The hyperbolic volume of knots from quantum dilogarithm

R.M. Kashaev

Laboratoire de Physique Théorique ENSLAPP
ENSLyon, 46 Allée d’Italie, 69007 Lyon, FRANCE
E-mail: rkashaev@enslapp.ens-lyon.fr

January, 1996

Abstract

The invariant of a link in three-sphere, associated with the cyclic quantum dilogarithm, depends on a natural number N. By the analysis of particular examples it is argued that for a hyperbolic knot (link) the absolute value of this invariant grows exponentially at large N, the hyperbolic volume of the knot (link) complement being the growth rate.
1 Introduction

Many known knot and link invariants, including Alexander [1] and Jones [2] polynomials, can be obtained from R-matrices, solutions to the Yang-Baxter equation (YBE) [3, 4]. Remarkably, many R-matrices in turn appear in quantum 3-dimensional Chern-Simons (CS) theory as partition functions of a 3-manifold with boundary, and with properly chosen Wilson lines [8]. The corresponding knot invariant acquires an interpretation in terms of a meanvalue of a Wilson loop. Note, that the quantum CS theory is an example of the topological quantum field theory (TQFT) defined axiomatically in [9].

Thurston in his theory of hyperbolic 3-manifolds [5] introduces the notion of a hyperbolic knot: a knot that has a complement that can be given a metric of negative constant curvature. The volume of the complement in this metric appears to be a topological invariant, called the hyperbolic volume of a knot [5, 6, 7]. In principle, there should exist a quantum generalization of this invariant for the following reason.

Consider Euclidean quantum 2+1 gravity with a negative cosmological constant, which is the CS theory with a non-compact gauge group [10], and calculate the partition function of a hyperbolic knot’s complement. The result would be a topological invariant, and the classical limit in the leading order would reproduce the hyperbolic volume of the complement. Unfortunately, quantum 2+1 gravity in its present formulation can not yet be used as a computational tool for this invariant.

The hyperbolic volume of ideal tetrahedra in three-dimensional hyperbolic space can be expressed in terms of Lobachevsky’s function, which is the imaginary part of Euler’s dilogarithm [11]. Therefore, it is natural to expect, that the quantum dilogarithm of [12, 13, 14] can lead to a generalized (deformed) notion of the hyperbolic volume.

In [15, 16] a link invariant, depending on a positive integer parameter N, has been defined via 3-dimensional interpretation of the cyclic quantum dilogarithm [12, 17], see also [18, 19]. The construction can be considered as an example of the simplicial (combinatorial) version of the 3-dimensional TQFT [20]. In this paper we argue that this invariant is in fact a quantum generalization of the hyperbolic volume invariant. Namely, let (L) be the value of the invariant on a hyperbolic knot or link L in three-sphere. We study the “classical” limit $N \to \infty$ of this invariant on particular examples of L, and show that for hyperbolic knots its absolute value grows exponentially, with the growth rate being given by the hyperbolic volume of the knot complement:

$$2\pi \log |(L)| \sim N V(L), \quad N \to \infty,$$

(1.1)

where $V(L)$ is the hyperbolic volume of L’s complement in S^3. Formula (1.1) is in agreement with the expected classical limit of Euclidean
quantum 2+1 gravity with a negative cosmological constant \[V \]. It is thus possible that the simplicial TQFT, defined in terms of the cyclic quantum dilogarithm, can be associated with quantum 2+1 dimensional gravity.

