Brief Original Article

Clostridioides difficile infections: Epidemiology, correlations and treatment in a Lebanese cohort with use of ATLAS scoring

Jacques Choucair¹, Rami Waked¹, Elie Haddad¹, Marie Chedid¹, Nabil Chehata¹, Gebrael Saliba¹, Houssam Dahboul²

¹ Department of Infectious Diseases, Hôtel Dieu de France, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
² Department of Gastrointestinal and Digestive Surgery, Hôtel Dieu de France, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon

Abstract

Introduction: The objectives of the present study were to investigate epidemiology, correlations, severity, and therapeutic response of *Clostridioides difficile* infections in a Lebanese tertiary care hospital.

Methodology: In this retrospective cohort study, patients having at least one positive *Clostridioides difficile* test (antigen glutamate dehydrogenase/GDH with toxins, or PCR) were studied.

Results: Among 58 patients, 20 (34.5%) and 53 (91.4%) had positive antigen GDH and toxins, respectively. PCR was performed in 25 (43.1%) patients without any positive ribotype 027. Fifteen (25.9%) patients were immunocompromised, 35 (60.3%) patients received antibiotics prior to the infection and 34 (58.6%) on proton pump inhibitors. Fifty-four (93%) patients had a resolution of their symptoms after a mean period of 4.2 days of treatment. Twenty-two (38%) participants were treated with oral vancomycin, 11 (19%) with intravenous metronidazole and 23 (39.6%) with both antibiotics. Resolution of symptoms was significantly more rapid with monotherapy (p = 0.007) with no significant difference between vancomycin and metronidazole (p = 0.413). A positive correlation was found between ATLAS score and delay to symptoms resolution (r = 0.553; p < 0.001; N = 54), as well as between ATLAS score and prevalence of complications (p = 0.003).

Conclusions: History of treatment with antibiotics, proton pump inhibitors, and hospital admission during the previous year were prevalent among our patient cohort. Rates of symptomatic resolution were similar with monotherapy and dual therapy.

Key words: ATLAS score; *Clostridioides difficile*; pseudomembranous colitis; Middle East; outcome; treatment.

J Infect Dev Ctries 2020; 14(12):1461-1465. doi:10.3855/jidc.13189

(Received 20 June 2020 – Accepted 04 August 2020)

Copyright © 2020 Choucair *et al*. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Clostridioides difficile (*C. difficile*) infection is one of the most common healthcare associated infections worldwide. It can manifest with variable symptoms, mainly diarrhea, and it is responsible for significant morbidity and mortality. *C. difficile*, previously named *Clostridium difficile*, is named so due to the difficulty of isolating it. It is a gram positive, spore forming and toxin-producing anaerobe [1].

Fast identification of the infection is critical to ensure early treatment and prevent contagion. Discontinuation of antibiotics and treating the infection are effective in most cases [2]. However, a significant minority of patients develops complications requiring surgical management. Multiple criteria should be assessed to confirm treatment success [3]. *C. difficile* colonizes the digestive tract and becomes pathogenic when the normal flora is altered [4].

During the last decade, increase in *C. difficile* infection prevalence has been noted, with an emergence of new resistant strains. Liberal use of antibiotics has favored its dissemination. Current estimations report 500 000 cases of *C. difficile* infection yearly in the United States, with a medical cost approaching 1.1 billion dollars [5]. However, reported rates of *C. difficile* infections in the Middle East varies among studies [6,7].

No study has used the ATLAS score in a Middle Eastern population. This study included patients diagnosed with *C. difficile* infection in a Lebanese tertiary care hospital, and its primary endpoint was to assess the ATLAS score in this population, as well as the epidemiology, correlations and therapeutic attitude.

