Application of the thermal time model for different Typha domingensis populations

Fanny Mabel Carhuancho León, Pedro Luis Aguado Cortijo, María del Carmen Morató Izquierdo and María Teresa Castellanos Moncho

Abstract

Background: Cattail (Typha domingensis Pers.) is a perennial emergent plant which is used in Green Floating Filters (GFFs), one of the most innovative systems of wastewater treatment to bioremediate eutrophic waters and produce biomass as biofuel feedstocks. The establishment of cattails in GFFs depends on the seed germination and plant responses under conditions of a new habitat. This study analysed the germination responses of four different populations of cattails through a thermal time model to know their basic parameters of germination and which population would be more adapted to the conditions tested.

Results: Seeds from the Badajoz (Ba), Cuenca (Cu), Madrid (Ma), Seville (Se) and Toledo (To) populations were exposed to different thermal regimes (constant, and alternating temperatures between 15 and 30 °C) and different darkness treatments (between 0 and 20 days with 24 h dark photoperiod, then exposed to light with 12 h light/dark photoperiod) to determine the parameters of the thermal model from germination levels in each treatment. To population was used to validate the thermal time parameters of other populations. Regardless of the other parameters, no germination occurred in total darkness. The mean value of base temperature (T_b) was 16.4 ± 0.2 °C in all treatments. Optimum temperature (T_o) values in Ma and Ba were 25 °C, and those in Cu and Se were 22.5 °C. The germination response decreased when the temperature approached T_b and increased when it was close to T_o. In comparison to alternating temperatures, constant temperatures had the highest germination response and lowest thermal time ($θ_T(50)$). Darkness treatments had a direct relationship with $θ_T(50)$. The population origin also affected seed germination; Cu had the highest values of T_o and germination response but had a lower $θ_T(50)$, which coincides with the lowest mean ambient temperatures.

Conclusion: According to these results, the germination response of cattails was high in all populations under optimal conditions but was affected to a greater or lesser extent depending on thermal regimes, darkness treatments, and populations. The thermal time model allowed us to determine that T_o was between 22.5–25 °C and that Cu is the best population regarding the germination response under the conditions tested.

Keywords: Typha domingensis, Thermal time, Seed germination, Green floating filter
Background

Typha is a perennial monocotyledon plant genus that is widely distributed [1] mainly in wetlands, marshlands and other aquatic habitats. *Typha domingensis* Pers. (commonly known as “cattail”) is a species of this genus, with an annual growth cycle, that is widely distributed around the world [1]. It is a warm temperate and pantropical species [2]. This species is also often found in the Iberian Peninsula and the Balearic Islands [3]. The reproduction of this species occurs by vegetative spread (rhizomes) and from seed [4, 5]. Seed production is very high due to a single female spadix that can produce more than 600,000 small single-seeded fruits [1]. Although considered an invasive plant, cattail provides different raw materials (for weaving) and the rhizomes serve as food for humans and livestock. In recent years, cattail has been used in wastewater treatments and reclamation of industrial sites due to its great capacity to remove particle matter, nutrients and metals from eutrophic waters [6–8]. For wastewater treatment, this species has been used to form green filters that use different types of biological elements (plants and microorganisms). Among the numerous existing green-filter systems, the innovative systems specially designed for small urban agglomerations are called green floating filters (GFFs) [9]. Different *Typha* species have been used in GFFs, but *T. domingensis* presents an advantage compared to other species: it has the capacity to produce more biomass in deeper water [10, 11] and to quickly form a floating and filtering plant mat that improves the purification of wastewater in a GFF [12]. Different studies have demonstrated that managed cattail in constructed wetlands could provide beneficial ecosystem services [6, 7] and sustainable biomass for biofuel feedstocks [13, 14] and bioproducts [15].

Seed germination is an important biological process in plants. The success or failure of introducing a population into a new local habitat is closely related to its seed germination ability. The dynamics of this process are complex and influenced by genetic changes and/or phenotypic variability in the different plant populations [16, 17]. An example of this complexity is the dormancy mechanism. It is an internal condition of seeds that impedes its germination under otherwise adequate hydric, thermal and gaseous conditions [18, 19]. This mechanism is very rare in seed crops but common in weed populations and is associated with weed dispersibility [20]. Dormancy can be ended by one or more environmental factors, such as temperature, water potential, light, and soil pH. However, different dormancy behaviours are related to environmental factors during seed development [19] and seeds can incorporate the effects of these factors over time [21].

In the case of cattail, germination studies have focused on avoiding its propensity to invade natural ecosystems and cause negative impacts. Previous studies have demonstrated that environmental requirements, such as temperature, light, depth of water, salinity, pH, and O2 concentration could influence the seed germination of different species of *Typha* [5, 16, 22–24].

One of the main factors required for seed germination is the temperature [25]. This factor has the greatest effect on dormancy, and on the germination rate in the case of seeds that do not exhibit dormancy [26], and many studies have been implemented using constant temperatures [17, 27, 28] or alternating temperatures [29, 30] on seed germination. Light is another environmental factor that is important for releasing seeds from dormancy [25, 31]. Among the environmental requirements related specifically to cattail seed germination, one of the main factors is humidity. Germination of cattail seeds only occurs in wet or flooded environments [5, 32, 33] at low soil water potentials < 1 MPa [34].

Genetic determinants also influence the germination of cattail seeds [35, 36]. Sometimes, the origins of populations determine the germination conditions of the seeds regardless of whether they are of the same species [24, 37]. Moreover, the factors that determine the germination of the mother plant (temperature, light, humidity, and others) must be taken into account [38]. Knowledge of the cattail populations germination capacity can help in the establishment in GFFs or the control of its expansion in different places [39].

There are various tools for the study of seed germination. In recent years, population-based threshold models have been widely used in germination studies. There are two types of models: empirical and mechanistic. The first is used for a specific objective, but the results are more difficult to apply [40, 41]. Mechanistic models, on the other hand, are based on known and experimentally quantified the environmental effects on seed dormancy, imbibition, and germination [41]. These models have been applied, therefore, to explain the most successful seed germination in recent years [29, 42, 43]. The main models developed are the thermal time model, the hydrotome model, and the hydrothermal model, which describe the effects of temperature and/or water potential on the germination rate by applying a linear relationship [42, 44, 45]. These models use biological time, which can be quantified by the extent to which water potential and/or temperature of each seed exceeds thresholds (base), below which germination is not completed [20]. The hydrotome model describes the response germination of seed populations in response to change in water potentials. The thermal time model is based on response germination under variable temperature regimes, and the hydrothermal model is the integration of
Table 1: Final germination percentage in *T. domingensis* seeds

