NON-MINIMAL BRIDGE POSITION OF 2-CABLE LINKS

JUNG HOON LEE

Abstract. Suppose that every non-minimal bridge position of a knot K is perturbed. We show that if L is a $(2, 2q)$-cable link of K, then every non-minimal bridge position of L is also perturbed.

1. Introduction

A knot in S^3 is said to be in bridge position with respect to a bridge sphere, the original notion introduced by Schubert [12], if the knot intersects each of the 3-balls bounded by the bridge sphere in a collection of ∂-parallel arcs. It is generalized to knots (and links) in 3-manifolds with the development of Heegaard splitting theory, and is related to many interesting problems concerning, e.g. bridge number, (Hempel) distance, and incompressible surfaces in 3-manifolds.

From any n-bridge position, we can always get an $(n + 1)$-bridge position by creating a new local minimum point and a nearby local maximum point of the knot. A bridge position isotopic to one obtained in this way is said to be perturbed. (It is said to be stabilized in some context.) A bridge position of the unknot is unique in the sense that any n-bridge ($n > 1$) position of the unknot is perturbed [7]. The uniqueness also holds for 2-bridge knots [8]. See also [11], where all bridge surfaces for 2-bridge knots are considered. Ozawa [9] showed that non-minimal bridge positions of torus knots are perturbed. Zupan [14] showed such property for iterated torus knots and iterated cables of 2-bridge knots. More generally, he showed that if K is an mp-small knot and every non-minimal bridge position of K is perturbed, then every non-minimal bridge position of a (p, q)-cable of K is also perturbed [14]. (Here, a knot is mp-small if its exterior contains no essential meridional planar surface.) We remark that there exist examples of a knot with a non-minimal bridge position that is not perturbed [10] and furthermore, knots with arbitrarily high index bridge positions that are not perturbed [5].

In this paper, we consider non-minimal bridge position of 2-cable links of a knot K without the assumption of mp-smallness of K.

Theorem 1.1. Suppose that K is a knot in S^3 such that every non-minimal bridge position of K is perturbed. Let L be a $(2, 2q)$-cable link of K. Then every non-minimal bridge position of L is also perturbed.

For the proof, we use the notion of t-incompressibility and $t-\partial$-incompressibility of [3]. We isotope an annuls A whose boundary is L to a good position so that it is t-incompressible and $t-\partial$-incompressible in one side, say B_2, of the bridge sphere. Then $A \cap B_2$ consists of bridge disks and (possibly) properly embedded disks. By using the idea of changing the order of $t-\partial$-compressions in [2] or [3], we show that in fact $A \cap B_2$ consists of bridge disks only. Then by a further argument, we find a cancelling pair of disks for the bridge position.
2. T-INCOMPRESSIBLE AND T-∂-INCOMPRESSIBLE SURFACES IN A 3-BALL

A trivial tangle T is a union of properly embedded arcs b_1, \ldots, b_n in a 3-ball B such that each b_i cobounds a disk D_i with an arc s_i in ∂B, and $D_i \cap (T - b_i) = \emptyset$. By standard argument, D_i's can be taken to be pairwise disjoint.

Let F denote a surface in B satisfying $F \cap (\partial B \cup T) = \partial F \neq \emptyset$. A t-compressing disk for F is a disk D in $B - T$ such that $D \cap F = \partial D$ and ∂D is essential in F, i.e. ∂D does not bound a disk in F. A surface F is t-compressible if there is a t-compressing disk for F, and F is t-incompressible if it is not t-compressible.

An arc α properly embedded in F with its endpoints on $F \cap \partial B$, is t-essential if α does not cobound a disk in F with a subarc of $F \cap \partial B$. In particular, an arc in F parallel to a component of T can be t-essential. See Figure 1. (Such an arc will be called bridge-parallel in Section 3.) A t-∂-compressing disk for F is a disk Δ in $B - T$ such that $\partial \Delta$ is an endpoint union of two arcs α and β, and $\alpha = \Delta \cap F$ is t-essential, and $\beta = \Delta \cap \partial B$. A surface F is t-∂-compressible if there is a t-∂-compressing disk for F, and F is t-∂-incompressible if it is not t-∂-compressible.

![Figure 1. A t-essential arc α.](image)

Hayashi and Shimokawa [3] classified t-incompressible and t-∂-incompressible surfaces in a compression body in more general setting. Here we give a simplified version of the theorem.

