Vandermonde sets and hyperovals

Kanat Abdukhalikov and Duy Ho

UAE University, PO Box 15551, Al Ain, United Arab Emirates
abdukhalik@uaeu.ac.ae, duyho92@gmail.com

Abstract

We consider relationships between Vandermonde sets and hyperovals. Hyperovals are Vandermonde sets, but, in general, Vandermonde sets are not hyperovals. We give necessary and sufficient conditions for a Vandermonde set to be a hyperoval. Therefore, we provide purely algebraic criteria for existence of hyperovals. Furthermore, we give necessary and sufficient conditions for the existence of hyperovals in terms of g-functions, which can be considered as an analog of Glynn’s Theorem for o-polynomials.

1 Introduction

A finite set of t elements in a finite field is called a Vandermonde set if all power sums of degrees up to $t-2$ of these elements are equal to 0. We consider relationships between Vandermonde sets [GW03; ST08] and hyperovals. Hyperovals are Vandermonde sets, but, in general, Vandermonde sets are not hyperovals. We found an additional set of power sums that their equality to 0 provides necessary and sufficient conditions for a Vandermonde set to be a hyperoval. Therefore, we provide purely algebraic criteria for existence of hyperovals in terms of power sums.

Usually hyperovals are described in terms of o-polynomials, and an alternative description of hyperovals in terms of special g-functions are given in [Abd17; Abd19b]. We note that g-function approach is more efficient in cases when o-polynomial looks very complicated, in particular for Subiaco, Adelaide, Lunelli-Se and sporadic O’Keefe-Penttila hyperovals [Abd19a; Abd19c]. We give necessary and sufficient conditions for the existence of hyperovals in terms of g-functions, which can be considered as an analog of Glynn’s Theorem [Gly89] for o-polynomials. Provided conditions for existence of hyperovals are suitable for efficient computer search.

The paper is organized as follows. We first recall in Section 2 preliminary results on projective planes, affine planes and hyperovals. In Section 3, we show in Theorem 5 that hyperovals are Vandermonde sets. In Section 4, we provide three new characterizations of a hyperoval
via power sums of its points. These are summarized in Theorem 8 and Theorem 11. We also describe examples of Vandermonde sets that are not hyperovals. In Section 5, we describe conditions on g-functions and ρ-polynomials for the existence of hyperovals in Theorem 17 and Theorem 18. In Section 6, we consider the Gram matrix for the elements of a hyperoval.

2 Preliminaries

2.1 Polar representation

In our paper we consider finite fields of characteristics 2 only. Let $F = \mathbb{F}_{2^m}$ be a finite field of order $q = 2^m$. Consider F as a subfield of $K = \mathbb{F}_{2^n}$, where $n = 2m$, so K is a two dimensional vector space over F.

The conjugate of $x \in K$ over F is

$$\bar{x} = x^q.$$

Then the trace and the norm maps from K to F are

$$T(x) = Tr_{K/F} = x + \bar{x} = x + x^q,$$

$$N(x) = N_{K/F}(x) = x\bar{x} = x^{1+q}.$$

The unit circle of K is the set of elements of norm 1:

$$S = \{u \in K \mid u\bar{u} = 1\}.$$

Therefore, S is the multiplicative group of $(q + 1)$st roots of unity in K. Since $F \cap S = \{1\}$, each non-zero element of K has a unique polar coordinate representation $x = \lambda u$ with $\lambda \in F^*$ and $u \in S$. For any $x \in K^*$ we have $\lambda = \sqrt{x\bar{x}}$ and $u = \sqrt{x/\bar{x}}$.

One can define nondegenerate bilinear form $\langle \cdot, \cdot \rangle : K \times K \to F$ by

$$\langle x, y \rangle = T(xy) = xy + \bar{x}y.$$

Then the form $\langle \cdot, \cdot \rangle$ is alternating and symmetric, that is, $\langle a, a \rangle = 0$ and $\langle a, b \rangle = \langle b, a \rangle$.

2.2 Affine and projective planes

Consider points of a projective plane $PG(2, q)$ in homogeneous coordinates as triples $(x : y : z)$, where $x, y, z \in F$, $(x, y, z) \neq (0, 0, 0)$, and we identify $(x : y : z)$ with $(\lambda x : \lambda y : \lambda z)$, $\lambda \in F$. Then points of $PG(2, q)$ are

$$\{(x : y : 1) \mid x, y \in F\} \cup \{(x : 1 : 0) \mid x \in F\} \cup \{(1 : 0 : 0)\}.$$
For $a, b, c \in F$, $(a, b, c) \neq (0, 0, 0)$, the line $[a : b : c]$ in $PG(2, q)$ is defined as
\[[a : b : c] = \{(x : y : z) \in PG(2, q) \mid ax + by + cz = 0 \}. \]

Triples $[a : b : c]$ and $[\lambda a : \lambda b : \lambda c]$ with $\lambda \in F^*$ define same lines. The point $(x : y : z)$ is incident with the line $[a : b : c]$ if and only if $ax + by + cz = 0$. We shall call points of the form $(x : y : 0)$ the points at infinity. Then $[0 : 0 : 1]$ indicates the line at infinity.

