Gradient Estimate for Ornstein-Uhlenbeck Jump Processes*

Feng-Yu Wang
School of Mathematical Sci. and Lab. Math. Com. Sys., Beijing Normal University, Beijing 100875, China
and
Department of Mathematics, Swansea University, Singleton Park, SA2 8PP, UK
Email: wangfy@bnu.edu.cn; F.Y.Wang@swansea.ac.uk

September 24, 2010

Abstract

By using absolutely continuous lower bounds of the Lévy measure, explicit gradient estimates are derived for the semigroup of the corresponding Lévy process with a linear drift. A derivative formula is presented for the conditional distribution of the process at time $t$ under the condition that the process jumps before $t$. Finally, by using bounded perturbations of the Lévy measure, the resulting gradient estimates are extended to linear SDEs driven by Lévy-type processes.

AMS subject Classification: 60J75, 60J45.
Keywords: Lévy process, gradient estimate, subordination, compound Poisson process.

1 Introduction

It is well-known that a Lévy process can be decomposed into two independent parts, i.e. the diffusion part and the jump part. If the diffusion part is non-degenerate, regularity properties for the semigroup of the Brownian motion can be easily confirmed for the Lévy semigroup. On the other hand, when the Lévy process is pure jump, existence and regularities of the transition density have been derived by using conditions on the symbol

*Supported in part by WIMCS, NNSFC(10721091).
or the Lévy measure (see [8, 9, 12] and references within); see also [5, 11] for heat kernel upper bounds for α-stable processes with drifts. As a continuation to the recent work [18], where the coupling property and applications are studied by using absolutely continuous lower bounds of the Lévy measure, this note aims to derive gradient estimates of the Lévy semigroup in the same spirit.

Let \( L_t \) be the Lévy process on \( \mathbb{R}^d \) with symbol (see e.g. [1])

\[
\eta(u) = i\langle u, b \rangle - \langle Qu, u \rangle + \int_{\mathbb{R}^d} \left( e^{i(u,z)} - 1 - i\langle u, z \rangle 1_{\{|z|<1\}} \right) \nu(dz),
\]

where \( b \in \mathbb{R}^d, Q \) is a non-negatively definite \( d \times d \) matrix, and \( \nu \) is a Lévy measure on \( \mathbb{R}^d \). In references the Lévy symbol is also called the characteristic exponent or the Lévy exponent, and in e.g. [10], \(-\eta\) rather than \( \eta \) is called the Lévy symbol. It is well known that \( L_t \) is a strong Markov process on \( \mathbb{R}^d \) generated by

\[
(1.1) \quad \mathcal{L}f := \langle b, \nabla f \rangle + \text{Tr}(Q \nabla^2 f) + \int_{\mathbb{R}^d} \left\{ f(z + \cdot) - f - \langle \nabla f, z \rangle 1_{\{|z|\leq 1\}} \right\} \nu(dz)
\]

for \( f \in C^2_b(\mathbb{R}^d) \).

Let \( P_t \) be the semigroup for the solution of the linear stochastic differential equation

\[
(1.2) \quad \text{d}X_t = AX_t \text{d}t + dL_t,
\]

where \( A \) is a \( d \times d \) matrix. According to [4], we have

\[
(1.3) \quad P_tf(x) = \int_{\mathbb{R}^d} f(e^{tA}x + y)\mu_t(\text{d}y),
\]

where \( \mu_t \) is the probability measure on \( \mathbb{R}^d \) with characteristic function

\[
(1.4) \quad \hat{\mu}_t(z) = \exp \left[ \int_0^t \eta(e^{sA}z) \text{d}s \right], \quad z \in \mathbb{R}^d.
\]

Let \( \mathcal{B}_b(\mathbb{R}^d) \) be the set of all bounded measurable functions on \( \mathbb{R}^d \). We shall estimate \( ||\nabla P_tf||_\infty \), the uniform norm of the gradient \( \nabla P_tf \), for \( t > 0 \) and \( f \in \mathcal{B}_b(\mathbb{R}^d) \). When the Lévy measure is finite, with a positive probability the process does not jump before a fixed time \( t > 0 \). So, in this case, the semigroup is not strong Feller and thus, does not have finite uniform gradient estimate. Therefore, to derive the uniform gradient estimate, it is essential to assume that \( \nu \) is infinite. Since \( \nu \) is always finite outside a neighborhood of 0, the behavior of \( \nu \) around the origin will be crucial for the study.

We will make use of the following lower bound condition of \( \nu \):
\begin{align}
\nu(dz) & \geq |z|^{-d}S(|z|^{-2})1_{\{|z|<r_0\}}dz,
\end{align}

where \(r_0 \in (0, \infty]\) is a constant and \(S\) is a Bernstein function with \(S(0) = 0\). Let

\[
c_0 = \int_{\{|z| \leq e^{-\|A\|}\}} (1 - \cos z_1)|z|^{-d}dz,
\]

\[
\lambda_0 = \int_{\mathbb{R}^d} (r_0 \vee |z|)^{-d}S((r_0 \vee |z|)^{-2})dz,
\]

where \(z_1\) stands for the first coordinate of \(z\), and \(\|A\|\) is the operator norm of \(A\). We have \(c_0 \in (0, \infty)\). Since \(S(r) \leq cr\) holds for some constant \(c \in (0, \infty)\), we have \(\lambda_0 < \infty\). In particular, if \(r_0 = \infty\) then \(\lambda_0 = 0\). We will estimate \(\|\nabla P_t f\|_\infty\) by using the upper bound of \(A\) and the function

\[
\alpha(t) := \int_0^\infty \frac{1}{\sqrt{r}} e^{-tS(r)}dr, \quad t > 0.
\]

Obviously, if \(\lim_{r \to \infty} \frac{S(r)}{\log r} = \infty\) then \(\alpha(t) < \infty\) for all \(t > 0\).

