Thinking outside the box: students positive about visionary elective curricula in medical school

Abstract

Objective: Space for personality development as well as for the development of critical, creative and interdisciplinary thinking is rarely found in medical curricula in Germany. To be prepared for the challenges of modern medicine, future physicians need a visionary mindset. The aim of this study is to determine the need for teaching such content among medical students in the context of visionary elective curricula and to examine these with regard to the desired topics and organizational structure.

Methods: This is a cross-sectional study with 236 medical students from all semesters of the Ludwig-Maximilians-University Munich. The survey consists of 50 questions and includes single choice, multiple choice, matrix questions, open-ended questions and Likert scales. Responses were examined using descriptive statistics and compared parametrically in sub-aspects.

Results: Three-quarters of respondents would like to see curricular content on interdisciplinary interfaces with other disciplines. A suitable framework for this is seen by 87% of the respondents in a visionary elective curriculum. Students would like to see a broad range of specific content such as global health, politics, business, and computer science. The majority of respondents would like to see 1 unit of instruction per week and would participate in an appropriate program. Such an offering would promote creative (53.6%), critical (63.7%), and interdisciplinary thinking (69.0%) and train to become better physicians (87%).

Conclusion: Participants in this study are positive toward the introduction of visionary content in medical school. Faculties should build visionary elective curricula according to the graduate profile requirements of the new NKLM 2.0 to make medical education sustainable.

Keywords: medical education, interdisciplinary studies, self-directed learning, creativity, visionary medicine, medical humanities

1. Introduction

1.1. Challenges for future physicians

The mission of medical school is to prepare physicians for future practice. Physicians are tasked with maintaining and, if possible, restoring the health of the population [https://www.gesetze-im-internet.de/_appro_2002/BJNR240500002.html]. Little room is given to personality development [1], [2]. In a profession that deals primarily with people, reflection and a basic understanding of society and the culture in which one practices is essential [3]. Currently, medicine and society are undergoing accelerating change. Technological innovation, digitalization, climate change, and the COVID-19 pandemic are just a few challenges facing medicine and society. A physician is at the center of society with medicine and must continuously adapt to the ongoing changes in the world in order to guarantee the best possible care for the population. Mere professional knowledge therefore does not seem to be sufficient. In times of Hippocrates, physicians therefore developed additional competencies, such as in philosophy. A physician in the 21st century also needs the ability to deal critically, creatively and interdisciplinarily with his capabilities and his role in society. These skills should therefore also be reflected in medical studies. In the Anglo-American world, the teaching of these skills has long been given space with the so-called Medical Humanities, where they are an integral part of many curricula [https://med.stanford.edu/medicineandthemuse/ProgramLinks/OtherPrograms.html]. A few years ago, the first German professorship for this topic was established at the Charité Berlin [4]. The Julius-Maximilians-University of Würzburg offers with the voluntary “Philosophicum” the possibility to question fundamental views on medicine [5], [6]. With the program “Lettered Medical Education”, the Technical University of Munich has created a voluntary program that aims to prepare future physicians for their human responsibility and to promote the examination of their own personality [7], [8]. The positive influence of
Medical Humanities on the personality formation and resilience of medical students and physicians as well as on the performance in multiple choice exams could be shown in several studies [9], [10], [11]. Similarly, the study of philosophy and other interdisciplinary content has long been called for by various experts [3], [6]. Since the 2000s, the digitalization of central areas of the working world has also found its way into healthcare and medicine and promises many opportunities [12], [13]. It is essential for future physicians to develop an understanding of the perspective of information technology [14]. In the area of digitalization, there has been at best sporadic curricular content nationwide [15], [16], [17]. An overview of the individual offerings at German faculties can be found in the research by Aulenkamp et al. (2021) [18].

At most German medical faculties, there is a large discrepancy between the requirements for future physicians and the actual training concepts [8]. In the 11th Student Survey of the Working Group on Higher Education Research at the University of Konstanz it is stated: “According to the majority of the students surveyed, far too little value is placed on: developing their own focal points of interest; analyzing complex issues; criticizing teaching opinions; participating in discussions in courses; applying what they have learned to practical issues; taking an interest in social and political issues from the perspective of the subject; dealing with ethical issues; applying research methods independently” [1]. This situation has also been confirmed in subsequent student surveys [2]. However, there has not yet been a systematic investigation of how medical students perceive this issue.

1.2. The physician as visionary

In order to define the physician role model and make it usable for medical education, various approaches have been pursued in the past and attempts have been made to make them usable for medical education. The CanMEDS roles represent a model that has been widely used for this purpose [19]. They were adapted to German-speaking countries for the creation of the NKLM 2015 (Nationaler Kompetenzbasierter Lernzielkatalog Medizin) and linked to competence-oriented teaching [http://www.nklm.de]. In recent years, it has been noticed – especially in the course of digitalization – that it is difficult to map modern, system-transcending ideas or even learning objectives within the existing role definitions. Federal policy has responded to the aforementioned demands on future physicians. First reforms such as the Masterplan Medizinstudium 2020 (MM 2020) [20] have been underway since 2015 [20]. The German Council of Science and Humanities (Wissenschaftsrat) demands that in addition to 75% (4500 h) core curriculum, 25% (1500 h) elective curriculum should be offered to allow individual focus training in addition to teaching basic medicine and competencies [21]. In the course of the further development of the NKLM 2.0 [22], [http://www.nklm.de] demanded by MM 2020 and promoted by IMPP (Institut für medizinische und pharmazeutische Prüfungsfragen), MFT (Medizinischer Fakultätsrat), bvmd (Bundesvertretung der Medizinstudierenden in Deutschland e.V.) and other associations, competencies of the „visionary axis“ were therefore demanded for the first time in the graduate profile (Chap. IV.2.8). These are integrated into the corresponding EPAs (entrustable professional activities) or nested EPAs, which form the basis for the learning objectives. The “visionary axis” is a newly introduced concept in the German training landscape, accordingly many aspects of the concept are still insufficiently investigated. In an international comparison, some contents overlap with the field of Medical Humanities discussed above and have been studied in its context [9], [23], [24]. However, the concept of the visionary axis goes further and includes other system-transcending dimensions. In the graduate profile of the NKLM, the visionary axis is defined as follows: “The genuine task of lifelong learning of physicians is the formation of a critical way of looking at things and the constructive and future-oriented working towards innovations and meaningful changes. Learning is understood as a productive-creative, activating, context- and socially-sensitive process. In the personal confrontation with the reality of patient care, students acquire skills for critical evaluation as well as the competencies and willingness to help shape this reality in the sense of a sustainable, patient- and person-centered medicine. In doing so, they know how to deal creatively with uncertainties, understand diversity and individuality as enrichments, and connect their daily actions in the knowledge of the past and with orientation towards the future” [25]. The integration of the visionary axis into the NKLM 2.0 was partly done on the initiative [26] of the bvmd, which had called for an extension of the previous CanMEDS roles to include a visionary axis (see figure 1). Visionary (elective) curricula are one way of implementing this new curricular content in practice. They should expand the medical curriculum to include all those topics and competencies that are essential for personality development, reflection on one’s own professional role, and for a better understanding of societal structures (see figure 2). This should promote critical, interdisciplinary and creative thinking. Currently, there is no medical faculty in Germany with an elective curriculum that is visionary in this sense. The described characteristics of the visionary axis include a variety of skills and abilities, some of which are difficult to operationalize. Therefore, it is necessary to investigate an evaluation as well as a prioritization of content from the perspective of medical students. In addition, their assessment of the relevance of individual skills for their studies and everyday professional life should be analyzed.

1.3. Aims of the study

The aim of the present study is to investigate the student perspective regarding a visionary elective curriculum in terms of the NKLM 2.0. This orienting study’s goal is to map in a survey among medical students of the Ludwig-
Maximilians-University of Munich (LMU) whether the introduction of a visionary elective curriculum is desired from the students’ perspective, which topics are assessed by the students as relevant in terms of content and to record which organizational framework conditions (e.g. temporal scope of the elective curriculum) would be ideal from the students’ perspective.

