Substrate thermal properties influence ventral brightness evolution in ectotherms

Jonathan Goldenberg, Liliana D’Alba, Karen Bisschop, Bram Vanthournout & Matthew D. Shawkey

The thermal environment can affect the evolution of morpho-behavioral adaptations of ectotherms. Heat is transferred from substrates to organisms by conduction and reflected radiation. Because brightness influences the degree of heat absorption, substrates could affect the evolution of integumentary optical properties. Here, we show that vipers (Squamata:Viperidae) inhabiting hot, highly radiative and superficially conductive substrates have evolved bright ventra for efficient heat transfer. We analyzed the brightness of 4161 publicly available images from 126 species, and we found that substrate type, alongside latitude and body mass, strongly influences ventral brightness. Substrate type also significantly affects dorsal brightness, but this is associated with different selective forces: activity-pattern and altitude. Ancestral estimation analysis suggests that the ancestral ventral condition was likely moderately bright and, following divergence events, some species convergently increased their brightness. Vipers diversified during the Miocene and the enhancement of ventral brightness may have facilitated the exploitation of arid grounds. We provide evidence that integument brightness can impact the behavioral ecology of ectotherms.
The evolution of organismal coloration depends on multiple ecological and evolutionary factors, and no single function can fully explain color variation across the animal kingdom. Most previous studies on animal coloration have focused on colors for camouflage and mimicry, e.g., refs. 2–4, or on sexual selection or social signaling, e.g., refs. 4–6. However, pigmented integument can also have significant thermal effects. By selectively absorbing and reflecting solar and environmental radiation, the pigmented tissue can directly affect body temperature. Thicker dashed lines indicate high reflectance; thinner dashed lines show low reflectance. Given the unique properties of melanin (see main text), we reasoned that a brighter integument will reflect more direct or indirect solar energy, while a darker integument will absorb more direct or indirect solar energy. Adapted from Porter & Gates and Porter et al. Drawing: Karen Bisschop.

Fig. 1 Flow of energy between direct-and-indirect solar radiations and the organism. Here, we assumed convective heat exchanges (i.e., wind), evaporative cooling from metabolism, food uptake, and urine/faeces production to be constant. The formulated model is a simplification and presented in a conceptual manner to reflect our hypothesis. The direct solar radiation contains all energy-rich radiations, spanning from the UV-visible (300–700 nm) to the near infrared (NIR: 700–2500 nm). The reflected radiation and the ground thermal radiation contain IR energy. The ground thermal radiation and the thermal conductivity increase with the increase of direct solar radiation. However, different grounds present different specific heat capacities (c_p), which ultimately affect the amount of heat released by the substrate. Solid lines represent the energy received by the organism; dashed lines represent the energy reflected by the organism. Thicker dashed lines indicate high reflectance; thinner dashed line show low reflectance. Given the unique properties of melanin (see main text), we reasoned that a brighter integument will reflect more direct or indirect solar energy, while a darker integument will absorb more direct or indirect solar energy. Adapted from Porter & Gates and Porter et al. Drawing: Karen Bisschop.
melanophores. These unique thermal properties of melanins led us to predict that a less melanic (brighter) venter would be favored for animals that live on hot radiative and conductive substrates, because it would allow them to better dissipate transferred heat.

Previous research on squamates has primarily focused on dorsal coloration, perhaps because it is visually recognizable and exposed to direct solar radiation e.g., refs. 7,28-31. Fewer studies have investigated the ecological significance of ventral coloration e.g., refs. 32-35 and only a handful have examined the link between it and thermoregulation36,37. Older studies investigated the effect of substrate use on thermoregulation37 and mentioned the taxonomical significance of ventral color reflectivity38,39. However, none specifically examined the evolution of ventral brightness.

Here we use a comparative approach to investigate the macro-evolutionary processes involved in shaping ventral brightness. We hypothesized that, while the dorsal, head and pattern brightness have evolved through tradeoffs between thermoregulation, protection, and camouflage, ventral brightness has been mainly driven by the c_p of the substrates. We predicted that species inhabiting hot, and highly radiative and superficially conductive substrates (i.e., low c_p) would express less melanic (i.e., darker) ventral integument than those on high c_p substrates. Moreover, as latitude in part determines how much of the sun’s radiation is received by the organism, while also directly affecting transmission of energy to the substrate30, we expected higher latitude species to express a greater melanic ventral integument than lower latitude counterparts. Furthermore, body size can have a strong effect on the overall thermal inertia of an organism31, therefore we advanced that larger species will benefit from a brighter venter given the slower cooling rates relative to smaller species31. Finally, we predicted that high altitude species will display a darker ventral integument than low altitude organisms, as high altitudes are generally colder than lower altitudes, and a more melanic venter may confer a thermal advantage. Using vipers as study organisms, we combined ancestral state estimations and Bayesian mixed models to test these hypotheses.

