A hyperelliptic Hodge integral

Jonathan Wise

July 24, 2008

1 Introduction

We work over \mathbb{C}. We will use the theories of orbifold stable maps and orbifold Gromov–Witten theory as developed in [2] and [1]. Our notation for the moduli space of degree β orbifold stable maps with n_1 ordinary marked points and n_2 orbifold points will be

$$\mathcal{M}(X; n_1, n_2; \beta),$$

which is an open substack of the corresponding Artin stack of pre-stable maps, $\mathcal{M}(X; n_1, n_2; \beta)$. (Since we will only deal with $\mathbb{Z}/2\mathbb{Z}$ stabilizers in this note, we will not need a more detailed notation.)

Let C be the universal curve over $\mathcal{M} = \mathcal{M}(B(\mathbb{Z}/2\mathbb{Z}); 0, 2g + 2)$. For each $i = 1, \ldots, 2g + 2$, there is a closed substack D_i, the i-th universal $\mathbb{Z}/2\mathbb{Z}$-gerbe over \mathcal{M}. Let $N_{D_i/C}$ be the normal bundle of D_i in C and define L_i to be the line bundle

$$L_i = \pi_\ast \left(N_{D_i/C}^\vee \otimes \rho_1 \right),$$

where ρ_1 is the non-trivial representation of $\mathbb{Z}/2\mathbb{Z}$, viewed as a line bundle on D pulled back from $B(\mathbb{Z}/2\mathbb{Z})$.

Remark 1.0.1. Our definition of L_i coincides with the cotangent line bundle on the universal hyperelliptic curve over $\mathcal{M}(B(\mathbb{Z}/2\mathbb{Z}); 0, 2g + 2)$. Indeed, let $p : \tilde{C} \to C$ be the base change of (point) $\to B(\mathbb{Z}/2\mathbb{Z})$ via the universal map $C \to B(\mathbb{Z}/2\mathbb{Z})$ and define \tilde{D}_i analogously. Then $\pi_\ast (N_{\tilde{D}_i/C} \otimes \rho_1)$ can be identified with the pushforward via πp of the -1-eigenspace of $p_\ast N_{\tilde{D}_i/C}^\vee = N_{\tilde{D}_i/C}^\vee$. Since the hyperelliptic involution acts nontrivially on the fiber of the cotangent bundle at a Weierstrass point, this is just $N_{\tilde{D}_i/C}$, which is the usual cotangent line bundle.

In view of the remark, it is legitimate to say $c_1(L_i) = \psi_i$.

We also have the hyperelliptic Hodge bundle, whose dual is defined to be

$$E^\vee = R^1 \pi_\ast (\rho_1)$$

where π is the map from the universal curve C to $\mathcal{M}(B(\mathbb{Z}/2\mathbb{Z}), 2g + 2)$.

Remark 1.0.2. This definition of the Hodge bundle coincides with the usual definition as $R^1 (\pi p)_\ast \mathcal{O}_C$ (where $p : \tilde{C} \to C$ is defined as in the last remark). Indeed, we can identify $R^1 (\pi p)_\ast \mathcal{O}_C$ since $p_\ast \mathcal{O}_C \cong \mathcal{O}_C \otimes (\mathcal{O}_C \otimes \rho_1)$ and \mathcal{O}_C has no higher cohomology (because C has genus 1).

It is therefore justified to write $c_1(E) = \lambda_i$.

Theorem 1.1. We have

$$\int_{\mathcal{M}(B(\mathbb{Z}/2\mathbb{Z}), 2g + 2)} \frac{c(E^\vee)^2}{c(L_1^\vee)} = \int_{\mathcal{M}} \frac{(1 - \lambda_1 + \cdots + (-1)^g \lambda_g)^2}{1 - \psi_1} = \left(-\frac{1}{4} \right)^g .$$

The first equality was proved in the two remarks above. The second equality will be proven by interpreting the integral as a Gromov–Witten invariant on the weighted projective space (Section 2) and evaluating it recursively using the WDVV equations (Section 2).

The application for this calculation is [3], where it is used to relate the genus zero Gromov–Witten invariants of $[\text{Sym}^2 \mathbb{P}^2]$ and the enumerative geometry of hyperelliptic curves in \mathbb{P}^2.

2 A Gromov–Witten invariant of \(P(1, 1, 2) \)

Let \(\overline{M}(P(1, 1, 2); n_1, n_2; \beta) \) be the moduli space of genus zero orbifold stable maps to \(P(1, 1, 2) \) with \(n_1 \) ordinary marked points and \(n_2 \) orbifold marked points and degree \(\beta \). The degree is evaluated by integrating \(c_1(O(1)) \) over the curve and so is an element of \(\frac{1}{2}\mathbb{Z} \).

