ON P-GROUPS OF MAXIMAL CLASS

Noureddine Snanou

October 5, 2022

Abstract.

Recall that a p-group of order $p^n > p^3$ is of maximal class, if its nilpotency class is $n - 1$. In this paper, we study the p-groups of maximal class. Furthermore, we introduce a subgroup of a p-group of maximal class called the fundamental subgroup. This group plays a fundamental role in the development of the general theory of p-groups of maximal class. As an application, we study some special class of finite p-groups of maximal class and exponent p.

Keywords: p-groups of maximal class, fundamental subgroup, CGZ-group.

1 Introduction

A group of order $p^n > p^3$ and nilpotency class $n - 1$, is said to be of maximal class. These groups have been studied by various authors [6, 10]. But the main reference in the theory of p-groups of maximal class is Blackburn’s paper [4]. Other famous references for these p-groups are [1, 7, 8]. The p-groups of maximal class with an abelian maximal subgroup were completely classified by Wiman in [9]. More recently, it is proved that the finite p-group of maximal class can be determined by centralizers of some subgroups. For example, the theorem of Suzuki ([33] Theorem III.14.23), [1] Proposition 1.8) shows that a finite p-group G is of maximal class if there is a self centralizing subgroup of order p^2, and in [11] Proposition 10.17], it is showed that if G is a finite p-group, $B \leq G$ is a nonabelian subgroup of order p^3 such that $C_G(B) < B$, then G is of maximal class. Some results about these groups that we present in this paper can be found in [11, 2, 3]. These results play a fundamental role in finite p-group theory. Throughout this paper, we use the standard notation, such as in [11].

The paper is organized as follows: In the second section, we recall some preliminaries of nilpotent groups. The third section covers the basic material about p-groups of maximal class. In section 4, we introduce a characteristic subgroup of a p-group of maximal class called the fundamental subgroup. This group plays a

1Faculty of Sciences Dhar El Mahraz-Fez, Sidi Mohamed Ben Abdellah University, E-mail: noureddine.snanou@usmba.ac.ma
fundamental role in the development of the general theory of p-groups of maximal class. In section 5, which is the end section of this work, we deal with some special class of finite p-groups of maximal class and exponent p, namely CGZ-groups. More precisely, we prove that any CGZ-group of order p^n and exponent p (where $3 \leq n \leq p$) admits a unique characteristic elementary abelian subgroup of index p.

2 Preliminaries

Let G be a group and H be a subgroup of G. An element $g \in G$ normalizes H if $gHg^{-1} = H$. We call $N_G(H) = \{g \in G | gHg^{-1} = H\}$ the normalizer of H in G. An element $g \in G$ centralizes H if $ghg^{-1} = h$ for any $h \in H$. We call $C_G(H) = \{g \in G | ghg^{-1} = h, \forall h \in H\}$ the centralizer of H in G. If $H = G$, then $Z(G) = C_G(G)$ is called the center of G.

Note that for a subgroup H of G, $C_G(H) = G$ if and only if $H \leq Z(G)$. It is easy to see that, for any subgroup H, $N_G(H)$ and $C_G(H)$ are subgroups of G with $C_G(H) \leq N_G(H)$, and that if $H \leq G$ then $H \leq N_G(H)$. The N/C-theorem [1] Introduction, Proposition 12 asserts that if $H \leq G$, then the quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of $Aut(H)$. In particular, $G/Z(G)$ is isomorphic to a subgroup of $Aut(G)$.

Let G be a group. Set $Z_0(G) = \{1\}, Z_1(G) = Z(G)$. Suppose that $Z_i(G)$ has been defined for $i \leq k$. Define $Z_{k+1}(G)$ as follows: $Z_{k+1}(G)/Z_k(G) = Z(G/Z_k(G))$. The chain $\{1\} = Z_0(G) \leq Z_1(G) \leq \ldots \leq Z_k(G) \leq \ldots$ is said to be the upper central series of G. All members of that series are characteristic in G.

Definition 2.1. For elements $x, y \in G$, their commutator $x^{-1}y^{-1}xy$ is written as $[x, y]$. If $X, Y \subseteq G$, then $[X, Y]$ is the subgroup generated by all commutators $[x, y]$ with $x \in X, y \in Y$.