Lemma 2.1. [3] Let (B, T) be a pair of a 3-ball and a trivial tangle in B, and let $F \subset B$ be a surface satisfying $F \cap (\partial B \cup T) = \partial F \neq \emptyset$. Suppose that F is both t-incompressible and t-∂-incompressible. Then each component of F is either

1. a disk D_i cobounded by an arc b_i of T and an arc in ∂B with $D_i \cap (T - b_i) = \emptyset$, or
2. a disk C properly embedded in B with $C \cap T = \emptyset$.

3. BRIDGE POSITION

Let S be a 2-sphere decomposing S^3 into two 3-balls B_1 and B_2. Let K denote a knot (or link) in S^3. Then K is said to be in bridge position with respect to S if $K \cap B_i$ ($i = 1, 2$) is a trivial tangle. Each arc of $K \cap B_i$ is called a bridge. If the number of bridges of $K \cap B_i$ is n, we say that K is in n-bridge position. The minimum such number n among all bridge positions of K is called the bridge number $b(K)$ of K. A bridge cobounds a bridge disk with an arc in S, whose interior is disjoint from K. We can take a collection of n pairwise disjoint bridge disks by standard argument, and it is called a complete bridge disk system. For a bridge disk
Take a bridge number, it is known that b is precisely, $R \cap V = \emptyset$. Take a new bridge disk $R \cup V$ a longitude of b and α. Lemma 3.1. After possibly changing R, the bridges contained in Γ is a knot C e.g. [11, Lemma 3.1]). Hence, as a definition, we say that a bridge position is perturbed if it admits a cancelling pair.

Let V_1 be a standard solid torus in S^3 with core α, and V_2 be a solid torus in S^3 whose core is a knot C. A meridian m_1 of V_1 is uniquely determined up to isotopy. Let $l_1 \subset \partial V_1$ be a longitude of V_1 such that the linking number $\text{lk}(l_1, \alpha) = 0$, called the preferred longitude. Similarly, let m_2 and l_2 be a meridian and a longitude of V_2 respectively such that $\text{lk}(l_2, C) = 0$.

Take a (p,q)-torse knot (or link) $T_{p,q}$ in ∂V_1 that wraps V_1 longitudinally p times; more precisely, $|T_{p,q} \cap m_1| = p$ and $|T_{p,q} \cap l_1| = q$. Let $h : V_1 \rightarrow V_2$ be a homeomorphism sending m_1 to m_2 and l_1 to l_2. Then $K = h(T_{p,q}) \subset S^3$ is called a (p,q)-cable of C. Concerning the bridge number, it is known that $b(K) = p \cdot b(C)$ [12], [13].

Let K be a knot (or link) in n-bridge position with respect to a decomposition $S^3 = B_1 \cup_S B_2$, so $K \cap B_1$ is a union of bridges b_1, \ldots, b_n. Let $R = R_1 \cup \cdots \cup R_n$ be a complete bridge disk system for $\bigcup b_i$, where R_i is a bridge disk for b_i. Let F be a surface bounded by K and $F_1 = F \cap B_1$. When we move K to an isotopic bridge position, F_1 moves together. We consider $R \cap F_1$. By isotopy we assume that in a small neighborhood of b_i, $R \cap F_1 = b_i$.

An arc γ in F_1 is bridge-parallel (b-parallel briefly) if γ is parallel, in F_1, to some b_i and cuts off a rectangle P from F_1 whose four edges are γ, b_i, and two arcs in S. Let $\alpha(\neq b_k)$ denote an arc of $R \cap F_1$ which is outermost in some R_k and cuts off the corresponding outermost disk Δ disjoint from b_k. The following lemma will be used in Section 6.

Lemma 3.1. After possibly changing K to an isotopic bridge position, there is no α that is b-parallel.

Proof. We isotope K and F_1 and take R so that the minimal number of $|R \cap F_1|$ is realized. Suppose that there is such an arc α which is parallel in F_1 to b_i (same or not with b_k). Isotope b_i along P to an arc parallel to α so that the changed surface F'_1 is disjoint from Δ. See Figure 2. Take a new bridge disk R'_j for b_i to be a parallel copy of Δ. Other bridge disks R_j ($j \neq i$) remain unaltered. They are mutually disjoint. Hence $R' = R - R_i \cup R'_i$ is a new complete bridge disk system. We see that $|R' \cap F'_1| < |R \cap F_1|$ since at least α no longer belongs to the intersection $R' \cap F'_1$. This contradicts the minimality of $|R \cap F_1|$. \hfill \Box

Now we consider a sufficient condition for a bridge position to be perturbed.

