Decidability of the extension problem for maps into odd-dimensional spheres

Lukáš Vokřínek

January 17, 2014

Abstract

In a recent paper [3], it was shown that the problem of existence of a continuous map $X \to Y$ extending a given map $A \to Y$ defined on a subspace $A \subseteq X$ is undecidable, even for Y an even-dimensional sphere. In the present paper, we prove that the same problem for Y an odd-dimensional sphere is decidable. More generally, the same holds for any d-connected target space Y whose homotopy groups $\pi_k Y$ are finite for $k > 2d$.

1. Introduction

The main object of study of the present paper is the extension problem. Given spaces X, Y and a map $f: A \to Y$ defined on a subspace $A \subseteq X$, it questions the existence of a continuous extension

\[
\begin{array}{ccc}
A & \xrightarrow{f} & Y \\
\downarrow & & \downarrow \\
X & \xrightarrow{g} &
\end{array}
\]

If Y is allowed non-simply connected, this problem is undecidable by a simple reduction to the word problem in groups. Thus, we restrict ourselves to the situation of a simply connected Y.

In [8], Steenrod expressed a hope that the extendability problem would be algorithmically solvable. It was proved in [11] that this is indeed the case if one restricts to a suitably “stable” situation, i.e. if $\dim X \leq 2 \text{conn} Y + 1$. The algorithm of that paper depended on computations with abelian groups of homotopy classes of maps that are not available unstably. Later, the authors showed in [3] that the previous positive result was very much the best possible: the extension problem with $\dim X > 2 \text{conn} Y + 1$ is undecidable, even for such a simple target space as S^{d+1} with $d + 1$ even. This undecidability result has implications to other problems, namely, [5] shows the undecidability of the problem of existence of a robust zero of a given PL-map $K \to \mathbb{R}^{d+2}$, again for d even.

It may thus come as a bit of a surprise that the last two problems with $d + 1$ odd are decidable – this is the content of Theorem 1 below. It applies to $Y = S^{d+1}$, $d + 1$ odd, since in this case, $\pi_n S^{d+1}$ is finite for $n > d + 1$. Again, [5] implies the decidability of the problem of existence of a robust zero of a given PL-map $K \to \mathbb{R}^{d+2}$, d odd.

Theorem 1. There exists an algorithm that, given a pair of finite simplicial sets (X, A), a finite d-connected simplicial set Y, $d \geq 1$, with homotopy groups $\pi_n Y$ finite for all $2d < n < \dim X$ and a simplicial map $f: A \to Y$, decides the existence of a continuous extension $g: X \to Y$ of f.

*The research was supported by the grant P201/11/0528 of the Czech Science Foundation (GA ČR).
2010 Mathematics Subject Classification. Primary 55Q05; Secondary 55S35.
Key words and phrases. Homotopy class, computation, higher difference.
We do not have any bounds on the running time of such an algorithm. In the light of the \#P-hardness of the computation of the homotopy group \(\pi_k Y \) when \(k \) is a part of the input (in unary), see [3], one should not expect that this algorithm is polynomial-time when the dimension of \(X \) is not fixed. However, even if \(\dim X \) is bounded, it seems that our algorithm will not have polynomial running time. Nevertheless, the contrast with the undecidability for even-dimensional \(X \) is huge.

In Section 5 we briefly discuss an extension of Theorem 4 to the fibrewise equivariant situation of [4]. In the special case \(A = \emptyset \), such an extension implies the decidability of the problem of existence of a \(\mathbb{Z}/2 \)-equivariant map \(X \to S^{d+1} \) when \(d+1 \) is odd. The index of \(X \), denoted \(\text{ind} X \), is the smallest \(d+1 \) for which such an equivariant map \(X \to S^{d+1} \) exists; it has many applications in geometry and combinatorics. Thus, with the equivariant version of Theorem 4 it is possible to narrow \(\text{ind} X \) down to two possible values.

2. Sets with an action and mappings to abelian groups

Let \(S \) and \(T \) be sets with a binary operation \(+ : S \times T \to S\) that has a right-sided zero \(0 \in T \), i.e. such that \(x + 0 = x \). We use the bracketing convention \(x + y + z = (x + y) + z \). We define a “derived” action of \(T \) on \(S \) by

\[
 x + \theta y = x + y + \cdots + y.
\]

Again, it has a right-sided zero \(0 \). The following lemma will be our main technical tool.

