QUASIFREE STOCHASTIC COCYCLES
AND QUANTUM RANDOM WALKS

ALEXANDER C. R. BELTON, J. MARTIN LINCOLN, MICHAŁ GNACIK, AND PING ZHONG

Abstract. The theory of quasifree quantum stochastic calculus for infinite-dimensional noise is developed within the framework of Hudson–Parthasarathy quantum stochastic calculus. The question of uniqueness for the covariance amplitude with respect to which a given unitary quantum stochastic cocycle is quasifree is addressed, and related to the minimality of the corresponding stochastic dilation. The theory is applied to the identification of a wide class of quantum random walks whose limit processes are driven by quasifree noises.

1. Introduction

Quantum stochastic calculi for gauge-invariant quasifree representations of the canonical commutation and anticommutation relations were originally developed in the 1980s; see [BSW], [HL1,2] and [L1]. The possibilities afforded for semigroup dilation via such calculi were further developed in [App] and [LiM], with the latter treatment using a theory of integral-sum kernel operators. Recently, quasifree stochastic calculus has been extended to the cases of squeezed states and infinite-dimensional noise [LM1,2]. A key ingredient of the latter theory is a partial transpose defined on a class of unbounded operators affiliated to the noise algebra, which defies the failure of complete boundedness for the transpose.

Use of quasifree stochastic calculus may be preferred to the standard theory founded by Hudson and Parthasarathy [HuP, Par] for both physical and mathematical reasons [HL2]. On the one hand, it describes systems which are more physically realistic, at non-zero temperatures for example. On the other hand, the quasifree theory boasts a fully satisfactory martingale representation theorem [HL1, LM1], in contrast to the standard theory, whose representation theorem is restricted by regularity assumptions which seem hard to overcome [PS1].

The purpose of this article is twofold. The first is to develop quasifree stochastic calculus in a simplified form within the standard theory, restricting to quasifree states with bounded covariance amplitudes, bounded operator-valued processes and unitary quantum stochastic cocycles with bounded vacuum-expectation semigroups. The second is to give a deeper explanation for an observation of Attal and Joye, who described how the quantum Langevin equation, obtained as limit of a repeated-interactions model with particles in a thermal state, is driven by noises...
satisfying quasifree Itô product relations \([\text{AtJ}]\). Those parts relating to the first objective are written so as to facilitate the second.

The quasifree CCR representations that we employ are of Araki–Woods type, determined by two maps: the doubling map
\[
\iota : k \rightarrow k \oplus \overline{k}; \quad x \mapsto \begin{pmatrix} x \\ -\overline{x} \end{pmatrix},
\]
where \(\overline{k}\) is the Hilbert space conjugate to the quasifree noise-dimension space \(k\), and an operator \(\Sigma = \begin{bmatrix} \alpha & \gamma \\ \beta & \delta \end{bmatrix} \in B(k \oplus \overline{k}) = B(k B(\overline{k}; k))\) for which the real-linear map \(\Sigma \circ \iota\) is symplectic. The corresponding Weyl operators \(W_\Sigma(f)\) act on the double Boson Fock space
\[
\Gamma_+(L^2(R_+; k \oplus \overline{k})) = \Gamma_+(L^2(R_+; k)) \otimes \Gamma_+(L^2(R_+; \overline{k}))
\]
in the following manner:
\[
W_\Sigma(f) := W(\Sigma \iota(f)) = W(\alpha f - \gamma \overline{f}) \otimes W(\beta f - \delta \overline{f}) \quad \text{for all } f \in L^2(R_+; k),
\]
where \(W(g)\) denotes the Fock–Weyl operator with test function \(g\), and the operators \(\iota\) and \(\Sigma\) are extended to act on functions pointwise; for example, \((\beta f)(t) := \beta f(t)\) for all \(t \in R_+\). The symplectic hypothesis ensures that \(W_\Sigma\) defines a CCR representation. This class of representations is sufficiently general to include a range of interesting examples, while being concrete enough to render the resulting stochastic calculus straightforward to employ with a minimum of technicalities. Details of this representation theory are given in Section 2.

Section 3 collects the relevant results from standard quantum stochastic analysis, chosen in light of the requirements for the passage to quasifree stochastic calculus in Section 4. We motivate the definition of quasifree stochastic integrals by combining the Itô-type quantum stochastic integration of simple processes with the realisation of quasifree creation and annihilation operators in terms of creation and annihilation operators for the Fock representation. It is notable that quasifree stochastic integrability is unaffected by squeezing the state; indeed, the resulting transformation of quasifree integrands may be viewed as a change-of-variables formula for quasifree stochastic calculus (Theorem 4.4). Our approach demonstrates the central rôle in the theory played by a partial conjugation, which constrains the class of admissible integrands when the noise is infinite dimensional. This corresponds to the partial-transpose operation at the heart of the coordinate-free quasifree stochastic calculus [LM1, 2]. Viewing quasifree integrals as particular cases of standard quantum stochastic integrals allows us to employ the existing modern quantum stochastic theory [L2] and, in particular, to avoid any application of Tomita–Takešaki theory. While maintaining strict mathematical rigour, the simplicity of our approach makes it very suitable for applications.

Various uniqueness questions are addressed in Section 5. We first show that the change-of-variables effect of squeezing on quasifree integrals means that, for present purposes, we may restrict to gauge-invariant quasifree states. Then the stochastic generators of quasifree Hudson–Parthasarathy cocycles on an initial Hilbert space \(\mathfrak{h}\) are parameterised by triples of operators \((A, H, Q)\), where \(A \in B(k)\) is non-negative, \(H \in B(\mathfrak{h})\) is self adjoint, and \(Q \in B(\mathfrak{h}; k \otimes \mathfrak{h})\) is \(k\)-conjugatable; see Definition 4.2. The set of triples that generating the same cocycle is...
parameterised by a class of self-adjoint operators in $B(k)$. Uniqueness for quasifree Hudson–Parthasarathy cocycles inducing a given inner Evans–Hudson flow j (Definition 3.17) is related to the minimality of j, as a stochastic dilation of its vacuum-expectation semigroup, in the sense of [Bha].

The final section, Section 6, concerns quantum random walks and the repeated-interactions model [AtP]. After a brief summary of the relevant results from the standard theory [Be1, BGL], we extend the example of Attal and Joye in two directions: to allow infinite-dimensional noise, and to incorporate an enlarged class of interaction Hamiltonians. We show that their example is part of a more general phenomenon: if the particles in the repeated-interactions model are in a faithful normal state whose density matrix ρ enjoys exponential decay of its eigenvalues, and the interaction Hamiltonian is p-conjugatable and has no diagonal part with respect to the eigenspaces of ρ, then the quantum Langevin equation which governs the limit cocycle U is driven by gauge-invariant quasifree noise. We also give sufficient further conditions on the matrix components of the interaction Hamiltonian for the quasifree noise to be the unique one within the class for which U is quasifree (Theorem 6.8). The GNS space given by the particle state splits naturally into mutually conjugate upper-triangular and lower-triangular parts; this splitting may be viewed as being the origin of the double Fock space arising in the relevant CCR representation.

We expect the results below to be of interest to researchers in quantum optics and related fields; the importance of quantum stochastic calculus to quantum control engineering, for example, is clearly demonstrated in many of the papers contained in [Gou]. In future work, we intend to explore quantum control theory within this quasifree framework. For initial results on quasifree filtering, which show the potential benefit of using squeezed fields for state restoration, see [Bou].

Notation and conventions. Throughout, the symbol h, sometimes adorned with primes or subscripts, stands for a generic Hilbert space; with this understanding, we usually refrain from saying “let h and h' be Hilbert spaces, et cetera”. All Hilbert spaces considered are complex and separable, with inner products linear in their second argument. The space of bounded operators from h to h' is denoted $B(h; h')$, and $B(h)_{sa}, B(h)_+, U(h)$ and $B(h)^+$ denote respectively the sets of self-adjoint and non-negative operators in $B(h) := B(h; h)$, and the groups of unitary and invertible bounded operators on h.

A conjugate Hilbert space of h is a pair (\overline{h}, K) consisting of a self-adjoint anti-unitary operator K from h to a Hilbert space \overline{h}; this is unique up to isomorphism in the natural sense. For any $x \in h$ and $A \in B(h)$, the vector $Kx \in \overline{h}$ and the operator $KAK^{-1} \in B(\overline{h})$ are abbreviated to \overline{x} and \overline{A} respectively. The closed linear span of a subset S of a Hilbert space is denoted $\overline{\text{Lin}} S$; the range of a bounded operator T and its closure are denoted $\text{Ran} T$ and $\overline{\text{Ran}} T$ respectively. The domain of an unbounded operator T is denoted $\text{Dom} T$. We employ the Dirac-inspired bra and ket notation

$$\langle x \rangle : h \to \mathbb{C}; \ y \mapsto \langle x, y \rangle \quad \text{and} \quad |x\rangle : \mathbb{C} \to h; \ \lambda \mapsto \lambda x,$$

for any vector $x \in h$.

Algebraic, Hilbert-space and ultraweak tensor products are denoted \bigotimes, \otimes and $\overline{\otimes}$, respectively. The indicator function of a set S is denoted 1_S. The group of complex numbers with unit modulus is denoted T. The integer part of a real number r is denoted $[r]$.

In this section, we collect some key facts on CCR representations and quasifree states. In particular, we introduce the squeezing matrices and AW amplitudes that determine the class of quasifree states that are relevant to us.

Recall that every real-linear operator $T : h \rightarrow h'$ is uniquely decomposable as $L + A$, where L is complex linear and A is conjugate linear; L and A are referred to as the linear and conjugate-linear parts of T. Explicitly,

$$Lx := \frac{1}{2}(Tx - iT(ix)) \quad \text{and} \quad Ax := \frac{1}{2}(Tx + iT(ix)) \quad \text{for all} \quad x \in h. \quad (2.1)$$

Definition 2.1. A real-linear operator $Z : h \rightarrow h'$ is symplectic if it satisfies

$$\text{Im}(Zx, Zy) = \text{Im}(x, y) \quad \text{for all} \quad x, y \in h.$$

We denote the space of symplectic operators from h to h' by $S(h; h')$, or $S(h)$ when $h' = h$, and the group of symplectic automorphisms of h by $S(h)^\times$.

For $T \in B(h; h')$, it is easily verified that T is isometric if and only if it is symplectic and complex linear. In particular, $U(h)$ is the subgroup of $S(h)^\times$ consisting of its complex-linear elements.

It is shown in the appendix that symplectic automorphisms of h are automatically bounded. Thus $S(h)^\times$ is a subgroup of the group of bounded invertible real-linear operators on h.

A parameterisation $B = B_{U,C,P}$ for the elements of $S(h)^\times$ is also given in the appendix.

For the rest of this section, we fix a Hilbert space H and let (\overline{H}, K) be its conjugate Hilbert space.

Fock space. As emphasised by Segal [Seg], the Boson Fock space over H has two interpretations, particle and wave:

$$\Gamma_+(H) = \bigoplus_{n=0}^{\infty} H^{\otimes n} = \overline{\text{lin}}\{\varepsilon(x) : x \in H\}.$$

Here $H^{\otimes n}$ denotes the nth symmetric tensor power of H, with $H^{\otimes 0} := \mathbb{C}$, and $\varepsilon(x)$ is the exponential vector corresponding to the test vector x:

$$\varepsilon(x) = (1, x, x^{\otimes 2}/\sqrt{2}, \cdots).$$

The normalised exponential vector $\exp(-\frac{1}{2}\|x\|^2)\varepsilon(x)$ is denoted $\varpi(x)$, and the distinguished vector $\varepsilon(0) = \varpi(0)$ is denoted Ω_H and called the Fock vacuum vector. For all $x, y \in H$,

$$\langle \varepsilon(x), \varepsilon(y) \rangle = \exp\langle x, y \rangle,$$

and the map $\lambda \mapsto \varepsilon(x + \lambda y)$ is holomorphic from \mathbb{C} to $\Gamma_+(H)$. As well as being total in $\Gamma_+(H)$, the exponential vectors are linearly independent.

For any orthogonal decomposition $H = H_1 \oplus H_2$, the Boson Fock space $\Gamma_+(H)$ is identified with the tensor product $\Gamma_+(H_1) \otimes \Gamma_+(H_2)$ via the natural isometric isomorphism which sends the exponential vector $\varepsilon(x_1, x_2)$ to $\varepsilon(x_1) \otimes \varepsilon(x_2)$ for all $x_1 \in H_1$ and $x_2 \in H_2$.
For any \(x \in \mathcal{H} \), the Fock–Weyl operator \(W_\mathcal{H}(x) \) is the unique unitary operator on \(\Gamma_+(\mathcal{H}) \) such that
\[
W_\mathcal{H}(x)\varphi(y) = \exp(-i\text{Im}(x,y))\varphi(x+y) \quad \text{for all } y \in \mathcal{H}. \tag{2.2}
\]

For all \(x, y \in \mathcal{H} \),
\[
\text{the map } t \mapsto W_\mathcal{H}(tx)\varphi(y) \text{ is continuous from } \mathbb{R}^+ \text{ to } \Gamma_+(\mathcal{H}), \tag{2.3a}
\]
and \(\text{Lin} \{ W_\mathcal{H}(z)\Omega_\mathcal{H} : z \in \mathcal{H} \} = \Gamma(\mathcal{H}) \), \tag{2.3b}
and \(\langle \Omega_\mathcal{H}, W_\mathcal{H}(x)\Omega_\mathcal{H} \rangle = \exp(-\frac{i}{2}\|x\|^2) \). \tag{2.3c}

CCR representations. We let \(CCR(\mathcal{H}) \) denote the \(C^* \)-algebra generated by the set unitary elements \(\{ w_x : x \in \mathcal{H} \} \) which satisfy the canonical commutation relations in Weyl form:
\[
w_x w_y = \exp(-i\text{Im}(x,y))w_{x+y} \quad \text{for all } x, y \in \mathcal{H}. \]

Its existence, uniqueness and simplicity were established in [Sla], and these imply that, for any operator \(B \in S(\mathcal{H})^\times \), there is a unique automorphism \(\alpha_B \) of \(CCR(\mathcal{H}) \) such that
\[
\alpha_B(w_x) = w_{Bx} \quad \text{for all } x \in \mathcal{H}; \]
see [BrR, Pet]. The gauge transformations of \(CCR(\mathcal{H}) \) are the automorphisms induced by the unitary operators on \(\mathcal{H} \) of the form \(x \mapsto \lambda x \), where \(\lambda \in T \).

If \(W \) is a map from \(\mathcal{H} \) to \(U(\mathcal{H}) \) satisfying the Weyl form of the canonical commutation relations, then \(W = \pi \circ w \) for a unique representation \(\pi \) of \(CCR(\mathcal{H}) \) on \(\mathcal{H} \). We therefore often refer to \(W \) itself as the representation. A representation \(W \) of \(CCR(\mathcal{H}) \) is regular if, for all \(x \in \mathcal{H} \), the unitary group \((W(tx))_{t \in \mathbb{R}} \) is strongly continuous; in this case, the Stone generator \(R(x) \) of the group is called the field operator corresponding to the test vector \(x \) for the regular representation \(W \).

Fock representation. It follows from the definition \(\tag{2.2} \) and properties \(\tag{2.3a} \) and \(\tag{2.3b} \) that the map \(x \mapsto W_\mathcal{H}(x) \) defines a regular representation of \(CCR(\mathcal{H}) \) with cyclic vector \(\Omega_\mathcal{H} \); this is called the Fock representation. If \(\{ R_\mathcal{H}(y) : y \in \mathcal{H} \} \) is the corresponding set of field operators then, for any \(x \in \mathcal{H} \), the creation operator \(a_\mathcal{H}^+(x) \) and annihilation operator \(a_\mathcal{H}^-(x) \) are defined by setting
\[
a_\mathcal{H}^+(x) := \frac{1}{2}(R_\mathcal{H}(ix) + iR_\mathcal{H}(x)) \quad \text{and} \quad a_\mathcal{H}^-(x) := \frac{1}{2}(R_\mathcal{H}(ix) - iR_\mathcal{H}(x)).
\]

They are closed and mutually adjoint operators with common domain \(\text{Dom } R_\mathcal{H}(ix) \cap \text{Dom } R_\mathcal{H}(x) \), on which the following canonical commutation relations hold [BrR]:
\[
\|a_\mathcal{H}^+(x)\xi\|^2 = \|a_\mathcal{H}^-(x)\xi\|^2 + \|x\|^2\|\xi\|^2.
\]
For any dense subspace \(\mathcal{D} \) of \(\mathcal{H} \), the subspace \(\text{Lin} \{ \varepsilon(z) : z \in \mathcal{D} \} \) is a common core for all Fock creation and annihilation operators, on which their actions are as follows:
\[
a_\mathcal{H}^+(x)\varepsilon(z) = \frac{d}{dt}\varepsilon(z+tx) \bigg|_{t=0} \quad \text{and} \quad a_\mathcal{H}^-(x)\varepsilon(z) = \langle x, z \rangle \varepsilon(z) \quad \text{for all } x, z \in \mathcal{H}.
Quasifree states and representations. Let a be a non-negative real quadratic form on H, and suppose
\[a[x] a[y] \geq (\text{Im}(x, y))^2 \quad \text{for all } x, y \in H. \] (2.4)
Then there is a unique state φ on $CCR(H)$ such that
\[\varphi(w_x) = \exp\left(-\frac{1}{2}a[x]\right) \quad \text{for all } x \in H; \] (2.5)
see [BrR, Pet]. Being non-negative, the form a polarises to a symmetric bilinear form [Kur]; in other words, the following map is real linear in each argument:
\[H \times H \rightarrow \mathbb{R}; \quad (x, y) \mapsto \frac{1}{4}(a[x+y] - a[x-y]). \]
In particular, the following regularity property holds: for all $x, y \in H$, the map $t \mapsto a[x+ty]$ is continuous on \mathbb{R}. If $\dim H < \infty$ then a is bounded and therefore there exists a bounded non-negative real-linear operator T on H such that $a[x] = \text{Re} \langle x, Tx \rangle$ for all $x \in H$.

Definition 2.2. A state φ on $CCR(H)$ is said to be quasifree if it satisfies (2.5) for some non-negative real quadratic form a satisfying (2.4); then a is called the covariance of φ, and any real-linear operator $Z : H \rightarrow \mathfrak{h}$ such that $\|Zx\|^2 = a[x]$ for all $x \in H$ is called a covariance amplitude for φ.

A state φ on $CCR(H)$ is gauge invariant if it is invariant under each gauge transformation, so that $\varphi(w_{\lambda x}) = \varphi(w_x)$ for all $\lambda \in \mathbb{T}$ and $x \in H$.

Remark. Covariances of gauge-invariant quasifree states on $CCR(H)$ are precisely the complex quadratic forms a on H such that
\[a[x] \geq \|x\|^2 \quad \text{for all } x \in H. \] (2.6)

Example 2.3. The Fock vacuum state φ_H on $CCR(H)$, given by the identity
\[\varphi_H(w_x) = \langle \Omega_H, W_H(x)\Omega_H \rangle \quad \text{for all } x \in H, \]
is the basic example of a gauge-invariant quasifree state, in view of (2.6) and the identity (2.3c).

Lemma 2.4. Let $Z \in S(H; \mathfrak{h})$. Then Z is a covariance amplitude for a quasifree state φ on $CCR(H)$. Moreover, if Z is complex linear then φ is gauge invariant.

Proof. The first part follows since
\[\|Zx\| \|Zy\| \geq |\langle Zx, Zy \rangle| \geq |\text{Im}(Zx, Zy)| = |\text{Im}(x, y)| \quad \text{for all } x, y \in H. \]
The second part is immediate. \qed

Remark. Proposition 2.6 below shows that a covariance amplitude of a quasifree state need not be complex linear for the state to be gauge invariant.

