Virtual synchronous machine control for wind turbines: a review

Lu, Liang; Cutululis, Nicolaos Antonio

Published in:
Proceedings of the 16th Deep Sea Offshore Wind R&D conference

Link to article, DOI:
10.1088/1742-6596/1356/1/012028

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Citation (APA):
Lu, L., & Cutululis, N. A. (2019). Virtual synchronous machine control for wind turbines: a review. In Proceedings of the 16th Deep Sea Offshore Wind R&D conference (1 ed., Vol. 1356). [012028] IOP Publishing. Journal of Physics: Conference Series (Online) https://doi.org/10.1088/1742-6596/1356/1/012028
Virtual synchronous machine control for wind turbines: a review

To cite this article: L Lu and N A Cutululis 2019 *J. Phys.: Conf. Ser.* **1356** 012028

View the article online for updates and enhancements.
Virtual synchronous machine control for wind turbines: a review

L Lu* and N A Cutululis

Department of Wind Energy, Technical University of Denmark, Frederiksbergvej 399, 4000 Roskilde, Denmark

*E-mail: lilu@dtu.dk

Abstract. Virtual synchronous machine (VSM) control has been put up and developing for the past ten years, but not much work has been done specially focusing on its application on wind turbines (WTs). This paper gives a thorough review of the work that has been done until now about application of VSM control on WTs. Aspects on control schemes, energy storage (ES), frequency and voltage control capabilities, different grid conditions etc. are summarized separately. Further research work in this field is emphasized.

Acronym

AC	Alternating Current	PWM	Pulse Width Modulation
AGC	Automatic Generation Control	Q-V	reactive power – Voltage
AVR	Automatic Voltage Regulator	RoCoF	Rate of Change of Frequency
CHP	Combined Heat and Power	ROGI	Reduced-Order Generalized Integrator
DC	Direct Current	RTDS	Real Time Digital Simulator
ES	Energy Storage	SCR	Short Circuit Ratio
EV	Electric Vehicle	SG	Synchronous Generator
FRT	Fault Ride-Through	SoC	State of Charge
GSC	Grid Side Converter	SSC	Storage Side Converter
HVDC	High Voltage Direct Current	STATCOM	STATic synchronous COMpensator
LVRT	Low-Voltage Ride-Through	SYNC	SYNchronized Control
MPPT	Maximum Power Point Tracking	UFLS	Under Frequency Load Shedding
MSC	Machine Side Converter	VC	Vector Control
PCC	Point of Common Coupling	VI	Virtual Inertia
P-f	active Power – Frequency	VISMA	Virtual Synchronous MAchine
PFC	Primary Frequency Control	VSC	Voltage Source Converter
PI	Proportion Integration	VSM	Virtual Synchronous Machine
PLL	Phase Lock Loop	VSYNC	Virtual SYNchronous Control
PMSG	Permanent Magnetic Synchronous Generator	VSynC	Virtual SYNchronous Control
PSS	Power System Stabilizer	WPP	Wind Power Plant
PV	PhotoVoltaic	WT	Wind Turbine
1. Introduction
With more and more renewable power like solar power and wind power being integrated to the traditional power system, the total inertia of the power system is getting lower and lower. With a smaller inertia, the frequency of the power system may have bigger deviations when there are sudden big changes of generation or load, causing a sudden big active power imbalance (frequency event). In order to maintain the original frequency stability, the idea came to mind is to make grid-integrated converters and their energy sources perform with similar characteristics or functions, like inertial response and primary frequency control (PFC), as synchronous generators (SGs). This is how virtual synchronous machine (VSM) concept was developed [1].

VSM is a control scheme applied to a converter to emulate the behaviour of a SG by using models of a SG within the control scheme. It was firstly put up for distributed generation units, like photovoltaic (PV) arrays and combined heat and power (CHP) in microgrids, and subsequently discussed for other applications like VSC-HVDC, STATCOM, electric vehicles (EVs) and variable speed WTs.

There have been some review papers on VSM control. In 2013, different control schemes of VSM at that stage and its application in microgrids were reviewed in [2], but one important scheme, synchronverter, was missed. Different VSM control schemes were reviewed and categorized in [3] based on the nature of the output reference from SG model: current reference, voltage reference and power reference. Namely, the VSM-controlled converter works as a current source or voltage source. Besides, it gives a classification of different VSM control methods by the level of detail of SG model they are based on. In 2016, three main functions of VSM control were reviewed in [4]: oscillation damping, frequency control and voltage control, without going into details of different control schemes. Different kinds of control schemes in terms of the level of detail of SG models and advanced functions like low-voltage ride-through (LVRT) aimed for PV arrays were reviewed in [5]. In 2017, VSM control schemes were classified in [6], depending on whether their SG models are high-order or low-order, whether they are current sources or voltage sources, and whether there is a need for PLL and ES, without focusing on the type of technology they are applied to. Application of VSM control on PV arrays, WTs, power electronics transformers and flexible AC & DC transmission systems were reviewed in [7]. However, the part related to WTs is rather short, and mainly presents virtual inertia and damping control, not VSM control. In 2018, a simple review about VSM control in microgrids was presented in [8]. To sum up, there is no work presenting a complete and thorough review on the specific application of VSM control on WTs yet. Therefore, a literature review is of great value to summarize what has been done, and more importantly, to identify the further research questions that need to be specially addressed on this topic. This paper gives a relatively comprehensive and detailed review on this topic. This is the main contribution of this paper.

