Evaluating the performance of free-formed surface parts using an analytic network process

Xueming Qian, Yanqiao Ma and Dezhi Liang
School of Mechatronic Engineering, Xi’an Technological University, Xi’an, China

*Corresponding author’s e-mail: bearqianxueming@163.com

Abstract. To successfully design parts with a free-formed surface, the critical issue of how to evaluate and select a favourable evaluation strategy before design is raised. The evaluation of free-formed surface parts is a multiple criteria decision-making (MCDM) problem that requires the consideration of a large number of interdependent factors. The analytic network process (ANP) is a relatively new MCDM method that can systematically deal with all kinds of dependences. In this paper, the factors, which come from the life-cycle and influence the design of free-formed surface parts, are proposed. After analysing the interdependence among these factors, a Hybrid ANP (HANP) structure for evaluating the part’s curved surface is constructed. Then, a HANP evaluation of an impeller is presented to illustrate the application of the proposed method.

1. Introduction
As the global business competition environment becomes more intense, enterprises depend on new product development (NPD) for competitive advantage[1]. Most NPD budgets are committed during the design phase, before the actual work tasks take place. Adequate planning is one of the key factors required to satisfy project quality, to reduce financial and scheduled risks, and to help in the success of a project. The management of the planning phase of an NPD project is both significant and complicated. The evaluation of alternatives is the first basic step of product planning. The selection of alternatives can be used to direct the project planning process (e.g., project organization, budget, and schedule), which can determine the success of a project [2][3]. In the up-front design process, the systematic evaluation and verification of the design solution are critical since they could shift the product development paradigm from the traditional trial-and-error and heuristic know-how methods to more scientific calculation, analysis and simulation. Solution needs to be developed to ensure the efficient and accurate assessment and evaluation of design.

On the other hand, with the development of Group Technology and Mass Customization, the budget for common parts is reduced, while the budget rate for special parts rises sharply. These parts have a free-formed surface, which raises the difficulty of designing, manufacturing and testing, especially in the aviation industry, the mold industry, and the motor industry[4][5][6]. In this paper, multi-objects for free-formed surface part (FSP) evaluation are proposed, they are the designing performance, the manufacturing performance and the testing performance. Based on the multi-objects, a hybrid ANP model is established for FSP evaluation. The rest of the paper proceeds as follows. Section 2 provides a quick review of related literature. The ANP method is introduced in section 3. Then, the factors in FSP evaluation are analyzed in section 4. Established hybrid ANP evaluation
structure is discussed in section 5. Section 6 evaluated impellers as a case study. Finally, section 7 concludes the paper.

2. Literature review

Many studies have evaluated product performance. P. Duverlie used an analogical method to evaluate design based on cost [7]. The analogical method allows for a cost-evaluation of a product compared with the cost of existing products. Hsu-Fang Hung evaluated design alternatives in collaborative development based on cost, time and quality. Product strategy is identified as the most important factor in this evaluation [8]. R. Sharma developed a system according to the criteria of time and cost, which allows the designer to estimate manufacturability and also explore different scenarios of parametric variation in the design[9]. Shehab and Abdalla proposed a manufacturing cost estimation tool for conceptual design using a CAD system in conjunction with a process planning system to estimate cost and generate initial plans[10]. The evaluation criteria mainly focused on individual development stages, such as: design, manufacture, quality, and testing. Today, evaluation of a individual development stage is deeply researched (e.g., manufacturing design, client-oriented design, and quality-oriented design).

The evaluation of a individual development stage mainly focuses on one object (for function, manufacturability or cost). In the design stage, the designers pour their energy into product function. Engineers think about how to realize the scenario in the manufacturing stage. In testing, personnel hope that the performance is easy to test and that the criteria are independent of each other. The criteria for these stages are interdependent, however. Subsequently, product design problems are decomposed into sub-problems, which evaluate the many aspects of a large problem. This step involves specialized knowledge from many fields that cannot be mastered by a single designer. Different aspects of a problem should be modeled and solved by different people who have appropriate core competencies [11][12]. Separate evaluation of the performances in a single development stage causes difficulty in evaluating general performance, especially when the product contains free-surface parts like the impeller, bodyworks, and mold pocket, since there are different objects to be matched in different stages.

