On the Average Complexity of the k-Level

Man-Kwun Chiu1 Stefan Felsner2 Manfred Scheucher2
Patrick Schnider3 Raphael Steiner2 Pavel Valtr4

1 Institut für Informatik,
Freie Universität Berlin, Germany,
{chiumk}@zedat.fu-berlin.de

2 Institut für Mathematik,
Technische Universität Berlin, Germany,
{felsner,scheucher,steiner}@math.tu-berlin.de

3 Institute of Theoretical Computer Science,
ETH Zürich, Switzerland
{patrick.schnider}@inf.ethz.ch

4 Department of Applied Mathematics,
Faculty of Mathematics and Physics, Charles University, Czech Republic
{valtr}@kam.mff.cuni.cz

Abstract

Let A be an arrangement of n lines in the Euclidean plane. The k-level of A consists of all intersection points v of lines in A which have exactly k lines of A passing below v. The complexity of the k-level in a line arrangement has been widely studied. In 1998 Dey proved an upper bound of $O(n \cdot (k+1)^{1/3})$. We investigate the complexity of k-levels in random line and hyperplane arrangements. When the arrangement is obtained from any fixed projective line arrangement of n lines by choosing a random cell to contain the south-pole, we prove an upper bound of $O((k+1)^2)$ on the expected complexity of the k-level. As a byproduct we show that the complexity of any ($\leq j$)-zone in a d-dimensional simple arrangement of n hyperplanes is of order $\Theta((j+1)^{d-1})$. The classical zone theorem is the case $j = 0$.

We also consider arrangements of great $(d-1)$-spheres on the sphere S^d which are orthogonal to a set of random points on S^d. In this model we prove that the expected complexity of the k-level is of order $\Theta((k+1)^{d-1})$.

1 Introduction

Let A be an arrangement of n lines in the Euclidean plane. The vertices of A are the intersection points of lines of A. Throughout this article we consider arrangements to be simple, i.e., no 3 lines intersect in a common vertex, we also assume that no two lines are parallel, and no line is vertical. The k-level of A consists of all vertices v which have exactly k lines of A below v. We denote the k-level by $V_k(A)$ and its size by $f_k(A)$. Moreover, by $f_k(n)$ we denote the maximum of $f_k(A)$ over all arrangements A of n lines, and by $f(n) = f_{\lceil (n-2)/2 \rceil}(n)$ the maximum size of the middle level.

A k-set of a finite point set P in the Euclidean plane is a subset K of k elements of P that can be separated from $P \setminus K$ by a line. Paraboloid duality is a bijection $P \leftrightarrow A_P$ between
point sets and line arrangements (for details on this duality see [O’R94, Chapter 6.5] or [Edc87, Chapter 1.4]). The number of k-sets of P equals $|V_{k-1}(A_P)| \cup V_{n-1-k}(A_P)|$.

In discrete and computational geometry bounds on the number of k-sets of a planar point set, or equivalently on the size of k-levels of a planar line arrangement have important applications. The complexity of k-levels was first studied by Lovász [Lov71] and Erdős et al. [ELSS73], they bound the size of the k-level by $O(n \cdot (k + 1)^{1/2})$. Dey [Dev98] used the crossing lemma to improve the bound to $O(n \cdot (k + 1)^{1/3})$. In particular, the maximum size $f(n)$ of the middle level is $O(n^{4/3})$. Concerning the lower bound on the complexity, Erdős et al. [ELSS73] gave a construction showing that $f(2n) \geq 2f(n) + cn = \Omega(n \log n)$ and conjectured that $f(n) \geq \Omega(n^{1+\varepsilon})$. An alternative $\Omega(n \log n)$-construction was given by Edelsbrunner and Welzl [EW85]. The current best lower bound $f_k(n) \geq n \cdot e^{\Omega(\sqrt{\log n})}$ was obtained by Nivasch [Niv08] improving on a bound by Tóth [Tőt01]. For more background on the problem we refer to Chapter 11 of Matoušek’s book [Mat02].

1.1 Higher Dimensions

The problem of determining the complexity of the k-level admits a natural extension to higher dimensions: Consider a simple arrangement \mathcal{A} of n hyperplanes in \mathbb{R}^d, i.e., no $d+1$ hyperplanes intersect in a common point, we also assume that the intersection of any d given hyperplanes is a single point, and no hyperplane is parallel to the x_d-axis. The k-level $V_k(\mathcal{A})$ of \mathcal{A} consists of all vertices (i.e. intersection points of d hyperplanes) which have exactly k hyperplanes of \mathcal{A} below them (with respect to the d-th coordinate). We denote the k-level by $V_k(\mathcal{A})$ and its size by $f_k(\mathcal{A})$. Moreover, by $f^{(d)}_k(n)$ we denote the maximum of $f_k(\mathcal{A})$ among all arrangements \mathcal{A} of n hyperplanes in \mathbb{R}^d.