Results

Study design and methodology validation. We analyzed 126 taxonomically unambiguous viper species from 31 genera, covering ~35% of the family Viperidae (The Reptile Database; accessed [July 2020]); Fig. S1). As direct spectrophotometry measurements of live vipers are logistically challenging, we retrieved brightness levels from 4161 images of these species from peer-reviewed articles, field guides, Google Images, documentaries and our own data. We removed images that were clearly over-or-under exposed. To account for different lighting and setup conditions, we took the following steps: (a) selected multiple (head ($M = 8.37, SD = 2.09$), dorsum ($M = 8.64, SD = 2.08$), venter ($M = 4.50, SD = 2.69$), and dorsal pattern ($M = 7.53, SD = 2.78$)) pictures/video frames per species, (b) assessed observer variability, (c) avoided over/under exposed areas, (d) assessed the relationship between brightness data obtained from image analyses and spectrophotometry, (e) assessed the variability of image brightness within species, and (f) verified the relationship between the visible (Vis), near infrared (NIR) and Ultraviolet (UV) spectra.

For (a) We examined all images in ImageJ 1.52i through a custom-made interactive plugin that enables the user to obtain brightness levels (see Methods for more information). Here we defined brightness as the mean of the RGB values10.

For each species we calculated the mean brightness for each of the four body regions (head, dorsum, venter, and dorsal pattern (geometric shapes that contrast with the dorsal ground coloration)) (Table 1, Fig. S2). For (b), to assess the repeatability of the measurements, four observers independently analyzed 12 species (388 images), (c) with the directive to avoid shaded areas and flashed (“burned”) regions. We found positive relationship between the observers (Obs1 vs Obs2: $r = 0.94, R^2 = 0.88, p < 0.0001$, Obs1 vs Obs3: $r = 0.99, R^2 = 0.98, p < 0.0001$, Obs1 vs Obs4: $r = 0.99, R^2 = 0.98, p < 0.0001$, Fig. S3), so only one proceeded with data collection. For (d), we verified the relationship between brightness values obtained through spectrophotometry from 29 living squamate species (including four viper species; Table S2) and brightness obtained through photographs. We found a significant positive relationship ($r = 0.79; R^2 = 0.62; p < 0.0001$, Fig. S4), a solid support for our method, particularly given that images were by necessity from different individuals to include intraspecific variation. For (e), we examined the variation of image brightness within same 29 squamate species. All standard deviations are moderate and similar across species (Fig. S5, Table S3), supporting the use of multiple images to retrieve an overall brightness mean per species. For (f), since 50% of the sun’s energy-rich radiation is confined to the NIR region44,45 and images account only for the Vis spectrum, we verified the relationship between these two spectral regions from spectrophotometry measurements on the same 29 living squamate species (Table S2). We found a strong positive relationship ($r = 0.79; R^2 = 0.62; p < 0.0001$, Fig. S6) as predicted, supporting the use of the vis spectrum as a proxy for the full spectrum. UV radiation also plays a role in the overall heating process of an organism, thus we verified the relationship between the UV range and the Vis spectrum on the same dataset. We found a significant positive relationship ($r = 0.68; R^2 = 0.46; p < 0.0001$, Fig. S7), further supporting use of the Vis range as proxy for the full spectrum.

Bright ventra associate with low c_p substrates. We found that integumentary brightness and substrate type were associated in all models of ventral and dorsal body regions. However, environmental and morpho-behavioral variables differ depending on body region. Specifically, ventral brightness, in addition to being positively associated with body mass and negatively with latitude variables, is strongly negatively associated with substrate type (Tables 2, S4–7); species living on substrates with low c_p (i.e., arid grounds) have significantly brighter ventral coloration 69% [61,78] than on any other substrate (Table S8, Fig. 2a).

Table 1 Data acquisition in ImageJ.
Body region

Venter
Dorsum
Head
Pattern

Our custom-made macro guides the user throughout analyses. Note that reference selection tool helps the user to stick to the reference length. For more details, please refer to Fig. S2

aWe aimed for 1/10 for comparative purposes.
Dorsal brightness is lower than the ventrum (Table S12, Fig. 2b) and it is negatively associated with substrate type, but, unlike the ventrum, also with activity pattern and altitude (Tables 2, S9–13, Fig. 2b). More specifically, diurnal and low altitude species are more likely to be brighter than nocturnal and high altitude animals (Tables 2, S12). Head brightness follows a nearly identical trend to dorsum (Fig. S8), but is only associated with substrate type and altitude (Tables 2, S14–18).

The result is not surprising, as the brightness levels of two regions are strongly associated with each other (Fig. S10B). By contrast, pattern region is only associated with substrate type. (Tables 2, S19–21, Fig. S9).

