Identification Through Sparsity in Factor Models

Simon Freyaldenhoven
Federal Reserve Bank of Philadelphia

This version: June 16, 2020

Online Appendix

List of Tables

1 Minimum overlap required for Assumption 3 to hold on average. 4
2 Minimum overlap required for Assumption 3 to hold in 95% of all cases. 5
3 List of all stocks included in financial application. 15

List of Figures

1 β_k as a function of group size $|A_k|$. 3
2 Objective function for different rotation criteria. 7
3 Comparison of loading matrices across different rotation criteria. 8
4 Boxplot depicting maximum cosine similarity under a four-factor DGP. 10
5 PCA loadings in macroeconomic application. 13
6 Rotated loadings in macroeconomic application. 14

Email: simon.freyaldenhoven@phil.frb.org
A Further Discussion of Assumption 3 and Its Implications

To gain intuition for the value of $\beta^k(v_\star k)$, let $N^+ = \sum_{i \in A_k} 1\{\lambda_{ik}^* v_{ik} \geq 0\}$, $N^- = \sum_{i \in A_k} 1\{\lambda_{ik}^* v_{ik} < 0\}$ and suppose that $N^- \leq N^+$ (the same result will hold for the opposite case). Then,

$$
\beta^k(v_\star k) = \sum_{i \in A_k} |v_{ik}| 1\{\lambda_{ik}^* v_{ik} \geq 0\} - \sum_{i \in A_k} |v_{ik}| 1\{\lambda_{ik}^* v_{ik} < 0\} \\
= N^+ \frac{1}{N} \sum_{i \in A_k} |v_{ik}| 1\{\lambda_{ik}^* v_{ik} \geq 0\} - N^- \frac{1}{N} \sum_{i \in A_k} |v_{ik}| 1\{\lambda_{ik}^* v_{ik} < 0\} \\
= N^- (|v^+_{ik}| - |v^-_{ik}|) + (N^+ - N^-) |v^+_{ik}|
$$

(1)

Thus, the difference in Equation (1) above and Equation (9) of the main text can be decomposed into the difference between two conditional means multiplied by N^-, and the difference between the number of sum terms used in each sum multiplied by a constant. While we treat Λ^* as fixed throughout, suppose Λ^* was random and assume $r = 2$. Further suppose λ_{ik} is distributed symmetrically and independently if $i \in A_k$, and equal to zero otherwise. Then, both of terms of the decomposition in (1) would be $O_p(\sqrt{n})$ under some regularity conditions (e.g., $\lambda_{ik} \overset{i.i.d.}{\sim} N(0, \sigma)$, as in Example 3 on Page 15 of the main text). Thus, $\beta^1(v_\star 1)$ will also be $O_p(\sqrt{n})$. Treating Λ as a fixed parameter, we avoid making any distributional assumptions on Λ, but instead simply define the above difference as $\beta^k(v_\star k)$.

We next illustrate the behavior of $\beta^k = \max_{v_\star k \in V_k} \beta^k(v_\star k)$ in finite sample for a hypothetical Λ^*. We create a $n \times 2$ loading matrix Λ^* with entries $\lambda_{ik}^* \overset{i.i.d.}{\sim} N(0, 1)$ if $i \in A_k$, and $\lambda_{ik}^* = 0$ otherwise. Further, $|A_2| = n$, such that $A_1 \subset A_2$. Online Appendix Figure 1 then depicts how β^1 changes as we increase the size of the set A_1. Online Appendix Figure 1 confirms that β^1 grows proportionally to the square root of the size of the set A_1.

As we have just argued theoretically and showed in simulation, in many cases $\beta^k \asymp \sqrt{n}$. To determine whether the condition in Assumption 3

$$
\|v_{\star k}^{A_1^c}\|_1 > \beta^k(v_\star k),
$$

(2)
is plausible, we further need to consider $\|v_{\star k}^{A_1^c}\|_1$ and, intuitively, under what conditions $\|v_{\star k}^{A_1^c}\|_1 > \sqrt{n}$.

1Changing the covariance structure such that $\text{Cov}(\lambda_{11}, \lambda_{12}) \neq 0$ does not affect the results below.

2Specifically, we orthonormalize Λ^* using Gram-Schmidt, such that $\frac{U^T U}{n} = I_2$, and write $U = (u_1, u_2) = (\lambda_1^*, v)$ (Redefining λ_1^* to have unit length is in line with the setup of the paper, see Section 2). Note that, with $r = 2$, the set V_1 only contains two vectors that are identical up to a sign indeterminacy.
Online Appendix Figure 1: Illustration of $\beta^1 = \max_{v_i \in V_1} \beta^1(v_1)$ as a function of group size $|A_1|$. $\lambda^{*}_{ik} \overset{i.i.d.}{\sim} N(0, 1)$ if $i \in A_k$, $\lambda^{*}_{ik} = 0$ otherwise, and $A_1 \subset A_2$. Figure based on 1000 simulations.

