Photoexcited Intramolecular Charge Transfer in Dye Sensitizers: Predictive In Silico Screening for Dye-Sensitized Solar Cell Devices

Kalyani Chordiya, Md. Ehesan Ali, and Mousumi U. Kahaly*

ABSTRACT: Efficient photoinduced intramolecular charge transfer (ICT) from donor to acceptor in dye molecules is the functional basis and key property in the working of a dye-sensitized solar cell (DSSC). To understand the ICT process in photoexcited dye molecules, we analyze the electronic properties and structural parameters of a chosen set of experimentally synthesized donor–acceptor (D–A) and donor–π-spacer–acceptor (D–π–A) type dye molecules in their ground, excited, and cationic states. The correlation between structural modification and charge redistribution in different parts of the molecule helps to identify the extent of π-conjugation and spatial rearrangement of electron density localization along the molecular skeleton. We find that prominent twisting of several groups and the resulting molecular bond rearrangements in larger parts of the molecule promote efficient donor to acceptor ICT, such as in D–A type ADEKA1 and C275 dyes. Thus, based on the modest computation of structural and electronic properties of dye molecules in their respective ground, excited, and cationic states, we identify the desired structural changes that facilitate tunable intramolecular charge transfer to highlight a simple and direct prescription to screen out probable efficient dye molecules among many samples. Our approach complements recent experimental evidence of capturing the structural view of the excited-state charge transfer in molecules.

INTRODUCTION

Dye-sensitized solar cells (DSSCs) were initiated after their first report by O’Regan and Grätzel in 1991,1−3 and with this rapid development was observed in the DSSC owing to their low-cost materials,4 flexible designs,5 high performance, and stability under low- or diffuse light conditions.6 The research efforts are mainly focused on tailoring the efficiency and stability by designing new sensitizers,7−9 modifying the semiconductor band gap,10,11 and optimizing the redox couple,12 dye absorbance,13 and counter electrodes.14 The typical working process of the device starts with photoexcitation of the dye molecule (from Dye → Dye*/Dye in nanoseconds). The excited dye molecule (Dye*) will release an electron into the conduction band of the semiconductor material (on a picosecond time scale), leaving the dye in the cationic (Dye*) state.15 The released electrons from the anode move through an external circuit and reach the cathode in 10−9−10−1 s.16 Then the oxidized dye is regenerated when the dye receives electrons from a redox mediator (I3−/I−) (μs). Oxidation of the medium happens in the process within picoseconds to nanoseconds. Further, these oxidized redox mediators (I3−) diffuse to the counter electrode, where it is regenerated by the electrons reaching the counter electrode through an external circuit. Thus, the dye and the electrolyte solution regain the original state and are ready to repeat the cycle. The working schematics of a typical DSSC with time scales involved in the electron transfer cycle of the device are given in Figure 1(I). Thus, it is obvious that the efficiency of the device is highly sensitive to the structure and performance of the dye molecules.17

The dye molecules typically of the donor–acceptor (D–A) and donor–π–acceptor (D–π–A) type have attracted immense attention in the field of DSSCs.18 The electron-donating groups with aromatic amines such as triphenyl amine,19 carbazole,20 and triazatruxene21 owing to their high positive mesomeric effects, synthetic availability, and modularity are best suited as donor groups. The π-spacer links the donor and acceptor group and has to have the electron affinity higher compared to the donor and lower than the acceptor group.22 Upon photoexcitation of the dye, the electron density of this molecule is rearranged and trapped by the highly electronegative groups such as π-spacer and acceptor groups.23

The SM-315 dye reported by Mathew et al. with 13%24 power conversion efficiency (PCE) and ZL001 and ZL003 by Zhang et al. with 12.8% and 13.6% PCE, respectively,21 are considered highly efficient D–π–A dyes. To improve the efficiency further, there were variations in the structure such as D–A, D–π–A, D–A′–π–A, and D–D–π–A,25−27 changes in the donor in order to extend the π-conjugation,7
π-spacer bearing a strong electron donor group and high molar absorption coefficient,28 and acceptor and linker as a stronger electron-withdrawing group.9,29 In addition to designing new dyes, new hole33,34 and electron35,36 transport materials were developed to show low glass transition temperatures, low melting points, and high solubility, leading to an increase in pore filling into the semiconductor film and increasing the surface area for the adsorption of the dye. At the end, the semiconductor layer with high dye loading as well as high light-harvesting efficiency capability will ensure the increase in the photocurrent density and the improved performance of DSSCs.37,38 Hence, structural/chemical/electronic modifications in any of the components (like D, π, A, linker, interface, etc.) and the resulting electron transfer kinetics39 change the PCE significantly.

