Preliminary Phytochemical Analysis, Antioxidant and Anti Gout Potential of Aqueous Seed Extract of *Punica granatum* - An *in vitro* Study

V. Jayavarsha a, R. Gayathri a*, V. Vishnu Priya a, J. Selvaraj a and S. Kavitha a

a Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i55B33843

Received 03 October 2021
Accepted 07 December 2021
Published 13 December 2021

ABSTRACT

Background: *Punica granatum* belongs to the family punicaceae. Pomegranate has a reservoir of secondary metabolites which possess free radical scavenging activity. Pomegranate has high antioxidants content, which helps in the delayed progress of atherosclerosis, cancer and ageing. Gout is a chronic metabolic disease. It is caused due to increased deposition of monosodium urate crystals in joints. It is caused due to increased intake of purine rich food. Xanthine oxidase converts hypoxanthine to uric acid. Xanthine oxidase (XO) plays an important role in the regulation of production of uric acid. Many research has been done in the extract to analyse the pharmacological characteristics and its beneficial uses. Pomegranate is widely consumed and used as preventive and therapeutic agents.

Aim: The aim of this study is to analyse phytochemical constituents, antioxidant and anti gout activity of aqueous seed extract of *Punica granatum*.

Methods: Aqueous seed extract of *Punica granatum* was prepared and analysed for its phytochemical, antioxidant and anti gout potential by using statistical methods.

Results: Phytochemicals such as flavonoids, alkaloids, terpenoids, steroids were present in aqueous extract of *Punica granatum*. IC$_{50}$ of antioxidant activity of aqueous seed extract of *Punica granatum* was found to be 280µg/ml. The extract also exhibited anti gout potential with an IC$_{50} = 310$ µg/ml. P value is < 0.05 so, it is significant.

*Corresponding author: E-mail: gayathri.sdc@saveetha.com;
Conclusion: Aqueous seed extract of *punica granatum* can be used to treat gout and to combat various other disorders and also have antioxidant and phytochemical activity. It will be an alternative for synthetic drugs. Herbal extracts are more preferred for its accessibility, cost effectiveness and less side effects. The combined effects of antioxidant and xanthine oxidase inhibitors will be helpful in hyperuricemia treatment.

Keywords: Antioxidant; anti gout; innovative technology; novel method; phytochemical; *Punica granatum*; xanthine oxidase.

1. INTRODUCTION

Punica granatum commonly known as pomegranate. *Punica granatum* is a shrub. It has multiple seeds. It grows up to 1.8 - 4.6 m tall. It is rich in vitamin A,C and E. Pomegranate juice contains a significant amount of anthocyanins and anthoxanthins that support good heart health. Pomegranate has many pharmacological characteristics [1]. Synthetic drugs are effective but sometimes cause side effects and are also expensive. Thus herbs can be used as an alternative for the synthetic drug as it is effective and safe [2].

Phytochemicals are natural bioactive compounds. The phytochemicals from natural products contain various chemical compounds such as polyphenols, flavonoids, steroids, saponins etc. It reduces the risk of cardiovascular diseases and cancer [3]. Pomegranate peel contains bioactive compounds such as phenolic acid, tannins, flavonoids etc [4]. Ligands, triterpenoids, phytosterols, fatty acids and also numerous phytochemicals are identified in different parts of the plants. Aromatic phytochemicals that help to convert the androgen to estrogen in therapeutic targets for treating the hormone sensitive types of breast cancer are also reported. It also helps in colon cancer treatment [5].

Pomegranate has high antioxidants content, which helps in the delayed progress of atherosclerosis, cancer and ageing. The large amount of phenolics present in the peel extract may be a reason for its strong antioxidant ability. The antioxidant activity was evaluated by four different methods like ABTS, DPPH and FRAP. The methanolic extract from the pomegranate exhibits 93.7% inhibition using the thiobarbituric acid methanol, hydroxyl, radical scavenging activity and LDL oxidation [6].

Gout is a chronic metabolic disease. It is caused due to increased deposition of monosodium urate crystals in joints. It is caused due to increased intake of purine rich food. Xanthine oxidase converts hypoxanthine to uric acid. Uric acid crystals accumulate in joints, causing gout arthritis [7,8,9]. The most important treatment of hyperuricemia is the development of an xanthine oxidase inhibitor [10,11,12]. Research in medicinal plants is conducted to isolate the active ingredients for the treatment of hyperuricemia. Our team has extensive knowledge and research experience that has translate into high quality publications [13-23]. The aim of this study is to analyse the phytochemical constituents, evaluate the antioxidant and anti gout activity in aqueous seed extract of *Punica granatum*.