The virtual dimension is given by the formula

\[
v \dim \overline{M}(P(1, 1, 2); n_1, n_2; \beta) = \dim P(1, 1, 2) - 3 + \int_{\beta} c_1(TP(1, 1, 2)) + n_1 + n_2 - \sum_{i=1}^{n_2} \text{age}(x_i)
\]

where \(x_i, i = 1, \ldots, n_2 \) is the set of orbifold marked points and \(\text{age}(x_i) \) is the sum of the \(t_j \) such that the eigenvalues of the action of the stabilizer of \(x_i \) acting on \(TP(1, 1, 2) \) are \(e^{2\pi i t_j}, j = 1, \ldots, n_2 \), listed with multiplicity. If \(f : C \to P(1, 1, 2) \) is a representable map then any orbifold point of \(C \) must be carried by \(f \) to the unique stacky point of \(C \), which is represented by \((0, 0, 1)\). The automorphisms act with eigenvalues \(-1, -1\) on the fiber of the tangent bundle at this point, so the age is 1.

The Euler sequence here is

\[
0 \to \mathcal{O} \to O(1) \oplus O(1) \oplus O(2) \to TP(1, 1, 2) \to 0
\]

so \(c_1(TP(1, 1, 2)) = 4c_1(O(1)) \). Thus,

\[
v \dim \overline{M}(P(1, 1, 2); n_1, n_2; \beta) = 4d - 1 + n_1
\]

where \(d = \int_{\beta} c_1(O(1)) \).

The inertia stack of \(P(1, 1, 2) \) is \(P(1, 1, 2) \amalg B(\mathbb{Z}/2\mathbb{Z}) \) and the rigidified inertia stack is \(P(1, 1, 2) \amalg \text{(point)} \). Let \(\gamma \) be the fundamental class of the second component. Let \(p \) be the class of an ordinary point in \(P(1, 1, 2) \).

We’ll compute the invariant,

\[
\langle p, \gamma, \ldots, \gamma \rangle_{\frac{1}{2}}
\]

Let’s put \(h = c_1(O(1)) \). Then \(p = 2h^2 \).

A schematic of the orbifold Chow ring of \(P(1, 1, 2) \) with its structure as a graded vector space is shown below.

\[
\begin{array}{c|c|c|c}
\text{P(1,1,2) (point)} & 0 & 1 & 2 \\
\hline
\text{Q} & \text{Qh} & \text{Qp} \\
\text{Q\gamma} & & & \\
\end{array}
\]

It is easy to see that \(\overline{M}(P(1, 1, 2); 1, 2; 0) \cong B(\mathbb{Z}/2\mathbb{Z}) \) and therefore that \(\gamma^2 = \frac{1}{2}p = h^2 \). Therefore a presentation of the orbifold Chow ring is \(\mathbb{Q}[h, \gamma]/(h^2 - \gamma^2) \). Note in particular that this satisfies Poincaré duality.

Lemma 2.1. The Gromov–Witten invariants of \(P(1, 1, 2) \) have the following properties.

(a) If \(\langle \gamma^\alpha \alpha, \alpha \rangle_0 \neq 0 \) then \(n = 2 \) and \(\alpha = 1 \).

(b) The invariant \(\langle \gamma^\alpha h, \ast \rangle_0 \) is zero for all \(n \).

Proof. For (a), the invariant is computed on the moduli space \(\overline{M}(P(1, 1, 2); a, n; 0) \) which has virtual dimension \(a - 1 \). Hence the invariant will be zero unless \(a = 1 \) (so \(\alpha \) comes from the untwisted sector) and \(\alpha = 1 \). But then the invariant will be zero by the unit axiom unless \(n = 2 \).

For (b), it is sufficient by linearity to show that \(\langle \gamma^\alpha, 2h, \ast \rangle_0 = 0 \). But the Chow class \(2h \) can be represented by a line that doesn’t pass through the unique orbifold point \((0, 0, 1)\). Since this is a degree zero invariant, this means it is computed on an empty moduli space, i.e., it is zero. \(\square \)
The WDVV equations give

$$\sum_{a+b=2g-1 \atop d_1+d_2=\frac{1}{2}} \left\langle h, h, \gamma \otimes a, * \right\rangle _{d_1}, \gamma, \gamma \otimes b \right\rangle _{d_2} = \sum_{a+b=2g-1 \atop d_1+d_2=\frac{1}{2}} \left\langle h, \gamma, \gamma \otimes a, * \right\rangle _{d_1}, h, \gamma, \gamma \otimes b \right\rangle _{d_2},$$

where d_1 and d_2 can take the values 0 and $\frac{1}{2}$ in the sums.

