Extraordinary response of metastatic pancreatic cancer to apatinib after failed chemotherapy: A case report and literature review

Cheng-Ming Li, Zhi-Chao Liu, You-Ting Bao, Xin-Dong Sun, Lin-Lin Wang

Cheng-Ming Li, Zhi-Chao Liu, You-Ting Bao, Xin-Dong Sun, Lin-Lin Wang, Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong Province, China

Lin-Lin Wang, School of Medicine, Shandong University, Jinan 250012, Shandong Province, China

You-Ting Bao, Department of Oncology, Weifang Medical University, Weifang 261042, Shandong Province, China

ORCID number: Cheng-Ming Li (0000-0002-1111-3268); Zhi-Chao Liu (0000-0001-7313-2504); You-Ting Bao (0000-0001-6349-5125); Xin-Dong Sun (0000-0003-2325-1366); Lin-Lin Wang (0000-0002-2873-4204).

Author contributions: Li CM collected the case data and wrote the paper; Sun XD and Wang LL treated the patient; Li CM, Liu ZC and Bao YT contributed to the literature search; Wang LL reviewed and revised the manuscript; All authors have read and approved the final manuscript.

Supported by The National Natural Science Foundation of China, No. 81402299; the Project of Postdoctoral Innovation of Shandong Province, No. 201501010; and the Project of Postdoctoral Science Foundation of China, No. 2016M590640.

Institutional review board statement: The case report was reviewed and approved by the Institutional Review Board of Shandong Cancer Hospital Affiliated to Shandong University, Jinan, China.

Informed consent statement: The husband of the patient provided written informed consent.

Conflict-of-interest statement: All the authors declare that there is no conflict of interest.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Lin-Lin Wang, MD, PhD, Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, No. 440, Jiyan Road, Jinan 250117, Shandong Province, China. 13793187739@163.com

Telephone: +86-531-67626142
Fax: +86-531-67626141

Received: July 14, 2017
Peer-review started: August 1, 2017
First decision: August 31, 2017
Revised: September 13, 2017
Accepted: September 26, 2017
Article in press: September 26, 2017
Published online: November 7, 2017

Abstract
Chemotherapy has limited efficacy in the treatment of advanced and metastatic pancreatic cancer (PC), and has serious side effects. The development of novel effective agents, especially targeted therapy, is essential...
for patients with PC. We present a 58-year-old Chinese woman initially diagnosed with locally advanced PC. As the disease progressed to Stage IV, the patient was unable to tolerate chemotherapy after the fourth-line treatment. She was then treated with apatinib, a novel and highly selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2 and achieved a progression-free-survival of 7 mo. All drug-related side effects were well controlled with medication. To the best of our knowledge, this is the first case of PC which responded to apatinib. Considering this remarkable response, apatinib may be a promising agent in the treatment of PC. We also reviewed the literature on chemotherapy and targeted therapy, especially the anti-angiogenesis therapy for patients with PC, and investigated the effect of apatinib in other solid tumors as well.

Key words: Anti-angiogenesis; Apatinib; Pancreatic cancer; Targeted therapy; Vascular endothelial growth factor receptor-2

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: As chemotherapy has limited efficacy in the treatment of advanced and metastatic pancreatic cancer, targeted therapy is becoming increasingly important in patients with pancreatic cancer. The case reported herein suggests that apatinib, a novel and highly selective tyrosine kinase inhibitor of vascular endothelial growth factor receptor-2, may be a promising and useful agent in the treatment of pancreatic cancer.

Li CM, Liu ZC, Bao YT, Sun XD, Wang LL. Extraordinary response of metastatic pancreatic cancer to apatinib after failed chemotherapy: A case report and literature review. World J Gastroenterol 2017; 23(41): 7478-7488 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i41/7478.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i41.7478

INTRODUCTION

Pancreatic cancer (PC) is a malignant tumor with a poor prognosis, and is the seventh most common cancer worldwide[1]. Chemotherapy or chemoradiation are recommended as primary therapy according to the National Comprehensive Cancer Network (NCCN) guideline for advanced and metastatic PC[2]. However, the therapeutic outcomes are unsatisfactory, with 1-year survival rates of only 17%-23%[3-5]. Given that there is limited evidence that further systemic therapy provides meaningful benefit for patients who have progressed on chemotherapy, the development of novel effective agents, including targeted therapy, to improve patient outcome is required.

Tumor angiogenesis has been found to be essential in the proliferation, invasion and metastasis of PC[6-9]. Vascular endothelial growth factor receptor-2 (VEGFR-2) is a major element involved in pancreatic tumor angiogenesis[10-13]. Therefore, interference with the VEGF-2 signaling pathway may have therapeutic efficacy in the treatment of PC by preventing angiogenesis.

