Small molecule inhibitors of PKR improve glucose homeostasis in obese, diabetic mice

Takahisa Nakamura, Alessandro Arduini, Brenna Baccaro, Masato Furuhashi, and Gökhan S. Hotamisligil

Department of Genetics & Complex Diseases, Harvard School of Public Health,
Boston, MA 02115, USA

To whom correspondence should be addressed:
Gökhan S. Hotamisligil, M.D., Ph.D.
Department of Genetics and Complex Diseases
Harvard School of Public Health, Boston, MA 02115
Fax: 617 432 1941, Phone: 617 432 1950
Email: ghotamis@hsph.harvard.edu
ABSTRACT

Obesity and metabolic diseases appear as clusters, often featuring high risk for insulin resistance and type 2 diabetes, and constitute a major global health problem with limited treatment options. Previous studies have shown that double-stranded RNA dependent kinase, PKR, plays an important role in the nutrient/pathogen sensing interface and acts as a key modulator of chronic metabolic inflammation, insulin sensitivity and glucose homeostasis in obesity. Recently, pathological PKR activation was also demonstrated in obese humans, strengthening its prospects as a potential drug target. Here, we investigate the use of two structurally distinct small-molecule inhibitors of PKR in the treatment of insulin resistance and type 2 diabetes in cells and in a mouse model of severe obesity and insulin resistance. Inhibition of PKR reduced stress-induced JNK activation and IRS1 serine phosphorylation in vitro and in vivo. In addition, treatment with both PKR inhibitors reduced adipose tissue inflammation, improved insulin sensitivity, and improved glucose intolerance in mice following the establishment of obesity and insulin resistance. Our findings suggest that pharmacologically targeting PKR may be an effective therapeutic strategy for the treatment of insulin resistance and type 2 diabetes.
The link between cellular stress signals and chronic metabolic diseases including obesity-induced insulin resistance, type 2 diabetes, fatty liver disease, and atherosclerosis has been well established1–3. During the course of obesity a broad array of inflammatory and stress responses are evoked in metabolic tissues, leading to activation of several inflammatory signaling molecules including c-Jun N-terminal kinase (JNK) and inhibitory kappa B kinase (IKK). These pathways play an important role in the development of insulin resistance and diabetes by controlling the inflammatory responses in metabolic tissues, inhibition of insulin receptor signaling, and disruption of systemic glucose and lipid homeostasis4–10. Evidence emerging from experimental models has demonstrated that suppression of these broad inflammatory networks generally results in protection against obesity-induced insulin resistance and diabetes4,11–13. However, the translation of these discoveries to the clinic has been slowed by the lack of effective therapeutic entities and it remains to be determined whether these strategies may be effective interventions after the establishment of disease.

Given that metaflammation— the chronic, low-grade, metabolic inflammation characteristic of obesity— is critical in the regulation of systemic metabolic homeostasis, there is an emerging emphasis on signaling nodes and molecules which integrate pathogen and stress responses with metabolic pathways as promising targets in understanding and eventually treating these debilitating diseases. In search of such molecules that integrate endoplasmic reticulum stress and related signaling pathways with inflammatory output, insulin action and metabolic control, we recently identified the double stranded RNA dependent kinase, PKR14. PKR is activated by nutrients such as fatty acids and endoplasmic reticulum stress, controls major inflammatory signaling
cascades such as JNK, and it is required for inflammasome activity14–16. PKR also directly interacts with insulin receptor signaling components and inhibits insulin action17. There is marked activation of PKR in liver and adipose tissue of mice with dietary and genetic obesity, and two independent lines of PKR-deficient mice have been shown to be protected against obesity-induced insulin resistance and obesity-induced inflammatory changes14,17. Finally, ER stress pathways, JNK and PKR are significantly activated in human obesity, particularly in adipose and liver tissues, raising the possibility that PKR may represent a suitable target for drug development against diabetes5,16.

