The endosomal trafficking factors CORVET and ESCRT suppress plasma membrane residence of the renal outer medullary potassium channel (ROMK)

Timothy D. Mackie¹, Bo-Young Kim², Arohan R. Subramanya³⁴, Daniel J. Bain⁵, Allyson F. O’Donnell⁶, Paul A. Welling², and Jeffrey L. Brodsky¹*

Running Title: Control of ROMK trafficking

1. University of Pittsburgh, Department of Biological Sciences, Pittsburgh, PA 15260
2. University of Maryland, Baltimore, Department of Physiology, Baltimore, MD 21201
3. University of Pittsburgh, Departments of Medicine and Cell Biology, Pittsburgh, PA 15261
4. VA Pittsburgh Healthcare System, Medicine and Research Services, Pittsburgh, PA 15240
5. University of Pittsburgh, Department of Geology and Environmental Science, Pittsburgh, PA 15260
6. Duquesne University, Department of Biological Sciences, Pittsburgh, PA 15282

*To whom correspondences should be addressed: Jeffrey Brodsky, Ph.D., A320 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260. Email: jbrodsky@pitt.edu Phone: (412) 624-4831

Keywords: protein trafficking, renal outer medullary potassium channel (ROMK), endosomal complexes required for trafficking (ESCRT), class-C core vacuole/endosome tethering complex, renal physiology, yeast genetics, endoplasmic-reticulum-associated degradation (ERAD), protein degradation

ABSTRACT
Protein trafficking can act as the primary regulatory mechanism for ion channels with high open probabilities, such as the renal outer medullary (ROMK) channel. ROMK, also known as Kir1.1 (KCNJ1), is the major route for potassium secretion into the pro-urine and plays an indispensable role in regulating serum potassium and urinary concentrations. However, the cellular machinery that regulates ROMK trafficking has not been fully defined. To identify regulators of the cell-surface population of ROMK, we expressed a pH-insensitive version of the channel in the budding yeast Saccharomyces cerevisiae. We determined that ROMK primarily resides in the endoplasmic reticulum (ER), as it does in mammalian cells, and is subject to ER-associated degradation (ERAD). However, sufficient ROMK levels on the plasma membrane rescued growth on low-potassium medium of yeast cells lacking endogenous potassium channels. Next, we aimed to identify the biological pathways most important for ROMK regulation. Therefore, we used a synthetic genetic array to identify nonessential genes that reduce the plasma membrane pool of ROMK in potassium-sensitive yeast cells. Genes identified in this screen included several members of the endosomal complexes required for transport (ESCRT) and the class-C core vacuole/endosome tethering (CORVET) complexes. Mass spectroscopy analysis confirmed that yeast cells lacking an ESCRT component accumulate higher potassium concentrations. Moreover, silencing of ESCRT and CORVET components increased ROMK levels at the plasma membrane in HEK293 cells. Our results indicate that components of the post-endocytic pathway influence the cell-surface density of ROMK and establish that components in this pathway modulate channel activity.

Protein quality control allows cells in all organisms to survive proteotoxic stresses and fine-tune their proteome in response to environmental changes (1). Significant recent work has elucidated in great detail how protein quality control pathways operate in the cytoplasm and in the endoplasmic reticulum (ER) (2–4). Common to both pathways is the delivery of substrates to the cytoplasmic proteasome, which selectively degrades ubiquitinated and misfolded protein substrates (5). In addition, proteins that reside in the ER or in the ER membrane must be removed from this...
compartment and delivered to the proteasome. The selection, delivery, and degradation of misfolded proteins in this compartment proceeds through the ER associated degradation (ERAD) pathway. Quality control “decisions” that operate at later steps in the secretory pathway, such as in the Golgi apparatus, the endosome, and the plasma membrane, have also been identified in eukaryotic cells (6–8). However, the relative influence of each system on specific client proteins is rarely investigated.

One critical class of proteins that transit the secretory pathway—and that might be subject to more than one quality control checkpoint—are ion channels. Even under ideal circumstances, ion channels may possess unfavorable folding kinetics or are thermodynamically unstable because of dynamic structural transitions, and/or because charged and hydrophilic residues reside within their transmembrane domains (9). Long-range interactions between channel domains or even between channel subunits further compromise folding efficiency (10). Perhaps not surprisingly, genetic mutations that exacerbate protein misfolding result in degradation by cellular protein quality control pathways, including ERAD and the late secretory quality control pathways, noted above (11). For example, the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) requires approximately 30 minutes from the onset of translation to reach its native conformation, during which ~70% of the wild-type channel is recognized as being misfolded and is targeted for ERAD (12, 13). The predominant cystic fibrosis-causing allele, ΔF508, interferes with the assembly of a soluble domain that engages a transmembrane domain-containing segment (14, 15) so essentially all of the mutant protein is degraded by ERAD. Moreover, even if the mutant is released to the plasma membrane, either through the application of chemical chaperones or by low temperature incubation, it is more rapidly endocytosed than the wild type protein and destroyed in the lysosome via plasma membrane quality control (16). Furthermore, ΔF508-containing aggregates have been detected in cells, which may be selected for degradation in the lysosome via the autophagic pathway (17). Studies of multimeric ion channels, such as the voltage-gated potassium channel human Ether-à-go-go Related Gene (hERG), have found that subunit assembly can also present an energetic barrier during ion channel maturation (18). In addition, hERG mutants associated with long Q-T syndrome are degraded by ERAD in a chaperone- and proteasome-dependent manner (19–21). Together, these data emphasize the inefficient nature of ion channel biogenesis and indicate that genetic, disease-causing mutations can interfere with protein folding in the secretory pathway.

In addition to CFTR and hERG, the impact of cellular quality control mechanisms in the regulation of other disease-associated ion channels has also been investigated (11, 20, 22–29). However, the rules that govern the quality control of diverse ion channels remain poorly defined. We propose that a continued investigation into the mechanisms underlying the biogenesis and degradation of ion channels will help uncover these rules and define how associated “channelopathies” might be treated.

To this end, we initiated studies on the homo-tetrameric Renal Outer Medullary Potassium (ROMK) channel, also known as Kir1.1. ROMK is the primary potassium efflux channel in the thick ascending limb and distal nephron (30) and is expressed as two major isoforms with divergent physiological roles. ROMK2 is primarily expressed in the thick ascending limb of the loop of Henle and is responsible for potassium cycling coupled to sodium and chloride reabsorption through the sodium potassium chloride cotransporter, NKCC2. In contrast, bulk potassium secretion via ROMK1 occurs in the late distal convoluted tubule, connecting tubule, and cortical collecting duct, and ROMK1 expression is increased in response to dietary potassium intake (31, 32). Under physiological conditions, both ROMK isoforms have a high open probability (P_o) of ~0.9 (33, 34), so channel expression must be tightly regulated due to its vital role in regulating serum potassium levels. Indeed, ROMK function is thought to be regulated primarily through the homeostatic control of protein trafficking (35–38). In addition, mutations that deplete ROMK from the plasma membrane cause an autosomal recessive salt-wasting disorder known as type II Bartter syndrome (39). Interestingly, individuals heterozygous for a type II Bartter mutant allele exhibit resistance to hypertension, most likely because of decreased NKCC2-mediated reabsorption of sodium (40). Of the >50 identified Bartter syndrome-associated mutations in ROMK, many appear to affect ROMK
trafficking or post translational modification when ectopically expressed in Xenopus laevis oocytes (41). To date, therapies for Bartter syndrome are not curative and patients require lifelong multi-drug treatments and potassium supplementation. Thus, a deeper understanding of the trafficking and degradative machineries that shepherd ROMK to and from the plasma membrane is necessary to devise effective treatments for type II Bartter syndrome.

In this study, we used the budding yeast Saccharomyces cerevisiae to define the relative contributions of protein trafficking and two distinct quality control pathways on ROMK stability and plasma membrane residence. As deleting the genes encoding two plasma membrane potassium channels, TRK1 and TRK2, renders yeast inviable on low potassium media (42), an ectopically expressed potassium channel, such as ROMK, can rescue this phenotype, assuming that it is able to fold, assemble, and traffic to the plasma membrane (Figure 1A). Previous studies by our group and other groups have exploited this technique for structure-function and genetic interaction studies of several human potassium channels (43–48). Here, we report on a new yeast screen to monitor growth on low potassium as a readout for genes that increase ROMK function at the plasma membrane. By screening the yeast non-essential deletion collection (49), we identified two complexes with established roles in post-endocytic trafficking that regulate the plasma membrane levels of ROMK: the endosomal complexes required for trafficking (ESCRT) and the class-C core vacuole/endoosome tethering (CORVET) complex. We then confirmed the biological relevance of these complexes by silencing select ESCRT and CORVET homologs in human cells. These data provide the first genome-wide analysis of factors that control ROMK biogenesis, and our work led to the identification of components that, in principle, can be therapeutically modulated to treat disorders associated with ROMK function.

RESULTS

Identification of a ROMK variant suitable for high-throughput genetic analysis. We recently reported that two targeted mutations in ROMK are necessary to ensure a screenable phenotype in trk1Δtrk2Δ yeast on low potassium medium (50). These mutations prevent the gating of ROMK by low pH, which is common in the yeast cytosol, and replace Ser with a phospho-mimetic amino acid, Asp, at position 44, which favors channel egress from the ER to the Golgi apparatus (51, 52). This form of ROMK was then used to show that type II Bartter syndrome mutations fail to rescue the growth of trk1Δtrk2Δ yeast on low potassium medium (50). In addition, our group previously performed a synthetic genetic array (SGA) in trk1Δtrk2Δ yeast on low potassium medium to identify genes that regulate the plasma membrane residence of another human potassium channel, Kir2.1. This study uncovered a component of complex I of the ESCRT complex (ESCRT-I), Vps23, as a negative regulator of Kir2.1 in both yeast and human cells (27). Since ROMK and Kir2.1 are 42% identical and are members of the inward-rectifying potassium channel family, Kir2.1 expressed in trk1Δtrk2Δvps23Δ yeast was used as a positive control. As previously reported, trk1Δtrk2Δvps23Δ yeast expressing Kir2.1 are able to grow on low (10 mM) potassium medium, while trk1Δtrk2Δ yeast transformed with an empty expression vector are not (Figure 1B).

We next tested the two alternatively spliced isoforms in the kidney, ROMK1 and ROMK2, which are identical except for a 19-amino acid residue N-terminal extension in ROMK1. To date, no biophysical differences between the channels have been identified, though they have divergent physiological roles (35). Curiously, ROMK2S44D+K80M failed to rescue the growth of trk1Δtrk2Δvps23Δ yeast on low potassium media as effectively as ROMK1S44D+K80M (Figure 1B), despite somewhat higher steady-state expression levels of ROMK2S44D+K80M compared to ROMK1S44D+K80M (Supplemental Figure S1). Notably, the degree of rescue mediated by ROMK1S44D+K80M was similar to that of Kir2.1, which was used in our previous screen. Hence, ROMK1S44D+K80M was used for the remainder of this study. Furthermore, we predicted that the ROMK1S44D+K80M protein could be used to conduct an SGA analysis, which could provide for the first time a whole genomic profile of the factors that negatively regulate ROMK trafficking.

In order to confirm that Kir2.1 and ROMK1S44D+K80M directly increase the amount of intracellular potassium in trk1Δtrk2Δ yeast, we prepared extracts from yeast cells expressing these proteins, as well as from those containing a vector
control, and subjected the extracts to Inductively Coupled Plasma Mass Spectrometry (ICP-MS). This method allows for precise measurement of the metallic elemental composition of a biological sample. We first noted that the level of intracellular potassium in trk1Δtrk2Δ yeast expressing ROMK1s44d+k80m was not statistically different from the vector control after approximately 8 hrs of culture in medium containing 10 mM potassium (Figure 1C, left graph). These data are consistent with the inability of this strain to grow better than the vector control in the same medium (Figure 1B). However, both Kir2.1 and ROMK1s44d+k80m expression increased intracellular potassium more than twofold compared to the vector control in trk1Δtrk2Δvps23Δ cells (Figure 1C, right graph), consistent with Vps23 acting as a negative regulator of ROMK.

Prior studies established that trk1Δtrk2Δ yeast are sensitive to the toxic cations hygromycin B (an aminoglycoside antibiotic), spermine, and tetramethylammonium (53). This phenotype arises from increased cellular uptake of the toxins in trk1Δtrk2Δ yeast because the membrane is hyperpolarized when potassium entry is limited. Therefore, we examined growth on medium containing hygromycin B. Consistent with data in Figure 1B, Kir2.1 or ROMK1s44d+k80m expression enhanced trk1Δtrk2Δvps23Δ yeast growth on medium supplemented with hygromycin B (Supplemental Figure S2). Together, these results indicate that ROMK1s44d+k80m functions as a potassium transporter in yeast, allowing for sufficient import of this cation to support growth on low potassium medium.

