Supporting Information
for
Position-dependent impact of hexafluoroleucine and trifluoroisoleucine on protease digestion

Susanne Huhmann¹, Anne-Katrin Stegemann¹, Kristin Folmert¹, Damian Klemczak¹, Johann Moschner¹, Michelle Kube¹ and Beate Koksch*¹

Address: ¹Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany

Email: Beate Koksch - beate.koksch@fu-berlin.de

* Corresponding author

Characterization and identification of synthesized peptides, characterization of the enzymatic digestion reactions, and identification of proteolytic cleavage products, HPLC methods, and synthesis protocol for Fmoc-HfLeu-OH
Synthesis of Fmoc-HfLeu-OH

General information

All reactions were run under an argon atmosphere unless otherwise indicated. Room temperature refers to 22 °C. Reagents and anhydrous solvents were transferred via oven-dried syringe or cannula. Flasks were flame-dried under vacuum and cooled under a constant stream of argon. Reactions were monitored by thin layer chromatography using Merck KGaA silica gel 60 F_{254} TLC aluminium sheets and visualized with ceric ammonium molybdate, vanillin staining solution or potassium permanganate staining solution. Chromatographic purification was performed as flash chromatography on Macherey-Nagel GmbH & Co. KG silica gel 60 M, 0.04–0.063 mm, using a forced flow of eluent (method of Still). Concentration under reduced pressure was performed by rotary evaporation at 40 °C at the appropriate pressure. Yields refer to chromatographically purified and spectroscopically pure compounds. NMR measurements were recorded on a JEOL-ECX400 (operating at 400 MHz for 1H NMR, 101 MHz for 13C NMR and 376 MHz for 19F NMR). Chemical shifts δ are reported in ppm with the solvent resonance as the internal standard. Coupling constants J are given in Hertz (Hz). Multiplicities are classified by the following abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, br = broad or m = multiplet and combinations thereof. High resolution mass spectra were obtained on an Agilent ESI-ToF 6220 (Agilent Technologies, Santa Clara, CA, USA).

Scheme S1: Synthesis of Fmoc-HfLeu-OH 9.
Compounds 3 to 7 were synthesized according to literature [1,2]. Obtained NMR data (\(^1\)H, \(^{13}\)C, and \(^{19}\)F) are consistent with literature [1,2].

Synthesis of Fmoc-HfLeu-OEt (8)

(S)-7 (1.04 g, 3.89 mmol) was dissolved in 10% Na\(_2\)CO\(_3\), aq (4 mL) and cooled to 0°C. Dioxane (1 mL) was added and the suspension was stirred for 15 min at 0 °C after which FmocOSu (1.44 g, 4.28 mmol) was added. The mixture was stirred for 3 h at 0 °C and at room temperature overnight. The reaction was diluted with H\(_2\)O (50 mL) and extracted with Et\(_2\)O (4 x 25 mL). The combined organic layers were concentrated in vacuo and the residue was subjected to column chromatography (n-hexane/Et\(_2\)O, 3:1) to give (S)-8 (1.12 g, 2.29 mmol, 59%) as a waxy solid.

TLC: \(R_f = 0.45\) (n-hexane/Et\(_2\)O, 5:1).

\(^1\)H-NMR (400 MHz, CDCl\(_3\)): \(\delta = 7.77\) (d, \(J = 7.5, 2H\)); 7.58 (d, \(J = 7.2, 2H\)); 7.40 (t, \(J = 7.5, 2H\)); 7.32 (t, \(J = 7.0, 2H\)); 5.40 (d, \(J = 7.50, 1H\)); 4.47 (dt, \(J = 20.0; 13.40, 3H\)); 4.32 – 4.18 (m, 3H); 3.18 (s, 1H); 2.40 (d, \(J = 14.5, 1H\)); 2.05 (d, \(J = 10.0, 1H\)); 1.30 (t, \(J = 7.1, 3H\)).

\(^{13}\)C-NMR (101 MHz, CDCl\(_3\)) \(\delta = 170.68, 143.75, 143.53, 141.45, 141.44, 140.84, 130.32, 127.92, 127.90, 127.19, 127.17, 125.07, 124.98, 120.32, 120.15, 120.11, 67.29, 62.53, 51.96, 47.21, 37.15, 27.27, 14.13.

