Genome comparison of the epiphytic bacteria *Erwinia billingiae* and *E. tasmaniensis* with the pear pathogen *E. pyrifoliae*

Michael Kube*1, Alexander M Migdoll1, Isabel Gehring2,3, Katja Heitmann1, Yvonne Mayer1, Heiner Kuhl1, Florian Knaust1, Klaus Geider2 and Richard Reinhardt1

Abstract

Background: The genus *Erwinia* includes plant-associated pathogenic and non-pathogenic *Enterobacteria*. Important pathogens such as *Erwinia amylovora*, the causative agent of fire blight and *E. pyrifoliae* causing bacterial shoot blight of pear in Asia belong to this genus. The species *E. tasmaniensis* and *E. billingiae* are epiphytic bacteria and may represent antagonists for biocontrol of fire blight. The presence of genes that are putatively involved in virulence in *E. amylovora* and *E. pyrifoliae* is of special interest for these species in consequence.

Results: Here we provide the complete genome sequences of the pathogenic *E. pyrifoliae* strain Ep1/96 with a size of 4.1 Mb and of the non-pathogenic species *E. billingiae* strain Eb661 with a size of 5.4 Mb, *de novo* determined by conventional Sanger sequencing and next generation sequencing techniques. Genome comparison reveals large inversions resulting from homologous recombination events. Furthermore, comparison of deduced proteins highlights a relation of *E. billingiae* strain Eb661 to *E. tasmaniensis* strain Et1/99 and a distance to *E. pyrifoliae* for the overall gene content as well as for the presence of encoded proteins representing virulence factors for the pathogenic species. Pathogenicity of *E. pyrifoliae* is supposed to have evolved by accumulation of potential virulence factors. *E. pyrifoliae* carries factors for type III secretion and cell invasion. Other genes described as virulence factors for *E. amylovora* are involved in the production of exopolysaccharides, the utilization of plant metabolites such as sorbitol and sucrose. Some virulence-associated genes of the pathogenic species are present in *E. tasmaniensis* but mostly absent in *E. billingiae*.

Conclusion: The data of the genome analyses correspond to the pathogenic lifestyle of *E. pyrifoliae* and underlines the epiphytic localization of *E. tasmaniensis* and *E. billingiae* as a saprophyte.

Background

The genus *Erwinia* comprises essentially plant-associated bacteria. Two species, *Erwinia amylovora* and *Erwinia pyrifoliae*, are connected with "pome fruit" diseases, fire blight of apple, pear and some ornamentals and Asian pear blight, respectively [1-3]. Other species were isolated from plant surfaces such as *Erwinia billingiae* and *Erwinia tasmaniensis*. Due to their epiphytic occurrence, they can compete with growth and distribution of *E. amylovora* on flowers and may be applied as antagonists for control of fire blight [4]. Such bacteria have the potential to reduce the use of antibiotics in agriculture for control of the disease. Accumulation of streptomycin resistant strains in pome fruit growing regions in the United States emphasizes the need of new strategies to reduce economical losses of more than $100 million per year for the United States resulting from fire blight [5-10].

In the course of description of pear pathogenic *E. pyrifoliae* strains, isolated in Korea, it became evident that they are related to *E. amylovora*, but distinct for several taxonomic criteria [11]. A pathogen associated with bacterial shoot blight of pear (BSBP) in Japan was also classified as *E. pyrifoliae* [12]. Strain Ep1/96 from Korea is assumed to be a representative for *E. pyrifoliae* and the features are also valid for the strains from Japan.

* Correspondence: kube@molgen.mpg.de

1 Max Planck Institute for Molecular Genetics, hptp group, Ihnestr. 63, D-14195 Berlin, Germany

Full list of author information is available at the end of the article

© 2010 Kube et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In dendrograms from 16S rRNA sequences and in alignments of parts from the house keeping genes gpd and recA, *E. pyrifoliae* is related to *E. amylovora*, less to *E. tasmaniensis* and in more distance to *E. billingiae* [12].

Several properties of these species can explain their interactions with plants. Pathogens as well as epiphytic bacteria are dependent on the availability of carbohydrates to metabolize them as an energy source. Plants synthesize and transport high levels of sucrose as a main product of photosynthesis. *E. amylovora*, the fire blight pathogen, is specialized on rosaceous plants, which typically also produce sorbitol. Mutants of *E. amylovora* in the sucrose and in the sorbitol metabolism are non-pathogenic [13,14]. Surprisingly, *E. tasmaniensis* lacks the srl-operon and is unable to metabolize sorbitol, although the epiphytes were isolated from the apple and pear flora [15,16]. *E. billingiae* was isolated from a similar environment, initially designated as “white *Erwinia herbicola*” and later classified as a novel species [17,18]. These bacteria are also detected in necrotic plant tissue from trees with fire blight (Geider et al., unpublished), but do not share important properties with *E. amylovora* [4]. These include the inability of *E. billingiae* to cause a hypersensitive response (HR) on tobacco leaves, a lack of levansynthesis with a general deficiency to metabolize sucrose [4]. A deficiency in levansynthesis was also observed for *E. pyrifoliae* [1]. On the other hand, destruction of the host plant tissue, indicated by HR on non-host plants, is an important pathogenicity factor of *E. amylovora* and was also described for *E. pyrifoliae* [1,19,20].

Another important pathogenicity factor of *E. amylovora* and *E. pyrifoliae* is the formation of capsular exopolysaccharide (EPS). Gene clusters encoding functions for amylovoran synthesis of *E. amylovora* and pyrifolan synthesis of *E. pyrifoliae* have been described and mutants created in these genes by transposon and by site directed mutagenesis, which lost virulence [21,22]. Other virulence factors of *E. amylovora* were described to include iron uptake, or defects in amino acid or nucleotide metabolism [23].

Therefore it was of special interest to show, if factors necessary for invasion can be identified in the genome of *E. pyrifoliae* and if their absence in the genome of *E. billingiae* and *E. tasmaniensis* can describe their epiphytic occurrence in plant surfaces.

We determined the complete genome of the pear-pathogen *E. pyrifoliae* strain Ep1/96, which is related to *E. amylovora* and of the non-pathogenic *E. billingiae* strain Eb661 [11,24]. A mixed strategy of pyrosequencing and traditional Sanger sequencing was used to determine both new genome sequences. These data together with the previously published genome sequence of *E. tasmaniensis* provide databases for comparative analysis of virulence factors.

Results and Discussion

Genome composition and architecture of *Erwinia billingiae* strain Eb661, *E. tasmaniensis* strain Et1/99 and *E. pyrifoliae* strain Ep1/96

The genomes of *E. billingiae* strain Eb661, *E. tasmaniensis* strain Et1/99 and *E. pyrifoliae* strain Ep1/96 contain one circular chromosome with a size of 5.1 Mb for strain Eb661, and 4.0 Mb for strain Ep1/96 down to 3.9 Mb for strain Et1/99 [15]. The number of corresponding predicted proteins ranges from 4,587 to 3,427 (Table 1). The distant position of *E. billingiae* strain Eb661 is indicated by the general genome data and corresponds to the phylogenetic position on a different branch in contrast to the other three genomes [12,24]. This classification into two groups is also supported by the estimated numbers of shared genes for the chromosomes of the strains Ep1/96, Et1/99 and Eb661 (6,883 out of 11,659 proteins in total) (Figure 1). The highest amount of unique proteins is present for strain Eb661 with 2,037 proteins (2,065 including paralogs etc.) corresponding to the enlarged chromosome size. This portion encompassing 4% of the deduced protein set encodes a wide additional metabolic repertoire and associated transporters. In contrast, the portion of estimated unique genes for the pathogenic strain Ep1/96 is 785 (897 including paralogs etc.) corresponding to approx. 25% of the proteins encoded on the chromosome.

