A LOCAL CURVATURE ESTIMATE FOR THE RICCI-HARMONIC FLOW
ON COMPLETE RIEMANNIAN MANIFOLDS

YI LI AND MIAOSEN ZHANG

ABSTRACT. In this paper we consider the local L^p estimate of Riemannian curvature for the Ricci-harmonic flow or List’s flow introduced by List [21] on complete noncompact manifolds. As an application, under the assumption that the flow exists on a finite time interval $[0, T)$ and the Ricci curvature is uniformly bounded, we prove that the L^p norm of Riemannian curvature is bounded, and then, applying the De Giorgi-Nash-Moser iteration method, obtain the local boundedness of Riemannian curvature and consequently the flow can be continuously extended past T.

1. INTRODUCTION

The Ricci-harmonic flow is defined to be the following system:

\[
\begin{cases}
\frac{\partial}{\partial t} g(t) = -2 \text{Ric}(g(t)) + 4 du(t) \otimes du(t), \\
\frac{\partial}{\partial t} u(t) = \Delta_g u(t), \\
g(0) = g_0, \quad u(0) = u_0,
\end{cases}
\]

(1.1)

where g_0 is a fixed Riemannian metric, u_0 is a fixed smooth function, $t \in [0, T)$, $g(t)$ is a family of metrics, $u = u(t)$ is a family of smooth functions on an n-dimensional manifold M. It was first introduced in [21] and also called extended Ricci flow in [3, 13, 21, 25]. The flow equations, as the motivation for studying it, were proved to characterize the static Einstein vacuum metrics [7, 21]. Under the assumption that M is compact, List [21,22] prove the short time existence, and also proved that if the Riemann curvature is uniformly bounded for all $t \in [0, T)$, then the solution can be extended beyond T. For a more general setting, see [23,24]. In the complete noncompact case, the long time existence of manifolds with bounded scalar curvature was given by the first author [19].

Over the last decade, there are lots of works on both compact and noncompact manifolds about eigenvalues, entropies, functionals, and solitons, see, for example, [1,2,3,5,8,10,11,12,13,16,20,25,27]. In this paper, we mainly focus on the estimate of curvature. List [22] proved that, M being compact, the Ricci-harmonic flow can be extended if the Riemannian curvature is bounded, as an application to see the importance of curvature estimate. Unfortunately, counterexamples show that the Riemannian curvature (see [21]) and Ricci curvature (see [6]) could not be bounded without any restrictions. On the other hand, those curvatures are L^2.

Key words and phrases. Ricci-harmonic flow, Parabolic system, Curvature estimate.
bounded in certain cases (e.g. \(n = 4 \)) if scalar curvature is bounded (see [18]). Furthermore, the pseudo-locality theorem corresponding to the Ricci-harmonic flow was be given in [9]. However, as in the Ricci flow case, whether the scalar curvature is bounded in certain cases (e.g. \(n = 4 \)) if scalar curvature is bounded (see [18]).

In the following, we often omit \(t \) variable, for example, \(g = g(t), u = u(t), \Delta = \Delta_g(t), \) etc. The operator \(\Box := \partial_t - \Delta \) will be frequently used later. \(C \) represents positive finite constants that we don’t care about their value.

The first result of this paper is

Theorem 1.1. (also see Theorem 2.7) Let \((g(t), u(t))_{t \in [0, T]} \) be a solution to the Ricci-harmonic flow on \(M \times [0, T] \), where \(M \) is a complete \(n \)-dimensional manifold and \(T \in (0, +\infty) \). Suppose there exist constants \(\rho, K, L > 0 \) and a point \(x_0 \in M \) such that the geodesic ball \(B_{g(0)}(x_0, \rho/\sqrt{K}) \) is compactly contained on \(M \) and

\[
|\text{Ric}_g(g(t))|_{g(t)} \leq K, \quad |\nabla_g u(t)|_{g(t)} \leq L.
\]

For any \(p \geq 3 \), there exist constants \(\Gamma_1, \Gamma_2 \) depending only on \(n, p, \rho, K, L \) and \(T \), such that

\[
\int_{B_{g(0)}(x_0, \rho/2\sqrt{K})} |Rm_{g(t)}|_{g(t)}^p dv_{g(t)} \leq \Gamma_1 \int_{B_{g(0)}(x_0, \rho/\sqrt{K})} |Rm_{g(0)}|_{g(0)}^p dv_{g(0)} + \Gamma_2 \text{Vol}_{g(0)}(B_{g(0)}(x_0, \rho/\sqrt{K})).
\]

Actually the explicit expressions for \(\Gamma_1 \) and \(\Gamma_2 \) can be found in the proof of Theorem 2.7.

Under the additional condition that \(|\nabla_{g(t)}^2 u|_{g(t)} \) is bounded, Theorem 1.1 was proved in [19]. Theorem 1.1 shows that this additional condition can be removed. According to the following remark, the boundedness of \(|\nabla_{g(t)} u(t)|_{g(t)} \) can also be removed. We include the condition \(|\nabla_{g(t)} u(t)|_{g(t)} \leq L \) in Theorem 1.1 is in order to see how \(K \) and \(L \) involve in the \(L^p \) estimate of \(Rm \).

Remark 1.2. (see Theorem B.2 in [19]) Suppose that \((g(t), u(t))_{t \in [0, T]} \) is a solution to (1) on \(M \times [0, T] \), where \(M \) is a complete \(n \)-dimensional manifold. If the estimate

\[
\sup_{M \times [0, T]} |\text{Ric}_g(g(t))|_{g(t)} \leq K
\]

holds for some positive constant \(K \), then we have

\[
\sup_{M \times [0, T]} |\nabla_{g(t)} u(t)|_{g(t)}^2 \leq 2KC(n).
\]
where $C(n)$ is a positive number depends only on n.

Theorem 1.3 and Remark 1.2 imply

Theorem 1.3. Let $(g(t), u(t))_{t \in [0,T]}$ be a solution to the Ricci-harmonic flow on $M \times [0,T]$, where M is a complete n-dimensional manifold and $T \in (0, +\infty)$. Suppose there exist constants ρ, K and a point $x_0 \in M$ such that the geodesic ball $B_{g(0)}(x_0, \rho/\sqrt{K})$ is compactly contained on M and

\[(1.3) \quad |\text{Ric}(g(t))|_{g(t)} \leq K. \]

For any $p \geq 3$, there exist constants Γ_1, Γ_2 depending only on n, ρ, K, T such that

\[\int_{B_{g(0)}(x_0, \rho/2\sqrt{K})} |\text{Rm}(g(t))|_{g(t)}^p dV_{g(t)} \leq \Gamma_1 \int_{B_{g(0)}(x_0, \rho/\sqrt{K})} |\text{Rm}(g(0))|_{g(0)}^p dV_{g(0)} + \Gamma_2 \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right). \]

Finally we state our main theorem.

