Instrumente zur Risikoprädiktion für kardiovaskuläre Erkrankungen

Assessments tools for risk prediction of cardiovascular diseases

Abstract

Scientific background
Cardiovascular diseases have an enormous epidemiological and economic importance. For the selection of persons with increased total cardiovascular risk for individual-targeted (e. g. drug-based) prevention interventions different risk prognosis instruments (equations, point scores and table charts) were derived from studies or databases. The transferability of these prognostic instruments on the populations not examined in these data sources as well as their comparability are not clear.

Research questions
The evaluation addresses the questions on the existence of instruments for risk prediction of cardiovascular diseases, their transferability and comparability.

Methods
A systematic literature search was performed in the medical electronic databases in April 2008 beginning from 2004 and was completed with a hand search. Publications on the prognostic instruments for cardiovascular diseases as well as publications addressing external validity and/or comparing prognostic instruments were included in the evaluation.

Results
The systematic literature search yielded 734 hits. Three systematic reviews, 38 publications with descriptions of prognostic instruments and 29 publications with data on the validity of the prognosis instruments were identified.
Most risk prognosis instruments are based on the Framingham cohort of the USA. Only the PROCAM study is completely based on the German reference population. Almost all prognostic instruments use the variables sex, age, smoking, different parameters of the lipid status and of the blood pressure. Different cardiovascular events are considered to be an end parameter in the prognosis instruments. The time span for predicted events in the studies mostly comprises ten years.
Data on calibration of the prognosis instruments (a quotient of the predicted by the observed risk) are presented in nearly half of the studies on the validation, however in no study from Germany. Only single studies find the levels of calibration between 0.9 and 1.1. Many studies on the transferability of the prognosis instruments show a value of the discrimination (correct differentiation of persons with different risk levels, best value 1.0) between 0.7 and 0.8, few studies between 0.8 and 0.9 and no study over 0.9. The studies addressing the discrimination of the prognostic instruments on the German population almost always find values between 0.7 and 0.8.
The comparison of the validity of different risk prognosis instruments shows a trend for a better calibration and a better discrimination for the prognosis instruments examined on the derivation and/or validation cohorts of one of the compared prognostic instruments. Comparing the prognostic instruments on other cohorts, the newly derived Framingham prognostic instruments show a better discrimination in comparison with previously derived instruments. No studies exists comparing different prognostic instruments on the German population.

Discussion

The geographic variance of the cardiovascular morbidity and mortality supposed to be the most important factor limiting the transferability of the prognostic instruments. An appropriate recalibration is considered to be an approach for the improvement of the transferability.

Conclusions

The identified instruments for the risk prediction of cardiovascular diseases are insufficiently validated on the German population. Their use can lead to false risk estimation for a single person. Therefore, the existing prognostic instruments should be used for the informed decision-making and for the therapy selection in Germany only with critical caution.

Zusammenfassung

Wissenschaftlicher Hintergrund

Kardiovaskuläre Erkrankungen gehören zu den Krankheitsbildern mit enormer epidemiologischer und volkswirtschaftlicher Bedeutung. Zur Auswahl von Personen mit erhöhtem kardiovaskulärem Gesamtisiko für individuumsbezogene (ggf. medikamentöse) Präventionsmaßnahmen werden verschiedene Risikoprognoesinstrumente (Gleichungen, Punktcores bzw. Tabellendiagramme) aus Studien bzw. Datenbanken abgeleitet. Die Übertragbarkeit dieser Prognoseinstrumente auf die in diesen Datenquellen nicht untersuchten Populationen sowie deren Vergleichbarkeit ist unklar.

Fragestellung

Die Bewertung soll Fragen nach dem Vorhandensein von Instrumenten zur Risikoprädiktion für kardiovaskuläre Erkrankungen, ihrer Übertragbarkeit und Vergleichbarkeit beantworten.

Methodik

Es werden eine systematische Literaturrecherche in den medizinischen elektronischen Datenbanken im April 2008 ab 2004 und eine Literaturhandsuche durchgeführt. In die Bewertung werden Publikationen über Prognoseinstrumente für kardiovaskuläre Erkrankungen sowie Publikationen mit Angaben zur externen Validierung bzw. zum Vergleich solcher Prognoseinstrumente untereinander einbezogen.

