Interplay of inhibition and multiplexing: Largest eigenvalue statistics

Saptarshi Ghosh¹, Sanjiv K. Dwivedi¹, Mikhail V. Ivanchenko² and Sarika Jalan¹(α)

¹ Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore - Simrol, Indore-453552, India
² Department of Applied Mathematics, Lobachevsky State University of Nizhny - Novgorod, Russia

received 9 March 2016; accepted in final form 24 June 2016
published online 28 July 2016

PACS 02.10.Yn – Matrix theory
PACS 87.18.Sn – Neural networks and synaptic communication

Abstract – The largest eigenvalue of a network provides understanding to various dynamical as well as stability properties of the underlying system. We investigate the interplay of inhibition and multiplexing on the largest eigenvalue statistics of networks. Using numerical experiments, we demonstrate that the presence of the inhibitory coupling may lead to a behaviour of the largest eigenvalue statistics of multiplex networks very different from that of isolated networks depending upon the network architecture of the individual layer. We demonstrate that there is a transition from the Weibull to the Gumbel or to the Fréchet distribution as networks are multiplexed. Furthermore, for denser networks, there is a convergence to the Gumbel distribution as network size increases indicating higher stability of larger systems.

Copyright © EPLA, 2016

Introduction. – In recent years, network science has attracted researchers from diverse communities owing to its remarkable applicability to understand the behavior of many real-world complex systems [1]. One of the widely investigated areas in the network science is understanding the relation of the spectral properties of the network adjacency matrices with the dynamical and structural properties of corresponding systems. Particularly, the largest eigenvalue of a network adjacency or coupling matrix has been shown to strongly influence the dynamical evolution of the corresponding network, for instance, synchronization properties of coupled Kuramoto oscillators [2] and dynamical properties of neural network [3]. Further, stability of ecological systems are demonstrated to be related with the largest eigenvalue of the interaction matrix of different species [4].

Furthermore, it has been increasingly realized that multiplex networks provide a better framework to investigate the structural and dynamical properties of many real-world complex systems [5]. As defined in [6], a multiplex network consists of different layers with one-to-one correlation between the mirror nodes of different layers. Few examples of complex systems, which can be represented in multiplex network framework, are banks, transportation, stock market, etc. [7]. A node in the multiplex network architecture may have a very different dynamical behavior due to the influence of other layers than it has in a single-layer network [6]. Further, inhibition in the coupling is known to play a crucial role in functioning and evolution of many real-world networks including brain and ecological networks [8]. We introduce inhibitory and excitatory coupling in different layers of the multiplex networks and investigate the statistical properties of R_{max}.

In this letter, we analyze the interplay of multiplexing and inhibition on the behavior of R_{max} of an ensemble of networks coupling matrices under GEV framework. The GEV statistics of an independent, identically distributed random variable has been successfully applied to many real-world systems including stock markets, natural disasters, galaxy distributions as a model for extreme events [9].

One such system having multiplex network architecture as well as inhibition in the coupling is the ecological system, which for instance, may consist of different geographical regions represented as different layers. These layers possess inhibitory and excitatory coupling due to the presence of predator-prey, mutualistic and competitive relations among the species. Further, species at different geographical regions may interact with each other due to, for instance, migration. R_{max} statistics indicates stability of such ecosystems, for example, against extinction of a species. We investigate the impact of the inhibition...
\[\rho(x) = \begin{cases} \frac{1}{\sigma} \left\{ 1 + \left(\frac{\xi(x - \mu)}{\sigma} \right)^{-1 - \frac{1}{\xi}} \right\} \exp \left\{ - \left(\frac{\xi(x - \mu)}{\sigma} \right)^{-\frac{1}{\xi}} \right\}, & \text{if } \xi \neq 0, \\ \frac{1}{\sigma} \exp \left(- \frac{x - \mu}{\sigma} \right) \exp \left[- \exp \left(- \frac{x - \mu}{\sigma} \right) \right], & \text{if } \xi = 0, \end{cases} \] (2)

Theoretical framework.

