The Information Flow Problem on Clock Networks

Ross Atkins

Abstract. The information flow problem on a network asks whether \(r \) senders, \(v_1, v_2, \ldots, v_r \) can each send messages to \(r \) corresponding receivers \(v_{r+1}, \ldots, v_{n+r} \) via intermediate nodes \(v_{r+1}, \ldots, v_n \). For a given finite \(R \subseteq \mathbb{Z}^+ \), the clock network \(N_s(R) \) has edge \(v_i v_k \) if and only if \(k > r \) and \(k - i \in R \). We show that the information flow problem on \(N_s(\{1, 2, \ldots, r\}) \) can be solved for all \(n \geq r \). We also show that for any finite \(R \) such that \(\gcd(R) = 1 \) and \(r = \max(R) \), we show that the information flow problem can be solved on \(N_s(R) \) for all \(n \geq 3r^3 \). This is an improvement on the bound given in [10] and answers an open question from [9].

Keywords. Keywords: network coding, information flow, cycle graph, guessing number.

1. The Information Flow Problem

The information flow problem (Definition 1.4) is an important problem for multiuser information theory. This problem was introduced in [1] to formalise the multiple unicast problem. It was shown that the information flow problem is equivalent to the guessing number of a related digraph [9]. The same paper poses an open question regarding the guessing number of a class of digraphs known as clock digraphs (Definition 1.7). Corollary 4.7 answers this question.

Definition 1.1. A network of length \(n \) and width \(r \) is an acyclic digraph \(N \) with vertex set \(\{v_i\}_{i=1}^{n+r} \) such that the input nodes (vertices \(v_1, v_2, \ldots, v_r \)) have no incoming edges. Vertices \(v_{n+1}, v_{n+2}, \ldots, v_{n+r} \) are called the output nodes and vertices \(v_{r+1}, v_{r+2}, \ldots, v_n \) are called intermediate nodes. For any \(r < k \leq n+r \), let \(\Gamma(k) \) denote set of all indices, \(i \), such that \(v_i v_k \) is an edge.

For any positive integer \(m \), let \([m]\) denote the set \(\{1, 2, 3, \ldots, m\} \).

Definition 1.2. For any network \(N \) and any integer \(s \geq 2 \), a circuit on \(N \) over \(\mathbb{Z}_s \), is a \(n \)-tuple of functions \(F = (f_{r+1}, f_{r+2}, \ldots, f_{n+r}) \),

\[
f_k : \mathbb{Z}_s^{\Gamma(k)} \to \mathbb{Z}_s \quad \forall \ r < k \leq n+r,
\]

where \(n \) and \(r \) are the length and width respectively of \(N \). For each input \(c = (c_1, c_2, \ldots, c_r) \in \mathbb{Z}_s^r \), let \(X = (X_1, X_2, \ldots, X_{n+r}) \) denote the unique \((n+r)\)-tuple in \(\mathbb{Z}_s^{n+r} \) such that \(X_i = c_i \) for all \(i \in [r] \) and

\[
X_k = f_k (X_i \mid i \in \Gamma(k)) \quad \forall \ r < k \leq n+r.
\]

\(X \) is called the valuation of \(F \).

Definition 1.3. A circuit, \(F = (f_{r+1}, f_{r+2}, \ldots, f_{n+r}) \), is called linear if and only if each function \(f_k \) is a linear map. For any linear circuit \(F \), let \(M_F \) denote the \(R \)-circuit matrix of \(F \); the linear map \(M_F : \mathbb{Z}_s^r \to \mathbb{Z}_s^{n+r} \) such that \(X = M_F(c) \) for all inputs \(c \in \mathbb{Z}_s^r \), i.e. \(M_F \) is a \((n+r) \times r\) matrix such that

\[
X^T = M_Fc^T
\]

where \(X^T \) and \(c^T \) are the column vectors of the valuation \(X \) and the input \(c \) respectively. The first \(r \) rows of the \(R \)-circuit matrix \(M_F \) are a copy of the \(r \times r \) identity matrix, \(I_r \).
Definition 1.4. A network N of width r is **s-solvable** if and only if there exists a circuit on N over \mathbb{Z}_s such that for all inputs $c \in \mathbb{Z}_s^r$, the valuation satisfies

$$(X_1, X_2, \ldots, X_r) = c = (X_{n+1}, X_{n+2}, \ldots, X_{n+r})$$

A network N of width r is **linearly s-solvable** if and only if there exists a linear circuit F on N over \mathbb{Z}_s such that the final r rows of M_F are a copy of I_r. For a given network N and an integer $s \geq 2$, the Information Flow Problem asks whether or not N is s-solvable. Similarly, the Linear Information Flow Problem asks whether or not N is linearly s-solvable.