Population	Darkness treatments	DT0d	DT3d	DT5d	DT7d	DT10d					
	Thermal regimen	Lower	Upper								
Ba	C	91 ± 1.9 (17.5)	99 ± 1.3 (25)	59 ± 3.1 (17.5)	99 ± 1.6 (30)	65 ± 3.8 (17.5)	94 ± 2.0 (22.5)	69 ± 5.1 (17.5)	92 ± 1.8 (25)	58 ± 5.3 (17.5)	79 ± 4.7 (22.5)
	A	60 ± 4.5 (15/20)	99 ± 4.1 (20/25)	53 ± 5.2 (15/20)	98 ± 1.7 (15/30)	53 ± 4.5 (15/20)	94 ± 2.6 (15/30)	53 ± 6.1 (15/20)	93 ± 4.4 (15/30)	49 ± 7.6 (15/20)	91 ± 4.1 (15/30)
Cu	C	92 ± 1.2 (17.5)	99 ± 1.7 (22.5)	87 ± 2.7 (17.5)	99 ± 1.1 (22.5)	81 ± 2.9 (17.5)	98 ± 1.3 (22.5)	74 ± 3.6 (17.5)	99 ± 1.8 (22.5)	67 ± 4.2 (17.5)	94 ± 3.9 (22.5)
	A	61 ± 5.5 (15/20)	99 ± 3.2 (15/25)	55 ± 6.9 (15/20)	97 ± 4.6 (20/30)	54 ± 7.7 (15/20)	98 ± 1.3 (15/30)	49 ± 6.2 (15/20)	95 ± 2.7 (20/25)	51 ± 7.1 (15/20)	94 ± 1.5 (15/30)
Ma	C	89 ± 2.2 (17.5)	99 ± 2.1 (25)	72 ± 2.7 (17.5)	98 ± 2.8 (30)	73 ± 3.3 (17.5)	96 ± 2.0 (25)	65 ± 4.5 (17.5)	97 ± 2.2 (30)	48 ± 6.4 (17.5)	86 ± 1.6 (25)
	A	67 ± 6.2 (15/20)	97 ± 3.1 (15/30)	51 ± 4.3 (15/20)	99 ± 2.1 (20/30)	48 ± 6.7 (15/20)	98 ± 3.6 (20/30)	49 ± 7.9 (15/20)	94 ± 3.4 (30)	49 ± 8.4 (15/20)	93 ± 3.4 (15/30)
Se	C	86 ± 3.8 (17.5)	99 ± 4.6 (22.5)	92 ± 5.8 (17.5)	97 ± 4.5 (22.5)	75 ± 5.5 (17.5)	92 ± 4.2 (22.5)	66 ± 6.5 (17.5)	91 ± 4.9 (30)	53 ± 8.2 (17.5)	83 ± 4.4 (22.5)
	A	58 ± 4.5 (15/20)	95 ± 3.0 (15/25)	52 ± 6.8 (15/20)	92 ± 4.3 (15/25)	53 ± 6.6 (15/20)	84 ± 5.4 (15/30)	54 ± 7.2 (15/20)	85 ± 5.2 (25/30)	50 ± 6.3 (15/20)	79 ± 4.9 (15/30)
Validation data (To)	C	74 ± 4.9 (17.5)	99 ± 3.1 (22.5)	62 ± 8.6 (27.5)	92 ± 6.5 (22.5)	62 ± 39 (17.5)	90 ± 4.2 (22.5)	56 ± 6.5 (17.5)	96 ± 4.9 (30)	47 ± 8.2 (17.5)	83 ± 4.4 (22.5)
	A	62 ± 5.2 (15/20)	96 ± 4.4 (15/25)	54 ± 7.9 (15/20)	96 ± 3.6 (15/25)	49 ± 8.6 (15/20)	97 ± 4.3 (15/30)	51 ± 9.1 (15/20)	97 ± 4.4 (25/30)	39 ± 9.8 (15/20)	95 ± 3.6 (15/30)

Maximum and minimum values ± SD of final germination percentage achieved according to different populations, thermal regimes, and darkness treatments in cattail seeds. The temperature at which these percentages were reached, is shown in parentheses on the bottom line.
Table 2: Multifactor analysis of variance and multiple range tests for different populations, darkness treatments and thermal regimes

Factors	Fd	F	Po	n	GR %	DT	N	GR %	Tr	n	GR %
Po	3	22.66***	Ba	60	82.2b	DT0d	48	91.4a	17.5_0	20	74.0b
DT	4	30.77***	Cu	60	88.2a	DT3d	48	87.6b	17.5_5	20	54.0b
Tr	5	51.45***	Ma	60	85.9a	DT5d	48	82.3c	20.0_0	20	83.0bc
PoxDT	12	0.08	Se	60	76.6c	DT7d	48	79.9c	20.0_10	20	82.0bc
PoxTr	9	0.68	Se	60	76.6c	DT10d	48	75.1d	22.5_0	20	92.0a
DTxTr	12	0.73	Se	60	76.6c	DT15d	48	75.1d	22.5_5	20	93.0ab
PoxDTxTr	36	0.15	Se	60	76.6c	DT20d	48	75.1d	22.5_10	20	93.0ab

Po: Populations; DT: Darkness treatments; Tr: Thermal Regimes (Tm_ΔT)
Significant codes: *** 0.001, ** 0.01, * 0.05. Different letters represent statistically significant differences between treatment of each population according to LSD test (p < 0.05)

Fig. 1: Relationship between GR (50) and Tm of cattail seeds from different populations with ΔT = 0 °C and different darkness treatments
both temperature and water potential \[25, 42, 44\]. The use of these models could provide a way to link ecological observation of germination to laboratory studies \[20\].

The thermal time model allows for the estimation of the width of the thermal range over which seeds of a particular species can germinate. This thermal range can be described by the three cardinal temperatures: optimum temperature (T_o), base temperature (T_b), and ceiling temperature (T_c) \[19\]. T_o is the temperature at which germination is most rapid, while T_b and T_c are the lowest and highest temperatures at which germination can occur, respectively \[25\]. Also, the dormancy status of the seeds can influence the thermal range between T_b and T_c \[25\]. This model is based on mathematical parameters, such as thermal time \(\theta_T\) (degree-day/degree-hour), the three cardinal temperatures \(T_b, T_o\) and \(T_c, ^\circ C\), the mean temperature of incubation \(T_m, ^\circ C\), the germination rate \(GR\) and the time to germination \(t\) for a specific germination percentile \(g\). The \(\theta_T\) is the daily differences between prevailing temperature and \(T_b\), which are accumulated to complete germination \[30\]. GR is considered as the inverse of time to germination for specific germination percentages; moreover, it increases with increasing temperature between \(T_b\) and \(T_o\), while it decreases between \(T_o\) and \(T_c\) \[19\]. The thermal time model has been used successfully to predict the occurrence of seed germination under non-water-limiting conditions, thus explaining approximately 80% of the variation in the cumulative percentile \[46\].

The aims of this work, therefore, was to determine the ecophysiological parameters of seeds germination for different populations of \(T. domingensis\) from Badajoz (Ba), Cuenca (Cu), Madrid (Ma) and Seville (Se) using thermal time model. These parameters allow us to know the germination behaviour of each population and the influence of environmental parameters, such as level and amplitude of temperatures or light exposure, on its germination responses. This analysis can be useful to know which would be the best population for establishing in a new habitat as well as assessing its ability to expand as a weed in a future scenario with warmer temperatures in the Mediterranean zone because of climate change.

![Fig. 2 Relationship between GR, \(GR_{50}\), and \(T_m\) of cattail seeds from different populations with \(\Delta T \geq 0 ^\circ C\) and different darkness treatments](image_url)
Results

Final germination responses in the different treatments

Table 1 shows the germination responses achieved in each treatment. To simplify Table 1, the germination responses to each set of temperatures and darkness treatments within the same population were summarized, and these are shown as lower and upper germination responses for constant (C) and alternating (A) thermal regimes.

The results of the multifactor analysis of variance carried out with the data mentioned above are shown in Table 2. There were significant differences among the populations (Po), darkness treatments (DT) and thermal regimes (Tr) when each of these factors was analyzed separately at $p < 0.05$; however, the interaction between the two factors (PoxDP, DPxTr, PoxTr) and among the three factors (PoxDPxTr) was not significant (Table 2).

No germination was obtained in DT20d treatment (20 days with 24 h darkness photoperiod), so the data from these treatments have not been included in the study. These results suggest that the dormancy of cattail seeds was not interrupted independently of thermal treatment or population. In others darkness treatments, different germination responses were reached according to the
influence of the factors studied (Table 1), and there was an inverse relationship (Cor. Coeff. −0.99, p < 0.05) between the number of dark days and the germination response within the same population and thermal regimes (Table 2). This difference was observed between the DT0d versus DT10d. Regarding the origin of the seeds, there were no significant differences between Cu and Ma, but differences did exist between Ba and Se, and those two together were significantly different from Cu and Ma together (Table 2). Cu and Ma had the highest values, while Se had the lowest germination responses.

