INTRODUCTION

In late December 2019, the outbreak of respiratory illness was reported in Wuhan, China. After a while, the cause of this unknown pneumonia was recognized as a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by World Health Organization (WHO) (Zhu et al., 2020; He, Deng, & Li, 2020; Huang et al., 2020).

Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses that cause respiratory, enteric, hepatic, and neurological diseases in humans and animals (Zumla, Chan, Azhar, Hui, & Yuen, 2016). Some human CoVs, such as HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, create mild respiratory illness, but some others including severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause severe diseases (Li, Bai, & Hashikawa, 2020). It is identified that COVID-19

Curcumin (a constituent of turmeric): New treatment option against COVID-19

Fatemeh Babaei1 | Marjan Nassiri-Asl2 | Hossein Hosseinzadeh3,4

1Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
2Department of Pharmacology and Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
3Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
4Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

Correspondence
Marjan Nassiri-Asl, Department of Pharmacology and Neurobiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, P.O. Box 19839-63113, Tehran, I.R. Iran. Email: marjannassiriasl@sbmu.ac.ir
Hossein Hosseinzadeh, Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, I.R. Iran. Email: hosseinzadehh@mums.ac.ir

Abstract
In late December 2019, the outbreak of respiratory illness emerged in Wuhan, China, and spreads worldwide. World Health Organization (WHO) named this disease severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused by a new member of beta coronaviruses. Several medications are prescribed to patients, and some clinical trials are underway. Scientists are trying to find a specific drug against this virus. In this review, we summarize the pathogenesis, clinical features, and current treatments of coronavirus disease 2019 (COVID-19). Then, we describe the possible therapeutic effects of curcumin and its molecular mechanism against coronavirus-19. Curcumin, as an active constituent of Curcuma longa (turmeric), has been studied in several experimental and clinical trial studies. Curcumin has some useful clinical effects such as antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects that could be effective to manage the symptoms of the infected patient with COVID-19. It has several molecular mechanisms including antioxidant, antiapoptotic, and antifibrotic properties with inhibitory effects on Toll-like receptors, NF-κB, inflammatory cytokines and chemokines, and bradykinin. Scientific evidence suggests that curcumin could have a potential role to treat COVID-19. Thus, the use of curcumin in the clinical trial, as a new treatment option, should be considered.

Keywords
antiapoptotic, antifatigue, antifibrotic, anti-inflammatory, antiviral, Coronavirus-19, curcumin

1 INTRODUCTION

In late December 2019, the outbreak of respiratory illness was reported in Wuhan, China. After a while, the cause of this unknown pneumonia was recognized as a novel coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by World Health Organization (WHO) (Zhu et al., 2020; He, Deng, & Li, 2020; Huang et al., 2020).

Coronaviruses (CoVs) are enveloped positive-stranded RNA viruses that cause respiratory, enteric, hepatic, and neurological diseases in humans and animals (Zumla, Chan, Azhar, Hui, & Yuen, 2016). Some human CoVs, such as HCoV-OC43, HCoV-HKU1, HCoV-229E, and HCoV-NL63, create mild respiratory illness, but some others including severe acute respiratory syndrome CoV (SARS-CoV) and Middle East respiratory syndrome CoV (MERS-CoV) cause severe diseases (Li, Bai, & Hashikawa, 2020). It is identified that COVID-19
transmitted among humans by respiratory droplets and close contact (Chan et al., 2020). A recent research project revealed that sequence homology between SARS-CoV-2 and SARS-CoV was 79.5% (Wu et al., 2020) and SARS-CoV-2 belongs to the same beta coronavirus (β CoV) clade as MERS-CoV and SARS-CoV (Yu, Du, Ojius, Pan, & Jiang, 2020). Moreover, it has been identified that SARS-CoV-2 had high homology with bat coronaviruses and likely derived from bats (Zhou et al., 2020), but the intermediate hosts of SARS-CoV-2 have not been determined yet. The recent finding reveals that COVID-19 has similar pathogenesis with SARS-CoV or MERS-CoV (Song et al., 2019) and uses the same receptor as SARS-CoV for entrance to human host cells (Lu et al., 2020; Wan, Shang, Graham, Baric, & Li, 2020).

2 | METHODS

The most important articles about COVID-19 (from starting disease up to now) and curcumin were selected. We considered all articles of curcumin—human and animal studies—that could be effective to treat or rescue COVID-19-infected patients. PubMed and Web of Science were used as databases. As the importance of the subject, some selected papers were in the press. The keywords used for the search were as follows: coronavirus-19, COVID-19, SARS-CoV-2, curcumin, *Curcuma longa*, turmeric, curcumin and antiviral, curcumin and anti-inflammatory, curcumin and antipyretic, curcumin and lung, curcumin and acute lung injury, curcumin and fatigue, curcumin and antioxidant, curcumin and ARDS, curcumin and bradykinin, curcumin and fibrosis, curcumin and Interleukin-6 (IL-6), curcumin and tumor necrosis factor-alpha (TNF-α), curcumin and NF-κB, curcumin and Toll-like receptors (TLRs), curcumin and antiapoptotic.

3 | PATHOGENESIS

The SARS-CoV-2 is an enveloped nonsegmented positive-sense RNA virus. Two-thirds of viral RNA is located in the first open reading frames that encode 16 nonstructural proteins, whereas the remaining part of the genome encodes four essential structural proteins including spike (S) glycoprotein, envelope (E) protein, matrix (M) protein, and nucleocapsid (N) protein (Cui, Li, & Shi, 2019).

S protein contributes to virus pathogenesis through binding to cell surface receptor, angiotensin-converting enzyme 2 (ACE2), and the entrance of the virus into the host cell (Zhou et al., 2020). The possible mechanism and molecules involved in membrane invagination during virus endocytosis are still unknown. S protein is divided into the S1 domain that is responsible for receptor binding, and S2 domain that mediates cell membrane fusion (He et al., 2004).

Recent data showed that the S protein of SARS-CoV-2 binds to ACE2 with a higher affinity than SARS-CoV. For this reason, it spreads rapidly in human populations (Wrapp et al., 2020). The ACE2 expressed on the surface of cells in the lung, arteries, heart, kidney, and intestine (Hamming et al., 2004). Its concentration in the alveolar cells of men was higher than women, which may correlate with a high incidence rate of COVID-19 among men. Moreover, the expression level of ACE2 in the alveolar cells of Asians was higher than other races, which may lead to high susceptibility to disease and severe outcomes (Sun, Lu, Xu, Sun, & Pan, 2020). The ACE2 is an enzyme that catalyzes vasoactive angiotensin II to vasodilator angiotensin[1–7] (Richards & Raizada, 2018).

On the other hand, the binding of the SARS-CoV spike protein to ACE2 leads to ACE2 downregulation (Kuba et al., 2005). It is not clear that SARS-CoV-2 could downregulate the expression of ACE2 or not as the homology of SARS-CoV-2 with SARS-CoV. ACE2 downregulation resulted in excessive production of angiotensin by the ACE, suggesting lead to pulmonary hypertension, acute lung injury (ALI), and lung fibrosis (Tan, Liao, Zhou, Mei, & Wong, 2018).

Previous studies have shown the protective role of ACE2 against various types of pulmonary illnesses such as acute respiratory distress syndrome (ARDS), chronic obstructive pulmonary disease (COPD), pulmonary hypertension, ALI, and asthma (Jia, 2016). It has been suggested that increasing ACE2 levels such as using angiotensin II receptor blocker medications could be effective to treat COVID-19 (Gurwitz, 2020). However, another study showed that decreasing ACE2 activity might be protective (Zhang, Penninger, Li, Zhong, & Slutsky, 2020). Thus, these hypotheses might be the basis for more research to clarify new therapeutic options.

3.1 | Clinical signs and symptoms in patients

The patients mainly were 30–79 years old (Wu & McGoogan, 2020). A few cases were children below 15 years old such as 15 days old in Iran (Kamali Aghdam, Safari, & Eftekhar, 2020). There were one or more coexisting medical conditions, including hypertension, diabetes, and cardiovascular disease in about half the patients (Chen et al., 2020). These coexisting medical conditions lead to a high mortality rate in COVID-19 patients (Wu & McGoogan, 2020). There was a spectrum of clinical features ranging from asymptomatic infection to severe respiratory failure. The most prevalent manifestations include fever, fatigue, dry cough, myalgia, dyspnea, and anorexia (Qin et al., 2020; Rodriguez-Morales et al., 2020). The uncommon symptoms were sputum production, headache, hemoptysis, diarrhea, nausea, and vomiting (Huang et al., 2020; Qian et al., 2020; Rodriguez-Morales et al., 2020).