2. Methods

2.1. Preparation of the survey and questionnaire design

In consultation with the ethics committee of the LMU Munich, there are no ethical-legal objections to the study. In creating the survey, the results of orienting focus group interviews were accessed. In these, on the one hand, a general interest of medical students in a visionary elective curriculum was established, on the other hand, the preferences and interests of the students regarding possible contents of the curriculum were surveyed. The final survey consisted of 50 questions. Preceding the survey were introductory texts explaining the visionary elective curriculum and how the survey was conducted. The questions were two matrix questions, ten single-choice questions, three multiple-choice questions, nine open-ended questions (two with free text), and 24 Likert scales. The decision was made to use 6-point Likert scales. This was done deliberately not to provide survey participants with a neutral choice, but at the same time to provide a sufficiently differentiated range of response options [27]. Depending on the question, five different poles were used (very positive/very negative; very supported/not supported; very well covered/not covered; very interested/not interested; strongly agree/strongly disagree). The survey was created using the software EvaSys (Lüneburg, Germany). A pilot was conducted by initially administering the questionnaire to 10 subjects. This resulted in an average completion time of 4:30 minutes and no technical difficulties in completion. The results of the subjects were not included in the survey results.

2.2. Conduction of the study

250 questionnaires were distributed to medical students of the Ludwig-Maximilians-University (LMU) within two weeks. Potential participants were approached personally before the start or after regular, curricular events to avoid selection bias. Participants were from both preclinical...
(N=63) and clinical study sections (N=173), ranging from first to 12th semester (see primary data for details, attachment 1). The response rate was 96.8% (voluntary participation). The response rate was based on the proportion of questionnaires received to questionnaires distributed. As an inclusion criterion, only LMU medical students were eligible to complete the survey. Six questionnaires had to be excluded ex-post because the respective participants indicated that they had not completed the questions truthfully or were not students of LMU.

2.3. Statistical analysis

The statistical analysis was performed with the software IBM SPSS 25 (Armonk, USA). For the creation of relative frequency values, only the answered questions were evaluated as the population in each case. A descriptive analysis of demographic and thematic preferences was performed. For the evaluation of the students’ assessment, Likert rating 1 and 2 were each evaluated as positive expression, Likert rating 5 and 6 as negative expression. Likert rating 3 was evaluated as “tending to negative”, Likert rating 4 was evaluated as “tending to positive”. The free texts were screened by two authors and sorted into groups according to content. Single-factor ANOVAs and t-tests were used for parametric comparisons. Distributional hypotheses were tested by nonparametric tests. A significance level of α=0.05 was assumed for all tests.

3. Results

3.1. Demographics of the participants

Questionnaires from N=236 students were included in the survey analysis (see figure 3). The average participant was 22.6 years old, female (66.0%), and in the clinical study section (68.0%). Of all survey participants, 17.0% reported that they were enrolled in another field of study prior to entering human medicine. 2.5% of students were concurrently enrolled in another field of study at the time of the survey. 21.2% mentioned having already completed professional training. 10.0% of students expressed interest in pursuing a second degree. Figure 3, items C and D show the study preferences that were indicated for a possible second degree program.

3.2. Evaluation of the current study situation compared to visionary elective curricula and topic focus

The majority of students (62.8%) indicated that the current medical school curriculum did not promote much creative thinking (Likert 1-2). 53.6% of students expected that a visionary elective curriculum would promote creative thinking (Likert 5-6). One-third of students (33.5%) felt that critical thinking was not promoted much in the curriculum (Likert 1-2). 63.7% of students expected that...
a visionary elective curriculum would promote critical thinking (Likert 5-6). 18.5% of the participants saw interdisciplinary thinking as little promoted by the course of study (Likert 1-2). A significant promotion would also be expected by 69.0% of the students with regard to interdisciplinary thinking (see figure 4). With regard to the subject orientation of the study program, most students saw topics such as biology (Likert mean: 4.67) and statistics (Likert mean: 3.61) as already being covered to a sufficient extent. Other topics such as global health (Likert mean: 2.80), computer science (Likert mean: 2.25), philosophy (Likert mean: 2.16), economics (Likert mean: 1.78), politics (Likert mean: 1.68), or literature (Likert mean: 1.30) appear to be covered rather less (see figure 4, Item D). In terms of topic orientation of visionary elective curricula, respondents were strongly inclined toward topic interfaces with global health (Likert mean: 4.45), politics (Likert mean 4.04). Respondents tended to be averse to addressing topic interfaces with biology (Likert mean: 3.35) and philosophy (Likert mean: 3.32). Students were strongly averse to statistics (Likert mean 2.98) and literature (Likert mean 2.79). Other topics suggested in free text were ethics (N=4), psychology, especially with interviewing & communication (N=8), law (N=5), languages & rhetoric (N=6), history (N=5), practical skills (N=3), sports (N=3), nursing and physical therapy (N=2), engineering and technology (N=2), and with one mention each: music, dentistry, general knowledge, arts & culture, research, establishment, and alternative medicine. Pre-clinical and clinical students did not differ significantly (data not shown).

3.3. Evaluation of visionary elective curricula.

Overall, 81.6% of students supported the promotion of teaching thematic interfaces with non-medical specialties (see figure 5, item A). There was no significant difference between the wishes of preclinical (mean: 1.10; SD: 0.31; scale: "yes"=1.0; "no"=2.0) and clinical (mean: 1.22, SD: 0.41) students. A visionary elective curriculum was considered useful by 67.3% (see figure 5, item B, Likert 5-6). 9.3%, on the other hand, could not see any added value in such an additional offering (Likert 1-2). More than half (58.3%) of the students stated that they would like to participate in a visionary elective curriculum (Likert 5-6). 21.3% expressed at least a positive tendency (Likert 4) to want to take advantage of this offer. Students in the preclinical study section (average Likert rating: 4.9; SD: 1.1) would participate in such an elective curriculum significantly more often (p=0.02) than students in the clinical study section (average Likert rating: 4.4; SD: 1.5). Regarding the time commitment, most students (42.2%) were in favor of one teaching unit (UE) per week of 45 min (see figure 5, item D).

More than half of the students (56%, Likert 5-6) felt that a visionary elective curriculum could make them better...
Figure 5: (A) Should interfaces of medicine with non-medical specialties be taught? Plot: relative frequencies, N=215. (B) Assessment of the usefulness of a visionary elective curriculum (N=214) and willingness to participate in such a program (N=211). Plot: relative frequencies from 6-point Likert scales. (C) Comparison of willingness to participate in such a program between preclinical and clinical settings. Plot: means from 6-item Likert scales, N=210, ANOVA, * = p<0.05. (D) Desired number of teaching units (UE) for visionary elective curricula in different time periods. Plot: Relative frequencies from single-choice questions, N=206. WE=1 weekend course in semester, Mon=month, Wo=week. (E) Do visionary elective curricula make students better physicians? Plot: relative frequencies of a 6-point Likert scale, N=216.

physicians. A quarter (25.8%) expressed at least a positive tendency (Likert score: 4). In free-text responses categorized by the authors, this was explained by the increase in general education (55.2%), the promotion of critical and creative thinking (25.4%), and expansion of non-medical expertise (3.0%) and personality development (1.5%).

4. Discussion

This paper is the first study to examine students’ perspectives on the new “visionary axis” in competency-based curricula [25] called for in the NKLM 2.0. Visionary curricula are designed to foster a visionary mindset in order to educate visionary physicians who can meet the societal challenges of today and tomorrow with critical, interdisciplinary, and creative thinking [26]. The results of this study should provide food for thought to build visionary curricula in Germany. It is a study with 236 participants from clinical and preclinical semesters. The high response rate of >96% could be achieved by conducting the survey in randomly selected, attendance-required face-to-face courses with high staffing. In this way, we felt that a possible selection bias for students who were already interested and would be more likely to participate in a relevant survey was counteracted. Orienting focus group interviews with students conducted in advance allowed us to generate hypotheses for the final survey. Despite a small pilot sample size of 10 students, basic information about the feasibility and comprehensibility of the questions was obtained. The fact that the study was conducted at only one university means that it can only be partially transferred to other universities in Germany. In particular, it must be taken into account that significantly more students in the clinical study section participated in the survey. Nevertheless, it should be pointed out that the image of the “better doctor” is difficult to operationalize. This image is influenced by multiple aspects in the physician’s understanding of his/her role. The NKLM 2.0 also addresses this issue in Chapters III and IV [http://www.nklm.de]. In this article, in addition to examining the physician ideal in the pilot, the definition of “good physician” was further queried in the primary survey to capture an understanding of individual perceptions of this ideal among students. Responses to this can be found in the primary data in attachment 1.