Definition 2.5. The doubling map for H is the following bounded real-linear operator:
\[\iota = \begin{bmatrix} I & 0 \\ -K & I \end{bmatrix} : H \rightarrow H \oplus \overline{H}, \quad x \mapsto \begin{pmatrix} x \\ -\overline{x} \end{pmatrix}. \]
Note that the range of the doubling map is total, since
\[
\left(\frac{x}{z}\right) = \frac{1}{2} \left(\cosh(x - z) - i \sinh(x + iz)\right) \quad \text{for all } x, z \in H.
\]

Now set
\[
AW_0(H) := \left\{ \Sigma = \begin{bmatrix} C & 0 \\ 0 & \Sigma \end{bmatrix} : S, C \in B(H)_+, \quad S^2 + iH = C^2 \right\} \subseteq B(H \oplus \overline{H})_+.
\]

and note that \(AW_0(H) = \{ \Sigma_A : A \in B(H)_+ \}, \) where
\[
\Sigma_A := \begin{bmatrix} \cosh A & 0 \\ 0 & \sinh A \end{bmatrix} \in B(H \oplus \overline{H})_+.
\]

Proposition 2.6. Let \(\Sigma \in AW_0(H).\) The bounded real-linear operator \(\Sigma \circ \iota\) is symplectic, and the quasifree state on \(CCR(H)\) with covariance amplitude \(\Sigma \circ \iota\) is gauge invariant.

Conversely, let \(\varphi\) be a gauge-invariant quasifree state on \(CCR(H),\) the covariance of which is a bounded complex quadratic form on \(CCR(H).\) Then \(\varphi\) has a covariance amplitude of the form \(\Sigma \circ \iota\) for a unique operator \(\Sigma \in AW_0(H).\)

Proof. Let \(\Sigma = \begin{bmatrix} C & 0 \\ 0 & \Sigma \end{bmatrix} \in AW_0(H),\) and set \(A := \sinh^{-1} S \in B(H)_+,\) so that \(\Sigma = \Sigma_A.\) Then, for all \(x, y \in H,\)
\[
\langle \Sigma \iota(x), \Sigma \iota(y) \rangle = \langle Cx, Cy \rangle + \langle Sx, Sy \rangle = \langle x, y \rangle + 2 \Re \langle Sx, Sy \rangle.
\]

It follows that \(\Sigma \circ \iota\) is symplectic, and is therefore a covariance amplitude of a quasifree state \(\varphi\) on \(CCR(H).\) The resulting covariance \(\mathfrak{a}_\Sigma : x \mapsto \|\Sigma \iota(x)\|^2\) satisfies
\[
\mathfrak{a}_\Sigma[x] = \|x\|^2 + 2\|Sx\|^2 = \langle x, \cosh 2A x \rangle \quad \text{for all } x \in H,
\]
and is thereby manifestly gauge invariant.

Conversely, let \(\mathfrak{a}\) be the covariance of a gauge-invariant quasifree state on \(CCR(H)\) and suppose that \(\mathfrak{a}\) is bounded. Since \(\mathfrak{a}\) is bounded and such that \(\mathfrak{a}[x] \geq \|x\|^2\) for all \(x \in H,\) there is a unique operator \(R \in B(H)\) such that \(\langle x, Rx \rangle = \mathfrak{a}[x]\) for all \(x \in H,\) and \(R \geq I_H.\) The map \(A \mapsto \cosh 2A\) is a bijection from \(B(H)_+\) onto \(\{ R \in B(H)_+ : R \geq I_H \},\) and therefore, by the identity (2.8), it follows that \(\mathfrak{a} = \mathfrak{a}_\Sigma\) for a unique operator \(\Sigma = \Sigma_A \in AW_0(H).\) \(\square\)

We now introduce the notion of squeezing, important in quantum optics. For any \(B \in S(H)^\times,\) set
\[
M_B := \begin{bmatrix} L & -AK^{-1} \\ -KA & L \end{bmatrix},
\]
where \(L\) and \(A\) are the linear and conjugate-linear parts of \(B.\)

Proposition 2.7.

(a) If \(B \in S(H)^\times\) then \(M_B\) is the unique operator \(M \in B(H \oplus \overline{H})\) such that \(M \circ \iota = \iota \circ B.\)

(b) The map \(B \mapsto M_B\) is a faithful representation of the group \(S(H)^\times\) on \(H \oplus \overline{H}.\)

(c) The map \((A, B) \mapsto \Sigma_A M_B\) from \(B(H)_+ \times S(H)^\times\) to \(B(H \oplus \overline{H})\) is injective.
(a) Let L and A be the linear and conjugate-linear parts of an operator $B \in S(H)^\times$. The block-matrix components of the bounded operator M_B are complex linear, so $M_B \in B(H \oplus H)$, and

$$M_B \circ \iota = \begin{bmatrix} L & -AK^{-1} \\ -KA & I \end{bmatrix} = \begin{bmatrix} L + A & -AK(A + L) \end{bmatrix} = \iota \circ B.$$

Uniqueness follows from the totality of Ran ι.

(b) By definition, the operator $M_{I_H} = I_{H \oplus H}$, and since

$$M_B M_{B'} \circ \iota = M_B \circ \iota \circ B' = \iota \circ B B' = M_{B B'} \circ \iota$$

for all $B, B' \in S(H)^\times$, by (a), so $M_B M_{B'} = M_{B B'}$, by the uniqueness part of (a). Thus, for each $B \in S(H)^\times$, the operator M_B is invertible and $(M_B)^{-1} = M_{B^{-1}}$. Furthermore, if $B, B' \in S(H)^\times$ are such that $M_B = M_{B'}$, then $\iota \circ B = \iota \circ B'$, so $B = B'$ by the injectivity of ι. Hence (b) holds.

(c) Suppose $(A_1, B_1), (A_2, B_2) \in B(H)_+ \times S(H)^\times$ are such that $\Sigma A_1 M_{B_1} = \Sigma A_2 M_{B_2}$. It follows from part (b) that $\Sigma A_i = \Sigma A_i M_{B_i}$, where $B = B_2 B_1^{-1}$. Set $C_i = \cosh A_i$ and $S_i = \sinh A_i$, for $i = 1, 2$, and let L and A be the linear and conjugate-linear parts of B. Then

$$\begin{bmatrix} C_1 & 0 \\ 0 & S_1 \end{bmatrix} = \begin{bmatrix} C_2 & 0 \\ 0 & S_2 \end{bmatrix} \begin{bmatrix} L & -AK^{-1} \\ -KA & I \end{bmatrix} = \begin{bmatrix} C_2 L & -C_2 AK^{-1} \\ -KS_2 A & S_2 L \end{bmatrix}.$$

As C_2 and K are invertible, this implies that $A = 0$, so B is complex linear and thus unitary, and $C_1 = C_2 B$. This implies that $C_1^2 = C_2 BB^* C_2 = C_2^2$, so $C_1 = C_2$ and $C_1 = C_1 B$. As C_1 is invertible, it follows that $B = I_H$ and (c) holds.

Definition 2.8. Set

$$M(H) := \{ M_B : B \in S(H)^\times \},$$

$$AW(H) := \{ \Sigma M : \Sigma \in AW_0(H), M \in M(H) \},$$

and

$$\Sigma_{A, B} := \Sigma_A M_B$$

for all $A \in B(H)_+$ and $B \in S(H)^\times$.

We refer to the elements of $M(H)$, $AW(H)$ and $AW_0(H)$ respectively as **squeezing matrices**, **AW amplitudes** and **gauge-invariant AW amplitudes** for H.

Remarks. (i) The AW abbreviation is in acknowledgement of Araki and Woods [ArW].

(ii) Each AW amplitude for H is of the form $\Sigma_{A, B}$ for a unique pair $(A, B) \in B(H)_+ \times S(H)^\times$, by Proposition 2.7.

(iii) Let $\Sigma = \Sigma_{A, B} \in AW(H)$. Then $\Sigma \circ \iota$ is symplectic, since it is the composition of symplectic maps $(\Sigma_A \circ \iota) \circ B$, and so is a covariance amplitude of a quasifree state on $CCR(H)$, by Lemma 2.4.
(iv) In terms of the parameterisation $B = B_{U,C,P} := U(\cosh P - C \sinh P)$ of $B \in S(H)^\times$ as in Theorem A.2 the squeezing matrices

$$M_B = M_{U,C,P} := \begin{bmatrix} U \cosh P & UC \sinh P \cdot K^{-1} \\ KUC \sinh P & U \cosh P \end{bmatrix},$$

(2.9)

$$(M_B)^{-1} = M_{B^{-1}} = M_{U^*,-U CU^*,UP^*}$$

and

$$\Sigma_{A,B} = \Sigma^{A,U,C,P} := \begin{bmatrix} \cosh A \cdot U \cosh P & \cosh A \cdot UC \sinh P \cdot K^{-1} \\ K \sinh A \cdot UC \sinh P & \sinh A \cdot U \cosh P \end{bmatrix}.$$ \hspace{1cm} (2.10)

Araki–Woods representations. We are interested in the class of representations W_Σ of $CCR(H)$ of Araki–Woods type, and the corresponding quasifree states φ_Σ, determined by AW amplitudes $\Sigma = \Sigma_{A,B}$ as follows:

$$W_\Sigma := W_{H \oplus \overline{H}} \circ \Sigma \circ \iota : x \mapsto W_{H \oplus \overline{H}}(\Sigma(x))$$

and

$$\varphi_\Sigma : w_x \mapsto \langle \Omega_{H \oplus \overline{H}}, W_\Sigma(x) \Omega_{H \oplus \overline{H}} \rangle \quad (x \in H).$$

Remark. Let $\Sigma = \Sigma_A$ be gauge invariant. On one hand, if A is injective then $\Omega_{H \oplus \overline{H}}$ is a cyclic vector for the representation W_Σ. On the other hand, if $A = 0$ then $W_\Sigma(x) = W_H(Bx) \otimes I_{\Gamma_+}(\overline{H})$ for all $x \in H$, so \(\prod \{ W_\Sigma(x) \Omega_{H \oplus \overline{H}} : x \in H \} = \Gamma_+(H) \otimes \Omega_{\overline{H}} \).

These AW representations W_Σ inherit regularity from the Fock representation $W_{H \oplus \overline{H}}$. As in the Fock case, given any $x \in H$, setting

$$a_\Sigma^+(x) := \frac{1}{2} (R_\Sigma(ix) + i R_\Sigma(x)) \quad \text{and} \quad a_\Sigma^-(x) := \frac{1}{2} (R_\Sigma(ix) + i R_\Sigma(x))$$

defines creation and annihilation operators via the quasifree field operators \(\{ R_\Sigma(z) : z \in H \} \), which are the Stone generators of the corresponding unitary groups \(W_\Sigma(tz) \). We now relate these to Fock creation and annihilation operators.

For convenience, let the AW amplitude $\Sigma \in B(H \oplus \overline{H})$ has the block-matrix form \(\begin{bmatrix} a & \gamma \\ \beta & \delta \end{bmatrix} \). The identification $\Gamma_+(H \oplus \overline{H}) = \Gamma_+(H) \oplus \Gamma_+(\overline{H})$ gives that

$$W_\Sigma(x) = W_{H \oplus \overline{H}}(\alpha x - \gamma \overline{x}, \beta x - \delta \overline{x}) = W_H(\alpha x - \gamma \overline{x}) \otimes W_{\overline{H}}(\beta x - \delta \overline{x}) \quad \text{for all } x \in H.$$

It follows that $R_\Sigma(x)$ is the closure of the operator

$$R_H(\alpha x - \gamma \overline{x}) \otimes I_{\Gamma_+(\overline{H})} + I_{\Gamma_+(H)} \otimes R_{\overline{H}}(\beta x - \delta \overline{x}),$$

by [ReS] Theorem VIII.33], which implies that

$$a_\Sigma^+(x) \geq a_{H \oplus \overline{H}}^+(\alpha x, \beta x) + a_{H \oplus \overline{H}}^-(\gamma \overline{x}, \delta \overline{x}) \quad \text{(2.11a)}$$

and

$$a_\Sigma^-(x) \geq a_{H \oplus \overline{H}}^-(\alpha x, \beta x) + a_{H \oplus \overline{H}}^+(\gamma \overline{x}, \delta \overline{x}). \quad \text{ (2.11b)}$$

Thus, in terms of a parameterisation $\Sigma = \Sigma^{A,U,C,P}$, as in (2.10),

$$a_\Sigma^+(x) \geq a_{H \oplus \overline{H}}^+(\cosh A \cdot U \cosh P x, \sinh A \cdot UC \sinh P x) + a_{H \oplus \overline{H}}^+(\cosh A \cdot UC \sinh P x, \sinh A \cdot U \cosh P x) \quad \text{for all } x \in H.$$
In particular, for a gauge-invariant AW amplitude $\Sigma = \Sigma_A$,

$$a_\Sigma^\pm(x) \supseteq a_H^\pm(cosh A x) \otimes I_{\Gamma_A(H)} + I_{\Gamma_+(H)} \otimes a_H^\pm(sinh A x) \quad \text{for all } x \in \mathcal{H}.$$

Remark. The absence of minus signs in these relations is due to our choice of signs in the definition of the doubling map ι, and the choice of parameterisation of the symplectic automorphism B.

3. Quantum stochastic calculus

In this section we summarise the relevant elements of standard quantum stochastic calculus [Par, Mey, Fag, L2] in a way which is adapted to the requirements of the quasifree stochastic calculus developed in Section 4. This section ends with discussions of the non-uniqueness of implementing quantum stochastic cocycles for an Evans–Hudson flow, and Bhat’s minimality criterion for quantum stochastic dilations.

For the rest of this article, we fix a Hilbert space \mathfrak{h}, which is referred to as the **initial space** or **system space**. For this section, we also fix a Hilbert space \mathcal{K} as the **multiplicity space** or **noise dimension space**. In later sections, this will vary or have further structure.

Notation. We use the abbreviations Ω, W, a^+, a^- and \mathcal{F} for $\Omega_H, W_H, a^+_H, a^-_H$ and $\Gamma_+(H)$, respectively, where the Hilbert space $H = L^2(\mathbb{R}^+; \mathcal{K})$. As is customary, we abbreviate the simple tensor $u \otimes \varepsilon(f)$ to $u \varepsilon(f)$ whenever $u \in \mathfrak{h}$ and $f \in L^2(\mathbb{R}^+; \mathcal{K})$.

For each $t \in \mathbb{R}^+$ we have the decomposition $\mathcal{F} = \mathcal{F}_t \otimes \mathcal{F}_t$, where $\mathcal{F}_t := \Gamma_+(L^2([0,t]; \mathcal{K}))$ and $\mathcal{F}_t := \Gamma_+(L^2([0,t]; \mathcal{K}))$.

The space of step functions from \mathbb{R}^+ to \mathcal{K} having compact support is denoted S. Although we view S as a subspace of $L^2(\mathbb{R}^+; \mathcal{K})$, we always take the right-continuous version of each step function, thus allowing us to evaluate these functions at any point in \mathbb{R}^+.

Note that S enjoys the following useful properties:

(i) If $f \in S$ and $t \in \mathbb{R}^+$ then $1_{[0,t]} f \in S$;

(ii) the **exponential subspace** $\mathcal{E} := \text{Lin}\{\varepsilon(f) : f \in S\}$ is dense in \mathcal{F};

(iii) the subspace $\text{Lin}\{f(t) : t \in \mathbb{R}^+\}$ is finite dimensional, for all $f \in S$.

In what follows we restrict our attention, as much as possible, to processes composed of bounded operators.

Definition 3.1. An \mathfrak{h}-\mathfrak{h}' **process**, or \mathfrak{h} **process** if $\mathfrak{h} = \mathfrak{h}'$, is a function

$$X : \mathbb{R}^+ \to B(\mathfrak{h} \otimes \mathcal{F}; \mathfrak{h}' \otimes \mathcal{F}); \quad t \mapsto X_t$$

which is adapted, so that

$$X_t \in B(\mathfrak{h} \otimes \mathcal{F}_t; \mathfrak{h}' \otimes \mathcal{F}_t) \otimes I_\mathcal{F}_t \quad \text{for all } t \in \mathbb{R}^+,$$

where $I_\mathcal{F}_t$ is the identity operator on \mathcal{F}_t, and measurable, so that the function

$$\mathbb{R}^+ \to \mathfrak{h}' \otimes \mathcal{F}; \quad t \mapsto X_t$$
is weakly measurable for all $\xi \in h \otimes F$. By separability, weak measurability may be replaced with strong measurability here.

An h-h' process X is

(i) **simple** if it is piecewise constant and right continuous, so that there exists a strictly increasing sequence $(t_n)_{n \geq 1} \subseteq \mathbb{R}_+$ such that $t_1 = 0$ and $t_n \to \infty$ as $n \to \infty$, with X constant on each interval $[t_n, t_{n+1})$;

(ii) **continuous** if $t \mapsto X_t\xi$ is continuous for all $\xi \in h \otimes F$;

(iii) **unitary** if X_t is a unitary operator for all $t \in \mathbb{R}_+$.

Every h-h' process X has an **adjoint process**, namely the h'-h process $X^* : t \mapsto X^*_t$. Clearly X^* is simple if X is.

Notation. It is convenient to augment the multiplicity space, by setting

$$\hat{K} := \mathbb{C} \oplus K, \quad \hat{x} := \begin{pmatrix} 1 \\ x \end{pmatrix} \text{ for all } x \in K \text{ and } \hat{f}(t) := f(t) \text{ for all } f \in S \text{ and } t \in \mathbb{R}_+.$$

Thus $\hat{K} \otimes h = h \oplus (K \otimes h)$ and any operator $T \in B(\hat{K} \otimes h; \hat{K} \otimes h')$ has a block-matrix form

$$\begin{bmatrix} T_0^0 & T_0^1 \\ T_1^0 & T_1^1 \end{bmatrix} \in \begin{bmatrix} B(h; h') & B(K \otimes h; h') \\ B(h; K \otimes h') & B(K \otimes h; K \otimes h') \end{bmatrix}.$$

Remark. One may also begin with a Hilbert space \hat{K} and, by choosing a distinguished unit vector $\omega \in \hat{K}$, obtain K by setting $K := \hat{K} \ominus \mathbb{C} \omega$. This observation will be useful in Section 6.

Definition 3.2. An **K-integrand process on h**, or simply an **integrand process**, is a $\hat{K} \otimes h$ process F such that, in terms of its block-matrix form $\begin{bmatrix} K & M \\ L & N \end{bmatrix}$,

$$s \mapsto K_s v \varepsilon(g) \text{ and } s \mapsto M_s (g(s) \otimes v \varepsilon(g)) \text{ are locally integrable,}$$

and $s \mapsto L_s v \varepsilon(g)$ and $s \mapsto N_s (g(s) \otimes v \varepsilon(g))$ are locally square-integrable, for all $v \in h$ and $g \in S$.

Remark. Suppose F is a $\hat{K} \otimes h$ process such that, for all $x, y \in K$, the function

$$s \mapsto \|K_s + M_s (|x| \otimes I_{h \otimes F})\| + \|(|y| \otimes I_{h \otimes F})(L_s + N_s (|x| \otimes I_{h \otimes F}))\|^2$$

is locally integrable. Then F is an integrand process.

Theorem 3.3. For any integrand process F, there exists a family $\Lambda(F) := (\Lambda(F)_t)_{t \geq 0}$ of linear operators, with common domain $h \otimes E$ and codomain $h \otimes F$, such that

$$\langle u \varepsilon(f), (\Lambda(F)_t v \varepsilon(g)) \rangle = \int_0^t \langle \hat{f}(s) \otimes u \varepsilon(f), F_s (\hat{g}(s) \otimes v \varepsilon(g)) \rangle \, ds \quad (3.1)$$

for all $u, v \in h$, $f, g \in S$ and $t \in \mathbb{R}_+$. Furthermore, if $r, t \in \mathbb{R}_+$ are such that $r \leq t$ then

$$\|((\Lambda(F)_t - \Lambda(F)_r) v \varepsilon(g))\| \leq \int_r^t \|((K_s + M_s (|g(s)| \otimes I_{h \otimes F})) v \varepsilon(g))\| \, ds$$

$$+ C(g) \left\{ \int_r^t \|(L_s + N_s (|g(s)| \otimes I_{h \otimes F})) v \varepsilon(g))\|^2 \, ds \right\}^{1/2}.$$
for all $u, v \in \mathfrak{h}$ and $f, g \in S$, where $C(g) := \|g\| + (1 + \|g\|^2)^{1/2}$.

