DOMINATION ON CACTUS CHAINS OF PENTAGONS

Miroslava Mihajlov Carević
Faculty for Business, Economics and Entrepreneurship, Belgrade, Republic of Serbia,
e-mail: mm.carevic@vspep.edu.rs,
ORCID iD: https://orcid.org/0000-0001-6458-2044

DOI: 10.5937/vojtehg70-36576; https://doi.org/10.5937/vojtehg70-36576

FIELD: Materials and chemical technologies, Mathematics
ARTICLE TYPE: Original scientific paper

Abstract

Introduction/purpose: A graph as a mathematical object occupies a special place in science. Graph theory is increasingly used in many spheres of business and scientific fields. This paper analyzes pentagonal cactus chains, a special type of graphs composed of pentagonal cycles in which two adjacent cycles have only one node in common. The aim of the research is to determine the dominant set and the dominance number on ortho and meta pentagonal cactus chains.

Methods: When the corresponding destinations are treated as graph nodes and the connections between them as branches in the graph, the complete structure of the graph is obtained, to which the laws of graph theory are applied. The vertices of the pentagon are treated as nodes of the graph and the sides as branches in the graph. By applying mathematical methods, the dominance was determined on one pentagon, then on two pentagons with a common node, and then on ortho and meta pentagonal cactus chains.

Results: The research has shown that the dominance number on the ortho chain \(O_h\) of the length \(h \geq 2\) is equal to the value of the expression \(\left\lceil \frac{3h}{2} \right\rceil\) while on the meta chain \(M_h\) it is equal to the value of the expression \(h+1\), which was proven in this paper.

Conclusion: The results show that the dominant sets and the dominance numbers on ortho and meta pentagonal cactus chains are determined and explicitly expressed by mathematical expressions. They also point to the possibility of their application in the fields of science as well as in the spheres of business in which these structures appear.

Keywords: graph, pentagonal cactus-chain, dominant set, dominance number.
Introduction

Mathematical apparatus and mathematical methods are used in almost all fields of science, both natural (Ghergu & Radulescu, 2011; Veličković et al, 2020) and social (Vladimirovich & Vasilyevich-Chernyaev, 2021). A graph as a mathematical object occupies a special place in science (Bakhshesh, 2022; Hajian & Rad, 2021; Hernández Mira et al, 2021). It is used in medicine, genetics, chemistry, etc. All structural formulas of covalently bound compounds are graphs. Chemical elements are represented by graphs where atoms are vertices and chemical bonds are lines in the graph (Balaban, 1985). A graphical representation of chemical structures provides a visual insight into molecular bonds and chemical properties of molecules. The QSPR study has shown that many of chemical properties of molecules are closely related to theoretical graphical invariants called molecular descriptors (Mihalić & Trinajstić, 1992). The theoretical graphical invariant is also the dominance number, which is the simplest variant of the k-dominance number that is used many times in mathematics (Zmazek & Žerovnik, 2003).

A graph is usually denoted by G, a set of its vertices (nodes) by $V(G)$ and a set of its branches (lines) by $E(G)$.

A set D that is a subset of the set $V(G)$ is called a k-dominant set in the graph G if for each vertex outside the set D there is at least one vertex in the set D such that the distance between them is less than or equal to k. The number of elements of the smallest k-dominant set is called the k-dominance number and is denoted by $γ_k$. If $k = 1$, the 1-dominance number is called the dominance number and is denoted by $γ$ and the 1-dominant set is called the dominant set.

A cactus graph is a connected graph in which no line (branch) is in more than one cycle. The study of cactus graphs began in the middle of the 20th century. In his work (Husimi, 1950) Husimi uses these graphs in studies of cluster integrals. Riddell (Riddell, 1951) uses them in the theory of condensation. They were later used in the theory of electrical and communication networks (Zmazek & Žerovnik, 2005) as well as in chemistry (Sharma et al, 1997; Gupta et al, 2001; Gupta et al, 2002).

It is known that many chemical compounds have a pentagonal shape in their configuration. Among them are cycloalkanes, which are very common compounds in the nature. The five-membered and six-membered cycloalkanes, cyclopentane (Figure 1) and cyclohexane, which contain 5 and 6 ring carbon atoms, respectively, are very stable and their structures appear in many biological molecules.
Their ring structures are also included in the composition of steroids. A large number of steroids are synthesized in laboratories and used in the treatment of cancer, arthritis, various allergies and other diseases (Balaban & Zeljković, 2021). Pentagonal forms in combination with hexagonal forms are present in many compounds, among which are heterocyclic compounds: morphine, benzofuran, dibenzothiophene and others.

