A CHANDRA LOOK AT FIVE OF THE WIDEST DOUBLE-PEAKED BALMER LINE EMITTERS

ISKRA V. STRATEVA, 1 W. N. BRANDT, 2 MICHAEL ERACLEOUS, 2,3 AND GORDON GARMIRE 2

Received 2008 June 2; accepted 2008 July 24

ABSTRACT

We study the 0.5–10 keV emission of a sample of five of the widest double-peaked Balmer line emitters with Chandra. The Balmer lines of these objects originate close (within a few hundred gravitational radii) to the central black holes of the active galactic nuclei (AGNs), and their double-peaked profiles suggest an origin in the AGN accretion disk. We find that four of the five targets can be modeled by simple power-law continua with photon indices (1.6 ≤ Γ ≤ 1.8) typical of similar luminosity AGNs. One object, SDSS J0132−0952, shows evidence of ionized intrinsic absorption. The most luminous SDSS double-peaked emitter, SDSS J2125−0813, has either an unusual flat spectrum (Γ ≈ 1) or is highly absorbed. It is the only double-peaked emitter for which no external illumination is necessary to account for the Balmer line emission. The strength of the Balmer line emission in the remaining four objects suggests that the total line flux likely exceeds the viscous energy that can be extracted locally from the accretion disk and external illumination is necessary. All five double-peaked emitters have unusually strong X-ray emission relative to their UV/optical emission, which is the likely source of the external illumination necessary for the production of the observed strong broad lines. On average about 30% of their bolometric luminosities are emitted between 0.5 and 10 keV. The spectral energy distributions of the five double-peaked emitters show the big blue bumps characteristic of radiatively efficient accretion flows. The Balmer line profiles, as well as the optical and X-ray fluxes of the double-peaked emitters, are highly variable on timescales of months to years in the AGN rest frame.

Subject headings: galaxies: active — techniques: spectroscopic — X-rays: galaxies

1. INTRODUCTION

Double-peaked emitters are active galactic nuclei (AGNs) whose broad Balmer line profiles have a characteristic “double-humped” shape, with one peak blueward of the rest-frame wavelength of the line and another one redward of it. The best explanation for the origin of the double-peaked shape involves emission from a region in the AGN accretion disk. Since the first examples of double-peaked emission lines in AGNs were published in the 1980s (e.g., Oke 1987; Chen et al. 1989), more than 100 double-peaked emitters have been found. Some of these objects have been also studied in the X-ray band (e.g., Eracleous et al. 1996, 2000, 2002; Eracleous & Halpern 1998; Strateva et al. 2006), but most of these studies focused on individual objects or on serendipitous X-ray detections of limited quality.

The small sample of double-peaked emitters studied in detail in the X-ray band to date consists of predominantly low-luminosity radio-loud (RL) objects—broad-line radio galaxies (BLRGs; Eracleous & Halpern 1994; Eracleous et al. 2003, hereafter E03). Based on the prototype disk emitter (Arp 102B) and the small original BLRG sample, a model was developed to explain the existence of double-peaked emission in AGNs. Chen & Halpern (1989) proposed that BLRGs and other low-accretion-rate, low-luminosity AGNs—which do not accrete through a standard thin disk—could exhibit low-ionization line profiles with double-peaked profiles. The line profiles are produced as the outer portions of the disk are illuminated by an X-ray-emitting elevated structure in the center—a structure that is characteristic of radiatively inefficient accretion flows (RIAs; e.g., Rees et al. 1982; Narayan & Yi 1994; Quataert & Narayan 1999; Abramowicz et al. 2002) and replaces the standard thin disk. The illumination provided by the central elevated structure in AGNs with RIAs is necessary, but not sufficient, for the production of double-peaked lines of the observed strength: all BLRGs with double-peaked lines require external illumination (since the viscous power available locally in the disk is insufficient to explain the line strength), but not all BLRGs or other RIAF AGNs have double-peaked lines. The association of RL AGNs with RIAs could explain the higher frequency of double-peaked emitters observed among BLRGs (20%; E03), compared to 3% of low-redshift Sloan Digital Sky Survey (SDSS) AGNs. Recent work by Lewis & Eracleous (2006) however, has shown that not all BLRG double-peaked emitters with low optical luminosities are inefficient emitters: Pictor A, for example, emits a bolometric luminosity of more than 8% of the Eddington luminosity, which is too high to support a RIAF (RIAF solutions exist for \(M_{\text{crit}} = \alpha^{-2} M_{\text{Edd}} < 0.09 M_{\text{Edd}} \), for a viscosity parameter \(\alpha < 0.3 \), and the radiated energy is further reduced by the accretion efficiency; Narayan & Yi 1995).

The systematic search for AGNs with double-peaked Balmer lines in the SDSS revealed that as many as 3% of \(z < 0.33 \) objects are double-peaked emitters, regardless of their radio loudness (Strateva et al. 2003; hereafter, S03). Moreover, a handful of luminous higher redshift double-peaked emitters were discovered serendipitously based on their H β and Mg ii line profiles. The expansion of the parameter space of the double-peaked emission-line AGNs to include radio-quiet (RQ; \(\log R \leq 1 \)) and higher luminosity objects, as well as the discovery of low optical luminosity objects like Pictor A that are efficient accretors, require a critical evaluation of the existing models of illumination and the conditions necessary for the existence of double-peaked emission lines.

1 Max Planck Institute for Extraterrestrial Physics, Garching, 85741, Germany.
2 Department of Astronomy and Astrophysics, 525 Davey Lab, The Pennsylvania State University, University Park, PA 16802.
3 Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16803.
4 Following Ivezic et al. (2002), we define an AGN as radio loud if \(\log [20 \text{cm}/3136 \text{Jy}] = 0.4(i−t) > 1 \), where \(i \) is the Sloan Digital Sky Survey i-band magnitude and \(t = -2.5 \log [20 \text{cm}/3136 \text{Jy}] \) is the 20 cm AB radio magnitude.
5 The systematic search for AGNs with double-peaked Balmer lines in the SDSS revealed that as many as 3% of \(z < 0.33 \) objects are double-peaked emitters, regardless of their radio loudness (Strateva et al. 2003; hereafter, S03). Moreover, a handful of luminous higher redshift double-peaked emitters were discovered serendipitously based on their H β and Mg ii line profiles. The expansion of the parameter space of the double-peaked emission-line AGNs to include radio-quiet (RQ; \(\log R \leq 1 \)) and higher luminosity objects, as well as the discovery of low optical luminosity objects like Pictor A that are efficient accretors, require a critical evaluation of the existing models of illumination and the conditions necessary for the existence of double-peaked emission lines.
X-ray observations of the new extended sample are particularly important, since they allow us to obtain more accurate estimates of the bolometric luminosities of the sources and to gauge the need for extra illumination of the accretion disk. Double-peaked emitters which are efficient accretors likely require an alternative mode of illumination. The development of new scenarios can be guided by observations in the X-ray band. Basic X-ray absorption constraints, for example, provide sensitive probes of the nuclear conditions: (1) they allow us to see any intervening material right up to the AGN core, and (2) they are sensitive to molecular, atomic, or ionized gas and dust. The X-ray absorption constraints could provide sensitive tests of specific models proposed to explain the expanded population of double-peaked emitters. A recent model by Cao & Wang (2006), for example, aims to explain the disk illumination necessary for the existence of the double-peaked lines with the presence of jets in RL, and slower, less collimated outflows in RQ double-peaked emitters. The predictions of this model can be tested directly by obtaining X-ray spectroscopy of double-peaked emitters and looking for signs of these outflows in absorption.

In addition to testing specific models of illumination, comparison of the X-ray emission of double-peaked emitters to that of typical AGNs is essential for uncovering the necessary and sufficient conditions for the dominance of accretion-disk Balmer line emission in this type of AGN. Such findings, which will also elucidate the physical conditions in AGNs with the broadest observed Balmer lines, will have implications for the (still uncertain) structure of the broad-line region (BLR) in AGNs in general. It is conceivable that the accretion disk is part of the BLR in all AGNs, but its contribution dominates the Balmer line emission only in the small subsample of AGNs with the broadest lines (see also Laor 2007 for some tantalizing ideas about the structure of the BLR).

In this paper we present the first results of an exploratory campaign to map the X-ray properties of a representative sample of AGNs with the broadest double-peaked Balmer lines. Using the Chandra X-Ray Observatory we obtained high-quality X-ray images and spectra for five sources, complemented by contemporaneous optical spectra from the ground. Our five targets span the redshift and optical luminosity plane of the SDSS double-peaked sample presented in S03. The paper is organized as follows: in § 2 we present the current sample and its selection criteria, followed by the analysis of the X-ray and optical observations of each individual source in §§ 3 and 4, and the discussion and conclusions in § 5. Throughout this paper we use the Spergel et al. (2007) concordance cosmology and quote all flux and luminosity errors as 90% confidence limits; all other errors quoted are 1σ Gaussian equivalents.