The rest of paper is organized as follows. Section 2 gives a brief introduction of three different initial VSM control schemes as a background and basis. Section 3 summarizes the application of VSM control on WTs in different aspects. Section 4 puts forward some further research needs on this topic, before concluding in Section 5.

2. VSM control
This section lists three different control schemes proposed at the early stage of VSM concept. They provide main foundations for subsequent developments in this field.

2.1. VISMA
The concept of VSM control was firstly introduced by Dirk Turschner, Ralf Hesse and Hans-Peter Beck of Clausthal University of Technology in Germany in 2007 [1,9–11]. They named their scheme as VISMA (VIrtual Synchronous MAchine). A detailed description of the general idea of VISMA to emulate SG’s static and dynamic properties by implementing SG’s model in the control scheme of an inverter is given in [1]. The model emulates a salient SG, which includes all the resistances and reactances of stator windings, field winding and damper winding. A further detailed mathematical expression of the SG model in d-q frame is given in [12]. To avoid unsteady states under asymmetric
load conditions caused by the standard transformation, a more robust three-phase model was applied to investigate the dynamic processes [13].

Based on the simplified three-phase SG model, the control diagram was developed as shown in Figure 1 [14]. In this scheme, three-phase grid voltages at point of common coupling (PCC) are measured to calculate current references based on the SG model. The current references will be compared with the measured currents by the hysteresis controller, which generates switch signals for the converter. In this case, the converter works as a current source, which is not as favorable as a voltage source in weak or islanded grids. Besides, the hysteresis controller in this scheme works at a fixed tolerance band, which makes the switching frequency of the converter not constant but varying within a range. Hence, there are many harmonics in output currents. To improve this problem, a revision of the VISMA control scheme was proposed as shown in Figure 2 [15]. In the updated scheme, the inputs were changed to grid currents measured at PCC and the outputs become reference voltages to the PWM controller. That is why it was named current-to-voltage control. In this case, the VISMA behaves as a voltage source and the outputs have almost no harmonics because of the constant switching frequency of the PWM controller and a proper filter. Furthermore, considering the widely applied PWM-controlled converters in current market, the current-to-voltage control tends to be more easily utilized.

2.2. VSYNC

Almost at the same time of initial publication of VISMA, another claimed VSM control was developed in the three-year VSYNC (Virtual SYNchronous Control) project, started at the end of 2007 under the 6th EU-Research Framework program [16,17,26,18–25]. The basic idea of the control scheme is to modify the active power reference P_{VSM} for the energy storage (ES) by combining two parts. One is proportional to the rate of change of frequency ($RoCoF$) $\frac{df}{dt}$, derived from the rotor motion equation of a SG, to stand for the virtual inertia. The other is proportional to the frequency deviation Δf, which is the same as active power-frequency (P-f) droop control. It can be expressed as:

$$ P_{VSM} = K_\omega \Delta \omega + K_i \frac{d\omega}{dt} \quad (1) $$

It should be noted that in this paper we would not discuss this kind of control scheme in the range of VSM control. The reasons are as follows. The virtual inertia part of the active power reference, although related to the swing equation of a SG model, is only approximate to one part of the equation. For the VSM control, we think that at least a full description of the swing equation should be expressed in the control scheme, while variations of control schemes may differ in the electrical equations of a SG model. The converter control in this VSYNC scheme is still traditional vector control (VC), different from the majority of control schemes based on a SG model, which calculate the internal potential and power angle for the PWM controller. Besides, the implementation of virtual inertia requires the presence of an
external voltage with a physical inertia and is not suitable for islanded operation, in contrast with a SG or a VSM implementation [3]. Furthermore, the concepts of virtual inertia and droop control have been developed in separate contexts and there has been a lot of work on those topics. Therefore, the VSM control concept in this paper only focuses on the control schemes that are based on, and derived from a relatively complete SG model, not including work on virtual inertia or P-f droop control. It is still worth mentioning that much work in this VSYNC project can be referred, like ES selection and sizing [19,22], real-time simulation with hardware in loop [25,26], field tests [20,21], measurement and remote monitoring [23,24].

2.3. Synchronverter
In 2009, another type of VSM control, named synchronverter, was developed by Qing-Chang Zhong and George Weiss [27–30]. It is based on a fifth-order round rotor SG model without rotor damper windings. This model includes two parts: second-order swing equations for rotor mechanical movement, and third-order electrical equations for stator voltages and back electromotive force in the field winding. After combining with the reactive power-voltage (Q-V) droop control, the control scheme for regulation of active and reactive power is shown in Figure 3 below.

Several improvements have been since introduced. The synchronverter was improved to realize self-synchronization by removing PLL in [31]. Five modifications, like virtual inductors, virtual capacitors and anti-windup, were proposed to improve the overall stability and performance [32,33]. A bounded controller is used for the frequency loop and excitation current loop to guarantee given bounds for both frequency and voltage [34,35].

