Ribonucleic acid (RNA) is a dogma breaker. The "central dogma" of cellular biochemistry mandates that deoxyribonucleic acid (DNA) stores information, and RNA copies this information and uses it to direct the assembly of amino acid building blocks into proteins, such as enzymes. Enzymes catalyze important chemical reactions in the cell, such as the breakdown of glucose or the synthesis of urea.

When biochemists discovered catalytic RNA, they had to ditch the dogma. Because of its structure, it turns out, RNA can act as an enzyme and catalyze reactions. While two strands of DNA tend to zip up into the famous double helix, RNA usually goes solo. The single RNA strand folds back on itself to create myriad tangled arrangements. Some of these arrangements create an active center, the place on the RNA where the enzymatic magic happens. The many RNA enzymes and protein enzymes that use metal atoms to do their job are called metalloenzymes. One example of an important structural motif in RNA metalloenzymes is the group I intron, which can snip itself out of an RNA segment. Understanding exactly how the RNA and the metals interact will help to provide precise answers about how the enzyme really works.

Through X-ray crystallography, researchers have revealed many structural features of group I introns. But X-ray crystallography creates images of the enzyme frozen in time; it does not catch an enzyme in action. In a new study, Joseph Piccirilli, Daniel Herschlag, and colleagues established a molecule that acts). Here, Piccirilli, Herschlag, and colleagues directed the literature data from structural models and functional studies with a random sprinkling of sulfur atoms in the intron to find critical oxygen contacts. Piccirilli, Herschlag, and colleagues established a group of specific oxygen atoms to watch.

They tried the metal rescue experiment with each of these oxygens, and the only enzyme rescued by the metal switch was the one in which they changed the C262 oxygen to a sulfur. Therefore, they concluded that this specific oxygen atom makes a critical contact with the magnesium ion. The strategy of atomic mutagenesis combined with metal ion rescue can be used to help understand the mechanism of other RNA and protein metalloenzymes.

Genomics Helps Explain Why Some Like It Hot

As warm-blooded creatures, humans and other mammals maintain a relatively stable body temperature that buckles under the stress of intense heat (or cold). When the heat gets too high, we develop fevers and weaken, and our proteins destabilize and degrade—in some cases, such reactions can prove fatal. But some organisms appear to defy nature (as we think of it) by flourishing in extremely high temperatures. The archaeal microbe *Pyrobaculum aerophilum*, for example—originally found in a boiling marine water hole in Italy—thrives at ~100 °C (212 °F). Similarly, the bacterium *Thermus thermophilus* grows at temperatures between 48 °C and 85 °C (118–185 °F).

Such organisms are of interest for many reasons—not least of which is to understand the mechanisms that engineer their heat resistance, or thermostability. How do these thermophilic bacteria and archaea manage to maintain active, stable proteins at such high temperatures? In an elegant demonstration of how the...
Some thermophilic bacteria can thrive in extreme heat because their proteins have an abundance of disulfides (yellow, above), covalent bonds between sulfur atoms that improve stability and likely boost heat-tolerance.

A condition of speciation. (CDC)

Islands in the Genome Promote Speciation

Have you ever wondered how the myriad insect forms—beetles, flies, dragonflies, mosquitoes, grasshoppers, ants, wasps, bees, and countless others—evolved? Insects make up 75% of all species known. The large number of insect species is probably a result of a combination of one or more factors: a high rate of formation of new species, or speciation, an ability to adapt to new environments and exploit new ecological niches, and a lower rate of extinction. Speciation, adaptation, and extinction are all controlled by the interplay between genetic and environmental factors. Understanding the genetic changes that lead to the formation of new species is an important area of research in evolutionary biology.

