INTRODUCTION

Plumbago zeylanica is a family of Plumbaginaceae and commonly known as “chittiramulam or vellai” in Tamil and widely distributed in southern parts of India. In the traditional system of medicine, different parts of the plant used a variety of diseases [1,2]. P. zeylanica is widely used as a gastrointestinal disease [3], respiratory disease [4], gonorrhea and syphilis [5], inflammatory diseases [6], scabies [7], blood coagulation profile activity [8], anti-allergic activity [1], central nervous system (CNS) stimulant activity [9], antioxidant [10], anti-infertility activity [11], lipid metabolism activity [12], and cytotoxicity activity [13]. There is no documentary evidence of contraindication and interaction. Subcutaneous injection of the carrageenan is to promote hyperalgesia and to develop erythema. This response due to pro-inflammatory mediators such as bradykinin, histamine, tachykinins, reactive oxygen, and nitrogen species [14]. These mediators readily migrate to sites of inflammation and proven with current study. After administration of the carrageenan showed significant inflammatory response in paw edema model [15]. Inflammation is a disorder involving swelling associated with multiple complex mediators [16]. Inflammation is a pathological state and characterized by concurrent active inflammation, tissue destruction, and attempts at repairing stage [17]. The natural system of medicines is believed that one of the important source of health-care field [18]. However, we investigated the protective effect of dichloromethane extract of P. zeylanica (DMEPZ) influence on regulating complex mediators in inflammatory rats to provide a definite experimental base for the clinical medication.

METHODS

Preparation of the extracts

The roots of P. zeylanica were collected in Nellore District, India. Botanical identification and voucher specimen No. RIP/2013/120 has been deposited in the museum of the Department of Pharmacognosy at Ratnam Institute of Pharmacy, Nellore, India. The roots were dried under shade, segregated, and pulverized by a mechanical grinder and passed through a 40 mesh sieve. The powdered 1 kg of the material was soaked in solvent dichloromethane (4000 mL) for 48 hrs and repeats the process for thrice to get complete extraction. The solvent was removed in a rotary vacuum and stored in an airtight container.

Drugs and chemicals

Carrageenan was obtained from SD. Fine Chemicals Limited, Bombay. All other chemicals were of analytical grade procured from reputed Indian manufacturers.

Experimental animals

The experimental design was approved by the Institutional ethical committee of Ratnam Institute of Pharmacy, Nellore (Ethical Approval No. 13/Institutional Animal Ethics Committee/Pharma/RIP/2013). Male albino Wistar rats weighing 180-200 g (6-8 weeks) were supplied from animal facility and housed six animals per cage at 23-25°C and relative humidity between 55 and 58%, respectively. They had access to food and water ad libitum and were exposed to alternate 12 hrs light and dark cycles.

Acute toxicity study

The acute toxicity study was carried out albino Wistar rats. The experiment made into six groups containing six animals in each group. DMEPZ was suspended in critical micelle concentration + dimethyl-sulphoxide and starting dose from 5, 50, 100, 200, and 400 to 2000 mg/kg body weight (bw) to all groups, respectively. These animals were observed for a 72 hrs period. The number of deaths was expressed as a percentile and the lethal dose 50 (LD50) was determined by probit a test using the death percentage versus the log dose [19].
The time at which signs of toxicity appear and disappear was observed systematically and recorded for each animal.

Carrageenan-induced rat paw oedema
A total of 30 animals were equally divided into 5 groups of six each. Before the experimental study allowed for overnight fasting in the rats. All the groups of rats, hindpaw volume measured by the plethysmograph instrument (Yukui et al.). All the groups were injected 0.1 mL of a suspension of 1% carrageenan under the subplantar aponeurosis of the right hind paw of rats except Group I. Group I is the positive control and injected 0.1 mL saline. Group II is a negative control and injected 0.1 mL of a suspension of 1% carrageenan under the subplantar region. Group V served as positive control and received diclofenac sodium was injected intraperitoneally at 25 mg/kg b.w 1 h before carrageenan injection. Group III and IV were orally administered with DMEPZ 250, 500 mg/kg b.w, respectively. After carrageenan injection, paw volume was measured at 1, 2, and 3 hrs to determine the inflammatory activity.

In the rats, percentage of inhibition of edema calculated using the following formula,

\[
\text{% of inhibition of oedema} = \frac{Vc - Vt}{Vc} \times 100
\]

Where, Vc is the edema in the disease control group and Vt is the edema in the treatment group.

