Projektbericht zum Simulatorennetzwerk: Ein Tool zur Verbesserung der Unterrichtsmaterialien und zum gezielten Einsatz von Ressourcen in Skills Labs

Zusammenfassung

Die medizinische Ausbildung im deutschsprachigen Raum bemüht sich vermehrt in der letzten Dekade um mehr Praxisbezug. Dieser wird mittlerweile an vielen Fakultäten durch simulations-basierten Unterricht in Skills Labs implementiert. Simulatoren sind damit essentieller Bestandteil für diese Art der medizinischen Ausbildung. Ihre Beschaffung und der Betrieb im Rahmen eines Skills Lab verlangen einen großen Einsatz von Ressourcen. Hier soll daher ein Projekt des Ausschusses für praktische Fertigkeiten der Gesellschaft für medizinische Ausbildung vorgestellt werden, welches eine Online-Datenbank (das Simulatorennetzwerk) für einen bessern Informationsfluss zwischen den Skills Labs und für eine transparente Bewertung der Simulatoren ermöglicht.

Schlüsselwörter: Fertigkeiten, praktische Fertigkeiten, klinische Fertigkeiten, medizinische Ausbildung, Simulation, Skills Lab, Simulatoren

Einleitung

Der Einsatz von Simulation in der Lehre und zu Prüfungszielen wird seit vielen Jahren in einer Reihe von Disziplinen praktiziert. Die simulierten Szenarien umfassen dabei so unterschiedliche Bereiche wie die Ausbildung und Prüfung von Piloten, das Training von Soldaten, den
Betrieb von Kernkraftwerken oder das Üben unterschiedlicher Managementstrategien [1], [2].

Auch in der medizinischen Aus-, Fort- und Weiterbildung wird Simulation zunehmend als Unterrichts- und Prüfungsformat eingesetzt [3], und beforscht [4], [5]. Issenberg und Kollegen identifizierten beispielsweise Faktoren für den sinnvollen Einsatz von Simulation in einem systematischen Review [6]. Auf nationaler Ebene fordert der Ausschuss für praktische Fertigkeiten in seinem Konsensusstatement von 2011 simulations-basierten Unterricht zur Vermittlung praktischer und kommunikativer Fertigkeiten [7].

Skills Labs sind Orte, in denen einfache Fertigkeiten ebenso wie komplexe Szenarien am Modell oder Simulator trainiert werden können. 38 von 43 medizinischen Fakultäten in den deutschsprachigen Ländern Europas betreiben derartige Zentren [8], [9]. Sie haben zu einer breiten Implementierung von Simulation in die medizinische Lehre geführt und etablieren die Simulation als Lehrenform zwischen Theorie und Krankenbett. Mittlerweile steht eine Vielzahl unterschiedlichster Simulator zur Verfügung und eine große Anzahl Hersteller versuchen, Ihre Simulator auf dem expandierenden Markt zu platzieren. Um ein adäquates Angebot an Simulatoren vorzuhalten und die diversen Verschleißteile regelmäßig zu ersetzen, sind dabei große finanzielle Ressourcen nötig, die viele Fakultäten nicht ohne weiteres aufbringen wollen oder können. Auch stellt sich die oft berechtigte Frage, wie komplex (und damit oft auch teuer) ein Simulator sein muss, um eine hohe didaktische Wertigkeit zu besitzen [10].

Bislang sind die Skills Lab-Leitungen bei der Beschaffung dieser Informationen auf die Distributoren und Hersteller angewiesen. Im günstigsten Fall ist eine weitere Fakultät bekannt, die einen interessanten Simulator besitzt, so dass auf deren Erfahrung zurückgegriffen werden kann. Eine unabhängige Quelle für diese Informationen gibt es bisher nicht.

Projektbeschreibung

Vor diesem Hintergrund entstand im Rahmen des Ausschusses für praktische Fertigkeiten der GMA [http://www.gesellschaft-medizinische-ausbildung.org/index.php?option=com_content&view=article&id=134&Itemid=120&lang=de] beim Skills Lab Symposium in Münster 2010 die Idee, einen „Geräte TÜV“ zu entwickeln, der als unabhängige Informationsquelle für alle Anwender von Simulation an medizinischen Fakultäten im deutschsprachigen Raum zur Verfügung steht.

