SHORT COMMUNICATION
AN UPDATED LIST OF ODONATA OF SOUTHWESTERN BANGLADESH

M. Sajjad Hossain Tuhin & M. Kawsar Khan

26 December 2018 | Vol. 10 | No. 15 | Pages: 12995–13001
10.11609/jott.4031.10.15.12995-13001
AN UPDATED LIST OF Odonata of southwestern Bangladesh

M. Sajjad Hossain Tuhin & M. Kawsar Khan

1 Forestry and Wood Technology Discipline, Khulna University, Khulna 9208, Bangladesh
2 Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
1 tuhin.taxon@gmail.com, 2 bmbkawsar@gmail.com (corresponding author)

Abstract: An odonate survey was conducted throughout the southwestern region of Bangladesh, concentrating on eight districts and the Sundarban, from August 2014 to August 2016. A total of 50 species under 30 genera belonging to six families was recorded during the study period. Among these, 31 species belonged to Anisoptera and 19 to Zygoptera suborders. Libellulidae and Coenagrionidae were the most dominant anisopteran and zygopteran families with 28 and 17 species, respectively. One Zygoptera species Mortonagrion varalli was newly added to the odonate fauna of Bangladesh.

Keywords: Damselflies, dragonflies, habitat associations, Mortonagrion varalli, Odonata, species richness, Sundarban.

Odonates (dragonflies and damselflies) were one of the earliest winged insects that evolved in the Permian period (Kalkman et al. 2008) and distributed all over the world except in Antarctica (Silisby 2001; Grimaldi & Engel 2005; Trueman 2007). Although odonates are highly distributed in diverse ecological niches, they are sensitive to the alteration of their habitats. Hence, odonates are considered as indicators of the status of freshwater ecosystems (Watson et al. 1982; Brown 1991; Martin & Maynou 2016). Odonates are also extensively studied in evolutionary and ecological research (Córdoba-Aguilar 2008). At present, 5,740 species of odonates are known from the world (Subramanian 2009).

Odonates are considered freshwater insects as the females lay eggs on water or submerged plants and the larval development occurs underwater (Hornung & Rice 2003). Unlike the larva, the adults are aerial. Their foraging and reproductive success, however, depends heavily on the availability of freshwater resources. Hence, odonate assemblage is higher in aquatic habitats (Oppel 2005). Odonate diversity also varies in different climatic zones (Balzan 2012). Similar to other insect orders, the majority of the dragonfly species inhabits tropical and subtropical climate zones (Dumont 1991). The Indo-Malayan region is one of the most diverse habitats of highly endangered odonates (Clausnitzer et al. 2009). Bangladesh, being located in the Indo-Burma biodiversity hotspot zone, is expected to possess high odonate diversity (Chowdhury & Mohiuddin 2011). Along with geographic variation, seasonal variation such as temperature, humidity, and rainfall influences species richness of odonates. Bangladesh has six seasons with warm and wet summer, monsoon, and autumn from April to September. The temperature starts to fall after...
September and late monsoon, winter, and spring are dry and cold although the temperature barely drops below 10°C.

Bangladesh is a rich habitat for odonate diversity because of its geographic location and abundance of water bodies (Chowdhury & Mohiuddin 2011). Very few studies, however, were carried out to annotate the odonate fauna of the country. Chowdhury & Mohiuddin (2011) listed 96 species of odonates from the eastern region while Khan (2015b) reported 76 species from the northeastern region of Bangladesh. In recent years, a few species were added to the odonate fauna of Bangladesh and at present 108 species are known from the country (Khan 2015a, in press). The odonate survey till date, however, focused mainly on the eastern region while surveys are lacking in other parts of Bangladesh, especially in the southwestern region, which has diverse freshwater resources.

The southwestern region of Bangladesh is administratively mainly under Khulna Division. This division consists of 10 administrative districts and covers a large area of 22,285 km². The largest tract of mangrove forest of the world, the Sundarban, is also situated under this division and is distributed over three districts, namely, Khulna, Bhagerhat, and Satkhira. Many rivers, canals, ponds, and lakes occur in this part of the country. These freshwater resources are excellent habitats for odonates (Khan 2015b). Biswas et al. (1980) took the first approach to annotate the odonates of this region; however, their study was limited to Bagerhat District. Since this last odonatological survey in the region, there were no attempts to study odonates. In the present study, we conducted a broad survey in the southwestern region of Bangladesh to document odonates of the area.

