Molecular Identification, GC-MS Analysis of Bioactive Compounds and Antimicrobial Activity of Thermophilic Bacteria Derived from West Sumatra Hot-Spring Indonesia

Zona Octarya¹, Titania T. Nugroho², Yuana Nurulita², Saryono*²

¹Department of Chemistry Education, Tarbiyah and Teacher Training Faculty, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru, Riau, Indonesia
²Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Riau, Kampus Bina Widya, Simpang Baru, Pekanbaru, Riau, Indonesia

1. Introduction

Antibiotics have been used a lot to treat diseases caused by pathogenic microbial infections. Antibiotics are compounds that can inhibit the growth of pathogenic microorganisms, including bacteria and fungi (Gould 2016). The ability of microorganisms to modify themselves due to antibiotics has led to an increase in the resistance of pathogenic microorganisms to currently used antibiotics (Peterson and Kaur 2018). MRSA (methicillin-resistant Staphylococcus aureus) and VRSA (vancomycin-resistant Staphylococcus aureus) are examples of infection with antibiotic-resistant pathogenic bacteria. Cases of antibiotic resistance continue to increase every year (Scheffler et al. 2013). The increasing antimicrobial resistance of isolates found in dairy products due to contamination S. aureus and MRSA on these food products (Alghizzi and Shami 2021). According to the World Health Organization (WHO), antibiotic resistance has posed a severe threat to human health worldwide (Romandini et al. 2021). Based on data from WHO, at least 700,000 people worldwide die each year due to antibiotic resistance, of which around 200,000 are newborns (WHO 2021). This case is expected to increase in 2050 to 10 million (Mancuso et al. 2021). Data from the Indonesian Ministry of Health in 2019 shows an increase in antibiotic resistance to antibiotics Carbapenems, Fluoroquinolones, and third-generation cephalosporins for some bacteria such as E.coli and K. Pneumoniae (R.I. Ministry of Health 2020). Antibiotic resistance in Indonesia...
can also be increased by bacterial coinfection in COVID-19 patients due to the widespread use of broad-spectrum antibiotics (Prasetyoputri 2021). Search for new natural biologically active compounds and their characterization is one of the urgent tasks in modern biotechnology. One of the sources of bioactive compounds is microorganisms. Thus, they are an important source of antimicrobial compounds. Secondary metabolite compounds produced by bacteria can be antimicrobial, antitumor agents, immunosuppressant agents, herbicides, pesticides, antiparasitic agents, and enzymes. In addition, thermophilic bacteria can be used to produce bioethanol and other industrial chemicals (Zeldes et al. 2015; Panda et al. 2018; Gurumurthy et al. 2020). Thermophilic bacteria live optimally at 45°C between 80°C and can be isolated from various environments such as deep sea, soil, hot springs, and compost (Pandey et al. 2015). The provinces on the Indonesian island of Sumatra are traversed by mountainous trails and have many hot springs. These natural conditions are a source of diversity of thermophilic microorganisms. Previously, was reported the potential of thermophilic bacteria in Sumatra as a source of amylase (Ardhi et al. 2020), protease, and inulinase enzymes (Fachrial et al. 2019). Thermophilic bacteria can be used to produce bioethanol and other industrial chemicals (Zeldes et al. 2015; Panda et al. 2018; Gurumurthy et al. 2020). Thermophilic bacteria also have the potential to produce antibiotic compounds, such as cyclohexyl acrylate, imiloxan, tabtoxinine-lactam, and filberton (Alrumman et al. 2018; Gurumurthy et al. 2020). Thermophilic bacteria in Sumatra can be antimicrobial, antitumor agents, immunosuppressant agents, herbicides, pesticides, antiparasitic agents, and enzymes. In addition, thermophilic bacteria can be used to produce bioethanol and other industrial chemicals (Zeldes et al. 2015; Panda et al. 2018; Gurumurthy et al. 2020). Thermophilic bacteria live optimally at 45°C between 80°C and can be isolated from various environments such as deep sea, soil, hot springs, and compost (Pandey et al. 2015). The provinces on the Indonesian island of Sumatra are traversed by mountainous trails and have many hot springs. These natural conditions are a source of diversity of thermophilic microorganisms. Previously, was reported the potential of thermophilic bacteria in Sumatra as a source of amylase (Ardhi et al. 2020), protease, and inulinase enzymes (Fachrial et al. 2019). Thermophilic bacteria can be used to produce bioethanol and other industrial chemicals (Zeldes et al. 2015; Panda et al. 2018; Gurumurthy et al. 2020). Thermophilic bacteria also have the potential to produce antibiotic compounds, such as cyclohexyl acrylate, imiloxan, tabtoxinine-lactam, and filberton (Alrumman et al. 2018; Gurumurthy et al. 2020). Thermophilic bacteria in Sumatra can be antimicrobial, antitumor agents, immunosuppressant agents, herbicides, pesticides, antiparasitic agents, and enzymes. In addition, thermophilic bacteria can be used to produce bioethanol and other industrial chemicals (Zeldes et al. 2015; Panda et al. 2018; Gurumurthy et al. 2020).

