Center-outward Rank- and Sign-based
VARMA Portmanteau Tests:
Chitturi, Hosking, and Li–McLeod revisited

Marc Hallin∗
ECARES and Département de Mathématique
Université Libre de Bruxelles, Brussels, Belgium
E-mail: mhallin@ulb.ac.be

and

Hang Liu
International Institute of Finance, School of Management
University of Science and Technology of China
Hefei, Anhui, China
E-mail: hliu01@ustc.edu.cn

Abstract

The pseudo-Gaussian portmanteau tests of Chitturi, Hosking, and Li and McLeod for VARMA models are revisited from a Le Cam perspective, providing a precise and more rigorous description of the asymptotic behavior of the multivariate portmanteau test statistic, which depends on the dimension d of the observations, the number m of lags involved, and the length n of the observation period. Then,

∗Corresponding author: Marc Hallin, Université Libre de Bruxelles CP 114/4, Avenue Franklin Roosevelt 50, B-1050 Bruxelles, Belgium.
based on the concepts of center-outward ranks and signs recently developed (Hallin, del Barrio, Cuesta-Albertos, and Matrán, *Annals of Statistics* 49, 1139–1165, 2021), a class of multivariate rank- and sign-based portmanteau test statistics is proposed which, under the null hypothesis and under a broad family of innovation densities, can be approximated by an asymptotically chi-square variable. The asymptotic properties of these tests are derived; simulations demonstrate their advantages over their classical pseudo-Gaussian counterpart.

Keywords Multivariate ranks and signs, Measure transportation, Le Cam’s asymptotic theory, Multivariate time series; VARMA models.

1 Introduction

1.1 The Gaussian multivariate portmanteau test

The so-called *portmanteau test* certainly ranks among the most popular and most widely used testing procedures in time series analysis. It is simple, intuitive, apparently well understood, and naturally complements eye-inspection of residual correlograms.

In their univariate forms, portmanteau test statistics were first introduced by Box and Pierce (1970) as a sum of squared residual autocorrelations of orders one through m associated with the estimation (usually, a least square one) of the model parameters. A later version by Ljung and Box (1978) is taking into account the fact that a residual autocorrelation of order k, when computed from a series of length n, is based on a sum of $(n - k)$ terms only; while improving finite-sample performance, that modification has no asymptotic impact, though.

Chitturi (1974) for the VAR case, Hosking (1980), and Li and McLeod (1981) for the VARMA case extended the Ljung-Box-Pierce test to the multivariate context by replacing sums of squared residual autocorrelations with sums of normalized squared elements of (estimated) residual cross-covariance matrices; modified versions in the spirit of Ljung and Box (1978) also are proposed by these authors.
A widespread opinion is that the null distribution of the multivariate
portmanteau statistic, in the \(d \)-dimensional VARMA\((p, q)\) case, is asymptot-
ically chi-square with \(d^2(m - p - q) \) degrees of freedom under a “broad” class
of innovation densities, where \(m \) is the number of lags in the test statistic.
This is, actually, the statement in Theorem 2 of Hosking (1980). In this
statement, Hosking is not very precise about what is to be understood with
“asymptotically chi-square.” Actually, if only the series length \(n \) goes to infin-
ity, the claim is incorrect. In his Appendix, he recommends \(m = O(n^{1/2}) \); but
this clearly precludes an asymptotic distribution with finitely many degrees
of freedom. Chitturi (1974), and Li and McLeod (1981) are more cautious,
with a somewhat vague claim that this asymptotic null distribution is “ap-
proximately chi-square with \(d^2(m - p - q) \) degrees of freedom for \(m \) and \(n \)
(the series length) large enough.”

As we shall see, these statements, at best, are imprecise and the asymp-
totic distribution of the portmanteau test statistic under the null is not
chi-square with \(d^2(m - p - q) \) degrees of freedom—not even under Gaussian
innovation densities. The chi-square critical values resulting from these
statements, nevertheless, are routinely used in the daily implementation of
the test.

In the univariate case, a similar problem was detected by Taniguchi and
Amano (2010), who show that the classical univariate portmanteau test
statistics of Box and Pierce (1970) and Ljung and Box (1978) are not asymp-
totically chi-square if the number \(m \) of lagged residuals in the test statistic
is finite. Based on this observation, they also propose a modified Whittle
likelihood ratio test which is asymptotically chi-square. In a more general
setting of single-output regression with ARMA errors, Akashi et al. (2018,
2021) propose a likelihood ratio-based portmanteau test incorporating the
Whittle likelihood ratio test of Taniguchi and Amano (2010) as a special
case and provide a sufficient condition, in terms of Fisher information, under
which their test statistic is asymptotically chi-square.

Half a century after its introduction, thus, one of the most popular tests in
time series analysis still relies on vague or even faulty asymptotic statements.
The first objective of this paper is to fix these asymptotic results. Rather than
modifying the classical test statistics (as Taniguchi and Amano (2010) and Akashi et al. (2018, 2021) are doing in the univariate case), we are providing a precise account and a rigorous derivation of the asymptotic behavior of the portmanteau test statistic for VARMA models. Taking advantage of this, we then propose, based on the measure-transportation-based concepts of center-outward ranks and signs recently developed in Hallin et al. (2021) (see Hallin (2022) for a nontechnical survey) a class of rank-based portmanteau tests and establish their asymptotic distributions under the null. Simulations demonstrate the advantages of these tests, in terms of power and resistance to outliers, over the classical Chitturi-Hosking-Li-McLeod pseudo-Gaussian ones under non-Gaussian innovation densities.

Throughout, the theoretical tools we are using are borrowed from Le Cam’s powerful asymptotic theory of statistical experiment—a theory that was not available, fifty years ago, to Chitturi, Hosking, Li, and McLeod, who instead are making intensive use of Taylor expansions.

1.2 Center-outward rank-based multivariate portmanteau test

Despite their popularity, the Gaussian portmanteau tests have some undesirable drawbacks. First, their validity and consistency rely on the assumption of finite fourth-order innovation moments, an assumption that may not hold in economic and financial practice, where data are usually heavy-tailed. Second, the finite-sample performance of pseudo-Gaussian tests often is quite poor under non-Gaussian innovations (see Section 1.2 in Hallin et al. (2022b) for numerical examples). Last but not least, the pointwise chi-square approximation of the null distribution of the pseudo-Gaussian portmanteau statistic under given innovation density f is far from uniform with respect to f. As a consequence, the \sup_f of the size under innovation density f of pseudo-Gaussian tests, in general, does not converge to the nominal asymptotic level α (see, e.g., Section 1.1 in Hallin et al. (2022a)): as a semiparametric test, thus, the pseudo-Gaussian portmanteau test fails to satisfy the asymptotic probability level condition.
Thanks to distribution-freeness, classical (univariate) rank-based tests are escaping that asymptotic size problem: for the ARMA case, see, e.g., Hallin and Puri (1988, 1994). In a multivariate or multiple-output context, however, due to the fact that no canonical ordering is available in \mathbb{R}^d for $d \geq 2$, a long-standing problem has been: “what are ranks and signs in dimension $d \geq 2$?” Various notions of ranks and signs have been proposed in the literature, including the componentwise ranks (Puri and Sen, 1971), the spatial ranks (Oja, 2010), the depth-based ranks (Liu, 1992), and the Mahalanobis ranks and signs (Hallin and Paindaveine, 2004). None of these ranks or signs are distribution-free under the whole family of absolutely continuous distributions, though. The *center-outward ranks and signs* recently proposed by Chernozhukov et al. (2017) and Hallin et al. (2021) are not only distribution-free under absolutely continuous distributions; they also are maximal ancillary (see Hallin et al. (2021)). They have been applied quite successfully to various statistical models of daily statistical importance, including multiple-output regression and MANOVA (Hallin et al., 2022a), goodness-of-fit (Ghosal and Sen, 2022), test of vector independence (Deb and Sen, 2021; Shi et al., 2022), multivariate quantile regression (del Barrio et al., 2022), R-estimation for VARMA models (Hallin et al., 2022b) and rank-based order selection of VAR models (Hallin et al., 2023).

In this paper, we propose a class of asymptotically distribution-free portmanteau tests for VARMA models based on residual center-outward ranks and signs. These residuals are the estimated residuals based on an estimation $\hat{\theta}^{(n)}$ of the parameter θ of the null VARMA model: the resulting ranks and signs, thus, are *aligned* ones, failing to achieve exact finite-sample distribution-freeness. For sufficiently large m, however, the test statistic is arbitrarily close to an asymptotically chi-square ($d^2(m - p - q)$ degrees of freedom) oracle statistic based on the ranks and signs of the *exact residuals*—that is, based on the actual θ value, as opposed to the *aligned* ones; the ranks and signs of these exact residuals are fully distribution-free but, of course, cannot be computed from the observations.

While the pseudo-Gaussian portmanteau test requires plugging-in the Gaussian quasi-likelihood VARMA estimator $\hat{\theta}^{(n)}$ for the unspecified VARMA
parameter θ, our rank-based tests rely on plugging-in the center-outward R-estimators $\hat{\theta}^{(\alpha)}$—as derived in Hallin et al. (2022b)—based on the same score function as the test statistic itself. A numerical study reveals that, when based on Gaussian scores, our rank-based test outperforms the classical pseudo-Gaussian one under a broad range of innovation distributions. This is probably the sign of a general Chernoff-Savage property (Chernoff and Savage, 1958) for which, however, we have no proof in this context.

The paper is organized as follows. Section 2 introduces the VARMA model and the local asymptotic normality of the model under some mild regularity assumptions. Section 3 revisits the Gaussian multivariate portmanteau tests of Chitturi (1974), Hosking (1980) and Li and McLeod (1981) and re-establishes their asymptotic properties under precise form via Le Cam’s asymptotic theory. Section 4 proposes a class of center-outward rank-based portmanteau test statistics and similarly establishes their asymptotic properties. A brief numerical analysis of the finite-sample size and power of these tests is conducted in Section 5. Section 6 concludes. All proofs are collected in the Appendix.

2 Notation and general setting

In this section, we introduce the VARMA(p, q) model (Section 2.1) and the local asymptotic normality property of the model (Section 2.2), which is the essential tool in our analysis of the asymptotic behavior of the Gaussian and center-outward rank-based multivariate portmanteau test statistics.

2.1 VARMA models

Consider the d-dimensional VARMA(p, q) model

$$\left(I_d - \sum_{i=1}^{p} A_i L^i \right) X_t = \left(I_d + \sum_{j=1}^{q} B_j L^j \right) \epsilon_t, \quad t \in \mathbb{Z},$$

(2.1)

where $A_1, \ldots, A_p, B_1, \ldots, B_q$ are $d \times d$ matrices, L denotes the lag operator, and $\{ \epsilon_t; t \in \mathbb{Z} \}$ is some i.i.d. mean-zero d-dimensional white noise process.
with density \(f \). Denoting by
\[
\theta := \left((\text{vec}(A_1))', \ldots, (\text{vec}(A_p))', (\text{vec}(B_1))', \ldots, (\text{vec}(B_q))' \right)',
\]
(where ' indicates transposition) the \((p+q)\times d^2\)-dimensional VARMA parameter, we throughout assume that \(\theta \) satisfies the following very classical conditions ensuring identifiability and the existence of a stationary and invertible solution to (2.1).

Assumption 1.

(i) All solutions of the determinantal equations
\[
\det \left(I_d - \sum_{i=1}^{p} A_i z_i \right) = 0 \quad \text{and} \quad \det \left(I_d + \sum_{i=1}^{q} B_i z_i \right) = 0, \quad z \in \mathbb{C}
\]
lie outside the unit ball in \(\mathbb{C} \);

(ii) \(\det(A_p) \neq 0 \neq \det(B_q) \);

(iii) \(I_d - \sum_{i=1}^{p} A_i z_i \) and \(I_d + \sum_{i=1}^{q} B_i z_i \) have no common left factors other than \(I_d \).

Denote by \(\Theta_{p,q} \) the VARMA\((p,q)\) parameter space—namely, the set of all \(\theta \) values satisfying Assumption 1: \(\Theta_{p,q} \) is a finite collection of open connected subsets of \(\mathbb{R}^{(p+q)d^2} \).

Let \(X^{(n)} := \{X_1^{(n)}, \ldots, X_n^{(n)}\} \) (superscript \((n) \) omitted whenever possible) be an observed finite realization of some solution of (2.1). For any \(\theta \in \Theta_{p,q} \), this observation \(X^{(n)} \) is asymptotically (as \(n \to \infty \)) stationary and invertible; associated with any \((p+q)\)-tuple \((X_0^{(n)}, \ldots, X_{-p+1}^{(n)}, \epsilon_1^{(n)}, \ldots, \epsilon_{-q+1}^{(n)}) \) of initial values, it determines, for any \(\theta \), an \(n \)-tuple of residuals
\[
Z_t^{(n)}(\theta) := \left(I_d - \sum_{i=1}^{p} A_i L_i \right) X_t^{(n)} - \sum_{j=1}^{q} B_j L_j \epsilon_t, \quad t = 1, \ldots, n,
\]
which can be computed recursively. These residuals are i.i.d. with density \(f \) and \(Z_t^{(n)}(\theta) \) coincides with \(\epsilon_t \) for any \(t \) iff \(X^{(n)} \) is a solution of (2.1) with parameter value \(\theta \).
2.2 Local asymptotic normality (LAN)

Our asymptotic analysis relies on the local asymptotic normality (LAN) property of VARMA models. That property requires mild regularity conditions on the density f of ϵ_t.