2 The quantum invariant for three hyperbolic knots

Let \(\omega \) be a primitive \(N \)-th root of unity. Throughout this paper we will work with the following choice for this root:

\[
\omega = \exp(2\pi i/N). \tag{2.1}
\]

The result of calculation of the link invariant from papers [15, 16] for three simplest hyperbolic knots reads:

\[
\langle 4_1 \rangle = \sum_k |(\omega)_k|^2, \quad \text{("figure-eight" knot)}, \tag{2.2}
\]

\[
\langle 5_2 \rangle = \sum_{k \leq l} \frac{(\omega)_k^2}{(\omega)_l^2} \omega^{-k(l+1)}, \tag{2.3}
\]

\[
\langle 6_1 \rangle = \sum_{k+l \leq m} \frac{|(\omega)_m|^2}{(\omega)_k(\omega)_l} \omega^{(m-k-l)(m-k+1)}, \tag{2.4}
\]

where the summation variables run over \(\{0, \ldots, N-1\} \);

\[
(\omega)_k = \prod_{j=1}^k (1 - \omega^j), \quad k = 0, \ldots, N-1; \tag{2.5}
\]

and the asterisk means the complex conjugation. Strictly speaking only \(N \)-th powers of these quantities are invariants.

Note that the simplest case \(N = 2 \) is related to a particular value of the Alexander polynomial \(\Delta_L(t) \):

\[
|\langle L \rangle| = \Delta_L(-1), \quad N = 2. \tag{2.6}
\]

In the next section we study another extreme case \(N \to \infty \).

3 The classical limit

Here we calculate explicitly the leading asymptotics at \(N \to \infty \) of the invariant for the hyperbolic knots from section 2 and justify formula (1.1).
First, for a positive real γ and complex p with $|\text{Re } p| < \pi + \gamma$, define two functions

$$f_{\gamma}(p) = S_{\gamma}(\gamma - \pi)/S_{\gamma}(p), \quad \overline{f}_{\gamma}(p) = S_{\gamma}(-p)/S_{\gamma}(\pi - \gamma),$$

where

$$S_{\gamma}(p) = \exp \frac{1}{4} \int_{-\infty}^{+\infty} \frac{e^{px}}{\sinh(\pi x) \sinh(\gamma x)} \frac{dx}{x},$$

the singularity of the integrand at $x = 0$ being put below the contour of integration. In [13] the function (3.3) is shown to be a particular solution to the functional equation:

$$(1 + e^{ip})S_{\gamma}(p + \gamma) = S_{\gamma}(p - \gamma).$$

Via this functional equation the definition of the function $S_{\gamma}(p)$ can be extended to the whole complex plane.

For fixed p the leading asymptotics of $S_{\gamma}(p)$ at $\gamma \to 0$ is given by Euler’s dilogarithm:

$$S_{\gamma}(p) \sim \exp \frac{1}{2i\gamma} \text{Li}_2(-e^{ip}), \quad \gamma \to 0,$$

where

$$\text{Li}_2(z) = -\int_0^z \frac{\log(1-u)}{u} du.$$

For numerical calculations the following formula will be useful (see, for example, [21]):

$$\text{Im } \text{Li}_2(re^{i\theta}) = \varphi \log(r) + \Lambda(\varphi) + \Lambda(\theta) - \Lambda(\varphi + \theta),$$

where $0 < r \leq 1$,

$$\varphi = \varphi(r, \theta) = \arctan \left(\frac{r \sin \theta}{1 - r \cos \theta} \right),$$

and

$$\Lambda(\theta) = -\int_0^\theta \log |2 \sin \phi| \, d\phi,$$

is Lobachevsky’s function.

From (3.2) and (3.4) it is easy to see that $f_{\gamma}(p)$ and $\overline{f}_{\gamma}(p)$ are analytic continuations of the symbols $(\omega)_k$ and $(\omega)_k^*$ in the sense that

$$(\omega)_k = f_{\gamma}(-\pi + \gamma + 2k\gamma), \quad (\omega)_k^* = \overline{f}_{\gamma}(-\pi + \gamma + 2k\gamma),$$

4
where
\[\gamma = \pi/N. \] (3.11)

Formulae (3.10) enable us to rewrite the summations in (2.2), (2.3), (2.4) as contour integrals, one has just to replace symbols \((\omega)_k\) and \((\omega)_{\bar{k}}\) by their analytic continuations, and each summation, by a contour integral:
\[\sum_k \rightarrow \frac{i}{4\gamma} \oint dp \tan \left(\frac{\pi^2 + \pi p}{2\gamma} \right) \] (3.12)
with an appropriately chosen contour.

