D-GONALITY OF MODULAR CURVES AND BOUNDING TORSIONS

Khac Viet Nguyen & Masa-Hiko Saito
Hanoi Institute of Mathematics & Kyoto University

Abstract. We study the problem of d-gonality of the modular curve $X_0(N)$. As a result, we can give an upperbound of the level N by means of d. This generalizes Ogg’s result on hyperelliptic modular curves ($d = 2$) in ([O]). As a corollary of this result, we prove an analogue of the strong Uniform Boundedness Conjecture for elliptic curves defined over the function fields of curves. If a base curve is d-gonal, we can bound orders of torsions of Mordell-Weil groups in terms of d uniformly.

§0 Introduction

Let N be a positive integer, and let $\Gamma_0(N)$ be the subgroup of $\Gamma = SL_2(\mathbb{Z})/(\pm 1)$ defined by matrices $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ with N dividing c. Then $\Gamma_0(N)$ acts on the upper half plane \mathbb{H} properly discontinuously, and let

$$Y_0(N)_C = \Gamma_0(N) \backslash \mathbb{H}.$$

The modular curve $X_0(N)_C$ is the compactification of $Y_0(N)_C$ obtained by adding the cusps. A smooth projective curve C defined over an algebraically closed field k is called d-gonal if there exists a finite morphism $f : X \to \mathbb{P}^1_k$ of degree d. For example, if a smooth curve C is 1-gonal, C is isomorphic to \mathbb{P}^1_k, and if C is 2-gonal, then either $g(C) \leq 1$ or C is a hyperelliptic curve of genus $g(C) \geq 2$.

In this paper, we shall consider the following problem.

Problem 0.1. If $X_0(N)_C$ is d-gonal, can one give a bound for N by means of d?

By the genus formula of $X_0(N)_C$, one can determine the case when $g(N) := g(X_0(N)_C) = 0$, which gives the answer for $d = 1$. (One knows that $N \leq 25$ for $d = 1$.) For $d = 2$, Ogg [O] classified all hyperelliptic modular curves $X_0(N)_C$, and it gives us the sharp bound $N \leq 71$. In this paper, we deal with Problem 0.1 for general d.

Our main theorem can be stated as follows.

The first author was supported by JSPS through the long term visiting program (L-95504);
Theorem 0.2. (cf. Corollary 3.5.) Let $X_0(N)$ be the modular curve of level N. If $X_0(N) \subset C$ is d-gonal, then we have

\begin{equation}
N \leq \begin{cases}
25 & \text{if } d = 1 \\
71 & \text{if } d = 2 \\
(48(d-1)^2 + 35)(36(d-1)^2 + 47) & \text{if } d \geq 3
\end{cases}.
\end{equation}

Note that we can obtain better bound for N odd (see Corollary 3.3).

Before going into the sketch of the proof of Theorem 0.2, we explain the motivation of Problem 0.1. Our original motivation is a function field analogue of the so-called strong Uniform Boundedness Conjecture (abbreviated as sUBC). According to [Kam-Ma], we denote by $\Phi(d)$ the set of all isomorphism classes of finite abelian groups occurring as the full groups of torsion in the Mordell-Weil groups of elliptic curves over number fields K with absolute degree $[K : \mathbb{Q}] \leq d$. Then sUBC states that $\Phi(d)$ is finite.

Let d be a positive integer. A prime number p is called a torsion prime for degree d if there is a number field K of degree d, an elliptic curve E defined over K, and a K-rational point P of E, of order p. Let $S(d)$ denote the set of torsion primes of degree $\leq d$. Then Kamienny and Mazur [Kam-Ma] showed that $\Phi(d)$ is finite if and only if $S(d)$ is finite (see also [E]). Recently, Merel [Me] showed that for $p \in S(d)$

$$p < d^{3d^2},$$

which completes the proof of sUBC. (Note that one could not give an explicit bound for N occurring as an exponent of a group in $\Phi(d)$. The complete descriptions of $\Phi(d)$ for $d = 1, 2$ is known (see [Ma], [Kam-Ma], [E] and references therein).

In this paper, we prove the following theorem which can be viewed as an analogue of sUBC in the function field case. Let C be a smooth projective curve defined over the field of complex numbers and set $K = \mathbb{C}(C)$, the function field of C. Let E be a non-constant elliptic curve defined over K. If C is d-gonal, then there exists an extension of fields $\mathbb{C}(\mathbb{P}^1) = \mathbb{C}(t) \hookrightarrow K$ of degree d. (Note that such a field extension may not be unique even if we assume that d is minimal.)

Now we denote by $\Phi_{fun}(d)$ the set of all isomorphism classes of finite abelian groups occurring as the full groups of torsion in the Mordell-Weil groups of non-constant elliptic curves over a function field K with an extension $\mathbb{C}(\mathbb{P}^1) \hookrightarrow K$ of degree $\leq d$. Then we propose an function field analogue of sUBC as: $\Phi_{fun}(d)$ is finite.

This seems to be a quite natural question, which originally arose in a seminar at Kochi (July, 1995) with H. Tokunaga and the second author. Furthermore they realized that the analogue can be reduced to the problem of d-gonality of modular curves.

From Theorem 0.2, we obtain the following theorem, which obviously implies that $\Phi_{fun}(d)$ is finite.
Theorem 0.3 (An analogue of sUBC for function field case). (cf. Theorem 4.3.) Let E be a non-constant elliptic curve defined over the function field K of a complex smooth projective curve C. Assume that C is d-gonal and the Mordell-Weil group $E(K)$ has a torsion element of order N. Then

$$N \leq B(d)$$

where $B(d)$ is the right hand side of the inequality (0.1).

Let us give a short summary of this paper. In §1, we recall necessary results on curves. One important remark is that d-gonality of a curve descends to a curve below via a finite morphism, and another is the so-called inequality of Castelnuovo-Severi. In §2, we will prove “Tower Theorem 2.1”, which is one of our main contributions in this paper. In §3, we will generalize a beautiful argument of Ogg [O] and Harris-Silverman [Ha-Si] to obtain a bound of level N by means of d. From Tower Theorem 2.1, we obtain a finite morphism $f : X_0(N)_{\mathbb{Q}} \to C'$ defined over \mathbb{Q} of degree $d' \leq d$ such that $g(C') \leq (d/d' - 1)^2$. For a prime p not dividing N, $X_0(N)_{\mathbb{Q}}$ has a good reduction at p. When $g(C') \geq 1$, applying Good Reduction Lemma 5.1, C' has also good reduction at p and we obtain a finite morphism $f_{\mathbb{F}_p} : X_0(N)_{\mathbb{F}_p} \to C'_{\mathbb{F}_p}$ of degree d defined over \mathbb{F}_p.