Consider first the right side of the equality. One of the d_i must be zero, so consider the invariant $\left\langle h, \gamma, \ldots, \gamma, * \right\rangle _0$. This is zero by Lemma 2.13. On the left side, note that if $d_i = 0$ then the corresponding term of the sum will be zero by the divisor axiom unless $a = 0$ also. Thus we get

$$\left\langle h^2, \gamma \otimes (2g+1) \right\rangle _\frac{1}{2} + \frac{1}{4} \sum_{a+b=2g-1} \left\langle \gamma \otimes a, *, \gamma \otimes (b+2) \right\rangle _\frac{1}{4} = 0.$$

But $\left\langle \gamma \otimes n, * \right\rangle _0 = 0$ for $n > 2$ by Lemma 2.1 (a). Thus we are left with

$$\left\langle h^2, \gamma \otimes (2g+1) \right\rangle _\frac{1}{2} = -\frac{1}{4} \left\langle \gamma^2, \gamma \otimes (2g-1) \right\rangle _\frac{1}{2}.$$

Since $h^2 = \gamma^2 = \frac{1}{2}P$ we get

$$\left\langle p, \gamma \otimes (2g+1) \right\rangle _\frac{1}{2} = \left(-\frac{1}{4} \right) ^g \left\langle p, \gamma \right\rangle _\frac{1}{2}$$

by induction. The invariant on the right side of this equality is easily seen to be 1. Indeed, $\overline{M}(P(1,1,2); 1, 1; \frac{1}{2})$ may be identified with $P(\Gamma(P(1,1,2), O(1))) \cong P^1$. The virtual dimension of $\overline{M}(P(1,1,2); 0, 1; \frac{1}{2})$ is also 1, so we only need to solve the enumerative problem to compute $\left\langle p, \gamma \right\rangle _\frac{1}{2}$. If $(u,v) \in P^1$ is a point, then the condition that the corresponding curve interpolates the point $(x,y,z) \in P(1,1,2)$ is $ux + vy = 1$. This has exactly one solution if $(x,y) \neq (0,0)$ so we conclude that $\left\langle P, \gamma \right\rangle _\frac{1}{2} = 1$.

We have therefore proved

$$\left\langle p, \gamma \otimes (2g+1) \right\rangle _\frac{1}{2} = \left(-\frac{1}{4} \right) ^g \tag{1}$$

3 The virtual fundamental class

Lemma 3.1. Let C be a smooth orbifold curve. Suppose there is a representable map $f : C \rightarrow P(1,1,2)$ of degree $\frac{1}{2}$. Then C has at most 1 orbifold point.

Proof. In this case, $f^* O(1)$ is a line bundle of degree $\frac{1}{2}$ on C. The only such line bundles on C are the $O(P)$ where P is an orbifold point of C. Suppose $f^* O(1) = O(P)$ for a particular orbifold point P and that C has another orbifold point $Q \neq P$. Let σ be any nonzero section of $O(1)$ over $P(1,1,2)$. Then $f^* \sigma$ is a section of $O_C(P)$, hence vanishes only P. But this means $f(Q) \neq (0,0,1)$, which contradicts the representability of f. \square

Proposition 3.2. There are isomorphisms

$$\overline{M}(P(1,1,2); 0, 2g+1; \frac{1}{2}) \cong \overline{M}(P(1,1,2); 0, 1; \frac{1}{2}) \times \overline{M}(B(Z/2Z); 2g + 2)$$

Proof. If $(f, C) \in \overline{M}(P(1,1,2); 0, 2g+1; \frac{1}{2})$, then C has a unique irreducible component C_0 with $\deg f \mid _{C_0} = \frac{1}{2}$; all other components have degree 0. By the lemma, C_0 has exactly 1 orbifold point. The remaining orbifold points must lie on a component that is attached at the unique orbifold point of C. Thus every point of $\overline{M}(P(1,1,2); 0, 2g+1; \frac{1}{2})$ lies in the image of the gluing map

$$\iota : \overline{M}(P(1,1,2); 0, 1; \frac{1}{2}) \times \overline{M}(B(Z/2Z); 2g + 2) \rightarrow \overline{M}(P(1,1,2); 0, 2g + 1)$$

3
that attaches the marked point from the first component to the first marked point from the second component.