It is natural to consider the information flow problem as an information theory problem in the following way. Each input node, v_i, is a sender trying to send a message to its corresponding receiver at node v_{n+i} via the network of internal nodes. The elements of the group \mathbb{Z}_s correspond to the s distinct possible messages that could be sent along each edge. There is a traditional method for solving the information flow problem, called “routing”, in which each intermediate node simply passes on one of the messages it receives. A network can only be solved by routing if and only if there exist vertex disjoint paths from each sender to its corresponding receiver. There are many examples in which a network is solvable, but cannot be solved by routing alone [3,6]. Instead we allow each non-input node, v_k, to perform some function, f_k, on the messages it receives from nodes $\Gamma(k)$. Each node v_i must send the same message to all nodes v_k such that $i \in \Gamma(k)$. Linear circuits are of interest because they are fast to compute and linear circuits are sufficient to solve a large family of networks (Theorems 2.5 and 4.6).

The information flow problem also has an application to computing the guessing number [4,7] and the information defect [2,5,8] of directed graphs. Specifically, for any network N with input nodes v_1, v_2, \ldots, v_r and output nodes $v_{r+1}, v_{r+2}, \ldots, v_{n+r}$, let G_N denote the digraph obtained by identifying vertex v_i with v_{n+i}, for all $1 \leq i \leq r$. The relationship between the s-solvability of a network N and the guessing number (and information defect) of G_N is presented in Theorem 1.5 which originally appears in [9]. Note that for our purposes it does not matter if edge $v_{n+i}v_k$ is replaced with $v_i v_k$ (nor would it make any difference if both edges were included) because, for a circuit which solves the network, the valuation would satisfy $X_i = X_{n+i}$.

Theorem 1.5. [2] For any network N of length n and width r, if the guessing number of G_N is denoted $\text{gn}(G_N, s)$ and the information defect of G_N is denoted $b(G_N, s)$, then

$$\text{gn}(G_N, s) \leq r \quad \text{and} \quad b(G_N, s) \geq n - r.$$

We get the equality $\text{gn}(G_N, s) = r$ if and only if N is s-solvable. Moreover, if N is linearly s-solvable then $b(G_N, s) = n - r$.

Definition 1.6. For any finite $R \subset \mathbb{Z}^+$ let $r = \max(R)$. For any integer $n > r$ let $N_n(R)$ denote the **clock** network; the network with vertex set $V = \{v_1, v_2, v_3, \ldots, v_{n+r}\}$ and edge set

$$E = \{v_i v_k \mid k > r \text{ and } k - i \in R\}.$$
The network $N_n([r])$ is called the full clock network. To simplify notation, we sometimes write $N_n(r) = N_n([r])$.

Definition 1.7. For any finite $R \subset \mathbb{Z}^+$ let $r = \max(R)$. For any integer $n > r$ let $G_{\text{clock}}(n, R)$ denote the clock digraph which has n vertices $\{v_i\}_{i=1}^n$, where $v_i v_j$ is an edge if and only if $j - i$ (modulo n) is in R. To simplify notation, for any positive integer r, we say $G_{\text{clock}}(n, r) = G_{\text{clock}}(n, [r])$.

The clock network inherits its name from the clock digraph, $G_{\text{clock}}(n, R)$, as defined in [9]. When $|R| = 2$, the clock digraph is also known as the Cayley graph Cay(n, R), or the “shift graph” [10]. The clock digraph, $G_{\text{clock}}(n, R)$, can be obtained from the clock network, $N_n(R)$, by identifying nodes v_i and v_{n+i} for all $1 \leq i \leq r$. i.e.

$G_{\text{clock}}(n, r) = G_{N_n(R)}$.

We show in Theorem 2.5 that $N_n(r)$ is always linearly s-solvable. By Theorem 1.5 (which originally appears in [9]) this implies that the guessing number and information defect of $G_{\text{clock}}(n, r)$ are r and $n - r$ respectively.

Proposition 1.8. For a given finite $R \subset \mathbb{Z}^+$, let $r = \max(R)$, let M be a $(n+r) \times r$ matrix with entries in \mathbb{Z}_s and for $i = 1, 2, \ldots, n+r$, let $\omega(i)$ be the i^{th} row of M. If

- the first r rows of M form a copy of the identity matrix I_r, and
- for all $r < k \leq n+r$, the row $\omega(k)$ is a linear combination of the rows $\{\omega(i) \mid k - i \in R\}$,

then there exists a circuit, F, on $N_n(R)$ such that $M_F = M$.

Proof. For $k = r + 1, r + 2, \ldots, n + r$, and $j \in R$, let $\lambda_{kj} \in \mathbb{Z}_s$ be the constants by which $\omega(k)$ is a linear combination of $\{\omega(k - j) \mid j \in R\}$. i.e.

