REVIEW OF PHASE CHANGE MATERIALS BASED ON ENERGY STORAGE SYSTEM WITH APPLICATIONS

R. Thamaraikannan1, B. Kanimozhi2, M. Anish3, J. Jayaprakash4, P. Saravanan5, A. Rohan Nicholas6

School of Mechanical Engineering, Sathyabama University, Chennai, India
E-mail: anish2010me@gmail.com

Abstract. The use of different types of storage systems using phase change materials (PCMs) is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to maintain temperatures within the well-being zone. PCMs have been extensively used in various storage systems for heat pumps, solar engineering, and thermal control applications. The use of PCMs for heating and cooling applications have been investigated during the past decade. There are large numbers of PCMs, which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of phase change materials used in different types of storage systems with different applications.

1. Introduction

Since the beginning of time people have benefited by sun. Ancient civilizations personified by the sun. Only recently have we developed the ability to harness the sun's awesome power. The resultant technologies have promising deduction for the future of renewable energy and sustainability. Energy storage is the capture of energy produced at one time for use at later time. A device that stores energy is sometimes called as accumulator. Energy comes in many forms including radiation, chemical, gravitational potential, electricity, elevated temperature latent heat. Energy storage involves converting energy from forms that are difficult to store to conventional, economical storage forms. As examples energy demand can balanced by storing energy during off-peak times and using it during peak times. Energy from solar heaters can be stored interpersonally for use in winter and cold obtained from kilter air can be provided for summer air conditioning. Storage medium include water or ice slush tanks ranging from small to massive. There are many types of storage system using phase change materials is an effective way of storing energy and also to make advantages of heating and cooling systems are installed to keep temperatures within the well-being zone. PCMs have been extensively used in various storage systems. For heat pumps solar engineering and thermal control applications. The use of PCMs for heating and cooling have been investigated during the past decade. They are large number of PCMs which melt and solidify at a wide range of temperatures, making them attractive in a number of applications. This paper also outline the investigation and analysis of phase change materials used in different types of storage systems with different applications. Thermal energy storage technology with PCMs with many applications those technology is very beneficial for the humans as well as the energy conversations.

2. Energy Storage Systems
Thermal Energy Storage systems play an important role in the effectual functioning of different systems, and industrial waste heat advance systems. Energy can be stored and recovered as sensible heat, latent heat and also in energy storage transformations increase of any of these. In SHS system, thermal energy is stored by increasing the temperature of a solid or liquid. The SHS system uses the heat capacity and the change in the temperature of the material during the procedure of charging and discharging. The amount of stored thermal energy depend on the specific heat of the medium, the temperature alter and the amount of storage material. LHS system is settled on heat absorption or release, when heat provide to the system. When materials access certain level of temperature the additional heat energy is stored in the system without any alter in the temperature, then the stored energy in the materials experience a phase change from solid to gas or reversed. It is called as latent heat storage system. Energy Storage system, the energy is occupied and distributed while breakage or reforming molecular bonds in a fully reversed chemical reaction. In this case, the storage of heat depends on the quantity of chemical material and endothermic heat of reaction.

3.Heat Transfer Improvements Methods

Enhancement techniques are supporting tools for thermal energy storage systems. The closely enhanced design yields good results in thermal systems. The rapid development of world literature on this subject point that enhancement is now a major specialty area in thermal energy (heat transfer) Research and Development, so the industrial and domestic utilization of improvement techniques increases day by day. Heat transfer improvements techniques are needed for many latent heat thermal energy storage systems; various methods are proposed to increase the heat passing in a latent heat thermal energy storage system, such as Metallic fillers, metal matrix construction, and finned tubes were used to increase the thermal conductivity of the phase change materials as shown in figure 1. Improvements related techniques are listed below. (i) Active methods of agitators, vibrators, scrapers and clay. (ii) Microencapsulated PCM. (iii) PCM contains separate high conductivity particles, Lessing rings. (iv) PCM assorted with graphite composite material. (v) Extensive surfaces such as fins and honeycombs.

