Ticking time bombs: connections between circadian clocks and cancer [version 1; referees: 2 approved]

Katja A. Lamia
Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA

Abstract
Connections between mammalian circadian and cell division cycles have been postulated since the early 20th century, and epidemiological and genetic studies have linked disruption of circadian clock function to increased risk of several types of cancer. In the past decade, it has become clear that circadian clock components influence cell growth and transformation in a cell-autonomous manner. Furthermore, several molecular mechanistic connections have been described in which clock proteins participate in sensing DNA damage, modulating DNA repair, and influencing the ubiquitination and degradation of key players in oncogenesis (c-MYC) and tumor suppression (p53).

Corresponding author: Katja A. Lamia (klamia@scripps.edu)
Author roles: Lamia KA: Writing – Original Draft Preparation
Competing interests: The author is a member of the editorial board for The Journal of Biological Rhythms.
How to cite this article: Lamia KA. Ticking time bombs: connections between circadian clocks and cancer [version 1; referees: 2 approved] F1000Research 2017, 6(F1000 Faculty Rev):1910 (doi: 10.12688/f1000research.11770.1)
Copyright: © 2017 Lamia KA. This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Grant information: The author is supported by National Institutes of Health grants DK097164 and CA211187.
First published: 30 Oct 2017, 6(F1000 Faculty Rev):1910 (doi: 10.12688/f1000research.11770.1)
Introduction

Connections between mammalian cell division cycles and time of day have been postulated since the early 20th century when Mrs. C.E. Droogleever Fortuyan-van Leijden demonstrated that the difficulty of observing mitosis in growing tissues stemmed from its propensity to occur late at night. Similar daytime-dependent changes in the mitotic indices of several rodent tissues were reported by 1950. By the 1960s, it became clear that many biological daily rhythms are driven by endogenous oscillators, and the term “circadian” was adopted to describe endogenous rhythms with a period close to that of the 24-hour day. Halberg and Barrum demonstrated the existence of circadian rhythms in DNA synthesis and mitosis in healthy mouse tissues in vivo. Circadian rhythms of cell division in human proliferating cell populations in vivo have also been documented. Careful examinations of the relationship between circadian and cell division cycles in individual proliferating fibroblasts in cell culture have demonstrated that cell division is influenced by circadian time but is not limited to a specific circadian phase, suggesting a complex relationship between these two biological oscillators. Many epidemiological studies have demonstrated that disruption of circadian rhythms caused by shift work increases the risk of several cancers, and the size of the effect is correlated with the duration and severity of circadian disruption. Thus, long-term rotating shift work confers the greatest increase in risk. Notably, unlike other tumor types, skin cancers were recently found to be reduced among night shift workers and this might be due to reduced sun exposure. Accumulated evidence for increased risk of several cancers in shift workers led the World Health Organization to declare circadian disruption a probable carcinogen. However, controversy remains over the generality and robustness of these effects, and some have raised concerns that lifestyle factors associated with shift work may enhance cancer risk independent of disruption of circadian rhythms per se. Conversely, several studies have found significant effects of genetic variants or expression level of clock genes on human cancer incidence or survival or on the tumor burden in genetically engineered mouse models of cancer. While circadian rhythms clearly influence cell division and tumor formation, we are only beginning to understand the molecular underpinnings for their interrelationship.

Mammalian circadian clocks are most widely recognized as the drivers of sleep cycles. Such behavioral rhythms are driven by secreted factors from the suprachiasmatic nucleus (SCN), a neuronal master pacemaker located at the base of the anterior hypothalamus, just above the optic chiasm. Konopka and Benzer’s elucidation of the genetic basis for circadian activity rhythms in fruit flies provided the first evidence for genetically determined behavior and jump-started research in eukaryotic molecular chronobiology. Subsequent work has demonstrated that mammalian circadian behavior is also genetically determined and defined a transcription-translation feedback loop that drives cell-autonomous rhythms of gene expression in nearly all mammalian cells. The core molecular clock is driven by a heterodimer of the basic helix-loop-helix transcription factor BMAL1 with either CRY1 or CRY2, which represses CLOCK/BMAL1 activity, and the nuclear hormone receptors REV-ERBα and REV-ERBβ, which repress Bmal1 expression. TIMELESS is the mammalian homolog of Drosophila melanogaster TIM (dTIM), which dimerizes with dPER and is required for circadian rhythms in flies. The mechanism of TIMELESS in mammalian clocks is unclear, but it is required for maintenance of normal circadian rhythms.

