Challenging Photon Mass: from Scalar Quantum Electrodynamics to String Theory

Lukasz Andrzej Glinka*
B.M. Birla Science Centre, Hyderabad, India
*Corresponding author: laglinka@gmail.com; lukaszglinka@wp.eu
Received May 24, 2014; Revised June 02, 2014; Accepted June 09, 2014

Abstract A massless photon, originated already through the Maxwell theory of electromagnetism, is one of the basic paradigms of modern physics, ideally supported throughout both the quantum electrodynamics and the Higgs mechanism of spontaneous symmetry breaking which lays the foundations of the Standard Model of elementary particles and fundamental interactions. Nevertheless, the physical interpretation of the optical experimental data, such like observations of total internal reflection in the Goos–Hänchen effect, concludes a photon mass. Is, therefore, light diversified onto two independent species - gauge photons and optical photons? Can such a state of affairs be consistently described through a unique theoretical model? In this paper, two models of a photon mass, arising from the scalar quantum electrodynamics with the Higgs potential, are discussed. The first scenario leads to a neutral scalar mass estimable throughout the experimental limits on a photon mass. In the modified mechanism, a neutral scalar mass in not affected throughout a photon mass and is determinable through the experimental data, while a massless dilaton is present and a non-kinetic massive vector field effectively results in the string theory of non-interacting invariant both a free photon and a neutral scalar, and the Aharonov–Bohm effect is considered. The Markov hypothesis on maximality of the Planck mass is applied.

Keywords: scalar quantum electrodynamics, Higgs potential, scalar field, photon mass, dilaton, non-kinetic vector field, Aharonov–Bohm effect, Markov hypothesis, invariant particles, string theory

Cite This Article: Lukasz Andrzej Glinka, “Challenging Photon Mass: from Scalar Quantum Electrodynamics to String Theory.” Applied Mathematics and Physics, vol. 2, no. 3 (2014): 103-111. doi: 10.12691/amp-2-3-6.

1. Introduction

The basic paradigm of physics is a massless photon, already established through the Maxwell theory of electromagnetism, Cf. the Refs. [1-15], solicited through quantum electrodynamics, Cf. the Refs. [16-26], the basis of quantum optics, Cf. the Refs. [27-38], and more general gauge field theories, Cf. the Refs. [39-49], which lay the foundations of the Standard Model of elementary particles and fundamental interactions, wherein a massless photon leads to the Higgs particle equiping the weak gauge fields, W± and Z0 bosons, in a mass due to the spontaneous symmetry breaking mechanism [50,51,52]. Although a photon mass was early considered [53-62], this idea was explicitly implemented into Maxwell's electrodynamics through Alexandru Proca [63,64], whose academic mentor Louis De Broglie made the grounds for this idea [65-78]. Furthermore, the physical interpretation of the optical experimental data, such like the Goos–Hänchen effect of the beam shift [79], through observations of total internal reection [80], concludes a photon mass. This aspect was discussed in the context of quantized radiation and generalized to quantum theory of massive spin-1 photons [81], and then suggested to be untenable [82]. Furthermore, many authors have considered the various aspects of a photon mass [83-185].

In modern physics, the Higgs potential, well-known in high energy physics, Cf. the Refs. [186-193], gives a particle mass. Scalar quantum electrodynamics, Cf. the Refs. [194,195,196,197,198], where a photon interacts with a charged scalar boson, exhibits this mechanism. It’s both origin and the most remarkable physical application is the Ginzburg (Landau model [199], a rising from L.D. Landau's model of the second order phase transitions [200] and formulating superconductivity near the critical temperature as a charged Bose {Einstein condensate, wherein for the 2 + 1-dimensional case, in the type-II superconductors, the magnetic flux is transported throughout the Abrikosov vortices carrying super current [201]. These vortices are point-like objects having a non-trivial topology of non-contractible circles created throughout the scalar fields [202].

Following the monograph [203], we consider two models based on the scalar quantum electrodynamics. The first one is based on the Higgs potential, whereas the alternative one deals with the modified Higgs potential, but both them involve existence of a neutral scalar boson and a dilaton, and differ from the Higgs mechanism through the resulting photon mass and a different scalar field mass. First, this mass is estimated throughout the present-day experimental limits on a photon mass, and
next remains a free parameter and has no relation to a photon mass. The Markov hypothesis \cite{204,205}, on the maximality of Planck’s mass $M_p = \sqrt{\hbar c/G}$, is applied. In the second case, the Aharonov–Bohm effect\cite{206} is included, and the effective string theory of invariant non-interacting both a free photon and a neutral scalar is obtained.