In this paper, we analyze the k-dominance of pentagonal cactus chains. Hexagonal cactus chains were investigated in papers (Farrell, 1987; Vukićević & Klobučar, 2007). Afterwards, the papers (Majstorovic et al, 2012; Klobučar & Klobučar, 2019) determined the dominance number on a uniform hexagonal cactus chain, the dominance number on an arbitrary hexagonal network, and the total and double total dominance number on a hexagonal network. The K-dominance on rhomboidal cactus chains (Carević et al, 2020) as well as on the icosahedral-hexagonal network (Carević, 2021) was also investigated.

Pentagonal cactus-chains

The pentagonal cactus-chain G is a graph consisting of a cycle with 5 vertices. A vertex that is common to two or three pentagons is called a cut-vertex. If each pentagon in the graph G has at most 2 cut-vertices and each cut-vertex is divided between exactly 2 pentagons, the graph G is called a pentagonal cactus-chain.

With G_h we will denote a pentagonal cactus-chain of the length h and $G_h = P^1 P^2 \ldots P^h$ where P^i are successive pentagons in the chain (Figure 2).
Denote by x and y the vertices in the graph G and by $d(x, y)$ the distance between them, where the distance between two vertices is equal to the number of branches located from one vertex to another. Denote by p_i the minimum distance between the pentagons P_i and P_{i+2}:

$$p_i = \min \{d(x, y) : x \in P_i \land y \in P_{i+2}, i = 1, 2, \ldots, h-2\}$$

Then p_i is the distance between the pentagons P_i and P_{i+2}.

With the exception of the first and last pentagons in the cactus chain, which have one cut-vertex, all other pentagons have two cut-vertices, and they are called inner pentagons.

In the pentagonal cactus chain G_h, we distinguish between ortho and meta inner pentagons. An inner pentagon is called an ortho pentagon if its cut-vertices are adjacent, and a meta pentagon if the distance between its cut-vertices is $d = 2$.

A pentagonal cactus chain is uniform if all its inner pentagons are of the same type. A chain G_h is called an ortho-chain, and is denoted by O_h if all its inner pentagons are ortho-pentagons (Figure 3).
Analogously, a chain G_h is called a meta-chain, and is denoted by M_h if all its inner pentagons are meta-pentagons (Figure 4).

Figure 4 – Meta cactus-chain M_5
Рис. 4 – Мета кактус-цепочка M_5
Слика 4 – Мета кактус-ланац M_5

To determine the dominant set on the uniform pentagonal cactus chains O_h and M_h, it will be necessary to point out certain vertices in the cactus chain. That is why it is necessary to mark them. In the ortho pentagon P_i the cut-vertices are adjacent and we will denote them by V_i and V_{i+1}. The other vertices in P_i it will be denoted by x_{1i}, x_{2i} and x_{3i} (Figure 5):

Figure 5 – Marking vertices in the ortho pentagon
Рис. 5 – Обозначение вершин в ортогональном пятиугольнике
Слика 5 – Означавање чворова у орто петоуглу

In the meta pentagon P_i the cut-vertices are at a distance $d = 2$ and we will denote them by V_{2i-1} and V_{2i+1}. With V_{2i} we will denote the vertex to which it applies $d(V_{2i-1}, V_{2i}) = d(V_{2i}, V_{2i+1}) = 1$. The other two nodes in the pentagon P_i will be denoted x_{1i} and x_{2i} (Figure 6):
Research results

In this section, we consider 1-dominance on ortho and meta pentagonal cactus chains. We will first consider the dominance of one pentagon and two adjacent pentagons in the ortho and meta chain of cacti.

Lemma 3.1. The dominance number for the pentagon is $\gamma = 2$.