When examined under steady-state conditions in mammalian cells, ROMK primarily resides in the ER (35, 41). Similarly, we found that the majority of ROMK1s44d+k80m co-migrated with the ER-resident protein Sec61 when lysates from a wild-type yeast strain isogenic to trk1Δtrk2Δ and its derivatives (BY4742) were subjected to subcellular fractionation by sucrose gradient sedimentation analysis (Figure 1D). ROMK appeared to be absent in the Pma1-containing plasma membrane fractions. Based on the clear increase in intracellular potassium and the phenotypic data presented above, these results suggest that ROMK1s44d+k80m growth rescue on low potassium medium requires only small amounts of protein at the plasma membrane that are undetectable using this approach (also see below). This conclusion is consistent with our previous data, indicating that very low levels of Kir2.1 plasma membrane residence are sufficient for growth rescue under these steady-state conditions (48, 50).

ROMK1s44d+k80m is primarily degraded by the vacuole and not by ERAD in yeast. ER-associated degradation (ERAD) is one of the first lines of defense against the accumulation of misfolded proteins in the secretory pathway. We recently reported that ROMK1s44d+k80m is more stable than wild-type ROMK1 in yeast and in vitro (50), but the relative contribution of ERAD versus post-ER quality control mechanisms was not investigated. Moreover, neither ROMK1 nor ROMK1s44d+k80m was completely stable when the proteasome was inhibited with MG132. These data suggest that a sub-population of ROMK is degraded in the vacuole, which serves as the degradative compartment for post-ER quality control in yeast (54) To determine whether the vacuole contributes directly to ROMK degradation, both wild-type ROMK1 and ROMK1s44d+k80m were expressed in a yeast strain lacking Pep4, which activates proteasome in the vacuole by cleaving their immature forms (55), as well as in an isogenic wild-type strain. We then analyzed their relative degradation profiles in a cycloheximide chase assay. As shown in Figure 2, both ROMK variants were significantly stabilized in pep4Δ yeast. However, while ROMK1 was only partially stabilized (Figure 2A), consistent with targeting to the ERAD pathway, ROMK1s44d+k80m was almost completely stable within the 90-minute timescale of the chase (Figure 2B). These data also emphasized the overall heightened stability of the ROMK1s44d+k80m protein as compared to wild type ROMK1 (50).

We next examined the relative efficiencies with which wild-type ROMK1 and the ROMK1s44d+k80m isoform are degraded by ERAD. During ERAD, misfolded protein substrates are recognized by molecular chaperones such as Hsp70 and ubiquitinated by E3 ubiquitin ligases that are ER associated (2, 4). After the acquisition of a polyubiquitin tag, the ERAD substrate is retrotranslocated from the ER in an ATP-dependent process that utilizes the AAA-ATPase, Cdc48 (in yeast) or p97 (in mammals). We found that wild-type ROMK1 behaves like a canonical yeast ERAD substrate as it was significantly stabilized when
Cdc48 was inactivated, when the genes encoding two ER-localized E3 ubiquitin ligases in yeast, Hrd1 and Doa10, were deleted, or when the cytosolic Hsp70 Ssa1 was disabled (Figure 3A,C,E). However, ROMK1\textsubscript{S44D+K80M} is consistently more stable, and the relative amount of degradation is affected less or not at all by ablation of these ERAD components (Figure 3B,D,F). Therefore, we propose that the degradation of wild-type ROMK1 is dominated by ERAD whereas the degradation of ROMK1\textsubscript{S44D+K80M} is dominated by post-ER quality control. Therefore, ROMK1\textsubscript{S44D+K80M} represents a novel “tool” with which to decipher how the post-ER quality control machinery regulates channel levels.

A yeast synthetic genetic array (SGA) for ROMK1 effectors implicates late secretory pathway protein degradation. Since ROMK1\textsubscript{S44D+K80M} rescues potassium sensitivity in trk1\textsubscript{Δ}trk2\textsubscript{Δ}vps23\textsubscript{Δ} yeast and appears to do so by increasing intracellular potassium (Figure 1B-C) (50), we conducted a whole-genome screen for other factors that negatively regulate ROMK residence and activity at the plasma membrane. To this end, ROMK1\textsubscript{S44D+K80M}-expressing trk1\textsubscript{Δ}trk2\textsubscript{Δ} yeast were mated with the non-essential yeast deletion collection and arrays of triple mutant progeny (i.e., those that were deleted for TRK1, TRK2, and a non-essential gene; see Experimental Procedures) were generated (Figure 4A). Potential negative effectors were identified by comparing growth on high (100 mM) versus low (“0” mM) potassium medium, in which the only available potassium derives from trace amounts in the media components (42). The initial screen revealed 40 very strong hits (z-score >3), 228 strong hits (z-score >2), and 519 weak hits (z-score >1) from the nearly 5,000 strains screened (Supplemental Table S1). The confirmed negative regulator of ROMK, VPS23 (see above), was among the very strong hits from the screen. We then re-arrayed select parental strains representing the 228 strong and very strong hits into fresh 96-well plates and performed the screen a second time to eliminate false positives. For the purposes of this study, we also eliminated from consideration genes known to sensitize yeast to toxic cations, such as members of the RSC chromatin remodeling complex (53). GO-term analysis of the 40 confirmed strongest hits indicated a positive (p<0.05) enrichment for the terms “endosomal transport”, “late endosome to vacuole transport”, and “vacuolar transport”, each of which are components of the late secretory trafficking and quality control machineries (Figure 4B). Other genes associated with these pathways were also represented among the strong (z-score >2) and weak (z-score >1) hits.

Next, to further increase our confidence in select hits, we reconstructed several of the triple mutant strains de novo by manually mating trk1\textsubscript{Δ}trk2\textsubscript{Δ} with the appropriate strain from the deletion collection, inducing sporulation, micro-dissecting the resultant tetrads, and selecting triple knock-out progeny (Figure 4C, underlined). This step was necessary to correct for false positives from the original list of screen hits and to build a trustworthy set of strains for subsequent experiments. Select strains that were absent from the original screen were included in this curated list as they are well-characterized components of the endosome-to-vacuole sorting pathway and genetically interact with the isolated hits (Figure 4C). The parental strains from the deletion collection corresponding to those in this curated list were also confirmed by PCR (see Experimental Procedures). The reconstructed strains were then transformed with a vector control or the Kir2.1, ROMK1, or ROMK1\textsubscript{S44D+K80M} expression vectors. Transformants were serially diluted onto a range of potassium supplemented media, and yeast expressing ROMK1\textsubscript{S44D+K80M} that grew better on low (“0” or 10 mM) concentrations of potassium relative to the vector control were considered to be verified negative regulators of ROMK (Figure 5 and Supplemental Figure S3). Importantly, the relative amounts of Kir2.1, ROMK1, and ROMK1\textsubscript{S44D+K80M} in these strains did not reflect the degree to which growth was rescued (Supplementary Figure S4), suggesting that the primary effect of the mutants was on protein residence at the plasma membrane and not only on changes in global protein levels.

To bolster our confidence that the rescue of growth on low potassium medium observed correlates with an increase in ROMK plasma membrane residency, we next conducted sucrose gradient analysis on fractionated membranes derived from end3\textsubscript{Δ} potassium sensitive yeast and an isogenic wild-type strain. In the end3\textsubscript{Δ} background, which is endocytosis deficient, a small amount of ROMK1\textsubscript{S44D+K80M} appears to comigrate
with the plasma membrane marker Pma1 when gels analyzing fractions from the gradient were overexpressed (Supplementary Figure 5A, B, “long exposure”). A signal corresponding to the plasma membrane was not evident when lysates from wild-type cells were examined (Supplementary Figure 5A). Thus, even though the amount of the protein at the plasma membrane is quite low, ROMK1S44D+K80M promotes robust rescue of potassium sensitive growth in end3Δ yeast (Supplementary Figure S5C, D). This phenomenon most likely arises from the high P_0 reported for ROMK (33, 34).

Vps8, a subunit of the CORVET complex, was identified as one of the strongest hits from the initial screen (Figures 4-5). The CORVET complex is a heterohexamer involved in tethering vesicles containing Vps21, which is the yeast Rab5 homolog, prior to early endosome biogenesis (56). CORVET shares four out of six subunits with the HOPS complex, which performs a similar role as CORVET. However, HOPS instead functions with vesicles containing Ypt7, which is the yeast Rab7 homolog, to promote fusion of multi-vesicular bodies (MVBs) with the vacuole (57, 58). Components of both complexes are conserved from yeast to man (59–61). Therefore, to determine whether CORVET and/or HOPS functioned as novel, negative regulators of ROMK, both unique and shared CORVET and HOPS knockout strains were generated in the trk1Δtrk2Δ background. We discovered that only deletion of the CORVET-specific subunits Vps3 and Vps8 improved the growth of in trk1Δtrk2Δ yeast expressing ROMK1S44D+K80M (Figure 5B-C). In contrast, deletion of the HOPS-specific subunits Vps39 and Vps41 and shared subunits Vps11, Vps16, Vps18, and Vps33 had no or little effect on growth (data not shown). A model to explain these data is provided in the Discussion section.

Several other strong hits, as measured by the degree of growth rescue on low potassium, included strains lacking the ubiquitin-binding subunits of the four ESCRT complexes: Vps27 (ESCRT-0), Vps23 (ESCRT-I), Vps36 (ESCRT-II), and Vps20 (ESCRT-III) (Figure 5D-H). The ESCRTs act sequentially to recruit ubiquitinated endocytic and Golgi-derived cargo into the MVB degradation pathway (62). ESCRT targeting is primarily mediated by the cytoplasmic E3 ubiquitin ligase Rsp5 in yeast and the homologous Nedd4 ligases in mammals (63, 64). Therefore, we hypothesized that disabling Rsp5 would stabilize ROMK1S44D+K80M to a greater degree than ROMK1 since the degradation of ROMK1S44D+K80M was exclusively Pep4-dependent (Figure 2). As anticipated, ROMK1S44D+K80M was completely stable in yeast containing the temperature-sensitive rsp5-2 allele (Figure 6B). The lack of any Rsp5-dependence on wild-type ROMK1 degradation (Figure 6A) likely reflects the predominant contribution of ERAD to the disposal of this channel (Figure 3).

How is ROMK activity enhanced in yeast lacking ESCRT, CORVET, or other endosomal sorting genes? Early endosomes are crucial branch points from which cargo may be trafficked in a retrograde fashion to the Golgi apparatus through the action of the Retromer and GARP complexes, sorted into intralumenal vesicles by ESCRT, or recycled directly to the plasma membrane. Direct recycling is known to occur in yeast, though the precise mechanisms are not completely understood (65). We hypothesized that perturbations in ESCRT and other pro-degradation factors shift the dynamic equilibrium of the endosomal population of ROMK toward increased recycling. To test this hypothesis, we crossed our reconstructed trk1Δtrk2Δvps23Δ strain with nhx1Δ yeast, which lack a sodium-proton exchanger involved in endosome acidification and cargo recycling (66). As expected, the NHX1 deletion ablated ROMK-mediated growth on low potassium medium in the trk1Δtrk2Δvps23Δ background (Figure 6C), suggesting that the increase in ROMK activity when ESCRT is perturbed arises from increased recycling.

As the contribution of Nhx1 during cargo recycling is indirect, we sought to replicate this analysis with components of known protein recycling pathways in the cell. We chose Vps5, a BAR-domain containing subunit of the Retromer subcomplex that induces the formation of tubular structures for endosome-to-Golgi recycling (67), and Rcy1, a factor presumed to act upstream of most Vps proteins (68). Surprisingly, deletion of neither VPS5 (Supplementary Figure S6) nor RCY1 (Supplementary Figure S7) in the trk1Δtrk2Δvps23Δ background ablated ROMK1S44D+K80M activity. These data suggest that ROMK recycling occurs through redundant pathways.
ROMK vacuolar targeting is impeded in yeast deficient in ESCRT components. Having shown that ROMK1S4AD+K80M is ERAD-resistant and is regulated by ESCRT and CORVET, we next asked whether ROMK subcellular localization is altered in strains lacking genes encoding select members of these complexes. To this end, we expressed Venus-tagged ROMK80M (Vn-ROMK) in an ESCRT (snf7Δ) and CORVET (vps8Δ) deficient yeast strain, in the pep4Δ mutant, and in an isogenic wild-type strain (BY4742). In wild-type yeast, Vn-ROMK partially colocalized with both an mCherry-tagged ER-resident marker, Ses2-mCh (69), and the dye FM4-64 (70), which binds lipids on the cell surface, passes through the endocytic pathway, and accumulates on the vacuolar limiting membrane (Figure 7A,B). These results are consistent with passage of the protein through the secretory pathway and into a pre-degradative compartment. In agreement with dual localization, an immunoblot of lysate from wild-type yeast with an antibody that detects GFP derivatives, such as Venus, shows both full-length Vn-ROMK (predicted molecular mass of ~70 kDa) and the free Venus species (predicted molecular mass of ~28 kDa) (Figure 7C). The free Venus species arises from the fact that the fluorescent protein tag is refractory to vacuolar proteolysis (71), so once the Vn-ROMK channel enters a proteolytic compartment the fusion protein is only partially digested. Consistent with this view, Vn-ROMK-derived fluorescence accumulated primarily in the vacuole in pep4Δ yeast (Figure 7A,B), and the free Venus species was absent when vacuolar proteases were inactivated (Figure 7C). These data are also consistent with our observation that ROMK1S4AD+K80M degradation is primarily vacuolar (Figure 2B).