2. Higgs Potential

Scalar quantum electrodynamics is described through the Lagrangian

$$L = \frac{\hbar c}{2} (D^\mu \Phi)^\dagger D^\mu \Phi - V(\Phi) - \frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu} - j^\mu A_\mu,$$

where h is the Planck constant and $c = 1/\sqrt{\hbar \mu_0}$ is the speed of light in vacuum, with the magnetic permittivity of free space μ_0 and the electric permeability of free space ϵ_0. $D^\mu \Phi = \partial^\mu \Phi + e A^\mu \Phi$, where e is the elementary charge and $\partial^\mu = [\partial^\mu, c \nabla]_+$ is a covariant derivative of a charged (complex) scalar field $\Phi(x),$ $\Phi^\dagger \Phi = \Phi^\dagger \Phi = \partial^\mu \Phi - \partial^\nu A^\mu \Phi$ is the Faraday tensor of electromagnetic field, $F_{\mu\nu} = \eta_{\mu\nu} \eta_{\alpha\beta} F^{\alpha\beta}$, and the photon is an abelian gauge field $A_\mu \epsilon^\alpha$, $\eta_{\mu\nu}$ is a diagonal (1, -1, -1, -1) is the Minkowski metric.

Moreover, Φ is expressed through neutral (real) scalar fields $\phi(x)$

$$\Phi = \phi_1(x) + i \phi_2(x),$$

which have the vacuum expectation values

$$\langle 0 | \phi_1(x) | 0 \rangle = \phi_0, \langle 0 | \phi_2(x) | 0 \rangle = 0,$$

where ϕ_0 is a real constant field and $| 0 \rangle$ the static Fock vacuum state. The Lagrangian (1) is invariant under the U(1) group transformations

$$\Phi' = e^{-i\theta} \Phi, \Phi^\dagger' = e^{i\theta} \Phi^\dagger,$$

$$A'_\mu = A_\mu + \frac{\hbar}{e} \partial^\mu \theta, A'^\mu = A^\mu - \frac{\hbar}{e} \partial^\mu \theta,$$

where $\theta(x)$ is a local phase, and the conserved Noether current is

$$j^\mu = i e c (\Phi^\dagger \partial^\mu \Phi - (\partial^\mu \Phi^\dagger) \Phi), \partial^\mu j^\mu = 0.$$

Let us consider the following effective O(2)-symmetric Higgs potential,

$$V(\Phi) = \frac{m^2 c^3}{2h} |\Phi|^2 + \frac{\hbar c}{4} |\Phi|^4,$$

where m is a mass parameter, g is a coupling constant, and the decomposition

$$\phi_1(x) = \phi_0 + \chi(x), \langle 0 | \chi(x) | 0 \rangle = 0,$$

$$\phi_2(x) = \phi(x), \langle 0 | \phi(x) | 0 \rangle = 0,$$

one receives the energy

$$\langle 0 | V(\Phi) | 0 \rangle = m^2 c^3 + \frac{\hbar c}{4} \phi_0^2 = \epsilon(\phi_0)$$

whose extremal values are established through the condition

$$\frac{d\epsilon(\phi_0)}{d\phi_0} = \frac{m^2 c^3}{h} \phi_0 + g c \phi_0^3 = 0,$$

which has two solutions, first $\phi_0 = 0$ for which $\epsilon(\phi_0) = 0$, and

$$\phi_0^2 = \frac{1}{g} \frac{m^2 c^3}{h^2} \phi_0^2 = \frac{1}{g^2} \frac{m^2 c^3}{h^2} = \frac{1}{4} \frac{m^4 c^5}{h^3}.$$

The non-trivial solution is physical if and only if $g > 0, m^2 > -m_0^2, m_0 > 0$.

In result, the Lagrangian (1) becomes

$$L = \frac{\hbar c}{2} (\frac{m_0 c^2}{h^2} - \phi_0^2 \phi_0^2 + \frac{h c}{2} \theta \chi \theta \chi +$$

$$-\frac{h c g}{4} \phi_0^2 \chi^2 - \frac{h c g}{4} \phi_0 \chi \phi_0 \chi^2 $$

$$+ \epsilon c \chi \chi \phi_0 A_\mu - \epsilon c \phi_0 A_\mu + \frac{m_0 c^2}{h^2} - \frac{h c g}{4} \chi \phi_0 \chi A_\mu - \frac{1}{4\mu_0} F_{\mu\nu} F^{\mu\nu}$$

$$+ \frac{g c}{2} A_\mu A^\mu + \frac{g c}{2} \phi_0 A_\mu A^\mu - \frac{g c}{2} \phi_0 A_\mu A^\mu$$

and its massive part written in the standard form

$$L_m = \frac{e^2 m_0^2 c^3}{2h^3} A_\mu A^\mu - \frac{m_0^2 c^3}{2h} \chi^2 - \frac{m_0^2 c^3}{2h} \phi_0^2,$$

allows to establish the masses

$$m_A = \frac{h c}{g} \phi_0, m_\phi = \sqrt{g m_A^2 - m_0^2}, m_\chi = \sqrt{3g m_A^2 - m_0^2}.$$