Es formte sich eine Kerngruppe, die hauptverantwortlich das Projekt betreute und über das Fortkommen in den Ausschusssitzungen berichtete. Initial wurde das Projekt durch die Skills Labs der medizinischen Fakultäten der Universitäten Bern, Köln und Marburg getragen, wobei letztere die Koordination übernahm. Das Lernzentrum der Charité Berlin widmete sich im weiteren Verlauf vor allem der technischen Umsetzung. Ziel war es, eine Datenbank zu schaffen, welche zunächst geschützt durch einen Login

- Zutritt zu relevanten Information über die Simulatoren liefert,
- ein Bewertungssystem enthält und
- eine Verknüpfung der Simulatoren zum NKLM [11] (Arbeitspakete 14 „Praktische Fertigkeiten“) [7] bietet.

Eine erste Version des „Simulatorennetzwerks“ wurde im Sinne eines „soft starts“ auf dem Skills Lab Symposium 2012 in Marburg im Rahmen der Sitzung des Ausschusses für praktische Fertigkeiten präsentiert. Dort erhielten die anwesenden Skills-Lab-Leitungen ebenfalls Zugangsdaten, welche auch das Einpflegen des eigenen Bestands an Modellen und Simulatoren erlauben.

Technische Umsetzung

Die Datenbank basiert auf der e-learning Plattform ILIAS [http://www.ilias.de/docu/goto.php?target=cat_580&client_id=docu] und nutzt dessen Wiki Funktion. Jede der vier oben genannten Säulen wird über eine Wiki-Seite repräsentiert, die wiederum die Links zu den Einzelseiten enthält (siehe Abbildung 1) [http://simnet.charite.de/ilias/goto.php?target=wiki_41_Hauptseite]. ILIAS bietet darüber hinaus ein sehr ausgereiftes System zur Rechtevergabe, die Möglichkeit des Nachrichtenaustausches zwischen den Nutzern sowie Ressourcen, um Multime diainhalte wie Fotos und Videos zugänglich zu machen.

Das Organisationsprinzip des Simulatorennetzwerks

Um eine übersichtliche Datenbank zu kreieren muss ein leicht nachvollziehbares Organisationsprinzip der Anordnung der Daten zu Grunde liegen. Daher erschien eine Struktur, die eine Querverlinkung verschiedener Organisationsstrukturen ermöglicht und jeden Simulator nach verschiedenen Kriterien sortierbar macht als sinnvoll. Es entstanden vier Säulen:

1. **Simulator**: Hier ist jedem Simulator seine eigene Wiki-Seite gewidmet, wo Eckdaten wie Hersteller, ungefäh rer Preis, Kategorie (High scale, part task etc.) vereint sind. Außerdem als zentrales Element das Bewertungssystem, auf das weiter unten noch detailliert eingegangen wird.

2. **Skills Lab**: Die Wiki-Seite der einzelnen Skills Labs soll keinesfalls die Homepages der einzelnen Institutionen ersetzen. Ein kurzer Informationstext zu dem Skills Lab, sowie einige Fotos vermitteln hier einen ersten Eindruck des Skills Lab. Eine Tabelle beinhaltet die Kontaktdaten und einen direkten Link zur Homepage.

3. **Fachgebiet**: Diese Säule gliedert die Simulatoren nach den medizinischen Fachgebieten. Dabei haben wir uns an den in der Approbationsordnung angegebenen orientiert und diese dann ergänzt [12].
4. **Organsystem**: Hier wird eine Verknüpfung zum Arbeitspaket 14 des Nationalen kompetenzbasierten Lernzielkatalogs (NKLM) [7] aufgebaut. Am Anfang jeder Wiki-Übersichtsseite in der Säule „Organsysteme“ findet sich ein Auszug, welche Lernziele aus dem Arbeitspaket 14 „Praktische Fertigkeiten“ des NKLM an dieser Stelle abgebildet werden.