![Figure 1 Different kinds of Heat Transfer Improvements fins](image-url)
4. Objective:

[1] By using phase change material like paraffin and stearic acid during thermal energy storage systems using both sensible and latent heat storage capacity in a unit volume, while charging and discharging the solar energy is maintained at constant temp and pressure.

[2] PCMs like paraffin (aluminium is filled with paraffin) it maintain that hot water is accessible throughout the day the storage unit stores the heat in the PCM storage during the day time and supplies hot water during at night and overcast time.[3] By using he PCM (wax based storage system is improved by fixed copper, aluminum and iron spring). we can store the loss of energy during changing and discharging of solar energy.[4] His review is using the PCM the latent storage system is obtained in effective way and it has the many advantages high storage, isothermal in nature. PCM is widely used for many applications.

[5] To avoid when the available energy source is irregular then a time lagging between productions is demand by providing three different aspect ratio of thermal storage tank namely 2, 1, 1/2.[6] He describe that using the pcm when the solar radiation is not available we use the sensible storage unit. when the solar radiation is available means we use the latent heat storage system.[7] The storage of solar energy with the help of thermal energy storage like solar energy storage sensible heat storage and latent heat storage with the help of PCM. [8] He describe using the solar energy the water is heated with the help of attachment of photovoltaic tank because this one reach the high efficiency when compared to others normal heater.

[9] The focus on solar power plant using the thermal energy storage technology and system to get a low economic analysis as high efficiency.[10] He describe focus on solar and power plant using the latent thermo Celine energy storage system is performed for repeated charging and discharging process and movement of process using the encapsulated PCM.[11] He describe using the PCM as salt instead of paraffin wax to increase the solidification of storage system and It has high thermal conductivity and low cost compared to the paraffin wax.[12] She describe the storage. The energy interns of temperature distribution heat transfer and energy storage rate by using multi tank storage system.[13] The solar energy storage based on the metal hybrids particularly to get the better performance, optimization and good economical feasibility.[14] He describes that energy storage system based on latent heat storage and thermo chemical heat storage mainly concentrate on limited life of methods energy source is the achievement of sustainable energy is not available at all the time the need of heat storage system obtained.[15] He describe in order to reduce operation cost of solar plant and the limitation is their low heat conductivity based on different types of thermal storage system sensible. latent and chemical heat using PCM.[16] The simple and widely used application of solar energy include cooking, water heating power generation and agricultural drying operating the cooking on power by using different PCM(stearic acid).[17] The usage of PCM to kept the heat in the form of latent heat is increased because large amount of thermal energy stored in smaller volume. In that sodium thiosulphate, pentahydrate used as a PCM stored in stainless steel capsule.[18] He describes the mainly concentrated on free cooling and active building cooling by the concept of thermal energy storage by using PCM as CaCl2,6H2O this material is used for cooling the water during night time and circulating throughout the area. [19] He describes based on phase changing material in solar thermal energy storage system in different types Sensible heat storage, latent heat storage and thermo chemical storage and is widely used for many applications in order to reduce the low cost medium good efficiency and stores thermal energy.[20] He describes based on PCM the indoor temperature of the fluctuation can be reduced significantly to achieve energy conservation in building with thermal comfort.

[21] The review on thermal energy storage system using phase changing material and it’s widely used for many applications space heating and cooling in buildings solar application of peak energy storage on heat exchanger in improvement. It concentrates to raise in electric energy cost thermal storage
technologies.[22] To achieve thermal comfort in buildings reducing the cooling and heating demand using PCM to obtain energy efficiency in HVAC system.[23] He describes using PCM able to charge and discharge the energy storage with a thermal power with the help of latent thermal energy storage system in order to increase the thermal conductivity of material using as pcm. which limits the power that can be extracted from the thermal energy storage [24] He explains the heat transfer co-efficient decreases with increasing phase change material as micro protected pcm suspension with water propanol mixture as the base fluid. temperature and flow rate of heat transfer in three technique the pure conduction quasi-steady and decay period.[25] In order to increase the content on the pcm its prepared by using the macro packed pcm its prepared by using n-octedecane, n-eicosane and n-docosane to get the thermal conductivity was more than pure pcm and also widely used in application material in buildings [26] In order to reduce the weight and space requirement of energy storage system by using cylindrical latent heat energy storage system .based on pcm canonic acid is used with copper fins.