Cotton pellet-induced granuloma
A total of 24 were equally divided into four groups of six each. The sterile cotton pellets in milligram of 10±1 were implanted to subcutaneously into both sides of the groins region of each rat, and before the pellets implantation rats were anesthetized. Group I received the vehicle (0.9% NaCl 10 mL/kg b.w) and served as control. The dose of 250 and 500 mg/kg b.w of DMEPZ was orally administered as Group II and III rats for seven consecutive days from the first day of cotton pellet implantation. Diclofenac at a dose of 25 mg/kg b.w received group IV.

Table 1: HPLC profiles of the DMEPZ

Retention time (min)	Area (mV)	Height (mV)	Area (%)	Height (%)
3.580	46.3701	2.7367	0.3292	0.3232
4.860	31.0003	3.9909	0.4240	0.4714
6.713	91.5804	5.8665	0.6725	0.6429
7.447	419.5180	22.7855	2.9192	2.6913
8.233	137.2056	13.0742	1.5443	1.4544
8.880	460.7721	316.7515	26.3048	25.3143
10.147	21.8959	1.5991	0.1452	0.1389
10.867	18.9115	0.8879	0.0827	0.0749
13.247	54.9761	3.3796	0.3825	0.3692
14.400	44.8306	2.3031	0.3119	0.2720
15.180	892.58227	461.7467	62.1094	58.5395
24.833	128.1171	3.6027	0.0891	0.0425
27.660	195.0064	5.6933	1.3569	0.6725
38.853	105.1888	2.2108	0.7320	0.6211

Values are expressed as mean±SE (n=6). Data were analyzed using one-way analysis of variance followed by Dunnett’s multiple comparison test.

Table 2: Effect of DMEPZ on cotton pellets-induced granuloma in rats

Treatment	Dose (mg/kg)	Weight of wet cotton pellets (mg)	Percentage inhibition	Weight of dry cotton pellets (mg)	Percentage inhibition
Control	Saline 2 mL	102.34±1.44	41.64	33.66±0.62	30.35
DMEPZ	250	106.40±1.77	41.64	25.17±0.62	47.92
Diclofenac	500	80.52±1.62	55.84	23.54±0.58	51.29

Values are expressed as mean±SE (n=6). Data were analyzed using one-way analysis of variance followed by Dunnett’s multiple comparison test. *p<0.001; p<0.05 considered as significant; NS: Non-significant; All groups are compared with normal control. SE: Standard error, DMEPZ: Dichloromethane extract of Plumbago zeylanica.

Table 3: Effect of DMEPZ on carrageenan-induced rat paw oedema

Treatment	Dose (mg/kg)	Percentage inhibition	Weight of wet cotton pellets (mg)	Percentage inhibition	Weight of dry cotton pellets (mg)
Control	Saline 2 mL	41.64	102.34±1.44	41.64	33.66±0.62
DMEPZ	250	41.64	106.40±1.77	41.64	25.17±0.62
Diclofenac	500	55.84	80.52±1.62	55.84	23.54±0.58

Values are expressed as mean±SE (n=6). Data were analyzed using one-way analysis of variance followed by Dunnett’s multiple comparison test. *p<0.001; p<0.05 considered as significant; NS: Non-significant; All groups are compared with normal control. SE: Standard error, DMEPZ: Dichloromethane extract of Plumbago zeylanica.
Asian J Pharm Clin Res, Vol 10, Issue 10, 2017, 372-375

Vetriselvan

Non-steroidal anti-inflammatory drug including indomethacin or aspirin is not inhibiting initial phase of edema and has been attributed to the release of chemical mediators. The second phase of swelling attributed to the production of cyclooxygenase-2 in the hind paw as revealed in previous study [22]. In the recent years, the biological effect of phytosterols emphasis on their in vitro and in vivo immune modulatory activity [23].

