Riemann Extension of the Anti-Mach Space time

M. Abdel-Megied* 1, Nassar H. Abdel-All** 2
and E. A. Hegazy* 3

*Mathematics Department, Faculty of Science, Minia University
** Mathematics Department, Faculty of Science, Assiut University

Abstract

Riemann extension for the Anti Mach metric is derived, the solution of geodesic equations for the extended space are given and some properties for the extended space was studied and compared with the basic space.

1 Introduction

Riemann extension is defined as a product of a non-Riemannian n-space and a vector n-space A^n (also called Riemannian 2n space) [1]. It is possible by means of such extension, to relate the properties of a non-Riemannian n space with those of certain Riemannian 2n spaces [2], [3].

For n dimensional Riemannian spaces of the coordinates x^i, $i = 1 : n$ the metrics are given by:

$$n ds^2 = g_{ij} dx^i dx^j. \quad (1.1)$$

The Riemann extension of an affine connected space A^n is given by the canonical form [3]

$$2n ds^2 = -2 \Gamma^k_{ij} \Psi_k dx^i dx^j + 2 d \Psi_k dx^k, \quad (1.2)$$

where $\Psi_k, k = n + 1, ..., 2n$ are the coordinates of additional space and $\Gamma^k_{ij} = \Gamma^k_{ji}$ are the connection coefficients of the space A^n.

The geodesic equations of the metric (1.2) are given by:

$$\ddot{y}^k + \dot{\Gamma}^k_{ij} \dot{y}^i \dot{y}^j = 0, \quad (1.3)$$

where y^k are the coordinates of the extended space, $\dot{\Gamma}^k_{ij}$ are the christoffel symbols of the second kind for the metric (1.2) and dot means differentiation.
with respect to the affine parameter s.

Dryuma [4]-[6] studied solutions of the geodesic equations in the extended Riemannian space and gives some solutions of the Einstein equations for the eight dimensional Riemann extension of the classical Schwarchild four dimensional metrics, Minkowsky space time metric in rotating coordinate system, and some properties of the Gödel space metric and its Riemann extension. We study the Riemann extension of the Anti Mach metric space time and its geodesic equations in eight dimension space with its complete solutions. In §2 we introduce the Anti Mach space time and its Riemann extension. The complete solution of the geodesic equations in extended space time is given in §3. The constructions of translation surface for the Anti Mach metric in four dimension is established in §4.

2 The Riemann Extension of the Anti-Mach Space time

The line element for the Anti- Mach space time is given by [7]:

$$4ds^2 = dx^2 - 4tdxdz + 2dydz + 2t^2dz^2 + dt^2.$$ (2.1)

The non vanishing christoffel symbols of second kind for the line element (2.1) are given by:

$$\Gamma^4_{13} = 1, \quad \Gamma^2_{14} = -1, \quad \Gamma^4_{33} = -2t, \quad \Gamma^1_{34} = -1.$$ (2.2)

From equations (2.1), (2.2) and (1.2) the extended metric takes the form:

$$8ds^2 = 4Pdzdt + 4Qdxdz - 4Vdxdz + 4tVdz^2 + 2dxdP + 2dydQ + 2dzdU + 2tdV,$$

$$= \hat{g}_{ij}dy^idy^j,$$ (2.3)

where $\Psi_k = (P, Q, U, V)$ are the additional coordinates.

In the local coordinates $y^i = (x, y, z, t, P, Q, U, V)$ with this type of metric which has Ricci tensor $^8R_{ij} = 0$ as the basic space which has $^4R_{ij} = 0$.

