Efficient enumeration of instantiations in Bayesian networks

Sampath Srinivas
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052
sampaths@microsoft.com

Pandurang Nayak
Recom Technologies
NASA Ames Research Center, MS 269-2
Moffett Field, CA 94035
nayak@ptolemy.arc.nasa.gov

Abstract

Over the past several years Bayesian networks have been applied to a wide variety of problems. A central problem in applying Bayesian networks is that of finding one or more of the most probable instantiations of a network. In this paper we develop an efficient algorithm that incrementally enumerates the instantiations of a Bayesian network in decreasing order of probability. Such enumeration algorithms are applicable in a variety of applications ranging from medical expert systems to model-based diagnosis. Fundamentally, our algorithm is simply performing a lazy enumeration of the sorted list of all instantiations of the network. This insight leads to a very concise algorithm statement which is both easily understood and implemented. We show that for singly connected networks, our algorithm generates the next instantiation in time polynomial in the size of the network. The algorithm extends to arbitrary Bayesian networks using standard conditioning techniques. We empirically evaluate the enumeration algorithm and demonstrate its practicality.

1 INTRODUCTION

Over the last several years Bayesian networks have been applied to a wide variety of problems ranging from medical diagnosis [Heckerman et al., 1992; Horvitz et al., 1988] and natural language understanding [Charniak and Goldman, 1991] to vision [Levitt et al., 1989] and map learning [Dean, 1990]. A central problem in such applications is to use the network to generate explanations for observed data. Such explanations correspond to instantiations of the network (i.e., value assignments to each node in the network) with the structure of the network providing the explanation for the values. Each such instantiation has an associated probability that can be computed from the specification of the Bayesian network (see [Pearl, 1988a] for details). Hence, finding one or more of the most probable instantiations of a Bayesian network is a problem of central importance.

Pearl [1987] has developed an elegant message-passing algorithm for computing the most probable instantiation of a Bayesian network. This algorithm runs in polynomial time on singly connected networks, and can be extended to arbitrary networks through conditioning. It can also be used to compute the second most probable instantiation. Dawid [1992] has also developed an algorithm that computes the most likely instantiation using the junction tree of the Bayesian network. This algorithm is inherently applicable to arbitrary networks.

While generating the most probable instantiation is important, it is inadequate for a variety of applications. Instead, such applications require that different instantiations of the network be enumerated in decreasing order of probability. For example, in a medical diagnosis application, the most probable diagnosis is rarely adequate; doctor's typically want the differential diagnosis, i.e., the set of plausible diagnoses that can explain the observed symptoms. The differential diagnosis is used in two ways: (a) to decide upon a set of tests that best distinguish between the various diagnoses; and (b) to help design a treatment plan, e.g., to select a plan that as applicable to all (or most) of the possible diagnoses. In Bayesian network terms, each diagnosis corresponds to an instantiation and a differential diagnosis is generated by enumerating instantiations in decreasing order of probability.

Turning to another field, Hidden Markov Models (HMMs) have been used to find the most likely labeling of words with parts of speech in natural language applications. The standard HMM model used in this application [Charniak et al., 1993] can be repre-
sented as a singly connected Bayesian network. Each labeling of words with parts of speech corresponds to an instantiation of the network. Current techniques compute the most likely labeling, i.e., the most likely instance of the corresponding Bayesian network. However, it may be happen that the most likely labeling is rejected by the semantic analysis phase of the natural language system. In such a situation, the next most likely labeling is necessary. Enumerating labelings in decreasing order of probability corresponds directly to the problem of enumerating instantiations of the Bayesian network in decreasing order of probability.

Finally, enumerating instantiations of Bayesian networks is also needed to extend model-based diagnosis to handle dependent component failures. Some of the best model-based diagnosis algorithms [de Kleer and Williams, 1989; de Kleer, 1991] are based on enumerating candidates in decreasing order of prior probability, and checking these candidates for consistency with the observations. The enumeration algorithms used to date make the strong assumption that component failures are mutually independent. Dependent component failures can be represented using a Bayesian network in which the nodes represent components and node values represent component modes, so that network instantiations correspond to candidates. Existing model-based diagnosis algorithms can therefore be extended to handle dependent component failures using an algorithm to generate network instantiations in decreasing order of probability (see [Nayak and Srinivas, 1995]).

