Search for quark contact interactions and extra spatial dimensions using dijet angular distributions in proton-proton collisions at $\sqrt{s} = 8$ TeV

The CMS Collaboration

Abstract

A search is presented for quark contact interactions and extra spatial dimensions in proton-proton collisions at $\sqrt{s} = 8$ TeV using dijet angular distributions. The search is based on a data set corresponding to an integrated luminosity of 19.7 fb$^{-1}$ collected by the CMS detector at the CERN LHC. Dijet angular distributions are found to be in agreement with the perturbative QCD predictions that include electroweak corrections. Limits on the contact interaction scale from a variety of models at next-to-leading order in QCD corrections are obtained. A benchmark model in which only left-handed quarks participate is excluded up to a scale of 9.0 (11.7) TeV for destructive (constructive) interference at 95% confidence level. Lower limits between 6.0 and 8.4 TeV on the scale of virtual graviton exchange are extracted for the Arkani-Hamed–Dimopoulos–Dvali model of extra spatial dimensions.

Submitted to Physics Letters B
1 Introduction

High momentum-transfer proton-proton collisions at the CERN LHC probe the dynamics of the underlying interaction at distances below 10^{-19} m. Often these collisions produce a pair of jets (dijets) approximately balanced in transverse momentum p_T. These dijet events provide an ideal testing ground to probe the validity of perturbative quantum chromodynamics and to search for new phenomena such as quark compositeness or additional, compactified spatial dimensions. A particularly suitable observable for this purpose is the dijet angular distribution \(\chi_{\text{dijet}} \) expressed in terms of $\chi_{\text{dijet}} = \exp\left(\left|y_1 - y_2\right|\right)$, where y_1 and y_2 are the rapidities of the two jets with the highest transverse momenta. Rapidity is defined as $y = \ln \left(\left(E + p_z\right) / \left(E - p_z\right)\right)$ with E being the jet energy and p_z the projection of the jet momentum onto the beam axis. For the scattering of massless partons, χ_{dijet} is related to the polar scattering angle θ^* in the partonic center-of-mass (c.m.) frame by $\chi_{\text{dijet}} = (1 + |\cos \theta^*|) / (1 - |\cos \theta^*|)$. The choice of the variable χ_{dijet} is motivated by the fact that for Rutherford scattering the angular distribution is approximately independent of χ_{dijet}. In perturbative QCD the dijet angular distribution at small c.m. scattering angles is approximately independent of the underlying partonic level process and exhibits behavior similar to Rutherford scattering, characteristic of spin-1 particle exchange. Signatures of new physics (NP), such as quark contact interactions (CI) or virtual exchange of Kaluza-Klein [2] excitations of the graviton, that exhibit angular distributions that are more isotropic than those predicted by QCD, could appear as an excess of events at low values of χ_{dijet}.

Models of quark compositeness [3, 4] postulate interactions between quark constituents at a characteristic scale Λ that is much larger than the quark masses. At energies well below Λ, these interactions can be approximated by a CI characterized by a four-fermion coupling. The effective Lagrangian can be written as [3,4]:

\[
L_{\text{qq}} = \frac{2\pi}{\Lambda^2} \left[\eta_{LL}(q_L^\mu q_L)(q_L^\nu q_L) + \eta_{RR}(q_R^\mu q_R)(q_R^\nu q_R) + 2\eta_{RL}(q_R^\mu q_L)(q_L^\nu q_R) \right],
\]

where the subscripts L and R refer to the left and right chiral projections of the quark fields and η_{LL}, η_{RR}, and η_{RL} are taken to be 0, +1, or −1. The various combinations of (η_{LL}, η_{RR}, η_{RL}) correspond to different CI models. The following CI scenarios with color-singlet couplings between quarks are investigated:

Λ	(η_{LL}, η_{RR}, η_{RL})
Λ_{LL}^\pm	(±1, 0, 0)
Λ_{RR}^\pm	(0, ±1, 0)
Λ_{VV}^\pm	(±1, ±1, ±1)
Λ_{AA}^\pm	(±1, ±1, ±1)
$\Lambda_{(V-A)}^\pm$	(0, 0, ±1)

Note that the models with positive (negative) η_{LL} or η_{RR} lead to destructive (constructive) interference with the QCD terms and a lower (higher) cross section in the limit of high partonic c.m. energies. In all CI models discussed in this Letter, next-to-leading-order (NLO) QCD corrections are employed to calculate the cross sections. In proton-proton collisions the Λ_{LL}^\pm and Λ_{RR}^\pm models result in identical tree-level cross sections and NLO corrections, and consequently lead to the same sensitivity. For Λ_{VV}^\pm and Λ_{AA}^\pm, as well as for $\Lambda_{(V-A)}^\pm$, the CI predictions are identical at tree-level, but exhibit different NLO corrections and yield different sensitivity.
Measurements of dijet angular distributions at the Fermilab Tevatron have been reported by the CDF [5] and D0 [6, 7] Collaborations, and at the LHC by the CMS [8, 10] and ATLAS [11, 12] Collaborations. The most stringent limits to date on CI models calculated at tree-level have been obtained by the CMS Collaboration from the inclusive jet p_T spectrum [13], which excludes $\Lambda_+^{LL} < 9.9$ TeV and $\Lambda_-^{LL} < 14.3$ TeV. Constraints on CI models with NLO corrections have been previously obtained from a search in the dijet angular distributions [8], excluding in particular $\Lambda_+^{LL} < 7.5$ TeV and $\Lambda_-^{LL} < 10.5$ TeV.

