Acute and sub-acute toxicity study of aqueous extract of *Pericopsis (Afrormosia) laxiflora* (Benth.) on white albino rats

Ouattara Abou, Koné Monon, Golly Kofï Julien, Ouattara Karamoko and Coulibaly Adama

DOI: https://doi.org/10.22271/phyto.2020.v9.i6a.12905

Abstract

Many plants investigated elsewhere were found to contain toxic substances. The objective of this study is to evaluate acute and sub-acute toxicity of aqueous extract of *Pericopsis laxiflora*, plant traditionally used to treat different diseases in Côte d’Ivoire. Acute toxicity of aqueous extract was assessed at a dose of 5000 mg/kg bw. For sub-chronic toxicity testing, Wistar rats were orally administered with different dose of the plant extract for 28 days. There was no mortality reported or any toxicity signs including autonomic effects in animals administered orally. The weights of the rats of the different batches increased over the 28 days after oral administration of the aqueous extract. Aqueous extract of *Pericopsis laxiflora* is not likely to produce any severe toxic effects. However, prolonged oral administration at high dose may cause observable changes in biochemical parameters, in particular Red blood cell and Platelets.

Keywords: *Pericopsis laxiflora*, Biochemical, hematological, toxicity

Introduction

The use of plants for the treatment of diseases dates back to the history of human life. In all parts of the world and more precisely in Africa and other least developed countries from Asia, plants are used in traditional medicine to treat different communicable and non-communicable diseases. It is estimated that more that 80% of people living in developing countries frequently use traditional practices for their primary health care needs. This situation has given rise to inquietude among health professionals and consumers on the issue of safety. Indeed, many plants investigated elsewhere were found to contain toxic substances like certain secondary metabolites. Among them are tannins, saponins, terpenoid, cyanogenic, toxic amino acids, glycosides, alkaloids, coumarins, flavonoids. *Pericopsis laxiflora* (Benth.) is traditionally used to treat different diseases. In Côte d’Ivoire, a decoction of the leaves and bark or roots of *Pericopsis laxiflora* is taken to treat headache, stomach ulcers, stomach aches, upset stomach, gastritis, enteritis, heart pain, abdominal pain. It is also used throughout the dry forests and savannas of Africa. For example, in Guinea, it is used against shigellosis and colibacillosis. In Ghana, this plant is used in the treatment of malaria and as antiulcer ancestral area Benoue in Nigeria. Many studies reported the biological activities of extracts of this medicinal plant. Despite their biological properties the toxicological profile has not been clearly established. Therefore, the evaluation of the toxicity remains a priority in order to bring more confidence to their use. Thus, the acute and sub-acute toxicity of aqueous extract of *Pericopsis laxiflora* was evaluated in rat models.

Materials and methods

Plant collection

The plant, *Pericopsis laxiflora*, (Benth.) was obtained from Lataha village in Korhogo Department of Northern Côte d’Ivoire in December 2019. The plant’s identity was confirmed at the herbarium of the Department of Agroforestry, Jean Lorougnon GUEDE University, Côte d’Ivoire.

Preparation of aqueous extract of *Pericopsis laxiflora*

Fresh stem bark samples were cut into small pieces and then dried under shade for a week. 100 g of plant powder were macerated in 1 L of distilled water and homogenized under magnetic stirring for 24 hours at 25°C using a magnetic stirrer RCT-type IKAMAG. The homogenate obtained was filtered successively twice cotton wool and once on Whatman paper No 2.
The volume of the filtrate obtained is first reduced by means of a rotary evaporator Büchi type with the temperature of 60 °C. Then the rest of the filtrate is evaporated using an oven type Med Center Venticell at 50 °C to give a brown powder which is the total aqueous extract [14].

Experimental animals

Fifthy six white male albino rats (Wistar stock) were obtained from the Department of Biochemistry and Microbiology, Jean Lorougnon GUEDE University, Côte d’Ivoire. The animals were fed on diet specially prepared from chick Grower’s mash and were given water ad libitum throughout the study period. Animals’ weights ranged from 143 g to 158 g just before the commencement of the experiment.

Experimental design for acute toxicity study

The study was conducted in two phases using a total of sixteen male rats. In the first phase, nine rats were divided into 3 groups of 3 rats each. Groups 1, 2 and 3 animals were given 10, 100 and 1000 mg/kg body weight (b.w.) of the extract, respectively, to possibly establish the range of doses producing any toxic effect. Each rat was given a single dose after at least 5 days of adaptation. In addition, a fourth group of three rats was set up as control group and animals in the group were not given the extract.

