Anti-inflammatory and Anti-oxidative Effects of Korean Red Ginseng Extract in Human Keratinocytes

Chang-Eui Hong1 and Su-Yun Lyu2*
1Department of Pharmacy, Yeungnam University, Gyeongsan 712-749, 2Department of Herbal Medicinal Pharmacology, Daegu Haany University, Gyeongsan 712-715, Korea

Background: In this study, we have investigated the effect of Korean red ginseng (KRG) extracts on the production of TNF-\(\alpha\) and IL-8 in human keratinocytes. Also, to examine the antioxidative effect of red ginseng extracts, free radical scavenging activity and superoxide dismutase (SOD) activity in human dermal fibroblasts was measured. Methods: To investigate the effect of KRG in atopic dermatitis, we measured the level of TNF-\(\alpha\) and IL-8 secretion in LPS-stimulated human keratinocytes after the treatment of KRG extracts using enzyme-linked immunosorbent assay. Anti-oxidative activity was investigated by measuring 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and SOD activity. Results: The stimulation of human keratinocytes with KRG extracts shifted the LPS-induced cytokine secretion toward a more immunosuppressive response. KRG dose-dependently decreased TNF-\(\alpha\) and IL-8 production in HaCaT cells and a significant inhibition of TNF-\(\alpha\) was shown when cells were treated with 500 and 1,000 \(\mu\)g/ml of KRG extracts. Additionally, KRG extracts showed DPPH radical scavenging and SOD activity in a dose-dependent manner. Particularly, SOD activities of concentrations higher than 60 \(\mu\)g/ml of KRG extracts were significantly different in human dermal fibroblast cells. Conclusion: Based on this study, KRG extracts may be a useful immunosuppressive agent in the treatment of atopic dermatitis.

INTRODUCTION

All parts of the atopic disease have shown an increase in the last few decades (1). The first clinical manifestation of atopy is generally considered atopic dermatitis and the start of the atopic march. The atopic march is generally characterized by the progression of atopic dermatitis to asthma and allergic rhinitis during the first several years of life. The putative mechanism is the skin, which acts as the site of primary sensitization through possible defects in the epidermal barrier with later sensitization in the airways (2,3). Atopic dermatitis correlates with the expression of proinflammatory cytokines such as tumor necrosis factor-alpha (TNF-\(\alpha\)), interleukin (IL)-8, and IL-1 from keratinocytes, mast cells, and dendritic cells. Acute AD is associated with the production of Th helper 2 type (Th2) cytokines but during chronic phase of AD, there is a switch to Th1-like cells which primarily produce TNF-\(\alpha\) and IFN-\(\gamma\) (4).

Keratinocytes comprise 90% of the cells found in the epidermis and are capable of eliciting an immune response (5). Cytokines produced by these epithelial cells maintain normal homeostatic mechanisms in these structures. Skin cytokines can have pro-inflammatory as well as anti-inflammatory function, and dysfunction in the cytokine balances can contribute to inflammatory diseases in these organ systems (6). Keratinocytes synthesize and secrete a wide variety of cytokines including tumor TNF-\(\alpha\) and IL-8. TNF-\(\alpha\) is an important mediator of shock and cachexia (7). TNF-\(\alpha\) induces fever, hypotension, prostaglandin E\(_2\) (PGE\(_2\)), and local tissue necrosis (8). It also has a synergistic effect on PGE\(_2\)-induced aggregation of neutrophils and synthesis of thromboxanes (6). In addition, IL-8 is a potent neutrophil chemoattractant and activating fac-
tor produced by a variety of cells including keratinocytes and its production is augmented by the primary cytokine TNF-α (9). Intradermally injected IL-8 induces neutrophil accumulation in dermis surrounding the dermal blood vessels (10). Overexpression of IL-8 is also thought to mediate T-cell chemotraction in cutaneous T-cell lymphoma (11) and to contribute to neutrophil accumulation in the epidermis in psoriatic skin (12).

Moreover, antioxidants may be beneficial in conditions of oxidative stress, defined as when the oxidative/reductive balance of the body is tipped in favor of the former (13). Reactive oxygen species (ROS) released from inflammatory cells constitutes one of the critical causative factors in inflammatory skin diseases such as atopic dermatitis (14). Several types of inflammatory cells such as neutrophils and macrophages play an important role in acute inflammatory processes. However, in chronic and overaggressive inflammatory conditions, ROS may also be released into the extracellular compartment, and may cause local propagation of the inflammatory reaction and tissue damage (15,16). Therefore, the inhibition of ROS production or scavenging the released ROS may be important in preventing excess tissue damage in atopic dermatitis (14).

