Weak Gorenstein global dimension

Driss Bennis

Department of Mathematics, Faculty of Science and Technology of Fez, Box 2202, University S. M. Ben Abdellah Fez, Morocco, driss_bennis@hotmail.com

Abstract. In this paper, we investigate the weak Gorenstein global dimensions. We are mainly interested in studying the problem when the left and right weak Gorenstein global dimensions coincide. We first show, for GF-closed rings, that the left and right weak Gorenstein global dimensions are equal when they are finite. Then, we prove that the same equality holds for any two-sided coherent ring. We conclude with some examples and a brief discussion of the scope and limits of our results.

Keywords: Gorenstein flat dimension; weak Gorenstein global dimension; weak global dimension; GF-closed rings

1 Introduction

Throughout the paper, all rings are associative with identity, and all modules are unitary. Let R be a ring. The injective (resp., flat) dimension of an R-module M is denoted by $\text{id}_R(M)$ (resp., $\text{fd}_R(M)$).

A left (resp., right) R-module M is called Gorenstein flat, if there exists an exact sequence of flat left (resp., right) R-modules

$$F = \cdots \to F_1 \to F_0 \to F^0 \to F^1 \to \cdots,$$

such that $M \cong \text{Im}(F_0 \to F^0)$ and such that the sequence $I \otimes_R F$ (resp., $F \otimes_R I$) remains exact whenever I is an injective right (resp., left) R-module. The sequence F is called a complete flat resolution.

For a positive integer n, we say that M has Gorenstein flat dimension at most n, and we write $\text{Gfd}_R(M) \leq n$, if there is an exact sequence of R-modules

$$0 \to G_n \to \cdots \to G_0 \to M \to 0,$$

where each G_i is Gorenstein flat (please see [6, 9, 11]).

The notion of Gorenstein flat modules was introduced and studied over Gorenstein rings, by Enochs, Jenda, and Torrecillas [10], as a generalization of the notion of flat modules in the sense that an R-module is flat if and only if it is Gorenstein flat with finite flat dimension. In [5], Chen and
Ding generalized known characterizations of Gorenstein flat modules (then of the Gorenstein flat dimension) over Gorenstein rings to n-FC rings (coherent with finite self-FP-injective dimension). Then, in [11], Holm generalized the study of the Gorenstein flat dimension to coherent rings. In the same direction, the study of Gorenstein flat dimension is generalized, in [1], to a larger class of rings called GF-closed: a ring R is called left (resp., right) GF-closed, if the class of all Gorenstein flat left (resp., right) R-modules is closed under extensions; that is, for every short exact sequence of left (resp., right) R-modules $0 \to A \to B \to C \to 0$, the condition A and C are Gorenstein flat implies that B is Gorenstein flat. A ring is called GF-closed, if it is both left and right GF-closed. The class of GF-closed rings includes strictly the one of coherent rings and also the one of rings of finite weak global dimension [1, Example 3.6].

In this paper, we are concerned with the left and right weak Gorenstein global dimensions of rings, $l.Gwdim(R)$ and $r.Gwdim(R)$, which are respectively defined as follows:

\[
\begin{align*}
l.Gwdim(R) &= \sup \{Gfd_R(M) \mid M \text{ is a left } R\text{-module}\} \quad \text{and} \\
r.Gwdim(R) &= \sup \{Gfd_R(M) \mid M \text{ is a right } R\text{-module}\}.
\end{align*}
\]

In the classical case we have, for any ring R, the following well-known equality [13, Theorem 9.15]:

\[
\sup \{fd_R(M) \mid M \text{ is a right } R\text{-module}\} = \sup \{fd_R(M) \mid M \text{ is a left } R\text{-module}\}.
\]

The common value of these equal terms is called weak global dimension of R and denoted by $wdim(R)$.