As in the planar case, there remains a gap between lower and upper bounds;

$$\Omega(n^{d/2} k^{[d/2]-1}) \leq f^{(d)}_k(n) \leq O(n^{d/2} k^{[d/2]-1} c_d),$$

here $c_d > 0$ is a small positive constant only depending on d. Details and references can be found in Chapter 11 of Matoušek’s book [Mat02]. In dimensions 3 and 4 improved bounds have been established. For example, for $d = 3$, it is known that $f^{(3)}_k(n) \leq O(n(k + 1)^{3/2})$ (see [SST01]).

For the middle level in dimension $d \geq 2$ an improved lower bound $f^{(d)}_k(n) \geq n^{d-1} \cdot e^{\Omega(\sqrt{\log n})}$ is known (see [Tőt01] and [Niv08]).

2 Our Results

In the first part of this paper we consider arrangements of lines in the projective plane and investigate the average complexity of the k-level, when the arrangement is “randomly” projected to an Euclidean arrangement. This question was raised by Barba, Pilz, and Schnider while sharing a pizza [BPS19].

In the considered model, a cell c of the arrangement is chosen uniformly at random and we consider a projected Euclidean arrangement where c is mapped to the top-bottom-cell/southpole. In Section 3 we prove the following bound on the average complexity of the k-level in this model. Remarkably the bound is independent of the number n of lines in the arrangement.

Theorem 1. Given a projective arrangement \mathcal{A} of n lines, the expected size of the k-level in the induced Euclidean arrangement is at most $8e \cdot (k + 1)^2$ when the southpole is chosen uniformly at random among the cells of \mathcal{A}.
Given a hyperplane arrangement A in \mathbb{R}^d and a hyperplane $H_0 \in A$, the zone of H_0, denoted by $Z_{\leq 0}(H_0, A)$, is the set of all faces (from 0-dimensional, i.e., vertices, to d-dimensional, i.e., cells) of A which can be seen from H_0, i.e., can be connected to H_0 along a simple path which intersects hyperplanes of A only at the endpoints. The classical zone theorem for hyperplane arrangements (cf. [ESS91] and [Mat02, Chapter 6.4]) bounds the size of any zone in an arrangement of n hyperplanes by $O(n^{d-1})$.

Our proof of Theorem 1 uses the planar case of the following generalization of the zone theorem to higher orders. The $(\leq j)$-zone of a hyperplane H_0 in an arrangement A, denoted by $Z_{\leq j}(H_0, A)$, consists of all faces of A which can be connected to H_0 with a simple path whose interior intersects at most j hyperplanes of A.

Theorem 2 (Generalized Zone Theorem). Let A be a simple arrangement of n hyperplanes in \mathbb{R}^d and let $H_0 \in A$, then the complexity of the $(\leq j)$-zone of H_0 is of order $\Theta((j + 1)n^{d-1})$.

We prove this theorem in Section 4. For the planar case $d = 2$, we show that the number of vertices in the $(\leq j)$-zone of H_0 that also lie above or on H_0 is at most $2e(j + 2)n$. This bound is used in the proof of Theorem 1.

In Section 5 we consider “arrangements of randomly chosen lines”. Here we propose the following model of randomness. Think of a projective line arrangement as a great-circle arrangement on the unit sphere S^2 in \mathbb{R}^3. The correspondence between great-circles on S^2 and planes through the origin in \mathbb{R}^3 extends to a correspondence between arrangements of the respective objects, Figure 1 gives an illustration.

Figure 1: The correspondence between great-circles on the unit sphere S^2 and lines in a plane Π. Using the center of the sphere as the center of projection, the points A, B, C, D on the sphere S^2 are projected to the points A', B', C', D' in the plane Π.

On S^2 we have the duality between points (each antipodal pair of points defines the normal vector of the plane containing a great-circle) and great-circles. Since we can choose points uniformly at random from S^2, we get random arrangements of great-circles. This duality clearly generalizes to higher dimensions, and we can therefore talk about random arrangements on S^d for a fixed dimension $d \geq 2$. We call the intersection of S^d with a central hyperplane in \mathbb{R}^{d+1} a great-$(d-1)$-sphere of S^d. Using the duality between antipodal pairs of points on S^d and great-$(d-1)$-spheres we prove the following bound on the expected size of the k-level in this random model:
Theorem 3. Let $d \geq 2$ be fixed. In an arrangement of n great-$(d-1)$-spheres chosen uniformly at random on the unit sphere S^d (embedded in \mathbb{R}^{d+1}), the expected size of the k-level is of order $\Theta((k+1)^{d-1})$ for all $k \leq n/2$.

