Beyond the Standard Model Effective Field Theory: The Singlet Extended Standard Model

Ian Lewis
University of Kansas

S. Adhikari, I.M. Lewis, M. Sullivan, Physical Review D (2021) 075027

Phenomenology Symposium 2021
May 26, 2021
Approaches for Beyond the Standard Model Physics

- Complete theories with many particles.
 - SUSY, Composite Higgs Models, etc. However, the particle zoo has not appeared.
Approaches for Beyond the Standard Model Physics

- Complete theories with many particles.
 - SUSY, Composite Higgs Models, etc. However, the particle zoo has not appeared.
- Alternative approaches: Simplified models and effective field theories.
Complete theories with many particles.

- SUSY, Composite Higgs Models, etc. However, the particle zoo has not appeared.

Alternative approaches: Simplified models and effective field theories.

Simplified Models:

- Assume only one or two particles accessible at the LHC, the rest are too heavy.
- Choose particles that are ubiquitous in more complete beyond the Standard Model models.

Effective Field Theory:

Assume only Standard Model particles accessible at the LHC.

Write a power expansion in inverse powers of a heavy new physics scale Λ:

$$L = L_{SM} + \sum_{k} c_{1,k} \Lambda^{-1} + \sum_{k} c_{2,k} \Lambda^{-2} + \cdots$$

The operators consist of Standard Model fields and are invariant under Standard Model symmetries.

Any new high scale physics will induce these operators: the Standard Model Effective Field Theory is inevitable.

Note: you can also classify according to topology.
Complete theories with many particles.

- SUSY, Composite Higgs Models, etc. However, the particle zoo has not appeared.

Alternative approaches: Simplified models and effective field theories.

Simplified Models:
- Assume only one or two particles accessible at the LHC, the rest are too heavy.
- Choose particles that are ubiquitous in more complete beyond the Standard Model models.

Effective Field Theory:
- Assume only Standard Model particles accessible at the LHC.
- Write a power expansion in inverse powers of a heavy new physics scale Λ:

$$\mathcal{L} = \mathcal{L}_{SM} + \sum_{k} \frac{c_{1,k}}{\Lambda} O_{1,k} + \sum_{k} \frac{c_{2,k}}{\Lambda^2} O_{2,k} + \cdots$$

The operators consist of Standard Model fields and are invariant under Standard Model symmetries.

Any new high scale physics will induce these operators: the Standard Model Effective Field Theory is inevitable.
Approaches for Beyond the Standard Model Physics

- Complete theories with many particles.
 - SUSY, Composite Higgs Models, etc. However, the particle zoo has not appeared.
- Alternative approaches: Simplified models and effective field theories.
 - Simplified Models:
 - Assume only one or two particles accessible at the LHC, the rest are too heavy.
 - Choose particles that are ubiquitous in more complete beyond the Standard Model models.
 - Effective Field Theory:
 - Assume only Standard Model particles accessible at the LHC.
 - Write a power expansion in inverse powers of a heavy new physics scale Λ:
 \[
 \mathcal{L} = \mathcal{L}_{SM} + \sum_{k} \frac{c_{1,k}}{\Lambda} O_{1,k} + \sum_{k} \frac{c_{2,k}}{\Lambda^2} O_{2,k} + \cdots
 \]
 - The operators consist of Standard Model fields and are invariant under Standard Model symmetries.
 - Any new high scale physics will induce these operators: the Standard Model Effective Field Theory is inevitable.
- Note: you can also classify according to topology.
 N. Craig, P. Draper, KC Kong, Y. Ng, D. Whiteson, arXiv:1610.09392;
 J.H. Kim, KC. Kong, B. Nachman, D. Whiteson JHEP 04 (2020) 030
Simplified Models

- Assume only one or two particles accessible at the LHC, the rest are too heavy.

\[
\begin{align*}
\text{Other New Physics} & \gtrsim \Lambda \\
\text{LHC Energy} & \sim 13 \text{ TeV} \\
\text{Handful new states} & \\
\text{SM} & \lesssim v
\end{align*}
\]

- As with Standard Model Effective Field Theory, the new physics beyond the LHC reach will inevitably manifest itself as an EFT:

\[
L = L_{\text{ren}} + \sum_k \frac{c_{1,k}}{\Lambda} O_{1,k} + \sum_k \frac{c_{2,k}}{\Lambda^2} O_{2,k} + \cdots
\]

Now \(L_{\text{ren}} \) is the renormalizable theory, and the operators \(O_{n,k} \) consist of the fields of and are invariant under the symmetries of the simplified model.