![Figure 3 Synchronverter. Reproduced from [29].](image)

2.4. Others
Apart from the three VSM control schemes mentioned above, there are also some schemes proposed by other researchers worldwide. Osaka University in Japan proposed a scheme based on the swing equation including governor function in [36–39]. An algebraic type of VSM control by Kawasaki Technology Co., Ltd. and Kawasaki Heavy Industries, Ltd. in Japan was introduced in [40]. University of Tennessee in US also presented their VSM control scheme in [41], which includes modeling of the governor, automatic generation control (AGC), power system stabilizer (PSS) and automatic voltage regulator (AVR).

Of course, contributions kept coming out on improving the VSM control schemes in recent five years. Variations of different schemes lie in many aspects, for instance, differences of SG models utilized, different expressions of SG models in different frames, different parameter designs and tuning, and improvements in terms of stability or performance in various grid conditions, etc. Due to space limitation, details are not included here.
3. Application of VSM control on WTs
This section only includes the work that focuses on the application of VSM control on WTs. The content is arranged by topics of interest.

3.1. WT type
Obviously only type-3 and type-4 WTs are relevant for this topic as VSM control is applied to converters. Papers working on type-3 WTs are [42–47], while those on type-4 WTs are [48–54].

3.2. Energy storage (ES)
One VSM control scheme for type-3 WTs without an ES was presented in [42]. The kinetic energy kept in the rotating mass of a WT was observed to give the inertial support for momentary active power extraction. During super-synchronous mode, the power will not be delivered by the rotor until the speed has reached a threshold value above synchronous speed, to account for the rotor losses. Rotor and stator power sharing is controlled by the variation of power angle between rotor voltage and inverter voltage. The rotor-induced voltage was found to reverse its phase when operation changed from super-synchronous to sub-synchronous mode.

Some results on the inertial response process of a VSM-controlled type-4 WT without an ES were presented in [48]. When there is no ES equipped with the WT, extra energy needs to be obtained from the rotor kinetic energy in case of a system frequency drop. As a result, the rotor speed will decrease during the inertial response process, which leads to the change of active power reference in the VSM control. This is different from traditional VSM control schemes with an ES, in which active power references keep unchanged during the inertial response period. Due to this phenomenon, this paper finds that a VSM-controlled type-4 WT without an ES has worse inertial response performance compared to those with an ES. This paper shows the advantage of ES for VSM control from a new aspect. However, the wind speed was assumed to be constant in the inertial response period. Further work is needed to compare the different influences from change of rotor speed and change of wind speed, on the active power reference of VSM control.

One VSM control strategy for type-4 WTs with a minute-level ES in the DC link as energy buffer was proposed in [49]. The ES is connected to the DC link via a DC-DC converter, named storage side converter (SSC), which keeps the DC link voltage constant by charging or discharging the ES. The VSM control is divided into three different operation modes in terms of the different state of charge (SoC) of the ES. In VSM normal operation, the SoC will be controlled around SoC_setpoint. When SoC drops too low, the control will change to VSM MPPT mode, in which machine side converter (MSC) generates the maximum available power and grid side converter (GSC) will output all the generated power from MSC. On the other hand, when SoC is too high, pitch control will be enabled to reduce the power intake. The operation diagram is shown in Figure 4 below. Sizing of the ES is also discussed in the paper. That is, in Figure 4, the four energy capacities $E_1 \sim E_4$ are designed separately considering different amounts of energy needed in different operation conditions.

![Figure 4 SoC and VSM mode. Reproduced from [49].](image-url)
3.3. Control schemes

Research on a type of VSM control, named virtual synchronous control (VSynC), for type-3 WTs was presented in [44–46]. This control scheme includes four parts: active power control, alternating-voltage/reactive power control, supplementary damping control, and current limitation control. The active power control and supplementary damping control combine together to work in the same way as the corresponding part, which realizes the swing equation of a SG model, in a traditional VSM control scheme. The current limitation control is something new in which a virtual resistance is included to suppress current transients due to the absence of inner current limiter, however, its effectiveness needs to be verified with further details.

Another contribution is to consider the different inertial response characteristics of WTs from SGs. The reason for the difference is that the input mechanical power captured from wind varies during inertial response process with changes of rotor speed and pitch angle, which differs from SGs of which input mechanical power can be regarded constant. An approach dealing with this is proposed by dividing the mechanical power into two parts: P_{m0} as a constant power injection pre-disturbance (part one), and ΔP_{m} as variations caused by rotor speed or pitch angle (part two), as shown in the green dashed boxes in Figure 5.

![Figure 5 VSynC for type-3 WT. Reproduced from [44].](image)

A comparative study of the principle and dynamic process of different inertia releasing methods on type-3 WTs was presented in [55]. VSynC was compared with df/dt inertial control [56][57] and PLL-tuning control [58,59] considering the motion of internal voltage. The inner link among them is that they all emulate the inertial response behaviour of SGs from different aspects. Simulations showed that WTs with all of these methods contributed effective and similar inertial responses.

A type of VSM control, also named virtual synchronous control, for type-3 WTs was proposed in [47]. Electromagnetic equations of the WT model under d-q axis virtual synchronous rotating coordinates were firstly established. Then the electromechanical model of the WT was realized through the proposed virtual synchronous shaft with due rotor inertia. $P-f$ and $Q-V$ droop controllers were added to emulate the governor and exciter of SGs. The basic structure of the control strategy is shown in Figure 6 below. Last but not the least, an adaptive droop control is applied to achieve MPPT in steady state and realize short-term power support in dynamic state, by changing the droop coefficient of $P-f$ curve.

