Active Learning for Sound Event Detection
Zhao Shuyang, Toni Heittola, and Tuomas Virtanen

Abstract—This paper proposes an active learning system for sound event detection (SED). It aims at maximizing the accuracy of a learned SED model with limited annotation effort. The proposed system analyzes an initially unlabeled audio dataset, from which it selects sound segments for manual annotation. The candidate segments are generated based on a proposed change point detection approach, and the selection is based on the principle of mismatch-first farthest-traversal. During the training of SED models, recordings are used as training inputs, preserving the long-term context for annotated segments. The proposed system clearly outperforms reference methods in the two datasets used for evaluation (TUT Rare Sound 2017 and TAU Spatial Sound 2019). Training with recordings as context outperforms training with only annotated segments. Mismatch-first farthest-traversal outperforms reference sample selection methods based on random sampling and uncertainty sampling. Remarkably, the required annotation effort can be greatly reduced on the dataset where target sound events are rare: by annotating only 2% of the training data, the achieved SED performance is similar to annotating all the training data.

Index Terms—Active learning, sound event detection, change point detection, mismatch-first farthest-traversal, weakly supervised learning

I. INTRODUCTION

Sound event detection (SED) is a task of automatically identifying sound events such as gunshot, glass smash and baby cry from an audio signal. It predicts the presence of each target sound event and its onset/offset. SED has been applied in various applications, including noise monitoring [1], healthcare monitoring [2], wildlife monitoring [3], urban analysis [4], and multimedia indexing and retrieval [5].

Due to the large number and variability of sound events in real-life acoustic environments, there does not exist an universal SED model. Therefore, most SED applications require their own models. The development of a SED model is commonly based on supervised learning, where a sufficient amount of labeled data is needed. However, data collection is often the most time-consuming part during the development of SED models. Compared to capturing audio data, annotating them is much more time-consuming in most cases. Thus, a practical problem is to optimize the SED accuracy with a limited annotation effort.

Recently, weakly supervised learning has been studied to reduce the required annotation effort in the development of SED models [6], [7]. Weak labels indicate the presence of target event classes in an audio signal, without temporally locating them. In most cases, assigning weak labels is much simpler, compared to assigning strong labels, which requires the onset/offset of each individual sound event.

Despite of the existence of weakly supervised learning, annotating a large amount of data is still time-consuming. Active learning has been used in various machine learning problems [8], [9], where labels are difficult, time-consuming, or expensive to obtain. An active learning algorithm controls a labeling process by selecting the data to be labeled, typically based on an estimate of the capability to improve an existing model. In most cases, active learning targets on the situation where unlabeled data is abundant, but affordable annotation effort can provide labels only to a limited amount of data, which is called a labeling budget.

Active learning for SED has previously not been studied, though a few active learning studies have been made on sound classification [10], [11], [12], [13], [14]. All of these studies are limited to single-label classification on sound segment datasets [15], [16], where a sound segment contains an isolated event. However, the situation is different in SED, which typically deals with long signals containing many sound events, possibly overlapping in time.

In this paper, we propose an active learning system for SED. The system analyzes initially unlabeled audio recordings, from which it selects sound segments for manual annotation. It aims at maximizing the accuracy of the learned SED model, with a limited labeling budget. In addition to the overall system, we also propose the following novelties: (i) Variable-length sound segments are generated as selection candidates using a change point detection approach. To the best of our knowledge, audio change point detection has previously not been used for active learning. Change point detection is used to avoid generating segments that contain only a part of an event, which is sometimes hard to recognize either manually or automatically. (ii) The selection of candidate segments is based on the mismatch-first farthest-traversal principle, which has been shown effective in sound classification [14]. In this study, the selection principle is generalized to the whole labeling process, without clustering in the first stage as is originally proposed. As a result, the process does not require the cluster number as a hyper-parameter, which is sometimes hard to estimate. Furthermore, the sample selection method is extended to multi-label classification. (iii) We propose to use a partial sequence loss during the training of SED models, to preserve the temporal context of a labeled segment in the original recording: each recording is given as an input and the training loss is computed based on only the output within annotated segments. Previously, segments generated from the same recordings are processed independently in the training, such as in UrbanSound8K [16] and Audioset [17].

The structure of the rest of the paper is as follows. Related works are discussed in Section 2. The proposed system is introduced in Section 3. The evaluation of the proposed system is presented in Section 4. The conclusions are drawn in
Section 5.

II. RELATED WORKS

A. Weakly supervised learning

Weakly supervised learning has recently attracted lots of research interests in the field of SED, especially after the release of a large publicly available sound event dataset, Audioset [17], which provides only weak labels. Audioset has been used to learn high-level representations in [18]. The learned representation clearly outperforms hand-crafted features such as log-mel spectrogram in an environmental sound classification dataset [15] and an acoustic scene classification dataset [19]. Furthermore, weakly supervised learning can be also used to directly learn SED models, such as in the task 4 of Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 [20].