The number of 7 rRNA operons is constant within the chromosomes, but the presence of one unusual rRNA operon with a 16S-23S-5S-5 S organization is limited to

![Figure 1 Venn diagram for the deduced proteins of *E. pyrifoliae* strain Ep1/96, *E. tasmaniensis* strain Et1/99 and *E. billingiae* strain Eb661.](http://www.biomedcentral.com/1471-2164/11/393)
the genomes of strains Ep1/96 and Et1/99. This could provide a genetic marker for these species within the genus *Erwinia*. The occurrence of the unusual 16S-23S-5S-5S organization within the chromosome is interpreted as the result of a chromosomal recombination event. Large inversions and translocations have occurred frequently during evolution in the genus *Erwinia* (Figure 2). The present conserved synteny between the three genomes is disrupted by large inversions, which indicates two different types of organization. One type is shared by strain Ep1/96 and Et1/99 as well as a second one which is shared by strain Eb661 and strain Ea273 (data not shown). These re-arrangements are thought to be driven by homologous recombination, which often occurs at the rRNA operons [25]. The importance of rRNA operons for these events could be confirmed by the comparison of the chromosomes of strain Eb661 and Et1/99 for the centered inversion, which is suggested to be responsible for the duplication of the 5S-rRNA gene. The comparison of the chromosomes of strain Et1/99 and Ep1/96 indicates the stability of this re-arrangement. Several other translocations and inversions are present especially within two regions not neighbouring to rRNA operons.

However, Figure 2 also illustrates that the larger chromosome size of *E. billingiae* strain Eb661 is mainly based on the presence of single genes scattered over the whole genome and not on the transfer of large gene clusters. The minor influence of phage integrations was estimated by the prediction of integrated regions (258 kb for strain Eb661, 177 kb for strain Et1/99 and 261 kb for strain Ep1/96) and of gene duplication corresponding to the number of potential paralogs (76 for strain Eb661, 57 for strain Et1/99 and 223 for strain Ep1/96). Cumulative GC skew analyses support the weak modulations of the chromosomes by these events by its regular run (Additional file 1).

The exchange of genetic material mainly depends on the presence of extrachromosomal elements. The number of plasmids ranges from two for Eb661 to five in strain Et1/99 (Table 2). A deviating GC content compared to the chromosome suggests an unrelated origin for pET35 and pET49. Several plasmids in the genus *Erwinia* show the potential for a conjugal transfer such as pEB170 of *E. billingiae* strain Eb661, the plasmids pET35 (CU468130), pET45 (CU468132), pET46 (CU468133), pET49 (CU468131) of *E. tasmaniensis* strain Et1/99 and pEL60 of *E. amylovora* strain Leb66 (AY422214), an untypical isolate from Lebanon. Plasmids pEp05 and pEt46 carry mob genes and may contain an oriT to be mobilized by Tra proteins of other plasmids. The species *E. amylovora*, *E. pyrifoliae*, and *E. tasmaniensis* share thiO (glycine oxidase), thiS (sulfur carrier protein), thiG (thiazole synthase) and thiF (adenyltransferase) in conserved order. These genes are located on plasmids of *E. pyrifoliae* and *E. amylovora* and on the chromosome of *E. tasmaniensis*. A potential gene flow is indicated by the high identities between the sequences on the nucleotide level and the amino acid level of at least 87% (Figure 3). *E. amylovora* genes for thiamine metabolism are located on plasmid pEA29. Plasmidfree strains of *E. amylovora* show reduced virulence and reduced growth in minimal

Strain	Ep1/96	Et1/99	Eb661
Size (bp)	4,026,322	3,883,467	5,100,168
Seq. coverage	34*1	11	19*2
G+C content (%)	53.4	53.7	55.2
Protein coding (%)	84.9	85.0	87.7
Coding sequences	3,645	3,427	4,587
Average size (bp)	938	964	975
G+C content (%)	54.6	54.9	56.3
Assigned function	2,846	2,676	3,768
Uncharacterized	250	362	304
Transposases	90	25	10
rRNA operons	7	7	7
tRNAs	75	81	77
Extrachromosomal elements	4	5	2

Sequencing coverage was reached by a 9fold Sanger sequencing and a 25fold coverage with GS20 data for strain Ep1/96 and by a 11fold Sanger sequencing and a 8fold coverage with GS FLX data for strain Eb661.

rRNA operons show 16S-23S-5S order, except one copy within the chromosome of the strains Ep1/96, Ea273 and Et1/99 with the unusual 16S-23S-5S-5S order organization. The 16S-23S-5S-5S operon is missing in strain Eb661, which belongs to a different phylogenetic branch.

Table 1: Chromosome features for the genomes of *E. pyrifoliae* strain Ep1/96, *E. tasmaniensis* strain Et1/99 and *E. billingiae* strain Eb661.
Figure 2 Chromosome organization of strain Eb661 vs. Et1/99 vs. Ep1/96. Chromosomes were compared using ACT. Red lines connect homologous regions present in the same orientation while the blue lines connect regions of inverted orientation. Black bars symbolize chromosomes. Localization of the rRNA operons is indicated by white (16S-23S-5S rRNA organization) and yellow bars (16S-23S-5S-5S rRNA organization). Translocated and inverted regions are highlighted in grey and the positions on the chromosomes are provided. The estimated size of these regions, which were modulated by several re-arrangements, is noted in megabases.
media without thiamine [26,27]. The choline transporter protein BetT is encoded in all three species and may help to protect bacteria against osmotic stress [28]. We detected homologies for stbD and stbE in the sequences of pEP36 but not for E. tasmaniensis strain Et1/99. StbD and StbE are plasmid stability proteins and code for a toxin-antitoxin system, which is widespread throughout pathogenic bacteria [29].

Pathogenicity of several Erwinia species is probably based on a large set of modules (Table 3). We focussed the analyses on the genetic environment encoded within the genomes with respect to secretion, production of exopolysaccarides, sorbitol and sucrose metabolism as well as on the presence of miscellaneous genes with potential impact to the virulence for the pathogenic erwinias.

Secretion systems

The ability to secrete effector proteins and to colonize host plant tissue represents very important features. Differences in chromosome content were also identified by mapping the deduced proteins from the non-pathogenic Erwinia species with potential impact to the virulence for the investigated genomes. Extra-cellular proteins for nutrient acquisition [30]. Among them, one of the best studied are the genetically and structurally conserved type III secretion systems (T3SSs), which were found to be crucial for delivery of proteins acting as pathogenicity factors into the extracellular space or the cytoplasm [31,32]. Target cells and secreted proteins are of broad range and host-specific.

The primary T3SS in Erwinia species is composed of the hrp/hrc-gene-cluster and two flanking regions (Hrp elicitors and effectors [HEE] and Hrp-associated enzymes [HAE]), which contain effector proteins and enzymes involved in systemic virulence [15,33]. Like in E. amylovora this assembly could also be identified in the pathogenic E. pyrifoliae strain Ep1/96, and clearly marks a difference to the system of the non-pathogenic E. tasmaniensis strain Et1/99 without the HAE region and E. billingiae strain Eb661, which contains no homologs to a T3SS [15]. Nevertheless, the hrp/hrc-clusters of E. pyrifoliae and E. tasmaniensis show almost conserved synteny. Slight differences are orfU1 (Acc. No. AAD24685) and orfU2 (Acc. No. AAD24686) of E. amylovora with similarity to genes coding for hypothetical proteins in Helicobacter pylori [33]. The products of those CDS may represent specific components of the E. amylovora T3SS.

