Probabilistic Event Categorization

Janyce Wiebe† and Rebecca Bruce‡ and Lei Duan†
†Dept. of Computer Science and the Computing Research Laboratory
New Mexico State University
Las Cruces, NM 88003
‡Dept. of Computer Science and Engineering
Southern Methodist University
Dallas, TX 75275-0112
wiebe,lduan@cs.nmsu.edu, rbruce@seas.smu.edu

Recent Advances in Natural Language Processing (RANLP-97),
European Commission, DG XIII, Tzigov Chark, Bulgaria, September 1997, pp. 163–170.

Abstract
This paper describes the automation of a new text categorization task. The categories assigned in this task are more syntactically, semantically, and contextually complex than those typically assigned by fully automatic systems that process unseen test data. Our system for assigning these categories uses a probabilistic classifier, developed with a recent method for formulating a probabilistic model from a predefined set of potential features (Bruce 1995, Bruce and Wiebe 1994, Pedersen et al. 1996). This paper focuses on feature selection. It presents various types of properties experimented with in this work. We identify and evaluate various approaches to organizing the collocational properties into features. With the more complex features we define, there is an organization that yields the best results; but the same organization with less complex features yields inferior results. The results suggest a way to take advantage of properties that are low frequency but strongly indicative of a class. The problems of recognizing and organizing the various kinds of contextual information required to perform a linguistically complex categorization task has rarely been systematically investigated in NLP.

1 Introduction
This paper reports findings on performing automatic event categorization, i.e., recognizing high-level semantic classes of the main state or event that a clause is about. The event categorization addressed in this paper is new. In this classification scheme, the event reported by the main clause of a sentence is categorized as being either: (1) a private state (the clause is about, e.g., a belief, emotion, or perception), (2) a speech event (the clause is about, e.g., a saying or declaring event), or (3) other (the clause is about another kind of state or event). The speech-event category is divided into subcategories based on how the event is presented syntactically and how much of what was said is presented in the sentence. The language used to describe private states and speech events is rich and varied, including idiomatic and metaphorical expressions (Barnden 1992). There is a large amount of syntactic and part-of-speech variation, and the categorization is context dependent. Although the categories are complex, it has been demonstrated in an inter-coder reliability study (Wiebe and Bruce 1997) that these classifications can be performed with high reliability by human judges.

The method we use to automate this task is probabilistic classification. We perform an explicit model search to find a model that provides a good characterization of the relationships among the targeted classification and properties in the data (Bruce 1995, Bruce and Wiebe 1994, Pedersen et al. 1997). Doing so is in contrast to one common practice in NLP of assuming a certain model form, such as n-gram and Naive Bayesian models, without testing how well those models fit the data. In the experiments reported on here, the models identified as best for the task being performed vary in structure in response to the type of features used, supporting the usefulness of performing model search. The method permits the use of many features of different kinds, includ-
We experimented with many different kinds of properties to perform the classification task. These properties are presented in this paper. They are determined fully automatically, and range from shallow surface characteristics (e.g., word counts and word co-occurrence) to more syntactically complex structures (e.g., an adjective serving as subject complement) as well as discourse features (e.g., whether or not the sentence is the first one in a paragraph). Many of the properties would be applicable to other event categorization and information extraction tasks for which one event out of many in a sentence is targeted, or for which the classifications are highly context dependent.

We also experimented with various ways to organize collocational properties into features, including properties that are often used in word-sense disambiguation systems. With the more complex properties we define, there is an organization that yields the best results, but with the less complex properties, the same organization yields inferior results. The results suggest a way to take better advantage of properties that are low frequency but strongly indicative of a class.

In addition to such factors as the form of the model and the method used to choose collocations, the organization used for collocational information is another experimental parameter that can affect performance of an NLP system that uses collocational information.

A preprocessor was developed to determine the properties according to which the classifications are made. It is composed of off-the-shelf components and new components. The new components and pointers to the existing ones will be available over the World Wide Web. The annotation instructions, the results of the intercoder-reliability study, and tables of feature values for experimentation will also be available at that site.

