Bleeding after endoscopic submucosal dissection: Risk factors and preventive methods

Yosuke Kataoka, Yosuke Tsuji, Yoshiki Sakaguchi, Chihiro Minatsuksi, Itsuko Asada-Hirayama, Keiko Niimi, Satoshi Ono, Shinya Kodashima, Nobutake Yamamichi, Mitsuhiro Fujishiro, Kazuhiko Koike

Yosuke Kataoka, Yosuke Tsuji, Yoshiki Sakaguchi, Chihiro Minatsuksi, Itsuko Asada-Hirayama, Keiko Niimi, Satoshi Ono, Shinya Kodashima, Nobutake Yamamichi, Mitsuhiro Fujishiro, Kazuhiko Koike, Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan

Mitsuhiro Fujishiro, Department of Endoscopy and Endoscopic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan

Keiko Niimi, Center for Epidemiology and Preventive Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan

Author contributions: Kataoka Y and Tsuji Y contributed to the literature review and manuscript writing; Koike K gave the final approval of the manuscript; All the other authors checked the manuscript and suggested improvement.

Conflict-of-interest statement: Yosuke Tsuji: lecture fees from Olympus Medical Systems, GUNZE and CSL Behring, collaborative research fund from HOYA Pentax; Mitsuhiro Fujishiro: lecture fees from Olympus Medical Systems and CSL Behring, collaborative research fund from HOYA Pentax; the remaining authors declare no conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Yosuke Tsuji, MD, PhD, Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. ytsuji-tky@umin.ac.jp

Telephone: +81-3-38155411
Fax: +81-3-58009522

Received: April 11, 2016
Peer-review started: April 13, 2016
First decision: May 12, 2016
Revised: May 30, 2016
Accepted: June 15, 2016
Article in press: June 15, 2016
Published online: July 14, 2016

Abstract

Endoscopic submucosal dissection (ESD) has become widely accepted as a standard method of treatment for superficial gastrointestinal neoplasms because it enables en block resection even for large lesions or fibrotic lesions with minimal invasiveness, and decreases the local recurrence rate. Moreover, specimens resected in an en block fashion enable accurate histological assessment. Taking these factors into consideration, ESD seems to be more advantageous than conventional endoscopic mucosal resection (EMR), but the associated risks of perioperative adverse events are higher than in EMR. Bleeding after ESD is the most frequent among these adverse events. Although post-ESD bleeding can be controlled by endoscopic hemostasis in most cases, it may lead to serious conditions including hemorrhagic shock. Even with preventive methods including administration of acid secretion inhibitors and preventive hemostasis, post-ESD bleeding cannot be completely prevented. In addition high-risk cases for post-ESD bleeding, which include cases with the use of antithrombotic agents or which require large resection, are increasing. Although there have been many reports about associated risk factors and methods of preventing post-ESD bleeding, many issues remain unsolved. Therefore, in this review, we have...
overviewed risk factors and methods of preventing post-ESD bleeding from previous studies. Endoscopists should have sufficient knowledge of these risk factors and preventive methods when performing ESD.

Key words: Endoscopic submucosal dissection; Risk factor; Bleeding; Prevention; Antithrombotic agents

© The Author(s) 2016. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Antithrombotic agents and large resection are known to be significant risk factors for post-endoscopic submucosal dissection (post-ESD) bleeding, and as the indications for antithrombotic agents increase, and the indications for endoscopic resection are expanded, endoscopists have a chance to face an increasing number of patients with a high risk of post-ESD bleeding. Acid secretion inhibitors and preventive hemostasis are effective for the prevention of post-ESD bleeding, but do not seem to be completely effective in its prevention. Developing additional preventive methods which can reduce post-ESD bleeding more effectively will become an increasingly important issue in the future.

Kataoka Y, Tsuji Y, Sakaguchi Y, Minatsuki C, Asada-Hinayama I, Niimi K, Ono S, Kodashima S, Yamamichi N, Fujishiro M, Koike K. Bleeding after endoscopic submucosal dissection: Risk factors and preventive methods. World J Gastroenterol 2016; 22(26): 5927-5935 Available from: URL: http://www.wjgnet. com/1007-9327/full/v22/i26/5927.htm DOI: http://dx.doi. org/10.3748/wjg.v22.i26.5927

INTRODUCTION

Endoscopic submucosal dissection (ESD) has become a well-established method of treatment for superficial neoplasms in the gastrointestinal tract. ESD was first developed as an advanced technique which was intended to overcome the limitations of conventional endoscopic mucosal resection (EMR) in the 1990s[1-3]. ESD is curatively advantageous over EMR in that it enables en block fashion, regardless of tumor size, shape, ulceration or location, which contributes to the decrease in local recurrence rate. Moreover, specimens obtained by en block resection enable accurate histological diagnosis of target lesions[4,5].