In this paper we develop an efficient algorithm to enumerate instantiations of a Bayesian network in decreasing order of probability. Our algorithm can be viewed as a generalization of Pearl’s algorithm. It operates as follows. An arbitrary node in the Bayesian network is chosen as the starting node. The starting node requests all its neighbors for messages pertaining to the computation of a list of instances sorted in decreasing order of probability. These messages pertain to instantiations of the part of the network reachable through the neighbor. When the starting node has received the messages it combines them appropriately and returns the entire list of instantiations of the Bayesian network sorted in decreasing order of probability. When a neighbor is requested to give a message, it recursively requests each of its neighbors (except for the original requesting node) for a message. It combines these messages appropriately and passes them on to the requesting node. As we will see, the independence properties of the singly connected network make such a message passing algorithm possible.

The description of the message passing algorithm thus reduces to the description of the operations at a single node. The description explains what the messages are and how the messages coming from neighbors are combined and sent to the requesting node. As noted earlier, we start by describing how to compute the entire list of instantiations in decreasing order of probability. In the next section we show how to modify this algorithm to make it compute one instance at a time (on demand).

2 COMPUTING THE ENTIRE LIST OF INSTANTIATIONS

Pearl [1987] describes a message passing algorithm for computing the most likely instance of a singly connected Bayesian network. Our enumeration algorithm is also a message passing algorithm, and can be viewed as a generalization of Pearl’s algorithm. It operates as follows. An arbitrary node in the Bayesian network is chosen as the starting node. The starting node requests all its neighbors for messages pertaining to the computation of a list of instances sorted in decreasing order of probability. These messages pertain to instantiations of the part of the network reachable through the neighbor. When the starting node has received the messages it combines them appropriately and returns the entire list of instantiations of the Bayesian network sorted in decreasing order of probability. When a neighbor is requested to give a message, it recursively requests each of its neighbors (except for the original requesting node) for a message. It combines these messages appropriately and passes them on to the requesting node. As we will see, the independence properties of the singly connected network make such a message passing algorithm possible.

The description of the message passing algorithm thus reduces to the description of the operations at a single node. The description explains what the messages are and how the messages coming from neighbors are combined and sent to the requesting node. As noted earlier, we start by describing how to compute the entire list of instantiations in decreasing order of probability. In the next section we show how to modify this algorithm to make it compute one instance at a time (on demand).

2.1 WHAT ARE THE MESSAGES?

We now define the messages sent between nodes. We start by defining some terminology. Consider two nodes A and B that are connected by an arc in a Bayesian network R. We use $R_{A\rightarrow B}$ to refer to the set of all the nodes in the subnetwork containing A when the arc connecting A and B is disconnected. Note that the arc between A and B can be in either direction.

Suppose that node X requests node Y for a message, and let Y be a parent of X. We will refer to the mes-
sage that Y sends X as $\pi_{Y\rightarrow X}$.

Consider the case where Y contains a list of instantiations of a state x or any node reachable through X. The message is indexed by the states in X sorted by decreasing order of probability. This is the conditional probability of the instance r given X in state x. The probability is stored with each list element. Since R is a singly connected network, the elements in $R_{Y\|X}$ form a complete Bayesian network in themselves. Hence it is possible to compute the probability of each instantiation of $R_{Y\|X}$ without regard to X or any node reachable through X.

Now consider the case where Y is a child of the requesting node X in the Bayesian network. We will refer to the message that Y sends X as $\lambda_{Y\rightarrow X}$. The list of states y in Y is a vector indexed by the states y of Y. The location $\lambda_{Y\rightarrow X}[Y = y]$ contains a list of all instantiations r of $R_{Y\|X}$ such that Y has state y in i. The list elements are arranged in decreasing order of probability. The probability is stored with each list element.

Note that observing the value of X makes the nodes in $R_{Y\|X}$ independent of all nodes in $R_{X\|Y}$. Hence given a state x of X and an instantiation r of $R_{Y\|X}$, it is possible to compute the probability $P(R_{Y\|X} = r|X = x)$ locally within the subnetwork formed by the nodes in $R_{Y\|X}$.

2.2 Computing the Messages

Suppose that node X has requested node Y for a message. We describe the computations that Y performs in computing the message.

Y first recursively asks for messages from all its neighbors (except for X). After they are available, it computes the message meant for X. There are two cases: Y is either a parent or a child of X.

