How to Use Gazetteers for Entity Recognition with Neural Models

Simone Magnolini¹, Valerio Piccioni², Vevake Balaraman¹,², Marco Guerini¹, Bernardo Magnini¹

¹ Fondazione Bruno Kessler, Trento, Italy
² University of Trento

magnini@fbk.eu
Entity Recognition (1)

Prof.	B.	Magnini	teaches	Computational	Linguistics	at	University	of	Trento
O	B-PER	I-PER	O	O	O	O	B-ORG	I-ORG	I-ORG

- **Named Entities (NER)**
 - Proper nouns: almost fixed expressions (e.g. no morphological variations)
 - Common categories: PERSON, LOCATION, ORGANIZATION
 - Several datasets available (e.g. CoNLL, OntoNotes)
Entity Recognition (2)

	I	would	like	a	salami	pizza	and	two	cheese	sandwiches
O	O	O	O	O	B-FOOD	I-FOOD	O	O	B-FOOD	I-FOOD

- **Nominal Entities**
 - Noun phrases: compositional
 - *pasta*
 - *pasta with pesto*: + prepositional modifier
 - *Italian pasta with pesto*: + adjectival modifier
 - *spaghetti with broccoli:*
 - *spaghetti with pesto*: can be inferred
 - Some categories: FOOD, FORNITURE, CLOTHES, etc.
 - Few datasets available
Entity Recognition (3)

- **Neural models**
 - State of art performance
 - Data-driven (typically few thousand labeled sentences)
 - No need for hand-crafted features (e.g. capitalization)
 - No need for external knowledge sources

NeuroNLP2: Ma and Hovy, ACL 2016
Using Gazetteers with Neural Models

- Gazetteers
 - Lists of entity names for a certain category
 - Rich source of domain knowledge
 - Relatively cheap to obtain in large quantities (100K+)

- PERSON
 - Tom Cruise
 - Nicolas Cage
 - Bruce Willis
 - John Wayne
 - Christian Bale
 - Bernardo Magnini

- FOOD
 - spaghetti al pesto
 - lasagne
 - pasta
 - mozzarella cheese
 - hot smoked salmon
 - roasted salmon
 - sandwich
Using Gazetteers with Neural Models

Research questions

• Is domain knowledge (gazetteers) useful with neural models of entity labeling?
• How can we inject such knowledge?
• Named entities vs nominal entities
• Impact of the dataset size

Related work
Liu et al: Towards Improving Neural Named Entity Recognition with Gazetteers - ACL 2019
Experimental Method

1. Extract gazetteer features, three methods:
 - Single token presence
 - Multi-token presence
 - Neural model of the gazetteer

2. Chose a neural sequence labeling system
 - NeuroNLP2 (Ma and Hovy, ACL 2016) is used in this study

3. Integrate gazetteer features into the neural labeling system
 - As additional embedding dimension
 - As features for the classifier
Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane that throws him in a cage...
Gazetteer as feature: Single Token Presence

Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage…

A token has a positive value if it matches with a token present in the gazetteer.

Feature: 1-hot vector for each class to be labeled
Gazetteer as feature: Multi-token Presence

Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage…

Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage…

A token has a positive value if it is part of an entity name in the gazetteer.

Feature: 1-hot vector for each class to be labeled
Gazetteer as feature: Gazetteer Neural Model - NN_g

Bruce Wayne (Christian Bale) is attacked during a cruise by his nemesis Bane (Tom Hardy) that throws him in a cage…

A token has a positive value if it is classified as part of a category entity by a gazetteer classifier (NN_g).

- NN_g is pre-trained on the Gazetteer (Guerini et al. SigDial 2018)
- The representation of the input sequence at the last layer before Softmax is used as the corresponding gazetteer representation for the sequence.