A second gene cluster similar to the HAE region could be identified in E. pyrifoliae. The two genes hsvA and hsvC show a high similarity on amino acid level of 86% and 66%, respectively, to their counterparts in the hrp/hrc-T3SS. However, a corresponding hsvB-gene was not found in this cluster but a sequence coding for a putative capsular exopolysaccharide synthesis protein.

An incomplete T3SS similar to the Salmonella pathogenicity island 1 (SPI-1) and also found in the insect endosymbiont Sodalis glossinidus, may have a distinct function in Erwinia species [15,34]. This region, spanning about 20 kbp in E. pyrifoliae and E. tasmaniensis, con-
contains most of the invasion- \((invFGEABC)\), surface presentation of antigens \((spaOPQRS)\) and invasins with the associated chaperone-genes \((sicA, sipB, sipD)\) as well as those encoding the needle complex \((prgHIJK, orgA)\). However, three CDS for conserved hypothetical proteins were found replacing \(sipC\), an essential invasion gene and \(invIJ\), encoding putative effectors [35,36]. Furthermore, the genes \(sipA, iacP, sicB, sptP, iagB, hilA, orgBC\) and \(hilC\), which constitute mainly regulatory components, are lacking. The gene content and order is highly conserved between \(E. pyrifoliae\) and \(E. tasmaniensis\). A similar island was not found in \(E. billingiae\). However, it remains unclear, if this T3SS is operative because of the incompleteness in comparison to the SPI-1 and the replaced genes. Recent results from pathogenicity tests on immature pears with SPI-1-like mutants of \(E. amylovora\) indicate that it is not essential for pathogenicity [37]. Even for \(Salmonella typhimurium\) it was shown, that only the initial infection stages are affected in mutants while they remain pathogenic when applied by different routes [38].

Only few CDS for putative effector proteins could be identified in the erwinias. Most of those proteins are thought to affect or to be secreted by the T3SS. The suggested effector SrfC of \(Pectobacterium carotovorum\) subsp. \(atroscopicum\) is also thought to be exported by T3SS [39]. \(E. billingiae\) carries the \(srfABC\) gene cluster like the other three erwinias, but is lacking the instrumentation for a T3SS. The function of SrfC remains unclear, in consequence.

Both pathogenic erwinias possess coding sequences for the SopA protein, which has been characterized as an effector-like protein in \(Salmonella\) influencing the inflammatory response of mammalian hosts [40]. This protein is translocated via the \(Salmonella\) T3SS on the SPI-1 into eukaryotic cells and seems to be necessary for full virulence [41]. Since a similar T3SS has been identified in the pathogenic erwinias, one could assume that the SopA effector has a particular role in pathogenicity of those bacteria in plants. It could influence proteins in the plant cell to alter defence response to bacterial invasion.

Another putatively SPI-1 dependent system found in the four \(Erwinia\) species is composed of the small operon \(srfABC\), which seems to be regulated by SPI-1 activation [42]. Repression is accomplished by RcsB and PhoP,

Table 2: General features of the determined extrachromosomal elements of \(E. pyrifoliae\) strain Ep1/96, \(E. tasmaniensis\) strain Et1/99 and \(E. billingiae\) strain Eb661.

Strain	Ep1/96	Et1/99	Eb661
Plasmid tag	pEp2.6	pEp03	pEp36
Size (bp)	2,590	3,070	4,955
G+C (%)	44.9	49.0	53.2
Protein coding (%)	66.6	58.9	77.3
Coding sequences	6	4	5
Average size (bp)	287	452	766
G+C content (%)	43.9	47.0	52.2
Assigned function	1	2	4
Conserved uncharacterized	1	2	1
Uncharacterized	4	-	7
Transposase(s)	-	-	7
mobilization or transfer gene	-	mob	-

Kube et al. BMC Genomics 2010, 11:393
http://www.biomedcentral.com/1471-2164/11/393
Page 6 of 15
Table 3: Genetic elements with potential impact to virulence of pathogenic erwinias were summarized and the presence of the key genes is indicated for the analysed genomes (for details please see Additional file 33).

Functional context	Description	Key genes	Ep1/96	Et1/99	Eb661
Secretion systems and effectors					
hrp/hsv/dsp cluster (T3SS)	Hrp-associated enzymes (HAE)	hrpK, hsvABC	+	-	-
	Hrp/hrc secretion/translocation pathway	hrcUTSRQ, hrpPO, hrncN/hrpQULYSAB; hrcl, hrpDEFG, hrcC, hrpTV	+	+	-
	Hrp elicitor/effector region (HEE)	hpn, orfABC, hpnW, dspEF	+	+	-
Salmonella SPI-1-like T3SS	Invasion proteins	invHFGEABCJ	(+)	(+)	-
	Surface presentation of antigens (SPA)	spaOPQRST	(+)	(+)	-
	Cell invasion proteins	sicA, sipBCDA, spIP, prgHIJK, orgA	(+)	(+)	-
	Invasion plasmid antigen (IPA)	ipaBCDA	-	-	-
T6SS	T6S proteins and effectors	various	+*	+*	+*
Effector and virulence associated	putative operon involved in virulence	srfABC	+	+	+
proteins	Outer membrane protease	sopA	+	-	-
	Maintenance of virulence plasmid	mvpT	+	+	-
	Virulence protein; regulator for acidic stress;	msgA, phoPQ, mviN, ompX	+	+	+
	integral membrane protein, outer membrane protein				
	Outer membrane invasion protein	pagC	+	-	+
	Virulence associated protein	virK	-	+	+
Metabolism	Capsular polysaccharide-biosynthesis	amsGHIABCDEFKL, galFE/ cpsGHIABCDEFKL, galFE	+	+*	+*
	Putative cps biosynthesis system	ymcABC	+	+	+
	Regulators	rcsA, rcsB, rcsC, rcsF	+	+	+
Levan-metabolism	Levan synthesis	lsc	-	+	-
	Regulators	rlsA, rlsB, rlsC	+	+	-
whose coding sequences could be identified in the erwini-}
as. For several effectors the SPI-1 related T3SS may has a}
special function, which is different to the hrp/hrc-T3SS}
but probably not essential for virulence because it is also}
present in the non-pathogenic species E. tasmaniensis.
This would be in accordance to rececently published}
results on SPI-1 mutants of E. amylovora [37].

The gene virK, which is secreted by the second Salmo-
nella T3SS found on the pathogenicity island 2 (SPI-2)
and regulated by the phoPQ-genes, is a pathogenicity fac-
tor of Salmonella sp. [43]. A coding sequence for VirK
was identified in E. tasmaniensis and E. billingiae but not
in the pathogenic erwinias. A possible reason could be
the missing secretion system for this protein, which led to
the loss of the gene in the process of specialization. The
T3SS share a wide homology that could support secretion
by the other systems found in the Erwinia species [30]. A
simple protein export machinery is built by the Type V
secretion system (T5SS), which is found in various bacte-
ria [44]. The main domains, a leader sequence and an
extracellular effector domain, and an outer membrane
export channel, are sometimes encoded on one sequence
and constitute one protein. Because of the self-assembly
and -export they were termed autotransporters. Another
strategy, dubbed two-partner secretion, is characterized
by separate expression of leader-effector protein and the
leader-channel protein. Most effector proteins are
involved in adherence, invasion and degradation [44].
The non-pathogenic E. billingiae is the only species
where we identified genes for corresponding autotrans-
porters (EbC_25980, EbC_37340). They show similarities
to the AidA domain family, which is mainly present in
enteropathogenic bacteria, and pertactin, an autotrans-
porter found in Bordetella sp., respectively. The primary
role of the afore mentioned proteins is adherence to tar-
get structures. It may be possible that they substitute the
function of missing fimbrial parts found in the other
Erwinia species, a difference to strains Ep1/96 and Et1/
99.

