Guidelines for the prevention and management of children and adolescents with COVID-19

Enmei Liu1 · Rosalind Louise Smyth2,3 · Qinyuan Li1 · Amir Qaseem4 · Ivan D. Florez5,6,7 · Joseph L. Mathew8 · Yasser Sami Amer9,10,11,12 · Janne Estill13 · Quan Lu14 · Zhou Fu1 · Xiaoxia Li15 · Edwin Shih-Yen Chan16,17 · Jürgen Schwarze18 · Gary Wing-Kin Wong19 · Toshibo Fukuoka20,21 · Hyeong Sik Ahn22,23,24,25 · Myeong Soo Lee26,27,28,29 · Detty Nurdiati30 · Bin Cao31,60,61 · Wenwei Tu32 · Yuan Qian33 · Shunying Zhao34 · Xiaoyan Dong14 · Xiaoping Luo35 · Zhimin Chen36 · Guobao Li37,38 · XiaoBo Zhang39 · Xiaodong Zhao40,41 · Hongmei Xu42 · Feng Xu43 · Yuan Shi44 · Ruiqi Zhao42 · Yao Zhao45 · Junqiang Lei46 · Xianlan Zheng47 · Mengshu Wang46 · Shu Yang48 · Xixi Feng49 · Liqun Wu50 · Zhihui He51 · Shihui Liu52 · Qi Wang53,54 · Yang Song55 · Zhengxiu Luo1 · Qi Zhou29 · Gordon Guyatt53 · Yaolong Chen29,56,57,58 · Qiu Li59

Received: 5 February 2022 / Revised: 26 July 2022 / Accepted: 4 September 2022 / Published online: 16 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Children are the future of the world, but their health and future are facing great uncertainty because of the coronavirus disease 2019 (COVID-19) pandemic. In order to improve the management of children with COVID-19, an international, multidisciplinary panel of experts developed a rapid advice guideline at the beginning of the outbreak of COVID-19 in 2020. After publishing the first version of the rapid advice guideline, the panel has updated the guideline by including additional stakeholders in the panel and a comprehensive search of the latest evidence. All recommendations were supported by systematic reviews and graded using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. Expert judgment was used to develop good practice statements supplementary to the graded evidence-based recommendations. The updated guideline comprises nine recommendations and one good practice statement. It focuses on the key recommendations pertinent to the following issues: identification of prognostic factors for death or pediatric intensive care unit admission; the use of remdesivir, systemic glucocorticoids and antipyretics, intravenous immunoglobulin (IVIG) for multisystem inflammatory syndrome in children, and high-flow oxygen by nasal cannula or non-invasive ventilation for acute hypoxemic respiratory failure; breastfeeding; vaccination; and the management of pediatric mental health.

Conclusion: This updated evidence-based guideline intends to provide clinicians, pediatricians, patients and other stakeholders with evidence-based recommendations for the prevention and management of COVID-19 in children and adolescents. Larger studies with longer follow-up to determine the effectiveness and safety of systemic glucocorticoids, IVIG, noninvasive ventilation, and the vaccines for COVID-19 in children and adolescents are encouraged.

What is Known:
• Several clinical practice guidelines for children with COVID-19 have been developed, but only few of them have been recently updated.
• We developed an evidence-based guideline at the beginning of the COVID-19 outbreak and have now updated it based on the results of a comprehensive search of the latest evidence.

What is New:
• The updated guideline provides key recommendations pertinent to the following issues: identification of prognostic factors for death or pediatric intensive care unit admission; the use of remdesivir, systemic glucocorticoids and antipyretics, intravenous immunoglobulin for multisystem inflammatory syndrome in children, and high-flow oxygen by nasal cannula or non-invasive ventilation for acute hypoxemic respiratory failure; breastfeeding; vaccination; and the management of pediatric mental health.
Introduction

The worldwide spread of coronavirus disease 2019 (COVID-19) represents a serious threat to the health of children. As of June 30, 2022, nearly 13.8 million children have tested positive for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection since the onset of the pandemic, and children comprised 18.7% of all cases [1]. Omicron has rapidly replaced the Delta variant and become the dominant SARS-CoV-2 variant responsible for most infections, since it was first detected in November 2021[2]. Since the emergence of the Omicron variant, the number of COVID-19 cases in children has dramatically increased [1], reigniting concerns about how to appropriately manage SARS-CoV-2 infection in children.

Since the beginning of the COVID-19 outbreak, close to 100 international and national clinical practice guidelines (CPGs) for the management of adult COVID-19 patients have been developed [3]. However, there are so far only few evidence-based guidelines specifically focusing on pediatric COVID-19 [4]. The management of pediatric patients differs in many aspects from that of adults [5]. For example, COVID-19 is usually milder in children than adults [6]. Interventions used to treat adults may not be effective and safe in children. In addition, there are topics such as breastfeeding during the pandemic that are specific to children and, although mentioned in some guidelines [7, 8], not necessarily covered by most adult or general guidelines.

In response to these issues, we published the first international Rapid Advice Guidelines for Management of Children with COVID-19 in May 2020 [9]. We provided ten recommendations addressing the most common questions in the diagnosis and management of children with COVID-19, based on the knowledge of the disease at the time of the guideline publication. Along with the emergence of new evidence related to the management of COVID-19 in children and adolescents over the last years, more information about COVID-19-related clinical syndromes has become available [10, 11]. According to the World Health Organization (WHO) guideline development methodology, a standard (instead of a rapid) guideline is recommended for public health emergencies that have lasted over 6 months [12]. We updated the original guideline [9] following methodological handbooks [13, 14], and reported the contents according to the Reporting Items for Practice Guidelines in Healthcare (RIGHT) checklist and the Checklist for the Reporting of Updated Guidelines (CheckUp) [15, 16]. We registered the guideline at the International Practice Guidelines Registry Platform (http://guidelines-registry.org/; registration No. IPGRP-2020CN101) and published the guideline protocol [17].
Guideline working group

Building on the panel of the previous version of the guideline, two chairs (EL, RLS) invited and recruited more new panelists in developing this guideline, with the aim of enhancing the diversity in expertise, geographical origin, and gender among the panel members. The updated panel comprised 18 specialties including pediatric respiratory medicine, pediatric infectious diseases, pediatric critical care medicine, neonatology, pediatric nephrology, pediatric immunology, general pediatrics, pulmonary and critical care medicine, infectious diseases, nursing, radiology, epidemiology, global health, health technology assessment, health policy, health economics, law, and statistics. The newly added methodologists (GG, IDF) have rich experience in updating guidelines and using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach and the Appraisal of Guidelines for Research & Evaluation (AGREE) instrument. The newly added pulmonary physician (BC) has experience in clinical trials on drugs for COVID-19. We also considered gender balance, nearly half of the panelists were female.

The international guideline working group comprised 69 members: 45 members of the original guideline working group and 24 new members. Members were allocated to four specific groups: (1) a steering group comprised of five members, including the chair (EL) and co-chair (RLS), a chief methodologist (YC), and two chief clinical experts (QL and ZL); (2) a consensus group comprised of 41 members; (3) an evidence synthesis and evaluation group comprised of 20 members with experience conducting systematic reviews; and (4) a patient partner group with two guardians of children and a child patient. Appendix 1 Table 1 presents detailed information about the guideline working group.

Scope of the guideline

The guideline focuses on the prevention and management of COVID-19. The target population of the updated guideline is children and adolescents younger than 18 years old infected, or at risk of infection, by SARS-CoV-2. The target audience includes clinicians, pediatricians, clinical pharmacists, general practitioners, nurses, and other health workers in general and children’s hospitals, primary clinics, and communities worldwide, as well as families involved in the care of children with COVID-19.

Methodology

Formulating clinical questions

To identify a preliminary set of clinical questions, we first performed a systematic review of existing CPGs for managing COVID-19 in children [4] and noted the research gaps they identified, as well as existing clinical trials for COVID-19 in children. Second, we conducted semi-structured interviews with three experienced pediatricians. The steering group then drafted an initial list of preliminary clinical questions. All questions used the PICO format, which describes the population (P), intervention (I), comparison (C), and outcomes (O). Panelists used a seven-point Likert scale to rate whether each question should be included in the guideline [19]. The guideline included clinical questions achieving high total scores without substantial dissent and approved by all steering group members.

Evidence retrieval, evaluation, and synthesis

We performed for each question a systematic literature search of the WHO COVID-19 Database, MEDLINE (via PubMed), The Cochrane Library, Web of Science, Embase, China Biology Medicine disc, China National Knowledge Infrastructure, and Wanfang from January 1, 2020, through July 13, 2022. Systematic reviews that met the requirements to answer our clinical questions were used directly; if such reviews were not found, we conducted new systematic reviews. We critically appraised the methodological quality of the publications using standard tools such as A Measurement Tool to Assess Systematic Reviews (AMSTAR) scale for systematic reviews [20], the Cochrane Risk of Bias tool (ROB 1.0) for randomized controlled trials (RCTs) [21], the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) for diagnostic accuracy studies [22], and the Newcastle–Ottawa Scale (NOS) for observational studies [23]. We used the GRADE approach to rate the quality of evidence and the strength of recommendations (Table 1)
We also provided “good practice statements (GPS)” proposed by the GRADE Working Group in our guideline [25].

Formulation of the recommendations

We drafted preliminary recommendations based on the evidence for each question, balance of benefits and harms, patients’ values and preferences, and cost considerations [24]. The consensus group and patient representatives participated in two rounds of Delphi survey and voted for the preliminary recommendations and gave their comments. Recommendations were taken to have reached a consensus when 70% of the voters agreed on the recommendation.

External review

Two external experts (Dr Yu-Lung Lau, Chair Professor of Pediatrics, University of Hong Kong and Dr Anthony Que, Clinical pharmacist, Lanzhou University) reviewed the final draft guideline. The two chairs (EL, RLS) and one methodologist (YC) discussed feedback from the external reviews and revised the guideline based on their comments and suggestions.