Corollary 4. Let $d \geq 2$ be fixed. In an arrangement of n hyperplanes, which arises as the projection of an arrangement of n great-$(d-1)$-spheres chosen uniformly at random from the unit sphere S^d (embedded in \mathbb{R}^{d+1}), the expected size of the k-level is of order $\Theta((k+1)^{d-1})$.

3 Proof of Theorem 1

As the preparation for the proof of Theorem 1 we introduce some terminology and prove a few preliminary results. Let each of F and F' be a vertex, edge, line, or cell of an arrangement A of lines. We define their distance $d_A(F,F')$ as the minimum number of lines of A intersected by the interior of a curve connecting a point of F with a point of F'. Using this terminology the $(\leq j)$-zone $Z_{\leq j}(\ell,A)$ of a line ℓ in an arrangement A is defined as the set of vertices, edges and cells from A which have distance at most j from ℓ. See Figure 2 for an illustration. The classical zone theorem asserts that $Z_{\leq 0}(\ell,A)$ has linear complexity (see e.g. [Mat02, Chapter 6.4], [O'R94, Chapter 6.2], or [Ede87, Chapter 5.3]). By Theorem 2 the complexity of $Z_{\leq j}(\ell,A)$ is in $O((j+1)n)$.

![Figure 2: The higher order zones of a line \(\ell\).](image)

Fix a directed line $\ell \in A$ and assume without loss of generality that it is horizontal and directed from left to right. Our aim is to bound the size of the set $C_k(\ell)$ of pairs (C,v) where C is a cell of the zone below and touching ℓ and v is a vertex above ℓ whose distance to C is k. Clearly, v has to belong to the $(\leq k-1)$-zone of ℓ.

Consider a family \mathcal{F} of half-intervals in \mathbb{R}. We have left-intervals of the form $(-\infty, a]$ and right-intervals $[b, \infty)$. A collection of k half-intervals from \mathcal{F} is a k-clique if there is a point $p \in \mathbb{R}$ that lies in all these k half-intervals but not in any other half-interval of \mathcal{F}.

Lemma 5. Any family of half-intervals contains at most $k+1$ different k-cliques.

Proof. For $p \in \mathbb{R}$, let $l(p)$ be the number of left-intervals and $r(p)$ the number of right-intervals containing p. A point p certifies a k-clique iff $l(p) + r(p) = k$. From the monotonicity of the functions l and r it follows that if $(l(p_1), r(p_1)) = (l(p_2), r(p_2))$ for two points p_1 and p_2, then they are contained in the same intervals. Thus the number of k-cliques is at most the number of pairs (l, r) such that $l + r = k$ and $l, r \geq 0$, which is $k+1$. \qed
For a fixed vertex v in the $(\leq k-1)$-zone above ℓ, let $B_\ell(v)$ be the set of cells C such that $(C, v) \in C_\ell(\ell)$.

Claim. $|B_\ell(v)| \leq k$.

Proof. Consider a line g in A and let a be its intersection with ℓ. If v is to the left of g, draw the half-interval $[a, \infty)$ on ℓ. If v is to the right of g, draw the half-interval $(-\infty, a]$ on ℓ. Let H be the set of these half-intervals. We claim that there is a bijection between $B_\ell(v)$ and the $(k-1)$-cliques in H. Indeed, if the intersection of the half-intervals of a clique K, viewed as a subset of ℓ, is I_K, then I_K is the subset of ℓ which is reachable from v by crossing the lines corresponding to the half-intervals of K. If C is a cell below ℓ at distance k from v then ℓ and a subset of $(k-1)$ additional lines have to be crossed to reach v from C, i.e., there is a $(k-1)$-clique in H whose intersection is $C \cap \ell$. The number of $(k-1)$-cliques in H is at most k by Lemma 5.

Let C_k be the union of the $C_k(\ell)$ over all the 2^n choices of a directed line ℓ in A.

Theorem 6. Let A be an arrangement of n lines and let $1 \leq k \leq n$. Then $|C_k| \leq 4e \cdot k(k+1) \cdot n^2$.

