Keep That Card in Mind: Card Guessing with Limited Memory

Boaz Menuhin
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Moni Naor
Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel

Abstract
A card guessing game is played between two players, Guesser and Dealer. At the beginning of the game, the Dealer holds a deck of \(n \) cards (labeled \(1, \ldots, n \)). For \(n \) turns, the Dealer draws a card from the deck, the Guesser guesses which card was drawn, and then the card is discarded from the deck. The Guesser receives a point for each correctly guessed card.

With perfect memory, a Guesser can keep track of all cards that were played so far and pick at random a card that has not appeared so far, yielding in expectation \(\ln n \) correct guesses, regardless of how the Dealer arranges the deck. With no memory, the best a Guesser can do will result in a single guess in expectation.

We consider the case of a memory bounded Guesser that has \(m < n \) memory bits. We show that the performance of such a memory bounded Guesser depends much on the behavior of the Dealer. In more detail, we show that there is a gap between the static case, where the Dealer draws cards from a properly shuffled deck or a prearranged one, and the adaptive case, where the Dealer draws cards thoughtfully, in an adversarial manner. Specifically:

1. We show a Guesser with \(O(\log^2 n) \) memory bits that scores a near optimal result against any static Dealer.
2. We show that no Guesser with \(m \) bits of memory can score better than \(O(\sqrt{m}) \) correct guesses against a random Dealer, thus, no Guesser can score better than \(\min\{\sqrt{m}, \ln n\} \), i.e., the above Guesser is optimal.
3. We show an efficient adaptive Dealer against which no Guesser with \(m \) memory bits can make more than \(\ln m + 2\ln \log n + O(1) \) correct guesses in expectation.

These results are (almost) tight, and we prove them using compression arguments that harness the guessing strategy for encoding.

2012 ACM Subject Classification Theory of computation → Adversary models

Keywords and phrases Adaptivity vs Non-adaptivity, Adversarial Robustness, Card Guessing, Compression Argument, Information Theory, Streaming Algorithms, Two Player Game

Digital Object Identifier 10.4230/LIPIcs.ITCS.2022.107

Related Version Full Version: https://arxiv.org/abs/2107.03885
Full Version: https://eccc.weizmann.ac.il/report/2021/096/

Acknowledgements We thank Eylon Yogev and Yotam Dikstein for many suggestions and advice. We thank Hila Dahari, Uri Feige, Tomer Grossman, and Adi Schindler for meaningful discussions and insights. We thank Samuel Spiro for his comments. We also thank Gal Vinograd for reading a preliminary version of this document.

1 Incumbent of the Judith Kleeman Professorial Chair.
Keep That Card in Mind: Card Guessing with Limited Memory

1 Introduction

“Those who cannot remember the past are condemned to repeat it”
—George Santayana, The Life of Reason, 1905 [23]

Even if you use randomness and cryptography!

There are n cards in a deck. In each turn, one player, called Dealer, selects a card and a
second player, called Guesser, guesses which card was drawn. The selected cards cannot be
drawn again. The quantity of interest is how many cards were guessed correctly.

A Guesser with perfect memory can guess a card that has not appeared yet. When there
are i cards left, the probability of correctly guessing is $\frac{1}{i}$. By linearity of expectation, such a
Guesser is expected to guess correctly about $\ln n$ times. On the other hand, at any point in
time, a memoryless Guesser cannot guess with probability better than $\frac{1}{n}$, resulting in 1
correct guess on expectation2. We are interested in the case where the Guesser has $m < n$
bits of memory.

One can think about card guessing as a streaming problem where the algorithm predicts
the next element in a stream, under the promise that all elements in the stream are unique.
In the streaming model, a large sequence of elements is presented to an algorithm, usually
one element at a time. The algorithm, which cannot store the entire input, keeps the
needed information and outputs some function on the stream seen so far. As it may be
impossible to output the exact value of the function without storing the entire input, it is a
typical relaxation to consider an approximate value of the function as output. In this sense,
prediction is a form of approximation3.

Some streaming problems are solvable by a deterministic algorithm, while others require
a randomized one (for a survey on streaming algorithms, see [21]). It is common to analyze
the performance of an algorithm with respect to a worst-case stream that is chosen ahead of
time and is fixed throughout the execution of the algorithm. We call such a stream oblivious,
or static. A recent line of works (see Section 1.3) focuses on analyzing the performance of an
algorithm as if an adversary looks at the algorithm’s output in every turn and thoughtfully
chooses the next element in order to make the algorithm to fail. An algorithm that performs
well against such an adversary is called adversarially robust.

In this paper, we pinpoint the complexity of card guessing in different environments,
especially with respect to the memory requirements of the Guesser.

1.1 Our Results

We study the case where the Guesser has bounded memory, and we ask how well a Guesser
can perform? It turns out that the performance of a memory bounded Guesser is highly
sensitive to the behavior of the Dealer.

- A Dealer is called “random shuffle” if every ordering of the deck has equal probability.
 This is equivalent to drawing a card at random in every turn.
- A static Dealer draws cards one by one from a prearranged deck in some specific order
 and may choose the worst order.
- An adaptive Dealer is allowed to change the order of the deck throughout the game.

2 These examples are taken from a textbook on algorithms by Kleinberg and Tardos [19], Chapter 13,
Pages 721-722.
3 We elaborate on prediction as a form of approximation in the full version.
Clearly these dealers are presented by increasing power. Our results are as follows:

1. Against the random-shuffle Dealer, there exists a Guesser with $\log^2 n + \log n$ memory bits that makes at least $1/2 \log n$ correct guesses in expectation, i.e. asymptotically similar to a Guesser with perfect memory. This Guesser can be amplified at the cost of $\log n$ factor to get closer to $\ln n$.

2. There exists a Guesser with $\log^2 n - \log n + 2$ bits of memory and $2 \log n$ random bits that against any static Dealer scores $1/4 \ln n - O(1)$ correct guesses in expectation. This Guesser can be amplified at the cost of $\log n$ factor to get closer to $\ln n$.

3. The above Guessers are optimal: Every Guesser with m bits of memory can score at most $O(\sqrt{m})$ correct guesses in expectation against the random-shuffle Dealer, regardless of the amount of randomness that the Guesser uses.

4. For every m there exists a computationally efficient adaptive Dealer against which no Guesser with m memory bits can make more than $\ln m + 2 \ln \log n + O(1)$ correct guesses in expectation, regardless of how much randomness and what cryptographic tools and assumptions that the Guesser uses.

5. Furthermore, there exists a computationally efficient adaptive universal Dealer, i.e., that makes no assumption on the amount of memory of the Guesser, against which every Guesser with m bits of memory is expected to make at most $(1+o(1)) \cdot \ln m + 8 \ln \log n + O(1)$ correct guesses.

See Table 1 for a comparison of our results.

Guessing Technique	Memory	Random bits	Dealer	Score
Subset Guesser	m	-	Any	$\ln m$
Remember last cards	m	-	Any	$\frac{m}{\log n}$
Subset+Remember last	$m \leq \sqrt{n}$	-	Random	$2 \ln m - \ln \log n - \ln 2$
Following Subsets	$O(\log^2 n)$	-	Random	$1/2 \log n$
Randomized Subsets	$O(\log^2 n)$	$2 \log n$	Static	$1/4 \ln n$
Any Guesser	m	∞	Random	$O(\min\{\ln n, \sqrt{m}\})$
Any Guesser	m	∞	Adaptive	$\ln m + 2 \ln \log n + O(1)$
Any Guesser	m	∞	Adaptive-universal	$(1 + o(1)) \cdot \ln m + O(\log \log n)$

To summarize, the main lesson from these results is the significant impact of adaptivity of the dealer, more than any other factor.

1.2 Our Approaches and Techniques

Our results separate the required amount of memory and randomness that the Guesser requires for playing against the three types of Dealers.

Quite surprisingly, we show that against the random-shuffle Dealer, a Guesser with very limited memory, and no randomness at all, can perform similarly to a Guesser with perfect memory. More formally, the main result of Section 4.1 is:

▶ **Theorem 1.** There exists a Guesser with $\log^2 n + \log n$ memory bits and no randomness that scores $1/2 \log n$ correct guesses in expectation when playing against the random-shuffle Dealer.
Keep That Card in Mind: Card Guessing with Limited Memory

Our Guesser tracks which cards were drawn from multiple subsets of cards. Using at most $2 \log n$ bits per subset, the Guesser can recover the last card that has not appeared from each subset and guess it. Repeating that guess over and over, the Guesser can guarantee a single correct guess from each subset.

However, the last cards from the different subsets may be indistinct. The subsets are built incrementally, i.e., the ith subset is contained in the $(i + 1)$-th subset, as visualized in Figure 1. It follows that the probability for the last card from each subset to appear before the last card from the following subset is fixed (and is at least $1/2$). So we get that the expected number of correct guesses is proportional to the number of subsets tracked by the Guesser and the ratio between two following subsets.

With more space we can have denser subsets, getting that for $0 < \delta \leq 1$ a Guesser with $\log_{1+\delta} 2 \log^2 n + \log n$ can score $\frac{\delta}{(1+\delta)\ln(1+\delta)} \ln n$ correct guesses in expectation, when playing against the random-shuffle Dealer. For $\delta = 1$ this is the above theorem. The number of correct guesses goes to $\ln n$ as δ goes to zero.

Consider a static Dealer, one that fixes the sequence of cards ahead of time but chooses the worst arrangement. A simple adversarial argument shows that for every Guesser that uses no randomness, there exists an arrangement of the deck against which that deterministic Guesser scores at most 1 correct guess (guessing a single card is inevitable, even by a memoryless Guesser). In Section 4.2 we show that $2 \log n$ random bits suffice for a Guesser with $O(\log^2 n)$ bits of memory to score near perfect results when playing against any static Dealer.

Theorem 2. There exists a Guesser with $\log^2 n - \log n + 2$ bits of memory and $2 \log n$ random bits that scores $\frac{1}{4} \ln n$ correct guesses in expectation when playing against any static Dealer.

We use a pairwise independent permutation to split the cards to $\log n$ disjoint subsets of various sizes and track each subset similarly to the previous construction. We show that in each turn, the Guesser recovers a correct guess from a certain subset in probability that is proportional to the number of cards left in the deck. Namely, when t cards are left in the deck, the probability of a correct guess is at least $\frac{1}{4t}$, resulting in $\frac{1}{4} \ln n$ correct guesses in expectation.

Our deterministic and randomized Guessers are inspired by Garg and Schneider [13] and Feige’s [11] algorithms for the first player in the Mirror Game in that they follow subsets of cards and track which member appeared. However, it turns out that there are fundamental differences between strategies for Mirror Game and card guessing against an adaptive dealer. We elaborate on the relation to the Mirror Game and to Feige’s construction in the full version.

