Research article

Evaluation of growth and efficiency-related traits of different levels of Boer × Central Highland crossbred goats

Zeleke Tesema a,⁎, Kefyalew Alemayehub, Damitie Kebedeb, Tesfaye Getachewc, Belay Deribe a, Mekonnen Tilahun d, Alemu Kefalea, Mesfin Lakew e, Asres Zegeye a, Negus Belaynehd, Liuel Yizengawa a, Mekonnen Shibeshia, Solomon Tiruneha, Getachew Workua, Shanbel Kirosa, Molla Bishawa a

a Sirinka Agricultural Research Center, Woldia, Ethiopia
b Bahir Dar University, Colleges of Agriculture and Environmental Science, Bahir Dar, Ethiopia
c International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
d Andasa Livestock Research Center, Bahir Dar, Ethiopia
e Amhara Agricultural Research Institute, Bahir Dar, Ethiopia

ARTICLE INFO

Keywords:
Boer goat
Environmental factors
Kleiber ratio
Genetic factors
Growth rate

ABSTRACT

The growth and efficiency-related traits of the Boer × Central Highland goats raised semi-intensively were evaluated. Besides, genetic and non-genetic factors affecting growth and efficiency-related traits were identified. Data were collected over a period of nine years in a flock of Boer crossbred goats and analyzed using general linear model procedure of SAS. The overall least-squares mean live weight at birth, 3-, 6-, 9- and 12 months of age were 2.52+/−0.01, 9.81+/−0.13, 13.8+/−0.15, 17.8+/−0.19, and 20.5+/−0.29 kg, respectively. The average weight gains from birth to 3 months, 3 to 6, 6 to 9 and 9–12 months of age were 80.3, 37.5, 41.9, and 31.2 g day−1, respectively. Boer blood level, birth type, season and year of kidding had a significant effect on growth traits. The overall least-squares mean of Kleiber ratio from birth to 3 months, 3–6 months, 6–9 months, and 9 month to yearling age were 13.99+/−0.11, 5.23+/−0.14, 4.66+/−0.16, and 2.95+/−0.18, respectively. Parity, birth type, Boer blood level, season and year of birth had a significant influence on the expression of efficiency-related traits (Kleiber ratios) in different growth phases. In terms of growth performance and efficiency-related traits, F2 and F3 crossbred goats did not show any benefit over F1 crossbred goats. Increasing Boer blood level above 50% would be worthless under the existing minimal input production system. Therefore, besides to improving the management of goats, producing the first filial generation would be suitable for medium to high input production systems.

1. Introduction

Goats are an important genetic resource for the production of meat, milk, skin, and fiber, and contribute significantly to the rural poor's livelihood in developing countries (Alade et al., 2010). Many avenues to improve goat productivity have been suggested and implemented, among which genetic improvement through crossbreeding has been identified as an avenue. Crossbreeding is used to exploit both additive and heterosis effects (Schiermiester, 2014; Williams et al., 2014). As a result, Boer goats have been introduced and crossed with Ethiopian indigenous goat breeds such as Abergele, Central Highland, and Woyito-Guji goat to improve the meat productivity through crossbreeding since 2007 (Abe-gaz and Gizaw, 2015; Tesema et al., 2020a).

Improving growth performance and the efficiency of feed conversion is imperative in any genetic improvement program aimed at enhancing meat production. Including a trait like Kleiber ratio (KR) in selection processes can help improve feed efficiency as there is a lack of individual animal feed intake records, particularly in developing countries. The KR is defined as growth rate/body mass0.75 (Kleiber, 1947). It provides a good sign of how an animal grows efficiently and it is recommended as an efficient selection criterion for feed efficiency under a low-input production system (Eskandarinasab et al., 2010; Mohammadi et al., 2011).

⁎ Corresponding author.
E-mail address: zeleke.t2007@gmail.com (Z. Tesema).

https://doi.org/10.1016/j.heliyon.2021.e08184
Received 17 July 2021; Received in revised form 19 August 2021; Accepted 13 October 2021
2405-8440/© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Performance evaluation of different levels of crossbreeds focusing on growth and efficiency-related traits is required to design a method for disseminating genetic material to ensure the program’s long-term viability or to change the breed and crossbreeding scheme (Tesema, 2019). In addition, knowledge of environmental factors affecting the growth and efficiency-related features is imperative to improve the efficiency of breeding program. In Ethiopia, however, there is a scarcity of information. Few pieces of research have reported growth performance of 50% Boer level or F1 crossbred goats (Belay et al., 2014; Deribe et al., 2015), and little is known about the interactions on the growth and Kleiber ratio for different levels of Boer goat. Therefore, this study aims to evaluate the growth and efficiency-related traits and to identify genetic and non-genetic factors affecting the performance of different levels of crossbred goats.