This is a closed embedding, so to complete the proof, we must show that the image of this map is in open in \(\mathfrak{M}(B(\mathbb{Z}/2\mathbb{Z}); 2g + 2) \). Consider a first-order deformation \((C', f')\) of \((C, f)\). Let \(C_1\) be the contracted component of \(C\) and let \(C_0\) be the component of positive degree. If \((C', f')\) were not in the image of \(\iota\), then \(C'\) would be a first-order smoothing of \(C\). But then consider the map \(N_{C_1/C'} \to (f_{|C_1})^* T_{\mathbb{P}(0,1)}(1, 1, 2)\). If \(P\) is the point of attachment between \(C_0\) and \(C_1\), then \(N_{C_1/C'}|_P\) is spanned by \(T_P C_0\). Moreover, \(C_0\) meets \((0, 0, 1)\) transversally (since \(f_{|C_0}\) has degree \(\frac{1}{2}\)), which implies that the map \(N_{C_1/C'} \to (f_{|C_1})^* T_{\mathbb{P}(0,1)}(1, 1, 2)\) is nonzero at \(P\).

On the other hand, \(N_{C_1/C} \cong \mathcal{O}_{C_1}(-P)\), and \((f_{|C_1})^* T_{\mathbb{P}(0,1)}(1, 1, 2) \cong (f_{|C_1})^* (\rho_1 \oplus \rho_1)\) because \(f\) contracts \(C_1\) onto the point \((0,0,1)\) and \(T_{\mathbb{P}(0,1)}(1,1,2) \cong \rho_1 \oplus \rho_1\). Thus we obtain a pair of sections of \(\rho_1 \oplus \mathcal{O}_{C_1}(P)\), at least one of which does not vanish at \(P\).

Let \(\pi : C_1 \to \overline{C}_1\) be the coarse moduli space. Then we get a section of \(\pi_* (\rho_1 \oplus \mathcal{O}_{C_1}(P))\) that is not everywhere zero. But \(\pi_* (\rho_1 \oplus \mathcal{O}_{C_1}(P)) = \mathcal{O}_{\overline{C}_1}(-g)\) where \(2g + 2\) is the number of orbifold points on \(C_1\). By stability of \((C, f)\), \(g > 0\), so all sections of \(\pi_* (\rho_1 \oplus \mathcal{O}_{C_1}(P))\) vanish. This contradicts the nonvanishing of the section at \(P\).

Now that we know how the moduli space looks, we must determine the virtual fundamental class. We use the deformation–obstruction sequence,

\[
\text{Def}(C) \to \text{Obs}(f) \to \text{Obs}(C, f) \to \text{Obs}(C) = 0.
\]

We know that \(\text{Obs}(C, f)\) is a vector bundle because \(\overline{\mathfrak{M}(\mathbb{P}(1, 1, 2); 0, 2g + 1; \frac{1}{2})}\) is smooth. The virtual fundamental class is the top Chern class of this vector bundle.

\[
\text{Obs}(f) \text{ is the relative obstruction space for the map } \overline{\mathfrak{M}(\mathbb{P}(1, 1, 2); 0, 2g + 1; \frac{1}{2})} \to \mathfrak{M}(B(\mathbb{Z}/2\mathbb{Z}); 2g + 1).
\]

If \((C, f)\) is a curve in \(\overline{\mathfrak{M}(\mathbb{P}(1, 1, 2); 0, 2g + 1; \frac{1}{2})}\) then we have just seen that \(C\) is the union of two curves, \(C_0\) and \(C_1\), along an orbifold point, with \(\deg(f_{|C_0}) = \frac{1}{2}\) and \(\deg(f_{|C_1}) = 0\). It is clear that any deformation of \(C\) that is trivial near the node will extend to a deformation of \((C, f)\) — indeed, \(C_0\) is rigid and \(C_1\) is contracted by \(f\). Thus, the image of \(\text{Def}(C) \to \text{Obs}(f)\) is the space of deformations of the node. If we name the nodal point \(P\), then the deformations of the node are parameterized by \(\pi_* (T_P C_0 \otimes T_P C_1)\), so we have an exact sequence on \(\overline{\mathfrak{M}(\mathbb{P}(1, 1, 2); 0, 2g + 1; \frac{1}{2})}\).

\[
0 \to \pi_* (T_P C_0 \otimes T_P C_1) \to \text{Obs}(f) \to \text{Obs}(C, f) \to 0.
\]

Explicitly, \(\text{Obs}(f) = \mathcal{R}^1 \pi_* f^* T \mathbb{P}(1, 1, 2)\), where \(f : C \to \mathbb{P}(1, 1, 2)\) is the universal map. Tensoring the normalization sequence for the node \(P\) with \(f^* T \mathbb{P}(1, 1, 2)\) and taking cohomology, we obtain

\[
H^0(T|_P) \to H^1(T) \to H^1(T|_{C_0}) \oplus H^1(T|_{C_1}) \to H^1(T|_P) = 0,
\]

writing \(T = f^* T \mathbb{P}(1, 1, 2)\). Note that \(H^0(T|_P) = 0\) since \(P\) is an orbifold point and \(T|_P \cong \rho_1 \oplus \rho_1\) has no invariant sections.