2. Materials and Methods

2.1. Screening for Thermophilic Bacteria that have Antimicrobial Activity from Laboratory Collections

Table 1 is the data of thermophilic bacteria from the collection of the Biochemistry Laboratory of the University of Riau. The total number of samples in this study was 50 isolates of thermophilic bacteria and coded LBKURCC (Laboratorium BioKimia Universitas Riau Culture Collection). These thermophilic bacteria were tested for antimicrobial ability against Staphylococcus aureus ATCC 29213, Escherichia coli ATCC 35218, and the fungus Candida albicans ATCC 10231. Pathogenic bacteria are purchased from a collection of microorganism cultures which are standard bacteria and are pathogenic for humans. E. coli ATCC 35218 is an Enteropathogenic Escherichia coli (EPEC) strain that can cause diarrhea. S. aureus ATCC 29213 and C. albicans ATCC 10231 are clinical isolates used as a standard quality control strain in laboratory testing. Bacteria were cultured in Nutrient Broth for 48 hours at 45°C. The supernatant was obtained by centrifugation for ten minutes at 10,000 rpm. The antimicrobial activity of thermophilic bacteria against microbial pathogens was tested by the disc diffusion method. Disc with a diameter of 6 mm was immersed in the bacterial culture supernatant. After 1 hour, the discs were placed on solid media containing pathogenic microbes and

Origin	Number of isolates	LBKURCC code
Sungai Pinang, Riau Province	17	197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213
Rimbo Panti, West Sumatera Province	10	214, 215, 216, 217, 218, 219, 220, 221, 222, 223
Padang Gantiang, West Sumatera Province	5	224, 225, 226, 227, 228
Pawan, Riau Province	6	229, 230, 231, 232, 233, 234
Bukik Gadang, West Sumatera Province	6	235, 236, 237, 238, 239, 240
Bukik Kili, West Sumatera Province	6	241, 242, 243, 244, 245, 246
then incubated for 24 hours at 45°C. The zone of inhibition of pathogen growth in mm was used as antimicrobial activity. The following scoring system was used: Diameter of inhibition zone >15mm (++), 13-15 mm (+), <13 mm ((+)/-) and absent (-) (Esikova et al. 2002).

2.2. Morphological Characterization of Selected Thermophilic Bacteria

The pure isolate of the most potential bacteria was incubated at 45°C for 24 hours on a Nutrient Agar medium. Single bacteria colonies were taken to observe cell shape and Gram stain test. Gram stain test was carried out referring to Al-Dhabi et al. 2016. Bacterial growth temperature is determined by growing bacteria in a temperature range of 35-60°C. Bacterial growth was then observed on Nutrient Agar (Merck) for 2 days.

2.3. Molecular Identification of the Promising Thermophilic Bacteria

Bacteria were grown in a liquid medium for 24 hours at 45°C. Bacterial DNA was isolated using a modified GES method (Pitcher et al. 1989). The mixture of PCR reaction consisted of 39.5 µL of ddH2O, 0.5 µL of primers 27F: (5'-AGA GTT TGA TCC TGG CTC AG-3') and 1492 R (5'--GGT TAC CTT GTT ACG ACT T-3'), 1 µL of 10 mM dNTPs, 0.5 µL of Taq-polymerase, and 5 µL of reaction buffer. PCR was performed using either a Perkin-Elmer Cetus Thermal Cycler with a cycle profile of pre-run at 96°C for 2 minutes, denaturing at 96°C for 1 minute, annealing at 55°C for 1 minute, and extension at 72°C for 1.5 minutes and a total of 35 cycles was followed by a post-run at 72°C for 2 minutes (White et al. 1990; O'Donnell 1996). The PCR products were purified by the PEG precipitation method (Hiraishi et al. 1995). An automated DNA sequencer (ABI PRISM 3130 Genetic Analyzer) sequence bacterial ribosomal DNA. Sequencing data were processed using the BioEdit program. The length of the DNA fragment obtained in sequencing was 1,411 bp. The results were then analyzed for sequence homology using the mega BLAST program, accessed on the NCBI website. Sequence alignment of thermophilic bacterial strains with sequences already stored in NCBI based on the similarity of the 16S rRNA gene was carried out using Clustal W software. The resulting data were processed to obtain bacterial kinship relationships (Kumar et al. 2016).

2.4. Liquid Culture Fermentation and Crude Extract Extraction

Bacterial isolates that showed the highest antimicrobial activity in the previous test were selected for fermentation. Bacterial liquid culture fermentation was carried out in a Nutrient Broth (Merck) liquid medium (2 x 250 ml) at pH 7. The culture was incubated for 2 days at 45°C with a stirring speed of 150 rpm. The cultures were centrifuged at 300 rpm for 30 min to obtain cell-free extracts. Extraction with ethyl acetate was carried out by adding ethyl acetate in a ratio of 1:1 with the volume of the supernatant. Extraction was carried out by adding the volume of ethyl acetate 3 times in a separating funnel. The solvent layer was separated and evaporated at 40°C temperature by Rotavapor (Buchi R-100) under a vacuum. The extract was used as a stock for GC-MS analysis and performed antimicrobial activity tests.

2.5. Analysis by Gas Chromatography-Mass Spectrometry (GC-MS)

The GC-MS analysis of the obtained ethyl acetate extract was carried out with the SHIMADZU GCMS-QP2010S. The column used was (fused silica) with 30 m x 250 µm x 0.25 µm. Three µl of the sample were injected at 300°C and the GC run times were 80 minutes. Helium gas velocity was 0.5 ml/min with a pressure of 13.7 kPa. The electron energy was 70 Ev and the measured mass was 28-600 amu. The chromatogram results were compared with the compounds in the database. Then identify the name of the components, chemical structure, weight, and molecular formula.

2.6. Antimicrobial Activity

Twenty microliters of crude extract of ethyl acetate (200 ppm) were dropped on a paper disc and then tested for antimicrobial activity. The pathogenic microbes used are bacteria and fungi. Gram-negative bacteria *E. Coli*, gram-positive *S. aureus*, and fungi *C. Albicans*. The concentration of the suspension of pathogenic microbes was 1.5 x 10⁸ CFU/ml. It conforms to the 0.5 McFarland standard. The paper disc containing the extract was placed on the solid media inoculated with the test microbes. Positive control for an antibacterial was 5µL Ampicillin (100 µg/ml), antifungal was nystatin (100 µg/ml), and negative control ethyl acetate. Incubation was carried out for 24 hours at 37°C. (Alrumman et al. 2019). The zone of resistance formed around the disc
is measured with a ruler. The experiment was done in three replications.

