Anti-β2GPI/β2GPI induces human neutrophils to generate NETs by relying on ROS

Yanqiu You1 | Yanhong Liu1 | Fujun Li2 | Fengyun Mu1 | Caijun Zha1

1 Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
2 Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, Harbin, China

Correspondence
Fujun Li, Department of Anesthesiology, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin, Heilongjiang Province, 150001 China.
Email: lfyyqt1@163.com

Funding information
Heilongjiang Provincial Health and Family Planning Commission, Grant/Award Number: Grant number 2016-070

Neutrophils participate in the regulation of pathogens by phagocytosis as well as by generating neutrophil extracellular traps (NETs). Antiphospholipid antibodies, particularly those targeting beta-2-glycoprotein I (β2GPI), stimulate monocytes, platelets, and endothelial cells with prothrombotic participation. This study aimed to explore NET generation in response to anti-β2GPI/β2GPI. A series of experiments involving the separation of primary human leukocytes, NETosis quantification using propidium iodide, exploration of NETosis by fluorescence microscopy, western blotting, examination of free Zn2+ using FluoZin-3, and reactive oxygen species (ROS) examination with dihydrorhodamine 123 were performed in this study. We found that anti-β2GPI/β2GPI triggered NETosis, resembling phorbol 12-myristate 13-acetate (PMA)-induced NETosis in magnitude and morphology. The anti-β2GPI/β2GPI complex in isolation stimulated NETs without relying on p38, protein kinase B (AKT), extracellular signal-related kinase (ERK) 1/2, and zinc signals. NET generation was unaffected by the NADPH oxidase suppressor DP1. The anti-β2GPI/β2GPI complex stimulated ROS generation without relying on NADPH oxidase, which may participate in NET generation triggered via the anti-β2GPI/β2GPI complex. In summary, our results indicate that the anti-β2GPI/β2GPI complex reinforced NET generation by relying on ROS.

The significance of the paper in the context of current knowledge: Neutrophils as one of the first lines of defence and essential in the response to pathogen invasion. They eradicate bacteria via phagocytosis or by releasing antimicrobial proteins in degranulation. In this study, we explored the capability of anti-β2GPI/β2GPI to stimulate NETosis, demonstrating that anti-β2GPI/β2GPI is a promising method for triggering NET. Anti-β2GPI/β2GPI induced ROS generation without relying on NADPH oxidase, which contributes to NETosis independently of ERK1/2, Zn2+, or AKT. Our results showed that anti-β2GPI/β2GPI triggered NETosis, resembling PMA-induced NETosis in magnitude as well as morphology. The anti-β2GPI/β2GPI complex in isolation stimulated NETs without relying on p38, AKT, ERK1/2, or zinc signals. The anti-β2GPI/β2GPI complex stimulated ROS generation without relying on NADPH oxidase, which may participate in NET generation triggered via the anti-β2GPI/β2GPI complex.

KEYWORDS
anti-β2GPI/β2GPI, neutrophil extracellular traps, primary human leukocytes, propidium iodide, reactive oxygen species
Neutrophils represent the most abundant cells in the immune system and are responsible for 50-70% of leukocytes in human blood. As one of the first lines of defence, they are essential in the response to pathogen invasion. They eradicate bacteria via phagocytosis or by releasing antimicrobial proteins in degranulation. Neutrophils receive an innovative pattern of apoptosis programing signals known as NETosis that induces the release of neutrophil extracellular traps (NETs), which are composed of double-stranded DNA resembling a net with a histone coating as well as antimicrobial agents including myeloperoxidase. NETs attract and eradicate bacteria and counteract viruses. NETosis occurs in reaction to multiple fungal as well as bacterial pathogens. Initially, phorbol 12-myristate 13-acetate (PMA) stimulates NETosis. As a stimulator of protein kinase C (PKC), PMA stimulates several downstream pathways triggering NADPH oxidase, which generates the reactive oxygen species (ROS) necessary for NETosis.

NETs are related to multiple autoimmune disorders such as small-vessel vasculitis, rheumatoid arthritis, psoriasis, and systemic lupus erythematosus (SLE). Consequently, the release of chromatin during the generation of NETs is a source of autoantigens. If NETs are produced during viral infections, they are particularly effective in influencing tolerance and inducing autoimmunity, because viruses trigger the delivery of inflammatory cytokines including Type I interferon, which participates in SLE. Antiphospholipid antibodies identify not only thrombin, but also β2GP. Anti-β2GP antibodies are commonly used for clinical assays. The understanding of reactions downstream of β2GP is more detailed. As a cationic protein that binds to lipids, β2GP shows elevated concentrations in blood and can be generated via the liver, monocytes, endothelial cells, and trophoblasts. Although several studies have suggested that β2GP affects NET delivery, its aetiology is unclear.

