Magnitude and determinants of newborn mortality in neonatal intensive care unit hospitals in Ethiopia: a systematic review and meta-analysis

CURRENT STATUS: POSTED

Gizachew Tadele Tiruneh
JSI Research and Training Institute Inc
gizt121@gmail.comCorresponding Author
ORCiD: https://orcid.org/0000-0002-5842-9518

Tesega Mengistu Birhanu
Amhara public health institute

Abdurahaman Seid
Wollo University

Mahteme Haile Workneh
Amhara public health institute

Dareskedar Getie
Amhara public health institute

Tenagnework Antefe Abebe
Amhara public health institute

Ambanesh Necho Mulat
UNICEF Ethiopia

Taye Zeru Tadege
Amhara public health institute

Kassahun Alemu Gelaye
University of Gondar

Tadesse Awoke Ayele
University of Gondar

DOI:
SUBJECT AREAS
Pediatrics

KEYWORDS
neonatal mortality, neonatal intensive care unit, Ethiopia, determinants, risk factors,
Abstract
Background: In Ethiopia, the neonatal mortality rate has not shown significant changes over time and is among the highest in the world. Exploring the magnitude and the causes of neonatal mortality in the hospital where neonatal intensive care unit is functioning could be supremely important to step towards improving the quality of neonatal care services. Therefore, this review aimed to explore the pooled magnitude and determinates of neonatal mortality in the neonatal intensive care unit hospitals in Ethiopia. Methods: The research team retrieved global peer-reviewed journal articles available as electronic databases including PubMed, Popline, and Scopus databases. Google Scholar, institutional repositories, and Google were used to retrieve grey literature. Random-effects meta-analysis model was used to pool the estimates of the magnitude of mortality among studies. The results were presented as the pooled estimates (odds ratio and proportion) with 95% confidence intervals, at less than 0.05 significant levels. Results: In this review, 10 studies were included with a total of 8,729 neonates. Of these, 1,779 (20.4%) neonates died in the neonatal intensive care unit. The pooled neonatal mortality rate was 19.0% (95% CI: 14.0-25.0). The neonatal mortality is three times higher among early age (OR: 2.80; 95% CI: 1.45-5.40) and preterm newborns (OR: 3.27; 95% CI: 2.12-5.07) than their counterparts. Early age of the newborn, prematurity, low birth weight, perinatal asphyxia, mode of delivery, hypothermia, late initiation of breastfeeding, and having antenatal care visits were the main determinants for neonatal mortality. Likewise, perinatal asphyxia, hyaline membrane disease, respiratory distress syndrome, and prematurity were identified as the most determinant and statistically associated with the death of premature neonates admitted to intensive care units. Conclusion: Neonatal mortality in the intensive care unit is high. It is unacceptably high amongst early and preterm neonates. Special care for preterm and early age newborns, timely initiation of breastfeeding, exclusive breastfeeding, and appropriate mode of delivery, essential obstetric and newborn care, and promoting antenatal visits are recommended to reduce neonatal mortality. Protocol registration: The protocol was registered at the International prospective register of systematic reviews (PROSPERO) with registration number CRD42019123195.

Background
The global neonatal mortality rate (NMR) declined from 36 deaths per 1,000 live births in 1990 to 19 per 1,000 live births in 2015 [1]. In 2015, an estimated 1.3 million intrapartum stillbirths [2] and 2.7 million neonatal deaths occurred globally [2, 1]. The neonatal mortality in sub-Saharan Africa is 29 per 1,000 live births accounting for 36% of under-five mortalities with a slow decline over the past 25 years (i.e., 1990–2015) [1]. In Ethiopia, neonatal mortality has declined from 61 to 28 deaths per 1,000 live births during the same period [3, 4]. Despite progress, the NMR is unacceptably high that has not shown a significant decline since 2000 [5–7], and far from the Sustainable Development Goals (SDGs) global targets to reduce NMR to 12 per 1,000 live births by 2030 [8, 9]. Moreover, the 2016 national Demographic and Health Survey (DHS) showed that NMR varies significantly among regions. The NMR in Amhara region has no significant change over time and higher than other regions in the country which stands at 47 per 1,000 live births and accounts for 55% of under-five mortality in the region in 2015 [7].

Three-quarters of neonatal deaths occur in the first week, and more than one-quarter of deaths occur in the first 24 hours. These large fractions of deaths are preventable [10]. Globally, nearly 80% of neonatal deaths are caused by perinatal asphyxia (PNA), infections, and complications of premature birth. Evidence shows that available interventions can reduce the three most common causes of neonatal mortality—preterm, intrapartum, and infection-related deaths—by 58%, 79%, and 84%, respectively [11]. However, in low-and-middle-income countries, access to these evidence-based high impact interventions is often low [12, 3, 13].

Until the 2010–2015 National Fourth Health Sector Development Plan (HSDP IV), newborns received very little programmatic attention from the health system in the country. Since then, newborn health is now one of the country’s priorities. Since 2015, to address service quality, Ethiopia has produced a national quality strategy and health sector transformation in quality (HSTQ) to guide the national efforts to ensure service quality [14]. Ethiopia is also committed to improving neonatal care services at all levels of the health system through the Health Sector Transformation Plan (HSTP). The country developed different strategies and programs to address newborn survival at health facility and community level including integrated management of neonatal and childhood illness (IMNCI),
community-based neonatal care (CBNC), newborn corner initiative, neonatal intensive care unit (NICU), pediatric referral care, and quality improvement program to address neonatal complications (prematurity, asphyxia, neonatal sepsis, neonatal tetanus, neonatal pneumonia, and other neonatal causes), the leading causes of under-five mortality in the country [15]. Realizing more than two-thirds of childbirths still take place at home, provision of essential neonatal care at the community level (i.e., CBNC) through the Health Extension Program (HEP) has been implemented in the country since 2012 [16]. Moreover, the Ministry of Health (MOH) has established newborn corners in primary health facilities to improve neonatal care and the MOH seeks to enable all public hospitals to provide delivery services to establish neonatal intensive care services [17].

