Abstract

We present algorithmic results for the parallel assembly of many micro-scale objects in two and three dimensions from tiny particles, which has been proposed in the context of programmable matter and self-assembly for building high-yield micro-factories. The underlying model has particles moving under the influence of uniform external forces until they hit an obstacle; particles can bond when being forced together with another appropriate particle.

Due to the physical and geometric constraints, not all shapes can be built in this manner; this gives rise to the **Tilt Assembly Problem** (TAP) of deciding constructibility. For simply-connected polyominoes P in 2D consisting of N unit-squares (“tiles”), we prove that TAP can be decided in $O(N \log N)$ time. For the optimization variant MaxTAP (in which the objective is to construct a subshape of maximum possible size), we show polyAPX-hardness: unless $P=NP$, MaxTAP cannot be approximated within a factor of $\Omega(N^{1/3})$; for tree-shaped structures, we give an $O(N^{1/2})$-approximation algorithm. For the efficiency of the assembly process itself, we show that any constructible shape allows pipelined assembly, which produces copies of P in $O(1)$ amortized time, i.e., N copies of P in $O(N)$ time steps. These considerations can be extended to three-dimensional objects: For the class of polycubes P we prove that it is NP-hard to decide whether it is possible to construct a path between two points of P; it is also NP-hard to decide constructibility of a polycube P. Moreover, it is expAPX-hard to maximize a path from a given start point.

1 Introduction

In recent years, progress on flexible construction at micro- and nano-scale has given rise to a large set of challenges that deal with algorithmic aspects of programmable matter. Examples of cutting-edge application areas with a strong algorithmic flavor include self-assembling systems, in which chemical and biological substances such as DNA are designed to form predetermined shapes or carry out massively parallel computations; and swarm robotics, in which complex tasks are achieved through the local interactions of robots with highly limited individual capabilities, including micro- and nano-robots.

Moving individual particles to their appropriate attachment locations when assembling a shape is difficult because the small size of the particles limits the amount of onboard energy and computation. One successful approach to dealing with this challenge is to use molecular diffusion in combination with cleverly designed sets of possible connections: in **DNA tile self-assembly**, the particles are equipped with sophisticated bonds that...
ensure that only a predesigned shape is produced when mixing together a set of tiles, see [18]. The resulting study of algorithmic tile self-assembly has given rise to an extremely powerful framework and produced a wide range of impressive results. However, the required properties of the building material (which must be specifically designed and finely tuned for each particular shape) in combination with the construction process (which is left to chemical reactions, so it cannot be controlled or stopped until it has run its course) make DNA self-assembly unsuitable for some applications.

An alternative method for controlling the eventual position of particles is to apply a uniform external force, causing all particles to move in a given direction until they hit an obstacle or another blocked particle. As two of us (Becker and Fekete, [1]) have shown in the past, combining this approach with custom-made obstacles (instead of custom-made particles) allows complex rearrangements of particles, even in grid-like environments with axis-parallel motion. The appeal of this approach is that it shifts the design complexity from the building material (the tiles) to the machinery (the environment). As recent practical work by Manzoor et al. [15] shows, it is possible to apply this to simple “sticky” particles that can be forced to bond, see Fig. 1; the overall assembly is achieved by adding particles one at a time, attaching them to the existing sub-assembly.

![Figure 1: A practical demonstration of Tilt Assembly based on alginate (i.e., a gel made by combining a powder derived from seaweed with water) particles [15]. (a) Alginate particles in initial positions. (b) After control moves of $\langle e, s, w, n, e, s \rangle$ (for east, south, west, north), the alginate microrobots move to the shown positions. (c) After $\langle w, n \rangle$ inputs, the system produces the first multi-microrobot polyomino. (d) The next three microrobot polyominoes are produced after applying multiple $\langle e, s, w, n \rangle$ cycles. (e) After the alginate microrobots have moved through the microfluidic factory layout, the final 4-particle polyomino is generated.](image)

Moreover, pipelining this process may result in efficient rates of production, see Fig. 2 [15].

One critical issue of this approach is the requirement of getting particles to their destination without being blocked by or bonding to other particles. As Fig. 3 shows, this is not always possible, so there are some shapes that cannot be constructed by Tilt Assembly.

This gives rise to a variety of algorithmic questions: (1) Can we decide efficiently whether a given polyomino can be constructed by Tilt Assembly? (2) Can the resulting process be pipelined to yield low
Figure 2: (Top left) Initial setup of a seven-tile polyomino assembly; the composed shape is shown enlarged on the lower left. The bipartite decomposition into blue and red particles is shown for greater clarity, but can also be used for better control of bonds. The sequence of control moves is $\langle e, s, w, n \rangle$, i.e., a clockwise order. (Bottom left) The situation after 18 control moves. (Right) The situation after 7 full cycles, i.e., after 28 control moves; shown are three parallel “factories”.

Figure 3: A polyomino (black) that cannot be constructed by Tilt Assembly: the last tile cannot be attached, as it gets blocked by previously attached tiles.

1.1 Our Contribution

We present the results shown in Table 1.