In Section 4.3 we show that these Guessers are the best possible against the random-shuffle Dealer for $m \leq \log^2 n$. I.e., that there exists no Guessing technique that uses less memory and performs similarly.
Theorem 3. Any Guesser with m memory bits can get at most $O(\min\{\ln n, \sqrt{m}\})$ correct guesses in expectation when playing against the random-shuffle Dealer.

We show this by presenting an encoding scheme that utilizes correct guesses to encode an ordered set in an efficient manner. Using a compression argument we show that $\log^2 n$ bits of memory are actually essential for getting $O(\ln n)$ correct guesses.

Proof by Compression. This is a quite general method (see below) to prove the success of an algorithm by showing that some events allow us to compress the random bits used. Say a randomized algorithm can tolerate some number of bad events. For some specific domain (e.g. ordered sets of some size), we introduce an encoding scheme that utilizes the occurrence of certain bad events in order to achieve a shorter description of elements in the domain. We then consider the amount of bad events required to achieve a description that is shorter than the entropy of a random element in the domain. We know that for any compression method, the probability of chopping off (saving) w bits from a random string is at most 2^{-w}. We get that the probability for too many bad events is negligible.

The method has been applied in a variety of fields, for instance, to prove the success of the algorithm in the “Algorithmic Lovász Local Lemma” [20], the success probability of Cuckoo Hashing [22], lower bounds on construction of cryptographic primitives [14] and space-time trade-off for quantum algorithms [6].

To prove Theorem 3, we introduce an encoding scheme for ordered sets that utilizes correct guesses to achieve a shorter description of the ordered set. The idea is to simulate a game between a Guesser and a static Dealer, where the bottom of the deck is arranged according to the ordered set we wish to encode. If sufficiently many correct guesses occurred, then the encoding function stores the necessary information required to reproduce the course of the game.

Namely: the memory state of the Guesser, the set of turns at which the Guesser predicted correctly and the cards that the Dealer draws in the other turns in their respective order. By fixing the Guesser’s randomness, every ordered set yields a single description by the encode function, and every description results in a single course of the game during decode. This allows the decode function to reconstruct the ordered set. A visual representation of the stored information is provided in Figure 2.

We get that we pay once for the memory state of the Guesser, and from that point on any correct guess shrinks the description of the ordered set. We then show that making too many correct guesses implies compression, i.e., a description of expected length shorter than the entropy of a random element. By doing so, we bound the expected number of correct guesses that any Guesser can make. The result holds regardless of how much randomness and what cryptographic tools and assumptions are used by the Guesser.

![Figure 2](image-url) Correct guesses encoding. Colored - information stored by the encoding scheme.
In Section 5, we turn our attention to the adversarial adaptive Dealer. We show that if
the Dealer is allowed to be adaptive, then almost any advantage gained from sophisticated
memory usage vanishes. Furthermore, the adversarial dealer needs to know very little about
the guesser. We show two results:

> **Theorem 4.** For every m there exists an efficient adaptive Dealer against which any
Guesser with m bits of memory can score at most $\ln m + 2 \ln \log n + O(1)$ correct guesses in
expectation.

> **Theorem 5.** There exists a universal efficient adaptive Dealer against which any Guesser
with m bits of memory can score at most $(1 + o(1)) \cdot \ln m + 8 \ln \log n + O(1)$ correct guesses
in expectation.

The two Dealers share the same general strategy that is parameterized differently. The
Dealer’s strategy is simply to refrain from drawing recently guessed cards for some turns. This
result stands even if the Guesser is allowed to use unlimited randomness and cryptographic
tools, while the Dealer is as simple as possible. The computational efficiency and simplicity
of the Dealer, as well as the fact that the result stands even against an all-powerful Guesser
with randomness and cryptography, emphasize that it is the adaptivity that plays the key
role, rather than anything else. Recall that by Theorem 2, a mild amount of randomness
suffices to achieve near optimal results against any static Dealer.

![Figure 3](image.png)

Figure 3 Adaptive Dealer general scheme.

In more detail, our Dealer shuffles the deck at the beginning of the game and draws cards
one by one. At some point, the Dealer begins to refrain from selecting cards guessed by the
Guesser. When the Guesser guesses a card that resides in the deck, the Dealer takes that
card and moves it to the back of the deck. Moving cards to the back reduces the number of
cards that the Dealer may select, and as a result, makes the Dealer predictable. Therefore,
at some point, the Dealer reshuffles the deck, making all cards available for drawing again,
and repeats this behavior. Towards the end of the game, the Dealer shuffles the deck one
last time and draws cards at random. The period of turns between reshuffles is called an
epoch, and the strategy is called MtBE-strategy (which stands for Move to the Back Epoch
strategy).

Call a guess *reasonable* if it is a card that can be drawn, that is, a possibly correct guess.
To show that moving cards to the back is an effective strategy, we show that no memory
bounded Guesser is expected to make too many reasonable guesses during each epoch. The
idea is that if the Guesser can produce many reasonable guesses, then she knows something
about the set of cards in the deck and can be used to describe it efficiently. We show an
encoding scheme for *sets*, and using compression argument, we bound the expected amount
of reasonable guesses in every epoch.

Since our Dealer is adaptive, it is difficult to predict the order in which cards will be
drawn, thus we do not use the same encoding scheme for *ordered* sets. Instead, we encode
unordered sets using a similar encoding scheme.
As in Theorem 3, the encoding scheme works by simulating a game between the Guesser and the Dealer, where the Dealer keeps the set of cards we wish to encode for the end. If sufficiently many reasonable guesses occurred during an epoch, we use that epoch to achieve a shorter description of the set. In detail, we store the Guesser’s memory state, the cards drawn by the Dealer while the Guesser guessed incorrectly, the set of turns where the Guesser guessed reasonably, and which of these guesses were actually correct. These objects allow us to simulate the same game during decoding and thus to recover the set. Visualization of the encoded information provided in Figure 4.

![Figure 4](https://example.com/fig4.png)

Figure 4 Reasonable guesses encoding. Colored - information stored by the encoding scheme.

Since reasonable guesses allow us to achieve shorter descriptions, we get a bound on the expected number of reasonable guesses during each epoch. By doing so, we bound the expected number of correct guesses in each epoch, since the cards are drawn from a large enough set. At this point, the analysis’s calculations of the two Dealers vary and we analyze them differently.

Lastly, since a Guesser with \(m \) bits of memory can achieve \(\ln m \) correct guesses in expectation, these results are almost tight.

1.3 Related Work

Card Guessing. An early work concerning card guessing dates back to 1924 [12], when Ronald Fisher studied the game in the context of analyzing claims of psychic ability. Fisher suggested and analyzed a method to measure and determine a Guesser’s claim to have supernatural abilities (namely clairvoyance and telepathy) by assigning scores to the Guesser’s guesses and see how much they deviates from the expectation. In 1981, Diaconis and Graham [9] studied the case where there are \(c_i \) copies of the \(i \)th card, and determined the optimal and worst strategies for some cases. They considered the cases of no feedback at all, partial feedback (was the guess correct or not) for \(c_i = 1 \), and full feedback (which card was drawn). Recently, Diaconis, Graham, He and Spiro [8] asymptotically determined the expected score that an optimal strategy achieves for the case of partial feedback where \(c_i \geq 2 \).

A more useful yet equally dubious purpose is “Card Counting” in gambling (see Wikipedia entry [26]). In 1962 Edward Thorp, a Professor of Mathematics, published a bestseller book [25] about winning strategies in the game of Black-Jack. The book covered analyses of the game from the viewpoint of the player and the Casino, as well “low-memory” strategies that increase the player’s expected benefit. The idea behind card counting in this context is that by knowing the distribution of the next card(s), one can evaluate their own hand better and thus bet accordingly. Card counting has been applied to other card games, such as Bridge and Texas hold ’em Poker. In these games, evaluating the probabilities for the upcoming cards is considered essential. In the context of this paper, card counting is an applied “low-memory” card guessing technique that utilizes the structure of specific games.
Mirror Games. Garg and Schneider [13] introduced the Mirror Game, a game closely related to card guessing. In Mirror Game, there are two players, Alice and Bob, taking turns in saying numbers from \([n]\). In every turn, a player says a number that was not said before by either player. If a player says a number that was already declared, that player loses, and the other player is the winner. If there are no more numbers to say, then it is a draw. Alice is first. Bob always has a simple deterministic winning strategy that requires only \(\log n\) memory bits. When Alice says \(x\), Bob says \(n + 1 - x\), and hence the name’s origin.

Garg and Schneider showed that every deterministic winning (drawing) strategy for Alice requires \(\Omega(n)\) bits of memory. They have also presented a randomized strategy for Alice that with high probability ends with at least a draw for Alice that requires \(O(\sqrt{n})\) bits of storage. Their strategy relied on access to a secret (from Bob) random matching. Using the same settings, Feige [11] showed that \(O(\log^{3} n)\) bits of storage suffice. Our Guessers for the static case (Sections 4.1 and 4.2) are inspired by Feige’s construction.

Adversarial streams and sampling. A streaming algorithm is called *adversarially robust* if it’s performance are guaranteed to hold even when the elements in the stream are chosen adaptively in an adversarial manner. The question concerning the gap in memory consumption between the static case and the adversarially adaptive case has been the subject of recent line of works.

On the positive side, Ben-Eliezer, Jayaram, Woodruff and Yogev [3] showed general transformations for a family of tasks, for turning a streaming algorithm to be adversarially robust, with some overhead. Woodruff and Zhou [27] suggested another set of transformation for the same family of problems. A different approach was taken by Hassidim, Kaplan, Mansour, Matias and Stemmer [16] who showed that it may be possible to get an even smaller overhead in some cases by using differential privacy as a protection against an adaptive adversary.

On the negative side, Hard and Woodruff [15] showed that linear sketches are inherently not adversarially robust. They showed it for the task of approximating \(L^p\) norms but their technique stands for other tasks as well. In a recent result, Kaplan, Mansour, Nissim and Stemmer [18] showed a problem that requires polylogarithmic amount of memory in the static case but *any* adversarially robust algorithm for it requires exponentially larger memory. Our work join that of [18] by showing a simpler, even more natural, streaming problem that separates adversarial streams from oblivious streams.

In a similar vein, given a large enough sample from some population, then we know that the measure of any fixed sub-population is well-estimated by its frequency in the sample. The size of the sample needed is the VC dimension of the set system of the sub-populations of interest. Ben-Eliezer and Yogev [4] showed that when sampling from a stream, if the sample is public and an adversary may choose the stream based on the samples so far, then the VC Dimension may not be enough. Alon, Ben-Eliezer, Dagan, Moran, Naor and Yogev [1] showed that the Littlestone dimension, which might be much larger than the VC dimension, captures the size of the sample needed in this case.

