Plastic tube-assisted gastroscopic removal of embedded esophageal metal stents: A case report

Gui-Yong Peng, Xiu-Feng Kang, Xin Lu, Lei Chen, Qian Zhou

Guì-Yòng Peng, Xin-Lu Kang, Xin Lu, Léi Chen, Qian Zhou, Department of Gastroenterology of Southwest Hospital, The Third Military Medical University, Chongqing 400038, China

Author contributions: Peng GY designed and performed the operation, wrote the manuscript, and obtained funding; Kang XF and Lu X collected the data; Chen L provided technical support; Zhou Q provided material support.

Supported by The National Natural Science Foundation, Grant No. 81070384

Correspondence to: Gui-Yong Peng, MD, Professor, Department of Gastroenterology of Southwest Hospital, The Third Military Medical University, NO. 1 Gaotanyan Street, Shapingba District, Chongqing 400038, China. pgy63@163.com

Telephone: +86-23-65315659 Fax: +86-23-65315659

Received: June 20, 2013 Revised: July 24, 2013

Accepted: August 20, 2013

Published online: October 14, 2013

Abstract

A patient with stent embedding after placement of an esophageal stent for an esophagobronchial fistula was treated with an ST-E plastic tube inserted into the esophagus to the upper end of the stent using gastroscopy. The gastroscope was guided into the esophagus through the ST-E tube, and an alligator forceps was inserted into the esophagus through the ST-E tube alongside the gastroscope. Under gastroscopy, the stent wire was grasped with the forceps and pulled up into the ST-E tube. When resistance was met during withdrawal, the gastroscope was guided further to the esophageal section where the stent was embedded. Biopsy forceps were inserted into the lower section of the stent through the biopsy hole to fix the stent, while the alligator forceps continued to be used to pull up the stent wire until the Z-shaped metal loops became elongated stripes. All the stent wire was removed through the ST-E tube.

Peng GY, Kang XF, Lu X, Chen L, Zhou Q. Plastic tube-assisted gastroscopic removal of embedded esophageal metal stents: A case report. World J Gastroenterol 2013; 19(38): 6505-6508 Available from: URL: http://www.wjgnet.com/1007-9327/full/v19/i38/6505.htm DOI: http://dx.doi.org/10.3748/wjg.v19.i38.6505

INTRODUCTION

The use of fully covered self-expandable esophageal metal stents has favorable results in treating a variety of...
benign and malignant esophageal strictures and esophageal fistulae. However, stent placement over a prolonged period can result in hyperplastic tissue overgrowth on both ends of the stent, leading to in-stent restenosis. Therefore, stents should be removed after an appropriate period after treatment of benign esophageal strictures and fistulae. Notable tissue hyperplasia can occur at both stent ends, causing difficulty in stent removal and sometimes requiring surgical treatment. This procedure has a high risk of trauma. Therefore, a minimally invasive, low-risk method is needed for removal of embedded esophageal stents. Here, we report our experience with a novel approach to gastroscopic removal of an embedded esophageal stent.

CASE REPORT
The patient was a 15-year-old girl who had experienced coughing after drinking since early March 2012. The imaging of iodinated contrast-enhanced radiological examination showed an esophagobronchial fistula arising from the left bronchus to the middle portion of the esophagus. Under gastroscopy on May 30, 2012, a fully covered Z-shaped metal stent measuring 2 cm × 6 cm was placed within the esophagus to cover the fistula opening. After the procedure, the coughing after drinking disappeared. However, the patient developed esophageal obstruction. Gastroscopy on August 13, 2012 showed tissue hyperplasia on both stent ends, luminal stenosis, and embedding of both stent ends in the hyperplastic tissue.

Attempts to remove the stent under endoscopy failed and led to a disorganized stent structure. Enhanced chest computed tomography scan showed the wall of the middle and inferior segment of the esophagus were noticeably thickened. Part of the stent was embedded in the esophageal wall, the boundary between the stent and surrounding fat was blurred, and the upper end of the stent pressed against the trachea carina (Figure 1).