Dijet angular distributions are also sensitive to signatures from the Arkani-Hamed–Dimopoulos–Dvali (ADD) model [14, 15] of compactified extra dimension (ED) that provides a possible solution to the hierarchy problem of the standard model (SM). In the ADD model, gravity is assumed to propagate in the entire higher-dimensional space, while SM particles are confined to a (3+1) dimensional subspace. As a result, the fundamental Planck scale M_D in the ADD model is much smaller than the (3+1) dimensional Planck energy scale M_{Pl}, which may lead to phenomenological effects that can be tested with proton-proton collisions at the LHC. The coupling of the graviton in higher-dimensional space to the SM fields can be described by a (3+1)-dimensional tower of Kaluza–Klein (KK) graviton excitations, each coupled to the energy-momentum tensor of the SM field with gravitational strength. The effects of a virtual graviton exchange can therefore be approximated at leading-order (LO) by an effective (3+1)-dimensional theory that sums over KK excitations of a virtual graviton. This sum is divergent, and therefore has to be truncated at a certain energy scale of order M_D, where the effective theory is expected to break down. Such a theory predicts a non-resonant enhancement of dijet production, whose angular distribution differs from the QCD prediction. Two parameterizations for virtual graviton exchange in the ADD model are considered, namely the Giudice–Rattazzi–Wells (GRW) [16] and the Han–Lykken–Zhang (HLZ) [17] conventions. Though not considered in this paper, another convention by Hewett [18] exists. In the GRW convention the sum over the KK states is regulated by a single cutoff parameter Λ_T. The HLZ convention describes the effective theory in terms of two parameters, the cutoff scale M_S and the number of extra spatial dimensions n_{ED}. The parameters M_S and n_{ED} can be directly related to Λ_T [19]. We consider scenarios with 2 to 6 EDs. The case of $n_{ED} = 1$ is not considered since it would require an ED of the size of the order of the solar system, the gravitational potential at these distances would be noticeably modified and is therefore excluded. The case of $n_{ED} = 2$ is special in the sense that the relation between M_S and Λ_T also depends on the parton-parton c.m. energy \sqrt{s}. Signatures from virtual graviton exchange have previously been sought in dilepton [20, 21], diphoton [22, 23], and dijet [6, 24, 25] final states, where the most stringent limits come from the dilepton searches ranging from 3.4 to 4.7 TeV.

In this Letter, we extend previous searches for contact interactions to higher CI scales, for a wide range of models that include the exact NLO QCD corrections to dijet production. In addition, we explore various models of compactified extra dimensions. Using a data sample corresponding to an integrated luminosity of 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV, the measured dijet angular distributions, unfolded for detector effects, are compared to QCD predictions at NLO, including for the first time electroweak (EW) corrections.
pseudorapidity $|\eta| < 2.5$. The lead tungstate crystal electromagnetic calorimeter and the brass and scintillator hadron calorimeter surround the tracking volume and cover $|\eta| < 3$. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the solenoid with a coverage of $|\eta| < 2.4$.

Events are reconstructed using a particle-flow technique \[27, 28\] which combines information from all CMS subdetectors to identify and reconstruct in an optimal way the individual particle candidates (charged hadrons, neutral hadrons, electrons, muons, and photons) in each event. These particle candidates are clustered into jets using the anti-k_T algorithm \[29\] as implemented in the FASTJET package \[30\] with a size parameter $R = 0.5$. Jet energy scale corrections \[31\] derived from data and Monte Carlo (MC) simulation are applied to account for the response function of the calorimeters for hadronic showers.

The CMS trigger system uses a two-tiered system comprising a level-1 trigger (L1) and a high-level trigger (HLT) to select physics events of interest for further analysis. The selection criteria used in this analysis are the inclusive single-jet triggers, which require one L1 jet and one HLT jet with various thresholds on the jet p_T, as well as trigger paths with thresholds on the dijet mass and scalar sum of the jet p_T. The p_T of jets is corrected for the response of the detector at both L1 and the HLT. The efficiency of each single-jet trigger is measured as a function of dijet mass M_{jj} using events selected by a lower-threshold trigger.

Events with at least two reconstructed jets are selected from an inclusive jet sample and the two highest-p_T jets are used to measure the dijet angular distributions for different ranges in M_{jj}. In units of TeV the M_{jj} ranges are $(1.9, 2.4)$, $(2.4, 3.0)$, $(3.0, 3.6)$, $(3.6, 4.2)$, and >4.2. The lowest M_{jj} range is chosen such that the trigger efficiency exceeds 99%. Events with spurious jets from noise and noncollision backgrounds are rejected by applying loose quality criteria \[32\] to jet properties and requiring a reconstructed primary vertex within ± 24 cm of the detector center along the beam line and within 2 cm of the detector center in the plane transverse to the beam. The main primary vertex is defined as the one with the largest summed p_T^2 of its associated tracks. The phase space for this analysis is defined by selecting events with $\chi_{dijet} < 16$ and $y_{boost} < 1.11$, where $y_{boost} = \frac{1}{2} |y_1 + y_2|$. This choice of values restricts the two jets within $|y| < 2.5$. The highest value of M_{jj} observed in this data sample is 5.2 TeV.

3 Cross section unfolding and uncertainties

The measured χ_{dijet} distributions, defined as $(1/\sigma_{dijet})(d\sigma_{dijet}/d\chi_{dijet})$, up to $\chi_{dijet} = 16$ in each M_{jj} range, are corrected for migration effects due to the finite jet p_T resolution and position resolution of the detector. Fluctuations in the jet response cause event migrations in χ_{dijet} as well as in dijet mass. Therefore, a two-dimensional unfolding in these variables is performed using the D’Agostini method \[33\] as implemented in the ROOUnfold package \[34\]. The unfolding corrections are determined from a response matrix that maps the true M_{jj} and χ_{dijet} distributions onto the measured ones. This matrix is derived using particle-level jets from HERWIG++ version 2.5.0 \[35, 36\] with the tune of version 2.4. The jets are smeared in p_T with a double-sided Crystal-Ball parameterization \[37\] of the response, which takes into account the full jet energy response including non-Gaussian tails. The unfolding correction factors vary from less than 3% in the lowest M_{jj} range to less than 20% in the highest M_{jj} range.

