Uniformity of stably integral points on elliptic curves

by

DAN ABRAMOVICH

November 20, 2018

0. Introduction

Let \(X \) be a variety of logarithmic general type, defined over a number field \(K \). Let \(S \) be a finite set of places in \(K \) and let \(\mathcal{O}_{K,S} \) be the ring of \(S \)-integers. Suppose that \(\mathcal{X} \) is a model of \(X \) over \(\text{Spec} \mathcal{O}_{K,S} \). As a natural generalization of theorems of Siegel and Faltings, it was conjectured by S. Lang and P. Vojta (Vojta, conjecture 4.4) that the set of \(S \)-integral points \(\mathcal{X}(\mathcal{O}_{K,S}) \) is not Zariski dense in \(\mathcal{X} \). In case \(X \) is projective, one may choose an arbitrary projective model \(\mathcal{X} \) and then \(\mathcal{X}(\mathcal{O}_{K,S}) \) is identified with \(X(K) \). In such a case, one often refers to this conjecture of Lang and Vojta as just Lang’s conjecture.

L. Caporaso, J. Harris and B. Mazur (CHM) apply Lang’s conjecture in the following way: Let \(X \to B \) be a smooth family of curves of genus \(g > 1 \). Let \(X^n_B \to B \) be the \(n \)-th fibered power of \(X \) over \(B \). In CHM it is shown that for high enough \(n \), the variety \(X^n_B \) dominates a variety of general type. Assuming Lang’s conjecture, they deduce the following remarkable result: the number of rational points on a curve of genus \(g \) over a fixed number field is uniformly bounded.

In this note we study an analogous implication for elliptic curves. Let \(E/K \) be an elliptic curve over a number field, and let \(P \in E(K) \). We say that \(P \) is stably \(S \)-integral, denoted \(P \in E(K, S) \), if \(P \) is \(S \)-integral after semistable reduction (see §4). Our main theorem states (see §5):

Theorem 1. (Main theorem in terms of points) Assume that the Lang - Vojta conjecture holds. Then for any number field \(K \) and a finite set of places \(S \), there is an integer \(N \) such that for any elliptic curve \(E/K \) we have \(\#E(K, S) < N \).

Since the moduli space of elliptic curves is only one-dimensional, the computations and the proofs are a bit simpler than the higher genus cases. One can view the results in this paper as a simple application of the methods of CHM.

0.1. Overview. In section 1 we prove a basic lemma analogous to lemma 1.1 (CHM) on uniformity of correlated points. In section 2 we study a particular pencil of elliptic curves which is the main building block for proving theorem 1. In section 3 we look at quadratic twists of an elliptic curve, motivating the study in section 4 of stably integral points. Section 5 gives a proof of the main theorem.

In section 6 we will refine our methods and show that the Lang - Vojta conjecture implies the uniform boundedness conjecture for torsion on elliptic curves, thus giving a conditional (and therefore obsolete) proof of the following theorem of Merel:

Theorem 2. (Merel, [Merel]) For any integer \(d \) there is an integer \(N(d) \) such that given a number field \(K \) with \([K : \mathbb{Q}] = d \), and given an elliptic curve \(E/K \), then \(\#E(K)_{\text{tors}} < N(d) \).

It should be noted that the methods introduced in section 1 were essential for the developments in 2, 3. It would be interesting if one could apply the method to the study points on abelian varieties in general.

0.2. Acknowledgements. I am indebted to the ideas in the work [CHM] of Lucia Caporaso, Joe Harris and Barry Mazur and to conversations with them. Thanks to Joe Silverman and Sinnou David for discussions of points on elliptic curves and much encouragement. Much of this text was written during a pleasant visit with the group “Problemes Diophantiens” in Paris. It is also a pleasure to thank Henri Darmon, Gerhard Frey, Brendan Hassett and Felipe Voloch for their suggestions. Special thanks are due to Frans Oort who read an earlier version of this paper and sent me many helpful comments.

1 Partially supported by NSF grants DMS-9207285 and DMS-9503276
2 I take the opportunity to wish Professor Oort a happy 60th birthday.
0.3. The Lang - Vojta conjecture. A common practice in arithmetic geometry is that of generalizing rational points on projective varieties to integral points on quasi-projective varieties. We can summarize this in the following table, which will be explained below:

Number field \(K\)	Ring of \(S\)-integers \(O_{K,S}\)
Projective variety \(X\) over \(K\)	Quasi projective variety \(X\) and a model \(\mathcal{X}\) over \(O_{K,S}\)
Rational point \(P \in X(K)\)	Integral point \(P \in \mathcal{X}(O_{K,S})\)
\(X\) of general type	\(X\) of log-general type
e.g.: \(C\) a curve of genus \(> 1\)	e.g.: \(E\) an elliptic curve with the origin removed
Faltings' theorem: \(C(K)\) finite	Siegel's theorem: \(E(O_{K,S})\) finite
Lang's conjecture: If \(X\) is of general type then \(X(K)\) not Zariski dense	Lang-Vojta conjecture: If \(X\) is of logarithmic general type then \(\mathcal{X}(O_{K,S})\) not Zariski dense

We remind the reader of the definition of a variety of log general type:

Definition 1. Let \(X\) be a quasi-projective variety over \(\mathbb{C}\). Let \(f : Y \to X\) be a resolution of singularities, that is, a proper, birational morphism where \(Y\) is a smooth variety. Let \(Y \subset Y_1\) be a projective compactification, such that \(Y_1\) is smooth and such that \(D = Y_1 \setminus Y\) is a divisor of normal crossings. Then \(X\) is said to be of logarithmic general type if for some positive integer \(m\), the rational map defined by the complete linear system \(|m(KY_1 + D)|\) is birational to the image.