Based on these observations, in this study we investigated the potential of pharmacological inhibitors of PKR activity to ameliorate the inflammation and insulin resistance associated with obesity in an established disease model.

Research Design and Methods

Biochemical reagents. All biochemical reagents were purchased from Sigma-Aldrich (St. Louis, MO) unless otherwise indicated. Anti-IRS-1 and anti-phospho-IRS-1 (Ser307) were from Upstate Biotechnology (Lake Placid, NY). Antibodies against PKR, JNK1, Akt, phospho-Akt, insulin receptor β subunit, β-tubulin were from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-phospho-eIF2α (Ser52) antibody was purchased from Invitrogen (Carlsbad, CA). Anti-phospho-insulin receptor (Tyr1162/1163), PKR inhibitor (C_{13}H_{8}N_{4}OS, imoxin) and a negative control of PKR inhibitor (C_{15}H_{8}Cl_{3}NO_{2}) were purchased from Calbiochem (Gibbstown, NJ). Anti-phospho-JNK (Thr183/Tyr185) antibody was purchased from Cell Signaling Technology (Danvers, MA). Recombinant
IRS1, JNKs, p38, IKKβ, IκB, MBP, and agarose-conjugated PKR antibody were purchased from Millipore (Billerica, MA).

Kinase assays. For in vitro kinase assays, each recombinant protein- at a concentration of 10 ng/µl was mixed with 16.7 µM PKR inhibitor or DMSO in kinase buffer [25 mM Tris-HCl (pH 7.5), 5 mM β-glycerophosphate, 2 mM dithiothreitol (DTT), 0.1 mM Na3VO4, 10 mM MgCl2] and kept on ice for 10 minutes. Then, the mixture was incubated with a substrate for each measurement and 10 µCi 32P-γATP at 30°C for 20 min followed by SDS-PAGE. For PKR kinase assay with tissue or cell lysates containing 100-300 µg of protein, the lysates were mixed with agarose-conjugated PKR antibody or 1 µg of PKR antibody and protein G sepharose beads. The mixture was agitated at 4°C for 3 hours, pelleted by centrifugation and washed three times with lysis buffer followed by two additional washes with PKR kinase buffer [15 mM Hepes (pH7.4), 10 mM MgCl2, 40 mM KCl, 2 mM DTT] for equilibration. After washing with kinase buffer, the beads were incubated in 20 µl kinase buffer containing 10 µCi 32P-γATP (PerkinElmer Life Sciences, Waltham, MA) at 30°C for 20 min followed by SDS-PAGE.

Mice. Animal care and experimental procedures were performed with approval from animal care committees of Harvard University. Age-matched lean and obese ob/ob male mice, purchased from The Jackson Laboratory (Bar Harbor, ME), were treated by daily subcutaneous injection with 0.5 mg/kg/day (200-250 microL) of imoxin or vehicle (DMSO:PBS=1:19) for 4 weeks beginning at 9 weeks of age20,21. After 9 days of treatment, IP GTT was performed (0.5 g/kg glucose) after an overnight food withdrawal. After 16 days of treatment, IP ITT (2 IU/kg insulin) was performed following 6 hours
daytime food withdrawal. Vehicle (0.5% carboxymethylcellulose) or 2-aminopurine (100 mg/kg/day, 100-150 microL) was administered daily to male ob/ob mice by oral gavage for 3 weeks beginning at 7-weeks of age. After 1 week of treatment, IP GTTs were performed as described above. IP ITTs were performed following 2 weeks of 2-AP treatment.