In a new study, Thomas Turner, Matthew Hahn, and Sergey Nuzhdin worked with the malaria mosquito Anopheles gambiae to uncover genes that may be driving speciation. A. gambiae exists in multiple forms that may be in the early stages of differentiating into separate species; on the other hand, they may be partially differentiated, co-existing races that could give us valuable information on genes responsible for racial differences in mosquitoes. Turner and colleagues focused on two forms, A. gambiae M and A. gambiae S, that sometimes mate and create hybrid forms in nature. While it’s unclear whether the forms can produce fertile hybrid offspring in the wild, the progeny of lab matings appear to have no problems with fertility. This suggests that individuals either naturally prefer to mate with others of their own form, or that there must be environmental and/or genetic conditions that are not favorable for the survival of hybrid progeny in nature.

To study the genetic underpinnings of speciation, the researchers used DNA microarrays to identify global differences...
in the mosquito genomes. Using a combination of gene chips, statistics, and computational biology, Turner and colleagues found that the M and S genomes differ at just three regions. The researchers suggested that genes present here may be responsible for early speciation. These three “speciation islands” in the genome contain 67 predicted genes. In a preliminary analysis of seven of these genes, Turner and colleagues identified five that are different between the two Anopheles forms; these include genes that play a role in a range of cellular processes, including energy metabolism, response to sudden increases in temperature (heat shock), and ion transport across cell membranes. Future work focusing on the 67 genes hypothesized to reside in the divergent regions should yield interesting clues to the identity of genes that drive speciation, and the mechanism by which they do so.

This is a significant finding in the field of speciation research: in terms of methodology, this study shows that DNA microarrays can be used to identify regions of the genome that are different between two diverging species, allowing researchers to home in on potentially interesting genes. This study also shows that in spite of possible cross-flow of genetic material (natural hybrids between the two forms are found at a low frequency) between two populations, the populations can still be accumulating differences in their genomes—differences that could eventually lead to the formation of new species.

Comparing results in Anopheles and the well-studied insect model Drosophila, in which scientists have also started identifying “speciation genes,” should tell us if similar genes are employed repeatedly in different genera during the formation of new species.

Turner TL, Hahn MW, Nuzhdin SV (2005) Genomic islands of speciation in Anopheles gambiae. DOI: 10.1371/journal.pbio.0030285

Speciation Begins, but Doesn’t End, with the Twist of a Shell

DOI: 10.1371/journal.pbio.0030330

The coil of a snail shell can be either right-handed (dextral) or left-handed (sinistral), based on whether the shell spirals out clockwise or counterclockwise when viewed from above. Most species are composed entirely of individuals that are one or the other type; in exceptional cases, populations may differ in their handedness, or chirality, but within a single population, all individuals tend to be alike. This makes sense, since the mechanics of reproduction are harder between two individuals of opposite chirality (their genitalia are also reversed), reducing the likelihood that they will successfully mate and produce offspring. Over time, therefore, the rarer type will become rarer and rarer until it goes extinct.

This poses the interesting evolutionary question of how a species of one chirality can give rise to another of opposite chirality. If the rarer types are less likely to reproduce, then how do they ever establish themselves beyond a threshold frequency? If they are able to establish themselves, then is a change in chirality—which is caused by a single gene—enough to isolate them so that they are a new species? A study in this issue by Angus Davison et al. sheds light on the complex interplay of factors that influence evolution in the snail *Euhadra*. Although a single gene does cause a change in chirality, and snails with different chirality are able to mate only with great difficulty, there is nevertheless almost free gene flow between them. Other factors must ultimately become involved to cause speciation.

The 22 species of *Euhadra* are land-dwelling natives of Japan, and include five sinistral and 17 dextral species. Using mitochondrial DNA analysis to construct a family tree, the authors showed that population density, the proximity of other species, and the maternal inheritance pattern of shell chirality (the direction of a snail’s shell is determined so early in development that it is governed not by its own genes, but by its mother’s). The surprising conclusion is that the last factor, the unusual mode of inheritance, allows for near free gene flow between the two forms within a population, even if the two forms are themselves almost unable to mate. The reason is that the offspring of a sinistral mother could itself be sinistral, even if it contains entirely dextral genes. Its offspring, though, might include dextral snails, because its own dextral genes determined *their* shell chirality.