The remainder of this paper is organized as follows. The method used for model selection is described in section 2. The results of the experiments are given up front in section 3 and then discussed in subsequent sections. Section 4 details the properties experimented with, and section 5 presents different possible organizations of contextual information into features. Section 6 discusses the results, and section 7 is the conclusion.

2 The Method

We use a supervised learning method for automatically formulating probabilistic models for use in classification, where a classifier is induced from a corpus of tagged data. Suppose there is a training sample in which each sentence is represented by the variables \((F_1, \ldots, F_{n-1}, S)\). Variables \((F_1, \ldots, F_{n-1})\) correspond to properties of the sentence and the context in which it appears, and variable \(S\) is the classification variable, the variable that corresponds to the classification being made. Our task is to induce a classifier that will assign a value for \(S\), given the values that the feature variables have for this sentence.

We adopt a statistical approach whereby a probabilistic model is selected that describes the interactions among the feature variables. This approach is described fully elsewhere (Bruce 1995, Bruce and Wiebe 1994, Pedersen et al. 1996). Such a model can form the basis of a probabilistic classifier since it specifies the probability of observing any and all combinations of the values of the feature variables.

In the fully saturated model, all variables are interdependent, and the parameters of the model correspond to combinations of values of all of the variables in the model. If the data sample can be adequately characterized by a less complex model, i.e., a model in which there are fewer interactions between variables, then more reliable parameter estimates can be obtained. How well a model characterizes the training sample is determined by measuring the fit of the model to the sample, i.e., how well the distribution defined by the model matches the distribution observed in the training sample.

A good strategy for developing probabilistic classifiers is to perform an explicit model search to select the model to use in classification. The model selection algorithm used here performs a backward sequential search (a type of greedy search) of the class of decomposable models, a class of models that have many computational advantages (Whittaker 1990).

A backward sequential search is performed, which begins by designating the saturated model as the current model. At each stage, we generate the set of decomposable models of complexity level \(i - 1\) that can be created by removing an edge from the current model of complexity level \(i\). The evaluation criterion is applied to each of these models to determine which yields the least degradation in fit from the current model. If the degradation is within limits established by the evaluation criterion, this becomes the current model and the search continues. Otherwise, the search stops. For a further discussion of search strategies and evaluation criteria, see Pedersen et al. (1997).

The model selection process also performs feature selection. If a model is selected where there is no edge connecting a feature variable to the classifica-
tion variable, then that feature has been, in essence, dropped from the classifier. The Log-likelihood ratio statistic $G^2$ (Bishop et al. 1975) is used as the model evaluation criterion in all of the experiments.

3 The Experiments and Results

This section presents the results of the comparative experiments performed in this paper. The properties used to form features are presented in section 4, and the various organizations of collocational information are given and discussed in section 5.

After a large amount of background experimentation, the best experiment we found involves: (1) four non-collocational features (those labeled the Current Best in section 4), and (2) the collocational properties labeled Syntactic Patterns in section 4, organized as per-class-2, which is described in section 5. A feature was judged to be good if, after the model search procedure has completed, that feature is still included in (one of) the model(s) with the highest accuracy.

Since our interests are to investigate the relative goodness of the various collocational patterns and of the organizations, we varied only these factors, and used the same set of non-collocational features throughout.

The total amount of data consists of 2,544 main clauses from the Wall Street Journal Treebank corpus (Marcus et al. 1993). The distribution of classes over the entire data set is shown in table 1. The lower bound for the problem—the frequency in the entire data set of the most frequent class (Gale et al. 1992b)—is 52%.

For clearer understanding of the factors covaried in the experiments presented in table 2, the model search procedure was not permitted to drop any features from the model.

10-fold cross-validation was performed. For each fold, the collocations were determined and model search was performed anew. Each fold is a different split between 1/10th testing data (TestData), and 9/10th training data (TrainingData). For each fold, TrainingData was further split into 9/10th training data (SearchData; 81% of the total data) and 1/10th test data (SelectionData; 9% of the total data). Model search was performed on SearchData, and the model $M$ with the highest accuracy on SelectionData was selected. Finally, the accuracy, precision, and recall of Model $M$ on the real test set, TestData, were determined; the results presented in table 2 are the averages of those results over all of the folds. Thus, which model to choose as best is based on a search-selection split of the training data, and the results are reported on separate, held-out test data.