$\omega(k) = \sum_{j \in R} \lambda_{kj} \omega(k - j)$.

![Figure 2. The full clock network $N_8(2)$.](image)
For all pairs \((k, j)\) such that \(k - j \not\in R\) we set \(\lambda_{kj} = 0\). Now let \(F = (f_{r+1}, f_{r+2}, \ldots, f_{n+r})\) be the circuit on \(N_R(n)\) defined by

\[
X_k = f_k \left(X_i \mid i \in \Gamma(k) \right) = \sum_{j \in R} \lambda_{kj} X_{k-j},
\]

and for \(i = 1, 2, \ldots, n + r\), let \(\omega'_i\) be the \(i\)th row of \(M_F\). Since the first \(r\) rows of any \(R\)-circuit matrix form a copy of \(I_r\), we must have \(\omega_i = \omega'_i\) for \(i = 1, 2, \ldots, r\). Then, inductively, for all \(k > r\) we must have \(\omega_k = \sum_{j \in R} \lambda_{kj} \omega_{k-j} = \sum_{j \in R} \lambda_{kj} \omega'_{k-j} = \omega'_k\).

\[\square\]

2. Full Clock Networks

As Theorem 2.5 shows, the full clock network is linearly \(s\)-solvable for all \(s\). This is equivalent to Proposition A in [9], however their proof is incomplete (see Example 2.6). We show that the full clock network is linearly \(s\)-solvable by finding a valid \([r]\)-circuit matrix explicitly.

Definition 2.1. For any integers \(a, b > 0\) we can define \(J_{a,b}\) in the following recursive manner. If \(a = b\), then \(J_{a,a} = I_a\) (the \(a \times a\) identity matrix). Otherwise:

- if \(a < b\) then \(J_{a,b} = [J_{a,b-a}, I_a]\),
- if \(a > b\) then \(J_{a,b} = [J_{a-b,b}, I_b]\).

So if \(a > b\) or \(a < b\), then \(J_{a,b}\) is either the horizontal concatenation of \(J_{a,b-a}\) and \(I_a\) or the vertical concatenation of \(J_{a-b,b}\) and \(I_b\) respectively. For example: \(J_{4,3}\) and \(J_{30,43}\) are depicted in Figure 2.

Proposition 2.2. If \(A\) is the topleft-most \(a \times a\) sub-matrix of \(J_{n,r}\), then \(|\det(A)| = 1\).

Proof. Let \(A\) be the topleft-most \(a \times a\) submatrix of \(J_{n,r}\). We now construct the pair of integers \(p\) and \(q\) in the following way. Initially let \(x = n\) and \(y = r\). Then iteratively perform the following process.

while \(x \geq a\) or \(y \geq a\):

if \(x > y\) replace \(x\) with \(x - y\),

otherwise replace \(y\) with \(y - x\).

Throughout this process (by Definition 2.1) topleft-most \(x \times y\) submatrix of \(A\) is always a copy of \(J_{x,y}\). As soon as both \(x\) and \(y\) are less than or equal to \(a\), we set \(p = x\) and \(q = y\), and terminate this process. Just before the final iteration, we must have had one of \(x\) or \(y\) greater than \(a\), so \(a \leq \max(x, y) = p + q\). Now \(A\) must be in the following form.

\[
A = \begin{bmatrix} J_{p,q} & P \\ Q & S \end{bmatrix}
\]
Figure 4. In the proof of Proposition 2.2, $J_{p,q}$ is the topleft-most $p \times q$ submatrix of A and A is the topleft-most $a \times a$ submatrix of $J_{n,r}$.

where P, Q and S are matrices with dimensions $p \times (a-q)$, $(a-p) \times q$ and $(a-p) \times (a-q)$ respectively. Now, there are two cases:

- If P is the left-most $(a-q)$ columns of a copy of I_p, then $[Q, S]$ is the topleft-most $(a-p) \times a$ submatrix of a large identity matrix.
- If Q is the top-most $(a-p)$ rows of a copy of I_q, then $[P S]$ is the topleft-most $a \times (a-q)$ submatrix of a large identity matrix.