Several methods have been proposed in the literature for multi-objective decision making problems. When considering intangible factors, some authors suggest using an analytic hierarchy process (AHP). The analytic hierarchy process (AHP) was developed by Thomas Saaty in the early 1970s[13]. The strength of the AHP approach lies in its ability to hierarchically structure a complex, multiattribute, multiperson and multiperiod problem. In addition, it can also handle both qualitative (through representing qualitative attributes in terms of quantitative values) and quantitative attributes. Pairwise comparisons of the elements (usually, alternatives and attributes) can be established using a scale that indicates the strength with which one element dominates another with respect to a higher level element. This scaling process can be translated into priority weights (scores) for a comparison of alternatives. However, AHP is based on an independence assumption, ignoring the interdependence fact in solving those problems.

Hence, Satty modified the AHP into an ANP approach to counterweigh the demerit[14]. The ANP captures the interdependence of decision criteria and improves the limitation of AHP. There are many authors who have recently applied this technique in MCDM problems. For example, Meade et al. presents an overall systemic methodology, which includes ANP and utility theory, for making a business case for strategic alliance formation and justifying the conclusion that strategic relationships are a critical step in the case firm[15]. Sarkis integrated the environmentally conscious business practice elements and attributes into a strategic assessment and applied the systems using ANP[16]. This integration highlighted the importance of the natural environment in everyday and long term organizational practices and processes at a level that is unparalleled since the start of the industrial solution. Meade and Sarkis showed what lies in the linkage of disparate strategic logistics and system issues in a single systematic study framework[17]. Here, ANP not only provides solutions to strategic logistics alternative selection, but it also provides a structure for an organization to develop and
enhance logistics strategy. Wu and Lee used ANP to ensure the successful implementation of knowledge management[18]. They also raised the critical issue of how companies can better evaluate and select a favorable knowledge management strategy before that implementation. Thus, the ANP research method is most suitable and valid for this MCDM problem and interdependency relationships.

In this paper, we deal with FSP evaluation as a multi-objective decision making problem. First, the paper proposes three phases to build network systems for comprehensive evaluation. The authors’ analyzed the evaluating factors of free-formed surface parts (FSP). Second, all the factors are classified into three layers. Third, the second layer is treated as the network layer, and a hybrid ANP model is established for FSP evaluation.

3. Principles of the ANP Method

3.1. The typical structure of an analytic network process

The typical network architecture is made up of two parts (shown as Figure 1). These parts include: (1) a control layer and (2) a network layer. In the control layer there are some decision-making criteria, like \( P_1 \ldots, P_i \ldots P_n \). These elements are only controlled by the goal element, and can be divided into sub-criterion according to need. This means that the control layer can have many goal elements or only one. The other part is the network-layer. It contains some element clusters, such as \( \{ C_1, \ldots, C_i \ldots C_p \} \), here, \( C_i \) denotes element cluster \( \{ e_{i1}, e_{i2}, \ldots, e_{ik} \} \). The weights of the elements in the control-layer can be obtained by the AHP. In the network layer, they must be obtained via super-matrix.

![Figure 1. ANP structure.](image)

The Analytic Network Process (ANP) provides a general framework for dealing with decisions without making assumptions about the independence of higher-level elements from lower level elements or the independence of the elements within a level (as in a hierarchy). In fact, the ANP uses a network without a need for special levels.
4. Analyse the Factors in FSP Evaluation

4.1. Evaluation criteria

These evaluation criteria are management focused and mainly evaluate the cost, delivery and quality, while it is difficult to control the result without controlling the process. In order to better evaluate the FSP, the criteria from the three development stages are proposed here.

Evaluation criteria come from three phases: (1) design process, (2) manufacturing process, and (3) test process.