This study was conducted to explore the capability of anti-β2GPI/β2GPI or PMA to stimulate the cells at 37°C in cultivation media. SYTOX green was added at 1 μM followed by incubation for 4 h. Cells were placed on glass slides after centrifugation in a cytospin at 300 × g for 5 min. A Zeiss Axioskop was utilized to observe fluorescence (Oberkochen, Germany). A Nikon Coolpix 4500 digital camera was used to capture the images at 10X magnification (Tokyo, Japan).

The cell lysate was electrophoresed in 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels and transferred onto a polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA, USA). The membrane was blocked in 3% dry nonfat milk in saline/0.05% Tween-20 (TBST) for 1 h at RT, washed with TBST three times, and then incubated with primary antibodies against p-AKT, AKT, p-p38, p38, p-ERK1/2, ERK1/2, and β-actin (Cell Signalling Technology, Danvers, MA, USA) overnight at 4°C. Following three washes with TBST, the membranes were incubated with horseradish peroxidase-conjugated secondary antibodies for 1 h at RT. Finally, the western blotting (WB) signals were developed using ECL detection reagents (Millipore, Billerica, MA, USA).

Free Zn2+ inside the cells was examined as previously described. Briefly, WBCs were treated for 1 h with anti-β2GPI/β2GPI in measuring buffer at 37°C. During the final 30 min, Fluozin-3 acetoxymethyl ester was added to the cells. PBS was used to wash the cells, which were evaluated by flow cytometry using a BD FACSCalibur flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Fluozin-3 emission was evaluated in FL-1. Side and forward scatter were measured to differentiate lymphocytes, monocytes, and granulocytes. The levels of free Zn2+ were evaluated as the average intensities (fluorescence) twice before sedimentation, which was conducted at room temperature (RT) for 45-60 min. Hypotonic lysis was carried out utilizing the remaining red blood cells. Ethical approval was acquired from the institutional ethics review board of The First Affiliated Hospital of Harbin Medical University.
of every cell population using a separation constant in terms of the Zn$^{2+}$/FluoZin-3 complex (8.9 nM), determining the lowest intensity (fluorescence) with N,N,N$'$,N$'$-tetakis (2-pyridylmethyl) ethylenediamine (TPEN, 50 μM) and highest fluorescence intensity with the Zn$^{2+}$ ionophore pyrithione.

2.6 | ROS examination with DHR123

For ROS examination, cells were subjected to 30-min loading using 1 μg/mL (dihydrorhodamine) (DHR) 123 as a loading buffer (measuring buffer with bovine serum albumin [w/v; 0.3%]) at 37°C. Measuring buffer was used to wash the cells twice, which were subsequently added to 96-well plates. Fluorescence was measured at the initial stage of the experiment and after 45 min at 37°C using a fluorescence plate reader. The excitation and emission wavelengths were 485 and 535 nm, respectively.

3 | RESULTS

3.1 | Induction of NETs by anti-β2GPI/β2GPI

NETosis stimulation was carried out via various mercury species in PHL supplemented with anti-β2GPI (10 μg/mL)/β2GPI (100 μg/mL). NET generation was quantified by examining the DNA outside the cells by PI staining (Figure 1). Fluorescence was noticeably increased with anti-β2GPI/β2GPI, suggesting the generation of NETs. Independent supplementation with β2GPI or anti-β2GPI did not affect the fluorescence. Additional procedures were conducted using anti-β2GPI/β2GPI. The effect of anti-β2GPI/β2GPI was dependent on the time and concentration and showed a similar effect as PMA, a known stimulator of NETosis (Figure 2). Anti-β2GPI/β2GPI-induced NETs were confirmed by SYTOXgreen staining (Figure 3). Briefly, anti-β2GPI/β2GPI triggered NETosis resembling PMA-induced NETosis in magnitude and morphology.