An emerging class of secretion systems, possibly related
with pathogenicity, is the recently identified Type VI
secretion system (T6SS) in Gram-negative bacteria [45].
Analyses revealed one large (EpC_06160-EpC_06400,
vgrG) and one small cluster (EpC_19520-EpC_19550) in
E. pyrifoliae. Both clusters are present in E. tasmaniensis
and E. billingiae, but show variations in gene content
(Additional file 4). Most of the still uncharacterized genes
are conserved within the clusters. Functions were
assigned for the putative regulator Fha (involved in phos-
phorylation), the membrane associated proteins such as
Lip (outer membrane lipoprotein), IcmF and DotU (inner
membrane proteins), ClpV (ATPase) and Hcp and VgrG
[46,47]. The proteins Hcp and VgrG are secreted, Hcp
building a tube-like structure for effector delivery, while
VgrG may be an effector-activator or an effector itself
[45]. One CDS, found in E. pyrifoliae (EpC_06280) and
E. billingiae (EbC_05860), of the larger cluster codes for a
putative exported protein, which shows similarities of
50-65% to a protein of other plant-pathogenic bacteria such
as Pectobacterium atrosepticum (syn. Erwinia carotovora
ssp. atroseptica) and Pseudomonas syringae pv. tomato.
In case this exported protein has an effector function, it
would match the previous results, that E. tasmaniensis is
missing many other effector proteins [15]. Whether the

| Table 3: Genetic elements with potential impact to virulence of pathogenic erwinias were summarized and the presence of the key genes is indicated for the analysed genomes (for details please see Additional file 33). (Continued) |

Sorbitol-Operon	Sorbitol uptake, metabolization	srIAEBDMR	+	-	+
Sucrose-Operon	Sucrose uptake, metabolization	scrKYABR	+	+	-
Non-ribosomal peptide synth.	Suggested phytotoxin	eppT	+	-	-

Adhesion & extracellular factors

Cell-influencing factors	Necrosis factors	cnf1, cnf2	+	+	-
Proteases	ptrA, ptrB	+	+	+	+
Siderophores	foxR, dfoA, alcA	+	+	(+)	

The presence is weighted by three criteria: "+" completely present, "(+)" present in parts and ".-" absent. An extended gene content by the presence of additional genes is marked by "**".
secretion systems have an influence on pathogenicity is undiscernible so far, since only a rudimentary instrumentation was found in *E. amylovora*. Plant invasion, which was not confirmed for *E. tasmaniensis*, may be an important requirement for the function (i.e. translocation of proteins into dedicated host cells).

For the T6SS essential gene content, function assignment and structural determination is not well advanced. Most information exist for animal pathogens, but also plant pathogens may use T6SS [48]. Nevertheless, the intrinsic role of the T6SS beside T3SS and/or T4SS has yet to be determined.

Genetics of EPS synthesis by *E. pyrifoliae* and *E. billingiae*

Several metabolic factors are considered to play an important role for causing disease in *Erwinia*-infected plants including synthesis of exopolysaccharides (EPS) i.e. amylovoran or related products and levan production as well as metabolism of sorbitol and sucrose [49].

The capsular EPS of *E. amylovora* is amylovoran, which apparently modulates recognition of the bacteria by plant defense mechanisms and is a main pathogenicity factor [50]. The gene cluster for EPS-synthesis of pyrifolan by *E. pyrifoliae* also consists of 12 CDS (Additional file 3) with two adjacent genes for precursor synthesis. The encoded proteins are at least 85% similar and have a conserved order for *E. pyrifoliae* and *E. amylovora*. The repeating units of amylovoran and pyrifolan have the same sugar composition and identical linkages except a missing second side chain of glucose for pyrifolan [22].

No EPS has been identified so far for *E. tasmaniensis*, but there is a gene cluster for synthesis of capsular polysaccharide on the chromosome [15]. *E. billingiae* possesses similar genes but produces an EPS. In alignments of Cps proteins from *E. pyrifoliae* and *E. billingiae*, CpsF (WceF) have a remarkable divergence, which may indicate specific functions for processing and assembly of the repeating units of capsular EPS for both species.

E. amylovora produces another EPS, levan, which serves as quickly generated shield against recognition by plant defence reactions [51]. The secreted levansucrase, encoded by *lsc*, cleaves sucrose into glucose and fructose, which is subsequently polymerized to levan [52]. Levan is not strictly necessary for virulence of *E. amylovora* [51]. Also the non-pathogenic *E. tasmaniensis* possesses an *lsc* gene and produces levan [15]. *E. pyrifoliae* lacks the *lsc* gene, but an *orf* (EpC_17920) coding for a protein similar to levanase was identified [22]. Levanase belongs to the β-D-fructofuranosidases and can also cleave inulin and sucrose [53]. Therefore, the enzyme could provide nutrients by cleavage of fructans in plant tissue, and may degrade levan from synthesizing bacteria, if it is secreted by *E. pyrifoliae*.

Sorbitol and sucrose metabolism

A dominant carbohydrate in rosaceous plants is the transport sugar alcohol sorbitol. In case of *E. amylovora* the proteins for its metabolism are encoded by the genes *srlAEURBDM*, which could also be identified for *E. pyrifoliae* and *E. billingiae* but not in the genome of *E. tasmaniensis* [13,15]. Virulence assays of *E. amylovora* *srl-*mutants showed reduced symptoms on apple seedlings but only weak effects on pear slices due to their low content of sorbitol. The content of sorbitol is high in leaves and in transport tissue, and its amount varies during plant development [54].

Sucrose is another important transport sugar in plants. Mutants of *E. amylovora* in the *sor* operon are non-virulent [14]. The disaccharide is actively transported into the cells and subsequently cleaved. Besides the repressor gene *sor*, four genes encoding steps in sucrose metabolism are present in *E. amylovora*, *E. pyrifoliae* and *E. tasmaniensis*. The genes *sorA* are located in an operon for these three species, but *E. tasmaniensis* carries a second copy of *sorAB* [15]. Alignments with MAUVE of the *srl* regions of *E. pyrifoliae* and *E. billingiae* as well as the sor region of *E. pyrifoliae* and *E. tasmaniensis* show a remarkable similarity for these gene clusters including the second *sorAB* copy in the genome of *E. tasmaniensis* (Figure 4) [55]. This region does not completely comprise the *sorAB* gene cluster, but is extended to 400 bp downstream of *sorB* and to a partial similarity at 1000 bp upstream of *sorA*.

An interesting feature of *E. billingiae* is its possible ability to metabolize xylitol. This sugar alcohol is widely distributed in nature and can interfere with bacterial activities [56]. *E. billingiae* may degrade xylitol to avoid interference with its growth and to use it as a carbon source despite its low nutritional value. A similar gene is missing in the genomes of *E. pyrifoliae* strain Ep1/96 and the *E. tasmaniensis* strain Et1/99. On the other hand, *E. tasmaniensis* strain Et2/99 can grow with xylitol as carbon source [16].