This virtual synchronous control strategy can be classified as VSM control because it is also based on a simplified model of a SG. Apart from the route from excitation current reference i_{rm} to excitation electromotive force e_0, in this control strategy, the $P-\delta$ part works quite similarly to the swing equation part of a classical VSM control, but here it is a bit more complex. The functions of $P-f$ droop and virtual axis are overlapping somehow, and there is no clear damping loop in this strategy.
Some results of VSM control for type-4 WTs with an ES were provided in [49, 50]. The control scheme utilized is introduced in [41].

The VSM control scheme proposed in [54] combines the classical swing equation with the feedforward damping introduced in [60]. This combination offers a unique new feature: the contribution to primary frequency control can be disabled while oscillation damping is preserved. The control diagram is shown in Figure 7 below. Besides, an adaptive inertia power limitation scheme was designed in the paper to address one major restriction of VSM-controlled converters: a reduced capability to deal with short-term peak currents.

A control strategy based on the synchronverter type of VSM control for type-4 WTs was explained in [52, 53]. The MSC is operated as a synchronous motor, since it receives power from the permanent magnetic synchronous generator (PMSG) at the AC side and injects it to the DC link. The main tasks of the MSC are to regulate the DC link voltage to the desired value and to achieve unity power factor operation at the AC side. The GSC is operated as a synchronous generator, since it injects active and reactive power to the grid. The main tasks of the GSC are to achieve MPPT, i.e. maximum power extraction from the wind, and also regulate the reactive power. The control diagrams of these two converters are shown in Figure 8 and Figure 9 below.

Figure 6: Virtual Synchronous Control for type-3 WT. Reproduced from [47].

Figure 7: VSM control with feedforward damping. Reproduced from [54].
The synchronized control (SYNC) for type-3 WTs in microgrids and weak grids was introduced in [61], which applies $P-f$ droop control in MSC to achieve grid synchronization instead of PLL, and SYNC enables WTs to provide active power output under frequency disturbances. Increasing the $P-f$ droop coefficient will improve the synchronous stability but deteriorate the small signal stability. To solve this problem, a modified SYNC scheme is proposed in the paper by adding an assistant damping component to improve the synchronous stability and small signal stability simultaneously.

This modified method was inspired by SG’s swing equation. Hence, to some extent, it has some characteristics in common with VSM control. However, we do not consider this $P-f$ droop-controlled SYNC as VSM control because they have different development sources and routes. $P-f$ droop control [62][63], together with VC-based df/dt control [64][56], are two different methods to equip WTs with virtual inertia (VI) to have frequency control capabilities like SGs under frequency disturbances. The VI designs are derived with initial focus more on realizing frequency regulating capability. Slightly differently, VSM control focuses more on realizing SG models within converter controls, while frequency control capability comes true as one of the consequences. However, it has been demonstrated that there are equivalence links into a single theoretical frame for VSM control and droop control, these two well established concepts that have been developed in separate contexts [65].

3.4. Grid conditions

3.4.1. System rating at PCC.

VSM control is deemed to enable WTs to work properly in weak grids and islanded power systems. This subsection presents some work about this.

Results from preliminary tests of a VSM grid-forming algorithm were presented in [66]. The capabilities of the algorithm are demonstrated in a strong AC power system, a very weak one and an islanded one. When a WT with VSM control was connected to a strong AC power grid, its steady state performance was compared to an adjacent WT operating with classical current control. Comparison over several months shows that there is little difference in the average frequency content between VSM control and current control and the dynamic power changes on the generator side is not altered by the VSM control. For weak power grid integration, RTDS simulations show that VSM control can operate in power grids of lower SCR compared to conventional current control. The comparison is shown in Table 1. In an islanded system, different WTs shared the dynamic load change by the droop control of frequency and reactive power was shared by the droop control of voltage.
Table 1. Minimum SCR of power grid.

	WT power output percentage	
	0%	100%
VSM control	0.00005	1.1
Current control	1.7	2.2

Some simulation results were presented in [49] of a stand-alone working scenario, in which a load was only supplied by a type-4 WT, in the two-area power system model [67]. In VSM normal operation, the WT could adjust the rotor speed and pitch angle according to the load, even if the load was larger than the available wind power. When SoC dropped below the threshold, the power limit block was enabled and system frequency dropped rapidly. The under frequency load shedding (UFLS) protection was triggered to reduce the load until reaching a new balance. If there were no UFLS, the frequency would keep dropping until the event was considered as an internal fault and the WT was tripped.

3.4.2. Unbalanced voltage. A collaborative control strategy based on VSM for the MSC and GSC of type-3 WTs under unbalanced grid voltage was proposed in [43]. In the control strategy, the MSC is controlled to achieve smooth electromagnetic torque, while the GSC is controlled to reduce the oscillation of output power. To realize this, reduced-order generalized integrator (ROGI) is employed. The voltage reference for MSC contains two parts: one is the output of VSM that controls the output power of stator; another is the output of ROGI to get smooth electromagnetic torque. There are also two parts in the voltage reference for GSC. One is the output of PI controller based on vector control (VC) which keeps stable the voltage of DC link. The other one is the output of ROGI to reduce the oscillation of the total output power of WT. The control scheme is shown in Figure 10 below.