Methodology

After obtaining the Saint Joseph University’s ethical and hospital committee’s approvals, data was
collected from archived medical files and microbiology laboratory records (using the ICD-10-CM code “A04.7”). Search was conducted from November 2016 to November 2017. Patient with confirmed C. difficile infection during the studied period were included. Patients younger than 18 years old, or not admitted during the studied period were excluded. Information collected included age, sex, relevant past medical history (hospitalization in the past year, previous C. difficile infection, antibiotic, proton pump inhibitor intake and immunosuppression), symptoms, type and duration of treatment, duration between onset of treatment and clinical improvement. Serum creatinine and albumin levels upon diagnosis were also collected to calculate the ATLAS score [8]. Lastly, occurrence of complications was noted.

The targeted population tested for C. difficile and diagnosis were according to the definition of the IDSA guidelines [9]. Clinical improvement was defined as the resolution of fever and diarrhea. Immunosuppression was defined by the presence of any of the following: use of any type of immunosuppressors, corticosteroids (prednisone ≥ 7.5 mg for 4 weeks or more, or its equivalent), chemotherapy, HIV positive or the presence of an autoimmune/systemic diseases.

SPSS statistical software (Windows, version 22, Chicago, IL, USA) was used for statistical analysis of data. Statistical threshold used corresponds to p-value < 0.05. Effectives and percentages were used for qualitative variables whereas mean and standard deviation were used for quantitative variables. Spearman’s correlation coefficient was used to study the link between the ATLAS score and the number of days till resolution of symptoms. Kruskal-Wallis test was used to compare mean duration till resolution of symptoms according to ATLAS score. Fisher’s exact test was used to compare the presence of complications according to the ATLAS score, as well as to study the association between the ATLAS score and type of antibiotic therapy. Kruskal-Wallis test was used to compare the mean duration till resolution of symptoms according to monotherapy versus dual therapy.

Results
Fifty-eight participants (23 males and 35 females; sex ratio = 1.52) with a mean age of 65.28 ± 20.87 years (18-95 years) were included in the study. Only 8 (13.8%) patients were admitted for diarrhea (Reasons described in Table 1).

All patients developed diarrhea or loose stools, with (51.7%) or without fever (48.2%). Toxins and antigens were positive in 20 (34.5%) and 53 (91.4%) patients, respectively. PCR test was done in 25 (43.1%) patients. Ribotype 027 was tested in 25 (43.1%) patients. Details are presented in Table 2.

Results have shown that 15(25.9%) patients were immunocompromised, and most were receiving proton pump inhibitor therapy (58.6%) or antibiotics prior to the C. difficile infection episode (60.3%). The most used antibiotic prior to the episode was Amoxicillin/clavulanic acid (34.3%). Also, 24.9% of patients had a history of one or more C. difficile infection episode and 84.5% were hospitalized once or more during the year prior the current episode. Details on patients are shown in Table 3.
The mean of ATLAS score was 3.74 ± 0.890 with a median of 4. Fifty-six patients with C. difficile infection were treated with antibiotic therapy and the most used was an association between vancomycin and metronidazole (39.7%) or monotherapy with vancomycin (37.9%). The mean course of treatment was 12.66 ± 2.134 days (range: 6-14 days) and clinical resolution of symptoms occurred after a mean of 4.20 ± 1.122 days (range: 2-7 days). Seven (12.1%) patients developed complications.

Table 3. Details on patient’s characteristics.

Number of patients (%)	Previous antibiotics use
	35 (60.3)
Antibiotics	
Amoxicillin/Clavulanic acid	12 (34.3)
Quinolones	7 (20.0)
Carbapenems	4 (11.4)
Cephalosporins, 3rd generation	4 (11.4)
Trimethoprim/ sulfamethoxazole	2 (5.7)
C3G + Carbapenems	1 (2.9)
Tigecycline	1 (2.9)
Monobactam	1 (2.9)
Cephalosporins, 4th generation	1 (2.9)
Piperacillin/Tazobactam	1 (2.9)
Amoxicillin, Aminoglycoside	1 (2.9)
Proton pump inhibitors	34 (58.6)
Previous C. diff infection episode	
0	44 (75.9)
1	10 (17.2)
2	3 (5.2)
3	1 (1.7)
Hospitalization during last year	
0	9 (15.5)
1	22 (37.9)
2	17 (29.3)
3	9 (15.5)
5	1 (1.7)
Immunosuppression	15 (25.9)
Atlas score	
2	3 (5.2)
3	21 (36.2)
4	24 (41.4)
5	8 (13.8)
6	2 (3.4)
Antibiotic therapy	
None	2 (3.4)
Metronidazole	11 (19.0)
Vancomycin	22 (37.9)
Vancomycin /metronidazole	23 (39.7)
Complications	
7	7 (12.1)
Type of complication	
Death	4
Colic distention	1
Ileus	1
Acute kidney injury	1