Evolution of brightness in different body regions. The ancestral state reconstruction of the ventral brightness (Fig. 3a) suggests that the root viper node had a brightness level of 57% [44,71] 95% C.I., and that several groups convergently evolved bright or dark integument. During the mid-late Miocene (~14–6 Mya), brightness of Echis sp–Cerastes sp. (71% [59,84]), Pseudocerastes sp.–Eristicophis sp. (64% [52,76], Bitis sp. (61% [50,72]), Causus sp. (58% [46,70]), Daboia sp. (58% [47,69]), and few species of Crotalus sp. (58% [51,64]), independently increased (Fig. 3a), and decreased in Bothrops sp. (53% [45,60]), Gloydius sp. (43% [33,52]), and Vipera sp. (45% [36,55]). The results are further supported by the Stony’s C1–C5 metrics of convergences based on dorsal and ventral...
brightness of the focal taxa (Table S23); specifically C1 (i.e., the maximum distance between two lineages that has been brought together by subsequent evolution) = 0.54 ($p = 0.00$) coupled with C5 (i.e., the number of convergent focal taxa that reside in a distinct region of the polymorphospace) = 15 ($p = 0.00$) show that the focal taxa significantly cluster together in a separate region of the polymorphospace driven by ventral brightness (Table S23, Fig. S14). As another line of evidence, the 95% C.I. phenogram, which projects the phylogeny in a space defined by the ventral brightness over time (Fig. S15B), shows that ventral brightness of the focal taxa shifted to bright brightness levels independently over time, corroborating our findings.

Brightness on the dorsum also increased across several genera (mostly different genera/species than those whose ventral brightness increased) from the late Oligocene to the mid-Miocene (~24−14 Mya) (Fig. 3b). The head brightness follows the same trend as the dorsum (Fig. 3c). Lastly, unlike all other body regions, brightness of patterns decreased starting in the early Miocene (~20−15 Mya) (Fig. 3d).

Discussion

We hypothesized that evolution of ventral brightness in ectotherms confined to the ground is driven by the heat retention properties of their primary substrates. We used ancestral reconstructions and
multinomial models, with vipers as study organisms, to test this hypothesis. Our results show that, as predicted, bright ventral integuments are associated with arid substrates, i.e., low specific heat capacity substrates. This suggests that a bright ventral integument may provide an evolutionary advantage to species living on arid soils by more rapidly dissipating the heat transferred from the ground, thereby potentially avoiding overheating.

Ventral brightness was affected not only by the substrate, but also by latitudinal distribution and body mass. However, contrary to our predictions, altitude did not play a role in shaping ventral brightness.

Latitude in part determines how much the sun’s radiation is received by the organism, while also directly affecting transmission of energy to the substrate. Similarly to Moreno Azocar et al., our results indicate that species closer to the equator are more likely to have brighter venters compared to species at higher latitudes. The authors suggested a potential thermoregulatory function because ventral melanism was significantly affected by cloudiness and minimum net radiation. We propose that darker ventra may provide a thermal advantage in lower energy-rich radiation zones; because melanin not only can absorb and transform solar radiation into heat but also conduct energy, promoting thermal conductance.

Body mass affects thermal inertia in that larger species take longer to change body temperature. Our findings show that larger species have brighter venters, possibly because of the slower cooling rates relative to smaller species. These results suggest that substrate conditions, together with latitude and body mass, shape the ventral brightness evolution in our ectothermic group.

Finally, high altitudes are not only generally colder than low altitudes, but also have higher radiation. Therefore, unlike substrates at low altitudes, those at high altitudes likely experience contrasting abiotic factors, e.g., high solar radiation, low temperatures, that ultimately affect the substrate thermal properties. Our predictions did not account for the effect of solar radiation, but only temperature, at high altitude, but given our results we suggest that the brightness of the venter is not influenced by altitude.

Dorsal and head brightness were also negatively associated with the substrate type, but they were darker than the venters across all substrate types (Fig. 2). Moreover, altitude and, on the dorsum, the activity pattern, were also associated with the dorsal and head brightness, suggesting that brightness of those regions is driven by multiple competing pressures such as camouflage, thermoregulation, and UV protection. Indeed, we found that diurnal and lower altitude species are more likely to have a brighter integument than nocturnal and higher elevation animals on any given substrate. Darker integuments may contribute not only to better camouflage, but also to thermoregulatory functions in colder environments (e.g., allowing the brain to reach optimal temperatures faster) and UV protection (e.g., protecting the animal from higher radiations at higher altitudes). The present results are further supported by Martinez-Freiria et al. who found that darker dorsal colors in European vipers are associated with cold environments. Overall, our findings on the dorsal and ventral brightness suggest that these body regions are subjected to divergent selective forces.