However, understanding the interplay of different physiochemical and photochemical aspects of the main components of DSSCs demands a molecular level understanding of the dye molecules. This can be achieved by using quantum chemistry methods like density functional theory (DFT) and time-dependent density functional theory (TDDFT), which helped researchers find excellent agreement with experimentally reported geometries and electronic properties.40,41 DFT studies on a dye sensitizer molecule42 reveal their electron-donating and -withdrawing components which play an important role in understanding intramolecular charge transfer (ICT) after photoexcitation. An easier flow of π-electrons from one conjugate part of the molecule to another part requires that the orbitals are extended through the atoms that make the conjugate system. This implies efficient charge delocalization, thereby improving the intramolecular charge transfer. Hence, the electronic structure of different ionized states of the molecules has to be calculated.43 Structural changes due to ICT are possible if the molecule is flexible to adapt the changes provided the π-conjugation is extended through the donor to the acceptor. True ICT states reflect change in both electronic structure and molecular geometry and often prominently differ from the ground states in their molecular structure.44

ICT can be addressed in many ways, such as by taking the difference in charge density between two states, by twisting of a

Figure 1. (I) Schematics of a DSSC with the electron transfer process involved shown by black one-direction arrows and the time scale for the electron transfer. (II) 2-D structural representation (PCE %) of dyes: (a) ADEKA1 (12.8%), (b) C275 (12.5%), (c) C257 (8.7%), (d) D5L2A1 (6%), (e) CB4 (4.28%), and (f) D5L2A3 (2%). The blue color represents the donor group, green the π-spacer linkage, and red the acceptor. Note that there are ambivalent opinions about such distinction of the D, π, and A parts in dyes like ADEKA-1 or C275, and the present colored representations are just representations of descriptions in the mentioned references. (III) UV–vis spectra (green curve) of ADEKA1 spanning the spectral range of 220–700 nm, suggesting adequate light absorption, along with electron charge density relocalization in the excited Dye (Dye*) corresponding to two peaks in the UV–vis spectra. The Dye* isosurface shows the electron density upon the photoexcitation of the dye with a particular frequency. The right panel shows the structure or geometry change owing to the Dye to Dye*/Dye+ transition, which occurs within a nanosecond time scale.15
certain group in the dye, or with fluorescence. Well-known for efficient ICT, fused molecules have been used in multiple recent studies for designing organic dyes including fused-ring (hereafter referred as fused) molecular structures as D and π-spacers to increase the performance of the dye. Fully fused molecules have planar backbones in all the electronic states, while the nonfused molecular framework usually allows structural distortion. Consequently, the fused ones tend to show higher reorganization energies, resulting in reduced voltage and current losses. Thus, it is also important to identify the fused molecular groups in a dye molecule and correlate with its reorganization energy and extent of charge transfer.

An understanding of ICT in dye molecules (rather molecules in general) and its correlation to PCE is often captured through expensive simulations and resource-consuming experiments. Usually they involve molecular engineering, screening, strategies for suitable fabrication, and optimization for higher efficiency. During the process often issues like purification, tailoring the absorption band of the sensitizer dye, and cost effectiveness are involved. The question remains, from the huge number of available molecular dyes, how to screen out the ones that show a stronger tendency for high PCE?

In this report, based on DFT and TDDFT methods, we highlight the structural changes and resulting ICT in a dye molecule after photooxidation (Dye → Dye*/Dye*), as shown in Figure 1. We choose six different dyes with different reported PCE (in parentheses) for comparison (shown in Figure 1 (a−f)); ADEKA1 (12.8%), C275 (12.5%), C257 (8.7%), DLS2A1 (6%), CB4 (4.28%), and DLS2A3 (2%). While their structures are different, there are ambivalent opinions about a clear distinction of D, π, and A parts in dyes like ADEKA-1 or C275 (as in Figure 1). In C275, the benzothiadizole can be considered as an additional acceptor, and the phenyl between benzothiadizole and −COOH may represent the π-spacer linkage, thereby bringing C275 within the well-established D−π−A model. In the dye ADEKA1, the tetra-thiophene can be chosen as the π-spacer linkage rather than the acceptor. Herein we adopted colored representations based on the mentioned references. These dyes have been studied experimentally and are physically and chemically stable. Here it is worth noting that the performance of the dye molecules, for example ADEKA-1, can be prominently affected by multiple factors, such as the dye synthesis route, choice of electrolytes of different redox potentials, impact of cosolvents in DSSCs, assembly of molecular and atomic passivation, electrode−electrolyte interface structures, cosensitization, etc. However, our choices of the six dye molecules to understand their structure-dependent ICT and extent of charge transfer over the molecular skeleton still hold valid.

To observe the true ICT in these dyes and to correlate it with the experimentally reported PCE, we use the following steps: (i) The optimized ground-state geometry is used to simulate the UV−vis spectra. (ii) The charge density difference for each transition state is observed. (iii) Then, we select the strongest excited state with the lowest energy to relax the molecule in the excited state. (iv) Next, an electron is removed from the system (to obtain Dye*, the cationic state), and we relax the molecular geometry in that cationic state. (v) Similarly, one electron is added to the neutral geometry (to obtain Dye*), and the molecule in this anionic state is geometrically relaxed. (vi) Using the final energies of the dye molecule in its relaxed geometries in the ground, cationic, and anionic states, the reorganization energy (λi = e, h) is calculated. (vii) The geometrical parameters of the dye in the ground, excited, and cationic states are studied to identify the charge transfer and geometry modification.

