Suppression of $H \to VV$ decay channels in the Georgi-Machacek model

S.I. Godunov1,2, M.I. Vysotsky1,3,4, and E.V. Zhemchugov1,4

1Institute for Theoretical and Experimental Physics, Moscow, 117218, Russia
2Novosibirsk State University, Novosibirsk, 630090, Russia
3Moscow Institute of Physics and Technology, 141700, Dolgoprudny, Moscow Region, Russia
4Moscow Engineering Physics Institute, 115409, Moscow, Russia

Abstract

The $H \to ZZ$ decay mode is usually considered as one of the most promising ways to discover new heavy neutral scalar H. We show that in the Georgi–Machacek model it is possible to get large enhancement of double SM-like Higgs boson production due to H decays while ZZ and WW decay channels could be highly suppressed.
I. INTRODUCTION

Models with extended Higgs sector provide a very rich phenomenology. In many models there is a heavy neutral scalar H which has the admixture of the neutral component of the Standard Model (SM) doublet. As one of the consequences this new heavy scalar can provide us with the significant enhancement of double SM-like Higgs boson (h) production.

In our previous paper [1] we considered extensions of the SM by isotriplets with hypercharges $Y = 0$ and $Y = 2$. In see-saw type II (one extra triplet with $Y = 2$) double Higgs boson production can be increased by the value which is comparable with what we have in the SM. In the Georgi–Machacek (GM) model [2] we obtained that H production cross section is significantly enhanced so $2h$ production can be much larger than in the SM.

If H is produced with large cross section then in principle it can be discovered in ZZ final state. Direct searches in this mode at the LHC [3] can set limits on model parameters which in some ranges of M_H can be stronger than that from h couplings. However it is not the case in the GM model since we show that $\text{Br} (H \to ZZ) < 1\%$ could occur.

II. THE MODEL

In the GM model (see [4] for a detailed review of this model[1]) in addition to SM Higgs doublet

$$\Phi^{(0)} = \begin{bmatrix} \Phi^+ \\ \Phi^0 \end{bmatrix},$$

(1)

two isotriplets with hypercharges $Y = 0$ and $Y = 2$ are introduced:

$$\xi = \begin{bmatrix} \xi^+ \\ \xi^0 \\ \xi^- \end{bmatrix}, \quad \Delta = \begin{bmatrix} \Delta^{++} \\ \Delta^+ \\ \Delta^0 \end{bmatrix}. \tag{2}$$

We took the potential in the following form (for a detailed description see [4]):

$$V = \frac{H_2^2}{2} \text{Tr} (\Phi^\dagger \Phi) + \lambda_1 [\text{Tr} (\Phi^\dagger \Phi)]^2 + \frac{H_3^2}{2} \text{Tr} (X^\dagger X) - M_1 \text{Tr} (\Phi^\dagger \tau^a \Phi \tau^b) (UXU^\dagger)_{ab}, \tag{3}$$

1 We follow the notations used in [4] with minor change: $\chi \leftrightarrow \Delta$, $v_\chi \leftrightarrow v_\Delta$.
where $\Phi^{(0)}$, ξ and Δ are combined into matrices Φ and X:

$$
\Phi = \begin{bmatrix}
\Phi^0 \\
-\Phi^{+*}
\end{bmatrix}, \\
\langle \Phi \rangle = \frac{1}{\sqrt{2}} \begin{bmatrix}
v_\phi \\
0
\end{bmatrix},
$$

$$
X = \begin{bmatrix}
\Delta^{0*} & \xi^+ & \Delta^{++} \\
-\Delta^{++*} & \xi^0 & \Delta^+ \\
\Delta^{++*} & -\xi^{++*} & \Delta^0
\end{bmatrix}, \\
\langle X \rangle = \begin{bmatrix}
v_\Delta & 0 & 0 \\
0 & v_\Delta & 0 \\
0 & 0 & v_\Delta
\end{bmatrix},
$$

U is a rotational matrix:

$$
U = \begin{bmatrix}
-\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & 0 & -\frac{i}{\sqrt{2}} \\
0 & 1 & 0
\end{bmatrix},
$$

$\tau^a = \sigma^a/2$ where σ^a are Pauli matrices. Let us note that we consider simplified potential which corresponds to $\lambda_2, \lambda_3, \lambda_4, \lambda_5, M_2 = 0$ choice in the potential considered in paper [4].

The value of v_Δ is generated by the term proportional to M_1 and the following relations are useful:

$$
v_\Delta = \frac{M_1 v_\phi^2}{4 \mu_3^2}, \\
v_\phi^2 + 8 v_\Delta^2 = (246 \text{ GeV})^2.
$$

In paper [1] v_Δ is defined to be $\sqrt{2}$ times larger.

Since the potential is written in the way that vevs of two triplets are the same then the custodial symmetry is preserved and the relation between W and Z boson masses is the same as in the SM so the experimental data on W mass does not lead to new limits on model parameters. It means that main restrictions originate from the measurement of h couplings to SM particles. Since the accuracy of these measurements is not very good at the moment, these restrictions are not very tough and v_Δ up to approximately 30 GeV is allowed.