2. MATERIALS AND METHODS

2.1 Preparation of Aqueous Seed Extract of *Punica granatum*

Punica granatum was purchased from a farm in Chennai. Peeled fruit was crushed and filtered to get the seed extract. The extract was prepared by a hot percolation method. Antioxidant and Anti gout potential of the extract was evaluated.

2.2 Phytochemical Screening Test

1. Test for phlobatannin

1ml of the extract was treated with 1ml of 1% HCl and boiled for 10 mins. The formation of red color precipitate indicates the presence of phlobatannin.

2. Test for carbohydrates

Three to five drops of Molisch reagent was added with 1 mL of the extract and then 1 mL of concentrated sulphuric acid was added carefully through the side of the test tube. The mixture was then allowed to stand for two minutes and diluted with 5 mL of distilled water. The development of a red or dull violet ring at the junction of the liquids showed the presence of carbohydrates.
3. Test for flavonoids

Few drops of 1% liquid ammonia were taken in a test tube and along with it 1ml of the extract was added resulting in the formation of yellow color thereby indicating the presence of flavonoids.

4. Test for alkaloids

2ml of sample was mixed with 2ml of HCl. Then 6 drops of HCN was added and further 2 drops of picric acid was added that resulted in a creamish pale yellow ppt indicating the presence of alkaloids.

5. Test for Terpenoids

2 ml of sample along with 2ml of chloroform and 3ml of con. H2SO4 was added. Red color ppt obtained indicates the presence of terpenoids.

6. Test for Proteins

One milliliter of ninhydrin was dissolved in 1 mL of acetone and then a small amount of extract was added with ninhydrin. The formation of purple colour revealed the presence of protein.

7. Detection of saponins

Foam test: A fraction of the extract was vigorously shaken with water and observed for persistent foam.

8. Test for steroids

One ml of chloroform was mixed with 1 mL of extract and then ten drops of acetic anhydride and five drops of concentrated sulphuric acid were added and mixed. The formation of dark red colour or dark pink colour indicates the presence of steroids.

2.3 Assessment of Antioxidant Activity

2.3.1 DPPH free radical scavenging activity

Scavenging of 2, 2-Diphenyl-1-picrylhydrazyl (DPPH) radicals was assessed by the method of Hatano et al, (1989). DPPH solution (1.0 ml) was added to 1.0 ml of extract at different concentrations (0.1 to 0.5mg/ml). The mixture was kept at room temperature for 50 minutes and the activity was measured at 517 nm. Ascorbic acid at the same concentrations was used as standard. The capability to scavenge the DPPH radical was calculated and expressed in percentage (%) using following formula:

DPPH radical scavenging (%) = Control OD - Sample OD/ Control OD x 100

2.3.2 In vitro xanthine oxidase inhibitory activity of aqueous seed extract of Punica granatum

In vitro Xanthine oxidase inhibitory of the extract was assessed as per the method of (Nguyen et al, 2004; Umamaheswari et al., 2007) [20]. Briefly, the assay mixture consisted of 1 ml of the fraction (0.1 to 0.5g/ml), 2.9 ml of phosphate buffer (pH 7.5) and 0.1 ml of xanthine oxidase enzyme solution (0.1 units/ml in phosphate buffer, pH 7.5), which was prepared immediately before use. After preincubation at 25°C for 15 min, the reaction was initiated by the addition of 2 ml of the substrate solution (150 M xanthine in the same buffer). The assay mixture was incubated at 25°C for 30 min. The reaction was then stopped by the addition of 1 ml of 1N hydrochloric acid and the absorbance was measured at 290 nm using a UV spectrophotometer. Allopurinol (0.1 to 0.5mg/ml), a known inhibitor of XO, was used as the positive control. One unit of XO is defined as the amount of enzyme required to produce 1 mmol of uric acid/min at 25-C. XO activity was expressed as the percentage inhibition of XO in the above assay system calculated as percentage of inhibition as follows.