Apatinib (Hengrui Pharmaceutical Co., Ltd., Shanghai, China), also known as YN968D1, is a multiple kinase inhibitor with in vitro activity against VEGFR-2, PDGFR-beta, c-Kit, and c-src[14,15]. It was shown to have a survival benefit in gastric cancer in a Phase II[16] and III[17] trial and is currently being studied in multiple solid tumor types, such as colon and breast cancers[18-20]. Because of its easy administration, better compliance, reduced toxicity and improved outcomes, apatinib has demonstrated substantial potential as a new therapeutic option in a variety of tumor types[17,21].

Here, we report a patient with PC who was treated with apatinib following failure of the fourth-line therapy and achieved a progression-free survival (PFS) of 7 mo, demonstrating the potential of apatinib in the treatment of PC. To the best of our knowledge, this is the first case of PC which responded to apatinib.

CASE REPORT

In November 2014, a 58-year-old woman attended our hospital complaining of persistent pain in the upper abdomen and back, following dyspepsia for approximately 4 d. Physical examination suggested tenderness in the upper abdomen but without rebound pain. The serum carbohydrate antigen 19-9 (CA19-9) level was 148 U/mL (normal range, 0-39 U/mL). An upper abdominal contrast-enhanced computed tomography (CT) scan revealed a 3.1 cm × 1.7 cm mass at the body of the pancreas (Figure 1A), with the mass having an intimate connection to the splenic artery and vein. An enlarged lymph node was detected behind the aorta abdominals (Figure 1B). An 18F-FDG positron emission tomography (PET) scan also displayed a mass in the body of the pancreas with an SUV of 6.2 and an enlarged lymph node with an SUV of 4.8 (Figure 1C and D). Subsequently, an endoscopic biopsy of the mass showed a moderately differentiated adenocarcinoma (Figure 2). The patient was diagnosed with locally advanced, unresectable PC (cT4N1M0, Stage III).

Concurrent chemoradiotherapy (CCRT) with gemcitabine (GEM) weekly and 30 fractions of radiotherapy were administered from November 7 to December 18, 2014. When CCRT was completed, the tumor response was considered stable disease (SD) on a repeat abdominal CT according to the modified
Response Evaluation Criteria in Solid Tumors (RECIST) criteria. The CA19-9 level gradually decreased to 125.6 U/mL. GEM with oxaliplatin was then administered for 4 cycles. An abdominal CT scan revealed a partial response, while serum CA19-9 level gradually decreased to a normal value (24.4 U/mL). The timeline of treatment and trend in CA19-9 during treatment are displayed in Figure 3.

However, 1 mo later, the patient attended our hospital again because of recurrence of upper abdominal pain. The CT scan showed metastatic lesions in the right pleura and lungs (Figure 4A-D), while the lesion in the pancreas and enlarged lymph node remained stable (Figure 4E and F). Clinical restaging showed cT4N1M1, Stage IV. The CA19-9 level increased to 150.8 U/mL. From June 27, 2015, 4 cycles of paclitaxel-albumin with S-1 were administered. The response after 2 courses and 4 courses was SD. The CA19-9 level gradually decreased to 46.87 U/mL, which was almost a normal value (Figure 3).

Approximately 4 mo later, a CT scan showed that the primary as well as the metastatic lesions had progressed. The CA19-9 level was 107.6 U/mL. As the patient had good performance status (PS), the fourth-line therapy with FOLFOX4 was administered. After 3 cycles, the CT scan showed that response to treatment was SD. However, the CA19-9 level had gradually increased from 107.6 U/mL to 302.3 U/mL. The patient was unable to tolerate this regimen due to gastrointestinal toxicity, and refused further chemotherapy. From June 3, 2016, the patient received apatinib (500 mg p.o. qd) as the fifth-line treatment. The CA19-9 level after 15 d of apatinib treatment decreased sharply from 302.3 U/mL to 88.8 U/mL. The CA19-9 level was tested every 2 wk and a CT scan was performed every 8 wk during the follow-up. The CA19-9 level was maintained between 56.8 U/mL and 92.4 U/mL (Figure 3) and the primary mass decreased from 1.7 cm to 1.2 cm, and then to 1.0 cm (Figure 5D-F) while other lesions showed no obvious

Figure 1 Abdominal CT and ¹⁸F-FDG PET/CT show lesions located in the pancreas and behind the aorta abdominalis. A: A 3.1 cm × 1.7 cm mass at the body of the pancreas; B: An enlarged lymph node behind the aorta abdominalis; C: The mass in the body of the pancreas with an SUV of 6.2; D: The enlarged lymph node with an SUV of 4.8. CT: Computed tomography; PET: Positron emission tomography.