3.2 | Laboratory findings

According to laboratory examination, lymphopenia, hypoalbuminemia, and high levels of C-reactive protein (CRP), erythrocyte sedimentation rate (ESR), and lactate dehydrogenase (LDH) were the most prevalent results in the patients (Mo et al., 2020; Qin et al., 2020; Rodriguez-Morales et al., 2020; Talebpour, Hadadi, Oraii, & Ashraf, 2020; Wang, Yang, Li, Wen, & Zhang, 2020).
Patients with severe symptoms had raised levels of coagulation indexes (prothrombin time, activated partial thromboplastin time, and D-dimer), procalcitonin, IL-6, and serum ferritin, and multiple organ involvement, such as liver (increased lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels), kidney (increased blood urea nitrogen and creatinine levels), and heart and muscle (increased creatinine kinase levels) compared with patients with mild symptoms. Also, there was higher neutrophil-to-lymphocyte ratio (NLR) and lower percentages of monocytes, eosinophils, and basophils in complete blood count (Qian et al., 2020; Talebpour et al., 2020; Wan, Xiang, et al., 2020).

The pathological features of COVID-19 were similar to SARS-CoV and MERS-CoV infection (van den Brand, Smits, & Haagmans, 2015; Hui & Zumla, 2019; Nassar, Bakhrebah, Meo, Alsauabeyl, & Zaher, 2018). Moreover, moderate microvascular steatosis, mild lobular, and portal activity were observed in the liver biopsy samples. The heart tissue also showed interstitial mononuclear inflammatory infiltrates. The CD4 and CD8 T cells were decreased in flow cytometric analysis of peripheral blood. Also, X-ray images showed a rapid progression of pneumonia in lung tissues (Xu et al., 2020).

3.3 | Pathology

The pathological features of COVID-19 were similar to SARS-CoV and MERS-CoV infection (van den Brand, Smits, & Haagmans, 2015; Hui & Zumla, 2019; Nassar, Bakhrebah, Meo, Alsauabeyl, & Zaher, 2018). Moreover, moderate microvascular steatosis, mild lobular, and portal activity were observed in the liver biopsy samples. The heart tissue also showed interstitial mononuclear inflammatory infiltrates. The CD4 and CD8 T cells were decreased in flow cytometric analysis of peripheral blood. Also, X-ray images showed a rapid progression of pneumonia in lung tissues (Xu et al., 2020).

Study details	Treatment protocol	Reference
41 patients, Wuhan, China	Oxygen support, antibiotics (N), antiviral (oseltamivir), corticosteroid (methylprednisolone), renal replacement therapy	Huang et al. (2020)
69 patients, Wuhan, China	Oxygen support, antibiotics (N), antiviral (N), corticosteroid (N), antifungal (N), arbidol, moxifloxacin, interferon therapy (N)	Wang, Yang, et al. (2020)
135 patients, Northeast Chongqing, China	Oxygen support, antibiotics (N), antiviral (Kaletra), corticosteroid (N), traditional Chinese medicine therapy, renal replacement therapy	Wan, Xiang, et al. (2020)
155 patients, Wuhan, China	Oxygen support, corticosteroid (N), expectorant, antiviral: arbidol, lopinavir, ritonavir, interferon inhalation, immune enhancer (thymalfasin, immunoglobulin)	Mo et al. (2020)
One patient Case report, United States	Antipyretic therapy: acetaminophen (650 mg, every 4 hr), and ibuprofen (600 mg, every 6 hr), expectorant: guaifenesin (600 mg), oxygen support, antibiotics (vancomycin and cefepime), antiviral (remdesivir)	Holshue et al. (2020)
99 patients, Wuhan, China	Oxygen support, antibiotics: cephalosporins, quinolones, carbapenems, tigecycline against methicillin-resistant Staphylococcus aureus, linezolid, Antiviral: oseltamivir (75 mg, every 12 hr), ganciclovir (0.25 g, every 12 hr), and lopinavir and ritonavir (500 mg, twice daily), corticosteroid: methylprednisolone sodium succinate, methylprednisolone, and dexamethasone, antifungal (N), renal replacement therapy, immunoglobulin therapy (IV)	Chen et al. (2020)
More than 100 patients Wuhan, Jingzhou, China	Chloroquine phosphate	Gao, Tian, and Yang (2020)
20 patients, Marseille, France	Hydroxychloroquine (600mg, daily)	Gautret et al., (2020)

Note: N: not mentioned.

Countries use various strategies to treat COVID-19 patients. Some protocols for the treatment are summarized in Table 1. Some clinical trials try to find an effective drug (Li & De Clercq, 2020). Organ dysfunction, including shock, ARDS, acute cardiac injury, acute kidney injury, liver dysfunction, and secondary inflammation are causes of death among COVID-19 patients (Chen et al., 2020; Huang et al., 2020; Wan, Xiang, et al., 2020; Wang, Hu, et al., 2020). Current medical therapies are symptomatic treatment or supportive care. There is no definitive treatment yet for this
disease. Therefore, finding effective strategies to treat infected patients and protect organs is necessary to decrease the mortality rate.

4.1 | Curcumin as a new option

Curcumin, as a potential agent, could be considered to treat COVID-19. Curcumin, as an active constituent of rhizomes of C. longa (turmeric), is a hydrophobic polyphenol (Figure 1) (Akbar et al., 2018; Soleimani, Sahebkar, & Hosseinzadeh, 2018). Curcumin is used as a spice in foods and for different purposes such as cosmetic and pharmaceutical industries in the world (Hosseini & Hosseinzadeh, 2018). Curcumin has several pharmacological effects such as antioxidant, anticancer, antibacterial, antiviral, and antidiabetic effects (Fan et al., 2015; Moghadamtousi et al., 2014; Zhu et al., 2017), as well as anti-inflammatory activity (Cheng, Yang, Hu, Zhu, & Liu, 2018). As the potential role of curcumin to treat many inflammatory disorders, at the first step we will describe all effects of curcumin that may be useful to treat COVID-19, and then, we explain the possible molecular mechanisms of it.

5 | THERAPEUTIC EFFECTS OF CURCUMIN AGAINST COVID-19

5.1 | Antiviral effects

Curcumin prevented the replication of SARS-CoV and inhibited 3Cl protease in Vero E6 cells. Also, it significantly has an inhibitory activity against the cytopathogenic effect of SARS-CoV in Vero E6 cells (Wen et al., 2007). Curcumin was effective against other viruses such as influenza A virus, HIV, enterovirus 71 (EV71), herpes simplex virus (HSV), hepatitis C virus (HCV), and human papillomavirus (HPV) with several mechanisms that made it valuable for antiviral therapies (Moghadamtousi et al., 2014; Praditya et al., 2019; Qin et al., 2014). Recently, it has been shown that the transformation of curcumin into carbon quantum dots could boost antiviral effects of curcumin with different mechanisms against EV71 in vitro and in vivo (Lin et al., 2019). The interesting issue about carbon quantum dots is that it alone was effective against coronavirus (HCoV) by inhibiting the entry receptor of HCoV-229E (Łoczechin et al., 2019).

5.2 | Antiemetic effect

C. longa L, as herbal medicine, is used to treat vomiting from ancient times in Asian countries (Liu et al., 2018). Curcumin (20 mg/kg, intragastric, 3 days) improved appetite of rats in chemotherapy induced by fluorouracil (5-FU) (Yao et al., 2013). It may be effective against vomiting due to COVID-19.

5.3 | Reduces myalgia and fatigue

In an animal study, oral administration of curcumin has an antifatigue function and improved physical function in mice (Huang et al., 2015). Administration of curcumin (1,000 mg/d, 30 days) reduced stress and fatigue in the subjects that experiencing occupational stress-related anxiety and fatigue in a randomized double-blind placebo-controlled study (Pandaran Sudheeran et al., 2016). Curcumin (2.5 g, two times a day) reduced delayed-onset muscle soreness of healthy men who have a heavy eccentric exercise (Nicol, Rowlands, Fazakerly, & Kellett, 2015). The use of curcumin in myalgic encephalomyelitis/chronic fatigue syndrome as a novel therapeutic option was mentioned (Morris et al., 2019). Curcumin inhibited sepsis-induced muscle wasting by inhibiting catabolic response in skeletal muscle via blocking NF-κB (Alamdari, O’Neal, & Hasselgren, 2009). Curcumin (Meriva®, 1 g, 3 months) prevented muscle loss and improved physical performance in healthy elder subjects and delayed the onset of sarcopenia in them (Franceschi et al., 2016). These results suggest that curcumin may be effective to manage myalgia and fatigue symptoms induced by COVID-19.