Lemma 3.2. Suppose a separating arc γ of $F \cap S$ cuts off a disk Γ from F such that

1. $\Gamma \cap B_1$ is a single disk Γ_1, and
2. $\Gamma \cap B_2(\neq \emptyset)$ consists of bridge disks D_1, \ldots, D_k.

Then the bridge position of K is perturbed.

Proof. Let b_i ($i = 1, \ldots, k$) denote the bridge for D_i and $s_i = D_i \cap S$. Let r_1, \ldots, r_{k+1} denote the bridges contained in Γ_1. We assume that r_1 is adjacent to b_{i-1} and b_i. See Figure 3. Let $R = R_1 \cup \cdots \cup R_{k+1}$ be a union of disjoint bridge disks, where R_i is a bridge disk for r_i. In the following argument, we consider $R \cap \Gamma_1$ except for $r_1 \cup \cdots \cup r_{k+1}$.
Suppose there is a circle component of $R \cap \Gamma_1$. Let $\alpha(\subset R_i \cap \Gamma_1)$ be one which is innermost in Γ_1 and Δ be the innermost disk that α bounds. Let Δ' be the disk that α bounds in R_i.

Figure 2. Sliding b_i along P.

Figure 3. The disk Γ_1 and bridge disks D_i's.
Then by replacing \(\Delta' \) with \(\Delta \), we can reduce \(|R \cap \Gamma_1| \). So we assume that there is no circle component of \(R \cap \Gamma_1 \).

Suppose there is an arc component of \(R \cap \Gamma_1 \) with both endpoints on the same arc of \(\Gamma_1 \cap S \). Let \(\alpha(\subset R_i \cap \Gamma_1) \) be one which is outermost in \(\Gamma_1 \) and \(\Delta \) be the corresponding outermost disk in \(\Gamma_1 \) cut off by \(\alpha \). The arc \(\alpha \) cuts \(R_i \) into two disks and let \(\Delta' \) be one of the two disks that does not contain \(r_i \). By replacing \(\Delta' \) with \(\Delta \), we can reduce \(|R \cap \Gamma_1| \). So we assume that there is no arc component of \(R \cap \Gamma_1 \) with both endpoints on the same arc of \(\Gamma_1 \cap S \).

If \(R \cap \Gamma_1 = \emptyset \), then \((R_i, D_i)\) is a desired cancelling pair and the bridge position of \(K \) is perturbed. So we assume that \(R \cap \Gamma_1 \neq \emptyset \).

Case 1. Every arc of \(R \cap \Gamma_1 \) is b-parallel.

Let \(\alpha \) be an arc of \(R \cap \Gamma_1 \) which is outermost in some \(R_j \) and \(\Delta \) be the outermost disk that \(\alpha \) cuts off from \(R_j \). In addition, let \(\alpha \) be b-parallel to \(r_i \) via a rectangle \(P \). Then \(P \cup \Delta \) is a new bridge disk for \(r_i \), and \((P \cup \Delta, D_i)\) or \((P \cup \Delta, D_{i-1})\) is a cancelling pair.

Case 2. There is a non-b-parallel arc of \(R \cap \Gamma_1 \).

Consider only non-b-parallel arcs of \(R \cap \Gamma_1 \). Let \(\beta \) denote one which is outermost in \(\Gamma_1 \) among them and \(\Gamma_0 \) denote the outermost disk cut off by \(\beta \). Because there are at least two outermost disks, we take \(\Gamma_0 \) such that \(\partial \Gamma_0 \) contains some \(s_i \). Let \(r_1, \ldots, r_m \) be the bridges contained in \(\Gamma_0 \) and \(R' = R_1 \cup \cdots \cup R_m \). In the following, we consider \(R' \cap \Gamma_0 \) except for \(r_1 \cup \cdots \cup r_m \) and \(\beta \). If \(R' \cap \Gamma_0 = \emptyset \), then there exists a cancelling pair \((R_i, D_i)\). Otherwise, every arc of \(R' \cap \Gamma_0 \) is b-parallel. Let \(\alpha \) be an arc of \(R' \cap \Gamma_0 \) which is outermost in some \(R_j \) and \(\Delta \) be the outermost disk that \(\alpha \) cuts off from \(R_j \). In addition, let \(\alpha \) be b-parallel to \(r_i \) via a rectangle \(P \). Then \(P \cup \Delta \) is a new bridge disk for \(r_i \), and \((P \cup \Delta, D_i)\) or \((P \cup \Delta, D_{i-1})\) is a cancelling pair.

