Study of obstructive sleep apnea in respiratory disorders

D. H. Bhise¹, R. R. Hegde²*, J. M. Phadtare³ and N. N. Ramraje⁴

¹Assistant Professor, Department of Pulmonary Medicine, GMC Akola, India
²Assistant Professor, Department of Pulmonary Medicine, Grant Government Medical College, Mumbai, India
³Professor and Head of Unit, Department of Pulmonary Medicine, Grant Government Medical College, Mumbai-8, India
⁴Professor and Head of Department, Department of Pulmonary Medicine, Grant Government Medical College, Mumbai, India

*Correspondence Info:
Department of Pulmonary Medicine,
Grant Government Medical College, Mumbai-400008,
Maharashtra state, India
E-mail: rohit_hegde1984@yahoo.co.in

Abstract

100 patients having respiratory complaints were selected randomly from OPD and were screened for by symptomatology, history, clinical examination, Chest X ray & spirometry and were analyzed for various respiratory diseases. The youngest subject was 30 yrs old and the oldest 75 years. In the study, 75% were males and 25% were females. Polysomnography was performed in these subjects. Patients were distributed as regards the severity of Obstructive Sleep Apnea (OSA). OSA was detected in 45, of these 45% had mild, 35% moderate and 20% had severe OSA. A linear relationship was found between Body Mass Index (BMI) and severity of OSA as also between neck circumference and severity of OSA. No correlation was detected between Diabetes Mellitus and OSA. Whereas, there was a significant impact of systemic hypertension on OSA.

Keywords: Polysomnography, Obstructive sleep apnea, Respiratory Diseases

1. Introduction

Approximately 45 years ago, two reports published within few years of each other revolutionized our thinking about sleep and wakefulness. Normal pattern of human sleep was first discovered by Davies, Harvey and Hobart in 1937-39.¹ Prior to this, sleep was considered a passive state- an intermediate state between wakefulness and death. Today we know that sleep is an active and complex state. Herman Hans Berger recorded different electrical activities in the human brain during awake and sleep state in 1928. In 1949, Moruzzi and Magoun reasoned on the basis of electrical stimulation of the brain stem that its central core, the reticular formation contained element essential for arousal and consequently wakefulness. Asterinsky and Kleitman reported periods during sleep in which EEG resembled that of wakefulness. They also observed rapid eye movements during this stage that give this stage its name. Research of sleep has led to the staging of sleep and sleep related disorders- of which Obstructive Sleep Apnea has generated maximum interest. Though Obstructive Sleep Apnea has been mentioned in literature since the time of Charles Dickens in his description of fat boy joe in The Posthumous papers of Pickwickian Club: it is only in the past 3 decades that this entity has been clinically defined. Sleep Disordered breathing is a common condition that is characterized by repetitive episodes of partial or complete upper airway obstruction during sleep. Sleep Related Breathing Disorder (SRBD) is common in vast majority of the population and is under-reported, under-diagnosed and under-treated. Population based epidemiological studies have uncovered a high prevalence of undiagnosed OSA and have consistently found that even mild obstructive sleep apnea is associated with significant morbidity. The term overlap syndrome was coined in 1985 by David Flenley² - to describe patient having both Chronic Obstructive Pulmonary Disease and Obstructive Sleep Apnea. Co-existence of COPD and OSA is associated with a definite increase in morbidity and decrease in survival. There is an independent association of OSA with hypertension, stroke and cardiovascular disease³.
2. Materials And Methods

Amongst patients attending our OPD, 100 patients who were diagnosed as chronic obstructive pulmonary disease, bronchial asthma, interstitial lung disease and post infective fibrosis were selected and they underwent investigations like chest X-ray, pulmonary function test and polysomnography. Obstructive Sleep apnea was defined as Apnea hypopnea index (AHI) of more than 5/hour. The severity of OSA was graded as mild (AHI 5-14/hour), moderate (AHI 15-29/hour) and severe (AHI ≥ or = 30/hour). The selected patients were studied for different variables in relation to the presence and severity of OSA. These patients were also evaluated on the basis of their morphological characteristics like Body mass Index (BMI) and neck circumference to see for any possible association with the disease. Co-morbid conditions like diabetes mellitus and hypertension were taken into consideration. These patients also underwent echocardiography to see for the presence of pulmonary hypertension. Any addiction like tobacco consumption in any form and alcohol intake were given due consideration. Thyroid functions were also taken into consideration. All these variables were analyzed using SPS v13.0 software (Chicago, Illinois, Inc).