The lower central series $G = K_1(G) \geq K_1(G) \geq K_2(G) \geq \ldots$ of G is defined as follows: $K_1(G) = G, K_{i+1}(G) = [K_i(G), G], i > 0$. All members of that series are characteristic in G. We have $K_i(G)/K_{i+1}(G) = Z(G/K_i(G))$. If $H \leq G$, then $K_i(H) \leq K_i(G)$ for all i.

Since $[y, x] = [x, y]^{-1}$, we have $[Y, X] = [X, Y]$. We write $[G, G] = G'$, the subgroup G' is called the commutator (or derived subgroup) of G. We also write $G^0 = G, G' = G^1$. Then the subgroup $G^{i+1} = [G^i, G^i]$ is called the $(i+1)$th derived subgroup of G. $i \geq 0$. The chain $G = G^0 \geq G^1 \geq \ldots \geq G^n \geq \ldots$ is called the derived series of G. All members of this series are characteristic in G and all factors G^i/G^{i+1} are abelian. The group G is said to be solvable if $G^n = 1$ for some n.

Definition 2.2. A group G is said to be nilpotent if the upper central series of G contains G. In other words, G is nilpotent of class c, if $Z_c(G) = G$ but $Z_{c-1}(G) < G$, we write $c = cl(G)$. In particular, the class of the identity group is 0 and the class of a nonidentity abelian group is 1.

Lemma 2.1. The following are equivalent:

1. G is nilpotent of class c.

2. $G = K_1(G) > K_2(G) > K_3(G) > \ldots > K_{c+1}(G) = \langle 1 \rangle$.

3. \(\langle 1 \rangle = Z_0(G) < Z_1(G) < \ldots < Z_{c-1}(G) < Z_c(G) = G. \)

Theorem 2.1. Let \(G \) be a \(p \)-group of order \(p^m \geq p^2 \). Then:

1. \(G \) is nilpotent of class at most \(m - 1 \).
2. If \(G \) has nilpotency class \(c \) then \(|G : Z_{c-1}(G)| \geq p^2 \).
3. The maximal subgroups of \(G \) are normal and of index \(p \).
4. \(|G : G'| \geq p^2 \).

Corollary 2.1. Let \(G \) be a \(p \)-group and let \(N \) be a normal subgroup of \(G \) of index \(p^i \geq p^2 \). Then \(K_i(G) \leq N \).

Proof. The group \(G/N \) has order \(p^i \geq p^2 \). It follows from part (1) of the Theorem that \(G/N \) has class \(\leq i - 1 \) and consequently \(K_i(G/N) = \langle 1 \rangle \). Since \(K_i(G/N) = K_i(G)/N/N \), this proves that \(K_i(G) \leq N \).

3 \(p \)-groups of maximal class

Recall that a group of order \(p^m \) is of maximal class, if \(cl(G) = m - 1 > 1 \). Of course, any group of order \(p^2 \) and any nonabelian \(p \)-group of order \(p^3 \) have maximal class. If \(G \) is a group of maximal class and of order \(p^m \), then the lower and upper central series of \(G \) are:

\[
G = K_1(G) > K_2(G) > K_3(G) > \ldots > K_m(G) = \langle 1 \rangle,
\]

and

\[
\langle 1 \rangle = Z_0(G) < Z_1(G) < \ldots < Z_{m-2}(G) < Z_{m-1}(G) = G.
\]

The two series are the same, and all members of these series are characteristic in \(G \). The sections are all of order \(p \), except the first which has order \(p^2 \) and is not cyclic. Clearly \(G/K_i(G) \) is also of maximal class for \(4 \leq i \leq m - 1 \).

Proposition 3.1. Let \(G \) be a \(p \)-group of maximal class and order \(p^m \). Then:

1. \(|G : G'| = p^2 \), \(|Z(G)| = p \) and \(|K_i(G) : K_{i+1}(G)| = p \) for \(2 \leq i \leq m - 1 \).
2. If \(1 \leq i < m - 1 \), then \(G \) has only one normal subgroup of order \(p^i \). More precisely, if \(N \) is a normal subgroup of \(G \) of index \(p^i \geq p^2 \), then \(N = K_i(G) \).
3. \(G \) has \(p + 1 \) maximal subgroups.