From equation (1.3) the complete system of geodesic equations for the metric (2.3) read as:

$$\ddot{x} = 2\dot{z}i,$$ (2.4)

$$\ddot{y} = 2\dot{x}i,$$ (2.5)

$$\ddot{z} = 0$$ (2.6)
\[\ddot{t} = 2t\dot{z}^2 - 2\dot{x}\dot{z}, \quad (2.7) \]
\[\ddot{P} = 4Q\dot{z}(\dot{x} - t\dot{z}) - 2t\dot{Q} + 2\dot{z}\dot{V} \quad (2.8) \]
\[\ddot{Q} = 0 \quad (2.9) \]
\[\ddot{U} = 4P\dot{z}(\dot{x} - t\dot{z}) - 2t\dot{P} + 2(\dot{x} - 2t\dot{z})\dot{V} \quad (2.10) \]
\[\ddot{V} = 2V\dot{z}^2 - 4Q\dot{z}\dot{t} - 2\dot{z}\dot{P} - 2\dot{x}\dot{Q}, \quad (2.11) \]

where dot denotes differentiation with respect to the parameter \(s \).

The four equations (2.4) - (2.7) constitute the system of geodesics equations of the basic space and do not contain the coordinates \(\Psi \) while the other four equations (2.8)- (2.11) represent a system of second order ordinary differential equations for the coordinates \(\Psi \) and the first derivative of the coordinates \((x, y, z, t) \). Solutions of the equations (2.4)- (2.11) will be given in the next section.

3 Solutions of the Geodesics Equations

To solve the geodesic equations (2.4) - (2.11) we take an arbitrary initial point \(x^i(s)|_{s=0} = x_0^i \) and \(\Psi_k(s)|_{s=0} = \Psi_0 = (P_0, Q_0, U_0, V_0) \) with the initial directions \(\frac{dx^i}{ds}|_{s=0} = \xi_i \) and \(\frac{d\Psi_k}{ds}|_{s=0} = h_k \), with the supplementary condition for the geodesics

\[\hat{g}_{ij}\frac{dy^i}{ds}\frac{dy^j}{ds} = \epsilon, \quad (3.1) \]

where \(\epsilon = 0, 1, -1 \) according to null, timelike and spacelike geodesics respectively, that is

\[4P\dot{z}\dot{t} + 4Q\dot{x}\dot{z} + 4V\dot{x}\dot{z}^2 + 2\dot{z}\dot{P} + 2\dot{y}\dot{Q} + 2\dot{z}\dot{U} + 2t\dot{V} = \epsilon. \quad (3.2) \]

Solutions of the first four equations (2.4)- (2.7) are given by Ozsváth and Schücking [7] and read as:

For \(\xi^3 \neq 0 \)

\begin{align*}
 x &= x_0 + (2t_0\xi^3 - \xi^1)s + \frac{\xi^4}{\xi^3}(1 - \cos(\sqrt{2}\xi^3)s) + \frac{\sqrt{2}(\xi^1 - t_0\xi^3)}{\xi^3}\sin(\sqrt{2}\xi^3)s, \\
 y &= y_0 + [\xi^2 + \frac{(\xi^4)^2 + 2(\xi^1)^2}{2\xi^3} + t_0(3t_0\xi^3 - 4\xi^1)]s + \end{align*}

3
\[
\frac{\xi^4}{2(\xi^3)^2}[2(\xi^1 - 2t_0\xi^3)\cos\sqrt{2}\xi^3 s - (\xi^1 - t_0\xi^3)\cos 2\sqrt{2}\xi^3 s
\]
\]
\[
-(\xi^1 - 3t_0\xi^3)] - \frac{\sqrt{2}}{(\xi^3)^2}[(\xi^1)^2 - t_0\xi^3(3\xi^1 - 2t_0\xi^3)]\sin\sqrt{2}\xi^3 s
\]
\[
+\frac{1}{2\sqrt{2}(\xi^3)^2}[(\xi^1)^2 - \frac{(\xi^1)^2}{2} - t_0\xi^3(2\xi^1 - t_0\xi^3)]\sin 2\sqrt{2}\xi^3 s
\] (3.4)

\[
z = z_0 + \xi^3 s
\] (3.5)

\[
t = t_0(2 - \cos\sqrt{2}\xi^3 s) - \frac{\xi^1}{\xi^3}(1 - \cos\sqrt{2}\xi^3 s) + \frac{\xi^4}{\sqrt{2}\xi^3}\sin\sqrt{2}\xi^3 s,
\] (3.6)

and for \(\xi^3 = 0\)

\[
x = x_0 + \xi^1 s
y = y_0 + \xi^2 s + \xi^1\xi^4 s^2
\]
\[
z = z_0
\]
\[
t = t_0 + \xi^4 s
\] (3.7)

