Health-Related Quality of Life in Patients With Type 2 Diabetes (ADDQoL) in Poland, The Czech Republic and Slovakia - Gender Differences

Sylwia Anna Krzemieńska (sylwia.krzeminska@umed.wroc.pl)
Wroclaw Medical University: Uniwersytet Medyczny im Piastow Slaskich we Wroclawiu
https://orcid.org/0000-0001-7695-0967

Ewelina Bąk
University of Bielsko-Biała: Akademia Techniczno Humanistyczna w Bielsku-Białej

Andrea Polanská
University Hospital Ostrava: Fakultní Nemocnice Ostrava

Kateřina Hašová
University Hospital Ostrava: Fakultní Nemocnice Ostrava

Milan Laurinc Laurinc
Ministry of Health of The Slovak Republic

Zrubcová Dana
University of Nitra

Research Article

Keywords: diabetes, quality of life, woman, men

DOI: https://doi.org/10.21203/rs.3.rs-317142/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

The aim of this study was to compare the impact of type 2 diabetes on quality of life (QoL), taking into account gender differences in relation to individual domains of Diabetes-Related Quality of Life Audit (ADDQoL) in adult women and men from Poland, the Czech Republic and Slovakia.

Material and methods

The participants were 608 patients from three countries, of whom 278 were women and 330 men with type 2 diabetes mellitus. The tool used in the study was the Audit of Diabetes-Dependent Quality of Life (ADDQoL).

Results

The overall average QoL was slightly higher in men than in women. In ADDQoL scores, mean weighted impact scores were negative for all of the domains. The domain which was the most affected by type 2 diabetes in both men and women from all three countries was the “freedom to eat”; while the “living conditions” domain was the least affected. Diabetes had a slightly negative average weighted impact on most men and women - AWI<-3.0.

Except for the different AWI scores in men with type 2 diabetes depending on their education, neither women nor men revealed any significant changes in terms of the impact of education, residence, marital status, smoking, hypertension, or taking anti-hypertensive drugs.

Conclusions

Type 2 diabetes mellitus negatively affects all the domains of life, in both women and men in all three countries; however, this impact is inconsiderable. The participants assess their quality of life as good and very good.

Introduction

Diabetes mellitus (DM) as a group of metabolic syndromes characterized by hyperglycemia due to a defect in the secretion and/or activity of insulin [1] is a major global health threat. Unfortunately, diabetes leads to serious complications which might result in disability or even death. Diabetes is a concern for 463 million people globally and 60 million in Europe. In European countries, it affects 8.9% of the population aged between 20 and 79 years. In this population, type 2 diabetes accounts for 90% of all cases.

The prevalence of diabetes increases with age, and it is estimated that there are more cases in the group of women in the population of DM patients, which may be related to their average life expectancy.[2]

Diabetes mellitus requires specialized management in terms of education, therapy and self-care.[3] Restrictions related to compliance with therapy rules based on diet, regular use of medications or insulin therapy and optimal physical activity combined with blood glucose measurements can result[4] in a negative impact of diabetes on the quality of life in patients.[5]

Gender differences are an important factor in the assessment of the health-dependent quality of life because gender plays a major role in decisions concerning health, as well as in the perception of health in different countries and cultures.[6] Poland, Czech Republic, and Slovakia are neighboring countries with similar economic status and cultural behavior patterns, which is why the authors decided to conduct this type of assessment in these countries.

In the literature, there are reports concerning gender differences in the perception of the quality of life with respect to selected population samples[6] or comorbidities: cardiovascular[7] HIV[8] or chronic diseases in relation to mental state,[9] but studies on gender differences in the perception of the diabetes-dependent quality of life are scarce.[10]

The objective of the present study was to compare the impact of type 2 diabetes mellitus (T2DM) on the quality of life (QoL), taking into account gender differences in relation to individual domains of the Audit of Diabetes-Dependent Quality of Life (ADDQoL) and relationships between QoL, selected socio-demographic factors or clinical parameters in adult women and men with diabetes from Poland, the Czech Republic, and Slovakia.

Patients And Methods

This observational-correlational study was conducted from May 2016 to August 2019 among T2DM patients treated at specialized diabetes clinics in Poland, Slovakia, and the Czech Republic.

The study procedure followed the STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) recommendations.

A total of 660 patients participated in the study, 220 from each country. The participants were enrolled for the study based on the following inclusion criteria: type 2 diabetes mellitus, age over 18 years, duration of the disease longer than 5 years, no cognitive impairment, the possibility
to independently complete the questionnaire, and informed consent to participate in the study.

Due to the incompleteness of some of the questionnaires and patients resigning in the course of the study, the number of patients who were eventually enrolled was 608. There were 100 women and 114 men from Poland, 82 women and 114 men from the Czech Republic, and 96 women and 102 men from Slovakia. The duration of the disease was: for Polish women 5.64 ± 2.35 years, Polish men 6 ± 2.92 years, Czech women 5.43 ± 2 years, Czech men 5.32 ± 2.66 years, Slovak women 5.92 ± 1.7 years and Slovak men 6.08 ± 2.67 years.

Socio-demographic data, such as age, sex, place of residence, education, marital status, professional activity; and clinical data, such as body weight, comorbidities, duration of DM, complications of DM, and medications were obtained from patients’ medical records. The diabetes complications and comorbidities were included only if confirmed by a specialist.

Before the start of the study, each patient was informed about its purpose. Each patient then completed the Audit of diabetes-dependent QoL (ADDQoL) questionnaire. The time needed for survey completion was 20–30 minutes.

According to the data of the Polish National Health Fund (NFZ) and the Diabetes-Coalition in Poland, there are ca. 3.5 million patients with DM in Poland, which accounts for 9% of the total population. Type 2 diabetes has been diagnosed in 2 million people, which is 6% of the population. Considering that 6% of the Polish population has type 2 [11] DM, with the maximum permissible error of 3% and confidence level of 90%, the minimum sample size can be estimated as 163 patients. For the Czech Republic, with a population of 10,650,00, with a stratum weight of 7.38%, [12] a confidence level of 95%, and an estimation error of 4%, the minimum sample would be 164 patients. For Slovakia, with a population of 5,450,000, a stratum weight of 5.85%[13] confidence of 95%, and estimation error of 4%, the minimum sample would be 132 patients.

Eventually, 214 participants from Poland, 196 from the Czech Republic, and 198 from Slovakia were qualified for the study, therefore the sample size was considered representative.

Instrument

The Audit of Diabetes-Dependent Quality of Life (ADDQOL) consists of two overview items; one of them measures generic overall QoL and the remaining 19 items are concerned with the impact of diabetes on specific aspects of life. The 19 life domains are as follows: leisure activities, working life, local or long-distance journeys, holidays, physical health, family life, friendships and social life, close personal relationships, sex life, physical appearance, self-confidence, motivation to achieve things, people's reactions, feelings about the future, financial situation, living conditions, dependence on others, freedom to eat, and freedom to drink. With respect to these 19 domains, the respondents are asked to evaluate how their life would be if they did not have diabetes. The scales range from −3 to +1 for 19 life domains (impact rating) and from 0 to +3 for attributed importance (importance rating). A weighted score for each domain is calculated as a multiplier of impact rating and importance rating (ranging from −9 to +3). Lower scores reflect poorer QoL. Finally, the average weighted impact score (ADDQOL score) is calculated for the entire scale across all applicable domains.[14, 15]

The study in Poland relied on the Polish language version of the ADDQoL, as its psychometric properties, determined earlier, indicate that it is a reliable tool for the assessment of QoL in Polish adults with T1DM or T2DM.[16] Validation in the respective countries also confirmed the utility of the instrument for the evaluation of patients with T2DM in Slovakia and the Czech Republic.[17] The instrument is characterized by high consistency and reliability coefficients for all three countries. Cronbach's alpha values were 0.928 for Poland, 0.936 for the Czech Republic, and 0.932 for Slovakia.

