DNA-cytometric grading of prostate cancer systematic review with descriptive data analysis

Alfred Böcking1*, Maurits Tils1, Martin Schramm1, Josef Dietz2 and Stefan Biesterfeld1

Abstract
Gleason-score ≤6, assessed on core needle biopsies, is an essential prognostic parameter to offer the strategy of Active Surveillance (AS) to patients with locally confined cancers of the prostate. Yet, its interobserver reproducibility is low (48-70%) and its prognostic validity unsatisfactory. An option to complementary assess the malignant potential of these cancers are objective DNA-ploidy-measurements on existing biopsies. For that purpose chromosomal heterogeneity is indirectly quantified by DNA-cytometry resulting in DNA-grades of malignancy 1–4. This review systematically trawls and evaluates all scientific publications on the potential diagnostic and prognostic validity and the heterogeneity of DNA-ploidy measurements in cancers of the prostate between 1966 and 2013. Publications have been classified into Oxford levels of evidence and levels of significance were given for the correlation of DNA-ploidy with different clinical outcomes. 114 scientific articles had to be excluded because of different methodological reasons. All but one of the 67 methodologically acceptable articles report on a significant diagnostic resp. prognostic significance of DNA ploidy measurements in cancers of the prostate. 8 level 1b studies report that DNA-ploidy, assessed on punch biopsies independently predicts organ confinement as assessed after radical prostatectomy. 18 level 2b studies prove that DNA-ploidy measurements add statistically significant information to the Gleason-score. 16 level 2b investigations report a significant correlation of DNA-ploidy with recurrence-free survival. 15 level 2b studies document a significant correlation with overall survival after different types of therapy. 5 level 2b investigations prove a significant correlation with local recurrence or progress after radical prostatectomy. 3 level 2b publications show a significant correlation of DNA-ploidy with the occurrence of lymph node- or bone metastases after radical prostatectomy. 1 level 2b study documents the additional prognostic value of DNA-ploidy measurements over conventional subjective grading in prostate cancer patients under AS. All existing 15 narrative reviews on selected articles dealing with prognostic DNA-cytometry in cancers of the prostate are in favor of this method. Prospective level 1b studies, especially those proving the validity of DNA ploidy measurements to predict non-progression in patients with clinically insignificant low-grade low stage cancers of the prostate eligible for Active Surveillance additionally to the Gleason-score are still missing.

Keywords: DNA-cytometry, DNA-ploidy, DNA-grading, prostate cancer, Gleason-score, active surveillance, brachytherapy, prognosis

Introduction
Epidemiology
Mean age of patients facing the diagnosis of prostate cancer in Germany currently is 70 years. 26.1% of all newly diagnosed malignancies among men are cancers of the prostate. Its incidence has risen from 80 in 1993 to 111.4/100,000 men or 65,830 new cases in 2010. 70,100 new cases are prognosticated for 2014. Nevertheless mortality is constantly decreasing, from 30 in 1993 to 20.0/100,000 men in 2010 [1]. Even lethality is low: 11.7% in the USA in 2006 as compared to other cancers [2]. The favorable five-years survival rate of 93% is mainly due to more frequent early diagnoses as a consequence of PSA-testing [1].
As about 30% of patients who, according to inquest died from prostate cancer, in fact did not according to autopsy [3], the true mortality rates may be significantly lower.

Therapy

Adequate therapy of prostate cancers essentially depends on their individual histological type, stage and grade of malignancy. High grades are associated with early and rapid tumor progression and subsequent metastasis. Low grade and low stage cancers may either locally be treated with curative intention (e.g., by radical prostatectomy, external or internal radiation) or subjected to an Active Surveillance (AS) strategy. Different to “Watchful Waiting”, this includes the option for curative therapy if the cancer progresses. About 53% of all newly diagnosed patients with cancers of the prostate in Germany are currently treated by radical prostatectomy, 8% hormonally, 6% by a combination of both, 12% by radiation, 14% by AS and 5% by Watchful Waiting [4].

As the probability of patients with “clinically insignificant microcarcinomas” of the prostate [5] to die from their cancer is very low: 89% overall survival after 8 years [6], 81% overall survival after 10 years [7], the strategy of AS has been designed. About 45% of all screening-detected cancers can be managed with AS [7]. In Germany this strategy is recommended to patients with low-grade Gleason-score(GS)<=6 and low stage (T1c and T2a) cancers, found in <=2 core biopsies with <50% of their volume and a PSA <10 ng/ml. It comprises regular urological examinations, repeated biopsies and PSA-controls but still allows curative therapy if clinical signs of progression can be detected [8].

Shortcomings of Gleason-grading

Grading the malignant potential of individual cancers of the prostate currently is performed according to the modified Gleason-score according to the International Society for Urologic Pathology (ISUP) [9] on histological sections of biopsies or resected tissue.

Grading the malignant potential of cancers should be reproducible among different pathologists, representative for the tumor as a whole and, most importantly, prognostically valid. Grading the malignancy of cancers of the prostate should predict outcome of patients even after different types of therapy. Neither the original [10] nor the revised GS [9] reveal sufficient inter-observer reproducibility to rely clinical decisions of the significance of radical prostatectomy vs. AS on this subjective prognostic index only. [11] report a reproducibility of 58–69%, [12] of 48%, [13] of 70% and [14] of 47% for the revised score.

The main cause for the revision of the Gleason-system by the International Society for Urologic Pathology (ISUP) was to enhance its representativity on punch biopsies for the tumor as a whole (as observed in radical prostatectomies). Yet, contrary to what was expected, [15] found an agreement of only 72%.

Two groups furthermore demonstrated that the revised Gleason-grading could neither differentiate the survival of score 7a- and 7b- [16] or GS <=6- and GS7-patients after radical prostatectomy [17].

Prognostic DNA-cytometry

Cancers of the prostate, as all other cancers [18] reveal quite different types of chromosomal aneuploidy [19,20]. While malignant tumors progress, their chromosomal sets may become more and more variable, caused by genetic instability [20,21-23]. The resulting “chromosomal chaos” [24,25] can be indirectly quantified by measuring the DNA-content of hundreds to thousands of cancer cells. These methods are called DNA-flow-cytometry [26,27], respectively DNA-image-cytometry [28-34].

It is based on measurements of the Integrated Optical Density (IOD) of stoechiometrically and specifically DNA-stained nuclei and internal calibration with normal, diploid reference cells. Measurements of nuclei under UV-light, previously stained with DNA-specific fluorescent dyes, like DAPI, in liquids flowing through a capillary are called “DNA Flow Cytometry”. Its disadvantage is that the cells are lost after analysis, thus control measurements are not possible. Furthermore cancer cells cannot be differentiated from non-epithelial cells without additional immunocytochemical markers. Measurements on Feulgen-stained nuclei [35] on glass slides, using TV-image-analysis systems are called “DNA Image Cytometry”. It has the advantage that it can repeatedly be performed on prestained and specifically restained slides on individually preclassified cells. Its performance has been highly standardized by a task force of the European Society for Analytical Cellular Pathology, ESACP [30,32-34]. For the purpose of grading the malignant potential of selected solid tumors, four grades of increasing malignancy have been agreed upon: peridiploid (grade 1), peritetraploid (grade 2), x-ploid (grade 3) and multiploid (grade 4) (Table 1 and Figure 1).

Interobserver reproducibility of prognostic DNA-histogram interpretations of prostate cancer biopsies has been reported to be 93.0% and 90.2% [36,37].

Existing reviews

14 narrative reviews have so far addressed diagnostic or prog-

DNA-grade	Definition
1 (Peridiploid, Type A)	One stemline at 2c±10%
2 (Peritetraploid, Type B)	One stemline at 2c±10%, second stemline at 4c±10%
3 (X-ploid, Type C)	One additional stemline outside 1, 8c-2, 2c or 3, 6c-4, 4c±10%
4 (Multiploid, Type D)	More than one stemline outside1, 8c-2, 2c or 3, 6c-4, 4c±10%
Figure 1. Typical DNA-histograms, corresponding Gleason-scores and tentative prognosis. Frequencies* from [37], prognostic DNA-categories according to [41], 2001.

Typical DNA-histogram	DNA-grade vs. Gleason-Score	Prognosis Therapy Frequency
Peridiploid	Type A	Very good
Type A	DNA-grade 1	
	Correlates about to GS <=6	
	Active surveillance in locally confined carcinomas	
	In ca. 55% of punch biopsies*	
Peritetraploid	Type B	Still good
Type B	DNA-grade 2	
	Correlates about to GS 7	
	For elder patients similar as in grade 1	
	In ca. 26% of punch-biopsies*	
X-ploid	Type C	Not so good
Type C	DNA-grade 3	
	Correlates about to GS 8	
	Treatment acc. to S3-guidelines	
	In ca. 10% of punch-biopsies*	
Multiploid	Type D	Not good
Type D	DNA-grade 4	
	Correlates about to GS 9&10	
	Treatment acc. to S3-guidelines	
	In ca. 9% of punch-biopsies*	
nostic DNA-cytometry in cancers of the prostate between 1992 and 2006 [38-51] Table 2. They have reviewed between 2 and 36 publications, mean 12.8. Two of them dealt with DNA-flow cytometry only [30,46]. Besides [46], who did not validate their findings, all of them concluded that this method is of diagnostic or prognostic relevance:

- “Ploidy predicts prognosis significantly” [38].
- “Ploidy looks promising following radical prostatectomy” [39].
- “DNA-ploidy is a CAP (College of American Pathologists) category II method” [40].

Table 2. Reviews dealing with DNA-cytometry in prostate cancer.

Authors	Year	Publications reviewed	Systematic Flow/Image cytometry	Methodological aspects	Prognostic significance	Comparison with other markers
Buhmeida et al., [38]	2006	14	No FCM&ICM	Yes	“Predicts P significantly in organ confined disease”	Yes N=7
Montironi et al., [39]	2006	2	No FCM	No	Not done	No
Epstein et al., [40]	2005	18	No FCM&ICM	Yes	“Ploidy looks promising following RPE”	Yes N=16
Ross et al., [41]	2003	8	No FCM&ICM	No	DNA-ploidy=CAP category II	Yes N=28
Chakravanti and Zhai et al., [42]	2003	8	No FCM&ICM	No	Predicts P independently	Yes N=29
Mazzucchetti et al., [43]	2002	8	No FCM&ICM	No	“Provides important prognostic information”	Yes N=1
Miller et al., [44]	2001	6	No FCM&ICM	No	“Questionable independent variable”	Yes N=3
Bostwick et al., [45]	2000	5	No FCM&ICM	No	DNA-ploidy =CAP category II	Yes N=6
Sakr and Grignon et al., [46]	1997	16	No FCM&ICM	No	“Good potential as prognostic marker”	Yes N=3
Mikuz et al., [47]	1997	4	No FCM&ICM	No	“Difficult to understand why these well documented data have not yet gained access to treatment protocols”	No
Schröder et al., [48]	1994	36	No FCM&ICM	Yes	WHO-consensus conference: “DNA-ploidy is of value in treatment decisions, particularly when surveillance is a treatment option”. “DNA-ploidy should uniformly be studied in clinical trials, particularly in patients with localized cancer”.	No
Shankey et al., [26]	1993	?	No FCM	Yes	“Any sample shown to contain representative tumor can provide meaningful information”	No
Lieber et al., [49]	1992	12	No FCM&ICM	No	“DNA-diploid tumors have a better prognosis than tumors of a similar stage and grade that are non-diploid”	No
Deitch et al., [50]	1992	8	No FCM	No	“FCM has much to tell us about the natural history and biologic behaviour of prostate cancer”	No
Böcking et al., [51]	1992	34	No FCM&ICM	Yes	“DNA-cytometry is a powerful tool for grading the malignant potential of prostatic carcinomas, superior to histological and cytological evaluation”	No
patients with localized cancer” [47].