To treat atopic dermatitis, anti-inflammatory agents are often applied. Topical corticosteroids as anti-inflammatory agents rapidly reduce the severity of this disease, but allow early relapse of the dermatitis after discontinuing treatment. In addition, chronic use of stronger steroids may lead to a rebound phenomenon, steroid dermatitis, and rosacea-like lesions (17). Traditional herbs is an alternative therapy that can be used in the treatment of dermatologic disorders (18,19). Previous studies have shown that herbal therapy with oriental medicine may be beneficial for the treatment of patients with atopic dermatitis (20). Korean red ginseng (KRG, the steamed ginseng) and related activities and supernatant from cells.

In this study, we have investigated the effect of KRG extracts on the production of TNF-α and IL-8 in human keratinocytes. In addition, to examine the antioxidative effect of red ginseng extracts, free radical scavenging activity and superoxide dismutase (SOD) activity in human dermal fibroblasts was measured.

MATERIALS AND METHODS

Preparation of Korean red ginseng (KRG) extracts

Six-year old fresh ginseng was collected from Youngchun in Korea (October 2009). KRG extract was prepared by water extraction and manufactured by Coseed Biopharm (Korea). Briefly, red ginseng was made by steaming fresh ginseng at 95~100°C for 2 h and drying at 55~60°C. One hundred grams of powdered red ginseng was added to 1 L of distilled water, and was extracted at 4°C for 7 h. The extraction procedure was repeated seven times. The extract was filtered using 400 mash and 0.45 μm filters. Sugar content and dry weight of the final extract was 1.7 brix and 0.44%, respectively.

Cell culture

Human keratinocytes (HaCaT) and human dermal fibroblasts (HDF-N) were maintained in Dulbecco’s Modified Eagle Medium (DMEM) and were supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 μg/ml streptomycin at a temperature of 37°C in a 5% CO2 humidified incubator (Sanyo, Japan). For cytokine production, cells were detached by vigorous pipetting. After centrifugation, the cells were incubated (5×10⁵ cells/ml) with fresh medium in 24-well flat-bottomed tissue culture plates (Corning, NY, USA) at 37°C in a 5% CO2 humidified incubator (Sanyo, Japan).

Cells were supplemented in the absence or presence of KRG extracts and stimulants (1 μg/ml lipopolysaccharide (LPS) for TNF-α and IL-8) for 48 h. Cultures were centrifuged at 300×g for 10 min to separate supernatant from cells.

Cell density determination

Cell numbers and viability were assessed by trypan blue (Sigma, Poole, UK) dye exclusion. Twenty microliters of trypan blue solution was mixed with 20 μl of cell suspension in a microtube to obtain a final density of 0.3–2×10⁶ cells/ml, and was loaded onto a hemocytometer. The cells that excluded the dye were counted in the standard manner within 1~5 min after mixing of the dye and cell suspension.
MIT assay
To determine the cytotoxic effect of KRG extracts, the viability of HaCaT and HDF-N cells were measured 48 h post-treatment. The cytotoxicity was measured by MTT (3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide, Sigma, Poole, UK) assay colorimetric dye reduction method. Cells (1×10⁵ cells/ml) were seeded in 96 well flat-bottomed tissue culture plates (Corning, NY, USA) in the absence or presence of KRG extracts for 24 h at 37°C in a 5% CO₂ humidified incubator (Sanyo, Japan). At the end of the incubation, 50 μl of filtered sterilized MTT stock solution was added and the plate was incubated for a further 4 h. Dimethylsulfoxide (DMSO, Duchefa Biochemie, Netherlands) was added and the absorbance was detected using an enzyme-linked immunosorbent assay (ELISA) plate reader (Molecular Devices, CA, USA) at 570 nm.

