This study examined the relationship between self-injurious behavior and caloric intake. Behavioral, dietary, and weight/height indices obtained on 80 neurodevelopmentally disabled and autistic clients revealed that maintenance on high caloric diets significantly predicted the occurrence of self-injurious behavior in male clients. Male clients with self-injurious behavior were also outside their recommended weight to height index. Systematic studies are needed to assess the relationship among diet, the endogenous opioid system, and self-injurious behavior.

KEY WORDS: diet; self-injurious behavior; neurodevelopmental disability; autism.

INTRODUCTION

Increasing evidence suggests that disregulation of the endogenous opioid system contributes to self-injuring symptoms observed in neurodevelopmentally disabled and autistic patients (Baron and Sandman, 1983; Sandman, 1988; Sandman and Kastin, 1990). For example, administration of naloxone and naltrexone (opiate blockers) attenuated self-injury in these patients (Barrett et al., 1989; Bernstein et al., 1987; Davidson et al., 1983; Herman et al., 1987; Kars et al., 1990; Richardson and Zaleski, 1983; Sandman et al., 1990; Sandman et al., 1983; Sandyk, 1985).

Opioids have been associated with the regulation of food intake in human subjects. When compared to control subjects, B-endorphin was significantly elevated in plasma and in cerebral spinal fluid of obese subjects.
(Atkinson, 1987). Former heroin addicts treated with methadone had higher caloric intake (ranging from 2000 to 13,500 cal/day) while maintaining a low weight-to-height index (Tallman et al., 1984). These studies suggested that stimulation of the opiate system may lead to increased calorie intake, and that high caloric intake may participate in the maintenance of elevated opioid levels.

Opioid receptors have been identified at all levels of the visceral and gustatory pathways (Mantyh and Hunt, 1984) and appear to be involved in processing gustatory (taste) information. For example, rats (LC-2) that exhibit high levels of intracranial self-stimulation and excessive intake of saccharin also were tolerant to morphine. Release of beta-endorphin (BE) increased in rats following highly palatable foods (chocolate milk or candy) (Dum et al., 1983; Lieblich et al., 1983). Similarly, chronic administration of morphine altered the dietary selection of rats by doubling fat intake over baseline levels (Ottaviani and Riley, 1984). Blocking the opioid receptors with naloxone decreased the amount of fats (Marks-Kaufman and Kanarek, 1981) and saccharin (Lynch, 1986) ingested by rats.

Anecdotal observations suggested that SIB patients consumed more calories than patients without SIB. Diet may contribute to the maintenance of SIB because caloric intake reflects the activity of the opioid system, and opioids may regulate SIB. The aim of this study is to survey the relationship between SIB and caloric diets.

METHOD

Subjects

Subjects were 80 profoundly and severely mentally retarded clients (46 males, 34 females) from two randomly chosen residences at Fairview Developmental Center, a state operated facility in Costa Mesa, California. Clients ranged in age from 22 to 46.

Procedure

Clients were separated and coded into four behavioral groups: SIB only, aggression only, SIB and aggression, and no SIB or aggression. SIB was defined as any behavior causing tissue damage. Aggression was defined as harm inflicted on others or violent outbursts resulting in the destruction of property. SIB and aggression were assessed annually with a state-wide
The presence of SIB in males was associated with high caloric intake and with the tendency to be either below or above ideal height/weight index. Reports that stimulation of the opiate system increases caloric intake and that high caloric intake can stimulate beta-endorphin (BE) are consistent with the presumed relationships among diet, the BE system, and
SIB. Both increased caloric intake (Atkinson, 1987) and SIB (Barron and Sandman, 1983; Gillberg et al., 1985; Sandman et al., 1990) are related to stimulation of the opioid system. In the current study, the association between high caloric diets and SIB was most apparent in underweight males. This pattern may be related to two separate observations: (1) high caloric intake and SIB are both associated with elevated endogenous opiates; (2)

Table I. Relationship Between Diet and Weight Range for Total Sample and Males Onlya
Total samplea
Below weight

Quarter diet
Half diet
Regular diet
Double diet
Triple

aNote. The values represent percentages. $n = 80$.

$^b_{n = 46} p < .01$.

Table II. Binomial Distribution Analysis of Behavior Versus High Density Diets (Double and Triple) in Males Onlya
Double
SIB
Aggressive
SIB/aggressive
Neither

aNote. Combined SIB and SIB/aggressive males have 12 out of 18 of the high caloric diets.

Table III. Binomial Distribution Analysis of Aggressive Range Versus Behavioral Ratingsa
Below
SIB
Aggressive
SIB/aggressive

aNote. Combined SIB and SIB/aggressive males have 12 out of 17 abnormal weight indices. The three out of the four males who were below their weight range also display SIB and have triple density diet.
addiction to opiates is associated with low body weight (Tallman et al., 1984) and reflects tolerant opioid receptors.

Patients seeking high density diets may regulate dysfunctional receptors with increased calories (caloric intake increases opioids) (Tallman et al., 1984) perhaps resulting in stimulus seeking behavior (e.g., SIB). The observation that SIB was frequent in three of four underweight patients with triple density diets is consistent with this possibility. This supports anecdotal observations that SIB outbursts tend to occur after meals in some patients.

The results of this survey are preliminary and the study has several weaknesses. First, it is difficult to determine precisely all the calories a patient receives because they may be given food reinforcers on an irregular basis which are not included in the nutritional assessment. Second, it is not probable that all patients with SIB have disregulated opiate systems. Neuromodulator activity in the dopamine (Breese et al., 1984; Castells et al., 1979), gamma aminobutyric acid (Baumeister and Frye, 1984), and serotonin systems (Breese et al., 1984; Castells et al., 1979) have been implicated in SIB. The interaction of nutrition, SIB, and these neurochemical systems are unknown. The fact that a significant trend was found in this survey warrants further studies of the diet-SIB relationship.