- “In retrospective studies … any sample shown to contain representative tumor can provide meaningful information” [48].
- “DNA-diploid tumors have a better prognosis than tumors of a similar stage and grade that are non-diploid” [49].
- “Flow cytometry has much to tell us about the natural history and biologic behavior of prostate cancer” [50].
- “DNA-cytometry is a powerful tool for grading the malignant potential of prostatic carcinomas, superior to histological and cytological evaluation” [51].

As inclusion of patients with locally confined cancers of the prostate into the strategy of AS requires a valid prognostic assessment of individual tumors and the subjective Gleason-score suffers from low inter-observer reproducibility and insufficient prognostic validity, more reliable prognostic biomarkers are required. So far no systematic review exists on the prognostic validity of DNA-ploidy measurements, that have to be considered to supplement the Gleason-score on identical specimens. This study provides the first systematic review on that subject.

Review

Systematic review of the literature

A query has been performed in PubMed for publications between January 1966 [52] and August 19th, 2013 with the following key words: “prostate cancer and (DNA-ploidy or DNA-aneuploidy or DNA-cytometry or DNA-image-cytometry)”. Studies were classified into different levels of evidence according to their design, applying the criteria of the Oxford Center for Evidence Based Medicine [53]:

- Level 1b, diagnosis: Validating cohort studies with good reference standards or clinical decision rule, tested within one clinical center.
- Level 2b, diagnosis: Exploratory cohort studies with good reference standard or clinical decision rule after derivation or validated on split samples or data bases.
- Level 1b, prognosis: Individual inception cohort studies with >80% follow-up or clinical decision rule, validated in a single population.
- Level 2b, prognosis: Retrospective cohort studies or follow-up of untreated control patients in a randomized controlled clinical trial. Derivation of a clinical decision rule or validated on split samples only.
- Level 3b, prognosis: Retrospective cohort studies with insufficiently defined inclusion criteria or less than 80% of follow-up.

A. B. has performed the review. No reports were excluded because of their status of publication. A systematic assessment of publication bias had not been performed.

The following features were considered as “good reference standards”: For the correlation with diagnosis, the results of histological examination of radical prostatectomies, especially concerning extracapsular spread and infiltration of seminal vesicles. For the correlation with prognosis, the recurrence-free- or overall survival time, the occurrence of lymph node- or bone metastases, clinical proof of local progression or recurrence or a so-called biochemical recurrence.

The **diagnostic accuracy** of specific indices of nuclear DNA distribution obtained on pretherapeutic biopsies, e.g., to render spread beyond the capsule more likely, should be compared with that of the Gleason-score in studies meeting the criteria of Oxford level of evidence 1b. Similarly the **prognostic validity** of indices of nuclear DNA-distribution should be investigated in comparison with the Gleason-Score, specific for different therapeutic settings, in Oxford level of evidence 1b studies.

Excluded papers

1,819 titles had been listed and 1 found through other sources. After exclusion of 40 duplicates and reading the respective abstracts, 1,573 records have been excluded and full texts of 207 publications that seemed to deal with the above mentioned subjects were ordered and reviewed (Figure 2). 114 of these have been excluded from further evaluation due to different types of methodological shortcomings [61-174].

- 32 revealed an inadequate study design: 10 comprised < 50 patients [54-63], 6 had a mixture of different types of therapy [64-69], 5 missed sufficient therapeutic information [70-74], 3 missed sufficient follow-up information [75-77], 4 applied an inadequate gold standard (digital rectal examination, cancer volume) [78-81], 2 selected prognostically extreme groups of patients [82,83], 1 comprised mixed tumor-stages [84], 1 presented no details on recurrence [85].
- 24 correlated DNA-ploidy with non-diagnostic or prognostic features: 5 with morphometry only [86-90], 4 with changes under therapy [91-94], 1 with effects of radiation [95], 2 with stage only [96,97], 2 with cytological grade [98,99], 2 with cancer diagnosis instead of prognosis [100,101], 2 with 5α-reductase [102,103], 1 with PSA and Gleason-score [104], 1 with stage and cytological grade [105], 1 with Gleason-score and stage [106], 1 with histological subtype [107], 1 with stage and non Gleason-grade [108], 1 with steroid receptors [109].
- 25 dealt with methodological aspects of cytometry only [110-134].
- 14 applied an inadequate cytometric methodology: 8 an inadequate sampling of cells [135-142], 3 performed measurements on sections of different thickness [143-145], 1 applied an inadequate internal calibration [146], 1 missed information on cytometric method [147], 1 measured only 30 nuclei per specimen [52].
- 19 various reasons: 7 were not written in English language [148-154], 3 presented case reports [155-157], 2 dealt with rat prostate cancers [158,159], 2 presented no own data [160,161], 1 correlation of biopsy and radical prostatectomy [162], 1 was redundant with a previous
Records identified through database searching (n=1,819)

Records after duplicates removed (n=1,780)

Records screened (n=1,780)

Records excluded (n=1,573)

Full-text articles excluded, with reasons (n=113)

Studies included in qualitative synthesis (n=81)

Studies included in quantitative synthesis (meta-analysis) (n=67)

Figure 2. PRISMA-flow diagram for handling of records (www.prisma-statement.org).

Methodologically sufficient papers
Papers that did not reveal the above mentioned shortcomings were considered as “methodologically sufficient”. 66 publications reported statistically significant correlations between various DNA-ploidy parameters and one of the above-mentioned patient-relevant endpoints. These comprised 15,693 patients (Tables 3-8):

- 8 level 1b studies reported a significant correlation of DNA-cytometric features with histologically proven cancer spread beyond the capsule as detected after radical prostatectomy [167-174]. 4 of them documented a significant improvement of diagnostic accuracy concerning the prediction of organ confinement by DNA-ploidy features over Gleason-score alone (Table 3).
- 10 level 2b studies were found that report on a statistically significant correlation of DNA-cytometric features with recurrence-free survival after radical prostatectomy in a multivariate-analysis [16,175-179,181,184-186], 3 in
an univariate analysis [180,182,183] Table 4. [193] found the same after external radiation in a multivariate analysis. 4 level 3b studies [187-190] proved a significant correlation of DNA-ploidy parameters with recurrence free survival time after radical prostatectomy on multivariate analyses (Table 4).

- 2 level 3b studies [110,169] proved an independent correlation of DNA-ploidy parameters with overall survival time under AS apart from histological or cytological grading in a multivariate design (Table 5). 1 level 2b study did the same multivariate for recurrence free survival time [197] (Table 4).

- 6 level 2b studies proved a significant correlation of DNA-ploidy with overall survival after radical prostatectomy [180,200], 2 of them in a multivariate design [178,198,199,201]. 4 level 3b studies do the same [190,202,203], 1 of them univariate [204]. 6 studies provided a significant correlation of DNA-ploidy with overall survival after hormonal therapy in a multivariate design [169,208-211,213]. 6 level 3b-studies [85], 7 of them multivariate, showed the same [110,169,214-217]. 2 level 3b studies dealt with overall survival after AS [43,64] and report a significant correlation in a multivariate analysis. [212] represents the only publication in which DNA-ploidy did not correlate with survival. But “neither Gleason-score nor WHO-grade correlated” (Table 5).

- 18 level 2b studies report that DNA-ploidy parameters add significant independent prognostic information to the Gleason-score, 12 of them after radical prostatectomy [15,170,175-178,181,185,186,198,222,225] 2 after hormonal therapy [199,208], 1 after external radiation [205] 1 after AS [197], 1 after brachytherapy [207] and 1 after transurethral resection [197]. 9 level 3b studies report the same after radical prostatectomy [167,170,184,187,189,190,203,215,222] Table 6.

- 5 level 2b studies [170,180,182,190,225] report a significant correlation between DNA-ploidy parameters and the occurrence of local progression or recurrence after radical prostatectomy, 1 after hormonal therapy [234], 1 after brachytherapy [227] (Table 7).

- 3 level 2b [170,186,229] and 1 level 3b study [173] report on a significant correlation of DNA-ploidy parameters with the occurrence of lymph node- or bone metastases after radical prostatectomy. 2 level 3b studies report the same after hormonal therapy [224,235] Table 8.

Tumor heterogeneity

The following publications dealt with aspects of heterogeneity of DNA-ploidy patterns in cancers of the prostate and representativity of punch biopsy for the tumor as a whole.

- Only 3/78 (3.8%) diploid needle-biopsy-DNA-histograms were discrepant to those obtained on subsequent prostatectomy specimens of stage A2-B2 cancers (diploid, aneuploid), while 21.4% of biopsies had been undergraded cancers as Gleason-low-grade [170].

- 141 separate cancer foci had been investigated in 68 radical prostatectomy specimens of different stages of cancer (mean 2.1 per prostate), [39] (n=43) showed heterogeneity of DNA-ploidy pattern (diploid, non-diploid) [171].

- 122 simulated punch biopsies had been investigated from nine prostatectomies containing cancers of unknown stage (mean 12 samples). Five (56%) showed heterogeneity of the DNA pattern (diploid, tetraploid, aneuploid). All four cases having a homogenous DNA content were DNA diploid in all samples. In those cases with a heterogeneous pattern, the areas having abnormal DNA-patterns could not be predicted by histologic pattern or grade [228].

- These authors compared DNA-ploidy patterns (diploid vs. non-diploid) in punch biopsies and subsequent prostatectomy specimens in 12 cases with cancer. Four sections per resected cancer of unknown stage had been investigated. The concordance was to 92% [230].

- Heterogeneity of DNA-ploidy patterns (diploid, tetraploid, aneuploid) had been found in 50% of 39 T2 and T3 cancers

Table 3. Correlation of DNA-ploidy on biopsies with extracapsular spread (ECS) after radical prostatectomy (RPE). Bold p-values refer to Cox multivariate regression analysis.