Measurement of TNF-α and IL-8 secretion
The levels of cytokine produced in the culture supernatants were determined by a commercially available ELISA kit obtained from Assay Designs, Inc (MI, USA). Briefly, supernatants were added to the 96-well plates coated with monoclonal antibody with specificity for human TNF-α or IL-8. Between subsequent steps in the assay, coated plates were sequentially exposed to biotin-conjugated anti-cytokine antibodies and detected by streptavidine-peroxidase anti-rabbit antibody. The plate was developed using 3,3′,5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide solution and optical density readings at 450 nm was taken using an ELISA plate reader (Molecular Devices, CA, USA) at 570 nm.

1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity
Various concentrations of KRG extracts were added to a methanolic solution of DPPH (0.1 mM) according to the method of Bois (23). After being stirred and left for 20 min at room temperature, the absorbance of DPPH solution was adjusted at 0.700±0.02 with 80% methanol at 517 nm. Fifty microliters of extracts or standard antioxidant solution was added to 2.95 ml of methanolic DPPH solution, The mixture was shaken vigorously and was left in the dark at 23°C for 30 min. The amount of DPPH remaining was determined at 520 nm, and the radical scavenging activity was obtained from the following equation:
$$\text{Radical scavenging activity (\%)} = \frac{(\text{OD}_{\text{control}} - \text{OD}_{\text{sample}})}{\text{OD}_{\text{control}}} \times 100.$$

Superoxide dismutase (SOD) activity
SOD activity was assayed using the nitroblue tetrazolium (NBT) method of Beauchamp and Fridovich (24). Cells were homogenized in 0.05 M sodium carbonate buffer (pH 10.2). The assay mixture consisted of 0.05 M sodium carbonate buffer (pH 10.2) containing 3 mM xanthine, 0.75 mM NBT, 3 mM EDTA, 1.5 mg/ml BSA and 50 μl of homogenate. The reaction was initiated by adding 50 μl of xanthine oxidase (0.1 mg/ml) and incubated for 30 min at room temperature. The reaction was stopped by adding 6 mM of copper (II) chloride and centrifuged at 1,500 rpm for 10 min. The absorbance of formazan at 560 nm was then measured in the supernatant, The SOD activity was obtained from the following equation:
$$\text{SOD activity (\%)} = \frac{(\text{OD}_{\text{control}} - \text{OD}_{\text{sample}})}{\text{OD}_{\text{control}}} \times 100.$$

Statistical analysis
All values expressed as mean±S.E.M. were obtained from at least five observations and were compared using one way ANOVA followed by Duncan’s multiple range test. Differences were significant; probability values of <0.001, <0.01, or <0.05 were considered significant with 99.9%, 99% or 95% of confidence, respectively.

RESULTS
Cytotoxic effects on HaCaT and HDF-N cells in vitro
Prior to studying the cytotoxic effects of KRG extracts, we determined the optimal dose of LPS. Cells were treated with various concentrations of LPS and the optimal dose of LPS used (1 μg/ml) was determined from LPS titration curves (data not shown). Cells were treated for 48 h with KRG extracts at the indicated dose and the viability was measured using MTT assay. The control is shown in the bar graph. More than 80% of the cells survived at concentrations lower than 1,000 μg/ml and 1,000 μg/ml in HaCaT and HDF-N cells, respectively (Figs. 1, 2).

Effect of Korean red ginseng extracts on TNF-α and IL-8 secretion in LPS-stimulated HaCaT cells
TNF-α and IL-8 are the major proinflammatory cytokines produced by keratinocytes, monocytes, and macrophages. As shown in Fig. 3, the stimulation of human keratinocytes with KRG extracts shifted the LPS-induced cytokine secretion toward a more immunosuppressive response. In the presence
Effects of Korean Red Ginseng
Chang-Eui Hong and Su-Yun Lyu

Figure 1. Cell viability of human keratinocyte cells (HaCaT) when treated with Korean red ginseng (KRG) extracts. HaCaT cells were treated with various concentrations (100, 200, 400, 800, 1,000, 2,000, 4,000, 6,000, 8,000, and 10,000 μg/ml) of KRG extract for 48 h and the cytotoxicity was measured by MTT assay colorimetric dye reduction method.

Figure 2. Cell viability of human dermal fibroblasts (HDF-N) when treated with Korean red ginseng (KRG) extracts. HDF-N cells were treated with various concentrations (100, 200, 400, 800, 1,000, 2,000, 4,000, 6,000, 8,000, and 10,000 μg/ml) of KRG extract for 48 h and the cytotoxicity was measured by MTT assay colorimetric dye reduction method.

