Eigenvector distribution in the critical regime of BBP transition

Zhigang Bao ‡
Hong Kong University of Science and Technology
mazgbao@ust.hk

Dong Wang†
National University of Singapore
wangdong@wangd-math.xyz

In this paper, we study the random matrix model of Gaussian Unitary Ensemble (GUE) with fixed-rank (aka spiked) external source. We will focus on the critical regime of the Baik-Ben Arous-Péché (BBP) phase transition and establish the distribution of the eigenvectors associated with the leading eigenvalues. The distribution is given in terms of a determinantal point process with extended Airy kernel. Our result can be regarded as an eigenvector counterpart of the BBP eigenvalue phase transition [6]. The derivation of the distribution makes use of the recently re-discovered eigenvector-eigenvalue identity, together with the determinantal point process representation of the GUE minor process with external source.

1 Introduction

In this paper, we consider the Gaussian Unitary Ensemble (GUE) with fixed-rank external source, also known as the spiked GUE in the literature, denoted by

\[G_\alpha \equiv G^{(N)}_\alpha := G + \sum_{i=1}^{k} \alpha_i e_i e_i^*, \]

where \(G = (g_{ij})_{N,N} \) is a standard \(N \)-dimensional GUE, i.e., \(g_{ii} \sim N(0,1) \) (\(1 \leq i \leq N \)); \(g_{ij} \sim N(0,1)+iN(0,1) \) (\(1 \leq i < j \leq N \)) are independent random variables with standard real/complex normal distributions, and \(g_{ji} = \overline{g_{ij}} \). Here \(\alpha = (\alpha_1, \ldots, \alpha_k) \in \mathbb{R}^k \) is a deterministic vector with fixed dimension \(k \), and \(\{e_i\} \) is the standard basis of \(\mathbb{R}^N \). The entire discussion in this paper works under the following more general setting

\[G_{\alpha,v} = G + \sum_{i=1}^{k} \alpha_i v_i v_i^* \]

with any deterministic orthonormal vectors \(v_i \in \mathbb{C}^N \). Nevertheless, due to the unitary invariance of GUE, it would be sufficient to focus on the model in (1.1).

Throughout the paper, we will be focusing on the critical regime of the well-known Baik-Benz Arous-Péché (BBP) phase transition [6], and thus make the following assumption on \(\alpha_i \)'s

Assumption 1. There exist fixed constants \(a_1, \ldots, a_k \in \mathbb{R} \) such that

\[\alpha_i = \sqrt{N} + N^{\frac{1}{3}} a_{k-i+1}, \quad i = 1, \ldots, k. \]

We emphasize here that \(\alpha_i \)'s are unordered. Whenever the ordered parameters are needed in some local discussion, we will use \(\alpha_{(j)} \) to denote the \(j \)-th largest \(\alpha_i \).

We further denote the ordered eigenvalues of \(G_\alpha \) by

\[\sigma_1 > \cdots > \sigma_N \]

‡Supported by Hong Kong RGC grant GRF16300618, GRF 16301519, and NSFC 11871425
†Supported by Singapore AcRF grant R-146-000-217-112
*Throughout this paper, for all the random matrices we consider, the eigenvalues are distinct with probability 1. Hence we always assume the simplicity of the eigenvalues without further explanation.
and set

$$x_i = (x_{i1}, \ldots, x_{iN})^T$$

(1.5)
to be the unit eigenvector associated with σ_i.

In this paper, we are primarily interested in the limiting distribution of $|x_{ij}|^2$’s with bounded i, after appropriate normalization, as the dimension $N \to \infty$. Observe that $|x_{ij}|^2$ can be understood as the square of the projection of eigenvector x_i onto the direction e_j. Due to the unitary invariance, our results can also be applied to the projection $|(x_i^*, v_j)|^2$, where we used x_i^* to denote the i-th eigenvector of $G_{\alpha, v}$ in (1.2). Before we state the main results, we first give a brief review of the literature on the eigenvalue and eigenvector of random matrices with fixed-rank deformation, in Section 1.1 and then we present the definition of the extended Airy kernel in Section 1.2 with which we will then state our main results in Section 1.3.

1.1 Random matrix with fixed-rank deformation

Our model in (1.1) is in the category of the random matrices with fixed-rank deformation, which also includes the spiked sample covariance matrix and the signal-plus-noise model as typical examples. A vast amount of work has been devoted to understanding the limiting behavior of the extreme eigenvalues and the associated eigenvectors of the deformed models. Since the seminal work of Baik, Ben Arous and Péché, it is now well-understood that the extreme eigenvalues undergo a so-called BBP phase transition along with the change of the strength of the deformation. Specifically, there exists a critical threshold such that the extreme eigenvalue of the deformed matrix will stick to the right end point of the limiting spectral distribution if the strength of the deformation is less than or equal to the threshold, and will otherwise jump out of the support of the limiting spectral distribution. In the latter case we often call the extreme eigenvalue as an outlier. Moreover, the fluctuation of the extreme eigenvalues in different regimes (subcritical, critical and supercritical) are also identified in [9] for the complex spiked covariance matrix. Particularly, for the deformed GUE in (1.1), the phase transition takes place on the scale $\alpha_i = \sqrt{N} + O(N^{1/6})$. Hence, for the deformed GUE, more specifically, the regimes $\alpha_i < \sqrt{N} - N^{1/6+\varepsilon}$, $\alpha_i = \sqrt{N} + O(N^{1/6})$ and $\alpha_i > \sqrt{N} + N^{1/6+\varepsilon}$ will be referred to as subcritical, critical and supercritical, respectively, in the sequel. We also refer to [4], [7], [13], [14], [23], [30], [40], [45] and the reference therein for the first-order limit of the extreme eigenvalue of various related models. The fluctuation of the extreme eigenvalues of various models have been considered in [9], [13], [14], [22], [30], [34], [40], [41], [45], [47], [54], [55].

In parallel to the results of the extreme eigenvalues, there are some corresponding results on eigenvectors in the literature. Suppose G_α is given in (1.1) while $\alpha_1, \ldots, \alpha_k$ are significantly away from the critical threshold, say, $\min_j |\alpha_j - \sqrt{N}| \geq \varepsilon \sqrt{N}$ for some positive constant ε, it is known that (i) if $\alpha_i(\varepsilon) = (1 - \varepsilon)\sqrt{N}$, then x_i, the eigenvector associated with the i-th largest eigenvalue σ_i, is delocalized in the sense $\|x_i\|_\infty \leq N^{-1/2+\delta}$ for any small constant $\delta > 0$ with high probability; (ii) if $\alpha_i(\varepsilon) \geq (1 + \varepsilon)\sqrt{N}$, then x_i has an order one bias on the direction of the deformation e_i. Here we used $\alpha_i(\varepsilon)$ to denote the i-th largest value of all α_j’s and e_i is the canonical basis vector with the corresponding index. In [13], [14], [22], [30], [45], the behavior of the extreme eigenvectors has been studied on the level of the first order limit. A detailed discussion of eigenvector behavior in the full subcritical regime and supercritical regime can be found in the recent work [18], which was done for the spiked sample covariance matrix. Especially, the discussion in [18] indicates that in case there is an α_j close to the critical threshold, i.e. $\alpha_j = (1 + o(1))\sqrt{N}$, for any fixed i such that σ_i is not an outlier, x_i will have a bias of small order towards the direction of e_j. On the level of the fluctuation, the limiting behavior of the extreme eigenvectors has not been fully studied yet. By establishing a general universality result of the eigenvectors of the sample covariance matrix in the null case, the authors of [18] are able to establish the law of the eigenvectors of the spiked covariance matrices in the subcritical regime. In this regime, the eigenvector distribution is similar to (up to appropriate scaling) that of the bulk and edge regime of Wigner matrices without spikes; see [21], [39], [22], [15] and [43] for instance. More specifically, in the subcritical regime, the limiting distribution of the square of eigenvector components (after appropriate scaling) is given by χ^2 distribution, which tells the asymptotic Gaussianity of the eigenvalue components themselves (without taking square). Although the result was established for sample covariance matrix only in [18], it can be extended to deformed Wigner without essential difference. In the supercritical regime, the fluctuation of the eigenvectors was recently studied in [11], [10], [21] for

\[1\]Since the eigenvalues are assumed to be distinct, x_i are unique up to an angular factor. We ignore the angular factor since we consider only the moduli of the components throughout the paper.
various models with generally distributed matrix entry. For generally distributed deformed Wigner matrix, the leading eigenvector distribution is non-universal in the supercritical regime; see [24]. However, if one restricts the discussion to the deformed GUE, then the limiting distribution of the square of eigenvalue components (after appropriate centering and scaling) is given by Gaussian. Although the discussion in [24] has only covered the regime $\alpha_i \geq (1+\epsilon)\sqrt{N}$, one can use the approach in [10] to extend the result to the full supercritical regime $\alpha_i \geq \sqrt{N} + N^{1/6+\epsilon}$.

The aforementioned works leave the eigenvector distribution in the critical regime undiscussed. In this paper, we will establish the eigenvector distribution in the critical regime, i.e., $\alpha_i = \sqrt{N} + O(N^{1/6})$. Here although we are dealing with the deformed GUE only, our methodology and result reveal certain universality of eigenvector distribution of random matrices with fixed-rank deformation in the critical regime of BBP transition, within the class of unitary invariant ensemble. Especially, our discussion can apply similarly to the fixed-rank deformed Laguerre Unitary Ensemble (LUE) that is also known as spiked Wishart ensemble or spiked sample covariance matrices in statistics and on which the BBP transition is most intensively studied, and the fixed-rank deformed Jacobi Unitary Ensemble (JUE, aka MANOVA ensemble in statistics) by using the corresponding correlation kernel formulas in [2]. We expect universal asymptotic results in these models. We also remark here that the universality has not yet been proved or disproved for generally distributed Wigner matrices with fixed-rank perturbation in the critical regime of BBP transition, even on the eigenvalue level.

At last, we remark that for both Hermitian type (complex) random matrices and real symmetric type random matrices, the BBP transition may happen under fixed rank deformations. The study of eigenvalues there shows that in the critical regime the two types of random matrices have different universal behaviours and are usually investigated by different methods (except for [19], [20]), while in the the supercritical and subcritical regimes, the behaviours of the two types of random matrices have more common features and are usually investigated together, by some perturbative approaches which can often reduce the problems to those of the non-perturbed models. The previous research of eigenvectors in BBP transition, which is only in the supercritical and subcritical regimes, generally works for both types of random matrices and yields similar results for them. Our approach in the critical regime, however, is non-perturbative and works only for the Hermitian type random matrices, because it depends on the determinantal property that is not available for the real symmetric ones. The study of the eigenvectors in the critical regime of BBP transition for real symmetric type random matrices is more challenging and is out of the scope of the current paper.

1.2 Extended Airy kernel

In order to state our main results, we need to first introduce the extended Airy kernel in this subsection. Recall the Airy kernel that defines the celebrated Tracy-Widom distribution that is often seen in random matrix theory and interacting particle systems of the Kardar-Parisi-Zhang (KPZ) universality class, see [3], [27] and [48], and references therein,

$$K_{\text{Airy}}(x, y) = \frac{1}{(2\pi i)^2} \int_\sigma du \int_\gamma dv \frac{e^{\frac{u}{3} - xu}}{e^{\frac{v}{3} - yv}} \frac{1}{u - v}, \quad (1.6)$$

where the contours γ and σ are as in Figure 1. They are nonintersecting and infinite contours; γ goes from $e^{-2\pi i/3} \cdot \infty$ to $e^{2\pi i/3} \cdot \infty$, and σ goes from $e^{-\pi i/3} \cdot \infty$ to $e^{\pi i/3} \cdot \infty$. We then define the extended Airy kernel depending on real parameters a_1, a_2, \ldots, which is the correlation kernel of a determinantal point process at discrete time $t \in \mathbb{Z}_{\geq 0}$. For any $m_1, m_2 \in \mathbb{Z}_{\geq 0}$, we let

$$K_{m_1, m_2}^{\text{Airy}, a}(x, y) = -1(m_1 < m_2)1(x < y) \frac{1}{2\pi i} \int_{m_2} e^{(y-x)w} \prod_{j=m_1+1}^{m_2} (w - a_j) dw + \tilde{K}_{m_1, m_2}^{\text{Airy}, a}(x, y), \quad (1.7)$$

where

$$\tilde{K}_{m_1, m_2}^{\text{Airy}, a}(x, y) = \frac{1}{(2\pi i)^2} \int_\sigma du \int_\gamma dv \frac{e^{\frac{u}{3} - xu}}{e^{\frac{v}{3} - yv}} \frac{1}{\prod_{j=1}^{m_1} (v - a_j) \prod_{j=1}^{m_2} (u - v)} \frac{1}{u - v}, \quad (1.8)$$

such that the contour in (1.7) encloses all the poles $a_{m_1+1}, \ldots, a_{m_2}$ and in (1.8) all the poles a_1, \ldots, a_{m_2} of v are to the left of γ. We note that in the special $m_1 = m_2 = 0$ case, the correlation kernel $K_{m_1, m_2}^{\text{Airy}, a}(x, y)$ is reduced to $K_{\text{Airy}}(x, y)$.

3
The Airy kernel K_{Airy} defines a determinantal point process, with infinitely many particles, ordered as

$$+\infty > \xi_1 > \xi_2 > \cdots,$$

and the n-point correlation function

$$R_n(x_1, \ldots, x_n) = \det(K_{\text{Airy}}(x_i, x_j))_{i,j=1}^n.$$

(1.10)

Analogously, for each $m \geq 0$, the extended Airy kernel $K_{\text{Airy},a}^{m,m}$ also defines a determinantal point process, with infinitely many particles, ordered as

$$+\infty > \xi_1^{(m)} > \xi_2^{(m)} > \cdots,$$

with $\xi_i^{(0)} \equiv \xi_i$ in (1.9). Furthermore, if we put all the $\xi_i^{(m)}$’s ($m \geq 0$, $i \geq 1$) together, they form a determinantal point process living in space \mathbb{R} and time $m \in \mathbb{Z}_{\geq 0}$. The probability meaning of the extended Airy kernel is that it defines a determinantal point process with infinitely many species of particles, $\xi_i^{(m)}$ (particle index $i = 1, 2, \ldots$, species index $m = 0, 1, \ldots$), such that the marginal distribution of m-species particles is given by the correlation kernels $K_{\text{Airy},a}^{m,m}$, and further the mixed correlation function is given by

$$R_n(x_1, m_1; x_2, m_2; \ldots; x_n, m_n)$$

$$:= \lim_{\Delta x \to 0} \frac{1}{\Delta x^n} \mathbb{P} \left(\text{there exists a particle in } [x_i, x_i + \Delta x] \text{ at time } m_i \text{ for } i = 1, \ldots, n \right)$$

$$= \det \left(K_{\text{Airy},a}^{m_i,m_j}(x_i, x_j) \right)_{i,j=1}^n.$$

(1.12)

Figure 1: Contours γ and σ.

Figure 2: Double contour X consisting of γ and σ that are deformed through $\pm \sqrt{-x_i}$.

Figure 3: $\gamma_{\text{std}}(a)$ and $\sigma_{\text{std}}(b)$ that are standardized deformations of γ and σ.

Figure 4: 4-fold contour \mathbb{X} consisting of two pairs of γ and σ in standardized deformation.

Remark 1. It is not easy to check directly that the correlation functions in (1.12) are well-defined, since the kernel functions are generally non-Hermitian. (The necessary and sufficient condition for a Hermitian kernel to define a probabilistic determinantal point process is given in [50, Theorem 3].) However, since we know in Lemma 6 (see also [2]) that the extended Airy kernel is the limit of the correlation kernels of the GUE minor process with external source, we conclude thereby that the correlation functions in (1.12) are well-defined. Then it is not hard to see that the rightmost particle exists for each species. Also we have that the point process consisting of finitely many species of particles is simple (by [38, Remark 4]).

1.3 Main results

Recall the point process in (1.11) with any fixed parameter sequence $a = (a_1, \ldots, a_k)$. Define for any integers $n > j$ the random variable

$$\Xi_j^{(k)}(a; n) := n^3 \prod_{i=1}^{j-1} \frac{\xi_i^{(k)} - \xi_i^{(k-1)}}{\xi_i^{(k)} - \xi_i^{(k-1)}} \prod_{i=j+1}^n \frac{\xi_i^{(k)} - \xi_i^{(k-1)}}{\xi_i^{(k)} - \xi_i^{(k-1)}}.$$

(1.13)

Our first result is on the existence of the limit of $\Xi_j^{(k)}(a; n)$ as $n \to \infty$.

4
Theorem 1. For any $a = (a_1, \ldots, a_k) \in \mathbb{R}^k$ with fixed components, and j a fixed positive integer,

$$\Xi_j^{(k)}(a; \infty) := \lim_{n \to \infty} \Xi_j^{(k)}(a; n)$$

exists almost surely.

Our second result is on the distribution of the first k components of the eigenvectors associated with the largest eigenvalues. The theorem states for the first component, and see Remark 2 for the 2-nd, \ldots, k-th components.

Theorem 2. Under Assumption 1, for any fixed j, we have

$$N^{\frac{1}{2}} |x_{j1}|^2 \xrightarrow{d} \left(\frac{3\pi}{2}\right)^{\frac{1}{2}} \Xi_j^{(k)}(a; \infty), \quad \text{as } N \to \infty.$$

Remark 2. Since our $\alpha_1, \ldots, \alpha_k$ are unordered, the first component corresponding to the $\alpha_1 e_1 e_1^*$ deformation has nothing special compared with the 2-nd, \ldots, k-th components, and we state the result for the first component only for notational simplicity. The result of Theorem 1 can be adapted for x_{jl} with any $l = 2, \ldots, k$ as follows: We consider, instead of G_α, the random matrix \tilde{G}_α which is a conjugate of G_α by switching the first row/column and the l-th row/column. Then

$$x_{jl} = \tilde{x}_{j1},$$

where \tilde{x}_{mn} means the n-th component of the normalized eigenvector of \tilde{G}_α associated with σ_m (the m-th largest eigenvalue of G_α, which is also the m-th largest eigenvalue of \tilde{G}_α).

Remark 3. We further remark here that the result in Theorem 2 holds for any fixed j. Particularly, j can be even larger than k (but fixed). Note that σ_j is not an outlier or a critical spiked eigenvalue in case $j > k$. Hence, the result in Theorem 2 shows that a critical spike can even cause a bias of the eigenvectors associated with those non-outliers towards the direction of the spikes, since x_{j1} is typically of order $N^{-1/6}$ here while it would be of order $N^{-1/2}$ in case the deformation $\sum_{i=1}^k \alpha_i e_i e_i^*$ was absent, for instance. Such a phenomenon was previously observed in [18] when the spike is in the subcritical or supercritical regime, but sufficiently close to the critical regime. As $j \gg k$, this bias eventually peters out, and the decay speed deserves further study.

A consequence of Theorem 1 and Remark 2 is as follows:

Corollary 3. Under Assumption 1, for a fixed j, the moduli of components $|x_{j,k+1}|, |x_{j,k+2}|, \ldots, |x_{jN}|$ have the same distribution, and we have, with $l > k$,

$$N|x_{jl}|^2 \xrightarrow{d} \frac{1}{2} \chi^2(2), \quad as \ N \to \infty,$$

where $\chi^2(2)$ is the χ^2 random variable with parameter 2, which can be equivalently expressed as Gamma(1, 1) or Exp(1).

Finally, the integrable property of the distribution of $\Xi_j^{(k)}(a; \infty)$ will be the subject of further study, and here we only present the first step towards this direction: the non-degeneracy of the distribution.

Theorem 4. Under the assumption of Theorem 1, the limit $\Xi_j^{(k)}(a; \infty)$ is nondegenerate, i.e,

$$\mathbb{P}(\Xi_j^{(k)}(a; \infty) = x) < 1$$

for any $x \in \mathbb{R}$.

In the end of Section 7, we also present some simulation results, which show some features of the eigenvector distribution numerically.
1.4 Proof strategy

In order to prove Theorem 1 we turn to study the logarithm of \(\Xi^{(k)}_j(a;n) \) in (1.13), which can be further written as an integral of \(1/(\xi^{(k)}_j - x) \) against a random measure \(\mu \), with the lower limit of the integral given by \(\xi^{(k)}_i \); see (3.4) and (3.8). Specifically, the measure \(\mu \) has density \(\phi \) taking 1 on intervals \((\xi^{(k)}_i, \xi^{(k)}_{i-1}] \) for all \(i \) and 0 elsewhere. It is also clear that \(\xi^{(k)}_i \to -\infty \) almost surely as \(n \to \infty \). Hence, in order to show that the left tail of the integral in (3.8) is negligible, i.e., the integral is convergent, it suffices to study the property of the measure \(\mu((x, \infty)) \) when \(x \to -\infty \). A key technical step in this part is Proposition 10 where we show that the random measure \(\mu \) behaves like a halved Lebesgue measure when it acts on the interval \((x, \infty)\) with \(x \to -\infty \). Heuristically, since \(\mu \) has density 1 on intervals \((\xi^{(k)}_i, \xi^{(k)}_{i-1}] \)'s but 0 on \((\xi^{(k-1)}_i, \xi^{(k-1)}_{i-1}] \)'s, Proposition 10 can be interpreted as: when \(i \) is large, \(\xi^{(k)}_i \) is typically sitting neutrally between \(\xi^{(k-1)}_i \) and \(\xi^{(k-1)}_{i-1} \) and does not favor either side.

Technically, the complementary distribution function, \(\mu((x, +\infty)) \), can be expressed (approximately) in terms of the difference between two linear statistics: one of the species \(\{\xi^{(k)}_i\} \) with the test function \(h_x(t) = (-t + x)1(t > x) \), and the other of the species \(\{\xi^{(k-1)}_i\} \) with the same test function; see (4.13). The computation of the linear statistics of determinantal point processes, especially those from random matrix models, is an extensively studied area, and results are abundant. The tricky part in our case is that up to the leading term, the asymptotics of the two linear statistics are the same. We take the advantage of our model that both the mean and variance of the difference of the two linear statistics have an exact formula; see (4.13) and (4.16). For our purpose, it suffices to take limits of the mean and variance formulas. This is done in the proof of Proposition 10 via a rather delicate saddle point analysis involving a series of contour deformations. We also refer to the recent work [32] for a study on the fluctuation of the difference of linear eigenvalue statistics of a Wigner matrix and its minor, where two strongly correlated linear statistics have a significant cancellation. The work [32] indicates that exploiting the true size of the fluctuation of difference between the linear statistics of two interlacing point processes is normally more delicate than that of a single linear statistic for an individual point process. Although the result in [32] is more on the bulk regime of random matrices, while here we are discussing two interlacing species of the extended Airy process, our analysis also indicates the general complexity of the difference between two linear statistics.

For the proof of Theorem 2 we start from the celebrated eigenvector-eigenvalue identity. We refer the interested readers to the recent survey [29] and reference therein for a detailed discussion and a history of this identity. Here we cite the identity directly from [29] with slight modification as the following proposition.

Proposition 5. Let \(A \in \mathbb{C}^{n \times n} \) be an Hermitian matrix and let \(M_j \in \mathbb{C}^{(n-1) \times (n-1)} \) be its minor obtained by deleting the \(j \)-th column and row from \(A \). Denote by \(\lambda_1(A) > \cdots > \lambda_n(A) \) the ordered eigenvalues of \(A \) and by \(\lambda_1(M_j) > \cdots > \lambda_{n-1}(M_j) \) the ordered eigenvalues of \(M_j \). Furthermore, let \(\mathbf{v}_i = (v_{i1}, \ldots, v_{in})^\top \) be the eigenvector of \(A \), associated with \(\lambda_i(A) \). Then one has

\[
|v_{ij}|^2 = \frac{\prod_{\ell=1}^{n-1}(\lambda_i(A) - \lambda_{\ell}(M_j))}{\prod_{\ell \in \{1, \ldots, n\} \setminus \{i\}}(\lambda_i(A) - \lambda_{\ell}(A))},
\]

(1.18)

Applying the eigenvector-eigenvalue identity to our random matrix \(G_\alpha = G^{(N)}_\alpha \) and its minor \(G^{(N-1)}_\alpha \) which is constructed by removing the first column and first row of \(G_\alpha \), we can write

\[
|x_{j1}|^2 = \prod_{i=1}^{j-1} \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i} \prod_{i=j+1}^{N} \frac{\sigma_j - \lambda_{i-1}}{\sigma_j - \sigma_i},
\]

(1.19)

where \(\sigma_1 > \sigma_2 > \cdots > \sigma_N \) are eigenvalues of \(G_\alpha \), \(\lambda_1 > \cdots > \lambda_{N-1} \) are eigenvalues of \(G^{(N-1)}_\alpha \), and \(x_{j1} \) is the first component of the normalized eigenvector of \(G_\alpha \) associated with \(\sigma_j \). Equivalently, we have

\[
N^{\frac{1}{2}}|x_{j1}|^2 = N^{\frac{1}{2}} \prod_{i=1}^{j-1} \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i} \prod_{i=j+1}^{N} \frac{\sigma_j - \lambda_{i-1}}{\sigma_j - \sigma_i},
\]

(1.20)

which resembles formally \(\Xi^{(k)}_j(a;n) \) in (1.13).
First, for the fixed \(i \) terms in (1.20), we apply the result of GUE minor process with external source in [2] which shows that the two species of point process \(\{ \sigma_i \} \) and \(\{ \lambda_i \} \) together form a determinantal point process (see also [35]). We first show in Lemma \(\rho \) that the edge scaling limit of this point process is given by a determinantal point process with extended Airy kernel defined in (1.12), under Assumption \(\Pi \). Consequently, we have

\[
\frac{\sigma_j - \lambda_i}{\sigma_j - \lambda_i} \xrightarrow{d} \frac{\xi_j^{(k)} - \xi_i^{(k-1)}}{\xi_j^{(k)} - \xi_i^{(k)}}
\] (1.21)

for any fixed \(i \neq j \). This gives an indication of the connection between \(N^{1/3}|x_{j1}|^2 \) and the limit \(\Xi_j^{(k)}(a; \infty) \).

However, the weak convergence in (1.21) cannot be applied directly to the double limit case when \(i = i(N) \rightarrow \infty \) as \(N \rightarrow \infty \). Hence, besides Lemma \(\rho \) we need to analyze the product of the large \(i \) terms in (1.20). To this end, we mimic the idea of the proof of Theorem \(\Pi \). Again, we turn to consider the logarithm of the

\[
1 \sum_{j=2}^{N} \frac{1}{\Lambda_1 - \Lambda_j}
\] (1.22)

is identified to be an infinite sum given in terms of the Airy process, where \(\Lambda_1 > \cdots > \Lambda_N \) are the ordered eigenvalues of Gaussian Orthogonal Ensemble (GOE). The randomness of (1.22) essentially depends only on the local edge regime of the eigenvalues of \(G_N \) and \(G_{(N-1)} \), and the bulk eigenvalues contribute a deterministic factor. Similar phenomenon has also shown up in the limiting theorem of some other eigenvalue statistics in the literature, which inspires our current work. For instance, in the recent work [42], the weak limit of the statistic

For the proof of the nondegeneracy of the distribution of \(\Xi_j^{(k)}(a; \infty) \), i.e., Theorem \(\Pi \) we will apply the weak convergence in Theorem \(\Pi \) to translate the question to \(N^{1/3}|x_{j1}|^2 \). An advantage of the latter is that the eigenvalue distribution admits a log-gas representation which can facilitate our analysis. More specifically, we will show that a bounded truncation (from both below and above) of \(\log(N^{1/3}|x_{j1}|^2) \) has a lower bound for variance, uniformly in \(N \). This will finally lead to the conclusion of Theorem \(\Pi \).

Finally, we remark here that in this paper we do not consider the deformed GOE since the corresponding results on the minor process used for GUE here is not available for GOE so far. But many discussions in this paper work for the deformed GOE as well.

1.5 Organization and notation

The rest of the paper is organized as follows. In Section \(\Pi \) we state some preliminary results which will be used in the later sections. The main results of the paper, Theorems \(\Pi \) and \(\Pi \) are proved respectively in Sections \(\Pi \) and \(\Pi \) based on the key technical estimates in Propositions \(\Pi \) and \(\Pi \) whose proofs will be stated respectively in Sections \(\Pi \) and \(\Pi \) in addition, Corollary \(\Pi \) is an easy consequence of Theorem \(\Pi \) and Remark \(\Pi \) and its proof will be stated at the end of Section \(\Pi \). Section \(\Pi \) is then devoted to the proof of Theorem \(\Pi \). Finally, some proofs of technical lemmas are collected in Appendix \(\Pi \).

