Distribution of the transfer matrix in disordered wires

M Ancliff

Department of Physics, Catholic University of Korea, Bucheon, Gyeonggi 420-743, Korea

E-mail: mark.ancliff@catholic.ac.kr

Received 29 January 2016, revised 16 April 2016
Accepted for publication 16 May 2016
Published 6 June 2016

Abstract

A closed expression is derived for the probability distribution of the transfer matrix for a particle moving in one-dimension with delta-correlated, weak disorder. The change in the distribution as a function of wire length is described by a diffusion equation on the SU(1, 1) group, which is solved through the decomposition of the regular representation into irreducible components. The expression generalizes a number of well-known results, including the distributions of the transmission coefficient and local density of states. As an application, the average single energy-level contribution to the persistent current in a flux threaded ring is derived.

Keywords: electronic transport, disordered mesoscopic systems, representation theory

1. Introduction

The one-dimensional disordered wire represents the simplest example of a disordered mesoscopic system. Over the past 50 years it has been analyzed using a variety of techniques, such as diagrammatics [1–3], Fokker–Planck equations [4], and functional-integration [5]. The system is unusual in that exact expressions can be obtained for many quantities, such as distribution of the transmission coefficient [4], distribution of local density of states [3], and density–density correlators [2].

The system can be described through the transfer matrix, \(T_E(x, x') \), which defines the transport of electrons at energy \(E \). The main result of this paper is a derivation of the distribution of the transfer matrix \(T_E \) in the case of short-range, Gaussian disorder. This distribution entails known results for the transmission coefficients, local density of states, and density–density correlators (at a single energy), but is not entailed by them, and as such represents a new exact result for the disordered wire.
The result is obtained by utilizing the representation theory of the pseudo-unitary group $SU(1, 1)$. Conservation of the probability current implies that the transfer matrix belongs to this group, and therefore the distribution of transfer matrices belongs to the regular representation of functions on the group. All calculations of physical quantities at a single energy can be rewritten as problems in the representation theory.

The paper is organized as follows. In section 2 we derive a diffusion equation on the group for the distribution of transfer matrices as a function of wire length. In section 3 we solve the diffusion equation by decomposing the regular representation into irreducible unitary subrepresentations. Section 4 analyses the distribution and shows how the distributions of other physical properties can be obtained from it. Finally, as an application, section 5 considers the case of a disordered ring. Specifically, the average contribution to the persistent current from electrons in a given energy interval is calculated. The paper concludes with a discussion of possible generalizations of the representation-theoretic method presented here to other systems.

2. Diffusion equation for the probability distribution

We choose units so that $\hbar = 2m = 1$ and consider the one-dimensional Hamiltonian, $H = -\partial_x^2 + V(x)$, where $V(x)$ is Gaussian distributed and $(V(x)V(x')) = \alpha^2 \delta(x - x')$. For weak disorder it is reasonable to write an Eigenstate of energy E as a sum of right- and left-moving parts

$$\psi(x) = \phi_R(x)e^{ikx} + \phi_L(x)e^{-ikx}, \quad (1)$$

where $k = \sqrt{E}$, and $\phi_R(x)$ and $\phi_L(x)$ are slowly changing functions (i.e. $|\phi_R(x)/\phi_L(x)| \ll k$). The equation $H\psi = E\psi$ is equivalent to the condition

$$\frac{d}{dx} \left(\begin{array}{c} \phi_R \\ \phi_L \end{array} \right) = -\frac{V(x)}{2k} \left(\begin{array}{cc} i & e^{-2ikx} \\ -ie^{2ikx} & -i \end{array} \right) \left(\begin{array}{c} \phi_R \\ \phi_L \end{array} \right). \quad (2)$$

In what follows we denote the matrix occurring on the right-hand side of (2) by $A(x)$. The transfer matrix $T(x, x')$ between any two points x and x' on the wire is defined by the condition $\phi(x) = T(x, x')\phi(x')$. From (2) it follows that

$$\frac{d}{dx} T(x, x') = -\frac{V(x)}{2k} A(x) T(x, x'). \quad (3)$$

The group $SU(1, 1)$ is composed of 2×2 matrices T satisfying the condition $T A T^\dagger = \Lambda$, where $\Lambda = \text{diag}(1, -1)$. Its algebra, defined as the tangent space of the group at the identity, is therefore composed of matrices η satisfying $\eta \Lambda + A\eta^\dagger = 0$. It is straightforward to check that the matrix $A(x)$ lies in the $SU(1, 1)$ algebra, and therefore (3) is a differential equation on the $SU(1, 1)$ group. Choosing a basis for the algebra

$$L_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad L_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad L_z = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \quad (4)$$

allows us to write $A(x) = L_z - \cos(2kx)L_y + \sin(2kx)L_x$.

Equation (3) is a significant generalization of (2): while in the former the representation on which the group acts is fixed (the ‘natural’ representation of 2×2 matrices), the latter refers only to the group itself, and we are therefore free to consider the group action on an arbitrary state of an arbitrary representation. To see why a change of representation might be useful, consider the (left-) regular representation in which elements of the group and algebra act as linear operators on the Hilbert space of L^2-functions on the group, with respect to the
invariant (Haar) measure. Given a function \(f(T) \) in the Hilbert space, group element \(T_2 \in SU(1, 1) \), and algebra element \(\eta \in SU(1, 1) \) the action is defined as
\[
(\hat{T}_2 f)(T_1) = f(T_2^{-1} T_1),
\]
and algebra element \(\eta \) the action is defined as
\[
(\eta f)(T) = \lim_{t \to 0} \frac{d}{dt} e^{-i\eta T} f(T).
\]

Here, and in what follows, hats on the group and algebra elements imply that they are acting as operators in a representation.

