In-Hospital Death Due to COVID-19 Disease in Iranian Patients: A Systematic Review and Meta-Analysis Study

Mostafa Ghanei
Baqiyatallah University of Medical Sciences

Seyed Hassan Saadat
Baqiyatallah University of Medical Sciences

Alireza Najimi-Varzaneh
Tarbiat Modares University Faculty of Medical Sciences

Mohammad Gholami Fesharaki
Tarbiat Modares University Faculty of Medical Sciences

Keywords: COVID-19, Iran, Mortality, Hospital, Systematic Review

Posted Date: July 2nd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-662222/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Context: The prevalence of in-hospital death due to COVID-19 hospital is one of the qualitative indexes, which can be used to assess the quality of care, as well as the mortality patterns in COVID-19 pandemic.

Objectives: Therefore, this systematic and meta-analysis study has been done with the aim of estimating overall prevalence in-hospital death due to COVID-19 disease in iranian patients.

Evidence Acquisition: Articles were identified through international searching databases including PubMed, Scopus, Elsevier, Google Scholar, and Web of Science and Iranian scientific information database (SID), Health.barakatks, IranDoc, Civilica and MagIran. We reviewed systematically all studies reporting the prevalence of in-hospital death due to COVID-19 disease. In this study meta-analysis method with random effect model has been used to estimate the pooled prevalence.

Results: 118 records were identified by the electronic search, of which 43 studies were identified as relevant papers that were meta-analyzed for the pooled in-hospital death due to COVID-19 prevalence. Overall, prevalence of death were 12.16% (95% CI: 10.72%-13.61%). The highest and lowest death prevalence has been reported in Northern Provinces (Gilan, 27.27% (95% CI: 8.66%-45.88%) and Mazandaran, 21.27% (95% CI: 18.14%-24.40%)) and Turkish-speaking provinces (Azerbaijan, East, 3.29% (95% CI: 2.11%-4.47%) and Zanjan, 3.42% (95% CI: 1.82%-5.02%)) respectively.

Conclusions: Considering the death rate obtained in this study and its comparison with other countries, it can be said that the performance of the Iranian medical system in COVID-19 pandemic is acceptable.

1. Context

In late 2019 began a wave of respiratory diseases in Wuhan(China) On March 11, 2020, according to the World Health Organization, the COVID-19 pandemic was announced[1].

The World Health Organisation estimates that 14% of infected cases are severe and require hospitalization and 4% of infected die[2]. Approximately, 143 million confirmed cases and more than 3 million deaths were reported by the World Health Organization (WHO) as of April 20, 2021[3].

COVID-19 poses a significant global threat due to the lack of a validated cure and the difficulty of its delivery[4]. The rate of death due to COVID-19 in each country depends on the actual number of cases, screening system, the capacity of the health and management [5–7]. COVID-19 patients had a very high ranging in-hospital death rate of admitted patients. The large cohort study in China (9.6%)[8], 3.98% [9], USA (8.2% [10], 18.58%[11], 45.11%[12], 22.77% [13]), Brazil (26.82%[14], Spain (21.3% [15], 20.90%[16], 21.41% [17]), France (16.87% [18], 27.72% [19]), Italy (28% [20]) reported various prevalence of in-hospital death due to COVID-19. Abate et al in a meta analysis study showed that the pooled prevalence of in-hospital mortality in patients with coronavirus disease was 15% (95% CI: 13 to 17)[21]. In-hospital death is one of the qualitative indexes, which can be used to assess the resilience of a health system in Crisis.
situations. However, the study of in-hospital death due to Covid-19 in Iran is of great importance for two reasons. First, Iran was one of the first countries to face the COVID-19, and on the other hand, due to the existence of many sanctions, this country has not been able to access many equipment and medicines.

2. Objectives

Therefore, this systematic and meta-analysis study has been done with the aim of estimating overall prevalence in-hospital death due to COVID-19 disease in Iranian patients.