[27] In order to get the satisfactory conductivity good thermal reliability and stability by using unchanged pcm in differntLauric -Palmatic -Stearic acid /expanded perlite composite[28] He describes the use of pcm in a thermal energy storage tank when blended to a heat pump system and also he mentioned to get high efficiency by using pcm tanks compared to normal tank material like salt hydride, macro-encapsulated in plastic flat slab.[29] He describes in order to improve the speed of the charging and discharging heat process by adding the oil engine different type of paraffin wax as PCM.[30] He describes order to increase the higher heat storage capacity by using different kind of building composite PCM in different ratio and many TES application.

[31] The review on phase changing material. The phase change between 0 degree Celsius and 250 degree Celsius during heating and cooling applications by latent heat storage system and many techniques used for heat transfer.PCM salt hydrate, eutectic mixtures.

[32] By using the composite PCM to achieve the high energy charging and discharging and method to enhance the thermal conductivity by the PCM.[33] The discharging process of a latent heat thermal energy storage system with help of finned head pipes by using the high temperature PCM.[34] He describes to accrue long term productivity of LHS system by using Thermo-Physical stability of both paraffin’s and salt hydrates. Its mainly focused on to improve the phase transience rate thermal conductivity latent heat storage capacity and thermo physical stability.

5. Encapsulation of Phase Change Materials

There are many merits in using an encapsulated phase change materials, which rising the heat transfer area, decrease the PCM reactivity towards the outside surroundings, and manage the changes in the storage material sizes. The phase change materials are encapsulated in clear design closed vessel with metal or plastic materials as shown in Figure.2
length of the packed bed contains encapsulated AL-Si PCM shots. Air was used as the heat transfer fluid (HTF) in their analysis.[36] Developed an ID porous medium framework to find the thermal characteristics of ice-water cool storage in crowded capsules for air conditioner, in which the water as PCM and alcohol as coolant for assorted porosities.[37] Analyses numerical probe on packed bed thermal framework for sensible and latent heat storage systems. The framework was compared in relation to the work factors of particle size, void fraction, particle material, flow rate alteration, working fluid inlet temperature and wall thermal losses. [38] Compare Sodium acetate try hydrate has more effectual than paraffin wax in which the storage tank comprise number of encapsulated PCM balls in which solar energy is engrossed and stored as latent heat. Large amount of solar energy can be stored in a day time and same heat can be used afterwards. It concluded Sodium acetate try hydrate has more effectual than paraffin wax and extended with thermal cooling on PCB. Carry a transient phase change thermal storage system. The manage volume limit difference approach was used to find the equations. The EASY scheme was used to find the pressure and velocity fields of the HEAT TRANSFER FLUID. The influencing factors such as radial temperature spreading, phase change overlap position and heat accumulation have been considered. Deal with the experimental ascertaining of the thermal performance of a packed bed latent heat TES system, formed with solar flat plate aggregator, in which the TES unit contains paraffin as PCM is filled in spherical capsules. Delineate the preparation of a form-stable PCM and polyethylene paraffin compound. It contained of paraffin as a dispersed PCM and a high volume polyethylene (HDPE) as a supporting material to contribute the heat storage. Analyse the solidification of an n-hexadecane filled in spherical enclosure. The performance of solidification process calculates for three various unchanged surface temperatures and three different initial super heats of n-hexadecane. He determined that the solidification phase propagate inside and outside the centre of the sphere. Studied four various capsules (sphere, cylinder, plate and tube) for analyse the effects of geometrical constellation. The consequence of the capsule diameter and shell thickness and the void ratio on the action of the heat storage system were also analysed. The experiment was handling by using a commercial plate heat trader as the heat storage tank. It was confirmed that the spherical capsule showed the best heat release performance among the four types of analyse capsules.