The state of our understanding of the connections between circadian rhythms and cell division today is reminiscent of the early days investigating connections between clocks and metabolism, when there was considerable resistance to the idea that circadian rhythms could modulate metabolic function at the molecular level. Only after it was established that circadian rhythms in individual organs modulate metabolic physiology independent of behavioral and feeding rhythms has it become possible to dissect specific mechanisms by which clocks regulate metabolic pathways in a cell- and tissue-autonomous manner. The past decade has seen several important advances in understanding molecular connections between core components of molecular circadian clocks and cell division, including some of the most frequently mutated players in human cancer. Our understanding of the role of clocks in cancer development is still in its infancy and will greatly benefit from enhanced communication, interaction, and resource sharing among experts in circadian rhythms, cell division, and cancer biology.

Tumor studies in mice

Several studies in animal models support the hypothesis that circadian clocks control cell proliferation or transformation (or both) independent of other lifestyle changes (Table 1). Early studies found that the timing of cell division after partial hepatectomy in rats displays a robust circadian rhythm antiphase to the rhythmic production of endogenous corticosteroids. Later, Okamura and colleagues reproduced those findings in mice and showed that genetic disruption of circadian clock components altered the timing of the first cell division. Lévi and colleagues demonstrated that surgical ablation of the SCN or “master clock” greatly enhanced the growth of implanted tumors in addition to abolishing circadian rhythms of behavior and body temperature. Like the difficulty in separating direct cell-autonomous clock control of metabolic functions from effects on behavior (feeding/activity cycles), these studies cannot distinguish between effects of systemic circadian control of daily fluctuations in feeding, hormone production, and so on that may indirectly influence cell growth and division. Indeed, it seems likely that the effects of circadian disruption on cancer risk are multi-faceted and could involve both cell-autonomous and systemic effects.

Several studies have examined the effect of ubiquitous deletion or mutation of the circadian repressors Cry1/2 and Per1/2 on tumor incidence. Deletion or mutation of Per2 either alone or in combination with deletion of Per1 has consistently been found to increase the incidence of tumor formation in several different genetic or irradiation-induced tumor models. Reported effects of Cry1 or Cry2 deletion (or both) on tumor formation have varied. While deletion of both Cry1 and Cry2 improves survival and decreases the tumor burden in p53 mice, the same double deletion enhances spontaneous and irradiation-induced
formation of hepatocellular carcinomas (HCCs) and increases the formation of cholangiocarcinomas after exposure to diethylnitrosamine. These differences may be due to unique functions of CRY1 and CRY2 and differences in the molecular pathways targeted in each tumor model. Consistent with this hypothesis, deletion of CRY2 alone consistently enhances cellular transformation in cooperation with multiple different oncogenic manipulations, whereas deletion of CRY1 decreases transformation only in the context of p53 deletion. Furthermore, loss of CRY2 increases the formation of MYC-driven lymphomas in mice with wild-type CRY1. Additional studies of CRY1 and CRY2 are needed to understand their overlapping and distinct roles in cell division and tumor formation. New genetic tools for tissue-specific ablation of CRY1/2 and Per1/2/3 will enable the elucidation of their effects on cell-autonomous growth and survival and global physiology. Additional studies investigating the effects of clock gene disruptions in tumor models driven by a variety of genetic manipulations (and in myriad cell types) are also needed to improve our understanding of how circadian disruption impacts different types of cancers.

Recently, tissue-specific ablation of clock function via Cre-mediated deletion of Bmal1 in lung epithelial cells, in conjunction with other genetic manipulations to induce local tumor formation, demonstrated that loss of the tumor-resident circadian clock enhances lung tumor progression. The hypothesis that BMAL1 opposes cell proliferation in a cell-autonomous manner is supported by studies of normal and transformed rodent cell lines, N-MYC driven glioblastoma cell lines, and deletion of Bmal1 in keratinocytes in vivo. Perhaps not surprisingly, many transformed cell lines exhibit altered or lost circadian rhythms; restoration of clock function in B16 melanoma cells reduced proliferation both in culture and after implantation in mice. However, another study found that keratinocyte-specific Bmal1 deletion reduced the incidence of RAS-driven squamous tumors. Thus, the effect of Bmal1 deletion on cell growth and transformation may depend on the cellular or genetic context in which it occurs.