2. SAMPLE SELECTION

The sample of five SDSS double-peaked emitters observed with Chandra was selected to span the part of the luminosity-redshift-RL space which was not covered by the initial BLRG sample. Figure 1 shows the positions of the five targets on the redshift versus 2500 Å monochromatic-luminosity plane, using the rest-frame flux densities measured during the SDSS epoch. The full SDSS sample of double-peaked emitters from S03 is also shown for comparison, as well as the sample of SDSS double-peaked emitters serendipitously detected with ROSAT and presented in Strateva et al. (2006; hereafter, S06). The Chandra sample is representative of the full SDSS double-peaked emitter sample with regard to optical luminosity, redshift, and radio-loudness (to the extent that most SDSS double-peaked emitters are RQ). The prototype disk emitter, Arp 102 B, is fainter at 2500 Å than most SDSS double-peaked emitters, as is the optically brighter, efficient accretor, Pictor A.

The initial BLRG sample of Eracleous & Halpern (1994, 2003) has been extended with serendipitously discovered double-peaked emitters in a handful of low-ionization nuclear emission-line region galaxies (LINERS) and quasars. A small number of sources from this original sample of double-peaked emitters have serendipitous or pointed X-ray coverage; in all but nine cases only soft-band coverage by ROSAT is available, with too few counts for spectral fits. Among the nine double-peaked emitters from the original sample with 0.3–10 keV XMM-Newton and Chandra observations, four are LINERs (NGC 1097, M81, NGC 4203, and NGC 4579; S06 and references therein) and the remaining five are BLRGs (Arp 102 B, 3C 390.3, Pictor A, PKS 0921–213, and 3C 382; S06; Grandi et al. 2006). The X-ray data for these nine double-peaked emitters are summarized in Strateva et al. (2006). These are predominantly low UV luminosity and redshift (z < 0.1) objects, as shown in Figure 1. The new Chandra targets were selected to be predominantly RQ (four out of the five), higher luminosity and redshift (0.199 < z < 0.625) counterparts to the original-sample sources studied in the hard X-ray band, forming an ideal comparison sample of double-peaked emitters. The selection criteria used only optical data, and the sample is therefore unbiased with respect to the X-ray properties of the selected targets. We present the five targets in Table 1, listing the SDSS i-band magnitudes, redshifts, and radio loudness, as well as the FWHMs of the Hα or Hβ lines.

The five double-peaked emitters observed with Chandra are among the 16 AGNs with the broadest published Balmer lines: FWHM > 14000 km s⁻¹. Among the parent sample of over 3000 SDSS AGNs from which the SDSS double-peaked emitters were selected, virtually all AGNs with such extremely broad Balmer lines showed line profiles indicative of a disk origin. Thus, with regard to their Balmer line widths, the five Chandra targets are not representative of the full sample of SDSS double-peaked emitters. They were selected because the widths of their Balmer lines suggest an origin very close to the center of the disk. As such they are the most suitable objects for addressing the question of the energy budget of the line-emitting portion of the disk. By extension, this set of objects can also help us address the important question of why only a small fraction of AGNs show double-peaked Balmer line profiles, while the majority of the profiles are single peaked.

3. Chandra IMAGING SPECTROSCOPY

Table 2 summarizes the observations carried out during Chandra Cycle 8. The exposure times were selected to yield enough counts for a basic spectroscopic fit in each case (>100 counts). Three of the targets (SDSS J1004+4801, SDSS J1238+5325, and SDSS J2125–0813) had prior serendipitous ROSAT detections, while the remaining two have ROSAT all sky survey (RASS) upper limits. We used CIAO version 3.4 and XSPEC version 12.3.0 to analyze the data, starting with the event 1 files. We fit all spectra with more than 200 counts in the 0.3–10 keV band using χ² minimization and use the Cash statistic (C-stat) for the one object with less than 200 counts. The results for each of the five double-peaked emitters are summarized below, where we also discuss their X-ray variability.

3.1. SDSS J0132–0952

SDSS J0132–0952 is a RQ double-peaked emitter which was observed with Chandra for 8.2 ks. The X-ray image of the target
is a point source with a point-spread function (PSF) FWHM = 0.85'' ± 0.03'' (Table 2). Based on the SDSS image, our target lies in a cluster at $z = 0.26$, identified by Koester et al. (2007); it is situated at a projected distance of ~230 kpc from the brightest cluster galaxy.

The 0.3–10 keV spectrum of SDSS J0132–0952 cannot be modeled by a simple power law absorbed by neutral hydrogen with a column density equal to the Galactic value (χ^2/dof = 50/32, where dof stands for the number of degrees of freedom). Since intrinsic absorption is common among AGNs, we attempted to model the spectrum by adding an intrinsic absorber.

The addition of a neutral intrinsic absorber does not improve the fit significantly (χ^2/dof = 49/31), because the spectrum is too soft; allowing for partial coverage improves the fit, but the model is only marginally acceptable (χ^2/dof = 42/30). The fit residuals are suggestive of an absorption edge around 0.7–0.8 keV, and we attempted to fit the spectrum with a ionized absorber model (absori in XSPEC; Done et al. 1992). The spectral fit is shown in Figure 2. The fit is improved at >98% confidence (χ^2/dof = 37/30); the unabsorbed spectrum is a power law with $\Gamma = 1.70 ± 0.08$, typical for similar X-ray luminosity AGNs.

![Fig. 1.—Redshift-luminosity distribution of the five-object Chandra sample with respect to the full S03 sample, the ROSAT sample studied by S06, and the X-ray-observed E03 sample. Two of the E03 objects, discussed in §1, are denoted by letters: A stands for Pictor A, and B stands for Arp 102B. All monochromatic luminosities are corrected for host galaxy contamination.](image-url)

SDSS Name	log R	z	FWHM (km s$^{-1}$)	M_i (mag)
J013253.31–095239.5	<0.7	0.260	15200	−22.9
J100443.44+480156.5	<0.6	0.199	16000	−22.8
J123807.77+532556.0	2.3	0.348	15400	−24.4
J140720.70+023553.1	<1	0.309	20100	−22.9
J212501.21–081328.6	<0.2	0.625	14000	−26.8

Notes.—Col. (1): SDSS name given in the J2000 epoch R.A. and decl. form. Col. (2): Radio loudness parameter. Col. (3): Redshift. Col. (4): FWHM of the Hα (objects 1–4) or Hβ (object 5) line. Col. (5): Extinction- and K-corrected (assuming a power-law continuum with index $\alpha_v = −2.45$ for $\lambda > 5000$ Å; Vanden Berk et al. 2001) SDSS i-band model magnitude (including the host galaxy contribution).
TABLE 2
X-RAY OBSERVATIONS

Object	ObsID	Instrument	Observation Date	t_{exp} (s)	Counts	Count Rate	PSF FWHM (arcsec)	ROSAT (counts s$^{-1}$)
J0132−0952	6770	ACIS-7	2006 Jun 24	8151	727	0.089 ± 0.003	0.85 ± 0.03	≤0.011
J1004+4801	6771	ACIS-235678	2006 Jan 31	8628	359	0.042 ± 0.002	0.80 ± 0.03	0.04 ± 0.01
J1238+5325	6773	ACIS-7	2006 May 31	4061	1133	0.279 ± 0.008	0.75 ± 0.02	0.10 ± 0.02
J1407+0235	6772	ACIS-235678	2005 Dec 7	5471	1348*	0.246 ± 0.007*	1.1 ± 0.1	≤0.014
J2125−0813	6774	ACIS-7	2006 Apr 2	4110	155	0.038 ± 0.003	1.1 ± 0.1	0.06 ± 0.01

Notes.—Asterisks denote observed values, which are not corrected for pile-up. Col. (1): Short object name. Col. (2): Chandra Observation ID. Col. (3): ACIS chips used; all observations used the 1 subarray, except ObsID 6772, which used the 1 subarray. Col. (4): Date of the observation. Col. (5): Effective exposure time, t_{exp}. Col. (6): Total counts in the 0.3–10 keV spectrum. Col. (7): Count rate for the ACIS-S3 chip. Col. (8): FWHM of the ACIS image PSF. Col. (9): The 0.5–2 keV ROSAT count rate.

Fig. 2.—X-ray spectra of the five double-peaked emitters overlaid with the best-fit models. The panels are arranged in order of increasing R.A., with the R.A. increasing to the right and down. The second panel displays the 1–3 σ confidence contours for the gas column density and ionization parameter for the SDSS J0132−0952 fit shown in the first panel. The SDSS J1407−0235 fit takes into account the pile-up estimated to be 12%. The last panel gives the SDSS J2125−0813 Cash-statistic fit which has no $\Delta \chi^2$ residuals; $\Delta \chi$ refers to the residuals in units of σ with error bars of size 1.
which have an average photon index of $\Gamma = 1.74 \pm 0.09$ (e.g., Piconcelli et al. 2002). The column density of the ionized absorber is constrained to $N_{HI} = (4 \pm 2) \times 10^{22}$ cm$^{-2}$ with an ionization parameter $\xi = 160 \pm 70$ ergs$^{-1}$ cm$^{-1}$. The absorber parameters are given in Table 3 and the estimated fluxes and monochromatic luminosities in Table 4. We show the 1σ and 3σ contours for two interesting parameters in Figure 2. Since the XSPEC absorber model is not fully self consistent (it treats the temperature and ionization parameter are chosen differently in different photoionization codes. The XSPEC model parameters are given in Table 3 and the estimated fluxes and monochromatic luminosities of two, with $N_{HI} \leq 6 \times 10^{20}$ cm$^{-2}$.