Our study showed a significantly positive correlation between ATLAS score and the time needed to achieve clinical resolution of symptoms (r = 0.553; p < 0.001; N = 54). With a higher ATLAS score, the time needed to achieve clinical resolution of symptoms after starting treatment was significantly longer (p < 0.001) as shown in Figure 1.

Occurrence of complications was significantly associated to ATLAS score (p = 0.003). Out of the patients presenting with complications, 71% had a score of 5 and 28.6% had a score of 6. Out of the 7 complications, 4 patients died (3 of them had a score of 4 and one a score of 6).

Antibiotic choice was correlated to ATLAS score (p < 0.001). Patients with a low score (< 4) were treated with monotherapy, with the use of metronidazole particularly and patients with higher scores (≥ 4) were treated with dual therapy. Dual therapy was used in patients with higher scores, explaining the longer duration to recovery and symptoms resolution.

Time to recovery was significantly longer in patients treated with dual antibiotic therapy than with monotherapy (p = 0.007). No significant difference in time to recovery was seen between metronidazole and vancomycin (p = 0.413).

Discussion

Many studies have been carried out worldwide to investigate C. difficile infections, but these are lacking in the Middle East and Lebanon. Studies from the Middle East showed variable prevalence for this infection [10]: Shehabi et al. [11] reported 9.7% in Jordan, Rotimi et al. [12] found a less than 10% prevalence of hospital acquired C. difficile infections in Nigeria during the period 2010-2012.
infection/colonization in Kuwait, and Moukhaiber et al. [13] found that 30 out 88 (65.2%) of stool samples examined of patients admitted to a tertiary care center in Lebanon, were positive for C. difficile.

To our knowledge, this is the first study to use the ATLAS score in this population. The average age was comparable to one study in the literature, showing a mean age of 67 years for a total of 15,461 patients [14]. Also, the percentage of women (60.2% in our study) was comparable to that of this same study. A history of antibiotic therapy and proton pump inhibitor use were associated with C. difficile infection according to this study. A study from Jordan showed that most patients with C. difficile infections were on one or more broad spectrum antibiotic which is comparable to our study [15]. Therefore, limiting unnecessary antibiotic prescription remains the most important method for reducing the risk of such infection [10]. Proton pump inhibitors usage have a proven association with C. difficile infection as several studies and meta-analyses showed [10,16]. Using proton pump inhibitors only when indicated can therefore decrease the incidence and the recurrence of this infection.

Most patients in this study had at least one hospitalization during the year preceding the current C. difficile infection, which is consistent with the data from worldwide studies, showing that each hospital stay increases the risk of infection, with a higher risk when the stay is longer. Another study from Lebanon showed two third of C difficile infected patients were hospitalized in the previous weeks. Hygiene measures are therefore essential to prevent the transmission of such infections [17]: patients isolation, hand washing with soap and water and educating the patient and staff.

ATLAS score predicts the severity and clinical course of C. difficile infection [8]. This score also predicted the length of hospital stay after the diagnosis and the time needed until symptomatic recovery after treatment [18]. We found a positive correlation between this score and the time needed to recover. Studies have proved that with higher scores, comes a higher time needed to symptomatic recovery and patient discharge [19]. Complication rate is also significantly higher when ATLAS score is higher and choice of antibiotic therapy depends on the score, even if the physician is not familiar with the score [17]. Using this score was easy with no significant additional costs on the patient. Compared to the severity classification of the IDSA guidelines, ATLAS score may be more objective, standardized and may anticipate a potential complication of C. difficile infection.