However, ESD is technically more difficult and requires a longer procedure time than EMR. In addition, ESD is accompanied by a relatively high risk of procedure-related adverse events[4-11]. Especially, bleeding after ESD is one of the most severe adverse events because post-ESD bleeding may lead to serious conditions including hemorrhagic shock. Moreover, post-ESD bleeding can occur later than other adverse events, and may require additional treatment even after discharge[12-14]. Therefore, in this review article, we will focus on risk factors and preventive methods of post-ESD bleeding.

POST-ESD BLEEDING

Post-ESD bleeding, or bleeding after ESD is the most frequent adverse event associated with ESD. The incidence of bleeding after gastric ESD has been reported to range from 1.8% to 15.6%[4,9,15-18]. On the other hand, there have been many reports that bleeding rates after esophageal or colorectal ESD are a much smaller percentages[19-25] (Tables 1 and 2). Therefore, the reports listed in the following section are focused on the risk factors and methods of preventing bleeding after gastric ESD.

Post-ESD bleeding is generally defined as the condition that presents any clinical signs of bleeding such as hematemesis, melena, hemodynamic deterioration or downtick of > 2 g/dL in hemoglobin level and requires endoscopic hemostasis[12,13,26].

Oda et al reported that 76% of post-ESD bleeding occurred within 24 h of ESD, but it can occur as late as two weeks after the procedure[12,13,27,28]. Post-ESD bleeding can be controlled by endoscopic hemostasis in most cases (Figure 1), but it sometimes leads to life-threatening conditions that require blood transfusion or emergency surgery[12,29]. Therefore, endoscopists should have sufficient knowledge of risk factors for this adverse event and be fully prepared for it.

RISK FACTORS

When performing gastric ESD, endoscopists should know whether their cases have a high risk of post-ESD bleeding. There have been many reports concerning the risk factors for post-ESD bleeding[9,12-15,26,27,29-32]. Although other factors are still controversial, several studies have revealed that antithrombotic agents and resection size are significant risk factors for post-ESD bleeding[9,14,15,26,27,29,30,33].

Antithrombotic agents

Because the number of patients taking antithrombotic agents has been increasing worldwide[34,35], there will be an increasing necessity to perform ESD for these patients in the future. Endoscopists should pay attention to both the risks of bleeding and thrombembolism when performing ESD in this situation.

Tentative guidelines concerning the continuation and cessation of antithrombotic agents during endoscopy have been published from several societies including the Japan Gastroenterological Endoscopy Society, American Society for Gastrointestinal Endoscopy, and European Society of Gastrointestinal Endoscopy[36-38]. ESD for patients taking antithrombotic agents is performed according to these guidelines, but currently data supporting ESD under these guidelines is
still insufficient. It is a clinically important, but unsolved question whether antithrombotic agents increase the risk of post-ESD bleeding. Several retrospective studies have shown that antithrombotic agents as a whole are risk factors for post-ESD bleeding\cite{14,15,33}. Adversely, there is also data which suggests that antithrombotic agents do not significantly increase post-ESD bleeding\cite{26,27,29,32}. However, the types of antithrombotic agents and cessation periods differed among these studies. Each antithrombotic agent has its own mechanism and carries a different risk of bleeding. So the post-ESD bleeding risk for each agent must be analyzed individually.

Aspirin is known to be one of the most commonly administered antiplatelet agents. Initial reports demonstrated the safety of colonoscopic polypectomy in patients taking aspirin\cite{39-41}. Similarly the rate of post-ESD bleeding does not significantly increase with the cessation of aspirin from one week before ESD\cite{16,42}. Although available data concerning continued aspirin use is still lacking, guidelines permit ESD without aspirin cessation in patients with a high-risk of thromboembolism. Recently, Lim et al.\cite{16}, Matsumura et al.\cite{30} and Sanomura et al.\cite{43} reported that the continued use of aspirin did not increase the risk of bleeding after gastric ESD. However, Cho et

Ref.	Organ	Year	Case No.	Post-ESD bleeding	Perforation	En block resection
Ichiro et al.\cite{13}	Stomach	2005	1033	6.2%	3.7%	98.0%
Isomoto et al.\cite{17}	Stomach	2009	589	1.8%	4.5%	94.9%
Chung et al.\cite{26}	Stomach	2009	1000	15.6%	1.2%	95.3%
Mannen et al.\cite{26}	Stomach	2009	478	8.2%	3.6%	
Tsuji et al.\cite{33}	Stomach	2010	398	5.8%	-	-
Higashiyama et al.\cite{14}	Stomach	2011	924	3.0%	4.0%	
Okada et al.\cite{31}	Stomach	2011	647	4.3%	-	-
Toyokawa et al.\cite{32}	Stomach	2012	1123	5.0%	2.4%	93.5%
Lim et al.\cite{16}	Stomach	2012	1591	5.9%	-	-
Koh et al.\cite{15}	Stomach	2013	1166	5.3%	-	98.5%

Table 1: Previous reports of bleeding after gastric endoscopic submucosal dissection

