Longitudinal fluctuations in the Berezinskii-Kosterlitz-Thouless phase

Pawel Jakubczyk1,2 and Walter Metzner2

1Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
2Max-Planck-Institute for Solid State Research, Heisenbergstr. 1, D-70569 Stuttgart, Germany

(Dated: March 29, 2018)

We analyze the interplay of longitudinal and transverse fluctuations in a $U(1)$ symmetric two-dimensional ϕ^4-theory. To this end, we derive coupled renormalization group equations for both types of fluctuations obtained from a linear (cartesian) decomposition of the order parameter field. Discarding the longitudinal fluctuations, the expected Berezinskii-Kosterlitz-Thouless (BKT) phase characterized by a finite stiffness and an algebraic decay of order parameter correlations is recovered. Renormalized by transverse fluctuations, the longitudinal mass scales to zero, so that longitudinal fluctuations become increasingly important for small momenta. Within our expansion of the effective action, they generate a logarithmic decrease of the stiffness, in agreement with previous functional renormalization group calculations. The logarithmic terms imply a deviation from the vanishing beta-function for the stiffness in the non-linear sigma model describing the phase fluctuations at three-loop order. To gain further insight, we also compute the flow of the parameters characterizing longitudinal and transverse fluctuations from a density-phase representation of the order parameter field, with a cutoff on phase fluctuations. The power-law flow of the longitudinal mass and other quantities is thereby confirmed, but the stiffness remains finite in this approach. We conclude that the marginal flow of the stiffness obtained in the cartesian representation is an artifact of the truncated expansion of momentum dependencies.

I. INTRODUCTION

The Mermin-Wagner theorem12 excludes the spontaneous breaking of continuous symmetries at finite temperatures in systems with reduced dimensionality $d \leq 2$. A situation arises for two-dimensional systems with abelian symmetry groups such as $U(1)$. In this case phase fluctuations indeed prevent long-range order at $T > 0$, but the order-parameter correlations decay only algebraically at low temperatures. A phase transition to the high temperature phase with exponentially decaying correlations is driven by topological excitations, that is, vortices, as discovered independently by Berezinskii3 and Kosterlitz and Thouless4.

There are two familiar ways of parametrizing the complex order parameter field $\phi(r)$ in a $U(1)$-symmetric theory. One possibility is a linear (cartesian) decomposition of the form $\phi(r) = \alpha + \sigma(r) + i\pi(r)$, where α is the expectation value of $\phi(r)$, while $\sigma(r)$ and $\pi(r)$ are real fields, usually referred to as longitudinal and transverse components. The massless transverse fluctuations lead to infrared divergences in perturbation theory3, which require a renormalization group treatment. Alternatively one may decompose the complex field as $\phi(r) = A(r) e^{i\theta(r)}$ in polar coordinates, with an amplitude $A(r)$ and a phase $\theta(r)$. Writing the amplitude as a square root of density, $A(r) = \sqrt{\rho(r)}$, the ϕ^4-interaction is transformed to a quadratic density-fluctuation term, while interaction terms are generated from the quadratic $|\nabla \phi|^2$ term. The latter are however suppressed at small momenta, so that no infrared divergences arise in this representation3.8

Usually the BKT-transition is described by phase fluctuations. If amplitude fluctuations3 are present, such as in an interacting Bose gas, they are expected to be innocuous due to their finite mass. The coupled system of longitudinal and transverse fluctuations has been analyzed in a series of studies9,10,11 via the functional renormalization group (fRG), also known as exact or non-perturbative renormalization group12. This approach is based on an exact flow equation for an effective action $\Gamma[A]\phi\rangle$, which, as a function of an infrared cutoff Λ, interpolates continuously between the bare action $S[\phi\rangle$ and the generating functional for one-particle irreducible vertex functions $\Gamma[\phi\rangle$. Using a non-perturbative derivative expansion9,10,11 signatures of the BKT-transition were obtained12 although vortices do not appear explicitly in that approach. The essential singularity of the correlation length $\xi \sim e^{\frac{1}{\sqrt{T-T_{\text{BKT}}}}}$ above the critical temperature was reproduced, except in the immediate vicinity of T_{BKT}. In the low temperature phase below T_{BKT} the expected algebraic decay of order parameter correlations was obtained over many length scales, but at very large distances the correlations ultimately decay exponentially, with a huge but finite correlation length9. In the fRG flow this behavior is reflected by a quasi-fixed point of the scale-dependent phase stiffness J^Λ at intermediate scales Λ, while ultimately J^Λ scales to zero for $\Lambda \to 0$. In a recent reexamination of the fRG flow equations it was found that the expected essential scaling of ξ could be reproduced arbitrarily close to T_{BKT} by finite-tuning the infrared cutoff function9. By the same procedure, the algebraic decay below T_{BKT} could be maintained at arbitrarily long distances, but only as long as T is not too low. The fRG has also been shown to be a powerful tool for accurate calculations of non-universal properties such as the specific heat, which exhibits a pronounced maximum above the BKT transition temperature14.

The failure in obtaining a stable fixed point for the stiffness at low temperatures has been attributed to the approximate truncation of the effective action15. It is striking that a rather sophisticated approximation, which captures the subtle and peculiar features of the BKT-transition over a wide range of scales, fails to reproduce the fixed point at low temperatures, which can be easily obtained from a Gaussian theory of...
phase fluctuations.\cite{footnote:13}
In this article we clarify the mechanism that spoils the fixed point of the stiffness in the fRG flow. We focus on the low temperature regime well below the BKT-temperature, where vortices play no role. Using a truncation of the effective action at quartic order in the field, with a cartesian decomposition in longitudinal and transverse components, we obtain an analytic understanding of the behavior of the flow. The expected fixed point with an algebraic decay of order parameter correlations is recovered if longitudinal fluctuations are discarded. However, transverse fluctuations lead to a decreasing longitudinal mass and, as an inevitable consequence, to a slowly decreasing stiffness, if longitudinal fluctuations are taken into account. Although the flow of the stiffness is only logarithmic, it ultimately results in a finite correlation length at any temperature $T > 0$. This is clearly at odds with the absence of any singular corrections to the phase stiffness in the density-phase representation. Therefore, we relate the longitudinal-transverse and the density-phase representation to each other by computing the flow of parameters in the cartesian decomposition with a cutoff on phase fluctuations. Thereby, the flow of the longitudinal mass to zero is confirmed, while the stiffness remains finite.

The paper is structured as follows. In Sec. II we introduce the $U(1)$-symmetric ϕ^4-model and describe the ansatz for the truncated effective action. The corresponding flow equations are presented in Sec. III. In Sec. IV we analyze the flow of the stiffness and other quantities, first without, and then with longitudinal fluctuations. In Sec. V we revisit the flows from a density-phase representation perspective. In the final Sec. VI we summarize and conclude that the instability of the BKT fixed point observed in the cartesian representation is most likely an artifact of the truncation.

II. BARE AND EFFECTIVE ACTION

We consider a two-dimensional system with a complex order parameter field $\phi(\mathbf{r})$ described by a $U(1)$-symmetric action of the form

$$S[\phi] = \beta \left[\frac{u_0}{8} \int d^2 r \left(\phi(\mathbf{r})^2 - \alpha_0^2 \right)^2 + \frac{Z_0}{2} \int d^2 r |\nabla \phi(\mathbf{r})|^2 \right],$$

where u_0, α_0, and Z_0 are real positive constants, and $\beta = 1/T$ is the inverse temperature. The potential in the first term has the form of a Mexican hat with a degenerate minimum at any complex ϕ with modulus α_0. Hence, the bare action exhibits spontaneous symmetry breaking. The system is regularized by an ultraviolet momentum cutoff Λ_0. Note that we analyze only thermal, not quantum fluctuations.

