Review
Pharmacological and analytical aspects of alkannin/shikonin and their derivatives: An update from 2008 to 2022

Kirandeep Kaur, Rashi Sharma, Atamjit Singh, Shivani Attri, Saroj Arora, Sarabjit Kaur, Neena Bedi

Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, India
Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar 143005, India

Abstract
Alkannin/shikonin (A/S) and their derivatives are naturally occurring naphthoquinones majorly found in Boraginaceae family plants. They are integral constituents of traditional Chinese medicine Zicao (roots of Lithospermum erythrorhizon). In last two decades significant increase in pharmacological investigations on alkannin/shikonin and their derivatives has been reported that resulted in discovery of their novel mechanisms in various diseases and disorders. This review throws light on recently conducted pharmacological investigations on alkannin/shikonin and their derivatives and their outputs. Various analytical aspects are also discussed and brief summary of patent applications on inventions containing alkannin/shikonin and its derivatives is also provided.

Keywords:
alkannin naphthoquinones patents shikonin

1. Introduction
Alkannin and shikonin (A/S) are enantiomeric pair and naphthoquinone pigments (Boulos, Rahama, Hegazy, & Efferth, 2019) which are well known for their therapeutic, cosmetic and coloring applications (Fig. 1). Plants containing these bioactive pigments are traditionally used for curing various ailments since centuries. Alkannin was initially reported as a principle component of the root bark of with records of traditional utilization for 4th century BCE for various ailments, principally for ulcers (Papageorgiou, Assimopoulou, Couladouros, Hepworth, & Nicolaou, 1999; Weigle, 1974). On the other hand, Alkanna tinctoria Tausch. Plant of European Origin belonging to Boraginaceae family shikonin was isolated from the root bark of Chinese medicinal plant Lithospermum erythrorhizon Sieb. et Zucc (Boraginaceae) which is well

https://doi.org/10.1016/j.chmed.2022.08.001
1674-6384/© 2022 Tianjin Press of Chinese Herbal Medicines. Published by ELSEVIER B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
known in China by various traditional names i.e. tzuts’ao, tzu-ken, hung-tzu ken, etc (Huu Tung, Du, Wang, Yuan, & Shoyama, 2013). It is an integral component of traditional Chinese medicine Zicao (roots of L. erythrorhizon) which has successful history in treatment of various inflammatory and infectious diseases (Andújar, Ríos, Giner, & Recio, 2013; Papageorgiou, Assimopoulou, Couladouros, Hepworth, & Nicolau, 1999; Winter, 1984a,b; Khan and Abourashed, 2010).

Apart from these plants, a wide range of plants belonging to Boraginaceae family are known to possess these enantiomers and their derivatives. In fact acetylishikonin was first isolated from L. erythrorhizon by Kuroda and Wada in 1922, later shikonin and its other derivatives were also identified (Kuroda & Wada, 1936). It took almost 14 years to identify accurate structure of shikonin (reported as 5,8-dihydroxy-2-[(1R,1-hydroxy-4-methyl-3-pentenyl]-1,4 naphthoquinone in 1936 by Brockmann); subsequently, it’s another enantiomer alkannin was identified by the same group (Albreht, Vovk, Simonovska, & Srbinoska, 2009; Brockmann, 1936). Approximately, 35 derivatives (Fig. 2) of alkannin and shikonin have been isolated from various plants of Boraginaceae family and extensively investigated for wide range of biological activities including wound healing, antimicrobial (Aburjai, Al-Janabi, Al-Mamoori, & Azzam, 2019), anti-acne (Fang & Shoukang, 1998), antiulcer (Singh & Sharma, 2012), anti-inflammatory (Lee et al., 2016), anticancer (Sun, Zhang, Liu, & Guan, 2019) activities, etc.

In the time frame of 1969 to 2021, a total of 634 full text reports are available in PubMed database and out of these, and 606 reports are published after 2000, showing the increased interest of research groups in A/S and their derivatives. Trend analysis suggests that researchers are more focused on shikonin than alkannin (Fig. 3). An exhaustive review of A/S and their derivatives was first published by Papageorgiou group in 1999 (Papageorgiou, Assimopoulou, Couladouros, Hepworth, & Nicolau, 1999). A decade later, another update was published with prime focus on wound healing and associated bioactivities (Papageorgiou, Assimopoulou, & Ballis, 2008). In 2013, Andújar group published a compilation containing pharmacological investigations on A/S and their derivatives for the period of 2002 to 2013 (Andújar, Ríos, Giner, & Recio, 2013). Subsequently, various review reports were published by different research groups with a focus on either individual bioactivity or on individual derivative. A/S and their derivatives possess enantiomeric properties that make their analysis quite complex. Surface-enhanced Raman Spectroscopy (SERS) and chiral HPLC have been successfully utilized for differentiating A/S and their derivatives (Cañamero, et al., 2022; Azuma et al., 2016). Literature analysis suggests that after 2008 (Papageorgiou, Assimopoulou, & Ballis, 2008), any review update regarding analytical aspects of A/S and their derivatives is not available. Thus, there is a dire need of an updated compilation containing all pharmacological, analytical and miscellaneous investigations on A/S and their derivatives. Forecasting the marketable potential of A/S and their derivatives, wide range of patents have been filed by various research groups around the globe for various applications to safeguard their usage. This review is primarily focused on providing update on various investigations on A/S and their derivatives from year 2008 to 2021 along with thorough insight on the patent applications filed.

2. Pharmacological activities

2.1. Wound healing activity

Dried roots of Arnebia guttata Bung, Arnebia euchroma (Royle) Johnston, and Lithospermum erythrorhizon Sieb. Et Zucc loaded oil based ointment (Zicao) has been widely used for treatment of wounds (Chak, Hsiao, & Chen, 2013; Hsiao, Tsai, & Chak, 2012; Lu et al., 2008; Zeng & Zhu, 2014). The major active components of Zicao include shikonin and its derivatives such as deoxyshikonin, acetylishikonin and β,β-dimethylacrylshikonin. Furthermore, to overcome the demerits of this oil based ointments such as discomfort, irritation and difficulty in cleaning, soluble water based topical preparation such as Zicao-HP-β-CD complex was formulated using 2-hydroxypropyl-β-cyclodextrin to form water-soluble complex which resulted in its enhanced bioavailability and stability. The active ingredients of Zicao enhance collagen synthesis in granuloma tissues and promote inactivation of tumor necrosis factor-α gene expression (Chen, Yu, Hsu, Tsai, & Tsai, 2018). On the other hand, Jawoongo, a Korean traditional medicine has been found highly effective in removing necrotic tissue caused by burn wounds. Jawoongo consists of Lithospermum Radix, Angelicae Gigantis Radix, Ronicerae Flos, Glycyrrhizae Radix, Coptidis Rhizome and Scutellariae Radix. The major active ingredient is Lithospermum Radix which mainly comprises of deoxyshikonin. It significantly increases the phosphorylation of p38 and ERK1/2 in a concentration dependent manner. Additionally, it activates Mitogen-activated protein kinase (MAPK) signaling which promotes cellular migration and angiogenesis. It was observed that deoxyshikonin induced migration and proliferation in HaCaT cells mediated through activation of p38 and ERK respectively. Thus, the study demonstrated that deoxyshikonin possesses strong ability for proliferation, migration and tube formation of HaCaT and HUVEC cells, which in turn promotes angiogenesis (Kim, Lee, & Yook, 2013; Park et al., 2017).

Recently, an increased attention is focused on the herbal medicines attributing to their quality, safety and efficacy. Since ancient times, people have used plant based preparations to promote wound healing process (Fronza, Heinzmann, Hamburger, Laufer, & Merfort, 2009). Various plants especially belonging to Boraginaceae family have been reported to possess excellent therapeutic potential in wound management. The main active metabolites of this family are naphthoquinones which possess anti-inflammatory, anti-microbial, anti-oxidant activities contributing to wound healing (Lee et al., 2016). Meanwhile, additional studies demonstrated that therapeutic benefits of roots of Boraginaceae family plants are wider than its aerial parts. The most active components found in roots are shikonin, alkannin, deoxyshikonin and acetylishikonin. Traditionally, the root extract of Onosma dichroantha Boiss. has been used in Iran for healing burn wounds. Furthermore, the cyclohexane fraction has been found to be most potent inhibitor of lipopolysaccharide induced nitrogen oxide production which accelerates fibroblast proliferation, tissue regeneration and angiogenesis. Active components present in the cyclohexane fraction were found to be shikonin, arnabin-1 and β,β-dimethyl acrylalkannin. Among all of these components, arnabin-1 has proangiogenic and synergistic effects with vascular endothelial growth factor (VEGF) which further augments the wound healing process (Saafari et al., 2019). Similarly, several other phytoconstituents isolated from n-hexane-dichloromethane extract of Onosma argentatum Hub.-Mor. roots i.e. deoxyshikonin, acetyl-
shikonin, 3-hydroxyisovalerylshikonin and 5–8-O-dimethylacetylshikonin were found to be effective in treatment of burns wounds. In another study, the efficacy of mixture of olive oil, beeswax and root extract of Alkanna tinctoria Tausch. was examined on burn wounds which showed rapid epithelization and angiogenesis (Gümüş & Özlü, 2017). Moreover, this extract has been established to increase fibroblasts production which amplifies tissue regeneration and provides better perfusion to wound area resulting in granulation tissue formation (Yazdinezhad, Monsef-Esfahani, & Ghahremani, 2013) (Fig. 4). The healing effects of ointment loaded with Arnebia euchroma extract were also compared with standard silver sulfadiazine on second degree burns and the extract demonstrated higher efficacy. Fibroblast proliferation, cell migration and collagen synthesis were observed to be the major mechanisms in its healing process (Nasiri et al., 2016).
Furthermore, the active constituents of *L. erythrorhizon* such as shikonin, isobutyl-shikonin, β-hydroxy-isovaleryl-shikonin and α-methyl-n-butyl-shikonin were loaded in chitosan/gelatin-based scaffolds and examined for their wound healing potential. The results demonstrated the mechanism of healing via regulation of epithelial-mesenchymal transition (EMT) through TGF-β expression (Table 1) (Hsiao, Tsai, & Chak, 2012; Wang, Kravchuk, & Kimble, 2010; Yao, Chen, Chen, Li, & Huang, 2019).

