Testing for Majorana Zero Modes in a \(p_x + i p_y \) Superconductor at High Temperature by Tunneling Spectroscopy

Yaakov E. Kraus\(^1\), Assa Auerbach\(^1\), H.A. Fertig\(^2\) and Steven H. Simon\(^3\)

\(^1\) Physics Department, Technion, 32000 Haifa, Israel
\(^2\) Department of Physics, Indiana University, Bloomington, IN 47405, USA
\(^3\) Alcatel-Lucent, Bell Labs, 600 Mountain Avenue, Murray Hill, NJ 07974, USA

Directly observing a zero energy Majorana state in the vortex core of a chiral superconductor by tunneling spectroscopy requires energy resolution better than the spacing between core states \(\Delta c^2/\epsilon_F \). We show that nevertheless, its existence can be decisively detected by comparing the temperature broadened tunneling conductance of a vortex with that of an antivortex even at temperatures \(T \gg \Delta c^2/\epsilon_F \).

Driven partially by the dream of building naturally error resistant quantum computers, the study of topological phases of matter has become an important topic of research [1]. The simplest class of topological phases of matter that could be useful in this respect are the chiral \(p_x + i p_y \) BCS paired systems [2]. There are several physical systems where \(p_x + i p_y \) pairing is believed to be realized, including the \(\nu = 5/2 \) quantum Hall state [3, 4]. In addition there have been recent proposals to realize \(p_x + i p_y \) pairing in cold fermion gases [5]. In these (weak) \(p_x + i p_y \) systems, certain types of vortices (quasiparticles in the quantum Hall context [8]) are believed to carry zero energy Majorana fermions [8, 9] which are the topologically protected degrees of freedom.

In \(\text{Sr}_2\text{RuO}_4 \) and \(^3\text{HeA} \) the vortices that carry the Majorana fermions are the so-called half-quantum vortices, which can be thought of as a vortex in the order parameter of one spin species without a vortex in the order parameter of the opposite species [10]. (Note that in spin-polarized \(p_x + i p_y \) systems, including proposed atomic gas realizations or the \(5/2 \) state, there is no half-quantum vortex and the full quantum vortex carries the Majorana fermions.)

Let us suppose that in one of these systems, the relevant Majorana-fermion-carrying vortex has been observed [11]. The next important step would be to design an experiment to observe the Majorana fermion in such a vortex [12]. In the case of \(\text{Sr}_2\text{RuO}_4 \), one obvious experiment would be an energy-resolved tunneling experiment, which measures the local density of states (LDOS) [13]. An observation of a localized mode at precisely zero energy would be direct evidence of the Majorana mode. For cold atoms, an analogous experiment for observing the LDOS would be an energy-resolved local particle annihilation experiment. For the other realizations of \(p_x + i p_y \) order it is not as clear how such an experiment would be performed [14].

In principle such tunneling experiments could provide definitive evidence for the Majorana mode. However, in practice they may be prohibitively difficult. In the vortex, there will exist sub-gap bound states in the core known as Caroli-de-Gennes-Matricon (CdGM) states [15, 16]. The spacing between these bound states is typically of order \(\delta_c = \Delta c^2/\epsilon_F \). We consider a two dimensional uniform \(p_x + i p_y \) superconductor of spinless fermions. The BdG excitations are given by [17]

\[
\begin{pmatrix}
\hat{T} & \Delta \\
\Delta^\dagger & -\hat{T}
\end{pmatrix}
\begin{pmatrix}
u_n \\
v_n
\end{pmatrix}
= E_n
\begin{pmatrix}
u_n \\
v_n
\end{pmatrix},
\]

where \(\hat{T} \) is the kinetic energy operator, and \(\epsilon_F \) is the Fermi energy.
FIG. 2: BdG spectrum $E_n(m)$, of the vortex pair on the sphere, depicting the CdGM core states. The inset shows that their double degeneracies are split by weak tunneling between the poles. The state nearest zero energy is the Majorana mode of both vortex and antivortex.