Their model indicated that new chiral types are able to arise, in spite of there being fewer suitable mates, if there is reproductive character displacement. They cannot be considered new species, however, because of the gene flow between them. Reproductive character displacement can account for the speciation of sinistral *Euhadra* only under a complex set of conditions. Interspecific mating would need to be common among the dextral snails. High population density helps, since it allows those with the rare new form to find each other more easily. But gene flow between left and right forms would preserve the population as a single species, unless other factors, such as difference in habitat use or geographic separation, increased the isolation of the two forms. This argues against so-called “single-gene speciation,” and shows that the creation of a new species requires more than a simple twist of fate.

Davison A, Chiba S, Barton NH, Clarke B (2005) Speciation and gene flow between snails of opposite chirality. DOI: 10.1371/journal.pbio.0030282
A Recipe for Self-Renewing Brain

DOI: 10.1371/journal.pbio.0030307

In all the hullabaloos about stem cells, nobody has noted their uncanny similarity to pizza dough. You can divide either into two or four or eight identical pieces, but that doesn't determine what kind of cell or pizza you're going to make. But once you let a cell grow hundreds of nuclei, or you pile on the pepperoni, you're on your way to making a skeletal muscle fiber or a pepperoni pizza. If you want a white blood cell or an all-veggie pie, you're out of luck. The commitment to becoming a certain cell type is called differentiation.

Stem cells in living organisms can multiply without differentiating, preserved by molecular signals in special niche environments; without these signals in the petri dish, they differentiate. Pluripotent mouse embryonic stem (ES) cells, a special type of stem cell with the potential to develop into many different cell types, are an exception. Because they divide symmetrically, the scads of artificially grown ES cells are all the same. This leads researchers to wonder: what conditions in the body keep stem cells from differentiating, why are ES cells the only kinds that don't differentiate in the petri dish, and how can scientists create undifferentiated tissue-specific stem cells in the lab?

In a new paper, Austin Smith and colleagues developed a method to produce symmetrical divisions of mouse brain stem cells derived from ES cells. Their novel method creates an on/off switch for differentiation of tissue-specific stem cells: they can multiply without differentiation, and they can also become normal brain cells. The authors also managed to cultivate the brain stem cells without re-creating the rarefied neurosphere, the highly specialized environment or microenvironment in which the body grows its own brain stem cells.

Many scientists believe that in the body, these microenvironments prevent stem cells from differentiating. Neurospheres, for example, contain some undifferentiated brain stem cells floating in a broth of differentiating cells. One feature of the neurosphere is that a very low percent of cells are brain stem cells. In fact, neurospheres have so few of these cells that scientists have a hard time even observing them. But by cultivating brain stem cells outside the neurosphere, the scientists showed that a complex microenvironment may not be necessary. To grow their stem cells, Smith et al. combined epidermal growth factor (EGF) and fibroblast growth factor (FGF), two small proteins that bind to stem cells and promote growth.

Enlisting Genomics to Understand Flu Evolution

DOI: 10.1371/journal.pbio.0030302

Last October, as Americans started lining up for flu shots, news broke that 48 million vaccine doses had been contaminated. With 100 million people considered at high risk and fears of a potentially deadly avian flu epidemic on the horizon, the shortage caused long lines, allegations of price gouging, and a new bill to bolster the nation’s anemic vaccine manufacturing base.

