Optimal Convergence Rates of Deep Neural Networks in a Classification Setting

Joseph T. Meyer
joseph-theo.meyer@uni-heidelberg.de
Institute for Applied Mathematics, Heidelberg University, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany

July 26, 2022

Abstract
We establish optimal convergence rates up to a log-factor for a class of deep neural networks in a classification setting under a restraint sometimes referred to as the Tsybakov noise condition. We construct classifiers in a general setting where the boundary of the bayes-rule can be approximated well by neural networks. Corresponding rates of convergence are proven with respect to the misclassification error. It is then shown that these rates are optimal in the minimax sense if the boundary satisfies a smoothness condition. Non-optimal convergence rates already exist for this setting. Our main contribution lies in improving existing rates and showing optimality, which was an open problem. Furthermore, we show almost optimal rates under some additional restraints which circumvent the curse of dimensionality. For our analysis we require a condition which gives new insight on the restraint used. In a sense it acts as a requirement for the ”correct noise exponent” for a class of functions.

Keywords: Tsybakov noise condition, Classification using deep neural networks
MSC2020 subject classifications: 62C20, 62G05.

1 Introduction
We consider i.i.d. data \((Y_i, X_i)_{i=1}^n\) with \(Y_i \in \{0, 1\}\) and \(X_i \in \mathbb{R}^d\). Our goal is to provide an estimator of the form \(\hat{Y} = 1(X \in \hat{G})\) where \(\hat{G}\) is
constructed with a neural network which approximates Y well with respect to the misclassification error. We show optimal convergence rates under the following two conditions. First, the underlying distribution Q satisfies a noise condition as in [22] described below. Second, the boundary of the set

$$G_Q^* := \{ x \mid f_Q(x) \geq \frac{1}{2} \}$$

with $f_Q(x) := Q(Y = 1|X = x)$ satisfies certain regularity conditions.

Neural Networks have shown outstanding results in many classification tasks such as image recognition [7], language recognition [4], cancer recognition [10], and other disease detection [16]. Our work follows current approaches in the statistical literature to explain the success of neural networks, e.g. the impactful contributions [12, 21]. The objective is to fill a gap in the literature by proving optimal convergence rates in a specific setting which was also considered in [11]. We focus on deep feedforward neural networks with ReLU-activation functions. Deep networks have been considered in many theoretical articles [12, 13, 18, 19] and have proven useful in many applications [20, 15]. Intuitively, we wish to approximate the set G_Q^* directly instead of approximating the regression function f_Q. The classification setting we consider is similar to the setting given in [17, 22]. In particular, we assume that Q satisfies a noise condition which can be described as follows. For Q-measurable sets G_1, G_2 define

$$d_{f_Q}(G_1, G_2) := \int_{G_1 \Delta G_2} |2f_Q(x) - 1| Q_X(dx),$$

$$d_{\Delta}(G_1, G_2) := Q_X(G_1 \Delta G_2).$$

The condition then states that there exists a constant $\kappa \geq 1$ such that

$$d_{f_Q}(G, G_Q^*) \geq c_1 d_{\Delta}^{\kappa}(G, G_Q^*)$$

(1.1)

for some constant $c_1 > 0$ and all G. This requirement is sometimes referred to as the Tsybakov noise condition. It can be interpreted as a restraint on the probability distribution regarding regions close to the boundary where $f_Q(x) = \frac{1}{2}$. Roughly speaking, it forces the mass to decay at a certain rate when one approaches this boundary. Using this, one can achieve rates approaching n^{-1} for small κ, i.e. if there is not much mass in the region around $f_Q(x) = \frac{1}{2}$. The condition has been used in many statistical articles considering classification such as [1] and [23] who analyse support vector machines. Similarly to [17], we show optimal convergence rates in the case where the
boundary of \(G^*_Q \) satisfies certain regularity conditions, i.e. is similar to an element of a Dudley class \([6]\). More precisely, we consider sets which are slightly more general then the sets given in \([18]\). While many other approximation results using neural networks exist, see \([5]\) using sigmoid activation functions or \([24]\) using piecewise linear functions among others, the methods used in \([18]\) inspired us to obtain the results for our setting. The sets they consider have been used in many articles such as \([11, 19]\). As an estimator, we use a risk minimizer of the empirical version of the misclassification error. Precisely calculating this estimator involves finding a global minimum of a highly non-convex loss with respect to the parameters of a neural network. Typically, such calculations are not feasible in practice. Thus, the results we provide are theoretical in nature and do not have direct useful applications, as is typical for results of this kind \([13, 21]\). From our point of view, the main value of current contributions is to show results such as consistency in situations which are typical for statisticians using relatively simple classes of neural networks. In time, the techniques developed may be used to show claims in cases which are closer to those encountered in reality and using classes of neural networks which are closer to those used in practise.

A lot of work has been done regarding consistency of feedforward deep neural networks. \([21]\) prove optimal convergence rates with respect to the uniform norm in a regression setting. Among others, similar results were given by \([9]\) for non-continuous regression functions with respect to the \(L_2\)-norm, \([14]\) who did not use a sparsity constraint, and \([2]\). Regarding results for classification, \([19]\) show convergence rates considering the misclassification error in a noiseless setting. Consistency results which include condition (1.1) in the assumptions are given by \([3, 13, 8]\). In contrast to our approach, the previously mentioned articles attempt to estimate the regression function \(f_Q \) instead of directly estimating the set \(G^*_Q \). Additionally, while some obtain optimal convergence rates, the settings do not correspond to the setting given in \([22]\). In particular, the (optimal) convergence rates differ from ours in these papers. A very interesting contribution was made by \([11]\) who consider an almost identical situation to ours, while their estimators differ. However, the rates they obtain are not optimal in the minimax sense.

1.1 Contribution

Our contribution includes the following.

- First and foremost, Theorem 4.1 together with Corollary 3.7 prove optimal convergence rates in the minimax sense for the setting described above. To the best of our knowledge, we are the first to obtain optimal
convergence rates using neural networks corresponding to the setting
given in [22] and thus close this gap in the literature.

• Theorem 3.5 establishes convergence rates in a general setting, where
the boundary of the set G^*_Q can be well approximated by neural
networks. This enables us to prove rates in a variety of settings. We use
this theorem to prove optimal convergence rates under an additional
constraint, which circumvents the curse of dimensionality, in the sense
that the rates do not decrease exponentially in the dimension d.

• In order to prove the results stated here, we require a condition which
together with condition (1.1) forces κ to be the ”correct parameter”
for the distribution Q. We believe that this condition may bring new
insights to condition (1.1) and may be helpful in other situations where
(1.1) is required.

1.2 Outline

After introducing some notation, we rigorously introduce the problem at
hand in Section 2. Here, we also provide some convergence results consider-
ing empirical risk minimizers with respect to arbitrary sets. These results are
then used to prove our main consistency theorems regarding neural networks
in Section 3. Section 4 includes the corresponding lower bounds followed by
some concluding remarks in Section 5.

1.3 Notation

We introduce some general notation which is used throughout this article.

For $x \in \mathbb{R}$, let $\lfloor x \rfloor := \max\{k \in \mathbb{Z} \mid k \leq x\}$ and $\lceil x \rceil := \min\{k \in \mathbb{Z} \mid k \geq x\}$. Let λ be the Lebesgue measure. For a function $g : \Omega \subseteq \mathbb{R}^s \rightarrow \mathbb{R}$ and $k \in \mathbb{N}$ denote by

$$
\|g\|_\infty := \sup_{x \in \Omega} |g(x)|, \quad \|g\|_{L^k} := \left(\int |g|^k \lambda(dx) \right)^{\frac{1}{k}}
$$

the uniform-norm and the L^k-norm, respectively. Note that we omit the
dependence on Ω in the notation. For $x \in \mathbb{R}^s$, let $\|x\|_2$ and $\|x\|_\infty$ be the euclidean-norm and the uniform-norm, respectively. For $j \in \{1, \ldots, s\}$ let

$$x_{-j} := (x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_s).$$
Additionally, let
\[B_r(x) := \{ y \in \mathbb{R}^s \mid \|x - y\|_\infty \leq r \}, \]
\[B^\circ_r(x) := \{ y \in \mathbb{R}^s \mid \|x - y\|_\infty < r \}. \]

For \(a \in \mathbb{N}^s \) let \(|a| := \sum_{i=1}^s a_i \).

Now, let \(\beta \in (0, \infty) \). Define \(m := \max\{k \in \mathbb{N} \mid k < \beta \} \) and \(\omega := \beta - m > 0 \).

For \(f \in \mathcal{C}([0, 1]^s, \mathbb{R}) \) let
\[\|f\|_{\mathcal{C}^\beta} := \sum_{|\alpha| \leq m} \|\partial^\alpha f\|_\infty + \sum_{|\alpha| = m} \sup_{x \neq y} \left| \frac{\partial^\alpha f(x) - \partial^\alpha f(y)}{|x - y|_\infty^\omega} \right| \]
be the Hölder-norm. For \(B > 0 \), define the class of Hölder-continuous functions by
\[\mathcal{F}_{\beta, B, s} := \left\{ f \in \mathcal{C}([0,1]^s, \mathbb{R}) \mid \|f\|_{\mathcal{C}^\beta} \leq B \right\}. \]

Let \(G_1, G_2 \subseteq \Omega \) be two subsets. We write
\[G_1 \Delta G_2 := (G_1 \setminus G_2) \cup (G_2 \setminus G_1) \]
for their symmetric difference and
\[1(x \in G_1) := \begin{cases} 1, & \text{for } x \in G_1, \\ 0, & \text{otherwise} \end{cases} \]
for the indicator function corresponding to \(G_1 \).

2 General Convergence Results

In this section, we state our results in a relatively general setting. The results on neural networks in the next section only consider the case where \(\mathbb{P}_X \) has a bounded density with respect to the Lebesgue measure. Our setup is similar to the binary classification setup of [22].

2.1 Classification Setup

Let \((X_i, Y_i)_{i=1}^n \) be i.i.d. observations distributed according to some probability measure \(\mathbb{P} \), where \(X_i \in \mathbb{R}^d \) and \(Y_i \in \{0, 1\} \). Denote by \(\mathbb{P}_X \) the marginal probability distribution with respect to \(X \in \mathbb{R}^d \). The goal is to predict
\(Y \in \{0, 1\} \) when observing \(X \in \mathbb{R}^d \), where \((X,Y)\) is distributed according to \(Q \) independently of \((X_i,Y_i)_{i=1}^n\) using classifiers of the form
\[
\hat{Y} := \mathbb{1}(X \in \hat{G})
\]
for some \(Q \)-measurable set \(\hat{G} \subseteq \mathbb{R}^d \). Note that a classifier is uniquely determined by \(\hat{G} \). Performance is measured by the misclassification error
\[
R(\hat{G}) := \mathbb{P}(Y \neq \hat{Y}) = \mathbb{E}
\left[(Y - \mathbb{1}(X \in \hat{G}))^2 \right].
\]
For \(f_Q(x) := \mathbb{E}[Y|X = x] = Q(Y = 1|X = x) \) the set
\[
G^*_Q := \left\{ x \mid f_Q(x) \geq \frac{1}{2} \right\}
\]
is a so called bayes rule and thus minimizes the misclassification error. Classification can equivalently be seen as estimation of \(G^*_Q \) by the set \(\hat{G} \), which is therefore equally referred to as classifier. For a \(Q \)-measurable set \(G \subseteq \mathbb{R}^d \) let
\[
R_n(G) = \frac{1}{n} \sum_{i=1}^n 1(Y_i \neq 1(X_i \in G)) = \frac{1}{n} \sum_{i=1}^n (Y_i - 1(X_i \in G))^2
\]
be the empirical version of the misclassification error \(R(G) \). We consider empirical risk minimization classifiers defined by
\[
\hat{G}_n := \arg \min_{G \in \mathcal{N}_n} R_n(G)
\]
where \(\mathcal{N}_n \) is some finite collection of \(Q \)-measurable sets for all \(n \in \mathbb{N} \).

2.2 Consistency Results

Proposition 2.1 establishes convergences rates for estimating \(G^*_Q \) using \(\hat{G}_n \) under certain conditions on \(\mathcal{N}_n \) and \(Q \). For the loss function, we consider a slight generalization of the misclassification error
\[
\mathbb{E}
\left[(R(\hat{G}_n) - R(G^*_Q))^p \right] = \mathbb{E}
\left[d_{f_Q}^p(G_n,G^*_Q) \right]
\]
for \(p \geq 1 \). The proposition is somewhat similar to Theorem 2 from [17]. In contrast to our approach, they consider the discrimination of two probability distributions with underlying distribution functions and do not allow for non-optimal convergence rates. The proposition is an important component for the proof of our main theorem given in Section 3. The proofs of this section can be found in Appendix A.
Proposition 2.1. Let $\tau_n > 0$ be a monotonically increasing sequence. Let \mathcal{Q} be a class of potential joint distributions \mathcal{Q} of (X,Y) and \mathcal{N}_n be a collection of subsets of \mathbb{R}^d for all $n \in \mathbb{N}$ such that the following conditions hold.

(i) For all $Q \in \mathcal{Q}$ all sets in $\bigcup_{n \in \mathbb{N}} \mathcal{N}_n$ and G^*_Q are \mathcal{Q}-measurable.

(ii) There exists a constant $\kappa \geq 1$ such that

$$d_{f_0}(G,G^*_Q) \geq c_1 d_{\Delta}^\kappa(G,G^*_Q)$$

for some constant $c_1 > 0$, all $G \in \bigcup_{n \in \mathbb{N}} \mathcal{N}_n$ and all $Q \in \mathcal{Q}$.

Additionally, we assume that there is a constant $N_0 \in \mathbb{N}$ such that for all $n \geq N_0$ the following holds.

(iii) There is a constant $c_2 > 0$ such that for all $Q \in \mathcal{Q}$ there is a $G \in \mathcal{N}_n$ with

$$d_{f_0}(G,G^*_Q) \leq c_2 \tau_n^{-\kappa}.$$

(iv) There exist constants $c_3, \rho > 0$ such that

$$\log (|\mathcal{N}_n|) \leq c_3 n^{\frac{\rho}{\rho + 2\kappa - 1}}.$$

Then for all $p \geq 1$ we have

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{Q}} \tau_n^{\kappa p} \mathbb{E}[d_{f_0}^p(\hat{G}_n, G^*_Q)] < \infty,$$

$$\lim_{n \to \infty} \sup_{Q \in \mathcal{Q}} \tau_n^{p} \mathbb{E}[d_{\Delta}^p(\hat{G}_n, G^*_Q)] < \infty,$$

where

$$\hat{\tau}_n := \min\{\tau_n, n^{\frac{1}{\rho + 2\kappa - 1}}\}$$

for all $n \in \mathbb{N}$.

Condition (i) is needed for all terms to be well defined. Condition (iii) states that the set in question must be well approximated by elements of \mathcal{N}_n. A sufficient assumption is that \mathcal{N}_n is an ϵ-net of $\{G^*_Q \mid Q \in \mathcal{Q}\}$, where $\epsilon := c_1 \tau_n^{-\kappa}$. Together with (iv), this indirectly bounds the complexity of \mathcal{Q}. If the class of sets $\{G^*_Q \mid Q \in \mathcal{Q}\}$ is too large, one will not be able to find sets \mathcal{N}_n that satisfy (iii) and (iv) at the same time. It is clear that the best rates are achieved with $\tau_n = n^{\frac{1}{\rho + 2\kappa - 1}}$. We do not use the same sequences in conditions (iii) and (iv) since one can prove non-optimal convergence rates using this version of the proposition.
The second condition is the noise condition described in the introduction. Note that following [22], for $\kappa > 1$ condition (ii) holds if
\[
P \left(|2f_Q(X) - 1| \leq t \right) \leq c t \frac{1}{\kappa - 1}
\]
for all $t > 0$ and some $c > 0$. Roughly speaking, this forces the mass to decay at a certain rate when one approaches the boundary of G^*_Q. Note that we use (ii) instead of this assumption since it is slightly more general and includes the case $\kappa = 1$. Additionally, it appears more naturally in the proofs. Observing the alternative assumption, $\kappa = 1$ corresponds to the case where there is no mass close to the boundary of G^*_Q, meaning that f_Q does not take on values close to $\frac{1}{2}$. Using Proposition 2.1 one can achieve rates approaching n^{-1} for small κ, ρ i.e. if there is not much mass in the region around $f_Q(x) = \frac{1}{2}$ and the complexity of \mathcal{N}_n, and consequently Ω, is moderate. In contrast, the following proposition provides convergence rates if condition (ii) is not satisfied.

Proposition 2.2. Let $\tau_n > 0$ be a monotonically increasing sequence. Let Ω be a class of potential joint distributions Q of (X,Y) and \mathcal{N}_n be a collection of subsets of \mathbb{R}^d for all $n \in \mathbb{N}$ such that the following conditions hold.

(i) For all $Q \in \Omega$ all sets in $\bigcup_{n \in \mathbb{N}} \mathcal{N}_n$ and G^*_Q are Q-measurable.

Additionally, we assume that there is a constant $N_0 \in \mathbb{N}$ such that for all $n \geq N_0$ the following holds.