2.2. Antimicrobial activity

Traditional Chinese herb *L. erythrorhizon* has been widely used in treatment of a wide range of infections (Yan, Tan, Miao, Wang, & Cao, 2019). *Candida albicans* is the major opportunistic pathogen and major cause of fungal infections in humans. Shikonin showed significant inhibitory effect on the growth of *C. albicans* through multiple mechanisms. It markedly increases the intracellular ROS (reactive oxygen species) and causes depolarization of mitochondrial membrane potential. It was observed to reduce the ergosterol content also. Further, it could lead to the upregulation of thioredoxin reductase-related gene (TRR1), NADPH oxidoreductase-related gene (EBP1) and mitochondrial respiratory electron transport chain-related gene (MRF1) (Fig. 5) (Miao et al., 2012). Moreover, shikonin was also found effective for periodontal diseases as it has ability to inhibit Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Lactobacillus acidophilus which are most susceptible bacterial strains involved in dental caries (Li, Xu, Zhu, & Wang, 2012). In the latest studies, shikonin and its derivatives including shikonin glucoside, 4-chlorophenylacetyl shikonin, lithospermidin B and Angelyl shikonin were assessed for protein binding with Main protease (Mpro) of SARS CoV-2 revealed shikonin and some derivatives as potential antiviral agent of Covid (Woo & Das, 2022).

2.3. Anticancer activity

Cancer is one of the most fatal diseases and one of the primary causes of deaths globally. The incidence of cancer in India has been expanding in the last two decades as in other developing nations. Not only the incidence but pattern has also changed to a great extent. The active constituents of *L. erythrorhizon* such as shikonin, arnebin 1 and β, β-dimethyl acryl alkannin antagonize the hemolytic activity of PLY thereby reducing the cytotoxicity of PLY. It also inhibits oligomers formation and block pore formation on the cell membrane which leads to decreased production of IFN-γ and IL-6 (Zhao et al., 2017). Moreover, shikonin has been found as therapeutically effective for periodontal diseases as it has ability to inhibit Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Lactobacillus acidophilus which are most susceptible bacterial strains involved in dental caries (Li, Xu, Zhu, & Wang, 2012). In the latest studies, shikonin and its derivatives including shikonin glucoside, 4-chlorophenylacetyl shikonin, lithospermidin B and Angelyl shikonin were assessed for protein binding with Main protease (Mpro) of SARS CoV-2 revealed shikonin and some derivatives as potential antiviral agent of Covid (Woo & Das, 2022).
wound models. Mechanisms involved and pharmacological outcomes from various investigation of alkannin/shikonin containing plant extracts, alkannin/shikonin and its derivatives on different machinery (Han et al., 2007). In addition, antiapoptotic progression cancer drugs are likely to cause apoptosis. Due to sensitivity to effective cancer treatment. It is known that conventional anti-2012). Anticancer drug resistance is another major obstacle in the cult because of multiple potential targets (Han et al., 2007). transporter-mediated resistance is possible as it works on fewer and upregulation of apoptotic inducers enormously limit the effec-
tion (HPV) long term infection of HPV is the leading cause of cervi-
rative cell death (Degterev et al., 2005). More-
receptor-mediated apoptosis. Necroptosis is a programmed cell death characterized by necrotic cell morphology and activation of autop-
Figure 6 (a/b). Additionally, p73 is responsible for
Table 1
Mechanisms involved and pharmacological outcomes from various investigation of alkannin/shikonin containing plant extracts, alkannin/shikonin and its derivatives on different wound models.

Test compounds/extract	Cell cultures/In vitro/In vivo assays	Mechanism involved/Pharmacological outcomes	Wound types	References	
Shikonin, isobutylshikonin, 6-hydroxyisovaleryshikonin, 2-methyl-n-butyl-shikonin	Cytotoxicity assay using L929 mouse fibroblasts; In vivo wound healing assay	Proliferation of fibroblasts; Synergistic effect of gelatin and chitosan promote granulation tissue formation Activation of Erk1/2 and p38/β pathway; Induction of hypertropic scar derived fibroblasts apoptosis	Skin wounds	Yao, Chen, Chen, Li, & Huang, 2019 Xie et al., 2015	
Shikonin, β,β'-dimethylacryl shikonin, β,β'-dimethylnitroshikonin, shikonin	Hypertropic scar derived fibroblasts (HSF) and normal fibroblasts (nHSF) cell lines	Inhibition of LPS-induced NO production thereby promoting tissue regeneration and angiogenesis	Hypertrophic or keloid scars	Safavi et al., 2019	
Shikonin, juglone, 1-naphthoquinone, lapachol, deoxyshikonin, β,β'-dimethylacrylshikonin, acetylshikonin	Murine macrophages (RAW264.7), normal human skin fibroblasts (HS27), human microvascular endothelial cells (HMEC-1), zebrafish line TG (fl1: EGFP)	Human dermal scar-derived fibroblasts (HSF) and Human 'normal' dermal fibroblasts (nHSF)	Inhibition of TGF-β1 induced collagen deposition and cell mediated contraction; Phosphorylation of P-Erk and NF-κβ	Dermal scars	Fan et al., 2019
Alkanna strigosa extract	Excision and incision wound models	Increase in wound contraction rate and promoting granulation tissue formation	Suppurative wounds	Aburjai, Al-Janabi, Al-Mamoorni, & Azazim, 2019	
2-methyl-n-butylshikonin, acetylshikonin, isovaleryshikonin, deoxyshikonin	Anti-oxidant activity using DPPH assay and wound healing activity using Linear incision wound model	Accelerative effect on proliferation and migration thereby promoting re-epithelialization	Incision wounds	Erugyur, Yilmaz, Kutsal, Yücel, & Üstün, 2016 Cardoso et al., 2018	
2-bromo-1,4-naphthoquinone, 2-N-isonicotinoyl-hydrazone-1,4-naphthoquinone, 1-N-isonicotinoyl-hydrazone-[2hydroxy-3-(3-methyl-2-butenyl)]-1,4-naphthoquinone	Mouse fibroblast cell lines 3T3, MTT assay, Scratch assay, Excision wound model	Inhibition of lysophosphatidic acid signaling pathway and MAPK signaling pathway	Diabetic wounds		
Shikonin, acetylshikonin, β,β'-dimethylacrylshikonin	Excision wound model	Increase in collagen fibre levels in granuloma tissue via expression of TTN-α	Excision wounds	Chen, Yu, Hsu, Tsai, & Tsai, 2018 Park et al., 2017	
Deoxyshikonin	Human umbilical vein vascular endothelial cells (HUVECs), immortalized human keratinocytes (HaCaT)	Stimulation of phosphorylation of p38 and extracellular signal regulated kinase.	Full-thickness dermal wounds	Nasiri et al., 2016	
Arnebia euchroma roots	Randomized, single blind clinical trials	Promote angiogenesis via increased expression of matrix mucopolysaccharide deposition, collagen synthesis and fibroblasts proliferation.	Second degree burns wounds		
Echium arenarium extract	Murine 218 macrophagic cells (Raw264.7), Bacillus cereus, Listeria monocytogenes, Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumonia, Leishmania major (GLC94) and Leishmania infantum (LV05)	Anti-oxidant, anti-bacterial activity and anti-leishmanial activity	Cutaneous leishmaniamic wounds	Kefi et al., 2018	
Allkanna tinctoria extract	Experimental study on patients with second degree burns.	Increased fibroblastic activity and accelerated granulation.	Full-thickness burn wound	Gümüş & Özlu, 2017	

extent (Ferlay et al., 2010; Jha, 2009; Guddati, 2012; Rocconi et al., 2012). Anticancer drug resistance is another major obstacle in the effective cancer treatment. It is known that conventional anti-
cancer drugs are likely to cause apoptosis. Due to sensitivity to neoplastic cells to apoptosis, they significantly become resistant via antiapoptotic progression and dysregulation of apoptotic machinery (Han et al., 2007). In addition, antiapoptotic progression in neoplastic cells involves overexpression of antiapoptotic proteins (Bcl-2, Bcl-x1, Mcl-1, c-FLIP), proapoptotic proteins mutations (p53, Apaf-1, Bax, FAS) and loss of caspases (Caspace-3 and Caspace-8) which significantly contributes to drug resistance (Bonora et al., 2015). Therefore, defects in the apoptotic signaling and upregulation of apoptotic inducers enormously limit the effect-
iveness of chemotherapy. Presently, overcoming the drug transporter-mediated resistance is possible as it works on fewer targets whereas apoptosis mediated drug resistance is highly diffi-
cult because of multiple potential targets (Han et al., 2007).