Ref.	Organ	Year	Case No.	Post-ESD bleeding	Perforation	En block resection
Ono et al.\cite{25}	Esophagus	2009	107	0.0%	4.0%	100.0%
Isomoto et al.\cite{19}	Esophagus	2013	291	0.7%	0.0%	99.7%
Tsuji et al.\cite{20}	Esophagus	2015	373	0.0%	5.2%	96.7%
Saito et al.\cite{21}	Colon	2010	1111	1.5%	4.9%	88.0%
Niimi et al.\cite{34}	Colon	2010	310	1.6%	4.8%	90.3%
Oka et al.\cite{79}	Colon	2010	688	1.7%	3.3%	-
Toyonaga et al.\cite{22}	Colon	2012	1143	1.2%	1.4%	99.3%
Takeuchi et al.\cite{81}	Colon	2012	348	4.6%	2.3%	91.1%
Lee et al.\cite{24}	Colon	2013	1000	0.4%	5.3%	97.5%
Nakajima et al.\cite{23}	Colon	2013	816	2.2%	2.0%	94.5%

Table 2: Previous reports of bleeding after esophageal or colorectal endoscopic submucosal dissection

Figure 1 Spurting bleeding from visible vessel on the day after gastric endoscopic submucosal dissection (A) and successful hemostasis by using hemostatic forceps (B).
ESD bleeding remains to be investigated hereafter. Currently, there is still insufficient data about DOACs and the risk of post-ESD bleeding needs to be assessed. However, the association between DOACs and the risk of bleeding after ESD has become increasingly used in clinical practice, and the management of patients taking warfarin to reconsider whether bridging is necessary for the prevention of arterial thromboembolism and decreases the risk of bleeding events after operations or other invasive procedures.

Two retrospective studies showed that post-ESD bleeding in patients undergoing heparin bridge therapy occurred at the rate of 23% to 38%[30,49]. Additionally, Douketis et al[50] reported a randomized trial to evaluate the risks of thromboembolism and bleeding events after operations or other invasive procedures in patients taking warfarin for chronic atrial fibrillation or flutter. This study suggested that forgoing bridging anticoagulation is non-inferior to perioperative heparin bridging for the prevention of arterial thromboembolism and decreases the risk of major bleeding[50]. Therefore, it may be necessary to reconsider whether bridging is necessary for the management of patients taking warfarin.

Recently, direct oral anticoagulant drugs (DOACs) have become increasingly used in clinical practice, and the association between DOACs and the risk of post-ESD bleeding needs to be assessed. However, data about DOACs is still being accumulated and is currently still insufficient. The risk of DOACs for post-ESD bleeding remains to be investigated hereafter.

Resection size and other factors
There have been several reports that specimen size > 40 mm is a significant risk factor for post-ESD bleeding[9,15,27,30]. Owing to the acceptance of expanded indications for larger lesions, there have been increasingly more cases of large ESD in our practices[51-53]. The reason why larger resection causes more bleeding is simply considered to derive from the fact that more vessels would be exposed on the ulcer bases after large ESD.

Patients receiving hemodialysis are known to be prone to bleed from gastroduodenal ulcers[54]. A few studies showed hemodialysis is a risk factor for post-ESD bleeding[30,31,50,56]. Numata et al[55] reported that two ESD-related deaths occurred among hemodialysis patients in an evaluation of ESD outcomes in 63 patients with chronic kidney disease; post-ESD bleeding triggered femoral infarction in one case, and alveolar hemorrhage occurred in the other case. More careful management after ESD may be required for patients on hemodialysis because post-ESD bleeding may lead to secondary adverse events.

Two studies have also shown that long procedure time is an independent risk factor for post-ESD bleeding[31,32]. A longer procedure time was required in these studies when intraoperative bleeding was frequent and difficult to control, which might mean more vessels exist in the submucosal layer in these cases.

As for the location, it has been generally reported that the lower part of the stomach is a risk factor for post-ESD bleeding. Tsuji et al[56] and Miyahara et al[57] reported that post-ESD bleeding occurred more frequently in the lower part of the stomach than in the upper or middle part. That may be partly because more careful endoscopic hemostasis is required during the ESD procedure in the upper and middle part of the stomach where intraoperative bleeding frequently occurs, which may ultimately prevent post-ESD bleeding[13,14,20]. Although intraoperative bleeding may be associated to submucosal artery diameters, arteries of the upper and middle part of the stomach are known to be thicker in diameter than in the lower part as evaluated in human resected gastric specimens and dog models[57,58]. In addition, antral active peristalsis and bile reflux may contribute to a high incidence of post-ESD bleeding in the lower part of stomach[12,14].

Adversely, Chung et al[59] reported that the upper part of the stomach was a risk factor. They performed hemostasis on all vessels likely to bleed regardless of the location[14]. Tsuji et al[56] showed that post-ESD bleeding occurred more often when beginners performed coagulation of the ulcer floor after ESD. These discrepancies might occur due to the amount of remnant exposed vessels on the mucosal defect of ESD.