Assumption 2. (i) The innovation density f belongs to the class of non-vanishing Lebesgue densities on \mathbb{R}^d, i.e., $f(x) > 0$ for all $x \in \mathbb{R}^d$;

(ii) $\int x f(x) d\mu = 0$ and $\int xx' f(x) d\mu = \Xi$ where Ξ is finite and positive definite;

(iii) $f^{1/2}$ is mean-square differentiable with mean-square gradient $D f^{1/2}$, that is, there exists a square-integrable vector $D f^{1/2}$ such that, for any sequence $h \in \mathbb{R}^d$ such that $0 \neq h \to 0$,

$$(h'h)^{-1} \int \left[f^{1/2}(x + h) - f^{1/2}(x) - h'D f^{1/2}(x) \right]^2 d\mu \to 0;$$

(iv) letting $\varphi_f(x) := (\varphi_{f1}(x), \ldots, \varphi_{fd}(x))^t := -2D f^{1/2}(x)/f^{1/2}(x)$ (the location score function), $\int [\varphi_i(x)]^4 f(x) d\mu < \infty$, $i = 1, \ldots, d$;

(v) the function $x \mapsto \varphi_f(x)$ is piecewise Lipschitz, i.e., there exists $K \in \mathbb{R}$ and a finite measurable partition of \mathbb{R}^d into J non-overlapping subsets I_1, \ldots, I_J such that, for all x, y in I_j, $j = 1, \ldots, J$,

$$\|\varphi_f(x) - \varphi_f(y)\| \leq K \|x - y\|.$$

Conditions (i) and (iii) are standard in the context of LAN; (ii) and (iv) guarantee the existence of a full-rank information matrix for θ. Under (v), the impact of initial values is asymptotically negligible in mean square norm; without loss of generality, thus, we henceforth assume that

$$X_0^{(n)} = \ldots = X_{-p+1}^{(n)} = 0 = \epsilon_1^{(n)} = \ldots = \epsilon_{-q+1}^{(n)}.$$

Denote by F_d the class of densities f satisfying Assumption 2.
Letting $P^{(n)}_{\theta,f}$ denote the distribution of $X^{(n)}$ under parameter value θ and innovation density f, write

$$L_{\theta,n-1/2}(\tau^{(n)}) := \log \frac{dP^{(n)}_{\theta,n-1/2}(\tau^{(n)})}{dP^{(n)}_{\theta,f}}$$

where $\tau^{(n)}$ is a bounded sequence of $\mathbb{R}^{(p+q)d^2}$, for the log-likelihood ratio of $P^{(n)}_{\theta,n-1/2}(\tau^{(n)}, f)$ with respect to $P^{(n)}_{\theta,f}$ computed at $X^{(n)}$.

Define

$$\Gamma^{(n)}_{f}(\theta) := n^{-1/2} \left((n-1)^{1/2} \left(\text{vec}(\Gamma^{(n)}_{1,f}(\theta)) \right)' , \ldots , \right.$$

$$\left. (n-i)^{1/2} \left(\text{vec}(\Gamma^{(n)}_{i,f}(\theta)) \right)' , \ldots , \left(\text{vec}(\Gamma^{(n)}_{n-1,f}(\theta)) \right)' \right)' ,$$

(2.2)

with the so-called f-cross-covariance matrices

$$\Gamma^{(n)}_{i,f}(\theta) := (n-i)^{-1} \sum_{k=i+1}^{n} \varphi_j(\mathbf{Z}^{(n)}_{i}(\theta))\mathbf{Z}^{(n)}_{i-1}(\theta) \quad i = 1, \ldots, n-1. \quad (2.3)$$

Let $C^{(n)}_{i,\theta} := (c_{1,\theta}, \ldots, c_{n-1,\theta})$ with

$$c_{i,\theta} := \begin{pmatrix}
\sum_{j=0}^{i-1} \sum_{k=0}^{\min(q,i-j-1)} (G_{i-j-k-1} B_k) \otimes H'_{j} \\
\vdots \\
\sum_{j=0}^{i-p} \sum_{k=0}^{\min(q,i-j-p)} (G_{i-j-k-p} B_k) \otimes H'_{j} \\
I_d \otimes H'_{i-1} \\
\vdots \\
I_d \otimes H'_{i-q}
\end{pmatrix}, \quad i = 1, \ldots, n-1, \quad (2.4)$$

where G_u and H_u, $u \in \mathbb{Z}$ are the Green matrices associated with the autoregressive and moving average operators, respectively, in (2.1)—namely, the matrix coefficients of the inverted linear difference operators $(A(L))^{-1}$.
and \((B(L))^{-1}\):

\[
\sum_{u=0}^{\infty} G_u z^u = \left(I_d - \sum_{i=1}^{p} A_i z^i \right)^{-1} \quad \text{and} \quad \sum_{u=0}^{\infty} H_u z^u = \left(I_d + \sum_{i=1}^{q} B_i z^i \right)^{-1}, \quad z \in \mathbb{C}, |z| < 1.
\]

More constructive (recursive) definitions of Green’s matrices can be found in Section 1.1 of Hallin (1986) and Section 3 of Garel and Hallin (1995) but are not needed here, and we skip them for the sake of space: the only thing we need to recall is the fact that, under Assumption 1, \(\|G_u\|\) and \(\|H_u\|\), just as the moduli of all solutions of the homogeneous difference equations associated with \(A(L)\) and \(B(L)\), are exponentially decreasing as \(u \to \infty\), which implies that \(\|c_{i,\theta}\|\) exponentially decreases as \(i \to \infty\). Defining

\[
\Delta_{f}^{(n)}(\theta) := \sum_{i=1}^{n-1} c_{i,\theta} (n-i)^{1/2} \text{vec}(\Gamma_{i,f}^{(n)}(\theta)) = n^{1/2} C_{\theta}^{(n)} \Gamma_{f}^{(n)}(\theta),
\]

(2.5)

(the central sequences), the following LAN result is established in Garel and Hallin (1995), Proposition 3.1.

Proposition 2.1 (Garel and Hallin (1995)). Let Assumptions 1 and 2 hold. Then, for any bounded sequence \(\tau^{(n)}\) in \(\mathbb{R}^{(p+q)d^2}\), under \(\Gamma_{\theta,f}^{(n)}\), as \(n \to \infty\),

\[
L_{\theta,n}^{(n)} = \tau^{(n)} \Delta_{f}^{(n)}(\theta) - \frac{1}{2} \tau^{(n)^{T}} \Lambda_f(\theta) \tau^{(n)} + o_P(1),
\]

(2.6)

with \(\Delta_{f}^{(n)}(\theta)\) (the central sequence) defined in (2.5) and \((p+q)d^2 \times (p+q)d^2\) symmetric and positive definite \(\Lambda_f(\theta)\) (the information matrix—see equation (3.16) in Garel and Hallin (1995) for an explicit form). Still under \(\Gamma_{\theta,f}^{(n)}\), \(\Delta_{f}^{(n)}(\theta)\) is asymptotically normal with mean 0 and covariance \(\Lambda_f(\theta)\).

3 The Chitturi-Hosking-Li-McLeod multivariate portmanteau test

In this section, we are revisiting the pseudo-Gaussian multivariate portmanteau test of Chitturi-Hosking-Li-McLeod and, adopting a Le Cam approach,
clarify their asymptotic results.

3.1 Residual cross-covariance matrices

For a Gaussian density \(f \), the score function is \(\varphi_f(z) = -\Sigma^{-1}z \), where \(\Sigma \) is the covariance matrix of \(\epsilon_t \), and the \(f \)-cross-covariance matrices (2.3) reduce to

\[\Gamma_{iN}(\theta) := -(n - i)^{-1} \sum_{t=i+1}^{n} Z_t(\theta)Z'_{t-i}(\theta), \quad i = 1, \ldots, n-1. \] (3.1)

Note that \(\Gamma_{iN}(\theta) \) differs from the traditional lag-\(i \) cross-covariance matrix \((n - i)^{-1} \sum_{t=i+1}^{n} Z_t(\theta)Z'_{t-i}(\theta) \) by a left factor \(-\Sigma \).

Proposition 3.1 provides the asymptotic distribution of \(\Gamma_{iN}(\theta) \) under \(P_{\theta:f}^{(n)} \) and contiguous sequences of alternatives \(P_{\theta+n^{-1/2}\tau:f}^{(n)} \). See the Appendix for a proof. In practice, of course, \(\Sigma \) remains unspecified and has to be estimated by some \(\Sigma^{(n)} \)—typically, the residual empirical covariance matrix. As long as \(\Sigma^{(n)} \) is consistent, substituting it for \(\Sigma \) in (3.1), in view of Slutsky’s Lemma, has no impact on asymptotic distributions. Rather than introducing cumbersome additional notation, thus, we pursue with the \(\Sigma \)-based definition of \(\Gamma_{iN}(\theta) \). As for its rank-based counterparts defined in Section 4.3, they do not involve any \(\Sigma \) nor any of the parameters of the actual innovation distribution.

Proposition 3.1. Let Assumptions 1 and 2 hold. Then, for any positive integers \(i \neq j \), the vectors

\[(n - i)^{1/2} \text{vec}(\Gamma_{iN}(\theta)) \quad \text{and} \quad (n - j)^{1/2} \text{vec}(\Gamma_{jN}(\theta)) \]

are jointly asymptotically normal, with mean \((0',0')' \) under \(P_{\theta:f}^{(n)} \), mean

\[((\Sigma \otimes \Sigma^{-1})c'_{i,\theta}\tau)'', ((\Sigma \otimes \Sigma^{-1})c'_{j,\theta}\tau)'' \] (3.2)

under \(P_{\theta+n^{-1/2}\tau:f}^{(n)} \), and covariance

\[\left(\begin{array}{cc} \Sigma \otimes \Sigma^{-1} & 0 \\ 0 & \Sigma \otimes \Sigma^{-1} \end{array} \right) \]

under both.

To determine the asymptotic behavior of the Gaussian portmanteau test,
the asymptotic linearity of \((n - i)^{1/2}\text{vec}(\Gamma^{(n)}_{i:N}(\theta))\) is required. That result is established in Lemma 4 of Hallin and Paindaveine (2005) under the quite restrictive assumption that the distribution of \(\epsilon_t\) is elliptically symmetric. Here, we make the assumption that asymptotic linearity holds for general \(f\) satisfying Assumption 2; the form of the linear term on the right-hand side of (3.3) below follows from the form of the shift matrices in (3.2)—themselves a consequence of Le Cam’s third Lemma.

Assumption 3. For any positive integer \(i\),

\[
(n - i)^{1/2} \left[\text{vec}(\Gamma^{(n)}_{i:N}(\theta + n^{-1/2}\tau)) - \text{vec}(\Gamma^{(n)}_{i:N}(\theta)) \right] = (\Sigma \otimes \Sigma^{-1}) c'_{i,\theta}\tau + o_P(1)
\]

under \(P^{(n)}_{\theta:j}\), as \(n \to \infty\).

We refer to Section 4 of van den Akker et al. (2015) for primitive conditions.

The Gaussian portmanteau test is based on the plug-in of \(\hat{\theta}^{(n)}_{N}\), the Gaussian quasi-maximum likelihood estimator (QMLE) of \(\theta\), in the test statistic to be defined. Recall that \(\hat{\theta}^{(n)}_{N}\) is defined as the solution of \(\Delta^{(n)}_{N}(\hat{\theta}^{(n)}_{N}) = 0\) where

\[
\Delta^{(n)}_{N}(\theta) := \sum_{i=1}^{n-1} c_{i,\theta}(n - i)^{1/2}\text{vec}(\Gamma^{(n)}_{i:N}(\theta))
\]

is the Gaussian central sequence. A finite fourth-order moment assumption on \(\epsilon_t\) is required in order for \(\hat{\theta}^{(n)}_{N}\) to be root-\(n\)-consistent; see, e.g., Mélard (2022) for a recent proof.

Assumption 4. \(E\left[\text{vec}(\epsilon_t\epsilon'_t) (\text{vec}(\epsilon_t\epsilon'_t))'\right] < \infty\).

In view of (3.3), the plug-in impact of substituting \(\hat{\theta}^{(n)}_{N}\) for the actual \(\theta\) in a quadratic form of \((n - i)^{1/2}\text{vec}(\Gamma^{(n)}_{i:N}(\theta))\), \(i = 1, \ldots, m\) is asymptotically non-negligible. Taking into account the fact that \(\Delta^{(n)}_{N}(\hat{\theta}^{(n)}_{N}) = 0\), however, that impact can be neutralized in view of Lemma 3.2 below.

Denote by \(\Gamma^{(n)*}_{i:N}(\theta)\) the matrix of residuals in the regression of \(\Gamma^{(n)}_{i:N}(\theta)\)'s entries with respect to \(\Delta^{(n)}_{N}(\theta)\) in their joint asymptotic (under \(P^{(n)}_{\theta:j}\)) distri-
bution; namely, let

\[(n - i)^{1/2} \text{vec} \left(\Gamma_{i,i'}^{(n)}(\theta) \right) \]

\[= (n - i)^{1/2} \text{vec} \left(\Gamma_{i,i'}^{(n)}(\theta) \right) - (\Sigma \otimes \Sigma^{-1})c_i\theta \left(\sum_{i=1}^{n-1} c_i\theta (\Sigma \otimes \Sigma^{-1})c_i'\theta \right)^{-1} \Delta_{N}^{(n)}(\theta) \quad (3.4) \]

\[= (n - i)^{1/2} \text{vec} \left(\Gamma_{i,i'}^{(n)}(\theta) \right) - (\Sigma \otimes \Sigma^{-1})c_i\theta \left(\sum_{i=1}^{n-1} c_i\theta (\Sigma \otimes \Sigma^{-1})c_i'\theta \right)^{-1} \]

\[\times \left(\sum_{i=1}^{n-1} c_i\theta (n - i)^{1/2} \text{vec} \left(\Gamma_{i,i'}^{(n)}(\theta) \right) \right). \quad (3.5) \]

Lemma 3.2 below shows that \(\Gamma_{i,i'}^{(n)}(\hat{\theta}_N^{(n)}) \) and \(\Gamma_{i,i'}^{(n)}(\theta) \) under \(P_{\theta,f}^{(n)} \) only differ by a \(o_P(n^{-1/2}) \) quantity: under \(P_{\theta,f}^{(n)} \) and contiguous alternatives, thus, using \(\Gamma_{i,i'}^{(n)}(\hat{\theta}_N^{(n)}) \) in the portmanteau test statistic is asymptotically equivalent to using \(\Gamma_{i,i'}^{(n)}(\theta) \). The advantage of the latter is that it no longer involves \(\hat{\theta}_N^{(n)} \), which simplifies the derivation of asymptotic results. See the Appendix for a proof.