A scale-dependent effective action\cite{footnote:12} is defined by adding an infrared regulator

$$R^\Lambda[\phi] = \frac{T}{2} \int_q R^\Lambda(\mathbf{q}) \phi_q^* \phi_q,$$

with a suitable regulator function $R^\Lambda(\mathbf{q})$ to the bare action. Here and in the following ϕ_q is the order parameter field in momentum representation, with normalization conventions such that $\phi(\mathbf{r}) = T \int_q \phi_q e^{i \mathbf{q} \cdot \mathbf{r}}$, and \int_q is a short-hand notation for $\int \frac{d^d q}{(2\pi)^d}$. The partition function with complex source fields h is then given by the functional integral

$$Z^\Lambda[h] = \int \mathcal{D}[\phi] e^{-S[\phi] - R^\Lambda[\phi] + \int_q (h_q \phi_q^* + h_q^* \phi_q)}.$$

(3)

The Legendre transform of $-\ln Z^\Lambda[h]$ yields the scale-dependent effective action

$$\Gamma^\Lambda[\phi] = -\ln Z^\Lambda[h] + \int_q (h_q \phi_q^* + h_q^* \phi_q) - R^\Lambda[\phi].$$

(4)

The regulator $R^\Lambda[\phi]$ suppresses fluctuations with $|\mathbf{q}| < \Lambda$. For $\Lambda = \Lambda_0$, all fluctuations are completely suppressed such that $\Gamma^\Lambda_0[\phi] = S[\phi]$, which defines the initial condition of the flow. For a sharp momentum cutoff one can choose $\Lambda_0 = \Lambda_0^*,\text{ while for a smooth regulator function } R^\Lambda(\mathbf{q}) \text{ the initial flow parameter is } \Lambda_0 = \infty. \text{ For } \Lambda \to 0, \text{ the regulator function } R^\Lambda(\mathbf{q}) \text{ vanishes and } \Gamma^\Lambda[\phi] \text{ tends to the final effective action } \Gamma[\phi]. \text{ The flow of } \Gamma^\Lambda[\phi] \text{ is determined by the exact equation\cite{footnote:12}}$

$$\partial_\Lambda \Gamma^\Lambda[\phi] = \frac{1}{\Gamma^{(2)\Lambda}[\phi] + R^\Lambda},$$

where $\Gamma^{(2)\Lambda}[\phi]$ is the matrix of second functional derivatives of $\Gamma^\Lambda[\phi]$ with respect to ϕ and ϕ^*. The exact effective action is a complicated functional of ϕ. In Refs.\cite{7} and \cite{8}, it was approximated by a derivative expansion of the form (with slightly different notations)

$$\Gamma^\Lambda[\phi] = \beta \int d^2 r \left[\frac{1}{2} Z^\Lambda[\rho(\mathbf{r})] |\nabla \phi(\mathbf{r})|^2 + \frac{1}{8} Y^\Lambda[\rho(\mathbf{r})] \left(|\nabla \phi(\mathbf{r})|^2 \right)^2 \right],$$

(6)

where U^Λ, Z^Λ, and Y^Λ are functions of the $U(1)$-invariant $\rho(\mathbf{r}) = |\phi(\mathbf{r})|^2$. The second gradient term is important for capturing the distinct longitudinal and transverse gradients.\cite{footnote:13} The unrestricted ρ-dependence of U^Λ, Z^Λ, and Y^Λ turned out to be a crucial ingredient in the BKT-transition regime.\cite{footnote:13} At low temperatures, however, one may discard the ρ dependence of Z^Λ and Y^Λ, and truncate U^Λ at quadratic order in ρ, that is, at quartic order in ϕ. We are thus led to our ansatz for the effective action,

$$\Gamma^\Lambda[\phi] = \beta \int d^2 r \left[\frac{u^\Lambda}{8} \left(\phi(\mathbf{r})^2 - \alpha^\Lambda \phi(\mathbf{r})^2 \right)^2 + \frac{Z^\Lambda}{2} |\nabla \phi(\mathbf{r})|^2 + \frac{Y^\Lambda}{8} \left(|\nabla \phi(\mathbf{r})|^2 \right)^2 \right],$$

(7)

with positive scale-dependent numbers u^Λ, α^Λ, Z^Λ, and Y^Λ. The first two terms have the form of the bare action, with renormalized parameters. In the following we will drop the Λ-superscripts from scale-dependent quantities, to simplify the notation.
To expand around the real positive minimum of the Mexican hat potential, we decompose $\phi(\mathbf{r})$ linearly (in cartesian coordinates) as

$$\phi(\mathbf{r}) = \alpha + \sigma(\mathbf{r}) + i\pi(\mathbf{r}),$$

where $\sigma(\mathbf{r})$ and $\pi(\mathbf{r})$ are real fields describing longitudinal and transverse fluctuations, respectively. Their Fourier components σ_q and π_q obey the relations $\sigma_q = -\sigma_{-q}$ and $\pi_q = -\pi_{-q}$. Inserting the decomposition of ϕ into Eq. (7), one obtains several quadratic, cubic and quartic terms,

$$\Gamma = \Gamma_\sigma + \Gamma_\pi + \Gamma_{\sigma\pi} + \Gamma_{\sigma^2\pi} + \Gamma_{\sigma^2\pi^2}.$$ \hfill (9)

The quadratic terms have the form

$$\Gamma_\sigma = \frac{T}{2} \int_q (m_\sigma^2 + Z_\sigma q^2) \sigma_q \sigma_{-q},$$

$$\Gamma_\pi = \frac{T}{2} \int_q Z_\pi q^2 \pi_q \pi_{-q}. \hfill (10)$$

The longitudinal mass is determined by the order parameter α and the quartic coupling u in Eq. (7) as

$$m_\sigma^2 = u\alpha^2,$$

and the Z-factors for longitudinal and transverse fluctuations are related to Z and Y by

$$Z_\sigma = Z + Y\alpha^2,$$

$$Z_\pi = Z. \hfill (12)$$

We now see that the quartic gradient term in the action (7) is crucial for allowing independent renormalizations of longitudinal and transverse fluctuations16 The cubic and quartic interaction terms read

$$\Gamma_\sigma = \frac{T^2}{2} \int_{q,p} U(p) \alpha \sigma_p \sigma_q \sigma_{-p-q},$$

$$\Gamma_{\sigma\pi} = \frac{T^2}{2} \int_{q,p} U(p) \alpha \sigma_p \pi_q \pi_{-p-q},$$

$$\Gamma_{\sigma^2\pi} = \frac{T^3}{8} \int_{q,p,q'} U(p) \sigma_p \sigma_q \sigma_{-p-q-q'},$$

$$\Gamma_{\sigma^2\pi^2} = \frac{T^3}{8} \int_{q,p,q} U(p) \pi_p \pi_q \pi_{-p-q-q'},$$

$$\Gamma_{\sigma^2\pi^2} = \frac{T^3}{4} \int_{q,p,q,q'} U(p) \sigma_p \sigma_q \pi_p \pi_{-p-q-q'}, \hfill (13)$$

where $U(p) = u+Yp^2$. The relations (11)-(13) are valid for the quartic action (7). Higher order terms would yield additional contributions.

A quantum version of the ansatz (7) for the effective action fully captures the subtle interplay of longitudinal and transverse fluctuations in the ground state of an interacting Bose gas19

III. FLOW EQUATIONS

Inserting the ansatz (7) for the effective action Γ^A into the exact flow equation (5) and comparing coefficients, one obtains flow equations for the scale-dependent parameters. The parameters u, α, Z, and Y in Eq. (7) are related to the longitudinal mass m_σ^2 and the Z-factors for longitudinal and transverse fluctuations, Z_σ and Z_π, by the relations (11) and (12). We can thus avoid flow equations for four-point functions, and use u, m_σ^2, Z_σ, and Z_π as our basic variables. The flow of m_σ^2, Z_σ, and Z_π is determined from the self-energies for σ- and π-fields, that is, two-point functions.