In table 2, rows correspond to the organizations defined in section 4: (PC-1 for per-class-1; PC-2 for per-class-2; OR-1 for over-range-1, and OR-2 for over-range-2). Columns correspond to collocation types.

A better result than any in the table was obtained in a separate experiment, in which some hand-tuning of the collocational features was performed: over 78% by manually grouping some related information into features.

4 Properties

The properties we experimented with are given in this section, along with brief indications of the preprocessing required to determine them. Many are similar to the kinds of surface properties suggested by Hearst (1992) and Light (1996). Some are based on properties found to be correlated with similar classes in the literature; others are based on observing the tagged training data; and others were chosen based on intuition and the fact that the preprocessor is able to determine them (such as the tense of the main verb).

The Treebank syntax trees were used for only one purpose, to identify the main clause of the sentence. The reason that the main clause must be identified is only because we define the problem as classifying the main clause. The features could easily be adapted to any clause, whether or not it is the main clause.

The main verb of the clause to be classified is the pivot of some of the properties. We adopt Quirk et al.’s definition of a main verb (1985), and use a finite-state machine to skip over the various types of auxiliaries and identify the main verb automatically. In identifying and applying the collocational properties listed below, the morphological analyzer described in Karp et al. (1992) is used to match the root forms of words, and Brill’s tagger (Brill 1992) is used to assign parts of speech.

We begin with the non-collocational properties, listing first those from the best experiment we found. Listed second are properties that were chosen in some experiment for inclusion in the most accurate model. This occurred either on the current data with a different subset of features than those in the best experiment, or on an earlier version of the annotated data. In this earlier version of the problem definition, the annotations were less context-sensitive, and the task was more like traditional word-sense disambiguation. Listed third are those we did not succeed with.

4.1 Non-Collocational Properties

4.1.1 The Current Best

The following non-collocational features are the best we found for the current problem.

1. Whether or not the sentence begins a new paragraph. Paragraphs are already delimited in the Treebank corpus.

Psychological experiments have shown a correlation between paragraph breaks and point of
Table 1: Distribution of Classes

| Class                                    | Percentage of the Corpus |
|------------------------------------------|--------------------------|
| Private state                            | 10%                      |
| Speech category 1: direct speech         | 09%                      |
| Speech category 2: mixed direct and indirect speech | 04%                      |
| Speech category 3: other speech event    | 24%                      |
| Borderline private state and other event | 01%                      |
| Other state or event                     | 52%                      |

Table 2: 10-fold Results Varying Collocation Type and Feature Organization

| Co-occurrence Patterns | Within-5 Patterns | Syntactic Patterns |
|------------------------|-------------------|--------------------|
|                        | Accuracy | Precision | Recall | Accuracy | Precision | Recall | Accuracy | Precision | Recall |
| OR-1                   | 0.6838   | 0.6967     | 0.9815 | 0.6020   | 0.6144     | 0.9799 | 0.7039   | 0.7056     | 0.9976 |
| OR-2                   | 0.7063   | 0.7164     | 0.9858 | 0.7082   | 0.7147     | 0.9909 | 0.7114   | 0.7158     | 0.9937 |
| PC-1                   | 0.5315   | 0.5364     | 0.9906 | 0.5550   | 0.5568     | 0.9969 | 0.7382   | 0.7431     | 0.9933 |
| PC-2                   | 0.6500   | 0.6571     | 0.9886 | 0.6567   | 0.6604     | 0.9945 | 0.7468   | 0.7495     | 0.9965 |
view sentences (Stark 1987, Bruder and Wiebe 1990). That this is one of the best features lends further support to those findings.

2. Percentage of the sentences so far in the current paragraph that the system classified as private-state or speech-event sentences. The value is 1 if this proportion is greater than 0.3, 0 otherwise. The goodness of this feature also gives evidence for the importance of the paragraph as a unit for this problem.

3. Define a quote ratio, $R = N/M$, where $N$ is the number of words which are within quotation marks in the sentence, and $M$ is the total number of words in the sentence. There are three levels to this property: $R$ greater than 0.3; $R$ between 0.3 and 0.1; and $R$ less than 0.1.