Results

We initially identified eight clinical questions. We subsequently added a clinical question on COVID-19 vaccination for children because the issue has recently received significant attention from physicians, the public, and policymakers. All panelists agreed and approved the new question. We found two existing living systematic reviews to support clinical questions on high-flow oxygen by nasal cannula (HFNC) or non-invasive ventilation (NIV) and breastfeeding [26–28]. We conducted four systematic reviews to support the other clinical questions [29–32]. We present the summary of recommendations in Fig. 1, including the new items and the changes to the previous guideline recommendations. Appendix 1 Table 3 presents the process of formulating clinical questions, Appendix 1 Table 4 presents the final list of PICO questions, and Appendix 1 Table 5 presents a detailed overview of the new recommendations, previous recommendations, and the rationale for changes.

Recommendations

We display the final list of the recommendations along with their strength and the certainty of the supporting evidence in Table 2. Each recommendation is labelled as new, modified, or unchanged. The following sections describe the details of each question and the summary of the evidence and consensus process that support each recommendation.

Clinical question 1: What are the main prognostic factors for death or pediatric intensive care unit (PICU) admission in children and adolescents with COVID-19?

Recommendation 1 We suggest that pediatricians and other guideline users should identify the presence of prognostic factors for death or PICU admission in children and adolescents with COVID-19 at an early stage. The main prognostic factors for death are multisystem inflammatory syndrome in children (MIS-C) complications and acute kidney injury (AKI); the prognostic factors for PICU admission include AKI, Acute Respiratory Distress Syndrome (ARDS), MIS-C complications, chronic pulmonary disease, and congenital heart disease (Conditional recommendation, very low certainty of evidence) (New).

Table 1 Grading of certainty of evidence and strength of recommendations*

Certainty of evidence	Description
High	We are very confident that the true effect lies close to that of the estimate of the effect
Moderate	We are moderately confident in the effect estimate: The true effect is likely to be close to the estimate of the effect, but there is a possibility that it is substantially different
Low	Our confidence in the effect estimate is limited: The true effect may be substantially different from the estimate of the effect
Very low	We have very little confidence in the effect estimate: The true effect is likely to be substantially different from the estimate of the effect

Strength of recommendation	Description
Strong	Advantages of the intervention significantly outweigh disadvantages or disadvantages of the intervention significantly outweigh advantages
Conditional	Advantages of the intervention may outweigh disadvantages, disadvantages of the intervention may outweigh advantages, or the relationship between advantages and disadvantages is not clear

* According to the GRADE Working Group [24]
Table 2 Summary of the recommendations and good practice statements

Recommendations	Status
Recommendation 1: We suggest that pediatricians and other guideline users should identify the presence of prognostic factors for death or PICU admission in children and adolescents with COVID-19 at an early stage. The main prognostic factors for death are MIS-C complications and AKI; the prognostic factors for PICU admission include AKI, ARDS, MIS-C complications, chronic pulmonary disease, and congenital heart disease (Conditional recommendation, very low certainty of evidence)	New
Recommendation 2: We suggest standard care without remdesivir to treat children and adolescents with COVID-19 (Conditional recommendation, very low certainty of evidence)	Modified
Recommendation 3: We suggest that antipyretics (ibuprofen or paracetamol) can be used to relieve fever and pain in children and adolescents with COVID-19 (Conditional recommendation, very low certainty of evidence)	New
Recommendation 4: We suggest low-dose, short-course of dexamethasone therapy for children and adolescents with severe COVID-19 (Conditional recommendation, low certainty of evidence)	Modified
Recommendation 5.1: We suggest IVIG for children and adolescents with MIS-C (Conditional recommendation, very low certainty of evidence)	New
Recommendation 5.2: We suggest using glucocorticoids in combination with IVIG for children and adolescents with MIS-C who have a severe clinical presentation at the time of diagnosis (acute left ventricular dysfunction, immediate admission to PICU care, or hemodynamic support requirement) (Conditional recommendation, very low certainty of evidence)	New
Recommendation 6: We suggest HFNC or NIV (CPAP or BiPAP) as the initial modality of therapy for acute hypoxic respiratory failure in hospitalized children and adolescents with COVID-19 (Conditional recommendation, low certainty of evidence)	New
Recommendation 7: We recommend that mothers with COVID-19 continue to breastfeed their babies if their health condition permits, while taking appropriate precautions (Strong recommendation, low certainty of evidence)	Unchanged
Recommendation 8: We suggest COVID-19 vaccination for children and adolescents aged 3–17 years if a COVID-19 vaccine is available and approved by local health authorities for their age and health condition, while closely monitoring for potential side effects after vaccination (Conditional recommendation, moderate certainty of evidence)	New
Good practice statements	Status
Good practice statement: We suggest pediatricians, parents, and caregivers should explore possible mental health problems among children and adolescents with COVID-19 and provide them with the optimal support that is feasible in the local setting	New

Unchanged, the main content and the strength of recommendation remain unchanged from the original recommendation; modified, the main content or strength of the recommendation has changed compared to the original recommendation; new, the recommendation that was not included in the original version of the guideline has been added in the updated guideline. Abbreviations and acronyms: COVID-19, coronavirus disease 2019; IVIG, intravenous immunoglobulin; MIS-C, multisystem inflammatory syndrome in children; PICU, pediatric intensive care unit; HFNC, high-flow oxygen by nasal cannula; NIV, non-invasive ventilation; CPAP, continuous positive airway pressure; BiPAP, bilevel positive airway pressure; AKI, acute kidney injury; ARDS, acute respiratory distress syndrome

Evidence summary Our systematic review included 56 observational studies (22 cohort studies, nine case–control studies, and 25 case series) with 79,104 children and adolescents with COVID-19, with data collected between January 2020 and July 2021 [29]. MIS-C complications (OR 58.00, 95% CI: 6.39 to 526.79) and AKI (OR 3.15, 95% CI: 1.25 to 7.90) increased the odds of death. AKI (OR 55.02, 95% CI: 6.26 to 483.35), ARDS (OR 29.54, 95% CI: 12.69 to 68.78), MIS-C complications (OR 3.83, 95% CI: 1.48 to 9.87), chronic pulmonary disease (OR 3.45, 95% CI: 1.47 to 8.07), and congenital heart disease (OR 2.90, 95% CI: 1.26 to 6.67) increased the odds of PICU admission.

Explanation Most children with COVID-19 have milder clinical symptoms and better prognosis than adults [33]. However, as the number of SARS-CoV-2-infected children and adolescents continues to rise globally, the number of children with severe forms of the disease, including complications such as respiratory failure and multiple organ failure, also increases. Therefore, identifying the prognostic factors for unfavorable outcomes is crucial to identify the children at highest risk early, and to allow hierarchical management and prevention of disease progression.

Only a few guidelines that focus on prognosis of COVID-19 in children exist. The guidelines of the Centers for Disease Control and prevention (CDC) indicate that the risk of developing severe COVID-19 for children was higher if pre-existing conditions, such as obesity, diabetes, asthma, chronic lung disease, or immunosuppression, were present [34]. One consensus statement mentioned that increased respiratory rate, poor mental response or lethargy, progressive elevation of lactate levels, bilateral or multiple lobar infiltrates, pleural effusion or rapid progression of pulmonary lesions in the short term, and age less than 3 months were predictors for developing severe or critical COVID-19 [35]. A systematic review showed that male sex, elevated inflammatory markers (including C-reactive protein [CRP], procalcitonin, ferritin, and D-dimer), and decreased lymphocyte count were associated with various indicators of poor prognosis including death, PICU admission, progression to
critical disease, progression to MIS-C, need of respiratory support, organ dysfunction, and hospitalization in children with COVID-19 [36].

Clinical question 2: Should remdesivir be used to treat children and adolescents with COVID-19?

Recommendation 2 We suggest standard care without remdesivir to treat children and adolescents with COVID-19 (Conditional recommendation, very low certainty of evidence) (Modified).

Evidence summary Our systematic review identified three single-arm cohort studies with 112 children and adolescents with COVID-19, with data collected between January 2020 and August 2021 [30]. In one of these studies, all patients had severe COVID-19 [37]; in another study, 75% of the patients were admitted to the pediatric intensive care unit (PICU) [38]; and in the third study, 22% of the patients received mechanical ventilation [39]. The pooled results showed that among those treated with remdesivir, 5.9% (95% confidence interval [CI]: 1.5 to 10.2%) died, 37.2% (95% CI: 0.0 to 76.0%) needed extra-corporeal membrane oxygenation (ECMO) or invasive mechanical ventilation (IMV), 37.1% (95% CI: 0.0 to 74.5%) experienced adverse events, and 16.2% (95% CI: 1.8 to 30.5%) experienced serious adverse events.

One published living systematic review of four clinical trials with 3826 hospitalized adults with COVID-19 found little to no difference between patients receiving or not receiving remdesivir in the main outcomes: mortality (odds ratio [OR] 0.90, 95% CI: 0.72 to 1.11), mechanical ventilation (OR 0.75, 95% CI: 0.52 to 0.98), viral clearance at 7 days (OR 1.06, 95% CI: 0.35 to 3.20), and time to symptom resolution (ratio of mean days with symptoms between remdesivir and standard care 0.82, 95% CI: 0.64 to 1.06) [40].