Theorem 1.4. (also see Theorem 3.2) Let $(g(t), u(t))_{t \in [0,T]}$ be a smooth solution to the Ricci-harmonic flow on $M \times [0,T]$ with $T \in (0, +\infty)$, where M is a complete n-dimensional manifold. If $(M, g(0))$ is complete and:

\[\text{sup}_M |\text{Rm}(g(0))|_{g(0)} < \infty, \quad \text{sup}_{M \times [0,T]} |\text{Ric}(g(t))|_{g(t)} < \infty \]

then the flow can be extended over T.

This paper is organized as follow: In Sect. 2.1, we state our main idea and prove Theorem 1.1 i.e., the L^p norm estimate of Riemannian curvature. We supply the details of the proof in Sect. 2.2. In Sect. 3, We discuss the extension of (1.1) and prove Theorem 1.4.

2. L^p ESTIMATE OF RIEMANNIAN CURVATURE

We start with the proof of Theorem 1.1. As in [13-19], we let ϕ be a (time independent) Lipschitz function with compact support in a domain $\Omega \subset M$. Throughout this section, we always assume the condition (1.2) holds.

2.1. Main idea.

Given a real number $p \geq 1$ that is determined later. We introduce the following integrals:

\[B_1 := \frac{1}{K} \int_M |\nabla \text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dV, \quad B_2 := \int_M |\nabla \text{Rm}|^2 |\text{Rm}|^{p-3} \phi^{2p} dV, \]

and also

\[A_1 := \int_M |\text{Rm}|^p \phi^{2p} dV, \quad A_2 := \int_M |\text{Rm}|^{p-1} \phi^{2p} dV, \]
\[A_3 := \int_M |\text{Rm}|^{p-1} |\nabla \phi|^2 \phi^{2p-1} dV, \quad A_4 := \int_M |\text{Rm}|^{p-1} |\nabla \phi|^2 \phi^{2p-2} dV. \]

In order to control the second derivative of u, we need another type of integrals

\[T_k := \int_M |\text{Rm}|^{k-1} |\nabla^2 u|^2 \phi^{2p} dV, \quad k = 1, 2, \ldots, p. \]

Then we have following inequalities, proved in Sect. 2.2.
Proposition 2.1. We have
\[
\frac{d}{dt} A_1 \leq B_1 + CKB_2 + CKA_4 + C(K + L^2)A_1 + CT_p.
\]

Proposition 2.2.
\[
B_1 \leq CKB_2 + C(K + L^2)A_1 + CKL^2A_2 + CKA_4 + CT_p - \frac{1}{2K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} d\nu \right).
\]

We observe that all T_k can be controlled by T_p and T_1.

Lemma 2.3. For any positive constant C and any $k = 1, 2, ..., p$,
\[
T_k \leq \frac{1}{C^{p-k}} T_p + (p-k)C^{k-1}T_1
\]

Proof. We can easily find that, for any positive constant C, the following inequality
\[(|\text{Rm}| - C)(|\text{Rm}|^{k-1} - C^{k-1}) \geq 0,
\]
holds, which implies
\[|\text{Rm}|^k - C|\text{Rm}|^{k-1} + C^k \geq C^{k-1}|\text{Rm}| \geq 0.
\]
Integrating on both sides yields
\[
T_k \leq \int_M \left(\frac{1}{C} |\text{Rm}|^k + C^{k-1} \right) |\nabla^2 u|^2 \phi^{2p} d\nu = \frac{1}{C} T_{k+1} + C^{k-1}T_1.
\]

We now use the induction method to prove this lemma. For $k = p$, $T_p \leq T_p$ satisfied. If the lemma is satisfied for some $k \leq p$, then
\[
T_{k-1} \leq \frac{1}{C} T_k + C^{k-2}T_1 \leq \frac{1}{C} \left(\frac{1}{C^{p-k}} T_p + (p-k)C^{k-1}T_1 \right) + C^{k-2}T_1 = \frac{1}{C^{p-(k-1)}} T_p + [p - (k-1)]C^{k-2}T_1.
\]
Therefore the above mentioned estimate hold.

According to Lemma 2.3, we can estimate all T_k’s in terms of T_p and T_1. However, from the definition, we see that T_p and T_1 contain the second derivative of u so that we can not use the condition (1.2) to bound them. More precisely,
\[
T_p = \int_M |\text{Rm}|^{p-1} |\nabla^2 u|^2 \phi^{2p} d\nu, \quad T_1 = \int_M |\nabla^2 u|^2 \phi^{2p} d\nu.
\]

Motivated by these two integrals, by replacing the second derivative of u by its first derivative, we set
\[
S := \int_M |\text{Rm}|^{p-1} |\nabla u|^2 \phi^{2p} d\nu, \quad \tilde{S} = \int_M |\nabla u|^2 \phi^{2p} d\nu.
\]

It is clear from the condition (1.2) that $S \leq L^2 A_2$.

Proposition 2.4. We have
\[B_2 \leq -\frac{1}{p-1} \frac{d}{dt} A_2 + CA_1 + CA_4 + CL^2 A_2 + CT_{p-1} \]

Proposition 2.5. For each \(p \geq 2 \), \(T_p \) satisfies the following estimate
\[T_p \leq \frac{d}{dt} S - \frac{C}{p-1} \frac{d}{dt} A_2 - \frac{C}{K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dV \right) + C(K + L^2) A_1 + CKL^2 A_2 + C(K + L^2) A_4 + C^{p-1} T_1 \]

Proposition 2.6. \(T_1 \) satisfies the following estimate
\[T_1 \leq -\frac{d}{dt} \tilde{S} + CL^2 \text{Vol}_{g(t)}(\Omega). \]

We will give proofs for Proposition 2.4 – Proposition 2.6 in Sect. 2.2. Now we can prove Theorem 1.1.

Theorem 2.7. Let \((g(t), u(t))_{t \in [0,T]} \) be a solution to the Ricci-harmonic flow on \(M \times [0,T] \), where \(M \) is a complete n-dimensional manifold with \(T \in (0, +\infty) \). Suppose that there exist constants \(\rho, K, L > 0 \) and a point \(x_0 \in M \) such that the geodesic ball \(B_{g(0)}(x_0, \rho/\sqrt{K}) \) is compactly contained on \(M \) and \((\text{Ric}(g(t)), \nabla u(t)) \) satisfies (1.2). For any \(p \geq 3 \), there exist constants \(\Gamma_1, \Gamma_2 \) depending only on \(n, p, \rho, K, L \) and \(T \), such that
\[\int_{B_{g(0)}(x_0, \rho/2\sqrt{K})} |\text{Rm}(g(t))|^p dV_{g(t)} \leq \Gamma_1 \int_{B_{g(0)}(x_0, \rho/\sqrt{K})} |\text{Rm}(g(0))|^p dV_{g(0)} + \Gamma_2 \text{Vol}_{g(0)} \left(B_{g(0)}(x_0, \rho/\sqrt{K}) \right). \]

Actually the explicit expressions for \(\Gamma_1 \) and \(\Gamma_2 \) can be found in the proof.