In either case, all the entries of S must be zero because $a-p < q$ and $a-q < p$. Now consider $J_{p,q}$ in which the bottomright-most square submatrix must be a copy of an identity matrix. Explicitly, for any integer b such that $0 \leq b \leq \min(p, q)$, we have

$$J_{p,q} = \begin{bmatrix} \ast & \ast & \ast \\ \ast & I_b & \ast \\ \ast & \ast & I_{a-q} \end{bmatrix},$$

where \ast denotes arbitrary entries. In particular $J_{p,q}$ has this form for $b = p + q - a$. Substituting Equation (2) into Equation (1), we see that A has the form:

$$A = \begin{bmatrix} J_{p,q} & P \\ Q & 0 \end{bmatrix} = \begin{bmatrix} \ast & \ast & I_{a-q} \\ \ast & I_{p+q-a} & 0 \\ I_{a-p} & 0 & 0 \end{bmatrix}$$

where a 0 denotes a submatrix full of zeros, and \ast denotes a submatrix with arbitrary entries. The only non-zero terms in the Leibniz formula for the determinant of A must come exclusively from the submatrices labelled I_{a-q}, I_{p+q-a} and I_{a-p}. Therefore

$$|\det(A)| = |\det(I_{a-q})| \times |\det(I_{p+q-a})| \times |\det(I_{a-p})| = 1.$$

Definition 2.3. For any positive integers n and r with $n > r$ we define the $(n+r) \times r$ matrix $M_{n,r}$ formed by concatenating a copy of I_r on top of $J_{n,r}$, i.e.

$$M_{n,r} = \begin{bmatrix} I_r \\ J_{n,r} \end{bmatrix}.$$

Proposition 2.4. For any positive integers $n > r$, if M is an $r \times r$ submatrix of $M_{n,r}$ formed by r consecutive rows then $|\det(M)| = 1$.

Proof. Let M be the rows $\omega_{a+1}, \omega_{a+2}, \ldots, \omega_{a+r}$. There are two cases: either $0 \leq a < r$ or $r \leq a \leq n$.

□
• If \(a < r \) then \(M \) consists of the final \(r - a \) rows of \(I_r \) followed by the initial \(a \) rows of \(\mathcal{I}_{n,r} \). In this case, \(M \) must have the form:

\[
M = \begin{bmatrix}
0 & I_{r-a} \\
A & *
\end{bmatrix}
\]

Where \(A \) is the top-leftmost \(a \times a \) submatrix of \(\mathcal{I}_{n,r} \) and * denotes a submatrix with arbitrary entries. In this case, by Proposition 2.2, we have

\[
|\det(M)| = |\det(I_{r-a})| \times |\det(A)| = 1
\]

• If \(a \geq r \) then \(M \) must have the form:

\[
M = \begin{bmatrix}
* & I_b \\
I_{r-b} & 0
\end{bmatrix}
\]

where * denotes a submatrix with arbitrary entries and \(b \) is the remainder when \(n - a \) is divided by \(r \). In this case we have

\[
|\det(M)| = |\det(I_{r-b})| \times |\det(I_b)| = 1.
\]

\[\square\]

Theorem 2.5. For any \(n \geq r > 0 \) and any \(s \geq 2 \), the full clock network, \(N_n(r) \), is linearly \(s \)-solvable.

Proof. Consider the matrix \(\mathfrak{M}_{n,r} \) as defined in Definition 2.3. By Proposition 2.4, for any \(s \), the integer span of any \(r \) consecutive rows of \(\mathfrak{M}_{n,r} \) is all \(\mathbb{Z}_r^{s} \). So any row can be expressed as a linear combination of the preceding \(r \) rows. Moreover, the first \(r \) rows of \(\mathfrak{M}_{n,r} \) form a copy of \(I_r \). Therefore \(\mathfrak{M}_{n,r} \) satisfies the conditions of Proposition 1.8, and so there is a circuit \(F \) on \(N_n(r) \) such that \(M_F = \mathfrak{M}_{n,r} \). This circuit linearly solves \(N_n(r) \) because the final \(r \) rows of \(\mathfrak{M}_{n,r} \) form a copy of \(I_r \). \(\square \)

Example 2.6.

Let \(F \) be a circuit on \(N_n(r) \) over \(\mathbb{Z}_s \) such that the valuation of \(F \) satisfies

\[
X_i + X_{i+1} + \cdots + X_{i+r} \equiv 0 \pmod{s} \quad \text{for } i = 1, 2, 3, \ldots, n - r
\]

for any input \(c \in \mathbb{Z}_s^r \). To see that this circuit does not solve \(N_n(r) \) in general, observe that for \(n = 7 \) and \(r = 2 \), it does not solve \(N_7(2) \). Explicitly, for any \(c = (c_1, c_2) \in \mathbb{Z}_2^2 \), the valuation must satisfy:

\[
\begin{align*}
X_1 &= c_1 \\
X_2 &= c_2
\end{align*}
\]

because for any valuation of a circuit on \(N_7(2) \), we have \((X_1, X_2) = c\). Moreover, for \(j = 3, 4, 5, 6 \) and \(7 \), we can deduce:

\[
\begin{align*}
X_3 &= -c_1 - c_2, \\
X_4 &= c_1, \\
X_5 &= c_2, \\
X_6 &= -c_1 - c_2 \\
\text{and } X_7 &= c_1,
\end{align*}
\]

because \(X_{j-2} + X_{j-1} + X_j \equiv 0 \). Finally, if \(F \) solved \(N_7(2) \), then we would have:

\[
\begin{align*}
X_8 &= c_1 \\
\text{and } X_9 &= c_2.
\end{align*}
\]

