Risk of urothelial bladder cancer in Lynch syndrome is increased, in particular among MSH2 mutation carriers

R S van der Post,1,2 L A Kiemeney,3,4,5 M J L Ligtenberg,1,2 J A Witjes,4 C A Hulsbergen-van de Kaa,2 D Bodmer,1 L Schaap,1 C M Kets,1 J H J M van Krieken,2 N Hoogerbrugge1,6

1Department of Human Genetics, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
2Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
3Department of Epidemiology, Biostatistics and HTA, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
4Department of Human Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
5Comprehensive Cancer Centre East, Nijmegen, the Netherlands
6Department of Medical Oncology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands

ABSTRACT

Background Colorectal, endometrial and upper urinary tract tumours are characteristic for Lynch syndrome (hereditary non-polyposis colon carcinoma, HNPCC). The aim of the present study was to establish whether carriers of mutations in mismatch repair genes MLH1, MSH2 or MSH6 are at increased risk of urinary bladder cancer.

Methods Carriers and first degree relatives of 95 families with a germline mutation in the MLH1 (n=26), MSH2 (n=43), or MSH6 (n=26) gene were systematically questioned about the occurrence of carcinoma. The cumulative risk of cancer occurring before the age of 70 years (CR70) was compared to the CR70 of the general Dutch population. Microsatellite instability (MSI) testing and/or immunohistochemistry (IHC) for mismatch repair proteins was performed on bladder tumour tissue.

Results Bladder cancer was diagnosed in 21 patients (90% men) from 19 Lynch syndrome families (2 MLH1, 15 MSH2, and 4 MSH6). CR70 for bladder cancer was 7.5% (95% CI 3.1 to 11.9%) for men and 1.0% (95% CI 0.3 to 8.0%) for women, resulting in relative risks for first degree relatives of 4.2 (95% CI 2.2 to 7.2) for men and 2.2 (95% CI 0.3 to 8.0) for women. Men carrying an MSH2 mutation and their first degree relatives were at highest risks: CR70 for bladder cancer was more common in MSH2 mutation carriers and their first degree relatives than expected in the general population, the relative risk (RR) being 3.6 (p=0.001).16 Cumulative risks were not presented. In their study every case of bladder cancer was accompanied by cancer of the bladder in the family. For that reason, the authors concluded that the risk of bladder cancer was increased only in families with ureter cancer.

In addition to morphologic resemblance, sporadic urothelial cell cancers of the renal pelvis, ureter and bladder share the most important risk factors and molecular genetic aberrations; it is therefore remarkable that the risk of bladder cancer does not appear to have increased in Lynch syndrome families, while the risk of upper urinary tract cancer has. The aim of the present study was to establish whether patients with Lynch syndrome are at increased risk of cancer of the urinary bladder.

INTRODUCTION

Lynch syndrome, previously called hereditary non-polyposis colon carcinoma (HNPCC), is caused by a germline mutation in one of the mismatch repair (MMR) genes MLH1, MSH2, MSH6 and PMS2. It results in a large increase in spontaneous mutations and thus has a direct oncogenic effect. Besides the high risk of developing colorectal carcinomas of 10–80%, Lynch syndrome family members are at increased risk of developing several extra-colonic cancers and tumours at a relatively young age: endometrial cancer, ovarian cancer, small bowel and biliary tract cancer, seba-

Correspondence to
Professor Nicoline Hoogerbrugge, 849 Human Genetics, Radboud University Nijmegen Medical Centre, Postbox 9101, 6500 HB Nijmegen, The Netherlands; n.hoogerbrugge@antrg.umcn.nl

Received 11 January 2010
Revised 9 February 2010
Accepted 11 February 2010

This paper is freely available online under the BMJ Journals unlocked scheme, see http://jmg.bmj.com/site/about/unlocked.xhtml

J Med Genet 2010;47:464–470. doi:10.1136/jmg.2010.076992

Original article

J Med Genet: first published as 10.1136/jmg.2010.076992 on 30 June 2010. Downloaded from http://jmg.bmj.com/ on January 29, 2024 by guest. Protected by copyright.
were contacted in order to obtain up-to-date information on the occurrence of carcinoma in mutation carriers and their first degree relatives. First degree relatives with MMR gene mutation negative tests were excluded. All diagnoses of UC carcinoma were verified and confirmed by review of pathology reports or medical reports.

