Hierarchical Subtask Discovery With Non-Negative Matrix Factorization

Adam C. Earle ¹ Andrew M. Saxe ² Benjamin Rosman ¹ ³

Abstract
Hierarchical reinforcement learning methods offer a powerful means of planning flexible behavior in complicated domains. However, learning an appropriate hierarchical decomposition of a domain into subtasks remains a substantial challenge. We present a novel algorithm for subtask discovery, based on the recently introduced multitask linearly-solvable Markov decision process (MLMDP) framework. The MLMDP can perform never-before-seen tasks by representing them as a linear combination of a previously learned basis set of tasks. In this setting, the subtask discovery problem can naturally be posed as finding an optimal low-rank approximation of the set of tasks the agent will face in a domain. We use non-negative matrix factorization to discover this minimal basis set of tasks, and show that the technique learns intuitive decompositions in a variety of domains. Our method has several qualitatively desirable features: it is not limited to learning subtasks with single goal states, instead learning distributed patterns of preferred states; it learns qualitatively different hierarchical decompositions in the same domain depending on the ensemble of tasks the agent will face; and it may be straightforwardly iterated to obtain deeper hierarchical decompositions.

1. Introduction
Hierarchical reinforcement learning methods hold the promise of faster learning in complex state spaces and better transfer across tasks, by exploiting planning at multiple levels of detail (Barto & Madadevan, 2003). A taxi driver, for instance, ultimately must execute a policy in the space of torques and forces applied to the steering wheel and pedals, but planning directly at this low level is beset by the curse of dimensionality. Algorithms like HAMS, MAXQ, and the options framework permit powerful forms of hierarchical abstraction, such that the taxi driver can plan at a higher level, perhaps choosing which passengers to pick up or a sequence of locations to navigate to (Sutton et al., 1999; Dietterich, 2000; Parr & Russell, 1998). While these algorithms can overcome the curse of dimensionality, they require the designer to specify the set of higher level actions or subtasks available to the agent. Choosing the right subtask structure can speed up learning and improve transfer across tasks, but choosing the wrong structure can slow learning (Solway et al., 2014; Brunskill & Li, 2014). The choice of hierarchical subtasks is thus critical, and a variety of work has sought algorithms that can automatically discover appropriate subtasks.

One line of work has derived subtasks from properties of the agent’s state space, attempting to identify states that the agent passes through frequently (Stolle & Precup, 2002). Subtasks are then created to reach these bottleneck states (van Dijk & Polani, 2011; Solway et al., 2014; Diuk et al., 2013). In a domain of rooms, this style of analysis would typically identify doorways as the critical access points that individual skills should aim to reach (Simsek & Barto, 2009). This technique can rely only on passive exploration of the agent, yielding subtasks that do not depend on the set of tasks to be performed, or it can be applied to an agent as it learns about a particular ensemble of tasks, thereby suit the learned options to a particular task set.

Another line of work converts the target MDP into a state transition graph. Graph clustering techniques can then identify connected regions, and subtasks can be placed at the borders between connected regions (Mannor et al., 2004). In a rooms domain, these connected regions might correspond to rooms, with their borders again picking out doorways. Alternately, subtask states can be identified by their betweenness, counting the number of shortest paths that pass through each specific node (Simsek & Barto, 2009; Solway et al., 2014). Finally, other methods have grounded subtask discovery in the information each state reveals about the eventual goal (van Dijk & Polani, 2011). Most of these approaches aim to learn options with a single or low number of termination states, can require high computational ex-
pense (Solway et al., 2014), and have not been widely used to
generate multiple levels of hierarchy (but see (Vigorito &
Barto, 2010)).

Here we describe a novel subtask discovery algorithm
based on the recently introduced Multitask linearly-solvable
Markov decision process (MLMDP) framework (Saxe et al.,
2016), which learns a basis set of tasks that may be linearly
combined to solve tasks that lie in the span of the basis
(Todorov, 2009a). We show that an appropriate basis can
naturally be found through non-negative matrix factorization
(Lee & Seung, 1999; 2000), yielding intuitive decomposi-
tions in a variety of domains. Moreover, we show how the
 technique may be iterated to learn deeper hierarchies of
subtasks.