Explanation Remdesivir is a broad-spectrum antiviral agent that can integrate into the ribonucleic acid (RNA) strand of SARS-CoV-2 and prematurely terminate the RNA replication process [41]. On October 22, 2020, the US Food and Drug Administration (FDA) approved remdesivir for the treatment of COVID-19 in children and adolescents aged at least 12 years and weighing at least 40 kg requiring hospitalization [42]. Now, it expanded the approval of using...
remdesivir to treat pediatric patients 28 days of age and older weighing at least 3 kg with SARS-CoV-2 infection, who are hospitalized, or not hospitalized and have mild-to-moderate COVID-19 and are at high risk for progression to severe COVID-19 [43]. Only a few single-arm cohort studies of remdesivir for the treatment of COVID-19 in children have been published [37–39]. Its efficacy and safety for treating children and adolescents with COVID-19 is currently uncertain. The recommendations for remdesivir therapy vary greatly among different countries and organizations [44–46]. Given the uncertainty of the effectiveness and safety of remdesivir in children, as well as the situation that the drug was not licensed for use in most countries and regions, the panelists made the final decision not to recommend its use under standard care after consulting two patient members of the panel for their preferences.

Clinical question 3: Should antipyretics (ibuprofen or paracetamol) be used to treat children and adolescents with COVID-19?

Recommendation 3 We suggest that antipyretics (ibuprofen or paracetamol) can be used to relieve fever and pain in children and adolescents with COVID-19 (Conditional recommendation, very low certainty of evidence) (New).

Evidence summary Our systematic review included 40 studies (37 retrospective cohort studies and three prospective cohort studies) with 4,881,423 adults with COVID-19, with data collected between January 2020 and November 2021 [31]. During the COVID-19 pandemic, the use of nonsteroidal anti-inflammatory drugs (NSAIDs) was shown to potentially reduce mortality (OR 0.89, 95% CI: 0.72 to 1.11; adjusted odds ratio [aOR] 0.71, 95% CI: 0.58 to 0.87 compared with people who did not receive NSAIDs). The use of NSAIDs was not significantly associated with higher risk of SARS-CoV-2 infection (OR 0.96, 95% CI: 0.86 to 1.07; aOR 1.01, 95% CI: 0.94 to 1.09), ICU admission (OR 1.28, 95% CI: 0.94 to 1.75; aOR 0.89, 95% CI: 0.65 to 1.22), requiring mechanical ventilation (OR 1.11, 95% CI: 0.79 to 1.54; aOR 0.80, 95% CI: 0.52 to 1.24), or administration of supplemental oxygen (OR 0.80, 95% CI: 0.52 to 1.24; aOR 1.00, 95% CI: 0.89 to 1.12). The subgroup analyses revealed that, compared with not using any NSAID, the use of ibuprofen (OR 1.09, 95% CI: 0.50 to 2.39; aOR 0.95, 95% CI: 0.78 to 1.16) and cyclooxygenase-2 (COX-2) inhibitor (OR 0.62, 95% CI: 0.35 to 1.11; aOR 0.73, 95% CI: 0.45 to 1.18) was not associated with an increased risk of death during the COVID-19 pandemic.

Explanation Ibuprofen and paracetamol are commonly used as antipyretic drugs in children [47]. Their effectiveness for reducing fever or pain is undisputed. However, concerns exist that the use of NSAIDs could worsen COVID-19 symptoms [48, 49]. In vitro experiments confirmed that SARS-CoV-2 virus can invade human cells by binding to angiotensin-converting enzyme-2 (ACE2), and ibuprofen can increase the bioavailability of ACE2 to a certain extent, thereby enhancing the viral replication process [50, 51]. Therefore, ibuprofen might exacerbate the progression of the disease [52]. However, the evidence we collected shows that the drug is safe for adults with COVID-19. Despite the indirectness of the evidence for this result for children with COVID-19, the panel remains somewhat confident that the use of ibuprofen is relatively safe for children with COVID-19. Therefore, panelists suggest that ibuprofen can still be used if necessary. Recommendations for ibuprofen in other guidelines are also consistent with ours [53, 54].

Clinical question 4: Should systemic glucocorticoids be used to treat children and adolescents with severe COVID-19?

Recommendation 4 We suggest low-dose short-course dexamethasone therapy for children and adolescents with severe COVID-19 (Conditional recommendation, low certainty of evidence) (Modified).

Evidence summary Our systematic review, which included one prospective cohort study and one case series with a total of 69 children and adolescents with COVID-19, with data collected between January 2020 and August 2021, did not find statistically significant impact of glucocorticoid therapy on the critical outcomes mortality (OR 2.79, 95% CI: 0.13 to 60.87), mechanical ventilation (OR 2.83, 95% CI: 0.78 to 10.30), or duration of PICU admission (weighted mean differences [WMD] 2.0, 95% CI: −0.95 to 4.95) when compared with no glucocorticoid therapy [30].

One published systematic review included fourteen RCTs on glucocorticoid therapy with over 2000 adult COVID-19 patients [40]. Compared with standard care, corticosteroids probably reduce mortality (risk difference [RD] 20 fewer deaths per 1000 patients, 95% CI: 36 fewer to 3 fewer) and mechanical ventilation (RD 25 fewer per 1000, 95% CI: 44 fewer to 1 fewer), and increase the number of days free from mechanical ventilation (RD 2.6 more, 95% CI: 0.3 more to 5.0 more). Another published systematic review included seven RCTs with 1703 critically ill adult COVID-19 patients [55]. The 28-day all-cause mortality was lower in patients receiving dexamethasone than in patients receiving usual care or placebo (OR 0.64, 95% CI: 0.50 to 0.82); mortality did not differ between patients receiving hydrocortisone (OR 0.69, 95% CI: 0.43 to 1.12 compared with usual care or placebo) and patients receiving methylprednisolone (OR 0.91, 95% CI: 0.29 to 2.87 compared with usual care than placebo).
Explanation Glucocorticoids are the most widely used, effective anti-inflammatory and immunosuppressive agents in clinical practice, and they can reduce the severity of inflammatory lung injury in patients with severe COVID-19 [56–58]. Although there are so far no high-quality clinical trials confirming the efficacy of glucocorticoid therapy for COVID-19 in children and adolescents, the efficacy of dexamethasone has been demonstrated in adult patients [56]. Dexamethasone is inexpensive, easy to administer, and readily available globally [58]. A short course of dexamethasone therapy is generally safe and does not increase the risk of adverse events among critically ill patients [55]. Although our direct evidence from children, due to the small sample size, does not yet prove its effectiveness, glucocorticoid therapy is becoming routine in the treatment of adult patients with COVID-19. After balancing the potential risks and benefits of the drug in children, the panel believed that it may potentially be associated with lower mortality. The panel therefore suggested to use low-dose (0.15 to 0.3 mg/kg/dose once daily, maximum 6 mg) and short-course (generally 3–5 days, up to 10 days) dexamethasone therapy for children and adolescents with severe COVID-19 [59]. When dexamethasone is not available, equivalent dosage of alternative glucocorticoids (hydrocortisone and methylprednisolone) could be considered. Of note, direct evidence from pediatric patients is very limited and the evidence is extrapolated from adult patients. Therefore, systemic glucocorticoids are suggested to be used for pediatric COVID-19 patients with caution, preferring dexamethasone over other glucocorticoids if available.

Clinical question 5: Should intravenous immunoglobulin (IVIG) be used to treat children and adolescents with MIS-C?

Recommendation 5.1 We suggest IVIG for children and adolescents with MIS-C (Conditional recommendation, very low certainty of evidence) (New).

Recommendation 5.2 We suggest using glucocorticoids in combination with IVIG for children and adolescents with MIS-C who have a severe clinical presentation at the time of diagnosis (acute left ventricular dysfunction, immediate admission to PICU care, or hemodynamic support requirement) (Conditional recommendation, very low certainty of evidence) (New).

Evidence summary Our systematic review identified four cohort studies of children and adolescents with MIS-C with data collected between January 2020 and August 2021 [30]. The review showed that 64 patients receiving IVIG (2 g/kg) as the only first-line therapy had a treatment success rate of 62% (treatment failure was defined as the persistence of fever 2 days after the introduction of first-line therapy or recrudescence of fever within 7 days after the beginning of the first-line therapy treatment). One published systematic review of 27 case series with 917 MIS-C patients (mean age 9.3 years, 95% CI: 8.4 to 10.1) found that 81.0% (95% CI: 75.0 to 86.9%) of MIS-C patients received IVIG treatment; overall mortality was 1.9% (95% CI: 1.0 to 2.8%) [60].

One of the cohort studies included in our systematic review [30] found that 32 MIS-C patients with a severe initial clinical presentation at the time of diagnosis (acute left ventricular dysfunction, admission to PICU care, or need of hemodynamic support) who received a combination of IVIG and methylprednisolone (0.8–1 mg/kg/12 h for 5 days; or 15–30 mg/kg/day for 3 days) as first-line therapy had lower odds of treatment failure (OR 0.25, 95% CI: 0.09 to 0.70), need of second-line treatment (OR 0.19, 95% CI: 0.06 to 0.61) and hemodynamic support (OR 0.21, 95% CI: 0.06 to 0.76), and occurrence of secondary acute left ventricular dysfunction (OR 0.20, 95% CI: 0.06 to 0.66) compared with 64 MIS-C patients who received IVIG alone (2 g/kg, single dose) as first-line therapy [61]. One study (n = 40) showed that 22 MIS-C patients who received a combination of IVIG and methylprednisolone (0.8 mg/kg/d for 5 days) had a shorter time to recovery of left ventricle ejection fraction (2.9 vs. 5.4 days, p = 0.002) than the remaining 18 patients who received IVIG alone (2 g/kg, single dose) as first-line therapy [62]. Another study with larger sample size (103 patients in the IVIG plus glucocorticoids group and 103 in the IVIG group after propensity score matching) also indicated that IVIG plus glucocorticoids was associated with a lower risk of the composite outcome of cardiovascular dysfunction on or after day 2 than IVIG alone (17% vs. 31%; RR = 0.56, 95% CI: 0.34 to 0.94) [63].

