On the Asymptotic Behaviour of Cosmological Models in Scalar-Tensor Theories of Gravity

Andrew Billyard * Alan Coley* Jesus Ibáñez †

August 6, 2018

Abstract

We study the qualitative properties of cosmological models in scalar-tensor theories of gravity by exploiting the formal equivalence of these theories with general relativity minimally coupled to a scalar field under a conformal transformation and field redefinition. In particular, we investigate the asymptotic behaviour of spatially homogeneous cosmological models in a class of scalar-tensor theories which are conformally equivalent to general relativistic Bianchi cosmologies with a scalar field and an exponential potential whose qualitative features have been studied previously. Particular attention is focussed on those scalar-tensor theory cosmological models, which are shown to be self-similar, that correspond to general relativistic models that play an important role in describing the asymptotic behaviour of more general models (e.g., those cosmological models that act as early-time and late-time attractors).

1 Introduction

Scalar-tensor theories of gravity are currently of great interest, partially due to the fact that such theories occur as the low-energy limit in superstring
theory (see [1] and references therein). The first scalar-tensor theories to appear (with $\omega = \omega_0$) were due to Jordan [2, 3], Fierz [4] and Brans and Dicke [5] and the most general scalar-tensor theories were formulated by Bergmann [6], Nordtvedt [7] and Wagoner [8]. The observational limits on scalar-tensor theories include solar system tests [9, 10, 11, 12] and cosmological tests such as Big Bang nucleosynthesis constraints [13, 14].

The possible isotropization of spatially homogeneous cosmological models in scalar-tensor theories has been studied previously. For example, Chauvet and Cervantes-Cota [15] have studied the possible isotropization of Bianchi models of types I, V and IX within the context of Brans-Dicke theory without a scalar potential, but with barotropic matter, $p = (\gamma - 1)\mu$, by studying exact solutions at late times. Mimoso and Wands [16] have studied Brans-Dicke theory with a variable $\omega = \omega(\phi)$ in the presence of barotropic matter (but without scalar field potential) and, in particular, gave forms for ω under which Bianchi I models isotropize. We note that there is a formal equivalence between such a theory (with $\gamma \neq 2$) and a scalar-tensor theory with a potential but without matter, via the field redefinitions $V \equiv (2 - \gamma)\mu$ and $\omega \nabla_a \phi \nabla_b \phi \rightarrow \omega \nabla_a \phi \nabla_b \phi - \gamma \mu \phi \delta_a^0 \delta_b^0$.

In a recent paper [17] (see also [18] and [19]), cosmological models containing a scalar field with an exponential potential were studied. In particular, the asymptotic properties of the spatially homogeneous Bianchi models, and especially their possible isotropization and inflation, were investigated. Part of the motivation for studying such models is that they can arise naturally in alternative theories of gravity [20]; for example, Halliwell [21] has shown that the dimensional reduction of higher-dimensional cosmologies leads to an effective four-dimensional theory coupled to a scalar field with an exponential self-interacting potential.

The action for the general class of scalar-tensor theories (in the so-called Jordan frame) is given by [6, 8],

$$S = \int \sqrt{-g} \left[\phi R - \frac{\omega(\phi)}{\phi} g_{ab} \phi, a \phi, b - 2V(\phi) + 2\mathcal{L}_m \right] d^4x. \quad (1)$$

However, under the conformal transformation and field redefinition [22, 23, 16]

$$g_{ab}^* = \phi g_{ab}, \quad \frac{d\phi}{d\phi} = \pm \sqrt{\omega(\phi) + 3/2} \phi, \quad (2a)$$

$$\frac{d\phi}{d\phi} = \pm \frac{\omega(\phi) + 3/2}{\phi}, \quad (2b)$$

2
the action becomes (in the so-called Einstein frame)

\[
S^* = \int \sqrt{-g^*} \left[R^* - g^{*ab} \phi_{,a} \phi_{,b} - 2 \frac{V(\phi)}{\dot{\phi}^2} + 2 \mathcal{L}_m \right] d^4x, \quad (3)
\]

which is the action for general relativity (GR) containing a scalar field \(\phi \) with the potential

\[
V^*(\phi) = \frac{V(\phi(\varphi))}{\phi^2(\varphi)}. \quad (4)
\]

Our aim here is to exploit the results in previous work \cite{17} to study the asymptotic properties of scalar-tensor theories of gravity with action (1) which under the transformations (2) transform to general relativity with a scalar field with the exponential potential given by

\[
V^* = V_0 e^{k \phi}, \quad (5)
\]

where \(V_0 \) and \(k \) are positive constants. That is, since we know the asymptotic behaviour of spatially homogeneous Bianchi models with action (3) with the exponential potential (5), we can deduce the asymptotic properties of the corresponding scalar-tensor theories under the transformations (2) \(^1\) (so long as the transformations are not singular!). In particular, we are concerned with the possible isotropization and inflation of such scalar-tensor theories.

The outline of the paper is as follows. In section 2, we review the framework within which GR and a scalar field with a potential (Einstein frame) is formally equivalent to a scalar-tensor theory with a potential (Jordan frame), concentrating on both the exact and approximate forms for the parameters \(V \) and \(\omega \) in the Jordan frame. In particular, we discuss the explicit example of the Brans-Dicke theory with a power-law potential and we also discuss the conditions which lead to appropriate late-time behaviour as dictated by solar system and cosmological tests. In section 3, we then apply the conformal transformations to Bianchi models studied in the Einstein frame to produce exact solutions which represent the asymptotic behaviour of more general spatially-homogeneous models in the Jordan frame (for \(\omega = \omega_0 \), a constant). These Brans-Dicke models are self-similar and the corresponding homothetic vectors are also exhibited. We conclude with a discussion in section 4.

\(^1\)The possible isotropization of spatially homogeneous scalar-tensor theories which get transformed to a model with an effective potential which passes through the origin and is concave up may be deduced from the results of Heusler \cite{24}.