In the snf7Δ ESCRT mutant, Vn-ROMK fluorescence shifts from the ER and vacuole to a large punctum that is adjacent to, but not contiguous with, the vacuolar limiting membrane (Figure 7A,B, see white arrows). This localization pattern is consistent with a substrate that is unable to enter intraluminal vesicles and therefore accumulates on the surface of the prevacuolar compartment due to the loss of ESCRT activity in this background (64). Furthermore, the free Venus species is again absent in immunoblot analyses of snf7Δ lysates (Figure 7C). Interestingly, a species of ~36 kDa is instead present in this background and not in the isogenic wild-type. The appearance of this band, only in ESCRT mutants, could be due to proteolytic clipping by proteases within the prevacuolar compartment, as its observed molecular weight coincides with a predicted cleavage site between the first and second transmembrane domains of ROMK (data not shown). The fluorescence of Vn-ROMK in other ESCRT mutants (e.g., vps23Δ and vps36Δ) showed a nearly identical phenotype to snf7Δ (data not shown). Finally, to confirm that the Vn-ROMK-enriched puncta in snf7Δ cells represents the prevacuolar compartment, we expressed Vn-ROMK in a strain expressing an mCherry-tagged version of the Snf7 protein and found that Vn-ROMK and Snf7-RFP colocalize (Figure 7D, white arrows). It was previously observed that the RFP tag interferes with Snf7 function (72), causing a dominant negative phenotype similar to the genetic null (Figure 7C, compare lanes 7 and 10). Therefore, the expression of Snf7-RFP serves both as a marker of the prevacuolar compartment and as an inhibitor of trafficking beyond this compartment.

We also examined localization and Vn-ROMK processing in the vps8Δ CORVET mutant. In this strain, Vn-ROMK is primarily present in the ER with little to no vacuolar signal (Figure 7A,B). Furthermore, although the free Venus species accumulates in this background, its levels are reduced relative to the isogenic wild-type strain (Figure 7C). In some vps8Δ cells, we observed Vn-ROMK accumulating in small puncta near the outer margin of the cell (Figure 7B, white arrows). These results are in accordance with reduced vacuolar delivery in the vps8Δ strain and are in line with localization patterns observed for native yeast substrates in this genetic background (73).

ESCRT and CORVET deplete ROMK from the plasma membrane in HEK293 cells. Given that components in the trafficking and degradation machineries in the late secretory pathway are conserved between yeast and humans, we next asked whether depleting the levels of select components that function in this pathway increases the steady-state distribution of ROMK at the plasma membrane in human cells. To answer this question, we reduced the levels of HGS (the Vps27 homologue), TSG101 (the Vps23 homologue), and VPS8 (the Vps8 homologue) in HEK293 cells that
stably express wild-type ROMK1 under the control of an inducible promoter. Next, ROMK at the plasma membrane was biotinylated, captured on beads, and quantified via Western blot with anti-ROMK antibodies. Robust suppression of TSG101, HGS, and VPS8 protein levels was achieved by siRNAs-mediated knockdown. Moreover, silencing each of these components increased the steady-state levels of ROMK1 at the plasma membrane (Figure 8A). We noted that both immature and mature glycosylated ROMK were biotinylated, as previously reported (74), and that is likely a consequence of ROMK overexpression in these cells. As controls for this experiment, we found that the Na+/K+ ATPase α-subunit, ATP1A, was also biotinylated, but its cell surface expression was unchanged upon knockdown of the ESCRT or CORVET subunits (Figure 8A). In turn, the abundant cytosolic protein, Hsp90, was not biotinylated. Similar results were obtained when this experiment was repeated with a second set of siRNA oligonucleotides (data not shown).

To examine if ROMK1 was primarily degraded in the lysosome in HEK293 cells, we then performed a cycloheximide chase analysis in the presence or absence of the lysosomal protease inhibitor, leupeptin. As shown in Figure 8B, the addition of leupeptin reduced the rate of ROMK1 degradation relative to the vehicle control. However, treatment with the proteasome inhibitor MG132 had no observable effect on ROMK1 stability (Figure 8B), indicating that ERAD played a minimal role in degrading ROMK1 in HEK293 cells. These effects were observed for both the mature (m) and immature (i) ROMK species (data not shown). It is important to emphasize that wild type ROMK1 was used in these experiments since the ROMK1S44D+K80M derivative was only needed in yeast to overcome defects in its trafficking/regulation (also see Discussion, below). Nevertheless, these data indicate that ROMK1 degradation in mammalian cells is primarily lysosomal and also utilizes the ESCRT and CORVET complexes to deplete ROMK from the cell surface. Thus, the yeast-based expression system identified evolutionarily conserved trafficking components that influence the biogenesis of human potassium channels in human kidney cells.

DISCUSSION

Surface expression of the ROMK channel in the distal nephron is physiologically downregulated in states of dietary potassium deprivation by clathrin-dependent endocytosis to safeguard against deleterious potassium loss and to maintain potassium homeostasis (36, 75). Our studies identify components of the trafficking machinery that may underlie a highly regulated pathway that determines whether internalized channels recycle to the surface or are targeted for degradation in the lysosome. Indeed, our genetic screen in yeast revealed that trafficking components involved in endosomal sorting and trafficking act as negative regulators of ROMK. Particularly noteworthy ROMK regulators included the CORVET subunits Vps3 and Vps8, the ESCRT subunits Vps27, Vps23, Vps36, Vps20, and Snf7. Knockdown of the human homologues of Vps23, Vps27, and Vps8 increased density of ROMK at the plasma membrane of HEK293 cells, indicating that negative regulators identified in the yeast screen are also relevant in human cells (Figure 8).

To explain how inhibition of ESCRT and CORVET genetic components increases ROMK plasma membrane residency, we propose the following model (Figure 9). Deletion or silencing of ESCRT, CORVET, and other endosomal sorting factors shifts the equilibrium of cargo sorting at early endosomes to favor increased recycling of ROMK to the plasma membrane. Evidence for this model is provided by the abrogation of ROMK function in a yeast strain lacking both an ESCRT component and a recycling component (Figure 6C). It is likely that deletion or silencing of different components produces the same phenotype through different mechanisms, as divergent recycling pathways originate from different endosomal populations (65)(76). Indeed, the subcellular localization of Venus-tagged ROMK differs dramatically between yeast strains lacking ESCRT and CORVET components (Figure 7), despite similar ROMK function in these strains (Figure 5). With the exception of the end3Δ strain, increased ROMK activity is unlikely due to non-specific inhibition of endocytosis, as deletion of ESCRT and CORVET components do not perturb the rate of endocytosis (73, 77).

The initial screen of the yeast knockout collection uncovered hits in diverse biological pathways, such as endosomal trafficking, mitochondrial function, and translational
regulation. As endosomal trafficking is an important determinant of a protein’s plasma membrane residency, we chose to focus on trafficking factors. Notably, at least one member each of the four ESCRT complexes—ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III—was identified as a hit in the initial screen and confirmed by de novo strain construction. The first three ESCRTs act sequentially to identify ubiquitinated cargo for recruitment to inwardly-budding membrane invaginations, while ESCRT-III acts as the primary membrane deforming complex that drives intra-lumenal vesicle (ILV) formation (63). The ESCRT-0 subunit Vps27 binds ubiquitinated cargo, as does the ESCRT-I subunit Vps36. The ubiquitin-binding subunit of ESCRT-II, Vps36, was also identified in our screen, but as a weaker hit. Since these ubiquitin binding subunits are themselves ubiquitinated, ESCRT is able to recognize both mono- and polyubiquitinated cargoes (64). Most ESCRT substrates in yeast are ubiquitinated by the Nedd4 homologue Rsp5 (78) (71), which we also found contributes to ROMK154A-DKOM degradation (Figure 6B) in accordance with the well-characterized role of Nedd4 in regulating ROMK in the kidney in response to fluctuations in dietary potassium (75, 79). Another E3 ligase that acts in the late secretory pathway in yeast, Pib1, can complement Rsp5 activity for some substrates (80–82). Further study is needed to determine how these respective ligases affect ROMK1 ubiquitination and degradation in the yeast system.

CORVET is a hexameric Rab5-positive vesicle tethering complex consisting of six distinct subunits. Four of these subunits, Vps11, Vps16, Vps18, and Vps33, are also components of the HOPS complex found on Rab7-positive vesicles (56). Recent structural studies have shown that these tethering complexes adopt a disordered and highly flexible conformation that coalesces into a tightly ordered structure upon Rab GTPase binding (83–85). Both of the Rab5-binding subunits that are unique to CORVET, Vps8 and Vps3, were identified in this study as negative regulators of ROMK plasma membrane residence in yeast. Consistent with these data, Vps8 knockdown in mammalian cells increased cell surface expression of ROMK (Figure 7). Strikingly, neither the CORVET/HOPS shared subunits nor the HOPS Rab7-binding subunits were identified as hits in our screen. One model for these data is that CORVET acts upstream of a critical and as yet uncharacterized step in sorting for ROMK (Figure 8). It is also possible that blocking HOPS-mediated tethering arrests ROMK trafficking after it has been packaged into intra-lumenal vesicles by ESCRT and Vps4, at which point its degradative fate is sealed. Trivially, HOPS function may simply be more tolerant of the loss of individual subunits than CORVET. In addition to binding Rab5, Vps8 also contains a RING E3 ubiquitin ligase domain, which is necessary for tethering (86). However, no specific clients for Vps8-ubiquitination have been found. Therefore, Vps8 ubiquitination may be redundant with other E3 ligases acting at endosomes, notably Rsp5 and Pib1 (see above), yet the CORVET-interacting early endosomal SNARE, Pep12, was also identified as a negative regulator of ROMK. These results lead us to hypothesize that CORVET negatively regulates ROMK by promoting endosome maturation and fusion with lysosomes. To our knowledge, our work represents the first study to genetically link CORVET to the regulation of a specific, clinically relevant cargo, as most mechanistic studies of CORVET have utilized synthetic substrates (87).

Other trafficking related genes identified as negative regulators of ROMK include the Golgi-localized SNARE GOS1, and the Retromer encoding factors VPS35 and VPS36. The genes were also identified as negative regulators of Kir2.1 (27). Retromer is a membrane remodeling complex that facilitates cargo retrieval from endosomes either to the plasma membrane or the trans-Golgi network and is generally conceived of as being a “pro-recycling” component, thereby acting in opposition to ESCRT-mediated MVB sorting (67). Based on this activity, it is difficult to envision how Retromer functions as a negative regulator of ROMK. However, it is possible that Retromer promotes futile cycling between endosomes and the Golgi, and that a sub population of ROMK is freed and recycled to the plasma membrane through alternative pathways in Retromer mutants. In fact, select cargo have been found in multiple model systems to be enriched at the plasma membrane upon Retromer inhibition (88–90)

ROMK may follow a similar trafficking itinerary to that described for the Jen1 lactate permease (91). In this recent paper, the authors demonstrated that endocytosed Jen1 traffics from
endosomes back to the Golgi in a Retromer-dependent fashion before transiting back to the endosome and entering the MVB pathway. In this way, Retromer ultimately stimulates protein degradation by promoting the MVB–vacuolar trafficking of cargo proteins. If ROMK follows a similar route, then internalized ROMK would migrate from endosomes back to the Golgi in a Retromer dependent fashion, but only as a prequel to ROMK trafficking to the MVB–vacuole for degradation.