Hyperinsulinemic-euglycemic clamp studies. Hyperinsulinemic-euglycemic clamps were performed in ob/ob mice after 18 days of PKR inhibitor treatment as described previously with slight modification. Four days before the clamp experiments, the right jugular vein of each mouse was catheterized with a polyethylene tube filled with heparin solution (100U/ml). After an overnight food withdrawal, HPLC purified 3H-glucose (0.05 µCi/min; Perkin Elmer) was infused during the 2 hour basal period. After the basal period, a 120 min hyperinsulinemic-euglycemic clamp was conducted with a primed-continuous infusion of human insulin (Novolin; Novo Nordisk) at a rate of 12.5 mU/kg/min. Blood samples were collected at 20 min intervals for the immediate measurement of plasma glucose concentration, and 25% glucose was infused at variable rates to maintain plasma glucose at basal concentrations. Insulin-stimulated whole-body glucose disposal was estimated with a continuous infusion of 3H-glucose throughout the clamps (0.1µCi/min). To estimate insulin-stimulated glucose uptake in individual tissues, 2-14C-deoxyglucose (2-14C-DG; Perkin Elmer) was administered as a bolus (10 µCi) 75 min after the start of clamps. Blood samples were collected for the determination of plasma 3H-glucose, 3H2O, and 2-14C-DG concentrations. After euthanasia, gastrocnemius muscles from both hindlimbs and epididymal adipose tissue were harvested and immediately frozen in liquid N2 and stored at -80°C until further analysis. For metabolic
cage studies, mice were placed in an indirect open circuit calorimeter (Columbus Instruments). Mice were afforded access to food and water, and data collections were made over 24 h following a 24-h acclimation period.

Portal vein insulin infusion and protein extraction from tissues. Following food withdrawal, mice were anesthetized with an IP injection of tribromoethanol (250 mg/kg), and insulin (2 IU/kg) or PBS was injected into mice through the portal vein. Three minutes after injection, tissues were removed, frozen in liquid nitrogen, and kept at -80°C until processing. For protein extraction, tissues were placed in a cold lysis buffer [25 mM Tris-HCl (pH 7.4), 1 mM EGTA, 1 mM EDTA, 10 mM Na₄P₂O₇, 10 mM NaF, 2 mM Na₃VO₄, 1% NP-40, 1 mM PMSF, 1% protease inhibitor cocktail]. After homogenization on ice, the tissue lysates were centrifuged, and the supernatants were used for western blot analysis.
RESULTS

Imoxin inhibits PKR action *in vitro* and *in vivo*

We previously showed that activated PKR inhibits insulin signaling, at least in part, through induction of IRS1 serine phosphorylation, *in vitro* and *in vivo*. This finding prompted our efforts to determine whether a chemical inhibitor of PKR activation could ameliorate insulin resistance, which is considered one of the principal drivers of metabolic syndrome. To this end, we selected an imidazolo-oxindole PKR inhibitor (imoxin), which was previously reported to inhibit PKR kinase activity and autophosphorylation\(^2\). We first examined the ability of PKR to directly phosphorylate IRS-1 in the presence or absence of imoxin *in vitro*. Addition of imoxin inhibited PKR activity and suppressed phosphorylation of IRS-1 (Figure 1A) and eIF2\(\alpha\) (Figure 1B). PKR-induced phosphorylation of IRS-1 and eIF2\(\alpha\) was not altered by a derivative of inactive oxindole, which served as a negative control (Figure 1A and 1B).

To confirm imoxin action in cells, we treated mouse embryonic fibroblasts (MEFs) with TNF\(\alpha\), which induces both PKR activation and IRS1 serine phosphorylation. In this system, imoxin treatment effectively reduced TNF\(\alpha\)–induced IRS1 serine phosphorylation (Figure 1C). Imoxin treatment also blocked activation of PKR in response to thapsigargin-induced ER stress (Figure 1D). We previously showed that PKR acts as an upstream regulator of JNK in response to metabolic or organelle stress and that genetic disruption of PKR activity uncouples these signals from JNK activation and downstream events. Accordingly, we observed here that chemical inhibition of PKR suppressed JNK activation in cells (Figure 1E). Since imoxin does not directly modify
JNK activity in vitro (Figure 1F), we conclude that the inhibition of JNK activation occurs downstream of PKR inactivation in cells. As additional controls we examined whether activity of the closely related kinase PERK and several other functionally relevant enzymes was altered in the presence of imoxin. Although imoxin treatment dose-dependently decreased PKR function and levels of phospho-JNK, these experiments did not reveal any effect of imoxin against PERK (Figure 1D), further evidence of selectivity of the inhibitor at least against these structurally or functionally related molecules. We also did not find any direct inhibitory activity of imoxin against any one of the JNK isoforms (Figure 1F), p38 (Figure 1G), or IKKβ (Figure 1H) in in vitro kinase assays.