The right-hand sides of the flow equations are loop integrals with interaction vertices and σ- and π-propagators

$$G_{\sigma}(q) = \langle \sigma_q \sigma_{-q} \rangle = \frac{1}{m_\sigma^2 + Z_\sigma q^2 + R(q)}, \hfill (14)$$

$$G_{\pi}(q) = \langle \pi_q \pi_{-q} \rangle = \frac{1}{Z_\pi q^2 + R(q)}. \hfill (15)$$

The derivation of the flow-equations is straightforward. In the present case, one can obtain them also by expanding the flow equations for the derivative expansion used in Ref.8 or, even more easily, by extracting the classical (zero frequency) bosonic contributions from the flow equations in Ref.17

The flow equation for α is obtained from the condition that the one-point σ-vertex has to vanish if α is the modulus of the minimum of the effective action. This yields11

$$\frac{d\alpha}{d\Lambda} = -\frac{\alpha T}{2m_\sigma^2 + R(q)} \int_q [u + 2U(q)G_{\sigma}(q) + uG_{\pi}(q)]. \hfill (16)$$

Here and in the following the prime indicates a Λ-derivative acting only on $R(q)$, that is,

$$G'_{\sigma/\pi}(q) = D_\Lambda G_{\sigma/\pi}(q) = -G^2_{\sigma/\pi} \frac{dR(q)}{d\Lambda}. \hfill (17)$$

The flow equations for m_σ^2 and Z_σ can be derived from the flow equation for the self-energy of the σ-fields, which has the form12

$$\frac{d}{d\Lambda} \Sigma_\sigma(p) = [u + 2U(p)] \sigma \frac{d\alpha}{d\Lambda}$$

$$+ \int_q \big[u + 2U(p + q) \big] G_{\sigma}(q) + uG_{\pi}(q) \big[u + 2U(p + q) \big] \sigma$$

$$- \int_q \big[u + 2U(p + q) \big] G_{\sigma}(q) + uG_{\pi}(q) \big[u + 2U(p + q) \big] \sigma$$

$$\times D_\Lambda \big[G_{\sigma}(q) + G_{\pi}(p + q) \big]$$

$$- \frac{T}{2} \int_q \big[u + 2U(q) \big] \sigma^2 D_\Lambda \big[G_{\sigma}(q) + G_{\pi}(p + q) \big], \hfill (18)$$

where D_Λ as defined in Eq. (7). The flow of the longitudinal mass $m_\sigma^2 = m_{\sigma,0}^2 + \Sigma_\sigma(0)$ is thus obtained from

$$\frac{d}{d\Lambda} m_\sigma^2 = 3\alpha^2 T \frac{d\alpha}{d\Lambda} + \int_q \big[u + 2U(q) \big] \sigma^2 D_\Lambda \big[G_{\sigma}(q) + uG_{\pi}(q) \big]$$

$$- \frac{T}{2} \int_q D_\Lambda \big[u + 2U(q) \big] \sigma^2 G_{\pi}(q) + u^2 G_{\sigma}(q)]. \hfill (19)$$
The flow of \(Z_\sigma \) can be obtained from a second momentum derivative of the self-energy at \(p = 0 \), that is,

\[
\frac{d^2}{dp^2} Z_\sigma = \frac{1}{4} \frac{d^2}{dp^2} \Sigma_\sigma^{(2)}(p)|_{p=0} = \frac{1}{4} \Delta_p \frac{d}{dp} \Sigma_\sigma(p)|_{p=0},
\]

where \(\Delta_p = \delta^2_{p_x} + \delta^2_{p_y} \), yielding

\[
\frac{d}{d\Lambda} Z_\sigma = 2Y \frac{d\alpha}{d\Lambda} + TY \int_q G'_\sigma(q) - \frac{T}{8} \Delta_p \int_q \left([U(p) + U(q)] G'_\sigma(q) + \alpha G'_\sigma(q) \right)
+ DT \left[G_\sigma(q)G_\sigma(p + q) \right]|_{p=0} - \frac{T}{8} \Delta_p \int_q \left([U(p)]^2 G_\sigma(q)G_\sigma(p + q) \right)|_{p=0}. \tag{20}
\]

The flow equation for the \(\pi \)-field self-energy reads

\[
\frac{d}{d\Lambda} \Sigma_\sigma(p) = \frac{ua}{\alpha} \frac{d\alpha}{d\Lambda} + \frac{T}{2} \int_q \left(\frac{[u + 2U(p + q)] G'_\sigma(q) + \alpha G'_\sigma(q)}{\pi} \right)
- T \int_q \left([U(q)]^2 \sigma^2 D_\Lambda \left[G_\sigma(q)G_\sigma(p + q) \right] \right)|_{p=0}. \tag{21}
\]

The flow of \(\pi_\sigma \) can be extracted by applying a second order momentum derivative, that is,

\[
\frac{d^2}{dp^2} \Sigma_\sigma = \frac{1}{4} \Delta_p \frac{d^2}{dp^2} \Sigma_\sigma(p)|_{p=0},
\]

yielding

\[
\frac{d}{d\Lambda} \pi = \frac{T}{4} \Delta_p \int_q U(p + q)G'_\sigma(q)|_{p=0}
- \frac{T}{4} \Delta_p \int_q \left([U(q)]^2 \sigma^2 D_\Lambda \left[G_\sigma(q)G_\sigma(p + q) \right] \right)|_{p=0}. \tag{22}
\]

Using the relation \(\alpha^2 U(q) = G_\sigma^{-1}(q) - G_\sigma^{-1}(q) \), this can be simplified to

\[
\frac{d}{d\Lambda} \pi = \frac{T}{4} \Delta_p \int_q U(q) D_\Lambda \left[G_\sigma(q)G_\sigma^{-1}(q)G_\sigma(p + q) \right]|_{p=0}
= \frac{T}{4\alpha^2} \Delta_p \int_q D_\Lambda \left[G_\sigma^{-1}(q)G_\sigma(p + q) \right]
- G_\sigma(q)G_\sigma^{-1}(q)G_\sigma(p + q)|_{p=0}. \tag{23}
\]

In the last step the contribution from transverse fluctuations has been disentangled from contributions involving also longitudinal fluctuations.

IV. FLOW

We now study the flow of the parameters \(\alpha, m_\sigma^2, Z_\sigma \) and \(Z_\pi \) as obtained from the flow equations derived in the preceding section. We will first show that the BKT fixed point is easily recovered if only transverse fluctuations are taken into account, and will then analyze the behavior and impact of longitudinal fluctuations.

A. BKT fixed point

The flow equations involve longitudinal and transverse fluctuations. Discarding the longitudinal fluctuations, the flow equation (16) for the order parameter \(\alpha \) is reduced to

\[
\frac{d\alpha}{d\Lambda} = \frac{2\pi}{aT} \int_q u G'_\sigma(q). \tag{24}
\]

Using \(m_\sigma^2 = u\alpha^2 \), this can be written as

\[
\frac{dm_\sigma^2}{d\Lambda} = -T \int_q G'_\sigma(q). \tag{25}
\]

The flow equation (23) for \(Z_\pi \) is also simplified,

\[
\frac{dZ_\pi}{d\Lambda} = \frac{T}{4\alpha^2} \Delta_p \int_q D_\Lambda \left[G_\sigma^{-1}(q)G_\sigma(p + q) \right]|_{p=0}. \tag{26}
\]

If the contribution from longitudinal fluctuations is omitted. The simplified flow equations (24) and (26) represent a closed system involving only \(\alpha \) and \(Z_\sigma \). The coupling \(u \) and the longitudinal mass \(m_\sigma^2 \) have canceled out. After substituting \(q \rightarrow q - p \) in the integral in Eq. (26), the momentum derivative acts on \(G_\sigma^{-1} \), so that one obtains

\[
\frac{dZ_\pi}{d\Lambda} = \frac{T}{4\alpha^2} Z_\sigma \int_q G'_\sigma(q) + \frac{T}{4\alpha^2} D_\Lambda \int_q G_\sigma(q) \Delta_q R(q). \tag{27}
\]

For a momentum independent regulator function, such as \(R = Z_\sigma \Lambda^2 \), the last term in this flow equation vanishes. For a generic regulator function with the usual asymptotic properties \(R(q) \rightarrow 0 \) for \(\Lambda \rightarrow 0 \) and \(R(q) \rightarrow \text{const} \) for \(q \rightarrow 0 \), the integral \(\int_q G_\sigma(q) \Delta_q R(q) \) converges to a constant for \(\Lambda \rightarrow 0 \), such that its \(\Lambda \)-derivative vanishes in that limit. Hence, the second term in Eq. (27) vanishes in any case for \(\Lambda \rightarrow 0 \), such that

\[
\frac{dZ_\pi}{d\Lambda} = \frac{T}{4\alpha^2} Z_\sigma \int_q G'_\sigma(q) \tag{28}
\]

in the infrared limit.