Recall that, for constants q_1 and q_2, $v_{*1} = q_1 \lambda^{*}_{11} + q_2 \lambda^{*}_{21}$, and thus $\|v_{*1}\|_1 = q_2 \|\lambda^{*}_{21}\|_1$, a constant times the sum of the absolute values of λ^{*}_{21} on A_{1}^c. It can be shown that $\|v_{*1}\|_2 = 1$ and $\lambda^{*}_{k1} \perp v_{*k}$ implies $q_2^2 = (1 - [\lambda^{*1}_{k1}, \lambda^{*1}_{k2}]^T)^{-1}$. Hence $q_2 \geq 1$, and $\|\lambda^{*}_{21}\|_1 > \beta^k$ is sufficient for (2) to hold. In general, the sum of the absolute values of λ^{*}_{21} on A_{1}^c will be proportional to the number of outcomes affected by F_2, but not F_1. This suggests that $F_1 \in F^{exact}$ if there are proportionally more than \sqrt{n} outcomes that are affected by F_2, but not F_1.

While, under the distribution of λ^{*}_{11} considered above, we can infer the minimum value needed for $\|v_{*1}\|_1$ to fulfill the condition in (2) for a given group size from Online Appendix Figure 1 (e.g., at $|A_1| = 400$, around 10), we next directly report the number of outcomes affected by F_2, but not F_1 that is needed for condition (2) to hold across a number of different DGPs for Λ^*. In particular, let

$$
\mu = (\mu_1, \mu_2) \quad \text{and} \quad \Sigma = \begin{bmatrix} 1 & \rho \\ \rho & 1 \end{bmatrix}.
$$

We create a 500×2 loading matrix Λ^* with $A_1 \subset A_2$ and $|A_1| = 300$. We draw $\lambda^{*}_{i1} \overset{i.i.d.}{\sim} N(\mu, \Sigma)$ if $i \in A_1$, $\lambda^{*}_{i2} \overset{i.i.d.}{\sim} N(\mu_2, 1)$ if $i \in A_{1}^c \cap A_2$, and $\lambda^{*}_{ik} = 0$ otherwise. To get a better sense of how demanding Assumption 3 is in practice, we then vary both μ and ρ. The results are depicted in Online Appendix Tables 1 and 2. Each entry depicts the minimum size of $A_{1}^c \cap A_2$ for $\|v_{*k}\|_1 > \beta^k(v_{*k})$ to hold for a given combination of μ and ρ.

Online Appendix Table 1 depicts the minimum number of entries in $A_{1}^c \cap A_2$ needed for condition (2) to hold for $k = 1$ on average across repeated realizations. Note that, with $\mu = (0, 0)$
Means μ_k	Correlation ρ			
μ_1 0	ρ -0.4, -0.2, 0, 0.2, 0.4			
μ_2 1				
0 10	11	11	11	10
0 10	10	10	10	10
1 36	31	27	21	16
1 26	21	16	21	11
2 62	53	44	36	27
2 36	27	36	44	53

Online Appendix Table 1: Smallest number of entries in $A_1^c \cap A_2$ needed for condition (2) to hold on average for $k = 1$. $|A_1| = |A_1 \cap A_2| = 300$. Table varies the distribution of λ_{ik}^* through the parameters μ and ρ. In particular, $\lambda_{ik}^* \sim \text{i.i.d. } N(\mu, \Sigma)$ if $i \in A_1$, $\lambda_{i2}^* \sim \text{i.i.d. } N(\mu_2, 1)$ if $i \in A_1^c \cap A_2$, and $\lambda_{ik}^* = 0$ otherwise. Table based on 1000 simulations.

and $\rho = 0$, this DGP is among those considered in Online Appendix Figure 1 (at $|A_1| = 300$ in the figure). It states that, under this DGP, it is sufficient if 11 outcomes are affected by F_2, but not by F_1 for (2) to hold on average. In other words: on average, $F_1 \in F^{\text{exact}}$, and is thus identified, whenever more than 11 outcomes are affected by F_2, but not by F_1.

Online Appendix Table 2 depicts the number of entries needed for condition (2) to hold in 95% of all realizations. Again focusing on the case $\mu = (0, 0)$ and $\rho = 0$, it states that, if $|A_1^c \cap A_2| \geq 28$, $F_1 \in F^{\text{exact}}$ in 95% of all simulations. We note that, while for some combinations of μ and ρ, $|A_1^c \cap A_2|$ is smaller, we need a fairly large number of outcomes affected by F_2, but not by F_1 in other regions of the parameter space. On the other hand, it still allows for significant overlap between A_1 and A_2. Further, as we showed in Online Appendix Figure 1, the required size for $|A_1^c \cap A_2|$ will be smaller in cases where the “joint active set” $A_1 \cap A_2$ is smaller than 300, which is frequently the case in applications.