Online Computation and Competitive Analysis. Another area where the exact power of the adversary comes up is in competitive analysis of online algorithms (see Borodin and El-Yaniv [5]). Here there are various types of adversaries, distinguished by whether they are

4 Additional discussion on the relation and differences between card guessing and Mirror Game is provided in the full version of this paper.
B. Menuhin and M. Naor

adaptive or static and whether they decide on the movements of the competing algorithm in an online manner or an offline one. The result is a hierarchy of oblivious, adaptive online and adaptive offline adversaries. It turns out that in request-answer games (a very general form capturing issues like paging), an algorithm competitive against the adaptive offline adversary may be transformed into a deterministic one with similar competitive ratio [2]. We do not see a similar phenomenon in our setting, where one should recall that a deterministic algorithm is hopeless against a static adversary.

Distinguishing Permutations and Functions. A stream of \(q \) random elements from the domain \([n]\) is given to a memory bounded algorithm that attempts to determine whether the stream was sampled with or without repetitions. When the stream ends, the algorithm outputs its determination, and is measured by it’s ability to judge better than guessing at random. If \(q = \Theta(\sqrt{n}) \), then by the birthday paradox, a repetition occurs with high probability. The algorithm uses \(O(q \log n) \) memory bits to recognize this repetition.

Motivated by the fact that the task of distinguishing between random permutations and random functions has significant cryptographic implications, Jaeger and Tessaro [17] introduced the above problem and showed a conditional bound on the advantage of the algorithm. In particular, they showed that under an unproved combinatorial conjecture the advantage of an algorithm with \(m \) bits of memory is bounded by \(\sqrt{q \cdot m/n} \). Dinur [10] showed an unconditional upper bound on the advantage of \(\log q \cdot q \cdot m/n \). This was followed by the work of Shahaf, Ordentlich and Segev [24] who achieved the unconditional upper bound on the advantage of \(\sqrt{q \cdot m/n} \).

2 Preliminaries

Throughout this paper we use \([n]\) and \([1 − n]\) to denote the set of integers \(\{1, \ldots, n\} \). We denote the collection of subsets of \([n]\) of size exactly \(k \) by \(\binom{[n]}{k} = \{B \subseteq [n] : |B| = k\} \). We denote the set of permutations on \(n \) elements by \(S_n \). All logs are base 2 unless explicitly stated otherwise, \(\ln \) is the natural logarithm (base \(e \)). We denote the set of binary strings of length \(\ell \) by \(\{0, 1\}^\ell \). We denote the set of binary strings of any finite length by \(\{0, 1\}^* = \bigcup_{i \in \mathbb{N}} \{0, 1\}^i \).

2.1 Information Theory

▶ Definition 6 (Entropy). Given a discrete random variable \(X \) that takes values from domain \(\mathcal{X} \) with probability mass function \(p(x) = \Pr[X = x] \). The Binary Entropy (abbreviated Entropy) of \(X \), denoted \(H(X) \) is

\[
H(X) = - \sum_{x \in \mathcal{X}} p(x) \cdot \log p(x).
\]

▶ Definition 7 (Prefix-free code). A set of code-words \(C \subseteq \{0, 1\}^* \) is prefix-free if no code-word \(c \in C \) is a prefix of another code-word \(c' \in C \).

▶ Proposition 8 (Theorem 5.3.1 in [7]). The expected length \(L \) of any prefix-free binary code for a random variable \(X \) is greater than or equal to the binary entropy \(H(X) \).

▶ Lemma 9. Given a random variable \(X \) uniformly drawn from domain \(\mathcal{X} \). For every encoding function \(\text{Encode} \) for \(X \), The probability that the encoding of \(X \) is \(d \) bits less than it’s entropy is at most \(2^{-d} \), i.e.

\[
\Pr_{X \in \mathcal{X}}[|\text{Encode}(X)| = H(X) - d] \leq 2^{-d}.
\]
3 Introduction to the Card Guessing Game

A card guessing game is played between a Dealer and a Guesser. At the beginning of the game, the Dealer holds a deck of n distinct cards (labeled $1, \ldots, n$). In every turn, the Dealer chooses a card from the deck, draws it, and places it face-down. The Guesser guesses which card was drawn, the card is then revealed and discarded from the Dealer’s deck. The Guesser gets a point for every correct guess. The game continues, for n turns, until the Dealer has no cards to draw.

Assume that the Dealer draws cards uniformly at random from the deck. A Guesser with perfect memory can keep track of all cards played so far and guess cards that are still in the deck. In turn $n - t$ there are t cards in the Dealer’s deck and the Guesser’s probability to guess the next card correctly is $1/t$. Hence, the expected number of correct guesses is

$$\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{t} + 1 = H_n \approx \ln n$$

On the other extreme, a Guesser with no memory at all can guess the same card over and over again without knowing whether this card was picked already or not. Such a behavior would result in 1 correct guess with probability 1.

Question: How well can a Guesser with m memory bits play?

A transcript of a card guessing game is a sequence of pairs $\{(g_t, d_t)\}_{t=1}^n$ that describes that at turn t the Guesser guessed the card g_t and that the Dealer drew the card d_t. The number of correct guesses during a game is the number of turns during which $g_t = d_t$. In our game, the Guesser aims to maximize the number of correct guesses.

Guesser. A Guesser consists of two probabilistic functions:

1. **State transition function:** taking a memory state and a card drawn, and assigning a new memory state.
2. **Guessing function:** receiving a memory state and outputting a card to guess.

A memory bounded Guesser can use only m bits to store the memory state, so we refer to each state as $\{0, 1\}^m$.

Randomness. We assume that the Guesser has random bits that both of the above functions may use, e.g. to select a random element of a set as a guess. We differentiate between random bits that are used on the fly, i.e. “read once”, and random bits that are accessed several times, i.e. long lasting. We charge the Guesser for the latter but not for the former. The Guesser may use her long lasting random bits for a secret permutation, seed for a pseudo-random generator, and any random object that may assist her.

We are not concerned with the number of on the fly random bits. For our constructive results, we measure the amount of long lasting random bits that the Guesser uses, as well as suggest computationally efficient solutions which are good against computationally powerful dealers. As for the impossibility results, we will show that they hold even if the Guesser is computationally unbounded, uses cryptography, and regardless of how much randomness, of both kinds, the Guesser uses.

Static vs. Adaptive Dealers. To show that the Guesser’s performance vary with the Dealer’s abilities, we present the different flavors of Dealers we consider:

- The most benign Dealer we consider is a Dealer that shuffles the deck at the beginning of the game and draws cards one by one. This is equivalent to drawing cards at random from the deck in every turn. We call this Dealer **random shuffle** as it remains with the same shuffle throughout the game, and the deck is shuffled uniformly at random.
The second Dealer we consider may be familiar with the Guesser’s behavior and fixes the
deck in advance in some particular order. As the deck of the Dealer remains the same
throughout the game, we call this Dealer static.

The third possibility we consider is a Dealer that is adaptive and selects the cards
according to past guesses made by the Guesser, thoughtfully, in an adversarial manner.
For our impossibility result, we do not assume that the Dealer is familiar with the
Guesser’s algorithm. We call such a Dealer adversarial adaptive, or just adaptive
for short. If the Dealer is not even aware of the memory size of the Guesser, we call it
adaptive universal.

The static Dealer and the adaptive Dealer aims to minimize the number of correct guesses.
For this purpose, the static Dealer chooses a worst case ordering of the deck in advance,
and the adaptive Dealer uses a choosing strategy, a function from a transcript prefix
\((g_1, d_1, \ldots, g_{k-1}, d_{k-1})\) to a distribution over a set of cards from which the Dealer samples a card \(d_k\) to
draw. For example, a (silly) adaptive Dealer may look at the last guess and if the guessed
card is still in the deck then draw it.

While the Guesser is limited to using \(m\) bits of memory, the Dealer remembers everything
that happened since the beginning of the game and may act accordingly. This puts the
Guesser at a disadvantage, as the Guesser needs to remember and maintain both a sketch of
the history and in particular the parts of history that are relevant to the Dealer’s strategy.
In light of this, we observe that only some guesses may be fruitful. Call a guess reasonable
if it is one of the cards that the Dealer may draw. Clearly, a correct guess is necessarily
reasonable. Against a Dealer that draws cards from the deck at random, a reasonable guess
is a synonym for a card that was not played yet. As remarked above, when showing the
impossibility results we construct a computationally efficient Dealer. This emphasizes the
role of adaptivity, especially when compared to the Guesser.

The state of the Guesser consists of \(m\) bits and we assume that they are secret, i.e. that
the adversary cannot access them when choosing the next card. The only information
the Dealer has is the history (transcript).

3.1 Basic guessing techniques

In this section, we describe basic guessing techniques that a Guesser with \(m\) bits of memory
may use. For a comparison of these techniques, see the first three rows of Table 1.

Subset Guessing. The Guesser chooses a random (or predetermined) subset of cards
\(A \subseteq \binom{[n]}{m}\) and pretends as if there are only \(m\) cards in the deck. In every turn, the Guesser
guesses one of the cards from \(A\) that were not played so far. Each card requires one bit, so
this strategy requires \(m\) bits in total. Counting only turns in which the Dealer draw cards
from \(A\), we get that the Guesser makes \(\ln m\) correct guesses in expectation over Guesser’s
and Dealer’s randomness.

While this technique ensures that all guesses during the game are reasonable, only on \(m\)
turns a card from \(A\) will be drawn. These \(m\) cards have to be drawn at some point in the
game, and the Guesser is agnostic about when exactly these cards are selected. It follows
that this technique performs equally well against the different kinds of Dealers.

“Remember” the last \(k\) cards. With only \(\log n\) memory bits, the Guesser can correctly
guess the last card in the game: Initialize memory with \(\sum_{i=1}^{n} x \mod n\) and remove every
drawn card from the sum. Just before the last turn, the memory will contain the one
card that was not drawn yet. This technique generalizes well to \(k \) cards by storing the sums \(S_p = \sum_{x=1}^{n} x^p \mod n \) for \(p = 1, \ldots, k \) and removing \(d^p \) from the respective sums when the card \(d \) is drawn. When \(k \) cards are left, solving the equation system reveals the missing cards (See Chapter One in [21]). Since each sum requires \(\log n \) bits, a total of \(k \log n \) bits are required to accurately identify the last \(k \) cards. This allows the Guesser to reasonably guess in the last \(k \) turns, and by guessing at random, the Guesser makes \(\ln k \) correct guesses in expectation using \(k \cdot \log n \) bits of memory. Thus, a Guesser with \(m \) bits of memory can score \(\ln \frac{m}{\log n} \) correct guesses in expectation, when playing against any Dealer.

As we saw, these techniques works well against any Dealer. The two methods (Remembering last cards and subset guessing) are compatible and we can combine them against the random-shuffle Dealer (but not against the others): of the \(m \) bits, use \(m/2 \) for the first method and \(m/2 \) for second one. The last card from the subset is expected when there are \(n \frac{m}{1+\log n} < \frac{2n}{m} \) cards left until the end of the game. The Guesser “remembers” the last \(\frac{2n}{m} \) cards, so for \(m \leq \sqrt{n} \) the two useful periods do not overlap. We get that a Guesser with \(m \leq \sqrt{n} \) memory bits can expect to score \(2 \ln m - \ln \log n - \ln 2 \). For \(m = \sqrt{n} \), this is near optimal.