In summary, according to available evidence,
DAPT and heparin bridge therapy significantly increase post-ESD bleeding, but it is unclear whether other antithrombotic agents are risk factors. In terms of other risk factors for post-ESD bleeding, large resection size would be a reliable risk factor, but there have been an insufficient number of prospective studies and there is not enough well-established data. Large-scale prospective analyses concerning this issue are essential.

PREVENTIVE METHODS

Massive post-ESD bleeding occasionally leads to a severe condition that requires blood transfusion, such as hemorrhagic shock\(^\text{(13)}\). Therefore, prevention of post-ESD bleeding is imperative. According to previous studies, there are only two well-established effective methods of prevention with supportive evidence: the use of acid secretion inhibitors and preventive coagulation of the ESD-induced ulcer bed.

Acid secretion inhibitors

Acid secretion inhibitors including proton pump inhibitors (PPI) or histamine-2 receptor antagonists (H2RA) are normally used to facilitate healing of ulcers after gastric ESD. It is still unclear whether PPIs can reduce post-ESD bleeding more effectively than H2RAs although several studies have reported that PPIs may be superior to H2RAs\(^\text{(19-23)}\).

Niimi et al\(^\text{(24)}\) reported that 2-wk administration of PPI resulted in 80% of the transitional rate to scarring-stage ulcers at 8 wk after ESD. The study suggested 2-wk administration of a maintenance dosage of PPI may be sufficient in cases without deteriorating factors such as concomitant use of antithrombotic agents or ulceractive findings in the tumor. Further studies are required to determine optimum doses and duration of PPI administration.

Preventive hemostasis

Endoscopic preventive coagulation or clipping after ESD may prevent post-ESD bleeding. Takizawa et al\(^\text{(12)}\) reported that post-ESD coagulation of visible vessels (PEC) prevented post-ESD bleeding (with PEC, 3.1% vs without, 7.1%, \(P < 0.01\)). Mukai et al\(^\text{(25)}\) reported that PEC plus artery-selective clipping may reduce delayed bleeding after gastric ESD (PEC, 4.5% vs PEC plus artery-selective clipping, 1.3%, \(P = 0.17\)). Uedo et al\(^\text{(26)}\) reported that Doppler US may be helpful to search vessels in the post-ESD ulcers.

However, repeated coagulation by hemostatic forces can lead to coagulation syndrome or delayed perforation\(^\text{(27)}\). A patient with coagulation syndrome presents fever, abdominal pain or leukocytosis as a result of electrocoagulation injury to the gastrointestinal wall. Therefore, endoscopists should take care not to perform excessive coagulation.

Second-look endoscopy

It was originally reported that a second-look endoscopy (SLE) after the initial endoscopic hemostasis for peptic ulcer bleeding significantly reduces the risk of recurrent bleeding\(^\text{(28)}\). According to such findings, SLE after ESD is performed in many facilities in Japan. However, recent studies have implied that SLE has little influence on the prevention of post-ESD bleeding\(^\text{(28,29)}\). Mochizuki et al\(^\text{(30)}\) reported that SLE was not routinely recommended for patients with an average bleeding risk (the incidence of postoperative bleeding of SLE group vs non-SLE groups; 5.4% vs 3.8%). On the other hand, Jung et al\(^\text{(31)}\) reported the efficacy of SLE with prophylactic hemostasis.

Nishizawa et al\(^\text{(32)}\) systematically evaluated the efficacy of second-look endoscopy for gastric ESD, and they concluded in their systematic review and meta-analysis that second-look endoscopy has no advantage for the prevention of post-ESD bleeding in patients without a high risk of bleeding.

As for patients at low-risk for post-ESD bleeding, it seems that SLE is not routinely recommended. However, there is insufficient data to evaluate the efficacy of SLE in patients with a high risk of post-ESD bleeding.

Even with the above mentioned preventive methods, the rate of postoperative bleeding is still approximately 4.5%\(^\text{(4)}\). Therefore, the development of a novel technique that decreases post-ESD bleeding more effectively is essential.

NEW METHODS

In order to prevent post-ESD bleeding, methods of closing or shielding the ESD-induced ulcer seem to be promising. As for the closing method, conventional clipping closure is technically difficult in cases where the mucosal defect is large. Lee et al\(^\text{(33)}\) reported that mucosal closure with a detachable snare and clips supports earlier healing of ulcers after ESD. Kantsevoy et al\(^\text{(34)}\) reported that endoscopic suturing closure is a feasible technique which can eliminate the need for hospitalization after the ESD procedure.

Recently, the utility of a shielding method using polyglycolic acid (PGA) sheets and fibrin glue to manage ulcers after ESD procedure has been reported. PGA sheets are widely used in the surgical field as an absorbable material to reinforce suturing. Takimoto et al\(^\text{(35)}\) originally reported the efficacy of shielding a mucosal defect after duodenal ESD using PGA sheets and fibrin glue to prevent delayed perforation. Furthermore, Tsuji et al\(^\text{(36,37)}\) also reported the possibility of reducing postoperative adverse events, such as post-ESD bleeding or delayed perforation (Figure 2). In addition to PGA shielding, other shielding methods have been reported. There has been a report concerning bio-sheet graft therapy for post-ESD ulcer...
in an animal experiment. According to the study, this bio-sheet graft therapy might be effective in attenuating the degree of inflammation in the ESD-induced ulcers. However, there has been no randomized controlled trial to investigate the efficacy of these novel methods to prevent postoperative bleeding. Therefore, further research on its efficacy is required.