A handful of recent studies demonstrated that exposing mice to light cycles engineered to impose a state of “chronic jet lag”, mimicking the experience of rotational shift work, increased tumor formation in breast, lung, and liver cancer models. Liver-specific deletion of Bmal1 prevented the increase in HCC caused by chronic jet lag, suggesting a tumor-autonomous effect of circadian disruption. It will be interesting to further investigate how specific genetic manipulation of clock components alters the impact of light cycle changes to determine the primary molecular mechanism(s) by which circadian disruption impacts tumor initiation or progression or both.

Emerging molecular connections

Several studies have demonstrated a non-random association between the timing of the circadian cycle and that of the cell cycle. Although the relationship between these two oscillators is not well understood, some molecular connections have been described (Figure 1), including circadian transcriptional regulation of the key cell cycle regulators Weel, p21, Ccnb1, and Ccnd1 (encoding CYCLINs B1 and D1) by PER1/2/3. Weel transcription can be directly activated by CLOCK/BMAL1 and repressed by PERs or CRYs. PER1 influences the transcription of Weel and Ccnb1 by a p53-dependent mechanism and of p21 independent of p53, possibly by stabilizing c-MYC. Circadian clocks may also influence cell cycle regulators indirectly by modulating the activity of critical signal transduction cascades that alter cell cycle dynamics. A genome-wide screen for modulators of circadian rhythm found an overrepresentation of phosphatidylinositol 3-kinase effectors, which is also a key pathway for modulating cell cycle and cell

Table 1. Effects of genetic and environmental circadian disruption in mouse cancer models.

Disruption	Location	Impact	Reference(s)
Bmal1−/−	Ubiquitous	Enhanced KrasG12D lung tumors	26
Bmal1	Hepatocytes	Enhanced hepatocellular carcinoma (HCC) and prevented further increase in response to chronic jet lag	41
Bmal1−/−	Lung epithelium	Enhanced KrasG12D and p53−/−;KrasG12D lung tumors	26
Bmal1−/−	Keratinocytes	Reduced RAS-driven squamous tumors	53
Cry2−/−	Ubiquitous	Enhanced lymphoma in Emu-MYC	27
Cry1−/−;Cry2−/−	Ubiquitous	Decreased tumor formation in p53−/−; enhanced HCC and cholangiocarcinoma	41,42,46,47
Per2emin	Ubiquitous	Enhanced tumors caused by irradiation, diethylnitrosamine, or mutant Kras or p53	26,43,45
Per2emin or Per2emlo	Ubiquitous	Enhanced tumor formation in p53−/− mice	44
Per1−/−;Per2−/−	Ubiquitous	Enhanced HCC	41
Chronic jet lag	Environmental	Enhanced tumor formation in breast, lung, and liver models	26,41,54–56
Endogenous glucocorticoids exhibit high-amplitude circadian rhythms and inhibit signaling downstream of the epidermal growth factor receptor (EGFR) via glucocorticoid receptor-induced activation of EGFR pathway inhibitors. Clock input to DNA damage response and repair

Consistent with observed rhythms in mitotic indices, several studies have demonstrated circadian rhythms of sensitivity to various types of DNA damage. Mouse skin and hair follicles exhibit maximum sensitivity to DNA damage at night induced by either ultraviolet (UV) or ionizing radiation. Rhythms in sensitivity to damage were lost in mice harboring genetic deletion of *Bmal1* in keratinocytes or ubiquitous deletion of *Cry1* and *Cry2*. Interestingly, both (6-4) photoproducts (64Ps) and cyclobutane pyrimidine dimers (CPDs) are reduced, but double-strand breaks (DSBs) are increased, across the circadian cycle in *Bmal1*-deficient skin. CRY1 and CRY2 evolved from bacterial UV-activated DNA repair enzymes, and several studies suggest that they retain a functional role in genome protection. Although they lack catalytic DNA repair activity, purified human CRY2 retains the ability to preferentially interact with single-stranded DNA containing a UV photoproduct in *vitro*. Furthermore, CRY2-deficient cells exhibit increased accumulation of DNA DSBs. CRY1 and CRY2 are phosphorylated on unique sites following DNA damage, resulting in stabilization of CRY1 and degradation of CRY2.
Furthermore, they play overlapping and distinct roles in modulating the transcriptional response to DNA damage\(^8\). While some of the transcriptional changes in Cry2\(^-\) cells can be explained by the unique role of CRY2 in modulating c-MYC protein stability (see below), further investigation will be required to understand the mechanism(s) by which mammalian CRYs participate in the DNA damage response.