\[\square \]

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{The disks \(D_0 \) and \(D_1 \) are cancelling disks, whereas \(D_2 \) and \(D_3 \) are not.}
\end{figure}
Remark 3.3. Let \(K \) be an unknot in \(n \)-bridge position, with \(K \cap B_1 = r_0 \cup r_1 \cup \cdots \cup r_{n-1} \) and \(K \cap B_2 = b_0 \cup b_1 \cup \cdots \cup b_{n-1} \). We assume that the bridge \(r_i \) (\(i = 0, 1, \ldots, n-1 \)) is adjacent to \(b_{i+1} \) and \(b_i \), where we consider the index \(i \) modulo \(n \). Let \(R_i \) and \(D_i \) denote bridge disks for \(r_i \) and \(b_i \), respectively. Then \(C = R_0 \cup D_0 \cup \cdots \cup R_{n-1} \cup D_{n-1} \) is called a complete cancelling disk system if each \((R_i, D_i)\) and each \((R_i, D_i)\) is a cancelling pair.

Let \(D \) denote a disk bounded by \(K \). By following the argument of the proof of Theorem \[1.1\] we can assume that \(D \cap B_2 \) consists of bridge disks \(D_0, \ldots, D_{n-1} \) and \(D \cap B_1 \) is a single disk, as in \[3\]. Then if \(n > 1 \), the bridge position of \(K \) admits a cancelling pair by Lemma \[3.2\], giving a proof of the uniqueness of bridge position of the unknot. One may hope that \(D_0 \cup \cdots \cup D_{n-1} \) extends to a complete cancelling disk system. But when \(n \geq 4 \), there exists an example such that \(D_0 \cup \cdots \cup D_{n-1} \) does not extend to a complete cancelling disk system, as expected in \[3\] Remark 1.2]. Some \(D_i \) is even not a cancelling disk. This issue was related to one of the motivations for the present work. In Figure \[4\], \(K \) is an unknot in 4-bridge position bounding a disk \(D \) and \(D \cap B_2 = D_0 \cup D_1 \cup D_2 \cup D_3 \). Each of the disks \(D_0 \) and \(D_1 \) is a cancelling disk. However, \(D_2 \) and \(D_3 \) are not cancelling disks because, say for \(D_2 \), an isotopy of \(b_2 \) along \(D_2 \) and then slightly into \(B_1 \) does not give a 3-bridge position of \(K \) (see \[11\], \[6\]).

4. Proof of Theorem \[1.1\] First step

Let \(K \) be a knot such that every non-minimal bridge position of \(K \) is perturbed. Let \(L \) be a \((2, 2q)\)-cable of \(K \), with components \(K_1 \) and \(K_2 \). Suppose that \(L \) is in non-minimal bridge position with respect to a bridge sphere \(S \) bounding 3-balls \(B_1 \) and \(B_2 \). Each \(L \cap B_i \) (\(i = 1, 2 \)) is a trivial tangle. Since \(L \) is a 2-cable link, \(L \) bounds an annulus, denoted by \(A \). We take \(A \) so that \(|A \cap S| \) is minimal.

Claim 1. One of the following holds.

- \(L \) is the unlink in a non-minimal bridge position, hence perturbed.
- \(A \cap B_2 \) is t-incompressible in \(B_2 \).

Proof. Suppose that \(A \cap B_2 \) is t-compressible. Let \(\Delta \) be a t-compressing disk for \(A \cap B_2 \) and let \(\alpha = \partial \Delta \). Let \(F \) be the component of \(A \cap B_2 \) containing \(\alpha \).

Case 1. \(\alpha \) is essential in \(A \).

A t-compression of \(A \) along \(\Delta \) gives two disjoint disks bounded by \(K_1 \) and \(K_2 \) respectively. Then \(L \) is an unlink. Since the complement of an unlink has a reducing sphere, by \[11\] a bridge position of an unlink is a split union of bridge positions of unknot components. Since a non-minimal bridge position of the unknot is perturbed, we see that \(L \) is perturbed.

Case 2. \(\alpha \) is inessential in \(A \).