Only substrate type was associated with pattern brightness, with no clear reduction in brightness with higher specific heat capacity substrates. Recently, Pizzagalli et al. found that specific geometric shapes on the viper dorsa are associated with different ground habitats. Our results provide another line of evidence that patterns primarily evolved for a function other than thermoregulation, most likely camouflage.

Substrate properties in a given location can rapidly change following climatic shifts. In the last 50 My Earth experienced multiple climatic changes e.g., ref. 50; for instance, during the Miocene (~23–5 Mya) it underwent regional aridification phases due to new orogenic formations and changes in air circulation. Such environmental variations may affect the performance and the bauplan of ectothermic organisms. Vipers evolved from an ancestral form 49.7 Mya ca. and evolved during these selective climatic fluctuations. The observed increase in ventral brightness in the mid-late Miocene (Fig. 3a), suggests that following aridification, brighter integuments may have enabled species inhabiting arid soils to more rapidly dissipate ground heat.

Integumentary brightness evolved differently in ventral and dorsal regions, further suggesting that it is uncoupled in these body regions. On the ventral side, five groups ((1) Causus sp., (2) Echis sp. - Cerastes sp., (3) Pseudocerastes sp. - Eristicophis sp., (4) Bitis sp., and (5) few members of Cerastes sp.) independently enhanced brightness of their ventral integuments during the mid-late Miocene (~14–6 Mya). Extant members of the African species inhabit the Sahara region. Zhang et al. estimated that this desert formed 7–11 Mya. Interestingly, the rise of these four bright ventral genera (group 2, 3) coincides with this aridification. In parallel, the uplift of East Africa during the late Miocene may have enabled the rise of several Bitis spp., following the shrinkage of rainforests and expansion of open habitats. During the mid-late Miocene, wooded-savannas gradually replaced tropical forests in Southern Africa, creating new vacant niches that could be filled by species with brighter venters such as Causus sp. Similarly, ancestral forms of Cerastes sp. rapidly radiated when the great mountain ranges formed in North America, rapidly aridifying the surrounding environment. On the other hand, the steep decrease in brightness experienced by the Gloydius complex, especially G. ussuriensis, may be linked to the uplift of the Tibetan plateau, which provoked an increase in precipitation in the loess plateau/east Asia around 8–9 Mya producing forests in which dark ventral species may perform better.

Brightening of the dorsum and head may have been a response to the gradual replacement of forests with open areas since 20 Mya ca., where brighter integuments may have provided an evolutionary benefit for camouflage and thermoregulatory purposes.

In contrast to any other body region, the pattern area follows an overall decrease of brightness starting from 20 Mya. Darker and contrasting patchy areas across the dorsum may have provided an evolutionary advantage by disrupting the ground coloration to better blend with the surrounding environment.

While the dorsum is exposed to both solar radiation and prey/predator sight, the ventral region is mostly cryptic in species confined to the ground. Ectotherms are highly susceptible to the surrounding environmental conditions to attain body temperatures that maximize performance. Thus, different brightness levels on different body regions may confer specific advantages to achieve the desired function. Our results support the hypothesis that brightness of exposed body regions is not only selected for thermoregulatory properties, but also for protection and camouflage. In contrast to Smith et al. prediction that ventral color reflectivity would have little effect on thermoregulation, as the animals lie flat against the surface, we found that ventral brightness evolution appears to be mainly shaped by the substrate type. Hence, the upper and lower body regions experienced contrasting selection pressures, leading to the current variation in extant viper color brightness.

We have here provided evidence for the significance of brightness of an often-neglected body region, and laid the groundwork for future studies examining the reflectance, emissivity and thermoregulatory properties of melanin. Moreover, it may be important to implement such results in climate change.
risk assessments due to the potential impact they can have on species distribution.

Methods

Species selection and dataset construction. Vipers (Viperidae Oppel, 1811) are a family of venomous snakes that evolved 50 Mya cp32,33. Unlike other snakes, vipers use a sit-and-wait foraging behavior e.g., ref. 34, and therefore their substrate type likely plays an important role in regulating their body temperature. To date, 365 viper species (The Reptile Database35; accessed [July 2020]) are distributed across the globe ranging from the tropics to the higher latitudes36 (≥60° N). The observed large diversity, coupled with their feeding strategy and a relatively long evolutionary history, makes this family an ideal study organism to investigate how ventral brightness evolved under divergent selective environments.

To determine whether the specific heat capacity (c_p) of substrates has played a role in coloration brightness, we extracted information on the substrate condition brightness levels of 126 taxonomically unambiguous viper species from 31 genera distributed across the world. We previously explained in Results section our precautions to retrieve brightness levels in different species from images and we refer the reader to that paragraph. All the references to the collected 4161 images are available at the provided repository.