Throughout the paper, we will use \(\mathcal{O}(\cdot) \) and \(o(\cdot) \) for the standard big-O and little-o notations. We use \(C, C', C_1, \) etc. to denote positive constants (independent of \(N \)). For any set \(I \), the notation \(|I| \) stands for its cardinality. We use the shorthand notation \([a, b] = [a, b] \cap \mathbb{Z}\) for all \(a, b \in \mathbb{R} \).
2 Collection of results for spiked GUE and extended Airy process

In this section, we first review the determinantal point process representation of the eigenvalue distribution of G_{α} and its minors, and then state some preliminary results to be used in the later sections. Some lemmas in this section are direct consequences of existing results in the literature, while for others, only the proof strategy exists in the literature. We give the proofs and/or the references of the lemmas in Appendix A.

2.1 Determinantal point process representation for eigenvalues of G_{α}

In this subsection, we re-denote the eigenvalues of $G_{\alpha} = G_{\alpha}^{(N)}$ and $G_{\alpha}^{(N-1)}$ by

$\lambda_i^{(N)} := \sigma_i$, $\lambda_{\ell}^{(N-1)} := \lambda_{\ell}$, where $i \in [1, N]$, $\ell \in [1, N-1]$

(2.1)

and further we denote by $\lambda_1^{(N-j)} > \cdots > \lambda_{N-j}^{(N-j)}$ the ordered eigenvalues of the matrix $G_{\alpha}^{(N-j)}$, which is obtained from G_{α} by deleting its first j rows and columns.

For each j, the eigenvalues of $G_{\alpha}^{(N-j)}$ form a determinantal point process. In addition, the eigenvalues of all $G_{\alpha}^{(N-j)}$, $j = 0, \ldots, k$ together form a determinantal point process, called the GUE minor process with external source [2]. The correlation kernel of these eigenvalues is given as follows: For $j_1, j_2 \in [0, \ldots, k]$,

$K_{\text{GUE},\alpha}^{j_1,j_2}(x, y) = -1(j_1 > j_2)1(x < y)\frac{1}{2\pi i} \int_{\Gamma} \frac{e^{(y-x)w}}{\prod_{i=j_2+1}^{j_1} (w - \alpha_i)} dw + \tilde{K}_{\text{GUE},\alpha}^{j_1,j_2}(x, y)$

(2.2)

where

$\tilde{K}_{\text{GUE},\alpha}^{j_1,j_2}(x, y) = \frac{1}{(2\pi i)^2} \int_{\Sigma} dz \int_{\Gamma} dw \frac{e^{2zx}z^{N-k}}{e^{2z-w}w^{N-k}} \frac{1}{\prod_{i=j_2+1}^{j_1} (z - \alpha_i)} \frac{1}{z - w}$

(2.3)

Here Γ is a circular contour wrapping 0 and $\alpha_1, \ldots, \alpha_k$ positively, and Σ is an infinite contour from $-i \cdot \infty$ to $i \cdot \infty$, to the right of Γ; see Figure 10.

The relation between the correlation kernel $K_{\text{GUE},\alpha}^{j_1,j_2}(x, y)$ and the correlation kernel $K_{\text{Airy},\alpha}^{k_1,k_2}(x, y)$ defined in (1.7) is as follows:

Lemma 6. Let $\alpha_1, \ldots, \alpha_k$ be given in Assumption [4]. If we denote, with $j_i = k - k_i \in [0, k]$ ($i = 1, 2$),

$K_{N,\text{scaled}}^{j_1,j_2}(x, y) = N^{-\frac{1}{2}} N^{-\frac{j_1+j_2}{2}} e^{N\pi(x-y)} K_{\text{GUE},\alpha}^{j_1,j_2}(2\sqrt{N} + N^{-\frac{1}{2}}x, 2\sqrt{N} + N^{-\frac{1}{2}}y)$

(2.4)

then

1. For all x, y in a compact subset of \mathbb{R}, uniformly

$\lim_{N \to \infty} K_{N,\text{scaled}}^{j_1,j_2}(x, y) = K_{\text{Airy},\alpha}^{k_1,k_2}(x, y)$

(2.5)

2. Let $\epsilon > \max(a_1, \ldots, a_k)$. For any $C \in \mathbb{R}$, as operators on $L^2((C, +\infty))$, the ones with kernel $e^{C(x-y)} K_{N,\text{scaled}}^{j_1,j_2}(x, y)$ converge, in trace norm, to the one with kernel $e^{C(x-y)} K_{\text{Airy},\alpha}^{k_1,k_2}(x, y)$.

Consequently, the above statements imply the weak convergence of the joint distribution of $\{N^{1/6} (\lambda_i^{(N-j)} - 2\sqrt{N}) \mid 0 \leq j \leq k, 0 \leq i \leq K\}$ to that of $\{\xi_i^{(k-j)} \mid 0 \leq j \leq k, 1 \leq i \leq K\}$ for any fixed positive integer K, where $\xi_i^{(k-j)}$’s are particles in the determinantal point process given by (1.12).

We note that although we discussed the joint distribution of $\lambda_i^{(N-j)}$ for all $j \in [0, k]$, to prove Theorem 2 we only need the $j = 0, 1$ cases. Hence we recycle the notations σ_i and λ_i for $\lambda_i^{(N)}$ and $\lambda_i^{(N-1)}$ respectively in the sequel, for simplicity.
2.2 Useful estimates

By the well-known Weyl’s inequality, we have that

\[\sigma_1 > \lambda_1 > \lambda_2 > \lambda_3 > \cdots > \lambda_{N-1} > \sigma_N, \quad \text{and more generally} \quad \lambda_1^{(N-j)} > \lambda_1^{(N-j-1)} > \lambda_2^{(N-j)} > \cdots > \lambda_{N-j}^{(N-j)} \]

(2.6)

for all \(j = 0, 1, \ldots, N - 1 \). In parallel, for the particles in the extended Airy process defined in (1.12), we also have the following interlacing property.

Lemma 7. Let \(j = 1, \ldots, k \). With probability 1, the particles \(\xi_i^{(j)} \) and \(\xi_i^{(j-1)} \) \((i = 1, 2, \ldots)\) whose joint distribution is given by (1.12) satisfy the interlacing inequality

\[+ \infty > \xi_i^{(j)} > \xi_i^{(j-1)} > \xi_i^{(j)} > \xi_i^{(j-1)} > \cdots. \]

(2.7)

Next, we list some rigidity result for the particles in the extended Airy process and also the eigenvalues of \(G_\alpha \).

Lemma 8. Let \(\xi_j^{(k)}, j = 1, \ldots \) be the particles defined in (1.12). Then we have the following estimates.

1. For any fixed \(j \), there exists a numerical \(C > 0 \), such that for all \(t > 0 \)

\[\mathbb{P}(\xi_j^{(k)} > t) < Ce^{-t/C}, \quad \mathbb{P}(\xi_j^{(k)} < -t) < Ce^{-t/C}. \]

(2.8)

2. For all \(n \geq 2 \), there exists a numerical \(c > 0 \), such that

\[\mathbb{P}\left(\left| \xi_{n}^{(k)} \right| + \left(\frac{3\pi n}{2} \right)^{2/3} > n^{3/5} \right) \leq cn^{-\frac{2}{3}} \log n. \]

(2.9)

Lemma 9. Suppose \(N > k \) is large enough, then:

1. For \(j \in [1, k] \), there exists a numerical \(C > 0 \), such that

\[\mathbb{P}(\sigma_j > 2\sqrt{N} + tN^{-\frac{1}{6}}) < Ce^{-t/C}, \quad \mathbb{P}(\sigma_N < -2\sqrt{N} - tN^{-\frac{1}{6}}) < Ce^{-t/C}, \quad \text{for all } t > 0, \]

(2.10)

\[\mathbb{P}(\sigma_j < 2\sqrt{N} - tN^{-\frac{1}{6}}) < Ce^{-t/C}, \quad \mathbb{P}(\sigma_N > -2\sqrt{N} + tN^{-\frac{1}{6}}) < Ce^{-t/C}, \quad \text{for all } 2 \leq t \leq 2N^{2/3}. \]

(2.11)

2. For any positive constant \(C > 0 \), there exists a numerical \(c > 0 \), such that for all \(2 \leq n \leq CN^{1/10} \),

\[\mathbb{P}\left(\left| N^{\frac{1}{3}}(\sigma_n - 2\sqrt{N}) + \left(\frac{3\pi n}{2} \right)^{2/3} \right| > n^{\frac{4}{5}} \right) \leq cn^{-\frac{2}{3}} \log n. \]

(2.12)

3. Given any (small) \(c \in (0, 1) \), for all \(i \in [1, (1 - c)N] \), for any (small) constant \(\varepsilon > 0 \) and (large) constant \(D > 0 \)

\[\mathbb{P}\left(|\sigma_i - \Upsilon_i| \geq N^{-\frac{1}{6} + \varepsilon} i^{-\frac{1}{6}} \right) \leq N^{-D}. \]

(2.13)

Here \(\Upsilon_i \) is the scaled quantile of semicircle law defined by

\[\int_{\Upsilon_i/\sqrt{N}}^{2} \rho_{sc}(x)dx = \frac{N - i + \frac{1}{2}}{N}, \quad \rho_{sc}(x) = \frac{1}{2\pi} \sqrt{4 - x^2}. \]

(2.14)

All the lemmas stated in this section are proved in Appendix A.

\[^{1} \text{Hereafter we ignore the probability 0 event that some } \lambda_i^{(N-j-1)} \text{ is identical to } \lambda_i^{(N-j)} \text{ or } \lambda_{i+1}^{(N-j)}. \]
3 Existence of the limit

In this section, we prove Theorem 1. Recall (1.13). For any $1 \leq j \leq k < m < n$, we set the quantity

$$
\Xi_j^{(k)}(a;n) = n^j \prod_{i=1}^{j-1} \frac{\xi_j^{(k)}}{\xi_i^{(k)}} \prod_{i=j+1}^{m} \frac{\xi_j^{(k)} - \xi_{i-1}^{(k)}}{\xi_j^{(k)} - \xi_i^{(k)}} A_j^{(k)}(a;n),
$$

where $A_j^{(k)}(a;n) := \prod_{i=m+1}^{n} \frac{\xi_j^{(k)} - \xi_{i-1}^{(k)}}{\xi_j^{(k)} - \xi_i^{(k)}}$.

In order to prove Theorem 1, it suffices to show that for any given $m > k$, $\log A_j^{(k)}(a;n) + \frac{1}{3} \log n$ converges almost surely as $n \to \infty$, or equivalently, by Cauchy’s criterion,

$$
\limsup_{m \to \infty} \sup_{n > m} \left| \log A_j^{(k)}(a;n) + \frac{1}{3} \log \frac{n}{m} \right| = 0, \quad \text{a.s.}
$$

In order to study

$$
\log A_j^{(k)}(a;n) = \sum_{i=m+1}^{n} \left(\log \frac{\xi_j^{(k)}}{\xi_{i-1}^{(k)}} - \log \frac{\xi_j^{(k)}}{\xi_i^{(k)}} \right),
$$

we define a random measure $\mu = \mu^{(k)}$ on \mathbb{R} that is absolutely continuous with respect to the Lebesgue measure, and is given by a random density function $\phi(x)$

$$
\phi(x) := \begin{cases}
1, & \xi_i^{(k)} < x \leq \xi_{i-1}^{(k)} \text{ for all } i > 1, \\
0, & \text{otherwise.}
\end{cases}
$$

Since $\xi_1^{(k)} < +\infty$ almost surely, we have that

$$
M(x) := \mu((x,+\infty)) = \int_x^{\infty} \phi(t) dt
$$

is a well defined random, continuous and piecewise linear function of $x \in \mathbb{R}$. We also define the deterministic function

$$
F(x) := \mathbb{E} M(x).
$$

It is clear that as $x \to +\infty$, $M(x) \to 0$ almost surely, and $F(x) \to 0$. We have the following estimate of $F(x)$ and $M(x)$, whose proof will be given in the end of this section.

Proposition 10. As the negative parameter $x \to -\infty$, we have

$$
F(x) = \frac{-x}{2} + \mathcal{O}(1), \quad \text{Var} M(x) = \mathbb{E} M^2(x) - F^2(x) = \frac{2}{\pi} \sqrt{-x} + \mathcal{O}(|x|^{1/2}).
$$

Then we write

$$
\log A_j^{(k)}(a;n) = \int_{\xi_j^{(k)}}^{\xi_{m-1}^{(k)}} \frac{1}{\xi_j^{(k)} - x} d\mu(x) = \int_{\xi_j^{(k)}}^{\xi_{m}^{(k)}} \frac{1}{\xi_j^{(k)} - x} dM(x) = \int_{\xi_j^{(k)}}^{\xi_{m}^{(k)}} \frac{1}{\xi_j^{(k)} - x} dM(x),
$$

where in the last step we used the fact that $dM(x) = 0$ on $(\xi_{m-1}^{(k)}, \xi_m^{(k)})$ by definition. Hence (3.2) is equivalent to

$$
\limsup_{m \to \infty} \sup_{n_2 > n_1 > m} D_{n_1,n_2} = 0, \quad \text{a.s., where } D_{n_1,n_2} = \left| \int_{\xi_{n_2}^{(k)}}^{\xi_{n_1}^{(k)}} \frac{1}{\xi_j^{(k)} - x} dM(x) + \frac{1}{3} \log \frac{n_2}{n_1} \right|.
$$

Or else, we can use $F(x)$ to rewrite (3.9) as

$$
\limsup_{m \to \infty} \sup_{n_2 > n_1 > m} \tilde{D}_{n_1,n_2} = 0, \quad \text{a.s., where } \tilde{D}_{n_1,n_2} = \left| \int_{\xi_{n_2}^{(k)}}^{\xi_{n_1}^{(k)}} \frac{1}{\xi_j^{(k)} - x} dM(x) - \int_{-(3n_1/2)^{2/3}}^{-x} \frac{1}{0-x} dF(x) \right|,
$$

(3.10)
in light of the first identity in (3.7). It is equivalent to show: for any \(\epsilon_1, \epsilon_2 > 0 \), there exists \(m_{\epsilon_1, \epsilon_2} \), such that for all \(m > m_{\epsilon_1, \epsilon_2} \), \(\mathbb{P}(\sup_{n_2 > n_1 > m} \tilde{D}_{n_1, n_2} > \epsilon_1) < \epsilon_2 \). Furthermore, we see that it suffices to show, under the same assumption,

\[
\mathbb{P}\left(\sup_{n > m} \tilde{D}_{m, n} > \epsilon_1 \right) = \mathbb{P}\left(\sup_{n > m} \left| \int_{\zeta_{m}^{(k)}}^{\zeta_{m}^{(k)}} \frac{1}{\zeta_{j}^{(k)} - x} dM(x) - \int_{\zeta_{m}^{(k)}}^{\zeta_{m}^{(k)}} \frac{1}{0 - x} dF(x) \right| > \epsilon_1 \right) < \epsilon_2. \tag{3.11}
\]

Here we note that by Lemma 8, the constants \(0, -(3\pi m/2)^{2/3} \) and \(-(3\pi n/2)^{2/3} \) approximate the values of \(\zeta_j^{(k)} \), \(\zeta_m^{(k)} \) and \(\zeta_n^{(k)} \) respectively.

Therefore, in order to prove Theorem 1, it suffices to show (3.11) in the sequel.

Remark 4. Here we remark that the proof of (3.11) relies only on the following three ingredients: (i) Proposition 10 on the properties of \(F(x) \) and \(M(x) \), (ii) Lemma 8 on the fluctuation of \(\zeta_j^{(k)} \) and \(\zeta_m^{(k)} \), and (iii) the property that both \(dF(x) \) and \(dM(x) \) are dominated by the Lebesgue measure. Our proof below could be potentially simplified. Nevertheless, for coherency, we keep the current presentation, since it can be easily adapted in the later proof of (5.15).

Proof of (3.11). We carry out the proof in three steps. To facilitate the proof, for \(j \in [1, k] \) and \(m > k \), we denote by \(\Omega_{j, m}^{(k)} \) the events that \(\zeta_m^{(k)} \) and \(\zeta_j^{(k)} \) satisfy the following rigidity properties

\[
\Omega_{j, m}^{(k)} := \left\{ \omega \mid \left| \zeta_j^{(k)} \right| \leq m^{\frac{2}{3}}, \left| \zeta_m^{(k)} + (3\pi m/2)^{\frac{2}{3}} \right| \leq m^{\frac{2}{3}} \right\}, \tag{3.12}
\]

and also denote \(\Omega_{j, m, n}^{(k)} = \Omega_{j, m}^{(k)} \cap \Omega_{j, n}^{(k)} \).

1. We first note that given any \(\epsilon_1 > 0 \), there exists \(m_{\epsilon_1} \) such that for all \(n > m > m_{\epsilon_1} \),

\[
\mathbb{E}_{\zeta_m^{(k)}} \left[\int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{\zeta_j^{(k)} - x} dF(x) - \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{0 - x} dF(x) \right] 1(\Omega_{j, m}^{(k)}) \\
\leq \left| \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{\zeta_j^{(k)} - x} dF(x) - \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{0 - x} dF(x) \right| 1(\Omega_{j, m}^{(k)}) \\
+ \left| \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{0 - x} dF(x) - \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{0 - x} dF(x) \right| 1(\Omega_{j, m}^{(k)}) \\
< \frac{\epsilon_1}{3} + \frac{\epsilon_1}{3} = \frac{2\epsilon_1}{3}.
\]

2. We next show that given any \(\epsilon_1, \epsilon_2 > 0 \), there exists sufficiently large positive integer \(m_{\epsilon_1, \epsilon_2}'' \) such that for all \(m > m_{\epsilon_1, \epsilon_2}' \),

\[
\mathbb{P}\left(\sup_{n > m} \left| \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{\zeta_j^{(k)} - x} d(M(x) - F(x)) 1(\Omega_{j, m}^{(k)}) \right| > \frac{\epsilon_1}{3} \right) < \frac{\epsilon_2}{2}. \tag{3.14}
\]

To see it, using integration by parts, we write

\[
\int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{1}{\zeta_j^{(k)} - x} d(M(x) - F(x)) = \frac{M(\zeta_m^{(k)}) - F(\zeta_m^{(k)})}{\zeta_j^{(k)} - \zeta_m^{(k)}} - \frac{M(\zeta_m^{(k)}) - F(\zeta_m^{(k)})}{\zeta_j^{(k)} - \zeta_m^{(k)}} - \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{M(x) - F(x)}{(\zeta_j^{(k)} - x)^2} dx.
\]

So to prove (3.14), we only need to show that for a large enough \(m_{\epsilon_1, \epsilon_2}'' \), if \(m > m_{\epsilon_1, \epsilon_2}' \),

\[
\mathbb{P}\left(\left| \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} \frac{M(x) - F(x)}{(\zeta_j^{(k)} - x)^2} dx 1(\Omega_{j, m}^{(k)}) \right| > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}, \tag{3.16}
\]

\[
\mathbb{P}\left(\sup_{n > m} \left| \int_{\zeta_m^{(k)}}^{\zeta_m^{(k)}} M(x) - F(x) 1(\Omega_{j, m}^{(k)}) \right| > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}. \tag{3.17}
\]
(a) For (3.10), we note that since $(\xi_j^{(k)} - \xi_m^{(k)})/(3\pi m/2)^{2/3} = 1 + O(m^{-1/15})$ on $\Omega_{j,m}$, it suffices to show

$$\mathbb{P}\left(\frac{|M(\xi_m^{(k)}) - F(\xi_m^{(k)})|}{(3\pi m/2)^{2/3}} 1(\Omega_{j,m}) > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}. \quad (3.18)$$

To prove (3.18), we first set

$$\ell_i = \left\lceil \frac{2}{3\pi} \right\rceil^{3/2}.$$

Then for any $m \in [\ell_i, \ell_{i+1}]$, $|M(\xi_m^{(k)}) - F(\xi_m^{(k)})| \leq A_i + B_i(m) + C_i(m)$, where

$$A_i = |M(-i) - F(-i)|, \quad B_i(m) = |M(\xi_m^{(k)}) - M(-i)|, \quad C_i(m) = |F(\xi_m^{(k)}) - F(-i)|. \quad (3.20)$$

By the estimate in Proposition 10 and Markov’s inequality, we have that if i is big enough, then for any $\epsilon > 0$

$$\mathbb{P}\left(|M(-i) - F(-i)| \geq \epsilon i \right) < \epsilon^{-2} i^{-3/2}, \quad (3.21)$$

and we conclude that there exists a sufficiently large positive integer $N_{\epsilon_1,\epsilon_2}$ such that

$$\mathbb{P}\left(\sup_{i > N_{\epsilon_1,\epsilon_2}} \frac{A_i}{(3\pi \ell_i)^{2/3}} > \frac{\epsilon_1}{27} \right) < \frac{\epsilon_2}{6}. \quad (3.22)$$

Using the properties that $|F(x_1) - F(x_2)| \leq |x_1 - x_2|$ and $|M(x_1) - M(x_2)| \leq |x_1 - x_2|$, we have that there exists $N'_{\epsilon_1,\epsilon_2}$ such that if $i > N'_{\epsilon_1,\epsilon_2}$, then for all $m \in [\ell_i, \ell_{i+1}]$, we have that on $\Omega_{j,m}$,

$$\left| \frac{\xi_m^{(k)} - (-i)}{(3\pi m/2)^{2/3}} - \left(\frac{3\pi \ell_i + 2}{2} \right) \right| \leq \left| \frac{\xi_m^{(k)} - (-i)}{(3\pi m/2)^{2/3}} \right| \leq \left| \frac{(-3\pi \ell_i/2)^{2/3} - \ell_i^{3/5}}{(3\pi m/2)^{2/3}} \right| < \frac{\epsilon_1}{27}, \quad * = B \text{ or } C. \quad (3.23)$$

Hence we have that if $i > \max(N_{\epsilon_1,\epsilon_2}, N'_{\epsilon_1,\epsilon_2})$ and $m \in [\ell_i, \ell_{i+1}]$, then by (3.22),

$$\frac{|M(\xi_m^{(k)}) - F(\xi_m^{(k)})|}{(3\pi m/2)^{2/3}} 1(\Omega_{j,m}) \leq \frac{A_i}{(3\pi \ell_i)^{2/3}} + \frac{2}{27} \epsilon_1 \quad (3.24)$$

Then by (3.22), we prove (3.18), which further implies (3.10).

(b) To show (3.17) holds, we note that since on $\Omega_{j,m}$, $|\xi_j^{(k)} - x| = 1 + O(m^{-1/15})$ if $x \geq \xi_m^{(k)}$, it suffices to show that if m is large enough,

$$\mathbb{P}\left(\sup_{n > m} \int_{\xi_n^{(k)}}^{\xi_m^{(k)}} \frac{|M(x) - F(x)|}{x^2} dx 1(\Omega_{j,m}) > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}. \quad (3.25)$$

Also, since $\xi_m^{(k)}$ goes to $-\infty$ monotonically as $m \to \infty$, $\xi_m^{(k)} < -\left(\frac{2}{3}\pi m \right)^{2/3} + m^{3/5}$ on $\Omega_{j,m}$, and the integrand of (3.25) is non-negative, we find that it suffices to prove that there exists $K_{\epsilon_1,\epsilon_2}$, such that for all positive integers $k_2 > k_1 > K_{\epsilon_1,\epsilon_2}$,

$$\mathbb{P}\left(\sup_{k_2 > k_1} \int_{-k_2}^{-k_1} \frac{|M(x) - F(x)|}{x^2} dx \geq \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}. \quad (3.26)$$

We define the auxiliary functions with integer parameters $k_1 < k_2$

$$A_{k_1,k_2} = \sum_{i=k_1}^{k_2} \frac{|M(-i) - F(-i)|}{(i-1)i}, \quad B_{k_1,k_2} = \sum_{i=k_1}^{k_2} \frac{|M(-i) - F(-i)|}{i(i+1)}, \quad C_{k_1,k_2} = 2 \sum_{i=k_1+1}^{k_2-1} \frac{F(-i)}{(i-1)i(i+1)} - \frac{F(-k_1)}{k_1(k_1+1)} + \frac{F(-k_2)}{(k_2-1)k_2}. \quad (3.27)$$

Since for $x \in [-i, -(i-1)]$, we have, by the monotonicity of $F(x)$ and $M(x)$,

$$M(-(i-1)) - F(-i) \leq M(x) - F(x) \leq M(-i) - F(-(i-1)), \quad (3.28)$$
and the inequality
\[
\int_{-k_2}^{-k_1} \frac{|M(x) - F(x)|}{x^2} dx \leq \sum_{i=k_1+1}^{k_2} \int_{-i}^{-(i-1)} \frac{|M(-i) - F(-(i-1))|}{x^2} dx + \frac{|M(-(i-1)) - F(-i)|}{x^2} dx
\]
\[
= \sum_{i=k_1+1}^{k_2} \frac{|M(-i) - F(-(i-1))|}{(i-1)i} + \sum_{i=k_1}^{k_2-1} \frac{|M(-i) - F(-(i+1))|}{i(i+1)}
\]
\[
\leq (A_{k_1+k_2} + C_{k_1,k_2}) + (B_{k_1,k_2-1} + C_{k_1,k_2})
\]
\[
\leq A_{k_1,k_2} + B_{k_1,k_2} + 2C_{k_1,k_2}.
\]

(3.29)

Hence to prove (3.26), it suffices to show that there exists \(K_{\epsilon_1,\epsilon_2} \) such that for \(k_1 > K_{\epsilon_1,\epsilon_2} \),
\[
\mathbb{P} \left(\sup_{k_2 > k_1} A_{k_1,k_2} > \frac{\epsilon_1}{27} \right) < \frac{\epsilon_2}{12}, \quad \mathbb{P} \left(\sup_{k_2 > k_1} B_{k_1,k_2} > \frac{\epsilon_1}{27} \right) < \frac{\epsilon_2}{12}, \quad \text{and} \quad \sup_{k_1 > k_2} 2|C_{k_1,k_2}| < \frac{\epsilon_1}{27}.
\]

(3.30)

By the estimate of \(F(x) \) in Proposition 10, we can easily verify the \(C_{k_1,k_2} \) part of (3.30) with large enough \(k_1 > K_{\epsilon_1,\epsilon_2} \). On the other hand, analogous to (3.21), we have that for large enough \(i \),
\[
\mathbb{P} \left(|M(-i) - F(-i)| \geq i^{4/5} \right) < i^{-\frac{1}{9}}.
\]

(3.31)

Also if \(k_1 > 270\epsilon_1^{-1} + 1 \), we have
\[
\sum_{i=k_1}^{\infty} i^{-6/5} < \int_{k_1-1}^{\infty} x^{-6/5} dx < \frac{\epsilon_1}{54}.
\]

(3.32)

Hence if \(k_1 > 270\epsilon_1^{-1} + 1 \), noting that \(i(i+1)^2 > (i-1)i \geq i^2/2 \) for all \(i \geq k_1 \), we have
\[
\mathbb{P} \left(\sup_{k_2 > k_1} B_{k_1,k_2} > \frac{\epsilon_1}{27} \right) \leq \mathbb{P} \left(\sup_{k_2 > k_1} A_{k_1,k_2} > \frac{\epsilon_1}{27} \right)
\]
\[
\leq \mathbb{P} \left(\sup_{i=k_1}^{\infty} \frac{|M(-i) - F(-i)|}{i^2} \geq \frac{\epsilon_1}{54} \right)
\]
\[
\leq \mathbb{P} \left(\bigcup_{i=k_1}^{\infty} \left\{ \frac{|M(-i) - F(-i)|}{i^2} > i^{-\frac{6}{11}} \right\} \right)
\]
\[
\leq \sum_{i=k_1}^{\infty} \mathbb{P} \left(\frac{|M(-i) - F(-i)|}{i^2} > i^{-\frac{6}{11}} \right)
\]
\[
\leq \sum_{i=k_1}^{\infty} i^{-\frac{1}{11} - \frac{4}{11} + \frac{1}{9}} < \int_{k_1-1}^{\infty} x^{-\frac{10}{11}} dx = 10(k_1 - 1)^{-\frac{10}{11}},
\]
and conclude the proof of the \(A_{k_1,k_2} \) and \(B_{k_1,k_2} \) parts of (3.30). Now (3.30) is proved, and so are (3.26) and (3.17).

Thus we finish the proof of (3.14). The constant \(m''_{\epsilon_1,\epsilon_2} \) can be deduced from \(N_{\epsilon_1,\epsilon_2} \), \(N'_{\epsilon_1,\epsilon_2} \), \(K_{\epsilon_1,\epsilon_2} \) above.