MATERIALS AND METHODS

Study Site

Khulna Division lies between 21.643°N to 24.181°N and 88.561°E to 89.942°E (Fig. 1). The study area has a tropical climate with a mild winter from October to March, a hot and humid summer from March to June, and a humid, warm, rainy monsoon from June to October. Temperature varies all the year round: the temperature falls to the lowest in January and December at 12–15°C and reaches the highest in April–June at 41–45°C. Daily relative humidity fluctuates between 50% and 90%, which is the lowest in the evening and highest in the morning. The maximum precipitation is experienced in July with 20–25 days of rain with 368mm precipitation (Bangladesh Bureau of Statistics 2014).
We conducted fieldwork in the southwestern region of Bangladesh (concentrated on Khulna Division) from August 2014 to August 2016. We surveyed eight districts (namely, Khulna, Kushita, Jessore, Bagherhat, Chuadanga, Satkhira, Magura, and Jhinaidha) and the Sundarban during the study period. We randomly selected five sites from each district, at least 2km apart, by considering the accessibility and diversity of the habitat. In total, we selected 45 sites across the entire study area (Fig. 1). We did a regular survey (weekly, Bi-weekly, monthly, or bi-monthly) in the sampling sites \((n=9)\) under Khulna and Jessore districts (Table 1), and one or two opportunistic surveys in the rest of the sites \((n=36)\). We recorded GPS quadrate for all surveyed sites with a GPS device (Garmin GPSMAP 76CSx).

Sampling design

We surveyed the odonates by walking opportunistically through the roadsides, canal banks, river banks, pond sides, lakesides, open fields, forest paths, crop fields, grasslands, and urban and semi-urban areas of the study sites from 08:00h to 17:00h. We photographed the specimens for various identification keys such as wing venation, colour, patterns of thorax and abdomen, and shape of the anal appendages with a Nikon-3200D camera using Nikkor 55–300 mm AF-S DX and Micro-Nikkor 105mm FX AF lenses. We collected specimens that were difficult to identify from visual inspection and images by using an insect sweeping net. We did not collect any endangered odonates or sample from any protected areas, hence no permission was required for the collections. We identified the odonates with the help of taxonomic keys provided by Fraser (1920, 1933, 1934, 1936), Asahina (1967), Lahiri (1987), Mitra (2002), Subramanian (2005), and Nair (2011) and classified them according to Dijkstra et al. (2013).

Results

In total, 50 species belonging to 30 genera and six families were recorded from the study area (Table 2). Among them, 31 species (62%) belonging to 22 genera were recorded from Anisoptera suborder while 19 species (38%) comprising eight genera were reported from Zygoptera suborder (Table 2). Libellulidae was the most dominant family with 56% (28 species) of the total species count (Fig. 2). Coenagrionidae showed next highest dominance with 34% (17 species) species count, followed by Platycnemididae (4%), Protonuridae (2%), Gomphidae (2%), Aeshnidae (2%), and Corduliidae (2%) (Fig. 2). Libellulidae was the best represented anisopteran family with 28 species whereas Coenagroniidae was the most abundant zygopteran family with 17 species (Fig. 2).

A maximum of 47 species was recorded from Khulna District followed by Kushita (36), Jessore (32), Bagherhat (32), Chuadanga (27), Satkhira (24), Magura (22), and Jhinaidha (22) districts. A total of 25 species was recorded from the Sundarban mangrove area. Thirteen species were commonly found in all districts of the study area (Table 2). Three species, *Agriocnemis pygmaea*, *Ischnura senegalensis*, and *Diplacodes trivialis*, were recorded from all 45 study sites. *Mortonagrion varalli* was recorded for the first time from Bangladesh from a single female collected from the Khulna University campus (22.800°N and 89.535°E).