Proof. Applying Lemma 2.3 with \(C = 1 \) and \(k = p - 1 \) to Proposition 2.4 yields
\[B_2 \leq -\frac{1}{p-1} \frac{d}{dt} A_2 + CA_1 + CA_4 + CL^2 A_2 + CT_p + CT_1 \]

Plugging Proposition 2.2 the above inequality into Proposition 2.1 successively to replace \(B_1 \) and \(B_2 \): \[
\frac{d}{dt} \left[A_1 + \frac{CK}{p-1} A_2 + \frac{1}{2K} \int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dV \right]
\leq C(K + L^2) A_1 + CKL^2 A_2 + CKA_4 + CKT_p + CKT_1
\]

Then apply proposition 2.5 and Proposition 2.6 to replace \(T_p \) and \(T_1 \), we obtain
\[\frac{d}{dt} \left[A_1 + \frac{CK}{p-1} A_2 + CK\tilde{S} + CKS + C \int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dV \right]
\leq CK(K + L^2) A_1 + CK^2 L^2 A_2 + CK(K + L^2) A_4 + CKC^p L^2 \text{Vol}_{g(t)}(\Omega). \]

Choose \(\Omega := B_{g(0)}(x_0, \rho/\sqrt{K}) \) and
\[\phi := \left(\frac{\rho/\sqrt{K} - d_{g(0)}(x_0, \cdot)}{\rho/\sqrt{K}} \right)_+ \].
Define
\[
U := \int_M |\mathcal{Rm}|^p \phi^2 p^p dV_t + \frac{CK}{p-1} \int_M |\mathcal{Rm}|^{p-1} \phi^2 p^p dV_t + C \int_M |\text{Ric}|^2 |\mathcal{Rm}|^{p-1} \phi^2 p^p dV_t \\
+ CK \int_M |\mathcal{Rm}|^{p-1} |\nabla u|^2 \phi^2 p^p dV_t + KCp \int_M |\nabla u|^2 \phi^2 p^p dV_t
\]
then \(U\) satisfies the following estimate
\[
U' \leq \left[CK^2 + CKL^2 + C(p-1)KL^2\right] U + CK(K + L^2)A_4 + CKCpL^2 \text{Vol}_{g(t)}(\Omega).
\]
using
\[
e^{-2Kt} g(0) \leq g(t) \leq e^{2Kt} g(0)
\]
and
\[
|\nabla_{g(t)} \phi|_{g(t)} \leq e^{KT} |\nabla_{g(0)} \phi|_{g(0)} \leq \sqrt{\text{Vol}_K} e^{KT}/p.
\]
we can estimate \(A_4\) as follows:
\[
A_4 = \int_M |\mathcal{Rm}|^{p-1} |\nabla \phi|^2 \phi^2 p^{2p-2} dV_t \leq \int_{B_{g(0)}(x_0, \rho/\sqrt{K})} |\mathcal{Rm}|^{p-1} \phi^2 p^{2p-2} dV_t \leq A_1 + Kp^2 \phi g_{i\bar{j}} \rho^{-2p} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right)
\]
Hence
\[
U' \leq \Lambda_1 U + \left[CK(K + L^2)K^p e^{2pKt} \rho^{-2p} + CKCpL^2\right] \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right),
\]
where \(\Lambda_1 := C(p-1)KL^2 + CK(K + L^2)\) is a constant. The Bishop-Gromov volume comparison theorem shows that the inequality
\[
\text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right) \leq e^{T} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right)
\]
holds for all \(0 \leq t \leq \tau \leq T\). consequently, we arrive at
\[
U' \leq \Lambda_1 U + \Lambda_2 e^{T} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right),
\]
with \(\Lambda_2 := CK(K + L^2)K^p e^{2pKt} \rho^{-2p} + CKCpL^2\). This implies that
\[
\frac{d}{dt} \left(e^{-\Lambda_1 t} U(t)\right) \leq \Lambda_2 e^{T} \text{Vol}_{g(t)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right).
\]
Upon integration over \([0, \tau]\), it yields
\[
U(\tau) \leq e^{\Lambda_1 T} \left(U(0) + \Lambda_2 \text{Vol}_{g(\tau)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}}\right)\right)\right).
\]
Now we consider
\[
U(0) = \left(A_1 + \frac{CK}{p-1} A_2 + KCpS + CKS + C \int_M |\text{Ric}|^2 |\mathcal{Rm}|^{p-1} \phi^2 p^p dV_t\right)_{t=0}
\]
We have proved that
\[A_4 \leq A_1 + \Lambda_2^2 \rho p K T \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right). \]

According to the definition, it is clear that
\[
S = \int_M |\text{Rm}|^{p-1} |\nabla u|^2 \phi^{2p} dV \leq \int M A_2,
\]
\[
\tilde{S} = \int_M |\nabla u|^2 \phi^{2p} dV \leq C L^2 \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).
\]

Applying Young’s inequality to \(A_2 \), we get
\[
A_2 = \int_M |\text{Rm}|^{p-1} \phi^{2p} dV = \int_M \left(|\text{Rm}|^{p-1} \phi^{2p-2} \right) \phi^2 dV \\
\leq \frac{p-1}{p} \int_M |\text{Rm}|^p \phi^{2p} dV + \frac{1}{p} \int_M \phi^2 dV \\
\leq A_1 + C \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).
\]

The obvious estimate
\[
\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dV \leq K^2 A_2
\]
tells us that
\[
U(0) \leq \left(\frac{CK}{p-1} + CK^2 + CKL^2 \right) \int_M |\text{Rm}(g(0))|^p \phi^{2p} dV_{g(0)} \\
+ \left(\frac{CK}{p-1} + C + CKL^2 \right) \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right)
= \Gamma_1 e^{-\Lambda_1 T} \int_{B_{g(0)}(x_0, \rho/\sqrt{K})} |\text{Rm}(g(0))|^p \phi^{2p} dV_{g(0)} \\
+ \left(\Gamma_2 e^{-\Lambda_1 T} - \Lambda_2 \right) \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right),
\]
where
\[
\Gamma_1 := e^{\Lambda_1 T} \left(\frac{CK}{p-1} + CK^2 + CKL^2 \right), \quad \Gamma_2 := e^{\Lambda_1 T} \left(\frac{CK}{p-1} + C + CKL^2 + \Lambda_2 \right).
\]

Plug it into the differential inequality and we obtain for \(p \geq 2 \)
\[
\int_{B_{g(0)}(x_0, \rho/\sqrt{K})} |\text{Rm}(g(t))|^p dV_{g(t)} \\
\leq \Gamma_1 \int_M |\text{Rm}(g(0))|^p \phi^{2p} dV_{g(0)} + \Gamma_2 \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right) \\
\leq \Gamma_1 \int_{B_{g(0)}(x_0, \rho/2\sqrt{K})} |\text{Rm}(g(0))|^p dV_{g(0)} + \Gamma_2 \text{Vol}_{g(0)} \left(B_{g(0)} \left(x_0, \frac{\rho}{\sqrt{K}} \right) \right).
\]
We finished the proof. \(\square \)