5.4 | Antinociceptive, anti-inflammatory, and antipyretic effects

The antinociceptive and anti-inflammatory effects of curcumin in animal and human studies were reviewed by Eke-Okoro, Raffa, Pergolizzi, Breve, & Taylor, 2018 (Eke-Okoro et al., 2018). About the important molecular mechanism of these effects, it will discuss later that curcumin could be effective as a novel treatment against COVID-19. Also, in an animal study, curcumin (100 mg/kg, i.p.) has an antipyretic effect in rats (Haider et al., 2013). It seems that curcumin overcomes the fever of COVID-19-infected patients.

5.5 | Inhibitory effects on cytokines and chemokines

Two meta-analyses of randomized controlled trials have shown that curcumin reduced circulating IL-6 and TNF-α levels that both are the key inflammatory mediators and increase in inflammatory diseases (Derosa, Maffioli, Simental-Mendía, Bo, & Sahebkar, 2016; Sahebkar,
Curcumin also reduced the expression of IL-1β in M1 macrophages from Behcet’s disease patients (Palizgir et al., 2018). Also, curcumin protected human genital mucosal epithelial cells against HIV-1 replication by inhibiting activation of proinflammatory chemokines such as IL-8 and RANTES (Ferreira, Nazli, Dizzell, Mueller, & Kaushic, 2015). The summary of the clinical effects of curcumin that may be useful to treat COVID-19 is illustrated in Figure 2.

In this section, we summarize the important molecular mechanisms of curcumin that show potential ability against COVID-19. Figure 3 presents a summary of the possible molecular mechanisms of curcumin against COVID-19 via different signaling pathways in the pulmonary system. This figure shows the inhibitory effects of curcumin on TLRs, NF-κB, cytokines, chemokines, bradykinin, oxy-radicals, transforming growth factor-beta1 (TGF-β1), cyclooxygenase (COX), plasminogen activator inhibitor-1 (PAI-1), IL-17A, and caspase-3 (Cas-3).

5.6 Antioxidant effects

In severe COVID-19 infection, pneumonia may cause hypoxemia, which, in turn, disturbs cell metabolism and reduces the energy supply, and increases anaerobic fermentation. Then, acidosis happens and causes oxygen free radicals to destroy the phospholipid layer of the cell membrane (Li, Yang, et al., 2020). Therefore, treatment with a drug that has antioxidant properties will be good for these patients and curcumin has this effect. Several studies have shown that curcumin is a strong antioxidant (Abrahams, Haylett, Johnson, Carr, & Bardien, 2019; Farzaei et al., 2018; Mary, Vijayakumar, & Shankar, 2018; Trujillo et al., 2013). Curcumin (1 mg/kg, 5 mg/kg) increased the superoxide dismutase (SOD) level in acute lung injury induced by intestinal ischemia–reperfusion in mice (Fan et al., 2015). Furthermore, curcumin (200 mg/kg) reduced malondialdehyde (MDA) level and recovered the levels of xanthine oxidase (XO) and total antioxidative capacity (TAOC) in ventilator-induced
5.7 | The anti-inflammatory effects in acute lung injury/acute respiratory distress syndrome (ALI/ARDS) models

ARDS is a clinical syndrome and is associated with increased permeability pulmonary edema, severe arterial hypoxemia, and impaired carbon dioxide excretion, eventually resulting in respiratory failure. It may occur due to a pulmonary or extrapulmonary infectious or noninfectious insult (Matthay, Ware, & Zimmerman, 2012).

Major inflammatory mediators in ARDS include cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10), chemokines such as macrophage inhibitory factor (MIF), and macrophage chemoattractant protein, metabolites of arachidonic acid (prostanoids and leukotrienes), and oxyradicals. Until yet, mechanical ventilation is only a proven strategy for treatment to improve the survival of patients (Matuschak & Lechner, 2010). Recently, rescue therapy with high-dose vitamin C has been suggested to use for these patients (Fowler et al., 2019). Therefore, finding new treatments to overcome these mediators and preventing respiratory failure are necessary. On the other hand, the protective effects of curcumin were studied in several pulmonary diseases such as COPD, ARDS, pulmonary fibrosis, and asthma in animal studies (Lelli, Sahebkar, Johnston, & Pedone, 2017; Venkatesan, Punithavathi, & Babu, 2007). In this part of the review, we explain molecular

FIGURE 3 Possible molecular mechanisms of curcumin against COVID-19 in the pulmonary system. AA: arachidonic acid, ALI: acute lung injury, AP-1: activator protein 1, BK: bradykinin, ACE2: angiotensin-converting enzyme 2, Ang II: angiotensin II, ARDS: acute respiratory distress syndrome, Cas-3: caspase 3, COX: cyclooxygenase, CXCL: chemokine (C–X–C motif) ligand, 12-HPETE: 12-hydroperoxyeicosatetraenoic acid, JNK: c-Jun N-terminal kinase, 12 LOX: 12-lipoxygenase, MMP: matrix metalloproteinase NF-κB: nuclear factor kappa-light-chain-enhancer of activated B cells, MAPK: mitogen-activated protein kinase, PAI-1: plasminogen activator inhibitor-1, PLA2: phospholipase A2, PG: prostaglandin, SMAD3: mothers against decapentaplegic homolog 3, TGF-β1: transforming growth factor-beta 1, TNF-α: tumor necrosis factor-α, TLR: Toll-like receptor, TRPA1: transient receptor potential channel subfamily vanilloid member 1, TRPV1: transient receptor potential channel subfamily A member 1
mechanisms that curcumin may be useful to prevent or treat the ARDS.

5.7.1 NF-κB activity and inflammatory cytokines and chemokines

ALI is a model that is used for the ARDS animal study (Karunaweera, Raju, Gyengesi, & Münch, 2015; Olivera et al., 2012; Tian et al., 2006; Wang, Tang, Duan, & Yang, 2018), and curcumin exhibits its effects by predominantly targeting proinflammatory NF-κB pathway (Ahn, Sethi, Jain, Jaiswal, & Aggarwal, 2006; Karunaweera et al., 2015; Olivera et al., 2012; Puur et al., 2018; Wang, Tang, et al., 2018). Curcumin decreased IL-6 level and myeloperoxidase (MPO) activity, intercellular adhesion molecule-1 (ICAM-1) expression, and bronchoalveolar lavage fluid (BALF) protein in ALI induced by intestinal ischemia–reperfusion in mice that all of them are known as inflammatory indexes. It seems that curcumin by inhibiting NF-κB could have anti-inflammatory effects (Fan et al., 2015). Curcumin not only decreased the level of keratinocyte-derived chemokine (KC), IL-1β, macrophage inflammatory protein (MIP)-2, TNF-α, IL-6, and TGF-β in the BALF but also downregulated the expression of their genes except IL-6 in ALI induced by Staphylococcus aureus in mice. Also, curcumin inhibited the activation of NF-κB by downregulating phosphorylation of IkB-α in bone marrow-derived macrophages (BMDM) that were stimulated with S. aureus. It has been suggested that some part of the anti-inflammatory effects of curcumin are due to regulating NF-κB activity (Xu et al., 2015).

Curcumin downregulated the production of proinflammatory cytokine (TNF-α, IFN-α, and IL-6) in influenza A virus-infected human macrophages and BAL fluid of infected mice. Similar to other noted studies, curcumin downregulated the expression of NF-κB and increased the cytosolic IκBα and inhibited its phosphorylation in the cytoplasm in human macrophages (Xu & Liu, 2017). In this way, curcumin reduced TNF-α, MIP-2, and IL-6 in lipopolysaccharide (LPS)-induced ALI in mice. It has been suggested that curcumin inhibits the release of cytokines by activation of 5’ adenosine monophosphate (AMP)-activated protein kinase (AMPK) (Kim et al., 2016).

Curcumin reduced the production of TNF-α, IL-1β, IL-6, and IL-8, MMP-2, and MMP-9 both in mice and in A549 cells infected with influenza A virus. These cytokines exacerbate the ALI (Dai et al., 2018). The inhibitory role of curcumin on the expression of proinflammatory cytokines such as TNF-α, IL-1, and IL-6 was reviewed in ALI and fibrosis by Gouda and Bhandary (2019). It seems that the most important molecular mechanism of curcumin on IL-6 activities may be related to the downregulation or inhibition of IL-6 signaling in different inflammatory diseases (Ghandadi & Sahebkar, 2017). Furthermore, curcumin has an inhibitory effect on IL-17A that plays a pivotal role in the inflammation of the alveolar epithelial cells in ALI studies. In other words, IL-17 by activating P35 causes the stabilization of the PAI-1, which in turn mediates the accumulation of extracellular matrix (ECM) and subsequent development of pulmonary fibrosis in alveolar type II (ATII) cells, and curcumin inhibits IL-17A-mediated changes in the p53-fibrinolytic system (Figure 3) (Gouda & Bhandary, 2018, 2019). Curcumin also reduced the gene expression of chemokines such as chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL5, and CXCL12 that is increased during inflammation in the airway epithelial cells in bleomycin-induced ALI in mice (refer to Figure 3 for more details) (Gouda & Bhandary, 2018).

