Compressing Branch-and-Bound Trees

Gonzalo Muñoz ¹ Joseph Paat ² Álinson S. Xavier ³

¹Universidad de O’Higgins, Chile
²University of British Columbia, Canada
³Argonne National Laboratory, USA

IPCO 2023
Branch and Bound Trees

Branch and bound (BB) tree:
- Each node v corresponds to $Q(v)$
- Each non-leaf node v has children:
 \[Q(v) \cap \{ x : \pi^T x \leq \pi_0 \} \text{ and } \]
 \[Q(v) \cap \{ x : \pi^T x \geq \pi_0 + 1 \} \]
 where $\pi \in \mathbb{Z}^n$, $\pi_0 \in \mathbb{Z}$.

Tree dual bound:
\[
d(T, c) = \min_{v \in L(T)} \min \{ c^T x : x \in Q(v) \} \]
Previous Research

• **Variable branching rules:**
 - Pseudocost branching
 - Strong branching
 - Reliability branching

 Benichou et al (1971)
 Applegate, Bixby, Chvátal & Cook (1995)
 Achterberg, Koch & Martin (2005)

• **Branching on general directions:**
 - Owen & Mehrotra (2001)
 - Mahajan & Ralphs (2009)
 - Cornuejols, Liberti, Nannicini (2011)
 - Gamrath & al (2015)

• **Bounds on tree size:**
 - Exponential size with var. disjunctions
 - Exponential size with general disjunctions
 - Size under limited support size
 - Full strong branching tree size

 Jeroslow (1974), Chvatal (1980)
 Dadush et al. (2020), Dey et al. (2022)
 Basu, Conforti, Di Summa & Jiang (2021)
 Dey, Dubey & Molinaro (2022)
Work Overview

- **Research question:** Can we make a BB tree smaller without deteriorating dual bound?
- **Motivation:**
 - Small dual certificates
 - Strong disjunctions for instance families
 - Training data for ML branching methods
- **Talk outline:**
 1. Tree Compression Problem (TCP)
 2. Complexity & lower bound results
 3. Exact & heuristic algorithms
 4. MIPLIB 3 & 2017 computational experiments
Tree Operations

\[
\text{drop}(T, \nu)
\]

\[
\text{replace}(T, \nu, \pi, \pi_0)
\]

\[
\pi \leq \pi_0
\]

\[
\pi x \geq \pi_0 + 1
\]
The Tree Compression Problem

Compression: T_k is a compression of T_1 if $\exists T_1, T_2, \ldots, T_k$ such that:

1. $T_i = \text{drop}(T_{i-1}, \nu)$ or $T_i = \text{replace}(T_{i-1}, \nu, \pi, \pi_0)$; and
2. $|T_i| < |T_{i-1}|$; and
3. $d(T_i, c) \geq d(T_{i-1}, c)$

Tree Compression Problem (TCP): Given a branch and bound tree T, an objective vector c, and a set of branching directions \mathcal{D}, is there a compression T' of T?
NP-Completeness I

Disjunctive Infeasibility (DI):

- Let $S = \{x \in \mathbb{R}^n : Ax \leq b\}$ where $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$.
- Does there exist $\pi \in \mathbb{Z}^n \setminus \{0\}$, $\pi_0 \in \mathbb{Z}$ such that:

$$S \subseteq \{x \in \mathbb{R}^n : \pi_0 < \pi^T x < \pi_0 + 1\}$$

Mahajan & Ralphs (2009): (DI) is NP-complete.

Theorem 1. (TCP) is NP-complete when $D = \mathbb{Z}^n$ and $c = 0$.
NP-Completeness II

Proof Sketch:

1. Let S be an instance of (DI)
2. Let $x^* \in S \setminus \mathbb{Z}^n$. WLOG $x_1 \notin \mathbb{Z}$.
3. Let

$$P = \text{conv}\left(\left\{\left(\frac{x^*}{0}, \frac{x^*}{1}\right)\right\} \cup \left\{\left(\frac{x}{\frac{1}{2}}\right) : x \in S\right\}\right)$$

4. Build the tree on the right.
5. If (DI) has a YES answer (π, π_0) then replace($T, r, (\pi, 0), \pi_0$) is a compression.
6. If tree is compressible, it must be with replace($T, r, (\pi, \pi_{n+1}), \pi_0$), where $\pi_{n+1} = 0$ and r is the root.
Theorem 2. There exists a tree T with root polyhedron $P \subseteq \mathbb{R}^{n+1}$ such that:

1. $|T| \geq 2^{n+1}$ and $d(T, 0) = \infty$
2. Best compression of T has at least $\frac{2^n-1}{n}$ nodes
3. There exists T' with root P s.t. $|T'| = 7$ and $d(T', 0) = \infty$.