As elaborated in a later section, the analysis of the relaxed geometries in the ground, excited, and cationic states of a dye molecule guides us to identify the spatial charge redistribution by means of bond reorganization in different parts of the dye molecule. Note that the consideration of the cationic state helps to mimic the electron injection mechanism from the excited dye molecules into the wide band gap of a semiconductor (like TiO2) as usual in experiments. Finally, we correlate the efficiency of the dye to transfer the electron from the donor to the acceptor with the extent of molecular π-conjugation and structural distortion and charge localization. This should assist in the suitable structural engineering of organic dyes for a more efficient photovoltaic performance.

THEORETICAL METHODS AND COMPUTATIONAL DETAILS

The calculations based on the description of the electronic ground state are given by solving the time-dependent Schrödinger equation given by eq 1 for which the Hamiltonian is described by eq 2

\[i\hbar \frac{\partial \psi(r, t)}{\partial t} = \hat{H} \psi(r, t) \]

\[\hat{H} = \hat{T} + \hat{V}_{ee} + \hat{V}(r, t) \]

with kinetic energy \(\hat{T} \), electron−electron repulsion \(\hat{V}_{ee} \), and external potential \(V(r, t) \). The probability of finding an electron at position \(r \) at time \(t \) is given by taking the absolute square of the wave function \(\psi(r, t) \). Based on the Runge−Gross theorem, using the wave function, we can calculate the external potential which will produce the density for further analysis. Simulations for the dye sensitizer under this study were performed using the ORCA 4.0 quantum chemistry package. The ground-state molecular geometries of the dyes and their electronic structures were obtained with the PBE0/def2-TZVP method. The electronic spectroscopy of the dyes and the excited-state geometry optimization were performed using TD-DFT. The PBE0 functional provides a good description of both the ground and excited states, whereas with the def2-TZVP basis set errors in bond length are smaller than 1 pm and in bond angles smaller than 1°. To reduce the computational time, the RIJCOSX approximation is used in addition to replacing bulky alkyl groups in the dye with smaller alkyl groups. The large hexyl groups in ADEKA1 are replaced by ethyl groups; hexyl groups in C275 and C257 are replaced by methyl groups. Photoabsorption spectra were calculated with the TDDFT approach including a solvent effect to simulate the real experimental conditions, using a conductor like the polarizable continuum model (PCPM). We calculate the energy gap (\(E_g \)) for a dye which is given as the ground-state energy difference between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) levels (\(E_g = E_{LUMO} − E_{HOMO} \)). A change in the dipole moment (\(\Delta S = S_i − S_0 \)) of the molecule upon photoexcitation marks charge separation in the molecule. The single excitation-state lifetime (\(\tau \)) is expressed as \(\tau = \frac{1}{\gamma} \).
where E is the excitation energy and f the oscillator strength; it provides an estimate of the time for the injection of electron from the dye to the semiconductor substrate. The longer the excitation lifetime, the higher the optical stability of the dye in that state.

A semiclassical theory of charge transfer rate equation has been developed by Marcus$^{22-74}$ and quantum mechanically is given by Jortner et al.$^{75-77}$ The electron transfer in the nonadiabatic regime is considered to be analogous to an optical transition between two electronic states within the Franck–Condon approximation.78 The rate of charge transfer is the probability of the electron transfer from the donor to the acceptor per second. In the condition of maximum transfer rate, we can consider that the Gibbs free energy is approximately equal to the reorganization energy (λ). The total reorganization energy (λ) is given by $\lambda = \lambda_0 + \lambda_\text{fp}$, where $\lambda_0 = (E_\text{HOMO}^0 - E_\text{LUMO}^0) + (E_\text{HOMO}^0 - E_\text{HOMO}^\infty) + (E_\text{LUMO}^0 - E_\text{LUMO}^\infty)$, E_HOMO^0 and E_LUMO^0 represent the energies of the neutral and cation or anion species in their lowest energy geometries, respectively, while E_HOMO^∞ and E_LUMO^∞ represent the energies of the neutral and cation species with the geometries of the cation or anion and neutral species.

Results and Discussion

The ground-state geometry and electronic structures of all six dye molecules as predicted by our calculations show that the energy gap for the dyes lies in the narrow range of 2.5–3.1 eV showing a reasonable match with the earlier reported results (see Supporting Information Table S1). Hence, the choice of functional and basis set are suitable for the present study. The energy of the HOMO of all dyes is lower than the redox potential of the electrolyte (for Γ^-/Γ^0 it is -4.8 eV),79 ascertaining that the regeneration of the oxidized dyes is energetically favorable. We also find the LUMO of each chosen dye molecule to be above the conduction band edge position of the semiconductor substrate (for the TiO$_2$ semiconductor it is -4.0 eV)80 (see Table S1) which guarantees efficient electron injection from the LUMO of the dye molecules to the conduction band of TiO$_2$.