SDSS J0132−0952 falls within the RASS observation RS931905N00 (1990 June), but is not detected in 440 s. We estimate a count-rate upper limit of ≤ 0.011 s$^{-1}$ in the 0.5−2 keV band (see Table 2), with χ^2/dof = 37/30 wabs(absorzi*zpow).

TABLE 3

X-RAY SPECTRAL FITS

Object	Γ	N_{HI} (cm$^{-2}$)	N_{HI} (cm$^{-2}$)	$\text{EW}_{\text{FeK}\alpha}$ (keV)	χ^2/dof	Model
J0132−0952	1.70 ± 0.08	3.0 × 1020	(4 ± 2) × 1022	$\xi = 160 \pm 70$	<0.5	37/30 wabs(absorzi*zpow)
J1004+4801	1.60 ± 0.09	9.0 × 1019	...	<0.9	21/32 wabs*zpow	
J1238+5325	1.77 ± 0.05	1.6 × 1020	...	<0.3	54/46 wabs*zpow	
J1407+0235	1.60 ± 0.05	2.4 × 1020	...	49/58 jdpileup(abs+power)		
J2125−0813	1.0 ± 0.1	5.3 × 1020	...	~7	123/118 wabs*zpow	

Notes.—Col. (1): Short object name. Col. (2): Power-law photon index. Col. (3): Galactic hydrogen column density. Col. (4): Intrinsic absorbing column density N_{HI} and ionization parameter of the absorbing gas, ξ in units of ergs$^{-1}$ cm$^{-1}$, whenever appropriate. Col. (5): FeKα line equivalent width or upper limit. Col. (6): χ^2 (first four rows) or C-stat (last row) of the model fit and the number of dof. Col. (7): XSPEC/SHERPA model.

TABLE 4

X-RAY AND OPTICAL FLUXES, LUMINOSITIES, AND FLUX RATIOS

Object	$F_{0.1-2\text{keV}}$ (ergs cm$^{-2}$ s$^{-1}$)	$F_{0.5-2\text{keV}}$ (ergs cm$^{-2}$ s$^{-1}$)	L_{2000} (ergs s$^{-1}$ Hz$^{-1}$)	L_{2000} (ergs s$^{-1}$ Hz$^{-1}$)	α_{ox}	$\Delta\alpha_{\text{ox}}$	σ_{ox}	L_{bol} (ergs s$^{-1}$)
J0132−0952	8.7$^{+2.1}_{-2.8} \times 10^{-13}$	4.8$^{+1.2}_{-1.8} \times 10^{-13}$	26.24	29.01	-1.06	0.28	0.17	1 × 1045
J1004+4801	2.9$^{+0.6}_{-0.4} \times 10^{-13}$	1.4$^{+0.3}_{-0.3} \times 10^{-13}$	25.45	28.22	-1.06	0.17	0.19	2 × 1044
J1238+5325	1.1$^{+0.2}_{-0.3} \times 10^{-13}$	6.1$^{+1.6}_{-0.8} \times 10^{-13}$	26.91	29.53	-1.00	0.41	...	4 × 1044
J1407+0235	1.7$^{+0.1}_{-0.1} \times 10^{-13}$	8.1$^{+0.2}_{-0.2} \times 10^{-13}$	26.66	29.30	-1.01	0.37	0.17	2 × 1044
J2125−0813	7.1$^{+1.2}_{-1.0} \times 10^{-13}$	3.3$^{+0.6}_{-0.5} \times 10^{-13}$	26.77	30.23	-1.33	0.18	0.20	1 × 1046

Notes.—Col. (1): Short object name. Col. (2): 2−10 keV rest-frame absorption-corrected flux. Col. (3): 0.5−2 keV rest-frame absorption-corrected flux. Col. (4): Logarithm of the 2 keV monochromatic luminosity. Col. (5): Logarithm of the 2500 Å monochromatic luminosity. Col. (6): UV-to-X-ray spectral index, $\alpha_{\text{ox}} = -0.3838(\log L_{2500\AA} - \log L_{\text{ox}})$. Col. (7): σ_{ox} residuals, obtained by subtracting the α_{ox} expected from the $\alpha_{\text{ox}}(\log L_{2500\AA} = \log L_{\text{ox}})$ relation of Steffen et al. (2006) from the observed one. Col. (8): The hardx ratio used here is defined as $(A - B)/(A + B)$, where A refers to the ROSAT PSPC count rate in the hard (0.5−2.0 keV) and B in the soft (0.1−0.4 keV) band.

The hardness ratio used here is defined as $(A - B)/(A + B)$, where A refers to the ROSAT PSPC count rate in the hard (0.5−2.0 keV) and B in the soft (0.1−0.4 keV) band.
the Galactic value). Assuming the Chandra power-law model slope and absorption equal to the Galactic value, the ROSAT soft-band flux was $F_{0.5-2 \text{ keV}} = (4.4 \pm 1.1) \times 10^{-13}$ ergs cm$^{-2}$ s$^{-1}$. This is significantly brighter than the 2006 Chandra soft-band flux given above.\(^{10}\)

3.3. SDSS J1238+5325

SDSS J1238+5325 (Table 2) is a RL double-peaked emitter which we observed with Chandra using the ACIS-S $\frac{1}{2}$ subarray. The 0.3–10 keV spectrum can be represented by a simple power law with photon index $\Gamma = 1.77 \pm 0.05$ modified by Galactic absorption (see Table 3 and Fig. 2). Any intrinsic absorption is constrained to be $N_{H,i} < 3 \times 10^{24}$ cm$^{-2}$.

SDSS J1238+5325 was previously detected with ROSAT in 1990 December. Assuming that the Chandra power-law model modified by Galactic absorption applies, the soft-band flux was $F_{0.5-2 \text{ keV}} = (1.2 \pm 0.2) \times 10^{-12}$ ergs cm$^{-2}$ s$^{-1}$ during the ROSAT observation, essentially unchanged from the 2006 Chandra observation.

3.4. SDSS J1407+0235

SDSS J1407–0235 is a RQ double-peaked emitter observed by Chandra for 5.5 ks (Table 2). The source falls within two RASS ~ 390 s pointings: RS931738N00 and RS931638N00, observed on 1991 August 13. The estimated count-rate upper limits, $\lesssim 0.014 \text{ s}^{-1}$, are consistent for the two observations, corresponding to an expected Chandra ACIS-S count rate of $\lesssim 0.066 \text{ s}^{-1}$ (0.3–10 keV). The actual observed count rate (using the $\frac{1}{2}$ subarray) was $0.25 \pm 0.01 \text{ s}^{-1}$ (a brightening by at least a factor of 4) and the source is piled up. We used SHERPA’s jdp11.eup model to estimate the pile-up and model the X-ray spectrum. The estimated pile-up fraction is 12%, and the spectrum can be modeled by a simple power law with photon index $\Gamma = 1.60 \pm 0.05$ modified by Galactic absorption. The pile-up and absorption corrected fluxes in the hard and soft bands are $F_{2-10 \text{ keV}} = 1.7 \times 10^{-12}$ ergs cm$^{-2}$ s$^{-1}$ and $F_{0.5-2 \text{ keV}} = 8.1 \times 10^{-13}$ ergs cm$^{-2}$ s$^{-1}$, respectively (see Table 4).

3.5. SDSS J2125–0813

SDSS J2125–0813 is the highest optical luminosity SDSS double-peaked emitter ($M_V = -26.8$, Table 1) and one of only three high-redshift ($z \approx 0.6$) double-peaked emitters discovered serendipitously based on their [O iii] line profiles. Its inclusion in the current sample allows us to extend substantially the redshift and luminosity coverage of the sample.

A simple power-law model modified by Galactic absorption in the 0.3–10 keV band results in a rather flat power-law slope of $\Gamma = 1.0 \pm 0.1$, with large residuals around 3.9–4.3 keV, corresponding to ~ 6.3–7 keV in the AGN rest frame (C stat = 123 for 118 dof; see Fig. 2). The inclusion of neutral intrinsic absorption does not improve the fit. The addition of a Gaussian emission line centered at 6.7 keV (rest frame) with a width of 0.3 keV improves the fit (C stat = 118 for 117 dof), but the small number of counts prevents us from reliably constraining the line parameters. The equivalent width of the Gaussian line is ~ 0.7 keV, and if confirmed, this line is consistent with Fe xxv Kα emission. Note that the putative FeKα line EW is too high relative to the observed hard-band X-ray luminosity and would require unusually high Fe abundance; typical AGNs with 2–10 keV luminosities similar to that of SDSS J2125–0813 (1045 ergs s$^{-1}$) are expected to have EW ~ 40 eV (Bianchi et al. 2007).