Based on the results on content aspects, we propose that a visionary elective curriculum be established as a longitudinal course in medical school. The majority of respondents favored 1 UE per week of 45 min. According to the respondents, such a course would have very great potential to promote creative, critical, and interdisciplinary
thinking skills. This is in line with the goal of visionary curricula and is compatible with the requirements for individual focus required by the German Council of Science and Humanities [19]. Respondents would like to see a range of specific content to choose from (see figure 4). A modular structure of the elective curricula with a possible internal credit system would therefore be advantageous. Already in the 2015 version of the NKLM, there are some learning objectives that could be mapped to a visionary curriculum, but are currently taught only sparsely [http://www.nklm.de]. Such learning objectives have become even more numerous in the new NKLM 2.0 [http://www.nklm.de]. Visionary elective curricula would provide the framework to cover these new learning objectives in the curriculum. In the long run, prospective accompanying research is useful to verify whether the teaching of a visionary mindset is indeed achievable through appropriate curricula.

5. Conclusions

The present work is a cross-sectional study to survey the need for a voluntary visionary elective curriculum among students at LMU Munich. 75.0% of the students surveyed would like to see curricular content on interdisciplinary interfaces with other (non-medical) disciplines. This would promote creative, critical, and interdisciplinary thinking. 67.3% of respondents see visionary elective curricula as a suitable framework for this. The majority of respondents would like to see a timeframe of 1 UE/week. In terms of content, global health, politics, economics, and computer science were the most requested topics. The majority of respondents concluded that a visionary elective curriculum would make medical students better physicians later on. The study thus provides the first orienting data for the student perspective on visionary content in medical studies, as called for in the “visionary axis” of the graduate profile of the new NKLM 2.0.

Author contributions

- Conceptualization: Eder, Gerhard, Rohr, Salvermoser, Schmidt
- Methodology: Eder, Gerhard, Schmidt
- Validation: Fischer, Dimitriadis
- Formal analysis: Eder, Rohr, Schmidt
- Investigations: Eder, Gerhard, Rohr, Salvermoser, Schmidt
- Resources: Dimitriadis, Fischer
- Data management: Eder, Rohr, Schmidt
- Transcript - preparation manuscript: Eder, Gerhard, Rohr, Salvermoser
- Transcript - review & editing: Dimitriadis, Fischer, Gerhard, Rohr, Salvermoser
- Visualization: Eder, Gerhard, Rohr, Salvermoser
- Supervision: Fischer, Dimitriadis
- Project coordination: Gerhard, Rohr (according to CRedit taxonomy, arranged alphabetically)

Acknowledgements

The authors would like to thank the LMU Munich Student Excellence Program (MeCuM StEP) for funding and in particular the other fellows of the class of 2019: Stephan Berthold, Katharina Eisenhut, Daniel Petersheim, Nicola Schieferdecker, Danmei Zhang. The authors would like to thank Marco Brücke (1997-2020) for his visionary mindset in creating the system transcendent axis “Der/Die Visionär*in” and the AG Medizinische Ausbildung der Bundesvertretung der Medizinstudierenden in Deutschland e.V. (bvmd) for the elaboration of the corresponding position paper. S.O. Rohr thanks the German National Academic Foundation for its support.

Competing interests

The authors declare that they have no competing interests.

Attachments

Available from https://www.egms.de/en/journals/zma/2021-38/zma001515.shtml
1. Attachment_1.pdf (209 KB)
Primary data

References

1. Kolbert-Ramm C, Ramm M. Zur Studiensituation im Fach Humanmedizin - Ergebnisse des 11. Studierendensurveys - Sonderauswertung mit Unterstützung des Medizinischen Fakultätentages (MFT) der Bundesrepublik Deutschland, Berlin. Konstanz: Universität Konstanz, Arbeitsgruppe Hochschulforschung, Büro für Sozialforschung; 2011.
2. Multrus F, Majer S, Bargel T, Schmidt M. Studiensituation und studentische Orientierungen - 13. Studierendensurvey und Universitäten und Fachhochschulen. Konstanz: Universität Konstanz, Arbeitsgruppe Hochschulforschung; 2016.
3. Cole TC, Harris RW. The art of medicine. Lancet. 2009;374(9691):P720. DOI: 10.1016/S0140-6736(09)60313-5
4. Charité - Universitätsmedizin Berlin. Erste Professur für Medical Humanities in Deutschland. Berlin: Charité - Universitätsmedizin Berlin; 2015.
5. Universitätsklinikum Würzburg. Konzept des Philosophicums. Würzburg: Universitätsklinikum Würzburg. Zugänglich unter/available from: https://www.ukw.de/forschung-lehre/wuerzburger-philosophicum/konzept/
6. Bohrer T, Schmidt M, Rüter G, Königshausen JH. Medizinstudium: Die Schwester der Medizin. Dtsh Ärztebl. 2010;107(51-52):A-2591/B-2261/C-20207.
7. Berberat P, Teufel D. Aus- und Weiterbildung: Arzt, nicht "nur" Mediziner. Dtsh Ärztebl. 2018;115(47):A-2172/B-1795/C-1773.
8. Mangione S, Chakraborti C, Staltari G, Harrison R, Tunkel AR, Liou KT, Cerco E, Voeller M, Bedwell WL, Fletcher K, Kahn MJ. Medical Students’ Exposure to the Humanities Correlates with Positive Personal Qualities and Reduced Burnout: A Multi-Institutional U.S. Survey. J Gen Intern Med. 2018;33(5):628-634. DOI: 10.1007/s11606-017-4275-8

9. Thomson A, Harley D, Cave M, Clandinin J. The enhancement of medical student performance through narrative reflective practice: a pilot project. Can Med Educ J. 2013;4(1):e69-74. DOI: 10.3883/cmej.36592

10. Orr AR, Moghbeli N, Swain A, Bassett B, Niepold S, Rizzo A, DeLisser HM. The Fostering Resilience through Art in Medical Education (FRAME) workshop: a partnership with the Philadelphia Museum of Art. Adv Med Educ Pract. 2019;10:361-369. DOI: 10.2147/AMEP.S194575

11. Kuhn S. Medizin im digitalen Zeitalter: Transformation durch Bildung. Dtstch Ärztebl. 2018;115(14):A-633/B-552/C-552.

12. Stiefelhagen P. Wohin geht die Reise in der digitalisierten Medizin? Info Diabetol. 2016;10(2):62. DOI: 10.1007/s15034-016-0847-7

13. Kuhn S, Kadioglu D, Deutsch K, Michl S. Data Literacy in der Medizin. Onkologe. 2018;24(5):368-377. DOI: 10.1007/s00761-018-0344-9

14. Justus-Liebig-Universität Giessen. SPC Digitale Medizin, eHealth und Telemedizin. Giessen: Justus-Liebig-Universität Giessen. Zugänglich unter/available from: https://www.uni-giessen.de/fbz/fb11/studium/medizin/klinik/spc/spechealth

15. Universität Heidelberg, Med. Fakultät. Digitale Medizin. Heidelberg: Universität Heidelberg, Med. Fakultät. Zugänglich unter/available from: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Digitale-Medizin.111801.0.html

16. Friedelhagen P. Wohin geht die Reise in der digitalisierten Medizin? Info Diabetol. 2016;10(2):62. DOI: 10.1007/s15034-016-0847-7

17. Kuhn S, Muller N, Kirchgassner E, Ulzheimer L, Deutsch KL. Digital skills for medical students - qualitative evaluation of the curriculum 4.0 "Medicine in the digital age". GMS J Med Educ. 2020;37(6):Doc60. DOI: 10.3205/zma001353

18. Aulenkamp J, Mikuteit M, Loffler T, Schmidt J. Overview of digital health teaching courses in medical education in Germany in 2020. GMS J Med Educ. 2021;38(4):Doc80. DOI: 10.3205/zma001476

19. Frank J. The CanMEDS 2005 physician competency framework. Better standards. Better physicians. Better care. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2005. Zugänglich unter/available from: http://www.royalcollege.ca/rcsite/canneds/canneds-framework-e.