Lemma 3.2. Let Assumptions 1, 2, 3, and 4 hold. Then

\[(n - i)^{1/2} \text{vec} \left(\Gamma_{i,i'}^{(n)}(\hat{\theta}_N^{(n)}) - \Gamma_{i,i'}^{(n)}(\theta) \right) = o_P(1), \quad (3.6) \]

for any fixed \(i \geq 1 \), under any \(P_{\theta,f}^{(n)} \) and any contiguous \(P_{\theta,f}^{(n)} \) and any contiguous \(P_{\theta+n^{-1/2}f,f}^{(n)} \), as \(i < n \to \infty \).

Note, however, that the asymptotic equivalence (3.6) results from the fact that the estimator \(\hat{\theta}_N^{(n)} \) and the cross-covariances \(\Gamma_{i,i'}^{(n)} \) both are associated with the Gaussian distribution (although \(f \) needs not to be Gaussian): the same result would not hold with non-Gaussian quasi-maximum likelihood estimators (for instance, the estimator \(\hat{\theta}_f^{(n)} \) obtained from the actual likelihood equations \(\Delta_f^{(n)}(\theta) = 0 \), with \(f \) non-Gaussian. Nor does it hold, e.g., with robust or R-estimators (see Hallin et al. (2022b)) of \(\theta \) plugged into \(\Gamma_{i,i'}^{(n)} \).
3.2 The (pseudo-)Gaussian test

The statistic of the Gaussian portmanteau test of Hosking (1980) (to be performed as a pseudo-Gaussian test) takes the form

\[Q^{(n)}_{m,N}(\hat{\theta}^{(n)}_{N}) := \sum_{i=1}^{m} (n-i) \text{vec}(\Gamma^{(n)}_{i,N}(\hat{\theta}^{(n)}_{N}))'(\Sigma \otimes \Sigma)^{-1}\text{vec}(\Gamma^{(n)}_{i,N}(\hat{\theta}^{(n)}_{N})) \]

\[= n\Gamma^{(m,n)}_{N}(\hat{\theta}^{(n)}_{N})(I_m \otimes \Sigma \otimes \Sigma)^{-1}\Gamma^{(m,n)}_{N}(\hat{\theta}^{(n)}_{N}), \]

where

\[\Gamma^{(m,n)}_{N}(\theta) := \frac{n}{2} \left((n-1)^{1/2}\text{vec}(\Gamma^{(n)}_{1,N}(\theta))', \ldots, (n-m)^{1/2}\text{vec}(\Gamma^{(n)}_{m,N}(\theta))' \right), \]

and \(\Sigma := n^{-1} \sum_{t=1}^{n} Z_t(\hat{\theta}^{(n)}_{N})Z_t'(\hat{\theta}^{(n)}_{N}) \).

The asymptotic behavior of \(Q^{(n)}_{m,N}(\hat{\theta}^{(n)}_{N}) \) is obtained by approximating it (for sufficiently large \(m \)) by a statistic that is asymptotically chi-square with \(d^2(m-p-q) \) degrees of freedom as \(n \to \infty \). Specifically, it follows from Lemma 3.2 and the exponential decrease (as \(i \to \infty \)) of \(\|c_{i,\theta}\|'s \) that, for \(m \) large enough, \((n-i)^{1/2}\text{vec}(\Gamma^{(n)}_{i,N}(\hat{\theta}^{(n)}_{N}))\) is arbitrarily close to

\[(n-i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,N}(\theta)) = (n-i)^{1/2}\text{vec}(\Gamma^{(n)}_{i,N}(\theta)) - (\Sigma \otimes \Sigma^{-1})c_{i,\theta}'\left(\sum_{i=1}^{m} c_{i,\theta}(\Sigma \otimes \Sigma^{-1})c_{i,\theta}' \right)^{-1} \times \left(\sum_{i=1}^{m} c_{i,\theta}(n-i)^{1/2}\text{vec}(\Gamma^{(n)}_{i,N}(\theta)) \right), \]

a quantity that results from truncating at \(m \) terms the sums in the right-hand side of (3.5).

Let

\[Q^{(n)*}_{m,N}(\theta) := \sum_{i=1}^{m} (n-i)(\text{vec}(\Gamma^{(n)*}_{i,N}(\theta))'(\Sigma \otimes \Sigma)^{-1}\text{vec}(\Gamma^{(n)*}_{i,N}(\theta))). \]

The following result states that \(Q^{(n)}_{m,N}(\hat{\theta}^{(n)}_{N}) \) can be approximated by \(Q^{(n)*}_{m,N}(\theta) \), where \(Q^{(n)*}_{m,N}(\theta) \) is asymptotically chi-square under \(P_{\hat{\theta},f}^{(n)} \) as \(n \to \infty \).
Proposition 3.3. Let Assumptions 1, 2, 3, and 4 hold. Then, under $P_{\theta,f}$ and contiguous alternatives,

(i) for all $\delta, \varepsilon > 0$, there exist integers $M_{\delta,\varepsilon}$ and $N_{\delta,\varepsilon}$ such that

$$P \left(\left| Q_{m:N}^{(n)}(\hat{\theta}_N^{(n)}) - Q_{m:N}^{(n)ss}(\theta) \right| < \delta \right) > 1 - \varepsilon$$

for all $n \geq N_{\delta,\varepsilon}$ and fixed $m \geq M_{\delta,\varepsilon}$;

(ii) $Q_{m:N}^{(n)ss}(\theta)$ is asymptotically chi-square with $d^2(m - p - q)$ degrees of freedom as $n \rightarrow \infty$.

See the Appendix for a proof.

4 A portmanteau test based on multivariate center-outward ranks and signs

4.1 Pseudo-Gaussian versus rank-based tests

Pseudo-Gaussian tests are generally considered asymptotically valid over some class \mathcal{P} of distributions (containing the Gaussian). And the critical value obtained from the common asymptotic distribution of a pseudo-Gaussian test statistic indeed yields, for each $P \in \mathcal{P}$, a test with correct asymptotic size α, say. As mentioned in the introduction, the convergence to α of the finite-sample sizes of the resulting tests, however, in general is highly non-uniform: while converging to α pointwise in $P \in \mathcal{P}$, the $\sup_{P \in \mathcal{P}}$ of these sizes typically fails to do so. If P remains unspecified, which is the case when pseudo-Gaussian tests are performed, the α-level constraint should apply to the $\sup_{P \in \mathcal{P}}$ of the size under P; this sup, however, typically fails to converge to the asymptotic nominal α level. This is to be kept in mind when performing pseudo-Gaussian tests.

Distribution-free tests do not suffer from the same drawback, since their finite-sample size (hence also their asymptotic size) does not depend on $P \in \mathcal{P}$, pointwise and uniform convergence being equivalent under distribution-freeness. The typical example of distribution-free tests is that of rank-based
The advantages in terms of size and validity of rank tests over the pseudo-Gaussian ones, moreover, are not obtained at the cost of power and efficiency, as shown, for location and simple-output regression, by the celebrated Chernoff-Savage and Hodges-Lehmann results (Chernoff and Savage (1958); Hodges and Lehmann (1956)) and, for univariate ARMA time series, by Hallin (1994) and Hallin and Tribel (2000). Although no fully general versions of the Chernoff-Savage and Hodges-Lehmann inequalities have been established so far, in the multiple-output case, for center-outward ranks and signs, partial results (restricted to elliptical densities f) have been obtained by Hallin and Paindaveine (2002a) and Deb et al. (2021), and, for elliptical VARMA models, by Hallin and Paindaveine (2002b, 2005). These inequalities are quite likely to hold beyond the class of elliptical densities, though.

The basic tools for constructing our rank-based multivariate portman-teau test are the center-outward ranks and signs proposed by Hallin et al. (2021), based on ideas and results from measure transportation theory. In Section 4.2, we introduce the center-outward distribution function and its empirical version, from which the center-outward ranks and signs can be defined.

4.2 Center-outward ranks and signs

Denote by S_d and \bar{S}_d the open and closed unit ball, respectively, and by S_{d-1} the unit hypersphere in \mathbb{R}^d. Let \mathcal{P}_d^+ denote the family of all distributions P with densities in \mathcal{F}_d such that, for all positive $r \in \mathbb{R}$, there exist constants $L^-_r > 0$ and $L^+_r < \infty$ for which

$$L^-_r \leq f(x) \leq L^+_r \quad \text{for all} \quad x \in r \bar{S}_d.$$

For P in this family, the center-outward distribution functions defined below are continuous: see Figalli (2018). More general cases are studied in del Barrio et al. (2020), but require more cautious and less intuitive definitions of these center-outward functions which, for the sake of simplicity, we do not consider here. Denote by U_d the spherical uniform distribution over S_d,
that is, the product of a uniform measure over the hypersphere S_{d-1} and a uniform over the unit interval of distances to the origin.

The center-outward distribution function F_\pm of P is defined as the a.e. unique gradient of convex function mapping \mathbb{R}^d to S_d and pushing P forward to U_d (that is, such that $F_\pm(X) \sim U_d$ if $X \sim P$). For $P \in \mathcal{P}_d^+$, such mapping is a homeomorphism between $S_d \setminus \{0\}$ and $\mathbb{R}^d \setminus F_\pm^{-1}\{0\}$ (Figalli (2018)) and the corresponding center-outward quantile function is defined as $Q_\pm := F_\pm^{-1}$ (letting, with a small abuse of notation, $Q_\pm(0) := F_\pm^{-1}(\{0\})$). For any given distribution P, the quantile function Q_\pm induces a collection of continuous, connected, and nested quantile contours $Q_\pm(r S_{d-1})$ and regions $Q_\pm(r S_d)$ of order $r \in [0,1)$; the center-outward median $Q_\pm(0)$ is a uniquely defined compact set of Lebesgue measure zero. We refer to Hallin et al. (2021) for details.

Turning to the sample, the residuals $Z_1^{(n)}(\theta), \ldots, Z_n^{(n)}(\theta)$ under $P_{\theta,f}^{(n)}$ are i.i.d. with density $f \in \mathcal{F}_d$ and center-outward distribution function F_\pm. For the empirical counterpart $F_\pm^{(n)}$ of F_\pm, let n factorize into $n = n_R n_S + n_0$, for $n_R, n_S, n_0 \in \mathbb{N}$ and $0 \leq n_0 < \min\{n_R, n_S\}$, where $n_R \to \infty$ and $n_S \to \infty$ as $n \to \infty$, and consider a sequence $\Theta^{(n)}$ of grids, where each grid consists of the $n_R n_S$ intersections between an n_S-tuple (u_1, \ldots, u_{n_S}) of unit vectors, and the n_R hyperspheres with radii $1/(n_R + 1), \ldots, n_R/(n_R + 1)$ centered at the origin, along with n_0 copies of the origin. The only requirement is that the discrete distribution with probability masses $1/n$ at each gridpoint and probability mass n_0/n at the origin converges weakly to the uniform U_d over the ball S_d. Then, we define $F_\pm^{(n)}(Z^{(n)}_t)$, for $t = 1, \ldots, n$ as the solution (optimal mapping) of a coupling problem between the residuals and the grid-points. Specifically, the empirical center-outward distribution function is the (random) discrete mapping

$$F_\pm^{(n)} : Z^{(n)} := (Z_1^{(n)}, \ldots, Z_n^{(n)}) \mapsto (F_\pm^{(n)}(Z_1^{(n)}), \ldots, F_\pm^{(n)}(Z_n^{(n)}))$$

satisfying

$$\sum_{t=1}^n \|Z_t^{(n)} - F_\pm^{(n)}(Z_t^{(n)})\|^2 = \min_{T \in \mathcal{T}} \sum_{t=1}^n \|Z_t^{(n)} - T(Z_t^{(n)})\|^2,$$

(4.1)
where $Z_t^{(n)} = Z_t^{(n)}(\theta)$, the set $\{F_{\pm}^{(n)}(Z_t^{(n)})|t = 1, \ldots, n\}$ coincides with the n points of the grid, and \mathcal{T} denotes the set of all possible bijective mappings between $Z_t^{(n)}, \ldots, Z_n^{(n)}$ and the n gridpoints. Intuition for this mapping in dimension $d = 2$ is provided in Figure 1.