As it will be needed in the following discussion, We also restate the Theorem \[1.1\] to emphasize the power of \(p \), which can be easily obtained from \(\Gamma_1, \Gamma_2, \Lambda_1, \Lambda_2 \):
From (2.5), (2.6) and (2.7) in [14], we have:

Proposition 2.9. We have

Combine them and we prove the proposition. □

2.2. Proof of Propositions 2.1–2.5 In this subsection we give proofs of Proposition 2.1–2.5.

Proposition 2.8. We have

\[
\frac{d}{dt} A_1 \leq B_1 + CKB_2 + CKA_4 + C(K + L^2)A_1 + CT_p
\]

Proof. Compute

\[
\frac{d}{dt} \left(\int_M |\text{Rm}|^p \phi^2 dV_i \right) = \int_M (\partial_t |\text{Rm}|^p) \phi^2 dV_i + \int_M |\text{Rm}|^p \phi^2 (-R + 2|\nabla u|^2) dV_i
\]

\[
= \frac{p}{2} \int_M |\text{Rm}|^{p-2} |\nabla^2 \text{Ric} \ast \text{Rm} + \text{Ric} \ast \text{Rm} \ast \text{Rm} + \text{Rm} \ast \nabla^2 u \ast \nabla^2 u + \text{Rm} \ast \nabla u \ast \nabla u \ast \phi^2| dV_i
\]

\[
\leq \int_M |\text{Rm}|^{p-2} (\nabla^2 \text{Ric} \ast \text{Rm}) \phi^2 dV_i + CKA_1 + CT_p + CL^2 A_1
\]

From (2.5), (2.6) and (2.7) in [14], we have:

\[
C \int_M |\text{Rm}|^{p-2} (\nabla^2 \text{Ric} \ast \text{Rm}) \phi^2 dV_i \leq B_1 + CKB_2 + CKA_4.
\]

Combine them and we prove the proposition. □

Proposition 2.9. We have

\[
B_1 \leq CKB_2 + C(K + L^2)A_1 + CKL^2 A_2 + CKA_4
\]

\[
+ C_0 T_p - \frac{1}{2K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^2 dV_i \right).
\]
Proof. From the evolution equation of $|\text{Ric}|^2$ (see \[21\]), we can deduce that

$$
|\nabla \text{Ric}|^2 = -\frac{1}{2}|\nabla|\text{Ric}|^2 + 2R_{pjqk} R^{pq} R^{k} - 4R_{pjqk} R^{ij} \nabla^p u \nabla^q u \\
+ 4\Delta u R^{ij} \nabla_i \nabla_j u - 4R^{ij} \nabla_i \nabla_k \nabla^k \nabla_j u - 4R_{ij} R_k^i \nabla^i u \nabla^j u \\
\leq -\frac{1}{2}|\text{Ric}|^2 + CK(L^2 + K)|\text{Rm}| + CK|\nabla^2 u|^2 + CK^2 L^2,
$$

in which we used the fact that $|\Delta u| \leq \sqrt{\pi}|\nabla^2 u|$. Hence we have

$$
B_1 \leq \int_M \left[\frac{1}{2K}(\Delta - \partial_t)|\text{Ric}|^2 + C(L^2 + K)|\text{Rm}| \\
+ CKL^2 + C|\nabla^2 u|^2 \right] |\text{Rm}|^{-1} \phi^2 u \, dV_t
$$

$$
= \frac{1}{2K} \int_M \left[(\Delta - \partial_t)|\text{Ric}|^2 \right] |\text{Rm}|^{-1} \phi^2 u \, dV_t \\
+ C(L^2 + K)A_1 + CKL^2 A_2 + CT_p
$$

$$
= \frac{1}{2K} \int_M (\Delta|\text{Ric}|^2) |\text{Rm}|^{-1} \phi^2 u \, dV_t + C(L^2 + K)A_1 + CKL^2 A_2 + CT_p
$$

$$
- \frac{1}{2K} \int_M \left[\partial_1(|\text{Ric}|^2|\text{Rm}|^{-1} \phi^2 u \, dV_t) \\
- |\text{Ric}|^2 (\partial_1|\text{Rm}|^{-1} \phi^2 u \, dV_t) - |\text{Ric}|^2 |\text{Rm}|^{-1} \phi^2 (-R + 2|\nabla u|^2) \, dV_t \right]
$$

$$
= -\frac{1}{2K} \left(\int_M \langle \nabla|\text{Ric}|^2, \nabla|\text{Rm}|^{-1} \phi^2 u \, dV_t + \int_M \langle \nabla|\text{Ric}|^2, \nabla \phi^2 u \rangle |\text{Rm}|^{-1} \phi^2 \, dV_t \right)
$$

$$
- \frac{1}{2K} \left(\frac{d}{dt} \int_M |\text{Ric}|^2 |\text{Rm}|^{-1} \phi^2 u \, dV_t \right) + C(L^2 + K)A_1 + CKL^2 A_2
$$

$$
+ CT_p + \frac{1}{2K} \int_M |\text{Ric}|^2 (\partial_1|\text{Rm}|^{-1} \phi^2 u \, dV_t
$$

From the proof of (2.13)-(2.15) in \[14\], we can deduce:

$$
\frac{C}{K} \int_M |\text{Ric}|^2 |\text{Rm}|^{-3} \phi^2 u (\nabla^2 \text{Ric} \ast \text{Rm}) \, dV_t \leq \frac{1}{5} B_1 + CKB_2 + CKA_4
$$

Then we can write:

$$
\frac{1}{2K} \int_M (\partial_1|\text{Rm}|^{-1} \phi^2 u \, dV_t = \frac{p - 1}{4K} \int_M |\text{Ric}|^2 (|\text{Rm}|^{-3} \partial_1|\text{Rm}|^2) \phi^2 u \, dV_t
$$

$$
= \frac{C}{K} \int_M |\text{Ric}|^2 |\text{Rm}|^{-3} \phi^2 u (\nabla^2 \text{Ric} \ast \text{Rm} + \text{Ric} \ast \text{Rm} \ast \text{Rm} +
$$

$$
\text{Rm} \ast \nabla^2 u \nabla^2 u \ast \text{Rm} \ast \text{Rm} \ast \nabla u \nabla u \, dV_t
$$

$$
\leq \frac{1}{5} B_1 + CKB_2 + CKA_1 + CKL^2 A_2 + CKA_4 + CT_p
$$
From (2.10) and (2.11) in \[14\], we have:

\[
-\frac{1}{2K} \int_M (\nabla |\text{Ric}|^2, \nabla |\text{Rm}|^{p-1}) \phi^{2p} dV_t \leq \frac{1}{10} B_1 + CK B_2
\]

\[
-\frac{1}{2K} \int_M (\nabla |\text{Ric}|^2, \nabla \phi^{2p}) |\text{Rm}|^{p-1} dV_t \leq \frac{1}{10} B_1 + CA_4
\]

Plugging them all together and we arrive at Proposition 2.2.

As already stated in notations that all \(C\) are irrelevant constants, while \(C_0\) in Proposition 2.2 is a special constant used latter.