Under the guidance of gastroscopy, an ST-E plastic tube (3 cm × 40 cm) was inserted into the esophagus to the upper end of the stent. A gastroscopy was guided into the esophagus through the ST-E tube, and an alligator forceps was inserted into the esophagus through the ST-E tube alongside the gastroscope. Under gastroscopy, the stent wire was gripped with the forceps and pulled into the ST-E tube. When resistance was met during withdrawal, the gastroscope was guided further to the esophageal section where the stent was embedded. Biopsy forceps were sent through a biopsy hole in the gastroscopy and inserted near the embedded stent to remove the silicone membranes and connection threads linking the Z-shaped stent wire. Next, while the lower section of the Z-shaped stent was fixed by the biopsy forceps, the alligator forceps were used to pull the upper section of the metal wire until the Z-shaped metal loops elongated. The wire mesh of the stent was then removed in stages through the ST-E tube (Figure 2).

DISCUSSION
Benign esophagobronchial fistulae are rare and often result from trauma, esophageal spontaneous rupture, tuberculosis, and Crohn’s disease. Treatment is usually difficult and surgical interventions involve a high risk of trauma.
Placement of fully covered self-expanding metal stents has become a viable treatment option. However, stent placement over a prolonged period can result in hyperplastic tissue overgrowth on both ends of the stent, leading to in-stent re-stenosis. Removing embedded stents is difficult. One study attempted to remove a stent by placing a secondary stent within the primary stent.[15] However, in this case, the stent structure was compromised and became disordered during attempts to remove the stent under endoscopy, with the result that sharp parts of the stent were entering the esophageal wall. Thus, placement of another stent might have caused esophageal perforation and damage to surrounding organs.

In our view, two goals must be achieved to successfully remove a structurally disordered Z-shaped metal stent embedded in the esophageal wall under gastroscopy. First, the esophageal entrance and throat must be protected from scratching by the stent wire during removal; second, each of the Z-shaped stent loops needs to be pulled outward until it is elongated. Gastroscopic procedures conducted through a ST-E tube meet these requirements, as the plastic tube fully protects the upper portion of the esophagus and throat from scratching by the stent wire. A two-handed operation is possible with an ST-E tube; with one hand, an alligator forceps is inserted into the esophagus through the ST-E tube alongside the gastroscope. Under the guidance of gastroscopy, the stent wire is gripped and pulled outward into the esophageal section where the stent is embedded and biopsy forceps guided with the second hand through a biopsy hole in the gastroscope to insert into the embedded stent to remove silicone membranes and connection threads linking the Z-shaped stent. While the lower section of the Z-shaped stent is fixed by the biopsy forceps, the alligator forceps can be used to pull the upper section of the metal wire until the Z-shaped metal loops are elongated, to enable the wire mesh of the stent to be removed through the ST-E tube. The wire mesh of the stent is removed in stages by repeating the above procedures.

In our view, plastic tube-assisted gastroscopy is a minimally invasive, safe, and effective method for removal of esophageal embedded metal stents.

ACKNOWLEDGMENTS
We got the study approval for the paper from Southwest Hospital.

REFERENCES
1 Adler DG, Fang J, Wong R, Wills J, Hilden K. Placement of Polyflex stents in patients with locally advanced esophageal cancer is safe and improves dysphagia during neoadjuvant therapy. Gastrointest Endosc 2009; 70: 614-619 [PMID: 19539918 DOI: 10.1016/j.gie.2009.01.026]
2 van Heel NC, Haringsma J, Spaander MC, Bruno MJ, Kuiipers EJ. Short-term esophageal stenting in the management of benign perforations. Am J Gastroenterol 2010; 105: 1515-1520 [PMID: 20234349 DOI: 10.1038/ajg.2010.104]
3 Bakken JC, Wong Kee Song LM, de Groen PC, Baron TH. Use of a fully covered self-expandable metal stent for the treatment of benign esophageal diseases. Gastrointest Endosc 2010; 72: 712-720 [PMID: 20883848 DOI: 10.1016/j.gie.2010.06.028]
4 Blackmon SH, Santora R, Schwarz P, Barroso A, Dunkin BJ. Utility of removable esophageal covered self-expanding metal stents for leak and fistula management. Ann Thorac Surg 2010; 89: 931-936; discussion 931-936 [PMID: 20172156 DOI: 10.1016/j.athoracsur.2009.10.061]
5 Leers JM, Vivaldi C, Schwar H, Blazadu M, Brabender J, Lurje G, Herbold T, Holscher AH, Metzger R. Endoscopic therapy for esophageal perforation or anastomotic leak with a self-expandable metallic stent. Surg Endosc 2009; 23: 2258-2262 [PMID: 19184216 DOI: 10.1007/s00464-008-0302-5]
6 Vakil N, Morris AJ, Marcon N, Segalin A, Peracchia A, Bethge N, Zuccaro G, Bosco J, Jones WF. A prospective, randomized, controlled trial of covered expandable metal stents in the pal-
Peng GY et al. Gastroscopic removal of embedded esophageal stents