Thermal model

The differences in the thermal regimes depended on the mean temperature (T_m) of each regime. In Figs. 1 and 2, the relationships are shown between GR_{50} and cattail seeds of distinct populations, thermal regimes and darkness treatments. The mean value of T_b was 16.4 ± 0.2 °C with a minimum of 16.1 °C and a maximum of 16.7 °C. This value explained why no germination occurred in the thermal treatments lower than 17.5 °C and the lowest values of the germination responses occurred in the thermal treatments closest to T_b (Table 2).

In Fig. 3, the relationships are shown between GR of different percentiles (30, 50 and 70%) and T_m of different populations with constant and alternating temperatures and treatments without 24 h dark photoperiod (DT0d). In thermal regimes within constant temperatures (Fig. 3a), both Ma and Ba had a T_o = 25 °C in the three percentiles of GR, while Cu and Se had a T_o = 22.5 °C. In the regimes with alternating temperatures (Fig. 3b), only Ma had a T_o = 25 °C, while the remaining populations had T_o = 22.5 °C. The T_o was 22.5 °C, but the optimum temperature difference (ΔT_o) = 2.5 °C was found in the Ma population with constant and alternating temperatures and the Ba population at constant temperatures (Fig. 3).

The thermal regimes with T_m and the temperature difference (ΔT) = 0 °C close to T_b achieved the lowest germination responses in all the treatments, while the thermal regimes at temperatures close to T_o showed the highest responses. The highest germination responses were observed in treatments with ΔT = 0 °C. The germination responses in the thermal regimes with the same T_m but with ΔT = 5 °C/10 °C were lower than ΔT = 0 °C, while the germination in thermal regimes with

Table 3 Parameters of the thermal models for cattail seeds with constant (A) and alternating (B) temperatures

Code	T_b °C	T_o °C	Log(θ_T(50)) °d	σθ_T(50) °d	θ_T(50) °d	1(To) °H	Code	T_b °C	T_o °C	Log(θ_T(50)) °d	σθ_T(50) °d	θ_T(50) °d	1(To) °H
BaCDT0d	16 ± 0.3	25	2.72	0.5	15.33	368	BaADT0d	16 ± 0.2	22.5	2.81	0.3	16.61	399
BaCDT3d	16 ± 0.3	25	2.81	0.5	16.61	399	BaADT3d	16 ± 0.2	22.5	2.94	0.3	18.02	454
BaCDT5d	16 ± 0.3	25	2.87	0.5	17.64	423	BaADT5d	16 ± 0.2	22.5	3.00	0.3	20.09	482
BaCDT7d	16 ± 0.3	25	2.96	0.5	19.21	461	BaADT7d	16 ± 0.2	22.5	3.06	0.3	21.33	512
BaCDT10d	16 ± 0.3	25	3.06	0.5	21.27	510	BaADT10d	16 ± 0.2	22.5	3.12	0.3	22.65	544
CuCDT0d	16 ± 0.2	22.5	2.41	0.4	11.13	267	CuADT0d	16 ± 0.5	22.5	2.70	0.4	14.88	357
CuCDT3d	16 ± 0.2	22.5	2.50	0.4	12.18	292	CuADT3d	16 ± 0.5	22.5	2.73	0.4	15.45	378
CuCDT5d	16 ± 0.2	22.5	2.63	0.4	13.87	333	CuADT5d	16 ± 0.5	22.5	2.79	0.4	16.28	391
CuCDT7d	16 ± 0.2	22.5	2.71	0.4	15.03	361	CuADT7d	16 ± 0.5	22.5	2.87	0.4	17.58	422
CuCDT10d	16 ± 0.2	22.5	2.84	0.4	17.11	411	CuADT10d	16 ± 0.5	22.5	2.90	0.4	18.23	438
MaCDT0d	16 ± 0.5	25	2.57	0.5	13.06	314	MaADT0d	16 ± 0.7	25	2.76	0.4	15.80	379
MaCDT3d	16 ± 0.5	25	2.70	0.5	14.92	358	MaADT3d	16 ± 0.7	25	2.80	0.4	16.44	395
MaCDT5d	16 ± 0.5	25	2.80	0.5	16.44	395	MaADT5d	16 ± 0.7	25	2.91	0.4	18.30	419
MaCDT7d	16 ± 0.5	25	2.90	0.5	18.17	436	MaADT7d	16 ± 0.7	25	3.00	0.4	20.09	482
MaCDT10d	16 ± 0.5	25	3.01	0.5	20.29	487	MaADT10d	16 ± 0.7	25	3.03	0.4	20.78	499
SeCDT0d	16 ± 0.1	22.5	2.75	0.4	15.70	377	SeADT0d	16 ± 0.5	22.5	2.98	0.4	19.69	473
SeCDT3d	16 ± 0.1	22.5	2.80	0.4	16.44	395	SeADT3d	16 ± 0.5	22.5	3.02	0.4	20.49	498
SeCDT5d	16 ± 0.1	22.5	2.89	0.4	17.99	432	SeADT5d	16 ± 0.5	22.5	3.11	0.4	22.42	538
SeCDT7d	16 ± 0.1	22.5	3.08	0.4	21.76	522	SeADT7d	16 ± 0.5	22.5	3.21	0.4	24.78	595
SeCDT10d	16 ± 0.1	22.5	3.16	0.4	23.57	566	SeADT10d	16 ± 0.5	22.5	3.24	0.4	25.53	613

T_b = Base temperature, T_o = Optimum temperature; Log(θ_T(50)) = log thermal time 50% germination in °d; σθ_T(50) = standard deviation of the log thermal time distribution within the seed population in °d; θ_T(50) = thermal time 50% germination in °d and °h, respectively.
ΔT = 15 °C was much closer to the germination with ΔT = 0 °C (Table 2).

The values of T₀ with different darkness periods were the same as those at DT₀d (Table 3). The highest values of GR₅₀ (0.34) were reached within constant regimes close to T₀ (22.5/25 °C) in all populations (Fig. 3a). In alternating regimes (Fig. 3b), these values are all approximately 0.23 in T₀ = 25 °C. ANOVA of alternating temperatures indicated significant differences between thermal treatments (F (5, 61) = 9.17, p < 0.001); therefore, the thermal treatments 15/30 °C and 20/25 °C showed different values of three percentiles of GR (30, 50 and 70%). Although they had the same mean temperature (Tₘ), this difference could be related to the different ranges utilized in alternating temperatures (15 and 5 °C, respectively).

In Fig. 4, the relationship between accumulated germination and log(θₜ₀) in different populations with temperatures and darkness treatments are shown. The curves of the models within the same population were close but not equal, and slight differences were observed between different darkness treatments and between thermal regimes with constant versus alternating temperatures. The curves of the regimes with alternating temperatures shift to the right when compared with those of constant temperatures.

Table 4 Relationship between log(θₜ₀) and darkness treatments (DT) in treatments with the same population and amplitude of temperature regimes

Code	A	b	R²
BaC	2.71	0.034	0.993
BaA	2.83	0.031	0.965
CuC	2.39	0.044	0.986
CuA	2.69	0.022	0.927
MaC	2.57	0.045	0.996
MaA	2.75	0.030	0.910
SeC	2.71	0.045	0.908
SeA	2.96	0.029	0.938

Log(θₜ₀) = a + b* (DT)
There were similar values of θ_T (standard deviation of the log thermal time) in all treatments (Table 3) which means that final germination (50%) was reached in all treatments.