Discussion

We updated the checklist of the southwestern region of Bangladesh, which now consists 50 species or 47% of the known odonate fauna of the country. One species of damselfly, *Mortonagrion varalli*, is a first record to the country. Another rare dragonfly *Epophthalmia vittata* was recorded during the opportunistic survey. Similar to previous studies (Koparde et al. 2014; Khan 2015b), the current study also suggests opportunistic survey as important for observing odonates.

Among the six recorded families, species recorded from Aeshnidae, Corduliidae, and Gomphidae are lower in numbers in comparison to other families. A single species belonging to each of these families was sighted from the study area. In Bangladesh, only one species is known from Corduliidae family. On the other hand,
Table 1. A list of locations in the southwestern region of Bangladesh surveyed during the study period

District	Location	Latitude	Longitude	No. of species	Date visited
Khulna	KU Campus	22.801°N	89.534°E	39	Weekly
	Boyara	22.832°N	89.541°E	18	Monthly
	Dumuria	22.809°N	89.413°E	24	Bi-monthly
	Dhigghola	22.894°N	89.522°E	22	2.ix.2016
	Jabusha	22.758°N	89.589°E	31	Bi-weekly
	Pouro Park	23.165°N	89.204°E	16	Bi-monthly
Jessore	M.M. College	23.162°N	89.203°E	18	Bi-monthly
	Borat Club	23.191°N	89.149°E	21	Bi-monthly
	Labutala	23.272°N	89.231°E	29	Bi-monthly
	Bagherpara	23.221°N	89.348°E	14	17.v.2016
Satkhira	Satkhira Govt. College	22.710°N	89.085°E	19	6 ix.2016
	Satkhira Medical College	22.691°N	89.047°E	14	6 ix.2016
	BGB Camp	22.732°N	89.084°E	15	6 ix.2016
	Binerpota	22.754°N	89.107°E	14	6 ix.2016
Bagerhat	Patkelghata	22.767°N	89.169°E	18	6 ix.2016
	Satgumj Mosque	22.674°N	89.737°E	17	9 ix.2016
	Khanjahan Ali Majar	22.660°N	89.760°E	26	9 ix.2016
	PC College	22.665°N	89.782°E	16	9 ix.2016
	Pouro Lake	22.655°N	89.795°E	11	9 ix.2016
	Pochi Dighi	22.648°N	89.772°E	8	9 ix.2016
Magura	Govt. H.S. College	23.489°N	89.419°E	18	15 v.2015
	Stadium Para	23.482°N	89.414°E	12	15 v.2015
	District Fishery Office	23.480°N	89.419°E	17	15 v.2015
	Arpara	23.377°N	89.371°E	11	15 v.2015
	Salikha	23.302°N	89.375°E	16	15 v.2015
Jhinaidha	KC College	23.545°N	89.170°E	19	13 ix.2016
	Kaligan	23.404°N	89.132°E	17	13 ix.2016
	Dulai-Mundia	23.380°N	89.139°E	7	13 ix.2016
	Gazi-Kalu Mazar	23.308°N	89.163°E	13	13 ix.2016
	Barobazar Railway Station	23.304°N	89.150°E	16	13 ix.2016, 13 viii.2017
	Kushtia Govt. College	23.901°N	89.128°E	32	3 v.2016, 16 ix.2016
	Kushtia Soshan	23.899°N	89.152°E	14	16 ix.2016
	Chourhas	23.889°N	89.108°E	9	16 ix.2016
	Bot-toil	23.851°N	89.098°E	12	16 ix.2016
	I.I. Campus	23.721°N	89.152°E	26	3 v.2016, 16 ix.2016
Chuadanga	Chuadanga Govt. College	23.639°N	88.849°E	18	18 ix.2016
	Rail Para	23.642°N	88.858°E	23	18 ix.2016
	Bus Terminal	23.637°N	88.860°E	11	18 ix.2016
	Jafarpur	23.623°N	88.859°E	14	18 ix.2016
	BGB Camp	23.620°N	88.864°E	15	18 ix.2016
Sundarban	Munsigong	22.237°N	89.185°E	17	3 ix.2015, 12 ii.2016
	Koromjol	22.427°N	89.430°E	14	10 x.2014
	Herbaria	22.299°N	89.616°E	17	11 x.2014
	Dublar Char	21.757°N	89.548°E	11	14 viii.2015
	Kotka	21.854°N	89.771°E	16	17 viii.2015
Table 2. A list of odonates in the current study. Khu=Khulna, Jes=Jessore, Sat=Satkhira, Bag=Bagherhat, Mag=Magura, Jhi=Jhinaidha, Kus=Kushita, Chu=Chuadanga, Sun=Sundarban. √ indicates the presence of a species in the study area. The species newly added to the odonate fauna of Bangladesh are marked with an asterisk (*).