3. Results

3.1. Screening for Thermophilic Bacteria that have Antimicrobial Activity

The result of the primary screening showed that the isolate LBKURCC218 displayed antimicrobial activity against *E. coli*, *S. aureus*, and *C. albicans* (Table 2). Among a total of 50 isolates showing antimicrobial activity, isolates which were code as LBKURCC198, LBKURCC200, LBKURCC201, LBKURCC202, LBKURCC204, LBKURCC207, LBKURCC212, LBKURCC216, LBKURCC217, LBKURCC218, LBKURCC220, LBKURCC223, LBKURCC224, LBKURCC227, LBKURCC231, LBKURCC232, LBKURCC235, LBKURCC243, and LBKURCC244, displayed antimicrobial activity against *C. albicans*. In this study, three (LBKURCC206, LBKURCC218, and LBKURCC222) isolates were active against Gram-negative and Gram-positive bacteria.

One of the most potential bacterial isolates is LBKURCC218 which has the antimicrobial activity against pathogenic fungi and bacteria. The inhibition zone around the paper disc indicates the presence of secondary metabolites produced by thermophilic bacteria that function as antimicrobials. One isolate (LBKURCC218) from Rimbo Panti hot spring, West Sumatera (Figure 1) was selected for identification according to their antimicrobial activity. We further characterized the selected isolates through analyses of the 16S rRNA region, gram staining, antimicrobial activities of crude extract, and metabolic profiling by GC-MS.

3.2. Morphological Characterization of Selected Thermophilic Bacteria

LBKURCC218 thermophilic bacterial colonies were circular, convex, and yellowish-white (Figure 2A). From the gram staining test, LBKURCC218 isolate was identified as a Gram-positive bacterium. The inhibition zone around the paper disc indicates the presence of secondary metabolites produced by thermophilic bacteria that function as antimicrobials. One isolate (LBKURCC218) from Rimbo Panti hot spring, West Sumatera (Figure 1) was selected for identification according to their antimicrobial activity. We further characterized the selected isolates through analyses of the 16S rRNA region, gram staining, antimicrobial activities of crude extract, and metabolic profiling by GC-MS.

Table 2. Preliminary screening of LBKURCC thermophilic bacteria

Isolate code	Inhibition zone category	Isolate code	Inhibition zone category			
E. coli	S. aureus	C. albicans	E. coli	S. aureus	C. albicans	
Sungai Pinang	+/−	−	Padang Gantiang	+/−	−	+/−
LBKURCC197	+/−	−	LBKURCC224	+/−	−	+/−
LBKURCC198	+/−	+/−	LBKURCC225	+/−	−	−
LBKURCC199	+/−	−	LBKURCC226	−	−	−
LBKURCC200	+/−	−	LBKURCC227	−	−	−
LBKURCC201	+/−	−	LBKURCC228	−	+/−	−
LBKURCC202	+/−	+/−	LBKURCC229	−	−	−
LBKURCC203	−	−	LBKURCC230	−	−	−
LBKURCC204	+/−	−	LBKURCC231	+/−	−	+/−
LBKURCC205	+/−	−	LBKURCC232	−	+/−	+
LBKURCC206	+/−	−	LBKURCC233	−	+/−	−
LBKURCC207	+/−	−	LBKURCC234	+/−	−	−
LBKURCC208	+/−	−	Bukit Gadang	+/−	−	+/−
LBKURCC209	−	−	LBKURCC235	−	−	+/−
LBKURCC210	−	−	LBKURCC236	+/−	−	−
LBKURCC211	+/−	−	LBKURCC237	−	−	−
LBKURCC212	+/−	−	LBKURCC238	−	−	−
LBKURCC213	+/−	−	LBKURCC239	−	−	−
Rimbo Panti	−	−	LBKURCC240	−	−	−
LBKURCC214	+/−	−	Bukit Kili	+/−	−	−
LBKURCC215	+/−	−	LBKURCC241	−	+/−	−
LBKURCC216	+/−	−	LBKURCC242	−	−	−
LBKURCC217	+/−	−	LBKURCC243	+/−	−	+/−
LBKURCC218	+/−	+/−	LBKURCC244	−	+/−	+/−
LBKURCC219	−	+/−	LBKURCC245	−	+/−	+/−
LBKURCC220	−	+/−	LBKURCC246	−	−	−
LBKURCC221	−	+/−	−	−	−	−
LBKURCC222	−	+/−	−	−	−	−
LBKURCC223	−	+/−	−	−	−	−

Inhibition zone category: diameter of inhibition zone >15 mm (++), 13-15 mm (+), <13 mm (+/−), and absent (−)
was gram-positive and rod-shaped (Figure 2B). The LBKURCC218 strain can grow in a temperature range of 35 to 55°C. This strain grows optimally at 50°C (Table 3). Bacillus sp. LBKURCC218 was fermented at 45°C to produce secondary metabolites. Antimicrobial activity was indicated by a clear zone around the paper disc (Figure 2C).

3.3. Molecular Identification of the Selected Thermophilic Bacteria

DNA sequences of selected thermophilic bacterial with 1411 bp were used for identification based on the 16S rRNA gene. The sequence was submitted to GenBank with accession number OM802613. Analysis of thermophilic bacteria LBKURCC218 16S
rRNA gene sequences with existing sequences in GenBank showed similarities to the genus *Bacillus* sp. This thermophilic bacterium showed 99.93% similarity with *Bacillus paramycoides* with accession number MW065486 (Figure 3).