The treatments of the same population and darkness treatments in thermal regimes with constant temperatures showed lower values of thermal time (Table 3) in comparison with regimes of alternating temperatures. The thermal time was influenced by the darkness treatments because, for all populations, and all temperature levels and temperature amplitudes, it was seen to increase the more days the seeds were kept in darkness (- Cor. Coeff: -0.99, $p < 0.05$). According to these results, there was a relationship between $\log(\theta_T (50))$ and the set

of darkness treatments (Table 4) characterized by an $R^2 > 0.90$.

There were also differences between θ_T (50) according to populations (Table 3). The lowest θ_T (50) time (Table 3) corresponded to Cu, which coincided with the lowest yearly maximum, mean and minimum ambient temperatures (Table 5). Ma had θ_T (50) higher than that of Cu with ambient temperatures slightly higher than those in Cu, while Se and Ba had the highest $\theta_T(g)$ (Table 3) and the highest ambient temperatures (Table 5).

The results of the evaluation of the thermal time models are shown in Table 6. The coefficient of determination (R^2) was the concordance between $\log(\theta_T(g))$ of each model (expected values in each model) and $\log(\theta_T(g))_{To}$ (observed values). Results of R^2 varied depending on thermal regimes and darkness treatments. A good concordance was found in all treatments with R^2 values greater than 0.77. The highest values of R^2 (≥ 0.90) corresponded to treatments without 24 h dark photoperiod (DT0d) in all populations and thermal regimes except Ma population (0.87 and 0.85 respectively), which implied a strong coincidence between expected and obtained values. R^2 values decreased in treatments with 24 h dark photoperiod (DT3d, DT5d, DT7d and DT10d).

Discussion

The successful establishment of a plant species in a location is closely related to the rapidity of germination. Different genotype and/or environmental factors can affect this process by increasing or decreasing this rate. Amongst the environmental factors, light is one that does not prevent the germination of seeds, if it acts as a signal [25] to cause a change in the germination rate and final germination [31] and, therefore, in thermal time parameters. This factor is one of the main determinants of the accumulation of a persistent seed bank of numerous weeds in the soil [48], and it is necessary for the germination of many species [31] mainly of plants with small seeds [31, 48] because large seeds can emerge from a much greater depth than light can penetrate [49]. Exposure time to light may be short, less than a minute, or long. Short exposure time is more commonly effective.
with small weed seeds, such as cattail seeds, than with large weeds [31].

Light exposure influences the germination of different *Typha* species [5, 50]. In this work, no germination was obtained in DT20d treatments and a delay in the germination was observed in treatments with a 24 h dark photoperiod (DT3d to DT10d). This effect may be explained by the development of a secondary dormancy related to phytochrome activation/deactivation processes which occur through the stimulus of light on cattail seeds. Phytochromes are the principal mechanism triggering germination of *Typha* because they participate in breaking the dormancy [22, 25]. These pigments have two mutually photoconvertible forms: Pfr (considered the active form for seed germination) and Pr (considered the inactive form) [25, 49]. Pfr is established during the formation of the seed in the mother plant; however, this phytochrome form can reconvert to Pr in darkness [18, 31]. In these circumstances, the secondary dormancy does not break, and a period is needed to reconvert the phytochrome to its active form (Pfr) [51, 52]. This secondary dormancy can explain the results in darkness treatments. For example, in the darkness treatments (DT3d to DT10d), thermal time increases as the number of days in darkness increases (Table 4). In the case of DT20d treatments, no germination was measured after 20 days in darkness. These cattail seeds, although they absorbed water and began to swell, did not break their coatings to allow germination. This may explain the death of every seed after 20 days in darkness or the delay produced by secondary dormancy. We support this second option but, since no subsequent germination data was collected, a further study would be necessary to determine it.

Treatments of the same population had an increase in θ_f (50) as the number of days in darkness increased. There was a relationship between log(θ_f (50)) and darkness treatments ($R^2 > 0.90$) (Table 4). Initially, a linear increase in thermal time was expected as the number of days in darkness increased. Indeed, there was an increase, but it was not proportional; for example, in the case of the population of Cu with constant temperatures, θ_f (50) at PT0d was 267 °h, and the value corresponding to DT10d was 411 °h. This means a 50% increase in thermal time, not a 100% increase as expected. This modification would indicate that *T. domingensis* seeds accumulate hours of temperature and that when receiving light, the dormancy is broken by the activation of Pfr and the germination response occurs more quickly than expected. Darkness treatments, such as DT3d, DT5d, DT7d and DT10d, had lower seed germination than treatments without 24 h dark photoperiod (DT0d). These results indicate that long days of darkness may decrease the light sensitivity of *T. domingensis*. Dormancy broken in the presence of light and the influence of phytochrome has been studied and is common in small seeds, such as cattails [22, 52]. A buried environment is associated with darkness and cattail seeds do not germinate in darkness at any temperature; hence, buried seeds of *T. domingensis* could be a control method for the establishment in aquatic ecosystems. Darkness is also related to the depth of water [25]; so the establishment of cattails in the GFF system may be successful if seeds are sowed above the soil submerged in water or on a floating structure of this system.

Although water depth was not a factor in this study, it is another factor that is related to the amount of light and the ease of germination of cattail seeds. The depth used was enough to saturate the paper and seed (< 0.4 cm) due to the fact that germination in cattail seeds is greater and faster in aquatic conditions [2, 24, 33]. Some authors have stated that flooded areas increase the germination of *Typha* species, and this increase in germination has a direct relation to depth [17, 53]. This feature may be caused by a decrease in the level of oxygen, rather than by the lower intensity of light in these situations [33]. Other studies, however, show no relationship between the germination rate and depth [34, 54]. The limit of the depth of germination in *Typha* species in clear water is around 40 cm [2] or 1 cm in sediment [55]. There is an extreme case where cattail seeds germinated under 80 cm water (and survived 8 weeks) [56].

The germination response in plants of different origins could also be different [49]. Differences related to the origin of a population are frequent in numerous species of plants, whether crops [57] or weeds [27, 58]. Successfully colonizing a new location is related to the greater adaptive capacity of these populations to harsher environmental conditions compared to other populations [59], thus allowing these populations to have greater flexibility and adaptability to different locations or future climate change scenarios [17].

Cattail seeds were grouped into northern (Cu and Ma) and southern (Ba and Se) populations (Fig. 5). Mean temperatures of germination within each group were similar, but there were differences between the groups. The northern populations have lower values than the southern populations (Table 5). The results of the thermal time study also show differences between northern and southern populations. In treatments with the same temperature and darkness periods, the northern population presented lower values of thermal time and a higher germination response than the southern populations (Tables 2 and 3).

These differences among populations are consistent with the results of other studies carried out with *Typha latifolia* L. in fifteen European populations [17] and USA populations [60]; in both studies, in comparison to
northern populations, southern populations germinated at a lower temperature. However, in our study, the opposite scenario occurred. Before providing conclusions, some points concerning these studies must be clarified. For example, *T. domingensis* is a species more adapted to warmer areas compared to *T. latifolia*. In the European study, only two Mediterranean populations were used, and both populations germinated more rapidly than northern populations; the distances between the origins of the populations were greater than those in our study. Some authors mention that other factors, such as temperature or nutrient supply, are more important than the origin of the seeds in the case of neighbouring populations [17].