Let \(\Delta' \) be the disk that \(\alpha \) bounds in \(A \). Then \((\text{Int} \Delta') \cap S \neq \emptyset \), since otherwise \(\alpha \) is inessential in \(F \). By replacing \(\Delta' \) of \(A \) with \(\Delta \), we get a new annulus \(A' \) bounded by \(L \) such that \(|A' \cap S| < |A \cap S| \), contrary to the minimality of \(|A \cap S| \). \(\square \)

Since our goal is to show that the bridge position of \(L \) is perturbed, from now on we assume that \(L \) is not the unlink. By Claim \[1\] \(A \cap B_2 \) is t-incompressible in \(B_2 \). If \(A \cap B_2 \) is t-\(\partial \)-compressible in \(B_2 \), we do a t-\(\partial \)-compression.

Claim 2. A t-\(\partial \)-compression preserves the t-incompressibility of \(A \cap B_2 \).

Proof. Let \(\Delta \) be a t-\(\partial \)-compressing disk for \(A \cap B_2 \). Suppose that the surface after the t-\(\partial \)-compression along \(\Delta \) is t-compressible. A t-compressing disk \(D \) can be isotoped to be disjoint
from two copies of Δ and the product region $\Delta \times I$. Then D would be a t-compressing disk for $A \cap B_2$ before the t-∂-compression, a contradiction. \square

A t-∂-compression simplifies a surface because it cuts the surface along a t-essential arc. So if we maximally t-∂-compress $A \cap B_2$, we obtain a t-∂-incompressible $A \cap B_2$. Note that the effect on A of a t-∂-compression of $A \cap B_2$ is just pushing a neighborhood of an arc in A into B_1, which is called an isotopy of Type A in [4]. After a maximal sequence of t-∂-compressions, $A \cap B_2$ is both t-incompressible and t-∂-incompressible by Claim 2. Then by applying Lemma 2.1

(*) $A \cap B_2$ consists of bridge disks D_i's and properly embedded disks C_j's.

5. Proof of Theorem 1.1: T-∂-compression and its dual operation

Take an annulus A bounded by L so that (*) holds and the number m of properly embedded disks C_j is minimal. In this section, we will show that $m = 0$, i.e. $A \cap B_2$ consists of bridge disks only.

Suppose that $m > 0$. Then $A \cap B_1$ is homeomorphic to an m-punctured annulus. A similar argument as in the proof of Claim 1 leads to that $A \cap B_1$ is t-incompressible. By Lemma 2.1 again, $A \cap B_1$ is t-∂-compressible. We can do a sequence of t-∂-compressions on $A \cap B_1$ until it becomes t-∂-incompressible. Note that the t-incompressibility of $A \cap B_1$ is preserved.

Now we are going to define a t-∂-compressing disk Δ_i $(i = 0, 1, \ldots, s$ for some s) and its dual disk U_{i+1} inductively. Let $A_0 = A$. Let Δ_0 be a t-∂-compressing disk for $A_0 \cap B_1$ and $\alpha_0 = \Delta_0 \cap A_0$ and $\beta_0 = \Delta_0 \cap S$. By a t-∂-compression along Δ_0, a neighborhood of α_0 is pushed along Δ_0 into B_2 and thus a band b_1 is created in B_2. Let A_1 denote the resulting annulus bounded by L. Let U_1 be a dual disk for Δ_0, that is, a disk such that an isotopy of Type A along U_1 recovers a surface isotopic to A_0. For the next step, let $U_1 = U_1$.

Let Δ_1 be a t-∂-compressing disk for $A_1 \cap B_1$ and $\alpha_1 = \Delta_1 \cap A_1$ and $\beta_1 = \Delta_1 \cap S$. After a t-∂-compression along Δ_1, a band b_2 is created in B_2. Let A_2 denote the resulting annulus bounded by L. There are three cases to consider.

Case 1. β_1 intersects the arc $U_1 \cap S$ more than once.

The band b_2 cuts off small disks $U_{2,1}, U_{2,2}, \ldots, U_{2,k_2}$ from U_1, which are mutually parallel along the band. We designate any one among the small disks, say $U_{2,1}$, as the dual disk U_2.

Let $R_2 = \bigcup_{j=2}^{k_2} U_{2,j}$ be the union of others.

Case 2. β_1 intersects $U_1 \cap S$ once.

We take the subdisk that b_2 cuts off from U_1 as the dual disk U_2, and let $R_2 = \emptyset$ in this case.

Case 3. β_1 does not intersect $U_1 \cap S$.

We take a dual disk U_2 freely, and let $R_2 = \emptyset$ in this case.

