Functional limit theorems for the number of busy servers in a $G/G/\infty$ queue

Alexander Iksanov*, Wissem Jedidi † and Fethi Bouzeffour ‡

October 28, 2016

Abstract

We discuss weak convergence of the number of busy servers in a $G/G/\infty$ queue in the J_1-topology on the Skorokhod space. We prove two functional limit theorems, with random and nonrandom centering, respectively, thereby solving two open problems stated in [16]. A new integral representation for the limit Gaussian process is given.

AMS 2010 subject classifications: primary 60F17; secondary 60K05

Keywords: functional limit theorem, $G/G/\infty$ queue, perturbed random walk, tightness

1 Introduction

Let $(\xi_k, \eta_k)_{k \in \mathbb{N}}$ be a sequence of i.i.d. two-dimensional random vectors with generic copy (ξ, η) where both ξ and η are positive. No condition is imposed on the dependence structure between ξ and η.

Define

$$K(t) := \sum_{k \geq 0} \mathbb{1}_{\{S_k + \eta_{k+1} \leq t\}} \quad \text{and} \quad Z(t) := \sum_{k \geq 0} \mathbb{1}_{\{S_k < t < S_k + \eta_{k+1}\}}, \quad t \geq 0,$$

where $\{S_k\}_{k \in \mathbb{N}_0}$ is the zero-delayed ordinary random walk with increments ξ_k for $k \in \mathbb{N}$, i.e., $S_0 = 0$ and $S_k = \xi_1 + \ldots + \xi_k$, $k \in \mathbb{N}$. In a $G/G/\infty$-queuing system, where customers arrive at times $S_0 = 0 < S_1 < S_2 < \ldots$ and are immediately served by one of infinitely many idle servers, the service time of the kth customer being η_{k+1}, $K(t)$ gives the number of customers served up to and including time $t \geq 0$, whereas $Z(t)$ gives the number of busy servers at time t. Some other interpretations of $Z(t)$ can be found in [12]. The process $(Z(t))_{t \geq 0}$ was also used to model the

*Faculty of Computer Science and Cybernetics, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine and Institute of Mathematics, University of Wroclaw, 50-384 Wroclaw, Poland; e-mail: iksan@univ.kiev.ua

†Department of Statistics & OR, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia and Université de Tunis El Manar, Faculté des Sciences de Tunis, LR11ES11 Laboratoire d’Analyse Mathématiques et Applications, 2002, Tunis, Tunisia; e-mail: wissem_jedidi@yahoo.fr

‡Department of Mathematics, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia; e-mail: fbouzaffour@ksu.edu.sa

$\mathbb{N}_0 := \mathbb{N} \cup \{0\}$.
number of active sources in a communication network (for instance, active sessions in a computer network) \[13, 16, 17\].

From a more theoretical viewpoint, \(K(t)\) is the number of visits to the interval \([0, t]\) of a perturbed random walk \((S_k + \eta_{k+1})_{k \in \mathbb{N}_0}\) and \(Z(t)\) is the difference between the number of visits to \([0, t]\) of the ordinary random walk \((S_k)_{k \in \mathbb{N}_0}\) and \((S_k + \eta_{k+1})_{k \in \mathbb{N}_0}\). To proceed, we need a definition. Denote by \(X := (X(t))_{t \geq 0}\) a random process arbitrarily dependent on \(\xi\). Let \((X_k, \xi_k)_{k \in \mathbb{N}}\) be i.i.d. copies of the pair \((X, \xi)\). Following \[8\] we call random process with immigration the random process \((Y(t))_{t \geq 0}\) defined by

\[
Y(t) := \sum_{k \geq 0} X_{k+1}(t - S_k) \mathbb{1}_{\{S_k \leq t\}}, \quad t \geq 0.
\]

If \(X\) is deterministic, the random process with immigration becomes a classical renewal shot noise process. Getting back to the mainstream we conclude that both \((K(t))_{t \geq 0}\) and \(Z := (Z(t))_{t \geq 0}\) are particular instances of the random process with immigration which correspond to \(X(t) = \mathbb{1}_{\{\eta \leq t\}}\) and \(X(t) = \mathbb{1}_{\{\eta > t\}}\), respectively.

Let \(D := D[0, \infty)\) be the Skorokhod space of real-valued functions on \([0, \infty)\), which are right-continuous on \([0, \infty)\) with finite limits from the left at each positive point. We shall write \(\overset{J_1}{\rightarrow}\) and \(\overset{P}{\rightarrow}\) to denote weak convergence in the \(J_1\)-topology on \(D\) and convergence in probability, respectively. The classical references concerning the \(J_1\)-topology are \[2, 11, 15\].

In this paper we shall prove weak convergence of \((Z(ut))_{u \geq 0}\), properly centered and normalized, in the \(J_1\)-topology on \(D\) as \(t \to \infty\). The same problem for \((K(ut))_{u \geq 0}\) which is much simpler was solved in \[1\]. We start with a functional limit theorem with a random centering.

Theorem 1.1. Assume that \(\mu := \mathbb{E}\xi \in (0, \infty)\) and that

\[
1 - F(t) = \mathbb{P}\{\eta > t\} \sim t^{-\beta} \ell(t), \quad t \to \infty
\]

for some \(\beta \in [0, 1)\) and some \(\ell\) slowly varying at \(\infty.\) Then

\[
\underbrace{\sum_{k \geq 0} \left(\mathbb{1}_{\{S_k \leq ut < S_k + \eta_{k+1}\}} - \left(1 - F(ut - S_k)\right) \mathbb{1}_{\{S_k \leq ut\}} \right)}_{\sqrt{\mu^{-1} \int_0^t (1 - F(y)) \, dy}} \overset{J_1}{\rightarrow} V_{\beta}(u), \quad t \to \infty,
\]

where \(V_{\beta} := (V_{\beta}(u))_{u \geq 0}\) is a centered Gaussian process with

\[
\mathbb{E} V_{\beta}(u) V_{\beta}(s) = u^{1-\beta} - (u - s)^{1-\beta}, \quad 0 \leq s \leq u.
\]

In the case where \(\xi\) and \(\eta\) are independent weak convergence of the finite-dimensional distributions in \[1.2\] was proved in Proposition 3.2 of \[16\]. In the general case treated here where \(\xi\) and \(\eta\) are arbitrarily dependent the aforementioned convergence outside zero (i.e., weak convergence of \((Z^*_1(u_1), \ldots, Z^*_n(u_n))\) for any \(n \in \mathbb{N}\) and any \(0 < u_1 < \ldots < u_n < \infty\), where \(Z^*_i(u)\) denotes the left-hand side in \[1.2\]) follows from a specialization of Proposition 2.1 in \[8\]. In Section 5.2 of \[16\] the authors write: ‘We suspect that the’ finite-dimensional ‘convergence can be considerably strengthened’. Our Proposition \[14\] confirms their conjecture.

