Clinical Research Article

Monogenic Causes in the Type 1 Diabetes Genetics Consortium Cohort: Low Genetic Risk for Autoimmunity in Case Selection

Luc Marchand,2,* Meihang Li,1,2,3,4,* Coralie Leblicq,2 Ibrar Rafique,2,5 Tugba Alarcon-Martinez,2 Claire Lange,2 Laura Rendon,2 Emily Tam,2 Ariane Courville-Le Bouyonnec,2 and Constantin Polychronakos2,4

1Clinical Research Center, Maoming People’s Hospital, Guangdong, China; 2Montreal Children’s Hospital and the Endocrine Genetics Laboratory, Child Health and Human Development Program, the Research Institute of the McGill University Health Centre, Montreal, Canada; 3The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, China; 4MaiDa Gene Technology, Zhoushan, China; and 5Department of Biological Sciences, International Islamic University, Islamabad, Pakistan

ORCID numbers: 0000-0003-3007-8944 (M. Li); 0000-0002-7624-6635 (C. Polychronakos).

*Equal contribution.

Received: 12 October 2020; Editorial Decision: 25 January 2021; First Published Online: 4 February 2021; Corrected and Typeset: 12 March 2021.

Abstract

Hypothesis: About 1% of patients clinically diagnosed as type 1 diabetes have non-autoimmune monogenic diabetes. The distinction has important therapeutic implications but, given the low prevalence and high cost of testing, selecting patients to test is important. We tested the hypothesis that low genetic risk for type 1 diabetes can substantially contribute to this selection.

Methods: As proof of principle, we examined by exome sequencing families with 2 or more children, recruited by the Type 1 Diabetes Genetics Consortium (T1DGC) and selected for negativity for 2 autoantibodies and absence of risk human leukocyte antigen haplotypes.

Results: We examined 46 families that met the criteria. Of the 17 with an affected parent, 7 (41.2%) had actionable monogenic variants. Of 29 families with no affected parent, 14 (48.3%) had such variants, including 5 with recessive pathogenic variants of WFS1 but no report of other features of Wolfram syndrome. Our approach diagnosed 55.8% of the estimated number of monogenic families in the entire T1DGC cohort, by sequencing only 1.1% of the autoantibody-negative ones.

Conclusions: Our findings justify proceeding to large-scale prospective screening studies using markers of autoimmunity, even in the absence of an affected parent.
also confirm that nonsyndromic WFS1 variants are common among cases of monogenic diabetes misdiagnosed as type 1 diabetes.

Key Words: monogenic diabetes, type 1 diabetes, WFS1, HLA, autoantibody

Type 1 diabetes mellitus (T1D) is due to the autoimmune destruction of the beta-cells and characterized by early onset and immediate requirement for insulin treatment. Among patients presenting with this clinical picture, a small but nonnegligible proportion actually have monogenic diabetes, many forms of which can be more effectively treated with alternatives to insulin (1). Balancing the small proportion of such cases (estimated at >1%) (2) against the potentially life-changing benefit of therapeutic reassignment requires refined selection algorithms for the costly genetic testing.

A recent study combining autoantibody (aAb) negativity with indices of beta-cell function (2) performed well in detecting the mild cases due to GCK variants (OMIM 125851) but missed more than half of those linked to HNF1A (OMIM 600496) and HNF4A (OMIM 125850), cases which were more likely to be misdiagnosed as T1D, the main differential diagnosis in children and young adults. Genetic T1D risk behaves as a polygenic trait (3), dominated by the human leukocyte antigen (HLA) class II DR-DQ locus (reviewed in (3)). Therefore, we tested whether selecting for HLA genotypes that do not confer autoimmune T1D risk can improve the efficiency of selecting aAb-negative cases to test for a monogenic cause.

In our recent screening of aAb-negative Chinese patients diagnosed as type 1 diabetes, we did find a high prevalence of monogenic cases, as expected from the low genetic T1D risk in East Asians, based on ethnicity alone (4). In a recent comparison of 1963 T1D cases with 804 cases of maturity onset diabetes of the young (MODY) previously diagnosed by clinical criteria, a low T1D genetic risk score was found to be predictive of MODY (5). We undertook to test this principle prospectively, for the ab initio diagnosis of unsuspected monogenic cases with a rigorously ascertained T1D phenotype, which is likely to exclude most patients with mild hyperglycemia due to GCK mutation. Our secondary aim was to see whether the high prevalence of recessive WFS1 variants causing a T1D clinical picture without any of the other manifestations of Wolfram syndrome (WS; OMIM 222300) that we found in China (4) would also be observed in individuals of European ancestry.