Figure 2 Hematoxylin and eosin staining of a tumor section (× 200). The pathological diagnosis was moderately differentiated adenocarcinoma.
tumor response was SD but the CA19-9 level gradually increased. Due to chemotherapy intolerance, apatinib was then given as the fifth-line therapy to this patient. PFS following apatinib therapy was 7 mo. In addition, the patient tolerated apatinib well, with satisfactory quality of life.

With current chemotherapy regimens for PC, including GEM, paclitaxel-albumin, S-1, oxaliplatin, 5-FU, leucovorin and irinotecan, the median survival for patients with unresectable or metastatic PC is 9-11 mo\(^4,22,23\). In recent years, an increasing number of targeted drugs for PC have been studied. Erlotinib is the only targeted drug approved by the Federal Drug Administration to treat PC. In a randomized Phase III trial\(^3\), the median survival and 1-year survival rate both increased in patients treated with GEM plus erlotinib, compared to those treated with only GEM. Although these results seem positive, the median overall survival (OS) was only prolonged by 9.9 d (6.24 mo vs 5.91 mo, \(P = 0.038\)) and the objective response rates (ORR) were not significantly different between the two treatment arms (57.5% vs 49.2%, \(P = 0.07\)). Furthermore, a higher incidence of some adverse events was observed with erlotinib plus GEM. In a small-sample study, sorafenib plus erlotinib also did not improve either survival or PFS rate as compared to a historical control\(^24\). The ViP trial, a Phase II double-blind, multicenter, randomized placebo-controlled trial, showed that vandetanib combined with GEM in patients with advanced PC did not improve OS (8.83 mo vs 8.95 mo, \(P = 0.303\))\(^25\). In addition, a meta-analysis showed that there was no statistically significant improvement in survival when PC patients change (Figure 5A-C, G-I). The response to treatment with apatinib was SD.

On January 13, 2017, the patient attended our hospital complaining of difficulty in breathing and the recurrence of upper abdominal pain, a CT scan revealed several metastatic lesions in the liver and pleural effusion (Figure 6). In addition, the CA19-9 level had markedly increased to 1978.0 U/mL. Her PS diminished rapidly with a score of 3, and the disease had progressed. The patient finally died of multiple organ dysfunction resulting from pulmonary infection.

During apatinib treatment, this patient developed the primary side effects of hypertension (grade 2), dental ulcer (grade 2) and a higher serum alanine transaminase level (grade 1) according to the Common Terminology Criteria for Adverse Events (CTCAE) v4.0 criteria. All side effects were well controlled with drug treatment and she had a PS score of 2.

This study was approved by the Institutional Review Board of Shandong Cancer Hospital Affiliated to Shandong University. The husband of the patient provided written informed consent.

DISCUSSION

To date, there has been no effective therapy for improving the survival of a PC patient due to its aggressive nature. In this case, we administered CCRT as first-line therapy and the tumor response was SD. GEM and oxaliplatin were administered as second-line therapy and PFS was only 3 mo. Paclitaxel-albumin with S-1 was then administered as third-line therapy and FOLFOX4 regimen as the fourth-line therapy. The tumor response was SD but the CA19-9 level gradually increased. Due to chemotherapy intolerance, apatinib was then given as the fifth-line therapy to this patient. PFS following apatinib therapy was 7 mo. In addition, the patient tolerated apatinib well, with satisfactory quality of life.

With current chemotherapy regimens for PC, including GEM, paclitaxel-albumin, S-1, oxaliplatin, 5-FU, leucovorin and irinotecan, the median survival for patients with unresectable or metastatic PC is 9-11 mo\(^4,22,23\). In recent years, an increasing number of targeted drugs for PC have been studied. Erlotinib is the only targeted drug approved by the Federal Drug Administration to treat PC. In a randomized Phase III trial\(^3\), the median survival and 1-year survival rate both increased in patients treated with GEM plus erlotinib, compared to those treated with only GEM. Although these results seem positive, the median overall survival (OS) was only prolonged by 9.9 d (6.24 mo vs 5.91 mo, \(P = 0.038\)) and the objective response rates (ORR) were not significantly different between the two treatment arms (57.5% vs 49.2%, \(P = 0.07\)). Furthermore, a higher incidence of some adverse events was observed with erlotinib plus GEM. In a small-sample study, sorafenib plus erlotinib also did not improve either survival or PFS rate as compared to a historical control\(^24\). The ViP trial, a Phase II double-blind, multicenter, randomized placebo-controlled trial, showed that vandetanib combined with GEM in patients with advanced PC did not improve OS (8.83 mo vs 8.95 mo, \(P = 0.303\))\(^25\). In addition, a meta-analysis showed that there was no statistically significant improvement in survival when PC patients
Figure 4 Computed tomography scan showed that the disease had progressed to stage IV. Metastatic lesions in the right pleura and lungs (lung window A, B; mediastinal window C, D). The lesion in the pancreas and enlarged lymph node remained stable (E, F).