Year (Publication)	Journal	Number of patients investigated	Months follow-up	Significance p	Flow/Image cytometry
Oxford level 1b					
Ishaarwal et al., [167]	2009 J Urol	370	5	<0.001	AUC-ROC+1.5%
Brinker et al., [168]	1999 J Urol	159	--	0.003	ICM
Vesalainen et al., [169]	1994 Br J Cancer	273	156	<0.0001	FCM
Ross et al., [170]	1994 Cancer	89	31.2	0.04	ICM
Green et al., [171]	1994 J Urol	70	--	<0.0001	ICM
Häggmann et al., [172]	1994 Scand J Urol Nephrol	54	--	<0.0001	ICM
Ross et al., [173]	1994 Mod Pathol	56	28.8	0.03	ICM
Badalament et al., [174]	1991 Cancer	112	--	0.04	FCM

Year (Publication)	Journal	Number of patients investigated	Months follow-up	Significance p	Flow/Image cytometry
Ishaarwal et al., [167]	2009 J Urol	370	5	<0.001	AUC-ROC+1.5%
Brinker et al., [168]	1999 J Urol	159	--	0.003	ICM
Vesalainen et al., [169]	1994 Br J Cancer	273	156	<0.0001	FCM
Ross et al., [170]	1994 Cancer	89	31.2	0.04	ICM
Green et al., [171]	1994 J Urol	70	--	<0.0001	ICM
Häggmann et al., [172]	1994 Scand J Urol Nephrol	54	--	<0.0001	ICM
Ross et al., [173]	1994 Mod Pathol	56	28.8	0.03	ICM
Badalament et al., [174]	1991 Cancer	112	--	0.04	FCM

Tumor heterogeneity

The following publications dealt with aspects of heterogeneity of DNA-ploidy patterns in cancers of the prostate and representativity of punch biopsy for the tumor as a whole.

- Only 3/78 (3.8%) diploid needle-biopsy-DNA-histograms were discrepant to those obtained on subsequent prostatectomy specimens of stages A2-B2 cancers (diploid, aneuploid), while 21.4% of biopsies had been undergraded cancers as Gleason-low-grade [170].

- 141 separate cancer foci had been investigated in 68 radical prostatectomy specimens of different stages of cancer (mean 2.1 per prostate), [39] (n=43) showed heterogeneity of DNA-ploidy pattern (diploid, non-diploid) [171].

- 122 simulated punch biopsies had been investigated from nine prostatectomies containing cancers of unknown stage (mean 12 samples). Five (56%) showed heterogeneity of the DNA pattern (diploid, tetraploid, aneuploid). All four cases having a homogenous DNA content were DNA diploid in all samples. In those cases with a heterogeneous pattern, the areas having abnormal DNA-patterns could not be predicted by histologic pattern or grade [228].

- These authors compared DNA-ploidy patterns (diploid vs. non-diploid) in punch biopsies and subsequent prostatectomy specimens in 12 cases with cancer. Four sections per resected cancer of unknown stage had been investigated. The concordance was to 92% [230].

- Heterogeneity of DNA-ploidy patterns (diploid, tetraploid, aneuploid) had been found in 50% of 39 T2 and T3 cancers
Table 4. Correlation of DNA-ploidy with recurrence-free survival time. Bold p-values refer to Cox multivariate regression analysis.

Year	Journal	Number of patients	Months Follow-up	Significance p	Flow/Image cytometry	Comment	
After RPE							
Oxford level 2b							
Bantis et al., [175]	2009	Tumori	112	¥ 60	**0.001**	ICM	pT2a-c, pT3a
Pretorius et al., [16]	2009	Cell Oncol	186	¥ 73.3	GS 7 <0.001	ICM	--
Bantis et al., [176]	2005	J Exp Clin Cancer Res	70	¥ 60.0	<0.007	ICM	--
Deliveliotis et al., [177]	2003	World J Urol	84	¥ 45	**0.0074**	FCM	--
Amling et al., [178]	1999	J Urol	106	¥ 120	**0.002**	FCM	After salvage prostatectomy
Gettman et al., [179]	1999	Adult Urology	211	60	<0.001	FCM	--
Mora et al., [180]	1999	Cancer Control	65	¥ 80	0.002	FCM	--
Lerner et al., [181]	1996	J Urol	904	¥ 38.4	p 0.0089	FCM	pT1, pT2
Zincke et al., [182]	1992	Cancer	370	¥ 60	0.0008	FCM	Plus hormonal treatment
Wirth et al., [183]	1991	Eur Urol	80	120	0.0013	FCM	pT 1-3
Nativ et al., [184]	1989	Mayo Clin Proc	146	94.8	**0.006**	FCM	Stage C n=146
Blute et al., [185]	1989	J Urol	315	96	**0.0004**	FCM	Stages A, B
Winkler et al., [186]	1988	Mayo Clin Proc	91	¥ 90	**0.001**	FCM	Low and high GS
Oxford level 3b							
Hawkins et al., [187]	1995	Urology	894	¥ 100	**<0.05**	FCM	Partially HAT, & radiation
Carmichael et al., [188]	1995	J Urol	112	¥ 102	**<0.034**	FCM	T2, NO, GS <=6
Voges et al., [189]	1993	Eur Urol	85	¥ 35	**<0.005**	FCM	<8 cm & <30% GS 4/5
Montgomery et al., [190]	1990	Arch Surg	261	240	<0.001	FCM	Stage B
Lee et al., [191]	1988	J Urol	88	60	<0.001	FCM	Interval free of disease
Oxford level 4							
Veltri et al., [192]	1994	J Cell Biochem	124	¥ 103.2	0.008	ICM	PSA-recurrence
After external radiation							
Oxford level 2b							
Centeno et al., [193]	1994	Int J Rad Oncol Biol Phys	70	136	**0.03**	FCM	T1-4, N0, M0 S-Phase
Oxford level 3b							
Khoo et al., [194]	1999	The Prostate	42	¥ 62	0.035	FCM	--
Pollack et al., [195]	1994	Cancer	76	¥ 40	**0.05**	FCM	--
After brachytherapy							
Oxford level 3b							
Peters-Gee et al., [60]	1992	Cancer	51	¥ 52	<0.05	ICM	--
After hormonal therapy							
Oxford level 2b							
Stege et al., [196]	1992	J Urol	67	>24	0.01	FCM	--
Oxford level 3b							
Visakorpi et al., [67]	1991	Br J Cancer	60	120	0.0103	FCM	--
After active surveillance							
Oxford level 2b							
Adolfsson et al., [197]	1990	J Urol	146	¥ 50	**0.018**	FCM	Non-Progression. Therapy if progressed
Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
---------	------	---------	--------------------	------------------	----------------	----------------------	---------
Ward et al., [198]	2005	BJU International	816	$\bar{X}\, 123.6$	0.008	FCM	cT3 only
Martinez-Jabaloyas et al., [199]	2004	Actas Urol Espan	54	$\bar{X}\, 120$	0.009	FCM	With bone marrow metastases
Amling et al., [178]	1999	J Urol	106	$\bar{X}\, 120$	0.001	FCM	After external radiation
Myers et al., [200]	1997	J Urol	62	$\bar{X}\, >120$	0.0014	FCM	Plus hormonal treatment
Di Silverio et al., [201]	1996	Eur Urol	85	$\bar{X}\, 35$	0.05	FCM	--
Zincke et al., [182]	1992	Cancer	370	$\bar{X}\, 60$	0.004	FCM	Plus hormonal treatment

Oxford level 3b

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Bratt et al., [202]	1996	Urology	57	54-92	0.009	FCM	S-phase fraction
Tinari et al., [203]	1993	Cancer	63	84	0.0044	FCM	Stages T1-T4
Miller et al., [204]	1991	J Urol	103	$\bar{X}\, 60$	<0.001	FCM	Stage D2
Montgomery et al., [190]	1990	Arch Surg	261	240	<0.0001	FCM	Stage B

After external radiation

Oxford level 3b

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Pollack et al., [205]	2003	J Clin Oncol	149	$\bar{X}\, 96$	0.05	ICM	
Song et al., [206]	1992	J Urol	65	>120	0.0001	ICM	Cancer cause specific survival

After brachytherapy

Oxford level 2b

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Martínez-Jabaloyas et al., [208]	2002	Urology	127	>120	0.031	FCM	
Pollack et al., [209]	1997	Prostate	33	$\bar{X}\, 45$	0.008	FCM	
Ahlgren et al., [210]	1997	Urology	96	$\bar{X}\, 176$	0.004	ICM	
Forsslund et al., [211]	1996	Cancer	334	360	0.001	ICM	
Jorgensen et al., [212]	1995	Brit J Cancer	59	36	n. s.	ICM	Neither GS nor WHO-grade correlated
Vesalainen et al., [169]	1994	Brit J Cancer	273	$\bar{X}\, 156$	0.058	FCM	T1-2, M0
Al Abadi et al., [213]	1992	Eur Urol	271	>= 24	<0.015	FCM	T1-4

Oxford level 3b

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Tribukait [110]	1993	Eur Urol	309	176	<0.0001	ICM	
Van den Ouden et al., [214]	1993	J Urol	963	96	0.023	FCM	Stages T1-T4
Di Silverio et al., [215]	1992	Eur Urol	80	$\bar{X}\, 60$	<0.005	FCM	Stage A-D
Forsslund et al., [216]	1992	Cancer	145	276	<0.001	ICM	Cytological grade
Fordham et al., [217]	1986	Br J Surg	72	6-144	<0.001	FCM	HT in 73%

Oxford level 4

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Miller et al., [204]	1991	J Urol	103	>60	<0.001	FCM	Stage D2

After active surveillance

Oxford level 3b

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Vesalainen et al., [169]	1994	Brit J Cancer	106	$\bar{X}\, 156$	0.02	FCM	T1-2, M0
Tribukait et al., [110]	1993	Europ Urol	287	$\bar{X}\, 176$	<0.001	FCM	FNABs

Oxford level 4

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Tribukait et al., [218]	1991	Acta Oncol	125	72	n.n.	FCM	FNABs

Oxford level 3b

After TUR

Oxford level 2b

Authors	Year	Journal	Number of patients	Months follow-up	Significance p	Flow/Image cytometry	Comment
Borre et al., [219]	1998	Prostate	120	$\bar{X}\, 180$	0.024	FCM	96 WHO low grades only

Table 5. Correlation of DNA-ploidy with overall survival. Bold p-values refer to Cox multivariate regression analysis.
Table 6. Addition of independent prognostic information to the Gleason-score. Bold p-values refer to Cox multivariate regression analysis.