5.7.2 TLRs in lung injury

The inhibitory effects of curcumin on the different subtypes of TLRs including extracellular TLR2 and TLR4 and intracellular TLR9 have been reported, which result in the therapeutic effects of curcumin in inflammation, infection, autoimmune, and ischemic disease (Boozari, Butler, & Sahebkar, 2019). Curcumin at low concentrations (10, 20 μM) prevented apoptosis and cytokine production (TNF-α, IL-6) induced by 19-kDa Mycobacterium tuberculosis protein (P19) in human macrophages. Curcumin also reduced the expression of TLR2/JNK that may be involved in the apoptosis of macrophages (Li et al., 2014). ALI/ARDS could be the consequence of severe influenza A virus infection with substantial morbidity and mortality. On the other hand, curcumin decreased TLR2/4 gene expression and inhibited phosphorylation of p38, JNK, and NF-κB in infected A549 cells with influenza A virus. It seems that curcumin regulates the TLR-MAPK/NF-κB signaling pathways involved in the replication and influenza pneumonia (Figure 3). However, other mechanisms have been suggested for the antiviral effects of curcumin. Furthermore, curcumin increased the survival rate in infected mice with this virus (Dai et al., 2018).

5.7.3 Antiapoptotic and antifibrotic effect

Pulmonary pathology of COVID-19 pneumonia in two patients with lung cancer showed the edema and prominent proteinaceous exudates, vascular congestion, and inflammatory clusters with fibrinoid material. Also, reactive alveolar epithelial hyperplasia and fibroblastic proliferation were reported in them (Tian et al., 2020). On the other hand, PAI-1 plays a key mediator role in pulmonary fibrosis. Furthermore, PAI-1 and apoptosis have an important role in the progression and pathogenesis of pulmonary fibrosis (Johnson, Shaikh, Muneesa, Rashmi, & Bhandary, 2020). Therefore, this issue led us to point out the antiapoptotic and the antifibrotic effects of curcumin here. The antiapoptotic effects of curcumin were found in different organ injuries including diabetes, nephrotoxicity, intestinal inflammation, neurotoxicity with several mechanisms (Loganes et al., 2017; QiHu, Shuntian, Xin, Xiaoxia, & Zhongpei, 2020; Soetikno et al., 2019; Sun et al., 2014). Both antiapoptotic and antifibrotic effects of curcumin were shown on the ALI model in mice. Curcumin reduced the expression of p53, PAI-1, and chemokines in bleomycin-induced ALI. Also, curcumin inhibited apoptosis mediated by IL-17 and downregulated cleaved caspase-3 in alveolar epithelial cells. The results suggest that the cross talk between the
inflammatory, fibrinolytic, and apoptotic pathways is interrupted by curcumin (Gouda & Bhandary, 2018). Similar results of curcumin were found with the bleomycin model in human alveolar basal epithelial cells (A549) (Gouda, Prabhu, & Bhandary, 2018). Also, curcumin decreased PAI-1 with cytokines and chemokines in ALI induced by staphylococcus aureus (Xu et al., 2015). On the other hand, curcumin inhibited the expression of TGF-β1 and SMAD3 pathway in ALI induced by sepsis in rats that may involve in the pathogenesis of ALI (Xu et al., 2013). Curcumin reduced expression fibrosis markers including smooth muscle actin (α-SMA), and Tenascin-C in reovirus 1/L-induced ALI/ARDS in mice (Avasarala et al., 2013). Intranasal curcumin reduced matrix metalloproteinases-9 (MMP-9)/tissue inhibitors of metalloproteinase (TIMP-1) expression and increased α-SMA, as a myofibroblast marker, which involves in muscle thickening in paraquat lung injury model in mice. It seems that pretreatment of curcumin prevented the early phase of pulmonary fibrosis by inhibiting inflammatory cells and producing fibrotic factors (Tyagi, Dash, & Singh, 2016) (Figure 3).

5.8 | The inhibitory effects of curcumin on bradykinin to suppress cough

Bradykinin has an important role in the inflammatory events during acute and chronic inflammatory diseases such as respiratory tract infection and asthma (Broadley, Blair, Kidd, Bugert, & Ford, 2010; Hewitt et al., 2016). Furthermore, it seems that bradykinin could trigger cough in these inflammatory diseases or other conditions such as in patients with cough associated with captopril and enalapril as ACE inhibitors (Hewitt et al., 2016; Katsumata, Sekizawa, Ujiie, Sasaki, & Takishima, 1991) Curcumin is an inhibitor of activated protein-1 (AP-1) (Singh & Aggarwal, 1995). Curcumin prevented the expression of IL-6 induced by bradykinin in human airway smooth muscle cells via this inhibition (Huang, Tilba, Panettieri, & Amrani, 2003).

On the other hand, it has shown that curcumin has a greater affinity to bradykinin B1 receptor (BK1) with strong inhibition activity (Ki value = 2.173 µg/ml) compared with BK2 receptor (Ki value = 58 µg/ml) (Yimam et al., 2016). The possible molecular mechanism of bradykinin for sensitizing cough reflex is through activation B2 receptors, which in turn stimulate the release of COX and 12-lipoxygenase (12-LOX) metabolites; then, these metabolites activate transient receptor potential (TRP) channel subfamily vaniloid member 1 (TRPV1) and subfamily A member 1 (TRPA1) channels result in an increase in both cough response and airway obstruction (Al-Shamlan & El-Hashim, 2019) (Figure 3). On the other hand, there are many studies due to the inhibitory effects of curcumin on 5-LOX and COX-2 (Rao, 2007). Furthermore, curcumin has shown these inhibitory effects in the airway studies (Kumari, Singh, Dash, & Singh, 2019; Yuan, Liu, Ma, Zhang, & Xie, 2018). Thus, curcumin is likely to inhibit the activity of bradykinin by inhibiting the COX enzyme (Figure 3).

5.9 | Bronchodilator effect of curcumin

Curcumin (20 mg/kg, p.o.) significantly inhibits ovalbumin (OVA)-induced airway constriction and airway hyperreactivity to histamine in sensitized guinea pigs (Ram, Das, & Ghosh, 2003). Also, curcumin (2.5 and 5 mg/kg, intranasal) significantly reduced bronchoconstriction in the mouse model of asthma (Subhashini et al., 2013). Moreover, C. longa extract (1.5, 3 mg/ml) reduced tracheal contractile response to OVA and maximum response to methacholine in rats. It also decreased interstitial fibrosis (Shakeri, Roshan, & Boskabady, 2020). Standard therapy with capsule curcumin 500 mg BD daily for 30 days in patients of bronchial asthma significantly improved forced expiratory volume one second (FEV1) compared with standard therapy. However, the mean scores for cough, dyspnea, wheezing, chest tightness, and nocturnal symptoms were insignificant. Curcumin is recommended to use as an add-on therapy for bronchial asthma (Abidi, Gupta, Agarwal, Bhalla, & Saluja, 2014).

5.10 | Effect of curcumin on ACE2 expression

Dietary administration of curcumin (150 mg kg⁻¹ day⁻¹, gavage during Ang II infusion) decreased the protein level of the AT1 receptor and enhanced the expression of the AT2 receptor/ACE2 and results in the attenuation of myocardial fibrosis in a rat model of angiotensin II infusion (Pang et al., 2015). These data suggest that similar events happen in the lung tissues to prevent fibrosis. However, this hypothesis needs further studies (Figure 3). Possibly curcumin will be useful in combination therapy with angiotensin-converting enzyme (ACE) inhibitors and AT1 antagonist (angiotensin II receptor blockers) to overcome fibrosis in COVID-19 patients. On the other hand, recently, Monteil et al. have revealed the human recombinant soluble ACE2 (hrsACE2) could inhibit the growth of SARS-CoV-2 in Vero-E6 cells, human capillary, and kidney organoids through preventing entry into host cells. However, they did not study lung organoids that are the major target organ for COVID-19 (Monteil et al., 2020).

