Anomalous Higgs Couplings at the LHeC

A. Senol

Kastamonu University, Department of Physics, 37100, Kastamonu, Turkey and
Abant Izzet Baysal University, Department of Physics, 14280, Bolu, Turkey

Abstract

The discovery of Higgs boson plays a crucial role in understanding the electroweak symmetry breaking sector. From now on, solving the dynamics of this sector needs precision measurements of the couplings of the Higgs boson to the standard model particles. In this work, we investigate the constrains on the anomalous HWW and $HWW\gamma$ couplings, described by the dimension-six operators in the effective Lagrangian, in a high energy envisaged ep collider which is called Large Hadron electron Collider (LHeC). We obtained the 95 % confidence level limits on the couplings of anomalous HWW and $HWW\gamma$ vertex, with the design luminosity of 10 fb^{-1} and electron beam energy of 140 GeV, through $ep \rightarrow \nu H+X$, $\gamma p \rightarrow WH+X$ and $e\gamma \rightarrow WH\nu$ processes by considering the new physics energy scale to be $\Lambda = 1 \text{ TeV}$. The sensitivity of the LHeC to the new physics scale is also briefly discussed.

PACS numbers: 12.60.Fr, 14.80.Cp

*Electronic address: asenol@kastamonu.edu.tr
I. INTRODUCTION

After the discovery of a new boson being compatible with Standard Model (SM) Higgs boson production and decay by ATLAS [1] and CMS [2] Collaborations at the Large Hadron Collider (LHC), the Electroweak Symmetry Breaking (EWSB) mechanism was verified experimentally leading to open up a gateway for new research field in particle physics. Now, the constraints on couplings of Higgs boson with the SM particles need to be reconsidered due to the fact that the precision measurements of its couplings will give us detailed information on EWSB of the SM and beyond. Therefore, we focus on anomalous couplings of HWW and $HW\gamma$ vertex in ep collision where some advantages over the LHC for precision measurements such as: the ability to separate backward scattering and forward scattering due to characteristic ep kinematics and an anomalous HWW vertex will be free from possible contaminations of other Higgs boson-electroweak vector boson couplings.

Recently, there has been a new ep collider project, the Large Hadron Electron Collider (LHeC) [3], in which a newly built electron beam of 60 GeV, to possibly 140 GeV, energy collides with the intense hadron beams of the LHC (7 TeV) and with the design luminosity of 10^{33} cm$^{-2}$ s$^{-1}$. The physics programme is purposed to a search of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model.

There have been several studies for anomalous couplings of HWW vertex in the literature which focus on future linear e^+e^- collider [4–10] and its $e\gamma$ [11, 12] and $\gamma\gamma$ [13–16] modes, hadron colliders [17–25] and also ep collider [27]. In Ref. [27], the constrains on anomalous CP-conserving and CP-violating couplings of HWW vertex coming from dimension-five operators in the effective Lagrangian are studied. Furthermore, we will analyze the anomalous couplings of HWW and $HW\gamma$ vertex coming from dimension-six operators in the effective Lagrangian.

The Higgs-vector boson vertices are uniquely assigned in the SM. In some models deviations from these vertices appear, such as non-pointlike character of boson and through interactions beyond the SM. We do not have a specific model to analyze for the effect of non-SM couplings. We investigated anomalous Higgs-vector boson couplings in a model independent way by means of effective non-renormalizable Lagrangian approach which keep
the SM gauge group $\{5, 28\}$

$$L_{\text{eff}} = L_{\text{SM}} + \sum_{k=1}^{\infty} \frac{1}{(\Lambda^2)_k} \sum_{i} f_i^{(k)} Q_i^{d_k},$$

where $d_k = 2k + 4$ denotes the dimension of operators and Λ is the energy scale of new interactions. We study only to complete set of the dimension-6 operators.