In conclusion, we impose condition (2) as a high-level assumption in Assumption 3. This section outlined how one could alternatively treat the loadings as random, and use restrictions on the distribution of λ_{ik} to prove an upper bound on β_k directly.
Means μ_k	Correlation ρ
μ_1 μ_2	-0.4 -0.2 0 0.2 0.4
0 0	25 27 28 26 25
0 1	26 27 27 26 24
1 1	58 51 45 37 32
1 -1	32 38 45 52 59
2 2	77 65 55 46 36
2 -2	35 46 56 65 75

Online Appendix Table 2: Smallest number of entries in $A_1 \cap A_2$ needed for condition (2) to hold in 95% of all realizations for $k = 1$. $|A_1| = |A_1 \cap A_2| = 300$. Table varies the distribution of λ_{ik}^* through the parameters μ and ρ. In particular, $\lambda_{i}^* \sim i.i.d. \mathcal{N}(\mu, \Sigma)$ if $i \in A_1$, $\lambda_{i2}^* \sim i.i.d. \mathcal{N}(\mu_2, 1)$ if $i \in A_1^c \cap A_2$, and $\lambda_{ik}^* = 0$ otherwise. Table based on 1000 simulations.
In this section we illustrate the behavior of a number of alternative rotation criteria. We start with our illustrative two-factor DGP from Section 3.1. For reference, we first repeat an illustration of the ℓ_1-norm of a loading vector across all rotations of the Principal Component estimate Λ^0 in Online Appendix Figure 2a. Online Appendix Figure 2a is identical to the left half of Figure 4 in the main text.

Recall from Equation 3 in the main text that the objective function for the Varimax criterion can be expressed as

$$\max_{R:R' R = I} Q(\Lambda^0 R) = Q(\Lambda) = \sum_{k=1}^r \left[\sum_{i=1}^n \lambda_{ik}^4 - \frac{1}{n} \left(\sum_{i=1}^n \lambda_{ik}^2 \right)^2 \right]$$

and denote the argmin to (3) by \tilde{R}, and the corresponding loading matrix by $\tilde{\Lambda} = \Lambda^0 \tilde{R}$. Noting that $Q(\Lambda)$ is additively separable in λ_k, $k = 1, \ldots, r$ (and ignoring the orthogonality constraint on R for now), we obtain

$$\sum_{i=1}^n \lambda_{ik}^4 - \frac{1}{n} \left(\sum_{i=1}^n \lambda_{ik}^2 \right)^2$$

as the contribution to the objective function $Q(\Lambda)$ by an individual column λ_k. The restriction $R_{ik} R_{ik} = 1$, combined with the choice of an initial estimate Λ^0 that is orthonormal, implies that the second part of (4) is constant. Maximizing (3) is therefore equivalent to maximizing the columnwise ℓ_4-norm, with the added restriction that the resulting loading vectors are orthonormal.

In the two-dimensional case ($r = 2$), the unit length restriction on λ_k means we can write $\lambda_k = \sin(\theta_k) \lambda_{1k} + \cos(\theta_k) \lambda_{2k}$ for some θ_k, making it easy to visualize rotations. We depict the ℓ_4-norm across rotations θ_k for a single vector λ_k in Online Appendix Figure 2b below.

Further note that at any solution $\tilde{\Lambda}$ to (3), $\tilde{\Lambda}^t \tilde{\Lambda} = I$ implies that

$$\tilde{\lambda}_{1k} \tilde{\lambda}_{2k} = 0 \iff \left[\sin(\theta_1) \lambda_{1k}^0 + \cos(\theta_1) \lambda_{2k}^0 \right] \left[\sin(\theta_2) \lambda_{1k}^0 + \cos(\theta_2) \lambda_{2k}^0 \right] = 0 \iff \sin(\theta_1) \sin(\theta_2) + \cos(\theta_1) \cos(\theta_2) = 0 \iff \cos(\theta_1 - \theta_2) = 0 \iff \theta_1 - \theta_2 = \frac{\pi}{2} + g\pi, g \in \mathbb{Z}.$$
$\cos(\theta_k)\lambda_{k2}^0\|^4_4$, subject to the constraint that $(\theta_1 - \theta_2)$ fulfills the condition stated in (5) above. We see in Online Appendix Figure 2b that, without the orthogonality restriction, the nonsingular rotations with the largest ℓ_4-norm correspond to $\theta_1^{\ell_4}$ and $\theta_2^{\ell_4}$, marked by the dashed black lines. The restriction in (5) forces the difference between any solutions $\tilde{\theta}_1$ and $\tilde{\theta}_2$ (at the red dashed lines) to be slightly larger than that found between $\theta_1^{\ell_4}$ and $\theta_2^{\ell_4}$.

We further note that $\theta_1^{\ell_4}$ and $\tilde{\theta}_1$ are close, but not identical. We would expect this to frequently be the case, and gave an intuitive explanation for this in Section 3.

(a) $\|\lambda_{k}\|_1 = \|\sin(\theta)\lambda_{k1}^0 + \cos(\theta)\lambda_{k2}^0\|_1$ as a function of θ. Minimum achieved at $\tilde{\theta}$.

(b) $\|\lambda_{k}\|_4^4 = \|\sin(\theta)\lambda_{k1}^0 + \cos(\theta)\lambda_{k2}^0\|_4^4$ as a function of θ. Maximum achieved at θ^{ℓ_4}. Maximum under the constraint in (5) achieved at $\tilde{\theta}$.

Online Appendix Figure 2: Comparison of objective functions across different criteria. Figure depicts the value of the respective objective function (ℓ_1- and ℓ_4-norm) across all rotations in the space spanned by the initial estimate Λ^0.