3. Evidence Acquisition

3.1. Search Strategy

In this systematic review and meta-analysis study, all studies that reported in-hospital death in admitted patients to hospital due to COVID-19 has been used. The literature in Iran was acquired through Iranian scientific data base including SID, IranDoc, Health.barakatkins, MagIran and Civilica and international searching databases including PubMed, Scopus, Elsevier and Web of Science. Additional search was also done by Google Scholar search engine.

The last search took place on 11 April 2021. To search and include related studies as many as possible, we used the following terms: “Deceased”, “Mortality”, “Death”, “COVID 19”, “Cross sectional”, “Cohort”, “Observational”, “Iran” (or the names of its provinces), as keywords for titles and/or abstracts in MeSH word search database with such combination. (“Cohort”[Title/Abstract] OR “Observational”[Title/Abstract] OR “Cross Sectional”[Title/Abstract]) AND (“Mortality”[Title/Abstract] OR “Death”[Title/Abstract] OR “Deceased”[Title/Abstract]) AND (“COVID 19”[Title/Abstract] AND (“Iran”[Title/Abstract] OR “Name of provinces, like Tehran, Isfahan, …”[Title/Abstract]).

3.2. Selection of Studies and Data Extraction

Published studies were regarded as qualified for the analysis if they met the following criteria: (1) Observational, cross-sectional or cohort studies with the full text of the paper available in the Persian or English languages, (2) studies with a sample size of more than 30, and (3) studies reporting the prevalence of in-hospital death in admitted patients to hospital due to COVID-19, (4) studies with mean Age ranges from 16 to 100, (5) studies with approved diagnosis of COVID-19 by means positive RT-PCR of throat-swab specimens or the chest CT scans according to the WHO interim guidance including ground glass opacity in addition to ill-defined margins, smooth or irregular interlobular septal thickening, air bronchogram, crazy-paving pattern, and thickening the adjacent pleura [22–24] conversely, the following studies were excluded: (1) non-English or non-Persian full-text reports, (2) studies not providing enough data to estimate the death prevalence, (3) studies designed as letters to the editor, expert opinions, editorials, commentaries, case-reports, case-series, and reviews, and (4) Studies reporting overlapping data.

3.3. Data Extraction
All articles categorized as potentially relevant were reviewed separately by both of the authors (Seyed Hassan Saadat and Alireza Najimi-Varzaneh). In case of inconsistency in the results of the two authors, the other two authors ((Mostafa Ghanei and Mohammad Gholami Fesharaki) review the articles and finally the results of the articles summarized the following data using Excel datasheets: First author’s name, duration of study, number of COVID-19 hospitalation patients, study sample size, name of the province, mean age and gender of responders. The analysis was conducted according to the preferred reporting items for systematic reviews and meta-analysis (PRISMA)[25]. In this study, The “Newcastle Ottawa Scale (NOS)” was used to evaluate the accuracy of the data in this analysis.

3.3. Statistical Analysis

The prevalence of in-hospitalized death among COVID-19 patient from each province of Iran was computed by metan command. Statistical tests of heterogeneity among the studies were carried out using the Q test (P < 0.10 indicates statistically significant heterogeneity) and I-squared statistics. We also used a funnel plot to investigate publication bias. In this study, “metafor” package in R software version 3.6. In this study, the publication bias was assessed graphically and statistically by funnel plot, and based on visual inspection of the funnel plot, Begg's Test, and Egger's test.

4. Results

4.1. Search Results and Study Selection

The study selection process is presented in Figure 1. A total of 118 studies were potentially associated with study subject. After reviewing the abstracts and titles, 79 studies were eliminated based on the stated inclusion and exclusion criteria. After the full text screening and quality assessment, a total of 43 records were deemed as eligible studies published until 11 April 2021.

4.2. Evaluating Heterogeneity Index and Publication Bias

In this study, for evaluating heterogeneity and publication bias the I-squared statistics and Begg and Egger tests has been used respectively. If the I-squared were upper 40% it showed heterogeneity and the random effect model must be used. In this study I-squared calculated 97.3%. Therefore in this study random model has been used. In addition, the upper 5% of Begg's (T=0.10, P-value=0.920) and Egger's Test (T=1.90, P-value=0.051) P-value showed any publication bias in this study.