We define an affine plane $AG(2, q) = PG(2, q) \setminus [0 : 0 : 1]$, so points of this affine plane $AG(2, q)$ are $\{(x : y : 1) \mid x, y \in F\}$. Associating $(x : y : 1)$ with (x, y) we can identify points of the affine plane $AG(2, q)$ with elements of the vector space $V(2, q) = \{(x, y) \mid x, y \in F\}$, and we will write $AG(2, q) = V(2, q)$. Lines in $AG(2, q) = V(2, q)$ are $\{(c, y) \mid y \in F\}$ and $\{(x, xb + a) \mid x \in F\}, a, b, c \in F$. These lines can be described by equations $x = c$ and $y = xb + a$.

We introduce now other representation of $PG(2, q)$ using the field K. Consider pairs $(x : z)$, where $x \in K, z \in F, x \neq 0$ or $z \neq 0$, and we identify $(x : z)$ with $(\lambda x : \lambda z), \lambda \in F^*$. Then points of $PG(2, q)$ are
\[\{(x : 1) \mid x \in K\} \cup \{(u : 0) \mid u \in S\}. \]

For $\alpha \in K$ and $\beta \in F$ we define lines $[\alpha : \beta]$ in $PG(2, q)$ as
\[[\alpha : \beta] = \{(x : z) \in PG(2, q) \mid \langle \alpha, x \rangle + \beta z = 0 \}. \]

Pairs $[\alpha : \beta]$ and $[\lambda \alpha : \lambda \beta]$ with $\lambda \in F^*$ define same lines. The point $(x : z)$ is incident with the line $[\alpha : \beta]$ if and only if $\langle \alpha, x \rangle + \beta z = 0$. The element $u_\infty = (u : 0), u \in S$, will be referred to as the point at infinity in the direction of u. So $[0 : 1]$ indicates the line at infinity.

We define an affine plane $AG(2, q) = PG(2, q) \setminus [0 : 1]$, so points of this affine plane $AG(2, q)$ are $\{(x : 1) \mid x \in K\}$. Associating $(x : 1)$ with $x \in K$ we can identify points of the affine plane $AG(2, q)$ with elements of the field K, and we write $AG(2, q) = K$. Lines of $AG(2, q) = K$ are of the form
\[L(u, \mu) = \{x \in K \mid \langle u, x \rangle + \mu = 0 \}, \]
where $u \in S$ and $\mu \in F$ (cp. [Bal99, subsection 2.1]).

Throughout the paper, we will consider these two representations of the projective plane $PG(2, q)$, and for each of such projective planes we consider a fixed affine plane $AG(A, q)$ described above. They will be written as $AG(2, q) = V(2, q)$ and $AG(2, q) = K$.

2.3 Hyperovals and representations

In the projective plane $PG(2, q)$, $q = 2^m$, an oval is a set of $q + 1$ points, no three of which are collinear. Any line of the plane meets the oval O at either 0, 1 or 2 points and is called exterior, tangent or secant, respectively. All the tangent lines to the oval O concur at the
same point \(N \), called the \textit{nucleus} of \(\mathcal{O} \). The set \(\mathcal{H} = \mathcal{O} \cup N \) becomes a \textit{hyperoval}, that is a set of \(q + 2 \) points, no three of which are collinear. Conversely, by removing any point from hyperoval one gets an oval.

By the fundamental theorem of projective geometry, any hyperoval of \(PG(2, q) \) is equivalent to a hyperoval \(\mathcal{H} \) containing the points \((1 : 0 : 0), (0 : 0 : 1), (0 : 1 : 0) \) and \((1 : 1 : 1)\). Consequently we may write \(\mathcal{H} \) in the form

\[
\mathcal{H} = \{ (t : f(t) : 1) \mid t \in \mathbb{F} \} \cup \{ (1 : 0 : 0), (0 : 1 : 0) \},
\]

where \(f \) induces a permutation of \(\mathbb{F} \) such that \(f(0) = 0 \) and \(f(1) = 1 \). By applying Lagrange’s Interpolation Formula, it can be shown (cp. \cite{Hir98}) that \(f \) can be expressed uniquely as a polynomial of degree \(q - 2 \) over the field \(\mathbb{F} \). The permutation polynomials which arise from hyperovals in this way are called \textit{o-polynomials} (cp. \cite{Che88}, \cite{Che96}).

As described in \cite{Abd19b}, the hyperoval \(\mathcal{H} \) can also be represented in \(PG(2, q) \) using the field \(K \) as

\[
\mathcal{H} = \left\{ \frac{u}{g(u)} \mid u \in S \right\} \cup \{0\},
\]

for some function \(g : S \to \mathbb{F} \). If \(g(u) = 0 \) then we assume that \(u/g(u) = u_\infty \) is the element at infinity in the direction \(u \). Such a function \(g : S \to \mathbb{F} \) is said to be a \textit{g-function}. We can assume \(g(u) \neq 0 \) for all \(u \in S \), by taking in place of \(g(u) \) an equivalent function \(g(u) + \langle c, u \rangle \) with appropriate \(c \in K \), cp. \cite{Abd17}. Furthermore, we can assume that

\[
g(u) = a_0 + a_1 u + \cdots + a_q u^q,
\]

where \(a_0 \in \mathbb{F}_2, a_i \in K \) and \(a_{q+1-i} = a_i^q \) for \(1 \leq i \leq q/2 \).

In thesis \cite{Deo15}, following ideas from \cite{FS06}, the \(\rho \)-\textit{polynomials} were introduced. We note that the \(\rho \)-polynomials and \(g \)-functions are connected in the following way: \(g(u) = 1/\rho(u) \).