In [2, Theorem 2.2], it is proved, for any ring R, that $Gfd_R(M) = fd_R(M)$ for every (left or right) R-module M with finite flat dimension. Then, if $wdim(R) < \infty$, we get:

\[
l.Gwdim(R) = wdim(R) = r.Gwdim(R).
\]

On the other hand, by [9, Theorem 12.3.1 (1 \iff 4)], we have for a left and right Noetherian ring R:

\[
l.Gwdim(R) = r.Gwdim(R).
\]

This naturally leads to the following conjecture:

Conjecture 1.1 For any ring R, $l.Gwdim(R) = r.Gwdim(R)$.

The main purpose of this paper is to prove that this conjecture holds for a large class of rings. First, we prove that the conjecture is true for GF-closed rings which have finite both left and right weak Gorenstein global dimensions (Theorem 2.11). Then, we prove the conjecture is true for two-sided coherent rings (Theorem 2.13). In Proposition 2.14, we prove that, for a ring R, $l.Gwdim(R) = 0$ if and only if $r.Gwdim(R) = 0$; and, in this case, R is an IF ring (i.e., R satisfies: every injective right (resp., left) R-module I is flat). We conclude with some examples and a brief discussion of the scope and limits of our results (Remark 2.15, Proposition 2.16 and Example 2.17).

2 Main results

We begin with the first main result which says that Conjecture 1.1 is true for GF-closed rings with finite both left and right weak Gorenstein global dimensions.
Theorem 2.1 If \(R \) is a GF-closed ring with finite both left and right weak Gorenstein global dimensions, then \(l.Gwdim(R) = r.Gwdim(R) \).

To prove this theorem, we need the following results.

The following lemma generalizes [7, Lemma 2.19].

Lemma 2.2 Assume that \(R \) is a left (resp., right) GF-closed ring. If \(M \) is a left (resp., right) \(R \)-module with \(\text{Gfd}_R(M) < \infty \), then there exists a short exact sequence of left (resp., right) \(R \)-modules \(0 \to M \to M' \to G \to 0 \), such that \(\text{fd}_R(M') = \text{Gfd}_R(M) \) and \(G \) is Gorenstein flat.

Proof. We only prove the case of left modules, and the case of right modules is proved similarly. Let \(\text{Gfd}_R(M) = n \) for some positive integer \(n \). We prove the result by induction on \(n \). The case \(n = 0 \) holds by the definition of the Gorenstein flat module. Then, suppose that \(n > 0 \) and pick a short exact sequence of left \(R \)-modules: \(0 \to K \to G_0 \to M \to 0 \), where \(G_0 \) is Gorenstein flat and \(\text{Gfd}_R(K) = n - 1 \). By induction, there exists a short exact sequence of \(R \)-modules: \(0 \to K \to K' \to H \to 0 \), such that \(\text{fd}_R(K') = \text{Gfd}_R(K) = n - 1 \) and \(H \) is Gorenstein flat. Consider the pushout diagram:

```
0 0 0
0 \rightarrow K \rightarrow G_0 \rightarrow M \rightarrow 0 0
0 \rightarrow K' \rightarrow D \rightarrow M \rightarrow 0 0
0 \rightarrow H \rightarrow H 0
```

By the middle vertical sequence and since \(R \) is left GF-closed, \(D \) is Gorenstein flat. Then, there exists a short exact sequence of left \(R \)-modules \(0 \to D \to F \to G \to 0 \), where \(F \) is flat and \(G \) is Gorenstein flat. Consider the pushout diagram:

```
0 0 0
0 \rightarrow K' \rightarrow D \rightarrow M \rightarrow 0 0
0 \rightarrow K' \rightarrow F \rightarrow M' \rightarrow 0 0
0 \rightarrow G \rightarrow G 0
```
By the middle horizontal sequence \(\text{fd}_R(M') = n \). Then, the right vertical sequence is the desired sequence.

Compare the following result to [12, Theorem 2.6 (ii)].

Corollary 2.3 Assume that \(R \) is a left (resp., right) GF-closed ring. If \(M \) is an injective left (resp., right) \(R \)-module, then \(\text{fd}_R(M) = \text{Gfd}_R(M) \).