2. Background: The Multitask LMDP

In the multitask framework of (Saxe et al., 2016), the agent
faces a set of tasks where each task has an identical tran-
sition structure, but different terminal rewards, modeling
the setting where an agent pursues different goals in the
same fixed environment. Each task is modeled as a finite-
exit LMDP (Todorov, 2009a). The LMDP is an alternative
formulation of the standard MDP that carefully structures
the problem formulation such that the Bellman optimality
equation becomes linear in the exponentiated cost-to-go. As
a result of this linearity, optimal policies compose naturally:
solutions for rewards corresponding to linear combinations
of two optimal policies are simply the linear combination
of their respective desirability functions (Todorov, 2009b).
This special property of LMDPs is exploited by (Saxe et al.,
2016) for details). Despite the restrictions inherent in the
formulation, the LMDP is generally applicable; see the sup-
plementary material in (Saxe et al., 2016) for examples of
how the LMDP can be applied to non-navigational and con-
ceptual tasks. A primary difficulty in translating standard
MDPs into LMDPs is the construction of the action-free pas-
sive dynamics P; however, in many cases, this can simply
be taken as the resulting Markov chain under a uniformly
random policy.

The Multitask LMDP (Saxe et al., 2016) operates by learn-
ing a set of N_t tasks, defined by LMDPs $L_t = (S_t, P_t, q_t, q^*_t)$,
$t = 1, \ldots, N_t$ with identical state space, passive dynamics,
and internal rewards, but different instantaneous exponenti-
tated boundary reward structures $q^*_t = \exp(r^*_t/\lambda)$, $t =
1, \ldots, N_t$. The set of LMDPs represent an ensemble of
tasks with different ultimate goals. We can define the task
basis matrix $Q = \begin{bmatrix} q_1 & q_2 & \cdots & q_{N_t} \end{bmatrix}$ consisting of the differ-
ent exponentiated boundary rewards. Solving these LMDPs
provides a set of desirability functions z^*_t, $t = 1, \ldots, N_t$ for
each task, which can be formed into a desirability basis ma-
trix $Z = \begin{bmatrix} z^*_1 & z^*_2 & \cdots & z^*_N \end{bmatrix}$ for the multitask module. With
this machinery in place, if a new task with boundary reward
q can be approximately expressed as a linear combination
of previously learned tasks, $q \approx Qz$. Then the same weighting
without explicit basis can be derived to retrieve the corresponding optimal desir-
ability function, $z = Zz$, due to the compositionality of the
LMDP.

2.1. Stacking the MLMDP

The multitask module can be stacked to form deep hierar-
chies (Saxe et al., 2016) by iteratively constructing higher
order MLMDPs in which higher levels select the instanta-
aneous reward structure that defines the current task for lower
levels in a feudal-like architecture. This recursive procedure
is carried out by firstly augmenting the layer l state space
$S^l_i = S^l \cup S^{l+1}_i$ with a set of N_t terminal boundary states
S^{l+1}_i called subtask states. Transitioning into a subtask state
corresponds to a decision by the layer l MLMDP to access
the next level of the hierarchy. These subtask transitions are
governed by a new N^{l+1}_t-by-N_l passive dynamics matrix P^l_i.
In the augmented MLMDP, the full passive dynamics are taken to be
$\tilde{P}^l = [P^l_i; P^l_j; P^l_l]$, corresponding to transitions
to interior states, boundary states, and subtask states respec-
tively. Higher layer transitions dynamics $[P^{l+1}_j; P^{l+1}_l]$ are
then suitably defined (Saxe et al., 2016). Crucially, in order
to stack these modules, both the subtask states themselves
S^{l+1}_i, and the passive dynamic matrix P^{l+1}_i must be defined.
These are typically hand crafted at each level.

3. Subtask discovery via non-negative matrix
factorization

Prior work has assumed that the task basis Q is given a
priori by the designer. Here we address the question of
how a suitable basis may be learned. A natural starting point is to find a basis that retains as much information as possible about the ensemble of tasks to be performed, analogously to how principal component analysis yields a basis that maximally preserves information about an ensemble of vectors. In particular, to perform new tasks well, the desirability function for a new task must be representable as a (positive) linear combination of the desirability basis matrix \(Z \). This naturally suggests decomposing \(Z \) using PCA (i.e., the SVD) to obtain a low-rank approximation that retains as much variance as possible in \(Z \). However, there is one important caveat: the desirability function is the exponentiated cost-to-go, such that \(Z = \exp(V/\lambda) \). Therefore \(Z \) must be non-negative, otherwise it does not correspond to a well-defined cost-to-go function.