However, this is not possible; \(X_9 = c_2 \) cannot be determined from only \(X_7 = c_1 \) and \(X_8 = c_1 \).
A modulo 2. So, by Proposition 1.8, \(A \) defined as follows.

\[
\begin{array}{c|cccccccccc}
 n & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
\hline
\text{Is } N_n(\{1,3\}) \text{ linearly 2-solvable?} & \times & \times &
\checkmark &
\checkmark &
\checkmark &
\checkmark &
\checkmark &
\checkmark & \checkmark \\
\text{Is } N_n(\{1,3\}) \text{ linearly 3-solvable?} &
\times & \times & \times &
\checkmark &
\checkmark &
\checkmark &
\checkmark &
\checkmark & \checkmark \\
\end{array}
\]

Figure 5. The linear 2-solvability and linear 3-solvability of \(N_n(\{1,3\}) \) for all \(n \geq 4 \).

3. Analysis of a specific case

In this section we investigate the 2-solvability and 3-solvability of the network \(N_n(\{1,3\}) \) for various values \(n \). Firstly, we consider \(n = 7 \) and \(n = 8 \) in the following example.

Example 3.1. Let \(n = 7 \), \(m = 3 \) and \(R = \{1,3\} \) and consider the following two matrices \(A \) and \(B \) defined as follows.

\[
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix} \quad \text{and} \quad
B = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

The matrix \(A \) is constructed so that the \(i \)th row is the sum of the \((i - 1)\)th row and the \((i - 3)\)th row modulo 2. So, by Proposition 1.9, \(A \) is a valid \{1,3\}-circuit matrix (over \(\mathbb{Z}_2 \)) and since the bottom 3 rows of \(A \) form an identity matrix, this demonstrates that \(N_7(\{1,3\}) \) is linearly 2-solvable. Similarly the matrix \(B \) demonstrates that \(N_8(\{1,3\}) \) is linearly 3-solvable. It can be verified by a brute force computer search that \(N_7(\{1,3\}) \) is not linearly 3-solvable and \(N_8(\{1,3\}) \) is not linearly 2-solvable.

In general, the \(s \)-solvability of a network depends on \(s \). However, for any \(n \geq 12 \), we can construct a \{1,3\}-circuit matrix of length \(n \) which is valid over \(\mathbb{Z}_s \) for any \(s \geq 2 \) in the following way. For \(n \equiv 0,1,2 \) (mod 3) iteratively concatenate copies of \(I_3 \) to the bottom of \(I_3 \), \(M_{10} \) or \(M_{14} \) respectively, where \(M_{10} \) and \(M_{14} \) are given in Figure 4. We know that no such \{1,3\}-circuit matrix exists for \(n = 7 \) nor \(n = 11 \) because (by brute force computer search) we computed that \(N_7(\{1,3\}) \) is not linearly 3-solvable and \(N_{11}(\{1,3\}) \) is not 2-solvable.

4. General Clock Networks

We saw in the previous section that the network \(N_n(\{1,3\}) \) is linearly \(s \)-solvable for any \(s \), for all \(n \geq 12 \). In this section we generalise this result to arbitrary finite sets of positive integers. Specifically, we determine for which finite \(R \subset \mathbb{Z}^+ \), does there exist a constant \(n_0 \) such that \(N_n(R) \) is \(s \)-solvable for all \(s \) and all \(n \geq n_0 \). We deduce (by Lemma 4.1 and Corollary 4.2) that such an integer \(n_0 \) exists if and only if \(\text{gcd}(R) = 1 \).

Lemma 4.1. If \(n \) is not a multiple of \(\text{gcd}(R) \), then \(N_n(R) \) is not \(s \)-solvable for any \(s \geq 2 \).