Proof. For a fixed directed line ℓ the set $C_k(\ell)$ is the union of $B_\ell(v)$ over all vertices v in A in the $(\leq k-1)$-zone above ℓ. From the proof of the Generalized Zone Theorem (see the end of Section 4), we get that the number of such vertices is at most $2e(k+1)n$. From the above claim we have $|B_\ell(v)| \leq k$ so that $|C_k(\ell)| \leq 2ek(k+1)n$. Since there are $2n$ directed lines we get $|C_k| \leq 4ek(k+1)n^2$.

We are ready to prove Theorem 1.

Proof. The k-level with the southpole chosen in cell C consists of the vertices at distance k from C. Thus, the expected complexity of the k-level when choosing C uniformly at random equals $|C_k|$ divided by the number of cells. Since the number of cells in a projective arrangement of n lines is $\binom{n}{2} + 1$ and $|C_k| \leq 4ek(k+1)n^2$ by Theorem 6, we can conclude the statement from

$$\frac{4e \cdot k(k+1) \cdot n^2}{\binom{n}{2} + 1} \leq 8e \cdot k(k+1) \cdot \frac{n}{n-1} \leq 8e \cdot (k+1)^2 \cdot \frac{k}{k+1} \cdot \frac{n}{n-1} \leq 1.$$

4 Proof of Theorem 2

Let A be an arrangement of n hyperplanes in \mathbb{R}^d and let $H_0 \in A$ be a fixed hyperplane. For any $j = 0, 1, \ldots, n-1$ denote by $V_{\leq j}$ the set of vertices of A contained in the $(\leq j)$-zone $Z_{\leq j}(H_0, A)$ of H_0 in A, i.e., $v \in V_{\leq j}$ if there is a simple path P_v from v to H_0 whose interior has at most j intersections with hyperplanes from A. Note that $V_{\leq 0}$ is the set of vertices in the traditionally studied zone of H_0 in A.

5
Lower Bound: We claim that $|V_{\leq j}| \geq \frac{1}{d+1}(j+1)(n-1)^{d-1}$ for $n \geq j + d + 1$ (here we use the usual notation for falling factorials $x^k = x(x-1)\ldots(x-k+1)$). To prove this bound, we use induction on the dimension d. For the base case, let $d = 1$. Since A is an arrangement of points on the line, it is clear that if $n \geq j + 2$, we have $|V_{\leq j}| \geq j + 1$, as claimed.

Now let $d \geq 2$ and assume that the bound holds for simple arrangements of $n \geq j + d$ hyperplanes in \mathbb{R}^{d-1}.

Let A be a simple arrangement of $n \geq j + d + 1$ hyperplanes in \mathbb{R}^d. For each hyperplane $H \in A \setminus \{H_0\}$, we denote the arrangement induced by the other hyperplanes of A on H by A/H, i.e., $A/H = \{H' \cap H \mid H' \in A \setminus \{H\}\}$. The arrangement A/H is a simple arrangement of $n - 1$ hyperplanes in $(d-1)$-dimensional space, whose vertices are the vertices of A contained in H. Now consider the $(\leq j)$-zone $Z_{\leq j}(H_0 \cap H, A/H)$ of the $(d-2)$-dimensional plane $H_0 \cap H$ within A/H. Every vertex in $Z_{\leq j}(H_0 \cap H, A/H)$ is a vertex of $Z_{\leq j}(H_0, A)$ and each vertex v in $Z_{\leq j}(H_0, A)$ is a vertex of the induced arrangement A/H for each of the d hyperplanes H incident to v. Using the induction hypothesis, we obtain $|V_{\leq j}| \geq \frac{1}{d+1} \left(\frac{1}{1-j/2}\right)^d (j+1)(n-2)^{d-2} = \frac{1}{d+1} (j+1)(n-1)^{d-1}$.

This proves the claim and shows that the $(\leq j)$-zone of H_0 is of size $\Omega((j+1)n^{d-1})$.

Upper Bound: Let A be a simple arrangement of n hyperplanes in \mathbb{R}^d. Let R be a random sample of hyperplanes from A where $H_0 \in R$ and each hyperplane $H \neq H_0$ independently belongs to R with probability $p := \frac{1}{j+2}$. The probability that a vertex $v \in V_{\leq j}$ is present in the induced subarrangement $A(R)$ and appears at distance 0 from H_0 is at least $\left(\frac{1}{j+2}\right)^d \cdot (1 - \frac{1}{j+2})^r$, where $0 \leq r \leq j$ denotes the distance of v from H_0 in A. The d hyperplanes determining the vertex v are present with probability $\left(\frac{1}{j+2}\right)^d$, and the r hyperplanes intersecting a fixed witnessing path P_v from v to H_0 are not present with probability $\left(1 - \frac{1}{j+2}\right)^r$. Note that

$$\left(1 - \frac{1}{j+2}\right)^r \geq \left(1 - \frac{1}{j+2}\right)^{j+1} = \left(\frac{j+1}{j+2}\right)^{j+1} = \left(1 + \frac{1}{j+1}\right)^{(j+1)} \geq 1/e,$$

where $e = 2.718\ldots$ denotes Euler’s number. Figure 3 gives an illustration for the planar case.