Die vier Säulen sind untereinander verlinkt. Durch die Quer Verlinkungen kann einfach zwischen diesen Ansichten gewechselt werden. Befindet sich der Benutzer z.B. im Wiki eines Simulators (Säule: Simulator), dem das Fachgebiet Chirurgie zugeordnet ist, so bringt ihn ein Klick auf den Hyperlink zur Säule „Fachgebiet“ und darin zur Kategorie „Chirurgie“. Es öffnet sich eine Liste mit allen Simulatoren, die unter „Chirurgie“ klassifiziert sind.
Die Säule „Skills Labs“ hingegen ermöglicht einen Überblick darüber, welche Simulatoren ein Skills Lab besitzt.

Bewertungssystem

Das Bewertungssystem des Simulatorennetzwerks basiert auf den zwei Grundprinzipien Freitext-Bewertung und visuelle Bewertungsskala vorgegebener Kriterien. Hinsichtlich letzterer bot ILIAS bisher nur die Möglichkeit ganze Wiki-Seiten zu bewerten. Ziel war es jedoch, einen Simulator nach vorgegebenen Kriterien (z.B. Haltbarkeit, Eignung für Prüfungen, Preis-Leistung, didaktische Qualität) mittels einer visuellen Skala bewerten zu können. Zur Entwicklung einer solchen Skala wurde ein Feature request bei den ILIAS-Entwicklern eingereicht, welches von der Mittelbauvereinigung der Universität Bern finanziert wird. Die Entwicklung der ersten Version ist aktuell (Stand 12/2012) abgeschlossen und erste Testläufe zur Fehler suche laufen. Die Implementierung in das System wird im Januar/Februar 2013 erfolgen. Die visuelle Skala wird über Sterne, die die jeweils durchschnittliche Bewertung der Unterpunkte errechnen, realisiert. Zusätzlich wird jedem Nutzer durch einen blauen Punkt vor der Bewertung seine eigene Bewertung angezeigt (siehe Film [http://www.ilias.de/docu/goto_docu_wiki_1357_Extended_Rating_in_Wiki.html]).

Diskussion

Simulation als Unterrichtsformat in medizinischer Aus- und Weiterbildung ist evidenzbasiert [4], [6]. Ein wesentliches Hindernis in der curricularen Umsetzung sehen die Autoren in den hohen Investitions- und Betriebskosten. Die entwickelte Datenbank soll die Kommunikation und den Informationsfluss unter Simulationszentren steigern und so helfen, Fehlinvestitionen zu vermeiden und die vorhandenen Ressourcen gezielt zur Umsetzung evidenzbasierter Ausbildungsstrategien einzusetzen.

Der Erfolg der Datenbank wird von der Beteiligung der Skills Labs abhängen. Auf der GMA Tagung 2012 in Aachen wurde die Datenbank erneut im Rahmen der Sitzung des Ausschusses für praktische Fertigkeiten präsentiert und stieß dabei wiederum auf positive Resonanz. Mehrere Skills Labs haben schon Modelle eingeführt oder mittlerweile studentische Tutors benannt, die dies tun werden. Eine für die Zukunft interessante Frage wird sein, inwieweit die Hersteller Daten aus dem Simulatorennetzwerk zur Verfügung gestellt werden können und welche Synergien sich daraus ergeben könnten. Zusätzliche Features wie zum Beispiel Verlinkungen zu spezieller Literatur oder die Aufnahme von Unterrichtskonzepten in das Simulatorennetzwerk könnten später implementiert werden.

Schlussfolgerungen

Der systematische Einsatz simulations-basierten Unterrichts an medizinischen Fakultäten in Skills Labs im deutschsprachigen Raum ist noch relativ jung. Die Evidenz der eingesetzten Verfahren muss noch verbessert werden. Nur ein ressourcen- schonender Einsatz von Simulation wird den Unterricht in Skills Labs auf Dauer etablieren können und somit eine relevante wissenschaftliche Begleitung ermöglichen. Das Simulatorennetzwerk strebt somit an, einen Beitrag zum effizienten Einsatz von Ressourcen in der medizinischen Lehre zu leisten. Den Autoren ist sowohl national als auch international kein ähnliches Projekt bekannt. Der Erfolg der Maßnahme wird von der Beteiligung der Anwender simulations-basierter Ausbildung in den Skills Labs abhängen. Es sind verschiedene Schulungsmaßnahmen geplant und bereits umgesetzt, die diese Beteiligung herbeiführen können.