Figure 3. Inhibition of TNF-α secretion in HaCaT cells by Korean red ginseng (KRG) extracts. Cells were stimulated with 1 μg/ml LPS and was treated with various concentrations of KRG extracts for 48 h. Significant difference in comparison with control at *p < 0.05 and **p < 0.01.

Figure 4. Inhibition of IL-8 secretion in HaCaT cells by Korean red ginseng (KRG) extracts. Cells were stimulated with 1 μg/ml LPS and was treated with various concentrations of KRG extracts for 48 h. *Significant difference in comparison with control at p < 0.05.

levels of TNF-α and IL-8 released from LPS-stimulated HaCaT cells in the presence of KRG extracts showed a certain immunomodulatory effect. Since more than 80% of the cells survived at concentrations lower than 1,000 μg/ml in HaCaT cells, it seems unlikely that the inhibition of cytokine production was due to any cytotoxic effect of KRG extracts.

Free radical scavenging activity of Korean red ginseng extracts
Decoloration of the stable free DPPH radical by antioxidant in samples was measured spectrophotometrically (Table I). In
Table I. Free radical scavenging activity of Korean red ginseng (KRG) extracts

Concentration (μg/ml)	Free radical scavenging activity (%)
1	11.8±0.6
2	14.6±0.3
3	18.3±0.2
4	22.5±0.2
5	30.3±1.2
6	33.1±1.2
7	34.5±0.2
8	42.3±0.1
9	45.7±0.9
10	48.9±2.2*
20	56.0±0.8*
30	59.5±0.1*
40	64.4±1.7*
50	70.6±0.2*
60	75.4±1.2**
80	80.2±1.7**
90	85.1±1.0**
100	92.4±0.4**

Significant difference in comparison with control at *p<0.05 and **p<0.01.

addition, we compared these results with those of α-tocopherol (Table II). According to the results, KRG showed that it inhibited DPPH formation by 50% at a concentration of 11 μg/ml (EC50). Samples showed DPPH radical scavenging activity in a dose-dependent manner.

Effect of Korean red ginseng extracts on SOD

In order to investigate whether the antioxidant activity of KRG extracts is mediated by an increase in antioxidant enzymes, we measured SOD activities in HDF-N cells treated with extracts of KRG which had previously shown relatively high DPPH radical scavenging activities (Table III). As a result, KRG samples dose-dependently increased the antioxidant enzyme activity of HDF-N cells. At a dose of 80 μg/ml, KRG extracts activated SOD level by 51.2%, SOD activities of concentrations higher than 60 μg/ml were significantly (p<0.05) increased (Table III). Since more than 80% of the cells survived at concentrations lower than 1,000 μg/ml in HDF-N cells, it seems unlikely that the induction of antioxidant activity was due to any cytotoxic effect of KRG extracts.

Table II. Free radical scavenging activity of α-tocopherol

Concentration (ug/ml)	Free radical scavenging activity (%)
0	0
0.1	−0.2±0.1
1	2.9±0.5
5	16.7±0.4
10	33.9±0.8

Table III. Superoxide dismutase (SOD)-like activities of Korean red ginseng (KRG) extracts in human dermal fibroblasts (HDF-N)

Concentration (μg/ml)	SOD activity (%)
10	21.1±1.8
20	23.8±1.7
30	27.8±1.4
40	29.9±1.1
50	35.0±2.5
60	44.5±1.9*
70	46.5±1.7*
80	51.2±1.6*
90	52.1±1.7*
100	57.8±2.3*

*Significant difference in comparison with control at p<0.05.

DISCUSSION

Atopic dermatitis is common inflammatory condition of the skin, often appears first in early infancy and may persist into adulthood. Although it is not life threatening, it affects the quality of life (25). For the management of atopic dermatitis, early treatment at the onset of symptoms and the prevention of recurrence are important. Use of topical or systemic steroid is essential for the successful management of atopic dermatitis; however, there are controversies regarding its long-term use (26,27). To date, several natural substance based anti-atopic agents have been topically tested as potential therapeutics for atopic dermatitis (28). Ginseng is known to possess various biological activities including anti-inflammatory and anti-tumor actions. The major components of raw ginseng are ginsenosides (29). The anti-allergic and anti-inflammatory effects of ginsenosides Rh1, anti-allergic effect of ginsenosides Rh2, and anti-allergic and anti-contact dermatitis activity of KRG saponin fraction and ginsenosides Rg3, Rf, and Rh2 have also been identified. The anti-allergic properties of KRG saponin fraction and ginsenosides have strongly suggested their possibility as potential anti-atopic agents.
nificantly suppressed LPS-induced elevation of TNF-\(\alpha\) and IL-8 secretion in human keratinocytes (HaCaT).

