Rapid Quantitative Method for *Salmonella* Detection in Polluted Waters

CHU MING CHENG, WILLIAM C. BOYLE, AND J. M. GOEFFERT

Department of Civil Engineering and Food Research Institute, Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706

Received for publication 29 December 1970

A procedure has been developed for the enumeration of salmonellae in polluted waters using several modifications of existing techniques. Confirmation of salmonellae is achieved within 48 hr. This procedure includes selective enrichment in m-Tetra-thionate Broth (22 ± 1 hr), plating on Brilliant Green Sulfa Agar (20 ± 1 hr), and confirmation by flagellar (H) agglutination of the growth in a mannose-containing medium (6 ± 1 hr). An incubation temperature of 41.5°C was used throughout this procedure. Dilution to extinction techniques (most probable number) were employed to enumerate salmonellae. Large sample volumes were concentrated through the use of membrane filters. This technique proved to be rapid and reliable for the enumeration of salmonellae in water, waste water, and wastewater sludges.

In the past many different techniques and selective media have been developed to recover salmonellae from foods, animal feeds, fecal specimens, and natural waters. However, complete identification of salmonellae is often a time-consuming procedure in the diagnostic laboratory. Since most salmonellae are motile, Hajna and Damon (6) suggested that polyvalent *Salmonella* flagellar agglutination could be used as a rapid screening test for the presence of *Salmonella*. Spicer (12) developed a simplified method for identifying the flagellar antigens of the most commonly encountered salmonellae. He used four main polyvalent *Salmonella* flagellar antisera and two adjutice antisera for identifying more than 17 *Salmonella* flagellar antigens. Edwards and Ewing (2) modified the Spicer antisera to achieve greater specificity and to minimize the incidence of cross-reactions. Silliker et al. (10) used Spicer-Edwards H antisera as a primary screening procedure for detecting salmonellae in food products. These investigators showed that organisms agglutinating in polyvalent *Salmonella* flagellar antisera could be tentatively classified as salmonellae with a good degree of certainty and that further biochemical tests would confirm the preliminary results. Sperber and Deibel (11) employed Spicer-Edwards antisera (with some modifications) to detect salmonellae in foods and animal feeds within 50 hr of initiating the analysis. They reported their procedure to be as sensitive as the more time-consuming, conventional method which required at least 4 to 5 days. These authors also developed a mannose-containing medium (M-broth) to minimize the incidence of nonspecific agglutination.

The purpose of this study was to develop a rapid and relatively simple technique to enumerate salmonellae in waste water, polluted water, and waste-water sludges. The procedures employed flagellar agglutination as a rapid screening test to detect salmonellae in the unique environment of polluted water.

MATERIALS AND METHODS

Samples. Samples of polluted water, waste-waters, and sludges were collected at selected points in the Madison, Wis., area. Sterile, 1-liter polyethylene bottles were used to collect the samples, and analyses were performed immediately upon return of the samples to the laboratory. The sludge samples were diluted and homogenized for 1 min in a Waring Blender before seeding into enrichment broth.

Sample concentration. Multiple tube, serial dilution techniques were employed to quantitate salmonellae in the samples. Large volumes of water were more conveniently tested by concentrating the sample prior to enrichment. This was accomplished for the 100-ml samples by filtering them through a membrane filter (HA 0.45-μm pore size; Millipore Corp., Bedford, Mass.). The filter was then placed into 100 ml of single-strength enrichment medium. For waters high in suspended matter, a microfiber prefilter (type AP 25; Millipore Corp.) was placed over the membrane filter, and approximately 2 to 3 g of sterilized diatomaceous earth (Celite no. 503) was added asep-
tically to the sample prior to filtration. After filtration, the membrane filter, prefilter, and diatomaceous earth mat were placed into a culture flask containing 100 ml of single-strength enrichment medium. The flasks were gently shaken and then incubated at 41.5 ± 0.5 °C for 22 ± 1 hr.