Dimension	Decision	Maximization	Approximation	Constructible Path
2D (simple)	$O(N \log N)$ (Sec. 3)	polyAPX-hard	$\Omega(N^{1/3})$, $O(\sqrt{N})$ (Sec. 4)	$O(N \log N)$ (Sec. 4)
3D (general)	NP-hard (Sec. 5)	polyAPX-hard	$\Omega(N^{1/3})$, - (Sec. 4)	NP-hard (Sec. 5)

Table 1: Results for Tilt Assembly Problem (TAP) and its maximization variant (MaxTAP)

1.2 Related Work

Assembling polyominoes with tiles has been considered intensively in the context of tile self-assembly. In 1998, Erik Winfree [18] introduced the abstract tile self-assembly model (aTAM), in which tiles have glue types on each of the four sides and two tiles can stick together if their glue type matches and the bonding strength is sufficient. Starting with a seed tile, tiles will continue to attach to the existing partial assembly...
until they form a desired polyomino; the process stops when no further attachments are possible. Apart
from the aTAM, there are various other models like the two-handed tile self-assembly model (2HAM) [8] and
the hierarchical tile self-assembly model [9], in which we have no single seed but pairs of subassemblies
that can attach to each other. Furthermore, the staged self-assembly model [10][11] allows greater efficiency by
assembling polyominoes in multiple bins which are gradually combined with the content of other bins.

All this differs from the model in Tilt Assembly, in which each tile has the same glue type on all four
sides, and tiles are added to the assembly one at a time by attaching them from the outside along a straight
line. This approach of externally movable tiles has actually been considered in practice at the microscale
level using biological cells and an MRI, see [12], [13], [4]. Becker et al. [5] consider this for the assembly of
a magnetic Gauß gun, which can be used for applying strong local forces by very weak triggers, allowing
applications such as micro-surgery.

Using an external force for moving the robots becomes inevitable at some scale because the energy capacity
decreases faster than the energy demand. A consequence is that all non-fixed robots/particles perform the
same movement, so all particles move in the same direction of the external force until they hit an obstacle or
another particle. These obstacles allow shaping the particle swarm. Designing appropriate sets of obstacles
and moves gives rise to a range of algorithmic problems. Deciding whether a given initial configuration of
particles in a given environment can be transformed into a desired target configuration is NP-hard [1], even in
a grid-like setting, whereas finding an optimal control sequence is shown to be PSPACE-complete by Becker
et al. [2]. However, if it is allowed to design the obstacles in the first place, the problems become much more
tractable [1]. Moreover, even complex computations become possible: If we allow additional particles of
double size (i.e., two adjacent fields), full computational complexity is achieved, see Shad et al. [16]. Further
related work includes gathering a particle swarm at a single position [14] and using swarms of very simple
robots (such as Kilobots) for moving objects [6]. For the case in which human controllers have to move
objects by such a swarm, Becker et al. [3] study different control options. The results are used by Shahrokhi
and Becker [17] to investigate an automatic controller.

Most recent and most closely related to our paper is the work by Manzoor et al. [15], who use global
control to assembly polyominoes in a pipelined fashion: after constructing the first polyomino, each cycle
of a small control sequence produces another polyomino. However, the algorithmic part is purely heuristic;
providing a thorough understanding of algorithms and complexity is the content of our paper.

2 Preliminaries

Polyomino: For a set $P \subset \mathbb{Z}^2$ of N grid points in the plane, the graph G_P is the induced grid graph,
in which two vertices $p_1, p_2 \in P$ are connected if they are at unit distance. Any set P with connected
grid graph G_P gives rise to a polyomino by replacing each point $p \in P$ by a unit square
centered at p, which is called a tile; for simplicity, we also use P to denote the polyomino when the
context is clear, and refer to G_P as the dual graph of the polyomino; P is tree-shaped, if G_P is a
tree. A polyomino is called hole-free or simple if and only if the grid graph induced by $\mathbb{Z}^2 \setminus P$ is connected.

Blocking sets: For each point $p \in \mathbb{Z}^2$ we define blocking sets $N_p, S_p \subseteq P$ as the set of all points $q \in P$ that
are above or below p and $|p_x - q_x| \leq 1$. Analogously, we define the blocking sets $E_p, W_p \subseteq P$ as the set
of all points $q \in P$ that are to the right or to the left of p and $|p_y - q_y| \leq 1$.

Construction step: A construction step is defined by a direction (north, east, south, west, abbreviated
by n, e, s, w) from which a tile is added and a latitude/longitude l describing a column or row. The
tile arrives from (l, ∞) for north, (∞, l) for east, $(l, -\infty)$ for south, and $(-\infty, l)$ for west into the
(corresponding) direction until it reaches the first grid position that is adjacent to one occupied by an
existing tile. If there is no such tile, the polyomino does not change. We note that a position p can be
added to a polyomino P if and only if there is a point $q \in P$ with $||p - q||_1 = 1$ and one of the four
(a) Removing t destroys decomposability. The polyomino can be decomposed by starting with the three tiles above t.

(b) Removing the red convex tile leaves the polyomino non-decomposable; it can be decomposed by starting from the bottom or the sides.

Figure 4: Two polyominoes and their convex tiles (white). (a) Removing non-convex tiles may destroy decomposability. (b) In case of non-simple polygons we may not be able to remove convex tiles.

blocking sets, N_p, E_p, S_p or W_p, is empty. Otherwise, if none of these sets are empty, this position is blocked.

Constructibility: Beginning with a seed tile at some position p, a polyomino P is *constructible* if and only if there is a sequence $\sigma = ((d_1, l_1), (d_2, l_2), \ldots, (d_{N-1}, l_{N-1}))$, such that the resulting polyomino P', induced by successively adding tiles with σ, is equal to P. We allow the constructed polyomino P' to be a translated copy of P. Reversing σ yields a *decomposition sequence*, i.e., a sequence of tiles getting removed from P.