\(^{19}\)F-NMR (376 MHz, CDCl\(_3\)) \(\delta = -67.27\) – -67.44 (m), -67.63 – -67.79 (m).

HRMS calculated for C\(_{23}\)H\(_{31}\)F\(_6\)NNaO\(_4\) [M+Na]^+: 512.1267; observed: 512.1294.

Synthesis of Fmoc-HfLeu-OH (9)

A solution of (S)-8 (55.0 mg, 11.2 mmol) in HCl\(_{conc}\) (2 mL) was stirred at room temperature for 24 h. The crude product was lyophilized and purified via a LaPrep\(^\circ\) low-pressure HPLC system (VWR, Darmstadt, Germany) using a Kinetex RP-C18 endcapped HPLC-column (5 \(\mu\)M, 100 Å, 250 \(\times\) 21.2 mm, Phenomenex\(^\circ\), USA). Deionized water and acetonitrile (ACN), both containing 0.1% (v/v) TFA served as eluents. A linear gradient of 30–100% ACN + 0.1% (v/v) TFA over 18 min with a flow rate of 20.0 mL/min was applied. UV-detection occurred at 280 nm. This gave (S)-9 (36.3 mg, 7.87 mmol, 70%) as a white powder.

\(^1\)H-NMR (400 MHz, DMSO-D\(_6\)): \(\delta = 7.82\) (d, \(J = 7.6, 2H\)); 7.77 (d, \(J = 8.7, 1H\)); 7.63 (d, \(J = 7.5, 2H\)); 7.36 (t, \(J = 7.4, 2H\)); 7.26 (t, \(J = 7.4, 2H\)); 4.35 – 4.23 (m, 2H); 4.17 (t, \(J = 6.7, 1H\)); 4.04 (br, 1H); 2.30 – 2.17 (m, 1H); 2.13 – 2.01 (m, 1H).
13C-NMR (101 MHz, DMSO-D$_6$): $\delta = 175.95$ (s); 158.87 (s); 144.17 (s); 144.10 (s); 141.23 (s); 141.22 (s); 128.27 (s); 128.25 (s); 127.62 (s); 127.61 (s); 125.69 (s); 125.68 (s); 125.63 (s); 125.61 (s); 120.65 (s); 120.61 (s); 66.23 (s); 51.54 (s); 47.11 (s); 29.52 (s); 26.34 (s).

19F-NMR (376 MHz, DMSO-D6): $\delta = -65.91$ – -66.13 (m); -66.38 – -66.62 (m).

HRMS calculated for C$_{21}$H$_{17}$F$_6$NO$_4$ [M+Na]$^+$: 484.0954; observed: 484.0942.

Peptide synthesis, purification and characterization

Peptide synthesis

Peptides containing HfLeu were synthesized on an Activo P11 Automated Peptide Synthesizer (Activotec, Cambridge, United Kingdom) working under nitrogen atmosphere. All other peptides, either non-fluorinated or TfIle containing, were synthesized manually under standard conditions.

Peptide characterization

High resolution mass spectra were recorded on an Agilent 6220 ESI–ToF LC–MS spectrometer (Agilent Technologies Inc., Santa Clara, CA, USA) to identify the pure peptide products. The samples were dissolved in a 1:1 mixture of water and acetonitrile containing 0.1% (v/v) TFA and injected directly into the spray chamber by a syringe pump using a flow rate of 10 µL min$^{-1}$. A spray voltage of 3.5 kV was used, the drying gas glow rate was set to 5 L min$^{-1}$ and the nebulizer to 30 psi. The gas temperature was 300 °C.

To verify purity of the synthesized peptides analytical HPLC was carried out on a Chromaster 600 bar DAD-System with CSM software (VWR/Hitachi, Darmstadt, Germany). The system works with a low-pressure gradient containing a HPLC-pump (5160) with a 6-channel solvent degasser, an organizer, an autosampler (5260) with a 100 µL sample loop, a column oven (5310) and a diode array flow detector (5430). A LUNA™ C8 (2) column (5 µm, 250 x 4.6 mm, Phenomenex®, Torrance, CA, USA) was used. As eluents water and ACN, both containing 0.1% (v/v) TFA were used, the flow rate was adjusted to 1 mL/min and the column was heated to 24 °C. The used gradient method is shown in Table S1. The UV-detection of the peptides occurred at 220 nm. The data were analyzed with EZChrom Elite software (version 3.3.2, Agilent Technologies, Santa Clara, CA, USA).
Table S1: Used linear gradient for the purity determination of the synthesized peptides.