Miscellaneous determinants with potential impact to virulence of pathogenic erwinias

A striking difference between the pathogenic species *E. pyrifoliae* and the non-pathogenic *E. tasmaniensis* is the existence of a nearly complete Type I fimbrial gene cluster in the latter one (Additional file 3). Enterobacterial Type I fimbriae are implied to be involved in cell attachment and adhesion to surfaces leading to biofilm formation [57]. Beside being a virulence determinant the fimbriae may therefore be a tool of epiphytic bacteria for colonization and protection against environmental effects. Without production of a capsular polysaccharide by *E. tasmaniensis*, the fimbriae may replace the capsules...
Figure 4 Alignment of the sucrose and sorbitol operons from *E. amylovora*, *E. pyrifoliae* and *E. tasmaniensis* with Mauve v.2.3.0. The similarity profile of the alignment in the progressive mode is shown in red [55]. The height of the bars corresponds to the average level of conservation in the sequence. White boxes indicate genes. The alignment of the sucrose operons (A-D) comprise nucleotide sequences of *E. amylovora* strain CFBP 1430 (A; Acc. No. AJ250722, positions 2306950), *E. pyrifoliae* strain Ep1/96 (B; Acc. No. FP236842, positions 2206738-2213359) and *E. tasmaniensis* strain Et1/99 (C; Acc. No. CU468135, positions 2119695-2126241). The genes *scrA* and *scrB* are duplicated in the genome of *E. tasmaniensis* Et1/99 (D; positions 1064052-1070604). There is a continuous homology in the sucrose operons shown in the similarity profiles. Alignment of the sorbitol operons (E-G) comprises nucleotide sequences of *E. amylovora* strain Ea7/74 (E; Acc. No. Y14603, positions 276-4479), *E. pyrifoliae* strain Ep1/96 (F; Acc. No. FP236842, positions 668798-672810) and *E. billingiae* strain Eb661 (G; Acc. No. FP236843, positions 2907872-2911878).
to allow bacterial aggregation [15]. This is supported by the lack of a Type I fimbrial gene cluster in *E. billlingiae*, which produces EPS and may thus not depend on fimbriae. On the other hand, the existence of Type I fimbriae may induce plant defence responses comparable to the effect of FimH on mammalian cells [58].

While the distribution of Type I fimbriae genes seems to differ, all *Erwinia* species except *E. billlingiae* possess a comparable incomplete instrumentation of K88 (F4) fimbriae genes. These fimbriae were found in entero-toxicigenic *E. coli* strains and identified as virulence factors, to determine attachment to specific receptors of intestinal cells [59]. The cluster, build up with *faeBCDEFGHIJK*, could be reconstructed except for the regulator FaeB and the component FaeJ, with unknown expression and function [60]. However, a CDS coding for a possible regulatory protein was found in *E. pyrifoliae* instead of FaeB, leading to the assumption that functional F4 fimbriae participate in adhesion of these species. There are no hints if they are related to pathogenicity.

Another gene cluster first described in entero-toxicigenic *E. coli* strains and also found in the erwinias forms the class 5 fimbriae with the surface antigen CS14 in the *csu-ABCDE*-operon [61]. They are involved for *E. coli* in attachment to specific intestinal epithelial cells. Whether F4 and class 5 fimbriae have a cumulative effect by adhering to receptors of the same cells or aim at different cells and have specific functions is difficult to determine on the molecular level. Since both, pathogenic and non-pathogenic *Erwinia* species possess these genes, their role in pathogenicity is unclear.

Furthermore, genes for the global regulator of fimbrial expression, the heat-stable nucleoid-structuring protein (*hns*), are present in the erwinias [59]. In *E. amylovora*, *E. pyrifoliae*, *E. billlingiae* and *E. tasmaniensis*, copies of an *hns* gene are located on the chromosome and also on a plasmid. *E. tasmaniensis* carries two chromosomal *hns* genes. The global regulator also affects EPS synthesis and the protein binds to the *lsc* promoter region of *E. amylovora* [62].

Strain Eb661 encodes several matrix components necessary for biofilm formation. Genes for cellulose synthesis (bsc- and bcs-operon) were identified as well as a CDS for the surface protein BapA. This instrumentation is similar to biofilm producing *Salmonella* species [63]. Several potential adhesion factors such as hemaglutinin-like proteins may support surface colonization [64].

The three *Erwinia* species share a common set of genes for proteases and siderophore production, which are important virulence factors in soft rot erwinias [65]. Two proteases (PtrA, PtrB) and siderophores (encoded by *foxR, dfoA, alcA*) may help in colonization and acquisition of nutrients [15,66]. Interestingly, the protease operon for the secreted enzyme PrtA, connected with virulence of *E. amylovora*, is not represented in the genomes of *E. pyrifoliae, E. tasmaniensis* or *E. billlingiae* [67].

Furthermore, virulence factors such as the cytotoxic necrotizing factors Cnf1 and Cnf2 were identified. These proteins were connected with pathogenic *E. coli* strains to alter signal transduction resulting in modified cell morphology and cell cycles as well as decreased phagocytosis of the bacteria [68,69]. Cnf1 was shown to inhibit apoptosis, which may help bacteria to survive after cell invasion and grow in an adapted environment [70]. In the case of the *Erwinia* species which have been investigated, *cnf1* and *cnf2*-genes could be identified in all species except *E. billlingiae*, a possible role of Cnf may be to weaken defence response therefore helping the bacteria to spread. Cnf is thought to influence transcription factors via effects on signal transduction [71].

A striking feature of *E. pyrifoliae* strain Ep1/96 is the presence of an assumed non-ribosomal peptide synthetase (NRPS; suggested name EppT; EpC_11160) with a size of 7028 aa. It shows similarities to several non-ribosomal peptide synthetases (NRPSs). It shows high similarity with a protein of unknown function from *Photorhabdus luminescens* (syn. *Xenorhabdus luminescens*), an enterobacterial pathogen of insects and an NRPS of the distantly related soft rot pathogen *P. atrosepticum* SCRI1043 encoded in an island typical for horizontal gene transfer [39,72]. Similar NRPS proteins are also encoded in the genome of *E. tasmaniensis* strain Et1/99 and *E. billlingiae* strain Eb661, but differ in size and domain content (Figure 5). According to a prediction program the NRPS-encoding ORF of *E. pyrifoliae* strain Ep1/96 contains six modules for the synthesis of a hexameric peptide with Ala-Thr-Thr-Gln-Phe-Ser [73]. The NRPS proteins in the genome of *E. billlingiae* and *E. tasmaniensis* are considerably smaller with an encoding capacity for possible attachment of modified Leu-Leu-Xaa and Ser, respectively. No significant relation to the modules to the analogous *E. pyrifoliae* region can be deduced. The short NRPS-regions may only encode small modified peptides.

The presence of the *eppT* gene in strain Ep1/96 may be a result of an integration event as it is indicated by the phage integrase located upstream. Similar proteins could be identified in other plant pathogens such as *P. syringae* pv. *syringae*, which has been involved in synthesis of the phytotoxin syringomycin [74]. This list can be extended to several plant pathogens such as *Ralstonia solanacearum* and *Xanthomonas axonopodis* pv. *citri*, but also to the non-pathogenic species *Pseudomonas fluorescens* [39]. The NRPSs vary in size (e.g. 3351 aa for Et1/99 compared to 7028 aa for Ep1/96) [75]. The NRPS of *E. pyrifoliae* and the one of *P. atrosepticum* show a similar length (7028 aa/7523 aa) and nearly 6000 aa could be aligned with an identity of at least 41%.
The role of the NRPS in the pathogenic strain Ep1/96 compared to the non-pathogenic strain Et1/99 and Eb661 shows much larger variations, e.g. apparently more possibilities for biofilm formation and adhesion, no synthesis or utilization of levan, the absence of a non-ribosomal peptide synthetase similar to EppT and a T3SS with the HAE-region, the SopA protein and possesses a VirK protein. Therefore, those components probably represent factors to describe pathogenic and non-pathogenic Erwinia species. Factors such as synthesis of EPS and levan, utilization of sugar and sugar alcohols as well as expression of proteases and siderophores may be related to nutrient acquisition and to modulate plant defence.