The analysis was performed in the R program, version 3.6.2.[18] The level of statistical significance assumed in all the calculations was α = 0.05. The mean value and the standard deviation were calculated for the quantitative data. The Mann-Whitney U test was used to compare two independent groups characterized by non-normal distributions. The normality of distributions was verified using the Shapiro-Wilk test. The Chi-square test or the Yates-corrected Chi-square test was used to verify the occurrence of correlations between the analyzed variables. The reliability of the scale was determined by calculating Cronbach's alpha coefficient. A logistic regression model was created in order to determine the risk factors for the occurrence of lower AWI values (higher negative impact of diabetes on the QoL).

Ethical Considerations

The study was approved by the Bioethics Committee of the Beskid Regional Chamber of Physicians in Bielsko Biała, Poland, on February 11, 2016 (approval no. 2016/02/ 11/1), and the Bioethics Committee of the Wrocław Medical University (no. 621/2017). All participants were informed about the content of the study and gave their informed consent to participate in it. The study protocol was prepared in accordance with the Helsinki Declaration.

Results

The characteristics of women and men by country are presented in Table 1.
Parameter	Poland	Male (N = 114)	p	Czech Republic	Male (N = 114)	p	Slovakia	Male (N = 102)	p
Age [years]									
mean ± SD	61.45± 8.29	61.61± 7.31	0.774	58.71± 6.46	59.48± 7.38	0.767	58.31± 6.27	59.26± 7.67	0.942
median	61.5	62		61	58		61	61	
quartiles	54–65	58–65		52–65	56–62		52–65	58–62	
BMI [kg/m2]									
mean ± SD	25.34± 4.86	26.92± 4.38	0.002	26.61± 2.93	27.06± 4.31	0.781	25.73± 2.24	24.85± 2.85	0.005
median	24.45	27.6		24.84	25.25		24.84	23.89	
quartiles	23.43– 28.33	24.49– 28.91		24.39– 28.73	22.71– 29.6		24.15– 28.73	22.71– 27.56	
Diabetes duration [years]									
mean ± SD	5.64± 2.35	6± 2.92	0.636	5.43± 2	5.32± 2.66	0.279	5.92± 1.7	6.08± 2.67	0.459
median	6	6		6	5		7	6	
quartiles	4–7	4–8		4–7	3–6		4–7	4–8	
Glucose fasting [mg/dL]									
mean ± SD	149.94± 66.68	158.17± 45.14	0.023	152.34± 39.59	159.38± 42.94	0.135	147.54± 31.14	154.43± 44.11	0.184
median	132	143		132	145		132	145	
quartiles	121–148	123.25–188.5		121–189	124–201		121–189	121–187	
HbA1c [%]									
mean ± SD	7.26± 0.8	7.84± 0.91	<0.001	7.11± 1.02	8.44± 1.38	<0.001	6.96± 0.91	8.45± 1.54	<0.001
median	7.1	7.8		6.8	8.9		6.8	8.9	
quartiles	6.8–8	7.2– 8.28		6.1–8.1	7.2– 9.7		6.1–8.1	6.8– 9.7	
Education									
Vocational or primary	30 (30.00%)	65 (57.02%)	<0.001	30 (36.59%)	56 (49.12%)	0.16	34 (35.42%)	53 (51.96%)	0.047
Pre-university	52 (52.00%)	32 (28.07%)	<0.001	45 (54.88%)	47 (41.23%)		55 (57.29%)	46 (45.10%)	
Higher	18 (18.00%)	17 (14.91%)	<0.001	7 (8.54%)	11 (9.65%)		7 (7.29%)	3 (2.94%)	
Place of residence									
Rural	35 (35.00%)	39 (34.21%)	0.715	38 (46.34%)	50 (43.86%)	0.842	70 (72.92%)	53 (51.96%)	0.004
Urban	64 (64.00%)	75 (65.79%)		44 (53.66%)	64 (56.14%)		26 (27.08%)	49 (48.04%)	
Marital status									
Not in relationship	1 (1.00%)	0 (0.00%)	<0.001	0 (0.00%)	50 (43.86%)	<0.001	1 (1.04%)	53 (51.96%)	<0.001
In relationship	23 (23.00%)	45 (39.47%)	<0.01	82 (100.00%)	64 (56.14%)		95 (98.96%)	49 (48.04%)	
Professional activity									
Currently working	75 (75.00%)	69 (60.53%)		32 (39.02%)	64 (56.14%)	0.026	26 (27.08%)	49 (48.04%)	0.004
Not working	2 (2.00%)	0 (0.00%)		50 (60.98%)	50 (43.86%)		70 (72.92%)	53 (51.96%)	
Smoking									
Never	29 (29.00%)	35 (30.70%)	0.903	35 (38.60%)	44 (38.60%)	<0.001	76 (79.17%)	58 (56.86%)	<0.001

p - Mann-Whitney test for quantitative variables, chi-squared or Fisher's exact test for qualitative variables

* Statistically significant (p < 0.05)
In the female group, the overall quality of life was slightly higher in Czech women (3.45 ± 1.07) than in Slovak (3.44 ± 1.02) and Polish (3.33 ± 0.95) women.

In the male group, the overall quality of life was slightly higher in Slovak men (3.51 ± 0.94) than in Polish (3.47 ± 0.89) and Czech (3.32 ± 0.81) men.

It can be noted that the generally perceived quality of life in the study group is higher in men than in women.

The average score for the item 'If I did not have diabetes, my quality of life would be' was slightly higher in the group of Polish women (2.66 ± 0.93) than in Slovak (2.57 ± 0.86) and Czech (2.49 ± 0.96) women. In the male group, it was the highest for Poles (2.64 ± 0.9), then for Czechs and Slovaks (2.62 ± 0.92).

In general, women from all three countries assessed their quality of life as good and very good: 64% of Polish, 55.15% of Slovak, and 50% of Czech women. Only one woman from Poland assessed her quality of life as excellent.

Men similarly assessed their overall quality of life as good and very good: 65.79% of Polish, 55.88% of Slovak, and 53.51% of Czech men.

It can be noted that the quality of life received the highest scores from Polish patients, both women, and men.
When responding to the item "If I did not have diabetes, my quality of life would be", women in all three countries claimed that it would be better − 85.42% of Slovak, 84.15% of Czech, and 81% of Polish women. Again, only one woman from Poland claimed that her quality of life would be worse without diabetes. Men also claimed that their quality of life would be better − 84.32% of Slovak, 81.58% of Polish, and 81.57 % of Czech men.