![Figure 1: A regular grid of $n = nRnS$ points over S_2.](image)

Based on this empirical center-outward distribution function, the center-outward ranks are defined as

$$R_{\pm,t}^{(n)} := R_{\pm,t}^{(n)}(\theta) := (n_R + 1)\|F_{\pm}^{(n)}(Z_t^{(n)})\|,$$ \hspace{1cm} (4.2)

the center-outward signs as

$$S_{\pm,t}^{(n)} := S_{\pm,t}^{(n)}(\theta) := F_{\pm}^{(n)}(Z_t^{(n)})/\|F_{\pm}^{(n)}(Z_t^{(n)})\|.$$ \hspace{1cm} (4.3)

It follows that $F_{\pm}^{(n)}(Z_t^{(n)})$ factorizes into

$$F_{\pm}^{(n)}(Z_t^{(n)}) = \frac{R_{\pm,t}^{(n)}}{n_R + 1}S_{\pm,t}^{(n)}, \quad \text{whence} \quad Z_t^{(n)} = Q_{\pm}^{(n)}\left(\frac{R_{\pm,t}^{(n)}}{n_R + 1}S_{\pm,t}^{(n)}\right).$$ \hspace{1cm} (4.4)

Those ranks and signs are jointly distribution-free under $\mathcal{P}_{\theta,f}^{(n)}$ (for $P \in \mathcal{P}_d^+$); more precisely, under $\mathcal{P}_{\theta,f}^{(n)}$, the n-tuple $F_{\pm}^{(n)}(Z_1^{(n)}), \ldots, F_{\pm}^{(n)}(Z_n^{(n)})$ is uniformly
distributed over the \(n!/n_0!\) permutations with repetition of the \(n\) underlying gridpoints (the origin having multiplicity \(n_0\)). Moreover, the center-outward distribution functions, ranks, and signs inherit, from the invariance properties of Euclidean distances, elementary but remarkable invariance and equivariance properties with respect to shift, global scale, and orthogonal transformations: see Proposition 2.2 in Hallin et al. (2022a) for details.

An intuitive choice of \(n_R\) and \(n_S\) in the factorization of \(n\) is
\[n_R \approx \frac{n_1}{d} \quad \text{and} \quad n_S \approx \frac{n(d - 1)}{d},\]
\(n_R\), indeed, is the cardinality of a one-dimensional grid over \([0, 1]\), \(n_S\) the cardinality of a grid over the \((d - 1)\)-sphere \(S_{d-1}\). Other heuristic criteria are possible, though. Mordant (2021), for instance, since the grid is supposed to provide an approximation of the spherical uniform, suggests minimizing the Wasserstein distance between the empirical distribution over the grid and the spherical uniform: see Section 3.2 of Hallin and Mordant (2022).

4.3 Center-outward rank-based cross-covariance matrices

Writing \(\mathbf{F}_{\pm, t}^{(n)}(\mathbf{Z}_1(n)(\theta)), \mathbf{R}_{\pm, t}^{(n)}(\mathbf{F}_1(n)), \) and \(\mathbf{S}_{\pm, t}^{(n)}(\mathbf{F}_2(n))\), respectively, consider the center-outward rank-based counterpart of \(\Gamma_f^{(n)}(\theta)\). Specifically, define

\[
\Gamma_{J_1, J_2}^{(n)}(\theta) := n^{-1/2} \left((n - 1)^{1/2} \left(\text{vec}(\Gamma_{J_1, J_2}^{(n)}(\theta)) \right) ', \ldots, \\
(n - i)^{1/2} \left(\text{vec}(\Gamma_{J_1, J_2}^{(n)}(\theta)) \right) ', \ldots, \left(\text{vec}(\Gamma_{J_1, J_2}^{(n)}(\theta)) \right) ' \right)',
\]

with, for \(i = 1, \ldots, n - 1,\)

\[
\Gamma_{i, J_1, J_2}^{(n)}(\theta) := (n - i)^{-1} \sum_{t=i+1}^{n} J_1 \left(\frac{R_{\pm, t}^{(n)}}{n_R + 1} S_{\pm, t}^{(n)} \right) J_2 \left(\frac{R_{\pm, t-i}^{(n)}}{n_R + 1} S_{\pm, t-i}^{(n)} \right)^{'}
\]

where \(J_1\) and \(J_2 : S_d \rightarrow \mathbb{R}\) are score functions satisfying Assumption 5 below. Call \(\Gamma_{i, J_1, J_2}^{(n)}(\theta)\) a (residual) rank-based cross-covariance matrix with lag \(i\): this matrix is distribution-free under \(\mathbf{F}_{\theta, n}^{(n)}\) due to distribution-freeness of the center-outward ranks and signs. In order to establish its asymptotic
distribution, we make the following assumption on \(J_1 \) and \(J_2 \).

Assumption 5. The score functions \(J_1 \) and \(J_2 \)

(i) are continuous over \(S_d \);

(ii) are square-integrable, that is, \(\int_{S_d} \|J_\ell(u)\|^2 dU_d < \infty \) for \(\ell = 1, 2 \).

Moreover,

(iii) for any sequence \(s^{(n)} := \{s_1^{(n)}, \ldots, s_n^{(n)}\} \) of \(n \)-tuples in \(S_d \) such that the uniform discrete distribution over \(s^{(n)} \) converges weakly to \(U_d \),

\[
\lim_{n \to \infty} n^{-1} \sum_{t=1}^n \|J_\ell(s_t^{(n)})\|^2 = \int_{S_d} \|J_\ell(u)\|^2 dU_d, \quad \ell = 1, 2. \tag{4.7}
\]

Let

\[
\mu^{(n)} := E(J_1(F_{\pm,1}^{(n)}))J_2'(F_{\pm,1}^{(n)}),
\]

\[
D_{J_1, J_2} := \left[\int_{S_d} J_2(u_2)J_2'(u_2)dU_d(u_2) \right] \otimes \left[\int_{S_d} J_1(u_2)J_1'(u_2)dU_d(u_2) \right] - \left[\int_{S_d} J_2(u)dU_d \int_{S_d} J_2'(u)dU_d \right] \otimes \left[\int_{S_d} J_1(u)dU_d \int_{S_d} J_1'(u)dU_d \right],
\]

and

\[
K_{J_1, J_2, f} := E[J_2(F_{\pm, f}^{(n)}))\epsilon_f'] \otimes E[J_1(F_{\pm, f}^{(n)}))\varphi_f'(\epsilon_f)].
\]

We then have the following result from Hallin et al. (2022b).

Proposition 4.1. Let Assumptions 1, 2, and 5 hold. Then, for any positive integers \(i \neq j \), the vectors

\[
(n - i)^{1/2}\text{vec}(\Gamma_{i+1,j+1}^{(n)}(\theta) - \mu^{(n)}) \quad \text{and} \quad (n - j)^{1/2}\text{vec}(\Gamma_{j+1,i+1}^{(n)}(\theta) - \mu^{(n)})
\]

are jointly asymptotically normal, with mean \((0', 0')'\) under \(P_{\theta, f}^{(n)} \), mean

\[
\left((K_{J_1, J_2, f}c_{i, \theta}^t \tau)', (K_{J_1, J_2, f}c_{j, \theta}^t \tau)' \right)'
\]

under \(P_{\theta+n^{-1/2}\tau, f}^{(n)} \), and covariance

\[
\begin{pmatrix}
D_{J_1, J_2} & 0 \\
0 & D_{J_1, J_2}
\end{pmatrix}
\]

under both.
Without loss of generality, we will assume that $\mathbf{\mu}^{(n)} = o(n^{-1/2})$. A sufficient condition is either $\int_{\mathbb{R}_d} \mathbf{J}_1(u) dU_d = 0$ or $\int_{\mathbb{R}_d} \mathbf{J}_2(u) dU_d = 0$; indeed, following the same lines as in Lemma 1 of Hallin and La Vecchia (2020), one has

$$\mathbf{\mu}^{(n)} = \mathbf{E}(\mathbf{J}_1(F_{\pm,1})) \mathbf{E}(\mathbf{J}_2(F_{\pm,1})) = o(n^{-1/2}).$$

Moreover, note that, for the scores in Example 1-3 of Section 4.7, $\mathbf{\mu}^{(n)} = 0$ holds whenever the regular grid $\mathcal{G}^{(n)}$ is symmetric with respect to the origin. See Hallin et al. (2023) for details.

To define the rank-based test statistic and derive its asymptotic theory, we assume the following asymptotic linearity of $(n-i)^{1/2} \mathbf{\text{vec}}(\Gamma^{(n)}_{i,\mathbf{J}_1,\mathbf{J}_2}(\theta))$, where the form of the right-hand side of (4.9) again follows from the form of the shift matrix in (4.8).

Assumption 6. For any positive integer i, as $n \to \infty$,

$$(n-i)^{1/2} \left[\mathbf{\text{vec}}(\Gamma^{(n)}_{i,\mathbf{J}_1,\mathbf{J}_2}(\theta + n^{-1/2} \mathbf{\tau})) - (\Gamma^{(n)}_{i,\mathbf{J}_1,\mathbf{J}_2}(\theta)) \right] = -K_{\mathbf{J}_1,\mathbf{J}_2,f} c'_{i,\theta} \mathbf{\tau} + o_p(1) \quad (4.9)$$

under $P^{(n)}_{\theta,f}$ (hence also under $P^{(n)}_{\theta+n^{-1/2} \mathbf{\tau},f}$).

Sufficient conditions for (4.9) can be found in van den Akker et al. (2015).

Let $\Delta_{\mathbf{J}_1,\mathbf{J}_2}(\theta) := \sum_{i=1}^{n-1} c_i,\theta (n-i)^{1/2} \mathbf{\text{vec}}(\Gamma^{(n)}_{i,\mathbf{J}_1,\mathbf{J}_2}(\theta))$ denote the rank-based central sequence. The asymptotic linearity of $\Delta_{\mathbf{J}_1,\mathbf{J}_2}(\theta)$, that is,

$$\Delta_{\mathbf{J}_1,\mathbf{J}_2}(\theta + n^{-1/2} \mathbf{\tau}) - \Delta_{\mathbf{J}_1,\mathbf{J}_2}(\theta) = -\sum_{i=1}^{n-1} c_i,\theta K_{\mathbf{J}_1,\mathbf{J}_2,f} c'_{i,\theta} \mathbf{\tau} + o_p(1). \quad (4.10)$$

as $n \to \infty$ readily follows from Assumption 6, both under $P^{(n)}_{\theta,f}$ and under $P^{(n)}_{\theta+n^{-1/2} \mathbf{\tau},f}$.

4.4 Center-outward rank-based portmanteau tests

Recall from Lemma 3.2 that the pseudo-Gaussian portmanteau test relies on a plug-in of the QMLE $\hat{\theta}^{(n)}_N$, which kind of neutralizes the asymptotic impact of computing cross-covariances from estimated residuals rather than exact ones. Lemma 4.2 below shows that a similar result holds for the rank-based
cross-covariance matrix $\Gamma_{i;J_1,J_2}^{(n)}$ when computed at the R-estimator $\theta_{J_1,J_2}^{(n)}$ of Hallin et al. (2022b). That result will not hold if the R-estimator and the rank-based cross-covariance matrix are based on distinct score functions, or if the QMLE is plugged in instead of the adequate R-estimator.

Let $\Upsilon_{J_1,J_2,f}^{(n)}(\theta) := \sum_{i=1}^{n-1} c_{i,\theta} K_{J_1,J_2,f} c_{i,\theta}'$ denote the shift matrix in (4.10) and let $\overline{\Upsilon}_{J_1,J_2}^{(n)}$ be a consistent (under $P_{\theta,f}^{(n)}$) estimator thereof; see Hallin et al. (2022b) for details. Further, denote by $\overline{\theta}^{(n)}$ a preliminary \sqrt{n}-consistent and asymptotically discrete estimator of θ. Recall that an estimator $\overline{\theta}^{(n)}$ of θ is called \textit{asymptotically discrete} if the number of values it takes in balls of radius $cn^{-1/2}$ ($c > 0$) is bounded as $n \to \infty$, which is easily obtained by discretization. This assumption, which is classical in Le Cam asymptotics, is needed in asymptotic statements but has no finite-sample implications. The \textit{one-step R-estimator} of θ is defined as

$$\theta_{J_1,J_2}^{(n)} := \overline{\theta}^{(n)} + n^{-1/2}(\overline{\Upsilon}_{J_1,J_2}^{(n)})^{-1}\Delta_{J_1,J_2}^{(n)}(\overline{\theta}^{(n)}).$$ \hspace{1cm} (4.11)

Now, consider the matrix $\Gamma_{i;J_1,J_2,f}^{(n)*}(\theta)$ of residuals in the regression of $(n-i)^{1/2}\text{vec}\Gamma_{i;J_1,J_2}^{(n)}(\theta)$ with respect to $\Delta_{J_1,J_2}^{(n)}(\theta)$ in the covariance matrix (note, however, that this matrix is not the asymptotic covariance matrix of $(n-i)^{1/2}\text{vec}\Gamma_{i;J_1,J_2}^{(n)}(\theta), \Delta_{J_1,J_2}^{(n)}(\theta))$)

$$
\begin{pmatrix}
D_{J_1,J_2} & K_{J_1,J_2,f} c_{i,\theta}' \\
c_{i,\theta} K_{J_1,J_2,f} & \left(\sum_{i=1}^{n-1} c_{i,\theta} K_{J_1,J_2,f} c_{i,\theta}'\right)
\end{pmatrix}.
$$
Namely, define \((n-i)^{1/2} \Gamma_{i,j_1,j_2,f}^{(n)*}(\theta)\) as

\[
(n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2,f}^{(n)*}(\theta)) := (n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2}^{(n)}(\theta)) - K_{j_1,j_2,f} c'_{i,\theta} \left(\sum_{i=1}^{n-1} c_{i,\theta} K_{j_1,j_2,f} c'_{i,\theta} \right)^{-1} \Delta_{j_1,j_2}^{(n)}(\theta)
\]

\[
= (n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2}^{(n)}(\theta)) - K_{j_1,j_2,f} c'_{i,\theta} \left(\sum_{i=1}^{n-1} c_{i,\theta} K_{j_1,j_2,f} c'_{i,\theta} \right)^{-1} \times \left(\sum_{i=1}^{n-1} c_{i,\theta} (n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2}^{(n)}(\theta)) \right).
\]

(4.12)

Lemma 4.2 below shows that \((n-i)^{1/2} \Gamma_{i,j_1,j_2}^{(n)}(\theta_{j_1,j_2})\) and the oracle statistic \((n-i)^{1/2} \Gamma_{i,j_1,j_2}^{(n)*}(\theta_{j_1,j_2})\) are asymptotically equivalent. Hence, the asymptotics of the rank-based test statistic constructed from \((n-i)^{1/2} \Gamma_{i,j_1,j_2}^{(n)}(\theta_{j_1,j_2})\) coincide with those of its counterpart built from \((n-i)^{1/2} \Gamma_{i,j_1,j_2,f}^{(n)*}(\theta_{j_1,j_2})\). See the Appendix for a proof.

