Urine Osmolarity and Risk of Dialysis Initiation in a CKD Cohort

Lise Bankira, Max Plischkeb, Nadine Boubya, Martin Haasb

aINSERM Unit 1138, Cordeliers Research Center, Paris, France; bDivision of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna, Vienna, Austria

Key Words
Vasopressin · Water intake · Urine volume · Creatinine clearance · Multivariate sub-distribution hazards model · Competing risk · Vasopressin antagonists (Vaptans)

Abstract
Background: Several experimental studies in rats and a few association studies in humans suggest that the antidiuretic action of vasopressin may accelerate the progression of chronic kidney disease. We undertook a retrospective analysis in a monocentric cohort of 273 patients with chronic kidney disease stages 1–4, focusing on a strong variable of interest, urinary osmolarity, and a strong endpoint, dialysis initiation. Data was analyzed in a multivariate proportional sub-distribution hazards model for competing risk data with appropriate co-variates. Main Results: Over a median follow-up period of 92 months, dialysis was initiated in 105 patients. After adjustments for baseline creatinine clearance, and other confounding factors, a higher risk for initiation of dialysis was found in patients with higher urinary osmolarity. After 72 months, the estimated adjusted cumulative incidence probability for dialysis initiation was 15, 24, and 34% in patients with baseline urinary osmolarity of 315, 510, and 775 mosm/l, respectively (p = 0.033). Key Messages: In this retrospective, longitudinal study, a higher baseline urinary osmolarity was strongly associated with a higher risk of end-stage renal disease (after appropriate adjustments). Further, prospective studies are required to evaluate the possible benefit of interventions aiming at reducing urinary osmolarity as a potential treatment for slowing chronic kidney disease progression.

Background
General practitioners and even nephrologists rarely consider the daily urine volume or osmolarity of their patients. Yet, it may make a difference for the kidney to excrete a daily load of 1,000 mosmole in 1, 2 or 3 liters of urine at 1,000, 500 or 333 mosm/l, respectively (plasma osmolarity in the range of 285–300 mosm/l) [1]. The ability of the human kidney to concentrate solutes in the urine several fold above the plasma value allows a significant ‘water economy’ in the excretion of soluble wastes, the most abundant of which is urea, the main end-product of protein catabolism [2]. There is a wide inter-individual variability in the spontaneous tendency of humans to concentrate urine as well as in their antidiuretic hormone (vasopressin) secretion and their thirst threshold. These characteristics are partly heritable and quite reproducible in each subject over time [3, 4].

In the last few years, interest in these urinary characteristics has been stimulated because new tools, such as selective vasopressin V2 receptor antagonists, the ‘vaptans,’ and a sensitive immuno-assay for measuring...
copeptin, a surrogate of vasopressin which is co-secreted in equimolar amounts with the hormone, and easier to measure [5] have become available. Moreover, experimental studies in rats have demonstrated an adverse influence of vasopressin in all forms of chronic kidney disease (CKD) [5], and more directly an adverse effect in autosomal dominant polycystic kidney disease [6]. For example, as shown in figure 1a, antagonizing vasopressin’s antidiuretic action by increasing fluid intake for several weeks, in addition to reducing urine osmolarity (as intended), also reduced proteinuria, blood pressure and glomerulosclerosis [7]. This prompted several epidemiological studies on the possible associations between different markers of the vasopressin-hydration axis and the decline in renal function, the rise in albuminuria in various cohorts from the general population, in cohorts of kidney transplant patients, or patients with diabetes mellitus. Because urine osmolarity or osmolality (in mosm/l or mosm/kg water, respectively) is rarely measured, these studies considered baseline water intake, urine volume, or plasma copeptin concentration [8–11] (see also review in [5]). Altogether, they suggested that a low water intake,
registries. The baseline value for each variable was the mean of all measurements during a run-in phase of one year (median number of measurements, 5 [3–8]).

As in almost all cohorts of the general population, for patients with CKD, urine osmolarity had not been directly measured at baseline. An estimated urine osmolarity (eUosm) was calculated by an equation based on the sum of the three major urinary solutes making up 90–95% of the urinary osmoles [13].

\[eU_{osm} = (U_{Na} + U_K) \times 2 + U_{urea} \]

where \(U_{Na} \), \(U_K \) and \(U_{urea} \) are the concentrations in mmol/l of Na, K and urea in 24 h urine, respectively. Accordingly, eUosm unit is mosm/l (assuming complete dissociation of Na and K salts). \(U_{Na} \) and \(U_K \) are multiplied by 2 to account for the accompanying anions.

The statistical analysis was a multivariate proportional sub-distribution hazards model for competing risk data, according to Fine and Gray [12]. Death during follow-up was the competing risk. The relationship between eUosm at baseline and risk for dialysis initiation during follow-up was adjusted for possible confounding variables (see below).

