The deubiquitinase ubiquitin specific protease 20 is a positive modulator of myocardial β₁-adrenergic receptor expression and signaling

Running Title: Deubiquitination and β₁AR trafficking

Samuel Mon-Wei Yu*¹, Pierre-Yves Jean-Charles*¹, Dennis M. Abraham¹, Suneet Kaur¹, Clarice Gareri¹, Lan Mao¹, Howard A. Rockman¹ and Sudha K. Shenoy¹,²

¹, Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27705, USA.
², Address correspondence to skshenoy@dm.duke.edu; Duke University Medical Center Rm 412, SANDS Bldg. PO Box 103204; 303, Research drive, Durham, NC-27710 Phone: 919-681-5061

* Equal Contribution

Key words: Protein kinase A, ubiquitination, LAMP1, endocytosis, G protein-coupled receptor

Abstract: Reversible ubiquitination of G protein-coupled receptors regulates their trafficking and signaling; whether deubiquitinases regulate myocardial β₁-adrenergic receptors (β₁ARs) is unknown. We report that ubiquitin specific protease 20 (USP20) de-ubiquitinates and attenuates lysosomal trafficking of the β₁AR. β₁AR-induced phosphorylation of USP20 Ser333 by protein kinase A-α (PKAα) was required for optimal USP20-mediated regulation of β₁AR lysosomal trafficking. Both phospho-mimetic (S333D) and phosphorylation-impaired (S333A) USP20 possess intrinsic deubiquitinase activity equivalent to WT activity. However, unlike USP20 WT and S333D, the S333A mutant associated poorly with the β₁AR and failed to deubiquitinate the β₁AR. USP20-KO mouse showed normal baseline systolic function but impaired β₁AR-induced contractility and relaxation. Dobutamine stimulation did not increase cAMP in USP20-KO left ventricles (LVs) whereas NKH477-induced adenylyl cyclase activity was equivalent to WT. The USP20 homolog, USP33 which shares redundant roles with USP20 had no effect on β₁AR ubiquitination, but USP33 was upregulated in USP20-KO hearts suggesting compensatory regulation. Myocardial β₁AR expression in USP20-KO was drastically reduced whereas β₂AR expression was maintained as determined by radioligand binding in LV sarcolemmal membranes. Phospho-USP20 was significantly increased in LVs of wild type (WT) mice after one-week catecholamine infusion and two-week chronic pressure overload induced by transverse aortic constriction (TAC). Phospho-USP20 was undetectable in β₁AR KO mice subjected to TAC, suggesting a role for USP20 phosphorylation in cardiac response to pressure overload. We conclude that USP20 regulates β₁AR signaling in vitro and in vivo. Additionally, β₁AR-induced USP20 phosphorylation may serve as a feed-forward mechanism to stabilize β₁AR expression and signaling during pathological insults to the myocardium.

Introduction

Beta adrenergic receptors (βARs) are G protein-coupled receptors (GPCRs) that respond to signals from the sympathetic nervous system and regulate cardiovascular functions (1,2). Out of the three βAR subtypes expressed in the healthy heart, the β₁AR and β₂AR subtypes are the most abundant, representing respectively 70–80% and 20-30% of total βARs (3). These receptors couple to the heterotrimeric G protein Gs upon catecholamine stimulation and activate adenylyl cyclase to promote cAMP production and protein kinase A (PKA) activation (1,2). The β₁AR is the main regulator of catecholamine-induced cardiac chronotropy and inotropy because mouse hearts lacking either β₁AR or both β₁- and β₂AR function normally at basal state but
fail to respond to β-adrenergic agonists; in contrast, mice lacking only β2AR have preserved cardiac responsiveness to catecholamine stimulation (4-8).

Activated β1AR and β2AR are regulated via phosphorylation by GPCR kinases (GRKs) and binding of the multifunctional adaptor proteins called β-arrestins, which precede receptor endocytosis and post-endocytic sorting (1,9). β1AR signaling is significantly attenuated in failing hearts due to receptor desensitization and downregulation (10,11). On the other hand, β2AR which is mostly desensitized but not downregulated in the failing heart, can promote anti-apoptotic signaling and is considered to be cardioprotective according to studies in mice and cardiomyocytes (12-14).

β1AR downregulation during heart failure may be compensatory to reduce cardiac metabolic demand and limit cardiotoxic signaling associated with chronic βAR stimulation. The downregulation of β1AR in failing hearts is observed at both mRNA and protein levels; latter process entails trafficking and degradation of receptor protein into lysosomes (10,15-17). Another hallmark of failing hearts is the refractory nature of βARs due to sequestration of desensitized receptor protein in late endosomes (16). Recruitment of phosphoinositide 3 kinase (PI3K) activity to the β1AR complex promotes β1AR sequestration into late endosomes, and blockade of PI3K recruitment mobilizes the trafficking of β1AR from late endosomes to the cell surface (16,17).

GPCR lysosomal trafficking and degradation can also be modulated by ubiquitination, a post-translational modification which appends monomers or polymeric chains of the 76 amino acid protein ubiquitin to substrates proteins (18,19). While the dynamics and mechanisms of β2AR ubiquitination have been broadly characterized, (20-24) the mechanisms that regulate β1AR ubiquitination and associated vesicular trafficking are largely unknown. In the current study, we discovered that ubiquitin specific protease 20 (USP20) deubiquitinates β1AR and regulates β1AR trafficking. We also generated and characterized a novel USP20 knockout mouse model to determine the effect of this deubiquitinase (DUB) on βAR expression and cardiac response to catecholamine stimulation.

Results
USP20 functions as a cognate deubiquitinase for the β1AR:

Agnost-stimulation of FLAG-tagged β1AR expressed in HEK-293 cells with isoproterenol (Iso) resulted in a detectable increase in receptor ubiquitination, which peaked at 60 min after agonist treatment and decreased to basal levels beyond 6 hours of agonist stimulation (Figure 1A-B). Agonist-induced lysosomal trafficking of the β1AR was initiated after 1 h of Iso stimulation as assessed by β1AR–LAMP1 colocalization. However, significant amount of β1AR trafficked to lysosomes only after 6h of agonist treatment (Figure 1C-D). Agonist-induced β1AR ubiquitination was detectable only when 10 mM N-ethylmaleimide (NEM, an inhibitor of deubiquitinating enzymes), but not when an inhibitor of 26S proteasomal activity such as MG132 was included in the lysis and immunoprecipitation (IP) buffers. This suggests that ubiquitination of β1ARs is rapidly reversed by deubiquitinase activity that associates with the β1AR. We previously demonstrated that the two homologous DUBs USP20 and USP33 function redundantly to deubiquitinate and regulate post-endocytic sorting of the β2AR to lysosomes (23). We therefore tested if ubiquitination and trafficking of the β1AR are regulated by deubiquitinases in a similar manner as the β2AR.

USP20 knockdown significantly increased ubiquitination of the β1AR in both unstimulated and agonist-stimulated cells when compared with cells transfected with control siRNA (Figure 2 A-B). In contrast, depletion of USP33 had no significant effect on β1AR ubiquitination compared with control knockdown (Figure 2C). For a number of GPCRs, ubiquitination serves as a sorting signal to promote their trafficking to late endosomes and lysosomes (19,25). We therefore tested if ubiquitination and trafficking of the β1AR are regulated by ubiquitinases in a similar manner as the β2AR.

USP20 knockdown significantly increased ubiquitination of the β1AR in both unstimulated and agonist-stimulated cells when compared with cells transfected with control siRNA (Figure 2 A-B). In contrast, depletion of USP33 had no significant effect on β1AR ubiquitination compared with control knockdown (Figure 2C). For a number of GPCRs, ubiquitination serves as a sorting signal to promote their trafficking to late endosomes and lysosomes (19,25). We therefore tested if USP20-mediated deubiquitination of the β1AR affects lysosomal trafficking of internalized β1ARs. After 6h Iso stimulation of cells transfected with control siRNA, we observed a significant increase in β1AR colocalization with the lysosomal marker protein LAMP1 (Figure 2D-F). Additionally, USP20 knockdown led to a statistically significant enhancement of β1AR:LAMP1 colocalization under basal and
Deubiquitination and β1AR trafficking

Iso-stimulated conditions as compared with quiescent cells with intact USP20 expression (Figure 2D-F). Accordingly, USP20 serves as a cognate DUB for the β1AR: USP20 deubiquitinates β1AR and attenuates its trafficking to lysosomes.

β1AR activation promotes site-specific USP20 phosphorylation by PKAα

We previously identified that a serine residue in the consensus PKA phosphorylation motif (Arg-Lys-Phe-Ser) within the unique insertion domain of USP20 is phosphorylated by PKAα upon agonist-activation of the β2AR (24). To determine if β1AR activation also provokes USP20 phosphorylation on this serine residue (Ser333 in human USP20, which is conserved across different species including mouse), we stimulated HEK-293 cells expressing β1AR with increasing doses of Iso or dobutamine (Dob, a selective full β1AR agonist). As shown in Figure 3A-D, β1AR activation triggered robust USP20 phosphorylation within 5 minutes even at subsaturating doses of either agonist. Additionally, this β1AR-induced USP20 phosphorylation is mediated by the PKAα isoform expressed in HEK-293 cells, because PKAα knockdown significantly decreased phosphorylation of USP20 induced by 5 and 20 min stimulation with Iso or Dob (Figure 3E-F). On the other hand, USP20 phosphorylation triggered by these agonists prevailed with control or PKAβ knockdown (Figure 3E-F). Accordingly, PKAα isoform in HEK-293 cells phosphorylates USP20 Ser333 downstream of both β1AR (Figure 3) and β2AR (24) activation.

Phospho-USP20 deubiquitinates β1AR and blocks β1AR trafficking to lysosomes

We next ascertained the role of USP20 phosphorylation in the regulation of β1AR trafficking by using two complementary approaches: by siRNA mediated downregulation of PKAα to stabilize de-phosphorylated USP20 in cells; and by overexpressing phosphorylation impaired (S333A) and phospho-mimetic (S333D) mutant constructs of USP20. Downregulation of PKAα significantly increased the colocalization of internalized β1AR with LAMP1 both before and after 6h of agonist-stimulation as compared with quiescent cells with intact PKAα expression (Figure 4A-B). PKAα knockdown also preserved agonist-induced ubiquitination of the β1AR (Figure 4C). We overexpressed recombinant adenoviruses encoding eGFP, or USP20 WT, S333A, or S333D constructs in HEK-293 cells stably transfected with FLAG-β1AR and analyzed Iso-induced ubiquitination of the receptor (Figure 5). In the absence of exogenous USP20, Iso stimulation produced robust β1AR ubiquitination. However, either wild-type USP20 or S333D overexpression led to significant deubiquitination of the receptor (Figure 5A-B). In contrast, S333A overexpression did not lead to receptor deubiquitination. These data suggest that USP20 Ser333 phosphorylation by PKAα is required for its DUB activity toward the β1AR.

These findings are paradoxical to our earlier findings with the β2AR: PKAα knockdown augmented β2AR de-ubiquitination and concomitantly blocked β2AR lysosomal trafficking (24). Our earlier work also showed that USP20 dissociates from the agonist-activated β2AR complex and additionally, phospho-mimetic mutant S333D only weakly associated with the β2AR compared with the phospho-defective S333A mutant (23,24). In contrast to the β2AR, which dissociates from USP20 upon activation (Figure 6 and reference 23), agonist-activated β1AR forms a stable complex with USP20, suggesting that phosphorylated USP20 associates robustly with the β1AR (Figure 6). Additionally, while overexpressed USP20 WT and S333D constructs displayed equivalent binding with the β1AR, S333A binding was significantly reduced (Figure 7A-B). Despite the differences observed in the interaction with the β1- versus β2- ARs, both phospho-mimetic and phosphorylation impaired forms of USP20 possessed similar intrinsic enzyme activity as assessed by active site labeling and covalent binding of ubiquitin vinyl methyl ester (Ub-VME) (Figure 7C-D). Ub-VME is an active-site directed probe that has been widely used to assess enzyme activity of DUBs and can distinguish between active and inactive forms of DUBs (26-28). As expected Ub-VME did not bind a catalytically inactive USP20 in which the active site cysteine and histidine residues have been mutated (USP20-CH) (23,29).
To determine the effects of USP20 phosphorylation on β1AR trafficking, we overexpressed WT, S333A, S333D and USP20-CH constructs in HEK-293 cells stably transfected with CFP-tagged β1AR and analyzed receptor colocalization with LAMP1 at 6h of agonist stimulation. As shown in Figure 8, both wild-type USP20 and phospho-mimetic S333D overexpression resulted in almost no agonist-induced increase in β1AR colocalization with LAMP1 compared to vector. On the other hand, both phospho-defective USP20 S333A and USP20-CH mutants significantly increased β1AR trafficking to lysosomes when compared with vector transfected cells (Figure 8). These data suggest that USP20 activity and its phosphorylation status play a critical role in attenuating the trafficking of internalized β1AR to lysosomes.