4. Whether or not “according to” appears.

**Good in other experiments**

1. WordNet synsets (Miller 1990). This property was motivated by uses of WordNet synsets in Resnik (1993) and Roget categories in Yarowsky (1992).

For abstract classes we need to extend coverage beyond individual word collocations. Thus, we experimented with the following synset properties. Let $W$ be a set of words chosen as collocations in some manner (see sections 4.2.1 and 4.3). A synset property is whether or not there is a member of the same synset as a member of $W$ in the sentence (keeping to the same part of speech).

2. The class assigned by the system to the previous sentence, i.e., a 2-gram property.

3. Whether or not the subject of the main clause contains a proper noun.

4. Whether or not the subject of the main clause contains a personal pronoun.

The preprocessor uses the output of a proper name recognizer developed by Jim Cowie at the Computing Research Laboratory at NMSU.

5. A set of binary properties, each mapped to its own feature: “that” appearing within a window after the main verb of the main clause; a comma appearing before the main verb; and a colon appearing just after the verb. We intend, in the near future, to treat these the same way that collocations are treated (see section 4.2 on collocational properties).

6. The tense of the main verb.

7. The absence or presence of “to” followed by the pattern NPapprox-short within X words (+ or -) of the main verb, where

   \[ \text{NPapprox-short} = \text{det}^* \text{adj}^* \text{noun}^+ \text{adj}* \]

   Example: “The company looked attractive to the investors”.

4.1.2 Not found to be useful

1. The length of the current sentence (above or below a threshold).

   This property was meant to be an approximation of whether or not the sentence is a complex sentence.

2. The number of sentences in the current article (above or below a threshold).

   This is a property of the entire article. The intuition is that longer articles are more likely to express reactions to events and motivations for actions. The difficulty of such properties for supervised learning methods is data sparsity, since the objects are entire articles rather than sentences.

3. The total number of proper nouns in the article, another property of articles rather than sentences.

4.2 Collocational Properties

By *collocation* we mean a relationship between a word and the annotation class. In this study, we consider a range of collocational patterns, from simple co-occurrence to those defined by syntactic expressions. Like many others (e.g., Hearst 1992, Berger et al. 1996, Robin 1996, Golding and Schabes 1996), our best results were obtained using collocations based on regular expressions composed of part-of-speech tags and the root forms of words. Such collocations can better pinpoint a particular state or event out of all those referred to in the sentence. When one event is being targeted, as in information extraction and event categorization, there is often noise if the entire sentence is considered.

Our syntactic collocational patterns are defined in section 4.2.1 below. These patterns define basic syntactic structures that are not specific to our particular problem.

In addition to the syntactic patterns, we also experimented with two simpler collocational patterns that are commonly used in NLP. These are presented in sections 4.2.2 and 4.2.3.

Below, the symbol $\text{main} \_verb\text{-MC}$ refers to the main verb of the main clause, and $\text{NP}approx$ is defined as follows: $\text{NP}approx = \text{NP}approx\_short \mid \text{NP}approx\_short \ prep \ \text{NP}approx$.

4.2.1 Syntactic Patterns.

baseMVCollPat = \{v \mid v \text{ is main}\_verb\text{-MC}\}.

E.g., “She believes that Mary is sweet.”

baseAdjCollPat = \{a \mid a \text{ is in the pattern } \langle \text{main}\_verb\_MC adv* a \rangle, \text{ where the main verb is copular}\}.

E.g., “She is/seems happy”
complexMVCollPat = \{ v \mid v \text{ is in the pattern } \langle \text{main}_\text{verb}-\text{MC} \text{ adv}^* [\text{NPapprox}] [\text{“to”}] v \rangle, \text{ where } v \text{ is a main verb}\} \\
E.g., "He made her jump."

complexAdjCollPat = \{ a \mid a \text{ is in the pattern } \langle \text{main}_\text{verb}-\text{MC} \text{ adv}^* [\text{NPapprox}] [\text{“to”}] \text{ adv}^* v \text{ adv}^* a \rangle, \text{ where } v \text{ is a main}_\text{verb} \text{ and } v \text{ is copular}\} \\
E.g., "He tried to be happy" or "It lead him to possibly be very happy."