By Weil’s theorem of the analogue of the Riemann hypothesis, we can bound the number of \mathbb{F}_{p^2}-rational points of $C'_{\mathbb{F}_p}$ from the above by $g(C')$, hence by $(d/d' - 1)^2$. Therefore the number of \mathbb{F}_{p^2}-rational points of $X_0(N)_{\mathbb{F}_p}$ is bounded from above only by d. On the other hand, we have enough \mathbb{F}_{p^2}-rational points of $X_0(N)_{\mathbb{F}_p}$ from points corresponding to supersingular elliptic curve cusps. For example, if $p = 2$, $\#(X_0(N)_{\mathbb{F}_2})$ is at least $\frac{1}{12}(N + 1) + 2$. This argument gives us bound of N by means of d and a proof of Theorem 0.2. In §4, we prove Theorem 0.3 by using Theorem 0.2 and the moduli property of $X_0(N)$. In §5, we shall prove the Good Reduction Lemma 5.1 which is our another contribution in this paper.

Let us mention some results related to ours. In the case of function field $K = k(C)$ with $\text{char } k = 0$, a bound of $|E(K)_{\text{tors}}|$ in terms of the genus $g = g(C)$ was given first by Levin [Le], and later (with sharper bound) by Hindry and Silverman [Hi-Si]. A rough estimate in [Hi-Si, Theorem 7.2, (c)] gives us

$$|E(K)_{\text{tors}}| \leq 144(g + 1)^{2/3}.$$

(See [Hi-Si, Theorem 7.2, (a),(b)] for refined bounds.) The bound in [Hi-Si, Theorem 7.2, (a)] follows from the function field analogue of Szpiro’s conjecture ([Hi-Si, Theorem 5.1]), which was originally proved by Kodaira and Shioda (cf. [Shi, Proposition 2.8]). Note that since the genus g can be arbitrarily large with d fixed, so it is still far from the uniform bound by d.

As far as the set $\Phi_{\text{fun}}(d)$ is concerned, Cox-Parry [C-P] determined the set $\Phi_{\text{fun}}(1)$ completely. (See also [M-P]). We can also determine the set $\Phi_{\text{fun}}(2)$ completely. (See Nguyen’s report of our joint work [Ng]).

When k is a finite field with q elements of $\text{char } k = p > 0$, we remark that our method in this paper gives a bound of order of prime-to-p-part of $E(K)_{\text{tors}}$ by
means of d. Our bound inevitably depends on d and the characteristic p but not depend on q. Recently, Goldfeld and Szpiro gave a bound for $|E(K)_{tors}|$ when k is a finite field with q elements (cf. [G-S, Theorem 13]). Their bound depends on q, the genus g and the inseparablility degree of the j-function $C \to \mathbb{P}^1$ associated to a minimal model of E/K.

Acknowledgement. We would like to thank Professor Shigefumi Mori for discussions on minimal models, which have been very helpful for our proving the good reduction lemma. We are also grateful to Professor Frans Oort who kindly answered our question on the stable reduction of curves via email. The second author would like to thank Professor Hiro-o Tokunaga for discussions on this problem at Kochi University which is a starting point of this work. We are also grateful to Professor Tetsuji Shioda for giving us kind comments and informing us of some of references related to our work.

The first author would like to thank JSPS for their financial support which made possible this joint work at Kyoto University.

§1 Some results on curves

In this section, we recall some known results on curves which we use later. Let k be an algebraically closed field of any characteristic $p \geq 0$.

Definition 1.1. A smooth projective curve C defined over k is called d-gonal if there exists a finite morphism $f : C \to \mathbb{P}^1_k$ of degree d, or equivalently, if C has a g^1_d. We call such a map f a d-gonal map.

If C admits a d-gonal map $f : C \to \mathbb{P}^1_k$, then it induces a field extension $k(\mathbb{P}^1_k) = k(t) \hookrightarrow K = k(C)$ of degree d, and conversely such a field extension gives a d-gonal map $f : C \to \mathbb{P}^1_k$.

Remark 1.2. One may like to use the term “d-gonality” for the case with d minimal. However the definition above allows us to state our results in simpler form and the reader can easily apply the results to the case with d minimal. Moreover we remark that a d-gonal map $f : C \to \mathbb{P}^1_k$ may not be unique up to automorphism of C and \mathbb{P}^1_k even if d is minimal.

Moreover, for $d \geq (1/2)g + 1$, any curve of genus g is d-gonal, and for $d < (1/2)g + 1$, there exist curves of genus g having no d-gonal map. On the other hand, there exists a hyperelliptic curve of genus g (2-gonal curve) for any $g \geq 2$.

First of all, we recall the following lemma. Though it may be well-known to experts, for completeness, we will give a proof which is valid for any algebraically closed base field k. (cf. [Ne, Theorem VII.2]).

Lemma 1.3. Let $h : C_1 \to C_2$ be a finite morphism between two smooth projective curves. If C_1 is d-gonal, then C_2 is also d-gonal.

Proof. Let $f : C_1 \to \mathbb{P}^1$ be a rational function of degree d. Let $K_i, (i = 1, 2)$ denote the rational function fields of $C_i (i = 1, 2)$. Then we have a field extension

\[k(\mathbb{P}^1_k) = k(t) \hookrightarrow K = k(C) \]
$K_2 \hookrightarrow K_1$ of degree m. Take an algebraic closure \overline{K}_1 of K_1, and let l and s be the separable and inseparable degrees of the extension K_1/K_2. (When char of k is 0, $s = 1$ and when char $k = p > 0$, then $s = p^e$ for some $e \geq 0$.) For any element $h \in K_1$, we can define the norm $N_{K_1/K_2}(h)$ as

$$N_{K_1/K_2}(h) = \prod_{i=1}^{l} (\sigma_i(h^s))$$

where $\sigma_i : K_1 \hookrightarrow \overline{K}_1, i = 1, \cdots, l$ are different K_2-embeddings of K_1 into \overline{K}_1. Then the norm $N_{K_1/K_2}(f)$ gives a morphism $C_2 \rightarrow \mathbb{P}^1$ of degree $\leq d$. It is easy to see that for some constant $\lambda \in k$ the norm $N_{K_1/K_2}(f - \lambda)$ gives a finite morphism $C_2 \rightarrow \mathbb{P}^1$ exactly of degree d.