CONCLUSION

Although ESD has been established as an excellent method of treatment for superficial gastrointestinal neoplasms, the prevention and management of post-ESD adverse events is an issue still to be solved. Especially, controlling bleeding after ESD should be considered one of the top priorities because its occurrence rate is relatively high and sometimes leads to a severe condition. It is imperative for all endoscopists who perform ESD to get acquainted with the risk factors of post-ESD bleeding. To date, some risk factors, such as antithrombotic drug use and large resection size, have been recognized, but optimum management of these risk factors is still to be clarified. Concerning prevention of post-ESD bleeding, PEC and PPI use are widely established as effective preventive methods, but have not been able to prevent bleeding completely. Currently, there are several ongoing studies concerning novel techniques for preventing bleeding with the ultimate goal of achieving zero risk for post-ESD bleeding. Further research is required.

REFERENCES

1. Ono H, Kondo H, Gotoda T, Shirao K, Yamaguchi H, Saito D, Hosokawa K, Shimoda T, Yoshida S. Endoscopic mucosal resection for treatment of early gastric cancer. Gut 2001; 48: 225-229 [PMID: 11155645 DOI: 10.1136/gut.48.2.225]
2. Gotoda T, Kondo H, Ono H, Saito Y, Yamaguchi H, Saito D, Yokota T. A new endoscopic mucosal resection procedure using an insulation-tipped electrosurgical knife for rectal flat lesions: report of two cases. Gastrointest Endosc 1999; 50: 560-563 [PMID: 10502182]
3. Soetikno R, Kaltenbach T, Yeh R, Gotoda T. Endoscopic mucosal resection for early cancers of the upper gastrointestinal tract. J Clin Oncol 2005; 23: 4490-4498 [PMID: 16002839 DOI: 10.1200/JCO.2005.19.935]
4. Park YM, Cho E, Kang HY, Kim JM. The effectiveness and safety of endoscopic submucosal dissection compared with endoscopic mucosal resection for early gastric cancer: a systematic review and metaanalysis. Surg Endosc 2011; 25: 2666-2677 [PMID: 21424201 DOI: 10.1007/s00464-011-1627-z]
5. Liu J, Chen S, Zhang Y, Qiu F. A meta-analysis of endoscopic submucosal dissection and EMR for early gastric cancer. Gastrointest Endosc 2012; 76: 763-770 [PMID: 22884100 DOI: 10.1016/j.gie.2012.06.014]
6. Saito Y, Fukuzawa M, Matsuda T, Fukuinaga S, Sakamoto T, Uraoka T, Nakajima T, Ikehara H, Fu KI, Itoi T, Fujii T. Clinical outcome of endoscopic submucosal dissection versus endoscopic mucosal resection of large colorectal tumors as determined by curative resection. Surg Endosc 2010; 24: 343-352 [PMID: 19517168 DOI: 10.1007/s00464-009-0562-8]
7. Fujifya M, Tanaka K, Dokoshi T, Tominaga M, Ueno N, Inaba Y, Ito T, Moriichi K, Kohgo Y. Efficacy and adverse events of EMR and endoscopic submucosal dissection for the treatment of colon neoplasms: a meta-analysis of studies comparing EMR and endoscopic submucosal dissection. Gastrointest Endosc 2015; 81: 583-595 [PMID: 25592748 DOI: 10.1016/j.gie.2014.07.034]
8. Urabe Y, Hiyaama T, Tanaka S, Yoshimara M, Arishi K, Chayama K. Advantages of endoscopic submucosal dissection versus endoscopic oblique aspiration mucosectomy for superficial esophageal tumors. J Gastroenterol Hepatol 2011; 26: 275-280 [PMID: 21261716 DOI: 10.1111/j.1440-1746.2010.06503.x]
9. Chung IK, Lee JH, Lee SH, Kim SJ, Cho YJ, Cho WY, Hwangbo Y, Keum BR, Park JJ, Chun HJ, Kim JJ, Ji SR, Seol SY. Therapeutic outcomes in 1000 cases of endoscopic submucosal dissection for early gastric neoplasms: Korean ESD Study Group multicenter study. Gastrointest Endosc 2009; 69: 1228-1235 [PMID: 19249769 DOI: 10.1016/j.gie.2008.09.027]
10. Tanabe S, Ishido K, Higuchi K, Sasaki T, Katada C, Azuma M, Naruke A, Kim M, Koizumi W. Long-term outcomes of endoscopic submucosal dissection for early gastric cancer: a retrospective comparison with conventional endoscopic resection in a single center. Gastric Cancer 2014; 17: 130-136 [PMID: 23576197 DOI: 10.1007/s10120-013-0241-2]
11. Oka S, Tanaka S, Kaneko I, Mouri R, Hirata M, Kawamura T, Yoshimara M, Chayama K. Advantage of endoscopic submucosal dissection compared with EMR for early gastric cancer. Gastrointest Endosc 2006; 64: 877-883 [PMID: 17140890 DOI: 10.1016/j.gie.2006.03.932]
12. Takizawa K, Oda I, Gotoda T, Yokoi C, Matsuda T, Saito Y, Saito D, Ono H. Routine coagulation of visible vessels may prevent delayed bleeding after endoscopic submucosal dissection—an analysis of risk factors. Endoscopy 2008; 40: 179-183 [PMID: 18322872 DOI: 10.1055/s-2007-995530]
13 Ichiro O, Takui G, Hisanao H, Takeo E, Yutaka S, Takahisa M, Pradeep B, Fabian E, Daizo S, Hiroyuki O. Endoscopic submucosal dissection for early gastric cancer: technical feasibility, operation time and complications from a large consecutive series. J Gastroenterol Endosc 2005; 17: 54-59