Proof. See [L3, Theorem 3.13]. \qed

Remark. The identity (3.1) is known as the first fundamental formula of quantum stochastic calculus. It follows from it that the family of operators $\Lambda(F)$ is unique.

Corollary 3.4. If $F = \begin{bmatrix} K & M \\ L & N \end{bmatrix}$ is an integrand process and its adjoint process $F^\ast = \begin{bmatrix} K^\ast & L^\ast \\ M^\ast & N^\ast \end{bmatrix}$ is also an integrand process then $\Lambda(F^\ast)_t \subseteq \Lambda(F)_t$ for all $t \in \mathbb{R}_+$. \hfill \Box

Remark. If the integrand process F is such that the operator $\Lambda(F)_t$ is bounded, for all $t \in \mathbb{R}_+$, then taking the closure of each operator defines a continuous \mathfrak{h} process which, by a slight abuse of notation, we also denote by $\Lambda(F)$.

Notation. Let $F = \begin{bmatrix} K & M \\ L & N \end{bmatrix}$ be an integrand process. Then

$$A^+(K) := \Lambda(\begin{bmatrix} K & 0 \\ 0 & 0 \end{bmatrix}), \hspace{1cm} A^+(L) := \Lambda(\begin{bmatrix} 0 & 0 \\ 0 & L \end{bmatrix}), \hspace{1cm} A^-(M) := \Lambda(\begin{bmatrix} 0 & M \\ 0 & 0 \end{bmatrix}) \hspace{1cm} \text{and} \hspace{1cm} A^\times(N) := \Lambda(\begin{bmatrix} 0 & 0 \\ 0 & N \end{bmatrix})$$

are the time, creation, annihilation and preservation integrals.

The following proposition, which is readily verified, connects the definition of quantum stochastic integrals of Theorem 3.3 with the classical Itô integration of simple processes.

Proposition 3.5. Suppose the noise dimension space K is finite dimensional, with orthonormal basis $(e_i)_{i \in I}$. Let $F = \begin{bmatrix} K & M \\ L & N \end{bmatrix}$ be a simple integrand process, let $t > 0$, and suppose the partition $\{0 = t_0 < t_1 < \cdots < t_n = t\}$ contains the points of discontinuities of F on $[0, t)$. Then

$$A^+(L)_t = \sum_{i \in I} \int_0^t L^i(s) \, dA^+(se_i) = \sum_{i \in I} \sum_{j=0}^{n-1} L^i(t_j) \left(I_{\mathfrak{h}} \otimes a^+(e_i 1_{[t_j, t_{j+1})}) \right) \quad \text{on } \mathfrak{h} \otimes \mathcal{E}$$

and

$$A^-(M)_t = \sum_{i \in I} \int_0^t M_i(s) \, dA^-(se_i) = \sum_{i \in I} \sum_{j=0}^{n-1} M_i(t_j) \left(I_{\mathfrak{h}} \otimes a^-(e_i 1_{[t_j, t_{j+1})}) \right) \quad \text{on } \mathfrak{h} \otimes \mathcal{E},$$

where $L^i(s) := (e_i \otimes I_{\mathfrak{h} \otimes \mathcal{F}}) \, L(s)$ and $M_i(s) := M(s)(e_i) \otimes I_{\mathfrak{h} \otimes \mathcal{F}}$.

Remark. The preservation integral $A^\times(N)$ has a similar expression (see [Par]) and the time integral is given by the straightforward prescription

$$A^\times(K)_t := \sum_{j=0}^{n-1} K(t_j)(t_{j+1} - t_j).$$

The following result is the quantum Itô product formula, or second fundamental formula. To state it, we define the quantum Itô projection

$$\Delta := \begin{bmatrix} 0 & 0 \\ 0 & I_K \end{bmatrix} \in B(\mathfrak{K}),$$

which is amplified to $\begin{bmatrix} 0 & 0 \\ 0 & I_{K \otimes \mathfrak{h}} \end{bmatrix}$ for appropriate choices of \mathfrak{h} without change of notation.
Theorem 3.6. Let F and G be integrand processes, let $X_0, Y_0 \in B(\mathfrak{h}) \otimes I_F$, and, for all $t \in \mathbb{R}_+$, set $X_t = X_0 + \Lambda(F)_t$ and $Y_t = Y_0 + \Lambda(G)_t$. Then
\[
\langle X_t u \varepsilon(f), Y_t v \varepsilon(g) \rangle = \langle X_0 u \varepsilon(f), Y_0 v \varepsilon(g) \rangle + \int_0^t \left\{ \left(\hat{f}(s) \otimes X_s u \varepsilon(f), G_s(\hat{g}(s) \otimes v \varepsilon(g)) \right) + \left(F_s(\hat{f}(s) \otimes u \varepsilon(f)), \hat{g}(s) \otimes Y_s v \varepsilon(g) \right) + \left(F_s(\hat{f}(s) \otimes u \varepsilon(f)), \Delta G_s(\hat{g}(s) \otimes v \varepsilon(g)) \right) \right\} ds
\]
for all $u, v \in \mathfrak{h}$, $f, g \in \mathbb{S}$ and $t \in \mathbb{R}_+$.

Proof. See [L2, Theorem 3.15]. \qed

Definition 3.7. The map $E_\Omega : B(\mathfrak{h} \otimes \mathcal{F}) \to B(\mathfrak{h})$, $T \mapsto E_\Omega[T] := (I_\mathfrak{h} \otimes (\Omega)) T (I_\mathfrak{h} \otimes |\Omega\rangle)$ is called the vacuum expectation. For all $t \in \mathbb{R}_+$, let σ^K_t be the normal $*$-endomorphism of $B(\mathcal{F})$ such that
\[
\sigma^K_t(W(g)) = W(S_t g), \quad \text{where } (S_t g)(s) := \begin{cases} g(s-t) & \text{if } s \geq t, \\ 0 & \text{if } s < t. \end{cases}
\]
The family $\sigma^K := (\sigma^K_t)_{t \geq 0}$ is called the CCR flow of index $\dim K$. We set
\[
\sigma_t := \text{id}_{B(\mathfrak{h})} \otimes \sigma^K_t \quad \text{for all } t \in \mathbb{R}_+.
\]

Remark. The vacuum expectation is normal, unital and completely positive, and is invariant for the action of $\sigma = (\sigma_t)_{t \geq 0}$, which is an E_0 semigroup [Arv]:
\[
E_\Omega \circ \sigma_t = E_\Omega \quad \text{for all } t \in \mathbb{R}_+.
\]

(3.2)

Definition 3.8. An \mathfrak{h} process Y is a quantum stochastic cocycle on \mathfrak{h} if
\[
Y_0 = I_{\mathfrak{h} \otimes \mathcal{F}} \quad \text{and} \quad Y_{r+t} = \sigma_r(Y_t) Y_r \quad \text{for all } r, t \in \mathbb{R}_+;
\]
it is a unitary QS cocycle if the process is unitary. The family $(E_\Omega[Y_t])_{t \geq 0}$ is called the vacuum expectation semigroup of Y. A Hudson–Parthasarathy cocycle, or HP cocycle in short, is a unitary QS cocycle whose expectation semigroup is norm continuous.

Remark. That $(E_\Omega[Y_t])_{t \geq 0}$ is a one-parameter semigroup follows from the adaptedness relations
\[
\sigma_r(Y_t) \in B(\mathfrak{h}) \otimes I_{\mathcal{F}_r} \otimes B(\mathcal{F}_{[r]}) \quad \text{and} \quad Y_r \in B(\mathfrak{h} \otimes \mathcal{F}_r) \otimes I_{\mathcal{F}_r}
\]
and the identity [52]: note that
\[
E_\Omega[Y_{r+t}] = E_\Omega[\sigma_r(Y_t)] E_\Omega[Y_r] = E_\Omega[Y_t] E_\Omega[Y_r] \quad \text{for all } r, t \in \mathbb{R}_+.
\]

Notation. Let
\[
B(\hat{K} \otimes \mathfrak{h})_0 := \left\{ T = \begin{bmatrix} T_0^0 & T_0^1 \\ T_1^0 & T_1^1 \end{bmatrix} \in B(\hat{K} \otimes \mathfrak{h}) : T_1^1 = 0 \right\}.
\]

Theorem 3.9.

(a) Let $F \in B(\hat{K} \otimes \mathfrak{h})$. The following are equivalent.

(i) $F = \begin{bmatrix} K & -L^* W \\ L W - I_{\mathfrak{h} \otimes \mathfrak{h}} \end{bmatrix}$, where $K = iH - \frac{1}{2} L^*L$, H is self adjoint and W is unitary.
(ii) \(F^* + F + F^* \Delta F = 0 = F + F^* + F \Delta F^* \).

(iii) There is a unitary \(\mathfrak{h} \) process \(U_t \) such that
\[
U_t = I_{\mathfrak{h} \otimes \mathfrak{F}} + \Lambda(F \cdot U)_t \quad \text{for all } t \in \mathbb{R}_+,
\]
where \((F \cdot U)_s := (F \otimes I_F)(I_\mathfrak{K} \otimes U_s)\) for all \(s \in \mathbb{R}_+ \).

In this case, \(U \) is the unique unitary \(\mathfrak{h} \) process satisfying (3.3).

(b) Let \(U \) be a unitary \(\mathfrak{h} \) process. The following are equivalent.

(i) \(U \) satisfies (3.3) for some operator \(F \in B(\tilde{\mathfrak{K}} \otimes \mathfrak{h}) \).

(ii) \(U \) is an HP cocycle.

In this case,
\[
\langle \hat{x} \otimes u, (F + \Delta)\hat{y} \otimes v \rangle = \lim_{t \to 0^+} t^{-1} \langle u \varepsilon(x1_{[0,t]}), (U_t - I_{\mathfrak{h} \otimes \mathfrak{F}})v \varepsilon(y1_{[0,t]}) \rangle
\]
for all \(u, v \in \mathfrak{h} \) and \(x, y \in \mathfrak{K} \). In particular, the vacuum expectation semigroup of \(U \) has generator \(K \).

(c) If \(F \in B(\tilde{\mathfrak{K}} \otimes \mathfrak{h})_0 \) then (i) and (ii) of (a) have the following equivalents.

(i) \(F = \begin{bmatrix} K & -L^* \\ L & 0 \end{bmatrix} \), where \(K + \frac{1}{2}L^*L \) is skew adjoint.

(ii) \(F^* + F + F^* \Delta F = 0 \).

Proof. Part (a) is covered by Theorems 7.1 and 7.5 of [LW]. For (b), see [L2]. The identity (3.4) is a straightforward consequence of (3.3), the first fundamental formula (3.1) and the strong continuity of \(U \). \(\square \)

Remark. The quantum stochastic equation (3.3) is referred to as the quantum Langevin equation in recent literature.

Definition 3.10. The unique operator \(F \), or triple \((H, L, W) \) associated with an HP cocycle \(U \) via (3.4) is called its stochastic generator. Conversely, for an operator \(F \in B(\tilde{\mathfrak{K}} \otimes \mathfrak{h}) \) having the block-matrix form given in Theorem 3.9(a)(i), the unique HP cocycle satisfying (3.3) is denoted \(Y^F \) or \(U^{(H,L,W)} \).

Remark. If \(F \) is the stochastic generator of an HP cocycle then Theorem 3.9 implies that \(F^* \) is also such a generator, since
\[
\begin{bmatrix}
 iH - \frac{1}{2}L^*L & -L^*W \\
 L & W - I_{\mathfrak{K} \otimes \mathfrak{h}}
\end{bmatrix}^* = \begin{bmatrix}
 i\tilde{H} - \frac{1}{2}\tilde{L}^*\tilde{L} & -\tilde{L}^*\tilde{W} \\
 \tilde{L} & \tilde{W} - I_{\mathfrak{K} \otimes \mathfrak{h}}
\end{bmatrix}
\]
where \(\tilde{W} = W^*, \tilde{L} = -W^*L \) and \(\tilde{H} = -H \). However, it is usually not the case that \(Y^{F^*} \) and \((Y^F)^* \) are equal. An exception is when \(\mathfrak{h} = \mathbb{C} \), described in Example 3.13.

In this article, we are mainly concerned with the following subclass of HP cocycles.

Definition 3.11. An HP cocycle is Gaussian if its stochastic generator lies in \(B(\tilde{\mathfrak{K}} \otimes \mathfrak{h})_0 \). Equivalently, its parameterisation has the form \((H, L, I_{\tilde{\mathfrak{K}} \otimes \mathfrak{h}}) \).

Corollary 3.12. The prescription \((H, L, W) \mapsto U^{(H,L,W)}\) defines a bijection
\[
B(\mathfrak{h})_s \times B(\mathfrak{h}; \mathfrak{K} \otimes \mathfrak{h}) \times U(\mathfrak{K} \otimes \mathfrak{h}) \to \{\text{HP cocycles on } \mathfrak{h} \text{ with noise dimension space } \mathfrak{K}\},
\]
which restricts to a bijection

\[B(h)_{sa} \times B(h; K \otimes h) \to \{ \text{Gaussian HP cocycles on } h \text{ with noise dimension space } K \}. \]

Example 3.13. [Pure-noise cocycles] For any \(z \in K \), setting \(W^z := (W(z1_{[0,t]}))_{t \geq 0} \) defines an HP cocycle on \(C \). An operator \(F \in B(K) \) is the generator of an HP cocycle on \(C \) if and only if

\[
F = \begin{bmatrix}
\alpha - \frac{1}{2} |z|^2 & -z^w \\
-\overline{z}w & w - I_K
\end{bmatrix}
\]

for some \(\alpha \in \mathbb{R} \), \(z \in K \) and \(w \in U(K) \).

The Gaussian pure-noise cocycles are precisely those of the form \((e^{i\alpha t}W^z)_{t \geq 0} \) for some \(\alpha \in \mathbb{R} \) and \(z \in K \).

As \(B(F^r) \otimes I_r \) and \(\sigma^K_r(B(F)) = I_r \otimes B(F^r) \) commute for all \(r \in \mathbb{R}_+ \), the adjoint process \((Y^F)^* \) is equal to the HP cocycle \(Y^{F^*} \).

Lemma 3.14. Let \(U \) be an HP cocycle on \(h \) and let \(u \) be a pure-noise HP cocycle with the same noise dimension space. Then

\[\tilde{U} := ((I_h \otimes u_t)U_t)_{t \geq 0} \]

is an HP cocycle on \(h \). Moreover, the stochastic generators \(\tilde{F} \sim (\tilde{H}, \tilde{L}, \tilde{W}) \) of \(\tilde{U} \), \(F \sim (H, L, W) \) of \(U \) and \(f \sim (\alpha, |z|, w) \) of \(u \) are related as follows:

\[
\tilde{F} = (I_h \otimes f) + F + (I_h \otimes f)\Delta F
\]

or, equivalently,

\[
\tilde{W} = (w \otimes I_h)W;
\]

\[
\tilde{L} = (w \otimes I_h)L + |z) \otimes I_h
\]

and

\[
\tilde{H} = H + \frac{i}{\alpha}((w^*z) \otimes I_h)L - L^*(|w^*z) \otimes I_h)) + \alpha I_h.
\]

Proof. That \(\tilde{U} \) is a unitary QS cocycle follows from the fact that \(\sigma_r(U_t) \) and \(I_h \otimes u_r \) commute for all \(r, t \in \mathbb{R}_+ \). The quantum Itô product formula, Theorem 3.6 implies that \(\tilde{U}_t = I_h \otimes x + \Lambda(\tilde{F} \cdot \tilde{U})_t \) for all \(t \in \mathbb{R}_+ \), where \(\tilde{F} = (I_h \otimes f) + F + (I_h \otimes f)\Delta F \). It now follows from the uniqueness part of Theorem 3.9 that \(\tilde{U} \) equals the HP cocycle \(Y^{\tilde{F}} \), so that \(\tilde{U} = U(\tilde{H}, \tilde{L}, \tilde{W}) \) where \(\tilde{H}, \tilde{L}, \tilde{W} \) is given by (3.5). \(\square \)

Definition 3.15. A quantum dynamical semigroup \(\mathcal{P} = (\mathcal{P}_t)_{t \geq 0} \) is a semigroup of completely positive contractive normal maps on \(B(h) \) which is pointwise weak operator continuous. If \(\mathcal{P}_t \) is unital for all \(t \in \mathbb{R}_+ \) then \(\mathcal{P} \) is called conservative.

Remark. The generator \(\mathcal{L} \) of a norm-continuous conservative quantum dynamical semigroup is expressible in Lindblad form [Lin]: there exists a separable Hilbert space \(K \), a self-adjoint operator \(H \in B(h) \) and an operator \(L \in B(h; K \otimes h) \) such that

\[
\mathcal{L}(a) = -i[H, a] - \frac{1}{2} \{ L^*L, a \} + L^*(I_K \otimes a)L \quad \text{for all } a \in B(h),
\]

where \([,]\) and \(\{ , \} \) denote the commutator and anti-commutator, respectively.
Theorem 3.16. Let U be an HP cocycle with stochastic generator (H, L, W). For all $t \in \mathbb{R}_+$, let

$$j_t : B(\mathfrak{h}) \to B(\mathfrak{h} \otimes \mathcal{F}); \quad a \mapsto U_t^*(a \otimes I_{\mathcal{F}})U_t,$$

and let

$$\theta : B(\mathfrak{h}) \to B(\mathcal{K} \otimes \mathfrak{h}); \quad a \mapsto \begin{bmatrix} -i[H,a] - \frac{1}{2}\{L^*L,a\} + L^*(I_K \otimes a)L & (L^*(I_K \otimes a) - aL^*)W \\ W^*((I_K \otimes a)L - La) & W^*(I_K \otimes a)W - I_K \otimes a \end{bmatrix}. \quad (3.7)$$

(a) If $j^K := (\text{id}_{B(\mathcal{K})} \otimes j_t)_{t \geq 0}$, so that

$$j^K_t(A) = (I_K \otimes U_t)^*(A \otimes I_{\mathcal{F}})(I_K \otimes U_t) \quad \text{for all } t \in \mathbb{R}_+ \text{ and } A \in B(\mathcal{K} \otimes \mathfrak{h}),$$

then $(j^K_t \circ \theta)(a)_{t \geq 0}$ is an integrand process for all $a \in B(\mathfrak{h})$ and

$$j_t(a) = a \otimes I_{\mathcal{F}} + \Lambda((j^K_t \circ \theta)(a))_t \quad \text{for all } a \in B(\mathfrak{h}) \text{ and } t \in \mathbb{R}_+. \quad (3.8)$$

Furthermore, the family $j = (j_t)_{t \geq 0}$ is the unique mapping process consisting of normal \text{*}-homomorphisms that satisfies (3.8).

(b) The mapping process j obeys the cocycle relation

$$j_{r+t} = \hat{j}_r \circ \sigma_r \circ j_t \quad \text{for all } r, t \in \mathbb{R}_+,$$

where \hat{j}_r is the normal \text{*}-homomorphism from $\text{Ran} \sigma_r$ to $B(\mathfrak{h} \otimes \mathcal{F})$ such that

$$\hat{j}_r(a \otimes b) = j_t(a)(I_R \otimes b) \quad \text{for all } a \in B(\mathfrak{h}) \text{ and } b \in \text{Ran} \sigma^K_r \subseteq B(\mathcal{F}).$$

Moreover, setting $\mathcal{P} := (\mathbb{E}_0 \circ j_t)_{t \geq 0}$ defines a norm-continuous conservative quantum dynamical semigroup on $B(\mathfrak{h})$, the vacuum expectation semigroup of j.