The main experimental systematic uncertainties in this analysis are caused by the jet energy scale, the jet energy resolution, and the unfolding correction. The overall jet energy scale uncertainty varies between 1% and 2% and has a dependence on pseudorapidity of less than 1% per unit of η \[31\]. The jet energy scale uncertainty is divided into 21 uncorrelated sources \[38\].
The effect of each source is propagated to the dijet angular distributions and then summed in quadrature to take into account uncorrelated p_T- and η-dependent sources that could cancel if varied simultaneously. The resulting uncertainty in the χ_{dijet} distributions due to the jet energy scale uncertainties is found to be less than 2.0% (2.6%) at low (high) M_{jj} over all χ_{dijet} bins. The maximum uncertainty in a given M_{jj} bin is typically found to be in the lowest χ_{dijet} bin.

The largest contributions to the unfolding corrections arise from the use of the Crystal-Ball parameterization to simulate the jet p_T resolution of the detector and from the uncertainty in the tails of the jet response function. The systematic uncertainty from using the parameterized model of the jet p_T and position resolutions to determine the unfolding correction factors is estimated by comparing the smeared χ_{dijet} distributions to the ones from a detailed simulation of the CMS detector using GEANT4 [39]. This uncertainty is found to be less than 0.4% (5%) in the lowest (highest) M_{jj} range. The systematic uncertainty in the tails of the jet response function is evaluated by determining a correction factor using a Gaussian ansatz to parameterize the response and assigning 50% of the difference between this correction and the nominal correction as the uncertainty. The size of this uncertainty varies from less than 1% in the lowest M_{jj} range to less than 13% in the highest M_{jj} range. Additional systematic uncertainties are evaluated to account for the uncertainty of approximately 10% [31] in the width of the core jet response function (0.5% (1.5%) in the lowest (highest) M_{jj} range) and for the modeling of the dijet spectra with HERWIG++ (0.1% (1.2%) in the lowest (highest) M_{jj} range, quantified by the difference to a response matrix obtained from simulation using PYTHIA 8 version 8.165 with tune 4C [40].

The uncertainty from additional interactions in the same proton bunch crossing as the interaction of interest, called pileup, is determined in simulation by varying the minimum bias cross section within its measured uncertainty of 6% [41]. No significant effect is observed. Though in the statistical analysis of the data the uncertainties are treated separately, for display in tables and figures, the total experimental systematic uncertainty in the χ_{dijet} distributions is calculated as the quadratic sum of the contributions due to the uncertainties in the jet energy calibration, jet p_T resolution, and unfolding correction. The total uncertainty including statistical uncertainties is less than 2.4% (49%) for the lowest (highest) M_{jj} range.

4 Theoretical predictions

The normalized dijet angular distributions are compared to the predictions of perturbative QCD. The NLO calculation is provided by NLOJET++ version 4.1.3 [42,43] within the FASTNLO framework version 2 [44,45]. Electroweak corrections for dijet production have been derived in Ref. [46], the authors of which provided us with the corresponding corrections for the χ_{dijet} distributions. These corrections change the predictions of the normalized χ_{dijet} distributions by up to 4% (14%) at low (high) M_{jj}. A figure showing these corrections can be found in the Appendix. The factorization (μ_F) and renormalization (μ_R) scales are defined to be the average p_T of the two jets, $\langle p_{T1,2} \rangle$. The impact of non-perturbative effects such as hadronization and multiple parton interactions is estimated using PYTHIA 8 and HERWIG++. These effects are found to be negligible.

The dominant uncertainty in the QCD predictions is associated with the choice of the μ_R and μ_F scales and is evaluated following the proposal in Ref. [47] by varying the default choice of scales in the following six combinations: $(\mu_F/\langle p_{T1,2} \rangle, \mu_R/\langle p_{T1,2} \rangle) = (1/2, 1/2), (1/2, 1), (1, 1/2), (2, 2), (2, 1), and (1, 2)$. These scale variations change the predictions of the normalized χ_{dijet} distributions by less than 6% (18%) at low (high) M_{jj}. The uncertainty due to the choice of parton distribution functions (PDF) is determined from the 22 uncertainty eigenvectors of
CT10 [48] using the procedure described in Ref. [48], and is found to be less than 0.6%, (1.0%) at low (high) \(M_{jj} \). A summary of the systematic uncertainties in the theoretical predictions is given in Table 1 together with the experimental ones. In the highest \(M_{jj} \) range, the dominant experimental contribution is the statistical uncertainty while the dominant theoretical contribution is the QCD scale uncertainty.

Table 1: Summary of the experimental and theoretical uncertainties in the normalized \(\chi_{\text{dijet}} \) distributions. For the lowest and highest \(M_{jj} \) ranges, the relative shift (in %) of the lowest \(\chi_{\text{dijet}} \) bin from its nominal value is quoted. While in the statistical analysis each systematic uncertainty is represented by a change of the \(\chi_{\text{dijet}} \) distribution correlated among all \(\chi_{\text{dijet}} \) bins, this table summarizes each uncertainty by a representative number to demonstrate the relative contributions.

Uncertainty	\(1.9 < M_{jj} < 2.4 \) TeV	\(M_{jj} > 4.2 \) TeV
Statistical	0.9	47
Jet energy scale	2.0	2.6
Jet energy resolution (tails)	1.0	13
Jet energy resolution (core)	0.5	1.5
Unfolding, modeling	0.1	1.2
Unfolding, detector simulation	0.4	5.0
Pileup	1	1
Total experimental	2.4	49
QCD NLO scale (6 variations of \(\mu_R \) and \(\mu_F \))	\(+6.1\)	\(+18\)
PDF (CT10 eigenvectors)	\(-2.1\)	\(-6.3\)
Electroweak corrections	0.6	1.0
Non-perturbative effects (PYTHIA 8 vs. HERWIG++)	0.1	0.1
Total theoretical	6.1	18

For calculating the CI terms as well as the interference between the CI terms and QCD terms at LO and NLO in QCD the CIJET program version 1.0 [49] has been employed. The CI models at LO are cross-checked with the implementation in PYTHIA 8 and found to be consistent. The ADD predictions are calculated with PYTHIA 8.