Besides the national efforts of expanding NICU to improve the survival of newborns in recent years, neonatal mortality still persistently high with no significant change over the last decade. Evaluating the causes of neonatal morbidity and mortality is an essential step toward improving the quality of existing practices. Therefore, this study systematically evaluated the factors of neonatal mortality and pooled the magnitude of mortality in the NICU hospitals in Ethiopia.

Review questions

1. What are the magnitudes of newborn mortality in NICU hospitals in Ethiopia?
2. What are the determinant factors of newborn mortality in NICU hospitals in Ethiopia?

Methods

Inclusion and exclusion criteria

Observational studies, including cross-sectional, case-control/case-referent, cohort, case-cohort designs, reported at least one component of factors that affect neonatal mortality or magnitude of mortality and published in English language since 2012, where the country plans to expand NICU in the hospitals, were included.

Commentaries, letters, duplicate studies, editorials, and studies written by different languages other than English were excluded from the review. Additionally, studies conducted at community settings, studies done outside of Ethiopia, and studies conducted among neonates out of age range between 0 and 28 days admitted for treatment at NICU were excluded from the study.

Search strategy
The research team systematically examined global peer-reviewed journal articles available as electronic databases including PubMed, Popline, and Scopus databases. In addition, a snowball approach was employed by searching literature in the reference lists of the initial search. Search terms (including synonyms and MeSH terms) were identified as Condition (Co), Context (Co), Population (Po), and Exposure (E) themes and used in a variety of combinations for neonatal mortality, infant mortality, hospital, and determinant, associated, or risk factors, and Ethiopia. A search strategy for Medline database is presented in below 1 below.

Table 1

#1 Condition	#2 Context	#3 Population	#4 Exposure	#5 Overall
((((("infant mortality" [MeSH Terms] OR				
 "infant"[All Fields] AND "mortality"[All Fields]) OR "neonatal mortality"[All Fields] OR ("neonatal"[All Fields] AND "mortality"[All Fields]) OR neonatal mortality) OR neonatal death) OR "Perinatal Death" [Mesh]) OR newborn death) OR perinatal mortality | (((hospital*) OR "Health System") OR Ethiopia) | (((Neonates at neonatal intensive care unit) OR Neonates admitted at hospital) OR Neonates admitted at intensive care unit OR neonates | (((determinants) OR "Social Determinants of Health"[Mesh]) OR risk factors) OR associated factors) OR predictors | (#1 AND #2 AND #3 AND #4 Filters: published in the last 5 years; Humans |

And the search strategy used for the Scopus database is:

"((TITLE-ABS-KEY ("Neonatal mortality") OR TITLE-ABS-KEY ("neonatal death") OR TITLE-ABS-KEY ("early neonatal death") OR TITLE-ABS-KEY ("early neonatal mortality") OR TITLE-ABS-KEY ("late neonatal death") OR TITLE-ABS-KEY ("late neonatal mortality") OR TITLE-ABS-KEY ("perinatal death")[nicu]) AND ((TITLE-ABS-KEY ("Ethiopia") OR TITLE-ABS-KEY (hospital) OR TITLE-ABS-KEY ("health facility"))) AND (TITLE-ABS-KEY (neonates)) AND ((TITLE-ABS-KEY (determinants) OR TITLE-ABS-KEY ("risk factors") OR TITLE-ABS-KEY ("associated factors") OR TITLE-ABS-KEY (predictors)) AND (LIMIT-TO (DOCTYPE, "ar")) AND (LIMIT-TO (LANGUAGE, "English"))"

The search activity was performed from 01–15 February 2019 and resulted in 290 from Scopus, 96 from Medline, and 9 from Google Scholar and Popline.

Study selection procedure
Endnote reference manager was used to upload search results and create library of all search results. The search returned 283 records after removing duplicates. The titles and abstracts of articles were reviewed to determine which full-text articles need to be retrieved based on the inclusion and exclusion criteria. The review authors independently screened the titles and abstracts yielded by the search against the inclusion criteria. We obtained full reports for all titles that appear to meet the inclusion criteria.

Accordingly, 28 full articles were screened reading titles and abstracts. The final synthesis included 10 papers. The results of the search and the process of screening and selecting studies for inclusion are illustrated using a Preferred Reporting Items for Systematic and Meta-Analysis (PRISMA) flow diagram below (Fig. 1).

Critical appraisal
Authors independently reviewed the methodological quality of each included study using the Joanna Briggs Institute (JBI) critical appraisal checklists for different study designs as appropriate [18-20]—to assess the methodological quality of studies and to determine the extent to which included studies have addressed the possibility of bias in its design, conduct, and analysis. Discrepancies between scores were resolved through discussions. To obtain an overall quality score, publications scored “1” point for each item fully met and “0” for none or very little information reported. Studies that scored 75% or more were categorized as high quality, scores in the range of 50–74% were ranked as medium, and scores less than 50% were rated as poor.

The standard review protocol, PRISMA checklist, was followed to establish minimum information that should be included when reviewing and reporting [21]. Moreover, the protocol was registered at the International prospective register of systematic reviews (PROSPERO) with registration number CRD42019123195.

Data abstraction and synthesis
Reviewers completed the data extraction form for all studies using an excel spreadsheet. Descriptive information about the eligible studies was summarized using text and tables. A narrative synthesis was used to analyze and interpret the findings.
Random-effects meta-analysis model was used to pool the estimates of the magnitude of mortality and determinant factors accounting for the variability among studies using Stata v15 [22]. The results were presented as the pooled estimates (odds ratio (OR) and proportion) with 95% confidence intervals (CI), at less than 0.05 significant levels, and the estimates of Tau² and I² statistic for heterogeneity. We also investigated the presence of publication and other bias in the extracted data using a funnel plot and Stata’s “metabias” command [23, 22].