Participants

The T1D Genetics Consortium (T1DGC), recruited multiplex families (2 or more affected children) for the study of T1D genetics (6). The majority (97.4%) were described as white Caucasians. Inclusion criteria were onset <35 years, uninterrupted requirement for insulin within 6 months of diagnosis, and at least 1 similarly affected sibling. Syndromic cases were excluded. DNA and clinical information were obtained from the NIDDK repository. The T1DGC consent authorized research on T1D genetics. The study was approved by the Research Ethics Board of the Montreal Children's Hospital.

Autoantibody Status

Subjects had been tested for aAb to glutamic acid decarboxylase 65-kilodalton isoform and islet antigen 2 at the time of recruitment, at widely varying intervals after diagnosis. Radiobinding assays, calibrated against the World Health Organization standards were used. Families were included if all affected members were negative.

HLA Risk

HLA had been genotyped by allele-specific oligonucleotide hybridization, confirmed by our exome results. Families were included if none of the affected individuals carried a risk HLA haplotype (defined as DRB1*0301-DQB1*0201 or DRB1*040x-DQB1*0302 where DRB1*040x includes *0401, *0402, *0404, and *0405) or if at least one affected member had the highly protective DQB1*0602.

Exome Sequencing

Exome sequencing in one proband from each family, involved capture with the 50 Mb Agilent SureSelect array and sequencing on the Illumina HiSeq at a depth of 50x. Data were processed in a standard pipeline, using GATK, BWA-MEM, and variants were annotated by Annovar. Only protein-altering variants (missense, frameshift, splicing, stopgain, stoploss) were considered. These were filtered for frequency in three public databases (1000 genomes, ExAc, and gnomAD). Maximal allele frequency cutoff was 0.0001 in any population for the dominant genes and 0.005 for the recessive WFS1. We searched for copy-number variants by loss of heterozygosity and normalized read counts, using FeatureCounts (http://subread.sourceforge.net/). All variants reported here were confirmed with Sanger sequencing of proband, untested sibling, and, if available, parents.
Genes in the University of Chicago list, one of the most comprehensive available, were analyzed. (https://dnatesting.uchicago.edu/tests/neonatal-diabetes-mellitus-mody-panel).

Data Analysis

The variants were evaluated by the American College of Medical Genetics and Genomics (ACMG)/Association for Molecular Pathology criteria (7) and rated as pathogenic, likely pathogenic, and variants of unknown significance (VUS). The latter were deemed actionable and included because they cannot be ignored in clinical practice, and justify a sulfonylurea trial or, at least, genetic counseling. They include the majority of disease-causing missense variants, if novel. Our very strict allele-frequency cutoffs minimize the probability of a given patient having a VUS that is spurious.

To evaluate the probability of finding the variants in a given gene under the null hypothesis, we summed up the allele frequencies of all variants in the European gnomAD set that met the same criteria (allele frequency and PP3 prediction). This aggregate probability of being a carrier of any such variant was applied to our exome cohort to derive the probability on the Poisson distribution.

Results

Autoantibodies

Of 2836 families, all affected individuals were negative for both antibodies in 414 families (14.6%) (Fig. 1). Of these, 52 families (1.8% of the total cohort) were also negative for HLA risk. In these families, sibling allele-sharing at the HLA locus on Chr6p21 had a negative logarithm of the odds ratio. We had usable DNA from 46 probands.

High frequency (41.2%) of actionable variants in cases with an affected parent

Twenty of these 52 families (38.5%) had a parent diagnosed with T1D or T2D, more than twice as many as the remaining T1DGC cohort (17.1%, P = 0.0003). Of the 17 such families for which DNA was available, 7 [41.2%, 95% confidence interval (CI 95%) = 20.1%-74.6%] had variants segregating with the phenotype: 5 in HNF1A (MODY3), a known 1 in RFX6 (OMIM 612659) (8,9), and 1 in INS (OMIM 613370) p.96Cyst > Arg replacing 1 of the cysteines involved in a disulfide bond and altered by a different missense variant in neonatal diabetes (10).