3. Combining (3.13) and (3.14) we arrive at that for \(m > \max(m'_{\epsilon_1, \epsilon_2}, m''_{\epsilon_1, \epsilon_2}) \),
\[
\mathbb{P} \left(\sup_{n > m} \left\{ \int \frac{\xi_j^{(k)}}{\xi_j^{(k)} - x} dM(x) - \int_{-(3\pi/m)^{2/3}}^{-(3\pi/m)^{2/3}} \frac{1}{0 - x} dF(x) \left| 1(\Omega_{j,m,n}^{(k)}) \right\} > \epsilon_1 \right\} < \frac{\epsilon_2}{2}.
\]

(3.34)
To complete the proof of (3.2), it suffices to find \(m_{\epsilon_1, \epsilon_2} > \max(m'_{\epsilon_1}, m''_{\epsilon_1, \epsilon_2}) \) such that for all \(m > m_{\epsilon_1, \epsilon_2} \)\)

\[
P \left(\bigcup_{n \geq m} (\Omega_{j,m,n}^{(k)})^c \right) < \frac{\epsilon_2}{2}. \tag{3.35}
\]

By (2.9) in Lemma 2.9 we have that if \(m) \) is large enough, then \(P(|\xi_m^{(k)} + (3\pi m/2)^{2/3}| > m^{3/5}) < cm^{-b/5} \log m, \) and the estimate also holds if \(m \) is replaced by \(n. \) Also by part II of Lemma 8 we have \(\lim_{m \to \infty} P \left(|\xi_j^{(k)}| \leq m^{3/5} \right) = 0. \) Hence it is straightforward to check that (3.35) holds if \(m \) is large enough, and the desired \(m_{\epsilon_1, \epsilon_2} \) exists.

Finally we complete the proof of (3.11). \(\square \)

4 Analysis of random measure \(\mu: \) proof of Proposition 10

We show that the estimate of the mean and variance of \(M(x) \) can be transformed to the mean and variance of a linear statistic of the extended Airy process, or more precisely, the difference between the linear statistics of two species, as mentioned in Section 1.4. We observe that the mean and variance of the linear statistic have (multi)-contour integral representations. Then we prove the said estimate, first of the mean and then of the variance, via delicate saddle point analysis of the contour integrals.

Define the finite random subsets of \(\mathbb{N} \)

\[
I_x := \{ i \in \mathbb{N} \mid \xi_i^{(k)} \in (x, +\infty) \}, \quad J_x := \{ i \in \mathbb{N} \mid \xi_i^{(k-1)} \in (x, +\infty) \}. \tag{4.1}
\]

and the random variable

\[
N_x = |I_x| - |J_x|. \tag{4.2}
\]

By the interlacing property stated in Lemma 7 we see that \(N_x \) is a Bernoulli random variable for a given \(x. \) Hence,

\[
\mathbb{E} N_x = P(N_x = 1). \tag{4.3}
\]

We also consider the random variable

\[
S_x = \sum_{i \in I_x} \xi_i^{(k)} + \sum_{i \in J_x} \xi_i^{(k-1)}. \tag{4.4}
\]

We observe that if \(\xi_1^{(k)} \leq x, \) then \(N_x = S_x = M(x) = 0. \) Under the condition that \(\xi_1^{(k)} > x, \) if \(N_x = 1, \) then \(S_x = M(x) - \xi_1^{(k)}, \) otherwise \(S_x = M(x) - \xi_1^{(k)} + x. \) We conclude that (noting that \(N_x 1(\xi_1^{(k)} > x) = N_x \))

\[
M(x) = S_x + (\xi_1^{(k)} - x(1 - N_x)) 1(\xi_1^{(k)} > x) = S_x + xN_x + (\xi_1^{(k)} - x) 1(\xi_1^{(k)} > x). \tag{4.5}
\]

By the estimate in Lemma 8 we find that as \(x \to -\infty, \) \(\mathbb{E} (\xi_1^{(k)} - x) 1(\xi_1^{(k)} > x) = -x + O(1) \) and \(\text{Var}(\xi_1^{(k)} - x) 1(\xi_1^{(k)} > x) = O(1). \) Hence to prove the Proposition 10 we only need the following estimates of the mean and variance of \(S_x + xN_x: \)

\[
\mathbb{E}(S_x + xN_x) = \frac{x}{2} + O(1), \tag{4.6}
\]

\[
\text{Var}(S_x + xN_x) = \frac{2}{\pi} \sqrt{-x} + a_k + O(|x|^{-1/2}), \tag{4.7}
\]

in light of the linearity of expectation and the trivial inequality

\[
|\text{Var}(X + Y) - (\text{Var}(X) + \text{Var}(Y))| \leq 2 \sqrt{\text{Var}(X) \text{Var}(Y)}. \tag{4.8}
\]

Below we prove (4.6) and (4.7) separately. For the proofs, we define the function

\[
h_x(t) = \begin{cases}
0, & t \leq x, \\
-t + x, & t > x.
\end{cases} \tag{4.9}
\]

We emphasize here, all integrals in the sequel, unless the integral domain is specified, are on \(\mathbb{R}. \)
By standard saddle point method, we have that the parts of integral (4.13a) over \(O \) above completes the proof of (4.6).

\[
\int_x^{\infty} tK_{\text{Airy},a}(t)dt - \int_{x}^\infty tK_{\text{Airy},a}(t)dt + x\left(\int_x^{\infty} K_{\text{Airy},a}(t)dt - \int_x^{\infty} K_{\text{Airy},a}(t)dt\right)
\]

(4.10)

By some standard residue calculation, we have that if

\[
\text{Proof of (4.6)} \quad \text{We have, by the standard formula for linear statistics of a determinantal point process,}
\]

(iii) \(X \)

To evaluate (4.13a), we define two types of infinite contours: \(a \) goes by the right of all \(a_i \) are the saddle points. We divide the double contour \(a \), see Figure 2, and the integral is understood as the Cauchy principal value, and the contour in (4.13b) goes by the right of all \(a_i \)’s. By direct computation, we find the (4.13b) is \((x - a_k^2)/2 + O(|x|^{-1/2}) \).

To evaluate (4.13a), we define two types of infinite contours:

\[
\gamma_{\text{std}}(a) = \{e^{2\pi i}t + a \mid t \geq 0\} \cup \{e^{2\pi i}t + a \mid t \leq 0\}, \quad \sigma_{\text{std}}(b) = \{e^{2\pi i}t + b \mid t \geq 0\} \cup \{e^{2\pi i}t + b \mid t \leq 0\},
\]

(4.14)

both oriented upward; see Figure 3. Assuming that \(-x \) is large enough, we deform the contour \(X \) such that \(u \) is on \(\gamma_{\text{std}}(-\sqrt{-x/3}) \), and \(v \) is on \(\gamma_{\text{std}}(\sqrt{-x/3}) \). Direct computation shows that \(\Re(u^3/3 - xu) \) attains its maximum along \(\sigma \) at \(\pm \sqrt{-x/3} \), and \(\Re(v^3/3 - xv) \) attains its minimum along \(\gamma \) at the same two points. Hence \(\pm \sqrt{-x/3} \) are the saddle points. We divide the double contour \(X \) into three disjoint subsets:

(i) \(X_1 = \{u, v \in X \mid |u - \sqrt{-x}| < 1, |v - \sqrt{-x}| < 1\} \),

(ii) \(X_2 = \{u, v \in X \mid |u + \sqrt{-x}| < 1, |v + \sqrt{-x}| < 1\} \),

(iii) \(X_3 = X \setminus (X_1 \cup X_2) \).

By standard saddle point method, we have that the parts of integral (4.13a) over \(X_1 \) and \(X_2 \) are both \(O(|x|^{-1/2}) \), and the part of integral (4.13a) over \(X_3 \) is \(o(|x|^{-1/2}) \). This together with the estimate of (4.13b) above completes the proof of (4.6).
Proof of (4.17) We can write, with $h_x(t)$ defined in (4.19),

$$
\mathbb{E}[(S_x + xN_x)^2] = \int h_x^2(t)K_{Airy,a}^{k,k}(t,t)dt + \int h_x^2(t)K_{Airy,a}^{k-1,k-1}(t,t)dt
$$

$$
+ \int h_x(s)h_x(t)\left[\begin{array}{c}
K_{Airy,a}^{k,k}(s,s) \\
K_{Airy,a}^{k,k}(t,t)
\end{array}\right]dsdt
+ \int h_x(s)h_x(t)\left[\begin{array}{c}
K_{Airy,a}^{k-1,k-1}(s,s) \\
K_{Airy,a}^{k-1,k-1}(t,t)
\end{array}\right]dsdt
+ \int h_x(s)h_x(t)\left[\begin{array}{c}
K_{Airy,a}^{k,k}(s,t) \\
K_{Airy,a}^{k,k}(t,s)
\end{array}\right]dsdt
+ \int h_x(s)h_x(t)\left[\begin{array}{c}
K_{Airy,a}^{k-1,k-1}(s,t) \\
K_{Airy,a}^{k-1,k-1}(t,s)
\end{array}\right]dsdt
$$

Combining (4.15) with (4.10) and using (1.7) we get

$$
\text{Var } [S_x + xN_x] = \int h_x^2(t)\left(K_{Airy,a}^{k,k}(t,t) + K_{Airy,a}^{k-1,k-1}(t,t)\right)dt - 2\int h_x(t)\left(\int\int K_{Airy,a}^{k,k}(s,t)K_{Airy,a}^{k,k}(s,t)dsdt\right)dt
$$

$$
- \int h_x(s)K_{Airy,a}^{k,k}(s,t)K_{Airy,a}^{k,k}(s,t)K_{Airy,a}^{k-1,k-1}(s,t)K_{Airy,a}^{k-1,k-1}(t,s)dsdt.
$$

(4.16b)

First, we consider the integrals in (4.16a). A simple change of order of integration yields

$$
\int h_x^2(t)\left(K_{Airy,a}^{k,k}(t,t) + K_{Airy,a}^{k-1,k-1}(t,t)\right)dt
$$

$$
= \frac{1}{(2\pi)^2} \int du \int dv \frac{e^{u^2-2uv}}{e^{v^2-x^2}} \frac{2}{(u-v)^2} \left(\prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j}\right) \frac{u + v - 2ak}{v - ak}.
$$

(4.17)

$$
\int h_x(t)\left(\int h_x(s)e^{a_k(s-t)}K_{Airy,a}^{k,k-1}(s,t)ds\right)dt
$$

$$
= \frac{1}{(2\pi)^2} \int du \int dv \frac{e^{u^2-2uv}}{e^{v^2-x^2}} \frac{1}{(u-v)^2} \left(\prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j}\right) \frac{3u + v - 2ak}{u - ak}.
$$

(4.18)

So (4.16a) becomes

$$
\frac{2}{(2\pi)^2} \int du \int dv \frac{e^{u^2-2uv}}{e^{v^2-x^2}} \left(\prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j}\right) \frac{1}{(u-v)^2(u-ak)(v-ak)}.
$$

(4.19)

Similarly to (4.18), when $x < 0$, this integral can be written as

$$
\frac{2}{(2\pi)^2} \int du \int dv \frac{e^{u^2-2uv}}{e^{v^2-x^2}} \left(\prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j}\right) \frac{1}{(u-v)^2(u-ak)(v-ak)}
$$

(4.20a)

$$
+ \frac{2}{\pi} \int_{-\sqrt{\frac{x}{a}}-\pi}^{\sqrt{\frac{x}{a}}+\pi} \left(v^2 - x + \sum_{j=1}^{k-1} \frac{1}{v - a_j} - \frac{1}{v - ak}\right)\frac{1}{(v-ak)^2}dv
$$

(4.20b)

$$
+ \prod_{j=1}^{k-1} (a_k - a_j) e^{\frac{x}{a} - a_kx} \frac{2}{2\pi} \int du \int dv \frac{1}{e^{u^2-2uv}} \frac{1}{(u-v)^2} \frac{1}{(v-ak)^3}dv,
$$

(4.20c)
where the contour X in (4.20a) and the contour from $-\sqrt{-xi}$ to $\sqrt{-xi}$ in (4.20b) are the same as those in (4.13). We have that the integral in (4.20b) is $4\sqrt{-x}/\pi + 2a_k + O(|x|^{-1})$, and the integral in (4.20a) is $O(|x|^{-1})$. The saddle point analysis is omitted since it is analogous to that for (4.13). The integral in (4.20k) will be cancelled out later, by a term in (4.22).

On the other hand, the double integral in (4.16b) can be expressed as

$$
\frac{1}{(2\pi)^3} \int_{\gamma} \frac{dv}{v} \int_{\gamma} \frac{dz}{z} \int_{\gamma} \frac{du}{u} \prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j} \frac{z - a_j}{w - a_j} - \frac{1}{(u - v)(z - w)(z - v)(v - a_k)(w - a_k)}. \tag{4.21}
$$

In order to estimate the integral above, we will perform several steps of contour deformation.

(I) We first deform the contour γ for w and v to $\gamma_w^{\text{out}} \cup \gamma_w^{\text{in}}$ and $\gamma_v^{\text{out}} \cup \gamma_v^{\text{in}}$, respectively, as in Figure 5 such that all $a_j (j = 1, \ldots, k)$ are enclosed in γ_w^{in}, and then also in γ_v^{in}. We also slightly deform the contour σ for u and z into σ_u and σ_z, respectively, as shown in Figure 5.

![Figure 5: Deformation of contour γ for w and v, and contour σ for u and z.](image)

(II) We then further deform the contour σ_u such that it goes between γ_v^{out} and γ_v^{in}, and thus also goes between γ_w^{out} and γ_w^{in}. We denote by σ_u' the deformed σ_u; see Figure 6. By residue calculation, we write (4.21) as

$$
\frac{1}{(2\pi)^4} \int_{\gamma_w^{\text{out}} \cup \gamma_w^{\text{in}}} \frac{du}{u} \int_{\gamma_v^{\text{out}} \cup \gamma_v^{\text{in}}} \frac{dv}{v} \int_{\gamma_w^{\text{out}} \cup \gamma_w^{\text{in}}} \frac{dz}{z} \int_{\gamma_v^{\text{out}} \cup \gamma_v^{\text{in}}} \frac{dw}{w} \prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j} \frac{z - a_j}{w - a_j} - \frac{1}{(u - v)(z - w)(z - v)(v - a_k)(w - a_k)}. \tag{4.22a}
$$

$$
+ \frac{1}{(2\pi)^2} \int_{\gamma_v^{\text{in}}} \frac{dz}{z} \int_{\sigma_z} \frac{dw}{w} \left(\prod_{j=1}^{k-1} \frac{z - a_j}{w - a_j} \right) \frac{1}{(w - a_k)(z - a_k)(z - w)^2} \tag{4.22b}
$$

$$
+ \frac{1}{(2\pi)^2} \int_{\gamma_w^{\text{in}}} \frac{dv}{v} \int_{\sigma_u} \frac{dz}{z} \left(\prod_{j=1}^{k-1} \frac{z - a_j}{v - a_j} \right) \frac{-1}{(v - a_k)^2(z - a_k)(z - v)}. \tag{4.22c}
$$

$$
+ \frac{1}{(2\pi)^2} \int_{\gamma_w^{\text{in}}} \frac{dv}{v} \int_{\sigma_u} \frac{dz}{z} \left(\prod_{j=1}^{k-1} \frac{z - a_j}{v - a_j} \right) \frac{1}{(v - a_k)^2(z - a_k)(z - v)}. \tag{4.22d}
$$

Derivation of (4.22b) – (4.22e). First we integrate u over $\sigma_u' - \sigma_u$, and the result is a 3-fold integral in v, w, z. The integral domain of z is always σ_z so we leave it alone, and divide the integral domain of
(III) Next, similarly to the previous step, we further deform the contour σ_z such that it goes between γ_v^{out} and γ_v^{in}, and thus also goes between γ_w^{out} and γ_w^{in}. Hence σ_z becomes σ_z'; see Figure 7. By residue calculation, the quantity in (4.22) becomes

$$
\frac{1}{(2\pi i)^4} \int_{\sigma_z'} du \int_{\gamma_v^{\text{out}}} dv \int_{\gamma_w^{\text{out}}} dz \int_{\gamma_v^{\text{out}}} dw e^{\frac{v}{\gamma_v^{\text{out}}} - xu} e^{\frac{3}{\gamma_w^{\text{out}}} - zv} \prod_{j=1}^{k-1} w - a_j \int_{\gamma_w^{\text{out}}} \frac{1}{(u - v)(z - w)(u - w)(v - a_k)(w - a_k)}
$$

Derivation of (4.23). (i) (4.22a) is transformed to the sum of (4.23a)–(4.23c), by an argument similar to that used to transform (4.21) to the sum of (4.22a)–(4.22c).
Now we define the infinite contour \(\gamma' \) as in Figure 8 that goes from \(e^{-2\pi i/3} \cdot \infty \) to \(\bar{\gamma} \), then to \(\bar{\sigma} \), then wraps around all \(a_j \)'s, and finally goes back to \(\bar{\gamma} \).

See Figure 8 for the deformation of contours.

Now we define the infinite contour \(\gamma' \) as in Figure 8 that goes from \(e^{-2\pi i/3} \cdot \infty \) to \(\bar{\gamma} \), then to \(\bar{\sigma} \), then wraps around all \(a_j \)'s, and finally goes back to \(\bar{\gamma} \).

Hence the 4-fold integral (4.23a) can be simplified by the residue theorem with \(\gamma'_{\nu} \cup \gamma'_{\nu} \) replaced by \(\gamma'_{\nu} \). Then the formula (4.25) becomes

\[
\int_{(4.25a)}\int_{(4.25b)}\int_{(4.25c)}
\]

\[
\]
and along the right side of \(w \), then goes along the left side of \(w \); \[\text{Figure 8: The deformed contours for } v, u \text{ and } z. \]

The four dots are \(\odot \), \(\bigodot \), \(\bigtriangleup \) and \(\bigtriangledown \).

\[\text{and finally goes to } \bigodot, \text{ and then goes to } \odot, \text{ and then goes to } \bigodot, \text{ and finally goes back to } \bigtriangleup; \]

and at last add an additional contour for \(w \), on which the contour integral vanishes: the contour goes from \(\bigtriangleup \) to \(\bigtriangledown \) along the left-side of \(\sigma'_u \), then goes from \(\bigtriangledown \) to \(\odot \), then from \(\odot \) to \(\bigodot \) along the right-side of \(\sigma'_u \), and finally goes back to \(\bigtriangleup; \]

\[\text{Figure 9: The deformed contours for } w, u \text{ and } z. \]

The four dots on top are \(\bigodot \), \(\odot \), \(\bigtriangleup \) and \(\bigtriangledown \), and the four dots on bottom are their complex conjugates.

We have the result in Figure 9. Similar to \(\gamma'_v \) in Figure 8, now we define the infinite contour \(\gamma'_w \) that goes from \(e^{-2\pi i/3} \), \(\infty \) to \(\bigtriangledown \), then to \(\odot \), then wraps all \(a_j \)'s until it reaches \(\bigodot \), and then goes to \(\odot \), and finally goes to \(e^{2\pi i/3} \), \(\infty \). Contour \(\gamma'_w \) is parallel to and to the left of \(\gamma'_v \). Hence, by the residue theorem, the 4-fold integral \((4.25a) \) becomes
$$\frac{1}{(2\pi i)^4} \int_{\sigma_0^C} \frac{du}{u} \int_{\sigma_0^\ell} \frac{dz}{z} \int_{C, \ell} \frac{dP.V.}{v} \int_{\gamma_0^C} \frac{dw}{w} P.V. \int_{\gamma_0^\ell} \frac{dv}{v} \left(\frac{e^{\frac{3}{2} - xu} e^{\frac{3}{2} - xz}}{e^{\frac{3}{2} - xv} e^{\frac{3}{2} - wx}} \prod_{j=1}^{k-1} \frac{u - a_j z - a_j}{v - a_j w - a_j} \right) \times \frac{1}{(u - v)(z - w)(u - w)(z - v)(v - a_k)(w - a_k)} \tag{4.26a}$$

$$+ \frac{1}{(2\pi i)^3} \int_{\sigma_0^\ell} \frac{dz}{z} P.V. \int_{\gamma_0^\ell} \frac{dv}{v} \int_{\gamma_0^C} \frac{du}{u} \left(\frac{e^{\frac{3}{2} - xu} e^{\frac{3}{2} - xz}}{e^{\frac{3}{2} - xv} e^{\frac{3}{2} - wx}} \prod_{j=1}^{k-1} \frac{z - a_j}{v - a_j} \right) \times \frac{1}{(u - v)(z - u)(z - v)(v - a_k)(u - a_k)} \tag{4.26b}$$

$$+ \frac{1}{(2\pi i)^3} \int_{\sigma_0^C} \frac{du}{u} P.V. \int_{\gamma_0^C} \frac{dv}{v} \int_{\gamma_0^\ell} \frac{dz}{z} \left(\frac{e^{\frac{3}{2} - xu} e^{\frac{3}{2} - xz}}{e^{\frac{3}{2} - xv} e^{\frac{3}{2} - wx}} \prod_{j=1}^{k-1} \frac{u - a_j}{v - a_j} \right) \times \frac{1}{(u - v)(z - u)(z - v)(v - a_k)(z - a_k)} \tag{4.26c}$$

$$+ \frac{1}{(2\pi i)^2} \int_{\gamma_{1L}^C \cup \gamma_{1R}^\ell} \frac{dw}{w} \int_{\sigma_0^C} \frac{dz}{z} \left(\frac{e^{\frac{3}{2} - xu} e^{\frac{3}{2} - xz}}{e^{\frac{3}{2} - xv} e^{\frac{3}{2} - wx}} \prod_{j=1}^{k-1} \frac{z - a_j}{w - a_j} \right) \frac{-4}{(w - a_k)^2 (z - a_k) (z - w)} \tag{4.26d}$$

$$+ \frac{1}{(2\pi i)^2} \int_{\sigma_0^\ell} \frac{dz}{z} \int_{\gamma_0^\ell} \frac{dw}{w} \left(\frac{e^{\frac{3}{2} - xu} e^{\frac{3}{2} - xz}}{e^{\frac{3}{2} - xv} e^{\frac{3}{2} - wx}} \prod_{j=1}^{k-1} \frac{z - a_j}{w - a_j} \right) \frac{2}{(w - a_k)^2 (z - w)^2} \tag{4.26e}$$

$$+ (4.26b) + (4.26c) + (4.26e) + 2a_k. \tag{4.26f}$$

Derivation of \(4.26\). (i) \(4.25a\) is the sum of \((4.26a) - (4.26c)\), and (ii) the sum of \((4.26a)\) and \((4.26b)\) is equal to the sum of \((4.26a)\) and \((4.26b)\). \(\Box\)

Now we can compute the contour integrals by saddle point method. Recall the contours \(\sigma_{std}\) and \(\gamma_{std}\) defined in \((4.14)\). To facilitate the analysis, we fix the shape of the contours as \(\sigma'_u = \sigma_{std}(-\sqrt{-x/3} - 1/\sqrt{-x})\), \(\sigma'_z = \sigma_{std}(-\sqrt{-x/3} + 1/\sqrt{-x})\), \(\gamma'_u = \gamma_{std}(\sqrt{-x/3} + 1/\sqrt{-x})\) and \(\gamma'_w = \gamma_{std}(\sqrt{-x/3} - 1/\sqrt{-x})\), and call the 4-fold contour consisting of them \(\mathcal{X}\). Also when we consider contour integrals in the form of \(\int_C^{C_{right}}\) in \((4.26)\) and \((4.26)\) where \(C \in C_+\), we fix the shape of the contour to be the part of \(\sigma_{std}(a)\) between \(\overline{C}\) and \(C\), where \(a = \Re(C) - \Im(C)/\sqrt{3}\). Below we also consider contour integrals denoted as \(\int_C^{C_{right}}\), whose contour is the part of \(\gamma_{std}(b)\) between \(\overline{C}\) and \(C\), where \(b = \Re(C) + \Im(C)/\sqrt{3}\). (For symmetry, \(\int_C^{C_{right}}\) should be expressed \(\int_C^{C_{left}}\). But since it occurs more often than \(\int_C^{C_{right}}\), we omit the left subscript for simplicity.)

(1) The 4-fold integral \((4.26a)\) can be estimated in the same way as the 2-fold integral \((4.13a)\). To perform the saddle point analysis, we denote the subsets of \(\mathcal{X}\)

(i) \(\mathbb{X}_1 = \{ u, v, z, w \in \mathcal{X} \ | \ |u - \sqrt{-x}| < 1, |v - \sqrt{-x}| < 1, |z - \sqrt{-x}| < 1, |w - \sqrt{-x}| < 1 \}, \)

(ii) \(\mathbb{X}_2 = \{ u, v, z, w \in \mathcal{X} \ | \ |u + \sqrt{-x}| < 1, |v + \sqrt{-x}| < 1, |z + \sqrt{-x}| < 1, |w + \sqrt{-x}| < 1 \}, \)

(iii) \(\mathbb{X}_3 = \mathcal{X} \setminus (\mathbb{X}_1 \cup \mathbb{X}_2)\).

By standard saddle point method, we have that the parts of integral \((4.26a)\) over \(\mathbb{X}_1\) and \(\mathbb{X}_2\) are both \(O(|x|^{-1})\), and the part of integral \((4.26a)\) over \(\mathbb{X}_3\) is \(o(|x|^{-1})\). Hence we have that \((4.26a)\) is \(O(|x|^{-1})\).

(2) Both of the 3-fold integrals \((4.26b)\) and \((4.26c)\) can be evaluated similarly, and they are \(O(|x|^{-1})\).

(3) The 3-fold integral \((4.26d)\) can be written as the sum of
The 2-fold integral (4.26d) can be written as the sum
\[
\frac{1}{(2\pi)^3} \int_{\gamma_0^s} \int_{\gamma_0^t} \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{z-a_j}{w-a_j} \right) \times \frac{1}{(z-w)(u-w)(z-u)(u-a_k)(w-a_k)} \tag{4.27a}
\]
\[
+ \frac{1}{(2\pi)^2} \int_{\gamma_0^s} \int_{\gamma_0^t} \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{z-a_j}{w-a_j} \right) \frac{1}{(z-u)^2(u-a_k)^2} \left(u^2-z+x + \sum_{j=1}^{k-1} \frac{1}{u-a_j} \right) \tag{4.27d}
\]
where the contours \(\gamma_0^s = \gamma_{std}(\sqrt{-x/3}+2/\sqrt{-x})\) and \(\sigma_0^u = \sigma_{std}(\sqrt{-x/3}-2/\sqrt{-x})\). We note that \(\sigma_0''\) is similar to \(\sigma_0'\) but keeps the contour for \(u\) in (4.27c) on its right, and the contour \(\gamma_0''\) is similar to \(\gamma_0'\) but intersects \(\sigma_0''\) at \(\sqrt{-x} + e^{\pi i/6} \sqrt{3}x\) and \(-\sqrt{-x} + e^{-\pi i/6} \sqrt{3}x\). On the other hand, the 3-fold integral (4.25c) can be written as the sum of
\[
\frac{1}{(2\pi)^3} \int_{\gamma_0^s} \int_{\gamma_0^t} \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{u-a_j}{w-a_j} \right) \times \frac{1}{(u-z)(z-w)(u-a_k)(w-a_k)} \tag{4.28a}
\]
\[
+ \frac{1}{(2\pi)^2} \int_{\gamma_0^s} \int_{\gamma_0^t} \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{u-a_j}{z-a_j} \right) \frac{1}{(u-z)^2(z-a_k)^2} \tag{4.28c}
\]
where the contour \(\sigma_0'' = \sigma_{std}(\sqrt{-x/3}-2/\sqrt{-x})\) is the same as \(\sigma_0''\) in (4.27c), and it intersects \(\sigma_0''\) at \(\sqrt{-x} + (1+3\sqrt{3i})/\sqrt{-4x}\) and \(-\sqrt{-x} + (1-3\sqrt{3i})/\sqrt{-4x}\).

(4) The 2-fold integral (4.26d) can be written as the sum
\[
\frac{1}{(2\pi)^2} \int_{X} \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{z-a_j}{w-a_j} \right) \frac{4}{(w-a_k)^2(z-a_k)(z-w)} \tag{4.29a}
\]
\[
+ \frac{1}{2\pi} \int_{X} d\gamma \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{z-a_j}{w-a_j} \right) \frac{4}{(z-a_k)^3} \tag{4.29b}
\]
by the same transform as (4.12) is transformed into (4.13), and the double contour \(X\) and the single contour in (4.29b) are the same as in (4.13). Note that the contour (4.13) is to the right of all \(a_k\)’s while the contour in (4.29b) is to the left of all \(a_k\)’s.

(5) The 2-fold integral (4.20b) can be written as the sum of
\[
\frac{1}{(2\pi)^2} \int_{\sigma_0''} \int_{\gamma_0} \int_{w} \int_{z} \int_{w} e^{\frac{z^3-xyz}{w-z}} \left(\prod_{j=1}^{k-1} \frac{z-a_j}{w-a_j} \right) \frac{1}{(w-a_k)^2(z-w)^2} \tag{4.30b}
\]
Then for any a_i, Recall the notations σ_i, distribution for $G_{\alpha} = G_{\alpha}^{(N)}$. Let $\lambda_1 > \lambda_2 > \cdots > \lambda_{N-1}$ be the ordered eigenvalues of $G_{\alpha}^{(N-1)}$, which is obtained by removing the first column and first row of G_{α}.