5 Results

In Fig. 1, the measured \(\chi_{\text{dijet}} \) distributions, corrected for instrumental effects and normalized by their respective event counts, for all \(M_{jj} \) ranges, are compared to theoretical predictions. The data are well described by NLO calculations that incorporate EW corrections. No significant deviation from the SM predictions is observed. The distributions are also compared to predictions for SM+CI with \(\Lambda_{\text{LL}} \) (NLO) = 10 TeV and predictions for SM+ADD with \(\Lambda_T \) (GRW) = 7 TeV.

The measured \(\chi_{\text{dijet}} \) distributions are used to determine exclusion limits on CI models that include full NLO QCD corrections to dijet production induced by contact interactions calculated with CIJET. Limits are also extracted for CI models calculated at LO with CIJET and ADD models implemented in PYTHIA 8. To take into account the NLO QCD and EW corrections in these LO models, the cross section difference \(\sigma_{\text{NLO}+\text{EW corr}} - \sigma_{\text{LO}} \) is evaluated for each \(M_{jj} \) and \(\chi_{\text{dijet}} \) bin and added to the PYTHIA 8 +ADD and LO QCD+CI predictions. With this procedure, an SM+CI (SM+ADD) prediction is obtained where the QCD terms are corrected to NLO with
Figure 1: Normalized χ^2_{dijet} distributions for $19.7\,\text{fb}^{-1}$ of integrated luminosity at $\sqrt{s} = 8\,\text{TeV}$. The corrected data distributions are compared to NLO predictions with EW corrections (black dotted line). For clarity the individual distributions are shifted vertically by offsets indicated in parentheses. Theoretical uncertainties are indicated as a gray band. The error bars represent statistical and experimental systematic uncertainties combined in quadrature. The ticks on the error bars represent experimental systematic uncertainties only. The horizontal bars indicate the bin widths. The NLO QCD prediction without EW corrections is also shown (purple dashed dotted). The prediction for SM+CI with $\Lambda_{\text{LL}}^\dagger$ (NLO) = 10 TeV is shown (red solid line), and so is the prediction for SM+ADD with Λ_T (GRW) = 7 TeV (blue dashed line).

EW corrections while the CI (ADD) terms are calculated at LO. The variations due to theoretical uncertainties associated with scales and PDFs are applied only to the QCD terms of the prediction, thereby treating the effective new physics terms as fixed benchmark terms.

In Fig. 2, the χ^2_{dijet} distributions for the two highest M_{jj} ranges are compared to various CI and ADD models. Only the two highest M_{jj} ranges are used to determine limits of CI and ADD model parameters since the added sensitivity from the lower M_{jj} ranges is negligible.

We quantify the significance of a NP signal with respect to the SM-only hypothesis by means of the likelihood for the SM-only, L_{SM}, and the likelihood for the SM with new physics, $L_{\text{SM+NP}}$. The L_{SM} and $L_{\text{SM+NP}}$ are defined as products of Poisson likelihood functions for each bin in χ^2_{dijet} and for the two highest ranges of M_{jj}. The predictions for each M_{jj} range are normalized to the number of observed events in that range. The p-values for the two hypotheses, $p_{\text{SM+NP}}(q \geq q_{\text{obs}})$ and $p_{\text{SM}}(q \leq q_{\text{obs}})$, are based on the log-likelihood ratio $q = -2 \ln(L_{\text{SM+NP}}/L_{\text{SM}})$. They are evaluated from ensembles of pseudo-experiments, in which systematic uncertainties are taken into account via nuisance parameters which affect the χ^2_{dijet} distribution, varied within their Gaussian uncertainties when generating the distributions of q [50].
Figure 2: Normalized χ_{dijet}^2 distributions in the two highest M_{jj} ranges. The corrected data distributions are compared to NLO predictions with EW corrections (black dotted line). Theoretical uncertainties are indicated as gray bands. The error bars represent statistical and experimental systematic uncertainties combined in quadrature. The ticks on the error bars represent experimental systematic uncertainties only. The horizontal bars indicate the bin widths. The predictions for the various CI and ADD models are overlaid.

We note that there is an observed difference between the NLO QCD calculations with EW corrections and the NLO QCD-only hypothesis in the above defined likelihood ratio, which corresponds to a significance of 1.1 standard deviation.

The agreement of the data with the SM-only hypothesis is estimated by calculating $p_{SM}(q \leq q_{obs})$ for each M_{jj} bin separately. The largest difference is found in the M_{jj} range $3.0–3.6$ TeV with a significance of 1.4 standard deviations, corresponding to a probability of 17% to obtain a deviation from the SM-only hypothesis larger than the observed. Including the two highest M_{jj} bins in the likelihood reduces this significance to 0.9 standard deviations, corresponding to a probability of 39%.

A modified-frequentist approach [50–52] is used to set exclusion limits on the scale Λ. Limits on the SM+NP models are set based on the quantity $CL_s = p_{SM+NP}(q \geq q_{obs})/(1 - p_{SM}(q \leq q_{obs}))$, which is required to be 0.05 for a 95% confidence level (CL) exclusion. The observed and expected exclusion limits on different CI and ADD models obtained in this analysis at 95% CL are listed in Tables 2 and 3 respectively. Note that the CI predictions with exact NLO QCD corrections show a smaller enhancement at low χ_{dijet}^2 relative to QCD than do the corresponding LO CI predictions, as described in detail in Ref. [53], and therefore result in less stringent limits.

These results are also summarized in Fig. 3. The limits on M_S for the different n_{ED} ($n_{ED} \geq 2$) directly follow from the limit for Λ_T. As a cross check, the limits for the CI scale $\Lambda_{LL/RR}^+$ are also determined for the case in which the data are not corrected for detector effects and instead the simulation predictions are convoluted with the detector resolutions. The extracted limits are found to agree with the quoted ones within 1%. We also quantify the effect of the inclusion of EW corrections in the QCD prediction on the $\Lambda_{LL/RR}^+$ (LO) observed limit, which would be reduced from 10.3 TeV to 9.8 TeV if EW corrections were neglected.
Table 2: Observed and expected exclusion limits at 95% CL for various CI models. The uncertainties in the expected limits considering statistical and systematic effects for the SM-only hypothesis is also given.