Inhibitory activity (%) = (1 - As/Ac) x100 Where,

As – absorbance in presence of test substance,
Ac – absorbance of control

2.4 Statistical Analysis

The data were subjected to statistical analysis using two-way analysis of variance (ANOVA) and Tukey’s multiple range test to assess the significance of individual variations between the groups. In Tukey’s test, significance was considered at the level of p<0.05.
3. RESULTS AND DISCUSSION

Table 1. Phytochemical screening of aqueous seed extract of *Punica granatum*

Phytochemicals	Presence / Absence
Amino acid	+++
Flavonoids	++
Alkaloids	++
Terpenoids	++
Saponins	+
Steroids	+
Carbohydrate	+
Protein	+

Antioxidant Potential of Aqueous Seed Extract of *Punica granatum*

Graph 1. Represents antioxidant activity of aqueous seed extract of *punica granatum*. X axis represents the concentration in µg/ml and Y axis represents the inhibitory potential of the extract. Blue indicates standard (vitamin c) and red indicates aqueous seed extract of *punica granatum*. Each bar represents Mean ± SEM of 3 independent observations. Significance at p < 0.05.

Anti gout activity of aqueous seed extract of *Punica granatum*

Graph 2. Anti gout activity of aqueous seed extract of *Punica granatum*. Xanthine oxidase inhibitory potential X axis represents the concentration in µg/ml and Y axis represents the inhibitory potential of the extract. Green indicate standard (allopurinol) and orange indicate aqueous seed extract of *punica granatum*. Each line represents Mean ± SEM of 3 independent observations. Significance at p < 0.05.
From the results, it was evident that the plant extract was rich in phytochemicals such as steroids, amino acids, flavonoids, alkaloids and terpenoids (Table 1). Phytochemical constituents are responsible for the medicinal property of the plant extract. The aromatic phytoconstituents help in scavenging the free radicals, as it can donate or accept electrons [29].

Antioxidant potential of aqueous seed extract of *Punica granatum* was determined by DPPH Free radical scavenging assay. IC$_{50}$ of antioxidant activity of aqueous seed extract of *Punica granatum* was found to be 280µg/ml (Graph 1) and increases in a dose dependent manner as compared to the standard Vitamin C. Antioxidant potential of the extract may be due to the presence of phytochemicals such as flavonoids and alkaloids. Free radical scavenging activity of the extract significantly increased in a dose dependent manner.

The extract also exhibited antigout potential (IC$_{50}$ = 310 microg/ml)(Graph 2) which increased in a dose dependent manner as compared to the control(allopurinol). Though the antigout potential of the herbal extract is significantly less than the standard allopurinol, it possesses other advantages like reduced side effects, cost effective and easy availability [30]. Allopurinol is a synthetic drug used in the treatment of gout. Long term use of allopurinol has side effects like nephrolithiasis, nausea and therefore, medicinal plants may be considered as an alternative for the treatment of gout [31].

In a previous study antioxidant rich fractions were extracted from pomegranate (*Punica granatum*) peels and seeds using ethyl acetate, methanol, and water. The extracts were screened for their potential as antioxidants using various in vitro models, such as beta-carotene-linoleate and 1,1-diphenyl-2-picryl hydrazyl (DPPH) systems [32]. Future studies may be needed to explore the potential health benefits in the prevention of generation of free radicals and the extract's scavenging ability [33].

Free radical scavenging ability of the plant is attributed to the aromatic phytochemicals which can quench the unpaired electrons produced during various metabolic reactions [30]. In previous studies, pomegranate seed oil has powerful anticancer agent particularly potential in breast and prostate cancer . Physiological parameters of *punica granatum* 19.23% of alcohol soluble extractives, 28.16% of water soluble extractives, 0.21% of chloroform soluble extract, 0.83% of pet-ether double extract, 0.90% of water soluble ash, 2.82% of water soluble ash [16].

The present research was carried out to prove the wound healing ability of the pomegranate peel extract on dead tissue, incisional and excisional wounds, which can be related to its antioxidant potential [17]. Gout is a metabolic disorder which has shown its increase in the past 50 years. The increased prevalence can be due to the high living and increased alcoholism [34]. Since, the clinical complications associated with gout are highly unmanageable [35-40] and the available synthetic drug does not act as a complete cure, alternative measures to explore natural remedies are taking an upscale.