Proposition 2.10. We have

\[
B_2 \leq -\frac{1}{p-1} \frac{d}{dt} \left(\int_M |\text{Rm}|^{p-1} \phi^{2p} dV_t \right) + CA_1 + CA_4 + CL^2 A_2 + CT_{p-1}
\]

Proof. Using the evolution inequality of \(|\text{Rm}|\) (see \[21\]), we can obtain:

\[
B_2 \leq \int_M \left[\frac{1}{2} (\Delta - \partial_t) |\text{Rm}|^2 + C |\text{Rm}|^3 + CL^2 |\text{Rm}|^2 + C |\nabla^2 u|^2 |\text{Rm}| \right] |\text{Rm}|^{p-3} \phi^{2p} dV_t
\]

\[
= \frac{1}{2} \int_M (\Delta |\text{Rm}|^2) |\text{Rm}|^{p-3} \phi^{2p} dV_t + CA_1 + CL^2 A_2
\]

\[
+ T_{p-1} - \frac{1}{2} \int_M (\partial_t |\text{Rm}|^2) |\text{Rm}|^{p-3} \phi^{2p} dV_t
\]

\[
\leq C \int_M |\nabla \text{Rm}| |\nabla \phi| |\text{Rm}|^{p-2} \phi^{2p-1} dV_t + CA_1 + CL^2 A_2
\]

\[
+ T_{p-1} - \frac{1}{2} \int_M (\partial_t |\text{Rm}|^2) |\text{Rm}|^{p-3} \phi^{2p} dV_t
\]

Following the proof of (2.18)-(2.19) in \[14\],

\[
-\frac{1}{2} \int_M (\partial_t |\text{Rm}|^2) |\text{Rm}|^{p-3} \phi^{2p} dV_t
\]

\[
= -\frac{1}{2} \int_M (\partial_t (|\text{Rm}|^2 |\text{Rm}|^{p-3} \phi^{2p} dV_t)
\]

\[
= -|\text{Rm}|^2 (\partial_t |\text{Rm}|^{p-3} \phi^{2p} dV_t - |\text{Rm}|^{p-1} \phi^{2p} \partial_t dV_t)
\]

\[
= -\frac{1}{2} \partial_t A_2 + \frac{p-3}{4} \int_M (\partial_t |\text{Rm}|^2) |\text{Rm}|^{p-3} \phi^{2p} dV_t
\]

\[
- \frac{1}{2} \int_M R |\text{Rm}|^{p-1} \phi^{2p} dV_t + \int_M |\text{Rm}|^{p-1} |\nabla u|^2 \phi^{2p} dV_t.
\]

Therefore, we can find:

\[
-\frac{1}{2} \int_M (\partial_t |\text{Rm}|^2) |\text{Rm}|^{p-3} \phi^{2p} dV_t \leq -\frac{1}{p-1} \partial_t A_2 + CA_1 + CA_4 + CL^2 A_2 + CT_{p-1}
\]

In summary we can find

\[
B_2 \leq -\frac{1}{p-1} \frac{d}{dt} \left(\int_M |\text{Rm}|^{p-1} \phi^{2p} dV_t \right) + CA_1 + CA_4 + CL^2 A_2 + CT_{p-1}
\]

and finish the proof. \(\square\)
Proposition 2.11. For any \(p \geq 2 \), \(T_p \) satisfy the following estimate

\[
T_p \leq -\frac{d}{dt} S - \frac{C}{p-1} \frac{d}{dt} A_2 - \frac{C d}{K} \frac{d}{dt} \left(\int_M |Ric|^2 |Rm|^{p-1} \phi^{2p} dV_t \right) + C(K + L^2) A_1 + CKL^2 A_2 + C(K + L^2) A_4 + C^{p-1} T_1
\]

Proof. We consider the quantity:

\[
\frac{d}{dt} \left(\int_M |Rm|^{p-1} |\nabla u|^2 \phi^{2p} dV_t \right)
\]

\[
= \int_M (\partial_t |Rm|^{p-1}) |\nabla u|^2 \phi^{2p} dV_t
\]

\[
- \int_M |Rm|^{p-1} |\nabla u|^2 (R - 2 |\nabla u|^2) \phi^{2p} dV_t
\]

\[
+ \int_M |Rm|^{p-1} (\Delta |\nabla u|^2 - 2 |\nabla^2 u|^2 - 4 |\nabla u|^4) \phi^{2p} dV_t,
\]

which infer:

\[
T_p = \int_M |Rm|^{p-1} |\nabla^2 u|^2 \phi^{2p} dV_t
\]

\[
= -\frac{1}{2} \int_M |Rm|^{p-1} |\nabla u|^2 \phi^{2p} dV_t
\]

\[
+ \frac{1}{2} \int_M (\partial_t |Rm|^{p-1}) |\nabla u|^2 \phi^{2p} dV_t
\]

\[
- \frac{1}{2} \int_M |Rm|^{p-1} |\nabla u|^2 (R - 2 |\nabla u|^2) \phi^{2p} dV_t
\]

\[
+ \int_M |Rm|^{p-1} \left(\frac{1}{2} \Delta |\nabla u|^2 - 2 |\nabla u|^4 \right) \phi^{2p} dV_t.
\]

Using

\[
(2.1) \quad \Box |\nabla u|^2 = -2 |\nabla^2 u|^2 - 4 |\nabla u|^4,
\]

from [21] we yields that \(R - 2 |\nabla u|^2 \geq -C \) and then

\[
-\frac{1}{2} \int_M |Rm|^{p-1} |\nabla u|^2 (R - 2 |\nabla u|^2) \phi^{2p} dV_t \leq CS.
\]

Therefore, we arrive at

\[
T_p \leq -\frac{1}{2} \frac{d}{dt} \int_M |Rm|^{p-1} |\nabla u|^2 \phi^{2p} dV_t
\]

\[
+ \frac{1}{2} \int_M |\nabla u|^2 (\partial_t |Rm|^{p-1}) \phi^{2p} dV_t
\]

\[
+ CS + \frac{1}{2} \int_M |Rm|^{p-1} \Delta |\nabla u|^2 \phi^{2p} dV_t.
\]
Notice that by the evolution equation of \(|Rm|^2\) (see [21])

\[
\frac{1}{2} \int_M |\nabla u|^2 (\partial_t |Rm|^p - 1) \phi^2 p dV_t
\]

\[
= \frac{1}{2} \int_M |\nabla u|^2 (\nabla^2 \text{Ric} \ast \text{Rm} + \text{Ric} \ast \text{Rm} \ast \text{Rm} + \nabla^2 u \ast \nabla^2 u

+ \text{Rm} \ast \text{Rm} \ast \nabla u \ast \nabla u) |\text{Rm}|^{p-3} \phi^2 p dV_t
\]

\[
\leq C \int_M |\nabla u|^2 \ast \nabla^2 \text{Ric} \ast |\text{Rm}|^{p-2} \phi^2 p dV_t