Our approach to subtask discovery is thus to uncover a low-rank representation through non-negative matrix factorization, to realize this positivity constraint (Lee & Seung, 1999, 2000). We seek a decomposition of \(Z \) into a data matrix \(D \in \mathbb{R}^{(m \times k)} \) and a weight matrix \(W \in \mathbb{R}^{(k \times n)} \) as:

\[
Z \approx DW
\]

where \(d_{ij}, w_{ij} \geq 0 \). The value of \(k \) in the decomposition must be chosen by a designer to yield the desired degree of abstraction, and is referred to as the decomposition factor. Since \(Z \) may be strictly non-negative, the non-negative decomposition is not unique for any \(k \) (Donoho & Stodden, 2004). Formally then we seek a decomposition which minimizes the cost function

\[
d_\beta(Z \| DW),
\]

where \(d \) is the \(\beta \)-divergence, a subclass of the more familiar Bregman Divergences (Hennequin et al., 2011). The \(\beta \)-divergence collapses to the better known statistical distances for \(\beta \in \{0, 1, 2\} \) corresponding to distances \{'Itakura-Saito’, ‘Kullback-Leibler’, ‘Euclidean’\} (Cichocki et al., 2011).

Crucially, since \(Z \) depends on the set of tasks that the agent will perform in the environment, the representation is defined by the tasks taken against it, and is not simply a factorization of the domain structure.

3.1. Conceptual demonstration

To demonstrate that the proposed scheme recovers an intuitive decomposition, we consider the resulting low-rank approximation to the action basis in two domains for a few decomposition factors. All results presented in this section correspond to solutions to Eqn.(2) for \(\beta = 1 \). In the same way that the columns of \(Z \) correspond directly to the optimal actions for the subtasks defined in the task basis \(Q \) (Todorov, 2006), so the columns of the low-rank approximation \(D \) may be considered the generalized actions of the uncovered subtasks. In Fig. 1, the subtasks uncovered for decomposition factors \(k = \{4, 9, 16\} \) are overlaid onto the corresponding domain(s).

It is clear from Figs. (1.b,c,d) that the subtasks uncovered in

Figure 1. Intuitive decompositions in structured domains. b) c) d) Representations of the subtasks uncovered for decomposition factors \(k = \{4, 9, 16\} \) in the nested-rooms domain respectively. Subtasks correspond to regions rather than single goal states, and typically find ‘rooms’ rather than ‘doorways’. f) g) h) Representations of the subtasks uncovered in the snake-rooms domain. In all cases the subtasks uncovered are refactored for different values of \(k \), and considered as a whole provide an approximate cover for the full action space.
our scheme correspond to ‘rooms’ rather than the perhaps more familiar ‘door-ways’ uncovered by other schemes. This is due to the fact that our scheme can, and typically does, uncover more complex distribution patterns over states rather than isolated goal states. There are a few notable features of the decomposition. Since an approximate basis is uncovered, there is no implicit preference or value ordering to the subtasks - all that is important is that they provide a good subspace for the task ensemble. An associated fact is that the resulting decomposition is ‘refactored’ for higher-rank decompositions; that is to say that $D_{k+1} \neq [D_k, d_{k+1}]$.

With some of the conceptual features of the scheme firmed up, we consider its application to the standard TAXI domain with one passenger and four pick-up/drop-off locations. The 5×5 TAXI domain considered is depicted in Fig.(2.a).

4. Hierarchical decompositions

The proposed scheme uncovers a set of subtasks by finding a low rank approximation to the desirability matrix Z. This procedure can simply be reapplied to find an approximate basis for each subsequent layer of the hierarchy, by factoring Z^{l+1}. However, as noted in section 2.1, in order to define Z^{l+1} in the first place, both the subtasks S^l_i, and the subtask passive dynamics P^l_i must be specified.

The subtask states S^l_i may be directly associated with the generalized actions defined by the columns of D^l. Where the columns of D^l corresponds to the desirability functions for a set of approximate basis tasks; these approximate basis tasks are taken to be the subtask states. Furthermore, as noted in section 2.1, in the original formulation, P^l_i is handcrafted by a designer for each layer (Saxe et al., 2016). Here
we relax that requirement and simply define the subtask transitions as

\[P^l_i = \alpha^l D^l, \]

where \(\alpha^l \) is a hand-crafted scaling parameter which controls how frequently the agent will transition to the higher layer(s).

\[
\begin{align*}
&[P^1_1, P^1_{b1}]
&\rightarrow Z^1
&\rightarrow D^1
&\rightarrow [S^1_1, P^1_1] \\
&P^2_1, P^2_{b1}
&\rightarrow Z^2
&\rightarrow D^2
&\rightarrow [S^2_1, P^2_1] \\
&P^3_1, P^3_{b1}
&\rightarrow \ldots \rightarrow \ldots \rightarrow \ldots
\end{align*}
\]

Figure 3. A recursive procedure for constructing hierarchical subtasks. By associating the subtask states \(S^l_i \) of the MLMDP with the generalized actions corresponding to columns of \(D^l \), the subtask discovery mechanism may be recursed to uncover hierarchical subtasks corresponding to ever greater levels of abstraction.