Proof: Let us denote the vertices of the pentagon by x_1, x_2, x_3, x_4, x_5 (Figure 7):

One pentagon vertex dominates two adjacent vertices. Let us take the vertex x_1. It dominates the vertices x_2 and x_5. As the pentagon has 5 vertices, domination over the other two vertices x_3 and x_4 is necessary. We conclude that one of the remaining two vertices must belong to the dominant set on the pentagon. Let it be the vertex x_3. Thus, the set $D = \{x_1, x_3\}$ is the dominant set for a given pentagon but it is not the only
dominant set whose cardinality is equal to 2. They are also sets that contain any two non-adjacent pentagon vertices. Let us prove that any of the mentioned two-membered sets is the minimum dominant set on the pentagon. Assuming that there is a dominant set of less cardinality D', it would have to contain only one vertex and one vertex cannot dominate the remaining 4 vertices of the pentagon. Thus, the minimum dominant set on a pentagon is a two-membered set, so the dominance number for the pentagon is $\gamma = 2$.

Lemma 3.2. The dominance number for two pentagons with one cut-vertex is $\gamma = 3$.

Proof: Let us denote the vertices of two pentagons by one common vertex with x_1, x_2, \ldots, x_9 (Figure 8):

![Figure 8 – Dominant set for two pentagons with a cut-vertex](image)

Let x_1 be the cut-vertex of the given pentagons P^1 and P^2. Based on Lemma 3.1. the pentagon P^1 excluding the vertex x_1 must have another dominant vertex that is not adjacent to the vertex x_1. Let it be the vertex x_3. Also by applying Lemma 3.1. the pentagon P^2 excluding the vertex x_1 must have another dominant vertex that is not adjacent to the vertex x_1. Let it be the vertex x_7. Thus the nodes x_1, x_3 and x_7 dominate over the nodes x_2, x_4, x_5, x_6, x_8 and x_9 so the dominant set for the pentagons $P^1 P^2$ is the set $D = \{x_1, x_3, x_7\}$. Analogous to the consideration in Lemma 3.1. the set D is not the only three-membered set that is dominant on $P^1 P^2$ but there is no dominant set of less cardinality. Suppose that there is a dominant set D' whose cardinality is equal to 2. Let D' contain one vertex from each
pentagon, for example $D' = \{x_1, x_3\}$. The vertices x_1 and x_3 would then dominate over the remaining 7 vertices in P^1P^2 and this is impossible. The vertex x_1 as a common vertex for both pentagons dominates over two neighboring vertices in both pentagons, so it dominates over 4 vertices in P^1P^2. The vertex x_3, or any other vertex not adjacent to the vertex x_1 dominates two adjacent vertices. So, the total sum of vertices covered by dominance is $4 + 2 = 6$ and that is less than 7. Thus, 2 vertices cannot dominate the remaining 7 vertices in P^1P^2. We conclude that the minimum dominant set for P^1P^2 is a three-membered set and $\gamma = 3$.

Let us consider the dominance on pentagonal ortho and meta cactus chains of arbitrary length.

Theorem 3.1. $\gamma(O_h) = \left\lceil \frac{3h}{2} \right\rceil$ for each $h \geq 2 \land h \in \mathbb{N}$.

Proof: We observe a pentagonal ortho cactus-chain $O_h = P^1P^2...P^h$ (Figure 9) and a set:

$$D_{O_h} = \{x^i_{2i}, i = 1, h\} \cup \{V_{2i}, i = 1, \left\lfloor \frac{h}{2} \right\rfloor\}$$

![Figure 9](image)

Figure 9 – Minimum dominant set for O_h

Рис. 9 – Минимально доминирующее множество для O_h

Слика 9 – Минимални доминантни скуп за O_h

Let us prove that D_{O_h} is the dominant set of minimum cardinality for a pentagonal ortho cactus-chain $O_h = P^1P^2...P^h$.

Let us divide the ortho-chain O_h into subchains $P^{2i-1}P^{2i}, i = 1, 2, ... , \left\lfloor \frac{h}{2} \right\rfloor$ (Figure 10) and the last pentagon P^h if h is an odd number.
Based on Lemma 3.2, the set $A_i = \{x_2^{2i-1}, x_2^{2i}, V_{2i}\}$ for $i = 1, 2, \ldots, \left\lfloor \frac{h}{2} \right\rfloor$ is the dominant set of minimum cardinality for the subchain $p^{2i-1}p^{2i}$. An ortho-chain of the length h for $h = 2k$, $k \in \mathbb{N}$ is composed of $\frac{h}{2}$ subchains $p^{2i-1}p^{2i}$, $i = 1, 2, \ldots, \frac{h}{2}$ (Figure 9A), so the set