In the second phase, further specific doses (1600, 2900 and 5000 mg/kg b.w.) of the extract were administered to three rats (one rat per dose) to further determine the correct LD50 value. The extract was dissolved in Phosphate buffered saline (PBS) solution and given via intraperitoneal route. All animals were observed frequently on the day of treatment and for 2 weeks for signs of acute toxicity. Experiment was conducted in two phases; each dose group of phase-1 made up of 3 rats while those in phase 2 have 1 rat per group [15, 16].

Sub-acute toxicity study

For sub-chronic toxicity testing, twenty Wistar rats were used. They were divided into four (4) groups of five (5) male Wistar rats in each group. Group 1 was the control group, which was orally given 1% Dimethyl Sulfoxide (DMSO) daily, for 28 days. Wistar rats in group 2, 3 and 4 were orally administered with 100 mg/kg, 300 mg/kg, and 1000 mg/kg of a rotary evaporator Büchi type with the temperature of 60 °C. Then the rest of the filtrate is evaporated using an oven type Med Center Venticell at 50 °C to give a brown powder which is the total aqueous extract (Table 1).

Experiment	Dose (mg/kg b.w)	No Dead rats after 24 hours	Observation
Phase-1*			
10	0/3	No sign of central nervous system intoxication (gait, lethargy, drowsiness, restlessness, convulsions and coma). No mortality reported or any toxicity signs including autonomic effects.	
100	0/3		
1000	0/3		
Control	0		
Phase 2			
1600	0/1		
2900	0/1		
5000	0/1		

*Experiment was conducted in two phases; each dose group of phase-1 made up of 3 rats while those in phase 2 have 1 rat per group

Results

Acute toxicity test

There was no mortality reported or any toxicity signs including autonomic effects (perspiration, defecation, incontinence in urination, salvation and pilo-erection) in animals administered orally with of 5000 mg/kg body weight (b.w.) of aqueous extracts of *P. laxiflora*. In addition, there was no sign of central nervous system intoxication (gait, lethargy, drowsiness, restlessness, convulsions and coma) reported (Table 1). In general, the weights of the rats of the different batches increased over the 28 days after oral administration of the aqueous extract of *P. laxiflora*. The rats in the control group recorded weight gains of between 6.94 g (day 7) and 56.35 g (day 28). The rats which received the dose of 100 mg/kg of bw had weight gains which varied between 14.44 g (day 7) and 54.44 g (day 28). At the concentration of 300 mg/kg bw, the weight gains of the rats were ranged between 22.3 g (day 7) and 46.91 g (day 28). The rats which consumed the dose of 1000 mg/kg bw had their weight increased from 2.3 g (day 7) to 40.45 g (day 28). However, the concentration of 300 mg/kg bw was that which increased the weight of the rats compared to the control batch (Figure 1).
Table 2 presents the biochemical parameters of the rats having received different doses of the aqueous extract of *P. laxiflora*. At the concentration of 100 mg/kg b.w, the aqueous extract studied did not modify the biochemical parameters of the rats compared to the rats in the control batch. The rats which absorbed the aqueous extract at the concentration of 300 mg/kg b.w had their sodium level (141.58 ± 6.31 mmol) modified compared to the control batch (*p* < 0.05). Furthermore, the rats which received the dose of 1000 mg/kg b.w also had some of their biochemical parameters significantly modified (*p* < 0.05) in particular Na (141.87 ± 3.49 mmol) and K (7.96 ± 0.29 mmol).

Table 3: Effects of of aqueous stem bark extract of *P. laxiflora* on haematological parameters in Wistar rats.

haematological parameters	Control	Dose of *P. laxiflora* (mg/kg b.w)		
		100	300	1000
RBC (10^6/µL)	8.20 ± 0.13	8.22 ± 0.20±ns	9.33 ± 0.15*	9.37 ± 0.19*
Hb (g/dl)	13.66 ± 0.80	13.40 ± 0.61±ns	13.56 ± 0.65±ns	13.68 ± 0.64±ns
Hct (%)	41.71 ± 1.2	41.84 ± 1.31±ns	42.01 ± 1.45±ns	41.98 ± 1.35±ns
MCV (µL)	66.18 ± 1.23	65.92 ± 1.80±ns	66.12 ± 1.60±ns	66.23 ± 1.55±ns
MCH (pg)	18.22 ± 1.23	18.10 ± 1.15±ns	18.15 ± 1.76±ns	18.20 ± 1.30±ns
MCHC (%)	34.10 ± 0.40	34.14 ± 0.51±ns	33.70 ± 0.58±ns	33.84 ± 0.65±ns
WBC (10^3/µL)	8.15 ± 1.71	8.21 ± 1.10±ns	8.36 ± 1.30±ns	9.16 ± 1.29±ns
Neutrophils (%)	21.78 ± 4.10	22.02 ± 4.33±ns	21.98 ± 4.65±ns	21.85 ± 2.33±ns
Lymphocyte (%)	71.20 ± 5.22	71.48 ± 4.50±ns	68.30 ± 3.87*	70.98 ± 3.60*
Platelets (10^3/mm³)	7.85 ± 0.67	7.81 ± 0.19±ns	8.02 ± 0.54*	8.60 ± 0.48*