111x654] the action becomes (in the so-called Einstein frame)

\[
S^* = \int \sqrt{-g^*} \left[R^* - g^{*ab} \phi_{,a} \phi_{,b} - 2 \frac{V(\phi)}{\dot{\phi}^2} + 2 \mathcal{L}_m \right] d^4x, \quad (3)
\]

which is the action for general relativity (GR) containing a scalar field \(\phi \) with the potential

\[
V^*(\phi) = \frac{V(\phi(\varphi))}{\phi^2(\varphi)}. \quad (4)
\]

Our aim here is to exploit the results in previous work \cite{17} to study the asymptotic properties of scalar-tensor theories of gravity with action (1) which under the transformations (2) transform to general relativity with a scalar field with the exponential potential given by

\[
V^* = V_0 e^{k \phi}, \quad (5)
\]

where \(V_0 \) and \(k \) are positive constants. That is, since we know the asymptotic behaviour of spatially homogeneous Bianchi models with action (3) with the exponential potential (5), we can deduce the asymptotic properties of the corresponding scalar-tensor theories under the transformations (2) \(^1\) (so long as the transformations are not singular!). In particular, we are concerned with the possible isotropization and inflation of such scalar-tensor theories.

The outline of the paper is as follows. In section 2, we review the framework within which GR and a scalar field with a potential (Einstein frame) is formally equivalent to a scalar-tensor theory with a potential (Jordan frame), concentrating on both the exact and approximate forms for the parameters \(V \) and \(\omega \) in the Jordan frame. In particular, we discuss the explicit example of the Brans-Dicke theory with a power-law potential and we also discuss the conditions which lead to appropriate late-time behaviour as dictated by solar system and cosmological tests. In section 3, we then apply the conformal transformations to Bianchi models studied in the Einstein frame to produce exact solutions which represent the asymptotic behaviour of more general spatially-homogeneous models in the Jordan frame (for \(\omega = \omega_0 \), a constant). These Brans-Dicke models are self-similar and the corresponding homothetic vectors are also exhibited. We conclude with a discussion in section 4.

\(^1\)The possible isotropization of spatially homogeneous scalar-tensor theories which get transformed to a model with an effective potential which passes through the origin and is concave up may be deduced from the results of Heusler \cite{24}.
2 Analysis

For scalar field Bianchi models the conformal factor in (2a) is a function of \(t \) only (i.e., \(\phi = \phi(t) \)), and hence under (non-singular) transformations (2) the Bianchi type of the underlying models does not change (i.e., the metrics \(g_{ab} \) and \(g^*_{ab} \) admit three space-like Killing vectors acting transitively with the same group structure). In general, in the class of scalar-tensor theories represented by (1) there are two arbitrary (coupling) functions \(\omega(\phi) \) and \(V(\phi) \). The models which transform under (2) to an exponential potential model, in which the two arbitrary functions \(\omega \) and \(V \) are constrained by (2b) and (4), viz.,

\[
\frac{\phi}{V} \frac{dV}{d\phi} = 2 \pm k \sqrt{\frac{3}{2} + \omega(\phi)},
\]

is a special subclass with essentially one arbitrary function. Although only a subclass of models obey this constraint, this subclass is no less general than massless scalar field models (\(V = 0 \); see, for example [16]) or Brans-Dicke models with a potential (\(\omega = \omega_0 \), constant), which are often studied in the literature. Indeed, the asymptotic analysis in this paper is valid not only for “exact” exponential models, but also for scalar-tensor models which transform under (2) to a model in which the effective potential is a linear combination of terms involving exponentials in which the dominant term asymptotically is a leading exponential term; hence the analysis here is rather more general (we shall return to this in the next section). For the remainder of this paper we shall not explicitly consider ordinary matter; i.e., we shall set the matter Lagrangians in (1) and (3) to zero. Matter can be included in a straightforward way [24, 16, 25].

2.1 Exact Exponential Potential Models

Scalar-tensor models which transform under (2) to a model with an exact exponential potential satisfy equations (2b) and (4) with (5), viz.,

\[
\frac{d\varphi}{d\phi} = \pm \sqrt{\omega(\phi) + 3/2},
\]

\[
V_0 e^{k\varphi} = \frac{V(\phi)}{\phi^2}.
\]
So long as the transformations (2) remain non-singular we can determine the asymptotic properties of the underlying scalar-tensor theories from the asymptotic properties of the exact exponential potential model. These properties were studied in [17]. We recall that the asymptotic behaviour depends crucially on the parameter k (in (3)) which will be related to the various physical parameters in the scalar-tensor theory (1).

In particular, in [17] it was shown that all scalar field Bianchi models with an exponential potential (4) (except a subclass of the Bianchi type IX models which recollapse) isotropize to the future if $k^2 \leq 2$ and, furthermore, inflate if $k^2 < 2$; if $k = 0$ these models inflate towards the de Sitter solution and in all other cases they experience power-law inflationary behaviour. If $k^2 > 2$, then the models cannot inflate, and can only isotropize to the future if the Bianchi model is of type I, V, VII, or IX. Those models that do not isotropize typically asymptote towards a Feinstein-Ibáñez anisotropic model [24]. Bianchi VII$_h$ models with $k^2 > 2$ can indeed isotropize [17] but do not inflate, while generically the ever-expanding Bianchi IX models do not isotropize [20].

Therefore, at late times and for each specific choice of $\omega(\phi)$ both the asymptotic behaviour of the models and the character of the conformal transformation (2) may be determined by the behaviour of the scalar field ϕ at the equilibrium points of the system in the Einstein frame. Recently this behaviour has been thoroughly investigated [17]. We shall summarize only those aspects relevant to our study. The existence of GR as an asymptotic limit at late times is also determined by the asymptotic behaviour of the scalar field; we shall return to this issue in section 2.3.