We implement the BdG equation on a sphere of radius R, parameterized by the unit vector $\mathbf{\Omega} = (\theta, \phi)$. The spherical geometry has two important advantages: (i) It has no boundaries, which strongly affect the low energy spectrum. (ii) In the absence of disorder the azimuthal angular momentum is conserved, which greatly reduces the computational difficulty of the BdG diagonalization.

The order parameter field on the sphere is taken to be of the following form \[8, 18\]

\[
\Delta_{\nu\nu'}(\mathbf{\Omega}, \mathbf{\Omega'}) = \sum_{l,m,l',m'} \Delta_{lm,l'm'} Y_{\frac{l}{2}, l, m}(\mathbf{\Omega}) Y_{\frac{l'}{2}, l', m'}(\mathbf{\Omega'}),
\]

\[
\Delta_F(\mathbf{\Omega}, \mathbf{\Omega'}) = \frac{\Delta_0}{(4\pi l_F^2)(l_F + \frac{1}{2})} \times (\alpha b' - \beta a') |\alpha a' + \beta b'|^2 R/(4\xi_F^2),
\]

which defines $\Delta_{lm,l'm'}$. Δ_0 is the pairing amplitude, the pairing range is ξ_F, and l_F is the Fermi angular momentum, given by $l_F = l_F(l_F + 1)/(2m R^2)$. The functions $\alpha = \cos(\theta/2)$ and $\beta = \sin(\theta/2)e^{i\phi}$ are spinor functions. Y_{qlm} are monopole harmonics \[19\], where q, l, m are half odd integers. The order parameter $\Delta_F(\mathbf{\Omega}, \mathbf{\Omega'})$ acquires a 2π phase when $\mathbf{\Omega}$ encircles $\mathbf{\Omega'}$, which describes $p_x + ip_y$ pairing. $|\Delta_F|$ keeps the particles within the pairing range $|\mathbf{\Omega} - \mathbf{\Omega'}| \sim \xi_F$.

The order parameter field $F_{\nu\nu'}(\mathbf{\Omega})$ describes the vorticity of the pair center of mass $\mathbf{\Omega} = (\mathbf{\Omega} + \mathbf{\Omega'})/2$. We choose $F_{\nu\nu'}$ to describe an antivortex on the north pole and a vortex on the south pole, with the direction of vorticity defined relative to the chirality of the $p_x + ip_y$ order parameter, depicted in Fig. 1. For the vortex pair field, we use the analytical form (without self consistency) \[20\]

\[
F_{\nu\nu'}(\mathbf{\Omega}) = \frac{\sin \theta \cdot R/\xi}{\sqrt{1 + (\sin \theta \cdot R/\xi)^2}} e^{i\phi},
\]

\[
\sum_{L=1,3,\ldots} f_L Y_{LM}(\mathbf{\Omega}),
\]

which defines f_L. Y_{LM} are spherical harmonics, and $\xi = 2\pi p_F/(\pi \Delta_0 k_F)$ is Pippard’s coherence length. We take $\xi_F < \xi$ for simplicity.

The BdG equation is represented as a matrix in terms of 3j symbols as

\[
T_{lm,l'm'} = \frac{\epsilon_F}{l_F(l_F + 1)} - \frac{1}{2} \delta_{l'l} \delta_{m'm},
\]

\[
\Delta_{lm,l'm'} = \delta_{m',1-m} \delta_0 \sqrt{(2l + 1)(2l' + 1)}
\]

\[
\left(D_l + (-1)^l + l' \right) \sum_L f_L \sqrt{\frac{2L + 1}{16\pi}} \times \left(\begin{array}{ccc} l \\ -m \\ m - 1 \\ 1 \\ \frac{l}{2} \\ -\frac{l}{2} \\ 0 \end{array} \right)
\]

\[
D_l \approx \frac{l}{l_F} e^{-(l^2 + l'^2)(\xi_F/R)^2}.
\]