Explanation MIS-C is a newly discovered clinical syndrome associated with SARS-CoV-2 infection and characterized by fever, systemic inflammation, and multiple organ dysfunction. Similar to Kawasaki disease, MIS-C patients can develop severe manifestations including coronary artery dilation, coronary aneurysms, toxic shock syndrome, sepsis, and macrophage activation syndrome [60]. IVIG produces a general anti-inflammatory effect. Direct evidence supporting the use of IVIG in MIS-C is very limited. A few case series found that the majority of MIS-C patients treated with IVIG had their condition improved and very low mortality [60]. A vast body of indirect evidence supporting IVIG use is available in patients with Kawasaki disease, where IVIG has been found to reduce abnormalities of the coronary artery and myocardits in patients and is the recommended first-line therapy [64]. Given the similarity of the two diseases, we therefore recommend IVIG to treat MIS-C. However, due to the indirectness of the evidence, we gave a conditional recommendation. High-dose IVIG (2 g/kg, single dose) can be used if the cardiac function and fluid status are normal;
otherwise, IVIG should be given as divided doses (1 g/kg/day, for 2 days). For MIS-C patients who have more severe initial clinical presentation (shock, severe cardiac dysfunction or other severe end-organ involvement, or requiring PICU care and hemodynamic support), methylprednisolone (1–2 mg/kg/day for 5 days) may be added because the combination therapy is more effective and causes only minor adverse events when used for a short period of time [30, 55, 58].

Clinical question 6: Should high-flow oxygen by nasal cannula (HFNC) or non-invasive ventilation (NIV) including continuous positive airway pressure (CPAP) and bilevel positive airway pressure (BiPAP) be used as the initial modality of therapy to treat acute hypoxemic respiratory failure in hospitalized children and adolescents with COVID-19?

Recommendation 6 We suggest HFNC or NIV (CPAP or BiPAP) as the initial modality of therapy for acute hypoxemic respiratory failure in hospitalized children and adolescents with COVID-19 (Conditional recommendation, low certainty of evidence) (New).

Evidence summary One published living systematic review on HFNC or NIV including CPAP and BiPAP identified 123 studies (45 on COVID-19, 70 on severe acute respiratory syndrome [SARS], and eight on Middle East Respiratory Syndrome [MERS]) published until May 2020, without any direct evidence in children with COVID-19 [26]. The mean ± standard deviation age of the hospitalized patients was 40.5 ± 15.6 years. Mortality was lower in hospitalized patients who received HFNC or NIV compared to those who received conventional oxygen therapy (OR 0.21, 95% CI: 0.09 to 0.47). However, health care workers (HCWs) who performed HFNC or NIV for COVID-19 patients had higher odds of being infected than those who did not perform these procedures (OR 3.10, 95% CI: 1.40 to 6.80). Thirty-five percent of HCWs exposed to COVID-19 patients treated with HFNC and NIV developed respiratory symptoms and 2.5% were tested positive for SARS-CoV-2 with polymerase chain reaction. This living systematic review has been updated three times and the search date of the last update is June 21, 2021 [27]. The new evidence from the latest update did not change the original finding that HFNC may reduce mortality compared with conventional oxygen therapy [27]. Moreover, NIV was not found to increase the risk of mortality in patients with COVID-19 compared with invasive mechanical ventilation (OR 0.74, 95% CI: 0.46 to 1.18) [27].

Explanation Low-certainty evidence suggests that HFNC and NIV (CPAP and BiPAP) can ameliorate hypoxemia, and reduce the need of early intubation and rate of complications associated with mechanical ventilation for patients with acute respiratory failure [26]. However, both HFNC and NIV may cause propagation of aerosol particles containing the virus, which may increase the risk of transmission of SARS-CoV-2 to HCWs [65]. Recommendations on the use of HFNC and NIV as the initial modality of therapy for treating COVID-19 patients with acute hypoxic respiratory failure are currently inconsistent across different guidelines [66, 67]. Appropriate use of personal protective equipment can minimize the risk for infections to HCWs from aerosols [26, 68]. Therefore, HFNC or NIV can be used to treat acute hypoxic respiratory failure in children and adolescents with COVID-19 if appropriate precautions are taken. Cooperation from the patients is crucial for successful ventilation and therefore should be a consideration when performing HFNC and NIV [69]. After providing HFNC or NIV, the condition of the patients must be monitored every 1 to 2 h with clinical and arterial blood gas evaluation to ensure the efficacy and safety of the ventilation. If there are signs of rapid deterioration, the patients should be intubated promptly.

Clinical question 7: Should mothers with COVID-19 continue to breastfeed their babies?

Recommendation 7 We recommend that mothers with COVID-19 continue to breastfeed their babies if their health condition permits, while taking appropriate precautions (Strong recommendation, low certainty of evidence) (Unchanged).

Evidence summary One living systematic review included 427 studies with 28,952 mothers with COVID-19 and 18,237 babies, with data collected between December 2019 and August 2021 [28]. The overall rate of SARS-CoV-2 positivity in babies born to mothers with COVID-19 was 1.8% (95% CI: 1.2 to 2.5%). Of the 592 SARS-CoV-2 positive babies with test data, 14 had confirmed mother-to-child transmission (seven in utero, two intrapartum, and five during the early postpartum period). Of the 800 SARS-CoV-2 positive babies with outcome data, 749 babies were alive at the end of follow-up. Mother with severe COVID-19 (OR 2.4, 95% CI: 1.3 to 4.4), maternal death (OR 14.1, 95% CI: 4.1 to 48.0), maternal admission to an ICU (OR 3.5, 95% CI: 1.7 to 6.9), and maternal postnatal infection (OR 5.0, 95% CI: 1.2 to 20.1) were associated with SARS-CoV-2 positivity in babies.

Explanation Breastfeeding is recognized as the best source of nutrition for infants, benefiting their neurological and immune system development, while reducing the risk of breast cancer, ovarian cancer, and type 2 diabetes in mothers [70, 71]. The WHO and the Rapid Advice Guidelines for Management of Children with COVID-19 currently
recommend that mothers with suspected or confirmed COVID-19 continue breastfeeding while taking the necessary protective measures [9, 72]. However, there are concerns that mothers with COVID-19 could transmit the virus to their babies while breastfeeding. Although in utero, intrapartum, and early postpartum transmission of SARS-CoV-2 is possible, the vertical transmission rate is very low [28]. Current evidence shows the overall rate of SARS-CoV-2 positivity in babies born to mothers with COVID-19 is less than 2% [28]. In addition, the mortality of SARS-CoV-2 positive babies is very low [28]. As the benefits of breastfeeding for the infant outweigh the risk of SARS-CoV-2 infection, the panelists agreed that breastfeeding should be continued as long as the health conditions of the mother and infant permit. However, mothers need to take appropriate protective measures (e.g., washing hands before contact with the infant and wearing a mask during close contact), especially those with severe COVID-19, admitted to ICU, or having a postnatal infection, who seem to have an elevated risk of SARS-CoV-2 positivity in their babies [28].

Clinical question 8: Should children and adolescents be vaccinated against COVID-19?

Recommendation 8 We suggest COVID-19 vaccination for children and adolescents aged 3–17 years if a COVID-19 vaccine is available and approved by local health authorities for their age and health condition, while closely monitoring for potential side effects after vaccination (Conditional recommendation, moderate certainty of evidence) (New).

Evidence summary One systematic review, which is an updated version of a previous systematic review we conducted [73], included six RCTs with 9962 children aged 3–17 years, with data collected until November 2021 [32]. As for the safety of vaccines, the overall risk of unsolicited adverse reactions (RR 1.21, 95% CI: 1.07 to 1.36) was significantly higher in the vaccine group than in the control group within 28 to 30 days after vaccination. However, no significant difference was found in severe (RR 2.35, 95% CI: 0.78 to 7.03) or life-threatening (RR 1.00, 95% CI: 0.06 to 15.94) adverse reactions between the two groups. No significant differences were found after receiving the first and the second dose (RR 1.00, 95% CI 0.99 to 1.02). Compared with mRNA vaccines and adenovirus vector vaccines, inactivated vaccines have a more satisfactory safety profile, both after the first (RR 1.40, 95% CI: 1.04 to 1.90) and the second (RR 1.84, 95% CI: 1.20 to 2.81) dose. As for the immunogenicity of vaccines, seroconversion rate after the first dose injection increased significantly for receptor binding domain (RBD)-binding antibodies (RR 99.48, 95% CI: 6.31 to 1559.12) compared with the unvaccinated. After booster vaccination, the immunogenicity of vaccines was further enhanced; seroconversion rate for RBD-binding antibodies (RR 101.50, 95% CI: 6.44 to 1600.76) and pseudovirus neutralizing antibodies (RR 144.80, 95% CI: 44.97 to 466.24) were further increased compared with the unvaccinated, and reached optimal levels. As for the efficacy of vaccines, three RCTs with mRNA vaccine as the intervention found that the risk of diagnosing COVID-19 after mRNA vaccination was low (RR 0.10, 95% CI: 0.05 to 0.21) compared with the unvaccinated. Other RCTs with inactivated vaccines or adenovirus vector vaccines as interventions did not assess vaccine efficacy.

Explanation Some international and national guidelines recommend vaccination for children, but the recommendations vary between guidelines [74–76]. The WHO guideline recommends two doses of the COVID-19 vaccine for children aged 5 to 15 to protect against COVID-19 [74]. CDC recommends COVID-19 vaccines for children aged 6 months and older [75]. The National Institute for Health and Care Excellence recommends vaccination for children over 5 years old who meet certain conditions, such as immunosuppression [76]. The COVID-19 vaccines which have so far been validated in completed clinical trials in children include BNT162b2, mRNA-1273, CoronaVac, BBIBP-CorV, Ad5-nCoV, and ZyCoV-D, with an overall age range of 3 to 17 years (Table 3). None of the vaccines increased the risk of severe or life-threatening adverse reactions, and all generated immune response to SARS-CoV-2 [77–83]. We also observed the interim findings from two ongoing clinical trials of the BNT162b2 and mRNA-1273 that included children 6 months through 3 years of age [84, 85]. The findings of these clinical trials showed that both vaccines may prevent children aged 6 months to 3 years against COVID-19 without increasing the risk of serious adverse events [84, 85]. However, we have serious concern about the short duration of follow-up (median = 35 days), limiting the ability to detect severe adverse events that might occur specifically after dose 3. We also concern about the small study size. These clinical trials may be not adequately powered to detect rare adverse events and efficacy against severe disease in young children. Therefore, more studies are needed to demonstrate the efficacy and safety of COVID-19 vaccine in children aged 6 months to 3 years.