The results from this study expand upon our previous work with another inward-rectifying potassium channel, Kir2.1 (48). Surface expression of both channels was suppressed by many of the same components, identifying the late secretory pathway as a key inhibitory trafficking step for inward rectifying potassium channels. ROMK and Kir2.1 share 42% sequence identity, though neither protein has predicted homology with any endogenous yeast protein (data not shown). Therefore, the yeast trafficking and post-ER degradation machineries may be largely unable to distinguish between the two channels. Nevertheless, we observed some subtle differences. In particular, we found that Kir2.1 increased growth rescue better than ROMK1 in all examined cases. We speculate that this is most likely due to stronger inward rectification of Kir2.1 (92, 93), allowing more potassium influx for growth. In contrast, the fact that select genes identified in this study were absent in the prior screen with Kir2.1 may have resulted from a higher signal to noise ratio due to differences in conductance properties between ROMK and Kir2.1.

The genetic screen described in this report required the use of a non-physiological variant of ROMK1, ROMK1S44D+K80M, which contains the phosphomimetic S44D mutation to override an ER-localization signal (94) as well as the K80M mutation to allow ROMK to access its open conformation in the acidic yeast cytosol (47, 95). Our recent work indicates that the K80M mutation is more important than the S44D mutation in promoting ROMK-mediated rescue on low potassium medium when expressed in the trk1Δtrk2Δ strain (50). Although we were initially unable to detect a plasma membrane population of ROMK1S44D+K80M by either sucrose density gradient fractionation (Figure 1D) or epifluorescence microscopy (data not shown), a minor fraction of plasma membrane ROMK1S44D+K80M was found in end3Δ yeast in which endocytosis is impaired (Supplementary Figure S5). Furthermore, rescue of growth on low potassium media correlates directly with increased intracellular potassium (Figure 1C). This result indicates that ROMK1S44D+K80M–mediated growth rescue is due to increased potassium influx. Together, it is likely that yeast require only small amounts of ROMK1S44D+K80M at the plasma membrane to achieve sufficient potassium influx to both increase intracellular potassium and allow growth on low potassium media. These data are consistent with the reported high P0 for ROMK (92).

An unforeseen but advantageous consequence of the K80M mutation was that the channel was more ERAD resistant than wild-type ROMK1 in yeast (Figure 3). The Lys-80 side chain is predicted by homology modeling to face the intrasubunit interface of the two transmembrane α-helices and acts as a pH-sensitive gate (95). Consequently, the K80M mutation is thought to destabilize the closed state of the channel (95). It is possible that wild-type ROMK1 residing in the low pH cytosol in yeast is in a closed state that is prone to misfolding, which targets the protein for ERAD. In contrast, the ROMK1S44D+K80M derivative is more stable in this environment. Indeed, we recently reported that ROMK1S44D+K80M is less susceptible to in vitro proteolysis than wild-type ROMK1, and that trafficking-incompetent mutations in ROMK associated with Type II Bartter syndrome destabilize the channel and restore ERAD targeting of ROMK1S44D+K80M (50). It is also noteworthy that neither wild-type ROMK1 nor ROMK1S44D+K80M could rescue growth of potassium-sensitive yeast lacking the ER-resident E3 ubiquitin ligase Doa10 (Supplementary Figure S8), indicating that inhibiting ERAD is insufficient to promote the forward trafficking of ROMK in yeast.

The properties of ROMK1S44D+K80M in yeast are analogous to those of wild-type ROMK1 in mammalian cells, as both are primarily substrates for vacuolar/lysosomal degradation (compare Figure 2B to Figure 8B). Future studies of ROMK in budding yeast should at minimum include the K80M mutation to ensure that the results will be translatable into mammalian systems.

In conclusion, we have identified key machinery involved in post-endocytic quality control of ROMK. Our findings build upon related
work on the inwardly-rectifying potassium channel Kir2.1 (27), the calcium-gated potassium channel KCa3.1 (96), and the voltage-gated potassium channel hERG (97, 98), adding ROMK to a growing list of channels and transporters regulated by post-endocytic transport (99). Previous studies of ROMK in yeast focused instead on the identification of ROMK-interaction partners from human cDNA libraries via the yeast two hybrid (100, 101). Our report instead represents the first attempt to use a genome-wide screen for negative regulators of ROMK. In the future, the yeast system could be modified to find positive regulators of ROMK by overexpressing rather than by deleting genes as well as gain-of-function mutations in the channel that alter trafficking or ion permeation.

EXPERIMENTAL PROCEDURES

Yeast strain construction, growth conditions, and plasmid construction. A complete list of the strains used in this study is provided in Supplemental Table 2. All strains were grown at 30°C unless indicated otherwise. Temperature sensitive strains were propagated at room temperature prior to temperature shift. Standard procedures were followed for propagation and transformation of yeast (102). Importantly, SC medium used in this study contained 1 g/L monosodium glutamate instead of ammonium sulfate as the primary nitrogen source and was buffered with MES to a pH of ~4.5 (27). For serial dilution growth assays, 200 µl cultures were grown overnight with agitation in 96-well dishes in selective liquid medium supplemented with 100 mM KCl and covered with a Breathe-Easy polyurethane membrane (Sigma-Aldrich, St. Louis, MO) to prevent evaporation. Once all cultures reached stationary phase, they were serially diluted 1:5 five times to fill a grid in a standard 96-well plate. Droplets from each dilution were then transferred to SC-Leu solid medium supplemented with 100, 25, 10, and 0 mM KCl using a 48-pin manifold (Sigma-Aldrich, St. Louis, MO). These plates were incubated for 4 days and imaged on days two, three, and four using a BioRad (Hercules, CA) Image Station. Medium to which no potassium was added (“0 mM”) has been estimated to contain 7-10 mM potassium (42).

Rat ROMK1 was tagged with an HA epitope in the extracellular loop as previously reported (51), and the S44D and K80M mutations were introduced as recently described (50). The manually curated trk1Δtrk2ΔxxxΔ strains originating from this study were made using standard mating, sporulation, and tetrad dissection techniques (102). The genotypes of all parental strains originating from the Yeast Knockout Collection were confirmed by colony PCR prior to mating with YAK01 using the primers indicated in Supplementary Table S3.

The Venus-ROMK_{K80M} expression vector was made by subcloning the gene encoding ROMK2 into the mVenusC1 (103) expression vector with the restriction enzymes KpnI and Acc1. PCR amplification and site-directed mutagenesis were then used to make the Lys→Met mutation analogous to K80M in ROMK1 and to flank Vn-ROMK with Xmal and XhoI restriction sites. These enzymes were then used to subclone Vn-ROMK into the yeast expression vector pRS415.

Synthetic genetic array screening conditions. All screening procedures and media recipes were adapted from protocols published by the Boone lab (104), utilized the trk1Δtrk2Δ strain, and contained a plasmid designed for ROMK_{S44D+K80M} expression (see above). All yeast manipulations utilized a metal 96-pin manifold (V&P Scientific, San Diego, CA) except for the final transfer onto permissive and selective medium, which used a disposable plastic 96-pin manifold. Briefly, the query strain (YAK01) transformed with the ROMK_{S44D+K80M} expression vector was mated with the MATα deletion collection (Invitrogen) on YPD plates grown overnight at room temperature. Diploids were selected with SC-Leu containing 200 µg/L G418 (Research Products International, Mount Prospect, IL), 100 µg/L clonNAT (Werner BioAgents, Jena, Germany), and 100 mM KCl to maintain potassium sensitivity and hinder the appearance of suppressor mutations. These plates were incubated for 2 days. The diploids were then sporulated onto nitrogen-deficient medium for 5 days at room temperature, and the tetrads were transferred onto SC medium lacking leucine, arginine, histidine, and uracil but containing 200 µg/L G418, 100 µg/L clonNAT, and 50 µg/L L-canavanine (Sigma-Aldrich) in order to select for desired spores and against unsporulated diploids and undesired spores. Cells on this selective medium were incubated for 2 days, and this step was repeated two times with 1 day incubations. Finally, the array of triple mutant haploid MATα cells lacking TRK1, TRK2, and one other unique
non-essential gene were transferred to SC-Leu supplemented with 100 mM KCl and SC-Leu with no additional KCl (“0 mM” potassium). Growth on these plates was assessed by imaging them after 12, 24, and 36 hr using the white light setting on a BioRad image station. Rescreening of hits was performed as described above, but with the additional step of transferring the array of triple mutant haploids into 100 µl of liquid SC-Leu medium supplemented with 100 mM KCl in a 96-well dish after the third selection step. These cultures were grown to saturation overnight, then droplets of liquid culture were transferred onto 0 mM and 100 mM KCl SC-Leu solid medium with the 96-pin manifold.

Cycloheximide chase analyses. Yeast cultures transformed with human potassium channels expressed under the control of the TEF1 were grown overnight to saturation, diluted into 5 ml of SC-Leu at an OD600 of 0.25, and grown to mid-log phase, which we define as an OD600 of 0.7-1.3. Cultures were treated with 150 µg/mL of cycloheximide (Sigma-Aldrich) and incubated with agitation in a 37°C waterbath unless otherwise specified. A total of 1 ml aliquots of culture were withdrawn at the indicated times and immediately harvested and flash frozen in liquid nitrogen. Aliquots were processed and analyzed for Western blot analysis as described below. For cycloheximide chase analyses of the temperature-sensitive cdc48-2 strain, all cultures were incubated at 39°C for 120 min prior to cycloheximide addition. For cycloheximide chase analyses of the temperature-sensitive ssa1-45 and rsp5-2 strains, all cultures were incubated at 37°C for 60 min or 39°C for 75 min respectively prior to cycloheximide addition.

Cycloheximide chase studies in HEK cells were performed 20-24 hrs after induction with doxycycline. Cells were pretreated with either 10 µM leupeptin (Sigma-Aldrich), 5 µM MG-132 (EMD Millipore, Billerica, MA) or vehicle for 1 hr before the addition of cycloheximide (50 µg/ml), and then cells were chased in the presence or absence of the protein degradation inhibitors for 1-3 hrs. Cell lysates, collected every hour after addition of cycloheximide, were resolved by SDS-PAGE and probed in Western blots with ROMK antibodies (R79 Serum (105)).

Analysis of ROMK residence. To perform a sucrose gradient analysis of ROMK residence, yeast cultures transformed with plasmids encoding the indicated channels were grown overnight to saturation, diluted into 200 mL of SC-Leu to an initial OD600 of 0.25, and then allowed to grow to mid-log phase. A total of 150 OD600 of cells were harvested and lysed with glass beads in a solution containing 10% sucrose, 10 mM Tris pH 7.6, 1 mM DTT, 1 mM PMSF (Sigma), 1 µg/mL leupeptin (Sigma), 0.5 µg/mL pepstatin A (Sigma), and 10 mM EDTA (106). The entire volume of the clarified lysate was then layered on top of a sucrose gradient with 1.5 ml of 30% sucrose, 1.5 ml of 40% sucrose, 2.5 ml of 50% sucrose, 1.5 ml of 60% sucrose, 1.5 ml of 65% sucrose, and 2.5 ml of 70% sucrose in the same buffer. The gradients were centrifuged in a Beckman L8-70M ultracentrifuge (Beckman-Coulter, Pasadena, CA) at 28,500g for 18.5 hrs. The gradient was then divided into 24 fractions, which were analyzed by SDS-PAGE and Western blot (see below).

Prior to epifluorescence microscopy, all strains were grown to mid-log phase in SC-Leu media or in SC-Leu-His for strains co-transformed with Scs2-mCh. Cells were placed on a 35 mm, poly-D-lysine-coated dish (MatTek, Ashland, MA) and imaged with a Nikon (Tokyo) Eclipse Ti inverted microscope equipped with epifluorescence, an Apo100 x objective (NA 1.45) and an Orca Flash 4.0 cMOS (Hamamatsu, Bridgewater, NJ) camera. NIS-Elements software (Nikon) was used to control the imaging parameters, and all images within an experiment were captured used identical acquisition settings. Post-acquisition processing was conducted using ImageJ (National Institutes of Health). To stain the vacuolar membrane, cells were incubated with 300 µM of the FM4-64 dye (Thermo Fisher) for at least 30 min, which allows for FM4-64 bound to lipid at the cell surface to traffic to the vacuolar-limiting membrane (70), and were washed prior to imaging. All images were acquired at room temperature.