(c) For all $a \in B(\mathfrak{h})$, $u, v \in \mathfrak{h}$ and $x, y \in \mathcal{K}$,

$$\langle \hat{x} \otimes u, (\theta(a) + \Delta \otimes a)\hat{y} \otimes v \rangle = \lim_{t \to 0^+} t^{-1} \langle u\varepsilon(x1_{[0,t]}), (j_t(a) - a \otimes I_{\mathcal{F}})v\varepsilon(y1_{[0,t]}) \rangle. \quad \text{for all } a \in B(\mathfrak{h}).$$

In particular, the vacuum expectation semigroup of j has generator \mathcal{L}.

Proof. That j satisfies (3.8) follows from the quantum Itô product formula. In turn, part (c) follows from (3.8), the first fundamental formula, Theorem 3.14, and the strong continuity of U. For (b) and the uniqueness part of (a), see [L2] and [LW1]. \hfill \square

Definition 3.17. An inner Evans–Hudson flow on $B(\mathfrak{h})$, or inner EH flow in short, is a mapping process j induced by an HP cocycle on \mathfrak{h}, as above [Ev]. The map θ is called the stochastic generator of j.

Remark. Let j be an inner EH flow on $B(\mathfrak{h})$. Using the ampliations introduced in Theorem 3.16, the prescription $J := (j_t \circ \sigma_t)_{t \geq 0}$ produces an E_0 semigroup on $B(\mathfrak{h} \otimes \mathcal{F})$ such that

$$J_t(A) := U_t^* \sigma_t(A)U_t \quad \text{for all } A \in B(\mathfrak{h} \otimes \mathcal{F}) \text{ and } t \in \mathbb{R}_+,$$

where U is any HP cocycle inducing j. In turn, we can recover j from J, since $j_t = J_t \circ \iota_{\mathcal{F}}$ for all $t \in \mathbb{R}_+$, where the ampliation

$$\iota_{\mathcal{F}} : B(\mathfrak{h}) \to B(\mathfrak{h} \otimes \mathcal{F}); \quad a \mapsto a \otimes I_{\mathcal{F}}.$$
Given an HP cocycle U, Lemma 3.14 provides sufficient conditions for an HP cocycle U' to induce the same EH flow as U. In the next result we show that these conditions are also necessary.

Proposition 3.18. Suppose j and j' are inner EH flows on $B(\mathfrak{h})$ with noise dimension space K, induced by HP cocycles U and U' and having stochastic generators (H, L, W) and (H', L', W'), respectively. The following are equivalent.

(i) The flows j and j' are equal.

(ii) The process $(U'(t)U^*_t)_{t \geq 0}$ is the ampliation to \mathfrak{h} of a pure-noise HP cocycle.

(iii) There is a scalar $\alpha \in \mathbb{R}$, a vector $z \in K$ and an operator $w \in U(K)$ such that

\[
 w \otimes I_h = W'W^*,
\]

\[
 |z\rangle \otimes I_h = L' - (w \otimes I_h)L
\]

and

\[
 \alpha I_h = H' - H - \frac{1}{2}\left((w^*z) \otimes I_h)L - L^*(|w^*z) \otimes I_h)\right).
\]

Proof. If (ii) holds then Lemma 3.14 implies that (iii) holds.

If (iii) holds then it is easily verified that θ', defined from (H', L', W') rather than (H, L, W), coincides with θ. Thus (i) holds by the uniqueness part of Theorem 3.16(a).

Finally, suppose that (i) holds, and let X denote the unitary process $(U'_tU^*_t)_{t \geq 0}$. For all $t \in \mathbb{R}_+$, the operator X_t commutes with all operators in $B(\mathfrak{h}) \otimes I_F$, so $X_t = I_h \otimes u_t$ for some unitary operator $u_t \in B(F)$. This implies that X_t commutes with $\sigma_r(U_t^*)$ for all $r, t \in \mathbb{R}_+$, and so

\[
 \sigma_r(X_t)X_r = \sigma_r(U'_t)X_r\sigma_r(U_t^*) = \sigma_r(U'_t)U'_tU^*_t\sigma_r(U_t) = U'_tU^*_t = X_{t+}.
\]

Hence $u = (u_t)_{t \geq 0}$ is a unitary QS cocycle on \mathbb{C}. Since $(U')^*$ and U^* are both strongly continuous and unitary, so u is strongly continuous and therefore its vacuum expectation semigroup P is too. As P is a semigroup on \mathbb{C}, this implies that P is norm continuous. Thus u is an HP cocycle and therefore (ii) holds. \qed

Remarks. Given a norm-continuous conservative quantum dynamical semigroup P on $B(\mathfrak{h})$, its generator \mathcal{L} is expressible in Lindblad form (3.4) for some separable Hilbert space K and operators $H = H^* \in B(\mathfrak{h})$ and $L \in B(\mathfrak{h} \otimes \mathfrak{h})$. In turn, Theorem 3.16 implies that the inner EH flow j induced by the HP cocycle with generator $(H, L, I_{K \otimes \mathfrak{h}})$ has vacuum expectation semigroup P. In this sense, the flow j is a *stochastic dilation* of P.

The non-uniqueness of triples (K, H, L) determining the generator \mathcal{L} of a norm-continuous quantum dynamical semigroup on $B(\mathfrak{h})$ is analysed in [PS3]; this may be compared to the non-uniqueness of triples (H, L, W) determining the stochastic generator θ of a given inner EH flow j characterised in Proposition 3.18.

The construction of stochastic dilations was a major motivation for the original development of quantum stochastic calculus [HuP] [Par].

We end this summary of standard quantum stochastic calculus by connecting it to Bhat’s analysis of dilations of the above form, in particular the question of minimality.

Theorem 3.19 ([Bha, Theorem 9.1]). Let j be an inner EH flow. The following are equivalent.
In this section we produce a simplified form of the coordinate-free multidimensional quasifree stochastic calculus \[\{j_t(a_1) \cdots j_t(a_n)\omega : u \in \mathfrak{h}, n \geq 1, a_1, \ldots, a_n \in B(\mathfrak{h}), t_1, \ldots, t_n \in \mathbb{R}_+\} = \mathfrak{h} \otimes \mathcal{F}.\]

(i) \textit{As a stochastic dilation of its vacuum expectation semigroup, the flow } j \textit{ is minimal:}

\[
\text{Lin} \left\{ j_t(a_1) \cdots j_t(a_n)\omega : u \in \mathfrak{h}, n \geq 1, a_1, \ldots, a_n \in B(\mathfrak{h}), t_1, \ldots, t_n \in \mathbb{R}_+ \right\} = \mathfrak{h} \otimes \mathcal{F}.
\]

(ii) \textit{The stochastic generator } (H, L, W) \textit{ of any HP cocycle which induces } j \textit{ satisfies}

\[
(\langle z \otimes I_0 \rangle L \notin CI_0 \text{ for all } z \in K \setminus \{0\}).
\]

\textbf{Remarks.} To see directly that (ii) is independent of the choice of HP cocycle which induces } j \textit{, note that for two such HP cocycles with stochastic generators } (H_1, L_1, W_1) \textit{ and } (H_2, L_2, W_2), \textit{ it holds that}

\[
\{(\langle z \otimes I_0 \rangle L_2 : z \in K \setminus \{0\}) \subseteq \{(\langle z \otimes I_0 \rangle L_1 : z \in K \setminus \{0\}) + CI_0\},
\]

by Proposition \[3.18\] This also gives the following further equivalent condition.

(iii) \textit{The stochastic generator } (H, L, W) \textit{ of any HP cocycle which induces } j \textit{ is such that the degeneracy space } K^2 = \{0\}; \textit{ for the definition of } K^2, \textit{ see } (3.11).

\textbf{Bhat} actually deals with the associated } E_0 \textit{ semigroup } J := (\hat{\gamma} \circ \sigma_t)_{t \geq 0} \textit{ on } B(\mathfrak{h} \otimes \mathcal{F}) \textit{ which, in view of the remark following Definition } 3.17 \textit{ is equivalent.}

4. QUASIFREE STOCHASTIC CALCULUS

In this section we produce a simplified form of the coordinate-free multidimensional quasifree stochastic calculus \[\{\Sigma_1, \Sigma_2\} = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix}\] \textit{with respect to a fixed AW amplitude } \Sigma = \Sigma_{A,B} \textit{ for a Hilbert space } k, \textit{ the quasifree noise dimension space.}

The conjugate Hilbert space of } L^2(\mathbb{R}_+; k) \textit{ is identified with } L^2(\mathbb{R}_+; \overline{k}), \textit{ and } L^2(\mathbb{R}_+; k) \oplus L^2(\mathbb{R}_+; \overline{k}) \textit{ is identified with } L^2(\mathbb{R}_+; k \oplus \overline{k}). \textit{ Note that we are here working with the Boson Fock space } \mathcal{F} \textit{ over } L^2(\mathbb{R}_+; k \oplus \overline{k}).

\textbf{Motivation.} \textit{Let } [\Sigma_1, \Sigma_2] = \begin{pmatrix} \alpha & \gamma \\ \beta & \delta \end{pmatrix} \textit{ be the block-matrix form of the AW amplitude } \Sigma, \textit{ with } \Sigma_1 = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \in B(k; k \oplus \overline{k}) \textit{ and } \Sigma_2 = \begin{pmatrix} \gamma \\ \delta \end{pmatrix} \in B(\overline{k}; k \oplus \overline{k}). \textit{ Following Proposition } 3.5 \textit{ and the relations } (2.11a-b) \textit{ expressing quasifree creation and annihilation operators } a^-_\Sigma \textit{ and } a^-_{\overline{\Sigma}} \textit{ in terms of Fock creation and annihilation operators, the following requirements for quasifree stochastic integration become apparent.}

\textit{Suppose the noise dimensions space } k \textit{ is finite dimensional, with orthonormal basis } (e_i)_{i \in \mathbb{I}}, \textit{ let } R \textit{ be a simple } (k \otimes \mathfrak{h})-\mathfrak{h} \textit{ process, let } t > 0 \textit{ and suppose the partition } \{0 = t_0 < \cdots < t_n = t\} \textit{ contains the points of discontinuity of } R \textit{ on } [0, t]. \textit{ Then}

\[
A_{\Sigma}^- (R)_t = I_1(t) + I_2(t),
\]

\textit{where}

\[
I_1(t) := \sum_{i \in I} \sum_{j=0}^{n-1} R_i(t_j) \left(I_0 \otimes a^-_{H_{B}B\frac{1}{2}}(\alpha e_1|t_j, t_{j+1}); \beta e_1|t_j, t_{j+1}) \right),
\]

\textit{and}

\[
I_2(t) := \sum_{i \in I} \sum_{j=0}^{n-1} R_i(t_j) \left(I_0 \otimes a^+_{H_{B}B\frac{1}{2}}(\gamma e_1|t_j, t_{j+1}); \delta e_1|t_j, t_{j+1}) \right),
\]
with H denoting $L^2(\mathbb{R}_+; k)$. Note that, for any $u \in \mathfrak{h}$, $f, g \in \mathbb{S}_k$ and $x, y \in k$,

$$a_{H \otimes H}^\pi(x_e 1_{[t_j, t_{j+1}]} \otimes y) a_{H \otimes H}^\pi(x_e 1_{[t_j, t_{j+1}]}) \epsilon(f, \mathbb{F}) = \int_{t_j}^{t_{j+1}} \langle (ae_i, \beta e_i), (f(s), \mathbb{F}(s)) \rangle \epsilon(f, \mathbb{F}) \, ds,$$

and

$$\langle (ae_i, \beta e_i), (x, \mathbb{F}) \rangle = \langle e_i, \Sigma^1_1 \left(\frac{x}{\mathbb{F}} \right) \rangle.$$

Thus

$$I_1(t) \epsilon(f, \mathbb{F}) = \int_0^t R_s \left(\Sigma^1_1 \left(\frac{f(s)}{\mathbb{F}(s)} \right) \otimes \epsilon(f, \mathbb{F}) \right) \, ds \quad \text{for all } u \in \mathfrak{h} \text{ and } f, g \in \mathbb{S},$$

and therefore

$$I_1(t) \supseteq A^- \left(R \left(\Sigma^1_1 \otimes I_{\mathfrak{h} \otimes \mathbb{F}} \right) \right)_t.$$

Applying this reasoning to $I_2(t)^\ast$, and exploiting adaptedness to commute the terms $R_j(t_j)^\ast$ and $I_{\mathfrak{h}} \otimes a_{H \otimes H}^\pi(\tau e_i \omega \mathbb{F}|_{(t_j, t_{j+1})})$, where $i \in \mathbb{I}$ and $j = 0, \ldots, n - 1$, yields the relation

$$I_2(t)^\ast \supseteq A^- \left(R^T \left(\Sigma^1_2 \otimes I_{\mathfrak{h} \otimes \mathbb{F}} \right) \right)_t \quad \text{on } \mathfrak{h} \otimes \mathcal{E}_k,$$

where R^T is the $(\mathfrak{h} \otimes \mathfrak{h})$ process such that

$$(\tau e_i \omega \mathbb{F}) R^T_s = R_s(\omega \mathbb{F}) \quad \text{for all } i \in \mathbb{I} \text{ and } s \in \mathbb{R}_+;$$

we say that R^T is partially transpose to R. It follows that

$$I_2(t) \supseteq A^+ \left(\Sigma^1_2 \otimes I_{\mathfrak{h} \otimes \mathbb{F}} R^T \right)_t,$$

and therefore

$$A^\ast_{\Sigma}(R)_t = A^- \left(R \left(\Sigma^1_1 \otimes I_{\mathfrak{F}} \right) \right)_t + A^+ \left(\Sigma^1_2 \otimes I_{\mathfrak{F}} R^T \right)_t.$$

Moreover, this also shows, for a suitable $(\mathfrak{h} \otimes \mathfrak{h})$ process Q, that

$$A^\ast_\Sigma(Q)_t = A^+ \left(\Sigma^1 \otimes I_{\mathfrak{F}} Q \right)_t + A^- \left(Q^T \left(\Sigma^1_2 \otimes I_{\mathfrak{F}} \right) \right)_t,$$

where Q^T is the $(\mathfrak{h} \otimes \mathfrak{h})$ process partially transpose to Q, given by $(Q^T)^{\ast}_{t \geq 0}$. Hence

$$A_\Sigma^\ast(Q)_t + A^\ast_\Sigma(R)_t = A^+ \left(\Sigma \otimes I \left[\begin{array}{c} Q^T \end{array} \right] \right)_t + A^- \left([R \quad Q^T] \left(\Sigma^1 \otimes I \right) \right)_t \quad \text{for all } t \in \mathbb{R}_+.$$

The preceding discussion shows clearly the need for a partial transpose operation for infinite-dimensional k. A comprehensive theory is developed in [LM1,2]. Here we specialise to our context of AW amplitudes, and it is convenient to concentrate on the composition of the partial transpose and adjoint operations.

First note that, for any $Y \in B(h_1; h \otimes h_2)$, the quantity

$$c(Y) := \sup \left\{ \left(\sum_{i \in \mathbb{I}} \| Y^*(e_i \otimes u) \|^2 \right)^{1/2} : u \in h_2, \| u \| = 1 \right\} \in [0, \infty]$$

is independent of the choice of orthonormal basis $(e_i)_{i \in \mathbb{I}}$ for h. When it is finite,

$$c(Y) = \sup \left\{ \| Y^*(h \otimes u) \|_2 : u \in h_2, \| u \| = 1 \right\},$$

where $\| \cdot \|_2$ denotes the Hilbert–Schmidt norm. Let $B_2(h; h')$ denote the space of Hilbert–Schmidt operators from h to h'.
Theorem 4.1. Let $Y \in B(h_1; h \otimes h_2)$.

(a) The following are equivalent.

(i) There is an operator $Y^c \in B(h_2; \overline{h} \otimes h_1)$ such that

$$((\overline{\varphi}) \otimes I_{h_1})Y^c = Y^*(|y\rangle \otimes I_{h_2}) \quad \text{for all } y \in h_2.$$ \hfill (4.1)

(ii) The quantity $c(Y) < \infty$.

In this case, the operator Y^c is unique and $c(Y) = \|Y^c\|$; furthermore, $c(Y^c) = \|Y^c\|$ and $Y^{cc} = Y$.

(b) Suppose that $c(Y) < \infty$, and let

$$X \in B(h'; h''), \quad X_1 \in B(h_1'; h_1), \quad Z_2 \in B(h_2; h_2') \quad \text{and} \quad Z \in B(h).$$

The following statements hold.

(i) $c(Y \otimes X) < \infty$ and $(Y \otimes X)^c = Y^c \otimes X^*$, so $c(Y \otimes X) = c(Y)\|X\|$.

(ii) $c(YX_1) < \infty$ and $(YX_1)^c = (I_h \otimes X_1^*)Y^c$.

(iii) $c((I_h \otimes Z_2)Y) < \infty$ and $((I_h \otimes Z_2)Y)^c = Y^cZ_2^*$.

(iv) $c((Z \otimes I_{h_2})Y) < \infty$ and $(Z \otimes I_{h_2})^c = (Y^c \otimes I_{h_2})^c$.

(c) Suppose that $c(Y \otimes I_{h'}) < \infty$ for some non-zero Hilbert space h'. Then $c(Y) < \infty$ and $Y^c \otimes I_{h'} = (Y \otimes I_{h'})^c$.

(d) Let $T \in B_2(h_0; h)$ and $A \in B(h_1; h_2)$. Then $c(T \otimes A) = \|T\|_2 \|A\| < \infty$.

Proof. Let $(e_i)_{i \in \mathbb{I}}$ be an orthonormal basis for h and note the trivial identity

$$Y^*(|e_i\rangle \otimes I_{h_2})u = Y^*(I_h \otimes |u\rangle)e_i \quad \text{for all } i \in \mathbb{I} \text{ and } u \in h_2.$$ \hfill (4.2)

For (a), note first that if $c(Y) < \infty$ then the prescription $u \mapsto \sum_{i \in \mathbb{I}} \overline{\varphi_i} \otimes Y^*(e_i \otimes u)$ defines an operator Y^c from h_2 to $\overline{h} \otimes h_1$ which is bounded with norm $c(Y)$ and such that

$$((\overline{\varphi}) \otimes I_{h_1})Y^c = \sum_{i \in \mathbb{I}} \langle e_i, y \rangle Y^*(e_i \otimes u) = Y^*(y \otimes u) \quad \text{for all } y \in h \text{ and } u \in h_2,$$

so that (4.1) holds. Conversely, suppose that an operator $Y^c \in B(h_2; \overline{h} \otimes h_1)$ satisfies (4.1). Then (4.2) implies that

$$\sum_{i \in \mathbb{I}} ||Y^*(I_h \otimes |u\rangle)e_i||^2 = \sum_{i \in \mathbb{I}} ||(\overline{\varphi_i}) \otimes I_{h_1})Y^c u||^2 = ||Y^c u||^2 \quad \text{for all } u \in h_2,$$

so (ii) holds. Uniqueness of the operator Y^c is immediate, and the fact that now $c(Y^c) = \|Y^c\|$ and $Y^{cc} = Y$ follows from taking the adjoint of identity (4.1).

Parts (b) and (d) are readily verified, and part (c) follows from the identity

$$Y^*(I_h \otimes |u\rangle) = (I_{h_1} \otimes \langle u'|)(Y \otimes I_{h'})^*(I_{h} \otimes |u \otimes u'|),$$

which is valid for all $u \in h$ and any unit vector $u' \in h'$.

\hfill □

Definition 4.2. We let

$$B_c(h_1; h \otimes h_2) := \{Y \in B(h_1; h \otimes h_2) : c(Y) < \infty\},$$
and note that it is a subspace of \(B(h_1; h \otimes h_2) \) on which \(c \) defines a norm. The elements of this space are \(h \)-conjugatable or partially conjugatable operators, and partial conjugation is the conjugate-linear isomorphism

\[
B_c(h_1; h \otimes h_2) \rightarrow B_c(h_2; \overline{h} \otimes h_1); \ Y \mapsto Y^c.
\]

An \(h \)-\((k \otimes h')\) process \(Q \) is conjugatable if, for all \(t \in \mathbb{R}_+ \), the operator \(Q_t \) is \(k \)-conjugatable; in this case \(Q^c := (Q^c_t)_{t \geq 0} \) is a \(h'-(\overline{k} \otimes h) \) process.