Also, the authors of \[16\] ask on p. 154: ‘When can the random centering’ in \[1.2\] ‘be replaced by a non-random centering?’ Our second result states that such

\(^2\)The Skorokhod spaces \(D(0, \infty)\) and \(D[0, T]\) for \(T > 0\) which appear below are defined similarly.
a replacement is possible whenever ξ possesses finite moments of sufficiently large positive orders. Our approach is essentially based on the decomposition:\footnote{Investigating Z directly, i.e., not using (1.3), seems to be a formidable task unless ξ and η are independent, and the distribution of Z is exponential (for the latter situation, see [17] and references therein). We note in passing that our Theorem 1.2 includes Theorem 1 in [17] as a particular case.}

$$\sum_{k\geq 0} \mathbb{1}_{\{S_k \leq ut < S_k + \eta_k + 1\}} - \mu^{-1} \int_0^{ut} (1 - F(y)) \, dy$$

$$= \left(\sum_{k\geq 0} \mathbb{1}_{\{S_k \leq ut < S_k + \eta_k + 1\}} - \sum_{k\geq 0} \mathbb{E}(\mathbb{1}_{\{S_k \leq ut < S_k + \eta_k + 1\}} | S_k) \right)$$

$$+ \left(\sum_{k\geq 0} \mathbb{E}(\mathbb{1}_{\{S_k \leq ut < S_k + \eta_k + 1\}} | S_k) - \mu^{-1} \int_0^{ut} (1 - F(y)) \, dy \right)$$

$$= \sum_{k\geq 0} \left(\mathbb{1}_{\{S_k \leq ut < S_k + \eta_k + 1\}} - (1 - F(ut - S_k)) \mathbb{1}_{\{S_k \leq ut\}} \right)$$

$$+ \left(\sum_{k\geq 0} (1 - F(ut - S_k)) \mathbb{1}_{\{S_k \leq ut\}} - \mu^{-1} \int_0^{ut} (1 - F(y)) \, dy \right). \tag{1.4}$$

Weak convergence on D of the first summand on the right-hand side, normalized by $\sqrt{\mu^{-1} \int_0^t (1 - F(y)) \, dy}$, was treated in Theorem 1.1. Thus, we are left with analyzing weak convergence of the second summand.

Theorem 1.2. Suppose that condition (1.1) holds. If $\mathbb{E} \xi^r < \infty$ for some $r > 2(1 - \beta)^{-1}$, then

$$\sum_{k\geq 0} \frac{\mathbb{1}_{\{S_k \leq ut < S_k + \eta_k + 1\}} - \mu^{-1} \int_0^{ut} (1 - F(y)) \, dy}{\sqrt{\mu^{-1} \int_0^t (1 - F(y)) \, dy}} \overset{\mathcal{D}}{\to} V_{\beta}(u), \quad t \to \infty, \tag{1.5}$$

where $\mu = \mathbb{E} \xi < \infty$ and V_{β} is a centered Gaussian process with covariance (1.3).

Under the assumption that ξ and η are independent weak convergence of the one-dimensional distributions in (1.5) was proved in Theorem 2 of [12]. Note that regular variation condition (1.1) is not needed for this convergence to hold. Weak convergence of the finite-dimensional distributions in (1.5) takes place under (1.1) and the weaker assumption $\mathbb{E} \xi^2 < \infty$. We do not know whether (1.1) and the second moment assumption are sufficient for weak convergence on D. More generally, weak convergence of the finite-dimensional distributions of $Z(ut)$, properly normalized and centered, holds whenever the distribution of ξ belongs to the domain of attraction of an α-stable distribution, $\alpha \in (0, 2) \setminus \{1\}$, see Theorem 3.3.21 in [7] which is a specialization of Theorems 2.4 and 2.5 in [8]. We do not state these results here because in this paper we are only interested in weak convergence on D.

The rest of the paper is structured as follows. Theorems 1.1 and 1.2 are proved in Sections 2 and 3 respectively. In Section 4 we discuss an integral representation of the limit process V_{β} which seems to be new. The appendix collects several auxiliary results.

4The normalization is not necessarily of the form $\sqrt{\mu^{-1} \int_0^t (1 - F(y)) \, dy}$, and the limit process is not necessarily V_{β}.
2 Proof of Theorem 1.1

We start by observing that

$$a(t) := \sum_{k=0}^{[t]+1} (1 - F(k)) \sim \int_0^t (1 - F(y))dy \sim (1 - \beta)^{1-\beta}t^{1-\beta} \ell(t) \quad (2.1)$$

as $t \to \infty$, where the second equivalence follows from Karamata’s theorem (Proposition 1.5.8 in [3]). In particular, the first equivalence enables us to replace the integral in the denominator of (1.2) with the sum. For each $t, u \geq 0$, denote by $\hat{Z}(ut)$ the first summand in decomposition (1.4), i.e.,

$$\hat{Z}(ut) := \sum_{k \geq 0} \left(1 \{s_k \leq ut < s_{k+1} \} \right) - (1 - F(ut - S_k)) 1\{S_k \leq ut\}$$

and then set

$$Z_t(u) := \sum_{k \geq 0} \left(1 \{s_k \leq ut < s_{k+1} \} \right) - (1 - F(ut - S_k)) 1\{S_k \leq ut\} \frac{1}{\sqrt{a(t)}} = \frac{\hat{Z}(ut)}{\sqrt{a(t)}}, \quad u \geq 0.$$

Our proof of Theorem 1.1 is similar to the proof of Theorem 1 in [17] which treats the case where ξ and η are independent, and the distribution of ξ is exponential (Poisson case). Lemma 2.1 given below is concerned with inevitable technical complications that appear outside the Poisson case. Put

$$\nu(t) := \inf\{k \in \mathbb{N}_0 : S_k > t\}, \quad t \in \mathbb{R}$$

and note that the random variable $\nu(1)$ has finite moments of all positive orders by Lemma 5.2

Lemma 2.1. Let $l \in \mathbb{N}$ and $0 \leq v < u$. For any chosen $A > 1$ and $\rho \in (0, 1 - \beta)$ there exist $t_1 > 1$ such that

$$\mathbb{E}|Z_t(u) - Z_t(v)|^{2l} \leq c(l)(u - v)^{(1 - \beta - \rho)}$$

whenever $u - v < 1$ and $(u - v)t \geq t_1$, where $c(l) := 2C_l(4A)^l(u - v)^{(1 - \beta - \rho)}\mathbb{E}(\nu(1))^l$ and C_l is a finite positive constant.