3.2 | Kinase phosphorylation

In order to examine the aetiology of how anti-β2GPI/β2GPI triggered NETosis, WB was applied to explore AKT function with the help of antibodies counteracting AKT serine phosphorylation (Figure 4A). PMA promoted phosphorylation in some proteins. However, anti-β2GPI/β2GPI was unable to do so. Moreover, phosphorylation of ERK1/2 and p38 MAPK was reinforced via PMA but not with anti-β2GPI/β2GPI (Figure 4B), suggesting that anti-β2GPI/β2GPI triggered NETosis without relying on stimulation of p38, ERK1/2, or AKT signalling pathway.

FIGURE 1 Induction of NETosis by anti-β2GPI/β2GPI. Primary human leukocytes were treated with anti-β2GPI/β2GPI complex, isotype control for 4 h at 37°C. extracellular NET-DNA was quantified. Data are presented as the mean ± SD of three independent experiments. ***, P < 0.001

FIGURE 2 Induction of NETosis by anti-β2GPI/β2GPI. A, Primary human leukocytes (PHL) were treated with anti-β2GPI/β2GPI for 4 h at 37°C and extracellular NET-DNA was quantified. B, PHL were treated with anti-β2GPI/β2GPI at the indicated concentration for 4 h at 37°C and extracellular NET-DNA was quantified. Data are presented as the mean ± SD of three independent experiments. *P < 0.05, **P < 0.01, ***P < 0.001

2.7 | Statistical analysis

Data are presented as the mean ± SD unless otherwise indicated. The data were analysed by Student t test or a one-way analysis of variance using Prism version 6 (GraphPad, Inc., La Jolla, CA, USA). Values of P < 0.05 were considered significant.
3.3 Zn\(^{2+}\) delivery

Zn\(^{2+}\) delivery was reinforced in lymphocytes and monocytes in response to anti-\(\beta\)2GPI/\(\beta\)2GPI rather than in WBC granulocytes (Figure 5A). Chelation of free Zn\(^{2+}\) inside the cells using TPEN, a Zn\(^{2+}\)-selective chelator that can penetrate membranes, failed to influence NETosis triggered by anti-\(\beta\)2GPI/\(\beta\)2GPI (Figure 5B). This indicates that Zn\(^{2+}\) delivery did not participate in NETosis triggered by anti-\(\beta\)2GPI/\(\beta\)2GPI.

![Figure 3: NETs induced by PMA and anti-\(\beta\)2GPI/\(\beta\)2GPI.](image)

FIGURE 3 NETs induced by PMA and anti-\(\beta\)2GPI/\(\beta\)2GPI. Fluorescence microscopy images of leukocytes stained with SYTOX green.

![Figure 4: Role of kinases in anti-\(\beta\)2GPI/\(\beta\)2GPI-induced NETosis.](image)

FIGURE 4 Role of kinases in anti-\(\beta\)2GPI/\(\beta\)2GPI-induced NETosis. Leukocytes were incubated with PMA or anti-\(\beta\)2GPI/\(\beta\)2GPI for 30 min. Western blot analysis was performed using antibodies against p-AKT (Ser473) A, and (ex) p-p38 MAPKs and ERK1/2 B.

![Figure 5: Role of Zn\(^{2+}\) in anti-\(\beta\)2GPI/\(\beta\)2GPI-induced NETosis.](image)

FIGURE 5 Role of Zn\(^{2+}\) in anti-\(\beta\)2GPI/\(\beta\)2GPI-induced NETosis. A, Leukocytes were treated with anti-\(\beta\)2GPI/\(\beta\)2GPI for 1 h, followed by loading with Fluo-Zin-3. Zinc-dependent fluorescence was measured. B, Leukocytes were pre-treated with TPEN, followed by incubation with anti-\(\beta\)2GPI/\(\beta\)2GPI for 4 h. Extracellular NET-DNA was quantified. Data are presented as the mean ± SD from three independent experiments. *, P < 0.05.
A previous study showed that ROS generation is crucial in NETosis.10 The pro-fluorophore DHR123, which is sensitive to redox, displayed similar fluorescence subsequent to supplementation with anti-β2GPI/β2GPI and PMA, despite its weakness compared with the strongest activation by H2O2 (Figure 6A). The NADPH oxidase inhibitor diphenylene iodonium (DPI) notably suppressed NETosis triggered via PMA, but not in the presence of anti-β2GPI/β2GPI (Figure 6B). N-Acetylcysteine counteracted oxidation and suppressed NETosis triggered via anti-β2GPI/β2GPI, indicating the influence of ROS on these reactions (Figure 6C). Our findings indicate that anti-β2GPI/β2GPI stimulated NETosis by activating ROS generation independently of NADPH oxidase.