3 Constructibility of Simple Polyominoes

In this section we focus on hole-free (i.e., simple) polyominoes. We show that the problem of deciding whether a given polyomino can be constructed can be solved in polynomial time. This decision problem can be defined as follows.

Definition 1 (Tilt Assembly Problem). Given a polyomino P, the TILT ASSEMBLY PROBLEM (TAP) asks for a sequence of tiles constructing P, if P is constructible.

3.1 A Key Lemma

A simple observation is that construction and (restricted) decomposition are the same problem. This allows us to give a more intuitive argument, as it is easier to argue that we do not lose connectivity when removing tiles than it is to prove that we do not block future tiles.

Theorem 2. A polyomino P can be constructed if and only if it can be decomposed using a sequence of tile removal steps that preserve connectivity. A construction sequence is a reversed decomposition sequence.

Proof. To prove this theorem, it suffices to consider a single step. Let P be a polyomino and t be a tile that is removed from P into some direction l, leaving a polyomino P'. Conversely, adding t to P' from direction l yields P, as there cannot be any tile that blocks t from reaching the correct position, or we would not be able to remove t from P in direction l.

For hole-free polyominoes we can efficiently find a construction/decomposition sequence if one exists. The key insight is that one can greedily remove *convex* tiles. A tile t is said to be convex if and only if there is a 2×2 square solely containing t; see Fig. 4. If a convex tile is *not* a cut tile, i.e., it is a tile whose removal does not disconnect the polyomino, its removal does not interfere with the decomposability of the remaining polyomino.

This conclusion is based on the observation that a minimal cut (i.e., a minimal set of vertices whose removal leaves a disconnected polyomino) of cardinality two in a hole-free polyomino always consists of two (possibly diagonally) adjacent tiles. Furthermore, we can always find such a removable convex tile in any decomposable hole-free polyomino. This allows us to devise a simple greedy algorithm.
We start by showing that if we find a non-blocked convex tile that is not a cut tile, we can simply remove it. It is important to focus on convex tiles, as the removal of non-convex tiles can harm the decomposability: see Fig. 4a for an illustration. In non-simple polyominoes, the removal of convex tiles can destroy decomposability, as demonstrated in Fig. 4b.

Lemma 3. Consider a non-blocked non-cut convex tile t in a hole-free polyomino P. The polyomino $P - t$ is decomposable if and only if P is decomposable.

Proof. The first direction is trivial: if $P - t$ is decomposable, P is decomposable as well, because we can remove the non-blocked tile t first and afterwards use the existing decomposition sequence for $P - t$. The other direction requires some case distinctions. Suppose for contradiction that P is decomposable but $P - t$ is not, i.e., t is important for the later decomposition.

Consider a valid decomposition sequence for P and the first tile t' we cannot remove if we were to remove t in the beginning. W.l.o.g., let t' be the first tile in this sequence (removing all previous tiles obviously does not destroy the decomposability). When we remove t first, we are missing a tile, hence t' cannot be blocked but has to be a cut tile in the remaining polyomino $P - t$. The presence of t preserves connectivity, i.e., $\{t, t'\}$ is a minimal cut on P. Because P has no holes, then t and t' must be diagonal neighbors, sharing the neighbors a and b. Furthermore, by definition neither of t and t' is blocked in some direction. We make a case distinction on the relation of these two directions.

The directions are orthogonal (Fig. 5a). Either a or b is a non-blocked convex tile, because t and t' are both non-blocked; w.l.o.g., let this be a. It is easy to see that independent of removing t or t' first, after removing a we can also remove the other one.

The directions are parallel (Fig. 5b). This case is slightly more involved. By assumption, we have a decomposition sequence beginning with t'. We show that swapping t' with our convex tile t in this sequence preserves feasibility.

The original sequence has to remove either a or b before it removes t, as otherwise the connection between the two is lost when t' is removed first. After either a or b is removed, t becomes a leaf and can no longer be important for connectivity. Thus, we only need to consider the sequence until either a or b is removed. The main observation is that a and b block the same tiles as t or t', except for tile c as in Fig. 5b. However, when c is removed, it has to be a leaf, because a is still not removed and in the original decomposition sequence, t' has already been removed. Therefore, a tile $d \neq t'$ would have to be removed before c. Hence, the decomposition sequence remains feasible, concluding the proof.

Next we show that such a convex tile always exists if the polyomino is decomposable.

Lemma 4. Let P be a decomposable polyomino. Then there exists a convex tile that is removable without destroying connectivity.

Proof. We prove this by contradiction based on two possible cases.

Assume P to be a decomposable polyomino in which no convex tile is removable. Because P is decomposable, there exists some feasible decomposition sequence S. Let P_{convex} denote the set of convex tiles of P and let $t \in P_{\text{convex}}$ be the first removed convex tile in the decomposition sequence S. By assumption, t cannot be removed yet, so it is either blocked or a cut tile.

t is blocked. Consider the direction in which we would remove t. If it does not cut the polyomino, the last blocking tile has to be convex (and would have to be removed before t), see Fig. 6a. If it cuts the polyomino, the component cut off also must have a convex tile and the full component has to be removed before t, see Fig. 6b. This is again a contradiction to t being the first convex tile to be removed in S.

t is a cut tile. $P - t$ consists of exactly two connected polyominoes, P_1 and P_2. It is easy to see that $P_1 \cap P_{\text{convex}} \neq \emptyset$ and $P_2 \cap P_{\text{convex}} \neq \emptyset$, because every polyomino of size $n \geq 2$ has at least two convex tiles of which at most one becomes non-convex by adding t. (A polyomino of size 1 is trivial.) Before being able to remove t, either P_1 or P_2 has to be completely removed, including their convex tiles. This is a contradiction to t being the first convex tile in S to be removed.
(a) If the unblocked directions of \(t \) and \(t' \) are orthogonal, one of the two adjacent tiles (w.l.o.g. \(a \)) cannot have any further neighbors. There can also be no tiles in the upper left corner, because the polyomino cannot cross the two free directions of \(t \) and \(t' \) (red marks).