Lemma 4.2. Let Assumptions 1, 2, 5, and 6 hold. Then

(i) \(\Delta_{j_1,j_2}^{(n)}(\theta_{j_1,j_2}) = o_p(1)\),

(ii) \((n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2,f}^{(n)*}(\theta_{j_1,j_2}) - \Gamma_{i,j_1,j_2}^{(n)}(\theta_{j_1,j_2})) = o_p(1)\), and

(iii) \((n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2,f}^{(n)*}(\theta_{j_1,j_2}) - \Gamma_{i,j_1,j_2,f}^{(n)*}(\theta)) = o_p(1)\),

for any fixed \(i \geq 1\), under \(P_{\theta,f}^{(n)}\) and \(P_{\theta+n^{1/2}}^{(n)}\), as \(n \to \infty\).

Note that the asymptotic covariance matrix of \((n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2,f}^{(n)}(\theta))\) in Proposition 4.1, which does not depend on the underlying density \(f\), differs from the corresponding shift matrix \(K_{j_1,j_2,f}\), which is not even symmetric for a general \(f\). This was not the case for the asymptotic covariance matrix of \((n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2,f}^{(n)}(\theta))\). As a consequence, the construction of rank-based portmanteau tests is more intricate than in the classical pseudo-Gaussian case and requires some additional notation.

In view of Lemma 4.2, the test statistic should involve a consistent estimator of the covariance matrix of \((n-i)^{1/2} \text{vec}(\Gamma_{i,j_1,j_2}^{(n)*}(\theta))\), rather than a
consistent estimator of \((n - i)^{1/2}\text{vec}(\Gamma^{(n)}_{i,j_1,j_2}(\theta))\). Let

\[
\Omega^{(m)}_{i,j_1,j_2,f}(\theta) := W^{(m)}_{i,j_1,j_2,f}(\theta) W^{(m)\prime}_{i,j_1,j_2,f}(\theta)
\]

(4.13)

with

\[
W^{(m)}_{i,j_1,j_2,f}(\theta) := (e^{(m)}_i \otimes D_{j_1,j_2}^{1/2}) - K_{j_1,j_2,f} c_i^\prime (\sum_{i=1}^m c_i \theta K_{j_1,j_2,f} c_i^\prime)^{-1}
\]

(4.14)

\[
\times C_\theta^{(m+1)} (I_m \otimes D_{j_1,j_2}^{1/2})
\]

and \(e^{(m)}_i\) standing for the \(i\)th vector of the canonical basis in \(\mathbb{R}^m\).

For sufficiently large \(m\), due to exponential decrease of \(\|c_i \theta\|\), the matrices \(\Omega^{(m)}_{i,j_1,j_2,f}(\theta^{(n)}_{j_1,j_2})\) are (uniformly in \(i\)) arbitrarily close to the covariance matrices of \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,j_1,j_2,f}(\theta))\) as \(n \to \infty\). Letting

\[
E^{(m)}_{j_1,j_2,f}(\theta) := I_{md^2} - (I_m \otimes K_{j_1,j_2,f}) C_\theta^{(m+1)} (\sum_{i=1}^m c_i \theta K_{j_1,j_2,f} c_i^\prime)^{-1} C_\theta^{(m+1)},
\]

(4.15)

we have

\[
\text{diag}(\Omega^{(m)}_{i,j_1,j_2,f}(\theta))_{1 \leq i \leq m} = E^{(m)}_{j_1,j_2,f}(\theta) (I_m \otimes D_{j_1,j_2}) E^{(m)\prime}_{j_1,j_2,f}(\theta).
\]

(4.16)

Heuristically, \(E^{(m)}_{j_1,j_2,f}(\theta)\), which appears in the rank-based test statistic (4.18), is taking into account the difference between \(\Gamma^{(n)*}_{i,j_1,j_2,f}(\theta)\) and \(\Gamma^{(n)}_{i,j_1,j_2,f}(\theta)\) in (4.12).

Our rank-based test statistics involve consistent estimators of the quantities defined above. Denote by \(\hat{K}^{(n)}_{j_1,j_2}\) a consistent estimator of \(K_{j_1,j_2,f}\); such \(\hat{K}^{(n)}_{j_1,j_2}\) can be obtained via (4.9)—for example, letting

\[
\tau_j = -c_1 \hat{g}^{(n)}_{j_1,j_2} (c_1 \hat{g}^{(n)}_{j_1,j_2} c_1 \hat{g}^{(n)}_{j_1,j_2})^{-1} e^{(d^2)}_j,
\]

where \(e^{(d^2)}_j\) denotes \(j\)th vector of the canonical basis in \(\mathbb{R}^{d^2}\), then

\[
(n - 1)^{1/2} \left[\text{vec}(\Gamma^{(n)}_{i,j_1,j_2} (\theta^{(n)}_{j_1,j_2} + n^{-1/2} \tau_j) - \Gamma^{(n)}_{i,j_1,j_2} (\theta^{(n)}_{j_1,j_2})) \right]
\]
is a consistent estimator of the jth column of $K_{j_1,j_2,f}$. For $j = 1, \ldots, d^2$, this yields a consistent estimator of $K_{j_1,j_2,f}$. Let $\hat{\Omega}_{i,j_1,j_2}(\theta)$ and $\hat{E}_{i,j_1,j_2}(\theta)$ stand for the consistent estimators of $\Omega_{i,j_1,j_2,f}(\theta)$ and $E_{i,j_1,j_2,f}(\theta)$ obtained by plugging K_{j_1,j_2} into (4.13)–(4.14) and (4.15). Then the center-outward rank-based portmanteau test statistic we are proposing takes the form

\[
Q^{(n)}_{m,j_1,j_2} (\theta^{(n)}_{j_1,j_2}) := \sum_{i=1}^{m} (n - i) \text{vec}(\Gamma^{(n)}_{i,j_1,j_2}(\theta^{(n)}_{j_1,j_2}))' (\hat{\Omega}^{(m)}_{i,j_1,j_2}(\theta^{(n)}_{j_1,j_2}))^{-1} \times \text{vec}(\Gamma^{(n)}_{i,j_1,j_2}(\theta^{(n)}_{j_1,j_2})),
\]

where A^{-} denotes the Moore-Penrose inverse of a matrix A. Alternatively, in view of (4.16), $Q^{(n)}_{m,j_1,j_2} (\theta^{(n)}_{j_1,j_2})$ can be written as

\[
Q^{(n)}_{m,j_1,j_2} (\theta^{(n)}_{j_1,j_2}) = n \Gamma^{(m,n)}_{j_1,j_2}(\theta^{(n)}_{j_1,j_2})(\hat{E}^{(m)}_{j_1,j_2}(\theta^{(n)}_{j_1,j_2}))' (\hat{\Omega}^{(m)}_{j_1,j_2}(\theta^{(n)}_{j_1,j_2}))^{-1} \times \Gamma^{(m,n)}_{j_1,j_2}(\theta^{(n)}_{j_1,j_2})
\]

where

\[
\Gamma^{(m,n)}_{j_1,j_2}(\theta) := n^{-1/2} \left((n - 1)^{1/2} (\text{vec}(\Gamma^{(n)}_{j_1,j_2}(\theta)))', \ldots, (n - m)^{1/2} (\text{vec}(\Gamma^{(n)}_{m,j_1,j_2}(\theta)))' \right)
\]

is a truncated version of $\Gamma^{(n)}_{j_1,j_2}(\theta)$.

4.5 Asymptotic distribution

Due to Lemma 4.2 and the consistency of $\theta^{(n)}_{j_1,j_2}$ and K_{j_1,j_2}, we have

\[
Q^{(n)}_{m,j_1,j_2} (\theta^{(n)}_{j_1,j_2}) = Q^{(n)}_{m,j_1,j_2,f}(\theta) + o_p(1),
\]

where

\[
Q^{(n)}_{m,j_1,j_2,f}(\theta) := \sum_{i=1}^{m} (n - i) \text{vec}(\Gamma^{(n)}_{i,j_1,j_2,f}(\theta))' (\Omega^{(m)}_{i,j_1,j_2,f}(\theta))^{-1} \times \text{vec}(\Gamma^{(n)}_{i,j_1,j_2,f}(\theta)).
\]
Moreover, note that for \(m \) large enough, due again to the exponential decrease of \(\|c_i, \theta\| \), \(Q_{m,J_1,J_2,f}^{(n)*}(\theta) \) is arbitrarily close to

\[
Q_{m,J_1,J_2,f}^{(n)**}(\theta) := \sum_{i=1}^{m} (n - i) \text{vec}(\Gamma_{i,J_1,J_2,f}^{(m,n)**}(\theta))' (\Omega_{i,J_1,J_2,f}^{(m)}(\theta))^{-1} \text{vec}(\Gamma_{i,J_1,J_2,f}^{(m,n)**}(\theta))
\]

where

\[
(n - i)^{1/2} \text{vec}(\Gamma_{i,J_1,J_2,f}^{(m,n)**}(\theta))
\]

\[
:= (n - i)^{1/2} \text{vec}(\Gamma_{i,J_1,J_2}^{(n)}(\theta)) - K_{J_1,J_2,f} c_{i,\theta}' (\sum_{i=1}^{m} c_{i,\theta} K_{J_1,J_2,f} c_{i,\theta})^{-1} \times (\sum_{i=1}^{m} c_{i,\theta} (n - i)^{1/2} \text{vec}(\Gamma_{i,J_1,J_2}^{(n)}(\theta)))
\]

is an approximation of \((n - i)^{1/2} \text{vec}(\Gamma_{i,J_1,J_2,f}^{(m,n)**}(\theta))\) resulting from truncating at \(m \) the summation in the right hand side of (4.12); the asymptotic covariance matrix of \((n - i)^{1/2} \text{vec}(\Gamma_{i,J_1,J_2,f}^{(m,n)**}(\theta))\) is \(\Omega_{i,J_1,J_2,f}^{(m)}(\theta) \) under \(P_{\theta,f}^{(n)} \).

The following result is the rank-based counterpart of Proposition 3.3 and states that \(Q_{m,J_1,J_2,f}^{(n)*}(\theta_J^{(n)}) \), for \(m \) large enough, can be approximated by \(Q_{m,J_1,J_2,f}^{(n)**}(\theta) \) which is asymptotically chi-square under \(P_{\theta,f}^{(n)} \) as \(n \to \infty \). Note that \(\Gamma_{J_1,J_2}^{(m,n)}(\theta) \), which depends on the ranks of the “true” residuals, is fully distribution-free, while (due to the presence of \(K_{J_1,J_2,f} \) \(\Gamma_{i,J_1,J_2,f}^{(m,n)**}(\theta) \) in (4.21), hence \(Q_{m,J_1,J_2,f}^{(n)**}(\theta) \) in (4.20), are not. However, \(Q_{m,J_1,J_2,f}^{(n)**}(\theta) \) is asymptotically distribution-free.

Proposition 4.3. Let Assumptions 1, 2, 5, and 6 hold. Then, under \(P_{\theta,f}^{(n)} \),

(i) for all \(\delta, \varepsilon > 0 \), there exist \(M_{\delta,\varepsilon} \) and \(N_{\delta,\varepsilon} \in \mathbb{N} \) such that

\[
P\left(|Q_{m,J_1,J_2,f}^{(n)}(\theta_J^{(n)}) - Q_{m,J_1,J_2,f}^{(n)**}(\theta)| < \delta \right) > 1 - \varepsilon
\]

for all \(n \geq N_{\delta,\varepsilon} \) and \(M_{\delta,\varepsilon} \leq m \leq n - 1 \);

(ii) irrespective of the innovation density \(f \), \(Q_{m,J_1,J_2,f}^{(n)**}(\theta) \) is asymptotically chi-square with \(d^2(m - p - q) \) degrees of freedom as \(n \to \infty \).

See the Appendix for a proof.
4.6 Local powers and AREs

Having obtained the asymptotic distributions of portmanteau test statistics under the null, natural questions are: what are their local asymptotic powers? can we derive their asymptotic relative efficiencies (AREs) with respect, for instance, to the classical procedure?

Local powers and AREs, however, depend on the type of alternative under consideration and are usually obtained via an application of Le Cam’s third Lemma. This requires an embedding of the VARMA model that has been studied so far into a larger model enjoying LAN and containing the alternatives of interest. A simple example is the VARMA model with \(p_1 > p \) and/or \(q_1 > q \), for which LAN results are available (Garel and Hallin, 1995); call it the “VARMA\((p_1, q_1)\) case”. Other alternatives of interest are, e.g., the presence of bilinear terms in the data-generating process, or the conditional heteroskedasticity of the \(\epsilon_t \)’s—for which LAN, in the vicinity of VARMA\((p, q)\) models, is not available in the literature. While we have no doubt that such LAN structures hold under appropriate assumptions, establishing such results is beyond the scope of this paper, and are restricting this section to a discussion of the VARMA\((p_1, q_1)\) case.