Species	Khu	Jes	Sat	Bag	Mag	Jhi	Kus	Chu	Sun
Suborder: Anisoptera									
Family: Aeshnidae (1)									
1	Gynacantha subinterrupta Rambur, 1842	✓	✓						
Family: Macromiidae (1)									
2	Epophthalmia vittata Burmeister, 1839	✓							
Family: Gomphidae (1)									
3	Actinogomphus rapax (Rambur, 1842)	✓	✓	✓	✓	✓	✓	✓	✓
Family: Libellulidae (28)									
4	Acisoma panorpoides Rambur, 1842	✓	✓	✓	✓	✓	✓	✓	✓
5	Aethriamanta brevipennis (Rambur, 1842)	✓	✓						
6	Brachydiplax chalybea Brauer, 1868	✓	✓	✓	✓	✓	✓	✓	✓
7	Brachydiplax farinosa Krüger, 1902	✓	✓	✓	✓	✓	✓	✓	✓
8	Brachydiplax sobrina (Rambur, 1842)	✓	✓	✓	✓	✓	✓	✓	✓
9	Brachytheoris contaminata (Fabricius, 1793)	✓	✓	✓	✓	✓	✓	✓	✓
10	Bradinopyga geminata (Rambur, 1842)	✓							
11	Crocothemis servilia (Drury, 1773)	✓	✓	✓	✓	✓	✓	✓	✓
12	Diplacodes nebulosa (Fabricius, 1793)	✓	✓	✓	✓	✓	✓	✓	✓
13	Diplacodes trivialis (Rambur, 1842)	✓	✓	✓	✓	✓	✓	✓	✓
14	Lathrecista asiatica (Fabricius, 1798)	✓							
15	Macrodiplax cori (Brauer, 1867)	✓							
16	Neurothemis fulvia (Drury, 1773)	✓	✓	✓	✓	✓	✓	✓	✓
17	Neurothemis tullia (Drury, 1773)	✓	✓	✓	✓	✓	✓	✓	✓
18	Orthetrum chrysis (Selys, 1891)	✓							
19	Orthetrum glaucum (Brauer, 1865)	✓	✓						
20	Orthetrum pruinosum (Burmeister, 1839)	✓	✓						
21	Orthetrum sabino (Drury, 1773)	✓	✓	✓	✓	✓	✓	✓	✓
22	Pantala flavescens (Fabricius, 1798)	✓	✓	✓	✓	✓	✓	✓	✓
23	Potamarcha congener (Rambur, 1842)	✓	✓	✓	✓	✓	✓	✓	✓
24	Rhodothemis rufo (Rambur, 1842)	✓	✓						
25	Rhyothemis variegata (Linnaeus, 1763)	✓	✓	✓	✓	✓	✓	✓	✓
26	Thalymis tillarga (Fabricius, 1798)	✓	✓	✓	✓	✓	✓	✓	✓
27	Tramea basilis (Palisot de Beauvois, 1805)	✓	✓						
28	Trithemis festiva (Rambur, 1842)	✓	✓	✓					
29	Trithemis pallidinervis (Kirby, 1889)	✓	✓	✓	✓	✓	✓	✓	✓
30	Urothemis signata (Rambur, 1842)	✓	✓	✓	✓	✓	✓	✓	✓
31	Zyxomma petiolatum (Rambur, 1842)	✓	✓						
Suborder: Zygoptera									
Family: Coenagrionidae (16)									
32	Agriocnemis femina (Brauer, 1868)	✓	✓	✓	✓	✓	✓	✓	✓
33	Agriocnemis kalinga Nair & Subramanian, 2014	✓	✓						
34	Agriocnemis lacteola Selys, 1877	✓	✓	✓	✓	✓	✓	✓	✓
35	Agriocnemis pieris Laidlaw, 1919	✓	✓	✓	✓	✓	✓	✓	✓