There are also no significant differences between women from Poland, the Czech Republic, and Slovakia, and between men from Poland, the Czech Republic, and Slovakia (p-value > 0.05 in both cases) (Table 2).

Table 2
General quality of life of woman and men and with diabetes

Parameter	Poland		Czech Republic		Slovakia	
In general, my present quality of life is						
mean ± SD	3.33 ± 0.95	p = 0.188	3.45 ± 1.07	p = 0.363	3.44 ± 1.02	p = 0.513
median	3		3.5		3	
quartiles	3–4		3–4		3–4	
If I did not have diabetes, my quality of life would be	2.66 ± 0.93	p = 0.905	2.49 ± 0.96	p = 0.339	2.57 ± 0.86	p = 0.6
median	3		2.5		3	
quartiles	2–3		2–3		2–3	

In general, my present quality of life is

Excellent (+3)	1 (1.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)
Very good (+2)	15 (15.00%)	13 (11.40%)	17 (20.73%)	13 (11.40%)	15 (15.62%)	9 (8.82%)
Good (+1)	49 (49.00%)	48 (42.11%)	24 (29.27%)	62 (54.39%)	42 (43.75%)	48 (47.06%)
Neither good or bad (0)	21 (21.00%)	42 (36.84%)	33 (40.24%)	29 (25.44%)	25 (26.04%)	34 (33.33%)
Bad (-1)	13 (13.00%)	9 (7.89%)	4 (4.88%)	9 (7.89%)	11 (11.46%)	8 (7.84%)
Very bad (-2)	1 (1.00%)	1 (0.88%)	3 (3.66%)	1 (0.88%)	2 (2.08%)	1 (0.98%)
Extremely bad (-3)	0 (0.00%)	1 (0.88%)	1 (1.22%)	0 (0.00%)	1 (1.04%)	2 (1.96%)

If I did not have diabetes, my quality of life would be

Very much better (-3)	11 (11.00%)	12 (10.53%)	14 (17.07%)	13 (11.40%)	9 (9.38%)	13 (12.75%)
Much better (-2)	32 (32.00%)	38 (33.33%)	27 (32.93%)	38 (33.33%)	37 (38.54%)	29 (28.43%)
A little better (-1)	38 (38.00%)	43 (37.72%)	28 (34.15%)	42 (36.84%)	36 (37.50%)	44 (43.14%)
The same (0)	18 (18.00%)	21 (18.42%)	13 (15.85%)	21 (18.42%)	14 (14.58%)	16 (15.69%)
Worse (1)	1 (1.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)

p - Mann-Whitney test for quantitative variables, chi-squared or Fisher's exact test for qualitative variables

* Statistically significant (p < 0.05)

Weighted impact score

Table 3 presents weighted impact scores by gender for each country. In the study group, weighted scores were negative for all the domains. In all three groups of women, the lowest scores were given to "freedom to eat", and they were − 4.15 ± 2.7 for Polish, − 4.17 ± 2.53 for Czech, and − 4.06 ± 2.26 for Slovak women. Similarly, in the male group, the lowest scores were given to "freedom to eat", but in a different order: −4.32 ± 2.7 for Polish, -4.31 ± 2.61 for Slovak, and 4.15 ± 2.47 for Czech men (Table 3). This means that these aspects of life were the most affected by diabetes.
Weighted impact score	Poland	p	Czech Republic	p	Slovakia	p				
	Female (N(N = 100))		Male (N = 114)		Female (N = 96)					
Leisure activities	mean ± SD	-1.61 ± 1.7	-1.72 ± 1.74	p = 0.562	-1.75 ± 1.84	1.65	p = 0.839	-2.02 ± 1.85	1.66	p = 0.139
	median	-2	-2		-2		-2	-2		-2
	quartiles	2–0	-3–0		2–0		-3–0	-2–0		-2–0
Working life	mean ± SD	-2.71 ± 2.74	-2.64 ± 2.95	p = 0.711	-2.53 ± 2.52	2.9	p = 0.798	-2.85 ± 2.66	3.1	p = 0.318
	median	-2	-2		-2		-2	-2		-2
	quartiles	4–0	-4–0		-4–0		-4–0	-4–0		-4–0
Journeys	mean ± SD	-2.07 ± 2.23	-2.18 ± 2.51	p = 0.947	-1.68 ± 1.99	2.41	p = 0.019	0.5 *		
	median	-2	-2		-1		-2	-2		-2
	quartiles	4–0	-3–0		-2–0		-4–0	-4–0		-4–0
Holidays	mean ± SD	-2.57 ± 2.64	-2.28 ± 2.46	p = 0.518	-2.56 ± 2.76	2.56	p = 0.572	-2.74 ± 2.7	2.8	p = 0.686
	median	-2	-2		-2		-2	-2		-2
	quartiles	4–0	-3–0		-3–0		-4–0	-4–0		-4–0
Physical health	mean ± SD	-2.64 ± 2.43	-2.42 ± 2.38	p = 0.483	-2.39 ± 2.31	2.7	p = 0.374	-2.69 ± 2.31	2.56	p = 0.374
	median	-2	-2		-2		-2	-2		-2
	quartiles	4–1	4–1		4–1		4–1	4–0		4–0
Family life	mean ± SD	-2.06 ± 2.55	-1.79 ± 2.4	p = 0.558	-2.11 ± 2.48	2.62	p = 0.381	-2.09 ± 2.4	2.6	p = 0.629
	median	-1	-1		-2		0	-2		-1
	quartiles	4–0	-3–0		-3–0		-3–0	-3–0		-3–0
Friendship & social life	mean ± SD	-2.05 ± 2.29	-1.79 ± 2.19	p = 0.365	-1.85 ± 2.14	2.23	p = 0.5	-1.89 ± 2.32	2.1	p = 0.645
	median	-2	-1		-2		-2	-1		-1
	quartiles	3–0	3–0		2–0		4–0	3–0		3–0
Personal relationship	mean ± SD	-2.26 ± 2.58	-2.11 ± 2.79	p = 0.522	-1.76 ± 2.33	2.62	p = 0.599	-2.42 ± 2.63	2.94	p = 0.424
	median	-2	-1		0		0	-2		-1
	quartiles	4–0	4–0		-3–0		-3–0	-4–0		-4–0
Sex life	mean ± SD	-2.48 ± 2.86	-2.36 ± 2.58	p = 0.942	-1.97 ± 2.67	2.69	p = 0.149	0.489		
	median	-2	-2		-1		-2	-2		-2
	quartiles	4–0	4–0		-3–0		-4–0	-4–0		-4–0
Physical appearance	mean ± SD	-2.32 ± 2.87	-2.35 ± 2.76	p = 0.814	-2.58 ± 2.95	3.1	p = 0.9	-2.44 ± 3.01	2.99	p = 0.817
	median	-2	-2		-2		-2	-2		-1
	quartiles	4–0	-4–0		-4–0		-4–0	-4–0		-4–0

p - Mann-Whitney test, * statistically significant (p < 0.05)
The third-most affected area for Poles and Czechs was "freedom to drink", and for Slovaks - "feelings about the future" (Table 4). Also, for all the male participants, it was "freedom to eat" that was the most affected by DM. The second-most affected domain for Poles and Czechs was "feelings about the future", while for Slovaks it was "freedom to drink". The third-most affected domain for Polish women was their "working life", while for Czech and Slovak women it was "freedom to drink". The second-most affected domain for Poles and Czechs was "feelings about the future", while for Slovaks it was "freedom to drink".