Statistical analysis
We calculated follow-up time for each family member with the date of birth as starting point until the dates of last contact, death, or diagnosis of cancer, whichever came first. Kaplan–Meier (KM) survival analyses were used to calculate the cumulative risk (plus SE) of cancer until specified ages. For MSI analysis, areas of the formalin fixed, paraffin embedded tissues containing either tumour cells (at least 50%) or normal cells were marked and material from these areas was isolated separately using a lysis buffer and a protein precipitation solution (Pierce, Centry systems, Minneapolis, Minnesota, USA). PCR of the markers D2S123, D5S346, D17S250, BAT25, BAT26 and BAT40 was performed using standard conditions in the presence of a fluorescently labelled primer. GeneScan analysis was performed on an ABI373A, ABI3100 or ABI3700 apparatus (PE Biosystems, Foster City, California, USA). A tumour was considered MSI positive when at least two of these standard set of markers, or 50% of an extended set, showed instability.

Immunohistochemistry (IHC) was performed on formalin fixed, paraffin embedded tissues. Slides were stained with antibodies against MLH1 (Pharmingen code: 511537), PMS2 (Pharmingen code: 556415), MSH2 (Oncogene Research Products code: NA26) and MSH6 (Transduction Laboratories code: G70220). Staining patterns of MMR proteins were evaluated using normal epithelial, stromal and inflammatory cells as internal controls. Stained slides were scored as: (1) positive—that is, staining of the tumour with a positive nuclear staining in at least some tumour cells; (2) negative—that is, no staining of the tumour with a positive internal control; or (3) not assessable—that is, insufficient technical quality to provide an unambiguous result despite repeated assays. As a verification five anonymous sporadic cancers of the bladder were taken random from the files of the department of pathology.

RESULTS
Members of 95 Lynch syndrome families diagnosed by a germline mutation in MLH1 (n=26), MSH2 (n=43) or MSH6 (n=26) were questioned by contact persons for occurrence of cancer such as UC of the bladder, ureter or renal pelvis. The total cohort of 1244

Table 1 Life table cumulative risks of cancers before the age of 70 (%)

Sex	Bladder	Ureter and renal pelvis	Urinary tract	Colorectal	Endometrial
MMR carriers and first degree relatives					
M	75 (3.1–11.9)	3.7 (0.9–6.5)	11.2 (4.0–18.4)	43.8 (37.6–50.0)	
n=542	n=13	n=7	n=20	n=141	
F	1.0 (0.2–2.4)	2.7 (0.3–5.1)	3.7 (0.7–5.1)	38.7 (32.5–44.9)	
n=519	n=2	n=5	n=7	n=112	
MLH1 carriers and first degree relatives					
M	10.8 (0–25.2)	4.8 (0–14.0)	15.6 (0–39.2)	57.0 (45.2–68.8)	
n=138	n=1	n=1	n=3	n=51	
F	0.0 (0–2)	2.4 (0–7.2)	2.4 (0–7.2)	50.4 (37.0–63.8)	
n=148	n=0	n=1	n=1	n=40	
MLH2 carriers and first degree relatives					
M	12.3 (4.3–20.3)	5.9 (0.7–11.1)	18.2 (5.0–31.4)	43.5 (34.7–52.3)	
n=248	n=10	n=10	n=15	n=65	
F	2.6 (0–3.8)	5.8 (0–11.6)	8.4 (0–15.4)	47.4 (36.8–58.0)	
n=213	n=2	n=4	n=6	n=51	
MLH6 carriers and first degree relatives					
M	1.3 (0–3.9)	1.3 (0–3.9)	2.6 (0–7.8)	31.0 (20.0–42.0)	
n=156	n=1	n=1	n=2	n=25	
F	0.0 (0–2)	0.0	0	22.1 (13.1–31.1)	32.7 (22.3–43.1)
n=158	n=0	n=0	n=0	n=21	30
Dutch population					
M	1.79	0.10	1.89	2.70	
F	0.45	0.04	0.49	2.14	1.05

