The recently revised guidelines for heart failure in Japan discuss the terminal phase of heart failure. Severe heart failure resistant to all treatments is considered as “stage D,” treatment refractory heart failure. Generally, these patients with heart failure are repeatedly hospitalized more than twice per year so special treatments are recommended, or end-of-life care is indicated. Pulliative care has developed as a terminal care for cancer and AIDS, but it has been considered for all life-threatening diseases. In such patients, early discoveries of physical and psychosocial problems, accurate assessments, and coping are important. For patients with cancer, it is usually not difficult to estimate their end of life, and patients, their families, and related medical professionals never miss the time to start hospice care. However, patients with chronic heart failure are repeatedly hospitalized because of acute worsening, and then they require terminal care in their last stage. Many cases of recovery have been observed among patients with severe heart failure by intensive acute treatments. Therefore, even for heart failure experts, it is difficult to determine which patients are entering the terminal stage and which ones should receive more intensive treatment.

Many elderly people in Japan are in a state of asymptomatic heart failure or pre-heart failure condition. Most of them have a frail condition and may easily develop severe heart failure triggered by a common cold, excessive alcohol consumption, and excessive salt intake. Cognitive function decreases in elderly patients with heart failure, which leads to a decrease in self-care ability for disease management of heart failure, and these conditions may cause acute worsening of chronic heart failure. Unfortunately, these patients are less likely to feel subjective symptoms even if their heart failure is severely worsening. This may cause patients to delay their treatment. Although B-type natriuretic peptide is a valuable biomarker to indicate the severity and prognosis of heart failure, it may be difficult to distinguish patients with end-stage heart failure. As an important physical finding to estimate the severity and prognosis of heart failure, physicians could focus on oscillatory breathing in patients with advanced heart failure.

Many factors for predicting prognosis of heart failure have been established. Among them, Cheyne-Stokes breathing is a well-known predictive indicator for severe heart failure. Central sleep apnea with Cheyne-Stokes breathing has been demonstrated as an additional highly prevalent comorbidity in heart failure with either reduced or preserved ejection fraction. Cardiopulmonary exercise testing (CPX) is widely used to evaluate heart failure severity and necessary for grading one’s exercise capacities. Furthermore, CPX provides traditional prognostic indicators. The presence of oscillatory ventilation during exercise evaluated by CPX is frequently observed in patients with severe heart failure and has been reported as one of the poorest prognostic indicators.

Oscillatory breathing characterized by cyclic variation of ventilation with or without interposed apnea has been observed at rest, during sleep, and during exercise in heart failure. Since all forms of these abnormal breathing patterns cause similar detrimental effects on clinical outcomes, they are considered collectively as “altered breathing syndrome,” which should be recognized as a comorbid condition of heart failure. The mechanisms of altered breathing syndrome include but are not limited to prolongation of circulation time accompanied by severe heart failure, excessive activated reflex of the chemoreceptor/baroreceptor, and increased dead space due to pleural effusion and pulmonary edema.

In chronic heart failure patients with central sleep apnea and Cheyne-Stokes breathing, hypoxemia may contribute to increased C-reactive protein levels and augment the release of inflammatory cytokines, adhesion molecules, and insulin. These mechanisms may further exacerbate heart failure through hypoxia in tissues, increasing the production of inflammatory cytokines, excessive production of reactive oxygen species, sympathetic nervous system activation, vascular endothelial dysfunction, and cognitive impairments.

From the Department of Rehabilitation, Kitasato University School of Allied Health Sciences, Sagamihara, Japan. This work was partly supported by JSPS KAKENHI Grant Number 15K01389. Address for correspondence: Minako Yamaoka-Tojo, MD, Department of Rehabilitation, Kitasato University School of Allied Health Sciences, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan. E-mail: myamaoka@med.kitasato-u.ac.jp Received for publication May 8, 2018. Revised and accepted May 14, 2018. doi: 10.1536/ihj.18-295 All rights reserved by the International Heart Journal Association.
Oscillatory breathing and poor cardiac prognosis

Stage C
- Low output
- Pulmonary congestion
(+)

Stage D
- Low output
- Pulmonary congestion
- Hypoxia
- Sympathetic nerve activation
(+) (+)

Stage A/B
- No symptoms
(-)

Stage CS
- Low output
- Sympathetic nerve activation
(-) (+)

Oscillatory breathing at rest

Figure. Conceptual classification of heart failure severity based on oscillatory breathing patterns. Stage CS indicates stage C heart failure with Cheyne-Stokes breathing at rest.