Monogenic diabetes is also frequent (48.3%), in the absence of history of an affected parent

Previous studies (2,11) indicate a penetrance of monogenic diabetes much lower than 100%, and our results corroborate this. We sequenced 29 of the 32 probands with no record of affected parent (3 excluded for DNA availability/quality control). No parent had been diagnosed with T1D, but information about other types of diabetes was incomplete in some cases. For this reason, what we would term “clinical penetrance” (based on awareness by the care provider) may underestimate the true biological penetrance. We found variants likely to be pathogenic for monogenic diabetes in 14 cases (48.3%, CI 95% = 30.1%-73.8%). Four of 29 had a variant in HNF1A. Of our total of 9 HNF1A variants (5 + 4), 5 were rated as pathogenic, 3 as likely pathogenic, and 1 was a VUS. (Table 1). All 9 segregated with diabetes in the affected sibling (P = 0.002).

Under the null hypothesis, the aggregate probability of any gnomAD variant satisfying our criteria (minor allele frequency < 0.0001 and ACMG PP3) to segregate with diabetes in 1 sibling pair was 0.0038. The probability that more than 1 such pair of HNF1A variants could occur by chance among our 34 undiagnosed pairs (46 sequenced minus 12 due to ACMG-pathogenic variants) was 0.0081, and the false discovery rate was calculated at 0.05 (calculation details in Table 2).
Table 1. Monogenic variants found in 21 cases

Patient ID	Gene	GRCh37 position	CDS change	Protein	Hom/het	Age at diagnosis	Parent \(^a\)	Max MAF	Pathogenicity by ACMG criteria	PMID or accession no		
									T1D	T2D		
24468904	HNF1A	12:121416627	c.C56T	p.S19L	Het	34	No	Yes	0	VUS	PM2 PP3	—
22082103	HNF1A	12:121426713	c.A404C	p.D135A	Het	18	No	Unk	0	Likely pathogenic PM1 PM2 PM5 PP3	18003757	
20871403	HNF1A	12:121426784	c.G475T	p.R159W	Het	19	No	Unk	3 × 10^-3	Likely pathogenic PS1 PM2 PP3	9754819	
42317204	HNF1A	12:121431395	c.G599A	p.R200Q	Het	20	Yes	No	3 × 10^-3	Pathogenic PS1 PM2 PM3 PP3 PP5	21224407	
28836403	HNF1A	12:121431435	c.G659G	p.I213M	Het	19	No	Yes	0	Likely pathogenic PM1 PM2 PM5 PP3	23348805	
224255704	HNF1A	12:121432065	c.G812A	p.R271Q	Het	28	Yes	No	7 × 10^-3	Pathogenic PS1 PM2 PM5 PP3	26853433	
21373604	HNF1A	12:121432077	c.A824T	p.E275V	Het	30	Yes	No	0	Pathogenic PS1 PM2 PP3	27059371	
21160303	HNF1A	12:12143375	c.1139delT	p.V380fs	Het	16	Yes	No	0	Pathogenic PVS1 PS1 PM2	VCV000435426	
26244503	HNF1A	12:121435276	c.1310-1G > A	splicing	Het	22	No	Unk	0	Pathogenic PS1 PM2 PM3 PP3	—	
46247703	WFS1	4:6296872	c.G817T	p.E273X	Het	15	No	No	2 × 10^-3	Pathogenic PS1 PM2 PM3 PP3	10521293	
41990004	WFS1	4:6302483	c.A961C	p.T321P	Het	10	No	Yes	0	Likely pathogenic PM2 PM3 PM5 PP3	24890733	
48247803	WFS1	4:6302884	c.1362_1377del	p.Y454fs	Het	10	No	No	0	Pathogenic PVS1 PS1 PM2 PP3	12754709	
47209403	WFS1	4:6303394	c.G1514A	p.C505Y	Het	12	No	Unk	0.0137	Pathogenic PS1 PM2 PM3 PP4	30014265	
40670003	WFS1	4:6303861	c.G1839A	p.W613X	Het	13	No	Yes	3 × 10^-3	Pathogenic PVS1 PS1 PM1 PM2 PP3 PP4	15277431	
20494604	INS	11:12181129	c.G2082C	p.E694D	Het	0\(^b\)	Yes	No	0	VUS PM2 PM3 PP3	—	
29863603	INS	11:12182028	c.174delA	p.A58fs	Het	6	No	No	0	Likely pathogenic PM1 PM2 PM5 PP2 PP4	—	
22358103	GCK	7:44187340	c.G277A	p.G258S	Het	18	No	No	0	Likely pathogenic PVS1 PM2 PP3	—	
43752103	KNCJ11	11:17408960	c.G679A	p.E227K	Het	9	De novo	3 × 10^-3	Pathogenic PS1 PM1 PM2 PP2 PP3	17021801		
23676104	RFX6	6:117198947	c.224-12A > G	splicing	Het	7	No	Yes	9 × 10^-3	Pathogenic PS1 PM2 PM3 PP4	20148032	
18891204	SPINK1	5:147207385	c.194 + 2T > C	splicing	Het	23	No	Unk	0.0035	Pathogenic PVS1 PS1 PM2 PP2	275378509	
26036704	KLF11	11:1018541	c.G1026A	p.M342I	Het	9	No	No	0.0001	VUS PM2 PM3	—	