F, female; M, male; MMR, mismatch repair.
Family number	Sex	MMR gene	Mutation	Age	Other malignancies (age at diagnosis)	Immunohistochemistry	Analysis of samples of the urinary bladder	T-stage	Grading	Morphology
77	M	MLH1	c.588+_588+6del	64	ES(73)	- + + - + ND	B Ta HG 1	Ta	HG	1
78	M	MSH2	c.1387-7_1501-7del	41		+ - - + - + MSI	TUR T1 HG 1	Ta	HG	1
79	M	MSH2	c.1852_1854del	66	ES(73)	- + + - + ND	B T1 HG 1	T1	HG	1
80	F	MSH2	(sister)	42	C(49)	+ - - + + MSI	CP T2a HG 1	CP	T2a	HG 1
81	M	MSH2	c.1-1076+6del (Del exon 1)	43	C(58, PR(58))	+ - - + + ND	CP T2a HG 1	CP	T2a	HG 1
82	M	MSH2	c.1-1076+6del	57	C(42)	+ - - + + ND	TUR T1 HG 1	T1	HG	1
83	M	MSH2	c.1386+1G/T	52	Cx2(42, 47)	+ - tws +	ND TUR T1 HG 1	Na	HG 1	TUR T1
84	M	MSH2	c.942+2T/G	74	C(65)	+ - tws +	ND TUR T1 HG 1	Na	HG 1	TUR T1
85	M	MSH2	c.1-457+del (Del exon 1-2)	56	UR(56), RP(57), ME(58), PR(57)	+ - + + ND	RP CP T1 HG 1	Na	HG 1	RP CP T1
86	M	MSH2	c.3514dup	71	UR(70), C(70)	+ + + + ND	B Ta LG 1	Ta	HG	1
87	M	MSH2	c.651dup	73	UR(67), C(61)	+ + + + ND	B TUR LG 1	Ta	HG	1
88	M	MSH2	c.3261del	84	UR(67), C(61)	+ + + + ND	B TUR LG 1	Ta	HG	1

- M, male; F, female; C, colon; UR, ureter; RP, renal pelvis; E, endometrial; PR, prostate; BR, breast; ES, esophageal; ME, melanoma; U, urinary; TUR, transurethral resection; CP, cystoprostatectomy; B, biopsy; NA, not accessible; HG, high grade; LG, low grade; 1, papillary; 2, solid growth pattern.
persons consisted of 406 proven mutation carriers (individuals with a pathogenic mutation on germline mutation analysis) and 838 first degree relatives. The latter group consisted of 111 obligate mutation carriers (concluded because of their position in the pedigree in relation to relatives tested positive for a mutation) and 727 persons at 50% risk to be mutation carriers. In 22 families, at least one (n=27) confirmed mutation carrier or first degree relative of a mutation carrier was diagnosed with UC of the urinary tract. In two additional families, the patient with UC of the bladder was not a first but a second degree relative of the mutation carrier diagnosed. Second degree relatives were not included in the KM risk analysis but the two second degree relatives with UC were included in the histopathology study. UC of the bladder was diagnosed in 21 patients from 19 Lynch syndrome families, the majority (71%) coming from MSH2 families (15 MSH2, two MLH1, and four MSH6); 19 out of 21 (90%) were men. Two patients with bladder cancer were at 50% risk of being an MSH2 mutation carrier, but could not be tested. Bladder cancer was diagnosed at an average age of 60±12 years (range 41–84 years), which is approximately 10 years younger than the average age of sporadic bladder cancer in the Netherlands.