Remark. Given any \(T \in B(h_1; h_2) \) and \(x \in h \), the operator \((|x\rangle \otimes T) \) is \(h \)-conjugatable, with the result \((|x\rangle \otimes T)^c = (|x\rangle) \otimes T^* \). In particular, if \(\dim h < \infty \) then every operator in \(B(h_1; h \otimes h_2) \) is \(h \)-conjugatable.

Definition 4.3. A \(\hat{k} \otimes h \) process \(V \) with noise dimension space \(k \) and block matrix form \[
\begin{bmatrix}
K & R \\
Q & 0
\end{bmatrix}
\]
is a \(\Sigma \)-integrable process on \(h \) if, setting \(K = k \oplus \overline{k} \),

(a) the processes \(Q \) and \(R_k^* \) are conjugatable, and

(b) the \(\hat{k} \otimes h \) process \(V^\Sigma := \begin{bmatrix} K & M \\ L & 0 \end{bmatrix} \) is a \(K \)-integrable process, in the sense of Definition 3.2, where

\[
L_t := (\Sigma \otimes I_{b \otimes F}) \begin{bmatrix} Q_t \\ R_t^c \end{bmatrix} \quad \text{and} \quad M_t := \begin{bmatrix} R_t & Q_t^c \end{bmatrix} \left(\Sigma^* \otimes I_{b \otimes F} \right) \quad \text{for all} \ t \in \mathbb{R}_+.
\]

In this case, the quasifree stochastic integral of \(V \) is the process \(\Lambda^\Sigma(V) := \Lambda(V^\Sigma) \).

Remarks. If \(V \) is a \(\Sigma \)-integrable process on \(h \), with block-matrix form \[
\begin{bmatrix}
K & R \\
Q & 0
\end{bmatrix},
\]

then

\[
V^\Sigma = \tilde{\Sigma} V^\square \tilde{\Sigma}^*, \quad \text{where} \quad V^\square := \begin{bmatrix} K & R \\ Q & 0 \end{bmatrix} \quad \text{and} \quad \tilde{\Sigma} := \begin{bmatrix} 1 & 0 \\ 0 & \Sigma \end{bmatrix} \otimes I_{b \otimes F}. \tag{4.3}
\]

A sufficient condition for a \(\hat{k} \otimes h \) process \[
\begin{bmatrix}
K & R \\
Q & 0
\end{bmatrix}
\]
to be a \(\Sigma \)-integrable process is that the function

\[
t \mapsto ||K_t|| + ||Q_t||^2 + ||Q_t^c||^2 + ||R_t||^2 + ||R_t^c||^2
\]
is locally integrable on \(\mathbb{R}_+ \). If \(\dim k < \infty \) then this reduces to the local integrability of the function \(t \mapsto ||K_t|| + ||Q_t||^2 + ||R_t||^2 \).

We will now show that \(\Sigma \)-integrability is unaffected by squeezing. The transformation of integrands resulting from squeezing the AW amplitude may be viewed as a change-of-variables formula.

Theorem 4.4. Let \(\tilde{\Sigma} = \Sigma M \), where \(\Sigma \) and \(M \) are an AW amplitude and squeezing matrix for \(k \), respectively, and let \(W \) be a \(\Sigma \)-integrable process. Then there is a \(\tilde{\Sigma} \)-integrable process \(\tilde{W} \) such that \(\Lambda^{\tilde{\Sigma}}(\tilde{W}) = \Lambda^\Sigma(W) \).

Proof. Let \(W \) have block-matrix form \[
\begin{bmatrix}
K & R \\
Q & 0
\end{bmatrix},
\]
let \(M = M^{U,C,P} \) as in (2.2), and let

\[
\tilde{Q}_t := (cU^* \otimes I)Q_t - (CsU^*K^{-1} \otimes I)R_t^c \quad \text{and} \quad \tilde{R}_t := R_t(Uc \otimes I) - Q_t^c \left(KUCs \otimes I \right)
\]
for all $t \geq 0$, where $c := \cosh P$, $s := \sinh P$ and $I := I_{h \otimes \mathcal{F}}$. To show that $\tilde{W} := \begin{bmatrix} K & R \\ Q & 0 \end{bmatrix}$ is as desired, it now suffices to verify the following.

(a) The processes \tilde{Q} and \tilde{R} are conjugatable.

(b) For all $t \in \mathbb{R}_+$, it holds that

$$\begin{bmatrix} \tilde{Q}_t \\ \tilde{R}_t^c \end{bmatrix} = (\Sigma \otimes I) \begin{bmatrix} Q_t \\ R_t^c \end{bmatrix}$$

and

$$\begin{bmatrix} R_t^c \\ Q_t^c \end{bmatrix} = (\Sigma \otimes I)^* \begin{bmatrix} R_t^c \\ Q_t^c \end{bmatrix};$$

equivalently,

$$\begin{bmatrix} \tilde{Q}_t \\ \tilde{R}_t^c \end{bmatrix} = (\Sigma \otimes I) \begin{bmatrix} Q_t \\ R_t^c \end{bmatrix}$$

for all $t \in \mathbb{R}_+$.

Now, Theorem 4.1 gives (a), and the following identities:

$$\tilde{R}_t^c = (\Sigma U^* \otimes I) R_t^c - (K s C U^* \otimes I) Q_t,$$

$$\tilde{Q}_t^c = (\Sigma U^* \otimes I) R_t^c - (s C U^* K^{-1} \otimes I) Q_t^c,$$

and

$$\tilde{Q}_t^c = (\Sigma U^* \otimes I) Q_t^c - (K C s U^* \otimes I) R_t^c$$

for all $t \in \mathbb{R}_+$. Together these imply that

$$\begin{bmatrix} \tilde{Q}_t \\ \tilde{R}_t^c \end{bmatrix} = (M \otimes I)^{-1} \begin{bmatrix} Q_t \\ R_t^c \end{bmatrix}$$

for all $t \in \mathbb{R}_+$, and so (b) holds as required. \hfill \Box

The following identity is the first fundamental formula for quasifree stochastic integrals. In view of Theorem 3.3 it holds by definition.

Proposition 4.5. Let V be a Σ-integrand process on h. With the notation given in (4.3),

$$\langle u \varepsilon (f), \Lambda^{\Sigma} (V)_t v \varepsilon (g) \rangle = \int_0^t \langle \Sigma^* f (s) \otimes u \varepsilon (f), V_s^\square \left(\Sigma^* g (s) \otimes v \varepsilon (g) \right) \rangle \, ds$$

for all $u, v \in h$, $f, g \in S_K$ and $t \in \mathbb{R}_+$.

The following is readily verified from the definitions. Let $\mathcal{F}_h := \Gamma_{\mathbb{R}_+} (L^2(\mathbb{R}_+; H))$ for any choice of H.

Corollary 4.6. Suppose that the AW amplitude Σ is gauge invariant, so has the form Σ_A, and let $k_0 := \ker A$. Then any Σ-integrand process V on h compresses to a k_0-integrand process V^0 on h and $\Lambda (V^0)_t$ is the compression of $\Lambda^{\Sigma} (V)_t$ to $h \otimes \mathcal{F}_k$, for all $t \in \mathbb{R}_+$.

Remark. Here k_0 is being viewed as a subspace of $K := k \oplus \overline{k}$ as well as of k, and \mathcal{F}_k is being identified with the subspace $\mathcal{F}_k \otimes \Omega_{K \oplus k_0}$ of \mathcal{F}_K.

This observation shows the quasifree stochastic calculus constructed here incorporates standard quantum stochastic integrals as well as purely quasifree stochastic integrals, making them useful for the investigation of repeated interaction systems with particles in a non-faithful state; see Section 4 and [Bel0].
The following result is the second fundamental formula for quasifree stochastic integrals, and should be compared with Theorem 4.6. The final term on the right-hand side is the quasifree Itô correction term.

Theorem 4.7. Let \(X := (X_0 + \Lambda^\Sigma(V_t))_{t \geq 0} \) and \(Y := (Y_0 + \Lambda^\Sigma(W_t))_{t \geq 0} \), where \(V = \begin{bmatrix} K & R \\ Q & 0 \end{bmatrix} \) and \(W = \begin{bmatrix} J & T \\ S & 0 \end{bmatrix} \) are \(\Sigma \)-integrand processes and \(X_0, Y_0 \in B(\mathfrak{h}) \otimes I_F \). In the notation of (4.3),

\[
\langle X_t u \varepsilon(f), Y_t v \varepsilon(g) \rangle = \langle X_0 u \varepsilon(f), Y_0 v \varepsilon(g) \rangle + \int_0^t \left\{ \left(\tilde{\Sigma}^* f(s) \otimes X_s u \varepsilon(f), W^\Sigma_s(\tilde{\Sigma}^* g(s) \otimes v \varepsilon(g)) \right) \right. \\
+ \left. \left(V^\Sigma_s(\tilde{\Sigma}^* f(s) \otimes u \varepsilon(f)), \tilde{\Sigma}^* g(s) \otimes Y_s v \varepsilon(g) \right) \right. \\
+ \left. \left((\Sigma \otimes I_{h \otimes F}) \begin{bmatrix} Q_s & \Lambda \end{bmatrix} u \varepsilon(f), (\Sigma \otimes I_{h \otimes F}) \begin{bmatrix} S_s & \Lambda \end{bmatrix} v \varepsilon(g) \right) \right\} ds
\]

for all \(u, v \in \mathfrak{h}, f, g \in \mathcal{S}_K \) and \(t \in \mathbb{R}_+ \).

Proof. This follows immediately from Theorem 3.6, Definition 4.3 and the identity

\[
\langle V^\Sigma_s(\tilde{\Sigma}^* u \varepsilon(f)), \Delta W^\Sigma_s(\tilde{\Sigma}^* v \varepsilon(g)) \rangle = \langle (\Sigma \otimes I_{h \otimes F}) \begin{bmatrix} Q_s \\ R^c_s \end{bmatrix} u \varepsilon(f), (\Sigma \otimes I_{h \otimes F}) \begin{bmatrix} S_s \\ T^c_s \end{bmatrix} v \varepsilon(g) \rangle,
\]

which holds for all \(x, y \in K \), \(u, v \in \mathfrak{h}, f, g \in \mathcal{S}_K \) and \(s \in \mathbb{R}_+ \).

Theorem 4.8. Let \(W \in B(\tilde{K} \otimes \mathfrak{h})_0 \). The following are equivalent.

(i) The operator \(W \) has block-matrix form \(\begin{bmatrix} K & -Q^* \\ Q & 0 \end{bmatrix} \), where \(Q \) is conjugatable and

\[
K + K^* + L^* L = 0 \quad \text{for the operator } L := (\Sigma \otimes I_{h})(\begin{bmatrix} Q \\ -Q^c \end{bmatrix}.
\]

(ii) There is a unitary \(\mathfrak{h} \) process \(U \) with noise dimension space \(K = k \oplus \mathbb{R} \) such that

(a) \(W \cdot U := ((W \otimes I_F)(I_{\mathfrak{h}} \otimes U_t))_{t \geq 0} \) is a \(\Sigma \)-integrand process, and

(b) \(U_t = I_{h \otimes F} + \Lambda^\Sigma(W \cdot U)_t \) for all \(t \in \mathbb{R}_+ \).

If either condition holds then \(U \) is the unique \(\mathfrak{h} \) process satisfying (a) and (b) of (ii).

Proof. Suppose that (i) holds and set

\[
F = W^\Sigma := \begin{bmatrix} I_{\mathfrak{h}} & 0 \\ 0 & \Sigma \otimes I_{\mathfrak{h}} \end{bmatrix} \begin{bmatrix} K & -Q^* \\ Q & 0 \\ -Q^c & 0 \\ 0 & \Sigma \otimes I_{\mathfrak{h}} \end{bmatrix} = \begin{bmatrix} K & -L^* \\ L & 0 \end{bmatrix}.
\]

Then \(F \in B(\tilde{K} \otimes \mathfrak{h})_0 \) and \(F^* + F + F^* \Delta F = 0 \). Appealing to Theorem 3.6 and Definition 4.10, there exists a unitary process \(U := Y^F \). Since \((W \cdot U)^\Sigma = F \cdot U \), so \(W \cdot U \) is a \(\Sigma \)-integrand process and \(\Lambda^\Sigma(W \cdot U)_t = \Lambda(F \cdot U)_t = U_t - I_{h \otimes F} \) for all \(t \in \mathbb{R}_+ \), hence (ii) holds.
Conversely, suppose that (ii) holds for a unitary \(h \) process \(U \), and let \(\begin{bmatrix} K & R \\ Q & 0 \end{bmatrix} \) be the block-matrix form of \(W \). Theorem 4.1 implies that the operators \(Q \) and \(R^* \) are conjugatable, and

\[
(W \cdot U)^\Sigma = F \cdot U, \quad \text{where } F = W^\Sigma := \begin{bmatrix} I_h & 0 \\ 0 & \Sigma \otimes I_h \end{bmatrix} \begin{bmatrix} K & R \\ Q & 0 \end{bmatrix} \begin{bmatrix} Q^* \\ 0 \end{bmatrix} = \begin{bmatrix} I_h & 0 \\ 0 & \Sigma \otimes I_h \end{bmatrix}^*. \tag{4.4}
\]

Assumption (b) gives that \(U_t = I_h \otimes F + \Lambda(F \cdot U)_t \) for all \(t \in \mathbb{R}^+ \), and so, by Theorem 3.9, it holds that \(F^* + F + F^* \Delta F = 0 \) and \(U = YF \). In particular, the uniqueness claim is established. The condition \(F^* + F + F^* \Delta F = 0 \) is equivalent to

\[
(a) \ [R \ Q^*] (\Sigma \otimes I_h) = - (\Sigma \otimes I_h) \begin{bmatrix} Q \\ R^* \end{bmatrix}^* \quad \text{and}
\]

\[
(b) \ 0 = K^* + K + L^* L, \quad \text{where } L = (\Sigma \otimes I_h) \begin{bmatrix} Q \\ R^* \end{bmatrix},
\]

so it remains to prove that \(X := Q + R^* = 0 \). Note that (a) is equivalent to \((\Sigma \otimes I_h) \begin{bmatrix} X \\ X^c \end{bmatrix} = 0 \) and, in terms of the parameterisation \(\Sigma^{A,U,C,P} \) of the AW amplitude \(\Sigma \) given in (2.10), this is equivalent to

\[
\begin{bmatrix}
\cosh A \cdot U \cosh P \otimes I_h \\
K \sinh A \cdot UC \sinh P \otimes I_h \\
\end{bmatrix}
\begin{bmatrix}
X \\
X^c \\
\end{bmatrix} = 0. \tag{4.5}
\]

It follows from (4.5) that \(X = -(\tanh P \cdot CK^{-1} \otimes I_h)X^c \), and so, by Theorem 4.1 and the fact that \(C \) commutes with \(P \) and \(C^2 = I_k \),

\[
X = (\tanh P \cdot CK^{-1} \otimes I_h)(\tanh P \cdot CK^{-1} \otimes I_h)X^c
= (\tanh P \cdot CK^{-1} \otimes I_h)(K \tanh P \cdot C \otimes I_h)X
= (\tanh^2 P \otimes I_h)X,
\]

thus \(0 = ((I_k - \tanh^2 P) \otimes I_h)X = (\cosh^2 P \otimes I_h)^{-1}X \) and so \(X = 0 \). \(\square \)

Remark. From the preceding proof, we see that the unique unitary \(h \) process \(U \) determined by an operator \(W \in B(k \otimes h)_0 \) satisfying Theorem 4.1(i) equals \(YF \), where \(F = W^\Sigma \) as defined in (4.4). In particular, \(U \) is an HP cocycle. Cocycle aspects of quasifree processes are further investigated in [LM5].

Definition 4.9. An HP cocycle \(U \) on \(h \) with noise dimension space \(k \oplus \mathbb{R} \) is \(\Sigma \)-quasifree and has \(\Sigma \)-generator \(W \) if \(U = YF \) for \(F = W^\Sigma \), where \(W \in B(k \otimes h)_0 \) has the block-matrix form \(\begin{bmatrix} K & -Q^* \\ Q & 0 \end{bmatrix} \), with \(Q \) \(k \)-conjugatable and

\[
K + K^* + L^* L = 0 \quad \text{for the operator } L := (\Sigma \otimes I_h) \begin{bmatrix} Q \\
- Q^* \end{bmatrix}. \tag{4.6}
\]

Remark. Thus \(\Sigma \)-quasifree HP cocycles form a subclass of the collection of Gaussian HP cocycles with noise dimension space having a decomposition \(K = k \oplus \mathbb{R} \).

Example 4.10. [Pure-noise cocycles] For a gauge-invariant AW amplitude \(\Sigma = \Sigma_A \), the quasifree pure-noise cocycles are of the form \((e^{i\alpha} W(x_1(x, t)))_{t \geq 0} \) for some \(x \in k \) and \(\alpha \in \mathbb{R} \), with corresponding \(\Sigma \)-generator

\[
\begin{bmatrix}
\frac{1}{2}(x, \cosh 2Ax) - x \\
|x| \\
0
\end{bmatrix}.
\]
Corollary 4.11. Let U be a Gaussian HP cocycle on \mathfrak{h} with noise dimension space $k \oplus \overline{k}$ and stochastic generator $[K - L^*]$, let $[L_1, L_2]$ be the block matrix form of L, and let $\Sigma = \Sigma_A$ be a gauge-invariant AW amplitude for k. The following are equivalent.

(i) The cocycle U is a Σ-quasifree HP cocycle.

(ii) The operator $L = (\Sigma \otimes I_0) \begin{bmatrix} Q & 0 \\ -Q^* & 0 \end{bmatrix}$ for a k-conjugatable operator $Q \in B(\mathfrak{h}; k \otimes \mathfrak{h})$.

(iii) The operator L_1 is k-conjugatable and $L_2 = -(\tanh A \otimes I_0)L_0^2$.

(iv) The operator L_2 is \overline{k}-conjugatable and $L_0^2 = -(\tanh A \otimes I_0)L_1$.

When these hold, the cocycle U has Σ-generator $[K - Q^*]$ and

$$(x \otimes I_0)Q - Q^*(x \otimes I_0) = (\Sigma(x) \otimes I_0)L - L^*(\Sigma(x) \otimes I_0) \quad \text{for all } x \in k.$$ \hfill (4.7)

Proof. By Theorem 3.16 and Definition 4.9, (i) is equivalent to (ii), and these imply that U has Σ-generator $[K - Q^*]$. Properties of the partial conjugation, Theorem 4.1, now imply that (ii) is equivalent to (iii); they also imply that (iii) is equivalent to (iv). When these conditions hold, since

$$(\Sigma(x) \otimes I_0)L = (x \cosh^2 A \otimes I_0)Q + Q^*(\sinh^2 A|x \otimes I_0) \quad \text{for all } x \in k,$$

the identity (4.7) follows from the identity $\cosh^2 A - \sinh^2 A = I_k$. \hfill \Box

Theorem 4.12. Let U be a Σ-quasifree HP cocycle with Σ-generator $W = [K - Q^*] \in B(\mathfrak{k} \otimes \mathfrak{h})_0$, and let j be the corresponding inner EH flow. Set $L := (\Sigma \otimes I_0) \begin{bmatrix} Q & 0 \\ -Q^* & 0 \end{bmatrix}$ and $H := \frac{1}{2}(K - K^*)$, and define the map

$$\psi : B(\mathfrak{h}) \rightarrow B(\overline{k} \otimes \mathfrak{h}) ; \quad a \mapsto \begin{bmatrix} -i[H, a] - \frac{1}{2}\{L^*L, a\} + L^*(I_k \otimes a)L & Q^*(I_k \otimes a) - aQ^* \\ (I_k \otimes a)Q - Qa & 0 \end{bmatrix}.$$ \hfill (3.7)

Then $(j^K \circ \psi)(a)_{t \geq 0}$ is a Σ-integrand process for all $a \in B(\mathfrak{h})$, where $j^K_t := \text{id}_{B(\mathfrak{k})} \otimes j_t$, and $j_t(a) = a \otimes I_F + \Lambda^\Sigma((j^K \circ \psi)(a)_{t})$ for all $a \in B(\mathfrak{h})$ and $t \in \mathbb{R}_+$.