Proof. With $u, v \geq 0$ fixed, $\hat{Z}(ut) - \hat{Z}(vt)$ equals the terminal value of the martingale $(R(k, t), \mathcal{F}_k)_{k \in \mathbb{N}_0}$, where $R(0, t) := 0,

$$R(k, t) := \sum_{j=0}^{k-1} \left(1 \{s_j + \eta_{j+1} \leq ut\} - F(ut - S_j) 1\{S_j \leq ut\} \right) - (1 \{s_j + \eta_{j+1} \leq vt\} - F(vt - S_j) 1\{S_j \leq vt\})$$

$\mathcal{F}_0 := \{\Omega, \emptyset\}$ and $\mathcal{F}_k := \sigma(\{\xi_j, \eta_j : 1 \leq j \leq k\})$. We use the Burkholder-Davis-Gundy inequality (Theorem 11.3.2 in [4]) to obtain for any $l \in \mathbb{N}$

$$\mathbb{E}(\hat{Z}(ut) - \hat{Z}(vt))^{2l} \leq C_l \left(\mathbb{E}\left(\sum_{k \geq 0} \mathbb{E}\left((R(k + 1, t) - R(k, t))^2 | \mathcal{F}_k \right) \right)^l + \sum_{k \geq 0} \mathbb{E}(R(k + 1, t) - R(k, t))^{2l} \right) =: C_l(I_1(t) + I_2(t)) \quad (2.2)$$
for a positive constant C_1. We shall show that

$$ I_1(t) \leq 2^l \mathbb{E}(\nu(1)^l (a((u-v)t))^l), \quad t \geq 0 $$

and that

$$ I_2(t) \leq 2^{2l} \mathbb{E}\nu(1)a((u-v)t), \quad t \geq 0. $$

Proof of (2.3). We first observe that

$$ \sum_{k \geq 0} \mathbb{E}\left((R(k + 1, t) - R(k, t))^2 | F_k \right) $$

$$ = \int_{[v, u]} F(ut - y)(1 - F(ut - y))d\nu(y) $$

$$ + \int_{[0, vt]} (F(ut - y) - F(vt - y))(1 - F(ut - y) + F(vt - y))d\nu(y) $$

$$ \leq \int_{[v, u]} (1 - F(ut - y))d\nu(y) + \int_{[0, vt]} (F(ut - y) - F(vt - y))d\nu(y) $$

whence

$$ I_1(t) \leq 2^{l-1} \left(\mathbb{E}\left(\int_{[v, u]} (1 - F(ut - y))d\nu(y) \right)^l + \mathbb{E}\left(\int_{[0, vt]} (F(ut - y) - F(vt - y))d\nu(y) \right)^l \right) $$

having utilized $(x + y)^l \leq 2^{l-1}(x^l + y^l)$ for nonnegative x and y. Using Lemma 5.1 with $G(y) = (1 - F(y))\mathbb{1}_{[0,(u-v)t]}(y)$ and $G(y) = F((u-v)t+y) - F(y)$, respectively, we obtain

$$ \mathbb{E}\left(\int_{[v, u]} (1 - F(ut - y))d\nu(y) \right)^l $$

$$ = \mathbb{E}\left(\int_{[0, ut]} (1 - F(ut - y))\mathbb{1}_{[0,(u-v)t]}(ut - y)d\nu(y) \right)^l $$

$$ \leq \mathbb{E}(\nu(1))^l \left(\sum_{n=0}^{[ut]} \sup_{y \in [n, n+1)} \left((1 - F(y))\mathbb{1}_{[0,(u-v)t]}(y) \right) \right)^l $$

$$ \leq \mathbb{E}(\nu(1))^l \left(\sum_{n=0}^{[u-v]} (1 - F(n)) \right)^l \leq \mathbb{E}(\nu(1))^l(a((u-v)t))^l. $$

(2.5)

and

$$ \mathbb{E}\left(\int_{[0, vt]} (F(ut - y) - F(vt - y))d\nu(y) \right)^l $$

$$ \leq \mathbb{E}(\nu(1))^l \left(\sum_{n=0}^{[vt]} \sup_{y \in [n, n+1)} (F((u-v)t+y) - F(y)) \right)^l $$

$$ \leq \mathbb{E}(\nu(1))^l \left(\sum_{n=0}^{[vt]} (1 - F(n)) - \sum_{n=0}^{[vt]} (1 - F((u-v)t+n+1)) \right)^l $$

$$ \leq \mathbb{E}(\nu(1))^l \left(\sum_{n=0}^{[vt]} (1 - F(n)) - \sum_{n=0}^{[vt]} (1 - F(n)) + \sum_{n=0}^{[(u-v)t]+1} (1 - F(n)) \right)^l $$

$$ \leq \mathbb{E}(\nu(1))^l(a((u-v)t))^l. $$

(2.6)
Combining (2.5) and (2.6) yields (2.3).

Proof of (2.4). Let us calculate

\[
\mathbb{E}((R(k+1,t) - R(k,t))^{2l} | \mathcal{F}_k) \\
\leq 2^{2l-1}((1 - F(u - S_k))^{2l} F(u - S_k) \\
+ (F(u - S_k))^{2l}(1 - F(u - S_k)) \mathbb{1}_{\{u < S_k \leq u\})} \\
+ ((1 - F(u - S_k)) + F(v - S_k))^{2l}(F(u - S_k) - F(v - S_k)) \\
+ (F(u - S_k) - F(v - S_k))^{2l}(1 - F(u - S_k) + F(v - S_k)) \mathbb{1}_{\{S_k \leq v\})} \\
\leq 2^{2l-1}((1 - F(u - S_k)) \mathbb{1}_{\{u < S_k \leq u\})} + (F(u - S_k) - F(v - S_k)) \mathbb{1}_{\{S_k \leq v\})}.
\]

Therefore,

\[
I_2(t) \leq 2^{2l-1} \left(\mathbb{E} \int_{(v,u]} (1 - F(u - y)) \mathrm{d}v(y) + \mathbb{E} \int_{[0,v]} (F(u - y) - F(v - y)) \mathrm{d}v(y) \right).
\]

Using now formulae (2.5) and (2.6) with \(l = 1 \) yields (2.4).