20. Bundesministerium für Gesundheit. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Gesundheit; 2017.

21. Wissenschaftsrat. Neustrukturierung des Medizinstudiums und Änderung der Approbationsordnung für Ärzte - der Expertenkommission zum Masterplan Medizinstudium 2020 (Dr. 7271-18). Dresden: Wissenschaftsrat; 2018.

22. MFT Medizinischer Fakultätsrat der Bundesrepublik Deutschland. Presserklärung zur gemeinsamen Entwicklung von NKLM und GK. Berlin: MFT Medizinischer Fakultätsrat der Bundesrepublik Deutschland e.V.; 2018.

23. Song P, Tang W. Emphasizing humanities in medical education: Promoting the integration of medical scientific spirit and medical humanistic spirit. Biosci Trends. 2017;11(2):128-133. DOI: 10.5582/bst.2017.01092

24. Miller E, Balmer D, Hermann N, Graham G, Charon R. Sounding narrative medicine: studying students’ professional identity development at Columbia University College of Physicians and Surgeons. Acad Med. 2014;89(2):335-342. DOI: 10.1097/ACM.0000000000000098

25. AG Absolventenprofil. Absolventenprofil Medizinstudium - Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) und Kompetenzorientierter Gegenstandskatalog (GK). 2020.

26. Preston C, Colman A. Optimal Number of Response Categories in Rating Scales: Reliability, Validity, Discriminating Power, and Respondent Preferences. Acta Psychol (Amst). 2000;104(1):1-15. DOI: 10.1016/S0001-6918(99)00050-5

27. Aulenkamp J, Mikuteit M, Loffler T, Schmidt J. Overview of digital health teaching courses in medical education in Germany in 2020. GMS J Med Educ. 2021;38(4):Doc80. DOI: 10.3205/zma001476

Corresponding author:
Sven Olaf Rohr
LMU Munich, University Hospital of Munich, Institute for Didactics and Training Research in Medicine, Pettenkoferstr. 8a, D-80336 Munich, Germany, Phone: +49 (0)89/4400-57202, Fax: +49 (0)89/4400-57202
sven.rohr@med.uni-muenchen.de

Please cite as
Rohr SO, Gerhard A, Schmidt F, Eder J, Salvermoser L, Dimitriadis K, Fischer MR. Thinking outside the box: students positive about visionary elective curricula in medical school. GMS J Med Educ. 2021;38(7):Doc119.
DOI: 10.3205/zma001515, URN: urn:nbn:de:0183-zma0015153

This article is freely available from https://www.egms.de/en/journals/zma/2021-38/zma001515.shtml

Received: 2020-10-22
Revised: 2021-06-20
Accepted: 2021-08-12
Published: 2021-11-15

Copyright ©2021 Rohr et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Über den Tellerrand hinaus: Studierende positiv gegenüber visionären Wahlcurricula im Medizinstudium eingestellt

Zusammenfassung

Zielsetzung: Platz für Persönlichkeitsbildung sowie für die Entwicklung kritischen, kreativen und interdisziplinären Denkens findet sich nur selten in medizinischen Curricula in Deutschland. Um auf die Herausforderungen der modernen Medizin vorbereitet zu sein, brauchen angehende Ärztinnen/Ärzte eine visionäre Geisteshaltung. Ziel der Studie ist es, den Bedarf für die Vermittlung solcher Inhalte unter Medizinstudierenden im Rahmen von visionären Wahlcurricula zu ermitteln und diese hinsichtlich der gewünschten inhaltlichen und organisatorischen Struktur zu untersuchen.

Methodik: Es handelt sich um eine Querschnittsstudie mit 236 Medizinstudierenden aus allen Semestern der Ludwig-Maximilians-Universität München. Die Umfrage besteht aus 50 Fragen und beinhaltet Single-Choice, Multiple Choice, Matrixfragen, offene Fragen und Likert-Skalen. Die Antworten wurden mittels deskriptiver Statistik untersucht und in Teilaspekten parametrisch verglichen.

Ergebnisse: Dreiviertel der Befragten wünschen sich curriculare Inhalte zu interdisziplinären Schnittstellen mit anderen Fachrichtungen. Ein geeigneter Rahmen dafür wird von 87% der Befragten in einem visionären Wahlcurriculum gesehen. Die Studierenden wünschen sich ein breites Angebot spezifischer Inhalte wie Global Health, Politik, Wirtschaft und Informatik. Die Mehrheit der Befragten wünscht sich einen Zeitumfang von 1 Unterrichtseinheit pro Woche und würde an einem entsprechenden Programm teilnehmen. Ein solches Angebot würde das kreative (53,6%), kritische (63,7%) und interdisziplinäre Denken (69,0%) fördern und zu besseren Ärztinnen/Ärzten ausbilden (87%).

Schlussfolgerung: Die Teilnehmenden dieser Studie sind gegenüber der Einführung visionärer Inhalte im Medizinstudium positiv eingestellt. Fakultäten sollten entsprechend der Anforderungen des Absolventenprofils des neuen NKLM 2.0 visionäre Wahlcurricula aufbauen, um die Ausbildung von Ärztinnen und Ärzten zukunftsfähig zu machen.

Schlüsselwörter: medizinische Ausbildung, interdisziplinäre Studien, selbstgesteuertes Lernen, Kreativität, Visionäre Medizin, Medizinische Geisteswissenschaften

1. Einleitung

1.1. Herausforderungen für angehende Ärztinnen/Ärzte

Das Medizinstudium hat den Auftrag, auf die spätere ärztliche Tätigkeit vorzubereiten. Ärzte haben den Auftrag, die Gesundheit der Bevölkerung zu erhalten und nach Möglichkeit wiederherzustellen [https://www.gesetze-im-internet.de/_appro_2002/BJNR240500002.html]. Der Persönlichkeitsentwicklung wird dabei wenig Raum gegeben [1], [2]. In einem Beruf, der vorrangig mit Menschen zu tun hat, ist Reflexion und ein Grundverständnis für die Gesellschaft und die Kultur, in der praktiziert wird, von zentraler Bedeutung [3]. Derzeit befinden sich Medizin und Gesellschaft in einem sich beschleunigendem Wan- del. Technische Innovationen, Digitalisierung, Klimawandel und die COVID-19-Pandemie sind nur einige Herausforderungen, der Medizin und Gesellschaft gegenüberste- hen. Ein Arzt steht mit der Medizin im Zentrum der Gesell- schaft und muss sich kontinuierlich an den fortwährenden Wandel der Welt anpassen, um bestmögliche Versorgung der Bevölkerung zu garantieren. Bloßes Fachwissen erreicht deshalb nicht ausreichend. Zu Zeiten Hippokrates haben Ärzte daher auch andere Kompetenzen, wie bei- spielsweise in der Philosophie, ausgebaut. Auch ein Arzt im 21. Jahrhundert benötigt die Fähigkeit, sich kritisch, kreativ und interdisziplinär mit seinem Handeln und der Gesellschaft auseinanderzusetzen. Diese Fähigkeiten...
sollten sich daher auch im Medizinstudium wiederfinden. Im angloamerikanischen Raum wird der Vermittlung dieser Kompetenzen schon länger mit den sogenannten Medical Humanities Raum gegeben, diese sind dort fester Bestandteil vieler Curricula [https://med.stanford.edu/medicineandthemuse/ProgramLinks/OtherPrograms.html]. Auch an der Charité Berlin wurde vor einigen Jahren die bundesweit erste Professur für dieses Thema eingerichtet [4]. Die Julius-Maximilians-Universität Würzburg bietet mit dem freiwilligen "Philosophicum" Medizinstudierenden, die Möglichkeit, grundlegende Sichtweisen auf die Medizin zu hinterfragen [5], [6]. Mit dem Programm "Lettered Medical Education" hat die TU München ein freiwilliges Programm geschaffen, das angehende Mediziner auf ihre menschliche Verantwortung vorbereiten und die Auseinandersetzung mit der eigenen Persönlichkeit fördern will [7], [8]. Der positive Einfluss von Medical Humanities auf die Persönlichkeitsbildung und die Resilienz von Medizinstudierenden und Ärzten sowie auf das Abschneiden in Multiple Choice-Klausuren konnte in mehreren Studien gezeigt werden [9], [10], [11]. Ebenso wird die Beschäftigung mit Philosophie und anderen interdisziplinären Inhalten schon länger von verschiedenen Experten gefordert [3], [6]. Seit den 2000er Jahren hält auch die Digitalisierung zentraler Bereiche der Arbeitswelt Einzug in das Gesundheitswesen und die Medizin und verspricht viele Chancen [12], [13]. Für angehende Ärzte ist es essentiell, ein Verständnis für die Perspektive der Informationstechnologie entwickeln [14]. Im Bereich Digitalisierung gibt es bundesweit bisher allenfalls vereinzelt curriculare Inhalte [15], [16], [17]. Eine Übersicht zu den einzelnen Angeboten an deutschen Fakultäten findet sich in den Untersuchungen von Aulenkamp et al. (2021) [18].