- The goal: use EFT methods to test the assumptions of the simplified models:
 - Can the effects of heavy new physics be ignored?
First, review the renormalizable model.

Add a real gauge singlet, scalar singlet S to SM:

$$V(\Phi, S) = V_\Phi(\Phi) + V_{\Phi S}(\Phi, S) + V_S(S)$$

Higgs potential:

$$V_\Phi(\Phi) = -\mu^2 \Phi^\dagger \Phi + \lambda (\Phi^\dagger \Phi)^2$$

Scalar singlet potential:

$$V_S(S) = b_1 S + \frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4$$

Mixing terms:

$$V_{\Phi S}(\Phi, S) = \frac{a_1}{2} \Phi^\dagger \Phi S + \frac{a_2}{2} \Phi^\dagger \Phi S^2$$

After electroweak symmetry breaking, have two mass eigenstates:

- h_1 with mass $m_1 = 125$ GeV.
- h_2 with mass $m_2 > m_1$.
- SM Higgs and singlet scalar mix with a mixing angle θ.
Relevant Feynman Diagrams

- **Couplings to fermions:**

\[
\begin{align*}
 h_1 & \quad f \quad -i \cos \theta \frac{m_f}{v} \\
 h_2 & \quad f \quad -i \sin \theta \frac{m_f}{v}
\end{align*}
\]

- **Couplings to gauge bosons:**

\[
\begin{align*}
 h_1 & \quad V \quad i \cos \theta \frac{2m_V^2}{v} g_{\mu
u} \\
 h_2 & \quad V \quad i \sin \theta \frac{2m_V^2}{v} g_{\mu
u}
\end{align*}
\]

- All SM-like Higgs rates suppressed $\cos^2 \theta$ relative to SM predictions.

- Since h_2 couplings to fermions and gauge bosons proportional to SM coupling, it is produced through same mechanisms as SM Higgs boson. Again, search predictions are relatively straight forward.
Interpretation of Fits

- Bound parameters by a χ^2 fit to Higgs signal strengths:

$$\mu_i^f = \frac{\sigma_i(pp \rightarrow h_1)}{\sigma_{i,SM}(pp \rightarrow h_1)} \frac{BR(h_1 \rightarrow f)}{BR_{SM}(h_1 \rightarrow f)}$$

- Without effective operators:

$$\sigma(pp \rightarrow h_1 + X) = \cos^2 \theta \sigma_{SM}(pp \rightarrow h_1 + X) \quad BR(h_1 \rightarrow XX) = BR_{SM}(h_1 \rightarrow XX)$$

θ is the mixing angle between Scalar singlet and SM Higgs.

- Then signal strengths to all initial and final states are the same:

$$\mu_i^f = \cos^2 \theta$$

- Hence, we have a simple interpretation at 95% CL:

$$|\sin \theta| < 0.24$$

- No longer true with effective operators. Different production and decay channels have different dependencies on the EFT, changing the interpretation of fits considerably [Dawson, Lewis PRD95 (2017) 015004]
Adding EFT operators

- What if we add non-renormalizable interactions to dimension-5?
 - Perturb the model and see how stable our conclusions are.

\[
L = g_s^2 \frac{f_{GG}}{16 \pi^2 \Lambda} S G^{\mu \nu, a} G^a_{\mu \nu} + g'^2 \frac{c_{BB}}{16 \pi^2 \Lambda} S B^{\mu \nu} B_{\mu \nu} + \frac{g^2}{16 \pi^2 \Lambda} c_{WW} \frac{16 \pi^2 \Lambda}{S W^{\mu \nu, a} W^a_{\mu \nu}}.
\]

\[
- \left(\frac{\sqrt{2} m_t}{\nu} \frac{f_f}{\Lambda} S \bar{Q}_{3L} \tilde{\Phi}_{tR} + \sum_{f=\tau, \mu, b} \frac{\sqrt{2} m_f}{\nu} \frac{f_f}{\Lambda} S F_L \Phi f_R + \text{h.c} \right)
\]

\[
- \left(\frac{a_3}{2 \Lambda} \Phi^\dagger \Phi S^3 + \frac{a_4}{2 \Lambda} (\Phi^\dagger \Phi)^2 S + \frac{b_5}{5 \Lambda} S^5 \right)
\]

- After scalar mixing, these operators introduce new interactions between the gauge bosons and the Higgs.