Feature: 1-hot vector for each class to be labeled
Reference Sequence Labeling Model: NeuroNLP2

- **NeuroNLP2**: Ma and Hovy, ACL 2016 – code available

- **Embedding**
 - Character → CNN (30-d)
 - Word → GloVe (100-d)

- **Recurrent NN**
 - BiLSTM

- **Output layer**
 - CRF

NeuroNLP2: Ma and Hovy, ACL 2016
Integration 1: Enriching Embeddings

\[\text{Embedding}(x) = [x_{\text{word}}; x_{\text{char}}] \]

\[\text{Embedding}(x) = [x_{\text{word}}; x_{\text{char}}; x_{\text{gaz}}] \]
Integration 2: CRF classifier

\[\text{hidden}_x = [LSTM_x; LSTM_x] \]

\[\text{hidden}_x = [LSTM_x; LSTM_x; GAZ_x] \]
Experimental Setting: Two Datasets

Dataset	Token	Types	Entities	Sentences
CoNLL-2003 – named entities (English, entities=23K)				
Train	204567	23624	23499	14987
Dev	51578	9967	5942	3466
Test	46666	9489	5648	3684
Diabetic Patient Diary (DPD) – nominal entities (food, Italian, entities=1,7K)				
Train	4748	636	1757	450
Dev	296	138	122	49
Test	2315	379	583	200
Experimental Setting: Gazetteers

entity	#entities	#tokens	length± SD	TTR	Type1 (%)	Type2 (%)	Sub-entity (%)
CoNLL gazetteers							
PER	3613	6454	1.79±0.54	0.96	0.99	0.63	23.60
LOC	1331	1720	1.29±0.69	0.97	0.97	0.66	10.14
ORG	2401	4659	1.94±1.44	0.91	0.91	0.35	19.44
MISC	869	1422	1.14±0.94	0.89	0.89	0.73	19.85
DPD gazetteer							
FOOD	23472	83264	3.55±1.87	0.75	0.75	1.22	11.27

Food gazetteer is much bigger than CoNLL gazetteers
Experimental Setting: Gazetteers

Entity	#entities	#tokens	length± SD	TTR	Type1 (%)	Type2 (%)	Sub-entity (%)
CoNLL gazetteers							
PER	3613	6454	1.79±0.54	0.96	19.07	04.63	23.60
LOC	1331	1720	1.29±0.69	0.97	04.66	10.14	
ORG	2401	4659	1.94±1.16	0.91	04.33	15.06	19.44
MISC	869	1422	1.64±0.94	0.85	08.61	08.73	19.85
DPD gazetteer							
FOOD	23472	83264	3.55±1.87	0.75	17.22	22.97	11.27

Food names have much higher length than CoNLL names.
Results: Gazetteers Integrated at Embedding Level

	CoNLL	DPD							
	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1	
NeuroNL P2	98.06	91.42	90.95	91.19	88.47	77.17	74.79	75.96	
	+ single token	98.06	91.53	90.51	91.02	88.29	75.63	77.19	76.40
	+ multi token	98.08	91.41	90.76	91.08	88.98	78.90	76.33	77.59
+ NN_g	98.05	91.41	91.02	**91.22**	89.89	79.68	77.36	**78.50**	

Adding gazetteer features at the embedding level works better than CRF integration.
Results: Gazetteers Integrated at Embedding Level

	CoNLL	DPD						
	Accuracy	Precision	Recall	F1	Accuracy	Precision	Recall	F1
NeuroNL P2	98.06	91.42	90.95	91.19	88.47	77.17	74.79	75.96
+ single token	98.06	91.53	90.51	91.02	88.29	75.63	77.19	76.40
+ multi token	98.08	91.41	90.76	91.08	88.98	78.90	76.33	77.59
+ NNg	98.05	91.41	91.02	**91.22**	89.89	79.68	77.36	**78.50**

Small improvement with named entities
Results: Gazetteers Integrated at Embedding Level

Gazetteers	CoNLL Accuracy	CoNLL Precision	CoNLL Recall	CoNLL F1	Dated Fusion Accuracy	Dated Fusion Precision	Dated Fusion Recall	Dated Fusion F1
NeuroNLP	98.06	91.42	90.95	91.19	88.47	77.17	74.00	75.96
+ single token	98.06	91.53	90.51	91.02	88.29	75.63	77.19	76.40
+ multi token	98.08	91.41	90.76	91.08	88.98	78.90	76.33	77.59
+ NN_{g}	98.05	91.41	91.02	**91.22**	89.89	79.68	77.36	**78.50**

Higher improvement with nominal entities.
Learning Curve: Nominal entities (DPD)

- NNg is more robust and consistent on nominal entities (DPD)
Learning Curve: named entities (CoNLL)

The multi-token approach works better for named entities (CoNLL)
Conclusion

- Gazetteers are still useful for neural models, under certain conditions:
 - When added as additional features with embeddings
 - When training data are limited
 - When nominal entities are addressed

- Best results are obtained with nominal entities and with a neural classifier built on top of the gazetteer