In this framework, there are only two relevant operators that Higgs boson couplings to electroweak vector bosons:

$$\frac{1}{\Lambda^2} \left\{ \frac{1}{2} f_\varphi \partial_\mu (\Phi^+ \Phi) \partial^\mu (\Phi^+ \Phi) + f_{WW} \Phi^+ (\tilde{W}_{\mu\nu} \tilde{W}^{\mu\nu}) \Phi \right\}.$$ \hspace{1cm} (2)

We use the formalism of \[29\] in writing for HWW and $HWW\gamma$ vertices in unitary gauge which follow from the effective Lagrangian (1) and (2):

$$\Gamma_{HWW}^{\mu\nu}(p, q, r) = \frac{e M_W}{s_W} \left\{ \left(1 - \frac{1}{4} f_\varphi \frac{v^2}{\Lambda^2} \right) g_{\mu\nu} + f_{WW} \frac{1}{\Lambda^2} [g_{\mu\nu}(q \cdot r) - q_\mu r_\nu] \right\} \quad (3)$$

and

$$\Gamma_{HWW\gamma}^{\mu\nu\alpha}(p, q, r, l) = \frac{e^2 M_W}{s_W} 2f_{WW} \frac{1}{\Lambda^2} \left\{ g_{\mu\nu}(q - r)_\alpha - q_\nu g_{\mu\alpha} + r_\mu g_{\nu\alpha} \right\} \quad (4)$$

where $v = \frac{2M_W}{e} \tan \theta_W$ is the vacuum expectation value; p, q, r and l are the momenta of the H, W^+, W^- and γ fields, respectively. μ, ν and α denote the W’s and γ fields, respectively.

If the values of f_{WW} and f_φ are zero in $\Gamma_{HWW}^{\mu\nu}$ vertex, it corresponds to the SM vertex at tree level. The second vertex $\Gamma_{HWW\gamma}^{\mu\nu\alpha}$ does not occur in the SM at tree level. All calculations were performed by means of computer package the CalcHEP \[30\], after implementation of the vertices (3) and (4) with taking $\Lambda = 1$ TeV and $m_H = 125$ GeV.

II. THE CROSS SECTIONS OF $ep \rightarrow \nu H + X$, $\gamma p \rightarrow WH + X$ AND $e\gamma \rightarrow WH\nu$ PROCESSES

The production mechanism for a Higgs boson in the WW fusion at the LHeC is $ep \rightarrow \nu H + X$ as shown in Fig. 1. This process has a single Feynman diagram involving the HWW vertex. In the left panel of Fig. 2 we display the total cross sections depending on incoming electron energy for the reaction $ep \rightarrow \nu H + X$ including only anomalous HWW
FIG. 1: Tree-level Feynman diagram for the process $ep \rightarrow \nu H + X$.

coupling with taking $f_{WW}(f_\phi)=1$ (0) TeV$^{-2}$, $f_\phi(f_{WW})=-1$ (0) TeV$^{-2}$ and $f_{WW}=f_\phi = 0$ for illustration purpose by using parton distribution functions library CTEQ6L [31]. The calculated total cross sections of the $ep \rightarrow \nu H + X$ process with taking 140 GeV of energy of incoming electron as function of the anomalous couplings f_{WW} and f_ϕ is shown in the right panel of Fig. 2. Here and henceforth, only one of the coupling parameter is kept from zero. From left panel of Fig. 2 we can see that, the only contribution from the SM part of the Eq. (3) in the case of $f_{WW}=f_\phi = 0$ (solid line), from both f_ϕ (f_{WW}) coupling and SM part in the case of $f_\phi = -1(0)$ TeV$^{-2}$, $f_{WW}=0$ (1) TeV$^{-2}$ to $ep \rightarrow \nu H + X$ process. Here, we see much larger deviation from SM cross sections on the positive region of the anomalous coupling f_ϕ due to the negative factor front the anomalous coupling f_ϕ in the Eq. (3).