In what follows \(\gamma\) will be assumed to be specified as in (3.11).

3.1 Knot 4_1 (figure-eight knot)

The exact formula (2.2) can be rewritten as a contour integral:
\[\langle 4_1 \rangle = \frac{i}{4\gamma} \oint_C dp \tan \left(\frac{\pi^2 + \pi p}{2\gamma} \right) f_\gamma(p) \overline{f}_\gamma(p), \] (3.13)

Where contour \(C\) encircles \(N\) points:
\[-\pi + \gamma + 2k\gamma \quad 0 \leq k < N, \] (3.14)
in the counterclockwise direction. In the large \(N\) (small \(\gamma\)) limit integral (3.13), by using (3.5), asymptotically can be approximated by
\[\langle 4_1 \rangle \sim \int dz \exp \frac{i}{2\gamma} [\text{Li}_2(z) - \text{Li}_2(1/z)]. \] (3.15)

The saddle point approximation of the last integral gives the result:
\[\langle 4_1 \rangle \sim \exp \frac{V(4_1)}{2\gamma}, \quad \gamma = \pi/N \rightarrow 0, \] (3.16)
where
\[V(4_1) = 4\Lambda(\pi/6) = 2.02988321 \ldots \] (3.17)

Formula (3.17) is in agreement with the known hyperbolic volume of the figure-eight knot complement \([6]\).

3.2 Knot 5_2

The sum (2.3) at large \(N\) is approximated by the double contour integral
\[\langle 5_2 \rangle \sim \int dzdu \exp \frac{i}{2\gamma} [2\text{Li}_2(z) + \text{Li}_2(1/u) + \alpha(z,u) - \pi^2/2], \] (3.18)
where
\[\alpha(z, u) = \log(z) \log(u). \] (3.19)
The stationary points are described by the algebraic equations:
\[u + z = uz, \quad u = (1 - z)^2. \] (3.20)
The maximal contribution to the integral comes from the solution \((z_0, u_0)\) to (3.20) with the property:
\[\text{Im } z_0 < 0 < \text{Im } u_0. \] (3.21)
Thus, we obtain for asymptotics of the absolute value of the invariant:
\[|\langle 5_2 \rangle| \sim \exp \frac{V(5_2)}{2\gamma}, \quad \gamma = \pi/N \to 0, \] (3.22)
where
\[V(5_2) = -\text{Im } (2\text{Li}_2(z_0) + \text{Li}_2(1/u_0) + \alpha(z_0, u_0)) = 2.82812208... \] (3.23)
in agreement with [6].

3.3 Knot 6_1

The sum (2.4) at large \(N\) is approximated by the triple integral
\[\langle 6_1 \rangle \sim \int dzdudv \exp \frac{i}{2\gamma} \left[\text{Li}_2(z) - \text{Li}_2(1/z) - \text{Li}_2(u) + \text{Li}_2(1/v) + \alpha(uv/z, z/u) + 2\pi i \log(u/z) \right], \] (3.24)
where \(\alpha(z, u)\) is defined in (3.19). The stationary points are solutions to the algebraic system of equations:
\[z(1 - z)^2 = -u^2v, \quad z^2(1 - u) = u^2v, \quad z(1 - v) = -uv. \] (3.25)
The maximal contribution to the integral comes from the solution \((z_0, u_0, v_0)\) with
\[\text{Im } z_0 < 0 < \text{Im } (u_0v_0). \] (3.26)
Thus, the asymptotics of the absolute value of the integral reads
\[|\langle 6_1 \rangle| \sim \exp \frac{V(6_1)}{2\gamma}, \quad \gamma = \pi/N \to 0, \] (3.27)
where
\[V(6_1) = -\text{Im } (\text{Li}_2(z_0) - \text{Li}_2(1/z_0) - \text{Li}_2(u_0) + \text{Li}_2(1/v_0) + \alpha(u_0v_0/z_0, z_0/u_0) + 2\pi i \log(u_0/z_0)) = 3.16396322... \] (3.28)
again in agreement with [6].
4 Summary

We have demonstrated on three examples of hyperbolic knots, that the link invariant, defined in [15, 16] via cyclic quantum dilogarithm, in the asymptotic limit \(N \to \infty \) reproduces the hyperbolic volume of a knot, see formula (1.1). This result implies a possible relation of the corresponding combinatorial TQFT to quantum 2+1-dimensional gravity.