$$D_1 = \bigcup_{i=1}^{k} A_i, \quad \text{for} \quad k = \frac{h}{2}$$

is a dominant set for the ortho-chain O_h. Therefore, it is

$$\gamma(O_h) \leq \text{card}(D_1) = \frac{h}{2} \cdot 3 = \frac{3h}{2}$$

where we have marked the cardinality of the set D_1 with $\text{card}(D_1)$. If h is an odd number (Figure 9B), then the set

$$D_2 = \bigcup_{i=1}^{k} A_i \cup \{x_2^h, V_{h+1}\}, \quad \text{for} \quad k = \frac{h}{2}$$

is a dominant set for the ortho-chain O_h and then is

$$\gamma(O_h) \leq \text{card}(D_2) = \left\lceil \frac{h}{2} \right\rceil \cdot 3 + 2 = \left\lceil \frac{3h}{2} \right\rceil.$$

Note that the set D_1 for $k = \frac{h}{2}$ if h an even number is equal to the following expression:

$$D_1 = \bigcup_{i=1}^{k} A_i = \bigcup_{i=1}^{k} \{x_2^{2i-1}, x_2^{2i}, V_{2i}\} =$$

$$= \{x_2^{1}, x_2^{2}, V_2\} \cup \{x_2^{3}, x_2^{4}, V_4\} \cup \ldots \cup \{x_2^{h-1}, x_2^{h}, V_h\} =$$

$$= \{x_2^{i}, \quad i = 1, 2, \ldots, h\} \cup \{V_{2i}, i = 1, 2, \ldots, \frac{h}{2}\}$$

Figure 10 – Subchain of the ortho-chain O_h
Рис. 10 – Подцепочка орто-цепочки O_h
Слика 10 – Подланац орто ланца O_h
Also for $k = \left\lceil \frac{h}{2} \right\rceil$ and h is an odd number, the set D_2 is equal to the following expression:

$$D_2 = \bigcup_{i=1}^{k} A_i \cup \{x_i^h, V_{h+1}\} = \bigcup_{i=1}^{\left\lceil \frac{h}{2} \right\rceil} \{x_i^h, V_{2i}\} \cup \{x_i^h, V_{h+1}\} = \{x_i^1, x_i^2, V_2\} \cup \{x_i^2, x_i^3, V_4\} \cup \ldots \cup \{x_i^h, V_{h}\} \cup \{x_i^h, V_{h+1}\} = \{x_i^i, i = 1, 2, ..., h\} \cup \{V_{2i}, i = 1, 2, ..., \left\lceil \frac{h}{2} \right\rceil\}$$

In case h is an even number, $h = \left\lceil \frac{h}{2} \right\rceil$ then we conclude that it is $D_1 = D_2$.

So, the set $D_{O_h} = \{x_i^i, i = 1, h\} \cup \{V_{2i}, i = 1, \left\lceil \frac{h}{2} \right\rceil\}$ is the dominant set for the ortho-chain O_h when h is even or odd number.

Also, in the case where h is an even number, $\frac{3h}{2} = \left\lceil \frac{3h}{2} \right\rceil$. So, $\gamma(0_h) \geq \frac{3h}{2}$ when h is even or odd number. Prove that the set D_{O_h} is the dominant set of minimal cardinality. Each subchain $p^{2i-1}p^{2i}$ contains 3 dominant nodes based on Lemma 3.2. Based on this, we conclude that each dominant set on the chain O_h contains more than 3 or exactly 3 dominant nodes in each subchain $p^{2i-1}p^{2i}$ and more than 2 or exactly 2 dominant nodes in the last pentagon if h is an odd number, based on Lemma 3.1.

So, we conclude that it is $\gamma(0_h) \geq \frac{h}{2} \cdot 3$ in case h is an even number, and $\gamma(0_h) \geq \frac{h}{2} \cdot 3 + 2$ in case h is an odd number. When we combine both cases, we get that $\gamma(0_h) \geq \frac{3h}{2}$.

It follows from $\gamma(0_h) \leq \frac{3h}{2}$ and $\gamma(0_h) \geq \frac{3h}{2}$ that it is $\gamma(O_h) = \left\lceil \frac{3h}{2} \right\rceil$.

Corollary 3.1. $D_{O_h} \subseteq D_{O_{h+1}}$ for each $h \geq 2$ and $h \in \mathbb{N}$.