4. CONCLUSION

The aqueous seed extract of *Punica granata* was able to scavenge free radicals and inhibit the xanthine oxidase enzyme in a concentration dependent manner. Treating the gout with medicinal plants is gaining new interest. Further in vivo studies and human cell line models may be required to validate and develop the extract into an alternative drug for the treatment of gout.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

SOURCE OF FUNDING

The present study was supported by the following agencies:

- Saveetha Dental College,
- Saveetha Institute of Medical and Technical Science,
- Saveetha University
- Jayakumar transport, chennai

ACKNOWLEDGEMENT

The authors would like to thank saveetha dental college and hospitals, Saveetha institute of medical and technical sciences, saveetha university for providing research laboratory facilities to carry out the study.
COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Pomegranate (Punica granatum) [Internet]. Encyclopedia of Genetics, Genomics, Proteomics and Informatics. 2008;1536–1536. Available http://dx.doi.org/10.1007/978-1-4020-6754-9_13259

2. Jasuja ND, Saxena R, Chandra S, Sharma R. Pharmacological Characterization and Beneficial Uses of Punica granatum [Internet]. Vol. 11, Asian Journal of Plant Sciences. 2012;251–67. Available:http://dx.doi.org/10.3923/ajps.2012.251.267

3. Vasanthi HR, ShriShriMal N, Das DK. Retraction Notice: Phytochemicals from Plants to Combat Cardiovascular Disease [Internet]. Vol. 19, Current Medicinal Chemistry. 2012;2242–51. Available:http://dx.doi.org/10.2174/092986712800229078

4. Singh B, Singh JP, Kaur A, Singh N. Phenolic compounds as beneficial phytochemicals in pomegranate (Punica granatum L.) peel: A review [Internet]. Vol. 261, Food Chemistry. 2018;75–86. Available:http://dx.doi.org/10.1016/j.foodchem.2018.04.039

5. Lansky EP, Newman RA. Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer [Internet]. Vol. 109, Journal of Ethnopharmacology. 2007;177–206. Available:http://dx.doi.org/10.1016/j.jep.2006.09.006

6. Hamid, Hamid H, Thakur NS, Sharma R, Thakur A, Kumar P, et al. Phytochemical extraction and quantification from wild pomegranate flavedo powder, their antioxidant and antimicrobial properties [Internet]. Vol. 9, Annals of Phytomedicine: An International Journal; 2020. Available:http://dx.doi.org/10.21276/ap.2020.9.1.24

7. Nile SH, Nile AS, Keum YS, Sharma K. Utilization of quercetin and quercetin glycosides from onion (Allium cepa L.) solid waste as an antioxidant, urease and xanthine oxidase inhibitors [Internet]. Vol. 235, Food Chemistry. 2017;119–26. Available:http://dx.doi.org/10.1016/j.foodchem.2017.05.043

8. Wu F, Zhu J, Li G, Wang J, Veeraraghavan VP, Krishna Mohan S, et al. Biologically synthesized green gold nanoparticles from Siberian ginseng induce growth-inhibitory effect on melanoma cells (B16). Artif Cells Nanomed Biotechnol. 2019;47(1):3297–305.

9. Chen F, Tang Y, Sun Y, Veeraraghavan VP, Mohan SK, Cui C. 6-shogaol, a active constituents of ginger prevents UVB radiation mediated inflammation and oxidative stress through modulating Nrf2 signaling in human epidermal keratinocytes (HaCaT cells). J Photochem Photobiol B. 2019;197:111518.

10. Fernández L. Preconditioning protects liver and lung damage in rat liver transplantation: Role of xanthine/xanthine oxidase [Internet]. Vol. 36, Heparology. 2002;562–72. Available:http://dx.doi.org/10.1053/jhep.2002.34616

11. Li Z, Veeraraghavan VP, Mohan SK, Bolla SR, Lakshmanan H, Kumaran S, et al. Apoptotic induction and anti-metastatic activity of eugenol encapsulated chitosan nanopolymer on rat glioma C6 cells via alleviating the MMP signaling pathway [Internet]. Vol. 203, Journal of Photochemistry and Photobiology B: Biology. 2020;111773. Available:http://dx.doi.org/10.1016/j.jphotobiol.2019.111773

12. Babu S, Jayaraman S. An update on β-sitosterol: A potential herbal nutraceutical for diabetic management. Biomed Pharmacother. 2020;131:110702.

