SYNTHESIS of IL-1β and TNFα by human monocytes-macrophages was significantly inhibited by eleven bisbenzylisoquinolines and one half-molecule (benzylisoquinoline), with IC₅₀ values in the µM range. The results indicate that these compounds may have value in the therapy of human diseases where these inflammatory cytokines have a central role in pathogenesis.

Key words: Bis-benzylisoquinolines, Cytokines, IL-1β, TNF-α

Inhibitory effects of bisbenzylisoquinolines on synthesis of the inflammatory cytokines interleukin-1 and tumour necrosis factor-alpha

W. Kim Seow,¹ Kazuhiro Nakamura,² Yukio Sugimura,² Yukihiro Sugimoto,⁎,² Yasuyuki Yamada,³ David P. Fairlie⁴ and Y.H. Thong.⁵–⁶ CA

¹Immunobiology Laboratory, The University of Queensland Dental School, Brisbane, 4000, Australia; ²Tochigi Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai-machi, Tochigi 321-34, Japan; ³Department of Agricultural Chemistry, Faculty of Agriculture, Kyoto University, Kyoto 606, Japan; ⁴Centre for Drug Design and Development, The University of Queensland, Brisbane, 4072, Australia; ⁵Immunobiology Laboratory, The University of Queensland, Mater Children’s Hospital, South Brisbane, 4001, Australia ⁶Present address: Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680, Japan

CA Corresponding Author

Introduction

The pro-inflammatory cytokines interleukin-1 (IL-1) and tumour necrosis factor (TNF) are potent molecular mediators with wide-ranging effects on a large array of cells, tissues and organs.¹,² They are produced by a wide variety of cell types, but monocytes-macrophages are the major source of these polypeptides which share structural similarities and have overlapping activities.³,⁴ They have been implicated in the pathogenesis of chronic inflammatory (e.g. rheumatoid arthritis⁵), autoimmune (e.g. insulin-dependent diabetes mellitus⁶), allergic (e.g. asthma⁷), infectious (e.g. leprosy⁸) and malignant (e.g. ovarian carcinoma⁹) diseases.

There is therefore a great interest in drugs that can control their generation and/or action because of the potential for therapeutic application. It has recently been shown that tetrandrine, a novel bisbenzylisoquinoline alkaloid, has potent inhibitory effects on the production of IL-1β and TNFα by human monocyte-macrophage cultures.¹⁰–¹² In addition, it has been shown to have therapeutic efficacy in a number of animal models of human disease, such as relapsing experimental allergic encephalitis in rats (multiple sclerosis),¹³ spontaneous diabetes in BB rats (insulin-dependent diabetes mellitus),¹⁴ air-pouch inflammation in rats (rheumatoid arthritis)¹⁵ and airways microvascular leakage in guinea-pigs (asthma).¹⁶ In an attempt to gain some mechanistic insight into the relationship between the bisbenzylisoquinoline structure and the extent of inhibition of the synthesis of TNF-α and IL-1β, the inhibitory potencies of tetrandrine and a series of ten other bisbenzylisoquinolines and one benzylisoquinoline (half-molecule) are now compared. The bisbenzylisoquinolines vary in the type of substituent, location of their ether bridges and the stereochemistry at a chiral centre. The sole benzylisoquinoline tested is a monomeric component of the dimeric benzylisoquinoline, tetrandrine,
and serves to identify whether the dimeric bisbenzylisoquinolines are active as a result of their inherent macrocyclic structure or because of their constituent functional groups which are also present in their smaller monomeric fragments.

Materials and Methods

Compounds: Four types of compounds were used in these experiments (Fig. 1). Three of these were macrocyclic ether compounds of isoquinolines bridged by alpha-benzylxoy substituents. These compounds differ in the position of the linkages between the two monomeric benzylisoquinoline components, and the nature and number of substituents on the aromatic rings. The fourth type of compound was represented by N-methylcoclaurine, a monomeric benzylisoquinoline.