(b) If the unblocked directions of \(t \) and \(t' \) are parallel, there is only the tile \(c \) for which something can change if we remove \(t \) before \(t' \).

Figure 5: The red marks indicate that no tile is at this position; the dashed outline represents the rest of the polyomino.

(a) If the removal direction of \(t \) is not crossed, the last blocking tile has to be convex (and has to be removed before).

(b) If the removal direction of \(t \) crosses \(P \), then \(P \) gets split into components \(A \) and \(B \). Component \(B \) has a convex tile \(t' \) that needs to be removed before \(t \).

Figure 6: Polyominoes for which no convex tile should be removable, showing the contradiction to \(t \) being the first blocked convex tile in \(P \) getting removed.

3.2 An Efficient Algorithm

An iterative combination of these two lemmas proves the correctness of greedily removing convex tiles. As we show in the next theorem, using a search tree technique allows an efficient implementation of this greedy algorithm.

Theorem 5. A hole-free polyomino can be checked for decomposability/constructibility in time \(O(N \log N) \).

Proof. Lemma [3] allows us to remove any convex tile, as long as it is not blocked and does not destroy connectivity. Applying the same lemma on the remaining polyomino iteratively creates a feasible decomposition sequence. Lemma [4] proves that this is always sufficient. If and only if we can at some point no longer find a matching convex tile (to which we refer as candidates), the polyomino cannot be decomposable.

Let \(B \) be the time needed to check whether a tile \(t \) is blocked. A naïve way of doing this is to try out all tiles and check if \(t \) gets blocked, requiring time \(O(N) \). With a preprocessing step, we can decrease \(B \) to \(O(\log N) \) by using \(O(N) \) binary search trees for searching for blocking tiles and utilizing that removing a tile can change the state of at most \(O(1) \) tiles. For every vertical line \(x \) and horizontal line \(y \) going through \(P \), we create a balanced search tree, i.e., for a total of \(O(N) \) search trees. An \(x \)-search tree for a vertical line \(x \) contains tiles lying on \(x \), sorted by their \(y \)-coordinate. Analogously define a \(y \)-search tree for a horizontal line \(y \) containing tiles lying on \(y \) sorted by their \(x \)-coordinate. We iterate over all tiles \(t = (x, y) \) and insert the
tile in the corresponding x- and y-search tree with a total complexity of $O(N \log N)$. Note that the memory complexity remains linear, because every tile is in exactly two search trees. To check if a tile at position (x', y') is blocked from above, we can simply search in the $(x' - 1)$-, x'- and $(x' + 1)$-search tree for a tile with $y > y'$. We analogously perform search queries for the other three directions, and thus have 12 queries of total cost $O(\log N)$.

We now iterate on all tiles and add all convex tiles that are not blocked and are not a cut tile to the set F (cost $O(N \log N)$). Note that checking whether a tile is a cut tile can be done in constant time, because it suffices to look into the local neighborhood. While F is not empty, we remove a tile from F, from the polyomino, and from its two search trees in time $O(\log N)$. Next, we check the up to 12 tiles that are blocked first from the removed tile for all four orientations, see Fig. 7. Only these tiles can become unblocked or a convex tile. Those that are convex tiles, not blocked and no cut tile are added to F. All tiles behind those cannot become unblocked as the first tiles would still be blocking them. The cost for this is again in $O(\log N)$. This is continued until F is empty, which takes at most $O(N)$ loops each of cost $O(\log N)$. If the polyomino has been decomposed, the polyomino is decomposable/constructible by the corresponding tile sequence. Otherwise, there cannot exist such a sequence. By prohibiting to remove a specific tile, one can force a specific start tile.

3.3 Pipelined Assembly

Given that a construction is always possible based on adding convex corners to a partial construction, we can argue that the idea of Manzoor et al. [15] for pipelined assembly can be realized for every constructible polyomino: We can transform the construction sequence into a spiral-shaped maze environment, as illustrated in Fig. 8. This allows it to produce D copies of P in $N + D$ cycles, implying that we only need $2N$ cycles for N copies. It suffices to use a clockwise order of four unit steps (west, north, east, south) in each cycle.

The main idea is to create a spiral in which the assemblies move from the inside to the outside. The first tile is provided by an initial south movement. After each cycle, ending with a south movement, the next seed tile of the next copy of P is added. For every direction corresponding to the direction of the next tile added by the sequence, we place a tile depot on the outside of the spiral, with a straight-line path to the location of the corresponding attachment.

Theorem 6. Given a construction sequence $\sigma := ((d_1, l_1), \ldots, (d_{N-1}, l_{N-1}))$ that constructs a polyomino P, we can construct a maze environment for pipelined tilt assembly, such that constructing D copies of P needs $O(N + D)$ unit steps. In particular, constructing one copy of P can be done in amortized time $O(1)$.