Simulations in MATLAB/Simulink were carried out to test the proposed control strategy under 5% unbalanced grid voltage. This scheme successfully decreased the oscillation of electromagnetic torque from 14.5% to 3.41% and output active power from 15.44% to 1.17% separately.

3.5. Fault ride-through (FRT)
In order to verify the FRT capability of the proposed control strategy, real-time simulations using an OPAL RT digital simulation system were carried out in [52]. A 50% grid voltage drop was initiated and lasted for 0.1 s. A peak was observed of the grid current when the voltage dropped, but it quickly settled down. The peak value was about five times of the normal value. Additionally, there was no noticeable change in the torque and rotor speed, which meant that the WT worked properly during the grid voltage fault.
The electromagnetic transient behavior of VSynC-based type-3 WTs was investigated in [68] and a voltage compensation strategy was proposed to ride through asymmetric grid faults. Through compensation of fault components of WT rotor voltage, overcurrent no longer exists under mild asymmetric faults and its amplitude is significantly suppressed under severe asymmetric faults. Meanwhile, electromagnetic torque oscillations are obviously limited during electromagnetic transient process as well as fault steady state. The proposed strategy improves the FRT capability of VSynC-based type-3 WTs, without complex control switches between normal and fault operations.

3.6. Frequency control

The effectiveness of proposed VSM control scheme for type-3 WTs was validated in [43] through simulations in MATLAB/Simulink. Compared to traditional vector control (VC), VSM control improves the frequency nadir and smooths frequency changing. Furthermore, influence of different parameters in VSM control was also investigated. In summary, a larger damping constant can damp the frequency changing better and increase the time of transition process. A larger active power coefficient will speed up the active power response, however, the damping for frequency changing becomes weaker.

Simulations were carried out to study the impacts of controller parameters and initial operation conditions on frequency response of a single WT in [44]. In addition, there were simulations that compared the different inertial responses of proposed VSynC control and traditional VC-based \(df/dt\) control with PLL. Results verified the better frequency control capability from VSynC control. Furthermore, VSynC control also shows better operation stability especially in weak power grids than VC-based \(df/dt\) control, which easily has oscillations because of the dynamics of PLL. It is pointed out in [45] that the power transfer capability of type-3 WTs with VSynC control is not limited, which means the maximum transmittable power, viz., the rated power can be achieved even when SCR is decreased to 1. However, the maximum transmittable power of VC-based type-3 WT is highly limited, approximately down to 0.84 pu.

The VSM control scheme for type-4 WTs in [49] was verified in the two-area power system model in real-time simulations. Firstly, transitions between different VSM operation modes were tested under variable wind conditions. The time sequence of the wind speed was generated by NREL TurbSim [69]. Secondly, dynamic performance of the VSM control was tested and compared with traditional MPPT control of WT. Results show that when there is large power imbalance in the grid, traditional MPPT control will not change its power output, while VSM normal mode and VSM MPPT mode provide active power injections at the beginning of the frequency event and guarantees higher frequency nadirs. What is more, VSM normal operation mode gives better frequency control capability compared with VSM MPPT mode.

3.7. Field tests

Some results from field tests were presented in [66]. WTs with VSM control were compared with adjacent ones with current control in steady state operation. WTs with VSM control were tested against dynamic load changes in an islanded system. However, for frequency events, a pseudo frequency disturbance was used rather than a real one, by injecting a frequency disturbance (with varying \(df/dt\)) into the VSM controller’s view of grid frequency. Besides, the research on SCR value of power grid in which VSM control can operate was carried out using RTDS simulation.

4. Further research

From what has been summarized above, we can see there is far from enough work on this topic of VSM control application on WTs. For each of the aspects listed above, the results presented in literature do not cover all the details we are concerned about. Besides, there is also a lack of repeated validations for the results above.

For ES, techno-eco analysis is essential to evaluate the necessity of applying an ES for VSM control of WTs. The advantage of VSM control with an ES for guaranteeing MPPT and frequency control simultaneously should be evaluated correctly. Different types of ES need to be evaluated individually to
find the most suitable type for VSM-controlled WT application. Besides, different locations of the ES also need to be compared, especially for VSM-controlled wind power plant (WPP) applications in the future. The control strategy for the SoC of ES needs to be optimized further, considering the difference of WT's from PV arrays, and it should be better coordinated with VSM control design and different WT operation conditions.

For VSM control schemes, although there are several different control schemes applied to different kinds of WT's, only availability of each control scheme is considered. There is no verified comparisons between different schemes, in terms of stability and performance in frequency control at least. Besides, special requirements for WT applications, like parameter design and tuning, need to be emphasized.

For grid conditions, VSM control can be considered to coordinate with black start methods in islanded systems. Improvements of VSM control need to be developed and compared for WT's under unbalanced voltages. It is also possible to combine FRT capability with VSM control.

