Characterization of the complete mitochondrial genome of *Cyclosa japonica* (Araneae: Araneidae)

Wen-Jia Yang*, Yan Liu*, Kang-Kang Xu, Da-Xing Yang and Can Li

Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China

ABSTRACT

The complete mitogenome of *Cyclosa japonica* (GenBank accession number MK512575) is 14,687 bp in length, containing 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes, and a putative control region. Its gene content and organization are identical with other spider mitogenomes. The overall base composition was as follows: A (35.61%), T (37.35%), C (10.87%), and G (16.18%), with an A + T bias (72.96%). Seven tRNAs (*trnM*, *trnW*, *trnK*, *trnE*, *trnF*, *trnH*, and *trnT*) lacked the TΨC arm stem, while two tRNAs (*trnS1* and *trnS2*) lacked the dihydrouracil (DHU) arm. Phylogenetic tree based on concatenated amino acid sequences of 13 PCGs shows that *C. japonica* is closely related to *Cyclosa argenteoalba*, which accord with morphological classification.

The orb-weaving spider, *Cyclosa japonica* (Araneae: Araneidae), is an important predator of several economical agricultural pests (Wang et al. 1996; Platnick 2015). This species is mainly distributed in China, Russia, Korea and Japan. These spiders weave small webs in paddy fields, trees, and tea bushes. In this study, adult individuals of *C. japonica* were collected from Maolan Nature Reserve in Libo country, Guizhou Province, China (E107°58′, N25°15′), and preserved in the spider specimen room of Guiyang University with an accession number GYU-GZML-14.

The complete mitogenome sequence of *C. japonica* is 14,687 bp in length and is deposited in GenBank under...

CONTACT Can Li lican790108@163.com College of Biology and Environmental Engineering, Guiyang University, Guiyang 550005, China

*These authors contributed equally to this work

© 2019 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Accession number MK512575. It harbors 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rrnL and rrnS), and a putative control region. The gene content and organization of *C. japonica* are identical with other spider mitogenomes (Li et al. 2016; Xu et al. 2019). Twenty-two genes were encoded on the major strand (J-strand), while others were transcribed on the minor strand (N-strand). The overall base composition was as follows: A (35.61%), T (37.35%), C (10.87%), and G (16.18%), with an A + T bias (72.96%). This mitogenome presented a negative AT-skew (-0.024) and a positive GC-skew (0.196).

The *C. japonica* mitogenome displays gene overlap in 28 bp in seven locations. The longest overlap is 16 bp in length and located between *cob* and *trnS2*. The intergenic spacer sequences were spread over 24 regions ranging in size from 1 to 39 bp. The 22 tRNAs had a total of 1297 bp, and their individual lengths ranged from 50 bp (trnC) to 67 bp (trnL2 and trnH). Nine tRNAs appear to be truncated and lack the potential to fold into the cloverleaf secondary structure. Seven of them (trnM, trnW, trnK, trnE, trnF, trnH, and trnT) lacked the TYC arm stem, and two tRNAs (trnS1 and trnS2) lacked the dihydrouracil (DHU) arm.

The *rrnL* and *rrnS* were located between *trnL1* and *trnQ* and separated by the *trnV*, with a length of 1017 and 684 bp, respectively. The control region was located between *trnQ* and *trnM* with a length of 1145 bp, and the A + T content was 69.26%. Three PCGs (cox3, nad6, and nad1) terminate with TAG, two PCGs (nad4 and nad4L) use T and the rest of the genes stop with TAA. Nine PCGs start with typical ATN start codons (ATA, ATT, and ATG), three genes (cox2, cox3, and nad6) use TTG and cox1 is initiated with TTA.

To validated with the phylogenetic position of *C. japonica*, a neighbor-joining phylogenetic tree was constructed using the concatenated amino acid sequences of 13 PCGs with MEGA6 (Tamura et al. 2013). The result showed that *C. japonica* is closely related to *Cyclosa argenteoalba* (Figure 1), which accord well with traditional morphological classification.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was supported in part by the Special Funding of Guiyang Science and Technology Bureau and Guiyang University [GYU-KYZ-2019-02-08], the Program for First-class university Construction in Guizhou Province [2017158322], the National Natural Science Foundation of China [31760130], the Program for Academician workstation in Guiyang University [20195605], the Training Program for High-level Innovative Talents of Guizhou Province [20164020], and the Program for First-class Discipline Construction in Guizhou Province [201785].

ORCID

Wen-Jia Yang http://orcid.org/0000-0003-4339-2158

References

Li C, Wang ZL, Fang WY, Yu XP. 2016. The complete mitochondrial genomes of two orb-weaving spider *Cytarachne nagasakiensis* (Strand, 1918) and *Hypsosinga pygmaea* (Sundevall, 1831) (Araneae: Araneidae). Mitochondrial DNA Part A. 27:2811–2812.

Platnick NI. 2015. The world spider catalog, version 13.5. American Museum of Natural History. http://research.amnh.org/iz/spiders/catalog/.

Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30:2725–2729.

Wang HQ, Yan HM, Yang HM. 1996. Studies on the ecology of spiders in paddy fields and utilization of spiders for biological control in China. Sci Agr Sin. 29:68–75.

Xu KK, Yang WJ, Yang DX, Li C. 2019. The complete mitochondrial genome sequence of *Neoscona multiplicans* (Chamberlin, 1924) (Araneae: Araneidae). Mitochondrial DNA Part B. 4:201–202.