We also experimented with noun syntactic patterns, but did not identify any that improved performance.

4.2.2 Within-5 Patterns.
One for each of verbs, nouns, and adjectives: 
Within-5 = \{ w \mid w \text{ appears within 5 words (+ or -) of } \text{main}_\text{verb}-\text{MC} \}.

4.2.3 Co-occurrence Patterns.
One for each of verbs, nouns, and adjectives:
Co-occurrence = \{ w \mid w \text{ appears anywhere in the sentence} \}.

5 Selecting Collocations and Organizing Information into Features

There are a number of ways to organize collocational properties, such as those defined above, into features. To produce the results presented above in section 3, we systematically varied the type of organization used.

The patterns defined above are used in combination with a selection method to identify individual collocations. The organization of the collocations into features and the method used to identify the individual collocations are interdependent. Let there be \( c \) annotation classes, \( C_1 \) to \( C_c \). Let there be \( p \) collocational patterns, \( P_1 \) to \( P_p \) (e.g., baseMVCollPat is one such pattern).

Then there are two ways to select collocations:
(1) select words that are correlated with class \( C_i \) when they appear in pattern \( P_j \); these are referred to as \textit{per-class collocations}, and are denoted as \( \text{WordsC}_iP_j \); and
(2) select words that, when they appear in pattern \( P_j \), are correlated with the classification variable across its entire range of values. These are referred to as \textit{over-range collocations}, and are denoted as \( \text{WordsP}_j \).

5.1 Identification of Per-Class Collocations

5.1.1 Criterion for Identifying Collocations.
The method used here and in Ng and Lee (1996) for forming the collocation sets \( \text{WordsC}_iP_j \) is (in the experiments, we use \( k = 0.5 \)):

\[
\text{WordsC}_iP_j = \{ w \mid P(C_i | w \text{ in } P_j) > k \}
\]

5.1.2 Organizations
We experimented with two organizations that are in greatest contrast with the over-range organizations given below.

Organization \textit{per-class-1} There is one binary feature for each class \( C_i \), whose value is 1 if any member of any of the sets \( \text{WordsC}_iP_j \) appears in the sentence, \( 1 \leq j \leq p \).

Organization \textit{per-class-2} For each pattern \( P_j \), define a feature with \( c + 1 \) values as follows:
For \( 1 \leq i \leq c \), there is one value which corresponds to the presence of a word in \( \text{WordsC}_iP_j \). Each feature also has a value for the absence of any of those words.

5.2 Identification of Over-Range Collocations

5.2.1 Criterion for Identifying Collocations.
In this alternative, the members of the collocation sets \( \text{WordsP}_j \) are identified as follows. \( G^2 \) (or another goodness-of-fit test) is applied to identify words \( w \) such that, when \( w \) appears in pattern \( P_j \), the model of independence between the classification variable and \( w \) has a poor fit.

Organization \textit{over-range-1} This organization is used in positional features such as in Gale et al. (1992a) and Leacock et al. (1993). Define one feature per pattern \( P_j \), with \( | \text{WordsP}_j | +1 \) values, one value for each word in \( \text{WordsP}_j \) (i.e., each word selected for pattern \( P_j \) using \( G^2 \) as described above). Each feature also has a value for the absence of any word in \( \text{WordsP}_j \).

Organization \textit{over-range-2} This organization is commonly used in NLP. Define a binary feature for each word in each set \( \text{WordsP}_j \), \( 1 \leq j \leq p \).

6 Discussion

As can be seen in table 2, the best results are obtained with the \textit{per-class-2} organization, which is not commonly used in NLP.

Notice in table 2 that good results are obtained with the per-class organizations and the syntactic patterns. But poorer results are obtained with the per-class organizations and the simpler collocational patterns. The simpler collocational patterns can give relatively good results—they do so when used with the over-range organizations.