Danksagung

Allen, die schon ein Modell im Simulatorennetzwerk eingepflegt haben.

Interessenkonflikt

Die Autoren erklären, dass sie keine Interessenkonflikte im Zusammenhang mit diesem Artikel haben.

Literatur

1. Issenberg SB, Gordon MS, Gordon DL, Safford RE, Hart IR. Simulation and new learning technologies. Med Teach. 2001;16(1):16-23.
2. Tekian A, McGuire CH, McGaghie WC. Innovative Simulations for Assessing Professional Competence. Chicago: University of Illinois at Chicago, Department of Medical Education; 1999.
3. Issenberg SB, McGaghie WC, Hart IR, Mayer JW, Felner JM, Petrusa ER, Waugh RA, Brown DD, Safford RR, Gessner IH, Gordon DL, Ewy GA. Simulation technology for health care professional skills training and assessment. JAMA. 1999;282(9):861-866. DOI: 10.1001/jama.282.9.861
4. McGaghie WC, Issenberg SB, Petrusa ER, Scalese RJ. A critical review of simulation-based medical education research: 2003-2009. Med Educ. 2010;44(1):50-63. DOI: 10.1111/j.1365-2923.2009.03547.x
5. Issenberg SB, Ringsted C, Ostergaard D, Dieckmann P. Setting a research agenda for simulation-based healthcare education: a synthesis of the outcome from an Utstein style meeting. Simul Healthc. 2011;6(3):155-167. DOI: 10.1097/SIH.0b013e318220724
6. Issenberg SB, McGaghie WC, Petrusa ER, Lee Gordon D, Scalese RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10-28. DOI: 10.1080/01421590500046924
7. Schnabel KP, Boltld PD, Breuer G, Fichtner A, Karsten G, Kujumdshiev S, Schmidts M, Stosch C. Konsensusstatement "Praktische Fertigkeiten im Medizinstudium" – ein Positionspapier des GMA-Ausschusses für praktische Fertigkeiten. GMS Z Med Ausbild. 2011;28(4):Doc58. DOI: 10.3205/zma000770
8. Segarra LM, Schwedler A, Weih M, Hahn EG, Schmidt A. Der Einsatz von medizinischen Trainingszentren für die Ausbildung zum Arzt in Deutschland, Österreich und der Schweiz. GMS Z Med Ausbild. 2008;25(2):Doc80. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2008-25/zma000564.shtml

9. Damanakis A, Stibane T, Klose KJ. Ein Statusreport über Skills Labs als Institutionen zum Erlernen praktischer und kommunikativer Fertigkeiten in der medizinischen Ausbildung; Dissertation. (noch nicht abgeschlossen)

10. Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46(7):636-647. DOI: 10.1111/j.1365-2923.2012.04243.x

11. Hahn EG, Fischer MR. Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) für Deutschland: Zusammenarbeit der Gesellschaft für Medizinische Ausbildung (GMA) und des Medizinischen Fakultätentages (MFT). GMS Z Med Ausbild. 2009;26(3):Doc35. DOI: 10.3205/zma000627

12. Bundesministerium für Gesundheit. Approbationsordnung für Ärzte vom 27. Juni 2002. Bundesgesetzbl. 2002;(44):2417ff.

Korrespondenzadresse:
Alexander Damanakis
Universitätsklinikum Gießen und Marburg, Standort Marburg, Klinik für Viszeral-, Thorax- und Gefäßchirurgie, Baldingerstraße, 35043 Marburg, Deutschland
damanaki@med.uni-marburg.de

