KaraTuner: Towards End-to-End Natural Pitch Correction for Singing Voice in Karaoke

Xiaobin Zhuang1, Huiran Yu2∗, Weifeng Zhao1, Tao Jiang1, Peng Hu1

1 Tencent Music Entertainment Lyra Lab, Shenzhen, China
2 Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

An automatic pitch correction system typically includes several stages, such as pitch extraction, deviation estimation, pitch shift processing, and cross-fade smoothing. However, designing these components with strategies often requires domain expertise and they are likely to fail on corner cases. In this paper, we present KaraTuner, an end-to-end neural architecture that predicts pitch curve and resynthesizes the singing voice directly from the tune-based pitch and vocal spectrum extracted from the original recordings. Several vital technical points have been introduced in KaraTuner to ensure pitch accuracy, pitch naturalness, timbre consistency, and sound quality. A feed-forward Transformer is employed in the pitch predictor to capture long-term dependencies in the vocal spectrum and musical note. We also develop a pitch-controllable vocoder based on a novel source-filter block and the Fre-GAN architecture. KaraTuner obtains a higher preference than the rule-based pitch correction approach through A/B tests, and perceptual experiments show that the proposed vocoder achieves significant advantages in timbre consistency and sound quality compared with the parametric WORLD vocoder, phase vocoder and CLPC vocoder.

Index Terms: Singing Voice Synthesis, Pitch Prediction, Pitch Correction, Universal Neural Vocoder

1. Introduction

Pitch correction is a widely applied voice editing technique, as it improves the intonation of the singers and helps create professional music products. In the music production industry, pitch correction is often performed by professional music engineers with sufficient domain knowledge using commercial pitch correction algorithms among researchers. A common idea to improve singing performance is to adopt features from professional singers with the help of time warping algorithms. Luo et al. [1] proposed a canonical time warping algorithm [2] that combines the canonical correlation analysis with dynamic time warping to port pitch curves from professional recordings into user singing. Yong et al. [3] further transferred energy dynamics from professional singing. Recently, Liu et al. [4] proposed a novel Shape-Aware DTW (SADTW) algorithm, which ameliorates the robustness of existing time-warping approaches by considering the shape of the pitch curve rather than low-level features when calculating the optimal alignment path. A latent-mapping algorithm was also designed to improve the vocal tone of the voice. However, deeply relying on a voice reference, in real-world applications these methods suffer from difficulties in template acquisition and their tuned performances are inevitably homogeneous in singing style. The data-driven approach proposed by Wager et al. [5] predicts pitch shifts from the difference between the singing voice and the accompaniment, which keeps the singing style to a greater extent and eases the homogeneity problem. However, the pitches identified from the accompaniment may not be accurate enough, and the pitch deviation is difficult to assess when the singer is severely off the correct melody. Score-based approaches like [6] and [7] usually use a set of rules to generate a target pitch curve from the given MIDI sequence. Although a note template is convenient to produce and is more reliable than the accompaniment, these strategies require careful parameter tuning and are not robust with corner cases.

In addition to relocating the pitch curve, another vital part of pitch correction system is resynthesizing the signal with the new tuned pitch, where a pitch-controllable vocoder is essential. Methods based on digital signal processing (DSP) such as phase vocoder [8], SOLA [9] [10], and WORLD [11] vocoder are feasible for the task. However, they tend to introduce artifacts and robotic voice into the synthesized audio. In recent years, neural network-based audio synthesis methods have received increasing attention. Differentiable DSP (DDSP) [12] has been introduced as a new method to generate audio with deep learning, where DSP algorithms are used as part of a neural network, ensuring end-to-end optimization. Since the first published examples of DDSP were focused on timbre transfer from monophonic instruments, Alonso et al. [13] present the DDSP architecture to a more complex, expressive instrument: the human vocal apparatus and check the suitability of the DDSP for singing voice synthesis by conditioning the model on the Mel Frequency Cepstral Coefficients (MFCC) of the original audio and creating a latent space. Other neural vocoders include WaveNet [14], WaveRNN [15], WaveGlow [16] and Parallel WaveGAN [17] do not address pitch-shifting problem, while LPCNet [18] which resembles a source-filter model, has the capability of pitch-shifting and exhibits more natural timbre than traditional phase vocoders [19]. Based on LPCNet, Morrison et al. [20] proposed Controllable LPCNet (CLPCNet), an improved LPCNet vocoder capable of pitch-shifting and time-stretching of speech.