The role of the NRPS in the pathogenic strain Ep1/96 remains unclear. A phytotoxin could be an advantage in acquisition and to modulate plant defence. Proteases and siderophores may be related to nutrient acquisition of sugar and sugar alcohols as well as expression of factors such as synthesis of EPS and levan, utilization of sugar and sugar alcohols as well as expression of proteases and siderophores may be related to nutrient acquisition.

Conclusions

The comparative analysis of *E. billingiae* strain Eb661, *E. tasmaniensis* strain Et1/99 and *E. pyrifoliae* strain Ep1/96 highlights the different genome organization within this genus driven by recombination events. The genomes of these epiphytic and pathogenic bacteria show high accordance of single genes and gene clusters, which are potential virulence factors in pathogenic species. The difference in lifestyle may depend on protein secretion and invasion into plants. *E. billingiae* lacks any T3SS in contrast to *E. tasmaniensis* and *E. pyrifoliae*. Differences between both pathogenic *E. amylovora* and *E. pyrifoliae* and the non-pathogenic *E. tasmaniensis* include a lack of the HAE-region in the hrp/hrc-T3SS, of the SopA and PagC proteins and the presence of a VirK protein and putatively of Type I fimbriae. *E. billingiae* shows much larger variations, e.g. apparently more possibilities for biofilm formation and adhesion, no synthesis or utilization of levan, the absence of a non-ribosomal peptide synthetase similar to EppT and a T3SS with the HAE-region, the SopA protein and possesses a VirK protein. Therefore, those components probably represent factors to describe pathogenic and non-pathogenic *Erwinia* species. Factors such as synthesis of EPS and levan, utilization of sugar and sugar alcohols as well as expression of proteases and siderophores may be related to nutrient acquisition and to modulate plant defence.

Evolutionary adaptation process resulting in the specialization as a plant pathogen. The genetic distance between the pathogenic *Erwinia* species and *E. tasmaniensis* is small, and larger to *E. billingiae*, which has a tendency to invade necrotic tissue of plants. Several differences in genes and their expression apparently restrict *E. tasmaniensis* to exist as an epiphyte on plant surfaces. This enables the species to survive especially on flowers and supports its potential to compete with pathogens such as *E. amylovora* and possibly *E. pyrifoliae*.

Methods

Genome determination

E. pyrifoliae strain Ep1/96 (DSM 12162) and *E. billingiae* strain Eb661 (DSM 17872) were cultured as described previously [11,18]. DNA was isolated with the Genomic DNA kit (Qiagen, Hildesheim, Germany) according to the manufacturer’s instructions. The genomic sequences were determined by whole genome shotgun sequencing using Sanger based sequencing technology and pyrosequencing.

The genomes of *E. pyrifoliae* strain Ep1/96 and *E. billingiae* strain Eb661 were covered by short insert shotgun libraries with 1.5 and 2.5 kb inserts and fosmid libraries with 37 kb inserts (CopyControl™ Fosmid Library Production Kit, Epicentre, Madison, U.S.A.) [76]. End-sequencing was performed on recombinant plasmids using BigDye 3.1 chemistry and 3730XL capillary sequencers (ABI, Darmstadt, Germany) resulting in a 9-fold sequencing coverage for strain Ep1/96 and a 11-fold sequencing coverage for strain Eb661. The high number of fosmid reads (24,252 and 7,096) resulted in one uncovered chromosomal region for strain Ep1/96 and a complete physical coverage by fosmid clones of the chromosome of strain Eb661. To reduce finishing experiments pyrosequencing was performed using the GS20 sequencer for strain Ep1/96 and the GS FLX platform for strain Eb661 (both 454 life science/Roche) resulting in an additional 25-fold (1,043,447 reads) and 8-fold (194,142 reads) sequencing coverage, respectively.

Data assembly was performed for strain Ep1/96 within two steps. GS20 data were initially assembled by Newbler (454 life science/Roche) and the resulting contigs were fragmented using PERL scripts resulting in overlapping sequence fragments, which were assigned as forward and reverse reads in fasta format and the corresponding fasta quality files. The thus obtained faked reads were assembled together with the Sanger derived processed reads using PhredPhrap [http://www.phrap.org]. GS FLX data and Sanger derived reads for strain Eb661 were assembled using the Celera assembler [77]. Assembled data for both projects were imported into Consed, edited and verified. Finishing experiments were performed by primer-
walking on bridging clones and PCR products to improve sequence quality and gap closure [78].

Genome annotation and comparison

Protein coding sequences were predicted by Glimmer3 and manually curated in Artemis [79,80]. Artemis was also used to calculate cumulative GC-skews [(G-C)/(G+C)] of the chromosomes. The genome sequences were annotated with HTGA [81]. Structural rRNAs and tRNAs were determined using RNAmmer and tRNA-Scan-SE [82,83]. Integrated bacteriophages were predicted by PhageFinder [84]. Furthermore, sequence analysis was improved using the RAST analysis platform [85]. NRPSs content was subsequently analysed by Pfam http://pfam.sanger.ac.uk/ and specificity prediction (NRPSpredictor, http://www-ab.informatik.uni-tuebingen.de/toolbox/) [73].

Genome comparisons were performed for *E. billingiae* strain Eb661 (this study), *E. tasmaniensis* strain Et1/99, *E. pyrifoliae* strain Ep1/96 (this study) and partial sequences of *E. amylovora* strain Ea273 [15]. The complete genome sequence of *E. amylovora* strain Ea273 (ATCC 49946) was published recently: FN666575, FN666576, and FN666577. Conserved synteny was examined using ACT with the big_blast.pl script (5000 bases sequence size; BLASTN algorithm) [86].

Core and pan genome for the deduced proteins were analysed by BLASTCLUST http://www.ncbi.nlm.nih.gov/ and parsed through a script to obtain intersections. Numbers were calculated using an identity of 60%, an alignment length of 70% and an e-value of 1e-6 at least as cutoffs for these analyses. The utilized scripts were implemented in a new public web-service at http://www.reziclust.molgen.mpg.de, which allows recalculation of results as well as performing new analyses. Results were parsed in addition through scripts for visualization of the present or absent potential orthologs within each genome.

Potential paralogs were estimated using BLAST [87]. Deduced protein sets of the chromosomes were compared against themselves and filtered with MSPcrunch using a minimal identity of 90% for this purpose [88].

Data and strain access

The annotated sequences of *E. pyrifoliae* strain Ep1/96 have been deposited in Genbank/EMBL/DBJ under accession numbers FP236842 (chromosome), FP928999 (pEp2.6), FP236827 (pEP03), FP236828 (pEP05), FP236829 (pEP36), and of *E. billingiae* strain Eb661 under accession numbers FP236843 (chromosome), FP236826 (pEB102) and FP236830 (pEB170).

The strains used for genomic sequencing are deposited in various international strain collections: Ep1/96 as DSM 12162, CFBP 4171; Eb661 (type strain) as DSM 17872, CFBP 6830, NCPPB 661, LMG 2613 and the previously sequenced *E. tasmaniensis* strain Et1/99 (type strain) as DSM 17950, CFBP 7177, NCPPB 4357, LMG 25318.

Additional material

Additional file 1 Cumulative GC skew [(G-C)/(G+C)] of three investigated chromosomes

Additional file 2 Chromosome maps of the three investigated species highlighting the conserved protein-coding gene content and the individual set. PDFs are of high resolution and allow enlarging regions of interest.