Table 4: Impact of DM on Various Domains

Domain	Mean ± SD	p-value	Quartiles	Median
Freedom to eat	-2.19 ± 2.95	0.696	0-0	-2
Freedom to drink	-2.81 ± 2.45	0.415	0-0	-2
People's reaction	-1.34 ± 2.03	0.903	0-0	-1.31
Feelings about future	-2.72 ± 2.52	0.629	0-0	-2.72
Financial situation	-2.65 ± 2.41	0.642	0-0	-2.65
Living conditions	-1.33 ± 2.01	0.711	0-0	-1.33
Dependence on others	-1.92 ± 2.37	0.022	0-0	-1.92
Self-confidence	-2.33 ± 2.62	0.616	0-0	-2.33
Motivation	-2.41 ± 2.4	0.688	0-0	-2.41

Ranks

In all the study groups of women, the domain on which DM had the highest impact was the patients’ "freedom to eat". For Poles, the second-most affected sphere was "feelings about the future", and for Czech and Slovak women it was "freedom to drink". The third-most affected domain for Polish women was their "working life", while for Czech and Slovak women - "feelings about the future".

Also, for all the male participants, it was "freedom to eat" that was the most affected by DM. The second-most affected domain for Poles and Czechs was "feelings about the future", while for Slovaks it was "freedom to drink". The third-most affected area for Poles and Czechs was "freedom to drink", and for Slovaks - "feelings about the future" (Table 4.).
Weighted impact score	Poland Female	Poland Male	Czech Republic Female	Czech Republic Male	Slovakia Female	Slovakia Male
Leisure activities	15	16.0	16	17.0	18	16.0
Working life	3	4.0	7	5.0	4	4.0
Journeys	13	12.0	17	9.0	14	12.0
Holidays	6	10.0	6	11.0	8	10.0
Physical health	8	5.0	9	4.0	5	5.0
Family life	14	14.5	11	14.0	15	14.5
Friendship & social life	17	14.5	14	12.5	16	14.5
Personal relationship	12	13.0	15	16.0	13	13.0
Sex life	10	7.0	12	8.0	9	7.0
Physical appearance	11	8.0	5	6.0	11	8.0
Self-confidence	7	11.0	10	12.5	10	11.0
Motivation	9	6.0	8	10.0	7	6.0
People's reaction	18	18.0	18	18.0	17	18.0
Feelings about future	2	3.0	3	2.0	3	3.0
Financial situation	5	9.0	4	7.0	6	9.0
Living conditions	19	19.0	19	19.0	19	19.0
Dependence on others	16	17.0	13	15.0	12	17.0
Freedom to eat	1	1.0	1	1.0	1	1.0
Freedom to drink	4	3.0	2	3.0	2	2.0

The least affected domains of life in all of the groups of women and men were “living conditions”, then “people’s reaction” for Polish and Czech men and women, and Slovak men, and “leisure activities” for Slovak women (Table 4.).

The impact of diabetes on “Sex life” was almost in the middle, although it was greater in women than in men; and among the female group, it was the strongest in Czech women (Table 4.).

AWI

In the assessment of AWI, the impact of diabetes on particular items pertaining to the domains of quality of life can be divided into: high negative impact (a score from −9 to −6.1), moderate negative impact (a score from −6 to −3.1), small negative impact (a score from −3 to 0) and the absence of negative impact or a positive impact (a score from 0 to 3).

The average weighted impact (AWI) score in the study group was the lowest for Slovak women (-2.46 ± 1.62), then for Polish (-2.41 ± 1.71) and Czech (-2.27 ± 1.66) women. The results indicate a small negative impact of diabetes on the female part of the study group. The lowest weighted impact score was for Czech men (-2.33 ± 1.61), then for Slovak (-2.31 ± 1.67) and Polish (-2.21 ± 1.51) men, which also points to a small negative impact of diabetes on participants. It can be noted that the average weighted impact (AWI) score was higher for men than for women. However, no correlation was statistically significant (p > 0.05). In general, it can be concluded that diabetes has a small negative impact on all the study groups, regardless of gender (Table 5.).
Table 5
Comparison of gender AWI by country.

	Poland		Czech Republic		Slovakia	
	Female (N = 100)	Male (N = 114)	Female (N = 82)	Male (N = 114)	Female (N = 96)	Male (N = 102)
AWI mean ± SD	-2.41 ± 1.71	-2.21 ± 1.51	p = 0.559	-2.27 ± 1.66	-2.33 ± 1.61	p = 0.785
median	-2.16	-2		-2.13	-2.14	
quartiles	-3.39 - -1	-3.01 - -1.07		-3.03 - -0.91	-3.39 - -0.92	
	-3.45 - -1.06	-3.15 - -1				

p - Mann-Whitney test

Regression analysis

The linear regression model was used to verify whether the selected social and demographic factors (gender, education, residence, marital status) or clinical parameters (smoking, alcohol consumption, hypertension, and anti-hypertensive drugs), or parameters that were statistically significant in individual groups could affect the quality of life by lowering the AWI score. Additionally, the groups were divided into women and men, and within these groups, into subgroups with a lower (<-3.0), and with a higher (>3.0) AWI score.

Women with AWI >-3.0 predominate in all three countries. In the female group, no statistically significant differences between the groups with AWI < -3.0 and > -3.0 were observed depending on the selected demographic and clinical factors (all p-values higher than 0.05) (Table 6.).
Table 6
Linear regression results in the female group