The twelve compounds used in this study were obtained from diverse sources. Tetrandrine and fangchinoline, were extracted from the tubers of *Stephania tetrandra,* which were purchased from Maruzen Seiyaku Company, Onomichi, Japan; cepharanoline, cepharanthine, isotetrandrine and cyceaine, extracted from the tuberous root of *Stephania cepharantha,* were purchased from Kaken 1.114 and centrifuged at 600 × g for 30 min. The

Production of IL-1β and TNFα: The study was performed with monocytes–macrophages isolated from human blood. Blood was drawn by venepuncture from three healthy non-smoking adults not on any medication for at least 2 weeks prior to the study. The heparinized blood was layered onto Hypaque–Ficoll medium of density 1.114 and centrifuged at 600 × g for 30 min. The

![Chemical structure of the bisbenzylisoquinolines](image)
mononuclear leukocytes (MNC) in the top band at the interface were harvested, washed and resuspended in RPMI 1640 medium for the experiments.

Preparation of adherent MNCs, containing predominantly monocytes, were made in sterile plastic Petri dishes. After 3 h at 37°C, the non-adherent cells were washed off, and the adherent cells were later removed with the aid of a sterile rubber policeman, washed and re-suspended in RPMI 1640 medium containing 5% foetal calf serum, and the cell concentration adjusted by counting in a Neubauer haemocytometer. To 1 ml of 2 x 10⁶ cells/ml was added 0.5 ml of drug solution. After incubation at 37°C for 15 min, 0.5 ml of 4 x 10⁷ heat-killed, formalin-fixed, Staphylococcus aureus as a stimulant, were added into wells of 24-well cluster plates. The supernatants were harvested after 24 h, and kept frozen at −70°C for up to 2 weeks before being assayed for the presence of IL-1β and TNFα. The cells were checked for viability by Trypan-blue dye exclusion (>94%).

Quantitation of IL-1β and TNFα: Both IL-1β and TNFα in the culture supernatants were measured by a competitive binding radioimmunoassay (Amersham, UK). The tracer was [125I]IL-1β or TNFα (human, recombinant), and the antibody to human recombinant IL-1β or TNFα was made in rabbits. The antibody-bound IL-1β or TNFα was then reacted with the Amerlex-M second antibody reagent (donkey anti-rabbit serum) which contains a second antibody that is bound to magnetizable polymer particles. Separation of the antibody-bound fraction is effected by centrifugation of the Amerlex-M suspension and decantation of the supernatant. Measurement of the radioactivity in the pellet enables the amount of labelled IL-1β or TNFα in the bound fraction to be calculated. The concentration of unlabelled IL-1β or TNFα in the sample is then determined by interpolation from a standard curve.

Determination of IC₅₀ values: The concentration of drug (µM) which causes 50% inhibition of cytokine production (IC₅₀) was determined from graphical plots of inhibitor concentration vs. percentage inhibition.

Results

Effect on IL-1β and TNFα synthesis: Human monocytes-macrophages were incubated with 0, 1, 4, 10, 20 and 40 µg/ml of each of the twelve compounds. The results (Table 1) showed dose dependent inhibition of both IL-1β and TNFα production for all twelve compounds. Control values (FM/10⁶ cells) for quantities of IL-1β and TNFα produced by cultures were 162.5 ± 8.2 and 81.2 ± 4.9 (mean ± S.E.M.) respectively, or approximately 2762 and 1380 pg/l/10⁶ cells, respectively.

IC₅₀ values: The IC₅₀ values were measured from graphs of inhibitor concentration vs. % inhibition and are presented in Table 2. The results show that all IC₅₀ values for the twelve compounds are within the same order of magnitude and the range 4–26 µM and 2–18 µM for IL-1β and TNFα respectively.

Discussion

Currently available drugs for therapy of chronic inflammatory and autoimmune diseases are unsatisfactory because of significant toxic and/or immunosuppressive side effects. There is therefore a great need to develop better and safer drugs to control inflammatory tissue destruction. The discovery of the central role of inflammatory cytokines in the pathogenesis of these diseases opens up a new strategic target for drug development. The authors recently showed that the bisbenzylisoquinoline alkaloids, tetrandrine and berbamine, have the capacity to inhibit both the generation and action of IL-1β and TNFα. Although the mechanism of action of bisbenzylisoquinolines is not well understood, studies with tetrandrine have shown its capacity to block calcium channels, interfere with transmembrane signalling, and induce apoptosis. Moreover, it is largely devoid of immunosuppressive properties and is non-toxic at therapeutic doses (20 mg/kg per day for 84 days) as assessed by appearance, behaviour, weight change, blood chemistry and organ histology of BB rats. This compares well with the oral LD₅₀ of 2.230 mg/kg in rats, which is more than 100 times the therapeutic dose. Furthermore, tetrandrine has been used empirically in humans for the treatment of silicosis at a dose of 300 mg/day for 3 years without serious toxic side effects. Thus, bisbenzylisoquinolines may have significant advantages over existing drugs used in the treatment of chronic inflammatory and autoimmune diseases, such as corticosteroids, cytotoxic and anti-rejection drugs, which have substantial toxic and immunosuppressive side effects. As such, they may become the fore-runner of a new class of safe and effective drug suitable for long term clinical usage.