Cultured human keratinocytes produce TNF-\(\alpha\) following stimulation with lipopolysaccharide (LPS) (31), which can activate neutrophils, eosinophils, and macrophages (32). TNF-\(\alpha\) induces fever, hypotension, leukocopenia, local tissue necrosis, PGE\(_2\), and collagenase synthesis, fibroblast proliferation, and collagen synthesis (8). TNF-\(\alpha\) and other proinflammatory cytokines produced at the initiation stage of atopic dermatitis induce the expression of a variety of chemokines and adhesion molecules which direct the recruitment, proliferation, and survival of leukocytes within the skin. KRG extracts sig-

ROS produced by the activation of primed inflammatory cells have potentially deleterious effects on the biological sys-
tem as they can damage proteins, lipids and nucleic acids (39-41). It was reported that the capacity for SOD induction in peripheral blood leukocytes in atopic dermatitis patients is lower than normal (42). Also, it has previously been shown that in extreme oxidative environments, H\(_2\)O\(_2\) inactivates SOD and O\(_2\)\(^-\) inactivates the other scavenging enzymes such as catalase and glutathione peroxidase (43,44). Therefore, it is important to look into the SOD activity produced by KRG ex-
ttracts to determine whether it can be considered a potential agent for atopic dermatitis. As shown in Table III, KRG ex-
ttracts showed SOD activities in a dose-dependent manner, KRG extracts activated SOD level by 51.2% at a dose of 80 \(\mu\)g/ml and SOD activities of concentrations higher than 60 \(\mu\)g/ml were significantly (\(p<0.05\)) elevated. Since it was shown that environmentally generated ROS may induce oxidative damage in the stratum corneum, leading to the disruption of barrier function and exacerbation of atopic der-

References

1. Williams H, Stewart A, von Mutius E, Cockson W, Anderson HR: International Study of Asthma and Allergies in Childhood (ISAAC) Phase One and Three Study Groups: Is eczema really on the increase worldwide? J Allergy Clin Immunol 121;947-954, 2008