For spatially homogeneous space-times the scalar field ϕ is formally equivalent to a perfect fluid, and so expansion-normalized variables can be used to study the asymptotic behaviour of Bianchi models [17, 28]. The scalar field variable, Ψ, is defined by

$$\Psi \equiv \frac{\dot{\phi}}{\sqrt{6} \theta^*},$$

where θ^* is the expansion of the timelike congruences orthogonal to the surfaces of homogeneity [1]. At the finite equilibrium points of the reduced system of autonomous ordinary differential equations, where Ψ is a finite constant, it has been shown [28] that $\theta^* = \theta^*_0/t^*$, where t^* is the time defined in the

\footnote{Note that $\theta^* > 0$ for all Bianchi models except those of type IX.}
Einstein frame:

\[dt^* = \pm \sqrt{\phi} \, dt. \]

(10)

From equation (10) it follows that \(\dot{\phi} \propto 1/t^* \), whence upon substitution into the Klein-Gordon equation

\[\ddot{\varphi} + \theta^* \dot{\varphi} + \frac{\partial V^*}{\partial \varphi} = 0, \]

(11)

we find that at the finite equilibrium points

\[\varphi(t^*) = \varphi_0 - \frac{2}{k} \ln t^*; \quad k \neq 0, \]

(12)

where \(\varphi_0 \) is a constant. Hence, from equation (11) we can obtain \(\phi \) as a function of \(t^* \), provided a particular \(\omega(\phi) \) is given. From equation (10) we can then find the relationship between \(t^* \) and \(t \), and consequently obtain \(\phi \) as a function of \(t \), and hence determine the asymptotic behaviour of \(\phi(t) \) for a given theory with specific \(\omega(\phi) \) (in the Jordan frame). Specifically, we can determine the possible isotropization and inflation of a given scalar-tensor theory in a very straightforward way.

As mentioned above, the behaviour determined from the key equation (12) is not necessarily valid for all Bianchi models. For the Bianchi models in which the phase space is compact, the equilibrium points represent models that do have the behaviour described by (12), as do the finite equilibrium points in Bianchi models with non-compact phase spaces. It is possible that the infinite equilibrium points in these non-compact phase spaces also share this behaviour, although this has not been proven. Finally, from equations (2) we note that since the asymptotic behaviour is governed by (12), the corresponding transformations are non-singular and this technique for studying the asymptotic properties of spatially homogeneous scalar-tensor theories is valid.

2.2 An Example

Suppose we consider a Brans-Dicke theory with a power-law potential, viz.,

\[\omega(\phi) = \omega_0 \]

(13)

\[V = \beta \phi^\alpha \]

(14)
(where β and α are positive constants), then (2b) integrates to yield

$$\phi = \phi_0 \exp \left(\frac{\varphi - \varphi_0}{\bar{\omega}} \right), \quad (15)$$

where

$$\bar{\omega} \equiv \pm \sqrt{\omega_0 + 3/2}, \quad (16)$$

and hence (11) yields

$$V^* = V_0 e^{k\varphi}, \quad (17)$$

where the critical parameter \bar{k} is given by

$$\bar{k} = \frac{\alpha - 2}{\bar{\omega}}. \quad (18)$$

From (17) we can now determine the asymptotic behaviour of the models in the Einstein frame, as discussed in section 2.1, for a given model with specific values of α and ω (and hence a particular value for \bar{k}).

The possible isotropization of the given scalar-tensor theory can now be obtained directly (essentially by reading off from the proceeding results - see subsection 3.1). For example, the inflationary behaviour of the theory can be determined from equations (2a), (11) and (12). Let us further discuss the asymptotic behaviour of the corresponding scalar-tensor theories (in the Jordan frame). From equations (10), (12) and (15) we have that asymptotically

$$\phi = \tilde{\phi}_0 \left[\pm (t - t_0) \left(1 + \frac{1}{k\bar{\omega}} \right) \right]^{-2/(1+k\bar{\omega})}, \quad (19)$$

where the \pm sign is determined from (10). Both this sign and the signs of $\bar{\omega}$ and $1 + k\bar{\omega}$ are crucial in determining the relationship between t^* and t; i.e., as $t^* \to \infty$ either $t \to \pm \infty$ or $t \to t_0$ and hence either $\phi \to 0$ or $\phi \to \infty$, respectively, as $\varphi \to -\infty$.

2.2.1 A Generalization

Suppose again that $\omega = \omega_0$, so that (13) also follows, but now V is a sum of power-law terms of the form

$$V = \sum_{n=0}^{m} \beta_n \phi^{\alpha_n}, \quad (20)$$
where \(m > 1 \) is a positive integer. Then (1) becomes

\[
V^* = \sum_{n=0}^{m} \beta_n \phi^{\alpha_n - 2} = \sum_{n=0}^{m} \tilde{\beta}_n \exp(\tilde{k}_n \phi); \quad \tilde{k}_n = \frac{\alpha_n - 2}{\omega}.
\]

(21)

For example, if

\[V = V_0 + \frac{1}{2} m \phi^2 + \lambda \phi^4, \]

then

\[V^* = \tilde{V}_0 e^{-2\phi/\tilde{\omega}} + \frac{1}{2} \tilde{m} + \tilde{\lambda} e^{2\phi/\tilde{\omega}} \]

(with obvious definitions for the new constants), which is a linear sum of exponential potentials. Asymptotically one of these potentials will dominate (e.g., as \(\phi \to +\infty \), \(V^* \to \tilde{\lambda} e^{2\phi/\tilde{\omega}} \)) and the asymptotic properties can be deduced as in the previous section.

2.2.2 Approximate Forms

In the last subsection we commented upon the asymptotic properties of a scalar-tensor theory with the forms for \(\omega \) and \(V \) given by (13) and (14). Let us now consider a scalar-tensor theory with forms for \(\omega \) and \(V \) which are approximately given by (13) and (14) (asymptotically in some well-defined sense) in order to discuss whether both theories will have the same asymptotic properties. In doing so, we hope to determine whether the techniques discussed in this paper have a broader applicability.

We assume that \(\omega \) and \(V \) are analytic at the asymptotic values of the scalar field in the Jordan frame in an attempt to determine whether their values correspond to the appropriate forms for \(\varphi \) and \(V^* \) in the Einstein frame, namely whether \(\varphi \to -\infty \) and the leading term in \(V^* \) is of the form \(e^{k\varphi} \).