Proof. Let \(d = \text{gcd}(R) > 1 \). By definition, each edge \(v_i v_k \) only joins vertices such that \(i \equiv k \) (mod \(d \)). Therefore \(N_n(R) \) is disconnected with at least one component for each residue modulo \(d \). Now consider some index \(a \), and an input \(c = (c_1, c_2, \ldots, c_r) \). If we keep \(c_i \) constant for all \(i \neq a \) and let \(c_a \) vary, then the valuation will only change on vertices in the same component as \(v_a \). Since \(n \) is not a multiple of \(d \),

\[(n + a) - a = n \neq 0 \text{ (mod } d)\].
So the input node, v_a, and its corresponding output node, v_{n+a}, are in a different components of $N_n(R)$. Therefore $N_n(R)$ is not s-solvable for any $s \geq 2$. □

Now consider any $R \subset \mathbb{Z}^+$ such that $\gcd(R) > 1$, there are an infinite number of integers n which are not a multiple of $\gcd(R)$. By Lemma 4.1 this is an infinite number of integers n such that $N_n(R)$ is not s-solvable (for any s). Therefore there cannot exist any n_0 such that $N_n(R)$ is s-solvable for all $n \geq n_0$. However, if n is a multiple of $d = \gcd(R) > 1$, then the network $N_n(R)$ is a disjoint union of d copies of

$$N' = N_{n/d}(R') \quad \text{where} \quad R' = \{j/d \mid j \in R\}.$$

So $N_n(R)$ is s-solvable if and only if N' is s-solvable. Since $\gcd(R') = 1$, it suffices now to consider only the cases that $\gcd(R) = 1$. We now make the following definition and propositions, used in Theorem 4.6 and Corollary 4.7.

Definition 4.2. Let $s \geq 2$ be an integer, let R be a finite set of positive integers, and let $r = \max(R)$.

- An R-atomic matrix is any $r \times r$ matrix, with entries in \mathbb{Z}_s, of the form:

$$
\begin{bmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
\alpha_r & \alpha_{r-1} & \alpha_{r-2} & \cdots & \alpha_1
\end{bmatrix}
$$

such that $\alpha_j = 0$ for all $j \notin R$.

Figure 6. Matrices M_{10} and M_{14} show that $N_{10}(\{1,3\})$ and $N_{14}(\{1,3\})$ are linearly s-solvable for any $s \geq 2$.

$$
M_{10} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 0 & 1 \\
-1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \text{and} \quad
M_{14} = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1 \\
0 & 1 & 1 \\
1 & 0 & -1 \\
0 & 0 & 1 \\
1 & 0 & -1 \\
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
$$
A R-step matrix is any $r \times r$ matrix, with entries in \mathbb{Z}_s, formed by starting with I_r, and then for some $1 \leq t \leq r$, replacing the t^{th} row with $[\beta_1, \beta_2, \ldots, \beta_r],$

$$
\begin{bmatrix}
1 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
\beta_1 & \beta_2 & \cdots & \beta_t & \cdots & \beta_r \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 1
\end{bmatrix}
$$

where β_i is non-zero only if there is some $j \in R$ such that $i + j \equiv t \pmod{r}$. Since $r \in R$, we always allow β_t to be non-zero.

For any $1 \leq t \leq r$, the t-toggle matrix is the following $r \times r$ matrix, $T(t)$, with entries in \mathbb{Z}_s.

$$
T(t) = \begin{bmatrix}
1 & 0 & \cdots & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
-1 & -1 & \cdots & -1 & \cdots & -1 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 1
\end{bmatrix}
$$

$i.e.$ The t-toggle matrix is formed from I_r by replacing row t with a row of -1s. A matrix is called a toggle matrix iff it is a t-toggle matrix for some t.

Proposition 4.3. Any R-step matrix can be expressed as a product of r R-atomic matrices.

Proof. Let P denote the only R-atomic matrix which is also a permutation matrix; the R-atomic matrix for which $\alpha_r = 1$ and $\alpha_i = 0$ for all $i < r$. For any $1 \leq t \leq r$ consider the product

$$A_t A_{r-1} \ldots A_t \ldots A_2 A_1 = S,$$

where A_t is an arbitrary R-atomic matrix and $A_i = P$ for all $i \neq t$. This product, S, is an arbitrary R-step matrix. \(\square\)

Proposition 4.4. If $\gcd(R) = 1$ and $r = \max(R) > 1$ then for any $1 \leq t \leq r$ the t-toggle matrix can be expressed as a product of $(2r - 3)$ R-step matrices.

Proof. We inductively define a sequence of subsets,

$$U_2 \subset U_3 \subset U_4 \subset \cdots \subset U_r = [r],$$

in the following manner. Let $U_2 = \{x,t\}$ where $x \in [r]$ is chosen so that $t - x \pmod{r} \in R$. For $k = 3, 4, 5, \ldots, r$, iteratively define $U_k = U_{k-1} \cup \{b\}$ for some $b \in [r] \setminus U_{k-1}$ such that there exists some $a \in U_{k-1}$ such that $a - b \pmod{r} \in R$. We know a and b exist because $\gcd(R) = 1$. Now let S_k be the matrix formed from I_r by replacing the t^{th} row with

$$(x_1, x_2, x_3, \ldots, x_n) \quad \text{where} \quad x_i = \begin{cases}
-1 & : \text{if } i \in U_k \\
0 & : \text{otherwise.}
\end{cases}
$$