Finally, we also consider Promax (Hendrickson and White 1964). Promax is one of the most commonly used oblique rotations in the literature, and a native implementation of it is included in many statistical software including MATLAB. The Promax rotation consists of two steps. The first step computes the Varimax rotation and raises all its entries to the fourth power to define a target matrix. In the second step, the Promax estimate is then obtained by computing a least-square fit from the Varimax solution to the previously defined target matrix. Due to the nature of this criterion, there is no obvious equivalent to Online Appendix Figure 2 for the Promax criterion.

However, in order to visually assess the performance of the different rotation criteria, we next depict the estimated loading matrix for all four of the above criteria in Online Appendix Figure 3. For reference, Panel 3a repeats the true loading matrix Λ^*. Panel 3b depicts $\tilde{\Lambda}$, the estimate
Online Appendix Figure 3: Comparison of loading matrices across different rotation criteria. Each panel depicts the loadings associated with all 207 outcomes, where the top diagram depicts λ_{1} and bottom panel λ_{2}. Panels 3b-3e differ in the criterion that determines θ_k in $\lambda_{k} = sin(\theta_k)\lambda_{1} + cos(\theta_k)\lambda_{2}$.

(a) True loading matrix Λ^*.

(b) The non-singular “rotated” matrix with smallest ℓ_1-norm $\|\Lambda\|_1$, $\tilde{\Lambda}$.

(c) The “rotated” matrix $\tilde{\Lambda}$ that maximizes the Varimax criterion.

(d) The non-singular “rotated” matrix with largest ℓ_4-norm $\|\Lambda\|_4$, Λ_{ℓ_4}.

(e) The “rotated” matrix Λ^{PROMAX} that is the result of the Promax rotation.
that minimizes the ℓ_1-norm of the loadings across rotations of Λ^0, which corresponds to the linear combinations at $\tilde{\theta} = [\tilde{\theta}_1, \tilde{\theta}_2]$ in Online Appendix Figure 2a. Panel 3c depicts $\hat{\Lambda}$, the estimate that maximizes the Varimax criterion across rotations of Λ^0, which corresponds to the linear combinations at $\hat{\theta} = [\hat{\theta}_1, \hat{\theta}_2]$ in Online Appendix Figure 2b. Panel 3d depicts Λ^{ℓ_4}, the estimate that maximizes the ℓ_4-norm of the loadings across rotations of Λ^0, which corresponds to the linear combinations at $\theta^{\ell_4} = [\theta_{1}^{\ell_4}, \theta_{2}^{\ell_4}]$ in Online Appendix Figure 2b. Panel 3e depicts Λ^{PROMAX}, the estimate that maximizes the Promax criterion across rotations of Λ^0.

The differences between the four estimates in Online Appendix Figure 3 are small and all four appear to be good estimates of Λ^*. Since the DGP we considered so far is very stylized, and Online Appendix Figure 3 is based on a single realization, we next turn to repeated simulations, and repeat the exercise from Section 5.1 by using the same DGP underlying Figure 7 in the main text. Recall that under this DGP, there are four factors. Of these four factors, one affects all outcomes, while the remaining three are local. Online Appendix Figure 4 uses a boxplot to visualize the performance of the different rotation criteria. It depicts the maximum cosine similarity as defined in Section 5 for each factor across 100 realizations of the DGP. In line with the main text, we consider two versions of this DGP. One in which $\lambda_{ik} = 0$ for all $i \in A_k^c$ (on the left), and one in which $\lambda_{ik} \sim_i.d. N(0, \sigma^2)$, $\sigma^2 = \frac{1}{n}$ for all $i \in A_k^c$ (on the right).

Panels 4a and 4b are identical to Figure 7c-7d in the main text, and demonstrate that the three local factors can be successfully recovered by our proposed criterion. The other three rotation methods perform significantly worse. While the estimators based on both Varimax and Promax still consistently achieve a similarity of above 0.9 for the local factors, the similarity with λ^*_2 in particular (the local factor affecting the most outcomes) is significantly lower than that of $\hat{\Lambda}$. Maximizing the ℓ_4-norm directly (Panels 4e-4f) performs even worse, in particular for λ^*_2.

Thus, we conclude that our proposed criterion based on the ℓ_1-norm outperforms all of the considered quartic criteria in this simulation exercise.
Online Appendix Figure 4: Maximum cosine similarity for all four factor loadings λ^*_k, $k = 1, \ldots, 4$. The first factor is global, while factors 2-4 are local. Boxplots based on 100 realizations.
C Algorithmic Implementation

Recall the minimization problem we consider throughout to identify Λ^* (or more precisely, an individual column λ^*_k):

$$\min_{R_{\cdot k}} \left\| \sum_{l=1}^{r} \lambda^o_l R_{lk} \right\|_1 \text{ such that } R_{\cdot k}' R_{\cdot k} = 1 \forall k. \quad (6)$$

We next discuss how to implement our estimator in practice. Our implementation consists of the following four steps.

1. We first compute the Principal Component estimator Λ^0 as an initial estimate for Λ^* that fulfills $\Lambda^0' \Lambda^0 = I$.