Diagonalizing Eq. (1) produces a set of energies E_n and corresponding eigenvectors u_n^{lm}, v_n^{lm}. By azimuthal symmetry, m is a good quantum number. The BdG wavefunctions on the sphere are

\[
u_n(\mathbf{\Omega}) = \sum_l u_n^{lm} Y_{\frac{l}{2}, l, m}(\mathbf{\Omega}),
\]

\[
u_n(\mathbf{\Omega}) = \sum_l \nu_n^{lm} Y_{\frac{l}{2}, l, -m+1}(\mathbf{\Omega}).
\]

In Fig. 2 we depict the BdG spectrum of the vortex pair as a function of m. The continuum states above the gap $|E_n| > \Delta_0$ are extended, while the branch that approaches zero is the $p_x + ip_y$ version of the CdGM core states. Their number is of order ϵ_F/Δ_0, and their spacing is of order δ_0 \[16\].

As seen in the inset of Fig. 2, each CdGM state is almost doubly degenerate. The splitting represents weak tunneling between the north and south pole core states. Indeed, we find that the tunnel splittings decrease exponentially with the radius of the sphere $\delta E_n \sim e^{-R/\xi}$ for $R \gg \xi$.

The lowest positive energy approaches zero as $E_0 \sim e^{-R/\xi}$. In the large sphere limit, the wavefunctions $u_0(\mathbf{\Omega}) \approx v_0(\mathbf{\Omega})$ are equally split between the north and south poles. The corresponding BdG fermion is constructed out of two well separated Majorana operators in the north and south poles. We have also verified that E_0 is insensitive to the addition of moderate potential disorder \[21\]. This agrees with previous asymptotic calculations in the plane which have shown that the Majorana excitations are "topologically protected" against perturbations \[3, 4\].
The asymptotic predictions for the wavefunctions \(u_0(r) \) for core-less vortices in the plane [7] are

\[
u_0(x) \sim \begin{cases} J_0(k_Fr)e^{-r/\pi\xi} & \text{antivortex}, \\ J_1(k_Fr)e^{i\phi}e^{-r/\pi\xi} & \text{vortex}, \end{cases}
\]

which are valid for both \(r \gg \xi \) and \(r \ll \xi \). Numerically, we confirmed that these predictions hold even in finite core sizes.

The physical reason behind the difference in Eq. (6) is that the Majorana wavefunctions are sensitive to the sum of vorticity and relative angular momentum. \(J_0 \) is obtained only when that sum vanishes, and this is important for the experimental signature we discuss below.

Local Density of States (LDOS). At zero temperature the LDOS is defined as [13]

\[
T(E, r) = \sum_n |u_n(r)|^2 \delta(E-E_n) + |v_n(r)|^2 \delta(E+E_n),
\]

where \(r \) is the distance from the vortex (or antivortex) center.

\[\text{FIG. 3: Zero temperature local density of states of Eq. (7) near the vortex and the antivortex centers. The peaks belong to the CdGM states. Notice that the zero energy Majorana mode is removed from the origin in the vortex, while it is maximized at the origin in the antivortex.}\]

In a tunneling spectroscopy experiment (e.g. Ref. [22]), the discrete LDOS spectrum is smeared by temperature broadening. The tunneling conductance [23] is defined as

\[
\frac{dI}{dV}(E, r) \sim T \int dE' \left(\frac{\partial f(E-E')}{\partial E'} \right) T(E', r),
\]

where \(f(E) \) is the Fermi-Dirac distribution at zero chemical potential and temperature \(T \).

In the BCS weak coupling regime, \(k_F\xi \gg 1 \), and therefore \(\delta_e^c \) could be a very small temperature scale. At moderate temperatures \(\delta_e^c < T < \Delta_0 \), the peaks of Fig. 3 are smeared on the energy axis (but not on the \(r \) axis), therefore an asymmetry effect can be observed.

\[\text{FIG. 4: Tunneling conductance of Eq. (8), in arbitrary units.} \ \lambda_{F} \text{ is the fermi wavelength. The temperature } T = 0.15\Delta_0, \text{ is about 10 times larger than the CdGM level spacing.}\]

A typical tunneling conductance is depicted in Fig. 4 which shows a central peak at \(r = 0, E = 0 \), with low broad ridges dispersing away to larger \(r, E \). We see that the central peak of the vortex is twice the height of that of the antivortex.