4 | DISCUSSION

NETosis is a crucial reaction used by WBCs to eliminate microorganisms.19 It affects both adaptive and innate immune reactions and is crucial for autoimmune reactions in disorders including SLE.20 Although numerous studies have identified reactions linked with NET delivery, the understanding of the reactions inside cells that participate in NET generation is insufficient regarding the various NET stimulators.

Although numerous candidate targets of anti-β2GPI/β2GPI have been identified in signal pathways to cause NETosis, most promising mechanisms were shown to be irrelevant to NETosis.12,13 PKC is a crucial kinase in pathways inducing NETosis and is stimulated by anti-β2GPI/β2GPI, likely by increasing the free Ca2+ concentration inside cells.21,22 NETosis stimulated via the PKC stimulator, PMA leads to phosphorylation of PKC, p38 MAPKs, and ERK1/2.23,24 However, no stimulation of these kinases was detected in the reaction to anti-β2GPI/β2GPI. Zn2+ is crucial for NETosis triggered via PMA.25 Evaluation of free Zn2+ in the reaction to anti-β2GPI/β2GPI revealed noticeably increased concentrations of lymphocytes and monocytes, which was similar to the results of previous studies.26 Zinc functions downstream of ROS and is crucial but insufficient for NETosis.17,27 Consequently, anti-β2GPI/β2GPI replaced Zn2+ with ROS, eliminating the requirement for Zn2+.

NETosis is associated with the stimulation of NADPH oxidase, which generates ROS crucial for NET generation.28 Several studies showed that NADPH oxidase does not always participate in NETosis and relies on other sources of ROS.29,30 However, the pro-fluorophore DHR123, which is sensitive to oxidation, displayed similar fluorescence subsequent to activation by PMA and anti-β2GPI/β2GPI, indicating similar ROS generation, although they arose from different sources. Notably, mercurial compounds alter the process of ROS arising from NADPH oxidase. Not only organic but also inorganic patterns of mercury cause mitochondrial injury following ROS delivery.

In conclusion, our study revealed that anti-β2GPI/β2GPI treatment is a promising method for stimulating NETosis through reactions relying on ROS.

ACKNOWLEDGEMENT

none

CONFLICT OF INTEREST

none

FUNDING INFORMATION

This work was supported by research fund of Heilongjiang Provincial Health and Family Planning Commission [Grant number 2016-070].

ORCID

Fujun Li http://orcid.org/0000-0001-6032-1242

REFERENCES

1. Newburger PE, Dale DC. Evaluation and management of patients with isolated neutropenia. Semin Hematol. 2013;50(3):198-206.

2. Benarafa C, Simon HU. Role of granule proteases in the life and death of neutrophils. Biochem Biophys Res Commun. 2017;482(3):473-481.
3. Edmisson JS, Tian S, Armstrong CL, et al. Filifactor alocis modulates human neutrophil antimicrobial functional responses. Cell Microbiol. 2018;20(6):e12829.

4. Law SM, Gray RD. Neutrophil extracellular traps and the dysfunctional innate immune response of cystic fibrosis lung disease: a review. J Inflamm (Lond). 2017;14(1):29.

5. Sollberger G, Tilley DO, Zychlinsky A. Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell. 2018;44(5):542-553.

6. Zhu L, Liu L, Zhang Y, et al. High level of neutrophil extracellular traps correlates with poor prognosis of severe influenza a infection. J Infect Dis. 2018;217(3):428-437.

7. Kenny EF, Herzig A, Kruger R, et al. Diverse stimuli engage different neutrophil extracellular trap pathways. Elife. 2017:6.

8. Gray RD, Lucas CD, MacKellar A, et al. Activation of conventional protein kinase C (PKC) is critical in the generation of human neutrophil extracellular traps. J Inflamm (Lond). 2013;10(1):12.

9. Ummarino D. Rheumatoid arthritis: don’t swallow the NETs. Nat Rev Rheumatol. 2017;13(6):322.

10. Corsiero E, Pratesi F, Prediletto E, Bombardieri M, Migliorini P. NETosis contributes to the heightened risk of thrombosis in inflammatory diseases. World J Cardiol. 2015;7(12):829-842.

11. Wang H, Li T, Chen S, Gu Y, Ye S. Neutrophil extracellular trap mitochondrial DNA and its autoantibody in systemic lupus erythematosus and a proof-of-concept trial of metformin. Arthritis Rheumatol. 2015;67(12):3190-3200.