2.2.1 Y is a parent of X

Consider an example of the first case (Figure 1.1). Say we are given an instance $r_{P_1\|Y}$ of the set $R_{P_1\|Y}$, with $P_1 = p_2$ in $r_{P_1\|Y}$. Similarly, say we are given an instance $r_{P_2\|Y}$ of $R_{P_2\|Y}$, with $P_2 = p_2$ in $r_{P_2\|Y}$. Furthermore, let $r_{C_1\|Y}$ and $r_{C_2\|Y}$ be any two instances of $R_{C_1\|Y}$ and $R_{C_2\|Y}$.

If we append all these instances together and add in a choice of state for Y, we get a full instance $r_{Y\|X}$ of $R_{Y\|X}$. The independence properties of a singly connected Bayesian network imply that:

\[P(r_{Y\|X}) = P(Y = y|P_1 = p_1, P_2 = p_2) \times \]

\[P(r_{P_1\|Y}P(r_{P_2\|Y}) \times \]

\[P(r_{C_1\|Y}|Y = y)P(r_{C_2\|Y}|Y = y) \]

Note that $r_{Y\|X}$ is an element of $\pi_{Y\rightarrow X}[Y = y]$. Similarly, $r_{P_1\|Y}$ is an element of $\pi_{P_1\rightarrow Y}[P_1 = p_1]$ and $r_{P_2\|Y}$ is an element of $\pi_{P_2\rightarrow Y}[P_2 = p_2]$. In addition, $r_{C_1\|Y}$ is an element of $\lambda_{C_1\rightarrow Y}[Y = y]$ and $r_{C_2\|Y}$ is an element of $\lambda_{C_2\rightarrow Y}[Y = y]$. The probabilities required in Equation 1 are exactly those stored with these elements (see Section 2.1).

Figure 2 shows the algorithm that uses Equation 1 to compute the message $\pi_{Y\rightarrow X}$. The following terminology is used in this algorithm. Given two ordered lists of instances L_1 and L_2 ordered in decreasing order of probability, let $L_1 \odot L_2$ be the ordered list composed of all possible combinations of the instances where one element is chosen from L_1 and one element is chosen from L_2. The probability of the combination is the product of the stored probabilities of the components.

The discussion above leads directly to the algorithm in Figure 2. This algorithm computes $\pi_{Y\rightarrow X}$ from the messages coming to it from P_1, P_2, C_1, and C_2. In essence, for each state y of Y, the algorithm is generating every element of $\pi_{Y\rightarrow X}[Y = y]$ and ensuring that the elements are put together into a list in decreasing order of probability. The algorithm is easily

We follow Pearl in choosing π and λ as the message names.
begin Compute-π^{I}-X(Y, X)
For all states y of Y:
1. $L^{Y}_{y} = \lambda^{C_{1} \rightarrow Y} [Y = y] \otimes \lambda^{C_{2} \rightarrow Y} [Y = y]$
2. Initialize LL to the empty list. LL is a list of lists.
3. For all combinations $< p_{1}, p_{2} >$ of the states of P_{1} and P_{2}:
 a. $k = P(Y = y|P_{1} = p_{1}, P_{2} = p_{2})$.
 b. $L = k \otimes \pi^{p_{1} \rightarrow Y} [P_{1} = p_{1}] \otimes \pi^{p_{2} \rightarrow Y} [P_{2} = p_{2}] \otimes L^{X}_{y}$
 c. Add L to LL.
4. $\pi^{I}_{Y \rightarrow X} [Y = y] = \text{Merge}(LL)$
end Compute-π^{I}-X

Figure 2: Algorithm when Y is a parent of X.

begin Compute-$\lambda^{I}_{Y \rightarrow X} (Y, X)$
For all states x of X:
1. Initialize LL to the empty list. LL is a list of lists.
2. For all states y of Y:
 a. $L^{Y}_{y} = \lambda^{C_{1} \rightarrow Y} [Y = y] \otimes \lambda^{C_{2} \rightarrow Y} [Y = y]$
 b. (For all combinations $< p_{1}, p_{2} >$ of the states of P_{1} and P_{2}:
 i. Let $k = P(Y = y|P_{1} = p_{1}, P_{2} = p_{2}, X = x)$.
 ii. $L = k \otimes \pi^{p_{1} \rightarrow Y} [P_{1} = p_{1}] \otimes \pi^{p_{2} \rightarrow Y} [P_{2} = p_{2}] \otimes L^{X}_{y}$
 iii. Add L to LL.
3. $\lambda^{I}_{Y \rightarrow X} [X = x] = \text{Merge}(LL)$
end Compute-$\lambda^{I}_{Y \rightarrow X}$

Figure 3: Algorithm when Y is a child of X.

adapted to the case where Y has an arbitrary number of parents and an arbitrary number of children.