In view of (2.1) we can invoke Potter’s bound (Theorem 1.5.6(iii) in [3]) to conclude that for any chosen \(A > 1 \) and \(\rho \in (0, 1 - \beta) \) there exists \(t_1 > 1 \) such that

\[
a((u - v)t)/a(t) \leq A(u - v)^{1-\beta-\rho}
\]

whenever \(u - v < 1 \) and \((u - v)t \geq t_1\). Note that \(u - v < 1 \) and \((u - v)t \geq t_1\) together imply \(t \geq t_1\). Hence

\[
I_1(t) / (a(t))^l \leq 2^l \mathbb{E}(\nu(1))^l \left(a((u - v)t)/a(t) \right)^l \leq (4A)^l \mathbb{E}(\nu(1))^l(u - v)^{l(1-\beta-\rho)}. \tag{2.7}
\]

Increasing \(t_1 \) if needed we can assume that \(t^{1-\beta-\rho}/a(t) \leq 1 \) for \(t \geq t_1 \) whence

\[
\sum_{n=0}^{\lfloor t \rfloor+1} (1 - F(n)) = ((u - v)t)^{1-\beta-\rho} - \sum_{n=0}^{\lfloor t \rfloor+1} (1 - F(n)) \leq (1 - (u - v)^{1-\beta-\rho}) \leq (u - v)^{1-\beta-\rho}
\]

because \((u - v)t)^{1-\beta-\rho} \geq t_1^{1-\beta-\rho} > 1\). This implies

\[
I_2(t) / (a(t))^l \leq 2^l \mathbb{E}(\nu(1))^l \left(a((u - v)t)/a(t) \right) \frac{1}{(a(t))^{l-1}} \leq (4A)^l \mathbb{E}(\nu(1))^l(u - v)^{l(1-\beta-\rho)}, \tag{2.8}
\]

where we have used \(\mathbb{E}(\nu(1)) \leq \mathbb{E}(\nu(1))^l \) which is a consequence of \(\nu(1) \geq 1 \) a.s.

Now the claim follows from (2.2), (2.7) and (2.8).

We are ready to prove Theorem 1.1. As discussed in the paragraph following Theorem 1.1 weak convergence of \((Z_t(u_1), \ldots, Z_t(u_n))\) for any \(n \in \mathbb{N} \) and any \(0 < u_1 < \ldots, u_n < \infty \) was proved in earlier works. In view of \(V_{\beta}(0) = 0 \) a.s., this immediately extends to \(0 \leq u_1 < \ldots, u_n < \infty \). Thus, it remains to prove tightness on \(D[0,T] \) for any \(T > 0 \). Since the normalization in (1.2) is regularly varying it is enough to investigate the case \(T = 1 \) only. Suppose we can prove that for any \(\varepsilon > 0 \) and \(\gamma > 0 \) there exist \(t_0 > 0 \) and \(\delta > 0 \) such that

\[
\mathbb{P}\left\{ \sup_{0 \leq u,v \leq 1, |u-v| \leq \delta} |Z_t(u) - Z_t(v)| > \varepsilon \right\} \leq \gamma \tag{2.9}
\]
for all $t \geq t_0$. Then, by Theorem 15.5 in [2] the desired tightness follows along with continuity of the paths of (some version of) the limit process.

On pp. 763-764 in [17] it is shown that (the specific form of Z_t plays no role here)

$$
\sup_{0 \leq u, v \leq 1, |u - v| \leq 2^{-i}} |Z_t(u) - Z_t(v)| \leq 2 \sum_{j=1}^{I} \max_{1 \leq k \leq 2^j} |Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})| + 2 \max_{0 \leq k \leq 2^{I-1}} \sup_{0 \leq w \leq 2^{-I}} |Z_t(k 2^{-I} + w) - Z_t(k 2^{-I})|
$$

for any positive integers i and I, $i \leq I$. Hence (2.9) follows if we can check that for any $\varepsilon > 0$ and $\gamma > 0$ there exist $t_0 > 0$, $i \in \mathbb{N}$ and $I \in \mathbb{N}$, $i \leq I$ such that

$$
P\left\{ \sum_{j=i}^{I} \max_{1 \leq k \leq 2^j} |Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})| > \varepsilon \right\} \leq \gamma, \quad t \geq t_0
$$

(2.10) and that

$$
\max_{0 \leq k \leq 2^{I-1}} \sup_{0 \leq w \leq 2^{-I}} |Z_t(k 2^{-I} + w) - Z_t(k 2^{-I})| \overset{p}{\to} 0, \quad t \to \infty.
$$

(2.11)

Proof of (2.10). By Lemma 2.1 for any chosen $A > 1$ and $\rho \in (0, 1 - \beta)$ there exists $t_1 > 1$ such that

$$
\mathbb{E}[Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})]^{2l} \leq c(l) 2^{-j(l(\gamma - \beta - \rho) - 1)}
$$

whenever $2^{-j} t \geq t_1$. Let $I = I(t)$ denote the integer number satisfying $2^{-I} t > t_1 > 2^{-I-1} t$.

Then the inequalities (2.12) and

$$
\mathbb{E}(\max_{1 \leq k \leq 2^j} |Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})|)^{2l} \leq \sum_{k=1}^{2^j} \mathbb{E}[Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})]^{2l}
$$

hold whenever $j \leq I$. Pick now minimal $l \in \mathbb{N}$ such that $l(1 - \beta - \rho) > 1$. Given positive ε and γ choose minimal $i \in \mathbb{N}$ satisfying $2^{-i(l(\gamma - \beta - \rho) - 1)} \leq \varepsilon^{2l}(1 - 2^{-l(l(\gamma - \beta - \rho) - 1)/(2l)})^{2l} / c(l)$.

Increase t if needed to ensure that $i \leq I$. Invoking Markov’s inequality and then the triangle inequality for the L_{2l}-norm gives

$$
P\left\{ \sum_{j=i}^{I} \max_{1 \leq k \leq 2^j} |Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})| > \varepsilon \right\}
$$

$$
\leq \varepsilon^{-2l} \mathbb{E}\left(\sum_{j=i}^{I} \max_{1 \leq k \leq 2^j} |Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})| \right)^{2l}
$$

$$
\leq \varepsilon^{-2l} \left(\sum_{j=1}^{I} (\mathbb{E}(\max_{1 \leq k \leq 2^j} |Z_t(k 2^{-j}) - Z_t((k - 1) 2^{-j})|)^{2l})^{1/2l} \right)^{2l}
$$

$$
\leq \varepsilon^{-2l} c(l) \left(\sum_{j=1}^{I} 2^{-j(l(1 - \beta - \rho) - 1)/(2l)} \right)^{2l}
$$

$$
= \varepsilon^{-2l} c(l) \frac{2^{-i(l(1 - \beta - \rho) - 1)}}{1 - 2^{-l(l(1 - \beta - \rho) - 1)/(2l)}} \leq \gamma
$$
for all \(t \) large enough.