The results of the present study showed that all eleven bisbenzylisoquinoline alkaloids have inhibitory effects on IL-1β and TNFα synthesis by human monocytes-macrophages. Calculation of IC₅₀ values showed that inhibitory concentrations of these eleven compounds were within the same order of magnitude. This was surprising as the structures depicted in Fig. 1 vary considerably. It was expected...

Mediators of Inflammation Vol 2 · 1993 201
Table 1. Effect of bisbenzylisoquinolines on production of IL-1β and TNFα by human monocytes–macrophages

Drug	Concentration (µg/ml)	Percent of control (±S.E.M.)	Drug	Concentration (µg/ml)	Percent of control (±S.E.M.)
	IL-1	TNF		IL-1	TNF
Aromoline	1	89.7 ± 2.9	Obaberine	1	95.3 ± 5.7
	4	71.5 ± 5.2		4	80.4 ± 2.6
	10	46.7 ± 6.5		10	69.0 ± 3.8
	20	20.5 ± 7.1		20	45.9 ± 5.6
	40	8.2 ± 3.4		40	13.1 ± 2.5
Berbamine	1	87.9 ± 5.1	Oxyacanthine	1	101.5 ± 4.8
	4	83.4 ± 4.8		4	80.9 ± 7.3
	10	33.7 ± 11.9		10	37.9 ± 12.4
	20	7.0 ± 0.7		20	16.9 ± 4.2
	40	4.3 ± 1.0		40	5.6 ± 0.1
Cepharanoline	1	82.4 ± 7.0	Tetrandrine	1	84.3 ± 5.6
	4	63.9 ± 6.0		4	64.9 ± 4.2
	10	40.8 ± 10.0		10	16.6 ± 6.0
	20	23.0 ± 6.8		20	13.0 ± 7.9
	40	17.1 ± 6.7		40	10.1 ± 6.6
Fangchinoline	1	94.3 ± 4.9	Cepharanthine	1	89.7 ± 11.2
	4	36.0 ± 6.3		4	84.4 ± 7.7
	10	3.8 ± 1.0		10	49.8 ± 11.5
	20	3.0 ± 0.9		20	20.5 ± 5.8
	40	1.7 ± 0.4		40	5.7 ± 1.1
Homoaromoline	1	74.3 ± 9.5	Cycleanine	1	84.5 ± 3.9
	4	49.6 ± 8.9		4	78.0 ± 4.2
	10	36.4 ± 10.8		10	64.0 ± 12.6
	20	13.6 ± 3.5		20	47.0 ± 14.1
	40	8.1 ± 3.1		40	36.6 ± 8.5
Isoterandrine	1	73.9 ± 9.3	N-methyl-	1	92.6 ± 9.5
	4	70.0 ± 10.3	coclaurine	4	51.8 ± 8.7
	10	46.5 ± 3.3		10	1.5 ± 3.7
	20	12.0 ± 4.2		20	1.5 ± 3.0
	40	5.1 ± 0.8		40	1.6 ± 3.3

The results represent the mean ± S.E.M. of three experiments using cells from three individuals. The quantity (fM/10⁶ cells) of IL-1β and TNFα produced by control cultures were 162.5 ± 8.2 and 81.2 ± 4.9 (mean ± S.E.M.), respectively.