3 Hyperovals are Vandermonde sets

Definition 1. Let \(1 < t < q \). A set \(T := \{ y_1, \cdots, y_t \} \subseteq GF(q) \) is a \textit{Vandermonde set} if

\[
\pi_k(T) := \sum_{i=1}^{t} y_i^k = 0,
\]

for all \(1 \leq k \leq t - 2 \) (cp. \cite{GW03; ST08}). The set \(T \) is a \textit{super-Vandermonde set} if it is a Vandermonde set and \(\pi_{t-1}(T) = 0 \).

Lemma 2 (cp. \cite{ST08}). The Vandermonde property is invariant under transformations \(y \to ay + b, \ (a \neq 0) \) if and only if \(t \) is even or \(b = 0 \).
Proof. We have \(\pi_k(T) := \sum_i y_i^k = 0 \) for all \(1 \leq k \leq t - 2 \). Denote \(T' \) the transformed \(T \). For \(1 \leq k \leq t - 2 \),

\[
\pi_k(T') = \sum_{i=1}^{t} (ay_i + b)^k
= a^k \left(\sum_i y_i^k \right) + t b^k + \sum_{i=1}^{t} \sum_{j=1}^{k-1} \binom{k}{j} a^j y_i^j b^{k-j}
= t b^k + \sum_{j=1}^{k-1} \left(\binom{k}{j} a^j b^{k-j} \sum_{i=1}^{t} y_i^j \right)
= t b^k.
\]

The proof now follows.

Corollary 3 (cp. [ST08]). If \(T \) is a Vandermonde set containing the zero element, then \(T \setminus \{0\} \) is a super-Vandermonde set. In particular, if \(T \) is a Vandermonde set and \(t \) is even, then for any \(a \in T \), the translate \(T - a \) is a Vandermonde set containing the zero element.

Lemma 4. Let \(O = \{y_1, \ldots, y_{q+1}\} \) be an oval with points in \(GF(q^2) \) and nucleus at \(0 \). Then \(O \) is a super-Vandermonde set of \(q + 1 \) points.

Proof. The set \(H := O \cup \{0\} \) is a hyperoval. Let \(x \notin H \). Since \((x - y_i)^{q-1} \) represents the slope of line going through \(x \) and \(y_i \) (cp. [Bal99]) and since every line going through \(x \) intersects \(H \) at either 0 or 2 points, we have

\[
x^{q-1} + \sum_{i=1}^{q+1} (x - y_i)^{q-1} = 0.
\]

This implies the polynomial

\[
\chi(X) = X^{q-1} + \sum_{i=1}^{q+1} (X - y_i)^{q-1}
\]

has at least \(q^2 - q - 2 \) roots. On the other hand, the degree of \(\chi(X) \) is at most \(q - 2 \), so \(\chi(X) \) must be the zero polynomial. This implies

\[
\pi_k(O) = \sum_{i=1}^{q+1} y_i^k = 0,
\]

for \(1 \leq k \leq q - 1 \). Also,

\[
\pi_q(O) = \sum_{i=1}^{q+1} y_i^q = \left(\sum_{i=1}^{q+1} y_i \right)^q = 0.
\]

Therefore \(O \) is a super-Vandermonde set. \[\square\]
Theorem 5. A hyperoval with points in $\text{GF}(q^2)$ is a Vandermonde set.

Proof. Let N be a hyperoval with points in $\text{GF}(q^2)$. Let N_0 be a translation of N containing 0. Then $O := N_0 \setminus \{0\}$ is an oval with points in $\text{GF}(q^2)$ and nucleus at 0. By Lemma 4, O is a super-Vandermonde set. Hence N_0 is a Vandermonde set. By Lemma 2, N is also a Vandermonde set. \qed

4 Hyperovals and power sums of points

In this section, we consider the set $H := \{u/g(u) \mid u \in S\} \cup \{0\}$. As noted in Section 2, we can assume $g(u) \neq 0$ for all $u \in S$. We rewrite elements of S as $S := \{u_0, u_1, \ldots, u_q\}$. For $1 \leq j \leq q+1$, let $y_j := u_j/g(u_j)$. For $1 \leq k \leq q$, let $\pi_k := \sum_{j=1}^{q+1} y_j^k$.

Lemma 6. A set N of $q+2$ points in $\text{GF}(q^2)$ is a hyperoval if and only if every line intersects N at an even number of points.

Proof. If N is a hyperoval then every line intersects N at 0 or 2 points. Assume every line intersects N at an even number of points. Let p be a point on N. Then the $q+1$ lines going through p each contains at least one more point of N. Since there are only $q+1$ points in $H \setminus \{p\}$, each of these lines contain exactly two points of N (including p). In particular, no three points of N are collinear and so N is a hyperoval. \qed

Example 7. Vandermonde sets of size $q+2$ are not necessarily hyperovals. For $q = 8$, let $\lambda, \mu \in F^*$ such that $1 + \lambda^3 + \mu^3 = 0$. Let

$$ H := \{0, 1, \omega, \bar{\omega}, \lambda, \lambda\omega, \lambda\bar{\omega}, \mu, \mu\omega, \mu\bar{\omega}\}, $$

where $\omega \in S$ such that $\omega^3 = 1$. Then H is a Vandermonde set but not a hyperoval, as the line $\langle 1, x \rangle = 0$ intersects H at four points.