Application of the Markov hypothesis gives

$$\phi_0 \leq \frac{1}{\sqrt{g}} \frac{c^3}{h G}, m_A \leq \frac{\hbar c}{\sqrt{g}} G, g \geq 1.$$

The relations (14) lead to the coupling constant

$$g = \frac{m_0^2 - m_\chi^2}{2 m_0^4}.$$

Moreover, since a mass is physical when is a positive real number, one has

$$g m_A^2 - m_\chi^2 \geq 0, 3 g m_A^2 - m_0^2 \geq 0.$$

104

Applied Mathematics and Physics
and, therefore, one receives the lower bound for the coupling constant
\[g \geq \frac{m_0^2}{m_A^2}, \]
which applied to (16), leads to the bounds
\[m_0 \leq \sqrt{\frac{m_X^2 - m_\phi^2}{2}}, \quad m \geq \sqrt{\frac{m_\phi^2 - m_\psi^2}{2}}, \]
and, through the Markov hypothesis, the squared-mass difference satisfies
\[\Delta m_{m\chi}^2 = m_X^2 - m_\phi^2 \leq \frac{2hc}{G}. \]

Also, the field equations for the Lagrangian (12) are
\[\Box A^\mu - \partial^\mu (\partial_\nu A^\nu) = -\frac{\mu_\phi e^c}{\hbar} (\chi^2 + \phi^2 + \frac{2mc}{\hbar} \chi) \]
\[+ \frac{m_\phi^2 e^c}{\hbar^2} A^\mu + \frac{\mu_\phi e^c}{\hbar} (\phi^2 - \chi^2 \phi), \]
\[+ \frac{2}{\hbar^2} \phi A^\mu A_\mu - \frac{e}{\hbar} \partial^\mu \chi \phi^2 - \frac{e}{\hbar} \partial^\mu \phi A_\mu \]
\[+ \frac{mc}{\hbar} \phi^2 + g \frac{2mc}{\hbar} \chi^2 + g \chi^3 \]
\[- \frac{gmc}{\hbar} \phi^2 - g \chi \phi^2 + \frac{e^2}{\hbar^2} \chi A^\mu A_\mu + \frac{e^2 mc}{\hbar^2} A^\mu A_\mu \]
\[+ \frac{e}{\hbar} \partial^\mu \chi A_\mu + \frac{e}{\hbar} \partial^\mu \phi A_\mu. \]

Where \(\Box = \partial^\mu \partial_\mu = \frac{1}{c^2} \partial_t^2 - \nabla^2 \) is the D'Alembert operator.

In the case of the non-trivial solution (10),
\[m_A = \frac{m_0}{\sqrt{3g}}, m_\phi = 0, m_X = \sqrt{2}m_0, \]
are the ground state masses. In this case, the coupling constant is
\[g = \frac{m_0^2}{m_A^2}. \]

Similarly, for \(\phi = 0 \), one obtains
\[m_A = 0, m_\phi = im_0, m_X = im_0 \]
that is a massless photon and two scalar tachyons, whereas \(g \) is undetermined throughout the masses. Interestingly, for
\[\phi_0 = \frac{1}{\sqrt{3g}} \frac{mc}{\hbar}, \]
one gets the masses
\[m_A = \frac{m_0}{\sqrt{3g}}, m_\phi = i \frac{\sqrt{5}}{3} m_0, m_X = 0, \]
that is a massive photon, a scalar tachyon, and a massless scalar. Then, the coupling constant is
\[g = \frac{m_0^2}{2m_A^2}. \]

A constant term in a Lagrangian does not affect the resulting field equations.