As we will see in Section 4, it is possible to do much better.

4 Static Dealer

We first present a guessing strategy that requires low memory and no randomness, and is highly effective against the random-shuffle Dealer Section 4.1. We then show a randomized version of it that requires low memory and little randomness, and is highly effective against any static Dealer (Section 4.2). In Section 4.3 we show that these guessing techniques are optimal against the random-shuffle Dealer, and that no memory bounded Guesser with less memory can perform asymptotically better.

4.1 Following-Subsets Guesser vs. Random shuffle Dealer

We present a computationally efficient guessing technique that requires low memory, no randomness, and is highly effective against the random-shuffle Dealer. We first show that \(\log^2 n + \log n \) memory bits suffice to score \(1/2 \log n \) correct guesses in expectation when playing against the random-shuffle Dealer, and then we generalize this technique for Guessers with more memory.

In terms of memory usage, we use the simple idea of summing cards as we did in the “Remembering last cards” guessing technique. The general idea is to follow the cards that appeared in various subsets of \([n] \). For each such subset we store two accumulators:

1. Sum of the values of the cards from the set seen so far (“remember last card”).
2. Number of cards from the set seen so far.

The memory needed for the two accumulators is \(O(\log n) \) bits. In fact, for a set of size \(w \) only \(2 \log w \) bits are needed, \(\log w \) to count how many cards from the set appeared, and another \(\log w \) to recover the last card from the set, by storing the sum of all cards mod \(w \). At the time that all but one card appeared (as can be indicated by the number of cards accumulator), the Guesser can recover this single card, and be certain that this card wasn’t played yet by the Dealer, and as a result, the Guesser can reasonably guess this card.

By tracking multiple sets, the Guesser may have more than one card to guess from. Against the random-shuffle Dealer that plays with a randomly shuffled deck, this doesn’t really matter which one is guessed (at least not for the expectation).
Subset construction. We consider all the subsets of the form \([1 - w]\) for \(w = 2^i\). I.e. the subsets are:

\([1 - 2], [1 - 4], [1 - 8], [1 - 16], [1 - 32], \ldots, [1 - n]\)

If there is a subset (range) where a single card is missing, then this card is the current guess.

Observe that in this construction there cannot be competing good cards to guess. For all \(k < k'\), if a card \(j\) is missing from the set \([1 - k]\), then there cannot be a different one missing from the set \([1 - k']\)^5.

▷ Claim 10. There exists a Guesser with \(\log^2 n + \log n\) memory bits that can score \(1/2 \log n\) correct guesses in expectation when playing against the random-shuffle Dealer.

Having more memory, we can have the subsets denser and have more subsets. Suppose that the ratio between two successive ranges is \(1 + \delta\) for \(0 < \delta < 1\). Then there are \(\log_{1+\delta} n\) such subsets. The probability of a set being useful now (i.e. that its last member arriving does not belong to a subset that contains it) is \(\delta/(1 + \delta)\). The expected number of useful sets is

\[
\frac{\delta}{1 + \delta} \log_{1+\delta} n = \frac{\delta}{(1 + \delta) \ln(1 + \delta)} \ln n.
\]

This goes to \(\ln n\) as \(\delta\) goes to zero.

In terms of space, the number of bits required for tracking \(\log_{1+\delta} n\) buckets is

\(\log^2 n \cdot \log_{1+\delta} 2 + \log n\).

Observe that the run time of the Guesser in every turn is at most \(O(\log_{1+\delta} n)\), thus the Guesser is computationally efficient.

▷ Corollary 11. For \(0 < \delta \leq 1\), there exists a Guesser with \(\log^2 n \cdot \log_{1+\delta} 2 + \log n\) memory bits that makes

\[
\frac{\delta}{(1 + \delta) \ln(1 + \delta)} \ln n
\]

correct guesses in expectation when playing against the random-shuffle Dealer.

A visual representation of the Guesser is provided in Figure 1.

4.2 Random-Subsets Guesser vs. Static Dealer

Consider a static Dealer such that instead of shuffling the deck uniformly at random, selects a worst case arrangement for the deck, knowing the Guesser’s algorithm (but not her random bits). For example, assume that the Dealer puts the Card “1” at the top of the deck and the Card “2” at the bottom of the deck. In this case, the Following-Subsets technique yields a single correct guess. The fact that the Dealer doesn’t shuffle the deck uniformly but commits to a deck arrangement as the game begins can be interpreted as a mild adversarial intent and ability.

^5 The Guesser may conclude more than one missing card in some cases. For example, if one card is missing from \([1 - k]\) and exactly two cards are missing from \([1 - k']\). We ignore this ability because it doesn’t seem to improve the Guesser’s performance.
The Guesser can defend herself against such behavior by using a secret permutation \(\pi \), using her long lasting random bits. She uses \(\pi \) to randomize the subsets, where the subset \([1 - w]\) tracks the cards \(\pi(1), \ldots, \pi(w) \). The analysis and performance of the Following-Subsets technique holds as before, but \(O(n \log n) \) bits of long lasting randomness are needed, which we wish to avoid.

We will show a related construction. The Guesser uses her randomness to sample a secret permutation from a family of pairwise independent permutations, for example, from the family \(\mathcal{H}_{\text{pair}} = \{ h(x) = ax + b : a \neq 0, b \geq 0 \} \) over a finite field, and assigns the card \(x \) to the subset \(S_j \) if \(2^{j-1} < h(x) \leq 2^j \). That is, given a function \(h \), the subset \(S_j \) is the set of all \(x \in [N] \) such that \(h(x) \in \{2^{j-1} + 1, \ldots, 2^j\} \).

The Guesser tracks the cards that appeared from each subset, as we did previously. In each turn, the Guesser attempts to recover a guess from a specific subset and guesses it. In detail, when \(t \leq n/2 \) cards are left until the end of the game, the Guesser tries to recover a guess from the subset \(S_j \) for \(j = \log(n/2t) \). If all cards but one have appeared from \(S_j \), then the Guesser knows which card it is and guesses it. For the first half of the game, the Guesser samples a random set of cards and guess cards that have not appeared from it. A procedural description of the Guesser is provided in Algorithm 1.

\begin{algorithm}
\caption{Randomized-Subsets.}
Sample a pairwise independent function \(h \sim \mathcal{H}_{\text{pair}} \)
Split the cards to subsets, such that \(x \in S_j \) if \(h(x) \in \{2^{j-1} + 1, \ldots, 2^j\} \)
Sample a set of cards \(A \)
while \(t \) cards left for \(t \in \{n, \ldots, n/2\} \) do
\hspace{1cm} Guess a random card from \(A \) that has not appeared
\hspace{1cm} \(d_t \leftarrow \) card drawn by Dealer
\hspace{1cm} Discard \(d_t \) from the subset \(S_j \) that contains it
while \(t \) cards left for \(t \in \{n/2 + 1, \ldots, 1\} \) do
\hspace{1cm} \(j \leftarrow \lfloor \log(n/2t) \rfloor \) \hspace{1cm} \(\triangleright \) Subset to consider
\hspace{1.5cm} if \(|S_j| = 1 \) then \hspace{1cm} \(\triangleright \) Can recover the last card
\hspace{1.5cm} \hspace{0.5cm} \(g_t \leftarrow \) last card in \(S_j \)
\hspace{1.5cm} else
\hspace{1.75cm} \hspace{0.5cm} \(g_t \leftarrow \) don’t care
\hspace{1.75cm} \hspace{0.5cm} Guess \(g_t \)
\hspace{1.5cm} \hspace{0.5cm} \(d_t \leftarrow \) card drawn by Dealer
\hspace{1.5cm} \hspace{0.5cm} Discard \(d_t \) from the subset \(S_j \) that contains it
\end{algorithm}

We will consider what are the chances that, in some turn, a specific subset yields the correct guess. That is, that the next card that the Dealer draws resides in a specific subset with a single missing card.

\begin{theorem}
There exists a Guesser that uses \(\log^2 n - \log n + 2 \) memory bits and \(2 \log n \) random bits and is expected to score at least \(\frac{1}{4} \log n \) correct guesses in a game against any static Dealer.
\end{theorem}

\subsection{Low-memory Case}

The guessing techniques seen so far assumed that the Guesser has about \(\log^2 n \) bits of memory. But what can be done if \(m \) is small, say \(m \ll \log^2 n \)? It is possible to fall back to the subset guessing technique and get \(\ln m \) correct guesses in expectation. That would work for both the random shuffle and the static cases (also for the adaptive). But we can do better.
Our Guessers can pretend as if the domain is of size $2^{\sqrt{m}}$ and ignore all other cards! In that case, the Following-Subsets guessing technique is expected to yield about $1/2 \log 2^{\sqrt{m}} = 1/2 \sqrt{m}$ correct guesses against the random-shuffle Dealer. The Random-Subsets guessing technique is expected to yield about $\frac{1}{4} \ln 2^{\sqrt{m}}$ correct guesses against a static Dealer, i.e. also $O(\sqrt{m})$.

So we get that for any m, a Guesser can score at least $O(\min\{\ln n, \sqrt{m}\})$ when playing against any static Dealer.

4.3 Bounds on best possible Guesser against Random Dealer

We show that the guessers of the previous section are the best possible low memory guessers, up to constants.

Theorem 13. Any Guesser using m bits of memory can get at most $O(\min\{\ln n, \sqrt{m}\})$ correct guesses in expectation when playing against the random-shuffle Dealer.

Our proof will use compression argument. We will present an encoding scheme that utilizes correct guesses to achieve shorter descriptions. As the expected length of the description is bounded by the entropy of a random input, we get an upper bound on the expected number of correct guesses for every memory bounded Guesser. Our proof for an adaptive Dealer (Section 5) will follow a similar structure.