Consider an analytic expansion for \(\phi \) about \(\phi = 0 \):

\[
\omega = \sum_{n=0}^{\infty} \omega_n \phi^n \quad \text{(22)}
\]

\[
V = \sum_{n=0}^{\infty} V_n \phi^n, \quad \text{(23)}
\]
where all ω_n and V_n are constants. Using (2) we find, up to leading order in ϕ, that for $\omega_0 \neq -3/2$

$$\varphi - \varphi_0 \approx \bar{\omega} \ln \phi,$$

(24)

so that $\varphi \to \pm \infty$ (depending on the sign in (16)) for $\phi \to 0$. The potential in the Einstein frame is (to leading order)

$$V^* \approx \exp \left\{ -\frac{2(\varphi - \varphi_0)}{\bar{\omega}} \right\}.$$

(25)

Hence, the parameter k of (5) is defined here as $k \equiv -2/\bar{\omega}$. For $\omega_0 = -3/2$ we have

$$(\varphi - \varphi_0)^2 \approx 4\omega_1 \phi$$

(26)

$$V^* \approx \frac{16\omega_1^2}{(\varphi - \varphi_0)^4},$$

(27)

so that $\varphi \not\to -\infty$ as $\phi \to 0$.

Next, let us consider an expansion in $1/\phi$, valid for $\phi \to \infty$:

$$\omega = \sum_{n=0}^{\infty} \frac{\omega_n}{\phi^n},$$

(28)

$$V = \sum_{n=0}^{\infty} \frac{V_n}{\phi^n}.$$

(29)

For $\omega_0 \neq -3/2$, the results are similar to the $\phi = 0$ expansion:

$$\varphi - \varphi_0 \approx -\bar{\omega} \ln \phi$$

(30)

$$V^* \approx \exp \left\{ \frac{2(\varphi - \varphi_0)}{\bar{\omega}} \right\},$$

(31)

where now $\varphi \to \mp \infty$ as $\phi \to \infty$. When $\omega_0 = -3/2$, we obtain

$$(\varphi - \varphi_0)^2 \approx \frac{4\omega_1}{\phi}$$

(32)

$$V^* \approx \frac{(\varphi - \varphi_0)^4}{16\omega_1^2}.$$

(33)

It is apparent that the sign of $\bar{\omega}$ is important in determining whether $\phi \to \infty$ or $\phi \to 0$ in order to obtain the appropriate form for φ, as was exemplified at the end of section 2.2.
Finally, in the event that ω and V are analytic about some finite value of ϕ, namely ϕ_0, it can be shown that $\varphi \rightarrow \varphi_0$ as $\phi \rightarrow \phi_0$. Hence, if one insists that ω remain analytic as $\omega \rightarrow \omega_0$ in the limit of $\varphi \rightarrow -\infty$, then ϕ must either vanish or diverge, and the GR limit is not obtained. This would then suggest that if one imposed $\varphi \rightarrow -\infty$ for $\phi \rightarrow \phi_0$ then ω would not be analytic about $\phi = \phi_0$.

2.3 Constraints on Possible Late-Time Behaviour

In this paper we are concerned with the possible asymptotic behaviour of cosmological models in scalar-tensor theories of gravity. However, there are physical constraints on acceptable late-time behaviour (as $t^* \rightarrow \infty$; see equation (10)). For example, such theories ought to have GR as an asymptotic limit at late times (e.g., $\omega \rightarrow \infty$ and $\phi \rightarrow \phi_0$) in order for the theories to concur with observations such as solar system tests. In addition, cosmological models must ‘isotropize’ in order to be in accord with cosmological observations.

Nordtvedt [7] has shown that for scalar-tensor theories with no potential, $\omega(\phi) \rightarrow \infty$ and $\omega^{-2}d\omega/d\phi \rightarrow 0$ as $t \rightarrow \infty$ in order for GR to be obtained in the weak-field limit. Similar requirements for general scalar-tensor theories with a non-zero potential are not known, and as will be demonstrated from the consideration of two particular examples found in the literature, not all theories will have a GR limit.

The first example is the Brans-Dicke theory ($\omega = \omega_0 = constant$) with a power-law self-interacting potential given by (14) studied earlier in subsection 2.2. In this case, ϕ is given by equations (15) and (16) and the potential is given by (14), viz.,

$$V(\phi) = \beta\phi^\alpha; \quad \alpha = 2 \pm k\sqrt{\omega_0 + 3/2}.$$

The $\alpha = 1$ case for FRW metrics was studied by Kolitch [29] and the $\alpha = 2$ ($k = 0$) case, corresponding to a cosmological constant in the Einstein-frame, was considered for FRW metrics by Santos and Gregory [30]. Earlier we considered whether anisotropic models in Brans-Dicke theory with a potential given by (14) will isotropize. Assuming a large value for ω_0, as suggested by solar system experiments, we conclude that for a wide range of values for α the models isotropize. However, in the low-energy limit of string theory where $\omega_0 = -1$ the models are only guaranteed to isotropize for $1 < \alpha < 3$.

10
Substituting (12) in (15) we get

\[\phi \sim (t^*)^{\pm \delta}, \quad \delta = \frac{1}{k} \sqrt{\frac{2}{3 + 2\omega_0}}. \tag{34} \]

Now, substituting the above expression into equation (9), we obtain \(t^* \) as a function of \(t \) and hence we obtain

\[\phi \sim t^{\pm \delta}. \tag{35} \]

Depending on the sign, we deduce from this expression that for large \(t \) the scalar field tends either to zero or to infinity and so this theory, with the potential given by (14), does not have a GR limit.

In the second example we assume that

\[\omega(\phi) + \frac{3}{2} = \frac{A\phi^2}{(\phi - \phi_0)^2}, \tag{36} \]

where \(A \) is an arbitrary positive constant. This form for \(\omega(\phi) \) was first considered by Mimoso and Wands \cite{16} (in a theory without a potential). Now, we obtain

\[\phi = \phi_0 + B e^{\frac{\phi}{\sqrt{A}}}, \tag{37} \]

where \(B \) is a constant, and the potential, defined by equation (8), is given by

\[V(\phi) = V_0 \phi^2 (\phi - \phi_0)^{\mp \sqrt{A}k}. \tag{38} \]

As before, at the equilibrium points we can express \(\phi \) as a function of \(t^* \), which then allows us to compute \(t \) as a function of \(t^* \). At late times we find that

\[\phi \sim \phi_0 + t^\beta, \tag{39} \]

where \(\beta \) is a constant whose sign depends on \(k, \omega_0 \) and the choice of one of the signs in the theory. What is important here is that in this case, at late times, we find that the scalar field tends to a constant value for \(\beta < 0 \), thereby yielding a GR limit. In both of the examples considered above, the conformal transformation for the equilibrium points is regular.