3. Results

3.1 Distribution

3.1.1. Age And Gender wise

Of the 100 patients, 75 were male and 25 were females.

Age	Male	Female	Total
20-40	17	10	27
40-60	46	13	59
60-80	12	2	14
Total	75	25	100

3.1.2. Age and severity wise

Age	Normal	Mild	Moderate	Severe	Total
20-40	14	6	4	2	26
40-60	35	10	8	5	58
60-80	6	4	4	2	16
Total	55	20	16	9	100
3.1.3. BMI and severity wise

BMI	Normal	Mild	Moderate	Severe	Total
<25	26	2	2	1	31
25-30	22	9	6	2	39
30-40	5	6	6	4	21
>40	2	3	2	2	9
Total	55	20	16	9	100

As the BMI increases, severity of OSA increases.

3.1.4. Neck Circumference and Severity wise

Neck Circumference	Normal	Mild	Moderate	Severe	Total
10-15	22	6	3	2	33
15-20	30	10	10	5	55
>20	3	4	3	2	12
Total	55	20	16	9	100
As the neck circumference increases, severity of OSA increases.

3.1.5. Respiratory Disease and Severity wise

Diseases	Normal	Mild	Moderate	Severe	Total
COPD	27	7	6	2	42
Asthma	14	2	2	2	20
ILD	8	1	1	0	10
Post infective Fibrosis	6	1	1	0	8
OSA	0	9	6	5	20
Total	55	20	16	9	100

55% of the total subjects had no sleep disordered breathing.
Irrespective of the type of disorder, 80% had mild to moderate OSA

3.2 Diabetes mellitus and OSA

Diabetes Mellitus	Normal	Mild	Moderate	Severe	Total
Yes	15	8	4	2	29
No	40	12	12	7	71
Total	55	20	16	9	100
No correlation was detected between Diabetes Mellitus and OSA.

3.3 Systemic Hypertension and OSA

Systemic Hypertension	Normal	Mild	Moderate	Severe	Total
Yes	25	15	14	8	62
No	30	5	2	1	38
Total	55	20	16	9	100

A significant impact of systemic hypertension on OSA was found. Subjects with higher blood pressure had higher AHI.

4. Discussion

100 patients were included in the study. They were evaluated for sleep disordered breathing; of these 42 were COPD, 20 Bronchial Asthma, 20 Obstructive sleep Apnea, 8 Interstitial Lung Disease and 6 were post infective fibrosis. This study provides data on the occurrence of OSA in respiratory diseases and its association with variety of potential factors such as Body Mass Index, Neck Circumference and systemic hypertension. A conventional measure of Apnea Hypopnea Index (AHI) was used to define the presence of OSA. Various investigators have taken different levels of AHI cut off points of 5, 14 and 29 events per hour to indicate mild, moderate and severe levels of OSA. These recommendations were acknowledged to be an expert consensus statement based on a paucity of objective data and intended to stimulate further research to identify optimal approach to quantify sleep related breathing disorders. Out of 100 subjects included in the study, 75 were males and 25 were females. Of the 75 males 35 had OSA while out of 25 females 10 had OSA. We found no sexual predilection conforming to other studies. Patients selected were between 20 to 80 years of age with higher incidence in the fifth to seventh decades. In our study, 31% had BMI less than 25, 39% had BMI between 25-30, 21%
between 30-40 and 9% had BMI more than 40. We used the correlation co-efficient test to establish a significant positive correlation between BMI and severity of OSA i.e as the BMI increases, the AHI increases. Guilleminault et al in their study found a clear relationship between excess body weight expressed as BMI and severity of OSA which corroborates with our study. Similarly we used correlation co-efficient test to establish a linear correlation between neck circumference and severity of OSA. Anthropometric evaluation in the form of neck circumference was also found to be a good predictor of OSA. RJ Davies et al and Pineda et al showed that neck circumference corrected for height is more useful as a predictor of obstructive sleep apnea than general obesity. Our study observed that there is significant correlation between systemic hypertension and AHI. Subjects with higher blood pressure had higher AHI. Worsnop CJ et al found a similar result in their study, with a linear relationship existing between OSA and systemic hypertension. Similar results were also obtained by Thomopoulos et al and Marin et al.