Proof. (1) We have that

\[
p^m = |G| = |G : G'| \prod_{i=2}^{m-1} |K_i(G) : K_{i+1}(G)|
\]
Now it suffices to observe that $|G : G'| \geq p^2$, by theorem 2.1 and that $|K_i(G) : K_{i+1}(G)| \geq p$ for $2 \leq i \leq m - 1$.

(2) Let N be any normal subgroup of G of index p^i with $0 \leq i \leq m$. If $i = 0$ or 1 then $N = K_1(G)$ or N is maximal in G. Otherwise $i \geq 2$ and $K_i(G) \leq N$ by Corollary 2.1. Since $|G : K_i(G)| = p^i$, we conclude that $N = K_i(G)$.

(3) As $G/K_2(G)$ has exponent p, the Frattini subgroup $\Phi(G) = K_2(G)$. Hence $G/\Phi(G)$ has order p^2 and can be regarded as a vector space over \mathbb{F}_p of dimension 2. This vector space has $p + 1$ subspaces of dimension 1 and these correspond to the maximal subgroups of G.

\[\square \]

Remark 3.1.

1. (The converse of the proposition 3.1(2)) If G is a noncyclic group of order $p^m > p^2$ containing only one normal subgroup of order p^i for each $1 \leq i < m - 1$, then it is of maximal class [1, Lemma 9.1].

2. A p-group G of order p^n has exactly $n + p - 1$ nontrivial normal subgroups if and only if it is of maximal class [1, Exercise 0.30].

Suppose that a p-group G has only one normal subgroup T of index $\geq p^{i+1}$. If G/T is of maximal class so is G (see [1, Theorem 12.9]). Conversely, let G be a p-group of maximal class. If N is a normal subgroup of G of index $\geq p^2$, then G/N has also maximal class. Indeed, since the class of $G/K_i(G)$ is $i - 1$ whenever $2 \leq i \leq m$, then the result follows immediately from proposition 3.1.

Proposition 3.2. Let G be a nonabelian group of order $p^m > p^2$. If G contains only one normal subgroup of index p^k for any $k \in \{2, ..., p + 1\}$, then it is of maximal class.

Proof. Obviously, $|G : G'| = p^2$ hence $d(G) = 2$. Assume that G is not of maximal class, then $m > p + 1$. Let $T < G'$ be G-invariant of index p^{p+1} in G, then G/T is of maximal class. As, by hypothesis, T is the unique normal subgroup of index p^{p+1} in G, then G is of maximal class. \[\square \]

Proposition 3.3. (M. Suzuki). Let G be nonabelian p-group. If $A < G$ of order p^2 is such that $C_G(A) = A$, then G is of maximal class.

Proof. We use induction on $|G|$. Since $p^2 \mid |\text{Aut}(A)|$ then, by N/C-theorem, $N_G(A)$ is nonabelian of order p^3. As $A < G$, then $Z(G) < A$ and $|Z(G)| = p$. Obviously, $C_{G/Z(G)}(A/Z(G)) = N_{G/Z(G)}(A/Z(G))$. Since $C_{G/Z(G)}(N_G(A)/Z(G)) \leq C_{G/Z(G)}(A/Z(G)) = N_{G/Z(G)}(A/Z(G))$ is of order p^2 then, by induction, $G/Z(G)$ is of maximal class so G is also of maximal class since $|Z(G)| = p$. \[\square \]

Corollary 3.1. A p-group G is of maximal class if and only if G has an element with centralizer of order p^2.