1. Repici A, Conio M, De Angelis C, Battaglia E, Musso A, Pellicano R, Goss M, Venezia G, Rizzetto M, Saracco G. Temporary placement of an expandable polyester silicone-covered stent for treatment of refractory benign esophageal strictures. Gastrointest Endosc 2004; 60: 513-519 [PMID: 15472671 DOI: 10.1016/S0016-5107(04)01882-6]

7. Jaganmohan S, Raju GS. Tissue ingrowth in a fully covered self-expandable metallic stent (with videos). Gastrointest Endosc 2008; 68: 602-604 [PMID: 18331738 DOI: 10.1016/j.gie.2007.12.024]

8. Fukuda T, Hirota S, Matsumoto S, Yoshikawa T, Motohara T, Nishida Y, Sugimura K. Periodic endoscopic observation of postoperative esophageal stricture due to excessive tissue hyperproliferation after stent placement. Gastrointest Endosc 2001; 53: 111-114 [PMID: 11154505 DOI: 10.1067/mge.2001.110736]

9. Vakil N, Gross U, Bethge N. Human tissue responses to metal stents. Gastrointest Endosc Clin N Am 1999; 9: 359-365 [PMID: 10388850]

10. Dua KS, Vleggaar FP, Santharam R, Siersema PD. Removable self-expanding plastic esophageal stent as a continuous, non-permanent dilator in treating refractory benign esophageal strictures: a prospective two-center study. Am J Gastroenterol 2008; 103: 2985-2994 [PMID: 18786110 DOI: 10.1111/j.1572-0241.2008.02177.x]

11. Repici A, Conio M, De Angelis C, Battaglia E, Musso A, Pellicano R, Goss M, Venezia G, Rizzetto M, Saracco G. Temporary placement of an expandable polyester silicone-covered stent for treatment of refractory benign esophageal strictures. Gastrointest Endosc 2004; 60: 513-519 [PMID: 15472671 DOI: 10.1016/S0016-5107(04)01882-6]

12. Siersema PD. Stenting for benign esophageal strictures. Endoscopy 2009; 41: 363-373 [PMID: 19340743 DOI: 10.1055/s-0029-1214532]

13. Sharma P, Kozarek R. Role of esophageal stents in benign and malignant diseases. Am J Gastroenterol 2010; 105: 258-273; quiz 274 [PMID: 2029413 DOI: 10.1038/ajg.2009.684]

14. Langer FB, Schoppmann SF, Prager G, Riegler FM, Zacherl J. Solving the problem of difficult stent removal due to tissue ingrowth in partially uncovered esophageal self-expanding metal stents. Ann Thorac Surg 2010; 89: 1691-1692 [PMID: 20417822 DOI: 10.1016/j.athoracsur.2009.07.066]

15. Hirdes MM, Siersema PD, Houben BL, Weusten BL, Vleggaar FP. Stent-in-stent technique for removal of embedded esophageal self-expanding metal stents. Am J Gastroenterol 2011; 106: 286-293 [PMID: 20940709 DOI: 10.1038/ajg.2010.394]

P-Reviewer Fan XM S-Editor Wen LL L-Editor O'Neill M E-Editor Zhang DN