Assessment of heterogeneity

The P-value of the Chi-squared test of heterogeneity and the I² and Tau² statistics were examined for heterogeneity between the studies to judge whether there were any apparent differences in the direction or size of the estimate between studies. We did a subgroup analysis to examine the pooled magnitude of mortality varied by administrative region, age of the neonate at admission, gestational age at birth, and research design. Moreover, sensitivity analysis was conducted to examine the effect of studies that are exclusively reported magnitude of mortality on early neonates and preterm as well as studies with a large sample.

Results

Description of studies

The characteristics of included studies are given in Table 2 below. Ten articles were included: four in Amhara, two in Addis Ababa, two in Oromia, one in Southern Nations, Nationalities, and Peoples’ (SNNP), and one in Somali region. All studies were published from 2012 to 2019. Six of the studies identified employed hospital-based cohort designs [24–29]; the remaining four applied cross-sectional designs [30, 31] (Table 1).

The capacity of NICU in terms of bed-size and staffing varied from hospital to hospital. It ranged from 16-beds NICU [32] to 50-beds NICU [26] and some hospitals had comprehensive neonatal care that included intensive care, KMC, and isolation rooms [30, 24, 27, 28, 26]. It was staffed with medical interns, pediatric residents, physicians, and nurses.

Study ID	Design	Objective	Region	Hospital	NICU capacity	Age of neonate	# of newborn deaths	Sample size	NMR (%)

Table 2: Characteristics of included studies
Demise 2017	Cross-sectional	Identify the patterns of neonatal admission and factors associated with mortality	Amhara	Gondar University Hospital	A 32-beds NICU with 4 separate rooms (1 room for each of preterm babies, term babies, isolation room for communicable diseases, and for those who need KMC). It was staffed with 7 medical interns, 2 pediatric residents, 1 pediatrician, and 17 nurses	< 28 days	110	769	14.3
Farah 2018	Retrospective cohort	Examine the trends of admission, specific causes and rate of neonatal mortality as well as predictors of neonatal mortality	Somali	Karamara General Hospital	A fully-functional 12-beds NICU that has 3 rooms (1 room for intensive care, 1 for kangaroo mother care, and another for septic neonates)	< 28 days	45	792	5.7
Orsido 2019	Retrospective cohort	Describe the reasons for admission and the magnitude of mortality	SNNP	Wolaita Sodo University Hospital	A 20-beds NICU	< 28 days	159	964	16.5
Tekleab 2017	Cross-sectional	Describe the reasons for admission and the magnitude of neonatal mortality	Addis Ababa	St Paul’s Hospital Millennium Medical College	A fully-functional NICU providing services for 24-hours a day and nurses, intern doctors, pediatric resident doctors, and pediatricians were working in the unit.	< 28 days	50	216	23.2
Tewabe	Cross-Assess	The	Amhara	Felege		< 28 days	52	391	13.3
Year	Design	Sectional	Neonatal Mortality Rate	Hospital	NICU Bed & Staffing	NICU ICU Bed & Staffing	NICU NICU Bed & Staffing	NICU NICU Bed & Staffing	NICU NICU Bed & Staffing
2018	Sectional	Neonatal mortality rate	Hiwot General Hospital	Neonatal unit had 60 beds and staffed with 5 pediatricians and 20 nurses. About 6,300 neonates were seen annually.					
2014	Cross-sectional	Examine the risk factors, antimicrobial use pattern and clinical outcomes of neonatal sepsis	Oromia Bishoftu General Hospital	NICU had 16 beds and staffed with 2 physicians, 3 nurses, and 2 cleaners. More than 1,000 of neonates admitted at NICUs annually		< 28 days	40	306	13.1
2012	Prospective cohort	Assess the independent predictors of early neonatal mortality	Addis Ababa Tikur Anbessa Specialized Hospital	It had 50 beds and it is the largest ICU in the country with a very high patient admission		< 7 days	881	3789	23.3
2017	Retrospective cohort	Model survival probability of preterm infants and identify risk factors	Oromia Jimma University Specialized Hospital	No data		< 28 days & preterm	171	490	34.9
2015	Retrospective cohort	Compare survival of preterm infants using the Cox proportional hazard model and the semi-parametric gamma frailty model and examine the risk factors of death	Amhara Gondar University Hospital	Same as "Demise 2017" death		< 28 days & preterm	122	485	25.2
2019	Retrospective	Assess time to	Amhara Gondar University	Same as "Demise 2017"		< 28 days & preterm	149	516	28.9
Methodological quality of included studies

According to the JBI quality appraisal tool, six of the cohort studies scored high quality (81%).

Likewise, the seven cross-sectional studies scored medium quality (72%) in which most studies lacked strategies to deal with confounding.

The results of our review are presented under three sections: 1) magnitude of neonatal mortality, 2) determinants of neonatal mortality, and 3) determinants of preterm mortality.

Magnitude of neonatal mortality

In this review, 10 studies involving 8,718 neonates with 1,779 (20.4%) neonatal deaths were included.

As presented in Fig. 1 below, the random effects pooled analysis showed that neonatal mortality rate is 19.0% (95% CI:15.0–23.0).

Sensitivity analysis

To determine the proportion of the pooled magnitude of mortality driven by some studies, we conducted three different analysis by excluding studies early neonates which is also large sample [26], on preterm [28, 29, 27], and both preterm and early neonates [28, 29, 27, 26]. Following the removal of a study on the early neonate, the overall pooled estimate was not changed. On the other hand, excluding studies on preterm neonates, the pooled estimate was decreased to 15% (95% CI: 0.10–0.21) without lowering heterogeneity between studies, and excluding both studies on preterm and early neonate, the NMR decreased to 14% (95% CI: 0.09–0.19) with reduced heterogeneity. As a
result, we conducted a sub-group analysis for preterm and early neonates to compare the magnitude of mortality with their counterparts.

Sub-group analysis

Three different subgroup analyses were conducted to investigate whether the observed magnitude of mortality is consistent across regions, preterm and term neonates, early and late neonates. We divided regions geographically into three groups as Amhara, Addis Ababa, Oromia, and other regions including SNNP and Somali regions. Gestational age is classified as preterm, born before 37 weeks of gestation, and term/post-term, born after completed 37 weeks of gestation. On the other hand, newborn age is divided as early neonates, neonates with less than 7 days of age at admission and late neonates, neonates with 7 days and above age. Accordingly, three different sub-group analyses were conducted.