Now let \(\delta(T) \) denote the delta-function\(^1\) at the identity of \(SU(1, 1) \) with respect to the Haar measure. The action of the transfer matrix \(\hat{T}(x, x') \) shifts the delta-function from the identity to the point \(T(x, x') \). Thus, given an ensemble of transfer matrices the ensemble average of the operators \(\langle \hat{T}(x, x') \rangle \) applied to the delta-function \(\delta(T) \) gives the probability distribution of transfer matrices with respect to the Haar measure, i.e. we can write
\[
P(T; x, x') = \langle \hat{T}(x, x') \rangle \delta(T).
\]

To obtain an explicit equation for the probability distribution, the ensemble average \(\langle \hat{T}(x, x') \rangle \) must be related to the statistics of the disordered potential \(V(x) \). Since the disorder is weak we can consider \(x = x' + \delta x \) such that \(\delta x \) is much greater than \(1/k \), but short enough that \(\hat{T}(x, x') \approx 1 \). The Transfer matrix can be expanded as
\[
\hat{T}(x, x') = \hat{1} - \frac{1}{2k} \int_{x'}^{x} V(s) \hat{A}(s) ds + \frac{1}{4k^2} \int_{x'}^{x} \int_{x'}^{x} V(s)V(t) \hat{A}(s) \hat{A}(t) ds dt + \cdots.
\]

Higher order terms do not contribute to first order in \(\delta x \). Since \(\langle V \rangle = 0 \) and \(\langle V(s)V(t) \rangle = \alpha^2 \delta(s-t) \), upon averaging over disorder we obtain
\[
\langle \hat{T}(x, x') \rangle = \hat{1} + \frac{\alpha^2}{8k^2} \int_{x'}^{x} \hat{A}(s)^2 ds + O(\delta x^2)
\]
\[
\approx \hat{1} + \frac{\alpha^2}{8k^2} \int_{x'}^{x} (\hat{L}_z + \sin(2ks)\hat{L}_x - \cos(2ks)\hat{L}_y)^2 ds + O(\delta x^2),
\]
\[
\approx \hat{1} + \frac{\alpha^2}{16k^2} (2\hat{L}_z^2 + \hat{L}_x^2 + \hat{L}_y^2) \delta x + O(\delta x^2),
\]
where in the last line we have ignored terms of order \(1/k \). Note that here we are considering \(\hat{T} \) and \(\hat{A} \) as operators on the regular representation (in particular, \(\hat{L}_i^2 = \hat{1} \)).

For arbitrary \(x \) and \(x' \) we thus have
\[
\frac{d}{dx} \langle \hat{T}(x, x') \rangle = \frac{\alpha^2}{16k^2} (2\hat{L}_z^2 + \hat{L}_x^2 + \hat{L}_y^2) \langle \hat{T}(x, x') \rangle.
\]
Combining (11) with (7) gives
\[
\frac{d}{dx} P(T, L) = \frac{\alpha^2}{16k^2} (2\hat{L}_z^2 + \hat{L}_x^2 + \hat{L}_y^2) P(T, L),
\]
where we have used the fact that the distribution of transfer matrices depends only on the distance from \(x \) to \(x' \), and set \(x - x' = L \). This equation should be solved with the initial condition \(P(T, 0) = \delta(T) \).

\(^1\) Strictly speaking the delta ‘function’ is a functional and does not belong to the regular representation. A more rigorous presentation would involve the construction of a rigged Hilbert space.
In the regular representation the algebra elements \(\hat{L}_i \) describe first-order differential operators on the \(SU(1, 1) \) group. The group can be parametrized in terms of Euler angles as

\[
\hat{L}_x = -2 \partial_{\phi}, \quad \hat{L}_y = -2 \cos \phi \partial_{\theta} + 2 \coth \theta \sin \phi \partial_{\phi} - 2(\sinh \theta)^{-1} \sin \phi \partial_{\psi}, \\
\hat{L}_z = 2 \sin \phi \partial_{\theta} + 2 \coth \theta \cos \phi \partial_{\phi} - 2(\sinh \theta)^{-1} \cos \phi \partial_{\psi}.
\]

where \(0 \leq \phi < 2\pi, 0 \leq \theta < \infty, -2\pi \leq \psi < 2\pi \), and the parametrization is unique except at the identity. From (5), the action of the algebra operators in these coordinates is found to be

\[
\hat{T}(\phi, \theta, \psi) = \exp(\hat{L}_x \theta/2)\exp(\hat{L}_y \psi/2)\exp(\hat{L}_z \phi/2)
\]

\[
= \begin{pmatrix}
\cosh \frac{\theta}{2}e^{i(\phi+\psi)/2} & \sinh \frac{\theta}{2}e^{i(\phi-\psi)/2} \\
\sinh \frac{\theta}{2}e^{-i(\phi+\psi)/2} & \cosh \frac{\theta}{2}e^{-i(\phi-\psi)/2}
\end{pmatrix},
\]

where \(0 \leq \phi < 2\pi, 0 \leq \theta < \infty, -2\pi \leq \psi < 2\pi \), and the parametrization is unique except at the identity. From (5), the action of the algebra operators in these coordinates is found to be

\[
\hat{T}(\phi, \theta, \psi) = \exp(\hat{L}_x \theta/2)\exp(\hat{L}_y \psi/2)\exp(\hat{L}_z \phi/2)
\]

\[
= \begin{pmatrix}
\cosh \frac{\theta}{2}e^{i(\phi+\psi)/2} & \sinh \frac{\theta}{2}e^{i(\phi-\psi)/2} \\
\sinh \frac{\theta}{2}e^{-i(\phi+\psi)/2} & \cosh \frac{\theta}{2}e^{-i(\phi-\psi)/2}
\end{pmatrix},
\]

Interpreting \(x \) in (12) as a time coordinate, the equation takes the form of a diffusion equation on the \(SU(1, 1) \) group. The parameter \(\lambda = 4k^2/\alpha^2 \) can be identified as the mean free path of the particle for back-scattering (in this case the rates of back- and forward-scattering are equal).

The solution of the diffusion equation given below relies heavily on the representation theory of \(SU(1, 1) \), so the following section begins with a summary of the necessary results (for a thorough overview, see, e.g. [6]).