14 Tsuji Y, Ohata K, To E, Chiba H, Ohyu T, Gunji T, Matsushita N. Risk factors for bleeding after endoscopic submucosal dissection for gastric lesions. World J Gastroenterol 2010; 16: 2913-2917 [PMID: 20556838 DOI: 10.3748/wjg.v16.i23.2913]

15 Koh R, Hirasawa K, Yahara S, Oka S, Sugimori K, Morimoto M, Numata K, Kokawa A, Sasaki T, Nozawa A, Taguri M, Morita S, Maeda S, Tanaka K. Antithrombotic drugs are risk factors for delayed postoperative bleeding after endoscopic submucosal dissection for gastric neoplasms. Gastrointest Endosc 2013; 78: 476-483 [PMID: 2362974 DOI: 10.1016/j.gie.2013.03.008]

16 Him JH, Kim SG, Kim JW, Choi YJ, Kwon J, Kim JY, Lee YB, Choi J, Im JP, Kim JS, Jung HC, Song IS. Do antiplatelets increase the risk of bleeding after endoscopic submucosal dissection of gastric neoplasms? Gastrointest Endosc 2012; 75: 719-727 [DOI: 10.1016/j.gie.2011.11.034]

17 Isomoto H, Shikawa S, Yamasugi N, Fukuda E, Ikeda K, Nishiya H, Ohnita K, Mizuta Y, Shiozawa J, Kohno S. Endoscopic submucosal dissection for early gastric cancer: a large-scale feasibility study. Gut 2009; 58: 331-336 [PMID: 19001058 DOI: 10.1136/gut.2008.165381]

18 Goto O, Fujishiro M, Oda I, Kakushima N, Yamamoto Y, Tsuji Y, Ohata K, Fujiwara T, Fujisawa J, Ishii N, Yoko C, Miyamato S, Itoh T, Morishita S, Gotoha T, Koike K. A multicenter survey of the management after gastric endoscopic submucosal dissection related to postoperative bleeding. Dig Dis Sci 2012; 57: 435-439 [PMID: 21901257 DOI: 10.1007/s10620-011-1885-6]

19 Isomoto H, Yamaguchi N, Minami H, Nakao K. Management of complications associated with endoscopic submucosal dissection/ endoscopic mucosal resection for esophageal cancer. Dig Endosc 2013; 25 Suppl 1: 29-38 [PMID: 23368404 DOI: 10.1111/j.1443-1661.2012.01388.x]

20 Tsuji Y, Nishida T, Nishiyama O, Yamamoto K, Kawai N, Yamaguchi S, Yamada T, Yoshio T, Kitamura S, Nakamura T, Nishino E, Man-I M, East JE, Azuma T. Principles and technical strategy for large, early colorectal neoplasia in Japan. Gastrointest Endosc 2010; 65: 141-147 [PMID: 20314075 DOI: 10.1016/j.gie.2009.04.004]

21 Nishino E, Igarashi M. Risk factors for complications of endoscopic submucosal dissection in gastric tumors: analysis of 478 lesions. J Gastroenterol 2010; 45: 30-36 [PMID: 19760133 DOI: 10.1007/s00535-009-0137-4]

22 Okada Y, Yamamoto Y, Kasuga A, Omae M, Kubota M, Hirasawa T, Ishiyama A, Chino A, Tsuchida T, Fujisaki J, Nakajima A, Hoshino E, Igarashi M. Risk factors for delayed bleeding after endoscopic submucosal dissection for gastric neoplasms. Surg Endosc 2011; 25: 98-107 [PMID: 20549245 DOI: 10.1007/s00464-010-1137-4]

23 Goto O, Fujishiro M, Kodashima S, Ono S, Niimi K, Hirano K, Yamamichi N, Koike K. A second-look endoscopy after endoscopic submucosal dissection for gastric epithelial neoplasm may be unnecessary: a retrospective analysis of postendoscopic submucosal dissection bleeding. Gastrointest Endosc 2010; 71: 241-248 [PMID: 19929219 DOI: 10.1016/j.gie.2009.08.030]