Additional file 3 Genes with potential impact for virulence in pathogenic erwinias encoded in the genomes of *E. pyrifoliae*, *E. billingiae* and *E. tasmaniensis*

Additional file 4 A scheme for involvement of proteins from *E. pyrifoliae*, *E. tasmaniensis* and *E. billingiae* in assembly of the T6SS

Acknowledgements

We acknowledge Julia Cekanov, Janina Thiel, Bernd Timmermann and Ines Müller (Berlin) for technical assistance, and Steffen Scheer, Sven Klages and Alfred Beck (Berlin) for computational support.

Author Details

1. Max Planck Institute for Molecular Genetics, Hptg group, Ihnestr. 63, D-14195 Berlin, Germany
2. Julius Kuehn Institute, Institute for Plant Protection in Fruit Crops and Viticulture, Schwabenheimer Str. 101, D-69221 Dossenheim, Germany
3. Heidelberg Institute for Plant Science, Neuenheimer Feld 360, D-69120 Heidelberg, Germany

Received: 1 September 2009 Accepted: 22 June 2010

Published: 22 June 2010

References

1. Rhim SL, Volkisch B, Gardan L, Paulin JP, Langlotz C, Kim WS, Geider K: *Erwinia pyrifoliae*, an Erwinia species different from *Erwinia amylovora*, causes a necrotic disease of Asian pear trees. *Plant Pathology* 1999, 48(4):514-520.

2. Shrestha R, Koo J, Park D, Hwang I, Hur J, Lim C: *Erwinia pyrifoliae*, a causal endemic pathogen of shoot blight of Asian pear tree in Korea. *The Plant Pathology Journal* 2003, 19(6):294-300.

3. Vanneste J: Fire blight: The disease and its causative agent, *Erwinia amylovora*. Wallingford, Oxon, UK; New York, NY, USA: CABI Pub; 2000:370.

4. Jakovlevic V, Jock S, Du Z, Geider K: Hypersensitive response and acylhomoserine lactone production of the fire blight antagonists *Erwinia tasmaniensis* and *Erwinia billingiae*. *Microbial Biotechnology* 2008:416-424.

5. Loper JE, Henkels MD, Roberts RG, Grove GG, Willett MJ, Smith TJ: Evaluation of Streptomycin, Oxytetracycline, and Copper Resistance of *Erwinia amylovora* isolated from Pear Orchards in Washington-State. *Plant Disease* 1991, 75(3):287-290.

6. McManus PS, Jones AL: Epidemiology and Genetic-Analysis of Streptomycin-Resistant *Erwinia amylovora* from Michigan and Evaluation of Oxytetracycline for Control. *Phytopathology* 1994, 84(6):627-633.

7. McManus PS, Stockwell VO, Sundin GW, Jones AL: Antibiotic use in plant agriculture. *Ann Rev Phytopathol* 2002, 40:443-465.

8. Moeller WJ, Schroth MN, Thomson SV: The Scenario of Fire Blight and Streptomycin Resistance. *Plant Disease* 1981, 65(7):563-568.
26. Falkenstein H, Zeller W, Geider K: Isolation of streptomycin-resistant isolates of Erwinia amylovora in New York. Plant Disease 2008, 92(3):714-716.

25. Liu SL, Sanderson KE: Fire blight management in the twenty-first century - Using new technologies that enhance host resistance in apple. Plant Disease 2003, 87(7):756-765.

19. Steinberger E, Beer S: Catabolite repression in bacteria. Mol Genet 1997, 256(6):581-619.

13. Aldridge P, Metzger M, Geider K: Genetics of sorbitol metabolism in Erwinia amylovora and its influence on bacterial virulence. Mol Genet 1995, 11:25-33.

9. Russo NL, Burr TJ, Berth DI, Aldwinckle HS: \textit{Erwinia amylovora} and its effectors in plant-microbe interactions. \textit{Erwinia pyrifoliae} 1999, 49(2):899-906.

20. Lamark T, Rokenes TP, McDougall J, Strom AR: Plasmid pEA29 and their detection with real-time PCR. Mol Biol Microb 2001, 42(2):469-481.

17. Zhao Y, Sundin GW, Wang D: Construction and analysis of pathogenicity island deletion mutants of \textit{Erwinia amylovora}. Can J Microbiol 2009, 55(4):457-464.

16. Geider K, Auling G, Du Z, Jakovljevic V, Jock S, Volksch B: \textit{Erwinia amylovora} strain Et1/99, a non-pathogenic bacterium in the genus \textit{Erwinia}. Environ Microbiol 2008, 10(9):2211-2222.

11. Bogs J, Geider K: Molecular analysis of sucrose metabolism of \textit{Erwinia amylovora} and influence on bacterial virulence. J Bacteriol 2000, 182(19):5351-5358.

5. Kube M, Migdall AM, Muller I, Kuhl H, Beck A, Reinhardt R, Geider K: The genome of \textit{Erwinia tasmaniensis} strain Et1/99, a non-pathogenic bacterium in the genus \textit{Erwinia}. Environ Microbiol 2008, 10(9):2211-2222.

4. Detweiler CS, Monack DM, Brodsky IE, Mathew H, Falkow S: Identification and functional characterization of a conserved bacterial type VI secretion machine: The bacterial type VI secretion machine: an ancient bacterial weapon to control host cells. \textit{Annu Rev Microbiol} 2008, 62:387-419.

2. Bugert P, Geider K: Molecular analysis of the ams operon required for exopolysaccharide synthesis of \textit{Erwinia amylovora}. Mol Microbiol 1995, 15(5):917-933.

1. Kim WS, Schollmeyer N, Nimtz M, Wray V, Geider K: Bioanalysis of structure and biosynthesis of the capsular exopolysaccharide from the Asian pear pathogen \textit{Erwinia amylovora}. Microbiology 2002, 148(12):4015-4024.

52. Shrestha P, Park DH, Cho JM, Cho S, Wilson C, Hwang J, Hur JH, Lim CK: Genetic organization of the \textit{hpr} genes cluster in \textit{Erwinia amylovora} and characterization of CR active domains in HrpENP protein by mutational analysis. Mol Cells 2008, 25(1):30-42.

51. Geier G, Geider K: Isolation of streptomycin-resistant isolates of \textit{Erwinia amylovora} and other species and role in pathogenicity. Bacterial Polysaccharides, Current Innovations and future trends. Microbiology 2008, 154(6):1370-1383.

50. Bellemann P, Geider K: Pathogenicity mutants of \textit{Erwinia amylovora} and their effectors in plant-microbe interactions. New Phytol 2008, 177(1):35-47.

49. Geider K: Structure, biosynthesis and regulation of capsular exopolysaccharide of \textit{Erwinia amylovora} and other species and role in pathogenicity. Current Innovations and future trends. Microbiology 2008, 154(6):1370-1383.

48. Diao J, Zhang Y, Huibregtse JM, Zhou D, Chen J: \textit{Erwinia amylovora} strain Et1/99, a non-pathogenic bacterium in the genus \textit{Erwinia}. Environ Microbiol 2008, 10(9):2211-2222.

47. Bell KS, Sebaihia M, Pritchard L, Holden MT, Hyman LJ, Holeva MC, Thomson NR, Bentley SD, Churchill LJ, Mungall K et al.: Genome sequence of the enterobacterial phytopathogen \textit{Erwinia carotovora} subsp. atroseptica and characterization of virulence factors. Proc Natl Acad Sci USA 2004, 101(30):11105-11110.

46. Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ: Characterization of a conserved bacterial type VI secretion system and disease. \textit{J Bacteriol} 2002, 184(6):1645-1648.