So from now on we will concentrate on sets of the form $H := \{u/g(u) \mid u \in S\} \cup \{0\}$.

Theorem 8. The set $H := \{u/g(u) \mid u \in S\} \cup \{0\}$ is a hyperoval if and only if one of the followings holds.

1. The equation

$$ g(u) + \langle u, b \rangle = 0 \quad (1) $$

has an even number of solutions $u \in S$ for each $b \in K$.

2. For each $v \in S$ and $1 \leq k \leq q$,

$$ \sum_{u \in S} \left\langle v, \frac{u}{g(u)} \right\rangle^k = 0. \quad (2) $$
Proof. 1. If H is a hyperoval, then by [Abd19b, Theorem 4.4] the equation (1) has 0 or 2 solutions for each $b \in K$. Assume the converse. For $v \in S, \mu \in F$, we want to show the line L defined by
$$\langle v, x \rangle + \mu = 0$$
intersects H at an even number of points. There are two cases depending on μ.

(a) $\mu = 0$. Then L intersects H at two points 0 and $v/g(v)$.

(b) $\mu \in F\{0\}$. Let $b = \frac{v}{\mu}$. We have

$$g(u) = \langle u, b \rangle \iff g(u) = \langle u, v/\mu \rangle$$
$$\iff g(u) = 1/\mu \cdot \langle u, v \rangle$$
$$\iff \mu = 1/g(u) \cdot \langle u, v \rangle$$
$$\iff \mu = \langle v, u/g(u) \rangle$$
$$\iff \langle v, u/g(u) \rangle + \mu = 0.$$

This implies the line L intersects H at an even number of points. The claim now follows from Lemma 6.

2. Assume H is a hyperoval. Fix $v \in S$. For each $\mu \in F$, the line $\langle v, x \rangle = \mu$ intersects H at either 0 or 2 points. In particular, the equation

$$\left\langle v, \frac{u}{g(u)} \right\rangle = \mu$$

has either 0 or 2 solutions $u \in S$. This implies condition (2) is true for each $v \in S$ and $1 \leq k \leq q$.

Conversely, assume condition (2) is true for each $v \in S$ and $1 \leq k \leq q$. We will show that every line $\langle v, x \rangle = \mu$ intersects H at an even number of points. Fix $v \in S$. For $\mu = 0$, the line $\langle v, x \rangle = 0$ intersects H at 0 and $v/g(v)$. For each $\mu \in F\{0\}$, let

$$U_\mu := \left\{ u \in S \setminus \{v\} \mid \left\langle v, \frac{u}{g(u)} \right\rangle = \mu \right\}.$$

We note that, for each $1 \leq k \leq q$,

$$\sum_{u \in U_\mu} \left\langle v, \frac{u}{g(u)} \right\rangle^k = \begin{cases} \mu^k & \text{if } |U_\mu| \text{ is odd,} \\ 0 & \text{if } |U_\mu| \text{ is even.} \end{cases}$$

Let $\Omega := \{ \mu \in F\{0\} \mid |U_\mu| \text{ is odd}\}$. Assume that $\Omega \neq \emptyset$. Then

$$\sum_{u \in S} \left\langle v, \frac{u}{g(u)} \right\rangle^k = \sum_{\mu \in \Omega} \sum_{u \in U_\mu} \left\langle v, \frac{u}{g(u)} \right\rangle^k = \sum_{\mu \in \Omega} \mu^k = 0.$
Also, the sets U_μ partition the set $S \setminus \{v\}$ of size q, so that $|\Omega|$ is even. In particular, the sum of the vectors $(1, \mu, \mu^2, \cdots, \mu^{q-2})$, $\mu \in \Omega$, is the zero vector. On the other hand, the Vandermonde’s determinant implies that these vectors are linearly independent. Hence $\Omega = \emptyset$.

We have shown that every line $\langle v, x \rangle = \mu$ intersects H at an even number of points. By Lemma 6, H is a hyperoval.

Lemma 9. The power of the bilinear form $\langle \cdot, \cdot \rangle$ is given by

$$\langle a, b \rangle^k = \sum_{i=0}^{\lfloor (k-1)/2 \rfloor} \binom{k}{i} \langle a^{iq+k-i}, b^{iq+k-i} \rangle.$$

Proof. Assume k is odd. We have

$$\langle a, b \rangle^k = (a^q b + ab^q)^k = \sum_{i=0}^{k} \binom{k}{i} a^{iq} b^i a^{k-i} b^{q(k-i)q} = \sum_{i=0}^{k} \binom{k}{i} a^{iq+k-i} b^{i+(k-i)q}$$

$$= \sum_{i=0}^{(k-1)/2} \binom{k}{i} a^{iq+k-i} b^{i+(k-i)q} + \sum_{i=(k+1)/2}^{k} \binom{k}{i} a^{iq+k-i} b^{i+(k-i)q}$$

$$= \sum_{i=0}^{(k-1)/2} \binom{k}{i} a^{iq+k-i} b^{i+(k-i)q} + \sum_{i=0}^{(k-1)/2} \binom{k}{i} a^{i+(k-i)q} b^{iq+k-i}$$

$$= \sum_{i=0}^{(k-1)/2} \binom{k}{i} \langle a^{iq+k-i}, b^{iq+k-i} \rangle.$$

Similar to the above, when k is even, we have

$$\langle a, b \rangle^k = \sum_{i=0}^{k/2-1} \binom{k}{i} \langle a^{iq+k-i}, b^{iq+k-i} \rangle + \binom{k}{k/2} \langle a^{iq+k-i}, b^{iq+k-i} \rangle$$

$$= \sum_{i=0}^{k/2-1} \binom{k}{i} \langle a^{iq+k-i}, b^{iq+k-i} \rangle,$$

since $\binom{k}{k/2}$ is even.