Proof. Consider the construction sequence σ, the movement sequence ζ consisting of N repetitions of the cycle (w, n, e, s), and an injective function $m : \sigma \rightarrow \zeta$, with $m((w, \cdot)) = e$, $m((n, \cdot)) = s$, $m(e, \cdot)) = w$ and $m((s, \cdot)) = n$. We also require that $m((d_i, l_i)) = \zeta_j$ if for all $i' < i$ there is a $j' < j$ with $m((d_{i'}, l_{i'})) = \zeta_{j'}$ and j is smallest possible. This implies that in each cycle there is at least one tile in σ mapped to one direction in this cycle.
Labyrinth construction: The main part of the labyrinth is a spiral as can be seen in Fig. 8. Consider a spiral that is making $|\zeta|$ many turns, and the innermost point q of this spiral. From q upwards, we make a lane through the spiral until we are outside the spiral. At this point we add a depot of tiles, such that after each south movement a new tile comes out of the depot (this can easily be done with bottleneck constructions as seen in Fig. 8 or in [15]). Then, we proceed for each turn in the spiral as follows: For the j-th turn, if $m^{-1}(\zeta_j)$ is empty we do nothing. Else if $m^{-1}(\zeta_j)$ is not empty we want to add the next tile. Let t_i be this particular tile. Then, we construct a lane in direction $-\zeta_j$, i.e., the direction from where the tile will come from, until we are outside the spiral. By shifting this line in an orthogonal direction we can enforce the tile to fly in at the correct position relating to l_i. There, we add a depot with tiles, such that the first tile comes out after $j-1$ steps and with each further cycle a new tile comes out (this can be done by using loops in the depot, see Fig. 8 or [15]). Depots, which lie on the same side of the spiral, can be shifted arbitrarily, so they do not collide. These depots can be made arbitrarily big, and thus, we can make as many copies of P as we wish. Note that we can make the paths in the spiral big enough, such that after every turn the bounding box of the current polyomino fits through the spiral.

Correctness: We will now show that we will obtain copies of P. Consider any j-th turn in the spiral, where the i-th tile t_i is going to be added to the current polyomino. With the next step, t_i and the polyomino move in direction ζ_j. While the polyomino does not touch the next wall in the spiral, the distance between t_i and the polyomino will not decrease. However when the polyomino hits the wall the polyomino stops moving and t_i continues moving towards the polyomino. Wall-hitting is the same situation as in our non-parallel model: To a fixed polyomino we can add tiles from n, e, s or w. Therefore, the tile connects to the correct place. Since this is true for any tile and any copy, we conclude that every polyomino we build is indeed a copy of P.

Time: Since the spiral has at most $4N$ unit steps (or N cycles), the first polyomino will be constructed after $4N$ unit steps. By construction, we began the second copy one cycle after beginning the first copy, the third copy one cycle after the second, and so on. This means, after each cycle, when the first
polyomino is constructed, we obtain another copy of P. Therefore, for D copies we need $N + D$ cycles (or $O(N + D)$ unit steps). For $D \in \Omega(N)$ this results in an amortized constant time construction for P.

Note that this proof only considers construction sequences in the following form: If a tile t_i increases the side length of the bounding box of the current polyomino, then the tile is added from a direction with a longitude/latitude, such that the longitude/latitude intersects the bounding box (see Fig. 9). In the case there is a tile, such that the longitude/latitude does not intersect the bounding box, then we can rotate the direction by $\frac{\pi}{2}$ towards the polyomino and we will have a desired construction sequence.

\]

\]

Figure 9: Two different sequences. The red tile represents the bounding box of the current polyomino. (Left) A desired sequence. The latitude intersects the bounding box. (Right) A sequence where the latitude does not intersect the bounding box.

4 Optimization Variants in 2D

For polyominoes that cannot be assembled, it is natural to look for a maximum-size subpolyomino that is constructible. This optimization variant is polyAPX-hard, i.e., we cannot hope for an approximation algorithm with an approximation factor within $\Omega(N^{2+})$, unless $P = NP$.

Definition 7 (Maximum Tilt Assembly Problem). Given a polyomino P, the Maximum Tilt Assembly Problem (MaxTAP) asks for a sequence of tiles building a cardinality-maximal connected subpolyomino $P' \subseteq P$.

Theorem 8. MaxTAP is polyAPX-hard, even for tree-shaped polyominoes.

Proof. We reduce Maximum Independent Set (MIS) to MaxTAP; see Fig. 10 for an illustration. Consider an instance $G = (V, E)$ of MIS, which we transform into a polyomino P_G. We construct P_G as follows. Firstly, construct a horizontal line from which we go down to select which vertex in G will be chosen. The line must have length $10n - 9$, where $n = |V|$. Every 10th tile will represent a vertex, starting with the first tile on the line. Let t_i be such a tile representing vertex v_i. For every v_i we add a selector gadget below t_i and for every $\{v_i, v_j\} \in \delta(v_i)$ we add a reflected selector gadget below t_j, as shown in Fig. 10 each consisting of 19 tiles. Note that all gadgets for selecting vertex v_i are above the gadgets of v_j if $i < j$ and that there are at most n^2 such gadgets. After all gadgets have been constructed, we have already placed at most $19n^2 + 10n - 9 \leq 29n^2$ tiles. We continue with a vertical line with a length of $30n^2$ tiles.

Now let α^* be an optimal solution to MIS. Then MaxTAP has a maximum polyomino of size at least $30n^2\alpha^*$ and at most $30n^2\alpha^* + 29n^2$: We take the complete vertical part of t_i for every v_i in the optimal solution of MIS. Choosing other lines block the assembly of further lines and thus, yields a smaller solution.