Theorem 3.2. $\gamma(M_h) = h + 1$ for each $h \geq 2$ and $h \in \mathbb{N}$.

Proof: We observe a pentagonal meta cactus-chain $M_h = p^1p^2...p^h$ (Figure 11) and set:

$D_{M_h} = \{V_{2i-1}, i = 1, h + 1\}$

![Figure 11 – Minimum dominant set for M_h](image)

Рис. 11 – Минимально доминирующее множество для $M_h

Слика 11 – Минимални доминантни скуп за $M_h
Let us prove that $D_{M_{h}}$ is the dominant set of minimum cardinality for a pentagonal meta cactus-chain $M_{h} = p_{1}^{1}p_{2}^{2}...p_{h}^{h}$. Based on Lemma 3.1, each pentagon has a dominant set made up of two non-adjacent vertices. Thus, the set $\{V_{2i-1}, V_{2i+1}\}$ is dominant for the pentagon p_{i}^{i} for each $i = 1, h$. By merging the dominant sets of all pentagons in the chain, we get a set that is dominant for the whole chain. But, each pentagon p_{i}^{i} has a common vertex with the pentagon p_{i+1}^{i+1} for each $i = 1, h - 1$. Common vertices should not be repeated in the dominant set. So, the set

$$D_{M_{h}} = \bigcup_{i=1}^{h} \{V_{2i-1}, V_{2i+1}\} \setminus \bigcup_{i=1}^{h-1} \{V_{2i+1}\}$$

is the dominant set for the meta-chain M_{h}. Note that it is

$$\bigcup_{i=1}^{h} \{V_{2i-1}, V_{2i+1}\} \setminus \bigcup_{i=1}^{h-1} \{V_{2i+1}\} = \{\{V_{1}, V_{3}\} \cup \{V_{3}, V_{5}\} \cup \{V_{5}, V_{7}\} \cup ... \cup \{V_{2h-1}, V_{2h+1}\}\} \setminus \{V_{3}, V_{5}, V_{7}, ..., V_{2h-1}\} = \{V_{2i-1}, i = 1, h + 1\}$$

Thus, the set $D_{M_{h}} = \{V_{2i-1}, i = 1, h + 1\}$ is the dominant set for the meta-chain M_{h} for each $h \in \mathbb{N}$ and $h \geq 2$. Let us prove that $D_{M_{h}}$ is the dominant set of minimal cardinality. Suppose that there is a set S of less cardinality that is dominant on the meta-chain M_{h}. The set S would then have one node less than the set $D_{M_{h}}$. Let it be a vertex V_{2i+1} for any $i = 1, h$. Then the pentagon p_{i}^{i} would have only one dominant node V_{2i-1}. Based on Lemma 3.1, that is not possible. We conclude that $D_{M_{h}}$ is the minimum dominant set for M_{h} so it is $\gamma(M_{h}) = h + 1$.

Corollary 3.2. $D_{M_{h}} \subset D_{M_{h+1}}$ for each $h \geq 2 \land h \in \mathbb{N}$.

Conclusion

In this paper, we have shown the arrangement of vertices in dominant sets on uniform ortho and meta pentagonal cactus chains that appear in molecule structures of numerous compounds. We also proved that the dominance number for a pentagonal ortho-chain of the length h is equal to the value of the expression $\left\lceil \frac{3h}{2} \right\rceil$ while for a pentagonal meta-chain it is equal to $h + 1$.

References

Bakhshesh, D. 2022. Isolate Roman domination in graphs. *Discrete Mathematics, Algorithms and Applications*, 14(3), art.number: 2150131. Available at: https://doi.org/10.1142/S1793830921501317.
Balaban, A.T. 1985. Applications of graph theory in chemistry. *Journal of chemical information and computer sciences*, 25(3), pp.334-343. Available at: https://doi.org/10.1021/ci00047a003

Balaban, M. & Zeljko, S. 2021. *HEMIJA* Teorija i eksperimenti. Banja Luka, Republic of Srpska, Bosnia and Herzegovina: University of Banja Luka, Faculty of natural sciences and mathematics [online]. Available at: https://hemija.pmf.unibl.org/wp-content/uploads/2021/07/Balaban_Zeljko_Hemija_Teorija-i-eksperimenti.pdf (in Serbian) [Accessed: 20 February 2022]. ISBN: 978-99955-21-91-2.