Selective enrichment procedures. Serial dilutions of water samples were inoculated into tubes containing m-Tetrathionate Broth (Difco). One-milliliter samples and subsequent lower decimal dilutions were inoculated into 10 ml of single-strength broth, and 10-ml samples were inoculated into 10 ml of double-strength broth. One hundred-milliliter samples were handled as described above. All samples were incubated at 41.5 ± 0.5 °C for 22 ± 1 hr.

Plating procedures. After selective enrichment, one loopful of enrichment broth was streaked onto Brilliant Green Sulfa (BG Sulfa) Agar (Difco) and incubated at 41.5 ± 0.5 °C for an additional 20 ± 1 hr.

M-broth enrichment. Two or more suspected *Salmonella* colonies were picked from the BG Sulfa Agar plates and each was placed into individual 1-ml samples of M-broth (11). The M-broth tubes were incubated at 41.5 ± 0.5 °C for 6 ± 1 hr.

All media were prewarmed to 41.5 °C before inoculation. This was particularly essential to the M-broth enrichment step which was usually incubated for only 6 hr.

Confirmation by modified H agglutination test. One drop of Formalin-salt solution (3.3 ml of Formalin and 4.62 g of NaCl to 100 ml of distilled water) was added to each M-broth culture, and 0.1 ml of pooled H antisera (11) was subsequently added. The tubes were gently shaken and then incubated for up to 60 min in a water bath at 50 °C. Any visible amount of flocculent precipitate (H agglutination) detected in the tube was regarded as a positive test for salmonellae. If pure isolate was required for further biochemical confirmation or complete serotyping, one loop of M-broth culture was streaked onto appropriate selective agar prior to the addition of Formalin-salt solution.

Further confirmation of positive H-agglutinated cultures was determined by biochemical tests on Triple Sugar Iron Agar (Difco), Lysine Iron Agar

TABLE 1. Sensitivity study of the quantitative procedure
Species tested
Salmonella typhimurium
S. typhimurium
S. heidelberg
S. heidelberg
S. Newport
S. Newport
S. Enteritidis

a Mean of ten spread plates on Brilliant Green Sulfa Agar.

b Most probable number. Four dilutions in triplicate in m-Tetrathionate Broth.

TABLE 2. Salmonella recovery in waste water from selected processes at Madison Metropolitan Sewage Treatment Plant
Date

11-8-69
3-24-70
4-15-70
4-30-70
6-4-70
7-9-70
8-18-70
9-16-70

a Most probable number; four dilutions in triplicate.

(Difco), and Urea Agar (Difco). Additional biochemical testing and complete serotyping of isolates were performed, as required, by courtesy of the Wisconsin State Laboratory of Hygiene.

Quantitation of salmonellae. Densities of salmonellae in samples were obtained by the use of multiple tube serial dilution techniques using most probable number (MPN) tables (1). Decimal dilutions of samples in triplicate were normally used throughout these studies.

Sensitivity test of the quantitative procedure. Four frequently encountered species of salmonellae found in surface waters, *Salmonella typhimurium*, *S. heidelberg*, *S. Newport*, and *S. Enteritidis*, were employed in the evaluation of the sensitivity of the quantitative procedure outlined above. Stock cultures of these four species were obtained from the Wisconsin State Laboratory of Hygiene. The cultures were inoculated into nutrient broth for 18 hr at 37 °C and then diluted with phosphate buffer (42 mg of KH₂PO₄ to 1 liter, adjusted to pH 7.2 with NaOH) to produce suspen-
TABLE 3. Salmonellae recovery in anaerobically digested sludge at Madison Metropolitan Sewage Treatment Plant

Date	Raw sludge	Digested sludge				
	Total solids (g/liter)	Volatile solids (%)	Salmonellae^a per gram of total solids	Total solids (g/liter)	Volatile solids (%)	Salmonellae^a per gram of total solids
6-3-70	41.05	76	22,400	22.04	67	680
7-30-70	34.87	76	5,340	20.68	66	220
9-1-70	32.17	74	2,780	16.08	68	90
9-16-70	25.61	75	3,350	16.68	67	960

^a Most probable number; four dilutions in triplicate.