Influenza A viruses are RNA viruses that infect humans, pigs, horses, and birds, both wild and domestic. Flu infection relies on a viral glycoprotein, hemagglutinin (HA), that binds to receptors on a host cell and allows the virus to be internalized. If antibodies produced by host immunity recognize viral antigens (on the surface of the HA protein), HA binding is inhibited and infection prevented. A virus’s best chance of gaining the upper hand in this evolutionary game of cat and mouse is to change its HA in a way that eludes antibody recognition. Typically the mutations are minor and the virus’s antigens conserved enough for the host body’s immune system to recognize them. On occasion, influenza can acquire an antigenically novel HA subtype, becoming a virulent pandemic strain that completely escapes immune surveillance and kills millions. Minimizing the effect of yearly influenza outbreaks—by developing effective matched vaccines—depends on predicting which flu strains are likely to evolve.

Toward this end, Eddie Holmes and colleagues took the global approach afforded by genomics to explore the forces underlying viral adaptations. They found multiple flu strains
Insulin or insulin-like proteins signal developing animals to grow. After a meal, the body creates insulin, allowing an organism to grow and compete with other organisms for available food. When food is scarce, insulin levels remain low. Only small organisms with low metabolic needs will survive the potential famine. Scientists can study how genes involved in insulin signaling affect development by mutating a gene and seeing what happens to the adult. This useful method, called gene knockout, provides insight into the specific relationship between a gene and its physical manifestation, or phenotype. By using the knockout method, scientists can observe how the growth of an organism responds to fluctuations in insulin signaling levels.

In a new study, Alexander Shingleton and colleagues used a temperature-sensitive mutation in an insulin-receptor gene to discover how alterations of insulin signaling in the fruitfly *Drosophila* affect different stages of fly development. At one stage, the researchers discovered, insulin signaling influences total development time, at another it influences body size, and at a third stage, it influences only organ size.

So when do developing flies need insulin? The researchers found that low insulin signaling during very early development extends total development time. Then the larvae reach their critical size, the watershed moment in insect development when larvae commit to becoming pupae. After critical size, reduced insulin signaling no longer delays development but instead leads to petite flies with petite organs. When the larvae become pupae, however, reduced insulin signaling simply creates smaller organs. Because developmental time, body size, and organ size each display different responses to reduced insulin signaling activity, these features may evolve independently, the authors reasoned.

For Insulin Signaling Pathways in Flies, Size Matters

DOI: 10.1371/journal.pbio.0030320
up the heat (from 17 °C to 24 °C) and watched what happened to their bugs. Using this temperature-sensitive insulin-receptor gene, the researchers found that, besides affecting development time, insulin signaling also plays a role in the differential growth rates of different organs. By tracking three organs on male flies, Singleton and colleagues discovered that the genitals are less sensitive to reduced insulin signaling than either the wings or the maxillary palps, olfactory components of the mouth. The authors also found that insulin signaling affects cell size and cell number differently. While slightly reduced insulin signaling shrinks cell size, highly reduced insulin signaling lowers cell number without affecting cell size. By incorporating the effects of reduced insulin signaling into the Drosophila development process, the authors constructed a model of Drosophila development that explains the various roles played by the insulin-signaling pathway during development.

Because the new study alters genes during development, it provides the details of when and how a developing animal requires insulin. Future fly studies may reveal why organs have individual responses to insulin signals, what other signaling pathways play a role in development, and how insulin came to influence so many different features of the developing fly at different times.

Singleton AW, Das J, Vinicius L, Stern DL. (2005) The temporal requirements for insulin signaling during development in Drosophila. DOI: 10.1371/journal.pbio.0030289

To Mosquitoes, People with Malaria Smell Like Dinner
DOI: 10.1371/journal.pbio.0030306

Malaria is a misnomer. People used to believe that poisoned or “bad air,” the translation of the Italian phrase “mal aria,” caused disease. In the 19th century, when parasitologists figured out that single-celled parasites cause malaria, they didn’t bother to change the disease’s name. Experimenters proved that these parasites need a host organism to survive—so they can’t be transmitted through air—and that the hosts, mosquitoes, carry the parasite to humans. Researchers were optimistic that if they could find a disease’s cause, they could also find the cure. Kill the mosquitoes and eradicate malaria. And with the advent of DDT and less environmentally harmful insecticides, potent anti-malarial drugs, and international funding in the late 20th century, eradication of malaria seemed imminent.