3. Derivation of the probability distribution

Given any group and a space of functions on the group, one can define two different group-actions on the space: the action on the left given above, \((T_2^{(L)} f)(T_1) = f(T_2^{-1} T_1)\); and action on the right, \((T_2^{(R)} f)(T_1) = f(T_1 T_2)\). The regular representation can be decomposed as a sum of irreducible unitary representations with respect to either of these actions, and as the actions commute the right action maps between equivalent irreducible representations of the left action, and vice-versa.

Now let \(V_{\mu} \) be an irreducible unitary representation. The Eigenstates of \(\hat{L}_0 = -\frac{1}{2} \hat{L}_z \) form a basis for each \(V_{\mu} \), and the fact that \(\exp[2\pi \hat{L}_z] = 1 \) implies that the Eigenvalues of \(\hat{L}_0 \) must be integer or half-integer (known as the weights of the representation). Irreducibility implies that for each weight \(n \) there is at most one Eigenstate of \(\hat{L}_0 \) in \(V_{\mu} \). Analogously to \(SU(2) \), one can define the operators \(\hat{L}_k = \frac{1}{2} (\hat{L}_x \pm i \hat{L}_y) \), which raise and lower the weight of a state by unity.

The notation \(\langle n_{\mu} | \rangle \) is used to represent the state of weight \(n \) in the representation \(V_{\mu} \), normalized so that \(\langle m_{\mu} | n_{\mu} \rangle = \delta_{mn} \). Using these states one can define the functions

\[
it_{\mu}(T) = \langle m_{\mu} | \hat{T} | n_{\mu} \rangle
\]

which span a representation of \(SU(1, 1) \) with respect to the left and right group actions given above. Specifically, they span a tensor product of a copy of \(V_{\mu} \) with respect to the right action and a copy of the dual representation \(V_{\mu}^* \) with respect to the left action, denoted \(V_{\mu}^{(L)} \otimes V_{\mu}^{(R)} \).

Note that \(t_{\mu}^{m,n} \) is a state with weight \(-m\) with respect to the left action and weight \(n \) with respect to the right action. The key to the decomposition of the regular representation is to find irreducible unitary representations \(V_{\mu} \) such that
The Casimir operator of the SU(1, 1) algebra is given by

$$c = \frac{1}{4}(L_x^2 + L_y^2 - L_z^2)$$

and acts as a scalar on all irreducible representations. The irreducible representations occurring in the decomposition of the regular representation can be specified uniquely by the weights that occur within them and the value of the Casimir operator. They are found to be [6]:

1. The lowest-weight representations $V_{l, +}$ with weights $\{l + n|n \in \mathbb{Z}, n \geq 0\}$, where l is a positive (half-) integer, on which the Casimir operator takes the value $(l + 1)$.
2. The highest-weight representations $V_{l, -}$ with weights $\{-l + n|n \in \mathbb{Z}, n \geq 0\}$, where l is a positive (half-) integer, on which the Casimir operator takes the value $(l + 1)$ as above (these are the dual representations of the lowest-weight representations).
3. The principal unitary series representations $V_{a,i}$, with weights $\{\pm a + i|n_i \in \mathbb{Z}\}$, where $\{a\}$ is a positive (half-) integer, on which the Casimir operator takes the value $-\frac{1}{4}(a^2 + a^2)$ (these representations are self-dual).

The decomposition formula can now be stated precisely. Given any function $f(T)$ in the regular representation, define the coefficients

$$c_{m,n}^{m,n} = \int_{SU(1,1)} d\mu_T f(T)(t_{m,n}^{m,n}(T))^*,$$

where $d\mu_T$ is the Haar measure. Then

$$f(T) \propto \sum_{l \in \mathbb{N}/2} (l - 1/2) \sum_{m,n \geq 1} (c_{l,+}^{m,n} t_{l,+}^{m,n}(T) + c_{l,-}^{m,n} t_{l,-}^{m,n}(T))$$

$$+ \sum_{c \in \{0,1/2\}} \int_0^\infty da \ a \tanh(\pi(a + ic)) \sum_{m,n \in \mathbb{Z}+c} c_{l+ia}^{m,n} t_{l+ia}^{m,n}(T).$$

With appropriate choice of Haar measure we can set the constant of proportionality to one. The prefactor $(l - 1/2)$ in the first sum and the term $a \tanh(\pi(a + ic))$ in the integral are related to the normalization of the functions $t_{m,n}^{m,n}$. They form what is known as the Plancherel measure of SU(1, 1).

For the delta function we have

$$c_{m,n}^{m,n} = \int_{SU(1,1)} d\mu_T \delta(T)(t_{m,n}^{m,n}(T))^* = (t_{m,n}^{m,n}(1))^* = \langle n_m | m_{\mu} \rangle = \delta_{mn}$$

and thus

$$\delta(T) = \sum_{l \in \mathbb{N}/2} (l - 1/2) \sum_{m,n \geq 1} (t_{l,+}^{m,m}(T) + t_{l,-}^{m,-m}(T))$$

$$+ \sum_{c \in \{0,1/2\}} \int_0^\infty da \ a \tanh(\pi(a + ic)) \sum_{m \in \mathbb{Z}+c} t_{l+ia}^{m,m}(T).$$

Turning back to (12), the operator on the right-hand side can be written

$$\frac{1}{4\lambda}(2L_x^2 + L_y^2 + L_z^2) = \frac{1}{\lambda}(\hat{c} - 3\hat{L}_0^2)$$
and is therefore diagonal in the basis $t_{m}^{m,n}$. Hence the solution of (12) is given by

$$P(T, L) = (\exp[(\hat{c} - 3L_{0})L/\lambda])\delta(T)$$

$$= \sum_{l \in N/2} (l - 1/2) \sum_{m \geq l} \exp[(l(l + 1) - 3m^2)L/\lambda]$$

$$\times (t_{l,+}^{m,m}(T) + t_{l,-}^{m,-m}(T))$$

$$+ \sum_{\epsilon \in [0,1/2]} \int_{0}^{\infty} da \ a \ \tanh(\pi (a + i\epsilon))$$

$$\times \sum_{m \in \mathbb{Z} + \epsilon} \exp[-(1/4 + a^2 + 3m^2)L/\lambda]t_{l,+}^{m,m}(T).$$ (25)

This is the final expression for the distribution of transfer matrices, exact in the limit of weak disorder, and forms the central result of this paper. In the following section we relate the functions $t_{m}^{m,n}(T)$ to more well known functions by using the Euler angle parametrization of the transfer matrices, and discuss some of the properties and limits of the distribution.