In this study, the estimated mean T_b was 16.4 °C and no differences greater than 0.6 °C were observed regardless of origin, darkness treatments, or level or amplitude of temperatures. We could have considered that T_b was constant; however, other studies with crops [46] or weeds [61] estimated different T_b values for the different amplitudes of temperatures. There were significant differences in the germination responses both in terms of the level and amplitude of temperatures (Table 2). In comparison to treatments with other T_m, treatments with T_m close to T_b achieved a lower germination response in all treatments (Table 2). No data were found for the calculated T_b for *Typha* species, but the estimated values of T_b for cattail seeds in this study were very similar to those obtained in other studies with summer weeds [29, 62]. Steinmaus (2000) established a relation between the slope of the line used to estimate T_b and germination rate; this rate will be greater with a higher slope. In our study, higher slopes occurred in *Cu* in thermal regimes with both constant and alternating temperatures and coincided with the lower θ_T (50) of all populations studied (Figs. 1 and 2).

Differences in T_o were obtained in the results of the multifactor analysis, mainly between the northern (Cu and Ma) and southern populations (Ba and Se) (Table 4). This difference in T_o is comparable with the results of other studies with different populations of weeds or with *T. latifolia* [17, 22, 23]. The T_o for the Swedish populations of *T. latifolia* was approximately 20 °C [23] or 10/30 °C with alternating temperatures in Italian
populations [22]. Australian populations of the *Typha* genus germinate readily at high temperatures and decline when the T_{in} is lower than 20 °C [63].

Table 7 shows the results from different studies of the seed germination of *T. latifolia* and *T. domingensis*. There are few studies on the seed germination of *T. domingensis*. Lorenzen et al. (2000) stated that a T_{o} of 30 °C and 25/10 °C occurred in south-eastern American populations of *T. domingensis* at constant and alternating temperatures, respectively. These T_{o} values are distinct from those obtained in our study (22.5–25 °C), but there are other studies with T_{o} values very similar to those obtained in our study (Table 7). These results showed different T_{o} values according to the places of origin of the seed and were closely related to climatic conditions at each location [17]. Some conditions, such as the temperature of the mother plants [38, 65], may determine the germination of populations, regardless of whether the seeds were of the same species [24, 37].

In the *Typha* genus, temperature and amplitude were shown to be factors related to germination [23]. The favourable effect of alternating temperatures on the germination response is well known in different weeds [22] because the effect enables a seed to understand when it is buried and to inhibit germination. In nature, seeds of the cattail are usually submerged. In this situation, fluctuations in the ambient temperature are rare; therefore, an increase in this fluctuation could indicate that seeds have reached land and germination could be stimulated. In this study, both thermal factors (level and fluctuation in temperatures) influenced the final germination of cattail seeds. In the treatments within the same population and in the darkness treatment, there was a greater germination response as the temperature approached T_{o} from values close to T_{br}, causing the existence of significant differences depending on the temperature level (Tables 1 and 2). An increase in the germination response is obtained with higher temperatures up to T_{o} above this value, germination begins to decrease. The same results occur in other studies with *Typha* [17, 22, 23, 33] and weeds [27, 29].

The use of different amplitudes of temperature is related to the loss of dormancy in weeds [29, 66] or crops such as lentil [30]. In the case of cattail seeds, the loss of dormancy is related to changes in germination responses. Treatments with $ΔT = 0$ °C and 15 °C had a higher germination response than those with $ΔT = 5$ °C and 10 °C (Table 1), so these last two amplitudes of temperature negatively affect germination. However, in studies with *T. latifolia*, treatments with constant temperature regimes ($ΔT = 0$ °C) achieved a lower germination response than alternating regimes ($ΔT > 0$ °C) [17]. On the other hand, $θ_{T} (50)$ corresponds to treatments of the same population, and $ΔT = 0$ °C is lower than treatments with $ΔT ≥ 0$ °C (Fig. 4), in contrast to *Solanum physalifolium* [29] whose thermal time is considerably reduced in an alternating regime (Table 3). These data are consistent with the germination rate (Fig. 3), in which treatments with alternating temperatures reach lower values than those corresponding to constant temperatures. According to these results, the best season to germinate *T. domingensis* would be late spring because these seasons have a temperature regime of approximately $ΔT = 15$ °C under natural conditions in the five locations where seeds were collected [47].

The thermal time value of different populations of cattail seeds (Table 3) was substantially lower than that of other weeds such as different species of *Solanum* [20, 22] or tropical species such as *Pennisetum typhoides* [45, 67]. This indicates a rapid germination response compared with those of other plant species. There were also differences between populations, with Cu being the one with the lowest thermal time, both in $ΔT = 0$ and $ΔT > 0$ treatments. Although Cu and Ma obtained similar germination values (Table 2), $θ_{T} (50)$ was the highest in Ma.

Therefore, Cu could be the population that presents the most vigour during this process because this population had the fastest germination under the conditions

Table 7 Optimal temperature in *T. domingensis* and *T. latifolia* in different populations from various studies

Plant species	Reference	C	A	Seed location
Typha domingensis	This study	22.5; 25 °C		Spain
	Lorenzen et al. (2000) [5]	30 °C	25/10 °C	Florida, U.S.
	Royal Botanic Gardens (2002) [64]	20 °C		Wakehurst, England
Typha latifolia	Sifton H.B (1959) [50]	30 °C	20/30 °C	Ontario, Canada
	Bonnewell, V. et al. (1983) [33]	35 °C		Minnesota, U.S.
	Lombardi, T et al. (1997) [22]	20/30 °C		Pisa, Italy
	Ekstam and Forseby (1999) [23]	20 °C		Linköping, Sweden
	Heinz, S (2011)	25 °C	10/25 °C	Germany
	Meng, H. et al. (2016) [24]	25/15 °C		Northeast of China

C constant temperature. *A* alternating temperature
tested. The final germination percentages were very similar in all populations. It would be necessary to carry out new tests to determine whether the development in other stages of plant growth would also be fast in this population.

In comparison to other species of the genus, such as *T. angustifolia*, *T. domingensis* is a plant species more adapted to warm temperatures. In Spain, it has been observed that *T. domingensis* has been colonizing places where *T. angustifolia* once stood [3]. If this capacity occurs with an increase in temperatures due to climate change, then it is possible to consider that *T. domingensis* might increase its expansion to the detriment of other *Typha* species such as *T. angustifolia*.

According to the evaluation of the models developed in this work (Table 6), there were some differences between the results that were related to thermal regimes and darkness treatments. The greatest coincidences are in the models developed with constant and alternating thermal regimes and DT0d treatments with R^2 mean values ≥ 0.9, except for the population of *Ma* that present values slightly below 0.9 in both thermal regimes. The best coincidence was between expected and observed values in constant regimes and treatments without 24 h dark photoperiod (DT0d). Darkness treatments affect the coincidence between expected and observed values, the R^2 decreased to mean values between 0.84 to 0.78. In the DT3d treatments, R^2 values were greater than the other darkness treatments. In the remaining darkness treatments (DT5d, DT7d and DT10d), R^2 values were similar (Table 6). *Ba* and *Ma* populations show both the most and least coincidental values in all treatments, respectively, but the differences were small among all populations.

This work shows that environmental factors and the origin of populations affect the germination responses of cattail seed; moreover, how these parameters could be used to develop models that predicting seed behaviour in a new habitat.

Conclusions

The thermal time model for the different populations of *T. domingensis* allows an understanding of the germination response of each population established in a new habitat, such as a GFF system. The germination response of *T. domingensis* was affected by thermal regimes, darkness treatments, and populations.

Among the different populations of *T. domingensis*, T_0 in *Ma* and *Ba* were 25 °C, and those in *Cu* and *Se* were 22.5 °C. However, the T_b was the same in the four populations (mean 16.4 ± 0.2 °C). Therefore, the best population can tolerate a vast range of temperatures in a new habitat was *Cu* due to this population had the highest germination rates and the highest germination percentage. If growth chambers are used to proceed with the germination of *T. domingensis* seeds, then the most appropriate temperature treatment will be a constant temperature of 22.5 °C. Under natural conditions, the best time for seed germination occurs when there is a temperature regime of approximately 15 °C in the Mediterranean zone such as Spain, which mainly occurs in the late spring. Values of T_m near T_o and ΔT values approximately to 15 °C are common in the four populations; hence, these values show that *T. domingensis* could readily germinate in a new habitat and expand as a weed if an increase in the mean temperature occurs.