Baseline characteristics and function of USP20-KO mice hearts
Because USP20 regulates β1AR, which is the predominant βAR subtype for cardiac contractility, we hypothesized that disruption of USP20 in vivo could impact β1AR function in the myocardium. To determine the role of USP20 in vivo, we used USP20 gene trap mice (USP20-KO) in which we confirmed the absence of USP20 protein expression by Western blotting (Figure 9A). We next compared USP20-KO and WT mice for overall cardiac morphology, histopathology and function (Figure 9B-E, Table 1). USP20-KO mice are similar to WT controls in terms of body and heart weights (Figure 9). Similar to WT mice, USP20-KO mice have normal heart morphology and no fibrosis in cross-sections assessed by Masson’s trichrome staining (Figure 9). However, conscious, non-anesthetized USP20-KO mice presented a faster heart rate than WT during noninvasive echocardiography, a response that can be attributed to greater excitement or stress in these animals during the procedure (Table 1). Although the LV wall dimensions of USP20-KO mice were comparable to WT, left ventricle volumes and internal dimensions were significantly greater in the USP20-KO mice compared to WT mice during both systole and diastole as assessed by M-mode echocardiography. Nevertheless, basal systolic function was normal in these mice and comparable to WT as determined by the percentage of LV fractional shortening (%FS, 53.5 ± 7.2, n=16 for USP20-KO versus %FS, 57.5 ± 6.5, n=15 for WT). These echocardiography findings are further complemented with invasive hemodynamic studies on anesthetized WT and USP20-KO mice which demonstrated similar heart rate as well as equivalent load dependent and load independent cardiac function but with a modest difference in diastolic function (dP/dt_{min}) and no significant differences in systolic function and cardiac output (Tables 2 & 3). Accordingly, USP20 gene deletion does not have a major adverse effect on cardiac development and on overall baseline cardiac performance in mice.

β1AR signaling and expression are downregulated in USP20-KO mouse hearts
To ascertain whether the absence of USP20 affects myocardial β1ARs, we first repeated invasive hemodynamic measurements with Iso stimulation. Compared with WT controls, we observed a marked blunting of Iso-induced cardiac contractility (dP/dt_{max}, Figure 10A) and relaxation (dP/dt_{min}, Figure 10B) in USP20-KO. The heart rates between the WT and USP20-KO measured before Iso infusion were not significantly different: mean bpm ± SD; WT 397±78 n=10; KO 339±52 n=10. However, the increase in heart rate induced by Iso stimulation was significantly blunted in the USP20-KO mice compared with the WT mice (Figure 10C). Additionally, as shown in Figure 10D, Dob infusion did not induce cAMP increase in USP20-KO LVs whereas direct activation of adenylyl cyclase with the water soluble forskolin analog NKH477 (30) resulted in equivalent cAMP production in both WT and USP20-KO LVs (n= 5-7 mice of each genotype, mean cAMP pmol/mg: WT-saline, 75±41; WT-dobutamine, 270±43; WT-NKH477, 242±57; KO-saline, 69±18; KO-dobutamine 40±18; KO-NKH477, 300±44).

To determine whether the impaired βAR activity was due to a reduction in receptor density, we measured the expression levels of β1 and β2 ARs in LV membranes by radioligand binding (Figure 11A-B). Interestingly, while the total βAR levels were not significantly different between WT and USP20-KO mice, β1AR levels
were significantly decreased and β2AR levels were reciprocally increased in USP20-KO LVs. These data suggest that USP20 functions as the cognate DUB to regulate trafficking and prevent degradation of the β1AR in vivo and as such, the β1ARs are tonically downregulated in USP20-KO. Because previous studies have shown a redundant regulation of the β2AR by USPs 20 and 33 (23), we also ascertained whether the expression level of USP33 was altered in USP20-KO hearts. Indeed, we detected a two-fold more USP33 in USP20-KO LV compared with WT LV extracts (Figure 11C-D). These findings suggest that while the β1AR is primarily regulated by USP20, cardiac β2AR expression and trafficking might be regulated by USP33 in addition to USP20 in vivo.

USP20 Ser333 phosphorylation is triggered in mouse hearts following chronic catecholamine stress and pressure overload

Excessive or chronic catecholamine stimulation of cardiac β1ARs is deleterious to heart function and leads to adverse cardiac remodeling, perhaps by promoting pathologic signaling via CaMKII signaling or via PI3K/AKT/GSK3 signaling (1,8,31,32). β1ARs also transactivate EGFRs in a β-arrestin-dependent manner and mitigate apoptosis induced by chronic iso stimulation (33). To determine if chronic catecholamine stimulation affects cardiac USP20 and/or activity, which in turn might affect β1AR trafficking and signaling, we subjected wild type mice to chronic saline or catecholamine exposure for 1 week and tested the levels of USP20 and phospho-USP20 in extracts prepared from left ventricles. The experimental mice (C57BL/6, 8-10 wk old) had normal heart function at baseline as measured by echocardiography (Table 4). 1-week infusion of saline did not alter cardiac function. However, chronic iso (3mg/kg/day for 7 days) led to a marked increase in LV chamber size and a decrease in fractional shortening (Table 4), consistent with previous studies (33). While saline-treated mice showed weak phospho-USP20, iso-infused mice showed 2-4 fold increase in USP20 phosphorylation (Figure 12). However, both saline and iso treated hearts had identical levels of total USP20. The sustained phospho-USP20 signals suggest the interesting possibility of preserved expression and signaling via the β1AR in non-lysosomal compartments with chronic iso stimulation.

β1 and β2 ARs also contribute to pressure-overload hypertrophy induced by transverse aortic constriction (TAC) (34,35). Previous studies have also shown that with moderate pressure gradients, only β1ARs are responsible for left ventricular hypertrophy (35). We tested if USP20 expression or phosphorylation are affected during hypertrophy, as this might regulate expression and desensitization of βARs. Two weeks of chronic pressure overload was induced by TAC in WT, β1AR KO and β1AR/β2AR double KO mice as previously described (34,36-39). At two weeks, blood pressure gradient was measured to assess the efficacy of surgery. Pre- and post-TAC echocardiography was also performed on conscious mice. The sham operated mice for WT, β1AR KO and β1AR/β2AR double KO displayed no pre- versus post-surgery change in fractional shortening and moreover, Western blots of heart extracts showed weak to no phospho-USP20 signals (Figure 13 and Table 5). The WT two-week TAC group, but neither the β1AR KO nor β1AR/β2AR double KO displayed robust phosphorylation of USP20 as well as deterioration of heart function as evaluated by ECHO (% FS, WT: pre sham: 57.8 ± 4.8, post sham: 55.8 ± 5.5; pre TAC: 57.7 ± 3.3, post TAC: 43.1 ± 13.6, Table 5). The WT TAC group but neither β1AR KO nor β1AR/β2AR double KO showed significant hypertrophy (HW/BW: WT-sham, 4.6 ± 0.5, WT-TAC 6.5 ± 1.0, Table 5). According to these data, increase in USP20 phosphorylation induced by TAC requires expression of β1ARs. Collectively, these in vivo data show a correlation of USP20 phosphorylation in two models of cardiac dysfunction (chronic iso and TAC) and suggest that βAR expression and signaling in the heart is regulated by USP20 and its phosphorylation. In addition, it appears that β1AR regulates and preserves its own trafficking itinerary as well as signaling by triggering downstream phosphorylation of USP20. Thus β1AR-dependent USP20 Ser333 phosphorylation is a feed-forward mechanism in vivo that might facilitate and sustain pathological cardiotoxic β1AR signaling.
Discussion

We have identified USP20 as a novel deubiquitinase that regulates βAR expression, trafficking and signaling in cultured cells and in mouse hearts (Figure 14). Our findings reveal βAR-induced phosphorylation of USP20 as a critical layer of regulation with unique reciprocal effects on the lysosomal trafficking of β1AR and β2AR subtypes (Figure 14). USP20 phosphorylation is induced by βAR stimulation, and by cardiac pressure overload through the β1AR; phospho-USP20 deubiquitinates β1AR and blocks lysosomal trafficking of the β1AR, whereas phospho-USP20 promotes both ubiquitination and lysosomal degradation of the β2AR (24). Furthermore, conditions that stabilize unphosphorylated USP20 are more favorable for β1AR lysosomal trafficking whereas unphosphorylated USP20 favors stabilization of β1AR expression and signaling. Thus phospho-USP20 presents as a molecular signature that engenders trafficking bias in the lysosomal sorting of the two major βAR subtypes.

We previously identified USP20, and its homolog USP33, as interacting partners of the β2AR and as mediators of β2AR ubiquitination and recycling (23). USP20 and USP33 share 70% identity and play redundant roles in the regulation of β2AR ubiquitination and trafficking (23). In fact, significant lysosomal degradation of the β2AR occurs in HEK-293 cells only after downregulation of both deubiquitinases, whereas receptor recycling is maintained when expression of either one of these DUBs is preserved (23). In contrast, we found that only USP20 and not USP33 protects β1AR from lysosomal degradation even though β1AR and β2AR share 52% identity (40). Ablation of USP20 in the heart coincides with a reduction in density of the β1AR even though cardiac USP33 is upregulated in the USP20 deficient heart. Thus, while USP33 upregulation may preserve β2AR expression in the heart, it is ineffective in regulating cardiac β1AR expression which is mainly modulated by USP20. Accordingly the deubiquitinases USPs 20 and 33 may play a prominent role in defining which βAR subtype signaling is sustained in normal, failing or pressure overloaded hearts.

While USP20 phosphorylation is triggered by agonists, it is reversed or blocked by β-blockers or antagonists (24). Possibly, beta-blockers by inhibiting cAMP production can inhibit PKA-mediated phosphorylation of USP20, thus differentially affecting the trafficking and lysosomal degradation of βAR subtypes in the failing heart. β-blockers also show differential effects on the expression level of βAR subtypes in the failing heart (41-43). Although β-blocker therapy improves cardiac function by antagonizing catecholamine activity, βAR density can also be increased by some β-blockers (for e.g., metoprolol) which contributes to the improved cardiac performance observed in heart failure patients (44,45). However, other β-blockers such as carvedilol do not upregulate or stabilize βAR expression in failing hearts, but nonetheless decrease morbidity and mortality of heart failure patients (43,46-51). While carvedilol has been shown to block USP20 interaction with the β2AR and inhibit β2AR recycling, (52) future work should reveal the exact effects of various βAR subtype-selective and non-selective blockers on USP20 phosphorylation and interaction of USP20 with the β1AR.