To overcome the drawbacks of the above methods, we propose KaraTuner, a novel architecture for automatic pitch correction in karaoke. The main contributions of our work are as follows: 1) We propose a vocal-adaptable pitch predictor to replace the rule-based pitch shift strategies to achieve diversity and naturalness of the predicted pitch. 2) We develop a source-filter (SF) block to achieve pitch controllability. We use the pitch-
integrated hidden representation from the SF block instead of the Mel-spectrogram as the activation of the neural vocoder. 3) We propose a practical data preprocessing method to build dataset from unlabeled amateur singing instead of any professional recordings. In the experiments, we use the rule-based approach and existing vocoders as the baseline, to show that KaraTuner is superior in pitch accuracy, pitch naturalness, timbre consistency, and sound quality.

2. ARCHITECTURE

Figure 1 illustrates the architecture of KaraTuner. We set up a pitch predictor with the Feed-Forward Transformer [21] (FFT) blocks and a pitch-controllable vocoder based on a source-filter block and the Fre-GAN architecture. In the training phase, these two modules are trained separately. Meanwhile, the ground truth pitch rather than the predicted pitch is passed through the source-filter block to maintain pitch consistency between the input and output of the vocoder for faster convergence.

2.1. Vocal-Adaptable Pitch Predictor

In speech and singing voice synthesis, people usually consider the spectral envelope as the timbre representation of a speaker, and its relationship with the pitch curve is generally ignored. However, En-Najjary et al. [22] reported that the spectral envelope feature implicitly contains the pitch curve, as they predicted it out of the spectral envelope with high accuracy. Inspired by this work, we take into account the spectral envelope along the frequency axis in the training phase to alleviate over-fitting and force the reference score to be the backbone of the pitch curve and the spectral envelope to express details such as gliding and vibrato. In our pitch prediction task, the information related to the pitch curve is concentrated in the middle-low frequency bands of the spectral envelope. Therefore, we drop the redundant high-frequency features. Finally, we use mean squared error (MSE) loss between the predicted pitch curve \(\hat{x} \) and the ground truth \(x \) to optimize the pitch predictor. The MSE loss of the pitch predictor is defined as:

\[
L_{\text{MSE}} = \mathbb{E}[||x - \hat{x}||_2]
\]

(1)

2.2. Pitch-Controllable Neural Vocoder

Most neural network vocoders cannot maintain the f0-consistency of the waveform, and many perform better on single-speaker datasets. At the same time, the sound quality usually downgrades when they generate audio of unseen speakers. Therefore, we adopted the universal neural vocoder Fre-GAN structure for high-fidelity any-speaker waveform generation. To further integrate pitch controllability, we designed a neural source-filter block inspired by WORLD vocoder[24] and [25], based on the assumption that the source is independent from the filter, and human voice can be synthesized by convolving the source signal with the filter impulse response. Besides, SingGAN vocoder by Chen et al. [26] also indicates that the use of pitch condition helps synthesize waveforms with stable and natural vowel pronunciation, which improves the audio quality. Hence, we developed a novel neural source-filter block, which combines the pitch feature with vocal spectrum envelope and also alleviates the glitch problem in the spectrogram.
2.2.1. Source-Filter Block

In KareTuner, the inputs of the source-filter (SF) block are the pitch curve and the spectral envelope. In the training phase, the ground truth pitch is directly fed into the SF block, while in the inference phase, the predicted pitch is masked with the voiced/unvoiced (V/UV) decision of the original audio before feeding into the network.

A vocal signal s typically consists of periodic and aperiodic components. In the SF block, the pitch goes through an embedding layer and does element-wise multiplication with the spectral envelope to generate the periodic component. Independently, the spectral envelope also goes through a ResBlock2 to predict the aperiodic component. A simple way to combine these two components is to add them directly. However, we found that a learnable mixing ratio of each frame can improve the sound quality of synthesized audio and reduce spectral defects. Thus, the hidden representation r of the signal can be defined as:

$$ r = \sigma(f_1(sp)) \odot \text{emb}(\text{pitch}) \odot sp + f_2(sp) \quad (2) $$

Here, f_1 denotes the ResBlock1 and f_2 denotes the ResBlock2. sp denotes the spectral envelope in full linear scale and emb denotes the embedding representation of input pitch. In the ResBlocks, we set the dilation rates to $[1, 2, 1, 2]$, and the kernel sizes to 3.