Interestingly, when the constant term of (12) vanishes, then
\[\varphi_0 = \frac{2mc}{\sqrt{g}} \]

In this case, the masses (14) become
\[m_A = \frac{\sqrt{2}m_0, m_\phi = m_0, m_X = \sqrt{5}m_0, \]
and, in the light of the Markov hypothesis, one has
\[m_0 \geq \frac{g}{\sqrt{2} \sqrt{5}} \frac{\hbar c}{G}, m_0 \leq 1 \frac{\sqrt{2} \sqrt{5}}{G}, g \leq \frac{2}{5}. \]

Also, for this case the coupling constant is
\[g = \frac{2m_A^2}{m_A^2}, \]
whereas the relation (20) gives
\[m_0 \leq \frac{1}{\sqrt{2} \sqrt{5}} \frac{\hbar c}{G}, \]
and, therefore, without loss of generality, one can take the value
\[m_0 = \frac{1}{\sqrt{2} \sqrt{5}} \frac{\hbar c}{G}. \]

which implies the following values of the masses
\[m_A = \frac{\hbar c}{\sqrt{2} \sqrt{5} G}, m_\phi = \frac{\hbar c}{\sqrt{2} \sqrt{5} G}, m_X = \frac{\hbar c}{\sqrt{2} \sqrt{5} G}. \]

The Markov hypothesis for \(m_\chi \) is broken, that is \(\chi \) is undetectable, while \(\phi \) can be regarded as the Higgs particle. For \(m_\chi \), one has \(g \geq 1 \), where
\[g = \frac{\hbar c}{G} \frac{1}{m_A^2}. \]

3. Modified Higgs Potential

Let us consider the O(2)-invariant modified Higgs potential
\[V(|\Phi|) = \frac{m_\phi^2}{2\hbar} (|\Phi| - |\Phi_0|)^2 + \hbar c \frac{\bar{\chi}}{4} (|\Phi| - |\Phi_0|)^4, \]
where \(\Phi_0 = \langle \Phi|\Phi_0 \rangle \). Considering the decomposition

\[m_A = \frac{m_0}{\sqrt{3g}}, m_\phi = i \frac{\sqrt{5}}{3} m_0, m_X = 0, \]

\[g = \frac{m_0^2}{2m_A^2}. \]
\[\Phi(x) = \chi_0 + \chi(x), \]
\[\langle 0 | \chi(x) | 0 \rangle = 0, |\Phi_0| = \chi_0 \] (39)

the potential (38) becomes
\[V(\Phi) = V(\chi) = \frac{m^2 c^3}{2h} \chi^2 - \frac{hc}{4} g \chi^4, \] (40)

and has the extremal values at \(\chi_0 = 0 \) and
\[\chi_0^2 = -\frac{m^2 c^2}{h^2 g}, \] (41)

and, for consistency, either \(\chi \) must be a tachyon, that is \(m^2 = -m_0^2 \) with \(m_0 > 0 \), or the coupling constant \(g < 0 \).

Let us present \(\Phi(x) \) through the polar decomposition
\[\Phi(x) = |\Phi(x)| e^{i\theta(x)}, \] (42)

\[\theta(x) = \arg(\Phi(x)) = \arctan \left(\frac{\phi_2(x)}{\phi_1(x)} \right) + 2\pi q, q \in \mathbb{Z}. \] (43)

where \(\theta(x) \) is a local phase, and we applied (2). In the most general situation
\[\theta(x) = \theta(x^\mu) = \int x^\mu d\gamma k_\mu(x^\nu), \] (44)

where \(x^\mu = [ct; x_i] \) is the position four-vector,
\[k_\mu = \left[\frac{\omega}{c}, k_i \right] \] is the wave four-vector, \(\omega \) is an oscillation frequency, \(k_i \) is a wave vector.

Applying the formulas (39), (43) and (44), one obtains
\[\phi_1(x) = \frac{\pm \left[\chi_0 + \chi(x) \right]}{\sqrt{1 + \tan^{2} \left(\int x^\mu d\gamma k_\mu(x^\nu) - 2\pi q \right)}} \] (45)

\[\phi_2(x) = \frac{\left[\chi_0 + \chi(x) \right]}{\sqrt{1 + \tan^{2} \left(\int x^\mu d\gamma k_\mu(x^\nu) - 2\pi q \right)}}. \] (46)

Considering the theory (1) according to the relations (39), (42) and (44), one obtains
\[\partial^\mu \Phi = \left(\partial^\mu \chi + i \chi k^\mu \right) e^{i\theta} \theta_\mu \theta_5 = \left(\partial^\mu \chi - i \chi k^\mu \right) e^{-i\theta} \] (47)

and, consequently
\[\chi_0 = \frac{m c}{\hbar} = \frac{c}{\hbar} \sqrt{m_k M_p}. \] (51)

Applying the Markov hypothesis, one receives
\[\chi_0 \leq \frac{c^3}{\hbar G}, m \leq \frac{\hbar c}{G}. \] (52)