Mortality by region

The subgroup analysis showed that NMR is significantly higher in Oromia than other regions; likewise, NMR is significantly lower in other regions category (SNNP and Somali) (Fig. 3).

Preterm mortality

Six studies [30, 24, 31, 26, 33, 25] reported neonatal mortality disaggregated by gestational age and the other three studies [28, 29, 27] were conducted among preterm neonates. Accordingly, mortality rates were compared among preterm and term/post-term neonates. The pooled mortality by gestational age at birth indicated that preterm neonates had three times (OR: 3.27; 95% CI: 2.12–5.07) higher odds of death as compared to term and post-term neonates (Fig. 4).

Early neonatal mortality

One study [26] conducted among early neonates. The other three studies [31, 24, 25] reported neonatal mortality disaggregated by age of neonate. We compared the neonatal mortality rate by age of newborn at admission. As such, the neonatal mortality is about three times (OR: 2.80; 95% CI: 1.45–5.40) higher among early age newborns than late age neonates (Fig. 5).

Determinants of neonatal mortality

In this review, many factors that could have influenced neonatal mortality were identified. As presented in Table 3, newborn age, gestational age, birth weight, PNA, mode of delivery, hypothermia, breastfeeding, and antenatal care (ANC) visit are the main determinants pooled from
the studies. The detail is as follows.

Age of neonate

Early age of the newborn was significantly associated with neonatal mortality in three studies [24, 25, 31].

Gestational age

Six studies, two studies among preterm neonates [27, 29] and four among all neonates [31, 24, 26, 33], reported gestational age as an independent predictor of neonatal mortality.

Perinatal Asphyxia: As presented in Fig. 4 below, four studies identified PNA is 2.51 times higher than neonates with no PNA (OR: 2.51; 95% CI: 1.85–3.40). Moreover, Demise et al [30] report respiratory distress had 12.97 times higher odds of death (95% CI: 5.37, 31.30); Worku et al [26] present a first minute APGAR of 3 or less was independently associated with NMR. Neonates who were resuscitated had two times higher risk of death than neonates who were not resuscitated (AHR: 2.28; 95% CI: 1.54–3.38).

Hypothermia: Orsido et al [25] reported neonates who had a temperature of < 35.5 °C at admission had 1.6 times higher risk of death than neonates temperature at admission 35.5–37.5 °C (AHR: 1.58; 95% CI: 1.06–2.34). Another study [30] also reported that severe hypothermia had more than 10 times higher odds of death that neonates with normal body temperature (AOR: 10.45; 95% CI: 1.04, 104.66).

Mode of delivery: Demise et al [30] reports instrumental delivery increased risk of neonatal mortality as compared with vaginal delivery (AOR: 2.99; 95% CI: 1.08–8.31); while same study presents cesarean delivery had 87% higher odds of death than normal deliveries but not statistically significant (AOR: 0.87; 95% CI: 0.46–1.64). On the other hand, Orsido et al [25] reported cesarean delivery had a 66% lower risk of death as compared with vaginal delivery (AHR:0.34; 95% CI:0.19–0.61).

Breastfeeding: A study by Orsido et al [25] reports that neonates who were not breastfed within one hour of birth had 2.6 times higher risk of death than their counterparts (AHR:2.62; 95% CI:1.60–4.30). Tewabe et al [31] also identified late initiation of breastfeeding and non-exclusive breastfeeding is an independent predictor of neonatal mortality.

Antenatal care

No ANC consultation was identified independent predictor of neonatal mortality in two studies [25, 31].
Moreover, Orsido et al [25] neonates admitted with the problem hyaline membrane disease (HMD) and birth order and Worku et al [26] reports number of siblings, marital status (not in union), presence of any congenital anomaly, presence of perinatal asphyxia, presence of sepsis, requirement of oxygen therapy and a lower birth weight were identified as independent predictor of neonatal mortality. A normal length at birth and the presence of jaundice were protective of early neonatal mortality [26]. The average length of stay below two days (AOR: 0.418; 95% CI:0.186, 0.936) were independently associated with neonatal mortality and showed a protective effect on neonatal death in the NICU [24].