2. Materials and methods

2.1. Location

The study was carried out at Sirinka Agricultural Research Center which is located 508 km away from Addis Ababa at an altitude of 1850 m.a.s.l and at 11°45’ 00” N and 39°36’ 36” E. The area receives about 950 mm of annual rainfall on average. The area has a moderately warm climate, with average daily temperatures ranging from 13.7 to 26.4 °C.

2.2. Breeding procedure and flock management

A natural controlled mating system was used, and the breeding season was year round with does grouped by lots. Each group of twenty to thirty does was exposed to a fertile Boer buck in a separate mating group, and the buck was kept with does for two estrus cycles. Well-trained attendant was assigned for each mating group to collect necessary information. Indigenous female Central Highland goats were mated with pure male Boer goats (exotic) to produce F1 crossbred goats with 50% Boer blood level. The F1 crossbred males and females were inter se mated to produce F2 offspring. About 25% of female crossbred progenies with 50% Boer blood level were crossed with 75% and pure Boer buck to increase their Boer blood level to 62.5% and 75%, respectively. Crossbred bucks with 50% Boer blood level were mated with pure female Central Highland goats to produce kids with 25% Boer blood level. Kids were identified using ear-tag and weighted within 24 h of birth. After kidding, kids were kept with their dams for 3–5 days indoors and after that, kids were separated from their dams and suckled three times a day until 90 days of age.

Detailed description of flock management level and breeding procedures were noted in previous studies (Tesema et al., 2020a, 2020b). Goats were raised under a moderate level of production inputs. All goats were grazed/ browsed on low-quality natural pasture for six hours and supplemented with 0.10–0.40 kg of concentrate ration based on their age, sex and physiology. The concentrate mix consists of wheat bran as energy source, Noug cake as a protein source and salt to provide with minerals. According to their age, sex, and physiological, experimental goats were housed in semi-open concrete barns at night. Vaccination, deworming, and spraying were done according to the goats’ physiology and age. All experimental techniques and animal care were in line with FASS (2010), and this was confirmed by animal nutrition and health researchers of Sirinka Agricultural Research Center, Amhara Region Agricultural Research Institute.

2.3. Data and studied traits

Data were collected for nine years at the Sirinka goat breeding station. Data including date of kidding, parity, sex of the kid, Boer blood level, litter size, birth weight and live weight up to yearling age were recorded by researchers using well organized recording sheet. The investigated trait includes live weight (birth weight, 3-, 6-, 9-, and 12-month weights), weight gain and Kleiber ratio at different ages. Weight gain (g day−1) of kids at different growth phases were defined as weight gain from birth to 3 month (WG1) = (3W in kg - BW in kg) / (90 days)×1000, from 3 to 6 month (WG2) = ((6W in kg - 3W in kg) / 90 days)×1000, from 6 to 9 months (WG3) = ((9W in kg - 6W in kg) / 90 days)×1000, and from 9 to 12 months of age (WG4) = ((12W in kg – 9W in kg) / 90 days)×1000. Kleiber ratios at different growth phases were calculated according to Kleiber (1947): Kleiber ratio at weaning = WG1 / (3W0.75), Kleiber ratio at six month = WG2 / (6W0.75), Kleiber ratio at nine month = WG3 / (9W0.75) and Kleiber ratio at yearling age = WG4 / (12W0.75).

Where; BW, 3W, 6, 9W, and 12W are birth weight, 3-, 6-, 9- and 12-month weight, respectively. A kid’s birth weight was measured within 24 h after birth and the 3-, 6-, 9-, and 12-month weights were measured on exact date.