This effect is a direct consequence of Eq. (6). Under temperature smearing the two CdGM peaks at \(r = 0 \) of the vortex, merge into one large central peak. In contrast, only a single Majorana state is responsible for the central peak of the antivortex. Since the relevant maximas in the LDOS are nearly identical, a ratio of 2 is obtained at elevated temperatures.

Our effect requires having spatial resolution in tunneling conductance better than a Fermi wavelength. If \(dI/dV(r, E) \) is convoluted with areal resolution of \((\delta r)^2 > \lambda_{F}^2 \), the ratio between the vortex and antivortex peak heights rapidly approaches unity as \(\delta r > \lambda_{F} \). The ratio is weakly temperature dependent in the regime \(\delta_e^c < T < \Delta_0 \).

In real three dimensional samples, zero bias peaks are somewhat suppressed by bulk states and surface imperfections, (Ref. [22] reports 15% enhancement above the high voltage background). Nevertheless, it is the ratio of 2 between the vortex and an antivortex enhancement.
which would signal the Majorana state. To avoid changes in the background, we suggest to leave the tip at the same position while reversing the magnetic field. The field should be localized and weak enough so as not to overturn the chiral order parameter.

In real three dimensional samples, zero bias peaks are somewhat suppressed by bulk states and surface imperfections, (Ref. [22] reports a 15% enhancement above the high voltage background). Nevertheless, it is the ratio of 2 between the vortex and an antivortex enhancement which would signal the Majorana state. To avoid changes in the background, we suggest to leave the tip at the same position while reversing the magnetic field. The field should be localized and weak enough so as not to overturn the chiral order parameter.

General Cases. Some difference between vortex and antivortex excitations is expected for any chiral symmetry breaking (CSB) superconductor. The important questions are whether this difference is observable at $T > \delta$, and whether it is sensitive to the existence of Majorana fermions.

For a CSB superconductor with relative angular momentum $M = 1, 2, \ldots$ (chiral-p, chiral-d, \ldots), there is a Majorana state in the vortex core, provided the vorticity N obeys $N + M = 0, \pm 2, \pm 4, \ldots$ [9]. However, in most cases these Majorana states vanish at the origin. The only exceptions are cores of antivortices which satisfy $N = -M$. Our factor of 2 effect will be observable only for this subset of cases. Notice that $p_x + ip_y$ is the only case where the effect occurs for vorticity $|N| = 1$.

Since the core states are only sensitive to large potential gradients, moderate disorder does not destroy the Majorana states. We have explicitly confirmed this expectation numerically [21], by solving the BdG equation with a white noise potential. For disorder potential fluctuations up to order ϵ_F, the Majorana tunneling energy decays with R, and $u_0(r)$ with r, with the same exponents as the clean system, and the peak height doubling signature of the Majorana states is essentially unaffected.

Summary. We solved the BdG spectrum of $p_x + ip_y$ vortex pair state in the spherical geometry. We show that even at high temperatures compared to the CdGM state spacing, a signature of the Majorana state remains when one compares the LDOS of the vortex to that of the antivortex.

Acknowledgements. We thank Ady Stern for useful discussions. Support from US - Israel Binational Science foundation and Israel Science Foundation is acknowledged. AA acknowledges Aspen Center for Physics for its hospitality. HAF acknowledges the support of the NSF through Grant No. DMR-0704033. AA and SHS acknowledge the hospitality of the KITP where this collaboration was initiated.