Domain	Determinants	(%)	Measure	AOR/ AHR	95% CI	P-value	Study ID		
Mode of delivery	Instrumental delivery	8	OR	2.99	1.07 8.31	< 0.05	Demise 2017		
	CS delivery	13	HR	0.34	0.19 0.61	< 0.001	Orsido 2019		
Hypothermia	Severe hypothermia	5	OR	10.45	1.04 104.7	< 0.05	Demise 2017		
	Temperature of neonate at admission (< 35.5)	110	HR	1.58	1.06 2.34	< 0.05	Orsido 2019		
Sepsis	Early onset of neonatal sepsis	88	OR	2.66	1.16 6.11	< 0.05	Demise 2017		
	Late onset of neonatal sepsis	11	OR	13.51	2.64 69	< 0.05	Demise 2017		
Asphyxia	PNA (Yes)	33	OR	5.97	3.06 11.64	< 0.05	Demise 2017		
	PNA (Yes)	58	HR	1.81	1.24 2.63	< 0.05	Orsido 2019		
	PNA (Yes)	14	OR	5.817	1.61 21	< 0.05	Tekleab 2017		
	PNA (Yes)	174	OR	1.82	1.32 2.51	< 0.001	Worku 2012		
Respiratory Distress Syndrome (RDS)	RDS (Yes)	43	OR	12.97	5.37 31.3	< 0.05	Demise 2017		
Resuscitation	Neonate resuscitated (Yes)	122	HR	2.28	1.06 2.34	< 0.05	Orsido 2019		
APGAR score	APGAR score at 1st min (<= 3)	185	OR	2.12	1.39 2.23	< 0.001	Worku 2012		
Length of stay (LOS)	Average LOS (> = 8+)	9	OR	0.418	0.19 0.936	0.01	Farah 2018		
	Average LOS (< = 22)	22	OR	9.5	0.19 0.936	0.034	Farah 2018		
Multiple pregnancy	Birth level (Multiple)	69	48.3	HR	1.8	1.1	2.94	< 0.05	Orsido 2019
--------------------	------------------------	----	------	----	-----	-----	------	--------	------------
	Gestation (single)	723	22.0	OR	0.7	0.54	0.9	< 0.05	Worku 2012
ANC visit	ANC (None)	80	48.2	HR	6.02	3.52	10.27	< 0.001	Orsido 2019
	ANC (None)	106	34.1	OR	1.7	1.28	2.26	< 0.001	Worku 2012
HMD	HMD (Yes)	31	66.0	HR	2.04	1.16	3.59	< 0.05	Orsido 2019
Breastfeeding	Breastfeeding initiated (after 1 h)	137	30.8	HR	2.62	1.6	4.3	< 0.001	Orsido 2019
	Late breastfeeding initiation time	33	22.0	OR	2.89	0.1	8.38	< 0.05	Tewabe 2018
	Exclusive breastfeeding (No)	18	7.1	OR	6.77	3.04	15.07	< 0.001	Tewabe 2018
Prematurity	Prematurity (Yes)	14	8.9	OR	0.492	0.25	0.957	0.037	Farah 2018
	Gestational age (GA) (less than the mean (36.6 wks.)		OR	0.683	0.59	0.795	< 0.05	Tekleab 2017	
	GA (< 37 wks.)	21	33.3	OR	2.14	1	4.52	< 0.05	Tewabe 2018
	GA (< 32 wks.)	347	52.5	OR	10.46	5.39	20.31	< 0.001	Worku 2012
	GA (32–37 wks.)	227	21.2	OR	3.6	1.39	6.69	< 0.01	Worku 2012
	GA (37–42 wks.)	248	15.2	OR	2.05	1.16	3.364	< 0.05	Worku 2012
Age of admission	Age of newborn at admission (early)	43	15.6	OR	0.39	0.16	0.97	< 0.05	Tewabe 2018
	Age of newborn at admission (≤ = 1 day)	693	24.6	OR	2.53	1.66	3.85	< 0.001	Worku 2012
	Age of newborn at admission (1–3 days)	158	18.6	OR	2.2	1.38	3.48	< 0.001	Worku 2012
Length	Length (45–51 cm)	261	16.2	OR	0.58	0.4	0.85	< 0.05	Worku 2012
Congenital anomaly	Congenital anomaly (any)	108	34.4	OR	2.02	1.33	2.51	< 0.05	Worku 2012
Oxygen treatment	Oxygen treatment (Yes)	755	31.6	OR	2.65	1.89	3.72	< 0.001	Worku 2012
Jaundice	Jaundice at admission (No)	745	27.4	OR	2.65	1.89	3.72	< 0.001	Worku 2012
Birth weight	Birth weight (< = 1500 gm)	268	59.3	OR	9.64	3.32	27.97	< 0.001	Worku 2012
Determinants of preterm mortality

Three studies reported determinants of preterm mortality among neonates admitted at NICU [29, 27, 28]. The leading causes of death were PNA [29, 27, 28], HMD [27, 29], and RDS [28, 29]. PNA [29, 27, 28], HMD [27, 29], and RDS [28, 29], and prematurity [29, 27] were identified as the most determinant and statistically associated with the death of premature infants admitted to NICU.

In addition, Yismawet al [27] identified the place of delivery, type of pregnancy, neonate cried immediately at birth, jaundice, receiving kangaroo mother care (KMC) and hypoglycemia remained statistically significant predictors of to death of preterm neonates. And, Yehuala et al [28] identifies ANC visit, multi-gravidity, HIV status of the mother, RDS, PNA, anemia and early breastfeeding initiation as the most determinant and statistically associated with the death of premature infants admitted to NICU. Wosenu et al [29], on the other hand, reported having, sepsis, jaundice, and initial temperature significantly contribute to a shorter survival time of premature infants (Table 4).

Table 4
Determinant factors for preterm mortality among neonates admitted at NICU

Domain	Determinants	(%)	Measure	AOR/ AHR	95% CI	P-value	Study ID	
ANC	ANC (Yes)	88	HR	0.5247	0.338	0.814	< 0.05	Yehuala 2015
Gravity	Gravidity (6–10)	17	HR	2.072	1.001	4.289	< 0.05	Yehuala 2015
RDS	RDS (Yes)	54	HR	7.774	4.712	12.826	< 0.001	Yehuala 2015
	RDS (Yes)	114	OR	3.287	2.033	5.315	< 0.001	Wesenu 2017
HMD	HMD (Yes)	107	OR	2.636	1.597	4.352	< 0.001	Wesenu 2017
	HMD (Yes)	39	HR	3.02	1.86	4.88	< 0.001	Yismaw 2019
PNA	PNA (Yes)	46	HR	1.55	1.09	2.2	< 0.05	Yismaw 2019
	PNA (Yes)	27	OR	2.479	1.239	4.959	< 0.05	Wesenu 2017
	PNA (Yes)	63	HR	2.123	1.42	3.18	< 0.001	Yehuala

16
Publication bias

The funnel plot (Fig. 7) appeared symmetrical, which suggests no evidence of small-study effects. The Egger’s test also indicated the low possibility of publication bias (Coef. = -5.472; p = 0.476).

Discussions

In this review, the pooled neonatal mortality rate was 19.0% which is higher among early age and preterm newborns than their counterparts. Early age of the newborn, prematurity, low birth weight, perinatal asphyxia, mode of delivery, hypothermia, late initiation of breastfeeding, and having antenatal care visits were the main determinants for neonatal mortality among neonates admitted to
intensive care units.