**Theorem 1.1.** Let (1.5) hold and let \(c_0, \lambda_0, \alpha(t)\) be defined above, let \(\theta \in \mathbb{R}\) be such that 

\[
A \leq -\theta I.
\]

Then there exists a constant \(c_1 \in (0, \infty)\) depending only on \(d\) and \(\theta\) such that

\begin{align}
(1.6) \quad \|\nabla P_t f\|_\infty & \leq \|f\|_\infty c_1 e^{\lambda_0 (t \wedge 1) - \theta t + t} \left\{ \alpha(c_0(t \wedge 1)) + \frac{(t \wedge 1)S(r_0^{-2})}{r_0} \right\}
\end{align}

holds for any \(t > 0\) and \(f \in \mathcal{B}_b(\mathbb{R}^d)\). If moreover \(A = 0\), then there exists \(c_1\) depending on \(d\) such that

\begin{align}
(1.7) \quad \|\nabla P_t f\|_\infty & \leq \|f\|_\infty e^{\lambda_0 t} \left\{ \frac{1}{\sqrt{2\pi}} \alpha(c_0 t) + \frac{c_1(1 - e^{-t\lambda_0})S(r_0^{-2})}{r_0 \lambda_0} \right\}
\end{align}

holds for any \(t > 0\) and \(f \in \mathcal{B}_b(\mathbb{R}^d)\), where \(\lambda_0 = \frac{1 - e^{-t\lambda_0}}{r_0 \lambda_0} = 0\) for \(r_0 = \infty\).

Now, we consider the gradient estimate for the semigroup associated to the linear SDE driven by a Lévy-type process. Let \(\sigma(x, dy)\) be a signed kernel on \(\mathbb{R}^d\), i.e. for each \(x \in \mathbb{R}^d\), \(\sigma(x, \cdot)\) is a signed measure while for each measurable set \(A\), \(\sigma(\cdot, A)\) is a measurable function. We call \(\sigma\) bounded if

\[
\|\sigma\|_\infty := \sup_{x \in \mathbb{R}^d} |\sigma(x, \cdot)|(\mathbb{R}^d) < \infty.
\]

Let \(L_t^{+\sigma}\) be the Lévy-type process with jump measure
for a bounded $\sigma$. In other words, there exist $b \in \mathbb{R}^d$ and non-negatively definite $d \times d$-matrix $Q$ such that $L_t^{+\sigma}$ is generated by

$$L^{+\sigma} f(x) = \mathcal{L} f(x) + \int_{\mathbb{R}^d} \{f(z) - f(x)\} \sigma(x, dz) =: \mathcal{L} f(x) + \sigma f(x)$$

for $f \in C^2_b(\mathbb{R}^d)$, where $\mathcal{L}$ is in (1.6). Let $P_t^{+\sigma}$ be the semigroup associated to the linear SDE

$$dX_t = AX_t dt + dL_t^{+\sigma}.$$ 

Combining Theorem 1.1 with a standard perturbation argument, we prove the following result on the gradient estimate of $P_t^{+\sigma}$.

Corollary 1.2. If (1.5) holds for some $S$ such that $\int_0^1 \alpha(t) dt < \infty$, then there exists a constant $c \in (0, \infty)$ such that

$$\|\nabla P_t^{+\sigma} f\|_\infty \leq c \{\alpha(c_0(t \wedge 1)) + \|\sigma\|_\infty\} \|f\|_\infty, \quad t > 0, f \in \mathcal{B}_b(\mathbb{R}^d)$$

holds for any bounded $\sigma$.

To illustrate our results, we consider below two typical choices of $\rho_0$.

Example 1.3. (1) If $\nu(dz) \geq c |z|^{-d-\alpha} 1_{\{|z| \leq r_0\}}$ for some $c, r_0 > 0$ and $\alpha \in (0, 2)$, then

$$\|\nabla P_t f\|_\infty \leq c \frac{e^{-\theta t}}{(t \wedge 1)^{1/\alpha}} \|f\|_\infty, \quad t > 0, f \in \mathcal{B}_b(\mathbb{R}^d)$$

holds for some constant $c' \in (0, \infty)$. If $\alpha \in (1, 2)$, then there exists a constant $c \in (0, \infty)$ such that

$$\|\nabla P_t^{+\sigma} f\|_\infty \leq c \|f\|_\infty \left\{\frac{1}{(t \wedge 1)^{1/\alpha}} + \|\sigma\|_\infty\right\}, \quad t > 0, f \in \mathcal{B}_b(\mathbb{R}^d)$$

holds for any bounded $\sigma$.

(2) If $\nu(dz) \geq c |z|^{-d} \log^{1+\epsilon}(1 + |z|^{-2}) 1_{\{|z| \leq r_0\}}$ for some $c, r_0, \epsilon > 0$, then

$$\|\nabla P_t f\|_\infty \leq c_1 \|f\|_\infty \exp[c_2 t^{-1/\epsilon} - \theta t], \quad t > 0, f \in \mathcal{B}_b(\mathbb{R}^d)$$

holds for some constants $c_1, c_2 \in (0, \infty)$. 

4
Since for the $\alpha$-stable process one has (see Corollary 2.2 (2) below for a more general result)

$$\sup_{\|f\|_\infty \leq 1} \|P_t f\|_\infty \geq \frac{c}{t^{1/\alpha}}$$

for some constant $c > 0$. Thus, the upper bound in Example 1.3(1) is sharp.

The main idea of the proof is to compare the process with the $S$-subordinate semigroup of the Brownian motion. To this end, we shall study in the next section the gradient estimate for subordinate semigroups. We will see that to compare the original semigroup with the subordinate semigroup, the error term is given by the conditional distribution of a compound Poisson process under the condition that the process jumps before time $t$. Thus, in Section 3 we will study the gradient estimate for the corresponding conditional distribution for compound Poisson processes. In this case, a derivative formula is presented. By combining results derived in Section 2 and Section 3, we prove Theorem 1.1 in Section 4. Finally, the proofs of Corollaries 1.2 and Example 1.3 are addressed in Section 5.