For frequency control capability, characteristics of the converters with VSM control need to be defined quantitatively and methods for assessing these characteristics need to be developed. Besides, a lot of work can be done when considering this frequency control capability from a WPP with VSM control.

For voltage control capability, at present there is not much verified and credible work on this. Validation of voltage control capability of WT's with VSM control needs to be carried out in various scenarios, especially during different faults and asymmetric voltage sags.

5. Conclusion
VSM control will play an important role in equipping WT's with frequency control capability and helping to increase wind power integration proportion. To understand better the state-of-art research status in this field, this paper gives a complete review on current achievements of VSM control application on WT's. Available control schemes and their special modifications for this application are summarized in detail. Especially, scenarios like weak power grids and unbalanced voltages are discussed. Based on what has been done on this topic summarized in this paper, further research needs are put forward as suggestions for future work. It still requires a lot of work to develop VSM control to a stage where it can be deployed as vector control today.

Acknowledgement
This work has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 727680 (TotalControl).

References
[1] Beck H P and Hesse R 2007 Virtual synchronous machine 2007 9th International Conference on Electrical Power Quality and Utilisation, EPQU
[2] Bevrani H, Ise T and Miura Y 2014 Virtual synchronous generators: A survey and new perspectives Int. J. Electr. Power Energy Syst. 54 244–54
[3] D’Arco S and Suul J A 2013 Virtual Synchronous Machines – Classification of Implementations and Analysis of Equivalence to Droop Controllers for Microgrids 2013 Grenoble PowerTech pp 1–7
[4] Liang X, Andalib C and Karim B 2016 Virtual Synchronous Machine Method in Renewable Energy Integration 2016 IEEE PES Asia-Pacific Power and Energy Conference (IEEE) pp 364–8
[5] Arricibita D, Sanchis P and Marroyo L 2016 Virtual Synchronous Generators Classification and Common Trends 42nd Annual Conference of the IEEE Industrial Electronics Society, IECON 2016 (IEEE) pp 2433–8
[6] Alsiraji H A and El-shatshat R 2017 Comprehensive assessment of virtual synchronous machine based voltage source converter controllers IET Gener. Transm. Distrib. 11 1762–9
[7] Kong X, Pan J, Gong X and Li P 2017 Emulating the features of conventional generator with
virtual synchronous generator technology: an overview. The 6th International Conference on Renewable Power Generation (RPG 2017) pp 2135–9

[8] Haritha M S and Nair D S 2018 Review on Virtual Synchronous Generator (VSG) For Enhancing Performance Of Microgrid 2018 International Conference on Power, Signals, Control and Computation (EPSCICON) (IEEE) pp 1–5

[9] Turschner D and Hesse R 2005 Power electronic substitution of a classical synchronous machine for power conditioning in decentralized energy supply 3rd French – German conference Renewable and Alternative Energies (Le Havre) pp 39–46

[10] Hesse R, Beck H P and Turschner D 2007 Die virtuelle Synchronmaschine ETZ Electr. Eng. + Autom. 128 38–44

[11] Beck H P, Hesse R and Turschner D 2007 Virtuelle Synchronmaschine in stromrichterdominierten schwachen Netzen Zwölftes Kasseler Symposium Energie-Systemtechnik

[12] Hesse R, Turschner D and Beck H-P 2009 Micro grid stabilization using the Virtual Synchronous Machine (VISMA) Proceedings of the International Conference on Renewable Energies and Power Quality (ICREPO’09), Valencia, Spain. pp 15–7

[13] Chen Y, Hesse R, Turschner D and Beck H-P 2011 Dynamic properties of the virtual synchronous machine (VISMA) Renew. Energy Power Qual. J. 1 755–9

[14] Chen Y, Hesse R, Turschner D and Beck H-P 2011 Improving the grid power quality using virtual synchronous machines International Conference on Power Engineering, Energy and Electrical Drives pp 1–6

[15] Chen Y, Hesse R, Turschner D and Beck H-P 2012 Comparison of methods for implementing virtual synchronous machine on inverters International Conference on Renewable Energies and Power Quality (ICREPO’12) vol 1 pp 734–9

[16] Driesen J and Visscher K 2008 Virtual synchronous generators IEEE Power and Energy Society 2008 General Meeting: Conversion and Delivery of Electrical Energy in the 21st Century, PES pp 1–3

[17] Visscher K and De Haan S W H 2008 Virtual synchronous machines (VSG’S) for frequency stabilisation in future grids with a significant share of decentralized generation CIRED Seminar 2008: SmartGrids for Distribution pp 82–82

[18] Van Wesenbeeck M P N, De Haan S W H, Varela P and Visscher K 2009 Grid tied converter with virtual kinetic storage 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future (IEEE) pp 1–7

[19] Albu M, Visscher K, Creangă D, Nechifor A and Golovanov N 2009 Storage selection for DG applications containing virtual synchronous generators 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future (IEEE) pp 1–6

[20] Vu Van T, Woyte A, Albu M, Van Hest M, Bozelie J, Diaz J, Loix T, Stanculescu D and Visscher K 2009 Virtual synchronous generator: Laboratory scale results and field demonstration 2009 IEEE Bucharest PowerTech: Innovative Ideas Toward the Electrical Grid of the Future pp 1–6