- See also Baur, Butter, Gonzalez-Fraile, Plehn, Rauch PRD95 (2017) 055011 with dimension-6 terms, or Dawson, Lewis PRD95 (2017) 015004 for my previous work.
2-D Fits to f_{GG}, other parameters profiled over. 2-D Fits to f_t, other parameters profiled over.

- Combination of all Higgs measurements from ATLAS and CMS.
- Renormalizable model corresponds to Wilson coefficients set to zero.
- Non-zero Wilson coefficients change bounds on scalar mixing angle.
Combination of all Higgs measurements from ATLAS and CMS.
- Black and red: EFT
- Blue: Renormalizable model
- Clearly the EFT changes in interpretation of measurements and searches.
 - High scale new physics can have large impact on the simplified model.
- There are also direct searches for heavy scalar resonances that must be accounted for.
What is usually done:

Accept point if $\sigma \leq \sigma_{\text{obs}}$, Reject point if $\sigma > \sigma_{\text{obs}}$

where σ_{obs} is the observed 95% CL upper limit.

However, statistically, when combining many measurements you can have 2-sigma fluctuations, and this prescription does not allow for it.
We proposed a new way of incorporating bounds from Brazilian bands:
First, work in Gaussian limit and assume no large upper fluctuations.
Assuming all data is SM-like, then every search is a SM measurement.
Each measurement has a 95% uncertainty band.
The upper limit of these error bands is the 95% limit on how large an additional signal can be on top of the signal.

Make a series of assumptions:
Assume data in good agreement with the Standard Model.
Assume Gaussianity.
We ignored interference between signal and background.

Hence, the χ^2 for direct searches:

$$\chi^2 = \begin{cases} \frac{(\sigma_{\text{sig}} - \sigma_{\text{obs}} + \sigma_{\text{exp}})^2}{(\sigma_{\text{exp}}/1.96)^2} & \text{if } \sigma_{\text{obs}} \geq \sigma_{\text{exp}} \\ \frac{\sigma_{\text{sig}}^2}{(\sigma_{\text{obs}}/1.96)^2} & \text{if } \sigma_{\text{obs}} < \sigma_{\text{exp}} \end{cases}$$

σ_{sig}: signal cross section, σ_{obs}: observed upper limit, σ_{exp}: expected upper limit.
Can check for one measurement and one degree of freedom the 95% CL gives $\sigma_{\text{sig}} < \sigma_{\text{obs}}$, consistent with usual approach.
Scalar searches: combined CMS and ATLAS measurements of all relevant final states.

Renormalizable model corresponds to Wilson coefficients set to zero

Non-zero Wilson coefficients open up new regions of allowed mixing angle
Higgs fits only.

- **Black and red**: EFT
- **Blue**: Renormalizable model

Clearly the EFT changes in interpretation of measurements and searches.
Conclusions

- The LHC has completed two very successful runs and the data analysis is under way.
- Still may expect to see new physics. Two interesting ways forward:
 - Simplified models: only a few new particles at LHC energies.
 - Effective field theory: only Standard Model and LHC energies.

- Scalar Singlet EFT: Investigated the stability of the interpretation of Higgs precision data in the singlet extended model. Interpretation of Higgs physics is considerably changed, even with multi-TeV new physics.
- Direct searches of scalar singlets depend on the couplings differently than precision Higgs data. Could have complementary information.

- Another example of BSM EFT: top partner can couple to top and gluons/photons via a chromomagnetic and magnetic dipole operator: Introduces new decay channels can open: $T \rightarrow t\gamma$ and $T \rightarrow tg$.

Kim, Lewis, JHEP 05 (2018) 095; Alhazmi, Kim, Kong, Lewis JHEP 01 (2019) 139.