Some of the chemotactic and chemokinetic agents reported to be involved topical inflammation through arachidonic acid by lipoxygenase activity such as 12-hydroxy-6,8,11,14-eicosatetraenoic acid from platelets, leukotriene B4 from polymorphonuclear leukocytes, and 5-hydroxy-6,8,11,14-eicosatetraenoic acid [24]. Carrageenan-induced edema has been commonly used as an experimental animal model for acute inflammation. In the carrageenan-induced rat paw edema model, except control group, and all examined with DMEPZ administered orally. The results showed significant anti-inflammatory activity, where dose 500 mg/kg exhibited the highest effect. Initially, 1-2 h, carrageenan mainly mediated by histamine, serotonin, and increased synthesis of prostaglandins in the damaged tissue surroundings [25]. After sustained by prostaglandin release and mediated by Bradykinin, leukotrienes, and polymorphonuclear cells [26]. The findings of the present study confirmed carrageenan causes the production and release of nitric oxide (NO) at the injured site NO, which alerts pathological conditions of NO synthesis, this could be involved in tissue injury, including edema and hyperalgesia condition [27].

Treatment with P. zeylanica extract showed significant action against paw edema in a dose-dependent manner. At 500 mg/kg dose of DMEPZ was quite comparable to diclofenac (25 mg/kg). The present study results indicate that a dose of 250 and 500 mg/kg b.w influencing against the inflammatory process. The inflammation due to arachidonic cofactors also revealed a previous study [28]. Among groups, cotton pellet granuloma tissue compared with wet and dry weight of the cotton pellets. Different dose of 250 and 500 mg/kg b.w of DMEPZ showed curing effect of inflammation comparable to diclofenac treatment. The results demonstrated that herbal medicine has ability to treat inflammatory diseases. Hence, it needs further detailed pharmacological and clinical investigations to prove it as an effective therapeutic agent for inflammation.

CONCLUSION

P. zeylanica extract showed active against carrageenan-induced rat paw edema in a dose-dependent manner. At 500 mg/kg P. zeylanica was comparable to diclofenac (25 mg/kg) in the inhibition of paw edema. The effect of DMEPZ may be attributed to its free radical scavenger activity and protection of apoptosis. In the experimental models, DMEPZ was found to exhibit significant (p<0.001) anti-inflammatory activity.

Fig. 2: High-performance liquid chromatography profiles of the dichloromethane extract of Plumbago zeylanica

Fig. 1: (a) Effect of dichloromethane extract of Plumbago zeylanica (DMEPZ) on carrageenan-induced rat (b) effect of DMEPZ on carrageenan-induced paw edema (basal time) rat paw edema (after 1 hr) (c) effect of DMEPZ on carrageenan-induced rat paw edema (after 3 hrs)
and the results were comparable to standard drug of diclofenac. Thus, the present study revealed DMEPZ phytoconstituents exerts the desired effects against hypersensitivity and inflammation.

ACKNOWLEDGMENTS
Authors are thanking to Department of Pharmacology, Ratnam Institute of Pharmacy, India for providing necessary facilities for carrying out research work.