Table 3: Positive and False Positive Occurrences of Collocational Features using Organization PC-1
In comparison to the more restrictive (syntactic) patterns, the less restrictive (co-occurrence and within-5) patterns identify properties that occur more frequently, but do not as strongly select one of the classes. To see this, consider table 3, which contains frequency information for one of the folds of the experiments whose results are in table 2, row 3. The first column shows that the total number of positive instances is much higher for the less restrictive collocational patterns than for the more restrictive ones. The second column shows that the number of false positives (e.g., a ps collocation that appears with a class other than ps) is also much higher for the less restrictive collocational patterns.

Organization per-class-1 admits the least amount of interaction between the words in the collocation sets and the other features: all the collocation words are grouped into one value of one feature. The less restrictive properties benefit from the organizations that permit more interaction. In interaction with other features, these properties become stronger indicators of a specific class.

With the over-range organizations, the syntactic patterns lead to many variable values for which there are seldom positive instances (since even grouped together, the frequency is low, as table 3 shows). The experiments presented in table 2 demonstrate that having many variables that contribute no evidence for most instances can harm accuracy. Methods have been proposed for handling low-frequency, highly indicative properties. One is to consider only collocations that occur above some threshold frequency (e.g., Smadja 1993 and Ng and Lee 1996). However, it is desirable to be able to retain these words, because when they occur, they are good indicators. Hearst (1992) addresses this problem by considering only positive evidence. Similarly, Yarowsky (1993) considers only the single best piece of evidence that occurs. Another way to handle this problem is the one presented here: by identifying the collocations using the per-class method, one is able to retain low-frequency, highly indicative properties by consolidating them into fewer variables.

### 7 Conclusion

This paper presented the results of a study in which a fully automatic system for event categorization was developed and tested. The system was developed using a recent method for formulating a probabilistic model to use in classification. Although the categorization task is complex, 10-fold cross validation results were presented, showing good performance: 75% accuracy, which is a 44% improvement over the lower bound. Some manual tuning of features raise the results above 78%.

Our focus in this paper was feature selection. Many different contextual properties were described and evaluated. The features evaluated in this study would be applicable to other event categorization and information extraction tasks for which one event out of many in a sentence is targeted, or for which the classifications are highly context dependent. In future work, we plan to investigate including the additional features that Siegel (1997) and Klavans & Chodorow (1992) found to be important for state versus event classification.

In addition to identifying relevant contextual properties, contrasting approaches to organizing collocational properties into features were defined and systematically tested. The results suggest that a grouping of features allowing fewer interactions is desirable for low frequency, highly indicative properties. On the other hand, the results suggest that higher-frequency, less indicative properties yield better results when the information is organized so that a greater degree of interaction among variables can be exploited. While these findings were obtained using a particular method for model selection, they should be equally applicable to any classification system that allows interactions among features and supports the types of features described in this study.

### 8 Acknowledgements

This research was supported in part by the Office of Naval Research under grant number N00014-95-1-0776. We thank Julie Maples for her work developing the annotation instructions and manually annotating the data, and Kenneth McKeever and Tom O’Hara for helpful insights regarding evaluation.

### References

Barnden, J.A. (1992). Belief in metaphor: taking commonsense psychology seriously. *Computational Intelligence* 8 (3): 520–552.

Berger, A., Della Pietra, A., & Della Pietra, V. (1996). A maximum entropy approach to natural language processing. *Computational Linguistics* 22 (1): 39–72.

Bishop, Y. M., Fienberg, S., & Holland, P. (1975). *Discrete Multivariate Analysis: Theory and Practice*. Cambridge: The MIT Press.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). *Classification and Regression Trees*. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.
Brill, E. (1992). A simple rule-based part of speech tagger. In *Proc. of the Third Conference on Applied Natural Language Processing*, pp. 152–155.

Bruce, R. (1995). A Statistical Method for Word-Sense Disambiguation. PhD thesis, Dept. of Computer Science, New Mexico State University, 1995.

Bruce, R., & Wiebe, J. (1994). Word-sense disambiguation using decomposable models. In *Proc. of the 32nd Annual Meeting of the Association for Computational Linguistics (ACL-94)*, pp 139–146.

Bruder, G. & Wiebe, J. (1990). A Psychological Test of an Algorithm for Recognizing Subjectivity in Narrative Text. In *Proc. of the 12th Annual Conference of the Cognitive Science Society*, pp 947–952.