TABLE 4. Salmonella serotypes isolated from wastewater at Madison Metropolitan Sewage Treatment Plant

Classification	No. of samples^a
Salmonella typhimurium	6
S. derby	5
S. infantis	4
S. enteritidis	3
S. senftenberg	2
S. anatum	1
S. thompson	1
S. newport	1
S. heidelberg	1

^a Samples were collected from August 29, 1969, to June 8, 1970.

RESULTS

Sensitivity of quantitative procedure. The results of the spread plate and MPN procedure for the four stock cultures of salmonellae are presented in Table 1. Statistical analysis by use of the t test (3) was made to evaluate the 95% confidence intervals for each set of spread plate counts. The 95% confidence intervals for MPN estimates were provided in MPN tables (1). Examination of Table 1 suggests that the proposed quantitative procedure provides estimates of salmonellae within acceptable limits based on spread plate counts, at least for the four serotypes of salmonellae tested herein. That the MPN confidence limits were wide is the inherent characteristic of the three-tube-test. Narrower limits could be achieved through more tube plantings, but the benefits for greater accuracy in results would have to be weighed against the costs for obtaining them.

Recovery of salmonellae in municipal wastewater. The quantitative method outlined above is being used in extensive studies to determine the sources and occurrence of salmonellae in polluted waters. A brief resume of some of the findings to date is presented herein to demonstrate the usefulness of the procedure. A more complete analysis of these findings will be presented in detail at a later date.

Municipal wastewater and sludges. Samples of raw and treated wastewater and digested and raw waste sludge have been collected routinely at the Metropolitan Sewerage Commission Wastewater Treatment Plant, Madison, Wis. The plant which treats approximately 40 million gal of domestic and industrial waste water per day employs both activated sludge and trickling filtration treatment processes in parallel after primary sedimentation. Results from 24-hr composite samples are presented in Table 2. Grab samples of raw and digested sludge were also examined at this plant, and the results of four analyses appear in Table 3. In each survey...
only a few positive samples were subjected to complete serotyping. Results of the serotyping are given in Table 4.

Polluted stream waters. Salmonellae have been frequently isolated in polluted streams and tidal waters. This quantitative technique is presently being used to study salmonellae dieoff in streams receiving unchlorinated waste-water effluents. Examples of two surveys are presented in Table 5 and 6. For these two streams, there was not significant tributary flow into the streams below the treatment plant outfalls, thus dilution was not a major contributor to apparent dieoff. Studies on other streams carrying chlorinated effluents invariably resulted in quantitative results below the sensitivity of this procedure (0.3 salmonellae per 100 ml).

DISCUSSION

A method has been sought to give a rapid, low-cost estimate of salmonellae densities in polluted waters. Traditional methods and modifications of these methods recently reported in the literature have been examined to establish a reliable method to meet these needs. In general, a modification of the accelerated procedure using broth cultures and serological reactions developed by Sperber and Deibel (11) was adopted.

Pre-enrichment procedures were not employed in the modified technique for several reasons. Use of nonspecific broths such as lactose resulted in excessive overgrowths of coliforms and other microorganisms associated with polluted

TABLE 6. Occurrence of salmonellae and fecal coliforms in Yahara River, Wisconsin

Distance from STP outfall (ft)	Salmonellae* per 100 ml	Fecal coliforms* per 100 ml
0	240	540,000
100	3.9	6,300
500	7.5	1,550
1,000	2.3	1,050
2,800	<0.4	1,550
3,000*	1.5	14,500
4,600	<0.4	643

- Date: May 26, 1970.
- Deforest Sewage Treatment Plant outfall.
- Most probable number; four dilutions in triplicate.
- Fecal coliforms (44.5 C), Geldreich et al. (5).
- Windsor Sewage Treatment Plant outfall.