Transcript accession numbers of each gene: HNF1A: NM_000545, WFS1: NM_00114585, INS: NM_001185098, GCK: NM_000162, KNCJ11: NM_000525, RFX6: NM_173560, SPINK1: NM_003122, KLF11: NM_001177716.

Abbreviations: Max MAF, maximal minor allele frequency in any population.

\(^a\)Diagnosis of diabetes in a transmitting parent or, if not determined, in either parent.

\(^b\)Although clearly neonatal, this case was declared as type 1 diabetes, never had genetic testing and was recruited for type 1 diabetes genetics.
As we found in China (4), the frequency of recessive WFS1 variants in patients not reported to have manifestations of WS rivaled that of MODY3. Five sibling pairs had WFS1 variants, 4 compound heterozygous and 1 homozygous. Five of the 10 subjects were recruited within a year of diagnosis, but the remaining had had diabetes for 5, 5, 6, 9, and 10 years without, we assume, having developed the diagnostic manifestations of WS, which would have disqualified them. A perhaps more important reason to believe that most are nonsyndromic cases, is their frequency, rivaling MODY3 and much higher than the very rare WS. By parental genotyping, the variants were in trans in all heterozygotes and all segregated with diabetes in the affected sibling (recessive logarithm of the odds = 2.4 at \(\theta = 0 \)). Only 1 of the 9 variants was rated VUS by ACMG criteria, a novel missense in trans to a pathogenic truncating allele (Table 1). We had no usable DNA from the sibling of the homozygous proband but, in the T1DGC SNP array linkage data (12), the 2 siblings are homozygous and identical-by-descent over a 31.8 cM telomeric region encompassing WFS1. This variant (p.R558C) is found only in Ashkenazi Jews, in whom homozygosity is known to cause a mild form of WS (13). Table 2 shows that the probability of recessive segregation of any 2 European gnomAD variants by chance alone

Gene	(1) Carrier	(2) Diallelic	(3) Segregating	(4) In at least 1 of 34 undiagnosed	FDR (%)	(5) In more than 1/34 undiagnosed
HNF1A	0.0075	N/A	0.00377	0.13	3.2	0.0081
WFS1	0.035	0.0112	0.00031	0.011	0.5	0.000055

The European gnomAD carrier frequencies of all variants meeting our filtering criteria (missense or truncating, PP3 by ACMG criteria and allele frequencies ≤0.0001 or 0.005, respectively) were summed. This aggregate probability was used to estimate the probabilities, under the null, of (1) being a carrier (diallelic for any of these variants; (2) segregating with diabetes in 2 siblings; (3) segregating with diabetes in at least 1 of our 34 undiagnosed sibling pairs; and (4) segregating in more than 1 of these pairs on the Poisson distribution. Undiagnosed was defined as sibling pairs whose diabetes was not explained by variants found Pathogenic by American College of Medical Genetics and Genomics/Association for Molecular Pathology criteria (N = 34). The FDR was calculated as expected/observed cases with a segregating variant. The estimates are conservative, as most of the variants reported have frequencies drastically lower than the cutoffs.

Diagnostic considerations

As a proof of principle, our design sacrificed sensitivity to maximize specificity. Some aAb-negative pairs were not selected for sequencing because one sibling carried a risk HLA, not unusual in the general population, especially for the common DRB1\(^*\)0301-DQB1\(^*\)0201. The 45.7% estimate of monogenic cause should equally apply to them. Including them, the total number of monogenic families in the entire T1DGC cohort can be probabilistically estimated on the basis of 3 reasonable assumptions: (i) both siblings in a pair have diabetes for the same reason, (ii) monogenic cases are aAb negative, and (iii) HLA does not affect monogenic diabetes risk. Violations of 1 or 2 are too rare to materially alter the results and violation of 3 lacks biological plausibility.