Of course, these are not the only possible forms for a variable \(\omega(\phi) \). For example, Barrow and Mimoso \cite{22} studied models with \(2\omega(\phi) + 3 \propto \phi^\alpha \) (\(\alpha > 0 \)) satisfying the GR limit asymptotically. (The GR limit is only obtained
asymptotically as $\phi \to \infty$, although for a finite but large value of ϕ the theory can have a limit which is as close to GR as is required). However, by studying
the evolution of the gravitational “constant” G from the full Einstein field
equations (i.e., not just the weak-field approximation), Nordtvedt \cite{7, 31} has
shown that
\[
\frac{\dot{G}}{G} = - \left(\frac{3 + 2\omega}{4 + 2\omega} \right) \left(1 + \frac{2\omega'}{(3 + 2\omega)^2} \right),
\]
where $\omega' = d\omega/d\phi$ (so that the correct GR limit is only obtained as $\omega \to \infty$
and $\omega' \omega^{-3} \to 0$). Torres \cite{32} showed that when $2\omega(\phi) + 3 \propto \phi^\alpha$, $G(t)$
decreases logarithmically and hence $G \to 0$ asymptotically. In the above
work, no potential was included. For a theory with $2\omega(\phi) + 3 \propto \phi^\alpha$
and with a non-zero potential satisfying equation (6) we have that
\[
\frac{\phi \, dV}{V \, d\phi} = A + B\phi^\alpha
\]
($\alpha \neq 0$; A and B constants), so that
\[
V(\phi) = V_0 \phi^A e^{B\phi^\alpha/\alpha}.
\]

A potential of this form was considered by Barrow \cite{33}.

Finally, Barrow and Parsons \cite{34} have studied three parameterized classes
of models for $\omega(\phi)$ which permit $\omega \to \infty$ as $\phi \to \phi_0$ (where the constant
ϕ_0 can be taken as ϕ evaluated at the present time) and hence have an
appropriate GR limit;

\begin{align*}
(i) & \quad 2\omega(\phi) + 3 = 2B_1^2 |1 - \phi/\phi_0|^{-\alpha} \quad (\alpha > \frac{1}{2}), \\
(ii) & \quad 2\omega(\phi) + 3 = B_2^2 |ln(\phi/\phi_0)|^{-2[\delta]} \quad (\delta > \frac{1}{2}), \\
(iii) & \quad 2\omega(\phi) + 3 = B_3^2 |1 - (\phi/\phi_0)^{\beta}|^{-1} \quad (\forall \beta).
\end{align*}

Other possible forms for $\omega(\phi)$ were discussed in Barrow and Carr \cite{35} and,
in particular, they considered models (i) above but allowed $\alpha < 0$ in order
for a possible GR limit to be obtained also as $\phi \to \infty$. Schwinger \cite{36} has
suggested the form $2\omega(\phi) + 3 = B^2/\phi$ based on physical considerations.
3 Applications

Let us exploit the formal equivalence of the class of scalar-tensor theories (1) with $\omega(\phi)$ and $V(\phi)$ given by

$$\omega(\phi) = \omega_0, \quad V(\phi) = \beta \phi^\alpha,$$

(40)

with that of GR containing a scalar field and an exponential potential (5). Indeed, since the conformal transformation (2a) is well-defined in all cases of interest, the Bianchi type is invariant under the transformation and we can deduce the asymptotic properties of the scalar-tensor theories from the corresponding behaviour in the Einstein frame. Also, we have that

$$k \equiv \frac{\alpha - 2}{\bar{\omega}}, \quad \bar{\omega}^2 \equiv \omega_0 + \frac{3}{2},$$

(41)

We recall that at the finite equilibrium points in the Einstein frame we have that

$$\theta^* = \theta_0^* t^{-1}_*,$$

(42)

$$\varphi(t^*) = \varphi_0 - \frac{2}{k} \ln(t^*),$$

(43)

where

$$\theta_0^* = 1 + \frac{k^2}{2} e^{k \varphi_0}.$$

(44)

Integrating equation (2b) we obtain

$$\phi(t^*) = d \exp \left(\bar{\omega}^{-1} \varphi(t^*) \right) = \phi_0 t_*^{-2/k\bar{\omega}},$$

(45)

where the constant $\phi_0 \equiv d \exp(\varphi_0/\bar{\omega})$ and we recall that t and t^* are related by equation (3), and equation (2a) can be written as

$$g_{ab} = \phi^{-1} g_{ab}^*.$$

(46)

3.1 Examples

1) All initially expanding scalar field Bianchi models with an exponential potential (3) with $0 < k^2 < 2$ within general relativity (except for a subclass of models of type IX) isotropize to the future towards the power-law inflationary flat FRW model (25), whose metric is given by

$$ds^2 = -dt_*^2 + t_*^{4/k^2} \left(dx^2 + dy^2 + dz^2 \right).$$

(47)
In the scalar-tensor theory (in the Jordan frame), ϕ is given by equation (45) and from (46) we have that

$$ds_{ST}^2 = \phi^{-1/2} \{ ds^2 \}.$$ (48)

Defining a new time coordinate by

$$T = ct \, \frac{1 + k\bar{\omega}}{1 + k\bar{\omega}}; \quad c = \frac{k\bar{\omega}}{1 + k\bar{\omega}} \phi_0^{-1/2},$$ (49)

(where $k\bar{\omega} + 1 \neq 0$; i.e., $\alpha \neq 1$), we obtain after a constant rescaling of the spatial coordinates

$$ds_{ST}^2 = -dT^2 + T^{2K} \left(dX^2 + dY^2 + dZ^2 \right),$$ (50)

where

$$K = \frac{k^2 + 2k\bar{\omega}}{k^2(1 + k\bar{\omega})}.$$ (51)

Finally, the scalar field is given by

$$\phi = \phi_0 c^{k_2 / k_2} T^{\alpha/2k} = \tilde{\phi}_0 T^{\alpha/2k}. \quad \text{(51)}$$

Therefore, all initially-expanding spatially-homogeneous models in scalar-tensor theories obeying (44) with $0 < (\alpha - 2)^2 < 2\omega_0 + 3$ (except for a subclass of Bianchi IX models which recollapse) will asymptote towards the exact power-law flat FRW model given by equations (50) and (51), which will always be inflationary since $K = \frac{1 + \alpha + 2\omega_0}{(\alpha - 1)(\alpha - 2)} > 1$ [note that whenever $2\omega_0 > (\alpha - 2)^2 - 3 = \alpha^2 - 4\alpha + 1$, we have that $1 + \alpha + 2\omega_0 > \alpha^2 - 3\alpha + 2 = (\alpha - 1)(\alpha - 2)$].