The evaluation factors for the design performance of FSP include: S1 hydromechanics, S2 aesthetics, S3 kinetics, S4 toughness, S5 other performance, S6 fairing S7, free-formed surface shape, S8 smoothing, S9 the fairing of key section curve, S10 Gauss Curvature, S11 principal Curvature, S12 inflexion and Variable torsion Point, S13 mean curvature, S14 parameter continuity, S15 Geometric continuity, S16 curvature, S17 inflexion, S18 Variable torsion Point, S19 second derivative point, S20 control point, S21 weight factor, S22 node vector, S23 data points, S24 the number of data point, S25 the distribution of data point.

The reachable matrix among the criteria is established using a normative method after the matrix is hierarchically ordered, a sub-triangular matrix is elicited as shown in Figure 2.

![Figure 2. Criteria in the design process.](image-url)
According to the above matrix (Figure 2), \( S_1, S_2, S_3, S_4, S_5 \) and \( S_6 \) belong to the first layer. \( S_7, S_8, S_9, S_{10}, S_{13}, S_{14} \) and \( S_{14} \) belong to the second layer. \( S_{16}, S_{17}, S_{18} \) and \( S_{19} \) belong to the third layer, along with \( S_{20}, S_{21}, S_{22} \) and \( S_{23} \). \( S_{24} \) and \( S_{25} \) belong to the sixth layer.

**Figure 3.** Criteria in the design process.

First, the above numerals elements were arrayed according to the mentioned hierarchy. The directed graph (DG) according to element “1” in the interchange place was then drawn. The hierarchical DG was then obtained, which presents the direct relationship of elements in different layers, similar to the above chart (Figure 3). The chart is a gradually specific design process from left to right. The criteria model in manufacturing and testing are set up at the same way, which is displayed in the following picture Figure 4.

**Manufacturing process**

**Figure 4.** Criteria for manufacturing process.

The multi-level structured graph is shown in the following paragraph Figure 5.
5. Hybrid ANP Structure for FSP Evaluation

This hierarchical system simply and intuitively describes the relationship of various indicators (factors in the lower classes dominated by the upper classes). It does not reflect interactions and interdependencies in the same class. ANP is an effective method to show the interdependence among criteria [19].

The ANP provides a more generalized model in decision-making without making assumptions about the independency of the elements within their own level. However, to evaluate the FSP, there are sixty-two criterions. Thus, ANP reduces the efficiency of the evaluation. Therefore, it is necessary to adjust the hierarchical system of the FSP and establish a mixed-network model according to the typical structure of ANP.

In this paper, according to the factors discussed in section 3, we treated the second layer criteria as the network layer, while the third layer and fourth layer were still in a hierarchical structure. We then set up a hybrid ANP structure.

5.1. Criteria and criteria clusters in the network

The control layer includes three criterion clusters: $P_1$, $P_2$, and $P_3$. $P_1$ is the design performance of the free-formed surface. $P_2$ is the manufacturing performance. $P_3$ is the testing performance. The criteria in the paper are mainly the elements dominated by the control layer in the three processes of free-formed surface design, process, and test, which are classified into three groups according to the elements. The three element groups are: $C_1$, $C_2$, and $C_3$. $C_1$ includes $e_{11}$ hydromechanics, $e_{12}$ aesthetics, $e_{13}$ kinetics, $e_{14}$ intensity, $e_{15}$ other performance, and $e_{16}$ fairing. $C_2$ includes, $e_{21}$ machinability, $e_{22}$ processing efficiency, $e_{23}$ surface quality, $e_{24}$ tool load, $e_{25}$ processing cost, $e_{26}$ processing deformation, and $e_{27}$ collision and interference. $C_3$ includes $e_{31}$ machining deflection and error, $e_{32}$ geometric moving error, $e_{33}$ programs calculation error, $e_{34}$ calculation principal error, $e_{35}$ surface quality, $e_{36}$ location error, and $e_{37}$ form error.

5.1.1. The hybrid network modelling evaluation system on the basis of hybrid -ANP.

As shown in Figure 6, the satisfaction of the CSP is the overall object. The three criteria are: design performance, manufacturing performance, and testing performance. The control layer is formed by these three criteria.