From the flow equations for \(\alpha \) and \(Z_\sigma \), Eqs. (24) and (28), one can immediately see that

\[
\frac{d}{d\Lambda} (Z_\sigma \alpha^2) = 0. \tag{29}
\]

Hence, the phase stiffness

\[
J = Z_\sigma \alpha^2 \tag{30}
\]

tends to a finite constant for \(\Lambda \rightarrow 0 \). The finite phase stiffness is a hallmark of the BKT phase. In particular, in case of an interacting Bose gas, the finite stiffness implies that the system is a superfluid at low temperatures, although there is no long-range order.

For simple regulator functions, the coupled flow equations for \(\alpha \) and \(Z_\pi \) can be solved explicitly. In particular, for a momentum-independent regulator \(R \) one obtains

\[
\int_q G'_\sigma(q) = -\frac{1}{4\pi Z_\pi} \frac{d\ln R}{d\Lambda}. \tag{31}
\]
for small Λ (that is, for $R \ll Z_\pi \Lambda^2$), such that
\[
\frac{d}{d\Lambda} \alpha^2 = \frac{T}{4\pi Z_{\pi}^2} \frac{d \ln R}{d\Lambda}, \tag{32}
\]
\[
\frac{d}{d\Lambda} Z_{\pi} = -\frac{T}{4\pi \alpha^2} \frac{d \ln R}{d\Lambda}. \tag{33}
\]

The solution of these equations has the form $\alpha^2 \propto R^{1/(4\pi J)}$ and $Z_{\pi} \propto R^{-1/(4\pi J)}$. For the specific choice $R = \Lambda^2$, where the parameter Λ is a momentum scale, one obtains
\[
\alpha^2 = \bar{\alpha}^2_0(\Lambda/\Lambda_0)^\eta, \tag{34}
\]
\[
Z_{\pi} = Z_{\pi 0}(\Lambda/\Lambda_0)^\eta, \tag{35}
\]
with the anomalous dimension
\[
\eta = \frac{T}{2\pi J}. \tag{36}
\]

The prefactors $\bar{\alpha}^2_0$ and $Z_{\pi 0}$ are renormalized counterparts of the bare parameters α^2_0 and $Z_{\pi 0}$.

In previous fRG calculations the regulator R was often chosen proportional to Z_{π}, so that common factors of Z_{π} could be scaled away by a redefinition of variables. For $R = Z_{\pi} \Lambda^2$, the transverse propagator has the simple form $G_{zz}^{-1}(q) = Z_{\pi}(q^2 + \Lambda^2)$. Since R depends on Z_{π} in this case, it appears also on the right hand side of the above solution as a function of R. Solving for α and Z_{π} as a function of Λ, one again obtains a solution of the form Eqs. (34) and (35), where now
\[
\eta = \frac{T/(2\pi J)}{1 + T/(4\pi J)} \approx \frac{T}{2\pi J} \text{ for } T \ll 4\pi J. \tag{37}
\]

Note that the difference between this equation and Eq. (36) is not a contradiction, but simply reflects the different choice of the flow parameter Λ.

The order parameter α vanishes for $\Lambda \to 0$, in agreement with the Mermin-Wagner theorem. Z_{π} diverges with a power-law for $\Lambda \to 0$, which implies a modification of the quadratic momentum dependence of the transverse fluctuation propagator to $G_{zz}(q) \sim |q|^{\eta - 2}$ for small q. This corresponds to the well-known algebraic decay of order parameter correlations at long distances, with an exponent proportional to T for low T.[13]

B. Longitudinal fluctuations at the BKT-fixed point

We now analyze how the transverse fluctuations affect the mass and the Z-factor of the longitudinal fluctuations. In the ground state of a superfluid Bose gas, the transverse quantum fluctuations lead to substantial renormalizations of the longitudinal fluctuations in $d \leq 3$ dimensions: m_{π}^2 vanishes and Z_{π} diverges in the low-energy limit.[13] In this section we still assume that the transverse fluctuations yield the dominant contributions to the flow, so that the flow of α and Z_{π} is described by the BKT fixed-point as discussed above. Although this assumption turns out to be inconsistent with its consequences, the power-laws derived below remain valid in a broad scaling regime at low temperatures.

The dominant transverse fluctuation contribution to the flow of the mass m_{π}^2 is given by the last term in Eq. (19). Discarding the other terms and using $u = m_{\pi}^2/\alpha^2$ one obtains
\[
\frac{d}{d\Lambda} m_{\pi}^2 = -\frac{T m_{\pi}^2}{\alpha^2} \int_q G_{zz}(q) G_{zz}(q), \tag{38}
\]
which can also be written as
\[
\frac{d}{d\Lambda} (m_{\pi}^2)^{-1} = \frac{T}{\alpha^2} \int_q G_{zz}(q) G_{zz}(q). \tag{39}
\]

Instead of solving the flow equation for a specific choice of regulator, we perform a general power-counting analysis for an arbitrary regulator that suppresses contributions from momenta below the cutoff scale Λ. At the BKT fixed point, one has $\alpha^2 \sim \Lambda^0$, $Z_{\pi} \sim \Lambda^{-\eta}$, and hence $G_{zz} \sim \Lambda^{\eta - 2}$, $G_{zz}' \sim \Lambda^{-\eta}$. Hence, for small Λ, the flow equation Eq. (39) has the form $\partial_\Lambda (m_{\pi}^2)^{-1} = -TC \Lambda^{\eta - 3}$, where $C > 0$ is a constant (note that G_{zz} is negative). This equation can be easily integrated, yielding
\[
m_{\pi}^2 = \frac{2 - \eta}{CT} \Lambda^{2-\eta}. \tag{40}
\]

for small Λ. The initial mass m_{π}^2 does not enter here, the constant C depends only on α and Z_{π}. The longitudinal mass thus vanishes rapidly for $\Lambda \to 0$, with an exponent $2 - \eta$, and a prefactor proportional to T^{-1}. Note that $\eta \leq 1/4$ in the BKT phase[15] so that $2 - \eta$ remains close to 2. From $u = m_{\pi}^2/\alpha^2$ it follows that the ϕ^4-coupling scales as $u \sim T^{-1} \Lambda^{2-2\eta}$ and thus vanishes, too.

Keeping only the transverse fluctuation term, the flow equation (20) for Z_{π} can be simplified to
\[
\frac{d}{d\Lambda} Z_{\pi} = -\frac{T}{8} \partial_\Lambda \int_q \left[|U(p)|^2 \alpha^2 D_{zz} [G_{zz}(q) G_{zz}(p + q)] \right]_{p=0}
= -T \partial_\Lambda (Z_{\pi} - Z_{\pi 0}) D_{zz} \int_q G_{zz}^2(q)
- \frac{T}{8} \alpha^2 \partial_\Lambda \int_q G_{zz}(q) D_{zz}(q). \tag{41}
\]

In the last step we have used the relation (12) to replace λ^2 by $Z_{\pi} - Z_{\pi}$. At the BKT fixed point, one has $u \sim \Lambda^{2-2\eta}$, $\alpha^2 \sim \Lambda^\eta$, and $G_{zz} \sim \Lambda^{-2}$, with T-independent prefactors, and $u \sim T^{-1} \Lambda^{2-2\eta}$. Hence, for small Λ, the flow equation has the form $\partial_\Lambda Z_{\pi} = K_1 (Z_{\pi} - Z_{\pi 0}) \Lambda^{-1} - K_2 T^{-1} \Lambda^{-\eta}$ with $Z_{\pi 0} = C_{\pi} \Lambda^{-\eta}$, where K_1, K_2 and C_{π} are positive T-independent constants.