4. Properties and limits of the probability distribution

4.1. Form of the functions $t_{m}^{m,n}(T)$

With the Haar measure $d\mu_{T} = \frac{1}{4\pi^2}d\phi d\psi d(\cosh \theta)$ the constant of proportionality in (21) is unity. The functions $t_{l,+}^{m,m}(T)$ can be written as [6]

$$t_{l,+}^{m,m}(T) = e^{i(m+\psi)(\cosh \frac{\theta}{2})} \frac{\Gamma(l - m, l + m; 1; \tanh^2 \frac{\theta}{2})}{\Gamma(l + 2m)}.$$ (26)

where \pm takes the value $+$ for $m \geq l$ and the value $-$ for $m \leq -l$. Note that the expansion of the hypergeometric function terminates in this case (it gives the Jacobi polynomial $P_{m-2l-1}^{0,2l-1}(1 - 2 \tanh^2(\theta/2))$). Similarly the functions $t_{l,\pm}^{m,m}(T)$ can be written as

$$t_{l,\pm}^{m,m}(T) = e^{im(\phi+\psi)}(\cosh \frac{\theta}{2})^{-l+2m} \Re F_{1}\left(l - m, l + m; 1; \tanh^{2} \frac{\theta}{2}\right)$$ (27)

equations (26) and (27) can be confirmed by writing \hat{c} and \hat{L}_{0} as differential operators in (ϕ, ψ, θ), and showing that the functions are Eigenfunctions of these operators with the required Eigenvalues.

4.2. Reflection and transmission amplitudes

In terms of the reflection and transmission amplitudes for a particle approaching the disordered region (x', x) from the left, r and t respectively, the transfer matrix is given by

$$T(x, x') = \begin{pmatrix} 1/t & r/t \\ r^*t^* & 1/t \end{pmatrix}.$$ (28)

Comparing this with the parametrization in terms of Euler angles above, and setting $\phi_{k} = \frac{1}{2}(\phi \pm \psi)$, we see that $t = e^{i\phi_{k}}/\cosh(\theta/2)$ and $r = e^{i\phi_{k}} \tanh(\theta/2)$.

The fact that the functions $t_{l}^{m,m}$ depend only on ϕ_{k} and θ implies that the probability of the transfer matrix can be expressed as a function of t alone. Figure 1 shows some plots of the probability density as a function of t for various ratios of L/λ.

4.3. Distribution of the resistance

The distribution of the resistance \(\rho = |r|^2 / |\ell|^2 = \sinh^2(\theta/2) \) can be found by integrating (25) over \(\psi \) and \(\phi \). Only the functions \(t_{a,0}^{0,0} \) contribute and the distribution is found to be

\[
P(\theta, L) = \int_{0}^{\infty} da \tan(\pi a)\exp[-(1/4 + a^2)L/\lambda]t_{a,0}^{0,0}(\theta).
\]

(Note that we have kept the measure \(dc\cosh \theta = 2d\rho \)). This expression can be simplified by choosing an integral representation for the hypergeometric function (derived in the appendix):

\[
t_{a,0}^{0,0}(\theta) = \frac{\cosh(\pi a)}{\sqrt{2\pi}} \int_{0}^{\infty} \frac{\cos(\alpha v)}{(\cosh v + \cosh \theta)^{1/2}} dv.
\]

With this expression for \(t_{a,0}^{0,0} \), the \(a \)-integral in (29) is now of Gaussian form. Evaluating it yields

\[
P(\theta, L) = \frac{i}{4\sqrt{2\pi}} \left(\frac{\lambda}{L} \right)^{3/2} e^{-L/4\lambda} \int_{0}^{\infty} \frac{v \exp[-(v - i\pi)^2\lambda/4L]}{(\cosh v + \cosh \theta)^{1/2}} dv.
\]

Shifting the integration contour by \(+i\pi \) and taking proper account of the branch cut between \(v = (-\theta - i\pi) \) and \(v = (\theta - i\pi) \) gives

\[
P(\theta, L) = \frac{1}{4\sqrt{\pi}} \left(\frac{\lambda}{L} \right)^{3/2} e^{-L/4\lambda} \int_{\theta}^{\infty} \frac{v \exp[-v^2\lambda/4L]}{(\cosh^2 \frac{v}{2} - \cosh^2 \frac{\theta}{2})^{1/2}} dv.
\]

This expression is identical to the one first calculated by Abrikosov in [4]. There a Fokker–Planck equation was derived for the distribution of resistance as a function of length, an approach very similar in spirit to the one taken in section 2. Indeed, if we had chosen the representation of \(L^2 \)-functions on the coset space \(SU(1, 1)/L_\phi \) instead of on the group, the two approaches would be exactly equivalent. (Here \(L_\phi \) denotes the subgroup generated by \(L_\phi \), and the coset space thus produced can be parametrized by the reflection amplitude \(r \), for details see [7].)

4.4. The weak-localized limit

In the weak-localized limit, \(L \gg \lambda \), the contribution of states with large \(m \) in (25) is exponentially suppressed. Since \(t_{a,m}^{m,m} \sim \cos(2m\phi_c) \), the distribution becomes approximately uniform in \(\phi_c \). The contribution of states with \(m = 0 \) has already been calculated in the previous
section. The contribution of states with \(m = \frac{1}{2} \) can be calculated in a similar way (see the appendix), giving

\[
P^{(1/2)}(\theta, \phi_+, L) = \frac{1}{2\sqrt{\pi}} \left(\frac{\lambda}{L} \right)^{1/2} e^{-L/\lambda} \cos \phi_+ \int_0^\infty \frac{\nu \cosh \frac{\nu}{2}}{\left(\cosh^2 \frac{\nu}{2} - \cos^2 \frac{\theta}{2} \right)^{1/2}} \, dv, \tag{33}
\]

where \(P^{(m)} \) stands for the total contribution of the \(t^{m,m} \) states (i.e. the \(2m \)th harmonic in \(\phi_+ \)). Comparing this with (32) we see that \(P^{(1/2)}/P^{(0)} \sim e^{-3L/4\lambda} \) in the weak-localized limit.