Using TD-DFT and CPCM combined calculations, photoabsorption excited states were obtained with the solvent effect as given in experimental studies (see Figure S1). For example, toluene as a solvent for ADEKA1,53,54 tetrahydrofuran (THF) solvent for C257,55 5-methyl chloride (CHCl$_3$) solvent for CB4,57 and methyl cyanide (MeCN) solvent for D5L2A1 and D5L2A3 have been used in our calculations (following given experimental references). The oscillator strength and excited-state lifetime (τ) are tabulated in Supporting Information Table S2. The photoabsorption spectra reveal that the first strong excitation is an outcome of the transition from the ground to first excited state in the case of ADEKA1 and C275, to the second excited state for D5L2A1 and D5L2A3, third excited state for C257, and sixth excited state for CB4. The contributions of molecular orbital transitions in a given excited state are tabulated in Table S2. From Table S2 we observe that ADEKA1 (at 643.5 nm), C275 (at 808.5 nm), C257 (at 671.5 nm), and D5L2A3 (at 719.6 nm) show 90% HOMO \rightarrow LUMO transition. D5L2A1 (at 667.8 nm) shows 97% HOMO \rightarrow LUMO transition for the first strong excitation. Hence, it is worth noting that the first strong excitation does not necessarily originate mainly from the HOMO \rightarrow LUMO transition. In Figure 2a–f we plot the charge density difference (with respect to the ground state) for the first strong excited states (as reported above) and observe that all six dyes show charge migration from the donor group to the acceptor group. To study how the photoexcitation-induced ICT and the modified molecular geometry of the dye molecule affect each other, we will optimize the excited-state geometry of dyes in their first strong excited state (we will refer to the “first strong excited state” as the “excited state” throughout this article).
Table 1. Presence of Fused D, π-Spacer, and A Group in the Dye, Calculated Electron (λ_e) and Hole (λ_h) Reorganization Energy, Total Reorganization Energy (λ), and Reorganization Energy Difference (λ′) between λ_e and λ_h for ADEKA1, C275, C257, CB4, D5L2A1, and D5L2A3.

Dyes	Fused D	Fused π	Fused Α	λ_e	λ_h	λ	λ′ = λ_e − λ_h
ADEKA1	yes	NA	no	0.4507	0.4441	0.8949	0.0066
C275	yes	NA	no	0.4077	0.4509	0.8587	0.0432
C257	no	NA	no	0.0416	0.2483	0.2900	0.2067
D5L2A1	no	no	no	0.4063	0.1808	0.5817	0.2255
CB4	yes	yes	no	0.3384	0.3014	0.6399	0.0370
D5L2A3	no	no	no	0.3523	0.2908	0.6431	0.0615

"NA means not applicable.

Figure 3. Difference in bond length of the ADEKA1 dye in the excited (red) and cationic states (blue) with respect to the ground-state geometry. The difference (Δ > 0.01 Å) is marked with "*". The red box highlights changes for the acceptor group, and the blue box highlights changes for the donor group.

A comparison of the dipole moment between the ground-state and the excited-state geometries of dyes is given in Supporting Information Table S1. The dipole value for ADEKA1, C275, and D5L2A3 increases upon transition from the ground to excited state, suggesting possible prominent modification of charge densities and molecular structural parameters.81,82 On the contrary in the case of C257 and D5L2A1, a decrease in the dipole value is found, which could be due to electron density localized on a group other than the acceptor83 after photoexcitation (see Figure 2). In the case of CB4 the geometry optimization calculations for the excited state did not reach convergence, so we keep CB4 out in our further discussions. Figure 2c shows that the spatial localization of the electron density in the excited state is mainly on the benzothiadiazole unit, which is far away from the substrate when compared to its ground-state charge distribution. The relatively small excited-state dipole moment in C257 (S = 3.604 D, as enlisted in Table S1, corresponding to the excitation with 671.5 nm) indicates a small excited-state charge separation. This suggest that excited-state charge density localization could be used as one important and cheaper way to understand charge separation in the excited state. This could also explain the decrease in the dipole moment upon excitation of C257 with a 671.5 nm photon.

The increase in the dipole moment in the excited-state geometry shows prominent charge separations,83 as also supported from our charge density distribution results for C275 (see Figure 2b). Electron and hole reorganization energies (λ_i with i = e for electron, h for hole) are other important parameters, showing the efficiency of the dye to transport holes or electrons across the molecule. Note that a smaller difference in the electron and hole reorganization energy reveals the efficiency of the dye in transporting both charged particles with similar ease. In addition, analysis of the λ_i helps in the choice of the charge transport material.84 Table 1 shows (λ_h < λ_e) for D5L2A1, CB4, and D5L2A3, which show good hole transfer ability, whereas (λ_h > λ_e) for C257 shows better electron transfer ability. ADEKA1 and C275 show a small magnitude of λ′, i.e., a small difference between λ_e and λ_h, suggesting a similar efficiency of these molecules in electron and hole transfer abilities (in comparison to other dyes). The presence of fused groups is known to affect ICT and reorganization energies owing to less distorted structures. However, they are also known to sometimes hinder the ICT process.85 To address the effect of the presence and absence of fused groups at the donor and π-spacer sites (see Table 1), we analyze the structural changes in the different parts of the dye molecules followed by the photoexcitation and removal of electrons simultaneously identifying the ICT pathway and extent of π-conjugation.