24 Miyahara I, Ikawaki R, Shimoda R, Saka Y, Fujis T, Tsuchi Y, Yamaguchi R, Watanabe A, Yamaguchi D, Higuchi T, Tonimura N, Ogata S, Touroukai N, Noda T, Hidaka H, Mannen K, Endo H, Yamanochure K, Yamazato S, Sakata Y, Fujiyama K. Perforation and postoperative bleeding of endoscopic submucosal dissection in gastric tumors: analysis of 1190 lesions in low- and high-volume centers in Saga, Japan. Digestion 2012; 86: 273-280 [PMID: 22986899DOI: 10.1159/000341422]

25 Matsumura T, Ariai M, Maruoka D, Oikomo K, Minemura S, Ishigami H, Saitio K, Nakagawa T, Katsuno Y, Kosukata T. Risk factors for early and delayed post-operative bleeding after endoscopic submucosal dissection of gastric neoplasms, including patients with continued use of antithrombotic agents. BMC Gastroenterol 2014; 14: 172 [PMID: 25280756 DOI: 10.1186/1471-228X-14-172]

26 Higashiyama M, Oka S, Tanaka S, Sanomura Y, Imagawa H, Shishido T, Yoshida S, Chayama K. Risk factors for bleeding after endoscopic submucosal dissection of gastric epithelial neoplasm. Dig Endosc 2011; 23: 290-295 [PMID: 21951088 DOI: 10.1111/j.1443-1661.2011.01151.x]

27 Toyokawa T, Inaba T, Omote S, Okamoto A, Miyasaka R, Watanabe K, Izumikawa K, Horii J, Fujita I, Ishikawa S, Morikawa T, Turakawa T, Tomoda J. Risk factors for perforation and delayed bleeding associated with endoscopic submucosal dissection for early gastric neoplasms: analysis of 1123 lesions. J Gastroenterol Hepatol 2012; 27: 907-912 [PMID: 22142449 DOI: 10.1111/ j.1440-1746.2011.07039.x]

28 Takeuchi T, Oka T, Harada S, Edogawa S, Kojima Y, Tokisaka S, Umegami E, Higuchi K. The postoperative bleeding rate and its risk factors in patients on antithrombotic therapy who undergo gastric endoscopic submucosal dissection. BMC Gastroenterol 2013; 13: 136 [PMID: 24016578 DOI: 10.1186/1471-228X-13-136]

29 Vandvik PO, Lincoff AM, Gore JM, Gutterman DD, Sonnenberg FA, Alonso-Coello P, Akl EA, Lansberg MG, Guyatt GH, Spencer FA. Primary and secondary prevention of cardiovascular disease: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e637S-e668S [PMID: 22315274 DOI: 10.1378/chest.11-2306]

30 Lansberg MG, O’Donnell MJ, Khatr P, Lang ES, Nguyen-Huyhn MN, Schwartz NE, Sonnenberg FA, Schulman S, Vandvik PO, Spencer FA, Alonso-Coello P, Guyatt GH, Akl EA. Antithrombotic and thrombolytic therapy for ischemic stroke: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest 2012; 141: e601S-e636S [PMID: 2215273 DOI: 10.1378/chest.11-2302]

31 Fujimoto K, Fujishiro M, Kato M, Higuchi K, Ikawaki R, Sakamoto C, Uchihashi S, Kashiwagi A, Ogawa H, Murakami K, Mine T, Yoshino J, Kinosita Y, Ichinose M, Matsu T. Guidelines for gastroenterological endoscopy in patients undergoing antithrombotic treatment. Dig Endosc 2014; 26: 1-14 [PMID: 25041766]

Kataoka Y et al. Overview of post-ESD bleeding
Role of antisecretory agents: 45-48 [PMID: 20078664 DOI: 10.1111/]

Continuous aspirin use does Uninterrupted clopidogrel therapy. 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Risk of colorectal polypycyemia bleeding with anticoagulants and antiplatelet agents: analysis of 1657 cases. Gastrointest Endosc 2004; 59: 44-48 [PMID: 14722546 DOI: 10.1016/S0016-5107(03)02507-1]

RISK OF BLEEDING AFTER ENDOscopic biopsy or polypctyemia in patients taking aspirin or other NSAIDS. Gastrointest Endosc 1994; 40: 458-462 [PMID: 7926536 DOI: 10.1016/S0016-5107(94)70210-1]

Potential role of aspirin. Am J Gastroenterol 2004; 99: 1785-1789 [PMID: 15350919 DOI: 10.1111/j.1572-0241.2004.30368.x]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection for early gastric cancer. Gastroenterology 2014; 17: 489-496 [PMID: 24124107 DOI: 10.1056/j.s01020-013-3053-5]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Technical feasibility of endoscopic submucosal dissection for early gastric cancer in patients taking anticoagulants or anti-platelet agents. Dig Liver Dis 2009; 41: 725-728 [PMID: 19230799 DOI: 10.1016/j.dld.2009.01.007]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]