2.2.2. Fre-GAN Vocoder

Fre-GAN [27] is a neural network vocoder with feed-forward transposed convolution blocks up-sampling the input mel-spectrogram until the output reaches the expected waveform sampling rate. It outperforms auto-regressive neural vocoders in inference speed, unseen-speaker generalization, and pitch consistency, which meets the requirements for the pitch correction system.

In the generator, a multi-receptive field fusion (MRF) module proposed in Hi-Fi-GAN [28] is employed to observe patterns on diverse scales. Skip-connections and up-sampling modules are also adopted at top-K deep layers to sum up different sample rates' features to increase resolution gradually and stabilize the adversarial training process. The overall architecture is called the Resolution-Connected Generator (RCG) block. In our work, the input of the RCG block is the hidden representation from SF block rather than the mel-spectrogram. Since the sampling rate of our experiment is different from the original Fre-GAN, we also modified some of the parameters in the up-sampling layers.

Two discriminators from the Fre-GAN are also employed in KareTuner, including the Resolution-wise multi-Period Discriminator (RPD) and Resolution-wise multi-Scale Discriminator (RSD)1. There, Discrete Wavelet Transform (DWT) instead of average pooling is applied to the waveform to achieve down-sampling without information loss.

2.2.3. Training Objectives

The training of the activation model and the vocoder was conducted in an end-to-end manner, and the network is optimized to reconstruct the real waveform from ground-truth pitch curve and spectral envelope.

1We used the implementation of the discriminators in: https://github.com/rishikksh20/Fre-GAN-pytorch, although it is not exactly the same as the original paper.

The generator loss is defined as:

$$
\mathcal{L}_G = \sum_{n=0}^{4} \mathbb{E}[[|D_n^G(\hat{x}) - 1|_2 + \lambda_{f_m}\mathcal{L}_{f_m}(G; D_n^G) + \lambda_{\text{STFT}}\mathcal{L}_{\text{STFT}}(G)] \\
+ \mathbb{E}[[|D_n^G(\hat{x}) - 1|_2 + \lambda_{f_m}\mathcal{L}_{f_m}(G; D_n^G)] + \lambda_{\text{STFT}}\mathcal{L}_{\text{STFT}}(G)) \quad (3)
$$

The discriminator loss is defined as:

$$
\mathcal{L}_D = \sum_{n=0}^{4} \mathbb{E}[[|D_n^\text{D}(x) - 1|_2 + |D_n^\text{D}(\hat{x})|_2] + \mathbb{E}[[|D_n^\text{D}(\phi(x) - 1)|_2 + |D_n^\text{D}(\phi(\hat{x}))|_2] \quad (4)
$$

Here, x denotes the ground truth waveform. \hat{x} denotes the generated waveform, G denotes the SF layer and RCG, D_n^D denotes the n-th RPD, D_n^D denotes the n-th RSD, ϕ denotes the m-th level DWT. λ_{f_m} and λ_{STFT} are weighting parameter for feature loss \mathcal{L}_{f_m} and STFT-spectrogram loss $\mathcal{L}_{\text{STFT}}$ respectively. The lambda parameters aim to balance the generative and adversarial losses in different scales. According to our experiments, these parameters are not particularly strict, but improper parameter settings usually make the training process unstable and introduce artifacts in the generated results. In the experiments, we set $\lambda_{f_m} = 2$ and $\lambda_{\text{STFT}} = 45$ which balance the adversarial losses.

The feature loss is defined as:

$$
\mathcal{L}_{f_m}(G; D_h) = \mathbb{E}\left[\sum_{i=0}^{T-1} \frac{1}{N_t}||D_{k}^{(i)}(x) - D_{k}^{(i)}(\hat{x})||_1\right] \quad (5)
$$

Where $D_{k}^{(i)}$ denotes the i-th feature extracted by discriminator D_h.

The STFT-spectrogram loss is defined as:

$$
\mathcal{L}_{\text{STFT}}(G) = \mathbb{E}||\psi(x) - \psi(\hat{x})||_1 \quad (6)
$$

Where $\psi(x)$ denotes the STFT function.

3. Experiments

3.1. Dataset and Data Preprocessing

In the pitch correction task, there hardly exists paired data that includes both out-of-tune and in-tune vocals of a song from the same singer, which increases the difficulty in training. Therefore, this paper’s novelty is that we conducted HMM smoothing [29] [30] to the out-of-tune vocals to extract standard MIDI note sequence as the reference note template in the training data. In the training phase, our model learns to generate the out-of-tune pitch curve from the corresponding out-of-tune notes. In the inferencing phase, we replace the note sequence with the target musical notes which will lead to in-tune pitch outputs. In this method, we built a large dataset without manual labeling to complete the pitch prediction task.

