A MARKOV DECISION PROCESS APPROACH FOR MENTAL HEALTH

Yasin GÖÇGÜN

Altınbaş University, Engineering and Natural Sciences Faculty, Industrial Engineering Department, İstanbul, TURKEY
yasin.gocgun@altinbas.edu.tr

(Geliş/Received: 21.02.2019; Kabul/Accepted in Revised Form: 21.10.2019)

ABSTRACT: Mind has various functions such as remembering a certain event, processing information, and providing responses to information it faces. During depression, mind does not work in an efficient way because of wasteful thoughts constantly occupying it. In this paper, we study the problem of how to react during depression, focusing on two decisions: ignoring the effects of wasteful thoughts on mind, and attempting to resolve depression. We model the problem of how to react during depression as a Markov Decision Process and solve it optimally. We also test the performance of two easy-to-use decision rules under diverse scenarios: always ignoring and always attempting to resolve.

Keywords: Markov Decision Processes, mental health, optimality equations

INTRODUCTION AND LITERATURE REVIEW

Mind is always in a particular state; it receives what it reads or sees, and begins to process them. During depression, mind is continuously affected by the source of depression, which can be a tragic event such as getting divorced, death of a family member, being bullied, or the image of a perpetrator. As a result, the information mind receives includes memories of a tragic event, which decreases the efficiency of mind since it struggles with thoughts related to such an event when performing a usual activity such as reading a text or performing a daily task at workplace.

An individual facing the abovementioned situation can be thought to choose one of the following decisions: 1) ignoring the effects of wasteful thoughts (depression) on mind, 2) attempting to resolve depression. In the former case, mind is constantly occupied by wasteful thoughts while the individual is working on her task. In the latter case, the individual tries to resolve the issue by having a break from her task and focusing on a relaxing activity for a short period. Certainly, both decisions cause waste of time and decrease in attention level.

To that end, we consider the problem of how to react during depression, focusing on the abovementioned decisions. The problem has the feature that the cause of depression dynamically arrives.
at mind over time, forcing the individual to either ignore or attempt to resolve. We formulate the problem as a discrete-time finite horizon Markov Decision Process (MDP), a mathematical framework used to model systems that evolve probabilistically over time (Puterman, 1994).

In this paper, the following contributions are made:

- We introduce a depression handling problem in which an individual seeks to find optimal policy with the objective of maximizing her well-being, which we define as attention level minus the amount of time wasted.
- We formulate the problem as an MDP and solve it optimally.
- We test the performance of easy-to-use decision rules under diverse scenarios.
- We derive certain policy insights from our computational results.

There have been numerous studies on mental health (Parker et al., 2016), (Bettis et al., 2017), (Momotani and Yamamoto, 2014), (Fergusson et al., 2015), (Kessler et al., 2015). Examples of topics studied in the literature include adult mental health, long-term effects of being bullied, workplace bullying as an antecedent of mental health problems, and child and adolescent mental health. The related literature is reviewed below.

Lereya et al. (2015) studied consequences of peer bullying in childhood. Their analysis revealed that young adults' mental health is adversely affected by being bullied by peers in childhood. Outcalt et al. (2015) focused on chronic pain and comorbid mental health conditions. They analyzed baseline data to investigate whether posttraumatic stress disorder and major depression are associated with factors such as psychological status and quality of life. Sigurdson et al. (2015) studied the effects of being bullied on health problems in adulthood. Their findings revealed that there is an association between involvement in bullying in adolescence and later mental health problems.

Cuijpers et al. (2016) conducted a comprehensive meta-analysis for interpersonal psychotherapy for mental health problems. Their results indicate that interpersonal psychotherapy can be used to treat depression effectively. Einarsen and Nielsen (2015) examined whether there is a relationship between exposure to workplace bullying and mental health. They found that health and well-being of workers are threatened by workplace bullying. Bor et al. (2014) conducted a literature review to examine whether “child and adolescent mental health problems are increasing in the 21st century”. Their findings revealed that, compared with previous cohorts, internalizing symptoms appear increasingly in recent cohorts of adolescent girls. Bruffaerts et al. (2018) studied mental health problems in college freshman. They point out that there is an association between mental health problems in college freshman and lower academic functioning.