2.2.2 Y is a child of X

Now consider the case where Y is a child of X. This situation is shown in Figure 1.2. The same argument used in the first case leads to the algorithm shown in Figure 3.3

3 At the expense of clarity, this algorithm can be improved by computing and saving L^{Y}_{y} for all y before entering the main loop.

begin Compute-ordered-instances(B)
1. Choose an arbitrary node R of the Bayesian network B and add a dummy node D as parent.
2. Compute-message(R, D)
3. Return $\lambda^{R \rightarrow D} [D = d]$
end Compute-ordered-instances

begin Compute-message(Y, X)
1. For all neighbors N of requested node Y except the requesting node X do:
 Compute-message(N, Y)
2. If Y is a parent of X then:
 Compute-$\pi^{I}_{Y \rightarrow X} (Y, X)$
else
 Compute-$\lambda^{I}_{Y \rightarrow X} (Y, X)$
end Compute-message

Figure 4: Algorithm for computing ordered instance list.

2.3 COMBINING THE MESSAGES

The algorithm Compute-ordered-instances for computing the ordered list of instances of the entire Bayesian network follows directly from Compute-$\pi^{I}_{Y \rightarrow X}$ and Compute-$\lambda^{I}_{Y \rightarrow X}$.

We choose an arbitrary node R of the Bayesian network as the root node and add a dummy node D as a parent of R. D has only one state \bar{d}. Hence automatically, $P(D = \bar{d}) = 1$. Let the parents of R before adding D be the set S_{R}. Let s_{R} be a joint state of S_{R}. Assume that the conditional probability was defined by the table $P_{old}(R|S_{R})$. The conditional probability distribution of R after D’s addition is set to be $P_{new}(R = r|S_{R} = s_{R}, D = \bar{d}) = P_{old}(R = r|S_{R} = s_{r})$. This ensures that effectively, R is independent of D, and hence if D requests R for a message, then $\lambda^{R \rightarrow D}[D = \bar{d}]$ contains exactly the list of ordered instances of the entire network. The full algorithm is described in Figure 4.

3 COMPUTING ONE INSTANCE AT A TIME

The previous section developed an algorithm that computes the entire list of ordered instances. Hence, though it takes full advantage of the independence properties of the network to decompose the problem, it’s run time is inherently exponential since the number
of instances is exponential. In this section, we modify that algorithm to return one instance at a time from the ordered list. The next instance is computed only on demand, i.e., we make the computation lazy.

Specifically, all that is required is to make the computation of the list operations ⊗, ⊖ and Merge lazy. The modified Compute-ordered-instances returns a lazy list. Initially, a lazy list contains only the first element of the list. The rest of the elements are stored as a delayed computation in the list’s data structure. Each time we demand the next element, the delayed computation is called. It performs only the necessary computations to compute the next element. This element is added to the end of the list. The computation then delays itself again⁴.

Note that the list LL in Compute-πf→X(Y, X) and Compute-λf→X(Y, X) is not a lazy list. However, each element in LL is a lazy list. This observation implies that the delayed computations will perform only the list operations ⊗, ⊖ and Merge. Let the lazy versions of ⊗, ⊖, and Merge be ⊗₂, ⊖₂, and Merge₂, respectively.

The definitions of ⊗₂ and Merge₂ is straightforward. Given a constant factor k and a lazy list L₂ as argument ⊗₂ multiplies k into the probability of the first element of L₂ and returns it. It then wakes up the delayed computation in L₂. This results in the second element of L₂ being generated. It then goes to sleep. On the next call it multiplies the constant factor into the second element and returns it. It then generates the third element of L₂ and goes to sleep and so on. On each call, it performs O(1) computations (not counting the computation within L₂’s delayed computation).

On each call, Merge₂ goes through its argument LL looking at the probability of the current element of every lazy list in LL. It returns the element Cmax with maximum probability. Let Lmax be the list from which Cmax came. Cmax is popped off Lmax. Merge₂ now wakes up the computation of Lmax till the next element of Lmax is generated and this is made the current element of Lmax. It then goes to sleep. On each call, Merge₂ performs O(Length(LL)) comparisons (not counting the computation within the delayed computation of Lmax).

3.1 AN EFFICIENT WAY OF MAKING ⊗ LAZY

The operation ⊗ takes two ordered lists L₁ and L₂ as arguments and returns an ordered list where each element is a compound element composed of one element from L₁ and one element of L₂. The numerical value associated with the compound element is the product of the numerical values associated with the constituents. The list which is returned is ordered by this numerical value.