More complex models including a partial or ionized absorber or an exponentially cutoff power-law model reflected by ionized material in addition to a relativistic Fe line provide better fits to the data, but cannot be well constrained with only 155 counts. For example, a model including an ionized absorber ($C \approx 200$ ergs cm$^{-2}$) with a large column density ($N_{H,i} \sim 10^{25}$ cm$^{-2}$) provides a statistically acceptable fit, suggesting the slow wind outflow model of Cao & Wang (2006) might provide extra illumination to the Hα emission region. A longer observation of this source is necessary to characterize better its X-ray-emitting region.

SDSS J2125–0813 was detected in the RASS in November 1990, with a 0.5–2 keV flux of $(8 \pm 1) \times 10^{-13}$ ergs cm$^{-2}$ s$^{-1}$ and a hardness ratio of 0.86, which corresponds to a power-law photon index of $\Gamma_{0.1-2} = 1.5$ (assuming absorption equal to the Galactic value). For comparison, the best-fit (Fig. 2) model 0.5–2 keV flux in the Chandra observation was 1.3×10^{-13} ergs cm$^{-2}$ s$^{-1}$, a soft X-ray band decrease in flux by a factor of ~ 6 over 15.5 yr. The observed change in the soft-band flux is significant and robust to changes in the power-law model (e.g., assuming intrinsic absorption) or the X-ray band (e.g., restricting the analysis to the 0.5–2 keV band) used to obtain the flux during the Chandra epoch.

4. CONTEMPORANEOUS OPTICAL OBSERVATIONS

We reobserved all five double-peaked emitters with the Marcario Low-Resolution Spectrograph (LRS) of the Hobby-Eberly Telescope (HET) in the optical band, within a few months of the Chandra observations. Double-peaked emitters are known to vary on timescales of months to years (e.g., Eracleous et al. 2006; Gezari et al. 2007), and thus contemporaneous observations are necessary to ensure proper comparison of the optical and the X-ray monochromatic luminosities. In addition to flux variations, the line profile shapes also vary on timescales of months to years and a contemporaneous spectrum allows us to estimate the emission-region size during the Chandra epoch. We used the G1 grism and 1′′ slit to cover the wavelength range 4150–10100 Å. Our spectra have a spectral resolution of 8.4 Å, corresponding to a velocity resolution of 350 km s$^{-1}$ at 7200 Å. The data were reduced in a standard manner, as described in Eracleous & Halpern (1994), for example.

We used the [O iii] line flux measured from the SDSS spectra to determine the flux calibration of the HET spectra. The [O iii] line emission is a good tracer of nuclear activity in AGNs (e.g., Kauffmann et al. 2003 and references therein) and provides a suitable and relatively robust measure (we estimate $\lesssim 10\%$ uncertainty) of the spectral normalization.

We isolated the Hα line profiles (or the Hβ profile in the case of SDSS J2125–0813) in the HET/LRS spectra by subtracting a local power-law continuum. We fitted the resulting line profiles with the relativistic Keplerian disk models of Chen & Halpern (1989) and Eracleous et al. (1995) in order to determine the parameters that characterize the line-emitting region of the disk. For these fits we ignore the regions around the narrow Hα line as well as the S, N, and O forbidden lines. We used the SDSS line-profile fits, which include modeling of the narrow lines, to verify that the results obtained from the HET spectra are robust. The line-profile fits allow us to estimate the following parameters: (1) the inner and outer radii of the emission region, R_1 and R_2, in units of $R_g \equiv GM/c^2$, where M is the mass of the black hole, (2) the inclination of the axis of the disk to the line of sight, i, (3) the...
emissivity power-law index, q, under the convention that $\epsilon \propto R^{-q}$, and (4) the broadening parameter, σ (in km s$^{-1}$).

The line profiles of the five objects of our sample are shown in Figure 3, together with the best-fitting disk models. Table 5 lists the model parameters. Two of the objects are well fit by an axisymmetric disk model, and all disk parameter estimates are fairly robust (in the case of SDSS J1215−0813, for example, the inner radius of the emission region is constrained to lie between 110 $R_d < R_i < 180 R_d$). The remaining three objects require nonaxisymmetric disk models, and we model them with an elliptical disk. The elliptical disk model (Eracleous et al. 1995) is the simplest nonaxisymmetric accretion-disk model which we use to obtain estimates of the inner and outer radii of the Hα line emission region. Besides the five disk parameters listed above, this model requires fitting for the disk ellipticity, e,

and the angle of the semimajor axis with respect to our line of sight, ϕ. The inner and outer radii of the emitting region are less well constrained in these three cases, but choosing models with fixed emissivity power-law indices, we can estimate the inner radius to about $\pm 30\%$. We start by assuming either a point-source illumination ($q = 3$) or illumination by scattering ($q = 2$), whenever the point-source model fit is inadequate. We were able to constrain the inclination angles to within a few degrees in all cases, which is important since this parameter is degenerate with the inner radius. The inner radius of the emitting region is a crucial parameter for the determination of the viscous energy available locally. The ratio of the line luminosity to the locally available energy (listed in Table 5 in all cases) determines the need for external illumination as discussed in §5.5 below.

We use the bluest parts of the HET spectra (3300 Å for SDSS J1215−0813, and 4000−4500 Å for the remaining targets) to estimate the change in flux between the HET and SDSS epochs and list the results in Table 6. Table 6 summarizes the optical variability timescales and amplitudes for the five Chandra double-peaked emitters. The changes in the continuum fluxes over the wavelength ranges specified in column (6) are given in column (7), with the changes in the Hα line fluxes (Hβ in the case of SDSS J1215−0813) listed in column (8). The continuum flux varied by factors of 2−3 for the three higher redshift sources (SDSS J1238+5325, SDSS J1407−0235, and SDSS J1215−0813) in the 3−4 yr (rest-frame) period between the SDSS and HET observations. In addition to the reported continuum-flux variability, the line profile shapes also varied between the SDSS and HET observations. The ratio of the blue-to-red peak height varied from ~ 0.9 to ~ 1 in the case of SDSS J0132−0952, and ~ 1.1 to ~ 0.8 in the case of SDSS J1407−0235 (see Fig. 3, last panel), as has been observed for other double-peaked emitters (e.g., Eracleous et al. 2006; Gezari et al. 2007).

In order to estimate the host galaxy corrections, we fit the SDSS spectra, which have broader wavelength coverage and provide better constraints on the AGN–host-galaxy decomposition, with a combination of host galaxy and AGN components. The results of these fits, for the three double-peaked emitters with detectable host galaxy contribution in the 3rd diameter SDSS fibers, are shown in Figure 4. The host galaxy and AGN components for the fit are constructed using AGN and galaxy eigenspectra obtained from large SDSS samples by Yip et al. (2004a, 2004b). We subtract the host galaxy spectra obtained in this fashion from the three SDSS spectra with substantial host galaxy contributions:

11 The external illumination is usually assumed to be well described by a power law with an index q with $2 < q \leq 3$, where $q = 2$ represents a point source high above the disk on the disk axis, while $q = 3$ represents a constant-density illuminator above the emission region (see Dunmont & Collin-Souffrin 1990).
Fig. 3.—H$_{\alpha}$ (first four panels) and Hβ (middle right panel) line profiles of the five double-peaked emitters observed with Chandra overlaid with the best-fit accretion-disk emission models. The panels are arranged in order of increasing R.A., with the R.A. increasing down and to the right. Each panel shows the fit residuals, including the indicated narrow lines, displaced to negative values for clarity. The bottom right panel shows the H$_{\alpha}$ variability of one of our targets, SDSS J1407–0235. The top curves denote the HET and SDSS spectra, while the bottom two curves show the accretion-disk fits; for clarity, the continuum levels have been displaced by arbitrary values in all cases.
amplitude, σ_{int} (for a description of this quantity see Almaini et al. 2000), of the unobscured AGNs from the Lockman Hole sample. They find that the average AGN has a $\sigma_{\text{int}} \sim 0.3$, with a range of $0.2 < \sigma_{\text{int}} < 0.5$ for the AGNs with confirmed variability. The corresponding σ_{int} values for our four variable sources are greater than 0.2, 0.5, 0.6, and 0.7 for SDSS J0132−0952, SDSS J1004+4801, SDSS J1407+0235, and SDSS J2125−0813, respectively. Based on this small sample, it appears that most double-peaked emitters are more variable on decade timescales than the typical AGN.

We tested the Chandra light curves for short-term variability using the XRONOS package. It enables us to compute the rms fractional variation (σ_{rms}) of the count rate within each exposure after binning the data in intervals ranging from half a minute to about 15–30 minutes (allowing for at least five bins in each case). No short-term variability was detected. The 3 σ Gaussian limits on the variability range between $\sigma_{\text{rms}} < 0.1$–0.3 for the higher S/N low-redshift objects and $\sigma_{\text{rms}} < 0.4$–0.6 for SDSS J2125−0813, depending on the length of the time interval probed. The non-detection of short-term variability is expected, as our objects are relatively luminous in the 0.5–10 keV band (with luminosities ranging between a few times 10^{43} and 10^{45} erg s$^{-1}$), and AGN variability amplitudes on short timescales are known to decrease with increasing luminosities (e.g., Nandra et al. 1997). Lawrence & Papadakis (1993) show that for AGNs with luminosities in the 10^{43}–10^{45} erg s$^{-1}$ range, timescales longer than 10^{4}–10^{6} s are typically necessary to detect rms variability of more than 10%; these timescales are 2–10 times longer than the exposure times in our snapshot survey.

