CD56-positive B cell precursor acute lymphoblastic leukemia harboring KMT2A-AFF1 rearrangement developed in a pregnant woman successfully treated with allogeneic hematopoietic cell transplantation

Hisao Nagoshi 1 · Kayo Toishigawa 1 · Tomoko Inoue 2 · Yoshiko Okikawa 3 · Takahiko Miyama 1 · Takakazu Kawase 1 · Taro Edahiro 1 · Kyoko Kazihara 4 · Hiromi Nakagawa 4 · Aiko Yamaoka 2 · Mitsunori Noma 2 · Teruhisa Fujii 2 · Noriyasu Fukushima 1 · Tatsuo Ichinohe 1

Received: 3 October 2019 / Accepted: 27 December 2019 / Published online: 7 January 2020
© The Author(s) 2020

Although aberrant T/NK-cell antigen expression is observed approximately 10% of B cell precursor acute lymphoblastic leukemia (BCP-ALL), the bright positivity of CD56 is exceedingly rare [1–3]. Here, we describe the first reported case, at least to our knowledge, of KMT2A-AFF1-rearranged BCP-ALL that co-expressed CD34, CD19, cytoplasmic (cyt) CD79a, and CD56 without any other lineage markers developed in a pregnant woman and successfully treated by allogeneic hematopoietic cell transplantation.

A 33-year-old woman in her third trimester was referred to our department because of extreme hyperleukocytosis reaching 300 × 10⁹/L with 96% of leukemic blasts (Fig. 1a). Flow cytometric analysis of bone marrow leukemic cells revealed the bright surface expression of CD34 and CD56 as well as the positivity of CD19, CD38, and HLA-DR with partial expression of cyt CD79a, while CD3, CD10, cyt myeloperoxidase, cyt CD3, cyt CD22, and cyt μ heavy chain were found to be negative (Fig. 1b). CD4 was also negative (data not shown) and there was no morphological findings that suggest monocytic differentiation. Cytogenetic analysis showed a 47, XX, +X, t(4;11)(q21;11q23.3) karyotype suggesting a diagnosis of KMT2A-rearranged BCP-ALL, which was confirmed by the molecular detection of KMT2A-AFF1 fusion transcript. After delivery of a female newborn by Cesarean section at 32 weeks pregnant, she had started to receive intensive chemotherapy by use of the hyper-CVAD regimen [2], which led her disease to sustained molecular remission. The delivered infant did not show any hematologic abnormalities that denied the possibility of fetal cell–derived maternal leukemia.

Considering the high-risk nature of KMT2A-AFF1-rearranged BCP-ALL with hyperleukocytosis, we decided to perform allogeneic peripheral blood stem-cell transplantation from her HLA identical sister using myeloablative conditioning consisting of fludarabine 120 mg/m², intravenous busulfan 12.8 mg/kg, and melphalan 140 mg/m² as a consolidative treatment. She has maintained molecular remission with good performance status with mild skin chronic GVHD more than 2 years after transplantation.

Aberrant expression of CD56 is commonly observed in acute myeloid leukemia, whereas its expression in lymphoblastic leukemia is a relatively rare event. BCP-ALL with KMT2A-AFF1 is a common subtype of KMT2A-rearranged leukemia characterized by frequent occurrence in infants with dismal clinical course [4]. In a more recent study, KMT2A-AFF1 was also shown to be the most prevalent translocation in adult patients with Philadelphia chromosome-negative BCP-ALL and associated with a worse outcome independent of age [5]. Although its etiology and cellular origin remain an enigma, KMT2A-AFF1 fusion gene was shown to be present in primitive CD34+CD19– lymphoid progenitors [6]. Because those common lymphoid progenitors usually differentiate into innate lymphoid cells via expression of CD56 [7], aberrant CD56 expression in our patient might suggest the bidirectional differentiation potential of very early B cell

---

1 Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine (RIRBM), Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan
2 Division of Transfusion Medicine, Hiroshima University Hospital, Hiroshima, Japan
3 Department of Medical Oncology, Hiroshima City Hiroshima Citizens Hospital, Hiroshima, Japan
4 Division of Laboratory Medicine, Hiroshima University Hospital, Hiroshima, Japan

Correspondence
Tatsuo Ichinohe
 tatsuo.ichinohe@gmail.com
progenitors characterized by CD34+CD10−CD19+ phenotype, a putative origin of KMT2A-AFF1-rearranged BCP-ALL. It is also important to note here that CD34+CD10+CD19+ B cell precursors might arise from distinct developmental pathways from CD34+CD10+CD19+ pre-B cells [8]. Because the promoter of CD56 gene contains sequences that allow binding of various transcription factors such as RUNX1, BTB3, Pax5, MMSET, CD56 gene contains sequences that allow binding of various transcription factors such as RUNX1, BTB3, Pax5, MMSET, CD56, CD99, CD117, cyt myeloperoxidase, cyt CD3, cyt 22, cyt 79a, cyt immunoglobulin μ heavy chain, TdT, and HLA-DR. The surface expression of CD2, CD3, CD4, CD5, CD7, CD8, CD24, CD99, and CD117 was negative (data not shown).