Inductively Coupled Plasma Mass Spectrometry. Yeast cultures transformed with a vector control or a vector engineered for the expression of distinct human potassium channels were grown overnight to saturation, diluted into 7 ml of SC-Leu medium containing either 100 mM or 10 mM KCl at an OD600 of 0.2, and allowed to grow for 8 hrs. Approximately 3.0 OD600 of cells were harvested by vacuum filtration onto 1.2 µm pore glass fiber membrane filters (EMD Millipore). Next, the cells
were washed with 1 μM EDTA and with double distilled water before they were dissolved in 30% trace metal grade HNO₃ (Fisher) at 65 °C overnight. Solutions were clarified by centrifugation at 20,000g for 10 min to remove any solid debris and diluted with 2% sub-boil distilled HNO₃ prior to analysis on a Perkin Elmer (Waltham, MA) NexION 300x ICP-MS. All elemental concentrations were determined using a 5-point calibration curve. An internal standard of beryllium, germanium, and thallium was added to all samples to assess signal strength and instrument drift. A 2% nitric acid blank was run every seven samples to assess signal memory effects. All biological replicates were run in technical duplicate and the technical replicates are the average of 3 replicate measurements from the ICP-MS.

HEK293 cell culture and siRNA knockdown. All cells were propagated at 37 °C in a 5% CO₂ humidified incubator. Cells were passaged every 3-4 days using standard methods. All experiments were conducted after seven or fewer passages. T-REX-HEK-293 ROMK cells were a generous gift from the laboratory of Dr. Jerod Denton (74), and the original T-REX-HEK 293 cells were purchased from Invitrogen. Upon receipt, they were tested for mycoplasma using a PCR-based kit (ATCC, Manassas, VA) and found to be negative. T-REX-HEK-293 ROMK cells were propagated in high-glucose DMEM (Sigma Life Sciences) supplemented with 10% Fetal Bovine Serum, 5 μg/ml Blasticidin S, and 250 μg/ml Hygromycin B to maintain selection for the integrated tetracycline-inducible ROMK cassette (107). To induce ROMK expression, cells were treated with 2 μg/ml tetracycline for at least 24 hrs. siRNA silencing was achieved with 1.5 μg/ml Lipofectamine RNAiMax (ThermoFisher) transfection reagent and 10 nM RNA duplex (GE Life Sciences, Marlborough MA) (sequences are indicated in Supplementary Table 3). Lipofectamine and RNA were incubated separately in 0.25 ml pre-warmed OptiMEM (ThermoFisher) for 5 min, mixed at a 1:1 volumetric ratio, incubated for another 5 min, and then added to cells. After 24 hrs, culture media was changed and the transfection protocol was repeated a second time.

HEK293 cell surface biotinylation. Prior to biotinylation, cells at 80-90% confluency were treated with 125 μg/ml cycloheximide for 2 hrs to increase the cell surface concentration of ROMK. The cells were washed 3 times with Dulbecco’s Phosphate Buffered Saline (DPBS), then treated with 0.3 mg/ml EZ-Link Sulfo-NHS Biotin (Thermo-Fisher) for 1 hr. Excess biotin was quenched by washing the cells with 100 mM glycine in DPBS 3 times, the cells were lysed in HEENG buffer (20 mM HEPES pH=7.6, 1 mM EDTA, 1 mM EGTA, 25 mM NaCl, 10% glycerol) containing 1% Triton TX-100 and cOmplete, Mini, EDTA free protease inhibitors (Roche Diagnostics, Mannheim, Germany) for 1 hr, and the mixture was centrifuged for 5 min at maximum speed to remove any insoluble material. Soluble protein concentrations were assessed with a Pierce BCA Protein Assay Kit (Thermo-Fisher) per the manufacturer’s instructions. For each condition, 300 μg of protein was added to 30 μl of Pierce NeutrAvidin Agarose (Thermo-Fisher) beads, brought to a total volume of 1 ml, and incubated overnight. Beads were then triple washed with DPBS and treated with 1X SDS-PAGE sample buffer for 1 hr at room temperature prior to SDS-PAGE and Western blot analysis (see below). All steps of this protocol were conducted at 4°C.

Western blot analysis. To assay protein expression in yeast, equivalent OD₆₀₀ cultures at mid-log growth phase were lysed in 300 mM NaOH, 1 mM 2-mercaptoethanol, 1 mM PMSF (Sigma), 1 μg/mL leupeptin (Sigma), and 0.5 μg/mL pepstatin A (Sigma). Total protein was precipitated from lysate with 5% trichloroacetic acid (TCA), resuspended in SDS-PAGE sample buffer, incubated for at least 1 hr at room temperature, and analyzed by SDS-PAGE (108). Steady-state levels of protein in HEK293 cells were analyzed by dissolving 30 μg of protein from clarified lysate in SDS-PAGE sample buffer, incubating for at least 1 hr, and analyzing by SDS-PAGE.

All Western blots were developed with the SuperSignal West enhanced chemiluminescence kit (Thermo-Fisher) per the manufacturer’s instructions. Chemiluminescence images were obtained on a BioRad image station. Quantitation of signal intensity was performed by measuring integrated pixel density in ImageJ (National Institutes of Health). Relevant antibody information is supplied in Supplementary Table S4.

ACKNOWLEDGEMENTS

We thank Dr. Jerod Denton (Vanderbilt University) for providing the HEK 293 T-REx ROMK cell line.
and for useful discussions and advice. The Scs2-mCherry plasmid was provided by the laboratory of Dr. Susan Michaelis (Johns Hopkins University), and the Snf7-RFP strain was provided by the laboratory of Dr. Martha Cyert (Stanford University). Dr. Robert Piper (University of Iowa), Dr. Christian Unger mann (Universität Osnabrück), and Dr. Jason MacGurn (Vanderbilt University) provided useful discussion and advice. Assorted strains, reagents, and equipment were kindly provided by the research groups of Dr. Karen Arndt (University of Pittsburgh), Dr. Manoj Puthenveedu (Carnegie Mellon University), Dr. Ora Weisz (University of Pittsburgh), Dr. Elizabeth Miller (Colombia University), Dr. Antony Cooper (University of New South Wales), and Dr. Linda Hicke (University of Texas). Technical assistance was provided by Dr. Brighid O’Donnell, Jackson Parr, and Yang Liu. This work was supported by grants GM75061 and DK79307 (University of Pittsburgh George O’Brien Kidney Research Center) to J.L.B, R01DK098145 to A.R.S, and DK054231 to P.A.W. The study was also supported by NSF MCB CAREER grant 1553143 to A.F.O. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

CONFLICTS OF INTEREST
The authors declare that they have no conflicts of interest with the contents of this article.

AUTHOR CONTRIBUTIONS
J.L.B., A.R.S., A.F.O., and P.A.W. conceived and guided the study. T.D.M. designed, performed, and analyzed all experiments except for those described in Figure 8B, which were designed and performed by B.K. A.F.O. provided equipment and guidance for epifluorescence microscopy and D.J.B. provided equipment and guidance for ICP-MS. T.D.M. drafted the document, which was edited and approved for publication by all authors.

REFERENCES
1. Balchin, D., Hayer-Hartl, M., and Hartl, F. U. (2016) In vivo aspects of protein folding and quality control. *Science*. **353**, aac4354
2. Ellgaard, L., McCaul, N., Chatsisvili, A., and Braakman, I. (2016) Co- and Post-Translational Protein Folding in the ER. *Traffic*. **17**, 615–638
3. Preston, G. M., and Brodsky, J. L. (2017) The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. *Biochem. J.* **474**, 445–469
4. Gottschling, D. E., and Nyström, T. (2017) The Upsides and Downsides of Organelle Interconnectivity. *Cell*. **169**, 24–34
5. Schmidt, M., and Finley, D. (2014) Regulation of proteasome activity in health and disease. *Biochim. Biophys. Acta*. **1843**, 13–25
6. Geva, Y., and Schuldiner, M. (2014) The Back and Forth of Cargo Exit from the Endoplasmic Reticulum. *Curr. Biol*. **24**, R130–R136
7. Arvan, P., Zhao, X., Ramos-Castaneda, J., and Chang, A. (2002) Secretory Pathway Quality Control Operating in Golgi, Plasmalemmal, and Endosomal Systems. *Traffic*. **3**, 771–780
8. MacGurn, J. A. (2014) Garbage on, garbage off: new insights into plasma membrane protein quality control. *Curr. Opin. Cell Biol*. **29**, 92–8
9. Gajewski, C., Dagcan, A., Roux, B., and Deutsch, C. (2011) Biogenesis of the pore architecture of a voltage-gated potassium channel. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 3240–5
10. Lukacs, G. L., and Verkman, A. S. (2012) CFTR: folding, misfolding and correcting the ΔF508 conformational defect. *Trends Mol. Med.* **18**, 81–91
11. Young, J. C. (2014) The role of the cytosolic HSP70 chaperone system in diseases caused by
misfolding and aberrant trafficking of ion channels. *Dis. Model. Mech.* 7, 319–29

12. Lukacs, G. L., Mohamed, A., Kartner, N., Chang, X. B., Riordan, J. R., and Grinstein, S. (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. *EMBO J.* 13, 6076–86

13. Ward, C. L., and Kopito, R. R. (1994) Intracellular turnover of cystic fibrosis transmembrane conductance regulator. Inefficient processing and rapid degradation of wild-type and mutant proteins. *J. Biol. Chem.* 269, 25710–8

14. Rabeh, W. M., Bossard, F., Xu, H., Okiyoneda, T., Bagdany, M., Mulvihill, C. M., Du, K., di Bernardo, S., Liu, Y., Konermann, L., Roldan, A., and Lukacs, G. L. (2012) Correction of both NBD1 energetics and domain interface is required to restore ΔF508 CFTR folding and function. *Cell.* 148, 150–63

15. Mendoza, J. L., Schmidt, A., Li, Q., Nuvaga, E., Barrett, T., Bridges, R. J., Feranchak, A. P., Brautigam, C. A., and Thomas, P. J. (2012) Requirements for Efficient Correction of ΔF508 CFTR Revealed by Analyses of Evolved Sequences. *Cell.* 148, 164–174

16. Sharma, M., Pampinella, F., Nemes, C., Benharouga, M., So, J., Du, K., Bache, K. G., Papsin, B., Zerangue, N., Stenmark, H., and Lukacs, G. L. (2004) Misfolding diverts CFTR from recycling to degradation. *J. Cell Biol.* 164, 923–933

17. Luciani, A., Villella, V. R., Esposito, S., Brunetti-Pierri, N., Medina, D., Settembre, C., Gavina, M., Pulze, L., Giardino, I., Pettoello-Mantovani, M., D’Apolito, M., Guido, S., Maslia, E., Spencer, B., Quaratino, S., Raia, V., Ballabio, A., and Maiuri, L. (2010) Defective CFTR induces aggresome formation and lung inflammation in cystic fibrosis through ROS-mediated autophagy inhibition. *Nat. Cell Biol.* 12, 863–875

18. Li, K., Jiang, Q., Bai, X., Yang, Y.-F., Ruan, M.-Y., and Cai, S.-Q. (2016) Tetrameric Assembly of K+ Channels Requires ER-Located Chaperone Proteins. *Mol. Cell.* 65, 1–14

19. Gong, Q., Keeney, D. R., Molinari, M., and Zhou, Z. (2005) Degradation of trafficking-defective long QT syndrome type II mutant channels by the ubiquitin-proteasome pathway. *J. Biol. Chem.* 280, 19419–25

20. Anderson, C. L., Delisle, B. P., Anson, B. D., Kilby, J. A., Will, M. L., Tester, D. J., Gong, Q., Zhou, Z., Ackerman, M. J., and January, C. T. (2006) Most LQT2 Mutations Reduce Kv11.1 (hERG) Current by a Class 2 (Trafficking-Deficient) Mechanism. *Circulation.* 113, 365–373

21. Wang, Y., Huang, X., Zhou, J., Yang, X., Li, D., Mao, H., Sun, H. H., Liu, N., and Lian, J. (2012) Trafficking-deficient G572R-hERG and E637K-hERG activate stress and clearance pathways in endoplasmic reticulum. *PLoS One.* 7, e29885

22. Buck, T. M., Plavchak, L., Roy, A., Donnelly, B. F., Kashlan, O. B., Kleyman, T. R., Subramanya, A. R., and Brodsky, J. L. (2013) The Lhs1/GRP170 chaperones facilitate the endoplasmic reticulum-associated degradation of the epithelial sodium channel. *J. Biol. Chem.* 288, 18366–80

23. Gao, Y., Bertuccio, C. A., Balut, C. M., Watkins, S. C., and Devor, D. C. (2012) Dynamin- and Rab5-dependent endocytosis of a Ca2+ -activated K+ channel, KCa2.3. *PLoS One.* 7, e44150

24. Donnelly, B. F., Needham, P. G., Snyder, A. C., Roy, A., Khadem, S., Brodsky, J. L., and Subramanya, A. R. (2013) Hsp70 and Hsp90 multichaperone complexes sequentially regulate thiazide-sensitive cotransporter endoplasmic reticulum-associated degradation and biogenesis. *J. Biol. Chem.* 288, 13124–35