FIG. 2: The total cross sections for the process $ep \rightarrow \nu H + X$ including only anomalous HWW couplings in ep collisions at the LHeC. The plot on the left displays incoming electron energy dependence with taking $m_H = 125$ GeV. The plot on the right shows dependence on anomalous couplings f_{WW} (solid line) and f_ϕ (dashed line) with taking $E_e=140$ GeV and $m_H = 125$ GeV.

Efficient γp collisions can be realized with real γ, produced using Compton back scattering
FIG. 3: Tree-level Feynman diagrams for the process $\gamma p \rightarrow WH + X$.

of laser beam off the high energy electron beam, only on the base of linac ring type ep colliders [32]. In this framework, we consider $\gamma p \rightarrow WH + X$ reaction to see the effect of both HWW and $HWW\gamma$ couplings. The tree-level diagrams of the process $\gamma p \rightarrow WH + X$ are depicted in Fig. 3. We present the total cross section as function of incoming electron beam energy for this process by using the spectrum of photons scattered backward from the interaction of laser light with the high energy electron beam [33] in case $f_{WW} = f_\phi = 0$, $f_{WW}(f_\phi) = 1(0)$ TeV$^{-2}$ and $f_\phi(f_{WW}) = -1 (0)$ TeV$^{-2}$ in the left panel of Fig. 4. As we can see, contribution of the $HWW\gamma$ vertex, described in Eq. (4), leads to an increase of about two orders in the cross section. Total cross sections of $\gamma p \rightarrow WH + X$ process as a functions of f_{WW} and f_ϕ is shown in the left panel of Fig. 4.

The another mode of ep colliders is $e\gamma$ option where γ is elastic photon emission coming from proton. The equivalent photon spectrum is described by the equivalent photon approximation (EPA) [34] which embedded in CalcHEP. The $e\gamma \rightarrow WH\nu$ process in ep collision is described by tree-level diagrams in Fig. 5. These diagrams contain anomalous HWW and $HWW\gamma$ couplings. In Fig. 6 we plot the total cross section depending on incoming electron energy for $f_{WW} = f_\phi = 0$, $f_{WW}(f_\phi) = 1(0)$ TeV$^{-2}$ and $f_\phi(f_{WW}) = -1 (0)$ TeV$^{-2}$ (left panel) and as functions of f_{WW} and f_ϕ with taking $E_e = 140$ GeV (right panel) by using EPA.
FIG. 4: The total cross sections depending on incoming electron energy for $\gamma p \rightarrow WH + X$ including anomalous HWW and $HWW\gamma$ couplings in ep collisions at the LHeC. The plot on the left displays incoming electron energy dependence with taking $m_H = 125$ GeV. The plot on the right shows dependence on anomalous couplings f_{WW} (solid line) and f_ϕ (dashed line) with taking $E_e=140$ GeV and $m_H = 125$ GeV.

FIG. 5: Tree-level Feynman diagrams for the process $e\gamma \rightarrow WH\nu$.

III. LIMITS ON THE ANOMALOUS HIGGS COUPLINGS

One-parameter χ^2 test was applied without a systematic error to obtain 95% confidence level (C.L.) on the upper limits of the f_ϕ and f_{WW}. The χ^2 function is

$$\chi^2 = \left(\frac{\sigma_{SM} - \sigma(f_\phi, f_{WW})}{\sigma_{SM} \delta} \right)^2$$

(5)
where $\delta = \frac{1}{\sqrt{N}}$ is the statistical error. The number of events are given by $N = \sigma_{SM} L_{int}$ where L_{int} is the integrated luminosity. When calculating number of events we assume all W bosons decay leptonically in the final state, the dominant Higgs boson decay to $b\bar{b}$, the efficiency for b-tagging to be $\epsilon = 60\%$ and the fake rejection factors of 0.01 for light quarks. And also we applied cuts for missing transverse energy (MET) for neutrinos to be MET > 25 GeV, transverse momentum of quarks to be $p_T^{b,j} > 30$ GeV and pseudorapidity of quarks to be $|\eta|^{b,j} < 2.5$. With assuming these restrictions, we have calculated total cross sections $\sigma_{SM} = 0.047$ pb for $ep \rightarrow \nu H + X$, $\sigma_{SM} = 7.61 \times 10^{-3}$ pb for $\gamma p \rightarrow WH + X$ and $\sigma_{SM} = 3.72 \times 10^{-4}$ pb for $e\gamma \rightarrow WH\nu$ processes.