Parameter	AWI Poland	p	AWI Czech Republic	p	AWI Slovakia	p					
	< -3.0 (N = 29)	> -3.0 (N = 71)		< -3.0 (N = 21)	> -3.0 (N = 61)		< -3.0 (N = 29)	> -3.0 (N = 67)			
Education	Vocational or primary	8 (27.59%)	22 (30.99%)	p = 0.594	7 (33.33%)	23 (37.70%)	p = 0.586	6 (20.69%)	28 (41.79%)	p = 0.062	
	Pre-university	14 (48.28%)	38 (53.52%)	p = 0.546	11 (52.38%)	34 (55.74%)	p = 0.906	19 (65.52%)	36 (53.73%)	p = 0.186	
	Higher	7 (24.14%)	11 (15.49%)	p = 0.546	3 (14.29%)	4 (6.56%)	p = 0.137	4 (13.79%)	3 (4.48%)	p = 0.302	
Place of residence	Rural	8 (27.59%)	27 (38.03%)	p = 0.546	9 (42.86%)	29 (47.54%)	p = 0.906	18 (62.07%)	52 (77.61%)	p = 0.241	
	Urban	21 (72.41%)	43 (60.56%)	p = 0.546	12 (57.14%)	32 (52.46%)	p = 0.631	11 (37.93%)	15 (22.39%)	p = 0.302	
	Unknown	0 (0.00%)	1 (1.41%)	p = 0.546	0 (0.00%)	0 (0.00%)	p = 1	1 (3.45%)	0 (0.00%)	p = 0.302	
Marital status	Not in relationship	5 (17.24%)	18 (25.35%)	p = 0.551	21 (100.00%)	61 (100.00%)	p = 0.906	28 (96.55%)	67 (100.00%)	p = 0.241	
	In relationship	24 (82.76%)	51 (71.83%)	p = 0.551	13 (61.90%)	44 (72.13%)	p = 0.631	21 (72.41%)	55 (82.09%)	p = 0.241	
	Unknown	0 (0.00%)	2 (2.82%)	p = 0.551	2 (9.52%)	4 (6.56%)	p = 0.137	1 (3.45%)	0 (0.00%)	p = 0.302	
Smoking	Never	17 (58.62%)	48 (67.61%)	p = 0.587	6 (28.57%)	13 (21.31%)	p = 0.137	7 (24.14%)	12 (17.91%)	p = 0.302	
	Past	7 (24.14%)	11 (15.49%)	p = 0.587	1 (4.76%)	5 (8.20%)	p = 1	0 (0.00%)	0 (0.00%)	p = 1	
	Present	5 (17.24%)	12 (16.90%)	p = 0.587	20 (95.24%)	56 (91.80%)	p = 0.317	29 (100.00%)	67 (100.00%)	p = 0.317	
Alcohol	Drinking	2 (6.90%)	7 (9.86%)	p = 1	18 (85.71%)	57 (93.44%)	p = 1	25 (86.21%)	64 (95.52%)	p = 1	
	Not drinking	27 (93.10%)	64 (90.14%)	p = 1	12 (57.14%)	44 (72.13%)	p = 0.317	18 (62.07%)	52 (77.61%)	p = 0.186	
Hypertension	Yes	18 (62.07%)	54 (76.06%)	p = 0.381	9 (42.86%)	17 (27.87%)	p = 0.381	11 (37.93%)	15 (22.39%)	p = 0.381	
	Antihypertensive drugs	Yes	18 (62.07%)	55 (77.46%)	p = 0.185	7 (33.33%)	23 (37.70%)	p = 0.586	6 (20.69%)	28 (41.79%)	p = 0.062
	No	11 (37.93%)	16 (22.54%)	p = 0.185	11 (52.38%)	34 (55.74%)	p = 0.586	19 (65.52%)	36 (53.73%)	p = 0.062	

p - chi-squared or Fisher's exact test for qualitative variables

Men with AWI >-3.0 predominate in all three countries. In the group with AWI >-3.0, men from Poland were better educated (p = 0.07). The remaining correlations were not statistically significant (Table 7.).
Table 7
Linear regression results in the male group

Parameter	AWI Poland		AWI Czech Republic		AWI Slovakia					
	< -3.0 (N = 29)	> -3.0 (N = 85)	p	< -3.0 (N = 34)	> -3.0 (N = 80)	p	< -3.0 (N = 27)	> -3.0 (N = 75)	p	
Education	Vocational or primary	19 (65.52%)	46 (54.12%)	p = 0.017 *	16 (47.06%)	40 (50.00%)	p = 0.87	13 (48.15%)	40 (53.33%)	p = 0.921
	Pre-university	10 (34.48%)	22 (25.88%)	p = 0.849	14 (41.18%)	36 (45.00%)	p = 0.865	13 (48.15%)	40 (53.33%)	p = 0.812
	Higher	0 (0.00%)	17 (20.00%)	p = 0.075	4 (11.76%)	7 (8.75%)	p = 0.87	1 (3.70%)	2 (2.67%)	p = 0.87
Place of residence	Rural	9 (31.03%)	30 (35.29%)	p = 0.849	14 (41.18%)	36 (45.00%)	p = 0.865	13 (48.15%)	40 (53.33%)	p = 0.812
	Urban	20 (68.97%)	55 (64.71%)	p = 0.075	20 (58.82%)	44 (55.00%)	p = 0.87	14 (51.85%)	35 (46.67%)	p = 0.87
	Unknown	0 (0.00%)	0 (0.00%)	p = 0.075	14 (41.18%)	36 (45.00%)	p = 0.865	13 (48.15%)	40 (53.33%)	p = 0.812
Marital status	Not in relationship	16 (55.17%)	29 (34.12%)	p = 0.075	20 (58.82%)	44 (55.00%)	p = 0.87	14 (51.85%)	35 (46.67%)	p = 0.87
	In relationship	13 (44.83%)	56 (65.88%)	p = 0.075	12 (35.29%)	32 (40.00%)	p = 0.607	15 (55.56%)	43 (57.33%)	p = 0.804
	Unknown	0 (0.00%)	0 (0.00%)	p = 0.075	9 (26.47%)	25 (31.25%)	p = 0.87	10 (37.04%)	23 (30.67%)	p = 0.87
Smoking	Never	6 (20.69%)	13 (15.29%)	p = 0.188	13 (38.24%)	23 (28.75%)	p = 0.87	2 (7.41%)	9 (12.00%)	p = 0.87
	Past	10 (34.48%)	21 (24.71%)	p = 0.188	18 (52.94%)	39 (48.75%)	p = 0.838	7 (25.93%)	27 (36.00%)	p = 0.475
	Present	11 (37.93%)	51 (60.00%)	p = 0.188	16 (47.06%)	41 (51.25%)	p = 0.838	7 (25.93%)	27 (36.00%)	p = 0.475
Alcohol	Drinking	2 (6.90%)	0 (0.00%)	p = 0.188	32 (94.12%)	76 (95.00%)	p = 1	27 (100.00%)	75 (100.00%)	p = 1
	Not drinking	14 (48.28%)	53 (62.35%)	p = 0.188	32 (94.12%)	76 (95.00%)	p = 1	27 (100.00%)	75 (100.00%)	p = 1
Hypertension	Yes	15 (51.72%)	32 (37.65%)	p = 1	2 (5.88%)	4 (5.00%)	p = 0.075	0 (0.00%)	0 (0.00%)	p = 0.075
	Antihypertensive drugs	28 (96.55%)	72 (84.71%)	p = 1	16 (47.06%)	40 (50.00%)	p = 0.87	13 (48.15%)	40 (53.33%)	p = 0.921
	No	28 (96.55%)	69 (81.18%)	p = 0.067	14 (41.18%)	33 (41.25%)	p = 0.067	13 (48.15%)	33 (44.00%)	p = 0.067

*p - chi-squared or Fisher’s exact test for qualitative variables, * Statistically significant (p < 0.05)

Except for the different AWI scores in men with type 2 diabetes depending on their education, neither women nor men revealed any significant changes in terms of the impact of education, residence, marital status, smoking, hypertension, or taking anti-hypertensive drugs.

Discussion

Our study provides information about diabetes-related QoL and its assessment by women and men with T2DM in Poland, Slovakia, and the Czech Republic based on a study that employs the widely used DM-specific ADDQoL scale.[16, 19–21]

The issue of the QoL is also addressed by the International Diabetes Federation which considers the quality of life as one of the fundamental goals of diabetes care, along with metabolic control and prevention. This is because it has been proven that laboratory results which are so important for physicians, are important for patients with DM only to the extent that they affect their physical, emotional and social well-being, namely the quality of life.[22]
Currently, there are few studies presenting sex differences with regard to the quality of life of DM patients, and studies that assess the quality of life of women and men with the use of the ADDQoL tool are very rare.