But that expectation underestimated the flexibility of living creatures. Mosquitoes acquired resistance to insecticides while the parasites acquired resistance to anti-malarial drugs. Worse, the aggressive eradication campaign skipped over vast regions of the globe, especially sub-Saharan Africa.

Malaria remains a devastating problem in Africa for several reasons. Environmental conditions provide an amenable atmosphere for both Plasmodium falciparum, the most dangerous form of the parasite, and the Anopheles gambiae mosquito, the most effective vector. Also, many countries in sub-Saharan Africa lack the infrastructure to protect their citizens from malaria. Given the overwhelming scope of malarial infection in Africa, new understanding of the disease will help epidemiologists devise targeted anti-malarial strategies.

Mosquitoes are most attracted to children infected with malarial parasites in the gametocyte stage (pictured above). The Anopheles mosquito ingests gametocytes during its blood meal. (CDC/ Dr. Mae Melvin)

A new study conducted in Western Kenya by Jacob Koella and colleagues analyzed mosquito behavior to discover how it facilitates the transmission of malaria. The research determined that mosquitoes are more attracted to people infected with transmissible malaria than to either people infected with non-transmittable forms of the disease or uninfected people. To measure the attraction of the mosquitoes, the researchers set up a chamber of infected mosquitoes surrounded by tents containing the study participants. A device called an olfactometer wafted the odors of each participant toward the mosquitoes. Researchers measured which smell most attracted the hungry bugs.

This question had long stalled scientists because of contradictory and indirect evidence. Sweat, breath odor, and high body temperature all increase mosquitoes’ blood lust, and no previous study had isolated the variable of malarial infection.

To control for the natural variation in how attractive mosquitoes found each participant, Koella et al. compared the number of mosquitoes that were attracted to infected people to the number of mosquitoes that were attracted to those same people after they were no longer infected. The researchers found that in general, an individual attracted more mosquitoes when infected with transmittable malaria. This demonstrates that malaria, in addition to causing fever, vomiting, headache, and sometimes death, causes more mosquito bites. The biting mosquitoes will then pick up the parasite and spread it to other people.

As another control, the researchers compared infection with a non-transmittable form of the parasite to infection with the transmittable form and to no infection. A mosquito can pick up the malaria parasite only when in its sexually reproductive stage. The transmittable parasite, known as a gametocyte, multiplies in the mosquito’s salivary glands and, eventually, to the blood of the next human victim. But the malaria parasite has a complicated life cycle that also includes non-transmittable asexual stages. Koella and colleagues found that these parasitic forms, unlike the sexually reproductive form, did not make humans more attractive to mosquitoes.

Previous to the recent study, malaria researchers had proved that mosquito biting rates greatly influence the spread of malaria. Koella and colleagues showed that the parasite itself increases these biting rates when it is ready for a new host.

Lacroix R, Mukabana WR, Gouagna LC, Koella JC (2005) Malaria infection increases attractiveness of humans to mosquitoes. DOI: 10.1371/journal.pbio.0030298
How Fruitflies Know It’s Time for Lunch

DOI: 10.1371/journal.pbio.0030332

To control what you eat and when, your nervous system must coordinate a laundry list of signals: internal signals contain information about energy level, food preferences, and metabolic need, while external signals relay information about the quality of available food, determined by its smell and taste. Scientists studying the fruitfly Drosophila have traced the path of olfactory signals beginning with chemical receptors in the mouth, which set off neurons that signal the antennal lobe of the central nervous system. From here, the electrical stimulation zooms toward the so-called mushroom body, a mushroom-shaped cluster of neurons involved in olfactory processing. Less is known about the gustatory signals, which begin both in the mouth and in the pharynx and aim toward the subesophageal ganglion region of the fly’s brain. How olfactory and gustatory signals influence feeding patterns remains murky.