The higher harmonics can be found in a similar way, but the expressions become increasingly complicated owing to the appearance of poles in the integral representation for \(t^{m,m} \), and the inclusion of the discrete-series representations. In particular, it is not easy to give an expression equivalent to (33) for general \(m \).

As found in [4], for \(L \gg \lambda \) the distribution of \(P^{(0)} \) becomes approximately Gaussian in \(\theta \)

\[
P^{(0)}(\theta, \phi_+, L) \approx \frac{1}{2\sqrt{\pi}} \left(\frac{\lambda}{L} \right)^{1/2} e^{-L/\lambda} \cos \phi_+ \exp[-(\theta - L/\lambda)^2 \lambda/4L], \tag{34}
\]

with respect to measure \(d\theta \). We can show a similar result also holds for the higher harmonics. For \(L \gg \lambda \) the integrand in (33) is only significant for \(\theta = v = \theta \ll 0 \). Keeping only leading order terms in \(u/\theta \) leads to

\[
P^{(1/2)}(\theta, \phi_+, L) \approx \frac{1}{\sqrt{2\pi}} \left(\frac{\lambda}{L} \right)^{1/2} e^{-3L/4\lambda} \exp[-(\theta - L/\lambda)^2 \lambda/4L] \cos \phi_+ \]

\[
\times \int_0^\infty \theta \exp[-(\theta \lambda - L)u/2L] \frac{dv}{(e^u - 1)^{1/2}}
\]

(35)

with respect to \(\frac{1}{2\pi} d\phi_+ d\theta \). Making a change of variables \(y = (e^u - 1)^{1/2} \) gives

\[
P^{(1/2)}(\theta, \phi_+, L) \approx \frac{1}{\sqrt{2\pi}} \left(\frac{\lambda}{L} \right)^{1/2} e^{-3L/4\lambda} \exp[-(\theta - L/\lambda)^2 \lambda/4L] \cos \phi_+ \]

\[
\times \int_0^\infty (1 + y^2)^{-\lambda \theta/2L - 1/2} \, dy.
\]

(36)

Setting \(\theta = L/\lambda \) in the integrand allows the integral to be taken, leading to a Gaussian distribution in \(\theta \)

\[
P^{(1/2)}(\theta, \phi_+, L) \approx \frac{\sqrt{\pi}}{2} \left(\frac{\lambda}{L} \right)^{1/2} e^{-3L/4\lambda} \cos \phi_+ \exp[-(\theta - L/\lambda)^2 \lambda/4L]. \tag{37}
\]

The mean and variance of the Gaussian distribution are the same as for \(P^{(0)} \).

4.5. The far-ballistic limit

For \(L \gg \lambda \), the distribution is sharply peaked around \(\theta = \phi_+ = 0 \). The exponential factors in (25) decay slowly, and we can replace the sums on \(m \) and \(l \) with integrals, and assume \(\alpha, l, m \gg 1 \). Specifically, approximating

\[
t_l^{m,m} \approx e^{2m\phi_+} F_1 \left(1; (l^2 - m^2) \tanh^2 \frac{\theta}{2} \right), \tag{38}
\]

\[
t_{\alpha,l}^{m,m} \approx e^{2m\phi_+} F_1 \left(1; -\alpha^2 + (m^2) \tanh^2 \frac{\theta}{2} \right).
\]

(39)
and
\[
\sum_{l \in \mathbb{N}/2} \left(l - \frac{1}{2} \right) \sum_{m \geq l} \exp[i(l(l + 1) - 3m^2)L/\lambda] \rightarrow 2 \int_0^\infty \frac{dl}{l} \exp[i^2L/\lambda] \int_0^\infty dm \exp[-3m^2L/\lambda] \cdots ,
\]

(40)

\[
\sum_{\epsilon \in (0,1/2)^0} \int_0^\infty da \frac{a \tanh(\pi(a + i\epsilon))}{\epsilon} \sum_{m \in \mathbb{Z}+\epsilon} \exp[-(1/4 + a^2 + 3m^2)L/\lambda] \rightarrow 2 \int_0^\infty da \frac{\alpha \exp[-\alpha^2L/\lambda]}{\alpha} \int_0^\infty dm \exp[-3m^2L/\lambda] \cdots
\]

(41)

leads to integrals which can be evaluated exactly. The result is
\[
P(\theta, \phi, L) \approx \left(\frac{\pi}{2} \right)^{1/2} \lambda^{1/2} \exp \left[-\frac{\lambda}{4L} (\theta^2 + 2\phi^2) \right]
\]

(42)

with respect to measure \(\frac{1}{2\pi} d\phi d\theta \).

5. Persistent current in a fluxthreaded ring

Given that the distribution of the transmission coefficient is a previously known result, the additional information contained in the main result of this paper, (25), is the dependence of the probability on the phase of \(t \). If an open, simply connected wire, it turns out that this phase is usually irrelevant in the calculation of physical quantities. For example, the absolute value of the Green’s function \(G_E(x, x') \) is independent of the phase of the transmission amplitude, and therefore the density–density correlators are likewise independent. Similarly, the distribution of the local density of states, \(r \sim G_E(x, x) \), can be found directly from the distribution of the transmission coefficient (as has been explicitly demonstrated in [8]).

For an application where the full distribution of \(t \) is necessary, we therefore turn to a closed, disordered ring. An interesting feature of such rings is the appearance of a persistent current when threaded by a magnetic flux [9]. More recent theoretical interest in such systems [10–12] has been spurred by advances in experimental techniques [13, 14] which allow the measurement of persistent current in a single mesoscopic ring.