Moreover, for the non-trivial solution (41) with \(g > 0 \), one has
\[g \leq 1, m = m_0, m_A = \frac{m_0}{\sqrt{g}}, m_k = \frac{m_0^2}{g} \sqrt{G}, \] (53)

whereas for \(g < 0 \), one obtains
\[g \leq 1, m = m_0, m_A = \frac{m_0}{\sqrt{g}}, m_k = \frac{m_0^2}{g} \sqrt{G}. \] (54)

The Lagrangian (48) leads to the following field equations
\[0 = (\chi_0 + \chi)^2 \left(k_\mu + \frac{e}{\hbar} A_\mu \right), \] (55)

\[\square \chi + g \chi^3 + \frac{m_0^2 c^2}{\hbar^2} \chi = \left(k_\mu + \frac{e}{\hbar} A_\mu \right) \left(k^\mu + \frac{e}{\hbar} A^\mu \right) (\chi_0 + \chi)^2, \] (56)

\[\partial_\nu F^{\nu \mu} = \mu_0 e c \left(k_\mu + \frac{e}{\hbar} A_\mu \right) (\chi_0 + \chi)^2, \] (57)

where \(\partial_\nu F^{\nu \mu} = -\square A^\mu + \partial^\mu \left(\partial_\nu A^\nu \right) \) or, equivalently,
\[k_\mu = -\frac{e}{\hbar} A_\mu, \] (58)

\[\square \chi + \frac{m_0^2 c^2}{\hbar^2} \chi + g \chi^3 = 0, \] (59)

\[\partial_\nu F^{\nu \mu} = 0, \] (60)

whereas the Noether current (49) has the form
\[j^\mu = \frac{e^2 c}{\hbar} (\chi_0 + \chi)^2 k^\mu, \] (61)

Consequently, (48) describes free photon non-interacting with scalar field
\[L = \frac{hc}{2} \theta_\mu \theta^\mu \chi - \frac{m_0^2 c^3}{2h} \chi^2 - \frac{hc}{4} \chi^4 - \frac{1}{4 \mu_0} F_{\mu \nu} F^{\mu \nu} \] (62)

whereas, although the photon mass term is cancelled through the current term, a photon mass has the value determined in (50). Also, then one receives
\[\phi_1(x) = \frac{\pm \left[\chi_0 + \chi(x) \right]}{\sqrt{1 + \tan^{2} \left(\int x^\mu d\gamma k_\mu(x^\nu) + 2\pi q \right)}} \] (63)
\[
\varphi_2(x) = \mp \left[X_0 + \chi(x) \right] \frac{\tan \frac{\varepsilon}{h} \int \frac{d\varepsilon}{\varepsilon} A_\mu(x') + 2\pi q}{\sqrt{1 + \tan \frac{\varepsilon}{h} \int \frac{d\varepsilon}{\varepsilon} A_\mu(x') + 2\pi q}} \tag{64}
\]

and \(\Phi \) becomes neutral, that is \(\varphi_2 = 0 \), if and only if the condition holds

\[
\int \frac{d\mu}{\varepsilon} A_\mu(x') = (p - 2q) \frac{\pi h}{e}, \quad p, q \in \mathbb{Z} \tag{65}
\]

where \(A_\mu = \left[\frac{\phi}{c} A_i \right] \) is potential four-vector, \(\phi(x) \) is the electric potential and \(A_i(x) \) is the magnetic potential. Interestingly, the particular case

\[
\int d\varepsilon A_i(x', t', t') = 2n \frac{\pi h}{e}, \quad n \in \mathbb{Z}, \tag{66}
\]

the magnetic flux quantization for the Aharonov \{Bohm effect, gives

\[
\int dt' \varepsilon(x', t') = (2n - 2q + p) \frac{\pi h}{ec} \tag{67}
\]

Interestingly, the formulas (43) and (44) allow to establish

\[
k_\mu = \partial_\mu \theta = \frac{\phi_1^2}{\phi_2 \phi_1} \cos^2 \frac{\phi_2}{\phi_1}, \tag{68}
\]

and throughout the gauge condition (58), one receives

\[
A_\mu = \frac{h}{e} \frac{\phi_1^2}{\phi_2 \phi_1} \cos^2 \frac{\phi_2}{\phi_1}, \tag{69}
\]