The adjacency matrix \(A \) of a network has entries \(A_{ij} = 1 \) or 0 depending upon whether \(i \) and \(j \) nodes are connected or not. The diagonal entries of \(A \) are zero depicting no self-connection. We use the Erdős-Rényi (ER) model to generate a random network [1]. Further, we use configuration model [10] to generate scale-free (SF) networks. To begin with, we consider a network comprising all the excitatory connections leading to a symmetric adjacency matrix, i.e., \(A_{ij} = A_{ji} = 1 \) having only 0 and 1 matrix elements. An introduction of the inhibitory nodes, with probability \(p_{in} \), replaces all 1 entries to \(-1\) in the corresponding rows of the adjacency matrix and consequently the symmetric property of the matrix is lost [11] as a row corresponding to an inhibitory node will have all \(-1\) non-zero entries, whereas the corresponding column may consist of elements having different signs depending on whether they belong to the inhibitory or excitatory nodes. We henceforth declare the adjacency matrix with the directional signs as coupling matrix [12] and investigate the distribution of \(R_{\text{max}} \) of the ensemble of these matrices having \(-1, 0, 1\) entries.

Further, for the multiplex network, the coupling matrix \(A \) can be defined as,

\[A = \begin{pmatrix} A^{(1)} & I \\ I & A^{(2)} \end{pmatrix}, \] (1)

where \(A^{(1)} \) \((A^{(2)}) \) represents the coupling matrix of the first (second) layer and \(I \) is an unit \(N \times N \) matrix where \(N \) is the size of \(A^{(1)} \) and \(A^{(2)} \) networks. We start with \(P \) random realizations of the multiplex network with ER-ER, SF-SF and ER-SF network topologies and introduce inhibitory couplings in each layer with probability \(p_{in}^{(1)} \) and \(p_{in}^{(2)} \), respectively and investigate the effect of inhibition in individual layers on the collective \(R_{\text{max}} \) behavior of the multiplex network.

GEV distributions can be characterized entirely in terms of three universal probability distribution functions (PDF) namely Weibull, Gumbel and Fréchet depending on the fact that the tail of density function is power law, faster than power law and bounded or unbounded, respectively [9]. The probability density function for three GEV distributions can be written as

\[\text{see eq. (2) above} \]
Table 1: Estimated parameters of KS test for fitting of GEV and normal distributions of R_{\max} for different inhibitory inclusion probability (p_{in}) of SF network over 5000 population. Other parameters are network size $N = 100$ and average degree $(k) = 6$.

p_{in}	ξ of GEV	σ of GEV	μ of GEV	p-value of KS test for GEV	μ of Normal	σ of Normal	p-value of KS test for Normal
0.0	−0.2065	0.1758	10.1715	0.0125	10.2143	0.1790	0.1158
0.2	−0.3580	1.4003	6.4256	0.0191	6.8590	1.3539	0.0000
0.4	0.0663	0.8681	3.3062	0.0000	3.8690	1.1566	0.0000
0.47	0.1586	0.5245	2.8023	0.1285	3.1987	0.8179	0.0000
0.49	0.0937	0.4955	2.7889	0.4406	3.1253	0.7177	0.0000
0.50	0.0597	0.4807	2.7905	0.9688	3.0983	0.6684	0.0000

Table 2: Estimated parameters of KS test for fitting GEV and normal distributions of R_{\max} for different inhibitory inclusion probability (p_{in}) of SF network over 5000 population. Other parameters are network size $N = 100$ and average degree $(k) = 4$.