**Figure 5.** Criteria for processing error.
Figure 6. Hybrid ANP structure.

The three criterion clusters are formed by the elements of the second layer (design, process, and test). In the third and fourth layer, design, manufacturing, and test are named as factor levels. The framework of the factor level is still the hierarchical structure. The schemes are treated as the fourth layer, where mixed evaluation architecture is established.

5.2. Determining the total sort eigenvector

Table 1 is the sort eigenvector that is calculated according to the limit relative sort eigenvector in the criteria of the control layer and the criteria of the Network layer. In order to compare the evaluation results, the sort eigenvector is calculated by AHP in the table at the same time.

Table 1. Total sort eigenvector.

| Elements in the network layer | Sort eigenvector on the criteria | Overall sort eigenvector |
|------------------------------|---------------------------------|--------------------------|
|                              | ANP | AHP | ANP | AHP | ANP | AHP | ANP | AHP |
| Criteria                     | P₁  | P₂  | P₃  | P₄  | Project |
| C₁                            |     |     |     |     |         |
| e₁₁                          | 0.0574 | 0.1146 | 0.0574 | 0.0542 | 0.0572 | 0.0552 |
| e₁₂                          | 0.0577 | 0.1126 | 0.0537 | 0.0785 | 0.0574 | 0.0543 |
| e₁₃                          | 0.0572 | 0.1795 | 0.0546 | 0.0761 | 0.0574 | 0.0865 |
| e₁₄                          | 0.0627 | 0.2027 | 0.0637 | 0.0707 | 0.0637 | 0.0977 |
| e₁₅                          | 0.0575 | 0.0478 | 0.0375 | 0.0425 | 0.0475 | 0.0230 |
| e₁₆                          | 0.0481 | 0.3428 | 0.0481 | 0.0481 | 0.0481 | 0.1652 |
6. Real World Case Study

The impeller is a complex product with free-formed surface parts. Figure 7 shows two impeller schemes for one company. According to the ability in design, manufacturing and testing of the company, the performance of the opened impeller and closed impeller are comprehensively evaluated in accordance with the comprehensive sort eigenvector in table 1. The overall scores are calculated by ANP and AHP. If the dependency is omitted, the ANP model becomes an AHP model. The opened impeller scheme scores 5.1971441 by the ANP method and 5.521217 by the AHP method. The closed impeller scheme scores 5.388804 by the ANP method and 5.53628 by the AHP method. The ANP method is more distinct than the AHP. Furthermore, the ANP method takes the dependence of the element in the same layer into account. It is also reasonable at distributing the weight among criteria. The scores level is lower than the analytical method in evaluating the same scheme.

$$\begin{array}{llllll}
\epsilon_{21} & 0.0571 & 0.0571 & 0.2621 & 0.0571 & 0.0571 & 0.1169 \\
\epsilon_{22} & 0.0509 & 0.0479 & 0.0899 & 0.0695 & 0.0509 & 0.0401 \\
\epsilon_{23} & 0.0572 & 0.0602 & 0.2654 & 0.0386 & 0.0572 & 0.1184 \\
\epsilon_{24} & 0.0412 & 0.0442 & 0.1160 & 0.0226 & 0.0412 & 0.0518 \\
\epsilon_{25} & 0.0579 & 0.0429 & 0.0561 & 0.0119 & 0.0479 & 0.0250 \\
\epsilon_{26} & 0.0445 & 0.0495 & 0.1104 & 0.0134 & 0.0445 & 0.0493 \\
\epsilon_{27} & 0.0345 & 0.0305 & 0.1001 & 0.0593 & 0.0345 & 0.0447 \\
\end{array}$$

$$\begin{array}{llllll}
\epsilon_{31} & 0.0391 & 0.0391 & 0.0391 & 0.1156 & 0.0391 & 0.0083 \\
\epsilon_{32} & 0.0473 & 0.0753 & 0.1507 & 0.1395 & 0.0673 & 0.0100 \\
\epsilon_{33} & 0.0453 & 0.0403 & 0.0068 & 0.0539 & 0.0403 & 0.0039 \\
\epsilon_{34} & 0.0472 & 0.0602 & 0.0361 & 0.0779 & 0.0522 & 0.0056 \\
\end{array}$$

Figure 7. Two kinds of impeller.