Proof of (2.11). We shall use a decomposition

\[
(a(t))^{1/2}(Z_t(k2^{-l} + w) - Z_t(k2^{-l}))
= \sum_{j \geq 0} \left(\mathbf{1}_{\{S_j + \eta_{j+1} \leq (k2^{-l} + w)t\}} - F((k2^{-l} + w)t - S_j) \right) \mathbf{1}_{\{k2^{-l}t < S_j \leq (k2^{-l} + w)t\}}
+ \sum_{j \geq 0} \left(\mathbf{1}_{\{k2^{-l}t < S_j + \eta_{j+1} \leq (k2^{-l} + w)t\}} - (F((k2^{-l} + w)t - S_j) - F(k2^{-l}t - S_j)) \right) \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
=: J_1(t, k, w) + J_2(t, k, w).
\]

It suffices to prove that for \(i = 1, 2 \)

\[
(a(t))^{-1/2} \max_{0 \leq k \leq 2^l - 1} \sup_{0 \leq w \leq 2^{-l}} |J_i(t, k, w)| \xrightarrow{P} 0, \quad t \to \infty. \tag{2.13}
\]

Proof of (2.13) for \(i = 1 \). Since \(|J_1(t, k, w)| \leq \nu((k2^{-l} + w)t) - \nu(k2^{-l}t) \) and \(\nu(t) \) is a.s. nondecreasing we infer \(\sup_{0 \leq w \leq 2^{-l}} |J_1(t, k, w)| \leq \nu((k + 1)2^{-l}t) - \nu(k2^{-l}t) \).

By Boole’s inequality and distributional subadditivity of \(\nu(t) \) (see formula (5.7) on p. 58 in [6])

\[
\mathbb{P} \left\{ \max_{0 \leq k \leq 2^l - 1} (\nu((k + 1)2^{-l}t) - \nu(k2^{-l}t)) > \delta(a(t))^{1/2} \right\}
\leq \sum_{k=0}^{2^l-1} \mathbb{P} \left\{ \nu((k + 1)2^{-l}t) - \nu(k2^{-l}t) > \delta(a(t))^{1/2} \right\}
\leq 2^l \mathbb{P} \left\{ \nu(2^{-l}t) > \delta(a(t))^{1/2} \right\} \leq 2^l \mathbb{P} \left\{ \nu(2t_1) > \delta(a(t))^{1/2} \right\}
\]

for any \(\delta > 0 \). The right-hand side converges to zero as \(t \to \infty \) because \(\nu(2t_1) \) has finite exponential moments of all positive orders (see Lemma 5.2).

Proof of (2.13) for \(i = 2 \). We have

\[
\max_{0 \leq k \leq 2^l - 1} |J_2(t, k, w)|
\leq \sup_{0 \leq w \leq 2^{-l}} \left(\sum_{j \geq 0} \mathbf{1}_{\{k2^{-l}t < S_j + \eta_{j+1} \leq (k2^{-l} + w)t\}} \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
+ \sum_{j \geq 0} (F((k2^{-l} + w)t - S_j) - F(k2^{-l}t - S_j)) \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
\right)
\leq \sum_{j \geq 0} \mathbf{1}_{\{k2^{-l}t < S_j + \eta_{j+1} \leq (k + 1)2^{-l}t\}} \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
+ \sum_{j \geq 0} (F(((k + 1)2^{-l}t - S_j) - F(k2^{-l}t - S_j)) \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
\leq \sum_{j \geq 0} (\mathbf{1}_{\{k2^{-l}t < S_j + \eta_{j+1} \leq (k + 1)2^{-l}t\}}
- (F(((k + 1)2^{-l}t - S_j) - F(k2^{-l}t - S_j)) \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
+ 2 \sum_{j \geq 0} (F(((k + 1)2^{-l}t - S_j) - F(k2^{-l}t - S_j)) \mathbf{1}_{\{S_j \leq k2^{-l}t\}}
=: J_{21}(t, k) + 2J_{22}(t, k).
\]
Pick minimal \(r \in \mathbb{N} \) satisfying \(r(1 - \beta) > 1 \) so that \(\lim_{t \to \infty} t^{-1}(a(t))^r = \infty \).

Using (2.6) with \(u = (k + 1)2^{-I} \) and \(v = k2^{-I} \) we obtain

\[
\mathbb{E}(J_{22}(t, k))^{2r} \leq \mathbb{E}(\nu(1))^{2r}(a(2^{-I}t))^{2r} \leq \mathbb{E}(\nu(1))^{2r}(a(2t_1))^{2r}
\]

which implies

\[
(a(t))^{-r}\mathbb{E}(\max_{0 \leq k \leq 2^I - 1} J_{22}(t, k))^{2r} \leq (a(t))^{-r}2^I \max_{0 \leq k \leq 2^I - 1} \mathbb{E}(J_{22}(t, k))^{2r}
\]

\[
\leq (a(t))^{-r}2^I \mathbb{E}(\nu(1))^{2r}(a(2t_1))^{2r}.
\]

The right-hand side converges to zero as \(t \to \infty \) by our choice of \(r \). Consequently, \((a(t))^{-1/2} \max_{0 \leq k \leq 2^I - 1} J_{22}(t, k) \stackrel{p}{\to} 0 \) as \(t \to \infty \) by Markov’s inequality.

Using a counterpart of the first inequality in (2.2) for the martingale \((R^*(l, t), F_l)_{l \in \mathbb{N}_0}\), where \(R^*(0, t) := 0 \) and

\[
R^*(l, t) := \sum_{j=0}^{l-1} \mathbb{1}_{\{vt < S_j + \eta_j, 1 \leq u \leq ut\}} - (F(ut - S_j) - F(ut - S_j)) \mathbb{1}_{\{S_j \leq ut\}}, \quad l \in \mathbb{N}
\]

for \(u = (k + 1)2^{-I}t \) and \(v = k2^{-I}t \), one can check that

\[
\mathbb{E}(J_{21}(t, k))^{2r} \leq C_r \mathbb{E} \left(\int_{[0, k2^{-I}t]} (F((k + 1)2^{-I}t - y) - F(k2^{-I}t - y))d\nu(y) \right)^r
\]

\[
= \mathbb{E} \int_{[0, k2^{-I}t]} (F((k + 1)2^{-I}t - y) - F(k2^{-I}t - y))d\nu(y).
\]

In view of (2.6) the right-hand side does not exceed

\[
C_r (\mathbb{E}(\nu(1))r(a(2^{-I}t))r + \mathbb{E} \nu(1)a(2^{-I}t)) \leq C_r (\mathbb{E}(\nu(1))r(a(2k))r + \mathbb{E} \nu(1)a(2k)).
\]

Arguing as above we conclude that \((a(t))^{-1/2} \max_{0 \leq k \leq 2^I - 1} J_{21}(t, k) \stackrel{p}{\to} 0 \) as \(t \to \infty \), and (2.1.13) for \(i = 2 \) follows. The proof of Theorem 1.1 is complete.

