HARDY-TYPE INEQUALITIES AND PRINCIPLE FREQUENCY OF THE p–LAPLACIAN

BO-YONG CHEN

ABSTRACT. We prove a sharp L^p weighted Hardy inequality involving boundary distance δ for any domain $\Omega \subset \mathbb{R}^n$. The inequality may be improved substantially under the additional assumption that $-\log \delta$ is subharmonic. Applications of these inequalities to the principle frequency of the p–Laplacian are given.

1. INTRODUCTION

In 1920, Hardy [5] discovered the following famous inequality:

$$\left(1 - \frac{1}{p}\right)^p \int_0^\infty \frac{F(x)^p}{x^p} \, dx \leq \int_0^\infty f(x)^p \, dx,$$

where $F(x) = \int_a^x f(t) \, dt$ and $f \geq 0$. A modern version of Hardy’s inequality for a domain $\Omega \subset \mathbb{R}^n$ may be stated as follows

$$\left(1 - \frac{1}{p}\right)^p \int_\Omega \frac{|f|^p}{\delta^p} \, dx \leq \int_\Omega |\nabla f|^p \, dx, \quad f \in C_0^\infty(\Omega),$$

where δ denotes the boundary distance of Ω; this holds whenever $-\delta$ is subharmonic on Ω (e.g., Ω is convex), and the constant is sharp. The analogue of this inequality for \mathbb{R}^n is

$$\left(\frac{n}{p} - 1\right)^p \int_{\mathbb{R}^n} \frac{|f(x)|^p}{|x|^p} \, dx \leq \int_{\mathbb{R}^n} |\nabla f|^p \, dx, \quad f \in C_0^\infty(\mathbb{R}^n),$$

for all $1 \leq p < n$ and the constant is sharp. These inequalities have been generalized and improved in different ways by a large number of authors and many applications have been found; we refer the reader to the book [1] by Balinsky et. al. for the references until 2015 and the article of Kutev and Rangelov [9] for the references up to now.

In this note we will prove the following weighted Hardy inequality:

Theorem 1.1. Let $\Omega \subset \mathbb{R}^n$ be a domain. Then we have

$$\left(\frac{\alpha + p - n}{p}\right)^p \int_\Omega \frac{|f|^p}{\delta^{\alpha+p}} \, dx \leq \int_\Omega |\nabla f|^p \, dx, \quad f \in C_0^\infty(\Omega),$$

for all $1 \leq p < \infty$ and $\alpha > \max\{n - p, 2 - p\}$. Moreover, the constant $\left(\frac{\alpha+p-n}{p}\right)^p$ is sharp.

Supported by NSF grant 11771089.
Remark. If \(n = 1 \) and \(\Omega = (0, \infty) \), then we obtain the following one-dimensional weighted Hardy inequality
\[
\left(\frac{\alpha + p - 1}{p} \right)^p \int_0^\infty \frac{|f(x)|^p}{x^{\alpha + \alpha}} \, dx \leq \int_0^\infty \frac{|f'(x)|^p}{x^\alpha} \, dx, \quad f \in C_0^\infty((0, \infty)).
\]
for \(\alpha > 2 - p \), which even holds for \(\alpha > 1 - p \) (cf. [6], Theorem 330).

The case \(\alpha = 0 \) is the most interesting.

Corollary 1.2. Let \(\Omega \subsetneq \mathbb{R}^n \) be a domain with \(n \geq 2 \). Then we have
\[
(1.4) \quad \left(\frac{1}{p} - \frac{n}{p} \right)^p \int_\Omega \frac{|f|^p}{\delta^p} \, dx \leq \int_\Omega |\nabla f|^p \, dx, \quad f \in C_0^\infty(\Omega),
\]
for all \(p > n \), and the constant \(\left(\frac{1}{p} - \frac{n}{p} \right)^p \) is sharp.

Remark. (1) Lewis [10] proved
\[
C_{n,p} \int_\Omega |f|^p / \delta^p \leq \int_\Omega |\nabla f|^p
\]
for \(p > n \), where the constant \(C_{n,p} \) is not explicit.