Table 1 Clinical trials using targeted agents for advanced or metastatic pancreatic cancer

Target medicine	Mechanism	Phase	Stage	n	Arm	PFS, mo	OS, mo	ORR
Cetuximab[27]	EGFR	III	Locally advanced/ metastatic	746	A: GEM + cetuximab	3.4 vs 3.0	6.3 vs 5.9	49% vs 44%
					B: GEM			
Nimotuzumab[28]	EGFR	III	Locally advanced/ metastatic	18	GEM + nimotuzumab	3.71 vs 3.7	9.29 vs 9.29	55.50%
Lapatinib[29]	EGFR + Her-2	II	Metastatic	17	Lapatinib + capecitabine	2.6 vs 2.6	5.2 vs 5.2	-
Cixutumumab[30]	IGF-1R	I b/ II	Metastatic	116	A: Erlotinib + cixutumumab + GEM	3.6 vs 3.6	7.0 vs 6.7	12.28% vs 12.28%
					B: Erlotinib + GEM			
Cetuximab + Everolimus[31]	EGFR + mTOR	II	Locally advanced/ metastatic	31	Everolimus+ cetuximab + capcitabine	-	5.0	22.60%
Cetuximab + trastuzumab[30]	EGFR + Her-2	I - II	Metastatic	33	Cetuximab + trastuzumab	1.8 vs 1.8	4.6 vs 4.6	-
Erlotinib + Selumetinib[32]	EGFR + MEK1/2	II	Locally advanced/ metastatic	46	Erlotinib + selumetinib	1.9 vs 1.9	7.3 vs 7.3	-

EGFR: Epidermal growth factor receptor; GEM: Gemcitabine; ORR: Objective response rate.
were treated with erlotinib or cetuximab\cite{26}. Other trials where one\cite{27-30} or a combination of two targeted agents\cite{31-33} were administered for advanced or metastatic PC also did not show significant positive results (Table 1).

Angiogenesis is an essential and significant step in tumor growth as it supplies necessary oxygen, growth factors and nutrients, and is generally considered an attractive target in cancer therapy\cite{34-37}. Some studies have confirmed that PC is indeed angiogenesis-dependent\cite{6-9}. Bevacizumab, an anti-angiogenesis agent, is currently the most frequently studied drug for PC in clinical trials. A double-blind phase III trial of bevacizumab in combination with GEM and erlotinib for metastatic PC showed that the addition of bevacizumab led to a statistically significant

Figure 5 The primary mass in the pancreas shrunk gradually during apatinib treatment: (D) 1.7 cm (E) 1.2 cm (F) 1.0 cm. The metastatic lesions showed no obvious change (A-C; G-I).

Figure 6 Disease progression. CT scan revealed several metastatic lesions in the liver (A) and pleural effusion (B). CT: Computed tomography.
improvement in PFS ($P = 0.0002$). However, there was no significant improvement in OS (7.1 mo vs 6.0 mo, $P = 0.2087$)\cite{38}. Moreover, in the CALGB 80303 trial\cite{39}, median PFS and ORR were similar in the two treatment arms (for PFS, 3.8 mo vs 2.9 mo, $P = 0.07$; for ORR, 13% vs 10%, respectively). However, in the subgroup analysis, the median survival was 7.9 mo in PS 0 patients, 4.8 mo in PS 1 patients and only 2.4 mo in PS 2 patients. These findings suggested that bevacizumab is much more effective in PS 0 and 1 patients. In another Phase II study\cite{40} of bevacizumab combined with chemotherapy, median PFS was 5.9 mo and median OS was 7.4 mo. Partial response and stable disease occurred in 30% and 45% of patients, respectively, which met the study’s primary endpoint. These studies\cite{39-41} demonstrated that further efforts should be focused on identifying subsets of PC patients who are more likely to benefit from bevacizumab. These findings indicate that anti-angiogenesis treatment has great potential in PC.

Tumors produce various angiogenic factors and cytokines to induce angiogenesis, which is essential for tumor growth. Among these tumor-derived factors, the VEGF family including VEGF-A to -D was initially identified as endothelial cell-specific mitogens with the ability to induce physiologic and pathologic angiogenesis\cite{42-46}. It has been reported that VEGF displays these broad vascular functions by the binding and activation of VEGF\cite{46-49}, especially VEGFR-2\cite{50-52}, mainly expressed in vascular endothelial cells. As described in Figure 7, bevacizumab, a humanized monoclonal antibody that only targets VEGF-A to prevent its interaction with VEGFR-2, was the first targeted antiangiogenic agent approved for use in oncology\cite{53}. Apatinib, the first generation of oral anti-angiogenesis drugs, mainly targets VEGFR-2 through the intracellular ATP-binding site that inhibits all VEGF-stimulated endothelial cell migration and proliferation, decreases tumor microvascular density and promotes apoptosis\cite{11,54,55}. Therefore, it seems that apatinib may have more potential in anti-angiogenesis than bevacizumab by affecting the VEGFR-2 pathway of angiogenesis.