Consider the example shown in Figure 5. List L₁ is shown along the rows of a matrix and list L₂ is shown along the columns. In this example, the elements of the list are the numerical values themselves. Each location in the matrix is the product of the appropriate elements of L₁ and L₂.

An element a(i₂, j₂) in the matrix is dominated by an element a(i₁, j₁) if it is necessarily less than or equal to a(i₁, j₁) regardless of the actual values in the ordered lists L₁ and L₂. We see directly that a(i₂, j₂) is dominated by a(i₁, j₁) iff i₁ ≤ i₂ and j₁ ≤ j₂. We will call the element a(i + 1, j) as the dominated neighbor along dimension i of a(i, j). That is, an element’s dominated neighbor along a dimension is the element immediately “below” it along that dimension.

We will now describe ⊗₂. Every time ⊗₂ is called, it returns the next largest element in the matrix. The remaining elements are those elements of the matrix that have not yet been returned during previous calls to ⊗₂. ⊗₂ encodes the set of remaining matrix elements using the fringe, F. The fringe consists of those remaining elements that are not dominated by any of the other remaining elements (see Figure 5).

Each time ⊗₂ is called, it returns the maximum element, Cmax, of the fringe F and then updates the fringe. The fringe update is easily accomplished by the procedure Update-fringe shown in Figure 6. Note that this procedure does not explicitly generate the

⁴See [Charniak et al., 1987] for details on implementing lazy list operations.
begin Update-fringe
1. Choose the max element C_{max} of the fringe F and delete it from F.
2. Along each dimension K do:
 Let C_K be the dominated neighbor of C_{max} along K. If C_K is not dominated by any element in F then:
 (a) Compute C_K (i.e., actually multiple the probabilities and create the compound element). This computation might require the computation of the next yet uncomputed element of L_K. If so, awaken the computation of L_K so that this element is available.
 (b) Add C_K to the set F.
3. Return C_{max}.
end Update-fringe

Figure 6: Updating the fringe in \oplus_z.

matrix. It simply retains the matrix indices with each element of F to perform domination tests.

We have assumed in the above discussion that \oplus_z takes only two arguments. However, the identical discussion applies if there are n lists given as arguments. Instead of a two dimensional matrix, we have a n dimensional matrix. The Update-fringe procedure applies even when there are n arguments. A general implementation that can handle any number of argument lists can be used to compute $(L_1 \oplus_z L_2 \oplus_z \ldots \oplus_z L_n)$ as $\oplus_z(L_1, L_2, \ldots, L_n)$. Such an implementation is immediately applicable in Compute-$\pi_{Y \rightarrow X}(Y, X)$ and Compute-$\lambda_{Y \rightarrow X}(Y, X)$.

Let L_{result} be the entire ordered list which would result if all the elements returned successively by $\oplus_z(L_1, L_2, \ldots, L_n)$ were computed (by repeated calls to the delayed computation). Consider the situation where the first k elements of L_{result} have been computed and the rest are yet uncomputed. We see that every time we update the fringe, we add at most n elements to it. At the start of the computation the fringe consists of exactly 1 element (viz, the first element of L_{result}). Hence after k elements of L_{result} have been computed, the size of the fringe is at most nk. Examining Update-fringe, we see that when computing the $k + 1$st element, we need $O(nk)$ comparisons to determine C_{max}. In addition, we need to make $O(nk)$ domination tests along each of the n dimensions in Step 2. Each domination test requires n index comparisons. Hence the $k + 1$st element of L_{result} can be computed with $O(n^2k)$ comparisons (not counting any operations resulting from waking up computations in any argument list). We note that this is a loose bound.

In practice, as we shall see later, \oplus_z does much better.

4 COMPLEXITY OF THE FULL LAZY ALGORITHM

We now compute an upper bound on the complexity of the full lazy algorithm, i.e., the complexity of generating the kth most probable instance of the Bayesian network.

Consider a node Y which is computing a message to be sent to node X using Compute-message(Y, X). Let Size(Y) be the size of the conditional probability table of Y. That is, Y is the product of the cardinalities of Y and each of its parents. Let Degree(Y) be the number of neighbors of Y, i.e., the sum of the number of parents and number of children.

We examine the complexity of computing the message where each message element is a lazy list. Specifically, we look at the total complexity of computing the next element in each of these lazy lists. We consider only the computations performed within Y, i.e., we exclude the comparisons performed in recursive calls to Compute-message.