In Figure 3 we show the difference in bond length between the ground-state and excited-state geometry (red plot) and ground-state and cationic-state geometry (blue plot). Corresponding numbers for these bond length differences are listed in Supporting Information Table S3, columns ΔE and ΔC. The abbreviation for bond length between the atom type X and its...
The atomic indices for atoms in ADEKA1 except hydrogen in donor groups are from 48 to 62 and for acceptor from 0 to 47. The variations in bond length between B(C48, C44) and B(C50, C49) of the donor group and B(C44, C43), B(C36, S35), B(C22, S21), B(C36, S35), B(S31, C30), and B(Si6, C5) in the acceptor group show the extended conjugation in the ADEKA1 dye. Furthermore, a change in angles and dihedral angles in acceptor groups demonstrates the delocalization of charge throughout the structure of ADEKA1 (see Figure S4a for bond lengths, Figure S5a for dihedral angles, and Table S3 for corresponding values). The overall effect of extended π-conjugation and delocalization of charge, as observed in the molecular frame of the dye in excited and cationic states with respect to the ground state (see Figure 3 and Figure 4), is summarized as follows. The alteration of the structural parameters for the entire molecule describes that the π-conjugation is extended in both excited and cationic states. The distance between the nitrogen (blue atom) in the donor group and the silicon atom in the acceptor group increases as the structure evolves from ground (23.030 Å) → excited state (23.695 Å) → cationic state (23.772 Å). Finally, we estimate the twist from the dihedral angle between the donor and the first thiophene of the acceptor, and also between the last thiophene and the phenyl-silyl-anchor (blue shaded box in Figure 4 for the cationic state). ADEKA1 shows a prominent bond length variation for C275 dye. The atomic indices (excluding hydrogen) for C275 in its three parts are as follows: (i) donor, carbon (C) from 6 to 45, nitrogen (N) 46, 47, and 29, oxygen (O) 42 and 43, and sulfur (S) 48, 53, and 52; (ii) in the acceptor, C from 0 to 5 and 49 and O 50 and S1. In C275 the donor becomes planar in the cationic state; however, the acceptor also goes out of plane with respect to the donor. This might affect the effective charge transfer to the substrate (Supporting Information Figure S6 (third row in third column for C275), Figure Sh for bond lengths, Figure S4c for bond lengths, Figure S5c for dihedral angles, and corresponding values in Table S5). The variation of structural parameters in the donor site (B(C7, C6)), the nonfused site between cyclopentadithiophene and benzothiazole (B(C16, C15)) after excitation, and the nonfused site B(C17, C16) after ionization along with twisting between the donor and acceptor) hints at active charge transfer between the rings. Negligible structural variation inside the cyclopentadithiophene group reveals a stable structure with minimal distortion which results in low electron recombination energy for the C275 dye.

The atomic indices (excluding hydrogen) for D5L2A1 in its three parts are as follows: (i) donor, from 0 to 18, (ii) π-spacer, from 19 to 25, and (iii) acceptor, from 26 to 30. D5L2A1 shows a prominent bond length variation (change (Δ) > 0.02 Å with respect to ground state) on the entire molecule; however, the dihedral angle varies mostly along the donor group (see Supporting Information Figure S3d for bond lengths, Figure S4d for bond lengths, Figure S5d for dihedral angles, and values in Table S6). In this system, electronic charges are mostly localized near the donor, with negligible transfer to the π-spacer and acceptor (Figure S6 (fourth column for D5L2A1)), suggesting a narrow charge conjugation. The atomic indices (excluding hydrogen) for D5L2A3 in its three parts are as follows: (i) in the donor, from 0 to 18, (ii) in the π-spacer, from 19 to 25, and (iii) in the acceptor, from 26 to 37. In D5L2A3 we observe very few variations in structural parameters showing less effects when in excited and cationic states (see Supporting Information Figure S3d for bond lengths, Figure S4e for bond lengths, Figure S5e for dihedral angles, and values in Table S7 and Figure S6 (sixth column for D5L2A3)).
D5L2A1 and D5L2A3 dyes might also contribute to the less efficient charge transfer.

SUMMARY AND CONCLUSION

The ground-state geometry for the selection of experimentally synthesized dye molecules ADEKA1, C275, C257, D5L2A1, CB4, and D5L2A3 is optimized using DFT. The UV−vis spectra and band gap computed using the ground-state geometry and TDDFT method are found to be a reasonable match with the reported experimental results (see Supporting Information Figure S1). Our charge density difference plots for excited states computed using TDDFT highlight the different response of the dyes. While dyes like ADEKA1, C275, D5L2A1, CB4, and D5L2A3 show effective charge separation and transfer from the donor to acceptor (see Figure 2 for the first strong excited state and Supporting Information Figure S2 for other excitation states), for C257 the charge seems to be localized on the donor instead of the acceptor group. Hence, our results for charge density difference maps capture the charge redistribution for different excitation states at a reasonable computational cost. The estimated electron and hole reorganization energy (λi, i = e, h) suggests that ADEKA1 and C275 possess better electron and hole transfer abilities than other dyes. Additionally, these two dyes show a significant increase in dipole moment (>2 D in going from the ground to excited state), which is consistent with their reported high efficiency.