Owing to its strong and broad spectrum anti-cancer activity, shikonin and its derivatives are gaining popularity. A study by a research group revealed the necroptotic mechanism of shikonin to promote non-apoptotic cell death (Degterev et al., 2005). More-
over, shikonin could circumvent cancer drug resistance through induction of necroptosis. Necroptosis is a programmed cell death characterized by necrotic cell morphology and activation of autop-
hagy (Han et al., 2007). Also, shikonin promotes topoisomerase mediated DNA cleavage, caspase-dependent apoptosis and cell cycle arrest via activation of tumor suppressor gene p73 and down-
regulation of ICBP90 (Fig. 6). Additionally, p73 is responsible for transcription of various p53 target genes such as p16INK4A, PIUMA (p53-upregulated modulator of cell death) and p21 (Jang, Hong, Jeong, & Kim, 2015). A recent report indicates that ICBP90 is overexpressed in patients with cervical cancer. Cervical cancer is second most malign-
tant tumor in women after breast cancer. Annually, the global rate of cervical cancers is about 60 million cases with 25 million deaths (Kaarthigeyan, 2012). Also, high risk human papillomavirus infec-
tion (HPV) long term infection of HPV is the leading cause of cervi-
cal intraepithelial neoplasia, precancerous lesions and cervical
carcinoma (Cook et al., 2017). Previous studies demonstrated that β-hydroxysovaleryl shikonin (β-HIVS), a shikonin derivative, possesses inhibitory effect on HeLa cells through apoptosis and prevent tumor cell proliferation. β-HIVS retards PI3K activity and downregulates AKT/mTOR signaling along with reduced P70S6K expression levels which ultimately leads to tumor suppression (Lu et al., 2015).

On the other side, breast cancer is most prevalent malignancy in women. Recently, triple-negative breast cancer (TNBC) accounts for about 20% of all new cases of breast cancer accompanied with higher grade and distinct metastatic potential. Therefore, suppression of metastasis might be a promising therapy for TNBC patients (Lambert, Pattabiraman, & Weinberg, 2017; Temian, Pop, Irime, & Berindean-Neagoe, 2018). Essentially, epithelial-to-mesenchymal transition (EMT) plays a pivotal role in regulating metastasis process. EMT involves loss of epithelial phenotypes and the gain of mesenchymal features. It is characterized by downregulation of epithelial cell-surface markers such as occludin, E-cadherin and zona occludens-1 whereas upregulation of mesenchymal markers such as N-cadherin and vimentin. Of particular interest, shikonin has been established as an effective strategy with good therapeutic potential for TNBC patients. It significantly reduces the expression of miR-17-5p which leads to activation of tumor suppressor gene (PTEN). However, overexpression of PTEN downregulates the Akt expression thereby inhibiting metastasis (Bao et al., 2020).

In recent years, the incidence of colon cancer is considerably increasing in western countries attributing to unhealthy lifestyles. The safety and efficacy of shikonin was determined against colon cancer. Studies demonstrated that shikonin promotes cell death via mitochondrial dysfunction which is induced by downregulation of Bcl-2 and upregulation of Bax, Caspase-3 and Caspase-9. In addition, activation of MAPK pathway and increased endoplasmic reticulum stress triggers apoptosis (Han et al., 2019; Liang et al., 2017). Specifically, anti-cancer activity of shikonin against gefitinib-resistant non-small cell lung cancer (NSCLC) was investigated. Shikonin showed strong cytotoxicity against NSCLC cell lines. Also, it effectively generates ROS and stimulates EGFR degragation resulting in inhibition of TrxR thereby inducing apoptosis (Li et al., 2017). Another study on paclitaxel-resistant non-small cell lung cancer, shikonin induces dysregulation of NEAT1 expression which leads to deactivation of PI3K/Akt pathway hence, inhibiting cell proliferation. Simultaneously, shikonin considerably increases expression of PARP and caspase-3 and caspase 9 cleavages (Zang, Rao, Zhu, Wu, & Jiang, 2020). Researchers reported that activation of STAT3 and PKM2 regulates cell proliferation (Cao et al., 2020; Hoshino, Hirst & Fujii, 2007). Therefore, STAT3 and PKM2 can be considered as key targets for tumor suppression. Recent studies indicated that shikonin markedly reduced the expression of STAT3dimer and PKM2 gene thereby inhibiting inhibits melanoma cell growth (Cao et al., 2020; Liu et al., 2020). Furthermore, the deactivation of NfkB also contributes in inhibiting cancer-inducing inflammation by decreasing release of inflammatory cytokines such as COX-2, iNOS and IL-6 (Table 3). In the recent studies shikonin was tested against Acute Myeloid Leukemia. Shikonin impairs the mitochondrial activity and electron transport chain complex-II to selectively target leukemia cells (Roma et al., 2022). Moreover, inhibitory potential of shikonin was reported on Sunitinib-Resistant renal carcinoma cells. It acts by necrodoxin complex formation and downregulation of AKT/mTOR signaling pathway (Markowitsch et al., 2022). Lately, shikonin was tested and found effectively active against Mutant-non small lung cancer cells. It induces necrosis and apoptosis of cancer cells via thioresdoxin reductase 1 inhibition following SecTRAPs generation and oxygen-coupled redox cycling pathway (Zhang et al., 2022). One of the study demonstrated antitumor growth of leukemia cells. It triggers the apoptosis of cancer cells by checking the cancer cell growth in S phase of cell cycle (Chen et al., 2021). Shikonin is found to be a potential inhibitor in pancreatic cancer as it mediates PD-L1 degradation which in turn suppresses immune evasion in pancreatic cancer cells via NF-kB/STAT3 and NF-kB/CSN5 signaling pathway (Ruan et al., 2021). The antitumor potential of shikonin co delivered with siTGF-β against triple negative breast cancer cells was investigated by Li et al and this codelivery approach was found to be magnificently efficacious for the same (Li et al., 2022). In a nutshell, shikonin/alkannin and their

Fig. 5. Mechanistic action of shikonin and its derivatives on various microbial strains viz. *Staphylococcus aureus*, *Candida albicans* and *Streptococcus pneumoniae* where ROS is reactive oxygen species and MMP is mitochondrial membrane potential.
Table 2
Mechanisms involved and pharmacological outcomes from various antimicrobial investigations on alkannin/shikonin and its derivatives.

Shikonin and its derivatives	Cells/Targeted strains	Mechanism involved	References
Shikonin	Human lung epithelial cells (A549)	Antagonistic effect on haemolytic activity of pneumolysin (PLY); Reduce the cytotoxicity of PLY by inhibiting oligomers formation and blocking pore formation on the cell membrane;	Zhao et al., 2017
	Murine model of endonasal pulmonary infection; Streptococcus pneumoniae strain D39 serotype 2 (NCTC 7466)		
	Aspergillus terreus (NCCP860035)	Decreased production of IFN-γ and IL-6. Upregulation of Mpkc, spm1, protein kinase (Pkc-c), protein kinase (disk1) serine/threonine-protein kinase and small GTPase ras-1 proteins;	Shishodia & Shankar, 2020
Iranian Arnebia euchroma extract	S. aureus ATCC 35591 (MRSA) and S. aureus ATCC 25923 (MSSA)	Moderate increase in CAMP.	Liao et al., 2016
Lithospermum erythrorhizon seeds	Bacillus subtilis 613R, Clavibacter michigenensis subsp. nebraskensis CN74-1, Agrobacterium radiobacter K84, Agrobacterium tumefaciens C58, Escherichia coli ESS, Erwinia carotovora ATCC 15713, Pseudomonas aureofaciens, Pseudomonas fluorescens, Pseudomonas syringae B, Raistonia solanacearum, and Serratia marcescens		
Acetylsyshikoninshikonin, β-sitosterol, β,β-dimethylacyl shikonin and deoxyshikonin from L. erythrorhizon	Porphyromonas gingivalis (ATCC 33277), Streptococcus mutans (UA 159), Pseudobacterium nucleatum (ATCC 25586) and Lactobacillus acidophilus (ATCC 4356)		Li, Xu, Zhu, & Wang, 2012
	Escherichia coli (ATCC-59008), Klebsiella pneumoniae (ATCC-59008) and Enterobacter cloacae (ATCC25924), Bacillus subtilis (ATCC-10031), Staphylococcus aureus (ATCC-25923), Streptococcus pneumoniae (ATCC-10032), Aspergillus niger, Rhizoctonia phaseoli, Aspergillus flavus, Penicillium chrysogenum and Candida albicans		Singh & Sharma, 2012
Shikonin	Candida albicans (SC5314)	Increased intracellular ROS and depolarization of mitochondrial membrane potential	Miao et al., 2012
Deoxyalkaninn, alkannin, acetylalkaninn, isobutyryl alkannin, β-hydroxyiso valeryshikonin and shikonin isovalerate from Arnebia hispidissima (Lehm.) DC.	Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Staphylococcus epidermidis (ATCC 12228), Klebsiella pneumoniae (ATCC 13883), Enterobacter cloaceae (ATCC 13047), Pseudomonas aeruginosa (ATCC 227853) Candida albicans (ATCC 10231), Candida tropicalis (ATCC 13801) and Candida glabrata (ATCC 28838), S. aureus, E. faecalis and MRSA.		Damianakos et al., 2012
Alkannin, shikonin, acetyl alkannin, acetyl shikonin, β,β-dimethyl acryloyl alkannin isovaleryl alkannin, and β-methylbutyryl alkannin, Cinnamoyl alkannin, 3,4-(methylenedioxy)cinamoyl alkannin, isobutyryl alkannin from Arnebia euchroma			Shen et al., 2002

derivatives are promising candidates for anticancer activity which act by various signaling pathways.