To state the next theorem we define the following partial ordering \preceq on the set of nonnegative integers. If

$$b = \sum_{i=0}^{m} b_i 2^i \text{ and } c = \sum_{i=0}^{m} c_i 2^i$$

8
(where each b_i and each c_i is either 0 or 1), then $b \leq c$ if and only if $b_i \leq c_i$ for all i (cp. [Gly89], [OP91]). In other words, $b \leq c$ if and only if all nonzero terms appearing in the binary expansion of b also appear in the binary expansion of c.

Let

$$M := \{(i,k) \mid 1 \leq k \leq q - 2, 0 \leq i \leq \lfloor (k - 1)/2 \rfloor, i \leq k\},$$

and

$$D := \{iq + k - i \mid (i,k) \in M\}.$$

Theorem 10. The set $H := \{u/g(u) \mid u \in S\} \cup \{0\}$ is a hyperoval if and only if $\pi_d = 0$ for all $d \in D$.

Proof.

1. We first prove that H is a hyperoval if and only if $\pi_d = 0$ for all $d \in D'$, where

$$D' := \{iq + k - i \mid 1 \leq k \leq q, 0 \leq i \leq \lfloor (k - 1)/2 \rfloor, i \leq k\}.$$

Fix $1 \leq k \leq q$. For each $v \in S$, by Lemma 9, we have

$$\sum_{u \in S} \left(\frac{\langle v, u \rangle}{g(u)}\right)^k = \sum_{j=1}^{q+1} \sum_{i=0}^{\lfloor (k-1)/2 \rfloor} \binom{k}{i} \langle v^{iq+k-i}, y_j^{iq+k-i} \rangle$$

$$= \sum_{i=0}^{\lfloor (k-1)/2 \rfloor} \sum_{j=1}^{q+1} \binom{k}{i} \langle v^{iq+k-i}, y_j^{iq+k-i} \rangle$$

$$= \sum_{i=0}^{\lfloor (k-1)/2 \rfloor} \binom{k}{i} \langle v^{iq+k-i}, \pi_{iq+k-i} \rangle$$

$$= \sum_{0 \leq i \leq \lfloor (k-1)/2 \rfloor} \langle v^{iq+k-i}, \pi_{iq+k-i} \rangle = P_k(v),$$

where P is the polynomial obtained from expanding the terms in the last sum. We can assume P_k has degree at most q, as $v^{q+1} = 1$.

The power of v in $P_k(v)$ is either of the form $k - 2i$ or $q + 1 - 2i - k$. If $i \neq i'$, then $k - 2i \neq k - 2i'$, and $k - 2i \neq q + 1 - k - 2i' - k$. Hence $P_k(v)$ has the form $P_k(v) = \sum \pi_r v^r$.

By Theorem 8, H is a hyperoval if and only if $P_k(v) = 0$ has $q + 1$ roots $v \in S$ for each $1 \leq k \leq q$. Equivalently, the coefficients of P_k are zeros, that is, $\pi_d = 0$ for all $d \in D'$.

2. Since $D \subseteq D'$, if $\pi_{d'} = 0$ for all $d' \in D'$, then $\pi_d = 0$ for all $d \in D$. Conversely, we let $d' = iq + k - i \in D'$ and consider the two cases $k = q$ and $k = q - 1$. In the case $k = q$, there is only one possibility $i = 0$ and $d' = q$. In particular, $\pi_{d'} = 0$ if and only if $\pi_1 = 0$.

The case $k = q - 1$ occurs if and only if $q - 1 \mid d'$. This implies $d' = (q - 1)t$ for some $1 \leq t \leq q$ and

$$\pi_{d'} = \sum_{j=1}^{q+1} (y_j^{q-1})^t.$$
The elements \(y_j^{q-1} \) are in \(S \) and pairwise distinct, so that the set \(\{ y_j^{q-1} \mid 0 \leq j \leq q \} \) is \(S \) and hence a Vandermonde set. It follows that \(\pi_{d'} = 0 \). Therefore, \(\pi_{d'} = 0 \) for all \(d' \in D' \) if and only if \(\pi_d = 0 \) for all \(d \in D \).

The theorem now follows from part 1) and 2).

For \(d \in D \) and \(l \in \mathbb{Z} \), if \(d' \equiv 2^l d \pmod{q^2 - 1} \), then \(\pi_d = \pi_{d'} \). And so Theorem 10 can be improved as follows. Let \(\sim \) be the equivalence relation on \(D \) defined by \(x \sim y \) if and only if there exists \(l \in \mathbb{Z} \) such that \(x \equiv 2^l y \pmod{q^2 - 1} \). Let

\[
D := D/\sim.
\]

Theorem 11. The set \(H := \{ u/g(u) \mid u \in S \} \cup \{0\} \) is a hyperoval if and only if \(\pi_d = 0 \) for all \(d \in D \).