In previous studies on weakly supervised learning for SED, a pooling function is used to aggregate frame-level class probabilities into segment-level [18], [21], in order to derive the loss given weak labels as target output. A recent survey [7] identifies five pooling functions used in previous weakly supervised learning studies. Among them, temporal attention [21] appears to be the most favored technique. Furthermore, a temporal attention system tops the performance in Detection and Classification of Acoustic Scenes and Events (DCASE) 2017 challenge task 4 [22].

B. Sample selection

There are different problem setups defined in the field of active learning. Previous studies on sound classification follow the setup of pool-based sampling, where a large collection of unlabeled data is available from the very beginning of a labeling process.

Uncertainty sampling method was studied in [10], [11], [12], where the uncertainty to classify a sample with an existing model was used for sample selection. One of the problems with uncertainty sampling is the unreliable certainty estimation unless a decent amount of data is labeled. In many cases, uncertainty sampling does not outperform random sampling when the labeling budget is low [10], [11]. Another problem with uncertainty sampling is the low diversity in a selection batch, since the samples uncertain to the same model are often similar [23].

A cluster-based active learning was proposed in [13]. Segment-to-segment similarities were measured based on the distribution of MFCCs in each segment in the training dataset. K-medoids clustering was performed on the sound segments, and the centroids of clusters (medoids) were selected for annotation. Therefore, the method is called medoid-based active learning (MAL). A label assigned to a medoid segment was propagated to other cluster members of the medoid as predicted labels. When all the medoids were annotated, another round of clustering was performed. Both the annotated labels and the propagated labels were used in training. MAL relies completely on the similarity measurement. The advantage is that it enables good performance with a low labeling budget, since it does not require a reliable model. However, the method is not optimal as the labeling budget grows, since the selection of samples does not take previously annotated samples into account. Another problem is that the choice of the number of clusters K requires a prior knowledge about a dataset.

As an extension of MAL, mismatch-first farthest-traversal was proposed in [14]. It performs only one round of K-medoids clustering. Thus, it is equivalent to MAL when the labeling budget is lower than K. After annotating the medoids, the sample selection continued with mismatch-first farthest-traversal as the second stage. The samples with mismatched predictions were selected as the primary criterion. The target is to select the samples with wrong predicted labels. The samples with mismatched predictions were further selected by their distances to previously selected samples as the secondary criterion. The target is to maximize the diversity of selected samples. The method clearly outperforms MAL when the labeling budget is higher than K. It also outperforms other reference methods with all evaluated labeling budget. In addition, an approach was proposed to estimate the cluster number K. However, it assumed a relatively balanced number of instances from each sound class. This assumption can hardly be satisfied in SED problems.

III. THE PROPOSED METHOD

The proposed active learning system aims at optimizing the accuracy of a learned SED model, with a limited annotation
The segments are generated based on a change point detection approach, in order to obtain segments containing complete sound events, since segments with only part of an event is sometimes difficult to annotate. Aiming at discriminative features for sound event activities, embeddings are extracted per frame using a pre-trained model, which is described in Section 3.3. Change point detection is performed on the embeddings $Y = [y_1, ..., y_T]$, where each embedding vector $y_t$ corresponds to the time frame $t = 1, 2, ..., T$. A likelihood of a change $\delta(t)$ is measured in each frame $t$ by the cosine distance between the mean of past $M$ and future $M$ frames. In this study, $M$ frames correspond to 0.5 seconds.

The bottom panel in Figure 2 illustrates the likelihood of change estimated at each frame in an example audio signal. A peak in the likelihood is used as a change point. The change points divide an audio signal into segments, which are used as candidates for sample selection and annotation.

### B. Sample Selection

Figure 3 illustrates the active learning process with the generated candidate segments as samples. The sample selection method follows the principle of mismatch-first farthest-traversal [14]. A detailed visualization of the sample selection method is given online.

When selecting the first batch of samples, no annotated samples are available. In order to maximize the diversity of selected samples, farthest-traversal is performed on the whole training set. Farthest-traversal is explained later in this section. An annotator assigns labels to the selected samples, with which a SED model is trained.

Two types of predicted labels are generated for each unlabeled sample. Based on a trained SED model, model-predicted labels are generated. Based on nearest neighbour prediction, propagated labels are generated, according to a distance metric. The similarity between the two types of predicted labels is measured for each unlabeled sample.

The samples are primarily ranked by the prediction similarities, lowest first. There are typically multiple samples with the same prediction similarities. They are further ranked by the distance to the previously selected samples, farthest first. A batch of samples with the highest rank is presented to the annotator and the active learning process continues to the next iteration.