Gale, W., Church, K., & Yarowsky, D. (1992a). A Method for Disambiguating Word Senses in a Large Corpus. *AT&T Bell Laboratories Statistical Research Report No. 104*.

Gale, W., Church, K., & Yarowsky, D. (1992b). Estimating upper and lower bounds on the performance of word-sense disambiguation programs. In *Proc. of the 30th Annual Meeting of the Association for Computational Linguistics (ACL-92)*, pp. 249–264.

Golding A. & Schabes Y. (1996). Combining trigram-based and feature-based methods for context-sensitive spelling correction. In *Proc. of the 34th Annual Meeting of the Association for Computational Linguistics (ACL-96)*, pp. 71–78

Hearst, M. (1992). Automatic acquisition of hyponyms from large text corpora. In *Proc. of the 14th International Conference on Computational Linguistics (COLING-92)*.

Karp, D., Schabes, Y., Zaidel, M., & Egedi, D. (1992). A freely available wide coverage morphological analyzer for English. In *Proc. of the 14th International Conference on Computational Linguistics (COLING-92)*.

Klavans, J. & Chodorow, M. (1992). Degrees of stativity: the lexical representation of verb aspect. In *Proc. 14th International Conference on Computational Linguistics (COLING-92)*.

Leacock, C., Towell, G., & Voorhees, E. (1993). Corpus-Based Statistical Sense Resolution. In *Proc. of the Speech and Natural Language ARPA Workshop*.

Light, M. (1996). Morphological cues for lexical semantics. In *Proc. of the 34th Annual Meeting of the Society for Computational Linguistics (ACL-96)*, pp. 25–31.

Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a large annotated corpus of English: The Penn Treebank. *Computational Linguistics 19* (2): 313–330.

Miller, G. (1990). Special Issue, WordNet: An online lexical database. *International Journal of Lexicography*, 3 (4).

Ng, H., & Lee, H. (1996). Integrating multiple knowledge sources to disambiguate word sense: An exemplar-based approach. In *Proc. of the 34th Annual Meeting of the Society for Computational Linguistics (ACL-96)*, pp. 40–47.

Pedersen, T., Bruce, R., & Wiebe, J. (1997). Sequential Model Selection for Word Sense Disambiguation. To appear in *Proc. of the Fifth Conference on Applied Natural Language Processing*, Association for Computational Linguistics.

Pedersen, T., Kayaalp, M., & Bruce, R. (1996). Significant lexical relationships. In *Proc. of the 13th National Conference on Artificial Intelligence (AAAI-96)*, pp. 455–460.

Quirk, R., Greenbaum, S., Leech, G., & Svartvik, J. (1985). *A Comprehensive Grammar of the English Language*. (New York: Longman).

Resnik, P. (1993). Disambiguating noun groupings with respect to WordNet senses. In *Proc. of the third workshop of very large corpora*, pp. 54–68.

Robin, J. (1996). Evaluating the portability of revision rules for incremental summary generation, In *Proc. of the 34th Annual Meeting of the Association for Computational Linguistics (ACL-96)*, pp. 205-214.

Siegel, E. (1997). Learning methods for combining linguistic indicators to classify verbs. In *Proc. 2nd Conference on Empirical Methods in Natural Language Processing (EMNLP-2)*, pp. 156-162.

Smadja F. (1993). Retrieving collocations from text: Xtract. *Computational Linguistics 19* (1): 143–177.

Stark, H. A. (1987). Keeping track of characters in narrative. Ph.D. dissertation, Stanford University.

Whittaker, J. (1990). *Graphical Models In Applied Multivariate Statistics*. New York, NY: John Wiley & Sons.

Wiebe, J. & Bruce, R. (1997). Annotation instructions and inter-coder reliability study for an event categorization task. *Technical report* (Computing Research Laboratory, New Mexico State University).

Yarowsky, D. (1992). Word-sense disambiguation using statistical models of Roget’s categories trained on large corpora. In *Proc. 15th International Conference on Computational Linguistics (COLING-92)*, pp. 454–460.

Yarowsky, D. (1993). One Sense Per Collocation. In *Proc. of the Speech and Natural Language ARPA Workshop*. 