6 | ADVANTAGE OF CURCUMIN OVER THE OTHER NATURAL AGENTS

Advantage of curcumin over other important natural agents with reported anti-inflammatory activities such as zerumbone (Prasannan et al., 2012), thymoquinone (Siveen, Mustafa, et al., 2014), honokiol (Rajendran et al., 2012), escin (Tan et al., 2010), pinitol (Sethi, Ahn, Sung, & Aggarwal, 2008), and tocotrienols (Siveen, Ahn, et al., 2014) is that it has additional antiviral, antiemetic, antinociceptive, antifatigue, and bronchodilator effects that previously has been discussed in this review. Also, it has significant protective effects in the ARDS model in animal studies. These mentioned effects help us to conclude that curcumin has the potential to be effective against COVID-19 infection.
7 | SAFETY AND BIOAVAILABILITY OF CURCUMIN

To date, over 100 clinical trials have been completed with curcumin and safety, tolerability, and outcome have been reported in all of them (Kunnumakkara et al., 2017). An oral dose of 500 mg (two times a day, 30 days) was reported safe for curcumin (Soleimani et al., 2018). Curcumin up to 8,000 mg/day was safe, tolerable, and effective in humans, and higher doses were with toxicity (Kunnumakkara et al., 2019; Shanmugam et al., 2015). Curcumin has low bioavailability, but a lot of data from clinical trials showed the high efficacy of curcumin or turmeric against several diseases (Kunnumakkara et al., 2019). However, various strategies are used including analogs of curcumin and formulations such as adjuvants, nanoparticles, liposomes, micelles, and phospholipid complexes to improve its bioavailability (Kunnumakkara et al., 2017). Recently, it has been shown that the encapsulation of curcumin into specific nanocarrier could enhance its therapeutic efficiency (Moballeh Naseri et al., 2020).

8 | CONCLUSION

COVID-19 is spreading worldwide, leading a pandemic. There is no definitive treatment yet for this disease. In this review, we summarized clinical and molecular mechanisms that curcumin might be effective to treat COVID-19. Research evidence suggests that curcumin will be useful to treat patients especially in ARDS cases with high mortality risk. Curcumin has several therapeutic effects including antiviral, antinociceptive, anti-inflammatory, antipyretic, and antifatigue effects with several molecular mechanisms such as antioxidant, antiapoptotic, antifibrotic effects, and inhibitory effects on NF-κB, inflammatory cytokines and chemokines. Toll-like receptors, and bradykinin. The importance of this review is due to the fact that curcumin is a nutraceutical that could be a new treatment option to combat the COVID-19 pandemic. Designing the best formulation with high efficacy and good bioavailability is necessary. Further clinical studies should focus on curcumin against COVID-19 infection.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

ETHICAL APPROVAL

The study did not involve any human or animal testing.

ORCID

Marjan Nassiri-Asi https://orcid.org/0000-0003-3701-0758

Hossein Hosseinzadeh https://orcid.org/0000-0002-3483-851X

REFERENCES

Abidi, A., Gupta, S., Agarwal, M., Bhalla, H. L., & Saluja, M. (2014). Evaluation of efficacy of curcumin as an add-on therapy in patients of bronchial asthma. Journal of Clinical and Diagnostic Research, 8(8), Hc19-24. https://doi.org/10.7860/jcdr/2014/9273.4705

Abrahams, S., Haylett, W. L., Johnson, G., Carr, J. A., & Bardien, S. (2019). Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience, 406, 1–21. https://doi.org/10.1016/j.neuroscience.2019.02.020

Ahn, K. S., Sethi, G., Jain, A. K., Jaiswal, A. K., & Aggarwal, B. B. (2006). Genetic deletion of NAD(P)H:Quinone oxidoreductase 1 abrogates activation of nuclear factor-kappaB, IkappaBalpHa kinase, c-Jun N-terminal kinase, Akt, p38, and p44/42 mitogen-activated protein kinases and potentiates apoptosis. The Journal of Biological Chemistry, 281(29), 19798–19808. https://doi.org/10.1074/jbc.M601162200

Akbar, M. U., Rehman, K., Zia, K. M., Qadir, M. I., Akash, M. S. H., & Ibrahim, M. (2018). Critical review on curcumin as a therapeutic agent: From traditional herbal medicine to an ideal therapeutic agent. Critical Reviews in Eukaryotic Gene Expression, 28(1), 17–24. https://doi.org/10.1615/CritRevEukaryotGeneExpr.2018200088

Alamdari, N., O’Neal, P., & Hasselgren, P. O. (2009). Curcumin and muscle wasting: A new role for an old drug? Nutrition, 25(2), 125–129. https://doi.org/10.1016/j.nut.2008.09.002

Al-Shamlan, F., & El-Hashim, A. Z. (2019). Bradykinin sensitizes the cough reflex via a B(2) receptor dependent activation of TRPV1 and TRPA1 channels through metabolites of cyclooxygenase and 12-lipoxygenase. Respiratory Research, 20(1), 110. https://doi.org/10.1186/s12931-019-1060-8

Avasarala, S., Zhang, F., Liu, G., Wang, R., London, S. D., & London, L. (2013). Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One, 8(2), e57285. https://doi.org/10.1371/journal.pone.0057285

Boozari, M., Butler, A. E., & Sahebkar, A. (2019). Impact of curcumin on toll-like receptors. J Cell Physiology, 234(8), 12471–12482. https://doi.org/10.1002/jcp.28103

Broadley, K. J., Blair, A. E., Kidd, E. J., Bugert, J. J., & Ford, W. R. (2010). Bradykinin-induced lung inflammation and bronchoconstriction: Role in para influenza-3 virus-induced inflammation and airway hyperreactivity. The Journal of Pharmacology and Experimental Therapeutics, 335(3), 681–692. https://doi.org/10.1124/jpet.110.171876

Chan, J.-W., Yuan, S., Kok, K.-H., To, K.-W., Chu, H., Yang, J., … Yuen, K.-Y. (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223), 514–523. https://doi.org/10.1016/s0140-6736(20)30154-9

Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., … Zhang, L. I. (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223), 507–513. https://doi.org/10.1016/s0140-6736(20)30211-7

Cheng, K., Yang, A., Hu, X., Zhu, D., & Liu, K. (2018). Curcumin attenuates pulmonary inflammation in lipopolysaccharide induced acute lung injury in neonatal rat model by activating peroxisome proliferator-activated receptor γ (PPARγ) pathway. Medical Science Monitor, 24, 1178–1184. https://doi.org/10.12659/MSM.908714

Cui, J., Li, F., & Shi, Z. L. (2019). Origin and evolution of pathogenic coronaviruses. Nature Review Microbiology, 17(3), 181–192. https://doi.org/10.1038/s41579-018-0118-9

Dai, J., Gu, L., Su, Y., Wang, Q., Zhao, Y., Chen, X., … Li, K. (2018). Inhibition of curcumin on influenza A virus infection and influenza pneumonia via oxidative stress, TLR2/4, p38/JNK MAPK and NF-κB pathways. International Immunopharmacology, 54, 177–187. https://doi.org/10.1016/j.intimp.2017.11.009

Derosa, G., Maffioli, P., Simental-Mendia, L. E., Bo, S., & Sahebkar, A. (2016). Effect of curcumin on circulating interleukin-6 concentrations: A systematic review and meta-analysis of randomized controlled trials. Pharmacological Research, 111, 394–404. https://doi.org/10.1016/j.phrs.2016.07.004

Eke-Okoro, U. J., Raffa, R. B., Pergolizzi, J. V. Jr, Breve, F., & Taylor, R. Jr (2018). Curcumin in turmeric: Basic and clinical evidence
for a potential role in analgesia. *Journal of Clinical Pharmacy and Therapeutics, 43*(4), 460–466. https://doi.org/10.1111/jcpt.12703

Fan, Z., Yao, J., Li, Y., Hu, X., Shao, H., & Tian, X. (2015). Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-κB. *International Journal of Clinical and Experimental Pathology, 8*(4), 3451–3459.