Figure 3: A path P_v witnessing that v belongs to the $(\leq j)$-zone of ℓ for all $j \geq 2$.

Let X be the number of vertices in the 0-zone of H_0 in $A(R)$. For the expectation of this random variable we have $\mathbb{E}(X) \geq \frac{1}{d+2} \left(\frac{1}{j+2}\right)^d \cdot |V_{\leq j}|$.

On the other hand, by the classical zone theorem we have $X \leq c \cdot |R|^{d-1}$ for some constant $c = c(d)$ only depending on d. Therefore $\mathbb{E}(X) \leq c \cdot \mathbb{E}(Y^{d-1})$, where Y is the number of hyperplanes in R. Note that $Y \sim B(n, p)$ is a binomially distributed random variable.

The above inequalities imply $|V_{\leq j}| \leq c \cdot e \cdot (j + 2)^d \cdot \mathbb{E}(Y^{d-1})$. From known bounds for the moments of the binomial distribution, we obtain the estimate $\mathbb{E}(Y^{d-1}) = \Theta((np)^{d-1})$ (see for
instance [PT10], Corollary 2.1). Hence
\[|V_{\leq j}| \leq c \cdot e \cdot (j + 2)^d \cdot O((n/(j + 2))^{d-1}) = O((j + 1)n^{d-1}). \]

Every vertex \(v \) of \(A \) belongs to at most \(3^d \) faces of \(A \). Every face \(F \) belonging to \(Z_{\leq j}(H_0, A) \) contains a vertex \(v \) which also belongs to \(Z_{\leq j}(H_0, A) \). Therefore, \(|Z_{\leq j}(H_0, A)| \leq 3^d |V_{\leq j}| \) whence \(|Z_{\leq j}(H_0, A)| = O((j + 1)n^{d-1}) \).

For the planar case \(d = 2 \), we can provide reasonable bounds for the number of vertices in the \((\leq j)\)-zone: An inductive argument, as used to show the classical zone theorem (see e.g. [GHW13 page 136]), shows \(|V_{\leq j}^+| \leq 2n - 3 \). Using the constant 2 in the role of \(c(2) \), we obtain \(|V_{\leq j}^+| \leq 2e(j + 2)n \).

This concludes the proof of Theorem 2.

5 Proof of Theorem 3

Let \(C \) be a simple arrangement of \(n \) great-(\(d - 1 \))-spheres on the unit sphere \(S^d = \{ x \in \mathbb{R}^{d+1} : \|x\| = 1 \} \) with center \(o \) in \(\mathbb{R}^{d+1} \). For a vertex \(v \) of the arrangement, let \(\phi_C(v) \) denote the number of great-(\(d - 1 \))-spheres that are crossed by the geodesic arc from \(v \) to the south-pole \(s = (0, \ldots, 0, -1) \) of the sphere. The set of vertices \(v \) of \(C \) with \(\phi_C(v) = k \) is denoted \(V_k(C) \).

When \(C \) is projected to a \(d \)-dimensional plane \(H \) with the origin \(o = (0, \ldots, 0) \) as center of projection, we obtain an arrangement \(A \) of hyperplanes in \(\mathbb{R}^d \). Moreover, if the south pole \(s \) is projected to a point “at infinity” of \(H \), say to \((0, \ldots, 0, -\infty) \), then, for every point \(p \) in \(S^d \), the \(S^1 \) containing the geodesic arc from \(p \) to \(s \) is projected to the “vertical” line through \(p \), i.e., the line \(p + (0, \ldots, 0, \lambda) \). The geodesic is projected to one of the two rays starting from \(p \) on this line. In particular, all vertices \(v \) of \(C \) with \(\phi_C(v) = k \) are projected to vertices of \(A \) either at level \(k \) or \(n - k - d \).

Let \(C \) be an arrangement of randomly chosen great-(\(d - 1 \))-spheres and let \(B \) be a subset of size \(d \) in \(C \). Note that with probability 1, the random great-sphere-arrangement is in general position, and simple, i.e., no more than \(d \) great-spheres intersect in a common point. Let \(p' \) be one of the two intersection points of the great-(\(d - 1 \))-spheres in \(B \). Now consider the arrangement \(C' = C - B \) and note that \((C', p') \) can be viewed as a random arrangement of great-(\(d - 1 \))-spheres together with a random point on \(S^d \). Hence, to estimate the expected size of \(V_k(C) \), we can estimate the probability that \(\phi_C(p') = k \). This is the purpose of the following Lemma.