An den meisten deutschen Medizinfakultäten herrscht eine große Diskrepanz zwischen den Anforderungen an zukünftige Ärzte und den tatsächlichen Ausbildungsconzepten [8]. Schon im 11. Studierendensurvey der Arbeitsgruppe Hochschulforschung an der Universität Konstanz heißt es: „Deutlich zu wenig Wert gelegt wird dagegen nach Ansicht der Mehrheit der befragten Studierenden darauf: eigene Interessenschwerpunkte zu entwickeln; komplex Sachverhalte zu analysieren; Kritik an Lehrmeinungen zu üben; sich an Diskussionen in Lehrveranstaltungen zu beteiligen; das Gelernte auf praktische Fragestellungen umzusetzen; sich für soziale und politische Fragen aus der Sicht des Faches zu interessieren; sich mit ethischen Fragestellungen zu befassen; Forschungsmethoden selbstständig anzuwenden“ [1]. Diese Situation wurde auch in folgenden Studierendensurveys bestätigt [2]. Allerdings wurde bisher noch nicht systematisch untersucht, wie Medizinstudierende diese Thematisierung einschätzen.

1.2. Die Ärztin/der Arzt als Visionär/in

Um das ärztliche Rollenbild zu definieren und für die ärztliche Ausbildung nutzbar zu machen, wurden in der Vergangenheit verschiedene Ansätze verfolgt und versucht, sie für die ärztliche Ausbildung nutzbar zu machen. Ein bisher weit verbreitetes Modell hierfür stellen die CanMEDS-Rollen dar [19]. Sie wurden für die Erstellung des NKLM 2015 auf den deutschsprachigen Raum angepasst und mit kompetenzorientierter Lehre verbunden [http://www.nklm.de]. In den vergangenen Jahren ist – insbesondere im Zuge der Digitalisierung – aufgefallen, dass sich innerhalb der bestehenden Rollendefinitionen nur schwer innovative, system-transzende Ideen oder gar Lernziele abbilden lassen. Die Bundespolitik hat auf die oben genannten Anforderungen an zukünftige Ärzte reagiert. Erste Reformen wie der Masterplan Medizinstudium 2020 (MM 2020) sind seit 2015 im Gange [20]. Der Deutsche Wissenschaftsrat fordert, dass neben 75% (4500 h) Kernkurscurriculum auch 25% (1500 h) Wahlkurscurriculum angeboten werden, um so neben der Vermittlung von Basismedizinkompetenzen individuelle Schwerpunktbildung zu ermöglichen [21]. Im Zuge der vom MM 2020 geforderten und vom IMPP, MFT, bvmrd und weiteren Verbänden vorangetriebenen Weiterentwicklung des NKLMs 2.0 (Nationaler Kompetenzbasierter Lernzielkatalog Medizin [22], [http://www.nklm.de]) wurden daher erstmalig Kompetenzen „der visionären Achse“ im Absolventenprofil (Kap. IV.2.8) gefordert. Diese sind in die entsprechenenden EPAs (entrustable professional activities) bzw. nested-EPAs integriert, die die Grundlage für die Lernziele darstellen. Die „visionäre Achse“ ist ein neu eingeführtes Konzept in der deutschen Ausbildungslandschaft, entsprechend sind viele Aspekte des Konzeptes noch unzureichend untersucht. Im internationalen Vergleich überschneiden sich einige Inhalte mit dem oben thematisierten Gebiet der Medical Humanities und sind in dessen Kontext untersucht worden [9], [23], [24]. Das Konzept der visionären Ärztin geht allerdings noch weiter und inkludiert auch andere systemtranszendenten Dimensionen. Im Absolventenprofil des NKLM ist die visionäre Ärztin wie folgt definiert: „Genuine Aufgabe des lebenslangen Lernens von Ärzt*innen ist die Ausbildung einer kritischen Betrachtungsweise und des konstruktiven und der Realität der Patientenversorgung erwerben die Studierenden Fähigkeiten zur kritischen Bewertung sowie die Kompetenzen und die Bereitschaft, diese Realität mit zu gestalten im Sinne einer zukunftssicheren, Patienten-orientierten Handlung.“ [25]. Die Integration der visionären Achse in den NKLM 2.0 erfolgte mitunter auf Initiative [26] der bvmrd (Bundesvertretung der Medizinstudierenden in Deutschland e.V.), die eine Erweiterung der bisherigen CanMEDS-Rollen um eine visionäre Achse gefordert hatte (siehe Abbildung 1). Eine Möglichkeit, diese neuen curriculären Inhalte auch praktisch umzusetzen, sind visionäre (Wahl-)Curricula. Sie sollen das medizinische Curriculum um all jene The-
Abbildung 1: Darstellung der sechs CanMEDs-Rollen mit der Erweiterung um die visionäre systemtranszendenten Achse (nach [19], modifiziert von [26]).

Abbildung 2: Ziele und Kernelemente visionären Denkens.

1.3. Ziele der Studie

Ziel der vorliegenden Studie ist es, die Studierendenperspektive in Bezug auf ein visionäres Wahlcurriculum im Sinne des NKLM 2.0 zu untersuchen. Die orientierende Studie soll in einer Umfrage unter Medizinstudierenden der Ludwig-Maximilians-Universität München (LMU) abilden, ob die Einführung eines visionären Wahlcurriculums aus Studierendensicht gewünscht ist, welche Themen von den Studierenden als inhaltlich relevant bewertet werden und erfassen, welche organisatorischen Rahmenbedingungen (z.B. zeitlicher Umfang des Wahlcurriculums) aus Sicht der Studierenden ideal wären.

2. Methoden

2.1. Erstellung der Umfrage und Fragebogendesign

In Rücksprache mit der Ethikkommission der LMU München bestehen keine ethisch-rechtlichen Bedenken gegen die Studie. Bei der Erstellung der Umfrage wurde auf die Ergebnisse von orientierenden Fokusgruppeninterviews zugegriffen. In diesen wurde einerseits ein generelles Interesse von Medizinstudierenden an einem visionären Wahlcurriculum festgestellt, andererseits wurden die Präferenzen und Interessen der Studierenden bezüglich möglicher Inhalte des Curriculums erhoben. Die finale Umfrage bestand aus 50 Fragen. Vorangehend fanden sich Einführungstexte mit Erklärungen zum visionären Wahlcurriculum und zur Durchführung der Umfrage. Es handelte sich bei den Fragen um zwei Matrixfragen, zehn Single-Choice-Fragen, drei Multiple-Choice-Fragen, neun offene Fragen (zwei mit Freitext) und 24 Likert-Skalen.
Es wurde sich dazu entschieden, eine 6-Punkt Likert-Skala zu verwenden. Damit soll den Umfrageteilnehmern bewusst keine neutrale Auswahlmöglichkeit geboten werden, gleichzeitig aber ein ausreichend differenziertes Spektrum an Antwortmöglichkeiten gegeben werden [27]. Je nach Fragestellung wurden fünf verschiedene Pole verwendet (sehr positiv/sehr negativ; sehr gefördert/nicht gefördert; sehr gut abgedeckt/nicht abgedeckt; großes Interesse/kein Interesse; große Zustimmung/große Ablehnung). Die Umfrage wurde unter Verwendung des Programmes EvaSys (Lüneburg, Deutschland) erstellt. Eine Pilotierung erfolgte, indem der Fragebogen zunächst an 10 Probanden ausgegeben wurde. Dabei ergab sich eine durchschnittliche Bearbeitungsdauer von 4:30 Minuten und keine technischen Schwierigkeiten bei der Durchführung. Die Ergebnisse der Probanden flossen nicht in die Umfrageergebnisse ein.