2.4. Data analysis

Before doing the main data analysis, checking for outlier and normality of data were conducted. Factors influencing growth and efficiency-related traits were analyzed using the GLM procedure of SAS (2002). The fixed factors were the sex of kid, birth type, Boer blood level, kid genotype, parity, season and year of kidding. Tukey-Kramer test was used to separate least-squares means with more than two levels. The statistical model used was:

\[Y_{ijklmnop} = \mu + B_i + S_j + X_k + D_l + T_m + L_o + H_o + e_{ijklmnop} \]

where, \(Y_{ijklmnop} \) is live weight, weight gain and efficiency-related traits; \(\mu \) is overall mean; \(B_i \) is the effect of \(i^{th} \) birth type (2 levels: single and multiple births); \(S_j \) is the effect of \(j^{th} \) season of birth (3 levels: short, main and dry); \(X_k \) is the effect of \(k^{th} \) sex of kid (2 levels: male and female); \(D_l \) is the effect of \(l^{th} \) parity of doe (5 levels: 1 to ≥5); \(T_m \) is the effect of \(m^{th} \) year of birth (9 levels: 2009–2018); \(L_o \) is the effect of \(o^{th} \) Boer blood level (4 levels: 25, 50, 62.5 and 75%); \(H_o \) is the effect of \(o^{th} \) kid genotype (3 levels: F1, F2 and F3), and \(e_{ijklmnop} \) is random error term associated with each observation.

3. Results

3.1. Live weight and factors affecting live weight

The live weight of Boer x Central Highland goats and the influence of different factors are presented in Table 1. The overall least-squares mean BW, 3W, 6W, 9, and 12W were 2.52 ± 0.0, 9.81 ± 0.13, 13.8 ± 0.15, 17.8 ± 0.19, and 20.5 ± 0.29 kg, respectively. The growth of an animal is a function of genetic potential, hormones, nutrition, and other environmental factors. Among environmental factors, the birth type had a pronounced effect on the live weight of goats at subsequent ages (Table 1). The live weight of single-born kids at different age was heavier (P < 0.001) than multiple-born kids. Except for 6W, male kids had greater (P < 0.05) live weight than their female counterparts at all ages. The Boer blood level had a considerable influence on 3W and 9W of goats. Kids with 25% Boer blood level had a greater (P < 0.05) 3W than kids with 62.5% and greater 9W than kids with 75% Boer blood level. However, non-significant (P > 0.05) difference among exotic gene levels was observed for BW, 6W, and 12W. Live weight difference among F1, F2, and F3 kids of all ages was non-significant (P > 0.05). Except for BW, where kids born from the 1st and 5th parities were lower than kids from other mid parities (2–4), the effect of parity was not obvious.

Year of kidding had a pronounced effect on the live weight of goats at different ages. Kids born in 2016 and 2017 had greater 6W, 9W, and 12W than kids born in the other years. The weight of kids born in 2011 and 2014 was consistently lower than kids born in the other years. The BW of kids born during the short rainy season was greater and the 9W of kids born during the main rainy season was superior to other seasons.
3.2. Weight gain of crossbred goats at different growth phases

The least-squares means and respective standard errors for investigated weight gain at different growth phases are presented in Table 2. The overall least-squares mean for W1, W2, W3, and W4 of Boer x Central Highland goats in this study were 80.3 ± 1.40, 37.5 ± 1.12, 41.9 ± 1.45, and 31.2 ± 0.9 g day⁻¹. The weight gain of kids showed a decreasing trend as the age increases, i.e. the weight gain from birth to weaning age was one fold of the post-weaning weight gains of kids. Single-born kids had a faster (P < 0.05) pre-weaning growth rate than those of multiple-born kids. However, from 3 to 6 months of age, single-born kids had lower weight gain than multiple-born kids and also similar in the subsequent ages. Sex of kid was not an important source of variation (P > 0.05) for the weight gain, although numerical superiority was observed for males. Except for W4, the effect of parity on weight gains (W1, W2 and W3) was found to be statistically similar (P > 0.05).

This study showed that the pre-weaning weight gain (W1) of kids with 25% Boer blood level was higher (P < 0.05) than kids with 62.5% and 75% Boer blood level. In the post-weaning (from 3 to 6-month and 9-month to yearling age), kids with 75% Boer blood level were gained lower weight compared to other exotic gene levels. However, the growth rate of kids with 50% and 62.5% Boer blood levels was similar. In addition, the kid genotype compared to other exotic gene levels. However, the growth rate of kids with 50% and 62.5% Boer blood levels was similar. In addition, the kid genotype had not a pronounced influence (P > 0.05) on the growth rate of kids. Season of kidding exerted a significant influence on weight gain of kids. Kids born during the main rainy season and short rainy season gained significantly greater (P < 0.05) weight from six-month to nine-month and nine-month to yearling age, respectively. The influence of birth year on weight gain of kids was not consistent and the highest pre-weaning weight gain was observed for kids born in 2010, 2012, 2016, and 2018, whereas the highest post-weaning weight gain was observed for kids born in 2009, 2016, and 2017 than the other years.