Lemma 7. Let \(C \) be an arrangement of \(n \) great-(\(d - 1 \))-spheres chosen uniformly at random on the unit sphere \(S^d \) (embedded in \(\mathbb{R}^{d+1} \) and centered at the origin). Let \(p \) be an additional point chosen uniformly at random from \(S^d \), and let \(B \) be the geodesic arc from \(p \) to the south pole on \(S^d \). For all \(k \leq n/2 \), the probability \(q_k \) that exactly \(k \) great-(\(d - 1 \))-spheres from \(C \) intersect \(A \) is of order \(\Theta((k + 1)^{d-1}/n^d) \). More precisely, it satisfies
\[
\frac{2^{d-1} \rho \pi (k + 1)^{d-1} (n - k + 1)^{d-1}}{(n + 1)^{2d-1}} \leq q_k \leq \min \left\{ \frac{\rho \pi}{n + 1}, \frac{\rho n^{d}(k + 1)^{d-1}}{(n + 1)^{2d-1}} \right\},
\]
where \(a^\gamma = a(a+1) \cdots (a+b-1) \) denotes the rising factorial and \(\rho = \frac{\text{area}_{d-1}(S^d)}{\text{area}_{d-1}(S^d)} = \frac{\Gamma(\frac{d+1}{2})}{\pi^{\frac{d+1}{2}}} \) only depends on the dimension \(d \).

For the planar case \(d = 2 \), the two upper bounds from Lemma 7 coincide if \(k \approx n/\pi \), and we have \(\frac{\pi}{2} \cdot \frac{1}{n} \leq q_k \leq \frac{\pi}{2} \cdot \frac{1}{n} \) for \(k \ll n/2 \), and \(\frac{1}{\pi} \cdot \frac{1}{n} \leq q_k \leq \frac{1}{\pi} \cdot \frac{1}{n} \) for \(k \approx n/2 \).
Proof. Denote by ϕ the length of the geodesic arc A on \mathbb{S}^d from p to s, i.e., ϕ is the angle between the two rays emanating from o towards s and p. Note that – independent from the dimension d – the three points o, s, and p lie in a 2-dimensional plane which also contains the geodesic arc A. Point p lies on a $(d - 1)$-sphere C of radius $\sin(\phi)$ in the d-dimensional hyperplane defined by the equation $x_d = -\cos(\phi)$. Figure 4 gives an illustration for the case $d = 2$, where C is a circle.

The probability that the arc A defined by the random point p is intersected by exactly k great-$(d-1)$-spheres from the random arrangement C is

$$q_k = \int_0^{\pi} \frac{\text{Vol}_{d-1}(\mathbb{S}^{d-1}) \sin^{d-1}(\phi)}{\text{Vol}_d(\mathbb{S}^d)} \cdot \left(\frac{n}{k}\right) (\phi/\pi)^k (1 - \phi/\pi)^{n-k} d\phi.$$

This can be rewritten as

$$q_k = \rho \cdot \left(\frac{n}{k}\right) \cdot \int_0^{\pi} \sin^{d-1}(\phi) \cdot (\phi/\pi)^k (1 - \phi/\pi)^{n-k} d\phi,$$

where $\rho = \rho(d) = \frac{\text{Vol}_{d-1}(\mathbb{S}^{d-1})}{\text{Vol}_d(\mathbb{S}^d)} = \frac{\Gamma\left(\frac{d+1}{2}\right)}{\pi^{\frac{d+1}{2}} \Gamma\left(\frac{d+1}{2}\right)}$ is a constant only depending on d. The latter equation follows from $\text{Vol}_d(\mathbb{S}^d) = 2\pi^{\frac{d+1}{2}} / \Gamma\left(\frac{d+1}{2}\right)$, where $\Gamma(x)$ is the Euler gamma function (see e.g. [Wikb]).

In the following we give upper and lower bounds for q_k. The Euler beta function B turns out to be the tool to evaluate the integrals:

$$B(a + 1, b + 1) = \int_0^1 t^a (1 - t)^b dt = \frac{a! \cdot b!}{(a + b + 1)!}.$$

For this identity and more information see for example [Wika].