Proof. It is known that \(\text{Gfd}_R(M) \leq \text{fd}_R(M) \) for every (left or right) \(R \)-module and over any associative ring \(R \). Conversely, assume that \(\text{Gfd}_R(M) \) is finite, then by Lemma 2.2 there exists a short exact sequence of \(R \)-modules: \(0 \rightarrow M \rightarrow M' \rightarrow G \rightarrow 0 \) such that \(\text{fd}_R(M') = \text{Gfd}_R(M) \). Since \(M \) is injective, this sequence splits and therefore \(\text{fd}_R(M) \leq \text{fd}_R(M') = \text{Gfd}_R(M) \).

Lemma 2.4 If \(R \) is a left GF-closed ring with \(\text{l.Gwdim}(R) < \infty \), then, for a positive integer \(n \), the following are equivalent:

1. \(\text{l.Gwdim}(R) \leq n \);
2. \(\text{Gfd}_R(M) \leq n \) for every finitely presented left \(R \)-module \(M \);
3. \(\text{Gfd}_R(R/I) \leq n \) for every finitely generated left ideal \(I \) of \(R \);
4. \(\text{fd}_R(E) \leq n \) for every injective right \(R \)-module \(E \);
5. \(\text{fd}_R(E') \leq n \) for every right \(R \)-module \(E' \) with finite injective dimension;

Consequently, the left weak Gorenstein global dimension of \(R \) is also determined by the formulas:

\[
\text{l.Gwdim}(R) = \sup \{ \text{Gfd}_R(R/I) \mid I \text{ is a finitely generated left ideal of } R \} = \sup \{ \text{Gfd}_R(M) \mid M \text{ is a finitely presented left } R\text{-module} \} = \sup \{ \text{fd}_R(E) \mid E \text{ is an injective right } R\text{-module} \} = \sup \{ \text{fd}_R(E') \mid E' \text{ is a right } R\text{-module with } \text{id}_R(E) < \infty \}.
\]

Proof. The implications 1 \(\Rightarrow \) 2 \(\Rightarrow \) 3 are trivial. The implication 3 \(\Rightarrow \) 4 follows from [1] Theorem 2.8 (1 \(\Rightarrow \) 2). The implication 4 \(\Rightarrow \) 5 is proved by induction on \(\text{id}_R(E') \) using the flat counterpart of [4] Corollary 2, p. 135. Finally, the implication 5 \(\Rightarrow \) 1 is a simple consequence of [1] Theorem 2.8 (3 \(\Rightarrow \) 1). ■

Similarly we obtain the right version of Lemma 2.4.

Lemma 2.5 If \(R \) is a right GF-closed ring with \(\text{r.Gwdim}(R) < \infty \), then, for a positive integer \(n \), the following are equivalent:

1. \(\text{r.Gwdim}(R) \leq n \);
2. \(\text{Gfd}_R(M) \leq n \) for every finitely presented right \(R \)-module \(M \);
3. \(\text{Gfd}_R(R/I) \leq n \) for every finitely generated right ideal \(I \) of \(R \);
4. \(\text{fd}_R(E) \leq n \) for every injective left \(R \)-module \(E \);
5. \(\text{fd}_R(E') \leq n \) for every left \(R \)-module \(E' \) with finite injective dimension;
Consequently, the right weak Gorenstein global dimension of R is also determined by the formulas:

\[
\begin{align*}
r.Gwdim(R) &= \sup\{\text{Gfd}_R(R/I) \mid I \text{ is a finitely generated right ideal of } R\} \\
&= \sup\{\text{Gfd}_R(M) \mid M \text{ is a finitely presented right } R\text{-module}\} \\
&= \sup\{\text{fd}_R(E) \mid E \text{ is an injective left } R\text{-module}\} \\
&= \sup\{\text{id}_R(E') \mid E' \text{ is a left } R\text{-module with } \text{id}_R(E) < \infty\}.
\end{align*}
\]

\textbf{Proof of Theorem 2.1}. Assume that $r.Gwdim(R) = n$ is finite. From Corollary 2.3, $\text{fd}_R(E) = \text{Gfd}_R(M) \leq n$ for every injective right R-module E. Then, from Lemma 2.4, $l.Gwdim(R) \leq n = r.Gwdim(R)$.