To determine the efficacy of imoxin treatment in PKR inhibition in vivo, we treated genetically obese (ob/ob) mice with the inhibitor for 30 days (0.5 mg/kg/day, administered subcutaneously). Imoxin treatment markedly reduced PKR levels and PKR activity in WAT (Figure 1E). PKR expression is induced upon PKR activation, thus the reduction in total PKR level may be a reflection of decreased inflammation in imoxin-treated mice and is further support that this chemical targeted PKR and reduced its activity. Indeed, in accordance with our findings in cell lines, PKR inhibition also resulted in reduced JNK activity in the WAT of these mice.

Metabolic outcomes upon inhibition of PKR activity in obese and diabetic mice

To assess the effect of PKR inhibition on glucose homeostasis, we examined body weight and glucose homeostasis in wild type and ob/ob mice following daily subcutaneous administration of imoxin or vehicle for 4 weeks. Imoxin had no effect on body weight in either genotype over the course of the experiment (data not shown), but markedly
improved glucose tolerance in ob/ob mice compared to the vehicle treatment (Figure 2A). Imoxin treated ob/ob mice also demonstrated significantly improved insulin sensitivity in an insulin tolerance test (ITT) (Figure 2B). Treatment with imoxin did not produce adverse effects in liver or kidney function, as determined by ALT/AST ratio and BUN level, respectively (Figure 2C). PKR inhibition also did not alter glucose tolerance or insulin tolerance in lean control mice (Figure 2D and data not shown).

Histological examination of the tissue samples revealed that imoxin treatment did not markedly alter adipocyte size in ob/ob mice. However, the appearance of crown-like structures, indicative of mononuclear cellular infiltration, was reduced in imoxin-treated animals compared to the vehicle-treated controls (Figure 2E). Expression of the inflammatory markers Tnfa and Il6 in WAT was also significantly reduced in ob/ob mice treated with imoxin compared to controls (Figure 2F). We next examined whether inhibition of PKR, the alterations seen in inflammatory mediators, and the reduced JNK activity in WAT culminated in enhanced insulin action. Indeed, insulin-stimulated tyrosine phosphorylation of insulin receptor β subunit (IRβ) and serine phosphorylation of AKT were significantly increased in WAT of imoxin-treated ob/ob mice compared with that of vehicle-treated controls (Figure 2G). Thus systemic PKR inhibition by a small molecule reduces adipose tissue inflammation and increases insulin sensitivity in WAT of ob/ob mice.

To further explore the therapeutic potential of PKR inhibition and generate more confidence in the chemical PKR inhibition approach, we also tested a second small molecule, 2-aminopurine (2-AP), an established inhibitor of PKR that is structurally independent of imoxin. In ob/ob mice, oral administration of 2-AP (200 mg/kg/day)
improved glucose tolerance and insulin-stimulated glucose disposal (3A-B). In adipose tissue from 2-AP treated mice, we also observed a reduction in the expression of pro-inflammatory cytokines and macrophage markers (Figure 3C). Furthermore, we found that both serum alanine aminotransferase and aspartate aminotransferase levels were reduced by treatment of 2-AP, suggesting that 2-AP treatment potentially also improves liver function (Figure 3 D,E). Taken together, these results support the concept that PKR inhibition may generate metabolic benefits in mice with established disease.