In order to prove Theorem 2, we define, analogous to (3.4), (3.5) and (3.6), the random measure

$$N_{\alpha}(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} \frac{e^{-x^2/2}}{\sqrt{2\pi}} \prod_{i=1}^d \left(x_i - \lambda_i \right) dt,$$

then for any $L \in \{j, N\}$,

$$|x_{j,L}|^2 = \sum_{i=1}^j \sigma_i - \lambda_i \prod_{i=j+1}^L \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i} G_{j,L}^{(k)}(\alpha; N), \quad \text{where } G_{j,L}^{(k)}(\alpha; N) := \prod_{i=L+1}^N \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i}. \quad (5.2)$$

Here the superscript k in the notation $G_{j,L}^{(k)}(\alpha; N)$ reminds us that the external source is of rank k; see $\alpha_1, \ldots, \alpha_k$ in Assumption 1 that represent the external source. Analogous to (3.3) and (3.8), we write

$$\log G_{j,L}^{(k)}(\alpha; N) = \int_{\sigma_N}^{\sigma_L} \frac{1}{\sigma_j - x} dM_N(x) = \int_{\sigma_N}^{\sigma_L} \frac{1}{\sigma_j - x} dM_N(x). \quad (5.3)$$

Analogous to Proposition 10, we have the following key technical result, whose proof will be given in Section 6.

Proposition 11. 1. Let $\epsilon > 0$ be any small (but fixed) constant and N be large enough. For $x \in ((-2 + \epsilon)\sqrt{N}, 2\sqrt{N} - N^{-1/10})$, we have

$$F_N(x) = E_N(x) + O(N^{-2/3}(2\sqrt{N} - x)^{1/2}), \quad E_N(x) = \frac{1}{2\pi} \left(-\sqrt{4N - x^2} + x \arccos \frac{x}{2\sqrt{N}} \right) + \sqrt{N} - x/2, \quad (5.4)$$

$$\text{Var} M_N(x) = V_N(x) + O(N^{-2/3}(2\sqrt{N} - x)^{1/2}), \quad V_N(x) = \frac{1}{\pi} \left(\sqrt{1 - \frac{x^2}{4N}} + \arccos \frac{x}{2\sqrt{N}} \right). \quad (5.5)$$

Hence we obtain the final proof of (4.7).

5 Eigenvector distribution for GUE with external source

Recall the notations σ_i in (1.4) and x_i in (1.5) for the eigenvalues and eigenvectors of $G_{\alpha} = G_{\alpha}^{(N)}$. Let $\lambda_1 > \lambda_2 > \cdots > \lambda_{N-1}$ be the ordered eigenvalues of $G_{\alpha}^{(N-1)}$, which is obtained by removing the first column and first row of G_{α}.

In order to prove Theorem 2, we define, analogous to (3.4), (3.5) and (3.6), the random measure $N_{\alpha}(x)$, (random) complementary distribution function $M_N(x)$ for μ_N, and the mean of $M_N(x)$ such that

$$\phi_N(x) = \begin{cases} 1 & \sigma_i < x \leq \lambda_{i-1} \text{ for all } i \in [1, N] \\ 0 & \text{otherwise}, \end{cases} \quad \text{and} \quad M_N(x) = \mu_N((x, +\infty)) = \int_x^{+\infty} \phi_N(t) dt, \quad (5.1)$$

Then for any $L \in \{j, N\}$,

$$|x_{j,L}|^2 = \sum_{i=1}^j \sigma_j - \lambda_i \prod_{i=j+1}^L \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i} G_{j,L}^{(k)}(\alpha; N), \quad \text{where } G_{j,L}^{(k)}(\alpha; N) := \prod_{i=L+1}^N \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i}. \quad (5.2)$$

Here the superscript k in the notation $G_{j,L}^{(k)}(\alpha; N)$ reminds us that the external source is of rank k; see $\alpha_1, \ldots, \alpha_k$ in Assumption 1 that represent the external source. Analogous to (3.3) and (3.8), we write

$$\log G_{j,L}^{(k)}(\alpha; N) = \int_{\sigma_N}^{\sigma_L} \frac{1}{\sigma_j - x} dM_N(x) = \int_{\sigma_N}^{\sigma_L} \frac{1}{\sigma_j - x} dM_N(x). \quad (5.3)$$

Analogous to Proposition 10, we have the following key technical result, whose proof will be given in Section 6.

Proposition 11. 1. Let $\epsilon > 0$ be any small (but fixed) constant and N be large enough. For $x \in ((-2 + \epsilon)\sqrt{N}, 2\sqrt{N} - N^{-1/10})$, we have

$$F_N(x) = E_N(x) + O(N^{-2/3}(2\sqrt{N} - x)^{1/2}), \quad E_N(x) = \frac{1}{2\pi} \left(-\sqrt{4N - x^2} + x \arccos \frac{x}{2\sqrt{N}} \right) + \sqrt{N} - x/2, \quad (5.4)$$

$$\text{Var} M_N(x) = V_N(x) + O(N^{-2/3}(2\sqrt{N} - x)^{1/2}), \quad V_N(x) = \frac{1}{\pi} \left(\sqrt{1 - \frac{x^2}{4N}} + \arccos \frac{x}{2\sqrt{N}} \right). \quad (5.5)$$
2. Let C be a large enough positive constant and N be large enough. For $x \in [2\sqrt{N} - N^{-1/10}, 2\sqrt{N} - CN^{-1/6}]$, we have, with $\xi = N^{1/6}(x - 2\sqrt{N})$,

$$F_N(x) = N^{-1/6} \left(-\frac{\xi}{2} + O(1) \right),$$

(5.6)

$$\text{Var } M_N(x) = N^{-1/3} \left(\frac{2}{\pi} \sqrt{-x} + O(|\xi|^{1/4}) \right).$$

(5.7)

To prove Theorem 2 we first note that by Lemma 9, upon the scaling $x \mapsto N^{1/6}(x - 2\sqrt{N})$, given a fixed L, $\sigma_1, \ldots, \sigma_L$ and $\lambda_1, \ldots, \lambda_L$ converge weakly and jointly to $\xi_1^{(k)}, \ldots, \xi_L^{(k)}$ and $\xi_1^{(k-1)}, \ldots, \xi_L^{(k-1)}$’s respectively, as $N \to \infty$. Hence for any fixed $L > j$,

$$\prod_{i=1}^{j-1} \sigma_j - \lambda_i \prod_{i=j+1}^{L} \sigma_j - \lambda_i \to \prod_{i=1}^{j-1} \xi_j^{(k)} - \xi_i^{(k)} \prod_{i=j+1}^{L} \xi_j^{(k)} - \xi_i^{(k)} = L^{-1} \Xi_j^{(k)}(\alpha; L).$$

(5.8)

Using the convergence result in Theorem 1 we only need to show that for any $\epsilon_1, \epsilon_2 > 0$, there is a sufficiently large $L_{\epsilon_1, \epsilon_2} > 0$ such that for any $L \geq L_{\epsilon_1, \epsilon_2}$,

$$\limsup_{N \to \infty} \mathbb{P} \left(\left| \log \mathcal{G}_{2}^{(k)}(\alpha; N) - \left[\log N^{1/3} + \log \left(\frac{3\pi}{2} \right)^{1/3} \right] \right| > \epsilon_1 \right) < \epsilon_2.$$
Next, we observe that by (5.14) and (5.16), for any $\epsilon_3 > 0$, there is a small enough $\epsilon > 0$, such that for all large enough N

$$\left| \int_{(2+\epsilon)\sqrt{N}}^{2\sqrt{N} - N^{-1/6}(3\pi L/2)^{2/3}} \frac{1}{2\sqrt{N} - x} d(E_N(x) - F_N(x)) \right| < \epsilon_3. \quad (5.14)$$

Hence, instead of (5.13), we only need to show, under the same assumption,

$$\mathbb{P}\left(\int_{(2+\epsilon)\sqrt{N}}^{\sigma_L} \frac{1}{\sqrt{N} \sigma_j - x} dM_N(x) - \int_{(2+\epsilon)\sqrt{N}}^{2\sqrt{N} - N^{-1/6}(3\pi L/2)^{2/3}} \frac{1}{2\sqrt{N} - x} dF_N(x) > \epsilon_1 \right) < \epsilon_2. \quad (5.15)$$

Theorem 2 will then follow if (5.15) is proved.

Proof of (5.15). First, we set the integer

$$N_0 = \left\lfloor \frac{2}{3\pi N^{10}} \right\rfloor. \quad (5.16)$$

We note that by part 2 of Lemma 9, $\sigma_{N_0} = 2\sqrt{N} - N^{-1/10} + O(N^{-8/75})$ with high probability. To prove (5.15), it suffices to show the following two inequalities with the same conditions:

$$\mathbb{P}\left(\int_{\sigma_{N_0}}^{\sigma_L} \frac{1}{\sigma_j - x} dM_N(x) - \int_{2\sqrt{N} - N^{-1/10}}^{2\sqrt{N} - N^{-1/6}(3\pi L/2)^{2/3}} \frac{1}{2\sqrt{N} - x} dF_N(x) > \epsilon_1 \right) < \epsilon_2, \quad (5.17)$$

$$\mathbb{P}\left(\int_{(2+\epsilon)\sqrt{N}}^{\sigma_{N_0}} \frac{1}{\sqrt{N} \sigma_j - x} dM_N(x) - \int_{(2+\epsilon)\sqrt{N}}^{2\sqrt{N} - N^{-1/10}} \frac{1}{2\sqrt{N} - x} dF_N(x) > \epsilon_1 \right) < \epsilon_2. \quad (5.18)$$

The proof of (5.17) is similar to that of (3.11) after a change of variable $\xi = N^{1/6}(x - 2\sqrt{N})$. Actually, we can show the following stronger estimate, which is an analogue of (3.11):

$$\mathbb{P}\left(\sup_{L < n \leq N^{1/10}} \left| \int_{\sigma_n}^{\sigma_L} \frac{1}{\sigma_j - x} dM_N(x) - \int_{2\sqrt{N} - N^{-1/10}}^{2\sqrt{N} - N^{-1/6}(3\pi L/2)^{2/3}} \frac{1}{2\sqrt{N} - x} dF_N(x) \right| > \epsilon_1 \right) < \epsilon_2, \quad (5.19)$$

where the supremum for n is bounded by L and $N^{1/10}$, rather than in (3.11) for all n greater than m. Note that the proof of (3.11) only relies on three ingredients as explained in Remark 4 and all of them have their counterparts in the proof of (5.19): the counterpart of Proposition 10 is part 2 of Proposition 11; the counterpart of Lemma 8 is parts 1 and 2 of Lemma 9; the dominance by Lebesgue measure is the same for μ and μ_N. The only slight difference is that part 2 of Lemma 9 is only valid for n less than $N^{1/10}$ since the Airy process approximation of the GUE minor process with external source can only be extended to such an intermediate regime.

The proof of (5.18) again follows the idea of the proof of (3.11), with some necessary modifications. We describe the proof parallel to that of (3.11), and give detailed explanations on the modifications. Analogous to (3.12), we denote the events

$$\hat{\Omega}_{j,m}^{(k)} := \left\{ \omega \mid |N^{1/6}(\hat{\sigma}_j - 2\sqrt{N})| \leq m^{3}, \ |\sigma_m - \Upsilon_m| \leq N^{-\frac{1}{4}}m^{3/2} \right\}, \quad (5.20)$$

where Υ_m is defined in (2.14).

1. Analogous to (3.13), we have the estimate that if N is large enough, then

$$\left| \int_{(-2+\epsilon)\sqrt{N}}^{\sigma_{N_0}} \frac{1}{\sqrt{N} \sigma_j - x} dM_N(x) - \int_{(-2+\epsilon)\sqrt{N}}^{2\sqrt{N} - N^{-1/10}} \frac{1}{2\sqrt{N} - x} dF_N(x) \right| 1(\hat{\sigma}_{j,N_0}^{(k)}) < 2\epsilon_1 / 3. \quad (5.21)$$

2. Next, analogous to (3.14), we show

$$\mathbb{P}\left(\left| \int_{(-2+\epsilon)\sqrt{N}}^{\sigma_{N_0}} \frac{1}{\sqrt{N} \sigma_j - x} d(M_N(x) - F_N(x)) 1(\hat{\sigma}_{j,N_0}^{(k)}) \right| > \frac{\epsilon_1}{3} \right) < \frac{\epsilon_2}{2}. \quad (5.22)$$

25
Using an integration by parts decomposition like (3.15), we find that it suffices to show
\[
P \left(\left| M_N(\sigma_{N_0}) - F_N(\sigma_{N_0}) \right| > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}, \tag{5.23} \]
\[
P \left(\left| M_N((-2+\epsilon)\sqrt{N}) - F_N((-2+\epsilon)\sqrt{N}) \right| > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}, \tag{5.24} \]
\[
P \left(\int_{(-2+\epsilon)\sqrt{N}}^{\sigma_{N_0}} \frac{M_N(x) - F_N(x)}{(\sigma_j - x)^2} \, dx \right) > \frac{\epsilon_1}{9} \tag{5.25} \]

We first see that (5.21) only needs that \(M_N((-2+\epsilon)\sqrt{N}) \) is close to \(F_N((-2+\epsilon)\sqrt{N}) \), and it is a direct consequence of (5.5) at \(x = (-2+\epsilon)\sqrt{N} \), by using Markov inequality. Estimate (5.23) can be verified in the same way as for (5.10). On the other hand, to verify (5.25), it suffices to show that
\[
P \left(\int_{(-2+\epsilon)\sqrt{N}}^{\sqrt{N}-\frac{1}{10}} \frac{|M_N(x) - F_N(x)|}{(2\sqrt{N} - x)^2} \, dx > \frac{\epsilon_1}{9} \right) < \frac{\epsilon_2}{6}, \tag{5.26} \]
by the argument like that around (3.25) and (3.26). More specifically, to prove (5.26), we introduce
\[
\ell_i = 2\sqrt{N} - iN^{-\frac{1}{6}} \tag{5.27} \]
and analogous to (3.27) we set
\[
\hat{A}_{k_1,k_2} = \sum_{i=k_1}^{k_2} \frac{|M_N(\ell_i) - F_N(\ell_i)|}{(i-1)i}, \quad \hat{B}_{k_1,k_2} = \sum_{i=k_1}^{k_2} \frac{|M_N(\ell_i) - F_N(\ell_i)|}{i(i+1)}, \tag{5.28} \]
\[
\hat{C}_{k_1,k_2} = 2 \sum_{i=k_1+1}^{k_2-1} \frac{F_N(\ell_i)}{(i-1)i(i+1)} - \frac{F_N(\ell_{k_1})}{k_1(k_1+1)} + \frac{F_N(\ell_{k_2})}{(k_2-1)k_2}. \tag{5.29} \]

Then analogous to (5.29) and (3.30), we have (without loss of generality, assuming \(N^{1/15} \) and \((4-\epsilon)N^{2/3} \) are integers)
\[
\int_{(-2+\epsilon)\sqrt{N}}^{\sqrt{N}-\frac{1}{10}} \frac{|M_N(x) - F_N(x)|}{(2\sqrt{N} - x)^2} \, dx \leq N^{\frac{1}{9}} (A_{N^{1/15},(4-\epsilon)N^{2/3}} + B_{N^{1/15},(4-\epsilon)N^{2/3}} + 2C_{N^{1/15},(4-\epsilon)N^{2/3}}), \tag{5.30} \]
and need only to prove
\[
P \left(N^{\frac{1}{9}} A_{N^{1/15},(4-\epsilon)N^{2/3}} > \frac{\epsilon_1}{27} \right) < \frac{\epsilon_2}{12}, \quad P \left(N^{\frac{1}{9}} B_{N^{1/15},(4-\epsilon)N^{2/3}} > \frac{\epsilon_1}{27} \right) < \frac{\epsilon_2}{12}, \quad 2N^{\frac{1}{9}} C_{N^{1/15},(4-\epsilon)N^{2/3}} < \frac{\epsilon_1}{27}. \tag{5.31} \]
As \(N \) is large enough, it is straightforward to show the last inequality for \(C_{N^{1/15},(4-\epsilon)N^{2/3}} \). Also, like (3.33), we have that for large enough \(N \),
\[
P \left(A_{N^{1/15},(4-\epsilon)N^{2/3}} > \frac{\epsilon_1}{27} N^{-\frac{4}{9}} \right) \leq P \left(A_{N^{1/15},(4-\epsilon)N^{2/3}} > \frac{\epsilon_1}{27} N^{-\frac{4}{9}} \right) \]
\[
\leq P \left(\sum_{i=N^{1/15}}^{(4-\epsilon)N^{2/3}} \frac{|M_N(\ell_i) - F_N(\ell_i)|}{i^2} > \frac{\epsilon_1}{54} N^{-\frac{4}{9}} \right) \]
\[
\leq P \left(\bigcup_{i=N^{1/15}}^{(4-\epsilon)N^{2/3}} \left\{ \frac{|M_N(\ell_i) - F_N(\ell_i)|}{i^2} > i^{-\frac{6}{9}} N^{-\frac{4}{9}} \right\} \right) \]
\[
\leq \sum_{i=N^{1/15}}^{(4-\epsilon)N^{2/3}} P \left(\frac{|M_N(\ell_i) - F_N(\ell_i)|}{i^2} > i^{-\frac{6}{9}} N^{-\frac{4}{9}} \right) \]
\[
\leq \sum_{i=N^{1/15}}^{(4-\epsilon)N^{2/3}} i^{-\frac{13}{9}} < \frac{\epsilon_2}{12}. \tag{5.32} \]

We thus finish the proof of (5.26), and then (5.25), and finally finish the proof of (5.22).
3. At last, we need to show that the event $\hat{\Omega}^{(k)}_{j,N_0}$ satisfies that $\mathbb{P}(\hat{\Omega}^{(k)}_{j,N_0}) > 1 - \epsilon_2/2$ if N is large enough. (This is analogous to (3.35) but is much weaker.) This follows directly from the estimates of σ_j and σ_{N_0} in parts 1 and 2 of Lemma 9.

Hence, we conclude the proof of Theorem 2. \hfill \Box

Next, we prove Corollary 3.

Proof. Let $U = (u_{ij}) \in \mathbb{C}^{(N-k)\times(N-k)}$ be any unitary matrix, then by the unitary invariance of GUE, the random matrix $(I_k \oplus U)G_\alpha(I_k \oplus U^\dagger)$ has the same distribution as G_α. Hence the eigenvector $x_j = (x_{j1}, \ldots, x_{jN})^\dagger$ of G_α associated with σ_j, which is a random unit vector, satisfies that fixing x_{j1}, \ldots, x_{jk}, the conditional distribution of the truncated random vector $(x_{j,k+1}, \ldots, x_{jN})^\dagger$ is unitarily invariant.

Furthermore, we have $\sum_{i=k+1}^N |x_{ji}|^2 = 1 - O(kN^{-1/3})$ with high probability by Theorem 2. So the distribution of x_{ji} is approximated by that of a component of a Haar distributed complex unit random vector in \mathbb{C}^{N-k}, as $N \to \infty$. Combining the above facts we can conclude the proof of Corollary 3 easily. \hfill \Box

6 Analysis of random measure μ_N: proof of Proposition 11

To prove (6.4) and (6.6), we use the method similar to the proof of (3.7). We consider, analogous to (4.2), the random variable (with notation abused)

$$N_x = |I_x| - |J_x| \quad \text{where} \quad I_x := \{i \in \mathbb{N} \mid \sigma_i \in (x, +\infty)\}, \quad J_x := \{i \in \mathbb{N} \mid \lambda_i \in (x, +\infty)\}. \quad (6.1)$$

By the interlacing property, we note that N_x is a Bernoulli random variable. Then

$$\mathbb{E}N_x = \mathbb{P}(N_x = 1). \quad (6.2)$$

We also consider, analogous to (4.3) the random variable (with notation abused)

$$S_x = -\sum_{i \in I_x} \sigma_i + \sum_{i \in J_x} \lambda_i. \quad (6.3)$$

We observe that if $\sigma_1 \leq x$, then $N_x = S_x = M_N(x) = 0$. Under the condition that $\sigma_1 > x$, we have that if $N_x = 1$, then $S_x = M_N(x) - \sigma_1$, otherwise $S_x = M_N(x) - \sigma_1 + 1$. Similar to (4.5), we conclude that

$$M_N(x) = S_x + xN_x + (\sigma_1 - x)1(\sigma_1 > x). \quad (6.4)$$

For the second term in (6.4) that only involves σ_1, by part 1 of Lemma 9, we have the following estimate that holds for all $x \in \mathbb{R}$:

$$\mathbb{E}[(\sigma_1 - x)1(\sigma_1 > x)] = 2\sqrt{N} - x + O(N^{-\frac{1}{2}}), \quad \text{Var}[(\sigma_1 - x)1(\sigma_1 > x)] = O(N^{-\frac{1}{4}}). \quad (6.5)$$

Then by the linearity of expectation and (4.8), the mean and variance estimates in Proposition 11 follow from (6.5) and that for $x \in ((-2 + \epsilon)\sqrt{N}, 2\sqrt{N} - N^{-1/10})$

$$\mathbb{E}(S_x + xN_x) = E_N(x) - (2\sqrt{N} - x) + O(N^{-\frac{1}{4}}(2\sqrt{N} - x)\frac{1}{2}), \quad (6.6)$$

$$\text{Var}(S_x + xN_x) = V_N(x) + O(N^{-\frac{1}{4}}), \quad (6.7)$$

and for $x \in [2\sqrt{N} - N^{-1/10}, 2\sqrt{N} - CN^{-1/6}]$, with $x = 2\sqrt{N} + N^{-1/6}\xi$, then we have the uniform convergence

$$N^{\frac{1}{2}} \mathbb{E}(S_x + xN_x) = \frac{\xi}{2} + O(1), \quad (6.8)$$

$$N^{\frac{1}{2}} \text{Var}(S_x + xN_x) = \frac{\xi}{2} \sqrt{-\xi} + O(|\xi|^{\frac{1}{2}}). \quad (6.9)$$

Below we prove (6.6), (6.7) and (6.8). The proof of (6.9) is similar to that of (6.7) and we only give a sketch.
Proof of (6.6) To facilitate the saddle point analysis below, we define several types of contours. First, we recall that $\alpha_1, \ldots, \alpha_k$ are defined by a_1, \ldots, a_k in Assumption I. We take a constant $r \in [0, +\infty)$ such that r is bigger than all a_1, \ldots, a_k. Then we let $\Gamma_{\text{std},N}^0(a)$ be the positively oriented boundary of the open set $\{z \in \mathbb{C} \mid |z| < \sqrt{N} + a\} \cup \{z \in \mathbb{C} \mid |z - \sqrt{N}| < N^{1/6}r\}$ where $a \geq 0$, such that it is almost the circle centred at 0 with radius $\sqrt{N} + a$ and it encloses all $\alpha_1, \ldots, \alpha_k$. (Actually, if $r = 0$, then Γ is the circle centred at 0 with radius $\sqrt{N} + a$.) We also define for any $b \in \mathbb{R}$ the upward vertical contour

$$\Sigma_{\text{std},N}^+(b) = \{b + it \mid -\infty < t < +\infty\}.$$

(6.10)

Next, for any $\theta \in (0, \pi/6)$, we define the positively oriented contour

$$\Gamma_{\text{std},N}^>(\theta, a) = \left\{(\sqrt{N} + a)e^{(\frac{\pi}{3} - \theta)i} + e^{\frac{2\pi}{3}t} \mid -\frac{2}{\sqrt{3}}(\sqrt{N} + a)\sin\left(\frac{\pi}{3} - \theta\right) \leq t \leq 0\right\} \cup \left\{(\sqrt{N} + a)e^{(\frac{\pi}{3} + \theta)i} + e^{\frac{2\pi}{3}t} \mid 0 \leq t \leq \frac{2}{\sqrt{3}}(\sqrt{N} + a)\sin\left(\frac{\pi}{3} - \theta\right)\right\} \cup \left\{(\sqrt{N} + a)e^{it} \mid \frac{\pi}{3} - \theta \leq t \leq \frac{5\pi}{3} + \theta\right\}.$$

(6.11)

We also define for any $b < \sqrt{N}$ the upward infinite polygonal contour

$$\Sigma_{\text{std},N}^\leq(b) = \{b + e^{\frac{2\pi}{3}i}t \mid 0 \leq t \leq 2(\sqrt{N} - b) + \sqrt{N}\} \cup \{b + e^{\frac{2\pi}{3}i}t \mid -\sqrt{N} - 2(\sqrt{N} - b) \leq t \leq 0\}$$

$$\cup \left\{\frac{3}{2}\sqrt{N} + it \mid |t| \geq \sqrt{3}(\frac{3}{2}\sqrt{N} - b)\right\}.$$

(6.12)

See Figures 11 and 12 for their shapes.

![Figure 10: Contours Γ and Σ.](image1)

![Figure 11: Shapes of $\Gamma_{\text{std},N}^0(a)$ and $\Sigma_{\text{std},N}^+(b)$.](image2)

![Figure 12: Shapes of $\Gamma_{\text{std},N}^>(\theta, a)$ and $\Sigma_{\text{std},N}^\leq(b)$](image3)

We have that

$$E(S_x + xN_x) = E\left(\sum_{\lambda \in \mathcal{I}_x} \lambda_i - \sum_{\sigma \in \mathcal{J}_x} \sigma_i \right) + xE|\mathcal{I}_x| - xE|\mathcal{J}_x|$$

$$= \int_x^\infty tK_{\text{GUE},\alpha}(t)(t)dt - \int_x^\infty tK_{\text{GUE},\alpha}^0(t)dt$$

$$+ x\left(\int_x^\infty K_{\text{GUE},\alpha}^0(t)dt - \int_x^\infty K_{\text{GUE},\alpha}^1(t)dt\right)$$

$$= - \int_{+\infty}^\infty (t - x)\left(K_{\text{GUE},\alpha}^0(t) - K_{\text{GUE},\alpha}^1(t)\right)dt.$$

(6.13)

In light of (2.3), one has

$$K_{\text{GUE},\alpha}^0(t) - K_{\text{GUE},\alpha}^1(t) = \frac{1}{(2\pi i)^2} \int_{\Sigma} dz \int_{\Gamma} dw \frac{e^{2 - tw - zN - k}}{e^{2 - tw - wN - k}} \prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \frac{1}{w - \alpha_1}. $$

(6.14)
where (i) the contour Φ means that the Σ contour cuts into the Γ contour, and divide its interior into two

$$\alpha$$

which implies

$$\text{E}(S_x + xN_x) = -\frac{1}{(2\pi)^2} \int_{\Phi} \int_{\Gamma} \frac{e^{z^2 N - k}}{e^{w^2 N - k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{1}{w - \alpha} \int_{-\infty}^{0} e^{-(z-w)^2} t(t-x) dt$$

$$= -\frac{1}{(2\pi)^2} \int_{\Phi} \int_{\Gamma} \frac{e^{z^2 N - k}}{e^{w^2 N - k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{1}{w - \alpha} \int_{x}^{\infty} e^{-(z-w)^2} t(t-x) dt$$

(6.15)

By some standard residue calculation, we have that

$$\text{E}(S_x + xN_x)$$

$$= -\frac{1}{(2\pi)^2} \int_{\Phi} \int_{\Gamma} \frac{e^{z^2 N - k}}{e^{w^2 N - k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{1}{w - \alpha} \int_{x}^{\infty} e^{-(z-w)^2} t(t-x) dt$$

+ $$\frac{1}{2\pi i} \int_{\text{upper-intersect}} \frac{w - x + (N - k)/w}{w - \alpha} + \sum_{j=2}^{k} \frac{1}{(w - \alpha_j)(w - \alpha)} dw,$$

(6.16a)

$$+ \frac{1}{2\pi i} \int_{\text{lower-intersect}} \frac{w - x + (N - k)/w}{w - \alpha} + \sum_{j=2}^{k} \frac{1}{(w - \alpha_j)(w - \alpha)} dw,$$

(6.16b)

where (i) the contour Φ means that the Σ contour cuts into the Γ contour, and divide its interior into two

$$\alpha$$

parts, such that they intersect at the two saddle points $\frac{1}{2}(x + \sqrt{N - x^2})$ and $\frac{1}{2}(x - \sqrt{N - x^2})$, which are the upper-intersect and lower-intersect respectively in (6.16b), and all $\alpha_1, \ldots, \alpha_k$ are in the right part, (ii) the integral in (6.16a) is understood as the Cauchy principal value, and (iii) the contour of integral in (6.16b) goes by the right of 0 and all $\alpha_1, \ldots, \alpha_k$. We then have

$$\text{E}(S_x + xN_x) = \frac{1}{2\pi i} \int_{\frac{1}{2}(x + \sqrt{N - x^2})}^{\frac{1}{2}(x - \sqrt{N - x^2})} \left(\frac{1}{w - \alpha} - \frac{1}{w - \alpha_j} \right) dw$$

$$= \frac{1}{\pi} \left[\sqrt{4N - x^2} \left(\frac{1}{w - \alpha} - \frac{1}{w - \alpha_j} \right) \right]_{-\infty}^{\infty}$$

$$= \frac{1}{\pi} \left[-\sqrt{4N - x^2} + \frac{1}{2} \left(\frac{\arccot \frac{x - 2\alpha}{\sqrt{4N - x^2}} - \frac{\arccot \frac{x - 2\alpha_j}{\sqrt{4N - x^2}}}{\alpha} \right) \right]_{-\infty}^{\infty}$$

$$= \frac{1}{\pi} \left[-\sqrt{4N - x^2} + \frac{1}{2} \left(\frac{\arccot \frac{x - 2\alpha}{\sqrt{4N - x^2}} - \frac{\arccot \frac{x - 2\alpha_j}{\sqrt{4N - x^2}}}{\alpha} \right) \right]_{-\infty}^{\infty}$$

$$= \frac{1}{\pi} \left[-\sqrt{4N - x^2} + \frac{1}{2} \arccot \frac{x - 2\alpha}{\sqrt{4N - x^2}} \right]_{-\infty}^{\infty}$$

$$+ O(N^{-1/5})$$

$$= E_N(x) - (2\sqrt{N} - x) + O(N^{-1/5}(2\sqrt{N} - x)^{1/2})$$

where we note that $\alpha_i = \sqrt{N} + N^{1/6}a_{k_i+1}$ and $N^{-1/10} < 2\sqrt{N} - x < (4 - \epsilon)\sqrt{N}$, and all the O terms are uniform in x.