Examining Compute-$\pi_{Y \rightarrow X}(Y, X)$ and Compute-$\lambda_{Y \rightarrow X}(Y, X)$, we note that the Merge, and \oplus_z operations together perform $O($Size(Y)) operations.\footnote{In this analysis, we consider both comparisons and multiplications as elementary operations.}

Now consider the number of operations performed by the \oplus_z. Say we have generated the first k elements of every message element list and are looking to generate the $k + 1$st element of each of these lists. We see that the number of operations performed by \oplus_z is bounded by $O($Size(Y)Degree(Y))3k$.

Given a Bayesian network B let Size(B) = $\Sigma_{Y \in B}$Size(Y). We see that Size(B) measures the amount of information required to specify the network. Let MaxDegree(B) = max$Y \in B$Degree(Y).

Say we have generated the k most probable instances of the Bayesian network and are now computing the $k + 1$th most probable instance. We see that \oplus_z and Merge, together perform $O($Size(B)) operations. \oplus_z performs $O($Size(B)MaxDegree(B)3k$)$ operations.

Thus, the overall complexity of generating the $k + 1$st most probable instance is $O($Size(B)MaxDegree(B)3k$)$. Note that this is a loose upper bound. There are two reasons. The first is that the bound that we computed earlier on \oplus_z is loose. The second is that we are assuming that every delayed list will be forced to compute its next element in the process of computing the next most probable instance of
exactly what is computed by [Pearl, 1987]. The algorithm runs much faster (as described later).

We also note that when \(k = 1 \) the algorithm computes the most probable instance of the network. This is exactly what is computed by [Pearl, 1987].

5 MULTIPOLY-CONNECTED NETWORKS AND EVIDENCE NODES

The algorithm we have presented so far can handle only singly connected Bayesian networks. When Bayesian networks are not singly connected, there is a general scheme called conditioning which can be used to adapt the singly connected algorithms to perform Bayesian network computations [Pearl, 1988b].

Conditioning chooses a set of nodes in the Bayesian network such that observing the values of nodes leaves the resulting network singly connected. This is in accordance with the independence semantics of Bayesian networks. The set of conditioning variables is called the cutset. A computation is performed for every possible joint instance of the cutset using the singly connected algorithm and these computations are then combined. In general, domains suitable for modeling with Bayesian networks have a large number of independences and so the size of the cutset is small.

Our algorithm can be adapted directly to handle multiply connected networks using conditioning. For every joint instance \(c \) of the cutset, we compute an ordered list of instances \(L_c \) of the network. Each element \(e_c \) of \(L_c \) will be a full network instance. Each element \(e_c \) will necessarily have each of the conditioning variables in the state specified by \(c \). The probability stored with \(e_c \) will be \(P(e_c | c) \). \(L_c \) can be computed with the algorithm we have developed above. For each list \(L_c \) we then compute \(L_c' = P(c) \circ L_c \). Here \(P(c) \) is the prior probability of the cutset instance \(c \). The lists \(L_c' \) (one for each cutset instance \(c \)) are then merged to give the list of all instances in decreasing order of probability.

Let the cutset of Bayesian network \(B \) be \(C_B \). Let \(Size(C_B) \) be the size of the joint state space of the variables in the cutset. A loose upper bound for generating the \(k + 1 \)st most probable instance of the Bayesian network is then \(O(\text{Size}(C_B) \text{Size}(B) \text{MaxDegree}(B)^3 k) \). Thus, the \(k + 1 \)st most probable instance can be generated in linear time. We note however, that the problem of computing the most likely instance of a Bayesian network, in general, is NP hard. In other words, the constant factor of our linear time algorithm can be extremely large (since it depends on the network characteristics). Thus, our enumeration algorithm is practical only for sparsely connected networks, i.e., networks for which \(O(\text{Size}(C_B)) \) is small.

Finally, note that for simplicity of exposition, our algorithm description has not made any reference to evidence nodes. A very simple change makes the algorithm generate only those instances which are consistent with the evidence. These instances are generated in decreasing order of conditional probability given the evidence. The change is as follows: For each evidence node in the belief network, delete all states except the observed evidence state. Note that the probabilities associated with the generated instances will be prior probabilities (i.e., without conditioning on the evidence). However, the posterior probability and the prior probability of each of the the instances is related by the same constant, viz, the prior probability of the evidence. Hence the instances are generated in the correct order (i.e., in decreasing order of posterior probability given the evidence).