13. Malaikolundhan H, Mookkan G, Krishnamoorthi G, Matheswaran N, Alsawalha M, Veeraraghavan VP, et al. Anticarcinogenic effect of gold nanoparticles synthesized from Albizia lebbeck on HCT-116 colon cancer cell lines. Artif Cells Nanomed Biotechnol. 2020;48(1):1206–13.

14. Han X, Jiang X, Guo L, Wang Y, Veeraraghavan VP, Krishna Mohan S, et al. Anticarcinogenic potential of gold nanoparticles synthesized from Trichosanthes kirilowii in colon cancer cells through the induction of apoptotic pathway. Artif Cells Nanomed Biotechnol. 2019; 47(1):3577–84.

15. Gothai S, Muniandy K, Gnanaraj C, Ibrahim IAA, Shahzad N, Al-Ghamdi SS, et al.
al. Pharmacological insights into antioxidants against colorectal cancer: A detailed review of the possible mechanisms. Biomed Pharmacother. 2018;107:1514–22.

16. Veeraraghavan VP, Hussain S, Balakrishna JP, Dhawale L, Kullappan M, Ambrose JM, et al. A comprehensive and critical review on ethnopharmacological importance of desert truffles: Terfezia claveryi, Terfezia boudieri, and Tirmania nivea [Internet]. Food Reviews International. 2021;1–20. Available:http://dx.doi.org/10.1080/87559129.2021.1889581

17. Sathya S, Ragul V, Veeraraghavan VP, Singh L, Niyas Ahamed MI. An in vitro study on hexavalent chromium [Cr(VI)] remediation using iron oxide nanoparticles based beads. Environmental Nanotechnology, Monitoring & Management. 2020;14:100333.

18. Yang Z, Pu M, Dong X, Ji F, Priya Veeraraghavan V, Yang H. Piperine loaded zinc oxide nanocomposite inhibits the PI3K/AKT/mTOR signaling pathway via attenuating the development of gastric carcinoma: In vitroandin vivostudies. Arabian Journal of Chemistry. 2020;13(5):5501–16.

19. Rajendran P, Alizahrani AM, Rengarajan T, Veeraraghavan VP, Krishna Mohan S. Consumption of reused vegetable oil intensifies BRCA1 mutations. Crit Rev Food Sci Nutr. 2020;1–8.

20. Barma MD, Muthupandiyan I, Samuel SR, Amaechi BT. Inhibition of Streptococcus mutans, antioxidant property and cytotoxicity of novel nano-zinc oxide varnish. Arch Oral Biol. 2021;126:105132.

21. Samuel SR. Can 5-year-olds sensibly self-report the impact of developmental enamel defects on their quality of life? Int J Paediatr Dent. 2021;31(2):285–6.

22. Samuel SR, Kuduruthullah S, Khair AMB, Shaye MA, Elkaseh A, Varma SR. Dental pain, parental SARS-CoV-2 fear and distress on quality of life of 2 to 6 year-old children during COVID-19. Int J Paediatr Dent. 2021;31(3):436–41.

23. Tang Y, Rajendran P, Veeraraghavan VP, Hussain S, Balakrishna JP, Chinnathambi A, et al. Osteogenic differentiation and mineralization potential of zinc oxide nanoparticles from Scutellaria baicalensis on human osteoblast-like MG-63 cells [Internet]. Vol. 119, Materials Science and Engineering: C. 2021;111656. Available:http://dx.doi.org/10.1016/j.msec.2020.111656

24. Yin Z, Yang Y, Guo T, Veeraraghavan VP, Wang X. Potential chemotherapeutic effect of betalain against human non-small cell lung cancer through PI3K/Akt/mTOR signaling pathway. Environ Toxicol. 2021;36(6):1011–20.

25. Veeraraghavan VP, Periadurai ND, Karunakaran T, Hussain S, Surapaneni KM, Jiao X. Green synthesis of silver nanoparticles from aqueous extract of Scutellaria barbata and coating on the cotton fabric for antimicrobial applications and wound healing activity in fibroblast cells (L929). Saudi J Biol Sci. 2021;28(7):3633–40.

26. Mickymaray S, Alfaiz FA, Paramasivam A, Veeraraghavan VP, Periadurai ND, Surapaneni KM, et al. Rhaponticin suppresses osteosarcoma through the inhibition of PI3K-Akt-mTOR pathway. Saudi J Biol Sci. 2021;28(7):3641–9.