Bitte zitieren als
Damanakis A, Blaum WE, Stosch C, Lauener H, Richter S, Schnabel KP. Projektbericht zum Simulatorennetzwerk: Ein Tool zur Verbesserung der Unterrichtsmaterialien und zum gezielten Einsatz von Ressourcen in Skills Labs. GMS Z Med Ausbild. 2013;30(1):Doc4. DOI: 10.3205/zma0008477, URN: urn:nbn:de:0183-zma0008477

Artikel online frei zugänglich unter
http://www.egms.de/en/journals/zma/2013-30/zma000847.shtml

Eingereicht: 05.07.2012
Überarbeitet: 06.12.2012
Angenommen: 13.12.2012
Veröffentlicht: 21.02.2013

Copyright
©2013 Damanakis et al. Dieser Artikel ist ein Open Access-Artikel und steht unter den Creative Commons Lizenzbedingungen (http://creativecommons.org/licenses/by-nc-nd/3.0/deed.de). Er darf vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden, vorausgesetzt dass Autor und Quelle genannt werden.
Simulator Network Project Report: A tool for improvement of teaching materials and targeted resource usage in Skills Labs

Abstract

During the last decade, medical education in the German-speaking world has been striving to become more practice-oriented. This is currently being achieved in many schools through the implementation of simulation-based instruction in Skills Labs. Simulators are thus an essential part of this type of medical training, and their acquisition and operation by a Skills Lab require a large outlay of resources. Therefore, the Practical Skills Committee of the Medical Education Society (GMA) introduced a new project, which aims to improve the flow of information between the Skills Labs and enable a transparent assessment of the simulators via an online database (the Simulator Network).

Keywords: skills, practical skills, clinical skills, medical education, simulation, skills lab, simulators

Introduction

The use of simulation for instruction and examination purposes has been practiced for many years in a number of disciplines. The simulated scenarios encompass such diverse areas as the training and testing of pilots, the training of soldiers, the operation of nuclear power plants, or the practice of different management strategies [1], [2]. Also throughout medical education, simulation as a training and examination tool is being increasingly employed [3], and researched [4], [5]. Issenberg and colleagues, for example, have already identified factors for
The appropriate use of simulation in a systematic review [6]. At the national level, the Practical Skills Committee, in their 2011 Consensus Statement, required the use of simulation-based instruction to convey practical and communicative skills [7].

Skills Labs are sites where one can practice simple skills, as well as complex scenarios, with the use of models or simulators. Such centers are employed by 38 of the 43 medical faculties in the German-speaking countries [8], [9]. Skills Labs lead to a wide employment of simulation in medical education, and establish simulation as a form of instruction between theory and bedside. Meanwhile, a variety of different simulators are available, and a large number of manufacturers are trying to place their simulators in the expanding market. Extensive financial resources are necessary to obtain an adequate supply of simulators, as well as to replace diverse consumable or wearing parts, and many faculties cannot or will not easily part with such amounts. Additionally, there is the often legitimate question of how complex (and therefore expensive) a simulator must be, in order to possess a high educational value [10]. The Skill Lab managers, who are responsible for the acquisition of simulators, have until now depended on the distributors and manufacturers to obtain such information. At best, an additional faculty that owns a simulator of interest is known, and can be questioned about their experiences. There is currently no independent source for this information.

Project Description

In light of the above, during the Skills Lab Symposium in Münster 2010, the Practical Skills Committee of the GMA [http://www.gesellschaft-medizinische-ausbildung.org/index.php?option=com_content&view=article&id=134&Itemid=120&lang=de] first developed the idea of a “product certifier” for simulators, which would provide an independent source of information on simulators to all faculties in the German-speaking world. The task group was formed to supervise the project, and to brief the Committee on its progress during meetings. Initially, the project was supported by the Skills Labs from the medical faculties of the Universities of Bern, Cologne and Marburg, whereas the latter was responsible for coordination. In the later course of the project, the Learning Center of the Charité Berlin was engaged primarily on technical implementation.

The goal was to create a database, originally protected by login, that
- allows access to relevant information about delivered simulators,
- contains a rating system, and
- offers a link to the simulators on the National Competency-Based Learning Objective Catalog for Medicine (NKLM) [11] (Work Package 14 “Practical Skills”) [7].