2. Next, we find all local minima of (6). We achieve this by first drawing a random grid of starting points $R_{\cdot k}^{0j}$, $j = 1, \ldots, J$, where $R_{lk}^{0j} = \frac{x_l}{\|x\|} \sim N(0, I_r)$.

 For each starting point $R_{\cdot k}^{0j}$, we find the argmin of (6), denoted by $R_{\cdot k}^{1j}$.

 At the end of this step, we have J candidate solutions $R_{\cdot k}^{1j}$.

3. In general, many of the J candidate solutions will be (close to) identical (because many starting points will converge to the same local minimum). In this step, we consolidate identical solutions into a single candidate, such that we are left with P unique rotation vectors $R_{\cdot k}^p$.

 We sort these unique rotation columns $R_{\cdot k}^p$, $p = 1, \ldots, P$ in descending order according to their occurrences.

 At the end of this step, we have P candidate solutions $R_{\cdot k}^p$.

4. Each candidates $R_{\cdot k}^p$ correspond to a local minimum of (6). In this last step, we combine these solutions into the rotation matrix \tilde{R}.

 With $R_{\cdot k}^p$ sorted according to their occurrences, we initialize $\tilde{R} = R_{\cdot k}^1$ and iteratively append $R_{\cdot k}^p$, $p = 2, \ldots, P$ whenever the resulting matrix does not become (close to) singular. Denote the resulting $r \times \tilde{r}$ matrix by $\tilde{R} = [\tilde{R}_{\cdot 1}, \ldots, \tilde{R}_{\cdot \tilde{r}}]$.

 Finally, we distinguish two cases:

 The number of random starting points J increases with the number of factors r. In particular, for $r = (2, 3, 4, 5, 6)$, we find that grid sizes $J = (150, 300, 1000, 2000, 3000, 5000)$ work well in practice. The constrained minimization in (6) becomes numerically more difficult as r increases. We find that the performance of the MATLAB solver starts to deteriorate for $r > 6$ and leave a refinement of the optimization routine for future research.

 We use $fmincon$, a native optimization routine included in MATLAB. We also implemented our algorithm using $fminsearch$ and $fminunc$, and found both to be significantly slower than $fmincon$.

3The number of random starting points J increases with the number of factors r. In particular, for $r = (2, 3, 4, 5, 6)$, we find that grid sizes $J = (150, 300, 1000, 2000, 3000, 5000)$ work well in practice. The constrained minimization in (6) becomes numerically more difficult as r increases. We find that the performance of the MATLAB solver starts to deteriorate for $r > 6$ and leave a refinement of the optimization routine for future research.

4We use $fmincon$, a native optimization routine included in MATLAB. We also implemented our algorithm using $fminsearch$ and $fminunc$, and found both to be significantly slower than $fmincon$.

11
• $\bar{r} \geq r$: We have more candidate solutions than the number of factors. In this case, we simply keep the most frequently found r rotation columns in \bar{R}, and $\bar{R} = \bar{R}_{\bullet,1:r}$. The result, $\bar{\Lambda} = \Lambda^0\bar{R}$, is our proposed estimate for the loading matrix Λ^*.

• $\bar{r} < r$: There are fewer candidate solutions than the number of factors. In this case, we iteratively append vectors e^d to \bar{R}, where e^d denotes an $r \times 1$ vector with dth entry $e^d_d = 1$, and zeros everywhere else. Note that this is equivalent to adding $(r - \bar{r})$ columns of Λ^0 to $\bar{\Lambda} = \Lambda^0\bar{R}$ directly. The result, $\bar{\Lambda}$, is our proposed estimate for the loading matrix Λ^*.

5We choose the entry d to pick out the loading vector λ^0_d that maximizes the minimum singular value of the combined matrix $[\bar{\Lambda}, \lambda^0_d]$. Intuitively, this is the column in Λ^0 that is furthest away from any linear combination of the columns in $\bar{\Lambda}$.
Online Appendix Figure 5: Illustration of PCA loadings λ_{*k}^0 for $k = 1, \ldots, 8$. Bars correspond to the loadings associated with the individual macroeconomic indicators from Section 6.2.
Online Appendix Figure 6: Illustration of additional rotated loadings $\tilde{\lambda}_k$ for $k = 6, 7, 8$. Bars correspond to the loadings associated with the individual macroeconomic indicators from Section 6.2.
E Data Appendix

E.1 Financial Data

The following procedure was used to obtain the dataset:

1. To obtain the stock symbols, the Wikipedia page for the respective stock index was scraped on April 23, 2015.

2. The corresponding stock prices were extracted from Yahoo! Finance and converted to daily returns.

3. The data ranges from 01/01/2011 until 03/20/2015. To avoid missing values, we dropped all stocks that were not publicly listed during the entire timespan. We only kept the primary listing for stocks listed on multiple stock exchanges, and only those days were kept that were active trading days on all five stock exchanges.

After consolidating the data to correct for missing values, 272 stocks remained in the dataset spanning 687 observations. The complete list of stocks included is provided in Online Appendix Table 3 below. Online Appendix Table 3 also links each stock symbol to its corresponding company and the respective primary industry.