Previous literature indicated that the overall mortality rate in NICU of developing countries ranged from 0.2–64.4% [34]. In our systematic review and meta-analysis, using the random effect model, the pooled neonatal mortality rate was estimated to be 19% (95% CI: 15.0–23.0%) which is higher than the pooled estimate of neonatal mortality at NICU of Iran (11.40%) [35]. However, previously in Brazil, a wide variation in the mortality rates was found among intensive care units (9.5–48.1%), with an overall mortality rate for newborns admitted at nine NICU sites being 18.6% [36] which is comparable to our result. It is also indicated that neonatal mortality rate varies significantly between the central and western parts of Iran [35]. This is comparable to our subgroup analysis that showed a significantly higher NMR in Oromia region than other regions. This variation might be related to the difference in availability of equipment type, and severity of disease in admitted neonates, as well as the performance of physicians, midwifes and neonatal nurses in different regions of Ethiopia.

Moreover, the regional variation would be associated with suboptimal NICU neonatal services across the country [24, 30].

Our stratified analysis also showed that preterm neonates had three times higher odds of death as compared to preterm and term and post-term neonates. A recently conducted individual study conducted in Ethiopia indicated that the odds of neonatal mortalities among preterm neonates were 2.2 times higher than that of term neonates [37]. A systematic review and meta-analysis result showed that neonatal mortality was the lowest in the full-term newborn infants but higher among neonates with a gestational age of 28–32 weeks [38]. The most common causes of mortality in NICUs of Iran were prematurity (44.14%) [35]. This could be also supported by the previous study as preterm birth (40.8%) and intrapartum complications (27.0%) accounted for most early neonatal deaths [39]. This is due to the fact that preterm newborn had immaturity of immune systems and other body defense mechanisms which help to control newborn infection and disease susceptibility. Other possible explanations for the high death rate of preterm neonates might be due to delay in receiving adequate health care due to poor facilities and lack of medical supplies in Ethiopia.

In this review, gestational age or prematurity was related to as a factor to neonatal mortality. The
finding is also consistent with the systematic review in developing and developed countries [34]. It might be due to their intrinsic susceptibility to infection due to lack of immunologic competence, the lack of appropriate treatment modalities, such as mechanical ventilation, surfactant administration, parenteral nutrition and delay in the initiation of health care services [27, 33].

Perinatal asphyxia is identified as a risk factor for neonatal mortality. The reason might be the quality and access of emergency obstetric newborns and comprehensive emergency obstetric services are inadequate in a clinical setting [25, 27]. Training of health care workers to detect risk factors, fetal asphyxia during labor and delivery including provision of neonatal resuscitation must be given [33]. We observed that mode of delivery showed a variation in the rate of neonatal mortality. Instrumental mode of delivery is also identified as a risk factor for neonatal mortality [30]. It gives a clue as there is fetus suffocation, early rupture of membrane and environmental contamination with nosocomial infections during delivery [26]. On the other hand, it is also reported that cesarean mode of delivery had a protective effect on the risk of neonatal mortality [25]. This finding is consistent with the study done in Brazil [36]. It might be related to the use of timely decisions rather than waiting for vaginal delivery. Delivering by cesarean section reduces the risk of death and complications that can come due to prolonged labor [25]. On the contrary, it is reported that the cesarean section had increased neonatal mortality which could have resulted from the delay in decision making during prolonged labor, poor quality of operation procedure and its prohibition effect on early breastfeeding initiation [30, 25, 32].

Delayed breastfeeding after 1 hour of birth results in a higher risk of neonatal mortality compared to their counterpart [25, 31]. This indicates the sub-optimal practice of early initiation of breastfeeding despite its great importance in the reduction of neonate death. It is also important to consider the neonates who are sick that might not be able to suck breast milk as compared to a healthier one [25]. Neonates born from mothers who had no ANC visit are more likely to die compared to neonates born from mothers who have ANC follow up [30, 26, 25, 31]. ANC visit saves the lives of babies by early detection and management of the problems related to the pregnancy by promoting and establishing good health [25, 31].
The current systematic review and meta-analysis are the first of its kind to be conducted at the NICU hospitals of Ethiopia to assess the burden and determinant factors associated with neonatal mortality in Ethiopia. The information obtained may improve knowledge on the cause of neonatal mortality at NICU so as to reduce neonatal mortality rates in Ethiopia. But the inclusion of only English language articles in the review is a limitation. Moreover, all the studies are based on facility-based records that are subject to information bias.

Conclusions

Neonatal mortality at NICU hospitals in Ethiopia is unacceptably high. Subgroup analysis shows that the mortality rate is also higher among early and preterm neonates. Gestational age, mode of delivery, ANC follow up, breastfeeding, hypothermia, age of the neonate, hypoglycemia, place of delivery, and low birth weight were among the factors identified for neonatal mortality rate at NICU hospital in Ethiopia. Almost all identified factors associated with neonatal mortality at NICU hospital are preventable. Therefore, special care for preterm and early age newborns, timely initiation of breastfeeding, exclusive breastfeeding, appropriate mode of delivery, essential obstetric and newborn care, and promoting antenatal visits are recommended to reduce neonatal mortality. Moreover, the finding calls policymakers and program managers to focus on strengthen NICU services by revising the strategies set in place for optimal quality services and on the prevention of risk factors with neonatal mortality at NICU hospital during, pregnancy, delivery and postnatal period.

Abbreviations
Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

The authors declare that they did not receive funding for this research from any source.

Authors’ contributions

GT, TM, AS, DG, TA, TAA, AN, and TZ conceptualized the paper. GT, TM, AS, DG, and TA, performed article search, data extraction, and data analysis. GT, TM, AS, DG, TA, TAA, and MH did critical review. GT, TM, and AS produced the first draft of the manuscript. All authors contributed to the interpretation, commented on multiple versions, and approved the final manuscript.

Acknowledgments
The authors would like to acknowledge both Transform Primary Health Care project and JSI Research and Training Institute Inc. /The Last Ten Kilometers Project for their support to the successful accomplishment of this review. We also take this opportunity to thank Dr. Kassahun Alemu and Dr. Tadesse Awoke for their hands-on training systematic review.

References

1. UN IGME. Levels & Trends in Child Mortality: Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation. Report 2015. Geneva, Switzerland: World Health Organization; 2015.