7. Conclusion

This paper presented various evaluation criteria for the design, manufacturing and testing of an FSP. According to the dominance relations and interdependence among the criteria, we established a hybrid Network evaluation system based on HANP and gave a comprehensive evaluation for the impeller scheme. Compared with the traditional method AHP, HANP considered the interdependence among the criteria in same layer, making the evaluation results more reasonable and the scheme easier to distinguish. In the evaluation system, the scoring system still uses a decimalist, which is constitutionally based on the score of specialists from different areas. This scoring system is difficult and inefficient at avoiding of subjectivism of specialists. Thus, the scoring system for design, manufacturing, and testing is the focus of further study.
References

[1] Hicks BJ, Cully SJ, Allen RD, and Mullineux G 2002 A framework for the requirements of capturing, storing and reusing information and knowledge in engineering design. *Int J Inf Manage* 22:263–80

[2] Lee E, Woo S, Sasada T 2001 The evaluation system for design alternatives in collaborative design. *Automat Construction* 10:295–301

[3] Dvir D, Raz T, and Shenhar AJ 2003 An empirical analysis of the relationship between project planning and project success. *Int J Project Manage* 21:89–95

[4] Chen YM, Liu J 1999 Cost effective design for injection molding. *Robot Comput Integr Manuf* 15:1–21

[5] W. El-Mehalawi and R. A. Miller 1998 A case-based approach for part cost estimation in net shape manufacturing. *Transactions of NAMRIC/SAE* 26: 37–42

[6] H. Wang, X. H. Zhou and X.-Y. Ruan 2003 Research on Injection Mould Intelligent Cost Estimation System and Key Technologies. *Int J Adv Manuf Technol* 3:215–22

[7] P. Duverlie 1997 Cost estimating during design step: parametric method versus Case based reasoning method. *Univeriste’ de Valenciennes*

[8] Hsu-Fang Hung, Hsing-Pei Kao, and Kuo-Cheng Ku 2007 Evaluation of design alternatives in collaborative development and production of modular products. *Int J Adv Manuf Technol* 33: 1065–076

[9] R. Sharma. J. X. Gao 2007 A knowledge-based manufacturing and cost evaluation system for product design/re-design. *Int J Adv Manuf Technol* 33: 856–065

[10] Shehab EM, Abdalla HS 2001 Manufacturing cost modeling for concurrent product development. *Robot Comput-Integr Manuf* 17 (4): 341–53

[11] Eppinger, S. D., Whitney, D. E., Smith, R. P. and Gebala, D. A 1994 A model-based method for organizing tasks in product development. *Research in Engineering Design* 6: 1–13

[12] Krishnamachari, R. S. and Papalambros, P. Y. 1996. Optimal hierarchical decomposition synthesis using integer programming. *Proceedings of 1996 ASME Design Engineering Technical Conferences and Computers in Engineering Conference*. Irvine, CA

[13] Saaty, T. L 1988 The Analytic Hierarchy Process. *University of Pittsburgh*

[14] Saaty T. L. 1996 Decision making with dependence and feedback: the analytic network process. RWS, Pittsburgh

[15] Meade LM, Liles DH, and Sarkis J 1997 Justifying strategic alliances and partnering: a prerequisite for virtual enterprising. *Omega* 25 (1):29–42

[16] Sarkis J 1998 Evaluating environmentally conscious business practices. *Eur J Oper Res* 107:159–74

[17] Meade LM, Sarkis J 1998 Strategic analysis of logistics and supply chain management systems using analytical network process. *Logist Transp Rev* 34 (3):201–15

[18] Wen Wu, Yu-Ting Lee 2007 Selecting knowledge management strategies by using the analytic network process. *Expert Systems with Applications* 32 (3):841-847

[19] Saaty T. L 2001 Decision Making with Dependence and Feedback—The Analytic Network Process. 2nd ed., Pittsburgh, USA: RWS Publications