Lemma 2. Let \(f : S \to G \) be an arbitrary mapping of \(S \) into an abelian group \(G \). Then, for each prime power \(q = p^m \) and \(\ell > 0 \), there exists \(\ell' \geq \ell_0 \), a function \(D_{q,\ell} f : S \times T^{\ell} \to G \) such that \(D_{q,\ell} f(x; y_1, \ldots, y_\ell) = 0 \) whenever \(y_i = 0 \) for some \(i \), and \(\theta > 0 \) such that

\[
 f(x + \theta y) \equiv f(x) + D_{q,\ell} f(x; y, \ldots, y) \quad (\text{mod } q). \tag{mod q}
\]

In fact, \(D_{q,\ell} f \) is a formal expression in terms of \(f \), the action of \(T \) on \(S \) and the group structure on \(G \) and works universally for all \(f : S \to G \). Moreover, this expression is computable.

We will make a heavy use of higher-order differences

\[
 \Delta_\ell f(x; y_1, \ldots, y_\ell) = \sum_{0 \leq k \leq \ell} \sum_{1 \leq i_1 < \cdots < i_k \leq \ell} (-1)^{\ell-k} f(x + y_{i_1} + \cdots + y_{i_k}).
\]

Clearly, \(\Delta_\ell f(x; y_1, \ldots, y_\ell) = 0 \) whenever \(y_i = 0 \) for some \(i \).

For any formal expression written in terms of the action of the group \(T \) on \(S \), we will use a superscript \((-)^{\theta}\) to denote the expression obtained by replacing each \(x + y \) by \(x + \theta y \). In this way, we yield \(\Delta_\ell^{(\theta)} f \). The function \(D_{q,\ell} f \) will be an integral combination of the \(\Delta_\ell^{(\theta)} f \).

Proof. We let \(\ell = p^m \) be any power of \(p \) for which \(\ell > \ell_0 \) and \(\theta = p^{n+m-1} \). The proof is executed by induction with respect to \(m \). By definition, \(f(x + p^n m - 1 y) \) equals

\[
 f(x + p^n m - 1 y) = \Delta_\ell^{(p^{n-1})} f(x; y, \ldots, y) - \sum_{j=0}^{p^n-1} (-1)^{p^n-j} \binom{p^n}{j} f(x + j p^{m-1} y).
\]

For \(j > 0 \), write \(j = p^{n'} j' \) where \(j' \) is prime to \(p \) and observe that

\[
 j \binom{p^n}{j} = p^n \binom{p^n-1}{j-1}
\]

is divisible by \(p^n \), so that \(p^{n-n'} \mid \binom{p^n}{j} \). Setting \(n' + m = n + m' \), we have either \(m' \leq 0 \), in which case \(n - n' \geq m \) and the binomial coefficient is divisible by \(q = p^m \), or we obtain for \(q' = p^{n'} \) by induction

\[
 f(x + j p^{m-1} y) = f(x + p^{n+m-1} j' y) \equiv f(x) + D_{q',\ell} f(x; y, \ldots, y) \quad (\text{mod } q').
\]
(this holds even for \(j = 0 \) when the last term is interpreted as 0). Upon multiplication by \(\binom{p^n}{j} \), that is divisible by \(p^{n-n'} = q/q' \), we obtain even

\[
\left(\binom{p^n}{j} \right) f(x + jy^{p^{n-1}}y) \equiv \left(\binom{p^n}{j} \right) f(x) + \left(\binom{p^n}{j} \right) D_{q', \ell} (x; y, \ldots, y). \tag{mod q}
\]

Since \(\sum_{j=0}^{p^n-1} (-1)^{n-j} \binom{p^n}{j} = -1 \), substituting the previous equation into the first yields

\[
f(x + p^{n+m-1}y) \equiv f(x) + \Delta_4^{(p^{m-1})} f(x; y, \ldots, y) - \sum_{j=0}^{p^n-1} (-1)^{n-j} \left(\binom{p^n}{j} \right) D_{q', \ell} (x; y, \ldots, y)
\]

where we set \(D_{q', \ell} = \Delta_4^{(p^{m-1})} - \sum_{j=0}^{p^n-1} (-1)^{n-j} \binom{p^n}{j} D_{q', \ell} \).

\[\square\]

Example 3. In this example, we have \(q = p^m = 4 \) and \(\ell = 4 \). Then

\[
f(x + 8y) = \Delta_4^{(2)} f(x; y, y, y, y) + 4f(x + 6y) - 6f(x + 4y) + 4f(x + 2y) - f(x)
\]

and we continue in a similar way with the third term,

\[
f(x + 4y) = \Delta_4 f(x; y, y, y, y) + 4f(x + 3y) - 6f(x + 2y) + 4f(x + y) - f(x).
\]

Substituting into the first equation, we get

\[
f(x + 8y) \equiv f(x) + \Delta_4^{(2)} f(x; y, y, y, y) + 2\Delta_4 f(x; y, y, y, y) \tag{mod 4}
\]

and \(D_{4,4} f = \Delta_4^{(2)} f + 2\Delta_4 f \).