2. Lawn JE, Blencowe H, Waiswa P, Amouzou A, Mathers C, Hogan D et al. Stillbirths: rates, risk factors, and acceleration towards 2030. The Lancet. 2016;387(10018):587-603. doi:https://doi.org/10.1016/S0140-6736(15)00837-5.

3. WHO, UNICEF, UNFPA, World Bank Group, United Nations Population Division. Trends in Maternal Mortality: 1990 to 2015 Population and Development Review. Geneva: World Health Organization; 2015.

4. UNICEF, World Health Organization, The World Bank, United Nations DESA/Population Division. Levels & Trends in Child Mortality. Report 2015. Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation. New York: UNICEF; 2015.

5. Central Statistical Agency [Ethiopia], International I. Ethiopia Demographic and Health Survey 2011. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ICF International; 2012.

6. Central Statistical Agency [Ethiopia], Macro O. Ethiopia Demographic and Health Survey 2005. Addis Ababa, Ethiopia and Calverton, Maryland, USA: Central Statistical Agency and ORC Macro; 2006.

7. Central Statistical Agency (CSA) [Ethiopia], ICF. Ethiopia Demographic and Health Survey 2016. Addis Ababa, Ethiopia, and Rockville, Maryland, USA: CSA and ICF;
8. WHO. Strategies toward ending preventable maternal mortality (EPMM). Geneva, Switzerland: World Health Organization; 2015.

9. Chou D, Daelmans B, Jolivet RR, Kinney M, Say L. Ending preventable maternal and newborn mortality and stillbirths. BMJ. 2015;351:h4255.

10. Hogberg U. The World Health Report 2005: "make every mother and child count" - including Africans. Scandinavian Journal of Public Health. 2005;33(6):409-11. doi:10.1080/14034940500217037.

11. Bhutta ZA, Das JK, Bahl R, Lawn JE, Salam RA, Paul VK et al. Can available interventions end preventable deaths in mothers, newborn babies, and stillbirths, and at what cost? The Lancet. 2014;384(9940):347-70. doi:https://doi.org/10.1016/S0140-6736(14)60792-3.

12. Lassi ZS, Mallick D, Das JK, Mal L, Salam RA, Bhutta ZA. Essential interventions for child health. Reproductive Health. 2014;11(1):S4.

13. Holmes W, Kennedy E. Reaching emergency obstetric care: overcoming the ‘second delay’. Melbourne: Burnet Institute on behalf of Compass. 2010.

14. FMOH. Ethiopian National Health Care Quality Strategy: 2016-2020: Transforming the Quality of Health Care in Ethiopia. Addis Ababa, Ethiopia: Federal Ministry of Health (FMOH); 2016.

15. FMoH. National Strategy for Newborn and Child Survival in Ethiopia: 2016-2020. Addis Ababa, Ethiopia: Federal Ministry of Health; 2015.

16. FMoH. Community Based Newborn Care Implementation Guideline. Addis Ababa, Ethiopia: Federal Ministry of Health; 2013.

17. UNICEF. Investing in Survival: Enhancing the Neonatal Intensive Care Unit of Yekatit 12 Hospita: A Final Report for UNICEF’s Next Generation; 2013.
18. Lockwood C, Munn Z, Porritt K. Qualitative research synthesis: methodological
guidance for systematic reviewers utilizing meta-aggregation. International Journal of
Evidence-Based Healthcare. 2015;13(3):179-87.

19. Tufanaru C, Munn Z, Aromataris E, Campbell J, Hopp L. Chapter 3: Systematic reviews
of effectiveness. Joanna Briggs Institute Reviewer’s Manual. The Joanna Briggs
Institute; 2017.

20. Moola S, Munn Z, Tufanaru C, Aromataris E, Sears K, Sfetcu R et al. Chapter 7: Systematic reviews of etiology and risk. Joanna Briggs Institute Reviewer’s Manual.
The Joanna Briggs Institute; 2017.

21. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D et al. PRISMA extension
for scoping reviews (PRISMA-ScR): checklist and explanation. Annals of Internal
Medicine. 2018;169(7):467-73.

22. StataCorp. Stata: Release 15. Statistical Software. College Station, Texas: Stata
Press; 2017.

23. Sterne JA, Palmer TM. Meta-analysis in Stata: an updated collection from the Stata
Journal. 2 ed. StataCorp LP; 2016.

24. Farah AE, Abbas AH, Ahmed AT. Trends of admission and predictors of neonatal
mortality: A hospital based retrospective cohort study in Somali region of Ethiopia.
PLOS ONE. 2018;13(9). doi:10.1371/journal.pone.0203314.

25. Orsido TT, Asseffa NA, Berheto TM. Predictors of Neonatal mortality in Neonatal
intensive care unit at referral Hospital in Southern Ethiopia: a retrospective cohort
study. BMC Pregnancy and Childbirth. 2019;19(1):83.

26. Worku B, Kassie A, Mekasha A, Tilahun B, Worku A. Predictors of early neonatal
mortality at a neonatal intensive care unit of a specialized referral teaching hospital
27. Yismaw AE, Gelagay AA, Sisay MM. Survival and predictors among preterm neonates admitted at University of Gondar comprehensive specialized hospital neonatal intensive care unit, Northwest Ethiopia. Italian Journal of Pediatrics. 2019;45(1):4. doi:10.1186/s13052-018-0597-3.

28. Ayalew S YS. Survival Analysis of Premature Infants Admitted to Neonatal Intensive Care Unit (NICU) in Northwest Ethiopia using Semi-Parametric Frailty Model. Journal of Biometrics & Biostatistics. 2015;06(01). doi:10.4172/2155-6180.1000223.

29. Wesenu M, Kulkarni S, Tilahun T. Modeling Determinants of Time-To-Death in Premature Infants Admitted to Neonatal Intensive Care Unit in Jimma University Specialized Hospital. Annals of Data Science. 2017;4(3):361-81. doi:10.1007/s40745-017-0107-2.