Methods

Plant material

The plant material used for this study was obtained and subsequently identified by experts of the Botany Unit of the Department of Agrarian Production (UPM). The Botanical key used was: Flora Iberica, Vol. XVIII, Gen. Typha [3]. *T. domingensis* is a species widely distributed throughout Spain. For this reason, no specimens were taken to be included in any Herbarium. According to the International Union for Conservation of Nature and Natural Resources (IUCN) Red List Categories, *T. domingensis* does not qualify as critically endangered, endangered, vulnerable or near threatened [68] so permissions were not necessary to collect samples.

The seed material for this study came from natural *T. domingensis* stands at five different locations in Spain (Fig. 5). For the thermal study, mature spadices were collected from Puebla de Alcocer (*Ba*), Olmedilla del Campo (*Cu*), and Lantejuela (*Se*). The plants of these populations were located in naturally flooded areas (ponds, lagoons, and marshes) and in this study they are represented by *Ba*, *Cu*, and *Se*, for plant populations from Badajoz, Cuenca and Seville, respectively (Table 5). *Ma* location was the fourth population. The seeds of this population were obtained from a macrophyte nursery in the experimental fields of GA, Madrid, whose initial source was the Manzanares River, which is very close to these facilities. The fifth population was collected in Seseña, Toledo (*To*). This population was used to evaluate the results of the thermal models obtained for the other populations. According to the classification of Köppen-Geiger, the five locations are classified as having temperate climates with dry and hot summers. The geographic coordinates and temperatures of the different locations are shown in Table 5 [47].

Mature spadices of these populations were collected from plants grouped into the pure mass of cattails between late summer and early autumn of 2017. These spadices were obtained from various *T. domingensis* plants (7–12 plants per population) that grew in the same physical location. The seeds of each spadix were
mixed. In the laboratory, the seeds were removed from these spadices by agitating the fruits in water. Only seeds settling to the bottom of the container were selected as viable seeds for the germination test. Then, the selected seeds were dried on filter paper and stored in a refrigerator (at 5 °C) until they were used in the germination test in the following year.

Previous experiments had been carried out to verify that most of the seeds were viable. Shortly before the experiment, the seeds were treated with 1% sodium hypochlorite to prevent infection during the assay [69], washed with sterile distilled water to eliminate any residue and dried rapidly at room temperature.

Germination tests

Germination tests were carried out in three identical growth chambers with two photoperiodic regimes: (i) 24 h darkness, the dishes were covered with aluminium foil and placed in black plastic bags to prevent the passage of light, and (ii) 12 h light /dark under continuous irradiation illuminated by 8 fluorescent sources of white light (Sylvania Grolux 35 W). PAR was measured in different positions of the growth chamber (PAR sensor LI-COR-DATALOGGER Inc.USA) at the beginning and the end of the experiments; the mean value was 85 ± 9 μmol m⁻² s⁻¹.

Different darkness treatments and thermal regimes on five cattail seed populations (Ba, Cu, Ma, Se and To) were studied as factors that could alter the final germination and the result of the germination model. The relationship between thermal time, temperature and darkness for the cattail seeds was studied. For this reason, different darkness treatments (0, 3, 5, 7, 10 and 20 dark days) were included in this study. The longest number of days was the same (20 days) for the seeds, so the number of days with 12 h light /dark photoperiod was reduced successively (Table 8). In the treatment DT20d, the seeds were incubated in total darkness for the entire time.

Different thermal regimes were included in this study. These regimes include different levels of constant or alternating temperatures, as explained below. The constant temperatures used (C) were: 17.5, 20.0, 22.5, 25.0, 27.5 and 30.0 °C; the alternating temperatures used (A) were 15/20, 15/25, 15/30, 20/25, 20/30, and 25/30 °C. In the alternating regimes, higher temperatures coincide with light periods and lower temperatures with the dark period of each photoperiodic regime used, and the temperature difference (ΔT) between the dark and light periods was ΔT = 5, 10 and 15 °C (Table 8). The mean value of both temperatures (T_m) was used to calculate the models.

Temperatures above 30 °C were not used because T. domingensis is a plant species whose germination season coincides with middle spring, so it would be very odd if the mean temperature above 30 °C was reached at that time in the study area. The treatment name was composed of the name of the population, mean temperature value, letter of the temperature regime C/A with a number that indicated the ΔT and darkness treatment, such as Ba25C0DT5d and Ba25A10DT3d.

The experimental design was completely randomized. A total of 360 treatments were carried out and three replicates of 33 seeds each were used for each treatment. The germination test was conducted in a filter paper-lined Petri dish filled with 15 ml of distilled water. To prevent evaporation losses, the edges of the Petri dishes were closed using laboratory film. HOBO U12 (Onset Computer Corporation, Pocasset, MA, USA) data loggers were used to monitor the temperature inside the

Table 8 Thermal regimes and darkness period treatments used in the experiment

Treatments	T_m	ΔT	Darkness treatments	Description
C 17.5	17.5	0	DT0d	20 days with 12 h light /dark
C 20.0	20	0	DT3d	3 days (24 h darkness) and 17 days (12 h light /dark)
C 22.5	22.5	0	DT5d	5 days (24 h darkness) and 15 days (12 h light /dark)
C 25.0	25	0	DT7d	7 days (24 h darkness) and 13 days (12 h light /dark)
C 27.5	27.5	0	DT10d	10 days (24 h darkness) and 20 days (12 h light /dark)
C 30.0	30	0	DT20d	20 days with 24 h darkness
A 15/20	17.5	5		
A 15/25	20	10		
A 15/30	22.5	15		
A 20/25	22.5	5		
A 20/30	25	10		
A 25/30	27.5	5		
growth chambers. Data from the chamber were accepted if the temperature registered showed a difference of less than ±0.5 °C. All treatments were set up at 9:00 h. Germinated seeds were counted daily for 20 days. A seed was considered to have germinated when the coleoptile broke the pericarp [22].

Thermal time model

Seed germination of different populations of *T. dominensis* was described as a function of the thermal time model. According to the model presented by Garcia-Huidrobo et al. (1982), the parameter thermal time \(\theta_T \) (degree-day/degree-hour) for the percentile \(g \) is:

\[
\theta_T(g) = (T - T_b) t_g
\]

(1)

Another parameter defined in this model is the germination rate \(GR_g \), which is the inverse of the thermal time to radicle emergence of a specific percentile of the population defined by eq. 1.

\[
GR_g = \frac{T - T_b}{\theta_T(g)} = \frac{1}{t_g}
\]

(2)

There is a linear regression line between \(GR_g \) and \(T \) when the temperature is between \(T_b \) and \(T_o \). Under these circumstances, the slope of this linear regression is equal to the reciprocal of thermal time \(\theta_T(g) \). If the change in \(\theta_T(g) \) within a seed population is a log-normal distribution, then the relation between \(GR_g \) and \(\theta_T(g) \) can be described using the probit function [46].

\[
prob_g = \left(\frac{1}{\sigma_{\theta_T}} \right) \log\left(T - T_b \right) t_g \log(\theta_T(50))
\]

(3)