Ergebnisse

Die systematische Literaturrecherche ergibt 734 Treffer. Es werden insgesamt drei systematische Übersichten, 38 Publikationen mit Beschreibungen prognostischer Instrumente und 29 Veröffentlichungen mit Angaben zur Validität der Prognoseinstrumente identifiziert.
Die meisten Risikoprognoseinstrumente basieren auf der Framingham-Kohorte der USA. Komplett auf die deutsche Bezugspopulation stützt sich ausschließlich die PROCAM-Studie. Fast alle prognostischen Instrumente verwenden als Variablen Geschlecht, Alter, Rauchen, Angaben zum Lipidstatus und zu Blutdruckwerten. Es werden bei den Prognoseinstrumenten verschiedene kardiovaskuläre Ereignisse als Endparameter betrachtet. Die Zeitspanne für prognostizierte Ereignisse beträgt meistens zehn Jahre.

Angaben zur Kalibrierung der Prognoseinstrumente (der Quotient von vorhergesagtem zu beobachtetem Risiko) werden in ca. der Hälfte der Studien zur Validierung präsentiert, dabei in keiner Studie aus Deutschland. Nur in einzelnen Studien liegt die Kalibrierung im Bereich von 0,9 bis 1,1. Viele Studien zur Übertragbarkeit von Prognoseinstrumenten zeigen einen Wert für die Diskrimination (richtige Zuordnung von Personen mit unterschiedlicher Risikohöhe, Bestwert: 1,0) zwischen 0,7 und 0,8, wenige zwischen 0,8 und 0,9 und keine über 0,9. In den Studien mit Angaben zur Diskrimination für die deutsche Population liegen diese Werte fast ausschließlich zwischen 0,7 und 0,8. Beim Vergleich der Validität von verschiedenen Risikoprognoseinstrumenten zeigt sich ein Trend für eine bessere Kalibrierung und eine bessere Diskrimination bei der Überprüfung auf den Ableitungsbzw. Validierungskohorten eines der verglichenen Prognoseinstrumente. Bei dem Vergleich von Prognoseinstrumenten durch Anwendung auf andere Populationen liefern die neu abgeleiteten Framingham-Prognoseinstrumente eine etwas bessere Diskrimination im Vergleich zu früher errechneten Instrumenten. Es liegen bislang keine Studien zum Vergleich von verschiedenen Prognoseinstrumenten an der deutschen Population vor.

Diskussion

Als die wichtigste limitierende Komponente bezüglich der Übertragbarkeit von Prognoseinstrumenten wird die geografische Varianz der kardiovaskulären Morbidität und Mortalität angeführt. Eine entsprechende Rekalibrierung wird als Ansatz zur Verbesserung der Übertragbarkeit angesehen.

Schlussfolgerungen

Die identifizierten Instrumente zur Risikoprädiktion von kardiovaskulären Erkrankungen sind an der deutschen Population nicht ausreichend validiert. Ihre Anwendung kann zur Fehleinschätzung des Risikos einzelner Patienten führen. Deswegen sind in Deutschland die vorliegenden Prognoseinstrumente für die informierte Entscheidungsfindung und die Therapieauswahl nur mit kritischer Vorsicht anzuwenden.

Schlüsselwörter: Kardiovaskuläre Erkrankungen, Risiko, Prognoseinstrumente, systematische Übersicht
Executive Summary

1. Scientific background
Cardiovascular diseases caused 358,684 deaths in Germany 2007 and have an enormous epidemiological importance. Cardiovascular diseases are also of extreme relevance from the health-economic view. The costs of cardiovascular diseases 2006 were nearly 35 billion euros.

It is assumed that cardiovascular morbidity and mortality are modifiable through different prevention interventions. Besides of the population-targeted prevention interventions the individual-targeted (e.g. drug-based) prevention interventions are usually indicated in persons with an increased total risk. For the selection of persons with an increased total cardiovascular risk, so-called risk prognosis instruments are constructed and used.