3.3. Kleiber ratio and the influence of genetic and non-genetic factors

The least-squares means and standard errors of Kleiber ratio for various non-genetic factors are shown in Table 3. Kleiber ratio (KR)
A few prospect for goat farming is Ethiopia's geographic proximity to high goat meat importing countries in the Middle East. The export market demands goats that weigh 25–30 kg at a yearling age; however, the

4. Discussion

4.1. Live weight

The mean live weight observed for Boer crossbred goats in this study is similar to that reported by Abd-Allah et al. (2016) for Boer x Egyptian Baladi goats managed semi-intensively. Nevertheless, the current results is higher than the report of Mustefa (2017) for Boer x Central Highland goats and lower than weight of Boer x Abergelé crossbred goats (Belay et al., 2014) under semi-intensive management. The genetic potential of indigenous parental lines, the physical environment, and the variation of flock management could explain the variability across studies.

One prospect for goat farming is Ethiopia's geographic proximity to high goat meat importing countries in the Middle East. The export market demands goats that weigh 25–30 kg at a yearling age; however, the decreases with the age of kids. The highest and lowest KR was observed during the pre-weaning period and 9 months of age, respectively.
Performance of indigenous goats was lower and cannot meet the standards for the export market. Thus, crossbreeding with meat-type Boer goats was started in 2007 to boost the productivity of indigenous goats. As this study exhibited, the expected weight advantages from crossbreeding were not exploited and even Boer crossbred goats could not meet the aforementioned export standard. This may not show the poor genetic potential of Boer goat as the expression of genetic potential is under the influence of environmental factors. Under a similar management level, the performance of indigenous goats and their crossbred with Boer goat was evaluated by different scholars (Mohammed et al., 2012; Tilahun et al., 2014; Tesema et al., 2018). When compared to indigenous goats, Boer crossbred goats had higher carcass weight by about 38.9% (Tesema et al., 2018). As well, Boer crossbred goats had a carcass weight higher by 48% relative to indigenous Arsi-Bale goats (Mohammed et al., 2012). In addition, the carcass weight of Boer crossbred goats was higher by 3.8 kg compared to indigenous goats (Tilahun et al., 2014). Furthermore, crosses were grown faster and performed better than local goats (Mohammed et al., 2012; Tilahun et al., 2014; Tesema et al., 2018). The study of Mohammed et al. (2012) and Tesema et al. (2018) demonstrated the genetic potential of Boer crossbred goats to outgrow and outgain indigenous goats when managed better. Under modest management, however, the performance of crossbred goats was no better than that of indigenous goats. Therefore, these results indicated that Boer crossbred goats would be suitable for medium to high input production systems.

The superiority of singletons in live weight was reported elsewhere (Kebede et al., 2012; Deribe and Taye, 2013; Belay et al., 2014). This might be because of the lower intrauterine availability of nutrients to the multiple-born kids. Ewes with multiple births had significantly lower cotyledons than single birth and the birth weight of kids was significantly correlated (r = 0.64) with the weight of cotyledons (Oramari et al., 2011). Likewise, according to Jawaresh et al. (2009), birth weight was positively correlated with placental weight (r = 0.56) and cotyledon number (r = 0.43). In addition, lack of competition for milk during the post-natal period could be the other probable reason for the superiority of