Table 3. The growing temperature of bacterial isolate LBKURCC218

Temperature (°C)	Growth
35	+
40	+
45	++
50	+++
55	+
60	-

- not grow, +: moderate growth, ++: good growth and +++: prolific growth

3.4. Analysis by Gas Chromatography-Mass Spectrometry

The GC-MS chromatogram of the ethyl acetate extract of *Bacillus paramycoides* LBKURCC218 produced 33 peaks (Supplementary Figure 1). Table 4 shows the names of the compounds extracted with ethyl acetate. Dodecanoic acid, which represented 23.62% of the total compound, was the main compound, followed by 11-Dodecanoic acid at 17.84%. The compound detected at moderate concentration was eicosane (5.08%) followed by 4.15% of phenol 2, 6-bis(1,1 dimethyl ethyl)-4-methyl. The chemical structure of major compounds of *Bacillus paramycoides* LBKURCC218 crude extract is shown in Figure 5. Other compounds were detected in the little amount such as 1-tetradecene.
Table 4. GC-MS analysis of ethyl acetate extract *Bacillus Paramycoides* LBKURCC218

Peak	Compounds	Chemicals formula	Molecular weight	RT (min)	Area (%)	Similarity index (%)
1	Isoxazolidine	C₃H₇NO	73	8,817	1.75	70
2	Butanoic acid 2-methyl	C₅H₁₀O	102	8,896	0.89	92
3	Phenol 2, 6-bis(1,1 dimethyl ethyl)-4-methyl	C₂₅H₂₄O	220	27,329	4.15	75
4	Undecane, 2-methyl	C₁₁H₂₂	170	29,281	1.04	96
5	1-Dodecane	C₁₂H₂₆	168	33,820	1.72	93
6	Dodecane	C₁₂H₂₄	170	33,970	1.44	96
7	Dodecanolic acid	C₁₂H₂₄O₂	214	36,893	23.62	94
8	Decane	C₁₀H₂₂	198	37,045	2.40	83
9	1-Iodo-2-methylnonane	C₁₉H₃₁O	268	37,178	1.42	89
10	1-Tetradecene	C₁₄H₂₈	196	38,096	3.26	92
11	Pentadecene	C₁₅H₃₀	212	38,199	2.33	96
12	11-octadecanoic acid	C₂₀H₄₀O₂	296	40,380	17.84	92
13	Octadecanoic acid	C₂₀H₄₀O₂	298	40,722	1.92	94
14	Octadecane	C₂₀H₄₀	254	40,856	1.02	94
15	1-Hexadecene	C₁₆H₃₂	224	41,952	2.50	92
16	Hexadecane	C₁₆H₃₂	226	42,034	1.67	95
17	Naphthalene	C₁₀H₈	268	42,245	1.22	69
18	Hexadecane	C₁₆H₃₂	226	43,790	1.41	95
19	Methyl ester of ricinoleic acid	C₁₃H₂₄O₃	312	43,974	1.29	86
20	Cyclotetradecane	C₁₄H₂₈	196	45,483	2.17	89
21	Hexadecane	C₁₆H₃₂	226	45,565	2.53	96
22	Hexadecane	C₁₆H₃₂	226	47,194	1.88	96
23	2-Undecene	C₁₁H₂₀	182	47,284	0.90	75
24	Nonadecane 2-methyl	C₁₉H₃₂	282	47,747	1.12	89
25	1,2 Benzenedicarboxylic acid	C₁₈H₄₀O₄	390	48,151	2.09	83
26	Eicosane	C₂₀H₄₀	282	48,349	1.31	92
27	Eicosane	C₂₀H₄₀	282	48,802	5.08	96
28	Tetradecane	C₁₄H₂₀	226	49,732	0.87	87
29	Eicosane	C₂₀H₄₀	282	50,310	2.30	95
30	Eicosane	C₂₀H₄₀	282	50,785	1.47	93
31	Hexatriacontane	C₃₆H₇₂	507	51,371	1.14	91
32	Hexacosane	C₂₄H₄₈	366	51,771	2.48	95
33	Propane 2-(1,1 dimethyl ethyl) sulfonyl 12-methyl	C₁₈H₃₄O₂S	178	69,301	1.76	81

(3.26%), hexadecane (2.53%), 1-hexadecene (2.50%), hexacosane (2.48%), decane (2.40%), pentadecene (2.33%), cyclotetradecane (2.17%), Propane 2-(1,1 dimethyl ethyl) sulfonyl 12-methyl (1.76%), and isoxazolidine (1.75%).

3.5. Antimicrobial Activity

Our findings showed that ethyl acetate extract of *Bacillus paramycoides* LBKURCC218 inhibited the growth of *E. coli*, *S. aureus*, and *C. Albicans* (Figure 4). The inhibition diameter zone value of *Bacillus paramycoides* LBKURCC218 against *E. coli*, *S. aureus*, and *C. albicans* was 10.67 mm, 11.67 mm, and 23 mm (Table 5).

4. Discussion

Thermophilic bacteria from the collection of the Biochemistry Laboratory of the University of Riau have been tested for their antimicrobial activity. The thermophilic bacteria that was able to inhibit both bacterial and fungal pathogens was the LBKURCC218 isolate. The area of origin of LBKURCC218 is the hot springs of Rimbo Panti, West Sumatra Province, Indonesia. When viewed from the earth’s surface, the Rimbo Panti hot spring is a dense forest. Forest areas have typical environmental conditions for hot spring bacteria to live. Existing environmental conditions are also influenced by temperature, acidity (pH), and the diversity of isolates in specific locations can affect the types of secondary metabolites produced by bacteria (Poli *et al.* 2017). The presence of microbial interactions in competition for food causes microorganisms to produce secondary metabolites that act as antibiotics. Hot springs are a habitat for thermophilic bacteria that can be used as a source of antibiotics (Panda *et al.* 2018). Thermophilic bacteria have been isolated from hot springs with antimicrobial activity in southern Saudi Arabia. There were 50 bacteria from 84 bacterial isolates with antimicrobial activity (Alrumman *et al.* 2019). Aldhabi has also isolated bacteria from sediments...
from hot springs at Tharban. This bacterium is a type of *Streptomyces* sp. Al-Dhabi. This strain has also been investigated, which has antimicrobial activity (Al-Dhabi et al. 2016).

