Grazing intensity is key to global grassland carbon sequestration potential

Philip L Staddon & Maede Faghihinia

To cite this article: Philip L Staddon & Maede Faghihinia (2021) Grazing intensity is key to global grassland carbon sequestration potential, Sustainable Environment, 7:1, 1895474, DOI: 10.1080/27658511.2021.1895474

To link to this article: https://doi.org/10.1080/27658511.2021.1895474

© 2021 The Author(s). This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Published online: 11 Apr 2021.

Submit your article to this journal

Article views: 42

View related articles
Grazing intensity is key to global grassland carbon sequestration potential

Philip L Staddon and Maede Faghihinia

ABSTRACT
Grasslands are coming under ever-increasing pressure worldwide. Many grasslands are degraded due to overgrazing and inappropriate land management. This is impacting belowground biology and soil biological processes. One aspect that deserves far greater attention is the intensity of grazing and how this impacts grassland soil ecosystems. Grazing intensity impacts soil organisms including their diversity and activity, and the soil carbon cycle. However, environmental characteristics determine in part the effects of grazing intensity on soil processes. In addition, many questions remain to be answered in relation to the type of livestock and grazing regime. Only with a fuller understanding of the impacts of grazing on the soil ecosystem will it be possible to advise farmers and land managers on optimal grazing choices for a sustainable future.

Food security and climate change mitigation are arguably the two most significant challenges facing humanity. Because agriculture accounts for an ever-increasing share of the world’s net primary production, the management of agricultural land and soil has implications for the global carbon cycle and feedbacks to climate change. This is true for all agricultural systems be they arable, permanent crops or livestock focused. Land used for livestock grazing accounts for about 60% of total agricultural land (FAO 2020) and includes much of the grassland area worldwide, from arid rangelands, such as steppes and savannas, to wetter temperate grasslands. The demand for meat production from an increasingly affluent and growing human population (Ritchie, 2017) is adding pressure to many grasslands, many of which are now classified as degraded as a result of overuse and especially overgrazing. This degradation of grasslands will ultimately impact the sustainability of their use for meat production whilst also leading to positive feedback on climate change as carbon is both lost from grassland soils and less is being sequestered as a result of sparser vegetation. Despite much research being undertaken on the impacts of grazing on ecosystem function in grasslands, including on belowground processes, there is a dearth of information on how grazing intensity per se or livestock density impacts grasslands and their carbon balance. Indeed, much of the research to date compares grazed versus non-grazed grassland, although more recently there has been a belated focus on this issue of grazing intensity. In the last couple of years, a wealth of studies have highlighted how little we actually know about the effects grazing management choices are having on grassland ecosystem functioning.

As traditional livestock farming approaches disappear in favor of intensification, there is increasing evidence of the benefits of low-level livestock grazing in many systems. In Spain, for example, grazing abandonment in Quercus dehesa grassland has led to lower soil carbon content (Oggioni et al., 2020). However, in other systems such as alpine steppe in the Tibetan Plateau, it has been reported that the removal of grazing leads to increased soil carbon content (Liu et al., 2020). Zhan et al. (2020) highlight the lack of understanding of how grazing intensity impacts grassland ecosystem functioning, especially belowground. In a meta-analysis across grasslands in China, classified into low, medium and high grazing intensities, they found that soil microbial activity and soil organic carbon were the highest under low grazing intensity. Similarly, Jiang et al. (2020) found that low-intensity grazing increased soil carbon content in Chinese grasslands, whereas moderate to high grazing intensity decreased it. Going hand in hand with impacts on grassland soil carbon stocks, grazing intensity impacts the nitrogen cycle and availability of nutrients, including micronutrients, in the soil (Hou et al., 2020).
A key component of soil biota in grasslands is the arbuscular mycorrhizal fungi, which form symbiotic associations with plant roots (Staddon et al., 2002). Mycorrhizal fungi assist the plant with nutrient acquisition and, also act as a direct pathway for movement of carbon from the plant to the soil. As such, they are a central component of the soil carbon cycle and play a significant role in determining soil carbon sequestration (Staddon, 2003). Only relatively recently has much effort been spent investigating the impact of livestock on mycorrhizal fungi (Figure 1), leading to a focus on the impact of grazing intensity on mycorrhizas. Faghihinia et al. (2020b) demonstrated that increasing grazing intensity led to decreasing mycorrhizal hyphal density in the soil, which would have implications for both the nutrient uptake capacity of mycorrhizas and carbon translocation into the bulk soil. Focusing on soil microbial biomass more generally, Toledo et al. (2020) showed that high grazing intensity decreased microbial biomass carbon in three ecological areas in Patagonia. They however noted that the effect of grazing intensity on soil microbial communities is moderated by environmental characteristics of the ecological areas, including seasonality (Toledo et al., 2020). This seasonality effect on the impact of grazing intensity was also reported for mycorrhizal fungi in North China steppe (Faghihinia et al., 2020a).