6. Thermal Energy Storage System Based on the Solar System

Thermal energy storage consists a number of technologies that store thermal energy in artificial lake for afterwards. They can be employed to equilibrium the energy demand between the day time, night time and the overcast period. Solar energy is a greater renewable energy resource, of an sporadic nature, and its effectual utilization is a part of expense and effectual storage system. No storage is utilize in solar energy system, the major part of the energy demand will be come across by the Sharma et al (1999) handled experimental test on commercial grade of stearic acid, paraffin wax and acetamide. Throughout the investigate latent heat of fusion, melting temperature and specific heat of PCM have been addressed. He terminated that acetamide and paraffin wax were found to be more stable pcm than stearic acid and protracted his study with erythritol as PCM. He builds a prototype solar cooker based on an evacuated tube solar aggregator with PCM. Solar energy is stored in the PCM storage unit during daytime and is utilized for cooking in overcast period. Cooking experiments and PCM storage processes were carried out simultaneously. It was observed that noon cooking didn’t affect the evening cooking, and evening cooking using PCM heat storage was found to be faster than noon cooking. Developed a framework of open-loop passive solar water-heating system joint with sodium thiosulfate pentahydrate pcm. It was determined that the water temperature at the midpoint of the storage tank reduced regularly by day until the temperature of pcm. Heat storage action of the same solar water-heating system joined with the other salt hydrate pcm’s were checked theoretically by using meteorological data and thermo physical properties of PCM with some premise, finally he proved that the PCM solar water header had a higher thermal efficiency than conventional solar water-heating system. Experimental Study of Heat Transfer improvement in Latent Heat Thermal Storage System during Charging and Discharging Processes. Hybrid thermal energy storage system.
used for PCM, for managing simultaneously the storage of heat from solar and electric energy. This is developed and declared with experimental data. Simulations carried out for a period of 4 continuous winter months point that, with such a system, the electricity consumed for space heating is reduced above 32%. Also more than 90% of the electric energy is very intense during off-peak hours. For electricity fair where time of use schemes are in effect, the return on the finance in such a thermal storage system is very desirable.

7. Conclusion

The review of this paper carried out various methods of heat transfers techniques to improve the thermal energy storage system. The paper mainly focus on PCM based thermal energy storage system, which is more adaptability and useful to the energy conservative system and wrapped current research papers in particular field.

References:
[1] Arun Prasad Raja, Basak T. and Das S.K. (2005), “Heat transfer and fluid flow in a constructal heat exchanger”, Engineering in Proceedings of the Fifth International Conference on Enhanced Compact and Ultra Compact Heat Exchangers Science Engineering and Technology.
[2] Ismail K.A.R., Alves C.L.F. and Modesto M.S. (2001), “Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder”, Journal of Applied Thermal Engineering, Vol. 21, pp. 53-77.
[3] Frusteri F., Leonardi V., Vasta S. and Restuccia G. (2005), “Thermal conductivity measurement of a PCM based storage system containing carbon fiber”, Journal of Applied Thermal Engineering, No. 25, pp. 1623-1633.
[4] Hisham Ettouney, Hisham El-Dessouky and Eman Al-Kandari (2004), “Heat Transfer Characteristics during Melting and Solidification of Phase Change Energy Storage Process”, Conference on Industrial Engineering and Chemical Research. No. 43, pp. 5350-5357.
[5] Piaa Lamberg (2004), “Approximate analytic model for two-phase solidification problem in a finned phase-change material storage”, Journal of Applied Energy, No. 77, pp. 131-152.
[6] Ananthanarayanan V., Sahai Y., Mobley C.E. and Rapp R.A. (1987), “Modeling of fixed bed heat storage units utilizing phase-change materials”, Journal of Metallurgical Trans. B, Vol. 18, pp. 339-346.
[7] Velraj R., Seeniraj R.V., Hafner B., Faber C. and Schwarzer K. (1999), “Heat transfer enhancement in a latent heat storage system”, Journal of Solar Energy, Vol. 65, No. 3, pp. 171-180.
[8] Ismail K.A.R. and Stuginsky R. (1999), “A parametric study on possible fixed bed models for PCM and sensible heat storage”, Journal of Applied Thermal Engineering, Vol. 19, pp. 757-788.
[9] Kanimozhi B. and Ramesh Bapu B.R. (2010), “Enhancement of Solar Water Heating System Using PCM”, National Journal of Advanced Mechanics And Building Science, Vol. 1, No.2, pp. 48-51.
[10] Kanimozhi B. and Ramesh Bapu B.R. and Sivashanmugam M. (2009), “Thermal cooling on PCB using PCM materials”, International Conference on Advanced in Mechanical and Building Science in the 3rd Millennium, ICAMP 2009, Dec. 2009, VIT, Vellore University, Vellore.
[11] Nasser Mostafavinia, Saman Eghvay and Amir Hassanzadeh 2015 Numerical analysis of melting of nano-enhanced phase change material (NePCM) in a cavity with different positions of two heat source-sink pairs Indian J. Sci. Tech. 8(9) pp 49–61.
[12] Aceves-Saborio SS, Nakamura HH and Reistad GM 1994 Optimum efficiencies and phase change temperatures in latent heat storage systems ASME Journal of Energy Resources Technology 116(1) pp 79-86.
[13] Vahid Madadi, Hamid Beheshti, Touraj Tavakoli and Amir Rahimi 2015 Experimental study and first thermodynamic law analysis of a solar water heater system J. Non-Equilibrium Thermodynamics 40 (3) pp 171–183.
[14] Selvan Bellan, Tanvir E Alam, José González-Aguilar, Manuel Romero, Muhammad M Rahman, D Yogi Goswami and Elias K Stefanakos 2015 Numerical and experimental studies on heat transfer
characteristics of thermal energy storage system packed with molten salt PCM capsules. Applied Thermal Engineering 90 pp970-979.