Now, even in the VARMA\((p_1, q_1)\) case, things are not as simple as it may appear at first sight. While asymptotic shifts under local VARMA\((p_1, q_1)\) alternatives are easily obtained for the Gaussian \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,J_1,J_2,f}(\theta))\) and the rank-based \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,J_1,J_2,f}(\hat{\theta}^{(n)}))\), hence, in view of Lemmas 3.2 and 4.2, for \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,N}(\hat{\theta}^{(n)}))\) and \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,J_1,J_2}(\theta^{(n)}))\), the quadratic forms \(Q^{(n)*}_{m,J_1,J_2}(\theta)\) and \(Q^{(n)*}_{m,J_1,J_2}(\theta)\) are not idempotent (not even asymptotically so) in these statistics and are not asymptotically chi-square under the null. As a consequence, the asymptotic shifts of \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,N}(\hat{\theta}^{(n)}))\) and \((n - i)^{1/2}\text{vec}(\Gamma^{(n)*}_{i,J_1,J_2,f}(\hat{\theta}^{(n)}))\) do not induce, for the portmanteau statistics \(Q^{(n)}_{m,N}(\hat{\theta}^{(n)}) = Q^{(n)*}_{m,N}(\theta) + o_P(1)\) and \(Q^{(n)}_{m,J_1,J_2}(\theta^{(n)}) = Q^{(n)*}_{m,J_1,J_2}(\theta) + o_P(1)\), the usual chi-square noncentrality parameters, and the classical methods expressing AREs in terms of ratios of noncentrality parameters do not apply.

These classical methods, on the other hand, do apply to the asymptotically chi-square approximations \(Q^{(n)*}_{m,N}(\theta)\) and \(Q^{(n)*}_{m,J_1,J_2}(\theta)\). These, however,
are oracle test statistics that cannot be computed from the observations and
the resulting AREs cannot be considered as approximations of the actual
portmanteau AREs; the approximation errors in Propositions 3.3 and 4.3,
indeed, do not go to zero as \(n \to \infty \). Such AREs are of limited practical
value, thus. Accordingly, we will not proceed any further with their numer-
ic evaluation, and rather recommend, for power comparisons, the Monte
Carlo approach adopted in Section 5.

4.7 Some standard score functions

The rank-based test statistic \(Q_{m,J_1,J_2}^{(n)}(\theta_{J_1,J_2}^{(n)}) \) depends on the choice of the
score functions \(J_1 \) and \(J_2 \). Here we provide three examples of standard score
functions, extending scores that are widely applied in the univariate (see
e.g. Hallin and La Vecchia (2020)) and the elliptical setting (see Hallin and
Paindaveine (2004)).

Example 1 (Sign test scores). Setting \(J_\ell \left(\frac{R_{\pm,t}^{(n)}}{n_R + 1} S_{\pm,t}^{(n)} \right) = S_{\pm,t}^{(n)} \), \(\ell = 1, 2 \)
yields the center-outward sign-based cross-covariance matrices

\[
\Gamma^{(n)}_{i,\text{sign}}(\theta) = (n - i)^{-1} \sum_{t=i+1}^{n} S^{(n)}_{\pm,t}(\theta) S^{(n)'}_{\pm,t-i}(\theta), \quad i = 1, \ldots, n - 1.
\]

The resulting test statistic \(Q_{m,J_1,J_2}^{(n)}(\theta_{J_1,J_2}^{(n)}) \) entirely relies on the center-outward
signs \(S_{\pm,t}^{(n)}(\theta) \), which justifies the terminology sign test scores.

Example 2 (Spearman scores). Another simple choice is \(J_1(u) = u = J_2(u) \).
The corresponding rank-based cross-covariance matrices are

\[
\Gamma^{(n)}_{i,\text{Sp}}(\theta) = (n - i)^{-1} \sum_{t=i+1}^{n} F^{(n)}_{\pm,t}(\theta) F^{(n)'}_{\pm,t-i}(\theta), \quad i = 1, \ldots, n - 1
\]

reducing, for \(d = 1 \), to Spearman autocorrelations, whence the terminology Spearman scores.

Example 3 (van der Waerden or spherical normal scores). Let

\[
J_\ell \left(\frac{R_{\pm,t}^{(n)}}{n_R + 1} S_{\pm,t}^{(n)} \right) = J_\ell \left(\frac{R_{\pm,t}^{(n)}}{n_R + 1} \right) S_{\pm,t}^{(n)}, \quad \ell = 1, 2,
\]

28
with \(J_\ell(u) = \left(F_d^2 \right)^{-\ell}(u) \)^{1/2}, where \(F_d^2 \) denotes the chi-square distribution function with \(d \) degrees of freedom. This yields the spherical van der Waerden (vdW) rank scores, with cross-covariance matrices

\[
\Gamma_{i,\text{vdW}}^{(n)}(\theta) = (n - i)^{-1} \sum_{t=i+1}^{n} \left[\left(F_d^2 \right)^{-1} \left(\frac{\rho_{i,t}^{(n)}(\theta)}{nR + 1} \right) \right]^{1/2} \left[\left(F_d^2 \right)^{-1} \left(\frac{\rho_{i,t-1}^{(n)}(\theta)}{nR + 1} \right) \right]^{1/2} \times S_{i,t}^{(n)}(\theta)S_{i,t-1}^{(n)}(\theta), \quad i = 1, \ldots, n - 1.
\]

5 Numerical assessment of finite-sample performance and resistance to outliers

In this section, we investigate through a brief Monte Carlo experiment the finite-sample performance of the center-outward rank-based and pseudo-Gaussian tests under various innovation densities, including contaminated ones.

5.1 Size and power

We first compare the sizes of these tests, hence their validity, by generating \(N = 300 \) replications of sample size \(n = 1000 \) from the bivariate VARMA(1, 1) model with

\[
A_1 = \begin{pmatrix} 0.5 & 0.2 \\ -0.1 & 0.4 \end{pmatrix} \quad \text{and} \quad B_1 = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.4 \end{pmatrix}
\]

and three types of innovation densities \(f \): spherical normal, mixture of three Gaussians, and skew-\(t \) distribution with 3 degrees of freedom (denoted as skew-\(t_3 \); see Azzalini and Capitanio (2003) for a definition), respectively.

The mixture is of the form

\[
\frac{3}{8} N(\mu_1, \Sigma_1) + \frac{3}{8} N(\mu_2, \Sigma_2) + \frac{1}{4} N(\mu_3, \Sigma_3),
\]

with \(\mu_1 = (-5, 0)' \), \(\mu_2 = (5, 0)' \), \(\mu_3 = (0, 0)' \), and
Figure 2: Rejection frequencies (nominal level 5%; asymptotic chi-square critical values and, for the van der Waerden, Spearman, and sign tests, bias-corrected (BC) permutational critical values), for $m = 5, 10, \ldots, 25$, of the Gaussian, van der Waerden, Spearman, and sign portmanteau tests for unspecified VARMA(1,1) model, under the VARMA(1,1) model (5.1) with spherical normal (upper panel), mixture (5.2) of three Gaussians (middle panel) and skew-t_3 (lower panel) innovation densities. Number of observations $n = 1000$; $N = 300$ replications. The solid and dashed horizontal lines indicate the nominal level $\alpha = 5\%$ and the rejection limits of the 5% two-sided test of the hypothesis that the actual level indeed is 5%.
\[
\Sigma_1 = \begin{pmatrix} 7 & 5 \\ 5 & 5 \end{pmatrix}, \quad \Sigma_2 = \begin{pmatrix} 7 & -6 \\ 6 & 6 \end{pmatrix}, \quad \Sigma_3 = \begin{pmatrix} 4 & 0 \\ 0 & 3 \end{pmatrix}.
\]

For each replication, a VARMA(1,1) model has been estimated, via Gaussian likelihood, van der Waerden, Spearman, and sign R-estimation, respectively (ranks and signs computed from a grid with \(n_R = 25, n_S = 40,\) and \(n_0 = 0\)). Based on these estimators, the Gaussian, van der Waerden, Spearman, and sign portmanteau tests (ranks and signs computed from a grid with \(n_R = 25, n_S = 40,\) and \(n_0 = 0\)) were performed for each replication at 5% nominal level for \(m = 5, 10, \ldots, 25.\) Note that a series length of \(n = 1000\) in dimension two—roughly corresponding to a series length of \(n \approx \sqrt{1000} \approx 32\) in dimension one—is not a very large one.

The rejection frequencies under the null hypothesis of an unspecified VARMA(1,1) model are shown in Figure 2 for the spherical Gaussian, the mixture of three Gaussians (5.2), and the skew-\(t_3\) innovation densities. The dotted horizontal lines provide the 5% critical band outside which the empirical size of a test is significantly different from the nominal level \(\alpha = 5\%\).

Irrespective of the innovation density, rejection rates (for fixed \(n\)) tend to decrease as \(m\) increases. As a function of \(m\), the decrease depends on the scores and the actual innovation. It appears, for instance, that the van der Waerden test meets the nominal \(\alpha\)-level constraint for \(m \approx 8\) under all three innovation densities, while the Spearman test requires \(m\) to be as large as 10 (under the mixture of Gaussians or the Skew-\(t_3\)) or even 14 (under the spherical Gaussian) for not exhibiting significant over-rejection. In that respect, van der Waerden is “more \(m\)-parsimonious” than Spearman, and the sign test is particularly “greedy” (never meeting the nominal 5% size requirement for \(m\) between 5 and 25 in the mixture case). As for Hosking’s traditional pseudo-Gaussian test, it is meeting the nominal level constraint for \(m\) as small as 5.

In order to compare the powers of the various portmanteau tests, we simulated the bivariate VARMA(1,2) model with matrix coefficients

\[
A_1 = \begin{pmatrix} 0.5 & 0.2 \\ -0.1 & 0.4 \end{pmatrix}, \quad B_1 = \begin{pmatrix} 0.3 & 0 \\ 0 & 0.4 \end{pmatrix}, \quad \text{and} \quad B_2 = \begin{pmatrix} 0.07 & 0.03 \\ -0.02 & 0.1 \end{pmatrix} \tag{5.3}
\]
Figure 3: Rejection frequencies (nominal level 5%; asymptotic chi-square critical values), for \(m = 5, 10, \ldots, 25 \), of the Gaussian, van der Waerden, Spearman, and sign portmanteau tests for unspecified VARMA(1,1) model, under the VARMA(1,2) alternative (5.3) with spherical normal (upper panel), mixture (5.2) of three Gaussians (middle panel) and skew \(t_3 \) (lower panel) innovation densities. Number of observations \(n = 1000 \); \(N = 300 \) replications. The solid horizontal line indicates the nominal level \(\alpha = 5\% \).
under the same innovation densities as above.

The rejection frequencies, under the VARMA(1,2) alternative (5.3) with spherical normal, mixture (5.2) of three Gaussians, and skew-t_3 innovation densities, of the same Gaussian, van der Waerden, Spearman, and sign portmanteau tests as in Figure 2 are shown in Figure 3 for $m = 5, 10, \ldots, 25$. As expected, rejection frequencies tend to decrease as m increases, irrespective of the innovation density. Interestingly, for given m, Spearman has greater power than Hosking’s traditional test, even under normal innovations, for all $m \leq 25$. So has the sign test—but this is largely due to the fact that, as shown in Figure 2, it is over-rejecting. Now, a fair comparison should take the results of Figure 2 into account. Table 1 provides, for each test and each innovation density, the optimal lag numbers m_0—that is, the lag compatible with the 5% level condition at which the empirical power is maximal—along with that power. Inspection of the table reveals that van der Waerden with $m = 5$ or 6 lags is the uniform winner, and more parcimonous than Spearman, which is second best, albeit with more than $m = 10$ lags. Both are overperforming Hosking’s traditional test.

Test	Gaussian	Mixture	Skew-t_3			
	m_0	Power	m_0	Power	m_0	Power
vdW	6	0.272	5	0.660	5	0.580
Spearman	14	0.193	10	0.507	10	0.400
Sign	22	0.142	–	–	15	0.217
Hosking	5	0.203	5	0.350	5	0.237

Table 1: Optimal lag numbers m_0 and empirical powers (against the VARMA alternative (5.3)) of the van der Waerden, Spearman, sign and Hosking portmanteau tests, under spherical normal, mixture of three Gaussians, and skew t_3 innovation densities, respectively. Boldface indicates the winner (consistently, van der Waerden with $m = 5$ or 6) in each column.

These conclusions, of course, are based on a very limited Monte Carlo experiment. More general innovation densities and more general alternatives (bilinear, heteroskedastic, etc.) clearly should be considered. However, a general phenomenon emerges: increasing the number m of lags while n is fixed helps (see Propositions 3.3 and 4.3) improve the chi-square approximation, but comes at the cost of additional degrees of freedom, hence larger critical
values and lower rejection frequencies. The choice of a test statistic, thus, relies on a trade-off: once it is large enough for the level constraint to be satisfied, increasing m is not desirable unless a gain of power compensates for the loss caused by the additional degrees of freedom.

5.2 Robustness

Next, we investigate the robustness properties of the center-outward rank-based and pseudo-Gaussian tests. A thorough theoretical treatment of this issue is beyond the scope of this paper, and we only perform a limited Monte-Carlo study, focusing on two cases: resistance to a temporary change in the innovation density, with a short “crisis period” of heavy-tailed innovations, and resistance to the presence of a patchy outlier. In both cases, the level and power of the rank-based test remains largely unaffected while the pseudo-Gaussian severely over-rejects.