3 Proof of Theorem 1.2

Set \(f(t) := \sqrt{t(1 - F(t))} \) for \(t > 0 \). In view of (2.1)

\[
\sqrt{\int_0^t (1 - F(y))dy} \sim (1 - \beta)^{-1/2} t^{1/2 - \beta/2} (\ell(t))^{1/2} \sim (1 - \beta)^{-1/2} f(t)
\]

as \(t \to \infty \). Assuming that \(\mathbb{E} \xi^r < \infty \) for some \(r > 2(1 - \beta)^{-1} \) we intend to show that

\[
\sup_{0 \leq u \leq T} \left| \sum_{k \geq 0} (1 - F(ut - S_k)) \mathbb{1}_{\{S_k \leq ut\}} - \mu^{-1} \int_0^u (1 - F(y))dy \right| \stackrel{p}{\to} 0, \quad t \to \infty
\]

for any \(T > 0 \). This in combination with (3.1) and Theorem 1.1 is sufficient for the proof of the \(J_1\)-convergence.

We proceed by observing that

\[
\sum_{k \geq 0} (1 - F(t - S_k)) \mathbb{1}_{\{S_k \leq t\}} - \mu^{-1} \int_0^t (1 - F(y))dy = \int_{[0, t]} (1 - F(t - y))d(\nu(y) - \mu^{-1}y).
\]
Integration by parts yields
\[
\begin{align*}
\int_{[0,t]} (1 - F(t - y))d(\nu(y) - \mu^{-1}y) + \mathbb{P}\{\xi = t\} \\
= \nu(t) - \mu^{-1}t - \int_{[0,t]} (\nu(t - y) - \mu^{-1}(t - y))dF(y) = \left(\nu(t) - \mu^{-1}t - \sigma\mu^{-3/2}W(t)\right) \\
- \int_{[0,t]} (\nu(t - y) - \mu^{-1}(t - y) - \sigma\mu^{-3/2}W(t - y))dF(y) \\
+ \sigma\mu^{-3/2}\left(W(t) - \int_{[0,t]} W(t - y)dF(y)\right) =: R_1(t) + \sigma\mu^{-3/2}R_2(t),
\end{align*}
\]

where \(\sigma^2 = \text{Var} \xi < \infty\) and \(W\) is a standard Brownian motion as defined in Lemma 5.3. For any \(T > 0\)

\[
\sup_{0 \leq u \leq T} \left| R_1(ut) \right| \leq \sup_{0 \leq u \leq T} \left| \nu(ut) - \mu^{-1}ut - \sigma\mu^{-3/2}W(ut) \right| \\
+ \sup_{0 \leq u \leq T} \int_{[0,ut]} \left| \nu(u - y) - \mu^{-1}(u - y) - \sigma\mu^{-3/2}W(u - y) \right|dF(y) \\
\leq \sup_{0 \leq u \leq T} \left| \nu(u) - \mu^{-1}u - \sigma\mu^{-3/2}W(u) \right| \\
+ \sup_{0 \leq u \leq T} \sup_{0 \leq y \leq ut} \left| \nu(y) - \mu^{-1}y - \sigma\mu^{-3/2}W(y) \right| \\
\leq 2 \sup_{0 \leq u \leq T} \left| \nu(u) - \mu^{-1}u - \sigma\mu^{-3/2}W(u) \right|.
\]

By Lemma 5.3 the right-hand side is \(o(t^{1/r})\) a.s. as \(t \to \infty\). Hence, our choice of \(r\) in combination with (3.1) ensure that

\[
\lim_{t \to \infty} \sup_{0 \leq u \leq T} \left| R_1(ut) \right| / f(t) = 0 \quad \text{a.s.}
\]

Further, we note that

\[
R_2(t) = W(t)(1 - F(t)) + \int_{[0,t]} (W(t) - W(t - y))dF(y) =: R_{21}(t) + R_{22}(t).
\]

Pick now \(\varepsilon \in (0,(1 - \beta)/2)\) if \(\beta \in [1/2,1)\) and \(\varepsilon \in (0,1/2 - \beta)\) if \(\beta \in [0,1/2)\). With this \(\varepsilon\), we have for any \(T > 0\)

\[
\begin{align*}
\sup_{0 \leq u \leq T} \left| R_{22}(ut) \right| & \leq \sup_{0 \leq u \leq T} \int_{[0,ut]} \frac{|W(ut) - W(ut - y)|}{y^{1/2-\varepsilon}} y^{1/2-\varepsilon}dF(y) \\
& \leq \sup_{0 \leq u \leq T} \sup_{0 \leq x \leq ut} \frac{|W(u) - W(u - x)|}{x^{1/2-\varepsilon}} \int_{[0,ut]} y^{1/2-\varepsilon}dF(y) \\
& \leq \sup_{0 \leq u \leq T} \frac{|W(u) - W(v)|}{(u - v)^{1/2-\varepsilon}} \int_{[0,T]} y^{1/2-\varepsilon}dF(y) \\
& \overset{d}{=} \sup_{0 \leq u \leq T} \frac{|W(u) - W(v)|}{(u - v)^{1/2-\varepsilon}} \int_{[0,T]} y^{1/2-\varepsilon}dF(y).
\end{align*}
\]

Here,

\[
\sup_{0 \leq u \leq T} \frac{|W(u) - W(v)|}{(u - v)^{1/2-\varepsilon}} < \infty \quad \text{a.s.}
\]
because the Brownian motion W is locally Hölder continuous with exponent $1/2 - \varepsilon$ (for any $\varepsilon \in (0, 1/2)$), and the distributional equality denoted by $\overset{d}{=} \varepsilon$ is a consequence of self-similarity of W with index $1/2$. Now it is convenient to treat two cases separately.

Case $\beta \in [1/2, 1)$ in which

$$
\frac{t^\varepsilon}{f(t)} \int_{[0,T]} y^{1/2-\varepsilon} dF(y) \sim \frac{\mathbb{E}R_1^{1/2-\varepsilon}}{t^{1/2-\beta/2-\varepsilon}\ell(t)^{1/2}} \to 0, \quad t \to \infty
$$

by (3.1) and our choice of ε. This proves

$$
\sup_{0 \leq u \leq T} \frac{|R_{22}(ut)|}{f(t)} \overset{P}{\to} 0, \quad t \to \infty.
$$

(3.2)

Case $\beta \in [0, 1/2)$. Here, we conclude that

$$
\frac{t^\varepsilon}{f(t)} \int_{[0,T]} y^{1/2-\varepsilon} dF(y) \sim \frac{T^{1/2-\beta-\varepsilon}\ell(t)^{1/2}}{(1/2 - \beta - \varepsilon)t^{\beta/2}} \to 0, \quad t \to \infty
$$

having utilized (3.1), Theorem 1.6.4 in [3], which is applicable by our choice of ε and the fact that $\lim_{t \to \infty} \ell(t) = 0$ when $\beta = 0$. Thus, (3.2) holds in this case, too.