6 IMPLEMENTATION RESULTS

The algorithm described in this paper has been implemented in Lisp. The results reported below are for unoptimized compiled code in Allegro Common Lisp on a Sun Sparcstation 10. The run times reported are milliseconds of CPU time usage.

Run times for Compute-ordered-messages are shown in Table 1. The algorithm is implemented on top of IDEAL, a software package for Bayesian network inference [Srinivas and Breese, 1990]. The times shown are for two randomly generated singly connected belief networks. Given the number of nodes

Table 1: Run times for Compute-ordered instances.

Time to generate next instance	
Number of Bayes net variables	500
Max. num. of states per node	6
MaxDegree	5
Number of instances generated	600
Setup time	11 secs
Max. time	34 msec
Min. time	0 msec
Avg. time	7.8 msec

Time to generate next instance	
Number of Bayes net variables	300
Max. num. of states per node	5
MaxDegree	5
Number of instances generated	600
Setup time	2 mins
Max. time	50 msec
Min. time	0 msec
Avg. time	11.000 msec
of nodes is in the order of hundreds. The time to com­
pute the belief network is set randomly.

We see that we can compute each instance in the order
tons of milliseconds on the average when the number
of nodes is in the order of hundreds. The time to com­
pute instances varies fairly uniformly as the instances
are generated. In other words, there is no trend to­
wards increase or decrease in the average time as the
number of instances generated increases. We note here
that if the algorithm performed in accordance with its
worst case analysis there should be a linear increase in
run time. In practice, we see that the algorithm does
much better.

We note that the time to initialize the algorithm data
structures is substantial relative to the time generate
instances. Note that the initialization is a one time
cost and can be incurred during off-line precomputation.

7 RELATED WORK

In addition to its use in explanation, the computa­
tion of most likely instantiations of Bayesian networks
has been utilized in Bayesian network inference. [San­
tos and Shimony, 1994] approach the problem of com­
puting marginal probabilities in Bayesian networks by
computing the most likely instances which subsume a
particular state of a variable and summing over the
probability masses of these instances. They formulate
the problem of computing the most likely instance as
a best first search and also as an integer programming
problem. [Poole, 1993] searches through network in­
stantiations to compute prior and posterior probabili­
ties in Bayesian networks. A heuristic search function
is used. In the model-based diagnosis community, [de
Kleer, 1991] studies a closely related problem – viz,
how to focus the diagnostic search on most likely can­
didates. The common thread in the work discussed
above is a best first search through the space of net­
work instantiations – in this paper, we have used the
properties of Bayesian networks to reduce the search
problem to a direct polynomial algorithm that per­
forms no search.

The work described in this paper is most closely re­
lated to the the results presented in [Sy, 1992] and
[Li and D’Ambrosio, 1993]. In [Sy, 1992], the author
sets up a search for finding the most probable explana­
tion with a particular pruning strategy. The pruning
strategy is analyzed and found to yield a polynomial
complexity bound for generating the next most prob­
able instance. [Li and D’Ambrosio, 1993] develop an
algorithm to compute the next most likely instance by
incrementally modifying “evaluation trees” of proba­
bility terms. Their algorithm too has a polynomial
bound. Our algorithm’s complexity is similar to that
of [Sy, 1992] and [Li and D’Ambrosio, 1993]. However,
in addition, it gives the additional insight that the un­
derlying operation is simply a lazy enumeration of the
sorted list of all instantiations. This insight leads to a
very concise algorithm statement which is both easily
understood and implemented.

8 CONCLUSION

We have developed an efficient algorithm to enumerate
the instantiations of a Bayesian network in decreasing
order of probability. For singly connected networks
the algorithm runs in time polynomial in the size of
the network. An implementation of the algorithm re­
vealed excellent performance in practice. The algo­
rithm has significant applications including explana­
tion in Bayesian network-based expert systems, part­
of-speech tagging in natural language systems, and
candidate generation (i.e., computing plausible hypo­
theses) in model-based diagnosis.

As described earlier, our algorithm can be used in
model-based diagnosis to generate candidate diagnoses
in decreasing order of probability (even when com­
ponent failures are dependent). The generated can­
didates are then checked for consistency with obser­
vations of the system. We plan to explore a tighter
integration of candidate generation and consistency
checking. The basic intuition is as follows: When a
candidate is found to be inconsistent this gives us in­
formation that may allow us infer that some other can­
didates (which have not yet been generated) are nec­
essarily inconsistent. If this information is fed back
to the candidate generator in some way, it can skip
enumeration of such candidates. Such pruning has the
potential to dramatically improve the overall efficiency
of the diagnosis system.