[15] Lingkun Liu, Guruprasad Alva, Xiang Huang and Guiyin Fang 2016 Preparation, heat transfer and flow properties of microencapsulated phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews 66 pp 399-414.

[16] Govindaraj Kumaresan, Rahulram Sridhar and Ramalingom Velraj 2012 Performance studies of a solar parabolic trough collector with a thermal energy storage system. Energy 47 (1) pp 395-402.

[17] V K Jebasingh and G M Joselin Herbert 2015 Numerical simulation of elliptical absorber tube in parabolic trough collector for better heat transfer. Indian J. Sci. Tech. 8(24) DOI: 10.17485/ijst/2015/v8i24/80165.

[18] Mohamed M Abdulgalil, Franc F Kosi, Mohamed H Musbah and Mirko S Komatina 2014 Effect of thermal energy storage in energy consumption required for air conditioning system in office building under the africanmediterranean climate. Thermal Science 18(1) pp S201-S212.

[19] Beemkumar N and Karthikeyan A 2016 Experimental analysis of heat transfer characteristics of solar energy. Materials today: Proceedings 3 pp 2475 – 2482.

[20] Felix Regin A, Solanki SC and Saini JS 2008 Heat transfer characteristics of thermal energy storage system using PCM capsule: A review. Renewable and Sustainable Energy Reviews 12 pp 2438–58.

[21] Medrano M, Yilmaz M O, Nogues M, Martorell I, Joan Roca and Luisa F Cabeza 2009 Experimental evaluation of commercial heat exchangers for use as PCM thermal storage systems. Applied Energy 86 2047-2055.

[22] Nallasamy N, Sampath S and Velraj R 2007 Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources. Renewable Energy 32 pp 1206-1277.

[23] Shina Y and Inagaki T 2005 Study on the efficiency of effective thermal conductivities on melting characteristics of latent heat storage capsules. International Journal of Heat and Mass Transfer 48 pp 373-383.

[24] Velraj R, Seeniraj R V, Hafner B, Faber C and Schwarzer K 1999 Heat transfer enhancement in a latent heat storage system. Solar Energy 65(3) pp 171-180.

[25] Zalba B, Mann J M, Cabeza L F and Mehling H 2003 Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Applied Thermal Engineering 23 pp 251-283.

[26] Kanimozi B. and Ramesh Bapu B.R. (2011), “Experimental Study of Heat Transfer Enhancement in Latent Heat Thermal Storage System during Charging and Discharging Processes”, International Journal of Design and Manufacturing Technologies, Vol. 2. No. 5, pp45-49

[27] Chen S.L. and Yue J.S. (1991) “Thermal performance of cool storage in packed capsules for air-conditioning”, Journal of Heat Recovery Systems and CHP, Vol. 11, No. 6, pp. 551-561. [37] UrosStritih (2003), “Heat transfer enhancement in latent heat thermal storage system for buildings”, International Journal of Energy and Buildings, No. 35, pp. 1097-1104.