(2) The number \(1 - \frac{n}{p} \) has already appeared in Morrey’s inequality:
\[
|f(x) - f(y)| \leq C_{n,p}|x - y|^{1 - \frac{n}{p}} \|
abla f\|_{L^p(B)}, \quad f \in W^{1,p}(B),
\]
where \(B \) is a ball in \(\mathbb{R}^n \) and \(W^{1,p} \) denotes the standard Sobolev space.

Theorem 1.1 may be improved under certain additional conditions.

Theorem 1.3. Let \(\Omega \subsetneq \mathbb{R}^n \) be a domain. If \(-\log \delta \) is subharmonic on \(\Omega \), then we have
\[
(1.5) \quad \left(\frac{\alpha + p - 2}{p} \right)^p \int_\Omega \frac{|f|^p}{\delta^p} \, dx \leq \int_\Omega |\nabla f|^p \, dx, \quad f \in C_0^\infty(\Omega),
\]
for any \(1 \leq p < \infty \) and \(\alpha > \max\{2 - p, 0\} \). Moreover, the constant \(\left(\frac{\alpha + p - 2}{p} \right)^p \) is sharp.

The condition that \(-\log \delta \) is subharmonic is motivated by function theory of several complex variables. A fundamental result of Oka states that \(-\log \delta \) is plurisubharmonic (hence is subharmonic) for all pseudowconvex domains \(\Omega \subsetneq \mathbb{C}^n \) (cf. [7]). A geometric characterization of bounded pseudoconvex domains with \(C^2 \)-boundary is that the complex Hessian of some/any defining function is semi-positive on every holomorphic tangent space of the domain.

As a popular application of Hardy-type inequalities, we shall investigate the principle frequency (= the first eigenvalue) of the \(p \)–Laplacian \(\Delta_p \), which is defined by
\[
\Delta_p u = \text{div}(|\nabla u|^{p-2}\nabla u).
\]
Note that the \(p \)–Laplacian is nonlinear except for the case \(p = 2 \), which corresponds to the classical Laplace operator \(\Delta \). Let \(W^{1,p}_0(\Omega) \) denote the closure of \(C_0^\infty(\Omega) \) under the norm of \(W^{1,p}(\Omega) \). We consider the following eigenvalue problem with Dirichlet boundary condition
\[
\Delta_p u + \lambda |u|^{p-2}u = 0.
\]
We say that λ is an eigenvalue of $-\Delta_p$ if the above equation has a nontrivial weak solution (eigenfunction) $u_\lambda \in W^{1,p}_0(\Omega)$, i.e.,
\[
\int_\Omega |\nabla u_\lambda|^{p-2}\nabla u_\lambda \cdot \nabla f = \lambda \int_\Omega |u_\lambda|^{p-2}u_\lambda f, \quad f \in C_0^\infty(\Omega).
\]
For $n \geq 2$ it is known that the first eigenvalue $\lambda_p(\Omega)$ of $-\Delta_p$ can be characterized by
\[
(1.6) \quad \lambda_p(\Omega) = \inf_{f \in C_0^\infty(\Omega) \setminus \{0\}} \left\{ \frac{\int_\Omega |\nabla f|^p dx}{\int_\Omega |f|^p dx} \right\}.
\]
We refer the reader to Lindqvist [11, 12] for an introduction to the p-Laplace equation and the p-Laplace eigenvalue problem.

Let R_Ω be the inradius of Ω, i.e., the radius of the largest ball inscribed in Ω.

Theorem 1.4.
(1) Let $\Omega \subseteq \mathbb{R}^n$ be a domain with $n \geq 2$. Then we have
\[
(1.7) \quad - \frac{n}{p} \leq R_\Omega \cdot \lambda_p(\Omega)^{\frac{1}{p}} - 1 \leq \frac{C_n \log p}{p}, \quad p > n.
\]
(2) Suppose furthermore that $-\log \delta$ is subharmonic. Then we have
\[
(1.8) \quad - \frac{2}{p} \leq R_\Omega \cdot \lambda_p(\Omega)^{\frac{1}{p}} - 1 \leq \frac{C_n \log p}{p}, \quad p > 2.
\]

Remark.
(1) Juutinen et al. [8] obtained the asymptotic formula $R_\Omega \cdot \lambda_p(\Omega)^{\frac{1}{p}} \to 1$ as $p \to \infty$.
(2) Poliquin [13] proved $R_\Omega \cdot \lambda_p(\Omega)^{\frac{1}{p}} \geq C_{n,p}$ for $p > n$, where the constant $C_{n,p}$ is not explicit.

