The application of a decision support system in predicting flood hazard using the analytical hierarchy process method

M Lintang and N Pandiangan
Universitas Musamus, Merauke, Indonesia

E-mail: lintangcahyo93@gmail.com

Abstract. Flood disasters are natural disasters that often occur in Indonesia because of the tropics. There are many flood-prone areas that have high population density, due to lack of understanding of the community regarding flood-prone areas and many people choose settlements in a flood area without prior knowledge of the territory. These are flood-prone areas. For that purpose a built Prediction Decision Support System using Flood Vulnerability the Analytical Hierarchy Process method where on this system has five criteria, namely land slope, landform, bulk rain, land use, and soil texture. The results of this study are: the slope of land is flat, which is the criteria for the slope of the land is flat. with the results of 11.33.

1. Introduction
Flooding is a natural disaster that can be dangerous human life so it must be avoided. Indonesia is a country which is very vulnerable to various natural disasters, such as droughts, floods, land slides, volcanic eruptions, and earthquakes and tsunamis. Flooding is the biggest disaster which ranks first in Indonesia. Various triggers can cause flooding such as land changes in the upstream area with forest clearing which causes rainwater not to be absorbed by the land so that the water directly flows into the river as well development of urban areas that are not accompanied by management goodwill cause the urban drainage system to deteriorate so that the water does not flow properly so that it causes puddles. This study we took a case study in the city of Merauke. Flood disaster in general caused by the amount of rainfall that occurred in Merauke city and not accommodated surface flow discharge in existing drainage channels. This condition is exacerbated by the blockage of the channels leading to drainage. Momentary floods in general caused by the amount of rainfall that occurred in Merauke City and not accommodated surface flow discharge in existing drainage channels. This condition is exacerbated by the blockage of the channels leading to drainage. Based on these problems, this research will be carried out by implementing the AHP Analytic Hierarchy Process method. Because AHP uses the judgment of the decision supporter to structure the problem into a hierarchy [1]. AHP utilizes comparisons between each pair of items formed as a matrix. Matching comparisons produce weighting scores used to measure the number of important items and criteria for each other. Matrix calculations are then used to sort the variables to the best decisions.
2. Literature review
AHP method is able to discuss modeling problems, pair comparisons, rating scales, consistency indices, comparisons between matrices, weighting parameters, sensitivity analysis and decisions between groups [1]. The AHP method can also be used very well in evaluating a more objective problem. AHP can be a valuable tool in prioritizing an indicator. Decision-makers can use priority assessments from this study as determined by AHP. AHP has been widely used in evaluating and selecting medical technology, agriculture, capital and information system projects, project evaluation and technology [3]. AHP is a theory of measurement that is carried out through pairwise comparisons between criteria and depends on expert judgment for weighting priority scales [4]. AHP is a decision-making model that can be conceptualized and is a structured model [5]. This method has been used in a variety of decision-making problems such as: measuring individual weights from the principles of medical ethics, examining the importance of health information systems for patients with rare diseases, solving environmental impact problems, for selecting suppliers [6,7]; for to support decision making in groups [8]; and to determine and evaluate a performance [9]. AHP is a decision-making model that can be conceptualized and is a structured model [5]. This method has been used in a variety of decision-making problems such as: measuring individual weights from the principles of medical ethics, examining the importance of health information systems for patients with rare diseases, solving environmental impact problems, for selecting suppliers [6,7]; for to support decision making in groups [8]; and to determine and evaluate a performance [9].