Now suppose we had an $N^{1-\varepsilon}$-approximation for MaxTAP. Then we would have a solution of at least $\frac{1}{\varepsilon} T^*$, where T^* is the optimal solution. We know that an optimal solution has $T^* \geq 30n^2\alpha^*$ tiles and the polyomino has at most $N \leq 30n^3 + 29n^2 \leq 59n^3$ tiles. Therefore, we have at least $\frac{30n^2\alpha^*}{59n^3}$ tiles and thus at least $\frac{1}{59n^3 \cdot 30n^2} \alpha^*$ strips, because each strip is $30n^2$ tiles long. Consider some $\varepsilon \geq \frac{\alpha^*}{2} + \eta$ for any $\eta > 0$, then the number of strips is $\frac{1}{59n^3 \cdot 30n^2} \alpha^*$ which results in an $n^{1-\varepsilon}$-approximation for MIS, contradicting the inapproximability of MIS (unless $P=NP$) shown by Berman and Schnitger [7].

As a consequence of the construction, we get Corollary 9.
Corollary 9. Unless $P = NP$, MAXTAP cannot be approximated within a factor of $\Omega(N^{\frac{1}{3}})$.

On the positive side, we can give an $O(\sqrt{N})$-approximation algorithm.

Theorem 10. The longest constructible path in a tree-shaped polyomino P is a \sqrt{N}-approximation for MAXTAP, and we can find such a path in polynomial time.

Proof. Consider an optimal solution P^* and a smallest enclosing box B containing P^*. Then there must be two opposite sides of B having at least one tile of P^*. Consider the path S between both tiles. Because the area A_B of B is at least the number of tiles in P^*, $|S| \geq \sqrt{A_B}$ and a longest, constructible path in P has length at least $|S|$, we conclude that the longest constructible path is a \sqrt{N}-approximation.

To find such a path, we can search for every path between two tiles, check whether we can build this path, and take the longest, constructible path.

Checking constructibility for $O(N^2)$ possible paths is rather expensive. However, we can efficiently approximate the longest constructible path in a tree-shaped polyomino with the help of sequentially constructible paths, i.e., the initial tile is a leaf in the final path.

Theorem 11. We can find a constructible path in a tree-shaped polyomino in $O(N^2 \log N)$ time that has a length of at least half the length of the longest constructible path.

Proof. We only search for paths that can be built sequentially. Clearly, the longest such path is at least half as long as the longest path that can have its initial tile anywhere. We use the same search tree technique as before to look for blocking tiles. Select a tile of the polyomino as the initial tile. Do a depth-first search and for every tile in this search, check if it can be added to the path. If it cannot be added, skip all deeper tiles, as they also cannot be added. During every step in the depth-first search, we only need to change a single tile in the search trees, doing $O(1)$ updates with $O(\log N)$ cost. As we only consider $O(N)$ vertices in the depth-first search, this results in a cost of $O(N \log N)$ for a fixed start tile. It is trivial to keep track of the longest such constructible path. Repeating this for every tile results in a running time of $O(N^2 \log N)$.

In tree-shaped polyominoes, finding a constructible path is easy. For simple polyominoes, additional arguments and data structures lead to a similar result.

Theorem 12. In simple polyominoes, finding the longest of all shortest paths that are sequentially constructible takes $O(N^2 \log N)$ time.
Before we start with the proof of Theorem 12, we show in the next two lemmas that it is sufficient to consider shortest paths only, and that we can restrict ourselves to one specific shortest path between two tiles. Hence, we just need to test a maximum of $O(n^2)$ different paths.

Lemma 13. In a sequentially constructible path, if there is a direct straight connection for a subpath, the subpath can be replaced by the straight connection.

![Figure 11: A subpath W' and its shortcut L in green. To block L, A and B must exist. But then, either p_0 or p_1 (red tiles) will also be blocked. Therefore, also W' cannot be built.](image)

Proof. Consider a sequentially constructible path W and a subpath $W' \subset W$ that has a straight line L connecting the startpoint and the endpoint of W'. W.l.o.g., L is a vertical line and we build from bottom to top. Assume that $(W \setminus W') \cup L$ is not constructible. Then at least two structures (which can be single tiles) A and B must exist, preventing us from building L. Furthermore, these structures have to be connected via a path (AB or BA, see Fig. 11). We observe that none of these connections can exist or otherwise, we cannot build W (if AB exist, we cannot build the last tile p_0 of L; if BA exist, we cannot build the first tile p_1 of W'). Therefore, we can replace W' with L.

By repeating the construction of Lemma 13, we get a shortest path from tile t_1 to t_2 in the following form: Let P_1, \ldots, P_k be reflex tiles on the path from t_1 to t_2. Furthermore, for every $1 \leq i \leq k - 1$, the path from P_i to P_{i+1} is monotone. This property holds for every shortest path, or else we can use shortcuts as in Lemma 13.

Lemma 14. If a shortest path between two tiles is sequentially constructible, then every shortest path between these two tiles is sequentially constructible.

Proof. Consider a constructible shortest path W, a maximal subpath W' that is x-y-monotone, and a bounding box B around W'. Due to L_1-metric, any x-y-monotone path within B is as long as W'. Suppose some path within B is not constructible. Then we can use the same blocking argument as in Lemma 13 to prove that W' cannot be constructible as well, contradicting that W is constructible.

Using Lemma 13 and Lemma 14, we are ready to prove Theorem 12.