p_{in}	ξ of GEV	σ of GEV	μ of GEV	p-value of KS test for GEV	μ of Normal	σ of Normal	p-value of KS test for Normal
0.0	−0.2219	0.2109	7.302	0.1519	7.3843	0.2151	0.7846
0.2	−0.3038	0.9238	4.8985	0.0161	5.2143	0.909	0.0005
0.4	−0.0071	0.6743	2.8222	0.0002	3.211	0.8428	0.0000
0.46	0.0617	0.4901	2.4659	0.3708	2.7812	0.6710	0.0000
0.48	0.0309	0.4590	2.4275	0.5492	2.7077	0.6074	0.0000
0.50	−0.0049	0.4333	2.4219	0.8788	2.6700	0.5521	0.0000

where μ, σ, ξ represent location parameter, scale parameter and shape parameter, respectively. The underlying statistics can be determined by the value of the shape parameter as follows: $\xi > 0$ (Fréchet Statistics), $\xi = 0$ (Gumbel statistics) and $\xi < 0$ (Weibull statistics). We use the Kolmogorov-Smirnov (KS) test\(^1\) to characterize the distributions in terms of GEV statistics derived from the numerical simulations.

The largest eigenvalue statistics for isolated network. – We start the investigation for the isolated ER and SF networks followed by the multiplex network having different network topologies representing each layer. First, we discuss the average behavior of R_{\max} for the isolated SF networks. As inhibitory couplings are introduced in the network, thereby leading to asymmetry in the coupling matrix, spectra of network might start taking up complex eigenvalues. Consequently, the average value of R_{\max} decreases up to $p_{in} \leq 0.5$ (fig. 1). At $p_{in} = 0.5$, \overline{R}_{\max} shows the minimum value by displaying the global minima. The smallest eigenvalue of a network adjacency matrix (λ_{\min}) with all the positive entries becomes the largest eigenvalue (λ_{\max}) of the same matrix with all the negative entries ($p_{in} = 1$) and as $\lambda_{\max} \neq \lambda_{\min}$ for the SF network with all the positive entries. Thus the behaviour of R_{\max} becomes asymmetric about the minima at $p_{in} = 0.5$ (fig. 1). A similar behavior is observed for different average degrees of the SF networks (fig. 1).

Next, we probe for the fluctuations in the largest eigenvalue around the mean value. The statistics of R_{\max} is fitted with the normal and GEV distribution (eq. (2)). For $p_{in} = 0$, we find that the distribution can be modeled using the GEV statistics and value of the shape parameter characterizes the statistics as the Weibull distribution (figs. 2 and 3). Details of fitting parameters for different degrees are given in tables 1 and 2. Note that the KS test accepts the normal distribution as well for $p_{in} = 0$. This is due to a close resemblance of the Weibull distribution with the normal distribution for a particular parameter regime [13]. Furthermore, R_{\min} lying in the left tail of the triangular shape distribution of eigenvalues of an ensemble of SF networks (at $p_{in} = 0$) is known to follow a power law behaviour [14] which is bounded due to the finite-size effect. This combination characterizes R_{\min} for $p_{in} = 0$ and consequently R_{\max} for $p_{in} = 1$ as the Weibull distribution. For the intermediate p_{in} values, except at $p_{in} = 0.5$, certain p_{in} values can be modeled using the GEV statistics but without any consistent behavior.

At $p_{in} = 0.5$, the statistics can be modeled using GEV statistics and the exact form of the distribution depends on the average degree and the network size. At this p_{in} value, a transition is observed from the Weibull to the Fréchet via the Gumbel distribution as denseness (k) of the network increases (figs. 2 and 3). For a small network

\(^1\)Using KS test, we fit the distribution with GEV statistics using functions kstest, gevfit and gevpdf from MATLAB statistics toolbox. Calculation of GEV distribution parameters are done with 95% confidence level.
The behavior of the shape parameter as a function of network size leading to transition from the Weibull to the Gumbel distribution for larger networks. We find that irrespective of the nature of R_{\max} distribution portrayed initially for small networks, increment in the network size leads to fluctuations in R_{\max} at the same scale. These results can be interpreted in terms of the stability of a system. The tail behaviour of the Fréchet and the Gumbel distributions of power law and exponential decay type, respectively indicate that for the Gumbel distribution higher values of R_{\max} are less probable. Hence large systems displaying Gumbel distribution is more stable than the corresponding systems with smaller network size which shows Fréchet statistics. The introduction of negative entries in network coupling matrices leads to a more stable system for the larger size and for the denser networks.