Let \(X\) be a quasi-projective variety of logarithmic general type, defined over a field \(K\) which is finitely generated over \(\mathbb{Q}\) (e.g., a number field). Let \(R\) be a ring, finitely generated over \(\mathbb{Z}\), whose fraction field is \(K\) (e.g., the ring of \(S\)-integers in a number field). Choose a model \(\mathcal{X}\) of \(X\) over \(R\). The following is a well-known conjecture of Lang and Vojta ([Vojta], conjecture 4.4).

Conjecture. The set of integral points \(\mathcal{X}(R)\) is not Zariski dense in \(\mathcal{X}\).

In case \(X\) in the conjecture above is projective, then logarithmic general type means just general type; and integral points are just rational points.

0.4. What should the last entry in the table read? We would like to fill in the question mark in the last entry in the table. One is tempted to ask:

Does the Lang - Vojta conjecture imply the uniformity of \(#E(O_{K,S})\)?

but one sees immediately that this cannot be true without some restrictions. Most importantly, one has to restrict the choice of the model \(E\), as can be seen in the following example:

Let \(E\) be an elliptic curve over a number field \(K\) such that \(E(K)\) is infinite. Fix \(P_1, \ldots, P_n \in E(K)\). Choose an equation

\[y^2 = x^3 + Ax + B \]

for \(E\), where \(A, B \in O_{K,S}\) for some finite \(S\). Choose \(c \in O_{K,S}\) such that for each \(P_i\) one has \(c^2x(P_i), c^3y(P_i) \in O_{K,S}\). By changing coordinates \(x_1 = c^2x, y_1 = c^3y\), one obtains a new model \(E_1\) given by the equation \(y_1^2 = x_1^3 + c^4Ax_1 + c^6B\), on which all the points \(P_i\) are integral.

The problem with this new model arises because when one changes coordinates, one blows up the closed point corresponding to the origin at primes dividing \(c\), so the resulting model has “extraneous” components over these primes. We are led to modify the statement:

Theorem 3. (Main theorem in terms of models, see [4]) Assume that the Lang-Vojta conjecture holds. Then for any number field \(K\) and a finite set of places \(S\) there is an integer \(N\) such that for any stably minimal elliptic curve \(E\) over \(O_{K,S}\) we have \(#E(O_{K,S}) < N\).

It turns out that stably minimal models are very minimal indeed. In particular we will see that Néron models, the canonical models of elliptic curves over rings of integers, are not necessarily sufficiently minimal for the purpose of our methods. On the other hand we will see that semistable models are stably minimal. A precise definition of a stably minimal model, and how to obtain a canonical one from the Néron model, will be given in [4].
In the case of semistable elliptic curves, it is worthwhile to state an immediate corollary of the theorem:

Corollary 1. The Lang-Vojta conjecture implies that the number of integral points on semistable elliptic curves over \(\mathbb{Q} \) is bounded.

Remark. Another conjecture of Lang (see [LangAMS]) predicts that the number of all \(S \)-integral points on so called quasi-minimal elliptic curves should be bounded in terms of the rank and the number of elements in \(S \). In view of the corollary, one is tempted to ask whether the rank of an elliptic curve can be bounded in terms of the places of additive reduction of the elliptic curve.

1. **Boundedness of correlated points**

One of the main ideas in [CHM] is, that in order to bound the number of points on curves it is enough to show that they are *correlated*, that is, there is an algebraic relation between all \(n \)-tuples of these points. This is the content of the lemma below. First, some notation.

Let \(\pi : X \to B \) be a family of smooth irreducible curves over a field \(K \). We denote by \(\pi_n : X^B_n \to B \) the \(n \)-th fibered power of \(X \) over \(B \). Given a point \(b \in B \) we denote by \(X_b \) the fiber of \(X \) over \(b \). Similarly, given \(Q = (P_1, \ldots, P_n) \in X_B^n \) we denote by \(X_Q \subset X_B^{n+1} \) the fiber of \(X_B^{n+1} \) over \(Q \). Note that if \(\pi_n(Q) = b \) then \(X_Q \simeq X_b \). Denote by \(p_n : X_n \to X_{n-1} \) the projection onto the first \(n-1 \) factors.

Assume that we are given a subset \(\mathcal{P} \subset X(K) \) (typical examples would be rational points, or integral points on some model of \(X \)). Again, we denote by \(\mathcal{P}_B^n \subset X_B^n \) the fibered power of \(\mathcal{P} \) over \(B \) (namely the union of the \(n \)-tuples of points in \(\mathcal{P} \) consisting of points in the same fiber), and by \(\mathcal{P}_b \) the points of \(\mathcal{P} \) lying over \(b \).

Definition 2. Assume that for some \(n \) there is a proper closed subset \(F_n \subset X_B^n \) such that \(\mathcal{P}_B^n \subset F_n \). In such a case we say that the subset \(\mathcal{P} \) is \(n \)-correlated.

For instance, a subset \(\mathcal{P} \) is \(1 \)-correlated if and only if it is not Zariski dense; in which case it is easy to see that, over some open set in \(B \), the number of points of \(\mathcal{P} \) in each fiber is bounded. This is generalized by the following lemma:

Lemma 1. (compare [CHM], lemma 1.1) Let \(X \to B \) be a family of smooth irreducible curves, and let \(\mathcal{P} \subset X(K) \) be an \(n \)-correlated subset. Then there is a dense open set \(U \subset B \) and an integer \(N \) such that for every \(b \in U \), we have \(\# \mathcal{P}_b \leq N \).

Proof: Let \(F_n = \overline{\mathcal{P}_B^n} \) be the Zariski closure, and \(U_n = X_B^n \setminus F_n \) the complement. We now define by descending induction: \(U_{i-1} = p_i(U_i) \) and \(F_{i-1} = X_B^{i-1} \setminus U_{i-1} \) the complement. Notice that over \(U_{i-1} \), the map \(p_i \) restricts to a finite map on \(F_i \); by definition if \(x \in U_{i-1} \) then \(p_i^{-1}(x) \not\subset F_i \), and \(p_i^{-1}(x) \) is an irreducible curve. Therefore the number of points in the fibers of this map is bounded: if \(x \in U_{i-1} \) then we can write \(\#(p_i^{-1}(x) \cap F) \leq d_i \).