27. Teja KV, Ramesh S. Is a filled lateral canal – A sign of superiority? [Internet]. Vol. 15, Journal of Dental Sciences. 2020;562–3. Available:http://dx.doi.org/10.1016/j.jds.2020.02.009

28. Kadanakuppe S, Hiremath S. Social and Behavioural Factors Associated with Dental Caries Experience among Adolescent School Children in Bengaluru City, India [Internet]. Vol. 14, British Journal of Medicine and Medical Research. 2016;1–10. Available:http://dx.doi.org/10.9734/bjmmr/2016/24021

29. Panth N, Manandhar B, Paudel KR. Anticancer Activity ofPunica granatum(Pomegranate): A Review [Internet]. Vol. 31, Phytotherapy Research. 2017;568–78. Available:http://dx.doi.org/10.1002/ptr.5784

30. El-Rahman HSMA, Abd HS. Xanthine Oxidase Inhibitory Activity and Antigout of Celery Leek Parsley and Molokhia [Internet]. Vol. 3, Advances in Biochemistry. 2015;40. Available:http://dx.doi.org/10.11648/j.ab.20150304.11

31. Anderson EE, Everett Anderson E, Wayne Rundles R, Silberman HR, Metz EN. Allopurinol Control of Hyperuricosuria: A New Concept in the Prevention of Uric
Acid Stones [Internet]. Vol. 97, Journal of Urology. 1967;344–7. Available: http://dx.doi.org/10.1016/s0022-5347(17)63042-8

32. Singh RP, Chidambara Murthy KN, Jayaprakasha GK. Studies on the antioxidant activity of pomegranate (Punica granatum) peel and seed extracts using in vitro models [Internet]. Vol. 50, Journal of Agricultural and Food Chemistry. 2002;81–6. Available: http://dx.doi.org/10.1021/jf010865b

33. Madirala DS, Cuddapah R, Sadhu NK. Evaluation of anti-gout activity of fresh fruit juice of Psidium guava against diuretic Induced Gout in wistar rats [Internet]. Vol. 01, Journal of Comprehensive Pharmacy. 2014;26–9. Available: http://dx.doi.org/10.37483/jcp.2014.1105

34. Pritchett AM, Deswal A, Aguilar D. Lifestyle modification with diet and exercise in obese patients with heart failure – A pilot study [Internet]. Vol. 02, Journal of Obesity & Weight loss Therapy; 2012. Available: http://dx.doi.org/10.4172/2165-7904.1000118

35. Siddons RC. Carbohydrase activities in the bovine digestive tract [Internet]. Vol. 108, Biochemical Journal. 1968;839–44. Available: http://dx.doi.org/10.1042/bj1080839

36. Khan S, Patel A, Bhise KS. Antioxidant activity of pomegranate peel powder [Internet]. Vol. 7, Journal of Drug Delivery and Therapeutics; 2017. Available: http://dx.doi.org/10.22270/jddt.v7i2.1380

37. Bhandary SK, N. SK, Bhat VS, Sharmila KP, Bekal MP. Preliminary phytochemical screening of various extracts of Punica granatum peel, whole fruit and seeds [Internet]. Vol. 02, Journal of Health and Allied Sciences NU. 2012;34–8. Available: http://dx.doi.org/10.1055/s-0040-1703609

38. Serrano A, Ros G, Nieto G. Bioactive Compounds and Extracts from Traditional Herbs and Their Potential Anti-Inflammatory Health Effects [Internet]. Vol. 5, Medicines. 2018;76. Available: http://dx.doi.org/10.3390/medicines5030076

39. Shishavan NG, Abbasi MM, Afshar RA, Milani PZ, Yahyavi F. The Effects of Pomegranate (Punica granatum L.) Peel Methanolic Extract on Methotrexate Induced Changes in Hepatic Antioxidant Enzymes of Rats [Internet]. Vol. 12, Jundishapur Journal of Natural Pharmaceutical Products; 2017. Available: http://dx.doi.org/10.5812/jjnpp.57499

40. Umamaheswari M, AsokKumar K, Somasundaram A, Sivashanmugam T, SubhadraDevi V, Ravi TK. Xanthine oxidase inhibitory activity of some Indian medical plants [Internet]. Vol. 109. Journal of Ethnopharmacology. 2007;547–51. Available: http://dx.doi.org/10.1016/j.jep.2006.08.020