2.4. Miscellaneous activities

Apart from pharmacological activities discussed above alkaninn/shikonin and their derivatives also possess therapeutic potential against phytophagototoxicity, bronchial asthma, peptic ulcer, spasmogenicity, atherosclerosis, inflammatory diseases, ischemic heart diseases, cataract, hepatotoxicity and impotency (Fig. 7) (Yildirim, 2020). Onosma, the biggest genus of Boraginaceae family, is being used as traditional medicine since centuries (Davis, 1970). Shikonin and its derivatives have also been reported to inhibit oxidized low-density lipoprotein (LDL) induced monocyte adhesion by deactivation of NFκB and hence used in treatment of atherosclerosis. It is well known that oxidized LDL plays a key role in thrombosis, endothelium apoptosis and vascular smooth muscle proliferation. In addition, it also stimulates release of inflammatory mediators such as cytokines and reactive oxygen species. Moreover, activation of NFκB further upregulates the expression ofMoreover,
intracellular adhesion molecule (ICAM-1), E-selectin, vascular cell adhesion molecule and monocyte chemotactic protein-1. Hence, the accumulation of oxidized low-density lipoprotein (oxLDL) and inflammatory cells lead to atherosclerosis. Shikonin has also been found effective in retarding oxLDL mediated ROS production through induction of expression of PI3K/Akt/Nrf 2-dependent antioxidant genes such as SOD-1, HO-1, Catalase, GPx-1, GCLM, and GSR (Huang et al., 2015).

Furthermore, the oxidative stress is the major cause of various other medical conditions such as ageing, diabetes, stroke, neurodegenerative disorders, cancer etc. Oxidative stress is often accompanied with higher blood sugar levels. The skeletal muscle cells are rich in insulin-sensitive glucose transporters named as glucose transporter 4 (GLUT4). Their main function is translocation of glucose from cytoplasm to cell membrane aiding in glucose uptake. Therefore, it plays imperative role in regulation of homeostasis of glucose. However, the contraction-induced release of reactive oxygen species (ROS) and activation of AMP activated protein kinase (AMPK) may also lead to increased glucose uptake in skeletal muscle cells (Mao, Yu, Li, & Li, 2008; Su, Huang, & Zhu, 2016). Subsequently, acetylshikonin-induced glucose uptake was significantly inhibited by reduction of PLC-β3 in L6 myotubes, which makes it evident that acetylshikonin-induced glucose uptake may be triggered by activation of inositol lipid signaling and increased DAG release (Huang et al., 2019). On the other hand, ageing is also considered as biggest cause of Alzheimer’s disease. Various studies have shown that oxidative stress, neuronal apoptosis and neuroinflammation plays critical role in pathogenesis of Alzheimer’s disease (Heneka, 2015). SIRT1 is essentially involved in cognitive functions and shows protective effect against ageing-related neuronal degeneration. Thus, SIRT1 can be the most promising therapeutic target for Alzheimer’s disease. Multiple studies reported that chronic inflammation associated with raised levels of pro-inflammatory mediators such as IL-6, IL-10, TNF-α and IL-1β. Notably, acetylshikonin reduced the levels of these mediators via inhibiting the activation of NFκB and thereby reducing inflammation. Simultaneously, it also inhibits the activation of p21/p53 signaling pathway (Chang et al., 2015). Furthermore, overexpression of thymic stromal lymphopoietin (TSLP) is a major factor contributing to allergic diseases such as asthma, allergic rhinitis etc. Epithelial cell-derived TSLPs control the allergic condition via regulating the activation of T-cells, mast cells, and dendritic cells. The findings of the study elucidated that shikonin as well as L. erythrorhizon aqueous extract was able to downregulate TSLP production as well as markedly attenuated the levels of IKKα, NLRP3 and Caspase-1 (Yen et al., 2017). Besides having multiple pharmacological effects, naphthoquinones are also considered as potent allelochemicals as they hold good potential to defend against predators. Previous studies demonstrated that juglone, 1,4-naphthoquinone, plumbagin and 2-methoxy-1,4-naphthoquinone showed anti-feedant activity against the cabbage looper Trichoplusia ni (Akhtar, Isman, Niehaus, Lee, & Lee, 2012). Naphthoquinones were also found effective against the dry bean pests Epilachna varivestis and Acanthoscelides obtectus (Cespedes et al., 2016). Moreover, the extreme toxicity of juglone against Myzocallis walshii and plumbagin against Tetranychus cinnabarinus, Myzus persicae and Illinois liriodendri were also investigated. These studies substantiate that juglone and plumbagin are effective insecticidal and acaricidal agents. The inhibitory and toxicity potential of Onosma visianii roots against Spodoptera littoralis was also investigated. The main active constituents of O. visianii roots include isovalerylshikonin and isobutyrylshikonin. Being highly lipophilic in nature, these active moieties easily enter the insect exoskeleton and hinder the physiological processes. Moreover, the ester groups of these moieties increases cuticle penetration via linkage with hydroxyl groups and significantly inhibits acetylcholinesterase (AChE).
Compounds	Cell lines/In vitro/vivo assay	Mechanism involved	Types of cancer	References
Shikonin	Human normal lung fibroblast cell line CCD19 and human NSCLC cell lines (HCCB27, H1650 and H1975)	Induces EGFR degradation causes deactivation of Tyr1173 and Tyr1068 of EGFR; Inhibits TrxR1 to activate ROS-mediated apoptosis	Gefitinib-resistant non-small cell lung cancer	Li et al., 2017
	Human epithelial colorectal adenocarcinoma Caco-2 cells. AOM/DSS model.	Inhibition of COX-2, iNOS and IL-6 via deactivation of NFκB; Inhibits Bcl-2 and activates Caspase-3	Colon cancer	Andrújar, Ríos, Giner, & Recio, 2013
	Normal human colon epithelial cell line (NCM460), well-differentiated colon carcinoma cell lines (HT29 and HCT116), poorly differentiated colon carcinoma cell line (SW480).	Overexpression of SIRT2; Inhibits the viability of SW480 cells and arrests the cell cycle at the G2/M stage; Inhibition of ERK1/2 phosphorylation	Colorectal cancer	Zhang et al., 2017
MRI mouse tumor xenograft model MCF-7 and SK-BR-3 cells		Downregulation of ERα, GPER, EGFR and p-ERK expressions; Inhibits the proliferation in MCF-7 and SK-BR-3 cells; Arrest cell cycle at G0/G1 phase in MCF-7 and induce apoptosis in SK-BR-3 cells	Breast cancer	Yang et al., 2019
	Human lung cancer cells (A549)	Significant increase in RIP1 levels leading to necroptosis	Non-small cell lung cancer	Kim et al., 2017
	Nude mouse tumor xenograft model	Decreased Bcl-2 and Bcl-xl expression; Increased caspase 3 and 9 activities. Depolarization of mitochondrial membrane potential	Colon cancer	Liang et al., 2017
	Human colon cancer cell lines HCT116, SW480 and human normal colon mucosal epithelial cell line NCM460.	Irreversible inhibition of human recombinant CDC25 phosphatases; Inhibit dephosphorylation of CDK1 thereby inducing cell cycle arrest at G2/M phase Suppression of NEAT1 and Akt signaling	Cancer	Zhang et al., 2019
	Xenograph tumour model			Zhang, Ras, Zhu, Wu, & Jiang, 2020
	Human lung cancer cells (A549)	(continued on next page)		
Table 3 (continued)

Compounds	Cell lines/In vitro/In vivo assay	Mechanism involved	Types of cancer	References
b,b-Dimethyl acrylshikonin	(CRL-6475) and mouse nonmetastatic melanoma cell line B16-F0 (CRL6322), Reticulum (ER) stress.	Activation of p-ERK, p-p38, Caspase-3 and Caspase-9		& Fan, 2020

Fig. 7. Mechanistic activity of shikonin and acetyl shikonin for treatment of asthma, arthrosclerosis, diabetes and inflammation. LDL, low density lipoprotein; DAG, diacylglycerol; ROS, reactive oxygen species; TSLP, thymic stromal lymphopoietin; IL, interleukins; GCM, global compact on migration.

Table 4

Mechanism involved and pharmacological outcomes from miscellaneous investigations on alkannin/shikonin containing plant extracts, alkannin/shikonin and its derivatives.