Let γ be the Guesser’s randomness and π be the shuffle sampled by the Dealer’s randomness. Denote by $G_{(\gamma)}$ a Guesser with fixed randomness γ, and D_π a static Dealer with a deck arranged according to π. Let $\mathsf{val}(D_\pi, G_{(\gamma)})$ be the number of correct guesses during the last $k = n^{1-\beta}$ turns, for some $\beta > 0$. Let a random variable $C = \mathsf{val}(D_\pi, G)$ and let c be the expected number of correct guesses during that last k turns where the expectation is taken over Guesser’s and Dealer’s randomness. Denote by Π_B the set of all deck arrangements such that the last k cards in the deck are the ordered set B. So we can consider the expectation over the choice of the last k cards.

$$c = \mathbb{E}_{\gamma, \pi} [C] = \mathbb{E}_{\gamma, \pi} \mathbb{E}_{B \in \Pi_B} [C] = \sum_{B \in \Pi_B} \mathbb{E}_{\pi \in \Pi_B} \mathbb{E}_{\gamma} [C|\gamma] \cdot \Pr[\gamma].$$

In particular, we focus on bounding the term

$$\mathbb{E}_{B \in \Pi_B} \mathbb{E}_{\pi \in \Pi_B} [\mathsf{val}(D_\pi, G_{(\gamma)})|\gamma].$$

We claim that no Guesser can expect to guess correctly too many times at the last k turns. We prove this by presenting an encoding scheme for ordered sets B (the last k cards played by the Dealer) that utilizes correct guesses to achieve shorter descriptions. The encode function works by simulating the Guesser on a deck of card, where the first $n-k$ cards are from $[n]\backslash B$ and the k cards are ordered according to B. Record the Guesser’s memory (m bits) after the first $n-k$ turns and from that point on see when the Guesser gives correct guesses. These can be used to help describe B. Let the number of correct guesses be C. If $C \geq \alpha$ for some $\alpha > 0$, then to record B, we note the location of some α places with a correct guess and provide the remaining $k - \alpha$ missing values. So how many possibilities do we have? For the memory 2^m, for the correct guesses locations (k) and for the other values an ordered set of size $k - \alpha$ out of n.

Recall that Π_B is the set of all deck arrangements for which the last k cards are the ordered set B. The order of the first $n-k$ cards may lead the Guesser to different memory states; in terms of correct guesses, some of which may be more beneficial then others, especially.
for a Guesser with fixed randomness. Given an ordered set B and Guesser’s randomness γ, let $\pi_{B,\gamma} \in \Pi_B$ be the deck arrangement for which the Guesser $\mathcal{G}(\gamma)$ makes the most correct guesses in the last k turns. That is
\[
\forall \pi \in \Pi_B : \text{val}(\mathcal{D}_\pi, \mathcal{G}(\gamma)) \leq \text{val}(\mathcal{D}_{\pi_{B,\gamma}}, \mathcal{G}(\gamma)).
\]

The encoding function will simulate a game against a static Dealer with fixed deck order $\pi_{B,\gamma}$ to encode B. Fix some prefix free code (Definition 7) for ordered subsets. The scheme will use this code for the cases where there are not enough correct guesses to utilize.

Definition 14 (EncodeO$_{\gamma,\alpha}$). To encode B, an ordered subset of $[n]$ of size k, the function $\text{EncodeO}_{\gamma,\alpha}$ records and simulates a game between the Guesser $\mathcal{G}(\gamma)$ and the static Dealer $\mathcal{D}_{\pi_{B,\gamma}}$. Let T' be the set of locations during the last k turns at which $\mathcal{G}(\gamma)$ makes a correct guess, i.e.
\[
T' = \{n - k, \ldots, n - k + \ell - 1 | g_t \text{ is a correct guess}\}.
\]

- If $|T'| < \alpha$ then the code is made of an indicator bit 0 and an explicit prefix-free description of B.
- If $|T'| \geq \alpha$ then let T be the first α turns at which the Guesser guessed correctly.
 The code is made of:
 1. An indicator bit 1.
 2. Guesser’s memory state M at turn $n - k$ (m bits).
 3. Description of T, the locations of the first α correct guesses made by $\mathcal{G}(\gamma)$ during the last k turns ($\log(k)$ bits).
 4. Description of $B \setminus \{g_t | t \in T\}$ ($\log(n + \alpha - 1)$ bits).

Similarly we define the decode function.

Definition 15 (DecodeO$_{\gamma,\alpha}$). If the indicator bit is 0, then decode the set in the natural way. If the indicator bit is 1, then parse the other bits as a 3-tuple (M, T, B_1) as encoded by $\text{EncodeO}_{\gamma,\alpha}$. The function $\text{DecodeO}_{\gamma,\alpha}$ works by simulating and recording a partial game between Dealer \mathcal{D}_{B_1} and Guesser $\mathcal{G}(\gamma)$:

- Initialize the Guesser $\mathcal{G}(\gamma)$ with memory state M at turn $n - k$ and simulate k turns against the Dealer \mathcal{D}_{B_1}.
- If in turn $n - k \leq t \leq n$ the guess g_t is tagged as correct (by T), then \mathcal{D}_{B_1} draws the card g_t, otherwise \mathcal{D}_{B_1} draws the next card from B_1.
- Output the set of cards drawn by Dealer \mathcal{D}_{B_1}, in the order they were drawn.

A procedural description of $\text{DecodeO}_{\gamma,\alpha}$ is specified in Algorithm 2.

We assume that γ is given to us “for free” and is known during encoding and decoding of the ordered set B. We justify this assumption in two different ways:

- Fixing γ we can consider a specific encoding scheme for ordered sets $\text{EncodeO}_{\gamma,\alpha}$.
- We can assume that we encode a pair (γ, B) where γ is written explicitly in some natural way right next to $\text{EncodeO}_{\gamma,\alpha}(B)$.

Claim 16. The code produced by $\text{EncodeO}_{\gamma,\alpha}$ is prefix-free.

Corollary 17. If $\mathcal{G}(\gamma)$ makes $C \geq \alpha$ correct guesses in the last k turns when playing against the static Dealer $\mathcal{D}_{\pi_{B,\gamma}}$, then $\text{EncodeO}_{\gamma,\alpha}(B)$ is of length
\[
\log\left(2 \cdot 2^m \cdot \binom{k}{\alpha} \cdot n(n - 1) \cdots (n - k + \alpha + 1)\right)
\]
Algorithm 2 Decode$_{\gamma,\alpha}$.

Parameter: $k \in [n]$, γ

Input: $M \in \{0,1\}^m$, $T \in \binom{[k]}{\alpha}$, B_1 an ordered subset of $[n]$ of size $k - \alpha$

Initialize Guesser $G_{(\gamma)}$ at turn $n - k$ with memory state M.

$B' \leftarrow \emptyset$

for $t \in \{n - k, \ldots, n\}$ do

$g_t \leftarrow$ guess made by Guesser $G_{(\gamma)}$

if g_t is tagged as correct (according to T) then

$d_t \leftarrow g_t$

else

$d_t \leftarrow$ next card from B_1

Append d_t to B'

Update $G_{(\gamma)}$ memory state according to d_t

return B'

So we get that the encoding scheme saves bits for every correct guess while “paying” only m bits of memory. The contradiction comes from counting the number of the ordered sets B in two different ways:

- $n(n - 1) \cdots (n - k + 1)$ are all the possible options for ordered set B,
- and $\binom{k}{\alpha} \cdot n(n - 1) \cdots (n - k + \alpha + 1)2^{m+1} -$ upper bound on the possible options for ordered set B according to the encoding.

So we get

$$\alpha \leq \frac{m + 1}{\ln(n - k) - \ln k} \approx \frac{1}{\beta} \frac{m + 1}{\ln n}.$$

As the code is prefix free, and from Lemma 9, we get that the probability over the choice of B for any correct guess beyond $\frac{m + 1}{\beta \ln n}$ drops exponentially, so the expected number of correct guesses cannot be larger than that. By the above, we get that

$$\mathbb{E}_B[\text{val}(D_{\pi_{B,\gamma}}, G_{(\gamma)})|\gamma] \leq \frac{m + 1}{\beta \ln n} + 2.$$

Recall that $\pi_{B,\gamma}$ is the deck arrangement that ends with B for which the guesser $G_{(\gamma)}$ makes the most correct guesses in the last k turns. Since the expected number of correct guesses over the randomness of both the Guesser and the Dealer, is a convex combination of the above, we conclude that the expected number of correct guesses in the last k turns is at most

$$c = \mathbb{E}_{\gamma,x}[C] \leq \frac{m + 1}{\beta \ln n} + 2.$$

Now, consider the expected number of correct guesses throughout the game, where the expectation is over the deck shuffle and the Guesser’s randomness. Suppose that the Guesser is perfect in the first $n - k$ steps, in the sense that all the guesses are reasonable. Then the expected number of correct guesses in the first turns is $H_n - H_k = \beta \ln n$. So we get that the total number of correct guesses is not expected to be better than

$$\beta \ln n + \frac{m + 1}{\beta \ln n} + 2.$$

Taking the best β to be $\sqrt{m + 1}/\ln n$, we get that this is not better than $2\sqrt{m + 1} + 2$.

ITCS 2022
Note that this bound still holds even if the Guesser has at its disposal a large amount of randomness that it can repeatedly access (i.e. storing the randomness is not charged to the memory). So we conclude with tight bounds up to constants:

\textbf{Theorem 18.} There is a Guesser using \(m \) bits of memory that obtains \(\frac{1}{2} \min \{ \log n, \sqrt{m} \} \) correct guesses in expectation against the random-shuffle Dealer and any Guesser using \(m \) bits of memory can get at most \(O(\min \{ \ln n, \sqrt{m} \}) \) correct guesses in expectation.

The same impossibility result also stands against the static Dealer.

\section{Adaptive Dealer}

We show that for every \(m \) there exists an adaptive Dealer \(D_m \) such that every Guesser with \(m \) memory bits is expected to make at most \(\ln m + 2 \ln \log n + O(1) \) correct guesses when playing against Dealer \(D_m \).

Our proof is similar in structure to that in Section 4.3 in showing that a too successful Guesser can be used to compress a random set. We present our “Move-to-the-Back Dealer” in Section 5.1. We describe an encoding scheme for unordered sets (Section 5.3) that utilizes reasonable guesses made against our Dealer in order to achieve a shorter description of unordered sets. In Section 5.4 we show that having too many reasonable guesses implies compression, i.e. descriptions that are too short, and we get that the expected number of reasonable guesses is bounded and thus the expected number of correct guesses. We analyze the performance of the entire Dealer, as a whole, in Section 5.5.

In Section 5.6 we show a universal adaptive Dealer that doesn’t know how much memory the Guesser has, against which any Guesser with \(m \) bits of memory can score at most \((1 + o(1)) \cdot \ln m + 8 \ln \log n + O(1) \).

\subsection{Move-to-the-Back Dealer}

Consider a game between some memory bounded Guesser and a Dealer who selects cards adaptively in an adversarial manner. Assume that at some turn the Guesser makes an incorrect guess. This guess may be incorrect because the Guesser had no luck, but it may also be incorrect because that card was played earlier and the Guesser did not recall that.

The idea is to use the Guesser’s past guesses against her, and by doing so, forcing the Guesser to keep track of both past guesses and cards drawn. We achieve this by making incorrect available card guesses undrawable for some turns, i.e. “moving cards to the back of the deck”. The Dealer we present begins the game with a properly shuffled deck, similarly to the random-shuffle Dealer. At a certain turn the Dealer begins to “move cards to the back” and every once in a while the Dealer reshuffles the deck, making undrawable cards available again. Towards the end of the game our Dealer makes one last reshuffle and draws cards one by one.