In our study, we focused on identifying features that differentiated female groups from male ones in individual countries, and on examining the quality of life of DM patients with regard to sex in individual countries.

The subjective assessment of patients' quality of life is affected by clinical, as well as social and demographic factors.[22]

In the analyzed group of women, the overall average quality of life was slightly higher in Czech women than in women from Slovakia and Poland.

In general, women form all three countries assessed their quality of life as good and very good. Men also rated their overall quality of life as good and very good. In the group of men, the average quality of life was slightly higher in Slovaks than in Poles and Czechs. In our study, it can however be noted that the generally perceived quality of life in the study group is higher in men than in women.

Similar results were obtained in a study by Kurowska et al. Although the study used a different research tool for assessing the level of QoL, men from the study group obtained definitely higher scores than women in the domain of psychology,[23] which can also be interpreted in line with other studies that conclude that men have higher self-confidence in terms of their ability of self-care and management of diabetes, and they less frequently are anxious due to their illness or experience depressive disorders. Hence the good knowledge and a positive attitude that are the predictors of adherence to self-care rules and are conducive to good QoL.[24–26]

In studies by Pufal et al.,[27] and in a work by Lewko and Krajewska-Kulak,[28] as well as by Glasgow,[29] sex also differentiated participants in terms of satisfaction with the quality of life. The authors claim that women had lower scores because of their lower self-reported quality of life compared to men. They referred the results to a higher propensity of women to depressive states.

Also, the results of studies by Polish authors indicate that the quality of life is significantly reduced by the female gender and the symptoms of depression[30] and anxiety.

Quite the opposite results, pointing to a lower quality of life in a group of men, were obtained by D’Souza et al.[31] who concluded that women, in general, better cope with compliance with therapy rules, and therefore have better results for HbA1c levels and a lower BMI and hence their quality of life, in general, is higher. These findings are consistent with other studies which have proven that the duration of diabetes, fasting blood glucose[32] and a positive attitude to treatment[33–34] are conducive to a better perception of the quality of life by women.

Szczęśniak and Żmurewska[35] concluded in their study that gender does not constitute a factor differentiating the participants in terms of the assessment of the quality of life.

In our study, it can be noted that the quality of life received the highest scores from Polish patients, both women, and men. There are also no significant differences neither between women from Poland, the Czech Republic, and Slovakia, nor between men from Poland, the Czech Republic, and Slovakia.

About 50% of female (most of them from Poland) and male (most of them from the Czech Republic) participants with type 2 diabetes declared at least a good level of QoL. On the other hand, more than 80% of participants (both women and men) in each country stated that their quality of life would be better without DM.

Similar results were obtained by Golińska et al. in a study in which the majority of participants of both genders assessed their quality of life as good, but no statistically significant correlation was found between gender and QoL.[36]

Similar results were obtained also in a study by Chudiak et al. in which participants unanimously stated that their quality of life would be much better had it not been for their diabetes.[37]

In the study group, the weighted impact scores were negative for all the domains. The lowest scores in all three groups of women and in all three groups of men were obtained for “freedom to eat”.

Studies by the present authors demonstrate that for both women and men, diabetes has the greatest impact on “freedom to eat” and "freedom to drink", which confirms that dietary restrictions related to the non-pharmacological control of diabetes are burdensome to them. The need for adherence to a dietary regime affects the presence of early complications of diabetes, such as hypoglycemia and hyperglycemia, the levels of HbA1C, as well as the occurrence of a variety of complications and overweight present in a large group of women and men in the study group.

Studies by the present authors confirm previous studies carried out in Poland,[16, 38] as well as in other countries, such as Argentina,[39] Greece, or cross-sectional studies with the participation of patients from nine European[21] countries.
In a study by Bradley conducted with the use of ADDQoL among patients with type 1 and type 2 diabetes mellitus, the negative impact of diabetes on the quality of life in all domains was confirmed for almost all cases, despite a high level of satisfaction with treatment observed in the patients. Adherence to the diet had a dominant impact on the quality of life, and it was perceived by the participants as very restrictive.[14]

The least affected domains of life in all of the groups of women and men were "living conditions", then "people's reaction" for Polish and Czech men and women, and Slovak men, and "leisure activities" for Slovak women.

Almost in the middle of the scale, there is the impact of diabetes on "sex life". Diabetes has a higher impact on this aspect of life in men (in all groups), and a slightly lower impact in women (the highest in Slovak women, then in Polish and Czech women). Sexual dysfunctions in women with diabetes are primarily impaired libido and pain during intercourse, mainly due to vaginal dryness.[40–42] Sexual problems in men with diabetes involve erectile dysfunction, with the problem increasing with the duration of diabetes.[43–44] This common, increasing, and embarassing problem poses a challenge for contemporary diabetes care, as confirmed by the authors' own study, although our analyses pointed to a higher intensity of this problem in men. The results of a study by Bąk et al.[45] also confirm that diabetes has a negative impact on the quality of life of patients with diabetes in Poland, especially in terms of "freedom to eat", "freedom to drink" and "sex life" in both genders of patients with T1DM, "freedom to eat," "freedom to drink" and "feelings about the future" in both genders, and "working life" and "sex life" in men with T2DM.

The average weighted impact (AWI) score in the authors' own study was the lowest for Slovak women, then for Polish and Czech women. This was slightly different in the male group. The lowest weighted impact scores were obtained for Czech men, then for Slovak and Polish men. It can be noted that the average weighted impact (AWI) was higher for men. In general, it can be concluded that diabetes has a small negative impact on all the study groups, regardless of gender. Authors from Poland [35, 38] and from other countries obtained similar results.[21]

Glasgow et al. in a study involving DM patients conducted with the use of the SF-20 questionnaire, demonstrated that a lower quality of life was influenced by such factors as a low level of education, older age, female gender, type of social insurance, number of complications of diabetes, number of comorbidities and low level of physical activity during the activities of daily living.[30]

Also, functional capacity is a significant factor determining the quality of life of patients with diabetes mellitus. What is more, the quality of life is significantly reduced by the female gender, autonomic or peripheral neuropathy, lack of physical activity, high BMI, and symptoms of depression and anxiety.[31]

The authors' own study did not reveal any statistically significant impact of the selected social and demographic factors on the extent to which diabetes affects women and men. However, it was noted that in the study group both women and men were characterized by a small negative impact of diabetes on the overall quality of life.

Conclusions

Type 2 diabetes mellitus negatively affects all the domains of life both in women and men, however, this impact is inconsiderable. The most affected domains are “freedom to eat” and “feelings about the future”. The generally perceived quality of life in the study group is higher in men than in women, and it received the highest scores from patients from Poland, both women and men. Most of women and men in the study group assessed their quality of life as good and very good.

Strengths and limitations of the study:

To the best of our knowledge, there have been no similar studies in such an internationally selected group of patients by gender. Our study reveals that type 2 diabetes has a negative impact on the health and perceived quality of life, especially in women who are prone to suffer from diabetes-related emotional and depressive disorders.

Nonetheless, our study does not illustrate the entire issue, or all problems experienced by patients with type 2 diabetes in the analyzed countries. It seems reasonable to extend the research on the quality of life and correlate it with additional parameters such as, for example, the level of anxiety, depression or diabetes-related stress. And, perhaps, also with adherence to therapeutic recommendations or level of self-care.