As integumentary brightness may be evolutionary constrained across different regions of an organism, we took measurements from three regions of interest in each of the four body parts, i.e., head ($M = 8.37$, $SD = 2.09$), dorsum ($M = 8.64$, $SD = 2.08$), venter ($M = 4.50$, $SD = 2.69$), and dorsal pattern ($M = 7.53$, $SD = 2.78$; geometric shapes that contrast with the dorsal ground coloration) (Table 1, Fig. S2) and for each species we calculated the mean brightness for each body section. Clear images of the ventral side are rare, hence we analyzed a lower proportion of images for this cryptic body region. Six species (Atheris squamigera, Trimeresurus albolabris, T. erythros, T. medoensis, T. popeiorum, T. stejnegeri) do not show clear cut outsourcing, hence we dropped any pattern analysis from those cases.

Soils display different c_p based on the amount of water they contain37. Arid substrates (low c_p) quickly dissipate the heat via conduction and radiation, while forests grounds (high c_p) slowly absorb and diffuse the heat. Accounting for direct c_p values measurements on different soil types (Table S1), we classified substrates based on its c_p gradient, i.e., from low (arid substrates such as deserts and rocky soils) to high (forest grounds). We looked in the literature to find which variables better describe the amount of the sun's energy reaching the animal and substrate38,39, hence we have to remove those species for any analysis involving pattern brightness. To avoid the effect of the heat exchange between substrate-organism, we chose the lowest 300 m for our analyses (from 300 to 瞻300 m) and for the highest we used the lowest 300 m for our analyses (from 300 to 700 m).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
in any of the mostly supported models (DIC < 5) and had a cumulative Akaike of >0.75. Then, to retrieve the posterior...