Proof. It is straightforward to verify that

$$(j^K \circ \psi)(a)_{s} = (j^K_s \circ \theta)(a) \quad \text{for all } a \in B(\mathfrak{h}) \text{ and } s \in \mathbb{R}_+,$$

where $j^K_s := \text{id}_{B(\mathfrak{k})} \otimes j_s$ for $K = k \oplus \overline{k}$, and θ is the map from $B(\mathfrak{h})$ to $B(\overline{k} \otimes \mathfrak{h})$ defined in (3.7). It therefore follows from Theorem 3.16 that

$$j_t(a) - a \otimes I_F = \Lambda((j^K \circ \theta)(a)_{t}) = \Lambda^\Sigma((j^K \circ \psi)(a)_{t})$ \quad \text{for all } a \in B(\mathfrak{h}) \text{ and } t \in \mathbb{R}_+,$$

as claimed. \hfill \Box
5. Uniqueness questions

In this section, issues of uniqueness are considered. We begin with the question of uniqueness of AW amplitudes for quasifree HP cocycles. Given an HP cocycle with noise dimension space K and stochastic generator $F = \begin{bmatrix} K & -L^*V \\ L V & -I \end{bmatrix}$, we examine the class of pairs (Σ, Q) such that

\[\Sigma \text{ is an AW amplitude, } Q \text{ is a } k\text{-conjugatable operator and } (\Sigma \otimes I_h) \begin{bmatrix} Q \\ -Q^c \end{bmatrix} = L, \]

so that $W := \begin{bmatrix} K & -Q^* \\ Q & 0 \end{bmatrix}$ is a Σ-quasifree generator and $F = W \Sigma$. Immediate necessary conditions for this class to be non-empty are that U is Gaussian, so that $F \in B(\hat{K} \otimes h)_0$, and K has a decomposition $k \oplus \overline{k}$, so K must not have finite odd dimension.

We also consider the uniqueness of quasifree HP cocycles implementing a given EH flow \jmath and relate this to the minimality of \jmath as a stochastic dilation of its expectation semigroup.

For the remainder of this section, we fix a quasifree noise dimension space k, and set $K = k \oplus \overline{k}$.

Theorem 4.4 has the following consequence.

Corollary 5.1. Let $\tilde{\Sigma} = \Sigma M$, where Σ and M are an AW amplitude and squeezing matrix for k, respectively. Then every Σ-quasifree HP cocycle is also $\tilde{\Sigma}$-quasifree.

In light of the above corollary, we restrict to gauge-invariant AW amplitudes for the rest of this section. For an operator $X \in B(h; k \otimes h)$, let the k-degeneracy space of X be

\[k^X := \{ x \in k : ((x) \otimes I_h)X = 0 \}. \]

Proposition 5.2. Let $\Sigma = \Sigma_A$ be a gauge-invariant AW amplitude for k, and suppose U is a Σ-quasifree HP cocycle with stochastic generator $\begin{bmatrix} K & -L^* \\ L^* & 0 \end{bmatrix}$ and Σ-generator $\begin{bmatrix} K & -Q^* \\ Q & 0 \end{bmatrix}$, where L has block-matrix form $\begin{bmatrix} L_1 & \ast \\ \ast & L_2 \end{bmatrix}$. Then

\[k^{L_1} = \{ 0 \} \iff k^Q = \{ 0 \}. \]

Furthermore, if $\tilde{\Sigma} = \Sigma_{\tilde{A}}$ is another gauge-invariant AW amplitude for k, then the following are equivalent.

(i) The cocycle U is also $\tilde{\Sigma}$-quasifree.

(ii) $((\tanh \tilde{A} - \tanh A) \otimes I_h)L_1 = 0$.

Proof. Corollary 4.11 implies that L_2 is \overline{k}-conjugatable and Q is k-conjugatable, with

\[L_1 = (\cosh A \otimes I_h)Q \quad \text{and} \quad L_2^c = -((\tanh A \otimes I_h)L_1). \]

Thus (5.2) follows from the invertibility of $\cosh A$. Corollary 4.11 also implies that (i) holds if and only if $L_2^c = -((\tanh \tilde{A} \otimes I_h)L_1)$. Therefore (i) and (ii) are equivalent, by (5.3). \hfill \Box

For an HP cocycle U with noise dimension space $k \oplus \overline{k}$, let

\[\Xi(U) := \{ \Sigma \in AW_0(k) : U \text{ is } \Sigma\text{-quasifree} \} \]

be the set of gauge-invariant AW amplitudes for k for which U is Σ-quasifree.
Corollary 5.3. Let U be an HP cocycle with stochastic generator $\begin{bmatrix} K - L^* \\ L \end{bmatrix}$. If U is quasifree with respect to a gauge-invariant AW amplitude Σ_A then

$$\Xi(U) = \{ \Sigma_A : \tilde{A} \in B(k)_+ \text{ and } \text{Ran}(\tanh \tilde{A} - \tanh A) \subseteq k^{L_1} \}$$

$$= \{ \Sigma_{\text{tanh}^{-1}(X + \tanh A)} : X \in B(k)_{sa}, \ spec(X + \tanh A) \subseteq [0, 1) \text{ and } \text{Ran} X \subseteq k^{L_1} \}.$$

In particular, if $k^{L_1} = \{0\}$ then U is quasifree with respect to at most one gauge-invariant AW amplitude.

We now turn to the question of implementability of inner EH flows by quasifree HP cocycles.

Proposition 5.4. Let U and \tilde{U} be quasifree HP cocycles on \mathfrak{h} with respect to a gauge-invariant AW amplitude Σ for k, and let $\begin{bmatrix} K - Q^* \\ Q \end{bmatrix}$ and $\begin{bmatrix} \tilde{K} - \tilde{Q}^* \\ \tilde{Q} \end{bmatrix}$ be their respective Σ-generators. The following are equivalent.

(i) The cocycles U and \tilde{U} induce the same inner EH flow.

(ii) There exist $x \in k$ and $\alpha \in \mathbb{R}$ such that

$$\tilde{Q} - Q = |x| \otimes I_\mathfrak{h} \text{ and } \tilde{H} - H - \frac{i}{2}((|x| \otimes I_\mathfrak{h})Q - Q^*(|x| \otimes I_\mathfrak{h})) = \alpha I_\mathfrak{h},$$

where $H := \frac{1}{2}(K - K^*)$ and $\tilde{H} := \frac{1}{2}(\tilde{K} - \tilde{K}^*)$.

Proof. Let C and T denote $\cosh A$ and $\tanh A$, respectively, where $\Sigma = \Sigma_A$, and let

$$L := (\Sigma \otimes I_\mathfrak{h}) \begin{bmatrix} Q \\ -Q^c \end{bmatrix}, \quad K := iH - \frac{1}{2}L^*L, \quad \tilde{L} := (\Sigma \otimes I_\mathfrak{h}) \begin{bmatrix} \tilde{Q} \\ -\tilde{Q}^c \end{bmatrix} \text{ and } \tilde{K} := i\tilde{H} - \frac{1}{2}\tilde{L}^*\tilde{L}.$$

By Proposition 5.1 (i) is equivalent the existence of $z = (z_1, \Sigma_1) \in k \oplus k$ and $\alpha \in \mathbb{R}$ such that

$$\tilde{L} - L = |z| \otimes I_\mathfrak{h} \text{ and } \tilde{H} - H - \alpha I_\mathfrak{h} = \frac{i}{2}((|z| \otimes I_\mathfrak{h})L - L^*(|z| \otimes I_\mathfrak{h})). \quad (5.4)$$

If $z = (z_1, \Sigma_2) \in k \oplus k$ and $\alpha \in \mathbb{R}$ are such that (5.4) holds then

$$0 = (T \otimes I_\mathfrak{h})(L_1 + |z_1| \otimes I_\mathfrak{h} - \tilde{L}_1) = -L_2^c + |Tz_1| \otimes I_\mathfrak{h} + \tilde{L}_2^c = |z_2 + Tz_1| \otimes I_\mathfrak{h},$$

so $z_2 = -Tz_1$, and therefore $z = \Sigma_\mathfrak{h}(x)$, where $x = C^{-1}z_1$. It follows from (5.4) that (ii) holds. Conversely, suppose that (ii) holds, with $x \in k$ and $\alpha \in \mathbb{R}$, and set $z := \Sigma_\mathfrak{h}(x)$. Then

$$\tilde{L} - L = (\Sigma \otimes I_\mathfrak{h}) \begin{bmatrix} \tilde{Q} - Q \\ Q^c - \tilde{Q}^c \end{bmatrix} = (\Sigma \otimes I_\mathfrak{h}) \begin{bmatrix} |x| \otimes I_\mathfrak{h} \\ -|\Sigma_\mathfrak{h}| \otimes I_\mathfrak{h} \end{bmatrix} = |z| \otimes I_\mathfrak{h},$$

so $\tilde{Q} - Q = |C^{-1}z_1| \otimes I_\mathfrak{h} = |x| \otimes I_\mathfrak{h}$ and, by (5.4), condition (5.4) is satisfied. \qedsymbol

Theorem 5.5. Let j be an inner EH flow which is a minimal dilation of its vacuum expectation semigroup. Then there is at most one gauge-invariant AW amplitude Σ such that j is induced by a Σ-quasifree HP cocycle.
Proof. Suppose that j is induced by a Σ-quasifree HP cocycle U and a $\tilde{\Sigma}$-quasifree HP cocycle \tilde{U}, where $\Sigma = \Sigma_A$ and $\tilde{\Sigma} = \Sigma_{\tilde{A}}$ are gauge-invariant AW amplitudes for k. Then U and \tilde{U} are Gaussian and so have stochastic generators of the form $\begin{bmatrix} K - L^* \\ L \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \tilde{K} - \tilde{L}^* \\ \tilde{L} \\ 0 \end{bmatrix}$ respectively. Letting $\begin{bmatrix} K - Q^* \\ Q \\ 0 \end{bmatrix}$ and $\begin{bmatrix} \tilde{K} - \tilde{Q}^* \\ \tilde{Q} \\ 0 \end{bmatrix}$ be their respective quasifree generators, it follows that $(\Sigma \otimes I_h) \begin{bmatrix} Q \\ Q^c \end{bmatrix} = L$ and $(\tilde{\Sigma} \otimes I_h) \begin{bmatrix} \tilde{Q} \\ \tilde{Q}^c \end{bmatrix} = \tilde{L}$.

and Proposition 3.18 implies that $\tilde{L} = L + |z\rangle \otimes I_h$ for some $z = (z_1, z_2)$ in $k \oplus \tilde{k}$. If $T := \tanh A$ and $\tilde{T} := \tanh \tilde{A}$ then

$$((T - \tilde{T}) \otimes I_h) \tilde{L}_1 = (T \otimes I_h)(L_1 + |z_1\rangle \otimes I_h) - (\tilde{T} \otimes I_h)\tilde{L}_1$$

$$= -L_2^c + |Tz_1\rangle \otimes I_h + \tilde{L}_2^c$$

$$= |z_2 + Tz_1\rangle \otimes I_h,$$

so if $y \in \text{Ran}(T - \tilde{T})^*$ then

$$(\langle y, 0 \rangle | \otimes I_h) \tilde{L} = (\langle y \rangle | \otimes I_h) \tilde{L}_1 \in \mathbb{C}I_h.$$

Therefore, by Theorem 3.19 the minimality of j implies that $\text{Ran}(T - \tilde{T})^* = \{0\}$, so $\tilde{T} = T$, $\tilde{A} = A$ and $\tilde{\Sigma} = \Sigma$. □

6. Quantum random walks

In this section we first review the basic theory of unitary quantum random walks for particles in a vector state and their convergence to quantum stochastic cocycles [Be1]; for an elementary treatment via the semigroup decomposition of quantum stochastic cocycles, see [BGL]. Stronger theorems for more general walks may be found in [Be2], for particles in a faithful normal state, and in [Be3], for particles in a general normal state. We then construct quantum random walks in the repeated-interactions model for particles in a faithful normal state ρ. Under the assumption that the interaction Hamiltonian H_I has no diagonal component with respect to the eigenspaces of the density matrix of ρ, we demonstrate convergence to HP cocycles of the form $U \otimes I$ where I is the identity operator of the Fock space over $L^2(\mathbb{R}_+; K_0)$ for a subspace K_0 of the GNS space of ρ. The construction yields a quasifree noise dimension space k together with natural conjugate space \bar{k} and, under the assumption of exponential decay of the eigenvalues of the density matrix corresponding to ρ, a gauge-invariant AW amplitude $\Sigma(\rho)$ for k. We then show that U is $\Sigma(\rho)$-quasifree, assuming only that H_I is p-conjugatable. We also show that if the lower-triangular matrix components of H_I are strongly linearly independent then $\Sigma(\rho)$ is the unique gauge-invariant AW amplitude with respect to which U is quasifree.

Particles in a vector state. For this subsection, we fix a noise dimension space K.
Definition 6.1. The toy Fock space Υ over K is the tensor product of a sequence of copies of $\hat{K} := \mathbb{C} \oplus K$ with respect to the constant stabilising sequence given by $\omega := \begin{pmatrix} 1 \\ 0 \end{pmatrix}$:

$$\Upsilon := \bigotimes_{n=0}^{\infty} (\hat{K}, \omega).$$

We also set

$$\Upsilon\big|_m := \bigotimes_{n=m}^{\infty} (\hat{K}, \omega) \quad \text{for all } m \geq 1$$

and denote the identity operator on $\Upsilon\big|_m$ by I_m.

As is readily verified [Be1], toy Fock space over K approximates Boson Fock space over K in the following sense. Let $F_J = \Gamma_+ (L^2(J; K))$ for any subinterval $J \subseteq \mathbb{R}_+$, with Ω_J its vacuum vector, and, for all $\tau > 0$, let

$$D_\tau : \Upsilon \to \bigotimes_{n=0}^{\infty} (F_{[n\tau,(n+1)\tau)} \Omega_{[n\tau,(n+1)\tau)} = \mathcal{F}$$

be the isometric linear operator such that

$$\left(\begin{pmatrix} 1 \\ x_n \end{pmatrix} \right)_{n \geq 0} \mapsto \bigotimes_{n=0}^{\infty} (1, \tau^{-1/2}x_n 1_{[n\tau,(n+1)\tau)}, 0, 0, \ldots)$$

for any finitely-supported sequence $(x_n) \subseteq K$. Then $D_\tau D_\tau^* \to I_\mathcal{F}$ in the strong operator topology as $\tau \to 0+$.

Definition 6.2. For any $U \in U(\hat{K} \otimes \mathfrak{h})$, the quantum random walk generated by U is the sequence $(U_n)_{n \geq 0} \subseteq B(\mathfrak{h} \otimes \Upsilon)$ defined recursively as follows:

$$U_0 = I_{\mathfrak{h} \otimes \Upsilon} \quad \text{and} \quad U_{n+1} = (\sigma_n \circ \iota)(U) U_n \quad \text{for all } n \geq 0,$$

where the normal *-monomorphism

$$\iota : B(\hat{K} \otimes \mathfrak{h}) \to B(\mathfrak{h} \otimes \Upsilon); \quad A \otimes X \mapsto X \otimes A \otimes I_{\Upsilon}|_1$$

and $\sigma_n := \text{id}_B(\mathfrak{h}) \otimes \sigma^n_{\Upsilon}$ is the ampliation of the right shift *-endomorphism of $B(\Upsilon)$ with range $I_{\mathfrak{h} \otimes \Upsilon} \otimes B(\Upsilon \big|_n)$.

Scaling maps on $B(\hat{K} \otimes \mathfrak{h})$ are defined by setting

$$s_\tau \left(\begin{bmatrix} A & C \\ B & D \end{bmatrix} \right) = \begin{bmatrix} \tau^{-1}A & \tau^{-1/2}C \\ \tau^{-1/2}B & D \end{bmatrix} \quad \text{for all } \tau > 0.$$

Remark. If the generator U has the form $A \otimes X$ then

$$U_n = X^n \otimes A^\otimes \otimes I_{\Upsilon}|_n \quad \text{for all } n \geq 0.$$

Henceforth we focus on the repeated-interactions model of [AIP].
Theorem 6.3. Let the operators \(H_S \in B(\mathfrak{h}) \), \(H_P \in B(\hat{\mathfrak{K}}) \) and \(H_I \in B(\hat{\mathfrak{K}} \otimes \mathfrak{h}) \) be self adjoint, and suppose that \((\langle \omega \rangle \otimes I_B)H_I(\langle \omega \rangle \otimes I_B) = 0 \), so that \(H_I(\langle \omega \rangle \otimes I_B) \in B(\mathfrak{h}; \hat{\mathfrak{K}} \otimes \mathfrak{h}) \) has block-matrix form \(\begin{bmatrix} 0 & V \\ V^* & 0 \end{bmatrix} \) for some \(V \in B(\mathfrak{h}; \hat{\mathfrak{K}} \otimes \mathfrak{h}) \). For all \(\tau > 0 \), let \(U(\tau) := \exp i \tau H_I(\tau), \) where

\[
H_I(\tau) := I_R \otimes H_S + H_P \otimes I_h + \tau^{-1/2} H_I \in B(\hat{\mathfrak{K}} \otimes \mathfrak{h}),
\]

and let

\[
U^\tau := ((I_\mathfrak{h} \otimes D_\tau)U(\tau)(I_\mathfrak{h} \otimes D_\tau)^*)_{\tau \geq 0}
\]

and

\[
F := \begin{bmatrix} iH_S + i(\omega, H_P \omega)I_\mathfrak{h} - \frac{1}{2} V^* V & iV^* \\ iV & 0 \end{bmatrix} \in B(\hat{\mathfrak{K}} \otimes \mathfrak{h})_0.
\]

Then \(F^* + F + F^* \Delta F = 0 \) and, as \(\tau \to 0^+ \),

\[
\sup_{t \in [0, T]} \| (U^t - Y^F_t) \xi \| \to 0 \quad \text{for all } \xi \in \mathfrak{h} \otimes \mathfrak{F} \text{ and } T \in \mathbb{R}_+.
\]

Proof. That \(F \) is as claimed is readily verified, and the final claim holds by [Be1], Theorem 7.6 and Remarks 4.8 and 5.10, since

\[
\lim_{\tau \to 0^+} s_\tau (U(\tau) - I_{\mathfrak{h} \otimes \mathfrak{F}}) = F.
\]

Particles in a faithful state. We now fix a non-zero Hilbert space \(p \), referred to as the particle space, and a faithful normal state \(\rho \) on \(B(\mathfrak{p}) \). Let \((\gamma_\alpha)_{\alpha \in I} \) be the eigenvalues of its density matrix \(\varrho \), ordered to be strictly decreasing, and suppose the index set \(I \) is either \(\{0, 1, \cdots, N\} \) for some non-negative integer \(N \), or \(\mathbb{Z}_+ \). For any \(\alpha \in I \), let \(P_\alpha \in B(\mathfrak{p}) \) be the orthogonal projection with range \(k_\alpha \), the eigenspace of \(\varrho \) corresponding to the eigenvalue \(\gamma_\alpha \). Thus \(\varrho = \sum_{\alpha \in I} \gamma_\alpha P_\alpha \) and \(\sum_{\alpha \in I} \gamma_\alpha d_\alpha = 1 \), where \(d_\alpha := \dim k_\alpha = \text{tr}(P_\alpha) \).