(ii) There is a constant $c_2 > 0$ such that for all $n \in \mathbb{N}$ and $Q \in \Omega$ there is a $G \in \mathcal{N}_n$ with
\[
d_{f_Q}(G, G^*_Q) \leq c_2 \tau_n^{-1}.
\]

(iii) There exist $c_3, \rho > 0$ such that
\[
\log (|\mathcal{N}_n|) \leq c_3 n^{\frac{\rho}{\rho + 2}}.
\]

Then for all $p \geq 1$ we have
\[
\lim_{n \to \infty} \sup_{Q \in \Omega} \sup_{\mathcal{N}_n} \tilde{\tau}_n^p \mathbb{E} \left[d_{f_Q}^p \left(\hat{G}_n, G^*_Q \right) \right] < \infty,
\]
where
\[
\tilde{\tau}_n := \min \{ \tau_n, n^{\frac{p}{\rho + 2}} \}
\]
for all $n \in \mathbb{N}$.

Note that the requirement in condition (ii) of Proposition 2.2 corresponds to requirement (iii) of 2.1 with $\kappa = 1$. However, for $p = 1$ the best rate achievable is of order $n^{-\frac{1}{2}}$, which is always slower $n^{-\frac{1}{4}}$. Proposition 2.2 provides rates in absence of condition (ii) of Proposition 2.1. We do not claim optimality for these rates.
3 Convergence Rates for Neural Networks

We begin by shortly introducing neural networks. The idea is to use Proposition 2.1 to obtain optimal convergence rates up to a log factor. Neural networks are used to define a suitable class of sets \(\mathcal{N}_n \) for every \(n \in \mathbb{N} \).

3.1 Definitions regarding Neural Networks

Definition 3.1. Let \(L, m_0, \ldots, m_{L+1} \in \mathbb{N} \). For \(i = 1, \ldots, L \), let \(\sigma_i \) be a function

\[
\sigma_i : \mathbb{R} \to \mathbb{R}.
\]

For \(b = (b_1, \ldots, b_{m_i}) \in \mathbb{R}^{m_i} \), define a shifted \(m_i \)-dimensional version of \(\sigma_i \) by

\[
\sigma_{i,b} : \mathbb{R}^{m_i} \to \mathbb{R}^{m_i}, \quad \sigma_{i,b}(y_1, \ldots, y_{m_i}) = (\sigma_i(y_1 - b_1), \ldots, \sigma_i(y_{m_i} - b_{m_i})).
\]

A neural network with network architecture \((L, (m_0, \ldots, m_{L+1}), (\sigma_1, \ldots, \sigma_L))\) is a sequence

\[
\Phi := (W_1, b_1, \ldots, W_L, b_L, W_{L+1})
\]

where each \(W_s \in \mathbb{R}^{m_s \times m_{s-1}} \) is a weight matrix and \(b_s \in \mathbb{R}^{m_s} \) is a shift vector. The realization of a neural network \(\Phi \) on a set \(D \subseteq \mathbb{R}^{m_0} \) is the function

\[
R(\Phi) : D \to \mathbb{R}^{m_{L+1}}, \quad R(\Phi)(x) = W_{L+1}\sigma_{L,b_L}W_L \cdots W_2\sigma_{1,b_1}W_1x.
\]

We denote by

\[
\mathcal{N}_{L,m,\sigma} := \{ R(\Phi) \mid \Phi = (W_1, b_1, \ldots, W_{L+1}, b_{L+1}), W_s \in \mathbb{R}^{m_s \times m_{s-1}}, b_s \in \mathbb{R}^{m_s} \}
\]

the set of realizations of neural networks with network architecture \((L, m, \sigma)\), where \(m := (m_0, \ldots, m_{L+1}) \in \mathbb{N}^{L+2} \) and \(\sigma := (\sigma_1, \ldots, \sigma_L) \).

Typically, for \(i, \ldots, L \) the function \(\sigma_i \) is called activation function and \(\sigma_{i,b} \) is named shifted activation function. The constant \(L \) denotes the number of hidden layers. The values \(d := m_0 \) and \(m_{L+1} \) are the input and output dimensions, respectively. In this article, we are interested in the case where for \(i = 1, \ldots, L \) the activation function in the \(i \)-th layer is the rectifier linear unit (ReLU)

\[
\sigma_i(x) := \max\{x, 0\}.
\]

Additionally, if not further specified, we consider a compact domain \(D := [0, 1]^d \) and a one dimensional output \(m_{L+1} = 1 \). For the sake of completeness, we note that a network with \(L=0 \) layers is of the form \(\Phi := (W) \)
for $W \in \mathbb{R}^{m_0 \times m_1}$ and has realization $R(\Phi)(x) = Wx$. Note that, in general, the weights of a neural network Φ, i.e. the entries of its shift vectors (b_1, \ldots, b_{L+1}) and weight matrices (W_1, \ldots, W_{L+1}), are not uniquely determined by its realization $R(\Phi)$. In the following, for brevity, we occasionally introduce a network by defining its realization. In such a case, it is clear from the presentation of the realization which precise neural network is considered.

As a first step, we wish to introduce a suitable finite class of sets parameterized by neural networks and count the number of elements. We define these sets as $R(\Phi)^{-1}(1)$ where Φ is a realization of a neural network. Equivalently, we could have considered neural networks with a binary step function in the output layer or find a neural network $\tilde{\Phi}$ and define the approximating set $R(\tilde{\Phi})^{-1}((0, 1])$, which is closer to the idea that the realization of the neural network represents some sort of probability. Since this is not the idea of our approximation results, we stick to the version above. In order to obtain a finite class, we need to reduce the number of considered elements of $\mathcal{N}_{L, m, \sigma}$ while maintaining reasonable approximating capabilities. A typical approach in the theoretical literature is to use a sparsity constraint. For $s > 1$ we therefore only consider realizations of neural nets which have at most s nonzero weights. If s is the total number of nonzero weights, we say that the network has sparsity s. Additionally, we assume all weights to be elements of the set

$$\mathcal{W}_c := \{k2^{-c} \mid c \in \mathbb{N}, k \in \{-2^c, -2^c + 1, \ldots, 2^c - 1, 2^c\}\}.$$

Thus, we only consider weights $|w| \leq 1$. Concluding, we use the following notation to describe the collection of sets we are interested in.

Definition 3.2. Let $L_0, c \in \mathbb{N}$ and $s_0 > 1$ be fixed. Denote by $\tilde{\mathcal{N}}_{L_0, s_0, c}$ the set of realizations of neural networks with d dimensional input, one dimensional output, at most L_0 layers, ReLU activation functions and sparsity at most s_0, where all weights are elements of \mathcal{W}_c. The class of corresponding sets given by neural networks is then

$$\mathcal{N}_{L_0, s_0, c} := \{R(\Phi)^{-1}(1) \subseteq [0, 1]^d, \mid \Phi \in \tilde{\mathcal{N}}_{L_0, s_0, c}\}.$$

Note that the requirements from Definition 3.2 allow for realizations of neural networks with arbitrary hidden layer dimensions $(m_1, \ldots, m_L) \in \mathbb{N}^L$. However, it is easy to see that every element of $\tilde{\mathcal{N}}_{L_0, s_0, c}$ is a realization of a neural net which satisfies the properties described in the Definition and $m_i \leq s_0$ for all $i \in \{1, \ldots, L_0\}$. Using this, we receive an upper bound on the number of elements of $\mathcal{N}_{L_0, s_0, c}$ by counting the number of corresponding neural networks. Thus, the following bound is independent of the choice of activation functions σ.

10
Lemma 3.3. For $s_0 > 1$ and $L_0, c \in \mathbb{N}$ let $\mathcal{N}_{L_0, s_0, c}$ be the class of sets introduced in Definition 3.2. We have an upper bound on the number of elements given by

$$|\mathcal{N}_{L_0, s_0, c}| \leq ((d s_0 + \min\{s_0, L_0\})(s_0 + 1)^2)^{s_0}.$$

Proof. First of all, if $s_0 \leq L_0$, clearly only the last s_0 layers have influence on the realization of a neural network. Thus, an upper bound is given by counting the number of neural nets with at most $\min\{s_0, L_0\}$ layers, at most sparsity s_0, weights in \mathcal{W}_c and $m_i \leq s_0$ for all $i \in \{1, \ldots, L\}$. Each weight can take on $|\mathcal{W}_c| = 2^{s_0} + 1$ different values. The total number of weights can be bounded by

$$m_0 m_1 + \sum_{i=1}^{\min\{s_0, L\}} (m_i + 1)m_{i+1} \leq d s_0 + \sum_{i=1}^{\min\{s_0, L_0\}} (s_0 + 1)s_0$$

$$\leq d s_0 + \min\{s_0, L_0\}(s_0 + 1)^2$$

$$=: V.$$

Note that if $s_0 \leq L_0$, the input dimension does not influence the outcome. Therefore, there are at most

$$\binom{V}{s_0} \leq V^{s_0}$$

possible combinations to pick s_0 (possibly) nonzero weights. Thus

$$|\mathcal{N}_{L_0, s_0, c}| \leq V^{s_0}(2^{s_0} + 1)^{s_0} \leq (V2^{s_0})^{s_0}.$$

\[\square \]

3.2 Conditions on the Bayes-Rule

In order to define the set of probability distributions we consider for approximation, we restrict the possible bayes rules. We then add a smoothness condition to the function f_Q near the boundary of the respective bayes rule. Intuitively, the boundary should satisfy some kind of smoothness condition so that it can be approximated by neural networks. Additionally, the set must be discretizable in some sense. When using $\mathcal{F} = \mathcal{F}_{\beta, B, d-1}$ the class of sets we use is similar to a class defined in [18]. Note, that the class used here is larger. This version depends on a set \mathcal{F} which represents a class of boundary functions. The idea is that we can obtain different convergence rates for different classes using the same procedure.
Definition 3.4. Let $\beta \geq 0$, $B > 0$ and $d \in \mathbb{N}$ with $d \geq 2$. Additionally, let $r \in \mathbb{N}$, $\epsilon_1, \epsilon_2 > 0$, \mathbb{Q} be a probability measure on $[0,1]^d \times \{0,1\}$ and \mathcal{F} be a class of functions

$$\gamma : [0,1]^{d-1} \rightarrow \mathbb{R}.$$

Define

$$\mathcal{I} := \{1, \ldots, d\} \times \{-1, 1\},$$

$$\mathcal{D} := \left\{\prod_{i=1}^{d} [a_i, b_i] \mid 0 \leq a_i < b_i \leq 1\right\},$$

and

$$\mathcal{H}_{\beta,B} := \{g \in \mathcal{F}_{\beta,B,1} \mid \forall \alpha < \beta : \partial^\alpha g(0) = 0\}$$

if $\beta > 0$. Let $\mathcal{K}_{\mathbb{Q},\beta,B,\epsilon_1,\epsilon_2,r,d}$ be the class of all subsets $H = H_1 \cup \cdots \cup H_u \subseteq [0,1]^d$ for $u \in \{0, \ldots, r\}$ such that for $\nu = 1, \ldots, u$ there exist $(j_\nu, \iota_\nu) \in \mathcal{I}$, $\gamma_\nu \in \mathcal{F}$, $D_\nu = \prod_{i=1}^{d} [a^\nu_i, b^\nu_i] \in \mathcal{D}$ with the following properties.

1. For all $\nu = 1, \ldots, u$ we have

$$H_\nu = D_\nu \cap \{x \in [0,1]^d \mid \iota_\nu x_{j_\nu} \leq \gamma_\nu(x_{-j_\nu})\}.$$

2. $\lambda(D_{\nu_1} \cap D_{\nu_2}) = 0$ for $\nu_1 \neq \nu_2$.

3. If $\beta > 0$, the following holds. For $\nu = 1, \ldots, u$ and all $x \in D_\nu \cap \partial H$ there exists $g_{\nu,x} \in \mathcal{H}_{\beta,B}$ such that for $y_{j_\nu} \in [\max\{0, x_{j_\nu} - \epsilon_1\}, \min\{1, x_{j_\nu} + \epsilon_1\}]$ we have

$$|2f_{\mathbb{Q}}(y) - 1| \leq g_{\nu,x}(x_{j_\nu} - y_{j_\nu}) \text{ for } x_{j_\nu} - \epsilon_1 \leq y_{j_\nu} \leq x_{j_\nu},$$

$$|2f_{\mathbb{Q}}(y) - 1| \leq g_{\nu,x}(y_{j_\nu} - x_{j_\nu}) \text{ for } x_{j_\nu} \leq y_{j_\nu} \leq x_{j_\nu} + \epsilon_1,$$

where $y = (x_1, \ldots, x_{j_\nu-1}, y_{j_\nu}, x_{j_\nu+1}, \ldots, x_d)$.

4. $b^\nu_{j_\nu} - a^\nu_{j_\nu} \geq \epsilon_2$ for all $\nu = 1, \ldots, u$.

Note that $g \in \mathcal{H}_{\beta,B}$ implies $g(0) = \partial^{\beta} g(0) = 0$. The idea is to use sets defined by realizations of neural networks to approximate $G^*_{\mathbb{Q}} \in \mathcal{K}_{\mathbb{Q},\beta,B,\epsilon_1,\epsilon_2,r,d}$ from Definition 3.4 for a suitable class \mathcal{F} in order to apply Proposition 2.1. Figure 1 shows an example for an element of $\mathcal{K}_{\mathbb{Q},\beta,B,\epsilon_1,\epsilon_2,r,d}$, where \mathcal{F} is the set of piecewise linear functions. The definition contains an additional condition on the function $f_{\mathbb{Q}}$ close to the boundary of $G^*_{\mathbb{Q}}$. Following the intuition mentioned in [17], for $\beta > 0$ condition (ii) in Theorem 2.1 means that $f_{\mathbb{Q}}$
Figure 1: Example for an element of $K_{Q,\beta,B,\epsilon_1,\epsilon_2,12,2}$, where F is the set of piecewise linear functions. The grey objects represent the set. The small boxes represent a possible choice for D_1,\ldots,D_{12}.

acts like x^β close to the boundary of G_0^*, where $\kappa = 1 + \beta$. More precisely, condition (ii) requires that f_Q does not increase slower than x^β. In order to prove the combination of conditions (iii) and (iv), we require that β is the correct rate, meaning that f_Q does not increase faster than x^β. In Section 4 we prove that this condition does not lower the complexity of the problem. Thus, the rates obtained by [17] are still optimal.

3.3 Main Theorems

We begin by stating the central result of this article. We then use this result to show consistency results for more specific cases. The rates we obtain in Theorem 3.5 are optimal up to a log factor. In the following, all proofs of this section are given in Appendix B.

Theorem 3.5. Let $\beta \geq 0$, $B, \rho > 0$ and $d \in \mathbb{N}$ with $d \geq 2$. Let F be a set of functions

$$\gamma : [0, 1]^{d-1} \to \mathbb{R}$$

such that the following holds. There exist $\epsilon_0, C_1, C_2 > 0$ and $C_3, C_4 \in \mathbb{N}$ such that for any $\gamma \in F$ and any $\epsilon \in (0, \epsilon_0)$ there is a neural network Φ with $L \leq L_0(\epsilon) := C_1 \lceil \log(\epsilon^{-1}) \rceil$ layers, sparsity $s \leq s_0(\epsilon) := C_2 \epsilon^{-\rho} \log(\epsilon^{-1})$ and weights in W_c with $c = c_0(\epsilon) := C_3 + C_4 \lceil \log(\epsilon^{-1}) \rceil$ such that

$$\|R(\Phi)(x) - \gamma\|_\infty \leq \epsilon.$$
Define $\kappa := 1 + \beta$ and let \mathcal{Q} be a class of potential joint distributions Q of (X,Y) such that the following conditions hold.

(a) There is a constant $M > 1$ such that for all $Q \in \mathcal{Q}$ the marginal distribution of Q_X has a Lebesgue density bounded by M.

(b) There are constants $r \in \mathbb{N}$ and $\epsilon_1, \epsilon_2 > 0$ such that for all $Q \in \mathcal{Q}$ the Bayes rule satisfies $G_Q^* \in K_{Q,\beta,B,r,\epsilon_1,\epsilon_2,d}^F$.

(c) We have
\[d_{f_Q}(G, G_Q^*) \geq c_1 d_{\Delta}(G, G_Q^*) \]
for some constant $c_1 > 0$, all $G \in \mathcal{N}$ and all $Q \in \mathcal{Q}$, where
\[\mathcal{N} := \bigcup_{n \in \mathbb{N}} \mathcal{N}_{n,n,n} \]
is the class of sets corresponding to any neural network.

Let
\[\tau_n := n \frac{1}{\log^2(n)}. \]

Then there exist constants $C_1', C_2', C_3' > 0$ and $C_4' \in \mathbb{N}$ such that for all $p \geq 1$ we have
\[\lim_n \sup_{Q \in \mathcal{Q}} \tau_n^{p_c} \mathbb{E}[d_{f_Q}(\hat{G}_n, G_Q^*)] < \infty, \]
\[\lim_n \sup_{Q \in \mathcal{Q}} \tau_n^p \mathbb{E}[d_{\Delta}(\hat{G}_n, G_Q^*)] < \infty, \]
where
\[\hat{G}_n := \arg \min_{G \in \mathcal{N}_n} R_n(G). \]

with $\mathcal{N}_n = \mathcal{N}_{C_1'L_0(\tau_n^{-1}), C_2'\epsilon_0(\tau_n^{-1}), C_3'c_0(\tau_n^{-1})}^n$.

3.4 Results for Regular Boundaries

We can now prove results for specific classes of sets \mathcal{F} to obtain convergence results. A first important example is the class $\mathcal{F}_{\beta,B,d}$. The following Lemma is a consequence of Theorem 5 in [21].