To solve equations (2.8)-(2.11) for the case \((\xi^3 \neq 0)\) we have from equation (2.4)

\[
\dot{x}(s) = 2\xi^3 t(s) + \xi^1 - 2\xi^3 t_0.
\] (3.8)

Solution of the equation (2.9) is:

\[
Q = h_2 s + Q_0.
\] (3.9)

Using equations (3.5), (3.8) and (3.9) in equation (2.8) we have:

\[
\dot{P} = 4Q\xi^3[(\xi^1 - \xi^3 t_0)\cos(\sqrt{2}\xi^3 s) +
\]
\[
\frac{\xi^4}{\sqrt{2}}\sin(\sqrt{2}\xi^3 s)] + 4\xi^3 h_2(\xi^1 - \xi^3 t_0) s \cos(\sqrt{2}\xi^3 s)
\]
\[
+2\sqrt{2}\xi^3 \xi^4 h_2 s \sin(\sqrt{2}\xi^3 s) - 2h_2 \dot{t} + 2\xi^3 \dot{V},
\] (3.10)

Integrating with respect to \(s\) we get:

\[
\dot{P} = 2\sqrt{2}Q_0(\xi^1 - \xi^3 t_0) \sin(\sqrt{2}\xi^3 s) - 2Q_0\xi^4 \cos(\sqrt{2}\xi^3 s) +
\]
\[
4\xi^3 h_2(\xi^1 - \xi^3 t_0)\left[\frac{s}{\sqrt{2}\xi^3} \sin(\sqrt{2}\xi^3 s) + \frac{1}{2(\xi^3)^2} \cos(\sqrt{2}\xi^3 s)\right]
\]
\[
+2\sqrt{2}\xi^3 \xi^4 h_2\left[-\frac{s}{\sqrt{2}\xi^3} \cos(\sqrt{2}\xi^3 s) + \frac{1}{2(\xi^3)^2} \sin(\sqrt{2}\xi^3 s)\right]
\]
\[-2h_2 t(s) + 2\xi^3 V + C_1, \quad \text{(3.11)}\]

where \(C_1\) is a constant of integration. Using equation (3.6) in equation (3.11) we get:

\[
\dot{P} = L_1 \sin(\sqrt{2}\xi^3)s + L_2 \cos(\sqrt{2}\xi^3)s + L_3 s \sin(\sqrt{2}\xi^3)s +
L_4 s \cos(\sqrt{2}\xi^3)s + L_5 + 2\xi^3 V + C_1, \quad \text{(3.12)}
\]

where

\[
L_1 = 2\sqrt{2}Q_0(\xi^1 - \xi^3t_0), \quad L_2 = -2Q_0\xi^4, \quad L_3 = 2\sqrt{2}h_2(\xi^1 - \xi^3t_0),
\]

\[
L_4 = -2\xi^4 h_2, \quad L_5 = \frac{2h_2\xi^1}{\xi^3} - 4h_2 t_0.
\]

From the initial conditions (at \(s \to 0\) we have \(V = V_0\) and \(\dot{P} = h_1\)) in equation (3.12) we get:

\[
L_5 + C_1 = h_1 - L_2 - 2\xi^3 V_0,
\]

then we have:

\[
\dot{P} = L_1 \sin(\sqrt{2}\xi^3)s + L_2(\cos(\sqrt{2}\xi^3)s - 1) + L_3 s \sin(\sqrt{2}\xi^3)s +
L_4 s \cos(\sqrt{2}\xi^3)s + 2\xi^3(V - V_0) + h_1, \quad \text{(3.13)}
\]

using equations (3.5), (3.6), (3.9) and (3.13) in equation (2.11) we get:

\[
\ddot{V} + 2(\xi^3)^2 V = M + M_1 \sin(\sqrt{2}\xi^3)s + M_2 \cos(\sqrt{2}\xi^3)s, \quad \text{(3.14)}
\]

where

\[
M = 2\xi^1 h_2 - 2\xi^3(h_1 + 2\xi^4 Q_0 + h_2t_0) + 4(\xi^3)^2 V_0,
M_1 = -2\sqrt{2}\xi^4 h_2, \quad M_2 = -4h_2(\xi^1 - \xi^3t_0),
\]

the solution of equation (3.14) is given by:

\[
V(s) = A_1 \sin(\sqrt{2}\xi^3)s + A_2 \cos(\sqrt{2}\xi^3)s + \frac{M}{2(\xi^3)^2}
\]

\[-\frac{M_1}{2\sqrt{2}\xi^3}s \cos(\sqrt{2}\xi^3)s + \frac{M_2}{2\sqrt{2}\xi^3}s \sin(\sqrt{2}\xi^3)s, \quad \text{(3.15)}
\]
where A_1 and A_2 are constants.
From the initial condition $s = 0$ we have:

\[V = V_0, \quad \dot{V} = h_4, \]

and from the equation (3.15) we get:

\[A_1 = \frac{h_4}{\sqrt{2} \xi^3} + \frac{M_1}{4(\xi^3)^2}, \quad A_2 = V_0 - \frac{M}{2(\xi^3)^2} \]

Hence equation (3.15) becomes:

\[V(s) = K_1 \sin(\sqrt{2} \xi^3) s + K_2 \cos(\sqrt{2} \xi^3) s + K_3 s \sin(\sqrt{2} \xi^3) s + K_4 s \cos(\sqrt{2} \xi^3) s, \quad (3.16) \]

where

\[K_1 = \frac{h_4}{\sqrt{2} \xi^3} + \frac{M_1}{4(\xi^3)^2}, \quad K_2 = V_0 - \frac{M}{2(\xi^3)^2}, \quad K_3 = \frac{M_2}{2 \sqrt{2} \xi^3}, \quad K_4 = -\frac{M_1}{2 \sqrt{2} \xi^3}. \]

Using the equation (3.16) in the equation (3.13) we get:

\[\dot{P} = H_1 \sin(\sqrt{2} \xi^3) s + H_2 \cos(\sqrt{2} \xi^3) s + H_3, \quad (3.17) \]

where

\[H_1 = \frac{1}{2 \sqrt{2} \xi^3} [-\xi^4 h_2 + 4 \xi^3 (h_4 + 2 Q_0 (\xi^1 - \xi^3 t_0))], \quad H_2 = 2 (h_1 - \frac{\xi^1 h_2}{\xi^3} + \xi^4 Q_0 + 2 h_2 t_0 - \xi^3 V_0) \]

\[H_3 = -h_1 - 2 \xi^4 Q_0 + \frac{2 \xi^1 h_2}{\xi^3} - 4 h_2 t_0 + 2 \xi^3 V_0. \]

By integration with respect to s we obtain:

\[P = -\frac{H_1}{\sqrt{2} h_3} \cos(\sqrt{2} h_3) s + \frac{H_2}{\sqrt{2} h_3} \sin(\sqrt{2} h_3) s + H_3 s + C_2, \quad (3.18) \]

where C_2 is a constant. From the initial condition at $s = 0$ we have $P = P_0$ then:

\[C_2 = P_0 + \frac{H_1}{\sqrt{2} \xi^3}. \]

Equation (3.18) read as:
\[P = P_0 + \frac{H_1}{\sqrt{2\xi^3}}(1 - \cos(\sqrt{2}\xi^3)s) + \frac{H_2}{\sqrt{2\xi^3}}\sin(\sqrt{2}\xi^3)s + H_3s. \] (3.19)