On the other hand, the integral in (6.16a) has the estimate as $O((4N - x^2)^{-1/2}) = O(N^{-1/5})$. To see it, we deform the contours Γ and Σ into standard shapes depending on the value of x:
(i) If \((-2 + \epsilon)\sqrt{N} < x < 1.9\sqrt{N}\), then let \(\Gamma = \Gamma^{\circ, N}_{std,N}(0)\), and \(\Sigma = \Sigma^{\leq N}_{std,N}(x/2)\).

(ii) If \(1.9\sqrt{N} \leq x < 2\sqrt{N} - N^{-1/10}\), then let \(\Gamma = \Gamma^{\geq N}_{std,N}(\theta, 0)\) with \(\theta = \arccos(x/\sqrt{4N})\), and \(\Sigma = \Sigma^{\leq N}_{std,N}(x/2 - \sqrt{N - x^2}/\sqrt{3})\).

Then we can estimate it by the standard saddle point analysis, similar to the analysis for the integral over \(X\) in (4.13a). We omit the detail.

Hence we obtain (6.3).

Proof of (6.3) Like in the proof of (6.10), we also make use of (6.10) and compute (6.16a) and (6.16b) separately. However, now we require that upper intersects and lower intersects, the intersections of \(\Sigma\) with \(\Gamma\), are \(\sqrt{N} \pm (2\sqrt{N} - x)^{1/2}N^{1/4}\). (For \(x \in [2\sqrt{N} - N^{-1/10}, 2\sqrt{N} - CN^{-1/6}, \) they are very close to \(\frac{1}{2}(x \pm \sqrt{4N - x^2})\).) Let \(\xi = N^{1/6}(x - 2\sqrt{N})\), such that \(-N^{1/15} < \xi < -C\). First we consider (6.16b). We have, with \(v = N^{-1/6}(w - \sqrt{N})\),

\[
N^{\frac{1}{2}} \times (6.16b) = -\frac{1}{2\pi i} \int_{V^{\xi}} v^2 - \xi \frac{v^2 - \xi}{v - a_k} + \sum_{j=2}^{k} \frac{1}{(v - a_{k+1-j})(v - a_k)} - N^{-\frac{1}{2}} \frac{v^3 + k}{1 - N^{-\frac{1}{2}} v} dv
= -\frac{1}{2\pi i} \int_{V^{\xi}} v^2 - \xi \frac{v^2 - \xi}{v - a_k} + \sum_{j=2}^{k} \frac{1}{(v - a_{k+1-j})(v - a_k)} dv + O(N^{-\frac{1}{2}} \xi^3). (6.18)
\]

Here we note that \(N^{-1/3} \xi^3 = O(N^{-2/15})\). Like the estimate of (4.13b), we have that (6.18) is \((\xi - a_k^2)/2 + O(|\xi|^{-1/2})\) for \(-N^{1/15} < \xi < -C\).

Next, we consider (6.16a). We deform \(\Gamma\) into \(\Gamma^{\geq N}_{std,N}(0, (2\sqrt{N} - x)^{1/2}N^{1/4}/\sqrt{3})\), and deform \(\Sigma\) into \(\Sigma^{\leq N}_{std,N}((\sqrt{N} - 2\sqrt{N} - x)^{1/2}N^{1/4}/\sqrt{3})\). With the change of variables \(\xi = N^{1/6}(x - 2\sqrt{N})\), \(u = N^{-1/6}(z - \sqrt{N})\), and \(v = N^{-1/6}(w - \sqrt{N})\), we have

\[
N^{\frac{1}{2}} \times (6.16a) = -\frac{1}{(2\pi i)^2} \int_{X_N} dudv \frac{e^{\frac{3}{2}u + f_N(u)}}{e^{\frac{3}{2}v + f_N(v)}} \left(\prod_{j=2}^{k} \frac{u - a_{k+1-j}}{v - a_{k+1-j}} \right) \frac{1}{(v - a_k)(u - v)^2}. (6.19)
\]

where

\[
f_N(u) = (N - k) \log(1 + N^{-1/3}u) - N^{2/3}u + \frac{1}{2} N^{1/3}u^2 - \frac{1}{3} u^3, (6.20)
\]

and the contour \(X_N\) is transformed from the deformed \(\Phi = \Gamma \times \Sigma\) in (6.16a) by the change of variables. We note that in the region \(u, v = o(N^{1/3})\), the contour \(X_N\) in (6.19) overlaps with the contour \(X\) in (4.13a), if \(\xi\) is identified with \(x\) there. By standard saddle point analysis similar to that for (4.13a) that we discussed in Section 4, we derive that (6.19) is \(O(|\xi|^{-1/2})\) for \(-N^{1/15} < \xi < -C\).

Combining (6.10) with the estimates of (6.18) and (6.19), we prove the identity (6.3).

Proof of (6.7) We let \(h_x(t)\) be defined in (4.9), and analogous to (4.10), we have

\[
\mathbb{E}[(S_x + xN_x)^2] = \int h_x^2(t)K_{GUE,\alpha}^0(t, t)dt + \int h_x^2(t)K_{GUE,\alpha}^1(t, t)dt
+ \int h_x(s)h_x(t)K_{GUE,\alpha}^0(s, t)K_{GUE,\alpha}^0(t, s)dsdt
+ \int h_x(s)h_x(t)K_{GUE,\alpha}^1(s, t)K_{GUE,\alpha}^1(t, s)dsdt
- \int h_x(s)h_x(t)K_{GUE,\alpha}^0(s, t)K_{GUE,\alpha}^1(t, s)dsdt
- \int h_x(s)h_x(t)K_{GUE,\alpha}^1(s, t)K_{GUE,\alpha}^0(t, s)dsdt. (6.21)
\]
Hence, by (6.16), we have analogous to (4.16)

\[
\text{Var} [Sx + xN_x] = \int h_x^2(t) \left(K_{\text{GUE}, \alpha}(t, t) + K_{\text{GUE}, \alpha}^{11}(t, t) \right) \text{dt} - 2 \int h_x(t) \left(\int_t^\infty h_x(s)e^{\alpha_1(s-t)}K_{\text{GUE}, \alpha}^{01}(s, t) \text{ds} \right) \text{dt}
\]

(6.22a)

\[
- \int h_x(s)h_x(t) \left(K_{\text{GUE}, \alpha}(s, t)K_{\text{GUE}, \alpha}^{00}(s, t) + K_{\text{GUE}, \alpha}^{11}(s, t)K_{\text{GUE}, \alpha}(t, s) \right.
\]

\[
- K_{\text{GUE}, \alpha}(s, t)\tilde{K}_{\text{GUE}, \alpha}^{10}(s, t) - \tilde{K}_{\text{GUE}, \alpha}^{10}(s, t)K_{\text{GUE}, \alpha}(t, s) \right) \text{dsdt}.
\]

(6.22b)

First we consider the integral in (6.22a). Like (4.17) and (4.18), we write

\[
\int \frac{1}{(2\pi i)^2} \int d\zeta \int_\Gamma \frac{e^{\zeta z}z^{-N-k}}{e^{\zeta z}-zw} \left(\prod_{j=2}^k \left(\frac{z - \alpha_j}{w - \alpha_j} \right) \right) \frac{1}{(z-w)^2(z-\alpha_1)(w-\alpha_1)}
\]

(6.23)

Similarly to (6.16), when \(x < 0 \), this integral can be written as

\[
\int \frac{1}{(2\pi i)^2} \int_{\Phi} d\zeta \int_\Gamma \frac{e^{\zeta z}z^{-N-k}}{e^{\zeta z}-zw} \left(\prod_{j=2}^k \left(\frac{z - \alpha_j}{w - \alpha_j} \right) \right) \frac{1}{(z-w)^2(z-\alpha_1)(w-\alpha_1)}
\]

(6.25)

\[
+ \frac{2}{2\pi i} \int_{\text{upperintersect}} dw \left(w + \frac{N-k}{w} - x + \sum_{j=2}^k \frac{1}{w - \alpha_j} - \frac{1}{w - \alpha_1} \right) \frac{1}{(w-\alpha_1)^2}
\]

(6.26a)

\[
+ e^{a_2 - a_1 \alpha_1 \alpha_1^{N-k}} \prod_{j=2}^k (\alpha_1 - \alpha_j) \frac{2}{2\pi i} \int_\Gamma \frac{1}{e^{\zeta z}-zw} \left(\prod_{j=2}^k \left(\frac{1}{w - \alpha_j} \right) \right) \frac{1}{(w-\alpha_1)^2}
\]

(6.26b)

where the contour \(\Phi \) is the same as in (6.16), and the contours \(\Sigma \) and \(\Gamma \) intersect at the two saddle points \(\frac{1}{2}(x + \sqrt{4N-x^2}) \) and \(\frac{1}{2}(x - \sqrt{4N-x^2}) \), which are the upperintersect and lowerintersect respectively. We also require that in \((6.20a) \), the contour \(\Sigma \) lies to the left of all \(\alpha_1, \ldots, \alpha_k \), and the contour in \((6.26b) \) lies to the right of \(0 \) and all \(\alpha_1, \ldots, \alpha_k \). We evaluate \((6.26b) \) analogous to \((6.17) \), and have that

\[
(6.26b) = \frac{2}{2\pi i} \int_{\frac{1}{2}(x+\sqrt{4N-x^2})}^{\frac{1}{2}(x-\sqrt{4N-x^2})} dw \left[\left(1 - \frac{N-k}{\alpha_1^2} - \sum_{j=2}^k \frac{1}{(\alpha_1 - \alpha_j)^2} \right) \frac{1}{w - \alpha_1} + \frac{N-k}{w} + \frac{k}{w-\alpha_1} \frac{1}{w - \alpha_j} \right.
\]

\[
+ \left(\alpha_1 - x + \frac{N-k}{\alpha_1} + k \frac{1}{\alpha_1 - \alpha_j} \right) \frac{1}{(w-\alpha_1)^2} - \frac{1}{(w-\alpha_1)^3} \right]
\]

\[
= \frac{2}{\pi} \left(\sqrt{1 - \frac{x^2}{4N}} + \arccos \left(\frac{x}{2\sqrt{N}} \right) \right) + O(N^{-\frac{3}{2}}).
\]

(6.27)
We also evaluate the integral in (6.26a) by standard saddle point analysis similar to (4.13a), and find that it is $O((4N - x^2)^{-1}) = O(N^{-2/3})$. The integral in (6.26c) will be cancelled out later.

On the other hand, the double integral in (6.22b) can be expressed as

$$
\frac{1}{(2\pi i)^4} \int_{\Sigma} du \int_{\Gamma} dv \int_{\Sigma} dz \int_{\Gamma} dw \frac{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}}{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}} \prod_{j=2}^k (u - \alpha_j z - \alpha_j) (v - \alpha_j w - \alpha_j) \times \frac{1}{(u-v)(z-w)(u-w)(z-v)(v - \alpha_1)(w - \alpha_1)}. \tag{6.28}
$$

In order to estimate the integral above, we will perform several steps of contour deformation. Since the arguments are parallel to those for the contour deformations of (4.21) in Section 4, we omit most justifications. Also similar to the computation of (4.21), below we assume that all contour integrals in the form of \int_{C}^{C} have the contour going between 0 and $\min\{\alpha_1, \ldots, \alpha_k\}$, unless they are specially marked as $\int_{C_{\text{right}}}^{C}$, in which case the contour goes to the right of $\max\{\alpha_1, \ldots, \alpha_k\}$.

(I) We first deform the contours for w and v to $\Gamma^{\text{out}}_w \cup \Gamma^{\text{in}}_w$ and $\Gamma^{\text{out}}_v \cup \Gamma^{\text{in}}_v$, respectively, as in Figure 13 such that all α_j ($j = 1, \ldots, k$) are enclosed in Γ^{in}_w, and then also in Γ^{in}_v, and 0 is enclosed in Γ^{out}_w, and then also in Γ^{out}_v. We also slightly deform the contour Σ and denote it by Σ_u and Σ_z for the contour of u and z, respectively.

(II) We then further deform the contour Σ_u such that it goes between Γ^{out}_u and Γ^{in}_u, and thus also goes between Γ^{out}_v and Γ^{in}_v. We denote by Σ'_u the deformed Σ_u; see Figure 13. By residue calculation, we write (6.28) as

$$
\frac{1}{(2\pi i)^4} \int_{\Sigma_u} du \int_{\Gamma^{\text{out}}_u \cup \Gamma^{\text{in}}_u} dv \int_{\Sigma_z} dz \int_{\Gamma^{\text{out}}_v \cup \Gamma^{\text{in}}_v} dw \frac{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}}{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}} \prod_{j=2}^k (u - \alpha_j z - \alpha_j) (v - \alpha_j w - \alpha_j) \times \frac{1}{(u-v)(z-w)(u-w)(z-v)(v - \alpha_1)(w - \alpha_1)}. \tag{6.29a}
$$

$$
+ \frac{1}{(2\pi i)^2} \int_{\Sigma_z} dz \int_{\Gamma^{\text{in}}_v} dv \int_{\Sigma_u} du \frac{e^{\frac{w^2}{2} - xv} w^{-N-k}}{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}} \prod_{j=2}^k (z - \alpha_j) (w - \alpha_j) \frac{1}{(w - \alpha_1)(z - \alpha_1)(z - w)^2}. \tag{6.29b}
$$

$$
+ \frac{1}{(2\pi i)^2} \int_{\Sigma_z} dz \int_{\Gamma^{\text{in}}_v} dv \int_{\Sigma_u} du \frac{e^{\frac{w^2}{2} - xv} w^{-N-k}}{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}} \prod_{j=2}^k (z - \alpha_j) (w - \alpha_j) \frac{-1}{(v - \alpha_1)^2(z - \alpha_1)(z - v)}. \tag{6.29c}
$$

$$
+ \frac{1}{(2\pi i)^2} \int_{\Gamma^{\text{out}}_v} dv \int_{\Sigma_z} dz \int_{\Sigma_u} du \frac{e^{\frac{w^2}{2} - xv} w^{-N-k}}{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}} \prod_{j=2}^k (z - \alpha_j) (w - \alpha_j) \frac{-1}{(v - \alpha_1)^2(z - \alpha_1)(z - v)}. \tag{6.29d}
$$

(III) Next, similarly to the previous step, we further deform the contour Σ_z such that it goes between Γ^{out}_v and Γ^{in}_v, and thus also goes between Γ^{out}_u and Γ^{in}_u. Hence Σ_z becomes Σ'_z; see Figure 13. By residue calculation, the quantity in (6.29a) becomes

$$
\frac{1}{(2\pi i)^4} \int_{\Sigma_u} du \int_{\Gamma^{\text{out}}_u \cup \Gamma^{\text{in}}_u} dv \int_{\Sigma_z} dz \int_{\Gamma^{\text{out}}_v \cup \Gamma^{\text{in}}_v} dw \frac{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}}{e^{\frac{u^2}{2} - xu} u^{-N-k} e^{\frac{w^2}{2} - xw} w^{-N-k}} \prod_{j=2}^k (u - \alpha_j z - \alpha_j) (v - \alpha_j w - \alpha_j) \times \frac{1}{(u-v)(z-w)(u-w)(z-v)(v - \alpha_1)(w - \alpha_1)}. \tag{6.30a}
$$
\begin{align*}
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^w} dw \int_{\Gamma_{\text{in}}^w} du \frac{2^{x-u} \nu^{N-k}}{e^{2\pi i (u^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{u - \alpha_j}{w - \alpha_j} \right) \frac{1}{(w - \alpha_1)(u - \alpha_1)(u - w)^2} \\
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^v} dv \int_{\Gamma_{\text{in}}^v} du \frac{2^{x-v} \nu^{N-k}}{e^{2\pi i (v^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{u - \alpha_j}{v - \alpha_j} \right) \frac{1}{(v - \alpha_1)^2(u - \alpha_1)(u - v)} \\
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^v} dv \int_{\Gamma_{\text{in}}^v} du \frac{2^{x-u} \nu^{N-k}}{e^{2\pi i (u^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{u - \alpha_j}{v - \alpha_j} \right) \frac{1}{(v - \alpha_1)^2(u - \alpha_1)(u - v)} \\
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^v} dv \int_{\Gamma_{\text{in}}^v} du \frac{2^{x-v} \nu^{N-k}}{e^{2\pi i (v^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{u - \alpha_j}{w - \alpha_j} \right) \frac{1}{(w - \alpha_1)(z - \alpha_1)(z - w)^2} \\
&+ \frac{1}{2\pi i} \int_{\Gamma_{\text{in}}^w} dw \left(w - x + \frac{N - k}{w} + \sum_{j=2}^k \frac{1}{w - \alpha_j} - \frac{1}{w - \alpha_1} \right) \frac{1}{(w - \alpha_1)^2} \\
&+ \prod_{j=2}^k (\alpha_1 - \alpha_j) e^{\frac{2^{x-z} \alpha_1 \alpha_j}{2^{x-z} \alpha_1 \alpha_j}} \frac{1}{2\pi i} \int_{\Gamma_{\text{in}}^w} dw \frac{1}{(w^2 - \nu w^{N-k})} \left(\prod_{j=2}^k \frac{1}{w - \alpha_j} \right) \frac{1}{(w - \alpha_1)^3} \\
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{in}}^w} dw \int_{\Gamma_{\text{out}}^w} dz \frac{2^{x-z} \nu^{N-k}}{e^{2\pi i (z^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{z - \alpha_j}{v - \alpha_j} \right) \frac{1}{(v - \alpha_1)^2(z - \alpha_1)(z - v)} \\
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^w} dv \int_{\Gamma_{\text{in}}^w} dw \frac{2^{x-z} \nu^{N-k}}{e^{2\pi i (z^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{1}{(w - \alpha_1)^3(z - \alpha_1)(z - w)} \\
&+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^w} dv \int_{\Gamma_{\text{in}}^w} dw \frac{2^{x-z} \nu^{N-k}}{e^{2\pi i (z^2 - x w)} \nu^{N-k}} \left(\prod_{j=2}^k \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{2}{(w - \alpha_1)^3} \\
&+ \prod_{j=2}^k (\alpha_1 - \alpha_j) e^{\frac{2^{x-z} \alpha_1 \alpha_j}{2^{x-z} \alpha_1 \alpha_j}} \frac{1}{2\pi i} \int_{\Gamma_{\text{in}}^w} dw \frac{1}{(w^2 - \nu w^{N-k})} \left(\prod_{j=2}^k \frac{1}{w - \alpha_j} \right) \frac{1}{(w - \alpha_1)^3}
\end{align*}

(IV) For further deformation of the contours, we introduce the shorthand notations \(\Gamma_1, \Gamma_2 \Gamma_3\) and \(\Gamma_4\) analogous to \(\Gamma_1, \Gamma_2, \Gamma_3\) and \(\Gamma_4\) defined in (4.21). We delay the concrete assignment of their values to Remark 14 and only indicate that they are close to \(\frac{1}{2} (x + \sqrt{4N - x^2})\), and their relative positions are shown in the subsequent figures schematically; especially see Figure 17.

For the 4-fold integral (6.30a), we perform the following operations:

(i) deform \(\Sigma_u'\) such that it passes \(\square\) and \(\square\)
(ii) deform Σ_z' such that it passes \bullet and \bullet;

(iii) deform Γ_{out}^v such that it goes from \bullet to Γ_w, then wraps around 0 (and Γ_{out}^w) and finally goes back to \bullet;

(iv) deform Γ_v' such that it goes from \bullet to Γ_w along the right side of Σ_z', then wraps around all α_j's, and finally goes back to \bullet;

(v) and at last add an additional contour for v, on which the contour integral vanishes: the contour goes from \bullet along the left side of Σ_z', then goes from \bullet to \bullet, and further goes from \bullet to \bullet along the right side of $\Sigma_{u'}$, and finally goes from \bullet to \bullet.

See Figure 16 for the deformation of contours.

Figure 16: The deformed contours for v, u and z. The four intersections are \bullet, \bullet, \bullet and \bullet.

Now we define the contour Γ_v' as in Figure 10 that goes from \bullet to \bullet, then wraps α_j's until it reaches \bullet, and then goes to \bullet, and finally wraps 0 and goes to \bullet. Hence the 4-fold integral (6.30) can be simplified by the residue theorem with $\Gamma_{\text{out}}^v \cup \Gamma_{\text{in}}^v$ replaced by Γ_v'. Then the formula (6.30) becomes

$$\frac{1}{(2\pi i)^4} \int_{\Sigma_u} dv \int_{\Sigma_w} dw \int_{\Gamma_{\text{out}}^u \cup \Gamma_{\text{in}}^u} dP \cdot V. \int_{\Gamma_v'} \frac{e^{z \bar{u} \cdot u - z \bar{w} \cdot w}}{e^{z \bar{v} \cdot v - z \bar{w} \cdot w}} \prod_{j=2}^{k} \left(\frac{w - \alpha_j}{z - \alpha_j} \right)$$

$$\times \frac{1}{(z - w)(u - w)(z - v)(v - \alpha_1)(w - \alpha_1)}$$

(6.31a)

$$+ \frac{1}{(2\pi i)^3} \int_{\Sigma_z} dz \int_{\Gamma_{\text{out}}^z \cup \Gamma_{\text{in}}^z} dw \int_{\Gamma_v'} \frac{e^{z \bar{u} \cdot u - z \bar{w} \cdot w}}{e^{z \bar{v} \cdot v - z \bar{w} \cdot w}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right)$$

$$\times \frac{1}{(z - w)(u - w)(z - u)(u - \alpha_1)(w - \alpha_1)}$$

(6.31b)

$$+ \frac{1}{(2\pi i)^3} \int_{\Sigma_u} du \int_{\Gamma_{\text{out}}^u \cup \Gamma_{\text{in}}^u} dw \int_{\Gamma_v'} \frac{e^{z \bar{u} \cdot u - z \bar{w} \cdot w}}{e^{z \bar{v} \cdot v - z \bar{w} \cdot w}} \left(\prod_{j=2}^{k} \frac{u - \alpha_j}{w - \alpha_j} \right)$$

$$\times \frac{1}{(u - z)(u - w)(z - \alpha_1)(w - \alpha_1)}$$

(6.31c)

$$+ \frac{1}{(2\pi i)^2} \int_{\Gamma_{\text{out}}^u} dv \int_{\Sigma_z} dz \frac{e^{z \bar{v} \cdot v - z \bar{w} \cdot w}}{e^{z \bar{u} \cdot u - z \bar{w} \cdot w}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right)$$

$$\times \frac{-4}{(w - \alpha_1)^2(z - \alpha_1)(z - w)}$$

(6.31d)

$$+ \sum_{j=2}^{k} (\alpha_1 - \alpha_j) e^{z \bar{u} \cdot u - z \bar{w} \cdot w} \frac{1}{2\pi i} \int_{\Gamma_{\text{out}}^u \cup \Gamma_{\text{in}}^u} dw \left(\prod_{j=2}^{k} \frac{1}{w - \alpha_j} \right)$$

$$\frac{2}{(w - \alpha_1)^3}$$

(6.31e)
+ \frac{1}{(2\pi i)^2} \int_{\Sigma'_z} dz \int_{\Gamma_w} dw \ e^{\frac{z^2}{2} - xz \cdot z_{N-k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{2zw - z - \alpha}{(w - \alpha)^2(z - \alpha)(z - w)^2} \quad (6.31f)

+ 1 - \frac{N-k}{\alpha^2}

Here we remark that the 1-fold integral \((6.30g)\) is equal to \(1 - \frac{N-k}{\alpha^2}\).

(V) Now we deform the contour \(\Gamma^\text{out}_w \cup \Gamma^\text{in}_w\) for \(w\) in the way similar to our deformation of \(\Gamma^\text{out}_v \cup \Gamma^\text{in}_v\) for \(v\) in Step [IV]. We perform the following operations:

(a) deform \(\Sigma'_{u}^\prime\) such that it passes \(\Box\) and \(\Box\), and meanwhile still passes \(\Box\) and \(\Box\);

(b) deform \(\Sigma'_z\) such that it passes \(\Box\) and \(\Box\) and meanwhile still passes \(\Box\) and \(\Box\);

(c) deform \(\Gamma^\text{out}_w\) such that it goes from \(\Box\) along the left-side of \(\Sigma'_{u}\) until it reaches \(\Box\), then wraps around 0 and finally goes back to \(\Box\);

(d) deform \(\Gamma^\text{in}_w\) such that it goes from \(\Box\) to \(\Box\) along the right-side of \(\Sigma'_{z}\), then wraps around all \(\alpha_j\), and finally goes back to \(\Box\);

(e) and at last add an additional contour for \(w\), on which the contour integral vanishes: the contour goes from \(\Box\) to \(\Box\) along the left-side of \(\Sigma'_{z}\), then goes from \(\Box\) to \(\Box\), and further goes from \(\Box\) to \(\Box\) along the right-side of \(\Sigma'_{u}\), and finally goes from \(\Box\) to \(\Box\).

We have the result in Figure [17]. Similar to \(\Gamma'\) in Figure [16] Now we define the contour \(\Gamma'_w\) that goes from \(\Box\) to \(\Box\), then wraps \(\alpha_j\)'s until it reaches \(\Box\), and then goes to \(\Box\), and finally wraps 0 and goes to \(\Box\). Hence by the residue theorem, the 4-fold integral \((6.31a)\) can be simplified with \(\Gamma^\text{out}_w \cup \Gamma^\text{in}_w\) replaced by \(\Gamma'_w\), and then formula \((6.31)\) becomes

\[
\frac{1}{(2\pi i)^4} \int_{\Sigma'_u} du \int_{\Sigma'_z} dz \ P.V. \int_{\Gamma'_v} dw \ P.V. \int_{\Gamma'_w} dw \ e^{\frac{u^2}{2} - zu \cdot u_{N-k}} \ e^{\frac{z^2}{2} - xz \cdot z_{N-k}} \left(\prod_{j=2}^{k} \frac{u - \alpha_j}{w - \alpha_j} \right) \alpha_j \frac{1}{(u - v)(z - w)(u - w)(v - \alpha_1)(w - \alpha)} \quad (6.32a)
\]

\[
+ \frac{1}{(2\pi i)^3} \int_{\Sigma'_u} du \int_{\Sigma'_z} dz \ P.V. \int_{\Gamma'_v} dw \ P.V. \int_{\Gamma'_w} dw \ e^{\frac{u^2}{2} - zu \cdot u_{N-k}} \ e^{\frac{z^2}{2} - xz \cdot z_{N-k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{v - \alpha_j} \right) \alpha_j \frac{1}{(u - v)(z - w)(z - v)(v - \alpha_1)(u - \alpha)} \quad (6.32b)
\]

\[
+ \frac{1}{(2\pi i)^3} \int_{\Sigma'_u} du \int_{\Sigma'_z} dz \ P.V. \int_{\Gamma'_v} dw \ P.V. \int_{\Gamma'_w} dz \ e^{\frac{u^2}{2} - zu \cdot u_{N-k}} \ e^{\frac{z^2}{2} - xz \cdot z_{N-k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{v - \alpha_j} \right) \alpha_j \frac{1}{(u - v)(z - w)(z - v)(v - \alpha_1)(z - \alpha)} \quad (6.32c)
\]

\[
+ \frac{1}{(2\pi i)^2} \int_{\Gamma^\text{in}_w \cup \Gamma^\text{out}_w} dw \int_{\Sigma'_z} dz \ e^{\frac{u^2}{2} - zu \cdot u_{N-k}} \ e^{\frac{z^2}{2} - xz \cdot z_{N-k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{1}{(w - \alpha_1)^2(z - \alpha)(z - w)} \quad (6.32d)
\]

\[
+ \frac{1}{(2\pi i)^2} \int_{\Sigma'_z} dz \int_{\Gamma^\text{in}_w} dw \ e^{\frac{u^2}{2} - zu \cdot u_{N-k}} \ e^{\frac{z^2}{2} - xz \cdot z_{N-k}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{2}{(w - \alpha_1)^2(z - \alpha)(z - w)^2} \quad (6.32e)
\]

\[+ (6.31b) + (6.31c) + (6.31e) + 1 - \frac{N-k}{\alpha^2}. \quad (6.32f)\]
Now we can compute the contour integrals by saddle point method. First we need to fix the shapes of contours Γ^\prime_w, Γ^\prime_z, Σ^\prime_u and Σ^\prime_z.