Based on the currently available evidence on COVID-19 vaccines for children and a consideration of the patients’ values and preferences, the panel believes that the benefits of administering vaccines to children aged 3–17 years would outweigh the harms. It should be noted that the overall age of vaccination has been extended to 3–17 years old in the current clinical trials, but different types of vaccines are approved for different age groups (Table 3). In addition, there are substantial differences across countries and regions in the types of vaccines that are available and the age
Table 3 A summary of vaccines that have been validated in clinical trials in children

Vaccine name (developer)	BNT162b2 (Pfizer/BioNTech)\(^7\),\(^8\)	mRNA-1273 (Moderna)\(^9\)	CoronaVac (Sinovac)\(^80\)	BBIBP-CorV (Sinopharm)\(^8\)	Ad5-nCoV (CanSino Biologics)\(^82\)	ZyCov-D (Cadila Healthcare)\(^83^*\)
Vaccine type	mRNA vaccine	mRNA vaccine	Inactivated vaccine	Inactivated vaccine	Adenovirus vaccine	DNA vaccine
Age range	5–15	12–17	3–17	3–17	6–17	12–17
Location	USA, Spain, Finland, Poland	USA	China	China	China	India
Dose of administration	5–11 years: 10 μg/dose	100 μg/dose	1.5 or 3 μg/dose	2 μg, 4 μg, or 8 μg/dose	0.3 ml/dose	2 mg/dose
Number of scheduled doses	First and second dose (0, 21 days)	First and second dose (0, 28 days)	First and second dose (0, 28 days)	First, second, and third dose (0, 56 days)	First and second dose (0, 56 days)	First, second, and third dose (0, 28, and 56 days)
Vaccine efficacy	5–11 years: 90.7% (after second dose)	93.3% (after second dose)	N/A	N/A	N/A	66.6% (after first dose), 100% (after two dose)
Immune response	99.2% serologic response	98.8% serologic response	Over 96.8% serologic response	100% serologic response	98%-100% serologic response	93.33% serologic response at day 84
Adverse reaction	Injection site pain, fatigue, headache, and fever	Injection site pain, headache, and fatigue	Injection site pain, and fever	Fever, and cough	Fever, headache, fatigue, injection site pain, abdominal pain	Injection site pain, muscle pain, headache, fever, and fatigue

\(^*\)Included both children aged 12–17 years and adults

\(N/A\), not applicable
at which children are eligible to be vaccinated. Therefore, decisions related to COVID-19 vaccination should be made in accordance with local regulations and local research data.

Cases of myocarditis and pericarditis were found in children and adolescents, especially in male adolescents, after receiving mRNA (BNT162b2 or mRNA-1273) vaccines, which requires close monitoring [86]. Myocarditis and pericarditis occurred more often after the second dose, and usually within a week of vaccination [86]. The conditions of most patients with myocarditis or pericarditis improved quickly after treatment and they could return to their normal daily activities [87]. Although the short-term risks of adverse outcomes among children with myocarditis after mRNA vaccination were low, the long-term risks associated with myocarditis and pericarditis remain unknown. Besides, the evidence on the effects of COVID-19 vaccination for children below 3 years is very limited. Larger studies with longer follow-up are needed to inform recommendations for COVID-19 vaccination in this population.

Clinical question 9: How should the mental health of children and adolescents with COVID-19 be managed?

Good practice statement We suggest pediatricians, parents, and caregivers should explore possible mental health problems among children and adolescents with COVID-19 and provide them with the optimal support feasible in the local setting (New).

Evidence summary Our systematic review did not identify studies that met the requirements.

Explanation Managing mental health of patients with COVID-19 during the pandemic is important, especially in the context of a pandemic where the huge social-psychological impact brought by the COVID-19 epidemic may exceed the role of the disease itself [88]. People with COVID-19 are at increased risk for mental health problems [89]. Anxiety and depression appear to be the main symptoms among children and adolescents in the context of COVID-19 [90], especially among hospitalized COVID-19 patients [91, 92]. Possible reasons include the isolation from family members and friends which can lead to helplessness and loneliness [93], and the fear of being stigmatized and discriminated because of being infected [94]. Apart from the high incidence of short-term mental disorders, some studies have indicated that survivors may develop psychological sequelae after recovering from COVID-19, such as anxiety and/or depression, post-traumatic stress disorder, and cognitive deficits [95]. Therefore, we suggest that children and adolescents with COVID-19 should be monitored for possible mental health problems.

The symptoms of mental disorders in children and adolescents are atypical and vary across different ages. Young children may experience fussiness and irritability, startling and crying more easily, and difficulties in consolation [94]. Older children and adolescents may show symptoms such as changes in mood, ongoing irritability, and feelings of hopelessness or rage [94].

Out of consideration for children’s mental health, the panel proposed a statement on psychological interventions based on the concept of a good practice statement according to the GRADE framework. The panel suggested that pediatricians, parents, and caregivers should observe whether the children have features of anxiety, depression, or other psychological symptoms. The optimal mental health support feasible in the local setting should be provided for children and adolescents with COVID-19 [96].

Discussion

Children are the future of the world, but in the context of the pandemic, their health and future are facing great uncertainty [97, 98]. The attention paid to children with COVID-19 globally is far from enough. There also exist clearly less clinical evidence and fewer practice guidelines related to children with COVID-19 than for adults. The guideline working group has been concerned about SARS-CoV-2 infections in children as early as the beginning of the outbreak in 2020 and continues to assemble evidence and conduct research on children with COVID-19. After publishing the first version of the evidence-based rapid advice guideline for children, the panel has updated the guideline by including additional stakeholders in the panel and through a comprehensive search of the latest evidence. This guideline can assist pediatricians in clinical decision-making, support policy makers in developing relevant policies, and inspire researchers in prioritizing clinical trials. In addition, the guideline will help children and their guardians access and understand up-to-date evidence-based knowledge of COVID-19.

Strengths and limitations

Our guideline has several strengths. First, to our knowledge, this is one of the few guidelines for children with COVID-19 that is registered and has a published protocol. Second, we strictly followed methodological handbooks to update our guideline and report its contents. Third, all recommendations were supported by systematic reviews and solicited suggestions from patient representatives. The guideline has however also limitations. First, we comprehensively searched the literature and used systematic reviews to support recommendations. However, very few
clinical studies have been conducted specifically on children and the study quality was not optimal. The weakness of the evidence may cause some bias and lead to low certainty of evidence. Therefore, it was difficult for panelists to make strong recommendations. However, we still provide specific recommendations on key clinical questions, such as the application of IVIG for treating MIS-C, the use of systemic glucocorticoids in children with severe COVID-19, and the vaccination of children, based on scientific consensus. Caution is nevertheless needed when translating these recommendations into clinical practice. More reliable evidence about the management of children with COVID-19 is urgently needed. Another limitation is that while the guideline can be used at different levels of healthcare facilities, some recommendations, such as those for HFNC or NIV, may be difficult to implement in resource-limited settings. Finally, the guideline development group did not include any general practitioners, who nevertheless constitute a target audience group for our guideline.

Suggestions for future research

There is an urgent need for clinical trials on children with COVID-19. The research gaps for future research identified by the panelists are listed in Table 4.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00431-022-04615-4.

Acknowledgements We thank Dr Yu-Lung Lau and Dr Anthony Que for external review the guideline. We thank the members of evidence synthesis and evaluation group involved in the conduct of the systematic reviews (Weiguo Li, Yuyi Tang, Qianling Shi, Zijun Wang, Xingmei Wang, Ruobing Lei, Siya Zhao, Hui Liu, Xiao Liu, Meng Lv, Xuefei Luo, Jiao Liu, Xiangyang Dang, Yantong Zhou, Lidan Gan, Zhi Li, Liangqin Yi, Shuai Peng). We thank the patient representatives (Maryam Yasser Sami Amer, Jianping Peng, Lei Shi) for giving comments to the initial guideline and voting for consensus. We thank Professor Rafael González Cortés, Professor Saurabh Mehta, Professor Shariful Islam, and Gilead Sciences Inc for providing us their unpublished data. We thank Dr Sayada Zartasha Kazmi for helping the panelists fill out the questionnaire and check emails.

Authors' contributions All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Enmei Liu, Zhengxiu Luo, Qinyuan Li, Qi Zhou, and Yaolong Chen. The first draft of the manuscript was written by Enmei Liu, Rosalind Louise Smyth, Qinyuan Li, Qi Zhou, and Yaolong Chen and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This work was supported by grants from the National Clinical Research Center for Child Health and Disorders (Children’s Hospital of Chongqing Medical University, Chongqing, China) (grant number NCRCCHD-2020-EP-01), the Fundamental Research Funds for the Central Universities (grant number Izujbky-2021-ey13), and Chongqing “Bayu Scholar” program. The sponsors did not have any influence in the content of the guideline.
Availability of data and material The datasets used and analyzed during this study are available from the corresponding author on reasonable request.

Declarations

Ethics approval N/A.

Consent to participate N/A.

Consent for publication N/A.