Now we prove that S_k can be expressed as a product of $(2k - 3)$ R-step matrices, by induction on $k = 2, 3, 4, \ldots, r$. For the base case ($k = 2$), S_2 is a R-step matrix. For the inductive step,

$$S_k = E_{ab}(-1)S_{k-1}E_{ab}(1)$$

where $E_{ij}(\lambda)$ is the matrix formed from I_r by replacing the ij^{th} entry with λ. Note that $E_{ab}(1)$ and $E_{ab}(-1)$ are both R-step matrices because $a - b \pmod{r} \in R$, and S_{k-1} can be expressed as a product of $(2(k - 1) - 3)$ R-step matrices by the inductive assumption. Therefore S_k can be expressed as a product of

$$1 + (2(k - 1) - 3) + 1 = 2k - 3 \quad \text{R-step matrices.}$$
This completes the induction. For \(k = r \) we have \(U_r = \{1, 2, \ldots, r\} \) and so the \(t \)-toggle matrix is \(T(t) = S_r \), which can be expressed as a product of \((2r - 3) \) \(R \)-step matrices.

\[\square \]

Proposition 4.5. Any \(r \times r \) permutation matrix can be expressed as the product of at most \(\frac{3r}{2} \) toggle matrices.

Proof. First we show that an arbitrary \(k \)-cycle can be expressed as the product of \(k + 1 \) toggle matrices. Explicitly, if \(Q \) is the \(r \times r \) matrix corresponding to the \(k \) cycle, \((a_1, a_2, \ldots, a_k) \), can be expressed as the product

\[Q = T(a_1)T(a_2)T(a_3) \cdots T(a_{k-1})T(a_k)T(a_1). \]

Now consider the cyclic decomposition of the permutation; the permutation expressed as the composition of at most \(n/2 \) cycles, such that the sum of the lengths of these cycles is at most \(n \). If each of these cycles are expressed as a product of toggle matrices, then this is

\[\square \]

Theorem 4.6. For any finite \(R \subset \mathbb{Z}^+ \), the network \(N_n(R) \) is linearly \(s \)-solvable if and only if the identity matrix can be expressed as a product of \(n \) \(R \)-atomic matrices with entries in \(\mathbb{Z}_s \).

Proof. For any valuation, \(X = (X_1, X_2, \ldots, X_n) \), of a linear circuit on \(N_n(R) \), let \(Y_i \) denote the column vector \(Y_i = (X_{i+1}, X_{i+2}, X_{i+3}, \ldots, X_{i+r})^T \) for \(i = 0, 1, 2, \ldots, n \). Since \(f_k \) is linear,

\[X_k = f_k (X_{k-j} \mid j \in R) = \sum_{j \in R} \alpha_{kj} X_{k-j}. \]

Therefore we must have \(Y_i = A_i Y_{i-1} \) where \(A_i \) is a \(R \)-atomic matrix. Inductively this implies that \(Y_i = A_i A_{i-1} \ldots A_2 A_1 Y_0 \) for all \(i \geq 0 \) and thus \(Y_n = A Y_0 \), where \(A = A_n A_{n-1} \cdots A_2 A_1 \) is a product of \(n \) \(R \)-atomic matrices. For all inputs \(c \in \mathbb{Z}_s^r \) we have

\[F(c) = Y_n = A Y_0 = A c. \]

So if \(X \) is the valuation of a circuit which linearly \(s \)-solved \(N_n(R) \), then \(c = Ac \) for all \(c \in \mathbb{Z}_s \). Hence \(A = I_r \), and \(A \) is a product of exactly \(n \) \(R \)-atomic matrices. Conversely the function \(f_k \) can be reconstructed from the \(R \)-atomic matrix \(A_{k-r} \), for each \(k = r + 1, r + 2, \ldots, n + r \), so this construction is reversible.

\[\square \]

Corollary 4.7. Let \(R \) be any finite set of positive integers with \(\gcd(R) = 1 \) and let \(r = \max(R) \). For any \(n \geq 3r^3 \), the network \(N_n(R) \) is linearly \(s \)-solvable for any integer \(s \geq 2 \).