DUBs exist in cells as fully processed enzymes; however, they require conformational activation induced by binding of substrates (53,54). The binding of the activity-based Ub-VME probe suggests that Ser333 phosphorylation does not affect the intrinsic DUB activity of USP20. However, Ser333 phosphorylation by PKAα dictates USP20’s specific association and affinity for each βAR subtype, which further defines deubiquitination and effects on post-endocytic sorting to lysosomes of each βAR subtype. Accordingly, phospho-USP20 deubiquitinates β1AR and blocks lysosomal trafficking of the β1AR, whereas it promotes both ubiquitination and lysosomal degradation of the β2AR. In contrast, conditions that stabilize unphosphorylated USP20, are more favorable for β1AR lysosomal trafficking and for stabilization of β2AR expression and signaling. While pathological insults provoke USP20 phosphorylation in vivo, the effects of phospho-USP20 on the development of cardiac dysfunction and heart failure remains to be defined when USP20 S333A and S333D knock-in mouse models become available.
We also identified the physiological effects of USP20-ablation in the heart of our newly characterized USP20-KO mice. The basal systolic function in USP20-KO and WT are comparable, but USP20-KO manifest modest load dependent relaxation impairment determined by invasive hemodynamic studies on anesthetized mice. Nevertheless, overall cardiac performance was normal as cardiac output in USP20-KO mice was similar to WT. Importantly, USP20-KO mice show markedly impaired cardiac responsiveness to β-agonist stimulation. This impaired cardiac contractility induced by adrenergic stimulation is ascribed to the inability of the heart to promote cAMP production after stimulation with the β1AR selective agonist dobutamine. On the other hand, USP20 ablation did not affect the signaling machinery downstream of β1AR as NKH477-induced adenylyl cyclase activation was preserved. The impaired β-adrenergic signaling in USP20 KO mouse was associated with lower density of β1AR. The inability of the remaining β1AR to activate cAMP in the USP20-KO LVs, may be linked to their ubiquitination status, which promotes their compartmentalization in lysosomes or induces conformational changes that do not favor G protein activation. Under chronic or intermittent stress of pressure overload, the densities of both β1- and β2- ARs are significantly reduced (55). Future studies should reveal the exact role of USP20 in regulating β1AR expression and signaling in the heart subjected to pressure overload.

The lessened Iso-induced cardiac contractility in USP20-KO mice is consistent with β1AR deficiency because mice lacking β1AR also present normal basal cardiac function and impaired cardiac responsiveness to β-adrenergic stimulation (5,7). However, the exact underlying mechanism that leads to modest reduction in relaxation in USP20-KO mice remains to be defined. On the other hand, preserved expression of β2AR in cardiac membranes of USP20-KO was associated with upregulation of USP33. Whether USP20 regulates additional GPCRs and proteins in the heart and whether USP20 modulates alternate signaling mechanisms in pressure overloaded ventricles and heart failure, also remain to be defined.

In conclusion we have determined a novel role of USP20 in the regulation of myocardial β1AR density and cardiac responsiveness after catecholamine stimulation. While catecholamines stimulate βAR signaling that is critical for inducing powerful contractions of the heart muscle, catecholamines also trigger GRK2-mediated signal desensitization which is followed by receptor endocytosis and degradation (56-60). These events are maladaptive in the long term as they either cause βARs to be degraded or to be refractory to stimulus and thus reduce cardiac performance. In this scenario, β1ARs also promote non-canonical signaling pathways that promote apoptosis or cardiac hypertrophy (61). Accordingly, restoring βAR activity without enabling endocytosis or directly inhibiting the endocytic machinery has been found to be cardioprotective (16,61-69). Thus, preserving βAR levels and activity by preventing lysosomal trafficking of βARs is a valuable therapeutic strategy for heart failure; in this context exploiting deubiquitinases and their activity might prove beneficial.

Experimental Procedures

Reagents

N-ethylmaleimide, anti-FLAG M2 affinity gel, CGP20712A, propranolol, isoproterenol, dobutamine, and NKH477 were purchased from Sigma-Aldrich. The IgGs obtained from the following sources were used at 1:1000 dilution unless indicated otherwise: mouse monoclonal anti-β-actin (A5441, 1:10000), rabbit polyclonal anti-FLAG (F7425), Sigma-Aldrich; rabbit polyclonal anti-USP20 (A300-189A, 1:2000) and anti-USP33 (A300-925A), anti-ubiquitin (A300-317A) Bethyl Laboratories, Inc.; anti-LAMP1 (sc-18821), rabbit polyclonal anti-PKAα (sc-903), anti-PKAβ (sc-904), anti-β-Tubulin (sc-5274), anti-β2AR H20 (sc-569), anti-β1AR V-19 (sc-568), Santa Cruz Biotechnology; rabbit polyclonal anti-GAPDH (3683), Cell Signaling Technology. Custom antibody specific for mouse USP33 and USP20 phosphorylated at serine 333 was produced by GenScript and described previously (24,70). Horseradish peroxidase-conjugated secondary antibodies were from Rockland Immunochemicals, Cell Signaling Technology and Bethyl Laboratories, Inc. and used at a
Deubiquitination and β1AR trafficking

Dilution of 1:300. Alexa Fluor 488-, 594-, and 633-conjugated secondary antibodies were purchased from Invitrogen and used at a dilution of 1:300 for immunofluorescence labeling.

Experimental animals
Genetically engineered β1AR-KO and β1AR/β2AR-KO mice were described previously (5,7). The USP20 gene trap heterozygous mouse line (Usp20tm1a(EUCOMM)Hmgu) was purchased from the International Knockout Mouse Consortium. The USP20 gene trap heterozygous mice were mated to produce homozygous gene trap and wild type mice that were used as experimental cohorts. Additionally, we generated USP20 gene trap KO with C57BL/6N ES cell lines (HEPD0524_2_C09 and HEPD0524_2_H10, EUCOMM), with the help of Duke Transgenic Core. All three USP20 gene trap KO lines (designated as USP20-KO) were studied and were assigned into age and gender-matched experimental cohorts. Genotypes of all breeding and experimental animals were confirmed by PCR-based and Western blotting assays. All in vivo measurements were made by observers blinded to specimen identity. All animals were handled according to the approved protocols and animal welfare regulations of the Duke University Institutional Animal Care and Use Committee.

Cell Lines
Human embryonic kidney (HEK-293) cells were purchased from the American Type Culture Collection and grown in minimal essential medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Plasmid transfections in these cells were performed at 40-50% confluency in the presence of Lipofectamine 2000TM (Thermo Fisher Scientific) and following manufacturer’s protocol as described before (52). Stable cell lines expressing FLAG-tagged β1AR, CFP-tagged β1AR or FLAG-tagged β2AR were selected by supplementing growth medium with 1 mg/ml of G418 and upon passaging were maintained in growth medium containing 400 μg/ml of G418, as described previously (71).

Cardiac morphological and histological examinations
Morphological and histological cardiac assessments were performed as described previously (72). Hearts were excised and briefly washed in PBS before photograph with a Nikon SMZ 800 stereomicroscope and a DS-Fi1 camera. Histological heart specimen were fixed in 10% formaldehyde solution, sectioned into 5 μm thick slices, and stained with Masson trichrome before visualization at 20X magnification under a Zeiss Axio Imager widefield fluorescence microscope. ZEN software version 2.3 (Carl Zeiss Microscopy) was used for histological image processing and stitching whereas NIH ImageJ was used for quantification and analysis.

Transthoracic echocardiography.
All cardiovascular phenotyping was performed at the Duke Cardiovascular Physiology Core. Echocardiography was performed on 2-4 months old awake mice using a Vevo 2100 high-resolution imaging system (VisualSonics, Toronto, ON, Canada) as described previously (72). Left ventricle structure and dimension were assessed via parasternal short axis view in M-mode, while aortic ejection time was measured by pulsed-wave Doppler. All data and images were analyzed with the Vevo 2100 Imaging System by an examiner blinded to mouse identity.

Hemodynamic evaluation in intact anesthetized mice
Mice were anesthetized with a mixture of ketamine (100 mg/kg IP) and xylazine (2.5 mg/kg IP), and connected to a rodent ventilator via endotracheal intubation (8,34). Intraventricular pressure was measured in real-time with a 1.4F high-fidelity micromanometer catheter (Millar Instruments) inserted into the left ventricle via the right carotid artery. Isoproterenol was administered through a polyethylene catheter (PE10) inserted into the right external jugular vein. Ventricular contractility was assessed at baseline and 45 seconds after injection of increasing doses of isoproterenol.

Left ventricular pressure–volume analysis
After bilateral vagotomy, cardiac catheterization was performed with a 1.4F high-fidelity micromanometer catheter (Millar Instruments) on anesthetized mice like described for the
Deubiquitination and β1AR trafficking

Left ventricle volume and intraventricular pressure during systole and diastole were measured in real-time and recorded using a P–V conductance system (PowerLab, AD Instruments). Various preload conditions were elicited by transient inferior vena cava occlusion (IVC). Parallel conductance (Vp) of the blood pool was determined by 10-μl injection of 15% saline into the right jugular vein and used for correction of P–V loop data. Data were analyzed with P-V analysis software (PVAN data analysis software version 3.3; Millar Instruments) by an observer blinded to mouse genotype.

Determination of cardiac cAMP levels.
For catecholamine induced cAMP, 3-4 months old mice were injected a single bolus of a β1AR selective agonist of dobutamine (10 µg/g body weight) or equivalent volume of vehicle (0.9% NaCl) given intraperitoneally. For direct adenyl cyclase activation, mice were treated with 1µg/g body weight of the water soluble forskolin analog NKH477(30). 2 Min after drug injection the mice were rapidly euthanized and their hearts excised, flash frozen in liquid nitrogen and stored at -80 °C until assays. Total cAMP levels in mouse ventricles were measured with Direct cAMP ELISA kit (catalog #: ADI-900-066; Enzo Life Sciences Inc) according to manufacturer’s instructions. Optical density associated with cAMP levels were measured at 405 nm with Synergy Neo2 Hybrid Multi-Mode Reader (Biotek).

Cardiac membrane isolation
Left ventricles isolated from 3-4 months old WT and USP20-KO mice were lysed in ice-cold homogenization buffer containing 25 mM Tris-Cl (pH 7.4), 5 mM EDTA (pH 8.0), 5 µg/ml leupeptin, and 10 µg/ml aprotinin as described previously. After low speed centrifugation (500 x g for 5 minutes at 4°C) to remove debris, supernatant were centrifuged at high-speed (35,000 x g for 30 minutes at 4°C) to precipitate membranes. Membrane fractions were then suspended in buffer containing 75 mM Tris-Cl, (pH 7.4), 2 mM EDTA (pH 8.0), 12.5 mM MgCl2, 5 µg/ml leupeptin, and 10 µg/ml aprotinin and stored at -80 °C until radioligand binding assays.

Radioligand binding assays.
Radioligand binding assays were performed as described previously (72-74). Briefly, membranes isolated from LV of WT and USP20-KO mice were diluted to a concentration of 0.5 mg/ml in ice-cold binding assay buffer containing 50 mM Tris-Cl (pH 7.4), 2 mM EDTA (pH 8.0), 12.5 mM MgCl2, and 180 µg/ml L-ascorbic acid. 500 pM [125I]CYP was added to all membranes and inhibition of specific [125I]CYP binding was determined by adding 20 µM of non-selective antagonist propranolol or of β1AR selective antagonist CGP20712A. Samples were prepared in triplicate in polypropylene 96-well plates (Costar, Cambridge, MA) and at least 3 independent experiments were performed. After 90 min incubation at room temperature, membrane-bound radioligand were harvested onto Whatman GF/B glass fiber filters using a Brandel cell harvester (Brandel, Gaithersburg, MD). Filters were washed 3 times with ice-cold washing buffer (50 mM Tris -Cl [pH 7.4], 2 mM EDTA [pH 8.0], 12.5 mM MgCl2) and bound radioactivity were measured with a Packard Cobra gamma counter.

RNA Interference
Control siRNA targeting no mRNA and siRNA targeting USP20, USP33, PKAα, or PKAβ were purchased from Dharmacon GE Healthcare Life Sciences and described previously (23,24). Transfections were performed in serum-free medium in 40–50% confluent cells using 20 μg of siRNA in the presence of Lipofectamine 2000™ and following manufacturer’s protocol. 4 h after transfection, serum-containing medium was added to the cells and maintained for 48 h until experiments. Cells in which knockdown of target protein attained >80% efficiency were used for experimental analyses.