To show the first upper bound on q_k, we bound the integral above as follows: Since $\sin(\phi) \leq 1$ holds for every $\phi \in [0, \pi]$, we have

$$q_k \leq \rho \left(\frac{n}{k}\right) \int_0^{\pi} (\phi/\pi)^k (1 - \phi/\pi)^{n-k} d\phi = \rho \pi \left(\frac{n}{k}\right) \int_0^1 t^k (1 - t)^{n-k} dt$$

$$= \rho \pi \left(\frac{n}{k}\right) B(k + 1, n - k + 1) = \rho \pi \cdot \frac{n!}{k! (n - k)!} \cdot \frac{k! (n - k)!}{(n + 1)!} = \rho \pi \cdot \frac{1}{n + 1}.$$
Towards the second upper bound on \(q_k \), we use the fact that \(\sin(\phi) \leq \phi \) holds for every \(\phi \in [0, \pi]
\\n\\n\\n\\n
\[
q_k \leq \rho n^{d-1} \binom{n}{k} \int_{\phi=0}^{\pi} (\phi/n)^{k+d-1} (1 - \phi/n)^{n-k} d\phi = \rho n^d \binom{n}{k} \int_{t=0}^{1} t^{k+d-1} (1 - t)^{n-k} dt
\\n= \rho n^d \cdot \frac{n!}{k!(n-k)!} \cdot \frac{(k + d - 1)!(n-k)!}{(n+d)!} = \rho n^d \cdot \frac{(k+1)^{d-1}}{(n+1)^{d-1}}.
\]

To show the lower bound on \(q_k \), we split the integral in two parts: Since \(\sin(\phi) \geq 2 \cdot \phi/\pi \) holds for every \(\phi \in [0, \pi/2] \) and \(\sin(\phi) \geq 2 \cdot (1 - \phi/\pi) \) holds for every \(\phi \in [\pi/2, \pi] \), we have

\[
q_k \geq 2^{d-1} \rho \binom{n}{k} \left[\int_{\phi=0}^{\pi/2} (\phi/n)^{k+d-1} (1 - \phi/n)^{n-k} d\phi + \int_{\phi=\pi/2}^{\pi} (\phi/n)^{k}(1 - \phi/n)^{n-k+d-1} d\phi \right]
\\\geq 2^{d-1} \rho \binom{n}{k} \int_{\phi=0}^{\pi} (\phi/n)^{k+d-1} (1 - \phi/n)^{n-k+d-1} d\phi
\\= 2^{d-1} \rho \pi \binom{n}{k} \int_{t=0}^{1} t^{k+d-1} (1 - t)^{n-k-d-1} dt
\\= 2^{d-1} \rho \pi \cdot \frac{n!}{k!(n-k)!} \cdot \frac{(k + d - 1)!(n-k + d - 1)!}{(n+2d-1)!}
\\= 2^{d-1} \rho (k+1)^{d-1} \cdot (n-k+1)^{d-1} \cdot (n+1)^{2d-1}.
\]

This completes the proof of Lemma 7.

Proof of Theorem 3. Consider an arrangement \(C \) of \(n + d \) great-(\(d - 1 \))-spheres \(C_1, \ldots, C_{n+d} \) chosen uniformly and independently at random from \(S^d \). Let \(p \) be a vertex of \(C \) chosen uniformly at random (i.e., one of the two points of intersection of \(d \) great-(\(d - 1 \))-spheres \(C_{i_1}, \ldots, C_{i_d} \) chosen u.a.r. from \(C \)). Note that \(p \) is a u.a.r. chosen point from \(S^d \).

We now apply Lemma 7 with \(p \) and \(C_p := C - \{C_{i_1}, \ldots, C_{i_d}\} \). Point \(p \) is separated from \(o \) by \(k \) great-(\(d - 1 \))-spheres from \(C_p \) with probability \(q_k = \Theta(k^{d-1}/n^d) \). Since \(p \) is chosen uniformly at random among the \(2 \binom{n+d}{d} \) vertices of \(C \), we obtain the desired bound of \(\Theta(k^{d-1}) \).

6 Discussion

Due to the \(O(nk^{1/3}) \) upper bound for the complexity of the \(k \)-level, Theorem 3 is only interesting for small \(k \), i.e., \(k \ll n^{3/5} \). It would be interesting to have an improved upper bound for the expected size of the \(k \)-level when the south-cell is randomly chosen also in the range of values between \(\Omega(n^{3/5}) \) and \(n/2 \).