Carević, M.M. 2021. Dominating Number on Icosahedral-Hexagonal Network. *Mathematical Problems in Engineering*, art.ID:6663389. Available at: https://doi.org/10.1155/2021/6663389.

Carević, M.M., Petrović, M. & Denić, N. 2020. Dominating sets on the rhomboidal cactus chains and the icosahedral network. In: 19th *International Symposium INFOTEH*-Jahorina, Jahorina, pp.152-157, March 18-20 [online]. Available at: https://infoteh.etf.ues.rs.ba/zbornik/2020/radovi/P-4/P-4-2.pdf [Accessed: 20 February 2022].

Farrell, E.J. 1987. Matchings in hexagonal cacti. *International Journal of Mathematics and Mathematical Sciences*, 10 (art.ID:234184), pp.321-338. Available at: https://doi.org/10.1155/S0161171287000395.

Ghergu, M. & Radulescu, V. 2012. *Nonlinear PDEs: Mathematical Models in Biology, Chemistry and Population Genetics*. Berlin Heidelberg: Springer-Verlag. ISBN 13: 9783642226632.

Gupta, S., Singh, M. & Madan, A.K. 2001. Applications of graph theory: Relationship of molecular connectivity index and atomic molecular connectivity index with anti-HSV activity. *Journal of Molecular Structure: THEOCHEM*, 571(1-3), pp.147-152. Available at: https://doi.org/10.1016/S0166-1280(01)00560-7.

Gupta, S., Singh, M. & Madan, A.K. 2002. Application of Graph Theory: Relationship of Eccentric Connectivity Index and Wiener's Index with Anti-inflammatory Activity. *Journal of Mathematical Analysis and Applications*, 266(2), pp.259-268. Available at: https://doi.org/10.1006/jmaa.2000.7243.

Hajian, M. & Rad, N.J. 2021. Fair Total Domination Number in Cactus Graphs. *Discussiones Mathematicae Graph Theory*, 41, pp.647-664. Available at: https://doi.org/10.7151/DMGT.2225.

Hernández Mira, F.A., Parra Inza, E., Almira, J.M. S. & Vakhania, N. 2021. Properties of the Global Total k-Domination Number. *Mathematics*, 9(5), art.ID:480. Available at: https://doi.org/10.3390/math9050480.

Husimi, K. 1950. Note on Mayers' theory of cluster integrals. *The Journal of Chemical Physics*, 18(5), pp.682-684. Available at: https://doi.org/10.1063/1.1747725.

Klobučar, A. & Klobučar, A. 2019. Total and Double Total Domination Number on Hexagonal Grid. *Mathematics*, 7(11), art.number:1110. Available at: https://doi.org/10.3390/math7111110.
Majstorovic, S., Doslic, T. & Klobucar, A. 2012. K-Domination on hexagonal cactus chains. *Kragujevac Journal of Mathematics*, 36(2), pp.335-347 [online] Available at: https://imi.pmf.kg.ac.rs/kjm/pub/13569261514726_kjom3602-17.pdf [Accessed: 20 February 2022]

Mihalić, Z. & Trinajstić, N. 1992. A graph-theoretical approach to structure-property relationships. *Journal of Chemical Education*, 69(9), art.ID:701. Available at: https://doi.org/10.1021/ed069p701.

Riddell, R.J. 1951. *Contributions to the theory of condensation*. Ph.D. thesis. University of Michigan ProQuest Dissertations Publishing [online]. Available at: https://www.proquest.com/openview/4c69a76aaebdf43a91617e8dc2be8fe6/1?pq-origsite=gscholar&cbl=18750&diss=y [Accessed: 20 February 2022].

Sharma, V., Goswami, R. & Madan, A. K. 1997. Eccentric connectivity index: A novel highly discriminating topological descriptor for structure-property and structure-activity studies. *Journal of chemical information and computer sciences*, 37(2), pp.273-282. Available at: https://doi.org/10.1021/ci960049h.

Veličković, J., Arsić, N.B. & Stošić, L.T. 2020. The Efficiency of Galvanic Wastewater Treatment Facility ‘Frad’ in Aleksinac. *Trendovi u poslovanju*, 8(2), pp.78-85. Available at: https://doi.org/10.5937/trendpos2002078V.