Boardman et al. (2011) addressed the question of how the stigma of depression is linked to the responses to depression. Their results revealed that stigma is associated with ideas about depressive symptoms. Buckaloo et al. (2009) performed research on the effects of exercise on prison inmates, and found that exercise is a proper strategy to tackle incarceration. Jorm et al. (2006) conducted research on the claim that dealing with depression alone is better than seeking help. They concluded that adults generally embrace the view that personal weakness causes depression.

Patten (2005) developed Markov models that represent incidence, prevalence, and recovery from depression, and used Monte Carlo simulation to constrain model parameters to the respective data. Their study reveals that incidence and episode duration influences the period prevalence of depression. Other methods to deal with depression include longitudinal cohort studies (Boardman et al., 2011), data analysis and statistical methods such as prediction (Buckaloo et al., 2009), and meta-analysis (Corrigan et al., 2014).

Examples of studies focusing on the impact of mental health problems can be summarized as follows. Corrigan et al. (2014) studied the elements of mental illness stigma and investigate public policy considerations that tackle this illness. They concluded that it is necessary to resort to policy change in overcoming the structural stigma. Motivated by the impact of working conditions of academic settings on mental health, Levecque et al. (2017) evaluated the prevalence of mental health problems in a group of PhD students in Belgium. Their analysis revealed that factors such as job demands, the
supervisor’s leadership style, and the culture of team decision making are associated with mental health problems. Reiss (2013) surveys the literature on the relationships between a variety of indicators of socioeconomic status and mental health outcomes for children. Their review emphasizes the need for early childhood interventions to improve mental health in children.

MDP has been applied to a variety of health problems. Examples of those problems include “optimal assignment of treatments to health states” (Bala and Mauskopf, 2006), control of patient admissions in hospitals (Nunes et al., 2009), assessment of pharmacoeconomics and health technology (Stahl, 2008), and disease prevention, disease screening and surveillance, and treatment decisions (Denton et al., 2011).

Unlike our work, the mental health literature does not contain any work that models a mental health problem using MDPs.

**PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION**

The problem of dealing with depression can be described as follows.

- We consider depression in the sense that persistent thoughts and memories constantly occupy mind, thereby focusing on the negative effects of depression on the way mind works.
- We consider a finite time horizon, considering the effect of depression on mind for certain number of periods. This corresponds to a period in which the individual works on a particular task. Once this period ends, the individual’s performance is evaluated.
- The imagination of a person who is the source of depression or the rememberance of a tragic event arrives at mind randomly at each time period, with probability \( P_d \). We assume that at most one arrival occurs at each time period. The probability that depression is resolved at any given period when the individual attempts to resolve it is represented by \( P_r \). We assume that depression may be resolved by having a break from work for a little while and being involved in a relaxing activity.
- If the individual ignores the effect of depression, then her attention level decreases by \( y_1 \) units and time lost increases by \( x_1 \) units. If the individual attempts and resolves depression, with certain probability \( P_r \), attention level decreases by \( y_2 \) unit and time lost increases by \( x_2 \); with probability \( 1 - P_r \), attention level decreases by \( y_3 \) units and time lost increases by \( x_3 \) units.
- If depression arises during a given period, at the beginning of the next period, the individual performs the decision of ignoring or attempting to resolve.
- There are weights for attention level and time lost, respectively. These weights represent the effect of attention level and time lost on the individual’s well-being, and are denoted by \( w_{al} \) and \( w_{tl} \) respectively.
- The objective is to handle depression with the objective of maximizing the well-being of the individual.