(i) If $(-2 + \epsilon)\sqrt{N} < x < 1.9\sqrt{N}$, then let Γ^\prime_w be $\Gamma^\prime_{std,N}(0)$, Γ^\prime_z be $\Gamma^\prime_{std,N}(1)$, Σ^\prime_u be $\Sigma^\prime_{std,N}(x/2)$ and Σ^\prime_z be $\Sigma^\prime_{std,N}(x/2 + 1)$.

(ii) If $1.9\sqrt{N} \leq x < 2\sqrt{N} - N^{-1/10}$, then with $\theta = \arccos(x/\sqrt{4N})$, let Γ^\prime_w be $\Gamma^\prime_{std,N}(\theta, 0)$, Γ^\prime_z be $\Gamma^\prime_{std,N}(\theta, 2 - x/\sqrt{N})^{-1/4}$, Σ^\prime_u be $\Sigma^\prime_{std,N}(x/2 - \sqrt{N - x^2/4}/\sqrt{3})$ and Σ^\prime_z be $\Sigma^\prime_{std,N}(x/2 - \sqrt{N - x^2/4}/\sqrt{3} + (2 - x/\sqrt{N})^{-1/4})$.

Remark 5. We note that in either case, the four contours have four intersections around $\frac{1}{2}(x + \sqrt{4N - x})$, and they are the desired \square, \square, \square, and \square.

(1) The 4-fold integral (6.32a) can be estimated in the same way as for (4.26a), and it is $\mathcal{O}(2\sqrt{N} - x^{-1}N^{-1/4})$.

(2) Both of the 3-fold integrals (6.32b) and (6.32c) can be estimated in the same way as for (4.26b) and (4.26c). We note that in the evaluation of (4.26b) and (4.26c), we specified the shapes of the contour from \square to \square for u and the contour from \square to \square for z. Here we can deform the contours from \square to \square for u and the contour from \square to \square for z in a similar way: the contour for u is the part of Σ^\prime_u inside of Γ^\prime_u, and the contour for z is the part of Σ^\prime_z inside of Γ^\prime_z. We conclude that both (6.32b) and (6.32c) are $\mathcal{O}(2\sqrt{N} - x^{-1}N^{-1/4})$.

(3) The 3-fold integral (6.31b) can be written as the sum of

\[
\frac{1}{(2\pi i)^3} \int_{\Sigma^\prime_z} dz \text{ P.V.} \int_{\Gamma^\prime_w} du \int_{\Sigma^\prime_u} dw \left\{ \frac{e^{\frac{z^2}{2} - xz\sqrt{N-k}}}{e^{\frac{w^2}{2} - xw\sqrt{N-k}}} \left(\prod_{j=2}^{k} \frac{z - \alpha_j}{w - \alpha_j} \right) \right\} \times \frac{1}{(z-w)(u-w)(z-u)(u-\alpha)(w-\alpha)} \quad (6.33a)
\]

\[
+ \frac{1}{(2\pi i)^2} \int_{\square} du \int_{\square} dz \left\{ \frac{1}{(u-z)^2(u-\alpha)(z-\alpha)} \right\} \quad (6.33b)
\]

\[
+ \frac{1}{(2\pi i)^2} \int_{\square} dz \int_{\square} du \left\{ \frac{1}{(z-u)^2(u-\alpha)^2} \right\} \quad (6.33c)
\]

\[
+ \frac{1}{2\pi i} \int_{\square} du \left\{ \frac{1}{u-\alpha} \right\} \quad (6.33d)
\]

where the contours

\[
\Gamma^\prime_w = \begin{cases} \Gamma^\prime_{std,N}(2), & (-2 + \epsilon)\sqrt{N} < x < 1.9\sqrt{N}, \\ \Gamma^\prime_{std,N}(\arccos(x/\sqrt{4N}), 2(2 - x/\sqrt{N})^{-1/4}), & 1.9\sqrt{N} \leq x < 2\sqrt{N} - N^{-1/10}, \end{cases}
\]

\[
\Sigma^\prime_u = \begin{cases} \Sigma^\prime_{std,N}(x/2 - 1), & (2 - \epsilon)\sqrt{N} < x < 1.9\sqrt{N}, \\ \Sigma^\prime_{std,N}(x/2 - \sqrt{N - x^2/4}/\sqrt{3} - (2 - x/\sqrt{N})^{-1/4}), & 1.9\sqrt{N} \leq x < 2\sqrt{N} - N^{-1/10}. \end{cases}
\]

upperintersect' and lowerintersect' are the intersections between Γ^\prime_w and Σ^\prime_z. Also we take the contours from \square to \square for u to be the part of Σ^\prime_u inside Γ^\prime_w, the contour from lowerintersect' to upperintersect' for z to be the part of Σ^\prime_z inside Γ^\prime_w. On the other hand, the 3-fold (6.31c) can be rewritten as the sum of

\[
\frac{1}{(2\pi i)^3} \int_{\Sigma^\prime_u} dz \text{ P.V.} \int_{\Gamma^\prime_w} du \int_{\Gamma^\prime_z} dw \left\{ \frac{e^{\frac{z^2}{2} - xz\sqrt{N-k}}}{e^{\frac{w^2}{2} - xw\sqrt{N-k}}} \left(\prod_{j=2}^{k} \frac{u - \alpha_j}{w - \alpha_j} \right) \right\}
\]
Hence we obtain the final proof of (6.7).

(8) (6.33b) and (6.36b) are

(7) (6.33d) can be evaluated similar to (6.26b), and it is

(6.38a) cancels with (6.33c), and (6.38c) cancels with (6.36c).

where the contour \(\Gamma''_w \) is the same as \(\Gamma''_w \) in (6.33a), and it intersects \(\Sigma''_w \) at upperintersect'' and lowerintersect'', and the contour from \(\square \) to \(\square \) for \(z \) is the part of \(\Sigma_z \) inside \(\Gamma'_v \).

(4) The 2-fold integral (6.32d) can be written as the sum of

\[
\frac{1}{(2\pi i)^2} \int_{\Sigma''_w} dz \int_{\Phi} du \frac{e^{\frac{3}{4} - xz} w^{N-k}}{e^{\frac{3}{4} - xz}} \left(\prod_{j=2}^k \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{-4}{(w - \alpha_1)^2(z - w)^2}.
\]

by the same transform as (6.15) is transformed into (6.16), and the contour \(\Phi \) and the integral limits upperintersect, lowerintersect are as defined in (6.16). Note that in (6.37b) the contour is between 0 and min(\(\alpha_1, \ldots, \alpha_k \)) while in (6.16b) the contour is to the right of 0 and all \(\alpha_1, \ldots, \alpha_k \).

(5) The 2-fold integral (6.32a) can be written as the sum of

\[
\frac{1}{(2\pi i)^2} \int_{\Sigma'''_w} dz \int_{\square} du \frac{e^{\frac{3}{4} - xz} w^{N-k}}{e^{\frac{3}{4} - xz}} \left(\prod_{j=2}^k \frac{z - \alpha_j}{w - \alpha_j} \right) \frac{-1}{(w - \alpha_1)^2(z - w)^2}.
\]

where \(\Sigma'''_w \) is the same as \(\Sigma''_w \) in (6.33c), the contour for \(w \) in (6.38a) is the part of \(\Sigma''_w \) inside of \(\Gamma'_v \), the contour for \(w \) in (6.38b) is the part of \(\Gamma'_v \) to the right of \(\Sigma''_w \), the contour for \(w \) in (6.38c) is the part of \(\Sigma''_w \) inside of \(\Gamma'_v \), and the contour for \(w \) in (6.38d) is the part of \(\Gamma'_v \) to the right of \(\Sigma''_w \). We note that (6.38a) cancels with (6.33c), and (6.38c) cancels with (6.36c).

(6) The 1-fold integral (6.31c) cancels with (6.26c).

(7) (6.33d) can be evaluated similar to (6.26d), and it is

(6.33b) and (6.36b) are \(\mathcal{O}(N^{-2/5} \log N) \), and all other integrals from (6.33a) to (6.38d) not mentioned above, are \(\mathcal{O}(N^{-1/3}) \).

Hence we obtain the final proof of (6.7).
Now should be around

There exist representation, and prove Lemma 12, which leads to the proof of Theorem 4 in a straightforward way. The advantage of the latter is that the eigenvalue distribution of a GUE-type matrix has a log-gas representation, and extend Airy process. Our proof relies on that log Ξ

In this section, we prove that the random variable Ξ

Also need the following estimate:

Sketch of proof of (6.9) Like the proof of (6.7), we try to estimate (6.25) and (6.28).

For (6.25), we again use the decomposition (6.20), but the precise shapes of the contours are not to be the same as in the proof of (6.6), and the integral limits upperintersect, lowerintersect are not to be \(\frac{1}{2}(x + \sqrt{4N - x^2}) \) and \(\frac{1}{2}(x - \sqrt{4N - x^2}) \). Instead, we deform the contour \(\Phi = \Gamma \times \Sigma \) as in the proof of (6.3), that is, \(\Gamma \) into \(\Gamma_{\text{std},N}(0, (2\sqrt{N} - x)^{1/2}N^{1/4}/\sqrt{3}) \), and deform \(\Sigma \) into \(\Sigma_{,N}((\sqrt{N} - 2\sqrt{N} - x)^{1/2}N^{1/4}/\sqrt{3}) \), and then let the integral limits upperintersect be \(\sqrt{N} \pm (2\sqrt{N} - x)^{1/2}N^{1/4}/4 \). Then we have that in the regime that \(x = N^{-1/6}\xi + 2\sqrt{N} \) and \(N^{1/15} < \xi < -C \), (6.26a) is \(O(N^{-1/3}(-\xi)^{-1}) \), and (6.26b) is \(N^{-1/3}(\frac{1}{2}\sqrt{-2} + 2\sqrt{N}) + O(N^{-1/3}(-\xi)^{-1}) \).

For (6.28), we take the transforms as in Steps 1 – 5, with only one methodological difference: The intersection points \(\mathfrak{D}, \mathfrak{D}', \mathfrak{D} \) and \(\mathfrak{D} \) now should be around \(\sqrt{N} + (2\sqrt{N} - x)^{1/2}N^{1/4}/4 \), in consistence with our choice of \(\Phi \) and upperintersect, lowerintersect. However, practically we can still use the deformation of the contours in the regime 1.9\(\sqrt{N} \leq x < 2\sqrt{N} - N^{-1/10} \), because in the regime where we are working, \(\frac{1}{2}(x + \sqrt{4N - x^2}) \) and \(\sqrt{N} + (2\sqrt{N} - x)^{1/2}N^{1/4} \) are very close to each other. Hence we can still use the saddle point method that is used in the proof of (6.7), especially that for the regime \(1.9\sqrt{N} \leq x < 2\sqrt{N} - N^{-1/10} \).

At last, we derive (6.9) by the method delineated above, with much detail omitted.

7 Nondegeneracy of the limiting distribution

In this section, we prove that the random variable \(\Xi_{\mathfrak{D}}^{(k)}(a; \infty) \) defined in (1.14) is nondegenerate, i.e., Theorem 4 which tells that the distribution is not supported on a single point. It is equivalent to show that \(\log \Xi_{\mathfrak{D}}^{(k)}(a; \infty) \) is a non-linear functional on the extended Airy process. Our proof relies on that \(\log \Xi_{\mathfrak{D}}^{(k)}(a; \infty) \) is the limit of log-\(N^{1/3}|x_{j1}|^2 \) by Theorem 2 (up to a constant), which is a non-linear functional on the GUE minor process with external source. The advantage of the latter is that the eigenvalue distribution of a GUE-type matrix has a log-gas representation that does not pass to their limiting processes, e.g., an Airy-type process. We make use of the log-gas representation, and prove Lemma 12 which leads to the proof of Theorem 4 in a straightforward way.

Since in the statement and proof of Lemma 12 we will condition on \(\lambda_1, \ldots, \lambda_{N-1}, \sigma_1, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_N \) and play with the randomness of \(\sigma_j \) only, we will denote by \(\omega = (\lambda_1, \ldots, \lambda_{N-1}, \sigma_1, \ldots, \sigma_{j-1}, \sigma_{j+1}, \ldots, \sigma_N) \) a generic realization of the collection of the given eigenvalues, for notational simplicity.

Lemma 12. There exist \(M, \epsilon, \epsilon', \epsilon'' > 0 \), such that if \(N \) is large enough, there exists an event \(A \) of \(\omega \), with \(\mathbb{P}(A) > \epsilon \), and the conditional variance satisfies

\[
\mathbb{P}\left(M^{-1} < N^{\frac{2}{3}} | x_{j1} |^2 < M \mid \omega \right) > \epsilon', \quad \text{and} \quad \text{Var}\left(\log(N^{\frac{2}{3}} | x_{j1} |^2) \mid \omega \text{ and } M^{-1} < N^{\frac{2}{3}} | x_{j1} |^2 < M\right) > \epsilon'',
\]

for any fixed \(\omega \in A \).

Proof of Theorem 4 by Lemma 12. Lemma 12 shows that for all large enough \(N \), the followings hold:

(i) \(\mathbb{P}(M^{-1} < N^{1/3}|x_{j1}|^2 < M) > \mathbb{P}(A \cap \{M^{-1} < N^{1/3}|x_{j1}|^2 < M\}) > \epsilon' \), and

(ii) the conditional variance

\[
\text{Var}\left(\log(N^{\frac{2}{3}} | x_{j1} |^2) \mid M^{-1} < N^{\frac{2}{3}} | x_{j1} |^2 < M\right) \geq \frac{\mathbb{P}(A \cap \{M^{-1} < N^{1/3}|x_{j1}|^2 < M\})}{\mathbb{P}(M^{-1} < N^{1/3}|x_{j1}|^2 < M)} \text{Var}\left(\log(N^{\frac{2}{3}} | x_{j1} |^2) \mid A \cap \{M^{-1} < N^{\frac{2}{3}} | x_{j1} |^2 < M\}\right) > \epsilon' \epsilon'''
\]

Using Theorem 2 we have \(\mathbb{P}(M^{-1} < (3\pi/2)^{1/3}\Xi_j^{(k)}(a; \infty) < M) > \epsilon' \) and \(\text{Var}(\log((3\pi/2)^{1/3}\Xi_j^{(k)}(a; \infty)) \mid M^{-1} < (3\pi/2)^{1/3}\Xi_j^{(k)}(a; \infty) < M) > \epsilon' \epsilon'' \). Then we can conclude the proof of Theorem 4 easily.

The remaining part of this section is devoted to the proof of Lemma 12. To make notations simple, in this section we denote \(\lambda_i = N^{1/6}(\lambda_i - 2\sqrt{N}) \) and \(\sigma_i = N^{1/6}(\sigma_i - 2\sqrt{N}) \). We recall that \(\tilde{\sigma}_i \)'s and \(\tilde{\lambda}_i \)'s converge jointly in distribution to \(\xi_i^{(k)} \)'s and \(\xi_i^{(k-1)} \)'s, by Lemma 6. We further denote \(F_j = \log(N^{1/3}|x_{j1}|^2) \). We will also need the following estimate:
Lemma 13. Let $L > 0$ be any constant independent of N. If N is large enough, there is a constant C_L such that for all $x \in [-L, L]$
\[
\mathbb{E} \left(\sum_{i=1}^{N} \frac{1}{(\bar{\sigma}_i - x)^2 + 1} \right) < C_L.
\] (7.3)

Proof. The left-hand side of (7.3) can be expressed as
\[
\mathbb{E} \left(\sum_{i=1}^{N} \frac{1}{(\bar{\sigma}_i - x)^2 + 1} \right) = N^{-\frac{1}{2}} \int_{-\infty}^{\infty} \rho_N(t) \frac{1}{(t - (2\sqrt{N} + N^{-1/6}x))^2 + N^{-1/3}} dt,
\] (7.4)

where $\rho_N(t)$ is the empirical density function of $\sigma_1, \ldots, \sigma_N$. By the property of determinantal processes (cf. (1.12)), $\rho_N(t) = K_{\text{GUE},\alpha}^{0,0}(t, t)$, where $K_{\text{GUE},\alpha}^{0,0}$ is defined in (2.2) and represented by a double integral formula in (2.3). The estimation of $\rho_N(t)$ with $t \in ((-2 + \epsilon)\sqrt{N} N^{-1/10})$ and $t \in [2\sqrt{N} - N^{-1/10}, 2\sqrt{N} - CN^{-1/6}]$ can be done by the same saddle point analysis method as we evaluate $\mathbb{E}(S x + x N_x)$ in (6.6) and (6.8) respectively, since $\mathbb{E}(S x + x N_x)$ is expressed by a very similar double integral formula in (6.15). For $t > 2\sqrt{N} - CN^{-1/6}$, where $C > 0$, $\rho_N(t)$ can be estimated by using (A.20) in Appendix A and then apply the standard saddle point method to $H_{N,0}$ and $J_{N,0}$. For $t \leq (2 + \epsilon)\sqrt{N}$, similar methods can be applied and we omit the detail. The estimate we need is that for large enough N:

(i) (The semicircle law) For $t \in ((-2 + \epsilon)\sqrt{N} N^{-1/10}, 2\sqrt{N} - N^{-1/10})$, $\rho_N(t) = \frac{1}{2\pi} \sqrt{4N - t^2}(1 + o(1)).$

(ii) For $t \in [2\sqrt{N} - N^{-1/10}, 2\sqrt{N} - CN^{-1/6})$ and $t \in ((-2 + \epsilon)\sqrt{N} N^{-1/10}, 2\sqrt{N} + N^{-1/10}]$, $\rho_N(t) = O(N^{1/4}(2\sqrt{N} - t)^{1/2})$ and $\rho_N(t) = O(N^{1/4}(2\sqrt{N} + t)^{1/2})$ respectively.

(iii) For $t \geq 2\sqrt{N} - CN^{-1/6}$ and $t \leq (2\sqrt{N} + CN^{-1/6}, \rho_N(t) = O(N^{1/6}e^{-CN^{1/6}(t - 2\sqrt{N})})$ and $\rho_N(t) = O(N^{1/6}e^{-CN^{-1/6}(2\sqrt{N} + t)})$, for some $c > 0$, respectively.

The estimate of $\rho_N(t)$ above and the expression (7.4) imply the desired boundedness.

Proof of Lemma 7.2. We discuss first the $j = 1$ case in detail, and then extend the discussion to the $j > 1$ case.

The $j = 1$ case. We note that $\xi_{1,1}^{(k-1)} > \xi_{2,2}^{(k)}$ almost surely and they are both continuous random variables. Hence there exist some $c_1 \in \mathbb{R}$ and $\epsilon_2 > 0$ such $\mathbb{P}(\xi_{1,1}^{(k)} \in (c_1, c_1 + \epsilon_2))$ and $\xi_{2,2}^{(k)} < c_1 - \epsilon_2 > \epsilon_1$ for some $\epsilon_1 > 0$. Hence the event A_1 defined by
\[
A_1 = \{\tilde{\lambda}_1 \in (c_1, c_1 + \epsilon_2) \text{ and } \tilde{\sigma}_2 < c_1 - \epsilon_2\}
\] (7.5)

satisfies that $\mathbb{P}(A_1) > \epsilon_1$ for large enough N.

Let $p(\omega)$ be the marginal density of ω, whose formula is not relevant. If ω is fixed, the conditional density of σ_1 given ω is, by [2, Theorem 1]
\[
p_{\omega}(\sigma) = \frac{1}{C_{\omega}} \exp(-f_{\omega,a_{\omega}}(\sigma))1(\sigma > \lambda_1), \quad \text{where} \quad f_{\omega,a_{\omega}}(\sigma) = \frac{\sigma^2}{2} - a_{\omega}\sigma - \sum_{i=2}^{N} \log(\sigma - \sigma_i),
\] (7.6)

for some constant C_{ω}, or equivalently, the conditional density for $\tilde{\sigma}_1$ is
\[
\tilde{p}_{\omega}(\tilde{\sigma}) = \frac{p(\sigma)}{N^{1/6}} = \frac{1}{C_{\omega,a_{k}}} \exp(-\tilde{f}_{\omega,a_{k}}(\tilde{\sigma}))1(\tilde{\sigma} > \tilde{\lambda}_1), \quad \text{where} \quad \tilde{f}_{\omega,a_{k}}(\tilde{\sigma}) = N^{\frac{1}{6}}\tilde{\sigma} - a_{k}\tilde{\sigma} + N^{\frac{1}{6}}\frac{\tilde{\sigma}^2}{2} - \sum_{i=2}^{N} \log(\tilde{\sigma} - \tilde{\sigma}_i),
\] (7.7)

and $C_{\omega,a_{k}} = N^{-N/6} \exp(2N^{2/3} a_{k})C_{\omega}$. Hence
\[
\tilde{f}_{\omega,a_{k}}'(\tilde{\sigma}) = N^{\frac{1}{6}} - a_{k} + N^{-\frac{1}{3}}\tilde{\sigma} - \sum_{i=2}^{N} \frac{1}{\tilde{\sigma} - \tilde{\sigma}_i}, \quad \tilde{f}_{\omega,a_{k}}''(\tilde{\sigma}) = N^{-\frac{1}{3}} + \sum_{i=2}^{N} \frac{1}{(\tilde{\sigma} - \tilde{\sigma}_i)^2}, \quad \text{and} \quad \int_{\tilde{\lambda}_1}^{\infty} \tilde{p}_{\omega}(\tilde{\sigma}) d\tilde{\sigma} = 1.
\] (7.8)
We note that since the random variable $\xi_1^{(k)} < +\infty$ and as $N \to \infty$, we have that there exists $M_1 > c_1 + \epsilon_2$ such that $\mathbb{P}(\xi_1^{(k)} > M_1) < \frac{\epsilon_1}{6}$, and then for large enough N,

$$\mathbb{P}(\tilde{\sigma}_1 > M_1) = \int p(\omega) d\omega \int_{M_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} < \frac{\epsilon_1}{6}. \quad (7.9)$$

Then the event A_2 defined by

$$A_2 = \left\{ \omega \in A_1 \mid \int_{\lambda_1}^{M_1} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} > \frac{2}{3} \right\} \quad (7.10)$$

satisfies $\mathbb{P}(A_2) > \epsilon_1/2$ for large enough N. Otherwise we will have

$$\int p(\omega) d\omega \int_{M_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} \geq \int_{A_1 \setminus A_2} p(\omega) d\omega \int_{M_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} > \frac{1}{3} \mathbb{P}(A_1 \setminus A_2) = \frac{\epsilon_1}{6}, \quad (7.11)$$

contradictory to (7.9).

Next, since $\epsilon_1^{(k)} > \xi_1^{(k-1)}$ almost surely and $\epsilon_1^{(k)}, \xi_1^{(k-1)}$ are both continuous random variables, there exist $\epsilon_3 > 0$ such that $\mathbb{P}(\epsilon_1^{(k)} > \xi_1^{(k-1)} + \epsilon_3) > 1 - \epsilon_1/12$, and then for large enough N,

$$\mathbb{P}(\tilde{\sigma}_1 \leq \tilde{\lambda}_1 + \epsilon_3) = \int p(\omega) d\omega \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \epsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} < \frac{\epsilon_1}{12}. \quad (7.12)$$

Then the event A_3 defined by

$$A_3 = \left\{ \omega \in A_2 \mid \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \epsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} < \frac{1}{3} \right\} \quad (7.13)$$

satisfies $\mathbb{P}(A_3) > \epsilon_1/4$ for large enough N. Otherwise, we will have

$$\int p(\omega) d\omega \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \epsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} \geq \int_{A_2 \setminus A_3} p(\omega) d\omega \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \epsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} > \frac{1}{3} \mathbb{P}(A_2 \setminus A_3) = \frac{\epsilon_1}{12}, \quad (7.14)$$

contradictory to (7.12). We note that if $\omega \in A_3$, then

$$\mathbb{P}(\tilde{\sigma}_1 > M_1 \mid \omega) = \int_{M_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} < \frac{1}{3}, \quad \mathbb{P}(\tilde{\sigma}_1 \in (\tilde{\lambda}_1, \tilde{\lambda}_1 + \epsilon_3) \mid \omega) = \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \epsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} < \frac{1}{3}; \quad (7.15)$$

and

$$\mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1] \mid \omega) = \int_{\tilde{\lambda}_1 + \epsilon_3}^{M_1} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} > \frac{1}{3}. \quad (7.15)$$

Recall $L > 0$ in Lemma 13. Now we choose L sufficiently large such that $[-L, L] \supseteq (c_1 - \epsilon_2, M_1)$, and define

$$A_4 = \left\{ \omega \in A_3 \mid \int_{\tilde{\lambda}_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}_1) \sum_{i=1}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2 + 1} d\tilde{\sigma}_1 < \frac{C_L}{\epsilon_1/8} \right\}. \quad (7.16)$$

We have that $\mathbb{P}(A_4) > \epsilon_1/8$ for all large enough N. Otherwise,

$$E \left(\sum_{i=1}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2 + 1} \right) = \int p(\omega) d\omega \int_{\tilde{\lambda}_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}_1) \sum_{i=1}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2 + 1} d\tilde{\sigma}_1 \geq \int_{A_3 \setminus A_4} p(\omega) d\omega \int_{\tilde{\lambda}_1}^{\infty} \tilde{p}_\omega(\tilde{\sigma}_1) \sum_{i=1}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2 + 1} d\tilde{\sigma}_1 \geq \mathbb{P}(A_3 \setminus A_4) \frac{C_L}{\epsilon_1/8} \geq C_L,$$

contradictory to (7.13).
Now consider the function $F_1 = \log(N^{1/3}|x_{11}|^2)$ defined by (1.20). For a fixed $\omega \in A_4$, F_1 depends on σ_1, or equivalently $\tilde{\sigma}_1$. Below we express it as $F_1(\tilde{\sigma}_1; \omega)$ as a function of $\tilde{\sigma}_1$. $F_1(\tilde{\sigma}_1; \omega)$ is an increasing function as $\tilde{\sigma}_1 \in (\tilde{\lambda}_1, +\infty)$. In Theorem 2 we have shown that the random variable F_1 converges weakly to the random variable $(3\pi/2)^{1/3}\Xi_j^{(k)}(a; \infty)$, so there exists $M_2 > 1$ such that for large enough N,

$$\mathbb{P}(F_1 < -\log M_2 \text{ or } F_1 > \log M_2) < \frac{\epsilon_1}{16}. \quad (7.18)$$

Then the event A_5 defined by

$$A_5 = \left\{ \omega \in A_4 \mid [-\log M_2, \log M_2] \cap [F_1(\tilde{\lambda}_1 + \epsilon_3; \omega), F_1(M_1; \omega)] \neq \emptyset \right\} \quad (7.19)$$

satisfies $\mathbb{P}(A_5) > \epsilon_1/16$ for large enough N. Otherwise, we will have

$$\mathbb{P}(F_1 < -\log M_2 \text{ or } F_1 > \log M_2) > \int_{A_4 \setminus A_5} p(\omega) d\omega \mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1] \mid \omega) \geq \frac{\epsilon_1}{16} = \frac{\epsilon_1}{48}. \quad (7.20)$$

We have, by (5.2) and (5.3),

$$F_1(\tilde{\sigma}; \omega) = \int_{\cup_{i=2}^{N}(\tilde{\lambda}_{i-1}, \tilde{\lambda}_i)} \left[-\frac{1}{\tilde{\sigma} - \lambda} \right] dx + \frac{1}{3} \log N. \quad (7.21)$$

Hence with $\omega \in A_4$, we have

$$F_1(M_1; \omega) - F_1(\tilde{\lambda}_1 + \epsilon_3; \omega) < \int_{(-\infty, \tilde{\lambda}_1)} \left(\frac{1}{\tilde{\lambda}_1 + \epsilon_3 - \lambda} - \frac{1}{M_1 - \lambda} \right) \, d\lambda = \log \frac{M_1 - \tilde{\lambda}_1}{\epsilon_3} < \log \frac{M_1 - c_1}{\epsilon_3}. \quad (7.22)$$

and for $\tilde{\sigma}$ between $\tilde{\lambda}_1 + \epsilon_3$ and M_1,

$$\frac{d}{d\tilde{\sigma}} F_1(\tilde{\sigma}; \omega) > \int_{[\epsilon_1, \epsilon_2]} \frac{1}{(\tilde{\sigma} - x)^2} dx = \frac{1}{M_1 - c_1} - \frac{1}{M_1 - c_1 + \epsilon_2}, \quad (7.23)$$

where we recalled the domain in (7.3).