Thus, out of 52 pairs negative for both aAb and risk HLA, we were able to sequence 46, and 21 (45.7%, CI 95% = 31.2%-64.7%) had an actionable monogenic variant.
estimated total of 37.6 pairs. Thus 55.8% (21/37.6) of the estimated total number of monogenic families in the entire T1DGC cohort were diagnosed by sequencing only 11.1% (46 of 414) of aAb negative probands.

Discussion

Our study was not designed to develop a diagnostic algorithm for screening T1D cases for monogenic diabetes. Selecting for an affected sibling enriches in monogenic causes, and therefore our percentages are an overestimate of those in the general T1D population. Our main aim was to use this convenience sample to showcase the power of genetic screening as an addition to auto-antibody testing. The T1DGC had no data on beta-cell function markers, and it is likely that they will further increase the power of future algorithms. However, it is worth pointing out that they may be less important in patients with a convincing T1D phenotype (note the very low prevalence of GCK cases, compared to clinically diagnosed MODY cohorts).

Our results clearly justify future prospective studies using additional aAb (anti-insulin and anti-ZnT8) and a more refined genetic risk assessment. Although HLA accounts for the bulk of the known T1D genetic risk, the INS and PTNPN22 loci also contribute, and more than 50 additional loci have small but measurable effects. Future case-selection algorithms can benefit from a number of genetic risk scores that are being developed (20,21), to explore deeper into those that were missed with HLA only. Moreover, given some reports of aAb-positive cases of monogenic diabetes (22), it may be worth also searching for monogenic diabetes in weakly positive patients who have a very low score for a single antibody.

Another important finding is the confirmation that the frequency of nonsyndromic WFS1 variants is a close second to that of HNF1A in subjects of European descent with a clinical diagnosis of T1D. Based on the results presented in this paper, the Canadian Institutes of Health Research have funded the Accurate Diagnosis in Diabetes for Appropriate Management study (ClinicalTrials.gov Identifier: NCT03988764), in which we aim to recruit 5000 pediatric patients diagnosed as T1D and sequence all aAb negative cases by exome sequencing. We expect that the results will generate a powerful algorithm for optimal selection of T1D patients for sequencing.

Acknowledgments

We thank the HSBC bank employee fund-raising volunteers and Mr. Guy Dufresne, executor of the La Chance Estate, for generous gifts to the Montreal Children’s Hospital Foundation, that made this study possible. We thank all families who participated in the T1DGC and all T1DGC professionals who contributed to the creation of this precious resource.

Financial Support: Canadian Institutes of Health Research, Ref. PJT-159715

Author Contributions: CP and ML developed the project and wrote the manuscript; LM managed the sequencing and data analysis; CL and IR added ACMG criteria and literature support; TAM, CL, LR, and ET managed the DNA samples and confirmed pathogenic variants with Sanger sequencing; and ACLB performed the analysis and statistics on the original T1DGC data set.

Additional Information

Correspondence: Constantin Polychronakos, MD, 1001 Décarie Boulevard, Montreal, QC H4A 3J1, Canada. Email: constantin.polychronakos@mcgill.ca; and Meihang Li, PhD, Maoming People’s Hospital, 101 Weimin Road, Maoming 525000, Guangdong, China. Email: limeihang@163.com.

Disclosure Summary: CP and ML are stock holders, and CP is Chief Scientific Officer of Zhejiang Maidagene Co., Ltd, a for-profit startup offering genetic testing services.

Data Availability: All the variants were submitted to Clinvar (https://www.ncbi.nlm.nih.gov/clinvar/). Exome results are available upon request for reasonable use.