+ CL^2 A_1 + CL^2 T_{p-1} + CL^2 S
\]

\[
= -C \int_M \langle \nabla |\nabla u|^2, \nabla \text{Ric} \rangle |\text{Rm}|^{p-2} \phi^2 p dV_t

- CL^2 \int_M \langle \nabla |\text{Rm}|^2, \nabla \text{Ric} \rangle |\text{Rm}|^{p-4} \phi^2 p dV_t

- CL^2 \int_M \langle \nabla \phi, \nabla \text{Ric} \rangle |\text{Rm}|^{p-2} \phi^2 p dV_t

+ CL^2 A_1 + CL^2 T_{p-1} + CL^2 S
\]

\[
\leq C \int_M |\nabla^2 u||\nabla u||\nabla \text{Ric}||\text{Rm}|^{p-2} \phi^2 p

+ CL^2 \int_M |\nabla \text{Rm}||\nabla \text{Ric}||\text{Rm}|^{p-3} \phi^2 p dV_t

+ CL^2 \int_M |\nabla \phi||\nabla \text{Rm}||\text{Rm}|^{p-2} \phi^2 p dV_t

+ CL^2 A_1 + CL^2 T_{p-1} + CL^2 S
\]

\[
\leq CT_{p-2} + \frac{1}{8C_0} B_1 + CL^2 B_2 + CA_4 + CL^2 A_1 + CL^2 T_{p-1} + CL^2 S
\]

Applying integrating by parts, the last term becomes

\[
\int_M |\text{Rm}|^{p-1} \Delta |\nabla u|^2 \phi^2 p dV_t
\]

\[
= -\int_M \langle \nabla |\nabla u|^2, \nabla |\text{Rm}|^{p-1} \phi + 2p |\text{Rm}|^{p-1} \nabla \phi \rangle \phi^{2p-1} dV_t
\]

\[
\leq 2C \int_M |\nabla^2 u||\nabla u||\nabla \text{Rm}||\text{Rm}|^{p-2} \phi^2 p dV_t

+ 2C \int_M |\nabla^2 u||\nabla u||\nabla \phi||\text{Rm}|^{p-1} \phi^{2p-1} dV_t
\]

\[
\leq \frac{1}{8} T_p + 8CL^2 B_2 + \frac{1}{8} T_p + 8CL^2 A_4
\]

Plugging them into the inequality of \(T_p\), we obtain

\[
T_p \leq -\frac{1}{2} \partial_t S + CT_{p-2} + \frac{1}{8C_0} B_1 + CL^2 A_1

+ CL^2 T_{p-1} + CL^2 S \frac{1}{8} T_p + CL^2 B_2 + CL^2 A_4
\]
Replacing B_1 by using Proposition 2.9 yields

\[
T_p \leq -\frac{1}{2} \partial_t S - \frac{p}{p-1} \partial_t A_2 - \frac{1}{16C_0K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dv \right) + \frac{3}{8} T_p + 2(8C)^2 T_1 + \frac{\partial}{\partial t} \left[C(K + L^2) A_1 \right] + C K L^2 A_2
\]

Using the relationship between T_k (see Lemma 2.3), we can write inequalities:

\[
CT_{p-2} \leq C \left[\frac{1}{8C} T_p + 2 \frac{\partial}{\partial t} A_1 \right] \leq \frac{1}{8} T_p + 2(8C)^2 T_1
\]

to replace CT_{p-2} and we will get:

\[
T_p \leq -\frac{1}{2} \partial_t S + \left(\frac{3}{8} - \frac{1}{16C_0K} \right) \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dv \right) + 2(8C)^2 T_1 + C(K + L^2) A_1 + C K L^2 A_2
\]

Replacing B_2 by using Proposition 2.4 we obtain

\[
T_p \leq -\frac{1}{2} \partial_t S - \frac{p}{p-1} \partial_t A_2 - \frac{1}{16C_0K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dv \right) + \frac{3}{8} T_p + 2(8C)^2 T_1 + C(K + L^2) A_1 + C K L^2 A_2
\]

Again we can write

\[
CL^2 T_{p-1} \leq CL^2 \left[\frac{1}{8CL^2} T_p + (8CL^2)^{p-2} T_1 \right] = \frac{1}{8} T_p + (8CL^2)^p T_1
\]

Plugging it into the inequality and we finally have

\[
T_p \leq -\frac{1}{2} \partial_t S - \frac{p}{p-1} \partial_t A_2 - \frac{1}{16C_0K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dv \right) + \frac{1}{2} T_p + C(K + L^2) A_1 + C K L^2 A_2 + C^{p-1} T_1 + CL^2 S + C(K + L^2) A_4
\]

which infer:

\[
T_p \leq -\partial_t S + CL^2 \left[\frac{C}{K} \frac{d}{dt} \left(\int_M |\text{Ric}|^2 |\text{Rm}|^{p-1} \phi^{2p} dv \right) \right] + C(K + L^2) A_1 + C K L^2 A_2 + C^{p-1} T_1 + CL^2 S + C(K + L^2) A_4
\]

Then we finish the proof. \(\square\)

Proposition 2.12. T_1 satisfy the following estimate

\[
T_1 \leq -\partial_t S + CL^2 \text{Vol}_{\partial(t)}(\Omega)
\]
Proof. Consider the quantity:

\[\partial_t S = \partial_t \int_M |\nabla u|^2 \phi^2 \, dV \]

\[= \int_M (\Delta |\nabla u|^2 - 2 |\nabla^2 u|^2 - 4 |\nabla u|^4) \phi^2 \, dV + \int_M |\nabla u|^2 \phi^2 (-R + 2 |\nabla u|^2) \, dV \]

\[\leq -2T_1 + \int_M |\nabla u|^2 \phi^2 \, dV + C L^2 \int_M \phi^2 \, dV \]

\[\leq -2T_1 + 2C \int_M |\nabla u|^2 |\nabla u||\nabla \phi| \phi^{2p} \, dV + CL^2 \text{Vol}_{g(t)}(\Omega) \]

\[\leq -T_1 + C \int_M |\nabla u|^2 |\nabla \phi| \phi^{2p-2} \, dV + CL^2 \text{Vol}_{g(t)}(\Omega) \]

\[\leq -T_1 + CL^2 \text{Vol}_{g(t)}(\Omega) \]

\[\square \]

3. The Extension of the Ricci-Harmonic Flow

As [22] has proved, the flow can be extended over \(T \) if the Riemannian curvature is bounded at each point. First we prove

Lemma 3.1. There exist constants \(C \) such that the following estimate

\[\Box |Rm| \leq C |Rm|^2 + C |\nabla^2 u|^2 + C \]

holds.