3. Postnikov tower

We assume that \(Y \) is \(d \)-connected simplicial set and has all homotopy groups \(\pi_n Y \) finite for \(2d < n < \dim X = D \). In the following theorem, \(K(\pi, n+1) \) is the Eilenberg-MacLane space and \(E(\pi, n) \) its path space; more precisely, we use the canonical minimal models with both simplicial sets minimal and the projection \(\delta: E(\pi, n) \to K(\pi, n+1) \) a minimal fibration, see [7].

Theorem 4. For each simply connected simplicial set \(Y \), it is possible to construct simplicial sets \(P_n \) for \(n < D \), and a sequence of simplicial maps

\[
Y \xrightarrow{\varphi_n} P_n
\]

such that \(\varphi_n: \pi_i(Y) \to \pi_i(P_n) \) is an isomorphism for \(i \leq n \) and \(\pi_i(P_n) = 0 \) for \(i > n \).

Further, for \(2d < n < D \), it is possible to construct simplicial sets \(P_{n,i} \) that fit into a pullback square

\[
P_{n,i} \xrightarrow{k} K(\mathbb{Z}/q, n+1)
\]

with \(q = p^m \) a prime power (depending on \(n \) and \(i \); the same applies to \(k \)) and \(P_{n-1} = P_{n,0} \), \(P_n = P_{n,r} \), where \(r \) is some integer that depends on \(n \). The composition of the projections \(P_{n,i} \to P_{n,i-1} \) for \(i = 1, \ldots, r \) is a map \(p_n: P_n \to P_{n-1} \) for which \(p_n \varphi_n = \varphi_{n-1} \).
Proof. The paper [2] gives the simplicial sets P_n. To obtain their refinements $P_{n,i}$, we compute a decomposition

$$\pi_n \cong \mathbb{Z}/q_1 \oplus \cdots \oplus \mathbb{Z}/q_r$$

of the n-th homotopy group into a sum of cyclic groups of prime power orders. Then we define $\pi_{n,i} = \mathbb{Z}/q_i \oplus \cdots \oplus \mathbb{Z}/q_i$ with obvious projections $pr: \pi_n \to \pi_{n,i}$; $P_{n,i}$ is the following pullback

$$
\begin{array}{ccc}
P_{n,i} & \xrightarrow{\delta} & E(\pi_{n,i}, n) \\
\downarrow & & \downarrow \\
P_{n-1} & \xrightarrow{k_n} & K(\pi_{n+1}, n + 1)
\end{array}
$$

\[\text{Theorem 5.} \text{ It is possible to construct an action } x + \Theta y, \Theta \gg 0, \text{ of } P_{2d} \text{ on each } P_{n,i}, \text{ for } 2d \leq n < D, \text{ that has a right-sided zero } 0 \in P_{2d}. \text{ The projections } P_{n,i} \to P_{n,i-1} \text{ respect this action.}\]

Proof. We will construct, by induction with respect to n and i, positive integers $\Theta_{n,i}$ and an action $x + \Theta_{n,i} y$ of P_{2d} on $P_{n,i}$. The action $x + \Theta y$ from the statement is then obtained by setting $\Theta = \Theta_{D-1,i}$ and deriving the action $\Theta_{n,i}$: this is possible since $\Theta_{n,i} \mid \Theta$ by construction. Starting with $n = 2d$, the paper [1] constructs an abelian H-group structure on P_{2d}, i.e. an action of P_{2d} on itself; we set $\Theta_{2d+1,0} = 1$.