## 2 Gradient estimates for subordinate semigroups

This section is a counterpart of the recent work [7] where dimension-free Harnack inequality is investigated for subordinate semigroups, see e.g. [16] and references within for potential theory and historical remarks on subordinations of the Brownian motion.

Let $(E, \rho)$ be a Polish space. For a function $f$ on $E$, define

$$|\nabla f|(x) := \limsup_{y \to x} \frac{|f(y) - f(x)|}{\rho(x, y)}, \quad x \in E.$$ 

Let $P^0_t$ be a (sub-)Markov semigroup on $B_b(E)$ such that for some positive function $\varphi$ on $(0, \infty)$,

$$|\nabla P^0_t f| \leq \|f\|_\infty \varphi(t), \quad t > 0, f \in B_b(E)$$ 

(2.1)

holds. We intend to estimate the gradient of a subordinate semigroup $P^S_t$ of $P^0_t$ induced by a Bernstein function $S$. More precisely, for any $t \geq 0$ let $\mu^S_t$ be the probability measure on $[0, \infty)$ with Laplace transformation

$$\int_0^\infty e^{-\lambda s} \mu^S_t(ds) = e^{-tS(\lambda)}, \quad \lambda \geq 0.$$ 

(2.2)

Then the $S$-subordination of $P^0_t$ is given by
The following assertion follows immediately from (2.3) and the dominated convergence theorem.

**Theorem 2.1.** If (2.1) holds with \( \int_0^\infty \varphi(s) \mu^S_t(ds) < \infty \), then

\[
|\nabla P^S_t f| \leq \|f\|_{\infty} \int_0^\infty \varphi(s) \mu^S_t(ds), \ f \in \mathcal{B}_b(E).
\]

In particular, we have the following explicit gradient estimates by using known results on diffusion semigroups.

**Corollary 2.2.** (1) Let \( E \) be a complete connected Riemannian manifold and \( P^0_t \) be the diffusion semigroup generated by \( \Delta + Z \) for a vector field \( Z \) on \( E \) such that

\( \text{Ric} - \nabla Z \geq 0 \)

holds. Then

\[
\|\nabla P^S_t f\|_{\infty} \leq \frac{\|f\|_{\infty}}{\sqrt{2\pi}} \int_0^\infty \frac{1}{\sqrt{r}} e^{-tS(r)} dr, \ t > 0, f \in \mathcal{B}_b(E).
\]

(2) Let \( P^0_t \) be generated by \( \Delta \) on \( \mathbb{R}^d \). We have

\[
\sup_{\|f\|_{\infty} \leq 1} \|\nabla P^S_t f\|_{\infty} \geq \frac{1}{\sqrt{2\pi}} \int_0^\infty \frac{1}{\sqrt{r}} e^{-tS(r)} dr.
\]

**Proof.** (1) It is well-known that the curvature condition implies (cf. [2])

\[
P^0_t f^2 - (P^0_t f)^2 \geq t|\nabla P^0_t f|^2.
\]

This implies that

\[
\|\nabla P^0_t f\|_{\infty} \leq \frac{1}{\sqrt{t}} \|f\|_{\infty}.
\]

Then the proof of (1) is finished by combining this with Theorem 2.1 and noting that

\[
\int_0^\infty \mu^S_t(ds) = \int_0^\infty \frac{1}{\sqrt{2\pi}} \int_0^\infty \frac{1}{\sqrt{r}} e^{-rs} dr \mu^S_t(ds) = \frac{1}{\sqrt{2\pi}} \int_0^\infty e^{-rs} \mu^S_t(ds) dr = \frac{1}{\sqrt{2\pi}} \int_0^\infty r^{-1/2} e^{-tS(r)} dr.
\]

6
(2) Let $P^0_t$ be generated by $\Delta$ on $\mathbb{R}^d$. We have

$$P^0_t f(x) = \frac{1}{(4\pi ts)^{d/2}} \int_{\mathbb{R}^d} e^{-|x-y|^2/(4s)} f(y) dy.$$ 

Take

$$f(x) = 1_{[0,\infty)}(x_1) - 1_{(-\infty,0)}(x_1).$$

We have $\|f\|_\infty = 1$ and

$$P^0_s f(x) = \frac{1}{2\sqrt{\pi s}} \left\{ \int_0^\infty e^{-(r-x_1)^2/(4s)} dr - \int_{-\infty}^{x_1} e^{-r^2/(4s)} dr \right\}$$

$$= \frac{1}{2\sqrt{\pi s}} \left\{ \int_{-x_1}^\infty e^{-r^2/(4s)} dr - \int_{-\infty}^{-x_1} e^{-r^2/(4s)} dr \right\}.$$ 

So,

$$\frac{d}{dx_1} P^0_s f(x) = \frac{1}{\sqrt{\pi s}} e^{-x_1^2/(4s)} \leq \frac{1}{\sqrt{\pi s}}, \quad s > 0, x \in \mathbb{R}^d.$$ 

Combining this with (2.3) and using the dominated convergence theorem, we arrive at

$$\left. \frac{d}{dx_1} P^s_t f(x) \right|_{x=0} = \frac{1}{\sqrt{\pi}} \int_0^\infty 1 \frac{1}{\sqrt{s}} \mu^S_t (ds) = \frac{1}{\sqrt{2\pi}} \int_0^\infty \frac{1}{\sqrt{r}} e^{-tS(r)} dr.$$

\[\square\]

### 3 A derivative formula

Let $\nu(dz) \geq \rho_0(z) dz =: \nu_0(dz)$ for some non-negative measurable function $\rho_0$ on $\mathbb{R}^d$ such that