Abbreviations

ADDQoL - Audit of Diabetes-Dependent Quality of Life

AWI - average weighted impact

BMI – Body Mass Impact

DM – Diabetes Mellitus
Declarations

Data and/or code availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

Ethical Considerations

The study was approved by the Bioethics Committee of the Beskid Regional Chamber of Physicians in Bielsko Biała, Poland, on February 11, 2016 (approval no. 2016/02/11/1), and the Bioethics Committee of the Wrocław Medical University (no. 621/2017). All participants were informed about the content of the study and gave their informed consent to participate in it. The study protocol was prepared in accordance with the Helsinki Declaration.

Competing interests

The authors declare that they have no conflict of interest.

Funding

Research supported by the Wrocław Medical University SUB.E020.21.002.

Authors’ contributions

Krzemińska Sylwia: Conceptualization; Data curation; Formal analysis; Funding acquisition; Investigation; Methodology; Project administration; Resources; Supervision; Validation; Visualization; Roles/Writing - original draft; Writing - review & editing.

Bąk Ewelina: Data curation; Formal analysis; Project administration; Writing - original draft;

Polanská Andrea: Conceptualization; Data curation; Formal analysis; Project administration;

Hašková Kateřina: Data curation; Formal analysis; Project administration;

Laurinc Milan: Conceptualization; Data curation; Formal analysis; Project administration;

Zrubcová Dana: Data curation; Formal analysis; Project administration;

References

1. Araszkiewicz, A., Bandurska-Stankiewicz, E., Budzyński, A., Cypryk, K., Czech, A., & Czupryniak, L. et all: Clinical recommendations for the management of patients with diabetes. 2020. The Opinion of the Polish Diabetes Association. Diabetologia praktyczna 2020,6,1 https://journals.viamedica.pl/diabetologia_praktyczna/issue/view/4845 Accessed 18.01.2021.

2. Life expectancy at birth in the EU: men vs. women. https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-20190725-1.

3. Rokicka, D., Wróbel, M., Szymorska-Kajanek, A., Bożek, A., & Strojek, K. (2018). Assessment of compliance to self monitoring of blood glucose in type 2 diabetic patients and level of implementation of Polish Diabetes Association Recommendation for general practitioners — results of multicenter, prospective educational health programme — DIABCON study. Clin Diabetol, 7(3), 129–135. doi:10.5603/DK.2018.0008.

4. American Diabetes Association. 4. Comprehensive medical evaluation and assessment of comorbidities: standards of medical care in diabetes—2019. Diabetes Care. 2019; 42 (Supplement 1): 34–45. doi: 10.2337/dc19-S004.

5. Krzeminska, S., Baj, E., Šáteková, L., Polanská, A., & Hašková, K. Laurinc M. Comparison of.

6. Diabetes-Dependent Quality of. (2020). Life (ADDQoL) in Patients with T2DM in Poland, The Czech Republic, and Slovakia. Diabetes Metab Syndr Obes, 13, 3773–3786. https://doi.org/10.2147/DMSO.S273339.

7. Lee, K. H., Xu, H., & Wu, B. (2020). Gender differences in quality of life among community-dwelling older adults in low- and middle-income countries: results from the Study on global AGEing and adult health (SAGE). BMC public health, 20, 114. https://doi.org/10.1186/s12889-
Emery, C. F., Frid, D. J., Engebretson, T. O., et al. (2004). Gender differences in quality of life among cardiac patients. Psychosom Med, 66(2), 190–197. doi:10.1097/01.psy.000016775.98593.f4.

Tesfay, A., Gebremariam, A., Gerbaba, M., & Abhra, H. (2015). Gender differences in health related quality of life among people living with HIV on highly active antiretroviral therapy in Mekelle Town, Northern Ethiopia. Biomed Res Int, 2015, 516369. doi:10.1155/2015/516369.

da Rocha, N. S., Schuch, F. B., & Fleck, M. P. (2014). Gender differences in perception of quality of life in adults with and without chronic health conditions: the role of depressive symptoms. J Health Psychol, 19(6), 721–729. doi:10.1177/135910531478644.

Castellano-Guerrero, A. M., Guerrero, R., Ruiz-Aranda, D., et al. (2020). Gender differences in quality of life in adults with long-standing type 1 diabetes mellitus. Diabetol Metab Syndr, 12, 64. doi:10.1186/s13098-020-00571-x. Published 2020 Jul 17.

12. Statistical report: diabetes statistics in Poland and in the world. [in Polish]. Available from: http://cukrzycapolska.pl/cukrzyca/statystyki. Accessed 03.02.2021.

13. Available from: https://www.uzis.cz/sites/default/files/ knihovna/nzis_rep_2018_K01_A004_diabet_endokrin_2017.pdf. Accessed 03.02.2021.

14. Available from: http://www.nczisk.sk/Documents/aktuality/ tlacove_spravy/2019/TS_diabetes_12112019.pdf. Accessed.

15. Bradley, C., & Speight, J. (2002). Patient perceptions of diabetes and diabetes therapy: assessing quality of life. Diabetes Metab Res Rev, 18(Suppl 3), S64–S69. doi:10.1002/dmrr.279.

16. Bradley, C., Todd, C., Gorton, T., Symonds, E., Martin, A., & Plowright, R. (1999). The development of an individualized questionnaire measure of perceived impact of diabetes on quality of life: the ADDQoL. Qual Life Res, 8(1–2), 79–91. doi:10.1023/a:1026485130100.

17. Bak, E., Marcisz, C., Nowak-Kapusta, Z., Dobrzyn-Matusiak, D., Marcisz, E., & Krzemsinska, S. Psychometric properties of the Audit of Diabetes-Dependent Quality of Life (ADDQoL) in a population-based sample of Polish adults with type 1 and 2 diabetes. Health Qual Life Outcomes. 2018;16(1):53. Published 2018 Mar 27. doi:10.1186/s12955-018-0878-y.

18. Brož, J., Janickova Zdarska, D., Urbanova, J., et al. (2016). An international, multicenter, observational survey to evaluate diabetes control in subjects using insulin for the treatment of type 1 and type 2 diabetes mellitus in the Czech Republic and Slovak Republic: study protocol for a cross-sectional survey. Open Access J Clin Trials, 8, 13–20. doi:10.2147/OA JCT. S103459.

19. R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URLhttps://www.R-project.org/.

Turk, E., Prevolnik Rupel, V., Tapajner, A., Leyshon, S., & Isola, A. (2013). An Audit of Diabetes-Dependent Quality of Life (ADDQoL) in Older Patients with Diabetes Mellitus Type 2 in Slovenia. Value Health Reg Issues, 2(2), 248–253. doi:10.1016/j.vhri.2013.05.001.

Kong, D., Ding, Y., Zuo, X., et al. (2011). Adaptation of the Audit of Diabetes-Dependent Quality of Life questionnaire to people with diabetes in China. Diabetes Res Clin Pract, 94(1), 45–52. doi:10.1016/j.diabres.2011.05.026.

Bradley, C., Eschwège, E., de Pablos-Velasco, P., et al. (2018). Predictors of Quality of Life and Other Patient-Reported Outcomes in the PANORAMA Multinational Study of People With Type 2 Diabetes. Diabetes Care, 41(2), 267–276. doi:10.2337/dc16-2655.