Let \(U = U_0 \subset B \). We claim that over \(U \), the number of points of \(\mathcal{P} \) in each fiber is bounded. Consider a point \(b \in U \).

Case 1: \(\mathcal{P}_b \subset F_1 \). In this case, the number of points on \(\mathcal{P}_b \) is bounded by \(d_1 \).

Case 2: there is some \(P \in \mathcal{P}_b, P \not\subset F_1 \), but \(X_P \cap \mathcal{P}_b^2 \subset F_2 \). In this case the number of points of \(\mathcal{P} \) is bounded by \(d_2 \).

Case i: \(Q = (P_1, \ldots, P_{i-1}) \in \mathcal{P}_b^{i-1} \setminus F_{i-1} \) but \(X_Q \cap \mathcal{P}_b^i \subset F_i \). Here the number of points is bounded by \(d_i \).

Notice that in the case \(i = n \) we have by definition \(X_Q \cap \mathcal{P}_b^n \subset F_n \), and the process stops. Therefore \(N = \max_i d_i \) is the bound for the number of \(\mathcal{P} \) points in each fiber over \(U \).

Example ([CHM]): Let \(X \to B \) be a family of smooth, irreducible curves of genus > 1 over a number field \(K \). Assume that Lang’s conjecture holds true. Then in [CHM] it is shown that \(X(K) \) is \(n \)-correlated, and the lemma above, with noetherian induction, is used to obtain the existence of a uniform bound on the number of rational points on such curves.

Example: Assume that \(X_K \to B_K \) is a semistable family of curves of genus 1, together with a section \(s : B_K \to X_K \), and assume that over an open set \(B_0 \subset B_K \) the restricted family \(X_0 \to B_0 \) is smooth. Assume that the Lang-Vojta conjecture holds true. Given a semistable model \(X = X_K \setminus s(B_K) \) over \(\mathcal{O}_{K,S} \), we will later show that \(X(\mathcal{O}_{K,S}) \setminus X_0 \) is \(n \)-correlated for some integer \(n \). We will deduce the existence of a uniform bound on the number of integral points on curves in this family.

Example: Let \(S \) be a finite set of places in \(K \). Assuming that the Lang-Vojta conjecture holds true, we will show that the set of stably \(S \)-integral points on any family of elliptic curves over a number field \(K \) is \(n \)-correlated for some \(n \). We will deduce the existence of a uniform bound on the number of stably \(S \)-integral points on an elliptic curve.
2. Moduli of elliptic curves with level 3 structure

2.1. The geometry. Let E_1 be the universal family of elliptic curves over \mathbb{C} with full symplectic level 3 structure. The surface E_1 can be identified with the total space of the elliptic pencil written in bi-homogeneous coordinates as:

\[(*) \quad \lambda(X^3 + Y^3 + Z^3) - 3\mu XYZ = 0,\]

mapping to the moduli space \mathbb{P}^1 via $[\lambda : \mu]$. This equation gives a smooth model, which by abuse of notation we will also call E_1, of this space over Spec $\mathbb{Z}[1/3]$. We may choose the section Θ over the point $[X : Y : Z] = [1 : -1 : 0]$ as the origin of the elliptic surface. Over Spec $\mathbb{Z}[1/3]$, the fibers of the elliptic pencil possess level 3 structure of type $\mu_3 \times \mathbb{Z}/3\mathbb{Z}$, in a way which is described precisely by Rubin and Silverberg in [Ru-S]; however in this section we will work over \mathbb{C}.

The pencil $E_1 \to \mathbb{P}^1$ is semistable, possessing four singular fibers, having 3 nodes each, over $\Sigma_0 = \{0, 1, \zeta_3, \zeta_3^2\} \subset \mathbb{P}^1$ where ζ_3 is a primitive third root of 1.

Let L be the pullback of a line from the plane, and let S_1, \ldots, S_9 be the exceptional curves over the nine base points of the pencil fixing $S_1 = \Theta$ to be the origin of the elliptic surface. Let F be a fiber of the elliptic surface. We have the linear equivalence $-F \sim -3L + S_1 + \cdots + S_9$.

As a pencil of cubics with smooth total space, one easily calculates the relative dualizing sheaf, as follows:

We know that $\omega_{\mathbb{P}^2} = O_{\mathbb{P}^2}(-3)$. The canonical sheaf of the blown up surface is therefore $O(-3L + S_1 + \cdots + S_9)$. Therefore we have $\omega_{E_1} \simeq O(-F)$, and $\omega_{E_1/\mathbb{P}^1} \simeq O(F)$.

Let $\pi_n : E_n \to \mathbb{P}^1$ be the n-th fibered power of E_1 over \mathbb{P}^1. Denote by $\pi_{n,i} : E_n \to E_1$ the projection onto the i-th factor. We have that $\omega_{E_n/\mathbb{P}^1} \simeq O(nF)$, and therefore $\omega_{E_n} \simeq O((n - 2)F)$. We denote by $\Theta_n = \sum_{i=1}^n \pi_{n,i}\Theta$, the theta divisor. We denote by $\Sigma_n = \pi_{n,1}^{-1}\Sigma_0 \subset E_n$ the locus of singular fibers, the inverse image of $\Sigma_0 \subset \mathbb{P}^1$.

It should be noted that E_n is singular, but not too singular:

Lemma 2. There is a desingularization $f_n : \tilde{E}_n \to E_n$ such that $\omega_{\tilde{E}_n} \simeq f_n^*\omega_{E_n}(D)$, for some effective divisor D such that $f_n(D) \subset \Sigma_n$, and such that $f_n^*\Theta_n$ is a reduced divisor of normal crossings.