Although the precise role of TIMELESS in mammalian circadian clocks is not well defined, it clearly impacts clock function in mammals\(^33,34\) and interacts with mammalian CRY1\(^34\) and CRY2\(^35\). It also directly interacts with PARP-1 and thereby is recruited to sites of DNA damage\(^36\). Depletion of TIMELESS or replacement with a mutant that cannot interact with PARP-1 greatly reduced homologous recombination repair\(^37\). These recent findings likely explain earlier observations that depletion of TIMELESS reduced the activation of checkpoint kinases 1 (CHK1) and 2 (CHK2) in response to DNA damage\(^38,77,78\). CLOCK is also recruited to DNA DSBs independent of H2AX\(^79\), although no functional impact of CLOCK deficiency on the DNA damage response has been established.

Regulation of protein turnover of key cancer drivers

Several recent studies have uncovered unexpected roles for CRY1, CRY2, and PER2 in modulating the targeting of substrates for ubiquitination, including two of the most commonly mutated proteins in human cancers: p53 and c-MYC. PER2 interacts directly with p53 and prevents its ubiquitination by the MDM2 E3 ubiquitin ligase, resulting in stabilization of p53 in cells expressing high levels of PER2\(^30,31\). This may explain earlier observations that thymocytes from Per2 mutant mice are deficient in p53 stabilization after irradiation\(^31\). In addition, PER2 seems to modulate p53 nuclear import\(^32\), perhaps via effects on p53 ubiquitination. The herpes virus-associated ubiquitin-specific protease (HAUSP) removes polyubiquitin chains from both MDM2 and p53\(^33-37\). Its affinity for MDM2 is reduced and for p53 is increased following DNA damage, contributing to stabilization of p53. HAUSP also interacts with CRY1 through its C-terminal tail, which is not conserved in CRY2, and this interaction is increased in response to DNA damage, resulting in stabilization of CRY1 while CRY2 is destabilized\(^38\).

In response to DNA damage, the interaction between CRY2 and the E3 ligase substrate adaptor F-box and leucine-rich repeat 3 (FBXL3) is increased\(^39\). FBXL3 targets both CRY1 and CRY2 for ubiquitination by a SKP-CULLIN-Fbox (SCF) E3 ligase complex\(^38\), and mutation of FBXL3 alters circadian period length\(^39,40\). In addition to being substrates of FBXL3-mediated ubiquitination, CRY1 and CRY2 influence the formation of FBXL3-containing SCF complexes\(^40\) and recruit phosphorylated c-MYC to SCF(FBXL3)\(^33\). Indeed, disruption of CRY2 or FBXL3 stabilizes c-MYC as much as depletion of its best established E3 ligase FBXW7\(^32\). Consistent with this, c-MYC was increased in lung tumors subject to genetic disruption of clock function\(^41\). Furthermore, c-MYC protein exhibits circadian oscillation in mouse thymus and is elevated throughout the day upon exposure to chronic jet lag\(^42\). CRY1 and CRY2 may also stimulate the ubiquitination of other substrates by SCF(FBXL3) or other E3 ligases. In fruit flies, dCRY is required for ubiquitination of dTIM by JETLAG in response to blue light\(^43\), and mammalian CRY1 was recently found to be involved in MDM2-mediated ubiquitination of FOXO1 in mouse livers\(^44\). PER1 has also been shown to alter the protein stability of both p53 and c-MYC\(^45\); it is unclear whether these effects are indirectly caused by altered expression of PER2 or CRY2 or both. In addition, PER1 and PER2 have been reported to interact with the RNA binding protein NONO and thereby contribute to circadian activation of p16Ink4A expression\(^46\). Thus, inactivation of PERs could inhibit both the retinoblastoma (Rb) and p53 tumor suppressors.