Proof. Using the evolution equation of \(|Rm|^2 \) (see Chapter 2.7 in [21]), we obtain:

\[\Box |Rm|^2 = 2 |Rm| (\partial_t |Rm|) - 2 |Rm| (\Delta |Rm|) - 2 |\nabla |Rm| |^2 \]

\[= 2 |Rm| (\Box |Rm|) - 2 |\nabla |Rm| |^2 \]

\[\leq -2 |\nabla Rm|^2 + C |Rm|^3 + C |Rm||\nabla^2 u|^2 + C |\nabla u|^2 |Rm|^2 \]

From \(|\nabla Rm| \geq |\nabla |Rm|| \) and assumption (2), we can get

\[\Box |Rm| \leq C |Rm|^2 + C |\nabla^2 u|^2 + CL^2 |Rm| \]

\[\leq C |Rm|^2 + C |\nabla^2 u|^2 + CL^2 (|Rm|^2 + 1) \]

\[= C |Rm|^2 + C |\nabla^2 u|^2 + C \]

which gives the desired estimate. \(\square \)

Now we prove Theorem [1.4]

Theorem 3.2. Let \((g(t), u(t))\) be a smooth solution to the Ricci-harmonic flow on \(M \times [0, T) \) with \(T < \infty \), where \(M \) is a complete \(n \)-dimensional manifold. If \((M, g(0))\) is complete and:

\[\sup_M |Rm(g(0))|_{g(0)} < \infty, \quad \sup_{M \times [0, T)} |Ric(g(t))|_{g(t)} < \infty, \]

then \(|Rm| \) is locally bounded and \(g(t) \) extends smoothly to a complete solution on \([0, T + \epsilon)\) for some constants \(\epsilon > 0 \).
Proof. According to Remark 1.2 we can denote
\[K := \sup_{M \times [0, T)} |\text{Ric}|(x, t) < \infty, \quad L := \sup_{M \times [0, T)} |\nabla u|(x, t) < \infty. \]
According to Lemma 3.1 we can pick a constant \(C_m \geq 2 \) that is sufficiently large so that
\[\square |\text{Rm}| \leq C_m(|\text{Rm}|^2 + 2|\nabla^2 u|^2 + 1) \]
Plugging it with evolution equation (2.1) we can find
\[
(\partial_t - \Delta)(|\text{Rm}| + C_m|\nabla u|^2 + 1) = (\partial_t - \Delta)(|\text{Rm}| + C_m|\nabla^2 u|^2)
\]
\[
= C_m(|\text{Rm}|^2 - 4|\nabla u|^4 + 1)
\]
\[
\leq C_m(|\text{Rm}|^2 + C_m^2|\nabla u|^4 + 1)
\]
\[
\leq C_m(|\text{Rm}| + C_m|\nabla u|^2 + 1)^2
\]
On the other hand,
\[
\int_{\Omega} (|\text{Rm}| + C_m|\nabla u|^2 + 1)^p dV_{g(t)} \leq 3^{p-1} \int_{\Omega} (|\text{Rm}|^p + C_m^p|\nabla u|^{2p} + 1) dV_{g(t)}
\]
\[
\leq 3^{p-1} \int_{\Omega} |\text{Rm}|^p dV_{g(t)} + 3^{p-1}(C_m^pL^{2p} + 1) \text{Vol}_{g(t)}(\Omega)
\]
Define
\[\Phi := |\text{Rm}| + C_m|\nabla u|^2 + 1 \]
and then the above propositions gives
\[
\left(\int_{\Omega} \Phi^p dV_{g(t)} \right)^{\frac{1}{p}} \leq \left(3^{p-1} \int_{\Omega} |\text{Rm}|^p dV_{g(t)} + 3^{p-1}(C_m^pL^{2p} + 1) \right)^{\frac{1}{p}}
\]
\[
\leq 3 \left(\int_{\Omega} |\text{Rm}|^p dV_{g(t)} \right)^{\frac{1}{p}} + 3C_mL^2 + 3
\]
\[
\leq 3 \left[C e^{\Lambda \rho^{-1} (\Lambda + K \rho^{-2p})} \right]^{\frac{1}{p}} + 3C_mL^2 + 3
\]
\[
\leq C(1 + \Lambda) + 3K\rho^{-2} + 3C_mL^2 + 3
\]
\[
:= C_n,
\]
which is a constant independent of \(p \). We also have
\[
(\partial_t - \Delta)\Phi \leq C_m\Phi^2.
\]
The progress to give uniform bound from \(L^p \) estimate is an essentially routine applying De Giorgi-Nash-Moser iteration presented in Lemma 19.1 of [15]. We write \(f = u = \Phi \) and the above inequality shows that
\[
\partial_t u \leq \Delta u + Cf u
\]
weakly on \(M \times [0, T] \). It is equivalent to say that for fixed \(a \geq 1 \)
\[
(3.1) \quad -\int_M q^2 u^{2a-1} \Delta u dV_{g(t)} + \frac{1}{2a} \int_M q^2 \partial_t (u^{2a}) dV_{g(t)} \leq C \int_M q^2 u^{2a} f dV_{g(t)}
\]
for any $t \in [0, T]$ and non-negative Lipschitz function φ whose support is compactly contained in $B_{g(0)}(x_0, \rho/2\sqrt{K})$. Integrate by part and notice that $a \geq 1$, we obtain

$$\int_M \varphi^2 u^{2a-1} \Delta u dV_{g(t)}$$

$$= 2 \int_M \varphi u^{2a-1} (\nabla u, \nabla \varphi) dV_{g(t)} + (2a - 1) \int_M \varphi^2 u^{2a-2} |\nabla u|^2 dV_{g(t)}$$

$$\geq \frac{1}{a} \int_M 2a \varphi u^{2a-1} (\nabla u, \nabla \varphi) dV_{g(t)} + \frac{1}{a} \int_M a^2 \varphi^2 u^{2a-2} |\nabla u|^2 dV_{g(t)}$$

$$= \frac{1}{a} \int_M |\nabla (\varphi u^a)|^2 dV_{g(t)} - \frac{1}{a} \int_M |\nabla \varphi|^2 u^{2a} dV_{g(t)}$$

For Ricci-Harmonic flow, we have $\partial_t dV_{g(t)} = (-R + 2|\nabla u|^2) dV_{g(t)}$, and furthermore

$$|R - 2|\nabla u|^2| \leq |R| + 2|\nabla u|^2 \leq C \left(|Rm| + C_m |\nabla u|^2 + 1\right) = C\Phi = Cf,$$

we then arrive at

$$\int_M \varphi^2 \partial_t (u^{2a}) dV_{g(t)} = \frac{d}{dt} \left(\int_M \varphi^2 u^{2a} dV_{g(t)} \right) - \int_M \varphi^2 u^{2a} (R - 2|\nabla u|^2) dV_{g(t)}$$

$$\geq \frac{d}{dt} \left(\int_M \varphi^2 u^{2a} dV_{g(t)} \right) - C \int_M \varphi^2 u^{2a} f dV_{g(t)}.$$

Plugging the above two inequalities into (3.1) implies

$$\int_M |\nabla (\varphi u^a)|^2 dV_{g(t)} + \frac{1}{2} \frac{d}{dt} \left(\int_M \varphi^2 u^{2a} dV_{g(t)} \right)$$

$$\leq Ca \int_M \varphi^2 u^{2a} f dV_{g(t)} + \int_M |\nabla \varphi|^2 u^{2a} dV_{g(t)}.$$