A first version of the “Simulator Network”, in terms of a "soft start", was presented during the Practical Skills Committee meeting at the Skills Lab Symposium 2012 in Marburg. There, the attending Skills Lab managers received login data, which also allowed them to add their inventory of models and simulators to the database.

Technical Implementation

The network is based on the e-learning platform ILIAS [http://www.ilias.de/docu/goto.php?target=cat_580&client_id=docu] and uses its wiki function. Each of the four columns Simulator, Skills Lab, Organ System and Discipline detailed below are represented by a wiki page, which in turn contains links to the individual pages (see Figure 1) [http://simnet.charite.de/ilias/goto.php?target=wiki_41_Hauptseite]. ILIAS also offers a sophisticated access rights system, messaging capability, as well as resources that allow for the posting of multimedia content, such as photos and videos.

The Organization of the Simulator Network

In order to develop a comprehensible, user-friendly database, the arrangement of data must be logical and easy to understand. Therefore, a suitable structure must allow for cross-linking between different organizational structures, as well as the sorting of each simulator by various criteria. Four columns were created:

1. **Simulator**: Here, each simulator has its own wiki page, summarizing key data such as manufacturer, approximate price, category (e.g., high scale, part task), etc. In addition, the evaluation system on this page is a central element, and will be discussed below in detail.
2. **Skills Lab**: The wiki page of the individual Skills Labs will under no circumstance replace the websites of the individual institutions. A short informational text, as well as some photos, would serve to provide a first impression of the Skills Lab. A table will contain contact information, as well as a direct link to the homepage.
3. **Subject Area**: This column groups the simulators according to their respective medical area. The groups were based on the current medical licensing guidelines, and were expanded as needed [12].
4. **Organ System**: Here is a link to the Work Package 14 of the National Competency-Based Learning Objective Catalog for Medicine (NKLM) [7]. At the beginning of each wiki page overview, in the column "Organ Systems", the applicable learning objectives of the Work Package 14 "Practical Skills" of the NKLM are clearly listed.

All four columns are linked to each other, and the cross-linking enables the user to easily switch between these views. For example, a user visiting the wiki page of a simulator (column: Simulator) classified under the field of surgery, must simply click on the link to the column...
“Subject Area” to be taken to the “Surgery” listings, where he will find a full list with all simulators classified under “Surgery”. The column “Skills Labs”, conversely, provides an overview of simulator inventory of a particular Skills Lab.

Rating System

The rating system of the Simulator Network is based on two basic principles: a free-text review, and a visual rating scale with predetermined criteria. Regarding the latter, ILIAS currently offers only the possibility to evaluate an entire wiki page. The aim was, however, to rate simulators according to predefined criteria (e.g., durability, exam
suitability, price-performance, teaching quality) using a visual scale. In order to obtain such a scale, a feature request was submitted to the developers of ILIAS, which is funded by the “Mittelbauvereinigung” of the University of Bern. The development of the first version is (as of 12/2012) completed, and the first test runs are currently in progress. The implementation of the system will take place in January / February 2013. The visual scale will be based on a star system, which is automatically calculated by averaging the ratings of sub-points. A blue dot above the star ratings will enable each user to see how they rated a simulator (see movie [http://www.ilias.de/docu/goto_docu/wiki_1357_Extended_Rating_in_Wiki.html]).

Discussion

Simulation is an evidence-based teaching method throughout medical education [4], [6], but major obstacles to its curricular implementation are the high purchase and operating costs. The developed database is designed to improve communication and information flow between simulation centers. This should help prevent poor investments, and optimize the use of resources towards implementation of evidence-based educational strategies. The success of the database will depend on the participation of the Skills Labs. On the GMA Conference 2012 in Aachen, the database was once again presented at the meeting of the Practical Skills Committee, and again it was met with an overwhelmingly positive response. Several Skills Labs have already added models to the database, or designated student tutors who will soon do so. An interesting question for the future will be the extent of the Simulator Network’s data that can be made available to the manufacturers, and what synergies might arise from this. Additional features could be later implemented, such as links to relevant literature, or posts with recordings of teaching concepts in the Simulator Network.