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/ Prognosis	Comment
After RPE								
Oxford level 2b								
Bantis et al., [175]	2009	Tumori	112	≥ 60	0.001	ICM	P	pT2a-c, pT3a
Pretorius et al., [16]	2009	Cell Oncol	186	≥ 73.3	<0.001	ICM	GS 7	
Ward et al., [198]	2005	BJU international	816	≥ 126.6	0.008	FCM		pT3 only
Bantis et al., [176]	2005	J Exp Clin Cancer Res	70		<0.007	ICM	P	
Deliveliotis et al., [177]	2003	World J Urol	84	≥ 45	0.0074	FCM	P	--
Amling et al., [178]	1999	J Urol	106	≥ 60	0.002	FCM		After external radiation
Ross et al., [225]	1999	Urology	211	≥ 60	<0.001	FCM	P	Prediction of external radiation
Blute et al., [222]	1997	Adult Urology	2712	At primary diagnosis	0.005	FCM	D	Correlation with positive margins
Lerner et al., [181]	1996	J Urol	904	≥ 42	p 0.0089	FCM		pT1, pT2
Ross et al., [170]	1994	Cancer	89	≥ 31.2	0.006	ICM	P	Metastases & recurrences x3
Blute et al., [185]	1989	J Urol	315	96	0.0004	FCM	P	Stages A, B
Winkler at al., [186]	1988	Mayo Clin Proc	91	≥ 90	<0.001	FCM	P	Low and high GS
Oxford level 3b								
Isharwal et al., [176]	2009	J Urol	370	3	AUC-ROC +1,5%	ICM	D	ECS
Ross et al., [225]	1999	Am J Surg Pathol	111	≥ 27	0.002	ICM	P	Disease recurrence
Di Silverio et al., [215]	1996	Europ Urol	85	≥ 35	0.05	FCM	--	
Hawkins et al., [187]	1995	Urology	894	≥ 100	<0.05	FCM	P	Partially HT
Ross et al., [170]	1994	Mod Pathol	56	≥ 28.8	0.0026	ICM	P	--
Tinari et al., [203]	1993	Cancer	81	≥ 84	0.0044	FCM	P	Stages T1 – T4
Voges et al., [189]	1993	Eur Urol	85	70	0.001	FCM	P	Time to recurrence
Montgomery et al., [190]	1990	Arch Surg	261	240	0.001	FCM	P	Progression & cause specific survival
Nativ et al., [184]	1989	Mayo Clin Proc	38	≥ 94.8	0.002	FCM	P	GS low-grade subgroup
After TUR								
Oxford level 3b								
Nielsen et al., [226]	1993	APMIS	79	120	0.0035	FCM	P	Grading acc. to Shelley
After external radiation								
Oxford level 2b								
Pollack et al., [205]	2003	J Clin Oncol	149	108	0.03	ICM	P	Survival
Oxford level 3b								
Song et al., [206]	1992	J Urol	65	>120	<0.0001	ICM	P	Mayo Grade
After brachytherapy								
Oxford level 2b								
Stephensen et al., [207]	1987	Cancer Res	82	≥ 91.8	0.0109	FCM		Pelvic lymphnode dissection, D1, N+
Oxford level 3b								
Peters-Gee et al., [60]	1992	Cancer	51	≥ 52	<0.05	ICM		--
After hormonal therapy								
Oxford level 2b								
Martinez-Jabaloyas et al., [199]	2004	Actas Urol Espan	54	120	0.009	ICM	P	All with bone metastases
Martinez-Jabaloyas et al., [208]	2002	Urology	127	>120	0.031	FCM	P	--
Oxford level 3b								
Pollack et al., [205]	2003	J Clin Oncol	149	≥ 96	0.005	ICM	P	After external radiation
Continuation of Table 6.

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/Prognosis	Comment
Ahlgren et al., [210]	1997	Urology	96	176	0.0004	ICM	P	FNABs
Forsslund et al., [211]	1996	Cancer	334	360	0.001	ICM	P	FNABs
Vesalainen et al., [169]	1994	Br J Cancer	101	156	0.058	FCM	P	--
Di Silverio et al., [201]	1992	Eur Urol	80	60	<0.05	FCM	P	--
Fordham et al., [217]	1986	Br J Surg	72	6-144	<0.001	FCM	P	Ploidy + GS better than GS alone

After active surveillance
Oxford level 2b

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/Prognosis	Comment
Adolfsson et al., [197]	1990	J Urol	146	50	0.018	FCM	Non-Progression	FNABs. Therapy if progressed

After TUR
Oxford level 2b

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/Prognosis	Comment
Borre et al., [219]	1998	Prostate	120	180	0.024	FCM	P	96 WHO low grades only

Table 7. Correlation of DNA-ploidy with local recurrence or progress. Bold p-values refer to Cox multivariate regression analysis.

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/Prognosis	Comment
Ross et al., [225]	1999	Am J Surg Pathol	111	27	0.002	ICM	--	
Ross et al., [170]	1994	Cancer	89	31.2	<0.001	ICM	3 x more frequent	
Zincke et al., [182]	1992	Cancer	370	60	<0.0001	FCM	Plus hormonal treatment	
Montgomery et al., [190]	1990	Arch Surg	283	112.8	<0.001	FCM	Stage B	
Winkler et al., [186]	1988	Mayo Clin and Foundation	91	>60	<0.0001	FCM	Stage D1	

After hormonal therapy
Oxford level 2b

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/Prognosis	Comment
Eskelinen et al., [227]	1991	Eur Urol	35	187	0.028	FCM	T1/2	

After Brachytherapy
Oxford level 2b

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Diagnosis/Prognosis	Comment
Keyes et al., [223]	2013	In J Rad Oncol Biol Phys	94	90	0.011	ICM	PSA recurrence	

Table 8. Correlation of DNA-ploidy with occurrence of lymphnode- or bone metastases. Bold p-values refer to Cox multivariate regression analysis.

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Lymph nodes/ Bone	Remarks	
Ross et al., [170]	1994	Cancer	89	31.2	0.006	ICM	--		
Ross et al., [229]	1993	Cancer	100	At primary diagnosis	0.0001	ICM	L & B	71 after laparotomy	
Winkler et al., [186]	1988	Mayo Clin Rep	91	90	<0.0001	FCM	B	D1	

Oxford level 3b

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Lymph nodes/ Bone	Remarks
Ross et al., [173]	1994	Med Pathol	56	28.8	0.0026	ICM	L, B	

Oxford level 4

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Lymph nodes/ Bone	Remarks
Tucci et al., [57]	1994	Brazilian J Med Biol Res	28	50	0.03	ICM	B	

After hormonal therapy
Oxford level 3b

Authors	Year	Journal	Number of patients	Months of follow-up	Significance p	Flow/Image cytometry	Lymph nodes/ Bone	Remarks
Tribukait [235]	1993	Eur Urol	309	176	<0.0001	FCM	--	
Eskelinen et al., [227]	1991	Eur Urol	91	187	0.0601	FCM	Ln	
in radical prostatectomies. Five simulated punch biopsies had been taken per specimen. The risk of underestimation decreased from 60% with one biopsy to 5% with five investigated biopsies [231].

- 123 DNA-histograms from 48 men with prostatectomy due to cancers of unknown stage (mean 2.6) had been compared with those of six preoperative biopsies (diploid, non-diploid). In 34 men (71%) DNA-ploidy in prostatectomies was correctly predicted as either diploid or non-diploid on biopsies. Under-estimation occurred mainly when only one or two biopsies were analyzed [232].

Conclusions

All twelve reviews on diagnostic or prognostic DNA-measurements in prostate cancer published so far are merely "narrative" and not systematic ones. Yet, they all conclude that DNA-ploidy is of either diagnostic or of prognostic value, without considering the methodologic quality of addressed papers.

Shortcomings of published papers

The most frequent cause for exclusion of papers (n=32) was an inadequate study design (not enough patients:<50), mixture of different therapies, lacking therapeutic, clinical or follow-up information, selection of patients. In 13 publications DNA-measurements were methodologically insufficient (inadequate sampling or calibration, measurements of sections of different thickness, paucity of cells). Correlation with non-diagnostic or prognostic features (n=25) and dealing with methodological aspects only (n=24) cannot be criticized. Many scientists did not obey existing respective international and interdisciplinary methodological consensus reports [30,32-34], especially concerning problematical types of specimens (sections), missing performance standards (<300 nuclei) and individual prognostic interpretation of data.

Algorithms for DNA-grading of prostate cancer
[52] have been the first to propose an objective alternative for grading prostate cancer malignancy based on DNA-measurements in cancer cells. Our group has published on "DNA-grading of prostatic carcinoma: Prognostic validity and reproducibility" [233]. Up to 1998 no standardized, internationally agreed algorithms existed, on how to derive prognostically different groups from DNA-histograms of prostate cancers. Each author individually defined at least two, up to five different categories. The only common aspect was that they all comprised a DNA-diploid category as the prognostically most favorable one. In 1998 and 2001 the European Society of Analytical Cellular Pathology (ESACP) "Taskforce on Standardization of Diagnostic DNA-Image Cytometry" has published a detailed proposal how to derive four prognostically relevant groups, resp. grades of malignancy, from DNA-measurements of malignant tumors: peridiploid, peritetraploid, x-ploid and multiploid [33,34] (Figure 1 and Table 1). Unfortunately, not many authors have adopted the respective standardized algorithms since then. Thus, their results concerning the prognostic validity of DNA-grading the malignancy of prostate cancer are hardly comparable. Nevertheless, the main, clinically relevant differentiation refers to DNA-diploidy vs. DNA-non diploidy. During tumor progression, peridiploid cancers primarily increase their rate of proliferation [64,234]. Later on during tumor progression, additional peritetraploid clones evolve [235]. Thus, concerning diploidy vs. non-diploidy, it is not relevant which c-value the peridiploid peak exactly has, but if there is a second peak at 4c or elsewhere. According to [210,234] a prognostically relevant proliferation rate >5% can be stated in peridiploid DNA-histograms, supposed a reasonable number of >1000 of nuclei had been measured to obtain representative results [34].

Diagnostic accuracy

The fact that DNA-ploidy-parameters are able to nearly exclude cancer spread beyond the capsule as detected after radical prostatectomy significantly more precise than the Gleason-Score, has been proven in 8 level 1b studies [167-174], Table 3. Thus DNA-ploidy should additionally be taken into consideration, whenever organ confinement is a prerequisite for certain therapeutic strategies, like AS.

Prognostic validity

For untreated patients with early prostate cancer under Active Surveillance the following results have been published:

- Documented for 120 untreated patients in a multivariate level 2b study the significant superior ability of DNA-ploidy over the histological WHO-grade to predict tumor-specific survival time [219].
- Proved in a multivariate level 1b-study with a statistically significant correlation of DNA-ploidy with recurrence-free survival time in 146 untreated patients in comparison with the cytological grade [197,236].
- Proved for 106 untreated patients in a multivariate level 2b study a statistically significant correlation of DNA-ploidy with overall survival time in comparison with the Gleason-score [169].
- Proved for 287 primary untreated patients in a multivariate level 2b study significant correlation with overall survival time in comparison with the cytological grade [235,236].

Brachytherapy is another standard treatment for organ confined prostate cancer. Patients that most likely reveal cancer spread beyond the capsule have to be excluded from this approach. Using core biopsy material, [223] could correctly predict the majority of failures and non-failures, while Gleason-score failed (Figure 3). DNA-diploid patients had a significantly lower rate of disease recurrence as compared with DNA-aneuploid patients. Thus, DNA-grading of prostate cancer malignancy can be used to further specify the inclusion criteria for brachytherapy.