It remains to check weak convergence on D of $R_{21}(t)/f(t)$ to the zero function or equivalently

$$
\sup_{0 \leq u \leq T} \frac{|R_{21}(ut)|}{f(t)} \overset{P}{\to} 0, \quad t \to \infty
$$

(3.3)

for each $T > 0$. We shall only consider the case where $T > 1$, the case $T \in (0, 1]$ being analogous and simpler. By Potter’s bound (Theorem 1.5.6 (iii) in [3]), for any chosen $A > 1$ and $\delta > 0$ there exists $t_0 > 0$ such that $1 - F(u)/(1 - F(t)) \leq Au^{-\beta - \delta}$ whenever $u \in (0, 1]$ and $ut \geq t_0$. With this t_0, write

$$
\sup_{0 \leq u \leq T} |R_{21}(ut)| \leq \sup_{0 \leq u \leq t_0/t} |R_{21}(ut)| \vee \sup_{t_0/t \leq u \leq 1} |R_{21}(ut)| \vee \sup_{1 \leq u \leq T} |R_{21}(ut)|.
$$

For the first supremum on the right-hand side we have $\sup_{0 \leq u \leq t_0/t} |W(u)|(1 - F(ut)) \leq \sup_{0 \leq u \leq t_0} |W(u)|$ which converges to zero a.s. when divided by $f(t)$.

For the third supremum,

$$
\sup_{1 \leq u \leq T} |W(u)|(1 - F(t)) \leq (1 - F(t)) \sup_{0 \leq u \leq T} |W(u)|
$$

$$
\overset{d}{=} t^{1/2}(1 - F(t)) \sup_{0 \leq u \leq T} |W(u)|,
$$

and the right hand-side divided by $f(t)$ converges to zero a.s. in view of (3.1).

Finally,

$$
\frac{\sup_{t_0/t \leq u \leq 1} |W(u)|(1 - F(ut))}{1 - F(t)} \leq A \sup_{t_0/t \leq u \leq 1} |W(u)|u^{-\beta - \delta}.
$$

(3.4)

As before we distinguish the two cases.

\(^5\)Weak convergence on $D(0, \infty)$ follows immediately from the fact that $\lim_{t \to \infty} (1 - F(ut))/(1 - F(t)) = u^{-\beta}$ locally uniformly in u on $(0, \infty)$. A longer proof is needed to treat weak convergence on $D(0, \infty)$, i.e., with 0 included.
CASE $\beta \in [1/2, 1)$. Choose δ satisfying $\delta \in (0, (1 - \beta)/2)$. The law of the iterated logarithm for $|W|$ at large times guarantees that $\lim_{t \to \infty} |W(t)|^{t^{-\beta}} = 0$ a.s. and thereupon $\sup_{u \geq t_0} |W(u)|^{u^{-\beta}} < \infty$ a.s. With this at hand we continue \eqref{3.4} as follows:

$$
\sup_{t_0/t \leq u \leq 1} \frac{|W(ut)|(1 - F(ut))}{f(t)} \leq A t^{\beta+\delta} \sqrt{1 - F(t)} \sup_{t_0/t \leq u \leq t} (|W(u)|^{u^{-\beta}}) \rightarrow A \sup_{u \geq t_0} (|W(u)|^{u^{-\beta}}) \frac{f(t)}{t^{1/2 - \beta/2 - \delta}} \text{ a.s.}
$$

having utilized \eqref{3.1} for the last asymptotic equivalence. The right-hand side converges to zero a.s.

CASE $\beta \in [0, 1/2)$. Pick δ so small that $\beta + \delta < 1/2$. The law of the iterated logarithm for $|W|$ at small times entails $\lim_{t \to 0} |W(t)|^{t^{-\beta}} = 0$ a.s. whence $\sup_{0 \leq u \leq 1} |W(u)|^{u^{-\beta}} < \infty$ a.s. Continuing \eqref{3.4} with the help of self-similarity of W we further infer

$$
\sup_{t_0/t \leq u \leq 1} \frac{|W(ut)|(1 - F(ut))}{f(t)} \leq A \sup_{0 \leq u \leq 1} |W(u)|^{u^{-\beta}} \sqrt{1 - F(t)}.
$$

It remains to note that the right-hand side trivially converges to zero a.s.

Combining pieces together we conclude that \eqref{3.3} holds. The proof of Theorem 1.2 is complete.

4 Integral representation of the limit process V_β

First of all, we note that V_0 is a standard Brownian motion. Therefore, throughout the rest of the section we assume that $\beta \in (0, 1)$.

Denote by $B := (B(u, v))_{u, v \geq 0}$ a standard Brownian sheet, i.e., a two-parameter continuous centered Gaussian field with $\mathbb{E}B(u_1, v_1)B(u_2, v_2) = (u_1 \wedge u_2)(v_1 \wedge v_2)$. In particular, B is a Brownian motion in u (in v) for each fixed v (u). See Section 3 in \cite{18} for more properties of B. It turns out that the limit process V_β can be represented as the integral of a deterministic function with respect to the Brownian sheet. Such integrals are constructed in \cite{10}. Also, these can be thought of as particular instances of the integrals of the first kind with respect to the Brownian sheet, see Section 4 in \cite{18}. Set

$$
V_\beta^*(u) = \sqrt{1 - \beta} \int_{[0, u]} \int_{[0, \infty)} \mathbbm{1}_{\{x + z^{-1/\beta} > u\}} dB(x, z), \quad u \geq 0.
$$

Clearly, the process $V_\beta^*: = (V_\beta^*(u))_{u \geq 0}$ is centered Gaussian. Since

$$
\mathbb{E}V_\beta^*(u)V_\beta^*(s) = (1 - \beta) \int_{(0, \infty)} \int_{(0, \infty)} \mathbbm{1}_{\{x + z^{-1/\beta} > u\}} \mathbbm{1}_{[0, u]}(x) \mathbbm{1}_{\{x + z^{-1/\beta} > s\}} \mathbbm{1}_{[0, s]}(x) dz dx
$$

for $0 \leq s \leq u$, we conclude that V_β^* is a version of V_β.