Test compounds	Cell lines/In vitro/In vivo assay	Mechanism involved	Disease targeted	References
Lithospermum erythrorhizon and Angelica sinensis extract	Human Bronchial Epithelial cell line (BEAS-2B)	Anti-inflammatory effect in Der-p2-stimulated BEAS-2 β cells;	Allergic diseases such as asthma, atopic dermatitis and allergic rhinitis	Yen et al., 2017
Onosma tauricum extract	Anti-oxidant assays (DPPH, CUPRAC, ferrous ion chelating, FRAP, plumbagin, ABTS) and Enzyme inhibitory assays (AChE, α-amylase, BChE, tyrosinase, α-glucosidase)	Anti-oxidant and enzyme inhibitory activity		Kirkan et al., 2018
Onosma sieheana and Onosma stenoloba extracts	Total phenolic assay, total flavonoid assay, anti-oxidant assay, tyrosinase assay, α-amylase assay.	Anti-tyrosinase activity. Increased expression of p-Erk1/2 and reduced expression of tyrosinase related protein 1 and 2	Diabetes	Sahinler, Ceylan, & Tepe, 2020
Lithospermum radix aqueous extract	Sub-acute oral toxicity	Suppression of spinal inflammation	Chemotherapy induced neuropathy, Fibrinolysis	Han et al., 2016
Shikonin	PA-1 activity assay, Clot lysis assay, mouse arterial thrombosis model, Mouse liver fibrosis model.	Inhibition of plasminogen activator inhibitor-1 activity; Anti-thrombotic and anti-fibrotic effect	Atherosclerosis	Huang et al., 2015
	Human endothelial cell line derived from human lung carcinoma cells and human umbilical vein endothelial cells	Induction of expression of PI3K/ Akt/NF2-dependent antioxidant genes such as SOD-1, HO-1, Catalase, GPx-1, GCLM and GSR; Inhibition of oxLDL-induced intracellular ROS accumulation via NF-κB adhesion	Rheumatoid arthritis	Liu et al., 2020
	Human umbilical vein endothelial cells (HUVEC), human fibroblast-like synoviocyte (HFLS),Collagen-induced arthritis			
Table 4 (continued)

Test compounds	Cell lines/In vitro/In vivo assay	Mechanism involved	Disease targeted	References
Isovaleryl shikonin and isobutyryl shikonin	Acute toxicity, chronic toxicity, growth inhibition, antifeedant activity, AChE inhibitory activity and antioxidant assay.	Inhibition of AChE enzymes; Inhibition of mitochondrial respiration thereby inhibiting larval growth	Inhibition of larval growth of Tobacco cutworm Spodoptera littoralis	Li, Zeng, Su, He, & Zhu, 2018
Acetylshikonin	Behavioral testing (Morris Water Maze test)	Inhibition of activation of p53/p21 signaling pathway; Upregulation of SIRT1 in hippocampus; Anti-apoptotic activity in neuronal cells and attenuated H2O2 induced oxidative stress	Alzheimer’s disease	Huang et al., 2019
Acetylshikonin and isobutyryl shikonin	Anti-genotoxic properties (Umu-test) and cytotoxicity assay (lung fibroblast cell line (V79))	Activation of p2C-β3/PKCö cascades via activation of inositol lipid signaling and increase in DAG release	Diabetes.	Skrzypczak et al., 2015

Table 5

Plant	Extraction process	Solvent systems	Methods	Constituents	References
Lithospermum erythrorhizon	Sonication	Gradient elution: Petroleum ether-ethyl acetate, petroleum ether – dichloromethane, petroleum ether – acetone, and petroleum ether – ethyl acetate and acetone	Silica gel column chromatography	Acetylshikonin, shikonin, deoxyshikonin, β-sitosterol and β,β-dimethylacrylshikonin	Li, Xu, Zhu, & Wang, 2012
	Solid liquid extraction	–	Open column of silica gel chromatography	Shikonin, acetylshikonin, 5,8-dihydroxy-1,4-naphthoquinone (DH), 1,4naphthoquinone (NAP) and β,β'-dimethylacrylshikonin. Shikonin (an improved method)	Cheng et al., 2008
	Solid-liquid extraction	n-hexane/2- propanol (90:10, volume percentage)	Chiral HPLC	Isobutyrylshikonin	Azuma et al., 2016
	Maceration	50% hexane in CH2Cl2, CH2Cl2, 5% and 33% acetone in CH2Cl2, and 5% and 33% methanol in CH2Cl2	Silica gel column chromatography and Sephadex column with methanol.	Shikonin, β-hydroxyisovalerylshikonin, acetylshikonin, β,β-dimethylacrylshikonin, deoxyshikonin, isobutyrylshikonin, and methyl-n-butyrilshikonin.	Yen et al., 2017
	Maceration	0.085% H3PO4 buffer and acetonitrile: 10%–25% for 20 min; 25%–70% for 30 min; 70%–90% for 40 min; 80%–90% for 60 min; and 100% for 65 min.	Reverse phase column chromatography	Shikonin, bhydroxyisovalerylshikonin, acetylshikonin, β-acetoxyisovalerylshikonin, deoxyshikonin, isobutyrylshikonin, β,β-dimethylacrylshikonin, and methyl-n-butyrilshikonin.	Deoxyshikonin
	Ultrasonic extraction.	Methanol and water with 0.5% acetic acid.	Reverse phase column chromatography	Deoxyshikonin	Park et al. (2017)
Onosma visianii	Soxhlet extraction	methanol and water (0.1% formic acid) (90:10)	Semipreparative HPLC	Isovalerylshikonin, isobutyrylshikonin, acetylshikonin, hydroxyisovalerylshikonin, shikonin-β,β-dimethylacrylate, proponyshikonin, 5,8-dimethoxy acetylshikonin, 1-(5,8-dimethoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl 2-methylbutanoate, 5,8-dimethoxy isobutyrylshikonin, 5,8,0-dimethyldioxoexshikonin, 2-(4-hydroxy-4-methylpent-2-ene-1-yl)-5,8-dimethoxynaphthalene-1,4-dione.	Sut et al., 2017
Alkanna strigosa	Soxhlet extraction	(CHCl3; MeOH: H2O) (5:4:1)	Preparative tlc	Alkannin and shikonin	Aburjai, Al-Janabi, Al-Mamoori, & Azzam, 2019
Echium italicum	Maceration	Hexane-Etilacetae	silica gel column chromatography	2-Methyl-n-butyrilshikonin, isovalerylshikonin, acetylshikonin and deoxyshikonin	Eryugur, Yilmaz, Kutsal, Yıcıel, & Üstün, 2016
Lomandra hastilis	Sonication	n-hexane-acetone (3:1)	Preparative TLC	5,8-Dihydroxy-2-ethyl-3,6,7-trimethoxy-1,4-naphthoquinone, lomazarin, 2-(1'-	Utkina & Pokhilo, 2017

(continued on next page)
Table 5 (continued)

Plant	Extraction process	Solvent systems	Methods	Constituents	References
Alkanna tinctoria	Extraction with 95% EtOH	Hexane-EtOAc (20:1-0:1, volume percentage)	Silica gel column chromatography Sephadex column	Alkannin, shikonin, 5,8-dihydroxy-3,6,7-trimethoxy-1,4-naphthoquinone	Akgun, Erku, Pilavci, & Yesil, 2011
		Methanol	Reverse phase column chromatography		Albreht, Vovk, Simonovska, & Srbinska, 2009
		Hexane-EtOAc (5:1-4:1, volume percentage)	HPLC-PDA analysis		Mohapatra et al., 2016
		supercritical CO2 extraction			Yusufoğlu et al., 2018
Echium italicum	Solid-liquid extraction	MeOH:HC0OH (20:1, volume percentage) and THF:MeCN: H2O:HC0OH (30:20:50:0.5, volume percentage)	Chiral thin-layer chromatography and semi-preparative HPLC	Alkannin, 2-methyl-n-butyrylshikonin, and isovaleryl shikonin	
Arnebia nobilis Reichb.f.	Perculation	–		Acetyl alkanin, acetoxyisorvaleryl alkanin and β,β'-dimethylacyl alkanin	
Alkanna hispidissima	Perculation	Hexane - acetone - acetic acid		Arnebin-1, arnebin-2, arnebin-3, arnebin-4, arnebin-5, arnebin-6 arnebin-7, tiglicacid, arnebinone, alkanin, arnebinol, and cycloarnebin-7	

3. Isolation and analytical aspects of A/S and their derivatives

A/S and their derivatives have been reported to be isolated from various Boraginaceae family plants (Table 5) amongst which L. erythrorhizon (Lee et al., 2016; Rajasekar et al., 2012; Han et al., 2007; Azuma et al., 2016) and Alkanna tinctoria Tausch. (Mohammed, 2016; Rashan et al., 2018; Jaradat et al., 2018) yield high content of shikonin and alkannin derivatives, respectively. Adding on, the petroleum ether and chloroform fraction of dried roots of L. erythrorhizon elute β,β'-dimethylacrylshikonin, isobutyl shikonin, shikonin, 5,8-dihydroxy-3,6,7-trimethoxy-1,4-naphthoquinone, and 5,8-dihydroxy-3,6,7-trimethoxy-2-(1'-methoxymethyl)-1'-naphthoquinone. In another report, solid liquid extraction and HPLC-VIS technique was also used to obtain acetyl alkanin and β,β'-dimethylacyl alkanin from the dry roots of Echium etalicum (Albreht, Vovk, Simonovska, & Srbinska, 2009). In addition to the conventional methods of extraction and isolation, a novel method called supercritical CO2 method was used to