In the following we integrate the equation for the coordinate \(U \), using the equations (3.3), (3.5), (3.6), (3.8), (3.16) and (3.19) in the equation (2.10) we get:

\[\dot{U} = R_1 \sin(\sqrt{2}\xi^3)s + R_2 \cos(\sqrt{2}\xi^3)s + R_3 s \sin(\sqrt{2}\xi^3)s
+ R_4 s \cos(\sqrt{2}\xi^3)s + R_5 \sin^2(\sqrt{2}\xi^3)s + R_6 \cos^2(\sqrt{2}\xi^3)s + R_7 \sin(\sqrt{2}\xi^3)s \cos(\sqrt{2}\xi^3)s, \] (3.20)

where \(R_1, R_2, R_3, R_4, R_5, R_6, \) and \(R_7 \) are constants read as:

\[R_1 = \frac{1}{\sqrt{2\xi^3}}[8(\xi^1)^2h_2 - (\xi^4)^2h_2 + 4\xi^3\xi^4(h_4 + \xi^3(P_0 + 4Q_0t_0) + 4(\xi^3)^2t_0(3h_1 + 6h_2t_0)
- 4\xi^3V_0) + 4\xi^3\xi^3(-2h_1 - 2\xi^4Q_0 - 7h_2t_0 + 3\xi^3V_0)], \]

\[R_2 = \frac{1}{2\xi^3}[-7\xi^1\xi^4h_2 - 8(\xi^3)^3t_0(P_0 - 2Q_0t_0) + 4\xi^3(2(\xi^4)^2Q_0 + \xi^1(3h_4 + 4\xi^1Q_0) + \xi^4(h_1 + 3h_2t_0))
+ 8(\xi^3)^2(-2h_4t_0 + \xi^1(P_0 - 4Q_0t_0) - \xi^4V_0)], \]

\[R_3 = -2\sqrt{2}\xi^4(-\xi^1h_2 + \xi^3(h_1 + 2\xi^4Q_0 + 2h_2t_0) - 2(\xi^3)^2V_0), \]

\[R_4 = 4(\xi^1 - \xi^3t_0)(\xi^1h_2 - \xi^3(h_1 + 2\xi^4Q_0 + 2h_2t_0) + 2(\xi^3)^2V_0) \]

\[R_5 = \frac{1}{\xi^3}[-5\xi^1\xi^4h_2 + 8(\xi^3)^3Q_0t_0^2 + \xi^3(4(\xi^4)^2Q_0 + 4\xi^1(h_4 + 2\xi^1Q_0) + \xi^4(h_1 + 9h_2t_0))
- 4(\xi^3)^2(h_4t_0 + 4\xi^1Q_0t_0 + \xi^4V_0)], \]

\[R_6 = \frac{1}{\xi^3}[5\xi^1\xi^4h_2 - 8(\xi^3)^3Q_0t_0^2 - \xi^3(4(\xi^4)^2Q_0 + 4\xi^1(h_4 + 2\xi^1Q_0)
+ \xi^4(4h_1 + 9h_2t_0)) + 4(\xi^3)^2(h_4t_0 + 4\xi^1Q_0t_0 + \xi^4V_0)], \]

\[R_7 = \frac{\sqrt{2}}{\xi^3}[(-8\xi^1)^2h_2 + (\xi^4)^2h_2 - 4\xi^3\xi^4h_4 + 8\xi^1\xi^3(h_1 + 3h_2t_0 - \xi^3V_0) + 8(\xi^3)^2t_0(-h_1 - 2h_2t_0 + \xi^3V_0)]. \]

Integrating twice and using the initial conditions we get:

\[U(s) = U_0 + N_1 \sin(\sqrt{2}\xi^3)s + +N_2(\cos(\sqrt{2}\xi^3)s - 1) \]
\[+ N_3 s \sin(\sqrt{2} \xi^3)s + N_4 s \cos(\sqrt{2} \xi^3)s + N_5 \sin(2\sqrt{2} \xi^3)s \]
\[+ N_6 (\cos(2\sqrt{2} \xi^3)s - 1) + N_7 s, \]

where \(N_1, N_2, N_3, N_4, N_5, N_6 \) and \(N_7 \) are constants and are given by:

\[
N_1 = \frac{1}{5\sqrt{2} (\xi^3)} \left[(\xi^4) h_2 - 8(\xi^3)^3 t_0 (P_0 - 2Q_0 t_0) + 4(\xi^4)^2 Q_0 - \xi^1 (3 h_1 + 4 \xi^1 Q_0) + \xi^1 (h_2 t_0) - 8(\xi^3)^2 (-2 h_1 t_0 + \xi^1 (P_0 - 4Q_0 t_0) + \xi^4 V_0) \right],
\]

\[
N_2 = \frac{1}{4 (\xi^3)^3} \left[- \xi^1 \xi^4 h_2 + 8(\xi^3)^3 t_0 (P_0 - 2Q_0 t_0) + 4(\xi^4)^2 Q_0 - \xi^1 (3 h_1 + 4 \xi^1 Q_0) - \xi^4 Q_0 + 2h_2 t_0 - 2(\xi^3)^2 V_0 \right],
\]

\[
N_3 = \frac{1}{5\sqrt{2} (\xi^3)} \left[- \xi^1 \xi^4 h_2 + \xi^3 (h_1 + 2 \xi^4 Q_0 + 2h_2 t_0) - 2(\xi^3)^2 V_0 \right],
\]

\[
N_4 = - \frac{-2(\xi^1 - \xi^3 t_0) (\xi^1 h_2 - \xi^3 (h_1 + 2 \xi^4 Q_0 + 2h_2 t_0) + 2(\xi^3)^2 V_0)}{(\xi^3)^2},
\]

\[
N_5 = \frac{1}{8\sqrt{2} (\xi^3)} \left[8(\xi^1)^2 h_2 - (\xi^4)^2 h_2 + 4 \xi^3 \xi^4 h_4 + 8(\xi^3)^2 t_0 (h_1 + 2h_2 t_0 - \xi^3 V_0) + 8 \xi^1 \xi^3 (-h_1 - 3h_2 t_0 + \xi^3 V_0) \right],
\]

\[
N_6 = \frac{1}{8(\xi^3)^3} \left[- 5 \xi^1 \xi^4 h_2 + 8(\xi^3)^3 t_0^2 + \xi^3 (4(\xi^4)^2 Q_0 + 4 \xi^1 (h_4 + 2 \xi^1 Q_0) + \xi^4 (4 h_1 + 9 h_2 t_0)) - 4(\xi^3)^2 (h_4 t_0 + 4 \xi^1 Q_0 t_0 + \xi^4 V_0) \right],
\]

and

\[
N_7 = \frac{(\xi^4)^2 h_2}{4 (\xi^3)^2} + h_3 + 2 \xi^4 P_0 + 2h_1 t_0 + 4 \xi^4 Q_0 t_0 + 4h_2 t_0^2 + \frac{\xi^4 h_4 - 2 \xi^1 h_2 t_0}{\xi^3} - 2 \xi^3 t_0 V_0,
\]

For the second case (\(\xi^3 = 0 \)) it’s easy to find:

\[
P = P_0 + h_1 s - \xi^4 h_2 s^2
\]
\[
Q = Q_0 + h_2 s
\]
\[
U = U_0 - (\xi^4 h_1 - \xi^1 h_4) s^2 + \frac{\xi^4 h_2}{2} (|\xi^4|^2 - (\xi^4)^2) s^3 + h_3 s
\]
\[
V = V_0 + h_4 s - \xi^1 h_2 s^2.
\]

These solutions for \(\xi^3 \neq 0 \) and \(\xi^3 = 0 \) satisfy also the condition given by equation (3.2).

Because of the homogeneity of the basic manifold (also extended manifold)
without loss of generality, we consider the geodesics in eight dimension space time at the vertex (i.e \(x_0 = 0, \Psi_0 = 0 \)).