Model	Observed (TeV)	Expected (TeV)
$\Lambda_{LL/RR}^+$ (LO)	10.3	9.8 ± 1.0
$\Lambda_{LL/RR}^-$ (LO)	12.9	12.4 ± 2.2
$\Lambda_{LL/RR}^+$ (NLO)	9.0	8.7 ± 0.8
$\Lambda_{LL/RR}^-$ (NLO)	11.7	11.4 ± 1.8
Λ_{VL} (NLO)	11.3	10.8 ± 1.1
Λ_{VV} (NLO)	15.2	14.6 ± 2.6
Λ_{AA} (NLO)	11.4	10.9 ± 1.1
Λ_{AA} (NLO)	15.1	14.5 ± 2.6
$\Lambda_{(V-A)}$ (NLO)	8.8	8.5 ± 1.1
$\Lambda_{(V-A)}$ (NLO)	8.9	8.6 ± 1.2

Figure 3: Observed (solid lines) and expected (dashed lines) 95% CL lower limits for the CI scales Λ for different compositeness models (NLO), for the ADD model scale with GRW parameterization Λ_T and for the ADD model scale with HLZ parameterization M_S. The gray bands indicate the corresponding uncertainties in the expected exclusion limits.
Table 3: Observed and expected exclusion limits at 95% CL for various ADD models in LO. The uncertainties in the expected limits considering statistical and systematic effects for the SM-only hypothesis is also given.

Model	Observed (TeV)	Expected (TeV)
ADD Λ_T (GRW)	7.1	6.8 ± 0.5
ADD M_S (HLZ) $n_{ED} = 2$	7.3	7.0 ± 0.5
ADD M_S (HLZ) $n_{ED} = 3$	6.0	5.7 ± 0.4
ADD M_S (HLZ) $n_{ED} = 4$	7.1	6.8 ± 0.5
ADD M_S (HLZ) $n_{ED} = 5$	7.8	7.5 ± 0.6
ADD M_S (HLZ) $n_{ED} = 6$	8.4	8.1 ± 0.6

6 Summary

Normalized dijet angular distributions have been measured with the CMS detector over a wide range of dijet invariant masses. No significant deviation from the standard model predictions is observed. Lower limits are set on the contact interaction scale for a variety of quark compositeness models that include NLO QCD corrections and on the cutoff scale for the ADD models with extra dimensions. The 95% confidence level lower limits on the contact interaction scale Λ are in the range 8.8–15.2 TeV. The improved description of the data resulting from the inclusion of the electroweak corrections yields approximately 5% higher limits. The lower limits on the cutoff scales in the ADD models, Λ_T (GRW) and M_S (HLZ), are in the range 6.0–8.4 TeV. These results represent the most stringent set of NLO limits on the contact interaction scale and the best limits on the benchmark ADD model to date.

Acknowledgments

We would like to thank S. Dittmaier and A. Huss for providing us with the electroweak correction factors. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).
References

[1] UA1 Collaboration, “Angular distributions for high-mass jet pairs and a limit on the energy scale of compositeness for quarks from the CERN pp collider”, *Phys. Lett. B* **177** (1986) 244, [doi:10.1016/0370-2693(86)91065-8].

[2] K. O., “Quantum theory and five-dimensional theory of relativity”, *Z. Phys.* **37** (1926) 895, [doi:10.1007/BF01397481].

[3] E. Eichten, K. D. Lane, and M. E. Peskin, “New Tests for Quark and Lepton Substructure”, *Phys. Rev. Lett.* **50** (1983) 811, [doi:10.1103/PhysRevLett.50.811].

[4] E. Eichten, I. Hinchliffe, K. D. Lane, and C. Quigg, “Super Collider Physics”, *Rev. Mod. Phys.* **56** (1984) 579, [doi:10.1103/RevModPhys.56.579].

[5] CDF Collaboration, “Measurement of Dijet Angular Distributions by the Collider Detector at Fermilab”, *Phys. Rev. Lett.* **77** (1996) 5336, [doi:10.1103/PhysRevLett.77.5336] [arXiv:hep-ex/9609011] [Erratum doi:10.1103/RevModPhys.58.1065].

[6] D0 Collaboration, “Measurement of dijet angular distributions at $\sqrt{s} = 1.96$ TeV and searches for quark compositeness and extra spatial dimensions”, *Phys. Rev. Lett.* **103** (2009) 191803, [doi:10.1103/PhysRevLett.103.191803] [arXiv:0906.4819].

[7] D0 Collaboration, “High-p_T jets in $\bar{p}p$ collisions at $\sqrt{s} = 630$ GeV and 1800 GeV”, *Phys. Rev. D* **64** (2001) 032003, [doi:10.1103/PhysRevD.64.032003] [arXiv:hep-ex/0012046].

[8] CMS Collaboration, “Search for quark compositeness in dijet angular distributions from pp collisions at $\sqrt{s} = 7$ TeV”, *J. High Energy Phys.* **05** (2012) 055, [doi:10.1007/JHEP05(2012)055].

[9] CMS Collaboration, “Measurement of Dijet Angular Distributions and Search for Quark Compositeness in pp Collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* **106** (2011) 201804, [doi:10.1103/PhysRevLett.106.201804].

[10] CMS Collaboration, “Search for Quark Compositeness with the Dijet Centrality Ratio in pp Collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. Lett.* **105** (2010) 262001, [doi:10.1103/PhysRevLett.105.262001].

[11] ATLAS Collaboration, “ATLAS search for new phenomena in dijet mass and angular distributions using pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **01** (2013) 029, [doi:10.1007/JHEP01(2013)029] [arXiv:1210.1718].