The fact that DNA-ploidy-parameters could prove in 17 retrospective level 2b studies to add significant prognostic
information to the Gleason-score independent from the type of therapy (Table 6) should encourage scientists to conduct studies in order to confirm these findings on a higher level of evidence as this had already been proposed by a WHO-working group [48]. Yet, level of evidence 1b studies, proving independent prognostic validity of DNA-ploidy over Gleason-score to predict non progression of clinically insignificant prostate cancers under Active Surveillance in a prospective setting are still missing. We recommend to perform these.

Heterogeneity
Data on the representativity of DNA-ploidy measurements on biopsies for the cancer as a whole are heterogeneous and depend on the number of samples investigated. While [168,228] and [230] found discrepancies in only 3.8%, 5.0% and 8.0%, [210,232] reported different ploidy-levels in 24.1% and 29.0%. These figures are lower than comparable ones for the Gleason-score (30%:11). Because DNA-ploidy is inhomogeneously distributed within prostate cancers, especially of advanced stages, as histopathological grades are, it is advisable to investigate all cancer foci in biopsies, either separately or pooled.

Why is DNA-cytometry not used more widely?
Some critical comments on this method overlook the enormous technological input that computer science, digital image analysis and informatics have meanwhile contributed to develop this method, becoming a biologically well founded, fast and valid prognostic technology. The fact that the procedure up to the recent development of digital nuclear classifiers has been too laborious and too time consuming and pathologists have not been sufficiently reimbursed, further prohibited its clinical acceptance.

While retrospective studies proving the independent prognostic validity of DNA-ploidy measurements have been published for all main types of treatment modalities of prostate cancers, prospective level 1b studies are still missing. As no other treatment decision in cancers of the prostate is so much dependent from an objective, reproducible and valid prognostication of an individual cancers behavior as Active Surveillance, prospective studies should especially focus on patients under this strategy.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

Authors’ contributions	AB	MT	MS	JD	SB
Research concept and design	✓				
Collection and/or assembly of data		✓	✓	✓	✓
Data analysis and interpretation	✓			✓	
Writing the article	✓				
Critical revision of the article			✓	✓	✓
Final approval of article	✓				
Statistical analysis	✓				
The impact of the 2005 International Society of Urological Pathology Consensus Conference on standard Gleason grading of prostatic carcinoma in needle biopsies. J Urol. 2008; 180:548-52. | Article | PubMed

18. Mitelman F, Johansson B and Mertens F (Eds.): Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (2014). Cancer genome anatomy project. 2014.

19. Baretton GB, Valina C, Vogt T, Schneiderbanger K, Diebold J and Lohrs U. Interphase cytogenetic analysis of prostatic carcinomas by use of nonisotopic in situ hybridization. Cancer Res. 1994; 54:4472-80. | Article | PubMed

20. Gburek BM, Kollmorgen TA, Qian J, D’Souza-Gburek SM, Lieber MM and Jenkins RB. Chromosomal anomalies in stage D1 prostate adenocarcinoma primary tumors and lymph node metastases detected by fluorescence in situ hybridization. J Urol. 1997; 157:223-7. | Article | PubMed

21. Alcaraz A, Takahashi S, Brown JA, Herath JF, Bergstrahl EJ, Larson-Keller JJ, Lieber MM and Jenkins RB. Aneuploidy and aneuploidy of chromosome 7 detected by fluorescence in situ hybridization are markers of poor prognosis in prostate cancer. Cancer Res. 1994; 54:3998-4002. | Article | PubMed

22. Henke RP, Kruger E, Ayhan N, Hubner D and Hammerer P. Frequency and distribution of numerical chromosomal aberrations in prostatic cancer. Hum Pathol. 1994; 25:476-84. | Article | PubMed

23. Matsuyama H, Pan Y, Oba K, Yoshihiro S, Matsuoka K, Hagarth L, Kudren D, Naito K, Bergerheim US and Ekman P. The role of chromosome 8p22 deletion for predicting disease progression and pathological staging in prostate cancer. Aktuelle Urol. 2003; 34:247-9. | Article | PubMed

24. Duesberg P, Li R, Fabarius A and Heflmann R. The chromosomal basis of cancer. Cell Oncol. 2005; 27:293-318. | Article | PubMed

25. Duesberg P and McCormack A. Immortality of cancers: a consequence of inherent karyotypic variations and selections for autonomy. Cell Cycle. 2013; 12:783-802. | Article | PubMed Abstract | PubMed Full Text

26. Shankey TV, Kallioniemi OP, Kosloski JM, Lieber ML, Mayall BH, Miller G and Smith GJ. Consensus review of the clinical utility of DNA content cytometry in prostate cancer. Cytometry. 1993; 14:497-500. | Article | PubMed

27. Ormerod MG, Tribukait B and Giarretti W. Consensus report of the task force on standardisation of DNA flow cytometry in clinical pathology. DNA Flow Cytometry Task Force of the European Society for Analytical Cellular Pathology. Anal Cell Pathol. 1998; 17:103-10. | Article | PubMed

28. Sandritter W, Carl M and Ritter W. Cytophotometric measurements of the DNA content of human malignant tumors by means of the Feulgen reaction. Acta Cytol. 1966; 10:26-30. | Article | PubMed

29. Brugal G and Chassery JM. A new image-processing system designed for densitometry and pattern analysis of microscopic specimens. Histochemistry. 1977; 58:241-258.

30. Böcking, Giroud F and Reith A. Consensus report of the ESAC task force on standardization of diagnostic DNA image cytometry. European Society for Analytical Cellular Pathology. Anal Cell Pathol. 1995; 8:67-74. | Article | PubMed

31. Bacus JW and Bacus JV. Quality control in image cytometry: DNA ploidy. J Cell Biochem Suppl. 1994; 19:153-64. | Article | PubMed

32. Giroud F, Haroske G, Reith A and Böcking A. 1997 ESAC consensus report on diagnostic DNA image cytometry. Part II: Specific recommendations for quality assurance. European Society for Analytical Cellular Pathology. Anal Cell Pathol. 1998; 17:201-8. | Article | PubMed

33. Haroske G, Giroud F, Reith A and Böcking A. 1997 ESAC consensus report on diagnostic DNA image cytometry. Part I: basic considerations and recommendations for preparation, measurement and interpretation. European Society for Analytical Cellular Pathology. Anal Cell Pathol. 1998; 17:189-200. | Article | PubMed

34. Haroske G, Baak JP, Danielsen H, Giroud F, Gschwendtner A, Oberholzer...
36. Engelhardt M. Kinetiken des Prostata Spezifischen Antigens als Indikationsstellung zur Prostatabiopsie. Med. Diss. Univ. Düsseldorf, Germany, 2014.

37. Tils M. Häufigkeit von DNA-Ploidiemustern in Stanzbiopsien vom Prostatakarzinom. Med. Diss. Univ. Düsseldorf, Germany, 2014.

38. Buhmeida A, Pyrhonen S, Laatko M and Collan Y. Prognostic factors in prostate cancer. Diagn Pathol. 2006; 1:4. | Article | PubMed Abstract | PubMed Full Text

39. Montonri R, Mazzucchelli R, Scarpelli M, Lopez-Beltran A, Mikuz G, Alfga B and Bocon-Gibod L. Prostate carcinoma II: prognostic factors in prostate needle biopsies. BJU Int. 2006; 97:492-7. | Article | PubMed

40. Epstein JJ, Amin M, Bocon-Gibod L, Egevad L, Humphrey PA, Mikuz G, Newling D, Nilsson S, Sakr W, Srigley JR, Wheeler TM and Montonri R. Prognostic factors and reporting of prostate cancer in radical prostatectomy and pelvic lymphadenectomy specimens. Scand J Urol Nephrol Suppl. 2005; 34-63. | Article | PubMed

41. Ross JS, Jennings TA, Naezer T, Sheehan CE, Fisher HA, Kauffman RA, Anwar S and Kalikatur BV. Prognostic factors in prostate cancer. Am J Clin Pathol. 2003; 120 Suppl:S85-100. | Article | PubMed

42. Chakravarti A and Zhai GG. Molecular and genetic prognostic factors of prostate cancer. World J Urol. 2003; 21:265-74. | Article | PubMed

43. Mazzucchelli R, Lopez-Beltran A, Scarpelli M and Montonri R. Predictive factors in prostate needle biopsy. Pathologia. 2002; 94:331-7. | Article | PubMed

44. Miller GJ, Brawner MK, Sakr WA, Thrasler JB and Townsend R. Prostate cancer: serum and tissue markers. Rev Urol. 2001; 3 Suppl 2:S11-9. | Article | PubMed Abstract | PubMed Full Text

45. Bostwick DG, Grignon DJ, Hammond ME, Amin MB, Cohen M, Crawford G, Dospadarowicz M, Kaplan RS, Miller DS, Montonri R, Pajak T, Pollack A, Srigley JR and Yarbro JW. Prognostic factors in prostate cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med. 2000; 124:995-1000. | Article | PubMed

46. Sakr WA and Grignon DJ. Prostate cancer: indicators of aggressiveness. Eur Urol. 1997; 32 Suppl 3:15-23. | Article | PubMed

47. Mikuz G. Pathology of prostate cancer. Old problems and new facts. Adv Clin Path. 1997; 1:213-34. | Article | PubMed

48. Schröder F, Tribukait B, Böcking A, Devere White R, Koss L, Lieber M, Stenkvist B and Zetterberg A. Clinical utility of cellular DNA measurements in prostate carcinoma. Consensus Conference on Diagnosis and Prognostic Parameters in Localized Prostate Cancer. Stockholm, Sweden, May 12-13, 1993. Scand J Urol Nephrol Suppl. 1994; 162:51-63. | Article | PubMed

49. Lieber MM. DNA ploidy: early malignant lesions. J Cell Biochem Suppl. 1992; 16H:44-6. | Article | PubMed

50. Deitch AD and Devere White RW. Flow cytometry as a predictive modality in prostate cancer. Hum Pathol. 1992; 23:352-9. | Article | PubMed

51. Böcking A. Diagnostic DNA cytometry of prostatic cancer. Diagn. Oncol. 1992; 2:90-102.

52. Tavares AS, Costa J, de Carvalho A and Reis M. Tumour ploidy and prognosis in carcinomas of the bladder and prostate. Br J Cancer. 1966; 20:438-41. | Article | PubMed Abstract | PubMed Full Text

53. Phillips B, Ball C, Sackett D, Badenoch D, Straus S, Haynes B, Dawes M and Howick J. Oxford Center for Evidence Based Medicine. Levels of evidence. 2007. | Website

54. Abaza R, Diaz LR, Jr., Laskin WB and Pims MR. Prognostic value of DNA ploidy, bcl-2 and p53 in localized prostate adenocarcinoma incidently discovered at transurethreal prostatectomy. J Urol. 2006; 176:2701-5. | Article | PubMed

55. Moussa M, Song TY, Frei JV, Peers G and Chin JL. DNA cytometric proliferative index predicting organ confinement in clinical stage-B prostate cancer. Clin Invest Med. 1997; 20:119-26. | Article | PubMed

56. Romics I, Boci J, Bach D, Beuler W, Frang D and Kopper L. DNA content of prostatic cancer measured by flow cytometry in patients undergoing radical prostatectomy. Anticancer Res. 1995; 15:1131-4. | Article | PubMed