References

1. Bacon S, Kyirhair MP, Rizvi SR, et al. Successful maintenance on sulphonylurea therapy and low diabetes complication rates in a HNF1A-MODY cohort. Diabet Med. 2016;33(7):976-984.
2. Carlsson A, Shepherd M, Ellard S, et al. Absence of islet auto-antibodies and modestly raised glucose values at diabetes diagnosis should lead to testing for MODY: lessons from a 5-year pediatric Swedish National Cohort Study. Diabetes Care. 2020;43(1):82-89.
3. Polychronakos C, Li Q. Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet. 2011;12(11):781-792.
4. Li M, Wang S, Xu K, et al. High prevalence of a monogenic cause in Han Chinese diagnosed with type 1 diabetes, partly driven by nonsyndromic recessive WFS1 mutations. Diabetes. 2020;69(1):121-126.
5. Patel KA, Oram RA, Flanagan SE, et al. Type 1 diabetes genetic risk score: a novel tool to discriminate monogenic and type 1 diabetes. Diabetes. 2016;65(7):2094-2099.
6. Hilner JE, Perdue LH, Sides EG, et al; T1DGC. Designing and implementing sample and data collection for an international genetics study: the Type 1 Diabetes Genetics Consortium (T1DGC). Clin Trials. 2010;7(Suppl):S5-S32.
7. Richards S, Aziz N, Bale S, et al; ACMG Laboratory Quality Assurance Committee. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405-424.
8. Patel KA, Kettunen J, Laakso M, et al. Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun. 2017;8(1):888.
9. Sansbury FH, Kirel B, Caswell R, et al. Biallelic RFX6 mutations can cause childhood as well as neonatal onset diabetes mellitus. *Eur J Hum Genet.* 2015;23(12):1744-1748.

10. Fu J, Wang T, Li M, Xiao X. Identification of insulin gene variants in patients with neonatal diabetes in the Chinese population. *J Diabetes Investig.* 2020;11(3):578-584.

11. Pihoker C, Gilliam LK, Ellard S, et al; SEARCH for Diabetes in Youth Study Group. Prevalence, characteristics and clinical diagnosis of maturity onset diabetes of the young due to mutations in HNF1A, HNF4A, and glucokinase: results from the SEARCH for Diabetes in Youth. *J Clin Endocrinol Metab.* 2013;98(10):4055-4062.

12. Concannon P, Chen WM, Julier C, et al; Type 1 Diabetes Genetics Consortium. Genome-wide scan for linkage to type 1 diabetes in 2496 multiplex families from the Type 1 Diabetes Genetics Consortium. *Diabetes.* 2009;58(4):1018-1022.

13. Bansal V, Boehm BO, Darvasi A. Identification of a missense variant in the WFS1 gene that causes a mild form of Wolfram syndrome and is associated with risk for type 2 diabetes in Ashkenazi Jewish individuals. *Diabetologia.* 2018;61(10):2180-2188.

14. Marchand LLM, Leblicq C, Rafique I, et al. Supplementary material for “Monogenic causes in the type 1 diabetes genetic consortium cohort: low genetic risk for autoimmunity in case selection.” *Mendeley Data.* 2021;2. doi:10.17632/mvdk3xzbr.2

15. Abbasi F, Saba S, Ebrahim-Habibi A, et al. Detection of KCNJ11 gene mutations in a family with neonatal diabetes mellitus: implications for therapeutic management of family members with long-standing disease. *Mol Diagn Ther.* 2012;16(2):109-114.

16. Evliyaoglu O, Erkan O, Ataoglu E, et al. Neonatal diabetes: two cases with isolated pancreas agenesis due to homozygous PTF1A enhancer mutations and one with developmental delay, epilepsy, and neonatal diabetes syndrome due to KCNJ11 mutation. *J Clin Res Pediatr Endocrinol.* 2018;10(2):168-174.

17. Patel J, Madan A, Gammon A, Sossenheimer M, Samadder NJ. Rare hereditary cause of chronic pancreatitis in a young male: SPINK1 mutation. *Pan Afr Med J.* 2017;28:110.

18. Howes N, Lerch MM, Greenhalf W, et al; European Registry of Hereditary Pancreatitis and Pancreatic Cancer. Clinical and genetic characteristics of hereditary pancreatitis in Europe. *Clin Gastroenterol Hepatol.* 2004;2(3):252-261.

19. Rebours V, Lévy P, Ruszniewski P. An overview of hereditary pancreatitis. *Dig Liver Dis.* 2012;44(1):8-15.

20. Sharp SA, Rich SS, Wood AR, et al. Development and standardization of an improved type 1 diabetes genetic risk score for use in newborn screening and incident diagnosis. *Diabetes Care.* 2019;42(2):200-207.

21. Winkler C, Krumsiek J, Buettner F, et al. Feature ranking of type 1 diabetes susceptibility genes improves prediction of type 1 diabetes. *Diabetologia.* 2014;57(12):2521-2529.

22. Urbanová J, Rypáčková B, Procházková Z, et al. Positivity for islet cell autoantibodies in patients with monogenic diabetes is associated with later diabetes onset and higher HbA1c level. *Diabet Med.* 2014;31(4):466-471.