\((3.1)\)

$$\lambda_0 := \int_{\mathbb{R}^d} \rho_0(z) dz \in (0, \infty).$$

Let $(L^0_t)_{t \geq 0}$ be the compound Poisson process with Lévy measure $\nu_0$. Then $L^0_t$ can be realized as

\((3.2)\)

$$L^0_t = \sum_{i=1}^{N_t} \xi_i, \quad t \geq 0,$$
where \( N_t \) is the Poisson process with rate \( \lambda_0 \) and \( \{ \xi_i \} \) are i.i.d. random variables on \( \mathbb{R}^d \) which are independent of \( (N_t)_{t \geq 0} \) and have common distribution \( \nu_0/\lambda_0 \). Here, we set \( \sum_{i=1}^{0} \xi_i = 0 \) by convention. Let \((L^1_t)_{t \geq 0}\) be the Lévy process which is independent of \((L^0_t)_{t \geq 0}\) and has Lévy measure \( \nu - \nu_0 \), such that

\[
(3.3) \quad L_t := L^1_t + L^0_t, \quad t \geq 0
\]

is the Lévy process with symbol \( \eta \). As we explained in the Introduction, to ensure the strong Feller property for a jump process, it is essential to restrict on the event that the process jumps before a fixed time. Thus, instead of \( P_t \), it is natural for us to investigate the gradient estimate for \( P^1_t \) defined by

\[
P^1_t f(x) = \mathbb{E} \left\{ f(X^x_t 1_{\{N_t \geq 1\}}) \right\}, \quad f \in \mathcal{B}_b(\mathbb{R}^d), \quad t > 0,
\]

where \( X^x_t \) solves (1.2) with initial data \( x \). The following result provides a derivative formula for this operator, which can be regarded as the jump counterpart of the Bismut-Elworthy-Li formula for diffusion processes [3, 6].

**Theorem 3.1.** Let \( \rho_0 \) be non-negative and differentiable such that \( \nu(dz) \geq \rho_0(z)dz \), \( \lambda_0 := \int_{\mathbb{R}^d} \rho_0(z)dz \in (0, \infty) \), and

\[
(3.4) \quad \int_{\mathbb{R}^d} \left\{ \sup_{x:|x-z| \leq \varepsilon} |\nabla \rho_0|(x) \right\} dz < \infty
\]

holds for some \( \varepsilon > 0 \). Then for any \( t > 0 \) and \( f \in \mathcal{B}_b(\mathbb{R}^d) \),

\[
(3.5) \quad \nabla P^1_t f(x) = -\mathbb{E} \left\{ f(X^x_t 1_{\{N_t \geq 1\}}) \frac{1}{N_t} \sum_{i=1}^{N_t} e^{A^* \tau_i} \nabla \log \rho_0(\xi_i) \right\},
\]

where \( \tau_i \) is the \( i \)-th jump time of \((N_t)_{t \geq 0}\) and \( A^* \) is the transposition of \( A \). Consequently, if \( A \leq -\theta I \) then

\[
\| \nabla P^1_t f \|_\infty \leq \| f \|_\infty \frac{e^{\theta t}(1 - e^{-\lambda_0 t})}{\lambda_0} \int_{\mathbb{R}^d} |\nabla \rho_0|(z)dz, \quad t > 0, \quad f \in \mathcal{B}_b(\mathbb{R}^d).
\]

**Proof.** We shall make use of a formula for random shifts of the compound Poisson process derived in [145]. Let \( \Lambda(dw) \) be the distribution of \( L^0 := (L^0_t)_{t \geq 0} \) which is a probability measure on the path space

\[
W = \left\{ \sum_{i=1}^{\infty} x_i 1_{[t_i, \infty)} : i \in \mathbb{N}, x_i \in \mathbb{R}^d \setminus \{0\}, 0 \leq t_i \uparrow \infty \text{ as } i \uparrow \infty \right\}
\]
equipped with the \(\sigma\)-algebra induced by \(\{w \mapsto w_t : t \geq 0\}\).

Let \((\tau, \xi)\) be a \([0, t] \times \mathbb{R}^d\)-valued random variable such that the joint distribution of \((L^0, \tau, \xi)\) is

\[ g(w, s, z)\Lambda(dw)ds\nu_0(dz). \]

Let \(\Delta w_t = w_t - w_{t-}\) and

\[ U(w) = \sum_{\Delta w_t \neq 0} g(w - \Delta w_t 1_{[t, \infty)}, t, \Delta w_t). \]

By [18, Corollary 2.3], for any bounded measurable function \(F\) on the path space of \(L^0\), one has

\[ \mathbb{E}(F1_{\{U > 0\}})(L^0) = \mathbb{E}\left\{ F1_{\{U > 0\}} \right\}(L^0 + \xi 1_{[\tau, \infty)}). \]

Now, let \((\tau, \xi)\) be independent of \((L^1_t, L^0_t)_{t \geq 0}\) with distribution

\[ \frac{1}{t\lambda_0} 1_{[0,t]}(s)ds\nu_0(dz). \]

We have \(g(w, s, z) = \frac{1}{t\lambda_0} 1_{[0,t]}(s)\). Since \(\tau\) is independent of \(L^0\) so that with probability one \(\tau(\leq t)\) is not a jump time of \(L^0\), and since \(\xi \neq 0\) a.s., we have

\[ U(L^0 + \xi 1_{[\tau, \infty)}) = \frac{N_t + 1}{\lambda_0 t}. \]