Lewko, J., Polityńska, B., Kochanowicz, J., et al. (2007). Quality of life and its relationship to the degree of illness acceptance in patients with diabetes and peripheral diabetic neuropathy. Adv Med Sci, 52(Suppl 1), 144–146.

Kurowska, K., & Szomszor, M. (2011). The impact of health behaviours on the quality of life of patients diagnosed with type 2 diabetes. Diabet Prakt, 12, 4; 142–150.

Martínez, Y. V., Prado-Aguilar, C. A., Rascón-Pacheco, R. A., & Valdivia-Martínez, J. J. (2008). Quality of life associated with treatment adherence in patients with type 2 diabetes: a cross-sectional study. BMC Health Serv Res, 8, 164. doi:10.1186/1472-6963-8-164. Published 2008 Jul 30.

Imayama, I., Plotnikoff, R. C., Courneya, K. S., et al. (2011). Determinants of quality of life in adults with type 1 and type 2 diabetes. Health Qual Life Outcomes, 9, 115. https://doi.org/10.1186/1477-7525-9-115.

Cong, J. Y., Zhao, Y., Xu, Q. Y., Zhong, C. D., & Xing, Q. L. (2012). Health-related quality of life among Tianjin Chinese patients with type 2 diabetes: a cross-sectional survey. Nurs Health Sci, 14(4), 528–534. doi:10.1111/j.1442-2018.2012.00734.x.

Pufal, J., Gierach, M., Pufal, M., Bronisz, A., Kielbasa, L., & Junik, R. (2004). The influence of socio-demographic and clinical factors on quality of life of patients with type 2 diabetes. Diabet. Dośw. Klin, 4, 137–143.

Lewko, J., & Krajewska-Kulak, E. (2010). Multidimensional assessment of quality of life of patients with diabetes. Pol. Merk. Lek, 28, 486–489.

Glasgow, R. E., Ruggiero, L., Eakin, E. G., Dryfoos, J., & Chobanian, L. Quality of life and associated characteristics in a large national sample of adults with diabetes. Diabetes Care. 1997 Apr;20(4):562-7. doi: 10.2337/diacare.20.4.562. PMID: 9096981.

Borowiak, E.,rosiak, K., & Kostaka, T. (2009). A comparative analysis of the effect of diabetes and previous heart attack on patients' quality of life. Probl. Pieleg., 17, 2, 86–91.
32. D'Souza, M. S., Venkatesaperumal, R., Ruppert, S. D., Karkada, S. N., & Jacob, D. (2016). Health Related Quality of Life among Omani Men and Women with Type 2 Diabetes. *J Diabetes Res, 2016*, 8293579. doi:10.1155/2016/8293579.

33. Martínez, Y. V., Prado-Aguilar, C. A., Rascón-Pacheco, R. A., et al. (2008). Quality of life associated with treatment adherence in patients with type 2 diabetes: a cross-sectional study. *BMC Health Serv Res, 8*, 164. https://doi.org/10.1186/1472-6963-8-164.

34. Svenningsson, I., Marklund, B., Attvall, S., & Gedda, B. (2011). Type 2 diabetes: perceptions of quality of life and attitudes towards diabetes from a gender perspective. *Scandinavian Journal of Caring Sciences, 25*(4), 688–695.

35. Jelsness-Jørgensen, L. P., Ribu, L., Bemklev, T., & Mønn, B. A. (2011). Measuring health-related quality of life in non-complicated diabetes patients may be an effective parameter to assess patients at risk of a more serious disease course: a cross-sectional study of two diabetes outpatient groups. *J Clin Nurs, 20*(9–10), 1255–1263. doi:10.1111/j.1365-2702.2010.03554.x.

36. Szczęśniak, G., & Zmurowska, B. (2009). Comparing the impact of type 2 diabetes mellitus on the quality of life in men and women. *Fam. Med. Prim. Care Rev, 11*, 517–520.

37. Glińska, J., Skupińska, A., Lewandowska, M., Brosowska, B., & Kunikowska, B. (2012). Demographic factors and the quality of life of patients with diabetes mellitus. *Nursing Topics, 20*(3), 279–288.

38. Chudiak, A., Lomper, K., Jankowska-Polańska, B., & Uchmanowicz, I. The impact of diabetes education on the assessment of the quality of life of patients type 2 diabetes. *Problemie Pielęgniarstwa 2015, 23*, 1–6. 10.5603/PP.2015.0001.

39. Ptasiński, A., & Pączek, L. (2008). Influence of diabetes on quality of life- assessment with the use of ADDQL questionnaire in general practice. *Med. Metab., 4*, 45–48.

40. Pichon-Riviere, A., Irazola, V., Beratarrechea, A., Alcaraz, A., & Carrara, C. (2015). Quality of life in type 2 diabetes mellitus patients requiring insulin treatment in Buenos Aires, Argentina: a cross-sectional study. *Int J Health Policy Manag, 4*(7), 475–480. doi:10.15171/ijhpm.2015.80. Published 2015 Apr 10.

41. Esposito, K., Maiorino, M. I., Bellastella, G., Giugliano, F., Romano, M., & Giugliano, D. Determinants of female sexual dysfunction in type 2 diabetes. *Int J Impot Res. 2010 May-Jun;22*(3):179–84. doi: 10.1038/ijir.2010.6. Epub 2010 Apr 8. PMID: 20376056.

42. Celik, S., Golbası, Z., Kelleci, M., et al. (2015). Sexual Dysfunction and Sexual Quality of Life in Women with Diabetes: The Study Based on a Diabetic Center. *Sex Disabil, 33*, 233–241. https://doi.org/10.1007/s11195-014-9383-3.

43. Bąk, E., Marcisz, C., Krzemińska, S., Dobrzyn-Matusiak, D., Foltyn, A., & Droszdzol-Cop, A. Relationships of Sexual Dysfunction with Depression and Acceptance of Illness in Women and Men with Type 2 Diabetes Mellitus. *Int J Environ Res Public Health, 2017;14*(9):1073. Published 2017 Sep 16. doi:10.3390/ijerph14091073.

44. Giugliano, F., Maiorino, M., Bellastella, G., Cicchino, M., Giugliano, D., & Esposito, K. (2010). Determinants of erectile dysfunction in type 2 diabetes. *Int J Impot Res, 22*(3), 204–209. doi:10.1038/ijir.2010.1.

45. Malavige, L. S., Jayaratne, S. D., Kathariarachchi, S. T., Sivayogan, S., Fernando, D. J., & Levy, J. C. (2008). Erectile dysfunction among men with diabetes is strongly associated with premature ejaculation and reduced libido. *J Sex Med, 5*(9), 2125–2134. doi:10.1111/j.1743-6109.2008.00907.x.

46. Bąk, E., Nowak-Kapusta, Z., Dobrzyn-Matusiak, D., Marcisz-Dyla, E., Marcisz, C., & Krzemińska, S. A. (2019). An assessment of diabetes-dependent quality of life (ADDQoL) in women and men in Poland with type 1 and type 2 diabetes. *Ann Agric Environ Med, 26*(3), 429–438. doi:10.26444/aaem/99959.