Risk prognosis instruments in form of equations, point scores and table charts (risk charts) are constructed through a statistical analysis of the data derived from populations. These instruments enable to estimate a risk for a cardiovascular event and/or a survival probability without this event in dependence of the values of the risk factors. Risk prognosis instruments may be also represented graphically, for example as nomograms.

There are a number of different risk prognosis instruments. Unfortunately, these instruments are based on different primary studies or databases which usually do not include the German population. The transferability of these prognostic instruments on the populations not examined in these data sources as well as the comparability of the validity of these prognostic instruments is questioned.

2. Research questions
The evaluation addresses the following questions:
- Which instruments for the risk prediction of cardiovascular diseases are available?
- What is the evidence for a transferability of the available risk prognosis instruments for cardiovascular diseases on populations not involved in the prognostic study?
- To what extent are the available methods for risk prediction of cardiovascular diseases comparable?

3. Methods

Information sources and search strategy
A literature search was performed in the most important medical electronic databases (MEDLINE, EMBASE etc.) in April 2008. The search strategy was restricted to the years beginning from 2004 as well as to the languages German and English. Moreover, an expanded hand search was performed to identify publications on prognostic instruments for cardiovascular diseases as well as publications on the external validity of different prognostic instruments.

Inclusion and exclusion criteria
Publications on prognostic instruments for cardiovascular diseases in persons without previous cardiovascular disease as well as publications addressing external validation and/or the comparison of different prognostic instruments were included in the evaluation. The instruments focusing on specific patient risk groups were not considered. Discrimination and calibration were used as accuracy criteria.

Data analysis and information synthesis
Systematic surveys and primary publications on prognostic instruments as well as publications on the evaluation of the validity and the comparability of different prognostic instruments were considered as information sources. The information synthesis was performed qualitatively.

4. Results

Results of the literature search
The systematic literature search yielded 734 hits. 116 publications were selected for the review in full text and were examined for the inclusion in the evaluation. Three systematic reviews, eight publications with descriptions of prognostic instruments and 13 publications addressing the validity of the prognostic instruments were identified through the literature search. The hand search in the reference lists of the relevant articles revealed 30 further publications with descriptions of prognostic instruments and 16 further publications addressing the validity of the prognostic instruments.

Risk prognostic instruments
Most risk prognosis instruments are based on the Framingham cohort of the USA, almost all other on European cohorts, mostly on British or Italian. Only the PROCAM study is completely based on the German reference population. Two other instruments, the SCORE Charts for Germany and the WHO/ISH-charts for the European risk region EUR-A, are partially based on this population. Population-based, patient-based and occupational cohorts, in some studies only men or women, were used as a reference population for the derivation of the prognostic instruments.

Almost all prognostic instruments use the variables sex, age, smoking and one or several parameters on lipid status and blood pressure. Many prognostic instruments use the variables diabetes mellitus and/or blood glucose for the risk calculation, several instruments the variables left ventricular hypertrophy on electrocardiogram (ECG), body-mass-index, antihypertensive therapy and some
prognostic instruments other variables. The multinational studies stratify their prognostic instruments also regionally. Mostly, only five to six prognostic variables are used in the prognostic instruments.

The most important endpoints are death from coronary heart disease, death from cardiovascular disease, coronary heart disease and coronary event (death, myocardial infarction, in some studies also angina pectoris and/or coronary revascularization) as well as cerebrovascular event (stroke, in some studies also transient ischemic attack), cardiovascular disease and cardiovascular event (coronary event, cerebrovascular event some studies also intermittent claudication and/or heart insufficiency). The time span for predicted events comprises mostly ten years.

Constructing the scores, three different statistical regression models, namely logistic, Weibull or Cox regression models, are used for the data analysis of the reference population. A stepwise regression model is selected in all procedures.

External validity of the risk prediction instruments of cardiovascular diseases

Data on calibration of the prognostic instruments (a quotient of the predicted by the observed risk) are presented in nearly half of the studies. Only a single study shows a level of calibration between 0.9 and 1.1. In all three studies from Germany data on the calibration of the prognostic instruments are missing.