The converse inequality is proved similarly. \hfill \blacksquare

Under the condition of Theorem 2.1, the classical left and right finitistic flat dimension are equal and they are also equal to the left and right weak Gorenstein global dimensions. Recall that the left finitistic flat dimension, $l.FFD(R)$, of a ring R is defined as follows:

\[
l.FFD(R) = \{\text{fd}_R(M) \mid M \text{ is a left } R\text{-module with } \text{fd}_R(M) < \infty\}.
\]

The right finitistic dimension $r.FFD(R)$ is defined similarly.

\textbf{Proposition 2.6} If R is a GF-closed ring with finite both left and right weak Gorenstein global dimensions, then $l.FFD(R) = l.Gwdim(R) = r.Gwdim(R) = r.FFD(R)$.

\textbf{Proof}. This follows from Theorem 2.1 and the following result. \hfill \blacksquare

Recall that the left finitistic Gorenstein flat dimension, $l.FGFD(R)$, of a ring R is defined as follows:

\[
l.FGFD(R) = \{\text{Gfd}_R(M) \mid M \text{ is a left } R\text{-module with } \text{Gfd}_R(M) < \infty\}.
\]

The right finitistic dimension $r.FGFD(R)$ is defined similarly.

The following result is a generalization of [11, Theorem 3.24].

\textbf{Proposition 2.7} For any ring R, we have $l.FFD(R) \leq l.FGFD(R)$ and $r.FFD(R) \leq r.FGFD(R)$. Furthermore, if R is left (resp., right) GF-closed, then $l.FFD(R) = l.FGFD(R)$ (resp., $r.FFD(R) = r.FGFD(R)$).

\textbf{Proof}. The inequalities follow immediately by the fact that $\text{Gfd}_R(M) = \text{fd}_R(M)$ for every R-module M with finite flat dimension [2, Theorem 2.2].

Now, assume that R is left GF-closed (the right version is proved similarly). It remains to prove the converse inequality $l.FGFD(R) \leq l.FFD(R)$. For that, we can assume that $l.FFD(R) = n$ is finite. Let M be a left R-module with finite Gorenstein flat dimension. By Lemma 2.2 there exists a short exact sequence of left R-modules $0 \to M \to M' \to G \to 0$ such that $\text{Gfd}_R(M) = \text{fd}_R(M') \leq n$. This implies the desired inequality. \hfill \blacksquare

Now we give the second main result which says that Conjecture 1.1 is true for two-sided coherent rings. For that we use the following notions:

From [8], a ring R is called right (resp., left) IF, if every injective right (resp., left) R-module I is flat. A ring R is called IF, if it is both left and right IF. Then, let us call a ring R is right (resp.,
left) n-IF, for $n \geq 0$, if $\text{fd}_R(E) \leq n$ for every injective right (resp., left) R-module E. And R is called n-IF, if it is both left and right n-IF.

Obviously, 0-IF rings are just the IF rings. And, from [9] Theorem 9.1.11, the n-IF Noetherian rings are the same as the well-known n-Gorenstein rings.

The following result is also a generalization of [9] Theorem 12.3.1 (1 \iff 4).

Theorem 2.8 If R is a right and left coherent ring, then, for a positive integer n, the following are equivalent:

1. $l.Gwdim(R) \leq n$;
2. R is n-IF;
3. $r.Gwdim(R) \leq n$.

Consequently, for any two-sided coherent ring R, $l.Gwdim(R) = r.Gwdim(R)$.

The proof of this theorem uses the notion of a flat preenvelope of modules which is defined as follows:

Definition 2.9 ([14]) Let R be a ring and let F be a flat R-module. For an R-module M, an homomorphism (or F) $\varphi : M \to F$ is called a flat preenvelope, if for any homomorphism $\varphi' : M \to F'$ with F' is a flat module, there is an homomorphism $f : F \to F'$ such that $\varphi' = f \varphi$.

Note that if M embeds in a flat module, then its flat preenvelope (if it exists) is injective.

The coherent rings is also characterized by the notion of a flat preenvelope of modules as follows:

Lemma 2.10 ([14], Theorem 2.5.1) A ring R is coherent if and only if every R-module has a flat preenvelope.