Immunoprecipitation and Immunoblotting
For cardiac samples, freshly isolated mouse ventricles were solubilized in an ice-cold lysis buffer containing 20 mM Tris-Cl (pH 7.4), 137 mM NaCl, 20% (v/v) glycerol, and 1% (v/v) IGEPAL CA-630, supplemented with phosphatase and protease inhibitors (1 mM sodium orthovanadate, 10 mM sodium fluoride, 10 mM phenylmethylsulfonyl fluoride, 5 µg/ml leupeptin, 5 µg/ml aprotinin, 1 µg/ml phosphatase 500 pM [125I]CYP was added to all membranes and inhibition of specific [125I]CYP binding was determined by adding 20 µM of non-selective antagonist propranolol or of β1AR selective antagonist CGP20712A. Samples were prepared in triplicate in polypropylene 96-well plates (Costar, Cambridge, MA) and at least 3 independent experiments were performed. After 90 min incubation at room temperature, membrane-bound radioligand were harvested onto Whatman GF/B glass fiber filters using a Brandel cell harvester (Brandel, Gaithersburg, MD). Filters were washed 3 times with ice-cold washing buffer (50 mM Tris -Cl [pH 7.4], 2 mM EDTA [pH 8.0], 12.5 mM MgCl2) and bound radioactivity were measured with a Packard Cobra gamma counter.

RNA Interference
Control siRNA targeting no mRNA and siRNA targeting USP20, USP33, PKAα, or PKAβ were purchased from Dharmacon GE Healthcare Life Sciences and described previously (23,24). Transfections were performed in serum-free medium in 40–50% confluent cells using 20 μg of siRNA in the presence of Lipofectamine 2000™ and following manufacturer’s protocol. 4 h after transfection, serum-containing medium was added to the cells and maintained for 48 h until experiments. Cells in which knockdown of target protein attained >80% efficiency were used for experimental analyses.

Immunoprecipitation and Immunoblotting
For cardiac samples, freshly isolated mouse ventricles were solubilized in an ice-cold lysis buffer containing 20 mM Tris-Cl (pH 7.4), 137 mM NaCl, 20% (v/v) glycerol, and 1% (v/v) IGEPAL CA-630, supplemented with phosphatase and protease inhibitors (1 mM sodium orthovanadate, 10 mM sodium fluoride, 10 mM phenylmethylsulfonyl fluoride, 5 µg/ml leupeptin, 5 µg/ml aprotinin, 1 µg/ml phosphatase...
inhibitor cocktail 2 (P5726), and 1 μg/ml phosphatase inhibitor cocktail 3 (P0044); all were from Sigma-Aldrich. Cardiac homogenates were centrifuged at 35,000 g for 30 minutes at 4°C and the supernatant used for experiments. For immunoprecipitation assays, HEK-293 cells stably expressing FLAG-tagged β1- or β2-AR were solubilized in ice-cold lysis buffer containing 50 mM HEPES (pH 7.5), 2 mM EDTA (pH 8.0), 250 mM NaCl, 10% (v/v) glycerol, and 0.5% (v/v) IGEPA CA-630 supplemented with the aforementioned phosphatase and protease inhibitors and also with 10 mM N-ethylmaleimide to inhibit cellular deubiquitinas activity and preserve receptor ubiquitination. Lysates from these cells were centrifuged at 13,000 rpm for 20 min at 4 °C and 1 to 2 mg of supernatant whole cell extracts were immunoprecipitated using anti-FLAG M2 resin. After overnight end-over-end rotation at 4 °C, immune complexes were washed three times with lysis buffer and eluted in 2× SDS-PAGE sample buffer. Immune complexes and 20 μg of corresponding lysates were resolved on 4–20% gradient gels and transferred onto nitrocellulose membranes. Membrane blocking and antibody incubation were in 5% (w/v) dried skim milk powder dissolved in TTBS: (0.2% (v/v) Tween 20, 10 mM Tris-Cl, (pH 8.0), and 150 mM NaCl), whereas in-between washes were performed in TTBS. Note that many batches of commercial anti-USP20 IgG also detect endogenous USP33, but anti-USP33 IgG does not detect endogenous USP20; optimal separation of the two proteins is achieved on 4-20% or 4-12% Tris glycine gradient gels. Immunoblotted proteins were detected with enhanced chemiluminescence (SuperSignal West Pico reagent, Pierce). Signals were detected and acquired with a charge-coupled device camera system (Bio-Rad Chemidoc-XRS) and analyzed with Image Lab software (Bio-Rad).

Quantification of β1AR ubiquitination
The FLAG-β1AR IPs were serially immunoblotted for ubiquitin and FLAG tag. Band densities detected by the ubiquitin antibody between 70 kDa and 300 kDa were determined in all lanes and those values from the lane that had no FLAG-β1AR was used as the negative control to subtract nonspecific signals. Similar densitometry was performed for the FLAG blot to evaluate the signals of prominent β1AR bands between 45-70 kDa. The specific values obtained for ubiquitinated species in each lane was then divided by the corresponding β1AR value which was used in producing bar graphs. In Figure 1B, maximal ubiquitin signal in each experiment is taken as 100%. In Figures 2B, and 6B, the signals from control + agonist is fixed as 100% in each experiment.

Adenovirus-mediated transduction
HA-tagged adenovirus expressing WT, phospho-mimetic, phospho-deficient or catalytically inactive USP20 mutants were generated with the AdEasy system (Agilent Technologies) according to published protocols (75,76) and their identity confirmed by sequencing. For conjugation assays with ubiquitin-vinyl methyl ester (Ub-VME, U-203; R&D Systems) and for co-immunoprecipitation experiments, cells were transduced with adenovirus for 2 hours and harvested 12-14 h post transduction in co-immunoprecipitation buffer deprived of NEM. For Ub-VME conjugation assays, the level of expression of each USP20 construct was estimated by densitometric comparison of known amounts of purified HA-USP20 (76) as detected by immunoblotting with polyclonal anti-HA antibody. The final volume of lysate used in Ub-VME binding was adjusted to obtain 4 pmoles of USP20 in each reaction. 20 pmoles of Ub-VME was added to the reaction. In these assays maximal shift for USP20 WT required a 30 min incubation of the lysate + Ub-VME mixture at 37 °C. We used this condition to compare the reactivity of S333A, S333D and USP20-CH constructs. The reactions were terminated by addition of SDS-PAGE sample buffer and further analysis was carried out by Western blotting with a polyclonal anti-HA antibody (Cell Signaling Technology).

Immunofluorescence Staining and Confocal Imaging
Immunofluorescence staining and confocal imaging were performed as described previously (23,24). HEK-293 cells stably expressing exogenous β1AR-CFP were transfected with siRNA or plasmids encoding pcDNA3-HA and HA-tagged USP20 wild-type or mutants. 24 h
post-transfection, the cells were seeded on poly-
d-lysine coated 35-mm glass bottom plates (MatTek Corp, Ashland, MA), serum-starved for 1 h the next day, stimulated with 1 μM Iso and fixed with 5% formaldehyde diluted in calcium/magnesium-containing Dulbecco’s phosphate-buffered saline (DPBS). 15 min after fixation, cells were permeabilized for 20–30 min with 0.1% Triton X-100, incubated with primary antibody overnight at 4 °C, and with cognate secondary antibody for 1 h at room temperature. Washes after cell fixation and antibody incubations were performed with DPBS whereas DPBS containing 2% bovine serum albumin was used for permeabilizing solution and antibody dilutions. Cells were visualized with Zeiss LSM-710 or LSM-510 META confocal microscope with filter settings for respective fluorophores: excitation nm are, 435 (CFP) 488 (Alexa 488), 568 (Alexa 594), and 633 (Alexa 633) and emission (460-500 nm, CFP, 515–540 nm, GFP; 585–615 nm, Texas Red; 650 nm, Alexa Fluor 633). Images acquired by the LSM operating software (ZEISS ZEN imaging software) were analyzed with Imaris software (Bitplane, South Windsor, CT) to quantify fluorophore colocalization. A total of 13-20 z-stack images from three independent experiments were used for analyses.

Micro-osmotic Pump Implantation
Micro-osmotic pump implantation for chronic isoproterenol administration was performed as described previously (77,78). Mice were anesthetized with a mixture of ketamine (100 mg/kg) and xylazine (2.5 mg/kg). Saline- or isoproterenol-filled micro-osmotic pumps (Alzet model 1007D, Durect Corp., Cupertino, CA) were subcutaneously implanted in 3-4 months old WT mice and adjusted to a dosage 3mg/kg/day for 7 days. After treatment, mice were rapidly euthanized and their hearts processed for molecular analyses.

Transverse aortic constriction (TAC)
Transverse aortic constriction was performed in 8- to 12-week-old mice anesthetized with a mixture of ketamine (100 mg/kg) and xylazine (2.5 mg/kg) as described previously (34). After thoracotomy, the aortic arch was ligated with a 6.0 nylon suture to the width of a 27-gauge needle, inducing a 60-80% constriction. The sham control mice underwent similar procedure but without aortic ligation. After needle removal and chest/skin closure, animals were maintained for 2 weeks, then euthanized for molecular analyses of cardiac tissues.

Statistical analysis
Data from at least 3 independent experiments were averaged and represented as means ± SEM. Two-tailed Student’s t test was used for basal assessments of WT and USP20-KO mice whereas studies involving more than two groups, time course and dose response experiments were analyzed with ANOVA followed by post hoc correction for multiple comparisons. Statistical analyses were performed using GraphPad Prism 7 (GraphPad, Inc.), and significance was established for \(p < 0.05 \).

Acknowledgement:
We acknowledge support from the NIH (HL118369 to SKS; HL125905 to DA; HL56687 and P01 HL75443 to HAR), and 15GRNT25550051 from the American Heart Association (SKS). We also acknowledge support from the Mandel Center for Hypertension and Atherosclerosis Research and the Duke O’Brien Center for Kidney Research (NIH/NIDDK, Award Number P30-DK096493).

Conflict of Interest
None.

References
1. Rockman, H. A., Koch, W. J., and Lefkowitz, R. J. (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415, 206-212
2. Rohrer, D. K., and Kobilka, B. K. (1998) Insights from in vivo modification of adrenergic receptor gene expression. Annu Rev Pharmacol Toxicol 38, 351-373
3. Bristow, M. R., Ginsburg, R., Umans, V., Fowler, M., Minobe, W., Rasmussen, R., Zera, P., Menlove, R., Shah, P., Jamieson, S., and et al. (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59, 297-309

4. Chruscinski, A. J., Rohrer, D. K., Schauble, E., Desai, K. H., Bernstein, D., and Kobilka, B. K. (1999) Targeted disruption of the beta2 adrenergic receptor gene. J Biol Chem 274, 16694-16700

5. Rohrer, D. K., Chruscinski, A., Schauble, E. H., Bernstein, D., and Kobilka, B. K. (1999) Cardiovascular and metabolic alterations in mice lacking both beta1- and beta2-adrenergic receptors. J Biol Chem 274, 16701-16708

6. Rohrer, D. K., Schauble, E. H., Desai, K. H., Kobilka, B. K., and Bernstein, D. (1998) Alterations in dynamic heart rate control in the beta 1-adrenergic receptor knockout mouse. Am J Physiol 274, H1184-1193

7. Rohrer, D. K., Desai, K. H., Jasper, J. R., Stevens, M. E., Regula, D. P., Jr., Barsh, G. S., Bernstein, D., and Kobilka, B. K. (1996) Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc Natl Acad Sci U S A 93, 7375-7380

8. Yoo, B., Lemaire, A., Mangmool, S., Wolf, M. J., Curcio, A., Mao, L., and Rockman, H. A. (2009) Beta1-adrenergic receptors stimulate cardiac contractility and CaMKII activation in vivo and enhance cardiac dysfunction following myocardial infarction. Am J Physiol Heart Circ Physiol 297, H1377-1386