For the induction step, we apply Lemma 2 to the Postnikov invariant $k: P_{n,i-1} \to K(\mathbb{Z}/q, n + 1)$ – its target is a simplicial abelian group, i.e. an abelian group in each dimension. The function

$$D_{\mathbb{Z}/q, \ell}^{(\Theta_{n,i-1})} k: P_{n,i-1} \times P_{2d} \times \cdots \times P_{2d} \to K(\mathbb{Z}/q, n + 1)$$

(formally, it is not derived from $D_{\mathbb{Z}/q, k}$ since $x + y$ is not defined, but we want to emphasize that it is with respect to the action $x + \Theta_{n,i-1} y$) is zero whenever at least one of the components in P_{2d} is zero and thus we have a diagram

$$
\begin{array}{ccc}
P_{n,i-1} \times \{\text{fat wedge}\} & \xrightarrow{0} & E(\mathbb{Z}/q, n) \\
\downarrow & & \downarrow \\
P_{n,i-1} \times P_{2d} \times \cdots \times P_{2d} & \xrightarrow{M'} & K(\mathbb{Z}/q, n + 1)
\end{array}
$$

(the fat wedge consists of those ℓ-tuples $(y_1, \ldots, y_\ell) \in P_{2d} \times \cdots \times P_{2d}$ with at least one y_i equal to the basepoint 0). The cofibre of the map on the left is $(P_{n,i-1})_+ \wedge P_{2d} \wedge \cdots \wedge P_{2d}$ and is $(\ell(d + 1) - 1)$-connected. Therefore, when $\ell \gg 0$, a diagonal M' exists; it can be computed as in [1]. We define $M(x, y) = M'(x, y, \ldots, y)$, so that

$$\delta M(x, y) = D_{\mathbb{Z}/q, \ell}^{(\Theta_{n,i-1})} k(x, y, \ldots, y) = k(x + \theta \Theta_{n,i-1} y) - k(x),$$

where θ is the output of Lemma 2. Denoting $\Theta_{n,i} = \theta \Theta_{n,i-1}$, this allows us to define a new action on $P_{n,i} \subseteq P_{n,i-1} \times E(\mathbb{Z}/q, n)$ by the formula

$$(x, c) + \Theta_{n,i} y = (x + \Theta_{n,i} y, c + M(x, y))$$

(the compatibility holds since $\delta (c + M(x, y)) = \delta c + \delta M(x, y) = k(x) + (k(x + \Theta_{n,i} y) - k(x)) = k(x + \Theta_{n,i} y))$.

After the following simple observation, we will be ready to prove Theorem 1.

\[\text{Lemma 6.} \text{ For each } g': X \to P_{2d} \text{ and } 2d < n < D, \text{ it is possible to compute the finite set of homotopy classes of all lifts } g: X \to P_n.\]

Proof. This follows from the fact that each π_n is finite for $2d < n < D$. Namely, since π_{2d+1} is finite, the number of all lifts of g' to a map $X \to P_{2d+1}$ is finite. Thus, it is possible to go through all these partial lifts and compute all their lifts to P_n by recursion.
4. Proof of Theorem

For $n = D - 1$, let $f: A \to P_n$ also denote the composition $f: A \xrightarrow{i} Y \xrightarrow{\pi_n} P_n$. By the usual obstruction theory, it is enough to check whether an extension to $g: X \to P_n$ exists − the higher obstructions are all zero. Thus, we consider the Postnikov stage P_n with an action $x + \Theta g$ by the stage P_{2d}. Consider the commutative square (the R and R' are the restriction maps while Π_X and Π_A are post-compositions with the projection $P_n \to P_{2d}$)

$$[g] \in [X, P_n] \xrightarrow{\Pi_X} [X, P_{2d}]$$

$$[f] \in [A, P_n] \xrightarrow{\Pi_A} [A, P_{2d}] \triangleright [f']$$

with $[f'] = \Pi_A[f]$. We compute the groups on the right explicitly as in [1] and consider the subset $H = (R')^{-1}([f'])$ of all possible extensions of f' to a map $X \to P_{2d}$. There is a finite set $H_0 \subseteq H$ such that $H = H_0 + \Theta \ker R'$; namely, if $[h_0] \in H$ and we identify $\ker R' \cong \mathbb{Z}/q_1 \oplus \cdots \oplus \mathbb{Z}/q_r$ (possibly with some $q_i = 0$ giving $\mathbb{Z}/0 \cong \mathbb{Z}$), we may take for H_0 all r-tuples of the form $[h_0] + (z_1, \ldots, z_r) \in H$ with each $|z_i| \leq \Theta/2$.