A powerful intuitive demonstration of the recursive potential of the scheme is had by considering firstly the \(k = 16 \) decomposition of the nested rooms domain, Fig.(1), followed by the \(k = 4 \) decomposition of the higher layer desirability matrix, computed by solving the higher layer MLMDP. The decomposition at the first layer intuitively uncovers a subtask for each of the sixteen rooms in the domain, Fig.(4); the decompositions of the second layer uncovers the abstracted quadrants. As such planning at the highest layer will drive the agent to the correct quadrant, whereas planning at the lower layer will drive the agent to a specific room, and planning at the level of primitives will then navigate the agent to the specific state.

![Layer 1 decomposition](image1) ![Layer 2 decomposition](image2)

Figure 4. Hierarchical decomposition of the nested rooms domain. Recursive application of the scheme yields intuitive results. The first layer of abstraction uncovers ‘rooms’; the second layer uncovers quadrants.

To show that the scheme uncovers sensible decompositions when applied to deeper hierarchies, we consider a 1D ring of 256 states in Fig.(5). At each layer \(l \), we perform the decomposition with factor \(k^l = \frac{256}{3^{l+1}} \). The subtasks uncovered in \(D^l \) are then overlayed onto the base domain. At lower levels of abstraction (outer rings), subtasks exhibit strong localized behaviour; whereas at higher levels of abstraction (inner rings), the subtasks uncovered correspond to broad, complex distributions over states, covering whole regions of the state space.

![A single layer of hierarchy](image3) ![Multiple layers of hierarchy](image4)

Figure 5. Deep hierarchical decomposition of the 1D ring domain. Each ring represents the full state space, onto which successively higher layer decompositions have been overlayed. The outer most ring corresponds to the first layer of abstraction; here subtasks are strongly localized indicating generalized actions that would drive the agent to specific fine-grained regions. Inner rings correspond to subsequent layers of abstraction; here subtasks exhibit more distributed behaviour indicating generalized actions that would drive the agent to broader patches of the states space.

5. Determining the decomposition factor \(k \)

Further leveraging the unique construction in Eqn.(2) we may formally determine the optimal decomposition factor \(k \) by critiquing the incremental value of ever higher rank approximations to the complete action basis. Let us denote the dependence of \(d_\beta(\cdot) \) on the decomposition factor simply as \(f(k) \). Then we may naively define the optimal value for \(k \) as the smallest value that demonstrates diminishing incremental returns through classic elbow-joint behaviour

\[
|f(k + 1) - f(k)| < |f(k) - f(k - 1)|. \tag{4}
\]

In practice, when the task ensemble is drawn uniformly from the domain, the observed elbow-joint behaviour is an encoding of the high-level domain structure.

The normalized approximation error for higher rank approximations in the TAXI domain is considered in Fig.(6). Both measures exhibit ‘elbow-joint’ behaviour at \(k = 5 \). This result is intuitive; we would expect to see a subtask corresponding to the pick-up action in the base MDP (this being the state of having the passenger in the taxi), and a subtask corresponding to the drop-off action in the base MDP (this being the state of having the passenger at each location). This critical value would be identified by Eqn.(4).
6. Equivalence of subtasks

The new paradigm allows for a natural notion of subtask equivalence. Suppose some standard metric is defined on the space of matrices in $\mathbb{R}^{m \times n}$ as $m(A, B) = ||A - B||_2^2$. Then a formal pseudo-equivalence relation may be defined on the set of subtasks, encoded as the scaled columns of the data matrix D, as $A \sim B \rightarrow m(A, B) < \epsilon$. The pseudo-equivalence class follows as

$$\{(D_j, W_j) \in d_\beta(Z, D_j W_j) \mid (D_i W_i) \sim (D_j W_j)\}. \quad (5)$$

This natural equivalence measure allows for the explicit comparison of different sets of subtasks.