\textbf{Epochs and the MtBE-strategy.} The span of turns between reshuffles is called an \textbf{epoch}. In particular, for \(k \in [n], \ell \in [k] \), the span of \(\ell \) turns that begins when \(k \) cards are left, and ends when \(k - \ell + 1 \) cards are left, is called a \((k, \ell)\)-epoch. We refer to applying the strategy of “moving cards to the back” during a span of turns (epoch) by \textbf{MtBE-strategy} (which stands for Move-to-the-Back Epoch strategy).
Definition 19 \((k, \ell, u)\)-MtBE-strategy. \(\) Given \(k \in \{n\}, \ell \in \{k\} \) and \(u \leq \min \{k - \ell, \ell\}\), when \(t\) cards are left s.t. \(k \leq t \leq k - \ell + 1\): Let \(A_t\) be the set of \(t\) available cards, let \(B_t^*\) be the set of reasonable guesses made by the Guesser since when there were \(k\) cards in the back and until there are \(t\), let \(u_t = \min\{u, |B_t^*|\}\) and let \(B_t\) be the set of the first \(u_t\) guesses from \(B_t^*\).

A Dealer that follows \((k, \ell, u)\)-MtBE-strategy, draws a card uniformly at random from the set \(A_t \setminus B_t\) when \(t\) cards are left in the deck for \(k \leq t \leq k - \ell + 1\).

The upper bound \(u\) is necessary to make sure that during any point in \((k, \ell)\)-epoch the Dealer has cards to draw and that these cards are not too predictable. Though implicit, this definition describes a reshuffle, as when \(t = k\) the set \(B_t\) is empty. A procedural description of this strategy is specified in Algorithm 3.

Algorithm 3 \((k, \ell, u)\)-MtBE-strategy.

\begin{itemize}
\item Parameter: \(k \in \{n\}, \ell \in \{k\}, u \leq \min \{k - \ell, \ell\}, A \subseteq \binom{\{n\}}{k}\)

\begin{algorithm}
\begin{algorithmic}
\STATE \(B \leftarrow \emptyset\)
\FOR {\(t \in \{k, \ldots, k - \ell + 1\}\)}
\STATE Draw a card \(c \in_R A \setminus B\) and discard \(c\) from \(A\)
\STATE \(g \leftarrow\) guess made by Guesser
\IF {\(g \in A\) \AND \(|B| < u\)}
\STATE \(B \leftarrow B \cup \{g\}\) \Comment Move to the back
\ENDIF
\ENDFOR
\end{algorithmic}
\end{algorithm}
\end{itemize}

We notice that, when the Dealer follows a \((k, \ell, u)\)-MtBE-strategy, a guess is reasonable if it is available and being guessed for the first time in the current epoch, assuming no more than \(u\) cards were moved to the back. We get that moving cards to the back works well against guessing techniques that repeat the same guess over and over. Recall that the guessing techniques that were successful against a static Dealer (namely the Following-Subsets technique from Section 4.1 and the Random-subsets technique from Section 4.2) did exactly that.

Observe that the Dealer cannot move cards to the back for too many rounds, as cards will become too predictable as \(A_t \setminus B_t\) shrinks. Therefore, we apply the MtBE-strategy in a sequence and reshuffle the deck at the beginning/end of each epoch. Reshuffling the deck sets \(B_t\) to be the empty set again.

As the Dealer refrains from drawing reasonably guessed cards during an epoch, a significant portion (if not all) of these cards would reside in the deck at the beginning of the following epoch. Therefore, a Guesser can repeat her reasonable guesses from the previous epoch to get another chance, and most of these guesses will be reasonable. Repeating reasonable guesses can be done either by generating a pseudorandom sequence of guesses from which some portion would be reasonable, or by tracking cards using memory. We discuss this in detail after Lemma 22.

Finally, we present the Dealer, termed Move-to-the-Back Dealer, in all her glory.

Definition 20 (Move-to-the-Back Dealer). Given \(m \leq \frac{n}{\ell \cdot \log n}\), a Move-to-the-Back Dealer \(D_m\) plays according to the strategy:

1. Shuffle the deck uniformly at random and draw cards one by one until \(\frac{n}{8 \cdot \ell \cdot \log n}\) cards are left.
2. Play the MtBE-strategy \(d\) times in a sequence, where \(d = (\frac{n}{8 \cdot \ell \cdot \log n} - 2m \cdot \log n)/\ell\), each epoch for \(\ell = m \cdot \log n\) turns, and move at most \(u = \ell\) cards to the back during each epoch. Begin when \(\ell_1 = \frac{n}{\ell \cdot \log n}\) cards are left in the deck.
3. When \(2m \log n\) cards left, shuffle the deck and draw cards one by one for the rest of the game.
Note that \mathcal{D}_m is computationally efficient.

We refer to the turn at which the first epoch begins as $n - k_1$. Observe that for every epoch in the sequence played by our Dealer we get that $\ell \leq k_i - \ell$ so we can set the maximal number of cards moved to the back u to ℓ.

The main theorem of this section states that Move-to-the-Back Dealer works well against any memory bounded guesser.

Theorem 21. For any m, every Guesser with m bits of memory is expected to make at most

$$\ln m + 2 \ln \log n + O(1)$$

correct guesses when playing against the Move-to-the-Back Dealer \mathcal{D}_m (Definition 20).

Thinking about this theorem, it is clear that a Guesser with m memory bits can easily achieve $\ln m$ correct guesses in expectation by using the simple Subset Guessing strategy (from Section 3.1). So essentially, this theorem states that moving cards to the back and reshuffling every once in a while, is a very effective strategy against a memory bounded Guesser.

5.2 Towards a proof

Consider m and Move-to-the-Back Dealer \mathcal{D}_m. Let γ be the Guesser’s randomness and let Δ be the Dealer’s randomness. Let R_i denote the number of reasonable guesses made during the ith epoch. Let r_i be the expectation of R_i taken over the Guesser’s and the Dealer’s randomness, i.e.

$$r_i = \mathbb{E}_{\gamma, \Delta}[R_i].$$

To prove that our Dealer works well against any memory bounded Guesser we analyze the reasonable guesses during a single epoch. We claim that no Guesser can expect to make too many reasonable guesses during any of the epochs while our Dealer follows the MtBE-strategy. Consider the (k_i, ℓ)-epoch where the Dealer follows the MtBE-strategy.

Lemma 22 (Informal). A Guesser with m bits of memory that plays against a Move-to-the-Back Dealer \mathcal{D}_m is expected to make at most

$$r_i \leq \max \left\{ \frac{8 \cdot e \cdot k_1 \cdot \ell}{n}, m \right\} + 2.$$

reasonable guesses during any (k_i, ℓ)-epoch played by the \mathcal{D}_m.

Observe that when k_1 cards are left, the probability that a random guess is a card that is still in the deck is $\frac{k_1}{n}$. By linearity of expectation we get that guessing randomly for ℓ turns would yield at most $\frac{8 \cdot e \cdot k_1 \cdot \ell}{n}$ reasonable guesses in expectation. These cards are a reasonable guess exactly once during each epoch, as the Dealer avoids drawing them, but for the same reason it follows that a significant portion of them would still be available (and reasonable) in the next epoch. So we get that by using the same set of random guesses in each epoch the Guesser can get near the claimed upper bound of reasonable guesses. On the other hand, with carefully managed m bits, it may be possible in some cases to keep track of m cards that have not appeared (as we did in the Subset guessing technique in Section 3.1). So essentially, this lemma states that any memory bounded Guesser that plays against our Dealer cannot do much better then guessing cards at random or tracking m cards.
At any turn, the Dealer’s strategy determines a distribution to sample a card from. In our case, this distribution is uniform on the available cards that were not moved to the back. We think of the Dealer as using precedence represented by a permutation \(\pi \) in order to make this choice:

Definition 23 (min-order). Given a permutation \(\pi \in S_n \) and a set \(C \subseteq [n] \) we say that a card \(x \in C \) is the \(\pi \)-min-order card from \(C \) if \(x \) is the element of \(C \) with the smallest \(\pi \) value.

We describe the randomness \(\Delta \) of the Dealer in an indirect way: the Dealer has two independent parts for its randomness, (i) a sequence of permutations \(\{\pi_t\}_{t=1}^n \) and (ii) a set \(D \in \binom{[n]}{k_1} \). The way they are used is:
- For turn \(1 \leq t \leq n - k_1 \) the Dealer draws the \(\pi_t \)-min-order card from \(A_t \setminus D \).
- For turn \(n - k_1 + 1 \leq t \leq n \) the Dealer draws \(\pi_t \)-min-order card from \(A_t \setminus B_t \).

As the Move-to-the-Back Dealer draws cards uniformly at random at the first turn in the following epoch, i.e., cards are drawn in a non-uniform manner.

Consider some Guesser \(G \) that plays against the Move-to-the-Back Dealer \(D_m \) (Definition 20) and fix one of the epochs \((k_1, \ell)\)-epoch played by \(D_m \). For every triplet \(\gamma, \{\pi_t\}_{t=1}^n, D \) we associate the Guesser \(G_{(\gamma)} \) with fixed randomness \(\gamma \) and the Dealer \(D_{m, (D, \{\pi_t\})} \) with fixed randomness that corresponds to \(\{\pi_t\}_{t=1}^n \) and \(D \) as the last cards to be played.

Fix some prefix-free code (Definition 7) for sets of size \(k_1 \). The encoding scheme will use this code for the cases when there are not enough reasonable guesses to utilize.

Definition 25 (EncodeU). To encode a set \(D \in \binom{[n]}{k_1} \), the function \(\text{EncodeU}_{\gamma, \{\pi_t\}, \alpha, i} \) simulates a game between Guesser \(G_{(\gamma)} \) and Dealer \(D_{m, (D, \{\pi_t\})} \).

Denote by \(T^\ell \) the set of turns during the \((k_1, \ell)\)-epoch at which \(G_{(\gamma)} \) made a reasonable guess, i.e.

\[T^\ell = \{n - k_i \leq t \leq n - k_i + \ell - 1 | g_t \text{ is a reasonable guess}\}. \]
If $|T'| < \alpha$, then the code is made of an indicator bit set to 0 and an explicit prefix free representation of D.

If $|T'| \geq \alpha$, then let T be the first α turns from T' during which the Guesser guessed reasonably during the (k_i, ℓ)-epoch. The code is made of:

1. Indicator bit set to 1 (1 bit).
2. Guesser’s memory state M at turn $n - k_1$ (m bits).
3. Description of T, the first α turns at which the Guesser guessed reasonably during the (k_i, ℓ)-epoch (log $\binom{\ell}{\alpha}$ bits).
4. Binary vector V of length α that tags which of the reasonable guesses described in T were also correct (a bits6).
5. Description of $D \setminus \{g_t | t \in T\}$ (log $\binom{n}{k_{1-\alpha}}$ bits).