Effect of PKR inhibition on whole body energy metabolism, glucose fluxes, and insulin sensitivity

We previously observed that PKR−/− mice displayed higher rates of oxygen consumption than control mice, likely contributing to their decreased weight14. This raised the possibility that the metabolic benefits of PKR deletion may be secondary to reduced weight, although PKR deficient animals were also protected against a short-term model of insulin resistance11. To determine whether small molecule inhibition of PKR similarly altered the metabolic phenotype, we performed metabolic cage studies on ob/ob mice treated with vehicle or imoxin. PKR inhibition did not alter VO₂ (Figure 4A) or heat production (Figure 4B), indicating that PKR-mediated regulation of glucose homeostasis is not dependent on weight regulation mechanisms.

To better understand the whole-body consequences of PKR inhibition on insulin sensitivity and glucose fluxes, we next performed hyperinsulinemic-euglycemic clamp studies in ob/ob mice after 18 days of treatment with imoxin. The glucose infusion rate (GIR) required to maintain blood glucose levels was significantly higher in imoxin-treated mice compared to vehicle-treated controls (Figure 4C, D) indicating increased
systemic insulin sensitivity. Insulin-stimulated glucose disposal rate (Rd) and suppression of hepatic glucose production (HGP) were significantly enhanced by imoxin treatment (Figure 4E, F). There was no significant difference in basal HGP between the vehicle and imoxin groups (Figure 4G). Imoxin treatment also induced a small but significant increase in insulin-stimulated glucose uptake in muscle (Figure 4H). These data demonstrate that chemical inhibition of PKR improves whole-body insulin sensitivity through the suppression of insulin-stimulated hepatic glucose production and enhancement of glucose disposal in peripheral tissues.
Discussion

Understanding the molecular links between obesity and metabolic syndrome may suggest novel therapeutic strategies and targets for the treatment of this prevalent disease. Our group and others have previously found that the double stranded RNA-dependent kinase PKR is activated in adipose and other tissues during obesity in mouse models and in obese humans, and is critical to the development of metainflammation and insulin resistance. Studies in two independent lines of PKR-deficiency in mice showed protection against insulin resistance and diabetes14,17. Hence, we examined whether pharmacological inhibition of PKR action could reduce obesity-induced insulin resistance and metabolic dysfunction. Here, we find that two distinct small molecule chemical inhibitors of PKR kinase activity improved glucose homeostasis and insulin sensitivity, and ameliorated adipose inflammation in genetically obese mice. Thus, our findings suggest that PKR inhibition may be a viable interventional strategy in the treatment of established metabolic disorders.

In this study, PKR inhibition had no effect on glucose tolerance or insulin sensitivity in lean mice, in agreement with our previous finding of normal glucose homeostasis in lean PKR knockout animals14. This suggests that, despite its role as a nutrient and stress sensor, PKR activity is dispensable for the modulation of insulin responsiveness and adipose inflammation under homeostatic conditions. An independent study has suggested that PKR deficiency resulting from a deletion in the RNA-binding domain may increase insulin sensitivity and metabolic health even in lean animals17. Hence, it is possible that the inhibition achieved through synthetic chemical inhibition is not fully replicating these
observations in the lean mice with whole body genetic ablation of PKR or that there are subtle differences in the deletion models. Nevertheless, human studies18,19 and multiple genetic models14,17 have provided evidence supporting the consideration of this enzyme for therapeutic purposes and should stimulate the development of orally active molecules with enhanced pharmacological properties. Total body PKR-deficiency in mice does not appear to be associated with major immunological complications. However, it is worth noting that in addition to cellular stress signals, PKR can sense pathogens and plays an important role in inflammasome activation16. Hence, it will be important to examine whether systemic PKR inhibition as utilized in this paradigm would hinder inflammatory responses to infection, especially under chronic usage, and consider alternative targeting strategies.