5.2.1 Resistance to changes in the innovation density

In this section, we consider, for $-29 \leq t \leq 1000$ (hence, $n = 1030$ observations), the same VARMA(1,1) and VARMA(1,2) data-generating processes as in Section 5.1, with spherical Gaussian innovations for $t = 1, \ldots, 1000$ but, for the initial period $t = -29, \ldots, 0$ (that is, 3% of the observation period), innovation outliers from a centered skew-t_2. This can be interpreted as a crisis-exit scenario with crisis period ending at time $t = 0$—an information that is not available to the analyst.

The rejection frequencies under the VARMA(1,1) null hypothesis (5.1) and the VARMA(1,2) alternative (5.3) are shown in Figures 4 and 5, respectively. Comparing Figure 4 and the top panel of Figure 2 reveals that the size of the rank-based tests under the null are remarkably robust (the van der Waerden satisfies the nominal 5% constraint for $m \geq 5$, as it did in the upper panel of Figure 2) while the size of Hosking’s pseudo-Gaussian test, with a rejection frequency under the null of about 0.80, is very severely affected: the impact of the initial crisis (3% of the observation period), thus, is quite persistent. The high rejection frequency of the classical portman-
Figure 4: Rejection frequencies (nominal level 5%; asymptotic chi-square critical values), for $m = 5, 10, \ldots, 25$, of the Gaussian, van der Waerden, Spearman, and sign portmanteau tests for unspecified VARMA(1,1) model, under the VARMA(1,1) model (5.1) with spherical normal innovations contaminated by 30 points of skew-t_2 ones. Number of observations $n = 1030$; number of replications $N = 300$. The solid and dashed horizontal lines indicate the nominal level $\alpha = 5\%$ and the rejection limits of the 5\% two-sided test of the hypothesis that the actual level indeed is 5\%.

Figure 5: Rejection frequencies (nominal level 5%; asymptotic chi-square critical values), for $m = 5, 10, \ldots, 25$, of the Gaussian, van der Waerden, Spearman, and sign portmanteau tests for unspecified VARMA(1,1) model, under the VARMA(1,2) alternative (5.3), with spherical normal innovations contaminated by 30 points of skew-t_2 additive outliers. Number of observations $n = 1030$; number of replications $N = 300$. The solid and dashed horizontal lines indicate the nominal level $\alpha = 5\%$.
teau test, in Figure 5, which is more or less the same as under the null, is meaningless and entirely explained by overall over-rejection under the null. Quite on the contrary, the empirical powers of the rank-based tests remain quite stable and van der Waerden with $m = 6$ remains the best choice (note that Spearman with $m = 14$ slightly over-rejects). Rank-based portmanteau tests, thus, unlike the traditional ones, are robust to the fact that 30 observations still belonging to the crisis period have been included in the analysis (the end-of-crisis date being unknown).

5.2.2 Resistance to patchy outliers

Another form of robustness is resistance to the presence of patchy innovation outliers. Here, at $t = 500, 501$ and $t = 502, 503$ respectively, shocks of sizes $(20, 20)'$ and $(-20, -20)'$ are added to the Gaussian innovations for the same VARMA(1,1) and VARMA(1,2) data-generating processes as in Section 5.1 (same observation period, $n = 1000$).

The rejection frequencies under the VARMA(1,1) null hypothesis and

![Figure 6: Rejection frequencies (nominal level 5%; asymptotic chi-square critical values), for $m = 5, 10, \ldots, 25$, of the Gaussian, van der Waerden, Spearman, and sign portmanteau tests for unspecified VARMA(1,1) model, under the VARMA(1,1) model (5.1) with spherical normal innovations contaminated by 4 points of additive outliers of size 20. Number of observations $n = 1000$; number of replications $N = 300$. The solid and dashed horizontal lines indicate the nominal level $\alpha = 5\%$ and the rejection limits of the 5% two-sided test of the hypothesis that the actual level indeed is 5%.

36
Figure 7: Rejection frequencies (nominal level 5%; asymptotic chi-square critical values), for \(m = 5, 10, \ldots, 25 \), of the Gaussian, van der Waerden, Spearman, and sign portmanteau tests for unspecified VARMA(1,1) model, under the VARMA(1,2) alternative (5.3), with spherical normal innovations contaminated by 4 points of additive outliers of size 20. Number of observations \(n = 1030 \); number of replications \(N = 300 \). The solid and dashed horizontal lines indicate the nominal level \(\alpha = 5\% \).

VARMA(1,2) alternative are shown in Figures 6 and 7, respectively. The plots clearly indicate that the rank-based tests are considerably more robust than their Gaussian competitor: the empirical size of the Hosking test (value 1 for \(m = 5, 10, 15 \), values 0.993 and 0.970 for \(m = 20 \) and \(m = 25 \)) is exploding and its empirical power, which is close to the empirical size, is therefore meaningless. In stark contrast, Figure 6 and the top panel of Figure 2 remain relatively similar: the empirical sizes of the rank-based tests are not affected by outliers (e.g., for \(m = 5 \) or 6, the van der Waerden tests yield the nominal 5% size) and their empirical powers remain approximately the same as under the uncontaminated case.

6 Conclusions

This paper achieves two objectives: a rigorous statement of the asymptotic behavior of the portmanteau test statistic under the null hypothesis, and the construction of rank-based versions of the same. Simulations indicate that
the latter, thanks to a faster convergence, both in terms of the number n of observations and the number m of lags involved, bring substantial potential gains of power when compared to their classical counterparts—particularly so under skewed and heavy-tailed innovation densities.

The same simulations also provides empirical evidence of a better resistance of rank-based tests to the presence of contaminated innovations. A more thorough analysis, on the model of Hampel et al. (1986), Ronchetti and Yen (1986), or Heritier and Ronchetti (1994) (all restricted to models with independent observations), of the robustness properties of rank tests in the time-series context is highly desirable, and should be left for further research.

Acknowledgement

The authors thank the editor, associated editor, and three anonymous referees for helpful comments, which significantly helped improve the final version of the manuscript.

References

Akashi, F., Hirokaki, O., Taniguchi, M., and Monti, A.C. (2018). A new look at portmanteau tests. *Sankhya, the Indian Journal of Statistics* 80, 121-137.

Akashi, F., Taniguchi, M., Monti, A.C., and Amano, T. (2021). *Diagnostic Methods in Time Series*, Springer, Singapore.

van den Akker, R., Hallin, M., and Werker, B. (2015). On quadratic expansions of log-likelihoods and a general asymptotic linearity result. In M. Hallin, D. Mason, D. Pfeifer, and J. Steinebach Eds, *Mathematical Statistics and Limit Theorems, Festschrift in Honor of Paul Deheuvels*, Springer, pp. 147–166.

Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. *Journal of the Royal Statistical Society Series B* 65, 367–389.
del Barrio, E., González-Sanz, A., and Hallin, M. (2020). A note on the regularity of optimal-transport-based center-outward distribution and quantile functions. *Journal of Multivariate Analysis* 180, 104671.

del Barrio, E., Sanz, A. G., and Hallin, M. (2022). Nonparametric multiple-output center-outward quantile regression. *arXiv:2204.11756*.

Box, G. and Pierce, D. (1970). Distribution of residual autocorrelation in autoregressive- integrated moving average time series models. *Journal of the American Statistical Association* 65, 1509–526.

Chernoff, H. and Savage, I. R. (1958). Asymptotic normality and efficiency of certain nonparametric tests. *Annals of Mathematical Statistics* 29, 972–994.

Chernozhukov, V., Galichon, A., Hallin, M., and Henry, M. (2017). Monge-Kantorovich depth, quantiles, ranks, and signs, *Annals of Statistics* 45, 223–256.

Chitturi, R.V. (1974). Distribution of residual autocorrelations in multiple autoregressive schemes. *Journal of the American Statistical Association* 69, 928–934.

Deb, N., Bhattacharya, B., and Sen, B. (2021). Efficiency lower bounds for distribution-free Hotelling-type two-sample tests based on optimal transport. *arXiv:2104.01986*.

Deb, N. and Sen, B. (2021). Multivariate rank-based distribution-free nonparametric testing using measure transportation. *Journal of the American Statistical Association*, DOI: 10.1080/01621459.2021.1923508.

Figalli, A. (2018). On the continuity of center-outward distribution and quantile functions, *Nonlinear Analysis* 177, part B, 413–421.

Garel, B. and Hallin, M. (1995). Local asymptotic normality of multivariate ARMA processes with a linear trend. *Annals of the Institute of Statistical Mathematics* 3, 551–579.

Ghosal, P. and Sen, B. (2022). Multivariate ranks and quantiles using optimal transport: consistency, rates and nonparametric testing. *The Annals of Statistics*, 50, 1012–1037.

Hallin, M. (1986). Non-stationary q-dependent processes and time-varying moving-average models: invertibility properties and the forecasting problem. *Advances in Applied Probability* 18, 170–210.
Hallin, M. (1994). On the Pitman non-admissibility of correlogram-based time series methods. *Journal of Time Series Analysis* 16, 607–612.

Hallin, M. (2022). Measure transportation and statistical decision theory. *Annual Review of Statistics and its Applications* 9, 401–424.

Hallin, M., del Barrio, E., Cuesta-Albertos, J., and Matrán, C. (2021). Center-outward distribution and quantile functions, ranks, and signs in dimension d: a measure transportation approach. *Annals of Statistics* 49, 1139–1165.

Hallin, M., Hlubinka, D., and Hudecová, Š. (2022a). Fully distribution-free center-outward rank tests for multiple-output regression and MANOVA. *Journal of the American Statistical Association*, in press. DOI: 10.1080/01621459.2021.2021921; arXiv:2007.15496.

Hallin, M. and La Vecchia, D. (2020). A simple R-estimation method for semiparametric duration models. *Journal of Econometrics* 218, 736-749.

Hallin, M., La Vecchia, D., and Liu, H. (2022b). Center-outward R-estimation for semiparametric VARMA models. *Journal of the American Statistical Association* 117, 925–938.

Hallin, M., La Vecchia, D., and Liu, H. (2023). Rank-based testing for semiparametric VAR models: a measure transportation approach. *Bernoulli* 29, 229-273.

Hallin, M. and Mordant, G. (2022). On the finite-sample performance of measure-transportation-based multivariate rank tests. In *Festschrift for David Tyler*, Springer, to appear. Available at http://arxiv.org/abs/2111.04705.

Hallin, M. and Paindaveine, D. (2002a). Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks. *Annals of Statistics* 30, 1103–1133.

Hallin, M. and Paindaveine, D. (2002b). Optimal procedures based on interdirections and pseudo-Mahalanobis ranks for testing multivariate elliptic white noise against ARMA dependence. *Bernoulli* 2, 787–815.

Hallin, M. and Paindaveine, D. (2004). Rank-based optimal tests of the adequacy of an elliptic VARMA model. *Annals of Statistics* 32, 2642–2678.
Hallin, M. and Paindaveine, D. (2005). Affine-invariant aligned rank tests for the multivariate general linear model with VARMA errors. *Journal of Multivariate Analysis* 93, 122–163.

Hallin, M. and Puri, M.L. (1988). Optimal rank-based procedures for time series analysis: testing an ARMA model against other ARMA models. *Annals of Statistics* 16, 402-432.

Hallin, M. and Puri, M.L. (1994). Aligned rank tests for linear models with autocorrelated error terms. *Journal of Multivariate Analysis* 50, 175–237.

Hallin, M. and Tribel, O. (2000). The efficiency of some nonparametric rank-based competitors to correlogram methods. In F. T. Bruss and L. Le Cam Eds, *Game Theory, Optimal Stopping, Probability, and Statistics: Papers in honour of T.S. Ferguson on the occasion of his 70th birthday*, I.M.S. Lecture Notes-Monograph Series, pp. 249–262.

Hampel, F.R., Ronchetti, E., Rousseeuw, P., and Stahel, W.A. (1986). *Robust Statistics: the Approach Based on Influence Functions*, Wiley & Sons.

Heritier, S. and Ronchetti, E. (1994). Bounded-influence tests in general parametric models. *Journal of the American Statistical Association* 89, 897–904.

Hodges, J.L. and Lehmann, E.L. (1956). The efficiency of some nonparametric competitors of the t-test. *Annals of Mathematical Statistics* 2, 324–335.

Hosking, J.R.M. (1980). The multivariate portmanteau statistic. *Journal of the American Statistical Association* 75, 602–607.

Kreiss, J.-P. (1987). On adaptative estimation in stationary ARMA processes. *Annals of Statistics* 15, 112–133.

Li, W.K. and McLeod, A.I. (1981). Distribution of the residual autocorrelation in multivariate ARMA time series models. *Journal of the Royal Statistical Society Series B* 43, 231–239.

Liu, R. Y. (1992). Data depth and multivariate rank tests, in Y. Dodge, Ed., *L1 Statistics and Related Methods*. North-Holland, Amsterdam, 279–294.

Ljung, G. M. and Box, G. E. P. (1978). On a measure of lack of fit in time series models. *Biometrika* 65, 297–303.

Mélard, G. (2022). An indirect proof for the asymptotic properties of VARMA model estimators. *Econometrics and Statistics* 21, 96–111.
Mordant, G. (2021). *Transporting Probability Measures: some contributions to statistical inference*, PhD thesis, Université catholique de Louvain.

Oja, H. (2010). *Multivariate Nonparametric Methods with R: an approach based on spatial signs and ranks*. Springer, New York.

Puri, M.L. and Sen, P.K. (1971). *Nonparametric Methods in Multivariate Analysis*. John Wiley & Sons, New York.

Ronchetti, E. and Yen, J.H. (1986). Variance-stable R-estimators. *Statistics* 17, 189–199.