Lemma 3.6. Let $\beta, B > 0$ and $d \in \mathbb{N}$. Then there exist $\epsilon_0, c_1, c_2 > 0, c_3, c_4 \in \mathbb{N}$ such that the following holds. For any function $\gamma \in \mathcal{F}_{\beta,B,d}$ and any $\epsilon \in (0, \epsilon_0)$, there exists a neural network Φ with $L \leq L_0(\epsilon) := c_1 \lceil \log(\epsilon^{-1}) \rceil$ layers,
sparsity $s \leq s_0(\epsilon) := c_2 \epsilon^{-\frac{d}{\beta}} \log(\epsilon^{-1})$ and weights in \mathcal{W}_c with $c = c_0(\epsilon) := c_3 + c_4 \log(\epsilon^{-1})$ such that

$$\|R(\Phi)(x) - \gamma\|_{\infty} \leq \epsilon.$$

Corollary 3.7. Let $\beta_1 \geq 0, B_1, \beta_2, B_2 > 0$ and $d \in \mathbb{N}$ with $d \geq 2$. Let \mathcal{Q} be a class of potential joint distributions \mathbb{Q} of (X,Y). Assume (a),(b),(c) from Theorem 3.5 hold with $\rho := \frac{d-1}{\beta_2}, \beta := \beta_1, B := B_1$ as well as $\mathcal{F} := \mathcal{F}_{\beta_2,B_2,d-1}$. Let

$$\tau_n := \frac{1}{n \cdot \frac{b}{\log^2(n)}}.$$

Then there exist constants $C_1', C_2' > 0$ and $C_3' \in \mathbb{N}$ such that for all $p \geq 1$ we have

$$\limsup_{n \to \infty} \sup_{\mathcal{Q} \in \mathcal{Q}} \tau_n^p \mathbb{E}[d_{f_{\mathcal{Q}}}^{p}(\hat{G}_n,G^*_\mathcal{Q})] < \infty,$$

$$\limsup_{n \to \infty} \sup_{\mathcal{Q} \in \mathcal{Q}} \tau_n^p \mathbb{E}[d_{\Delta}^{p}(\hat{G}_n,G^*_\mathcal{Q})] < \infty,$$

where

$$\hat{G}_n := \arg \min_{G \in \mathcal{N}_n} R_n(G)$$

with $\mathcal{N}_n = \mathcal{N}_{c_1'L_0(\tau_n^{-1}),c_2's_0(\tau_n^{-1}),c_3'c_0(\tau_n^{-1})}$ and L_0, s_0, c_0 from Lemma 3.6.

Corollary 3.7 together with Theorem 4.1 from the next chapter prove optimal convergence rates, which was the main goal of this paper.

Following up, note that the rates we receive from Corollary 3.7 are affected by the curse of dimensionality. Observe that the rates obtained by Theorem 3.5 are influenced by condition (c) on the one hand and the ability of neural networks to approximate sets in \mathcal{F} on the other. The dependence on the dimension d in Corollary 3.7 comes from the latter. Thus, a natural approach to circumvent the curse of dimensionality is to approximate a smaller set \mathcal{F}. Intuitively, it is clear that without strong restrictions on the distribution we can only overcome the curse if the complexity of the boarders of the sets we approximate is small enough so that they themselves can overcome the curse. In the literature, many different sets are considered which infer useful approximation capabilities of neural networks. Here, we use a class of sets introduced by [21] which is close to class $\mathcal{F}_{\beta,B,d}$.

15
Definition 3.8. Let $r \in \mathbb{N}$, $t \in \mathbb{N}^r$, $d \in \mathbb{N}^{r+1}$, $\beta \in \mathbb{R}^r$ and $B > 0$ with $t_i \leq d_i$, $\beta_i > 0$ for $i = 1, \ldots, r$, $d_{r+1} = 1$. Define

$$
G_{r,t,\beta,B,d} := \{ \gamma = \gamma_r \circ \cdots \circ \gamma_1 \mid \gamma_i = (\gamma_{ij} \circ t_{ij})_{j=1}^{d_{i+1}}, \quad \gamma_{ij} : \mathbb{R}^{t_i} \to \mathbb{R} \}
$$

where

$$
ID_i = \{ \iota : \mathbb{R}^{t_i} \to \mathbb{R}^{d_i} \mid \iota(x) = (x_{i_1}, \ldots, x_{i_{t_i}}), \quad i_j \in \{1, \ldots, d_i\} \}.
$$

Instead of requiring that γ_{ij} is supported on $[0,1]^{t_i}$, we could have used the condition that γ_{ij} is supported on $\prod_{k=1}^{t_i} [a_k, b_k]$ for some values $a_k, b_k \in \mathbb{R}$. However, this does not enlarge the class considerably. It can easily be seen that we can instead increase the bound B to find an even larger class. The idea for using the set $G_{r,t,\beta,B,d}$ is that its complexity does not depend on the input dimension d_1, but only on the most difficult component to approximate. The complexity of the components depend on their effective dimension t_i and their implied smoothness. As described by [21], the correct smoothness parameter to consider is

$$
\beta^*_i := \beta_i \prod_{k=i+1}^{r} \min\{\beta_k, 1\}.
$$

Examples for sets that can profit from Definition 3.8 are additive models ($r = 1, t_1 = 1$), interaction models of order k ($r = 1, t_1 = k$), or multiplicative models (they are a subset of $G_{r,t,\beta,B,d}$ when $r = \log_2(d) + 1, t_i = 2$ for all i).

Next, our goal is to establish a convergence result when the set of boundary functions is $G_{r,t,\beta,B,d}$. Similarly to the approach above, we first provide a lemma which provides approximation results using neural networks.

Lemma 3.9. Let $r \in \mathbb{N}$, $t \in \mathbb{N}^r$, $d \in \mathbb{N}^{r+1}$, $\beta \in \mathbb{R}^r$ and $B > 0$ with $t_i \leq d_i$, $\beta_i > 0$ for $i = 1, \ldots, r$, $d_{r+1} = 1$. Let $G_{r,t,\beta,B,d}$ be defined as in Definition 3.8 and define

$$
\rho := \max_{i=1,\ldots,r} \left(\frac{t_i}{\beta^*_i} \right).
$$

Then there exist $\epsilon_0, c_1, c_2 > 0, c_3, c_4 \in \mathbb{N}$ such that the following holds. For any function $\gamma \in G_{r,t,\beta,B,d}$ and any $\epsilon \in (0, \epsilon_0)$, there exists a neural network Φ with $L \leq L_0(\epsilon) := c_1 \lceil \log(\epsilon^{-1}) \rceil$ layers, sparsity $s \leq s_0(\epsilon) := c_2 \epsilon^{-\rho} \log(\epsilon^{-1})$ and weights in W_0 with $e = c_0(\epsilon) := c_3 + c_4 \lceil \log(\epsilon^{-1}) \rceil$ such that

$$
\|R(\Phi)(x) - \gamma\|_\infty \leq \epsilon.
$$
The following corollary establishes the corresponding convergence result. Theorem 4.2 provides the lower bound in the case where \(t_i \leq \min\{d_1, \ldots, d_i\} \).

Corollary 3.10. Let \(r_2 \in \mathbb{N} \), \(t \in \mathbb{N}^{r_2} \), \(d \in \mathbb{N}^{r_2+1} \), \(\beta_1 \geq 0 \), \(\beta_2 \in \mathbb{R}^{r_2} \), and \(B_1, B_2 > 0 \) with \(\beta_{2,i} > 0 \) for \(i = 1, \ldots, r_2 \), \(d_{r_2+1} = 1 \). Additionally, \(t_1 < d_1 \) and \(t_i \leq d_i \) for \(i \neq 1 \). Define \(d' \in \mathbb{N}^{r_2+1} \) with \(d'_1 = d_1 - 1 \), \(d'_i = d_i \) for \(i \neq 1 \) and

\[
\rho := \max_{i=1, \ldots, r_2} \frac{t_i}{\beta_{2,i}}
\]

Define \(\kappa := 1 + \beta_1 \) and let \(\Omega \) be a class of potential joint distributions \(Q \) of \((X,Y)\) such that the following conditions hold.

(a) There is a constant \(M > 1 \) such that for all \(Q \in \Omega \) the marginal distribution of \(Q_X \) has a Lebesgue density bounded by \(M \).

(b) There are constants \(r_1 \in \mathbb{N} \) and \(\epsilon_1, \epsilon_2 > 0 \) such that for all \(Q \in \Omega \) the bayes rule satisfies \(G^*_Q \in K_{Q,\beta_1,B_1,\epsilon_1,\epsilon_2,r_1,d_1}^{r_2,t,\beta_2,B_2,d'} \) with \(F := G_{r_2,t,\beta_2,B_2,d'} \).

(c) We have

\[
d_{f_q}(G, G^*_Q) \geq c_1 d_{\Delta}(G, G^*_Q)
\]

for some constant \(c_1 > 0 \), all \(G \in N \) and all \(Q \in \Omega \), where

\[
N := \bigcup_{n \in \mathbb{N}} N_{n,n,n}
\]

is the class of sets corresponding to any neural network.

Let

\[
\tau_n := \frac{n^{2s_p-1}}{\log \delta(n)}
\]

Then there exist constants \(C'_1, C'_2 > 0 \) and \(C'_3 \in \mathbb{N} \) such that for all \(p \geq 1 \) we have

\[
\limsup_{n \to \infty} \sup_{Q \in \Omega} \tau_{n}^{\text{occ}} \mathbb{E}[d^p_{f_q}(\hat{G}_n, G^*_Q)] < \infty,
\]

\[
\limsup_{n \to \infty} \sup_{Q \in \Omega} \tau_{n}^{\text{occ}} \mathbb{E}[d^p_{\Delta}(\hat{G}_n, G^*_Q)] < \infty,
\]

where

\[
\hat{G}_n := \arg \min_{G \in N_n} R_n(G).
\]

with \(N_n = \mathcal{N}_{C'_1 L_0(\tau_n^{-1}), C'_2 s_0(\tau_n^{-1}), C'_3 c_0(\tau_n^{-1})} \).
Note that Corollary 3.10 is a generalisation of Corollary 3.7. The rate now depends on ρ which in turn depends on t_1, \ldots, t_{r_2} instead of the input dimension d_1. Clearly, the effective dimensions t_i can be much smaller than the input dimension d_1, for example, when the boundary functions come from an additive function.

4 Lower Bound

We now establish lower bounds on the convergence rates from corollaries 3.7 and 3.10. Note that the lower bounds also prove that the rates obtained in Theorem 3.5 can not be improved up to a log-factor. Since Corollary 3.10 is a generalisation of 3.7, we only have to prove a lower bound for the setting given in the former. For clarity, we provide both statements. The proofs of this section can be found in Appendix C.

Theorem 4.1. Let $\beta_1 \geq 0, B_1, \beta_2, B_2, \rho > 0$ and $d \in \mathbb{N}$ with $d \geq 2$. Let Ω be the class of all potential joint distributions Q of (X,Y) such that (a),(b) from Theorem 3.5 hold with $\rho := \frac{d-1}{\beta_2}, \kappa := 1 + \beta_1, \beta := \beta_1, B := B_1, F := F_{\beta_2, B_2, d-1}$ and some $M > 1, r \in \mathbb{N}, \epsilon_1, \epsilon_2 > 0$. Let (c) hold with $c_1 > 0$ large enough and set

$$
\tau_n := n^{1 \frac{c_1}{2 \beta_2 + p - 1}}.
$$

Then

$$
\liminf_{n \to \infty} \inf_{G_n \in \mathcal{G}} \sup_{Q \in \Omega} \tau_n^p \mathbb{E}\left[d_\Delta^p (G_n, G_{\ast}^n) \right] > 0,
$$

$$
\liminf_{n \to \infty} \inf_{G_n \in \mathcal{G}} \sup_{Q \in \Omega} \tau_n^{p\kappa} \mathbb{E}\left[d_{\alpha}^p (G_n, G_{\ast}^n) \right] > 0
$$

for every $p \geq 0$, where \mathcal{G} contains all estimators depending on the data $(X_1, Y_1), \ldots, (X_n, Y_n)$.

Intuitively, B_1 bounds the factor of the x^{β_2}-term of f_Q close to the boundary from above. On the other hand, c_1 bounds this term from below. Thus, not every combination of $B_1, c_1 > 0$ is possible. We prove Theorem 4.1 for large $c_1 > 0$. We do not provide the exact ratio of B and c_1 required since it is not important for the statement. Lastly, the lower bound corresponding to Corollary 3.10 is given.

Theorem 4.2. Let $r_2 \in \mathbb{N}, t \in \mathbb{N}^{r_2}, d \in \mathbb{N}^{r_2+1}, \beta_1 \geq 0, \beta_2 \in \mathbb{R}^{r_2}$, and $B_1, B_2 > 0$ with $\beta_2, i > 0$ for $i = 1, \ldots, r_2$, $d_{r_2+1} = 1$. Additionally, $t_1 < d_1$ and $t_i \leq \min\{d_1, \ldots, d_i\}$ for $i \neq 1$. Let

$$
\rho := \max_{i=1, \ldots, r_2} \frac{t_i}{\beta_2, i}
$$

Then...
Define $\kappa := 1 + \beta_1$ and let \mathcal{Q} be the class of all potential joint distributions \mathbb{Q} of (X, Y) such that (a), (b) from Corollary 3.10 hold for some $M > 1$, $r \in \mathbb{N}$, $\epsilon_1, \epsilon_2 > 0$. Let (c) hold with $c_1 > 0$ large enough and set

$$
\tau_n := n^{1 - \frac{1}{2\kappa + p - 1}}.
$$

Then

$$
\liminf_{n \to \infty} \inf_{G_n \in \mathfrak{G}} \sup_{\mathbb{Q} \in \mathcal{Q}} \tau_n^n \mathbb{E} \left[d^p (G_n, G^*_\mathbb{Q}) \right] > 0,
$$

$$
\liminf_{n \to \infty} \inf_{G_n \in \mathfrak{G}} \sup_{\mathbb{Q} \in \mathcal{Q}} \tau_n^{p^*} \mathbb{E} \left[d^p_{f_0} (G_n, G^*_\mathbb{Q}) \right] > 0
$$

for every $p \geq 0$, where \mathfrak{G} contains all estimators depending on the data $(X_1, Y_1), \ldots, (X_n, Y_n)$.

5 Concluding Remarks

We establish optimal convergence rates up to a log-factor in a classification setting under the (1.1) using neural networks. Theorem 3.5 can be applied for many different boundary functions. The complexity of the class of boundary functions \mathcal{F} is one of the main driving factors of the convergence rate. In particular, many approaches which circumvent the curse of dimensionality in a regression setting can be used to circumvent the curse in this classification setting.

Note that this paper is of a theoretical nature. While sparsity constraints are considered thoroughly in the theoretical literature, they are not widely used in practice. Additionally, we did not discuss the minimization required for the calculation of \hat{G}_n. This is a very interesting but complicated topic which is not in the scope of this article. Observe that the class of neural networks used in Theorem 3.5 depends on κ as well as ρ. We believe that one can extend the results of this paper by either having adaptive classes of neural networks or a class independent of κ and ρ in a similar manner to [22].

One obstacle to overcome is the fact that the conditions on the probability distribution \mathbb{Q} required are not strictly weaker for larger κ and ρ.

Lastly, while the goal of this paper is to prove results considering neural networks, it also contains new insights on the noise condition (1.1). In order to establish optimal convergence, an additional condition in order to show approximation results of neural networks with respect to the metric d_{f_0} is necessary. Intuitively, the reverse inequality is required for certain sets. Note that requiring the reverse inequality is an overly restrictive assumption which
holds for almost no classes of possible distributions \(Q \) for \(\kappa \neq 1 \). This proved to be a major challenge and is solved by (3.) in Definition 3.4. While this condition is always also satisfied for larger but not lower \(\beta \) (and thus \(\kappa \)), the reverse is true in condition (1.1). Thus, together the requirement is that \(\kappa \) is the "correct rate". Note that condition (3.) still allows for highly non-continuous \(f_Q \) close to the boundary of \(G_Q^* \). This is essential, since considering only smooth \(f_Q \) close to the boundary leads to different convergence rates as shown in Theorem 2 of [11].

A General Convergence Results

The proof of Proposition 2.1 is similar to the proof of Theorem 2 in [17]. For the sake of completion, we provide the entire argumentation here anyway.