Competing interests Bin Cao is one of the key investigators in the clinical trial on remdesivir for COVID-19 in China and was excluded from all discussions and voting related to remdesivir. Gordon Guyatt is a member of the Clinical Management COVID-19 Guideline Development Therapeutics Group for the WHO and co-chair of the GRADE working group. Ivan D. Florez is the current leader of the AGREE Collaboration. Jürgen Schwarze is employed by the University of Edinburgh and the Secretary General of the European Academy of Allergy and Clinical Immunology, which receives industrial sponsorship as indicated on the EAACI website (https://www.eaaci.org/organisation/founders-sponsors.html). Yasser Sami Abdel is employed as a pediatrician and CPG methodologist responsible for all CPG adaptation projects at the King Saud University Medical City, and receives a monthly salary. Yaolong Chen is the Co-Founder and Co-Chair of RIGHT working group. The conflict of the above authors was not considered serious enough to affect guideline working group membership or participation in the updating process. All other authors declare no relevant conflicts of interest.

References

1. American Academy of Pediatrics (2022) Children and COVID-19: state-level data report. https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-state-level-data-report. Accessed 8 Jul 2022
2. Antonelli M, Pujol JC, Spector TD et al (2022) Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2. Lancet 399(10343):2263–2264. https://doi.org/10.1016/S0140-6736(22)00941-2
3. Zhao S, Lu S, Xun WuS et al (2021) Analysis of COVID-19 guideline quality and change of recommendations: a systematic review. Health Data Sci 12:68885
4. Li Q, Zhou Q, Xun Y et al (2021) Quality and consistency of clinical practice guidelines for treating children with COVID-19. Ann Transl Med 9(8):633. https://doi.org/10.21037/atm-20-7000
5. Fraile Navarro D, Tendal B, Tangiy D et al (2022) Clinical care of children and adolescents with COVID-19: recommendations from the National COVID-19 Clinical Evidence Taskforce. Med J Aust 216(5):255–263. https://doi.org/10.5694/mja.51305
6. Lu X, Zhang L, Du H et al (2020) SARS-CoV-2 infection in children. N Engl J Med 382(17):1663–1665. https://doi.org/10.1056/NEJMc2005073
7. Vogel JP, Tendal B, Giles M et al (2020) Clinical care of pregnant and postpartum women with COVID-19: living recommendations from the National COVID-19 Clinical Evidence Taskforce. Aust NZ J Obstet Gynaecol 60(6):640–851. https://doi.org/10.1111/ajo.13270
8. Yang N, Che S, Zhang J et al (2020) Breastfeeding of infants born to mothers with COVID-19: a rapid review. Ann Transl Med 8(10):618. https://doi.org/10.21037/atm-20-3299
9. Liu E, Smyth R L, Luo Z et al (2020) Rapid advice guidelines for management of children with COVID-19. Ann Transl Med 8(10):617. https://doi.org/10.21037/atm-20-3754
10. Feldstein LR, Rose EB, Horwitz SM et al (2020) Multisystem inflammatory syndrome in U.S. children and adolescents. N Engl J Med 383(4):334–346. https://doi.org/10.1056/NEJMoa2021680
11. Golherstein E, Wen H, Miller BF (2020) Coronavirus disease 2019 (COVID-19) and mental health for children and adolescents. JAMA Pediatr 174(9):819–820. https://doi.org/10.1001/jamapediatrics.2020.1456
12. Garrity CM, Norris SL, Moher D (2017) Developing WHO rapid advice guidelines in the setting of a public health emergency. J Clin Epidemiol 82:47–60. https://doi.org/10.1016/j.jclinepi.2016.08.010
13. National Institute for Health and Care Excellence (2021) The guidelines manual. https://www.nice.org.uk/process/pmg6/resources/the-guidelines-manualpdf-2007970804933. Accessed 8 Jul 2022
14. Working Group for CPG Updates (2021) Updating clinical practice guidelines in the national health system: methodology handbook. National Health System Quality Plan of the Spanish Ministry of Health and Social Policy. Aragon Health Sciences Institute (I+CS), 2009. Clinical Practice Guidelines in the National Health System: I+CS No.2007 No.2005. 0102.02–01. https://portal.guiausalud.es/wp-content/uploads/2019/06/manual_actualizacion_gpc_ingles-2.pdf. Accessed 8 Jul 2022
15. Chen Y, Yang K, Marusic A et al (2017) A reporting tool for practice guidelines in health care: the RIGHT statement. Ann Intern Med 166(2):128–132. https://doi.org/10.7326/M16-1565
16. Vernon-Jones R W, Alonso-Coello P, Brouwers M, Martínez García L, CheckUp Panel (2017) Reporting items for updated clinical guidelines: checklist for the reporting of updated guidelines (CheckUp). PLoS Med 14(1):e1002207. https://doi.org/10.1371/journal.pmed.1002207
17. Zhou Q, Li W, Zhao S et al (2021) Guidelines for the Management of Children and Adolescent with COVID-19: protocol for an update. Transl Pediatr 10(1):177–182. https://doi.org/10.21037/tp-20-290
18. Schünemann HJ, Al-Ansary LA, Forland F et al (2015) Guidelines International Network: principles for disclosure of interests and management of conflicts in guidelines. Ann Intern Med 163(7):548–553. https://doi.org/10.7326/M14-1885
19. Likert R (1932) A technique for the measurement of attitudes. Archives of psychology 22(140):55
20. Shea BA, Grimshaw JM, Wells GA et al (2007) Development of AMSTAR: a measurement tool to assess the methodological quality of systematic reviews. BMC Med Res Methodol 7:10. https://doi.org/10.1186/1471-2288-7-10
21. Higgins JP, Altman DG, Gøtzsche PC et al (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928. https://doi.org/10.1136/bmj.d5928
22. Whiting PF, Rutjes AW, Westwood ME et al (2011) QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 155(8):529–536. https://doi.org/10.7326/0003-4819-155-8-201110180-00009
23. Petersen J, Welch V, Losos M et al (2011) The NewscastleOttawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Ottawa Hospital Research Institute, Ottawa
24. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schünemann HJ, GRADE Working Group (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336(7650):924–926. https://doi.org/10.1136/bmj.a452
25. Higgins JP, Altman DG, Gøtzsche PC et al (2007) Development of a tool for assessing the risk of bias in nonrandomised studies. Ann Intern Med 137(4):281–289. https://doi.org/10.7326/0003-4819-137-4-200702200-00008
26. Schünemann HJ, Khabas J, Solo K et al (2020) Ventilation techniques and risk for transmission of coronavirus disease, including COVID-19: a living systematic review of multiple streams of evidence. Ann Intern Med 173(3):204–216. https://doi.org/10.7326/M20-2306
27. Ute Muti-Schüenemann GE, Szczeklik W, Solo K et al (2022) Update alert 3: ventilation techniques and risk for transmission of coronavirus disease, including COVID-19. Ann Intern Med 175(1):W6–W7. https://doi.org/10.7326/L21-0424
28. Allotey J, Chatterjee S, Kew T et al (2022) SARS-CoV-2 positivity in offspring and timing of mother-to-child transmission: living systematic review and meta-analysis. BMJ 376:e67696. https://doi.org/10.1136/bmj.2021-067696
29. Shi Q, Wang Z, Liu J et al (2021) Risk factors for poor prognosis in children and adolescents with COVID-19: a systematic review and meta-analysis. EClinicalMedicine 41:101155. https://doi.org/10.1016/j.eclinm.2021.101155
30. Wang Z, Zhao S, Tang Y et al (2022) Potentially effective drugs for the treatment of COVID-19 or MIS-C in children: a systematic review. Eur J Pediatr 181:2135–2146. https://doi.org/10.1007/s00431-022-04388-w
31. Zhou Q, Zhao S, Gan L et al (2022) Use of non-steroidal anti-inflammatory drugs and adverse outcomes during the COVID-19 pandemic: a systematic review and meta-analysis. EClinicalMedicine 46:101373. https://doi.org/10.1016/j.eclinm.2022.101373
32. Du Y, Chen L, Shi Y (2022) Safety, immunogenicity, and efficacy of COVID-19 vaccines in children, adolescents, and infants: a systematic review and meta-analysis. Front Public Health 10:829176. https://doi.org/10.3389/fpubh.2022.829176
33. Ludvigsson JF (2020) Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr 109(6):1088–1095. https://doi.org/10.1111/apa.15270
34. Centers for Disease Control and Prevention (2021) Interim clinical guidance for management of patients with confirmed coronavirus disease (COVID-19). https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html. Accessed 8 Jul 2022
35. Tian M, Feng XY, Liu SY et al (2020) Expert consensus on imaging diagnosis and infection control for COVID-19. Chin J Med Imaging 26:401–414
36. Tsabouri S, Makis A, Kosmeri C et al (2021) Risk factors for severity in children with coronavirus disease 2019: a comprehensive literature review. Pediatr Clin North Am 68(1):321–338. https://doi.org/10.1016/j.pcl.2020.07.014
37. Goldman DL, Aldrich ML, Hagmann SHF et al (2021) Compassionate use of remdesivir in children with severe COVID-19. Pediatrics 147(5):e2020047803. https://doi.org/10.1542/peds.2020-047803
38. Méndez-Echevarría A, Pérez-Martínez A, Gonzalez Del Valle L et al (2021) Compassionate use of remdesivir in children with COVID-19. Eur J Pediatr 180(4):1317–1322. https://doi.org/10.1007/s00431-020-03876-1
39. Munoz F, Muller W, Ahmed A et al (2021) Safety and efficacy of remdesivir in a pediatric COVID-19 population. https://www.croiconference.org/abstract/safety-and-efﬁcacy-of-remdesivir-in-a-pediatric-covid-19-population. Accessed 8 Jul 2022
40. Siemieniuk RAC, Bartoszko JJ, Ge L et al (2020) Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ 370:m2980. https://doi.org/10.1136/bmj.m2980
41. Wang H (2020) To investigate the application value of remdesivir in the treatment of COVID-19 patients. J Internnt Med 26:513–515,528. https://doi.org/10.1176/jkwwzzz20200619
42. U.S. FOOD & DRUG ADMINISTRATION (2021) FDA approves first treatment for COVID-19. https://www.fda.gov/news-events/press-announcements/fda-approves-first-treatment-covid-19. Accessed 8 Jul 2022
43. U.S. FOOD & DRUG ADMINISTRATION (2022) Coronavirus (COVID-19) update: FDA approves first COVID-19 treatment for young children. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-approves-first-covid-19-treatment-young-children. Accessed 8 Jul 2022
44. Rochwerg B, Agarwal A, Siemieniuk RA et al (2020) A living WHO guideline on drugs for covid-19. BMJ 370:m3379. https://doi.org/10.1136/bmj.m3379
45. Qaseem A, Yost J, Etxezandia-Ikobaltzeta I et al (2021) Should remdesivir be used for the treatment of patients with COVID-19? Rapid, living practice points from the American College of Physicians (Version 2). Ann Intern Med 174(5):673–679. https://doi.org/10.1037/m20-8101