We collected 5294 full-song performances by amateur singers of different singing proficiency in karaoke settings, which are time-aligned with the accompaniment, with an average of 4.3 minutes. The same dataset is also used in vocoder training.
3.2. Experiments Settings

The spectral envelopes are extracted with cheaptrick algorithm in WORLD vocoder [11] with 2048 of window size, 512 of hop-size, and 2048 points of Fourier transform.

To meet the sound quality requirement of music production, we raised the sampling rate of the synthesized waveform from 22050Hz to 32000Hz, and STFT hopsize from 256 to 512. The up-sampling rate of the transposed convolution layers are set to [8, 4, 4, 2, 2], the kernel sizes are set to [16, 8, 8, 4, 4], and dilation rates of MRF are set to [(1, 1), (3, 1), (5, 1), (7, 1) × 3]. We used AdamW optimizer with $\beta_1 = 0.8$, $\beta_2 = 0.99$, batch_size = 128.

To evaluate the performance of the proposed method and the baseline, we ask 12 people with good music training experience to do the subjective test. We used 13 audio clips with lengths from 5s to 10s, and each candidate was randomly assigned four clips to evaluate pitch predictor performance and other four clips to evaluate vocoder performance.\footnote{The audio examples are available at: https://ella-granger.github.io/KaraTuner/}

3.3. Experiment 1: Pitch Predictor Performance

We used the post-tuning process in NPSS[31] as the pitch tuning baseline, which is a note shifting algorithm. It iterates through every note in the reference score, and moves the corresponding pitch curve to eliminate the difference between the estimated average of the curve and the target note. In this way, it performs pitch correction without altering the details such as bending and vibratos in the original curve. This method was also applied to the predicted pitch curve to obtain perfect intonation. Figure 2 illustrates an example from the results of the proposed pitch predictor.

3.4. Experiment 2: Vocoder Performance

We used the phase vocoder, WORLD vocoder and CLPCNet as baselines to synthesize the pitch-corrected audio. Mean Opinion Scale (MOS) evaluations were conducted over sound quality and the overall quality considering the timbre consistency, and the results of 43 valid answers are shown in Table 1. In the subjective evaluation, the proposed vocoder achieved the highest MOS score in both sound quality and the overall quality, which proves the significant advantage of the source filter block and the neural vocoder. In our objective evaluation of pitch accuracy, we find that traditional DSP vocoders have significant advantage than neural network vocoders, but our proposed vocoder has a lower root-mean-square of the pitch error than the CLPCNet.

4. CONCLUSION

In this paper, we proposed KaraTuner which performs end-to-end pitch correction. It predicts a natural pitch curve from the spectral envelope and a score reference, then synthesizes high fidelity in-tune singing voice while maintaining the original audio’s timbre. Experiment results suggest that evaluators show a stronger preference for KaraTuner than other baseline solutions. For future work, we will continue to optimize the quality in scenes of reverberation, noise and inaccurate rhythm of singing vocal.
5. References

[1] Y.-J. Luo, M.-T. Chen, T.-S. Chi, and L. Su, “Singing voice correction using canonical time warping,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 156–160.

[2] F. Zhou and F. D. L. Torre, “Canonical time warping for alignment of human behavior,” in NIPS, 2009.

[3] S. Yong and J. Nam, “Singing expression transfer from one voice to another for a given song,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 151–155.

[4] J. Liu, C. Li, Y. Ren, Z. Zhu, and Z. Zhao, “Learning the beauty in songs: Neural singing voice beautifier,” arXiv preprint arXiv:2202.12277, 2022.

[5] S. Wager, G. Tzanetakis, C.-W. Wang, and M. Kim, “Deep autotuner: A pitch correcting network for singing performances,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 246–250.

[6] O. Perrotin and C. D’Alessandro, “Target Acquisition vs. Expressive Motion: Dynamic Pitch Warping for Intonation Correction,” ACM Transactions on Computer-Human Interaction, vol. 23, no. 3, p. 17, 2016. [Online]. Available: https://hal.sorbonne-universite.fr/hal-01672238

[7] E. Azarov, M. Vashkevich, and A. Petrovsky, “Guslar: A framework for automated singing voice correction,” in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 7919–7923.

[8] M. Dolson, “The phase vocoder: A tutorial,” Computer Music Journal, vol. 10, no. 4, pp. 14–27, 1986.