Since \(Y_t := \int_0^t e^{(t-s)A}dL_s^1\) is independent of

\[ e^{At}x + \int_0^t e^{A(t-s)}dL_s^0, \]

it follows from (3.6) that for any \(z_0 \in \mathbb{R}^d\) and \(\varepsilon \in (-1, 1),

\[ P_t^1 f(x + \varepsilon z_0) = \mathbb{E}\left\{ f\left( Y_t + e^{At}(x + \varepsilon z_0) + \int_0^t e^{A(t-s)}dL_s^0 \right) 1_{\{N_t \geq 1\}} \right\} \]

\[ = \lambda_0 t\mathbb{E}\left\{ \frac{f\left( Y_t + e^{At}(x + \varepsilon z_0) + \int_0^t e^{A(t-s)}d\{L^0 + (\xi + \varepsilon e^{A\tau}z_0) 1_{[\tau, \infty)}\}_s \right)}{N_t + 1} \right\} \]

On the other hand, since the joint distribution of \((L^0, \tau, \xi + \varepsilon e^{A\tau}z_0)\) is
\[ \frac{1}{\lambda_0t} \int_{[0,t]}(s) \frac{\rho_0(z - \varepsilon e^{At}z_0)}{\rho_0(z)} \Lambda(dw)ds \nu_0(dz), \]

(3.6) holds for \( \xi' := \xi + \varepsilon e^{\tau A}z_0 \) in place of \( \xi \) with

\[ U(L^0) = \frac{1}{\lambda_0t} \sum_{i=1}^{N_i} \frac{\rho_0(\xi_i - \varepsilon e^{\tau_i A}z_0)}{\rho_0(\xi_i)}. \]

Consequently, for any \( F \geq 0 \), using \( FU \) in place of \( F \) in (3.6) one obtains

\[ \mathbb{E}\{F(L^0)U(L^0)1_{\{N_i \geq 1\}}\} = \mathbb{E}F(L^0 + \xi'1_{[r,\infty)}). \]

Taking \( n_t(w) = \sum_{s \leq t} 1_{\{\Delta w_s \neq 0\}} \) and

\[ F(w) = \frac{f(z + \int_0^t e^{(t-s)A}dw_s)}{n_t(w)} 1_{\{n_t(w) \geq 1\}}, \quad w \in W \]

for \( z \in \mathbb{R}^d \), we arrive at

\[ \frac{1}{\lambda_0t} \mathbb{E}\left\{ f \left( z + \int_0^t e^{(t-s)A}dL_s \right) \frac{1_{\{N_i \geq 1\}}}{N_t} \sum_{i=1}^{N_i} \frac{\rho_0(\xi_i - \varepsilon e^{\tau_i A}z_0)}{\rho_0(\xi_i)} \right\} \]

\[ = \mathbb{E}\left\{ f \left( z + \int_0^t e^{A(t-s)}d\{L^0 + (\xi + \varepsilon e^{\tau A}z_0)1_{[r,\infty)}\} \right) \frac{1_{\{n_t(w) \geq 1\}}}{N_t + 1} \right\}, \quad z \in \mathbb{R}^d. \]

Combining this with (3.7), we obtain

\[ P^1_t f(x + \varepsilon z_0) = \mathbb{E}\left\{ f(X^x_{t})1_{\{N_i \geq 1\}} \frac{1}{N_t} \sum_{i=1}^{N_t} \frac{\rho_0(\xi_i - \varepsilon e^{\tau_i A}z_0)}{\rho_0(\xi_i)} \right\}. \]

Therefore, for any \( \varepsilon \neq 0 \) we have

\[ \frac{P^1_t f(x + \varepsilon z_0) - P^1_t f(x)}{\varepsilon} = \mathbb{E}\left\{ f(X^x_{t})1_{\{N_i \geq 1\}} \frac{1}{N_t} \sum_{i=1}^{N_t} \frac{\rho_0(\xi_i - \varepsilon e^{\tau_i A}z_0) - \rho_0(\xi_i)}{\varepsilon \rho_0(\xi_i)} \right\}. \]

Noting that for \( i \leq N_t \) one has \( \tau_i \leq t \) so that \( e^{\tau_i A}z_0 \) is bounded, and noting that for each \( i \) one has

\[ \lim_{\varepsilon \downarrow 0} \frac{\rho_0(\xi_i - \varepsilon e^{\tau_i A}z_0) - \rho_0(\xi_i)}{\varepsilon \rho_0(\xi_i)} = -\langle e^{\tau_i A}z_0, \nabla \log \rho_0(\xi_i) \rangle = -\langle z_0, e^{\tau_i A} \nabla \log \rho_0(\xi_i) \rangle, \]

by (3.4) we are able to use the dominated convergence theorem to derive (3.5) by letting \( \varepsilon \to 0 \) in (3.8). \( \square \)
4 Proof of Theorem 1.1

4.1 Proof of (1.7) for $A = 0$

We shall first consider the case where $r_0 = \infty$ then pass to finite $r_0$ by using Theorem 3.1.

(I) For $r_0 = \infty$, i.e.

(4.1) $\nu(dz) \geq \lvert z \rvert^{-d} S(\lvert z \rvert^2) dz.$

Then

$\eta_1(u) := \int_{\mathbb{R}^d} \left( e^{i\langle u, z \rangle} - 1 - i\langle u, z \rangle 1_{\{\lvert z \rvert < 1\}} \right) \lvert z \rvert^{-d} S(\lvert z \rvert^2) dz$

$\eta_2(u) := \eta(u) - \eta_1(u) = i\langle u, b \rangle - \langle Qu, u \rangle + \int_{\mathbb{R}^d} \left( e^{i\langle u, z \rangle} - 1 - i\langle u, z \rangle 1_{\{\lvert z \rvert < 1\}} \right) \nu(dz) - \lvert z \rvert^{-d} S(\lvert u \rvert^2) dz$

provide two Lévy symbols. Noting that $S(\lvert z \rvert^{-2}) \geq 1_{\{\lvert z \rvert \leq \lvert u \rvert^{-1}\}} S(\lvert u \rvert^2)$ and