The optical variability of the five double-peaked emitters is also significant on long timescales (see Table 6), with flux-density changes of up to a factor of 3 over 3–4 yr in the AGN rest frame in our sample, accompanied by Hα line flux changes of up to a factor of 2.5. Figure 4 shows the HET and SDSS spectra of three of the five Chandra sources. Only two of the double-peaked emitters (SDSS J0132−0952 and SDSS J1407+0235) show clear Hα line-profile variations which are similar to those observed in double-peaked emitters with long-term variability monitoring (e.g., Eracleous et al. 2000; Gezari et al. 2007). The three higher redshift AGNs in our sample (SDSS J1238+5325, SDSS J1407+0235, and SDSS J2125−0813) vary by factors of 2–3 in the 4000 Å continuum in a few years. For comparison, the expected AGN variability at 4000 Å for a similar time lag in the SDSS is ~0.2 mag, or about 60% (Ivezić et al. 2004). We conclude that the double-peaked emitters studied here are typically more variable on long timescales (years) in the optical (a variability range of 10%–300%; see Table 6) and the X-ray (factors of ≥ 1.6, 3, 1, ≥ 4, and 6, in order of increasing right ascension [R.A.]) than the average AGN. In S06 we compared the width of the α_{em} residual distribution to that of the luminosity-matched Steffen et al. (2006) subsample and found that it was broader at the 1 σ level. This finding, which could be interpreted

Object	SDSS Observation Date	Galaxy (%)	$\Delta_{\text{HET-SDS}}$ (yr)	$\Delta_{\text{HET-Chandra}}$ (month)	Δ_{rres} (Å)	$F_{\text{SDSS}}/F_{\text{HET}}$	F_{HET} SDSS/F_{HET}	HET
J0132−0952......	2001 Aug 26	20	5	−10	4300–4600	1.15	0.9	
J1004+4801......	2001 Sep 26	20	5	−10	4300–4600	0.95	0.85	
J1407+0235......	2001 Apr 15	<10	0.2	0.57	4000–6200	0.53	0.63	
J0132−0952......	2001 Sep 1	<10	0.2	0.57	4000–6200	0.53	0.63	

Notes.—Col. (1): Short object name. Col. (2): Date of the SDSS observation. Col. (3): The percentage contribution from the host galaxy at 4200 Å from the SDSS spectrum, except for SDSS J1004+4801, for which the galaxy fraction is measured at 4500 Å. Col. (4): Observed-frame time interval between the SDSS and the HET observations, t_{obs}. Col. (5): Observed-frame time interval between the HET and the Chandra observations, t_{obs}. Col. (6): Rest-wavelength range for which the flux change was measured. Col. (7): The ratio of the HET to the SDSS flux. Col. (8): The ratio of the HET to the SDSS Hα line (Hβ in the case of SDSS J2125−0813) flux.
as an indication of larger X-ray and/or optical/UV variability for double-peaked emitters, is confirmed with the small sample studied here.

5.3. Distribution of the UV-to-X-Ray Indices

We use the UV-to-X-ray index, α_{ox}, defined in terms of the logarithm of the ratio of the rest-frame 2500 Å and 2 keV monochromatic fluxes, $\alpha_{\text{ox}} = -0.3838 \log \left[F_{\nu}(2500 \text{ Å})/F_{\nu}(2 \text{ keV}) \right]$, to compare the X-ray emission of our sample to that of more typical AGNs with similar optical/UV monochromatic luminosities. The UV-to-X-ray indices of the five Chandra targets are shown as a function of their 2500 Å monochromatic luminosities in Figure 5 and listed in Table 4. There is a tendency for the double-peaked emitters to have flatter α_{ox} values than typical RQ AGNs. This is expected for the one RL double-peaked emitter, SDSS J1238+5325, but is also apparent in the four RQ targets. We can characterize this discrepancy by subtracting from each observed value of α_{ox} the value expected based on the $\alpha_{\text{ox}}(l_{2500 \text{ Å}})$ relation found by Steffen et al. (2006) for RQ AGNs, $\alpha_{\text{ox}}(l_{2500 \text{ Å}}) = -0.137l_{2500 \text{ Å}} + 2.638$, and compare this to the spread, σ_{ox}, observed around the relation for normal RQ AGNs. The α_{ox} residual values ($\Delta \alpha_{\text{ox}}$), together with the values of σ_{ox} for similar-luminosity RQ AGNs are given in columns (7) and (8) of Table 4. The α_{ox} residuals of the four RQ double-peaked emitters are larger than or about equal to the spread observed around the $\alpha_{\text{ox}}(l_{2500 \text{ Å}})$ relation for normal RQ AGNs. The α_{ox} values are too flat in the cases of SDSS J0132−0952 and SDSS J1407+0235, and too flat in the cases of SDSS J1004+4801 and SDSS J2125−0813. The remaining double-peaked emitter, SDSS J1238+5325, has an UV-to-X-ray index which is 0.41 dex flatter than the value expected for similar-luminosity RQ AGN. This difference is typical for RL AGNs, which are known to have 2 keV monochromatic luminosities of a factor of ≥ 3 higher than those of RQ AGNs with similar UV emission (e.g., Wilkes et al. 1994). The combined optical and X-ray variability of the double-peaked emitters together with the uncertainties in the determination of $l_{2500 \text{ Å}}$ is large enough to account at least partially for the $\Delta \alpha_{\text{ox}}$ values observed for SDSS J1004+4801 (up to 0.2 dex), SDSS J1407+0235 (up to 0.3 dex), and SDSS J2125−0813 (up to 0.3 dex). For X-ray or optical variability to be the cause of the anomalous α_{ox} values observed for these three RQ AGNs, the variability amplitude over the 2−4 months

Figure 4—AGN–host-galaxy decomposition for the three double-peaked emitters whose SDSS spectra have detectable host galaxy contributions. The host galaxy component is shown in red, the AGN component in green, the total SDSS spectrum in black, and the total HET spectrum in cyan. All spectra are observed flux-calibrated spectra, i.e., no Galactic extinction correction has been applied. The SDSS spectra are convolved with an 8 Å Gaussian kernel for display purposes. The top panel shows only one of the two SDSS spectra, taken on 2001 September 26.
separating the Chandra and HET observations would have to reach the amplitude observed over years (optical) or decades (X-ray). Since the amplitude of AGN variability typically increases with time, this is not likely.

Using alternative methods to estimate I_{2500}, by (1) extrapolating the measured flux density at 3700–2500 Å using a uniform power-law of the form, $f_\nu \propto \nu^{\alpha}$, with slope $\alpha_2 = -1.5$ (Vanden Berk et al. 2001), or (2) using the Richards et al. (2006) SED template scaled to the observed fluxes in the extreme UV (see § 5.4), we find results consistent with those reported in Table 4 within 0.2 dex (typically <0.1 dex) in all cases. This is equivalent to an uncertainty of <0.1 dex in α_{ox}, which is inadequate to explain the observed flattening of the UV-to-X-ray index.

In addition, although variability and measurement uncertainty could be responsible for the flattening of the α_{ox} values in individual cases, it is unlikely that all four RQ double-peaked emitters would be affected in the same way. The mean value of the α_{ox} residuals is $\langle \alpha_{ox} - \alpha_{ox}(I_{2500}) \rangle = 0.25 \pm 0.04$ for the four RQ double-peaked emitters observed with Chandra, compared to $\langle \alpha_{ox} - \alpha_{ox}(I_{2500}) \rangle = -0.02 \pm 0.01$, for the luminosity-matched subsample of RQ AGNs from Steffen et al. (2006). Both the Gehan and logrank tests ($T = 3.2$, $P = 0.1\%$ and $T = 7.7$, $P < 0.1\%$, respectively; see S06 for the use of these sample-comparison tests) confirm that the current sample of four RQ double-peaked emitters has a statistically different distribution of α_{ox} residuals from the one found for all AGNs with similar UV luminosities and single-peaked lines presented in Steffen et al. (2006). This tendency was discernible in the S06 sample (left panel of Fig. 9 in S06), but not statistically significant; it was also observed in the preliminary analysis of the five Chandra targets in combination with a sample of double-peaked emitters observed with Swift (Strateva et al. 2007).