Transition to Gumbel and Fréchet for multiplex network. – Next, we turn our attention to investigate the impact of multiplexing on R_{\max} behaviour. It turns out that in the absence of any inhibition, multiplexing of a network with another network leads to an enhancement in the R_{\max}, depending upon the architecture of the network it is multiplexing with and the impact of multiplexing is governed by the layer having the largest degree. A multiplexing of ER network with the SF network leads to an enhancement in the R_{\max} value of the entire network as the average degree of the network. As inclusion of the inhibitory coupling resulting in negative entries in the network coupling matrices introduces a change in the behaviour of the shape parameter. For $p_{in} = 0.5$, there is an increment in the shape parameter as compared to that of $p_{in} = 0$ for different average degrees and for a fixed network size. Moreover, we find that the shape parameter converges towards zero yielding the Gumbel distribution.
compared to the isolated network, with the value of R_{max} lying approximately close to that of the isolated SF network as multiplexing increases the degree of all the nodes in the SF network by one only and hence, there is no profound impact on R_{max} (fig. 6). As inhibitory nodes are introduced with probability p_{in}, there is a trade off between the inhibition and the multiplexing, resulting in a quite interesting behaviour of R_{max}. Since, inhibition leads to make a matrix more antisymmetric, the contribution from the layer having inhibition keeps on reducing as inhibition in that layer increases towards $p_{\text{in}} = 0.5$ and impact of the layer having only symmetric coupling primarily governs R_{max}.

When an ER network is multiplexed with another ER network, inhibition in only one layer does not have any potential impact on R_{max} as it is governed by the another ER layer where inhibition is not present. However, for the ER-SF multiplex networks, the behaviour of R_{max} strongly depends on the layer in which inhibition is introduced. For instance, if inhibition is introduced in the ER layer, R_{max} remains unaffected as it is governed by the SF layer and since no inhibition is present in SF, leading to no visible impact on R_{max}. Value of R_{max} of the entire network, at no inhibition, is high due to this SF layer only. However, if inhibition is introduced in the SF layer, which leads to antisymmetricity in the SF layer, that results in the decrease in the value of R_{max} of the entire network, finally reaching a stable state when zero contribution comes from the SF layer (at $p_{\text{in}} = 0.5$) and R_{max} of the entire network settles down to R_{max} of the isolated ER network. Thereafter, increasing inhibition in the SF layer does not have much impact as contribution to R_{max} comes from the ER layer as R_{max} of the isolated network for $p_{\text{in}} > 0.5$ is always lower than that of the isolated ER network for $p_{\text{in}} = 0$ (figs. 1 and 6).

When both the layers are represented by SF networks, the change in R_{max} follows a similar behaviour as described for the ER-ER networks, as both the layers contribute equally to R_{max} and an inhibition in one layer makes the other layer govern the R_{max} behaviour.

So far, we have discussed inhibition in only one layer of the multiplex network. As soon as we introduce inhibition in both the layers, R_{max} starts exhibiting several interesting phenomena which depend on not only trade-off of inhibition and multiplexing but also on trade-off between the inhibition in both the layers. Until inhibition in one layer (say 2), which has the larger highest degree, is lower than the inhibition in the other layer, R_{max} keeps getting governed by the former and as soon as p_{in} in layer 2 gets larger than p_{in} of layer 1, R_{max} starts getting governed by layer 1. Interestingly, minima in R_{max} value, which a multiplex network can attain, are decided by the average degree of the multiplex network. The minima is reached, when inhibition in the SF layer becomes 0.5, as for this value maximum antisymmetricity is possible and consequently at this point R_{max} attains the minimum value governed by the average degree.