References
1. Endler, J. A., Westcott, D. A., Madonna, J. R. & Robson, T. Animal visual systems and the evolution of color patterns: sensory processing illuminates signal evolution. Evolution 59, 1795–1818 (2005).
2. Norris, K. S. & Lowe, C. H. An analysis of background color-matching in amphibians and reptiles. Ecology 45, 565–580 (1964).
3. Allen, J. J., Måtheberg, L. M., Barbosa, A. & Hamlon, R. T. Cuttlefish use visual cues to control three-dimensional skin papillae for camouflage. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 195, 547–555 (2009).
4. Cuthill, I. C. et al. The biology of color. Science https://doi.org/10.1126.science.aan0221 (2021).
5. Seehausen, O., Van Alphen, J. J. M. & Lande, R. Color polymorphism and sex ratio distortion in a cichlid fish as an incipient stage in sympatric speciation by sexual selection. Ecol. Lett. 2, 367–378 (1999).
6. Pérez-Rodríguez, L., Jovani, R. & Stevens, M. Shape matters: animal colour patterns as signals of individual quality. Proc. R. Soc. Lond. B Biol. Sci. 284, 20162446 (2017).
7. Tanaka, K. Thermal biology of a colour-dimorphic snake, Elaphe quadrivinata, in a montane forest: Do melanistic snakes enjoy thermal advantages? Biol. J. Linn. Soc. 92, 309–322 (2007).
8. Smith, K. R. et al. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards. Proc. R. Soc. Lond. B Biol. Sci. 283, 20160662 (2016).
9. Christian, K. A. & Tracy, C. R. The effect of the thermal environment on the ability of hatching galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218–223 (1981).
10. Clusella-Trullas, S., van Wyk, J. H. & Spotila, J. R. Thermal melanism in ectotherms. J. Therm. Biol. 32, 235–245 (2007).
11. Moreno Azócar, D. L. et al. Effect of body mass and melanism on heat balance in Liolaemus lizards of the geotisch clade. J. Exp. Biol. 219, 1162–1171 (2016).
12. Furuki, O. T. Thermal properties of soils. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory. https://doi.org/10.4236/ojcs.2011.13011 (1981).
13. Porter, W. P. & Gates, D. M. Thermodynamic equilibria of animals with environment. Ecol. Monogr. 39, 227–244 (1969).
14. Miller, G. E. in Introduction to Biomedical Engineering (3rd edn.) (eds Enderle, J., & Bronzino, J.) pp. 937–993 (Academic press, 2012).
15. Prota, G. Melanins and Melanogenesis (Academic Press, New York, 1992).
16. Meredith, P. et al. Towards structure–property–function relationships for eumelanin. Soft Matter 2, 37–44 (2006).
17. Geen, M. R. & Johnstone, J. C. Coloration affects heating and cooling in three color morphs of the Australian Bluetongue Lizard, Tiliguana scincoides. J. Therm. Biol. 43, 54–60 (2014).
18. Cordero, R. J. & Casadevall, A. Melanin. Carr. Biol. 30, R142–R143 (2020).
19. Jastrzebska, M. M., Isotolo, H., Palheimo, J. & Stubb, H. Electrical conductivity of synthetic DOPA–melanin polymer for different hydration states and temperatures. J. Biomater. Sci. Polym. Ed. 7, 577–586 (1996).
20. Mostert, A. B. et al. Role of semiconductor and ion transport in the electrical conductivity of melanin. Proc. Natl. Acad. Sci. USA 109, 8943–8947 (2012).
21. Mostert, A. B. et al. Understanding melanin: a nano-based material for the future. In Nanomaterials: Science and Applications (eds. D. M. Kane, A. Mischel & P. Roger) 175–202 (New York: Jenny Stanford Publishing, 2016).
22. Kelliker, J., DiMarzio, C. A. & Kwoski, G. J. Computational model of heterogeneous heating in melanin. Optical Interact. Tissue Cells XXVI 9321, 9321H (2015).
23. Jastrzebska, M. M., Isotolo, H., Palheimo, J. & Stubb, H. Electrical conductivity of synthetic dopa–melanin polymer for different hydration states and temperatures. J. Biomater. Sci. 7, 577–586 (1996).
24. Wünsche, J. et al. Protonic and electronic transport in hydrated thin films of the pigment eumelanin. Chem. Mater. 27, 436–442 (2015).
25. Remecker, S. B., Mostert, A. B., Schenk, G., Hanson, G. R. & Meredith, P. Heavy water as a probe of the free radical nature and the electrical conductivity of melanin. J. Phys. Chem. A 119, 14994–15000 (2015).
26. Migliaccio, L. et al. Evidence of unprecedented high electronic conductivity in mammalian pigment based eumelanin thin films after thermal annealing in vacuum. Front. Chem. 7, 162 (2019).
27. Rosenblum, E. B., Hoekstra, H. E. & Nachman, M. Adaptive reptile coloration and the evolution of the Mc1r gene. Evolution 58, 1794–1808 (2004).
28. Jackson, J. F., Iii, W. L. & Campbell, H. W. The dorsal pigmentation pattern of snakes as an antipredator strategy: a multivariate approach. Am. Naturalist 110, 1029 (1976).
29. Wüster, W. et al. Do aposematic and Batesian mimicry require bright colours? A test using European viper mimics. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2495–2499 (2004).
30. Allen, W. L., Baddeley, R., Scott-Samuels, N. E. & Cuthill, I. C. The evolution and function of pattern diversity in snakes. Behav. Ecol. 12, 1237–1250 (2001).
31. Clause, A. G. & Becker, R. N. Temperature shock as a mechanism for color pattern aberrancy in snakes. Herpetol. Notes 8, 331–334 (2015).
32. Ressel, S. & Schall, J. J. Parasites and shrewy males: malarial infection and color variation in fence lizards. Oecologia 78, 158–164 (1989).
33. Morrison, R. L., Rand, M. S. & Frost-Mason, S. K. Cellular basis of color differences in three morphs of the lizard Sceloporus undulatus erythrocheilus. Copeia 1995, 397–408 (1995).
34. Stuart-Fox, D. M. & Ord, T. J. Sexual selection, natural selection and the evolution of dimorphic coloration and ornamentation in agamid lizards. Proc. R. Soc. Lond. Ser. B Biol. Sci. 271, 2249–2255 (2004).
35. Langkilde, T. & Boronow, K. E. Hot boys are blue: temperature-dependent color change in male eastern fence lizards. J. Herpetol. 46, 461–465 (2012).
36. Moreno Azócar, D. L. et al. Variation in body size and degree of melanism within a lizards clade: is it driven by latitudinal and climatic gradients? J. Zool. 295, 243–253 (2014).
37. Pearlson, O. P. The effect of substrate and of skin color on thermoregulation of a lizard. Comp. Biochem. Physiol. Part A Physiol. 58, 353–358 (1977).
38. Hutchinson, V. H. & Larimer, J. L. Reflectivity of the integuments of some lizards from different habitats. Ecology 41, 199–209 (1960).
39. Norris, K. S. in Lizard Ecology: A Symposium (ed. W. W. Milstead) 162–229 (University of Missouri Press, 1967).
40. Berry, R. G. & Cheorly, R. J. Atmosphere, Weather and Climate (Routledge, 2003).
41. Olalla-Tarragà, M. Á. & Rodríguez, M. Á. Energy and interspecific body size patterns of amphibian faunas in Europe and North America: anurans follow Bergman’s rule, urodèles its converse. Glob. Ecol. Biogeogr. 16, 606–617 (2007).
42. Uetz, P., Freed, P. & Hoekse, I. (eds.). The Reptile Database. http://www.reptile-database.org (2020).
43. Ohla, Y., Kanade, T. & Sakai, T. Color information for region segmentation. Comput. Graph. Image Process. 13, 222–241 (1980).
44. Guoyard, G. A., Myers, D. & Emery, K. Proposed reference irradiance spectra for solar energy systems testing. Sol. Energy 73, 443–467 (2002).
45. Shawkey, M. D. et al. Beyond colour: consistent variation in near infrared and solar reflectivity in sunbirds (Nectarinidae). Sci. Nat. (Naturwissenschaften) 104, 78 (2017).
46. Shine, R. & Kearney, M. Field studies of reptile thermoregulation: how well do physical models predict operative temperatures? Funct. Ecol. 15, 282–288 (2001).