2.2. Durchführung der Umfrage

Es wurden 250 Fragebögen an Medizinstudierende der Ludwig-Maximilians-Universität (LMU) innerhalb von zwei Wochen ausgegeben. Die möglichen Teilnehmenden wurden vor Beginn oder nach regulären, curricularen Veranstaltungen persönlich angesprochen, um einen Selektionsbias zu vermeiden. Die Teilnehmenden kamen sowohl aus dem vorklinischen (N=63) als auch aus dem klinischen Studienabschnitt (N=173) und erstreken sich dabei vom ersten bis zum 12. Fachsemester (Details siehe Primärdaten, Anhang 1). Die Rücklaufquote lag bei 96,8% (freiwillige Teilnahme). Die Rücklaufquote ergab sich aus dem Anteil von erhaltenen zu ausgeteilten Fragebögen. Als Einschlusskriterium wurden nur Medizinstudierende der LMU zum Bearbeiten der Umfrage zugelassen. Sechs Bögen mussten ex-post ausgeschlossen werden, weil die jeweiligen Teilnehmenden, die Fragen nicht wahrheitsgemäß ausgefüllt zu haben oder nicht Studierende der LMU waren.

2.3. Statistische Auswertung

Die statistische Auswertung erfolgte mit dem Programm IBM SPSS 25 (Armonk, USA). Für die Erstellung relativer Häufigkeitswerte wurden jeweils nur die beantworteten Fragen als Grundgesamtheit gewertet. Es erfolgte eine deskriptive Analyse der demographischen und thematischen Präferenzen. Zur Auswertung der Einschätzung der Studierenden wurden jeweils die Likert-Bewertung 1 und 2 als positive Ausprägung gewertet, die Likert-Bewertung 5 und 6 als negative Ausprägung gewertet. Die Likert-Bewertung 3 wurde als „tendienziell negativ“, die Likert-Bewertung 4 wurde als „tendienziell positiv“ gewertet. Die Freitexte wurden von zwei Autoren gesichtet und nach Inhalten in Gruppen sortiert. Für die parametrischen Vergleiche wurden einfaktorielle ANOVAs und t-Tests verwendet. Verteilungshypothesen wurden durch nichtparametrische Tests geprüft. Bei allen Tests wurde ein Signifikanzniveau von α=0,05 angenommen.

3. Ergebnisse

3.1. Demografie der Teilnehmer

Die Mehrheit der Studierenden (62,8%) gab an, dass das derzeitige Medizinstudium das kreative Denken wenig fördere (Likert 1-2), 53,6% der Studierenden erwarten, dass ein visionäres Wahlcurriculum das kreative Denken fördere (Likert 5-6). Ein Drittel der Studierenden (33,5%) erwarten, dass ein visionäres Wahlcurriculum das kreative Denken fördere (Likert 5-6). 18,5% der Teilnehmenden sahen das interdisziplinäre Denken durch das Studium als wenig gefördert an (Likert 1-2). Eine deutliche Förderung würden 69,0% der Studierenden auch hinsichtlich des interdisziplinären Denkens erwarten (siehe Abbildung 4).

Bezüglich der Themenausrichtung des Studiums sahen die meisten Studierenden Themen wie Biologie (Likert-Mittelwert: 4,67) und Statistik (Likert-Mittelwert: 3,61) bereits in ausreichendem Maße behandelt. Weitere Themen wie Global Health (Likert-Mittelwert: 2,80), Informatik (Likert-Mittelwert: 2,25), Philosophie (Likert-Mittelwert: 2,16), Wirtschaft (Likert-Mittelwert: 1,78), Politik (Likert-Mittelwert: 1,68) oder Literatur (Likert-Mittelwert: 1,30) erscheinen eher weniger behandelt zu werden (siehe Abbildung 4, Punkt C). Bezüglich der Themenausrichtung visionärer Wahlcurricula waren die Befragten Themen schnittstellen zu Global Health (Likert-Mittelwert: 4,45), Politik (Likert-Mittelwert 4,04) stark zugeneigt. Die Befragten waren Themeschnittstellen zu Wirtschaftswissenschaften (Likert-Mittelwert: 3,90) und Informatik (Likert-Mittelwert 3,63) tendenziell zugeneigt. Studierende waren gegenüber der Behandlung von Themenschnittstellen zu Biologie (Likert-Mittelwert 3,35) und Philosophie (Likert-Mittelwert 3,32) tendenziell abgeneigt. Studierende waren gegenüber Statistik (Likert-Mittelwert 2,98) und Literatur (Likert-Mittelwert 2,79) stark abgeneigt. Weitere Themen,
die in Freitextform vorgeschlagen wurden, waren Ethik (N=4), Psychologie, v.a. mit Gesprächsführung & Kommunikation (N=8), Rechtswissenschaften (N=5), Sprachen & Rhetorik (N=6), Geschichte (N=5), praktische Fähigkeiten (N=3), Sport (N=3), Krankenpflege und Physiotherapie (N=2), Ingenieurwissenschaften und Technik (N=2), und mit jeweils einer Nennung: Musik, Zahnmedizin, General Knowledge, Kunst & Kultur, Forschung, Niederlassung und alternative Medizin. Studierende der Vorklinik und Klinik unterschieden sich nicht signifikant (Daten nicht gezeigt).

3.3. Bewertung visionärer Wahlcurricula

Insgesamt befürworteten 81,6% der Studierenden die Förderung der Lehre thematischer Schnittstellen mit nicht-medizinischen Fachgebieten (siehe Abbildung 5, Punkt A). Dabei zeigte sich kein signifikanter Unterschied zwischen den Wünschen von Studierenden aus Vorklinik (Mittelwert: 1,10; SD: 0,31; Skala: „Ja“=1,0; „Nein“=2,0) und Klinik (Mittelwert: 1,22; SD: 0,41). Ein visionäres Wahlcurriculum erachteten 67,3% als sinnvoll (siehe Abbildung 5, Punkt B, Likert 5-6). 9,3% hingegen konnten keinen Mehrwert in einem solchen Zusatzangebot erkennen (Likert 1-2). Mehr als die Hälfte (58,3%) der Studierendenklärten, an einem visionären Wahlcurriculum teilnehmen zu wollen (Likert 5-6). 21,3% äußerten zumindest eine positive Tendenz (Likert 4), dieses Angebot wahrzunehmen zu wollen. Studierende im vorklinischen Studienabschnitt (durchschnittliche Likert-Bewertung: 4,9; SD: 1,1) würden signifikant häufiger (p=0,02) an einem solchen Wahlcurriculum teilnehmen als Studierende im klinischen Studienabschnitt (durchschnittliche Likert-Bewertung: 4,4; SD: 1,5). Bezüglich des Zeitaufwandes sprachen sich die meisten Studierenden (42,2%) für eine Unterrichtseinheit (UE) pro Woche à 45 min aus (siehe Abbildung 5, Punkt D).