- New production modes: $gg \rightarrow Tt$. Kim, Lewis, JHEP 05 (2018) 095; also see Xing Wang's talk yesterday.
Conclusions

- The LHC has completed two very successful runs and the data analysis is under way.
- Still may expect to see new physics. Two interesting ways forward:
 - Simplified models: only a few new particles at LHC energies.
 - Effective field theory: only Standard Model and LHC energies.
- Just like the SMEFT is unavoidable, EFTs in simplified models are unavoidable.
- The EFTs can drastically change the phenomenology of the simplified models.

- Investigated the stability of the interpretation of Higgs precision data in the singlet extended model.
- Interpretation of Higgs physics is considerably changed, even with multi-TeV new physics.
- Direct searches of scalar singlets depend on the couplings differently than precision Higgs data.
 - Could have complementary information.
- Another example of BSM EFT: top partner can couple to top and gluons/photons via a chromomagnetic and magnetic dipole operator:
 - Introduces new decay channels can open:
 - $T \rightarrow t \gamma$
 - $T \rightarrow tg$
- Kim, Lewis, JHEP 05 (2018) 095; Alhazmi, Kim, Kong, Lewis, JHEP 01 (2019) 139
- New production modes:
 - $gg \rightarrow Tt$
 - Also see Xing Wang's talk yesterday
Conclusions

- The LHC has completed two very successful runs and the data analysis is under way.
- Still may expect to see new physics. Two interesting ways forward:
 - Simplified models: only a few new particles at LHC energies.
 - Effective field theory: only Standard Model and LHC energies.
- Just like the SMEFT is unavoidable, EFTs in simplified models are unavoidable.
- The EFTs can drastically change the phenomenology of the simplified models.
- Scalar Singlet EFT:
 - Investigated the stability of the interpretation of Higgs precision data in the singlet extended model.
 - Interpretation of Higgs physics is considerably changed, even with multi-TeV new physics.
 - Direct searches of scalar singlets depend on the couplings differently than precision Higgs data.
 - Could have complementary information.
Conclusions

- The LHC has completed two very successful runs and the data analysis is under way.
- Still may expect to see new physics. Two interesting ways forward:
 - Simplified models: only a few new particles at LHC energies.
 - Effective field theory: only Standard Model and LHC energies.
- Just like the SMEFT is unavoidable, EFTs in simplified models are unavoidable.
- The EFTs can drastically change the phenomenology of the simplified models.

Scalar Singlet EFT:

- Investigated the stability of the interpretation of Higgs precision data in the singlet extended model.
- Interpretation of Higgs physics is considerably changed, even with multi-TeV new physics.
- Direct searches of scalar singlets depend on the couplings differently than precision Higgs data.
- Could have complementary information.

Another example of BSM EFT: top partner can couple to top and gluons/photons via a chromomagnetic and magnetic dipole operator:

- Introduces new decay channels can open: $T \rightarrow t\gamma$ and $T \rightarrow tg$ Kim, Lewis, JHEP 05 (2018) 095; Alhazmi, Kim, Kong, Lewis JHEP 01 (2019) 139
- New production modes: $gg \rightarrow Tt$ Kim, Lewis, JHEP 05 (2018) 095; also see Xing Wang’s talk yesterday
Thank You
First, review regular EFT counting with amplitude to dimension-6:
- Amplitude has terms up to Λ^{-2}.
- Amplitude squared includes terms that go as Λ^{-4}:

$$|A|^2 \sim |g_{SM} + \frac{c_{dim-6}}{\Lambda^2}|^2 \sim g_{SM}^2 + g_{SM} \times \frac{c_{dim-6}}{\Lambda^2} + \frac{c_{dim-6}^2}{\Lambda^4}$$