Now we consider the stability problem of the principle frequency about variations of the domain. It is known [12] that if $\Omega_1 \subset \Omega_2 \subset \cdots$ is an exhaustion of Ω then
\[
(1.9) \quad \lim_{j \to \infty} \lambda_p(\Omega_j) = \lambda_p(\Omega).
\]
It is natural to ask whether (1.9) holds for a decreasing sequence of domains.

Theorem 1.5.
(1) Let $\{\Omega_j\}$ be a sequence of proper domains in \mathbb{R}^n such that $\Omega_j \supset \Omega$ and
\[
(1.10) \quad \eta_j := \max_{x \in \partial \Omega} \{\delta_j(x)\} \to 0 \quad (j \to \infty)
\]
where δ_j denotes the boundary distance of Ω_j. Then (1.9) holds for all $p > n$.
(2) Suppose furthermore that $-\log \delta_j$ is subharmonic. Then (1.9) holds for all $p > 2$.

Remark. The condition (1.10) is satisfied for instance, when the Hausdorff distance between $\partial \Omega$ and $\partial \Omega_j$ tends to 0 as $j \to \infty$.

Davis [2, 3] realized that the classical Hardy inequality (1.2) for $p = 2$ can be used to obtain explicit upper bounds on the rate of
\[
|\lambda_2(\Omega) - \lambda_2(\Omega_\varepsilon)|,
\]
where $\Omega_{\varepsilon} = \{ x \in \Omega : \delta(x) > \varepsilon \}$ for $\varepsilon > 0$. The results in Davies [3] were generalized to arbitrary values of p by Fleckinger et. al. [4]. One of the results in [4] states that if Ω is a bounded domain in \mathbb{R}^n with $n \geq 2$ such that
\[\int_{\Omega} \frac{|f|^p}{\delta^p} dx \leq c_p^p \int_{\Omega} |\nabla f|^p dx, \quad f \in C_0^\infty(\Omega), \]
holds for some $p \geq 2$ and $c_p > 0$, then
\[\lambda_p(\Omega) \leq \lambda_p(\Omega_{\varepsilon}) \leq \lambda_p(\Omega) + C_\varepsilon^{-\frac{2-p}{2p}} \]
where the constant C depends only on n, p and Ω. This combined with (1.4) and (1.5) gives

Theorem 1.6. (1) Let Ω be a bounded domain in \mathbb{R}^n with $n \geq 2$. Then we have

\[\lambda_p(\Omega) \leq \lambda_p(\Omega_{\varepsilon}) \leq \lambda_p(\Omega) + C_\varepsilon^{-\frac{2-p}{2p}}, \quad p > n. \]

(2) Suppose furthermore that $-\log \delta$ is subharmonic. Then we have

\[\lambda_p(\Omega) \leq \lambda_p(\Omega_{\varepsilon}) \leq \lambda_p(\Omega) + C_\varepsilon^{-\frac{2-p}{2p}}, \quad p > 2. \]

2. HARDY-TYPE INEQUALITIES

Let $\Omega \subseteq \mathbb{R}^n$ be a domain. For every $\beta \in \mathbb{R}$ we define $\chi_\beta(t) = t^{1-\beta/2}, t > 0$.

Lemma 2.1. For $\beta \geq 2$ the inequality

\[\Delta \chi_\beta(\delta^2) \geq (\beta - 2)(\beta - n)\delta^{-\beta} \]

holds in the sense of distributions in Ω.