Many studies on the transferability of the prognostic instruments show an AUC value for the discrimination (value for the correct differentiation of persons with different risk levels; AUC = area under the curve; best value 1.0) between 0.7 and 0.8 for different prognostic instruments (sufficient discrimination), few studies an AUC value between 0.8 and 0.9 (good discrimination) and no study an AUC value of more than 0.9 (excellent discrimination). From studies addressing the discrimination of the prognostic instruments (different Framingham equations) on the German population all but one find AUC values between 0.73 and 0.78 (sufficient discrimination). Studies evaluating the external validity of the new prognostic instruments such as PROCAM (2007) and SCORE-Germany, derived from the German population, are lacking.

Comparison of the validity of different risk prediction instruments of cardiovascular disease

The comparison of the validity of different risk prognostic instruments on the derivation cohort of one of these prognostic instruments (accuracy) showed a trend for a better calibration and a better discrimination for the prognostic instruments calculated from the data of the corresponding derivation cohort.

Comparing the prognostic instruments on other populations (transferability), the newly derived Framingham prognostic instruments showed a slightly better discrimination in comparison with previously calculated instruments. The value of the German prognostic instrument PROCAM 2002 in comparison with Framingham instruments for the European population is not clear. No studies comparing different prognostic instruments on the German population exist.

5. Discussion

Literature search

In spite of an extended search strategy in the most important medical databases, missing of relevant articles addressing the theme of the report due to the problem of the complexity of the literature search for prognostic studies is possible.

Risk prognostic instruments

The representativity of the study participants for the corresponding total population is questionable in many derivation studies of the risk prognostic instrument. The reference populations in the studies are not homogenous concerning the disease stages. The high number of rarely used variables in the risk prognostic instruments suggests that the relevance of these variables for the risk prognosis is not clearly estimated.

The use of endpoints comprising clinical events is more subjective than the exclusive use of the mortality; however, it has clearly higher clinical and social importance for the individual.

The Cox regression should be preferred for the derivation procedure, because this regression analysis can calculate the risk at different follow-ups and enables a relatively simple adaptation of the model for other populations.

In spite of the reduction of the precision, transforming a risk equation to a point score and to a risk chart, a risk chart permits a better illustration of the actual and the targeted risk of a person compared with a value directly determined from the risk equation.

External validity of the risk prediction instruments of cardiovascular disease

Different components of the transferability, mostly geographic, historic as well as methodological and disease spectrum, were evaluated in the presented studies on the external validation. The geographic transferability appears to be the most important of these components because of the substantial differences in the cardiovascular morbidity and mortality between different countries and regions.
The populations underlying the prognostic instruments in most studies were recruited many years ago; therefore, the prognostic instruments derived from these populations may be not transferable on the currently living populations.

It is not to be expected that the slightly different measurement methods and disease spectrums in different studies relevantly limit the transferability of the prognostic instruments.

An exact threshold value for a good or poor calibration is not clearly determined in the literature yet. In order to restrict the problem of poor calibration, the average values of the risk factors and the average event rates of the reference population used in the prognostic instrument should be replaced in the equations by the corresponding parameters of the predicted population (recalibration).

An exact and plausible threshold value for a good or poor discrimination of the prognostic instruments is also not stated in the literature. The differentiation in excellent, good, sufficient, weak and very weak discrimination is subjective. Moreover, it is recommended to perform the evaluation of the discrimination only after the recalibration of the instruments for the corresponding population.

Comparison of the validity of different risk prediction instruments of cardiovascular disease

The higher validity of the risk prognostic instruments examined on the derivation cohort than on the validation cohort of these prognostic instruments and especially on other populations may be explained due to the considerable geographic variance of the cardiovascular morbidity and mortality.

The lack of studies on the comparison of different prognostic instruments on the German population enables no statements on their comparability.