Remark 12. For \(q = 2^m \leq 128 \), the set \(D \) is given in Table 1.

Remark 13. For \(q = 4 \) and \(q = 8 \), from Table 1 it follows that \(H := \{ u/g(u) \mid u \in S \} \cup \{0\} \) is a hyperoval if and only if it is a Vandermonde set.

Example 14. Vandermonde sets of the form \(\{ u/g(u) \mid u \in S \} \cup \{0\} \) are not necessarily hyperovals either. For \(q = 16 \), let

\[
g(u) = u^{16} + \omega u^{12} + \omega u^{11} + \omega u^6 + \omega u^5 + u + 1,
\]

where \(\omega \) satisfies \(\omega^3 = 1 \). Let \(H := \{ u/g(u) \mid u \in S \} \cup \{0\} \). Then \(\pi_i = 0 \), for \(i = \{1, 3, 5, 7, 9, 11, 13\} \), but \(\pi_{37} \neq 0 \). This implies \(H \) is a Vandermonde set but not a hyperoval.

5 The coefficients of \(g \)-functions and \(\rho \)-polynomials

In this section we study the coefficients of \(g \)-functions for hyperovals. We start with the following.

Lemma 15. For \(f, g \in K[x] \), \(f(u) = g(u) \) for all \(u \in S \) if and only if \(f(x) \equiv g(x) \pmod{x^{q+1} - 1} \).

Proof. By the division algorithm, there exist \(r, h \in K[x] \) such that

\[
f(x) - g(x) = h(x)(x^{q+1} - 1) + r(x),
\]

where \(\deg r(x) < q + 1 \). Then \(f(u) = g(u) \) for all \(u \in S \) if and only if \(r(u) = 0 \). This occurs if and only if \(r(x) = 0 \), if and only if \(f(x) \equiv g(x) \pmod{x^{q+1} - 1} \).

For \(1 \leq k \leq q \), let

\[
e_k(X_1, \ldots, X_n) = \sum_{1 \leq j_1 < \cdots < j_k \leq n} X_{j_1} \cdots X_{j_k}
\]

be the elementary symmetric polynomial of degree \(k \) for variables \(X_1, \ldots, X_n \).
Table 1: Set D in small fields

| q | Elements in D | | D | |
|-----|-------------------------------|---|---|
| 4 | 1 | 1 |
| 8 | 1,3,5 | 3 |
| 16 | 1,3,5,7,9,11,13,37 | 8 |
| 32 | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 69, 73, 77, 85, 89, 147 | 21 |
| 64 | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 133, 137, 141, 145, 149, 153, 157, 165, 169, 173, 177, 181, 185, 275, 281, 283, 291, 297, 299, 307, 313, 409, 425, 661 | 55 |
| 128 | 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 261, 265, 269, 273, 277, 281, 285, 289, 293, 297, 301, 305, 309, 313, 317, 325, 329, 333, 337, 341, 345, 349, 353, 357, 361, 365, 369, 373, 377, 529, 531, 537, 539, 547, 553, 555, 561, 563, 569, 571, 579, 585, 587, 593, 595, 601, 603, 611, 617, 619, 625, 627, 633, 785, 793, 809, 817, 825, 841, 849, 857, 873, 881, 1093, 1095, 1097, 1109, 1111, 1123, 1125, 1127, 1139, 1141, 1301, 1317, 1333, 1365, 1381, 1587, 1619, 2341, 2349, 2381, 2405 | 147 |

Lemma 16. \(e_k(u_1, \ldots, u_{q+1}) = 0 \) for \(1 \leq k \leq q \).

Proof. To simplify the notation, we let \(e_k = e_k(u_1, \ldots, u_{q+1}) \). We consider the following forms of the polynomial

\[
f(x) = x^{q+1} - 1 = \prod_{u \in S}(x - u) = x^{q+1} + e_1x^q + e_2x^{q-1} + \cdots + e_qx + e_{q+1}.
\]

Then we have \(e_k = 0 \) for \(1 \leq k \leq q \). \(\square \)

We now recall the Lagrange's Interpolation Formula (cp. [LN97] Theorem 1.71). For \(n \geq 0 \), let \(a_0, \ldots, a_n \) be \(n+1 \) distinct elements of a field \(F \), and let \(b_0, \ldots, b_n \) be \(n+1 \) arbitrary elements of \(F \). Then there exists exactly one polynomial \(f \in F[x] \) of degree \(\leq n \) such that \(f(a_i) = b_i \) for \(i = 0, \ldots, n \). This polynomial is given by

\[
f(x) = \sum_{i=0}^{n} b_i \prod_{k=0 \atop k \neq i}^{n} \frac{x - a_k}{a_i - a_k}.
\]

Theorem 17. Let \(H := \{ u/g(u) \mid u \in S \} \cup \{0\} \). Then \(H \) is a hyperoval if and only if one of the following holds.

1. The coefficient of \(x^{2i-k+q+1} \) in \(g^{q-1-k}(x) \pmod{x^{q+1} - 1} \) is zero, for each pair \((i,k) \in \mathcal{M} \).