[9] W. Verhelst, “Overlap-add methods for time-scaling of speech,” Speech Communication, vol. 30, no. 4, pp. 207–221, 2000.

[10] S. Rudresh, A. Vassilht, K. Vijayan, and C. S. Seelamantula, “Epoch-synchronous overlap-add (esola) for time- and pitch-scale modification of speech signals,” 01 2018.

[11] M. Morise, F. Yokomori, and K. Ozawa, “World: A vocoder-based high-quality speech synthesis system for real-time applications,” IEICE Trans. Inf. Syst., vol. 99-D, pp. 1877–1884, 2016.

[12] J. Engel, L. Hantrakul, C. Gu, and A. Roberts, “Ddsp: Differentiable digital signal processing,” arXiv preprint arXiv:2001.04643, 2020.

[13] J. Alonso and C. Erkut, “Latent space explorations of singing voice synthesis using ddsd,” arXiv preprint arXiv:2103.07197, 2021.

[14] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, “Wavenet: A generative model for raw audio,” 2016.

[15] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. Lockhart, F. Stimberg, A. van den Oord, S. Dieleman, and K. Kavukcuoglu, “Efficient neural audio synthesis,” 2018.

[16] R. Prenger, R. Valle, and B. Catanzaro, “Waveglow: A flow-based generative network for speech synthesis,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 3617–3621.

[17] R. Yamamoto, E. Song, and J.-M. Kim, “Parallel wavegan: A fast waveform generation model based on generative adversarial networks with multi-resolution spectrogram,” in ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6199–6203.

[18] J.-M. Valin and J. Skoglund, “Lpnet: Improving neural speech synthesis through linear prediction,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5891–5895.

[19] T. F. Quatieri, Discrete-time speech signal processing: principles and practice. Pearson Education India, 2006.

[20] M. Morrison, Z. Jin, N. J. Bryan, J.-P. Caceres, and B. Pardo, “Neural pitch-shifting and time-stretching with controllable lpc-net,” arXiv preprint arXiv:2110.02360, 2021.

[21] A. Vyaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017, pp. 5998–6008.

[22] T. En-Najjary, O. Rosec, and T. Chonavel, “A new method for pitch prediction from spectral envelope and its application in voice conversion,” in INTERSPEECH, 2003.

[23] P. Lu, J. Wu, J. Luan, X. Tan, and L. Zhou, “Xiaoicesing: A high-quality and integrated singing voice synthesis system,” 2020.

[24] M. Morise, F. YOKOMORI, and K. Ozawa, “World: A vocoder-based high-quality speech synthesis system for real-time applications,” IEICE Transactions on Information and Systems, vol. E99-D, pp. 1877–1884, 07 2016.

[25] X. Wang, S. Takaki, and J. Yamagishi, “Neural source-filter-based waveform model for statistical parametric speech synthesis,” in ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 5916–5920.

[26] F. Chen, R. Huang, C. Cui, Y. Ren, J. Liu, and Z. Zhao, “Singgan: Generative adversarial network for high-fidelity singing voice generation,” arXiv preprint arXiv:2110.07468, 2021.

[27] J. H. Kim, S. H. Lee, J. H. Lee, and S. W. Lee, “Fre-gan: Adversarial-frequency-consistent audio synthesis,” in 22nd Annual Conference of the International Speech Communication Association, INTERSPEECH 2021. International Speech Communication Association, 2021, pp. 3246–3250.

[28] J. Kong, J. Kim, and I. Bae, “Hifi-gan: Generative adversarial networks for efficient and high fidelity speech synthesis,” Advances in Neural Information Processing Systems, vol. 33, pp. 17022–17033, 2020.

[29] M. Mauch and S. Dixon, “pyin: A fundamental frequency estimator using probabilistic threshold distributions,” in 2014 ieee international conference on acoustics, speech and signal processing (icassp). IEEE, 2014, pp. 659–663.

[30] M. Mauch, C. Cannam, R. Bittner, G. Fazeekas, J. Salamon, J. Dai, J. Bello, and S. Dixon, “Computer-aided melody note transcription using the tony software: Accuracy and efficiency,” in Proceedings of the First International Conference on Technologies for Music Notation and Representation, May 2015, accepted.

[31] M. Blauw and J. Bonada, “A neural parametric singing synthesizer modeling timbre and expression from natural songs,” Applied Sciences, vol. 7, no. 12, p. 1313, 2017.