3. Methodology
AHP is a decision-making method proposed by Saaty [1] AHP is a decision-making method proposed by Saaty [1] AHP is a decision-making method proposed by Saaty [1]. the application of the AHP method has been applied to various problems that involve planning decision making, the resource requirements needed for the application of this method, determining the various priorities needed, and determining the right decision alternatives [13]. The AHP implementation model requires 4 steps:

3.1. Step 1 : Analyzing problem objects:
The first stage is to build a structured hierarchy to make it easier to solve decision-making problems. This hierarchical structure includes criteria that are objective, multiple or singular, grading scale for each criterion, and requiring experts to suit the object under study used to evaluate. Basically, the application of the AHP method has three principles, the first requires a hierarchical framework, analyzes the priority scale on each criterion, and calculates the consistency ratio value. Building a framework and formulating it into hierarchies is the first step that must be made in the implementation of the AHP method, with the highest levels in the hierarchy being the goals of the whole, the intermediate levels in the hierarchy representing each criterion, and the lowest levels in the hierarchy is an alternative decision. After the hierarchical framework is created, then the user is asked to create a paired comparison matrix obtained from each hierarchy and to compare the pairwise comparison matrices between each user the user must use a paired comparison scale. the last step, each paired comparison matrix is then calculated to produce an eigenvector value to determine the importance of each criterion and each alternative. Pairwise comparison matrices (whose columns and rows are the contents of alternative decisions) must be formed based on the number of criteria. After determining alternatives for each matrix is formed, then the user must calculate the overall importance of each alternative. The matrix scheme is shown in figure. 1. This matrix shows the importance between criteria. In special cases, such as in currency exchanges, this matrix model matrix cannot be used [14].
Pairwise comparison calculations begin by comparing the interests between criteria. Is \(n \times (n - 1) / 2 \) which is needed in the calculation of each set of matrices. Decision-makers must assess and compare each element of the matrix using a scale of pairwise comparison. The final results of implementing decision making are returned to decision-makers.

3.2 Step 2: Assessment between groups:

This step has three stages. The first step, pairwise comparisons for each group must be done to determine the value of each criterion’s weight. The second step, pairwise comparisons between other groups is used to obtain the relative values obtained from the rating scale. In the application of the AHP method, verbal statements are obtained through a fundamental scale with values from one to nine. Although verbal gradation is not an important concern, there are several other numerical scales that have been proposed, see fig. 3 [15].

Scale type	Mathematical description	Parameters	Approx. scale values
Linear (Saaty, 1977)	\(S = X \)	\(x = \{1, 2, ..., 9\} \)	1;2;3;4;5;6;7;8;9
Power (Harker, Vargas, 1987)	\(S = X^2 \)	\(x = \{1, 2, ..., 9\} \)	1;4;9;16;25;36;49;64;81
Root square (Harker, Vargas, 1987)	\(S = \sqrt{X} \)	\(x = \{1, 2, ..., 9\} \)	1;\(\sqrt{9};\sqrt{8};\sqrt{7};\sqrt{6};\sqrt{5};\sqrt{4};\sqrt{3} \)
Geometric (Lootsma, 1989)	\(S = 2^{x-1} \)	\(x = \{1, 2, ..., 9\} \)	1;2;4;8;16;32;64;128;256
Inverse linear (Ma, Zheng, 1991)	\(S = \frac{9}{(9-x)} \)	\(x = \{1, 2, ..., 9\} \)	1;1.13;1.29;1.5;1.82;2.25;3;4.5;9
Asymptotical (Dodd, Donegan, 1995)	\(S = \tanh \left(\frac{\sqrt{(x-1)}}{14} \right) \)	\(x = \{1, 2, ..., 9\} \)	0.0;0.12;0.24;0.36;0.46;0.55;0.63;0.7;0.76
Balanced (Sal Hamalainen, 1997)	\(S = \frac{w}{(1-w)} \)	\(w = \{0.5, 0.55, 0.6, ..., 9\} \)	1;1.22;1.51;1.86;2.33;4.5;67.9
Logarithmic (Ishizuka, Balkenberg, Kaplan, 2010)	\(S = \log_2(x + 1) \)	\(x = \{1, 2, ..., 9\} \)	1;1.58;2.2;2.58;2.81;3.3;17.32

Figure 2. Judgement scales used in AHP

Harker and Vargas (1987) have conducted a quadratic scale trial and tested square roots using one simple example and debated in favor of a scale of 1 to 9 [16]. However, using one example for a quadratic scale trial, seems insufficient to conclude the use of linear scales 1–9. Lootsma (1989) argues that geometric scale is better in its use than using linear scale 1–9 [17].
Table 1. The 1-9 Fundamental Scales