**Markov Decision Process Model**

Markov Decision Process (MDP) is a mathematical framework used to model systems that evolve probabilistically over time. An MDP consists of the following components: (Göçgün, 2018)

- Stage: “It consists of time periods through which the system evolves.”
- State: “States capture the key features of the system at various time-points.”
- Action: At each state, one of the feasible actions is selected.
- Probabilistic state transitions: The process switches to a new state probabilistically after an action is chosen at each state.
- Reward/cost: A reward is obtained or a cost is incurred for each state-action pair.
The objective of an MDP is “to compute an action in each state so as to maximize expected net reward (or minimize expected cost)” (Gocgun, 2018).

State Space

The state space $s \in S$ takes the following form.

$$s = (al, tl, c),$$

where $al$ is attention level, $tl$ is time lost, and $c$ is a binary variable indicating whether there is a depression to be dealt with or not.

Action Sets

The decision of the individual at the beginning of each period is to either ignore or attempt to resolve depression, if there is depression. Otherwise there is no decision to be made. $A_s$ denotes the set of available actions in state $s$. Any action in $s$ is represented by:

$$a = (d),$$

where $d$ is ignore or attempt to resolve. Note that actions are chosen deterministically.

Transition Probabilities

After a decision is made, the state changes as follows.

If there is depression and the decision of the individual is to ignore,

$$s' = \begin{cases} 
(al - y_1, tl + x_1, 0), & \text{with probability } 1 - p_d \\
(al - y_1, tl + x_1, 1) & \text{with probability } p_d
\end{cases}$$

(1)

If there is depression and the individual’s decision is to attempt to resolve depression,

$$s' = \begin{cases} 
(al - y_2, tl + x_2, 0), & \text{with probability } (1 - p_d)(1 - p_r) \\
(al - y_2, tl + x_2, 1) & \text{with probability } p_d(1 - p_r) \\
(al - y_3, tl + x_3, 0) & \text{with probability } (1 - p_d)p_r \\
(al - y_3, tl + x_3, 1) & \text{with probability } p_d(1 - p_r)
\end{cases}$$

(2)

Rewards

The immediate reward is expressed as

$$r(a) = w_{al}(al) - w_{tl}(tl),$$

(3)

and represents the well-being of the individual at current stage.

Optimality Equations

Optimality equations for finding a policy that maximizes the expected well-being of the individual is expressed as follows:

$$v_n(s) = \max_{a \in A_s} \left\{ r(a) + \sum_{s' \in S} P(s' \mid s, a) v_{n+1}(s') \right\}, n = 1, \ldots, N, \forall s \in S,$$

(4)
where \( v_n(s) \) is the value function and gives us the optimal value of the MDP for state \( s \),
\[
P(s' | s, a) \text{ is the probability that the next state is } s' \text{ given that action } a \text{ is chosen at state } s.
\]
\[
v_{N+1}(s) = al(w_{fa}) - tl(w_{ft}),
\]
where \( w_{fa} \) is the end-of-period weight for attention level, and \( w_{ft} \) is end-of-period weight for time lost.

The following calculation is performed at each stage:
\[
a * (s) \in \arg \max_{a \in A_s} \left\{ r(a) + \sum_{s' \in S} P(s' | s, a)v_{n+1}(s') \right\}, n = 1, \ldots, N - 1.
\]

At the end of the horizon (which could be a day), the individual’s performance will be evaluated; these end-of-period weights are used to determine whether attention level or time lost is more important for the individual.

The solution of the above standard recursive equations for all \( s \) and \( n = 1, \ldots, N \) provides us an optimal policy (Puterman, 1994). In particular, we solve our finite-horizon MDP by using the backward induction technique (BIT). The BIT solves the optimality equations given in equations (4) and (5) backwards in time and then obtains the optimal actions given in Equations (6). We define initial conditions through Equation (1) and calculate the value function one stage at a time (Alagoz et al., 2010).

**NUMERICAL RESULTS**

This section contains computational results obtained by employing optimal policy as well as easy-to-use decision rules. We used R, a free software environment for statistical computing, for employing these decision rules.