Traded in	Ticker	Company	Prime Standard industry group
Frankfurt	ADS	Adidas	Clothing
Frankfurt	ALV	Allianz	Insurance
Frankfurt	BAS	BASF	Chemicals
Frankfurt	BAYN	Bayer	Pharmaceuticals and Chemicals
Frankfurt	BBI	Beiersdorf	Consumer goods
Frankfurt	BMW	BMW	Manufacturing
Frankfurt	CBK	Commerzbank	Banking
Frankfurt	CSN	Continental	Manufacturing
Frankfurt	DAI	Daimler	Manufacturing
Frankfurt	DBK	Deutsche Bank	Banking
Frankfurt	DB1	Deutsche Börse	Securities
Frankfurt	LHA	Deutsche Lufthansa	Transport Aviation
Frankfurt	DPW	Deutsche Post	Communications
Frankfurt	DTE	Deutsche Telekom	Communications
Frankfurt	EOGAN	EON	Energy
Frankfurt	FRE	Fresenius	Medical
Frankfurt	FME	Fresenius Medical Care	Medical
Frankfurt	HEI	HeidelbergCement	Building
Frankfurt	HEN3	Henkel	Consumer goods
Frankfurt	IFX	Infineon Technologies	Manufacturing
Frankfurt	SDF	K+S	Chemicals
Frankfurt	LXS	Lanxess	Chemicals
Frankfurt	LIN	Linde	Industrial gases
Frankfurt	MRK	Merck	Pharmaceuticals
Frankfurt	MUV2	Munich Re	Insurance
Frankfurt	RWE	RWE	Energy
Frankfurt	SAP	SAP	IT
Frankfurt	SIE	Siemens	Industrial, electronics
Frankfurt	TKA	ThyssenKrupp	Industrial, manufacturing
Frankfurt	VOV3	Volkswagen Group	Manufacturing
London	AAL	Anglo American plc	Mining
London	ABF	Associated British Foods	Food