Below, we calculate the average contribution to persistent current from states with energy between \(E \) and \(E + dE \). The contribution can be written \(i(E) dE \), where

\[
i(E) = \sum_n \delta(E - E_n) j_n = \sum_n \delta(E - E_n) \frac{\partial E_n}{\partial \Phi},
\]

(43)

Here \(n \) denotes a sum over single-electron states, \(j_n \) is the current of the \(n \)th state, and \(\Phi \) denotes the total flux through the ring [15].

The presence of the magnetic flux imposes twisted boundary conditions on the wavefunction: \(\psi_n(L) = \exp[i2\pi \Phi/\Phi_0] \psi_n(0), \psi_n'(L) = \exp[i2\pi \Phi/\Phi_0] \psi_n'(0) \), where \(\Phi_0 = h/e \) is the magnetic flux quantum. This implies that \(\exp[k_n LL_c]T(L, 0) \) has an Eigenvalue \(\exp[i2\pi \Phi/\Phi_0] \). Parametrizing the transfer matrix by Euler angles, the Eigenvalue equation takes the form

\[
\cos \left(2\pi \frac{\Phi}{\Phi_0} \right) = \cosh \frac{\theta}{2} \cos(\phi_+ + k_n L).
\]

(44)

In what follows, for notational convenience we choose units \(e = 1 \) and set \(2\pi \Phi/\Phi_0 = KL \). Differentiating (44) with respect to \(\Phi \) and substituting the result into (43) gives
\[
|i(E)| = |\sin KL| \delta \left(\cosh \frac{\theta}{2} \cos (\phi_+ + kL) - \cos KL \right)
\]

(45)

as found in [5]. Averaging over \(P(\theta, \phi_+, L) \), we find

\[
\langle |i(E)| \rangle = \frac{1}{2\pi} \int_{-\infty}^{\infty} d(\cosh \theta) \frac{\sin KL}{\left(\cosh^2 \frac{\theta}{2} - \cos^2 KL \right)^{1/2}} \times \left[P\left(\theta, \cos^{-1} \left(\frac{\cos KL}{\cosh \theta/2} \right) - kL, L \right) + P\left(\theta, -\cos^{-1} \left(\frac{\cos KL}{\cosh \theta/2} \right) - kL, L \right) \right]
\]

(46)

Figure 2 shows the average persistent current as a function of \(E \) for different values of \(L/\lambda \).

In the weak-localized and far-ballistic limits it is possible to simplify the above expression. In the far-ballistic limit, setting \(\cos u = \cos KL/\cosh(\theta/2) \) and using (42) we find

\[
\langle |i(E)| \rangle \approx \sqrt{2 \pi} \left(\frac{\lambda}{L} \right)^{3/2} \sin KL \int_{KL}^{\pi/2} \frac{du}{\cos u} \exp \left[-(1 - \cos^2 u/\cos^2 KL) \lambda/L \right] \times (\exp[-u^2 - \tilde{k}L^2 \lambda/2L] + \exp[-(u^2 + \tilde{k}L^2) \lambda/2L]).
\]

(47)

Here we have assumed \(0 \leq KL \leq \pi \) (this is no restriction since the persistent current is an odd function of \(KL \)), and used \(\tilde{k}L/2\pi \) to denote the fractional part of \(kL/2\pi \). The integrand is only significant when \(u \approx KL \approx \pm \tilde{k}L \) or when \(u \approx \pi/2 \). The pole at \(\pi/2 \) is a consequence of the use of the approximate formula \(\theta^2 \approx 4 \tanh^2(\theta/2) \), and should be ignored. Setting \(\tilde{k} = \pm K + \delta k \), \(u = KL + \eta \) and keeping only leading terms in \(\delta k \) and \(\eta \), for \(KL \gg \sqrt{L/\lambda} \) and \(\pi - KL \gg \sqrt{L/\lambda} \) we obtain
\[\langle |i(E)| \rangle \approx \sqrt{2} \left(\frac{\lambda}{L} \right)^{3/2} e^{-|\theta| / 4L} \left[L \tan KL \right] \int_0^\infty \exp \left[-2\lambda \eta \tan KL \right] d\eta \]
\[= \frac{1}{\sqrt{2\pi}} \left(\frac{\lambda}{L} \right)^{1/2} \exp \left[-|\theta| L^2 \lambda / 2L \right]. \quad (48) \]

In the absence of disorder, the energy levels are given by \(\tilde{k} = \pm K \) with current \(\hat{k} L/2 \). Thus in the far-ballistic limit the average current per level is unchanged, and the energy-levels are Gaussian distributed around those of a clean wire (see figure 2).

The situation is different if \(KL \lesssim L/\lambda \) or \(\pi - KL \lesssim L/\lambda \), as should be expected since \(KL \in [0, \pi) \) mark the positions of the level crossings in the clean system. For \(KL \lesssim L/\lambda \), approximating \(\cos^2 u/\cos^2 KL \approx (KL)^2 - u^2 \) we obtain

\[\langle |i(E)| \rangle = \frac{1}{\sqrt{3}} K\lambda \exp[3(KL)^2 - (\tilde{k}L)^2] \lambda / 3L \]
\[\times \left[1 - \text{erf} \left((K - \frac{\tilde{k}}{2}) \sqrt{3L} \right) - \text{erf} \left((K + \frac{\tilde{k}}{2}) \sqrt{3L} \right) \right]. \quad (49) \]

where \(\text{erf}(x) \) denotes the error function.