$- \int_{\{\lvert z \rvert \leq \lvert u \rvert^{-1}\}} \left( e^{i\langle u, z \rangle} - 1 - i\langle u, z \rangle 1_{\{\lvert z \rvert < 1\}} \right) \lvert z \rvert^{-d} dz$

$= \int_{\{\lvert z \rvert \leq \lvert u \rvert^{-1}\}} (1 - \cos \langle u, z \rangle) \lvert z \rvert^{-d} dz$

$= \int_{\{\lvert z \rvert \leq 1\}} (1 - \cos \left( \frac{u}{\lvert u \rvert}, z \right)) \lvert z \rvert^{-d} dz$

$= \int_{\{\lvert z \rvert \leq 1\}} (1 - \cos \theta) \lvert z \rvert^{-d} dz = c_0 \in (0, \infty),$

we see that

$u \mapsto \eta(u) + c_0 S(\lvert u \rvert^2)$

$= \eta_2(u) + \int_{\mathbb{R}^d} \left( e^{i\langle u, z \rangle} - 1 - i\langle u, z \rangle 1_{\{\lvert z \rvert < 1\}} \right) \lvert z \rvert^{-d} \left\{ S(\lvert z \rvert^{-2}) - S(\lvert u \rvert^2) 1_{\{\lvert z \rvert \leq \lvert u \rvert^{-1}\}} \right\} dz$

is also a Lévy symbol. Let $P_t^S$ be the semigroup of the Lévy process with Lévy symbol $-c_0 S(\lvert \cdot \rvert^2)$, and let $\tilde{P}_t^S$ be the one with Lévy symbol $\eta + c_0 S(\lvert \cdot \rvert^2)$. We have

(4.2) $P_t = P_t^S \tilde{P}_t^S.$
Since $P_t^S$ is the $c_0 S$-subordination of the semigroup generated by $\Delta$ on $\mathbb{R}^d$, according to Corollary 2.2 for $E = \mathbb{R}^d$ and $Z = 0$,

\begin{equation}
\|\nabla P_t^S f\|_\infty \leq \|f\|_\infty \int_0^\infty \frac{1}{\sqrt{2\pi r}} e^{-c_0 t S(r)} dr = \frac{1}{\sqrt{2\pi}} \alpha(c_0 t) \|f\|_\infty.
\end{equation}

Combining this with (4.2) we derive

\begin{equation}
\|\nabla P_t f\|_\infty \leq \frac{1}{\sqrt{2\pi}} \alpha(c_0 t) \|f\|_\infty.
\end{equation}

Thus, the desired assertion holds if $r_0 = \infty$.

(II) For $r_0 \in (0, \infty)$. Take

$$
\rho_0(z) = (r_0 \vee |z|)^{-d} S((r_0 \vee |z|)^{-2}).
$$

Then

\begin{equation}
\bar{\nu}(dz) := \nu(dz) + \rho_0(z) dz \geq |z|^{-d} S(|z|^{-2}) dz.
\end{equation}

Let $\bar{L}_t^0$ be the compound Poisson process with Lévy measure $\rho_0(z) dz$, and let

$$
\bar{P}_t^1 f(x) = \mathbb{E}\{1_{\{\tilde{\tau}_1 \leq t\}} f(x + \bar{L}_t^0)\},
$$

where $\tilde{\tau}_1$ is the first jump time of $\bar{L}_t^0$. Let $L_t$ be the Lévy process with Lévy symbol $\eta$ which is independent of $\bar{L}_t^0$. Then $L_t := L_t + \bar{L}_t^0$ is the Lévy process with Lévy symbol

$$
u(u) \mapsto \eta(u) + \int_{\mathbb{R}^d} (\cos(u, z) - 1) \rho_0(z) dz.
$$

Therefore,

$$
\bar{P}_t f(x) := \mathbb{E} f(x + \bar{L}_t)
= \mathbb{E}\{f(x + L_t) 1_{\{\tilde{\tau}_1 > t\}}\} + \mathbb{E}\{f(x + L_t + \bar{L}_t^0) 1_{\{\tilde{\tau}_1 \leq t\}}\}
= e^{-\lambda_0 t} P_t f(x) + P_t^1 P_t f(x).
$$

This implies that

\begin{equation}
P_t f(x) = e^{\lambda_0 t} (\bar{P}_t f - P_t^1 P_t f)(x).
\end{equation}
According to (4.5) and (I), (4.4) holds for \(\bar{P}_t\) in place of \(P_t\), i.e.

\[
\|\nabla \bar{P}_t f\|_\infty \leq \frac{1}{\sqrt{2\pi}} \alpha (c_0 t) \|f\|_\infty.
\]  

(4.7)

On the other hand, we have

\[
|\nabla \rho_0(z)| \leq 1_{\{|z| \geq r_0\}} \left\{ d|z|^{-d-1} S(r_0^{-2}) + 2|z|^{-d-3} S'(\|z\|^{-2}) \right\}.
\]

Since \(S'\) is decreasing, \(S\) is increasing and \(S(0) = 0\), from this we may find a constant \(c\) depending only on \(d\) such that

\[
\int_{\mathbb{R}^d} \left\{ \sup_{x:|x-z|<r_0/2} |\nabla \rho_0(x)| \right\} dz \leq c \int_{r_0}^\infty r^{-2} \left\{ S(r_0^{-2}) + r^{-2} S'(r^{-2}/4) \right\} dr
\]

\[
= c \int_{r_0}^\infty \left\{ \frac{S(r_0^{-2})}{r^2} - \frac{d}{r} S(r^{-2}/4) \right\} dr \leq \frac{c}{r_0} S(r_0^{-2}) + \frac{2c}{r_0} S(r_0^{-2}/4) \leq \frac{3c}{r_0} S(r_0^{-2}).
\]

Therefore, it follows from Theorem 3.1 with \(\theta = 0\) that

\[
\|\nabla \bar{P}_t f\|_\infty \leq \frac{3c S(r_0^{-2})(1 - e^{-\lambda_0 t})}{r_0 \lambda_0} \|f\|_\infty
\]

(4.8)

\[
\leq \frac{3c S(r_0^{-2}) t}{r_0} \|f\|_\infty, \quad t > 0.
\]

Combining this with (4.6) and (4.7) we obtain the desired gradient estimate (1.7).