15
Traded in	Ticker	Company	Prime Standard industry group
London	ADM	Admiral Group	Insurance
London	ADN	Aberdeen Asset Management	Fund management
London	AGK	Aggreko	Generator hire
London	ANTO	Antofagasta	Mining
London	ARM	ARM Holdings	Engineering
London	AV	Aviva	Insurance
London	AZN	AstraZeneca	Pharmaceuticals
London	BA	BAE Systems	Military
London	BAB	Babcock International	Consulting
London	BARC	Barclays	Banking
London	BG	BG Group	Oil and gas
London	BLND	British Land Co	Property
London	BLT	BHP Billiton	Mining
London	BNZL	Bunzl	Industrial products
London	BP	BP	Oil and gas
London	BRBY	Burberry Group	Fashion
London	BT-A	BT Group	Telecomms
London	CNA	Centrica	Energy
London	CPG	Compass Group	Food
London	CPI	Capita	Support Services
London	CRDA	Croda International	Chemicals
London	CRH	CRH plc	Building materials
London	DGE	Diageo	Beverages
London	EXPN	Experian	Information
London	FLC	Friends Life Group	Investment
London	FRES	Fresnillo plc	Mining
London	GP	GAS	Security
London	GKN	GKN	Manufacturing
London	GSK	GlaxoSmithKline	Pharmaceuticals
London	HL	Hargreaves Lansdown	Finance
London	HMSO	Hammerson	Property
London	HSBA	HSBC	Banking
London	I&O	International Consolidated Airlines	Transport air
London	IHG	InterContinental Hotels Group	Hotels
London	IML	IMI plc	Engineering
London	IMT	Imperial Tobacco Group	Tobacco
London	ITRK	Interkt Group	Product testing
London	ITV	ITV plc	Media
London	JMAT	Johnson Matthey	Chemicals
London	KGF	Kingfisher plc	Retail homeware
London	LAND	Land Securities Group	Property
London	LGEN	Legal & General	Insurance
London	LLFY	Lloyds Banking Group	Banking
London	MGTT	Meggitt	Engineering
London	MKS	Marks & Spencer Group	Retailer
London	MRO	Melrose plc	Engineering
London	MRW	Morrison Supermarkets	Supermarket
London	NG	National Grid plc	Energy
London	NXT	Next plc	Retail clothing
London	OML	Old Mutual	Insurance
London	PFC	Petrofac	Oil and gas
London	PRU	Prudential plc	Finance
London	RB	Reckitt Benckiser	Consumer goods
London	RBS	Royal Bank of Scotland Group	Banking
London	RDSA	Royal Dutch Shell	Oil and gas
London	REL	Reed Elsevier	Publishing
London	REX	Reexam	Packaging
London	RIO	Rio Tinto Group	Mining
London	RR	Rolls-Royce Group	Manufacturing
London	RRS	Ratcliff Resources	Mining
London	RSA	RSA Insurance Group	Insurance
London	SAB	SABMiller	Beverages
London	SBSY	J Sainsbury plc	Supermarket
London	SDN	Schroders	Fund management
London	SGE	Sage Group	IT
London	SL	Standard Life	Fund management
London	SMIN	Smiths Group	Engineering
London	SRP	Serco	Outsourced services
London	SSE	SSE plc	Energy
London	STAN	Standard Chartered	Banking
London	SVT	Severn Trent	Water
London	TATE	Tate & Lyle	Food
Traded in	Ticker	Company	Prime Standard industry group
-----------	--------	---------	-------------------------------
London	TLW	Tullow Oil	Oil and gas
London	TSCO	Tesco	Supermarket
London	ULYR	Unilever	Consumer goods
London	UU	United Utilities	Water
London	VED	Vedanta Resources	Mining
London	VOD	Vodafone Group	Telecoms
London	WEIR	Weir Group	Engineering
London	WG	Wood Group	Oil and gas
London	WOS	Wolseley plc	Building materials
London	WPP	WPP plc	Media
London	WTB	Whitbread	Retail hospitality
New York	AAPL	Apple Inc.	Consumer electronics
New York	ABT	Abbott Laboratories	Pharmaceuticals
New York	ACN	Accenture plc	Professional services
New York	AG	American International Group Inc.	Insurance
New York	ALL	Allstate Corp.	Insurance
New York	AMGN	Amgen Inc.	Biotechnology
New York	AMZN	Amazon.com	Internet
New York	APA	Apache Corp.	Oil and Gas
New York	APC	Anadarko Petroleum Corporation	Oil and Gas
New York	AXP	American Express Inc.	Consumer finance
New York	BA	Boeing Co.	Aerospace and defense
New York	BAC	Bank of America Corp	Banking
New York	BAX	Baxter International Inc	medical supplies
New York	BIIB	Biogen Idec	Biotechnology
New York	BK	Bank of New York	Banking
New York	BMY	Bristol-Myers Squibb	Pharmaceuticals
New York	BRK.B	Berkshire Hathaway	Conglomerate
New York	C	Caterpillar Inc	Construction and Mining Equipment
New York	CL	Colgate-Palmolive Co.	Personal Care
New York	CMCSA	Comcast Corporation	Telecommunications
New York	COF	Capital One Financial Corp.	Financial Services
New York	COP	ConocoPhillips	Oil and Gas
New York	COST	Costco	Retail
New York	CSCO	Cisco Systems	Networking equipment
New York	CVS	CVS Caremark	Health Care
New York	CVX	Chevron	Oil and gas
New York	DD	DuPont	Chemical industry
New York	DIS	The Walt Disney Company	Broadcasting and Entertainment
New York	DOW	Dow Chemical	Chemicals
New York	DVN	Devon Energy	Energy
New York	EBAY	eBay Inc.	Internet
New York	EMC	EMC Corporation	Computer storage
New York	EMR	Emerson Electric Co.	Electrical equipment
New York	EXC	Exelon	Energy
New York	F	Ford Motor	Manufacturing
New York	FCX	Freeport-McMoran	Mining
New York	FDX	FedEx	Courier
New York	FOXA	Twenty-First Century Fox, Inc	Media
New York	GD	General Dynamics	Aerospace and Defense
New York	GE	General Electric Co.	Conglomerate
New York	GILD	Gilead Sciences	Biotechnology
New York	GM	General Motors	Manufacturing
New York	GS	Goldman Sachs	Banking
New York	HAL	Halliburton	Oilfield services
New York	HD	Home Depot	Retail
New York	HON	Honeywell	Conglomerate