The cumulative risk of bladder cancer until the age of 70 (CR70) in all MMR mutation carriers and their first degree relatives was 7.5% (95% CI 5.1% to 11.9%) for men and 1.0% (95% CI 0% to 2.4%) for women (table 1). The corresponding CR70 for the Dutch population is 1.8% for men and 0.5% for women. The RR for carriers of any MMR mutation, as compared to the general Dutch population, was 7.0 (95% CI 3.4 to 13.0, p<0.001) for men and 5.8 (95% CI 0.5 to 16.1, p=0.15) for women. The overall CR70 risk for urinary tract cancer, including the bladder, in MSH2 mutation carriers and first degree relatives was 18.2% (95% CI 5.0% to 31.4%) in men and 8.4% (95% CI 0% to 15.4%) in women (table 1).

Two or more primary urinary tract cancers, of which one was in the bladder, were diagnosed in nine of all 21 patients with bladder cancer; in six patients these two cancers were diagnosed synchronously or within 1 year. The remaining three patients, with a metachronous combination of bladder and upper urinary tract cancer, had their bladder cancer diagnosed earlier in life than the upper urinary tract cancer. Exclusive upper urinary tract cancer was diagnosed in eight patients from seven Lynch syndrome families, with 68% caused by MSH2 (five MSH2, two MLH1, and one MSH6). The CR70 of colorectal cancer for confirmed MMR mutation carriers was 63.2% (95% CI 56.6% to 69.8%) and the CR70 of endometrial cancer was 35.4% (95% CI 26.8% to 44.0%) (table 1).

Bladder cancers from germline MSH2 mutation carriers were tested for mismatch repair deficiency: MSI was present in bladder tumour DNA from six out of seven cases, and IHC staining of MSH2 protein was absent in nine out of 11 cases, indicating mismatch repair deficiency (figure 2, table 2). Additionally, IHC staining of MLH1 or MSH6 proteins was absent in five out of six bladder carcinomas from MLH1 or MSH6 germline mutation carriers, respectively (figure 1, table 2). Three bladder tumours were identified having normal IHC staining and one tumour was MSS. As a control, IHC of five sporadic bladder carcinomas showed normal staining of all four MMR system proteins. No typical histological characteristics were observed in the bladder carcinomas when compared with sporadic bladder carcinomas (table 2).
DISCUSSION
This study indicates an increased risk of urothelial cancer of both the urinary bladder and the upper urinary tract (ureter and renal pelvis) in patients with Lynch syndrome carrying a germline MSH2 mutation. Furthermore, this study indicates that cancer of the urinary bladder, ureter and renal pelvis is also, though rarely, associated with MSH6 or MLH1 mutations. A causal relation between MSH2 deficiency and bladder cancer is likely: in the first place, because bladder cancers in these families often show MSI and/or absence of IHC staining of the MSH2 protein, just like upper urothelial tract cancer and colorectal cancer; in the second place, because of the presence of two MSH2 mutation families, each of which contained two first degree family members with bladder cancer, and with three of the bladder cancers diagnosed under the age of 50 (as illustrated in figure 3).

It is interesting that especially MSH2 mutation carriers are at increased risk of urothelial cancer, as observed in this cohort and in previous studies. The diversity in the function of the MSH2, MLH1 and MSH6 protein might be responsible for the variation in cancer risk. Environmental factors (eg, smoking status) may also affect the urologic tract cancer occurrence rates, but we do not have the necessary information to determine if this might contribute to the differences.

In eight out of 21 patients with bladder cancer, this was their first cancer diagnosis, whereas at this stage five of them developed another Lynch syndrome associated cancer at an older age. Therefore, early diagnosis of Lynch syndrome may prevent development of a second primary cancer, especially colorectal cancer (CRC) by regular colonoscopy with polypectomy. The diagnosis of Lynch syndrome in healthy relatives may lead to the clinical suspicion of Lynch syndrome.30 Watson et al proposed (unspecified) surveillance of patients starting with the age of 50, especially for families that carry mutations in MSH2. Although cytology is the superior marker in terms of specificity, Myrhoy et al showed that the sensitivity of urine cytology in diagnosing asymptomatic upper urinary tract cancer in Lynch syndrome is approximately 50%. Therefore, cytology only is not a proper method of surveillance.32 The most important biomarker of urothelial cancer is macro- or microscopically haematuria, which occurs in 85% of patients with bladder cancer.33 Consequently, Koornstra et al recommend annual surveillance for haematuria, by urinary dipstick, of all patients with Lynch syndrome, beginning at the age of 45 to 50.34 The recent use of sensitive transducers has improved imaging of the upper urinary tract and bladder by