Further analysis based on the comparison and difference in the structural parameters of the dyes (i) between ground and excited states and (ii) between ground and cationic states guided us to establish a more general correspondence between the molecular structural parameters, calculated electronic properties, and resulting efficiency of the dyes. Additionally, the presence of fused structures as only the donor in ADEKA1 and C275 and as only the π-spacer in CB4 has been observed to play an important role in supporting the understanding of ICT through structural changes. This study also finds that the presence of the fused structure as the donor group results in a smaller difference between the hole and electron recombination energy. The presence of the fused structure as only the π-spacer in D−π−A is observed to lower the electron recombination energy; however, this is not yet conclusive, and further study on this topic could be of interest for the reader. Analyzing the performance of the dye solely based on the recombination energy or the dipole moment is not conclusive, and hence structural analysis of dyes in various excited and ionic states helps one to understand the ICT more effectively. The dyes like ADEKA1 (Figure 4), C275, and C257 (Supporting Information Figure S6) show prominent changes in the structural parameters in the donor and acceptor region, in both excited and cationic states. On the other hand, D5L2A1 demonstrates changes in the π-spacer and in the donor group, respectively. However, no significant structural parameter changes were observed for D5L2A3.

Interestingly, we observe that efficient dyes show extended charge transfer, with a higher possibility of charge migration over the molecular skeleton. The extent of charge transfer is directly related to the electron-donating capacity of the donor, the withdrawal capacity π-spacer and/or acceptor groups, and the extent of conjugation length and associated structural rearrangement of the groups. Our study of detailed structural modifications in photoexcited dye molecules and associated loss of electron, accompanied by the calculation of the resulting electron and hole reorganization energy, reasonably explains why certain dye molecules show high photon conversion efficiency in comparison to others and can assist in improving the design of the dyes for DSSCs. While we selected certain dye molecules as a prototype, our approach proves to be simple yet significant for any dye molecule, to indeed aid the experimentalists to pre-estimate/manipulate the charge transfer process in such molecules, which in general has a critical role in physics, chemistry, biology, and material science.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c06233.

Tables and figures for changes in structural parameters for all dyes; additional information regarding UV−vis spectroscopy and electronic transitions (PDF)

AUTHOR INFORMATION

Corresponding Author

Mousumi U. Kahaly—ELI-ALPS, ELI-HU Non-Pro Ltd., Szeged H-6728, Hungary; Institute of Physics, University of Szeged, H-6720 Szeged, Hungary; orcid.org/0000-0002-8128-8397; Email: Mousumi.UpadhyayKahaly@eli-alps.hu

Authors

Kalyani Chordiya—ELI-ALPS, ELI-HU Non-Pro Ltd., Szeged H-6728, Hungary; Institute of Physics, University of Szeged, H-6720 Szeged, Hungary
Md. Ehesan Ali—Institute of Nano Science and Technology, Mohali, Punjab 140306, India; orcid.org/0000-0001-6607-5484

Complete contact information is available at: https://pubs.acs.org/10.1021/acsomega.1c06233

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

ELI-ALPS is supported by the European Union and cofinanced by the European Regional Development Fund (GR-NOP-2.3.6-15-2015-00001). K.C. and M.U.K. acknowledge PanNOSC European project, and also Project No. 2019-2.1.13-TE-NF-2020-00059 which has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the 2019-2.1.13-TE-NF-funding scheme.

REFERENCES

(1) O’Regan, B.; Grätzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737–740.
(2) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.
(3) Ye, M.; Wen, X.; Wang, M.; Iocozzia, J.; Zhang, N.; Lin, C.; Lin, Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162.
(4) Sun, S.-S. Design of a block copolymer solar cell. Sol. Energy Mater. Sol. Cells 2003, 79, 257–264.
(5) Bella, F.; Gerbaldi, C. Natural Polymers for Dye-Sensitized Solar Cells: Electrolytes and Electrodes. Environ. Polym. Sci. Technol. 2016, 1–17.

(6) Freitag, M.; Boschloo, G. The revival of dye-sensitized solar cells. Curr. Opin. Electrochem. 2017, 2, 111–119.

(7) Ying, W.; Yang, J.; Wielopolski, M.; MeoH, T.; Moser, J.-E.; Comte, P.; Hua, J.; Zakeeruddin, S. M.; Tian, H.; Grätzel, M. New pyridyl [3 + b] pryazine-based sensitizers for efficient and stable dye-sensitized solar cells. Chem. Sci. 2014, 5, 206–214.

(8) Arslan, B. S.; Güzel, E.; Kaya, T.; Durmaz, V.; Keskin, M.; Avci, D.; Nebioglu, M.; Sişman, I. Novel D–π-A organic dyes for DSSCs based on dibenzo [b, h][1, 6] naphthyridine as a π-bridge. Dyes Pigm. 2019, 164, 188–197.

(9) Zhou, H.; J.-M. Kim, S. M.; Kim, H. K. Significant Influence of a Single Atom Change in Auxiliary Acceptor on Photovoltaic efficiency of DSSCs. J. Photoenergy 2015, 112, 458–464.