6. Conclusions

The identified instruments for the risk prediction of cardiovascular disease are not sufficiently validated on the German population; their use can lead to false risk estimation for a single person. Therefore, the existing prognostic instruments should be used for the informed decision-making and for the therapy selection in Germany only with critical caution. Studies on external validation of the prognostic instruments and on the comparison of different prognostic instruments on the German population (if possible after previous recalibration) as well as randomized studies on therapeutic consequences and on clinical benefit of the prognostic instruments are needed.
Kurzfassung

1. Wissenschaftlicher Hintergrund

Kardiovaskuläre Erkrankungen gehören mit insgesamt 358.684 Gestorbenen in Deutschland 2007 zu den Krankheitsbildern mit einer epidemiologischen Bedeutung. Auch aus volkswirtschaftlicher Perspektive sind kardiovaskuläre Erkrankungen von äußerster Wichtigkeit. 2006 betrugen die Kosten der Krankheiten des Herz-Kreislaufsystems ca. 35 Mrd. Euro. Es wird davon ausgegangen, dass kardiovaskuläre Morbidität und Mortalität durch Präventionsmaßnahmen veränderbar sind. Neben der Anwendung von auf die Population gerichteten Präventionsmaßnahmen sind bei Personen mit einem erhöhten Gesamtrisiko oft auch individuumsbezogene (ggf. medikamentöse) Interventionen angezeigt. Für die Selektion von Personen mit erhöhtem kardiovaskulärem Gesamtrisiko werden sogenannte Risikoprognoseinstrumente konstruiert und verwendet. Durch eine statistische Auswertung von Daten aus einer Population werden Gleichungen, Punktescores bzw. Tabellendiagramme (Risikocharts) gebildet, wonach sich ein Risiko für ein kardiovaskuläres Ereignis bzw. eine Überlebenswahrscheinlichkeit ohne dieses Ereignis in Abhängigkeit von der Ausprägung der Risikofaktoren abschätzen lässt. Risikoprognoseinstrumente können außerdem grafisch z. B. als Nomogramme dargestellt werden. Es existiert eine Reihe von unterschiedlichen Risikoprognoseinstrumenten. Allerdings basieren diese auf verschiedenen Primärstudien bzw. Datenbanken, die meistens die deutsche Population nicht einbeziehen. Die Übertragbarkeit dieser Prognoseinstrumente auf die in diesen Datenquellen nicht untersuchten Populationen sowie die Vergleichbarkeit der Validität dieser Prognoseinstrumente wird in Frage gestellt.

2. Fragestellung

Die Beweitung soll folgende Fragen beantworten:

• Welche Instrumente zur Risikoprädiktion für kardiovaskuläre Erkrankungen sind vorhanden?
• Wie ist die Evidenz für eine Übertragbarkeit der vorhandenen Risikoprognoseinstrumente für kardiovaskuläre Erkrankungen auf Populationen, die nicht in der Prognosestudie beteiligt waren?
• Inwieweit sind die vorhandenen Methoden zur Risikoprädiktion für kardiovaskuläre Erkrankungen vergleichbar?

3. Methodik

Informationsquellen und Recherchestrategie

Die Literaturrecherche wird in den wichtigsten medizinischen elektronischen Datenbanken (MEDLINE, EMBASE u. a.) im April 2008 durchgeführt. Die Recherchestrategie beschränkt sich auf die Jahre ab 2004 sowie auf die Sprachen Deutsch und Englisch. Es wird außerdem eine ausgedehnte Handsuche nach Publikationen über Prognoseinstrumente für kardiovaskuläre Erkrankungen sowie über die externe Validität verschiedener Prognoseinstrumente durchgeführt.

Ein- und Ausschlusskriterien

In die Bewertung werden Publikationen über Prognoseinstrumente für kardiovaskuläre Erkrankungen von Patienten ohne jeweilige kardiovaskuläre Erkrankungen in der Vorgeschichte einbezogen sowie Publikationen mit Angaben zur externen Validierung bzw. zum Vergleich solcher Prognoseinstrumente untereinander. Die auf bestimmte Patientengruppen fokussierenden Instrumente werden nicht berücksichtigt. Als Gütekriterien werden Diskrimination und Kalibrierung eingesetzt.

Datenauswertung und Informationssynthese

Als Informationsquellen werden sowohl systematische Übersichten als auch Primärpublikationen zu prognostischen Instrumenten sowie zur Bewertung der Validität und der Vergleichbarkeit von verschiedenen Prognoseinstrumenten einbezogen. Die Informationssynthese erfolgt qualitativ.