Journal of Threatened Taxa | www.threatenedtaxa.org | 26 December 2018 | 10(15): 12995–13001
Aeshnidae and Gomphidae represent six species each. Hence, the lower species number recorded from these families is a representation of the fewer known species of the families in Bangladesh. The present study recorded three species from Platycnemididae family of which *Pseudocopera ciliata* was frequently sighted in different study sites. All anisopteran species excluding *Lathrecista asiatica* and *Bradinopyga geminata* were frequently observed. Similarly, all Coenagrionidae species except mortonagrichron species were frequently recorded.

Species diversity varies with change in habitat and microclimate. Some of the species were found only in distinct habitats whereas others adapted to broader landscapes were found in diverse habitats (Corbet 1999). *Agriocnemis femina*, *Agriocnemis kalinga*, *Agriocnemis pygmaea*, *Agriocnemis lecteola*, *Agriocnemis pieris*, and *Diplacodes trivialis* were found restricted to grassland habitats. *Ischnura senegalensis*, *Pseudagrion microcephalum*, and *Pseudagrion rubriceps* were observed mainly in water bodies. On the other hand, *Epophthalmia vittata*, *Lathrecista asiatica*, and *Gynacantha subinterrupta* were found only at the higher canopy of certain places. These observations provide evidence of habitat diversification and specialization of different species.

In the present study, 25 odonate species were recorded from the Sundarban mangrove forest. Due to high salinity and lack of freshwater, Sundarban is not well known for its odonate diversity. Previously, 26 species were recorded from the Indian part of the Sundarban region (Mitra & Mitra 2009). Among those, 17 species were also recorded in the current study from the Bangladeshi part of the Sundarban region. Also, eight species, which were unknown from the Sundarban region before, were recorded in the present study.

Water salinity is high in the southwestern region in comparison to the other areas of Bangladesh. Salinity is even higher in the mangrove areas and varies between 5ppt and 25ppt (Joshi & Ghose 2003). Pure, non-polluted water is important for odonate breeding (Carchini et al. 2005) and saline water has a negative influence on the odonate diversity (Needham & Westfall 1955). Hence, the lower odonate diversity in the southwestern region of Bangladesh (50 species in comparison to 96 species in the eastern region) can be a result of water salinity. The southwestern region also lacks the diversity of freshwater resources like waterfalls, streams, and tropical forest that are present in the eastern region.

In conclusion, we recorded 50 species of odonates in the current survey and updated the checklist of the southwestern region of Bangladesh. The present study is the first documentation of the odonate diversity in the Sundarban region of Bangladesh. Regional checklists are important to understand the diversity and conservation needs of a species and our study will fulfill that demand for the odonates of the region. Further long-term studies are required to understand the biology, population structure, threats, and conservation action needs of the
Odonata of southwestern Bangladesh

Asahina, S. (1967). A revision of the Asiatic species of the damselflies of the genus Ceriagrion (Odonata, Agrionidae). Japanese Journal of Zoology 15(3): 255–334.

Balzan, M.V. (2012). Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach. Journal of Insect Science 12(1): 87, https://doi.org/10.1673/031.012.8701

Bangladesh Bureau of Statistics (2014). District Statistics 2011 Khulna. Bangladesh Bureau of Statistics, Statistics Division, Dhaka, Bangladesh, 128pp.

Biowas, V., M.A. Bashar & A. Begum (1980). On a collection of Odonata from Bagerhat District, Khulna, Bangladesh. Indian Odonatology 3: 65–66

Brown, K.S. (1991). Conservation of neotropical environments: insects as indicators, pp. 349–404. In: Collins, N.M. (eds.). The Conservation of Insects and their Habitats. Academic Press, London, 493pp.

Carchini, G., A.G. Solimini & A. Ruggiero (2005). Habitat characteristics and Odonate diversity in mountain ponds of central Italy. Aquatic Conservation 15(6): 573–581.

Chowdhury, S.H. & M. Mohiuddin (2011). Carchini, G., A.G. Solimini & A. Ruggiero (2005). Habitat characteristics and Odonate diversity in mountain ponds of central Italy. Aquatic Conservation 15(6): 573–581.