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
47. Reguera, S., Zamora-Camacho, F. J. & Moreno-Rueda, G. The lizard Psammodromus algirus (Squamata: Lacertidae) is darker at high altitudes. Biol. J. Linnean Soc. 122, 17–32 (2014).

48. Martinez-Freiria, F., Toyama, K. S., Freitas, I. & Kaliountzopoulou, A. Thermal melanism explains macroevolutionary variation of dorsal pigmentation in Eurasian vipers. Sci. Rep. 10, 1–10 (2020).

49. Pizzigalli, C. et al. Eco-geographical determinants of ornamentation in vipers. Biol. J. Linnean Soc. 110, 1499–1562 (2012).

50. Kurschner, W. M., Kvaček, Z. & Dilcher, D. L. The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems. Proc. Natl Acad. Sci. USA 105, 449–453 (2008).

51. Schra, H. A., Goodman, C. & Clark, R. W. Do free-ranging lizards use thermal cues to evaluate prey? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 204, 295–308 (2018).

52. Alencar, L. R. V. et al. Diversification in vipers: phylogenetic relationships, time of divergence and shifts in speciation rates. Mol. Phylogenet. Evol. 105, 50–62 (2016).

53. Zhang, Z. et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during the Late Miocene. Nature 513, 401–404 (2014).

54. Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions and divergences of endemism between two Continents, between two Seas. (University of Chicago Press, 2020).

55. Douglas, M. E., Douglas, M. R., Schuett, G. W. & Porras, L. W. Evolution of rattles of rattlesnakes (Viperidae; Crotalus) in the warm deserts of western North America shaped by Neogene vicariance and Quaternary climate change. Mol. Ecol. 15, 3353–3374 (2006).

56. Charif, M. K., Krediet, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62 (2001).

57. Janis, C. M., Damuth, J. & Theodor, J. M. The species richness of Miocene browsers, and implications for habitat type and primary productivity in the North American grassland biome. Palaeogeogr. Palaeoclimatol. Palaeoecol. 207, 371–398 (2004).

58. Walters, K. A., & Roberts, M. S. Gloydius. Commun. Biol. 4, 1–14 (2020).

59. Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions and divergences of endemism between two Continents, between two Seas. (University of Chicago Press, 2020).

60. Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions and divergences of endemism between two Continents, between two Seas. (University of Chicago Press, 2020).

61. Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions and divergences of endemism between two Continents, between two Seas. (University of Chicago Press, 2020).

62. Pokorny, L. et al. Living on the edge: timing of Rand Flora disjunctions and divergences of endemism between two Continents, between two Seas. (University of Chicago Press, 2020).

63. Ursenbacher, S. et al. Postglacial recolonization in a cold climate specialist in terrestrial ecosystems. Oecologia 130, 293–304 (2002).

64. Senut, B., Pickford, M. & Ségalen, L. Neogene desertification in Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 154, 151–174 (2000).

65. Gaston, K. J. Global patterns in biodiversity. Sci. Surv. 79, 1–14 (1977).

66. Körner, C. et al. in Geography – A World Geographical Handbook, Chapter 24, vol. 1. (University of Chicago Press, 2000).

67. Couplan, F., & Ligeon, J. C. Fleurs des Alpes: balade d’un botaniste, des plaines à un botaniste, des plaines. (Masson, 1994).

68. Bayly, R., & Jordan, P. A. S. The de Blij: A Global Journey. (University of Chicago Press, 2002).

69. Savage, J. M. The Amphibians and Reptiles of Costa Rica: A Herpetofauna Southern Highlands of Tanzania, with an overview of the country’s tree viper fauna. Zootaxa 3120, 43–54 (2011).

70. Goldenberg, J., D’Alba, L., Bisschop, K., Vanhournout, B., Shawkey, M. M. ‘Replication Data for: Substrate thermal properties influence ventral brightness evolution in ecoregions’; MacroBright v0.1, https://doi.org/10.5066/F4Z6KIU4.

71. R-Core-Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2019).

72. Pennell, M. W. et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 15, 2218–2221 (2014).

73. Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

74. Stayton, C. T. convene: Analysis of Convergent Evolution. R package version 1.3. https://CRAN.R-project.org/package=convecon (2018).

75. Stayton, C. T. The definition, recognition, and interpretation of convergent evolution, and two new measures for quantifying and assessing the significance of convergence. Evolution 69, 2140–2153 (2015).

76. Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).