In any case, we get $U_2 = U_1 \cup U_2 - \text{int } R_2$.

In general, assume that A_i and U_i are defined. Let Δ_i be a t-∂-compressing disk for $A_i \cap B_1$ and $\alpha_i = \Delta_i \cap A_i$ and $\beta_i = \Delta_i \cap S$. After a t-∂-compression along Δ_i, a band b_{i+1} is created in B_2. Let A_{i+1} denote the resulting annulus bounded by L.

Case a. β_i intersects the collection of arcs $U_i \cap S$ more than once.

The band b_{i+1} cuts off small disks $U_{i+1,1}, U_{i+1,2}, \ldots, U_{i+1,k_{i+1}}$ from U_i, which are mutually parallel along the band. We designate any one among the small disks, say $U_{i+1,1}$, as the dual disk U_{i+1}. Let $R_{i+1} = \bigcup_{j=2}^{k_{i+1}} U_{i+1,j}$ be the union of others.

Case b. β_i intersects $U_i \cap S$ once.
We take the subdisk that b_{i+1} cuts off from U_i as the dual disk U_{i+1}, and let $R_{i+1} = \emptyset$ in this case.

Case c. β_i does not intersect $U_i \cap S$.

We take a dual disk U_{i+1} freely, and let $R_{i+1} = \emptyset$ in this case.

In any case, let $U_{i+1} = U_i \cup U_{i+1} - \text{int} R_{i+1}$.

Later, we do isotopy of Type A, dual to the $t-\partial$-compression, in reverse order along $U_i U_{i+1}, \ldots, U_1$. Let us call it dual operation for our convenience. Let b_{i+1} be the band mentioned above, cutting off $U_{i+1}, U_{i+1,1}, \ldots, U_{i+1,k+1}$ from U_i (in Case a). When the dual operation along U_{i+1} is done, we modify every U_j and $U_j (j \leq i)$ containing any $U_{i+1,s}$ (s > 1) of R_{i+1}, by replacing each $U_{i+1,s}$ (s > 1) with the union of a subband of b_{i+1} between $U_{i+1,s}$ and U_{i+1} and a copy of U_{i+1}, and doing a slight isotopy. We remark that, although it is not illustrated in Figure 5, some U_j's and U_j's temporarily become immersed when the subband passes through some removed region, say $U_{r,s}$ (s > 1). But the $U_{r,s}$ (s > 1) is also modified as we proceed the dual operations, and the U_j's and U_j's again become embedded. (In Figure 5 and Figure 6, the dual operation along U_{i+1} is done, and the dual operation along U_i is not done yet.) Actually, before the sequence of dual operations, U_j's and U_j's (j ≤ k) are modified in advance so that U_k is disjoint from the union of certain band b_{k+1} and a disk C_l (which will be explained later). See Figure 6.

Claim 3. For each c_j, there exists an α_i such that α_i connects c_j to other component of $A \cap S$.

Proof. Suppose that there exists a c_j which is not connected to other component of $A \cap S$. That is, for such c_j, every α_i incident to c_j connects c_j to itself. Then after a maximal
sequence of t-∂-compressions on A, some non-disk components will remain. This contradicts Lemma 2.1.

Let k be the smallest index such that α_k connects some c_j, say c_l, to other component (other c_j or $D_i \cap S$). If $k = 0$, then by a t-∂-compression along Δ_0, either C_l and other C_j are merged into one properly embedded disk, or C_l and a bridge disk are merged into a new bridge disk. This contradicts the minimality of m. So we assume that $k \geq 1$.

Suppose that we performed t-∂-compressions along $\Delta_0, \Delta_1, \ldots, \Delta_k$. Consider the small disks that the band b_{k+1} cuts off from U_k. They are parallel along b_{k+1}. We replace the small disks one by one, the nearest one to C_l first, so that U_k is disjoint from $b_{k+1} \cup C_l$. Let Δ be the small disk nearest to C_l. Let Δ' be the union of a subband of b_{k+1} and C_l that $\Delta \cap b_{k+1}$ cuts off from $b_{k+1} \cup C_l$. For every U_j and U_j ($j \leq k$) containing Δ, we replace Δ with Δ'. Then again let Δ be the (next) small disk nearest to C_l and we repeat the above operation until U_k is disjoint from $b_{k+1} \cup C_l$.