Chowdhury, S.H. & M. Mohiuddin (2011). A check-list of the Odonata from the eastern region of Bangladesh with some taxonomic notes. University Journal of Zoology, Rajshahi University 30: 61–66; https://doi.org/10.3329/ujzru.v30i0.10755

Clausnitzer, V., V.J. Kalkman, M. Ram, B. Collen, J.E. Baillie, M. Bedjanic & H. Karube (2009). Odonata enter the biodiversity crisis debate: the first global assessment of an insect group. Biological Conservation 142(8): 1864–1869.

Corbet, P.S. (1980). Biology of Odonata. Annual Review of Entomology 25(1): 189–217.

Corbet, P.S. (1989). Dragonflies Behavior and Ecology of Odonata. Harley Books, Colchester, Essex, U.K. 830pp, ISBN 0 946589 64 X.

Córdoba-Aguilar, A. (ed.) (2008). Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research. Oxford University Press, London.

Dijkstra, K.D.B., V.J. Kalkman, R.A. Dow, F.R. Stokvis & J. van Tol (2013). Redefining the damselfly families: a comprehensive molecular phylogeny of Zygoptera (Odonata). Systematic Entomology 39(1): 68–96; https://doi.org/10.1111/syen.12035

Dumont, H.J. (1991). Fauna Palaeastina (Insecta). Israel Academy of Sciences & Humanities, Jerusalem, 297pp.

Fraser, F.C. (1920). Odonata and wetland quality in southern Alberta, Canada: a preliminary study. Odonatologica 32(2): 119–129.

Fraser, F.C. (1933). The Fauna of British India including Ceylon and Burma: Odonata, Vol. 1. Taylor & Francis Ltd., London, 423pp.

Fraser, F.C. (1934). The Fauna of British India including Ceylon and Burma: Odonata, Vol. 2. Taylor & Francis Ltd., London, 423pp.

Fraser, F.C. (1936). The Fauna of British India including Ceylon and Burma: Odonata, Vol. 3. Taylor & Francis Ltd., London, 461pp.

Grimaldi, D. & M.S. Engel (2005). Evolution of the Insects. Cambridge University Press, New York, 763pp.

Hornung, J.P. & C.L. Rice (2003). Odonata and wetland quality in southern Alberta, Canada: a preliminary study. Odonatologica 32(2): 119–129.

Joshi, H. & M. Ghose (2003). Forest structure and species distribution along soil salinity and pH gradient in mangrove swamps of the Sundarbans. Tropical Ecology 44(2): 195–204.

Kalkman, V.J., V. Clausnitzer, K.D.B. Dijkstra, A.G. Orr, D.R. Paulson & J. van Tol (2008). Global diversity of dragonflies (Odonata) in freshwater. Hydrobiologia 595(1): 351–363; https://dx.doi.org/10.1007/s10750-007-9029-x

Khan, M.K. (2015a). Gynacantha subinterrupta Rambur, 1842: an addition to the odonates (Insecta: Odonata: Aeshnidae) of Bangladesh. Journal of Threatened Taxa 7(10): 7704–7705; https://doi.org/10.11609/jott.04276.7704-5

Khan, M.K. (2015b). Dragonflies and damselflies (Insecta: Odonata) of the northeastern region of Bangladesh with five new additions to the Odonata fauna of Bangladesh. Journal of Threatened Taxa 7(11): 7795–7804; https://doi.org/10.11609/jott.o4314.7795-804

Khan, M.K. (2018). Odonata of Bangladesh with three new records for the country. Journal of Threatened Taxa 10(13): 12821-12827; https://doi.org/10.11609/jott.3819.10.12821-12827

Koparde, P., P. Mhaske & A. Patwardhan (2014). New records of dragonflies and damselflies (Insecta: Odonata) from the Western Ghats of Maharashtra, India. Journal of Threatened Taxa 6(5): 5744–5754; https://doi.org/10.11609/jott.o3402.5744-54

Lahiri, A.R. (1987). Studies on the odonate fauna of Meghalaya. Records Zoological Survey India, Occasional Paper 90: 1–402.