45. Shekhar S, Soni S, Chaudhary B: \textit{Erwinia amylovora} polyphasic approach to pathogenicity and its effectors in plant-microbe interactions. New Phytol 2008, 177(1):35-47.
70. Fiorentini C, Gauthier M, Donelli G, Boquet P:
71. Zhang Y, Bak DD, Heid H, Geider K:
72. Fiorentini C, Falzano L, Travaglione S, Fabbri A:
73. Rausch C, Weber T, Kohlbach er O, Wohlleben W, Huson DH:
74. Bender CL, Alarcon-Chavez F, Gross DC:
75. Smith DJ, Earl AJ, Turner G:

53. Wanker E, Huber A, Schwab H: Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli. Appl Environ Microbiol 1995, 61(8):1953-1958.

54. Suleman P, Steiner P: Regulation of type I fimbriae synthesis and biofilm formation by the transcriptional regulator LrhA of Escherichia coli. Microbiology 2005, 151(10):3287-3298.

55. Darling AC, Mau B, Blattner FR, Perna NT: Identification of conserved genomic sequence with rearrangements. Genome Res 2004, 14(7):1394-1403.

56. Edwards RA, Puente JL: GTP-binding protein: what microbes teach us about cell regulation. J Leukoc Biol 2000, 68(4):219-227.

57. Blumer C, Kleefeld A, Lehnen D, Heintzen M, Dobrindt U, Nagy G, Michaelis K, Em Daly L, Poken T, Rachel R, et al.: Regulation of type 1 fimbriae production in E. coli and Salmonella. J Bacteriol 1992, 174(20):6350-6358.

58. Ashkar AA, Massmann KL, Cobbs BK, Gyles CL, Mackenzie R: FinM adhesin of type 1 fimbriae is a potent inducer of innate antimicrobial responses which requires TLH and type I intercellular signalling. PLoS Pathog 2008, 4(12):e1000233.

59. Edwards RA, Puente JL: Fimbrial expression in enteric bacteria: a critical step in intestinal pathogenesis. Trends Microbiol 1998, 6(7):282-287.

60. Bakker D, Willemsen PT, Willems RH, Huisman TT, Mooi FR, Oudega B, Stegehuis F, de Graaf FK: Molecular characterization of a minor fimbrial subunit involved in biofilm formation of K88 fimbriae. J Bacteriol 1992, 174(20):6350-6358.

61. Anantha RP, McVeigh AL, Lee LH, Agnew MK, Cassels FJ, Scott DA, Whittam TS, Savarino SJ: Evolutionary and functional relationships of colonization factor antigens and other class 5 adhesive fimbriae of enterotoxicogenic Escherichia coli. Infect Immun 2004, 72(12):7190-7201.

62. Hildebrand M, Aldridge P, Geider K: Characterization of Ins genes from Erwinia amylovora. Mol Genet Genomes 2006, 275(3):310-319.

63. Jonas K, Tomenius H, Cramer A, Normark S, Romling U, Belova LM, Melefors O: Roles of curli, cellulose and BapA in Salmo nella biofilm morphology studied by atomic force microscopy. BMC Microbiol 2007, 7:70.

64. Grotti N, Garavaglia BS, Garofalo CG, Orellana EG, Ottado J: A filamentous hemagglutinin-like protein of Xanthomonas axonopodis pv. citri, the phytopathogen responsible for citrus canker, is involved in bacterial virulence. PLoS One 2009, 4(2):e4358.

65. Toda I, Pritchard L, Birch PR: Comparative genomics reveals what makes an enterobacterial plant pathogen. Annu Rev Phytopathol 2006, 44:305-336.

66. Oh CS, Beer SV: Molecular genetics of Erwinia amylovora involved in the development of fire blight. FEMS Microbiol Lett 2005, 253(2):185-192.

67. Zhang Y, Bak DD, Heid H, Geider K: Molecular characterization of a protease secreted by Erwinia amylovora. J Mol Biol 1999, 289(5):1239-1251.

68. Hofmann P, Le Negrate G, Mogabri I, Hofmann V, Brest P, Alliana-Schmid A, Flatau G, Boquet P, Rossi B: Escherichia coli cytotoxic necrotizing factor-I (CNF-1) increases the adherence to epithelia and the oxidative burst of human polymorphonuclear leukocytes but decreases bacterial phagocytosis. J Leukoc Biol 2000, 68(4):522-528.

69. Rippere-Lampe KE, O'Brien AD, Conran R, Lockman HA: Mutation of the gene encoding cytotoxic necrotizing factor type 1 (cnf1) attenuates the virulence of uropathogenic Escherichia coli. Infect Immun 2001, 69(6):3954-3960.

70. Fiorentini C, Gauthier M, Donelli G, Boquet P: Bacterial toxins and the Rho GTP-binding protein: what microbes teach us about cell regulation. Cell Death Differ 1998, 5(9):720-728.

71. Fiorentini C, Falzano L, Travaglione S, Fabbri A: Hijacking Rho GTPases by protein toxins and apoptosis: molecular strategies of pathogenic bacteria. Cell Death Differ 2003, 10(2):147-152.

72. Duchaud E, Pusnock C, Frangulo L, Buchrieser C, Gavraud A, Taout S, Bocs S, Boursaux-Eude C, Chandler M, Charles JF, et al.: The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat Biotechnol 2003, 21(11):1307-1313.

73. Rausch C, Weber T, Kohlbach er O, Wohlleben W, Huson DH: Specificity prediction of adenylation domains in nonribosomal peptide synthetases (NRPS) using transductive support vector machines (TSVMs). Nucleic Acids Res 2005, 33(18):5799-5808.

74. Bender CL, Alarcon-Chavez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and nonribosomal synthetases. Microbiol Mol Biol Rev 1999, 63(2):266-292.

75. Smith DJ, Earl AJ, Turner G: The multifunctional peptide synthetase performing the first step of penicillin biosynthesis in Penicillium chrysogenum is a 421,073 dalton protein similar to Bacillus brevis peptide antibiotic synthetases. EMBO J 1990, 9(7):2743-2750.

76. Kubo M, Beck A, Zinder SH, Kuhl H, Reinhardt R, Adrian L: Genome sequence of the chlorinated compound-respiring bacterium Dehalococcoides species strain CBDB1. Nat Biotechnol 2003, 21(10):1269-1273.

77. Lyons ER, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, Kravitz SA, Mobarry CM, Reinert KH, Remington KA, et al.: A whole-genome assembly of Drosophila. Science 2000, 287(5461):2196-2204.

78. Gordon D: Viewing and editing assembled sequences using Consed. Curr Protoc Bioinformatics 2003, Chapter 11(Unit 11 12).

79. Delcher AL, Massmann KL, Koop M, Geider K, Schwab H: Improved microbial gene identification with GLIMMER. Nucleic Acids Res 1999, 27(23):4636-4641.

80. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Ballan B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944-945.

81. Rabus R, Kubo M, Beck A, Widdel F, Reinhardt R: Genes involved in the anaerobic degradation of ethylbenzene in a denitrifying bacterium, strain EBN1. Arch Microbiol 2002, 178(6):506-516.

82. Lagesen K, Hallin P, Rodland EA, Stærfeldt HH, Rognes T, Ussery DW: Rfam: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35(9):3100-3108.

83. Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25(3):955-964.

84. Bose M, Barber RD: Prophage Finder: a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol 2006, 6(3):223-227.

85. Overbeek R, Begley T, Butler RM, Chuang HY, Cohoon M, de Crey-Lagard V, Diaz N, Ditz E, Edwards R, et al.: The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 2005, 33(17):5691-5702.

86. Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis Comparison Tool. Bioinformatics 2005, 21(16):3422-3423.