Now we do the dual operation on A_k in reverse order along $U_k, U_{k-1}, \ldots, U_1$. Let A'_i ($i = 1, \ldots, k$) be the resulting annulus after the dual operation along U_i. The shape of the dual disk U_k is possibly changed but the number of circle components and arc components of $A'_{k-1} \cap S$ is same with those of $A_{k-1} \cap S$. After the dual operation along U_k, it is necessary to modify some U_j's and U_j's ($j \leq k - 1$) further as in Figure 6 so that U_{k-1} is disjoint from $b_{k+1} \cup C_l$. In this way, we do the sequence of dual operations, and the number of circle components of $A'_0 \cap S$ is also m. Then because b_{k+1} is disjoint from U_1, \ldots, U_k, we can do the t-∂-compression of A'_0 along Δ_k first and the number m of properly embedded disks C_j is reduced, contrary to our assumption.

We have shown the following claim.

Claim 4. $A \cap B_2$ consists of bridge disks.
6. Proof of Theorem 4.1 Finding a cancelling pair

By Claim 4.2, \(A \cap B_2 \) consists of bridge disks. Let \(d_0, \ldots, d_{k-1} \) and \(e_0, \ldots, e_{l-1} \) be bridges of \(K_1 \cap B_2 \) and \(K_2 \cap B_2 \) respectively that are indexed consecutively along each component. Let \(D_i \subset A \cap B_2 \) \((i = 0, \ldots, k-1)\) be the bridge disk for \(d_i \) and \(s_i = D_i \cap S \), and let \(E_j \subset A \cap B_2 \) \((j = 0, \ldots, l-1)\) be the bridge disk for \(e_j \) and \(t_j = E_j \cap S \). Let \(R = R_1 \cup \cdots \cup R_{k+l} \) be a complete bridge disk system for \(L \cap B_1 \) and let \(F = A \cap B_1 \). We consider \(R \cap F \) except for the bridges \(L \cap B_1 \).

If there is an inessential circle component of \(R \cap F \) in \(F \), it can be removed by standard innermost disk argument. If there is an essential circle component of \(R \cap F \) in \(F \), then \(L \) would be the unlink as in Case 1 of the proof of Claim 4.1. So we assume that there is no circle component of \(R \cap F \). If there is an inessential arc component of \(R \cap F \) in \(F \) with both endpoints on the same \(s_i \) (or \(t_j \)), then the arc can be removed by standard outermost disk argument. So we assume that there is no arc component of \(R \cap F \) with both endpoints on the same \(s_i \) (or \(t_j \)).

If \(R \cap F = \emptyset \), we easily get a cancelling pair, say \((R_m, D_i)\) or \((R_m, E_j)\), so we assume that \(R \cap F \neq \emptyset \). Let \(\alpha \) denote an arc of \(R \cap F \) which is outermost in some \(R_m \) and let \(\Delta \) denote the outermost disk that \(\alpha \) cuts off from \(R_m \). Applying Lemma 3.1, \(\alpha \) is not b-parallel. Suppose that one endpoint of \(\alpha \) is in, say \(s_{i_1} \), and the other is in \(s_{i_2} \) with the cyclic distance \(d(i_1, i_2) = \min \{|i_1 - i_2|, |k - (i_1 - i_2)|\} \) greater than 1. Then after the \(t \)-\(\partial \)-compression along \(\Delta \), we get a subdisk of \(A \) satisfying the assumption of Lemma 3.2, hence \(L \) is perturbed. So without loss of generality, we assume that one endpoint of \(\alpha \) is in \(s_0 \) and the other is in \(t_0 \).

Let \(A_1 \) be the annulus obtained from \(A \) by the \(t \)-\(\partial \)-compression along \(\Delta \) and \(F_1 = A_1 \cap B_1 \). The bridge disks \(D_0 \) and \(E_0 \) are connected by a band, and let \(P_1 \) be the resulting rectangle with four edges \(d_0, e_0 \), and two arcs in \(S \), say \(p_1, p_2 \). Let \(\alpha_1 \) denote an arc of \(R \cap F_1 \) which is outermost in some \(R_m \) and let \(\Delta_1 \) denote the outermost disk cut off by \(\alpha_1 \). If at least one endpoint of \(\alpha_1 \) is contained in \(p_1 \) or \(p_2 \), or one endpoint of \(\alpha_1 \) is in \(s_{i_1} (t_{j_1} \text{ respectively}) \) and the other is in \(s_{i_2} (t_{j_2} \text{ respectively}) \), then similarly as above,

- either \(\alpha_1 \) is inessential with both endpoints on the same component of \(F_1 \cap S \), or
- \(\alpha_1 \) is b-parallel, or
- Lemma 3.2 can be applied.