REFERENCES
1. Tabassum N, Hamdani M. Plants used to treat skin diseases. Pharmacogn Rev 2014;8(15):52-60.
2. Shankar R, Lavekar GS, Deb S, Sharma BK. Traditional healing practice and folk medicines used by Mishing community of North East India. J Ayurveda Integ Med 2012;3(3):124-9.
3. Maurya SK, Seth A, Laloo D, Singh NK, Gautam DN, Singh AK. Sodhana: An Ayurvedic process for detoxification and modification of therapeutic activities of poisonous medicinal plants. Anc Sci Life 2015;34(4):188-97.
4. Kumar D, Ganguly K, Hegde HV, Patil PA, Roy S, Kholkute SD. Activity of Plumbago zeylanica Linn. Root and Holoptelea integrifolia Roxb. Bark pastes in acute and chronic paw inflammation in Wistar rat. J Ayurveda Integ Med 2014;5:33-7.
5. Kishore N, Mishra BB, Tiwari KV, Tripathi V. An account of phytochemicals from Plumbago zeylanica (Family: Plumbaginaceae): A natural gift to human being. Chron Young Sci 2012;3:178-98.
6. Parekar RR, Bolegave SS, Marathe PA, Rege NN. Experimental evaluation of analgesic, anti-inflammatory and anti-platelet potential of Dashmooloa. J Ayurveda Integ Med 2015;6(1):11-8.
7. Ariyahanathan S, Saraswathy A, Rajamanickam GV. Quality control standards for the roots of three plumbago species. Indian J Pharm Sci 2010;72(1):86-91.
8. Shukla P, Singh RK. Toxicogenomics of phenylhydrazine induced hematotoxicity and its attenuation by plumbagin from Plumbago zeylanica. Pharmacogn Mag 2015;11 Suppl 3:S380-7.
9. Intiyavirah SP, Raby R. Effect of hydro-alcoholic root extract of Plumbago zeylanica l alone and its combination with aqueous leaf extract of Camellia sinensis on haloperidol induced Parkinsonism in Wistar rats. Ann Neurosci 2014;21(2):47-50.
10. Dai Y, Hou LF, Chan YP, Cheng L, But PP. Inhibition of immediate allergic reactions by ethanol extract from Plumbago zeylanica stems. Biol Pharm Bull 2004;27(3):429-32.
11. Bopaiah CP, Pradhan N. Central nervous system stimulatory action from the root extract of Plumbago zeylanica in rats. Phytother Res 2001;15(2):153-6.
12. Jain P, Sharma HP, Basri F, Baraik B, Kumar S, Pathak C. Pharmacological profiles of ethno-medicinal plant: Plumbago zeylanica l. A review. Int J Pharm Sci Res 2014;24:157-63.
13. Kumar D, Patil PA, Roy S, Kholkute SD, Hegde HV, Nair V. Comparative toxicity profiles of Plumbago zeylanica L. Root petroleum ether, acetone and hydroalcoholic extracts in Wistar rats. Ayu 2015;36:329-34.
14. Zhilos AV. TRP channels in respiratory pathophysiology: The role of oxidative, chemical irritant and temperature stimuli. Curr Neuropharmacol 2015;13(2):279-91.
15. Ma Y, Li Y, Li X, Wu Y. Anti-inflammatory effects of 4-methylcyclopentadecanone on edema models in mice. Int J Mol Sci 2013;14(12):23980-92.
16. Ricciotti E, Fitzgerald AG. Prostaglandins and Inflammation. Arterioscler Thromb Vasc Biol 2011;31:986-1000.
17. Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair: Positive actions and negative reactions. Adv Wound Care (New Rochelle) 2013;2(7):379-88.
18. Ameni D, Baghiani A, Boumener F, Dahamina S, Khennouf S, Abu Zarga MH, et al. Phytochemical profiles, antioxidant capacity and protective effect against AAPH-induced mouse erythrocyte damage by Daphne Gnidium L. Shoots extracts. Int J Pharm Pharm Sci 2015;11:148-56.
19. Raj J, Chandra M, Dogra TD, Pahuja M, Raina A. Determination of median lethal dose of combination of endosulfan and cypermethrin in wistar rat. Toxicol Int 2013;20(1):1-5.
20. Tilak JC, Adhikari S, Devasagayam TP. Antioxidant properties of Plumbago zeylanica, an Indian medicinal plant and its active ingredient, plumbagin. Redox Rep 2004;9(4):219-27.
21. Nesa L, Munira S, Mollika S, Islam M, Choin H, Chouduri AU, et al. Assessment of IL-6, IL-8 and TNF-a levels in the gingival tissue of patients with periodontitis. Exp Ther Med 2013;6(1):847-51.
22. Chattopadhyay P, Hazarika S, Dhiman S, Upadhyay A, Pandey A, Karmakar S, et al. Vitex negundo inhibits cyclooxygenase-2 inflammatory cytokine-mediated inflammation on carrageenan-induced rat hind paw edema. Pharmacognosy Res 2012;4(3):134-7.
23. Haj Said AA, El Omrani IS, Derfoufi S, Moussa AB. Highlights on nutritional and therapeutic value of stinging nettle (Urtica dioica). Int J Pharm Pharm Sci 2015;7:8-14.
24. Viljoen A, Mncwango N, Vermaak I. Anti-inflammatory iridoids of botanical origin. Curr Med Chem 2012;19(14):2104-27.
25. Noh MK, Jung M, Kim SH, Lee SR, Park KH, Kim DH, et al. Hematotoxicity and its attenuation by plumbagin from Plumbago zeylanica Linn. Root and Holoptelea integrifolia Roxb. Barks. J Ethnopharmacol 2015;167:117-22.
26. Nesa L, Munira S, Mollika S, Islam M, Choin H, Chouduri AU, et al. Evaluation of analgesic, anti-inflammatory and CNS depressant activities of methanolic extract of Plumbago zeylanica l in mice. Ayurveda 2015;36:329-34.