It is also worth highlighting that with regard to grazing impacts on grasslands, it is not only intensity that has often been overlooked but also the make-up of the grazing livestock involved, namely single or multiple species. Indeed, it has recently been shown that grazing by a mix of cattle and sheep can stimulate net carbon sequestration in grassland when compared to either of the species alone (Chang et al., 2020). Due to the dual challenges of securing food security (especially protein) and mitigating climate change, much more effort is required to better understand the impacts of grazing intensity and types on grassland ecosystem functioning. Only then will it be possible to advise farmers, landowners and governments on optimal grazing choices to secure the best long-term sustainable outcomes for ecosystem services under a range of conditions, including those resulting from climate change.

Public Interest Statement

Climate change and sustainability are now important considerations for governments and the public worldwide. The understanding that land needs to be managed more sustainably to secure food and water for future generations, as well as mitigate climate change, is now accepted by the public. In many cases, however, there is a lack of evidence as to what are the most appropriate solutions for maximizing target ecosystem services. How grasslands are managed is a case in point. This short communication offers a perspective on the knowledge gaps with regard to livestock management on grasslands. The optimal grazing density or grazing approach for the sustainable use of different grasslands is unknown. Yet without a sound scientific evidence base, it is not possible to advise land managers on which grazing management choice is the most appropriate for the sustainable provision of ecosystem services.

Author description

Dr Staddon is a principal lecturer in environment and sustainability at the Countryside and Community
mycorrhizal fungal abundance to a range of long-term grazing intensities. *Rhizosphere*, 13, 100178. https://doi.org/10.1016/j.rhsph.2019.100178

FAO (2020) Land use in agriculture by the numbers. *Food and Agriculture Organization of the United Nations*. http://www.fao.org/sustainability/news/detail/en/c/1274219/accessed17.02.21

Hou, D., Guo, K., & Liu, C. (2020). Asymmetric effects of grazing intensity on macroelements and microelements in grassland soil and plants in Inner Mongolia grazing alters nutrient dynamics of grasslands. *Ecology and Evolution*, 10 (16), 8916–8926. https://doi.org/10.1002/ece3.6591

Jiang, Z.-Y., Hu, Z.-M., Lai, D. Y. F., Han, D.-R., Wang, M., Liu, M., Zhang, M., & Guo, M.-Y. (2020). Light grazing facilitates carbon accumulation in subsoil in Chinese grasslands: A meta-analysis. *Global Change Biology*, 26(12), 7186–7197. https://doi.org/10.1111/gcb.15326

Liu, Y., Tenzintarchen, G. X., Wei, D., Dai, D., & Xu-Ri. (2020). Grazing exclusion enhanced net ecosystem carbon uptake but decreased plant nutrient content in an alpine steppe. *Catena*, 195, 104799. https://doi.org/10.1016/j.catena.2020.104799

Oggoni, S. D., Ochoa-Hueso, R., & Peco, B. (2020). Livestock grazing abandonment reduces soil microbial activity and carbon storage in a Mediterranean Dehesa. *Applied Soil Ecology*, 153, 103588. https://doi.org/10.1016/j.apsoil.2020.103588

Ritchie, H. (2017) *Meat and dairy production. Published online at OurWorldInData.org with data sourced from the UN Food and Agricultural Organization*. https://ourworldindata.org/meat-productionaccessed17.02.21.

Staddon, P. L. (2003). Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of \(^{14}\)C. *Science*, 300(5622), 1138–1140. https://doi.org/10.1126/science.1084269

Staddon, P. L., Heinemeyer, A., & Fitter, A. H. (2002). Mycorrhizas and global environmental change: Research at different scales. *Plant and Soil*, 244(1/2), 253–261. https://doi.org/10.1023/A:102085309675

Toledo, S., Peri, P. L., Correa, O. S., Gargaglione, V., & Gonzalez-Polo, M. (2020). Soil microbial communities respond to an environmental gradient of grazing intensity in south Patagonia Argentina. *Journal of Arid Environments*, 184, 104300. https://doi.org/10.1016/j.jaridenv.2020.104318

Zhan, T., Zhang, Z., Sun, J., Liu, M., Zhang, X., Peng, F., Tsunekawa, A., Zhou, H., Gou, X., & Fu, S. (2020). Meta-analysis demonstrating that moderate grazing can improve the soil quality across China’s grassland ecosystems. *Applied Soil Ecology*, 147, 103438. https://doi.org/10.1016/j.apsoil.2019.103438