Table 2. Inhibition of IL-1β and TNFα production by bisbenzylisoquinolines: IC₅₀ values

Bisbenzylisoquinolines (HCl salts)	MW	IC₅₀ (µM)	IL-1β	TNFα
Aromoline	667	13.6	18.3	
Homoaromoline	681	8.7	9.8	
Oxyacanthine	681	11.6	10.1	
Obaberine	695	26.0	8.9	
Berbamine	681	11.3	7.3	
Tetrandrine	681	4.6	4.6	
Cepharanoline	695	7.2	4.6	
Cepharanthine	665	12.3	3.8	
Cephaline	679	15.0	2.2	
Cycleanine	685	25.0	4.6	
N-methylcoclaurine*	335.5	11.6	16.4	

* half-molecule

that the locations and numbers of methoxy- vs. hydroxy-substituents (types A and B, cycleanine) would have significantly influenced interaction with (unknown) receptors responsible for blocking synthesis of the specific cytokines in question, especially if the dimeric form is maintained intracellularly. Similarly, the chirality differences would lead to different molecular orientations of the isoquinolines during interaction with receptor(s). However, the similarity in inhibitor potencies suggested that the dimer structure as such may not be the principal activity determinant.

A very significant finding may be that N-methylcoclaurine, a non-cyclic benzylisoquinoline quite different from the cyclic bisbenzylisoquinolines, has equivalent inhibitory effects on IL-1β and TNFα production. There are at least two possible interpretations of these findings in terms of structure–activity relationships. One interpretation would be that the bisbenzylisoquinolines and benzylisoquinolines act on different receptors, even though both are equipotent inhibitors of inflammatory cytokine production. A more likely interpretation is that the monomers, benzylisoquinolines, may be the active forms of the bisbenzylisoquinolines. Bisbenzylisoquinolines like N-methylcoclaurine are known to chemically assemble in plants to form bisbenzylisoquinolines like tetrandrine. However, it is not known whether bisbenzylisoquinolines transform biologically into
monomeric benzylisoquinolines, although it has been shown chemically that cleavage of tetrandrine can be achieved using strong reducing conditions (metallic sodium in liquid ammonia) into two monomers, one of which is N-methylcoclaurine. One avenue for further investigation would be to determine whether the bisbenzylisoquinolines are metabolized under the conditions of these experiments and, if so, to identify the metabolites after in vitro and in vivo degradation. Another would be to determine whether bisbenzylisoquinolines and benzylisoquinolines have similar or different molecular modes of actions. Because of the importance of inflammatory cytokines in health and disease, further development of these classes of compounds may provide insights into the biology of inflammatory cytokines as well as to a better and safer drug for therapy of inflammatory diseases.