Previous active learning studies on sound classification incorporate the idea of semi-supervised learning, where predicted labels on unlabeled data are also used in training [12], [13], [14]. However, SED is a multi-label classification problem and it has a higher risk of obtaining wrong predicted labels, compared to the single-label classification. Thus, the predicted labels are not used for semi-supervised learning in this study.

1) **Mismatch-first criterion:** At the beginning of each iteration, except the first one, model-predicted labels and propagated labels are generated for each unlabeled sample. Model-predicted labels are derived from the SED outputs of each recording as is illustrated in Figure 4. When a class of
Fig. 3. A visualization of mismatch-first farthest-traversal on an imaginary binary classification problem. In the bottom panel, the range of label propagation is used to visualize the area where an annotated data point propagates its label, according to nearest-neighbour prediction. Farthest-traversal is first performed on samples with mismatched predictions, and then on samples with matched predictions.

Fig. 4. An example of deriving model-predicted labels from sound event detection output.

on a sample $x$ is measured based on the Jaccard index as,

$$J(x) = \begin{cases} \frac{|A_x \cap B_x|}{|A_x \cup B_x|}, & \text{if } A_x \cup B_x \neq \emptyset \\ 1, & \text{if } A_x \cup B_x = \emptyset \end{cases} \quad (1)$$

Samples are first selected within the set $\mathcal{M}$, which consists of the samples with the lowest prediction similarities among the set of unlabeled samples.

The mismatch-first criterion is based on an assumption that a model benefits more from an counter example, where it makes an error, in comparison to an example where it makes a correct prediction. When the prediction results based on two mechanisms mismatch, the sample is a counter example for at least one of the mechanisms. Since nearest neighbour prediction and neural network prediction are two fundamentally different mechanisms, their prediction results are usually supplementary information to each other. In addition, the two prediction mechanisms are based on different context. The nearest neighbour prediction is based only annotated segments, whereas the SED model uses original recordings as context for annotated segments.

2) Farthest-traversal: Farthest-traversal aims at optimizing the diversity of selected samples. It selects the sample farthest to the previously selected samples. The distance between two samples is measured by the cosine distance between the means of embeddings within the two samples. The previously selected samples are denoted as a set $\mathcal{S}$, which is the union of annotated samples and the samples already selected in the current iteration. As a result, a selected sample is neither similar to annotated samples, nor to the ones to be annotated in the same batch. The distance from a sample $x$ to the set of previously selected samples $\mathcal{S}$ is defined as $d(x, S) = \min_{y \in S} d(x, y)$.

With mismatch-first as the primary criterion and farthest-traversal as the secondary criterion, a sample is selected as

$$s = \arg \max_{x \in \mathcal{M}} \min_{y \in S} d(x, y) \quad (2)$$

where $\mathcal{M}$ is the set of samples with the lowest prediction similarities.

The selected samples are added one by one into a selection batch and removed from the set of unlabeled samples, until the batch reaches a pre-defined batch size. After that, the batch of selected samples are presented to the annotator, querying for weak labels. Weak labels of a segment is a set of sound event classes, that are present in the segment.
In order to save annotation effort, this study learns SED models with weak labels. The neural network illustrated in Figure 5 is used for weakly supervised learning. The network architecture follows an attention-based weakly supervised learning system [21], which tops the performance in DCASE 2017 task 4. The input of the network is the log-mel spectrogram of a recording, denoted as $X = [x_1, ..., x_T]$, where each vector $x_t$ represents the log-mel band energies in a time frame $t = 1, 2, ..., T$. The target output is a vector $\tau$, corresponding to the event class activities. Each element in the target output vector $\tau = [\tau_1, ..., \tau_C]$ represents the presence/absence of an event class, 0 for absence and 1 for presence, and $C$ denotes the number of classes.

Compared to the method proposed in [21], which was originally proposed for audio tagging, the proposed system requires higher temporal resolution for SED. Therefore, the network in this study performs only frequency pooling, but not temporal pooling. The network consists of six blocks of gated CNNs, each of which consists of a linear CNN layer and a sigmoid CNN layer. The element-wise product between the outputs of the two CNN layers are fed to the next layer. Compared to traditional CNNs that use rectified linear units as activation function, the gated CNNs reduce the gradient vanishing problem in a deep structure [24].

The gated CNNs transfer the input log-mel spectrogram into a sequence of embeddings $Y = [y_1, ..., y_T]$, where embedding vector $y_t$ corresponds to time frame. The embedding extraction function is denoted as $e(X) = Y$. In order to model long-term temporal context, three bi-directional gated recurrent unit (GRU) layers are used as $Y' = gru(Y)$, where $Y'$ has the same shape as $Y$. For each frame in $Y'$, a fully-connected sigmoid layer is used to estimate the class probabilities $p_t = cla(y'_t)$. In parallel, a fully-connected softmax layer estimates the pooling weights as $w_t = att(y'_t)$.