Proof of Theorem 12. Because it suffices to check one shortest path between two tiles, we can look at the BFS tree from each tile and then proceed like we did in Theorem 11. Thus, for each tile we perform a BFS in time $O(N)$ and a DFS with blocking look-ups in time $O(N \log N)$, which results in a total time of $O(N^2 \log N)$.

12
5 Three-Dimensional Shapes

An interesting and natural generalization of TAP is to consider three-dimensional shapes, i.e., polycubes. The local considerations for simply connected two-dimensional shapes are no longer sufficient. In the following we show that deciding whether a polycube is constructible is \(NP \)-hard. Moreover, it is \(NP \)-hard to check whether there is a constructible path from a start cube \(s \) to an end cube \(t \) in a partial shape.

As a stepping stone, we start with a restricted version of the three-dimensional problem.

Theorem 15. It is \(NP \)-hard to decide if a polycube can be built by inserting tiles only from above, north, east, south, and west.

![Figure 12: Top-view on the polycube. There is a vertical part going south for the true and false assignment of each variable. We start building at the top layer (blue) and have to block either the true or the false part of each variable from above. The blocked parts have to be built with only inserting from east, west, and south. For each clause, the parts of the inverted literals are modified to allow at most two of them being built in this way. All other parts can simply be inserted from above in the end.](image)

Proof. We prove hardness by a reduction from 3SAT. A visualization for the formula \((x_1 \lor x_2 \lor \overline{x_3}) \land (\overline{x_2} \lor x_3 \lor x_4) \land (\overline{x_1} \lor x_3 \lor x_4)\) can be seen in Fig. 12. It consists of two layers of interest (and some further auxiliary ones for space and forcing the seed tile by using the one-way gadget shown in Fig. 14). In the beginning, one has to build a part of the top layer (highlighted in blue in the example, details in Fig. 13 (Right)). Forcing a specific start tile can be done by a simple construction. For each variable we have to choose to block the left (for assigning \(true\)) or the right (for assigning \(false\)) part of the lower layer. In the end, the remaining parts of the upper layer can trivially be filled from above. The blocked parts of the lower layer then have to be built with only inserting tiles from east, south, and west. In the end, the non-blocked parts can be filled in from above. For each clause we use a part (as shown in Fig. 13 (Left)) that allows only at most two of its three subparts to be built from the limited insertion directions. We attach these subparts to the three variable values not satisfying the clause, i.e., the negated literals. This forces us to leave at least one negated
true or false part of the variable. The variable is assigned the blocked value. (Right) Three gadgets for a clause. Only two of them can be built if the tiles are only able to come from the east, south, and west. Overall, this allows us to build the blocked parts of the lower layers only if the blocking of the upper level corresponds to a satisfying assignment. If we can build the true and the false parts of a variable in the beginning, any truth assignment for the variable is possible.

Figure 14: (Left) This polyomino can only be constructed by starting at “in” and ending at “out”. (Right) By adding layers above (white) and below (black) this polyomino starting at the “out”-tile, we obtain a polycube that is only constructible by starting at “in” (from the other direction we must build the black and white layer first and must then build the grey layer with 2D directions). Triangles denote where we can switch to another layer. With this gadget we can enforce a seed tile.

The construction can be extended to assemblies with arbitrary direction.

Theorem 16. It is NP-hard to decide if a polycube can be built by inserting tiles from any direction.
Proof. We add an additional layer below the construction in Theorem 15 that has to be built first and blocks access from below. Forcing the bottom layer to be built first can again be done with the one-way gadget shown in Fig. 14.

The difficulties of construction in 3D are highlighted by the fact that even identifying constructible connections between specific positions is NP-hard.

Theorem 17. It is NP-hard to decide whether a path from one tile to another can be built in a general polycube.

![Figure 15: (Left) Circuit representation for the SAT formula \((x_1 \lor \overline{x}_2 \lor \overline{x}_3) \land (\overline{x}_1 \lor x_2 \lor x_4) \land (x_2 \lor x_3 \lor x_4) \land (x_1 \lor x_2 \lor x_4)\). (Right) Reduction from SAT formula. Boxes represent variable boxes.](image)

Proof. We prove NP-hardness by a reduction from SAT. For each variable we have two vertical lines, one for the true setting, one for the false setting. Each clause gets a horizontal line and is connected with a variable if it appears as literal in the clause, see Fig 15 (Left). We transform this representation into a tour problem where, starting at a point \(s\), one first has to go through either the true or false line of each variable and then through all clause lines, see Fig. 15 (Right). The clause part is only passable if the path in at least one crossing part (squares) does not cross, forcing us to satisfy at least one literal of a clause. As one has to go through all clauses, \(t\) is only reachable if the selected branches for the variables equal a satisfying variable assignment for the formula.

We now consider how to implement this as a polycube. The only difficult part is to allow a constructible clause path if there is a free crossing. In Fig. 15 (Left), we see a variable box that corresponds to the crossing of the variable path at the squares in Fig. 15 (Right). It blocks the core from further insertions. The clause path has to pass at least one of these variable boxes in order to reach the other side. See Fig. 15 (Right) for an example. Note that the corresponding clause parts can be built by inserting only from above and below, so there are no interferences.