4.3. Prevalence of in-hospital death due to COVID-19 in Iran country

Data, including the prevalence of in-hospital death due to COVID-19 as well as other features like reference, province, first author’s name, study sample size, mean age and male percent were presented in Table1. Also, the pooled prevalence of in-hospital death due to COVID-19 according to the provinces of Iran were presented in Table 2. In this study from 43 study, totally 67928 patients evaluated that from them 6781 death has been reported.
The pooled overall in-hospital death due to COVID-19 in Iran using random effect model was 12.16% (95% CI: 10.72%-13.61%). The highest and lowest death prevalence has been reported in Northern Provinces (Gilan, 27.27% (95% CI: 8.66%-45.88%) and Mazandaran, 21.27% (95% CI: 18.14%-24.40%)) and Turkish-speaking provinces (Azerbaijan, East, 3.29% (95% CI: 2.11%-4.47%) and Zanjan, 3.42% (95% CI: 1.82%-5.02%)) respectively.

5. Discussion

Our meta-analysis study of 43 published articles involving 67928 patients is provide a comprehensive analysis of in-hospital death due to COVID-19 disease. The pooled overall, prevalence of in-hospital death in Iran country is 12.16% (95% CI: 10.72%-13.61%). This estimation is upper than large cohort study that reported in-hospital death due to COVID-19 in China[8, 9] and lower than study reported in in-hospital mortality in USA[11–13], Brazil[14], Spain[15–17], France[18, 19] and Italy [20].

This prevalence is also lower than pooled meta prevalence of in-hospital mortality in patients with COVID-19 in the world[21].

More result also showed that two Northern Provinces Gilan (27.27% (95% CI: 8.66%-45.88%) and Mazandaran (21.27% (95% CI: 18.14%-24.40%)) reported the highest in-hospital death prevalence due to COVID-19 in Iran country.

This result can be justified by the fact that these provinces are two destination of tourists travelers in Iran and the main reason for this high prevalence is travel. Previous studies has been identified that travel is a major risk factor for spread COVID-19[26–28]. Increasing prevalence of disease leads to increasing severity and increasing severity tend to higher prevalence in-hospital death due to COVID-19 disease.

The higher the prevalence of the disease, the greater the severity of the disease and, accordingly, the greater the death of patients. There are several limitations to be noted in the present study. Firstly, some provinces of Iran did not report any published article on in-hospital death due to COVID-19, so the generalizability of the above results to the whole of Iran is biased. Secondly, most of article that has been published in-hospital death due to COVID-19 are from Tehran city so in fact the pooled prevalence of Iran is close to the prevalence of Tehran, Furthermore, non existent data or low number of studies from certain provinces have not allowed us to report geographical distribution of Iran. Finally, due to the lack of meta-analysis studies in other countries, it is suggested that the present study be performed for other countries and the results be compared with the present study.

6. Conclusion

Considering the death rate obtained in this study and its comparison with other countries, it can be said that the performance of the Iranian medical system in COVID-19 pandemic is acceptable.

Declarations
Ethical Approval

This article is based on the management plans approved by the Ethics Committee of Tarbiat Modares University of Tehran with a code of ethics IR.MODARES.REC.1399.240 dated 2021 October 10.

Conflict of interest

The authors say they don't have any conflict of interest.

Acknowledgment

The authors gratefully acknowledge financial support from Tarbiat Modares University.

References

1. WHO. WHO characterizes COVID-19 as a pandemic. 2020; Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen.

2. Grech, V., Unknown unknowns - COVID-19 and potential global mortality. Early human development, 2020. 144: p. 105026-105026.

3. WHO. Coronavirus disease (COVID-19) pandemic. 2020 2020-12-01; Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019?gclid=CjwKCAiA8Jf-BrB-EiwAWDtEGnT5aEuG4ks8f8z7dtHUcjaM39WLnJ7x3mlhCl7qpdwCot2ITMuOxoCrgkQAyD_BwE.