In order to derive the output for an annotated segment, weighted average of the class probabilities is computed across all frames within the segment. Given the start time point of a segment as $t$ and the length of it as $l$, the weak label output of the segment is computed as

$$o = \sum_{i=t}^{t+l} w_i \cdot p_i, \quad (3)$$

where $\cdot$ represents element-wise multiplication. Binary cross entropy is used to measure the loss between the output and target.

In this study, the gated CNNs that extract embeddings are pre-trained with the balanced set of Audioset [17]. The embedding extraction function is considered as a general knowledge, which can be transferred to different SED problems. During the pre-training, the GRU layers are not used, and embedding vectors are directly fed to the fully-connected layers. The output of the second last layer of a classification network is used as embeddings. This follows the common practice in previous transfer learning studies [18], [25] on sound classification.

In the active learning process, the pre-trained embedding extraction function $e$ is fixed. The parameters of the GRU layers $gru$, the sigmoid layer $cla$ and the softmax layer $att$ are trained with data annotated in the active learning process. With a limited labeling budget, usually a small number of segments are labeled in each recording. During the training, the log-mel spectrogram of full recordings are used as input, but the training loss is derived from only the frames corresponding to labeled segments. When performing SED on test data, the detection output is based on the class probabilities, the output of $cla$, without using the layer $att$.

Previous studies use each annotated segment as a input [16], [17], when recordings are not fully annotated. As a result, they lose the contextual information in the original recordings. The
contextual information may benefit the SED performance from different aspects. Firstly, given background sounds as contextual information, a model can learn the unique characteristics of an event out of the background. Secondly, the contextual information can be used to model the dependencies between acoustic events and scenes. For example, it is common to hear key rattling before door opening and it is common to hear bird chirping in a forest.

IV. EVALUATION

In order to evaluate the performance of the proposed system, two sets of experiments are made on two different datasets. The first one focuses on the training input and annotation unit. The second one focuses on the sample selection method.

A. Datasets and settings

In order to evaluate active learning performances with different SED scenarios, two SED datasets are used in the evaluation. The statistics comparing the two datasets are shown in Table [1]. The first dataset is TUT Rare Sound Events 2017 [27], which is used in challenge of Detection and Classification of Acoustic Scenes and Events (DCASE) 2017, as task 2. The second dataset is TAU Spatial Sound Events 2019 - Ambisonic, which is used in challenge of DCASE 2019 [28], as task 3.

Both datasets consist of synthetic mixtures created by mixing isolated sound event clips with background sounds. Previous sound event detection studies [27], [28] use synthetic datasets as primary evaluation datasets, since the timestamps of sound events in these datasets are precise and consistent. In contrast, real life recordings use manual annotation, where the subjectivity may leads to inconsistency and possibly errors in the labels. The two datasets in this study are chosen to represent scenarios with different sound event densities, which largely affects the active learning performance.

| Dataset                  | TUT Rare Sound Events 2017 | TAU Spatial Sound Events 2019 |
|--------------------------|-----------------------------|-------------------------------|
| Total duration           | 25 h                        | 6 h 40 m                      |
| Training set duration    | 12 h 30 m                   | 5 h                           |
| Target event classes     | 3                           | 11                            |
| EBR                      | [-6 db, 0 db, 6 db]         | 30 db                         |
| Recording length         | 30 s                        | 1 m                           |
| Events per minute        | 1                           | 55                            |

A SUMMARY OF DATASETS USED IN THE EVALUATION.

1) TUT Rare Sound Events 2017: TUT Rare Sound Events 2017 dataset, referred as rare sound dataset later, is created by mixing isolated target sounds from Freesound with background audio in TUT Acoustic Scenes 2016 dataset [19]. There are three target event classes: baby cry, gun shot, and glass breaking. Most gun shot and glass breaking sounds are short, lasting around 200 milliseconds. In comparison, baby cry events are longer, typically ranging between one to four seconds. The background consists of sounds from 15 classes of real acoustic scenes, 78 instances each class. The acoustic scenes are bus, cafe/restaurant, car, city center, forest, grocery store, home, lakeside beach, library, metro station, office, residential area, train, tram, and urban park.

All the background audio tracks last 30 seconds. The sampling rate is 44100 Hz. An audio signal in the rare sound dataset might be either pure background or a target event mixed with a background. The event-to-background ratio (EBR) in dB is randomly chosen from \{-6, 0, 6\}, and the positioning of the target sound in a mixture is also random. The sound events are rare in this dataset, on average one event per minute.