5 Acknowlegements

The author is grateful to M. Blau, L. Freidel, J.M. Maillet, F. Smirnov for valuable discussions, and L.D. Faddeev for his encouragement in this work. The work is supported by the Programme TEMPRA-Europe de l’Est from the Région Rhône-Alpes.

References

[1] J.W. Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275-306
[2] V.F.R. Jones, A polynomial invariant for knots and links via Von Neumann algebras, Bull. Amer. Math. Soc. 12 (1985) 103-111
[3] C.N. Yang, Some exact results for the many-body problem in one dimension with repulsive delta-function interaction, Phys. Rev. Lett. 1967, Vol. 19, P. 1312-1314
[4] R.J. Baxter, Partition function of the eight-vertex lattice model, Ann. Phys. 1972, Vol. 70, P. 193-228
[5] W. Thurston, The geometry and topology of hyperbolic 3-manifolds, Lecture notes, Princeton University, Princeton (1977/78)
[6] C. Adams, M. Hildebrand, J. Weeks, Hyperbolic invariants of knots and links, Trans. Amer. Math. Soc. 1 (1991) 1-56
[7] C. Adams, The knot book. An elementary introduction to the mathematical theory of knots, W.H. Freeman and Company, N.Y. (1994)
[8] E. Witten, Quantum field theory and the Jones polynomial, Commun. Math. Phys. 121 (1989) 351-399
[9] M. Atiyah, Topological quantum field theories, Publ. Math. IHES 68 (1989) 175-186
[10] E. Witten, 2+1 dimensional gravity as an exactly soluble system, Nucl. Phys. B311 (1988/89) 46-78
[11] J. W. Milnor, *Hyperbolic geometry: the first 150 year*, Bull. Amer. Math. Soc., 6, n. 1 (1982), 232-248

[12] L.D. Faddeev, R.M. Kashaev, *Quantum dilogarithm*, Mod. Phys. Lett. A9 (1994) 427

[13] L.D. Faddeev, *Discrete Heisenberg-Weyl group and modular group*, Lett. Math. Phys. 34 (1995) 249-254

[14] L.D. Faddeev, *Current-like variables in massive and massless integrable models*, Lectures delivered at the International School of Physics “Enrico Fermi”, held in Villa Monastero, Varenna, Italy, 1994, [hep-th/9408041](https://arxiv.org/abs/hep-th/9408041)

[15] R.M. Kashaev, *Quantum dilogarithm as a 6j-symbol*, Mod. Phys. Lett. A9 (1994) 3757-3768

[16] R.M. Kashaev, *A link invariant from quantum dilogarithm*, Mod. Phys. Lett. A10 (1995) 1409-1418

[17] V.V. Bazhanov, N. Yu. Reshetikhin, *Remarks on the quantum dilogarithm* J. Phys. A, Math. Gen. v.28 (1995) 2217-2226.

[18] V.V. Bazhanov, R.J. Baxter, *Star-triangle relation for a three dimensional model*, J. Statist. Phys. 71 (1993) 839

[19] R.M. Kashaev, V.V. Mangazeev, Yu.G. Stroganov, *Star-Square and Tetrahedron Equations in the Baxter-Bazhanov Model*, Int. J. Mod. Phys. A8 (1993) 1399

[20] V.G. Turaev, O.Y. Viro, *State sum invariants of 3-manifolds and quantum 6j-symbols*, Topology 31 (1992) 865-902

[21] A.N. Kirillov, *Dilogarithm identities*, [hep-th/9408113](https://arxiv.org/abs/hep-th/9408113)