In a new study, Michael Pankratz and Christoph Melcher used genetic analysis to gain insight into the adult and larval neural networks that use taste information to regulate eating. Specifically, they found that several types of neurons responsible for coordinating taste signals express the gene hugin (hug), a gene linked to abnormal eating activity and expressed in only the subesophageal ganglion. By altering hug expression, the researchers uncovered the gene’s behavioral influence: hug-expressing neurons influence a fly’s decision to sample new food sources. The researchers also proposed that hug proteins play a role in hormone-triggered growth, an important consequence of adequate feeding.

To begin their investigation, Melcher and Pankratz analyzed the DNA from flies with abnormal eating behavior. One group of these flies shared a mutant klumpfuss (klu) gene, normally responsible for encoding a protein transcription factor. Because neural transcription factors control production levels of other neural proteins, the researchers used DNA microarrays to compare gene expression in normal flies to that in klu mutants. Any klu-controlled genes expressed at different levels in klu mutants might contain clues about the neural circuitry modulating feeding behavior.

Using microarrays, Melcher and Pankratz discovered that mutant fly larvae overexpress the hug gene, which is known to encode at least two neural proteins related to growth signaling. The researchers then investigated which signals influence hug expression by exposing larvae to either high or low food levels. Because both starved and sugar-fed flies express little hug, the researchers inferred that hug levels do not solely signal internal energy requirements but respond to internal and external signals carrying information about the quality of food. The researchers also noted that the finicky pumpless (ppl) mutants, which have a feeding defect similar to klu, overexpress hug.

Behavioral studies confirmed that too much hug reduces food intake and leads to stunted growth, while too little stimulates eating. Melcher and Pankratz selected a group of flies and blocked the synapses of their hug neurons to inhibit the neurons’ activity. In contrast to control flies, which start feeding on a novel food source only after an evaluation phase (they wait a while before initiating feeding), the experimental flies started eating new food right away. These hug neurons may help flies decide whether or not to eat a new food source.

Larvae express hug in only about 20 neurons, all located in the subesophageal ganglion. The axons of some of these hug neurons extend into the ring gland, a crucial metabolism and growth organ in flies. Other axons contact the protocerebrum, a structure close to brain centers that regulate learning and remembering odors. A third set of these axons extend to throat muscles—which is surprising because most subesophageal ganglion neurons have no connection to motor function. All together, these few hug neurons can signal structures controlling growth, feeding, and learning and memory.

Besides linking hug neurons to brain centers that regulate taste-related feeding behavior, the study also raises questions about how the nervous system prioritizes internal and external signals. How hungry must flies be to overcome taste aversion? How do the competing neural networks of taste and hunger signals decide whether the fly will eat? Future studies pairing behavioral and genetic analysis may begin to reveal answers to these open questions.

Melcher C, Pankratz MJ (2005) Candidate gustatory interneurons modulating feeding behavior in fruitfly larvae. DOI: 10.1371/journal.pbio.0030332
A Genetic Link to Obesity: The Numbers Don't Add up for GAD2

Obesity is a leading cause of preventable death and is often linked to type II diabetes and heart disease. Being a complex trait, obesity is likely caused by the interplay of multiple environmental factors and many genes. Common genetic differences between individuals within a region of Chromosome 10 have previously been associated with obesity. This region contains several genes with the potential to be directly involved in the disease. One of these genes, GAD2, has been the subject of many studies. A new study by Michael Swarbrick, Björn Waldenmaier, Christian Vaisse, and their colleagues takes a new look at GAD2 and provides strong evidence that the gene might not be as relevant to obesity as previously thought.