When $k^2 > 2$, the models in the Einstein frame cannot inflate and may or may not isotropize. Let us consider two examples.

2) Scalar field models of Bianchi type VI_h with an exponential potential (5) with $k^2 > 2$ asymptote to the future towards the anisotropic Feinstein-Ibáñez model [27] given by ($m \neq 1$)

$$ds^2 = -dt^2 + a_0^2 \left(t^{2p_1} dx^2 + t^{2p_2} e^{2mx} dy^2 + t^{2p_3} e^{2x} dz^2 \right),$$ (52)

where the constants obey

$$p_1 = 1,$$

$$p_2 = \frac{2}{k^2} \left(1 + \frac{(k^2 - 2)(m^2 + m)}{2(m^2 + 1)} \right),$$ (53)

$$p_3 = \frac{2}{k^2} \left(1 + \frac{(k^2 - 2)(m + 1)}{2(m^2 + 1)} \right).$$
In the scalar-tensor theory (in the Jordan frame), ϕ is given by equation (45) and the metric is given by (48). After defining the new time coordinate given by (49), we obtain

$$ds^2_{ST} = -dT^2 + A_0^2 \left(T^{2q_1} dX^2 + T^{2q_2} e^{2mX} dY^2 + T^{2q_3} e^{2X} dZ^2 \right),$$

(54)

where

$$q_i \equiv \frac{1 + k\bar{\omega} p_i}{1 + k\bar{\omega}} \quad (i = 1, 2, 3); \quad A_0^2 = a_0^2 \phi_0^{-1} c^{-2q_1},$$

(55)

and Y and Z are obtained by a simple constant rescaling (and $X = x$). Finally, the scalar field is given by equation (51).

The corresponding exact Bianchi VI$_h$ scalar-tensor theory solution is therefore given by equations (51) and (54) in the coordinates (T, X, Y, Z). Consequently, all Bianchi type VI$_h$ models in the scalar-tensor theory satisfying equations (40) with $(\alpha - 2)^2 > 2\omega_0 + 3$ asymptote towards the exact anisotropic solution given by equations (51) and (54).

3) An open set of scalar field models of Bianchi type VII$_h$ with an exponential potential with $k^2 > 2$ asymptote towards the isotropic (but non-inflationary) negative-curvature FRW model [17] with metric

$$ds^2 = -dt^2 + t^2 d\sigma^2,$$

(56)

where $d\sigma^2$ is the three-metric of a space of constant negative curvature. Again, ϕ is given by (43) and the metric is given by (48), which becomes after the time recoordinatization (49)

$$ds^2_{ST} = -dT^2 + C^2 T^2 d\sigma^2,$$

(57)

where $C^2 \equiv \phi_0^{-1} c^{-2} = \left[\frac{1 + k\bar{\omega}}{k\bar{\omega}} \right]^2$. This negatively-curved FRW metric is equivalent to that given by (56). Finally, the scalar field is given by equation (55).

Therefore, when $(\alpha - 2)^2 > 2\omega_0 + 3$, there is an open set of (BVII$_h$) scalar-tensor theory solutions satisfying equations (40) which asymptote towards the exact isotropic solution given by equations (51) and (57).

Equations (43) and (45) and the resulting analysis are only valid for scalar-tensor theories satisfying (40). However, the asymptotic analysis will also apply to generalized theories of the forms discussed in subsections 2.2.1 and 2.2.2. Finally, a similar analysis can be applied in Brans-Dicke theory with $V = 0$ [37].
3.2 Self-Similarity

All three attracting scalar-tensor theory solutions in the last subsection are self-similar; metric (50) admits the homothetic vector (HV) \(X = T \frac{\partial}{\partial T} + (1 - K) \left\{ X \frac{\partial}{\partial X} + Y \frac{\partial}{\partial Y} + Z \frac{\partial}{\partial Z} \right\} \), metric (54) admits the HV \(X = T \frac{\partial}{\partial T} + (1 - q_2) Y \frac{\partial}{\partial Y} + (1 - q_3) Z \frac{\partial}{\partial Z} \), and metric (57) admits the HV \(X = T \frac{\partial}{\partial T} \). Of course, all three solutions in the corresponding general relativistic model (i.e., in the Einstein frame) are self-similar. Let us show that this is always the case; i.e., all scalar-tensor solutions obtained in this way are self-similar.

In [17] it was shown that the cosmological solutions corresponding to the finite equilibrium points of the "reduced dynamical system" of the spatially homogeneous scalar field models with an exponential potential are all self-similar. Let \(g_{\ast ab} \) be the metric of such a solution and \(X_{\ast} \) the corresponding HV; hence we have that

\[\mathcal{L}_{X_{\ast}} g_{\ast ab} = 2 g_{\ast ab}, \]

(58)

where \(\mathcal{L} \) denotes the Lie derivative along \(X_{\ast} \). In the coordinates in which \(\theta_{\ast} = \theta_{\ast 0} t_{\ast}^{-1} \), from \(\mathcal{L}_{X_{\ast}} \theta_{\ast} = -\theta_{\ast} \) we find that [37]

\[X_{\ast} = t_{\ast} \frac{\partial}{\partial t_{\ast}} + X_{\ast}^{\mu}(x_{\ast}^{\nu}) \frac{\partial}{\partial x_{\ast}^{\mu}}. \]