The type of *Bacillus* isolated from hot springs was also reported by Arzu et al. (2012) and Oztas Gulmus and Gormez (2020). Another study reported the ability of *Bacillus* thermophilic bacteria to produce antimicrobials isolated from hot water in Jordan (Fandi *et al.* 2014) and *Bacillus subtilis* KFSB5 isolated from the Kinwat teak forest Kanse *et al.* (2014). This has increased the interest of researchers and industry to explore the potential of *Bacillus* class bacteria. Coupled with this research explores the potential of the *Bacillus* class from hot springs in Indonesia.

Microorganisms that live in hot springs have diversity and produce various types of secondary metabolites that function as antimicrobials. Bacillus-type bacteria can produce metabolites or enzymes (Kumar and Raja 2019), including antifungal and antimicrobial (Khan *et al.* 2018), (Caulier *et al.* 2019). This study also reported the ability of the thermophilic bacteria *B. paramycoides* LBKURCC218 to produce antibacterial and antifungal compounds. The inhibition zone (Figure 4) of *Bacillus paramycoides* LBKURCC218 against *Candida albicans* was 23 mm. The antifungal ability of *B. paramycoides* LBKURCC218 was higher than *Bacillus sonorenensis* KJU-KS2 (15 mm) (Alrumman *et al.* 2019) and *Streptomyces* sp. Al-Dhabi (14 mm) (Al-Dhabi *et al.* 2016). While the antimicrobial activity *Bacillus paramycoides* LBKURCC218 against pathogenic bacteria *E. coli* and *S. aureus* (Table 4) had similar inhibition zones to *Bacillus sonorenensis* KJU-KS2 and *Streptomyces* sp. Al-Dhabi. The antibacterial activity of *B. paramycoides* LBKURCC218 against *E. coli* was smaller than the thermophilic lactic acid bacteria *Pediococcus pentosaceus* N6 isolated from Rimbo Panti hot springs, which had an inhibition zone diameter of 20 mm (Yah *et al.* 2014).

Our study also showed that the thermophilic bacteria *Bacillus paramycoides* LBKURCC218 can produce compounds that have antimicrobial activity.

Table 5. Antimicrobial activity of *B. paramycoides* LBKURCC218 ethyl acetate extract using disc diffusion method

Test sample	Mean of zone inhibition against pathogenic microbes (mm)	E. coli	S. aureus	C. albicans
Ethyl acetate extract	23.00±0.47	11.67±0.47	10.67±0.47	
Nystatin	17.33±0.47	-	-	
Ampicillin	14.67±0.47	18.67±0.47		
Negative control (ethyl acetate)	-	-	-	

Figure 4. Inhibition zone of ethyl acetate extract strain *B. paramycoides* LBKURCC218 against microbial tested. (A) *E. coli*, (B) *S. aureus*, and (C) *C. albicans* (PC: positive control, NC: negative control, and 218: ethyl acetate extract of *Bacillus paramycoides* LBKURCC218)
The main compound of the ethyl acetate extract analyzed by GC-MS was dodecanoic acid (Figure 5). Dodecanoic acid is a fatty acid methyl ester. Previous studies reported that this compound has antiviral, antifungal, and antibacterial properties (Özçelik et al. 2005; Chandrasekaran et al. 2008). Dodecanoic acid or lauric acid has been tested in vitro and in vivo to inhibit the growth of Propionibacterium acnes. This compound has a minimal inhibitory concentration (MIC) 15 times lower than benzoyl peroxide (BPO) in inhibiting P. acnes, S. aureus, and S. epidermidis (Nakatsuji et al. 2009).

Long-chain fatty acid compounds can function as antibacterial. This is because the outer membrane of bacteria is very sensitive to fatty acid compounds. The difference in the sensitivity of the outer membrane of Gram-positive and Gram-negative bacteria may be due to the impermeability of the outer membrane, which serves as an effective barrier to hydrophobic substances (Heesterbeek et al. 2019). This study found that the antimicrobial compound B. paramycoides LBKURCC218 could inhibit S. aureus and E. coli with inhibition zones of 11.67 mm and 10.67 mm, respectively. This shows that gram-negative bacteria are more resistant to fatty acids than gram-positive bacteria as reported by Klobucar et al. (2021). Agoramoorthy et al. (2007) investigated the leaves of Excoecariaagallocha and found the excellent antimicrobial activity of dodecanoic acid (lauric acid) against S. aureus and E. coli. This compound was also active against several pathogenic microbes such as Micrococcus luteus, Salmonella typhimurium, Pseudomonas aeruginosa, Bacillus subtilis, and Klebsiella pneumonia.

The compound 11-octadecanoic acid was the second most abundant component produced by Bacillus paramycoides LBKURCC218. This long-chain fatty acid is synthesized from linoleic acid by Lactobacillus Plantarum. Miyamoto showed that 11-octadecanoic acid has anti-inflammatory activity in the gut (Miyamoto et al. 2015). Extract of Streptomyces strain KX852460 has the main components eicosane (C20H42) and dibutyl phthalate (C16H22O4), where the extract can inhibit the fungus R. solani AG-3. This indicates that the two compounds above have antifungal activity (Ahsan et al. 2017). Aissaoui investigated the potential of thermophilic Bacillus isolated from hot springs in Algeria. These thermophilic bacteria are good producers of phenolic compounds that can be used against clinical strains (Aissaoui et al. 2018). The crude bioactive extracts produced in our study contain phenol 2, 6-bis(1,1 dimethyl ethyl)-4-methyl. These phenolic compounds showed antibacterial, antifungal, and antioxidant activity (Zhao et al. 2020).