57. Tucci Junior S, Blumenfeld W and Narayan P. Ploidy status correlates with outcome in stage B prostate adenocarcinoma. Braz J Med Biol Res. 1994; 27:25-32. | Article | PubMed

58. Babiarz J, Peters JM, Miles B and Crissman JD. Comparison of DNA content in primary and lymph node metastases in prostate adenocarcinoma. Anal Quant Cytol Histol. 1993; 15:158-64. | Article | PubMed

59. Yokogi H, Mizutani M and Ishibe T. Flow cytometric DNA analysis of stage D2 prostatic carcinoma. Urol Int. 1991; 47:57-9. | Article | PubMed

60. McIntire TL, Murphy WM, Coon JS, Chandler RW, Schwartz D, Conway S and Weinstein RS. The prognostic value of DNA ploidy combined with histologic subtyping for incidental carcinoma of the prostate gland. Am J Clin Pathol. 1988; 89:370-3. | Article | PubMed

61. Lundberg S, Carstensen J and Rundquist I. DNA flow cytometry and histopathological grading of paraffin-embedded prostate biopsy specimens in a survival study. Cancer Res. 1987; 47:1973-7. | Article | PubMed

62. Frankfort OS, Chin JL, Englander LS, Greco WR, Pontes JE and Rustum YM. Relationship between DNA ploidy, glandular differentiation, and tumor spread in human prostate cancer. Cancer Res. 1985; 45:3418-23. | Article | PubMed

63. Böcking A, Auffermann W, Jocham D, Contractor H and Wohltmann D. DNA grading of malignancy and tumor regression in prostatic carcinoma under hormone therapy. Appl Pathol. 1985; 3:206-14. | Article | PubMed

64. Ahlgren G, Falkmer U, Gadaleanu V and Abrahamsson P. Evaluation of DNA ploidy combined with a cytometric proliferation index of imprints from core needle biopsies in prostate cancer. Eur Urol. 1999; 36:314-9. | Article | PubMed

65. Nordgren H, Nilsson S, Ekvost S, Stattn P, Heiden T, Bergkvist D, Ahlgren G, Falkmer U, Gadaleanu V and Abrahamsson PA. Prognostic significance of DNA ploidy combined with a cytometric proliferation index of stage D2 prostatic carcinoma. Anticancer Res. 1995; 15:1195-65. | Article | PubMed

66. Peters-Gee JM, Miles BJ, Cerny JC, Gaba AR, Jacobsen G and Crissman JD. Prognostic significance of DNA quantitation in stage D1 prostatic carcinoma with the use of image analysis. Cancer. 1992; 70:1159-65. | Article | PubMed

67. Visakorpi T, Kallioniemi OP, Paronen IV, Isola JJ, Heikkinen Al and Koivula TA. Flow cytometric analysis of DNA ploidy and S-phase fraction from prostatic carcinomas: implications for prognosis and response to endocrine therapy. Br J Cancer. 1991; 64:578-82. | Article | PubMed Abstract | PubMed Full Text

68. Haugen OA and Mjolnerod O. DNA-ploidy as prognostic factor in prostatic carcinoma. Int J Cancer. 1990; 45:224-8. | Article | PubMed

69. Borgmann V, Al-Abadi H and Nagel R. Treatment of locally advanced prostatic carcinoma with LHRR analogues: cytological, DNA-cytophotometrical, and clinical results. Am J Clin Oncol. 1988; 11 Suppl 1:S19-38. | Article | PubMed

70. Azua J, Romeo P, Valle J and Azua J, Jr. Cytologic differentiation grade and malignancy DNA index in prostatic adenocarcinoma. Anal Quant Cytol Histol. 1997; 19:102-6. | Article | PubMed

71. Azua J, Romeo P, Valle J and Azua J, Jr. DNA quantification as a prognostic factor in prostatic adenocarcinoma. Anal Quant Cytol Histol. 1996; 18:330-6. | Article | PubMed

72. Al Abadi H and Nagel R. Clinical relevance of cytology and DNA-cytometry in the therapy of patients with prostatic carcinoma. Verh. Dtsch. Ges. Zyt. 1995; 19:181-197.
Cytophotometric DNA analysis and steroid receptor content in human prostatic carcinoma. Scand. J. Urol. Nephrol. 1981; 60Suppl:85-88.

110. Tribukait B. Tumor biology in diagnostic cytology: DNA cytometry in carcinomas of the bladder and prostate. Recent Results Cancer Res. 1993; 133:23-31. | Article | PubMed

111. Falkmer UG. Methodologic sources of errors in image and flow cytometric DNA assessments of the malignancy potential of prostatic carcinoma. Hum Pathol. 1992; 23:360-7. | Article | PubMed

112. Falkmer UG. Methodological aspects on flow and image cytometric DNA assessments in prostatic adenocarcinoma. Acta Oncol. 1991; 30:201-3. | Article | PubMed

113. Stenkvist B and Johansson-Brown I. Image analysis cytology for DNA determination in breast and prostate cancer. Acta Oncol. 1991; 30:911-6. | Article | PubMed

114. Benson MC, Karp F and Tobin MS. Mult-parametric flow cytometric analysis of prostatic cancer. In Karr JP, Coffey DS, Gardner W (Eds.), Prognostic cytometry and cytopathology of prostate cancer. 1989; 243-253.

115. Coon JS and Weinstein RS. Cellular DNA content in archival, paraffin-embedded prostate carcinoma specimens. In Karr JP, Coffey DS, Gardner (Eds.), Prognostic cytometry and cytopathology of prostate cancer. 1989; 218-229.

116. Freudenberg N, Guzman J, Maier A, Pfänder R and Korth K. Cytology and DNA-cytometry of carcinoma of the prostate. MD-GKB: 1989; 55:74-77.

117. Klei FA, Ratliff JE and White FK. DNA distribution patterns of prostatic tissue obtained at time of transurethral resection. Urology. 1988; 31:260-5. | Article | PubMed

118. Benson MC and Walsh PC. The application of flow cytometry to the assessment of tumor cell heterogeneity and the grading of human prostatic cancer: preliminary results. J Urol. 1986; 135:1194-8. | Article | PubMed

119. Seppelt U, Sprenger E and Hedderich J. Methodologic sources of errors in image and flow cytometric DNA assessments of the malignancy potential of prostatic carcinoma. Hum Pathol. 1992; 23:360-7. | Article | PubMed

120. Tribukait B, Espositi PL and Ronström L. Tumour ploidy for characterization of prostatic carcinoma: flow-cytofluorometric DNA studies using aspiration biopsy material. Scand J Urol Nephrol Suppl. 1980; 55:59-64. | Article | PubMed

121. Tribukait B. Methodologic sources of errors in image and flow cytometric DNA assessments of the malignancy potential of prostatic carcinoma. Recent Results Cancer Res. 1993; 133:23-31. | Article | PubMed

122. Tribukait B, Espositi PL and Ronström L. Tumour ploidy for characterization of prostatic carcinoma: flow-cytofluorometric DNA studies using aspiration biopsy material. Scand J Urol Nephrol Suppl. 1980; 55:59-64. | Article | PubMed

123. Sebo TJ, Cheville JC, Riehle DL, Lohse CM, Pankratz VS, Blute ML and Sebo TJ. Conventional assessment of needle biopsy specimens is more useful than digital image analysis of needle biopsy specimens in FNAB samples. Anal Cell Pathol. 1999; 18:105-102. | PubMed

124. Lämmel A, Roters M, Kastendieck H and Becker H. Fluorometrische Untersuchungen an Prostatazellen. Urologe A. 1978; 243:253-263.

125. Zimmerman A and Truss F. Vergleichende zytologische und impulzysotopometrische Untersuchungen an Prostatazellen. Urologe A. 1978; 17:391-394.

126. Böcking et al. Pathology Discovery 2014, http://www.hoajonline.com/journals/pdf/2052-7896-2-7.pdf
doi: 10.7243/2015-7896-2-7
percent surface area and cores positive for carcinoma, perineural invasion, Gleason score, DNA ploidy and proliferation, and preoperative serum prostate specific antigen: a report of 454 cases. Cancer. 2003; 91:2196-204. | Article | PubMed

146. Ring KS, Karp FS, Olsson CA, O’Toole K, Bixon R and Benson MC. Flow cytometric analysis of localized adenocarcinoma of the prostate: the use of archival DNA analysis in conjunction with pathological grading to predict clinical outcome following radical retropubic prostatectomy. Prostate. 1990; 17:155-64. | Article | PubMed

147. Seay TM, Blute ML and Zincke H. Long-term outcome in patients with pTxN+ adenocarcinoma of prostate treated with radical prostatectomy and early androgen ablation. J Urol. 1998; 159:357-64. | Article | PubMed

148. Milcent S, Lorenzato M, Enaschescu D, Enaschescu C, Birembaut P and Staerman. La ploidie cellulaire: facteur prédictif de cancer de prostate localement avancé. Progr. Urol. 2007; 17:819-823.

149. Gundorova LV, Avantdilov GG, Saniev KB and Zaitzants OV. [Morphometric diagnostics of the prostate precursor and cancer by examination of ploidy]. Arkh Patol. 2003; 65:46-50. | PubMed

150. Martinez Jabaloyas JM, Ruiz Cerda JL, Sanz Chinesta S, Jimenez A, Hernandez M and Jimenez Cruz JF. [Prognostic value of DNA ploidy in prostatic cancer]. Actas Urol Esp. 2001; 25:283-90. | Article | PubMed

151. Danielsen HE, Kildal W and Sjodbo J. [Digital image analysis in pathology--exemplified in prostatic cancer]. Tidsskr Nor Laegeforen. 2000; 120:479-88. | Article | PubMed

152. Ishikawa A. [The clinical usefulness of flow cytometric DNA analysis in prostatic cancer]. Hinyokika Kyor. 1992; 38:665-70. | Article | PubMed

153. Piaton E, Bringuier PP, Seigneurin D, Perrin P and Devonec M. [Comparison with the cytological grade and DNA content]. Bull Cancer. 1991; 78:935-41. | PubMed

154. Sahin AA, Ro JY, El-Naggar AK, Ordonez NG, Babaian RJ and Ayala AG. Pseudosarcomatous fibroimyoblast tumor of the prostate. Am. J. Clin. Pathol. 1991; 96:253-258.

155. Howell LP and Teplitz RL. Papillary carcinoma of prostatic ductal origin: a cytologic report with immunohistochemical and quantitative DNA correlation. Diagn Cytopathol. 1989; 5:211-6. | Article | PubMed

156. Leistenschneider W. Cytophotometric DNA analysis as indicator of therapeutic Responsiveness. In: Kart JP, Coffey DS, Gardner W: Prognostic cytometric andcytopathology of prostate cancer. 1989; 266-280.