Our findings here also suggest that blocking PKR activity in established disease models has the ability to provide benefits independent of body weight regulation. This raises some interesting possibilities of testing the efficacy of PKR blockade in other diseases. For example, PKR has previously been implicated in mediating beta cell death as part of the anti-viral response that may precipitate the development of type 1 diabetes in some patients23. Thus, in addition to our finding that PKR inhibitors can improve glucose homeostasis in a mouse model of insulin resistance and type 2 diabetes, PKR inhibitors may also have potential as early interventional agents in type 1 diabetes models or other chronic metabolic diseases associated with similar stress, inflammatory and/or metabolic underpinnings.

In conclusion, this work further supports the hypothesis that PKR plays an important role in integrating nutrient and stress signaling and the progression and persistence of insulin
resistance during obesity. As the global chronic metabolic disease epidemic continues, it will be critical to identify new therapeutic entities that can be used to both prevent metabolic disease from developing and to treat individuals after the pathologies such as insulin resistance occur. These findings suggest PKR inhibitors may offer a strategy to alleviate metaflammation and serve as potential agents to fill this niche.
FIGURE LEGENDS

Figure 1: Imoxin inhibits PKR activity in vitro and in vivo

(A and B) PKR activity was assessed by in vitro kinase assay of PKR with IRS-1 (A) or eIF2α (B) as substrates in the presence or absence of 16.7 µM imoxin as indicated. An oxindole compound was used as a negative control for PKR inhibitor. PKR, IRS1, and eIF2a protein levels were examined by immunoblotting. (C) TNFα-induced IRS1 phosphorylation in wild-type MEFs. Cells were pretreated with 1 µM imoxin before addition of 10 ng/ml TNFα for 3 hours. IRS1 immunoprecipitates and cell lysates were analyzed by western blot. (D) Effect of PKR inhibitor (imoxin) on ER stress-induced PERK phosphorylation in wild-type MEFs. Cells were pretreated with imoxin (0.2, 0.5 µM or 1 µM) before adding of 300 nM thapsigargin for 3 hour. Cell lysates were analyzed by western. PKR activity was assessed by autophosphorylation level of PKR using ATP\[^{[γ-32P]}\] (E) PKR activity and expression and JNK1 activity in WAT of ob/ob mice after 30 days treatment with vehicle or PKR inhibitor (imoxin). PKR and JNK activities were examined by kinase assay. (F, G, and H) In vitro assay of JNK1, JNK2, and JNK3 (F), p38 (G), and IKKβ (H) kinase activity with substrates in the presence or absence of PKR inhibitor as indicated.

Figure 2: Imoxin improves glucose homeostasis and reduces inflammation in genetically obese mice

(A) Glucose tolerance tests performed after 9 days of treatment in ob/ob mice with vehicle (n = 6) or imoxin (n = 6). (B) Insulin tolerance tests performed after 16 days of
treatment in ob/ob mice with vehicle (n = 6) or imoxin (n = 6). (C) ALT/AST ratio and BUN levels were measured in the serum of ob/ob mice treated with vehicle (n=7) or imoxin (n=8). (D) Glucose tolerance test was performed on male C57BL/6J mice after 24 days. (E) Haematoxylin and eosin staining of WAT from ob/ob mice treated with vehicle or imoxin for 35 days. Scale bar, 200 µm. (F) Expression of Tnfa and Il6 in WAT of ob/ob mice treated with vehicle (n = 5) or imoxin (n = 5). (G) Insulin-stimulated IRβ tyrosine 1162/1163 and Akt serine 473 phosphorylation in WAT of ob/ob mice treated with vehicle or imoxin. Quantification of the western blot band intensity is shown in the lower panels. Data are shown as the mean ± SEM. *P<0.05, **P<0.01. Statistical difference between groups was calculated by two-way ANOVA.