Only one scalar, a combination of ξ^0 and Δ^0, mixes with neutral component Φ^0 of SM doublet forming mass eigenstates, h and H, which correspond to the scalar discovered at LHC (so $M_h = 125$ GeV) and new heavy scalar. Since this new scalar H has doublet admixture, it couples to quarks and therefore it can be produced in gluon-gluon fusion so its production cross section at LHC can be much larger than that for the other scalars of the GM model which can be produced only in electroweak processes. It was stressed in [1] that in some region of parameters space H decays can provide great enhancement of double h production at LHC.
III. HEAVY SCALAR DECAYS

According to papers [4, 5] the couplings of H boson to hh, WW, and ZZ are the following:

\[g_{Hhh} = 24\lambda_1 c^2 v_\phi - \frac{\sqrt{3}}{2} M_1 c_\alpha (3c^2_\alpha - 2), \]
\[g_{HWW} = c^2_W g_{HZZ} = \frac{g^2}{6} (8\sqrt{3} c_\alpha v_\Delta + 3s_\alpha v_\phi), \]

where $c_W = \cos \Theta_W$, Θ_W is the weak mixing angle, $c_\alpha = \cos \alpha$, $s_\alpha = \sin \alpha$, α is the mixing angle between h and H.

According to the potential [3] α is defined as following:

\[\sin 2\alpha = -\frac{\sqrt{3} v_\phi M_1}{M_H^2 - M_h^2}, \]

where M_H is the mass of H.

Using coupling constants (8) and (9), for the partial widths of H decays we get

\[\Gamma_{H \rightarrow hh} \approx \frac{v_\phi^2}{8 \pi} \frac{3M_H^3}{v_\phi^2} \left[1 + \frac{2}{1 - \left(\frac{M_h}{M_H} \right)^2} \right]^2 \frac{1}{\sqrt{1 - 4 \frac{M_h^2}{M_H^2}}}, \]
\[\Gamma_{H \rightarrow ZZ} \approx \frac{v_\phi^2}{24 \pi} \frac{M_H^3}{v_\phi^2} \left[1 - \frac{4}{1 - \left(\frac{M_h}{M_H} \right)^2} \right]^2 \left(1 - 4 \frac{M_Z^2}{M_H^2} + 12 \frac{M_Z^4}{M_H^4} \right) \sqrt{1 - 4 \frac{M_Z^2}{M_H^2}}, \]
\[\Gamma_{H \rightarrow WW} \approx \frac{v_\phi^2}{12 \pi} \frac{M_H^3}{v_\phi^2} \left[1 - \frac{4}{1 - \left(\frac{M_h}{M_H} \right)^2} \right]^2 \left(1 - 4 \frac{M_W^2}{M_H^2} + 12 \frac{M_W^4}{M_H^4} \right) \sqrt{1 - 4 \frac{M_W^2}{M_H^2}}. \]

Deriving these formulae we used the approximation $v_\phi \gg v_\Delta$, i.e. $\sin 2\alpha \approx 2 \sin \alpha$, $\mu_3 \approx M_H$, and $8\lambda_1 v_\phi^2 \approx M_H^2$. For $v_\Delta = 20$ GeV we get $\sin \alpha = 0.35$.

In paper [1] it was found that $H \rightarrow hh$ decays can provide large enhancement of double Higgs boson production. For $M_H = 300$ GeV and $v_\Delta \approx 20$ GeV we get $\sigma(gg \rightarrow H) = \sin^2 \alpha \times \sigma(gg \rightarrow H^{SM}) \approx 1.4$ pb at $\sqrt{s} = 14$ TeV. Using (11), (12), and (13) for $M_H = 300$ GeV we get $\text{Br}(H \rightarrow hh) \approx 98\%$ while $\text{Br}(H \rightarrow ZZ) \approx 0.6\%$. It means that in spite of large H production cross section the enhancement in ZZ final state is negligible so the search for H in this mode at LHC will not lead to new limits on model parameters.
IV. CONCLUSIONS

It was shown that though in the GM model new heavy neutral scalar H can be produced with large cross section at the LHC, ZZ and WW decay modes can be very suppressed (if $H \rightarrow hh$ decays are kinematically allowed and M_H is not significantly larger than 300 GeV) so direct searches for H in these decay modes will not lead to its discovery. This is a peculiar feature of the GM model.

The authors are partially supported under the grants RFBR No. 14-02-00995 and NSh-3830.2014.2. S G. and E. Zh. are also supported by MK-4234.2015.2. In addition, S. G is supported by Dynasty Foundation and by the Russian Federation Government under grant No. 11.G34.31.0047.

[1] S.I. Godunov, M.I. Vysotsky, E.V. Zhemchugov, JETP 120 (2015) 369-375.
[2] H. Georgi, M. Machacek, Nucl.Phys.B262, 463 (1985).
[3] V. Khachatryan et al. [CMS Collaboration], arXiv:1504.00936 [hep-ex], CMS-HIG-13-031, CERN-PH-EP-2015-074.
[4] K. Hartling, K. Kumar, H. E. Logan, Phys.Rev.D90, 015007 (2014).
[5] Ch.-W. Chiang, K. Yagyu, JHEP 2013, No. 01, 026 (2013).