Apatinib shows antitumor efficacy and good tolerance in mice when administered alone or in combination with chemotherapeutic drugs against a broad range of human tumor xenografts\cite{15}. In patients with advanced gastric or gastroesophageal junction adenocarcinoma, a Phase II study\cite{16} and a Phase III study\cite{20} showed that both OS and median PFS were significantly improved in the apatinib group. Furthermore, other clinical trials\cite{17,56} concluded that apatinib has substantial clinical activity without significant additional toxicity in patients with advanced
non-squamous and non-small cell lung cancer and hepatocellular carcinoma. Whether apatinib has an important role in the treatment of PC is unknown.

The reason for the use of apatinib in our case were unsatisfactory treatment efficacy after the fourth-line chemotherapy, but the patient still wished to continue the treatment. According to the general condition of the patient who had a PS 2, she was treated with apatinib at a daily dose of 500 mg. After 15 d of apatinib treatment, the CA19-9 level decreased sharply from 302.3 U/mL to 88.8 U/mL. Following a period of treatment, the primary mass was reduced in size and other metastatic diseases were well controlled for 7 mo. Although this is an individual case, apatinib did demonstrate its curative effect in PC. As an anti-angiogenesis therapy, it seems that apatinib may be effective in the treatment of PC.

Here, we report the first case of PC which responded to apatinib. It seems that apatinib may provide an additional option for the targeted treatment of PC. Nevertheless, further large-scale prospective studies on apatinib are required to verify its efficacy in the treatment of PC.

COMMENTS

Case characteristics
A 58-year-old woman with no significant medical history attended our hospital complaining of persistent pain in the upper abdomen and back, following dyspepsia for approximately 4 d.

Clinical diagnosis
Physical examination suggested tenderness in her upper abdomen but without rebound pain.

Differential diagnosis
Pancreatitis, pancreatic neuroendocrine tumor, cholecystitis, ampullary carcinoma.

Laboratory diagnosis
The serum carbohydrate antigen 19-9 level was 148 U/mL when diagnosed.

Imaging diagnosis
Computed tomography revealed a 3.1 cm × 1.7 cm mass at the body of the pancreas, and an enlarged lymph node was detected behind the aorta abdominals. 18F-FDG positron emission tomography displayed a mass in the body of the pancreas with an SUV of 6.2 and an enlarged lymph node with an SUV of 4.8.

Pathological diagnosis
Moderately differentiated adenocarcinoma.

Treatment
Chemotherapy, radiotherapy, and targeted therapy.

Related reports
Recently, many targeted drugs for pancreatic cancer have been studied. Erlotinib is the only targeted drug approved by the Federal Drug Administration to treat pancreatic cancer. Apatinib, the first generation of oral anti-angiogenesis drugs, mainly targets vascular endothelial growth factor receptor-2 (VEGFR-2). In patients with advanced gastric or gastroesophageal junction adenocarcinoma, a Phase II study and a Phase III study showed that both overall survival and median progression-free survival were significantly improved in the apatinib group. Furthermore, other clinical trials concluded that apatinib has substantial clinical activity without significant additional toxicity in patients with advanced non-squamous and non-small cell lung cancer and hepatocellular carcinoma. Therefore, apatinib seems have potential in anti-angiogenesis by affecting the VEGFR-2 pathway of angiogenesis.

Term explanation
Apatinib, also known as YN968D1, is a multiple kinase inhibitor with in vitro activity against VEGFR-2, PDGFR-beta, c-Kit, and c-src.

Experiences and lessons
Apatinib may provide an additional option for the targeted treatment of pancreatic cancer, and further large-scale prospective studies on apatinib are required to verify its efficacy in the treatment of pancreatic cancer.

Peer-review
In this study, it showed that apatinib, a first-generation anti-angiogenesis drug targeting VEGFR-2, indeed improved the life of a patient with metastatic pancreatic cancer.

ACKNOWLEDGMENTS

We thank our colleagues from Shandong Cancer Hospital for the treatment of this case, and the patient and her family members who agreed to publication of this case.