[12] ATLAS Collaboration, “Search for New Physics in Dijet Mass and Angular Distributions in pp Collisions at $\sqrt{s} = 7$ TeV Measured with the ATLAS Detector”, *New J. Phys.* **13** (2011) 053044, [doi:10.1088/1367-2630/13/5/053044] [arXiv:1103.3864].

[13] CMS Collaboration, “Search for contact interactions using the inclusive jet p_T spectrum in pp collisions at $\sqrt{s} = 7$ TeV”, *Phys. Rev. D* **87** (2013) 052017, [doi:10.1103/PhysRevD.87.052017].

[14] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity”, *Phys. Rev. D* **59** (1999) 086004, [doi:10.1103/PhysRevD.59.086004] [arXiv:hep-ph/9807344].
[15] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, “The hierarchy problem and new dimensions at a millimeter”, Phys. Lett. B 429 (1998) 263, doi:10.1016/S0370-2693(98)00466-3, arXiv:hep-ph/9803315.

[16] G. F. Giudice, R. Rattazzi, and J. D. Wells, “Quantum gravity and extra dimensions at high-energy colliders”, Nucl. Phys. B 544 (1999) 3, doi:10.1016/S0550-3213(99)00444-9.

[17] T. Han, J. D. Lykken, and R. Zhang, “Kaluza-Klein states from large extra dimensions”, Phys. Rev. D 59 (1999) 105006, doi:10.1103/PhysRevD.59.105006.

[18] J. Hewett, “Indirect collider signals for extra dimensions”, Phys. Rev. Lett. 82 (1999) 4765, doi:10.1103/PhysRevLett.82.4765.

[19] K. Cheung and G. Landsberg, “Kaluza-Klein states of the standard model gauge bosons: constraints from high energy experiments”, Phys. Rev. D 65 (2002) 076003, doi:10.1103/PhysRevD.65.076003, arXiv:hep-ph/0110346.

[20] CMS Collaboration, “Search for large extra dimensions in dimuon and dielectron events in pp collisions at $\sqrt{s} = 7$ TeV”, Phys. Lett. B 711 (2012) 15, doi:10.1016/j.physletb.2012.03.029.

[21] ATLAS Collaboration, “Search for contact interactions and large extra dimensions in the dilepton channel using proton-proton collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector”, (2014). arXiv:1407.2410v2.

[22] CMS Collaboration, “Search for signatures of extra dimensions in the diphoton mass spectrum at the Large Hadron Collider”, Phys. Rev. Lett. 108 (2011) 111801, doi:10.1103/PhysRevLett.108.111801.

[23] ATLAS Collaboration, “Search for extra dimensions in diphoton events using proton-proton collisions recorded at $\sqrt{s} = 7$ TeV with the ATLAS detector at the LHC”, New J. Phys. 15 (2013) 043007, doi:10.1088/1367-2630/15/4/043007, arXiv:1210.8389.

[24] ATLAS Collaboration, “Search for quark contact interactions in dijet angular distributions in pp collisions at $\sqrt{s} = 7$ TeV measured with the ATLAS detector”, Phys. Lett. B 694 (2011) 327, doi:10.1016/j.physletb.2010.10.021, arXiv:1009.5069.

[25] R. Franceschini et al., “LHC bounds on large extra dimensions”, JHEP 05 (2011) 092, doi:10.1007/JHEP05(2011)092, arXiv:1101.4919.

[26] CMS Collaboration, “The CMS experiment at the CERN LHC”, JINST 3 (2008) S08004, doi:10.1088/1748-0221/3/08/S08004.

[27] CMS Collaboration, “Particle-Flow Event Reconstruction in CMS and Performance for Jets, Taus, and E_{T}^{miss}”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, 2009.

[28] CMS Collaboration, “Commissioning of the Particle-flow Event Reconstruction with the first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary CMS-PAS-PFT-10-001, 2010.

[29] M. Cacciari, G. P. Salam, and G. Soyez, “The anti-k_t jet clustering algorithm”, JHEP 04 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.
[30] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet user manual”, *Eur. Phys. J. C* 72 (2012) 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

[31] CMS Collaboration, “Determination of jet energy calibration and transverse momentum resolution in CMS”, *J. Instrum.* 6 (2011) P11002, doi:10.1088/1748-0221/6/11/P11002.

[32] CMS Collaboration, “Jets in 0.9 and 2.36 TeV pp Collisions”, CMS Physics Analysis Summary CMS-PAS-JME-10-001, 2010.

[33] G. d’Agostini, “A multidimensional unfolding method based on Bayes’ theorem”, *Nucl. Instrum. Meth. A* 362 (1995) 487, doi:10.1016/0168-9002(95)00274-X.

[34] T. Adye, “Unfolding algorithms and tests using RooUnfold”, in *Proceedings of the PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding*, p. 313. CERN, Geneva, Switzerland, January 17-20, 2011. arXiv:1105.1160, doi:10.5170/CERN-2011-006.

[35] S. Gieseke et al., “Herwig++ 2.5 release note”, (2011). arXiv:1102.1672.

[36] M. Bähr et al., “Herwig++ physics and manual”, *Eur. Phys. J. C* 58 (2008) 639, doi:10.1140/epjc/s10052-008-0798-9, arXiv:0803.0883.

[37] M. J. Oreglia, “A study of the reactions $\psi' \rightarrow \gamma \gamma \psi$” PhD thesis, Stanford University, 1980. SLAC Report SLAC-R-236, see Appendix D.

[38] CMS Collaboration, “8 TeV jet energy corrections and uncertainties based on 19.8 fb$^{-1}$ of data in CMS”, CMS Detector Performance Summary DP-2013-033, 2013.

[39] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* 506 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

[40] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1”, *Comput. Phys. Commun.* 178 (2008) 852, doi:10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[41] CMS Collaboration, “Measurement of the inelastic proton-proton cross section at $\sqrt{s} = 7$ TeV”, *Phys. Lett. B* 722 (2013) 5, doi:10.1016/j.physletb.2013.03.024.