Proof. For every $a \in \mathbb{R}^n$, the function
\[u_a(x) := -|x-a|^2 + |x|^2 \]
is harmonic in \mathbb{R}^n. Since
\[\delta(x) = \min_{a \in \partial \Omega} \{|x-a|\}, \]
it follows that
\[-\delta^2(x) + |x|^2 = \max_{a \in \partial \Omega} \{u_a(x)\} \]
is subharmonic in Ω, i.e.,
\[-\Delta \delta^2 \geq -2n \]
holds in the sense of distributions in Ω. Thus we have
\[\Delta \chi_\beta(\delta^2) = \chi''_\beta(\delta^2)|\nabla \delta^2|^2 + \chi'_\beta(\delta^2)\Delta \delta^2 \]
\[= \beta(\beta - 2)\delta^{-\beta}|\nabla \delta|^2 + (1 - \beta/2)\delta^{-\beta} \Delta \delta^2 \]
\[\geq (\beta - 2)(\beta - n)\delta^{-\beta} \]
since $|\nabla \delta| = 1$ a.e. on Ω. \qed
Proof of Theorem 1.1. By (2.1) we have
\[(\beta - 2)(\beta - n) \int_\Omega |f|^p / \delta^\beta \leq \int_\Omega \Delta \chi_\beta(\delta^2) \cdot |f|^p = -\int_\Omega \nabla \chi_\beta(\delta^2) \cdot \nabla |f|^p = p(\beta - 2) \int_\Omega \delta^{1-\beta} |f|^{p-1} \nabla \delta \cdot \nabla |f|,\]
so that if \(\beta > 2\) then
\[
\frac{\beta - n}{p} \int_\Omega |f|^p / \delta^\beta \leq \int_\Omega \delta^{1-\beta} |f|^{p-1} \nabla \delta \cdot \nabla |f|
\leq \left[\int_\Omega |f|^p \nabla \delta \right]^{\frac{p-1}{p}} \left[\int_\Omega |f|^{p/\delta^\beta-p} \right]^{\frac{1}{p}}
\leq \left[\int_\Omega |f|^p / \delta^\beta \right]^{\frac{p-1}{p}} \left[\int_\Omega |\nabla f|^{p/\delta^\beta-p} \right]^{\frac{1}{p}}.
\]

Take \(\beta = p + \alpha\), we immediately obtain (1.3).

To see that the constant \(\left(\frac{\alpha + p - n}{p}\right)^p\) is sharp, we take
\[\Omega = B_2^* := \{ x \in \mathbb{R}^n : 0 < |x| < 2 \}.\]
For every \(0 < \varepsilon < 1\) we set \(\gamma_\varepsilon = \frac{\alpha + p - n}{p} + \varepsilon\). We choose a test function \(f_\varepsilon\) with compact support in \(B_2\) such that \(f_\varepsilon = |x|^{\gamma_\varepsilon}\) on \(B_1^*\). Let \(\sigma_n\) denote the area of the unit sphere in \(\mathbb{R}^n\). By using spherical coordinates, we obtain
\[
\int_{B_2^*} |f_\varepsilon|^p / \delta^{p+\alpha} = \int_{B_1^*} |f_\varepsilon|^p / \delta^{p+\alpha} + O(1)
= \sigma_n \int_0^1 r^{p\gamma_\varepsilon - p - \alpha + n - 1} dr + O(1)
= \sigma_n \int_0^1 r^{-1+p\varepsilon} dr + O(1)
= \sigma_n (p\varepsilon)^{-1} + O(1).
\]
Analogously, we have
\[
\int_{B_2^*} |\nabla f_\varepsilon|^p / \delta^\alpha = \sigma_n \gamma_\varepsilon^p \int_0^1 r^{p(\gamma_\varepsilon - 1) - \alpha + n - 1} dr + O(1)
= \sigma_n \gamma_\varepsilon^p (p\varepsilon)^{-1} + O(1).
\]
Thus
\[
\lim_{\varepsilon \to 0^+} \int_{B_2^*} |\nabla f_\varepsilon|^p / \delta^\alpha / \int_{B_2^*} |f_\varepsilon|^p / \delta^{p+\alpha} = \left(\frac{\alpha + p - n}{p}\right)^p.
\]
Since every f_ε may be approximated by functions in $C_0^\infty(B_2^*)$ under the norm
\[
\left(\int_{B_2^*} |f|^{p/\delta^{p+\alpha}} \right)^{1/p} + \left(\int_{B_2^*} |\nabla(\cdot)|^p/\delta^\alpha \right)^{1/p},
\]
we are done. □