6 Conclusion/Future Work

We have provided a number of algorithmic results for Tilt Assembly. Various unsolved challenges remain. What is the complexity of deciding TAP for non-simple polyominoes? While Lemma 4 can be applied to all polyominoes, we cannot simply remove any convex tile. Can we find a constructible path in a polyomino from a given start and endpoint? This would help in finding a \(\sqrt{N}\)-approximation for non-simple polyominoes. How can we optimize the total makespan for constructing a shape? And what options exist for non-constructible shapes?
An interesting approach may be to consider \textit{staged} assembly, as shown in Fig. 17, where a shape gets constructed by putting together subpolyominoes, instead of adding one tile at a time. This is similar to staged tile self-assembly \cite{10,11}. This may also provide a path to sublinear assembly times, as a hierarchical assembly allows massive parallelization. We conjecture that a makespan of $O(\sqrt{N})$ for a polyomino with N tiles can be achieved.

All this is left to future work.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure16.png}
\caption{(Left) Empty variable box. (Right) A clause line (blue) dips into a variable box. If the variable box is built, then we cannot build the dip of the clause line.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure17.png}
\caption{(Left) A polyomino that cannot be constructed in the basic TAP model. (Right) Construction in a staged assembly model by putting together subpolyominoes.}
\end{figure}

\section*{References}

\begin{thebibliography}{9}
\bibitem{1} A. T. Becker, E. D. Demaine, S. P. Fekete, G. Habibi, and J. McLurkin. Reconfiguring massive particle swarms with limited, global control. In \textit{Proceedings of the International Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and Distributed Robotics (ALGOSENSORS)}, pages 51–66, 2013.
\bibitem{2} A. T. Becker, E. D. Demaine, S. P. Fekete, and J. McLurkin. Particle computation: Designing worlds to control robot swarms with only global signals. In \textit{Proceedings IEEE International Conference on Robotics and Automation (ICRA)}, pages 6751–6756, 2014.
\bibitem{3} A. T. Becker, C. Ertel, and J. McLurkin. Crowdsourcing swarm manipulation experiments: A massive online user study with large swarms of simple robots. In \textit{Proceedings IEEE International Conference on Robotics and Automation (ICRA)}, pages 2825–2830, 2014.
\bibitem{4} A. T. Becker, O. Felfoul, and P. E. Dupont. Simultaneously powering and controlling many actuators with a clinical MRI scanner. In \textit{Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)}, pages 2017–2023, 2014.
\bibitem{5} A. T. Becker, O. Felfoul, and P. E. Dupont. Toward tissue penetration by MRI-powered millirobots using a self-assembled Gauss gun. In \textit{Proceedings IEEE International Conference on Robotics and Automation (ICRA)}, pages 1184–1189, 2015.
\end{thebibliography}
[6] A. T. Becker, G. Habibi, J. Werfel, M. Rubenstein, and J. McLurkin. Massive uniform manipulation: Controlling large populations of simple robots with a common input signal. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 520–527, 2013.

[7] P. Berman and G. Schnitger. On the complexity of approximating the independent set problem. Information and Computation, 96(1):77–94, 1992.

[8] S. Cannon, E. D. Demaine, M. L. Demaine, S. Eisenstat, M. J. Patitz, R. Schweller, S. M. Summers, and A. Winslow. Two hands are better than one (up to constant factors). In Proc. Int. Symp. on Theoretical Aspects of Computer Science (STACS), pages 172–184, 2013.

[9] H.-L. Chen and D. Doty. Parallelism and time in hierarchical self-assembly. SIAM Journal on Computing, 46(2):661–709, 2017.

[10] E. D. Demaine, M. L. Demaine, S. P. Fekete, M. Ishaque, E. Rafalin, R. T. Schweller, and D. L. Souvaine. Staged self-assembly: nanomanufacture of arbitrary shapes with O(1) glues. Natural Computing, 7(3):347–370, 2008.

[11] E. D. Demaine, S. P. Fekete, C. Scheffer, and A. Schmidt. New geometric algorithms for fully connected staged self-assembly. Theoretical Computer Science, 671:4–18, 2017.

[12] P. S. S. Kim, A. T. Becker, Y. Ou, A. A. Julius, and M. J. Kim. Imparting magnetic dipole heterogeneity to internalized iron oxide nanoparticles for microorganism swarm control. Journal of Nanoparticle Research, 17(3):1–15, 2015.

[13] P. S. S. Kim, A. T. Becker, Y. Ou, M. J. Kim, et al. Swarm control of cell-based microrobots using a single global magnetic field. In Proceedings of the International Conference on Ubiquitous Robotics and Ambient Intelligence (URAI), pages 21–26, 2013.

[14] A. V. Mahadev, D. Krupke, J.-M. Reinhardt, S. P. Fekete, and A. T. Becker. Collecting a swarm in a grid environment using shared, global inputs. In Proc. IEEE Int. Conf. Autom. Sci. and Eng. (CASE), pages 1231–1236, 2016.

[15] S. Manzoor, S. Sheckman, J. Lonsford, H. Kim, M. J. Kim, and A. T. Becker. Parallel self-assembly of polyominoes under uniform control inputs. IEEE Robotics and Automation Letters, 2(4):2040–2047, 2017.

[16] H. M. Shad, R. Morris-Wright, E. D. Demaine, S. P. Fekete, and A. T. Becker. Particle computation: Device fan-out and binary memory. In Proceedings IEEE International Conference on Robotics and Automation (ICRA), pages 5384–5389, 2015.

[17] S. Shahrokhi and A. T. Becker. Stochastic swarm control with global inputs. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 421–427, 2015.

[18] E. Winfree. Algorithmic self-assembly of DNA. PhD thesis, California Institute of Technology, 1998.