[42] Z. Nagy, “Three jet cross-sections in hadron hadron collisions at next-to-leading order”, *Phys. Rev. Lett.* 88 (2002) 122003, doi:10.1103/PhysRevLett.88.122003, arXiv:hep-ph/0110315.

[43] Z. Nagy, “Next-to-leading order calculation of three jet observables in hadron hadron collision”, *Phys. Rev. D* 68 (2003) 094002, doi:10.1103/PhysRevD.68.094002, arXiv:hep-ph/0307268.

[44] T. Kluge, K. Rabbertz, and M. Wobisch, “fastNLO: Fast pQCD calculations for PDF fits”, in *14th International Workshop on Deep-Inelastic Scattering (DIS 2006)*, p. 483. Tsukuba, Japan, Apr 20-24, April, 2006. arXiv:hep-ph/0609285, doi:10.1142/9789812706706_0110.

[45] D. Britzger, K. Rabbertz, F. Stober, and M. Wobisch, “New features in version 2 of the fastNLO project”, in *20th International Workshop on Deep-Inelastic Scattering and Related Subjects (DIS 2012)*, p. 217. Bonn, Germany, March 26-30, 2012. arXiv:1208.3641, doi:10.3204/DESY-PROC-2012-02/165.
A EW corrections to dijet angular distributions

Figure 4 shows the EW corrections to the dijet angular distributions. The corrections are based on the same calculations and tools used to derive the EW corrections to inclusive jet and dijet production cross sections published in Ref. [46]. The authors of Ref. [46] have provided the exact numbers to be applied to the dijet angular distribution as presented in this paper. The EW corrections change the predictions of the normalized χ_{dijet} distributions by up to 4% (14%) at low (high) M_{jj}.

[46] S. Dittmaier, A. Huss, and C. Speckner, “Weak radiative corrections to dijet production at hadron colliders”, JHEP 11 (2012) 095, doi:10.1007/JHEP11(2012)095, arXiv:1210.0438

[47] A. Banfi, G. P. Salam, and G. Zanderighi, “Phenomenology of event shapes at hadron colliders”, JHEP 06 (2010) 038, doi:10.1007/JHEP06(2010)038

[48] H.-L. Lai et al., “New parton distributions for collider physics”, Phys. Rev. D 82 (2010) 074024, doi:10.1103/PhysRevD.82.074024, arXiv:1007.2241.

[49] J. Gao et al., “Next-to-leading QCD effect to the quark compositeness search at the LHC”, Phys. Rev. Lett. 106 (2011) 142001, doi:10.1103/PhysRevLett.106.142001, arXiv:1101.4611.

[50] R. D. Cousins and V. L. Highland, “Incorporating systematic uncertainties into an upper limit”, Nucl. Instrum. Meth. A 320 (1992) 331, doi:10.1016/0168-9002(92)90794-5.

[51] T. Junk, “Confidence level computation for combining searches with small statistics”, Nucl. Instrum. Meth. A 434 (1999) 435, doi:10.1016/s0168-9002(99)00498-2, arXiv:hep-ph/9811356.

[52] A. L. Read, “Presentation of search results: the CL_s technique”, J. Phys. G 28 (2002) 2693, doi:10.1088/0954-3899/28/10/313.

[53] J. Gao, C. S. Li, and C. P. Yuan, “NLO QCD corrections to dijet production via quark contact interactions”, JHEP 07 (2012) 037, doi:10.1007/JHEP07(2012)037, arXiv:1204.4773.
Figure 4: Electroweak correction factors versus χ_{dijet} for each M_{jj} range, derived by the authors of Ref. [46] at 8 TeV c.m. energy with $\langle p_{T1,2} \rangle$ as choice for the μ_R and μ_F scales and the CT10-NLO PDF set.
B The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, M. Friedl, R. Frühwirth\(^1\), V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\(^1\), W. Kiesenhofer, V. Knünz, M. Krämer\(^1\), I. Krätschmer, D. Liko, I. Mikulec, D. Rabady\(^2\), B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\(^1\)

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, B. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, J. Lauwers, S. Luyckx, S. Ochesanu, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D’Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè\(^2\), T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang, F. Zenoni

Ghent University, Ghent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Crucy, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\(^3\), G. Bruno, R. Castello, A. Caudron, L. Cearb, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco\(^4\), J. Hollar, A. Jafari, P. Jez, M. Komm, V. Lemaître, C. Nuttens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov\(^5\), L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebergs, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, C. Mora Herrera, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato\(^6\), A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\(^6\), A. Vilela Pereira
Universidade Estadual Paulista a, Universidade Federal do ABC b, São Paulo, Brazil
C.A. Bernardesb, S. Dograa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb, P.G. Mercadanteb, S.F. Novaesa, Sandra S. Padulaa

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev2, P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, T. Cheng, R. Du, C.H. Jiang, R. Plestina7, F. Romeo, J. Tao, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Q. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.8

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran9, S. Elgammal10, M.A. Mahmoud11, A. Radi12,13

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
J. Talvitie, T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri,
T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing

University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V. Blobel, M. Centis Vignali, A.R. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, A. Perieanu, N. Pietsch, J. Poehlsen, T. Poelhsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen, A. Vanhoefer

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. Frensch, M. Giffels, A. Gilbert, F. Hartmann², T. Hauth², U. Husemann, I. Katkov⁵, A. Kornmayer², E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, T. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Agapitos, S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath¹⁶, F. Sikler, V. Veszpremi, G. Vesztergombi¹⁷, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi¹⁸, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
A. Makovec, P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, R. Gupta, U.Bhawandeep, A.K. Kalsi, M. Kaur, R. Kumar, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty², L.M. Pant, P. Shukla, A. Topkar
N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
M. Gabusia,b, S.P. Rattia,b, V. Rea, C. Riccardia,b, P. Salvinia, P. Vituloa,b