The discussion above does not give a clue on where equality (4.1) comes from. Here is a non-rigorous argument based on the idea from [14] which allows one to guess (4.1). We start with an integral representation

\[
\sum_{k \geq 0} \left(\mathbb{1}_{\{S_k \leq ut < S_{k+1}\}} - (1 - F(ut - S_k)) \mathbb{1}_{\{S_k \leq ut\}} \right) \frac{\sqrt{-1} \int_0^t (1 - F(y))dy}{\mu^{-1} \int_0^t (1 - F(y))dy} = \int_{[0,u]} \int_{[0,\infty)} \mathbb{1}_{\{x+z>u\}} \frac{\sum_{k=1}^{\nu(xt)} \mathbb{1}_{\{\eta_k \leq zt\}} - \nu(xt)F(zt)}{\sqrt{\mu^{-1} \int_0^t (1 - F(y))dy}} \, dx \, dz
\]

where \(\nu(t) = \inf\{k \in \mathbb{N} : S_k > t\} \) for \(t \geq 0 \). It is likely that

\[
\sum_{k=1}^{[xt]} \mathbb{1}_{\{\eta_k \leq zt\}} - [xt]F(zt) \int_{[0,u]} \int_{[0,\infty)} \mathbb{1}_{\{x+z>u\}} \frac{\sum_{k=1}^{\nu(xt)} \mathbb{1}_{\{\eta_k \leq zt\}} - \nu(xt)F(zt)}{\sqrt{\mu^{-1} \int_0^t (1 - F(y))dy}} \, dx \, dz
\]

converges weakly as \(t \to \infty \) to \(B(x, z^{-\beta}) \) on some appropriate space of functions \(g : [0, \infty) \times [0, \infty) \to \mathbb{R} \) equipped with some topology which is strong enough to ensure continuity of composition. The latter together with (2.1) and the well-known relation \(t^{-1/2} \nu(t) \to \mu^{-1/2} \) as \(t \to \infty \) should entail that

\[
\sum_{k=1}^{[xt]} \mathbb{1}_{\{\eta_k \leq zt\}} - [xt]F(zt) \int_{[0,u]} \int_{[0,\infty)} \mathbb{1}_{\{x+z>u\}} \frac{\sum_{k=1}^{\nu(xt)} \mathbb{1}_{\{\eta_k \leq zt\}} - \nu(xt)F(zt)}{\sqrt{\mu^{-1} \int_0^t (1 - F(y))dy}} \, dx \, dz
\]

converges weakly to \(\sqrt{1 - \beta} B(x, z^{-\beta}) \). One may expect that the right-hand side of (4.2) converges weakly to the right-hand side of (4.1). On the other hand, the left-hand side of (4.2) converges weakly to \(V_\beta \) by Theorem 1.1.

5 Appendix

The following result can be found in the proof of Lemma 7.3 in [1].

Lemma 5.1. Let \(G : [0, \infty) \to [0, \infty) \) be a locally bounded function. Then, for any \(l \in \mathbb{N} \)

\[
\mathbb{E} \left(\sum_{k \geq 0} G(t - S_k) \mathbb{1}_{\{S_k \leq t\}} \right)^l \leq \left(\sum_{j=0}^{[t]} \sup_{y \in [j,j+1]} G(y) \right)^l \mathbb{E}(\nu(1))^l, \quad t \geq 0. \tag{5.1}
\]

The second auxiliary result is well-known. See, for instance, Theorem 2.1 (b) in [9]. It is of principal importance here that \(\xi \) is a.s. positive rather than nonnegative.

Lemma 5.2. For all \(a > 0 \) and all \(t > 0 \) \(\mathbb{E} e^{at \nu(t)} < \infty \).

Also, we need a classical strong approximation result, see Corollary 3.1 (ii) in [5].

Lemma 5.3. Suppose that \(\mathbb{E} \xi^r < \infty \) for some \(r > 2 \). Then there exists a standard Brownian motion \(W \) such that

\[
\lim_{t \to \infty} t^{-1/r} \sup_{0 \leq s \leq t} \left| \nu(s) - \frac{\mu^{-1} s - \sigma \mu^{-3/2} W(s)}{\mu^{-1/2}} \right| = 0 \quad \text{a.s.,}
\]

where \(\mu = \mathbb{E} \xi \) and \(\sigma^2 = \text{Var} \xi \).
References

[1] Alsmeyer, G., Iksanov, A. and Marynych, A. (2017). Functional limit theorems for the number of occupied boxes in the Bernoulli sieve. *Stoch. Proc. Appl.*, to appear.

[2] Billingsley, P. (1968). *Convergence of probability measures*. Wiley: New York.

[3] Bingham N. H., Goldie C. M., and Teugels, J. L. (1989). *Regular variation*. Cambridge University Press: Cambridge.

[4] Chow, Y.S. and Teicher, H. (2003). *Probability theory: independence, interchangeability, martingales*. 3rd edition, Springer: New York.

[5] Csörgő, M., Horváth, L. and Steinebach, J. (1987). Invariance principles for renewal processes. *Ann. Probab.* 15, 1441–1460.

[6] Gut, A. (2009). *Stopped random walks. Limit theorems and applications*, 2nd edition. Springer-Verlag: New York.

[7] Iksanov, A. (2017). *Renewal theory for perturbed random walks and similar processes*. Birkhäuser, to appear. Preprint version of this monograph is available at http://do.unicyb.kiev.ua/iksan/publications.php

[8] Iksanov, A., Marynych, A. and Meiners, M. (2017). Asymptotics of random processes with immigration I: Scaling limits. *Bernoulli*, to appear.

[9] Iksanov, A. and Meiners, M. (2010). Exponential rate of almost-sure convergence of intrinsic martingales in supercritical branching random walks. *J. Appl. Probab.* 47, 513–525.

[10] Itô, K. (1951). Multiple Wiener integral. *J. Math. Soc. Japan*. 3, 157–169.

[11] Jacod, J. and Shiryaev, A. N. (2003). *Limit theorems for stochastic processes*, 2nd edition. Springer: Berlin.

[12] Kaplan, N. (1975). Limit theorems for a GI/G/∞ queue. *Ann. Probab.* 3, 780–789.

[13] Konstantopoulos, T. and Si-Jian Lin, S. J. (1998). Macroscopic models for long-range dependent network traffic. *Queueing Systems*. 28, 215–243.

[14] Krichagina, E. V. and Puhalskii, A. A. (1997). A heavy-traffic analysis of a closed queueing system with a GI/∞ service center. *Queueing Systems*. 25, 235–280.

[15] Lindvall, T. (1973). Weak convergence of probability measures and random functions in the function space $D(0, \infty)$. *J. Appl. Probab.* 10, 109–121.

[16] Mikosch, T. and Resnick, S. (2006). Activity rates with very heavy tails. *Stoch. Proc. Appl.* 116, 131–155.

[17] Resnick, S. and Rootzén, H. (2000). Self-similar communication models and very heavy tails. *Ann. Appl. Probab.* 10, 753–778.
[18] Walsh, J. B. (1986). Martingales with a multidimensional parameter and stochastic integrals in the plane. Probability and statistics, Lect. Winter Sch., Santiago de Chile. *Lecture Notes in Mathematics*. 1215, 329–491.