References

1. Dinarello CA. IL-1 and its biologically related cytokines. Adv Immunol 1989; 4: 153–205.
2. Balkwill FR, Burke F. The cytokine network. Immunol Today 1989; 10: 299–304.
3. Last-Barney K, Homon CA, Foanes RB, Merluzzi VJ. Synergistic and overlapping activities of tumor necrosis factor-α and IL-1. J Immunol 1988; 141: 527–534.
4. Seow WK, Thong YH, Ferrante A. Macrophage-neutrophil interactions: Contrast effects of interleukin-1 and tumor necrosis factor-alpha (cachectin) on human neutrophil adherence. Immunology 1987; 62: 357–361.
5. Avend WP, Dyer JM. Cytokines and cytokine inhibitors or antagonists in rheumatoid arthritis. Arthritis Rheum 1990; 33: 305–315.
6. Mandrup-Poulsen T. Cytokine-mediated beta-cell destruction: the molecular effecter mechanisms causing IDDM. Autoimmunity 1990; 3 (suppl. 1): 121–122.
7. Brown PH, Crompton GK, Greening AP. Proinflammatory cytokines in acute asthma. Lancet 1991; 338: 590–593.
8. Vamosmaru M, Uyemuras K. Defining protective responses to pathogens: Cytokine profiles in leprosy lesions. Science 1991; 254: 277–279.
9. Malik S, Balkwill F. Epithelial ovarian cancer: is a cytokine propelled disease? Br J Cancer 1991; 64: 617–620.
10. Seow WK, Ferrante A, Li Si-Ying, Thong YH. Suppression of human monocyte interleukin-1 production by the plant alkaloid tetrandrine. Clin Exp Immunol 1989; 75: 47–51.
11. Ferrante A, Seow WK, Rowan-Kelly B, Thong YH. Tertetrane, a plant alkaloid, inhibits the production of tumour necrosis factor alpha (cachectin) by human monocytes. Clin Exp Immunol 1990; 80: 233–235.
12. Seow WK, Ferrante A, Summore A, Thong YH. Comparative effects of tertetrane and berbamine on production of the inflammatory cytokines interleukin-1 and tumour necrosis factor. Life Sci 1992; 50: P1-53–P1-58.
13. Wong CW, Seow WK, Thong YH. Comparative effects of tertetrane and berbamine on acute and relapsing experimental allergic encephalitis in Lewis rats. Int Arch Allergy Appl Immunol 1992; 97: 31–36.
14. Lieberman I, Lezza FB, Trucco G, Seow WK, Thong YH. Prevention by tertetrane of the spontaneous development of diabetes mellitus in the BB rat. Diabetes 1992; 41: 616–619.
15. Wong CW, Seow WK, O'Cahalan JW, Thong YH. Comparative effects of tertetrane and berbamine in the subcutaneous air-pouch model of inflammation. Agents Actions Suppl 1992; 36: 110–118.
16. Wong, Thong YH, Seow WK. Comparative effects of tertetrane and berbamine on guineapig airway microvascular leakage induced by PAF and other allergic mediators. Int Immunopharmacol 1993; 15: 185–193.
17. Nakamura K, Tsuchiya S, Sugimoto Y, Sugimura Y, Yamada Y. Histamine release inhibition activity of bisbenzylisoquinoline alkaloids. Planta Medica 1992; 58: 505–508.
18. Tomita M, Sheng-Teh Lu. Alkaloids of Stephania tetrandra S. Moore. Yakugaku Zasshi 1967; 87: 316–318.
19. Tomita M, Konaka M. Alkaloids of Stephania cepharantha Hayata. Yakugaku Zasshi 1967; 87: 1203–1208.
20. Sugimoto Y, Yamada Y, Sugimura Y. Comparison of bisbenzylisoquinoline alkaloids in root cultures of Stephania cepharantha with those of the parent plant. J Nat Prod 1979; 42: 1–83.
21. Ferrante A, Thong YH. Optimal conditions for simultaneous purification of monomeric and polymorphonuclear leukocytes from human blood. Immunol Methods 1990; 56: 109–116.
22. King VP, Garcia ML, Himmel D, et al. Interaction of tetrandrine with slowly inactivating calcium channels. Characterization of calcium channel modulation by an alkaloid of Chinese medicinal herb origin. J Biol Chem 1993; 268: 2238.
23. Ioannoni B, Chalmers AH, Seow WK, McCormack JG, Thong YH. Tertetrane and transmembrane signal transduction: effect on phosphoinositide metabolism, calcium flux and protein kinase C translocation in human lymphocytes. Int Arch Allergy Appl Immunol 1989; 89: 349–354.
24. Teh BS, Chen P, Lavin M, Seow WK, Thong YH. Demonstration of the induction of apoptosis (programmed cell death) by tetrandrine. Int Arch Allergy Appl Immunol 1991; 1: 1117–1126.
25. Li Si-Ying, Teh BS, Seow WK, Liang Li-Hua, Thong YH. Effect of tetrandrine on immunological responses and cardiac transplant rejection in mice. Int Arch Allergy Appl Immunol 1989; 90: 169–173.
26. Wong CW, Seow WK, Zeng TS, Halliday WJ, Thong YH. Comparative effects of the bisbenzylisoquinolines tertetrane and berbamine on immunological responses and experimental bronchoconstriction in mice. Int J Immunopharmacol 1991; 13: 585–589.
27. Chang HM, But PPFI. Pharmacology and Applications of Chinese Materia Medica. Singapore: World Scientific, 1987.
28. Li Quanlu, Xu Yonghou, Zhou Zhexu. The therapeutical effect of tertetrane on silicosis. Chin J Tuberc Respir Dis 1981; 4: 321–328.
29. Fujita K, Morii F. Studies on the alkaloids of menispermaceous plants (Maesa Tomii). LXXIII. On the structure of bisbiscuclidean alkaloids (3). Cleavage of tertetrane by metallic sodium in liquid ammonia. J Pharmocol Sci Japan 1951; 71: 1039–1042.

Received 11 February 1993; accepted in revised form 5 March 1993.