Cumulative risks of colorectal and endometrial cancer are within the ranges published by other studies. Bladder cancer risk observed in our cohort was significantly higher than that observed in previous studies. These studies differed from our study by: (1) type of risk that was calculated; (2) by type of population; and (3) whether or not the type of mutation was distinguished. The data from these studies are given in table 3. Additionally the discrepancy in bladder cancer risk between our study and other studies may result from our systematic data collection approach (obtaining up-to-date information). This led to the discovery of nine new cases of bladder carcinoma, previously unrevealed with the standard procedure of a clinical geneticist taking the family history.

Considering the high risk of urothelial tract cancer in MSH2 mutation carriers, a surveillance programme needs to be developed. At present various recommendations have been published. The present European guidelines for families with an MMR mutation include ultrasound and urinalysis every 1–2 years with patients from the age of 30 to 35 only in cases where upper urinary tract cancer runs in the family (two or more cases of UC).13 The American guidelines include urinalysis with cytology every 1–2 years with patients from the age of 25 to 35 for all family members with Lynch syndrome.30

Figure 3 Pedigree of a Lynch syndrome family with two MSH2 mutation carriers with urinary bladder cancer. CRC, colorectal cancer.

Year	Diagnosis	Age
1995	CRC 36 yr	
	Not tested	
2000	Bladder ca 42 yr	
2000	Ureter ca 50 yr	
2000	Pyelum ca 51 yr	
2000	Endometrial ca 45 yr	
2000	CRC x2 52 yr	
2000	MSH2 mutation carrier	

Year	Diagnosis	Age
2000	CRC 34 yr	
	Not tested	
2000	Gastric ca 39 yr	
2000	Ovarian ca x2 40 yr	
2000	Bladder ca 41 yr	
2000	CRC 49 yr	
	MSH2 mutation carrier	
Recommendations for urothelial carcinomas surveillance in Lynch syndrome

1. Surveillance with a combination of ultrasound of the bladder and upper urinary tract, urinary cytology and sediment.
2. In every MSH2 mutation carrier
3. From age 40 and up
4. Performed every 1–2 years

ultrasonography. It was shown to be as accurate in the detection of renal masses and bladder filling defects as intravenous urography and computed tomography scanning. Further studies are needed to develop an optimum early detection strategy concerning the appropriate interval, methods to be used, and patient groups to be included. Until then, we propose a combination of ultrasonography of the bladder and upper urinary tract, urinary cytology and urine sediment (erythrocytes) every 1–2 years. We recommend a surveillance programme for UC of the bladder and upper urinary tract for all MSH2 mutation carriers starting at the age of 40, which is based on the youngest Lynch syndrome patient with bladder cancer reported in the literature (age 40) and observed in our study (age 41). The top age limit of surveillance for UC can be similar to that of surveillance for colorectal cancer. Surveillance should not be limited to families with a history of UC, because in our study clustering of urinary tract cancer was only observed in five families, while 19 patients had a negative family history of urinary tract cancer.

In conclusion, our data suggest that in addition to upper urinary tract cancer, urothelial cancer of the urinary bladder is part of the Lynch syndrome tumour spectrum. Carriers of an MSH2 mutation are particularly at increased risk of urinary tract cancer including cancer of the bladder. In these cases we consider surveillance necessary.

Acknowledgements We would like to thank Irene Reimerink and Marsha Voorendt (genetic counselors), Dr Ernie Bongers (clinical geneticist), Riki Willems, Monique Link, Monique Goossens, Sandra Hendriks-Comelissen and Evelien Hoenselaar (technical assistance).

Competing interests None.

Provenance and peer review Not commissioned; externally peer reviewed.