The solution for Z_{π} has the form $Z_{\pi} = C_{\pi} \Lambda^{-\eta}$, with the prefactor C_{π} determined by $-\eta C_{\pi} = K_1 (C_{\pi} - C_{\pi 0}) - K_2/T$, so that
\[
Z_{\pi} = \frac{K_1 C_{\pi} + K_2/T}{K_1 + \eta} \Lambda^{-\eta} \to \frac{K_2}{K_1} T^{-1} \Lambda^{-\eta} \tag{42}
\]
for low temperatures. Hence, Z_{π} diverges with the same power in Λ as Z_{π}, albeit with a larger prefactor proportional to T^{-1} for low temperatures. The relation $\bar{Y} = (Z_{\pi} - Z_{\pi})/\alpha^2$
then implies that the quartic gradient coupling Y diverges as $Y \sim T^{-1} \Lambda^{-2\gamma}$. Let us now check the assumptions underlying the derivation of the BKT fixed point in Sec. IV.A. We assumed that transverse fluctuations dominate over longitudinal fluctuations for small Λ, so that the contributions from terms involving G_{σ} could be discarded. Indeed $G_{\sigma}(q)$ is initially suppressed by the longitudinal mass m_σ^2. However, we have just shown that this mass vanishes as $\Lambda^{-\gamma}$ at the BKT fixed point. Furthermore, $Z_\sigma \sim \Lambda^{-\eta}$, such that $Z_\sigma q^2$ also vanishes as $\Lambda^{-\eta}$. Hence, the longitudinal and transverse propagators G_{σ} and G_{π} actually exhibit the same power-law scaling $G_{\sigma/\pi} \sim \Lambda^{\eta-2}$ for small Λ, so that the longitudinal fluctuations are not negligible compared to the transverse fluctuations, contrary to what we assumed.

C. Coupled longitudinal and transverse fluctuations

Since the assumptions on the irrelevance of longitudinal fluctuations at the BKT fixed point turned out to be violated, we have to deal with the full coupled system of longitudinal and transverse fluctuations. We will first show analytically that in the presence of longitudinal fluctuations the renormalized stiffness decreases logarithmically as a function of Λ, that is, the BKT fixed point is marginally unstable at any temperature within the ansatz (7). We then present a numerical solution of the flow equations for specific parameters. At low temperatures the BKT phase is spoiled only in the extreme infrared limit, corresponding to a finite but huge correlation length.

1. Flow of stiffness

Under the assumptions made in Sec. IV.A, the stiffness $J = Z_\sigma \alpha^2$ converges to a finite constant for $\Lambda \to 0$. We now show that the coupled system of longitudinal and transverse fluctuations actually generates a logarithmic decrease of J.

Inserting $m_\sigma^2 = u \alpha^2$, the flow equation (16) for α can be written as

$$\frac{d\alpha^2}{d\Lambda} = -T \int q [G_{\sigma}(q) + G_{\pi}(q)] - \frac{2T}{u} \int q U(q) G_{\sigma}(q).$$ (43)

The first term in the flow equation (23) for Z_π has the same form as the right hand side of Eq. (26) in Sec. IV.A, and thus tends to the right hand side of Eq. (28) for small Λ. In the second term we pull the momentum-derivative under the integral. This yields

$$\frac{dZ_\pi}{d\Lambda} = \frac{T}{\alpha^2} Z_\pi \int q G_{\sigma}(q) \frac{d}{d\alpha^2} \int q \left[G_{\sigma}(q) G_{\pi}^2(q) \Delta_{q} G_{\sigma}(q) \right].$$ (44)

In the flow equation for the stiffness only the pure transverse fluctuation terms cancel, such that

$$\frac{dJ}{d\Lambda} = -TZ_\sigma \int q \left[1 + 2u^{-1} U(q) \right] G_{\sigma}(q)$$

$$- \frac{T}{4} \int q D_{\Lambda} \left[G_{\sigma}(q) G_{\pi}^2(q) \Delta_{q} G_{\sigma}(q) \right].$$ (45)

In the regime governed by BKT-scaling, the propagators scale as $G_{\sigma} \sim \Lambda^{\eta-2}$ and $G_{\pi} \sim \Lambda^{\eta-2}$. Hence, all the terms on the right hand side of Eq. (45) are proportional to Λ^{-1} for small Λ. The anomalous dimension η cancels. The right hand side of the flow equation (45) is positive. Let us show this for the case of a momentum independent regulator R. The momentum derivative acting on $G_{\sigma}(q)$ can then be carried out explicitly, yielding $G_{\sigma}^2(q) \Delta_{q} G_{\sigma}(q) = -4Z_\sigma + 8Z_\pi^2 q^2 G_{\sigma}(q)$. Eq. (45) can then be simplified to

$$\frac{dJ}{d\Lambda} = -2TZ_\sigma u^{-1} \int q U(q) G_{\sigma}(q) - 2TZ_\sigma^{2} D_{\Lambda} \int q \frac{d}{d\alpha} G_{\sigma}(q) G_{\pi}(q).$$ (46)

Now it is obvious that the right hand side of the flow equation is positive, since G_{σ} and G_{π} decrease with increasing Λ (i.e., increasing R).

Hence, the scale-derivative of the stiffness is proportional to Λ^{-1}, with a positive prefactor $A(T)$. The temperature dependence of the prefactor can be read off from Eq. (45). In addition to the explicit factor T in front of the integrals, there is also another T-dependence entering via the propagators. While G_{σ} and G_{π} both scale as $\Lambda^{\gamma-2}$, the longitudinal propagator G_{σ} is suppressed due to an additional enhancement of Z_{σ} by a factor T^{-1}, see Eq. (42). For low temperatures, one thus finds $A(T) \propto T Z_\sigma Z_{\pi} \propto T^2$. Hence, for low temperatures, the flow equation for the stiffness has the form

$$\frac{dJ}{d\Lambda} = \frac{a T^2}{\Lambda},$$ (47)

with a positive constant $a > 0$. This yields a logarithmic decrease of the stiffness

$$J = J_0 - a T^2 \log(\Lambda_{av}/\Lambda).$$ (48)

The scale at which the stiffness vanishes can thus be estimated as

$$\Lambda_\varepsilon = \Lambda_{av} e^{-J_0/(aT^2)}.$$ (49)

It vanishes exponentially for $T \to 0$. The inverse critical momentum scale can be identified with a correlation length, that is, $\xi \sim N^{-1}$. Hence, the correlation length is finite at any temperature $T > 0$, but huge at low temperatures.

The slow decrease of the stiffness as a function of the scale in a $U(1)$-symmetric ϕ^4-theory in two dimensions was first observed by Gräter and Wetterich. They applied a quartic truncation of the effective action similar to ours, but without the quartic gradient term, so that the Z-factors for longitudinal and transverse fluctuations remained identical in their truncation. In this approximation G_{σ} is not suppressed by an additional factor T compared to G_{π}, so that the flow of the stiffness $dJ/d\Lambda$ is proportional to T instead of T^2. Hence, improving
the truncation by adding the quartic gradient term reduces the flow of the stiffness.

It is instructive to compare the above results to the loop expansion of the non-linear sigma model. The non-linear sigma model describes only phase fluctuations. It requires only two renormalization parameters, the coupling constant $g = K^{-1}$ with $K = J/T$, and the wave function renormalization Z. In two dimensions, the loop expansion of the beta-function determining the flow of g corresponds to an expansion in powers of g. For the abelian symmetry group $U(1)$, all contributions to β_g vanish. Gräter and Wetterich pointed out that their truncation is consistent with β_g to one-loop order (order g^2), but a discrepancy arises at the two-loop level. A similar behavior was obtained for a relativistic quantum O(N) model, but the correct one-loop result was reproduced only for a suitable cutoff function. In our improved truncation the inconsistency is shifted by one order to the three-loop level, independently of the cutoff choice.

Although the BKT fixed point turned out to be marginally unstable, at low temperatures the power-laws derived in Secs. IV.A and IV.B are nevertheless valid in a wide regime, with a scale-dependent anomalous exponent η increasing only logarithmically upon lowering Λ. This “quasi-fixed point” regime is seen very clearly in the numerical solution of the flow equations presented in the following section.