![Dodecanoic acid](image1.png)

![11-octadecanoic acid](image2.png)

![Eicosane](image3.png)

![4-Phenol 2,6-bis(1,1dimethyl ethyl)-4-methyl](image4.png)

Figure 5. Chemical structure of major compounds of B. paramycoides LBKURCC218 crude extract.
The first peak of GC-MS ethyl acetate extract of *Bacillus paramycoides* LBKURCC218 (Table 4) in this study was a compound similar to isoxazolidine (compound similarity index 70%). Previously, new isoxazolidine synthetic compounds have been found and have antifungal activity against plant pathogens (Ra et al. 2003). Isoxazolidine and γ-lactam analogs have antiviral activities because they can damage DNA or RNA from viruses. In addition, isoxazolidine is more active as an antitumor drug than antiviral (Piotrowska et al. 2019).

In conclusions, this study provides new information about the thermophilic bacteria *B. paramycoides* LBKURCC218 isolated from the Rimbo hot springs in West Sumatra, Indonesia, and its potential as an antifungal and antibacterial agents. The antimicrobial ability has been tested against the fungus *C. albicans* and *S. aureus* and *E. coli*. The diversity of compounds produced by this hot spring isolate was analyzed by GC-MS. The GC-MS chromatogram showed that this isolate produced general metabolites that could function as antibacterial and antifungal compounds. This study succeeded in exploring the potential of thermophilic isolates that have the potential as a source of antimicrobial compounds.

Acknowledgments

Thank you to the Directorate of Research and Community Service (DRPM) of the Ministry of Research and Technology and the National Research and Innovation Agency (Kemenristek-BRIN) for funding this research in 2021.

References

Aissaoui, Nadia, Mouna Mahjoubi, Fatima Nas, Olla Mghirbi, Mounia Arab, Yasmine Souissi, Amina Hoceini, Ahmed S. Masmoudi, Amor Mosbah, Nihel Klouche-Khelili, 2018. Antimicrobial potential of 2, 4-Di-tert-Butylphenol and Calixarene-based prodrugs from thermophilic *Bacillus licheniformis* isolated in Algerian hot spring from thermophilic *Bacillus licheniformis* isolated in Algerian hot spring. *Geomicrobiology Journal*. 36, 53–62. https://doi.org/10.1080/01490451.2018.1503377

Al-Dhabi, Naif Abdullah, Galal Ali Esmail, Veeramuthu Duraipandiyan, Mariadhas Valan Arasu, Mounir M. Salem-Bekheit, 2016. Isolation, identification and screening of antimicrobial thermophilic *Streptomyces* sp. Al-Dhabi-1 isolated from Tharban hot spring. *Saudi Arabia. Extremophiles. Springer Japan*. 20, 79–90. https://doi.org/10.1007/s10799-015-0799-1

Alghizzi, M., Shami, A., 2021. The prevalence of *Staphylococcus aureus* and methicillin-resistant *Staphylococcus aureus* in milk and dairy products in Riyadh, Saudi Arabia. *Saudi Journal of Biological Sciences*. 28, 7098–7104. https://doi.org/10.1016/j.sjbs.2021.08.004

Alruman, S.A., Mostafa, Y.S., Shekha, T., Al-Qahtani, S., Sahlabji, T., Taha, T.H., 2019. Antimicrobial activity and GC-MS analysis of bioactive constituents of thermophilic bacteria isolated from Saudi Hot Springs. *Arabian Journal for Science and Engineering*. 44, 75–85. https://doi.org/10.1007/s13369-018-3597-0

Ardhi, Aulia, Arina Nadenggan Siauduruk, Nabella Suraya, Nova Wahyu Pratwi, Usman Pato, Saryono, 2020. Molecular identification of amylase-producing thermophilic bacteria isolated from Bukit Gadang Hot Spring, West Sumatra, Indonesia. *Biodiversitas*. 21, 994–1000. https://doi.org/10.13057/biodiv/d210319

Arzu Cileri Cihan, Nilgun Tekin, Birgul Ozcan, C.C., 2012. The genetic diversity of genus *Bacillus* and the related genera revealed by 16S rRNA gene sequences and ARDRA analyses isolated from geothermal regions of Turkey. *Brazilian Archives of Biology and Technology*. 43, 309–324. https://doi.org/10.1590/S1517-83822012000100037

Caulier, Simon, Catherine Nannan, Annika Gillis, Florent Licciardi, 2019. Overview of the antimicrobial compounds Produced by members of the *Bacillus subtilis* Group. *Frontiers in Microbiology*. 10, 1–19. https://doi.org/10.3389/fmicb.2019.00302

Chandrasekaran, M., Kannathasan, K., Venkatesalu, V., 2008 Antimicrobial activity of fatty acid methyl esters of some members of chenopodiaceae. *Zeitschrift für Naturforschung* C, 63, 331–336. https://doi.org/10.1515/znc-2008-5-604

Chandrasekaran, M., Venkatesalu, V., Hsu, M.J., 2007. Antibacterial and antifungal activities of fatty acid methyl ester of the blind-eye mangrove from Indian. *Brazilian Journal of Microbiology*. 38, 739–742. https://doi.org/10.1590/S1517-838220070002800028

Ahsan, Taswar, Jianguang Chen, Xiuxiang Zhao, Muhammad Irfan, Yuanhua Wu, 2017. Extraction and identification of bioactive compounds (eicosane and dibutyl phthalate) produced by *Streptomyces* strain KX852460 for the biological control of *Rhizoctonia solani* AG-3 strain KX852461 to control target spot disease in tobacco leaf. *AMB Express*. 7, 54. https://doi.org/10.1186/s13568-017-0351-z

Esikova, T.Z., Yu, V., Temirov, S.L., Sokolov, Yu., Alakhov, B., 2002. Secondary antimicrobial metabolites produced by thermophilic *Bacillus* spp. Strains VK2 and VK1. *Prikladnaya Biokhimiya i Mikrobiologiya*. 38, 266–267.