[22] Ye Hong Ge Xin-shi (2000), “Preparation of polyethylene paraffin compound as a form-stable solid-liquid phase change material”, Conference on Solar Energy Materials and Solar Cells, No.64, pp. 37-44.

[23] Chan C.W. and Tan F.L. (2005), “Solidification inside a sphere -an experimental study”, International Journal of Heat and Mass Transfer, No. 33, pp. 335-341.

[24] Jinxia Wei, Yasuo Kawaguchi, Satoshi Hirano and Hiromi Takeuchi (2005), “Study on a PCM heat storage system for rapid heat supply”, Journal of Applied Thermal Engineering, No. 25, pp. 2903-2920

[25] Brousseau P. and Lacroix M. (1996), “Study of the thermal performance of a multi-layer PCM storage unit”, Journal of Energy Conservation and Management, Vol. 37, No. 5, pp. 599-609.

[26] Ismail, K.A.R. and Goncalves M.M. (1999), “Thermal performance of a PCM storage unit”, International Journal of Energy Conversion and Management, Vol. 40, pp. 115-138.
[27] Velraj R., Seeniraj R.V., Hafner B., Faber C. and Schwarzer K. (1999), “Heat transfer enhancement in a latent heat storage system”, Journal of Solar Energy, Vol. 65, No. 3, pp. 171-180.
[28] UrosStritih (2003), “Heat transfer enhancement in latent heat thermal storage system for buildings”, International Journal of Energy and Buildings, No. 35, pp. 1097-1104.
[29] Arun Prasad Raja, Basak T. and Das S. K. (2005), “Heat transfer and fluid flow in a constructal heat exchanger”, Engineering in Proceedings of the Fifth International Conference on Enhanced Compact and Ultra Compact Heat Exchangers Science Engineering and Technology.
[30] Ismail K.A.R., Alves C.L.F. and Modesto M.S. (2001), “Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder”, Journal of Applied Thermal Engineering, Vol. 21, pp. 53-77.
[31] Eftekhar J., Haji-Sheikh A. and Lou D.Y.S. (1984), “Heat Transfer Enhancement in a Paraffin Wax Thermal Storage System”, Journal of Solar Energy Engineering, Vol. 106, No. 3, pp. 299-306.
[32] Kanimozhi B. and Ramesh Bapu B.R. (2012), “Experimental Study of thermal energy storage in Solar System using PCM”, Advanced Materials Research,No.433, pp. 1027-1032
[33] Lacroix M. and Duong (1993), “Experimental improvements of heat transfer in a latent heat thermal energy storage unit with embedded heat sources”, International Journal of Energy Conversation and Management, Vol. 39, No. 8, pp. 703-716.
[34] Padmanabhan P.V. and Krishna Murthy M.V. (1986), “Outward phase change in a cylindrical annulus with axial fins on the inner tube”, International Journal of Heat and Mass Transfer, No. 29, pp.1855-1866.
[35] Siegel R. (1977), “Solidification of low conductivity material containing dispersed high conductivity particles”, International Journal of Heat and Mass Transfer, No. 20, pp. 1087-1089.
[36] Chow Zhong J.K. and Beam J.E. (1996), “Thermal conductivity enhancements for phase change storage media”, International Journal of Heat Mass Transfer, Vol. 23, No. 1, pp. 91-100.
[37] SuatCanbazoglu, Abdulmuttalip S., Ahinaslana, Ahmet Ekmekyapar, Y. GokhanAksoya and FatihAkarsu (2005), “Thermal performance of a solar cooker based on an evacuated tube solar collector with a PCM storage unit”, Journal of System Energy and Buildings, No. 37, pp. 235-242.
[38] R.J. Goldstein et al. (2006)“Heat transfer review of 2003 literature” International Journal of Heat and Mass Transfer Vol.49,pp. 451-534.