Proof of Proposition 2.1. Let \(n \geq N_0 \). Without loss of generality, we may assume that \(\tau_n \leq n^{\frac{1}{2\kappa - 1}} \), since otherwise the conditions are also satisfied when using \(\bar{\tau}_n = n^{\frac{1}{2\kappa - 1}} \). We begin by proving the assertion for the first term. The idea is to bound

\[
\mathbb{P}(d_Q(\hat{G}_n, G_Q^*) > t\tau_n^{-\kappa})
\]

for some \(t > 0 \). First, observe that for any \(G \in \mathcal{N}_n \)

\[
R_n(G) - R_n(G_Q^*) - d_Q(G, G_Q^*) \\
= \frac{1}{n} \sum_{i=1}^{n} (Y_i - 1(X_i \in G))^2 - \frac{1}{n} \sum_{i=1}^{n} (Y_i - 1(X_i \in G_Q^*))^2 \\
- \left(\mathbb{E}[(Y - 1(X \in G))^2] - \mathbb{E}[(Y - 1(X \in G_Q^*))^2] \right) \\
= \frac{1}{n} \sum_{i=1}^{n} h_G(X_i, Y_i) - \mathbb{E}[h_G(X_i, Y_i)] =: \frac{1}{n} \sum_{i=1}^{n} U_i(G)
\]

holds, where

\[
h_G : \mathbb{R}^d \times \{0, 1\} \to \mathbb{R}, \quad h_G(x, y) = (y - 1(x \in G))^2 - (y - 1(x \in G_Q^*))^2.
\]

Regarding (iii), for every \(n \in \mathbb{N} \) there exists a \(G_n \in \mathcal{N}_n \) such that

\[
d_Q(G_n, G_Q^*) \leq c_2 \tau_n^{-\kappa}.
\]

For \(t > 0 \), define

\[
\Xi_t := \left\{ G \in \mathcal{N}_n \mid d_Q(G, G_Q^*) \geq t\tau_n^{-\kappa} \right\}.
\]
Then, for \(t \geq 4c_2 \) and \(G \in \Xi_t \) we have

\[
\frac{1}{2} d_{f_0}(G, G^*_Q) - d_{f_0}(G_n, G^*_Q) \geq c_2 \tau_n^{-\kappa}. \tag{A.1}
\]

Recall that by definition \(\hat{G}_n \) minimizes \(R_n(\cdot) \). Therefore, in view of the calculations above, for \(t \geq 4c_2 \)

\[
P(d_{f_0}(\hat{G}_n, G^*_Q) > t\tau_n^{-\kappa})
\leq P(\exists G \in \Xi_t : R_n(G) - R_n(G_n) \leq 0)
\]

\[
= P\left(\exists G \in \Xi_t : R_n(G) - R_n(G^*_Q) - (R_n(G_n) - R_n(G^*_Q) \leq 0) \right)
\]

\[
= P\left(\exists G \in \Xi_t : d_{f_0}(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G)
- d_{f_0}(G_n, G^*_Q) - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \leq 0 \right)
\]

holds. Using inequality (A.1) in the third row yields

\[
P\left(\exists G \in \Xi_t : d_{f_0}(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G)
- d_{f_0}(G_n, G^*_Q) - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \leq 0 \right)
\]

\[
= P\left(\exists G \in \Xi_t : \left(\frac{1}{2} d_{f_0}(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G)
+ \left(\frac{1}{2} d_{f_0}(G, G^*_Q) - d_{f_0}(G_n, G^*_Q) - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right) \leq 0 \right) \right)
\]

\[
\leq P\left(\exists G \in \Xi_t : \frac{1}{2} d_{f_0}(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq 0 \right)
+ P\left(c_2 \tau_n^{-\kappa} - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \leq 0 \right)
\]

\[
\leq P\left(\exists G \in \Xi_t : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq \frac{1}{2} d_{f_0}(G, G^*_Q) \right)
+ P\left(c_2 \tau_n^{-\kappa} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right)
\]

21
and thus
\[
\mathbb{P}(d_{f_{Q}}(\hat{G}_n, G_{Q}^\ast) > t\tau_n^n)
\]
\[
\leq \mathbb{P}\left(\exists G \in \Xi_t : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq -\frac{1}{2}d_{f_{Q}}(G, G_{Q}^*) \right)
\]
\[
+ \mathbb{P}\left(c_2\tau_n^{-\kappa} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right).
\]

It remains to find upper bounds for the two terms above. In order to bound the first term, note that for \((x, y) \in \mathbb{R}^d \times \{0, 1\}\) and any \(G \in \mathcal{N}_n\) we have
\[
|h_{G}(x, y)| = \begin{cases}
1 - 1(x \in G) - (1 - 1(x \in G_{Q}^*)) & \text{for } y = 1, \\
1(x \in G) - 1(x \in G_{Q}^*) & \text{for } y = 0 \\
= 1(x \in G \Delta G_{Q}^*) \end{cases}
\]

For all \(i = 1, \ldots, n\) this implies \(|U_i(G)| \leq 2\) and
\[
\mathbb{E}[U_i(G)^2] \leq \mathbb{E}[h_{G}(X_i, Y_i)^2] = \mathbb{E}[1(x \in G \Delta G_{Q}^*)] = d_{\Delta}(G, G_{Q}^*) \leq c_1^{-\frac{1}{2}} d_{f_{Q}}(G, G_{Q}^*)^\frac{1}{2}
\]

where the last inequality follows from (ii). By Bernstein’s inequality, for all \(a > 0\)
\[
\mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} U_i(G) \right| \geq a \right) \leq 2 \exp\left(-\frac{k_1 na^2}{a + c_1^{-\frac{1}{2}} d_{f_{Q}}(G, G_{Q}^*)^\frac{1}{2}} \right)
\]

holds, where \(k_1 > 0\) is a constant. By setting \(a = \frac{1}{2}d_{f_{Q}}(G, G_{Q}^*)\) and observing that \(d_{f_{Q}}(G, G_{Q}^*) \leq 1\), we have
\[
\mathbb{P}\left(\left| \frac{1}{n} \sum_{i=1}^{n} U_i(G) \right| \geq \frac{1}{2}d_{f_{Q}}(G, G_{Q}^*) \right) \leq 2 \exp\left(-k_2 nd_{f_{Q}}(G, G_{Q}^*)^{2\kappa-1} \right)
\]

for some constant \(k_2 > 0\). Noting that by definition \(\tau_n \leq n^{\frac{1}{\kappa+2\kappa-1}}\) and \(\kappa \geq 1\).
by (iv) we have

\[
P \left(\exists G \in \Xi_t : \left| \frac{1}{n} \sum_{i=1}^{n} U_i(G) \right| \geq \frac{1}{2} d_{f_3}(G, G^*_Q) \right)
\]

\[
\leq 2 \exp \left(c_3 n^{\frac{\rho}{\tau_n - \kappa}} \right) \exp \left(- k_2 n l_{\frac{2n-1}{\kappa}} - \frac{1}{\kappa} \right)
\]

\[
\leq 2 \exp \left(c_3 n^{\frac{\rho}{\tau_n - \kappa}} \right) \exp \left(- k_2 n l_{\frac{2n-1}{\kappa}} + \frac{1}{\kappa} \right)
\]

\[
\leq 2 \exp \left(- c_3 \tau_n^\rho \right)
\]

for all \(t \geq \left(\frac{2c_3}{k_2} \right)^{\frac{n}{2\kappa - 1}} \). To bound the second term we use Bernstein’s inequality with \(a = c_2 \tau_n^{-\kappa} \) and receive

\[
P \left(c_2 \tau_n^{-\kappa} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right) \leq \exp \left(- \frac{k_1 n c_{2,3,4} \tau_n^{-2\kappa}}{c_2 \tau_n^{-\kappa} + c_1 \frac{1}{n} d_{f_3}(G^*_Q, G_n) \frac{1}{\kappa}} \right)
\]

\[
\leq \exp \left(- k_3 n \tau_n^{-2\kappa + 1} \right)
\]

\[
\leq \exp \left(- c_3 \tau_n^\rho \right)
\]

for some constant \(k_3 > 0 \). Therefore, for \(t \geq \max \left\{ 4c_2, \left(\frac{2c_3}{k_2} \right)^{\frac{n}{2\kappa - 1}} \right\} \) we find an upper bound

\[
P \left(d_{f_3}(\hat{G}_n, G^*_Q) > t \tau_n^{-\kappa} \right)
\]

\[
\leq P \left(\exists G \in \Xi_t : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq - \frac{1}{2} d_{f_3}(G, G^*_Q) \right) + P \left(c_2 \tau_n^{-\kappa} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right)
\]

\[
\leq 2 \exp \left(- c_3 \tau_n^\rho \right) + \exp \left(- k_3 \tau_n^\rho \right)
\]

Observing that \(d_{f_3}(\hat{G}_n, G^*_Q) \leq 1 \) we conclude

\[
E \left[d_{f_3}^p(\hat{G}_n, G^*_Q) \right]
\]

\[
\leq E \left[\mathbb{1} \left(d_{f_3}(\hat{G}_n, G^*_Q) > t \tau_n^{-\kappa} \right) \right] + t \tau_n^{-\kappa} E \left[\mathbb{1} \left(d_{f_3}(\hat{G}_n, G^*_Q) \leq t \tau_n^{-\kappa} \right) \right]
\]

\[
\leq 2 \exp \left(- c_3 \tau_n^\rho \right) + \exp \left(- k_3 \tau_n^\rho \right) + t \tau_n^{-\kappa p}
\]

23
and thus
\[
\lim_{n \to \infty} \sup_{Q \in \Omega} \tau_n^{sp} \mathbb{E}[d_{f_Q}^p(\hat{G}_n, G_Q^*)] \\
\leq \lim_{n \to \infty} \tau_n^{sp} \left(2 \exp \left(-c_3 \tau_n^{sp}\right) + \exp \left(-k_3 \tau_n^{sp}\right) + t \tau_n^{-sp}\right) \\
< \infty.
\]

Proving that the second term in the assertion is finite follows directly, since regarding (ii) for all \(Q \in \Omega\) and sets \(G \in \mathcal{N}_n\) it holds that
\[d_{f_Q}(G, G_Q^*) \geq c_1 d_{\Delta}(G, G_Q^*).\]

\[\square\]

Proof of Proposition 2.2. Let \(n \geq N_0\). Without loss of generality, we may assume that \(\tau_n \leq n^{1/2k_{2s}-1}\), since otherwise the conditions are also satisfied when using \(\tau_n = n^{1/2k_{2s}-1}\). The idea is to bound
\[\mathbb{P}(d_{f_Q}(\hat{G}_n, G_Q^*) > t \tau_n^{-1})\]
for some \(t > 0\). First, observe that for any \(G \in \mathcal{N}_n\)
\[R_n(G) - R_n(G_Q^*) - d_{f_Q}(G, G_Q^*) \]
\[= \frac{1}{n} \sum_{i=1}^{n} (Y_i - 1(X_i \in G))^2 - \frac{1}{n} \sum_{i=1}^{n} (Y_i - 1(X_i \in G_Q^*))^2 \\
- \left(\mathbb{E}\left[(Y - 1(X \in G))^2\right] - \mathbb{E}\left[(Y - 1(X \in G_Q^*))^2\right]\right) \\
= \frac{1}{n} \sum_{i=1}^{n} h_G(X_i, Y_i) - \mathbb{E}[h_G(X_i, Y_i)] =: \frac{1}{n} \sum_{i=1}^{n} U_i(G)\]
holds, where
\[h_G : \mathbb{R}^d \times \{0, 1\} \to \mathbb{R}, \ h_G(x, y) = (y - 1(x \in G))^2 - (y - 1(x \in G_Q^*))^2.\]

Regarding (ii), for every \(n \in \mathbb{N}\) there exists a \(G_n \in \mathcal{N}_n\) such that
\[d_{f_Q}(G_n, G_Q^*) \leq c_2 \tau_n^{-1}.
\]

For \(t > 0\), define
\[\Xi_t := \left\{ G \in \mathcal{N}_n \mid d_{f_Q}(G, G_Q^*) \geq t \tau_n^{-1} \right\}.
\]
Then, for $t \geq 4c_2$ and $G \in \Xi_t$ we have

$$
\frac{1}{2} df_q(G, G^*_Q) - df_q(G_n, G^*_Q) \geq c_2 \tau_n^{-1}.
$$

(A.2)

Recall that by definition \hat{G}_n minimizes $R_n(\cdot)$. Therefore, in view of the calculations above, for $t \geq 4c_2$

$$
\mathbb{P}(d_f(\hat{G}_n, G^*_Q) > t \tau_n^{-1}) \\
\leq \mathbb{P}(\exists G \in \Xi_t : R_n(G) - R_n(G_n) \leq 0) \\
= \mathbb{P}(\exists G \in \Xi_t : R_n(G) - R_n(G^*_Q) - (R_n(G_n) - R_n(G^*_Q) \leq 0) \\
= \mathbb{P}(\exists G \in \Xi_t : df_q(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G) \\
- df_q(G_n, G^*_Q) - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \leq 0)
$$

holds. Using inequality (A.2) in the third row yields

$$
\mathbb{P}(\exists G \in \Xi_t : df_q(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G) \\
- df_q(G_n, G^*_Q) - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \leq 0) \\
= \mathbb{P}(\exists G \in \Xi_t : \left(\frac{1}{2} df_q(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G) \right) \\
\left(\frac{1}{2} df_q(G_n, G^*_Q) - df_q(G_n, G^*_Q) - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right) \leq 0) \\
\leq \mathbb{P}(\exists G \in \Xi_t : \frac{1}{2} df_q(G, G^*_Q) + \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq 0) \\
+ \mathbb{P}(c_2 \tau_n^{-1} - \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \leq 0) \\
\leq \mathbb{P}(\exists G \in \Xi_t : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq \frac{1}{2} df_q(G, G^*_Q)) \\
+ \mathbb{P}(c_2 \tau_n^{-1} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n))
$$

25
and thus
\[\Pr(\hat{d}_Q(\hat{G}_n, G^*_Q) > t\tau^{-1}) \]
\[\leq \Pr\left(\exists G \in \Xi : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq -\frac{1}{2} d_Q(G, G^*_Q) \right) \]
\[+ \Pr\left(c_2\tau_n^{-1} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right) \]
It remains to find upper bounds for the two terms above. In order to bound the first term, note that for \((x, y) \in \mathbb{R}^d \times \{0, 1\}\) and any \(G \in N_n\) we have
\[|h_G(x, y)| = \begin{cases} |1 - 1(x \in G) - (1 - 1(x \in G^*_Q))|, & \text{for } y = 1, \\ |1(x \in G) - 1(x \in G^*_Q)|, & \text{for } y = 0 \end{cases} \]
\[= \begin{cases} |1(x \in G^*_Q - 1(x \in G)|, & \text{for } y = 1, \\ |1(x \in G) - 1(x \in G^*_Q)|, & \text{for } y = 0 \end{cases} \]
\[= 1(x \in G \Delta G^*_Q). \]
For all \(i = 1, \ldots, n\) this implies \(|U_i(G)| \leq 2\) and
\[\mathbb{E}[U_i(G)^2] \leq \mathbb{E}[h_G(X_i, Y_i)^2] = \mathbb{E}[1(x \in G \Delta G^*_Q)] = d_\Delta(G, G^*_Q) \leq 1. \]
By Bernstein’s inequality, for all \(a > 0\)
\[\Pr\left(\frac{1}{n} \sum_{i=1}^{n} U_i(G) \geq a \right) \leq 2 \exp\left(-\frac{k_1na^2}{a + 1}\right) \]
holds, where \(k_1 > 0\) is a constant. By setting \(a = \frac{1}{2} d_Q(G, G^*_Q)\), we have
\[\Pr\left(\frac{1}{n} \sum_{i=1}^{n} U_i(G) \geq \frac{1}{2} d_Q(G, G^*_Q) \right) \leq 2 \exp\left(-k_2nd_Q(G, G^*_Q)^2\right) \]
for some constant \(k_2 > 0\). Noting that by definition \(\tau_n \leq n^{\frac{1}{2\nu^2}}\), by (iii) we have
\[\Pr\left(\exists G \in \Xi : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \geq \frac{1}{2} d_Q(G, G^*_Q) \right) \]
\[\leq 2 \exp\left(c_3 n^{\frac{\rho}{2\nu^2}}\right) \exp\left(-k_2n^2\tau_n^{-2}\right) \]
\[\leq 2 \exp\left(c_3 n^{\frac{\rho}{2\nu^2}}\right) \exp\left(-k_2n^{-\frac{2}{\nu^2}+1}\right) \]
\[\leq 2 \exp\left(c_3 - k_2t^2\right) n^{\frac{\rho}{2\nu^2}} \]
\[\leq 2 \exp\left(-c_3\tau_n^{\rho}\right) \]
for all $t \geq \sqrt{\frac{2c_2}{k_2}}$. To bound the second term we use Bernstein’s inequality with $a = c_2 \tau_n^{-1}$ and receive

$$
P\left(c_2 \tau_n^{-1} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right) \leq \exp \left(- \frac{k_1 nc_2^2 \tau_n^{-2}}{c_2 \tau_n^{-1} + 1} \right)$$

$$
\leq \exp \left(- k_3 \tau_n^{-2} \right)$$

$$
\leq \exp \left(- k_3 \tau_n^p \right)
$$

for a constant $k_3 > 0$. Therefore, for $t \geq \max \left\{ 4c_2, \sqrt{\frac{2c_3}{k_2}} \right\}$ we find an upper bound

$$
P(d_{f_Q}(\hat{G}_n, G_Q^*) > t \tau_n^{-1})$$

$$
\leq P\left(\exists G \in \mathbb{E}_t : \frac{1}{n} \sum_{i=1}^{n} U_i(G) \leq -\frac{1}{2} d_{f_Q}(G, G_Q^*) \right)$$

$$
+ P\left(c_2 \tau_n^{-1} \leq \frac{1}{n} \sum_{i=1}^{n} U_i(G_n) \right)$$

$$
\leq 2 \exp \left(- c_3 \tau_n^p \right) + \exp \left(- k_3 \tau_n^p \right).
$$

Observing that $d_{f_Q}(\hat{G}_n, G_Q^*) \leq 1$, we conclude

$$
\mathbb{E}[d^p_{f_Q}(\hat{G}_n, G_Q^*)]$$

$$
\leq \mathbb{E} \left[1(d_{f_Q}(\hat{G}_n, G_Q^*) > t \tau_n^{-1}) \right] + t \tau_n^{-p} \mathbb{E} \left[1(d_{f_Q}(\hat{G}_n, G_Q^*) \leq t \tau_n^{-1}) \right]
$$

$$
\leq 2 \exp \left(- c_3 \tau_n^p \right) + \exp \left(- k_3 \tau_n^p \right) + t \tau_n^{-p}
$$

and thus

$$
\limsup_{n \to \infty} \sup_{f \in \mathcal{F}} \tau_n^p \mathbb{E}[d^p_{f_Q}(\hat{G}_n, G_Q^*)]$$

$$
\leq \limsup_{n \to \infty} \tau_n^p \left(2 \exp \left(- c_3 \tau_n^p \right) + \exp \left(- k_3 \tau_n^p \right) + t \tau_n^{-p} \right)
$$

$$
< \infty.
$$

\[\square \]

B Convergence Rates for Neural Networks

The first goal of this section is to prove Theorem 3.5. We then follow this up by proving Lemma 3.6 and Lemma 3.9.
B.1 Proof of the Main Result

In order to simplify the approximation results below, we introduce a lemma considering the parallelization and concatenation of two networks Φ_1 and Φ_2. Since these results have been shown in many other articles e.g. [18, 21], we omit the proof.