[21] Vu Van T, Visscher K, Diaz J, Karapanos V, Woyte A, Albu M, Bozelie J, Loix T and Federenciuc D 2010 Virtual synchronous generator: An element of future grids IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT Europe pp 1–7

[22] Albu M, Nechifor A and Creanga D 2010 Smart storage for active distribution networks. Estimation and measurement solutions 2010 IEEE Int. Instrum. Meas. Technol. Conf. I2MTC 2010 - Proc. 1486–91

[23] Albu M, Diaz J, Vu Van T, Neurohr R, Federenciuc D, Popa M and Calin M 2010 Measurement and Remote Monitoring for Virtual Synchronous Generator Design 2010 IEEE International Workshop on Applied Measurements For Power Systems (AMPS) pp 1–5

[24] Albu M, Calin M, Federenciuc D and Diaz J 2011 The measurement layer of the Virtual Synchronous Generator operation in the field test 2011 IEEE International Workshop on
Applied Measurements for Power Systems, AMPS 2011 - Proceedings (IEEE) pp 85–9

[25] Karapanos V, De Haan S W H and Zwetsloot K H 2011 Testing a Virtual Synchronous Generator in a Real Time Simulated Power System International Conference on Power Systems Transients IPST 2011 vol 31

[26] Karapanos V, de Haan S and Zwetsloot K 2011 Real time simulation of a power system with VSG hardware in the loop IECON 2011 - 37th Annual Conference of the IEEE Industrial Electronics Society (IEEE) pp 3748–54

[27] Weiss G and Zhong Q-C 2014 Static Synchronous Generators

[28] Zhong Q-C and Weiss G 2009 Static synchronous generators for distributed generation and renewable energy 2009 IEEE/PES Power Systems Conference and Exposition, PSCE 2009

[29] Zhong Q and Weiss G 2011 Synchronverters: Inverters That Mimic Synchronous Generators IEEE Trans. Ind. Electron. 58 1259–67

[30] Zhong Q-C 2012 Synchronverters; Grid-Friendly Inverters That Mimic Synchronous Generators Control of Power Inverters in Renewable Energy and Smart Grid Integration (A John Wiley & Sons, Ltd., Publication; IEEE Press) pp 277–96

[31] Zhong Q C, Nguyen P L, Ma Z and Sheng W 2014 Self-synchronized synchronverters: Inverters without a dedicated synchronization unit IEEE Trans. Power Electron. 29 617–30

[32] Natarajan V and Weiss G 2017 Synchronverters With Better Stability Due to Virtual Inductors, Virtual Capacitors, and Anti-Windup IEEE Trans. Ind. Electron. 64 5994–6004

[33] Weiss G and Natarajan V 2017 Modifications to the synchronverter algorithm to improve its stability and performance 19th International Symposium on Power Electronics, Ee 2017 pp 1–6

[34] Konstantopoulos G C, Zhong Q-C, Ren B and Krstic M 2015 Boundedness of Synchronverters 2015 European Control Conference, ECC 2015 pp 1050–5

[35] Zhong Q-C, Konstantopoulos G C, Ren B and Krstic M 2018 Improved synchronverters with bounded frequency and voltage for smart grid integration IEEE Trans. Smart Grid 9 786–96

[36] Sakimoto K, Miura Y and Ise T 2011 Stabilization of a power system with a distributed generator by a virtual synchronous generator function 8th International Conference on Power Electronics - ECCE Asia (IEEE) pp 1498–505

[37] Sakimoto K, Miura Y and Ise T 2014 Stabilization of a Power System Including Inverter-Type Distributed Generators by a Virtual Synchronous Generator Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi) 187 341–9

[38] Shintai T, Miura Y and Ise T 2012 Reactive Power Control for Load Sharing with Virtual Synchronous Generator Control Proceedings of The 7th International Power Electronics and Motion Control Conference vol 2 (IEEE) pp 846–53

[39] Alipoor J, Miura Y and Ise T 2013 Distributed Generation Grid Integration Using Virtual Synchronous Generator with Adaptive Virtual Inertia IEEE Energy Conversion Congress and Exposition (IEEE) pp 4546–52

[40] Hirase Y, Abe K, Sugimoto K and Shindo Y 2013 A grid-connected inverter with virtual synchronous generator model of algebraic type Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi) 184 10–21

[41] Yang L, Zhang X, Ma Y, Wang J, Hang L, Lin K, Tolbert L M, Wang F and Tomsovic K 2013 Hardware implementation and control design of generator emulator in multi-converter system Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC pp 2316–23

[42] Deepak C M, Vijayakumari A and Mohanrajan S R 2018 Virtual inertia control for transient active power support from DFIG based wind electric system RTEICT 2017 - 2nd IEEE International Conference on Recent Trends in Electronics, Information and Communication Technology, Proceedings vol 2018–Janua pp 809–14

[43] Jiao Y, Nian H and He G 2017 Control strategy based on virtual synchronous generator of DFIG-based wind turbine under unbalanced grid voltage 2017 20th International Conference on
Electrical Machines and Systems, ICEMS 2017

[44] Wang S, Hu J, Yuan X and Sun L 2015 On Inertial Dynamics of Virtual-Synchronous-Controlled DFIG-Based Wind Turbines IEEE Trans. Energy Convers. 30 1691–702