Table 6

Titles	Targeted diseases	Mechanism of action	References
Acylatedalkannin or shikonin deriva. - useful as dermatological, bactericial and fungidal medicaments	Treatment of skin lesions: ulcers, burns, wounds, scurf, skin cancers, Measles, rashes, ulcer sores, eczema, burns	Antibacterial and anti-inflammatory effect	Papageorgiou, 1980
Process for preparing arnebia root medicine with broad-spectrum medical functions	Proliferation of fibroblasts		Song, 2004
Table 6 (continued)

Titles	Targeted diseases	Mechanism of action	References
Alkannin derivatives as immune inhibitors and metal complexes thereof	Arthritis, scleroderma, lupus erythematosus, HIV infection and malignant tumor	Immunological suppression of chemokines and HIV-type 1	Li & Hu, 2004
Use of alkannin in preparing medicine for treating tumor disease	Treatment of tumor, effective on the tumor, effective on cancer cells	Killing tumor cells with p-glycoprotein	Hu & Fang, 2005
Application of shikonin in preparing medicine for inducing apoptosis	Treatment of tumor	Shikonin induces ROS production and cytoreduction release in cancer cells	Hu & Han, 2007
Application of Xinjiang radix macrotomiae for treating flat wart, common wart and fig wart	Treatment of verrucous disease, flat wart, common wart, fig wart	Diminishing the inflammation of tumor on an afflicted part, healing of wounds without leaving scar	Li & Chen, 2009
Method of treatment of virus infections using shikonin compounds	Virus infections, mycoplasma infections, malignant tumor	Promoting idiosyncratic cell mediated immunity and improves immune response of T-lymphocytes	Wang, 2008
Antineoplastic sulphur-containing alkannin and naphthoquinone derivatives	Antineoplastic	Inhibition of tumor cell growth	Li, Zhao, Xie, He, & Guo, 2008
Antineoplastic alkannatioria ketoximes derivatives	Antineoplastic	Retard tumor cell growth	Li & Zhao, 2010
Application of alkannin in preparation of pyruvate kinase inhibitor	Psoriasis, herpes simplex keratitis	Inhibition of PMK2 activity	Hu, 2011
Medical application of radix arnebiaeAusulithospermi naphthoquinone compounds	Crohn’s disease	Inhibition of NF-kB and STAT-3	Liu & Fan, 2014a
Medical application of gromwell naphthoquinone compounds	Ulcerative colitis	Inhibition of COX-2 and cytokines (INF-γ and IL-6)	Liu & Fan, 2014b
Medical application of lithospermumnaphthoquinone compounds	Chronic obstructive pulmonary disease (COPD)	Resisting inflammation, killing viruses and realizing quick apoptosis of skin vegetation cells.	Yuan & Wang, 2016
Pharmaceutical composition for treating flat wart and verruca vulgaris and preparation method for pharmaceutical composition	Flat wart, verruca vulgaris	Inhibition of influenza virus, gram positive and gram negative bacteria	Liu, Zhao & Wang, 2017
Compound traditional Chinese medicine for preventing and treating stigmatosis of freshwater fish	Stigmatosis	Activation of AMPK (AMP activated protein kinase)	Yoon, Lee, Jung, & Jeong, 2017
Compositions for metabolic disorders comprising alkannin as an active ingredient	Obesity, hyperlipidemia, fatty liver	Activation and differentiation of TH cells and cytokine secretion	Liu & Yu, 2017
Application of alkannin in preparation of medicine for treating upper and lower respiratory tract allergic disease	Allergic rhinitis and allergic asthma	Inhibition of EGFR kinase activity and induction of apoptosis in cancer cells	Liu, Leung, Li, & Fang, 2018
Hydroxynaphthoquinone compounds for treatment of non-small cell lung cancer	Non– small cell lung cancer	Synergistic effect of shikokin and herqueiazole	Zhuang & Zhang, 2017
Herqueiazole-containing medicine for controlling inflammation	Inflammation	Eliminating vaginal bacteria and maintaining vaginal flora and acid base balance	Wang & Chen, 2017
External biological preparation for feminine vagina prophylaxis and health care as well as treatment of gynaecological genital tract inflammation, and preparation method	Cervical erosion, vaginitis, pelvic inflammation	Inhibition of H1, K+ ATPase enzyme activity	Li, 2018
Omeprazole enteric-coated capsules capable of inhibiting gastric acid secretion	Gastric and duodenal ulcer	Anti-inflammatory effect	Liu, Wei, Zhong, Sun, Yi, & Yang, 2017
Composition for treating burns and scalds	Treating burns and scalds.	Inhibition of TNF-α	Ling, Wang, Wang, & Zhang, 2017
Shikonin and derivant thereof are as the application of gene therapy sensitizer	Cancer	Inhibition of STAT 3 (Signal transducers and activators of transcription) pathway	Chu, 2018; Chu, 2018b
Externally-applied anti-inflammatory agent containing radix lithospermii extract	Inflammation		
acetylshikonin, shikonin, deoxyshikonin, L. erythrorhizon extract was subjected to sonication to obtain tilis (Park et al., 2017; Utkina & Pokhilo, 2017). On the similar lines, thoqimone derivatives from the residual extract of Lomandra has-also exploited to primarily obtain deoxyshikonin and other naph-

Subsequently, the ultrasonication technique was isolate A/S from the powdered roots of A. tinctoria. Supercritical CO₂ functions as non-polar, lipophilic solvent with alkannin/shikonin. It was reported that highest yield was obtained at higher tem-

Furthermore, Micro-

Table 7 (continued)

Patent No./ Filling date	Plants	Titles	Conditions	Methods of extraction	Compounds	References
1999) CN1384149A (17-05-2002)	Comfrey roots	Gromwell haematocramehaematochrome extracting process	Liquid CO₂	Super critical CO₂ extraction	alkannin, β hydroxyl isovalerylshikonin, 2,3 dimethyl pentene shikonin.	Wang, 2002
	Arnebia euchroma	Method for promoting Xinjiang alkannatinctoria callus growth using rare earth element	N₂, solid medium	Callus growth culture	Shikonin	Wang, Fang, & Wang, 2005
CN1546450A (08-01-2004)	Dried Arnebia roots	Preparation method of high purity alkannaphthoquinone	Supercritical CO₂	Super critical CO₂ extraction	Alkannin, deoxyshikonin	Li & Hu, 2004
CN101434530A (12-12-2008)	Comfrey dried purple roots	Method for extracting alkannin from alkanet	Ethanol	Solid liquid extraction	Shikonin	Zu et al., 2009
CN10194212A (15-07-2010)	Comfrey powder	Method of extracting alkannin naphthoquinone pigment	1,1,1,2-Tetrafluoroethane	Molecular distillation	Dimethyl acrylamide shikonin, isovalerylshikonin	Liu & Liu, 2011
CN101906028B (26-08-2010)	Comfrey roots powder	Method for extracting benzoxquinone compound in lithospermum	Petroleum ether	Multiple reflux extraction	Alkannin	Yan, Xu, Yu, & Lei, 2013
CN10228499A (20-06-2011)	Arnebia roots	Method for separating naphthoquinone active ingredients from sinkangarnea root	Petroleum ether, ethylacetate	Ultrasonic extraction	Deoxyshikonin, acetyl shikonin, shikonin, β,β-metho acetylloxyshikonin, isovalerylshikonin, β hydroxyl isovalerylshikonin	Yuan & Yuan, 2011
CN10337913A (15-04-2012)	Comfrey purple grass powder	Extraction method of alkannin	Cyclohexane	Maceration	Shikonin	Pan, Wang, Tang, Li, Wang, & Zhou, 2013
CN103664566A (02-12-2013)	Comfrey purple grass	Alkannin extraction device	Petroleum ether	Ultrasonic crusher extraction	Shikonin	Tang, Wang, & Zhou, 2014
CN105949045A (28-07-2014)	Arnebia roots	Method for extracting alkannin from arnebia roots	Super critical CO₂	Super critical fluid extraction	Shikonin	Guo, Zhang, & Xu, 2016
CN105348065A (04-12-2015)	Lithospermum ericythroniz	Preparation method for high-purity alkannin from lithospermumerythroniz	Petroleum ether	Percolation	Shikonin	Yang & Yang, 2016
CN104774151A (30-01-2015)	Lithospermum mongolia	Preparation technology of mount taishan Radix Lithospermum naphthoquinone active monomers	Petroleum ether, hexanoic acid, Capro lactone Hexylalcohol-water, n-Hexane, ethylacetate, acetonitrile, water	High performance counter current chromatography	Iospenyl shikonin, hexylshikonin, isobutyryl shikonin	Lei, Haiwei, Jiang, Zhai, Yi, & Jiang, 2015
CN10751203A (03-03-2016)	Arnebia euchroma	Method for separating and preparing natural naphthoquinone compounds	Petroleum ether, ethylacetate, acetonitrile, water	High speed counter current chromatography	Deoxyshikonin, propionyl shikonin, β,β dimethylacryl shikonin, isovalerylshikonin.	He, Qing, & Zhang, 2017
CN108409570A (06-03-2018)	Arnebia euchroma	Fast and efficient purification method comfrey acetyl shikonin	Ethylacetate/petroleum ether	Reverse phase silica gel chromatography	Acetylshikonin	Jiang, Lin, & Zhao, 2018

isolated from the powdered roots of A. tinctoria. Supercritical CO₂ functions as non-polar, lipophilic solvent with alkannin/shikonin. It was reported that highest yield was obtained at higher tem-

Forecasting the market potential, numerous patent applications on inventions containing alkannin/shikonin and its derivatives have been filed by various research groups across the world. Brief details of these applications are divided into two categories viz. therapeutic and analytical and are summarized in Tables 6 and 7.