Time [min]	Water + 0.1% (v/v) TFA [%]	ACN + 0.1% (v/v) TFA [%]
0	95	5
18	30	70
19	0	100
21	0	100
21.5	95	5
24	95	5

Table S2: Identification of the synthesized peptides by ESI–ToF mass spectrometry and analytical RP-HPLC.

Peptide	Retention time [min]	Charge	m/z calculated	m/z observed
FA	10.597	+1	967.5364	967.5396
		+2	484.2721	484.2736
P2-LeuFA	12.500	+1	1009.5463	1009.5849
		+2	505.2956	505.2970
P2-HfLeuFA	12.393	+1	1117.4622	1117.5306
		+2	559.2573	559.2691
P2-IleFA	12.137	+1	1009.5463	1009.5849
		+2	505.2956	505.2971
P2-TfIleFA	12.493	+1	1063.4622	1063.5576
		+2	532.2814	532.2845
P1'-LeuFA	11.773	+1	1009.5463	1009.5863
		+2	505.2956	505.7982
P1'-HfLeuFA	11.917	+1	1117.4622	1117.5272
		+2	559.2573	559.2684
P1'-IleFA	11.370	+1	1009.5463	1009.5858
		+2	505.2956	505.2975
P1'-TfIleFA	11.870	+1	1063.4622	1063.5556
		+2	532.2814	532.2816
P2'-LeuFA	11.847	+1	1009.5463	1009.5866
		+2	505.2956	505.2981
P2'-HfLeuFA	12.197	+1	1117.4622	1117.5305
		+2	559.2573	559.2693
P2'-IleFA	11.557	+1	1009.5463	1009.5864
		+2	505.2956	505.2980
P2'-TfIleFA	12.283	+1	1063.4622	1063.5576
		+2	532.2814	532.2835
Enzymatic digestion studies

Characterization of the enzymatic digestion reactions was carried out via analytical HPLC on a LaChrom-ELITE-HPLC-System from VWR International Hitachi (Darmstadt, Germany). The system contains an organizer, two HPLC-pumps (L-
2130) with solvent degasser, an autosampler (L-2200) with a 100 µL sample loop, a
diode array flow detector (L-2455), a fluorescence detector (L-2485) and a high
pressure gradient mixer. As eluents water and ACN, both containing 0.1% (v/v) TFA
were used, and a flow rate of 3 mL/min was applied. The used linear gradients are
shown in Table S3. For the non-fluorinated peptides method A was used to follow the
digestion process, and for the fluorinated peptides method B was applied. For
chromatograms where an insufficient baseline separation was observed,
measurements were repeated using methods C [FA (pepsin), P2-LeuFA
(proteinase K), P2-IleFA (pepsin), P2-IleFA (proteinase K), P1'-LeuFA (elastase),
P1'-LeuFA (proteinase K), P1'-IleFA (proteinase K)] or D [P2-HfleuFA (proteinase K),
P2-TfIleFA (pepsin), P2-TfIleFA (proteinase K), P1'-TfIleFA (elastase), P2'-TfIleFA
(proteinase K)]. The obtained data were analyzed with EZChrom Elite software
(version 3.3.2, Agilent Technologies, Santa Clara, CA, USA).

Table S3: Used linear gradients to follow the digestion process by FL-RP-HPLC.

Method	Time [min]	Water + 0.1% (v/v) TFA [%]	ACN + 0.1% (v/v) TFA [%]
A	0	95	5
	5	70	30
	5.5	70	30
	6	95	5
	9	95	5
B	0	95	5
	5	60	40
	5.5	60	40
	6	95	5
	9	95	5
C	0	95	5
	15	70	30
	15.5	70	30
	16	95	5
	17	95	5
D	0	95	5
	15	55	45
	15.5	55	45
	16	95	5
	17	95	5
Identification of the proteolytic cleavage products (Table S4–S7) occurred according to the mass-to-charge ratios determined with an Agilent 6220 ESI–ToF–MS instrument (Agilent Technologies, Santa Clara, CA, USA). For this, the quenched peptide-enzyme-solutions after 120 min and 24 h incubation were analyzed. The solutions were injected directly into the spray chamber using a syringe pump with a flow rate of 10 µL min⁻¹. Spray voltage was set to 3.5 kV, a drying gas flow rate of 5 L min⁻¹ was used, the nebulizer was set to 30 psi, and the gas temperature to 300 °C. The fragmentor voltage was 200 V. Not all corresponding fragments could be detected.