Lemma B.1. Let $R(\Phi_1) : \mathbb{R}^{d_1} \to \mathbb{R}^{d_3}$ and $R(\Phi_2) : \mathbb{R}^{d_2} \to \mathbb{R}^{d_4}$ be realizations of neural networks with L_1, L_2 layers, sparsity s_1, s_2 and weights in $\mathcal{W}_{c_1}, \mathcal{W}_{c_2}$, respectively.

- If $d_4 = d_1$, the concatenation of the functions $R(\Phi_1) \circ R(\Phi_2)$ can be realized by a neural network with $L = L_1 + L_2 + 1$ layers, sparsity $s \leq 2s_1 + 2s_2$ and weights in $\mathcal{W}_{\max\{c_1,c_2\}}$.

- If $d_1 = d_2$, the parallelization of the functions $P(R(\Phi_1), R(\Phi_2)) : \mathbb{R}^{d_1} \to \mathbb{R}^{d_3+d_4}$ given by

$$P(R(\Phi_1), R(\Phi_2))(x) := (R(\Phi_1)(x), R(\Phi_2)(x))$$

can be realized by a neural network with $L = \max\{L_1, L_2\}$ layers, sparsity $s \leq s_1 + s_2 + 2dL$ and weights in $\mathcal{W}_{\max\{c_1,c_2\}}$.

Note that we are only using weights $|w| \leq 1$. In order to approximate high numbers, we use the following lemma.

Lemma B.2. Let $c, M \in \mathbb{N}$. Then there exist neural networks Φ_1, Φ_2 with input dimensions $m_0 = 1$, at most $L = M + 1$ layers, sparsity $s \leq 4M + 1$ and weights in \mathcal{W}_c such that

$$R(\Phi_1)(x) = 2^M x,$$
$$R(\Phi_2)(x) = 2^M$$

for all $x \in [0, 1]$.

Proof. The network Φ_1 is given by

$$\Phi_1 := (W_1, b_1, \ldots, W_{M+1}, b_{M+1})$$

where $W_{M+1} = W_1^T = (1 1)$,

$$W_i = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$
for \(i = 2, \ldots, M \), \(b_i = (0, 0) \) for \(i \leq M \) and \(b_{M+1} = 0 \). The other network is
\[
\Phi_2 := (W_0, b_0, \ldots, W_{M+1}, b_{M+1}) = (W_0, b_0) \times \Phi_1
\]
where \(W_0 = 0 \) and \(b_0 = 1 \).

The layers of both networks are bounded by \(M+1 \). Sparsity of both networks can be bounded by
\[
s \leq 2 \cdot 2 + 4(M - 1) + 1 = 4M + 1.
\]

Next, we construct a neural network for each \(G \in K_{Q,\beta,B,\epsilon_1,\epsilon_2,r,d}^F \) which approximates \(G \) well with respect to the metric \(d_{f_0} \). The rough idea for the construction of the network is similar to ideas used in [18]. However, the precise construction in order to adapt to the metric in question differs substantially. The proof of the following theorem is one of the main contributions of this paper.

Theorem B.3. Let \(\beta \geq 0, B, \rho > 0 \) and \(d \in \mathbb{N} \) with \(d \geq 2 \). Let \(\mathcal{F} \) be a set of functions
\[
\gamma : [0, 1]^{d-1} \to \mathbb{R}
\]
such that the following holds. There exist \(\epsilon_0, C_1, C_2 > 0 \) and \(C_3, C_4 \in \mathbb{N} \) such that for any \(\gamma \in \mathcal{F} \) and any \(\epsilon \in (0, \epsilon_0) \) there is a neural network \(\Phi \) with \(L \leq L_0(\epsilon) := C_1 \lceil \log(\epsilon^{-1}) \rceil \) layers, sparsity \(s \leq s_0(\epsilon) := C_2 \epsilon^{-\rho} \log(\epsilon^{-1}) \) and weights in \(\mathcal{W} \) with \(c = c_0(\epsilon) := C_3 + C_4 \lceil \log(\epsilon^{-1}) \rceil \) such that
\[
\|R(\Phi)(x) - f\|_{\infty} \leq \epsilon.
\]

Define \(\kappa = 1 + \beta \) and let \(\mathfrak{Q} \) be a class of potential joint distributions \(Q \) of \((X,Y)\) such that the following conditions hold.

(a) There is a constant \(M > 1 \) such that for all \(Q \in \mathfrak{Q} \) the marginal distribution of \(Q_X \) has a Lebesgue density bounded by \(M \).

(b) There are constants \(r \in \mathbb{N} \) and \(\epsilon_1, \epsilon_2 > 0 \) such that for all \(Q \in \mathfrak{Q} \) the bayes rule satisfies \(G^*_Q \in K_{Q,\beta,B,\epsilon_1,\epsilon_2,r,d}^F \).

Let
\[
\tau_n := \frac{n^{\frac{1}{2\epsilon_1+r-1}}}{\log^2(n)}.
\]
Then there exist constants $C'_1, C'_2 > 0$ and $C'_3 \in \mathbb{N}$ such that the set
\[\mathcal{N}_n = \mathcal{N}_{C'_1 L_0(\tau_n^{-1}), C'_2 s_0(\tau_n^{-1}), C'_3 o(\tau_n^{-1})} \]

satisfies the following property. There is a constants $c_2 > 0$ and $N_0 \in \mathbb{N}$ such that for all $n \geq N_0$ and $Q \in \mathcal{Q}$ there is a $G \in \mathcal{N}_n$ with
\[d_{f_0}(G, G^*_Q) \leq c_2 \tau_n^{-\kappa}. \]

Proof. Set $\epsilon_0 := \min\{\epsilon_1, \frac{\epsilon_2}{4}\}$. Choose N_0 large enough such that $\tau_{N_0} \geq \epsilon_0^{-1}$. The proof is outlined as follows. We first construct a candidate set G using neural networks. Then, we show that it satisfies the desired properties.

Let $n \geq N_0$, $Q \in \mathcal{Q}$ and
\[G^*_Q = H_1 \cup \cdots \cup H_u \]

as in Definition 3.4 with $u \leq r$. We begin with the construction of the candidate set G. The idea is to define a network which approximates G^*_Q well on each set H_ν separately. Define $\nu, j, a_\nu, b_\nu, D_\nu, \gamma_\nu$ and $g_{\nu, x}$ as in Definition 3.4. First, for each $\nu = 1, \ldots, u$ we consider a set \tilde{D}_ν with boarders lying on a grid. The advantage of using $\tilde{H}_\nu = \tilde{D}_\nu \cap H_\nu$ instead of H_ν is twofold. On the one hand, the grid and parameters of \mathcal{N}_n are defined such that the boarders of \tilde{D}_ν can be constructed precisely. On the other, using the grid, two sets $\tilde{H}_{\nu_1}, \tilde{H}_{\nu_2}$ have a minimum distance for $\nu_1 \neq \nu_2$, which is important for our method to work. For $\delta > 0$ let
\[h_\delta = \max\left\{ h = 2^{-c} \mid h \leq \delta, \ c \in \mathbb{N} \right\}. \]

Set $\epsilon := \tau_n^{-1}$. Define $I := \{0, h_\epsilon, 2h_\epsilon, \ldots, 1 - h_\epsilon\}$ and let
\[\tilde{a}_\nu := \min\{a \in I \mid a > a_\nu\}, \]
\[\tilde{b}_\nu := \min\{b \in I \mid b < b_\nu\}, \]

for $\nu = 1, \ldots, u$, $j = 1, \ldots, d$. Now, set
\[\tilde{D}_\nu := \begin{cases} \prod_{j=1}^{d} [\tilde{a}_\nu^{j}, \tilde{b}_\nu^{j}], & \text{if } \forall j = 1, \ldots, d \tilde{a}_\nu^{j} < \tilde{b}_\nu^{j}, \\ \emptyset, & \text{otherwise}. \end{cases} \]

Note that $\tilde{b}_\nu^{j} - \tilde{a}_\nu^{j} \geq 2\epsilon$ for all $\nu = 1, \ldots, u$ by the choice of ϵ_0. Figure 2 shows the collection of sets \tilde{D}_ν in the example considered in Figure 1. Obviously
Figure 2: The collection of sets \tilde{D}_ν when considering the example from Figure 1. The dotted lines are the boarders of the sets D_1, \ldots, D_{12}. Note that δ is quite large in this example and observe, that the distance between two sets $\tilde{D}_\nu_1, \tilde{D}_\nu_2$ is at least $2^{\delta+1}$.

we have $\tilde{D}_\nu \subseteq D_\nu$. Let

$$\tilde{H}_\nu = \tilde{D}_\nu \cap \{x \in [0,1]^d \mid \iota_\nu x_{j_\nu} \leq \gamma_\nu(x_{j_\nu})\}.$$

The idea is to construct a neural network for every $\nu = 1, \ldots, u$ which approximates \tilde{H}_ν. We obtain the final neural network by parallelizing and adding up these networks. More specifically, we construct a network that approximates the product of $1(x \in \tilde{D}_\nu)$ and $1(\iota_\nu x_{j_\nu} \leq \gamma_\nu(x_{j_\nu}))$. The latter is approximated by a network Φ_{γ_ν} which is the concatenation of a network approximating the heaviside function $1(x_{j_\nu} > 0)$ and a network approximating

$$\tilde{\gamma}_\nu(x) := (x_1, \ldots, x_{j_\nu-1}, \iota_\nu x_{j_\nu} - \gamma_\nu(x_{j_\nu}), x_{j_\nu+1}, \ldots, x_d).$$

For $\nu = 1, \ldots, u$, from the prerequisites given in the Theorem we obtain a network $\Phi_{\gamma_\nu}^1$ with $L_{\gamma_\nu}^1 \leq C_1^1 \log \epsilon^{-1}$, $s_{\gamma_\nu}^1 \leq C_2^1 \epsilon^{-\rho} \log \epsilon^{-1}$ and weights in \mathcal{W}_{c_3} with $c_3 := C_3^1 + C_4^1 \log \epsilon^{-1}$, such that

$$\|R(\Phi_{\gamma_\nu}^1) - \gamma_\nu\|_{\infty} \leq \frac{\epsilon}{4}. $$

For technical reasons, we need to slightly change the realisations in order to handle the behaviour of the approximations at the boarder of \tilde{D}_ν. Define
$\Phi_{\gamma_{\nu}}^2$ by its realization

$$R(\Phi_{\gamma_{\nu}}^2)(x) := \frac{b_{j_{\nu}} + a_{j_{\nu}}^\nu}{2} + \sigma \left(R(\Phi_{\gamma_{\nu}}^1)(x) + h_z - \frac{b_{j_{\nu}} + a_{j_{\nu}}^\nu}{2} \right) - \sigma \left(\frac{b_{j_{\nu}} + a_{j_{\nu}}^\nu}{2} - R(\Phi_{\gamma_{\nu}}^1)(x) + h_z \right)$$

$$= \begin{cases}
R(\Phi_{\gamma_{\nu}}^1)(x) + h_z, & \text{if } R(\Phi_{\gamma_{\nu}}^1)(x) \geq \frac{b_{j_{\nu}} + a_{j_{\nu}}^\nu}{2} + h_z, \\
R(\Phi_{\gamma_{\nu}}^1)(x) - h_z, & \text{if } R(\Phi_{\gamma_{\nu}}^1)(x) \leq \frac{b_{j_{\nu}} + a_{j_{\nu}}^\nu}{2} - h_z, \\
2R(\Phi_{\gamma_{\nu}}^1)(x) - \frac{b_{j_{\nu}} + a_{j_{\nu}}^\nu}{2}, & \text{otherwise.}
\end{cases}$$

Let $\hat{\gamma}_\nu := R(\Phi_{\gamma_{\nu}}^2)$. Note that

$$\|\hat{\gamma}_\nu - \gamma_{\nu}\|_\infty \leq \|R(\Phi_{\gamma_{\nu}}^1) - \gamma_{\nu}\|_\infty + h_z \leq \frac{\epsilon}{4} + \frac{\epsilon}{2} \leq \epsilon$$

as well as

$$\hat{\gamma}_\nu(x) \geq \gamma_{\nu}(x) \text{ for } x : \gamma_{\nu}(x) \geq b_{j_{\nu}}^\nu,$$

$$\hat{\gamma}_\nu(x) \leq \gamma_{\nu}(x) \text{ for } x : \gamma_{\nu}(x) \leq \tilde{a}_{j_{\nu}}^\nu.$$

Using parallelization and concatenation of Lemma B.1, the function

$$R(\Phi_{\gamma_{\nu}}^1)(x) := (x_1, \ldots, x_{j_{\nu}-1}, \iota_{\nu} x_{j_{\nu}} - \hat{\gamma}_\nu(x_{j_{\nu}}), x_{j_{\nu}+1}, \ldots, x_d)$$

is a realization of a neural network with at most $L_{3_{\gamma_{\nu}}}^3 = L_{2_{\gamma_{\nu}}}^1 + 3$ layers, sparsity $s_{3_{\gamma_{\nu}}} \leq 2s_{1_{\gamma_{\nu}}}^1 + 14 + 6d + 2dL_{1_{\gamma_{\nu}}}^1$,

and weights in $W_{c_{\gamma_{\nu}}}^3$ with $c_{\gamma_{\nu}}^3 = c_{\gamma_{\nu}}^1 + 2$. Now let

$$R(\Phi_H)(x) := \sigma(x_{j_{\nu}} + 1) - \sigma(x_{j_{\nu}}) = \begin{cases}
0, & \text{for } x_{j_{\nu}} \leq -1, \\
x_{j_{\nu}} + 1, & \text{for } -1 < x_{j_{\nu}} < 0, \\
1, & \text{for } x_{j_{\nu}} \geq 0.
\end{cases}$$

Note that $R(\Phi_H)(x) \in (0,1)$ if $x_{j_{\nu}} \in (-1,0)$. Define $\Phi_{\gamma_{\nu}} := \Phi_H \circ \Phi_{\gamma_{\nu}}^3$ as in Lemma B.1 concatenation. The network $\Phi_{\gamma_{\nu}}$ has $L_{\gamma_{\nu}} \leq C_{1_{\gamma_{\nu}}}^0 \lfloor \log \epsilon^{-1} \rfloor$ layers, sparsity $s_{\gamma_{\nu}} \leq C_{s_{2_{\gamma_{\nu}}}}^0 \epsilon^{-p} \lfloor \log(\epsilon^{-1}) \rfloor$ and weights in $W_{c_{\gamma_{\nu}}}$ with $c_{\gamma_{\nu}} := C_{c_{\gamma_{\nu}}^0}^0 + C_{c_{\gamma_{\nu}}^1}^0 \lfloor \log(\epsilon^{-1}) \rfloor$ for some constants $C_{c_{\gamma_{\nu}}^0}^0, C_{c_{\gamma_{\nu}}^1}^0 > 0, C_{c_{\gamma_{\nu}}^2}^0, C_{c_{\gamma_{\nu}}^3}^0 \in \mathbb{N}$. Then $R(\Phi_{\gamma_{\nu}})(x) = 1$ if $\iota_{\nu} x_{j_{\nu}} \leq \hat{\gamma}_\nu(x_{j_{\nu}})$ and $0 \leq R(\Phi_{\gamma_{\nu}})(x) < 1$ otherwise. Next,
for \(\nu = 1, \ldots, u \) with \(\tilde{H}_\nu \neq \emptyset \) and \(i \in \{1, \ldots, d\} \), define the network \(\Phi_{\nu,i} \) with realization

\[
R(\Phi_{\nu,i})(x) := 2h_{\nu}^{-1}\left(\sigma \left(x_i - \tilde{a}_i^\nu + \frac{h_{\nu}}{2} \right) - \sigma \left(x_i - \tilde{b}_i^\nu \right) \right) + \sigma \left(x_i - \tilde{b}_i^\nu - \frac{h_{\nu}}{2} \right)
\]

\[
= \begin{cases}
0, & \text{for } x_i \leq \tilde{a}_i^\nu - \frac{h_{\nu}}{2}, \\
2h_{\nu}^{-1}\left(x_i - \tilde{a}_i^\nu + \frac{h_{\nu}}{2} \right), & \text{for } \tilde{a}_i^\nu - \frac{h_{\nu}}{2} < x_i < \tilde{a}_i^\nu, \\
1, & \text{for } \tilde{a}_i^\nu \leq x_i < \tilde{b}_i^\nu, \\
1 - 2h_{\nu}^{-1}\left(x_i - \tilde{b}_i^\nu \right), & \text{for } \tilde{b}_i^\nu < x_i < \tilde{b}_i^\nu + \frac{h_{\nu}}{2}, \\
0, & \text{for } x_i \geq \tilde{b}_i^\nu + \frac{h_{\nu}}{2}.
\end{cases}
\]