Results

Baseline characteristics of the 273 patients are presented in table 1. In this cohort, 25% of the variance of all eUosm values during baseline was explained by random variation within patients, and 75% by inter-individual variance. eUosm correlated negatively with 24 h urine volume \((r = -0.45, \ p < 0.001) \) and positively with creatinine clearance \((r = 0.60, \ p < 0.01) \). Median eUosm was higher in men than in women (522 vs. 458 mosm/l, respectively, \(p < 0.01 \)) (as already reported in a number of studies in healthy subjects) [4]; it was lower in subjects with diuretics (490 vs. 526 mosm/l, \(p < 0.01 \)) than in subjects without these drugs.

The median follow-up until death or censoring was 92 months (76 to 95). End-stage kidney disease (= dialysis initiation) developed in 105 out of 273 patients (39%). The cumulative incidence function of end-stage renal disease according to baseline eUosm was studied after adjustment for several confounding variables. The most evident was baseline creatinine clearance because urine osmolarity is known to decline progressively as kidney function deteriorates. Other adjustment variables included age, proteinuria, type of underlying renal disease, beta-blocker and diuretic therapies (see table 2). The adjusted sub-distribution hazard ratio for initiation of dialysis was 2.04 (95% confidence interval 1.06 to 3.92) for each doubling of urine osmolarity \((p = 0.03) \). The 10th, 50th and 90th percentiles of eUosm corresponded to 315, 510 or 775 mosm/l, respectively. After 72 months, the estimated adjusted cumulative incidence probability of dialysis was 15%, 24%, and 34% in patients with a baseline eUosm equal to these three percentiles, respectively. Figure 1b displays the cumulative incidence probabilities of dialysis initiation for these three levels of baseline eUosm.

The major strengths of this study are as follows. The dependent variable, urine osmolarity, is a direct reflect of vasopressin’s action on the kidney. The baseline values are very strong because they are issued from several measurements over a 1 year run-in phase (most epidemiologic studies rely on only one measurement at baseline).

Table 1. Main characteristics of the 273 patients at inclusion (adapted from [12])

Variable	Median (Q1–Q3) or %
CKD level, grades 1 to 3a/3b to 4	141/132
Age, years	56 (42–67)
Male, %	56
BMI, kg/m²	26 (23–30)
MAP, mm Hg	97 (93–102)
Proteinuria, g/24 h	2.5 (0.5–5.6)
Diabetes mellitus, %	23
Underlying kidney disease, %	7
Polycystic kidney disease	7
Diabetic nephropathy	7
Glomerular disease	36
Other, or unknown	50
Medications, %	85
ACEI/AT-II blocker	47
Diuretics	47
Beta-blocker	47
Urine volume, l/24 h	2.2 (1.9–2.9)
eU_{osm}, mosm/l H₂O	510 (414–622)
Osmolar excr., mosm/24 h	1,200 (930–1,412)
Sodium excr., mmol/24 h	201 (141–251)

Table 2. Independent effect of urine osmolarity, age, protein excretion, kidney function, renal disease, and different drugs on the risk of initiating dialysis in the competing risk regression analysis (adapted from [12])

Variable	SH ratio [95% CI]	p value
Urine osmolarity (per doubling)	2.04 [1.06–3.92]	\(p = 0.03 \)
Age (per decade)	0.87 [0.74–1.02]	\(p = 0.08 \)
Proteinuria (per doubling)	1.85 [1.60–2.13]	\(p < 0.001 \)
Creatinine clearance (per doubling)	0.15 [0.09–0.23]	\(p < 0.001 \)
Renal disease (CKD vs. other diseases)	3.44 [1.73–6.81]	\(p < 0.001 \)
Beta-blocker therapy (yes vs. no)	1.54 [0.97–2.43]	\(p = 0.07 \)
Diuretic therapy (yes vs. no)	1.62 [1.03–2.55]	\(p = 0.04 \)
The endpoint (initiation of dialysis) is also stronger than in most studies about CKD progression, and the follow-up period is quite long. Finally, an elaborate statistical analysis was used, taking into account the competing risk of death. One limitation of this study is the high event rate observed in this cohort. It is possibly explained by the relatively high baseline proteinuria in patients referred to our clinic. Whether the conclusions of this study extend to other cohorts is unknown and should be evaluated.