Suppose first that g is any extension of f and express its image in $[X, P_{2d}]$ as $\Pi_X[g] = [h] - \Theta[k]$ with $[h] \in H_0$ and $[k] \in \ker R'$. Then $[\hat{g}] = [g] + \Theta[k] \in \Pi_{X}^2(H_0)$ also gives an extension of f since

$$R[\hat{g}] = R([g] + \Theta[k]) = [f] + \Theta R'[k] = [f],$$

(the operations in homotopy classes are natural and $[k] \in \ker R'$). Thus, we see that an extension g exists if and only if $[f] \in R\Pi_{X}^{-1}(H_0)$. This set is finite and its representatives can be computed using Lemma [3]. For each $[\hat{f}] \in R\Pi_{X}^{-1}(H_0)$, we may then test whether $[\hat{f}] = [f]$ by the main theorem of [3].

5. A fibrewise equivariant version

The same argument could be repeated in the fibrewise equivariant setup of [11], though actions with a strict right-sided zero have to be replaced by ones with a weak zero. Denoting $I = \Delta^1$, this structure is a map

$$(1 \times P_{n,i} \times_B P_{2d}) \cup (I \times P_{n,i} \times_B B) \to P_{n,i}$$

consisting of an action and a homotopy $x \sim x + 0$.

The most significant difference lies in the proof of Theorem[5] The space $P_{n,i-1} \times P_{2d} \times \cdots \times P_{2d}$ has to be replaced by the following subspace of $I^\ell \times (P_{n,i-1} \times_B P_{2d} \times_B \cdots \times_B P_{2d})$:

$$\bigcup_{1 \leq t_1 < \cdots < t_{\ell}} (d_{t_1}^+ \cdots d_{t_{\ell}}^+ I^\ell) \times (P_{n,i-1} \times_B \bigvee_{k=1}^{\ell} P_{2d}),$$

(1)

where $d_{t_1}^+ \cdots d_{t_{\ell}}^+ I^\ell \subseteq I^\ell$ consists of those ℓ-tuples (t_1, \ldots, t_{ℓ}) with $t_{i_1} = \cdots = t_{i_k} = 1$ and where $\bigvee_{k=1}^{\ell} P_{2d} \subseteq P_{2d} \times_B \cdots \times_B P_{2d}$ is formed by those ℓ-tuples (y_1, \ldots, y_{ℓ}) whose components y_j with $j \notin \{i_1, \ldots, i_k\}$ lie on the zero section B. In particular, $\bigvee_B P_{2d} = B \times B \cdots \times B$ and $\bigvee_B P_{2d} = P_{2d} \times_B \cdots \times_B P_{2d}$.

The subspace $P_{n,i-1} \times \{\text{fat wedge}\}$ is replaced by the subspace of [11] formed by those elements whose component in I^ℓ has at least one component equal to 0. By the methods of [4], it is then easy to equip this pair with effective homology, compute the variation of the map M' from the proof of Theorem[5] and use it to define a new weak action of P_{2d} on $P_{n,i}$.
References

[1] M. Čadek, M. Krčál, J. Matoušek, F. Sergeraert, L. Vokřínek, U. Wagner. Computing all maps into a sphere. Preprint, arXiv:1105.6257, 2011. Extended abstract in Proc. ACM–SIAM Symposium on Discrete Algorithms (SODA 2012), 1–10.

[2] M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, U. Wagner. Polynomial-time computation of homotopy groups and Postnikov systems in fixed dimension. Preprint, arXiv:1211.3093, 2012.

[3] M. Čadek, M. Krčál, J. Matoušek, L. Vokřínek, U. Wagner. Extendability of continuous maps is undecidable. Preprint, arXiv:1302.2370, 2013.

[4] M. Čadek, M. Krčál, L. Vokřínek. Algorithmic solvability of the lifting-extension problem. Preprint, arXiv:1307.6444, 2013.

[5] P. Franek, M. Krčál. Robust Satisfiability of Systems of Equations. Preprint, http://kam.mff.cuni.cz/~krcal/pmwiki/uploads/Main/soda.pdf, 2013. To appear in Proc. ACM–SIAM Symposium on Discrete Algorithms (SODA 2014).

[6] M. Filakovský, L. Vokřínek. Are two given maps homotopic? An algorithmic viewpoint. Preprint, arXiv:1312.2337, 2013.

[7] J. P. May. Simplicial Objects in Algebraic Topology. University of Chicago Press, Chicago, IL, 1992.

[8] N. E. Steenrod. Cohomology operations and obstructions to extending continuous functions: colloquium lectures. Princeton University, 1957.

Lukáš Vokřínek
Department of Mathematics and Statistics,
Masaryk University,
Kotlářská 2, 611 37 Brno,
Czech Republic
koren@math.muni.cz