Note that \(\Phi_{\nu,i} \) is a concatenation of two neural networks, since \(2h_{\nu}^{-1} \geq 1 \). By Lemma B.2, we can realize the function \(x \mapsto 2h_{\nu}^{-1}x \) using a neural network \(\Phi \) with \(L_{\nu} \leq 1 + \lceil \kappa \rceil c^\nu \) layers, sparsity \(s_\nu \leq 4\lceil \kappa \rceil c^\nu + 5 \) and weights in \(W_{c^\nu} \). Thus, \(\Phi_{\nu} \) has \(L_\nu \leq 4 + \lceil \kappa \rceil c^\nu \) layers, sparsity \(s_\nu \leq 32\lceil \kappa \rceil c^{\gamma_3} + 32 \) and weights in \(W_{\lceil \kappa \rceil c^\nu} \). We then define

\[
R(\Phi_\nu)(x) := \sigma \left(\sum_{i=1}^{d} R(\Phi_{\nu,i})(x) + R(\Phi_{\gamma_\nu})(x) - d \right).
\]

For \(x \in [0,1]^d \) we have \(R(\Phi_\nu)(x) = 1 \) if \(x \in \tilde{D}_\nu \) and \(\nu \not\in \hat{\nu}_i(x_{-j_\nu}) \). Otherwise \(0 \leq R(\Phi_\nu(x)) < 1 \) holds. Note that by regarding the construction of \(\tilde{D} \), we have \(R(\Phi_{\nu_1})(R(\Phi_{\nu_2})) = 0 \) for \(\nu_1 \neq \nu_2 \). In order to construct the sum, we used a parallelization of the networks \(\Phi_{\nu_1}, \ldots, \Phi_{\nu_d} \) and \(\Phi_{\gamma_\nu} \). Thus, the network \(\Phi_\nu \) has \(L_\nu \leq C_\nu^{\gamma_3} \lceil \log \epsilon^{-1} \rceil \) layers, sparsity \(s_\nu \leq \frac{C_\nu^{\gamma_3}}{\epsilon} \lceil \log \epsilon^{-1} \rceil \) and weights in \(W_{c^\nu} \) with \(c^\nu = C_3^\nu + C_4^\nu \lceil \log \epsilon^{-1} \rceil \) for some constants \(C_1, C_2 > 0 \), \(C_3^\nu, C_4^\nu \in \mathbb{N} \). Note that Lemma B.2 was used to construct \(d \geq 1 \). The realization of the final network is given by

\[
R(\Phi)(x) = \sum_{\nu: \tilde{D}_\nu \neq \emptyset} R(\Phi_\nu)(x).
\]

Define \(G := R(\Phi)^{-1}(1) \). We now verify the desired properties.

\footnote{Note that the notation suggests that the constants differ depending on \(\nu = 1, \ldots, u \). However, due to the construction, this is not the case. The superscripts in the notations above are given in order to describe where the constant comes from. For our analysis below, it does not make a difference if the constants change with \(\nu \) or not.}
We begin by finding constants $C'_1, C'_2, C'_3 > 0$ such that
\[G \in \mathcal{N}_{C'_1 L_0(\tau_n^{-1}), C'_2 s_0(\tau_n^{-1}), C'_3 c_0(\tau_n^{-1})}. \]

Clearly, this realization $R(\Phi)$ can be achieved with
\[L \leq \max_{\nu: \tilde{D}_\nu \neq \emptyset} (C'_\nu \lceil \log \epsilon^{-1} \rceil + 1) =: C'_1 L_0(\tau_n^{-1}) \]
layers, sparsity
\[s \leq 2u(C'_2 \epsilon^{-\rho} \lceil \log \epsilon^{-1} \rceil + Ld) \leq 2r(C'_2 \epsilon^{-\rho} \lceil \log \epsilon^{-1} \rceil + Ld) = C'_2 s_0(\tau_n^{-1}) \]
and weights in $\mathcal{W}_{C'_3 c_0(\tau_n)}$ with
\[C'_3 c_0(\tau_n^{-1}) \geq C'_3 + C'_4 \lceil \log \epsilon^{-1} \rceil. \]

with suitably chosen $C'_1, C'_2 > 0$, $C'_3 \in \mathbb{N}$. Note that the constants do not depend on u.

Next, we show that the set $G := R(\Phi)^{-1}(1)$ satisfies the desired approximation property $d_{f_Q}(G, G^*_Q) \leq \tau_n^{-\kappa}$. First, for $\nu = 1, \ldots, u$ define E_ν as follows. Let
\[E_\nu := \bigcup_{j=1}^d \left(\prod_{i=1}^{j-1} [0,1] \times \left([\tilde{a}_{j,\nu}^\nu, \tilde{a}_{j,\nu}^\nu] \cup [\tilde{b}_{j,\nu}^\nu, \tilde{b}_{j,\nu}^\nu] \right) \times \left(\prod_{i=j+1}^d [0,1] \right) \right). \]

It is easy to see that $\tilde{D}_\nu = \emptyset$ implies $D_\nu \subseteq E_\nu$. Set $E := \bigcup_{\nu=1}^u E_\nu \cup \tilde{D}_\nu$. Figure 3 shows E in the example considered in figures 1 and 3. Clearly $G^*_Q, G \subseteq E$. Thus
\[
 d_{f_Q}(G_Q, G) = \int_{G^*_Q \Delta G} |2f_Q(x) - 1| \chi(x) \, dx
 \leq M \left(\sum_{\nu=1}^u \int_{E_\nu} 1 \, dx + \sum_{\nu=1}^u \int_{(G^*_Q \Delta G) \cap \tilde{D}_\nu} |2f_Q(x) - 1| \, dx \right)
 =: M \left((I) + (II) \right).
\]

We need to bound both terms. For (I) we observe that by construction $h_{\epsilon_n} \leq 2\tau_n^{-\kappa}$ we have
\[
 (I) \leq \sum_{\nu=1}^u \sum_{j=1}^d h_{\epsilon_n} \leq 2r d \tau_n^{-\kappa}.
\]
Figure 3: The set E when considering the example from figures 1 and 2. The light grey set represents E. Note that E covers a majority of the space, since $\epsilon = \tau_n^{-1}$ is quite large in this example. Observe that $G_{\delta}, G \subseteq E$.

The calculations for the second term are a bit more involved. First, observe that by construction of G, for all $\nu = 1, \ldots, u$ we have

$$\int_{(G_{\delta} \Delta G) \cap D_\nu} |2f_Q(x) - 1| \, dx$$

$$= \int_{\prod_{i \neq j_\nu} [\hat{a}^\nu_i, \hat{b}^\nu_i]} \int_{a_\nu(x-j_\nu)}^{b_\nu(x-j_\nu)} |2f_Q(x) - 1| \, dx \, dx_{-j_\nu}.$$

where

$$b_\nu(x_{-j_\nu}) := \begin{cases} \hat{a}^\nu_{j_\nu}, & \text{if } \hat{\gamma}_\nu(x_{-j_\nu}), \gamma_\nu(x_{-j_\nu}) < \hat{a}^\nu_{j_\nu}, \\ \hat{b}^\nu_{j_\nu}, & \text{if } \hat{b}^\nu_{j_\nu} < \hat{\gamma}_\nu(x_{-j_\nu}), \gamma_\nu(x_{-j_\nu}), \\ \max\{\gamma_\nu(x_{-j_\nu}), \gamma_\nu(x_{-j_\nu})\}, & \text{otherwise}, \end{cases}$$

$$a_\nu(x_{-j_\nu}) := \begin{cases} \hat{a}^\nu_{j_\nu}, & \text{if } \hat{\gamma}_\nu(x_{-j_\nu}), \gamma_\nu(x_{-j_\nu}) < \hat{a}^\nu_{j_\nu}, \\ \hat{b}^\nu_{j_\nu}, & \text{if } \hat{b}^\nu_{j_\nu} < \hat{\gamma}_\nu(x_{-j_\nu}), \gamma_\nu(x_{-j_\nu}), \\ \min\{\hat{\gamma}_\nu(x_{-j_\nu}), \gamma_\nu(x_{-j_\nu})\}, & \text{otherwise}. \end{cases}$$

Let $x_{-j_\nu} \in \prod_{i \neq j_\nu} [\hat{a}^\nu_i, \hat{b}^\nu_i]$ be fixed. We have the following cases.

- Assume $\gamma_\nu(x_{-j_\nu}) \geq \hat{b}^\nu_{j_\nu}$. Then by construction we have

$$\hat{\gamma}_\nu(x_{-j_\nu}) \geq \gamma_\nu(x_{-j_\nu}) \geq \hat{b}^\nu_{j_\nu}.$$
and thus
\[\int_{a_{x_j}}^{b_{x_j}} |2f(x) - 1| \, dx_j = \int_{b_{x_j}}^{\tilde{b}_{x_j}} |2f(x) - 1| \, dx_j = 0. \]

- Assume \(\gamma_\nu(x_{j-\nu}) \leq \tilde{a}_{x_{j-\nu}}. \) Then by construction we have
 \[\hat{\gamma}_\nu(x_{j-\nu}) \geq \gamma_\nu(x_{j-\nu}) \geq \tilde{a}_{x_{j-\nu}}. \]
 and thus
 \[\int_{a_{x_j}}^{b_{x_j}} |2f(x) - 1| \, dx_j = \int_{\tilde{a}_{x_{j-\nu}}}^{\tilde{b}_{x_{j-\nu}}} |2f(x) - 1| \, dx_j = 0. \]

- Assume \(\gamma_\nu(x_{j-\nu}) \in (\tilde{a}_{x_{j-\nu}}, \tilde{b}_{x_{j-\nu}}), \) by construction
 \[x_\nu^* = (x_1, \ldots, x_{j-1}, x_\nu(x_{j-\nu}), x_{j+1}, \ldots, x_d) \in \partial G_0^x. \]
 Consider \(\gamma_\nu(x_{j-\nu}) \leq x_{j-\nu} \leq b_\nu(x_{j-\nu}). \) Let
 \[x = (x_1, \ldots, x_{j-1}, x_{j-\nu}, x_{j+1}, \ldots, x_d). \]
 Now, for \(\beta = 0 \) we have
 \[\int_{a_{x_j}}^{b_{x_j}} |2f(x) - 1| \, dx_j \leq \int_{\gamma_\nu(x_{j-\nu})}^{\hat{\gamma}_\nu(x_{j-\nu})} 1 \, dx_j \]
 \[= \hat{\gamma}_\nu(x_{j-\nu}) - \gamma_\nu(x_{j-\nu}) \leq \tau_{\nu}^k. \]

For \(\beta > 0 \), by definition of \(K^x_0 \) we have
\[|2f(x) - 1| \leq |g_{x,x^*}(x_{j-\nu} - \gamma_\nu(x_{j-\nu}))| \]
Let \(m := \max\{k \in \mathbb{N} \mid k < \beta\} \) and \(\omega := \beta - m \). Using a Taylor expansion, there exists \(y_{j\nu} \in (0, x_{j-\nu} - \gamma_\nu(x_{j-\nu})) \) such that
\[g_{x,x^*}(x_{j-\nu} - \gamma_\nu(x_{j-\nu})) = g_{x,x^*}(x_{j-\nu} - \gamma_\nu(x_{j-\nu})) - g_{x,x^*}(0) \]
\[= \sum_{i=1}^{m-1} \frac{1}{i!} \partial_{x_j}^i g_{x,x^*}(0)(x_{j-\nu} - \gamma_\nu(x_{j-\nu}))^i \]
\[+ \frac{1}{m!} \partial_{x_j}^m g_{x,x^*}(y_{j\nu})(x_{j-\nu} - \gamma_\nu(x_{j-\nu}))^m \]
\[= \frac{1}{m!} \partial_{x_j}^m g_{x,x^*}(y_{j\nu})(x_{j-\nu} - \gamma_\nu(x_{j-\nu}))^m. \]

36
Note that we used the definition of $H_{\beta, B}$ in the last equality for all $i \leq m < \beta$. Thus

$$|2f_Q(x) - 1| \leq \left| g_{\nu, x^*}(x_{j\nu} - \gamma_{\nu}(x_{-j\nu})) \right|$$

$$\leq \frac{1}{m!} \left| \frac{\partial^m g_{\nu, x^*}(y_{j\nu}) - \partial^m g_{\nu, x^*}(0)}{(y_{j\nu} - 0)^{\nu}} (x_{j\nu} - \gamma_{\nu}(x_{-j\nu}))^\beta \right|$$

$$\leq \frac{B}{m!} (x_{j\nu} - \gamma_\lambda(x_{-j\nu}))^\beta.$$

Similarly, for $a_{\nu}(x_{-j\nu}) \leq x'_{j\nu} \leq \gamma_{\nu}(x_{-j\nu})$ we obtain

$$|2f_Q(x) - 1| \leq \frac{B}{m!} (x_{j\nu} - \gamma_\lambda(x_{-j\nu}))^\beta.$$

This implies

$$\int_{a_{\nu}(x_{-j\nu})}^{b_{\nu}(x_{-j\nu})} |2f_Q(x) - 1| dx_{j\nu} dx_{-j\nu}$$

$$\leq \int_{\gamma_{\nu}(x_{-j\nu})}^{\hat{\gamma}_{\nu}(x_{-j\nu})} \frac{B}{m!} (x_{j\nu} - \gamma_{\nu}(x_{-j\nu}))^\beta dx_{j\nu} dx_{-j\nu}$$

$$= \frac{B}{m!(\beta + 1)} (\hat{\gamma}_{\nu}(x_{-j\nu}) - \gamma_{\nu}(x_{-j\nu}))^{\beta + 1}$$

$$\leq \frac{B}{m!(\beta + 1)} \tau_n^{-\kappa}.$$

Therefore, we have

$$\int_{a_{\nu}(x_{-j\nu})}^{b_{\nu}(x_{-j\nu})} |2f_Q(x) - 1| dx_{j\nu} dx_{-j\nu} \leq \max \left\{ \frac{B}{m!(\beta + 1)}, 1 \right\} \tau_n^{-\kappa}.$$

for all $\nu = 1, \ldots, u$ and $x_{-j\nu} \in \prod_{i \neq j\nu} [\tilde{a}_i^\nu, \tilde{b}_i^\nu]$ which yields

$$(II) \leq \max \left\{ \frac{B}{m!(\beta + 1)}, 1 \right\} \tau_n^{-\kappa}.$$

Thus

$$d_f(G, G^*_{Q}) \leq \left(2rd + \max \left\{ \frac{B}{m!(\beta + 1)}, 1 \right\} \right) \tau_n^{-\kappa}$$

which concludes the proof.

The remainder of the proof of our main result is now simple.
Proof of Theorem 3.5. We check the requirements in Proposition 2.1.

Conditions (i) and (ii) are clear.

Condition (iii) follows from Theorem B.3.

Lastly, we need to prove (iv). Let \(n \geq N_0 \) where \(N_0 \) is defined in Theorem B.3. By Lemma 3.3 we have

\[
|N_n| = |N_{C_1 L_0(\tau_n), C_2 s_0(\tau_n), C_3 c_0(\tau_n^{-1})}| \\
\leq \left((dC_2 s_0(\tau_n) \\
+ \min\{C_1' L_n(\tau_n), C_2' s_0(\tau_n^{-1})\}) (C_2' s_0(\tau_n) + 1)^2 \right)^{C_3 c_0(\tau_n^{-1})} C_2 s_0(\tau_n).
\]

Inserting all variables yields

\[
|N_n| \leq \left(k_1 \tau_n^{k_2} \log^2(\tau_n) \right)^{k_3 \tau_n^{k_4} \log(\tau_n)}
\]

for some constants \(k_1, k_2, k_3 > 0 \). Thus

\[
\log \left(|N_n| \right) \leq k_4 \tau_n^\rho \log^2(\tau_n)
\]

for some constant \(k_4 > 0 \). By setting

\[
\tau_n := \frac{n^{\frac{1}{2m+\rho-1}}}{\log^2(n)}
\]

we obtain assumption (iv)

\[
\log |N_n| \leq c_3 n^{\frac{\rho}{2m+\rho-1}}.
\]

\(\square \)

B.2 Proofs for Regular Boundaries

Next, we prove Lemma 3.6. We first provide the corresponding statement from [21]. Lemma 3.6 is a reformulated version.

Theorem B.4. (Theorem 5 in [21])

For any function \(f \in \mathcal{F}_{\beta,B,d} \) and any integers \(m \geq 1 \) and \(N \geq \max\{((\beta + 1)d, B + 1)\} \) there exists a neural network \(\Phi \) with

\[
L = 8 + (m + 5)(1 + \lceil d \log_2 d \rceil)
\]
layers, sparsity

\[s \leq 94d^2(\beta + 1)^{2d}N(m + 6)(1 + \lceil \log_2 d \rceil) \]

and weights \(|w| \leq 1\) such that

\[\|R(\Phi) - f\|_\infty \leq (2B + 1)3^{d+1}N2^{-m} + B2^\beta N^{-\tilde{s}}. \]

Proof. Theorem 5 in [21].