46. Chiotos K, Hayes M, Kimberlin DW et al (2021) Multicenter interim guidance on use of antivirals for children with coronavirus disease 2019/severe acute respiratory syndrome coronavirus 2. J Pediatric Infect Dis Soc 10(1):34–48. https://doi.org/10.1093/jpids/piaa115
47. Castagnoli R, Votto M, Liciari A et al (2020) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in children and adolescents: a systematic review. JAMA Pediatr 174(9):882–889. https://doi.org/10.1001/jamapediatrics.2020.1467
48. USA Today (2021) Fact check: does using ibuprofen when you have coronavirus make symptoms worse? 2020. https://www.usatoday.com/story/news/factcheck/2020/03/18/fact-check-coronavirus-and-ibuprofen-do-nsaids-make-coronavirus-worse/2865866001/. Accessed 8 Jul 2022
49. National Public Radio (2021) Concerned about taking ibuprofen for coronavirus symptoms? Here's What Experts Say. 2020. https://www.npr.org/sections/health-shots/2020/03/18/818026613/advice-from-france-to-avoid-ibuprofen-for-covid-19-leaves-experts-baffled. Accessed 8 Jul 2022
50. Shang J, Ye G, Shi K et al (2020) Structural basis of receptor recognition by SARS-CoV-2. Nature 581(7807):221–224. https://doi.org/10.1038/s41586-020-2179-y
51. Fang L, Karakulakos G, Roth M (2020) Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med 8(4):e21. https://doi.org/10.1016/S2213-2600(20)30116-8
52. Zhou P, Yang X, Wang X et al (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798):270–273. https://doi.org/10.1038/s41586-020-2122-7
53. Weikle B (2021) WHO clarifies guidance on ibuprofen, says there's no evidence it can worsen COVID-19. CBC website. https://www.cbc.ca/news/health/ibuprofen-covid-19-novel-coronavirus-1.5501496. Accessed 8 Jul 2022
54. National Institute for Health and Care Excellence (2021) COVID-19 rapid guideline: managing COVID-19 v2.0. https://app.magic.app/#!/guideLine/L4QB5n/section/jDmWqL.. Accessed 8 Jul 2022
55. WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working Group, Sterne JAC, Murthy S et al (2020) Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: a meta-analysis. JAMA 324(13):1330–1341. https://doi.org/10.1001/jama.2020.17023
56. RECOVERY Collaborative Group, Horby P, Lim WS et al (2021) Dexamethasone in hospitalized patients with Covid-19. N Engl J Med 384(8):693–704. https://doi.org/10.1056/NEJMoa2104136
57. Carsana L, Sonzogni A, Nasr A et al (2020) Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect Dis 20(10):1135–1140. https://doi.org/10.1016/S1473-3099(20)30434-5
58. World Health Organization (WHO) (2021) Corticosteroids for COVID-19: living guidance. 2 September 2020. https://apps.who.int/iris/handle/10665/334125. Accessed 8 Jul 2022
59. Henderson LA, Canna SW, Friedman KG et al (2022) American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version
3. Arthritis Rheumatol 74(4):e1–e20. https://doi.org/10.1002/art.42062
60. Yashahara J, Watanabe K, Takagi H et al (2021) COVID-19 and multisystem inflammatory syndrome in children: a systematic review and meta-analysis. Pediatr Pulmonol 56(5):837–848. https://doi.org/10.1002/ppul.25245
61. Ouldali N, Toubiana J, Antona D et al (2021) Association of intra-venous immunoglobulins plus methylprednisolone vs immunoglobulins alone with course of fever in multisystem inflammatory syndrome in children. JAMA 323(9):855–864. https://doi.org/10.1001/jama.2021.0694
62. Belladger Z, Aurian J, Moët M et al (2020) Addition of corticosteroids to immunoglobulins is associated with recovery of cardiac function in multi-inflammatory syndrome in children. Circulation 142(23):2282–2284. https://doi.org/10.1161/CIRCULATIONAHA.120.051047
63. Son MBF, Murray N, Friedman K et al (2021) Multisystem inflammatory syndrome in children - initial therapy and outcomes. N Engl J Med 385(1):23–34. https://doi.org/10.1056/NEJMo2102605
64. Oates-Whitehead RM, Baumer JH, Haines L et al (2003) Intra-venous immunoglobulin for the treatment of Kawasaki disease in children. Cochrane Database Syst Rev:CD004000. https://doi.org/10.1002/14651858.CD004000
65. Calvo C, López-Hortelano MG, Vicente JCC et al (2020) Recommendations on the clinical management of the COVID-19 infection by the «new coronavirus» SARS-CoV-2. Spanish Paediatric Association working group. An Pediatr (Engl Ed) 92(4):241.e1–11. https://doi.org/10.1016/j.anpede.2020.02.002
66. Royal College of Pediatrics and Child Health (2020) COVID-19-clinical management of children admitted to hospital with suspected COVID-19. https://www.rcpch.ac.uk/resources/covid-19-clinical-management-children-admitted-hospital-suspected-covid-19. Accessed 26 Oct 2021
67. Canadian Paediatric Society (2020) The acute management of paediatric coronavirus disease 2019 (COVID-19). https://www.cps.ca/en/documents/position/the-acute-management-of-paediatric-coronavirus-disease-2019-covid-19. Accessed 8 Jul 2022
68. Verbeek JH, Rajamaki B, Ijaz S et al (2020) Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev 5(4):CD011621. https://doi.org/10.1002/14651858.CD011621.pub3
69. Nørregaard O (2002) Noninvasive ventilation in children. Eur Respir J 20(5):1332–1342. https://doi.org/10.1183/09031936.02.00404802
70. Section on Breastfeeding (2012) Breastfeeding and the use of human milk. Pediatrics 129(3):e827–e841. https://doi.org/10.1542/peds.2011-3552
71. Chowdhury R, Sinha B, Sankar MJ et al (2015) Breastfeeding and maternal health outcomes: a systematic review and meta-analysis. Acta Paediatr 104(467):96–113. https://doi.org/10.1111/apa.13102
72. World Health Organization (WHO) (2020) Breastfeeding and COVID-19: Scientific Brief. https://www.who.int/news-room/commentaries/detail/breastfeeding-and-covid-19. Accessed 8 Jul 2022
73. Lv M, Luo X, Shen Q et al (2021) Safety, Immunogenicity, and efficacy of COVID-19 vaccines in children and adolescents: a systematic review. Vaccines 9(10):1102. https://doi.org/10.3390/vaccines9101102
74. World Health Organization (WHO) (2022) Coronavirus (COVID-19) vaccine for children aged 5 to 15. https://www.who.int/countries/coronavirus-covid-19/coronavirus-vaccination/coronavirus-covid-19-vaccination-for-children/coronavirus-covid-19-vaccine-for-children-aged-5-to-15/. Accessed 8 July 2022
75. CDC. COVID-19 vaccine recommendations for children and teens. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/vaccines-children-teens.html. Accessed 8 Jul 2022
76. National institute for health and Care Excellence (NICE). COVID-19 vaccines. Available at: https://bnfc.nice.org.uk/treatment-summaries/covid-19-vaccines/. Accessed 8 Jul 2022
77. Frencw RW Jr, Klein NP Jr, Kitchin N et al (2021) Safety, Immunogenicity, and efficacy of the BNT162b2 Covid-19 vaccine in adolescents. N Engl J Med 385:239–250. https://doi.org/10.1056/NEJMo2107456
78. Walter EB, Talaat KR, Sabharwal C et al (2022) Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. N Engl J Med 386:35–46. https://doi.org/10.1056/NEJMo2116298
79. Ali K, Berman G, Zhou H et al (2021) Evaluation of mRNA-1273 SARS-CoV-2 vaccine in adolescents. N Engl J Med 385:2241–2251. https://doi.org/10.1056/NEJMo2109522
80. Han B, Song Y, Li C et al (2021) Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine (CoronaVac) in healthy children and adolescents: a double-blind, randomised, con- trolled, phase 1/2 clinical trial. Lancet Infect Dis 21:1645–1653
81. Xia S, Zhang Y, Wang Y et al (2021) Safety and immunogenicity of an inactivated COVID-19 vaccine, BBIBP-CorV, in people younger than 18 years: a randomised, double-blind, controlled, phase 1/2 trial. Lancet Infect Dis 21:39–51. https://doi.org/10.1016/S1473-3099(21)00462-X
82. Zhu F, Jin P, Zhu T et al (2021) Safety and immunogenicity of a recombinant adenovirus type-5-vectored COVID-19 vaccine with a homologous prime-boost regimen in healthy participants aged 6 years and above: a randomised, double-blind, placebo-controlled, phase 2b trial. Clin Infect Dis cbia845. https://doi.org/10.1093/cid/cbiab845
83. Khobragade A, Bhate S, Ramaiah V et al (2022) Efficacy, safety, and immunogenicity of the DNA SARS-CoV-2 vaccine (ZyCoV-D): the interim efficacy results of a phase 3, randomised, double-blind, placebo-controlled study in India. The Lancet 399(10332):1311–1321. https://doi.org/10.1016/S0140-6736(22)00151-9
84. Food and Drug Administration, Vaccines and Related Biological Products Advisory Committee (2022) FDA briefing document: EUA amendment request for use of the Moderna COVID-19 vaccine in children 6 months through 17 years of age. https://www.fda.gov/media/159189/download. Accessed 8 Jul 2022
85. Food and Drug Administration, Vaccines and Related Biological Products Advisory Committee (2022) FDA briefing document: EUA amendment request for Pfizer-BioNTech COVID-19 vaccine for use in children 6 months through 4 years of age. https://www.fda.gov/media/159195/download. Accessed 8 Jul 2022
86. Gargano JW, Wallace M, Hadler SC et al (2021) Use of mRNA COVID-19 vaccine after reports of myocarditis among vaccine recipients: update from the Advisory Committee on Immunization Practices-United States, June 2021. MMWR Morb Mortal Wkly Rep 70(27):977–982. https://doi.org/10.15585/mmwr.mm7027e2
87. Park H, Yun KW, Kim KR et al (2021) Epidemiology and clinical features of myocarditis/pericarditis before the introduction of mRNA COVID-19 vaccine in Korean children: a multicenter study. J Korean Med Sci 36(32):e232. https://doi.org/10.3346/jkms.2021.36.e232
88. Iacobucci G (2022) Covid-19: pandemic has disproportionately harmed children's mental health, report finds. BMJ 376:o430. https://doi.org/10.1136/bmj.o430
89. Favaas TT, Dev P, Chauraia RN et al (2020) Neurological manifestations of COVID-19: a systematic review and meta-analysis of proportions. Neurad Sci 41(12):3437–3470. https://doi.org/10.1007/s10017-020-04801-y
90. Neerchau F, Flinn C, Niland R et al (2020) Exploring the impact of COVID-19 on mental health outcomes in children and adolescents: a systematic review. Int J Environ Res Public Health 17(22):8479. https://doi.org/10.3390/ijerph17228479
91. Cai X, Hu X, Ekumi IO, Wang J, An Y, Li Z, Yuan B (2020) Psychological distress and its correlates among COVID-19 survivors during early convalescence across age groups. Am J Geriatr Psychiatry 28(10):1030–1039. https://doi.org/10.1016/j.jagp.2020.07.003