Proof: The existence of a desingularization with $\omega_{\tilde{E}_n} \simeq f_n^*\omega_{E_n}(D)$ follows from [CHM], lemma 3.3, or lemma 3.6 of [Viehweg]. The desingularization is given by a succession of blowups along smooth centers. Since the singular locus of E_n meets Θ_n transversally, the centers of the blowups can be taken to be transversal to Θ_n, and therefore its inverse image is a divisor of normal crossings.

This lemma shows that $E_n \setminus \Theta_n$ has log canonical singularities. This means that sections of powers of $\omega_{E_n}(\Theta_n)$ give regular sections of the logarithmic pluricanonical sheaves of \tilde{E}_n; therefore, in order to prove that E_n is of logarithmic general type, there is no need to pass to a resolution of singularities - it suffices to show that $\omega_{\tilde{E}_n}(k\Theta_n)$ has many sections.

Lemma 3.

1. The line bundle $\omega_{E_1/\mathbb{P}^1}(\Theta_1)$ is the pullback of an ample bundle along a birational morphism.

2. Fix $n > 2$. Then $E_n \setminus \Theta_n$ is of logarithmic general type. Moreover, the base locus of the logarithmic pluricanonical linear series is contained in Θ_n.

Proof: Let Y be the blowup of \mathbb{P}^2 at all the base points of our pencil except $[1, -1, 0]$. The surface Y is the same as E_1 blown down along Θ. The line bundle $\omega_{E_1/\mathbb{P}^1}(\Theta_1)$ is the pullback of $M = O(3) \otimes O(-(S_2 + \cdots + S_9))$ from Y. On Y, M is represented by the strict transform of one of the cubics of the pencil, hence it is a nef line bundle; it has self intersection number 1, therefore it is nef and big. In fact, it is easy to see by a dimension count that the complete linear system of sections of $M^\otimes 3$ gives a birational morphism of Y to a surface in projective space, which blows down only the fibral components of E_1 which do not meet S_1.

Part (2) follows by taking the products of sections pulled back along the projections: On E_3, let p_{ij}, p_k be the projections to the i-th and j-th factors, respectively k-th factor. We have the inclusion $p_{ij}^*\omega_{E_2} \otimes p_k^*\omega_{E_1/\mathbb{P}^1}(\Theta_1) \subset \omega_{E_3}(\Theta_3)$. The sections of a power of this subsheaf give a map which generically separates between points whose third factors are different. Part 1 of this lemma implies that the base locus of these sections is contained in the theta divisors. By repeating this for the other two projections, we find that sections of powers of $\omega_{E_3}(\Theta_3)$ generically separate points; in particular $E_3 \setminus \Theta_3$ is of logarithmic general type. Similarly, E_n is of logarithmic general type for $n \geq 3$.

2.2. Boundedness of integral points on elliptic curves with level 3 structure. Let K be a number field containing $\mathbb{Q}(\zeta_3)$, and let E be an elliptic curve with full symplectic level 3 structure over K. Let $R = O_K[1/3]$.
The curve E occurs as a fiber in the surface over a point in $\mathbb{P}^1(K)$, which automatically has semistable reduction over R. Let E be the semistable model. Given any three R-integral points P_i on $E \setminus 0$, the point (P_1, P_2, P_3) gives rise to an R-integral point of the scheme $E_3 \setminus \Theta_3$ (where by abuse of notation, we use the model of E_3 over R which is the fibered cube of the given model $(*)$ of E_1).

Assume that the Lang-Vojta conjecture holds for the variety $E_3 \setminus \Theta_3$. Thus the Zariski closure F of the set of integral points $(E_3 \setminus \Theta_3)(R)$ is a proper subvariety of E_3; in other words, the set $P = (E \setminus \Theta)(R)$ is 3-correlated. By lemma 1, there is a dense open set $U \subset \mathbb{P}^1$ such that the number of integral points of fibers over $U(K)$ is bounded. The complement of U is a finite number of points, therefore by Siegel's theorem there is a bound on the number of integral points on these curves as well.

Open problem: Show that the S-integral points on $E_3 \setminus \Theta_3$ are not Zariski dense.

3. Quadratic twists of an elliptic curve

As a “complementary case” to the last section we will discuss here a typical case of isotrivial families of elliptic curves. This is in direct analogy with the exposition in [CHM], §§2.2. It will give us a good hint about the type of models of elliptic curves we need in order to obtain boundedness. A slightly more general version of the example here will be used in the proof of the main theorem.

Let $E : y^2 = x^3 + Ax + B$ be a fixed elliptic curve. We denote $f(x) = x^3 + Ax + B$. We assume that A and B are relatively prime S-integers in a number field L, where S is a finite set of places. All the quadratic twists of the curve over L can be written in the form:

$$E_t : ty^2 = f(x)$$

where t may be chosen S-integral.

We may form the family of Kummer surfaces associated to E_t:

$$K_t : t^2z^2 = f(x_1)f(x_2).$$

We have a morphism of K_t to K_1 via $(x_1, x_2, z, t) \mapsto (x_1, x_2, t/z)$. It can be easily verified that the affine surface K_1 is of logarithmic general type.

Assume that the Lang-Vojta conjecture holds for K_1. It now follows from lemma 1, that there is a uniform bound on the number of integral points on E_t: the integral points on K_1 are not Zariski dense, therefore the integral points on K_t are also not Zariski dense, since they map to integral points on K_1. Lemma 1 says that there is an open set $U \subset \mathbb{A}_1$ such that there is a bound on the number of points on E_t for an S-integral t in U; for the remaining finitely many integers t we can use Siegel's theorem. The same result can be obtained using any of the higher Kummer varieties $(E \times \cdots \times E)/(\pm 1)$.