Vladimirovich, G.S. & Vasilyevich-Chernyaev, M. 2021. The experience of applying mathematical methods for analysis of the microgeneration sector in Russia. *International Review*, (1-2), pp.153-160. Available at: https://doi.org/10.5937/intrev2102156V.

Vukičević, D. & Klobučar, A. 2007. K-Dominating sets on linear benzenoids and on the infinite hexagonal grid. *Croatica Chemica Acta*, 80(2), pp.187-191 [online]. Available at: https://hrcak.srce.hr/12849 [Accessed: 20 February 2022].

Zmazek, B. & Žerovnik, J. 2005. Estimating the traffic on weighted cactus networks in linear time. In: *Ninth International Conference on Information Visualisation (IV’05)*, London, UK, pp.536-541, July 6-7. Available at: https://doi.org/10.1109/IV.2005.48.

Zmazek, B. & Žerovnik, J. 2003. Computing the weighted Wiener and Szeged number on weighted cactus graphs in linear time. *Croatica Chemica Acta*, pp.137-143 [online]. Available at: https://hrcak.srce.hr/103089 [Accessed: 20 February 2022].
Резюме:
Введение/цель: Граф как математички објекат занима особо место у науци. Теорија графова все чаке се примењује во многих видима деятельности и различних научних областима. В оваа статија аналиизирају се пятиугольните кактус-цепочки, как особен вид графов, состояни од пятиугольних циклов, во кои се два соседни цикла имаат только один общий узел. Целта на истражувањата се задоволиле определувањето доминиращо множество и доминиращото число во орто- и мета-пятиугольните кактус-цепочки.

Методи: Кога соодветствуваат положения се сматраат как узли на граф, а врз межу нима – как ветви граф. Се добиваат полна структура графа, коеј се примењуваќи законы теорија графов. Вершина пятиугольника се сматраат как узли на граф, a элементи – как ветви графа. Во помош на математички методи, било определено доминиране на един пятиугольник, затем на два пятиугольника со обичен узел, a затем на орто- и мета-пятиугольните кактус-цепочки.

Резултати: Исследувањата покажаа, што число доминиране на орто-цепи O_h со должина $h \geq 2$ е равно значението изразот $\left\lceil \frac{3h}{2} \right\rceil$, a при време как на мета-цепи M_h оно е равно значението изразот $h+1$, што и следовало да се докажат в оваа статија.

Выводи: Резултати на истражувањата покажаа, што доминиращите множества и числа доминиране во орто- и мета-пятиугольните кактус-цепочки опредељуваат и експлицитно исчислуваат математичките изрази. Они така указуваат на вонможноста им примена как во области науки, так и в сферах бизнеса, во кои присествуваат овој структура.

Ключеви слова: граф, пятиугольная кактус-цепочка, доминиращо множество, число доминиране.
Михајлов Каревић, М., Domination on cactus chains of pentagons, pp. 583-597

Сферама пословања, као и научним областима. У овом раду анализирано су петоугаони кактус-ланци који представљају посебну врсту графа састављеног од петоугаоних циклуса у којима два суседна циклуса имају заједнички само један чвор. Циљ истраживања јесте одређивање доминантног скупа и доминацијског броја на орто и мета петоугаоним кактус-ланцима.

Методе: Када се одговарајућа одредишта тремирају као чворови графа, а везе међу њима као грани у графу, добија се потпуне структуре графа на коју се примењују законитости теорије графова. Темења петоугла су третирани као чворови графа, а странице као грани у графу. Применима математичких метода одређена је доминација на једном петоуглу, затим на два петоугла са заједничким чвором, а након тога на орто и мета петоугаоним кактус-ланцима.

Резултати: Истраживања су показала да је доминацијски број на орто ланцу O_h дужине $h \geq 2$ једнак вредности израза $\lceil \frac{3h}{2} \rceil$, док је на мета ланцу M_h једнак вредности израза $h + 1$, што је доказано у раду.

Закључак: Резултати показују да су доминантни скупови и доминацијски бројеви на орто и мета петоугаоним кактус-ланцима одређени и експлицитно изказане математичким изразима. Такође, упућују на могућност њихове примене у областима науке, као и у сферах пословања у којима се појављују ове структуре.

Кључне речи: граф, петоугаони кактус-ланц, доминантни скуп, доминацијски број.