Figure 3: The PKR inhibitor 2-aminopurine improves glucose homeostasis in ob/ob mice.

(A) Glucose tolerance tests performed after 7 days of treatment in ob/ob mice with vehicle (n = 8) or 2-aminopurine 2-AP (n = 8). (B) Insulin tolerance tests performed after 14 days of treatment in ob/ob mice with vehicle (n = 8) or 2-AP (n = 8). (C) Expression of Tnfa, Il6, F4/80, and Mcp-1 in WAT of ob/ob mice treated with vehicle (n = 8) or 2-AP (n = 8) for 21 days. (D and E) Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) level in ob/ob mice after 21 days of treatment with vehicle (n = 9) or 2-AP (n = 9). Data are shown as the mean ± SEM. *P<0.05, **P<0.01. Statistical difference between groups was calculated by two-way ANOVA.
Figure 4: Imoxin treatment improves systemic insulin sensitivity without altering metabolic rate.

Metabolic cage studies were performed on \textit{ob/ob} mice treated with vehicle (\textit{n}=10) or imoxin (\textit{n}=10). A) Rate of oxygen consumption (\textit{VO}_2). B) Heat Production. Hyperinsulinemic–euglycemic clamp studies were performed in \textit{ob/ob} mice after 18 days of treatment with vehicle (\textit{n}=8) or imoxin (\textit{n}=5). (C) Glucose infusion rates (GIR) during the clamp procedure. (D) Average (GIR). (E) Whole body glucose disposal rates (Rd). (F) Hepatic glucose production (HGP) during the clamp. (G) Basal HGP. (H) Tissue glucose uptake in gastrocnemius muscle. Data are shown as the mean ± SEM. *\textit{P}<0.05, **\textit{P}<0.01.

Acknowledgements

This work is supported in part by a grant from the National Institutes of Health, USA to GSH (DK052539). TN is supported by fellowships from the Human Frontier Science Foundation and American Heart Association. We are grateful to Kathryn Claiborn, Harvard School of Public Health, for editorial input.

Author contributions

GSH and TN conceived the hypothesis, designed the experiments, analyzed the results, and wrote the paper. TN, AA, MF, and BB performed experiments and analyzed results. TN and GSH wrote the paper.
References

1. Hotamisligil, G. S. Inflammation and metabolic disorders. *Nature* **444**, 860–7 (2006).

2. Hotamisligil, G. S. & Erbay, E. Nutrient sensing and inflammation in metabolic diseases. *Nature reviews. Immunology* **8**, 923–34 (2008).

3. Baker, R. G., Hayden, M. S. & Ghosh, S. NF-κB, inflammation, and metabolic disease. *Cell metabolism* **13**, 11–22 (2011).

4. Arkan, M. C. *et al.* IKK:beta links inflammation to obesity-induced insulin resistance. *Nature medicine* **11**, 191–8 (2005).

5. Cai, D. *et al.* Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. *Nature medicine* **11**, 183–90 (2005).

6. Hirosumi, J. *et al.* A central role for JNK in obesity and insulin resistance. *Nature* **420**, 333–6 (2002).

7. Kaneto, H. *et al.* Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. *Nature medicine* **10**, 1128–32 (2004).

8. Osborn, O. & Olefsky, J. M. The cellular and signaling networks linking the immune system and metabolism in disease. *Nature medicine* **18**, 363–74 (2012).

9. Chawla, A., Nguyen, K. D. & Goh, Y. P. S. Macrophage-mediated inflammation in metabolic disease. *Nature reviews. Immunology* **11**, 738–49 (2011).

10. Shoelson, S. E., Lee, J. & Goldfine, A. B. Inflammation and insulin resistance. *The Journal of clinical investigation* **116**, 1793–801 (2006).

11. Nakatani, Y. *et al.* Modulation of the JNK pathway in liver affects insulin resistance status. *The Journal of biological chemistry* **279**, 45803–9 (2004).