The next important result, which we use in the proof of Tower Theorem 2.1, is the so-called inequality of Castelnuovo-Severi.

Lemma 1.4. (The inequality of Castelnuovo-Severi). Let C, C_1, C_2 be smooth projective curves over k of genera g, g_1, g_2 respectively and let $\pi_1 : C \rightarrow C_1$ and $\pi_2 : C \rightarrow C_2$ surjective morphisms of degrees d_1, d_2 respectively. Assume that the induced map

$$(1.1) \quad \pi_1 \times \pi_2 : C \rightarrow C_1 \times C_2$$

is birational onto its image. Then one has

$$(1.2) \quad g \leq d_1 g_1 + d_2 g_2 + (d_1 - 1)(d_2 - 1).$$

Proof. Though there are many proofs of this inequality (cf. [H, Ch. V], [Gr]), we will give a proof using genus formula and the Hodge index theorem. Set $S = C_1 \times C_2$ and $D = \pi_1 \times \pi_2(C) \subset S$. Then one can calculate the virtual genus $p_a(D)$ of a curve D on a surface S as $p_a(D) = (K_S + D) \cdot D/2 + 1$. Then by assumption that $C \rightarrow D$ is birational, we have $g(C) \leq p_a(D)$. On the other hand, from the assumption, we obtain $K_S \cdot D = (g_1 - 1)d_1 + (g_2 - 1)d_2$ and the Hodge index theorem implies that $D^2 \leq 2d_1 d_2$ (see [H, Ex. 1.9, Ch. V]). Therefore we obtain the inequality.

\section*{2 Tower theorem}

In this section, we prove the following theorem which we call “Tower theorem”. Let k be a perfect field and fix an algebraic closure \overline{k} of k and let $G_k = Gal(\overline{k}/k)$ be the Galois group of the extension \overline{k}/k.

Theorem 2.1. Let C be a projective smooth curve defined over a perfect field k and $f : C \rightarrow \mathbb{P}^1_k$ a dominant morphism defined over \overline{k} of degree d. Then there exists a smooth projective curve C' defined over k and a dominant morphism

$$f' : C \rightarrow C'$$
defined over k of degree d' dividing d such that

\begin{equation}
(2.1) \quad g(C') \leq (d/d' - 1)^2.
\end{equation}

Proof. At first, we consider the following

Claim: There exists a tower of (projective smooth) curves over \overline{k}

\begin{equation}
(2.2) \quad C \rightarrow C_n \rightarrow \cdots \rightarrow C_2 \rightarrow C_1 \rightarrow C_0 \simeq \mathbb{P}^1
\end{equation}

satisfying the following conditions:

(i) $h_i : C_i \rightarrow C_{i-1}$ and $f_n : C \rightarrow C_n$ are morphisms of degree $e_i \geq 2$ and of degree d_n defined over \overline{k}.

(ii) Set $f_i : C \rightarrow C_i$ and $d_i = \deg f_i$. Then we have $d = d_0 > d_1 > \cdots > d_n \geq 1$ and for any $0 \leq i \leq n$

\[g(C_i) \leq (d/d_i - 1)^2. \]

(iii) For any $\sigma \in G_k := \text{Gal}(\overline{k}/k)$, the morphism

\[f_n \times f_n^\sigma : C \rightarrow C_n \times C_n^\sigma \]

has degree $d_n = \deg f_n$ onto its image.

Let us first explain how the theorem follows from this claim. Consider the morphism $f_n \times f_n^\sigma : C \rightarrow C_n \times C_n^\sigma$ for any $\sigma \in G_k$ and let $D = f_n \times f_n^\sigma(C)$ be the image. Let $p_1 : D \rightarrow C_n$ and $p_2 : D \rightarrow C_n^\sigma$ be the natural projections. Since f_n and f_n^σ factor through $C \rightarrow D$ and p_1 and p_2 respectively, from the assumption (iii), we know that $\deg p_i = (\deg f_n)/\deg(C \rightarrow D) = d_n / d_n = 1$, which implies that the projection maps p_1 and p_2 are birational. Hence we infer that $C_n \simeq C_n^\sigma$ (over \overline{k}) for any $\sigma \in G_k$. This shows that C_n is isomorphic (over \overline{k}) to a curve B defined over k. Replacing C_n by this new curve B, we obtain a morphism $h : C \rightarrow B$ of degree d_n. Though h may not be defined over k, for any $\sigma \in G_k$, the argument given above shows that $h : C \rightarrow B$ and $h^\sigma : C \rightarrow B$ differ by an automorphism of B. That is, we have $\alpha_\sigma \in \text{Aut}(B \otimes \overline{k})$ such that

\[h^\sigma = \alpha_\sigma \circ h. \]

It is easy to see that $\alpha : G_k \rightarrow \text{Aut}(B \otimes \overline{k})$ defines a cocycle in $H^1(G_k, \text{Aut}(B \otimes \overline{k}))$. Then by general theory of twisting (cf. [Si., X, Theorem 2.2]), α corresponds to a twist, that is, there exists a smooth curve C' defined over k and \overline{k}-isomorphism $\lambda : C' \rightarrow B$ such that $\alpha_\sigma = \lambda^\sigma \lambda^{-1}$. Now the map $\lambda^{-1} \circ h : C \rightarrow C'$ gives a dominant morphism defined over k of degree d_n and $g(C') = g(B) = g(C_n) \leq (d/d_n - 1)^n$, which implies the theorem.

Now we show how one can obtain a tower in the claim.

Take $\sigma \in G_k$, and consider the map

\[f \times f^\sigma : C \rightarrow \mathbb{P}^1_k \times \mathbb{P}^1_k. \]

Let $D = f \times f^\sigma(C) \subset \mathbb{P}^1 \times \mathbb{P}^1$ be the image. If for any $\sigma \in G_k$, $\deg f \times f^\sigma = \deg f = d$, then we can take $C_n = C_0(\simeq \mathbb{P}^1_k)$ as the normalization of D and
\(f_n = f_0 : C \rightarrow C_0 \) as the natural morphism to obtain the desired tower. (Note that \(d_n = d \) and \(g(C_0) = 0 \).) Hence in this case we get a tower \((2.2)\) as desired.