Also we use the notion of a flat cover of modules which is defined as follows:

Definition 2.11 ([14]) Let R be a ring and let F be a flat R-module. For an R-module M, an homomorphism (or F) $\varphi : F \to M$ is called a flat precover, if for any homomorphism $\varphi' : M \to F'$ with F' is a flat module, there is an homomorphism $f : F \to F'$ such that $\varphi' = \varphi f$. A flat precover $\varphi : F \to M$ of M is called flat cover, if every endomorphism f of F with $\varphi = \varphi f$ must be an automorphism.

Recall that an R-module M is called cotorsion, if $\text{Ext}^1_R(F, M) = 0$ for every flat R-module F.

Lemma 2.12 ([3] and [9], Lemma 5.3.25) For any ring R, every R-module M has a flat cover $\varphi : F \to M$ such that $\text{Ker}(\varphi)$ is cotorsion.

Note that every flat cover is surjective.

From its proof, [11] Proposition 3.22] is stated, as we need here, as follows:

Lemma 2.13 Let R be a right (resp., left) coherent ring. If T is a left (resp., right) R-module such that $\text{Tor}^1_R(I, T) = 0$ (resp. $\text{Tor}^1_R(T, I) = 0$) for every injective right (resp., left) R-module, then $\text{Ext}^1_R(T, K) = 0$ for every cotorsion left (resp., right) R-module K with finite flat dimension.
Proof of Theorem 2.8. Since every coherent ring is GF-losed, the implications 1 \(\Rightarrow\) 2 and 3 \(\Rightarrow\) 2 follow from Theorem 2.1 and Lemmas 2.4 and 2.5.

We only prove the implication 2 \(\Rightarrow\) 1. The implication 3 \(\Rightarrow\) 1 has a similar proof.

Let \(M\) be a left \(R\)-module, and consider an exact sequence of left \(R\)-modules:

\[
(*) \quad 0 \rightarrow G \rightarrow P_{n-1} \rightarrow \cdots \rightarrow P_b \rightarrow M \rightarrow 0,
\]

where each \(P_i\) is projective. We have to prove that \(G\) is Gorenstein flat.

First note that, using the above sequence \((*)\), we have:

\[
\text{Tor}_k^R(E, G) \cong \text{Tor}_k^R(E, M) \quad \text{for every} \ k \geq 1 \quad \text{and every right} \ R\text{-module} \ E.
\]

If \(E\) is an injective right \(R\)-module, then \(\text{fd}_R(E) \leq n\) (since \(R\) is \(n\)-IF), and so by the above isomorphism we get:

\[
(**) \quad \text{Tor}_k^R(E, G) = 0 \quad \text{for every} \ k \geq 1 \quad \text{and every injective right} \ R\text{-module} \ E.
\]

Then, by [11, Theorem 3.6 \((i \Leftrightarrow iii)\)], it remains to construct a right flat resolution of \(G\):

\[
F = 0 \rightarrow G \rightarrow F^0 \rightarrow F^1 \rightarrow \cdots,
\]

such that the sequence \(\text{Hom}_R(F, F)\) is exact whenever \(F\) is a flat left \(R\)-module. Equivalently, for every positive integer \(i\), \(G^i \rightarrow F^i\) is a flat preenvelope of \(G^i\), where \(G^0 = G\) and \(G^i = \text{Ker}(F^i \rightarrow F^{i+1})\) for \(i \geq 1\).