TABLE 7. Effect of selective enrichment media on recovery of salmonellae per 100 ml

Sample	SBG Sulfadiazine (Difco)	Tetra-thionate (Difco)	m-Tetra-thionate (Difco)
Raw sewage	150	93	460
Activated sludge effluent	2.1	43	240
Trickling filter effluent	0.9	150	2,400

- Using procedures outlined in Materials and Methods section.
- Selenite Brilliant Green Sulfa.

TABLE 8. Recovery of salmonellae in waste waters by enrichment-serology (ES) procedure and proposed procedure

Sample	Method A*	Method B*						
	No. of tubes giving positive reaction out of	MPN° index per 100 ml	No. of tubes giving positive reaction out of	MPN° index per 100 ml				
	3 of 10 ml each	3 of 1 ml each	3 of 0.1 ml each	3 of 10 ml each	3 of 1 ml each	3 of 0.1 ml each		
Raw sewage	0	0	2	6	2	1	0	15
Activated sludge effluent	1	1	0	7	2	1	0	15
Trickling filter effluent	2	2	0	21	3	2	0	93
Raw sewage	0	3	1	13	3	3	2	1100
Activated sludge effluent	2	2	0	21	2	0	0	9

- ES procedure described by Sperber and Deibel (11): selective enrichment, M-broth enrichment, and H agglutination test.
- Proposed procedure: selective enrichment, plating, M-broth enrichment, and H agglutination test.
- Most probable number.
- Date: March 17, 1970.
- Date: March 24, 1970.
waters. The pre-enrichment step requires an additional 24-hr incubation thereby lengthening the time required to complete an analysis. Finally, pre-enrichment is normally recommended as a means of recovering damaged cells from materials that have been treated to destroy pathogens. It is generally believed that salmonellae in polluted waters would not be weakened to the point where a pre-enrichment step would be necessary.

An ideal selective medium would permit the growth of all salmonellae while suppressing the proliferation of other closely related microorganisms. Unfortunately, there is no single medium which can entirely achieve this goal. Two of the media most commonly employed for selective enrichment of salmonellae are Selenite Cystine broth and Tetrathionate broth. McCoy (8) used both Tetrathionate and Selenite F broth in his study of salmonellae in raw sewage, sewage effluent, and sewage-polluted natural waters. Spino (13) used Tetrathionate broth as well as a Selenite Brilliant Green Sulfa enrichment medium to successfully isolate salmonellae from surface waters. He reported that incubation of both enrichment broths at 41.5°C often resulted in obtaining almost pure cultures of salmonellae. Kabler et al. (7) suggested the use of Tetrathionate broth without calcium carbonate for enrichment of salmonellae other than S. typhosa. They reported about 80% recovery of salmonellae from mixed cultures containing coliforms. In the present study, it was confirmed that m-Tetrathionate Broth developed by Kabler and Clark (7) was superior to both Tetrathionate Broth (Difco) and SBG Sulfa Broth (Difco) for recovery of salmonellae in polluted waters (Table 7). In addition, incubation temperatures of 41.5°C as recommended by Spino (13) resulted in the highest densities of salmonellae.

In the modified method presented herein, plating of cultures directly from the selective enrichment step minimized undesirable overgrowth that normally occurred in enrichment-serology procedure developed by Sperber and Deibel (reference 11, Table 8). Numerous plating media have been developed for the isolation of salmonellae. Galton (4) reported that Brilliant Green agar, when properly prepared, was more inhibitory to other enteric organisms than other selective media and yet provided relatively easy detection of suspected salmonellae. Osborne and Stokes (9) showed that the addition of 0.1% sulfapyridine to Brilliant Green agar further enhanced its selectivity for salmonellae.