30. Demisse AG, Alemu F, Gizaw MA, Tigabu Z. Patterns of admission and factors associated with neonatal mortality among neonates admitted to the neonatal intensive care unit of University of Gondar Hospital, Northwest Ethiopia. Pediatric Health, Medicine and Therapeutics. 2017;8:57-64. doi:10.2147/phmt.S130309.

31. Tewabe T, Mehariw Y, Negatie E, Yibeltal B. Neonatal mortality in the case of Felege Hiwot referral hospital, Bahir Dar, Amhara Regional State, North West Ethiopia 2016: a one year retrospective chart review. Italian Journal of Pediatrics. 2018;44(1):57. doi:10.1186/s13052-018-0498-5.

32. Woldu M, Guta M, Lenjisa J, Tegegne G, Tesafye G, Dinsa H. Assessment of the incidence of neonatal sepsis, its risk factors, antimicrobial use and clinical outcomes in Bishoftu General Hospital. Neonatal Intensive Care Unit, Debrezeit-Ethiopia Pediat Therapeut. 2014;4(214):2161-0665.1000214.

33. Tekleab AM, Amaru GM, Tefera YA. Reasons for admission and neonatal outcome in
the neonatal care unit of a tertiary care hospital in Addis Ababa: a prospective study. Research and Reports in Neonatology. 2016. doi:10.2147/rrn.S95455.

34. Chow S, Chow R, Popovic M, Lam M, Popovic M, Merrick J et al. A selected review of the mortality rates of neonatal intensive care units. Frontiers in Public Health. 2015;3:225.

35. Karimi P, Mahmudi L, Azami M, Badfar G. Mortality in Neonatal Intensive Care Units in Iran: A Systematic Review and Meta-Analysis. Iranian Journal of Neonatology. 2019;10(3):70-80.

36. Weirich CF, Andrade ALS, Turchi MD, Silva SA, Morais-Neto OL, Minamisava R et al. Neonatal mortality in intensive care units of Central Brazil. Revista de Saude Publica. 2005;39(5):775-81.

37. Seid SS, Ibro SA, Ahmed AA, Akuma AO, Reta EY, Haso TK et al. Causes and factors associated with neonatal mortality in Neonatal Intensive Care Unit (NICU) of Jimma University Medical Center, Jimma, South West Ethiopia. Pediatric Health, Medicine and Therapeutics. 2019;10:39.

38. Zhang B, Dai Y, Chen H, Yang C. Neonatal Mortality in Hospitalized Chinese Population: A Meta-Analysis. BioMed Research International. 2019;2019.

39. Oza S, Lawn JE, Hogan DR, Mathers C, Cousens SN. Neonatal cause-of-death estimates for the early and late neonatal periods for 194 countries: 2000–2013. Bulletin of the World Health Organization. 2014;93:19-28.

Figures
Figure 1

Study flow diagram
Figure 2: Magnitude of Neonatal Mortality in Neonatal Intensive Care Unit

Study	Hospital	ES (95% CI)	Weight
Demise 2017	Gondar UH	0.14 (0.12, 0.17)	10.15
Farah 2018	Karamara	0.06 (0.04, 0.08)	10.16
Orsido 2019	Wolaita Sodo UH	0.16 (0.14, 0.19)	10.21
Tekleab 2017	St Paul’s Hospital	0.23 (0.18, 0.29)	9.48
Tewabe 2018	Felege Hiwot	0.13 (0.10, 0.17)	9.89
Woldu 2014	Bishoftu	0.13 (0.10, 0.17)	9.74
Worku 2012	Tikur Anbessa	0.23 (0.22, 0.25)	10.38
Wesenu 2017	Jimma USH	0.35 (0.31, 0.39)	9.99
Yehuala 2015	Gondar UH	0.25 (0.21, 0.29)	9.99
Yismaw 2019	Gondar UH	0.28 (0.25, 0.33)	10.01
Overall	(I^2 = 97.14%, p = 0.00)	0.19 (0.14, 0.25)	100.00

Figure 2

Forest plot of the magnitude of neonatal mortality at NICU hospitals
Figure 3: Magnitude of Neonatal Mortality in NICU by Region

Subgroup analysis of NMR by region
Figure 4: The pooled odds ratio of the association between GA and NMR

Study	OR (95% CI)	Weight
Demise 2017	2.08 (1.35, 3.20)	17.69
Farah 2018	1.09 (0.58, 2.06)	14.77
Orsido 2019	5.92 (4.12, 8.53)	18.59
Tekleab 2017	6.80 (3.33, 13.89)	13.59
Tewabe 2018	4.79 (2.52, 9.10)	14.63
Worku 2012	2.93 (2.49, 3.45)	20.73
Overall (I-squared = 84.7%, p = 0.000)	3.27 (2.12, 5.07)	100.00

NOTE: Weights are from random effects analysis

Figure 4

Forest plot of the magnitude of neonatal mortality admitted at NICU by gestational age
Figure 5: The pooled odds ratio of the association between age of newborn and NMR

Study	OR (95% CI)	Weight
Farah 2018	1.22 (0.28, 5.20)	15.59
Orsido 2019	4.20 (2.77, 6.63)	49.81
Tewabe 2018	2.20 (1.04, 4.68)	34.69
Overall	2.80 (1.45, 5.40)	160.00

NOTE: Weights are from random effects analysis

Figure 5

Forest plot of the magnitude of neonatal mortality admitted at NICU by neonatal age
Figure 6: The pooled odds ratio of the association between PNA and NMR

Study	OR (95% CI)	Weight
Demise 2017	4.05 (2.50, 6.57)	21.40
Orsido 2019	1.80 (1.25, 2.58)	26.12
Tekleab 2017	2.69 (1.25, 5.79)	11.75
Worku 2012	2.40 (1.97, 2.94)	38.76
Overall (I-squared = 57.6%, p = 0.070)	2.51 (1.86, 3.40)	100.00

NOTE: Weights are from random effects analysis

Figure 6
Forest plot of the effect of PNA on NMR at NICU
Funnel plot for neonatal mortality outcome

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.
PRISMA 2009 checklist.doc