The original rare sound dataset is split into development training set, development test set and evaluation set. Each split of the dataset contains mixtures created with a separate set of background and target sounds. In this study, the development training set is used for training, and development test set is used for evaluation. Both the training and test set contains approximately 1500 audio signals, with 250 target events of each class.

2) TAU Spatial Sound Events 2019: The dataset TAU Spatial Sound Events 2019 dataset, referred as spatial sound dataset later, is originally a spatial audio dataset, which is used for sound event detection and spatial localization task in DCASE 2019 challenge. The dataset is synthetic, and the source of the mixtures are sound events from 11 classes, with 20 instances in each class. Each recording in the spatial sound dataset has around one minute duration, which is mixed with target sound events. On average, each minute of signal contains 55 events, randomly positioned, with possibly overlapping in time. The background is relatively quiet and the EBR of the mixtures is about 30 dB.

The original sampling rate of the dataset is 48 KHz. In the experiments, the recordings are resampled to 44.1 KHz, to match the sampling rate of the pre-trained embedding extraction model. The audio in this dataset has four channels, however only the first channel is used in this study, since this study does not deal with multi-channel audio.

Similar to the usage of the rare sound dataset, this study uses only the development set, ignoring the evaluation set in the challenge. Four-fold cross validation is used, following the original setup of the dataset.

B. Evaluation metric

In this study, segment-based error rate (ER) is used to evaluate the performance of a SED model [29]. The segment length in the segment-based evaluation is one second, which is a common setup in sound event detection studies, such as DCASE 2017 task 3.

The aim of active learning is to optimize the accuracy of learned SED models with a limited labeling budget. Thus, the active learning performance is evaluated by ER as a function of the labeling budget, which is given in proportion to the whole training set.

C. Basic experimental setups

Two sets of experiments are made on the above-mentioned datasets. This section describes common setups...
used in the experiments.

When computing the spectrogram, the frame length is 40 ms and hop length is 20 ms. In each frame, the signal is windowed with the Hanning window and then log-mel energies in 128 bands are calculated. The gated CNN pretrained with Audioset maps a log-mel spectrogram into an embedding sequence with the same number of frames and 256 dimensions. In the segmentation, one second is set as a lower limit of segment length, since annotating too short segments is impractical. The limit of segment length is implemented by ignoring peaks of $\delta(t)$ detected within one second to the previous detected change point.

In the simulation of the labeling process, the ground truth labels are initially hidden to the system. Upon the label query on a segment, annotated labels are simulated according to the ground truth. When a ground-truth sound event overlaps a queried candidate segment with more than 0.1 seconds, a weak label is generated, associating the event class with the segment. It is presumed that an event shorter than 0.1 second cannot be perceived by an annotator.

A SED model is trained with simulated annotations and the performance is benchmarked, when the number of simulated labels reaches an evaluated labeling budget. In this study, the following proportions of the training data as labeling budget are evaluated: 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 20%, 100%. The sample selection batch size is 0.5% of the training data. In TUT Rare Sound dataset, the selection batch size is equal to about 150 segments. In TAU Spatial Sound dataset, the selection batch size is equal to about 60 segments. The study focuses on limited labeling budget, thus most of the evaluated labeling budgets are under 10% of the training data. During the training of a SED model in each iteration, one third of the labeled data is randomly chosen for validation.

The experiments on TUT Rare Sound dataset are repeated five times, and the average performance is reported. The 4-fold validation experiments on the TAU Spatial sound dataset are repeated twice, and the average of the eight results is reported.

In all the experiments with reported results, the same network architecture is used. A preliminary study was made to investigate on the effect of the model complexity with low labeling budget: we tested using a single GRU layer instead of three, when only 1% of the training data was labeled. As a result, the performances are similar among the tested models with different number of layers.

D. Experiment A: training input and annotation unit

1) Experimental setups: The first set of experiments evaluate the effect of preserving original recordings as long-term context for annotated segments during the training of SED models. Two experiments are made to evaluate the training input and annotation unit as variables, separately. Random sampling is used in these experiments.

In the first experiment, the reference method uses only annotated segments as training inputs. Weak labels are used, and the weakly supervised learning follows the proposed network architecture.

In the second experiment, the reference method uses a full recording as an annotation unit, instead of a candidate segment. Strong labels are used, since weak labels are not informative for full recordings in TAU Spatial Sound dataset, where most recordings include all the 11 sound event classes. The proposed method also uses strong labels to make comparison with the reference method. During the model training with strong labels, the attention layer is not used and the training loss is directly computed as the binary cross-entropy between the target and the class probability output on frame basis.

2) Results: The results of experiment A on the two datasets are illustrated in Figure 6 and Figure 7. From the experimental results, there are two main observations.