Antibiotic therapy was initiated to some patients in this study without confirming diagnosis, only when the clinical suspicion was high, and PCR test could not be done. This practice has proved to have significant shorter times to initiate effective antimicrobial therapy and implement contact precautions [20].

This study highlights the importance of clinical and laboratory tests to diagnose C. difficile infection and to efficiently begin treatment. It is also the first study to use the ATLAS score in this population. However, this is a wide period monocentric study with a small population conducted on medical records, which could involve selection and documentation bias. It lacks consistency in microbiological test used. This study lacks comparative control group to assess the impact of risk factors on CDI development and the effect of CDI antibiotic therapy on outcomes.

Conclusions

Prior antibiotics, proton pump inhibitors intake, and history of hospitalization within the previous year are most prevalent among our patient cohort. ATLAS score is a good predictor of infection severity, its complications, time of hospital stay and choice of antibiotic therapy. Dual therapy is not always superior to monotherapy in terms of symptomatic recovery, and ATLAS score should guide the treatment.

Authors’ contribution

JC: conceptualization and editing; RW, EH, MC, NC, GS: writing - review and editing; HD: writing – initial draft.

Ethics approval

Authorization by the ethical committee of the Saint Joseph University, Beirut, Lebanon for data processing and publication was obtained.

References

1. Knetsch CW, Kumar N, Forster SC, Connor TR, Browne HP, Harmanus C, Sanders IM, Harris SR, Turner L, Morris T, Perry M, Miyajima F, Roberts P, Pirmohamed M, Songer JG, Weese JS, Indra A, Corver J, Rupnik M, Wren BW, Riley TV, Kuiper EJ, Lawley TD (2017) Zoonotic transfer of Clostridium difficile harboring antimicrobial resistance between farm animals and humans. J Clin Microbiol 56: 1384-1417.
2. Imperiale DG, Vogel T, Kaltenbach G (2010) Clostridium difficile: news and therapeutic perspectives. Médecine Thérapeutique 16: 231–237. [Article in French]
3. Bai Y, Sun X, Jin Y, Wang Y, Li J (2017) Accuracy of Xpert Clostridium difficile assay for the diagnosis of Clostridium difficile infection: A meta-analysis. PLOS ONE 12: e0185891.
4. Nerandzic MM, Donskey CJ (2017) Sensitizing Clostridium difficile spores with germinants on skin and environmental
surfaces represents a new strategy for reducing spores via ambient mechanisms. Pathog Immun 2: 404.

5. Heimann SM, Cruz Aguilar MR, Mellinghof S, Vehreschild MJGT (2018) Economic burden and cost-effective management of *Clostridium difficile* infections. Med Mal Infect 48: 23–29.

6. Karaoui WR, Rustam LB, Bou Daher H, Rimmani HH, Rasheed SS, Matar GM, Mahfouz R, Araj GF, Zahreddine N, Kanj SS, Berger FK, Gärtner B, Sabbagh RE, Sharara Al (2020) Incidence, outcome, and risk factors for recurrence of nosocomial *Clostridioides difficile* infection in adults: A prospective cohort study. J Infect Public Health 13: 485-490.

7. Aljafel NA, Al-Shaikhy HH, Alnahdi MA, Thabit AK (2020) Incidence of *Clostridioides difficile* infection at a Saudi tertiary academic medical center and compliance with IDSA/SHEA, ACG, and ESCMID guidelines for treatment over a 10-year period. J Infect Public Health 13: 1156–1160.