[1] S. Das Sarma, M. Freedman, C. Nayak, S. Simon and A. Stern, Rev. Mod. Phys. 80, 1083 (2008), and references therein.
[2] While such systems are not universal for topological quantum computation, they could serve as quantum memories. Schemes have also been constructed for partially topological quantum computation. See S. Bravyi, Phys. Rev. A 73, 042313 (2006).
[3] G.E. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003).
[4] T.M. Rice and M. Sigrist, J. Phys. Cond. Matter 7, L643 (1995); G. Baskaran, Physica B 223&224, 490 (1996); Y. Maeno. T.M. Rice and M. Sigrist, Phys. Today 54, No. 1, 42 (2001).
[5] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[6] M. Greiter, X.G. Wen and F.Wilczek, Nucl. Phys. B 374, 567 (1992).
[7] V. Gurarie and L. Radzihovsky, Annals of Physics 322, 2 (2007).
[8] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).
[9] G.E. Volovik, Pis’ma Zh. Eksp. Teor. Fiz. 70, 601 (1999) [JETP Lett. 70, 609 (1999)].
[10] In Sr$_2$RuO$_4$ the “full-quantum vortex” (a vortex in the order parameter of both spin components) is lower energy than the half-quantum vortex, so that the half-quantum vortex does not naturally occur. Nonetheless, several proposals have appeared for how to stabilize the half quantum vortices. See S. Das Sarma, C. Nayak and S. Tewari, Phys. Rev. B 73, 220502 (2006); S.B. Chung, H. Bluhm, and E.-A. Kim Phys. Rev. Lett. 99, 197002 (2007); In 3HeA, see: M.M. Salomaa and G.E. Volovik, Phys. Rev. Lett. 55, 1184 (1985).
[11] For the 5/2 state there are now several experiments that claim to observe the e/4 quasiparticle, which would be the Majorana-fermion-carrying vortex. See M. Dolev et al. Nature 452, 829 (2008); I.P. Radu et al. Science 320, 899 (2008); R.L. Willett, M.J. Manfra, L. N. Pfeiffer and K.W. West, arXiv:cond-mat/0807.0221.
[12] Proposals based on tunneling of the Majorana between two vortices were given by C.J. Bolech and E. Demler, Phys. Rev. Lett. 98, 237002 (2007); S. Tewari, C. Zhang, S. Das Sarma, C. Nayak and D.H. Lee, Phys. Rev. Lett. 100, 027001 (2008).
[13] J.D. Shore, M. Huang, A.T. Dorsey and J.Sentha, Phys. Rev. Lett. 62, 3089 (1989).
[14] For 3HeA one can at least imagine tunneling an atom through a nanoconstriction at varying pressure although in practice this might be extremely difficult. For the 5/2 state, tunneling in or out of the system requires flux-attachment (see Ref. [5]) and would likely result in a strong pseudogap in the tunneling amplitude. See for example, S. He, P. M. Platzman and B. I. Halperin, Phys. Rev. Lett. 71, 777 (1993).
[15] C. Caroli, P.G. de Gennes and J. Matricon, Phys. Lett. 9, 307 (1964).
[16] N.B. Kopnin and M.M. Salomaa, Phys. Rev. B 44, 9667 (1991).
[17] P.G. de Gennes, Superconductivity of Metals and Alloys (WA Benjamin Inc., New York, 1966).
[18] J.K. Jain and R.K. Kamilla, Phys. Rev. B 55, R4895
(1997); G. Moller and S. H. Simon, Phys. Rev. B 77, 075319 (2008).

[19] T.T. Wu and C.N. Yang, Nucl. Phys. B 107, 365 (1976); Phys. Rev. D 16, 1018 (1977).

[20] C. Pethik and H. Smith, Bose Einstein Condensation in Dilute Gases (Cambridge University press, Cambridge, 2002).

[21] Y.E. Kraus and A. Auerbach, to be published.

[22] C. Lupien, S.K. Dutta, B.I. Barker, Y. Maeno and J.C. Davis. [arXiv:cond-mat/0503317]

[23] F. Gygi and M. Schlüter, Phys. Rev. B 41, 822 (1990); Phys. Rev. B 43, 7609 (1991).