The current conservation \(\partial_\mu j^\mu = 0 \), applied to (61), gives the solution

\[
A^\mu = \frac{h}{e c} \frac{C^\mu}{(X_0 + \chi)^2}, \tag{70}
\]

where \(C^\mu \) is a constant current. Since a photon has spin 1, the Lorentz gauge \(\partial_\mu A^\mu = 0 \) holds for (70)

\[
C^\mu \partial_\mu \chi = 0, \quad \partial_\mu A^\mu = 0 \tag{71}
\]

Joining (69) and (70), along with (39) and the Lorentz gauge, one receives

\[
C^\mu \partial_\mu \phi_1 = -\frac{\phi_2}{\phi_1} C^\mu \partial_\mu \phi_2, \tag{72}
\]

\[
\phi_1^2 + \phi_2^2 = \frac{c}{e} \left[C^\mu \partial_\mu \phi_1 - \frac{C^\mu \partial_\mu \phi_2}{\phi_2} \right] \frac{\phi_2}{\phi_1} \sec^2 \frac{\phi_2}{\phi_1}, \tag{73}
\]

\[
\left[\frac{1}{\phi_1^2} \tan \frac{\phi_2}{\phi_1} - \frac{\phi_2}{\phi_2} \right] C^\mu \partial_\mu \phi_1 - \frac{\phi_2}{\phi_1} \left(\frac{\phi_2}{\phi_2} - \frac{\phi_2}{\phi_1} \right) \sec^2 \frac{\phi_2}{\phi_1} = 0 \tag{74}
\]

Moreover, the solution (69) allows to establish the Faraday tensor

\[
F^{\mu \nu} = \frac{2h}{\varepsilon c} \frac{1}{(X_0 + \chi)} \left[C^{\mu} \partial_\nu \chi - C^{\nu} \partial_\mu \chi \right], \tag{75}
\]

Consequently, one can establish the electric field and the magnetic induction

\[
E^\mu = c F^{\mu 0} = \frac{2h}{\varepsilon c} \frac{1}{(X_0 + \chi)} \left[C^{\mu} \partial_0 \chi - c \Phi_0 \chi \right], \tag{76}
\]

\[
B_\mu = -\frac{1}{2} \varepsilon_{ijk} F^{ij} = -\frac{2h}{\varepsilon c} \frac{1}{(X_0 + \chi)} \left[C^{ij} \frac{\chi}{\chi} \right], \tag{77}
\]

and, moreover, the stress-energy tensor of the electromagnetic field

\[
T^{\mu \nu} = \frac{1}{\rho_0} \left(\eta_{\alpha \beta} F^{\mu \alpha} F^{\nu \beta} - \frac{1}{4} \eta^{\mu \nu} F_{\alpha \beta} F^{\alpha \beta} \right) \tag{78}
\]

\[
= \frac{\hbar^2 c_0}{\varepsilon_0} \frac{4c^2}{e^4} \left(\frac{C^\mu C^\nu}{(-1)^\mu \nu} \right)^{1/2} \partial_\alpha \partial^\alpha \chi \partial^\gamma \partial^\gamma \chi \tag{79}
\]

where \(C^2 = C_{\mu} C^\mu \). Therefore, one obtains the energy density

\[
\epsilon = T_{00} = \frac{\hbar^2 c_0}{\varepsilon^4} \frac{4c^2}{e^4} \left(\frac{C^\mu}{C^2} \right)^{1/2} \partial_\alpha \partial^\alpha \chi \partial^\gamma \partial^\gamma \chi \tag{80}
\]

the Maxwell stress tensor

\[
\sigma_{ij} = -T_{ij} = \frac{\hbar^2 c_0}{\varepsilon^4} \frac{4c^2}{e^4} \left(\frac{C^i C^j}{C^2} + \frac{1}{2} \delta_{ij} \right) \partial_\alpha \partial^\alpha \chi \partial^i \partial^j \chi \tag{81}
\]

and the Poynting vector,

\[
S_i = c T_{0i} = \frac{\hbar^2 c_0}{\varepsilon^4} \frac{4c^2}{e^4} \left(\frac{C^0 C^i}{C^2} \right) \partial_\alpha \partial^\alpha \chi \partial^0 \partial^i \chi \tag{82}
\]

For the field (70), the first pair of the Maxwell equations (60), that is the Gauss and Ampere laws, give

\[
C^\mu \left(\partial_\chi - 3 \partial_\chi \partial^\gamma \chi \right) = 0, \tag{83}
\]

and applied in the equations (59), lead to the differential equation for \(\chi \)

\[
\partial_\chi \partial^\gamma \chi = -\frac{g}{3} \chi^4 - \frac{X_0}{3} \chi^3 - \frac{m^2 c^2}{3h^2} \chi^2 - \frac{X_0 m^2 c^2}{3h} \chi \tag{84}
\]