We first define the Dealer we will use during the decoder simulation. Since we simulate this Dealer, we can break the usual course of the game. In particular, we will assume that the Dealer begins playing the game at the middle and with a partial deck, that the Dealer is aware of the Guesser’s guess before placing a card and that the Dealer can place cards that do not reside in the deck.

Definition 26. The Dealer $D^*_m(D_\pi, T, V)$ plays according to the MtBE-strategy, as configured for D_m (Definition 20) with few modifications:

- When t cards are left for $t \in \{k_i, \ldots, k_i + 1\}$: play according to the MtBE-strategy with deck D_1 moving cards to the back when they are guessed and still in the deck.
- When t card is left, for $t \in \{k_i, \ldots, k_i - \ell + 1\}$, and until the tth reasonable guess: if turn t is tagged both as reasonable (by T) and correct (by V), then draw the card g_t guessed by the Guesser. Otherwise draw the π_t-min-order card from the deck that was not moved to the back.
- Once α reasonable guesses occurred during the ith epoch, stop playing.

A procedural description of the Dealer $D^*_m(D_\pi, T, V)$ is specified in Algorithm 4.

Note that after turn $n - k_1$, the Dealer simulated by the encoder recognizes a guess as reasonable if it is from D and wasn’t drawn yet. But when the Dealer simulated by the decoder observes a guess of a card not in D_1, then the Dealer cannot tell whether this is a card that will turn to be reasonable at the (k_i, ℓ)-epoch or a card that has been played before turn $n - k_1$. Therefore, the Dealer simulated by the decoder recognizes a guess as reasonable (and moves it to the back) if it is from D_1. We will soon see that this behavior allows the decoder to reproduce the same game transcript, and by doing so, decode the original set.

We now define the decode function.

Definition 27 (DecodeU$_{(\pi_\gamma), (\alpha, \delta)}$). If the indicator bit is 0 then decode a set from the remaining bits in the natural way. Otherwise, the function parses the remaining bits as a 4-tuple (M, V, T, D_1) as encoded by $\text{EncodeU}_{(\pi_\gamma), (\alpha, \delta)}$, and then simulates and records a partial game between the Dealer $D^*_m(D_\pi, T, V)$ (see Definition 26) and the Guesser $G_{(\gamma)}$:

- Initialize Guesser $G_{(\gamma)}$ with memory state M at turn $n - k_1$ and simulate a game against $D^*_m(D_\pi, T, V)$ until the αth reasonable guess in the (k_i, ℓ)-epoch.
- Let D_2 be the set of card guesses that were tagged as reasonable (by T).
- Output $D' = D_1 \cup D_2$.

A procedural description of DecodeU$_{(\pi_\gamma), (\alpha, \delta)}$ is specified in Algorithm 5.

6 Though a shorter representation is possible, it suffices for our purpose.
Algorithm 4 Behavior of $D_m^*(D_1, (\pi_t), T, V)$ while simulated by DecodeU$_{\gamma, (\pi_t), a, i}$.

Parameter: $D_1 \subseteq \binom{[n]}{k-\alpha}$, $(\pi_t)_{t=1}^n$, T, V, α, i.

1. For $j \in [i]$ do
 1.1. $B \leftarrow \emptyset$
 1.1.1. For $t \in \{k_j, \ldots, k_j - \ell_j + 1\}$ do
 1.1.1.1. Draw the π_t-min-order card from $D_1 \setminus B$ and discard from D_1
 1.1.1.2. $g_t \leftarrow$ guess made by Guesser
 1.1.1.3. If $g_t \in D_1$ and $|B| < u$ then
 1.1.1.3.1. $B \leftarrow B \cup \{g_t\}$
 1.1.1.4. Move to the back
 1.2. Move to the back

for $t \in \{k_i, \ldots, k_i - \ell + 1\}$ do
 2.1. $g_t \leftarrow$ guess made by Guesser
 2.2. If g_t is tagged as both reasonable and correct (according to T and V) then
 2.2.1. $d_t \leftarrow g_t$
 2.2.2. Move to the back
 2.3. Move to the back
 2.4. Continue playing

Algorithm 5 DecodeU$_{\gamma, (\pi_t), a, i}$.

Parameter: $k_i \in [n]$, $\ell \in [k_i]$, $(\pi_t)_{t=1}^n$, γ.

Input: $x \in \{0, 1\}^*$

1. If $x_1 = 0$ then
 1.1. Parse D' from x
 1.2. Return D'

2. Parse $M \in \{0, 1\}^m$, $V \in \{0, 1\}^\alpha$, $T \in \binom{[\ell]}{\alpha}$, $D_1 \in \binom{[n]}{k_i - \alpha}$ from x

3. Initialize Guesser G_γ at turn $n - k_1$ with memory state M.

4. $D_2 \leftarrow \emptyset$

5. For $t \in \{k_1, \ldots, k_i + 1\}$ do
 5.1. Simulate a turn between G_γ and $D_m^*(D_1, (\pi_t), T, V)$ and update Guesser’s memory accordingly

6. For $t \in \{k_i, \ldots, k_i - \ell + 1\}$ do
 6.1. Simulate a turn between G_γ and $D_m^*(D_1, (\pi_t), T, V)$ and update Guesser’s memory accordingly
 6.2. $g_t \leftarrow$ guess made by Guesser G_γ
 6.3. If g_t is tagged as reasonable (according to T) then
 6.3.1. $D_2 \leftarrow D_2 \cup \{g_t\}$

7. Return $D_1 \cup D_2$
We assume that both the Dealer’s precedence \(\{\pi_t\}_{t=1}^n \) and the Guesser’s randomness \(\gamma \) are given to us “for free” and are known during encoding and decoding of the set \(D \). We justify this assumption in two different ways:

- Fixing \(\gamma \) and \(\{\pi_t\}_{t=1}^n \) (i.e. fix the Dealer’s random source for the order) we can consider an encoding scheme for sets \(D \in \binom{[n]}{k_1} \).
- We can assume that we encode a triplet \((\gamma, \{\pi_t\}_{t=1}^n, D)\) where \(\gamma \) and \(\pi \) are written explicitly in some natural way right next to \(\text{Encode}_{U,\gamma,\{\pi_t\},\alpha,\ell}(D) \).

\(\triangleright \) Claim 28. The code produced by \(\text{Encode}_{U,\gamma,\{\pi_t\},\alpha,\ell} \) is prefix-free.

Denote by \(X_\alpha \subseteq \binom{[n]}{k_1} \) the collection of all sets \(D \in \binom{[n]}{k_1} \) such that \(G_\gamma \) makes at most \(\alpha \) reasonable guesses against \(D_{m,(D,\{\pi_t\})} \) during the \((k_1, \ell)\)-epoch. Observe that all sets in \(X_\alpha \) are encoded by \(\text{Encode}_{U,\gamma,\{\pi_t\},\alpha,\ell} \) to bit strings of the same length. Denote by \(w(m, k_1, \ell, \alpha) \) the length in bits of \(\text{Encode}_{U,\gamma,\{\pi_t\},\alpha,\ell}(D) \) for \(D \in X_\alpha \).

\(\triangleright \) Corollary 29. If \(G_\gamma \) makes at least \(\alpha \) reasonable guesses against the Dealer \(D_{m,(D,\{\pi_t\})} \) during the \((k_1, \ell)\)-epoch, then the length of \(\text{Encode}_{U,\gamma,\{\pi_t\},\alpha,\ell}(D) \) is

\[
w(m, k_1, \ell, \alpha) \triangleq \log \left(2 \cdot 2^m \cdot 2^\alpha \cdot \binom{n}{k_1 - \alpha} \cdot \binom{\ell}{\alpha} \right).
\]

Looking at the term from this corollary, it can be seen that for every increase in \(\alpha \) we save roughly \(\log n \) bits and pay roughly \(1 + \log \ell \) bits. In our Dealer (Definition 20) each epoch consists of \(\ell = m \log n \) turns, so we get that we expect to save order of \(\log n - \log m \) bits for every reasonable guess. We analyze this in detail in Claim 30.

5.4 Upper Bound on the Number of Reasonable Guesses

The function \(\text{Encode}_{U,\gamma,\{\pi_t\},\alpha,\ell} \) yields descriptions of lengths that varies with \(\alpha \). For example, for \(\alpha = 0 \), we get that in every simulation there are at least \(0 \) reasonable guesses, so all descriptions are of length \(\log \left(2 \cdot 2^m \binom{n}{k_1} \right) \), which is much larger than storing the set explicitly.

We first claim that making more reasonable guesses implies shorter descriptions, and more specifically, that each additional guess saves at least a bit. We then describe the amount of reasonable guesses required to achieve compression, i.e. descriptions of length shorter than the entropy of a random input. Consider a random set \(D \) chosen uniformly at random from \(\binom{[n]}{k_1} \). The entropy of \(D \) is

\[
H(D) = \log \binom{n}{k_1} = \log \binom{n}{k_1}.
\]

\(\triangleright \) Claim 30. For every \(m < n, k_1 \in [n/8e], \ell \in [k_1] \), if \(\alpha \geq \max \left\{ \frac{8e \cdot k_1 \cdot \ell}{n}, m \right\} \) then:

1. The encoding length decreases with reasonable guesses:

\[
w(m, k_1, \ell, \alpha + 1) \leq w(m, k_1, \ell, \alpha) - 1.
\]

2. The encoding achieves compression:

\[
w(m, k_1, \ell, \alpha) < \log \binom{n}{k_1}.
\]

Combining the above we get that no Guesser can make too many reasonable guesses against our Dealer. Recall the random variable \(R_i \) that denotes the number of reasonable guesses that a Guesser makes during the \((k_i, \ell)\)-epoch. Consider the sequence of epochs \(\{(k_i, \ell)\text{-epoch}\}_{i=1}^\ell \) played by the Move-to-the-Back Dealer \(D_{m} \) (from Definition 20).
Claim 31. For every Guesser G with m bits of memory, and for every epoch $i \in [d]$, for $\beta < \ell - \max \left\{ \frac{8 \cdot e \cdot k_1 \cdot \ell}{n}, m \right\}$ reasonable guesses during the (k_i, ℓ)-epoch, is at most

$$\Pr_{D \in \binom{[n]}{k_1}} \left[R_i \geq \max \left\{ \frac{8 \cdot e \cdot k_1 \cdot \ell}{n}, m \right\} + \beta \right] \leq 2^{-\beta}.$$

What about the upper bound u? Recall that while the Dealer follows the (k, ℓ, u)-MtBE-strategy (Definition 19), only the first u reasonably guessed cards are moved to the back; therefore only the first u reasonable guesses are guaranteed to be distinct. Any reasonable guess beyond u may be useless for set encoding. Further, if the Guesser is somehow able to reach u reasonable guesses, then moving cards to the back works in the Guesser’s favor (as cards become predictable), and the probability to guess reasonably grows with every guess. We address this concern by recalling that our Move-to-the-Back Dealer (Definition 20) plays the MtBE-strategy in a sequence of epochs for which $u = \ell$, therefore, it is impossible to make more than u reasonable guesses in an epoch. In Section 5.6 we present a Dealer for which $u < \ell$, and we restate the Claim to consider the upper bound u (see Claim 37).