*significant (*p* < 0.05), ns: Not significant. Values are expressed as Mean ± SEM. RBC: Red blood cell; Hb: Haemoglobin; Hct: haematocrit, MCV: Mean cell volume, MCH: Mean corpuscular haemoglobin, MCHC: Mean corpuscular haemoglobin concentration, WBC: White blood cells.

Discussion

The first part of this study should determine the lethal dose (LD₅₀) of extract, based on the observation of clinical signs and mortality in rats. Any clinical toxic effect was observed after oral administration of extract. No sign of central nervous system intoxication (gait, lethargy, drowsiness, restlessness, convulsions and coma). No changes in behavior and no deaths were recorded during the experiment. Our results showed that the LD₅₀ of aqueous extract of *P. laxiflora* were higher than 5000 mg/kg. Therefore, this extract could be considered non-toxic [18]. The body weight of treated rats gradually increased. This
could be due to body fat accumulation\cite{19, 20}. No differences was observed on most biochemical parameters of rats administrated with aqueous extract of \textit{P. laxiflora}. The serum level of the transaminases ALT and AST did not undergo any significant variation and this good availability of transaminases in the blood of the experimental rats would be due to the presence of betulin resulting from the aqueous extract administered. These results showed in other words that the liver and muscles to a lesser degree have not been reached. Indeed, the liver is the first target of toxicity and the first organ exposed to all that is absorbed in the small intestine. In addition, the liver works in combination with the kidneys to remove toxic substances from the blood \cite{21}. In the present study, no significant difference in creatinine and urea concentrations was observed in rats administrated with the aqueous extract of \textit{P. laxiflora}. These results also mean that the extract studied has no toxic effect on the kidney.

A slight significant difference of Na and K was observed in rats treated with this extract at 300 and 1000 mg/kg. The decrease of Na and K could be explained by a failure or blockage of the Na/K+ ATPase pump, thus causing a massive diffusion of K+ ions in the extracellular medium \cite{22}. Evaluations of haematological parameters provide useful information on the adverse effects of extracts on blood elements \cite{23}. In our study, the non-significant changes of several haematological parameters observed indicated that \textit{P. laxiflora} extract does not affect sur thses parameters.

Conclusion

The LD$_{50}$ of aqueous extract of \textit{P. laxiflora} is higher than 5000 mg/kg body weight. This extract could be considered non-toxic to rats. Aqueous extract of \textit{P. laxiflora} is not likely to produce any severe toxic effects. However, prolonged oral administration at high dose may cause observable changes in biochemical parameters, in particular RBC and Platelets. Further studies on sub-chronic toxicity will allow to definitively confirm the toxicity profile of this medicinal plant. Therefore, caution and safety measures should be taken before oral ingestion of \textit{P. laxiflora} for therapeutic purposes or for other uses; and prolonged use should be discouraged and lower doses encouraged. The histopathology study is needed to reveal extensive effects of \textit{P. laxiflora} in the body.