Proposition 3.4. Let G be a p-group, $B \leq G$ nonabelian of order p^3 and $C_G(B) < B$. Then G is of maximal class.
Proof. Assume that $|G| \geq p^4$ and the proposition has been proved for groups of order $< |G|$. It is known that a Sylow p-subgroup of $\text{Aut}(B)$ is nonabelian of order p^3. Now, $C_G(B) = Z(B) = Z(G)$. Therefore, by N/C-Theorem, $N_G(B)/Z(G)$ is nonabelian of order p^3. If $x \in G - C_G(B)$ centralizes $N_G(B)/Z(G)$, then x normalizes B so $x \in N_G(B)$, a contradiction. Thus, $C_G(N_G(B)/Z(G)) < N_G(B)/Z(G)$ so, by induction, $G/Z(G)$ is of maximal class. Since $|Z(G)| = p$, we are done.

\[\square \]

Proposition 3.5. Let G be a p-group. If G has a subgroup H such that $N_G(H)$ is of maximal class, then it is of maximal class.

Proof. Assume that $|N_G(H)| > p^3$ (otherwise, $C_G(H) = H$ and G is of maximal class, by Proposition 3.1). We use induction on $|G|$. One may assume that $N_G(H) < G$, then H is not characteristic in $N_G(H)$ so by Proposition 3.1 we have $|N_G(H) : H| = p$ hence $|H| > p$. As $|Z(N_G(H))| = p$ and $Z(G) < N_G(H)$, we get $Z(G) = Z(N_G(H))$ so $|Z(G)| = p$ and $Z(G) < H$. Then $N_{G/Z(G)}(H/Z(G)) = N_G(H)/Z(G)$ is of maximal class, so $G/Z(G)$ is also of maximal class by induction. Since $|Z(G)| = p$, then G is of maximal class.

\[\square \]

Lemma 3.1. Let G be a p-group and let $N \trianglelefteq G$ be of order $> p$. Suppose that G/N of order $> p$ has cyclic center. If $R/N \not\trianglelefteq G/N$ is of order p in G/N, then R is not of maximal class.

Proof. Let T be a G-invariant subgroup of index p^2 in N. Then $R \leq C_G(N/T)$ so R/T is abelian of order p^3, and we conclude that R is not of maximal class.

\[\square \]

Proposition 3.6. Let $A < G$ be of order $> p$. If all subgroups of G containing A as a subgroup of index p are of maximal class, then G is also of maximal class.

Proof. Set $N = N_G(A)$. In view of proposition 3.5 and hypothesis, one may assume that $|N : A| > p$ (otherwise, there is nothing to prove). Let $D < A$ be N-invariant of index p^2 (D exists since $|A| > p$). Set $C = C_N(A/D)$, then $C > A$. Let $F/A \leq C/A$ be of order p, then F is not of maximal class, a contradiction.

Let $H < G$ be of index $> p^k$, $k > 1$. If all subgroups of G of order $p^k | H|$, containing H, are of maximal class, then G is also of maximal class. Indeed, let $H < M < G$, where $|M : H| = p^k - 1$. Then all subgroups of G containing M as a subgroup of index p, are of maximal class. Now the result follows from Proposition 3.6.

Proposition 3.7. Let G be a p-group of maximal class and order p^m, $p > 2$, $m > 3$, and let $N \trianglelefteq G$ be of index p^3. Then $\exp(G/N) = p$.

Proof. Assume that this is false. Let T be a G-invariant subgroup of index p in N. By hypothesis, G/N has two distinct cyclic subgroups C/N and Z/N of order p^2. Then $C/N \cap Z/N = Z(G/T)$ and G/T is not of maximal class, a contradiction.

\[\square \]
Let A be an abelian subgroup of index p of a nonabelian p-group G. By \[1\] lemma 1.1, we have $|G| = p|G'||Z(G)|$. Hence, we have the following proposition.

Proposition 3.8. Suppose that a nonabelian p-group G has an abelian subgroup A of index p. If $|G : G'| = p^2$, then G is of maximal class.

Proof. We proceed by induction on $|G|$. One may assume that $|G| > p^3$. We have $|Z(G)| = \frac{1}{p}|G : G'| = p$, so $Z(G)$ is a unique minimal normal subgroup of G. Since $Z(G) < G'$, then we have $|G/Z(G) : G'/Z(G)| = |G : G'| = p^2$. Hence, the quotient group $G/Z(G)$ is of maximal class by induction, and the result follows since $|Z(G)| = p$. □

The previous result also holds if G contains a subgroup of maximal class and index p (see \[1\] Theorem 9.10).