Martin, R. & X. Maynou (2016). Dragonflies (Insecta: Odonata) as indicators of habitat quality in Mediterranean streams and rivers in the province of Barcelona (Catalonia, Iberian Peninsula). International Journal of Odonatology 19(3): 107–124; https://doi.org/10.1080/13887890.2016.1172991

Mitra, T.R. (2002). Geographical distribution of Odonata (Insecta) of Eastern India. Memoirs of Zoological Survey of India 19(1): 1–208.

Mitra, A. & B. Mitra (2009). Pictorial Handbook of Common Dragonflies and Damselflies (Insecta: Odonata) of Mangroves of Sundarbans, India. Zoological Survey of India, Kolkata, 56pp.

Nair, M.V. (2011). Dragonflies & Damselflies of Orissa and Eastern India. Wildlife Organisatin, Forest & Environment Department, Government of Orissa, Bhubaneswar, 254pp.

Needham, J.G. & M.J. Westfall, Jr. (1955). A Manual of the Dragonflies of north America (Anisoptera) including the Greater Antilles and the Provinces of the Mexican Border. University of California Press, Berkeley, California, 615pp.

Oppel, S. (2005). Habitat associations of an Odonata community in a lower montane rainforest in Papua New Guinea. International Journal of Odonatology 8(2): 243–257.

Silsby, J. (2001). Dragonflies of the World. Smithsonian Institution Press, Washington, D.C., 216pp.

Silva, D., P. de Marco & D.C. Resende (2010). Adult odonate abundance and community assemblage measures as indicators of stream ecological integrity: a case study. Ecological Indicators 10(3): 746–752.

Subramanian, K.A. (2005). Dragonflies and Damselflies of Peninsular India - A Field Guide. Indian Academy of Sciences, Bangalore, India, 118pp.

Subramanian, K.A. (2009). A Checklist of Odonata of India. Zoological Survey of India, Kolkata, 36pp.

Truman, W.H.I. (2007). A brief history of the classification and nomenclature of Odonata. Zootaxa 1668(1): 381–394; https://dx.doi.org/10.11646/zootaxa.1668.1.20

Watson, J.A.L., A.H. Arthington, & D.L. Conrick (1982). Effect of sewage effluent on dragonflies (Odonata) of Bulimba Creek, Brisbane. Marine and Freshwater Research 33(3): 517–528.
The Journal of Threatened Taxa is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use of articles in any medium, reproduction, and distribution by providing adequate credit to the authors and the source of publication.

ISSN 0974-7907 (Online); ISSN 0974-7893 (Print)

December 2018 | Vol. 10 | No. 15 | Pages: 12907–13046
Date of Publication: 26 December 2018 (Online & Print)
DOI: 10.11609/jott.2018.10.15.12907-13046

Articles

Dietary preference and feeding patterns of the urban Rhesus Macaque
Macaca mulatta (Mammalia: Primates: Cercopithecidae) in Asola-Bhatti Wildlife Sanctuary in India
-- Ishita Ganguly & Netrapal Singh Chauhan, Pp. 12907–12915

Postembryonic development of the Tri-spine Horseshoe Crab
Tachypleus tridentatus (Merostomata: Xiphosura) in a nursery habitat in the Philippines
-- Dorks Kaiser & Sabine Schoppe, Pp. 12916–12932

Communications

Copulatory behavior of the Jaguar Panthera onca (Mammalia: Carnivora: Felidae)
-- Pedro Nacib Jorge-Neto, Cristiane Schilbach Pizzutto, Gediendson Ribeiro de Araujo, Thyara de Deco-Souza, Leanes Cruz da Silva, Jorge Aparecido Salomão Jr. & Herman Baldassare, Pp. 12933–12939

Amphibians of the Dibang River Basin, Arunachal Pradesh: an annotated checklist with distribution records
-- Jayanta K. Roy, Ramie H. Begum & M. Firoz Ahmed, Pp. 12940–12952

Taxonomic studies on the gaudy grasshoppers (Orthoptera: Pyrgomorphoidea: Pyrgomorphidae) from the northeastern states of India
-- M. Imran Khan, M. Kamil Usmani, Shahnila Usmani & Hira Naz, Pp. 12953–12968