| Table 3. Kleiber ratio of Boer x Central Highland goats (LSM±SE). |
|---------------------|---------------------|---------------------|---------------------|---------------------|
| Source of variation | KR1 | KR2 | KR3 | KR4 |
| | N | LSM±SE | N | LSM±SE | N | LSM±SE |
| Overall | 672 | 13.99 ± 0.11 | 532 | 5.23 ± 0.14 | 452 | 4.66 ± 0.16 | 349 | 2.95 ± 0.18 |
| CV | 672 | 17.6 | 532 | 24.0 | 452 | 23.1 | 349 | 25.3 |
| Birth type | *** | *** | *** | *** | *** | *** |
| Single | 217 | 15.02 ± 0.19 | 174 | 3.96 ± 0.24 | 145 | 4.11 ± 0.27 | 114 | 2.96 ± 0.33 |
| Multiple | 455 | 13.47 ± 0.12 | 358 | 5.89 ± 0.16 | 307 | 4.95 ± 0.19 | 235 | 2.92 ± 0.22 |
| Boer BL | *** | *** | ** | *** | *** | ** |
| 25% | 40 | 15.27 ± 0.49a | 34 | 7.75 ± 0.46a | 32 | 3.75 ± 1.15bc | 17 | 4.28 ± 1.44a |
| 50% | 507 | 14.03 ± 0.12a | 414 | 5.18 ± 0.16a | 354 | 4.86 ± 0.17bc | 277 | 2.92 ± 0.18a |
| 62.5% | 31 | 13.48 ± 0.66b | 24 | 6.64 ± 0.64b | 21 | 5.72 ± 0.67bc | 14 | 3.75 ± 1.79b |
| 75% | 94 | 13.54 ± 0.28b | 60 | 4.48 ± 0.41b | 45 | 3.13 ± 0.35bc | 41 | 1.84 ± 0.42b |
| Kid genotype | | | | | | |
| | | | | | | |
| Parity | | | | | | |
| | 102 | 13.78 ± 0.12 | 84 | 5.63 ± 0.57 | 74 | 5.31 ± 0.44 | 54 | 3.61 ± 1.02 |
| | | | | | | |
| Kid genotype | | | | | | |
| | | | | | | |
| Sex | | | | | | |
| | 368 | 13.77 ± 0.14 | 301 | 5.17 ± 0.41 | 262 | 4.55 ± 0.20 | 217 | 2.79 ± 0.24 |
| Female | 304 | 14.26 ± 0.17 | 231 | 4.99 ± 0.23 | 190 | 4.83 ± 0.25 | 132 | 3.21 ± 0.29 |
| Male | | | | | | |
| | | | | | | |
| Year | | | | | | |
| | | | | | | |
| 2009 | 85 | 13.37 ± 0.29a | 80 | 7.04 ± 0.28a | 74 | 7.24 ± 0.28a | 51 | 3.89 ± 0.34ab |
| 2010 | 105 | 14.25 ± 0.24ad | 95 | 4.72 ± 0.31bc | 78 | 3.86 ± 0.33bc | 59 | 0.97 ± 0.25c |
| 2011 | 65 | 12.47 ± 0.25a | 40 | 4.16 ± 0.30ad | 36 | 4.07 ± 0.40bc | 32 | 2.18 ± 0.32ce |
| 2012 | 63 | 14.64 ± 0.39bc | 47 | 3.43 ± 0.35df | 35 | 3.26 ± 0.37ed | 28 | 3.01 ± 0.31e |
| 2013 | 95 | 13.38 ± 0.25b | 62 | 5.12 ± 0.43bc | 54 | 3.49 ± 0.47ef | 51 | 1.78 ± 0.42de |
| 2014 | 45 | 13.64 ± 0.36a | 24 | 4.54 ± 0.79abe | 18 | 3.19 ± 0.81bc | 15 | 3.65 ± 0.64be |
| 2016 | 114 | 15.47 ± 0.26a | 102 | 5.65 ± 0.30a | 81 | 4.89 ± 0.39b | 56 | 4.43 ± 0.59b |
| 2017 | 68 | 13.79 ± 0.35c | 46 | 5.49 ± 0.55b | 39 | 5.09 ± 0.47b | 29 | 4.95 ± 0.91b |
| 2018 | 36 | 16.7 ± 0.27a | 36 | 3.47 ± 0.39d | 37 | 2.26 ± 0.30f | 28 | 1.26 ± 0.23f |

KR1, weight gain from birth to 3 month; KR2, weight gain from 3 to 6 month; KR3, weight gain from 6 to 9 month; KR4, weight gain from 9 to 12 months of age; BL, blood level; F1, first filial generation; F2, second filial generation; F3, third filial generation. Ns, P > 0.05; ***, P < 0.001; **, P < 0.01; *, P < 0.05; N, number of observations. Least squares means with different superscripts within the same column and class are statistically different.
single-born kids. According to Bolacali et al. (2017), birth weight had a considerable influence on the growth performance of kids at subsequent ages. Thus, the inferior pre-weaning performance could be a cause for the lowest weight of kids in subsequent ages. The greater live weight of male kids than female kids in this study is consistent with other researchers' findings (Zhang et al., 2009; Praharani, 2012). According to Tesema et al. (2017), changes in the type and measurement of sex hormones like androgen resulted in differences in kid growth. In addition, Javasreh et al. (2009) noted that dams of male kids had a heavier placental weight and higher cotyledon number than dams of female kids and this could be the other reason for the higher weight of male kids.