The second pair of the Maxwell equations, that is the Faraday law and the Gauss law for magnetism, is given through the Bianchi identities

\[
\partial_\mu G^{\mu \nu} = 0, \tag{85}
\]

where
where $\lambda_x = \frac{h}{m_x c}$. For $g > 0$ and $m_x^2 = -m_0^2$ with $m_0^2 > 0$, one obtains

$$
\sigma(x) - \sigma_0 = \frac{-2 \sqrt{3} \lambda_x}{\sqrt{1 + \sqrt{g} \chi \lambda_x}},
$$

$$
F \left[\frac{1}{2} - \frac{2 \sqrt{g} \chi \lambda_x}{1 + \sqrt{g} \chi \lambda_x} \right],
$$

where $\lambda_x = \frac{h}{m_0 c}$. For the trivial extremum of the potential one has

$$
\sigma(x) - \sigma_0 = \mp \sqrt{3} \lambda_x \arcsin \left(\frac{1}{\sqrt{g} \lambda_x} \right),
$$

$$
\chi(\sigma) = \mp \sqrt{g} \lambda_x \sinh \left(\frac{\sigma - \sigma_0}{\sqrt{3} \lambda_x} \right),
$$

$$
A^\mu(\sigma) = \frac{g \lambda_x^2}{\sqrt{3} \lambda_x} \sinh \left(\frac{\sigma - \sigma_0}{\sqrt{3} \lambda_x} \right) C^\mu,
$$

Similarly, for the non-trivial solution (41) with $g > 0$ one receives

$$
\sigma(x) - \sigma_0 = \pm i \sqrt{6} \lambda_x F \left[\frac{\sqrt{g} \lambda_x X - 1}{\sqrt{g} \lambda_x X} \right],
$$

where $\lambda_x = \frac{h}{m_0 c}$, what for $-1 \leq \Re \sqrt{g} \lambda_x X \leq 1$ becomes

$$
\sigma(x) - \sigma_0 = \pm i \sqrt{6} \lambda_x \tanh \left(\frac{\sqrt{g} \lambda_x X - 1}{\sqrt{g} \lambda_x X} \right),
$$

$$
\chi(\sigma) = \frac{1}{\sqrt{g} \lambda_x} \left[1 + \tan^2 \left(\frac{\sigma(x) - \sigma_0}{\sqrt{6} \lambda_x} \right) \right]^{-1},
$$

$$
A^\mu(\sigma) = \frac{g \lambda_x^2}{4} \frac{h}{\sqrt{g} \lambda_x} \left(1 + \tan^2 \left(\frac{\sigma(x) - \sigma_0}{\sqrt{6} \lambda_x} \right) \right)^2 C^\mu.
$$

Let us consider two specific cases. First, for $g = 0$ one has

$$
\sigma(x) - \sigma_0 = \pm \sqrt{3} \lambda_x \arcsin \frac{X}{\chi_0},
$$

$$
\chi(\sigma) = \chi_0 \sin \left(\frac{\sigma(x) - \sigma_0}{\sqrt{3} \lambda_x} \right),
$$

$$
A^\mu(\sigma) = \frac{h}{\sqrt{g} \lambda_x} \left[1 \pm \sinh \left(\frac{\sigma(x) - \sigma_0}{\sqrt{3} \lambda_x} \right) \right]^2 C^\mu.
$$
Secondly, let us see what happens for a massless scalar, that is $m_{\chi} = 0$,
\[
\sigma(x) - \sigma_0 = \pm \frac{2}{\lambda_0} \sqrt{\frac{3}{8\sqrt{\lambda}}} \chi_0,
\]
(106)
\[
\chi(\sigma) = \chi_0 \left[\frac{gZ_0^2}{12} (\sigma(x) - \sigma_0)^2 - 1 \right]^{-1},
\]
(107)
\[
A^\mu(\sigma) = \frac{\hbar}{e\epsilon^2 \chi_0} \left[1 - \frac{12}{gZ_0^2 (\sigma(x) - \sigma_0)^2} \right] C^\mu
\]
(108)
Alternatively, the results can be presented in terms of the proper time
\[
\tau(x) = \int x \sqrt{\gamma_{\mu\nu} dx^\mu dx^\nu},
\]
(109)
throughout a simple change of the parameters
\[
\sigma(x) \rightarrow i\tau(x), \sigma_0 \rightarrow i\tau_0, g \rightarrow -g, m_{\chi}^2 \rightarrow -m_{\chi}^2
\]
(110)