Mehr als die Hälfte der Studierenden (56%, Likert 5-6) sind der Meinung, dass ein visionäres Wahlcurriculum sie zu besseren Ärzten machen könne. Ein Viertel (25,8%) äußerten zumindest eine positive Tendenz (Likert-Bewertung: 4). In von den Autoren kategorisierten Freitextantworten wurde dies durch den Zuwachs an Allgemeinbildung (55,2%), der Förderung kritischen und kreativen Denkens (25,4%) sowie durch Erweiterung des nicht-medizinischen Fachwissens (3,0%) und der Persönlichkeitsbildung (1,5%) erklärt.

4. Diskussion

Die vorliegende Arbeit ist die erste Studie, die die Perspektive der Studierenden auf die neue, im NKLM 2.0 gefördeerte „visionäre Achse“ in kompetenzorientierten Curricula [25] untersucht. Visionäre Curricula sollen eine visionäre Geisteshaltung fördern, um visionäre Ärztinnen und
Ärzte auszubilden, die den gesellschaftlichen Herausforderungen von heute und morgen mit kritischem, interdisziplinärem und kreativem Denken begegnen können [26].

Die Ergebnisse dieser Studie sollen einen Denkanstoß dazu geben, visionäre Curricula in Deutschland aufzubauen. Es handelt sich um eine Studie mit 236 Teilnehmenden aus klinischen und vorklinischen Semestern. Die hohe Rücklaufquote von >96% konnte dadurch erreicht werden, dass die Umfrage in zufällig ausgewählten, anwesenheitspflichtigen Präsenzveranstaltungen mit hohem Personalaufwand durchgeführt wurde. So sahen wir einem möglichen Selektionsbias für ohnehin interessierte Studierende, die häufiger an einer entsprechenden Umfrage teilnehmen würden, entgegengewirkt. Durch vorab durchgeführte orientierende Fokusgruppeninterviews mit Studierenden ließen sich Hypothesen für die finale Umfrage generieren. Trotz einer geringen Fallzahl der Pilotierung mit 10 Studierenden konnten grundlegenden Informationen über die Machbarkeit und die Verständlichkeit der Fragen gewonnen werden. Die Durchführung der Studie an nur einer Universität lässt eine Übertragbarkeit auf andere Universitäten in Deutschland nur teilweise zu. Insbesondere muss berücksichtigt werden, dass deutlich mehr Studierende im klinischen Studienabschnitt an der Umfrage teilgenommen haben. Gleichwohl ist darauf hinzuweisen, dass sich das Bild des „bessere/n Arzt/Ärztin“ nur schwer operationalisieren lässt. Dieses Bild wird durch multiple Aspekte im ärztlichen Rollenverständnis beeinflusst. Auch der NKLM 2.0 befasst sich in den Kapiteln III und IV [http://www.nklm.de] mit dieser Fragestellung. In dieser Arbeit wurde neben der Untersuchung des ärztlichen Ideals in der Pilotierung auch in der Hauptumfrage die Definition des „guten Arztes“ weiter abgefragt, um ein Verständnis von der individuellen Wahrnehmung dieses Ideals unter Studierenden zu erfassen. Die Antworten dazu befinden sich in den Primärdaten in Anhang 1.

Auf Basis der Ergebnisse zu inhaltlichen Gesichtspunkten schlagen wir vor, ein visionäres Wahlcurriculum als longitudinalem Kurs im Medizinstudium aufzubauen. Die Mehrheit der Befragten befürwortet 1 UE pro Woche mit 45 min. Ein solcher Kurs hätte nach Meinung der Befragten sehr großes Potenzial, kreatives, kritisches und interdisziplinäres Denkvermögen zu fördern. Das entspricht der Zielsetzung visionärer Curricula und ist kompatibel zu den vom Wissenschaftsrat geforderten Vorgaben an die individuelle Schwerpunktbildung [21].

Die Befragten wünschen sich eine Reihe spezifischer Inhalte zur Auswahl (siehe Abbildung 4). Ein modularer Aufbau der Wahlcurricula mit möglichem internem Credit-System wäre daher vorteilhaft. Schon im NKLM in der Fassung von 2015 finden sich einige Lernziele, die sich auf ein visionäres Curriculum mappen ließen, momentan aber nur spärlich gelehrt werden [http://www.nklm.de]. Derartige Lernziele sind im neuen NKLM 2.0 noch zahlreicher geworden [http://www.nklm.de]. Visionäre Wahl-
Abbildung 5: (A) Sollen Schnittstellen der Medizin mit nicht-medizinischen Fachrichtungen gelehrt werden? Darstellung: relative Häufigkeiten, N=215 (B) Bewertung der Sinnhaftigkeit eines visionären Wahlcurriculums (N=214) und der Teilnahmebereitschaft an einem solchen Programm (N=211). Darstellung: relative Häufigkeiten aus 6-stufigen Likert-Skalen. (C) Vergleich der Teilnahmebereitschaft an einem solchen Programm zwischen Vorklinik und Klinik. Darstellung: Mittelwerte aus 6-stufigen Likert-Skalen, N=210, ANOVA, * = p<0.05. (D) Gewünschter Anzahl an Unterrichtseinheiten (UE) für visionäre Wahlcurricula in verschiedenen Zeiträumen. Darstellung: Relative Häufigkeiten aus Single-Choice-Fragen, N=206, WE=1 Wochenendkurs im Semester, Mon=Monat, Wo=Woche. (E) Machen visionäre Wahlcurricula Studierende zu besseren Ärzten? Darstellung: relative Häufigkeiten einer 6-stufigen Likert-Skala, N=216.

curricula böten den Rahmen, diese neuen Lernziele im Curriculum mit abzudecken. Langfristig ist eine prospektive Begleitforschung sinnvoll, um zu überprüfen, ob die Vermittlung einer visionären Geisteshaltung tatsächlich durch entsprechende Curricula erreichbar ist.

5. Schlussfolgerungen

Bei der vorliegenden Arbeit handelt es sich um eine Querschnittstudie zur Erhebung des Bedarfs eines freiwilligen visionären Wahlcurriculums unter Studierenden der LMU München. 75,0% der befragten Studierenden wünschen sich curriculare Inhalte zu interdisziplinären Schnittstellen mit anderen (nicht-medizinischen) Fachrichtungen. Damit würden kreatives, kritisches und interdisziplinäres Denken gefördert. 67,3% der Befragten sehen in visionären Wahlcurricula einen dafür geeigneten Rahmen. Die Mehrheit der Befragten wünscht sich einen Zeitumfang von 1 UE/Woche. Inhaltlich wurden die Themen Global Health, Politik, Wirtschaft und Informatik am stärksten gefordert. Die Mehrheit der Befragten kam zu dem Schluss, dass ein visionäres Wahlcurriculum Medizinstudierende später zu besseren Ärztinnen und Ärzten mache. Die Studie liefert damit erste orientierende Daten für die studentische Perspektive auf visionäre Inhalte im Medizinstudium, wie Sie in der „visionären Achse“ des Absolventenprofils des neuen NKLM 2.0 gefordert werden.

Beiträge der Autoren

- Konzeptualisierung: Eder, Gerhard, Rohr, Salvermoser, Schmidt
- Methodik: Eder, Gerhard, Schmidt
- Validierung: Fischer, Dimitriadis
- Formale Analyse: Eder, Rohr, Schmidt
- Untersuchungen: Eder, Gerhard, Rohr, Salvermoser, Schmidt
- Ressourcen: Dimitriadis, Fischer
- Datenverwaltung: Eder, Rohr, Schmidt
- Niederschrift - Erstellung Manuskript: Eder, Gerhard, Rohr, Salvermoser
- Niederschrift - Überprüfung & Editierung: Dimitriadis, Fischer, Gerhard, Rohr, Salvermoser
- Visualisierung: Eder, Gerhard, Rohr, Salvermoser
- Supervision: Fischer, Dimitriadis | Projektkoordination: Gerhard, Rohr
(nach CRedit Taxonomy, alphabetisch geordnet)
Danksagungen

Die Autoren danken den Studierenden-Exzellenz-Programm der LMU München (MeCuM StEP) für die Förderung und insbesondere den weiteren Stipendiaten des Jahrgangs 2019: Stephan Berthold, Katharina Eisenhut, Daniel Petersheim, Nicola Schieferdecker, Danmei Zhang. Die Autoren danken Marco Brücke (1997-2020) für seine visionäre Geisteshaltung bei der Schöpfung der systemtranszendenten Achse „Der/Die Visionär*in“ und der AG Medizinische Ausbildung der Bundesvertretung der Medizinstudierenden in Deutschland e.V. (bvmd) für die Ausarbeitung des entsprechenden Positionspapiere. S.O. Rohr dankt der Studienstiftung des deutschen Volkes für deren Förderung.