Hence we may assume that one endpoint of \(\alpha_1 \) is in \(s_i \) \((i \neq 0)\) and the other is in \(t_j \) \((j \neq 0)\). After the \(t \)-\(\partial \)-compression along \(\Delta_1 \), \(D_i \) and \(E_j \) are merged into a rectangle. Arguing in this way, each \(D_i \) \((i = 0, \ldots, k-1)\) is merged with some \(E_j \) because of the fact that \(R \cap s_i = \emptyset \) gives us a cancelling pair. Moreover, we see that \(k = l \). After \(k \) successive \(t \)-\(\partial \)-compressions on \(A \), the new annulus \(A' \) intersects \(B_1 \) and \(B_2 \) alternately, in rectangles.

Note that \(b(L) = 2b(K) \) and \(L \) is in \(2k \)-bridge position. Since \(L \) is in non-minimal bridge position, \(k > b(K) \). So by the assumption of the theorem, the bridge position of \(K_i \) \((i = 1, 2)\) is perturbed. Let \((D, E)\) be a cancelling pair for \(K_1 \) with \(D \subset B_1 \) and \(E \subset B_2 \). However, \(D \) and \(E \) may intersect \(K_2 \). Let \(P_i \) and \(P_{i+1} \) be any adjacent rectangles of \(A' \) in \(B_1 \) and \(B_2 \) respectively. We remove any unnecessary intersection of \(D \cap P_i \) and \(E \cap P_{i+1} \), the nearest one to \(K_2 \) first, by isotopies along subdisks of \(P_i \) and \(P_{i+1} \) respectively. See Figure 7 for an example. Then \((D, E)\) becomes a cancelling pair for the bridge position of \(L \) as desired.

Acknowledgments.

The author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1A09081849).
Figure 7. Isotoping D and E.

REFERENCES

[1] D. Bachman and S. Schleimer, Distance and bridge position, Pacific J. Math. 219 (2005), no. 2, 221–235.
[2] H. Doll, A generalized bridge number for links in 3-manifolds, Math. Ann. 294 (1992), no. 4, 701–717.
[3] C. Hayashi and K. Shimokawa, Heegaard splittings of the trivial knot, J. Knot Theory Ramifications 7 (1998), no. 8, 1073–1085.
[4] W. Jaco, Lectures on three-manifold topology, CBMS Regional Conference Series in Mathematics, 43. American Mathematical Society, Providence, R.I., 1980.
[5] Y. Jang, T. Kobayashi, M. Ozawa, and K. Takao, A knot with destabilized bridge spheres of arbitrarily high bridge number, J. Lond. Math. Soc. (2) 93 (2016), no. 2, 379–396.
[6] J. H. Lee, Reduction of bridge positions along bridge disks, Topology Appl. 223 (2017), 50–59.
[7] J. -P. Otal, Présentations en ponts du nœud trivial, C. R. Acad. Sci. Paris Sér. I Math. 294 (1982), no. 16, 553–556.
[8] J. -P. Otal, Présentations en ponts des nœuds rationnels, Low-dimensional topology (Chelwood Gate, 1982), 143–160, London Math. Soc. Lecture Note Ser., 95, Cambridge Univ. Press, Cambridge, 1985.
[9] M. Ozawa, Nonminimal bridge positions of torus knots are stabilized, Math. Proc. Cambridge Philos. Soc. 151 (2011), no. 2, 307–317.
[10] M. Ozawa and K. Takao, A locally minimal, but not globally minimal, bridge position of a knot, Math. Proc. Cambridge Philos. Soc. 155 (2013), no. 1, 181–190.
[11] M. Scharlemann and M. Tomova, Uniqueness of bridge surfaces for 2-bridge knots, Math. Proc. Cambridge Philos. Soc. 144 (2008), no. 3, 639–650.
[12] H. Schubert, Über eine numerische Knoteninvariante, Math. Z. 61 (1954), 245–288.
[13] J. Schultens, Additivity of bridge numbers of knots, Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 3, 539–544.
[14] A. Zupan, Properties of knots preserved by cabling, Comm. Anal. Geom. 19 (2011), no. 3, 541–562.

Department of Mathematics and Institute of Pure and Applied Mathematics, Jeonbuk National University, Jeonju 54896, Korea
E-mail address: junghoon@jbnu.ac.kr