2. Numerical solution

We now complement the analytic results by an explicit numerical solution of the flow equations for a specific choice of the initial parameters in the bare action at various temperatures. The model parameters are $\alpha_0 = 1$, $Z_0 = 1$, and $u_0 = 1$. The ultraviolet momentum cutoff is $\Lambda_{uv} = 1$. For the regulator we choose a smooth exponential momentum cutoff $R(q) = Z_\pi q^\pi r(q^2/\Lambda^2)$ with $r(x) = \frac{2}{e^x - 1}$.

\begin{equation}
R(q) = Z_\pi q^\pi r(q^2/\Lambda^2) \quad \text{with} \quad r(x) = \frac{2}{e^x - 1}.
\end{equation}

We start the flow at $\Lambda = \Lambda_0 = e^5 \gg \Lambda_{uv}$, such that initially all fluctuations are practically suppressed. Flows will be presented as a function of the logarithmic flow parameter $s = \ln \Lambda_{uv}/\Lambda$. For $\Lambda > \Lambda_{uv}$, corresponding to $s < 0$, there are only small contributions to the flow.

In Fig. 1 we show the flow of the stiffness J for various temperatures. At low temperatures one can clearly see a large regime where the stiffness decreases logarithmically as a function of Λ, that is, linearly as a function of s, in agreement with Eq. (2). The slope is proportional to T^2 as predicted (see again Eq. (2)). For larger temperatures the regime controlled by the quasi-fixed point shrinks and the complete collapse of J is shifted to larger scales Λ, that is, smaller s.

The flow of the anomalous dimension η is shown in Fig. 2. At low temperatures it quickly reaches a quasi-plateau where it increases only logarithmically as a function of decreasing Λ. In that regime η is inversely proportional to J, that is, the product ηJ is invariant. The ratio $\eta J/T$ is temperature dependent, in agreement with Eq. (37), since the numerical results have been obtained with a regulator function proportional to Z_π, see Eq. (50).

The rapid decrease of the longitudinal mass m_π^2 as a function of decreasing Λ is evident from Fig. 3. For temperatures below $T = 1.0$ there is an extended regime where the flow follows the power law decay $m_\pi^2 \propto \Lambda^{-2\eta}$, in agreement with Eq. (40). One can also see that the straight line in the power law regime is shifted upwards at lower temperatures, in agreement with the factor T^{-1} in Eq. (40).

![FIG. 1: Renormalized stiffness J as a function of the logarithmic scale parameter s for several choices of the temperature.](image1)

![FIG. 1: Renormalized stiffness J as a function of the logarithmic scale parameter s for several choices of the temperature.](image2)

![FIG. 2: Top: Anomalous dimension η as a function of the scale parameter s for several choices of the temperature. Bottom: $J\eta/T$ as a function of s for various temperatures. The horizontal line represents the low temperature limit $1/(2\pi)$.](image3)
The flow of the Z-factors for longitudinal and transverse fluctuations is shown for two distinct temperatures in Fig. 4. Note that Z_T is always larger than Z_s, until the point where the stiffness J collapses. At the lower temperature $T = 0.25$ one can see the power laws $Z_s, Z_T \propto \Lambda^{-\eta}$ in agreement with Eqs. (35) and (42). The ratio Z_T/Z_s is proportional to T^{-3} in the quasi-fixed point regime at low temperatures, as expected from Eq. (42). It thus diverges for $T \to 0$. This matches with the behavior of the Z-factors in the ground state of the interacting Bose gas, where Z_s diverges due to transverse quantum fluctuations, while Z_T remains finite.

The scale Λ_c at which J vanishes is shown as a function of temperature in Fig. 5. The exponential decrease upon lowering T is clearly visible. For $T < 1$ the critical scale is tiny. The corresponding correlation length $\xi \sim \Lambda_c^{-1}$ is huge and becomes quickly practically infinite for $T \ll 1$.

V. DENSITY-PHASE REPRESENTATION

In the preceding sections, the flow was derived for a linear (cartesian) decomposition of the complex field ϕ in longitudinal and transverse components, see Eq. (8). Alternatively, one may decompose the field in polar coordinates, that is, amplitude and phase, and express the amplitude as a square root of the superfluid density:

$$\phi(r) = \sqrt{\rho(r)} e^{i\vartheta(r)}. \quad (51)$$

Inserting this parametrization into the bare action (1), and splitting $\rho(r) = \rho_0 + \tilde{\rho}(r)$ with $\rho_0 = \sigma^2_0$, one obtains

$$S[\phi] = \beta \int d^2r \left[\frac{4i0}{8} \tilde{\rho}^2(r) + \frac{Z_0 \rho_0}{2} \left(\nabla \vartheta(r) \right)^2 + \frac{Z_0}{2} \tilde{\rho}(r) \left(\nabla \vartheta(r) \right)^2 + \frac{Z_0}{8} \rho_0 \left(\nabla \tilde{\rho}(r) \right)^2 \right]. \quad (52)$$

The Jacobian associated with the transformation from Reϕ and Imϕ to the variables ρ and ϑ is one, and thus does not lead to additional terms in the functional integral. Note that the quartic interaction term in the action (1) has been transformed to a quadratic density fluctuation term, while the quadratic gradient term in (1) gives rise to a quadratic phase-gradient term, but also to interaction terms.

A distinctive advantage of the density-phase representation is that all interaction terms involve gradients, such that the interaction vertices are strongly suppressed at small momenta. Hence, the perturbation expansion is free from infrared divergences. The first term in Eq. (52) provides the density fluctuations with a mass. Due to the absence of infrared divergences this mass is not affected significantly by...
phase fluctuations. This is very different from the fate of the longitudinal mass discussed in the preceding sections.

Let us briefly review how the algebraic decay of order parameter correlations is obtained from the functional integral in density-phase coordinates by evaluating the correlation function

\[G(r) = \langle \phi(r)\phi^*(0) \rangle = \langle \sqrt{\rho(r)\rho(0)} e^{i(\theta(r)-\theta(0))} \rangle \]

(53)
at long distances \(r = |r| \). The density fluctuations are not expected to have any qualitative effect at long distances, since they are massive. Setting \(\delta(r) = 0 \) one can replace \(\rho(r) \) by \(\rho_0 \) and the action is reduced to the quadratic phase fluctuation term. This yields

\[G(r) = \rho_0 e^{-\frac{1}{2}(\theta(r)-\theta(0))^2} \]

(54)

Using the Fourier representation \(\theta(r) = T \int q \theta q e^{iqr} \), one can express the expectation value in the exponent as

\[\langle (\theta(r) - \theta(0))^2 \rangle = T \int q G_\theta(q)e^{iqr} - 1 \]

(55)

where

\[G_\theta(q) = \frac{1}{f^2(q^2)} \]

(56)

with the phase stiffness \(J = Z_\omega \rho_0 \). Representing \(q \) by polar coordinates \(q \) and \(\varphi \), one can write \(q r = q r \cos \varphi \). Performing the integration over the angle \(\varphi \), one obtains

\[G(r) = \rho_0 \exp \left[-\eta \int_0^\Lambda_{uv} dq \frac{1 - J_0(qr)}{q} \right] \]

(57)

where \(\Lambda_{uv} \) is the ultraviolet cutoff, and

\[\eta = \frac{T}{2\pi J} \]

(58)

The Bessel function is defined as \(J_0(x) = \int_0^{2\pi} \frac{d\varphi}{2\pi} \cos(x \cos \varphi) \). The integral is convergent at small \(q \) since \(J_0(0) = 1 \). At large \(q \) the integral diverges logarithmically, \(\int_0^{\Lambda_{uv}} dq \frac{1 - J_0(qr)}{q} \rightarrow -\ln(\Lambda_{uv}r) + \text{const} \), so that

\[G(r) \propto \rho_0/r^n \text{ for } r \rightarrow \infty \]

(59)

This is the celebrated algebraic decay of order parameter correlations in the BKT phase.