Interessenkonflikt

Die Autoren erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Anhänge

Verfügbar unter https://www.meditum.med.tum.de/de/

1. Anhang _1.pdf (212 kB)
 Primärdaten

Literatur

1. Kolbert-Ramm C, Ramm M. Zur Studiensituation im Fach Humanmedizin – Ergebnisse des 11. Studierendensurveys - Sonderauswertung mit Unterstützung des Medizinischen Fakultätentages (MFT) der Bundesrepublik Deutschland, Berlin. Konstanz: Universität Konstanz, Arbeitsgruppe Hochschulforschung, Büro für Sozialforschung; 2011.
2. Multrus F, Majer S, Bargel T, Schmidt M. Studiensituation und studentische Orientierungen - 13. Studierendensurveyand Universitäten und Fachhochschulen. Konstanz: Universität Konstanz, Arbeitsgruppe Hochschulforschung; 2016.
3. Cole TC, Harris RW. The art of medicine. Lancet. 2009;374(9691:P720. DOI: 10.1016/S0140-6736(09)60313-5
4. Charité - Universitätsmedizin Berlin. Erste Professor für Medical Humanities in Deutschland. Berlin: Charité - Universitätsmedizin Berlin; 2015.
5. Universitätsklinikum Würzburg. Konzept des Philosophicums. Würzburg: Universitätsklinikum Würzburg, Zugänglich unter/available from: https://www.ukw.de/forschung-lehre/wuerzburger-philosophicum/konzept/".
6. Bohrer T, Schmidt M, Rüter G, Königshausen JH. Medizinstudium: Die Schwester der Medizin. Dtsch Arztebl. 2010;107(51-52):A-2591/B-2251/C-20207.
7. Berberat P, Teufel D. Aus- und Weiterbildung: Arzt, nicht "nur" Mediziner. Dtsch Arztebl. 2018;115(47):A-2172/B-1795/C-1773.
8. TUM München. LET ME. München: TUM München. Zugänglich unter/available from: https://www.medium.med.tum.de/de/content/let-me
9. Mangione S, Chakraborti C, Staltari G, Harrison R, Tunkel AR, Liou KT, CerCEO E, Voeller M, Bedwell WL, Fletcher K, Kahn MJ. Medical Students’ Exposure to the Humanities Correlates with Positive Personal Qualities and Reduced Burnout: A Multi-Institutional U.S. Survey. J Gen Intern Med. 2018;33(5):628-634. DOI: 10.1007/s11606-017-4775-8
10. Thomson A, Harley D, Cave M, Clandinin J. The enhancement of medical student performance through narrative reflective practice: a pilot project. Can Med Educ J. 2013;4(1):69-74. DOI: 10.36834/cmj/36592
11. Orr AR, Moghbeli N, Swain A, Bassett B, Niepold S, Rizzo A, DeLisser HM. The Fostering Resilience through Art in Medical Education (FRAME) workshop: a partnership with the Philadelphia Museum of Art, Adv Med Educ Pract. 2019;10:361-369. DOI: 10.2147/AMEP.S194575
12. Kuhn S. Medizin im digitalen Zeitalter: Transformation durch Bildung. Dtsch Ärztebl. 2018;115(14):A-633/B-552/C-552.
13. Stiefelhagen P, Wohin geht die Reise in der digitalisierten Medizin? Info Diabetol. 2016;10(2):62. DOI: 10.1007/s15034-016-0847-7
14. Kuhn S, Kadloglu D, Deutsch K, Michi S. Data Literacy in der Medizin. Onkologie. 2018;24(9):368-377. DOI: 10.1007/s00761-018-0344-9
15. Justus-Liebig-Universität Giessen. SPC Digitale Medizin, eHealth and Telemedizin. Giessen: Justus-Liebig-Universität Giessen. Zugänglich unter/available from: https://www.uni-giessen.de/fbz/fb11/studium/medizin/klinik/spc/spacehealth
16. Universität Heidelberg, Med. Fakultät. Digitale Medizin. Heidelberg: Universität Heidelberg, Med. Fakultät. Zugänglich unter/available from: http://www.medizinische-fakultaet-hd.uni-heidelberg.de/Digitale-Medizin.111801.0.html
17. Kuhn S, Muller N, Kirchgassner E, Ulzheimer L, Deutsch KL. Digital skills for medical students - qualitative evaluation of the curriculum 4.0 "Medicine in the digital age". GMS J Med Educ. 2020;37(6):Doc60. DOI: 10.3205/zma001353
18. Aulenkamp J, Mikuteit M, Loffler T, Schmidt J. Overview of digital health teaching courses in medical education in Germany in 2020. GMS J Med Educ. 2021;38(4):Doc80. DOI: 10.3205/zma001476
19. Frank J. The CanMEDS 2005 physician competency framework. Better standards. Better physicians. Better care. Ottawa: The Royal College of Physicians and Surgeons of Canada; 2005. Zugänglich unter/available from: http://www.royalcollege.ca/rcsite/canmeds/canmeds-framework-e.
20. Bundesministerium für Gesundheit. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Gesundheit; 2017.
21. Wissenschaftsrat. Neustrukturierung des Medizinstudiums und Änderung der Approbationsordnung für Ärzte - der Expertenkommission zum Masterplan Medizinstudium 2020 (Drs. 7271-18). Dresden: Wissenschaftsrat; 2018.
22. MFT Medizinischer Fakultätentag der Bundesrepublik Deutschland. Presseerklärung zur gemeinsamen Entwicklung von NLKM und GK. Berlin: MFT Medizinischer Fakultätentag der Bundesrepublik Deutschland e.V.; 2018.
23. Song P, Tang W. Emphasizing humanities in medical education: Promoting the integration of medical scientific spirit and medical humanistic spirit. Biosci Trends. 2017;11(2):128-133. DOI: 10.5582/bst.2017.01092
24. Miller E, Balmer D, Herrmann N, Graham G, Charon R. Sounding narrative medicine: studying students’ professional identity development at Columbia University College of Physicians and Surgeons. Acad Med. 2014;89(2):335-342. DOI: 10.1097/ACM.0000000000000098
25. AG Absolventenprofil. Absolventenprofil Medizinstudium - Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) und Kompetenzorientierter Gegenstandskatalog (GK). 2020.

26. Bruecke M, Loeffler T, Ritter A, Rohr SO. Erweiterung des NKLM um die Achse des Visionärs/ der Visionärin. Berlin: Bundesvertretung der Medizinstudierenden in Deutschland e.V.; 2018.

27. Preston C, Colman A. Optimal Number of Response Categories in Rating Scales: Reliability, Validity, Discriminating Power, and Respondent Preferences. Acta Psychol (Amst). 2000;104(1):1-15. DOI: 10.1016/S0001-6918(99)00050-5

Korrespondenzadresse:
Sven Olaf Rohr
Klinikum der Universität München, LMU München, Institut für Didaktik und Ausbildungsforschung in der Medizin, Pettenkoferstr. 8a, 80336 München, Deutschland, Tel.: +49 (0)89/4400-57208, Fax: +49 (0)89/4400-57202
sven.rohr@med.uni-muenchen.de

Bitte zitieren als
Rohr SO, Gerhard A, Schmidt F, Eder J, Salvermoser L, Dimitriadis K, Fischer MR. Thinking outside the box: students positive about visionary elective curricula in medical school. GMS J Med Educ. 2021;38(7):Doc119. DOI: 10.3205/zma001515, URN: urn:nbn:de:0183-zma0015153

Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001515.shtml

Eingereicht: 22.10.2020
Überarbeitet: 20.06.2021
Angenommen: 12.08.2021
Veröffentlicht: 15.11.2021

Copyright
©2021 Rohr et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.