Note that the integral points on E_t are not the same as the integral points on the Néron model. Suppose that t is square free. Then a Néron integral point P is integral on E_t, away from characteristic 2 and 3, if at a prime of additive reduction P does not reduce to the component of the origin on the Néron model. In other words, even after semistable reduction (obtained by taking $y' = \sqrt{t}y$), P remains integral on the Néron model. We call such points *stably integral*.

Open problem: Show that the S-integral points on K_1 are not Zariski dense. As a first step, describe the images of nontrivial morphisms $\mathbb{A}_1 \setminus 0 \to K_1$.

4. Stably integral points

Definition 3. Let E be an elliptic curve over a number field K, let S be a finite set of places in K, and P be a K-rational point on E. We say that P is stably S-integral, written $P \in E(K, S)$ if the following holds: let L be a finite extension of K, and let T be the set of places above S, and assume that E has semistable reduction \mathcal{E} over $\mathcal{O}_{L,T}$; then $P \in (\mathcal{E} \setminus 0)(\mathcal{O}_{L,T})$. In other words, P is integral on the semistable model of $E \setminus 0$ over some finite field extension L of K, where T is the set of all places over S.

Stably integral points should be thought of as the rational points which are integral over the algebraic closure of the field. In this sense, they are a good analogue on elliptic curves, for rational points on curves of higher genus.

It is important to note that stably integral points can be described as the integral points on a certain type of model of the curve.

Definition 4. Let E be an elliptic curve over a number field K, let S be a set of places containing all places dividing 2 and 3, and let \mathcal{E} be the Néron model over $\mathcal{O}_{K,S}$. Let D_0 be the zero section of \mathcal{E}. Let S_n be the set
of places of additive reduction, and for a place \(v \) let \(\mathcal{E}_v^0 \) be the zero component. Let \(D = D_0 \cup \bigcup_{v \in S_n} \mathcal{E}_v^0 \) and let \(\mathcal{E}_0 = \mathcal{E} \setminus D \). We call \(\mathcal{E}_0 \) the Stably minimal model of \(E \).

Proposition 1. Let \(S \) be a set of places containing all places dividing 2 and 3. Then the \(S \)-integral points on the stably minimal model are precisely the stably \(S \)-integral points.

Proof: One can prove this proposition using the explicit list of possible reduction of the Néron model and their semistable reduction (Tate's algorithm). If one goes through this list, one sees that the kernel of the semistable reduction map away from characteristic 2 and 3 is precisely the additive components of the identity on the Néron model. A much more appealing proof follows directly from [Edix], section 5 (especially remark 5.4.1): assume given a field extension \(\mathcal{L} \) over \(K \) which is tamely and totally ramified at a given prime \(p \) (this can be assumed for a local field of semistable reduction of an elliptic curve once one avoids the primes dividing 2 and 3). Let \(\mathcal{E}_K, \mathcal{E}_L \) be the Néron models of \(E \) over \(K \) and \(L \) respectively. In [Edix] one obtains a description of the map induced on Néron models \(\mathcal{E}_K \times \text{Spec} \, O_L \to \mathcal{E}_L \), and one there sees that the group of components of the reduction \((\mathcal{E}_K)_p \) maps isomorphically to the group of components of the fixed locus under the Galois action of \((\mathcal{E}_L)_p \). Therefore the kernel of the map of Néron models is connected.

Remark: in order to include primes over 2 and 3 one simply needs to remove all the additive components which are in the kernel of the semistable reduction map. Since we are allowed to remove a finite number of places anyway, we can ignore this problem altogether.

5. The main theorem

Proof of the main theorem: We may assume that \(S \) contains all places above 2 and 3, and that \(K \) contains \(\zeta_3 \). Let \(X \to U \) be the family of all elliptic curves given by the equation

\[
y^2 = x^3 + ax + b,
\]

over an open set \(U \) in \(\mathbb{A}^k \), with parameters \(a, b \). Let \(B_0 \) be any irreducible closed subset in \(U \) and \(B \) a compactification of \(B_0 \). We can add level 3 structure to produce a semistable family \(X \to B_1 \), over a Galois, generically finite cover \(B_1 \) of \(B \). The Galois group of the cover is some \(G_1 \subset SL_2(\mathbb{F}_3) = G \). We have a natural map \(X_1 \to E_1 \), coming from the moduli interpretation of \(E_1 \), which is \(G_1 \)-equivariant. We have that \(X_{B_0}^n \) maps to \((X_1)^G_1)/G_1 \), which maps down to \(E_n/G \). Since the family \(E_1 \) is semistable, an \(n \)-tuple of stably integral points on an elliptic curve gives rise to an integral point on \((E_n/\Theta_\eta)/G \).

Note that if \(X_{B_0} \to B_0 \) is not isotrivial, then \(X_{B_0}^n \) dominates \(E_n/G \). Otherwise, its image is isomorphic to \((E/\Theta)/Aut \, E \) for some fixed elliptic curve \(E \), where \(Aut \, E \) acts diagonally.

The following lemmas show that \((E_n/\Theta)/G \) is of logarithmic general type for large \(n \), and that for any fixed elliptic curve \(E \), \((E/\Theta)/Aut \, E \) is of logarithmic general type. Assuming the Lang-Vojta conjecture, the integral points on the variety \((X_1)^G_1/\Theta)/G_1 \) are not Zariski dense. By lemma 1, we obtain a uniform bound on the number of stably integral points on all elliptic curves away from a closed subset \(B' \) of \(B \). By Noetherian induction, we have a bound on all elliptic curves. This gives the theorem.