In heart failure, autonomic dysregulation is positively correlated with oscillatory breathing and alterations in cardiovascular reflexes, and central neural control of sympathetic nerve activity. Kruppel-like factor 2 expression in the carotid bodies may reflect oscillatory breathing, autonomic dysregulation, and an increased incidence of arrhythmia in animal models of heart failure. Sympathetic overactivity contributes to ventricular arrhythmias and is an independent prognostic factor in chronic heart failure.

Cardiac rehabilitation is safe and effective for improving exercise capacity, quality of life, and prognosis of patients with heart failure. Cardiac rehabilitation reduced visceral adipose tissue in patients with chronic heart failure and reduced the coronary plaque volume in patients with acute coronary syndrome. Notably, exercise training in cardiac rehabilitation also reduced the duration of exercise oscillatory ventilation and oscillation amplitude without changing the cycle length in patients with chronic heart failure. Therefore, cardiac rehabilitation improves cardiopulmonary efficiency and functional capacity in patients with heart failure, and improves prognosis by improving oscillatory breathing and autonomic imbalance.

Oscillatory breathing is considered as one of the useful indicators to estimate the severity and outcome of heart failure. Yet, it remains unknown whether this index could be improved by heart failure treatment, aside from cardiac rehabilitation. Oscillatory breathing during exercise disappears when an adaptive servo-ventilator is used for heart failure patients with Cheyne-Stokes breathing at rest, and it may have great potential if the prognosis of heart failure is improved in these patients. Especially in advanced heart failure patients with oscillatory breathing during exercise and at rest, it may help to clarify whether the patients with advanced heart failure have shifted to stage D (Figure). An abnormal breathing pattern could indicate that terminal care rather than intensive heart failure treatment should be considered in these patients to improve their quality of life. Further studies are needed to clarify the usefulness of evaluating oscillatory breathing as a prognostic indicator for advanced heart failure.
Disclosures

Conflicts of interest: None.