Let \((\hat{\mathfrak{K}}, \pi, \eta) \) denote the GNS representation of \(\rho \). Thus \((\pi, \hat{\mathfrak{K}}) \) is a normal unital \(*\)-representation of \(B(\mathfrak{p}) \), \(\eta \) is an operator from \(B(\mathfrak{p}) \) to \(\hat{\mathfrak{K}} \) with dense range,

\[
\pi(X) \eta(Y) = \eta(XY) \quad \text{and} \quad \langle \eta(Z), \pi(X) \eta(Y) \rangle = \rho(Z^*XY) \quad \text{for all } X,Y,Z \in B(\mathfrak{p}).
\]

In particular, \(\rho(X) = \langle \omega, \pi(X) \omega \rangle \) and \(\eta(X) = \pi(X) \omega \) for all \(X \in B(\mathfrak{p}) \), where \(\omega := \eta(I_\mathfrak{p}) \). As is well known, the GNS representation is unique up to isomorphism; here, we take the triple defined as follows:

\[
\hat{\mathfrak{K}} := B_2(\mathfrak{p}), \quad \pi(X) := L_X \quad \text{and} \quad \eta(X) := X^{1/2} = \sum_{\alpha \in I} \sqrt{\gamma_\alpha} X P_\alpha \quad \text{for all } X \in B(\mathfrak{p}),
\]

where \(B_2(\mathfrak{p}) \) denotes the Hilbert–Schmidt class of operators on \(\mathfrak{p} \) and \(L_X \) denotes the operator of left multiplication by \(X \). In particular, \(\omega = \varrho^{1/2} \). Now let

\[
\hat{\mathfrak{K}} := \hat{\mathfrak{K}} \otimes \mathbb{C} \omega, \quad \hat{\pi} := \pi \otimes \text{id}_{B(\mathfrak{h})} \quad \text{and} \quad \hat{\rho} := \varrho \otimes \text{id}_{B(\mathfrak{h})},
\]

so that \((\hat{\pi}, \hat{\mathfrak{K}} \otimes \mathfrak{h}) \) is a normal unital \(*\)-representation of \(B(\mathfrak{p} \otimes \mathfrak{h}) \) and \(\hat{\rho} \) is a normal unital completely positive map from \(B(\mathfrak{p} \otimes \mathfrak{h}) \) to \(B(\mathfrak{h}) \). For all \(\alpha, \beta \in I \), let

\[
k_{\alpha\beta} := \text{Lin}\{ |x \rangle \langle y | : x \in k_\alpha, y \in k_\beta \},
\]
Theorem 6.4. Let the operators \(H_5 \in B(\mathfrak{h}) \), \(H_p \in B(p) \) and \(H_1 \in B(p \otimes \mathfrak{h}) \) be self adjoint, and assume that \((P_\alpha \otimes I_h)H_1(P_\alpha \otimes I_h) = 0 \) for all \(\alpha \in I \). Then we have the following.

(a) The operator \(\tilde{\pi}(H_1)(|\omega \rangle \otimes I_h) \in B(\mathfrak{h}; (\hat{K}_1 \otimes \hat{K}_0) \otimes \mathfrak{h}) \) has the block-matrix form \(\begin{bmatrix} 0 & V \end{bmatrix} \) for some \(V \in B(\mathfrak{h}; K_1 \otimes \mathfrak{h}) \).

(b) For all \(\tau > 0 \), let \(\hat{U}^\tau := (I_h \otimes D_\tau)\tilde{U}(\tau)(I_h \otimes D_\tau)^* \) for \(t \geq 0 \), where

\[
\tilde{U}(\tau) := \tilde{\pi}(\exp i\tau H_T(\tau))
\]

and \(H_T(\tau) := I_p \otimes H_5 + H_p \otimes I_h + \tau^{-1/2}H_1 \in B(p \otimes \mathfrak{h}) \), and let \(\tilde{F} := F \otimes 0_{\mathfrak{h} \otimes \mathfrak{h}} \), where

\[
F := \begin{bmatrix} K & iV^* \\ iV & 0 \end{bmatrix} \in B(K_1 \otimes \mathfrak{h}) \quad \text{with} \quad K := iH_5 + ip(H_p)I_h - \frac{1}{2}(H_1^2).
\]

Then \(\tilde{F}^* + \tilde{F} + \tilde{F}^* \Delta \tilde{F} = 0 = \tilde{F}^* + \tilde{F} + \tilde{F}^* \Delta \tilde{F} \) and, as \(\tau \to 0^+ \),

\[
\sup_{t \in [0,T]} \| (\tilde{U}_{t}^\tau - Y_{t}^\tau \tilde{F}) \| \to 0 \quad \text{for all} \ \xi \in \mathfrak{h} \otimes \mathcal{F} \ \text{and} \ T \in \mathbb{R}_+.
\]

Proof. (a) It must be shown that

\[
\text{Ran} \ \tilde{\pi}(H_1)(|\omega \rangle \otimes I_h) \perp (\mathbb{C}\omega \otimes K_0) \otimes \mathfrak{h}.
\]

If \(u, v \in \mathfrak{h}, \alpha \in I \) and \(T \in k_{\alpha\alpha} \), and \(H_{t}^u := (I_p \otimes \langle u \rangle)H_1(I_p \otimes \langle v \rangle) \), then

\[
\langle T \otimes u, \tilde{\pi}(H_1)(\omega \otimes v) \rangle = \langle T, H_{t}^u \omega \rangle = \sqrt{T_\alpha} \langle T, H_{t}^u P_\alpha \rangle = 0,
\]

and so (6.2) follows from (6.1).

(b) Note that \(\tilde{U}(\tau) = \exp i\tau \tilde{H}_T(\tau) \in B(\hat{K} \otimes \mathfrak{h}) \) for all \(\tau > 0 \), where

\[
\tilde{H}_T(\tau) := I_K \otimes H_5 + \pi(H_p) \otimes I_h + \tau^{-1/2}\tilde{\pi}(H_1).
\]
Furthermore, it is straightforward to verify that \(\langle \omega, \pi(H_P)\omega \rangle I_h = \rho(H_P)I_h \) and
\[
V^* V = \begin{bmatrix} 0 & 0 \\
0 & V \\
0 & 0 \end{bmatrix} = (|\omega| \otimes I_h)\pi(H_P^2)(|\omega| \otimes I_h) = \tilde{\rho}(H_P^2),
\]
and this last identity implies that \(F \) is as claimed. The conclusion now follows from Theorem 6.3 since \(\omega \) is identified with \(\left(\begin{smallmatrix} 0 \\ 0 \\ 0 \end{smallmatrix} \right) \in \mathbb{K}_1 \otimes \mathbb{K}_0 \) and \(\mathbb{C}\omega \) with \(\mathbb{C} \).

Remarks. Under the identification \(\mathfrak{h} \otimes \mathcal{F} = \mathfrak{h} \otimes \mathcal{F}^{\mathbb{K}_1} \otimes \mathcal{F}^{\mathbb{K}_0} \), where \(\mathcal{F}^{\mathbb{K}} = \Gamma_+\left(L^2(\mathbb{R}_+; H) \right) \), the limit process decomposes as
\[
Y_t^F = Y_t^F \otimes I_{\mathcal{F}^{\mathbb{K}_0}} \quad \text{for all } t \in \mathbb{R}_+.
\]

The condition on \(H_1 \) has the following physical interpretation: there is no contribution from the interaction Hamiltonian unless the particle undergoes a transition.

Assumption 6.5. We impose an exponential-decay condition on the eigenvalues of the density matrix \(\varrho \), by insisting that
\[
m_\rho := \inf \{ \gamma_{\alpha}/\gamma_{\alpha+1} : \alpha \geq 0 \} > 1.
\]

This ensures that the following lemma yields an AW amplitude for \(k \). To avoid it would require more of the general theory developed in [LM1,2].

For all \(\alpha, \beta \in \mathbb{I} \), let \(P_{\alpha \beta} \) denote the orthogonal projection with range \(k_{\alpha \beta} \).

Lemma 6.6. Suppose the state \(\rho \) satisfies Assumption 6.5. Then
\[
S(\rho) := \text{st.} \sum_{\alpha > \beta} \sqrt{\frac{\gamma_\beta}{\gamma_\beta - \gamma_\alpha}} P_{\alpha \beta} \in B(k_+),
\]
where the series converges in the strong sense, and, if \(C(\rho) := \sqrt{I_k + S(\rho)^2} \), then
\[
C(\rho) = \text{st.} \sum_{\alpha > \beta} \sqrt{\frac{\gamma_\beta}{\gamma_\beta - \gamma_\alpha}} P_{\alpha \beta} \quad \text{and} \quad S(\rho) = \text{st.} \sum_{\alpha > \beta} \sqrt{\frac{\gamma_\alpha}{\gamma_\beta - \gamma_\alpha}} P_{\beta \alpha}.
\]

Proof. If \(\alpha, \beta \in \mathbb{I} \) with \(\alpha > \beta \), and \(\zeta \in k_\alpha \) and \(\eta \in k_\beta \) with \(\alpha' \), \(\beta' \in I \), then
\[
0 \leq \frac{\gamma_\beta}{\gamma_\beta - \gamma_\alpha} = \left(\frac{\gamma_\beta}{\gamma_\beta - \gamma_\alpha} \right)^{-1} \leq \left(\frac{\gamma_{\alpha+1}}{\gamma_{\beta+1}} \right)^{-1} \leq (m_\rho - 1)^{-1}.
\]

and
\[
\rho_{\alpha \beta}(|\eta\rangle \langle \zeta|) = (P_{\alpha \beta}(|\zeta\rangle \langle \eta|))^* \delta_{\alpha \alpha'} \delta_{\beta \beta'} |\eta\rangle \langle \zeta| = P_{\beta \alpha}(|\eta\rangle \langle \eta|),
\]
where \(\delta \) is the Dirac delta. From (6.5a) it follows that (6.3) defines a non-negative bounded operator \(S(\rho) \) on \(k \), and from (6.5c) it follows that \(P_{\alpha \beta} = P_{\beta \alpha} \) for all \(\alpha > \beta \), so the identities (6.4) follow from (6.5b) and (6.5c).

Thus, under Assumption 6.5 with \(S(\rho) \) and \(C(\rho) \) as in the preceding lemma,
\[
\Sigma(\rho) := \begin{bmatrix} C(\rho) & 0 \\ 0 & S(\rho) \end{bmatrix} \in B(k \oplus \mathbb{R})
\]
defines a gauge-invariant AW amplitude for k.

Our goal now is to prove that the HP cocycle generated by F in Theorem 6.3 is $\Sigma(\rho)$-quasifree, provided that the interaction Hamiltonian H_{1} is p-conjugatable. To this end, note first that, for all $T \in B(p)$ and $\alpha, \beta, \alpha', \beta' \in \mathbb{I}$, the vectors $P_{\alpha} T P_{\beta}$ and $P_{\alpha'} T P_{\beta'}$ are orthogonal in $B_{2}(p)$ unless $\alpha' = \alpha$ and $\beta' = \beta$, and therefore

$$\sum_{\alpha > \beta} (\gamma \beta - \gamma \alpha) \| P_{\alpha} T P_{\beta} \|_{2}^{2} \leq \sum_{\beta > 0} \gamma \beta \| T \|_{2}^{2} \leq \| T \|^{2} \sum_{\beta > 0} \gamma \beta d_{\beta} = \| T \|^{2}$$

and

$$\sum_{\alpha > \beta} (\gamma \beta - \gamma \alpha) \| P_{\alpha} T P_{\beta} \|_{2}^{2} = \sum_{\alpha > \beta} (\gamma \beta - \gamma \alpha) \| P_{\alpha} T^{*} P_{\beta} \|_{2}^{2} \leq \| T^{*} \|^{2} = \| T \|^{2},$$

so the following prescriptions define bounded operators:

$$\phi_{p} : B(p) \to |k\rangle; \quad T \mapsto \sum_{\alpha > \beta} \sqrt{\gamma \beta - \gamma \alpha} P_{\alpha} T P_{\beta}$$

and

$$\bar{\phi}_{p} : B(p) \to |k\rangle; \quad T \mapsto \sum_{\alpha > \beta} \sqrt{\gamma \beta - \gamma \alpha} P_{\beta} T P_{\alpha}.$$

For the next proposition we adopt the notation

$$B_{c}(p \otimes h)^{*} := \{ A^{*} : A \in B_{c}(p \otimes h) \}. \quad (6.7)$$

Recall that Theorem 4.1 gives the inclusion $B_{2}(p) \otimes B(h) \subseteq B_{c}(p \otimes h)$. We will show that the maps $\phi_{p}|B_{2}(p) \otimes \text{id}_{B(h)}$ and $\bar{\phi}_{p}|B_{2}(p) \otimes \text{id}_{B(h)}$ extend to operators from $B_{c}(p \otimes h)^{*}$ to $B(h ; k \otimes h)$ and from $B_{c}(p \otimes h)^{*}$ to $B(h ; \bar{k} \otimes h)$, respectively, and that the resulting maps are related via partial conjugation.

Proposition 6.7. There are unique operators

$$\phi_{p}^{b} : B_{c}(p \otimes h)^{*} \to B(h ; k \otimes h) \quad \text{and} \quad \bar{\phi}_{p}^{b} : B_{c}(p \otimes h)^{*} \to B(h ; \bar{k} \otimes h)$$

such that

$$\langle \zeta | \eta \otimes u, \phi_{p}^{b}(A) v \rangle = \sqrt{\gamma \beta - \gamma \alpha} \langle \zeta \otimes u, A(\eta \otimes v) \rangle \quad (6.8a)$$

and

$$\langle \eta | \zeta \otimes u, \bar{\phi}_{p}^{b}(A) v \rangle = \sqrt{\gamma \beta - \gamma \alpha} \langle \eta \otimes u, A(\zeta \otimes v) \rangle \quad (6.8b)$$

for all $A \in B_{c}(p \otimes h)^{*}$, u, $v \in h$ and $\zeta \in k_{\alpha}$, $\eta \in k_{\beta}$ with $\alpha > \beta$. Furthermore, we have that

$$\| \phi_{p}^{b}(A) \| \leq c(A^{*}) \quad \text{and} \quad \| \bar{\phi}_{p}^{b}(A) \| \leq c(A^{*}) \quad \text{for all} \ A \in B_{c}(p \otimes h)^{*},$$

and the following properties hold.

(a) If $A \in B_{c}(p \otimes h)^{*} \cap B_{c}(p \otimes h)$ then $\phi_{p}^{b}(A)$ is h-conjugatable, $\bar{\phi}_{p}^{b}(A^{*})$ is h-conjugatable and

$$c(\phi_{p}^{b}(A)) = \| \phi_{p}^{b}(A) \| \leq c(A) \quad \text{and} \quad c(\bar{\phi}_{p}^{b}(A^{*})) = \| \phi_{p}^{b}(A) \| \leq c(A^{*}).$$

(b) The maps ϕ_{p}^{b} and $\bar{\phi}_{p}^{b}$ are extensions of $\phi_{p}|B_{2}(p) \otimes \text{id}_{B(h)}$ and $\bar{\phi}_{p}|B_{2}(p) \otimes \text{id}_{B(h)}$, respectively.
defines an operator \(\phi \) from \(\mathfrak{h} \) to \(\mathfrak{k} \otimes \mathfrak{h} \) such that \(\|\phi_\rho(\overline{A})\| \leq c(A^*) \); it also satisfies (6.8a) since, for all \(u, v \in \mathfrak{h}, \zeta \in \mathfrak{k}_\alpha \) and \(\eta \in \mathfrak{k}_\beta \), where \(\alpha \beta > \beta \),
\[
\langle \alpha \eta \otimes u, \phi_\rho(\overline{A})v \rangle = \sqrt{\beta - \gamma} \langle \alpha \eta \otimes u, (\langle \alpha \eta \otimes I_\mathfrak{h} \rangle A(\alpha \eta \otimes I_\mathfrak{h}) \rangle \rangle = \sqrt{\beta - \gamma} \langle \alpha \eta \otimes u, A(\alpha \eta \otimes \zeta) \rangle \rangle = \langle \alpha \eta \otimes u, \phi_\rho(\overline{A})v \rangle.
\]
In particular, the operator \(\phi_\rho(\overline{A}) \) does not depend on the choice of orthonormal bases made above. Similarly, there is an operator \(\overline{\phi}_\rho(\overline{A}) \) from \(\mathfrak{h} \) to \(\mathfrak{k} \otimes \mathfrak{h} \) such that \(\|\overline{\phi}_\rho(\overline{A})\| \leq c(A^*) \), the identity (6.8b) holds and, for any choice of orthonormal bases \((e^i_\alpha)_{i=1}^{d_\alpha} \) for \(\mathfrak{k}_\alpha \),
\[
\overline{\phi}_\rho(\overline{A})u = \sum_{\alpha > \beta} \sqrt{\beta - \gamma} \sum_{i=1}^{d_\alpha} \sum_{j=1}^{d_\beta} |e^j_\beta\rangle \langle e^i_\alpha| \otimes (\langle e^j_\beta| \otimes I_\mathfrak{h}) A(e^j_\beta \otimes u).
\]
(a) If \(A \in B_c(p \otimes \mathfrak{h})^* \cap B_c(p \otimes \mathfrak{h}), u, v \in \mathfrak{h} \) and \(\zeta \in \mathfrak{k}_\alpha, \eta \in \mathfrak{k}_\beta \) with \(\alpha > \beta \), then
\[
\langle \phi_\rho(\overline{A})u, \alpha \eta \otimes v \rangle = \sqrt{\beta - \gamma} A(\alpha \eta \otimes u, \zeta \otimes v) = \sqrt{\beta - \gamma} A(\alpha \eta \otimes u, A^*(\alpha \eta \otimes v)) = \langle \alpha \eta \otimes u, \phi_\rho(\overline{A}^*)v \rangle.
\]
Therefore, by linearity,
\[
\langle \phi_\rho(\overline{A})u, T \otimes v \rangle = \langle T \otimes u, \phi_\rho(\overline{A}^*)v \rangle \quad \text{for all } u, v \in \mathfrak{h} \text{ and } T \in \mathfrak{k},
\]
so \(\phi_\rho(\overline{A}) \) is \(k \)-conjugatable and \(\phi_\rho(\overline{A})^* = \overline{\phi}_\rho(\overline{A}^*) \).
(b) Let \(T \in B_2(p) \) and \(X \in B(\mathfrak{h}) \). Then \(T \otimes X \in B_2(p \otimes \mathfrak{h})^* \cap B_2(p \otimes \mathfrak{h}) \), by Theorem 4.4. Comparing matrix elements, the identities
\[
\phi_\rho(T) \otimes X = \phi_\rho^*(X) \quad \text{and} \quad \overline{\phi}_\rho(T) \otimes X = \overline{\phi}_\rho^*(X)
\]
are readily verified, so (b) follows.

Recall that a countable family of bounded operators \(C \) is said to be strongly linearly independent if there is no non-zero function \(\alpha : C \to \mathbb{C} \) such that \(\sum_{T \in C} \alpha(T)T \) converges to zero in the strong sense.

Theorem 6.8. Let \(F \in B(\overline{\mathfrak{k}} \otimes \mathfrak{h}) \) be as in Theorem 6.4, so that
\[
K_1 = k \oplus \overline{k}, \quad F = \begin{bmatrix} K & iV^* \\ iV & 0 \end{bmatrix}, \quad K = iH_5 + i\rho(H_5)I_\mathfrak{h} - \frac{1}{2}\overline{\rho}(H_1^2) \quad \text{and} \quad V = J^*\overline{\pi}(H_1)(|\omega \rangle \otimes I_\mathfrak{h}),
\]
was selected
where the operators $H_S \in \mathcal{B}(\mathfrak{h})$, $H_P \in \mathcal{B}(\mathfrak{p})$ and $H_1 \in \mathcal{B}(\mathfrak{p} \otimes \mathfrak{h})$ are self-adjoint, J is the natural isometry from $k \otimes \overline{k}$ to $\mathcal{C} \oplus (k \otimes \overline{k}) \oplus K_0$ and $(P_\alpha \otimes I_0)H_1(P_\alpha \otimes I_0) = 0$ for all $\alpha \in \mathbb{I}$.