As a corollary we get a bound on the expected number of reasonable guesses.

Corollary 32 (Formal). For every Guesser with m bits of memory, every epoch $i \in [d]$, the expected number of reasonable guesses during (k_i, ℓ)-epoch is at most

$$r_i \leq \max \left\{ \frac{8 \cdot e \cdot k_1 \cdot \ell}{n}, m \right\} + 2.$$

For this corollary to be meaningful we require that $k_1 \leq \frac{n}{8e}$, as otherwise it implies that $r_i < \ell$, i.e. that the expected number of reasonable guesses in the epoch is less than the number of turns in the epoch, which is always true. Observe this corollary is meaningful for every epoch played by our Dealer as the first epoch begins at turn $n - \frac{n}{8e \log n}$.

Denote by c_i the expected number of correct guesses during the ith epoch, where the expectation is taken over the Guesser’s and Dealer’s randomness γ, Δ.

Lemma 33. For every Guesser G with m bits of memory and every epoch $i \in [d]$, the expected number of correct guesses during the (k_i, ℓ)-epoch is at most

$$c_i \leq \max \left\{ \frac{8 \cdot e \cdot k_1 \cdot \ell}{n}, m \right\} + 2 \frac{k_i - \ell - u}{k_i - \ell - u}.$$

5.5 Analysis of the Move-to-the-Back Dealer

Having established a bound for a single epoch, we are ready to conclude the analysis of our Dealer and show its overall performance.

We recall that our Move-to-the-Back Dealer (Definition 20) starts the game with a properly shuffled deck from which the Dealer draws until k_1 cards are left, the Dealer then follows the MtBE-strategy over and over again and reshuffles every ℓ turns, and when $2m \cdot \log n$ cards are left, our Dealer shuffles the deck one last time and draws cards randomly until the end of the game. In particular, the Dealer plays the MtBE-strategy in a sequence of d epochs, where $d = \frac{n}{8e \log n} - \frac{2m \cdot \log n}{\ell}$, each epoch consists of $\ell = m \cdot \log n$ turns, and as for every epoch it holds that $\ell \leq k_i - \ell$ it follows that we can set $u = \ell$.

In the upcoming lemma, we will analyze and bound the cumulative number of correct guesses that any memory bounded Guesser can expect to make throughout the sequence of epochs.
Lemma 34. For $m \leq \frac{n}{\log^2 n}$, every Guesser with m memory bits that play against the Move-to-the-Back Dealer D_m is expected to guess correctly at most 1 time in total throughout the sequence of epochs that follows the MtBE-strategy.

Theorem 35. For any $m \leq n$ there exists a Dealer D_m such that every Guesser G with m memory bits is expected to make at most $\ln m + 2\ln \log n + O(1)$ correct guesses throughout the game.

5.6 Universal Move-to-the-Back Dealer

So far, we have configured our Dealer differently according to the amount of memory bits that the Guesser had. Using the building blocks and ideas seen so far in the section, we present a universal adaptive Dealer that works well against any Guesser with any amount of memory, without knowing how much memory the Guesser has. Albeit, with a drawback that a Guesser with m bits of memory is expected to make slightly more than $(1 + o(1)) \cdot \ln n + 8\ln \log n + O(1)$ correct guesses in expectation.

The starting point for the universal Dealer is the same as that of the Move-to-the-Back Dealer (Definition 20). Similarly, our universal Dealer separates the turns to epochs during which the Dealer follows the MtBE-strategy. However, the epochs will shrink and become shorter as more cards are drawn, and the analysis will be different.

Definition 36. The universal Dealer $D_{\text{universal}}$ plays according to the strategy:
1. Shuffle the deck uniformly at random, and draw cards one by one until $\frac{n}{8e \log^2 n}$ cards are left in the deck.
2. Play the MtBE-strategy in a sequence of d epochs, where $d = \log \log n \left(\frac{n}{8e \log^2 n} \right)$, such that the ith epoch begins when $k_i = \frac{n}{8e \log^2 n}$ cards are left, i.e. the length of the ith epoch is $\ell_i = k_i (1 - \frac{1}{\log n})$, and during each epoch at most $u_i = \frac{2\ell_i}{\log^2 n}$ cards are moved to the back.
3. When $\log^4 n$ cards left, shuffle the deck one last time and draw cards at random.

We begin our analysis in the same way as we did for the Move-to-the-Back Dealer. We consider the same implementation of the Dealer (Section 5.2), and the same encoding scheme for sets (Section 5.3).

Recall the discussion about the maximal number of cards moved to the back during an epoch, right before Corollary 32. In that discussion we argued that we may ignore the role of the bound u since it is impossible to make more than $u = \ell$ reasonable guesses. This is not the case for the universal Dealer, as during the ith epoch at most $u_i = \frac{2\ell_i}{\log^2 n}$ cards are moved to the back. We restate, without proof, Claim 31.

Claim 37 (Restate Claim 31). For every Guesser G with m bits of memory, and every epoch $i \in [d]$, for $\beta < u_i - \max \left\{ \frac{8e \cdot k_i \cdot \ell_i}{n}, m \right\}$, the probability that G makes more than $\beta + \max \left\{ \frac{8e \cdot k_i \cdot \ell_i}{n}, m \right\}$ reasonable guesses during the ith epoch, is at most $2^{-\beta}$.

As the universal Dealer begins following the MtBE-strategy when $\frac{n}{8e \log^2 n}$ cards are left, we get that the probability for more than $\max \left\{ \frac{\ell_i}{\log^2 n}, m \right\}$ reasonable guesses decays exponentially.
It follows that the expected number of reasonable guesses per epoch depends on the amount of memory the Guesser has. In particular, this Claim clarifies that we must analyze differently the epochs for which \(m \geq \frac{\ell_i}{\log^2 n} \) than the other epochs.

Therefore, for every \(m \), we separate the epochs into two eras. During the low-memory era, moving cards to the back works in the Dealer’s favor as the MtBE-strategy guarantees that no Guesser can guess well. During the high-memory era, moving cards to the back works in the Guesser’s favor, and we assume that the Guesser gains the maximal advantage from it.

\[\triangleright \text{Claim 38.} \text{ During the low-memory era, that is for } i \in [d] \text{ and } m < \frac{\ell_i}{\log^2 n}, \text{ any Guesser with } m \text{ bits of memory, makes on expectation at most} \]

\[c_i \leq \frac{1}{\log(n) - 2} \]

\[\text{correct guesses during the } (k_i, \ell_i) \text{-epoch.} \]

The above Claim states that the MtBE-strategy works well while the Guesser has insufficient memory. However, as mentioned already, once the Guesser reaches the maximal number of cards moved to the back, the MtBE-strategy works in the Guesser’s favor. We want to bound the Guesser’s benefit during such an epoch.

\[\triangleright \text{Claim 39.} \text{ For every epoch, the expected number of correct guesses that any Guesser makes, is at most} \]

\[\ln (\log(n) + 3). \]

We therefore have two upper bounds on the number of correct guesses, one for the low-memory era (Claim 38) and a general one (Claim 39) that we will use for epochs during the high-memory era.

\[\triangleright \text{Theorem 40.} \text{ There exists an adaptive universal Dealer against which any Guesser with } m \text{ bits of memory can score at most} \]

\[(1 + o(1)) \cdot \ln m + 8 \ln \log n + O(1) \]

\[\text{correct guesses in expectation.} \]

\[\text{References} \]

1 Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and Eylon Yogev. Adversarial laws of large numbers and optimal regret in online classification, 2021. \texttt{arXiv:2101.09054}.

2 Shai Ben-David, Allan Borodin, Richard M. Karp, Gábor Tardos, and Avi Wigderson. On the power of randomization in on-line algorithms. \textit{Algorithmica}, 11(1):2–14, 1994. \texttt{doi:10.1007/BF01294260}.

3 Omri Ben-Eliezer, Rajesh Jayaram, David Woodruff, and Eylon Yogev. A framework for adversarially robust streaming algorithms. In \textit{PODS’20}, pages 63–80, 2020.

4 Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In \textit{Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems}, PODS’20, pages 49–62, 2020.

5 Allan Borodin and Ran El-Yaniv. \textit{Online computation and competitive analysis}. Cambridge University Press, 1998.

6 Kai-Min Chung, Tai-Ning Liao, and Luowen Qian. Lower Bounds for Function Inversion with Quantum Advice. In \textit{1st Conference on Information-Theoretic Cryptography (ITC 2020)}, volume 163, pages 8:1–8:15, 2020.
Keep That Card in Mind: Card Guessing with Limited Memory

7 Thomas M. Cover and Joy A. Thomas. *Elements of Information Theory, 2nd Edition*. Wiley, 2006.
8 Persi Diaconis, Ron Graham, Xiaoyu He, and Sam Spiro. Card guessing with partial feedback. *CoRR*, October 2020. arXiv: 2010.05059. arXiv:2010.05059.
9 Persi Diaconis and Ronald Graham. The analysis of sequential experiments with feedback to subjects. *The Annals of Statistics*, 9 (1), January 1981.
10 Itai Dinur. On the Streaming Indistinguishability of a Random Permutation and a Random Function. In *Advances in Cryptology – EUROCRYPT 2020*, Lecture Notes in Computer Science, pages 433–460, 2020.
11 Persi Diaconis and Ronald Graham. The analysis of sequential experiments with feedback to subjects. In *Proceedings of the Society for Psychical Research Volume XXXIV*, pages 181–185. Society of Psychical Research, July 1924. URL: http://iapsop.com/archive/materials/spr_proceedings/spr_proceedings_v34_1924.pdf.
12 Ronald Fisher. A method of scoring coincidences in tests with playing cards. In *Proceedings of the Society for Psychical Research Volume XXXIV*, pages 181–185. Society of Psychical Research, July 1924. URL: http://iapsop.com/archive/materials/spr_proceedings/spr_proceedings_v34_1924.pdf.
13 Robin A. Moser and Gábor Tardos. A constructive proof of the general lovasz local lemma. *J. ACM*, 57(2), 2010.
14 S. Muthukrishnan. *Data Streams: Algorithms and Applications*. Foundations and Trends in Theoretical Computer Science, 1(2):117–236, 2005.
15 Edward O. Thorp. *Beat the Dealer: A Winning Strategy for the Game of Twenty-One*. Vintage, 1962.
16 Wikipedia. Card counting — Wikipedia, the free encyclopedia, 2004. [Online; accessed 11-June-2021]. URL: https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1016853614.
17 Wikipedia. Card counting — Wikipedia, the free encyclopedia, 2004. [Online; accessed 11-June-2021]. URL: https://en.wikipedia.org/w/index.php?title=Card_counting&oldid=1016853614.