Next, we investigate fluctuations in the R_{max} behaviour for multiplex networks having inhibitory nodes in both or one of the layers. We present results for several possible combinations (ER-ER, ER-SF, SF-SF) and show that multiplexing with a similar type of network does not lead to any significant impact on the R_{max} fluctuations, whereas multiplexing with a layer having a different network architecture has the following impact. The R_{max} statistics is again led by the layer having the largest degree as also found for the average R_{max} behaviour. But what is surprising is that the range of p_{in} for which the fluctuations can be modeled by the GEV statistics gets enhanced due to the multiplexing. For example, if both the layers of the multiplex network are represented by the ER networks, the R_{max} statistics can be characterized by the Weibull distribution for $p_{\text{in}} = 0.5$ and $0.4 \leq p_{\text{in}} \leq 0.5$ [17] as also reflected for the isolated case [16]. If both the layers are represented by the SF networks, R_{max} of an ensemble of multiplex networks does not fit with any distribution (region III, fig. 7(b)) except at a narrow range around $p_{\text{in}} = 0.5$ (region I, fig. 7(a)) where it shows GEV statistics. The type of the statistics in this region depends upon the average degree of the network. As the average degree increases, one gets a transition from the Weibull to the Fréchet distribution.
While R_{max} of the multiplex network having layers being represented with a similar architecture does not manifest any change as compared to that of the isolated case, an interesting phenomenon is observed for multiplex networks with different network topologies representing different layers. An ER network multiplexed with a SF network results in an increment in the shape parameter. Note that, the isolated ER and the isolated SF exhibit the Weibull and the Fréchet statistics, respectively. The multiplex ER-SF network exhibits a very different R_{max} fluctuation behaviour due to the interplay between the multiplexity and the inhibition. For instance, fig. 7 depicts R_{max} fluctuation statistics of ER-SF network for average degree $(k) = 6$. The R_{max} distribution can be characterized by the Gumbel (region II, fig. 7(b)) as well as the Fréchet (region I, fig. 7(b)) distribution in the range $0.4 \leq p^{(1)}_{in} = p^{(2)}_{in} \leq 0.5$. There is a transition from the Weibull to the Gumbel statistics for the parameter ranges $0.4 \leq p^{(1)}_{in} \leq 0.5$. $p^{(2)}_{in} = 0.42$, arising due to the interplay between ER and SF layers. Because of the large-degree nodes in the SF networks, we observe the Fréchet region for parameter ranges $0.41 \leq p^{(1)}_{in} \leq 0.5$ and $0.42 \leq p^{(2)}_{in} \leq 0.5$. Although, the SF layer governs the R_{max} fluctuation behaviour, we find that the Gumbel regime for a parameter range which reflects that the incremental behaviour of the shape parameter is greatly enhanced due to the multiplexing of a network with a different network architecture. This observation further indicates a reduction in the stability of a network as well as change in the dynamical behaviour of a network when it is multiplexed with another network having a different topology.

Conclusion. To summarize, we have investigated the impact of inhibitory and excitatory coupling on R_{max} statistics for an ensemble of isolated and multiplex networks. While the isolated SF networks for high connection density exhibit a transition from the Weibull to Fréchet distribution as a function of inhibition probability p_{in}, the SF networks with lower connection density do not show such transition for denser as well as sparser networks. In terms of stability of the corresponding network, this indicates that higher values of R_{max} mean a higher probability to become unstable for denser network with fixed network size. Moreover, multiplexity is shown to have a strong influence on the stability of a network. The R_{max} behaviour deviates drastically when it is multiplexed with a network of different network topology. Our study demonstrates that the multiplex network becomes more unstable than the isolated network even when directionality was introduced in a single layer of the multiplex network.