(10) Wu, M.; Ma, T. Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem 2012, 5, 1343–1357.

(11) Raj, C. C.; Prasanth, R. A critical review of recent developments in nanomaterials for photoelectrodes in dye sensitized solar cells. J. Power Sources 2016, 317, 120–132.

(12) Wu, J.; Lan, Z.; Lin, J.; Huang, M.; Huang, Y.; Fan, L.; Luo, G. Electrolytes in dye-sensitized solar cells. Chem. Rev. 2015, 115, 2136–2173.

(13) Sebo, B.; Huang, N.; Liu, Y.; Tai, Q.; Liang, L.; Hu, H.; Xu, S.; Zhao, X.-Z. Dye-sensitized solar cells enhanced by optical absorption, mediated by TiO2 nanofibers and plasmonics Ag nanoparticles. Electrochim. Acta 2013, 112, 458–464.

(14) Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y. Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to photovoltaic performance. Angew. Chem., Int. Ed. 2014, 126, 38–45.

(15) Wang, Y.; Chen, B.; Wu, W.; Li, X.; Zhu, W.; Tian, H.; Xie, Y. Efficient solar cells sensitized by porphyrins with an extended conjugation framework and a carbazole donor: from molecular design to cosensitization. Adv. Energy Mater. 2012, 12, 10085–10094.

(16) Venkatason, S.; Liu, L.-P.; Lin, J.-C.; Tsai, M.-H.; Teng, H.; Lee, Y.-L. Highly efficient quasi-solid-state dye-sensitized solar cells using polyethylene oxide (PEO) and poly (methyl methacrylate)(PMMA)-based printable electrolytes. J. Mater. Chem.A 2018, 6, 10085–10094.

(17) Ambrosio, F.; Martinsovich, N.; Troisi, A. What is the best anchoring group for a dye in a dye-sensitized solar cell? J. Phys. Chem. Lett. 2012, 3, 1531–1535.

(18) Cheng, G.; Akhtar, M. S.; Yang, O.-B.; Stadler, F. J. Novel Preparation of Anatase TiO2 Reduced Graphene Oxide Hybrids for High-Performance Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 6635–6642. PMID: 23777569.

(19) Bella, F.; Gerbaldi, C. Natural Polymers for Dye-Sensitized Solar Cells: Electrolytes and Electrodes. Environ. Polym. Sci. Technol. 2016, 122, 7491–7496.

(20) Chitpakdee, C.; Namuanggruk, S.; Suttipintong, K.; Jungsuttiwong, S.; Keawin, T.; Sudyoadsuk, T.; Siritph, K.; Promarak, V.; Kungwan, N. Effects of π-linker, anchoring group and capped carbazole at meso-substituted zinc-porphyrins on conversion efficiency of DSSCs. Dyes Pigm. 2015, 118, 64–75.

(21) Mathew, S.; Yella, A.; Gao, P.; Humphrey-Baker, R.; Churcod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M. K.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nat. Chem. 2014, 6, 242.
(42) Schiffmann, F.; VandeVondele, J.; Hutter, J.; Witz, R.; Urrakawa, A.; Baiker, A. Protonation-dependent binding of ruthenium bipyridyl complexes to the anatase (101) surface. J. Phys. Chem. C 2010, 114, 8398–8404.

(43) Jin, Y.; Qiao, J.-A.; Liu, C.; Luo, L.; Chi, X.; Zhang, Y.; Zeng, M.-H. Charge transfer and delocalization in ladder-type fused bithiophene imide oligomers. J. Phys. Chem. C 2019, 123, 20093–20104.

(44) Grabowski, Z. R.; Rotkiewicz, K.; Rettig, W. Structural changes accompanying intramolecular electron transfer: focus on twisted intramolecular charge-transfer states and structures. Chem. Rev. 2003, 103, 3899–4032.

(45) Grabowski, Z. R.; Dobkowski, J. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure. Pure Appl. Chem. 1983, 55, 245–252.

(46) Liang, J.; Zhu, C.; Cao, Z. Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations. Phys. Chem. Chem. Phys. 2013, 15, 13844–13851.

(47) Jiang, X.; Wang, J.; Wang, W.; Yang, Y.; Zhan, X.; Chen, X. Impact of an electron withdrawing group on the thiophene-fused benzoazolone unit on the photovoltaic performance of the derived polymer solar cells. Dyes Pigm. 2019, 166, 381–389.

(48) Jia, C.; Liu, S.-X.; Tanner, C.; Leiggener, C.; Neels, A.; Sanguineti, L.; Levillain, E.; Leutwyler, S.; Hauser, A.; Decurtsins, S. An Experimental and Computational Study on Intramolecular Charge Transfer: A Tetrathiafulvalene-Fused Dipyrido[3,2,2′,3′:5,6,5′,6′]pyrene Molecule. Chem. Eur. J. 2007, 13, 3804–3812.

(49) Amb, C. M.; Chen, S.; Graham, K. R.; Subbiah, J.; Small, C. E.; So, F.; Reynolds, J. R. Dithienylgermole as a fused electron donor in bulk heterojunction solar cells. J. Am. Chem. Soc. 2011, 133, 10062–10065.