- g_{SM} is a generic Standard Model coupling.
Comment on Counting

- First, review regular EFT counting with amplitude to dimension-6:
 - Amplitude has terms up to Λ^{-2}.
 - Amplitude squared includes terms that go as Λ^{-4}:
 \[|\mathcal{A}|^2 \sim |g_{SM} + \frac{c_{\text{dim}-6}}{\Lambda^2}|^2 \sim g_{SM}^2 + g_{SM} \times \frac{c_{\text{dim}-6}}{\Lambda^2} + \frac{c_{\text{dim}-6}^2}{\Lambda^4} \]
 - g_{SM} is a generic Standard Model coupling.
 - Same order as dimension-8 contributions:
 \[|\mathcal{A}|^2 \sim |g_{SM} + \frac{c_{\text{dim}-6}}{\Lambda^2} + \frac{c_{\text{dim}-8}}{\Lambda^4}|^2 \]
 \[\sim g_{SM}^2 + g_{SM} \times \frac{c_{\text{dim}-6}}{\Lambda^2} + \frac{c_{\text{dim}-6}^2}{\Lambda^4} + g_{SM} \times \frac{c_{\text{dim}-8}}{\Lambda^4} + O(\Lambda^{-6}) \]
 - Validity of keeping dimension-6 squared without dimension-8:
 - Strongly interacting theory: $c \gg g_{SM}$ so that $c_{\text{dim}-6}^2 \gg c_{\text{dim}-8} \times g_{SM}$.
 - Or the UV completion suppresses the dimension-8 terms.
Beyond the SM EFT Counting

Consider production or decay of an h_1. Then to dimension-6 there are three contributions:

- Renormalizable amplitude proportional to SM amplitude: $A_{\text{ren}} \sim \cos \theta A_{SM}$.
- Dimension-5 amplitude from the new scalar: $A_{5,S}$
- Dimension-6 amplitude from the new scalar: $A_{6,S}$
- Dimension-6 amplitude from SMEFT: $A_{6,SM}$.
Consider production or decay of an h_1. Then to dimension-6 there are three contributions:

- Renormalizable amplitude proportional to SM amplitude: $A_{\text{ren}} \sim \cos \theta A_{\text{SM}}$.
- Dimension-5 amplitude from the new scalar: $A_{5,S}$
- Dimension-6 amplitude from the new scalar: $A_{6,S}$
- Dimension-6 amplitude from SMEFT: $A_{6,SM}$.

Contributions from new scalar suppressed by $\sin \theta$.
Contributions from SMEFT suppressed by $\cos \theta$.
Consider production or decay of an h_1. Then to dimension-6 there are three contributions:

- Renormalizable amplitude proportional to SM amplitude: $A_{\text{ren}} \sim \cos \theta A_{SM}$.
- Dimension-5 amplitude from the new scalar: $A_{5,S}$.
- Dimension-6 amplitude from the new scalar: $A_{6,S}$.
- Dimension-6 amplitude from SMEFT: $A_{6,SM}$.

Contributions from new scalar suppressed by $\sin \theta$.

Contributions from SMEFT suppressed by $\cos \theta$.

Full amplitude:

$$A_{h_1} \sim \cos \theta A_{SM} + \cos \theta \frac{A_{6,SM}}{\Lambda^2} + \sin \theta \left(\frac{A_{5,S}}{\Lambda} + \frac{A_{6,S}}{\Lambda^2} \right) + O(\Lambda^{-3})$$

Amplitude squared:

$$|A_{h_1}|^2 \sim \cos^2 \theta |A_{SM}|^2 + \sin \theta \cos \theta \frac{A_{SM}A_{5,S}}{\Lambda}$$

$$+ \frac{1}{\Lambda^2} \left(\sin^2 \theta |A_{5,S}|^2 + \sin \theta \cos \theta A_{SM}A_{6,S} + \cos^2 \theta A_{SM}A_{6,SM} \right) + O(\Lambda^{-3})$$
Amplitude squared:

\[|A_{h_1}|^2 \sim \cos^2 \theta |A_{SM}|^2 + \sin \theta \cos \theta \frac{A_{SM}A_{5,S}}{\Lambda} \]

\[+ \frac{1}{\Lambda^2} \left(\sin^2 \theta |A_{5,S}|^2 + \sin \theta \cos \theta A_{SM}A_{6,S} + \cos^2 \theta A_{SM}A_{6,SM} \right) + O(\Lambda^{-3}) \]

Large mixing angle limit: \(\sin \theta \to \pm 1 \) and \(\cos \theta \to 0 \)

- The amplitude becomes:

\[|A_{h_1}|^2 \to \frac{|A_{5,S}|^2}{\Lambda^2} + O(\Lambda^{-3}) \]

- The square of the dimension five term is dominant, dimension-6 terms can be safely neglected.
- Any higher order term interference with renormalizable amplitude can be ignored.
- Very different from SMEFT, where dimension-6 squared is same order as dimension-8.
Beyond the Standard Model EFT Counting