Proof of Theorem 1.3. Since $-\log \delta$ is subharmonic, we have
\[
\Delta \delta^{-\alpha} = \Delta (e^{-\alpha \log \delta}) \geq \frac{\alpha^2}{\delta^{2+\alpha}},
\]
which holds in the sense of distributions in Ω. Hence
\[
\alpha^2 \int_\Omega \frac{|f|}{\delta^{p+\alpha}} \leq \int_\Omega \Delta \delta^{-\alpha} \cdot (|f|/\delta^{p-2}) = -\int_\Omega \nabla \delta^{-\alpha} \cdot \nabla (|f|/\delta^{p-2}) = \alpha p \int_\Omega \frac{|f|^{p-1}}{\delta^{p+\alpha-1}} \nabla \delta \cdot \nabla |f| + \alpha (2-p) \int_\Omega |f|/\delta^{p+\alpha},
\]
so that
\[
\frac{\alpha + p - 2}{p} \int_\Omega |f|^{p/\delta^{p+\alpha}} \leq \int_\Omega \frac{|f|^{p-1}}{\delta^{p+\alpha-1}} \nabla \delta \cdot \nabla |f| \leq \left(\int_\Omega |f|^{p/\delta^{p+\alpha}} \right)^{p-1} \left(\int_\Omega \nabla |f|/\delta^\alpha \right)^{\frac{2}{p}},
\]
which yields (1.5).

To see that the constant $\left(\frac{\alpha + p - 2}{p} \right)^p$ is sharp, we take
\[
\Omega := (\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}^{n-2} \subset \mathbb{R}^n.
\]
Let $x' = (x_1, x_2)$ and $x'' = (x_3, \cdots, x_n)$. We set
\[
B'_r = \{x' : |x'| < r\} \text{ and } B''_r = \{x'' : |x''| < r\}.
\]
Since $\delta(x) = |x'|$, it follows that $-\log \delta$ is harmonic on Ω. For $0 < \varepsilon < 1$ we set $\gamma_\varepsilon = \frac{\alpha + p - 2}{p} + \varepsilon$.

We choose a function g_ε with compact support in B'_2 such that $g_\varepsilon(x') = |x'|^{\gamma_\varepsilon}$ on B'_1. Let $\kappa \in C_0^\infty(B_2'')$ be a nonnegative function satisfying $\kappa = 1$ on B''_1. For the test function $f_\varepsilon := g_\varepsilon \cdot \kappa$, we have
\[
\int_\Omega |f_\varepsilon|^{p/\delta^{p+\alpha}} = \int_{B'_r \times \mathbb{R}^{n-2}} |f_\varepsilon|^{p/\delta^{p+\alpha}} + O(1)
\]
\[
= 2\pi \int_{\mathbb{R}^{n-2}} \kappa^p \cdot \int_0^1 r^{p\gamma_\varepsilon - p - \alpha + 1} dr + O(1)
\]
\[
= 2\pi (p\varepsilon)^{-1} \int_{\mathbb{R}^{n-2}} \kappa^p + O(1).
\]
Analogously, we have
\[
\int_{\Omega} |\nabla f_\varepsilon|^p / \delta^\alpha = \int_{B_1' \times \mathbb{R}^{n-2}} |\nabla f_\varepsilon|^p / \delta^\alpha + O(1)
\]
\[
= 2\pi \gamma_p(p\varepsilon)^{-1} \int_{\mathbb{R}^{n-2}} \kappa^p + O(1).
\]
Thus
\[
\lim_{\varepsilon \to 0^+} \frac{\int_\Omega |\nabla f_\varepsilon|^p / \delta^\alpha}{\int_\Omega |f_\varepsilon|^p / \delta^{p+\alpha}} = \left(\frac{\alpha + p - 2}{p}\right)^p.
\]

3. PRINCIPLE FREQUENCY OF THE \(p \)-LAPLACIAN

Proof of Theorem 1.4. Since
\[
R_\Omega = \max_{z \in \Omega} \{\delta(z)\},
\]
it follows from (1.4) that
\[
\left(1 - \frac{n}{p}\right)^p R_\Omega^{-p} \int_\Omega |f|^p dx \leq \int_\Omega |\nabla f|^p dx, \quad \forall f \in C_0^\infty(\Omega).
\]
This combined with (1.6) gives the first inequality in (1.7).