9. Jean-Charles, P. Y., Kaur, S., and Shenoy, S. K. (2017) G Protein-Coupled Receptor Signaling Through beta-Arrestin-Dependent Mechanisms. J Cardiovasc Pharmacol 70, 142-158

10. Ungerer, M., Bohm, M., Elce, J. S., Erdmann, E., and Lohse, M. J. (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87, 454-463

11. Ginsburg, R., Bristow, M. R., Billingham, M. E., Stinson, E. B., Schroeder, J. S., and Harrison, D. C. (1983) Study of the normal and failing isolated human heart: decreased response of failing heart to isoproterenol. Am Heart J 106, 535-540

12. Bernstein, D., Fajardo, G., Zhao, M., Urashima, T., Powers, J., Berry, G., and Kobilka, B. K. (2005) Differential cardioprotective/cardiotoxic effects mediated by beta-adrenergic receptor subtypes. Am J Physiol Heart Circ Physiol 289, H2441-2449

13. Devic, E., Xiang, Y., Gould, D., and Kobilka, B. (2001) Beta-adrenergic receptor subtype-specific signaling in cardiac myocytes from beta(1) and beta(2) adrenoceptor knockout mice. Mol Pharmacol 60, 577-583

14. Xiang, Y., and Kobilka, B. K. (2003) Myocyte adrenoceptor signaling pathways. Science 300, 1530-1532

15. Engelhardt, S., Bohm, M., Erdmann, E., and Lohse, M. J. (1996) Analysis of beta-adrenergic receptor mRNA levels in human ventricular biopsy specimens by quantitative polymerase chain reactions: progressive reduction of beta 1-adrenergic receptor mRNA in heart failure. J Am Coll Cardiol 27, 146-154

16. Perrino, C., Naga Prasad, S. V., Schroder, J. N., Hata, J. A., Milano, C., and Rockman, H. A. (2005) Restoration of beta-adrenergic receptor signaling and contractile function in
Deubiquitination and βAR trafficking

heart failure by disruption of the betaARK1/phosphoinositide 3-kinase complex. *Circulation* **111**, 2579-2587

17. Perrino, C., Schroder, J. N., Lima, B., Villamizar, N., Nienaber, J. J., Milano, C. A., and Naga Prasad, S. V. (2007) Dynamic regulation of phosphoinositide 3-kinase-gamma activity and beta-adrenergic receptor trafficking in end-stage human heart failure. *Circulation* **116**, 2571-2579

18. Hershko, A., and Ciechanover, A. (1998) The ubiquitin system. *Annu Rev Biochem* **67**, 425-479

19. Jean-Charles, P. Y., Snyder, J. C., and Shenoy, S. K. (2016) Chapter One - Ubiquitination and Deubiquitination of G Protein-Coupled Receptors. *Prog Mol Biol Transl Sci* **141**, 1-55

20. Shenoy, S. K., McDonald, P. H., Kohout, T. A., and Lefkowitz, R. J. (2001) Regulation of receptor fate by ubiquitination of activated beta 2-adrenergic receptor and beta-arrestin. *Science* **294**, 1307-1313

21. Shenoy, S. K., Xiao, K., Venkataramanan, V., Snyder, P. M., Freedman, N. J., and Weissman, A. M. (2008) Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the beta2-adrenergic receptor. *J Biol Chem* **283**, 22166-22176

22. Xiao, K., and Shenoy, S. K. (2011) Beta2-adrenergic receptor lysosomal trafficking is regulated by ubiquitination of lysyl residues in two distinct receptor domains. *J Biol Chem* **286**, 12785-12795

23. Berthouze, M., Venkataramanan, V., Li, Y., and Shenoy, S. K. (2009) The deubiquitinases USP33 and USP20 coordinate beta2 adrenergic receptor recycling and resensitization. *The EMBO journal* **28**, 1684-1696

24. Kommadri, R. P., Jean-Charles, P. Y., and Shenoy, S. K. (2015) Phosphorylation of the deubiquitase USP20 by protein kinase A regulates post-endocytic trafficking of beta2 adrenergic receptors to autophagosomes during physiological stress. *J Biol Chem* **290**, 8888-8903

25. Dores, M. R., and Trejo, J. (2012) Ubiquitination of G protein-coupled receptors: functional implications and drug discovery. *Molecular pharmacology* **82**, 563-570

26. Borodovsky, A., Ovaa, H., Meester, W. J., Venanzi, E. S., Bogyo, M. S., Hekking, B. G., Ploegh, H. L., Kessler, B. M., and Overkleeft, H. S. (2005) Small-molecule inhibitors and probes for ubiquitin- and ubiquitin-like-specific proteases. *ChemBioChem* **6**, 287-291

27. Hewings, D. S., Flygare, J. A., Bogyo, M., and Wertz, I. E. (2017) Activity-based probes for the ubiquitin conjugation-deconjugation machinery: new chemistries, new tools, and new insights. *FEBS J* **284**, 1555-1576

28. Naik, E., and Dixit, V. M. (2016) Usp9X Is Required for Lymphocyte Activation and Homeostasis through Its Control of ZAP70 Ubiquitination and PKCbeta Kinase Activity. *J Immunol* **196**, 3438-3451

29. Jean-Charles, P. Y., Zhang, L., Wu, J. H., Han, S. O., Brian, L., Freedman, N. J., and Shenoy, S. K. (2016) Ubiquitin-specific Protease 20 Regulates the Reciprocal Functions of beta-Arrestin2 in Toll-like Receptor 4-promoted Nuclear Factor kappaB (NFkappaB) Activation. *The Journal of biological chemistry* **291**, 7450-7464

30. Zhou, J., Lal, H., Chen, X., Shang, X., Song, J., Li, Y., Kerkela, R., Doble, B. W., MacAulay, K., DeCaul, M., Koch, W. J., Farber, J., Woodgett, J., Gao, E., and Force, T. (2010) GSK-3alpha directly regulates beta-adrenergic signaling and the response of the heart to hemodynamic stress in mice. *J Clin Invest* **120**, 2280-2291
Deubiquitination and β_1AR trafficking

31. Mangmool, S., Shukla, A. K., and Rockman, H. A. (2010) beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. *J Cell Biol* **189**, 573-587

32. Morisco, C., Zebrowski, D., Condorelli, G., Tsichlis, P., Vatner, S. F., and Sadoshima, J. (2000) The Akt-glycogen synthase kinase 3beta pathway regulates transcription of atrial natriuretic factor induced by beta-adrenergic receptor stimulation in cardiac myocytes. *J Biol Chem* **275**, 14466-14475

33. Noma, T., Lemaire, A., Naga Prasad, S. V., Barki-Harrington, L., Tilley, D. G., Chen, J., Le Corvoisier, P., Violin, J. D., Wei, H., Lefkowitz, R. J., and Rockman, H. A. (2007) Beta-arrestin-mediated beta-adrenergic receptor transactivation of the EGFR confers cardioprotection. *J Clin Invest* **117**, 2445-2458

34. Rockman, H. A., Ross, R. S., Harris, A. N., Knowlton, K. U., Steinhelper, M. E., Field, L. J., Ross, J., Jr., and Chien, K. R. (1991) Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. *Proc Natl Acad Sci U S A* **88**, 8277-8281

35. Zhao, M., Fajardo, G., Urashima, T., Spin, J. M., Poorfarahani, S., Rajagopalan, V., Huynh, D., Connolly, A., Quertermous, T., and Bernstein, D. (2011) Cardiac pressure overload hypertrophy is differentially regulated by beta-adrenergic receptor subtypes. *Am J Physiol Heart Circ Physiol* **301**, H1461-1470

36. Colomer, J. M., Mao, L., Rockman, H. A., and Means, A. R. (2003) Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. *Molecular endocrinology* **17**, 183-192

37. Skavdahl, M., Steenbergen, C., Clark, J., Myers, P., Demianenko, T., Mao, L., Rockman, H. A., Korach, K. S., and Murphy, E. (2005) Estrogen receptor-beta mediates male-female differences in the development of pressure overload hypertrophy. *American journal of physiology. Heart and circulatory physiology* **288**, H469-476

38. Tachibana, H., Naga Prasad, S. V., Lefkowitz, R. J., Koch, W. J., and Rockman, H. A. (2005) Level of beta-adrenergic receptor kinase 1 inhibition determines degree of cardiac dysfunction after chronic pressure overload-induced heart failure. *Circulation* **111**, 591-597

39. Tachibana, H., Perrino, C., Takaoka, H., Davis, R. J., Naga Prasad, S. V., and Rockman, H. A. (2006) JNK1 is required to preserve cardiac function in the early response to pressure overload. *Biochemical and biophysical research communications* **343**, 1060-1066

40. Shcherbakova, O. G., Hurt, C. M., Xiang, Y., Dell'Acqua, M. L., Zhang, Q., Tsien, R. W., and Kobilka, B. K. (2007) Organization of beta-adrenoceptor signaling compartments by sympathetic innervation of cardiac myocytes. *J Cell Biol* **176**, 521-533

41. Asano, K., Zisman, L. S., Yoshikawa, T., Headley, V., Bristow, M. R., and Port, J. D. (2001) Bucindolol, a nonselective beta 1- and beta 2-adrenergic receptor antagonist, decreases beta-adrenergic receptor density in cultured embryonic chick cardiac myocyte membranes. *J Cardiovasc Pharmacol* **37**, 678-691

42. Bristow, M. R., Abraham, W. T., Yoshikawa, T., White, M., Hattler, B. G., Crisman, T. S., Lowes, B. D., Robertson, A. D., Larrabee, P., and Gilbert, E. M. (1997) Second- and third-generation beta-blocking drugs in chronic heart failure. *Cardiovasc Drugs Ther* **11 Suppl 1**, 291-296
43. Yoshikawa, T., Port, J. D., Asano, K., Chidiak, P., Bouvier, M., Dutcher, D., Roden, R. L., Minobe, W., Tremmel, K. D., and Bristow, M. R. (1996) Cardiac adrenergic receptor effects of carvedilol. *Eur Heart J* 17 Suppl B, 8-16.

44. Aarons, R. D., and Molinoff, P. B. (1982) Changes in the density of beta adrenergic receptors in rat lymphocytes, heart and lung after chronic treatment with propranolol. *J Pharmacol Exp Ther* 221, 439-443.

45. Sigmund, M., Jakob, H., Becker, H., Hanrath, P., Schumacher, C., Eschenhagen, T., Schmitz, W., Scholz, H., and Steinfath, M. (1996) Effects of metoprolol on myocardial beta-adrenoceptors and Gi alpha-proteins in patients with congestive heart failure. *Eur J Clin Pharmacol* 51, 127-132.

46. Yue, T. L., McKenna, P. J., Ruffolo, R. R., Jr., and Feuerstein, G. (1992) Carvedilol, a new beta-adrenoceptor antagonist and vasodilator antihypertensive drug, inhibits superoxide release from human neutrophils. *Eur J Pharmacol* 214, 277-280.

47. Feuerstein, G., Liu, G. L., Yue, T. L., Cheng, H. Y., Hieble, J. P., Arch, J. R., Ruffolo, R. R., Jr., and Ma, X. L. (1998) Comparison of metoprolol and carvedilol pharmacology and cardioprotection in rabbit ischemia and reperfusion model. *Eur J Pharmacol* 351, 341-350.

48. Cleland, J. G., Charlesworth, A., Lubsen, J., Swedberg, K., Remme, W. J., Erhardt, L., Di Lenarda, A., Komajda, M., Metra, M., Torp-Pedersen, C., Poole-Wilson, P. A., and Investigators, C. (2006) A comparison of the effects of carvedilol and metoprolol on well-being, morbidity, and mortality (the "patient journey") in patients with heart failure: a report from the Carvedilol Or Metoprolol European Trial (COMET). *J Am Coll Cardiol* 47, 1603-1611.