[45] Wang S, Hu J and Yuan X 2015 Virtual Synchronous Control for Grid-Connected DFIG-Based Wind Turbines IEEE J. Emerg. Sel. Top. Power Electron. 3 932–44

[46] Wang S, Hu J and Yuan X 2015 DFIG-based Wind Turbines with Virtual Synchronous Control: Inertia Support in Weak Grid IEEE Power & Energy Society General Meeting (IEEE) pp 1–14

[47] Zhao Y, Chai J and Sun X 2015 Virtual synchronous control of grid-connected DFIG-based wind turbines 2015 IEEE Applied Power Electronics Conference and Exposition (APEC) pp 2980–3

[48] Xi J, Geng H, Yang G and Ma S 2017 Inertial response analysis of PMSG-based WECS with VSG control J. Eng. 2017 897–901

[49] Ma Y, Cao W, Yang L, Wang F F and Tolbert L M 2017 Virtual Synchronous Generator Control of Full Converter Wind Turbines with Short-Term Energy Storage IEEE Trans. Ind. Electron. 64 8821–31

[50] Ma Y, Yang L, Wang F and Tolbert L M 2016 Voltage closed-loop virtual synchronous generator control of full converter wind turbine for grid-connected and stand-alone operation Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC vol 2016–May pp 1261–6

[51] Heidary Yazdi S S, Milimonfared J, Fathi S H, Rouzbeh K and Rakhshani E 2019 Analytical modeling and inertia estimation of VSG-controlled Type 4 WTGs: Power system frequency response investigation Int. J. Electr. Power Energy Syst. 107 446–61

[52] Zhong Q C, Ma Z, Ming W L and Konstantopoulos G C 2015 Grid-friendly wind power systems based on the synchronverter technology Energy Convers. Manag. 89 719–26

[53] Zhong Q-C 2016 Virtual synchronous machines: A unified interface for smart grid integration IEEE Power Electron. Mag. 18–27

[54] Duckwitz D, Shan M and Fischer B 2014 Synchronous Inertia Control for Wind Turbines - Adaption of the Virtual Synchronous Machine to Wind Turbines for providing Distributed Contributions to Power System Inertia 13th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants

[55] Sun L, Yuan X, Hu J and He W 2015 Inertial control methods of variable-speed wind turbine: Comparative studies IEEE Power and Energy Society General Meeting vol 2015–Sept

[56] Haan S W H de, Morren J, Ferreira J A and Kling W L 2006 Wind Turbines Emulating Inertia and Supporting Primary Frequency Control IEEE Trans. Power Syst. 21 433–4

[57] Kayıkçı M and Milanović J V. 2009 Dynamic contribution of DFIG-based wind plants to system frequency disturbances IEEE Trans. Power Syst. 24 859–67

[58] He W, Yuan X, Hu J, Xiong X, Chen N and Zhu L 2014 Providing inertial support from wind turbines by adjusting phase-locked loop response IEEE Power and Energy Society General Meeting vol 2014–Octob (IEEE) pp 1–5

[59] Xiong X, Yuan X, Hu J and He W 2014 An alternative inertial control technology for full-converter wind turbines 13th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants

[60] Engler A 2002 Regelung von Batteriemotstromrichtern in modularen und erweiterbaren Inselnetzen (Berlin: Dissertation.de)

[61] Huang L, Xin H, Zhang L, Wang Z, Wu K and Wang H 2017 Synchronization and Frequency Regulation of DFIG-Based Wind Turbine Generators with Synchronized Control IEEE Trans. Energy Convers. 32 1251–62

[62] Fazeli M, Bozhko S V., Asher G M and Yao L 2008 Voltage and frequency control of offshore
DFIG-based wind farms with line commutated HVDC connection 4th IET International Conference on Power Electronics, Machines and Drives (PEMD 2008) pp 335–9

[63] Fazeli M, Asher G M, Klumpner C, Yao L and Bazargan M 2012 Novel integration of wind generator-energy storage systems within microgrids IEEE Trans. Smart Grid 3 728–37

[64] Ekanayake J and Jenkins N 2004 Comparison of the response of doubly fed and fixed-speed induction generator wind turbines to changes in network frequency IEEE Trans. Energy Convers. 19 800–2

[65] D’Arco S and Suul J A 2014 Equivalence of Virtual Synchronous Machines and Frequency-Droops for Converter-Based MicroGrids IEEE Trans. Smart Grid 5 394–5

[66] Brogan P, Knueppel T, Elliott D and Goldenbaum N 2018 Experience of Grid Forming Power Converter Control Digital Proceedings of the 17th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as Transmission Networks for Offshore Wind Power Plants (Energynautics GmbH)

[67] Kundur P 1994 Power System Stability And Control (McGraw-Hill, Inc.)

[68] Cheng X, Sun X, Chai J and Zhao Y 2017 Virtual Synchronous Control Strategy for Doubly-fed Induction Generator Under Asymmetrical Grid Faults 2017 20th International Conference on Electrical Machines and Systems, ICEMS 2017 (IEEE) pp 1–6

[69] Jonkman B and Kelley N 2016 TurbSim: A stochastic, full-field, turbulence simulator primarily for use with InflowWind/AeroDyn-based simulation tools