8. Miller MA, Louie T, Mullane K, Weiss K, Lentnek A, Golan Y, Kean Y, Sears P (2013) Derivation and validation of a simple clinical bedside score (ATLAS) for *Clostridium difficile* infection which predicts response to therapy. BMC Infect Dis 13: 148.

9. McDonald LC, Gerged DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey KW, Gould CV, Kelly C, Loo V, Sammons JS, Sandra TF, Wilcox MH (2018) Clinical practice guidelines for *Clostridium difficile* infection in adults and children: 2017 update by the Infectious Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). Clin Infect Dis 66: 1–48.

10. Shehabi AA, Badran EF, Abu-Khader EN (2016) *Clostridioides difficile*: Infection, diagnosis and treatment with antimicrobial drugs: A review article. Int Arab J Antimicrob Agents 5 Suppl 4: 14.

11. Shehabi AA, Abu-Ragheb HA, Allaham NA (2001) Prevalence of *Clostridium difficile*- associated diarrhea among hospitalized Jordanian patients. Eastern Medit Health J 7: 750-755

12. Rotimi VO, Mokaddas EM, Jamal WY, Verghese TL, El-Din K, Junaied TA (2002) Hospital-acquired *Clostridium difficile* infection amongst ICU and bum patients in Kuwait. Med Principles Pract 11: 23-28.

13. Moukhairb R, Araj GF, Kissoyan KA, Cheaito KA, Matar GM (2015) Prevalence of *Clostridioides difficile* toxigenotypes in infected patients at a tertiary care center in Lebanon. J Infect Dev Ctries 9:732-735. doi: 10.3855/jidc.6585.

14. Lessa FC, Mu Y, Bamberg WM, Beldavs ZG, Duminati GK, Dunn JR, Farley MM, Holzbauer SM, Meek R, Phipps EC, Wilson LE, Winston LG, Cohen JA, Limbago BM, Fridkin SK, Gerged DN, McDonald LC (2015) Burden of *Clostridioides difficile* infection in the United States. N Engl J Med 372: 825–834.

15. Wadi J, Ayesh AS, Shanab LA, Harara B, Petro H, Rumman A, Alaskar M, Maswadeh M, Tadibir M (2015) Prevalence of *Clostridioides difficile* infections among hospitalized patients in Amman, Jordan: A Multi-center study. Int Arab J Antimicrob Agents 5 Suppl 1: 1 – 9.

16. Deshpande A, Pasupuleti V, Thota P, Pant C, Rolston DDK, Hernandez AV, Donskey CJ, Fraser TG (2015) Risk factors for recurrent *Clostridioides difficile* infection: A systematic review and meta-analysis. Infect Control Hosp Epidemiol 36: 452–460.

17. Yanke E, Moriarty H, Carayon P, Safdar N (2018) A qualitative, interprofessional analysis of barriers to and facilitators of implementation of the Department of Veterans Affairs’ *Clostridioides difficile* prevention bundle using a human factors engineering approach. Am J Infect Control46: 276–284.

18. Hernández-García R, Garza-González E, Miller M, Arteaga-Muller G, Galván-de los Santos AM, Camacho-Ortiz A (2015) Application of the ATLAS score for evaluating the severity of *Clostridioides difficile* infection in teaching hospitals in Mexico. Braz J Infect Dis 19: 399–402.

19. Mulherin DW, Hutchison AM, Thomas GJ, Hansen RA, Childress DT (2014) Concordance of the SHEA-IDSA severity classification for *Clostridium difficile* infection and the ATLAS bedside scoring system in hospitalized adult patients. Infection 42: 999–1005.

20. Polen CB, Judd WR, Ratliff PD, King GS (2018) Impact of real-time notification of *Clostridium difficile* test results and early initiation of effective antimicrobial therapy. Am J Infect Control 46: 538–541.

Corresponding author
Rami Waked
Maine Medical Center
22 Bramhall St, Portland, ME 04102
United States
Email: ramiwaked12@hotmail.com
ORCID number: 0000-0001-8280-6638

Conflict of interests: No conflict of interests is declared.