12. Rand JH, Wu XX. Antibody-mediated disruption of the annexin-V anti-thrombotic shield: a new mechanism for thrombosis in the antiphospholipid syndrome. Thromb Haemost. 1999;82(2):649-655.

13. Rao AN, Kazzaz NM, Knight JS. Do neutrophil extracellular traps contribute to the heightened risk of thrombosis in inflammatory diseases? World J Cardiol. 2015;7(12):829-842.

14. Giacomelli R, Afeltra A, Alunno A, et al. International consensus: what else can we do to improve diagnosis and therapeutic strategies in patients affected by autoimmune rheumatic diseases (rheumatoid arthritis, spondyloarthritis, systemic sclerosis, systemic lupus erythematosus, antiphospholipid syndrome and Sjogren’s syndrome)?: the unmet needs and the clinical grey zone in autoimmune disease management. Autoimmun Rev. 2017;16(9):911-924.

15. Mulla MJ, Salmon JE, Chamley LW, et al. A role for uric acid and the NALP inflammasome in antiphospholipid antibody-induced IL-1beta production by human first trimester trophoblast. PLoS One. 2013;8(6):e65237.

16. van den Hoogen LL, van Roon JA, Radstake TR, Fritsch-Stork RD, Derksen RH. Delineating the deranged immune system in the antiphospholipid syndrome. Autoimmun Rev. 2016;15(1):50-60.

17. Haase H, Hebel S, Engelhardt G, Rink L. Ethylmercury and Hg2+ induce the formation of neutrophil extracellular traps (NETs) by human neutrophil granulocytes. Arch Toxicol. 2016;90(3):543-550.

18. Kraij T, Tengström FC, Kamerling SW, et al. A novel method for high-throughput detection and quantification of neutrophil extracellular traps reveals ROS-independent NET release with immune complexes. Autoimmun Rev. 2016;15(6):577-584.

19. Hirschfeld J, White PC, Millward MR, Cooper PR, Chapple ILC. Modulation of neutrophil extracellular trap and reactive oxygen species release by periodontal bacteria. Infect Immun. 2017;85(12).

20. Loos C, Blanco LP, Purmalek MM, et al. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med. 2016;22(2):146-153.

21. Neeli I, Radic M. Opposition between PKC isoforms regulates histone deimination and neutrophil extracellular chromatin release. Front Immunol. 2013;4:38.

22. Branzk N, Papayannopoulos V. Molecular mechanisms regulating NETosis in infection and disease. Semin Immunopathol. 2013;35(4):513-530.

23. Hoppenbrouwers T, Autar ASA, Sultan AR, et al. In vitro induction of NETosis: comprehensive live imaging comparison and systematic review. PLoS One. 2017;12(5):e0176472.

24. Gupta AK, Giaglis S, Hasler P, Hahn S. Efficient neutrophil extracellular trap induction requires mobilization of both intracellular and extracellular calcium pools and is modulated by cyclosporine a. PLoS One. 2014;9(5):e97088.

25. Hasan R, Rink L, Haase H. Zinc signals in neutrophil granulocytes are required for the formation of neutrophil extracellular traps. Innate Immun. 2013;19(3):253-264.

26. Gangadharan B, Antrobus R, Dwek RA, Zitzmann N. Novel serum biomarker candidates for liver fibrosis in hepatitis C patients. Clin Chem. 2007;53(10):1792-1799.

27. McCormick A, Heesemann L, Wagener J, et al. NETs formed by human neutrophils inhibit growth of the pathogenic mold aspergillus fumigatus. Microbes Infect. 2010;12(12-13):928-936.

28. Khan MA, Philip LM, Cheung G, et al. Regulating NETosis: increasing pH promotes NADPH oxidase-dependent NETosis. Front Med (Lausanne). 2018;5:19.

29. Hayashi H, Cherpokova D, Martinod K, et al. Sirt3 deficiency does not affect venous thrombosis or NETosis despite mild elevation of intracellular ROS in platelets and neutrophils in mice. PLoS One. 2017;12(12):e0188341.

30. Behnen M, Moller S, Brozek A, Klinger M, Laskay T. Extracellular acidification inhibits the ROS-dependent formation of neutrophil extracellular traps. Front Immunol. 2017;8:184.

How to cite this article: You Y, Liu Y, Li F, Mu F, Zha C. Anti-β2GPI/β2GPI induces human neutrophils to generate NETs by relying on ROS. Cell Biochem Funct. 2019;37:56-61. https://doi.org/10.1002/cbzf.3363