4. Ergebnisse

Ergebnisse der Literaturrecherche

Die systematische Literaturrecherche ergibt 734 Treffer. 116 Publikationen werden zur Durchsicht im Volltext ausgewählt und zum Einschluss in die Bewertung überprüft. Durch die Literaturrecherche werden drei systematische Übersichten identifiziert, acht Publikationen mit Beschreibungen prognostischer Instrumente und 13 Publikationen mit Angaben zur Validität der Prognoseinstrumente. Über die Handsuche in den Referenzlisten der relevanten Artikel werden 30 weitere Veröffentlichungen mit Beschreibungen prognostischer Instrumente und 16 weitere Publikationen mit Angaben zur Validität der Prognoseinstrumente identifiziert.

Risikoprognoseinstrumente

Die meisten Risikoprognoseinstrumente basieren auf der Framingham-Kohorte der USA, fast alle anderen auf europäischen, vor allem britischen und italienischen Kohorten. Komplett auf die deutsche Bezugspopulation stützt sich ausschließlich die PROCAM-Studie. Die SCORE-Charts für Deutschland und die WHO/ISH-Charts für die europäische Risikoregion EUR-A verwenden nur teilweise deutsche Daten. Als Grundlagenpopulationen für die Ableitung eines Prognoseinstruments werden sowohl populationsbasierte als auch Patienten- und Berufskohorten einbezogen, in einigen Studien nur Männer bzw. Frauen.
Fast alle prognostischen Instrumente verwenden als Variable Geschlecht, Alter, Rauchen, eine oder mehrere Angaben zum Lipidstatus und zu Blutdruckwerten. In vielen Prognoseinstrumenten wird zusätzlich als Variable Diabetes mellitus bzw. Blutzucker für die Risikoberechnung eingesetzt, in mehreren Instrumenten die Variablen linksventrikuläre Hypertrophie nach EKG, Body-Mass-Index, antihypertensive Therapie und in einigen prognostischen Instrumenten andere verschiedene Variablen. Die multinationalen Studien stratifizieren ihre Prognoseinstrumente auch regional. Es werden in den Prognoseinstrumenten meistens nur fünf bis sechs prognostische Variablen eingesetzt.

Die wichtigsten Endparameter sind Tod durch koronare Herzkrankheit, Tod durch kardiovaskuläre Krankheit, koronare Herzkrankheit bzw. koronares Ereignis (Tod, Myokardinfarkt ggf. Angina Pectoris und/oder koronare Revaskularisation) sowie zerebrovaskuläres Ereignis (Schlaganfall ggf. auch transitorische ischämische Attacke), kardiovaskuläre Krankheit bzw. kardiovaskuläres Ereignis (koronares Ereignis, zerebrovaskuläres Ereignis ggf. Claudicatio intermittens und/oder Herzinsuffizienz). Die Zeitspanne für prognostizierte Ereignisse beträgt meistens zehn Jahre.

Zur Datenauswertung der Bezugspopulation zur Erstellung eines Scores werden drei unterschiedliche statistische Methoden verwendet, logistische-, Weibull-bzw. Cox-Regressionsmodelle, dabei wird bei allen Verfahren eine schrittweise Regressionsanalyse gewählt.

Externe Validität von Instrumenten zur Risikoprädiktion für kardiovaskuläre Erkrankungen