(50) Duan, R.; Han, G.; Qu, L.-B.; Yi, Y. Importance of molecular rigidity on reducing the energy losses in organic solar cells: implication from geometric relaxations of A−D−A electron acceptors. Mater. Chem. Front. 2021, 5, 3903–3910.

(51) Wu, Y.; Marszalek, M.; Zakeeruddin, S. M.; Zhang, Q.; Tian, H.; Grätzel, M.; Zhu, W. High-conversion-efficiency organic dye-sensitized solar cells: molecular engineering on D−A−A−r featured organic indoline dyes. Energy Environ. Sci. 2012, 5, 8261–8272.

(52) Sil, M. C.; Chen, L.-S.; Lai, C.-W.; Chang, C.-C.; Chen, C.-M. Enhancement in the solar efficiency of a dye-sensitized solar cell by molecular engineering of an organic dye incorporating N-alkyl-attached 1,8-naphthalimide derivative. J. Mater. Chem. C 2020, 8, 11407–11416.

(53) Kakiage, K.; Aoyama, Y.; Yano, T.; Otsuka, T.; Kyomen, T.; Unno, M.; Hanaya, M. An achievement of over 12% efficiency in an organic dye-sensitized solar cell. Chem. Commun. 2014, 50, 6579–6581.

(54) Fujisawa, J.-i.; Osaawa, A.; Hanaya, M. A strategy to minimize the energy offset in carrier injection from excited dyes to inorganic semiconductor for efficient dye-sensitized solar energy conversion. Phys. Chem. Chem. Phys. 2016, 18, 22244–22253.

(55) Li, Z.-J.; Wang, X.-H.; Tian, W.-L.; Huang, T.-Q.; Meng, A.-L.; Yang, L.-N. Efficiency enhancement of pyridinium ylide dye-sensitized solar cells by introduction of benzothiadiazolyl chromophore: A computational study. Mater. Today Commun. 2020, 22, 100839.

(56) Zhang, M.; Wang, Y.; Xu, M.; Ma, W.; Li, R.; Wang, P. Design of high-efficiency organic dyes for titania solar cells based on the chromophoric core of cyclopentadithiophene-benzothiadiazole. Energy Environ. Sci. 2013, 6, 2944–2949.

(57) Liao, J.; Zhao, H.; Xu, Y.; Zhou, W.; Peng, F.; Wang, Y.; Fang, Y. Novel BODIPY dyes with electron donor variety for dye-sensitized solar cells. RSC Adv. 2017, 7, 33975–33985.

(58) Wu, Y.; Zhu, W. Organic sensitizers from D−A to D−−A−A: effect of the internal electron-withdrawing units on molecular absorption, energy levels and photovoltaic performances. Chem. Soc. Rev. 2013, 42, 2039–2058.
(81) Blanchard-Desce, M.; Wortmann, R.; Lebus, S.; Lehn, J.-M.; Krämer, P. Intramolecular charge transfer in elongated donor-acceptor conjugated polyenes. *Chem. Phys. Lett.* 1995, 243, 526–532.

(82) Hu, J.; Li, Y.; Zhu, H.; Qiu, S.; He, G.; Zhu, X.; Xia, A. Photophysical Properties of Intramolecular Charge Transfer in a Tribranched Donor–π–Acceptor Chromophore. *ChemPhysChem* 2015, 16, 2357–2365.

(83) Wang, S.-L.; Ho, T.-I. Substituent effects on intramolecular charge-transfer behaviour of styrylheterocycles. *J. Photochem. Photobiol., A* 2000, 135, 119–126.

(84) Ma, W.; Jiao, Y.; Meng, S. Modeling charge recombination in dye-sensitized solar cells using first-principles electron dynamics: effects of structural modification. *Phys. Chem. Chem. Phys.* 2013, 15, 17187–17194.

(85) Kise, K.; Hong, Y.; Fukui, N.; Shimizu, D.; Kim, D.; Osuka, A. Diarylamine-Fused Subporphyrins: Proof of Twisted Intramolecular Charge Transfer (TICT) Mechanism. *Chem.—Eur. J.* 2018, 24, 8306–8310.

(86) Naito, H.; Nishino, K.; Morisaki, Y.; Tanaka, K.; Chujo, Y. Solid-state emission of the anthracene-o-carborane dyad from the twisted-intramolecular charge transfer in the crystalline state. *Angew. Chem., Int. Ed.* 2017, 56, 254–259.

(87) Karmakar, S.; Ambastha, A.; Jha, A.; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Venkatramani, R.; Dasgupta, J. Transient Raman Snapshots of the Twisted Intramolecular Charge Transfer State in a Stilbazolium Dye. *J. Phys. Chem. Lett.* 2020, 11, 4842–4848.

(88) Liu, Y.; Zhang, X.; Li, C.; Tian, Y.; Zhang, F.; Wang, Y.; Wu, W.; Liu, B. Energy-Level Control via Molecular Planarization and Its Effect on Interfacial Charge-Transfer Processes in Dye-Sensitized Solar Cells. *J. Phys. Chem. C* 2019, 123, 13531–13537.