Lemma 4. (Compare [CHM], lemma 4.1) Let \(X_0 \subset X \) be an open inclusion of an irreducible variety \(X_0 \) in a smooth complex projective irreducible \(X \) of dimension \(n \), such that the complement \(D = X \setminus X_0 \) is a divisor of normal crossings. Let \(G \) be a finite group acting on \(X, X_0 \), \(D \) compatibly. Let \(\omega \) be a \(G \)-equivariant logarithmic \(k \)-canonical form on \(X_0 \). If at any point \(x \) of \(X_0 \) which is fixed by some element in \(G \), the form \(\omega \) vanishes to order at least \(C = k(\vert G \vert - 1) \), then \(\omega \) descends to a regular logarithmic \(k \)-canonical form on any desingularization of \(X_0/G \).

Proof: let \(Y_0 \) be a desingularization of \(X_0/G \) and let \(Y \) be a regular compactification, mapping to \(X/G \). Let \(Z' \) be the graph of the rational map \(X \to Y \). Let \(Z \) be a \(G \)-equivariant desingularization of \(Z' \), and \(Z_0 \) the inverse image of \(X_0 \). Let \(S \) be the branch locus of \(Z \) over \(Y \). By a theorem of Hironaka, such desingularizations may be chosen such that \((Z \setminus Z_0) \cup S \) is a divisor of normal crossings. Let \(F_1 \) be the closed set in \(Y \) where the fibers in \(Z \) are positive dimensional. Let \(D_Z \) be the inverse image of \(D \) in \(Z, D_Y \) its image in \(Y \). Let \(F_2 \subset Y \) be the singular locus of \(D_Y \cup S \). Clearly \(F = F_1 \cup F_2 \) is of codimension at least 2 in \(Y \). Note that away from \(F_1 \) the branch locus \(S \) is of codimension 1, since \(Y \) is smooth. Clearly \(\omega \) descends to a logarithmic form on \(Y \setminus S \). It is enough to show that it extends over \(Y \setminus F \), since \(F \) has codimension at least 2.

Given a point \(y \in S \setminus F \) let \(z \in Z \) be a point mapping to it. We can choose formal coordinates \((z_1, z_2, \ldots, z_n)\) on \(Z \) such that \((y_1, z_2, \ldots, z_n)\) are coordinates on \(Y \), with \(y_1 = z_1^n \). Since we removed the intersections of components of \(D \cup S \), there are only two cases to consider:
Case 1: \(z \notin D_Z \). We can write \(\omega = f(z_1, \ldots, z_m)\omega_1^C(dz_1 \wedge \cdots \wedge dz_m)^k \). We have \(dy_1 = mz_1^{m-1}dz_1 \). Since \(m < |G| \), we have that \(\omega = f(z_1, \ldots, z_m)(dz_1 \wedge dz_2 \wedge \cdots \wedge dz_m)^k \), is regular, and since it is invariant it descends.

Case 2: \(z \in D_Z \) and \(z_1 = 0 \) is the equation of \(D_Z \). We can write \(\omega = f(z_1, \ldots, z_m)(dz_1 \wedge \cdots \wedge dz_m)^k/z_1^k \). Since \(mdz_1/z_1 = dy_1/y_1 \), the invariance of \(\omega \) means that \(f \) descends to \(Y \), and therefore \(\omega \) descends.

Lemma 5. (Compare [CHM], theorem 1.3)

1. There exists a positive integer \(n \) such that \((E_n \setminus \Theta)/G \) (acting diagonally) is of logarithmic general type.
2. For a fixed elliptic curve \(E \), there is \(n \) so that \((E \setminus 0)/Aut E \) (Act \(E \) acting diagonally) is of logarithmic general type.

Proof: Let \(S \subset E_1 \) be any divisor containing the locus of fixed points of elements of \(G \), and let \(F \) be a fiber. Then the fixed points in \(E_n \) are contained in \(S_{G}^{n} \), the fibered product of \(S \) with itself \(n \) times. Recall that we have shown that \(L = \omega_{E/F}(\Theta) \) is big; therefore for some large \(k \), the \(\mathbb{Q} \)-line bundle \(L(-S+2F)/k \) is big. This means that for \(n = k|G| \), on \(E_n \) there are many sections of \(\omega_{E}^{m} \), vanishing to order \(|G| \) on the fixed points in \(E_n \). As in [CHM], lemma 2.1, it follows that there are also many invariant sections vanishing to such order.

The proof of part (2) is identical.

6. The Uniform Boundedness Conjecture

It is well known that torsion points of high order on an elliptic curve are integral; we will use this to study torsion points in terms of integral points. As quoted in the introduction, a long standing conjecture which was recently proved by Merel says that the order of a torsion point on an elliptic curve over a number field is bounded in terms of the degree of the field of definition only. We now indicate how Merel’s theorem follows from the Lang - Vojta conjecture.

We start with the basic proposition which makes things work (see the case of elliptic curves in [FL-OE]):

Proposition 2. Let \(P \) be a torsion point on an abelian variety \(A \), both defined over a field \(K \) of degree \(d \). Denote by \(n \) the order of \(P \). Let \(g \) be the dimension of \(A \) and let \(C \) be the order of the group \(Sp(2g)/\mathbb{Z} \). Assume that either \(n \) is not a prime power, or \(p^k = n \), such that \(p^k - p^{k-1} > Cd \). Then \(P \) is stably integral on \(A \), that is, its reduction at any place on the Néron model after semistable reduction is not the origin.

Proof: by adding level 3 structure we have (by a theorem of Raynaud) that there is a field of degree at most \(Cd \) where \(A \) has semistable reductions over all \(p \neq 3 \). Theorem IV.6.1 in [SilvEC] says that if \(P \) is not integral, then it is not integral at a place \(p \) above some prime \(p \) where \(n = p^k \); and the valuation satisfies \(v(P) > p^k - p^{k-1} \). Here by definition, \(p = u\pi^v(p) \), where \(u \) is a unit and \(\pi \) a uniformizer of the valuation ring. But \(v(p) \) is at most the degree of the field. We can similarly deal with primes over 3 by adding level 5 structure instead.

This following corollary is probably well known: torsion on abelian varieties is bounded in terms of the degree of the field, the dimension and a prime of potentially good reduction.