4. Al-Dorzi, H.M., S. Alsolamy, and Y.M. Arabi, Critically ill patients with Middle East respiratory syndrome coronavirus infection. Crit Care, 2016. 20(65): p. 016-1234.

5. Tadbiri, H., M. Moradi-Lakeh, and M. Naghavi, All-cause excess mortality and COVID-19-related deaths in Iran. Medical Journal of The Islamic Republic of Iran (MJIRI), 2020. 34(1): p. 561-566.

6. Goldstein, N.D. and I. Burstyn, On the importance of early testing even when imperfect in a pandemic such as COVID-19. Global epidemiology, 2020. 2: p. 100031-100031.

7. Kandel, N., et al., Health security capacities in the context of COVID-19 outbreak: an analysis of International Health Regulations annual report data from 182 countries. Lancet (London, England), 2020. 395(10229): p. 1047-1053.

8. Ding, Z.Y., et al., Association of liver abnormalities with in-hospital mortality in patients with COVID-19. J Hepatol, 2020.

9. Yan, X., et al., Neutrophil to lymphocyte ratio as prognostic and predictive factor in patients with coronavirus disease 2019: A retrospective cross-sectional study. J Med Virol, 2020. 92(11): p. 2573-2581.

10. Asch, D.A., et al., Variation in US Hospital Mortality Rates for Patients Admitted With COVID-19 During the First 6 Months of the Pandemic. JAMA Intern Med, 2020.

11. Goodman, K.E., et al., Impact of Sex and Metabolic Comorbidities on COVID-19 Mortality Risk Across Age Groups: 66,646 Inpatients Across 613 U.S. Hospitals. Clin Infect Dis, 2020.
12. Izurieta, H.S., et al., Natural history of COVID-19: Risk factors for hospitalizations and deaths among >26 million U.S. Medicare beneficiaries. J Infect Dis, 2020.

13. Mallow, P.J., et al., Outcomes of Hospitalized COVID-19 Patients by Risk Factors: Results from a United States Hospital Claims Database. J Health Econ Outcomes Res, 2020. 7(2): p. 165-174.

14. Macedo, M.C.F., et al., Correlation between hospitalized patients' demographics, symptoms, comorbidities, and COVID-19 pandemic in Bahia, Brazil. PLoS One, 2020. 15(12): p. e0243966.

15. Núñez-Gil, I.J.J., et al., Underlying heart diseases and acute COVID-19 outcomes. Cardiol J, 2020.

16. Rubio-Rivas, M., et al., Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry SEMI-COVID-19. J Clin Med, 2020. 9(11).

17. Rodilla, E., et al., Impact of arterial stiffness on all-cause mortality in patients hospitalized with COVID-19 in Spain. Hypertension, 2020.

18. Piroth, L., et al., Comparison of the characteristics, morbidity, and mortality of COVID-19 and seasonal influenza: a nationwide, population-based retrospective cohort study. Lancet Respir Med, 2020.

19. Zeitoun, J.D., M. Faron, and J.H. Lefèvre, Impact of the local care environment and social characteristics on aggregated hospital fatality rate from COVID-19 in France: a nationwide observational study. Public Health, 2020. 189: p. 104-109.

20. Ferroni, E., et al., Survival of Hospitalized COVID-19 Patients in Northern Italy: A Population-Based Cohort Study by the ITA-COVID-19 Network. Clin Epidemiol, 2020. 12: p. 1337-1346.

21. Abate, S.M., Y.A. Checkol, and B. Mantefardo, Global prevalence and determinants of mortality among patients with COVID-19: A systematic review and meta-analysis. Annals of medicine and surgery (2012), 2021. 64: p. 102204-102204.

22. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020. 395(10223): p. 497-506.

23. Guo, Y.-R., et al., The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak—an update on the status. Military Medical Research, 2020. 7(1): p. 1-10.

24. Shi, H., et al., Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study. The Lancet Infectious Diseases, 2020. 20(4): p. 425-434.