In the weak localized limit, substituting (32) for \(P(\theta, \phi_\lambda, L) \) into (46) gives

\[\langle |i(E)| \rangle = \frac{1}{2} \sin KL \left(\frac{\lambda}{\pi L} \right)^{1/2} \right. e^{-L/4L} \int_0^\infty d\theta \cos \theta \]
\[\times \int_0^\infty d\nu \frac{\nu \exp[-\nu^2 L/4L]}{(\cosh \theta - \cos 2KL)^{3/2} (\cosh \nu - \cosh \theta)^{1/2}} \quad (50) \]

exchanging the order of integration allows the \(\theta \)-integral to be taken. An integration by parts in \(\nu \) then leads to

\[\langle |i(E)| \rangle = \frac{1}{2} \sin^2 KL \left(\frac{\lambda}{\pi L} \right)^{1/2} \right. e^{-L/4L} \int_0^\infty d\nu \frac{\nu \cosh \nu \exp[-\nu^2 L/4L]}{\cosh^2 \frac{\nu}{2} - \cos^2 KL} \quad (51) \]

which agrees with the result found in [5].

Notice that the transmission phase \(\phi_\lambda \) in (45) occurs only in the term \(\cos(\phi_\lambda + kL) \), which is a fast oscillating function of \(L \). Therefore variation in \(L \) of just a single wavelength in the ensemble is enough to destroy the dependence of \(\langle |i(E)| \rangle \) on \(\phi_\lambda \), in which case (51) is obtained for all strengths of disorder.

Unfortunately the distribution of the transfer matrix is not enough to derive the distribution of \(\hat{i}(E) \). This can be seen from (43), as higher moments depend in a non-trivial way on \(\frac{\partial E}{\partial \phi} \), i.e. on the correlations between transfer matrices at nearby energies. It is possible to obtain the distribution of \(\hat{i}(E) \) in the case of a ring connected to an electron reservoir (e.g. as modelled in [16]), but the result is sensitive to the nature of the coupling. Connecting the ring to a reservoir allows the distribution of local density of states to be obtained (some results for the local density of states in the closed system have been found in [17]).

6. Discussion

This paper has introduced a new method for obtaining the transport statistics of disordered one-dimensional systems. The approach can be summarized as follows: firstly identify the symmetry group of the transfer matrix (here \(SU(1, 1) \)). Secondly relate the disordered potential to a diffusion equation on this group (equation (11)). Finally choose a representation

\(\langle |i(E)| \rangle \approx \sqrt{2} \left(\frac{\lambda}{L} \right)^{3/2} e^{-|\theta| / 4L} \left[L \tan KL \right] \int_0^\infty \exp \left[-2\lambda \eta \tan KL \right] d\eta \]
\[= \frac{1}{\sqrt{2\pi}} \left(\frac{\lambda}{L} \right)^{1/2} \exp \left[-|\theta| L^2 \lambda / 2L \right]. \quad (48) \]
on which the group acts (here the regular representation). Finally, solve the diffusion equation on that representation using the representation theory (in this case we were able to exactly diagonalize the differential operator by expressing it in terms of the Casimir invariant of the group).

In principle the same approach can be applied to any system which admits a description in terms of a transfer matrix. Although equation (3) assumed the absence of an atomic lattice, this assumption is not necessary and an equivalent equation is obtained as the continuum limit of a (single-band) tight-binding chain [18]—only the statistics of the disorder are different. The same equation appears again in the Andreev description of BCS superconductors [19], where it has been used to calculate the free energy and density of states in inhomogeneous superconductors [20]. In the Andreev equation the off-diagonal components of the matrix $A(x)$ in (3) describe the superconducting gap parameter $\Delta(x)$, and the fact that this does not vanish upon ensemble averaging leads to terms linear in \hat{L}_x and \hat{L}_y in the analogy of equation (11), making diagonalization of the operator $\langle \hat{T}(x, x') \rangle$ a much more difficult problem.

The generalization to n-channel wires is straightforward, and closely parallels the DMPK technique [21, 22]. The appropriate group becomes $sp(2n, \mathbb{R})$ (or $SU(n, n)$) in systems with (or without) time-reversal symmetry—corresponding to the unitary and orthogonal ensembles of DMPK. Spin–orbit interactions can be taken into account by replacing the matrix elements of $SU(n, n)$ by quaternions [23] (or equivalently, by using a particular subgroup of $SU(2n, 2n)$). In principle two or higher dimensional systems can be considered as the limit of large n by choosing an appropriate wire geometry with nearest neighbour tunneling between channels, but such an approach may not be optimal as it disregards the natural isotropy of such systems (motion along the wire is treated differently from motion across channels). The appropriate extension of the model considered here to higher dimensions is an interesting topic for further research.

The representation used can be tailored to the calculation in question. For example, as shown in [24], the nth moment of the reflection coefficient can be found in terms of the group action on the (finite-dimensional) spin-n representation. As mentioned in the text, the full distribution of the transmission coefficients can likewise be found by considering the space of L^2-functions on the coset space $SU(1, 1)/\hat{L}_z$. Generalizing to the n-channel case, the group action on the set of cosets $U(n, n)/U(n) \otimes U(n)$ yields an equation for the distribution function of the n transmission coefficients, in a manner analogous to the DMPK technique (here $U(n) \otimes U(n)$ is the block-diagonal subgroup generated by scattering between co-directional channels). The connection between the DMPK technique and harmonic analysis on coset spaces has previously been made [25], but the approach here is more general as the evolution operator need not be proportional to the Laplace–Beltrami operator on a coset space; indeed the representation used need not be realizable as a representation of functions on a coset space at all.

Finally, given the general relationship between irreducible unitary representations of a Lie group and its co-adjoint orbits, and the existence of a natural symplectic form on these orbits (the Kirillov–Kostant–Souriau form [26]), the approach should be amenable to semi-classical approximations. Given that exact solutions are unlikely in systems more complex than the one-dimensional wire considered here, the availability of approximation techniques is significant.
Acknowledgments

The theoretical basis of this work (including derivation of the distribution (25)) was developed as part of the author’s PhD thesis under the supervision of Boris Muzykantskii. This research was supported by the Catholic University of Korea research fund 2014.