REFERENCES

1. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015; 136: E359-E386 [PMID: 25220842 DOI: 10.1002/ijc.29210]

2. Tempero MA, Malafa MP, Behrm SW, Benson AB 3rd, Casper ES, Chiorean EG, Chung V, Cohen SJ, Czito B, Engelbrethson A, Fend M, Hawkins WG, Herman J, Hoffman JP, Ko A, Komanduri S, Koong A, Lowy AM, Ma WW, Merchant NB, Mulvihill SJ, Muscarella P 2nd, Nakakura EK, Okando J, Pitman MB, Reddy S, Sasson AR, Thayer SP, Weekes CD, Wolff RA, Woplin BM, Burns JL, Freedman-Cass DA. Pancreatic adenocarcinoma, version 2.2014: featured updates to the NCCN guidelines. J Natl Compr Canc Netw 2014; 12: 1083-1093 [PMID: 25099441]

3. Moore MJ, Goldstein D, Hamm J, Figer A, Hecht JR, Gallinger S, Au HJ, Murawa P, Walde D, Wolff RA, Campos D, Lim R, Ding K, Clark G, Voskoglou-Nomikos T, Psasynsky M, Parulekar W; National Cancer Institute of Canada Clinical Trials Group. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 2007; 25: 1960-1966 [PMID: 17452677 DOI: 10.1200/JCO.2006.07.9525]

4. Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouard Y, Adenis A, Raoul JL, Gourgu- Bourgade S, de la Fouchardière C, Bennouna J, Bachet JB, Khemissa-Akouz F, Pérel-Vergé D, Delbaldo C, Assenat E, Chauffert B, Michel P, Montoto- Grillot C, Dureux M; Groupe Tumeurs Digestives of Unicancer; PRODIGE Intergroup. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 2011; 364: 1817-1825 [PMID: 21561347 DOI: 10.1056/NEJMoa1011923]
Apatinib for chemotherapy-refractory advanced metastatic gastric cancer: results from a randomized, placebo-controlled, parallel-arm, phase II trial. *J Clin Oncol* 2013; 31: 3219-3225 [PMID: 23519852 DOI: 10.1200/JCO.2013.48.8585]

17 Li J, Qin S, Xu J, Xiong J, Wu C, Bai Y, Liu W, Tong J, Liu Y, Xu R, Wang Z, Wang Q, Ouyang X, Yang Y, Bai Y, Liang J, Lin X, Luo D, Zhang R, Wang X, Sun G, Wang L, Zheng L, Guo H, Wu J, Xu N, Yang J, Zhang H, Cheng Y, Wang N, Chen L, Fan Z, Sun Y, Hu H. Randomized, Double-Blind, Placebo-Controlled Phase III Trial of Apatinib in Patients With Chemotherapy-Refractory Advanced or Metastatic Adenocarcinoma of the Stomach or Gastroesophageal Junction. *J Clin Oncol* 2016; 34: 1448-1454 [PMID: 26884585 DOI: 10.1200/JCO.2015.63.5995]

18 Scott AJ, Messersmith WA, Jimeno A. Apatinib: a promising oral antiangiogenic agent in the treatment of multiple solid tumors. *Drugs Today* (Barc) 2015; 51: 223-229 [PMID: 26020864 DOI: 10.1358/dot.2015.51.4.2230599]

19 Hu X, Cao J, Hu W, Wu C, Pan Y, Cai L, Tong Z, Wang S, Li J, Wang Z, Wang B, Chen X, Yu H. Multicenter phase II study of apatinib in non-triple-negative metastatic breast cancer. *BMC Cancer* 2014; 14: 820 [PMID: 25376790 DOI: 10.1186/1471-2407-14-820]

20 Hu X, Zhang J, Xu B, Jiang Z, Ragaz J, Tong Z, Zhang Q, Wang X, Feng J, Pang D, Fan M, Li J, Wang B, Wang Z, Zhang Q, Sun S, Liao C. Multicenter phase II study of apatinib, a novel VEGFR inhibitor in heavily pretreated patients with metastatic triple-negative breast cancer. *Int J Cancer* 2014; 135: 1961-1969 [PMID: 24604288 DOI: 10.1002/ijc.28829]

21 Liu L, Yu H, Huang L, Shao F, Bai J, Lou D, Chen F. Progression-free survival as a surrogate endpoint for overall survival in patients with third-line or later-line chemotherapy for advanced gastric cancer. *Onco Targets Ther* 2015; 8: 921-928 [PMID: 25960663 DOI: 10.2147/OTT.S82365]

22 Vaccaro V, Sperduti I, Millella M. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *N Engl J Med* 2011; 365: 769-769; author reply 769 [PMID: 21641848 DOI: 10.1056/NEJMci1007627]

23 Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med* 2013; 369: 1691-1703 [PMID: 24311430 DOI: 10.1056/NEJMoa1304369]

24 Cardin DB, Golf F, Li CI, Shyr Y, Winkler C, DeVore R, Schlabach L, Holloway M, McCanahan P, Meyer K, Grigorieva K, Berlin J, Chan E. Phase II trial of soralafenib and erlotinib in advanced pancreatic cancer. *Cancer Med* 2014; 3: 572-579 [PMID: 24574334 DOI: 10.1002/cam4.208]