Intensity of Importance	Definition
1	Equal Importance
2	weak
3	Moderate importance
4	Moderate plus
5	Strong Importance
6	Strong plus
7	Very strong or demonstrated importance
8	Very, very strong
9	Extreme importance

3.3 Step 3: Assessment validation process:
The consistency ratio is obtained by comparing the consistency index with the random index (table 1, Saaty, 2005) [1]. CR has the form:

\[
\text{Consistency ratio} = \frac{\text{Consistency Index}}{\text{Random Index}}
\]

Table 2. Random Index [18]

n=3	n=4	n=5	n=6	n=7	n=8	n=9	n=10	
Indice	0.58	0.9	1.12	1.24	1.32	1.41	1.45	1.49

where the value of the consistency index is obtained using equations

\[
CI = \frac{\lambda_{\text{max}} - n}{n - 1}
\]

where the RI value is obtained from the average value of CI obtained from the random pair comparison simulation. A good CR value is not higher than 0.1.

\[
\lambda_{\text{max}} \quad \text{is the eigenvalue symbol of the pairwise comparison matrix so} \quad \lambda_{\text{max}} \gg n. \text{This equation is very good for measuring the level of consistency using the Eigen value equation. An alternative method to obtain the } \lambda_{\text{max}} \text{ value is } [14]:
\]

\[
\lambda_{\text{max}} = \sum_{j=1}^{n} \frac{(s-v)_{j}}{m-v_{j}}
\]

4. Experimental and result

4.1. Hierarchy structure of flood vulnerability

The hierarchical structure consists of desired objectives, internal criteria achieve goals and alternatives as a result of recommendations for decisions of objectives. The following is the hierarchy structure of vulnerability decision support systems flood shown by figure 4:
4.2. Normalization of pairwise comparison matrices

After compiling the required hierarchy, then do it comparison matrix paired with Saaty scale to get weight criteria to use equation (1). the results of the calculation of the matrix are shown in the table 3.

Table 3. The result of a pairwise comparison count

Criteria	Slope of Land	Land Use	Soil Texture	landform	Rainfall
Slope of Land	1	3	3	1	1
Land Use	0.33	1	1	0.33	0.33
Soil Texture	0.33	1	1	0.33	0.33
landform	1	3	3	1	1
Rainfall	1	3	3	1	1
Total	**3.67**	**11**	**11**	**3.67**	**3.67**

4.3. Normalized matrix pairwise comparison criteria

After knowing the number of each column in the matrix pairwise comparison, then is to divide each element in the normalized matrix with each number of columns. The result is as follows on table 4:
4.4. Calculation of consistency ratio
This equation is used to ensure that the value of the consistency ratio (CR) <= 0.1, if the CR value is greater than 0.1 then the pairwise comparison matrix must be re-evaluated and corrected. To calculate the consistency ratio value, a table is created as below:

Criteria	Slope of Land	Land Use	Soil Texture	Landform	Rainfall
Land Use	0.273	0.273	0.273	0.273	0.273
Soil Texture	0.091	0.091	0.091	0.091	0.091
Landform	0.273	0.273	0.273	0.273	0.273
Rainfall	0.273	0.273	0.273	0.273	0.273

4.5. Perform pairwise comparison calculations for criteria and sub-criteria
4.5.1. The following is the result of the normalization matrix sub-criteria for slope of land

Criteria	Flat	Small hilly	Hilly	Steep hilly	Total	Eigen Vector Priority	Result
Flat	0.522	0.522	0.522	0.522	2.087	0.522	2.609
Small Hilly	0.261	0.261	0.261	0.261	1.043	0.261	1.304
Hilly	0.130	0.130	0.130	0.130	0.522	0.130	0.652
Steep Hilly	0.087	0.087	0.087	0.087	0.348	0.087	0.435
Table 7. The result of the normalization matrix sub-criteria for land use