Peptide	Fragment	[M + H]⁺ calculated	[M + H]⁺ observed
FA	Abz-KAFAAAAK	967.5364	967.5376
	Abz-KAAF	555.2559	555.2938
	AAAAK	431.2617	431.2627
P2-LeuFA	Abz-KALeuFAAAK	1009.5463	1009.5883
	Abz-KALeuF	597.3029	597.2609
Peptide	Fragment	[M + H]⁺ calculated	[M + H]⁺ observed
--------------	-------------------	-------------------------------	-------------------------------
P2-HfLeuFA	Abz-KAHfLeuFAAAAK	1117.4622	1117.5298
P2-IleFA	Abz-KAAlleFAAAAK	1009.5463	1009.5851
	Abz-KAAlleF	597.3029	597.3435
	AAAAK	431.2617	431.2647
P2-TfIleFA	Abz-KATfIleFAAAAK	1063.4622	1063.5577
P1'-LeuFA	Abz-KAAFLeuAAAK	1009.5463	1009.5866
	Abz-KAAFLeu	776.2559	776.3214
	HfLeuAAK	581.2246	581.2246
	Abz-KAAF	555.2559	555.2934
	AAAK	360.2246	360.2239
P1'-HfLeuFA	Abz-KAAFHiLeuAAK	1117.4622	1117.5280
	Abz-KAAFHiLeu	776.2559	776.3214
	HfLeuAAK	581.2246	581.2246
	Abz-KAAF	555.2559	555.2934
	AAAK	360.2246	360.3630
P1'-IleFA	Abz-KAAFlleAAK	1009.5463	1009.5825
	Abz-KAAF	555.2559	555.2951
	IleAAK	473.3087	473.3104
P1'-TfIleFA	Abz-KAAFTfIleAAK	1063.4622	1063.5604
	Abz-KAAF	555.2559	555.2954
	TfIleAAK	527.2246	527.2827
P2'-LeuFA	Abz-KAAFALeuAAK	1009.5463	1009.5872
	Abz-KAAF	555.2559	555.2922
	AlleAAK	473.3087	473.3087
P2'-HfLeuFA	Abz-KAAFAHfLeuAAK	1117.4622	1117.5331
	AHfLeuAAK	581.2246	581.2550
	Abz-KAAF	555.2559	555.2965
P2'-IleFA	Abz-KAAFAlleAAK	1009.5463	1009.5875
	Abz-KAAF	555.2559	555.2943
	AlleAAK	473.3087	473.3112
P2'-TfIleFA	Abz-KAAFATfIleAAK	1063.4622	1063.5575
	Abz-KAAF	555.2559	555.2945
	ATfIleAAK	527.2246	527.2822

Table S5: Identification of the cleavage products of the different peptides by ESI–ToF mass spectrometry after digestion with pepsin.
Peptide	Fragment	[M + H]⁺ calculated	[M + H]⁺ observed
Abz-KAAF	668.3400	668.3820	
Abz-KAAF	555.2559	555.2971	
LeuAAAK	473.3087	473.3126	
AAK	360.2246	360.2271	
P1'-HfLeuFA	Abz-KAAFHfLeuAAAK	1117.4622	1117.5325
Abz-KAAF	776.2559	776.3236	
HfLeuAAAK	581.2246	581.2553	
Abz-KAAF	555.2559	555.2956	
AAK	360.2246	360.2273	
P1'-IleFA	Abz-KAAFleAAAK	1009.5463	1009.5908
Abz-KAAF	555.2559	555.2969	
IleAAAK	473.3087	437.3087	
P1'-TfIleFA	Abz-KAAFATfIleAAAK	1063.4622	1063.5634
Abz-KAAF	555.2559	555.2969	
TfIleAAAK	527.2246	527.2843	
P2'-LeuFA	Abz-KALKeuAAA	1009.5463	1009.5889
Abz-KAAF	555.2559	555.2970	
LeuAAK	473.3087	473.3121	
P2'-HfLeuFA	Abz-KAFAHfLeuAAK	1117.4622	1117.5307
Abz-KAAF	626.2930	626.3344	
HfLeuAAK	510.1875	510.2170	
P2'-IleFA	Abz-KAFAlleAAK	1009.5463	1009.5899
Abz-KAAF	555.2559	555.2970	
AlleAAK	473.3087	473.3121	
P2'-TfIleFA	Abz-KAFAFATfIleAAK	1063.4622	1063.5627
FATfIleAAK	674.2930	674.3530	
Abz-KAFA	626.2930	626.3333	
Abz-KAAF	555.2559	555.2969	
ATfIleAAK	527.2246	527.2845	
TfIleAAK	456.1875	456.2462	