Proof of Lemma 3.6. Let \(N \) be the smallest integer satisfying

\[N \geq k_1 \epsilon^{-\frac{d}{2}} \geq \max \{ (B2^{\beta+2}\epsilon^{-1})^{\frac{d}{2}}, (\beta + 1)^d, B + 1 \}, \]

where \(k_1 := \max \{ (B2^{\beta+2}\epsilon^{-1})^{\frac{d}{2}}, (\beta + 1)^d, B + 1 \} \). Let \(k_2 \) be the smallest integer satisfying

\[k_2 \geq \log(k_1 + 1) + \left(\frac{d}{\beta} + 1 \right) \log((2B + 1)3^{d+1}) + 1 \]

and define \(m := k_2 \lceil \log(\epsilon^{-1}) \rceil \in \mathbb{N} \). Since \(\epsilon < 3^{-1} \) and thus \(\log(\epsilon^{-1}) \geq 1 \) we have

\[m \geq \left(\log(k_1 + 1) + \left(\frac{d}{\beta} + 2 \right) \log((2B + 1)3^{d+1}) + 1 \right) \log(\epsilon^{-1}) \]

\[\geq \log(k_1 + 1) + \left(\frac{d}{\beta} + 1 \right) \log(\epsilon^{-1}) + \log((2B + 1)3^{d+1}) + 2 \]

\[\geq N + \log((2B + 1)3^{d+1}) + \log(\epsilon^{-1}) + 2. \]

Theorem B.4 implies the following. For any \(f \in \mathcal{F}_{\beta,B,d} \) there exists a network \(\tilde{\Phi} \) with

\[
L = 8 + (k_2 \lceil \log(\epsilon^{-1}) \rceil + 5)(1 + \lceil \log_2 d \rceil)
\]
layers, sparsity

\[s \leq 94d^2(\beta + 1)^{2d}k_1 \epsilon^{-\frac{d}{2}}(k_2 \lceil \log(\epsilon^{-1}) \rceil + 6)(1 + \lceil \log_2 d \rceil) \]

and weights \(|w_i| \leq 1\) such that

\[\|R(\tilde{\Phi}) - f\|_\infty \leq \frac{\epsilon}{2}. \]

Note that

\[
L \leq (8 + (2k_2 + 5)(1 + \lceil \log_2 d \rceil)) \log(\epsilon^{-1}) =: c_1 \log(\epsilon^{-1}),
\]

\[
s \leq (94d^2(\beta + 1)^{2d}k_1(2k_2 + 6)(1 + \lceil \log_2 d \rceil) \epsilon^{-\frac{d}{2}} \log(\epsilon^{-1}) =: c_2 \epsilon^{-\frac{d}{2}} \log(\epsilon^{-1}).
\]

39
Let V be defined as in the proof of Lemma 3.3. Following the proof of Lemma 12 of [21], we see that for any $g \leq \frac{\varepsilon}{4(L+1)V}$ there is a neural network Φ with L layers and sparsity s such that

$$\| R(\Phi) - R(\tilde{\Phi}) \|_{\infty} \leq \frac{\varepsilon}{2},$$

where the nonzero weights of Φ are discretized with grid size g. Now, define

$$\frac{\varepsilon}{4(L+1)V} = \frac{\varepsilon}{4(L+1)(ds + L(s+1)^2)} \geq \frac{\varepsilon}{4(c_1 \lceil \log \varepsilon^{-1} \rceil + 1)(d c_2 e^{-\frac{d}{2}} \lceil \log \varepsilon^{-1} \rceil + c_1 \lceil \log \varepsilon^{-1} \rceil (c_2 e^{-\frac{d}{2}} \lceil \log \varepsilon^{-1} \rceil + 1)^2)} \geq \frac{1}{4(c_1 + 1)(d c_2 + c_1 (c_2 + 1)^2)} e^{2+2\frac{d}{\beta}} \geq 2^{-\left(c_3 + c_4 \lceil \log(\varepsilon^{-1}) \rceil \right)} =: g.$$

with

$$c_3 := \lceil \log \left(4(c_1 + 1)(d c_2 + c_1 (c_2 + 1)^2) \right) \rceil,$$

$$c_4 := \left\lceil 2 + 2 \frac{d}{\beta} \right\rceil.$$

Therefore, all weights are elements of W_c with $c = c_3 + c_4 \lceil \log \varepsilon^{-1} \rceil$ and

$$\| R(\Phi) - f \|_{\infty} \leq \| R(\Phi) - R(\tilde{\Phi}) \|_{\infty} + \| R(\tilde{\Phi}) - f \|_{\infty} \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$

Lastly, we prove Lemma 3.9. The extension to this case is similar to the extension in [21].

Proof of Lemma 3.9. Let

$$\gamma = \gamma_r \circ \cdots \circ \gamma_1 \in \mathcal{G}_{r,t,\beta,B,d}$$

with $\gamma_i = (\gamma_{ij} \circ \theta_{ij})_{j=1}^{d_{i+1}}$. We first construct a candidate network Φ for γ. Then, we show that it approximates gamma well and satisfies the required properties.
In order to construct a network that approximates γ well, we first approximate γ_{ij} and τ_{ij} using neural networks. The final network is constructed using concatenation and parallelization.

Let $i = 1, \ldots, r$, $j = 1, \ldots, d_i + 1$ and $\epsilon_i > 0$. Using Lemma 3.6 there exist constants $\epsilon_0', c_1', c_2', c_3', c_4' \in \mathbb{N}$ such that there exists a neural network Φ_{ij} with $L_{ij} \leq c_1' \lceil \log(\epsilon_i^{-1}) \rceil$ layers, sparsity $s_{ij} \leq c_2' \epsilon_i^{-\frac{1}{\beta_i}} \log(\epsilon_i^{-1})$ and weights in $W_{c'}$ with $c' := c_3' + c_4' \lceil \log(\epsilon_i^{-1}) \rceil$ such that

$$\|R(\Phi_{ij})(x) - \gamma_{ij}\|_\infty \leq \epsilon_i$$

if $\epsilon_i < c_0'$. Let $\hat{\gamma}_{ij} := R(\Phi_{ij})(x)$. Additionally, the function ι_{ij} is the realization of a network with 0 Layers and sparsity t_i.

Since concatenating and parallelizing networks using Lemma B.1 leads to linear transformations on the upper bounds on the Layers, sparsity and the constant c', there exist constants $c_1', c_2', c_3', c_4' \in \mathbb{N}$ such that the function

$$\hat{\gamma} = \hat{\gamma}_r \circ \cdots \circ \hat{\gamma}_1$$

with $\hat{\gamma}_i = (\hat{\gamma}_{ij} \circ \iota_{ij})_{j=1}^{d_i+1}$ is the realization of a network with

$$L \leq c_1' \max_{i=1,\ldots,r} \lceil \log(\epsilon_i^{-1}) \rceil$$

layers,

$$s \leq c_2' \max_{i=1,\ldots,r} \epsilon_i^{-\frac{1}{\beta_i}} \log(\epsilon_i^{-1})$$

sparsity,

$$c' := c_3' + c_4' \max_{i=1,\ldots,r} \lceil \log(\epsilon_i^{-1}) \rceil$$

and weights in $W_{c'}$.

Now, let $\epsilon > 0$ be small enough. We show that $\hat{\gamma}$ approximates γ well for suitably chosen ϵ_i. Following Lemma 9 in [21] we have

$$\|\gamma - \hat{\gamma}\|_\infty \leq C \sum_{i=1}^{r} \max_{j=1,\ldots,d_i+1} |\gamma_{ij} - \hat{\gamma}_{ij}| \prod_{k=i+1}^{r} \min(\beta_k,1)$$

and

$$\|\gamma_{ij} - \hat{\gamma}_{ij}\|_\infty \cdot \prod_{k=i+1}^{r} \min(\beta_k,1) \leq C r \max_{i=1,\ldots,r} \epsilon_i \prod_{k=1}^{r} \min(\beta_k,1)$$

for some constant $C > 0$. Set

$$\epsilon_i := \left(\frac{\epsilon}{C \epsilon} \right) \frac{1}{\prod_{k=1}^{r-1} \min(\beta_k,1)}.$$
First, this implies
\[\| \gamma - \hat{\gamma} \|_\infty \leq \epsilon. \]

Additionally, the network \(\Phi \) has
\[L \leq c'_1 \max_{i=1,\ldots,r} \left\lfloor \log(\epsilon_i^{-1}) \right\rfloor \leq c_1 \left\lfloor \log(\epsilon^{-1}) \right\rfloor \text{ layers,} \]
\[s \leq c'_2 \max_{i=1,\ldots,r} \epsilon_i^{-\frac{t_i}{\rho}} \log(\epsilon_i^{-1}) = c_2 \max_{i=1,\ldots,r} \epsilon^{-\frac{t_i}{\rho}} \prod_{k=1}^{\min(\sigma_k,1)} \log(\epsilon^{-1}) \]
\[= c_2 \epsilon^{-\rho} \log(\epsilon^{-1}) \text{ sparsity,} \]
\[c' = c'_3 + c'_4 \max_{i=1,\ldots,r} \left\lfloor \log(\epsilon_i^{-1}) \right\rfloor \leq c_3 + c_4 \left\lfloor \log(\epsilon^{-1}) \right\rfloor := c \]
and weights in \(\mathcal{W}_c \) for some constants \(c_1, c_2 > 0, c_3, c_4 \in \mathbb{N}. \)

\[\square \]

C Lower Bound

We first prove Theorem 4.1. The outline of the proof is similar to the proof of Theorem 3 in [17]. However, the setting of Theorem 3.5 differs substantially from theirs. This leads to a new situation and new technical challenges to overcome in the proof of Theorem 4.1.

Proof of Theorem 4.1. By Hölder’s inequality and condition (c) it is enough to consider the case \(p = 1 \) and the first inequality. Let \(\Omega_1 \subseteq \Omega \) be a finite set of potential probability measures of \((X_1, Y_1), \ldots, (X_n, Y_n) \). Then

\[\sup_{Q \in \Omega} \mathbb{E}[d_\Delta(G_n, G^*_Q)] \geq \frac{1}{\# \Omega_1} \sum_{Q \in \Omega_1} \mathbb{E}[d_\Delta(G_n, G^*_Q)] \]

Hence, it suffices to show that for any estimator \(G_n \) we have

\[\frac{1}{\# \Omega_1} \sum_{Q \in \Omega_1} \mathbb{E}[d_\Delta(G_n, G^*_Q)] \geq cn^{-\frac{1}{2\sigma+1-\rho}} \quad \text{a.s.,} \tag{C.1} \]

for some constant \(c > 0 \). We now define the set \(\Omega_1 \). Then, we prove \(\Omega_1 \subseteq \Omega \). Lastly, we show that \(\Omega_1 \) satisfies (C.1).

Let \(\phi : \mathbb{R} \to [0,1] \) be an infinitely many times differentiable function with the following properties:
\[\phi(t) = 0 \text{ for } |t| \geq 1, \]
\[\phi(0) = 1. \]
Let $K \geq 2$ be an integer. For $i \in \{1, \ldots, K\}$ define

$$\phi_i : [0, 1]^{d-1} \to [0, 1], \ \phi_i(y) = k_1 K^{-\beta_2} \prod_{j=1}^{d-1} \phi\left(K \left(y_j - \frac{2i_j - 1}{K}\right)\right)$$

for some $0 < k_1$ small enough. Define

$$W := \prod_{i \in \{1, \ldots, K\}} \{0, 1\}.$$

For $w \in W$ let

$$\gamma_w : [0, 1]^{d-1} \to [0, 1], \ \gamma_w(y) = \sum_{i \in \{1, \ldots, K\}} w_i \phi_i(y).$$

Now, for $w \in W$ define Q_w as follows. The marginal distribution $Q_{w,X}$ is the uniform distribution on $[0, 1]^d$ and

$$f_{Q_w}(x) := \frac{1}{2} \left(1 + k_2 (\gamma_w(x-1) - x_1)^{\beta_1}\right) \mathbb{1}(x_1 \leq \gamma_w(x-1)) + \frac{1}{2} \left(1 - k_2 x_1^{\beta_1}\right) \mathbb{1}(0 < x_1 \leq \gamma_{1-w}(x-1)) + \frac{1}{2} \left(1 - k_3 (x_1 - \gamma_1(x-1))^{\beta_1}\right) \mathbb{1}(\gamma_1(x-1) < x_1)$$

for some $k_2, k_3 > 0$. Finally, let

$$Q_1 := \{Q_w \mid w \in W\}.$$

We now show that $Q_1 \subseteq \Omega$ by properly selecting the constants c_1, k_1, k_2, k_3 such that f_{Q_w} is well defined for all $w \in W$ and showing that Q_1 satisfies the conditions (a),(b),(c).

First of all, we choose k_1, k_3 small enough and (given $k_2 > 0$) K_0 large enough such that for all $K \geq K_0$ we have

$$\frac{1}{4} \leq f_{Q_w}(x) \leq 1$$

for all $x \in [0, 1]^d$ and $w \in W$.

(a) Clearly, for all $w \in W$ the marginal distribution of Q_w with respect to X has a Lebesgue density which bounded by $1 \leq M$.

43
(b) We need to show

\[G_{Q_w}^* = \left\{ x \in [0, 1]^d \mid f_{Q_w}(x) \geq \frac{1}{2} \right\} \in \mathcal{K}_{Q_1, B, \epsilon_1, \epsilon_2, r, d} \]

for all \(w \in W \).

1. Clearly, by selecting \(\nu = u = 1, j = j_\nu = 1, \nu_2 = 1, D_\nu = [0, 1]^d \)
and \(\gamma = \gamma_w \) we have

\[G_{Q_w}^* = H_1 = D_\nu \cap \{ x \in [0, 1]^d \mid \nu_2 x_1 \leq \gamma(x_{-1}) \} \].

For \(k_1 \) small enough we also have \(\gamma \in \mathcal{F}_{j_2, B_2, d-1} \) for all \(w \in W \).

2. clear.

3. If \(\beta_1 > 0 \), for \(w \in W \) and \(x \in \partial G_{Q_w}^* \) we have \(x_1 = \gamma_w(x_{-1}) \). Let

\[g_{\nu, x} : [0, 1] \to \mathbb{R}, \quad g_{\nu, x}(y) = \max\{k_2, k_3\} y^{\beta_1} \].

Note that for \(k_2, k_3 \) small enough we have \(g_{\nu, x} \in H_{\beta_1, B_1} \). Additionally, we have

\[|2f_{Q_w}(y) - 1| \leq g_{\nu, x}(y - x_1), \text{ for } y \geq x_1, \]
\[|2f_{Q_w}(y) - 1| \leq g_{\nu, x}(x_1 - y), \text{ for } y \leq x_1. \]

4. clear.

This implies the assertion.

(c) Let \(w \in W \). For \(\beta_1 = 0 \) we have

\[d_{\Delta}(G, G_{Q_w}^*) = d_{\Delta}(G, G_{Q_w}^*) = \frac{1}{\min\{k_2, k_3\}} d_{f_{Q_w}}(G, G_{Q_w}^*) \]
For $\beta_1 > 0$, there is an $\eta_0 > 0$ such that for all $0 < \eta \leq \eta_0$ we have

$$\lambda\left(\left\{ x \in [0, 1]^d \mid |2f_{Q_w}(x) - 1| \leq \eta \right\} \right)$$

$$\leq \lambda\left(\left\{ x \in [0, 1]^d \mid x_1 \leq \gamma_w(x_{-1}), \ k_2(\gamma_w(x_{-1}) - x_1)^{\beta_1} \leq \eta \right\} \right.$$

$$\cup \left\{ x \in [0, 1]^d \mid x_1 \leq \gamma_{1-w}(x_{-1}), \ k_2x_1^{\beta_1} \leq \eta \right\}$$

$$\cup \left\{ x \in [0, 1]^d \mid \gamma_1(x_{-1}) \leq x_1, \ k_3\left(x_1 - \gamma_1(x_{-1}) \right)^{\beta_1} \leq \eta \right\} \bigg)$$

$$\leq \lambda\left(\left\{ x \in [0, 1]^d \mid \gamma_2(x_{-1}) - \frac{1}{k_2^{\frac{1}{\beta_1}}} x_1 \leq \gamma_w(x_{-1}) \right\} \right.$$

$$\cup \left\{ x \in [0, 1]^d \mid x_1 \leq \frac{1}{k_2^{\frac{1}{\beta_1}}} \right\}$$

$$\cup \left\{ x \in [0, 1]^d \mid \gamma_1(x_{-1}) \leq x_1, \ \gamma_1(x_{-1}) + \frac{1}{k_3^{\frac{1}{\beta_1}}} \right\} \bigg)$$

$$\leq \left(\frac{2}{k_2^{\frac{1}{\beta_1}}} + \frac{1}{k_3^{\frac{1}{\beta_1}}} \right) \eta^{\frac{1}{\beta_1}}.$$

Following Proposition 1 in of [22] there exists $\tilde{c}_1, \tilde{\eta}_0 > 0$ such that

$$d^c_\Delta(G, G^*_Q) \leq \tilde{c}_1 d_{Q_w}(G, G^*_Q)$$

for all G such that $d_\Delta(G, G^*_Q) \leq \tilde{\eta}_0$. If $\tilde{\eta}_0 \geq 1$ this implies the assertion with $c_1 := \tilde{c}_1$. If not, the assertion is implied by setting $c_1 := \frac{\tilde{c}_1}{\tilde{\eta}_0}$.