25 Middleton G, Palmer DH, Greenhaw L, Ghanem P, Jackson R, Cox T, Evans A, Shaw VE, Wadley J, Valle JW, Propper D, Wasan H, Falk S, Cunningham D, Coxon F, Ross P, Madhusudan W, Wadd N, Corrie P, Hickish T, Costello E, Campbell F, Rawcliffe F, Neoptolemos JP. Vandetanib plus gemcitabine versus placebo plus gemcitabine in locally advanced or metastatic pancreatic carcinoma (VP): a prospective, randomised, double-blind, multicentre phase 2 trial. *Lancet Oncol* 2017; 18: 486-499 [PMID: 28259610 DOI: 10.1016/S1470-2045(17)30084-0]

26 Ottaviano A, Capozzi M, De Divitiis C, De Stefano A, Botti G, Avallone A, Tafuto S. Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: a meta-analysis of randomized phase III trials. *Acta Oncol* 2017; 56: 377-383 [PMID: 28259691 DOI: 10.1080/0284186X.2017.1289922]

27 Philip BA, Benedetti J, Corless CL, Wong R, O'Reilly EM, Flynn PJ, Rowland KM, Atkins JN, Mirtsching BC, Rivkin SE, Khorana AA, Goldman B, Fenoglio-Preesimer CM, Abbruzzese JL, Blanke CD. Phase III study comparing gemcitabine plus cetuximab versus...
gemcitabine on patients with advanced pancreatic adenocarcinoma: Southwest Oncology Group-directed intergroup trial S0205. J Clin Oncol 2010; 28: 3605-3610 [PMID: 20606093 DOI: 10.1200/JCO.2009.25.7066 28:13-136]

28 Xu D, Jiao SC, Wang LJ, Shi WW, Long YY, Li J, Bai L. Efficacy of nimotuzumab plus gemcitabine usage as first-line treatment in patients with advanced pancreatic cancer. Tumour Biol 2014; 35: 2313-2318 [PMID: 24142531 DOI: 10.1007/s13277-013-0306-x]

29 Wu Z, Gabrielson A, Hwang JJ, Novotny W. Discovery and validation of VEGFR ligands and its receptors. Nat Med 2003; 9: 669-676 [PMID: 12778165 DOI: 10.1038/nm0603-669]

30 Kordes S, Richel DJ, Klümpen HJ, Weterman MJ, Stevens AJ, Kandel JJ, Yamashiro DJ. VEGF blocking agents: an imbalance of positive and negative regulation. Cell 1991; 64: 327-336 [PMID: 1703045]

31 Assenat E, Azria D, Mollevi C, Guimbaud R, Tubiana-Mathieu N, Smith D, Delord JP, Samalin E, Portales F, Larbouret C, Assenat E. A phase II trial of combined MEK plus EGFR Inhibition for Chemotherapy-refractory Advanced Pancreatic Adenocarcinoma. Clin Cancer Res 2016; 22: 61-68 [PMID: 26252190 DOI: 10.1158/1078-0432.CCR-15-0791 32:103-104]

32 Liotta LA, Steeg PS, Stetler-Stevenson WG. Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 1991; 64: 327-336 [PMID: 1703045]

33 Schuch G, Kisker O, Atala A, Soker S. Pancreatic tumor growth is regulated by the balance between positive and negative modulators of angiogenesis. Angiogenesis 2002; 5: 181-190 [PMID: 12831059]

34 Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996; 86: 353-364 [PMID: 8756718]

35 Costache MI, Ioana M, Jordeche S, Ene D, Costache CA, Săfoiu A. VEGF Expression in Cancer and Other Malignancies: A Review of the Literature. Rom J Intern Med 2015; 53: 199-208 [PMID: 26710495 DOI: 10.1515/rjm-2015-0027]

36 Van Cutsen E, Verweme VL, Bennouna J, Humblet Y, Gill S, Van Laethem JL, Verslype C, Scheithauer W, Shang A, Cosaert J, Moore MJ. Phase III trial of bevacizumab in combination with gemcitabine and erlotinib in patients with metastatic pancreatic cancer. J Clin Oncol 2009; 27: 2231-2237 [PMID: 19307500 DOI: 10.1200/JCO.2008.20.0238]

37 Kindler HL, Niedzwiecki D, Hollis D, Sutherland S, Schrag D, Hurwitz H, Innocenti F, Mulcahy MF, O’Reilly E, Wozniak TF, Fics J, Bhargava P, Mayer RJ, Schilsky RL, Goldberg RM. Gemcitabine plus bevacizumab compared with gemcitabine plus placebo in patients with advanced pancreatic cancer: phase III trial of the Cancer and Leukemia Group B (CALGB 80303). J Clin Oncol 2010; 28: 3617-3622 [PMID: 20606091 DOI: 10.1200/JCO.2009.25.7066 28:13-136]