Shi, H., Drton, M., and Han, F. (2022). Distribution-free consistent independence tests via center-outward ranks and signs. *Journal of the American Statistical Association* 117, 395–410.

Taniguchi, M. and Amano, T. (2010). Systematic approach for portmanteau tests in view of the Whittle likelihood ratio. *Journal of the Japan Statistical Society*, 39, 177–192.
Appendix.

Proof of Proposition 3.1.

The result follows from deriving the asymptotic joint distribution, under $P^{(n)}_{\theta: f}$, of
\[(n - i)^{1/2} \text{vec}(\Gamma_{i:N}^{(n)}(\theta)), \quad (n - j)^{1/2} \text{vec}(\Gamma_{j:N}^{(n)}(\theta)), \quad \text{and} \quad \Delta_j^{(n)}(\theta)\]
along the same lines as in the proof of Lemma B.1 in Hallin et al. (2022b). An application of Le Cam’s third Lemma yields the asymptotic shifts in (3.2) and concludes. Details are left to the reader. \(\square\)

Proof of Lemma 3.2.

Since $\Delta_N^{(n)}(\hat{\theta}_N^{(n)}) = 0$, we have, in view of (3.4), $\Gamma_{i:N}^{(n)}(\hat{\theta}_N^{(n)}) = \Gamma_{i:N}^{(n)}(\hat{\theta}_N^{(n)})$. Moreover, (3.3) entails
\[
(n - i)^{1/2} \text{vec}(\Gamma_{i:N}^{(n)}(\hat{\theta}_N^{(n)}) - \Gamma_{i:N}^{(n)}(\theta)) = (n - i)^{1/2} \text{vec}(\Gamma_{i:N}^{(n)}(\hat{\theta}_N^{(n)}) - \Gamma_{i:N}^{(n)}(\theta) - (\Sigma \otimes \Sigma^{-1})c'_{i, \theta}(\sum_{i=1}^{n-1} c_{i, \theta}(\Sigma \otimes \Sigma^{-1})c'_{i, \theta})^{-1} \times (\sum_{i=1}^{n-1} c_{i, \theta}(n - i)^{1/2} \text{vec}(\Gamma_{i:N}^{(n)}(\hat{\theta}_N^{(n)}) - \Gamma_{i:N}^{(n)}(\theta))) + o_P(1)
\]
\[
= \left((\Sigma \otimes \Sigma^{-1})c'_{i, \theta} - (\Sigma \otimes \Sigma^{-1})c'_{i, \theta}(\sum_{i=1}^{n-1} c_{i, \theta}(\Sigma \otimes \Sigma^{-1})c'_{i, \theta})^{-1} \times (\sum_{i=1}^{n-1} c_{i, \theta}(\Sigma \otimes \Sigma^{-1})c'_{i, \theta})\right) n^{1/2}(\hat{\theta}_N^{(n)} - \theta) + o_P(1)
\]
\[= o_P(1).
\]
The result follows. \(\square\)

Proof of Proposition 3.3.

Due to Lemma 3.2 and the exponential decrease, as $i \to \infty$, of $\|c_{i, \theta}\|$, \[(n - i)^{1/2} \text{vec} \left(\Gamma_{i:N}^{(m,n)\ast\ast}(\theta) - \Gamma_{i:N}^{(n)}(\hat{\theta}_N^{(n)})\right)\]
with probability one converges to zero exponentially fast as m increases and $n \to \infty$. Part (i) then follows.
Turning to Part (ii), let
\[
\Gamma^{(m,n)\ast}_{\mathcal{N}}(\theta) := n^{-1/2} \left((n - 1)^{1/2} \left(\text{vec}(\Gamma^{(m,n)\ast}_{1/N}(\theta)) \right) \right)' \ldots
\]
\[
\ldots, (n - m)^{1/2} \left(\text{vec}(\Gamma^{(m,n)\ast}_{m/N}(\theta)) \right) \right)'.
\]

Note that \(\Gamma^{(m,n)\ast}_{\mathcal{N}}(\theta)\) can be written as \(\Gamma^{(m,n)\ast}_{\mathcal{N}}(\theta) = E^{(m)}_{\mathcal{N}}(\theta) I^{(m,n)}_{\mathcal{N}}(\theta)\), where
\[
E^{(m)}_{\mathcal{N}}(\theta) := I_{md^2} - (I_m \otimes \Sigma \otimes \Sigma^{-1}) C^{(m+1)r}_{\theta}
\times \left(C^{(m+1)}_{\theta} (I_m \otimes \Sigma \otimes \Sigma^{-1}) C^{(m+1)r}_{\theta} \right)^{-1} C^{(m+1)}_{\theta}
\]
is an idempotent matrix. Then it follows from Proposition 3.1 that \(\Gamma^{(m,n)\ast}_{\mathcal{N}}(\theta)\) is asymptotically normal with mean zero and covariance
\[
E^{(m)}_{\mathcal{N}}(\theta)(I_m \otimes \Sigma \otimes \Sigma)
\]
under \(P_{\theta, f}^{(n)}\). It remains to prove that \(\text{tr}(E^{(m)}_{\theta}) = (m - p - q)d^2\), where \(\text{tr}(E^{(m)}_{\theta})\) denotes the trace of \(E^{(m)}_{\theta}\). Using \(\text{tr}(ABC) = \text{tr}(CAB)\), we obtain
\[
\text{tr}(E^{(m)}_{\theta}) = \text{tr}(I_{md^2}) - \text{tr} \left(C^{(m+1)}_{\theta} (I_m \otimes \Sigma \otimes \Sigma^{-1}) C^{(m+1)r}_{\theta} \right)
\times \left(C^{(m+1)}_{\theta} (I_m \otimes \Sigma \otimes \Sigma^{-1}) C^{(m+1)r}_{\theta} \right)^{-1} C^{(m+1)}_{\theta}
\]
\[
= md^2 - \text{tr}(I_{(p+q)d^2}) = (m - p - q)d^2.
\]

The result follows. \(\square\)

Proof of Lemma 4.2.

It follows from (4.10) and Lemma 4.4 in Kreiss (1987) that, under \(P_{\theta, f}^{(n)}\),
\[
\Delta^{(n)}_{J_1 J_2} (\theta_{J_1 J_2}^{(n)}) = \Delta^{(n)}_{J_1 J_2} (\theta) - n^{1/2} \Upsilon^{(n)}_{J_1 J_2, f}(\theta) \left(\theta_{J_1 J_2}^{(n)} - \theta \right) + o_P(1).
\]

Hence, letting \(\Upsilon^{(n)}_{J_1 J_2, f}(\theta) := \) \(\lim_{n \to \infty} \Upsilon^{(n)}_{J_1 J_2, f}(\theta)\), it follows from the definition of \(\theta_{J_1 J_2}^{(n)}\) in (4.11) that
\[
\Delta^{(n)}_{J_1 J_2} (\theta_{J_1 J_2}^{(n)}) = \Delta^{(n)}_{J_1 J_2} (\theta) - n^{1/2} \left(\Upsilon^{(n)}_{J_1 J_2, f}(\theta) \bar{\theta}^{(n)} \right)
\]
\[
+ n^{-1/2} \Delta^{(n)}_{J_1 J_2} (\bar{\theta}^{(n)}) - \Upsilon^{(n)}_{J_1 J_2, f}(\theta) \theta\right) + o_P(1)
\]
\[
= \Delta^{(n)}_{J_1 J_2} (\theta) - n^{1/2} \Upsilon^{(n)}_{J_1 J_2, f}(\theta) \left(\bar{\theta}^{(n)} - \theta \right) - \Delta^{(n)}_{J_1 J_2} (\bar{\theta}^{(n)}) + o_P(1)
\]
\[
= n^{1/2} \Upsilon^{(n)}_{J_1 J_2, f}(\theta) \left(\bar{\theta}^{(n)} - \theta \right) - n^{1/2} \Upsilon^{(n)}_{J_1 J_2, f}(\theta) \left(\bar{\theta}^{(n)} - \theta \right) + o_P(1)
\]
\[
= o_P(1).
\]
This establishes part \((i) \) of the lemma. Part \((ii) \) follows as a corollary of Part \((i) \), since \(\Gamma_{1,i,j_2,j_2}(\theta^{(n)}_{j_1,j_2}) \) is the residual of the regression of \(\Gamma_{i,j_1,j_2}(\theta) \) with respect to \(\Delta_{j_1,j_2}(\theta) \) computed at \(\theta = \theta^{(n)}_{j_1,j_2} \). Asymptotic linearity, the asymptotic discreteness of \(\theta^{(n)}_{j_1,j_2} \) and Lemma 4.4 of Kreiss (1987) entail \((iii) \). \(\square \)

Proof of Proposition 4.3.

Part \((i) \) follows from (4.19) and the exponential decrease of \(\|c_{i,\theta}\| \). Turning to Part \((ii) \), let

\[
\Gamma_{j_1,j_2,f}^{(m,n)}(\theta) := n^{-1/2} \left((n - 1)^{1/2} \text{vec}(\Gamma_{j_1,j_2,f}^{(m,n)}(\theta)) \right) ^t, \ldots, (n - m)^{1/2} \text{vec}(\Gamma_{m,j_1,j_2,f}^{(m,n)}(\theta)) \right) ^t
\]

where \(\Gamma_{j_1,j_2,f}^{(m,n)}(\theta) \) is defined in (4.21). Note that \(\Gamma_{j_1,j_2,f}^{(m,n)}(\theta) \) can be written as

\[
\Gamma_{j_1,j_2,f}^{(m,n)}(\theta) = E_{j_1,j_2,f}^{(m)}(\theta) \Gamma_{j_1,j_2}^{(m,n)}(\theta)
\]

Then, from the definition of \(Q_{m,j_1,j_2,f}^{(n)*}(\theta) \) in (4.20),

\[
Q_{m,j_1,j_2,f}^{(n)*}(\theta) = n(\Gamma_{j_1,j_2,f}^{(m,n)}(\theta)) ^t (\text{diag}(\Omega_{j_1,j_2,f}^{(m)}(\theta))) ^{1 \leq i \leq m} - \Gamma_{j_1,j_2,f}^{(m,n)}(\theta)
\]

\[
= n(\Gamma_{j_1,j_2}^{(m,n)}(\theta)) ^t E_{j_1,j_2,f}^{(m)}(\theta) \left(\text{diag}(\Omega_{j_1,j_2,f}^{(m)}(\theta))) ^{1 \leq i \leq m} \right) ^t
\]

\[
\times E_{j_1,j_2,f}^{(m)}(\theta) \Gamma_{j_1,j_2}^{(m,n)}(\theta)
\]

\[
= n(\Gamma_{j_1,j_2}^{(m,n)}(\theta)) ^t E_{j_1,j_2,f}^{(m)}(\theta) \left(E_{j_1,j_2,f}^{(m)}(\theta)(I_m \otimes D_{j_1,j_2}) \right)
\]

\[
\times E_{j_1,j_2,f}^{(m)}(\theta) \Gamma_{j_1,j_2}^{(m,n)}(\theta)
\]

where the last equality follows from (4.16). Now, letting

\[
M_{\theta} := M_{j_1,j_2,f}^{(m)}(\theta)
\]

\[
:= (I_m \otimes D_{j_1,j_2}^{1/2}) E_{j_1,j_2,f}^{(m)}(\theta) \left(E_{j_1,j_2,f}^{(m)}(\theta)(I_m \otimes D_{j_1,j_2}) E_{j_1,j_2,f}^{(m)}(\theta) \right) ^{-\frac{1}{2}}
\]

\[
\times E_{j_1,j_2,f}^{(m)}(\theta)(I_m \otimes D_{j_1,j_2}^{1/2})
\]

we obtain

\[
Q_{m,j_1,j_2,f}^{(n)*}(\theta) = n(\Gamma_{j_1,j_2}^{(m,n)}(\theta)) ^t (I_m \otimes D_{j_1,j_2}^{-1/2}) M_{\theta}(I_m \otimes D_{j_1,j_2}^{-1/2}) \Gamma_{j_1,j_2}^{(m,n)}(\theta).
\]

45
In view of Proposition 4.1, \((I_m \otimes D_{J_1,J_2}^{-1/2})\Gamma_{J_1,J_2}^{(m,n)}(\theta)\) is asymptotically normal with covariance \(I_{md^2}\). Moreover, since \(M_\theta\) is symmetric and idempotent (indeed, \(M_\theta M_\theta = M_\theta\)), it remains to show that \(M_\theta\) is of rank \((m - p - q)d^2\).

Note that \(M_\theta\) has the same rank as \(E_{J_1,J_2,f}(\theta)\) which is also idempotent, it suffices to prove that \(\text{tr}(E_{J_1,J_2,f}(\theta)) = (m - p - q)d^2\). Using again the fact that \(\text{tr}(ABC) = \text{tr}(CAB)\), we have

\[
\text{tr}(E_{J_1,J_2,f}(\theta)) = \text{tr}(I_{md^2}) - \text{tr}((I_m \otimes K_{J_1,J_2,f})C_\theta^{(m+1)}(\sum_{i=1}^{m} c_{i,\theta} K_{J_1,J_2,f} c_{i,\theta}')^{-1} C_\theta^{(m+1)})
\]

\[
= md^2 - \text{tr}(C_\theta^{(m+1)}(I_m \otimes K_{J_1,J_2,f})C_\theta^{(m+1)}(\sum_{i=1}^{m} c_{i,\theta} K_{J_1,J_2,f} c_{i,\theta}')^{-1})
\]

\[
= md^2 - \text{tr}(I_{[p+q]d^2}) = (m - p - q)d^2.
\]

The result follows. \(\square\)