(59)

Now, the metric \(g_{ab} \) in the corresponding scalar-tensor theory is given by (40), where the scalar field is given by (45), viz.,

\[\phi(t_{\ast}) = \phi_{0} t_{\ast}^{-2/\bar{\omega}} \]

(60)

(or by (51) in terms of the time coordinate \(T \)). We emphasize that this power-law form for \(\phi \) is only valid for scalar-tensor theories that obey conditions (40). Hence, from equations (58)-(60) it follows that

\[\mathcal{L}_{X_{\ast}} g_{ab} = X_{\ast} \left(\phi^{-1}(t_{\ast}) \right) g_{\ast ab} + \phi^{-1} \mathcal{L}_{X_{\ast}} g_{\ast ab} \]

\[= t_{\ast} \frac{\partial}{\partial t_{\ast}} \left(\phi_{0}^{-1} t_{\ast}^{2/\bar{\omega}} \right) g_{\ast ab} + 2 \phi_{0}^{-1} t_{\ast}^{2/\bar{\omega}} g_{\ast ab} \]

\[= \left(\frac{2}{k_{\bar{\omega}}} + 2 \right) \phi_{0}^{-1} t_{\ast}^{2/\bar{\omega}} g_{\ast ab} \]

\[= 2cg_{ab}, \]

(61)

where the constant \(c \) is given by \(c = (1 + k_{\bar{\omega}})/(k_{\bar{\omega}}) \). That is, \(X = X_{\ast} \) is a homothetic vector for the spacetime with metric \(g_{ab} \) and consequently the corresponding scalar-tensor theory solution is self-similar.
3.3 The Special Case $\alpha = 1$

In the analysis above we have omitted the special case $\alpha = 1$ (i.e., $k\bar{\omega} = -1$). This case is degenerate as we will now demonstrate. Let the general relativistic metric be defined by

$$\text{ds}^2 = -dt^2 + \gamma_{\mu\nu}dx^\mu dx^\nu. \quad (62)$$

First, suppose we take $k\bar{\omega} = -1$ in (45) and define a new time coordinate by

$$T = \phi_0^{-\frac{1}{2}} \ln(t_*), \quad (63)$$

then the metric (62) becomes

$$\text{ds}^2_{ST} = -dT^2 + \phi_0^{-1} \exp\left(-2\sqrt{\phi_0T}\right)\gamma_{\mu\nu}dx^\mu dx^\nu, \quad (64)$$

where $\phi(T) = \phi_0 \exp\left(2\sqrt{\phi_0T}\right)$. Now, from equation (61) we obtain

$$\mathcal{L}_{X_*}g = 0; \quad (65)$$

i.e., in this case $X = X_*$ is a Killing vector (KV) of the spacetime (64). Since the KV X is timelike, the spatially homogeneous metric (64) admits four KV acting simply transitively and hence the resulting spacetime is (totally - i.e., four-dimensionally) homogeneous.

All known non-flat homogeneous spacetimes are given in table 10.1 in [38]; hence the metric (64) is given by one of those spacetimes in this table representing an orthogonal spatially homogeneous metric with a diagonal Einstein tensor (representing a perfect fluid spacetime or an Einstein spacetime with a cosmological constant) - all of these metrics are indeed known [38]. In the case when metric (64) is the flat Minkowski metric, the corresponding general relativistic spacetime (62) is de Sitter spacetime. However, this corresponds to the degenerate case in which

$$\theta^* = \theta_0^*, \quad \text{a constant;}$$

this is the only possibility in which equation (12) is not valid and hence the resulting analysis does not follow. This degenerate case corresponds to $k = 0$ in (5) (i.e., $V^* = V_0$, a constant); since $k\bar{\omega} = -1$ this corresponds to $\bar{\omega} \to \infty$ or $\omega_0 \to \infty$ (in which case GR is recovered from the scalar-tensor theory under consideration).
Finally, if $\alpha = 1$ in (14) (i.e., $V = \beta \phi$), then the action (1) becomes

$$S = \int \sqrt{-g} \left[\phi(R - 2\beta) - \frac{\omega}{\phi} g^{ab} \phi_{,a} \phi_{,b} + 2\mathcal{L}_m \right] d^4x,$$

which is equivalent to that for Brans-Dicke theory incorporating an additional constant β. Under the conformal transformation and field redefinition (2) the action becomes that for general relativity with a cosmological constant (and additional matter fields), and from the cosmic no-hair theorem it follows that all spatially homogeneous models (except for a subclass of Bianchi type IX) asymptote to the future towards the de Sitter model [39].

4 Conclusions

In this paper we have studied the asymptotic behaviour of a special subclass of spatially homogeneous cosmological models in scalar-tensor theories which are conformally equivalent to general relativistic Bianchi models containing a scalar field with an exponential potential by exploiting results found in previous work [17].

We illustrated the method by studying the particular example of Brans-Dicke theory with a power-law potential and various generalizations thereof, paying particular attention to the possible isotropization and inflation of such models. In addition, we discussed physical constraints on possible late-time behaviour and, in particular, whether the scalar-tensor theories under consideration have a general relativistic limit at late times.

In particular, several exact scalar-tensor theory cosmological models (both inflationary and non-inflationary, isotropic and anisotropic) which act as attractors were discussed, and all such exact scalar-tensor solutions were shown to be self-similar.

This is related to the previous work of several authors. Specifically, Chauvet and Cervantes-Cota [15] studied isotropization in Brans-Dicke gravity including a perfect fluid with $p = (\gamma - 1)\mu$. They examined whether the anisotropic models contain an FRW model as an asymptotic limit, which is how they defined isotropization. For Bianchi models of types I, V and IX, they found exact solutions in these cosmologies which can isotropize to the future, depending on the values of γ and ω and two other arbitrary constants. Furthermore, Mimoso and Wands [16] also studied scalar-tensor models with variable ω without a self-interacting potential V but coupled to barotropic
matter. Regarding the possible isotropization of the cosmological models (meaning here that the shear of the fluid becomes negligible), they concentrated on models of Bianchi type I and first discussed constraints on a fixed \(\omega = \omega_0 \) model necessary for isotropization at late times. In the particular case of a false vacuum \((p = -\mu)\), they showed that the de Sitter solution is the late-time attractor of the model. They then proceeded to examine arbitrary \(\omega(\phi) \) Bianchi type I cosmologies and showed that if a solution is to asymptote towards a GR limit (i.e., \(\omega \to \infty \)) then it must also isotropize. Their paper also discussed initial singularities in models of other Bianchi types.