Following (3.6)-(3.11) of [14] for the rest of the steps with $B = B_{g(0)}(x_0, \rho/2\sqrt{K})$, we obtain the following inequality

$$\sup_{B_{\hat{g}(0)}(0, \frac{\rho}{2\sqrt{K}}) \times [\frac{T}{4}, T]} u \leq Ce^{C(T + \frac{1}{\sqrt{K}})} \left(A^a + \left(\frac{\rho}{\sqrt{K}} \right)^{-2} + T^{-1} \right)^{-\frac{2\mu - 1}{p(\mu - 1) - p}} A,$$

where $\alpha = \frac{\mu(\mu - 1)}{p(\mu - 1) - p}$ and $\mu = \mu(n) \leq \frac{n}{n-2}$ is given by the Sobolev inequality (see [14]). A is the average L^p estimate of f, i.e.

$$A := \sup_{t \in [0, T]} \left(\int_B f^p(t) dV_0 \right)^{\frac{1}{p}}.$$

Apply the following result back to Φ and we get the local uniform bound for Φ near T:

$$\sup_{B_{g(0)}(0, \frac{\rho}{2\sqrt{K}}) \times [\frac{T}{4}, T]} \Phi \leq Ce^{C(T + \frac{1}{\sqrt{K}})} \left(1 + C_n^\mu \left(\frac{K}{\rho^\alpha} + T^{-1} \right)^{\beta'} \right),$$
where constants α', β' only depend on n and other constants may depend on $n, K, L, \rho, \Lambda, C_m$ but not p. Finally, since:

$$\lim_{t \to T} |R_m| \leq \lim_{t \to T} \Phi < \infty$$

satisfied and by the Theorem 6.22 of [21], we immediately yield that the the Ricci-Harmonic flow can be smoothly extended past T. □

REFERENCES

[1] Abolarinwa, Abimbola; Adebimpe, Olukayode; Bakare Emmanuel A., Monotonicity formulas for the first eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow, Journals of inequalities and applications, 10(2019), 1-16.

[2] Abolarinwa, Abimbola; Oladejo, Nathaniel K.; Salawu, Sulyman O., On the Entropy Formulas and Solutions for the Ricci-Harmonic Flow, Bulletin of the Iranian Mathematical Society, 45(2019), 1177-1192.

[3] Azami, Shahroud, Some results of evolution of the first eigenvalue of weighted p-laplacian along the extended Ricci flow, Commun. Korean Math. Soc., 35(2020), no. 3, 953-966.

[4] Chow, B., Lu, Peng; Ni, Lei, Hamilton’s Ricci flow, Gradient Studies in Mathematics, 77, American Mathematical Society, New York, 2006.

[5] Cao, Xiaodong; Guo Hongxin; Tran Hung, Harnack estimates for conjugate heat kernel on evolving manifolds, Math. Z., 281(2015), 201-214.

[6] Chen, Liang; Zhu, Anqiang, On the extension of the harmonic Ricci flow, Geom. Dedicata, 164(2013), 179-185.

[7] Ehlers, J.; Kundt, W., Exact solutions of the gravitational field equations, Gravitation: An introduction to current research, pages 49–101. John Wiley & Sons, Inc., New York, London, 1962.

[8] Fang, Shouwen; Zheng, Tao, An upper bound of the heat kernel along the harmonic-Ricci flow, Manu. Math., 151(2016), 1-18.

[9] Guo, Bin; Huang, Zhijie; Phong, Duong H., Pseudo-locality for a coupled Ricci flow, Comm. Anal. Geom., 26(2018), no. 3, 585-626.

[10] Guo, Hongxin; Philipowski, Robert; Anton Thalmaier, Entropy and lowest eigenvalue on evolving manifolds, Pacific J. Math., 264(2013), no. 1, 61-81.

[11] Guo, Hongxin; Philipowski, Robert; Anton Thalmaier, A stochastic approach to the harmonic map heat flow on manifolds with time-dependent Riemannian metric, Stochastic Process, 124(2014), no. 11, 3535-3552.

[12] Guo, Hongxin; Philipowski, Robert; Anton Thalmaier, An entropy formula for the heat equation on manifolds with time-dependent metric, application to ancient solutions, Potential Anal., 42(2015), no. 2, 483-497.

[13] Huang, Guangyue; Li Zhi, Monotonicity Formulas of Eigenvalues and Energy Functionals Along the Rescaled List’s Extended Ricci Flow, Mediterr. J. Math. 15(2018), Article number 63.

[14] Kotschwar, Brett; Munteanu, Ovidiu; Wang, Jiaping, A local curvature estimate for the Ricci flow, J. Funct. Anal., 271(2016), no. 9, 2604-2630.

[15] Li, Peter, Geometric Analysis, Cambridge Studies in Advanced Mathematics, vol. 134, Cambridge University Press, Cambridge, 2012.

[16] Li, Yi, Eigenvalues and entropies under the harmonic-Ricci flow, Pacific J. Math., 267(2014), no. 1, 141-184.

[17] Li, Yi, Long time existence of Ricci-harmonic flow, Front. Math. China, 11(2016), no. 5, 1313-1334.

[18] Li, Yi, Long time existence and bounded scalar curvature in the Ricci-harmonic flow, J. Differ. Equ., 265(2018), no. 1, 69-97.

[19] Li, Yi, Local curvature estimates for the Ricci-harmonic flow, arXiv:1810.09760

[20] Liu, Xiangao; Wang, Kui, A Gaussian upper bound of the conjugate heat equation along Ricci-harmonic flow, Pacific J. Math., 287(2017), no. 2, 465-484.

[21] List, B., Evolution of an extended Ricci flow system, PhD thesis, AEI Potsdam, 2005.

[22] List, B., Evolution of an extended Ricci flow system, Commun. Anal. Geom., 16(2008), no. 5, 1007-1048.

[23] Müller, R., The Ricci flow coupled with harmonic map flow, PhD thesis, ETH Zürich, 2012.

[24] Müller, R., Ricci flow coupled with harmonic map flow, Ann. Sci. Ec. Norm. Super., 45(2012), no. 4.

[25] Wu, Guoqiang; Zheng, Yu, Sharp logarithmic sobolev inequalities along an extended Ricci flow and applications, Pacific J. Math., 298(2019), no. 2, 464-509.
[26] Wu, Guoqiang; Zheng, Yu, *On the extension of Ricci harmonic flow*, Results Math, 75(2020), Article number 55.

[27] Yang, Fei; Shen, JingFang, *Volume growth for gradient shrinking solitons of Ricci-harmonic flow*, Science China Mathematics, 55(2012), no. 6, 1221-1228.

School of Mathematics and Shing-Tung Yau Center, Southeast University, Nanjing 211189, China
Email address: yilicms@gmail.com; yilicms@seu.edu.cn

Chien-Shiung Wu College of SEU, Southeast University, Nanjing 211189, China
Email address: zhmise@163.com