Otherwise, for some \(\sigma \in G_k \), the degree of \(f \times f^\sigma \) onto its image is \(d_1 < d = d_0 \). Then setting \(C_1 = \) the normalization of the image \(f \times f^\sigma (C) \subset \mathbb{P}^1 \times \mathbb{P}^1 \), we obtain finite morphisms

\[
\begin{align*}
 h_1 : C_1 &\rightarrow C_0 \simeq \mathbb{P}^1_k, \\
 h_1^\sigma : C_1 &\rightarrow C_0 \simeq \mathbb{P}^1_k, \\
 f_1 : C &\rightarrow C_1
\end{align*}
\]

such that \(f = h_1 \circ f_1 \), \(f^\sigma = h_1^\sigma \circ f_1 \) with \(e_1 = \deg h_1 = \deg h_1^\sigma \geq 2 \) and \(d_1 = \deg f_1 = d/e_1 < d \). Then since \(h_1 \times h_1^\sigma : C_1 \rightarrow \mathbb{P}^1_k \times \mathbb{P}^1_k \) is birational onto its image, the inequality of Castelnuovo-Severi implies that

\[
g(C_1) \leq (e_1 - 1)^2 = (d/d_1 - 1)^2.
\]

After continuing these procedures, we may assume that we have a tower of (smooth) curves

\[C \rightarrow C_i \cdots \rightarrow C_1 \rightarrow C_0 \simeq \mathbb{P}^1 \]

satisfying only the conditions (i), (ii) up to a level \(i > 0 \). For any \(\sigma \in G_k \) and the given morphism \(f_i : C \rightarrow C_i \), consider the morphism

\[
f_i \times f_i^\sigma : C \rightarrow C_i \times C_i^\sigma.
\]

If for all \(\sigma \in G_k \) \(f_i \times f_i^\sigma \) is birational onto its image, then the tower also satisfies the condition (iii). Then we can stop the procedure.

Otherwise, for some \(\sigma \in G_k \), the degree of \(f_i \times f_i^\sigma \) is \(d_{i+1} < d_i \). Then again let \(C_{i+1} \) be the normalization of the image of \(f_i \times f_i^\sigma(C) \) and let \(f_{i+1} : C \rightarrow C_{i+1} \) be the induced morphism and \(C_{i+1} \rightarrow C_i \times C_i^\sigma \) the induced map birational onto its image. Since the degree of each projection \(C_{i+1} \rightarrow C_i \) and \(C_{i+1} \rightarrow C_i^\sigma \) is \(e_{i+1} = d_i/d_{i+1} \geq 2 \), from the inequality of Castelnuovo-Severi (Lemma 1.4) and the assumption \(g(C_i) \leq (d/d_i - 1)^2 \), we obtain:

\[
(2.3) \quad g(C_{i+1}) \leq 2e_{i+1} \cdot g(C_i) + (e_{i+1} - 1)^2 \leq 2e_{i+1} \cdot (d/d_i - 1)^2 + (e_{i+1} - 1)^2.
\]

Since \(d_i = d_{i+1} \cdot e_{i+1} \), we obtain \(d/d_{i+1} = (d/d_i) \cdot e_{i+1} \), and since \(e_{i+1} \geq 2 \), we can easily see that

\[
(2.4) \quad 2e_{i+1}(d/d_i - 1)^2 + (e_{i+1} - 1)^2 \leq ((d/d_i) \cdot e_{i+1} - 1)^2 = (d/d_{i+1} - 1)^2.
\]

Hence, together with \((2.3)\), we obtain \(g(C_{i+1}) \leq (d/d_{i+1} - 1)^2 \) as desired. This procedure stops after a finite number of steps and this completes the proof of the claim.

\section*{§3 \(d \)-gonality of the modular curve \(X_0(N) \)}

In this section, we show our main theorem on \(d \)-gonality of the modular curves \(X_0(N)_C \) of level \(N \).
The main idea of the proof obviously goes back to a beautiful argument of Ogg in [O], which determines the complete list of hyperelliptic modular curves.

For a positive integer \(N\), let \(\Gamma_0(N)\), \(Y_0(N)\), and \(X_0(N)\) be as in Introduction. Classically, it is well-known that \(Y_0(N)\) and \(X_0(N)\) admit structures of algebraic curves \(Y_0(N)\) and \(X_0(N)\) defined over \(\mathbb{Q}\), and moreover by Igusa ([I]), there exist smooth models of \(Y_0(N)\) and \(X_0(N)\) over \(\mathbb{Z}[1/N]\). The smooth model \(Y_0(N)/\mathbb{Z}[1/N]\) can be considered as the coarse moduli space classifying a pair \((E, C)\) of an elliptic curve \(E\) with a cyclic subgroup of order \(N\) and \(X_0(N)/\mathbb{Z}[1/N]\) is its natural compactification. (See also [D-R] and [Ka-Ma] for more modern treatment of these facts.) Therefore for a prime \(p\) with \(p \nmid N\), \(X_0(N)\) has a good reduction at \(p\).

Let \(N\) be a positive integer and \(p\) a prime such that \(p \nmid N\) and \(X_0(N)\) the smooth projective curve over \(\mathbb{F}_p\) obtained by a reduction of \(X_0(N)\). For any extension field \(k\) of \(\mathbb{F}_p\), an \(k\)-rational point of \(X_0(N)\) corresponds to an isomorphism class of a pair \((E, C)\) of an elliptic curve with a cyclic subgroup of order \(N\) defined over \(k\).

The following argument is essentially due to Ogg ([O, Theorem 3]), which gives the lower bounds of number of \(\mathbb{F}_p^2\)-rational points of \(X_0(N)\). (See also [Ha-Si, Lemma 6].) If there exists a supersingular elliptic curve \(E\) defined over \(\mathbb{F}_p\), its Frobenius endomorphism \(\pi_p\) satisfies \(\pi_p^2 = -p\). Therefore any cyclic subgroup \(C \subset E\) of order \(N\) is defined over \(\mathbb{F}_p^2\), which yields a point \((E, C) \in X_0(N)\).