157. Lundgren H, Hartley-Asp B and Henriksson H. Fine needle biopsy as a method for following ploidy changes in the Dunning R-3327 rat prostate tumour. In Vivo. 1988; 2:213-6. | PubMed

158. Collins JM, Bagwell CB, Block NL, Claffin AJ, Irving GL, 3rd, Pollack A and Stover B. Flow cytometric monitoring of R 3327 rat prostate carcinoma. Invest Urol. 1981; 19:8-13. | Article | PubMed

159. Robertson CN and Paulson DF. DNA in radical prostatectomy specimens. Prognostic value of tumor ploidy. Acta Oncol. 1991; 30:205-7. | Article | PubMed

160. Nativ O and Lieber MM. Prostatic carcinoma: Prognostic importance of static and flow cytometric nuclear DNA ploidy measurements. Am. Urol. Assoc. 1991; 23:178-183.

161. Nagel R and al Abadi H. The prognostic significance of ploidy and DNA-heterogeneity in the primary diagnosis and monitoring of patients with locally advanced prostatic carcinoma. Scand J Urol Nephrol Suppl. 1991; 138:83-92. | Pdf | PubMed

162. Fossa SD, Berner A, Waehre H, Heiden T, Juul ME, van den Ouden D, Pettersen EO, Wang N and Tribukait B. DNA ploidy in cell nuclei from paraffin-embedded material--comparison of results from two laboratories. Cytometry. 1992; 13:395-403. | PubMed

163. Takai K, Goellner JR, Kutzmann JA, Myers RP and Lieber MM. Static and flow DNA cytometry of prostatic adenocarcinoma. Studies of needle biopsy and radical prostatectomy specimens. J. Urol. Pathol. 1994; 2:39-47.

164. Gettmann MT, Bergstrahl EJ, Blute M, Zincke H and Bostwick DG. Prediction of patient outcome in pathologic stage T2 adenocarcinoma of the prostate: lack of significance for microvesSEL density analysis. Urology. 1998; 51:79-85. | Article | PubMed

165. Isharwal S, Miller MC, Epstein JJ, Mangold LA, Humphreys E, Partin AW and Veltri RW. DNA Ploidy as surrogate for biopsy gleason score for preoperative organ versus nonorgan-confined prostate cancer prediction. Urology. 2009; 73:1092-7. | Article | PubMed Abstract | PubMed Full Text

166. Brinker DA, Ross JS, Tran TA, Jones DM and Epstein JJ. Can ploidy of prostate carcinoma diagnosed on needle biopsy predict radical prostatectomy stage and grade? J Urol. 1999; 162:2036-9. | Article | PubMed

167. Vesalainen S, Nordling S, Lipponen P, Talja M and Syrjanen K. Progression and survival in prostatic adenocarcinoma: a comparison of clinical stage, Gleason grade, S-phase fraction and DNA ploidy. Br J Cancer. 1994; 70:309-14. | Article | PubMed Abstract | PubMed Full Text

168. Ross JS, Figge H, Bui HK, del Rosario AD, Jennings TA, Ripin MD and Fisher HA. Prediction of pathologic stage and postprostatectomy disease recurrence by DNA ploidy analysis of initial needle biopsy specimens of prostate cancer. Cancer. 1994; 74:2811-8. | PubMed

169. Greene DR, Rogers E, Wessels EC, Wheeler TM, Taylor SR, Santucci RA, Thompson TC and Scardino PT. Some small prostate cancers are nondiploid by nuclear image analysis: correlation of deoxyribonucleic acid ploidy status and pathological features. J Urol. 1994; 151:1301-7. | Article | PubMed

170. Haggman M, de la Torre M, Brandstedt S, Norlen BJ, Norberg M and Busch C. Pre- and postoperative DNA ploidy patterns correlated to pT-stage, histological grade and tumour volume in total prostatectomy specimens. Scand J Urol Nephrol. 1994; 28:59-66. | Article | PubMed

171. Ross JS, Figge HL, Bui HK, del Rosario AD, Fisher HA, Nazer T, Jennings TA, Ingle R and Kim DN. E-cadherin expression in prostatic carcinoma biopsies: correlation with tumour grade, DNA content, pathologic stage, and clinical outcome. Mod Pathol. 1994; 7:835-41. | Article | PubMed

172. Badalamenta RA, O’Toole RV, Young DC and Drago JR. DNA ploidy and prostate-specific antigen as prognostic factors in clinically resectable prostate cancer. Cancer. 1991; 67:3014-23. | Pdf | PubMed

173. Bantsis A, Patsouris E, Gonidi M, Kavantzas N, Tsipis A, Athanassiadou AM, Aggelidou E and Athanassiadou P. Telomerase RNA expression and DNA ploidy as prognostic markers of prostate carcinomas. Tumori. 2009; 95:744-52. | Pdf | PubMed

174. Bantsis A, Gonidi M, Athanassiades P, Tsolos C, Lioissi A, Aggelidou E, Athanassiadou AM, Petراكou E and Athanassiadou P. Prognostic value of DNA analysis of prostate adenocarcinoma: correlation to clinicopathologic predictors. J Exp Clin Cancer Res. 2005; 24:273-8. | Pdf | PubMed

175. Deliveliotis C, Skolarikos A, Karayannis A, Tzelepis V, Trakas N, Alargof E and Protogerou V. The prognostic value of p53 and DNA ploidy following radical prostatectomy. World J Urol. 2003; 21:171-6. | Article | PubMed

176. Amling CL, Lerner SE, Martin SK, Slezk J, Slutzek JM, Blute ML and Zincke H. Deoxyribonucleic acid ploidy and serum prostate specific antigen predict outcome following salvage prostatectomy for radiation refractory prostate cancer. J Urol. 1999; 161:857-62. | Article | PubMed

177. Gettmann MT, Pacelli A, Slezk J, Bergstrahl EJ, Blute M, Zincke H and Bostwick DG. Role of microvesSEL density in predicting recurrence in
pathologic Stage T3 prostatic adenocarcinoma. *Urology*. 1999; 54:479-85. | Article | PubMed

180. Mora LB, Moscinski LC, Diaz JJ, Blair P, Cantor AB and Pow-Sang JM. Stage B prostate cancer: Correlation of DNA ploidy analysis with histological and clinical parameters. *Cancer Control*. 1999; 6:587-591. | Article | PubMed

181. Lerner SE, Blute ML, Bergstralh EJ, Bostwick DG, Eickholt JT and Zincke H. Analysis of risk factors for progression in patients with pathologically determined prostatic cancers after radical retropubic prostatectomy. *J Urol*. 1996; 156:137-43. | Article | PubMed

182. Zincke H, Bergstralh EJ, Larson-Keller JJ, Farrow GM, Myers RP, Lieber MM, Barrett DM, Rife CC and Gonchoroff NJ. Stage D1 prostate cancer treated by radical prostatectomy and adjuvant hormonal treatment. Evidence for favorable survival in patients with DNA diploid tumors. *Cancer*. 1992; 70:311-23. | Article | PubMed

183. Wirth MP, Muller HA, Manseck A, Muller J and Frohmuller HG. Value of nuclear DNA ploidy patterns in patients with prostate cancer after radical prostatectomy. *Eur Urol*. 1991; 20:248-52. | Article | PubMed

184. Nativ O, Winkler HZ, Raz Y, Therneau TM, Farrow GM, Myers RP, Zincke H and Lieber MM. Stage C prostatic adenocarcinoma: flow cytometric nuclear DNA ploidy analysis. *Mayo Clin Proc*. 1989; 64:911-9. | Article | PubMed

185. Blute ML, Nativ O, Zincke H, Farrow GM, Therneau T and Lieber MM. Pattern of failure after radical retropubic prostatectomy for clinically and pathologically localized adenocarcinoma of the prostate: influence of tumor deoxyribonucleic acid ploidy. *J Urol*; 1989; 142:1262-5. | Article | PubMed

186. Winkler HZ, Rainwater LM, Myers RP, Farrow GM, Therneau TM, Zincke H and Lieber MM. Stage D1 prostatic adenocarcinoma: significance of nuclear DNA ploidy patterns studied by flow cytometry. *Mayo Clin Proc*. 1988; 63:103-12. | Article | PubMed

187. Hawkins CA, Bergstralh EJ, Lieber MM and Zincke H. Influence of DNA ploidy and adjuvant treatment on progression and survival in patients with pathologic stage T3 (PT3) prostate cancer after radical retropubic prostatectomy. *Urology*. 1995; 46:356-64. | Article | PubMed

188. Carmichael MJ, Veltri RW, Partin AW, Miller MC, Walsh PC and Epstein JI. Deoxyribonucleic acid ploidy analysis as a predictor of recurrence following radical prostatectomy for stage T2 disease. *J Urol*. 1995; 153:3015-9. | Article | PubMed

189. Voges GE, Eigner EB, Ross W, Sussman H, Stockle M, Freiha FS and Stamey TA. Pathologic parameters and flow cytometric ploidy analysis in predicting recurrence in carcinoma of the prostate. *Eur Urol*. 1993; 24:132-9. | Article | PubMed

190. Montgomery BT, Nativ O, Blute ML, Farrow GM, Myers RP, Zincke H, Therneau TM and Lieber MM. Stage B prostatic adenocarcinoma. Flow cytometric nuclear DNA ploidy analysis. *Arch Surg*. 1990; 125:327-31. | Article | PubMed

191. Lee SE, Currin SM, Paulson DF and Walther PJ. Flow cytometric determination of ploidy in prostatic adenocarcinoma: a comparison with microscopic and histopathological grading as a predictor of clinical recurrence. *J Urol*. 1988; 140:769-74. | Article | PubMed

192. Veltri RW, Partin AW, Epstein JE, Marley GM, Miller CM, Singer DS, Patton KP, Criley SR and Coffey DS. Quantitative nuclear morphometry, Markovian texture descriptors, and DNA content captured on a CAS-200 image analysis system, combined with PCNA and HER-2/neu immunohistochemistry for prediction of prostate cancer progression. *J Cell Biochem Suppl*. 1994; 19:249-58. | Article | PubMed

193. Centeno BA, Zietman AL, Shipley WU, Sobczak ML, Shipley JW, Preffer FI, Boyle B and Colvin RB. Flow cytometric analysis of DNA ploidy, percent S-phase fraction, and total proliferative fraction as prognostic indicators of local control and survival following radiation therapy for prostate carcinoma. *Int J Radiat Oncol Biol Phys*. 1994; 30:309-15. | Article | PubMed

194. Khoo VS, Pollack A, Cowen D, Joon DL, Patel N, Terry NH, Zagas GK, von Eschenbach AC, Meistrich ML and Troncoso P. Relationship of Ki-67 labeling index to DNA-ploidy, S-phase fraction, and outcome in prostate cancer treated with radiotherapy. *Prostate*. 1999; 41:166-72. | Article | PubMed

195. Pollack A, Zagas GK, el-Naggar AK, Gauwitz MD and Terry NH. Near-diploidy: a new prognostic factor for clinically localized prostate cancer treated with external beam radiation therapy. *Cancer*. 1994; 73:1895-903. | Article | PubMed