4.2 Proof of (1.6) for \(A \neq 0\)

(III) We first observe that it suffices to prove (1.6) for \(t \in (0, 1]\). Assume that (1.6) holds for \(t \in (0, 1]\). By the semigroup property we have

\[
|\nabla P_t f| \leq |\nabla P_{\lambda_1}(P_{t-1} f)| \leq c_1 \alpha (c_0 (t \wedge 1)) \|f\|_\infty, \quad t > 0
\]

for some constant \(c_0, c_1 \in (0, \infty)\). So, the desired inequality (1.6) holds for \(\theta \leq 0\). Next, since \(A \leq -\theta I\) implies that \(|X_t^x - X_t^y| \leq e^{-\theta t}|x - y|\), we have

\[
\frac{|P_t f(x) - P_t f(y)|}{|x - y|} \leq \frac{|\mathbb{E} P_t f(X_{t-1}^x) - \mathbb{E} P_t f(X_{t-1}^y)|}{|x - y|}
\]

\[
\leq e^{-\theta (t-1)} \mathbb{E} \left\{ \frac{|P_t f(X_{t-1}^x) - P_t f(X_{t-1}^y)|}{|X_{t-1}^x - X_{t-1}^y|} \right\}.
\]
we arrive at
\[ |\nabla P_t f(x)| \leq e^{-\theta(t-1)}|\nabla P_t f(x)| \leq c_1 e^{-\theta(t-1)} \alpha(c_0(t \wedge 1)) \|f\|_\infty, \quad t > 1. \]
That is, (1.6) holds also for \( t > 1 \) with a different constant \( c_1 \).

(IV) For \( r_0 = \infty \) and \( t \in (0, 1] \). Let
\[
\eta_1(u) = \int_{\mathbb{R}^d} (e^{i(u,z)} - 1) |z|^{-d} S(|z|^{-2}) dz
\]
\[
= \int_{\mathbb{R}^d} (\cos(u, z) - 1) |z|^{-d} S(|z|^{-2}) dz,
\]
and \( \eta_2 = \eta - \eta_1 \). By (1.1), both \( \eta_1 \) and \( \eta_2 \) are Lévy symbols. We have
\[
\eta_1(e^{sA^*}u) + c_0 S(|u|^2)
\]
\[
= \int_{\mathbb{R}^d} (\cos(z, e^{sA^*}u) - 1) |z|^{-d} S(|z|^{-2}) dz + c_0 S(|u|^2)
\]
\[
= \int_{\mathbb{R}^d} \left( \cos \left( \frac{z}{|e^{sA^*}u|} \right) - 1 \right) |z|^{-d} S(|z|^{-2} |e^{sA^*}u|^2) dz + c_0 S(|u|^2)
\]
\[
= \int_{\mathbb{R}^d} (\cos z_1 - 1) |z|^{-d} \left\{ S(|z|^{-2} |e^{sA^*}u|^2) - S(|u|^2) 1_{\{|z| \leq e^{-\|A\|} \}} \right\} dz
\]
\[
= \int_{\mathbb{R}^d} (e^{i(u,z)} - 1 - i(u, z) 1_{\{|z| < 1\}}) |z|^{-d} \left\{ S(|z|^{-2} |e^{sA^*}u|^2) - S(|u|^2) 1_{\{|z| \leq e^{-\|A\|} \}} \right\} dz.
\]
Since for \( s \in [0, 1] \)
\[
S(|z|^{-2} |e^{sA^*}u|^2) \geq S(|u|^2) 1_{\{|u| \leq e^{-\|A\|} \}},
\]
this implies that
\[
u \mapsto \eta_1(e^{sA^*}u) + c_0 S(|u|^2)
\]
is a Lévy symbol. In particular, there exists a probability measure \( \pi_t \) on \( \mathbb{R}^d \) with log-characteristic function
\[
\log \hat{\pi}_t(u) = \int_0^t \eta(e^{sA^*}u) ds + tc_0 S(|u|^2)
\]
\[
= \int_0^t \eta_2(e^{sA^*}u) ds + \int_0^t \left\{ \eta_1(e^{sA^*}u) ds + c_0 S(|u|^2) \right\} ds.
\]
Now, letting $P_t^S$ be the semigroup for the Lévy process with Lévy symbol $-c_0 S(|\cdot|^2)$, and letting
\[ \tilde{P}_t f(x) = \int_{\mathbb{R}^d} f(x + z) \pi_t(dz), \]
we obtain from (1.3), (1.4) and the definition of $\pi_t$ that
\[ P_t f(x) = P_t^S \tilde{P}_t f(e^{tA} x). \]
Combining this with (4.3) we obtain
\[ \|\nabla P_t f\|_\infty \leq \|f\|_\infty \alpha(c_0 t). \]
(V) For $t \in (0, 1]$ and $r_0 \in (0, \infty)$. Let $\rho_0$, $\bar{L}_0^t$ and $\bar{L}_t$ be in (II). Let
\[ \bar{P}_t^1 f(x) = \mathbb{E}\left\{ f(e^{tA} x + \int_0^t e^{(t-s)A} d\bar{L}_s^0) 1\{\tau_1 \leq t\} \right\}, \]
\[ \bar{P}_t f(x) = \mathbb{E} f(e^{tA} x + \int_0^t e^{(t-s)A} d\bar{L}_s). \]
Then (4.6) holds. Since (4.1) holds for $\bar{\nu}$ in place of $\nu$, according to (IV) and the argument leading to (4.8) using Theorem 3.1, there exists a constant $c \in (0, \infty)$ depending only on $d$ and $\theta$ such that
\[ \|\nabla \bar{P}_t\|_\infty \leq \|f\|_\infty \alpha(c_0 t), \quad \|\nabla \bar{P}_t^1 f\|_\infty \leq \frac{cS(r_0^{-2}) t}{r_0} \|f\|_\infty. \]
Combining this with (4.6) we derive the desired gradient estimate (1.6).