For the second inequality in (1.7) we first infer from the domain monotonicity property that
\[
\lambda_p(\Omega) \leq \lambda_p(B_1) R_\Omega^{-p}
\]
where \(B_1 \) is the unit ball in \(\mathbb{R}^n \). By using the test function \(f = \chi(|x|) \) where \(\chi \) is a Lipschitz continuous function on \(\mathbb{R} \) with \(\chi|_{[1,\infty)} = 0 \) and spherical coordinates, we have
\[
\lambda_p(B_1) \leq \frac{\int_{B_1} |\nabla f|^p dx}{\int_{B_1} |f|^p dx} \leq \frac{\int_0^1 |\chi'(t)|^p t^{n-1} dt}{\int_0^1 |\chi(t)|^p t^{n-1} dt}.
\]
Take \(\chi(t) = 1 - t \), we obtain
\[
\lambda_p(B_1) \leq \frac{n^{-\frac{1}{p}}}{(p + 1)(p + 2) \cdots (p + n) \cdot \left(p + \frac{1}{p}\right)^n} \leq 1 + \frac{C_n \log p}{p}
\]
for suitable constant \(C_n > 0 \) depending only on \(n \). This combined with (3.1) yields the second inequality in (1.7).

By using Theorem 1.3 instead of Corollary 1.2, we obtain (1.8). \(\square \)

Proof of Theorem 1.5. Fix a number \(0 < \varepsilon < 1 \). Let \(\chi : \mathbb{R} \to [0,1] \) be a cut-off function such that \(\chi|_{(-\infty,1/2]} = 1 \) and \(\chi|_{[1,\infty)} = 0 \). For each \(f \in C_0^\infty(\Omega_j) \setminus \{0\} \) we set
\[
f_{\varepsilon,j} := \chi \left(\frac{\log \delta_j}{\log \varepsilon}\right) f.
\]

\[
\int_{\Omega} |\nabla f_\varepsilon|^p / \delta^\alpha = \int_{B_1' \times \mathbb{R}^{n-2}} |\nabla f_\varepsilon|^p / \delta^\alpha + O(1)
\]
\[
= 2\pi \gamma_p(p\varepsilon)^{-1} \int_{\mathbb{R}^{n-2}} \kappa^p + O(1).
\]
Since \(\text{supp} f_{\varepsilon,j} \subset \{ x \in \Omega_j : \delta_j(x) \geq \varepsilon \} \) and \(\eta_j \to 0 \), we conclude that \(\text{supp} f_{\varepsilon,j} \subset \Omega \) for \(j \geq j_\varepsilon \gg 1 \), so that
\[
\lambda_p(\Omega) \leq \frac{\| \nabla f_{\varepsilon,j} \|_{L^p(\Omega)}}{\| f_{\varepsilon,j} \|_{L^p(\Omega)}} \leq \frac{\| \nabla f \|_{L^p(\Omega_j)} + \| f \nabla \chi(\log \delta_j/\log \varepsilon) \|_{L^p(\Omega)}}{\| f \|_{L^p(\Omega_j)} - (\int_{\delta_j \leq \sqrt{\varepsilon}} |f|^p)^{1/p}}.
\]

Note that
\[
\left(1 - \frac{n}{p}\right)^{-p} \int_{\Omega_j} |\nabla f|^p \geq \int_{\Omega_j} |f|^p/\delta_j^p \geq \int_{\delta_j \leq \sqrt{\varepsilon}} |f|^p/\delta_j^p \geq \varepsilon^{-p/2} \int_{\delta_j \leq \sqrt{\varepsilon}} |f|^p
\]
and
\[
\int_{\Omega_j} |f|^p |\nabla \chi(\log \delta_j/\log \varepsilon)|^p \leq \sup \frac{|\chi'|}{|\log \varepsilon|} \int_{\varepsilon \leq \delta_j \leq \sqrt{\varepsilon}} |f|^p/\delta_j^p \leq \left(1 - \frac{n}{p}\right)^{-p} \sup \frac{|\chi'|}{|\log \varepsilon|} \int_{\Omega_j} |\nabla f|^p.
\]