Looking ahead

Several studies have found that circadian rhythms tend to be reduced or absent in tumors, that this can be driven by acute induction of individual oncogenes\(^47,48\), and even that tumors can dampen circadian rhythms in remote organs\(^49\). Patients with cancer often experience disruption of sleep-wake cycles and other systemic circadian rhythms, and those disruptions are associated with poor outcomes\(^47\). Interventions to improve the robustness of overall circadian timing systems in these patients may be beneficial.

Circadian disruption in shift workers enhances the risk of several types of cancer. Molecular connections between mammalian clock components and critical regulators of cell proliferation and survival suggest several possible underlying mechanisms that could explain those phenomena. Cancer is a complex disease process that requires overcoming several layers of protection. Thus, circadian modulation of this process may occur through any of these layers and will also be multi-faceted and complex. Several groups have used the power of mathematical modeling to improve our understanding not only of the cellular circadian clock but of these complex relationships as well\(^50,51,52,97,98\). In addition to molecular connections between circadian clocks and pathways that influence transformation, circadian rhythms robustly influence the efficacy and toxicity of pharmacological compounds, including chemotherapy drugs\(^99-104\). Mathematical modeling of drug pharmacokinetics and pharmacodynamics is used by pharmaceutical companies in preclinical studies. Although the number of variables is a major obstacle to generating complete models, some groups have begun to incorporate circadian modulation of drug distribution and metabolism into so-called multi-scale pharmacokinetics models\(^105\). Continued improvement of these models with the incorporation of new information emerging from the literature may lead to better pharmacological strategies.

Clocks may control many aspects related to all of the established and emerging hallmarks of cancer\(^106\). Therefore, it is no wonder that results of in vivo studies have been variable depending on the method of clock disruption as well as the specific cancer model employed. Greater understanding of the interrelationship between circadian clocks, the cell cycle, and tumor formation and progression will enable improved lifestyle recommendations, occupational and public health policies, and...
pharmacological strategies\(^{[10]}\) for the prevention and treatment of cancer.

Competing interests
The author is a member of the editorial board for The Journal of Biological Rhythms.

References

1. Fortuny-van Leijden CE: Some observations on periodic nuclear division in the cat. P K Akad Van Wetensch. 1917; 19: 39–54. WOS:000020559600003. Reference Source
2. Bulough WS, Echo EA: The diurnal variations in the tissue glycogen content and their relation to mitotic activity in the adult male mouse. J Exp Biol. 1950; 27(3–4): 257–63. PubMed Abstract
3. Bulough WS: Mitotic Activity in the Adult Male Mouse, Mus musculus L. The Diurnal Cycles and Their Relation to Waking and Sleeping. P ROY SOC B-BIOL SCI. 1948; 135: 212–33. Publisher Full Text
4. Pitterdin CB: Circadian rhythms and the circadian organization of living systems. Cold Spring Harb Symp Quant Biol. 1960; 25: 159–84. PubMed Abstract | Publisher Full Text
5. Halberg F, Barlow CP: On circadian rhythms in human epidermal cell proliferation. Acta Derm Venerol. 1991; 71(1): 85–7. PubMed Abstract
6. Nagoshi E, Saini C, Bauer C, et al.: Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 2004; 119(5): 693–704. PubMed Abstract | Publisher Full Text | F1000 Recommendation
7. Feillet C, Knauss P, Tamarini F, et al.: Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle. Proc Natl Acad Sci U S A. 2014; 111(27): 9628–33. PubMed Abstract | Publisher Full Text | F1000 Recommendation
8. Bieler J, Carnavo R, Gustafson K, et al.: Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells. Mol Syst Biol. 2014; 10(7): 739. PubMed Abstract | Publisher Full Text | F1000 Recommendation
9. Hansen J, Stevens RG: Case-control study of shift-work and breast cancer risk in Danish nurses: impact of shift systems. Eur J Cancer. 2012; 48(11): 1722–9. PubMed Abstract | Publisher Full Text | F1000 Recommendation
10. Knutsson A, Hammar N, Karlsson B: Shift workers’ mortality scrutinized. Chronobiol Int. 2004; 21(1): 1049–53. PubMed Abstract | Publisher Full Text | F1000 Recommendation
11. Karlsson B, Alfredsson L, Knutsson A, et al.: Total mortality and cause-specific mortality of Swedish shift- and dayworkers in the pulp and paper industry in 1952–2001. Scand J Work Environ Health. 2005; 31(1): 30–5. PubMed Abstract | Publisher Full Text
12. Strait K, Baan R, Grosse Y, et al.: Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007; 8(12): 1065–6. PubMed Abstract | Publisher Full Text
13. Hansson J, Lassen CF: Nested case-control study of night shift work and breast cancer risk among women in the Danish military. Occup Environ Med. 2012; 69(8): 551–6. PubMed Abstract | Publisher Full Text | F1000 Recommendation
14. Papantonou K, Castaño-Vinyals G, Espinosa A, et al.: Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. Int J Cancer. 2015; 137(3): 1147–57. PubMed Abstract | Publisher Full Text | F1000 Recommendation
15. F1000 recommended