In Fig. 7 we exhibited χ^2 as a function of f_{WW} (left panel) and f_ϕ (right panel) through $ep \rightarrow \nu H + X$, $\gamma p \rightarrow WH + X$ and $e\gamma \rightarrow WH\nu$ with $\Lambda = 1$ TeV, $E_e = 140$ GeV and design luminosity, $L = 10$ fb$^{-1}$. A distinct feature of this figure is that the limiting on anomalous couplings to see clearly at 95% C.L.. If the LHeC has collected 10 fb$^{-1}$ of data, the bounds on f_{WW} would be $(-39.3, 27.4)$ TeV$^{-2}$ for $ep \rightarrow \nu H + X$, $(-29.8, 11.9)$ TeV$^{-2}$ for $\gamma p \rightarrow WH + X$, $(-31.5, 11.3)$ TeV$^{-2}$ for $e\gamma \rightarrow WH\nu$ process and f_ϕ would be $(-47.2, 167.2)$ TeV$^{-2}$ for $ep \rightarrow \nu H + X$, $(-153.9, 261.2)$ TeV$^{-2}$ for $\gamma p \rightarrow WH + X$, $(-79.0, 237.1)$ TeV$^{-2}$ for $e\gamma \rightarrow WH\nu$ at 95% C.L. While the indirect 95% C.L. constraints of the L3 collaboration

FIG. 6: The total cross sections depending on incoming electron energy for $e\gamma \rightarrow WH\nu$ including anomalous HWW and $HWW\gamma$ couplings in ep collisions at the LHeC. The plot on the left displays incoming electron energy dependence with taking $m_H = 125$ GeV. The plot on the right shows dependence on anomalous couplings f_{WW} (solid line) and f_ϕ (dashed line) with taking $E_e = 140$ GeV and $m_H = 125$ GeV.
TABLE I: Variations of f_{WW} and f_ϕ couplings with respect to Λ at 95% C.L. for $ep \rightarrow \nu H + X$, $\gamma p \rightarrow WH + X$ and $e\gamma \rightarrow WH\nu$ processes with $E_e=140$ GeV and design luminosity of 10 fb$^{-1}$.

Λ (TeV)	f_{WW}	f_ϕ	f_{WW}	f_ϕ	f_{WW}	f_ϕ
1	(-39.3, 27.4)	(-47.2, 167.2)	(-29.8, 11.9)	(-153.9, 261.2)	(-31.5, 11.3)	(-79.0, 237.1)
2	(-44.7, 37.2)	(-175.7, 575.3)	(-117.2, 48.3)	(-495.1, 789.2)	(-129.9, 43.8)	(-306.9, 968.9)
3	(-338.3, 218.3)	(-281.7, 973.8)	(-238.5, 115.9)	(-714.6, 1004.3)	(-288.4, 99.7)	(-634.5, 2395.6)

[21, 35] for f_{WW} are in the interval of (-26.84, 26.84) TeV$^{-2}$ with taking $m_H=120$ GeV and (-7.0, 10) TeV$^{-2}$ form available data from Tevatron and LHC at 90% C.L. [25, 26].

In Table I we give 95% C.L. bounds of the couplings f_{WW} and f_ϕ for three different values of new physics energy scale, Λ, at $ep \rightarrow \nu H + X$, $\gamma p \rightarrow WH + X$ and $e\gamma \rightarrow WH\nu$ processes with the design luminosity of 10 fb$^{-1}$ and electron beam energy of 140 GeV. The fact that the sensitivity of coupling f_ϕ is more rapidly decrease, compared to f_{WW}, when the scale of new physics increase. On the other hand, we can see a faster drop on the sensitivity of coupling f_{WW} in $ep \rightarrow \nu H + X$ process, compared to $e\gamma \rightarrow WH\nu$, at $\Lambda=3$ TeV.