Furthermore, we demonstrate a surprising effect of the network size on the R_{max} behaviour of the network at $p_{in} = 0.5$. For denser networks, the R_{max} distribution is shown to have a transition from the Fréchet to the Gumbel distribution for larger networks. Whereas for sparser networks R_{max} exhibits a transition from Weibull to Gumbel as a function of network size indicating lesser stability. This means that the stability of the system increases for large dense network whereas it decreases for large sparser networks. Fluctuations in the largest eigenvalue converges to a particular distribution for larger networks irrespective of the connection density.

The extreme-value statistics tool has found its applicability in a wide range of real-world systems. The largest mass distribution in mass transport network exhibits the Weibull, Gumbel or Fréchet statistics depending on the critical mass [18]. Further, the level density of non-interacting bosons is shown to follow GEV distributions [19]. Our work extends the application of extreme-value statistics to the multiplex networks. The investigation presented here can be used to understand stability and dynamical behaviour of complex systems having multiplex architecture and can be extended further to understand the effect of different layers interacting with inhibitory connections on the collective properties of real-world systems having inherent multilayer architecture.

SJ thanks DST project grant (EMR/2014/000368/) for financial support and useful discussions with the group of MURILLO BAPTISTA during a visit to the University of Aberdeen. SG and SKD and MVI acknowledge, respectively, DST government of India for INSPIRE fellowship (IF150149), Council of Scientific and Industrial Research (CSIR), government of India grant 25/0205/12/EMR-II and Ministry of Education and Science of the Russian Federation (Research Assignment No. 1.115.2014/K).

REFERENCES

1. Albert R. and Barabási A.-L., *Rev. Mod. Phys.*, **74** (2002) 47.
2. Restrepo J. G. *et al.*, *Phys. Rev. E*, **71** (2005) 036151.
3. Sompolinsky H. *et al.*, *Phys. Rev. Lett.*, **61** (1988) 259; Hennequin G. *et al.*, *Phys. Rev. E*, **86** (2012) 011909.
4. May R. M., *Nature*, **238** (1972) 413.
5. Boccaletti S. *et al.*, *Phys. Rep.*, **544** (2014) 1.
6. Singh A. *et al.*, *EPL*, **111** (2015) 30010 and references therein.
7. Gómez-Gardeñes J. *et al.*, *Sci. Rep.*, **2** (2012) 620; Granell C. *et al.*, *Phys. Rev. Lett.*, **111** (2013) 128701; Aguirre J. *et al.*, *Phys. Rev. Lett.*, **112** (2014) 248701.
8. Compte A. *et al.*, *J. Neurophysiol.*, **89** (2003) 2707; Piñolos S. *et al.*, arXiv:1511.04435 (2015); Dwivedi S. and Jalan S., arXiv:1604.07603 (2016).
9. Gumbel E. J., *Statistics of Extremes* (Echo Point Books and Media) 2013.
10. Molloy M. and Reed B., *Random Struct. Algorithms*, **6** (1995) 161.
11. Rajan K. and Abbott L. F., *Phys. Rev. Lett.*, **97** (2006) 188104; Strata P. and Harvey R., *Brain Res. Bull.*, **50** (1999) 34950.
[12] Jalan S. et al., Phys. Rev. E, 84 (2011) 046107.
[13] Füredi Z. and Komlós J., Combinatorica, 1 (1981) 233; Krivelevich M. and Sudakov B., Comb. Probab. Comput., 12 (2003) 61.
[14] Farkas I. J. et al., Phys. Rev. E, 64 (2001) 026704.
[15] Jalan S. and Dwivedi S., Phys. Rev. E, 89 (2014) 062718.

[16] Dwivedi S. K. and Jalan S., Phys. Rev. E, 87 (2013) 042714.
[17] Supplementary Material is available at https://figshare.com/s/66ef014328dcf2e9c501.
[18] Evans M. R. and Majumdar S. N., J. Stat. Mech.: Theory Exp. (2008) P05004.
[19] Comtet A. et al., Phys. Rev. Lett., 98 (2007) 070404.