5.4. Bolometric Luminosities

Figure 6 shows the spectral energy distributions (SEDs) of the five Chandra sources from the near-infrared (NIR) to the X-ray band. The X-ray spectra are represented as power laws with photon indices given in Table 3. For the two AGN with negligible host galaxy contamination (SDSS J1238+5325 and SDSS J2125–0813) we show the HET-epoch spectra in the optical region; for the remaining three objects we plot the SDSS AGN components scaled to the flux level during the HET epoch. In all five cases we also plot the SDSS-epoch AGN components. Comparison of the HET-epoch and SDSS-epoch spectra gives an idea of the optical variability on long timescales (4–5 yr). The near-UV (NUV; $\lambda_{eff} = 2267$ Å) and far-UV (FUV; $\lambda_{eff} = 1516$ Å) fluxes, obtained by the GALEX mission (see Table 7) and corrected for Galactic extinction, are also shown. The extinction corrections, $A_{FUV} = 7.9E(B-V)$ and $A_{NUV} = 8.0E(B-V)$, are from Gil de Paz et al. (2007), who used the Cardelli et al. (1989) parameterization of the Galactic extinction law. The NIR fluxes (obtained from the 2MASS magnitudes reported in Table 8) contain the host galaxy contributions in all cases, and are well above the template SEDs in Figure 6. If we subtract an elliptical galaxy SED (scaled to the galaxy contribution in the SDSS spectra and corrected for the SDSS fiber apertures; see Fioc & Rocca-Volmerange 1997 for the galaxy SED) from the NIR fluxes, we can account for part of the discrepancy between the observed NIR fluxes and the template SEDs for SDSS J0132–0952 and SDSS J1004+4801. In both cases a standard elliptical galaxy template can account for ≤0.1 dex in the NIR; a dusty starburst would be necessary to explain the high observed NIR luminosities. In the cases of SDSS J1238+5325 and SDSS J2125–0813, the NIR colors are more consistent with an AGN SED and the high observed luminosities are in line with the higher optical/UV fluxes.
The average RL (for SDSS J1238+5325) and RQ (for the remaining four sources) quasar SEDs from Richards et al. (2006) scaled to the AGN continuum flux in the optical, are also shown in Figure 7. We used the SDSS AGN component, scaled to the HET-epoch flux in the three cases with significant host galaxy contribution, and the HET spectra in the remaining two cases. The Richards et al. (2006) average SEDs are similar from the infrared (IR) to the UV region to the standard Elvis et al. (1994) median SEDs (both SED template publish are shown in the second panel of Fig. 6 for one of our sources, SDSS J1407+0235), but they differ substantially in the X-ray band. The Elvis et al. (1994) sample was biased toward AGNs with good S/N *Einstein* data (hence X-ray brighter than the typical AGN) and bright in the extreme UV, and Richards et al. (2006) argue that typical AGNs are redder and have lower X-ray-to-optical ratios. The Richards et al. (2006) RQ SED has an \(\alpha_{\text{ox}} = -1.53 \) and the Elvis et al. (1994) RQ SED an \(\alpha_{\text{ox}} = -1.38 \), compared to \(\alpha_{\text{ox}} = -1.55 \) and \(\alpha_{\text{ox}} = -1.54 \) for their respective \(I_{2500} \) from the Steffen et al. (2006) relation; both SEDs have total (including the IR bump) bolometric luminosities of \(2 \times 10^{46} \) erg s\(^{-1}\). Note that the *GALEX* observations agree well with the optically scaled Richards et al. (2006) template SEDs for the four RQ *Chandra* AGN (within 0.11 dex, or <30%). The NUV band and the optical bracket rest-frame 2500 Å in all four cases, suggesting that the \(I_{2500} \) estimates based on the optically scaled template SEDs and the UV-to-X-ray indices are fairly robust (changes in \(\alpha_{\text{ox}} \) of less than 0.05). The RL AGN, SDSS J1238+5325, is 0.4 dex more luminous in the NUV band during the *GALEX* epoch relative to the HET-epoch optically scaled RL template SED; a similar variation at 2500 Å in the 17 days (13 in the AGN rest frame) between the *Chandra* and HET observations would result in a change in \(\alpha_{\text{ox}} \) of 0.16, and cannot fully account for the observed flatter \(\alpha_{\text{ox}} \).

The Arp 102B SED, discussed in more detail by E03 is shown in the last panel of Figure 6 for comparison. We use the Advanced Satellite for Cosmology and Astrophysics (ASCA) X-ray spectrum presented by Eracleous et al. (2003a; see also Lewis & Eracleous 2006), the *Hubble Space Telescope* (HST) UV spectrum given in Halpern et al. (1996) and the NIR and mid-infrared (MIR) spectra published by Riffel et al. (2006) and Chary (2007), respectively. Riffel et al. (2006) note strong stellar features in the NIR spectrum of Arp 102B, which was integrated over a 700 pc region centered on the active nucleus. The MIR source extent, studied by Chary (2007) was around 250 pc; for comparison, the *HST* aperture diameter is \(\sim 400 \) pc. In the same panel of Figure 6, we show the average quasar SED from Richards et al. (2006) in the infrared-to-UV region (scaled to the reddest UV wavelength of the Arp 102B *HST* spectrum, \(\sim 3200 \) Å) together with the ASCA power law in the X-ray region. In addition, the NIR emission of Arp 102B includes a strong galaxy contribution, while in the MIR variability by a factor of 2.5 over a 5 yr period was noted; both variability and varying host galaxy contributions are likely responsible for the discrepancy between the quasar SED and the Arp 102B IR data. The Arp 102B SED is characterized by a lack of a “big blue bump” (BBB), the excess emission between the X-ray and UV bands (\(\nu \sim 10^{15.4} \) Hz) normally associated with the innermost parts of the accretion disk (which is likely replaced by a hot radiatively inefficient central structure in the case of Arp 102B and other AGNs with RIAFs). In contrast to the Arp 102B SED, the *GALEX* observations of the five double-peaked emitters presented here

Table 7

Object	GALEX Observation Date	\(F_{\text{FUV}} \) (\(\mu \text{Jy} \))	\(F_{\text{NUV}} \) (\(\mu \text{Jy} \))	\(E(B-V) \)	\(A_{\text{FUV}} \) (mag)
J0132−0952..	2007 Oct 22	55.2 ± 3.9	31.1 ± 4.0	0.028	0.22
J1004+4801..	2007 Feb 10	16.3 ± 3.1	10.3 ± 3.0	0.0092	0.073
J1238+5325..	2005 Mar 2	215.0 ± 5.6	156.5 ± 8.9	0.015	0.12
J1407+0235..	2004 May 17	57.2 ± 1.4	48.9 ± 1.9	0.037	0.29
J2125−0813..	2003 Aug 27	112.7 ± 6.1	72.0 ± 5.8	0.056	0.44

Notes: Col. (1): Short object name. Col. (2): Date of the GALEX observations. Col. (3): Observed NUV flux. Col. (4): Observed FUV flux. Col. (5): Galactic reddening, following Schlegel et al. (1998). Col. (6): FUV extinction correction, \(A_{\text{FUV}} = 7.9 E(B-V) \), using the Cardelli et al. (1989) parameterization of the Galactic extinction law for total-to-selective extinction ratio of \(R_V = 3.1 \); the extinction correction in the NUV, \(A_{\text{NUV}} = 8.0 E(B-V) \), is the same within 2%–3%.

Table 8

Object	2MASS Observation Date	\(J \) (mag)	\(H \) (mag)	\(K_s \) (mag)
J0132−0952..	1999 Aug 9	16.93 ± 0.20	16.00 ± 0.20	14.71 ± 0.12
J1004+4801..	1999 Jan 9	16.32 ± 0.11	15.58 ± 0.14	14.97 ± 0.13
J1238+5325..	2000 Apr 25	16.04 ± 0.11	15.43 ± 0.15	14.55 ± 0.10
J1407+0235..	2000 Mar 28	>17	>16.3	>15.8
J2125−0813..	2000 Aug 27	16.02 ± 0.10	15.16 ± 0.11	14.28 ± 0.08

Notes: Col. (1): Short object name. Col. (2): Date of the 2MASS observation. Col. (3): Observed \(J \)-band magnitude. The \(J \) band has an effective wavelength of \(\lambda_{\text{eff}} = 1.253 \mu\text{m} \). Col. (4): Observed \(H \)-band magnitude. \(\lambda_{\text{eff}} = 1.662 \mu\text{m} \). Col. (5): Observed \(K_s \)-band magnitude. \(\lambda_{\text{eff}} = 2.159 \mu\text{m} \). Note that the Galactic reddening corrections are <0.05 mag in all cases for all three bands.
show that the BBB is present in all five SEDs, with the possible exception of SDSS J1004+4801. The presence of BBs is further confirmation for the relatively high efficiency of the accretion flows in these AGNs, excluding RIAF models for them.

Using the template SEDs from Figure 6, we can estimate the bolometric luminosities of the double-peaked emitters, which we list in the last column of Table 4. The Richards et al. (2006) SED does not extend to the radio domain \(10^8 \text{ Hz} < \nu < 10^{12.5} \text{ Hz} \), but the \(\nu < 10^{12.5} \text{ Hz} \) region is energetically unimportant and does not affect the bolometric luminosity estimates. The template SED bolometric luminosities will overestimate the true luminosities if the IR bump consists of fully reprocessed nuclear continuum emission and should be excluded when computing the total luminosity. Such “double-counting” of the IR emission can result in overestimates of the bolometric luminosity of up to 20\%–30\%. We can obtain upper limits to the bolometric luminosities and an estimate of possible uncertainties by normalizing the IR-to-extreme-UV part of the SED template to the NIR (in all cases but SDSS J1004+4801), the extreme UV (in the case of SDSS J1238+5325), and/or the SDSS-epoch spectra (in the case of SDSS J2125−0813, for example, where the SDSS-epoch flux was higher). In all cases, we find that the bolometric luminosities can be at most a factor of 2−3 higher than those reported in Table 4.