Angaben zur Kalibrierung der Prognoseinstrumente (Quotient von vorhergesagtem zu beobachtetem Risiko) werden in etwa der Hälfte der Studien präsentiert. Nur in einzelnen Studien liegt die Kalibrierung im Bereich von 0,9 bis 1,1. In allen drei Studien aus Deutschland fehlen Angaben zur Kalibrierung der Prognoseinstrumente. Viele Studien zur Übertragbarkeit von Prognoseinstrumenten zeigen einen AUC-Wert für die Diskrimination (Wert für die richtige Zuordnung von Personen mit unterschiedlicher Risikohöhe; AUC = Fläche unter der Kurve, engl.: area under curve; Bestwert: 1,0) zwischen 0,7 und 0,8 für verschiedene prognostische Instrumente (ausreichende Diskrimination), wenige Studien einen AUC-Wert zwischen 0,8 und 0,9 (gute Diskrimination) und keine Studie einen AUC-Wert von über 0,9 (exzellente Diskrimination). In den Studien mit Angaben zur Diskrimination der Prognoseinstrumente (verschiedene Framingham-Gleichungen) für die deutsche Population liegen mit einer Ausnahme alle AUC-Werte zwischen 0,73 und 0,78 (ausreichende Diskrimination). Studien zur Überprüfung der externen Validität der an der deutschen Population entwickelten neuen prognostischen Instrumente wie PROCAM (2007) und SCORE-Deutschland stehen noch aus.

Vergleich der Validität verschiedener Instrumente zur Risikoprädiktion für kardiovaskuläre Erkrankungen

Beim Vergleich der Validität von verschiedenen Risikoprognoseinstrumenten durch Anwendung auf die Ableitungskohorte eines dieser Prognoseinstrumente (Richtigkeit) zeigt sich in allen Studien ein Trend für eine bessere Kalibrierung und eine bessere Diskrimination für die auf Datenbasis der jeweiligen Ableitungskohorte berechneten Prognoseinstrumente. Auch beim Vergleich der Validität von verschiedenen Risikoprognoseinstrumenten durch Anwendung auf die Validierungskohorte (Reproduzierbarkeit) eines dieser Prognoseinstrumente liegt ein Trend für eine bessere Kalibrierung und eine bessere Diskrimination für die auf Datenbasis der entsprechenden Ableitungskohorte berechneten Prognoseinstrumente vor. Bei dem Vergleich von Prognoseinstrumenten durch Anwendung auf andere Populationen (Übertragbarkeit) liefern die neu abgeleiteten Framingham-Prognoseinstrumente eine etwas bessere Diskrimination im Vergleich zu früher errechneten Instrumenten. Der Stellenwert des überprüften deutschen Prognoseinstruments PROCAM von 2002 im Vergleich zu Framingham-Instrumenten für die europäische Population ist nicht eindeutig. Es liegen bisher keine Studien zum Vergleich von verschiedenen Prognoseinstrumenten an der deutschen Population vor.

5. Diskussion

Literaturrecherche

Trotz sehr breit angelegter Suchstrategie in den wichtigsten medizinischen Datenbanken ist ein Übersehen relevanter Artikel zum Thema des Berichts durch das Problem der Komplexität der Literaturrecherche bei prognostischen Studien möglich.

Risikoprognoseinstrumente

Die Repräsentativität der Studienteilnehmer für die jeweilige Gesamtpopulation ist bei vielen Studien zur Ableitung der Risikoprognoseinstrumente fraglich und die Grundlagenpopulationen in den Studien in Bezug auf das Krankheitsstadium sind nicht homogen. Die hohe Anzahl von in Risikoprognoseinstrumenten selten angewendeten Variablen spricht u. a. dafür, dass die Relevanz dieser Variablen für die Risikoprognose nicht eindeutig festgestellt ist. Die Bewertung von Endpunkten mit klinischen Ereignissen ist zwar subjektiver als die ausschließlich betrachtung von Mortalität, hat aber deutlich höhere klinische und soziale Bedeutung für das Individuum. Als Auswertungsverfahren sollte die Cox-Regression bevorzugt werden, da diese Regressionsanalyse u. a. das Risiko für mehrere Zeitpunkte ausrechnen kann und eine
relativ einfache Anpassung des Modells für die anderen Populationen ermöglicht. Trotz Minderung der Präzision bei dem Übergang von einer Risikogleichung zum Punktescore und zum Risikochart erlaubt ein Risikochart eine anschaulichere Darstellung des tatsächlichen und des anzustrebenden Risikos für die Patienten als ein direkt aus der Risikogleichung ermittelter Wert.