Firstly, preserving original recordings as the context clearly outperforms training with only annotated segments. In some cases, more than 60% of the labeling budget can be saved to achieve the same accuracy, by using the context. The benefit may be due to two facts. Firstly, an unlabeled part of a recording can be helpful to learn the background of an annotated segment. Secondly, the embedding sequences of only annotated segments can be short, and it may overfit GRUs during the training of SED models.

Secondly, annotating segments is more efficient compared to annotating full recordings. The segments randomly sampled from all the recordings have typically higher diversity, in comparison to a small amount of fully annotated recordings.

E. Experiment B: sampling method

1) Experimental setups: The second sets of experiment focuses on the sample selection method. The first experiment compares mismatch-first farthest-traversal to two reference methods based on random sampling and uncertainty sampling. The second experiment evaluates the effect of two segmentation methods, when mismatch-first farthest-traversal is used.

In random sampling, each candidate segment has an equal probability of being selected. In uncertainty sampling, the certainty of predicting a class $c$ is measured as $2 \times |o_c - 0.5|$, where $o_c$ is the weak label output, or segment-wise class probability. The overall prediction certainty on a sample is defined as the minimum prediction certainty over all the classes. In each iteration, a batch of samples with lowest overall prediction certainties are selected.

The performance of an iterative active learning method depends on the selection batch size. Typically smaller batch size leads to better accuracy, but it requires more training time. In this experiment, the selection batch size is set to 0.5% of the whole trained set, which is about 150 segments in TUT Rare Sound dataset and 60 segments in TAU Spatial Sound dataset. The batch size is chosen for convenience, since the performance of the learned SED model is reported after every two selection batches, according to the evaluated labeling budget.

In the second experiment, the proposed segmentation method based on change point detection is compared to a reference method. The reference method splits each recording into segments with a fixed length of two seconds. The total number of generated segments is similar to variable-length segments generated by the proposed method.
2) Results: The experimental results comparing the sampling methods are illustrated in Figure 8. The results show that the proposed method outperforms reference methods with all evaluated labeling budgets.

In the experiments on TUT Rare Sound dataset, the proposed method outperforms reference methods to a large extent. In this dataset, the target sound events are rare, thus most of the training data has little relevance to the target problem. Therefore, the annotation effort can be greatly reduced with selective sampling, if irrelevant data can be ruled out in the sample selection. As can be seen, uncertainty sampling also outperforms random sampling to a large extent.

Remarkably, the proposed active learning method requires only 2% of the training data to be annotated to achieve a similar performance, compared to annotating all the data. Surprisingly, the best performance is achieved with 5% of the training set as labeling budget. The sound events are rare in the dataset, and most of the segments containing target events are selected within the first 5% of the training set. By the time when 5% of the training data is labeled in a typical case, the segments containing target events comprise 35% of the labeled data, whereas, the segments containing target events comprise only 1.25% of the unlabeled data. The high label distribution bias has a negative effect to the accuracy of learned models, when the labeling budget is higher than 5%. As a result, the accuracy does not improve with increasing labeling budget.

In the experiments on TAU Spatial Sound dataset. The proposed method slightly outperforms the two reference methods, and the performances of the two reference methods are similar. In TAU Spatial Sound dataset, target sound events are dense. In principle, little improvement can be made with selective sampling, when labels on most part of the dataset are relevant to the target SED problem. In this case, the proposed method cannot save much annotation effort.

Combining the effect of sample selection and training with original recordings as context, a clear improvement in performance can be made with proposed system. To achieve ER of 0.55 in TUT Rare Sound dataset, a system that uses random sampling and training with only annotated segments requires 20% of the training set as a labeling budget. In comparison, the proposed method requires annotating only 1% of the training set. To achieve ER of 0.5 in TAU Spatial Sound
Fig. 8. Error rate of learned models as the function of labeling budget for different sampling methods.

Fig. 9. Error rate of learned models as the function of labeling budget for different segmentation methods.

dataset, a system that uses random sampling and training with only annotated segments requires 6% of the training set as labeling budget. In comparison, The proposed system requires annotating only 4% of the training set.

The experimental results comparing the two segmentation methods is illustrated in Figure 9 when mismatch-first farthest-traversal is used. The experiments show that variable-length segments lead to better performance. Mismatch-first farthest-traversal largely depends on the similarity analysis. Since fixed-length segments often contain part of events, the similarities between fixed-length segments are less relevant to their labels, compared to the similarities between variable-length segments, which is targeted to contain complete events.