**Experimental Design**

We consider a depression handling problem in which the length of the finite horizon is 48 (the length of each period is 10 minutes; therefore the length of the horizon is 8 hours). Probability that depression occurs at any period (\( p_d \)) is assigned two levels: 0.9 and 0.5 (the first level corresponds to high-frequency depression situation and the second one corresponds to medium-frequency depression situation).

Probability that depression is resolved after the individual attempts to resolve has three levels: 0.25, 0.5, and 0.75 (corresponding to low, medium, and high levels). By varying the levels of \( w_{fa} \), \( w_{ft} \), \( w_{al} \), \( w_{tl} \), we created 15 scenarios, which are described in Table 1. The ratio of any of \( w_{fa} \) and \( w_{ft} \) to any of \( w_{al} \) and \( w_{tl} \) is set to at least 1/200 and at most 1/25 as end-of-period weights are expected to be reasonably higher than \( w_{al} \) and \( w_{tl} \). In order to create enough trade-offs, the ratio of \( w_{al} \) to \( w_{tl} \) is set to two levels: 1 and 2.
Table 1. Scenarios used in testing decision rules.

| Scenario | $w_{al}$ | $w_{nl}$ | $w_{fl}$ | $w_{ft}$ |
|----------|----------|----------|----------|----------|
| 1        | 1        | 1        | 50       | 100      |
| 2        | 1        | 1        | 100      | 50       |
| 3        | 1        | 1        | 50       | 200      |
| 4        | 1        | 1        | 200      | 50       |
| 5        | 1        | 1        | 100      | 200      |
| 6        | 1        | 1        | 200      | 100      |
| 7        | 2        | 1        | 50       | 50       |
| 8        | 2        | 1        | 50       | 100      |
| 9        | 2        | 1        | 100      | 50       |
| 10       | 2        | 1        | 50       | 200      |
| 11       | 2        | 1        | 200      | 50       |
| 12       | 2        | 1        | 100      | 100      |
| 13       | 2        | 1        | 100      | 200      |
| 14       | 2        | 1        | 200      | 100      |
| 15       | 2        | 1        | 200      | 200      |

Regarding the relationship between $x_i$'s and $y_i$'s, we consider the following two cases.

**Case 1:** $y_1 = y_3 = 4y_2$, $x_1 = 2x_1 = 2x_2$

**Case 2:** $y_1 = y_3 = 2y_2$, $x_1 = 2x_1 = 2x_3$

Without loss of generality, we set $y_2$ to 1 and $x_2$ to 2. Consider Case-1; if the individual ignores the effect of depression, then her attention level decreases by 4 units and time lost increases by 2 units. This is due to the fact that in this case wasteful thoughts will occupy the mind, which adversely affects attention level and cause waste of time due to decrease in the efficiency of mind. On the other hand, if the individual attempts to resolve depression, with probability $p_r$, attention level decreases by 1 unit and time lost increases by 2 units; with probability $(1 - p_r)$, attention level decreases by 4 units and time lost increases by 4 units. The reason is that when depression is resolved, attention level will decrease slightly and the amount of time lost will be moderate; if it is not resolved, attention level will decrease significantly and the amount of time lost will be high.

We generated 180 problem sets since the number of scenarios is 15, the probability that depression is resolved has three levels, the probability that depression occurs at a given period has two levels, and we have two cases regarding the values of $x_i$'s and $y_i$'s. For each problem set, we ran 1000 independent simulations for the policy retrieval process (i.e., utilizing the optimal action for each state visited). To be more specific, we first find the optimal policy for a given problem set using the BIT, which gives us the optimal action at each state. Then we simulate the system, which transitions to various states because of random arrivals of the source of depression. Since we know the optimal action for each state visited, we are able to calculate the resulting cost for each of 48 stages.

In this work, we tested the performance of the following decision rules.

**Always Ignore (IGN):** According to this rule, the individual always chooses to ignore in case of depression.

**Always Attempt to Resolve (RES):** In case of depression, this rule always chooses the option of attempting to resolve.