For any prime \(p\), set

\[
(3.1) \quad s(p) = \sum_{E/\mathbb{F}_p, \text{supersingular}} \frac{1}{|\text{Aut}(E)|}.
\]

Moreover let \(\nu(N)\) be the number of distinct prime factors of \(N\), and set

\[
(3.2) \quad \phi(N) = [\text{SL}_2(\mathbb{Z})/ \pm 1 : \Gamma_0(N)] = N \prod_{p \mid N} (1 + 1/p).
\]

From the argument above, we can obtain the following lemma. For detailed proofs, see [O, Theorem 3] and [Ha-Si, Lemma 6].

Lemma 3.1. Let \(p \nmid N\) be a prime. Then we have

\[
(3.3) \quad \#X_0(N)_{\mathbb{F}_p^2}(\mathbb{F}_p^2) \geq 2^{\nu(N)} + 2s(p)\phi(N).
\]

Moreover for \(p = 2, 3\), \(s(2) = 1/24, s(3) = 1/12\), hence we have

\[
(3.4) \quad \#X_0(N)_{\mathbb{F}_4}(\mathbb{F}_4) \geq 2^{\nu(N)} + \frac{1}{12}\phi(N), \quad \text{if} \quad 2 \nmid N,
\]

and

\[
(3.5) \quad \#X_0(N)_{\mathbb{F}_9}(\mathbb{F}_9) \geq 2^{\nu(N)} + \frac{1}{6}\phi(N), \quad \text{if} \quad 3 \nmid N.
\]
Theorem 3.2. Let $X_0(N)$ be the modular curve of level N. If $X_0(N)_{\mathbb{C}}$ is d-gonal, that is, if it admits a finite map $f : X_0(N)_{\mathbb{C}} \longrightarrow \mathbb{P}^1_{\mathbb{C}}$ of degree d, then we have the following.

1) If N is odd, then we have

\[\frac{1}{12} \phi(N) + 2^\nu(N) \leq \begin{cases} 5d & \text{if } d = 1, 2 \\ 4(d-1)^2 + 5 & \text{if } d \geq 3 \end{cases}. \]

2) If $3 \nmid N$, then we have

\[\frac{1}{6} \phi(N) + 2^\nu(N) \leq \begin{cases} 10d & \text{if } d = 1, 2 \\ 6(d-1)^2 + 10 & \text{if } d \geq 3 \end{cases}. \]

Proof. From Tower Theorem 2.1, we obtain a smooth projective curve $C_{\mathbb{Q}}$ defined over \mathbb{Q} and a finite morphism $f : X_0(N)_{\mathbb{Q}} \longrightarrow C_{\mathbb{Q}}$ defined over \mathbb{Q} of degree d' such that $1 \leq d' \leq d$ and $g(C) \leq (d/d' - 1)^2$. First assume that $g(C) \geq 1$. For a prime $p \nmid N$, the curve $X_0(N)_{\mathbb{Q}}$ has good reduction at p, hence by Good Reduction Lemma 5.1 (see §5), $C_{\mathbb{Q}}$ has also good reduction at p and we obtain a finite morphism

\[f \times \mathbb{F}_p : X_0(N)_{\mathbb{F}_p} \longrightarrow C_{\mathbb{F}_p} \]

defined over \mathbb{F}_p. Let \mathbb{F}_q be the finite extension of \mathbb{F}_p with $q = p^2$. Then since $g(C) \leq (d/d' - 1)^2$, by Weil’s theorem of the analogue of the Riemann hypothesis, we can bound the number of \mathbb{F}_q-rational points of $C_{\mathbb{F}_q}$ as

\[\#C_{\mathbb{F}_q}(\mathbb{F}_q) \leq 1 + 2g(C)\sqrt{q} + q = 1 + 2pg(C) + p^2. \]

Since $g(C) \leq (d/d' - 1)^2$, from (3.8) above, we obtain

\[\#(X_0(N)_{\mathbb{F}_q}(\mathbb{F}_q)) \leq d' \cdot \#C_{\mathbb{F}_q}(\mathbb{F}_q) \leq d' \cdot (1 + 2(d/d' - 1)^2p + p^2). \]

Now fixing d, set $H(p, d') = d' \cdot (1 + 2(d/d' - 1)^2p + p^2)$. For $1 \leq d' \leq d$, we can easily see that

\[H(p, d') \leq \max\{H(p, 1), H(p, d)\} = \max\{p^2 + 1 + 2p \cdot (d - 1)^2, (p^2 + 1)d\} \]

From this and Lemma 3.1, putting $p = 2, 3$, we obtain the assertions (1) and (2). If $g(C) = 0$, then we have a finite morphism $X_0(N)_{\mathbb{F}_p} \longrightarrow C''_{\mathbb{F}_p}$ defined over \mathbb{F}_p but of degree $1 \leq d'' \leq d$ where $C''_{\mathbb{F}_p}$ is a rational curve defined over \mathbb{F}_p. In this case, the bound becomes better than the former case, which completes the proof of theorem.

By using obvious inequalities $\phi(N) \geq N + 1$ and $\nu(N) \geq 1$, we obtain the following corollary.
Corollary 3.3. Let \(X_0(N) \) be the modular curve of level \(N \). If \(X_0(N) \) is \(d \)-gonal, that is, if it admits a finite map \(f : X_0(N) \rightarrow \mathbb{P}^1_N \) of degree \(d \), then we have the following.

1) If \(N \) is odd, then we have

\[
(3.10) \quad N \leq \begin{cases} 60d - 25 & \text{if } d = 1, 2 \\ 48(d - 1)^2 + 35 & \text{if } d \geq 3 \end{cases}.
\]

2) If \(3 \nmid N \), then we have

\[
(3.11) \quad N \leq \begin{cases} 60d - 11 & \text{if } d = 1, 2 \\ 36(d - 1)^2 + 47 & \text{if } d \geq 3 \end{cases}.
\]

Remark 3.4. Since we know the genus formula of \(X_0(N) \), we know all the cases with \(g(N) := g(X_0(N)) \leq 1 \). If \(g(N) = 0 \), we have \(N = 1, \ldots, 10, 12, 13, 16, 18, 25 \), and if \(g(N) = 1 \), we have \(N = 11, 14, 15, 17, 19, \ldots, 21, 24, 27, 32, 36, 49 \). Ogg [O] showed that \(X_0(N) \) is a hyperelliptic curve of \(g(N) \geq 2 \) if and only if \(N = 22, 23, 26, 28, 29, 30, 31, 33, 35, 37, 39, 41, 46, 47, 50, 59, 71 \), (i.e. 19 values). This implies that if \(X_0(N) \) is 2-gonal then \(N \leq 71 \). This is obviously better than our bounds in Corollaries 3.3 and 3.5, because we use only rough estimates of \(\phi(N) \) and \(\nu(N) \).