Table S6: Identification of the cleavage products of the different peptides by ESI–ToF mass spectrometry after digestion with elastase.
Peptidic Sequence	M/z 1	M/z 2	
Abz-KAHfLeuFA	776.2559	776.2559	
FAAAAK	578.3301	578.2440	
P2-IleFA	Abz-KAlleFAAAAK	1009.5463	1009.5884
	Abz-KAlleFAAAA	881.4513	881.4960
	Abz-KAlleFAAA	810.4142	810.4960
	Abz-KAlleFAA	739.3771	739.4176
	Abz-KAlleFA	668.3400	668.3787
	FAAAAK	578.3301	578.3322
	AAK	360.2246	360.2256
	AAK	289.1875	289.1880
	AK	218.1504	218.1505
P2-TfIleFA	Abz-KATfIleFAAAAK	1063.4622	1063.5576
	Abz-KATfIleFAAA	864.3301	864.4210
	Abz-KATfIleFAA	793.2930	793.3844
	Abz-KATfIleFA	722.2559	722.3470
	FAAAAK	578.3301	578.3271
	AAK	360.2246	360.2224
P1'-LeuFA	Abz-KAAFLeuAAAK	1009.5463	1009.5887
	Abz-KAAFLeuAAA	881.4513	881.4815
	Abz-KAAFLeuAA	810.4142	810.4472
	AAFLeuAAAK	762.4513	762.4458
	Abz-KAAFLeuA	739.3771	7394120
	ALeuAAAK	691.4142	691.4142
	FLLeuAAAK	620.3771	620.3783
	Abz-KAA	408.1875	408.1875
	Abz-KA	337.1504	337.1504
	AK	289.1504	289.1858
P1'-HfLeuFA	Abz-KAFAHfLeuAAAK	1117.4622	1117.5330
	Abz-KAFAHfLeuAA	918.3301	918.3982
	AAFHfLeuAAAK	870.3673	870.3975
	AFHfLeuAAAK	799.3301	799.3600
	Abz-KAA	408.1875	408.1875
	Abz-KA	337.1504	337.1864
P1'-IleFA	Abz-KAFAIleAAAK	1009.5463	1009.5853
	Abz-KAFAIleAA	810.4142	810.4500
	Abz-KAFAIleA	739.3771	739.4144
	IleAAAK	620.3771	620.3747
P1'-TfIleFA	Abz-KAFAFtIleAAAK	1063.4622	1063.5578
	Abz-KAFAFtIleAA	864.3301	864.4205
	Abz-KAFAFtIleA	793.2930	793.3844
	AFTIleAAAK	745.3301	745.3814
	AAK	289.1875	289.1857
	AK	218.1504	218.1483
P2'-LeuFA	Abz-KAFAFLeuAAK	1009.5463	1009.5894
	Abz-KAFAFLeuAA	881.4513	881.4938
	Abz-KAFAFLeuA	810.4142	810.4938
	AFAFLeuAAK	691.4142	691.4168
	Abz-KAAF	626.2930	626.3324
	LeuAAK	402.2716	402.2730
	Abz-KA	337.1504	337.1872
P2'-HfLeuFA	Abz-KAFAHfLeuAAK	1117.6622	1117.5330
	Abz-KAFAHfLeuA	918.3301	918.4349
	AAFHfLeuAAK	870.3673	870.4001
	AFAHfLeuAAK	799.3301	799.3612
Table S7: Identification of the cleavage products of the different peptides by ESI-ToF mass spectrometry after digestion with proteinase K.