Corollary 2. For any triple \((d,g,p)\) there is an (explicit) integer \(N \) such that if \(K \) is a number field of degree \(d \), \(A \) an abelian variety of dimension \(g \) over \(K \), and \(p \) is a rational prime over which there is a place \(\p \) of \(K \) where \(A \) has potentially good reduction, then \(A(K)_{\text{tors}} < N \).

Proof: Let \(L \) be a field of degree \(\leq Cd \) over which \(A \) has good reduction at some prime \(\p \) over \(p \). Let \(A(L)_{\text{tors}} \to A_{\p} \) be the reduction map. By Weil’s theorem, the image has cardinality \(\leq (1+p^{Cd/2})^{2g} \). But by the proposition, any point in the kernel is of order \(p^k \) satisfying \(p^k - p^{k-1} < Cd \), which can be bounded as well.

We would like to apply the correlation method to torsion points of high order on elliptic curves, defined over all fields of degree \(d \). By the proposition, we may use the fact that when \(p \) is large these points are stably integral.

Since we want to show that there is a bound for torsion over number fields depending only on the degree, we might as well assume that \(E \) has level 3 structure: this has the effect of increasing the degree \(d \) by a factor of 24.

In [Ka-Ma], Kamienny and Mazur show that it is enough to bound the order of prime torsion points. We will show the existence of a bound on prime order torsion points, assuming the Lang - Vojta conjecture.

Let \(P \) be a torsion point of large prime order \(p \) on an elliptic curve \(E \) which has level 3 structure, defined over some number field of degree \(d \). The point \(P \) gives a point on the surface \(E_1 \) introduced in [2] defined over the same number field, and is in fact integral on \(E_1 \setminus \Theta \). The Galois orbit of \(P \) gives a \(\mathbb{Q} \)-rational point on the \(d \)-th symmetric power of \(E_1 \). We can do a bit better: fix an integer \(n \). Given \(n \) torsion points on an elliptic curve...
curve defined over the same number field (e.g. multiples of a given torsion point) we in fact get a rational point on $Y_n = \text{Sym}^d(E_n)$. In Y_n there is a divisor Θ_{Y_n} which consists of those tuples of points such that at least one point is the origin, and the points thus obtained are in fact integral on the scheme $Y_n \setminus \Theta_{Y_n}$.

Given an auxiliary integer k, let $F_{n,k}$ be the Zariski closure in Y_n of the set of all points corresponding to Galois orbits of n-tuples of distinct torsion points of prime order larger than k defined over fields of degree exactly d.

By definition, if $l > k$ then $F_{n,l}$ is contained in $F_{n,k}$. Let F_n be the intersection of $F_{n,k}$ over all integers k. By the noetherian property of algebraic varieties, $F_n = F_{n,k}$ for some k. What we want to show is that F_n is empty. We will assume the contrary and derive a contradiction.

We have the natural symmetrization map $(E_n)^d \to Y_n$. Let G_n be the inverse image of F_n under this map.

We denote by $\tau_i^d : (E_n)^d \to (E_i)^d$ the map induced from $\tau_i : E_n \to E_i$.

The varieties $(E_n)^d$ can be viewed as compactified semiabelian schemes over the space $\mathbb{P} = (\mathbb{P}^1)^d$.

Lemma 6. Let G be a component of G_n. There exists a closed subscheme $B \subset \mathbb{P}$, and subvarieties $A_i \subset E_i^d$, $0 < i < n+1$ mapping onto B, such that the general fiber of A_i over B is a finite union of abelian subvarieties, and G is a component of the fibered product of A_i over B. The varieties A_i are not contained in any diagonal in E_i^d or in the theta divisor, nor in the locus of singular fibers.

Proof: If F is a torsion point of some prime order p defined over a number field, then any multiple of it kP, for k prime to p, is also torsion defined over the same field. Fix an integer $1 \leq i \leq n$. We look at the projection of $\tau_i : G \to E_i^{d-1}$ forgetting the i-th factor. It follows that each fiber of G_n over E_i^{d-1} is stable under multiplication by k for any integer k. We now use the trick of Neeman and Hindry (see [Neeman] or [Hindry]), which tells us that a subvariety of an abelian variety which is stable under multiplication by all integers, is a union of abelian subvarieties.

Let $G' \subset G_n$ be the image of G under τ_i. For each point $P \in E_i^{d-1}$ in G' we have that $q_i^{-1}(P) \cap F_n$ is a union of finitely many abelian subvarieties of E_i^d. Since a subvariety of a constant abelian scheme is constant (say, by looking at torsion points), these abelian subvarieties depend only on the image of P in \mathbb{P}. Therefore there is a subvariety A_i as in the lemma such that G is a component of $(\tau_i^d)^{-1} A_i \cap \tau_i^{-1} G'$. By induction we obtain the product structure.

Since the variety G was obtained from the closure of Galois orbits of points over fields of degree exactly d, none of them is fixed by any permutation, and none is in the theta divisor. Similarly, we see that they are not contained in the singular fibers of E_i^d.

We will now show that for high enough n, any candidate for a component of F is of logarithmic general type. First note that, by noetherian induction, one may assume that the base B of A_i remains constant as n grows. We will now see that if one of the A_i appears many times in the product, then the image F of G is of logarithmic general type.

Lemma 7. Let $B \subset \mathbb{P}$ be an irreducible closed subvariety. Let $A_i \subset (E_i)^d$, $1 \leq i \leq m$ and A_{m+1} be subschemes mapping to B satisfying the conclusions in the previous lemma. There is an integer k_0 such that for any $k > k_0$ and any $l_i \geq 0$ the following holds:

Let G be a component of the scheme $$(A_1)^{l_1}_B \times_B \cdots \times_B (A_m)^{l_m}_B \times_B (A_{m+1})^{l_{m+1}}_B.$$ Let F be the image of G in Y_n, where $n = l_1 + \cdots + l_n + k$. Let $F' = F \setminus \Theta_{Y_n}$. Then F' is of logarithmic general type.