ACKNOWLEDGMENTS

We appreciate the support of Frank Crinella, Director, SDRI; Hugh Kohler, Director and Lou Sarrao, Clinical Director, Fairview Developmental Center. This project was supported in part by Grant RO445165 from NIMH.

REFERENCES

Atkinson, R. (1987). Opioid regulation of food intake and body weight in humans. Fed. Proc. 46: 178-182.
Barrett, R. P., Feinstein, C., and Hole, W. T. (1989). Effects of Naloxone and Naltrexone on self-injury: A double blind, placebo-controlled analysis. Am. J. Ment. Retard. 93: 644-651.
Baumeister, A., and Frye, G. (1978). Endogenous pain control mechanism: Review and hypothesis. Ann. Rev. Neurosci. 4: 451-452.
Bernstein, G. A., Hughes, J. R., Mitchell, J. E., and Thompson, T. (1987). Effects of narcotic antagonists on self-injurious behavior: A single case study. J. Am. Acad. Child. Adol. Psychiatry 26: 886-889.
Breese, G., Baumeister, A., McCown, T., Emerick, S., Frye, G., and Muller, R. (1984). Neonatal-6-hydroxydopamine treatment model of susceptibility for self-mutilation in the Lesch-Nyhan syndrome. Pharmacol. Biochem. Behav. 21: 459.
Castells, S., Chakrabarti, C., Winsberg, B., Hurwic, M., Perez, J., and Nyhan, W. (1979). Effects of L-5-hydroxytryptaphan on monamine and amino acid turnover in the Lesch-Nyhan syndrome. J. Aut. Devel. 9: 95-103.

Davidson, P. W., Keene, B. M., Carroll, M., and Rockwitz, R. J. (1983). Effects of naloxone on self-injurious behavior: A case study. Appl. Research on Mental Retardation. 4: 1-4.

Dum, J., Gramsch, D., and Herz, A. (1983). Activation of hypothalmic beta-endorphin pools induced by highly palatable food. Pharmacol. Biochem. Behav. 18: 443-447.

Gillberg, C., Terenius, and Lonneholm, G. (1985). Endorphin activity in childhood psychosis. Arch. Gen. Psychiat. 42: 780-783.

Hereman, B. H., Hammock, M. K., Arthur-Smith, A., Egan, J., Chatooor, I., Werner, A., and Zelnik, N. (1987). Naltrexone decreases self-injurious behavior. Ann. Neurol. 22: 550-552.

Kars, H., Broekema, W., Glaudemans-van Gelderen, I., Verhoeven, W. M., and van Ree, J. M. (1990). Naltrexone attenuates self-injurious behavior in mentally retarded subjects. Biol. Psychiatry 17: 741-746.

Lieblieh, I., Cohen, E., Ganéhrow, J., Blass, E., and Bergmann, F. (1983). Morphine tolerance in genetically elevated saccharin intake. Science 221: 71-873.

Lynch, W. (1986). Opiate blockage inhibits saccharin intake and blocks normal preference acquisition. Pharmacol. Biochem. Behav. 24: 833-836.

Manuhy, P. H., and Hunt, S. P. (1984). Neuropeptides are present in projection neurones at all levels in visceral and taste pathways: From periphery to sensory cortex. Brain Res. 229: 297-311.

Marks-Kaufman, R., and Kanarek, R. (1981). Modifications in nutrient selection induced by naloxone in rats. Psychopharmacology 74: 321-324.

Ottaviani, R., and Riley, A. (1984). Effects of chronic morphine administration on the self-selection of macronutrients in the rat. Nutri. Behav. 2: 27-36.

Richardson, J. S., and Zaleski, W. A. (1983). Naloxone and self-mutilation. Biol. Psychiatry 18: 99-101.

Sandman, C. A. (1988). B-endorphin disregulation in autistic and self-injurious behavior: A neurodevelopmental hypothesis. Synapse 2: 193-199.

Sandman, C. A. (1990/1991). The opiate hypothesis in autism and self-injury. J. Child Adol. Psychopharmacol. 1: 235-246.

Sandman, C. A., Barron, J. L., and Colman, H. (1990). An orally administered opiate blocker, Naltrexone attenuates self-injurious behavior. Am. J. Ment. Retard. 95: 93-102.

Sandman, C. A., Barron, J. L., Chicz-DeMet, A., and DeMet, E. (1990). Plasma B-endorphin levels in patients with self-injurious behavior and stereotypy. Am. J. Ment. Retard. 95: 84-92.

Sandman, C. A., Datta, P., Barron, J. L., Hoehler, F., Williams, C., and Swanson, J. (1983). Naloxone attenuates self-abusive behavior in developmentally disabled clients. Appl. Res. Ment. Retard. 4: 5-11.

Sandman, C. A., and Kastin, A. J. (1990). Neuropeptide modulation of development and behavior. In Deutsch, S., Weisman, A., and Weisman, R. (eds.), Application of Basic Neuroscience to Child Psychiatry. Plenum, New York, pp. 101-124.

Sandky, R. (1985). Naloxone abolished self-injuring in a mentally retarded child. Ann. Neurol. 17: 520-522.

Tallman, J., Ellenbring, M., Carson, G., Boosalis, M., Levine, A., and Morley, J. (1984). Effects of chronic methadone use in humans on taste and dietary preference. Fed. Proc. 43: 1058.