FIG. 7: χ^2 as a function of f_{WW} (left panel) and f_ϕ (right panel) through $ep \rightarrow \nu H + X$, $\gamma p \rightarrow WH + X$ and $e\gamma \rightarrow WH\nu$ with $E_e=140$ GeV and design luminosity of 10 fb$^{-1}$.
IV. CONCLUSION

In this work, we focused on couplings of HWW and $HWW\gamma$ vertices to constrain deviations from the SM behavior leading the effects of dimension-six effective operators by considering the new physics energy scale to be $\Lambda = 1$ TeV. We have examined these effects at $ep \rightarrow \nu H + X$, $\gamma p \rightarrow WH + X$ and $e\gamma \rightarrow WH\nu$ processes at the LHeC to compare which can give the best limits on the anomalous couplings. Best limits on f_{WW} are obtained about $(-39.3, 27.4)$ TeV$^{-2}$ at $ep \rightarrow \nu H + X$ process, $(-29.8, 11.9)$ TeV$^{-2}$ at $\gamma p \rightarrow WH + X$ and $(-31.5, 11.3)$ TeV$^{-2}$ at $e\gamma \rightarrow WH\nu$ process and the limits on f_{φ} are obtained about $(-42.45, 7.18)$ TeV$^{-2}$ at $ep \rightarrow \nu H + X$, $(-153.9, 261.2)$ TeV$^{-2}$ at $\gamma p \rightarrow WH + X$, $(-79.0, 237.1)$ TeV$^{-2}$ in $e\gamma \rightarrow WH\nu$ at 95% C.L. with the design luminosity value. The sensitivity on anomalous couplings, f_{WW} and f_{φ}, with respect to new physics scale are investigated. It is shown that the sensitivity of f_{φ} rapidly decrease, compared to f_{WW}, when the scale of new physics increase. We cannot simply compare our results on f_{WW} and f_{φ} one to one with the experimental limits obtained by various sources due to the different conventions adopted in the literature. However, the current experimental limits are of same order as our bounds. As well as, an integrated luminosity of 10 fb^{-1} would be enough to probe small values of anomalous Higgs couplings. Nevertheless, the LHeC is a suitable platform to complement the LHC results for searching of anomalous HWW and $HWW\gamma$ couplings in $ep \rightarrow \nu H + X$ process as well as $\gamma p \rightarrow WH + X$ and $e\gamma \rightarrow WH\nu$ processes.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716, 1 (2012) [arXiv:1207.7214 [hep-ex]].
[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716, 30 (2012) [arXiv:1207.7235 [hep-ex]].
[3] J. L. Abelleira Fernandez et al. [LHeC Study Group Collaboration], J. Phys. G 39, 075001 (2012) [arXiv:1206.2913 [physics.acc-ph]].
[4] K. Hagiwara, S. Ishihara, R. Szalapski and D. Zeppenfeld, Phys. Rev. D 48, 2182 (1993).
[5] K. Hagiwara, R. Szalapski and D. Zeppenfeld, Phys. Lett. B 318, 155 (1993) [hep-ph/9308347].
[6] G. J. Gounaris, F. M. Renard and N. D. Vlachos, Nucl. Phys. B 459, 51 (1996) [hep-ph/9509316].
[7] W. Kilian, M. Kramer and P. M. Zerwas, Phys. Lett. B 381, 243 (1996) [hep-ph/9603409].