5. Conclusion

Alkannin/shikonin and its derivatives possess a wide variety of pharmacological activities. These constituents are majorly investi-
gated for their wound healing, antimicrobial and anticancer potential. In the last decade, various mechanisms of alkannin/shikonin and their derivatives are explored implicated in wide variety of diseases. The present study suggests the higher applicability of alkannin/shikonin and its derivatives are in the development of potent and safer wound healing and anticancer agents. Various analytical investigations are also discussed that will help the analysts for more efficient analysis of alkannin/shikonin and its derivatives from different sources. Brief patent summary is provided to highlight the future marketable potential of alkannin/shikonin and its derivatives. The appropriate knowledge of the pharmacological aspects of A/S and their derivatives will not only benefit the novel product researchers but also the pharmaceutical/formulation scientists in their future course of action. Further, the advanced and novel drug delivery systems could be used to mask the limitations of these derivatives including their low solubility and photo-degradation. Despite having magnificent pharmacological potential, there is a dire need to collect remarkable data related to their toxicological and safety profile which can establish the clinical utility of these components.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

Authors are thankful to all the scientists for carrying out in-depth study on alkannin/shikonin and their derivatives that was helpful in framing this article. The authors duly acknowledge RUSA 2.0 Scheme (Component-4) of Ministry of Education, Government of India to facilitate the current work.

References

Aburjai, T., Al-Janabi, R., Al-Mamoori, F., & Azzam, H. (2019). In vivo wound healing and antimicrobial activity of Albicula strigosa. Wound Medicine, 25(1), 100–152.
Akgun, I. H., Erkuçuk, A., Pilavtepe, M., & Yesişeliktaş, O. (2011). Optimization of total alkannin yields of Albicula tinctoria by using sub- and supercritical carbon dioxide extraction. Journal of Supercritical Fluid, 57, 31–37.
Akhtar, Y., Isman, M. B., Lee, C. H., Lee, S. G., & Lee, H. S. (2012). Toxicity of quinones against two-spotted spider mite and three species of aphids in laboratory and greenhouse conditions. Industrial Crops and Products, 37(1), 536–541.
Akhtar, Y., Isman, M. B., Niehaus, L. A., Lee, C. H., & Lee, H. S. (2012). Antifeedant and toxic effects of naturally occurring and synthetic quinones to the cabbage looper, Trichoplusia. Crop Protection, 31(1), 8–14.
Albrecht, A., Vovk, I., Simonovska, B., & Sbrinonska, M. (2009). Identification of shikonin and its ester derivatives from the roots of Echium italicum L. Journal of Chromatography A, 1216(3), 156–162.
Andjia, J., Rios, J. L., Giun, R. M., & Recio, M. C. (2013). Pharmacological properties of shikonin – a review of literature since 2002. Planta Medica, 79(16), 1685–1697.
Azuma, H., Li, J., Youda, R., Suzuki, T., Miyamoto, K., Taniguchi, T., & Nagasaki, T. (2017). Aptima HPV Assay versus Hybrid Capture 2: HPV test for primary cervical cancer screening in the HPV FOCAL trial. Journal of Clinical Virology, 87, 1–8.
Craft, K. M., Nguyen, J. M., Berg, L. J., & Townsend, S. D. (2019). Methicillin-resistant Staphylococcus aureus (MRSA): Antibiotic-resistance and the biofilm phenotype. Frontiers in Pharmacology, 10(8), 1231–1241.
Daminanos, H., Kretschmer, N., Sydlovska-Baraneé, K., Pietrosiuk, A., Bauer, R., & Chinou, I. (2012). Antimicrobial and cytotoxic isoxenyl naphthazarins from Arnebia euchroma (Royle) Jonst. (Boraginaceae) callus and cell suspension cultures. Industrial Crops and Products, 37(12), 14310–14322.
Davis, P. H. (1970). Flora of Turkey and the East Aegean Islands. Flora of Turkey and the East Aegean Islands, 3, 645.
Detergert, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., ..., Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature Chemical Biology, 2, 112–119.
Deurenberg, R. H., & Stobberingh, E. E. (2009). The molecular evolution of hospital- and community-associated methicillin-resistant Staphylococcus aureus. Current Medical Chemistry, 9(9), 100–115.
Frey, M. H., Almazán, A., Gómez, D., Guzmán, C., & Durán, N. (2019). Cytotoxic activity of the methanolic extract from Prunus domestica L. Journal of Ethnopharmacology, 237, 362–367.
Fuyug, N., Yilmaz, G., Kutlu, O., Ustun, G., & Ustun, O. (2016). Bioassay-guided isolation of wound healing active compounds from Echium species growing in Turkey. Journal of Ethnopharmacology, 175, 370–376.
Fujimoto, N., Sato, Y., Nakanishi, T., Gondo, H., Ohta, M., & Seibert, J. A. (2013). Identification of macroscopic “cavitation” in vitro to investigate the naphthoquinones shikonin, naphthazarin and related analogues for the treatment of dermal scars. Chemico-Biological Interactions, 210, 1–14.
Hara, M., Hara, T., Sakai, T., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127(2), 2893–2917.
Inoue, M., Grazini, A., Vittoria, F., & Kato, I. (2009). Determination of the wound healing effect of Calendula extracts using the scratch assay with 3T3 fibroblasts. Journal of Ethnopharmacology, 126(3), 429–437.
Jiang, Y., Xu, J., Yang, M., Wang, Q., Cao, J., ..., Yang, Y. (2021). Cloning and functional analysis of EpGHQH1 in shikonin production of Echium plantagineum. Journal of Ethnopharmacology, 237, 362–367.
Kaur, K., Kaur, S., & Sharma, A. (2017). Chinese Herbal Medicines 14 (2022) 511–527.
Kaur, R., Sharma, A. Singh et al. Chinese Herbal Medicines 14 (2022) 511–527

Han, W., Li, L., Qiu, S., Lu, Q., Pan, Q., Gu, Y., ... Hu, X. (2007). Shikonin circumvents cancer drug resistance by induction of a necrotic cell death. Molecular Cancer Therapeutics, 6(5), 1641–1649.

Han, S., X. Kang, K. A., Piao, M. J., Zhen, A. X., Hyun, Y. J., Kim, H. M., ... Hyun, J. W. (2019). Shikonin exerts cytotoxic effects in human colon cancers by inducing apoptotic cell death via the endoplasmic reticulum and mitochondria-mediated cascades. Biomedicine & Pharmacotherapy, 112, 1–9.

He, J., Qing, M., & Zhang, S. (2017). Separate the method for preparing natural naphthoquinone compound. Patent No. CN107151203A.

Henecka, M. T. (2015). Neuroinflammation in Alzheimer’s disease. The Lancet Neurology, 14(12), 1384–1398.

Hoshino, A., Hirst, J. A., & Fuji, H. (2007). Regulation of cell proliferation by interleukin-3–induced nuclear translocation of pyruvate kinase. Journal of Biological Chemistry, 282(4), 17706–17711.

Hu, X. (2011). Application of shikonin in preparation of pyruvate kinase inhibitor. Patent No. CN102068421A.

Hu, X., & Fang, J. (2005). Use of allchin in preparing medicine for treating tumor by shikonin. Patent No. CN11579378A.

Hu, X., & Han, W. (2007). Apis of shikonin in preparing medicine for inducing apoptosis. Patent No. CN1931152A.

Hsiao, C. Y., Tsai, T. H., & Chak, K. F. (2012). The molecular basis of wound healing of alkannin and naphthoquinones derivatives. Patent No. CN101265212B.

Huang, C. S., Lin, A. H., Yang, T. C., Liu, K. L., Chen, H. W., & Li, C. K. (2015). Shikonin induces ROS-based mitochondria-mediated apoptosis in colon cancer. Oncotarget, 6(85), 10904–10916.

Jiang, H., Lin, Z., & Zhai, J. (2018). Acetylshikonin rapidly and efficiently purification process in Avin pill. Patent No. CN104172885B.

Jaradat, N. A., Zaid, A. N., Hussen, F., Issa, L., Altamimi, M., Fuqaha, B., & Assadi, M. (2012). Cervical cancer in India and HPV vaccination. European Journal of Integrative Medicine, 21, 88–93.

Kaarthigeyan, K. (2012). Medical application of alkannin and the related compounds. Patent No. CN101239936A.

Kim, N. S., Shin, S., Park, H. S., Kwon, H. J., Son, H. Y., & Bang, O. S. (2019). Sub-chronic oral toxicity of the aqueous extract of Lithospermi Radix for treating flat ulcerations of freshwater fish. Patent No. CN106393579A.

Lee, D. Y., Choi, S. I., Han, S. H., Lee, Y. J., Choi, J. G., Lee, Y. S., ... Kim, G. S. (2016). Lithospermi Radix for treating flat ulcerations of freshwater fish. Patent No. CN106390518A.