Acknowledgments We thank all of the staff in our department and members of Hiroshima University Hospital who dedicatedly provided the best care for this patient and her infant. We also thank Emi Kurita, Sachiko Fukumoto, Nanae Nakaju, Sajeda Chowdhury, Sanae Furuya, and Masako Ninomiya for their excellent technical and secretarial assistance.

Funding information This study was supported in part by Grants-in-Aid from the Japan Agency for Medical Research and Development (AMED) (no. 19ek05100023h0003 to TI), Grants-in-Aid for Young Scientists (JSPS KAKENHI no. JP18K15281 to HN), and the Program of the network-type Joint Usage/Research Center for Radiation Disaster Medical Science of Hiroshima University, Nagasaki University, and Fukushima Medical University (to TI).

Compliance with ethical standards All procedures performed in this study were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent for writing and publishing this report was obtained from the patient included in the study. T. Ichinohe has received speaker honoraria from Bristol-Myers Squibb, Celgene, Janssen Pharmaceutical K.K., and Kyowa Kirin Co. All other authors declare that they have no conflict of interest.

References

1. Paietta E, Neuberg D, Richards S, Bennett JM, Han L, Racevskis J, Dewald G, Rowe JM, Wiernik PH, and the Eastern Cooperative Oncology Group (2001) Rare adult acute lymphocytic leukemia with CD56 expression in the ECOG experience shows unexpected phenotypic and genotypic heterogeneity. Am J Hematol 66:189–196
2. Ravandi F, Cortes J, Estrov Z, Thomas D, Giles FJ, Huh YO, Pierce S, O’Brien S, Faderl S, Kantarjian HM (2002) CD56 expression predicts occurrence of CNS disease in acute lymphoblastic leukemia. Leuk Res 26:643–649
3. Hussein S, Gill KZ, Sireci AN, Colovani AI, Small T, Emmons FN, Murtu VV, Bhagat G, Alobeid B (2011) Aberrant T-cell antigen expression in B lymphoblastic leukaemia. Br J Haematol 155:449–456
4. Sanjuan-Pla A, Bueno C, Prieto C, Acha P, Stam RW, Marschalek R, Menéndez P (2015) Revisiting the biology of infant (t(4;11))/MLL-AF4+ B-cell acute lymphoblastic leukemia. Blood 126:2676–2685
5. Lafage-Pochitaloff M, Baranger L, Hunault M, Cuccini W, Lefebvre C, Bidet A, Tigaud I, Eclaiche V, Delabesse E, Bilhou-Nabéra C, Terré C, Chapiro C, Gachard N, Moziconacci M-J, Ameye G, Porter S, Grandel N, Béné MC, Chalandon Y, Graux C, Huguet F, Lhéritier V, Ifrah N, Dombret H on behalf of the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL) (2017) Impact of cytogenetic abnormalities in adults with Ph-negative precursor acute lymphoblastic leukemia. Blood 130:1832–1844
6. Hoflildler M, Rottgers S, Rosemann A, Schrauder A, Schrappe M, Pieters R, Jurgens H, Harbott J, Vornoor J (2005) Leukemic stem cell in childhood high-risk ALL/t(9;22) and t(4;11) are present in lymphoid-restricted CD34+/CD19+ cells. Cancer Res 65:1442–1449
7. Chen L, Youssef Y, Robinson C, Ernst GF, Carson MY, Young KA, Scoville SD, Zhang X, Harris R, Sekpri P, Mansour AG, Chan WK, Nalin AP, Mao HC, Hughes T, Mace EM, Pan Y, Rustagi N, Cahtterrjee SS, Gunarante P, Benbehai GK, Mundy-Bosse BL, Caliguri MA, Freud AG (2018) CD56 expression marks human group 2 innate lymphoid cell divergence from a shared NK cell and group 3 innate lymphoid cell developmental pathway. Immunity 49:464–476
8. Sanz E, Muños-A N, Monserrat J, Van-Den-Rym A, Escoll P, Ranz I, Álvarez-Mon M, de-la-Hera A (2010) Ordering human CD34+CD10–CD19+ pro-B cell and CD19– common lymphoid progenitor stages in two pre-B-cell development pathways. Proc Natl Acad USA 107:5925–5930
9. Damgaard T, Knudsen LM, Dahl JM, Gimsing P, Lodahl M, Rasmussen T (2009) Regulation of the CD56 promoter and its association with proliferation, anti-apoptosis and clinical factors in multiple myeloma. Leuk Lymphoma 50:236–246

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.