Références

1. Boukandou MM, Mewono L, Aboughe AS. Toxicity studies of medicinal plants used in sub-Saharan Africa. J Ethnopharmacol 2015;174(4):618-627.
2. Gurib-Fakim A. Medicinal plants: traditions of yesterday and drugs of tomorrow. Mol Aspects Med 2006;27(1):1-93.
3. Van DS, Griffiths S, Van ZL, Malan SF. The importance of including toxicity assays when screening plant extracts for antimalarial activity. Afr. J Biotechnol 2009;8(20):5595-601.
4. Ishii R, Yoshikawa K, Minakata H, Komura H, Kada T. Specificities of bio-antimutagens in plant kingdom. Agric. Biol. Chem 1984;48(10):2587-2591.
5. Ibegbulem CO, Chikezie PC, Mbagwu FN. Medicinal potentials and toxicity concerns of bioactive principles. Med. Aromat Plants 2015;4(3):202.
6. Demain AL, Fang A. The natural functions of secondary metabolites. Adv. Biochem. Eng. Biotechnol 2000;69:1-39.
7. Adjanohoun EJ, Ake-Assi L. Contribution au recensement des plantes médicinales de Côte d’Ivoire, Centre Nat. Floristique, Université Abidjan, 1979, 358.
8. Ake-Assi L. Quelques plantes utilisées dans le traitement des maladies cardiaques en Côte d’Ivoire. Bull. Med Trad 1988;2(1):96-100.
9. Keita SM, Amasson TJ, Baum RB, Marles R, Camara F, Traore KA. Etude ethnopharmacologique traditionnelle de quelques plantes médicinales anhelminthiques de la République de Guinée, Rev. Med. Vet. Pharm. Af 1995;9(2):119-134.
10. Alex A, Alfred A, Oteng Y, George T, Monique S. Ethnobotanical study of some Ghanaian anti-malarial plants, Journal of ethnomedicinal 2005;99(2):273-279.
11. Ekpendu TOE. Nigerian ethnomedicine and medicinal plant flora: Anti-ulcer plants of the Benue area of Nigeria, West Afr. J. Pharmacol. Drug Res 2003;19(1):1-4.
12. Ouattara A, Ouattara K, Coulibaly A, Adima AA. Phytochemical screening and evaluation of the antibacterial activity of bark extracts of \textit{Pericopsis} (Afromosia) \textit{laxiflora} (Benth.) of \textit{Escherichia coli} and \textit{Klebsiella pneumoniae} ESBL. Journal of Chemical and Pharmaceutical Research 2013;5(1):86-90.
13. Ouattara K, Ouattara A, Ouattara L, Rajib M, Debopam B, Balashpriya D et al. \textit{In vitro} antioxidant activity and antibacterial properties of trunk bark of \textit{Pericopsis laxiflora} Benth. (Leguminosae). Journal of Microbiology and Biotechnology Research 2016;6(5):17-23.
14. Guede-Guina F, Kra AM, Bong A, Vangah-Manda M, et De souza C. Inhibition par MISCA-\textit{F} de la croissance de \textit{Aspergillus fumigatus}, \textit{Candida albicans} et \textit{Cryptococcus neoformans}, 3 germes fongiques opportunistes du SIDA, J. Afrique Bioméd 1997;2(1):11-16.
15. Lorke D. A new approach to practical acute toxicity testing. Archives of Toxicology 1983;54(4):275-287.
16. Bulus T, Atawodi SE, Mamman M. Acute toxicity effect of the aqueous extract of \textit{Terminalia avicennioides} on white albino rats. Sci. World J 2011;6(2):1-4.
17. Traore Y, Koné M, Ouattara A, Bahi C, Nathalie KG, Coulibaly A et al. Evaluation of the toxicity of the ethanol extract 70% of the bark of \textit{Terminalia macroptera} (Combretaceae) on Whistar Rats. International Journal of Biochemistry Research & Review 2019;26(2):1-17.
18. Adeneaye AA, Olajunju JA. Preliminary hypoglycemic and hypolipidemic activities of the aqueous seed extract of \textit{Carica papaya} Linn in Wistar rats. Biol. Med. 2009;1(1):1-10.
19. Teo SD, Stirling S, Thomas A, Hoberman A, Kiropes KV. A 90 day oral gavage toxicity og D methylphenidate and D, L-methylphenidate in sprague dawley rats. Toxicology 2002;179(3):183-196.
20. Harizal SN, Mamsor SM, Hasnain J, Tharakan JKJ, Abdullah J. Acute toxicity study of the standardized methanolic extract of \textit{Mitragyna speciosa} Korth in Rodent. J. Ethnopharm 2010;131(2):404-409.
21. Tulsawani R. Ninety day repeated gavage administration of Hiphophphaerhamnoides extract in rats. Food and Chemical Toxicology 2010;48(8, 9):2483-2489.
22. Betancourt-Alonso MA, Orihuela A, Aguirre V, Vázquez R, Flores-Pérez I. Changes in behavioural and physiological parameters associated with \textit{Taenia pisiformis} infection in rabbits: \textit{Oryctolagus cuniculus}; that may improve early detection of sick rabbits. World Rabbit Sci 2011;19(1):21-30.