GAD2 encodes a protein (called GAD-65) involved in the production of GABA, a neurotransmitter involved in a variety of brain functions, including appetite stimulation and energy consumption. Studies in mice have shown that increased levels of GABA result in hunger and overeating. In healthy mice, the levels of GAD2, and hence, GABA, are controlled, making sure that the balance between weight gain and loss is maintained. A 2003 study of a French population found that three genetic mutations in and around the GAD2 gene occurred at a high level in individuals with obesity. The 2003 study, conducted by different researchers,
Scientists believe that genetic mutations in a specific region in Chromosome 10 play a role in obesity and have studied one gene, GAD2, intensively. But a new study finds no evidence linking GAD2 mutations with obesity.

was also published in PLoS Biology. When Swarbrick et al. surveyed German, Caucasian-American, and Canadian populations for this genetic correlation, however, they found no statistically significant link between obesity and any of the mutations.

There are many possible reasons why different studies may show different results: ethnic differences between populations, as well as behavioral and dietary differences, could account for varying results when it comes to studying a trait as complex as obesity. Also, studies that seek to show an association between genetic differences and complex diseases rely heavily on the statistical power of their tests, which depends on the number of subjects involved. Swarbrick et al. have not only studied 2,359 German, 729 US, and 1,137 Canadian subjects, but also conducted a “meta-analysis”—a statistical analysis of a collection of individual studies—of their data and the previously published data from 1,221 French subjects. Meta-analyses help identify patterns from multiple individual studies that may not be visible in any one study alone, and also help rule out chance differences that may be apparent in one single study. In this case, the meta-analysis showed that when the results from French subjects are put together with the results from other ethnic populations, there is no evidence for a link between changes in GAD2 and obesity.

Although GAD2’s role in controlling appetite made it an exciting candidate for a link to obesity-related conditions, Swarbrick et al. show that the numbers simply don’t add up. The search for serious obesity gene contenders in this region of Chromosome 10 is all set to continue—and attention can now turn to several other potential gene candidates located nearby.

Swarbrick MM, Waldenmaier B, Pennacchio LA, Lind DL, Cavazos MM, et al. (2005) Lack of support for the association between GAD2 polymorphisms and severe human obesity. DOI: 10.1371/journal.pbio.0030315

Gene Expression in the Aging Brain

DOI: 10.1371/journal.pbio.0030313

No matter how healthy a life one leads, no person has managed to live much longer than a century. Even though the advances of the modern age may have extended the average human life span, it is clear there are genetic limits to longevity. One prominent theory of aging lays the blame on the accumulation of damage done to DNA and proteins by “free radicals,” highly reactive molecules produced by the metabolic activity of mitochondria. This damage is expected to reduce gene expression by damaging the DNA in which genes are encoded, and so the theory predicts that the most metabolically active tissues should show the greatest age-related reduction in gene expression. In this issue, Michael Eisen and colleagues show that the human brain follows this pattern. A similar pattern—which, surprisingly, involves different genes—is found in the brain of the aging chimpanzee.

The authors compared results from three separate studies of age-related gene expression, each done on the same type of DNA microarray and each comparing brain regions in young versus old adult humans. In four different regions of the cortex (the brain region responsible for higher functions such as thinking), they found a similar pattern of age-related change, characterized by changes in expression of hundreds of genes. In contrast, expression in one non-cortical region, the cerebellum (whose principal functions include movement), was largely unchanged with age. In addition to confirming a prediction of the free-radical theory of aging (namely, that the more metabolically active cortex should have a greater reduction in gene activity), this is the first demonstration that age-related gene expression patterns can differ in different cells of a single organism.

The authors found a similar difference in age-related patterns in the brain of the chimpanzee, with many genes down-regulated in the cortex that remained unchanged in the cerebellum. However, the set of affected cortical genes was entirely different between humans and chimps, whose lineages diverged about 5 million years ago. The explanation for this difference is unknown, but the finding highlights the fact that significant changes in gene expression patterns, and thus changes in many effects of the aging process, can accumulate over relatively short stretches of evolutionary time.