Proof. It suffices to show that the identity matrix can be expressed as a product of exactly \(n \) \(R \)-atomic matrices. Let \(P \) denote the only atomic matrix which is also a permutation matrix; the atomic matrix for which \(\alpha_r = 1 \) and \(\alpha_i = 0 \) for all \(i < r \). Note that \(P \) is a \(r \)-cycle and so \(P^r = I_r \). Let \(Q = P^{-n} \) and note that \(Q \) is a permutation matrix. By Proposition 4.5, we can write \(Q \) as a product of \(\leq \frac{3r}{2} \) toggle matrices. By Proposition 4.3, we can write each of these toggle matrices as a product of \((2r - 3) \) \(R \)-step matrices, and by Proposition 4.3, we can write each of these step matrices as a product of \(r \) \(R \)-atomic matrices. Therefore \(Q \) can be expressed as a product of \(kr(2r - 3) \) \(R \)-atomic matrices. Since \(k \leq \frac{3r}{2} \) and \(n \geq 3r^3 > \frac{3r}{2}r(2r - 3) \), we must have \(n - kr(2r - 3) \geq 0 \) and so

\[Q \times P^{n-kr(2r-3)} = (Q \times P^{n}) \times (P^{r})^{k(2r-3)} = I_r. \]

Since \(P \) is a \(R \)-atomic matrix and \(Q \) can be expressed as a product of \(kr(2r - 3) \) \(R \)-atomic matrices, we can express \(I_r \) as a product of \(n \) \(R \)-atomic matrices.

\[\square \]

For finite \(R \subset \mathbb{Z}^+ \) with \(\gcd(R) = 1 \), let \(n_0 = n_0(R) \) be the minimum integer such that \(N_n(R) \) is \(s \)-solvable for all \(s \geq 2 \) for all \(n \geq n_0 \). Corollary 4.7 shows that \(n_0 \) is well defined and that \(n_0 \leq 3r^3 \) (where \(\max(R) = r \)). Theorem 2.5 shows that \(n_0([r]) = r \) and in Section 3, we deduced that \(n_0([1, 3]) = 12 \). The value \(n_0(R) \) for \(R \) in general, remains an open question. We conclude this section with an example which demonstrates that the cubic bound \(n_0 \leq 3r^3 \) in Corollary 4.7 cannot be replaced with any bound less than \(r^2 - r \).
Example 4.8. For any integer \(r \geq 3 \), let \(n = r^2 - r - 1 \) and consider the networks \(N = N_n(\{1, r\}) \) and \(N' = N_n(\{1, r - 1\}) \), and consider the digraphs \(G = G_{\text{clock}}(n, \{1, r\}) \) and \(G' = G_{\text{clock}}(n, \{1, r - 1\}) \). Using Theorem 1.5, the existence of the acyclic network \(N' \) of width \(r - 1 \) such that \(G' = G_{N'} \) implies that
\[
\text{gn}(G', s) \leq r - 1.
\]
Note that \(r(r - 1) \equiv 1 \) modulo \(n \), so \(G \) and \(G' \) are isomorphic, and so \(\text{gn}(G, s) = \text{gn}(G', s) < r \). Now using Theorem 1.5 again (since \(G = G_N \) we can conclude that \(N \) is not \(s \)-solvable. Thus
\[
\text{n}_0(\{1, r\}) \geq r^2 - r,
\]
for all \(r \geq 3 \).

References

[1] Rudolf Ahlswede, Ning Cai, Shou-Yen Robert Li, and Raymond W. Yeung. Network information flow. IEEE Trans. Inform. Theory, 46:1204–1216, 2000.
[2] Noga Alon, Avinatan Hasidim, Eyal Lubetzky, Uri Stav, and Amit Weinstein. Broadcasting with side information. arXiv preprint arXiv:0806.3246, 2008.
[3] Jullian Cannons, Randall Dougherty, Chris Freiling, and Kenneth Zeger. Network routing capacity. IEEE Trans. Inform. Theory, 52:777–788, 2006.
[4] Demetres Christofides and Klas Markström. The guessing number of undirected graphs. The Electronic Journal of Combinatorics, 18(1):P192, 2011.
[5] Maximilien Gadouleau and Søren Riis. Graph-theoretical constructions for graph entropy and network coding based communications. Information Theory, IEEE Transactions on, 57(10):6703–6717, 2011.
[6] Shuo-Yen Robert Li. Unachievability of network coding capacity. IEEE Trans. Inf. Theory, 52:2365–2372, 2006.
[7] Søren Riis. Utilising public information in network coding. General Theory of Information Transfer and Combinatorics, pages 861–897, 2006.
[8] Søren Riis. Graph entropy, network coding and guessing games. arXiv preprint arXiv:0711.4175, 2007.
[9] Søren Riis. Information flows, graphs and their guessing numbers. Electronic Journal of Combinatorics. 14, pages 44–61, 2007.
[10] Tuoyang Wu, Peter Cameron, and Søren Riis. On the guessing number of shift graphs. journal of Discrete Algorithms, 7(2):220–226, 2009.

Ross Atkins
University of Oxford
Department of Statistics
1 South Parks Road
Oxford OX1 3TG
United Kingdom
e-mail: ross.atkins@univ.ox.ac.uk