Proposition 3.9. Let G be a p-group of order p^4. Show that G is of maximal class if and only if $|G : G'| = p^2$.

Proof. Let $|G : G'| = p^2$. We have to prove that G is of class 3. Assume that $cl(G) = 2$. It follows from \[2\] Lemma 65.1 that G contains a nonabelian subgroup B of order p^3. By proposition 3.4, we have $G = BZ(G)$, then $|G : G'| = p^3$, a contradiction. □

Proposition 3.10. Let G be a p-group of order p^4 and exponent p. Prove that if G has no nontrivial direct factors then it is of maximal class.

Proof. Let H be an A_1-subgroup of G; then $|H| = p^3$. If $Z(G) \not\leq H$, then $G = H \times C$, where $C < Z(G)$ is of order p such that $C \not\leq H$. Thus, $Z(G) < H$ so $Z(G)$ is of order p. Since $C_G(H) = Z(G)$, we get $C_G(H) < H$. Then, by proposition 3.4, G is of maximal class. □

Proposition 3.11. If G is of order p^4 and exponent p. Prove that if $d(G) = 2$ then G is of maximal class.

Proof. Obviously, the group G has an abelian subgroup of index p. Since $G' = \Phi(G)$ and, by hypothesis, $|G : G'| = p^2$, the result follows from Proposition 3.8. □

4 Fundamental subgroup of a p-group of maximal class

Lemma 4.1. Let G be a p-group of maximal class and order p^m, $m > 3$. For each $2 \leq i \leq m - 2$, $M_i = C_G(K_i(G)/K_{i+2}(G))$ is a maximal subgroup of G.

Proof. Indeed, $K_i(G)/K_{i+2}(G)$ is a noncentral normal subgroup of order p^2 in $G/K_{i+2}(G)$. So by N/C-theorem, the quotient group G/M_i is isomorphic to a subgroup of $Aut(K_i(G)/K_{i+2}(G))$. But, a p-sylow subgroup of $Aut(K_i(G)/K_{i+2}(G))$ has order p. Thus, $|G, M_i| = p$. □
The subgroup \(M_2 = C_G(K_2(G)/K_1(G))\) plays distinguished role in what follows; we denote it by \(G_1\) and call the fundamental subgroup of \(G\). In the following, if \(G\) is of maximal class, then \(G_1\) denotes always the fundamental subgroup of \(G\). We shall write \(G_i\) instead of \(K_i(G)\) for all \(i \geq 2\) when there is no possible confusion. We have \(G/G_2\) is elementary abelian of order \(p^2\) and \([G_i, G_{i+1}] = p\) for \(1 \leq i \leq n-1\). Hence \(|G : G_i| = p^i\) for \(1 \leq i \leq n\).

Proposition 4.1. Let \(H\) and \(K\) be two \(p\)-groups of maximal class. Let \(\varphi : H \to K\) be an isomorphism, then \(\varphi(H_1) \subseteq K_1\).

Proof. The subgroup \(H_1\) is composed of the elements \(x \in H\) such that \([x, H_2] \leq H_4\). Let \(x \in H_1\), since \(\varphi(H_2) = K_2\) and \(\varphi(H_4) = K_4\), it follows that
\[
[\varphi(x), K_2] = [\varphi(x), \varphi(H_2)] = \varphi([x, H_2]) \leq \varphi(H_4) = K_4.
\]
Thus, \(\varphi(x) \in K_1\). As required.

Corollary 4.1. Let \(G\) be a \(p\)-group of maximal class. Then, \(G_1\) is a characteristic subgroup of \(G\).

Proof. The corollary follows directly from the preceding proposition by taking \(H = K\).

Remark 4.1.

1. If \(N\) is a normal subgroup of \(G\) such that \(|G/N| \geq p^4\), it is clear from the definition that \((G/N)_1 = G_1/N\).

2. Let \(G\) be a \(p\)-group of maximal class, \(|G| > p^4\). Let \(M\) be a maximal subgroup of \(G\) and let \(M_1\) be the fundamental subgroup of \(M\). Then \(|G : M_1| = p^2\) and \(M_1 \triangleleft G\) so \(M_1 = \Phi(G) < G_1\), and we get \(M_1 = G_1 \cap M\).