196. Stege R, Tribukait B, Lundh B, Carlstrom K, Pousette A and Hasenson M. Quantitative estimation of tissue prostate specific antigen, deoxyribonucleic acid ploidy and cytological grade in fine needle aspiration biopsies for prognosis of hormonally treated prostate carcinoma. *J Urol*. 1992; 148:833-7. | Article | PubMed

197. Adolfsson J and Tribukait B. Evaluation of tumor progression by repeated fine needle biopsies in prostate adenocarcinoma: modal deoxyribonucleic acid value and cytological differentiation. *J Urol*. 1990; 144:1408-10. | Article | PubMed

198. Ward JF, Slezak JM, Blute ML, Bergstralh EJ and Zincke H. Radical prostatectomy for clinically advanced (cT3) prostate cancer since the advent of prostate-specific antigen testing: 15-year outcome. *BJU Int*. 2005; 95:751-6. | Article | PubMed

199. Martinez Jabaloyas JM, Jimenez Sanchez A, Ruiz Cerda JL, Sanz Chinesta S, Sempere A and Jimenez Cruz JF. *Prognostic value of DNA ploidy and nuclear morphometry in metastatic prostate cancer*. Actas Urol Esp. 2004; 28:298-307. | Article | PubMed

200. Myers RP, Larson-Keller JJ, Bergstralh EJ, Zincke H, Oesterling JE and Lieber MM. Hormonal treatment at time of radical retropubic prostatectomy for stage D1 prostate cancer: results of long-term followup. *J Urol*. 1992; 147:910-5. | Article | PubMed

201. Di Silverio F, D’Eraimo G, Caponera M, Persecinio F, Eleuteri P, Cavallo D, De Vita R and Forte D. The prognostic value of DNA content in patients with prostatic carcinoma. *Eur Urol*. 1992; 21 Suppl 1:S2-5. | Article | PubMed

202. Bratt O, Anderson H, Bak-Jensen E, Balderot B and Lundgren R. *Multivariate pathogenesis and DNA flow cytometry with analysis of S-phase fraction in prostate cancer: influence on prognosis. Urology*. 1996; 47:218-24. | Article | PubMed

203. Tinari N, Natoli C, Angelucci D, Tenaglia R, Fiorentino B, Di Stefano P, Amatetti C, Zezza A, Nicolai M and Iacobelli S. DNA and S-phase fraction analysis by flow cytometry in prostate cancer. *Clinicopathologic implications*. *Cancer*. 1993; 71:1289-96. | Article | PubMed

204. Miller J, Horsfall DJ, Marshall VR, Rao DM and Leong SY. The prognostic value of deoxyribonucleic acid flow cytometric analysis in stage D2 prostatic carcinoma. *J Urol*. 1991; 145:1192-6. | Article | PubMed

205. Pollack A, Grignon DJ, Heydon KH, Hammond EH, Lawton CA, Mesic JB, Fu KK, Porter AT, Abrams RA and Shipley WU. *Prostate cancer DNA ploidy and response to salvage hormone therapy after radiotherapy with or without short-term total androgen blockade: an analysis of RTOG 8610*. *J Clin Oncol*. 2003; 21:1238-48. | Article | PubMed

206. Song J, Cheng WS, Cuppus RE, Earle JD, Farrow GM and Lieber MM. Nuclear deoxyribonucleic acid content measured by static cytometry: important prognostic association for patients with clinically localized prostate carcinoma treated by external beam radiotherapy. *J Urol*. 1992; 147:794-7. | Article | PubMed

207. Stephenson RA, James BC, Gay H, Fair WR, Whitmore WF, Jr, and Melamed MR. *Flow cytometry of prostate cancer: relationship of DNA content to survival. Cancer Res*. 1987; 47:2504-7. | Article | PubMed

208. Martinez-Jabaloyas JM, Ruiz-Cerda JL, Hernandez M, Jimenez A and Jimenez-Cruz F. *Prognostic value of DNA ploidy and nuclear morphology in prostate cancer treated with androgen deprivation*. *Urology*. 2002; 59:715-20. | Article | PubMed

209. Pollack A, Troncoso P, Zagas GK, von Eschenbach AC, Mak AC, Wu CS and Terry NH. The significance of DNA-ploidy and S-phase fraction in node-positive (stage D1) prostate cancer treated with androgen ablation. *Prostate*. 1997; 31:21-8. | Article | PubMed

210. Ahigren G, Lindholm K, Falkmer U and Abrahamsson PA. A DNA cytometric proliferation index improves the value of the DNA ploidy pattern as a prognosticating tool in patients with carcinoma of the prostate. *Urology*. 1997; 50:379-84. | Article | PubMed
211. Forsslund G, Nilsson B and Zetterberg A. Near tetraploid prostate carcinoma. Methodologic and prognostic aspects. Cancer. 1996; 78:1748-55. | Article | PubMed

212. Jorgensen T, Yogesan K, Skjorten F, Berner A, Tytger KJ and Danielsen HE. Histopathological grading and DNA ploidy as prognostic markers in metastatic prostatic cancer. Br J Cancer. 1995; 71:1055-60. | Article | PubMed Abstract | PubMed Full Text

213. Al-Abadi H and Nagel R. Nuclear DNA analysis: DNA heterogeneity in the monitoring of patients with locally advanced prostatic carcinoma. Eur Urol. 1992; 22:303-10. | Article | PubMed

214. Van den Ouden D, Tribukait B, Blom JH, Fossa SD, Kyrth KH, ten Kate FJ, Heiden T, Wang N and Schroder FH. Deoxyribonucleic acid ploidy of core biopsies and metastatic lymph nodes of prostate cancer patients: impact on time to progression. The European Organization for Research and Treatment of Cancer Genitourinary Group. J Urol. 1993; 150:400-6. | Article | PubMed

215. Di Silverio F, D’Eramo G, Buscarini M, Sciara A, Casale P, Di Nicola S, Loreto A, Seccareccia F and De Vita R. DNA ploidy, Gleason score, pathological stage and serum PSA levels as predictors of disease-free survival in C-D1 prostatic cancer patients submitted to radical retropubic prostatectomy. Eur Urol. 1996; 30:316-21. | Article | PubMed

216. Forsslund G, Esposti PL, Nilsson B and Zetterberg A. The prognostic significance of nuclear DNA content in prostatic carcinoma. Cancer. 1992; 69:1432-9. | Article | PubMed

217. Fordham MV, Burdge AH, Matthews J, Williams G and Cooke T. Prostatic carcinoma cell DNA content measured by flow cytometry and its relation to clinical outcome. Br J Surg. 1986; 73:400-3. | Article | PubMed

218. Tribukait B. DNA flow cytometry in carcinoma of the prostate for diagnosis, prognosis and study of tumor biology. Acta Oncol. 1991; 30:187-92. | Article | PubMed

219. Borre M, Hoyer M, Nerstrom B and Overgaard J. DNA ploidy and survival of patients with clinically localized prostate cancer treated without intent to cure. Prostate. 1998; 36:244-9. | Article | PubMed

220. Tavares AS, Costa J and Maia JC. Correlation between ploidy and prognosis in prostatic carcinoma. J Urol. 1973; 109:676-9. | Article | PubMed

221. Martinez Jabaloyas JM, Jimenez Sanchez A, Ruiz Cerda JL, Sanz Chinea S, Sempere A and Jimenez Cruz JF. [Prognostic value of DNA ploidy and nuclear morphometry in metastatic prostatic cancer]. Actas Urol Esp. 2004; 28:298-307. | Article | PubMed

222. Blute ML, Bostwick DG, Bergstralh EJ, Sleazak JM, Martin SK, Amling CL and Zinke H. Anatomic site-specific positive margins in organ-confined prostate cancer and its impact on outcome after radical prostatectomy. Urology. 1997; 50:733-9. | Article | PubMed

223. Keysy M, Macaulay C, Hayes M, Korbelik J, Morris WJ and Palcic B. DNA ploidy measured on archived pretreatment biopsy material may correlate with prostate-specific antigen recurrence after prostate brachytherapy. Int J Radiat Oncol Biol Phys. 2013; 86:829-34. | Article | PubMed

224. Isharwal S, Miller MC, Epstein JI, Mangold LA, Humphreys E, Partin AW and Veltri RW. DNA Ploidy as surrogate for biopsy Gleason score for preoperative organ versus nonorgan-confined prostate cancer prediction. Urology. 2009; 73:1092-7. | Article | PubMed Abstract | PubMed Full Text

225. Ross JS, Nazerer T, Church K, Amato C, Figge H, Rifkin MD and Fisher HA. Contribution of HER-2/neu oncogene expression to tumor grade and DNA content analysis in the prediction of prostatic carcinoma metastasis. Cancer. 1993; 72:3020-8. | Article | PubMed

226. Leung CS, Zbieranowski I, Demers J and Murray D. DNA image cytometry of prostatic carcinoma: a comparison of needle core biopsy and subsequent prostatectomy specimens. Mod Pathol. 1994; 7:195-9. | Article | PubMed

227. Wang N, Wilkin C, Böcking A and Tribukait B. Evaluation of tumor heterogeneity of prostatic carcinoma by flow- and image DNA cytometry and histopathological grading. Anal Cell Pathol. 2000; 20:49-62. | Article | PubMed

228. Häggarth L, Auer G, Busch C, Norberg M, Haggman M and Egevad L. The significance of tumor heterogeneity for prediction of DNA ploidy of prostate cancer. Scand J Urol Nephrol. 2005; 39:387-92. | Article | PubMed

229. Böcking A, Chatelain R, Orthen U, Gien V, van Kalkkreuth G, Jocham D and Wohltmann D. DNA-grading of prostatic carcinoma: prognostic validity and reproducibility. Anticancer Res. 1988; 8:129-35. | Article | PubMed

230. Tribukait B. Klinische Bedeutung der DNA-Durchflusszytometrie beim Prostatakarzinom. In: Samuels W and Böcking A (Eds.). Prognostische und therapeutische Bedeutung der DNA-Zytometrie beim Prostatakarzinom. Schriftenreihe zur Gesundheitsanalyse 2006, Gmünder Ersatzkasse, 41:115-133.

231. Tribukait B. Nuclear deoxyribonucleic acid determination in patients with prostate carcinomas: clinical research and application. Eur Urol. 1993; 23 Suppl 2:64-76. | Article | PubMed

232. Esposti PL. Cytologic malignancy grading of prostatic carcinoma by tranrectal aspiration biopsy. A five-year follow-up study of 469 hormone-treated patients. Scand J Urol Nephrol. 1971; 5:199-209. | Article | PubMed

233. Böcking A, Tils M, Schramm D, Dietz J and Biesterfeld S. DNA-cytometric grading of prostate cancer systematic review with descriptive data analysis. Pathol Discov. 2014; 2:7. | Article | PubMed

Citation:
Böcking A, Tils M, Schramm D, Dietz J and Biesterfeld S. DNA-cytometric grading of prostate cancer systematic review with descriptive data analysis. Pathol Discov. 2014; 2:7.
http://dx.doi.org/10.7243/2052-7896-2-7