38 Martin LK, Li X, Kleiber B, Ellison EC, Bloomston M, Zalupski M, Bekaii-Saab TS. VEGF remains an interesting target in advanced pancreatic cancer (APCA): results of a multi-institutional phase II study of bevacizumab, gemcitabine, and infusional 5-fluorouracil in patients with APCA. Ann Oncol 2012; 23: 2812-2820 [PMID: 22767582 DOI: 10.1093/annonc/mds134]

39 Ko AH, Dito E, Schillinger B, Vennou AP, Xu Z, Bergland EK, Wong D, Scott J, Hwang J, Tempo MA. A phase II study evaluating bevacizumab in combination with fixed-dose rate gemcitabine and low-dose cisplatin for metastatic pancreatic cancer: is an anti-VEGF strategy still applicable? Invest New Drugs 2008; 26: 463-471 [PMID: 18379729 DOI: 10.1007/s10637-008-9127-2]

40 Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003; 9: 669-676 [PMID: 12778165 DOI: 10.1038/nm0603-669]

41 Cao Y. Positive and negative modulation of angiogenesis by VEGFR1 ligands. Sci Signal 2009; 2 [PMID: 19244214 DOI: 10.1126/scisignal.259re1]

42 Leung DW, Cachero G, Kuang WJ, Goeddel DV, Ferrara N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 1306-1309 [PMID: 2479986]

43 Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20: 4368-4380 [PMID: 12409337 DOI: 10.1200/JCO.2002.10.088]

44 Kieran MW, Kalluri R, Cho YJ. The VEGF pathway in cancer and disease: responses, resistance, and the path forward. Cold Spring Harb Perspect Med 2012; 2 [PMID: 23091765 DOI: 10.1101/cshperspect.a006593]

45 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; 407: 249-257 [PMID: 11001068 DOI: 10.1038/35025220]

46 Coutlas I, Chawangsaksophak K, Rossant J. Endothelial cells and VEGF in vascular development. Nature 2005; 438: 937-945 [PMID: 16355211 DOI: 10.1038/nature04479]

47 Glade-Bender J, Kandel JJ, Yamashiro DJ. VEGF blocking therapy in the treatment of cancer. Expert Opin Biol Ther 2003; 3: 263-276 [PMID: 12662141 DOI: 10.1517/1472598.3.2.263]

48 Gille H, Kowalski J, Li B, LeCouter J, Moffat B, Zonchek TF, Pelletier N, Ferrara N. Analysis of biological effects and signaling properties of Flt-1 (VEGFR-1) and KDR (VEGFR-2). A reassessment using novel receptor-specific vascular endothelial growth factor mutants. J Biol Chem 2001; 276: 3222-3230 [PMID: 11058584 DOI: 10.1074/jbc.M002162200]

49 Hamerlik P, Lathia JD, Rasmussen R, Wu Q, Bartkova J, Lee M, Moudry P, Bartek J Jr, Fischer W, Lukas J, Rich JN, Bartek J. Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. J Exp Med 2012; 209: 507-520 [PMID: 22393126 DOI: 10.1084/jem.20111424]

50 Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol Cell Physiol 2001; 280: C1358-C1366 [PMID: 11350730]

51 Ferrara N, Hillan KJ, Gerber HP, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3: 391-400 [PMID: 15136787 DOI: 10.1038/nrd1381]

52 Peng H, Zhang Q, Li J, Zhang N, Hua Y, Xu L, Deng Y, Lai J, Peng Z, Peng B, Chen M, Peng S, Kuang M. Apatinib inhibits VEGF signaling and promotes apoptosis in intrahepatic cholangiocarcinoma. Oncotarget 2016; 7: 17220-17229 [PMID: 26967384 DOI: 10.18632/oncotarget.7948]

53 Peng S, Zhang Y, Peng H, Ke Z, Xu L, Su T, Tsung A, Tohme
S, Huang H, Zhang Q, Lencioni R, Zeng Z, Peng B, Chen M, Kuang M. Intracellular autocrine VEGF signaling promotes EBDC cell proliferation, which can be inhibited by Apatinib. *Cancer Lett* 2016; 373: 193-202 [PMID: 26805764 DOI: 10.1016/j.canlet.2016.01.015]

Qin S. Apatinib in Chinese patients with advanced hepatocellular carcinoma: A phase II randomized, open-label trial. *Asco Meeting Abstracts*. 2014

P-Reviewer: Barreto S, Chowdhury P **S-Editor:** Gong ZM
L-Editor: Filipodia **E-Editor:** Huang Y