Continued use of low-dose aspirin does not increase the risk of bleeding during or after endoscopic submucosal dissection in patients with gastric neoplasms. Endoscopy 2012; 44: 114-121 [PMID: 22271021 DOI: 10.1055/s-0035-1219459]

Postpolypectomy lower gastrointestinal bleeding: potential role of aspirin. Gastroenterology 1994; 52: 748-753 [PMID: 8083959 DOI: 10.1016/S0016-5107(05)80333-3]

Feasibility of endoscopic submucosal dissection for early gastric cancer. Gastrointest Endosc 2010; 71: 998-1005 [PMID: 20226452 DOI: 10.1016/j.gie.2009.11.022]
Lee BL, Kim BW, Kim HK, Choi H, Ji JS, Hwang SM, Cho YS, Chae HS, Choi KY. Routine mucosal closure with a detachable snare and clips after endoscopic submucosal dissection for gastric epithelial neoplasms: a randomized controlled trial. Gut Liver 2011; 5: 454-459 [PMID: 22195243 DOI: 10.5090/gnl.2011.5.4.454]

Kantesovy SV, Bitner M, Mitrovak AA, Thuluvath PJ. Endoscopic suturing closure of large mucosal defects after endoscopic submucosal dissection is technically feasible, fast, and eliminates the need for hospitalization (with videos). Gastrointest Endosc 2014; 79: 503-507 [PMID: 24332082 DOI: 10.1016/j.gie.2013.10.051]

Takimoto K, Imai Y, Matsuyama K. Endoscopic tissue shielding method with polyglycolic acid sheets and fibrin glue to prevent delayed perforation after duodenal endoscopic submucosal dissection. Dig Endosc 2014; 26 Suppl 2: 46-49 [PMID: 24750148 DOI: 10.1111/den.12280]

Tsuji Y, Ohata K, Gunji T, Shozuhima M, Hamanaka J, Ohno A, Ito T, Yamamichi N, Fujishiro M, Matsuhashi N, Koike K. Endoscopic tissue shielding method with polyglycolic acid sheets and fibrin glue to cover wounds after colorectal endoscopic submucosal dissection (with video). Gastrointest Endosc 2014; 79: 151-155 [PMID: 24140128 DOI: 10.1016/j.gie.2013.08.041]

Tsuji Y, Fujishiro M, Kodashima S, Ono S, Niimi K, Mochizuki S, Asada-Hirayama I, Mutsuda R, Minatuki C, Nakayama C, Takahashi Y, Sakaguchi Y, Yamamichi N, Koike K. Polyglycolic acid sheets and fibrin glue decrease the risk of bleeding after endoscopic submucosal dissection of gastric neoplasms (with video). Gastrointest Endosc 2015; 81: 906-912 [PMID: 25440679 DOI: 10.1016/j.gie.2014.08.028]

Kwon CJ, Kim G, Ko KH, Jung Y, Chung IK, Jeon S, Lee DH, Hong SP, Hahn KB. Bio-sheet graft therapy for artificial gastric ulcer after endoscopic submucosal dissection: an animal feasibility study. Gastrointest Endosc 2015; 81: 989-996 [PMID: 25484327 DOI: 10.1016/j.gie.2014.09.038]

Niimi K, Fujishiro M, Kodashima S, Goto O, Ono S, Hirano K, Minatuki C, Yamamichi N, Koike K. Long-term outcomes of endoscopic submucosal dissection for colorectal epithelial neoplasms. Endoscopy 2010; 42: 723-729 [PMID: 20806156 DOI: 10.1055/s-0030-1255675]

Oka S, Tanaka S, Kanao H, Ishikawa H, Watanabe T, Igarashi M, Saito Y, Ikenatsu H, Kobayashi K, Inoue Y, Yahagi N, Tsuda S, Simizu S, Ishi H, Yamano H, Kudo SE, Tsuruta O, Tamura S, Saito Y, Cho E, Fujii T, Sano Y, Nakamura H, Sugihara K, Muto T. Current status in the occurrence of postoperative bleeding, perforation and residual/local recurrence during colonoscopic treatment in Japan. Dig Endosc 2010; 22: 376-380 [PMID: 21175503 DOI: 10.1111/j.1443-1661.2010.01016.x]

Takeuchi Y, Ohta T, Matsu F, Nagai K, Ueno N. Indication, strategy and outcomes of endoscopic submucosal dissection for colorectal neoplasms. Dig Endosc 2012; 24 Suppl 1: 100-104 [PMID: 22553762 DOI: 10.1111/j.1443-1661.2012.01277.x]

Ono S, Tsuji Y, Fujishiro M, Kodashima S, Yamamichi N, Koike K. An effective technique for delivery of polyglycolic acid sheet after endoscopic submucosal dissection of the esophagus: the clip and pull method. Endoscopy 2014; 46 Suppl 1 UCTN: E44-E45 [PMID: 24523175 DOI: 10.1055/s-0033-1359125]