2. Sporzel JM: From atopic dermatitis to asthma: the atopic...
Chang-Eui Hong and Su-Yun Lyu

Effects of Korean Red Ginseng

1. Homey B, Steinhoff M, Ruzicka T, Leung DY: Cytokines and chemokines orchestrate atopic skin inflammation, J Allergy Clin Immunol 118:178-189, 2006
2. Pivarcsi A, Nagy I, Kemeny L: Intricate immunity in the skin: how keratinocytes fight against pathogens, Curr Immunol Rev 1:29-42, 2005
3. Feliciani C, Gupta AK, Sauder DN: Keratinocytes and cytokine/growth factors, Crit Rev Oral Biol Med 7:300-318, 1996
4. Beutler B, Cerami A, Cachectin (tumor necrosis factor): an endogenous mediator of shock and inflammatory responses, In: Oppenheim JJ, Shevach EM, editors, Immunophysiology: the role of cells and cytokines in immunity and inflammation, New York: Oxford University Press; p226-237, 1990
5. Tracey KJ, Vlassara H, Cerami A: Cachectin/tumor necrosis factor alpha monocyte-derived neutrophil chemotactic factor that has peptide sequence similarity to other host defense cytokines, Proc Natl Acad Sci U S A 84:9233-9237, 1987
6. Poller W: Neutrophil activation by intradermally injected neutrophil attractant/activation protein-1, J Invest Dermatol 96:690-694, 1991
7. Wimmers J, Ebenbichler C, Sauder DN: Interleukin-8 immunoreactivity in epidermis of cutaneous T-cell lymphoma patients, Lymphokine Cytokine Res 15:21-27, 1996
8. Schröder JM, Christophers E: Identification of C5αdes arg as an anionic neutrophil-activating peptide (ANAP) in psoriatic scales, J Invest Dermatol 87:53-58, 1986
9. Sies H: Oxidative stress: introductory remarks, In: Sies H, editor, Oxidative Stress, London: Academic Press; p1-7, 1985
10. Nakashima T, Sato F, Niwano Y, Kohno M, Muraoka W, Oda T: Inhibitory or scavenging action of ketoconazole and an anionic neutrophil-activating peptide (ANAP) in psoriatic scales, J Invest Dermatol 87:53-58, 1986
11. Holschneider M, Leung DY, Vogt MB, Hultcrantz R: Neutrophil recruitment by chemokines atopic dermatitis patients, J Allergy Clin Immunol 112:365-376, 1990
12. Ro JY, Ahn YS, Kim KH: Inhibitory effect of ginsenoside Re, a novel diterpenoid from Panax ginseng, on the mediator release in the guinea pig lung mast cells activated by specific antigen-antibody reactions, Int J Immunopharmacol 20:629-641, 1998
13. Bewshauk C, Fridovich I: Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal Biochem 44:276-287, 1971
14. Artik S, Ruzicka T, Hanke B, Skov L, Luger TA: Human keratinocytes are a source for the production of the interleukin-8 precursor, J Invest Dermatol 109:485-490, 1997
15. Pivarcsi A, Nagy I, Kemeny L: Intricate immunity in the skin: how keratinocytes fight against pathogens, Curr Immunol Rev 1:29-42, 2005
16. Feliciani C, Gupta AK, Sauder DN: Keratinocytes and cytokine/growth factors, Crit Rev Oral Biol Med 7:300-318, 1996
17. Beutler B, Cerami A. Cachectin (tumor necrosis factor): an endogenous mediator of shock and inflammatory response. In: Oppenheim II, Shevach EM, editors. Immunophysiology. New York: Oxford University Press; p226-237, 1990
18. Tracey KJ, Vlassara H, Cerami A: Cachectin/tumor necrosis factor, Lancet 1(8647);1122-1126, 1989
19. Yoshimura T, Matsushima K, Tanaka S, Robinson EA, Appella E, Oppenheim JJ, Leonard EJ: Purification of a human monococyte-derived neutrophil-chemotactic factor that has peptide sequence similarity to other host defense cytokines, Proc Natl Acad Sci U S A 84:9233-9237, 1987
20. Weis SJ: Tissue destruction by neutrophils, N Engl J Med 320:356-376, 1989
21. Inoue Y, Isobe M, Shiohara T, Hayashi H: Inhibitory activity of cyclopentoxolamine against reactive oxygen species released by primed inflammatory cells, Br J Dermatol 156:720-727, 2007
22. Chough SH, Park EK, Choe YH, Lee K, Lee WH, Lee K, Kang J, et al: Inhibitory effect of ginsenoside Rb1, inhibits passive cutaneous anaphylaxis reaction in mice, J Ginseng Res 35:95-98, 2009
23. Hashim M, Beuermann K, Lee SG, Seo H, et al: Inhibitory effect of ginsenoside Rb1 on the mediator release in the guinea pig lung mast cells activated by specific antigen-antibody reactions, Int J Immunopharmacol 20:629-641, 1998
24. Blois MS: Antioxidant determination by the use of a stable free radical, Nature 181:119-204, 1958
25. Artik S, Ruzicka T, Hanke B, Skov L, Luger TA: Human keratinocytes are a source for the production of the interleukin-8 precursor, J Invest Dermatol 109:485-490, 1997
26. Ro JY, Ahn YS, Kim KH: Inhibitory effect of ginsenoside Re, a novel diterpenoid from Panax ginseng, on the mediator release in the guinea pig lung mast cells activated by specific antigen-antibody reactions, Int J Immunopharmacol 20:629-641, 1998
27. Leung DY, Vlassara H, Cerami A: Cachectin/tumor necrosis factor. Lancet 1(8647);1122-1126, 1989
28. Kang JS, Yoon WK, Han MH, Lee H, Lee CW, Lee KH, Han SB, Lee K, Yang KH, Park SK, Kim HM: Inhibition of atopic dermatitis by topical application of silimarin in NC/Nga mice, Int Immunopharmacol 8:1475-1480, 2008
29. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T: Studies on the constituents of Japanese and Chinese crude drugs, Xi, Panaxadiol, a Sapogenin of Ginseng Roots, Chem Pharm Bull (Tokyo) 11:759-761, 1963
30. Park EK, Choo MK, Han MJ, Kim DH: Ginsenoside Rb1 possesses antiallergic and anti-inflammatory activities, Int Arch Allergy Immunol 135:113-120, 2004
31. Kock A, Schwarz T, Kimbauer R, Urbanski A, Perry P, Ansel JC, Luger TA: Human keratinocytes are a source for tumor necrosis factor inactivation alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light, J Exp Med 172:1609-1614, 1990
32. Collins T, Lapiere LA, Fiers W, Strominger JL, Pober JS: Recombinant human tumor necrosis factor increases mRNA levels and surface expression of HLA-AB antigens in vascular endothelial cells and dermal fibroblasts in vitro, Proc Natl Acad Sci U S A 83:446-450, 1986
33. Giustizieri ML, Mascia F, Frezzolini A, De Patò O, Chinni LM, Giannetti A, Girolomoni G, Pastore S: Keratinocytes from patients with atopic dermatitis and psoriasis show a distinct chemokine production profile in response to T cell-derived cytokines, J Allergy Clin Immunol 107:871-877, 2001
34. Albanesi C, Scarponi C, Sebastiani S, Cavani A, Federici M, Albanesi C, Girolomoni G: IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression in NC/Nga Mice, Evid Based Complement Alternat Med 2:191-199, 2005
35. Albanesi C, Scarponi C, Cavani A, Federici M, De Patò O, Puddu P, Girolomoni G: IL-17 enhances keratinocyte metabolic response of CXCR3 antagonistic chemokines, J Immunol 165:1395-1402, 2000