25. Gao, Y., Yechikov, S., Vazquez, A. E., Chen, D., and Nie, L. (2013) Distinct roles of molecular chaperones HSP90α and HSP90β in the biogenesis of KCNQ4 channels. *PLoS One.* 8, e57282

26. Iwai, C., Li, P., Kurata, Y., Hoshikawa, Y., Morikawa, K., Maharani, N., Higaki, K., Sasano, T.,
Notsu, T., Ishido, Y., Miake, J., Yamamoto, Y., Shirayoshi, Y., Ninomiya, H., Nakai, A., Murata, S., Yoshida, A., Yamamoto, K., Hiraoka, M., and Hisatome, I. (2013) Hsp90 prevents interaction between CHIP and HERG proteins to facilitate maturation of wild-type and mutant HERG proteins. Cardiovasc. Res. **100**, 520–8

Kolb, A. R., Needham, P. G., Rothenberg, C., Guerriero, C. J., Welling, P. A., and Brodsky, J. L. (2014) ESCRT regulates surface expression of the Kir2.1 potassium channel. Mol. Biol. Cell. **25**, 276–289

Seayafan, E., Defontaine, N., Demaretz, S., Zaarour, N., and Laghmani, K. (2016) OS9 interacts with NKCC2 and targets its immature form for the endoplasmic-reticulum-associated degradation pathway. J. Biol. Chem. **291**, 4487–4502

Hirota, Y., Kurata, Y., Kato, M., Notsu, T., Koshida, S., Inoue, T., Kawata, Y., Miake, J., Bahrudin, U., Li, P., Hoshikawa, Y., Yamamoto, Y., Igawa, O., Shirayoshi, Y., Nakai, A., Ninomiya, H., Higaki, K., Hiraoka, M., and Hisatome, I. (2008) Functional stabilization of Kv1.5 protein by Hsp70 in mammalian cell lines. Biochem. Biophys. Res. Commun. **372**, 469–474

Zhou, H., Tate, S. S., and Palmer, L. G. (1994) Primary structure and functional properties of an epithelial K channel. Am J Physiol. **266**, C809-24

Wang, W. H., Schwab, A., and Giebisch, G. (1990) Regulation of small-conductance K+ channel in apical membrane of rat cortical collecting tubule. Am. J. Physiol. **259**, F494-502

Frintd, G., Shah, A., Edvinsson, J., and Palmer, L. G. (2009) Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney. Am. J. Physiol. Renal Physiol. **296**, F347-54

Ho, K., Nichols, C. G., Lederer, W. J., Lytton, J., Vassilev, P. M., Kanazirska, M. V., and Hebert, S. C. (1993) Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature. **362**, 31–38

Leung, Y.-M. (2000) Phosphatidylinositol 4,5-Bisphosphate and Intracellular pH Regulate the ROMK1 Potassium Channel via Separate but Interrelated Mechanisms. J. Biol. Chem. **275**, 10182–10189

Welling, P. A., and Ho, K. (2009) A comprehensive guide to the ROMK potassium channel: form and function in health and disease. Am. J. Physiol. Renal Physiol. **297**, F849-63

Zeng, W.-Z., Babich, V., Ortega, B., Quigley, R., White, S. J., Welling, P. A., and Huang, C.-L. (2002) Evidence for endocytosis of ROMK potassium channel via clathrin-coated vesicles. Am. J. Physiol. Renal Physiol. **283**, F630-9

Lin, D.-H., Yue, P., Pan, C.-Y., Sun, P., Zhang, X., Han, Z., Roos, M., Caplan, M., Giebisch, G., and Wang, W.-H. (2009) POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels. J. Biol. Chem. **284**, 29614–24

Fang, L., Garuti, R., Kim, B.-Y., Wade, J. B., and Welling, P. A. (2009) The ARH adaptor protein regulates endocytosis of the ROMK potassium secretory channel in mouse kidney. J. Clin. Invest. **119**, 3278–89

Simon, D. B., Karet, F. E., Rodriguez-Soriano, J., Hamdan, J. H., DiPietro, A., Trachtman, H., Sanjad, S. A., and Lifton, R. P. (1996) Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. **14**, 152–6

Ji, W., Foo, J. N., O’Roak, B. J., Zhao, H., Larson, M. G., Simon, D. B., Newton-Cheh, C., State, M. W., Levy, D., and Lifton, R. P. (2008) Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. **40**, 592–9

Peters, M., Ermert, S., Jeck, N., Derst, C., Pechmann, U., Weber, S., Schlingmann, K. P.,
Seyberth, H. W., Waldegger, S., and Konrad, M. (2003) Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. *Kidney Int.** 64, 923–32

42. Nakamura, R. L., and Gaber, R. F. (1998) Studying Ion Channels Using Yeast Genetics. in *Methods in Enzymology*. pp. 89–104, Methods in Enzymology, Elsevier, 293, 89–104

43. Bichet, D., Lin, Y.-F., Ibarra, C. A., Huang, C. S., Yi, B. A., Jan, Y. N., and Jan, L. Y. (2004) Evolving potassium channels by means of yeast selection reveals structural elements important for selectivity. *Proc. Natl. Acad. Sci. U. S. A.* **101**, 4441–6

44. Haass, F. A., Jonikas, M., Walter, P., Weissman, J. S., Jan, Y.-N., Jan, L. Y., and Schuldiner, M. (2007) Identification of yeast proteins necessary for cell-surface function of a potassium channel. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 18079–84

45. Minor, D. L., Masseling, S. J., Jan, Y. N., and Jan, L. Y. (1999) Transmembrane structure of an inwardly rectifying potassium channel. *Cell* **96**, 879–91

46. Grishin, A., Li, H., Levitan, E. S., and Zaks-Makhina, E. (2006) Identification of gamma-aminobutyric acid receptor-interacting factor 1 (TRAK2) as a trafficking factor for the K+ channel Kir2.1. *J. Biol. Chem.* **281**, 30104–11

47. Paynter, J. J., Shang, L., Bollepalli, M. K., Baukrowitz, T., and Tucker, S. J. (2010) Random mutagenesis screening indicates the absence of a separate H+-sensor in the pH-sensitive Kir channels. *Channels*. **4**, 390–396

48. Kolb, A. R., Needham, P. G., Rothenberg, C., Guerriero, C. J., Welling, P. A., and Brodsky, J. L. (2014) ESCRT regulates surface expression of the Kir2.1 potassium channel. *Mol. Biol. Cell.* **25**, 276–89

49. Giaever, G., Chu, A. M., Ni, L., Connelly, C., Riles, L., Véronneau, S., Dow, S., Lucau-Danila, A., Anderson, K., André, B., Arkin, A. P., Astromoff, A., El Bakkoury, M., Bangham, R., Benito, R., Brachat, S., Campanaro, S., Curtiss, M., Davis, K., Deutschbauer, A., Entian, K.-D., Flaherty, P., Foury, F., Garfinkel, D. J., Gerstein, M., Gotte, D., Güldener, U., Hegemann, J. H., Hempel, S., Herman, Z., Jaramillo, D. F., Kelly, D. E., Kelly, S. L., Kötter, P., LaBonte, D., Lamb, D. C., Lan, N., Liang, H., Liao, H., Liu, L., Luo, C., Lussier, M., Mao, R., Menard, P., Ooi, S. L., Revuelta, J. L., Roberts, C. J., Rose, M., Ross-Macdonald, P., Scherens, B., Schimmack, G., Shafer, B., Shoemaker, D. D., Sookhaj-Mahadeo, S., Storms, R. K., Strathern, J. N., Valle, G., Voet, M., Volckaert, G., Wang, C., Ward, T. R., Wilhelmy, J., Winzeler, E. A., Yang, Y., Yen, G., Youngman, E., Yu, K., Bussey, H., Boeke, J. D., Snyder, M., Philippsen, P., Davis, R. W., and Johnston, M. (2002) Functional profiling of the Saccharomyces cerevisiae genome. *Nature* **418**, 387–391

50. O'Donnell, B. M., Mackie, T. D., Subramanya, A. R., and Brodsky, J. L. (2017) Endoplasmic Reticulum-Associated Degradation of the Renal Potassium Channel, ROMK, Leads to Type II Bartter Syndrome. *J. Biol. Chem.* **292**, 12813–12827

51. Yoo, D., Kim, B. Y., Campo, C., Nance, L., King, A., Maouyo, D., and Welling, P. A. (2003) Cell surface expression of the ROMK (Kir 1.1) channel is regulated by the aldosterone-induced kinase, SGK-1, and protein kinase A. *J. Biol. Chem.* **278**, 23066–75

52. Rapedius, M., Fowler, P. W., Shang, L., Sansom, M. S. P., Tucker, S. J., and Baukrowitz, T. (2007) H bonding at the helix-bundle crossing controls gating in Kir potassium channels. *Neuron* **55**, 602–14

53. Barreto, L., Canadell, D., Petrezsélyová, S., Navarrete, C., Maresová, L., Peréz-Valle, J., Herrera, R., Olier, I., Giraldo, J., Sychrová, H., Yenush, L., Ramos, J., and Ariño, J. (2011) A genomewide screen for tolerance to cationic drugs reveals genes important for potassium homeostasis in
Saccharomyces cerevisiae. *Eukaryot. Cell.* **10**, 1241–50

54. MacGurn, J. A., Hsu, P.-C., and Emr, S. D. (2012) Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. *Annu. Rev. Biochem.* **81**, 231–259

55. Woolford, C. A., Daniels, L. B., Park, F. J., Jones, E. W., Van Arsdell, J. N., and Innis, M. A. (1986) The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. *Mol. Cell. Biol.* **6**, 2500–10

56. Balderhaar, H. J. kleine, Lachmann, J., Yavavli, E., Bröcker, C., Lürick, A., and Ungermann, C. (2013) The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. *Proc. Natl. Acad. Sci. U. S. A.* **110**, 3823–8

57. Kingsbury, J. M., Sen, N. D., Maeda, T., Heitman, J., and Cardenas, M. E. (2014) Endolysosomal Membrane Trafficking Complexes Drive Nutrient-Dependent TORC1 Signaling to Control Cell Growth in Saccharomyces cerevisiae. *Genetics.* **196**, 1077–89

58. Plemel, R. L., Lobingier, B. T., Brett, C. L., Angers, C. G., Nickerson, D. P., Paulsel, A., Sprague, D., and Merz, A. J. (2011) Subunit organization and Rab interactions of Vps-C protein complexes that control endolysosomal membrane traffic. *Mol. Biol. Cell.* **22**, 1353–63

59. Lachmann, J., Glaubke, E., Moore, P. S., and Ungermann, C. (2014) The Vps39-like TRAP1 is an effector of Rab5 and likely the missing Vps3 subunit of human CORVET. *Cell. Logist.* **4**, e970840

60. Perini, E. D., Schaefer, R., Stötler, M., Kalaidzidis, Y., and Zerial, M. (2014) Mammalian CORVET Is Required for Fusion and Conversion of Distinct Early Endosome Subpopulations. *Traffic.* **15**, 1366–1389

61. Pols, M. S., ten Brink, C., Gosavi, P., Oorschot, V., and Klumperman, J. (2013) The HOPS Proteins hVps41 and hVps39 Are Required for Homotypic and Heterotypic Late Endosome Fusion. *Traffic.* **14**, 219–232

62. Babst, M. (2005) A protein’s final ESCRT. *Traffic.* **6**, 2–9

63. Henne, W. M., Stenmark, H., and Emr, S. D. (2013) Molecular mechanisms of the membrane sculpting ESCRT pathway. *Cold Spring Harb. Perspect. Biol.* **5**, 1–12

64. Stringer, D. K., and Piper, R. C. (2011) A single ubiquitin is sufficient for cargo protein entry into MVBs in the absence of ESCRT ubiquitination. *J. Cell Biol.* **192**, 229–42

65. McDonald, C., and Piper, R. C. (2016) Cell surface recycling in yeast: mechanisms and machineries. *Biochem. Soc. Trans.* **44**, 474–8

66. Kojima, A., Toshima, J. Y., Kanno, C., Kawata, C., and Toshima, J. (2012) Localization and functional requirement of yeast Na+/H+ exchanger, Nhx1p, in the endocytic and protein recycling pathway. *Biochim. Biophys. Acta - Mol. Cell. Res.* **1823**, 534–543

67. Burd, C., and Cullen, P. J. (2014) Retromer: a master conductor of endosome sorting. *Cold Spring Harb. Perspect. Biol.* **6**, 1–13