INFN Sezione di Perugia a, Università di Perugia b, Perugia, Italy
M. Biasina,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, A. Sahaa, A. Santocchiaa, G. Bagliesia, A. Staianoa,b,25 A. T. Serbana, M. Costaa, F. Cavallaria, A. Schizzia, A. T. Serbana, M. Casarsaa

INFN Sezione di Roma a, Università di Roma b, Roma, Italy
L. Baronea,b, F. Cavallaria, G. D’imperioa,b, D. Del Rea,b, M. Diemoza, C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiansa, F. Michellia,b,2, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b, C. Rovellia, F. Santanastasiob, A. Venturia, P.G. Verdinia, C. Vernieria,c

INFN Sezione di Torino a, Università di Torino b, Università del Piemonte Orientale (Novara) c, Torino, Italy
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casascoa,b,2, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c,2, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa,b, L. Soﬁia,b,2, P. Traczyka,b

INFN Sezione di Trieste a, Università di Trieste b, Trieste, Italy
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, A. Schizzia,b, T. Umera,b, A. Zanettia,b

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyoungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonbuk National University, Jeonju, Korea
T.J. Kim

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo, I. Yu
Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
E. Casimiro Linares, H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, A. Hernandez-Almada, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorni, W.A. Khan, T. Khurshid, M. Shoaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, L. Lloret Iglesias, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palchik, V. Perelygin, M. Savina, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobiev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, M. Perfilov, S. Petrushanko, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Dominguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, P. Bloch, A. Boci, A. Bonato, O. Bondu, C. Botta, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, E. Di Marco, M. Dobson, M. Dordevic, B. Dorney, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Mooritgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petruchiani, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, Y. Takahashi, D. Treille, A. Tsiour, G.I. Veres, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner
Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, M.A. Buchmann, B. Casal, N. Chanon, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, J. Hoss, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, M. Masciovecchio, D. Meister, N. Mohr, C. Nägeli, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, B. Millan Mejias, J. Ngadiuba, P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand
B. Asavapibhop, G. Singh, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci, S. Cerci, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut, K. Ozdemir, S. Ozturk, A. Polatoz, D. Sunar Cerci, B. Tali, H. Topakli, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, B. Isildak, G. Karapinar, K. Ocalan, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E.A. Albayrak, E. Gülmez, M. Kaya, O. Kaya, T. Yetkin

Istanbul Technical University, Istanbul, Turkey
K. Cankocak, F.I. Vardarlı

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold, S. Paramesvaran, A. Poll, T. Sakuma, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyan, G. Hall,
G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee, S.C. Zenz

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, P. Lawson, C. Richardson, J. Rohlf, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharyya, G. Christopher, D. Cutts, Z. Demiragli, N. Dhingra, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sinthuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, O.R. Long, A. Luthra, M. Malberti, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, Santa Barbara, La Jolla, USA
J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, A. Holzner, R. Kelley, D. Klein, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, M. Tadel, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, V. Dutta, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West, J. Yoo

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, J.R. Vlimant, R. Wilkinson, S. Xie, R.Y. Zhu

Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, B. Carlson, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev
University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, M. Krohn, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chaves, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdiick, A. Beretvas, J. Berryhill, P.C. Bhat, G. Bolla, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, Y. Gao, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outschoorn, S. Maruyama, D. Mason, P. McBride, P. Merkel, K. Mishra, S. Mrenna, Y. Musienko, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, M. Carver, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypros, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, M. Snowball, D. Sperka, J. Yelton, M. Zakaria

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
B. Bilki, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, K. Yi

Johns Hopkins University, Baltimore, USA
B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, M. Swartz
The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, R.P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, N. Skhirtladze, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, A. Belloni, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow, M. Zvada

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.-J. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mcizia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, M. Planer, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, A. Hart, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, J. Hardenbrook, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland, C. Tully, J.S. Werner, A. Zuranski
A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, D. Taylor, P. Verwilligen, C. Vuosalo, N. Woods

†: Deceased
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at British University in Egypt, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at Ain Shams University, Cairo, Egypt
13: Now at Sultan Qaboos University, Muscat, Oman
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
17: Also at Eötvös Loránd University, Budapest, Hungary
18: Also at University of Debrecen, Debrecen, Hungary
19: Also at University of Visva-Bharati, Santiniketan, India
20: Now at King Abdulaziz University, Jeddah, Saudi Arabia
21: Also at University of Ruhuna, Matara, Sri Lanka
22: Also at Isfahan University of Technology, Isfahan, Iran
23: Also at University of Tehran, Department of Engineering Science, Tehran, Iran
24: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
25: Also at Università degli Studi di Siena, Siena, Italy
26: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
27: Also at Purdue University, West Lafayette, USA
28: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
29: Also at Institute for Nuclear Research, Moscow, Russia
30: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
31: Also at California Institute of Technology, Pasadena, USA
32: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
33: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
34: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
35: Also at University of Athens, Athens, Greece
36: Also at Paul Scherrer Institut, Villigen, Switzerland
37: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
38: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
39: Also at Gaziosmanpasa University, Tokat, Turkey
40: Also at Adiyaman University, Adiyaman, Turkey
41: Also at Cag University, Mersin, Turkey
42: Also at Anadolu University, Eskisehir, Turkey
43: Also at Ozyegin University, Istanbul, Turkey
44: Also at Izmir Institute of Technology, Izmir, Turkey
45: Also at Necmettin Erbakan University, Konya, Turkey
46: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
47: Also at Marmara University, Istanbul, Turkey
48: Also at Kafkas University, Kars, Turkey
49: Also at Yildiz Technical University, Istanbul, Turkey
50: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
51: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
52: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
53: Also at Argonne National Laboratory, Argonne, USA
54: Also at Erzincan University, Erzincan, Turkey
55: Also at Texas A&M University at Qatar, Doha, Qatar
56: Also at Kyungpook National University, Daegu, Korea