By (7.22), with $M_3 = M_2 \cdot ((M_1 - c_1)/\epsilon_3)$, we have that

$$[F_1(\tilde{\lambda}_1 + \epsilon_3; \omega), F_1(M_1; \omega)] \subseteq [-\log M_3, \log M_3], \quad \text{if } \omega \in A_5. \quad (7.24)$$

Hence we have for all $\omega \in A_5$,

$$\mathbb{P}(-\log M_3 < F_1(\tilde{\sigma}_1; \omega) < \log M_3 \mid \omega) \geq \mathbb{P}(F_1(\tilde{\lambda}_1 + \epsilon_3; \omega) < F_1(\tilde{\sigma}_1; \omega) < F_1(M_1; \omega) \mid \omega)$$

$$= \mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1] \mid \omega) > \frac{1}{3}. \quad (7.25)$$

We note that by (7.23), $\tilde{f}''_{\omega, a_k}$ is positive and decreasing on $(\tilde{\lambda}_1, +\infty)$. For $\omega \in A_5$, we have that if $\tilde{\sigma} > \tilde{\lambda}_1$, then for large enough N,

$$0 < \tilde{f}''_{\omega, a_k}(\tilde{\sigma}) < N^{-\frac{3}{2}} + \sum_{i=2}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2}$$

$$< N^{-\frac{3}{2}} + \frac{1 + \epsilon_2^2}{\epsilon_2^2} \sum_{i=2}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2 + 1}$$

$$< N^{-\frac{3}{2}} + \frac{1 + \epsilon_2^2}{\epsilon_2^2} \int_{\tilde{\lambda}_1}^{\infty} \tilde{f}_{\omega}(\tilde{\sigma}_1) \sum_{i=1}^{N} \frac{1}{(\tilde{\sigma}_i - c_1)^2 + 1} d\tilde{\sigma}_1$$

$$< \frac{8C_L}{\epsilon_1 \epsilon_2^2},$$

where we use the property that $\tilde{\sigma}_i + \epsilon_2 < c_1 < \tilde{\sigma}$ ($i = 2, \ldots, N$).
Now with the aid of (7.20), we claim that for all $\omega \in A_5$, if we take C_A to be a constant bigger than both $\varepsilon_3^{-1} + 8C_L(\varepsilon_1^2 \varepsilon_2^{-1})(M_1 - c_1)$ and $16C_L(\varepsilon_1^2 \varepsilon_2^{-1})(M_1 - c_1)$, then
\[
\left| \tilde{f}_{\omega,ak}(\tilde{\sigma}) \right| < C_A \quad \text{if } \tilde{\sigma} \in [\tilde{\lambda}_1 + \varepsilon_3, M_1].
\]
(7.27)
Since $\tilde{f}_{\omega,ak}(\tilde{\sigma})$ is increasing on $(\tilde{\lambda}_1, +\infty)$, to prove (7.27), it suffices to check that
\[
\tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3) > -C_A,
\]
(7.28)
and
\[
\tilde{f}_{\omega,ak}(M_1) < C_A.
\]
(7.29)

If (7.28) does not hold, we have that, in light of (7.20),
\[
\tilde{f}_{\omega,ak}(2M_1 - c_1) = \tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3) + \int_{\tilde{\lambda}_1 + \varepsilon_3}^{2M_1 - c_1} \tilde{f}_{\omega,ak}''(\tilde{\sigma}) d\tilde{\sigma}
\leq \tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3) + \left[(2M_1 - c_1) - (\tilde{\lambda}_1 + \varepsilon_3) \right] \frac{8C_L}{\varepsilon_1^2 \varepsilon_2}
\leq -C_A + 2(M_1 - c_1) \frac{8C_L}{\varepsilon_1^2 \varepsilon_2} < 0.
\]
(7.30)
It implies that $\tilde{f}_{\omega,ak}(\tilde{\sigma})$ is negative on $(\tilde{\lambda}_1, 2M_1 - c_1)$, and then $\tilde{f}_{\omega,ak}(\tilde{\sigma})$ is decreasing there. By (7.27), $\tilde{p}_\omega(\tilde{\sigma})$ is increasing there. We hence have
\[
\frac{\mathbb{P}(\tilde{\sigma}_1 \in (M_1, +\infty) \mid \omega)}{\mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \varepsilon_3, M_1] \mid \omega)} \geq \frac{\mathbb{P}(\tilde{\sigma}_1 \in (M_1, 2M_1 - c_1) \mid \omega)}{\mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \varepsilon_3, M_1] \mid \omega)} = \frac{\int_{\tilde{\lambda}_1 + \varepsilon_3}^{2M_1 - c_1} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma}}{\int_{\tilde{\lambda}_1 + \varepsilon_3}^{M_1} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma}} > 1,
\]
(7.31)
which is contradictory to (7.15). On the other hand, if (7.29) does not hold, then
\[
\tilde{f}_{\omega,ak}(\tilde{\lambda}_1) = \tilde{f}_{\omega,ak}(M_1) - \int_{\tilde{\lambda}_1}^{M_1} \tilde{f}_{\omega,ak}''(\tilde{\sigma}) d\tilde{\sigma} \geq \tilde{f}_{\omega,ak}(M_1) - (M_1 - \tilde{\lambda}_1) \frac{8C_L}{\varepsilon_1^2 \varepsilon_2} \geq C_A - (M_1 - c_1) \frac{8C_L}{\varepsilon_1^2 \varepsilon_2} \geq \varepsilon_3^{-1}.
\]
(7.32)
Hence we have, by the monotonicity of $\tilde{f}_{\omega,ak}(\tilde{\sigma})$, that $\tilde{f}_{\omega,ak}(\tilde{\sigma}) \geq \varepsilon_3^{-1}$ for all $\tilde{\sigma} \in [\tilde{\lambda}_1, M_1]$. Hence we have
\[
\int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \varepsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} = \frac{1}{C_{\omega,ak}} \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \varepsilon_3} \exp(-\tilde{f}_{\omega,ak}(\tilde{\sigma})) d\tilde{\sigma}
\geq \frac{1}{C_{\omega,ak}} \int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \varepsilon_3} \exp[-\tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3) + \varepsilon_3^{-1}(\tilde{\lambda}_1 + \varepsilon_3 - \tilde{\sigma})] d\tilde{\sigma}
= (e - 1) \varepsilon_3 \frac{\exp[-\tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3)]}{C_{\omega,ak}},
\]
(7.33)
and
\[
\int_{\tilde{\lambda}_1 + \varepsilon_3}^{M_1} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma} = \frac{1}{C_{\omega,ak}} \int_{\tilde{\lambda}_1 + \varepsilon_3}^{M_1} \exp(-\tilde{f}_{\omega,ak}(\tilde{\sigma})) d\tilde{\sigma}
\leq \frac{1}{C_{\omega,ak}} \int_{\tilde{\lambda}_1 + \varepsilon_3}^{M_1} \exp[-\tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3) - \varepsilon_3^{-1}(\tilde{\sigma} - \tilde{\lambda}_1 - \varepsilon_3)] d\tilde{\sigma}
< \varepsilon_3 \frac{\exp[-\tilde{f}_{\omega,ak}(\tilde{\lambda}_1 + \varepsilon_3)]}{C_{\omega,ak}}.
\]
(7.34)
Hence we have
\[
\frac{\mathbb{P}(\tilde{\sigma}_1 \in (\tilde{\lambda}_1, \tilde{\lambda}_1 + \varepsilon_3) \mid \omega)}{\mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \varepsilon_3, M_1] \mid \omega)} = \frac{\int_{\tilde{\lambda}_1}^{\tilde{\lambda}_1 + \varepsilon_3} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma}}{\int_{\tilde{\lambda}_1 + \varepsilon_3}^{M_1} \tilde{p}_\omega(\tilde{\sigma}) d\tilde{\sigma}} > 1,
\]
(7.35)
which is also contradictory to (7.15). Hence we have (7.27).

We have that if \(\omega \in A_5 \) and \(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1] \), then (i) \(\tilde{\sigma}_1 \) spreads fairly even due to (7.24); and (ii) \(F_1(\tilde{\sigma}_1; \omega) \) varies monotonically and significantly, by (7.23). We therefore conclude that for all \(\omega \in A_5 \), for some \(\epsilon_4 > 0 \) independent of \(\omega \),

\[
\text{Var}(F_1(\tilde{\sigma}_1; \omega) \mid \omega \text{ and } \tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1]) > \epsilon_4.
\]

Then using (7.25), we have

\[
\begin{align*}
\text{Var}(F_1(\tilde{\sigma}_1; \omega) \mid \omega \text{ and } -\log M_3 &< F_1(\tilde{\sigma}_1; \omega) < \log M_3) \\
&\geq \frac{\mathbb{P}(\tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1] \mid \omega)}{\mathbb{P}(-\log M_3 < F_1(\tilde{\sigma}_1; \omega) < \log M_3 \mid \omega)} \text{Var}(F_1(\tilde{\sigma}_1; \omega) \mid \omega \text{ and } \tilde{\sigma}_1 \in [\tilde{\lambda}_1 + \epsilon_3, M_1]) \quad \text{(7.37)}
\end{align*}
\]

Taking \(A = A_5 \), \(M = M_3 \), \(\epsilon = \epsilon_1/16 \), \(\epsilon' = 1/3 \) and \(\epsilon'' = \epsilon_4 \), we see that Lemma 12 is verified in the \(j = 1 \) case by (7.25) and (7.37).

The \(j > 1 \) case

Similar to \(A_1 \) in the proof of the \(j = 1 \) case, we can define

\[
B_1 = \{ \tilde{\lambda}_j \in (d_1, d_1 + \delta_2) \text{ and } \tilde{\lambda}_{j-1} \in (d_2 - \delta_2, d_2) \text{ and } \tilde{\sigma}_{j+1} < d_1 - \delta_2 \text{ and } \tilde{\sigma}_{j-1} > d_2 + \delta_2 \text{ and } \tilde{\sigma}_1 < N_1 \},
\]

such that \(\mathbb{P}(B_1) > \delta_1 \) for large enough \(N \), where \(d_1, d_2, N_1 \) are real numbers, \(\delta_1, \delta_2 \) are positive numbers, and \(d_1 + \delta_2 < d_2 - \delta_2, d_2 + \delta_2 < N_1 \). We additionally require that \(\delta_2 < (d_2 - d_1)/6 \) for later use.

Next, let \(p(\omega) \) be the marginal density of \(\omega \), and the conditional density of \(\sigma_j \), as \(\omega \) is fixed, is

\[
p_{\omega}(\sigma) = \frac{1}{C_\omega} \exp(-g_{\omega,\omega_1}(\sigma))1(\lambda_j < \sigma < \lambda_{j-1}) \quad \text{where} \quad g_{\omega,\omega_1} = \frac{\sigma^2}{2} - \alpha_1 \sigma - \sum_{i=j+1}^{N} \log(\sigma - \sigma_i) - \sum_{i=1}^{j-1} \log(\sigma_i - \sigma),
\]

for some constant \(C_\omega \), or equivalently, the conditional density for \(\tilde{\sigma}_j \) is

\[
\tilde{p}_{\omega}(\tilde{\sigma}) = \frac{p_{\omega}(\sigma)}{N^{1/6}} = \frac{1}{C_{\omega,\omega_k}} \exp(-\tilde{g}_{\omega,\omega_k}(\tilde{\sigma}))1(\tilde{\lambda}_j < \tilde{\sigma} < \tilde{\lambda}_{j-1}),
\]

where

\[
\tilde{g}_{\omega,\omega_k}(\tilde{\sigma}) = N^{-\frac{1}{2}} \tilde{\sigma} - a_k \tilde{\sigma} + N^{-\frac{1}{2}} \tilde{\sigma}^2 - \sum_{i=j+1}^{N} \frac{1}{\tilde{\sigma} - \sigma_i} + \sum_{i=1}^{j-1} \frac{1}{\tilde{\sigma}_i - \tilde{\sigma}}, \quad \tilde{g}''_{\omega,\omega_k}(\tilde{\sigma}) = N^{-\frac{1}{2}} + \sum_{i \in \{1, N\} \setminus \{j\}} \frac{1}{(\tilde{\sigma} - \sigma_i)^2}.
\]

Hence

\[
\tilde{g}'_{\omega,\omega_k}(\tilde{\sigma}) = N^{-\frac{1}{2}} - a_k + N^{-\frac{1}{2}} \tilde{\sigma} - \sum_{i=j+1}^{N} \frac{1}{\tilde{\sigma} - \sigma_i} + \sum_{i=1}^{j-1} \frac{1}{\tilde{\sigma}_i - \tilde{\sigma}}, \quad \tilde{g}''_{\omega,\omega_k}(\tilde{\sigma}) = N^{-\frac{1}{2}} + \sum_{i \in \{1, N\} \setminus \{j\}} \frac{1}{(\tilde{\sigma} - \sigma_i)^2},
\]

and

\[
\int_{\tilde{\lambda}_j}^{\tilde{\lambda}_{j-1}} \tilde{p}_{\omega}(\tilde{\sigma}) \, d\tilde{\sigma} = 1.
\]

Then analogous to \(A_2 \) and \(A_3 \) in the proof of the \(j = 1 \) case, we can define

\[
B_3 = \left\{ \omega \in B_1 \mid \int_{\tilde{\lambda}_{j-1} - \delta_3}^{\tilde{\lambda}_j - \delta_3} \tilde{p}_{\omega}(\tilde{\sigma}) \, d\tilde{\sigma} < \frac{1}{3} \text{ and } \int_{\tilde{\lambda}_j}^{\tilde{\lambda}_j + \delta_3} \tilde{p}_{\omega}(\tilde{\sigma}) \, d\tilde{\sigma} < \frac{1}{3} \right\}
\]

such that \(\mathbb{P}(B_3) > \delta_1/4 \) for large enough \(N \), where \(\delta_3 > 0 \). We additionally require that \(\delta_3 < \delta_2/2 \) for later use. It is straightforward to see that for all \(\omega \in B_3 \),

\[
\mathbb{P}(\tilde{\sigma}_j \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_{j-1} - \delta_3]) > \frac{1}{3}.
\]

Analogous to the definition of \(A_4 \), we choose \(L \) in Lemma 13 sufficiently large such that \([-L, L] \supseteq (d_1 - \delta_2, d_2 + \delta_2) \), and let

\[
B_4 = \left\{ \omega \in B_3 \mid \int_{\tilde{\lambda}_j}^{\tilde{\lambda}_{j-1}} \tilde{p}_{\omega}(\tilde{\sigma}_j) \sum_{i=1}^{N} \frac{1}{(\sigma_i - d_1)^2 + 1} \, d\tilde{\sigma}_j < \frac{C_L}{\delta_1/8} \right\}
\]

43
and \[
\int_{\lambda_j}^{\lambda_{j-1}} \tilde{p}_{\omega}(\sigma_j) \sum_{i=1}^{N} \frac{1}{(\sigma_i - d_i)^2 + 1} d\tilde{\sigma}_j < \frac{C_L}{\delta_1/16}.
\] (7.44b)

We have that \(\mathbb{P}(B_4) > \delta_1/8\) for large enough \(N\). Otherwise, we have that with probability no less than \(\delta_1/8\), at least one of the two inequalities in (7.44a) and (7.44b) fails. Without of loss of generality, we assume that in probability \(\geq \delta_1/16\) inequality (7.44a) fails. Then like (7.47), we can derive \(\mathbb{E} \left(\sum_{i=1}^{N} \frac{1}{(\sigma_i - d_i)^2 + 1} \right) \geq C_L\), contradictory to (7.43).

Now consider the function \(F_j = \log(N^{1/3}|x_j|^2)\) defined by (1.20). For a fixed \(\omega \in B_4\), \(F_j\) depends on \(\sigma_j\), or equivalently \(\tilde{\sigma}_j\). Below we express it as a function of \(\tilde{\sigma}_j\) and further decompose it into two parts \(F_j(\tilde{\sigma}_j; \omega) = F_j^{(1)}(\tilde{\sigma}_j; \omega) + F_j^{(2)}(\tilde{\sigma}_j; \omega)\), where

\[
F_j^{(1)}(\tilde{\sigma}_j; \omega) := \sum_{i=1}^{j-1} \log \frac{\sigma_j - \lambda_i}{\sigma_j - \sigma_i}, \quad F_j^{(2)}(\tilde{\sigma}_j; \omega) := \sum_{i=j+1}^{N} \log \frac{\sigma_j - \lambda_{i-1}}{\sigma_j - \sigma_i} + \frac{1}{3} \log N.
\] (7.45)

We also note that \(F_j^{(2)}(\tilde{\sigma}; \omega)\) is an increasing function of \(\tilde{\sigma} \in (\tilde{\lambda}_j, \tilde{\lambda}_{j-1})\), analogous to \(F_1(\tilde{\sigma}; \omega)\) as \(\tilde{\sigma} \in (\tilde{\lambda}_1, +\infty)\). Similar to \(A_5\) in the proof of the \(j = 1\) case, we have that for a large enough \(N_2 > 0\), the event

\[
B_5 = \left\{ \omega \in B_4 \mid \sum [-\log N_2, \log N_2] \cap [F_j^{(2)}(\tilde{\lambda}_j + \delta_3; \omega), F_j^{(2)}(\tilde{\lambda}_j - \delta_3; \omega)] \neq \emptyset \right\}
\] (7.46)

satisfies \(\mathbb{P}(B_5) > \delta_1/16\) for large enough \(N\).

We have, by (5.2) and (5.3),

\[
F_j^{(2)}(\tilde{\sigma}; \omega) = \int_{\cup_{i=j+1}^{N} (\tilde{\lambda}_j, \tilde{\lambda}_{i-1})} \frac{-1}{\tilde{\sigma} - x} dx + \frac{1}{3} \log N.
\] (7.47)

Hence with \(\omega \in A_4\), we have, analogous to (7.22) and (6.25),

\[
F_j^{(2)}(\tilde{\lambda}_j - \delta_3; \omega) - F_j^{(2)}(\tilde{\lambda}_j + \delta_3; \omega) < \int_{-\infty, \tilde{\lambda}_j} \left(\frac{1}{\tilde{\lambda}_j + \delta_3 - x} - \frac{1}{\tilde{\lambda}_j - \delta_3 - x} \right) dx < \log \frac{d_2 - d_1}{\delta_3},
\] (7.48)

By (7.48), with \(N_3 = N_2 \cdot ((d_2 - d_1)/\delta_3)\), we have, analogous to (7.24),

\[
[F_j^{(2)}(\tilde{\lambda}_j + \delta_3; \omega), F_j^{(2)}(\tilde{\lambda}_j - \delta_3; \omega)] \subseteq [-\log N_3, \log N_3], \quad \text{if} \ \omega \in B_5.
\] (7.49)

On the other hand, since \(\tilde{\lambda}_{j-1} > d_2 - \delta_2\) and \(\tilde{\sigma}_1 < N_1\), we have

\[
-\log \frac{N_1 - d_2 + \delta_2 + \delta_3}{\delta_3} < \log \frac{\tilde{\lambda}_{j-1} - \tilde{\sigma}_j}{\tilde{\sigma}_1 - \tilde{\sigma}_j} < F_j^{(1)}(\tilde{\sigma}_j; \omega) < 0, \quad \text{for all} \ \tilde{\sigma}_j \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_{j-1} - \delta_3].
\] (7.50)

Hence by setting \(N_4 = N_3 \cdot ((N_1 - d_2 + \delta_2 + \delta_3)/\delta_3)\), we have for any \(\tilde{\sigma} \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_{j-1} - \delta_3]\),

\[
[F_j(\tilde{\lambda}_j + \delta_3; \omega), F_j(\tilde{\lambda}_{j-1} - \delta_3; \omega)] \subseteq [-\log N_4, \log N_4], \quad \text{if} \ \omega \in B_5.
\] (7.51)

We then have, analogous to (7.25) in the \(j = 1\) case,

\[
\mathbb{P}(-\log N_4 < F_j(\tilde{\sigma}_j; \omega) < \log N_4 \mid \omega) > \frac{1}{3}. \quad (7.52)
\]

Further, note that if \(\tilde{\sigma} \in (\tilde{\lambda}_j, d_2 - \delta_2)\), we have

\[
\frac{d}{d\tilde{\sigma}} F_j(\tilde{\sigma}; \omega) = \int_{\cup_{i=j+1}^{N} (\tilde{\sigma}, \tilde{\lambda}_{i-1})} \frac{dx}{(\tilde{\sigma} - x)^2} - \int_{\cup_{i=1}^{j-1} (\tilde{\lambda}_j, \tilde{\sigma}_i)} \frac{dx}{(\tilde{\sigma} - x)^2}
\]

\[
> \int_{[\tilde{\lambda}_j, d_2 - \lambda_j]} \frac{dx}{(\tilde{\sigma} - x)^2} - \int_{[d_2 - \delta_2, +\infty)} \frac{dx}{(\tilde{\sigma} - x)^2} = \frac{\delta_2}{(\tilde{\sigma} - \tilde{\lambda}_j)(\tilde{\sigma} - \lambda_j + \delta_2)} - \frac{1}{d_2 - \delta_2 - \tilde{\sigma}}.
\] (7.53)
By direct computation, and based on our assumptions on $d_1, d_2, \delta_2, \delta_3$, we have that for all $\omega \in B_5$

$$\frac{d}{d\sigma} F_j(\tilde{\sigma}; \omega) \geq \frac{1}{6\delta_2} > 0, \quad \tilde{\sigma} \in [\lambda_j + \delta_3, \lambda_j + \delta_2],$$

(7.54)

which is a counterpart of \(7.23\).

We note that by \(7.44\), \tilde{g}_{ω,a_k} is positive and concave on $(\tilde{\lambda}_j, \tilde{\lambda}_{j-1})$, so we have for $\tilde{\sigma} \in (\tilde{\lambda}_j, \tilde{\lambda}_{j-1})$,

$$0 < \tilde{g}_{\omega,a_k}''(\tilde{\sigma}) < \max\{\tilde{g}_{\omega,a_k}''(\tilde{\lambda}_j); \tilde{g}_{\omega,a_k}''(\tilde{\lambda}_{j-1})\},$$

(7.55)

and then for large enough N, we can derive in a way parallel to \(7.26\)

$$0 < \tilde{g}_{\omega,a_k}''(\tilde{\sigma}) < \frac{16C_L}{\delta_1 \delta_2^2}.$$

(7.56)

Moreover, we can show that for all $\omega \in B_5$, we can find a large enough $C_B > 0$ such that

$$|\tilde{g}_{\omega,a_k}(\tilde{\sigma})| < C_B \quad \text{if } \tilde{\sigma} \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_{j-1} - \delta_3].$$

(7.57)

The proof relies on that $\tilde{g}_{\omega,a_k}(\tilde{\sigma})$ is increasing on $(\tilde{\lambda}_j, \tilde{\lambda}_{j-1})$ and we can show both $\tilde{g}_{\omega,a_k}(\tilde{\lambda}_j + \delta_3) > -C_N$ and $\tilde{g}_{\omega,a_k}(\tilde{\lambda}_{j-1} - \delta_3) < C_N$. Since the proof techniques are similar to those used for \(7.28\) and \(7.29\), we omit the detail.

We have, analogous to \(7.39\),

$$\text{Var}(F_j(\tilde{\sigma}; \omega) \mid \omega \text{ and } \tilde{\sigma}_1 \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_j + \delta_2]) > \epsilon_4.$$

(7.58)

Also because of the probability inequality \(7.43\) and the boundedness of $g_{\omega,a_k}'(\tilde{\sigma})$ given in \(7.57\), we have that

$$\mathbb{P}(\tilde{\sigma}_j \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_j + \delta_2] \mid \omega) > \frac{\delta_5}{3}.$$

(7.59)

for some $\delta_4 > 0$. Hence we have, analogous to \(7.37\),

$$\text{Var}(F_j(\tilde{\sigma}; \omega) \mid \omega \text{ and } -\log N_4 < F_j(\tilde{\sigma}_j; \omega) < -\log N_4) \geq \frac{\mathbb{P}(\tilde{\sigma}_j \in [\tilde{\lambda}_j + \delta_3, \tilde{\lambda}_j + \delta_2] \mid \omega)}{\mathbb{P}(-\log N_4 < F_j(\tilde{\sigma}; \omega) < -\log N_4 \mid \omega)} \text{Var}(F_j(\tilde{\sigma}; \omega) \mid \omega \text{ and } \tilde{\sigma}_j \in [\tilde{\lambda}_j + \delta_3, \delta_2])$$

(7.60)

$$> \frac{\delta_5}{3} \delta_4.$$

Taking $A = B_5$, $M = N_4$, $\epsilon = \delta_1/16$, $\epsilon' = 1/3$ and $\epsilon'' = \delta_4 \delta_5/3$, we see that Lemma \(12\) is verified in the $j > 1$ case by \(7.32\) and \(7.60\). \(\square\)

In the end of this section, we state some simulation results on the distribution of the eigenvector components; see Figures \(18\) and \(19\) below. The simulation is done under the following setting for G_{α} in \(1.1\): $N = 1000$, $k = 2$, $\alpha_1 = \sqrt{N}$, $\alpha_2 = \sqrt{N} - N^{1/6}$. The simulation results are based on 6000 replications. In Figure \(18\) we plot the kernel density estimates (smooth approximations of histograms), p_X, for $X = N^{1/3}|x_{11}|^2$, $N^{1/3}|x_{12}|^2$, and $N|x_{13}|^2$. In Figure \(19\), we plot the negative logarithm of the tail function, $-\log \mathbb{P}(X > t)$, $t \geq 0.5$, for $X = N^{1/3}|x_{11}|^2$, $N^{1/3}|x_{12}|^2$, and $N|x_{13}|^2$. Observe that the limiting distribution of $N|x_{13}|^2$ shall be Exp(1), in light of Corollary \(3\). However, the yellow curve is apparently above 1 at $t = 0$ in Figure \(18\). This is due to a finite N effect, since according to our proof of Corollary \(3\) the difference between the distribution of $N|x_{13}|^2$ and the limiting one, Exp(1), is of order $O(N^{-1/3})$. We also remark here that Figure \(19\) shows (numerically) the difference between the tail behavior of the laws in Theorem \(2\) and that of Exp(1). A theoretical study of the tails of these laws will be deferred to future study.
\[\alpha_2.1, \gamma \text{ where the contours } \Gamma \text{ and } \]

\[\text{We only need to consider the convergence of } \]

\[\text{Next, analogous to } [46, \text{Formula (21)}] \text{ and (22)}, \]

\[\text{Proof of Lemma 6} \]

\[\text{A Proof of results in Section 2} \]

\[\text{Proof of Lemma } [6] \text{ We only give a sketch of the proof of Lemma } [6] \text{ because the case that } j_1 = j_2, \text{ and all } \alpha_j = \sqrt{N} (\text{equivalent to } a_{k-j+1} = 0) \text{ for } j = 1, \ldots, k \text{ is already proved in } [46] \text{ which follows closely the method used in } [6]. \text{ Our proof is an adaption of that in } [46]. \text{ The main difference between our lemma and the results in } [6] \text{ and } [46] \text{ is that we require } \epsilon \text{ to be large enough while in } [6] \text{ and } [46], \epsilon \text{ is only required to be positive, because they essentially assume all } \alpha_j = 0. \text{ Our assumption on } \epsilon \text{ implies that the operators } \]

\[\epsilon^I(x-y)K_{\text{Airy, } a}(x, y) \text{ and } \epsilon^I(x-y)K_{\text{Airy, } a, \text{scaled}}(x, y) \text{ are both trace class.} \]

\[\text{Proof. Below in this proof we are going to use notation in } [46] \text{ that is quite different from the notation used elsewhere in our paper.} \]

\[\text{We define, analogous to } [46, \text{Formula } (16)], \]

\[K_{N,j_1,j_2}(x, y) = N^{-1/6}N^{(j_1-j_2)/6}e^{N^{1/3}(y-x)}K_{\text{GUE, } \alpha}(2\sqrt{N} + N^{-1/6}y, 2\sqrt{N} + N^{-1/6}x). \]

\[\text{We only need to consider the convergence of } \epsilon^I(x-y)K_{N,j_1,j_2}(x, y) \text{ to } \epsilon^I(x-y)K_{\text{Airy, } a}(y, x) \text{ (pointwise and in trace norm). Analogous to } [46] \text{ Formulas (18) and (19)}, \text{ we denote } F(z) = z^2/2 - 2z + \log z \text{ (see } [46] \text{ Formula (17)}), \]

\[\tilde{w}_c = 1 + \epsilon N^{-1/3} \text{ (see } [46] \text{ Formula (16)}), \text{ and define} \]

\[H_{N,j_2}(x) = \frac{N^{\frac{3}{2}}}{2\pi} \int_\Gamma \left[z^k \prod_{i=j_2+1}^k \left(1 - \frac{\alpha_i}{\sqrt{N}} \right) \right] \exp(-NF(z)) \exp(N\frac{3}{2}x(z - \tilde{w}_c))dz, \]

\[J_{N,j_1}(y) = \frac{N^{\frac{3}{2}}}{2\pi} \int_\gamma \left[w^{-k} \prod_{i=j_1+1}^k \left(1 - \frac{\alpha_i}{\sqrt{N}} \right) \right] \exp(NF(w)) \exp(-N\frac{3}{2}y(w - \tilde{w}_c))dw, \]

\[\text{where the contours } \Gamma \text{ and } \gamma \text{ are defined as in } [46, \text{Formula (14)}]. \text{ Then we have, analogous to } [46, \text{Proposition 2.1}], \]

\[N^{(j_1-j_2)/3}e^{I(x-y)}K_{N,j_1,j_2}(x, y) = -\int_0^\infty H_{N,j_2}(x + t)J_{N,j_1}(y + t)dt. \]

\[\text{Next, analogous to } [46, \text{Formulas (21) and (22)}], \text{ define} \]

\[H_{\infty,k_2}(x) = \frac{\exp(-\epsilon x)}{2\pi} \int_{\Gamma_\infty} \exp \left(xz - \frac{z^3}{3} \right) \prod_{i=1}^{k_2} \left(1 - \frac{1}{\alpha_i} \right) dz, \]

\[J_{\infty,k_1}(y) = \frac{\exp(\epsilon y)}{2\pi} \int_{\gamma_\infty} \exp \left(-yw + \frac{w^3}{3} \right) \prod_{i=1}^{k_1} (w - \alpha_i) dw, \]

\[\text{where the contours } \Gamma_\infty \text{ and } \gamma_\infty \text{ are defined in } [46, \text{Figure 1}]. \text{ By the arguments in } [46, \text{Sections 2.1 and 2.2}], \text{ we have, analogous to } [46, \text{Proposition 2.2}], \text{ that for any fixed } y_0 \in \mathbb{R}, \text{ there exists } C > 0, c > 0, \text{ an integer} \]
Proof of Lemma 7. By Lemma 4 for any n, the joint distribution of $\lambda_1^{(N-j)}$, $\lambda_{N-j}^{(N-j)}$, $\lambda_2^{(N-j)}$, $\lambda_{N-j}^{(N-j)}$, ..., $\lambda_n^{(N-j)}$ converges weakly to that of $\xi_1^{(k-j)}$, $\xi_{1}^{(k-j)}$, $\xi_2^{(k-j)}$, $\xi_{2}^{(k-j)}$, ..., $\xi_n^{(k-j)}$ up to a scaling transform. Hence we have that the interlacing inequality (2.6) implies the weak interlacing property

$$+ \infty > \xi_1^{(k-j)} \geq \xi_{1}^{(k-j)} \geq \xi_2^{(k-j)} \geq \xi_{2}^{(k-j)} \geq \cdots \geq \xi_n^{(k-j)}.$$ \hfill (A.10)

On the other hand, the determinantal structure requires that the point process consisting of $\xi_1^{(k-j)}$ and $\xi_{1}^{(k-j)}$ is simple, so with probability 1 the inequalities in (A.10) are all strict. So with probability 1 we have (2.7) by letting $n \to \infty$.