For \((\xi^3 \neq 0) \) the equations (3.9), (3.16), (3.19) and (3.21) are reduced to

\[
P = \frac{1}{4(\xi^3)^2}[-4s(\xi^3)^2h_1 + (-4\sqrt{2}\xi^1 \sin \sqrt{2}s\xi^3 + \xi^4(-1 + \cos \sqrt{2}s\xi^3))h_2 + 4\xi^3(\sqrt{2}h_1 \sin \sqrt{2}s\xi^3 + 2s\xi^1 h_2 + h_4 - h_4 \cos \sqrt{2}s\xi^3)]
\]

(3.23)

\[
Q = h_2s
\]

(3.24)

\[
U = \frac{1}{16(\xi^3)^3}[\sqrt{2}(-8\xi^1 \xi^3 h_1 + 8(\xi^1)^2 h_2 - (\xi^4)^2 h_2 + 4\xi^3 \xi^4 h_4) \sin 2\sqrt{2}s\xi^3
\]

-4\sqrt{2}(-4s(\xi^3)^2\xi^4 h_1 - (\xi^4)^2 h_2 + 4\xi^3 \xi^4 (s\xi^1 h_2 + h_4)) \sin \sqrt{2}s\xi^3
\]

+2(7\xi^1 \xi^4 h_2 + 8s(\xi^3)^3 h_3 + 8s(\xi^3)^2 \xi^4 h_1 - 4\xi^3 (12h_1 + 2s\xi^4 h_2 - 20\xi^1 h_4))

+2(-5\xi^1 \xi^4 h_2 + \xi^3 (4\xi^4 h_1 + 4\xi^3 h_4)) \cos 2\sqrt{2}s\xi^3
\]

-4(-4\xi^3 \xi^4 h_1 + 8s(\xi^1)^2 \xi^3 h_2 + \xi^4 (\xi^4 h_2 + 4\xi^3 (-2s\xi^3 h_1 + 3h_4))) \cos \sqrt{2}s\xi^3
\]

(3.25)

\[
V(s) = \frac{1}{8(\xi^3)^2}[-8\xi^3 h_1 + 8\xi^1 h_2 + 8(-\xi^1 h_2 + \xi^3 (h_1 + s\xi^4 h_2)) \cos \sqrt{2}s\xi^3
\]

+\sqrt{2}(-8s\xi^1 \xi^3 h_2 - \xi^4 h_2 + 4\xi^3 h_4) \sin \sqrt{2}s\xi^3].
\]

(3.26)

Equation (3.2) lead to:

\[
\hat{g}_{ij} \frac{dy^i}{ds} \frac{dy^j}{ds} \big|_{y^i = 0} = 2\xi^1 h_1 + 2\xi^2 h_2 + \frac{3(\xi^4)^2 h_2}{2\xi^3} + 2\xi^3 h_3 + 2\xi^4 h_4 = \epsilon. \quad (3.27)
\]

For \(\xi^3 = 0 \) the equation (3.2) take the form:

\[
\xi^1 h_1 + \xi^2 h_2 + \xi^4 h_4 = \epsilon, \quad (3.28)
\]

also the equation (3.22) reduced to

\[
P = h_1 s - \xi^4 h_2 s^2,
\]

\[
Q = h_2 s,
\]

\[
U = - (\xi^4 h_1 - \xi^1 h_4) s^2 + \frac{2}{3} h_2 [(\xi^4)^2 - (\xi^1)^2] s^3 + h_3 s,
\]

\[
V = h_4 s - \xi^1 h_2 s^2.
\]

(3.29)

The geometrical and physical properties of the geodesic equation, and the relation between the extended space and the basic space will be done in the future work.
4 Translation Surfaces

Translation surfaces in an arbitrary Riemannian space are defined by the systems of equations [8]

\[\frac{\partial^2 x^i(u, v)}{\partial u \partial v} + \Gamma^i_{jk} \frac{\partial x^j(u, v)}{\partial u} \frac{\partial x^k(u, v)}{\partial v} = 0, \tag{4.1} \]

where \(\Gamma^i_{jk}\) is the christoffel symbols of the second kind.