REFERENCES

1. Aarnio M, Mecklin JP, Aaltonen LA, Nyström-Lehto M, Jarvinen HJ. Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 1995;64:430–3.
2. Vassen HF, Stormorken A, Menko FH, Nagengast FM, Kleibeuker JH, Griffin G, Taal BG, Möller P, Wijnen JT. MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. J Clin Oncol 2003;21:4074–80.
3. Dunlop MG, Farrington SM, Carathers AD, Wylie AH, Sharp L, Burn J, Liu B, Knutler KW, Vogelstein B. Cancer risk associated with germline DNA mismatch repair gene mutations. Hum Mol Genet 1998;6:105–10.
4. Hendriks YM, Wagner A, Moreau H, Menko F, Stormorken A, Quehenberger F, Sandkuijl L, Möller P, Genaurdi M, Van HH, Tops C, Van PM, Verkuijlen P, Kenter G, Wagner A, Morreau H, Menko F, Stormorken A, Quehenberger F, Brocker-Vriends AH, Vassen H. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH2 mutations: impact on counseling and surveillance. Gastroenterology 2004;127:17–25.
5. Quehenberger F, Vassen HF, van Houwelingen HC. Risk of colorectal and endometrial cancer for carriers of mutations of the hMLH1 and hMSH2 gene: correction for ascertainment. J Med Genet 2005;42:891–6.
6. Sijmons RH, Kieneyen LA, Witjes JA, Vassen HF. Urinary tract cancer and hereditary nonpolyposis colorectal cancer: risks and screening options. J Urol 1998;160:466–70.
7. Lynch HT, Taylor RJ, Lynch JF, Knezevic JA, Barrows A, Foode R, Wijnen J, Wagner A. Multiple primary cancer, including transitional cell carcinoma of the upper

Table 3: Overview of risk of bladder cancer in previous studies

Source	Design and methods	Data obtained from	Stratified by type of mutation	Risk of bladder cancer
Bermejo et al	Retrospective; analysis of incidence of cancer, compared to the general population	Records from 6 cancer genetics units in the London region	No RR (95% CI 0.90 to 1.24)	RR (MSH2) ¼ 1.06 (95% CI 0.90 to 1.24)
Geary et al	Retrospective; analysis of incidence of cancer, compared to the general population	Contact with family members known at the Hereditary Cancer Institute Edinburgh, and medical records of the National Health Service (UK)	No RR (95% CI 0.63 to 1.86, p = 0.05)	RR (MSH2) ¼ 1.1 (NS)
Watson and Lynch	Retrospective; analysis of incidence of cancer, compared to the general population	Dutch hereditary non-polyposis colorectal cancer registry	No RR	CR70* overall

*CR70 = percentage of individuals with a positive family history of UC who develop UC within 70 years of age.
Original article

unepithelial tract in a multigeneration HNPCC family: molecular genetic, diagnostic, and management implications. *Am J Gastroenterol* 2003; 98:644–70.

8. *Vasen HF, Wijnen JT, Menko FH, Kleibeuker JH, Taal BS, Griffioen G, Nagengast FM, Meijers-Heijboer EH, Bertario L, Varesco L, Bogaerts M, Mroj J, Froddi R, Khan PM. Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. *Gastroenterology* 1996; 110:1020–7.

9. *Watson P, Lynch HT. Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer* 1993; 71:677–85.

10. *Baglietto L, Lindor NM, Dowty JL, White DM, Wagner A, Gomez Garcia EB, Friends AH, Cartwright NR, Barnetson RA, Farrington SM, Tenesa A, Hampel H, Buchanan D, Arnold S, Young J, Walsh MD, Jass J, Macaré F, Antíl Y, Winship IM, Giles GG, Goldblatt J, Parry S, Suthers G, Leggett B, Butz M, Aronson M, Poynter JN, Baron JA, Le ML, Hiale R, Gallinger S, Hopper JL, Potter J, de la Chapelle A, Vasen HF, Dunlop MG, Thibodeau SN, Jenkins MA. Risks of Lynch Syndrome Cancers for MSH6 Mutation Carriers. *J Natl Cancer Inst* 2010; 102:193–201.