12. Wunderlich, F. T. *et al.* Hepatic NF-kappa B essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. *Proceedings of the National Academy of Sciences of the United States of America* **105**, 1297–302 (2008).

13. Reilly, S. M. *et al.* An inhibitor of the protein kinases TBK1 and IKK-α improves obesity-related metabolic dysfunctions in mice. *Nature medicine* **19**, 313–21 (2013).

14. Nakamura, T. *et al.* Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. *Cell* **140**, 338–48 (2010).
15. Komiya, K. *et al.* Free fatty acids stimulate autophagy in pancreatic \(\beta \)-cells via JNK pathway. *Biochemical and biophysical research communications* **401**, 561–7 (2010).

16. Lu, B. *et al.* Novel role of PKR in inflammasome activation and HMGB1 release. *Nature* **488**, 670–4 (2012).

17. Carvalho-Filho, M. A. *et al.* Double-stranded RNA-activated protein kinase is a key modulator of insulin sensitivity in physiological conditions and in obesity in mice. *Endocrinology* **153**, 5261–74 (2012).

18. Boden, G. *et al.* Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. *Diabetes* **57**, 2438–44 (2008).

19. Gregor, M. F. *et al.* Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. *Diabetes* **58**, 693–700 (2009).

20. Eley, H. L., Russell, S. T. & Tisdale, M. J. Attenuation of muscle atrophy in a murine model of cachexia by inhibition of the dsRNA-dependent protein kinase. *British journal of cancer* **96**, 1216–22 (2007).

21. Jammi, N. V, Whitby, L. R. & Beal, P. A. Small molecule inhibitors of the RNA-dependent protein kinase. *Biochemical and biophysical research communications* **308**, 50–7 (2003).

22. Hu Y, C. T. 2-Aminopurine inhibits the double-stranded RNA-dependent protein kinase both in vitro and in vivo. *J Interferon Res.* **13**, 323–8 (1993).

23. Scarim, A. L. *et al.* Mechanisms of \(\beta \)-Cell Death in Response to Double-Stranded (ds) RNA and Interferon-\(\gamma \). *The American Journal of Pathology* **159**, 273–283 (2001).
Figure 1 T. Nakamura et. al.

A

IB: IRS1

IB: PKR

IB: p-IRS1 (radio-labeled)

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR

IB: IRS1

IB: PKR

IB: PKR activity (p-PKR)

IB: IRS1

IB: PKR

IB: p-PKR
Figure 2 T. Nakamura et. al.

(A) Time after glucose injection (min) vs. Blood glucose (mg/dL)

(B) Time after insulin injection (min) vs. Blood glucose (mg/dL)

(C) ALT/AST for Veh and Imoxin

(D) Blood glucose level (mg/dL) vs. Time after glucose injection (min)

(E) Images of Veh and Imoxin

(F) Relative mRNA levels for Tnfa and p65

(G) Western blot analysis for p-IRβ, IRβ, p-Akt, and Akt
Figure 3 T. Nakamura et. al.

(A) Blood glucose (mg/dL) over time after glucose injection (min).

(B) Blood glucose (mg/dL) over time after insulin injection (min).

(C) Relative mRNA levels for different genes (Tnfα, Il6, F4/80, Mcp-1) following Veh or 2-AP treatment.

(D) Serum ALT (U/L) levels following Veh or 2-AP treatment.

(E) Serum AST (U/L) levels following Veh or 2-AP treatment.
Figure 4 T. Nakamura et. al.

A) VO₂ (mL/kg•h)
B) Heat Production (Kcal/h)

C) GIR (mg/kg/min)

D) Heat Production (Kcal/h)
E) Rd (mg/kg/min)
F) Clamp HGP (mg/kg/min)
G) Basal HGP (mg/kg/min)
H) Glucose uptake (mg/kg/min)