- Amplitude squared:

\[|A_{h_1}|^2 \sim \cos^2 \theta |A_{SM}|^2 + \sin \theta \cos \theta \frac{A_{SM} A_{5,S}}{\Lambda} + \frac{1}{\Lambda^2} \left(\sin^2 \theta |A_{5,S}|^2 + \sin \theta \cos \theta A_{SM} A_{6,S} + \cos^2 \theta A_{SM} A_{6,SM} \right) + O(\Lambda^{-3}) \]

- Large mixing angle limit: \(\sin \theta \rightarrow \pm 1 \) and \(\cos \theta \rightarrow 0 \)
 - The amplitude becomes:

\[|A_{h_1}|^2 \rightarrow \frac{|A_{5,S}|^2}{\Lambda^2} + O(\Lambda^{-3}) \]

 - The square of the dimension five term is dominant, dimension-6 terms can be safely neglected.
 - Any higher order term interference with renormalizable amplitude can be ignored.
 - Very different from SMEFT, where dimension-6 squared is same order as dimension-8.

- In the intermediate and small mixing angle limit, the interference can not be ignored and \(|A_{5,S}|^2 \) will not necessarily dominate over dimension-6.

- Counting depends on the angle.
Beyond the Standard Model EFT Counting

- Amplitude squared:

$$|A_{h_1}|^2 \sim \cos^2 \theta |A_{SM}|^2 + \sin \theta \cos \theta \frac{A_{SM}A_{5,S}}{\Lambda}$$

$$+ \frac{1}{\Lambda^2} \left(\sin^2 \theta |A_{5,S}|^2 + \sin \theta \cos \theta A_{SM}A_{6,S} + \cos^2 \theta A_{SM}A_{6,SM} \right) + O(\Lambda^{-3})$$

- Large mixing angle limit: $\sin \theta \rightarrow \pm 1$ and $\cos \theta \rightarrow 0$
 - The amplitude becomes:

$$|A_{h_1}|^2 \rightarrow \frac{|A_{5,S}|^2}{\Lambda^2} + O(\Lambda^{-3})$$

- The square of the dimension five term is dominant, dimension-6 terms can be safely neglected.
- Any higher order term interference with renormalizable amplitude can be ignored.
- Very different from SMEFT, where dimension-6 squared is same order as dimension-8.
- In the intermediate and small mixing angle limit, the interference can not be ignored and $|A_{5,S}|^2$ will not necessarily dominate over dimension-6.
- Counting depends on the angle.
- For h_2 production $\sin \theta \leftrightarrow \cos \theta$ up to signs. The $|A_{5,S}|^2$ dominates at small angles.
Direct Contributions to Important Branching Ratios

Nonzero effective W coupling.

Nonzero effective hypercharge coupling.

Adhikari, Lewis, Sullivan, arXiv:2003.10449
Indirect Contributions to Important Branching Ratios

Nonzero effective b-quark coupling.

Nonzero effective gluon coupling.

Adhikari, Lewis, Sullivan, arXiv:2003.10449
With this logic, we can construct a χ^2:

$$\chi^2 = \frac{(\sigma_{SM+sig} - \hat{\sigma}_{SM+sig})^2}{(\sigma_{exp}/1.96)^2}$$

- σ_{SM+sig} is the predicted SM+signal cross section
- $\hat{\sigma}_{SM+sig}$ is the measured rate in a signal search
- σ_{exp} is the expected 95% CL upper limit.
Ignoring interference, we can approximate the SM+signal cross section as the addition of the SM and signal cross sections

\[\sigma_{\text{SM}+\text{sig}} = \sigma_{\text{SM}} + \sigma_{\text{sig}} \]
Ignoring interference, we can approximate the SM+signal cross section as the addition of the SM and signal cross sections

$$\sigma_{SM+sig} = \sigma_{SM} + \sigma_{sig}$$

For the measurement, we assume that it is mostly SM like and that any deviation is reflected in the deviation between the expected and observed 95% CL:

$$\hat{\sigma}_{SM+sig} = \sigma_{SM} + \sigma_{obs} - \sigma_{exp},$$

where σ_{obs} is the observed 95% CL.
Detour: Combining Higgs Fits with Direct Search Limits

- Ignoring interference, we can approximate the SM+signal cross section as the addition of the SM and signal cross sections:

\[\sigma_{SM+sig} = \sigma_{SM} + \sigma_{sig} \]

- For the measurement, we assume that it is mostly SM like and that any deviation is reflected in the deviation between the expected and observed 95% CL:

\[\hat{\sigma}_{SM+sig} = \sigma_{SM} + \sigma_{obs} - \sigma_{exp}, \]

where \(\sigma_{obs} \) is the observed 95% CL.