Consider a short exact sequence of left \(R\)-modules \(0 \rightarrow G \rightarrow I \rightarrow L \rightarrow 0\), where \(I\) is injective. From Lemma 2.12 there exists a short exact sequence of left \(R\)-modules \(0 \rightarrow K \rightarrow F \rightarrow I \rightarrow 0\), where \(F\) is flat and \(K\) is cotorsion. Since \(R\) is \(n\)-IF, \(\text{fd}_R(I) \leq n\) and so \(\text{fd}_R(K) \leq n - 1\). Consider the pullback diagram

\[
\begin{array}{ccccccccc}
0 & & 0 & & & & & & & \\
| & & | & & | & & | & & | \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
K & & K & & K & & K & & K & \\
| & & | & & | & & | & & | \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & & D & & G & & I & & L & \\
| & & | & & | & & | & & | \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & & 0 & & 0 & & 0 & & 0 & \\
\end{array}
\]

From Lemma 2.13 and \((**)\), we have \(\text{Ext}_R^1(G, K) = 0\). Then, the left vertical sequence splits, and so \(G\) embeds in the flat module \(F\). Thus, \(G\) admits an injective flat preenvelope \(G \rightarrow F^0\), which gives the desired first flat preenvelope.

Now, for \(G^1 = \text{Coker}(G \rightarrow F^0)\) we prove that \(\text{Ext}_R^1(G^1, K) = 0\) for every cotorsion left \(R\)-module \(K\) with finite flat dimension. This gives, using the same argument above, the desired second flat preenvelope \(G^1 \rightarrow F^1\), and recursively we obtain the remains flat preenvelopes.

Let \(K\) be a cotorsion left \(R\)-module with finite flat dimension. By Lemma 2.12 there exists a flat cover \(F \rightarrow K\) of \(K\) such that we obtain a short exact sequence of left \(R\)-modules

\[
0 \rightarrow K' \rightarrow F \rightarrow K \rightarrow 0,
\]
where K' is cotorsion with finite flat dimension (since $\text{fd}_R(K) < \infty$). By [14 Proposition 3.1.2], F is cotorsion. Then, we get the following commutative diagram

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
0 & \text{Hom}(G^1, K') & \text{Hom}(F^0, K') & \text{Hom}(G, K') \\
\downarrow & \downarrow & \downarrow & \downarrow \\
0 & \text{Hom}(G^1, F) & \text{Hom}(F^0, F) & \text{Hom}(G, F) & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & \text{Hom}(G^1, K) & \text{Hom}(F^0, K) & \text{Hom}(G, K) \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
0 & 0 & 0 & 0
\end{array}
$$

with exact rows and columns. Indeed, the middle vertical sequence is exact since $F \to K$ is a flat cover of K; the right vertical sequence is exact since $\text{Ext}^1_R(G, K') = 0$ since K' is cotorsion with finite flat dimension; and the middle horizontal sequence is exact since $G \to F^0$ is a flat preenvelope. Then, the sequence $0 \to \text{Hom}(G^1, K) \to \text{Hom}(F^0, K) \to \text{Hom}(G, K) \to 0$ is exact. This implies, using $\text{Ext}^1_R(F^0, K) = 0$, that $\text{Ext}^1_R(G^1, K) = 0$, and this completes the proof.

For the case where $l.\text{Gwdim}(R) = 0$ or $r.\text{Gwdim}(R) = 0$ we have the following generalization of [5 Theorem 6 (1 \Leftrightarrow 2)].

Proposition 2.14 For a ring R, the following are equivalent:

1. $l.\text{Gwdim}(R) = 0$;
2. R is IF;
3. $r.\text{Gwdim}(R) = 0$.

Proof. The implications $1 \Rightarrow 2$ and $3 \Rightarrow 2$ follow from Theorem 2.8.

We prove the implication $2 \Rightarrow 1$. The implication $3 \Rightarrow 1$ has a similar proof.

We prove that every left R-module M is Gorenstein flat. For that, we have to construct a complete flat resolution F such that $M \cong \text{Im}(F_0 \to F^0)$. Since R is IF, we can consider any flat resolution of M as the “left half” of F. For that “right half” of F, consider an injective resolution I of M. Since R is IF, the sequence I is a right flat resolution of M such that the sequence $I \otimes_R I$ is exact whenever I is an injective (then flat) right R-module, as desired.