These results raise a number of questions about age-related gene expression changes, including whether metabolically active non-brain tissues display similar patterns of changes, and whether the divergence between human and chimp patterns was the direct result of selection, or was an inevitable consequence of some other difference in brain evolution. The patterns seen in this study also provide a starting point for understanding the network of genetic changes in aging, and may even reveal targets for treatment of neurodegenerative diseases.

Fraser HB, Khaitovich P, Plotkin JB, Pääbo S, Eisen MB (2005) Aging and gene expression in the primate brain. DOI: 10.1371/journal.pbio.0030274
Eyewitness testimony has a unique ability to convince juries. The attorney asks the witness to identify the guilty party. The witness points to the defendant, the crowd gasps, and the judge pounds her gavel, demanding order in the court. The jurors casually scribble something in their notes, and everybody knows that the fate of the accused has been sealed. But how reliable is a witness’s memory, especially after rehearsing the testimony ad nauseam with a team of lawyers? When a witness presents testimony, is she really remembering the event, or is she remembering something she remembered? Does the initial memory remain intact, or does it degrade like a copy of a copy?

The status of witness testimony in court is just one reason neuroscientists want to understand the biochemical underpinnings of memory formation. Consolidation, the process of new memory formation that takes place in the hippocampus, requires certain proteins. Reconsolidation, the reactivation of these memories in the amygdala, requires a different set of proteins. In the past, neuroscientists hypothesized that reconsolidation might allow old and new memories to link up. A new study by Cristina Alberini and colleagues provides evidence that the rats link new memories to old, the molecular basis of this process actually resembles consolidation.

To manipulate lab rat memories, the researchers used constructions called inhibitory avoidance apparatuses. The first apparatus had two tiny rooms: a well-lit safe room and a pitch-black electric-shock room. Rats spent ten seconds in the first room, the researchers flipped on a light, and the rats entered the shock chamber. Alberini and colleagues knew that the rats had formed a new memory when they hesitated to enter the dark room.

Rats then entered a second apparatus decorated differently from the first apparatus. The safe room smelled of perfume, the walls displayed striped wallpaper, and the floor was made from smooth plastic. For rats in the second apparatus, the researchers flipped on a light but did not let the rats pass into the shock room. Alberini and colleagues deduced that the rats had compiled their memories of both the first and second apparatuses when they hesitated to enter the second dark room during a final test.

The researchers found that rats injected with anisomycin, a drug that inhibits protein synthesis, could not form a new memory of the second apparatus and sometimes forgot the first. This showed that, as predicted, both the formation of new memories and the reconsolidation of old memories require protein synthesis. The researchers demonstrated the distinction between the processes of consolidation and reconsolidation by showing that rats require a certain protein in the hippocampus only for memory consolidation and the same protein in the amygdala only for reconsolidation.

Using a combination of proteins that took advantage of the differences between consolidation and reconsolidation, the researchers inhibited either the rats’ consolidation mechanism or the reconsolidation mechanism. Then, Alberini and colleagues tested the rats’ ability to link their memory of the first apparatus to their exposure to the second. Upon repeated trials, the rats with blocked reconsolidation pathways successfully linked memories of both apparatuses, while the rats with blocked consolidation pathways did not. Therefore, the consolidation pathway, and not the reconsolidation pathway, plays a role in memory linkage.

As a cautionary word, the researchers emphasized that their results applied to the fear-based memories created by the electric shock. Future studies may reveal if other types of memory yield the same results.

Tronel S, Milekic MH, Alberini CM (2005) Linking new information to a reactivated memory requires consolidation and not reconsolidation mechanisms. DOI: 10.1371/journal.pbio.0030293

DOI: 10.1371/journal.pbio.0030304.g001

Training rats to associate light with a traumatic experience helped researchers identify the mechanisms that allow the brain to link new memories with recollections. (Sophie Tronel and Ryan Corces-Zimmerman)