On average about 30\% of the bolometric luminosity is emitted between 0.5−10 keV in our sample (with a range of 16\%−36\%, or between 2\% and 12\% in the 0.5−2 keV X-ray band), compared to \~3\% emitted between 0.5−10 keV for the RQ AGN composites of Richards et al. (2006) and \~8\% for the median RQ AGN composite of Elvis et al. (1994). This comparison is not entirely fair, since the Richards et al. (2006) and Elvis et al. (1994) SEDs are constructed using more luminous AGNs \(L_{5000} = 30.6\) and \(L_{5000} = 30.5\), respectively) and \(\alpha_{ox}\) is luminosity dependent. If we renormalize the Richards et al. (2006) SED to the average value of \(L_{5000} = 29.2\), and scale the X-ray part of the SEDs to the level inferred from the Steffen et al. (2006) \(\alpha_{ox}(L_{5000})\) relation for typical RQ AGNs, we find that even in this case only 7\%−8\% of the bolometric luminosity is emitted between 0.5−10 keV by typical RQ AGNs. This restates the conclusion from § 5.3: the average RQ double-peaked emitter from our Chandra sample has an \(\alpha_{ox}\) value flatter by 0.25 dex relative to that of a typical RQ AGN and is 0.65 dex more luminous at 2 keV, which is equivalent to emitting about 30\% of its bolometric luminosity between 0.5−10 keV.

5.5. Disk Illumination

To compute theoretically the emerging spectrum of an accretion disk, both an accurate representation of the vertical structure of the disk and a suitable approximation for the radiation transfer are necessary. Williams (1980) for example, computes the Balmer line emission from the outer, optically thin parts of the accretion disks of cataclysmic variables, assuming a vertically homogeneous disk and local thermodynamic equilibrium (LTE). This paper finds that the outer regions of the disk cool through line emission (with <20\% of the locally available viscous energy emitted as H\(\alpha\)), producing the Balmer line series with small Balmer decrements \(F_{H\alpha}/F_{H\beta} \approx 1\). For comparison, the observed Balmer line decrements range between 3 and 4 for the four low-redshift Chandra targets (for which both H\(\alpha\) and H\(\beta\) fall within the SDSS wavelength coverage) similar to the Balmer decrement of 3.2, which is considered typical for the BLR gas.

Assuming a homogeneous photoionized disk, Collin-Souffrin (1987) and Dumont & Collin-Souffrin (1990) argued that standard accretion disks in AGNs can produce low-ionization lines with characteristics similar to those observed in the BLRs of AGNs (including steeper Balmer line decrements) if the disk is externally illuminated. The lines arise in the radiatively excited skin of the inner (10\(^2\)R\(_G\) < \(R < 10^4\)R\(_G\)) accretion disk or the radiatively heated body of the outer (\(R > 10^4\)R\(_G\)) disk.

The need for external illumination of the accretion disk is an important constraint on models aiming to explain the existence of double-peaked Balmer lines in AGNs. We can use the ratio of the H\(\alpha\) luminosity to the viscous power available locally in the line-emitting region of the disk, \(L_{H\alpha}/W_d\), in comparison with the Williams (1980) computations, to estimate the need for external illumination. The viscous power available locally in the line-emitting region of the disk, \(W_d\), can be estimated using an estimate of the bolometric luminosity and the extent of the emission-line region as described in, e.g., E03 and S06. In this work we use the bolometric luminosity estimates based on the observed spectral energy distributions (SEDs) presented in § 5.4.

E03 and S06 have found that for most double-peaked emitters \(L_{H\alpha}/W_d\) ratios range between 0.1 and 3. The \(L_{H\alpha}/W_d\) ratios for the five double-peaked emitters studied here are shown in Figure 7 in comparison to the 20 double-peaked emitters from Table 7 of E03.\(^{12}\) Note that the apparent anticorrelation seen in this figure is just a consequence of the fact that \(W_d\) is derived from the bolometric luminosity which correlates with the X-ray flux. For \(L_{H\alpha}/W_d \approx 1\), the energy released locally by viscous dissipation cannot power the observed line even in principle. This is the case.

\(^{12}\) We do not show the corresponding ratios for the S06 objects as the estimates were based on limits of the inner and our radii of the emitting regions rather than exact profile fits.
for one of our Chandra targets, SDSS J1004+4801, and 7 out of the 20 (35%) double-peaked emitters presented by E03. Three of the remaining four Chandra double-peaked emitters (as well as 9 out of the 20 E03 sources) have 0.2 ≤ $L_{10\alpha}/W_d$ ≤ 1. Thus, the observed $H\alpha$ luminosities are uncomfortably close to the total energy available locally, and larger than the 20% upper limit of Williams (1980) suggesting that external illumination plays a role. The only exception is the most luminous SDSS double-peaked emitter, SDSS J2125−0813; for a standard $H\alpha$ to H/3 luminosity ratio of 3.2, the measured $L_{10\alpha}/W_d = 0.44$ corresponds to $L_{10\alpha}/W_d \approx 0.12$, and no external illumination is necessary.

The total soft-band X-ray luminosity is a factor of 10−30 higher than the $H\alpha$ luminosities for all five double-peaked emitters (and ranges between 0.7 and 100 for the E03 sources), showing that enough energy is released within a few R_G of the black hole to illuminate the Balmer-line−emitting portion of the disk and produce line emission with the observed strength.

Assuming that the disk is photoionized and a thin skin emits the lines, the $H\alpha$ power depends on the illuminating flux and the reprocessing efficiency (i.e., what fraction of the cooling comes out as $H\alpha$). Collin-Souffrin & Dumont (1989) show that, in the case of a photoionized disk, about 20% of the “effective continuum power,” defined as $L_E = vL_v(3646\ \text{Å}) + vL_v(10\ \text{keV})$, could be emitted as $H\alpha$. In all five cases studied here, the $H\alpha$ line luminosities are equal (in the case of SDSS J1238+5325) or much smaller (by factors of 7, 6, 16, and 66, respectively, for the remaining four cases in order of increasing R.A.) than 20% of the effective continuum power.

We conclude that external illumination is necessary in at least four of the five cases studied here, since the locally available viscous energy is insufficient and the Balmer line decrements too steep, compared to the Williams (1980) predictions. A photoionized disk as described in e.g., Collin-Souffrin & Dumont (1989) can produce $H\alpha$ line emission of the observed strength with the proper Balmer line decrements.

5.6. Intrinsic Absorption

Based on the X-ray spectral fits presented in § 3, large column density neutral absorbers are ruled out in all cases. As a simple test for the presence of ionized absorbers, we added one or more edges at −0.7−0.8 keV to all model fits; this failed to improve the fits at significance levels >90% in all cases, with the exception of SDSS J0132−0952. SDSS J0132−0952 (see § 3.1), requires ionized intrinsic absorption with $N_{HI, i} \approx 4 \times 10^{22} \text{ cm}^{-2}$ and $\xi \approx 160 \text{ ergs s}^{-1} \text{ cm}$, but both quantities are poorly constrained. Similarly, although not required by the data, the limited S/N in the case of SDSS J2125−0813 allows for the addition of a $N_{HI, i} \sim 7 \times 10^{22} \text{ cm}^{-2}$, $\xi \sim 200 \text{ ergs s}^{-1} \text{ cm}$ ionized intrinsic absorber.

Recent work by Cao & Wang (2006) casts doubt on the suitability of a RIAF to illuminate efficiently the outer part of the accretion disk, suggesting instead that the required illumination can be provided by low Lorentz factor (<2) jets in RL objects or slow outflows in the case of RQ double-peaked emitters. If slow-moving outflows in the immediate vicinity of the black holes are responsible for the disk illumination, then X-ray observations are expected to show large X-ray absorbing columns: $N_{HI, i} \gtrsim 10^{23} \text{ cm}^{-2}$, providing a suitable scattering depth of $\tau \sim 0.2$, according to Cao & Wang (2006). As an example of the prevalence of suitable ionized absorbers in AGNs, Cao & Wang (2006) cite the work of Piconcelli et al. (2005), who found that 20 out of the 45 AGNs in their sample show signs of ionized absorption (parameterized by 0.7−0.8 keV absorption edges in 16 of the 20 cases with $\tau > 0.1$, and XSPEC aborsr fits in the remaining four).

The 0.3−10 keV X-ray spectra of the four RQ double-peaked emitters studied here do not require large column density ionized absorbers, with the exception of SDSS J0132−0952, where a lower column-density absorber is present, and SDSS J2125−0813, where a high column density and ionization absorber could not be ruled out. The Chandra snapshot survey presented here has yielded spectra with a limited numbers of counts and was not designed to provide stringent constraints on the column densities and ionization states of possible ionized absorbers, but the presence of such absorbers appears unlikely in at least two of the four RQ objects from the current sample.