In this function, \(prob_g \) is the probit transformation of the cumulative germination percentile \(g \), \(\theta_T(50) \) is the thermal time to 50% germination, and \(\sigma_{\theta_T} \) is the standard deviation of \(\theta_T \) for individual seeds in the population [70]. Alternative use of probit transformation is logistic transformation when the sample size is not very large. In this case, the midpoint of the logit regression (logit = 0) is the same as that obtained with probit transformation, and the slope (\(\alpha \)) is related to the standard deviation of the normal distribution (\(\sigma \)) as defined [71] as:

\[
\sigma = \frac{\pi}{\sqrt{3}} \times \frac{1}{\alpha}
\]

and the log \(\theta_T(50) \) is related to the intercept of the logit regression (\(\beta \)) [27] as:

\[
\log(\theta_T(50)) = -\frac{\beta}{\alpha}
\]

Data from the different temperature regimes were normalized following the concept of thermal time basis (Covell et al., 1986) where \(\theta_T(50) \) is the mean thermal time to 50% germination used for the log thermal time distribution that was estimated from the equation:

\[
\theta T_{(50)} = \frac{(T_m - T_b)}{GR_{50}}
\]

The different variables to solve this equation were obtained as follows:

Equation 2 \((1/t_{(50)})\) was used to calculate \(GR_{50} \) for different treatments. In each treatment, the results of \(GR_{50} \) were used to calculate a linear regression whose x-intercept represented the estimated value of \(T_b \) [46, 61]. The \(T_o \) was obtained from the relationship between different percentiles of \(GR \) (30, 50 and 70%) and the \(T_m \) of each thermal regime (C or A) with the same darkness treatments where \(T_o \) was the point on the x-axis that coincided with the maximum \(GR_{30} \), \(GR_{50} \), and \(GR_{70} \) of the above relationship. The estimated \(\theta_T(50) \) was used to obtain the \(\sigma \) of the log thermal time in the different treatments and using the logit model [29], the median germination time was estimated using the values to logit = 0 as was mentioned above. Only \(GR \) values less than 95% from \(T_b \) to \(T_o \) were included in the logit regression [28].

Validation of thermal time model

The evaluation process is an important part of the design of a model because it allows checking the concordance between expected and observed results. The method of evaluation used in this work is based on the coefficient of determination (R²) and the root-mean-square error (RMSE). This method provides an estimation of the difference between log(\(\theta_T(g) \)) obtained in each model (expected values) and log(\(\theta_T(g) \)) \(T_o \) (observed values), where log(\(\theta T(50) \)) \(T_o \) was calculated applying thermal parameters of each model (Table 4) to data germination of \(T_o \) population.

Statistical analyses

The multifactor analysis of variance with final germination response as a percentage was carried out with the software package Statgraphics Centurion XVI (Starpoint Technologies, 2011) to determine the relationships among origin, thermal conditions and darkness period of cattail seeds. Germination responses were transformed to meet the assumption of the ANOVA. In this case, the transformation used was arcsine (\(\sqrt{final \ germination \ %} \)). A multiple range test was also performed to determine which variables were significantly different from the others. The method to make the comparisons was LSD (Least Significance Difference). Statistical differences were defined as \(p < 0.05 \).
Availability of data and materials
All data generated or analysed and its supplementary information files during this study are included in this published article. The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s12870-020-02573-3.

Additional file 1.

Abbreviations
ΔT: The temperature difference; 6(g): Thermal time; 6(0): Standard deviation of 6; A: Alternating; ANOVA: Analysis of variance; Ba: Badajoz; C: Constante; Cu: Cuenca; DT: Darkness treatments; 6: the percentile of germination; GA: Agroenergy Group; GFF: Green floating filter; GR: Germination rate; IUCN: International Union for Conservation of Nature and Natural Resources; LD: light/dark; LSD: Least Significance Difference; Ma: Madrid; PAR: Photosynthetic Active Radiation; prob. 6: Probit transformation; Se: Seville; T 6: Base temperature; T m: Mean temperature; T 6: time of germination; T o: Optimum temperature; To: Toledo; USA: United States of America.

Acknowledgments
FMC is supported by a grant from the National Program of Scholarships and Educational Loan (PRONABEC) – Ministry of Education Peru.

Authors’ contributions
FMC performed and analyzed the seed germination test. PLA interpreted and/or analyzed the data used and/or analyzed during the current study and prepared the manuscript. All authors read and approved the final manuscript.

Funding
Not applicable.

Availability of data and materials
All data generated or analysed and its supplementary information files during this study are included in this published article. The datasets used and/or analyzed during this current study are available from the corresponding author on reasonable request.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Agroenergy Research Group, Department of Agricultural Production, School of Agricultural, Food and Biosystems Engineering, Universidad Politecnica de Madrid (UPM), Avenue Complutense s/n, 28040 Madrid, Spain. 2Department of Applied Mathematics, School of Agricultural, Food and Biosystems Engineering, Universidad Politecnica de Madrid (UPM), Avenue Complutense s/n, 28040 Madrid, Spain.

Received: 8 January 2020 Accepted: 23 July 2020
Published online: 17 August 2020

References
1. CABl. Typha domingensis. In: Invasive Species Compendium; 2020. https://www.cabi.org/isc/datasheet/54296. Accessed 15 Jan 2019.
2. Bansal S, Lishava SC, Newman S, Tangen BA, Wilcox D, Albert D, et al. Typha (cattail) invasion in north American wetlands: biology, regional problems, impacts, ecosystem services, and management. Wetlands. 2019; 39:6146–84. https://doi.org/10.1007/s11573-019-01174-7.
3. Cirujano S. CLXXV. Typhaceae. In: Flora Ibérica Plantas vasculares de la Península Ibérica e Islas Baleares. Volumen 18. Real Jardín Botánico; CSIC; 2007. p. 259–66.
4. Finkelstein SA. Identifying pollen grains of Typha latifolia, Typha angustifolia, and Typha x glauca. Can J Bot. 2003;81(9):985–90. https://doi.org/10.1139/b03-084.
5. Lorenzen B, Brix H, McKee KL, Mendelsssohn IA, Miao S. Seed germination of two Everglades species, Cladium jamaicense and Typha domingensis. Aquat Bot. 2000;65(3):169–80. https://doi.org/10.1016/S0304-3770(99)00076-5.
6. Otte JASS, Henaes MNPP, Camargo AF. AFM. The efficiency of free-floating and emergent aquatic macrophytes in constructed wetlands for the treatment of a fishpond effluent. Aquac Res. 2018;49(10):3468–76. https://doi.org/10.1111/are.13813.
7. Bervenulita T, Fernando Hamerskib AG, Andréa M, Bernadesb JZ-F, MAS R. Constructed floating wetland for the treatment of domestic sewage: a real-scale study. J Environ Chem Eng. 2016;6(5):5760–11. https://doi.org/10.1016/j.jece.2018.08.067.
8. Headley TR, Tannner CC. Constructed wetlands with floating emergent macrophytes: An innovative stormwater technology treatment. Crit Rev Environ Sci Technol. 2012;42(7):2261–310. https://doi.org/10.1080/10643389.2011.574108.
9. Curt MD, Martin-Girela I, Martínez A, Aguado PL, Fernández J. Assessing key productivity of a non-land-dependent system of biomass production. In: 27th European Biomass Conference and Exhibition, EUBCE 2019. Lisbon; 2019. p. 207–12.
10. MCNaughton SJ. R- and K-selection in Typha. Am Nat. 1975;109(967):251–60. 10.1086/282995.
11. Grace JB. The effects of nutrient additions on mixtures of Typha latifolia L. and Typha domingensis Pers. along a water-depth gradient. Aquat Bot. 1988; 31(1):819–32. https://doi.org/10.1016/0304-3770(88)90040-X.
12. Fernández J. Patent No.: WO/1998/045215; Patent No.: ES98/00086. 1998, 1998. https://doi.org/10.1016/S0304-3770(99)00076-5.
13. Cirujano S. CLXXV. Typhaceae. In: Flora Iberica Plantas vasculares de la Península Ibérica e Islas Baleares. Volumen 18. Real Jardín Botánico; CSIC; 2007. p. 259–66.
14. Bervenulita T, Fernando Hamerskib AG, Andréa M, Bernadesb JZ-F, MAS R. Constructed floating wetland for the treatment of domestic sewage: a real-scale study. J Environ Chem Eng. 2016;6(5):5760–11. https://doi.org/10.1016/j.jece.2018.08.067.
15. Colbers B, Cornelis S, Geraets E, Ramírez-Gaona M. A feasibility study on the usage of cattail (Typha spp.) for the production of insulation materials and bio-adhesives. Wageningen; 2017.
16. Stewart H, Miao SL, Colbert M, Caraher CE. Seed germination of two cattail (Typha) species as a function of Everglades nutrient levels. Wetlands. 1997; 17(1):116–22. https://doi.org/10.1007/BF03160723.
17. Heinz SJ. Population biology of Typha latifolia L. and Typha angustifolia L: establishment, growth and reproduction in a constructed wetland. Technische Universität München; 2012.
18. Benech-Arnold RL, Sánchez RA, Forcella F, Kruk BC, Ghersa CM. Environmental control of dormancy in weed seed banks in soil. F Crop Res. 2000;67(2):105–22. https://doi.org/10.1016/S0378-4290(00)00087-3.
19. Batlla D, Benech-Arnold RL. A framework for the interpretation of temperature effects on dormancy and germination in seed populations showing dormancy Science Research. Seed Sci Res. 2015;25(2):147–58. https://doi.org/10.1017/S0960258514000452.
20. Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006;171(3):501–23. https://doi.org/10.1111/j.1469- 8137.2006.01787.x.
21. Del Monte JP, Dorado J. Effects of light conditions and after-ripening time on seed dormancy loss of Bromus diandrus Roth. Weed Res. 2011;51(6):581– 90. https://doi.org/10.1111/j.1365-3180.2011.00882.x.
22. Lombardi T, Fochetti T, Bertacchi A, Onnis A. Germination requirements in a population of Typha latifolia. Aquat Bot. 1997;56(1):1–10. https://doi.org/10. 1016/S0304-3770(96)00106-0.
23. Ekstam G, Forsby Å. Germination response of Phragmites australis and Typha latifolia to diurnal fluctuations in temperature. Seed Sci Res. 1999;9(2): 157–63. https://doi.org/10.1017/S0960258599000173.
24. Meng H, Wang X, Tong S, Lu X, Hao M, An Y, et al. Seed germination environments of Typha latifolia and Phragmites australis in wetland restoration. Ecol Eng. 2016;96:194–9. https://doi.org/10.1016/j.ecoleng.2016.03.003.