68. Wiederkehr, A., Avaro, S., Prescianotto-Baschong, C., Haguenaier-Tsapis, R., and Riezman, H. (2000) The F-box protein Rey1p is involved in endocytic membrane traffic and recycling out of an early endosome in Saccharomyces cerevisiae. *J. Cell Biol.* **149**, 397–410

69. Zhou, C., Slaughter, B. D., Unruh, J. R., Guo, F., Yu, Z., Mickey, K., Narkar, A., Ross, R. T., McClain, M., Li, R., and al., et (2014) Organelle-Based Aggregation and Retention of Damaged Proteins in Asymmetrically Dividing Cells. *Cell.* **159**, 530–542

70. Vida, T. A., and Emr, S. D. (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. *J. Cell Biol.* **128**, 779–92

71. Guiney, E. L., Klecker, T., and Emr, S. D. (2016) Identification of the endocytic sorting signal
recognized by the Art1-Rsp5 ubiquitin ligase complex. *Mol. Biol. Cell.* **27**, 4043–4054

72. Huh, W. -K. K., Falvo, J. V, Gerke, L. C., Carroll, A. S., Howson, R. W., Weissman, J. S., and O’Shea, E. K. (2003) Global analysis of protein localization in budding yeast. *Nature.* **425**, 686–691

73. Luo, W. J., and Chang, A. (2000) An endosome-to-plasma membrane pathway involved in trafficking of a mutant plasma membrane ATPase in yeast. *Mol. Biol. Cell.* **11**, 579–92

74. Fallen, K., Banerjee, S., Sheehan, J., Addison, D., Lewis, L. M., Meiler, J., and Denton, J. S. (2009) The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating. *Channels (Austin).* **3**, 57–68

75. Al-Qusairi, L., Basquin, D., Roy, A., Rajaram, R. D., Maillard, M. P., Subramanya, A. R., and Staub, O. (2017) Renal Tubular Ubiquitin-Protein Ligase NEDD4-2 Is Required for Renal Adaptation during Long-Term Potassium Depletion. *J. Am. Soc. Nephrol.* **28**, 2431–2442

76. van Weering, J. R. T., and Cullen, P. J. (2014) Membrane-associated cargo recycling by tubule-based endosomal sorting. *Semin. Cell Dev. Biol.* **31**, 40–47

77. Wiederkehr, A., Meier, K. D., and Riezman, H. (2001) Identification and characterization of Saccharomyces cerevisiae mutants defective in fluid-phase endocytosis. *Yeast.* **18**, 759–773

78. Erpapazoglou, Z., Dhaoui, M., Pantazopoulou, M., Giordano, F., Mari, M., Léon, S., Raposo, G., Reggiori, F., and Haguenauer-Tsapis, R. (2012) A dual role for K63-linked ubiquitin chains in multivesicular body biogenesis and cargo sorting. *Mol. Biol. Cell.* **23**, 2170–83

79. Ronzaud, C., Loffing-Cueni, D., Hausel, P., Debonneville, A., Malsure, S. R., Fowler-Jaeger, N., Boase, N. A., Perrier, R., Maillard, M., Yang, B., Stokes, J. B., Koesters, R., Kumar, S., Hummler, E., Loffing, J., and Staub, O. (2013) Renal tubular NEDD4-2 deficiency causes NCC-mediated salt-dependent hypertension. *J. Clin. Invest.* **123**, 657–65

80. Shin, M. E., Ogburn, K. D., Varban, O. A., Gilbert, P. M., and Burd, C. G. (2001) FYVE Domain Targets Pib1p Ubiquitin Ligase to Endosome and Vacuolar Membranes. *J. Biol. Chem.* **276**, 41388–41393

81. Nikko, E., and Pelham, H. R. B. (2009) Arrestin-mediated endocytosis of yeast plasma membrane transporters. *Traffic.* **10**, 1856–67

82. Kampmeyer, C., Karakostova, A., Schenstrøm, S. M., Abildgaard, A. B., Lauridsen, A.-M., Jourdain, I., and Hartmann-Petersen, R. (2017) The exocyst subunit Sec3 is regulated by a protein quality control pathway. *J. Biol. Chem.* **292**, 15240–15253

83. Chou, H.-T., Dukovski, D., Chambers, M. G., Reinisch, K. M., and Walz, T. (2016) CATCHR, HOPS and CORVET tethering complexes share a similar architecture. *Nat. Struct. Mol. Biol.* **23**, 761–763

84. Murray, D. H., Jahnel, M., Lauer, J., Avellaneda, M. J., Brouilly, N., Cezaune, A., Morales-Navarrete, H., Perini, E. D., Ferguson, C., Lupas, A. N., Kalaidzidis, Y., Parton, R. G., Grill, S. W., and Zerial, M. (2016) An endosomal tether undergoes an entropic collapse to bring vesicles together. *Nature.* **537**, 107–111

85. Bröcker, C., Kuhlee, A., Gatsogiannis, C., Balderhaar, H. J. kleine, Hönscher, C., Engelbrecht-Vandré, S., Ungermann, C., and Raunser, S. (2012) Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. *Proc. Natl. Acad. Sci. U. S. A.* **109**, 1991–6

86. Horazdovsky, B. F., Cowles, C. R., Mustol, P., Holmes, M., and Emr, S. D. (1996) A novel RING finger protein, Vps8p, functionally interacts with the small GTPase, Vps21p, to facilitate soluble vacuolar protein localization. *J. Biol. Chem.* **271**, 33607–15
87. Galmes, R., Ten Brink, C., Oorschot, V., Veenendaal, T., Jonker, C., van der Sluijs, P., and Klumperman, J. (2015) Vps33B is required for delivery of endocytosed cargo to lysosomes. *Traffic* **16**, 1288–305

88. Dang, H., Klokk, T. I., Schaheen, B., McLaughlin, B. M., Thomas, A. J., Durns, T. A., Bitler, B. G., Sandvig, K., and Fares, H. (2011) Derlin-dependent retrograde transport from endosomes to the Golgi apparatus. *Traffic* **12**, 1417–31

89. Xia, W.-F., Tang, F.-L., Xiong, L., Xiong, S., Jung, J.-U., Lee, D.-H., Li, X.-S., Feng, X., Mei, L., and Xiong, W.-C. (2013) Vps35 loss promotes hyperresorptive osteoclastogenesis and osteoporosis via sustained RANKL signaling. *J. Cell Biol.* **200**, 821–837

90. Choy, R. W.-Y., Park, M., Temkin, P., Herring, B. E., Marlkey, A., Nicoll, R. A., and von Zastrow, M. (2014) Retromer mediates a discrete route of local membrane delivery to dendrites. *Neuron* **82**, 55–62

91. Becuwe, M., and Léon, S. (2014) Integrated control of transporter endocytosis and recycling by the arrestin-related protein Rod1 and the ubiquitin ligase Rsp5. *Elife* 10.7554/eLife.03307

92. Choe, H., Palmer, L. G., and Sackin, H. (1999) Structural determinants of gating in inward-rectifier K+ channels. *Biophys. J.* **76**, 1988–2003

93. Hibino, H., Inanobe, A., Furutani, K., Murakami, S., Findlay, I., and Kurachi, Y. (2010) Inwardly rectifying potassium channels: their structure, function, and physiological roles. *Physiol Rev* **90**, 291–366

94. Yoo, D., Fang, L., Mason, A., Kim, B.-Y., and Welling, P. A. (2005) A phosphorylation-dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal. *J. Biol. Chem.* **280**, 35281–9

95. Rapedius, M., Fowler, P. W., Shang, L., Sansom, M. S., Tucker, S. J., and Baukrowitz, T. (2007) H-bonding at the helix-bundle crossing controls gating in Kir potassium channels. *Neuron* **55**, 602–614

96. Balut, C. M., Hamilton, K. L., and Devor, D. C. (2012) Trafficking of intermediate (KCa3.1) and small (KCa2.x) conductance, Ca(2+)-activated K(+) channels: a novel target for medicinal chemistry efforts? *ChemMedChem* **7**, 1741–55

97. Guo, J., Massaeli, H., Xu, J., Jia, Z., Wigle, J. T., Mesaeli, N., and Zhang, S. (2009) Extracellular K+ concentration controls cell surface density of IKr in rabbit hearts and of the HERG channel in human cell lines. *J. Clin. Invest.* **119**, 2745–57

98. Apaja, P. M., Foo, B., Okiyoneda, T., Valinsky, W. C., Barriere, H., Atanasiu, R., Ficker, E., Lukacs, G. L., and Shrier, A. (2013) Ubiquitination-dependent quality control of hERG K+ channel with acquired and inherited conformational defect at the plasma membrane. *Mol. Biol. Cell.* **24**, 3787–804

99. Apaja, P. M., and Lukacs, G. L. (2014) Protein homeostasis at the plasma membrane. *Physiology (Bethesda)*, **29**, 265–77

100. Bundis, F., Neagoe, I., Schwappach, B., and Steinmeyer, K. (2006) Involvement of Golgin-160 in Cell Surface Transport of Renal ROMK Channel: Co-expression of Golgin-160 Increases ROMK Currents. *Cell. Physiol. Biochem.* **17**, 1–12

101. Renigunta, A., Mutig, K., Rottermann, K., Schlichthölzl, G., Preisig-Müller, R., Daut, J., Waldegger, S., and Renigunta, V. (2011) The Glycolytic Enzymes Glyceraldehyde 3-Phosphate Dehydrogenase and Enolase Interact with the Renal Epithelial K+ Channel ROMK2 and Regulate its Function. *Cell. Physiol. Biochem.* **28**, 663–672

102. Adams, A., and Kaiser, C. A. (1998) *Methods in Yeast Genetics: A Cold Spring Harbor*
103. Koushik, S. V, Chen, H., Thaler, C., Puhl, H. L., Vogel, S. S., and Vogel, S. S. (2006) Cerulean, Venus, and VenusY67C FRET reference standards. *Biophys. J.* 91, L99–L101

104. Tong, A. H. Y., and Boone, C. (2006) Synthetic genetic array analysis in *Saccharomyces cerevisiae*. *Methods Mol. Biol.* 313, 171–92

105. Wade, J. B., Fang, L., Coleman, R. A., Liu, J., Grimm, P. R., Wang, T., and Welling, P. A. (2011) Differential regulation of ROMK (Kir1.1) in distal nephron segments by dietary potassium. *Am. J. Physiol. Renal Physiol.* 300, F1385–93

106. Roberg, K. J., Rowley, N., and Kaiser, C. A. (1997) Physiological regulation of membrane protein sorting late in the secretory pathway of *Saccharomyces cerevisiae*. *J. Cell Biol.* 137, 1469–82

107. Raphemot, R., Weaver, C. D., and Denton, J. S. (2013) High-throughput screening for small-molecule modulators of inward rectifier potassium channels. *J. Vis. Exp.* 10.3791/4209

108. Zhang, Y., Nijbroek, G., Sullivan, M. L., McCracken, A. A., Watkins, S. C., Michaelis, S., and Brodsky, J. L. (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. *Mol. Biol. Cell.* 12, 1303–14

FIGURES AND LEGENDS

Figure 1. *ROMK1_{S44D+K80M} rescues growth of trk1Δtrk2Δ yeast on low potassium and increases potassium uptake.* A. Cartoon representation of a yeast-based assay for potassium channel function. B. Yeast strains with the indicated genotypes transformed with an empty expression vector control or vectors engineered to express Kir2.1, wild-type ROMK1, or ROMK1_{S44D+K80M} were serially diluted onto medium supplemented with the indicated amounts of KCl. C. Intracellular potassium levels, as measured by ICP-MS, were assessed using equivalent amounts of yeast containing an empty vector or expressing Kir2.1, wild-type ROMK1, or ROMK1_{S44D+K80M}. Cells were cultured for 8 hrs in liquid media containing either 100 mM or 10 mM KCl. Data show the means of 3 biological replicates. Error bars show standard deviations, *indicates p<0.05 (Student’s t-test). D. Western blots of sucrose gradient fractions showing migration of HA-tagged ROMK1_{S44D+K80M} containing microsomes in wild-type yeast. Pma1 marks the plasma membrane-derived fractions while Sec61 marks ER-derived fractions.

Figure 2. *ROMK1 and ROMK1_{S44D+K80M} are degraded to varying degrees by the vacuole in yeast.* Yeast cultures expressing HA-tagged versions of either (A) ROMK1 or (B) ROMK1_{S44D+K80M} grown to mid-logarithmic phase were dosed with cycloheximide and aliquots were withdrawn at 0, 30, 60, and 90 min. A yeast strain lacking the master vacuolar protease (*pep4Δ*, filled circles) or an isogenic wild-type (*PEP4*, open circles) expressing the proteins were shifted from room temperature to 37°C 30 min before addition of cycloheximide. ROMK expression was assessed by Western Blot and data were normalized to the initial timepoint. Representative blots are shown and all blots were stripped and reprobed for glucose-6-phosphate dehydrogenase (G6PD) as a loading control. Data represent the means of six independent experiments from two independent yeast transformations. Error bars show standard errors of the mean, *indicates a significant (p<0.05) difference as assessed by Student’s t-test.