2. The coefficient of \(x^{k-2i} \) in \(g^{q-1-k}(x) \pmod{x^{q+1} - 1} \) is zero, for each pair \((i,k) \in \mathcal{M} \).
Proof. Since the coefficients of \(x^{k-2i}\) and \(x^{2i-k+q+1}\) of \(g^{q-1-k}(x)\) are conjugate, it is sufficient to prove that \(H\) is a hyperoval if and only if the condition in part 1) holds. We can assume \(g \in K[x]\) such that \(g(u) \in F\) for \(u \in S\). From the Lagrange’s Interpolation Formula and Lemma 15, for each \(k\), modulo \((x^{q+1} - 1)\), \(g^{q-1-k}(x)\) has the form

\[
g^{q-1-k}(x) \equiv \sum_{u \in S} g^{q-1-k}(u) \prod_{\substack{v \in S \setminus \{u\}}} \frac{x - v}{u - v}.
\]

Using Lemma 16, for \(u \in S\), we have

\[
\prod_{\substack{v \in S \setminus \{u\}}} (x - v) = x^q + ux^{q-1} + u^2x^{q-2} + \cdots + u^q.
\]

Also,

\[
\prod_{\substack{v \in S \setminus \{u\}}} (u - v) = u^q.
\]

Then,

\[
g^{q-1-k}(x) \equiv \sum_{u \in S} \left[ug^{q-1-k}(u)(x^q + ux^{q-1} + \cdots + u^q) \right]
\]

\[
= \sum_{i=1}^{q+1} \left(\sum_{u \in S} u^i g^{q-1-k}(u) \right) x^{q+1-i}
\]

\[
= \sum_{i=0}^{q} \left(\sum_{u \in S} u^{-i} g^{q-1-k}(u) \right) x^i.
\]

By Theorem 11, \(H\) is hyperoval if and only if

\[
\sum_{u \in S} \left(\frac{u}{g(u)} \right)^d = \sum_{u \in S} \left(\frac{u}{g(u)} \right)^{iq+k-i} = \sum_{u \in S} u^{k-2i} g^{q-1-k}(u) = 0,
\]

for each pair \((i, k) \in \mathcal{M}\). This occurs if and only if the coefficient of \(x^{2i-k+q+1}\) in \(g^{q-1-k}(x)\) mod \((x^{q+1} - 1)\) is zero. \(\square\)

Using the relationship \(\rho(u) = 1/g(u)\) we obtain the following.

Theorem 18. Let \(H := \{u\rho(u) \mid u \in S\} \cup \{0\}\). Then \(H\) is a hyperoval if and only if one of the following holds.

1. The coefficient of \(x^{2i-k+q+1}\) in \(\rho(x)^k \pmod{x^{q+1} - 1}\) is zero, for each pair \((i, k) \in \mathcal{M}\).
2. The coefficient of \(x^{k-2i}\) in \(\rho(x)^k \pmod{x^{q+1} - 1}\) is zero, for each pair \((i, k) \in \mathcal{M}\).
Corollary 19. If \(H := \{ u/g(u) \mid u \in S \} \cup \{0\} \) is a hyperoval, then the coefficient of \(x^t \) in \(g(x) \) is zero, for \(t \equiv 2 \pmod{4} \) or \(t \equiv 3 \pmod{4} \).

Proof. Assume \(H := \{ u/g(u) \mid u \in S \} \cup \{0\} \) is a hyperoval. We consider the special case \(k = q - 2 \). We have

\[
\mathcal{I} := \{ i \mid (i, k) \in \mathcal{M} \} = \{ i \mid 0 \leq i \leq \lfloor (k - 1)/2 \rfloor, i \text{ even} \}.
\]

This implies

\[
\{ k - 2i \mid i \in \mathcal{I} \} = \{ t \mid 1 < t < q, t \equiv 2 \pmod{4} \}.
\]

By Theorem 17, the coefficient of \(x^t \) is zero in \(g(x) \) for \(t \equiv 2 \pmod{4} \). The proof now follows from the fact that the coefficients of \(x^t \) and \(x^{q+1-t} \) are conjugate.

\[\square \]

6 Gram matrices

Following [FS06], consider an element \(i \in K \) with property \(T(i) = i + i^q = 1 \). Then \(K = F(i) \) and \(i \) is a root of a quadratic equation

\[z^2 + z + \delta = 0, \]

where \(\delta = N(i) \in F \). Any element \(z \in K \) can be represented as \(z = x + yi \), where \(x, y \in F \). For \(z = x + yi \) we have \(x = \langle i, z \rangle \), and \(y = \langle 1, z \rangle \).

Note that if \(m \) is odd then one can choose \(i = \omega, \omega^2 + \omega + 1 = 0 \). So if \(w \in K \) is a generator of \(S \) then we can take \(i = \omega = w^{(q+1)/3} \). From Theorem 8 we have the following.

Theorem 20. Let \(H := \{ y_i \mid 1 \leq i \leq q + 1 \} \cup \{0\} \). Assume no two points \(y_i, y_j \) are on the same line \(\langle v, x \rangle = 0 \) for all \(v \in S \). Then \(H \) is a hyperoval if and only if

\[\sum_{j=1}^{q+1} \langle y_i, y_j \rangle^k = 0, \]

for each \(y_i \) and \(1 \leq k \leq q \).

For each \(1 \leq k \leq q \), let \(M_H(k) \) be the \((q+1) \times (q+1)\) matrix whose entries are \((M_H(k))_{i,j} := \langle y_i, y_j \rangle^k\). By Theorem 20, sums of elements in any column and any row of \(M_H(k) \) are equal to 0.