25. Bewley JD, Bradford KJ, Hillhorst HWM, Nonogaki H. Seeds: Physiology of development, germination and dormancy. 3rd ed. New York: Springer Science & Business Media; 2013.

26. Bouwmeester HJ, Karssen CM. The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia. 1992;90(1):88–94. https://doi.org/10.1007/BF00317813.

27. Del Monte JP, Tarquis AM. The role of temperature in the seed germination of two species of the Solanum nirigum complex. J Exp Bot. 1997;48(12):2087–93. https://doi.org/10.1093/jxb/48.12.2087.

28. Bradford K, Tarquis AM, Duran JM. A population-based threshold model describing the relationship between germination rates and seed deterioration. J Exp Bot. 1993;44(4):1125–34. https://doi.org/10.1093/jxb/44.4.1125.

29. Del Monte JP, Aguado PL, Tarquis AM. Thermal time model of Solanum sarahoiades germination. Seed Sci Res. 2014;24(4):321–30. https://doi.org/10.1079/SSR201400221.

30. Ellis RH, Banet S. Environmental temperatures and rate of seed germination in lentil. Ann Bot. 1994;74(5):519–24. https://doi.org/10.1006/reading.1994.1149.

31. Pons TL. Seeds responses to light. In: International C, editor. Seeds: The Ecology of Regeneration in Plant Communities. 2nd ed. United Kingdom: 2000. p. 237–60.

32. Sánchez-García EA, Rodríguez-Medina K, Moreno-Casasola P. Effects of soil water potential on seed germination in fresh and fossil species from the tropical coast of the Gulf of Mexico. Aquat Bot. 2017;140(April):4–12. https://doi.org/10.1016/j.aquabot.2017.04.002.

33. Bonnewell V, Koukkari WL, Pratt DC. Light, oxygen, and temperature requirements for Typha latifolia seed germination. Can J Bot. 1983;61(5):1330–6. https://doi.org/10.1139/b83-140.

34. Evans CE, Etherington JR. The effect of soil water potential on seed germination of some British plants. New Phytol. 1990;115(3):339–48. https://doi.org/10.1111/j.1469-8137.1990.tb04852.x.

35. Pendleton B, Meyer S. Habitat-correlated variation in blackbrush (Coleogyne ramosissima) Rosaceae seed germination response. J Arid Environ. 2004;59(22):229–43. https://doi.org/10.1016/j.jaridenv.2003.12.009.

36. Schmuths H, Bachmann K, Weber WE, Hornes R, Hoffmann MH. Effects of preconditioning and temperature during germination of 73 natural accessions of Arabidopsis thaliana. Ann Bot. 2006;97(4):623–34. https://doi.org/10.1093/aob/mcl012.

37. Oui J, Bai Y, Fu Y-B, Wilmshurst JF. Spatial variation in temperature thresholds during seed germination of remnant Festuca hallii populations across the Canadian prairie. Environ Exp Bot. 2010;67(3):479–86. https://doi.org/10.1016/j.envexpbot.2009.09.002.

38. Sugiyama S. Geographical distribution and phenotypic differentiation in populations of Dactylis glomerata L. in Japan. Plant Ecol. 2003;169(2):865–75. https://doi.org/10.1023/A:1023071229858.

39. Boers AM, Veltman RLD, Zedler JB, Consulting NR, Box PO, Street SM, et al. Typha x glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecol Eng. 2006;25(2):144–53. https://doi.org/10.1016/j.ecoleng.2006.04.011.

40. Dahal P, Bradford KJ. Effects of priming and endosperm integrity on seed germination rates of tomato genotypes. J Exp Bot. 1999;50(11):1441–53. https://doi.org/10.1093/jxb/1.11.1441.

41. Forcella F, Benech Arnold RL, Sanchez R, Ghersa CM. Modeling seedling establishment. F Crop Res. 2000;67(2):123–39. https://doi.org/10.1016/S0304-4297(00)00088-5.

42. Bradford KJ. Applications of hydrothermal time to quantifying and modeling seed germination and dormancy. Weed Sci. 2005;52(2):248–60. https://doi.org/10.1614/0044-743X-52.2.248.

43. Rowse H, Finch-Savage W. Hydrothermal threshold models can describe the germination response of carrot (Daucus carota) and onion (Allium cepa) seed populations across both sub- and supra-optimal temperatures. New Phytol. 2003;158(1):101–8. https://doi.org/10.1046/j.1469-8137.2003.00707.x.

44. Bradford KJ. A water relations analysis of seed germination rates. Plant Physiol. 1990;94(2):840–9. https://doi.org/10.1104/pp.94.2.840.

45. García-Huidobro J, Monteith JL, Squire GR. Time, temperature and dormancy of Pearl Millet (Pennisetum typhoides S. & H. J. J Exp Bot. 1982;33(1):288–96.

46. Colve S, Ellis RH, Roberts EH, Summerfield RJ. The influence of temperature on seed germination rate in Grain Legumes. J Exp Bot. 1986;37(5):705–15. https://doi.org/10.1093/jxb/37.5.705.