One special case of interest is the situation where the
component failures are independent – i.e., a trivial
Bayesian network with no arcs. The problem thus re­
duces to the following: Given a set of discrete variables
X_1, X_2, \ldots, X_n and distributions $P(X_i)$, successively
compute joint instances in decreasing order of proba­
bility. We have developed a linear time algorithm for
this special case — each successive instance is com­
puted in $O(n)$. For this special case, we have also
developed a tight integration between the candidate
generation and consistency checking (along the lines
described above). The result is a highly efficient and
focused search strategy [Nayak and Srinivas, 1995].
We also plan to explore another very significant application of our algorithm - viz, enumeration of most likely solutions in Constraint Satisfaction Problems.

Acknowledgements
We would like to thank the anonymous referees for their feedback and for pointers to some related work.

References

[Charniak and Goldman, 1991] E. Charniak and R. Goldman. A probabilistic model of plan recognition. In Proceedings of AAAI-91, pages 160–165, 1991.

[Charniak et al., 1987] E. Charniak, C. K. Riesbeck, D. V. McDermott, and J. R. Meehan. Artificial Intelligence Programming. Lawrence Erlbaum Associates, Inc., Hillsdale, NJ, 1987.

[Charniak et al., 1993] E. Charniak, C. Hendrickson, N. Jacobson, and M. Perkowitz. Equations for part-of-speech tagging. In Proceedings of AAAI-93, 1993.

[Dawid, 1992] A. P. Dawid. Applications of a general propagation algorithm for probabilistic expert systems. Statistics and Computing, 2:25–36, 1992.

[de Kleer and Williams, 1989] J. de Kleer and B. C. Williams. Diagnosis with behavioral modes. In Proceedings of IJCAI-89, pages 1324–1330, 1989. Reprinted in [Hamscher et al., 1992].

[de Kleer, 1991] J. de Kleer. Focusing on probable diagnoses. In Proceedings of AAAI-91, pages 842–848, 1991. Reprinted in [Hamscher et al., 1992].

[Dean, 1990] T. Dean. Coping with uncertainty in a control system for navigation and exploration. In Proceedings of AAAI-90, pages 1010–1015, 1990.

[Hamscher et al., 1992] W. Hamscher, L. Console, and J. de Kleer. Readings in Model-Based Diagnosis. Morgan Kaufmann, San Mateo, CA, 1992.

[Heckerman et al., 1992] D. Heckerman, E. Horvitz, and B. Nathwani. Toward normative expert systems: Part I. The Pathfinder project. Methods of information in medicine, 31:90–105, 1992.

[Horvitz et al., 1988] E.J. Horvitz, J.S. Breese, and M. Henrion. Decision theory in expert systems and artificial intelligence. International Journal of Approximate Reasoning, 2:247–302, 1988.

[Levitt et al., 1989] T. Levitt, J. Mullin, and T. Binford. Model-based influence diagrams for machine vision. In Proceedings of CUAI-89, pages 233–244, 1989.

[Li and D’Ambrosio, 1993] Z. Li and B. D’Ambrosio. An efficient approach for finding the MPE in belief networks. In Proceedings of CUAI-93, pages 342–349, 1993.

[Nayak and Srinivas, 1995] P. P. Nayak and S. Srinivas. Algorithms for candidate generation and fast model-based diagnosis. Technical report, NASA Ames Research Center, 1995.

[Pearl, 1987] J. Pearl. Distributed revision of composite beliefs. Artificial Intelligence, 33:173–215, 1987.

[Pearl, 1988a] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, CA, 1988.

[Pearl, 1988b] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, Calif., 1988.

[Poole, 1993] D. Poole. The use of conflicts in searching Bayesian networks. In Proceedings of CUAI-93, pages 359–367, 1993.

[Santos and Shimony, 1994] E. Santos and S. E. Shimony. Belief updating by enumerating high-probability independence-based assignments. In Proceedings of CUAI-94, pages 506–513, 1994.

[Srinivas and Breese, 1990] S. Srinivas and J. Breese. Ideal: A software package for analysis of influence diagrams. In Proceedings of CUAI-90, pages 212–219, 1990.

[Sy, 1992] B. Sy. Reasoning MPE to multiply connected belief networks using message passing. In Proceedings of AAAI-92, pages 570–576, 1992.