Odonata (Insecta) diversity of Kuldih Wildlife Sanctuary and its adjoining areas, Odisha, eastern India
-- Subrat Debarata & Kedar Kumar Swain, Pp. 12969–12978

Short Communications

On the diversity of the vertebrate fauna (excluding fishes) of Panchet Hill (Garh Panchkot), Purulia, West Bengal, India
-- Sanjib Chattopadhyay, Somenath Dey & Utpal Singha Roy, Pp. 12979–12985

First record of the rare Furry Lobster Palinurellus wienecki (De Man, 1881) (Decapoda: Palinuridae) from the Arabian Sea
-- K.K. Idreesbabu, C.P. Rajool Shanis & S. Sureshkumar, Pp. 12986–12989

Description of life stages of dung beetle Scaptodera rhadamistus (Fabricius, 1775) (Coleoptera: Scarabaeidae: Scarabaeinae) with notes on nesting and biology
-- Suvarna S. Khadakkar, Ashish D. Tiple & Arun M. Khurad, Pp. 12990–12994

An updated list of Odonata of southwestern Bangladesh
-- M. Sajjad Hossain Tuhin & M. Kawsar Khan, Pp. 12995–13001

On the reproductive biology of Salacia fruticosa Wall. ex M.A. Lawson
- an endemic medicinal plant of the Western Ghats, India
-- K. Subin, P.A. Jose & T.V. Sarath, Pp. 13002–13005

Contribution to the Macromycetes of West Bengal, India: 28–33
-- Rituparna Saha, Arun Kumar Dutta, Soumitra Paloi, Anirban Roy & Krishnendu Acharya, Pp. 13006–13013

Notes

The identification of Takin Budorcas taxicolor (Mammalia: Bovidae) through dorsal guard hair
-- Manokaran Kamalakannan, Pp. 13014–13016

Photographic evidence of Striped Hyena Hyaena hyaena (Mammalia: Carnivora: Hyaenidae) in Ramnagar forest division, Uttarakhand, India
-- Vipul Maurya, Jai Pratap Singh, Khakshakan Naseem, Surender Mehra, Parag M. Dhakate, Neha Verma & A.G. Ansari, Pp. 13017–13019

Range extension of the Least Leaf-nosed Bat Hipposideros cineraceus Blyth, 1853 (Mammalia: Chiroptera: Hipposideridae): to central India
-- M. Kamalakannan, C. Venkatraman, Tauseef Hamid Dar & Kailash Chandra, Pp. 13020–13023

A report on the possible interbreeding between Grizzled Giant Squirrel Ratufa macroura and Indian Giant Squirrel Ratufa indica from Chinnar Wildlife Sanctuary in the southern Western Ghats, India
-- Kiran Thomas, D.K. Vinodkumar, Jomals Mathews John, M. Shaji & P.O. Nameer, Pp. 13024–13028

Ischnura fontaineae (Insecta: Odonata: Zygoptera) in Oman, eastern Arabia
-- Elaine Mary Cowan & Peter John Cowan, Pp. 13029–13031

First report of Leptogyns hysterica Forel, 1900 (Hymenoptera: Formicidae: Ponerinae) from Pakistan
-- Muhammad Tariq Rasheed, Imran Bodlah, Ammara Gull e Fareen & Xiaolei Huang, Pp. 13032–13036

First report of darkling beetle Blaps orientalis Solier, 1848 (Coleoptera: Tenebrionidae) from India
-- V.D. Hegde, D. Vasanthakumar & S.V. Manthen, Pp. 13037–13038

Notes on the occurrence of orchids Bulbophyllum medioximum, Herminium edgeworthii and H. macrophyllum (Orchidaceae) in Arunachal Pradesh, India
-- Krishna Chowlu, Avishak Bhattacharjee & Pankaj Kumar, Pp. 13039–13043

Lectotypification of two names in the genus Gymnostachyum (Acanthaceae)
-- M.C. Shameer & V.K. Sreenivas, Pp. 13044–13045

Miscellaneous

National Biodiversity Authority

Photos速観

Publisher & Host

WILD REACH

Member

ZOO REACH

Threatened Taxa