The work in this paper can be generalized in a number of ways. In particular, more general scalar-tensor theories can be considered and more general (than spatially homogeneous) geometries can be studied. For example, the more general class of inhomogeneous \(G_2 \) models could be considered in which there exists two commuting spacelike Killing vectors. The motivation for studying \(G_2 \) cosmologies is that there is some evidence that the class of self-similar \(G_2 \) models plays an important rôle in describing the asymptotic behaviour of more generic general relativistic scalar field models with an exponential potential [cf. 42]; in this way, we may be able to find special scalar-tensor \(G_2 \) cosmological models that describe the asymptotic properties of more general scalar-tensor cosmologies. Some potential problems that exist in this more general context is that since \(\phi \), and hence the transformation (2a), depends on both time and one space variable, the transformation (2) will be singular (at least for certain values of the space variable) and the classification of \(G_2 \) models may not be preserved under such a transformation.

Acknowledgments

We would like to thank Robert van den Hoogen and Itsaso Olasagasti for helpful comments. This work was funded, in part, by NSERC (APB and AAC), the I.W. Killam Fund (APB) and CICYT PB96-0250 (JI).

References

[1] G. T. Horowitz, String theory as a quantum theory of gravity, in Proceedings of 12th Int. Conf. on General Relativity and Gravitation, edited by N. Ashby, D. F. Bartlett, and W. Wyss, pages 419–439, Cambridge, 1990, Cambridge University Press.
[2] P. Jordan, Nature 164, 637 (1949).
[3] P. Jordan, Z. Phys. 157, 112 (1959).
[4] M. Fierz, Helv. Phys. Acta 29, 128 (1956).
[5] C. Brans and R. H. Dicke, Phys. Rev. 124, 925 (1961).
[6] P. G. Bergmann, Int. J. Theoret. Phys. 1, 25 (1968).
[7] K. Nordtvedt, Astrophys. J. 161, 1059 (1970).
[8] R. V. Wagoner, Phys. Rev. D 1, 3209 (1970).
[9] S. Buchmann et al., in Proceedings of the Seventh Marcel Grossman Meeting on General Relativity, edited by R. T. Jantzen and G. M. Keiser, World Scientific, Singapore (1996).
[10] A. Abramovici et al., Science 256, 325 (1992).
[11] J. Hough et al., in Proceedings of the Sixth Marcel Grossman Meeting on General Relativity, edited by H. Sato and T. Nakamura, World Scientific, Singapore (1993).
[12] C. Bradaschia et al., Nucl. Instrum. and Methods A 289, 518 (1990).
[13] J. D. Barrow, Phys. Rev. D 35, 1805 (1987).
[14] A. Serna and J. M. Alimi, Phys. Rev. D 53, 3087 (1996).
[15] P. Chauvet and J. L. Cervantes-Cota, Phys. Rev. D 52, 3416 (1995).
[16] J. P. Mimoso and D. Wands, Phys. Rev. D 52, 5612 (1995).
[17] A. A. Coley, J. Ibáñez, and R. J. van den Hoogen, J. Math. Phys. 38, 5256 (1997).
[18] J. Ibáñez, R. J. van den Hoogen, and A. A. Coley, Phys. Rev. D 51, 928 (1995).
[19] R. J. van den Hoogen, A. A. Coley, and J. Ibáñez, Phys. Rev. D 55, 5215 (1997).
[20] A. B. Burd and J. D. Barrow, Nucl. Phys. B 308, 929 (1988).
[21] J. J. Halliwell, Phys. Lett. B 185, 341 (1987).
[22] J. D. Barrow and J. P. Mimoso, Phys. Rev. D 50, 3746 (1994).
[23] A. R. Liddle and D. Wands, Phys. Rev. D 49, 2665 (1992).
[24] M. Heusler, Phys. Letts. B 253, 33 (1991).
[25] Y. Kitada and M. Maeda, Phys. Rev. D 45, 1416 (1992).
[26] R. van den Hoogen, private communication (1998).
[27] A. Feinstein and J. Ibáñez, Class. Quantum Grav. 10, 93 (1993).
[28] J. Wainwright and G. F. R. Ellis, Dynamical Systems in Cosmology, Cambridge University Press, Cambridge (1997).
[29] S. Kolitch, Ann. Phys. (N. Y.) 246, 121 (1996).
[30] C. Santos and R. Gregory, gr-qc/9611063, 1996.
[31] K. Nordtvedt, Phys. Rev. 169, 1017 (1968).
[32] D. F. Torres, Phys. Lett. B 359, 249 (1995).
[33] J. D. Barrow, Phys. Rev. D 48, 1585 (1993).
[34] J. D. Barrow and P. Parsons, Phys. Rev. D 55, 1906 (1997).
[35] J. D. Barrow and B. J. Carr, Phys. Rev. D 54, 3920 (1996).
[36] J. Schwinger, Particles, Sources and Fields, Addison-Wesley, Reading, Massachusetts (1970).
[37] A. A. Coley, preprint (1998).
[38] D. Kramer, H. Stephani, E. Herlt, and M. A. H. MacCallum, Exact Solutions of Einstein’s Field Equations, Cambridge University Press, Cambridge (1980).
[39] R. M. Wald, Phys. Rev. D 28, 2118 (1983).
[40] J. . Ibáñez and I. Olasagasti, J. Math. Phys. 37, 6283 (1996).
[41] A. Feinstein, J. Ibáñez, and P. Labraga, J. Math. Phys. 36, 4962 (1995).

[42] J. M. Aguirregabiria, A. Feinstein, and J. Ibáñez, Phys. Rev. D 48, 4669 (1993).

[43] C. G. Hewitt and J. Wainwright, Class. Quantum Grav. 7, 2295 (1990).