References

1. Guidelines for diagnosis and treatment of acute and chronic heart failure (JCS 2017/JHFS 2017) 2018. Accessed May 14, 2018. Available at: http://www.j-circ.or.jp/guideline/pdf/JCS2017_tutsutsu_h.pdf
2. Bradley TD, Floras JS. Pathophysiologic and therapeutic implications of sleep apnea in congestive heart failure. J Card Fail 1996; 2: 223-40.
3. Oldenburg O, Lamp B, Faber L, et al. Sleep-disordered breathing in patients with symptomatic heart failure: a contemporary study of prevalence in and characteristics of 700 patients. Eur J Heart Fail 2007; 9: 251-7.
4. Bitter T, Faber L, Herding D, et al. Sleep-disordered breathing in heart failure with normal left ventricular ejection fraction. Eur J Heart Fail 2009; 11: 602-8.
5. Balady GJ, Arena R, Sietsema K, et al. Clinician’s Guide to cardiopulmonary exercise testing in adults: a scientific statement from the American Heart Association. Circulation 2010; 122: 191-225.
6. Likoff MJ, Chandler SL, Kay HR. Clinical determinants of mortality in chronic congestive heart failure secondary to idiopathic dilated or to ischemic cardiomyopathy. Am J Cardiol 1987; 59: 634-8.
7. Sun XG, Hansen JE, Beshai JF, et al. Oscillatory breathing and exercise gas exchange abnormalities prognosticate early mortality and morbidity in heart failure. J Am Coll Cardiol 2010; 55: 1814-23.
8. Dhakal BP, Lewis GD. Exercise oscillatory ventilation: Mechanisms and prognostic significance. World J Cardiol 2016; 8: 258-66.
9. Poletti R, Passino C, Giannoni A, et al. Risk factors and prognostic value of daytime Cheyne-Stokes respiration in chronic heart failure patients. Int J Cardiol 2009; 137: 47-53.
10. Sin DD, Fitzgerald F, Parker JD, et al. Risk factors for central and obstructive sleep apnea in 450 men and women with congestive heart failure. Am J Respir Crit Care Med 1999; 160: 1101-6.
11. Javaheri S, Parker TJ, Liming JD, et al. Sleep apnea in 81 ambulatory male patients with stable heart failure. Types and their prevalences, consequences, and presentations. Circulation 1998; 97: 2154-9.
12. Bradley TD, Floras JS. Sleep apnea and heart failure: Part I: obstructive sleep apnea. Circulation 2003; 107: 1671-8.
13. Murphy RM, Shah RV, Malhotra R, et al. Exercise oscillatory ventilation in systolic heart failure: an indicator of impaired hemodynamic response to exercise. Circulation 2011; 124: 1442-51.
14. Guazzi M, Raimondo R, Vicenzi M, et al. Exercise oscillatory ventilation may predict sudden cardiac death in heart failure patients. J Am Coll Cardiol 2007; 50: 299-308.
15. Corra U, Giordano A, Bosimini E, et al. Oscillatory ventilation during exercise in patients with chronic heart failure: clinical correlates and prognostic implications. Chest 2002; 121: 1572-80.
16. Tomita Y, Kasai T, Kasaka T, et al. Altered breathing syndrome in heart failure: newer insights and treatment options. Curr Heart Fail Rep 2015; 12: 158-65.
17. Abid MB, Kachra Z, Spokes KC, et al. NADPH oxidase activity is required for endothelial cell proliferation and migration. FEBS Lett 2000; 486: 252-6.
18. Schmalgemeier H, Bitter T, Fischbach T, et al. C-reactive protein is elevated in heart failure patients with central sleep apnea and Cheyne-Stokes respiration. Respiration 2014; 87: 113-20.
19. Larkin EK, Rosen CL, Kirchner HL, et al. Variation of C-reactive protein levels in adolescents: association with sleep-disordered breathing and sleep duration. Circulation 2005; 111: 1978-84.
20. Hinn T, Koike A, Nagayama O, et al. Clinical significance of the presence of oscillatory breathing both at rest and during exercise in cardiac patients. Int J Heart 2018; 59: 713-8.
21. Sands SA, Mebrate Y, Edwards BA, et al. Resonance as the mechanism of daytime periodic breathing in patients with heart failure. Am J Resp Crit Care Med 2017; 195: 237-46.
22. Naughton MT, Benard DC, Liu PP, et al. Effects of nasal CPAP on sympathetic activity in patients with heart failure and central sleep apnea. Am J Resp Crit Care Med 1995; 152: 473-9.
23. van de Borne P, Oren R, Abouassaly R, et al. Effect of Cheyne-Stokes respiration on muscle sympathetic nerve activity in severe congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 1998; 81: 432-6.
24. Zucker IH, Schultz HD, Li YF, et al. The origin of sympathetic outflow in heart failure: the roles of angiotensin II and nitric oxide. Prog Biophys Mol Biol 2004; 84: 217-32.
25. Marcus NJ, Del Rio R, Ding Y, et al. KL2 mediates enhanced chemoreflex sensitivity, disordered breathing and autonomic dysregulation in heart failure. J Physiol 2017(in press).
26. Podrid PJ, Fogel RI, Fuchs TT. Ventricular arrhythmia in congestive heart failure. Am J Cardiol 1992; 69: 82G-95G.
27. Cohn JN, Levine TB, Oliviari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 1984; 311: 819-23.
28. Stolen KQ, Kemppainen J, Ukkonen H, et al. Exercise training improves biventricular oxidative metabolism and left ventricular efficiency in patients with dilated cardiomyopathy. J Am Coll Cardiol 2003; 41: 460-7.
29. Belardinelli R, Georgioud, Cianci G, et al. Randomized, controlled trial of long-term moderate exercise training in chronic heart failure: effects on functional capacity, quality of life, and clinical outcome. Circulation 1999; 99: 1173-82.
30. O’Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA 2009; 301: 1439-50.
31. Takagawa Y, Yagi S, Ise T, et al. Improved exercise capacity after cardiac rehabilitation is associated with reduced visceral fat in patients with chronic heart failure. Int Heart J 2017; 58: 746-51.
32. Nishitani-Yokoyama M, Miyauchi K, Shimada K, et al. Effects of phase II comprehensive cardiac rehabilitation on coronary plaque volume after acute coronary syndrome. Int Heart J 2015; 56: 597-604.
33. Panagopoulos N, Karatzanos E, Dimopoulos S, et al. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure. Eur J Prev Cardiol 2017; 24: 825-32.
34. Yamauchi F, Adachi H, Tomono J, et al. Effect of a cardiac rehabilitation program on exercise oscillatory ventilation in Japanese patients with heart failure. Heart Vessels 2016; 31: 1659-68.
35. Kazimierczak A, Krzyzanowski K, Wierzbowski R, et al. Resolvement of exercise oscillatory ventilation with adaptive servoventilation in patients with chronic heart failure and Cheyne-Stokes respiration: preliminary study. Kardiol Pol 2011; 69: 1266-71.