Proof of Lemma 8. We prove the lemma in three steps: First the right tail estimate of $\xi_1^{(k)}$ in part [1] then the left tail estimate of $\xi_1^{(k)}$, and at last we prove part [2] about the rigidity of $\xi_n^{(k)}$.

Proof of the right tail estimate of $\xi_1^{(k)}$. We note that

$$\mathbb{P}(\xi_1^{(k)} > t) \leq \mathbb{P}(\xi_1^{(k)} > t) \leq \mathbb{E}(\# \text{ of } \xi_1^{(k)} \text{ on } [t, +\infty)) = \int_t^{+\infty} K_{\text{Airy}, a}(x, x)dx.$$ \hfill (A.11)

Then by (1.7),

$$\int_t^{+\infty} K_{\text{Airy}, a}(x, x)dx = \frac{1}{(2\pi i)^2} \int \frac{du}{\sigma} \int \frac{dv}{\bar{v}} \frac{e^{-\sigma u} \prod_{i=1}^{n-1} (u - a_j)}{e^{-\bar{v}v} \prod_{i=1}^{n} (v - a_j)} \frac{1}{(u-v)^2}. \hfill (A.12)$$

Let γ and σ be deformed into $\gamma_{\text{std}}(\sqrt{t})$ and $\sigma_{\text{std}}(-\sqrt{t})$ (c.f. (A.14)). By standard saddle point analysis, we find that as $t \to +\infty$, the integral (A.12) concentrates on the region $u \in \gamma_{\text{std}}(\sqrt{t}) \cap \{u - t = O(t^{-1/4})\}$ and $v \in \sigma_{\text{std}}(-\sqrt{t}) \cap \{v + \sqrt{t} = O(t^{-1/4})\}$. Then we conclude that as $t \to +\infty$,

$$\int_t^{+\infty} K_{\text{Airy}, a}(x, x)dx = O\left(t^{-3/2} \exp\left(-\frac{4}{3}\sqrt{t}\right)\right). \hfill (A.13)$$

Hence by choosing C properly, we have $\mathbb{P}(\xi_1^{(k)} > t) < \int_t^{+\infty} K_{\text{Airy}, a}(x, x)dx < C e^{-t/C}$.

\hfill \Box

Proof of the left tail estimate of $\xi_1^{(k)}$. We note that by the interlacing property in Lemma 7, $\mathbb{P}(\xi_1^{(k)} < -t) < \mathbb{P}(\xi_1^{(0)} < -t)$, where $\xi_1^{(0)}$ is the j-th particle in the determinantal point process defined by the Airy kernel (1.6). Then by [53], with any $\lambda \in (0, 1)$, we have

$$\mathbb{P}(\xi_1^{(0)} < -t) = \sum_{n=0}^{j-1} E(n; -t) < (1 - \lambda)^{j-1} \sum_{n=0}^{\infty} (1 - \lambda)^n E(n; -t) = 2^{j-1} D(-t, \lambda), \hfill (A.14)$$

where $E(n; -t)$ is the probability that exactly n particles are in $[-t, -\infty)$ as denoted in [53] Section ID, and $D(-t, \lambda)$ is defined by [53] Formula (1.17) as

$$D(-t, \lambda) = \exp\left(-\int_{-t}^{\infty} (x + t)q(x; \lambda)dx\right), \quad \text{where} \quad \frac{dq(s; \lambda)}{ds^2} = sq(s; \lambda) + 2q^3(s; \lambda), \quad q(s; \lambda) \sim \sqrt{\lambda}\mathcal{A}i(s) \text{ as } s \to \infty. \hfill (A.15)$$
The function $q(s; \lambda)$ is the Ablowitz-Segur solution to the Painlevé II equation \cite{1,19}, its asymptotics at $+\infty$ is given by the Airy function multiplied by constant $\sqrt{\lambda}$. The asymptotic behaviour of $q(s; \lambda)$ has been extensively studied, see \cite{28} for a rigorous and systematic discussion. We then derive the upper bound of $D(-t, \lambda)$ for large t from the asymptotics of $q(s; \lambda)$, and finally justify the estimate $\mathbb{P}(\xi_j^{(k)} < -t) < Ce^{-t/C}$ for some properly chosen C. \hfill \Box

Proof of the rigidity of $\xi_n^{(k)}$. We note that by the interlacing property \cite{26}, for all $n > k$,

$$\mathbb{P}\left(\left| \xi_n^{(k)} + \left(\frac{3\pi n}{2}\right)^{2/3} \right| > n^{\frac{2}{3}} \right) \leq \mathbb{P}\left(\# \text{ of } \xi_1^{(0)} \text{ in } \left(-\left(\frac{3\pi n}{2}\right)^{2/3} + n^{\frac{2}{3}}, \infty \right) \text{ is } \geq n - k \right) + \mathbb{P}\left(\# \text{ of } \xi_1^{(0)} \text{ in } \left(-\left(\frac{3\pi n}{2}\right)^{2/3} - n^{\frac{2}{3}}, \infty \right) \text{ is } < n \right).$$

(A.16)

Since $\xi_n^{(0)}$ are the n-th particle in the determinantal point process with the Airy kernel, so the problem is reduced to the rigidity of particles in this determinantal point process. The desired rigidity can be deduced from the mean and variance of the number of $\xi_1^{(0)}$ in $(-T, \infty)$ and the Markov inequality. If we denote the number of $\xi_1^{(0)}$ in $(-T, \infty)$ as $v_1(T)$, in the notation of \cite{51}, then

$$\mathbb{E}(v_1(T)) = 2T^{3/2}/(3\pi) + O(1), \quad \text{and} \quad \text{Var}(v_1(T)) = O(\log T)$$

as $T \to +\infty$, see \cite{51} Theorem 1 and the paragraph above Theorem 1 \cite{1}. That is enough to show that as $l \to \infty$,

$$\mathbb{P}\left(v_1\left(\left(\frac{3\pi n}{2}\right)^{2/3} - n^{\frac{2}{3}}\right) \geq n - k \right) = O\left(\frac{\log n}{n^{6/5}}\right), \quad \mathbb{P}\left(v_1\left(\left(\frac{3\pi n}{2}\right)^{2/3} + n^{\frac{2}{3}}\right) < n \right) = O\left(\frac{\log n}{n^{6/5}}\right).$$

(A.18)

By choosing the constant c properly, we obtain \cite{27} for all $n \geq 2$. \hfill \Box

Proof of Lemma \cite{9}. This lemma is analogous to Lemma \cite{8}. We prove it in four steps, with the first three steps parallel to those in the proof of Lemma \cite{8}. First, the right tail estimate of σ_j (part \cite{1}), next the left tail estimate of σ_j (part \cite{1}), and then the rigidity for σ_0, close to the edge (part \cite{2}), and at last the rigidity of σ_n in the bulk (part \cite{3}). In part \cite{1} we also need to consider σ_N, but we omit it, because the estimates for σ_N are analogous to the estimate for σ_1.

Proof of the right tail estimate of σ_j. We use the same idea as in \cite{A11}, and write

$$\mathbb{P}(\sigma_j > 2\sqrt{N} + tN^{-1/6}) \leq \mathbb{P}(\sigma_1 > 2\sqrt{N} + tN^{-1/6}) = \int_{2\sqrt{N}+tN^{-1/6}}^{\infty} K_{GUE,\alpha}^0(x, x)dx = \int_{t}^{\infty} K_{N,0,0}^{\prime}(x, x)dx,$$

(A.19)

where $K_{N,0,0}^{\prime}(x, x)$ is defined in \cite{A11}. Although we can evaluate the right-hand side of \cite{A19} like \cite{A12}, we prefer an indirect method that relies on result and proof of Lemma \cite{6} We recall that as a special case of \cite{A4},

$$K_{N,0,0}^{\prime}(x, x) = -\int_{t}^{\infty} H_{N,0}(x + t)J_{N,0}(x + t)dt,$$

(A.20)

and then by \cite{A7} and \cite{A8}, there exists $N_0 > 0$ and $C > 0$ such that for $x > 0$, $N > N_0$,

$$|Z_{N,0}H_{N,0}(x) - H_{\infty,k}(x)| \leq \frac{C\exp(-cx)}{N^{1/3}}, \quad |Z_{N,1}J_{N,0}(x) - J_{\infty,k}(x)| \leq \frac{C\exp(-cy)}{N^{1/3}},$$

(A.21)

where $Z_{N,0} = N^{-k/3}\exp(-3N/2)$ and $H_{\infty,k}, J_{\infty,k}$ are defined in \cite{A5} and \cite{A6}. Hence by the very rough estimate (whose proof is omitted) that $H_{\infty,k}(x) = O(1)$ and $J_{\infty,k}(x) = O(1)$ for all $x > 0$, and with the help of \cite{A9}, we have that

$$K_{N,0,0}^{\prime}(x, x) - K_{N,0,0}^{k,k}(x, x) = O(N^{-1/3}e^{-cx}), \quad \text{for all } x > 0 \text{ and } N > N_0.$$

(A.22)

It is pointed out in \cite{22} that \cite{51} Theorem 1 has a calculational error. See \cite{22} Theorem 6.2. Since we only need the magnitude of the variance, this mistake does not affect our argument. We also note that the variance of $\mathbb{P}(\# \text{ of } \xi_1^{(0)} \text{ in } (-T, -\infty))$ as $T \to +\infty$ can be computed by the contour integral method that is used in the proof of our Proposition \cite{10}.
Therefore, the desired right tail estimate of σ_j is implied by the estimate \((A.13)\) for the right tail estimate of $\xi_j^{(k)}$.

Proof of the left tail estimate of $\sigma_j = \lambda_j^{(N)}$. We use the same idea as in the proof of the left tail estimate of $\xi_j^{(k)}$, that $\mathbb{P}(\sigma_j < 2\sqrt{N} - tN^{-1/6}) \leq \mathbb{P}(\lambda_j^{(N-k)} < 2\sqrt{N} - tN^{-1/6})$, so it is not hard to see that it suffices to prove that there exists $C > 0$ such that

$$\mathbb{P}(\lambda_j^{(N-k)} < 2\sqrt{N} - k - t(N - k)^{-\frac{1}{2}}) < Ce^{-t^4/C},$$

for all $2 \leq t \leq 2(N - k)^{2/3}$. \((A.23)\)

where $\lambda_j^{(N-k)}$ is the j-th largest eigenvalue of a GUE random matrix with dimension $N - k$. The $j = 1$ case of \((A.23)\) exists in literature, see [43, Section 5.3, especially Formula (5.16)], where a stronger version of \((A.23)\) is derived in a very accessible way. The case of \((A.23)\) exists in literature, see [43, Section 5.3, especially Formula (5.16)], where a stronger version of \((A.23)\) is derived in a very accessible way. The $j > 1$ case of \((A.23)\) is not found in literature, to the best knowledge of the authors. However, we can extend the method in [43, Section 5.3] to solve this case. To see it, we note that like \((A.14)\), with $\lambda \in (0, 1)$, we have

$$\mathbb{P}(\lambda_j^{(N-k)} < 2\sqrt{N} - k - t(N - k)^{-\frac{1}{2}}) = \sum_{n=0}^{j-1} E(n; 2\sqrt{N} - k - t(N - k)^{-\frac{1}{2}}) < (1 - \lambda)^{1-\lambda} \sum_{n=0}^{\infty} (1 - \lambda)^n E(n; 2\sqrt{N} - k - t(N - k)^{-\frac{1}{2}}) = (1 - \lambda)^{1-\lambda} \det (\text{Id} - \lambda K),$$

where K is the $N \times N$ matrix whose (m, n) entry is

$$\langle P_{m-1}, P_{n-1} \rangle L^2((1 - \frac{1}{2}N) - 2/3, \infty), d\mu),$$

such that the meanings of P_m and $d\mu$ are the same as in [43, Formula (1.11)]. Then by the same arguments that leads to [43, Formula (5.14)], we have

$$\det (\text{Id} - \lambda K) = \prod_{i=1}^{N} (1 - \lambda \rho_i) \leq e^{-\frac{1}{2} \sum_{i=1}^{N} \rho_i} = \exp \left(-\lambda N \mu^N \left((1 - \frac{1}{2}(N - k)^{-2/3}, \infty) \right) \right),$$

where ρ_i are the eigenvalues of K, and μ^N is the measure defined in [43, Formula (1.4)]. We note that if we let $\lambda = 1$ in \((A.26)\), then \((A.26)\) is equivalent to [43, Formula (5.14)]. At last, using the estimate of $\mu^N((1 - \frac{1}{2}(N - k)^{-2/3}, \infty))$ given in [43, Section 5.3], we derive an estimate of $\det (\text{Id} - \lambda K)$, which yields the desired estimate of $\mathbb{P}(\lambda_j^{(N-k)} < 2\sqrt{N} - k - t(N - k)^{-1/6})$ and $\mathbb{P}(\sigma_j < 2\sqrt{N} - tN^{-1/6})$. Finally, we note that essentially the idea of the proof above is in [59].

Proof of the rigidity of σ_n for $n \leq CN^{1/10}$. As in \((2.12)\), we note that \((2.12)\) is analogous to \((2.9)\), and can be proved by an analogous argument. Instead of \((A.17)\), we have that if $v_{i}^{(n)}(T)$ is the number of eigenvalues of an n-dimensional GUE random matrix in the interval $(2\sqrt{n} - n^{-1/6}T, +\infty)$, then as $n \to \infty$, $T \geq T_0$ a positive constant, and $T/n = o(1)$, by the result of [37] \(^{4}\)

$$\mathbb{E}(v_{i}^{(n)}(T)) = 2T^{3/2} / (3\pi) + O(1), \quad \text{and} \quad \text{Var}(v_{i}^{(n)}(T)) = O(\log T).$$

\((A.27)\)

Then we prove \((2.12)\) by the same argument as the proof of \((2.9)\).

[49]

The proof of the rigidity of σ_n as in \((2.13)\). This is a direct consequence of the interlacing property $\lambda_n^{(N-k)} \leq \sigma_n \leq \lambda_{n-k}^{(N-k)}$ and the rigidity of GUE eigenvalues in [33, Theorem 2.2], which states the rigidity of eigenvalues for Wigner matrices that of which the GUE random matrices are a special case. \(\Box\)

\(^{4}\)The mean estimate is given in [37, Lemma 2.2], and the variance estimate is given in [37, Lemma 2.3] under an additional condition that $T \to \infty$ as $n \to \infty$. However, as pointed out by [12, Remark under Theorem 6.3], if we only need a crude estimate as in \((A.24)\), then the argument in [37] works for all $T > T_0 > 0$.\(\Box\)
References

[1] M. J. Ablowitz and H. Segur. Asymptotic solutions of the Korteweg-deVries equation. *Studies in Appl. Math.*, 57(1):13–44, 1976/77.

[2] M. Adler, P. van Moerbeke, and D. Wang. Random matrix minor processes related to percolation theory. *Random Matrices Theory Appl.*, 2(4):1350008, 72, 2013.

[3] G. W. Anderson, A. Guionnet, and O. Zeitouni. *An introduction to random matrices*, volume 118 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2010.

[4] Z. Bai and J. Yao. On sample eigenvalues in a generalized spiked population model. *J. Multivariate Anal.*, 106:167–177, 2012.

[5] Z. Bai and J. Yao. Central limit theorems for eigenvalues in a spiked population model. *Ann. Inst. Henri Poincaré Probab. Stat.*, 44(3):447–474, 2008.

[6] J. Baik, G. Ben Arous, and S. Péché. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. *Ann. Probab.*, 33(5):1643–1697, 2005.

[7] J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of spiked population models. *J. Multivariate Anal.*, 97(6):1382–1408, 2006.

[8] J. Baik and D. Wang. On the largest eigenvalue of a Hermitian random matrix model with spiked external source I. Rank 1 case. *Int. Math. Res. Not. IMRN*, (22):5164–5240, 2011.

[9] J. Baik and D. Wang. On the largest eigenvalue of a Hermitian random matrix model with spiked external source II: Higher rank cases. *Int. Math. Res. Not. IMRN*, (14):3304–3370, 2013.

[10] Z. Bao, X. Ding, J. Wang, and K. Wang. Statistical inference for principal components of spiked covariance matrix, 2020. arXiv:2008.11903.

[11] Z. Bao, X. Ding, and K. Wang. Singular vector and singular subspace distribution for the matrix denoising model, 2018. arXiv:1809.10476, to appear in Ann. Statist.

[12] F. Benaych-Georges, A. Guionnet, and M. Maida. Fluctuations of the extreme eigenvalues of finite rank deformations of random matrices. *Electron. J. Probab.*, 16:no. 60, 1621–1662, 2011.

[13] F. Benaych-Georges and R. R. Nadakuditi. The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices. *Adv. Math.*, 227(1):494–521, 2011.

[14] F. Benaych-Georges and R. R. Nadakuditi. The singular values and vectors of low rank perturbations of large rectangular random matrices. *J. Multivariate Anal.*, 111:120–135, 2012.

[15] L. Benigni. Fermionic eigenvector moment flow, 2019. arXiv:1908.10855.

[16] M. Bertola, R. Buckingham, S. Y. Lee, and V. Pierce. Spectra of random Hermitian matrices with a small-rank external source: the critical and near-critical regimes. *J. Stat. Phys.*, 146(3):475–518, 2012.

[17] M. Bertola, R. Buckingham, S. Y. Lee, and V. Pierce. Spectra of random Hermitian matrices with a small-rank external source: the supercritical and subcritical regimes. *J. Stat. Phys.*, 153(4):654–697, 2013.

[18] A. Bloemendal, A. Knowles, H.-T. Yau, and J. Yin. On the principal components of sample covariance matrices. *Probab. Theory Related Fields*, 164(1-2):459–552, 2016.

[19] A. Bloemendal and B. Virág. Limits of spiked random matrices I. *Probab. Theory Related Fields*, 156(3-4):795–825, 2013.

[20] A. Bloemendal and B. Virág. Limits of spiked random matrices II. *Ann. Probab.*, 44(4):2726–2769, 2016.
[21] P. Bourgade and H.-T. Yau. The eigenvector moment flow and local quantum unique ergodicity. *Comm. Math. Phys.*, 350(1):231–278, 2017.

[22] M. Capitaine. Limiting eigenvectors of outliers for spiked information-plus-noise type matrices. In *Séminaire de Probabilités XLIX*, volume 2215 of *Lecture Notes in Math.*, pages 119–164. Springer, Cham, 2018.

[23] M. Capitaine and C. Donati-Martin. Spectrum of deformed random matrices and free probability. In *Advanced topics in random matrices*, volume 53 of *Panor. Synth`eses*, pages 151–190. Soc. Math. France, Paris, 2017.

[24] M. Capitaine and C. Donati-Martin. Non universality of fluctuations of outlier eigenvectors for block diagonal deformations of Wigner matrices, 2018. [arXiv:1807.07773](https://arxiv.org/abs/1807.07773).

[25] M. Capitaine, C. Donati-Martin, and D. Féral. The largest eigenvalues of finite rank deformation of large Wigner matrices: convergence and nonuniversality of the fluctuations. *Ann. Probab.*, 37(1):1–47, 2009.

[26] M. Capitaine, C. Donati-Martin, and D. Féral. Central limit theorems for eigenvalues of deformations of Wigner matrices. *Ann. Inst. Henri Poincaré Probab. Stat.*, 48(1):107–133, 2012.

[27] I. Corwin. The Kardar-Parisi-Zhang equation and universality class. *Random Matrices Theory Appl.*, 1(1):1130001, 76, 2012.

[28] P. A. Deift and X. Zhou. Asymptotics for the Painlevé II equation. *Comm. Pure Appl. Math.*, 48(3):277–337, 1995.

[29] P. B. Denton, S. J. Parke, T. Tao, and X. Zhang. Eigenvectors from eigenvalues: a survey of a basic identity in linear algebra, 2019. [arXiv:1908.03795](https://arxiv.org/abs/1908.03795).

[30] X. Ding. High dimensional deformed rectangular matrices with applications in matrix denoising. *Bernoulli*, 26(1):387–417, 2020.

[31] N. El Karoui. Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices. *Ann. Probab.*, 35(2):663–714, 2007.

[32] L. Erdős and D. Schröder. Fluctuations of rectangular Young diagrams of interlacing Wigner eigenvalues. *Int. Math. Res. Not. IMRN*, (10):3255–3298, 2018.

[33] L. Erdős, H.-T. Yau, and J. Yin. Rigidity of eigenvalues of generalized Wigner matrices. *Adv. Math.*, 229(3):1435–1515, 2012.

[34] D. Féral and S. Péché. The largest eigenvalue of rank one deformation of large Wigner matrices. *Comm. Math. Phys.*, 272(1):185–228, 2007.

[35] P. L. Ferrari and R. Frings. Perturbed GUE minor process and Warren’s process with drifts. *J. Stat. Phys.*, 154(1-2):356–377, 2014.

[36] I. S. Gradshteyn and I. M. Ryzhik. *Table of integrals, series, and products*. Elsevier/Academic Press, Amsterdam, seventh edition, 2007. Translated from the Russian, Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger, With one CD-ROM (Windows, Macintosh and UNIX).

[37] J. Gustavsson. Gaussian fluctuations of eigenvalues in the GUE. *Ann. Inst. H. Poincaré Probab. Statist.*, 41(2):151–178, 2005.

[38] J. B. Hough, M. Krishnapur, Y. Peres, and B. Virág. Determinantal processes and independence. *Probab. Surv.*, 3:206–229, 2006.

[39] A. Knowles and J. Yin. Eigenvector distribution of Wigner matrices. *Probab. Theory Related Fields*, 155(3-4):543–582, 2013.
[40] A. Knowles and J. Yin. The isotropic semicircle law and deformation of Wigner matrices. *Comm. Pure Appl. Math.*, 66(11):1663–1750, 2013.

[41] A. Knowles and J. Yin. The outliers of a deformed Wigner matrix. *Ann. Probab.*, 42(5):1980–2031, 2014.

[42] B. Landon and P. Sosoe. Fluctuations of the overlap at low temperature in the 2-spin spherical SK model, 2019. [arXiv:1905.03317](https://arxiv.org/abs/1905.03317)

[43] M. Ledoux. Deviation inequalities on largest eigenvalues. In *Geometric aspects of functional analysis*, volume 1910 of *Lecture Notes in Math.*, pages 167–219. Springer, Berlin, 2007.

[44] J. Marcinek and H.-T. Yau. High dimensional normality of noisy eigenvectors, 2020. [arXiv:2005.08425](https://arxiv.org/abs/2005.08425)

[45] D. Paul. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. *Statist. Sinica*, 17(4):1617–1642, 2007.

[46] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices. *Probab. Theory Related Fields*, 134(1):127–173, 2006.

[47] A. Pizzo, D. Renfrew, and A. Soshnikov. On finite rank deformations of Wigner matrices. *Ann. Inst. Henri Poincaré Probab. Stat.*, 49(1):64–94, 2013.

[48] J. Quastel. Introduction to KPZ. In *Current developments in mathematics, 2011*, pages 125–194. Int. Press, Somerville, MA, 2012.

[49] H. Segur and M. J. Ablowitz. Asymptotic solutions of nonlinear evolution equations and a Painlevé transcendent. *Phys. D*, 3(1-2):165–184, 1981.

[50] A. Soshnikov. Determinantal random point fields. *Uspekhi Mat. Nauk*, 55(5(335)):107–160, 2000.

[51] A. B. Soshnikov. Gaussian fluctuation for the number of particles in Airy, Bessel, sine, and other determinantal random point fields. *J. Statist. Phys.*, 100(3-4):491–522, 2000.

[52] T. Tao and V. Vu. Random matrices: universal properties of eigenvectors. *Random Matrices Theory Appl.*, 1(1):1150001, 27, 2012.

[53] C. A. Tracy and H. Widom. Level-spacing distributions and the Airy kernel. *Comm. Math. Phys.*, 159(1):151–174, 1994.

[54] D. Wang. The largest sample eigenvalue distribution in the rank 1 quaternionic spiked model of Wishart ensemble. *Ann. Probab.*, 37(4):1273–1328, 2009.

[55] D. Wang. The largest eigenvalue of real symmetric, Hermitian and Hermitian self-dual random matrix models with rank one external source, Part I. *J. Stat. Phys.*, 146(4):719–761, 2012.

[56] H. Widom. On convergence of moments for random Young tableaux and a random growth model. *Int. Math. Res. Not.*, (9):455–464, 2002.

[57] H. Wu. *New Applications of Random Matrices in Spin Glass and Machine Learning*. ProQuest LLC, Ann Arbor, MI, 2019. Thesis (Ph.D.)–University of Michigan.