[8] S. M. Lietti, S. F. Novaes and R. Rosenfeld, Phys. Rev. D 54, 3266 (1996) [hep-ph/9603343].
[9] S. S. Biswal, D. Choudhury, R. M. Godbole and Mamta, Phys. Rev. D 79, 035012 (2009) [arXiv:0809.0202 [hep-ph]].
[10] S. S. Biswal, R. M. Godbole, R. K. Singh and D. Choudhury, Phys. Rev. D 73, 035001 (2006) [Erratum-ibid. D 74, 039904 (2006)] [hep-ph/0509070].
[11] I. Sahin, Phys. Rev. D 77, 115010 (2008) [arXiv:0802.0293 [hep-ph]].
[12] D. Choudhury and Mamta, Phys. Rev. D 74, 115019 (2006) [hep-ph/0608293].
[13] G. J. Gounaris and F. M. Renard, Z. Phys. C 69, 513 (1996) [hep-ph/9505429].
[14] A. T. Banin, I. F. Ginzburg and I. P. Ivanov, Phys. Rev. D 59, 115001 (1999) [hep-ph/9806515].
[15] T. Han, Y. -P. Kuang and B. Zhang, Phys. Rev. D 73, 055010 (2006) [hep-ph/0512193].
[16] B. Sahin, J. Phys. G 36, 025012 (2009) [arXiv:0808.0842 [hep-ph]].
[17] F. de Campos, M. C. Gonzalez-Garcia and S. F. Novaes, Phys. Rev. Lett. 79, 5210 (1997) [hep-ph/9707511].
[18] M. C. Gonzalez-Garcia, Int. J. Mod. Phys. A 14, 3121 (1999) [hep-ph/9902321].
[19] H. -J. He, Y. -P. Kuang, C. P. Yuan and B. Zhang, Phys. Lett. B 554, 64 (2003) [hep-ph/0211229].
[20] B. Zhang, Y. -P. Kuang, H. -J. He and C. P. Yuan, Phys. Rev. D 67, 114024 (2003) [hep-ph/0303048].
[21] V. Hankele, G. Klamke, D. Zeppenfeld and T. Figy, Phys. Rev. D 74, 095001 (2006) [hep-ph/0609075].
[22] S. Kanemura and K. Tsumura, Eur. Phys. J. C 63, 11 (2009) [arXiv:0810.0433 [hep-ph]].
[23] N. Desai, D. K. Ghosh and B. Mukhopadhyaya, Phys. Rev. D 83, 113004 (2011) [arXiv:1104.3327 [hep-ph]].
[24] F. Bonnet, M. B. Gavela, T. Ota and W. Winter, Phys. Rev. D 85, 035016 (2012) [arXiv:1105.5140 [hep-ph]].
[25] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia, Phys. Rev. D 86, 075013 (2012) [arXiv:1207.1344 [hep-ph]].
[26] T. Corbett, O. J. P. Eboli, J. Gonzalez-Fraile and M. C. Gonzalez-Garcia, Phys. Rev. D 87, 015022 (2013) [arXiv:1211.4580 [hep-ph]].
[27] S. S. Biswal, R. M. Godbole, B. Mellado and S. Raychaudhuri, arXiv:1203.6285 [hep-ph].
[28] W. Buchmuller and D. Wyler, Nucl. Phys. B 268, 621 (1986).

[29] E. Boos, A. Pukhov, M. Sachwitz and H. J. Schreiber, Z. Phys. C 75, 237 (1997) [hep-ph/9610424].

[30] A. Belyaev, N. D. Christensen and A. Pukhov, arXiv:1207.6082 [hep-ph].

[31] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W. K. Tung, JHEP 0207, 012 (2002) [hep-ph/0201195].

[32] U. Kaya, S. Sultansoy and G. Unel, arXiv:1211.5061 [hep-ph].

[33] I. F. Ginzburg, G. L. Kotkin, V. G. Serbo and V. I. Telnov, Nucl. Instrum. Meth. 205, 47 (1983).

[34] V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rept. 15, 181 (1975).

[35] P. Achard et al. [L3 Collaboration], Phys. Lett. B 589, 89 (2004) [hep-ex/0403037].