5 Proofs of Corollary 1.2 and Example 1.3

Proof of Corollary 1.2. Since the gradient estimate $\|\nabla P_t^{+\sigma} f\|_\infty \leq c(t) \|f\|_\infty$ is equivalent to
\[ |P_t^{+\sigma} f(x) - P_t^{+\sigma} f(y)| \leq c(t) \|f\|_\infty |x - y|, \quad x, y \in \mathbb{R}^d, \]
by the monotone class theorem it suffices to prove for $f \in C_0^2(\mathbb{R}^d)$. By (1.8), in this case we have
\[ \frac{d}{ds} P_s^{-} P_t^{+\sigma} f = P_s(\mathcal{L} - \mathcal{L}^{+\sigma}) P_t^{+\sigma} f = -P_s(\sigma P_t^{+\sigma} f), \quad s \in [0, t]. \]
Consequently,
\[ P_{t}^{\pm \sigma} f = P_{t} f + \int_{0}^{t} P_{s}(\sigma P_{t-s}^{\pm \sigma} f) ds. \]

Combining this with Theorem 1.1, we finish the proof. \( \square \)

**Proof of Example 1.3.** (1) follows immediately from Theorem 1.1 and Corollary 1.2 by taking \( S(r) = cr^{\alpha/2} \). To prove (2), we take

\[ S_{\varepsilon}(r) = \log^{1+\varepsilon}(1 + r^{1/(1+\varepsilon)}). \]

According to [15], for any Bernstein function \( S \) and any \( \delta > 1 \), \( r \mapsto S_{\delta}(r^{1/\delta}) \) is again a Bernstein function. In this case we have

\[ \nu(dz) \geq c1_{\{|z| \leq r_{0} \wedge 1\}}|z|^{-d}S_{\varepsilon}(|z|^{-2})dz. \]

Then the desired gradient estimate follows immediately from Theorem 1.1. \( \square \)

**Acknowledgement.** The author would like to thank Dr. Jian Wang for a number of corrections and comments on earlier versions of the paper, and to thank Professors M. Röckner, R. Schilling, R. Song, and L. Wu for useful conversations. He also like to thank the referee for careful comments and corrections.

**References**

[1] D. Applebaum, *Lévy Processes and Stochastic Calculus*, Cambridge University Press, 2004.

[2] D. Bakry, *On Sobolev and logarithmic Sobolev inequalities for Markov semigroups*, “New Trends in Stochastic Analysis” (Editors: K. D. Elworthy, S. Kusuoka, I. Shigekawa), Singapore: World Scientific, 1997.

[3] J. M. Bismut, *Large Deviations and the Malliavin Calculus*, Boston: Birkhäuser, MA, 1984.

[4] V. I. Bogachev, M. Röckner, B. Schmuland, *Generalized Mehler semigroups and applications*, Probab. Th. Relat. Fields 105(1996), 193–225.

[5] K. Bogdan, T. Jakubowski, *Estimate of heat kernel of fractional Laplacian perturbed by gradient operators*, Comm. Math. Phys. 271(2007), 179–198.

[6] K.D. Elworthy and X.-M. Li, *Formulae for the derivatives of heat semigroups*, J. Funct. Anal. 125(1994), 252–286.
[7] M. Gordina, M. Röckner, F.-Y. Wang, *Harnack inequalities for subordinate semigroups*, to appear in Potential Analysis. arXiv: 1004.3016.

[8] V. Knopova, R.L. Schilling, *A note on the existence of transition probability densities for Lévy processes*, arXiv:1003.1419.

[9] V. Knopova, R.L. Schilling, *Transition density estimates for a class of Lévy and Lévy-type processes*, arXiv:0912.1482v1.

[10] N. Jacob, *Pseudo Differential Operators and Markov Processes (Volume I)*, Imperial College Press, London, 2001.

[11] T. Jakubowski, K. Szczypkowski, *Time-dependent gradient perturbations of fractional Laplacian*, J. Evol. Equ. 10(2010), 319–339.

[12] E. Priola, J. Zabczyk, *Densities for Ornstein-Uhlenbeck processes with jumps*, Bull. Lond. Math. Soc. 41(2009), 41–50.

[13] M. Röckner, S.-X. Ouyang, F.-Y. Wang, *Harnack inequalities and applications for Ornstein-Uhlenbeck semigroups with jump*, arXiv: 0908.2889.

[14] M. Röckner, F.-Y. Wang, *Harnack and functional inequalities for generalized Mehler semigroups*, J. Funct. Anal. 203(2003), 237–261.

[15] L. R. Schilling, *Subordination in the sense of Bochner and a related functional calculus*, J. Austral. Math. Soc. Ser. A 64(1998), 368–396.

[16] R. Song, Z. Vondraček, *Potential theory of subordinate Brownian motion*, in “Potential Analysis of Stable Processes and its Extensions”, 87-176, Lecture Notes in Math. Vol. 1980, Springer, Berlin, 2009.

[17] F.-Y. Wang, *On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups*, Probab. Theory Relat. Fields 108(1997), 87–101.

[18] F.-Y. Wang, *Coupling for Ornstein-Uhlenbeck Processes with Jumps*, to appear in Bernoulli. arXiv: 1002.2890.