Externe Validität von Instrumenten zur Risikoprädiktion für kardiovaskuläre Erkrankungen

In den vorliegenden Studien zur externen Validierung werden meistens sowohl geografische als auch historische, methodologische und personenspektrumsbezogene Komponenten der Übertragbarkeit überprüft. Als die wichtigste Komponente erscheint aufgrund erheblicher Unterschiede in der kardiovaskulären Morbidität und Mortalität zwischen verschiedenen Ländern bzw. Regionen, die geografische Übertragbarkeit. Da die den Prognoseinstrumenten zugrunde liegenden Populationen in den meisten Studien vor vielen Jahren rekrutiert sind, könnten die auf Basis dieser Populationen abgeleiteten Prognoseinstrumente deshalb auf gegenwärtige Populationen nicht übertragbar sein. Es ist nicht zu erwarten, dass die etwas unterschiedlichen Messmethoden und Personenspektren in verschiedenen Studien die Übertragbarkeit der Prognoseinstrumente relevant einschränken.

Ein genauer Schwellenwert für eine gute bzw. schlechte Kalibrierung ist in der Literatur noch nicht eindeutig festgelegt. Um das Problem der schlechten Kalibrierung zu umgehen, werden in den Gleichungen die Durchschnittswerte für Risikofaktoren der Grundlagenpopulation eines Prognoseinstruments und die durchschnittlichen Ereignisraten dieser Population durch solche Parameter der zu prognostizierenden Population ersetzt (Rekalibrierung). Ein genauer und plausibler Schwellenwert für eine gute bzw. schlechte Diskrimination der Prognoseinstrumente wird in der Literatur ebenfalls nicht genannt. Die Aufteilung in exzellente, gute, ausreichende, schwache und sehr schwache Diskrimination ist subjektiv. Es wird außerdem empfohlen, die Überprüfung der Diskrimination erst nach der Rekalibrierung für die entsprechende Population durchzuführen.

Vergleich der Validität verschiedener Instrumente zur Risikoprädiktion für kardiovaskuläre Erkrankungen

Die bessere Validität von Risikoprognoseinstrumenten durch Anwendung auf die Ableitungs- als auch auf die Validierungskohorte dieses Prognoseinstruments und insbesondere auf andere Populationen ist durch die erhebliche geografische Varianz der kardiovaskulären Morbidität sowie Mortalität zu erklären. Das Fehlen von Studien zum Vergleich verschiedener Prognoseinstrumente an der deutschen Population ermöglicht keine Aussagen zu ihrer Vergleichbarkeit.

6. Schlussfolgerungen

Die identifizierten Instrumente zur Risikoprädiktion von kardiovaskulären Erkrankungen sind an der deutschen Population nicht ausreichend validiert. Ihre Anwendung kann zur Fehleinschätzung des Risikos einzelner Patienten führen. Deswegen sind in Deutschland die vorliegenden Prognoseinstrumente für die informierte Entscheidungsfindung und die Therapieauswahl nur mit kritischer Vorsicht anzuwenden. Die Durchführung von Studien zur externen Validierung der prognostischen Instrumente und zum Vergleich von verschiedenen Prognoseinstrumenten an der deutschen Population (möglichst nach vorheriger Rekalibrierung) sowie randomisierte Studien zu therapeutischen Konsequenzen und zum klinischen Nutzen der Anwendung von Prognoseinstrumenten sind zu empfehlen.

Korrespondenzadresse:
Dr. med. Vitali Gorenoi
Abteilung für Epidemiologie, Sozialmedizin und Gesundheitssystemforschung, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Tel.: +49 (0)511-532-9345
gorenoi.vitali@mh-hannover.de

Bitte zitieren als
Gorenoi V, Schönermark MP, Hagen A. Instrumente zur Risikoprädiktion für kardiovaskuläre Erkrankungen. GMS Health Technol Assess. 2009;5:Doc11.

Artikel online frei zugänglich unter
http://www.e/cms.de/en/journals/hta/2009-5/hta000073.shtml

Der vollständige HTA-Bericht steht zum kostenlosen Download zur Verfügung unter:
http://portal.dimdi.de/de/hta_berichte/hta251bericht_de.pdf

Copyright
©2009 Gorenoi et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.