Effect of Korean Red Ginseng

3. Spiegel JM, Paller AS: Atopic dermatitis and the atopic march, Ann Allergy Asthma Immunol 105:99-106, 2010
4. Holschneider M, Leung DY, Vogt MB, Hultcrantz R: Neutrophil recruitment by chemokines atopic dermatitis patients, J Allergy Clin Immunol 112:365-376, 2003
pression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 162:494-502, 1999

36. Gillitzer R, Berger R, Mielke V, Muller C, Wolff K, Stingl G. Upper keratinocytes of psoriatic skin lesions express high levels of NAP-1/IL-8 mRNA in situ. J Invest Dermatol 97:73-79, 1991

37. Gottlieb AB, Luster AD, Posnett DN, Carter DM: Detection of a gamma interferon-induced protein IP-10 in psoriatic plaques. J Exp Med 168:941-948, 1988

38. Grewe M, Brujinzeel-Koomen CA, Schopf E, Thepen T, Langeveld-Wildschut AG, Ruzicka T, Krutmann J: A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 19:359-361, 1998

39. Miller DM, Buettner GR, Aust SD: Transition metals as catalysts of "autoxidation" reactions. Free Radic Biol Med 8:95-108, 1990

40. Slater TF: Free-radical mechanisms in tissue injury. Biochem J 222:1-15, 1984

41. Fridovich I: Biological effects of the superoxide radical. Arch Biochem Biophys 247:1-11, 1986

42. Niwa Y, Iizawa O: Abnormalities in serum lipids and leukocyte superoxide dismutase and associated cataract formation in patients with atopic dermatitis. Arch Dermatol 130:1387-1392, 1994

43. Hodgson EK, Fridovich I: The interaction of bovine erythrocyte superoxide dismutase with hydrogen peroxide: inactivation of the enzyme. Biochemistry 14:5294-5299, 1975

44. Kono Y, Fridovich I: Superoxide radical inhibits catalase. J Biol Chem 257:5751-5754, 1982

45. Niwa Y, Sumi H, Kawahira K, Tenshima T, Nakamura T, Akamatsu H: Protein oxidative damage in the stratum corneum: Evidence for a link between environmental oxidants and the changing prevalence and nature of atopic dermatitis in Japan. Br J Dermatol 149:248-254, 2003

46. Cornelius LA, Li L, Sepp N, Lawley TJ, Caughman SW: The effect of ultraviolet B (UVB) and reactive oxygen intermediates (ROI) upon dermal microvascular endothelial cell (EC) adhesion molecule expression. J Invest Dermatol 98:596, 1992

47. Gougerot-Pocidalo M, Revillard J. Oxidative stress, cytokines, and lymphocyte activation. In: Fuchs J, Packer L, editors. Oxidative Stress in Dermatology. New York: Marcel Dekker; p187-211, 1993