Next we prove Inequality (C.1). For $w \in W$ write Q^n_w for the probability measure of the distribution of $(X_1, Y_1, \ldots, (X_n, Y_n)$ when the underlying distribution is Q_w. Define the product measure $\psi = \zeta \times \lambda$, where ζ is the counting measure on $\{0, 1\}$. Note that Q_w has a density with respect to ψ which is given by

$$dQ_w = \frac{dQ_w}{d\psi}(y, x) := \mathbb{1}(y = 1)f_w(x) + \mathbb{1}(y = 0) \cdot (1 - f_w(x)).$$

Assume $w_1, w_2 \in W$ differ by only 1 entry. We obtain

$$\int \min\{dQ^n_{w_1}, dQ^n_{w_2}\}d\psi = \int \min\{dQ^n_{0}, dQ^n_{1}\}d\psi,$$

45
where for \(s = 0, 1 \) we write \(Q^n_s = Q^n_{w_s} \) with
\[
w_i^s := \begin{cases} s, & \text{for } i_1 = \cdots = i_{d-1} = 1, \\ 0, & \text{otherwise} \end{cases}
\]
for \(i \in \{1, \ldots, K\}^{d-1} \). Then, using Assouad’s Lemma we get
\[
\frac{1}{\#\Omega_1} \sum_{Q \in \Omega_1} \mathbb{E}[d_\Delta(G_n, G^n_Q)] \\
\geq \frac{1}{2} K^{d-1} \lambda \left(\left\{ x \in [0, 1]^d \mid x_1 \leq \phi_1(x_{-1}) \right\} \right) \int \min\{dQ^n_0, dQ^n_1\} d\psi \\
= \frac{1}{2} k_1 K^{d-1-\beta_2} \int_{\mathbb{R}^{d-1}} \prod_{j=1}^{d-1} \phi(Kx_{j+1}) dx_{-1} \int \min\{dQ^n_0, dQ^n_1\} d\psi.
\]

We first bound the term \(\int \min\{dQ^n_0, dQ^n_1\} d\psi \). By using the fact that
\[
\int dQ_0 d\psi = 1
\]
and Hoelder's inequality in the fourth row we calculate
\[
\int \min\{dQ^n_0, dQ^n_1\} d\psi \\
= 1 - \frac{1}{2} \int |dQ^n_0 - dQ^n_1| d\psi \\
= 1 - \frac{1}{2} \int \left| \sqrt{dQ^n_0} - \sqrt{dQ^n_1} \right| \cdot \left| \sqrt{dQ^n_0} + \sqrt{dQ^n_1} \right| d\psi \\
\geq 1 - \frac{1}{2} \left(\int \left(\sqrt{dQ^n_0} - \sqrt{dQ^n_1} \right)^2 d\psi \right)^{\frac{1}{2}} \left(\int \left(\sqrt{dQ^n_0} + \sqrt{dQ^n_1} \right)^2 d\psi \right)^{\frac{1}{2}}.
\]
By repeatedly using the fact that $\int dQ_0 d\psi = 1$, this implies

$$\int \min\{dQ_0^n, dQ_1^n\} d\psi$$

$$= 1 - \frac{1}{2} \left(2 \left(1 - \int \sqrt{dQ_0^n dQ_1^n} d\psi \right) \right)^{\frac{1}{2}} \left(2 \left(1 + \int \sqrt{dQ_0^n dQ_1^n} d\psi \right) \right)^{\frac{1}{2}}$$

$$= 1 - \left(1 - \left(\int \sqrt{dQ_0^n dQ_1^n} d\psi \right)^2 \right)^{\frac{1}{2}}$$

$$\geq 1 - \left(1 - \left(\int \sqrt{dQ_0^n dQ_1^n} d\psi \right)^2 + \frac{1}{4} \left(\int \sqrt{dQ_0^n dQ_1^n} d\psi \right)^4 \right)^{\frac{1}{2}}$$

$$= 1 - \left(1 - \frac{1}{2} \left(\int \sqrt{dQ_0^n dQ_1^n} d\psi \right)^2 \right)$$

$$= \frac{1}{2} \left(\int \sqrt{dQ_0^n dQ_1^n} d\psi \right)^2.$$

By independence we have

$$\int \sqrt{dQ_0^n dQ_1^n} d\psi = \left(\int \sqrt{dQ_0 dQ_1} d\psi \right)^n.$$

Additionally, observe that

$$\int \sqrt{dQ_0 dQ_1} d\psi$$

$$= \frac{1}{2} \int dQ_0 d\psi + \frac{1}{2} \int dQ_1 d\psi - \frac{1}{2} \int \left(\sqrt{dQ_0} - \sqrt{dQ_1} \right)^2 d\psi$$

$$= 1 - \frac{1}{2} \int \left(\sqrt{dQ_0} - \sqrt{dQ_1} \right)^2 d\psi$$

and

$$\int \left(\sqrt{dQ_0} - \sqrt{dQ_1} \right)^2 d\psi$$

$$\leq \int \left(\sqrt{f_{w,0}(x)} - \sqrt{f_{w,1}(x)} \right)^2 dx + \int \left(\sqrt{1 - f_{w,0}(x)} - \sqrt{1 - f_{w,1}(x)} \right)^2 dx$$

$$\leq 2 \int \left(f_{w,0}(x) - f_{w,1}(x) \right)^2 dx + 2 \int \left(1 - f_{w,0}(x) - (1 - f_{w,1}(x)) \right)^2 dx$$

$$= 4 \int \left(f_{w,0}(x) - f_{w,1}(x) \right)^2 dx$$
where we used that $f_w(x) \geq \frac{1}{4}$ for all $x \in [0, 1]^d$ and $w \in W$. Next, we calculate

$$
\int (f_{w_0}(x) - f_{w^1}(x))^2 \, dx \\
\geq \frac{1}{4} \int_{[0,1]^{d-1}} \int_{0}^{\phi_j(x_1)} (k_2 (\phi_j(x_1) - x_1)^{\beta_1} + k_2 x_1^{\beta_1})^2 \, dx_1 \, dx_1
$$

$$
\geq \frac{k_2^2}{4} \int_{[0,1]^{d-1}} \int_{0}^{\phi_j(x_1)} (\phi_j(x_1) - x_1)^{2\beta_1} \, dx_1 \, dx_1
$$

$$
+ \frac{k_2^2}{4} \int_{[0,1]^{d-1}} \int_{0}^{\phi_j(x_1)} x_1^{2\beta_1} \, dx_1 \, dx_1
$$

$$
= \frac{k_2^2}{4} (I_1 + I_2).
$$

We need to control the terms I_1 and I_2. For the first we obtain

$$
I_1 := \int_{[0,1]^{d-1}} \int_{0}^{\phi_j(x_1)} (\phi_j(x_1) - x_1)^{2\beta_1} \, dx_1 \, dx_1
$$

$$
= \int_{[0,1]^{d-1}} \int_{0}^{\phi_j(x_1)} x_1^{2\beta_1} \, dx_1 \, dx_1
$$

$$
= \frac{1}{1 + 2\beta_1} \int_{[0,1]^{d-1}} \phi_j(x_1)^{1+2\beta_1} \, dx_1
$$

$$
\leq \frac{k_1^{1+2\beta_1}}{1 + 2\beta_1} \int_{\mathbb{R}^{d-1}} \prod_{j=1}^{d-1} (K x_{j+1})^{1+2\beta_1} \, dx_{j+1}
$$

$$
\leq 2 \frac{k_1^{1+2\beta_1}}{1 + 2\beta_1} K^{-\beta_2(1+2\beta_1)-(d-1)}
$$

$$
= 2 \frac{k_1^{1+2\beta_1}}{1 + 2\beta_1} K^{-\beta_2(2\kappa-1+\rho)}
$$

and similarly

$$
I_2 := \int_{[0,1]^{d-1}} \int_{0}^{\phi_j(x_1)} x_1^{2\beta_1} \, dx_1 \, dx_1
$$

$$
\leq 2 \frac{k_1^{1+2\beta_1}}{1 + 2\beta_1} K^{-\beta_2(2\kappa-1+\rho)}.
$$

This implies

$$
\int \min\{dQ_0^n, dQ_1^n\} \, d\psi \geq \frac{1}{2} \left(1 - c^* K^{-\beta_2(2\kappa-1+\rho)}\right)^{2n}
$$
for some constant $c^* > 0$. By setting $K := n^{\frac{1}{\beta_2} \frac{1}{2} - 1 + \rho}$ we obtain

$$\int \min\{dQ_0^n, dQ_1^n\} d\psi \geq \frac{1}{2} \left(1 - c^* \frac{1}{n}\right)^{2n} > c'$$

for some constant $c' > 0$ for n large enough. Thus

$$\frac{1}{\#\Omega_1} \sum_{Q \in \Omega_1} \mathbb{E}[d_\Delta(G_n, G_Q^*)]$$

$$= \frac{1}{2} k_1 K^{-d-1-\beta_2} \int_{\mathbb{R}^{d-1}} \prod_{j=1}^{d-1} \phi(Kx_{j+1}) dx_{-1} \int \min\{dQ_0^n, dQ_1^n\} d\psi$$

$$\geq \frac{1}{2} k_1 K^{-\beta_2} \int_{\mathbb{R}^{d-1}} \prod_{j=1}^{d-1} \phi(x_{j+1}) dx_{-1} \cdot c'$$

$$\geq cn^{-\frac{1}{2} + \rho}$$

for some constant $c > 0$. This concludes the proof.

Lastly, the proof of Theorem 4.2 is provided. The ideas used in the proof are very similar to those used in the proof of Theorem 4.1 above. We therefore only focus on the differences.

Proof of Theorem 4.2. As in the proof of Theorem 4.1 the strategy is to show that for any estimator G_n we have

$$\frac{1}{\#\Omega_1} \sum_{Q \in \Omega_1} \mathbb{E}[d_\Delta(G_n, G_Q^*)] \geq cn^{-\frac{1}{2} + \rho} \quad \text{a.s.,}$$

for some constant $c > 0$ and some finite set $\Omega_1 \subseteq \Omega$. Let $K \geq 2$ be an integer and let

$$i_{\text{opt}} := \arg \max_{i=1, \ldots, r_2} \frac{t_i}{\beta_2 i}.$$

As in the proof of Theorem 4.1 define $\phi : \mathbb{R} \to [0, 1]$ to be an infinitely many times differentiable function with the following two properties:

- $\phi(t) = 0$ for $|t| \geq 1$,
- $\phi(0) = 1$.

49
Note that ϕ^α also fulfills both properties for any $\alpha > 0$, though it may not be infinitely many times differentiable. For $i \in \{1, \ldots, K\}^{i_{\text{opt}}}$ define

$$
\phi_i : [0, 1]^{d_i-1} \to [0, 1], \quad \phi_i(y) = k_1 K^{-\beta_{i_{\text{opt}}}} \prod_{j=1}^{l_{i_{\text{opt}}}} \phi^\alpha \left(K \left(y_j - \frac{2i_j - 1}{K} \right) \right)
$$

for $\alpha := \prod_{k=1}^{n} \min\{\beta_k, 1\}$ and some $0 < k_1$ small enough. Define

$$
W := \prod_{i \in \{1, \ldots, K\}^{d-1}} \{0, 1\}.
$$

For $w \in W$ let

$$
\gamma_w : [0, 1]^{d_i-1} \to [0, 1], \quad \gamma_w(y) = \sum_{i \in \{1, \ldots, K\}^{i_{\text{opt}}}} w_i \phi_i(y).
$$

Now, for $w \in W$ we define Q_w as before. The marginal distribution Q_X is the uniform distribution on $[0, 1]^d$ and

$$
f_{Q_w}(x) := \frac{1}{2} \left(1 + k_2 (\gamma_w(x_{-1}) - x_1)^{\beta_1} \right) 1 \left(x_1 \leq \gamma_w(x_{-1}) \right) + \frac{1}{2} \left(1 - k_2 x_1^{\beta_1} \right) 1 \left(0 \leq x_1 \leq \gamma_{1-w}(x_{-1}) \right) + \frac{1}{2} \left(1 - k_3 (x_1 - \gamma_1(x_{-1}))^{\beta_1} \right) 1 \left(\gamma_1(x_{-1}) < x_1 \right)
$$

for some $k_2, k_3 > 0$. Note that for $k_1 > 0$ small enough $\gamma := \gamma_w \in \mathcal{G}_{r_2, l, \beta_2, B_2, d'}$ by defining

$$
\gamma_i(y) = (y_1, \ldots, y_{i_{\text{opt}}}, 0, \ldots, 0), \quad \text{for } i < i_{\text{opt}},
$$

$$
\gamma_i(y) = (\psi(y), 0, \ldots, 0), \quad \text{for } i = i_{\text{opt}},
$$

$$
\gamma_i(y) = \left(k_1^{\alpha_i} y_1^{\min\{\beta, 1\}}, 0, \ldots, 0 \right), \quad \text{for } i > i_{\text{opt}},
$$

where

$$
\psi(y) := \sum_{i \in \{1, \ldots, K\}^{i_{\text{opt}}}} w_i k_1^{\alpha_{i_{\text{opt}}}} K^{-\beta_{i_{\text{opt}}}} \prod_{j=1}^{l_{i_{\text{opt}}}} \phi \left(K \left(y_j - \frac{2i_j - 1}{K} \right) \right),
$$

$$
\alpha_i := \frac{1}{(r_2 - i_{\text{opt}} + 1) \prod_{k=i+1}^{n} \min\{\beta_k, 1\}}
$$

for $i_{\text{opt}} \leq i \leq r_2$. The rest of the proof is analogous to the proof of Theorem 4.1. \hfill \Box

50
Acknowledgments

First and foremost, I would like to thank Enno Mammen for supporting me with some helpful comments and inspiring insights during the creation of this paper. Additionally, many thanks goes to Munir Hiabu for assisting with comments during the final stages of the working process.

References

[1] Jean-Yves Audibert and Alexandre B Tsybakov. Fast learning rates for plug-in classifiers. *The Annals of Statistics*, 35(2):608–633, 2007.

[2] Andrew R Barron. Approximation and estimation bounds for artificial neural networks. *Machine learning*, 14(1):115–133, 1994.

[3] Thijs Bos and Johannes Schmidt-Hieber. Convergence rates of deep relu networks for multiclass classification. *Electronic Journal of Statistics*, 16(1):2724–2773, 2022.

[4] Ronan Collobert and Jason Weston. A unified architecture for natural language processing: Deep neural networks with multitask learning. In *Proceedings of the 25th International Conference on Machine Learning*, pages 160–167, 2008.

[5] George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of Control, Signals and Systems*, 2(4):303–314, 1989.

[6] Richard M. Dudley. Metric entropy of some classes of sets with differentiable boundaries. *Journal of Approximation Theory*, 10(3):227–236, 1974.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 770–778, 2016.

[8] Tianyang Hu, Jun Wang, Wenjia Wang, and Zhengu Li. Understanding square loss in training overparametrized neural network classifiers. *arXiv preprint arXiv:2112.03657*, 2021.

[9] Masaaki Imaizumi and Kenji Fukumizu. Deep neural networks learn non-smooth functions effectively. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 869–878. PMLR, 2019.
[10] Javed Khan, Jun S Wei, Markus Ringner, Lao H Saal, Marc Ladanyi, Frank Westermann, Frank Berthold, Manfred Schwab, Cristina R Antonescu, Carsten Peterson, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. *Nature Medicine*, 7(6):673–679, 2001.

[11] Yongdai Kim, Ilsang Ohn, and Dongha Kim. Fast convergence rates of deep neural networks for classification. *Neural Networks*, 138:179–197, 2021.

[12] Michael Kohler, Adam Krzyżak, and Sophie Langer. Estimation of a function of low local dimensionality by deep neural networks. *IEEE Transactions on Information Theory*, 2022.

[13] Michael Kohler and Sophie Langer. Statistical theory for image classification using deep convolutional neural networks with cross-entropy loss. *arXiv preprint arXiv:2011.13602*, 2020.

[14] Michael Kohler and Sophie Langer. On the rate of convergence of fully connected deep neural network regression estimates. *The Annals of Statistics*, 49(4):2231–2249, 2021.

[15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, 521(7553):436–444, 2015.

[16] Christian Leibig, Vaneeda Allken, Murat Seçkin Ayhan, Philipp Berens, and Siegfried Wahl. Leveraging uncertainty information from deep neural networks for disease detection. *Scientific Reports*, 7(1):1–14, 2017.

[17] Enno Mammen and Alexander B. Tsybakov. Smooth discrimination analysis. *The Annals of Statistics*, 27(6):1808–1829, 1999.

[18] Philipp Petersen and Felix Voigtlaender. Optimal approximation of piecewise smooth functions using deep relu neural networks. *Neural Networks*, 108:296–330, 2018.

[19] Philipp Petersen and Felix Voigtlaender. Optimal learning of high-dimensional classification problems using deep neural networks. *arXiv preprint arXiv:2112.12555*, 2021.

[20] Jürgen Schmidhuber. Deep learning in neural networks: An overview. *Neural Networks*, 61:85–117, 2015.
[21] Johannes Schmidt-Hieber et al. Nonparametric regression using deep neural networks with relu activation function. *The Annals of Statistics*, 48(4):1875–1897, 2020.

[22] Alexander B. Tsybakov. Optimal aggregation of classifiers in statistical learning. *The Annals of Statistics*, 32(1):135–166, 2004.

[23] Qiang Wu and Ding-Xuan Zhou. Svm soft margin classifiers: Linear programming versus quadratic programming. *Neural Computation*, 17(5):1160–1187, 2005.

[24] Dmitry Yarotsky. Error bounds for approximations with deep relu networks. *Neural Networks*, 94:103–114, 2017.