Remark 2.15 In [8 Example 2], Colby gave an example of a left and right coherent ring R which is right IF but not left IF. Then, $l.\text{Gwdim}(R) = r.\text{Gwdim}(R) = \infty$. Indeed, if $l.\text{Gwdim}(R) < \infty$, then, by Lemma 2.4 $l.\text{Gwdim}(R) = 0$, and from Theorem 2.8 $l.\text{Gwdim}(R) = r.\text{Gwdim}(R) = 0$. But, this contradicts the fact that R is not left IF (Proposition 2.14). Consequently:

1. To have the implication 4(or 5) $\Rightarrow 1$ in Lemma 2.4, the condition “$l.\text{Gwdim}(R) < \infty$” can not be dropped.
2. In [11, Theorem 3.14], the condition “\(\text{Gfd}(M) < \infty \)” cannot be dropped to get the implication \(iii \text{or} ii \Rightarrow i \). Indeed, since \(l\text{Gwdim}(R) = \infty \), there exists, using [11, Proposition 3.13], a left \(R \)-module with \(\text{Gfd}_{R}(M) = \infty \). However, \(\text{Tor}^{i}(I, M) = 0 \) for every \(i > 0 \) and every injective (then flat) right \(R \)-module \(I \).

Finally, to construct examples of GF-closed rings of finite weak Gorenstein global dimension which are neither coherent nor of finite weak global dimension, we need the following result:

Proposition 2.16 For any family of rings \(\{R_{i}\}_{i=1}^{m} \), we have:

\[
l.\text{Gwdim}\left(\prod_{i=1}^{m} R_{i} \right) = \sup\{l.\text{Gwdim}(R_{i}), 1 \leq i \leq m\} \text{ and } r.\text{Gwdim}\left(\prod_{i=1}^{m} R_{i} \right) = \sup\{r.\text{Gwdim}(R_{i}), 1 \leq i \leq m\}.
\]

Proof. The result is a consequence of [1, Theorem 3.4].

Example 2.17 Consider an IF ring \(R_{1} \) with infinite weak global dimension, and consider a non-coherent ring \(R_{2} \) with finite weak global dimension. Then, the direct product \(R_{1} \times R_{2} \) is GF-closed (by [1, Proposition 3.5]) with finite weak Gorenstein global dimension (by Proposition 2.16), but it is neither coherent nor of finite weak global dimension.

References

[1] D. Bennis, *Rings over which the class of Gorenstein flat modules is closed under extensions*, Comm. Algebra 37 (2009), 855–868.

[2] D. Bennis, A Note on Gorenstein Flat Dimension. Accepted for Publication in *Algebra Colloquium*.

[3] L. Bican, R. El Bashir, and E. Enochs, *All modules have flat covers*, Bull. London Math. Soc. 33 (2001), 385–390.

[4] N. Bourbaki, *Algèbre Homologique*, Chapitre 10, Masson, Paris, 1980.

[5] J. Chen and N. Ding, *Coherent rings with finite self-FP-injective dimension*, Comm. Algebra 24 (1996), 2963–2980.

[6] L. W. Christensen, *Gorenstein Dimensions*, Lecture Notes in Math., Springer-Verlag, Berlin, 2000.

[7] L. W. Christensen, A.Frankild, and H. Holm, *On Gorenstein projective, injective and flat dimensions - a functorial description with applications*, J. Algebra 302 (2006), 231–279.

[8] R. R. Colby, *On Rings which have flat injective modules*, J. Algebra 35 (1975), 239–252.

[9] E. E. Enochs and O. M. G. Jenda, *Relative Homological Algebra*, de Gruyter Expositions in Mathematics, Walter de Gruyter & Co., Berlin, 2000.

[10] E. E. Enochs, O. M. G. Jenda, and B. Torrecillas, *Gorenstein flat modules*, Nanjing Daxue Xuebao Shuxue Bannian Kan 10 (1993), 1–9.

[11] H. Holm, *Gorenstein homological dimensions*, J. Pure Appl. Algebra 189 (2004), 167–193.

[12] H. Holm, *Rings with finite Gorenstein injective dimension*, Proc. Amer. Math. Soc. 132 (2004), 1279–1283.
[13] J. J. Rotman, *An Introduction to Homological Algebra*, Academic Press, New York, 1979.
[14] J. Xu, *Flat Covers of Modules*, Lecture Notes in Math., Springer-Verlag, Berlin, 1996.