**Results**

Our results are presented in tables 2, 3, 4, and 5. Tables 2 and 3 correspond to Case-1, whereas tables 4 and 5 correspond to Case-2. Each row of the below tables corresponds to a different problem set.
values provided in each table are percentage differences between the optimal policy and the respective decision rule. Further, “Best str” means best strategy, and IGN and RES correspond to “always ignore” and “always attempt to resolve” decision rules.

We begin with the analysis of Table 2 for which $p_d = 0.9$. Our results reveal that, for $p_r = 0.5$ (the probability that depression is resolved after the individual attempts to resolve it), the “always attempt to resolve” decision rule performs better in 10 out of 15 problem sets. Whereas the “always ignore” decision rule performs better in 4 out of 15 problem sets. Additionally, if average percentage difference between the optimal policy and the respective decision rule is considered, the “always attempt to resolve” decision rule performs significantly better than the other rule. When $p_r$ is 0.25, the “always ignore” decision rule outperforms the other rule in 11 out of 15 problem sets, whereas the “always attempt to resolve” decision rule is the best rule in 2 out 15 problem sets. The two decision rules perform nearly the same in the remaining 2 problem sets. Further, the “always attempt to resolve” decision rule performs better in all the problem sets when $p_r$ is 0.75.

When the end-of-period weight for attention level ($w_a$) is higher than the end-of-period weight for happiness level for time lost ($w_h$), which corresponds to scenarios 2,4,6,9,11, and 14, the “always attempt to resolve” decision rule always outperforms the other rule for the $p_r = 0.5$ and $p_r = 0.75$ cases.

When depression occurs less frequently, which corresponds to $p_d = 0.5$, the only change with respect to Table 2 is in percentage differences between the optimal policy and the respective decision rule. In this case, the percentage difference values drop significantly. What is more, the “always attempt to resolve” decision rule performs as well as the optimal policy in almost all the problem sets when $p_r$ is 0.75 (see Table 3).

When the effect of the action of ignore is less severe (corresponding to Case-2), the “always ignore” decision rule generally performs better than the other decision rule for the $p_r = 0.25$ and $p_r = 0.5$ cases. On the other hand, for the $p_r = 0.75$ case, the “always attempt to resolve” decision rule generally performs better than the other rule (see tables 4 and 5).

| Scenario | Resolve prob 0.25 | Resolve prob 0.5 | Resolve prob 0.75 |
|----------|-------------------|------------------|------------------|
| IGN | RES | best str | IGN | RES | best str | IGN | RES | best str |
| 1 | 247 | 386 | IGN | 245 | 260 | IGN | 177 | 91 | RES |
| 2 | 1025 | 1095 | IGN | 2804 | 1763 | RES | 1425 | 240 | RES |
| 3 | 165 | 306 | IGN | 147 | 201 | IGN | 100 | 81 | RES |
| 4 | 396 | 362 | RES | 1366 | 677 | RES | 2047 | 151 | RES |
| 5 | 230 | 361 | IGN | 223 | 244 | IGN | 155 | 88 | RES |
| 6 | 997 | 1035 | IGN | 2513 | 1568 | RES | 1167 | 211 | RES |
| 7 | 3836 | 4533 | IGN | 864 | 536 | RES | 2496 | 233 | RES |
| 8 | 426 | 617 | IGN | 181 | 161 | RES | 191 | 44 | RES |
| 9 | 3223 | 3226 | BOTH | 13688 | 6963 | RES | 1862 | 98 | RES |
| 10 | 206 | 362 | IGN | 78 | 105 | IGN | 69 | 34 | RES |
| 11 | 1316 | 1124 | RES | 1020 | 435 | RES | 697 | 27 | RES |
| 12 | 784 | 955 | IGN | 355 | 244 | RES | 375 | 52 | RES |
| 13 | 291 | 438 | IGN | 126 | 127 | BOTH | 114 | 36 | RES |
| 14 | 97 | 97 | BOTH | 1345 | 716 | RES | 1453 | 94 | RES |
| 15 | 517 | 640 | IGN | 252 | 186 | RES | 229 | 40 | RES |
### Table 3. Case-1 results for $p_d = 0.5$