25. Moher, D., et al., Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev.[Internet]. 2015; 4: 1.

26. Chinazzi, M., et al., The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 2020. 368(6489): p. 395-400.

27. Gostic, K., et al., Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. Elife, 2020. 24(9): p. 55570.

28. Nicola, M., et al., The socio-economic implications of the coronavirus pandemic (COVID-19): A review. Int J Surg, 2020. 78: p. 185-193.
29. Moftakhar, L., et al., Epidemiological characteristics and outcomes of COVID-19 in diabetic versus non-diabetic patients. Int J Diabetes Dev Ctries, 2021. 9: p. 1-6.
30. Rastad, H., et al., The risk factors associated with COVID-19-Related death among patients with end-stage renal disease. Bmc Nephrology, 2021. 22(1).
31. Rastad, H., et al., Risk and predictors of in-hospital mortality from COVID-19 in patients with diabetes and cardiovascular disease. Diabetology & Metabolic Syndrome, 2020. 12(1).
32. Rastad, H., et al., Factors associated with the poor outcomes in diabetic patients with COVID-19. Journal of Diabetes and Metabolic Disorders, 2020. 19(2): p. 1293-1302.
33. Javanian, M., et al., Risk factors for mortality of 557 adult patients with COVID 19 in Babol, Northern Iran: a retrospective cohort study. Bratisl Lek Listy, 2021. 122(1): p. 34-38.
34. Javanian, M., et al., Clinical and laboratory findings from patients with COVID-19 pneumonia in Babol North of Iran: a retrospective cohort study. Rom J Intern Med, 2020: p. 161-167.
35. Mohammadi, F., et al., Artificial neural network and logistic regression modelling to characterize COVID-19 infected patients in local areas of Iran. Biomedical Journal, 2021.
36. Takhti, H.K., et al., Symptoms and factors associated with the hospitalization period of 3480 Covid-19 patients in Hormozgan, Iran. 2021.
37. Sami, R., et al., A one-year hospital-based prospective COVID-19 open-cohort in the Eastern Mediterranean region: The Khorshid COVID Cohort (KCC) study. PLoS One, 2020. 15(11 November).
38. Janani, M., et al., Epidemiological features and hotspot of COVID-19 in Isfahan province of Iran: Results of a cohort study. 2020.
39. Sayad, B., et al., Leukocytosis and alteration of hemoglobin level in patients with severe COVID-19: Association of leukocytosis with mortality. Health science reports, 2020. 3(4).
40. Moradi, E.V., et al., Increased age, neutrophil-to-lymphocyte ratio (NLR) and white blood cells count are associated with higher COVID-19 mortality. American Journal of Emergency Medicine, 2021. 40: p. 11-14.
41. Sobhani, S., et al., Association between Clinical Characteristics and Laboratory Findings with Outcome of Hospitalized COVID-19 Patients: A Report from Northeast Iran. Interdisciplinary perspectives on infectious diseases, 2021. 2021.
42. Nasiri, M., et al., The probable association between blood groups and prognosis of covid-19. Iranian Journal of Public Health, 2021. 50(4): p. 825-830.
43. Rashidi, F., et al., Incidence of symptomatic venous thromboembolism following hospitalization for coronavirus disease 2019: Prospective results from a multi-center study. Thrombosis Research, 2021. 198: p. 135-138.
44. Hormati, A., et al., Clinical characteristics and Mortality risk factors among COVID-19 patients in Qom–Iran; The results of a Retrospective Cohort study. 2020.
45. Monfared, A., et al., Clinical characteristics and outcome of COVID-19 pneumonia in kidney transplant recipients in Razi hospital, Rasht, Iran. Transpl Infect Dis, 2020. 22(6): p. 2.
46. Araban, M., et al., Epidemiological, clinical characteristics of coronavirus-infected disease (COVID-19) among sample of Iranian community: funding from survey in central of Iran. 2020.

47. Peymani, P., et al., Statins in patients with COVID-19: a retrospective cohort study in Iranian COVID-19 patients. Transl Med Commun, 2021. 6(1): p. 021-00082.

48. Shahriari-Rad, R., et al., Epidemiological and clinical features of 2019 novel coronavirus diseases (COVID-19) in the South of Iran. BMC Infectious Diseases, 2020. 20(1): p. 1-12.