Considering the effective theory (62) through the invariants, one obtains
\[
\partial_{\mu} \chi^\mu \chi = \frac{1}{2} \left(\partial_{\mu} \chi \partial_{\nu} \chi + \partial_{\nu} \chi \partial_{\mu} \chi \right)
\]
(111)
\[
F_{\mu \nu} F^{\mu \nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + \partial_{\sigma} A_{\mu} \partial_{\sigma} A_{\nu} - \partial_{\nu} A_{\sigma} \partial_{\sigma} A_{\mu}
\]
(112)
\[
\partial_{\mu} A_{\nu} = \partial_{\nu} A_{\mu}, \frac{\partial_{\mu} \chi}{\partial_{\sigma}} = 0,
\]
(113)
and, for this reason, the formula (112) takes the following form
\[
F_{\mu \nu} F^{\mu \nu} = 2 \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu} + \partial_{\sigma} A_{\mu} \partial_{\sigma} A_{\nu}
\]
(114)
whereas the effective theory (62) expressed becomes the string theory
\[
L = \frac{\hbar c}{2} \left(\frac{\partial^2 \chi}{\partial \tau^2} \right)^2 - \frac{m_{\chi}^2 c^3}{2h} \chi^2 - \frac{\hbar c}{4} \chi^4 + \frac{1}{2\mu_0} \partial_{\mu} \partial_{\nu} \chi^\mu \chi^\nu
\]
(115)
\[
L = \frac{\hbar c}{2} \left(\frac{\partial^2 \chi}{\partial \tau^2} \right)^2 - \frac{m_{\chi}^2 c^3}{2h} \chi^2 - \frac{\hbar c}{4} \chi^4 - \frac{1}{2\mu_0} \partial_{\mu} \partial_{\nu} \chi^\mu \chi^\nu
\]
(116)

For the Lagrangian in the form (117), the field equations are
\[
\frac{\partial^2 \chi}{\partial \tau^2} + \frac{m_{\chi}^2 c^3}{2h} \chi + \hbar c \chi^3 = 0,
\]
(118)
\[
\frac{\partial^2 A_{\mu}}{\partial \tau^2} = 0,
\]
(119)
and for the solution in the form (70), they reduce to
\[
\left(\frac{\partial^2 \chi}{\partial \tau^2} \right)^2 = -\frac{gZ_0^2}{3} \chi^2 - \frac{m_{\chi}^2 c^3}{3h^2} \chi^2 - \frac{\hbar c}{3h^2} \chi^4,
\]
(120)
what is the equation (83) written through the proper distance.

4. Summary

Scalar quantum electrodynamics, which throughout the Higgs mechanism of spontaneous symmetry breaking is the mental nucleus of the Standard Model of elementary particles and fundamental interactions, with help of the O(2)-symmetric Higgs potential, whose established physical significance is remarkable, produced two scenarios, similar to the Higgs mechanism through a neutral scalarfield ϕ identifiable with the Higgs boson, which include a dilaton field χ and, first of all, consistently elucidate a photon mass. In the first model, a neutral scalar field mass is estimable through the present-day experimental limits on a photon mass. In the modified model, a mass of non-kinetic vector field k_μ is given while a neutral scalar field mass is a free parameter. Moreover, in this scenario the Aharonov-Bohm effect is possible, while the effective theory describes a free photon non-interacting with a neutral scalar, and a photon mass determines the modification to the Higgs potential. The second model opens the way for further research in the non-abelian Yang-Mills theories of the Standard Model, string theory and superconductivity physics.

References

[1] H.J. M.uller-Kirsten. Electrodynamics: An Introduction Including Quan-tum E_ects (World Scienti_c, 2004).
[2] F.W. Hehl, Yu.N. Obukhov. Foundations of Classical Electrodynamicstics. Charge, Flux and Metric (Birkh_aur: auser, 2003).
[3] D.J. Gri_ths. Introduction to Electrodynamics (Prentice-Hall, 1999).
[4] J.D. Jackson. Classical Electrodynamics (Wiley, 1999).
[5] W. Greiner. Classical Electrodynamics (Springer, 1998).
[6] J. Schwinger, L.L. DeRaad, K. Milton, W.-Y. Tsai. Classical Electrody-namics. Charge, Flux and Metric (Birkh_aur: auser, 2003).
[7] H.C. Ohanian. Classical Electrodynamics (Allyn and Bacon, 1988).
[8] M. Schwartz. Principles of Electrodynamics (Dover, 1987).
[9] J.D. Jackson. Classical Electrodynamics (Wiley, 1999).
[10] A.O. Barut. Electrody-namics (Perseus Books, 1998).