Grant information
The author is supported by National Institutes of Health grants DK097164 and CA211187.

Acknowledgments
KAL would like to thank Drew Duglan and Alanna Chan for critical reading of the manuscript and assistance with figure preparation.
The circadian factor Period 2 plays a role in determining mammalian circadian period. Proc Natl Acad Sci U S A. 2010; 107(12): 5406–11.

The complex regulatory distribution of p53 by the circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell. 2011; 22(2): 359–72.

A DNA damage response screen identifies Rih108, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. J. Cell Sci. 2015; 128(5): 879–900.

The circadian clock to the cell cycle. Proc Natl Acad Sci U S A. 2013; 110(5): 1952–9.

The role of Deubiquitinase in circadian regulation and pharmacotherapy. Trends Mol Med. 2016; 22(5): 430–45.

The proximity of the p53-Mdm2 pathway. Mol Cell. 2016; 64(2): 170–82.

The dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2005; 19(4): 428–36.

Distally Rewires Hepatic Circadian Homeostasis. Proc Natl Acad Sci U S A. 2016; 113(5): 1029–34.

The Liver Circadian Clock Modulates Xenobiotic metabolism in mice. J Biol Rhythms. 2014; 29(4): 277–87.

Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646–74.

Tumor suppression: disruption of HAUSP gene stabilizes p53. Nature. 2004; 428(6982): 1 p following 466.

Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature. 2002; 416(6881): 648–53.

A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol Cell. 2004; 13(6): 879–86.

A multiscale modelling approach for circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proc Natl Acad Sci U S A. 2017; 114(33): 8776–81.

The Liver Circadian Clock Modulates Biochemical and Physiological Responses to Metformin. J Biol Rhythms. 2017; 32(4): 345–58.

The integration of the circadian clock into the mammalian cell cycle. Mol Cell. 2006; 22(5): 430–45.

The cell cycle coincidence of oncogenesis and cancer chemotherapy. J Theor Biol. 2013; 328: 244–57.

Circadian mutant Mammalian TIMELESS is required for ATM-mediated CHK2 activation and G2/M checkpoint control. J Biol Chem. 2010; 285(3): 3030–4.

DeBruyne JP, Weaver DR, Dallmann R: The hepatic circadian clock regulates xenobiotic metabolism in mice. J Biol Rhythms. 2014; 29(4): 277–87.

Hallmarks of cancer: the next generation. Cell. 2011; 144(5): 646–74.
Open Peer Review

Current Referee Status: ✓ ✓

Editorial Note on the Review Process
F1000 Faculty Reviews are commissioned from members of the prestigious F1000 Faculty and are edited as a service to readers. In order to make these reviews as comprehensive and accessible as possible, the referees provide input before publication and only the final, revised version is published. The referees who approved the final version are listed with their names and affiliations but without their reports on earlier versions (any comments will already have been addressed in the published version).

The referees who approved this article are:

Version 1

1 Francis Lévi Cancer Chronotherapy Unit, Cancer Research Centre, Warwick Medical School, Warwick University, Coventry, UK
 Competing Interests: No competing interests were disclosed.

1 Nicolas Cermakian Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC, Canada
 Competing Interests: No competing interests were disclosed.