49. Alamdari, N.M., et al., Mortality risk factors among hospitalized COVID-19 patients in a major referral center in Iran. Tohoku Journal of Experimental Medicine, 2020. 252(1): p. 73-84.

50. Baghaei, P., et al., Clinical manifestations of patients with coronavirus disease 2019 (Covid-19) in a referral center in Iran. Tanaffos, 2020. 19(2): p. 122-128.

51. Bikdeli, B., et al., Intermediate versus standard-dose prophylactic anticoagulation and statin therapy versus placebo in critically-ill patients with COVID-19: Rationale and design of the INSPIRATION/INSPIRATION-S studies. Thrombosis Research, 2020. 196: p. 382-394.

52. Kashefizadeh, A., et al., Clinical features and short-term outcomes covid-19 in tehran, iran: An analysis of mortality and hospital stay. Acta Biomedica, 2020. 91(4): p. 1-10.

53. Pirsalehi, A., et al., Neutrophil-to-lymphocyte ratio (NLR) greater than 6.5 May reflect the progression of COVID-19 towards an unfavorable clinical outcome. Iranian Journal of Microbiology, 2020. 12(5): p. 466-474.

54. Sabri, A., et al., Novel coronavirus disease 2019: Predicting prognosis with a computed tomography-based disease severity score and clinical laboratory data. Polish Archives of Internal Medicine, 2020. 130(7-8): p. 629-634.

55. Soleimani, A., et al., Effects of Angiotensin Receptor Blockers (ARBs) on In-Hospital Outcomes of Patients With Hypertension and Confirmed or Clinically Suspected COVID-19. American Journal of Hypertension, 2020. 33(12): p. 1102-1111.

56. Zali, A., et al., Baseline Characteristics and Associated Factors of Mortality in COVID-19 Patients; an Analysis of 16000 Cases in Tehran, Iran. Arch Acad Emerg Med, 2020. 8(1).

57. Homayounieh, F., et al., Clinical and imaging features predict mortality in COVID-19 infection in Iran. PLoS One, 2020. 15(9).

58. Maghbooli, Z., et al., Vitamin D sufficiency, a serum 25-hydroxyvitamin D at least 30 ng/mL reduced risk for adverse clinical outcomes in patients with COVID-19 infection. PLoS One, 2020. 15(9 September).

59. Looha, M.A., et al., Assessing Sex Differential in COVID-19 Mortality Rate by Age and Polymerase Chain Reaction Test Results; An Iranian Multi-Center Study. 2021.

60. Aghaaliakbari, F., et al., Angiotensin Converting Enzyme Inhibitors, A Risk Factor of Poor Outcome in Diabetic Patients with COVID-19 Infection. Iranian journal of kidney diseases, 2020. 14(6).

61. Pazoki, M., et al., Risk indicators associated with in-hospital mortality and severity in patients with diabetes mellitus and confirmed or clinically suspected COVID-19. Journal of Diabetes & Metabolic
62. Khoshnood, R.J., et al., Epidemiological Characteristics, Clinical Features, and Outcome of COVID-19 Patients in Northern Tehran, Iran; a Cross-Sectional Study. Advanced Journal of Emergency Medicine, 2020.

63. Mousavi, S.A., et al., Hematologic predictors of mortality in hospitalized patients with COVID-19: a comparative study. Hematology, 2020. 25(1): p. 383-388.

64. Kalantari, H., A.H.H. Tabrizi, and F. Foroohi, Determination of COVID-19 prevalence with regards to age range of patients referring to the hospitals located in western Tehran, Iran. Gene Reports, 2020. 21: p. 100910.

65. Akbariqomi, M., et al., Clinical characteristics and outcome of hospitalized COVID-19 patients with diabetes: A single-center, retrospective study in Iran. diabetes research and clinical practice, 2020. 169: p. 108467.

66. Nikpouraghdam, M., et al., Epidemiological characteristics of coronavirus disease 2019 (COVID-19) patients in IRAN: A single center study. Journal of Clinical Virology, 2020. 127: p. 104378.