Fachrial, Edy, Sari Anggraini, Harmilendi, Tifania T. Nugroho, Saryono, 2019. Isolation and molecular identification of carbohydrate and protease producing *Bacillus subtilis* JCM 1465 isolated from Penen Hot Springs in North Sumatra, Indonesia. *Biodiversitas*. 20, 3493–3498. https://doi.org/10.13057/biodiv/d201205

Fandi, Khalid, Nayef Al-muaikel, Fouad Al-momani. 2014. Antimicrobial activities of some thermophiles isolated from Jordan Hot Springs. *IJCEBS*. 2, 57–60.
Gould, K., 2016. Antibiotics: from prehistory to the present day. *Journal of Antimicrobial Chemotherapy*. 71, 572–575. https://doi.org/10.1093/jac/dkv484

Gurumurthy, D.M., Charanraj, T.P., Basheerabegum Faniband, N., Preeti, Zabin K. Bagewadi, Shivayogeeswar E. Neelagund, Sikandar I. Mullu, 2020. Cyanoxanthomycin, a bacterial antimicrobial compound. *Jordan Journal of Biological Sciences*. 13, 725–729.

Heesterbeek, D.A.C., Martin, N.I., Velthuizen, A., Duijst, M., Ruyken, M., Wubbolts, R., Rooijakers, S.H.M., Bardoe, B.W., 2019. Complement-dependent outer membrane perturbation sensitizes gram-negative bacteria to gram-positive specific antibiotics. *Scientific Reports*. 9, 1–10. https://doi.org/10.1038/s41598-019-38577-9

Hiraishi, A., Kamagata, Y., Nakamura, K., 1995. Polymerase chain reaction amplification and restriction fragment length polymorphism analysis of 16S rRNA genes from methanogens. *Journal of Fermentation and Bioengineering*. 79, 523–529. https://doi.org/10.1016/0922-338X(95)94742-A

Igarashi, Y., Yasuhiro, Kazuki Yamamoto, Chiaki Ueno, Nomoka Yamada, Katsumi Saito, Kazuki Takahashi, Masaru Enomoto, Shigetumi Kuwahara, Tsutomu Okawa, Etsu Tashiro, Masaya Imoto, Ye Xiaohanyao, Tao Zhou, Enjiro Harunari, Naoya Oku, 2019. Kedonoketone and 2′-oxosattabacin, benzenoid metabolites from a thermophilic bacterium thermostororothrix hazakensis in the phyllum Chloroflexi. *Journal of Antibiotics*. 72, 653–660. https://doi.org/10.1093/ja/41429-019-0195-7

Kanse, O.S., Kadam, T.A., Dnyanoba, K.V., 2014. Partial identification of antimicrobial compound produced by thermotolerant *Bacillus subtilis* KFSB5 isolated from compost soil. *Research Journal of Biotechnology*. 9, 23–28.

Khan, N., Noor, Pilar Martinez-Hidalgo, Tyler A. Ice, Maskit Maymon, Ethan A. Humm, Najmeh Nejat, Erin R. Sanders, Drora Kaplan, Ann M. Hirsch, 2018. Antifungal activity of bacillus species against *fusarium* and analysis of the potential mechanisms used in biocontrol. *Frontiers in Microbiology*. 9, 1–12. https://doi.org/10.3339/fmicb.2018.02363

Klobucar, K., Kristina, Jean Philippe Côté, Shawn French, Louis Borriollo, Amelia Bing Ya Guo, Michael H. Serrano-Wu, Katie K. Lee, Brian Hubbard, Jarrod W. Johnson, Jeffrey L. Gaulin, Jakob Magolan, Deborah T. Hung, Eric D. Brown, 2021. Chemical screen for vancomycin antagonists. *ACS Chemical Biology*. 16, 929–942. https://doi.org/10.1021/acschembio.100179

Kumar, R.M., Raja, S.S.S., 2019. Isolation, screening and identification of potential thermo stable bacterial enzyme producers in Sangameshwar, Tural Hot Springs, Journal of Drug Delivery and Therapeutics. 9, 510–517.

Kumar, S., Stecher, G., Tamura, K., 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*. 33, 1870–1874. https://doi.org/10.1093/molbev/msw054

Mancuso, G., Giuseppe, Angelina Midiri, Elisabetta Gerace, Carmelo Biondi, 2021. Bacterial antibiotic resistance: the most critical pathogens. *Pathogens*. 10, 1–14. https://doi.org/10.3390/pathogens10101310

Miyamoto, J., Junki, Taichi Mizukure, Si-bum Park, Shigenobu Kishino, Ikuo Kimura, Kanako Hirano, Paolo Bergamo, Mauro Rossi, Takuya Suzuki, Makoto Arita, Jun Ogawa, Soichi Tanabe. 2015. A gut microbial metabolite of linoleic acid, 10-Hydroxy-cis-12-octadecenoic acid, ameliorates intestinal epithelial barrier impairment partially via GPR40-MEK-ERK Pathway. *Journal of Biological Chemistry*. 290, 2902–2918. https://doi.org/10.1074/jbc.M114.610733

Nakatsui, T., Teruaki, Mandy C. Kao, Jia-you Fang, Christos C. Zouboulis, Richard L. Gallo, Chun-ming Huang, 2009. Antimicrobial property of Lauric acid against *Propionibacterium acnes*: its therapeutic potential for inflammatory acne vulgaris. *Journal Invest Dermatol*. 129, 2480–2488. https://doi.org/10.1038/jid.2009.93

O’Donnell, K., 1996. Progress towards a phylogenetic classification of *Fusarium*. *Sydowia*. 48, 57–70.