As noted above, our scheme uncovered ‘rooms’, where other methods typically uncover ‘doorways’, see Fig.(1). There is a natural duality between these abstractions. By considering the states whose representation in Eqn.(2), w_s, changes starkly on transitions we uncover those states which constitute the boundary between similar ‘regions’. Explicitly we consider the function $g : S \rightarrow \mathbb{R}$:

$$g(s) = \sum_i p_{is}||w_i - w_s||_2^2, \quad (6)$$

which is a weighted measure of how the representations of neighbour states differ from the current state. States for which $g(s)$ takes a high value are those on the boundary between ‘regions’. A cursory analysis of Fig.(7) immediately identifies doorways as being those boundary states.

7. Conclusion

We present a novel subtask discovery mechanism based on the low rank approximation of the action basis afforded by the LMDP framework. The new scheme reliably uncovers intuitively pleasing decompositions in a variety of sample domains. The proposed scheme is fundamentally dependent on the task ensemble, and may be straightforwardly iterated to yield hierarchical abstractions. Moreover the unusual construction allows us to analytically probe a number of natural questions inaccessible to other methods; we consider specifically a measure of the equivalence of different set of subtasks, and a quantitative measure of the incremental value of greater abstraction.

References

Barto, A.G. and Madadevan, S. Recent Advances in Hierarchical Reinforcement Learning. Discrete Event Dynamic Systems: Theory and Applications, (13):41–77, 2003.

Brunskill, E. and Li, L. PAC-inspired Option Discovery in Lifelong Reinforcement Learning. Proceedings of the 31st International Conference on Machine Learning, 32:316–324, 2014.

Cichocki, A., Cruces, S., and Amari, S. Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy, 13(1):134–170, 2011.

Dietterich, T.G. Hierarchical Reinforcement Learning with the MAXQ Value Function Decomposition. Journal of Artificial Intelligence Research, 13:227–303, 2000.

Diuk, C., Schapiro, A., Córdova, N., Ribas-Fernandes, J., Niv, Y., and Botvinick, M. Divide and conquer: Hierarchical reinforcement learning and task decomposition in humans. In Computational and Robotic Models of the Hierarchical Organization of Behavior, volume 9783642398, pp. 271–291. 2013.

Donoho, D. and Stodden, V. When does non-negative matrix factorization give a correct decomposition into parts? Proc. Advances in Neural Information Processing Systems 16, pp. 1141–1148, 2004.

Hennequin, R., David, B., and Badeau, R. Beta-divergence as a subclass of Bregman divergence. IEEE Signal Processing Letters, 18(2):83–86, 2011.

Lee, D.D and Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755):788–91, 1999.
Lee, D.D. and Seung, H.S. Algorithms for non-negative matrix factorization. *Advances in neural information processing ...*, 2000.

Mannor, S., Menache, I., Hoze, A., and Klein, U. Dynamic abstraction in reinforcement learning via clustering. *Twenty-first international conference on Machine learning - ICML ’04*, pp. 71, 2004.

Parr, R. and Russell, S. Reinforcement learning with hierarchies of machines. In *NIPS*, 1998.

Saxe, A.M., Earle, A., and Rosman, B. Hierarchy through Composition with Linearly Solvable Markov Decision Processes. *arXiv*, 2016.

Şimşek, Ö. and Barto, A.S. Skill Characterization Based on Betweenness. *Advances in Neural Information Processing Systems*, pp. 1497–1504, 2009.

Solway, A., Diuk, C., Córdova, N., Yee, D., Barto, A.G., Niv, Y., and Botvinick, M.M. Optimal Behavioral Hierarchy. *PLoS Computational Biology*, 10(8):e1003779, 8 2014.

Stolle, M. and Precup, D. Learning options in reinforcement learning. *Abstraction, Reformulation, and Approximation*, 2371: 212–223, 2002.

Sutton, R.S., Precup, D., and Singh, S. Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforcement learning. *Artificial Intelligence*, 112(1-2):181–211, 8 1999.

Todorov, E. Linearly-solvable Markov decision problems. In *NIPS*, 2006.

Todorov, E. Efficient computation of optimal actions. *Proceedings of the National Academy of Sciences*, 106(28):11478–11483, 7 2009a.

Todorov, E. Compositionality of optimal control laws. In *NIPS*, 2009b.

van Dijk, Sander G. and Polani, Daniel. Grounding subgoals in information transitions. In *2011 IEEE Symposium on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL)*, pp. 105–111. IEEE, 4 2011.

Vigorito, Christopher M and Barto, Andrew G. Intrinsically Motivated Hierarchical Skill Learning in Structured Environments. *IEEE Transactions on Autonomous Mental Development*, 2(2): 132–143, 6 2010.