Suppose that the state ρ satisfies Assumption [6.5], and the operator $H_1 \in \mathcal{B}(\mathfrak{p} \otimes \mathfrak{h})$ is p-conjugatable, and let $\Sigma(\rho)$ be given by [6.6]. Then the HP cocycle $U := Y^F$ is $\Sigma(\rho)$-quasifree with $\Sigma(\rho)$-generator $\left[\begin{array}{cc} K & -Q^* \\ Q & 0 \end{array} \right]$, where $Q = i\varphi_\rho^h(H_1)$.

Suppose further that, with respect to some orthonormal bases $(e^i_\alpha)_{i=1}^{d_\alpha}$ for k_α, where $\alpha \in \mathbb{I}$, the family $\{(e^i_\alpha \otimes I_0)H_1(|e^j_\beta \rangle \otimes I_0) : \alpha > \beta, \ i = 1, \ldots, d_\alpha, \ j = 1, \ldots, d_\beta\}$ is strongly linearly independent. Then $\Sigma(\rho)$ is the unique gauge-invariant AW amplitude with respect to which U is quasifree.

Proof. Since U is a Gaussian HP cocycle with stochastic generator $\left[\begin{array}{cc} K & -Q^* \\ Q & 0 \end{array} \right]$, Corollary 4.11 implies that, for the first part, it suffices to verify the identity

$$iV = (\Sigma(\rho) \otimes I_0) \left[\begin{array}{c} Q \\ -Q^* \end{array} \right].$$

Since H_1 is self-adjoint and p-conjugatable, by assumption, Proposition 6.7 ensures that the operators Q and $R := i\varphi_\rho^h(H_1)$ are well defined and conjugatable, with $Q^c = -i\varphi_\rho^h(H_1)^c = -R$. Thus, for all $\zeta \in k_\alpha$ and $\eta \in k_\beta$ with $\alpha > \beta$, and all $u, v \in \mathfrak{h}$,

$$\langle \zeta \otimes u, Qv \rangle = i\sqrt{\gamma_\beta - \gamma_\alpha} \langle \zeta, H^u_\alpha \eta \rangle \quad \text{and} \quad \langle \eta \otimes u, Q^c v \rangle = -i\sqrt{\gamma_\beta - \gamma_\alpha} \langle \eta, H^u_\alpha \zeta \rangle,$$

where $H^u_\alpha := (I_p \otimes \langle u \rangle)H_1(I_p \otimes |v\rangle)$. Hence, by Lemma 6.6

$$\langle \zeta \otimes u, C(\rho)Qv \rangle = i\sqrt{\gamma_\beta} \langle \zeta, H^u_\alpha \eta \rangle \quad \text{and} \quad \langle \eta \otimes u, S(\rho)Q^c v \rangle = -i\sqrt{\gamma_\alpha} \langle \eta, H^u_\alpha \zeta \rangle.$$

On the other hand, by definition, the operator V is such that

$$\langle \chi \otimes u, Vv \rangle = \langle \chi, H^u_\alpha \omega \rangle \quad \text{for all} \ u, v \in \mathfrak{h} \text{ and } \chi \in k \oplus \overline{k}.$$

Thus, in terms of the block-matrix decomposition $V = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right] \in \mathcal{B}(\mathfrak{h}; (k \oplus \overline{k}) \otimes \mathfrak{h})$,

$$iV = \left[\begin{array}{c} (C(\rho) \otimes I_0)Q \\ - (S(\rho) \otimes I_0)Q^c \end{array} \right] = (\Sigma(\rho) \otimes I_0) \left[\begin{array}{c} Q \\ -Q^c \end{array} \right],$$

as required.

For the last part, let $(e^i_\alpha)_{i=1}^{d_\alpha}$ be an orthonormal basis for k_α, for each $\alpha \in \mathbb{I}$, and let the abbreviation $e^{ij}_{\alpha \beta} := |e^i_\alpha \rangle \langle e^j_\beta|$ for all $\alpha, \beta \in \mathbb{I}, \ i = 1, \ldots, d_\alpha$ and $j = 1, \ldots, d_\beta$. Then, for all $x \in k \setminus \{0\}$, the family $\{\langle x, e^{ij}_{\alpha \beta} \rangle : \alpha > \beta, \ i = 1, \ldots, d_\alpha, \ j = 1, \ldots, d_\beta\}$ is not identically zero and so, under the strong linear independence assumption,

$$\langle \langle x \otimes I_0 \rangle V_1 = \text{st.} \sum_{\alpha>\beta} \sum_{i=1}^{d_\alpha} \sum_{j=1}^{d_\beta} \sqrt{\gamma_\beta} \langle x, e^{ij}_{\alpha \beta} \rangle (\langle e^i_\alpha \otimes I_0 \rangle H_1(|e^j_\beta \rangle \otimes I_0) \neq 0.$$

In other words $k^h = \{0\}$ and therefore, by Corollary 5.3 there is no other gauge-invariant AW amplitude Σ with respect to which the HP cocycle U is Σ-quasifree. \[\square\]
Remark. Theorems 6.4 and 6.8 comprise a significant generalisation of the main result of [AtJ], Theorem 7. The restriction to finite-dimensional noise or particle space, is removed, and the interaction Hamiltonian is of a more general form. In [AtJ], the operator H_I is taken to have the form $\begin{pmatrix} 0 & V^* \\ V & 0 \end{pmatrix}$, and this assumption corresponds to the $\Sigma(\rho)$-quasifree generator $\begin{pmatrix} K - Q^* \\ Q - 0 \end{pmatrix}$ satisfying $(\langle e_{j,k} | \otimes I_h)Q = 0$ for all $j > k > 0$.

In conclusion, a large class of unitary quantum random walks, with particles in a faithful normal state, converge to HP cocycles governed by a quasifree quantum Langevin equation.

Appendix

In this appendix, we prove that symplectic automorphisms of a Hilbert space h are necessarily bounded, and give a parameterisation for the elements of the group $S(h)^\times$. For the convenience of the reader, this is a streamlined version of the proof given in [HoR], which also covers the case of unbounded symplectic automorphisms of separable pre-Hilbert spaces.

Proposition A.1. Let $B \in S(h)^\times$. Then B is bounded.

Proof. Let L and A be the linear and conjugate-linear parts of B, as in (2.1). For all $z, x \in h$,

$2\langle Lz, x \rangle = \langle Bz - iB(iz), x \rangle$

$= \text{Re}\langle Bz, x \rangle + i\text{Im}\langle Bz, x \rangle + i\text{Re}\langle B(iz), x \rangle - \text{Im}\langle B(iz), x \rangle$

$= \text{Im}\langle Bz, ix \rangle + i\text{Im}\langle z, B^{-1}x \rangle + i\text{Im}\langle B(iz), ix \rangle - \text{Im}\langle iz, B^{-1}x \rangle$

$= \langle z, B^{-1}x \rangle - i(\text{Re}\langle z, B^{-1}(ix) \rangle + i\text{Im}\langle z, B^{-1}(ix) \rangle)$

$= \langle z, B^{-1}x \rangle - i(z, B^{-1}(ix))$.

Thus L has everywhere-defined adjoint $x \mapsto \frac{1}{2}(B^{-1}x - iB^{-1}(ix))$, and so is closed and bounded, by the closed graph theorem. Similarly, the conjugate-linear operator A has everywhere-defined adjoint $x \mapsto -\frac{1}{2}(B^{-1}x + iB^{-1}(ix))$, and so is also bounded. Thus B is bounded. \square

For a triple (U, C, P) consisting of a unitary operator U on h, a bounded non-negative operator P on h and a conjugation (a self-adjoint anti-unitary operator) C on h, such that P and C commute, we define the following bounded real-linear operator on h:

$B_{U,C,P} := U(\cosh P - C \sinh P)$ (A.1)

Remark. Since, with (U, C, P) as above, the map $-C$ is also a conjugation on h that commutes with P, a deliberate choice is being made here. The reason for this particular choice is that it eliminates minus signs elsewhere.

Theorem A.2.

(a) Let (U, C, P) be a triple as above.

(i) The operator $B_{U,C,P} \in S(h)^\times$, with bounded inverse

$(\cosh P + C \sinh P)U^* = B_{U^*,-UCU^*,UPU^*}$.
(ii) Suppose that $B_{U,C,P} = B_{U',C',P'}$ for another triple (U', C', P'). Then
\[U' = U, \quad P' = P \quad \text{and} \quad C' \text{ agrees with } C \text{ on } \Ran P. \]

(b) Conversely, let $B \in \mathcal{S}(\mathfrak{h})^\times$. Then there is a triple (U, C, P) as above, such that $B = B_{U,C,P}$.

Proof. (a) (i) This is a straightforward matter of verification.

(ii) Set $B = B_{U,C,P}$, and let L and A be its linear and conjugate-linear parts. Then
\[U \cosh P = L = U' \cosh P' \quad \text{and} \quad -UC \sinh P = A = -U'C' \sinh P'. \]
Since the bounded operators $\cosh P$ and $\cosh P'$ are non-negative and invertible, and U and U' are unitary, the uniqueness of polar decompositions implies that $U' = U$ and $\cosh P' = \cosh P$. Hence, by the non-negativity of P' and P, so $P' = P$, and thus also $C' \sinh P' = C \sinh P$. It follows that $C'f(P') = Cf(P)$ for all continuous functions $f : \mathbb{R}_+ \to \mathbb{C}$ satisfying $f(0) = 0$; in particular $C'P = CP$, so C' and C agree on $\Ran P$.

(b) Let L and A denote the linear and conjugate-linear parts of B. It follows from the proof of Proposition $\ref{prop:quasifree}$ that L^* and $-A^*$ are respectively the linear and conjugate-linear parts of B^{-1}, so
\[I_h = (L^* - A^*)(L + A) = L^*L - A^*A + L^*A - A^*L. \]
Therefore, taking linear and conjugate-linear parts,
\[L^*L = A^*A + I_h \quad \text{and} \quad L^*A = A^*L. \quad \tag{A.2} \]
Applying the first of these identities to the symplectic automorphism B^{-1}, we see that
\[LL^* = AA^* + I_h. \quad \tag{A.3} \]
Let $U|L|$ and $V|A|$ be the polar decompositions of L and A, respectively, and set $K := \ker A$ and $K^* := \ker A^*$. The conjugate-linear partial isometry V has initial space K^\perp and final space K^\perp^*, and the identities $\eqref{eq:part1}$ and $\eqref{eq:part2}$ imply that L is invertible, so U is unitary, and $|L| \geq I_h$. Thus there exists a unique non-negative operator $P \in \mathcal{B}(\mathfrak{h})$ such that $|L| = \cosh P$ and $|A| = (|L|^2 - I_h)^{1/2} = \sinh P$. Now $|L^*| = U|L|U^*$ and $|L| = U^*|L^*|U$ so, for all $x \in K$ and $z \in K^*$,
\[|L^*|Ux = U|L|x = Ux \quad \text{and} \quad |L|U^*z = U^*|L^*|z = U^*z, \]
which implies that $UK \subseteq K^*$ and $U^*K^* \subseteq K$. Hence $UK = K^*$, and therefore also $UK^\perp = K^\perp$. It follows that, on $\mathfrak{h} = K \oplus K^\perp$, U^*V has the form $\{0\} \oplus D_1$ for an anti-unitary operator D_1 on K^\perp. Therefore, setting $D := D_0 \oplus D_1$ for an arbitrary conjugation D_0 on K,
\[B = L + A = U|L| + V|A| = U(\cosh P + D \sinh P), \]
\[|A|D = |A|U^*V \quad \text{and} \quad U^*V|A| = D|A|. \]
Thus, using the identities $\eqref{eq:part1}$ and $\eqref{eq:part2}$ once more,
\[|A|U^*V = (|L|^2 - I)^{1/2}U^*V = U^*(|L|^2 - I)^{1/2}V = U^*|A^*|V = U^*V|A|. \]
Therefore D commutes with $|A| = \sinh P$ and so commutes with all continuous functions of $\sinh P$ such as P itself and $|L| = \cosh P$. The second identity in $\eqref{eq:part1}$ now implies that
\[\langle Lx, D|Ax \rangle = \langle Ly, Ax \rangle = \langle Lx, Ay \rangle = \langle Ly, Ay \rangle \]
\[= \langle Ax, Ay \rangle = \langle Lx, D^*|Ax \rangle \quad \text{for all } x, y \in \mathfrak{h}, \]
so \(D \) and \(D^* \) agree on \(\text{ Ran } |A| = K^\perp \), and thus \(D^*_1 = D_1 \). But \(D^*_0 = D_0 \), since \(D_0 \) is a conjugation on \(K \), therefore \(D^* = D \) and so the anti-unitary operator \(D \) is a conjugation on \(h \). The proof is now completed by letting \(C \) be the conjugation \(-D \).

\(\square \)

Acknowledgement. This work was supported by the Leverhulme Trust Research Project Grant RPG-2014-196 *Quantum random walks and quasi-free quantum stochastic calculus.*

References

[App] D. Applebaum, Quasi-free stochastic evolutions, in “Quantum Probability and Applications II”, (eds. L. Accardi & W. von Waldenfels), *Lecture Notes in Math.* **1136**, Springer, Berlin, 1985, pp. 46–56.

[ArW] H. Araki and E.J. Woods, Representations of the canonical commutation relations describing a non-relativistic infinite free Bose gas, *J. Math. Phys.* **4** (1963), 637–662.

[Arv] W. Arveson, “Noncommutative Dynamics and E-Semigroups”, *Springer Monographs in Mathematics*, Springer, New York, 2003.

[AtJ] S. Attal and A. Joye, The Langevin equation for a quantum heat bath, *J. Funct. Anal.* **247** (2007), no. 2, 253–288.

[AtP] S. Attal and Y. Pautrat, From repeated to continuous quantum interactions, *Ann. Henri Poincaré* **7** (2006), no. 1, 59–104.

[BSW] C. Barnett, R.F. Streater and I.F. Wilde, Quasi-free quantum stochastic integrals for the CAR and CCR, *J. Funct. Anal.* **52** (1983), no. 1, 19–47.

[Be1] A.C.R. Belton, Random-walk approximation to vacuum cocycles, *J. Lond. Math. Soc.* **81** (2010), no. 2, 412–434.

[Be2] — — , Quantum random walks and thermalisation, *Comm. Math. Phys.* **300** (2010), no. 2, 317–329.

[Be3] — — , Quantum random walks with general particle states, *Comm. Math. Phys.* **328** (2014), no. 2, 573–596.

[BGL] A.C.R. Belton, M. Gnacik and J.M. Lindsay, Strong convergence of quantum random walks via semigroup decomposition, *Preprint*.

[Bha] B.V.R. Bhat, Cocycles of CCR flows, *Mem. Amer. Math. Soc.* **149** (2001), no. 709.

[Bou] L. Bouten, Squeezing enhanced control, *Report no. 0407*, Department of Mathematics, University of Nijmegen, 2004.

[BrR] O. Bratteli and D.W. Robinson, “Operator Algebras and Quantum Statistical Mechanics II: Equilibrium States. Models in Quantum Statistical Mechanics”, second edition, *Texts and Monographs in Physics*, Springer, Berlin, 1997.

[Eva] M.P. Evans, Existence of quantum diffusions, *Probab. Theory Related Fields* **81** (1989), no. 4, 473–483.

[Fag] F. Fagnola, Quantum Markov semigroups and quantum flows, *Proyecciones* **18** (1999), no. 3, 144 pp.

[Gou] J. Gough (ed.), “Principles and Applications of Quantum Control Engineering”, *Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.* **370** (2012), no. 1079, 5237–5451.

[HoR] R. Honegger and A. Rieckers, Squeezing Bogoliubov transformations on the infinite mode CCR-algebra, *J. Math. Phys.* **37** (1996), no. 9, 4292–4309.

[HL1] R.L. Hudson and J.M. Lindsay, A noncommutative martingale representation theorem for non-Fock quantum Brownian motion, *J. Funct. Anal.* **61** (1985), no. 2, 202–221.

[HL2] — — , Uses of non-Fock quantum Brownian motion and a quantum martingale representation theorem, in “Quantum Probability and Applications II” (eds. L. Accardi & W. von Waldenfels), *Lecture Notes in Math.* **1136** Springer, Berlin, 1985, pp. 276–305.

[HuP] R.L. Hudson and K.R. Parthasarathy, Quantum Itô’s formula and stochastic evolutions, *Comm. Math. Phys.* **93** (1984), no. 3, 301–323.

[Kur] S. Kurepa, The Cauchy functional equation and scalar product in vector spaces, *Glasnik Mat.-Fiz. Astronom. Ser. II Drustvo Mat. Fiz. Hrvatske* **19** (1964), 23–36.

[Lin] G. Lindblad, On the generators of quantum dynamical semigroups, *Comm. Math. Phys.* **48** (1976), no. 2, 119–130.

[L1] J.M. Lindsay, Fermion martingales, *Probab. Theory Relat. Fields* **71** (1986), no. 2, 307–320.
QUASIFREE STOCHASTIC COCYCLES AND QUANTUM RANDOM WALKS

[La] ———, Quantum stochastic analysis — an introduction, in “Quantum Independent Increment Processes I”, (eds. M. Schürmann & U. Franz), Lecture Notes in Math. 1865, Springer, Heidelberg 2005.

[LiM] J.M. Lindsay and H. Maassen, Stochastic calculus for quantum Brownian motion of nonminimal variance - an approach using integral-sum kernel operators, Mark Kac Seminar on Probability and Physics, CWI Syllabi 32, Math. Centrum, Centrum Wisk. Inform., Amsterdam, 1992, pp. 97–167.

[LM1] J.M. Lindsay and O. Margetts, Quasifree martingales, Preprint.

[LM2] ———, Quasifree stochastic analysis, Preprint.

[LW1] J.M. Lindsay and S.J. Wills, Existence, positivity, and contractivity for quantum stochastic flows with infinite dimensional noise, Probab. Theory Related Fields 116 (2000), no. 4, 505–543.

[Mey] P.-A. Meyer, “Quantum Probability for Probabilists”, second edition, Lecture Notes in Math. 1538, Springer, Berlin, 1993.

[Par] K.R. Parthasarathy, “Introduction to Quantum Stochastic Calculus”, Monographs in Mathematics 85, Birkhäuser, Basel, 1992.

[PS1] K.R. Parthasarathy and K.B. Sinha, Stochastic integral representation of bounded quantum martingales in Fock space, J. Funct. Anal. 67 (1986), no. 1, 126-151.

[PS2] ———, Quantum Markov processes with a Christensen–Evans generator in a von Neumann algebra, Bull. London Math. Soc. 31 (1999), no. 5, 616-626.

[Pet] D. Petz, “An Invitation to the Algebra of Canonical Commutation Relations”, Leuven Notes in Mathematical and Theoretical Physics. Series A: Mathematical Physics 2, Leuven University Press, Leuven, 1990.

[ReS] M. Reed and B. Simon, “Methods of Modern Mathematical Physics I: Functional Analysis”, Academic Press, New York, 1972.

[Seg] I.E. Segal, “Mathematical Problems of Relativistic Physics. Lectures in Applied Mathematics II”, American Mathematical Society, Providence, R.I., 1963.

[Sla] J. Slawny, On factor representations and the C^*-algebra of canonical commutation relations, Comm. Math. Phys. 24 (1972), 151-170.

1Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YF, United Kingdom; email: a.belton@lancaster.ac.uk, j.m.lindsay@lancaster.ac.uk, p.zhong2@lancaster.ac.uk

2Department of Mathematics, University of Portsmouth, Portsmouth PO1 3HF, United Kingdom; email: michal.gnacik@port.ac.uk

3Current address: Department of Pure Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada N2L 3G1; email: ping.zhong@uwaterloo.ca