Octarya, Z., Riryn Novianty, Nabella Suraya, Saryono, 2021. Antimicrobial activity and GC-MS analysis of bioactive constituents of *Aspergillus fumigatus* 269 isolated from Sungai Pinang hot spring, Riau, Indonesia, *Biodiversitas*. 22, 1839–1845. https://doi.org/10.13057/biodiv/d220429

Özçelik, B., Berrin, Mustafa Aslan, Ilkay Orhan, Taner Karaoglu, 2005. Antibacterial, antifungal, and antiviral activities of the lipophilic extracts of *Pistacia vera*. *Microbiological Research*. 160, 159–164. https://doi.org/10.1016/j.micres.2004.11.002

Oztas, E., Gulmus, A., Gormez, A., 2020. Identification and characterization of novel thermophilic bacteria from Hot Springs, Erzurum, Turkey. *Current Microbiology*. 77, 979–987. https://doi.org/10.1007/s00284-020-01880-0

Panda, A.K., Amrita Kumari, Satpal Singh Bisht, Mahendra Rana, Surajit De Mandal, Nachimuthu Senthil Kumar, 2018. Biotechnological potential of thermophilic actinobacteria associated with Hot Springs. In: Singh, B.P, Gupta, V.K., Passari, A.K. (Eds.), New and Future Developments in Microbiotechnological Applications. Elsevier B.V. pp. 155-164 https://doi.org/10.1016/BS/MEIRC.2020.63994-3.00010-2

Pande, A., Dhakar, K., Sharma, A., 2015. Thermophilic bacteria that tolerate a wide temperature and pH range colonize the Soldhar (95°C) and Ringigad (80°C) hot springs of Uttarakhand, India. *Ann Microbiol*. 65, 1–92. https://doi.org/10.1016/j.micres.2004.11.002

Peterson, E., Kaur, P., 2018. Antibiotic resistance mechanisms in bacteria: relationships between resistance determinants of antibiotic producers, environmental bacteria, and clinical pathogens. *Frontiers in Microbiology*. 9, 1–21. https://doi.org/10.3389/fmicb.2018.02928

Piotrowska, D.G., Iwona E. Głowacka, Dominique Schols, Robert Snoeck, Graciela Andrei, Joanna Gotkowska, 2019. Novel isoxazolidine and γ-lactam analogues of homonucleosides. *Molecules*. 24, 1–23. https://doi.org/10.3390/molecules24224014
Pitcher, D.G., Saunders, N.A., Owen, R.J., 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Letters in Applied Microbiology. 8, 151–156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x

Poli, A., Annarita, Ilaria Finore, Ida Romano, Alessia Gioiello, Licia Lama, Barbara Nicolaus, 2017. Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms. 5, 1–30. https://doi.org/10.3390/microorganisms5020025

Prasetyoputri, A., 2021. Detection of bacterial coinfection in COVID-19 patients is a missing piece of the puzzle in the COVID-19 management in Indonesia. ACS Infectious Diseases. 7, 203-205 https://doi.org/10.1021/acsinfecdis.1c00006

R.I. Ministry of Health, 2020. Indonesia Antimicrobial Resistance Surveillance System in the Implementation of GLASS, Ministry of Health, Jakarta, Indonesia.

Ra, K.R., Mallesha, H., Kangappa, K.S., 2003. Synthesis of novel isoxazolidine derivatives and studies for their antifungal properties. European Journal of Medicinal Chemistry. 38, 1–7. https://doi.org/10.1016/S0223-5234(03)00077-1

Romandini, A., Alessandra, Arianna Pani, Paolo Andrea Schenaardi, Giulia Angela Carla Pattarino, Costantino De Giacomo, and Francesco Scaglione, 2021. Antibiotic resistance in pediatric infections: global emerging threats, predicting the near future. Antibiotics. 10, 1–12. https://doi.org/10.3390/antibiotics10040393

Scheffler, R.J., Colmer, S. Tynan, H., Demain, A.L., Gullo, V.P., 2013. Antimicrobials, drug discovery, and genome mining. Applied Microbiology and Biotechnology. 97, 969–978. https://doi.org/10.1007/s00253-012-4609-8

White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal rRNA Genes for phylogenetics. PCR Protocols. 2015, 315–322.

[WHO] World Health Organization, 2021. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2021.

Yah, N., Nurjama, Yetti Marlida, Arnim, Yuherman, 2014. Antimicrobial activity of lactic acid bacteria thermophilic isolated from hot spring rimbo panti of West Sumatera for food bio preservatives, Pakistan Journal of Nutrition. 13, 465–472. https://doi.org/10.3923/pjn.2014.465.472

Zeldes, B.M., Matthew W. Keller, Andrew J. Loder, Christopher T. Straub, Michael W.W. Adams, Robert M. Kelly, Robert M. Kelly 2015. Extremely thermophilic microorganisms as metabolic engineering platforms for the production of fuels and industrial chemicals. Frontiers in Microbiology. 6, 1–17. https://doi.org/10.3389/fmicb.2015.01209

Zhao, F., Wang, P., Rima, D., Lucardi, Z.S., S.L., 2020. Natural sources and bioactivities of 2,4-Di-Tert-Butylphenol and its analogs. Toxins. 12, 1–26. https://doi.org/10.3390/toxins12010035
Supplementary Figure 1. Chromatogram of ethyl acetate extract of Bacillus paramycoides LBKURCC218 analyzed by GC-MS