77. Barton, K. MuMIn: Multi-Model Inference. R package version 1.43.15. https://CRAN.R-project.org/package=MuMIn (2019).

78. Hadfield, J. MCMC Course Notes. https://cran.r-project.org/web/packages/MCMCglmm/vignettes/CourseNotes.pdf (2018).

79. Gerber, Y. & Rubin, D. B. Inference from iterative simulation using multiple sequences. Stat. Sci. 7, 457–511 (1992).

80. Porter, W. P., Mitchell, J. W., Beckman, W. A. & DeWitt, C. B. Behavioral implications of mechanistic ecology - Thermal and behavioral modeling of desert ectotherms and their microenvironments. Oecologia 13, 1–54 (1973).

81. Orlov, N., Sundukov, Y. N. & Kropachev, I. I. Distribution of pitvipers of “Gloydius blommhoffi” complex in Russia with the first records of Gloydius blommhoffi blommhoffi at Kunashir island (Kuril archipelago, Russian far east). Russ. J. Herpetol. 21, 169–178 (2014).

Acknowledgements

We are grateful to the Tel Aviv University’s Garden for Zoological Research for providing access to their reptile collection; especially to Shai Meiri, Ron Michlin, and Yossi Yovel for arranging the visit and Barak Levi for the great support during animal handling. We are thankful to Lionel Hertzog, Rafael Maia, and Joshua W. Lambert for the statistical support and to EON and TEREC groups for the multiple constructive comments. We are grateful to Lionel Hertzog, Rafael Maia, and Joshua W. Lambert for the statistical support and to EON and TEREC groups for the multiple constructive comments. We are thankful to Lionel Hertzog, Rafael Maia, and Joshua W. Lambert for the statistical support and to EON and TEREC groups for the multiple constructive comments. We are thankful to Lionel Hertzog, Rafael Maia, and Joshua W. Lambert for the statistical support and to EON and TEREC groups for the multiple constructive comments.

Author contributions

J.G., L.D.A., and M.D.S. conceived the project. J.G., L.D.A., and M.D.S. analyzed the data. J.G. prepared the manuscript. J.G., L.D.A., and M.D.S. performed the analyses.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s42003-020-01524-w.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Terms and Conditions

Springer Nature journal content, brought to you courtesy of Springer Nature Customer Service Center GmbH (“Springer Nature”). Springer Nature supports a reasonable amount of sharing of research papers by authors, subscribers and authorised users (“Users”), for small-scale personal, non-commercial use provided that all copyright, trade and service marks and other proprietary notices are maintained. By accessing, sharing, receiving or otherwise using the Springer Nature journal content you agree to these terms of use (“Terms”). For these purposes, Springer Nature considers academic use (by researchers and students) to be non-commercial. These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription (to the extent of the conflict or ambiguity only). For Creative Commons-licensed articles, the terms of the Creative Commons license used will apply.

We collect and use personal data to provide access to the Springer Nature journal content. We may also use these personal data internally within ResearchGate and Springer Nature and as agreed share it, in an anonymised way, for purposes of tracking, analysis and reporting. We will not otherwise disclose your personal data outside the ResearchGate or the Springer Nature group of companies unless we have your permission as detailed in the Privacy Policy.

While Users may use the Springer Nature journal content for small scale, personal non-commercial use, it is important to note that Users may not:

1. use such content for the purpose of providing other users with access on a regular or large scale basis or as a means to circumvent access control;
2. use such content where to do so would be considered a criminal or statutory offence in any jurisdiction, or gives rise to civil liability, or is otherwise unlawful;
3. falsely or misleadingly imply or suggest endorsement, approval, sponsorship, or association unless explicitly agreed to by Springer Nature in writing;
4. use bots or other automated methods to access the content or redirect messages
5. override any security feature or exclusionary protocol; or
6. share the content in order to create substitute for Springer Nature products or services or a systematic database of Springer Nature journal content.

In line with the restriction against commercial use, Springer Nature does not permit the creation of a product or service that creates revenue, royalties, rent or income from our content or its inclusion as part of a paid for service or for other commercial gain. Springer Nature journal content cannot be used for inter-library loans and librarians may not upload Springer Nature journal content on a large scale into their, or any other, institutional repository.

These terms of use are reviewed regularly and may be amended at any time. Springer Nature is not obligated to publish any information or content on this website and may remove it or features or functionality at our sole discretion, at any time with or without notice. Springer Nature may revoke this licence to you at any time and remove access to any copies of the Springer Nature journal content which have been saved.

To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law, including merchantability or fitness for any particular purpose.

Please note that these rights do not automatically extend to content, data or other material published by Springer Nature that may be licensed from third parties.

If you would like to use or distribute our Springer Nature journal content to a wider audience or on a regular basis or in any other manner not expressly permitted by these Terms, please contact Springer Nature at

onlineservice@springernature.com