Peptide	Fragment	[M + H]\(^+\) calculated	[M + H]\(^+\) observed
FA	Abz-KAAFAAAAK	967.5364	967.5376
	AFAAAAK	649.3673	649.2762
P2-LeuFA	Abz-KAKeuFAAAAK	1009.5463	1009.5863
	Abz-KAKeuFAAAA	810.4142	810.4536
	Abz-KAKeuFAAA	739.4116	739.4179
	Abz-KAKeuFA	668.3404	668.3816
	Abz-KAKeu	450.2345	450.2719
	AAK	289.1504	289.1880
P2-HfLeuFA	Abz-KAHfLeuFAAAAK	1117.4622	1117.5298
	Abz-KAHfLeuFAAAA	918.3301	918.3970
	Abz-KAHfLeuFAA	847.2930	847.3608
	Abz-KAHfLeuFA	776.2559	776.3233
	Abz-KAHfLeu	558.1504	558.2168
	AAK	289.1875	289.1884
P2-IleFA	Abz-KAllleFAAAAK	1009.5463	1009.5872
	Abz-KAllleFAA	810.4142	810.4551
	Abz-KAllleFA	739.3771	739.4192
	Abz-KAllle	668.3400	889.3806
	Abz-KAllleF	597.3029	597.3422
	AAK	289.1875	289.1891
P2-TfIleFA	Abz-KATfIleFAAAAK	1063.4622	1063.5604
	Abz-KATfIleFAAAA	864.3301	864.4204
	Abz-KATfIleFAA	793.2930	793.3895
	Abz-KATfIleFA	722.2559	722.3512
	Abz-KATfIleF	651.2188	651.3140
	AAAAK	431.2617	430.0513
	AAK	289.1875	289.1888
P1'-LeuFA	Abz-KAAFLeuAAK	1117.4622	1117.5271
	Abz-KAAFLeuAA	810.4142	810.4552
	Abz-KAAFLeuA	739.3771	739.4182
	FLeuAAAK	620.3771	620.3813
	Abz-KAA	408.1875	408.2276
	AAK	289.1504	289.1885
P1'-HfLeuFA	Abz-KAAFHfLeuAAAK	1117.4622	1117.5271
	FHfLeuAAAK	728.2930	728.3226
Peptide	Mass P1'	Mass P2'	
----------	----------	----------	
Abz-KAA	408.1875	408.2261	
Abz-KAAFlleAAK	1009.5463	1009.5878	
Abz-KAAFlleAA	810.4142	810.4545	
Abz-KAAFlleA	739.3771	739.4169	
FlleAAK	620.3771	620.3795	
Abz-KAA	408.1875	408.2265	
AAK	289.1504	289.1891	
Abz-KAAFlleAAK	1063.4622	1063.5580	
Abz-KAAFlleAA	864.3301	864.4253	
Abz-KAAFlleA	793.2930	793.3853	
FlleAAAK	647.2930	674.3504	
Abz-KAA	408.1875	408.2260	
AAK	289.1875	289.1880	
AK	218.1504	218.1508	
Abz-KAAFlleAAK	1009.5463	1009.5878	
Abz-KAAFlleAA	739.3771	739.4169	
FlleAAK	620.3771	620.3795	
Abz-KAA	408.1875	408.2265	
AAK	289.1875	289.1883	
Abz-KAAFlleAAK	1117.4622	1117.5304	
Abz-KAAFlleAA	847.2930	847.3603	
FlleAAK	510.1875	510.2172	
AAK	289.1875	268.1885	
Abz-KAAFlleAAK	1009.5463	1009.5878	
Abz-KAAFlleAA	626.2930	626.338	
FlleAAK	620.3771	620.3791	
Abz-KAA	408.1875	408.2260	
Abz-KAAFlleAAK	1063.4622	1063.5580	
FATlleAAK	674.2930	674.3496	
Abz-KAA	408.1875	408.2239	

Reference

1. Chiu, H.-P.; Cheng, R. P. *Org. Lett.* **2007**, *9* (26), 5517-5520.
2. Zhang, C.; Ludin, C.; Eberle, M. K.; Stoeckli-Evans, H.; Keese, R. *Helv. Chim. Acta* **1998**, *81* (1), 174-181.