Regularity of Invariant Sets in Semilinear Damped Wave Equations

Martino Prizzi
Dipartimento di Matematica e Informatica
Università degli Studi di Trieste

Under fairly general assumptions, we prove that every compact invariant subset I of the semiflow generated by the semilinear damped wave equation

$$\epsilon u_{tt} + u_t + \beta(x)u - \sum_{ij}(a_{ij}(x)u_{x_j})_{x_i} = f(x, u),$$

$(t, x) \in [0, +\infty[\times \Omega, u = 0, (t, x) \in [0, +\infty[\times \partial \Omega$ in $H^1_0(\Omega) \times L^2(\Omega)$ is in fact bounded in $D(A) \times H^1_0(\Omega)$. Here Ω is an arbitrary, possibly unbounded, domain in R^3, $A u = \beta(x)u - \sum_{ij}(a_{ij}(x)u_{x_j})_{x_i}$ is a positive selfadjoint elliptic operator and $f(x, u)$ is a nonlinearity of critical growth. The nonlinearity $f(x, u)$ needs not to satisfy any dissipativeness assumption and the invariant subset I needs not to be an attractor.