11. *Vasen HF, Moslien G, Alonso A, Bernstein I, Bertario L, Blanco I, Burn J, Capella G, Engel C, Frayling I, Fried W, Hes JF, Hodgson S, Mecklin JP, Möller P, Nagengast F, Parc Y, Renkonen-Sinisalo L, Sampson JR, Stormorken A, Wijnen J. Guidelines for the clinical management of Lynch syndrome (hereditary non-polyposis cancer). *J Med Genet* 2007; 44:353–62.

12. *Watson P, Vasen HF, Mecklin JP, Bernstein I, Aarnio M, Jarvinen HJ, Myhöij T, Sundé L, Wijnen JP, Lynch HT. The risk of extra-colonic, extra-endothelial cancer in the Lynch syndrome. *Int J Cancer* 2005; 123:444–9.

13. *Aarnio M, Sainio R, Pulkka E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltoniemi P, Mecklin JP, Jarvinen HJ. Cancer risk in mutation carriers of DNA-mismatch repair genes. *Int J Cancer* 1999; 81:214–18.

14. *Maul JS, Warner NR, Kuoaida SK, Burt RW, Cannon-Albright LA. Extracolonic cancers associated with mismatch repair gene-related cancer in the Utah Population Database. *Am J Gastroenterol* 2008; 103:1591–6.

15. *Parc Y, Boisson C, Thomas G, Olschwang S. Cancer risk in 348 French MSH2 or MLH1 gene carriers. *J Med Genet* 2003; 40:206–13.

16. *Geary J, Sasieni P, Houston R, Isatt L, Eeles R, Payne SJ, Fisher S, Hodgson SV. Gene-related cancer spectrum in families with hereditary non-polyposis colorectal cancer (HNPCC). *Fam Cancer* 2008; 7:163–72.

17. *Kim KN, Shashidharan M, Thorson AG, Tornent CA, Blatchford GJ, Christiansen MA, Watson P, Lemon S, Franklin B, Kaur B, Lynch J, Lynch HT. Cumulative incidence of colorectal and extracolonic cancers in MLH1 and MSH2 mutation carriers of hereditary nonpolyposis colorectal cancer. *J Gastrointest Surg* 1998; 2:257–61.

18. *Bermejo JL, Eng C, Hemminki K. Cancer characteristics in Swedish families fulfilling criteria for hereditary nonpolyposis colorectal cancer. *Gastroenterology* 2005; 129:1899–99.

19. *Gylling AH, Nieminen TT, Abdel-Rahman WM, Nuovan K, Juhola M, Joensuu EJ, Jarvinen HJ, Mecklin JP, Aarnio M, Peltoniemi PT. Differential cancer predisposition in Lynch syndrome: insights from molecular analysis of brain and urinary tract cancers. *Carcinogenesis* 2008; 29:1351–9.

20. *Hartmann A, Zanardi L, Brock-Edamstorn T, Blessy H, Dietmaier W, Steoer R, Cheville JC, Jurink K, Wieland W, Kruhle R, Rueschoff J, Holsteinest F, Fishel R. Frequent microsatellite instability in sporadic tumors of the upper urinary tract. *Cancer Res* 2002; 62:796–802.

21. *Umair A, Roland CR, Terdman JP, Syngal S, da la Chapelle A, Rueschoff J, Fishel R, Lindor NM, Burgart LJ, Hamelin R, Hamilton SR, Hatt RA, Jass J, Lindor A, Lynch HT, Peltoniemi P, Ramsay SD, Rodriguez-Bilagas MA, Vasen HF, Hawk ET, Barrett JC, Freedman AN, Srivastava S. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. *J Natl Cancer Inst* 2004; 96:191–6.

22. *Kiemeney LA, Lemmers FA, Verhoeven RH, Aben KK, Horing C, de NJ, Peeters PH, Visser OS, Vermeulen FA. [The risk of cancer in the Netherlands] (In Dutch). *Ned Tijdschr Geneeskd* 2008; 152:2233–41.

23. *Köhler CM, van Kreukn JH, Hebeda KM, Wezenberg SJ, Goossens M, Brunner HG, Litgenberg MJ, Hoogerbrugge N. Very low prevalence of germline MSH6 mutations in hereditary non-polyposis colorectal cancer suspected patients with colorectal cancer without microsatellite instability. *Br J Cancer* 2008; 95:1678–82.