5. Conclusions

- Sleep Disordered breathing is more prevalent in COPD afflicted than in the general population.
- A linear relationship was found between Body Mass Index (BMI) and severity of OSA as also between neck circumference and severity of OSA.
- No correlation was detected between Diabetes Mellitus and OSA.
- A significant impact of systemic hypertension on OSA was found.

References

1. Davis H, Davis PA, Loomis AL, et al. Change in Human brain potential during the onset of sleep. Science. 1937; 86: 448-450.
2. American Academy of Sleep Medicine Task Force breathing disorders in adults recommendations for syndrome definition and measurement techniques in clinical research: Sleep. 1999; 22: 687-689.
3. Cartwright RD, Samelson CF. The effect of no surgical treatment for obstructive sleep apnea: the tongue retaining device. JAMA. 1982; 248: 705-709.
4. J Respir Dis 2005; 26: 423-35
5. Ygla M, Tov N, Solomonov A, Rubin A H, Harlev D Division of Pulmonary Medicine, Rambam Medical centre, Faculty of Medicine, J Asthma. 2003; 40(8): 865-71.
6. Jackowski M, Fischer J, Korner K, Dahmen K. A Study of the prevalence of sleep apnea syndrome in patients with chronic diseases of the respiratory organs using pulse oximetry and polysomnography. Pneumologie 1989; 43 Suppl 1: 600-2.
7. Hira HS, Sharma RK, Department of Medicine, Maulana Azad Medical College, New Delhi. Indian J Chest Diseases Allied Sci. 1997; 39 (3): 157-62.
8. Gastaut H, Tassinari C, Duran B. Etude Polygraphique des manifestations episodiques (hypniques et respiratoire) du syndrome de pickwickian. Rev Neurol 1965; 112: 568-579.
9. Guilleminault C, Strohs R. The upper airway resistance syndrome. Sleep research. 1991; 20: 250.
10. RJ Davies, NJ Ali et al. Neck circumference and other clinical features in the diagnosis of the obstructive sleep apnea syndrome. Thorax. 1992 February; 47(2): 101-105.
11. Eldrige Pineda, Daniel Fitelson, Joseph Rahill, Anne O'Donnell, Tunay Kuru, Richard Waldhorn; Timothy Ruse, Med: Assessing the Adjusted Neck Circumference Sleep Apnea Screening Score in Patients Undergoing Polysomnography for Suspected Sleep Apnea. Chest. 2011; 140. doi:10.1378/chest.1119543
12. Worsnop C J, Naughton M T et al. The prevalence of obstructive sleep apnea in hypertensives. Am J Respir Crit Care Med. 1998; 157(1): 111-5.
13. Costas Thomopoulos, Helena Michalopoulou, Alexandros Kasiakogias, Anna Kefala, and Thomas Makris: Resistant Hypertension and Obstructive Sleep Apnea: The Sparring Partners. International Journal of Hypertension 2011; 947246. doi:10.4061/2011/947246
14. José M. Marin, Alvar Agusti, Isabel Villar, Marta Forner, David Nieto, Santiago J. Carrizo, Ferran Barbe, Eugenio Vicente, Ying Wei, F. Javier Nieto, Sanja Jelic, Association Between Treated and Untreated Obstructive Sleep Apnea and Risk of Hypertension. JAMA. 2012; 307 (20): 2169-2176.