67. Allameh, S.F., et al., Clinical Characteristics and Outcomes of 905 COVID-19 Patients Admitted to Imam Khomeini Hospital Complex in the Capital City of Tehran, Iran. Archives of Iranian Medicine, 2020. 23(11): p. 766-775.

68. Papizadeh, S., et al., Epidemiologic and clinical characteristics of 186 hospitalized patients with Covid-19 in Tehran, Iran: A retrospective, single-center case series. 2020.

69. Vahedian-Azimi, A., et al., The Primary Outcomes and Epidemiological and Clinical Features of Coronavirus Disease 2019 (COVID-19) in Iran. Adv Exp Med Biol, 2021: p. 199-210.

70. Gharebaghi, N., et al., Evaluation of epidemiology, clinical features, prognosis, diagnosis and treatment outcomes of patients with COVID-19 in West Azerbaijan Province. International Journal of Clinical Practice, 2021: p. e14108.

71. Rokni, M., et al., Comparison of clinical, para-clinical and laboratory findings in survived and deceased patients with COVID-19: diagnostic role of inflammatory indications in determining the severity of illness. BMC Infectious Diseases, 2020. 20(1).

Tables

Table 1: Characteristics of the included published in-hospital death due to COVID-19 articles in Iran country
Province	First Author	Time	Ref	Sample size	No. Death	Mean Age	Male Percent
Khuzestan	Moftakhar	Mar 1 to Sep 29, 2020	[29]	16391	691	38	55%
Alborz	Rastad	Jan 30 to Apr 5, 2020	[30]	520	81	62	57%
	Rastad	Feb 20 to Mar 25, 2020	[31]	2957	301	55	54%
	Rastad	Feb 20 to Apr 27, 2020	[32]	455	79	64	42%
Mazandaran	Javanian	Mar 1 to Apr 1, 2020	[33]	557	121	60	75%
	Javanian	Feb 25 to Mar 12, 2020	[34]	100	19	60	51%
Chahar Mahaal & Bakhtiari	Mohammadi	Not mentioned	[35]	101	9	55	62%
Hamedan	Mohammadi	Not mentioned	[35]	100	9	51	52%
Hormozgan	Takhti	Feb 1 to Jun 29, 2020	[36]	3480	239	43	53%
Isfahan	Sami	Feb 1 to Augr 30, 2020	[37]	490	34	57	61%
	Janani	Feb 3 to June 13, 2020	[38]	872	42	46	55%
	Mohammadi	Not mentioned	[35]	127	13	49	55%
Kermanshah	Sayad	Mar 7 to May 12, 2020	[39]	537	39	65	59%
	Mohammadi	Not mentioned	[35]	118	12	44	41%
Kurdistan	Mohammadi	Not mentioned	[35]	179	17	54	41%
Khorasan, Razavi	Moradi	Mar 1 to Jun 31, 2020	[40]	219	31	57	62%
	Sobhani	Feb 1 to May 30, 2020	[41]	397	61	61	56%
Qom	Nasiri	Mar 1 to Jun 31, 2020	[42]	329	64	65	51%
	Rashidi	Feb 20 to Apr	[43]	151	5	56	54%
Province	Candidate	Date Range	Number of Cases	Deaths	Recoveries	Death Rate	
------------------------	-----------------	------------------------	-----------------	--------	------------	------------	
10, 2020	Hormati	Feb 25 to Mar 20, 2020	[44]	650	100	63	56%
Gilan	Monfared	Feb 20 to Apr 19, 2020	[45]	22	6	52	68%
Markazi	Araban	Feb 9 to Apr 17, 2020	[46]	1142	124	52	58%
Fars	Peymani	Mar 1 to May 30, 2020	[47]	150	19	62	0%
Shahriarirad		Feb 20 to Mar 5, 2020	[48]	113	9	54	63%
Azerbaijan, East	Rashidi	Feb 20 to Apr 10, 2020	[43]	881	29	56	54%
Tehran	Alamdari	Jan 30 to Apr 5, 2020	[49]	459	63	62	70%
Baghaei		Feb 19 to Mar 5, 2020	[50]	127	21	54	76%
Bikdeli		Feb 22 to Mar 25, 2020	[51]	3188	329	55	60%
Kashefizadeh		Mar 1 to Apr 10, 2020	[52]	53	5	58	45%
Pirsalehi		Feb 20 to May 20, 2020	[53]	1320	184	52	61%
Sabri		Feb 21 to Mar 17, 2020	[54]	63	9	54	0%
Soleimani		Feb 20 to May 29, 2020	[55]	254	68	66	59%
Zali		Feb 19 to May 12, 2020	[56]	7136	1116	68	63%
Homayounieh		Feb 10 to Mar 30, 2020	[57]	90	21	60	64%
Maghbooli		Feb 20 to May 1, 2020	[58]	235	41	59	61%
Looha		Feb 20 to Jun 8, 2020	[59]	14791	1775	68	53%
Aghaaliakbari		Mar 1 to Jun 30, 2020	[60]	617	84	58	59%
Pazoki		Feb 20 to May 14, 2020	[61]	574	104	57	60%
Province	Dates	Reference	COVID-19 Cases	Deaths	Recovered	Death Rate	
---------------------------	----------------------	-----------	----------------	--------	-----------	------------	
Khoshnood	Feb 22 to May 30, 2020	[62]	1083	117	51	62%	
Mousavi	Feb 20 to Apr 20, 2020	[63]	225	55	60	58%	
Kalantari	Feb 24 to Mar 24, 2020	[64]	784	80	47	0%	
Akbari Qomi	Feb 26 to Mar 24, 2020	[65]	595	65	55	67%	
Nikpouraghdam	Feb 19 to Apr 15, 2020	[66]	2968	239	56	66%	
Allameh	Feb 20 to Mar 19, 2020	[67]	905	124	57	62%	
Papizadeh	Mar 1 to Mar 30, 2020	[68]	186	36	47	53%	
Vahedian-Azimi	Feb 26 to Mar 15, 2020	[69]	167	14	55	80%	
Mohammadi	Not mentioned	[35]	125	13	49	48%	
West Azerbaijan	Gharebaghi	Mar 1 to Apr 30, 2020	[70]	215	19	51	58%
Sistan and Baluchestan	Rokni	Feb 29 to May 24, 2020	[71]	233	28	50	64%
Zanjan	Rashidi	Feb 20 to Apr 10, 2020	[43]	497	17	56	54%
Overall			67928	6781	55.72	55%	