| Scenario | Resolve prob |
|----------|--------------|--------------|--------------|--------------|--------------|
|          | 0.25         | 0.5          | 0.75         |              |              |
| IGN RES  | best str     | IGN RES      | best str     | IGN RES      | best str     |
| 1        | 48 169       | 47 61        | 93 0         | RES          |              |
| 2        | 631 832      | 187 12       | 128 0        | RES          |              |
| 3        | 26 123       | 24 64        | 32 13        | RES          |              |
| 4        | 155 90       | 121 3        | 111 0        | RES          |              |
| 5        | 38 131       | 34 50        | 61 0         | RES          |              |
| 6        | 501 582      | 311 19       | 151 0        | RES          |              |
| 7        | 53 101       | 65 5         | 82 0         | RES          |              |
| 8        | 507 1566     | 2657 1747    | 254 0        | RES          |              |
| 9        | 62 62        | BOTH 78 2    | 88 0         | RES          |              |
| 10       | 40 177       | 33 73        | 65 0         | RES          |              |
| 11       | 74 36        | RES 85 2     | 91 0         | RES          |              |
| 12       | 453 899      | IGN 210 35   | RES 132 0    | RES          |              |
| 13       | 62 199       | IGN 70 72    | BOTH 142 0   | RES          |              |
| 14       | 179 180      | BOTH 127 2   | RES 112 0    | RES          |              |
| 15       | 137 278      | IGN 312 86   | RES 275 0    | RES          |              |

### Table 4. Case-2 results for $p_d = 0.9$

| Scenario | Resolve prob |
|----------|--------------|--------------|--------------|--------------|--------------|
|          | 0.25         | 0.5          | 0.75         |              |              |
| IGN RES  | best str     | IGN RES      | best str     | IGN RES      | best str     |
| 1        | 143,22 284,37 | IGN 143,22 217,63 | IGN 143,18 149,65 | IGN          |
| 2        | 286,77 423,09 | IGN 286,77 310,10 | IGN 299,32 204,61 | RES          |
| 3        | 119,42 260,90 | IGN 119,42 203,61 | IGN 117,94 143,73 | IGN          |
| 4        | 586,57 710,43 | IGN 586,57 509,69 | RES 655,17 346,03 | RES          |
| 5        | 145,62 285,95 | IGN 145,62 221,21 | IGN 145,18 154,97 | IGN          |
| 6        | 321,95 455,45 | IGN 321,95 337,27 | IGN 337,05 228,49 | RES          |
| 7        | 278,88 460,78 | IGN 272,43 326,56 | RES 208,52 148,38 | RES          |
| 8        | 181,32 342,25 | IGN 171,79 245,17 | IGN 128,93 120,79 | RES          |
| 9        | 444,25 626,86 | IGN 444,44 448,34 | IGN 339,53 197,32 | RES          |
| 10       | 135,91 287,08 | IGN 127,67 210,06 | IGN 91,92 107,97 | IGN          |
| 11       | 1024,54 1209,61 | RES 1131,13 944,68 | RES 782,64 362,86 | RES          |
| 12       | 246,62 406,32 | IGN 238,15 292,40 | IGN 181,02 140,40 | RES          |
| 13       | 165,09 315,34 | IGN 157,14 231,64 | IGN 115,28 116,79 | IGN          |
| 14       | 410,86 567,47 | IGN 409,52 413,59 | IGN 310,37 189,10 | RES          |
| 15       | 229,93 378,15 | IGN 222,62 276,95 | IGN 166,89 136,30 | RES          |
Table 5. Case-2 results for $p_d = 0.5$