Conclusions

In the German-speaking world, the systematic use of simulation-based instruction in Skills Labs of medical faculties is still relatively young. The evidence of the procedures currently in place must still be improved. Only with a prudent employment of resources can simulation be widely established, thus enabling relevant scientific research and validation. Thus, the Simulator Network seeks to contribute to the efficient use of resources in medical education. The authors were unable to identify any similar projects, in Germany or elsewhere, The success of the project will depend on the participation of the simulation centers. Diverse training sessions that aim to improve participation have been planned, or are currently taking place.

Acknowledgments

We thank all those who already added a model into the Simulation Network and Rudi Mörgli for help with the translation to English.

Competing interests

The authors declare that they have no competing interests.

References

1. Issenberg SB, Gordon MS, Gordon DL, Safford RE, Hart IR. Simulation and new learning technologies. Med Teach. 2001;16(1):16-23.
2. Tekian A, McGuire CH, McGaghie WC. Innovative Simulations for Assessing Professional Competence. Chicago: University of Illinois at Chicago, Department of Medical Education; 1999.
3. Issenberg SB, McGaghie WC, Hart IR, Mayer JW, Felner JM, Petrusa ER, Waugh RA, Brown DD, Safford RR, Geissner IH, Gordon DL, Ewy GA. Simulation technology for health care professional skills training and assessment. JAMA. 1999;282(9):861-866. DOI: 10.1001/jama.282.9.861
4. McGaghie WC, Issenberg SB, Petrusa ER, Scalse RJ. A critical review of simulation-based medical education research: 2003-2009. Med Educ. 2010;44(1):50-63. DOI: 10.1111/j.1365-2923.2009.03547.x
5. Issenberg SB, Ringsted C, Ostergaard D, Dieckmann P. Setting a research agenda for simulation-based healthcare education: a synthesis of the outcome from an Utstein style meeting. Simul Healthc. 2011;6(3):155-167. DOI: 10.1097/SIH.0b013e3182207c24
6. Issenberg SB, McGaghie WC, Petrusa ER, Lee Gordon D, Scalse RJ. Features and uses of high-fidelity medical simulations that lead to effective learning: a BEME systematic review. Med Teach. 2005;27(1):10-28. DOI: 10.1080/0142159050046924
7. Schnabel KP, Boldt PD, Breuer G, Fichtner A, Karsten G, Kujumdshiev S, Schmidts M, Stosch C. Konsensusstatement "Praktische Fertigkeiten im Medizinstudium" – ein Positionspapier des GMA-Ausschusses für praktische Fertigkeiten. GMS Z Med Ausb. 2011;29(4):Doc58. DOI: 10.3205/zma000770
8. Segarra LM, Schwerdler A, Weih M, Hahn EG, Schmidt A. Der Einsatz von medizinischen Trainingszentren für die Ausbildung zum Arzt in Deutschland, Österreich und der Schweiz. GMS Z Med Ausb. 2008;25(2):Doc80. Zugänglich unter/available from: http://www.egms.de/static/de/journals/zma/2008-25/zma000564.shtml
9. Damanakis A, Stibane T, Klose KJ. Ein Statusreport über Skills Labs als Institutionen zum Erlernen praktischer und kommunikativer Fertigkeiten in der medizinischen Ausbildung; Dissertation. (noch nicht abgeschlossen)
10. Norman G, Dore K, Grierson L. The minimal relationship between simulation fidelity and transfer of learning. Med Educ. 2012;46(7):636-647. DOI: 10.1111/j.1365-2923.2012.04243.x
11. Hahn EG, Fischer MR. Nationaler Kompetenzbasierter Lernzielkatalog Medizin (NKLM) für Deutschland: Zusammenarbeit der Gesellschaft für Medizinische Ausbildung (GMA) und des Medizinischen Fakultätenetages (MFT). GMS Z Med Ausb. 2009;26(3):Doc35. DOI: 10.3205/zma000627
12. Bundesministerium für Gesundheit. Approbationsordnung für Ärzte vom 27. Juni 2002. Bundesgesetzbl. 2002(3)(44):2417ff.