The M-broth enrichment step followed the plating procedures and was provided to stimulate the growth of flagella and to minimize the incidence of nonspecific agglutination. The use of polyclonal H antisera as a screening procedure has proven to be far more specific than biochemical tests. Experience with this method has indicated that preliminary classification of an organism as Salmonella on the basis of agglutination in pooled Salmonella H antisera is almost always confirmed by further biochemical tests and complete serotyping.

The technique proposed herein has proven to be highly sensitive to the recovery of salmonellae in polluted waters. As recognized by Sperber and Deibel (11) this technique will not detect all Salmonella species. The use of Selenite Cystine broth or other selective media in parallel with m-Tetrathionate Broth in enrichment procedures would improve recovery. In addition the three species S. agona (group B), S. quinhon (group X), and S. pullorum-gallinarum (group D) would not be detected by the pooled Salmonella H antisera (11). The two chief advantages of this procedure are the speed at which an analysis may be completed and the large volume of water sample that can be analyzed. This procedure also offers an economical advantage over other proposed methods of enumeration, costing approximately $1.20 per water sample (four dilutions in triplicate). Although the enumeration of salmonellae by MPN techniques is not accurate enough for laboratory research, it has proven to be adequate for field analysis. In concert with determination of fecal coliforms, it is anticipated that this method will prove useful in evaluating and monitoring polluted water sources.

ACKNOWLEDGMENTS

We express gratitude to Elizabeth McCoy and Robert Deibel for their counsel and encouragement. We thank Eleanor Christenson and her staff for their performing complete serotyping at the Wisconsin State Laboratory of Hygiene.

This investigation was supported by the Wisconsin Alumni Research Foundation.

LITERATURE CITED

1. American Public Health Association. 1965. Standard methods for the examination of water and wastewater, 12th ed., p. 608. Amer. Pub. Health Ass., Inc., New York.
2. Edwards, P. R., and W. H. Ewing. 1962. Identification of Enterobacteriaceae, 2nd ed., p. 116–128. Burgess Publishing Co., Minneapolis, Minn.
3. Davies, O. L. 1967. Design and analysis of industrial experiments. 2nd ed., p. 22–24. Hafner Publishing Co., New York.
4. Galton, M. M. 1961. Laboratory procedures for the isolation of Salmonella from human and animal food products, p. 435–438. Proc. 65th Annu. Meeting, U.S. Livestock Sanitary Ass.
5. Geldreich, E. E., H. F. Clark, C. B. Huff, and L. C. Best. 1965. Fecal coliform organism medium for the membrane filter technique. J. Amer. Water Works Ass. 57:208–214.
6. Hajna, A. A., and S. R. Damon. 1950. Polyclonal Salmonella “H” agglutination as a rapid screening test for Salmonella organisms. U.S. Public Health Rep. 65:116–118.
7. Kabler, P. W., and H. F. Clark. 1952. The use of differential
media with the membrane filter. Amer. J. of Pub. Health 42:390–392.

8. McCoy, J. H. 1962. Salmonellae in crude sewage, sewage effluent and sewage-polluted natural water 2nd ed., p. 205–226. Presented at Int. Conf. Water Poll. Res., London. Pergamon Press, London.

9. Osborne, W. W., and J. L. Stokes. 1955. A modified selenite brilliant-green medium for the isolation of Salmonella from egg products. Appl. Microbiol. 3:295–299.

10. Silliker, J. H., P. T. Fagan, J. Y. Chiu, and A. Williams. 1965. Polyvalent H agglutination as a rapid means of screening nonlactose-fermenting colonies for Salmonella organisms. Amer. J. Clin. Pathol. 43:548–554.

11. Sperber, W. H., and R. H. Deibel. 1969. Accelerated procedure for Salmonella detection in dried foods and feeds involving only broth cultures and serological reactions. Appl. Microbiol. 17:533–539.

12. Spicer, C. C. 1956. A quick method of identifying Salmonella H antigens. J. Clin. Pathol. 9:378–379.

13. Spino, D. F. 1966. Elevated-temperature technique for the isolation of Salmonella from streams. Appl. Microbiol. 14:591–596.