Criteria	Rice field, Openland	Agriculture, Dry land, Settlements	Shrubs, Grass	Plantation	Forest	Total	Eigen Vector Value	Priority	Result
Rice field, Openland	0.490	0.490	0.490	0.490	0.490	2.449	0.490	2.939	
Agriculture, Dry land, Settlements	0.245	0.245	0.245	0.245	0.245	1.224	0.245	1.469	
Shrubs, Grass	0.122	0.122	0.122	0.122	0.122	0.612	0.122	0.735	
Plantation	0.082	0.082	0.082	0.082	0.082	0.408	0.082	0.490	
Forest	0.061	0.061	0.061	0.061	0.061	0.306	0.061	0.367	

Table 8. The result of the normalization matrix sub-criteria for soil texture

Criteria	Very Smooth	Smooth	Rough Ground	The Ground is Very rough	Total	Eigen Vector Value	Priority	Result
Very Smooth	0.558	0.558	0.558	0.558	2.233	0.558	2.791	
Smooth	0.279	0.279	0.279	0.279	1.116	0.279	1.395	
Rough ground	0.093	0.093	0.093	0.093	0.372	0.093	0.465	
The ground is very rough	0.070	0.070	0.070	0.070	0.279	0.070	0.349	

Table 9. The result of the normalization matrix sub-criteria for landform

Criteria	Floodplain	Coast	Total	Eigen Vector Value	Result
Floodplain	0.875	0.875	1.75	0.875	2.625
Coast	0.125	0.125	0.25	0.125	0.375

Table 10. The result of the normalization matrix sub-criteria for rainfall

Criteria	Very High	High	Medium	Low	Very Low	Total	Eigen Vector Value	Result
Very High	0.490	0.490	0.490	0.490	0.490	2.449	0.490	2.939
High	0.245	0.245	0.245	0.245	0.245	1.224	0.245	1.469
Medium	0.122	0.122	0.122	0.122	0.122	0.612	0.122	0.735
Low	0.082	0.082	0.082	0.082	0.082	0.408	0.082	0.490
Very Low	0.061	0.061	0.061	0.061	0.061	0.306	0.061	0.367

4.6. Calculate results
After calculating each criterion and subcriterion, we must calculate the results of the implementation of the use of the AHP method in the case of flood prediction. For example we use 5 sample data to calculate ranking using the AHP method. Table 11 below is a value from the calculation of criteria and subcriteria.
Table 11. Priority table of criteria and sub criteria

Slope of land	Land use	Soil texture	Landform	Rainfall
Flat (2.609)	Rice Fields, Open Land	Very Smooth	Floodplain	Very High
(2.939)	(2.791)	(2.625)	(2.939)	
Small Hilly (1.395)	Agriculture, Dry Land, Settlement	Smooth	Coast	High
(1.469)	(1.395)	(0.375)	(1.469)	
Hilly (0.652)	Shrubs, Grass	Rough Ground	Medium	(0.735)
	(0.735)	(0.465)	(0.735)	
Steep Hilly (0.435)	Plantation	The Ground is Very Rough	Low	(0.490)
	(0.490)	(0.349)	(0.490)	
	Forest			(0.367)
	Very Low			(0.367)

Then given value data for 5 districts, namely district A, district B, district C, district D, and district E as shown in table 12 below

Table 12. Sample data in each district

Slope of Land	Land use	Soil texture	Landform	Rainfall	
District A	Flat	Agriculture, Dry Land, Settlement	Smooth	Floodplain	Medium
District B	Small Hilly	Shrubs, Grass	Rough Ground	Coast	High
District C	Small Hilly	Agriculture, Dry Land, Settlement	Rough Ground	Floodplain	Medium
District D	Flat	Agriculture, Dry Land, Settlement	Rough Ground	Floodplain	Medium
District E	Flat	Shrubs, Grass	The Ground is Very Rough	Floodplain	Medium

The final results are obtained from priority multiplication criteria and subcriteria priority. As seen in the table 13 below:

Table 13. Results table

Slope of Land	Land use	Soil texture	Landform	Rainfall	Total
District A	1.636* 2.609 0.545* 1.469	0.545* 1.395	1.636* 2.625	1.64*0.735	11.33
District B	1.636* 1.395 0.545* 0.735	0.545* 0.465	1.636* 0.375	1.64*1.469	5.96
District C	1.636* 1.395 0.545* 0.735	0.545* 0.465	1.636* 2.625	1.64*0.735	8.83
District D	1.636* 2.609 0.545* 1.469	0.545* 0.465	1.636* 2.625	1.64*0.735	10.82
District E	1.636* 2.609 0.545* 0.735	0.545* 0.349	1.636* 2.625	1.64*0.735	10.36
5. Conclusion

In this study, we applied the concept of decision making to predict flood-prone areas in the city of Merauke. This study uses 5 samples of data taken in each district. The application of the AHP method in this study is able to provide decision-makers in determining flood-prone areas. The results of the implementation of the AHP method are in the form of ranking obtained from the calculation of pairwise comparisons between criteria and subcriteria that follow the rules of decision making of the AHP method. Then the results were obtained that district A which has the criteria of Slope of land is Flat, Land Use is Agriculture, dry land and settlements, soil texture is smooth, landform is floodplain and rainfall is medium gets the highest order of assessment results of this study with the results of 11.33.

References

[1] Saaty T L 1990 How to make a decision: the analytic hierarchy process Eur. J. Oper. Res. 48 9–26
[2] Dirpan A 2018 Combining an Analytic Hierarchy Process and TOPSIS for Selecting Postharvest Technology Method for Selayar Citrus in Indonesia IOP Conf. Ser. Earth Environ. Sci. 156 12031
[3] Liberatore M J and Nydick R L 2008 The analytic hierarchy process in medical and health care decision making: A literature review Eur. J. Oper. Res. 189 194–207
[4] Saaty T L 2008 Decision making with the analytic hierarchy process Int. J. Serv. Sci. 1 83
[5] Chan Y L 2006 An analytic hierarchy framework for evaluating balanced scorecards of healthcare organizations Can. J. Adm. Sci. Can. des Sci. l’Administration 23 85–104
[6] Liu F-H F and Hai H L 2005 The voting analytic hierarchy process method for selecting supplier Int. J. Prod. Econ. 97 308–17
[7] Sevkli M, Lenny Koh S C, Zaim S, Demirbag M and Tatoglu E 2007 An application of data envelopment analytic hierarchy process for supplier selection: a case study of BEKO in Turkey Int. J. Prod. Res. 45 1973–2003
[8] Bryson N 1996 Group decision-making and the analytic hierarchy process: Exploring the consensus-relevant information content Comput. Oper. Res. 23 27–35
[9] Mittal K C, Goel A K and Mohindru P 2009 Performance evaluation of employees using analytical hierarchical process: A case study of Indian IT industry Asia Pacific Bus. Rev. 5 119–27
[10] Saaty T L 1988 What is the analytic hierarchy process? Mathematical models for decision support (Springer) pp 109–21
[11] Boroushaki S and Malczewski J 2008 Implementing an extension of the analytical hierarchy process using ordered weighted averaging operators with fuzzy quantifiers in ArcGIS Comput. Geosci. 34 399–410
[12] Lee A H I, Chen W-C and Chang C-J 2008 A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan Expert Syst. Appl. 34 96–107
[13] Vaidya O S and Kumar S 2006 Analytic hierarchy process: An overview of applications Eur. J. Oper. Res. 169 1–29
[14] Hovanov N V, Kolari J W and Sokolov M V 2008 Deriving weights from general pairwise comparison matrices Math. Soc. Sci. 55 205–20
[15] Ishizaka A and Labib A 2011 Review of the main developments in the analytic hierarchy process Expert Syst. Appl. 38 14336–45
[16] Alam S, Dobbie G and Rehman S U 2015 Analysis of particle swarm optimization based hierarchical data clustering approaches Swarm Evol. Comput. 25 36–51
[17] Harker P T and Vargas L G 1987 The theory of ratio scale estimation: Saaty’s analytic hierarchy process Manage. Sci. 33 1383–403
[18] Saaty T L 1977 A scaling method for priorities in hierarchical structures J. Math. Psychol. 15 234–81