Farzaei, M., Zobeiri, M., Parvizi, F., El-Senduny, F., Marmouzi, I., Coy-Barrera, E., … Abdollahi, M. (2018). Curcumin in liver diseases: A systematic review of the cellular mechanisms of oxidative stress and clinical perspective. *Nutrients, 10*(7), 855. https://doi.org/10.3390/nu10070855

Ferreira, V. H., Nazli, A., Dizzell, S. E., Mueller, K., & Kaushic, C. (2015). The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. *PloS One, 10*(4), e0124903. https://doi.org/10.1371/journ al.pone.0124903

Fowler, A. A., Truwit, J. D., Hite, R. D., Morris, P. E., DeWilde, C., Priday, G., … Yang, X. (2020). Breakthrough: Chloroquine phosphate and hydroxychloroquine are effective against SARS-CoV-2 in the treatment of experimental COVID-19 pneumonia in clinical studies. *The New England Journal of Medicine, 382*(10), 929–936. https://doi.org/10.1056/NEJMoa2001191

Hosseini, A., & Hosseinizadeh, H. (2018). Antidotal or protective effects of *Curcuma longa* (turmeric) and its active ingredient, curcumin, against natural and chemical toxicities: A review. *Biomedicine and Pharmacotherapy, 99*, 411–421. https://doi.org/10.1016/j.biopha.2018.01.072

Huang, C. D., Tilda, O., Panettieri, R. A. Jr, & Amrani, Y. (2003). Bradykinin induces interleukin-6 production in human airway smooth muscle cells: Modulation by Th2 cytokines and dexamethasone. *American Journal of Respiratory Cell and Molecular Biology, 28*(3), 330–338. https://doi.org/10.1165/rcmb.2002-0040OC

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. *Lancet, 395*(10223), 497–506. https://doi.org/10.1016/s0140-6736(20)30183-5

Huang, W.-C., Chiu, W.-C., Chuang, H.-L., Tang, D.-W., Lee, Z.-M., Wei, L. I., … Huang, C.-C. (2015). Effect of curcumin supplementation on physiological fatigue and physical performance in mice. *Nutrients, 7*(2), 905–921. https://doi.org/10.3390/nu7020905

Hui, D. S. C., & Zumla, A. (2019). Severe acute respiratory syndrome: Historical, epidemiologic, and clinical features. *Infectious Disease Clinics of North America, 33*(4), 869–889. https://doi.org/10.1016/j.idc.2019.07.001

Jia, H. (2016). Pulmonary angiotensin-converting enzyme 2 (ACE2) and inflammatory lung disease. *Shock, 46*(3), 239–248. https://doi.org/10.1097/shk.0000000000000633

Johnson, S., Shaikh, S. B., Muneesa, F., Rashmi, B., & Bhandary, Y. P. (2020). Radiation induced apoptosis and pulmonary fibrosis: Curcumin as an effective intervention? *International Journal of Radiation Biology, 96*(6), 709–717. https://doi.org/10.1080/0955002.2020.1739773

Kamali Aghdam, M., Jafari, N., & Eftekhari, K. (2020). Novel coronavirus infection in a 15-day-old neonate with clinical signs of sepsis, a case report. *Infectious Diseases Clinics of North America, 33*(4), 869–889. https://doi.org/10.1016/j.idc.2019.07.001

Katsumata, U., Sekizawa, K., Ujiie, Y., Sasaki, H., & Takishima, T. (1991). Effect of curcumin on incorporation of 3H-thymidine into DNA and expression of cell surface antigens in a human Burkitt's lymphoma cell line. *Biomedical & Pharmacotherapy, 45*(3), 100–108. https://doi.org/10.1016/s0052-9440(17)30328-6

Kim, J., Jeong, S. W., Quan, H., Jeong, C. W., Choi, J. I., & Bae, H. B. (2016). Effect of curcumin (*Curcuma longa* extract) on LPS-induced acute lung injury is mediated by the activation of AMPK. *Journal of Anesthesia, 30*(1), 100–108. https://doi.org/10.1007/s00540-015-2073-1

Kuba, K., Imai, Y., Rao, S., Gao, H., Guo, F., Guan, B., … Penninger, J. M. (2005). A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. *Nature Medicine, 11*(8), 875–879. https://doi.org/10.1038/nm1267
Kumari, A., Singh, D. K., Dash, D., & Singh, R. (2019). Intranasal curcumin protects against LPS-induced airway remodeling by modulating toll-like receptor-4 (TLR-4) and matrix metalloproteinase-9 (MMP-9) expression via affecting MAP kinases in mouse model. *Inflammopharmacology*, 27(4), 731–748. https://doi.org/10.1007/s10787-018-0544-3

Kunnunakkara, A. B., Bordoloi, D., Padmavathi, G., Monisha, J., Roy, N. K., Prasad, S., & Aggarwal, B. B. (2017). Curcumin, the golden nutraceutical: Multitargeting for multiple chronic diseases. *British Journal of Pharmacology*, 174(11), 1325–1348. https://doi.org/10.1111/bjp.13621

Kunnunakkara, A. B., Harsha, C., Banik, K., Vrkvikthri, R., Sailo, B. L., Bordoloi, D., ... Aggarwal, B. B. (2019). Is curcumin bioavailability a problem in humans: Lessons from clinical trials. *Expert Opinion on Drug Metabolism & Toxicology*, 15(9), 705–733. https://doi.org/10.1080/17425255.2019.1650914

Lelli, D., Sahebkar, A., Johnston, T. P., & Pedone, C. (2017). Curcumin use in pulmonary diseases: State of the art and future perspectives. *Pharmacological Research*, 115, 133–148. https://doi.org/10.1016/j.phrs.2016.11.017

Li, B. O., Yang, J., Zhao, F., Zhi, L., Wang, X., Liu, L., ... Zhao, Y. (2020). Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. *Clinical Research in Cardiology*, 109(5), 531–538. https://doi.org/10.1007/s00392-020-01626-9

Li, G., & De Clercq, E. (2020). Therapeutic options for the 2019 novel coronavirus (2019-nCoV). *Nature Reviews Drug Discovery*, 19(3), 149–150. https://doi.org/10.1038/d41573-020-00016-0

Li, M., Wu, Z., Niu, W., Yan, Y., Zhang, L., Shi, G., & Xi, X. (2014). The protective effect of curcumin against the 19-kDa Mycobacterium tuberculosis protein-induced inflammation and apoptosis in human macrophages. *Molecular Medicine Reports*, 10(6), 3261–3267. https://doi.org/10.3892/mmr.2014.2615

Li, Y. C., Bai, W. Z., & Hashikawa, T. (2020). The neuroinvasive potential of SARS-CoV2 may play a role in the respiratory failure of COVID-19 patients. *Journal of Medical Virology*, 92(6), 552–555. https://doi.org/10.1002/jmv.25728

Lin, C.-J., Chang, L., Chu, H.-W., Lin, H.-J., Chang, P.-C., Wang, Y. R. L., ... Huang, C.-C. (2019). High amplification of the antiviral activity of curcumin through transformation into carbon quantum dots. *Small (Weinheim an Der Bergstrasse, Germany)*, 15(41), e1902641. https://doi.org/10.1002/smll.201902641

Liu, Z., Huang, P., Law, S., Tian, H., Leung, W., & Xu, C. (2018). Preventive effect of curcumin against chemotherapy-induced side-effects. *Frontiers in Pharmacology*, 9, 1374. https://doi.org/10.3389/fphar.2018.01374

Löczéchin, A., Séron, K., Barra, A., Giovanelli, E., Belouzard, S., Chen, Y.-T., ... Szunérits, S. (2019). Functional carbon quantum dots as medical countermeasures to human coronavirus. *ACS Applied Materials & Interfaces*, 11(46), 42964–42974. https://doi.org/10.1021/acsami.9b15032

Loganes, C., Lega, S., Bramuzzo, M., Vecchi Brumatti, L., Piscianz, E., ... Zhang, Y. (2020). Clinical characteristics of refractory COVID-19 pneumonia in Wuhan, China. *Clinical Infectious Diseases*. https://doi.org/10.1093/cid/ciaa270

Mobaileh Nasery, M., Abadi, B., Poormoghadam, D., Zarrabi, A., Keyhanvar, P., Khababaei, H., ... Sethi, G. (2020). Curcumin delivery mediated by bio-based nanoparticles: A review. *Molecules*, 25(3), 689. https://doi.org/10.3390/molecules25030689

Moghadamtousi, S. Z., Kadir, H. A., Hassandarvish, P., Tajik, H., Abubakar, S., & Zandi, K. (2014). A review on antibacterial, antiviral, and antifungal activity of curcumin. *BioMed Research International*, 2014, 186864. https://doi.org/10.1155/2014/186864

Monteil, V., Kwon, H., Prado, P., Hagelkrüys, A., Wimmer, R. A., Stahl, M., ... Penninger, J. M. (2020). Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2. *Cell*, 81(4), 905–913. https://doi.org/10.1016/j.cell.2020.04.004

Morris, G., Puri, B. K., Walker, A. J., Maes, M., Carvalho, A. F., Walder, K., ... Berk, M. (2019). Myalgic encephalomyelitis/chronic fatigue syndrome: From pathophysiological insights to novel therapeutic opportunities. *Pharmacological Research*, 148, 104450. https://doi.org/10.1016/j.phrs.2019.104450

Nassar, M. S., Bakhrebah, M. A., Moe, S. A., Alsuabeyl, M. S., & Zaher, W. A. (2018). Middle East respiratory syndrome coronavirus (MERS-CoV) infection: Epidemiology, pathogenesis and clinical characteristics. *European Review for Medical and Pharmacological Sciences*, 22(15), 4956–4961. https://doi.org/10.26355/eurrev_201808_15635