Since there are no infrared divergences in the density-phase representation, there is no need to introduce infrared regulators and to compute a renormalization group flow. Nevertheless, to make a connection with the flow computed for the cartesian decomposition of the order parameter field, we now extract the flow of \(\alpha, m_\alpha^2 \), etc. from the density-phase representation in the presence of an infrared cutoff \(\Lambda \) acting on the phase variable \(\theta \).

With a sharp infrared cutoff on \(\theta \), equation (57) for \(G(r) \) is modified to

\[G^\Lambda(r) = \rho_0 \exp \left[-\eta \int_\Lambda^\Lambda_{uv} dq \frac{1 - J_0(qr)}{q} \right] \]

(60)

For \(\Lambda > 0 \), there is also an anomalous correlation function

\[F^\Lambda(r) = \langle \phi(r)\phi(0) \rangle = \langle \sqrt{\rho(r)\rho(0)} e^{i(\theta(r)-\theta(0))} \rangle \]

(61)

Following the steps leading to Eq. (60) for \(G^\Lambda(r) \), and choosing the average phase \(\langle \theta(r) \rangle \) equal to zero, one obtains

\[F^\Lambda(r) = \rho_0 \exp \left[-\eta \int_\Lambda^\Lambda_{uv} dq \frac{1 + J_0(qr)}{q} \right] \]

(62)

Note that \(F^\Lambda(r) \) vanishes for \(\Lambda \rightarrow 0 \), for any \(r \), since the integral in the exponent is logarithmically infrared divergent. Using the cartesian decomposition (8) of \(\phi(r) \), we can relate \(G^\Lambda(r) \) and \(F^\Lambda(r) \) to \(G^\Lambda_\alpha(r) \), \(G^\Lambda_x(r) \) and \(\alpha^\Lambda \) by the linear expressions

\[G^\Lambda_\alpha(r) = (\alpha^\Lambda)^2 + G^\Lambda_\varphi(r) + G^\Lambda_x(r) \]

(63)

\[F^\Lambda(r) = (\alpha^\Lambda)^2 + G^\Lambda_\varphi(r) - G^\Lambda_x(r) \]

(64)

The order parameter \(\alpha^\Lambda \) can be extracted from the longitudinal limit of \(G^\Lambda(r) \) or \(F^\Lambda(r) \). Since \(J_0(qr) \) vanishes for \(r \rightarrow \infty \), one obtains

\[\rho^\Lambda = (\alpha^\Lambda)^2 = \rho_0(\Lambda/\Lambda_{uv})^\beta \]

(65)

This agrees with the result (34) obtained for \(\alpha^2 \) in Sec. IV. The slight difference in the prefactor is due to the different form of the momentum cutoff chosen here and there.

Using Eq. (65), one can write the expressions (60) and (62) as

\[G^\Lambda(r) = \rho^\Lambda \exp \left[-\eta \int_\Lambda^\Lambda_{uv} dq \frac{J_0(qr)}{q} \right] = \rho^\Lambda e^{G^\Lambda_\varphi(r)} \]

(66)

\[F^\Lambda(r) = \rho^\Lambda \exp \left[-\eta \int_\Lambda^\Lambda_{uv} dq \frac{J_0(qr)}{q} \right] = \rho^\Lambda e^{-G^\Lambda_\varphi(r)} \]

(67)

where

\[G^\Lambda_\varphi(r) = T \int_{\Lambda_{uv}}^{\Lambda_{uv}} \frac{d^2q}{(2\pi)^2} \frac{1}{f^2(q^2)} e^{-q} \]

(68)

Inverting (65) thus yields

\[G^\Lambda_\varphi(r) = \rho^\Lambda \sinh G^\Lambda_\varphi(r) \]

(69)

\[G^\Lambda_\varphi(r) = \rho^\Lambda \left[\cosh G^\Lambda_\varphi(r) - 1 \right] \]

(70)

We now compare the behavior of \(G^\Lambda_\varphi(q) \) and \(G^\Lambda_x(q) \) at small momenta \(q \) with the results obtained from the flow equations in Sec. IV. The dominant contributions at small \(q \) come from contributions at large distances in real space. Since \(G^\Lambda_\varphi(r) \) decays at large \(r \), we can expand the hyperbolic functions to obtain, to leading order,

\[G^\Lambda_\varphi(r) \rightarrow \rho^\Lambda G^\Lambda_\varphi(r) \]

(71)

\[G^\Lambda_x(r) \rightarrow \frac{1}{2} \rho^\Lambda \left[G^\Lambda_\varphi(r) \right]^2 \]

(72)

The asymptotic behavior of \(G^\Lambda_\varphi(r) \) is consistent with our ansatz (15) for \(G^\Lambda_\varphi(q) \), if \(Z_\alpha^\Lambda \propto \Lambda^{-\eta} \), in agreement with
Fourier transforming the relation (72) between $G_\phi^\Lambda(r)$ and $G_\sigma^\Lambda(r)$ in the large distance limit yields

$$G_\phi^\Lambda(q) = \frac{T}{2} \rho^\Lambda \int_p G_\phi^\Lambda(p) G_\phi^\Lambda(p + q).$$

(73)

The inverse longitudinal mass is thus obtained as

$$(m_\eta^\Lambda)^{-2} = G_\phi^\Lambda(q) = \frac{T}{2} \rho^\Lambda \int_p G_\phi^\Lambda(p) G_\phi^\Lambda(p).$$

(74)

Note the similarity to the flow equation (39). Since the momentum integral diverges as Λ^{-2}, and $\rho^\Lambda \propto \Lambda^\eta$, one obtains $(m_\eta^\Lambda)^2 \propto T^{-1} \Lambda^{-2-\eta}$ in agreement with Eq. (40). Finally, comparing Eq. (73) with our ansatz (44) for $G_\phi^\Lambda(q)$, one obtains $Z_\phi^\Lambda \propto T^{-1} \Lambda^{-\eta}$, in agreement with Eq. (42).

Hence, the power laws for α^Λ, Z_ϕ^Λ, m_η^Λ, and Z_σ^Λ obtained from the flow derived in the cartesian decomposition of the order parameter field in Sec. IV are all confirmed by the calculation in density-phase representation. A discrepancy occurs if contributions from longitudinal fluctuations to the flow are taken into account, as these lead to a slow decrease of the stiffness J. Since it seems clear that density fluctuations can renormalize J only by a finite amount, the flow of the stiffness found in the fRG calculations is most likely an artifact of the truncation.

VI. CONCLUSION

Motivated by previous fRG calculations we have investigated the interplay of longitudinal and transverse fluctuations in a $U(1)$-symmetric ϕ^4-theory in two dimensions. A major goal was to clarify the mechanism leading to the unexpected decrease of the phase stiffness observed in the fRG flows. To gain analytic insight, we used approximate flow equations obtained from an effective action that was truncated at quartic order in the fields and at quadratic order in gradients. Discarding the longitudinal fluctuations we recovered the expected BKT fixed point with all its well-known properties: a finite phase stiffness, a vanishing order parameter, and an algebraic decay of order parameter correlations with an exponent η proportional to T at low temperatures. Renormalized by transverse fluctuations, the longitudinal mass vanishes, so that longitudinal fluctuations become increasingly important for small momenta. Unlike the transverse fluctuations, their contribution to the stiffness does not vanish. In our truncation, the stiffness decreases logarithmically as a function of the momentum cutoff Λ, leading to a collapse of the quasi-ordered BKT phase at a critical momentum scale Λ_c, which corresponds to a finite correlation length $\xi \sim \Lambda_c^{-1}$. The prefactor of the logarithmic decrease of J is proportional to T^2. Hence, the final correlation length increases exponentially upon lowering the temperature.

The above results are consistent with more involved fRG calculations based on a non-perturbative derivative expansion of the effective action[23] where the same slow decrease of the stiffness as in our calculation was found. Note, however, that these numerical flows suffer from singularities at $T \ll T_{\text{BKT}}$, so that the asymptotic low temperature behavior cannot be extracted.