The 3W and 9W of kids with 25% Boer blood level were higher than high grade crossbred goats. This is because as the exotic gene-level increases, the management they need also becomes sophisticated and must be managed accordingly. If not, nothing is expected from upgrading to a higher Boer level only and that is why the expected performance of goats was unparalleled to Boer blood level. This suggests that increasing the exotic gene level in the existing low-input production system is valueless. The level of management in this study is differs from smallholder farmers. Therefore, the results should be interpreted with semi-intensive management in mind.

The non-significance influence of filial generation on live weight of kids was consistent with Gizaw et al. (2012). The culling practice of unfit goats for breeding based on their physical conformation and live weight records in the station might be the reason for the observed non-significant differences among filial generations in this study. Indeed, segregation and decline in performance are expected in subsequent filial generations, but selective mating (Gizaw et al., 2012) and culling of poor-performing animals can counteract it. The significant effect of parity on live weight in this study is consistent with Praharani (2012) who reported the highest birth weight, weaning weight, and pre-weaning weight gain for kids born from dams in parity 3 and 4. Bolacali et al. (2017) also observed the highest and lowest birth weight of kids from 3-year-old and 6-year-old dams, respectively. According to Javasreh et al. (2009), the number of cotyledons and the weight of the placenta increased as the age of the dam increased and the increment of cotyledons and placenta is positively associated with the birth weight of kids. This might be the reason for the increase of BW up to the 4th parity.

The influence of season and year on kid’s live weight has been also reported in other literature (Al-Najjar et al., 2010; Hasan et al., 2014; Deribe et al., 2015). The mating season for does kidding during the short rainy season was November to January; during these seasons, there was an available feed resource for dams. The condition of the dam during the mating season has its own influence on the birth weight of kids. According to Terrazas et al. (2012), undernutrition of a dam during pregnancy resulted in poor maternal performance, low milk production, loss of body condition and limited bonding with the neonate. In the case of offspring, it resulted in low birth weight, low viability and deteriorates cognitive processes. Hence, the performance variation between year and season is due to the inconsistency of the management, variability of climatic conditions which determine the availability of feed resources and disease distribution thereby influences the performances of both dam and kids.

4.2. Weight gain

In most animal species, average weight gain per day (WG) is used to evaluate growth rates and animals with higher growth rates can gain weight in a shorter period with a low amount of production inputs. The decreasing trend of weight gain when the age increases in this study concurs with Gatew et al. (2019) and Deribe and Taye (2013). This is not surprising, because, besides genetic potential and other environmental factors, pre-weaning weight gain of kids is closely associated with the nutritional status of the dam, mothering ability and milk production potential of the dam. However, the growth of kids after weaning largely depends on their genetic potential and levels of other environmental influences.

The faster growth rate of single-born kids than multiple-born kids during the pre-weaning period (WG1) and lower or similar performance afterward is consistent with Deribe et al. (2015) and Mohammadi et al. (2012) who reported that multiple-born kids gained the least weight during the pre-weaning period, but not during the post-weaning period. Competition for uterine space during pregnancy and milk after parturition could explain the reduced growth rate of multiple-born kids during pre-weaning. The superiority of multiple-born kids in the post-weaning age is probably because of compensatory growth and due to their forceful adaptive capacity to the environmental variation. Several scholars noted the non-significant influence of sex on weight gain of goats (Deribe et al., 2015; Zergaw et al., 2016; Gatew et al., 2019). On the other hand, it has been described (Zhang et al., 2009; Baneh et al., 2012; Tesema et al., 2017) that sex has a substantial impact on the growth rate of goats.