Lemma 4.2. [\(\ddagger\) Theorem 9.6(e)] Let \(G\) be a group of maximal class and order \(p^m\), \(p > 2\), \(m > p + 1\). Then the set of all maximal subgroups of \(G\) is
\[
\Gamma_1 = \{M_1 = G_1; M_2; \ldots; M_{p+1}\}
\]
Where \(G_1\) is the fundamental subgroup of \(G\), and the subgroups \(M_2; \ldots; M_{p+1}\) are of maximal class.

Proposition 4.2. Let a \(p\)-group \(G\) of maximal class have order \(p^m > p^{p+1}\). If \(H < G\) is of order \(p^p\) and \(H \nleq G_1\), then \(H\) is of maximal class.

Proof. We proceed by induction on \(m\). If \(m = p + 2\), the result follows from Lemma 4.2 (indeed, then all members of the set \(\Gamma_1 - G_1\) are of maximal class). Now let \(m > p + 2\) and let \(H \leq M \in \Gamma_1\), then \(M\) is of maximal class (Lemma 4.2). The subgroup \(M_1 = M \cap G_1\) is the fundamental subgroup of \(M\) (Remark 4.1(2)). As \(H \nleq M_1\), then \(H\) is of maximal class, by induction, applied to the pair \(H < M\).
Proposition 4.3. Let G be of maximal class and order $> p^{p+1}$. If $H < G$ is of order $> p^2$, then either $H \leq G_1$ or H is of maximal class.

Proof. Let $|H| = p^k$. The result is known if $k = 3$ [4]. Assuming that $k > 3$, we use induction on k. Then all maximal subgroups of H which $\neq H \cap G_1$ are of maximal class, by induction. Then the set $\Gamma_1(H)$ contains exactly $|\Gamma_1(H)| - 1 \neq 0 \mod p^2$ members of maximal class so H is of maximal class, by [1, Theorem 12.12(c)].

Proposition 4.4. [1, Exercise 9.28] Let G be a p-group of maximal class and order $> p^{p+1}$. Show the following:

1. $\exp(G_1) = \exp(G)$.
2. If $x \in G$ is of order $\geq p^3$, then $x \in G_1$.

5 CGZ-group of exponent p

Let p be a prime number and G be a finite nonabelian p-group. The group G is called a CGZ-group if and only if every nonabelian subgroup H of G satisfies $C_G(H) = Z(H)$. In this section, we prove that any CGZ-group of order p^n and exponent p (where $3 \leq n \leq p$) admits a unique characteristic elementary abelian subgroup of index p.

Proposition 5.1. Let G be a p-group of order p^4 and exponent p. If G has no nontrivial direct factors then it is a CGZ-group.

Proof. Indeed, if G is minimal nonabelian then it is clearly a CGZ-group. Else, let H be a proper nonabelian subgroup of G, then $|H| = p^3$. Now, let $x \in C_G(H)$. If $x \notin H$ then $G = \langle x \rangle \cdot H$, a contradiction. So, $C_G(H) < H$ and then $C_G(H) = Z(H)$. As required.

Lemma 5.1. Let G be a nonabelian p-group and let N be a nonabelian subgroup of G. If G is a CGZ-group, then N is a CNZ-group.

Proof. Let H be a nonabelian subgroup of N. Since G is a CGZ-group, it follows that $C_N(H) = N \cap C_G(H) = N \cap Z(H) = Z(H)$. So N is a CNZ-group.

Proposition 5.2. [17, Proposition 2.2] Let G be a nonabelian p-group of exponent p, where $p \geq 3$. Then G is a CGZ-group if and only if G is a finite p-group of maximal class, and there is an abelian subgroup of index p.

Proposition 5.3. Let G be a p-group of order $p^n > p^4$ and exponent p. Then G is a CGZ-group if and only if all proper nonabelian subgroups of G have maximal class.