Figure 3. *ROMK1 is degraded by the ERAD pathway to a greater extent than ROMK1_{S44D+K80M} in yeast.* Yeast cultures expressing HA-tagged versions of either (A,C,E) ROMK1 or (B,D,F) ROMK1_{S44D+K80M} grown to mid-logarithmic phase were dosed with cycloheximide and aliquots were withdrawn at 0, 30, 60, and 90 minutes. Yeast strains containing either a temperature sensitive mutation in the gene encoding Cdc48 (*cdc48*⁻², filled circles) or lacking the mutant allele (*CDC48*, open circles)
expressing (A) wild-type ROMK1 or (B) ROMK1/S44D+K80M were shifted from room temperature to 39°C for 60 min before addition of cycloheximide. A yeast strain lacking the ER-resident E3 ubiquitin ligases (HRD1/DOA10, open circles) or an isogenic wild-type strain expressing (C) wild-type ROMK1 or (D) ROMK1/S44D+K80M were shifted from room temperature to 37°C 30 min before addition of cycloheximide. Yeast strains lacking four cytosolic isoforms of Hsp70 (Ssa1, Ssa2, Ssa3, and Ssa4) and containing either a temperature sensitive mutation of Ssa1 (ssa1-45, filled circles) or an isogenic wild-type allele (SSA1, open circles) and expressing (E) wild-type ROMK1 or (F) ROMK1/S44D+K80M were shifted from room temperature to 37°C 30 min before addition of cycloheximide. For all experiments, ROMK expression was assessed by Western Blot and normalized to the initial timepoint. Representative images are shown and all blots were stripped and reprobed for glucose-6-phosphate dehydrogenase (G6PD) as a loading control. Data represent the means of six independent experiments from two independent yeast transformations. Error bars show standard errors of the mean and *indicates a significant (p<0.05) difference as assessed by Student’s t-test.

Figure 4. Endosomal sorting genes are key negative regulators of ROMK at the cell surface. A. Cartoon representation of the synthetic genetic array screen. B. Gene ontology (GO) term analysis of very strong hits (z-score >3) isolated from initial screen listed in increasing order of p-value from most significant (<0.001) to least significant (<0.05). C. Endosomal transport genes considered for further investigation in this study. Genes are arranged by functional classification. Genes in boldface were identified in the screen, while those in normal type were selected as known interactors with identified genes. Underlined genes were selected for de novo strain reconstruction.

Figure 5. The deletion of genes encoding select ESCRT and CORVET components improves the growth of potassium sensitive yeast expressing ROMK1/S44D+K80M. Yeast strains with the indicated genotypes transformed with an empty expression vector control or vectors engineered to express Kir2.1, wild-type ROMK1, or ROMK1/S44D+K80M were serially diluted onto medium supplemented with the indicated amounts of KCl. All strains in this figure were identified in the high-throughput SGA screen and then reconstructed de novo. All experiments were performed in duplicate, and representative serial dilutions are shown.

Figure 6. Rsp5 promotes the degradation of ROMK1/S44D+K80M and Nhxl promotes recycling of ROMK. Yeast cultures expressing HA-tagged versions of either (A) ROMK1 or (B) ROMK1/S44D+K80M grown to mid-logarithmic phase were dosed with cycloheximide and aliquots were withdrawn at 0, 30, 60, and 90 minutes. Yeast strains containing either a temperature sensitive mutation in the gene encoding Rsp5 (rsp5-2, filled circles) or wild-type yeast (RSP5, open circles) expressing ROMK were shifted from room temperature to 39°C 75 min before addition of cycloheximide. ROMK expression was assessed by Western Blot and normalized to the initial timepoint. Representative blots are shown and all blots were stripped and reprobed for glucose-6-phosphate dehydrogenase (G6PD) as a loading control. Error bars represent the means of four independent experiments. Error bars show standard errors of the mean and *indicates a significant (p<0.05) difference as assessed by Student’s t-test. (C). Yeast strains with the indicated genotypes transformed with an empty expression vector control or vectors engineered to express Kir2.1, wild-type ROMK1, or ROMK1/S44D+K80M were serially diluted onto medium supplemented with the indicated amounts of KCl. All experiments were performed in duplicate, and a representative assay is shown.

Figure 7. Venus-tagged ROMK/K80M (Vn-ROMK) vacuolar trafficking is arrested in ESCRT-deficient yeast and reduced in CORVET-deficient yeast. A. Epifluorescence live cell images of the indicated yeast strains co-expressing Venus-ROMK/K80M (Vn-ROMK) and the ER-resident protein Scs2-mCherry (Scs2-mCh). B. Epifluorescence live cell images of the indicated yeast strains expressing Vn-ROMK are shown and were treated with the styryl dye FM4-64 for at least 30 min prior to imaging in order to stain the endosomal and vacuolar membranes. C. A Western blot analysis of lysates from yeast of
the indicated genetic backgrounds expressing Vn-ROMK or untagged ROMK1_K80M, or containing an empty expression vector was performed using the indicated antibodies. The Venus epitope migrates as three bands: full length Vn-ROMK (whole), a partially degraded species (clipped), and free Venus (free-Vn). The blot was stripped and reprobed with an antibody against the ROMK C-terminus to show the relative expression of untagged ROMK1_K80M (ROMK) and Vn-ROMK. All unlabeled bands are due to non-specific antibody binding (compare to lane 1 “vec”). G6PD is also shown as a loading control. D. Epifluorescence live cell images of yeast co-expressing Vn-ROMK and Snf7-RFP. For all images, a direct interference contrast (DIC) image is shown at right. The white scale bar measures 5 µm. White arrows indicate features of interest as described in the text.

Figure 8. Depletion of select ESCRT and CORVET components increases ROMK surface expression in HEK293 cells. A. Lysates from HEK293 cells expressing ROMK under the control of the doxycycline-inducible “T-REx” promoter were examined by anti-ROMK immunoblot in toto (left) or were surface biotinylated and precipitated with NeutAvidin beads (right). ROMK migrates as two bands: an (i) immature ER-glycosylated band at ~45 kDa and (m) a larger maturely glycosylated species of ~55-65 kDa (75). All blots were stripped and reprobed for cytosolic Hsp90 and plasma membrane-enriched ATP1A to show accurate loading and selective biotinylation of only cell surface proteins. An empty lane between the total and biotinylated samples was cropped out as indicated by the line. Quantitation of change in cell surface ROMK normalized to total protein for each replicate is shown below. Cell lysates from all siRNA-targeted factors were blotted on separate membranes to show efficient knockdown. Silencing for nine experimental replicates led to a decrease of 63 ± 4.7% for TSG101, 71 ± 4.3% for HGS, and 55 ± 5.1% for VPS8. *indicates p<0.05 (Student’s t-test). B. HEK293 cells expressing ROMK under the control of the doxycycline-inducible “T-REx” promoter were pretreated with the lysosomal protease inhibitor Leupeptin or MG132 (closed circles), or vehicle (open circles) for 1 hour prior to cycloheximide addition. Samples were harvested at the indicated times. ROMK expression was assessed by Western Blot and normalized to the initial timepoint. For this figure, only the upper mature band (m) was quantitated. Representative blots are shown and all blots were stripped and reprobed for actin as a loading control. Data represent the means of three independent experiments. Error bars show standard errors of the mean and *indicates a significant (p<0.05) difference as assessed by Student’s t-test.

Figure 9. Model of proposed roles for ESCRT and CORVET in ROMK post-endocytic regulation. After endocytosis, ROMK (grey cylinders) accumulates in early endosomes. The hexameric CORVET complex (dotted circles, “Vps” gene numbers indicated) tethers post-endocytic Rab5-positive vesicles to promote their fusion and maturation into early endosomes. ESCRT proteins (dashed circles, complexes 0, I, II, and III) recognize ubiquitinated ROMK and sequester the channel into intra-lumenal vesicles in late endosomes/multi-vesicular bodies. These late endosomes eventually mature and fuse with lysosomes in mammalian cells or vacuoles in yeast, where ROMK is degraded.
Mackie et al Figure 2

A

ROMK1

% remaining

chase time (min)

HA

G6PD

36-

55-

HA

G6PD

36-

55-

* * *

* *

* *

B

PEP4

ROMK1

S44D+K80M

PEP4

HA

G6PD

36-

55-

HA

G6PD

36-

55-
A

Mating

MATa
TRK1TRK2
xxxΔ

MATα
trk1Δtrk2Δ
XXX
ROMK

Sporulation

TRK1/trk1Δ
TRK2/trk2Δ
XXX/xxxΔ
ROMK

Progeny Selection

MATa
trk1Δtrk2Δ
xxxΔ
ROMK

Growth Assay

100 mM KCl

“0” mM KCl

B

ATP-dependent chromatin remodeling
Nucleosome organization
Chromatin remodeling
Histone exchange
DNA-templated transcription, elongation
Protein-DNA complex subunit organization
Chromatin disassembly
Protein-DNA complex disassembly
Endosomal transport
Late endosome to vacuole transport
Vacuolar transport

SWC5, SWR1, RSC1, RSC2, BDF1, NPL6
RSC1, RSC2, NPL6, NPL3, RPA49
SWC5, SWR1, RSC1, RSC2, BDF1, NPL6
RSC1, RSC2, NPL6
RSC1, RSC2, NPL6
VPS8, VPS23, YPT7, VPS20, VPS21
VPS8, VPS23, VPS20, VPS21
VPS8, VPS23, VPS64, YPT7, VPS20, VPS21

C

Family
CORVET
HOPS
ESCRT-0
ESCRT-I
ESCRT-II
ESCRT-III
Vps4C
Retromer
Rsp5 Adaptors
SNAREs
Rab GTPases
and cofactors

Function
Tether Early Endosomes
Tether Late Endosomes
Bind Ubiquitinated Cargo
Recruit Cargo to ILVs
Recruit Cargo to ILVs
Invaginate ILVs
Sever ILVs
Return Cargo to Golgi
Promote Ubiquitination
Fuse Membranes
Identify Endosomal Sub-Populations

Genes
VPS3, VPS8, VPS18, VAM6, VPS11, VPS16
VPS39, VPS41, VPS18, VAM6, VPS11, VPS16
VPS27, HSE1
VPS23, VPS28, VPS37, MVB12
VPS22, VPS25, VPS36
VPS2, VPS20, VPS24, SNF7
VPS4, VPS60, VTA1
VPS5, VPS17, VPS26, VPS29, VPS35
SSH4, BSD2, EAR1
TVP15, TVP23, TGL6, VAM7, PEP12, GOS1
VPS21, YPT7, YPT10, MSB3, MSB4, VPS9, BTS2
Mackie et al Figure 5

A

100 mM KCl

\textit{trk1}\textit{\Delta trk2}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

B

100 mM KCl

10 mM KCl

\textit{trk1}\textit{\Delta trk2}\textit{\Delta vps3}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

C

\textit{trk1}\textit{\Delta trk2}\textit{\Delta vps8}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

D

\textit{trk1}\textit{\Delta trk2}\textit{\Delta vps27}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

E

\textit{trk1}\textit{\Delta trk2}\textit{\Delta vps23}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

F

\textit{trk1}\textit{\Delta trk2}\textit{\Delta vps36}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

G

\textit{trk1}\textit{\Delta trk2}\textit{\Delta vps20}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}

H

\textit{trk1}\textit{\Delta trk2}\textit{\Delta snf7}\textit{\Delta}

vector

Kir2.1

ROMK1

ROMK1\textsubscript{S44D+K80M}
Mackie et al. Figure 6

(A) **ROMK1**

(B) **RSP5**

(C) 100 mM KCl, 10 mM KCl, “0” mM KCl

- **trk1Δtrk2Δvps23Δ**
- **trk1Δtrk2Δvps23Δnhx1Δ**
Mackie et al. Figure 7

A

BY4742

snf7Δ

pep4Δ

vps8Δ

B

BY4742

snf7Δ

pep4Δ

vps8Δ

C

 vec ROMK1K80M Vn-ROMK

BY4742 BY4742 BY4742

snf7Δ pep4Δ vps8Δ snf7Δ pep4Δ vps8Δ Snf7-RFP

D

BY4742

Vn-ROMK Snf7-RFP Merge DIC