If high column density absorbers were common in double-peaked emitters as a class, we might also expect that the UV to X-ray indices measured based on X-ray photometry (e.g., S06) should reflect this by showing steeper α_{OX} distributions (since the measured X-ray fluxes would be depressed by absorption). In fact, as argued above, the double-peaked emitters tend to have flatter α_{OX} values than similar optical/UV luminosity AGNs, suggesting excess X-ray emission relative to the UV emission.

We conclude that the slow-outflow model of Cao & Wang (2006) could provide the illumination necessary to power the strong double-peaked lines observed in some double-peaked emitters, but is unlikely to be responsible for the necessary extra power in all cases.

6. SUMMARY

The five double-peaked emitters observed with Chandra show diverse properties in the X-ray band. Their 0.3−10 keV emission is well fit by simple power laws; the power-law emission is modified by intrinsic absorption in the case of SDSS J0132−0952. The measured power-law photon indices, $1.6 < \Gamma < 1.8$, are typical for similar luminosity AGNs, with the exception of the most optically luminous object, SDSS J2125−0813. The 0.3−10 keV spectrum of SDSS J2125−0813 is either absorbed, or has an unusually flat slope of $\Gamma \sim 1$, and possible Fe xxv Kα emission.

The soft X-ray emission is strongly variable on timescales of years, but no short-term (minutes) variability is detected, as expected for snapshot observations of similar X-ray luminosity AGNs. The optical fluxes and $H\alpha$ line fluxes also vary strongly on long timescales, with stronger variability amplitudes than typical AGN observed in the optical.

The four RQ double-peaked emitters have strong X-ray emission (with about 30% of the total flux emitted in the 0.5−10 keV band) relative to their estimated monochromatic luminosities at 2500 Å, and statistically flatter UV-to-X-ray spectral indices. They all show a classical BBB in the extreme UV, suggesting the absence of RIAFs. External illumination of the accretion disk is necessary to produce Balmer line emission of the observed strength in at least four of the five cases (with the exception of the most luminous SDSS double-peaked emitter SDSS J2125−0813), and the excess X-ray emission could supply the extra energy, although it is still unclear how the accretion disk will intercept a sizable fraction of the soft X-ray emission.

I. V. S. and W. N. B. acknowledge the support of NASA LTSA grant NAG5-13035.

I. V. S. thanks Stefanie Komossa, Kazushi Iwasawa, and Andrea Merloni for helpful discussions and Jose Ramirez for his guidance using the XSTAR models.
The Hobby-Eberly Telescope (HET) is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen. The HET is named in honor of its principal benefactors, William P. Hobby and Robert E. Eberly.

The Marcario Low-Resolution Spectrograph is named for Mike Marcario of High Lonesome Optics, who fabricated several optics for the instrument but died before its completion; it is a joint project of the Hobby-Eberly Telescope partnership and the Instituto de Astronomía de la Universidad Nacional Autónoma de México.

REFERENCES

Abramowicz, M. A., Igumenshchev, I. V., Quataert, E., & Narayan, R. 2002, ApJ, 565, 1101
Almaini, O., et al. 2000, MNRAS, 315, 325
Bianchi, S., Guainazzi, M., Matt, G., & Fonseca Bonilla, N. 2007, A&A, 467, L19
Brandt, W. N., Mathur, S., & Elvis, M. 1997, MNRAS, 285, L25
Cao, X., & Wang, T.-G. 2006, ApJ, 652, 112
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Chary, R.-R. 2007, The Central Engine of Active Galactic Nuclei, 373, 443
Chen, K., Halpern, J. P., & Filippenko, A. V. 1989, ApJ, 344, 115
Chen, K., Halpern, J. P., & Filippenko, A. V. 1989, ApJ, 339, 742
Collin-Souffrin, S. 1987, A&A, 179, 60
Collin-Souffrin, S., & Dumont, A. M. 1989, A&A, 213, 29
Done, C., Mulchaey, J. S., Mushotzky, R. F., & Arnaud, K. A. 1992, ApJ, 395, 275
Dumont, A. M., & Collin-Souffrin, S. 1990, A&A, 229, 313
Elvis, M., et al. 1994, ApJS, 95, 1
Eracleous, M., & Halpern, J. P. 1994, ApJS, 90, 1
———. 1998, ApJ, 505, 577
———. 2003, ApJ, 599, 886
Eracleous, M., Halpern, J. P., & Charlton, J. C. 2003, ApJ, 582, 633 (E03)
Eracleous, M., Halpern, J. P., & Livio, M. 1996, ApJ, 459, 89
Eracleous, M., Lewis, K. T., Bogdanovic, T., Gezari, S., & Halpern, J. P. 2006, Astronomical Society of the Pacific Conference Series, 360, 227
Eracleous, M., Livio, M., Halpern, J. P., & Storchi-Bergmann, T. 1995, ApJ, 438, 610
Eracleous, M., Sambruna, R., & Mushotzky, R. F. 2000, ApJ, 537, 654
Eracleous, M., Shields, J. C., Chartas, G., & Moran, E. C. 2002, ApJ, 565, 108
Fioc, M., & Rocca-Volmerange, B. 1997, A&A, 326, 950
Gezari, S., Halpern, J. P., & Eracleous, M. 2007, ApJS, 169, 167
Gil de Paz, A., et al. 2007, ApJS, 173, 185
Grandy, P., Malaguti, G., & Fiocchi, M. 2006, ApJ, 642, 113
Halpern, J. P., Eracleous, M., Filippenko, A. V., & Chen, K. 1996, ApJ, 464, 704
Ivezic, Z., et al. 2002, AJ, 124, 2364
———. 2004, The Interplay Among Black Holes, Stars and ISM in Galactic Nuclei, 222, 525
Kallman, T. R., & McCray, R. 1982, ApJS, 50, 263
Kallman, T. R., Palmeri, P., Bautista, M. A., Mendoza, C., & Krolik, J. H. 2004, ApJS, 155, 675
Kauffmann, G., et al. 2003, MNRAS, 346, 1055
Knobel, B. P., et al. 2007, ApJ, 660, 239
Laor, A. 2007, The Central Engine of Active Galactic Nuclei, 373, 384
Lawrence, A., & Papadakis, I. 1993, ApJ, 414, L85
Lewis, K. T., & Eracleous, M. 2006, ApJ, 642, 711
Mateos, S., Barcons, X., Carrera, F. J., Page, M. J., Ceballos, M. T., Hasinger, G., & Fabian, A. C. 2007, A&A, 473, 105
Nandra, K., George, I. M., Mushotzky, R. F., Turner, T. J., & Yaqoob, T. 1997, ApJ, 476, 70
Narayan, R., & Yi, I. 1994, ApJ, 428, L13
———. 1995, ApJ, 452, 710
Oke, J. B. 1987, Superluminal Radio Sources, 267
Quataert, E., & Narayan, R. 1999, ApJ, 520, 298
Piconcelli, E., Cappi, M., Bassani, L., Fiore, F., Di Cocco, G., & Stephen, J. B. 2002, A&A, 394, 835
Piconcelli, E., Jimenez-Bailón, E., Guainazzi, M., Schartel, N., Rodríguez-Pascual, P. M., & Santos-Lleíó, M. 2005, A&A, 432, 15
Rees, M. J., Begelman, M. C., Blandford, R. D., & Phinney, E. S. 1982, Nature, 295, 17
Richards, G. T., et al. 2006, ApJS, 166, 470
Riffel, R., Rodríguez-Ardila, A., & Pastoriza, M. G. 2006, A&A, 457, 61
Schlegel, D. J., Finkbeiner, D. P., & Davis, M. 1998, ApJ, 500, 525
Schmoller, O., Brandt, W. N., Netzer, H., Maiolino, R., & Kaspi, S. 2006, ApJ, 646, L29
———. 2008, ApJ, 682, 81
Shinozaki, K., Miyaji, T., Ishisaki, Y., Ueda, Y., & Ogasaka, Y. 2006, AJ, 131, 2843
Spergel, D. N., et al. 2007, ApJS, 170, 377
Strateva, I., Brandt, W. N., Alexander, D. M., Krockenhofer, A. M., Lehmer, B. D., Schneider, D. P., & Vignali, C. 2006, AJ, 131, 2826
Strateva, I., Brandt, W. N., Eracleous, M., Garmire, G., & Komossa, S. 2007, The Central Engine of Active Galactic Nuclei, 373, 399
Strateva, I. V., Brandt, W. N., Eracleous, M., Schneider, D. P., & Chartas, G. 2006, ApJ, 651, 749
Strateva, I. V., et al. 2003, AJ, 126, 1720
Tarter, C. B., Tucker, W. H., & Salpeter, E. E. 1969, ApJ, 156, 943
Thorne, K. S. 1974, ApJ, 191, 507
Vanden Berk, D. E., et al. 2001, AJ, 122, 549
Wilkes, B. J., Tananbaum, H., Worrall, D. M., Avni, Y., Oey, M. S., & Flanagan, J. 1994, ApJS, 92, 53
Williams, R. E. 1980, ApJ, 235, 939
Yip, C. W., et al. 2004a, AJ, 128, 585
———. 2004b, AJ, 128, 2603