Proof. Let H be a nonabelian subgroup of G. If G is a CGZ-group, by Lemma 5.1, H is a CHZ-group, then it is of maximal class, by Proposition 5.2. Conversely, let H be a minimal nonabelian subgroup of G, by [3, Lemma 136.2(ii)], we have $|H| = p^3$. Now, if $x \in C_G(H)$ then $K = \langle x \rangle \cdot H$ is a nonabelian subgroup of
G and then it is of maximal class. But \(Z(H) \leq Z(K) \) and \(|Z(H)| = |Z(K)| = p \), so \(x \in Z(H) \). Thus \(C_G(H) \leq H \) and then \(G \) is of maximal class, by Proposition 3.4. Let \(R \) be a normal subgroup of order \(p^2 \). By \(N/C \)-theorem, we have \(|G, C_G(R)| = p \). If \(C_G(R) \) is not abelian, by hypothesis, it is of maximal class and then \(|Z(C_G(R))| = p \). But \(R \leq Z(C_G(R)) \), a contradiction. So \(C_G(R) \) is abelian and maximal in \(G \). Therefore, by Proposition 5.2, \(G \) is a \(CGZ \)-group.

Proposition 5.4. [11, Proposition 2.6] Let \(G \) be a finite \(p \)-group of maximal class. If \(G \) is a \(CGZ \)-group, then \(G' \) is abelian.

Remark 5.1. Let \(G \) be a \(CGZ \)-group of order \(p^n \) and exponent \(p \), by Proposition 5.4, \(G' \) is abelian, then \(G_1 = C_G(G_i/G_{i+2}) \) with \(1 \leq i \leq n - 2 \) (see [8] Theorem III.14.11).

Hence we have the following interesting corollary:

Corollary 5.1. Let \(G \) be a \(CGZ \)-group of order \(p^n \) and exponent \(p \), where \(p \geq 3 \). Then \(G \) possesses a unique characteristic elementary abelian subgroup of index \(p \). In this case, we have necessary \(n \leq p \).

Proof. Let \(K = C_G(Z_2(G)) \). By proposition 5.3 we easily see that \(K \) is an abelian subgroup of \(G \). By the above, we get \(K = G_1 \), then \(K \) is the unique characteristic elementary abelian subgroup of index \(p \). Since \(G \) has exponent \(p \), it is a regular \(p \)-group (see [11] Theorem 7.1(b)). Therefore, by a theorem of Blackburn ([8] Theorem III.14.21)) or [11] Theorem 9.5], we obtain \(|G| \leq p^p \).

References

[1] Y. Berkovich, *Groups of Prime Power Order, Vol. 1*, Walter de Gruyter · Berlin · New York, 2008.

[2] Y. Berkovich and Z. Janko, *Groups of Prime Power Order, Vol. 2*, Walter de Gruyter, Berlin, 2008.

[3] Y. Berkovich and Z. Janko, *Groups of Prime Power Order, Vol. 3*, Walter de Gruyter, Berlin, 2011.

[4] N. Blackburn, *On a special class of p-groups*, Acta Math. 100 pp. 45–92, 1958.

[5] M. E. Charkani and N. Snanou, *On a special class of finite p-groups of maximal class and exponent p*, JP Journal of Algebra, Number Theory and Applications 44(2) pp. 251–260, 2019.

[6] C. R. Leedham-Green and S. McKay, *On p-groups of maximal class, I*, Quart. J. Math. Oxford 27(2) pp. 297-311, 1976.

[7] C. R. Leedham-Green and S. McKay, *The structure of groups of prime power order*, London Mathematical Society Monographs. New Series, vol. 27, Oxford University Press, Oxford, 2002.

[8] B. Huppert, *Endliche Gruppen. I*, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.
[9] A. Wiman, *Über mit Diedergruppen verwandte p-Gruppen*, Arkiv för Matematik, Astronomi och Fysik 33A pp. 1–12, 1946.

[10] A. Wiman, *Über p-Gruppen von maximaler Klasse*, Acta Math. 88 pp. 317–346, 1952.

[11] H. Xue, H. Lv and G. Chen, *On a special class of finite p-groups of maximal class*, Italian J. Pure Appl. Math., 33 pp. 279–284, 2014.