Proof: Let M_i be the dimension of the fibers of A_i over B. For each choice of a subset J_i of $\{1, \ldots, d\}$ of size M_i, we have a variety $E_{J_i}B$, the pullback of $(E_i)^{d|M_i}$ to B along the projection π_{J_i} to the factors in J_i. Since A_i is not contained in the theta divisor of E_i^d, we have that A_i surjects generically finitely onto $E_{J_i}B$, whenever J_i has size M_i. We treat A_{m+1} a bit differently: using d different generically finite surjections $A_{m+1} \to E_{J_i}B$ where $J_i = \{i, \ldots, (i + M_{m+1}) \mod d\} \subset \{1, \ldots, d\}$, we can cook up a special generically finite surjection: write $k = qd + r$, then we map map $(A_{m+1})^k_B \to (E_{J_{m+1}B})^r_B \times_B (E_{qM})^d_B$.

In order to deal with the singularities, we desingularize the base: $B' \to B$. Now the pullback of the product of $E_{J_i}B$ to B' has semistable fibers, therefore has log canonical singularities as in lemma 2. Choose a canonical divisor $K_{B'}$. Choose an effective divisor $H \subset B$ such that the pull-back of H to B' is bigger than $-K_{B'}$. If G' is a desingularization of G, it admits a generically finite surjection $p : G \to V = (E_{J_1, B})^l_B \times_B \cdots \times_B (E_{J_m, B})^{l_m}_B \times_B (E_{J_{m+1}, B})^{l_{m+1}}_B \times_B (E_{qM})^d_B$.

Notice that V is the restriction to B of a variety of the form $E_{r_1} \times \cdots \times E_{r_d}$, and if k is large then each of the r_i is large as well. We can choose G so that it maps to B'. Let V' be the pullback of V to B'.

We wish to use the sections of powers of the logarithmic relative dualizing sheaf of the product variety V to construct differential forms on F. In view of lemmas 3 and 4, we need the sections to vanish sufficiently along the preimage of H, and their pullback to G should vanish along the fixed points Δ of the symmetric group action to sufficiently high order.

Since the relative dualizing sheaf $\omega_{E_i/B}(\Theta)$ is nef and big, then the sheaf $\omega_{E'/B}(\Theta)$ is nef, and the sheaf $\omega_{E_i/B}(\Theta)$ is nef and big. We have an injection $p^*(\omega_{E_i/B}(\Theta)) \rightarrow \omega_{E'/B}(m\Theta)$, since $V' \setminus \Theta$ has log canonical singularities. So since each of the r_i in the description of V can be made as large as we wish, the argument of lemma 3 shows that F is of logarithmic general type.

We can now show by induction on M that the relative dimension of G_{n+1} over G_n is at least $M + 1$, thus obtaining a contradiction. Clearly the relative dimension is at least 1. If for some n the relative dimension is precisely M, then by induction, using the embedding $G_{n+k} \subset (G_{n+1})^k$, the relative dimension of G_{n+k} over G_n is Mk, and therefore there is a component G of G_{n+k} of relative dimension Mk. From lemma 6 it follows that G is a component of a product variety of the form described in lemma 7, and therefore $F \setminus \Theta$ is of logarithmic general type. The Lang - Vojta conjecture implies that the integral points on F are not dense, contradicting the definition of F.

We arrived at a contradiction, therefore F_n must be empty, and we conclude that there is a bound for torsion points of prime order.

References

[N1] D. Abramovich: Uniformité des points rationnels des courbes algébriques sur les extensions quadratiques et cubiques, C.R. Acad. Sc. France, to appear. [http://math.bu.edu/INDIVIDUAL/abrmovic/quadf.ps]

[N2] D. Abramovich: Lang’s conjectures, conjecture H, and uniformity, preprint. [http://math.bu.edu/INDIVIDUAL/abrmovic/conjh.dvi]

[CHM] L. Caporaso, J. Harris and B. Mazur: Uniformity of rational points, Jour. A.M.S, to appear. [ftp://ftp.math.harvard.edu/pub/uniformityofrationalpoints.tex]

[Edix] B. Edixhoven, Néron models and tame ramification, Comp. Math. 81 (1992) p. 291-306.

[Fl-Oe] M. Flexor and J. Oesterlé: Sur les points de torsion des courbes elliptiques, in Séminaire sur les pinceaux de courbes elliptiques, L. Szpiro et al., Astérisque 183, 1990.

[Hindry] M. Hindry, Autour d’une conjecture de Serge Lang. Inv. Math. 94 (1988) 575-603.

[LangAMS] S. Lang, Old and new conjectures in diophantine inequalities, Bull. A.M.S. 23 (1990) 37-75.

[Ka-Ma] S. Kamienny and B. Mazur, Rational torsion of prime order on elliptic curves over number fields, to appear in Astérisque.

[Merel] L. Merel, Bornes pour la torsion des courbes elliptiques sur les corps de nombres, preprint.

[Neeman] A. Neeman, Weierstrass points in characteristic p, Inv. Math 75 (1984) 359-376.

[Ru-Si] K. Rubin and A. Silverber, Families of elliptic curves with constant mod p representations, preprint. [ftp://ftp.math.ohio-state.edu/pub/users/silver/repns.ps]

[SilvEC] J. Silverman, The arithmetic of elliptic curves. Springer, 1986.

[Viehw] E. Viehweg, Weak positivity and the additivity of the Kodaira dimension for certain fibre spaces, Adv. Stud. in Pure Math. 1 (1983), 329-353.

[Vojta] P. Vojta, A higher dimensional Mordell conjecture, in Arithmetic Geometry, G. Cornell and J. H. Silverman, eds., Springer 1986.