Nicol, L. M., Rowlands, D. S., Fazakerly, R., & Kellett, J. (2015). Curcumin supplementation likely attenuates delayed onset muscle soreness (DOMS). *European Journal of Applied Physiology*, 115(8), 1769–1777. https://doi.org/10.1007/s00421-015-3152-6

Olivera, A., Moore, T. W., Hu, F., Brown, A. P., Sun, A., Liotta, D. C., ... Pace, T. W. W. (2012). Inhibition of the NF-kB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inflammatory and anti-cancer properties. *International Immunopharmacology*, 12(2), 368–377. https://doi.org/10.1016/j.intimp.2011.12.009

Palizgir, M. T., Akhtari, M., Mahmoudi, M., Mostafaei, S., Rezaieamens, A., & Shahram, F. (2018). Curcumin reduces the expression of interleukin 1β and the production of interleukin 6 and tumor necrosis factor alpha by M1 macrophages from patients with Behcet’s disease. *Immunopharmacology and Immunotoxicology*, 40(4), 297–302. https://doi.org/10.1080/08923973.2018.1474921

Pandaran Sudheeran, S., Jacob, D., Natinga Mulakal, J., Gopinath Nair, G., Malik, A., Malik, B., ... Im, K. (2016). Safety, tolerance, and enhanced efficacy of a bioavailable formulation of curcumin with fenugreek dietary fiber on occupational stress: A randomized, double-blind, placebo-controlled pilot study. *Journal of Clinical Psychopharmacology*, 36(3), 236–243. https://doi.org/10.1097/jcp.0000000000000508

Pang, X. F., Zhang, L. H., Bai, F., Wang, N. P., Garner, R. E., McKallip, R. J., & Zhao, Z. Q. (2015). Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats. *Drug Design, Development and Therapy*, 9, 6043–6054. https://doi.org/10.2147/dddt.s95333

Praditya, D., Kirchhoff, L., Brüning, J., Rachmawati, H., Steinmann, J., & Steinmann, E. (2019). Anti-infective properties of the golden spice curcumin with fenugreek dietary fiber on occupational stress: A randomized, double-blind, placebo-controlled pilot study. *Journal of Clinical Psychopharmacology*, 36(3), 236–243. https://doi.org/10.1097/jcp.0000000000000508

Prasannan, R., Kalesh, K. A., Shanmugam, M. K., Nachiyappan, A., Ramachandran, L., Nguyen, A. H., ... Sethi, G. (2012). Key cell signaling pathways modulated by zerumbone: Role in the prevention and treatment of cancer. *Biochemical Pharmacology*, 84(10), 1268–1276. https://doi.org/10.1016/j.bcp.2012.07.015

Puar, Y. R., Shanmugam, M. K., Fan, L., Arfuso, F., Sethi, G., & Bergaonker, V. (2018). Evidence for the involvement of the master transcription
factor NF-κB in cancer initiation and progression. *Biomedicines, 6*(3), 82. https://doi.org/10.3390/biomedicines6030082
Qian, G.-Q., Yang, N.-B., Ding, F., Ma, A., H. Y., Wang, Z.-Y., Shen, Y.-F., ... Chen, X.-M. (2020). Epidemiologic and clinical characteristics of 91 hospitalized patients with COVID-19 in Zhejiang, China: A retrospective, multi-centre case series. *QJM, 113*(7), 474–481. https://doi.org/10.1093/qjmed/hca089
Qihui, L., Shuntian, D., Xin, Z., Xiaoxia, Y., & Zhongpei, C. (2020). Protection of curcumin against streptozotocin-induced pancreatic cell destruction in T2D rats. *Planta Medica, 86*(2), 113–120. https://doi.org/10.1055/a-1046-1404
Qin, C., Zhou, L., Hu, Z., Zhang, S., Yang, S., Tao, Y., ... Tian, D. S. (2020). Dysregulation of immune response in patients with COVID-19 in Wuhan. *China. Clinical Infectious Diseases, 71*(15), 762–768. https://doi.org/10.1093/cid/ciaa248
Qin, Y., Lin, L., Chen, Y., Wu, S., Si, X., Wu, H., ... Zhong, Z. (2014). Curcumin inhibits the replication of enterovirus 71 in vitro. *Acta Pharmacutica Sinica B, 4*(4), 284–294. https://doi.org/10.1016/j.apsb.2014.06.006
Rajendran, P., Li, F., Shanmugam, M. K., Vali, S., Kapoor, S., ... Sethi, G. (2012). Honokiol inhibits signal transducer and activator of transcription-3 signaling, proliferation, and survival of hepatocellular carcinoma cells via the protein tyrosine phosphatase SHP-1. *Journal of Cellular Physiology, 227*(5), 2184–2195. https://doi.org/10.1002/jcp.22954
Ram, A., Das, M., & Ghosh, B. (2003). Curcumin attenuates ager-duced-induced airway hyperresponsiveness in sensitized guinea pigs. *Biological and Pharmaceutical Bulletin, 26*(7), 1021–1024. https://doi.org/10.1248/bpb.26.1021
Rao, C. V. (2007). Regulation of COX and LOX by curcumin. *Advances of Cellular Physiology, 55*, 213–226. https://doi.org/10.1002/jmpr.2007.55.9
Rao, C. V. (2007). Regulation of COX and LOX by curcumin. *Advances in Experimental Medicine and Biology, 595*, 213–226. https://doi.org/10.1007/978-0-387-46401-5_9
Richards, E. M., & Raizada, M. K. (2018). ACE2 and pACE2: A pair of aces of pulmonary arterial hypertension treatment? *Respiratory and Critical Care Medicine, 448*(1), 89–94. https://doi.org/10.1002/jrcc.32111
Soleimani, V., Sahebkar, A., & Hosseinzadeh, H. (2018). Turmeric (*Curcuma longa*) and its major constituent (curcumin) as nontoxic and safe substances: Review. *Phytotherapy Research, 32*(6), 985–995. https://doi.org/10.1002/ptr.6054
Song, Z., Xu, Y., Yao, J. H., Li, Y. H., Zhang, X. S., Feng, B. A., Yang, C. M., & Zheng, S. (2020). Clinical, laboratory and imaging features of COVID-19 based on current evidence. *Journal of Medical Virology, 92*(6), 548–551. https://doi.org/10.1002/jmv.25722
Sun, P., Lu, X., Xu, C., Sun, W., & Pan, B. (2020). Understanding of COVID-19 and its major constituent (curcumin) as nontoxic and safe substances: Review. *Phytotherapy Research, 32*(6), 985–995. https://doi.org/10.1002/ptr.6054
Soveik, V., Sivakumar, R., Andrade, M., & Sethi, G. (2014). Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB-regulated gene products in multiple myeloma xenograft mouse model. *Oncotarget, 5*(9), 634–648. https://doi.org/10.18632/oncotarget.1596
Tyagi, N., Dash, D., & Singh, R. (2016). Curcumin inhibits paraquat induced kidney damage by suppressing kidney inflammma- and apoptosis in rats. *Drug Research, 69*(2), 75–82. https://doi.org/10.1055/a-0641-543
Tyagi, N., Dash, D., & Singh, R. (2016). Curcumin inhibits paraquat induced kidney damage by suppressing kidney inflammma- and apoptosis in rats. *Drug Research, 69*(2), 75–82. https://doi.org/10.1055/a-0641-543
Vranesic, K. S., Ahn, K. S., Ong, T. H., Shanmugam, M. K., Li, F., Yap, W. N., ... Sethi, G. (2014). Y-cotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model. *Oncotarget, 5*(7), 1897–1911. https://doi.org/10.18632/oncotarget.1876
Tian, X. F., Yao, J. H., Li, Y. H., Zhang, X. S., Feng, B. A., Yang, C. M., & Zheng, S. (2020). Intranasal curcumin and its evaluation in mu-rine model of asthma. *International Immunopharmacology, 17*(3), 733–743. https://doi.org/10.1016/j.intimp.2013.08.008
Tan, W. S. D., Liao, W., Zhou, S., Mei, D., & Wong, W. F. (2018). Targeting of SIRT1 by curcumin blocks the neurotoxicity of amyloid-p25-35 in rat cortical neurons. *Biochemical and Biophysical Research Communications, 448*(1), 89–94. https://doi.org/10.1016/j.bbrc.2014.04.066
Wu, S., Si, X., Wu, H., ... Zhong, Z. (2014). Curcumin inhibits the replication of enterovirus 71 in vitro. *Acta Pharmacutica Sinica B, 4*(4), 284–294. https://doi.org/10.1016/j.apsb.2014.06.006
Wang, Z.-Y., Shen, Y.-F., ... Sethi, G. (2014). Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB-regulated gene products in multiple myeloma xenograft mouse model. *Oncotarget, 5*(9), 634–648. https://doi.org/10.18632/oncotarget.1596
Xu, Y., Yao, J. H., Li, Y. H., Zhang, X. S., Feng, B. A., Yang, C. M., & Zheng, S. (2020). Intranasal curcumin and its evaluation in mu-rine model of asthma. *International Immunopharmacology, 17*(3), 733–743. https://doi.org/10.1016/j.intimp.2013.08.008
Yao, J. H., Li, Y. H., Zhang, X. S., Feng, B. A., Yang, C. M., & Zheng, S. (2020). Intranasal curcumin and its evaluation in mu-rine model of asthma. *International Immunopharmacology, 17*(3), 733–743. https://doi.org/10.1016/j.intimp.2013.08.008
Zhao, B., ... Sethi, G. (2014). Thymoquinone overcomes chemoresistance and enhances the anticancer effects of bortezomib through abrogation of NF-κB-regulated gene products in multiple myeloma xenograft mouse model. *Oncotarget, 5*(9), 634–648. https://doi.org/10.18632/oncotarget.1596
in mouse model. *Inflammopharmacology, 24*(6), 335–345. https://doi.org/10.1007/s10787-016-0286-z