Interpretation and Conclusion

Among patients with CKD of various etiologies, for an equal level of remaining renal function, those with higher urine osmolarity at baseline (and thus presumably a stronger influence of vasopressin on the kidney) were more likely to progress to dialysis during subsequent years. Why would vasopressin and/or a high urine concentration contribute to kidney disease progression? Experimental studies in rats, and a few observations in healthy humans undergoing clinical investigations have shown that vasopressin, through its V2 receptors (those responsible for its antidiuretic action on the kidney) induces a rise in GFR. Conversely, an increased hydration that lowers vasopressin secretion significantly lowers GFR [14, 15]. The vasopressin-induced ‘hyperfiltration’ results in the same vicious circle as that induced by a high protein diet [16]. This diet results in an increased load of nitrogen wastes (urea, ammonia, uric acid) and some organic wastes (phosphate) that are not only excreted by the kidney, but concentrated in the urine. Thus, as discussed elsewhere, the deleterious influence of a high protein diet on the diseased kidney may well be due to the enhanced secretion of vasopressin observed in this condition [5]. The kidney’s concentrating activity is a potentially modifiable risk factor. Interventional studies in CKD patients, intended to reduce vasopressin’s antidiuretic influence and urine osmolarity, are greatly needed in order to evaluate if the benefits observed in animal studies and suggested by retrospective epidemiological studies are effective in slowing the progression of kidney disease.

Funding Source

This manuscript corresponds to the presentation given during the H4H meeting on July 2nd, 2014, in Evian, France.

Disclosure Statement

All authors declare that they have no conflict of interest.

References

1. Bankir L: Antidiuretic action of vasopressin: quantitative aspects and interaction between V1a and V2 receptor-mediated effects. Cardiovasc Res 2001;51:372–390.
2. Bankir L, Bouby N, Trinh-Trang-Tan MM, Ahloulay M, Promenier D: Direct and indirect cost of urine excretion. Kidney Int 1996;49:1598–1607.
3. Zerbe RL, Miller JZ, Robertson GL: The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J Lab Clin Med 1991;117:51–59.
4. Perucca J, Bouby N, Valeix P, Bankir L: Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. Am J Physiol Regul Integr Comp Physiol 2007;292:R700–R705.
5. Bankir L, Bouby N, Ritz E: Vasopressin: a novel target for the prevention and retardation of kidney disease? Nat Rev Nephrol 2013;9:223–239.
6. Torres VE: Vasopressin antagonists in polycystic kidney disease. Semin Nephrol 2008;28:306–317.
7. Bouby N, Bachmann S, Bichet D, Bankir L: Effect of water intake on the progression of chronic renal failure in the 5/6 nephrectomized rat. Am J Physiol 1990;258(4 Pt 2):F973–F979.
8. Clark WF, Sontrup IM, Macnab JJ, Suri RS, Moisl L, Salvadori M, Garg AX: Urine volume and change in estimated GFR in a community-based cohort study. Clin J Am Soc Nephrol 2011;6:2634–2641.
9. Enhörning S, Wang TJ, Nilsson PM, Almgren P, Hedblad B, Berglund G, Strack J, Morgensthaler NG, Bergmann A, Lindholm E, Group L, Lyssenko V, Orho-Melander M, Newton-Cheh C, Melander O: Plasma copeptin and the risk of diabetes mellitus. Circulation 2010;121:2102–2108.
10. Meijer E, Bakker SJ, de Jong PE, Homan van der Heide JJ, van Son W, Struck J, Lems SP, Gansevoort RT: Copeptin, a surrogate marker of vasopressin, is associated with accelerated renal function decline in renal transplant recipients. Transplantation 2009;88:561–567.
11. Velho G, Bouby N, Hadjadi S, Matalah N, Mohammadi K, Fumeron F, Potier L, Bellili-Munoz N, Taveau C, Alhenc-Gelas F, Bankir L, Marre M, Roussel R: Plasma copeptin and renal outcomes in patients with type 2 diabetes and albuminuria. Diabetes Care 2013;36:3639–3645.
12. Plischke M, Kohl M, Bankir L, Shayanfar S, Handsiurya A, Heinz G, Haas M: Urine osmolarity and risk of dialysis initiation in a chronic kidney disease cohort – a possible trigger? PLoS One 2014;9:e93226.
13. Roussel R, Fezeu L, Marre M, Fumeron F, Jungers P, Lantieri O, Balkau B, Bouby B, Bankir L, Bichet DG: Comparison between copeptin and vasopressin in a population from the community and in people with chronic kidney disease. J Clin Endocrinol Metab 2014;99:4656–4663.
14. Anastasio P, Cirillo M, Spitali L, Frangiosa A, Pollastro RM, De Santo NG: Level of hydration and renal function in healthy humans. Kidney Int 2001;60:748–756.
15. Bouby N, Ahloulay M, Nsegbe E, Déchaux M, Schmitt F, Bankir L: Vasopressin increases glomerular filtration rate in conscious rats through its antidiuretic action. J Am Soc Nephrol 1996;7:842–851.
16. Brenner BM: Nephron adaptation to renal injury or ablation. Am J Physiol 1985;249(3 Pt 2):F324–F337.