For a general positive integer \(N \), write \(N = 2^i \cdot M \) such that \(M \) is odd. Then we have natural finite morphisms

\[
\varphi_1 : X_0(N) \rightarrow X_0(2^i) \quad \varphi_2 : X_0(N) \rightarrow X_0(M).
\]

By Lemma 1.3, if \(X_0(N) \) is \(d \)-gonal, then both of \(X_0(2^i) \) and \(X_0(M) \) are \(d \)-gonal. Hence we have the following corollary which gives a bounds for \(N \) by a polynomial in \(d \) of degree \(\leq 4 \).

Corollary 3.5. Let \(X_0(N) \) be the modular curve of level \(N \). If \(X_0(N) \) is \(d \)-gonal, that is, if it admits a finite map \(f : X_0(N) \rightarrow \mathbb{P}^1_N \) of degree \(d \), then we have the following.

\[
(3.12) \quad N \leq \begin{cases} (60d - 25)(60d - 11) & \text{if } d = 1, 2 \\ (48(d - 1)^2 + 35)(36(d - 1)^2 + 47) & \text{if } d \geq 3 \end{cases}.
\]

Remark 3.6. Let \(k = \mathbb{F}_p \) and fix an algebraic closure \(\overline{k} \) of \(k \). For \(N \) such that \(p \nmid N \), assume that the smooth projective curve \(X_0(N) \) is \(d \)-gonal. From Tower Theorem 2.1, we obtain a smooth projective curve \(C' \) defined over \(k \) and a finite morphism \(f : X_0(N)_k \rightarrow C' \) of degree \(d' \), \(1 \leq d' \leq d \) satisfying that \(g(C') \leq (d/d' - 1)^2 \). From the same arguments as in Theorem 1.2, we obtain an inequality

\[
\#(X_0(N)_{\mathbb{F}_p^2}(\mathbb{F}_p^2)) \leq \max\{p^2 + 1 + 2p \cdot (d - 1)^2, (p^2 + 1) \cdot d\}.
\]
Then from Lemma 3.1, (3.3), we obtain an inequality
\[2^{\nu(N)} + 2s(p)\phi(N) \leq \max\{p^2 + 1 + 2p \cdot (d - 1)^2, (p^2 + 1) \cdot d\}. \]

Hence if \(s(p) > 0 \), then we obtain a bound for \(N \) by a constant only depending on \(d \) and \(p \).

§4 Bounding orders of torsions of Mordell-Weil group.

Let \(C \) be a smooth projective curve defined over an algebraically closed field \(k \) with the rational function field \(K = k(C) \), and let \(E \) be an elliptic curve defined over \(K \). Then we obtain a relatively minimal elliptic surface \(\pi : E \to C \) associated to \(E/K \). We call \(E/K \) is “constant”, if its \(K/k \)-trace is non-trivial. If \(E/K \) is constant, then the associated family \(\pi : C \to C \) is birational equivalent to \(E_0 \times C \) with an elliptic curve \(E_0 \) over \(k \). It is known that the Mordell-Weil group \(E(K) \) of \(E \) is finitely generated, if \(E/K \) is not constant (cf. [La]).

Lemma 4.1. Let \(C \) and \(E/K \) be as above, and assume that the characteristic of the base field \(k \) is zero and \(E/K \) is not constant. Then if the Mordell-Weil group \(E(K) \) has a cyclic subgroup of order \(N > 1 \). Then one obtains a surjective morphism \(h : C \to X_0(N)_K \).

Proof. Let \(\pi^0 : E^0 \to C^0 \) denote the morphism obtained by restricting \(\pi \) to the maximal open set \(E^0 \) on which \(\pi \) is smooth. Now assume that the Mordell-Weil group \(E(K) \) has a cyclic subgroup of order \(N \), it defines a cyclic group of order \(N \) on each fiber \(E_t \) for \(t \in C^0 \). Then since \(Y_0(N)_K \) is the moduli space of pairs \((E, D) \) (see [D-R] and [Kat-Ma]), we have a natural non-constant morphism \(h^0 : C^0 \to Y_0(N) \), which extends to a finite morphism \(h : C \to X_0(N) \).

From Lemma 4.1 together with Lemma 1.3, we have the following

Proposition 4.2. Let \(C \) be a smooth projective curve defined over \(k \) with the rational function field \(K \) and assume that \(C \) is \(d \)-gonal. If there exists a non-constant elliptic curve \(E \) over \(K \) whose Mordell-Weil group \(E(K) \) has a cyclic group of order \(N \), then the modular curve \(X_0(N) \) is also \(d \)-gonal.

Together with Corollaries 3.3 and 3.5, this proposition implies the following theorem, which may be considered as an analogue of strong uniformly boundedness conjecture in the function field case.

Theorem 4.3. Let \(k \) be an algebraically closed field of characteristic zero and \(C \) be a smooth projective curve defined over \(k \), and let \(K = k(C) \) be the function field of \(C \). Then if there exists a non-constant elliptic curve \(E \) defined over \(K \) such that its Mordell-Weil group \(E(K) \) admits a torsion element of order \(N \). Then we have a polynomial function \(B(d) \) in \(d \) such that

\[N \leq B(d). \]
For example, we take \(B(d) \) as the right hand side of (3.12).

§5 A lemma of good reduction of morphisms

In this section, we shall use the following lemma, which we have used in the proof of Theorem 3.2.

Lemma 5.1. Let \(C_1 \) and \(C_2 \) be projective smooth curves defined over \(\mathbb{Q} \) both of which are geometrically irreducible, and let \(f : C_1 \to C_2 \) be a dominant morphism of degree \(d \) which is also defined over \(\mathbb{Q} \). Assume that \(C_1 \) has good reduction at a prime integer \(p > 0 \). Then we have the following.

1) Assume that \(g(C_1) \geq 1 \). Then \(C_2 \) has a good reduction at \(p \) and \(f \) induces a finite morphism of degree \(d \)

\[f_s : C_{1,s} \to C_{2,s}, \]

defined over \(\mathbb{F}_p \) where \(C_{i,s} \), \(i = 1, 2 \) denote the smooth projective curves defined over \(\mathbb{F}_p \) obtained from \(C_i \) respectively.