V. COnCLUSION

In this study, we propose an active learning system for sound event detection (SED), which targets on optimizing the accuracy of a learned SED model with limited annotation effort. The proposed system analyzes an initially unlabeled audio dataset, querying for weak labels on selected sound segments from the dataset. A change point detection method is used to generate variable-length audio segments. The segments are selected and presented to an annotator, based on the principle of mismatch-first farthest-traversal. During the training, full recordings are used as input to preserve the long-term context for annotated segments.

Experimental results show that training with original recordings as context for annotated segments clearly outperforms training with only annotated segments. Mismatch-first farthest-traversal clearly outperforms reference sampling methods based on random sampling and uncertainty sampling. The performance of mismatch-first farthest-traversal depends on the segmentation method that generates the candidate segments. Variable-length segments generated by change point detection lead to clearly better performance than fixed-length segments.

In overall, the proposed method effectively saves annotation effort to achieve the same accuracy, with respect to reference methods. The amount of annotation effort can be saved depends on the distribution of target sound events in the training dataset: larger amount of annotation effort can be saved when the target sound events are rare. On the dataset with rare events, more than 90% of labeling budget can be
saved by using the proposed system, with respect to a system that uses random sampling and annotated segments only for model learning. Notably, by annotating 2% of the training data, the proposed method achieves the same accuracy as training with all the data. On the dataset with dense events, 20%-50% of labeling budget can be saved by using the proposed system, with respect to a system that uses random sampling and annotated segments only for model learning.

REFERENCES

[1] P. Maji, A. Pimentel, and T. Virtanen, “Ensemble learning using source classification in sensors,” Applied Acoustics, vol. 129, no. 6, p. 258–267, January 2018.
[2] R. E. Zemach, J. Schröder, A. Gerlach, D. Hollosi, J. Appell, and F. Wallhoff, “Acoustic monitoring and localization for social care,” ICSE, vol. 6, no. 1, pp. 40–50, 2012. [Online]. Available: https://doi.org/10.3260/ICSE.6.1.40
[3] J. Batista, L. P. F. de Bessa, B. R. de Farias, and L. C. A. Cardoso, “A flexible framework for large audio datasets,” in Proceedings of the 18th International Conference on Machine Learning and Applications, 2019, pp. 625–630. [Online]. Available: https://doi.org/10.1109/ICMLA.2019.00077
[4] Q. Kong, C. Yu, Y. Xue, T. Iqbal, W. Wang, and M. D. Plumbley, “Weakly labeled audiostream tagging with attention neural networks,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 27, no. 11, pp. 1791–1802, 2019. [Online]. Available: https://doi.org/10.1109/TASLP.2019.2939973
[5] Y. Wang, J. Li, and F. Metze, “A comparison of five multiple instance learning pooling functions for sound event detection with weak labeling,” in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2019, Brighton, United Kingdom, May 12–17, 2019, pp. 31–35. [Online]. Available: https://doi.org/10.1109/ICASSP.2019.8862847
[6] S. C. H. Ho, R. Jin, and M. R. Lyu, “Large-scale text categorization by batch mode active learning,” in Proceedings of the 15th International Conference on Web Search and Data Mining, 2021, pp. 633–642. [Online]. Available: https://doi.org/10.1145/3442381.3449777
[7] Y. Liu, “Active learning with support vector machine applied to gene expression data for cancer classification,” Journal of Chemical Information and Modeling, vol. 44, no. 6, pp. 1936–1941, 2004. [Online]. Available: https://doi.org/10.1021/ci049810a
[8] G. Riccardi and D. Hakkani-Tür, “Active learning: theory and applications to automatic speech recognition,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 13, no. 4, pp. 504–511, 2005. [Online]. Available: https://doi.org/10.1109/TASLP.2005.848882
[9] G. Riccardi and D. Hakkani-Tür, “Active learning for automatic speech recognition,” in Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2002, May 13-17 2002, Orlando, Florida, USA, 2002, pp. 3904–3907. [Online]. Available: https://doi.org/10.1109/ICASSP.2002.7245510
[10] W. Han, E. Coutinho, H. Ruan, H. Li, B. Schuller, X. Yu, and X. Zhu, “Semi-supervised active learning for sound classification in hybrid rooms environments,” in IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pp. 6440–6444. [Online]. Available: https://doi.org/10.1109/ICASSP.2016.7472917
[11] G. Riccardi and D. Hakkani-Tür, “Active learning for sound event classification by clustering unlabeled data,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March 5-9, 2017, 2017, pp. 751–755. [Online]. Available: https://doi.org/10.1109/ICASSP.2017.7952261
[12] A. Mesaros, T. Heittola, and T. Virtanen, “TUT database for acoustic scene classification and sound event detection,” in 24th European Signal Processing Conference, EUSIPCO 2016, Budapest, Hungary, August 29 – September 2, 2016, pp. 1128–1132. [Online]. Available: https://doi.org/10.1109/EUSIPCO.2016.7662913
[13] R. Serizel, N. Turpault, H. D. H. Zadeh, and A. P. Shah, “Large-scale weakly labeled semi-supervised sound event detection in domestic environments,” in Proceedings of the Detection and Classification of Acoustic Scenes and Events 2017 Workshop (DCASE2017), 2017, pp. 85–92. [Online]. Available: https://doi.org/10.1109/TCAS.2018.2885636
[14] M. Sassano, “An empirical study of active learning with support vector machines for Japanese word segmentation,” in Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, July 6-12, 2002, Philadelphia, PA, USA, 2002, pp. 505–512. [Online]. Available: https://www.aclweb.org/anthology/P02-1064
[15] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling with gated convolutional networks,” in Proceedings of the 34th International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 July 2017, pp. 933–941. [Online]. Available: http://proceedings.mlr.press/v70/dauphin17a.html
[16] Y. Aytar, C. Vondrick, and A. Torralba, “Screener: Learning sound representations from unlabeled video,” in Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, 2016, pp. 892–900. [Online]. Available: http://papers.nips.cc/paper/6146-screener-learning-sound-representations-from-unlabeled-video
[17] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Sound event localization and detection of overlapping sources using convolutional recurrent neural networks,” J. Sel. Topics Signal Processing, vol. 13, no. 1, pp. 34–48, 2019. [Online]. Available: https://doi.org/10.1109/JSTSP.2018.2885636
[18] F. Çakır, G. Parascandolo, T. Heittola, H. Huttunen, and T. Virtanen, “Convolutional recurrent neural networks for polyphonic sound event detection,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 25, no. 6, pp. 1291–1303, 2017.
[19] G. Parascandolo, H. Huttunen, and T. Virtanen, “Recurrent neural networks for polyphonic sound event detection in real life recordings,” in 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016, Shanghai, China, March 20-25, 2016, pp. 6440–6444. [Online]. Available: https://doi.org/10.1109/ICASSP.2016.7472917
[20] S. Adavanne, A. Politis, J. Nikunen, and T. Virtanen, “Metrics for polyphonic sound event detection,” Applied Sciences, vol. 6, no. 6, p. 162, 2016. [Online]. Available: http://www.mdpi.com/2076-3417/6/6/162
[21] K. J. Piczak, “ESC dataset for environmental sound classification,” in 23rd Annual ACM Conference on Multimedia, 2015, pp. 1015–1018.
[22] J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for urban sound research,” in 2014 ACM International Conference on Multimedia, 2014, pp. 1041–1044. [Online]. Available: http://doi.acm.org/10.1145/2657866.2655045
[23] J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C. Moore, M. Plakal, and M. Ritter, “Audio set: An ontology and human-labeled dataset for audio events,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, 2017, pp. 776–780. [Online]. Available: https://doi.org/10.1109/ICASSP.2017.7952261
[24] A. Kumar, M. Khadkevich, and C. Fügner, “Knowledge transfer from weakly labeled audio using convolutional neural network for sound events and scenes,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2018, Calgary, AB, Canada, April 15-20, 2018, pp. 326–330. [Online]. Available: https://doi.org/10.1109/ICASSP.2018.8462300
Zhao Shuyang received the M.Sc. degree in signal processing from Tampere University of Technology (TUT), 2014. Since 2013, he has been working in Audio Research Group in TUT, where he is currently working towards ph.D. degree. His main research interests include audio content analysis and machine learning.