- The \(\chi^2 \) then becomes:

\[\chi^2 = \frac{(\sigma_{SM+sig} - \hat{\sigma}_{SM+sig})^2}{(\sigma_{exp}/1.96)^2} = \frac{(\sigma_{sig} - \sigma_{obs} + \sigma_{exp})^2}{(\sigma_{exp}/1.96)^2} \]
Problem: If observed limit is smaller than expected limit, best fit value for signal cross section is negative:

\[\chi^2 = \frac{(\sigma_{\text{sig}} - \sigma_{\text{obs}} + \sigma_{\text{exp}})^2}{(\sigma_{\text{exp}}/1.96)^2} \]

In this case, we interpret the best fit for the signal cross section to be zero, and the uncertainty to be the observed upper limit:

\[\chi^2 = \frac{(\sigma_{\text{obs}} - \sigma_{\text{exp}} + \sigma_{\text{obs}})^2}{(\sigma_{\text{obs}}/1.96)^2} \]

Hence, the \(\chi^2 \) for direct searches:

\[
\chi^2 = \begin{cases}
(\sigma_{\text{sig}} - \sigma_{\text{obs}} + \sigma_{\text{exp}})^2 & \text{if } \sigma_{\text{obs}} \geq \sigma_{\text{exp}} \\
(\sigma_{\text{obs}} - \sigma_{\text{exp}} + \sigma_{\text{obs}})^2 & \text{if } \sigma_{\text{obs}} < \sigma_{\text{exp}}
\end{cases}
\]
Detour: Combining Higgs Fits with Direct Search Limits

- Problem: If observed limit is smaller than expected limit, best fit value for signal cross section is negative:

$$\chi^2 = \frac{(\sigma_{\text{sig}} - \sigma_{\text{obs}} + \sigma_{\text{exp}})^2}{(\sigma_{\text{exp}}/1.96)^2}$$

- In this case, we interpret the best fit for the signal cross section to be zero, and the uncertainty to be the observed upper limit:

$$\chi^2 = \frac{(\sigma_{\text{sig}})^2}{(\sigma_{\text{obs}}/1.96)^2}$$

Can check for one measurement and one degree of freedom the 95% CL gives $\sigma_{\text{sig}} < \sigma_{\text{obs}}$, consistent with usual approach.

Now can combine measurements and limits in a statistically consistent way.
Detour: Combining Higgs Fits with Direct Search Limits

- Problem: If observed limit is smaller than expected limit, best fit value for signal cross section is negative:

\[
\chi^2 = \frac{(\sigma_{\text{sig}} - \sigma_{\text{obs}} + \sigma_{\text{exp}})^2}{(\sigma_{\text{exp}}/1.96)^2}
\]

- In this case, we interpret the best fit for the signal cross section to be zero, and the uncertainty to be the observed upper limit:

\[
\chi^2 = \frac{(\sigma_{\text{sig}})^2}{(\sigma_{\text{obs}}/1.96)^2}
\]

- Hence, the \(\chi^2\) for direct searches:

\[
\chi^2 = \begin{cases}
 \frac{(\sigma_{\text{sig}} - \sigma_{\text{obs}} + \sigma_{\text{exp}})^2}{(\sigma_{\text{exp}}/1.96)^2} & \text{if } \sigma_{\text{obs}} \geq \sigma_{\text{exp}} \\
 \frac{(\sigma_{\text{sig}})^2}{(\sigma_{\text{obs}}/1.96)^2} & \text{if } \sigma_{\text{obs}} < \sigma_{\text{exp}}
\end{cases}
\]

- Can check for one measurement and one degree of freedom the 95% CL gives \(\sigma_{\text{sig}} < \sigma_{\text{obs}}\), consistent with usual approach.

- Now can combine measurements and limits in a statistically consistent way.
Black: EFT
Blue: Renormalizable model
Clearly the EFT changes in interpretation of measurements and searches.