New York	HPQ	Hewlett Packard Co	Computer and IT
New York	IBM	International Business Machines	Computers and Technology
New York	INTC	Intel Corporation	Semiconductors
New York	JNJ	Johnson & Johnson Inc	Pharmaceuticals
New York	JPM	JP Morgan Chase & Co	Banking
New York	KO	The Coca-Cola Company	Beverages
New York	LLY	Eli Lilly and Company	Pharmaceuticals
New York	LMT	Lockheed-Martin	Aerospace and Defense
New York	LOW	Lowe’s	Retail
New York	MA	Masterclass Inc	Banking
New York	MCD	McDonald’s Corp	Fast Food
New York	MDLZ	Mondelēz International	Food processing
New York	MDT	Medtronic Inc.	Medical equipment
New York	MET	Metlife Inc.	Financial Services
Traded in	Ticker	Company	Prime Standard industry group
-----------	--------	---	-------------------------------
New York	MMM	3M Company	Conglomerate
New York	MEO	Altria Group	Tobacco
New York	MON	Monsanto	Agribusiness
New York	MRK	Merck & Co	Pharmaceuticals
New York	MS	Morgan Stanley	Banking
New York	MSFT	Microsoft	Software
New York	NKE	Nike	Apparel
New York	NOV	National Oilwell Varco	Oilfield services
New York	NSC	Norfolk Southern Corp	Transportation (Railway)
New York	ORCL	Oracle Corporation	Software
New York	OXY	Occidental Petroleum Corp.	Oil and Gas
New York	PEP	PepsiCo	Beverages
New York	PFE	Pfizer Inc	Pharmaceuticals
New York	PG	Procter & Gamble Co	Consumer goods
New York	PM	Phillip Morris International	Tobacco
New York	QCOM	Qualcomm Inc.	Semiconductors, Telecommunications
New York	RTN	Raytheon Co (NEW)	Aerospace and Defense
New York	SBUX	Starbucks Corporation	Coffee shop
New York	SLB	Schlumberger	Oilfield services
New York	SO	Southern Company	Energy and Telecommunications
New York	SPG	Simon Property Group, Inc.	Real estate
New York	T	AT&T Inc	Telecommunications
New York	TGT	Target Corp.	Retail
New York	TWX	Time Warner Inc.	Media
New York	TXN	Texas Instruments	Semiconductors
New York	UNH	UnitedHealth Group Inc.	Health Care
New York	UNP	Union Pacific Corp.	Transportation (Railway)
New York	UPS	United Parcel Service Inc	Courier
New York	USB	US Bancorp	Banking
New York	UTX	United Technologies Corp	Conglomerate
New York	V	Visa Inc.	Banking
New York	VZ	Verizon Communications Inc	Telecommunications
New York	WBA	Walgreens Boots Alliance	Pharmaceuticals, Retail
New York	WFC	Wells Fargo	Banking
New York	WMT	Wal-Mart	Retail
New York	XOM	Exxon Mobil Corp	Oil and Gas
Paris	AC	Accor	hotels
Paris	ACA	Crédit Agricole	banks
Paris	AF	Air France	Airlines
Paris	AI	Air Liquide	commodity chemicals
Paris	AJR	Airbus Group	aerospace
Paris	AKE	Arkema chemicals	chemicals
Paris	ALO	Alstom	industrial machinery
Paris	ALLU	Alcatel-Lucent	telecommunications
Paris	BN	Groupe Danone	food products
Paris	BNP	BNP Paribas	banks
Paris	CA	Carrefour	food retailers and wholesalers
Paris	CAP	Capgemini	computer services
Paris	CS	AXA	full line insurance
Paris	DG	Vinci	heavy construction
Paris	EDF	EDF	electricity
Paris	EI	Ettior	medical supplies
Paris	EN	Bouygues	heavy construction
Paris	FP	Total	integrated oil and gas
Paris	GLG	Société Générale	banks
Paris	GSZ	GDF Suez	gas distribution
Paris	KER	Kering	retail business
Paris	LG	Lafarge	building materials and fixtures
Paris	LR	Legrand	electrical components and equipment
Paris	MC	LVMH	clothing and accessories
Paris	ML	Michelin	tires
Paris	OR	L'Oréal	personal products
Paris	ORA	Orange	telecommunications
Paris	PUB	Publicis	media agencies
Paris	RI	Pernod Ricard	distillers and vintners
Paris	RNO	Renault	automobiles
Paris	SAF	Safran	aerospace and defence
Paris	SGO	Saint-Gobain	building materials and fixtures
Paris	STM	STMicroelectronics	semiconductors
Paris	SU	Schneider Electric	electrical components and equipment
Paris	TEC	Technip	oil equipment and services
Paris	VIE	Vedia Environnement	water
Traded in	Ticker	Company	Prime Standard industry group
-----------	--------	---------	-------------------------------
Paris	VIV	Vivendi	broadcasting and entertainment
Paris	VK	Vallourec	industrial machinery
Tel Aviv	BEZQ	Bezeq The Israel Telecommunication Corp. Ltd.	Telecommunication
Tel Aviv	CEL	Cellcom (Israel)	Telecommunication
Tel Aviv	CLIS	Clal Insurance Enterprises Holdings Ltd.	Insurance
Tel Aviv	DLEKG	Delek Group	Oil and Gas
Tel Aviv	DSCT	Israel Discount Bank Ltd	Banks
Tel Aviv	ESLT	Elbit Systems	Aerospace and Defence
Tel Aviv	FRUT	Frutarom Industries, Ltd.	Chemicals
Tel Aviv	GZT	Gazi-Globe Ltd.	Real Estate
Tel Aviv	HARL	Harel Insurance Ins. & Fin. Services Ltd	Insurance
Tel Aviv	ICL	Israel Chemicals Ltd.	Chemicals
Tel Aviv	LUMI	Bank Leumi Ltd.	Banks
Tel Aviv	MGDL	Migdal Insurance and Financial Holdings Ltd.	Insurance
Tel Aviv	MZTF	Bank Mizrachi-Tlalot Ltd	Banks
Tel Aviv	NICE	NICE Systems Ltd.	Technology
Tel Aviv	ORL	BAZAN - Oil Refineries Ltd	Oil & Gas Producers
Tel Aviv	ORMT	Ormat Industries	Alternative Energy
Tel Aviv	OSEM	Osem	Food Producers
Tel Aviv	POLI	Bank Hapoalim Ltd.	Banks
Tel Aviv	PROG	Perrigo Company	Pharmaceuticals
Tel Aviv	PTNR	Partner Communications Company Ltd.	Telecommunication
Tel Aviv	PZOL	Paz Oil Company Ltd.	Oil & Gas Services
Tel Aviv	TEVA	Teva Pharmaceutical Industries Ltd.	Pharmaceuticals

Online Appendix Table 3: Complete list of all stocks included in the analysis of Section 6.1.