We have no non-trivial lower bound and would like to know the answer to the following question:

Question 1. Is there a family of line arrangements where the expected size of the middle level is superlinear when the southpole is chosen uniformly at random? What about other \(k \)-levels?
Recursive constructions from [ELSS73] and [EW85] show that the size of the $n/2 - s$ level can be in $\Omega(n \log n)$ for any fixed s. Nevertheless computer experiments suggest that if we choose a random southpole for these examples the expected size of the middle level drops to be linear.

In Section 5 we were concerned with a natural model of randomness, where great-$d - 1$-spheres are chosen independently and uniformly at random from the sphere. In the context of research on Erdős–Szekeres-type problems, several articles made use of point sets which are sampled uniformly at random from a convex shape (see e.g. [BF87] [Va95] [BGAS13] [BSV]). It would be interesting to obtain bounds on the number of k-sets also for random point sets in these models.

Also it is worth mentioning that the probabilistic method used in Section 4 was already used e.g. by Clarkson and Shor [CS89].

Acknowledgments

M.-K. Chiu was supported by ERC StG 757609. S. Felsner and M. Scheucher were supported by DFG Grant FE 340/12-1. R. Steiner was supported by DFG-GRK 2434. P. Valtr was supported by the grant no. 18-19158S of the Czech Science Foundation (GAČR) and by the PRIMUS/17/SCI/3 project of Charles University. This work was initiated at a workshop of the collaborative DACH project Arrangements and Drawings in Schloss St. Martin, Graz. We thank the organizers for the inspiring atmosphere. We also thank Birgit Vogtenhuber for helpful and interesting discussions.

References

[BF87] I. Bárány and Z. Füredi. Empty simplices in Euclidean space. Canadian Mathematical Bulletin, 30(4):436–445, 1987.

[BGAS13] J. Balogh, H. González-Aguilar, and G. Salazar. Large convex holes in random point sets. Computational Geometry, 46(6):725–733, 2013.

[BPS19] L. Barba, A. Pilz, and P. Schnider. Sharing a pizza: bisecting masses with two cuts, 2019. arXiv:1904.02502.

[BSV] M. Balko, M. Scheucher, and P. Valtr. Holes and islands in random point sets. In Preparation.

[BT10] D. Berend and T. Tassa. Improved bounds on bell numbers and on moments of sums of random variables. Probability and Mathematical Statistics, 30(2):185–205, 2010.

[CS89] K. L. Clarkson and P. W. Shor. Applications of random sampling in computational geometry, ii. Discrete & Computational Geometry, 4(5):387–421, 1989.

[Dey98] T. K. Dey. Improved bounds for planar k-sets and related problems. Discrete & Computational Geometry, 19(3):373–382, 1998.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, 1987.

[ELSS73] P. Erdős, L. Lovász, G. J. Simmons, and E. G. Straus. Chapter 13 - dissection graphs of planar point sets In A Survey of Combinatorial Theory, pages 139–149. North-Holland, 1973.
[ESS91] H. Edelsbrunner, R. Seidel, and M. Sharir. On the Zone Theorem for Hyperplane Arrangements. In New Results and New Trends in Computer Science, pages 108–123. Springer, 1991.

[EW85] H. Edelsbrunner and E. Welzl. On the number of line separations of a finite set in the plane. Journal of Combinatorial Theory, Series A, 38:15–29, 1985.

[GHW13] B. Gärtner, M. Hoffmann, and E. Welzl. Computational geometry – lecture notes, 2013. https://www.ti.inf.ethz.ch/ew/Lehre/CG13/lecture/cg-2013.pdf

[Lov71] L. Lovász. On the number of halving lines. Annales Universitatis Scientiarum Budapestinensis de Rolando Eőtvős Nominatae Sectio Mathematica, 14:107–108, 1971.

[Mat02] J. Matoušek. Lectures on Discrete Geometry. Springer, 2002.

[Niv08] G. Nivasch. An improved, simple construction of many halving edges. Contemporary Mathematics, 453:299–305, 2008.

[O’R94] J. O’Rourke. Computational Geometry in C. Cambridge University Press, 1994.

[SST01] M. Sharir, S. Smorodinsky, and G. Tardos. An improved bound for k-sets in three dimensions. Discrete & Computational Geometry, 26(2):195–204, Jan 2001.

[Tót01] G. Tóth. Point Sets with Many k-sets. Discrete & Computational Geometry, 26(2):187–194, 2001.

[Val95] P. Valtr. On the minimum number of empty polygons in planar point sets. Studia Scientiarum Mathematicarum Hungarica, pages 155–163, 1995.

[Wika] Wikipedia. Beta function. http://en.wikipedia.org/wiki/Beta_function

[Wikb] Wikipedia. N-sphere. http://en.wikipedia.org/wiki/N-sphere