2) If \(g(C_2) = 0 \), then we obtain a dominant morphism

\[f'_s : C_{1,s} \to C' \]

of degree \(d' \leq d \) defined over \(\mathbb{F}_p \) such that \(C' \) is a smooth rational curve defined over \(\mathbb{F}_p \).

Proof. Let us set \(S = \text{Spec}(\mathbb{Z}_p) \) where \(\mathbb{Z}_p \) denotes the ring of \(p \)-adic integers, and denote by \(\eta \) and \(s \) the generic and the closed points of \(S \) respectively. Moreover, we set \(\hat{S} = \text{Spec}(\mathbb{Z}_p^{sh}) \), where \(\mathbb{Z}_p^{sh} \) is the strict henselization of \(\mathbb{Z}_p \) whose residue field \(k = \mathbb{Z}_p^{sh}/(p) \) is a fixed algebraic closure \(\mathbb{F}_p \) of \(\mathbb{F}_p = \mathbb{Z}_p/(p) \). For each curve \(C_i \) over \(\mathbb{Q} \), we obtain a regular \(\mathbb{Z}_p \)-model of \(C_i \)

\[\pi_i : C_i \to S = \text{Spec}(\mathbb{Z}_p) \]

such that:

i) \(C_i \) is a regular scheme,

ii) \(\pi_i \) is a proper flat morphism and

iii) \(C_{i,\eta} \simeq C_i \times_{\mathbb{Q}} \mathbb{Q}_p \).

Such models can be obtained by the blowing up of any projective model of \(C_i \) over \(S \) by blowing up (cf. [Lip].) Moreover since \(C_1 \) has good reduction, we can assume that \(\pi_1 : C_1 \to S \) is smooth.

Now let us assume that \(g(C_2) \geq 1 \), Then, by Lichtenbaum [Lic] and Shafarevich [Sha], we may assume that \(\pi_2 : C_2 \to S \) is the minimal model. Let \(J_i, i = 1, 2 \) denote the Jacobian varieties of \(C_i \) respectively. Then since \(J_1 \) has good reduction at \(p \), it is easy to see that \(J_2 \) also has good reduction at \(p \). (For a proof, one may use Serre-Tate criterion [S-T, Cor. 2], or just use the Néron models of \(J_1 \) and \(J_2 \).)
Since there exists a dominant morphism $C_1 \longrightarrow C_2$ defined over \mathbb{Q}, we obtain a dominant S-rational map

$$\varphi : C_1 \cdots \longrightarrow C_2.$$

Now considering the base extension $\hat{S} \longrightarrow S$, we obtain the induced \hat{S}-rational map

$$\varphi : \overline{C}_1 \longrightarrow \overline{C}_2$$

$$\pi_1 \downarrow \quad \varphi \quad \downarrow \pi_2$$

$$\hat{S}$$

Note that \overline{C}_2 is also the minimal model over \hat{S}. Since J_2 has good reduction at p, it implies that \overline{C}_2 has at least semistable reduction at p by [D-M, Theorem 2.4]. Consider the irreducible decomposition of $\overline{C}_{2,s}$:

$$\overline{C}_{2,s} = \sum_{i=1}^{l} T_i.$$

The dual graph of $\overline{C}_{2,s}$ has no cycle because the Néron model has no torus part, hence each irreducible component T_i is smooth and because J_2 has good reduction at p, one has $\sum_{i=1}^{l} g(T_i) = g(C_2) \geq 1$. Now we claim that:

Claim: $\overline{C}_{2,s}$ has only one irrational component, say, T_1.

If we admit this claim, we can show that $\overline{C}_{2,s} = T_1$, which also implies that $\overline{C}_{2,s}$ is smooth. Let l denote the the number of irreducible components of $\overline{C}_{2,s}$ and assume that $l > 1$. Then since the dual graph of $\overline{C}_{2,s}$ has no cycle, there exists a component T_i, $i \geq 2$ such that

$$(\overline{C}_{2,s} - T_i) \cdot T_i = 1.$$

Since $\overline{C}_{2,s} \cdot T_i = 0$, we have $(T_i)^2 = -1$. However since all components T_j, $j \geq 2$ are smooth rational curves, this implies that T_i is an exceptional rational curve of the first kind, which contradicts to the minimality of the model \overline{C}_2.

Now it is easy to see that $\pi_2 : \overline{C}_2 \longrightarrow \hat{S}$ is smooth, and since $\hat{S} \longrightarrow S$ is faithfully flat, we conclude that π_2 is smooth.

Now we prove the claim. After a sequence of quadratic transformations with centers in the special fiber of π_1, we obtain a birational morphism $\tau : \Gamma \longrightarrow \overline{C}_1$ such that \hat{S}-rational map φ induces a dominant \hat{S}-morphism $\phi : \Gamma \longrightarrow \overline{C}_2$. Note that since π_1 and π_2 are proper ϕ must be surjective. Consider the following commutative diagram (cf. [Sha]):

$$\begin{array}{c}
\Gamma \\
\tau \downarrow \varphi \downarrow \phi
\end{array}$$

$$\begin{array}{c}
\overline{C}_1 \\
\pi_1 \downarrow \quad \cdots \longrightarrow \quad \overline{C}_2 \\
\hat{S} \downarrow \pi_2
\end{array}$$
Set \(F = \overline{C_{1,s}} \), the special fiber of \(\pi_1 \) and let \(F' \) be the proper transform of \(F \) by \(\tau \), \(\overline{\Gamma_s} \) the special fiber of \(\tau \circ \pi_1 \), and write

\[
\overline{\Gamma_s} = F' + \sum_i m_i E_i.
\]

Here all of \(\{E_i\} \) are exceptional rational curves obtained by the blowing up \(\tau \). Now consider the morphism \(\phi_s : \overline{\Gamma_s} \rightarrow \overline{C_{2,s}} \). Since \(F' \) is the only one irrational component of \(\overline{\Gamma_s} \), \(\overline{C_{2,s}} \) has at most one irrational component, which proves the claim.

Next we prove assertion 2) of the lemma. Assume that \(g(C_2) = 0 \) and let

\[
f : C_1 \rightarrow C_2
\]

be the dominant morphism of degree \(d \).