Thus we have
\[
\lambda_p(\Omega) \leq \frac{\| \nabla f \|_{L^p(\Omega_j)} + \left(1 - \frac{n}{p}\right)^{-1} \sup \frac{|\chi'|}{|\log \varepsilon|} \| \nabla f \|_{L^p(\Omega_j)}}{\| f \|_{L^p(\Omega_j)} - \left(1 - \frac{n}{p}\right)^{-1} \sqrt{\varepsilon} \cdot \| \nabla f \|_{L^p(\Omega_j)}}.
\]

Since we can choose \(f \in C_0^\infty(\Omega_j) \) such that the quotient \(\| \nabla f \|_{L^p(\Omega_j)}/\| f \|_{L^p(\Omega_j)} \) is arbitrarily close to \(\lambda_j(\Omega)^{1/p} \), we obtain
\[
\lambda_p(\Omega) \leq \frac{\lambda_p(\Omega_j)^{1/p} \left(1 + \left(1 - \frac{n}{p}\right)^{-1} \sup \frac{|\chi'|}{|\log \varepsilon|}\right)}{1 - \left(1 - \frac{n}{p}\right)^{-1} \sqrt{\varepsilon} \cdot \lambda_p(\Omega_j)^{1/p}}.
\]

for \(j \geq j_\varepsilon \gg 1 \), that is,
\[
\lambda_p(\Omega_j)^{1/p} \geq \frac{\lambda_p(\Omega)^{1/p}}{1 + \left(1 - \frac{n}{p}\right)^{-1} \sup \frac{|\chi'|}{|\log \varepsilon|} + \left(1 - \frac{n}{p}\right)^{-1} \sqrt{\varepsilon} \cdot \lambda_p(\Omega)^{1/p}}.
\]

On the other hand, the domain monotonicity property implies that
\[
\lambda_p(\Omega_j) \leq \lambda_p(\Omega), \quad \forall j.
\]

Thus we obtain
\[
\lim_{j \to \infty} \lambda_p(\Omega_j) = \lambda_p(\Omega).
\]

The second assertion can be proved by using Theorem 1.3 instead of Corollary 1.2. \(\square\)
REFERENCES

[1] A. A. Balinsky, W. D. Evans and R. T. Lewis, The analysis and geometry of Hardy’s inequality, Springer International Publishing Switzerland 2015.

[2] E. B. Davies, Eigenvalue stability bounds via weighted Sobolev spaces, Math. Z. 214 (1993), 357–371.

[3] E. B. Davies, Sharp boundary estimates for elliptic operators, Math. Proc. Cambridge Philos. Soc. 129 (2000), 165–178.

[4] J. Fleckinger, E. M. Harrell and F. de Thélin, Boundary behavior and estimates for solutions for equations containing the p–Laplacian, Electron. J. Diff. Equations 38 (1999), 1–19.

[5] G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), 314–317.

[6] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge University Press, 1934.

[7] L. Hörmander, An introduction to complex analysis in several complex variables, Third Edition (Revised), Elsevier, 1990.

[8] P. Juutinen, P. Lindqvist and J. Manfredi, The ∞–eigenvalue problem, Arch. Rat. Mech. Anal. 148 (1999), 89–105.

[9] K. Kutev and T. Rangelov, Hardy inequalities with double singular weights, arXiv: 2001.07368v2.

[10] J. L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), 177–196.

[11] P. Lindqvist, Notes on the p–Laplace equation, Lectures at University of Jyväskylä, 2006.

[12] P. Lindqvist, A nonlinear eigenvalue problem, In: Topics in Mathematical Analysis (P. Ciatti et. al. eds), Series on Analysis, Applications and Computation-Vol.3, World Scientific Publishing Co. Pte. Ltd. (2008), 175–203.

[13] G. Poliquin, Principal frequency of the p-Laplacian and the inradius of Euclidean domains, J. Top. Anal. 7 (2015), 505–511.

DEPARTMENT OF MATHEMATICAL SCIENCES, FUJIAN UNIVERSITY, SHANGHAI, 20043, CHINA
E-mail address: boychen@fudan.edu.cn