We can also calculate \(H^1(T|_{C_0}) = 0\) using the Euler sequence, which pulls back to

\[
0 \to \mathcal{O} \to \mathcal{O}(P) \oplus \mathcal{O}(P) \oplus \mathcal{O}(2P) \to T|_{C_0} \to 0
\]

since \(f_{|C_0}\) has degree \(\frac{1}{2}\) and \(f^* \mathcal{O}(1) = \mathcal{O}(P)\). Pushing this sequence forward to the coarse moduli space via \(q : C_0 \to \overline{C}_0\) (note \(q_*\) is exact) gives

\[
0 \to \mathcal{O}_{C_0} \to \mathcal{O}_{\overline{C}_0} \oplus \mathcal{O}_{\overline{C}_0} \oplus \mathcal{O}_{\overline{C}_0}(q(P)) \to \pi_* T \to 0.
\]
Now taking cohomology and noting that \(H^1(\mathcal{O}_{\mathcal{C}_0}) = H^1(\mathcal{O}_{\mathcal{C}_0}(\pi(P))) = H^2(\mathcal{O}_{\mathcal{C}_0}) = 0 \), we deduce that
\[
H^1(T|_{\mathcal{C}_0}) = 0
\]
from the long exact sequence.

It now follows that \(\mathrm{Obs}(f) = H^1(T|_{\mathcal{C}_1}) \). But, as already remarked, \(f|_{\mathcal{C}_1} \) factors through the orbifold point of \(\mathbf{P}(1,1,2) \), so \(T|_{\mathcal{C}_1} \) is the pullback of the tangent bundle at this point, which is \(\rho_1 \oplus \rho_1 \). Thus,
\[
\mathrm{Obs}(f) = R^1 \pi_* (\rho_1 \oplus \rho_1) \cong E^\vee \oplus E^\vee
\]
where \(E \) is the Hodge bundle defined in the introduction.

We therefore have an exact sequence,
\[
0 \to \pi_*(T_{PC_0} \otimes T_{PC_1}) \to E^\vee \oplus E^\vee \to \mathrm{Obs}(C,f) \to 0.
\]

Now, consider the cartesian diagram
\[
\begin{array}{ccc}
e^{-1}(p) & \to & \overline{M}(\mathbf{P}(1,1,2);1,2g+1;\frac{1}{2}) \\
\downarrow & & \downarrow e \\
p & \to & \mathbf{P}(1,1,2).
\end{array}
\]

Under the identification of Proposition 3.2, \(e \) factors through the evaluation map on \(\overline{M}(\mathbf{P}(1,1,2);1,1;\frac{1}{2}) \). Thus, \(e^{-1}(p) \) may be identified with \(\overline{M}(\mathbf{B}(\mathbb{Z}/2\mathbb{Z});2g+2) \). We have \(i^{-1}(T_{PC_0}) \cong \rho_1 \), we get the exact sequence,
\[
0 \to L^\vee_1 \to E^\vee \oplus E^\vee \to i^* \mathrm{Obs}(C,f) \to 0.
\]

Now,
\[
\langle p, \gamma \otimes (2g+1) \rangle \frac{1}{2} = \int i^! \overline{M}(\mathbf{P}(1,1,2);1,2g+1;\frac{1}{2}) \overline{\mathrm{vir}} = \int \overline{M}(\mathbf{B}(\mathbb{Z}/2\mathbb{Z});2g+2) \frac{c(E^\vee)^2}{c(L^\vee_1)}.
\]

But we have also seen in Section 2 that
\[
\langle p, \gamma \otimes (2g+1) \rangle \frac{1}{2} = \left(-\frac{1}{4} \right)^g
\]
and this completes the proof of the theorem.

References

[1] Dan Abramovich, Tom Graber, and Angelo Vistoli. Gromov–Witten theory of Deligne–Mumford stacks. math.AG/0603151, 2006.

[2] Dan Abramovich and Angelo Vistoli. Compactifying the space of stable maps. J. Amer. Math. Soc., 15(1):27–75 (electronic), 2002.

[3] Jonathan Wise. The genus zero Gromov–Witten invariants of \([\text{Sym}^2 P^2]\), 2007.