In the following we study the translation surfaces of the Anti-Mach space time metric given by the equation (2.1). Using equation (2.1) in equation (4.1) we get:

\[\frac{\partial^2 x}{\partial u \partial v} - \frac{\partial z}{\partial u} \frac{\partial t}{\partial v} - \frac{\partial t}{\partial u} \frac{\partial z}{\partial v} = 0 \tag{4.2} \]

\[\frac{\partial^2 y}{\partial u \partial v} - \frac{\partial x}{\partial u} \frac{\partial t}{\partial v} - \frac{\partial t}{\partial u} \frac{\partial x}{\partial v} = 0 \tag{4.3} \]

\[\frac{\partial^2 z}{\partial u \partial v} = 0 \tag{4.4} \]

\[\frac{\partial^2 t}{\partial u \partial v} + \frac{\partial x}{\partial u} \frac{\partial z}{\partial v} + \frac{\partial z}{\partial u} \frac{\partial x}{\partial v} - 2t \frac{\partial z}{\partial u} \frac{\partial z}{\partial v} = 0. \tag{4.5} \]

The solution of the equation (4.4) takes the form

\[z(u, v) = f(u) + g(v). \tag{4.6} \]

Taking the function \(t(u, v)\) as in the following

\[t(u, v) = f(u) - g(v). \tag{4.7} \]

From the two equations (4.6) and (4.7) in equation (4.2) we have the representation

\[x(u, v) = x_1(u) + x_2(v). \tag{4.8} \]

From the equation (4.8) in the equation (4.2) we get:

\[\frac{x'_1 - 2ff'}{f'} = \frac{x'_2 + 2gg'}{g'} = C_3, \tag{4.9} \]

where \(C_3\) is a constant, \(f' = \frac{df(u)}{du}\) and \(g' = \frac{dg(v)}{dv}\).

By integration we get

\[x_1 = C_3f + f^2 + C_4, \quad x_2 = -C_3g - g^2 + C_5, \tag{4.10} \]
where C_4 and C_5 are constants of integration.

From the equations (4.7), (4.8) and (4.10) in the equation (4.3) we get:

$$\frac{\partial^2 y}{\partial u \partial v} = -2(C_3 f'g' + f f'g' + gg'f').$$

(4.11)

Solution of the equation (4.11) is given by:

$$y(u, v) = -2C_3 fg - f^2 g - g^2 f + G_1(u) + G_2(v)$$

(4.12)

where $G_1(u)$ and $G_2(v)$ are two arbitrary functions. It’s obvious from equation (4.12) that y is not a sum of two functions, function depended on the coordinate u and the other depended on the coordinate v. Hence, there is not exists a translation surface in four dimensional [9], but its projection in the 3-dimensional space (x, z, t) is a translation surface in . The following theorem can be consider.

Theorem: There exists a translation surface in the orthogonal projection and the existence comprises up to two an arbitrary functions in one variable.

5 Conclusion

We have offered a Riemann extension of the Anti Mach space time and the complete solution of the geodesic equations of the extended space with a study of the translation surfaces solution for the basic space.

References

[1] Paterson E.M. and Walker A.G ”Riemann extensions” Quart. J. Math. Oxford(2),3,(1952), 19-28.

[2] Paterson E.M ”Simply harmonoc Riemann extensions” J. London Math. Soc. 27,(1952), 102-107.

[3] Afifi Z. ”Riemann extension of affine connected spaces” Quart. J. Math. Oxford(2),5, (1954), 312-320.

[4] Dryuma V 2004” on the Riemann extension of the Scharzchild metrics” gr-qc / 0404125v1.
[5] Dryuma V 2005 “On the Riemann extension of rotating Minkowsky space-time metric” gr-qc/ 0505122v1.

[6] Dryuma V 2005 ” On the Riemann Extension of the Gödel space-time metric” gr-qc 0511165v1.

[7] Ozsváth and Schücking E ” An Anti-Mach Metric”. In: Recently Development in General Relativity. Pergamon Press., (1962).

[8] Eisenhart L. P ”Riemannian geometry” Princeton, Princeton University Press (1949). 15

[9] Liu H, and Yu Y. ”Affine translation surfaces in Euclidean 3-space” Proc. Japan Acad., 89, Ser. A (2013).