van den Brand, J. M., Smits, S. L., & Haagmans, B. L. (2015). Pathogenesis of Middle East respiratory syndrome coronavirus. *The Journal of Pathology, 235*(2), 175–184. https://doi.org/10.1002/path.4458

Venkatesan, N., Punithavathi, D., & Babu, M. (2007). Protection from acute and chronic lung diseases by curcumin. *Advances in Experimental Medicine and Biology, 595*, 379–405. https://doi.org/10.1007/978-0-387-46401-5_17

Wan, S., Xiang, Y. L., Fang, W., Zheng, Y. U., Li, B., Hu, Y., … Yang, R. (2020). Clinical features and treatment of COVID-19 patients in northeast Chongqing. *Journal of Medical Virology, 92*(7), 797–806. https://doi.org/10.1002/jmv.25783

Wan, Y., Shang, J., Graham, R., Baric, R. S., & Li, F. (2020). Receptor recognition by the novel coronavirus from Wuhan: An analysis based on decade-long structural studies of SARS coronavirus. *Journal of Virology, 94*(7), https://doi.org/10.1128/jvi.00127-20

Wang, D., Hu, B. O., Hu, C., Zhu, F., Liu, X., Zhang, J., … Peng, Z. (2020). Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. *China. JAMA*, 323*(11), 1061–1069. https://doi.org/10.1001/jama.2020.1585

Wang, X., An, X., Wang, X., Bao, C., Li, J., Yang, D., & Bai, C. (2018). Curcumin ameliorated ventilator-induced lung injury in rats. *Biomedicine and Pharmacotherapy, 98*, 754–761. https://doi.org/10.1016/j.biopha.2017.12.100

Wang, Y., Tang, Q., Duan, P., & Yang, L. (2018). Curcumin as a therapeutic agent for blocking NF-κB activation in ulcerative colitis. *Inflammopharmacology and Immuno toxicology, 40*(6), 476–482. https://doi.org/10.1007/s10892-017-9914-x

Wang, Z., Yang, B., Li, Q., Wen, L., & Zhang, R. (2020). Clinical features of 69 cases with coronavirus disease 2019 in Wuhan. *China. Clinical Infectious Diseases, 71*(15), 769–777. https://doi.org/10.1093/cid/ciaa272

Wen, C.-C., Kuo, Y.-H., Jan, J.-T., Liang, P.-H., Wang, S.-Y., Liu, H.-G., … Yang, N.-S. (2007). Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. *Journal of Medicine Chemistry, 50*(17), 4087–4095. https://doi.org/10.1021/jm070295s

Wrapp, D., Wang, N., Corbett, K. S., Goldsmith, J. A., Hsieh, C.-L., Abiona, O., … McLellan, J. S. (2020). Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. *Science*, 367*(6483), 1260–1263. https://doi.org/10.1126/science.abb2507

Wu, F., Zhao, S. U., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., … Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. *Nature, 579*(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3

Wu, Z., & McGloogan, J. M. (2020). Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72,314 cases from the Chinese center for disease control and prevention. *JAMA, 323*(13), 1239. https://doi.org/10.1001/jama.2020.2648

Xia, X., Yang, M., Sun, D., & Sun, S. (2012). Curcumin protects against sepsis-induced acute lung injury in rats. *Journal of Surgical Research, 176*(1), e31–39. https://doi.org/10.1016/j.jss.2011.10.1032

Xu, F., Diao, R., Liu, J., Kang, Y., Wang, X., & Shi, L. (2015). Curcumin attenuates staphylococcus aureus-induced acute lung injury. *The Clinical Respiratory Journal, 9*(1), 87–97. https://doi.org/10.1111/crj.12113

Xu, F., Lin, S. H., Yang, Y. Z., Guo, R., Cao, J., & Liu, Q. (2013). The effect of curcumin on sepsis-induced acute lung injury in a rat model through the inhibition of the TGF-β1/SMAD3 pathway. *International Journal of Immunopharmacology, 16*(1), 1–6. https://doi.org/10.1016/j.intimp.2013.03.014

Xu, Y., & Liu, L. (2017). Curcumin alleviates macrophage activation and lung inflammation induced by influenza virus infection through inhibiting the NF-κB signaling pathway. *Influenza and Other Respiratory Viruses, 11*(5), 457–463. https://doi.org/10.1111/irv.12459

Xu, Z., Shi, L., Wang, Y., Zhang, J., Huang, L., Zhang, C., … Wang, F.-S. (2020). Pathological findings of COVID-19 associated with acute respiratory distress syndrome. *Lancet Respiratory Medicine, 8*(4), 420–422. https://doi.org/10.1016/s2213-2600(20)30076-x

Yao, Q., Ye, X., Wang, L., Gu, J., Fu, T., Wang, Y., … Guo, Y. (2013). Protective effect of curcumin on chemotherapy-induced intestinal dysfunction. *International Journal of Clinical and Experimental Pathology, 6*(11), 2342–2349.

Yimam, M., Lee, Y.-C., Moore, B., Jiao, P., Hong, M., Nam, J.-B., … Jia, Q. I. (2016). Analgesic and anti-inflammatory effects of UP1304, a botanical composite containing standardized extracts of Curcuma longa and Morus alba. *Journal of Integrative Medicine, 14*(1), 60–68. https://doi.org/10.1016/s2095-4964(16)60211-5

Yu, F., Du, L., Ojius, D. M., Pan, C., & Jiang, S. (2020). Measures for diagnosing and treating infections by a novel coronavirus responsible for a pneumonia outbreak originating in Wuhan, China. *Microbes and Infection, 22*(2), 74–79. https://doi.org/10.1016/j.micinf.2020.01.003

Yuan, J., Liu, R., Ma, Y., Zhang, Z., & Xie, Z. (2018). Curcumin attenuates airway inflammation and airway remodeling by inhibiting NF-κB signaling and COX-2 in cigarette smoke-induced COPD mice. *Inflammation, 41*(5), 1804–1814. https://doi.org/10.1007/s10753-018-0823-6

Zhang, H., Penninger, J. M., Li, Y., Zhong, N., & Slutsky, A. S. (2020). Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. *Intensive Care Medicine, 46*(4), 586–590. https://doi.org/10.1007/s00134-020-05985-9

Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., … Shi, Z.-L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. *Nature, 579*(7798), 270–273. https://doi.org/10.1038/s41586-020-0212-7

Zhu, J.-Y., Yang, X., Chen, Y., Jiang, Y. E., Wang, S.-J., Li, Y., … Han, H.-Y. (2017). Curcumin suppresses lung cancer stem cells via inhibiting Wnt/-catenin and sonic hedgehog pathways. *Phytotherapy Research, 31*(4), 680–688. https://doi.org/10.1002/ptr.5791

Zhu, N. A., Zhang, D., Wang, W., Li, X., Yang, B. O., Song, J., … Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. *New England Journal of Medicine, 382*(8), 727–733. https://doi.org/10.1056/NEJMoa2001017

Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). *Coronaviruses - drug discovery and therapeutic options*. Nature Reviews. *Drug Discovery, 15*(5), 327–347. https://doi.org/10.1038/nrd.2015.37

How to cite this article: Babaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr. 2020;8:5215–5227. https://doi.org/10.1002/fsn3.1858