24. *de Jong AE, van FM, Hendriks Y, Taps C, Wijnen J, Ausemed MG, Meijers-Heijboer H, Wagner A, van Os TA, Brocker-Freunders AJ, Vasen HF, Morreau H. Microsatellite instability, immunohistochemistry, and additional PMS2 staining in suspected hereditary nonpolyposis colorectal cancer. *Clin Cancer Res* 2004; 10:972–80.

25. *Gjerbeck UI, Litgenberg MJ, Willemis RW, Hermans RP, Bloks WA, Dubois SV, van der Linden H, Meijers-Janssen ML, Hoogerbrugge N, Hebeda KM, van Kreukn JH. Interpretation of immunohistochemistry for mismatch repair proteins is only reliable in a specialized setting. *Am J Surg Pathol* 2004; 28:1246–51.

26. *Jarvinen HJ, Aarnio M, Mustonen H, Aktan-Collar K, Aaltonen LA, Peltoniemi P, de la Chapelle A, Mecklin JP. Controlled 15-year trial on screening for colorectal cancer in families with hereditary nonpolyposis colorectal cancer. *Gastroenterology* 2000; 118:829–34.

27. *Vasen HF, Watson P, Mecklin JP, Lynch HT. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. *Gastroenterology* 1999; 118:1453–6.

28. *Plaksche J, Engel C, Kruger S, Holinski-Feder E, Pagenstecher C, Mangold E, Moeslin G, Schulman K, Gebert J, von Knebel DM, Ruchhaf J, Loosemer M, Schuckert HK. Lower incidence of colorectal cancer and later age of disease onset in 27 families with pathogenic MSH6 germline mutations compared with families with MLH1 or MSH2 mutations in the German Hereditary Nonpolyposis Colorectal Cancer Consortium. *J Clin Oncol* 2004; 22:4486–94.

29. *Hampel H, Stephens JA, Pulkka E, Sankila R, Aaltonen LA, Mecklin JP, de la Chapelle A. Cancer risk in hereditary nonpolyposis colorectal cancer syndrome: later age of onset. *Gastroenterology* 2005; 129:815–21.

30. *Lindor NM, Petersen GM, Hadley DW, Kinney AY, Meldsfeld S, Lu KH, Lynch P, Burke W, Press N. Recommendations for the care of individuals with an inherited predisposition to Lynch syndrome: a systematic review. *JAMA* 2006; 296:1507–17.

31. *Lokeshwar VB, Habuchi T, Grossman HB, Murphy WM, Hautmann SH, Hemstreet GP III, Bono AV, Getzenberg RH, Goebell P, Schmitz-Draeger BJ, Schalken JA, Fradet Y, Marberger M, Messing E, Droller MJ. Bladder tumor markers beyond cytology: International Consensus Panel on bladder tumor markers. *Urology* 2005; 66(Suppl 1):35–63.

32. *Myhöij T, Andersen MB, Bernstein I. Screening for urinary tract cancer with urine cytology in Lynch syndrome and familial colorectal cancer. *Fam Cancer* 2008; 7:303–7.

33. *Wakui M, Shigai T. Urinary tract cancer screening through analysis of urinary red blood cell volume distribution. *Int J Urol* 2000; 7:248–53.

34. *Koornstra J, Mouwts MJ, Sijmons RH, Loefvåk HM, Kleibeuker JH. Management of extracolonic tumours in patients with Lynch syndrome. *Lancet Oncol* 2009; 10:400–8.

35. *Bajbuk M, Kosterlinc W, Sylvester R, et al. European Association of Urology (EAU) guidelines on non-muscle-invasive urothelial carcinoma of the bladder. *Eur Urol* 2008; 54:303–14.

36. *Hirata K, Kanemitsu S, Nakayama Y, Nagata N, Itoh H, Ohishi H, Ishikawa H, Furukawa Y. A novel germline mutation of MSH2 in a hereditary nonpolyposis colorectal cancer patient with liposarcoma. *Am J Gastroenterol* 2006; 101:193–6.