Appendix. Integral representations of the hypergeometric functions

The hypergeometric function \(_2F_1(a, b; 1; z) \) for \(0 \leq z < 1 \) can be written

\[
_2F_1(a, b; 1; z) = \frac{1}{2\pi i} \int w^{-1}(1 - z/w)^{-a}(1 - w)^{-b} dw,
\]

where the integral is counter-clockwise around the unit circle in the complex plane, as can be checked by a Taylor expansion of the integrand. For \(0 \leq \Re(a) < 1 \) the integral can be collapsed onto the branch cut along the real line from 0 to \(z \) to yield

\[
_2F_1(a, b; 1; z) = \frac{\sin(\pi a)}{\pi} \int_0^z w^{-1}(z/w - 1)^{-a}(1 - w)^{-b} dw.
\]

Inserting this into the expression for \(t_{\text{w},0}^{0,0} \) gives

\[
t_{\text{w},0}^{0,0}(\rho) = \frac{\cosh(\pi a)}{\pi}(\sinh^2\theta + w(1/w - 1))^{-1/2 + i\rho} \int_0^\pi w^{-1}(\tanh^2\theta/w - w)(1/w - 1) \cos^{1+2\rho}_v dv
\]

and making a change of variables to \(v = \ln[(\sinh^2(\theta/2) + w\cosh^2(\theta/2))(1/w - 1)] \), we arrive at

\[
t_{\text{w},0}^{0,0}(\rho) = \frac{\sqrt{2}}{\pi} \frac{\cosh(\pi a)}{\cosh \theta} \int_0^\infty \frac{\cos(\rho v)}{(\cosh v + \cosh \theta)^{1/2}} dv.
\]

A similar set of transformations for \(t_{\text{w},e}^{1+1/2} \) leads to the expression

\[
t_{\text{w},e}^{1+1/2}(\rho) = \frac{\sqrt{2}}{\pi} \frac{\sinh(\pi a)}{\cosh \theta} \int_0^\infty \frac{\sinh \frac{\rho}{2} \sin(v)}{(\cosh v + \cosh \theta)^{1/2}} dv.
\]

References

[1] Berezinskii V L 1974 Kinetics of a quantum particle in a one-dimensional random potential Sov. Phys.—JETP 38 620
[2] Gogolin A A 1982 Electron localization and hopping conductivity in one-dimensional disordered systems Phys. Rep. 86 1–53
[3] Altshuler B L and Prigodin V N 1989 Distribution of local density of states and NMR line shape in a one-dimensional disordered conductor Sov. Phys.—JETP 68 198–209
[4] Abrikosov A A 1981 The paradox with the static conductivity of a one-dimensional metal Solid State Commun. 37 997
[5] Kolokolov I V 1994 Functional integration method for 1d localization, multipoint correlators and persistent current in mesoscopic ring at arbitrary magnetic fields Ann. Phys. 231 234–55
[6] Ja N, Vilenkin and Klimyk A U 1991 Representation of Lie Groups and Special Functions vol 1 (Dordrecht: Kluwer)
[7] Ancliff M 2007 A representation theoretic approach for transport in disordered one-dimensional systems PhD thesis University of Warwick, UK
[8] Schomerus H, Titov M, Brouwer P W and Beenakker C W J 2002 Microscopic versus mesoscopic local density of states in one-dimensional localization Phys. Rev. B 65 121101
[9] Buttiker M, Imry Y and Landauer R 1983 Josephson behavior in small normal one-dimensional rings Phys. Lett. 96A 365–7
[10] Ginossar E, Glazman L I, Ojanen T, von Oppen F and Shanks W E 2010 Mesoscopic persistent currents in a strong magnetic field Phys. Rev. B 81 155448
[11] Bary-Soroker H, Entin-Wohlman O and Imry Y 2010 Persistent currents of noninteracting electrons in one-, two-, and three-dimensional thin rings Phys. Rev. B 82 144202
[12] Danon J and Brouwer P W 2010 Non-gaussian fluctuations of mesoscopic persistent currents Phys. Rev. Lett. 105 136803
[13] Bleszynski-Jayich A C, Shanks W E, Peaudecerf B, Ginossar E, von Oppen F, Glazman L and Harris J G E 2009 Persistent currents in normal metal rings Science 326 272–5
[14] Castellanos-Beltran M A, Ngo D Q, Shanks W E, Jayich A B and Harris J G E 2013 Measurement of the full distribution of persistent current in normal-metal rings Phys. Rev. Lett. 110 156801
[15] Cheung H-F, Riedel E K and Gefen Y 1989 Persistent currents in mesoscopic rings and cylinders Phys. Rev. Lett. 62 587–90
[16] Buttiker M 1985 Small normal-metal loop coupled to an electron reservoir Phys. Rev. B 32 1846–9
[17] Feldmann H, Nakhmedov E P and Oppermann R 2000 Distribution function of the local density of states of a one-channel weakly disordered ring in an external magnetic field Phys. Rev. B 62 2401–15
[18] Heinrichs J 1983 Continuum tight binding models and quantum transport in the presence of dynamical disorder Z. Phys. B 53 175–81
[19] Kosztin I, Kos S, Stone M and Leggett A J 1998 Free energy of an inhomogeneous superconductor: a wave-function approach Phys. Rev. B 58 9365
[20] Bartosch L and Kopietz P 1999 Algorithm for obtaining the gradient expansion of the local density of states and the free energy of a superconductor Phys. Rev. B 60 7452
[21] Dorokhov O N 1982 Transmission coefficient and localization length of an electron in a bound disordered chains Sov. Phys. JETP Lett. 36 318
[22] Mello P A, Pereyra P and Kumar N 1988 Macroscopic approach to multichannel disordered conductors Ann. Phys. 181 290
[23] Macêdo A M S and Chalker J T 1992 Effects of spin–orbit interactions in disordered conductors: a random-matrix approach Phys. Rev. B 46 14985
[24] Ancliff M and Muzykantskii B A 2005 A minimal approach for the local statistical properties of a one-dimensional disordered wire J. Phys. A: Math. Gen. 38 5751
[25] Hüffmann A 1990 Disordered wires from a geometric viewpoint J. Phys. A: Math. Gen. 23 5733
[26] Kirillov A A 2004 Graduate Studies in Mathematics (Lectures on the Orbit Method vol 64) (Providence, RI: American Mathematical Society)