| Scenario | Resolve prob | 0.25 | Resolve prob | 0.5 | Resolve prob | 0.75 |
|----------|--------------|------|--------------|-----|--------------|------|
|          | IGN          | RES  | best str     | IGN | RES          | best str |
| 1        | 22           | 121  | 22           | 75  | 22           | 27    |
| 2        | 58           | 181  | 58           | 81  | 76           | 0     |
| 3        | 18           | 108  | 18           | 72  | 17           | 33    |
| 4        | 162          | 313  | 203          | 103 | 545          | 0     |
| 5        | 22           | 112  | 22           | 71  | 21           | 28    |
| 6        | 57           | 160  | 57           | 71  | 73           | 0     |
| 7        | 89           | 368  | 89           | 175 | 116          | 0     |
| 8        | 32           | 165  | 32           | 96  | 34           | 25    |
| 9        | 228          | 664  | 215          | 226 | 1289         | 0     |
| 10       | 21           | 123  | 21           | 80  | 20           | 34    |
| 11       | 602          | 1090 | 417          | 137 | 158          | 0     |
| 12       | 48           | 186  | 48           | 97  | 55           | 7     |
| 13       | 26           | 129  | 26           | 79  | 26           | 28    |
| 14       | 94           | 251  | 91           | 96  | 146          | 0     |
| 15       | 38           | 143  | 38           | 78  | 41           | 14    |

In light of the abovementioned results, we have the following insights for the depression handling problem.

- Probability that depression is resolved is one of the determinants for the best decision rule.
- If probability that depression is resolved has moderate values, the “always attempt to resolve” decision rule generally performs better than the “always ignore” decision rule when the effect of ignoring is severe (corresponding to Case-1). Whereas the “always ignore” rule generally performs better than the other decision rule when the effect of ignoring is not severe.
- If probability that depression is resolved has small values, the individual should generally follow the “always ignore” decision rule.
- If probability that depression is resolved is considerably high, the individual should generally follow the “always attempt to resolve” decision rule.

CONCLUSIONS

We studied the problem of how to deal with depression, focusing on two decisions: ignoring the effects of wasteful thoughts on mind, and attempting to resolve depression. We modeled the problem as an MDP, solved it optimally and assessed the performance of two easy-to-use decision rules under diverse scenarios. Our computational results revealed that the best decision rule to implement depends on the probability that depression is resolved.

Our work reveals that easy-to-use decision rules provide somewhat good solutions for the depression handling problem we introduced. Future research could consider similar problems that lead to more realistic models. In particular, different types of arrivals of events that cause depression can be considered, and models in which state space is more complex can be studied. It would also be interesting to use infinite-horizon MDPs for modeling such problems. In that case, because of the computational intractability, an approximate solution rather than an optimal solution can be obtained through approximate dynamic programming techniques.
REFERENCES

Alagoz, O., Hsu, H., Schaefer, A.J., Roberts, M.S., Markov decision processes: a tool for sequential decision making under uncertainty. Medical Decision Making, 30 (4), pp. 474-483, 2010.

Bala, M.V., Mauskopf, J.A.: Optimal assignment of treatments to health states using a Markov decision model: an introduction to basic concepts. Pharmacoeconomics 24, 345–354, 2006.

Bettis, A. H., Coiro, M. J., England, J., Murphy, L. K., Zelkowitz, R. L., Dejardins, L. and Compas, B. E. Comparison of two approaches to prevention of mental health problems in college students: enhancing coping and executive function skills. Journal of American College Health, 65:313–322, 2017.

Bor, W., Dean, A.J., Najman, J. and Hayatbakhsh, R. Are child and adolescent mental health problems increasing in the 21st century? a systematic review. Austral. N.Z. J. Psychiatry, 48:606-616, 2014.

Boardman, F., Griffiths, F., Kokanovic, R., Potiriaidis, M., Dowrick, C., & Gunn, J. Resilience as a response to the stigma of depression: A mixed methods analysis. Journal of Affective Disorders, 135, 267–276, 2011.

Bruffaerts, R., Mortier, P., Kiekens, G., Auerbach, R.P., Cuijpers, P., Demyttenaere, K., Green, J.G., Nock, M.K. and Kessler R.C., Mental health problems in college freshmen: prevalence and academic functioning. J Affect Disord, 225:97–103, 2018.