Proposition: Suppose T is generated with full strong branching and best bound on directions $D \subseteq \mathbb{Z}^n$. Let T' be a compression of T using the same directions. Then:

1. Dual bound does not improve: $d(T, c) = d(T', c)$
2. Drop operation is sufficient
Exact Algorithm

Observation: \(\text{replace}(T, \nu, \pi, \pi_0) \) is a compression of \(T \) if and only if:

\[
\min\{c^T x : x \in Q(\nu), \pi^T x \leq \pi_0\} \geq d(T, c) \quad \text{and} \\
\min\{c^T x : x \in Q(\nu), \pi^T x \geq \pi_0 + 1\} \geq d(T, c)
\]

MILP Formulation [Mahajan & Ralphs (2009)]:

\[
\begin{align*}
\max_{\delta, p, q, \pi, \\ \pi_0, s_L, s_R} & \quad A^T p - s_L c - \pi = 0, \quad p^T b - d(T, c) s_L - \pi_0 \geq \delta \\
\text{s.t.} & \quad A^T q - s_R c + \pi = 0, \quad q^T b - d(T, c) s_R - \pi_0 \geq \delta - 1 \\
& \quad p, q \geq 0, \quad s_L, s_R \geq 0, \quad \pi \in \mathbb{Z}^n, \quad \pi_0 \in \mathbb{Z}
\end{align*}
\]

Exact Algorithm: Solve MILP for every node.
Heuristic Algorithm

Heuristic for General Branching Directions:

- Owen & Mehrotra (2001)
- Cornuejols, Liberti, Nannicini (2011)
- Karamanov & Cornuejols (2011)
- Mahmoud & Chinneck (2013)
- Gamrath et al. (2015)

Owen & Mehrotra’s Heuristic:

- Find best single variable direction \((\pi, \pi_0)\)
- For each fractional \(x_i^*\) consider \(\pi + e_i\) and \(\pi - e_i\).
- Repeat until no further improvement
MIPLIB 3 Experiments: Setup

Questions

1. How compressible are realistic BB trees?
2. How much compression is achievable in short running times?

Branching rules considered:

1. Full strong branching (FSB)
2. Reliability branching (RB) with plunging

Implementation & Environment:

1. Julia, JuMP, Gurobi 9.5
2. MIPLearn: Custom B&B Implementation
3. Tree generation: 10k node limit, no time limit
4. Tree compression: 24-hour limit for exact, 15-minute for heuristic
5. AMD Ryzen 9 7950x (5.7GHz, 16C, 32T, 128 GB RAM)
MIPLIB 3 Experiments: FSB/Heuristic
MIPLIB 3 Experiments: RB/Exact
MIPLIB 3 Experiments: RB/Heuristic

![Graph showing performance of different models](image-url)
MIPLIB 2017: Setup

Challenge: Node subproblems become too expensive

Node orderings:
1. Random
2. DFS
3. NodeId
4. SubtreeSize
5. Gap
6. Expert

Implementation:
- Precomputed compressibility info
- Reliability branching without plunging
MIPLIB 2017: Results

Node Ordering	AUC (%)	Compression Ratio (%)		
	1-hour	15-min	1-hour	4-hour
Expert	65.4	30.8	34.4	35.1
Gap	76.4	18.2	25.7	30.5
NodeId	79.6	15.5	21.6	27.9
SubtreeSize	79.6	15.6	21.7	28.1
Random	80.7	13.3	21.2	28.7
DFS	83.3	12.9	17.1	24.0
Conclusion & Future Work

In this talk:
- Tree compression problem
- NP-completeness and bound results
- Algorithms and MIPLIB experiments

Future work:
- Provably compressible trees
- Better heuristics
- Use directions found to accelerate MIP

Acknowledgments:
- Department of Energy Office of Electricity (DOE-OE)
- Natural Sciences and Engineering Research Council of Canada (NSERC)
Thank You!

Álison Santos Xavier
Computational Scientist
Energy Systems and Infrastructure Analysis Division
Argonne National Laboratory
axavier@anl.gov