Toni Heittola received his M.Sc. degree in Information Technology from Tampere University of Technology (TUT), Finland, in 2004. He is currently pursuing the Ph.D. degree at TUT. His main research interests are sound event detection in real-life environments, sound scene classification and audio content analysis.

Tuomas Virtanen is Professor at Tampere University, Finland, where he is leading the Audio Research Group. He received the M.Sc. and Doctor of Science degrees in information technology from Tampere University of Technology in 2001 and 2006, respectively. He has also been working as a research associate at Cambridge University Engineering Department, UK. He is known for his pioneering work on single-channel sound source separation using non-negative matrix factorization based techniques, and their application to noise-robust speech recognition and music content analysis. Recently he has done significant contributions to sound event detection in everyday environments. In addition to the above topics, his research interests include content analysis of audio signals in general and machine learning. He has authored more than 190 scientific publications on the above topics, which have been cited more than 9000 times. He has received the IEEE Signal Processing Society 2012 best paper award for his article “Monaural Sound Source Separation by Nonnegative Matrix Factorization with Temporal Continuity and Sparseness Criteria” as well as three other best paper awards. He is an IEEE Senior Member, member of the Audio and Acoustic Signal Processing Technical Committee of IEEE Signal Processing Society, and recipient of the ERC 2014 Starting Grant.