Then we obtain a dominant \(\mathbb{Z}_p \)-rational map \(f : C_1 \cdots \rightarrow C_2 \). As in the former case, by Shafarevich [Sha], we obtain the commutative diagram

\[
\begin{array}{ccc}
\Gamma & \xrightarrow{\phi} & C_2 \\
\tau & \xrightarrow{\phi} & \pi_2 \\
\pi_1 & \xrightarrow{\phi} & S \\
\end{array}
\]

Here \(\tau : \Gamma \rightarrow C_1 \) is obtained by a sequence of quadratic transformations with centers in the special fiber of \(\pi_1 \). Let \(F' \) be the proper transform of \(F = \overline{C_{1,s}} \). If the restriction of \(\tau \) to \(F' \simeq C_{1,s} \) is not constant, the image \(\phi(F') \) must be a rational curve \(\overline{C_{2,s}} \). The degree of the obtained map \(F' \rightarrow \overline{C_{2,s}} \) is equal to or less than \(d \). If the restriction of \(\phi \) to \(F' \) is constant, we will blow up \(C_2 \) at the closed point \(x = \tau(F') \) and its infinitely near points in order to make the morphism \(\tau \) flat. As mentioned in remark before the proof of [B-L-R, Prop. 6, 3.5] (see also [R-G]), there exists a blowing up \(V \rightarrow \overline{C_{2,s}} \) such that the induced morphism \(\phi' : \Gamma' \rightarrow V \) is flat. (Here \(\Gamma' \) is the schematic closure of \(\Gamma_1 \) in \(\Gamma \times_{C_2} V \).) Since \(\phi' \) is flat, it maps the proper transform of \(F' \simeq C_{1,s} \) by \(\Gamma' \rightarrow \Gamma \) onto a curve \(C' \) which is a rational curve over \(\mathbb{F}_p \) arising as an exceptional curve of the blowing up. Therefore, we obtain a surjective morphism \(C_{1,s} \rightarrow C' \), whose degree \(d' \) is less than or equal to \(d \), the degree of \(f \) at the generic fiber.

Remark 5.2. Without changing the above proof, we can extend the statement of Lemma 5.1 to the case of curves over a discrete valued field \(K \) with the integer ring \(R \) under the assumption that the residue field \(R/m \) is perfect.

References

[B-L-R] Bosch, S., Lütkebohmert, W. & Raynaud, M., *Néron Models*, Ergeb. Math. und ihrer Grzgeb.; 3.Folge, Bd.21, Springer-Verlag, 1990.
Cox, D. A. & Parry, W. R., *Torsion in elliptic curves over k(t)*, Comp. Math. 41 (1980), 337-354.

Deligne, P. & Mumford, D., *The irreducibility of the space of curves of given genus*, Publ. Math. I.H.E.S. 36 (1969), 75–109.

Deligne, P. & Rapoport, M., *Les schémas de modules de courbes elliptiques*, in Modular Functions of One Variable II, Springer Lect. Note in Math. 349, 1973, pp. 143–316.

Edixhoven, B., *Rational torsion points over number fields (after Kamienny and Mazur)*, Sém. Bourbaki 1993-1994, n° 782, Astérisque 227 (1995), 209–227.

Goldfeld, D. & Szpiro, L., *Bounds for the order of the Tate-Shafarevich group*, Comp. Math. 97 (1995), 71–87.

Grothendieck, A., *Sur une note de Mattuck-Tate*, J. Reine und Angew. Math. 200 (1958), 208-215.

Hartshorne, R., *Algebraic Geometry*, Graduate Texts in Math. 52, Springer-Verlag, New York, Heidelberg, Berlin, 1977.

Hindry, M. & Silverman, J. H., *The canonical height and integral points on elliptic curves*, Invent. Math. 93 (1988), 419–450.

Igusa, J., *Kroneckerian model of fields of elliptic modular functions*, Amer. J. Math. 81 (1959), 561–577.

Lang, S., *Fundamentals of Diophantine Geometry*, Springer-Verlag, 1983.

Levin, M., *On the group of rational points on elliptic curves over function fields*, Amer. J. of Math. 90 (1968), 456–462.

Lichtenbaum, S., *Curves over discrete valuation rings*, Amer. J. Math. 25 (1968), 380–405.

Lipman, J., *Desingularization of two-dimensional schemes*, Ann. Math. 107 (1978), 151–207.

Kamienny, S. & Mazur, B., *Rational Torsion of prime order in elliptic curves over number fields*, Astérisque, vol. 228, 1995, p. 81–98.

Katz, N. M. & Mazur, B., *Arithmetic Moduli of Elliptic Curves*, Annals of Mathematics Studies 108, Princeton University Press, 1985.

Mazur, B., *Modular curves and Eisenstein ideal*, Publ. I.H.E.S., 47 (1978), 33–186.

Merel L., *Bornes pour la torsion des courbes elliptiques sur les corps de nombres*, Invent. math. 124 (1996), 437-449.

Miranda, R. & Persson, U., *Torsion groups of elliptic surfaces*, Comp. Math. 72 (1989), 249–267.

Newman, M., *Conjugacy, genus, and class number*, Math. Ann. 196 (1972), 198–217.

Nguyen, K. V., *Class numbers, d-gonality of modular curves and bounding torsions*, to appear in Proceedings of Algebraic Geometry Symposium in Sendai (1996).

Ogg, A. P., *Hyperelliptic modular curves*, Bull. Soc. Math. France 102 (1974), 449–462.

Raynaud, M. & Gruson, L., *Critères de platitude et de projectivité*, Invent. Math. 13 (1971), 1–89.

Serre, J. & Tate, J., *Good reduction of abelian varieties*, Annals of Math. 88 (1968), 492–517.

Shafarevich, I., *Lectures on Minimal Models and Birational Transformations of Two-dimensional Schemes*, Bombay, Tata Institute, 1966.

Shioda, T., *On elliptic modular surfaces*, J. Math. Soc. Japan 24 (1972), 20–59.

Silverman, J. M., *The Arithmetic of Elliptic Curves*, Graduate Texts in Math., vol. 106, Springer-Verlag, 1986.
E-mail address: nkvioet@thevinh.ac.vn & viet@kusm.kyoto-u.ac.jp

Department of Mathematics, Faculty of Science, Kyoto University, Kyoto, 606-01, Japan
E-mail address: mhsaito@kusm.kyoto-u.ac.jp