In the following we consider additional properties of the matrix \(M_H(1) \), which we will denote by \(M_H \).

Proposition 21. Let \(H := \{ y_i \mid 1 \leq i \leq q + 1 \} \cup \{0\} \) be a hyperoval. For each \(i \), let \(c_i, s_i \) be elements in \(F \) such that \(y_i = c_i + s_i i \). Without loss of generality, assume \(y_q = 1 \) and \(y_{q+1} = s_{q+1} i \).

Let \(M_H \) be the \((q+1) \times (q+1)\) matrix whose entries are \((M_H)_{i,j} := \langle y_i, y_j \rangle\). The matrix \(M_H \) has the following properties.
1. M_H is symmetric and its diagonal entries are zeros. The trace of M_H is zero.

2. M_H has an eigenvalue $\mu = 0$ of multiplicity $q - 1$. The corresponding eigenvectors are

$$v_i = [0, \ldots, 0, 1, 0, \ldots, c_i, s_i/s_{q+1}]^T.$$

where $1 \leq i \leq q - 1$.

Also, the determinant of M_H is zero.

3. The characteristic polynomial of M_H is $P(x) = x^{q-1}(x + \mu_0)^2$. In particular, M_H has exactly one non-zero eigenvalue $\mu = \mu_0 \in F$ of multiplicity 2.

4. The minimal polynomial of M_H is $Q(x) = x(x + \mu_0)$.

Proof. 1. These follow from properties of the bilinear form $\langle \cdot, \cdot \rangle$.

2. From Theorem 20, it can be calculated that $M_Hv_i = 0$. Since the set of vectors $\{v_i\}$ is linearly independent, $\mu = 0$ is an eigenvalue of M_H with multiplicity $q - 1$ and v_i’s are the corresponding eigenvectors. It follows that the determinant of M_H is zero.

3. Since $\mu = 0$ is an eigenvalue of multiplicity $q - 1$, the characteristic polynomial of M_H has the form

$$P(x) = x^{q-1}(x^2 + ax + \mu_0^2).$$

Also since $tr(M_H) = 0$, the coefficient a of x^q is zero. Hence $P(x) = x^{q-1}(x + \mu_0)^2$.

This implies $\mu = \mu_0$ is the only non-zero eigenvalue of M_H with multiplicity 2.

4. The minimal polynomial $Q(x)$ of M_H divides $P(x)$, so it has the form

$$Q(x) = x^s(x + \mu_0)^t.$$

Since M_H is diagonalizable, $s = t = 1$ and so $Q(x) = x(x + \mu_0)$.

Acknowledgments

This work was supported by grant 31S366.

References

[Abd17] K. Abdukhalikov. “Bent functions and line ovals”. Finite Fields Appl. 47 (2017), 94–124.

[Abd19a] K. Abdukhalikov. “Equivalence classes of Niho bent functions”. arxiv:1903.04450. 2019.

[Abd19b] K. Abdukhalikov. “Hyperovals and bent functions”. European Journal of Combinatorics 79 (2019), 123 –139.
[Abd19c] K. Abdukhalikov. “Short description of the Lunelli–Sce hyperoval and its automorphism group”. *J. Geom.* 110. no. 3 (2019), Paper No. 54.

[Bal99] S. Ball. “Polynomials in finite geometries”. *Surveys in combinatorics, 1999 (Canterbury)*. Vol. 267. London Math. Soc. Lecture Note Ser. Cambridge Univ. Press, Cambridge, 1999, 17–35.

[Che88] W. Cherowitzo. “Hyperovals in Desarguesian planes of even order”. *Combinatorics ’86 (Trento, 1986)*. Vol. 37. Ann. Discrete Math. North-Holland, Amsterdam, 1988, 87–94.

[Che96] W. Cherowitzo. “Hyperovals in Desarguesian planes: An update”. *Discrete Mathematics* 155. no. 1 (1996), 31–38.

[Deo15] P. A. Deorsey. *Hyperovals and cyclotomic sets in AG(2, q)*. Thesis (Ph.D.) - University of Colorado at Denver. ProQuest LLC, Ann Arbor, MI, 2015, 94.

[FS06] J. C. Fisher and B. Schmidt. “Finite Fourier series and ovals in PG(2, 2^h)” *Journal of the Australian Mathematical Society* 81. no. 1 (2006), 2134.

[GW03] A. Gács and Z. Weiner. “On (q+t,t)-arcs of type (0,2,t)”. *Des. Codes Cryptogr.* 29. no. 1-3 (2003), 131–139.

[Gly89] D. G. Glynn. “A condition for the existence of ovals in PG(2,q),q even”. *Geom. Dedicata* 32. no. 2 (1989), 247–252.

[Hir98] J. W. P. Hirschfeld. *Projective geometries over finite fields*. Second Edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1998.

[LN97] R. Lidl and H. Niederreiter. *Finite Fields*. Cambridge University Press, 1997.

[OP91] C. M. O’Keefe and T. Penttila. “Polynomials for hyperovals of Desarguesian planes”. *J. Austral. Math. Soc. Ser. A* 51. no. 3 (1991), 436–447.

[ST08] P. Sziklai and M. Takáts. “Vandermonde sets and super-Vandermonde sets”. *Finite Fields Appl.* 14. no. 4 (2008), 1056–1067.