Table 2: Pooled prevalence of in-hospital death due to COVID-19 according to the provinces of Iran
Province	Number of study	Death %	Lower	Upper
Alborz	3	14.17	9.25	19.09
Azerbaijan, East	1	3.29	2.11	4.47
Azerbaijan, West	1	8.83	5.04	12.63
Chahar Mahaal and Bakhtiari	1	8.91	3.35	14.47
Fars	2	10.22	5.62	14.83
Gilan	1	27.27	8.66	45.88
Hamedan	1	9.00	3.39	14.61
Hormozgan	1	6.87	6.03	7.71
Isfahan	3	6.44	4.03	8.86
Kermanshah	2	7.67	5.63	9.70
Khorasan, Razavi	2	14.92	12.10	17.73
Khuzestan	1	4.21	3.91	4.52
Kurdistan	1	9.50	5.20	13.79
Markazi	1	10.86	9.05	12.66
Mazandaran	2	21.27	18.14	24.40
Qom	3	12.63	3.12	22.14
Sistan and Baluchestan	1	12.02	7.84	16.19
Tehran	22	13.82	12.37	15.28
Zanjan	1	3.42	1.82	5.02
Overall	**43**	**12.16**	**10.72**	**13.61**

No study has not reported in province including Ardabil, Bushehr, Golestan, Kerman, Khorasan, South and North, Kohgiluyeh and Boyer-Ahmad, Lorestan, Qazvin, Semnan and Yazd

Figures
Figure 1

Screening of Articles Based on PRISMA Statement
Figure 2

The Forest plot in-hospital death due to COVID-19 disease in Iranian patients