92. Sun P, Fan DJ, He T, Li HZ, Wang G, Zhang XZ, Wu YQ, Dai YH (2021) The effects of psychological intervention on anxiety symptoms of COVID-19-positive patients isolated in hospital wards. Eur Rev Med Pharmacol Sci 25(1):498–502. https://doi.org/10.26355/eurrev_202101_24421

93. Xiang YT, Yang Y, Li W (2020). Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. Lancet Psychiat 7:228–229. https://doi.org/10.1016/S2215-0366(20)30046-8

94. American Academy of Pediatrics (2021) Mental health during COVID-19: signs your child may need more support. https://www.healthychildren.org/English/health-issues/conditions/COVID-19/Pages/Signs-your-Teen-May-Need-More-Support.aspx. Accessed 26 Oct 2021

95. Schou TM, Joca S, Wegener G, Bay-Richter C (2021) Psychiatric and neuropsychiatric sequelae of COVID-19—a systematic review. Brain Behav Immun 97:328–348. https://doi.org/10.1016/j.bbi.2021.07.018

96. World Health Organization (WHO) (2021) Basic psychosocial skills: a guide for COVID-19 responders. https://www.who.int/news/item/01-06-2020-basic-psychosocial-skills-a-guide-for-covid-19-responders. Accessed 8 July 2022

97. Clark H, Coll-Seck AM, Banerjee A et al (2020) A future for the world’s children? A WHO-UNICEF-Lancet Commission Lancet 395(10224):605–658. https://doi.org/10.1016/S0140-6736(19)32540-1

98. Christakis DA (2020) Pediatrics and COVID-19. JAMA 324(12):1147–1148. https://doi.org/10.1001/jama.2020.14297

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Authors and Affiliations

Enmei Liu1 · Rosalind Louise Smyth2,3 · Qinyuan Li1 · Amir Qaseem4 · Ivan D. Florez5,6,7 · Joseph L. Mathew8 · Yasser Sami Amer9,10,11,12 · Janne Estill13 · Quan Lu1 · Xiaoxia Lu15 · Edwin Shih-Yen Chan16,17 · Jürgen Schwarze18 · Gary Wing-Kin Wong19 · Toshio Fukuoka20,21 · Hyeong Sik Ahn22,23,24,25 · Myeong Soo Lee26,27,28,29 · Detty Nurdiati30 · Bin Cao31,60,61 · Wenwei Tu32 · Yuan Qian33 · Shunying Zhao34 · Mengshu Wang35 · Chu Yang36 · Xiaoyan Dong14 · Xiaoping Luo37 · Zhimin Chen36 · Guobao Li38 · Xiaobo Zhang39 · Xiaodong Zhao40,41 · Hongmei Xu42 · Feng Xu43 · Yuan Shi44 · Ruiqiu Zhao45 · Yao Zhao46 · Junqiang Lei46 · Xianlan Zheng47 · Zhou Fu48 · Liqun Wu49 · Zhihui He51 · Shihui Liu52 · Myeong Soo Lee53 · Detty Nurdiati54 · Bin Cao55 · Shu Yang56 · Xixi Feng57 · Liqun Wu50 · Zhihui He51 · Shihui Liu52 · Qi Wang53,54 · Yang Song55 · Zhengxiu Luo1 · Qi Zhou29 · Gordon Guyatt53 · Yaolong Chen59 · Qiu Li59

Yaolong Chen
cehividence@lzu.edu.cn

Zhou Fu
fu_zhou79@aliyun.com

Xiaoxia Lu
Lusi74@163.com

Edwin Shih-Yen Chan
edwin.chan@scri.cris.sg

Jürgen Schwarze
Jurgen.Schwarze@ed.ac.uk

Gary Wing-Kin Wong
wingkinwong@cuhk.edu.hk

Toshio Fukuoka
tf11308@kchnet.or.jp

Hyeong Sik Ahn
ahnhann@gmail.com

Myeong Soo Lee
drmslee@gmail.com

Bin Cao
cao-bin_ben@163.com

Wenwei Tu
wwtu@hku.hk
Yuan Qian
yqianbjc@263.net
Shunying Zhao
zhaoshunying2001@163.com
Xiaoyan Dong
dongx_y0305@126.com
Xiaoping Luo
xpluo@tjh.tjmu.edu.cn
Zhimin Chen
chenzhimin6@163.com
Guobao Li
L3gb@qq.com
Xiaobo Zhang
zhangxiaobo0307@163.com
Feng Xu
xufeng9899@163.com
Yuan Shi
petshi530@vip.163.com
Ruiqiu Zhao
zrq0907@yeah.net
Yao Zhao
nhhco@126.com
Junqiang Lei
leijq1990@163.com
Xianlan Zheng
zhengxianlan@vip.163.com
Mengshu Wang
251291442@qq.com
Shu Yang
sishiyu1978@qq.com
Xixi Feng
583840943@qq.com
Liqun Wu
57128241@qq.com
Zhihui He
hezhihui726@sina.com
Shihui Liu
13811790161@163.com
Qi Wang
wangq87@mcmaster.ca
Yang Song
yangsongcochrane@gmail.com
Zhengxiai Luo
luozhengxiai816@163.com
Qi Zhou
zhouq18@lzu.edu.cn
Gordon Guyatt
guyatt@mcmaster.ca

1 Department of Respiratory Medicine Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
2 UCL Great Ormond St Institute of Child Health, London, UK
3 Great Ormond Street Hospital, London, UK
4 Clinical Policy and Center for Evidence Reviews, American College of Physicians, Philadelphia, USA
5 School of Rehabilitation Science, McMaster University, Hamilton, ON, Canada
6 Department of Pediatrics, University of Antioquia, Medellin, Antioquia, Colombia
7 Pediatric Intensive Care Unit, Clinica Las Americas, Medellin, Colombia
8 Advanced Pediatrics Centre, PGI MER Chandigarh, Chandigarh, India
9 Research Chair for Evidence-Based Health Care and Knowledge Translation, King Saud University, Riyadh, Saudi Arabia
10 Clinical Practice Guidelines & Quality Research Unit, Quality Management Department, King Saud University Medical City, Riyadh, Saudi Arabia
11 Pediatrics Department, King Saud University Medical City, Riyadh, Saudi Arabia
12 Alexandria Center for Evidence-Based Clinical Practice Guidelines, Alexandria University, Alexandria, Egypt
13 Institute of Global Health, University of Geneva, Geneva, Switzerland
14 Shanghai Children’s Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
15 Department of Respiratory Medicine, Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
16 Centre for Quantitative Medicine, Office of Clinical Sciences, Duke-National University of Singapore Medical School, Singapore, Singapore
17 Singapore Clinical Research Institute, Singapore, Singapore
18 Children’s Research Network and Department of Child Life and Health, Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
19 Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
20 Emergency and Critical Care Center, the Department of General Medicine, Department of Research and Medical Education at Kurashiki Central Hospital, Kurashiki, Japan
21 Advisory Committee in Cochrane Japan, Tokyo, Japan
22 Department of Preventive Medicine, Korea University, Seoul, South Korea
23 Korea Cochrane Centre, Seoul, South Korea
24 Institute for Evidence-Based Medicine, Korea University College of Medicine, Seoul, South Korea