49. Dargie, H. J. (2001) Effect of carvedilol on outcome after myocardial infarction in patients with left-ventricular dysfunction: the CAPRICORN randomised trial. *Lancet* 357, 1385-1390.

50. Flesch, M., Ettelbruck, S., Rosenkranz, S., Maack, C., Cremers, B., Schluter, K. D., Zolk, O., and Bohm, M. (2001) Differential effects of carvedilol and metoprolol on isoprenaline-induced changes in beta-adrenoceptor density and systolic function in rat cardiac myocytes. *Cardiovasc Res* 49, 371-380.

51. Bohm, M., Ettelbruck, S., Flesch, M., van Gilst, W. H., Knorr, A., Maack, C., Pinto, Y. M., Paul, M., Teisman, A. C., and Zolk, O. (1998) Beta-adrenergic signal transduction following carvedilol treatment in hypertensive cardiac hypertrophy. *Cardiovasc Res* 40, 146-155.

52. Han, S. O., Xiao, K., Kim, J., Wu, J. H., Wisler, J. W., Nakamura, N., Freedman, N. J., and Shenoy, S. K. (2012) MARCH2 promotes endocytosis and lysosomal sorting of carvedilol-bound beta(2)-adrenergic receptors. *J Cell Biol* 199, 817-830.

53. Komander, D., Clague, M. J., and Urbe, S. (2009) Breaking the chains: structure and function of the deubiquitinases. *Nature reviews. Molecular cell biology* 10, 550-563.

54. Sahtoe, D. D., and Sixma, T. K. (2015) Layers of DUB regulation. *Trends Biochem Sci* 40, 456-467.

55. Perrino, C., Naga Prasad, S. V., Mao, L., Noma, T., Yan, Z., Kim, H. S., Smithies, O., and Rockman, H. A. (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. *J Clin Invest* 116, 1547-1560.

56. Bristow, M. R., Ginsburg, R., Minobe, W., Cubiciotti, R. S., Sageman, W. S., Lurie, K., Billingham, M. E., Harrison, D. C., and Stinson, E. B. (1982) Decreased catecholamine
Deubiquitination and β1AR trafficking

sensitivity and beta-adrenergic-receptor density in failing human hearts. *N Engl J Med* 307, 205-211

57. Francis, G. S., Goldsmith, S. R., Ziesche, S. M., and Cohn, J. N. (1982) Response of plasma norepinephrine and epinephrine to dynamic exercise in patients with congestive heart failure. *Am J Cardiol* 49, 1152-1156

58. Thomas, J. A., and Marks, B. H. (1978) Plasma norepinephrine in congestive heart failure. *Am J Cardiol* 41, 233-243

59. Chidsey, C. A., Braunwald, E., and Morrow, A. G. (1965) Catecholamine Excretion and Cardiac Stores of Norepinephrine in Congestive Heart Failure. *Am J Med* 39, 442-451

60. Jean-Charles, P. Y., Yu, S. M., Abraham, D., Komaddi, R. P., Mao, L., Stracan, R. T., Zhang, Z. S., Bowles, D. E., Brian, L., Stiber, J. A., Jones, S. N., Koch, W. J., Rockman, H. A., and Shenoy, S. K. (2017) Mdm2 regulates cardiac contractility by inhibiting GRK2-mediated desensitization of beta-adrenergic receptor signaling. *JCI Insight* 2, Sep 7;2(17)

61. Morisco, C., Marrone, C., Galeotti, J., Shao, D., Vatner, D. E., Vatner, S. F., and Sadoshima, J. (2008) Endocytosis machinery is required for beta1-adrenergic receptor-induced hypertrophy in neonatal rat cardiac myocytes. *Cardiovasc Res* 78, 36-44

62. Salazar, N. C., Vallejos, X., Siryk, A., Rengo, G., Cannavo, A., Liccardo, D., De Lucia, C., Gao, E., Leosco, D., Koch, W. J., and Lymeropoulos, A. (2013) GRK2 blockade with betaARKct is essential for cardiac beta2-adrenergic receptor signaling towards increased contractility. *Cell Commun Signal* 11, 64

63. Nienaber, J. J., Tachibana, H., Naga Prasad, S. V., Esposito, G., Wu, D., Mao, L., and Rockman, H. A. (2003) Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. *J Clin Invest* 112, 1067-1079

64. Oudit, G. Y., Crackower, M. A., Eriksson, U., Sarao, R., Kozieradzki, I., Sasaki, T., Irie-Sasaki, J., Gidewicz, D., Rybin, V. O., Wada, T., Steinberg, S. F., Backx, P. H., and Penninger, J. M. (2003) Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. *Circulation* 108, 2147-2152

65. Harding, V. B., Jones, L. R., Lefkowitz, R. J., Koch, W. J., and Rockman, H. A. (2001) Cardiac beta ARK1 inhibition prolongs survival and augments beta blocker therapy in a mouse model of severe heart failure. *Proc Natl Acad Sci U S A* 98, 5809-5814

66. Naga Prasad, S. V., Barak, L. S., Rapacciuolo, A., Caron, M. G., and Rockman, H. A. (2001) Agonist-dependent recruitment of phosphoinositide 3-kinase to the membrane by beta-adrenergic receptor kinase 1. A role in receptor sequestration. *J Biol Chem* 276, 18953-18959

67. Rockman, H. A., Chien, K. R., Choi, D. J., Iaccarino, G., Hunter, J. J., Ross, J., Jr., Lefkowitz, R. J., and Koch, W. J. (1998) Expression of a beta-adrenergic receptor kinase 1 inhibitor prevents the development of myocardial failure in gene-targeted mice. *Proc Natl Acad Sci U S A* 95, 7000-7005

68. Rockman, H. A., Choi, D. J., Akhter, S. A., Jaber, M., Giros, B., Lefkowitz, R. J., Caron, M. G., and Koch, W. J. (1998) Control of myocardial contractile function by the level of beta-adrenergic receptor kinase 1 in gene-targeted mice. *J Biol Chem* 273, 18180-18184

69. Koch, W. J., Rockman, H. A., Samama, P., Hamilton, R. A., Bond, R. A., Milano, C. A., and Lefkowitz, R. J. (1995) Cardiac function in mice overexpressing the beta-adrenergic receptor kinase or a beta ARK inhibitor. *Science* 268, 1350-1353
70. Shenoy, S. K., Modi, A. S., Shukla, A. K., Xiao, K., Berthouze, M., Ahn, S., Wilkinson, K. D., Miller, W. E., and Lefkowitz, R. J. (2009) Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. *Proc Natl Acad Sci U S A* **106**, 6650-6655

71. Shenoy, S. K., Drake, M. T., Nelson, C. D., Houtz, D. A., Xiao, K., Madabushi, S., Reiter, E., Premont, R. T., Lichtarge, O., and Lefkowitz, R. J. (2006) beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. *J Biol Chem* **281**, 1261-1273

72. Jean-Charles, P. Y., Yu, S. M., Abraham, D., Komaddi, R. P., Mao, L., Strachan, R. T., Zhang, Z. S., Bowles, D. E., Brian, L., Stiber, J. A., Jones, S. N., Koch, W. J., Rockman, H. A., and Shenoy, S. K. (2017) Mdm2 regulates cardiac contractility by inhibiting GRK2-mediated desensitization of beta-adrenergic receptor signaling. *JCI Insight* **2**

73. Hara, M. R., Kovacs, J. J., Whalen, E. J., Rajagopal, S., Strachan, R. T., Grant, W., Towers, A. J., Williams, B., Lam, C. M., Xiao, K., Shenoy, S. K., Gregory, S. G., Ahn, S., Duckett, D. R., and Lefkowitz, R. J. (2011) A stress response pathway regulates DNA damage through beta2-adrenoreceptors and beta-arrestin-1. *Nature* **477**, 349-353

74. Hegde, A., Strachan, R. T., and Walker, J. K. (2015) Quantification of beta adrenergic receptor subtypes in beta-arrestin knockout mouse airways. *PLoS One* **10**, e0116458

75. Luo, J., Deng, Z. L., Luo, X., Tang, N., Song, W. X., Chen, J., Sharff, K. A., Luu, H. H., Haydon, R. C., Kinzler, K. W., Vogelstein, B., and He, T. C. (2007) A protocol for rapid generation of recombinant adeno viruses using the AdEasy system. *Nat Protoc* **2**, 1236-1247

76. Jean-Charles, P. Y., Wu, J. H., Zhang, L., Kaur, S., Nepliouev, I., Stiber, J. A., Brian, L., Qi, R., Wertman, V., Shenoy, S. K., and Freedman, N. J. (2018) USP20 (Ubiquitin-Specific Protease 20) Inhibits TNF (Tumor Necrosis Factor)-Triggered Smooth Muscle Cell Inflammation and Attenuates Atherosclerosis. *Arterioscler Thromb Vasc Biol* **38**, 2295-2305

77. Keys, J. R., Greene, E. A., Cooper, C. J., Naga Prasad, S. V., Rockman, H. A., and Koch, W. J. (2003) Cardiac hypertrophy and altered beta-adrenergic signaling in transgenic mice that express the amino terminus of beta-ARK1. *Am J Physiol Heart Circ Physiol* **285**, H2201-2211

78. Iaccarino, G., Tomhave, E. D., Lefkowitz, R. J., and Koch, W. J. (1998) Reciprocal in vivo regulation of myocardial G protein-coupled receptor kinase expression by beta-adrenergic receptor stimulation and blockade. *Circulation* **98**, 1783-1789
TABLE 1. Echocardiographic measurements in WT and USP20-KO

	WT	USP20-KO
	N = 15	N = 16
LVID;d (mm)	2.96 ± 0.34	3.27 ± 0.40*
LVID;s (mm)	1.27 ± 0.32	1.54 ± 0.38*
LVPW;d (mm)	1.01 ± 0.18	0.95 ± 0.16
IVS;d (mm)	1.05 ± 0.13	0.99 ± 0.12
EF (%)	88.18 ± 4.82	84.36 ± 5.89
FS (%)	57.50 ± 6.46	53.58 ± 7.20
LV Mass (Corrected) (mg)	84.88 ± 14.13	90.03 ± 20.49
LV Vol;d (µl)	34.68 ± 10.32	44.17 ± 13.35*
LV Vol;s (µl)	4.41 ± 3.23	7.47 ± 4.23*
Heart Rate (BPM)	652 ± 51	710 ± 57*
AET (ms)	38.82 ± 4.93	36.45 ± 2.89
mVcf (cir/sec)	15.07 ± 2.79	14.87 ± 2.81
mVcfc (cir/sec)	4.57 ± 0.80	4.31 ± 0.73

Values are expressed as mean ± SD. LV, left ventricle; s, systole; d, diastole; IVS, intra-ventricular septum; LVID, left ventricle internal dimension; LVPW, left ventricular posterior wall; EF, ejection fraction; FS, fractional shortening of LV; Vol, volume; BPM, beats per minute; AET, aortic ejection time; mVcf, mean velocity of circumferential fiber shortening; mVcfc, mean velocity of circumferential fiber shortening corrected for heart rate; cir/sec, circumferences per second. Statistical significance was determined by Student’s t Test. *p < 0.05 versus WT.
Deubiquitination and β_1AR trafficking

TABLE 2. Baseline Load Dependent Hemodynamics

	WT	USP20-KO
	N = 11	N = 14
Heart Rate (BPM)	453 ± 34	428 ± 55
LVESP (mm Hg)	130.4 ± 16.6	121.2 ± 26.4
LVEDP (mm Hg)	9.4 ± 4.9	10.4 ± 8.6
Arterial Elastance (mmHg/µl)	6.5 ± 2.2	6.7 ± 2.7
Systolic Function Parameters		
Stroke Volume (µl)	21.4 ± 5.2	19.4 ± 5.1
Ejection Fraction (%)	62.4 ± 19.1	51.9 ± 20.8
Cardiac Output (µl/min)	9590.1 ± 1941.3	8263.2 ± 2197.7
Stroke Work (mm Hg*µl)	2066.3 ± 593.7	1787.1 ± 561.6
dP/dtmax (mm Hg/s)	10237.4 ± 1305.5	9048.4 ± 1834.3
Diastolic Function Parameters		
dP/dtmin (mm Hg/s)	-8946.4 ± 1063.2	-7596.5 ± 1286.4*
Tau (ms) (Weiss)	7.9 ± 1.3	8.6 ± 1.8
Tau (ms) (Glantz)	12.1 ± 2.6	13.4 ± 3.4