The decrease of the stiffness and the ensuing finite correlation length at any finite temperature in the fRG flows has always been interpreted as an artifact of the truncation[23]. Indeed the algebraic decay of correlations in the BKT phase is very well established and confirmed by rigorous, numerical and experimental results. In particular, in a famous work by Fröhlich and Spencer[23] the existence of a BKT-phase with a power-law decay of order parameter correlations at low temperatures was rigorously proven. Note, however, that the proof is restricted to systems having only a phase degree of freedom, such as the plane rotator or the Villain model. To the best of our knowledge, there are no rigorous results on the BKT phase for two-dimensional systems with a complex order parameter consisting of phase and amplitude degrees of freedom such as the interacting Bose gas[24].

The flow of the stiffness obtained from the fRG is inconsistent with the results obtained from a density-phase representation of the order parameter field[2] To trace the origin of this discrepancy, we computed the flow of the parameters characterizing longitudinal and transverse fluctuations from a density-phase representation with a cutoff on phase fluctuations. Thereby, all power laws obtained from our truncated flow equations were confirmed. In particular, the longitudinal mass indeed scales to zero, with an exponent $2 - \eta$. However, there is no flow of the stiffness in the density-phase representation. The logarithmic flow of the stiffness obtained in the cartesian decomposition of the order parameter field must therefore be canceled by higher order terms not included in our truncation. Indeed, we already showed that the leading contributions to the stiffness flow (of order T) found in the work by Gräter and Wetterich[2] are canceled by including a density gradient term, so that the flow in our truncation arises only at order T^2. A comparison to the low temperature expansion of the non-linear sigma model[24] shows that the vanishing beta-function for the coupling in this model is thus reproduced to one-loop order in the truncation used by Gräter and Wetterich, and to two-loop order in our truncation. The cancellation of terms of order T^2 requires a complete account of all three-loop contributions in the non-linear sigma model. An early study of the scalar ϕ^4-theory revealed that the usual field-theoretic loop expansion cannot be captured by a gradient expansion of the fRG effective action[25]. The latter corresponds to a Taylor expansion of momentum dependences. Hence, we conclude that the unphysical flow of the stiffness found in the fRG calculations, including non-perturbative truncations based on the derivative expansion, is due to an insufficient parametrization of the momentum dependences of the effective action, which is rather hard to overcome. Since the fRG is nevertheless a powerful approach, in particular for computing non-universal properties, one may adopt a pragmatic attitude and discard the small contributions leading to the logarithmic flow of the stiffness by hand.
Acknowledgments

We are grateful to A. Alastuey, A. Auerbach, K. Byczuk, C. Castellani, C. Di Castro, B. Delamotte, N. Dupuis, A. Eberlein, T. Enss, T. Holder, H. Knörer, J. Pawlowski, J. Piasecki, H. Spohn, D. Ueltschi, C. Wetterich, R. Zeyher, and especially to John Toner for valuable discussions. PJ acknowledges support from the Polish National Science Center via grant 2014/15/B/ST3/02212.

1. N. D. Mermin and H. Wagner, Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models, Phys. Rev. Lett. 17, 1133 (1966).
2. V. L. Berezinskii, Destruction of Long-range Order in One-dimensional and Two-dimensional Systems having a Continuous Symmetry Group I. Classical Systems, Sov. Phys. JETP 32, 493 (1971).
3. J. M. Kosterlitz and D. J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6, 1181 (1973).
4. V. N. Popov, Functional integrals and collective excitations (Cambridge University Press, Cambridge, 1987).
5. Amplitude modes in condensed matter systems with a broken continuous symmetry are sometimes referred to as Higgs mode. We refrain from using this terminology, since the Higgs particle was originally postulated for systems coupled to a gauge field.
6. M. Gräter and C. Wetterich, Kosterlitz-Thouless Phase Transition in the Two Dimensional Linear σ Model, Phys. Rev. Lett. 75, 378 (1995).
7. G. v. Gersdorff and C. Wetterich, Nonperturbative renormalization flow and essential scaling for the Kosterlitz-Thouless transition, Phys. Rev. B 64, 054513 (2001).
8. P. Jakubczyk, N. Dupuis, and B. Delamotte, Reexamination of the nonperturbative renormalization-group approach to the Kosterlitz-Thouless transition, Phys. Rev. E 90, 062105 (2014).
9. J. Berges, N. Tetradis, and C. Wetterich, Non-Perturbative Renormalization Flow in Quantum Field Theory and Statistical Physics, Phys. Rep. 363, 223 (2002).
10. B. Delamotte, in Renormalization Group and Effective Field The- ory Approaches to Many-Body Systems, Lecture Notes in Physics Vol. 852, edited by A. Schwenk and J. Polonyi (Springer, Berlin, 2012).
11. W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and K. Schönhammer, Functional renormalization group approach to correlated fermion systems, Rev. Mod. Phys. 84, 299 (2012).
12. C. Wetterich, Exact evolution equation for the effective potential, Phys. Lett. B 301, 90 (1993).
13. L. Canet, B. Delamotte, D. Mouhanna, and J. Vidal, Nonperturba- tive renormalization group approach to the Ising model: A deriv- ative expansion at order o^4, Phys. Rev. B 69, 134413 (2003).
14. P. Jakubczyk and A. Eberlein, Phys. Rev. E 93, 062145 (2016).
15. See, for example, P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics (Cambridge University Press, Cambridge, 1995).
16. N. Tetradis and C. Wetterich, Critical exponents from the effective average action, Nucl. Phys. B422, 541 (1994).
17. B. Obert, C. Husemann, and W. Metzner, Low-energy singularities in the ground state of fermionic superfluids, Phys. Rev. B 88, 144508 (2013). While this work deals with superfluids built from fermionic constituents, the bosonic order parameter fluctuation sector of the effective action is equivalent to the interacting Bose gas.
18. A. A. Nepomnashchii and Y. A. Nepomnashchii, Contribution to the theory of the spectrum of a Bose system with condensate at small momenta, JETP Lett. 21, 1 (1975); Y. A. Nepomnashchii and A. A. Nepomnashchii, Infrared divergence in field theory of a Bose system with a condensate, Sov. Phys. JETP 48, 493 (1978).
19. F. Pistolesi, C. Castellani, C. Di Castro, and G. C. Strinati, Renormalization-group approach to the infrared behavior of a zero-temperature Bose system, Phys. Rev. B 69, 024513 (2004); C. Castellani, C. Di Castro, F. Pistolesi, and G. C. Strinati, Infrared Behavior of Interacting Bosons at Zero Temperature, Phys. Rev. Lett. 78, 1612 (1997).
20. N. Dupuis, Unified Picture of superfluidity: From Bogoliubov’s Approximation to Popov’s Hydrodynamic Theory, Phys. Rev. Lett. 102, 190401 (2009); Infrared behavior and spectral function of a Bose superfluid at zero temperature, Phys. Rev. A 80, 043627 (2009); Infrared behavior in systems with a broken continuous symmetry: Classical O(N) model versus interacting bosons, Phys. Rev. E 83, 031120 (2011).
21. D. J. Amit, Field theory, the renormalization group, and critical phenomena (World Scientific, Singapore, 1984).
22. A. Rançon, O. Kodio, N. Dupuis, and P. Lecheminant, Thermodynamics in the vicinity of a relativistic quantum critical point in 2+1 dimensions, Phys. Rev. E 88, 012113 (2013).
23. J. Fröhlich and T. Spencer, Kosterlitz-Thouless Transition in the Two-Dimensional Plane Rotator and Coulomb gas, Phys. Rev. Lett. 46, 1006 (1981); The Kosterlitz-Thouless transition in two-dimensional abelian spin systems and the Coulomb gas, Commun. Math. Phys. 81, 527 (1981).
24. Even the nature of the ground state of the two-dimensional interacting Bose gas is posed as an open question in the current mathematical literature, see S. Cenatiempo and A. Giuliani, Renormalization theory of a two-dimensional Bose gas: quantum critical point and quasi-condensate, J. Stat. Phys. 157, 755 (2014).
25. T. Papenbrock and C. Wetterich, Two-loop results from improved one loop computations, Z. Phys. C 65, 519 (1995).