Buckaloo, B. J., Krug, K. S., & Nelson, K. B. Exercise and low-security inmate: Changes in depression, stress, and anxiety. The Prison Journal, 89, 328–343, 2009.

Corrigan, P, Druss, B, Perlick, D. The impact of mental illness stigma on seeking and participating in mental health care. Psychol Sci Public Interest. 5(2):37–70, 2014.

Cuijpers, P.,Donker, T., Weissman, M.M., Ravitz, P. and Cristea, I.A., Interpersonal psychotherapy for mental health problems: a comprehensive meta-analysis. Am J Psychiatry, 173:680–687, 2016.

Denton, B.T., Alagoz, O., Holder, A. and Lee, E.K. Medical decision making: open research challenges. IIE Transactions on Healthcare Systems Engineering, 1(3), 161–167, 2011.

Einarsen, S. and Nielsen, MB. Workplace bullying as an antecedent of mental health problems: a five-year prospective and representative study. Int Arch Occup Environ Health, 88:131-142, 2015.

Fergusson, D. M., McLeod, G. F., Horwood, L.J., Swain, N. R. , and Chapple, S., Life satisfaction and mental health problems (18 to 35 years. Psychol Med,+ 45:2427-2436, 2015.

Goegun, Y., Approximate dynamic programming for optimal search with an obstacle. Selcuk Univ. J. Eng. Sci. Tech, 2018.

Jorm AF, Kelly CM, Wright A, Parslow RA, Harris MG, McGorry PD: Belief in dealing with depression alone: results from community surveys of adolescents and adults. J Affect Disord. 96: 59-65, 2006.

Kessler, R. C., N. A. Sampson, and P. Berglund. Life satisfaction and mental health problems (18 to 35 years. Epidemiol Psychiatr Sci, 24:210–226, 2015.

Lereya, S.T., Copeland, W.E. Costello, E.J. and Wolke, D., Adult mental health consequences of peer bullying and maltreatment in childhood: two cohorts in two countries. Lancet Psychiatry, 2:524–531, 2015.

Levecque, K., Anseel, F., De Beuckelaer, A., Van der Heyden, J., & Gisle, L. Work organization and mental health problems in PhD students. Research Policy, 46(4), 868–879, 2017.

Momotani, H. and Yamamoto, H., Mental health problems. Japanese Journal of Clinical Medicine, 72:288–292, 2014.

Nunes, L.G. Nadal, de Carvalho, S., Rodrigues, R. Markov decision process applied to the control of hospital elective admissions. Artif. Intell. Med., 47, 159–171., 2009.

Outcalt, S.D., Kroenke, K. and Krebs, E.E., Chronic pain and comorbid mental health conditions: independent associations of posttraumatic stress disorder and depression with pain, disability, and quality of life. J Behav Med, 38:535-543, 2015.

Parker, A.G. Hetrick, S.E. Jorm, A.F. Yung, A.R. McGorry, P.D. Mackinnon, A. Moller, B. and Purcell, R., The effectiveness of simple psychological and physical activity interventions for high
prevalence mental health problems in young people: a factorial randomised controlled trial. J. Affect. Disord., 196:200–209, 2016.

Patten, SB: Markov models of major depression for linking psychiatric epidemiology to clinical practice. Clin Pract Epidemol Ment Health. 1 (1): 2-10, 2005.

Puterman, M., Markov Decision Processes. John Wiley and Sons, New Jersey, 1994.

Reiss, F., Socioeconomic inequalities and mental health problems in children and adolescents: A systematic review, Soc Sci Med, 90, pp. 24-31, 2013.

Sigurdson, J.F., A.M. Undheim, J.L. Wallander, S. Lydersen, and A.M. Sund. The long-term effects of being bullied or a bully in adolescence on externalizing and internalizing mental health problems in adulthood. Child Adolesc Psychiatry Ment Health, 9:42, 2015.

Stahl, J.E., Modelling methods for pharmacoeconomics and health technology assessment: an overview and guide, Pharmacoeconomics, 26 (2), 131-148, 2008.