The selection of compatible exotic gene levels with the existing production system is imperative to be profitable in the goat crossbreeding program. Similar or lower weight gain of kids with 62.5% and 75% Boer level than lower Boer levels in this study shows that the level of management was unfavorable to high grade crossbred goats and thus upgrading to high exotic gene level could be worthless. In agreement with the current result, the absence of a decline in lamb growth performance from the F1 to the F4 generations was also observed by Boujenane et al. (1999). The influences of season and year of birth on the weight gain of kids were reported elsewhere (Mekuriaw, 2007; Zhang et al., 2009; Baneh et al., 2012; Mustefa, 2017). Variation in weight gain between birth years and seasons could be due to differences in feedstuff accessibility, management, and environmental conditions.

4.3. Kleiber ratio

The KR1 and KR2 in this study are comparable with those of Barazanbeh et al. (2012) and Gupta et al. (2016). The lower competition for milk and the larger intrauterine availability of nutrients could explain the single kid’s pre-weaning dominance in Kleiber ratio. Because the number of contact points between the uterus and the embryo reduces as the number of fetus increases and thus limiting the nutrition supply to the fetus. The non-significant influence of sex on Kleiber ratio in this study is concurring with Gupta et al. (2016). The higher Kleiber ratios for kids with 25% Boer blood level indicates that kids with lower exotic-gene level require less maintenance energy than kids with higher exotic gene levels. The effect of season and year of birth on Kleiber ratio has been documented elsewhere (Eskandarinassab et al., 2011; Supakorn and Pralomkarn, 2012; Gupta et al., 2016). The variation in managing practices, disease incidence, feed availability, climatic conditions, and breeding systems across the years could be the possible reasons for the observed differences across years.

5. Conclusions

The live weight and weight gain of Boer crossbred goats were under the influence of Boer blood level, litter size, season and year of birth. The expression of efficiency-related features at different growth phases was influenced by litter size, Boer blood level, parity, season, and year of birth. In terms of growth performance and efficiency-related traits, F2 and F3 crossbred goats did not show any benefit over F1 crossbred goats. In a low-input production system, increasing Boer blood levels above 50% would be useless. Therefore, besides improving the management, producing the first filial generation would be suitable for medium to high input production systems to exploit the expected benefits of crossbreeding.

Declarations

Author contribution statement

Zeleke Tesema: Conceived and designed the experiments; Analyzed and interpreted the data; Wrote the paper.
Kefayale Alemayehu; Damitie Kebede; Tesfaye Getachew: Contributed reagents, materials, analysis tools or data. Belay Deribe; Mekonnen Tilahun: Conceived and designed the experiments. Aleme Kefale; Asres Zegeye; Luei Yizengaw; Negus Belayneh; Mekonnen Shibeshi; Solomon Tiruneh; Shanbel Kiro; Molla Bishaw; Getachew Worku: Performed the experiments. Mesfin Lakew: Conceived and designed the experiments; Performed the experiments.

Funding statement

This work was supported by Amhara Region Agricultural Research Institute.

Data availability statement

Data will be made available on request.

Declaration of interests statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors appreciate Amhara Region Agricultural Research Institute for the financial support.

References

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., El-Kady, M.S., 2016. Assessment of some productive performance of Boer goats and their crosses with Egyptian Baladi goats. Int. J. Chem. Tech. Res. 9 (12), 259–265.

Abegaz, S., Gizaw, S., 2015. Small ruminant research and development in Ethiopia. In: Agricultural Animals in Research and Teaching, third ed. FASS, Champaign, IL.

Abirami, S.T., Abriham, S., 2015. On-station growth performance of crossbred goats (Boer x Central Highland) with different body weights. Int. J. Chem. Tech. Res. 9 (12), 259–266.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.

Abegaz, S., Gizaw, S., 2015. Small ruminant research and development in Ethiopia. In: Agricultural Animals in Research and Teaching, third ed. FASS, Champaign, IL.

Abiol, N.K., Dilala, M.A., Abdulyekeen, A.O., 2010. Phenotypic and genetic parameter estimates of litter size and body weights in goats. Int. J. Sci. Nature 1, 262–266.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.

Aboul-Enein, T.Y., Elsayed, M.K., 2010. Phenotypic and genotypic parameter estimates for early growth traits in Raini cashmere goats. Trop. Anim. Health Prod. 42, 1123–1127.

Abd-Allah, S., Mohamed, H.I., Abd-Elrahman, H.H., EL-Kady, R.I., 2016. Assessment of inter se mating between D 151 and D 159 non-genetic factors on growth traits and survival rates in Turkish indigenous Hair Kafkas Univ. Vet. Fak. Derg 16, 431–435.