Li, X., & Zeng, X. (2020). Shikonin suppresses progression and epithelial–mesenchymal transition in hepato-cellular carcinoma (HCC) cells by modulating miR-100/FGFR3/TGF-β signaling pathway. Cell Biomedicine International, 4(2), 46–47.

Li, X., Fan, X., Jiang, Z. B., Luo, W. T., Yao, X. J., Leung, E. L., & Liu, L. (2017). Shikonin inhibits gefitinib-resistant non-small cell lung cancer by inhibiting TrxK and activating the EGRF protumoral degradation pathway. Pharmacological Research, 115, 45–55.

Li, Y. (2018). Omeprazole enteric-coated capsules capable of inhibiting gastric acid secretion. Patent No. CN101291975A.

Li, X., Fan, H. (2014). Medical application of Lithosphermi naphthoquinone compounds. Patent No. CN103919756A.

Liu, X., & Fan, H. (2014). Medical application of Lithosphermi naphthoquinone compounds. Patent No. CN103690518A.

Liu, K., & Fan, H. (2014). Medical application of Radix Arnebiae seu lithospermum naphthoquinone compounds. Patent No. CN103753558A.

Liu, L., Leung, L. H., Li, X., & Fan, X. (2018). Hydroxynaphthoquinone compounds for treatment of non-small cell lung cancer. Patent US9913811B2.

Liu, T., Li, S., Wu, L., Yu, Q., Li, J., Feng, J., ... Guo, C. (2020). Experimental study of hepatocellular carcinoma treatment by shikonin through regulating PKM2. Journal of the European Society of Human Genetics, 7, 15–31.

Liu, Y., & Liu, K. (2011). Method for extracting allchin naphthoquinone pigment. Patent No. CN101942212A.

Liu, Z., Wei, Y., Zhang, H., Zou, J., & Yang, Y. (2017). Composition for treating burns and scalds. Patent No. CN101749641A.

Liu, P. J., Yang, C., Lin, C. N., Li, C. F., Chu, C. C., Wang, J. J., & Chen, J. Y. (2008). Shiakno and acetylshikonin promote reepithelialization, angiogenesis, and granulation tissue formation in wounded skin. The American Journal of Chinese Medicine, 36(1), 115–123.

Lu, D., Qian, J., Li, W., Feng, Q., Pan, S., & Zhang, S. (2015). β-hydroxyisovaleryl shikonin induces human cervical cancer cell apoptosis via PI3K/AKT/mTOR signaling pathway. Journal of Experimental & Clinical Cancer Research, 34(1), 1–12.

Liu, J. H., Hwang, K. E., Park, D. S., Oh, S. H., Jun, H. Y., Yoon, K. H., & Kim, Y. S. (2017). Shikonin-induced necrosis is enhanced by the inhibition of autophagy in human cervical cancer cell lines. Journal of Cancer Research and Therapeutics, 13(4), 114–122.

Mao, X., Yu, C. R., Li, W. H., & Li, W. X. (2008). Induction of apoptosis by shikonin through a ROS/JNK-mediated process in Bcr/Abl-positive chronic myelogenous leukemia (CML) cells. Cell Research, 18(8), 879–888.

Markowicz, C. D., Vazquez, V., Sekhon, J. S., Kardjilov, I., Slade, K. S., & Juengel, E. (2012). Shikonin inhibits cell growth of sunnial-resistant renal cell carcinoma by activating the necroosome complex and inhibiting the AKT/mTOR signaling pathway. Cancer, 14(5), 14–14.

Miao, H., Zhao, L., Li, C., Wang, Q., Liu, H., Fu, Z., & Cao, Y. (2012). Inhibitory effect of shikonin on Candida albicans growth. Biological and Pharmaceutical Bulletin, 35(11), 1956–1963.

Mohammmed, M. (2016). Evaluation of antipretaceous, antiinfective and sedative effects of Tribulus terrestris, Mimos a pilg and Alkanna tinctoria medicinal extracts. Journal of Phytomedicinal Research, 5, 105–107.

Mohapatra, S., Varma, R. S., Kumar, L. M. S., Thiyagarajan, O. S., Vijayakumar, M., Dilme, K., & Patki, P. P. (2016). Anti-aging activity of naphthoquinones from Arnebia nobilis DE2831786A1. Natural Products Research, 30, 574–577.

Nasiri, H., Hosseinmehr, S. J., Hosseinzadeh, A. Z., Azadbahkt, M., Abkari, J., & Azadbahkt, M. (2016). The effects of Arnebia euchroma ointment on second-degree burn wounds: A randomized clinical trial. Journal of Ethnopharmacology, 163, 107–116.

Pan, X., Wang, F., Tang, X., Li, S., Wang, C., & Zhou, J. (2013). Extraction method of Shikonin. Patent No. CN102491321A.

Papageorgiou, V. P. (1980). Acylated allchin or shikonin derivs. - Useful as dermatological, bacteriical and fungidal medicinal. Patent No. DE3813768A1.

Papageorgiou, V. P., Assimopoulou, A. N., Couladouros, E. A., Hepworth, D., & Nicolau, K. C. (1999). The chemistry and biology of allchin, and related naphthazarin natural products. Angewandte Chemie, 38(3), 279–301.

Ng, J. J., Upton, Z., Leavesley, D., & Fan, C. (2020). Investigating the effects of shikonin, deoxysiphonarin, and T. j-dihyroxime on shikonin on melanoma cell lines. Natural Product Communications, 15(4), 1–12.
Kaur, R. Sharma, A. Singh et al.

Chinese Herbal Medicines 14 (2022) 511–527

Pagapgeorgiou, V., Assimopoulou, A., & Ballis, A. (2008). Alkannins and shikonins: A new class of wound healing agents. Current Medicinal Chemistry, 15, 3248–3267.

Park, D. G., Woo, B. H., Kim, H. J., Choi, Y. W., & Park, H. R. (2020). Isotuberyshikonin has a potentially stronger cytotoxic effect on oral cancer cells than its analog, shikonin in vitro. Archives of Oral Biology, 1–3.

Park, J. Y., Kwak, H. J., Kang, K. S., Jung, E. B., Lee, D. S., Lee, S., & Kim, S. N. (2017). Wound healing activity of shikonin isolated from Arnebia euchroma. In vitro and in vivo studies. Journal of Ethnopharmacology, 199, 128–137.

Pavela, R. (2013). Efficacy of naphthoquinones as insecticides against the house fly, Musca domestica L. Industrial Crops and Products, 43, 745–750.

Rajasekar, S., Park, D. G., Park, S., Park, H. K., Kim, S. T., & Choi, Y. W. (2012). In vitro and in vivo anti-cancer effects of Lithospermum erythrorhizon extract on B16F10 murine melanoma. Journal of Ethnopharmacology, 144, 335–345.

Rashin, L., Hakkim, F. L., Fiebig, H. K., Kelter, G., Merfort, I., Al-Boushi, M., & Hasson, S. S. (2018). In vitro anti-proliferative activity of the Rhus toxicaria and Alkanna tinctoria root extracts in panel of human tumor cell lines hasson. Jordan Journal of Biological Sciences, 11(5), 489–494.

Rat, A., Naraino, H. D., Krigas, N., Grigoriadou, K., Maloupa, E., Alonso, A. V., & Willems, A. (2021). Endophytic bacteria from the roots of the medicinal plant Alkanna tinctoria tawsch (Boraginaceae): Exploration of plant growth promoting properties and potential role in the production of plant secondary metabolites. Frontiers in Microbiology, 12, 1–14.

Rocconi, R. P., Sullivan, P., Long, B., Blaise, M., Brown, J., Aruckle, J., & Finan, M. A. (2012). Treatment of chemotherapy-induced anemia in ovarian cancer patients: Does the use of erythropoiesis-stimulating agents worsen survival? Journal of Hematology & Oncology, 5(1), 79–79.

Roma, A., Cheng, M., Ahmed, N., Walker, S., Jayanth, P., Minden, M. D., & Spagnuolo, J. L. (2018). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling. Journal of Ethnopharmacology, 199(5), 680–687.

Razin, S., Struchman, E., Zins, I., & Rosenberg, M. (1978). Antimicrobial activities of naphthoquinones shikonin derivatives from Alkanna tinctoria. International Journal of Biological Sciences, 11(5), 680–687.

Rokiti, N. K., & Pokholo, N. D. (2017). Antioxidant activity from Skrzcypczak, A., Prystupa, N., Zgadzaj, A., Parzonko, A., Sykilowska-Baranek, K., Willems, A., & Spagnuolo, J. L. (2018). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling. Journal of Ethnopharmacology, 199(5), 680–687.

Rokiti, N. K., & Pokholo, N. D. (2017). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling. Journal of Ethnopharmacology, 199(5), 680–687.

Rokiti, N. K., & Pokholo, N. D. (2017). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling. Journal of Ethnopharmacology, 199(5), 680–687.

Rokiti, N. K., & Pokholo, N. D. (2017). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling. Journal of Ethnopharmacology, 199(5), 680–687.

Rokiti, N. K., & Pokholo, N. D. (2017). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling. Journal of Ethnopharmacology, 199(5), 680–687.

Rokiti, N. K., & Pokholo, N. D. (2017). Antioxidant activity of 1’-alkannin and 1’-deoxyshikonin isolated from Jawoongo: In vitro and in vivo generation and oxygen-coupled redox cycling.