LVESP, left ventricle end systolic pressure; LVEDP, left ventricle end diastolic pressure; dP/dtmax, maximum first derivative of left ventricular pressure; dP/dtmin, minimum first derivative of left ventricular pressure; Tau, left ventricular diastolic time constant. Values are expressed as mean ± SD. * p<0.05 compared with WT, Student t-test.
TABLE 3. Load Independent Hemodynamic Measures

	WT	USP20-KO
N = 10	**N = 13**	
EDPVR (mm Hg/µl)	0.23 ± 0.1	0.3 ± 0.2
ESPVR (mm Hg/µl)	4.33 ± 1.7	3.5 ± 1.3
PRSW (mm Hg)	63.6 ± 20.8	48.8 ± 17.5
dp/dt vs EDV(mm Hg/s/µl)	244.7 ± 95.2	195.01 ± 75.9
Emax (mm Hg/µl)	6.7 ± 2.2	5.6 ± 2.2

Values are expressed as mean ± SD. EDPVR, End Diastolic Pressure Volume Relationship; ESPVR, End Systolic Pressure Volume Relationship; PRSW, Preload Recruitable Stroke Work; EDV, End Diastolic Volume; Emax, maximal elastance.
TABLE 4. Echocardiographic measurements in WT mice after chronic Iso

	Saline		Iso	
	PRE	POST	PRE	POST
	6	6	5	5
LVDd (mm)	3.0 ± 0.2	3.0 ± 0.2	2.8 ± 0.2	3.9 ± 0.4*
LVDs (mm)	1.2 ± 0.1	1.2 ± 0.1	1.1 ± 0.1	2.4 ± 0.4*
IVSW (mm)	1.0 ± 0.1	1.0 ± 0.1	1.0 ± 0.1	0.9 ± 0.1
PW (mm)	1.1 ± 0.2	1.1 ± 0.2	1.2 ± 0.1	1.1 ± 0.1
ET (ms)	37.4 ± 3.2	36.8 ± 2.1	36.6 ± 3.1	42.2 ± 9.2
HR (BPM)	692 ± 31	723 ± 107	701 ± 10	620 ± 94
FS (%)	60.4 ± 2.6	60.3 ± 3.7	62.1 ± 3.4	38.3 ± 5.6*
LVm (mg)	85.2 ± 19.9	88.7 ± 16.4	93.5 ± 9.3	117.6 ± 10.5*
mVcf (cir/sec)	16.3 ± 1.7	16.5 ± 1.6	17.0 ± 1.8	9.4 ± 2.5*
mVcfc (cir/sec)	4.8 ± 0.5	4.7 ± 0.1	5.0 ± 0.5	2.9 ± 0.6*

Values are expressed as mean ± SD. LV, left ventricle; s, systole; d, diastole; IVS, intraventricular septum; LVID, left ventricle internal dimension; LVPW, left ventricular posterior wall; ET, ejection time; BPM, beats per minute; FS, fractional shortening of LV; LVm, LV mass; mVcf, mean velocity of circumferential fiber shortening; mVcfc, mean velocity of circumferential fiber shortening corrected for heart rate; cir/sec, circumferences per second. Statistical significance was determined by two-way ANOVA with post hoc Sidak analysis. *p < 0.05 versus pre-saline.
TABLE 5. Echocardiographic measurements following trans-aortic constriction

	Sham	WT	TAC			
	PRE	POST	PRE	POST	PRE	POST
N	11	12	18	18		
LVDD (mm)	3.0 ± 0.2	2.9 ± 0.3	3.2 ± 0.4	3.5 ± 1.0		
LVDS (mm)	1.3 ± 0.2	1.3 ± 0.2	1.4 ± 0.2	2.1 ± 1.2*		
IVSW (mm)	1.0 ± 0.1	1.0 ± 0.2	1.0 ± 0.1	1.2 ± 0.2*		
PW (mm)	1.1 ± 0.2	1.2 ± 0.1	1.1 ± 0.1	1.3 ± 0.3		
ET (ms)	36.7 ± 1.9	36.3 ± 3.2	37.7 ± 5.2	37.0 ± 4.3		
HR (BPM)	679 ± 58	716 ± 46	632 ± 100	691 ± 56		
FS (%)	57.8 ± 4.8	55.8 ± 5.5	57.7 ± 3.3	43.1 ± 13.6*		
LVm (mg)	94.0 ± 16.8	94.3 ± 20.5	99.5 ± 19.9	147.8 ± 22.0*		
mVcf (cir/sec)	15.8 ± 1.8	15.5 ± 1.8	15.6 ± 2.5	11.9 ± 4.0*		
mVcfc (cir/sec)	4.7 ± 0.5	4.5 ± 0.5	4.8 ± 0.6	3.5 ± 1.1*		
HW/BW (mg/g)	N.A.	4.6 ± 0.5	N.A.	6.5 ± 1.0*		

	Sham	TAC		
	PRE	POST	PRE	POST
N	6	6	6	6
LVDD (mm)	3.6 ± 0.4	3.7 ± 0.3	3.3 ± 0.3	3.5 ± 0.3
LVDS (mm)	2.1 ± 0.3	2.0 ± 0.3	1.9 ± 0.3	1.9 ± 0.4
IVSW (mm)	1.0 ± 0.1	1.0 ± 0.1	0.9 ± 0.1	1.2 ± 0.1
PW (mm)	1.0 ± 0.1	1.0 ± 0.1	1.1 ± 0.1	1.3 ± 0.2
ET (ms)	52.0 ± 3.8*	48.9 ± 3.1*	49.2 ± 2.0*	52.6 ± 4.1*
HR (BPM)	478 ± 25*	544 ± 23*	525 ± 29*	522 ± 51*
FS (%)	40.5 ± 3.1*	44.5 ± 4.3*	43.3 ± 6.1*	45.8 ± 6.2
LVm (mg)	105.2 ± 6.6	112.8 ± 9.9	99.2 ± 11.5	144.3 ± 12.6*
mVcf (cir/sec)	7.8 ± 1.1*	8.5 ± 0.7*	8.8 ± 1.5*	8.7 ± 1.1*
mVcfc (cir/sec)	2.8 ± 0.4*	2.9 ± 0.2*	3.0 ± 0.5*	3.0 ± 0.4*
HW/BW (mg/g)	N.A.	4.6 ± 0.5	N.A.	5.2 ± 1.0

	Sham	TAC		
	PRE	POST	PRE	POST
N	6	6	7	7
LVDD (mm)	3.4 ± 0.4	3.5 ± 0.1	3.5 ± 0.2	3.3 ± 0.3
LVDS (mm)	2.0 ± 0.4	2.1 ± 0.3	2.1 ± 0.2*	2.0 ± 0.3
IVSW (mm)	1.0 ± 0.1	1.1 ± 0.1	1.0 ± 0.1	1.2 ± 0.1
PW (mm)	1.2 ± 0.1	1.1 ± 0.2	1.1 ± 0.0	1.2 ± 0.1
ET (ms)	52.7 ± 3.5*	55.1 ± 3.2*	53.0 ± 3.2*	51.7 ± 3.6*
HR (BPM)	480 ± 70*	446 ± 39*	500 ± 69*	498 ± 53*
FS (%)	41.3 ± 7.0*	40.8 ± 6.7*	37.9 ± 4.3*	39.1 ± 4.6*
LVm (mg)	118.4 ± 22.1	120.5 ± 22.0	108.0 ± 17.7	127.0 ± 13.7*
mVcf (cir/sec)	7.9 ± 1.3*	7.4 ± 1.0*	7.2 ± 1.1*	7.6 ± 1.2*
mVcfc (cir/sec)	2.8 ± 0.6*	2.7 ± 0.4*	2.5 ± 0.3*	2.6 ± 0.3*
HW/BW (mg/g)	N.A.	4.1 ± 0.8	N.A.	5.3 ± 1.0

Values are expressed as mean ± SD. LV, left ventricle; s, systole; d, diastole; IVS, intra-ventricular septum; LVID, left ventricle internal dimension; LVPW, left ventricular posterior wall; ET, ejection time; BPM, beats per minute; FS, fractional shortening of LV; LVm, LV mass; mVcf, mean velocity of circumferential fiber shortening; mVcfc, mean velocity of circumferential fiber shortening corrected for heart rate; cir/sec, circumferences per second; HW, heart weight; BW, body weight. Statistical significance was determined by two-way ANOVA with post hoc Sidak analysis. *p < 0.05 versus WT Sham, PRE. #p < 0.05 versus all groups.
Figure 1. Agonist-induced ubiquitination and lysosomal trafficking of the β1AR. A) HEK-293 cells stably transfected with FLAG-β1AR were stimulated with 1 μM isoproterenol (Iso) for indicated times and subjected to FLAG immunoprecipitation followed by serial immunoblotting with anti-ubiquitin antibody (rabbit polyclonal, Bethyl Laboratories Inc.) and polyclonal FLAG antibody. The first lane shows the background signal obtained from HEK-293 cells transfected with vector. B) Ubiquitin smears were quantitated and normalized to cognate FLAG-β1AR bands and plotted as % maximum signal (see ‘methods’). The graph includes means ± SEM from 4 independent experiments. * p<0.05 compared with 0’, ANOVA, Bonferroni’s test. C) HEK-293 cells with stable FLAG-β1AR were stimulated with 1 μM Iso for the indicated times and the distribution of β1AR (red) and LAMP1 (green) were visualized with LSM-510 confocal microscope. Representative images are shown and quantification of colocalization from ≥13 z-stack images from three independent experiments are included in the bar graph in (D). We used Imaris software to quantify volume of colocalization from images in a Z-stack. * p<0.05, versus 0h, One-way ANOVA, Bonferroni’s test.
Figure 2. USP20 is as a cognate deubiquitinase for the \(\beta_1 \)AR. A) HEK-293 cells with stable FLAG-\(\beta_1 \)AR were transiently transfected with siRNAs targeting no mRNA (CTL) or USP20 for 48 h, serum starved for 60 min, stimulated \(\pm 1 \) \(\mu \)M Iso for 60 min. Immunoprecipitation and immunoblotting were as in Fig 1A. Lysate blots for USP20 and \(\beta \)-actin are shown in the lower two panels. Some batches of USP20 antisera cross-react with USP33, see “methods”. B) \(\beta_1 \)AR ubiquitination was quantitated as in Fig 1B. Graph represents means \(\pm \) SEM from 5 independent experiments. \(* p<0.05\), versus CTL-NS and USP20-Iso; ** \(p<0.01 \) compared with all others, Two-way ANOVA, Holm-Sidak’s posttest. C) \(\beta_1 \)AR ubiquitination was determined as in ‘A’ but siRNA targeting USP33 was used. Blots shown are representative of three similar experiments performed. D) Distribution of \(\beta_1 \)AR (red) and LAMP1 (green) in HEK-293 cells transfected with siRNA targeting either no mRNA (control, CTL), or USP20 \(\pm \) Iso were visualized with LSM-710 confocal microscope. Representative images are shown and quantification of colocalization from \(\geq20 \) z-stack images from three independent experiments are included in the bar graph in (E). We used Imaris software to quantify volume of colocalization from images in a Z-stack. \# \(p<0.05 \) versus CTL-NS; * \(p<0.01 \), versus all others, Two-way ANOVA, Holm-Sidak’s posttest. F) Lysates serially immunoblotted for USP20 and \(\beta \)-actin show knockdown of USP20.
Figure 3. β1AR activation promotes phosphorylation of USP20 on Serine 333 by PKAα. A) HEK-293 cells stably expressing FLAG-β1AR were stimulated for 5 min with indicated amounts of Iso and equivalent cell extracts were analyzed for USP20 phosphorylation (p-USP20) and expression (T-USP20). B) The phospho-USP20 bands were normalized to total USP20 in each sample and plotted as % maximum signal showing means ± SEM from n = 3 independent experiments. # denotes p<0.01 compared with non-stimulated (NS) samples, one-way ANOVA. C) and D) Experiments and analyses were as in panels A and B, except that the β1AR-selective agonist dobutamine was used. # p<0.05; * p<0.01 compared with NS. E) HEK-293 cells stably expressing FLAG-β1AR were transiently transfected with siRNAs targeting no mRNA (control), PKAα, or PKAβ for 48 h, serum-starved for 60 min, and then stimulated with 1 µM dobutamine (Dob) or 1 µM Iso for 5 min or 20 min. Cell lysates were immunoblotted for p-USP20, t-USP20, PKAα, PKAβ, and GAPDH. F) Quantification of p-USP20 normalized to t-USP20. N = 3, * p<0.01, ** p<0.001, ANOVA, Bonferroni posttest.
Figure 4. Effects of PKAα knockdown on β1AR lysosomal trafficking and β1AR ubiquitination.

A) Distribution of β1AR (red) and LAMP1 (green) in HEK-293 cells transfected with siRNA targeting either no mRNA (control, CTL), or PKAα ± Iso were visualized with LSM-710 confocal microscope. Images were acquired and analyzed as in Figure 1. Scale bars, 10 μm.

B) Volume of colocalization from images in a Z-stack obtained from ≥15 images from 4 independent experiments. # p<0.05 versus CTL-NS and PKAα-Iso; * p<0.05, versus all others; Two-way ANOVA, Holm-Sidak’s posttest.

C) HEK-293 cells with stable FLAG-β1AR were transiently transfected with siRNAs targeting no mRNA (CTL) or PKAα for 48 h, serum starved for 60 min, stimulated ± 1 µM Iso for 60 min. The receptor was immunoprecipitated with anti-FLAG affinity gel, and serially immunoblotted for ubiquitin and β1AR as in Fig 1A. Lysate blots for PKAα and β-actin are shown. Blots shown are representative of three similar experiments.
Deubiquitination and β1AR trafficking

Figure 5. Ser333 phosphorylation preserves DUB activity of USP20 facilitating β1AR deubiquitination. A) HEK-293 cells stably expressing FLAG-β1AR were infected at equal MOIs with recombinant adenoviruses encoding eGFP or USP20 WT, S333A (S/A) or S333D (S/D) constructs and stimulated with 1 μM Iso for 60 min. The receptors were isolated with M2 anti-FLAG affinity gel. The immunoprecipitates (IP) were separated by SDS-PAGE and immunoblotted (IB) with antibodies specific to ubiquitin (rabbit polyclonal, Bethyl Laboratories Inc.) and FLAG antibodies as in Fig 1A. Bottom panels show the expression levels of USP20 WT or mutants in the lysates as detected by monoclonal anti-HA (12CA5) antibody and detection of β-actin. B) Ubiquitin smears in each lane from the IP blot in A were quantified, normalized to β1AR signals, and plotted as bars. *, p < 0.05 versus GFP(NS), WT(NS and Iso) and S/D (NS and Iso); Two-way ANOVA Holm-Sidak’s posttest. NS, not stimulated. Data are means ± SEM of four independent experiments.
Deubiquitination and β1AR trafficking

Figure 6. The kinetics of agonist-induced binding of USP20 with β1AR and β2AR are dramatically different. A) HEK-293 cells stably expressing FLAG-β1AR were stimulated with 1 µM Iso for the indicated times. Receptors were immunoprecipitated with anti-FLAG affinity gel, followed by IB for USP20. HEK-293 cells without FLAG-β1AR were used as control cells (Mock). Central panel, the amount of receptors detected by FLAG antibody. Bottom Panels, total cell lysate IB’ed for USP20 and β-actin. B) USP20 band in each IP was normalized to the cognate β1AR band and the mean values (±SEM) from 3 independent experiments were plotted as % maximum signals denoting β1AR:USP20 association. C) and D) The same procedures were used as in (A) and (B) except that HEK-293 cells that stably express FLAG-β2AR were used. (B) and (D), n=3, * p<0.05 compared with 0’; One-way ANOVA, Bonferroni posttest.
Figure 7. Binding properties and DUB activity of USP20 phospho-mutants. A) HEK-293 cells stably expressing FLAG-β1AR were infected at equal MOIs with recombinant adenoviruses encoding eGFP or USP20 WT, S333A or S333D constructs and the receptors were isolated with M2 anti-FLAG affinity gel. The immunoprecipitates (IP) were separated by SDS-PAGE and immunoblotted (IB) with anti-HA (rabbit polyclonal, Cell Signaling Technology) and anti-FLAG antibodies. Lysates were analyzed serially immunoblotted for HA and β-actin. B) Quantification of USP20 in receptor IPs from four independent experiments is plotted as USP20/β1AR ratio. *, p<0.05; versus WT and S/D, One-way ANOVA, Boneferroni’s test. C) Expression of HA-tagged USP20 WT, S333A, S333D or Cys-His were induced in HEK-293 cells by respective recombinant adenoviral infections. Lysates that contain ~ 4 pmoles of each USP20 (see methods) were incubated with buffer or 20 pmoles of ubiquitin-VME in vitro at 37 °C. Unmodified USP20 and USP20 that is covalently linked with ubiquitin-VME were detected by immunoblotting with rabbit polyclonal anti-HA antibody (Cell Signaling Technology). D) The ratios of USP20-Ub and unmodified USP20 for each construct are plotted. No significant difference between WT, S/A and S/D; (One-Way ANOVA, Bonferroni’s test).
Deubiquitination and β₁AR trafficking

Figure 8. Phospho-USP20 inhibits lysosomal trafficking of the β₁AR. A), B) HEK-293 cells stably expressing β₁AR-CFP were transiently transfected with vector pcDNA3, USP20 WT, S333A (S/A), S333D (S/D), and catalytic site mutant (Cys-His, CH), starved for 60 min, and stimulated with Iso for 6 h. Cells were fixed, permeabilized, and immunostained for LAMP1. Confocal images are shown with β₁AR-CFP in red, LAMP1 in green (Alexa Fluor 488), and USP20 in cyan (Alexa Fluor 633). C) Quantification of volume of β₁AR colocalized with LAMP1 from ≥ 20 images from 3 independent experiments. * p<0.05, compared with pc3 Iso, S/A Iso, CH Iso; # p<0.05 compared with pc3 Iso. 2-way ANOVA, Holm-Sidak’s posttest. Scale bars, 10 μm.
Figure 9. Cardiac morphology, histopathology and morphometry of WT and USP20-KO mice. A) Immunoblot of cardiac lysates from 3 to 4 months old WT and USP20-KO mice with USP20 and GAPDH antibodies. Blots are representative of similar results obtained from >10 mice of each genotype. B) Representative whole hearts of 3 to 4 months old WT and USP20-KO mice (n = 3, scale bar = 1mm). C) Heart weight to body weight ratio of 3 to 4 months old WT (n = 12) and USP20-KO (n = 12) mice. Error bars indicate average ± SEM. D) Representative Masson Trichrome staining of cardiac sections from of 3 to 4 months old WT and USP20-KO (n = 5, scale bar = 0.5 mm). E) Representative baseline echocardiograms via M-mode, short axis imaging, of WT and USP20-KO mice. (See Table 1 for ECHO analyses).
Deubiquitination and β_{1}AR trafficking

Figure 10. β_{1}AR-induced cardiac contractility and cAMP response are impaired in USP20-KO mice. Hemodynamic parameters measured in anesthetized mice after infusion with increasing doses of isoproterenol are shown in panels (A) maximal first derivative of LV pressure (B) minimal first derivative of LV pressure. Data shown are average values ± SEM * p<0.01, two-way ANOVA, Holm-Sidak’s posttest. n=10 (WT) and n=10 (KO). C) Heart rate of anesthetized WT (n=10) and USP20-KO (n=10) mice in response to increasing doses of isoproterenol. Error bars indicate average ± SEM. * p<0.05, two-way ANOVA, Holm-Sidak’s posttest. D) cAMP production in 3-month old WT and USP20-KO hearts, following acute saline, dobutamine (Dob) or NKH477 infusion plotted as means ± SEM.** p<0.01, versus saline groups and KO-Dob; # p<0.05 compared with saline groups; two-way ANOVA, Holm-Sidak’s posttest.
Deubiquitination and β1AR trafficking

Figure 11. β1AR is down-regulated whereas, β2AR and USP33 are upregulated in USP20-KO LVs.
A) βAR subtypes in LV of WT and USP20-KO mice were measured by radioligand binding with 125I-cyanopindolol and using the β1AR subtype-selective antagonist CGP20712A as reported before (72,74). Non-specific binding was defined by the non-selective antagonist propranolol. Experiments were performed in triplicate. n = 21 for WT and n = 17 for USP20-KO. Error bars indicate average ± SEM. * p<0.05, ANOVA Bonferroni posttest.
B) Bar graphs show relative proportion of β1 and β2 AR in USP20-KO and WT LVs calculated from the binding values shown in panel A.
C) Immunoblot of cardiac lysates from 3 to 4 months old WT and USP20-KO mice probed with USP20, USP33 and GAPDH antibodies.
D) Band intensities of USP20 and USP33 normalized to GAPDH in each sample are shown and represented as means ± SEM. * p<0.05, versus USP33 in WT hearts, ANOVA, Bonferroni posttest.
Figure 12. βAR stimulation induces USP20 phosphorylation in vivo. Soluble extracts from left ventricles of WT mice exposed chronically to saline or Iso were immunoblotted for p-USP20 and total USP20. Quantification of p-USP20 normalized to USP20, saline: n=6; Iso n=5, * p=0.01, unpaired, two-tailed t-test.
Figure 13. Cardiac pressure overload induces USP20 phosphorylation in a β1AR-dependent manner.
A) Soluble extracts from left ventricles of WT mice with Sham or transverse aortic constriction (TAC) surgery were immunoblotted for p-USP20 and total USP20.
B) Quantification of p-USP20 normalized to USP20, Sham, n=5 and TAC n=11, ** p=0.003, unpaired, two-tailed t-test; the maximum pUSP20/USP20 ratio in the experimental cohort was taken as 100%.
C, D) Soluble extracts from left ventricles of mice that underwent sham or TAC surgery of indicated genotypes were serially immunoblotted for p-USP20 and total USP20.
E) Graph shows quantification of p-USP20 normalized to USP20 plotted as in B. * p<0.05, ANOVA, Bonferroni posttest.
Figure 14. Effects of USP20 and its phosphorylation on β₁AR signaling: A) Activation of the β₁AR induces USP20 phosphorylation on Ser333 catalyzed by PKAα. Phosphorylated USP20 deubiquitinates β₁AR and attenuates lysosomal trafficking, thus facilitating β₁AR signaling. B) PKAα downregulation by RNAi or overexpression of weakly interacting USP20 S333A mutant leads to increased lysosomal trafficking of ubiquitinated β₁ARs. C) In USP20-KO mice, myocardial β₁AR levels are significantly decreased, whereas levels of β₂AR and USP33 (homolog of USP20) are increased. Accordingly, while USP20 and USP33 serve as redundant DUBs for the β₂AR, USP20 functions as the predominant DUB to regulate β₁AR expression and trafficking in the myocardium.
The deubiquitinase ubiquitin specific protease 20 is a positive modulator of myocardial β1-adrenergic receptor expression and signaling
Samuel Mon-Wei Yu, Pierre-Yves Jean-Charles, Dennis M. Abraham, Suneet Kaur, Clarice Gareri, Lan Mao, Howard A. Rockman and Sudha K. Shenoy

J. Biol. Chem. published online December 11, 2018

Access the most updated version of this article at doi: 10.1074/jbc.RA118.004926

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts