STARLIKE FUNCTIONS ASSOCIATED WITH
A PETAL SHAPED DOMAIN

Kush Arora and S. Sivaprasad Kumar

Abstract. In this paper, we establish some radius results and inclusion relations for starlike functions associated with a petal-shaped domain.

1. Introduction

Let the open unit disk \(\{ z \in \mathbb{C} : |z| < 1 \} \) be represented by \(\mathbb{D} \) and \(\mathcal{H} \) be the class of all analytic functions in \(\mathbb{D} \). Consider \(\mathcal{A}_n \) as the class of analytic functions \(f \) in \(\mathbb{D} \) represented by

\[
f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \cdots.
\]

In particular, denote \(\mathcal{A}_1 := \mathcal{A} \) and let \(\mathcal{S} \) be the subclass of \(\mathcal{A} \) such that it involves all univalent functions \(f(z) \) in \(\mathbb{D} \). Let \(g, h \) be two analytic functions and \(\omega \) be a Schwarz function satisfying \(\omega(0) = 0 \) and \(|\omega(z)| \leq |z| \) such that \(g(z) = h(\omega(z)) \) then \(g \) is said to be subordinate to \(h \), or \(g \prec h \). If \(h \) is univalent, then \(g \prec h \) if and only if \(g(0) = h(0) \) and \(g(\mathbb{D}) \subset h(\mathbb{D}) \). Ma and Minda [11] introduced the univalent function \(\psi \) satisfying \(\operatorname{Re} \psi(\mathbb{D}) > 0 \), \(\psi(\mathbb{D}) \) starlike with respect to \(\psi(0) = 1 \) and \(\psi'(0) > 0 \) and the domain \(\psi(\mathbb{D}) \) being symmetric about the real axis. Further, they gave the definitions for the general subclasses of starlike and convex functions, respectively, as follows:

\[
\mathcal{S}^*(\psi) := \{ f \in \mathcal{S} : zf'(z)/f(z) \prec \psi(z) \}
\]

and

\[
\mathcal{K}(\psi) := \{ f \in \mathcal{S} : 1 + zf''(z)/f'(z) \prec \psi(z) \}.
\]

For different choices of \(\psi \), many subclasses of \(\mathcal{S}^* \) and \(\mathcal{K} \) can be obtained. For example, the notable classes of Janowski starlike and convex functions [8] are represented by \(\mathcal{S}^*[C, D] := \mathcal{S}^*((1 + Cz)/(1 + Dz)) \) and \(\mathcal{K}[C, D] := \mathcal{K}((1 + Cz)/(1 + Dz)) \) for \(-1 \leq D < C \leq 1 \), respectively. Further, \(\mathcal{S}^*_\alpha := \mathcal{S}^*[1 - 2\alpha, -1] \) and \(\mathcal{K}_\alpha := \mathcal{K}*[1 - 2\alpha, -1] \) represent the classes of starlike and convex functions.

Received August 15, 2021; Accepted January 24, 2022.

2020 Mathematics Subject Classification. Primary 30C80; Secondary 30C45.

Key words and phrases. Starlike function, convex function, petal shaped domain, radius problems.
of order $\alpha \in [0, 1)$, respectively. Note that $S^* := S^*_0$ and $K := K_0$ represent the well-known classes of starlike and convex functions, respectively. We denote $SS^*(\gamma) := S^*((1+z)/(1-z)^\gamma)$ and $SK(\gamma) := K((1+z)/(1-z)^\gamma)$ representing the class of strongly starlike and strongly convex functions of order $\gamma \in (0, 1]$, respectively.

Recall that for two subfamilies G_1 and G_2 of A, we say that r_0 is the G_1-radius for the class G_2 if $r_0 (0 < r \leq r_0)$ is the greatest number which satisfies $r^{-1}g(rz) \in G_1$, where $g \in G_2$. Moreover, starlike classes $S^*(\psi)$ for different $\psi(z)$ were considered by many authors, whose works examined the geometrical properties, radius results and coefficient estimates of the functions of their respective classes. Sokół and Stankiewicz [20, 21] considered the class $S^*_2 := S^*(\sqrt{1+z})$ and Mendiratta et al. [13] worked on the class $S^*_D := S^*((\sqrt{2} - (\sqrt{2} - 1)((1 - z)/(1 + 2(\sqrt{2} - 1)z)))^{1/2})$. Sharma et al. [19] studied the class $S^*_C := S^*(1 + 4z/3 + 2z^2/3)$ while the class $S^*_G := S^*(1 + \sin z)$ was examined by Cho et al. [6]. The classes $S^*_0 := S^*(e^z)$ and $\Delta^* := S^*(z + \sqrt{1+z^2})$ were considered by Mendiratta et al. [14] and Raina et al. [15], respectively. Kargar et al. [10] introduced and studied the class $BS^*(\alpha) := S^*(1 + z/(1 - \alpha z^2))$, $\alpha \in [0, 1)$, associated with the Booth lemniscate which was also investigated by Cho et al. [4]. Some more recent work on radius problems can be found in [1,3,5,7,23].

Motivated by the classes defined in [6, 10, 13–15, 19, 21], we consider the petal shaped region $\Omega_\rho := \{w \in \mathbb{C} : |\sinh(w - 1)| < 1\}$, which is characterised functionally as $\rho(z) = 1 + \sinh^{-1}(z)$ to define our class. Clearly, $\rho(z)$ is a Ma-Minda function. See Figure 2 for its boundary curve γ_0 which is petal shaped. Note that $\sinh^{-1}(z)$ is a multivalued function and has the branch cuts along the line segments $(-i\infty, -i) \cup (i, i\infty)$, on the imaginary axis and hence it is analytic in D. Now we introduce a new class of starlike functions

$$S^*_\rho := \left\{ f \in A : \frac{zf'(z)}{f(z)} \prec 1 + \sinh^{-1}(z) \right\} \quad (z \in D), \tag{4}$$

which is associated with the petal-shaped domain $\rho(D)$. From the above definition, we deduce that $f \in S^*_\rho$ if and only if there exists an analytic function $q(z) \prec \rho(z)$ such that

$$f(z) = z \exp \left(\int_0^z \frac{q(t) - 1}{t} dt \right). \tag{5}$$

Table 1 presents some functions in the class S^*_ρ, where $q_j \prec \rho$.

Since ρ is univalent in D, $q_j(D) \subset \rho(D)$ and $q_j(0) = \rho(0)$ $(j = 1, 2, 3)$, it follows that each $q_j \prec \rho$. Thus the functions $f_j(z)$ obtained from (5) are in the class S^*_ρ. In particular, if we choose

$$q(z) = 1 + \sinh^{-1}(z) = 1 + z - \frac{z^3}{6} + \frac{3z^5}{40} - \frac{5z^7}{112} + \cdots,$$
Table 1. Some functions in the class S_ρ^*

j	$q_j(z)$	$f_j(z)$
1	$1 + z/5$	$z \exp(z/5)$
2	$(5 + 2z)/(5 + z)$	$z + z^2/5$
3	$(7 + 4z)/(7 + z)$	$z(1 + z/7)^3$

then (5) gives

\[f_0(z) = z \exp \left(\int_0^z \frac{\sinh^{-1}(t)}{t} \, dt \right) = z + z^2 + \frac{z^3}{2} + \frac{z^4}{9} - \frac{z^5}{72} - \frac{z^6}{225} + \cdots, \]

which often acts as the extremal function for the class S_ρ^* yielding sharp results.

Remark 1.1. Note that $\sinh^{-1}(z) = \ln(z + \sqrt{1 + z^2})$. Let $w = zf'(z)/f(z)$, then the class S_ρ^* can be alternatively represented by $\exp(w - 1) \preceq z + \sqrt{1 + z^2}$, where $z + \sqrt{1 + z^2}$ represents the Crescent shaped domain [15]. Thus, there exists an exponential relation among the functions in the classes S_ρ^* and Δ^ψ.

In the present investigation, the geometrical properties of the function $1 + \sinh^{-1}(z)$ are studied and certain inclusion properties as well as radius problems are established for the class S_ρ^*.

2. Properties of the function $1 + \sinh^{-1}(z)$

The current section deals with the study of some geometric properties of the function $1 + \sinh^{-1}(z)$.

Theorem 2.1. The function $\rho(z) = 1 + \sinh^{-1}(z)$ is a convex univalent function.

Proof. Let $h(z) = \sinh^{-1}(z)$. Clearly, $h(0) = 0$. Since $h'(z) = 1/\sqrt{1 + z^2}$ and $\sqrt{1 + z^2} \preceq \sqrt{1 + z} \in \mathcal{P}$, where \mathcal{P} is the Carathéodory class. Therefore, $1/\sqrt{1 + z^2} \in \mathcal{P}$ which implies that $\Re h'(z) > 0$. Hence ρ is univalent. Now a calculation yields

\[1 + z h''(z) \frac{1}{h'(z)} = \frac{1}{1 + z^2}. \]

Since

\[\frac{1}{1 + z^2} \preceq \frac{1}{1 + z} \in \mathcal{P}, \]

Therefore, $\Re(1 + z h''(z)/h'(z)) > 0$ which implies that h (and thus ρ) is a convex univalent function. \hfill \Box

Remark 2.2. Note that $\rho'(0) > 0$ and the function $\varphi(z) = z + \sqrt{1 + z^2}$ satisfies $\varphi(z) = \overline{\varphi(z)}$. Therefore, $\rho(z) = \overline{\rho(z)}$ and hence, the domain $\Omega_\rho = \rho(\mathbb{D})$ is symmetric about the real axis.
Theorem 2.3. The domain Ω_ρ is symmetric about the line $\text{Re}(w) = 1$.

Proof. Since Ω_ρ is symmetric about the real axis, the condition $0 \leq \theta \leq \pi/2$ is sufficient to prove our result. As we know that symmetry along imaginary axis for $f \in A$ holds if $\text{Re}(f(\theta)) = -\text{Re}(f(\pi - \theta))$ and $\text{Im}(f(\theta)) = \text{Im}(f(\pi - \theta))$. Now let $h(z) = \sinh^{-1}(z) = \ln(z + \sqrt{1 + z^2})$. Then $\text{Im}(h(z)) = \arg(z + \sqrt{1 + z^2})$. For $z = re^{it}$, $t \in [0, \pi]$ and fixed $r \in (0, 1)$, we have the following expressions for $t \to \theta$

$$I_1 = \arg \left(r(\cos \theta + i \sin \theta) + \sqrt{1 + r^2(\cos(2\theta) + i \sin(2\theta))} \right)$$
$$= \arg \left(z + \sqrt{1 + z^2} \right),$$

and for $t \to \pi - \theta$

$$I_2 = \arg \left(r(\cos(\pi - \theta) + i \sin(\pi - \theta)) \right.$$
$$+ \sqrt{1 + r^2(\cos(2(\pi - \theta)) + i \sin(2(\pi - \theta)))} \bigg)$$
$$= \arg \left(r(-\cos \theta + i \sin \theta) + \sqrt{1 + r^2(\cos(2\theta) - i \sin(2\theta))} \right)$$
$$= \arg \left(-z + \sqrt{1 + z^2} \right).$$

Now let us consider $(z + \sqrt{1 + z^2})/(-\overline{z} + \sqrt{1 + \overline{z}^2})$. On rationalising the denominator, we get

$$\frac{z + \sqrt{1 + z^2}}{-\overline{z} + \sqrt{1 + \overline{z}^2}} = \frac{(z + \sqrt{1 + z^2})(-z + \sqrt{1 + z^2})}{(-\overline{z} + \sqrt{1 + \overline{z}^2})(-z + \sqrt{1 + z^2})} = \frac{1}{|z + \sqrt{1 + z^2}|^2} = k,$$

where $k > 0$ is some real positive constant. Thus,

$$\arg \left(\frac{z + \sqrt{1 + z^2}}{-\overline{z} + \sqrt{1 + \overline{z}^2}} \right) = \arg(k) = 0$$
$$\Rightarrow \arg \left(z + \sqrt{1 + z^2} \right) = \arg \left(-\overline{z} + \sqrt{1 + \overline{z}^2} \right)$$
$$\Rightarrow I_1 = I_2.$$

Similarly, $\text{Re}(h(\theta)) = -\text{Re}(h(\pi - \theta))$ for $0 \leq \theta \leq \pi/2$. Hence, $h(z)$ is symmetric about the imaginary axis and thus, by translation property, $\rho(z)$ is symmetric about the line $\text{Re}(w) = 1$.\hfill \Box

Now using Theorem 2.3, we obtain the next result:

Corollary 2.4. The disk $\{w : |w - 1| \leq \sinh^{-1}(r)\}$ is contained in $\rho(|z| \leq r)$ and is maximal.

Proof. Since $\min_{|z|=r} |\sinh^{-1}(z)| = |\sinh^{-1}(-r)| = \sinh^{-1}(r)$ and hence the conclusion can be drawn at once.\hfill \Box

Theorem 2.5. We find that the following properties hold for $\rho(z) = 1 + \sinh^{-1}(z)$:
Figure 1. \(\rho(D) \) lies in the annular region bounded between the circles \(C_1 \) and \(C_2 \).

(i) \(\rho(-r) \leq \text{Re} \rho(z) \leq \rho(r) \) (\(|z| \leq r < 1 \));

(ii) \(|\text{Im} \rho(z)| \leq \pi/2 \) (\(|z| \leq 1 \));

(iii) \(\rho(-r) \leq |\rho(z)| \leq \rho(r) \) (\(|z| \leq r < 1 \));

(iv) \(|\arg \rho(z)| \leq \tan^{-1}(1/t) \), where \(t = \frac{4}{\pi} \sqrt{\sinh^{-1}(1)(1 - \sinh^{-1}(1))} \).

Proof. (i) Since \(\rho(z) \) is convex and typically real, the value of \(\text{Re} \rho(z) \) falls between \(\lim_{\theta \to 0} \rho(re^{i\theta}) \) and \(\lim_{\theta \to \pi} \rho(re^{i\theta}) \), thus the result follows.

(ii) Using Theorem 2.3, it suffices to take \(\theta \in [0, \pi/2] \). Then the inequality follows by letting \(r \) tending to \(1^- \) and observing that the function

\[
\text{Im} \rho(z) = \text{arg} \left(r \cos(\theta) + \sqrt{1 + r^2(\cos(2\theta) + i \sin(2\theta))} + ir \sin(\theta) \right)
\]

is strictly increasing in the interval \([0, \pi/2] \) and hence the result follows at once.

(iii) The radially farthest and nearest points in \(\rho(D) \) from origin are respectively \(B \) and \(A \) (see Figure 1) and therefore the result obviously holds. Moreover we observe that these points \(A \) and \(B \) lie on the real line and hence the bounds of \(|\rho(z)| \) and \(\text{Re} \rho(z) \) coincide.

The proof of (iv) is evident from Theorem 3.1(iii) so skipped here. \(\square \)

Next we have the following important result:

Lemma 2.6. For \(1 - \sinh^{-1}(1) < a < 1 + \sinh^{-1}(1) \), let \(r_a \) be given by

\[
r_a = \begin{cases}
 a - (1 - \sinh^{-1}(1)), & 1 - \sinh^{-1}(1) < a \leq 1; \\
 1 + \sinh^{-1}(1) - a, & 1 \leq a < 1 + \sinh^{-1}(1).
\end{cases}
\]

Then \(\{w : |w - a| < r_a\} \subset \Omega_\rho \).

We omit the proof of Lemma 2.6 as it directly follows from Theorem 2.3 and Corollary 2.4.
Remark 2.7. Evidently the domain Ω_ρ is contained inside the disk $\{w : |w - 1| < \pi/2\}$.

3. Inclusion relations

This section establishes some inclusion results involving the class S^*_ρ with some well-known classes.

We consider the class $M(\beta)$, first studied by Uralegaddi et al. [22], given by

$$M(\beta) := \left\{ f \in A : \text{Re} \left(\frac{zf'(z)}{f(z)} \right) < \beta, \quad z \in \mathbb{D}, \quad \beta > 1 \right\},$$

and another interesting class introduced by Kanas and Wiśniowska [9] of k-starlike functions, denoted by k^{-ST} and defined by

$$k^{-ST} := \left\{ f \in A : \text{Re} \left(\frac{zf'(z)}{f(z)} \right) > k \left| \frac{zf'(z)}{f(z)} - 1 \right|, \quad z \in \mathbb{D}, \quad k \geq 0 \right\}.$$

Note that $S^* = 0^{-ST}$ and $S^*_p = 1^{-ST}$, where S^*_p is the class of parabolic starlike functions [17].

We establish the following inclusion relations for the class S^*_ρ.

Theorem 3.1. The class S^*_ρ satisfies the following relationships:

(i) $S^*_\rho \subset S^*_0 \subset S^*_{\alpha}$ for $0 \leq \alpha \leq 1 - \sinh^{-1}(1)$;

(ii) $S^*_\rho \subset M(\beta)$ for $\beta \geq 1 + \sinh^{-1}(1)$;

(iii) $S^*_\rho \subset \Sigma S^*(\gamma)$ for $(2/\pi) \tan^{-1}(1/t) \leq \gamma \leq 1$,

where $t = \frac{4}{\pi \sqrt{\sinh^{-1}(1)(1 - \sinh^{-1}(1))}}$;

(iv) $k^{-ST} \subset S^*_\rho$ for $k \geq 1 + 1/\sinh^{-1}(1)$.

Proof. Consider $f \in S^*_\rho$ which implies $zf'(z)/f(z) \prec 1 + \sinh^{-1}(z)$. By Theorem 2.5, it is evident that for $z \in \mathbb{D},$

$$1 - \sinh^{-1}(1) = \min_{|z|=1} \text{Re}(1 + \sinh^{-1}(z)) \leq \text{Re} \left(\frac{zf'(z)}{f(z)} \right)$$

and

$$\text{Re} \left(\frac{zf'(z)}{f(z)} \right) \leq \max_{|z|=1} \text{Re}(1 + \sinh^{-1}(z)) = 1 + \sinh^{-1}(1).$$

This proves (i) and (ii).

For (iii), let $w \in \mathbb{C}$, $X = \text{Re}(w)$, $Y = \text{Im}(w)$, and $b = 1 - \sinh^{-1}(1)$. Now consider the parabolic domain Γ_p with the boundary curve $\partial \Gamma_p = \gamma_p : Y^2 = 4a(X - b)$. Then the focus a of the smallest parabola γ_p which contains Ω_ρ will touch the peak points $1 \pm i\pi/2$ of S^*_ρ is $\pi^2/(16 \sinh^{-1}(1))$. Let P be any point on the parabola γ_p with parametric coordinates $(b + at^2, 2at)$ such that the tangent OE at P passes through origin for some parameter t. Let the equation
of the tangent OE be $y = mx$, where $m = dy/dx = (dy/dt)/(dx/dt) = 1/t$. Therefore at P, we have

$$m = \frac{y}{x} \Rightarrow \frac{1}{t} = \frac{2at}{b + at^2},$$

which yields

$$t = \sqrt{\frac{b}{a}} = \frac{4}{\pi} \sqrt{\sin^{-1}(1)(1 - \sin^{-1}(1))}$$

(7)

and the argument of the tangent at P of γ_p is $\tan^{-1}(1/t)$. Since $\Omega_p \subset \Gamma_p$, it gives

$$\left| \arg \frac{zf'(z)}{f(z)} \right| \leq \max_{|z|=1} \arg(\rho(z)) = \max_{|z|=1} \arg(\gamma_p) = \tan^{-1}(1/t),$$

which demonstrates $f \in SS^* ((2/\pi) \tan^{-1}(1/t))$, where t is given by (7).

To show (iv), consider $f \in k - ST$ along with the conic domain $\Gamma_k = \{ w \in \mathbb{C} : \Re w > k|w - 1| \}$). For $k > 1$, let $\partial \Gamma_k$ represent the horizontal ellipse

$$\gamma_k : x^2 = k^2(x - 1)^2 + k^2y^2$$

which may be rewritten as

$$\frac{(x - x_0)^2}{a^2} + \frac{(y - y_0)^2}{b^2} = 1,$$

where $x_0 = k^2/(k^2 - 1)$, $y_0 = 0$, $a = k/(k^2 - 1)$ and $b = 1/\sqrt{k^2 - 1}$. For $\gamma_k \subset \Omega_p$, the condition $x_0 + a \leq 1 + \sinh^{-1}(1)$ must hold, or equivalently $k \geq 1 + 1/\sinh^{-1}(1)$. Since $\Gamma_{k_1} \subset \Gamma_{k_2}$ for $k_1 \geq k_2$, it follows that for $k \geq 1 + 1/\sinh^{-1}(1)$, $k - ST \subset S_p$. Figure 2 clearly depicts these relations. □

For our next result, we consider $\mathcal{P}_n[C, D]$, the class of functions $p(z)$ of the form $1 + \sum_{k=1}^{\infty} c_k z^k$, satisfying $p(z) < (1 + Cz)/(1 + Dz)$, where $-1 \leq D < C \leq 1$. Denote by $\mathcal{P}_n(\alpha) := \mathcal{P}_n[1 - 2\alpha, -1]$ and $\mathcal{P}_n := \mathcal{P}_n(0)$. For $n = 1$, $\mathcal{P} = \mathcal{P}_1$ is the Carathéodory class. We need the following lemmas:

Lemma 3.2 ([18]). For $p \in \mathcal{P}_n(\alpha)$, we have

$$\left| \frac{zp'(z)}{p(z)} \right| \leq \frac{2(1 - \alpha)n\rho^n}{(1 - r^n)(1 + (1 - 2\alpha)n\rho^n)}, \quad (|z| = r).$$

Lemma 3.3 ([16]). For $p \in \mathcal{P}_n[C, D]$, we have

$$\left| p(z) - \frac{1 - CD\rho^{2n}}{1 - D^2 \rho^{2n}} \right| \leq \frac{(C - D)\rho^n}{1 - D^2 \rho^{2n}}, \quad (|z| = r).$$

Especially, for $p \in \mathcal{P}_n(\alpha)$, we have

$$\left| p(z) - \frac{1 + (1 - 2\alpha)\rho^{2n}}{1 - \rho^{2n}} \right| \leq \frac{2(1 - \alpha)\rho^n}{1 - \rho^{2n}}, \quad (|z| = r).$$

Theorem 3.4. Let $-1 < D < C \leq 1$. If either of the following two conditions holds:

(i) $(1 - \sinh^{-1}(1))(1 - D^2) < 1 - CD \leq 1 - D^2$ and $C - D \leq (1 - D) \sinh^{-1}(1)$;

(ii) $1 - D^2 \leq 1 - CD < (1 + \sinh^{-1}(1))(1 - D^2)$ and $C - D \leq (1 + D) \sinh^{-1}(1)$.

Let $a + D$.

In this section, radius results for various subclasses of A are established. We begin by determining sharp S^* radii ($k \geq 0$) for the class S^*_p. Using Theorem 3.1, we can establish that $R_{S^*_p} = R_M(\beta)(S^*_p) = 1$ for $0 \leq \alpha < 1 - \sinh^{-1}(1)$ and $\beta > 1 + \sinh^{-1}(1)$.

Theorem 4.1. If $f \in S^*_p$, then the following results hold:

Then $S^*[C, D] \subset S^*_p$.

Proof. Let $f \in S^*[C, D]$ which implies $zf'(z)/f(z) \in P[C, D]$. Using Lemma 3.3 we have

$$
\frac{|zf'(z)|}{f(z)} = \frac{1 - CD}{1 - D^2} \leq \frac{(C - D)}{(1 - D^2)}.
$$

Let $a = (1 - CD)/(1 - D^2)$ and assume that (i) holds. Now multiplying $1 + D$ and dividing by $(1 - D^2)$ on either side of the inequality $(C - D) \leq (1 - D)\sinh^{-1}(1)$ gives $(C - D)/(1 - D^2) \leq a - (1 - \sinh^{-1}(1))$ on simplification. Also, the inequality $(1 - \sinh^{-1}(1))/(1 - D^2) < 1 - CD \leq 1 - D^2$ is equivalent to $1 - \sinh^{-1}(1) < (1 - CD)/(1 - D^2) \leq 1$. Therefore, from (8) we find $w = zf'(z)/f(z)$ is contained inside the disk $|w - a| < r_a$, where $r_a = a - (1 - \sinh^{-1}(1))$ and $1 - \sinh^{-1}(1) < a \leq 1$. Hence $f \in S^*_p$ by Lemma 2.6. A similar proof can be shown when (ii) holds.

4. Radius problems

In this section, radius results for various subclasses of A are established. We begin by determining sharp S^*_p ($0 \leq \alpha < 1$), $M(\beta)$ ($\beta > 1$) and $k - ST$-radii ($k \geq 0$) for the class S^*_p. Using Theorem 3.1, we can establish that $R_{S^*_p} = R_M(\beta)(S^*_p) = 1$ for $0 \leq \alpha < 1 - \sinh^{-1}(1)$ and $\beta > 1 + \sinh^{-1}(1)$.

Theorem 4.1. If $f \in S^*_p$, then the following results hold:

Figure 2. Boundary curves, depicting some inclusion relations for $w = 1 + \sinh^{-1}(z)$.
(i) For $1 - \sinh^{-1}(1) \leq \alpha < 1$, we have $f \in S^*_\alpha$ in $|z| \leq \sinh(1 - \alpha)$.
(ii) For $1 < \beta \leq 1 + \sinh^{-1}(1)$, we have $f \in M(\beta)$ in $|z| \leq \sinh(\beta - 1)$.
(iii) For $k > 0$, we have $f \in k - ST$ in $|z| \leq \sinh(1/(k + 1))$.

The results are sharp.

Proof. Since $f \in S^*_\rho$, $zf'(z)/f(z) < 1 + \sinh^{-1}(z)$ and hence for $|z| = r < 1$ Theorem 2.5 gives

$$1 - \sinh^{-1}(r) \leq \Re \frac{zf'(z)}{f(z)} \leq 1 + \sinh^{-1}(r),$$

thereby validating the first two parts. Also, the constants $\sinh(1 - \alpha)$ and $\sinh(\beta - 1)$ are optimal for the function f_0 given by (6). Now to prove (iii), note that $f \in k - ST$ in $|z| < r$, if

$$\Re(1 + \sinh^{-1}(w(z))) \geq k|1 + \sinh^{-1}(w(z)) - 1| = k|\sinh^{-1}(w(z))|.$$

Here w denotes the Schwarz function. Since $\Re(1 + \sinh^{-1}(w(z))) \geq 1 - \sinh^{-1}(r)$ and $|\sinh^{-1}(w(z))| \leq \sinh^{-1}(r)$, the inequality $\Re(1 + \sinh^{-1}(w(z))) \geq k|\sinh^{-1}(w(z))|$ holds whenever $1 - \sinh^{-1}(r) \geq k\sinh^{-1}(r)$, which implies $r \leq \sinh(1/(1 + k))$. For the function f_0 given by (6) and for $z_0 = -\sinh(1/(1 + k))$, we have

$$\Re \frac{z_0 f_0(z_0)}{f_0(z_0)} = \Re(1 + \sinh^{-1}(z_0)) = \frac{k}{k + 1} = k|\sinh^{-1}(z_0)| = k\left|z_0 f_0(z_0) - 1\right|. $$

This concludes the proof. \qed

Corollary 4.2. Substituting $k = 1$ in part (iii) above, we find that $f \in S^*_\rho$ is parabolic starlike [17] in $|z| \leq \sinh(1/2)$.

In the next result, we find the K_α-radius for the class S^*_ρ.

Theorem 4.3. Let $f \in S^*_\rho$. Then $f \in K_\alpha$ in $|z| < r_\alpha$, where r_α is the least positive root of

$$9(1-r^2)\sqrt{1+r^2} \left(1 - \sinh^{-1}(r)\right) \left(1 - \alpha - \sinh^{-1}(r)\right) - r = 0 \quad (0 \leq \alpha < 1).$$

Proof. Let $f \in S^*_\rho$ and w be a Schwarz function. Then $zf'(z)/f(z) = 1 + \sinh^{-1}(w(z))$ such that

$$1 + \frac{zf''(z)}{f'(z)} = 1 + \sinh^{-1}(w(z)) + \frac{zw'(z)}{(1 + \sinh^{-1}(w(z)))\sqrt{1 + w^2(z)}}$$

which yields

$$\Re \left(1 + \frac{zf''(z)}{f'(z)}\right) \geq \Re \left(1 + \sinh^{-1}(w(z))\right) - \left|\frac{zw'(z)}{(1 + \sinh^{-1}(w(z)))\sqrt{1 + w^2(z)}}\right|. $$
We know for the Schwarz function w, the inequality $|w'(z)| \leq (1 - |w(z)|^2)/(1 - |z|^2)$ holds. Thus we observe that

$$\Re \left(1 + \frac{zf''(z)}{f'(z)} \right) \geq 1 - \sinh^{-1}(|z|) - \frac{|z|(1 - |w(z)|^2)}{(1 - \sinh^{-1}(|z|))(1 - |z|^2)\sqrt{1 + |z|^2}}$$

$$\geq 1 - \sinh^{-1}(|z|) - \frac{|z|}{(1 - \sinh^{-1}(|z|))(1 - |z|^2)\sqrt{1 + |z|^2}}.$$

Let $q(r) := 1 - \sinh^{-1}(r) - r/(1 - \sinh^{-1}(r))(1 - r^2)\sqrt{1 + r^2}$. We find $q(r)$ is a decreasing function in $[0, 1]$ with $q(0) = 1$. Therefore $\Re(1 + zf''(z)/f'(z)) > \alpha$ in $|z| < r_\alpha < 1$, where r_α is given as the least positive root of the equation $q(r) = \alpha$, which is same as (0) and hence the result.

Remark 4.4. Note for $\alpha = 0$, $r_0 \approx 0.37198$ which is not sharp, so the result can be further improved. The sharp K_α-radius for the class S^*_α is $r_0 \approx 0.400435$, which we can guess graphically but a mathematical proof is yet to derive.

For our next Theorems 4.5–4.8, the following subclasses are required:

Let $S^*_\alpha[C, D] := \{f \in A : zf'(z)/f(z) \in P_{\alpha}(C, D)\}$. Also, let $S^*_\alpha[1 - 2\alpha, -1] = A_{\alpha} \cap S^*_\alpha$ and $S^*_\alpha := A_{\alpha} \cap S^*_\alpha$. Further, Ali et al. [2] studied the three classes $S_n := \{f \in A_{\alpha} : f(z)/z \in P_{\alpha}\}$, $S^*_\alpha[C, D]$ and $CS_n(\alpha) := \left\{ f \in A_{\alpha} : \frac{f(z)}{g(z)} \in P_{\alpha}, g \in S^*_\alpha(\alpha) \right\}$.

Now we obtain the S^*_ρ,n-radii for the classes defined above.

Theorem 4.5. For the class S_n, the sharp S^*_ρ,n-radius is given by:

$$R_{S^*_\rho,n}(S_n) = \left(\frac{\sinh^{-1}(1)}{n + \sqrt{n^2 + (\sinh^{-1}(1))^2}} \right)^{1/n}.$$

Proof. Let $f \in S_n$. Define $s : D \to \mathbb{C}$ by $s(z) = f(z)/z$. Then $s \in P_{\alpha}$ and we can obtain $zf'(z)/f(z) - 1 = zs'(z)/s(z)$ from the above definition of s. Using Lemma 2.6 and Lemma 3.2, the following holds

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| \frac{zs'(z)}{s(z)} \right| \leq \frac{2nr^n}{1 - r^{2n}} \leq \sinh^{-1}(1),$$

or equivalently $(\sinh^{-1}(1))r^{2n} + 2nr^n - \sinh^{-1}(1) \leq 0$. Therefore, the S^*_ρ,n-radius of S_n is the least positive root of $(\sinh^{-1}(1))r^{2n} + 2nr^n - \sinh^{-1}(1) = 0$ for $r \in (0, 1)$. We can verify $\Re(f_0(z)/z) > 0$ holds in D, where $f_0(z) = z(1 + z^n)/(1 - z^n)$. Thus $f_0 \in S_n$ and $zf_0'(z)/f_0(z) = 1 + 2nz^n/(1 - z^{2n})$. Moreover, the result is sharp since at $z = R_{S^*_\rho,n}(S_n)$, we obtain

$$\frac{zf_0'(z)}{f_0(z)} - 1 = \frac{2nz^n}{1 - z^{2n}} = \sinh^{-1}(1).$$

The proof is complete.

□
Let \mathcal{F} define the class of functions $f \in \mathcal{A}$ satisfying $f(z)/z \in \mathcal{P}$. The radius of univalence and starlikeness of the class \mathcal{F} is $\sqrt{2} - 1$, as shown in [12].

Corollary 4.6. For the class \mathcal{F}, the S^*_p-radius is stated as

$$R_{S^*_p}(\mathcal{F}) = -e + \sqrt{1 + e^2} \approx 0.178105.$$

Theorem 4.7. For the class $\mathcal{CS}_n(\alpha)$, the sharp S^*_p,n-radius is given by

$$R_{S^*_p,n}(\mathcal{CS}_n(\alpha)) = \left(\frac{\sinh^{-1}(1)}{n - \alpha + 1 + \sqrt{(n - \alpha + 1)^2 + (\sinh^{-1}(1) + 2(1 - \alpha))\sinh^{-1}(1)}}\right)^{1/n}.$$

Proof. Let $f \in \mathcal{CS}_n(\alpha)$ and $g \in S^*_p(\alpha)$. Considering $s(z) = f(z)/g(z)$, clearly indicates $s \in \mathcal{P}_n$. Also, it gives

$$\frac{zf'(z)}{f(z)} = \frac{zs'(z)}{s(z)} + \frac{zg'(z)}{g(z)}.$$

The use of Lemmas 3.2–3.3 gives us

$$|zf'(z)/f(z) - 1 + (1 - 2\alpha)r^{2n}|/1 - r^{2n} | \leq \frac{2(n - \alpha + 1)r^n}{1 - r^{2n}}.$$

(10)

Considering $(1 + (1 - 2\alpha)r^{2n})/(1 - r^{2n}) \geq 1$, the relation $f \in S^*_p,n$ follows from (10) and Lemma 2.6 if the subsequent inequality is true:

$$\frac{1 + 2(n - \alpha + 1)r^n + (1 - 2\alpha)r^{2n}}{1 - r^{2n}} \leq 1 + \sinh^{-1}(1)$$

or equivalently, $(2 - 2\alpha + \sinh^{-1}(1))r^{2n} + 2(n - \alpha + 1)r^n - \sinh^{-1}(1) = 0$ holds. Thus, the least positive root of

$$(2 - 2\alpha + \sinh^{-1}(1))r^{2n} + 2(n - \alpha + 1)r^n - \sinh^{-1}(1) = 0$$

gives the S^*_p,n-radius for the class $\mathcal{CS}_n(\alpha)$. Next examine the following functions

$$f_0(z) = \frac{z(1 + z^n)}{(1 - z^n)(n + 2\alpha)/n} \text{ and } g_0(z) = \frac{z}{(1 - z^n)^{2(1 - \alpha)/n}},$$

which implies $f_0(z)/g_0(z) = (1 + z^n)/(1 - z^n)$ and $zg_0'(z)/g_0(z) = (1 + (1 - 2\alpha)z^n)/(1 - z^n)$. Moreover, $\text{Re}(f_0(z)/g_0(z)) > 0$ and $\text{Re}(zg_0'(z)/g_0(z)) > \alpha$ in the unit disk D is obvious. Hence $f_0 \in \mathcal{CS}_n(\alpha)$. At $z = R_{S^*_p,n}(\mathcal{CS}_n(\alpha))$, the function f_0 defined in (11) satisfies

$$\frac{zf_0'(z)}{f_0(z)} = \frac{1 + 2(n - \alpha + 1)z^n + (1 - 2\alpha)z^{2n}}{1 - z^{2n}} = 1 + \sinh^{-1}(1),$$

which accomplish sharpness of the result. □

Theorem 4.8. For the class $S^*_n[C, D]$, the S^*_p,n-radius is given by

$$R_{S^*_p,n}(S^*_n[C, D]) = \begin{cases} \min\{1; R_1\}, & -1 \leq D < 0 < C \leq 1; \\ \min\{1; R_2\}, & 0 < D < C \leq 1, \end{cases}$$
where

\[R_1 := \left(\frac{2 \sinh^{-1}(1)}{C - D + \sqrt{(C - D)^2 + 4(D^2(1 + \sinh^{-1}(1)) - CD)\sinh^{-1}(1)}} \right)^{\frac{1}{n}} \]

and

\[R_2 := \left(\frac{2 \sinh^{-1}(1)}{C - D + \sqrt{(C - D)^2 + 4(D^2(\sinh^{-1}(1) - 1) + CD)\sinh^{-1}(1)}} \right)^{\frac{1}{n}}. \]

Proof. Let \(f \in S_\ast_n[C, D] \). From Lemma 3.3, we have

\[\left| \frac{zf'(z)}{f(z)} - b \right| \leq \frac{(C - D)r^n}{1 - D^2r^{2n}}, \tag{12} \]

where \(b = \frac{(1 - CDr^{2n})}{(1 - D^2r^{2n})} \), \(|z| = r \), represents the center of the disk. We infer \(b \geq 1 \) for \(-1 \leq D < 0 < C \leq 1\). From Lemma 2.6, \(f \in S_\ast \rho,n \) depends on whether the following condition is true:

\[\frac{1 + (C - D)r^n - CDr^{2n}}{1 - D^2r^{2n}} \leq 1 + \sinh^{-1}(1), \]

which reduces to

\[r \leq \left(\frac{2 \sinh^{-1}(1)}{C - D + \sqrt{(C - D)^2 + 4(D^2(1 + \sinh^{-1}(1)) - CD)\sinh^{-1}(1)}} \right)^{\frac{1}{n}} = R_1. \]

Further, taking \(D = 0 \), we get \(b = 1 \). Then (12) yields

\[\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq Cr^n, \ (0 < C \leq 1). \]

Now applying Lemma 2.6 with \(a = 1 \) gives \(f \in S_\ast \rho,n \) if \(r \leq ((\sinh^{-1}(1))/C)^{1/n} \).

For \(0 < D < C \leq 1 \), we have \(b < 1 \). Thus, using Lemma 2.6 and (12), we have \(f \in S_\ast \rho,n \) if the following holds:

\[\frac{CDr^{2n} + (C - D)r^n - 1}{1 - D^2r^{2n}} \leq \sinh^{-1}(1) - 1, \]

or equivalently, if

\[r \leq \left(\frac{2 \sinh^{-1}(1)}{C - D + \sqrt{(C - D)^2 + 4(D^2(\sinh^{-1}(1) - 1) + CD)\sinh^{-1}(1)}} \right)^{\frac{1}{n}} = R_2. \]

This concludes the proof. \(\square \)

The next theorem establishes radius results for some well-known classes mentioned earlier.
Theorem 4.9. The sharp S^*_p-radii for the classes S^*_L, S^*_RL, S^*_C, S^*_C, Δ^* and $\mathcal{B}S^*(\alpha)$ are:

(i) $R_{S^*_p}(S^*_L) = \sinh^{-1}(1)(2 - \sinh^{-1}(1)) \approx 0.985928$.

(ii) $R_{S^*_p}(S^*_RL) = \frac{(2 + (1 + \sqrt{2}) \sinh^{-1}(1)) \sinh^{-1}(1)}{5 - 3\sqrt{2} + 4(\sqrt{2} - 1) + 2 \sinh^{-1}(1)} \sinh^{-1}(1) \approx 0.964694$.

(iii) $R_{S^*_p}(S^*_C) = \frac{1}{2} \left(\sqrt{2 (2 + 3 \sinh^{-1}(1))} - 2 \right) \approx 0.523831$.

(iv) $R_{S^*_p}(S^*_C) = \ln(1 + \sinh^{-1}(1)) \approx 0.632002$.

(v) $R_{S^*_p}(\Delta^*) = \frac{\sinh^{-1}(1)(2 + \sinh^{-1}(1))}{2(1 + \sinh^{-1}(1))} \approx 0.674924$.

(vi) $R_{S^*_p}(\mathcal{B}S^*(\alpha)) = \frac{-1 + \sqrt{1 + \alpha(2 \sinh^{-1}(1))^2}}{2\alpha \sinh^{-1}(1)}$, $\alpha \in [0, 1]$.

Proof. (i) Suppose $f \in S^*_L$. We have $z f'(z)/f(z) \prec \sqrt{1 + z}$. When $|z| = r$, we obtain

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 1 - \sqrt{1 - r} \leq \sinh^{-1}(1),$$

such that $r \leq (2 - \sinh^{-1}(1)) \sinh^{-1}(1) = R_{S^*_p}(S^*_L)$ holds. Next examine the function

$$f_0(z) = \frac{4z}{(1 + \sqrt{1 + z})^2} e^{2(\sqrt{1 + z} - 1)}.$$

Since $zf_0'(z)/f_0(z) = \sqrt{1 + z}$, it follows that $f_0 \in S^*_L$. As $zf_0'(z)/f_0(z) - 1 = -\sinh^{-1}(1)$ is obtained at $z = -R_{S^*_p}(S^*_L)$, the result is sharp.

(ii) Suppose $f \in S^*_RL$, we obtain

$$\frac{zf'(z)}{f(z)} < \sqrt{2} - (\sqrt{2} - 1) \sqrt{1 - \frac{1 - z}{(1 + 2(\sqrt{2} - 1))z}}.$$

For $|z| = r$, the subsequent inequality holds

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq 1 - \sqrt{2} + (\sqrt{2} - 1) \sqrt{\frac{1 + r}{(1 - 2(\sqrt{2} - 1)r)}},$$

provided

$$r \leq \frac{(2 + (1 + \sqrt{2}) \sinh^{-1}(1)) \sinh^{-1}(1)}{5 - 3\sqrt{2} + 4(\sqrt{2} - 1) + 2 \sinh^{-1}(1)} = R_{S^*_p}(S^*_RL).$$

Next observe the following function defined as

$$f_0(z) = z \exp \left(\int_0^z \frac{g_0(t) - 1}{t} dt \right),$$

where

$$g_0(t) = \sqrt{2} - (\sqrt{2} - 1) \sqrt{\frac{1 - t}{(1 + 2(\sqrt{2} - 1)t)}}.$$
From the definition of f_0, at $z = -R_{S^*_C}(S^*_R L)$, we have
\[
\frac{zf_0'(z)}{f_0(z)} = \sqrt{2} - (\sqrt{2} - 1)\sqrt{1 - z \over 1 + 2(\sqrt{2} - 1)z} = 1 - \sinh^{-1}(1),
\]
which confirms the sharpness.

(iii) Suppose $f \in S^*_C$. So $zf'(z)/f(z) < 1 + 4z/3 + 2z^2/3$. This gives
\[
\left| z \frac{f'(z)}{f(z)} - 1 \right| \leq \frac{4r}{3} + 2r^2 / 3 \leq \sinh^{-1}(1), \ |z| = r,
\]
for $r \leq \frac{1}{2} \left(\sqrt{2(2 + 3 \sinh^{-1}(1))} - 2 \right) = R_{S^*_C}(S^*_C)$. The sharpness of the result is established using the subsequent function
\[
f_0(z) = z \exp \left(\frac{4z + z^2}{3} \right),
\]
where $zf_0'(z)/f_0(z) = 1 + (4z + 2z^2)/3$ yields $f_0 \in S^*_C$, and substituting $z = R_{S^*_C}(S^*_C)$ gives $zf_0'(z)/f_0(z) = 1 + \sinh^{-1}(1)$, thereby proving the sharpness.

(iv) Suppose $f \in S^*_C$, we have $zf'(z)/f(z) < e^z$, which yields
\[
\left| z \frac{f'(z)}{f(z)} - 1 \right| \leq e^z - 1 \leq \sinh^{-1}(1) \text{ holds in } |z| = r,
\]
provided $r \leq \ln(1 + \sinh^{-1}(1)) = R_{S^*_C}(S^*_C)$. Now consider
\[
f_0(z) = z \exp \left(\int_0^z e^t - 1 \ dt \right).
\]
Since $zf_0'(z)/f_0(z) = e^z$, where $f_0 \in S^*_C$, so at $z = R_{S^*_C}(S^*_C)$, we have
\[
zf_0'(z)/f_0(z) = 1 + \sinh^{-1}(1),
\]
which shows the sharpness of the result.

(v) Suppose $f \in \Delta^*$ which gives $zf'(z)/f(z) < z + \sqrt{1 + z^2}$. Then,
\[
\left| z \frac{f'(z)}{f(z)} - 1 \right| \leq r + \sqrt{1 + r^2} - 1 \leq \sinh^{-1}(1), \ |z| = r,
\]
for $r \leq \sinh^{-1}(1)/2(1 + \sinh^{-1}(1)) = R_{S^*_C}(\Delta^*)$. For sharpness, define f_0 as
\[
f_0(z) = z \exp \left(\int_0^z t \left(t + \sqrt{1 + t^2} - 1 \right) dt \right).
\]
Since $zf_0'(z)/f_0(z) = z + \sqrt{1 + z^2}$, $f_0 \in \Delta^*$, so at $z = R_{S^*_C}(\Delta^*)$, we have
\[
zf_0'(z)/f_0(z) = 1 + \sinh^{-1}(1) \text{ which shows the sharpness of the result}.
\]

(vi) Suppose $f \in B^{S^*_C}(\alpha)$, $\alpha \in [0, 1]$, which gives $zf'(z)/f(z) < 1 + z/(1 - \alpha z^2)$. Then,
\[
\left| z \frac{f'(z)}{f(z)} - 1 \right| \leq \frac{r}{1 - \alpha r^2} \leq \sinh^{-1}(1), \ |z| = r,
\]
for \(r \leq \frac{-1+\sqrt{1+\alpha(2\sinh^{-1}(1))^2}}{2\alpha\sinh^{-1}(1)} = R_{S_p^*}^*(\alpha_1), \alpha_1 \in (0,1] \). For \(\alpha = 0, r \leq \sinh^{-1}(1) \). Next examine the function \(f_0 \) defined as

\[
f_0(z) = z \left(\frac{1 + \sqrt{\alpha z}}{1 - \sqrt{\alpha z}} \right)^{1/(2\sqrt{\alpha})}.
\]

Since \(zf_0'(z)/f_0(z) = 1 + z/(1 - \alpha z^2) \), where \(f_0 \in (BS^*(\alpha_1)) \), so at \(z = -R_{S_p^*}^*(BS^*(\alpha_1)) \), we have \(zf_0'(z)/f_0(z) = 1 - \sinh^{-1}(1) \), which ensures sharpness of the result.

Note that for \(\alpha = 0, R_{S_p^*}^*(BS^*(0)) = \sinh^{-1}(1) \approx 0.881374 \) and for \(\alpha = 1, R_{S_p^*}^*(BS^*(1)) = \left(-1 + \sqrt{1 + (2\sinh^{-1}(1))^2}\right)/(2\sinh^{-1}(1)) \approx 0.58241. \)

Next we present some radius problems for certain classes of functions expressed as ratio of functions:

\[
F_1 := \left\{ f \in A_n : \text{Re} \left(\frac{f(z)}{g(z)} \right) > 0 \text{ and } \text{Re} \left(\frac{g(z)}{z} \right) > 0, \, g \in A_n \right\},
\]

\[
F_2 := \left\{ f \in A_n : \text{Re} \left(\frac{f(z)}{g(z)} \right) > 0 \text{ and } \text{Re} \left(\frac{g(z)}{z} \right) > 1/2, \, g \in A_n \right\},
\]

and

\[
F_3 := \left\{ f \in A_n : \left| \frac{f(z)}{g(z)} - 1 \right| < 1 \text{ and } \text{Re} \left(\frac{g(z)}{z} \right) > 0, \, g \in A_n \right\}.
\]

Theorem 4.10. For functions in the classes \(F_1, F_2 \) and \(F_3 \), the sharp \(S_{p,n}^* \)-radius, respectively, are:

(i) \(R_{S_{p,n}^*}(F_1) = \left(\frac{4n^2 + (\sinh^{-1}(1))^2 - 2n}{\sinh^{-1}(1)} \right)^{1/n} \).

(ii) \(R_{S_{p,n}^*}(F_2) = \left(\frac{4n^2 + 4\sinh^{-1}(1) (n + \sinh^{-1}(1)) - 2n}{2(n + \sinh^{-1}(1))} \right)^{1/n} \).

(iii) \(R_{S_{p,n}^*}(F_3) = R_{S_{p,n}^*}(F_2) \).

Proof. (i) Let \(f \in F_1 \) and consider the functions \(s,d : \mathbb{D} \to C \), where \(s(z) = f(z)/g(z) \) and \(d(z) = g(z)/z \). Clearly, \(s,d \in P_n \). As \(f(z) = zd(z)s(z) \), applying Lemma 3.2 here gives

\[
\left| \frac{zf'(z)}{f(z)} - 1 \right| \leq \frac{4nr^n}{1 - r^{2n}} \leq \sinh^{-1}(1)
\]

such that

\[
r \leq \left(\frac{4n^2 + (\sinh^{-1}(1))^2 - 2n}{\sinh^{-1}(1)} \right)^{1/n} = R_{S_{p,n}^*}(F_1)
\]
The sharpness can be verified as follows. Examine the functions

\[f_0(z) = z \left(\frac{1 + z^n}{1 - z^n} \right)^2 \quad \text{and} \quad g_0(z) = z \left(\frac{1 + z^n}{1 - z^n} \right). \]

Evidently, \(\Re(f_0(z)/g_0(z)) > 0 \) and \(\Re(g_0(z)/z) > 0 \), which implies \(f_0 \in F_1 \).

Further calculation yields at \(z = R_{S_{p,n}}(F_1)e^{\pi i/n} \)

\[\frac{zf'(z)}{f(z)} = 1 + \frac{4nz^n}{1 - z^{2n}} = 1 - \sinh^{-1}(1), \]

which validates the result is sharp.

(ii) Let \(f \in F_2 \) and consider the functions \(s, d : \mathbb{D} \to \mathbb{C} \), where \(s(z) = f(z)/g(z) \) and \(d(z) = g(z)/z \). Clearly, \(s \in P_n(1/2) \) and \(d \in P_n \). As \(f(z) = zd(z)s(z) \), applying Lemma 3.2 here gives

\[\frac{|zf'(z)|}{f(z)} - 1 \leq \frac{2nr^n}{1 - r^{2n}} + \frac{nr^n}{1 - r^n} = \frac{3nr^n + nr^{2n}}{1 - r^{2n}} \leq \sinh^{-1}(1), \]

whenever

\[r \leq \left(\frac{\sqrt{9n^2 + 4\sinh^{-1}(1)(n + \sinh^{-1}(1)) - 3n}}{2(n + \sinh^{-1}(1))} \right)^{1/n} = R_{S_{p,n}}(F_2). \]

Therefore, \(f \in S_{p,n} \) holds for \(r \leq R_{S_{p,n}}(F_2) \). Next see that \(\Re(g_0(z)/z) > 1/2 \)
while \(\Re(f_0(z)/g_0(z)) > 0 \) for the functions

\[f_0(z) = z(1 + z^n)/(1 - z^n)^2 \quad \text{and} \quad g_0(z) = z/(1 - z^n). \]

Therefore \(f_0 \in F_2 \) which verifies the sharpness for \(z = R_{S_{p,n}}(F_2) \) such that

\[\frac{zf'(z)}{f(z)} - 1 = \frac{3nz^n + nz^{2n}}{1 - z^{2n}} = \sinh^{-1}(1). \]

(iii) Let \(f \in F_3 \) and consider the functions \(s, d : \mathbb{D} \to \mathbb{C} \), where \(s(z) = g(z)/f(z) \) and \(d(z) = g(z)/z \). Then \(d \in P_n \). We can verify that \(\frac{|1/s(z) - 1|}{1} < 1 \) holds whenever \(\Re(s(z)) > 1/2 \) and therefore \(s \in P_n(1/2) \). As \(f(z) = zd(z)/s(z) \), on applying Lemma 3.2, we obtain

\[\frac{|zf'(z)|}{f(z)} - 1 \leq \frac{3nr^n + nr^{2n}}{1 - r^{2n}} \leq \sinh^{-1}(1). \]

The rest of the proof is omitted as it is analogous to proof of Theorem 4.10(ii).

The sharpness can be verified as follows. Examine the functions

\[f_0(z) = z(1 + z^n)/(1 - z^n) \quad \text{and} \quad g_0(z) = z/(1 - z^n). \]

Using above definitions of \(f_0 \) and \(g_0 \), we see that

\[\Re \left(\frac{g_0(z)}{f_0(z)} \right) = \Re \left(\frac{1}{1 + z^n} \right) > 1/2 \quad \text{and} \quad \Re \left(\frac{g_0(z)}{z} \right) = \Re \left(\frac{1 + z^n}{1 - z^n} \right) > 0, \]
and therefore, \(f_0 \in F_3 \). Now at \(z = R_{S, n} (F_3) e^{i \pi/n} \), we obtain
\[
\frac{zf_0'(z)}{f_0(z)} - 1 = \frac{3nz^n - n_z^{2n}}{1 - z^{2n}} = -\sinh^{-1}(1),
\]
which serves as validation for the sharp result.

This concludes the proof. \(\square \)

References

[1] I. Aktaş and H. Orhan, *Bounds for radii of convexity of some q-Bessel functions*, Bull. Korean Math. Soc. 57 (2020), no. 2, 355–369. https://doi.org/10.4134/BKMS.b190242

[2] R. M. Ali, N. K. Jain, and V. Ravichandran, *Radius of starlikeness associated with the lemniscate of Bernoulli and the left-half plane*, Appl. Math. Comput. 218 (2012), no. 11, 6557–6565. https://doi.org/10.1016/j.amc.2011.12.033

[3] K. Bano and M. Raza, *Starlike functions associated with cosine functions*, Bull. Iranian Math. Soc. 47 (2021), no. 5, 1513–1532. https://doi.org/10.1007/s41980-020-00456-9

[4] N. E. Cho, S. Kumar, V. Kumar, and V. Ravichandran, *Differential subordination and radius estimates for starlike functions associated with the Booth lemniscate*, Turkish J. Math. 42 (2018), no. 3, 1380–1399.

[5] N. E. Cho, S. Kumar, V. Kumar, V. Ravichandran, and H. M. Srivastava, *Starlike functions related to the Bell numbers*, Symmetry 11 (2019), 219.

[6] N. E. Cho, V. Kumar, S. S. Kumar, and V. Ravichandran, *Radius problems for starlike functions associated with the sine function*, Bull. Iranian Math. Soc. 45 (2019), no. 1, 213–232. https://doi.org/10.1007/s41980-018-0127-5

[7] P. Goel and S. S. Kumar, *Certain class of starlike functions associated with modified sigmoid function*, Bull. Malays. Math. Sci. Soc. 43 (2020), no. 1, 957–991. https://doi.org/10.1007/s40840-019-00784-y

[8] W. Janowski, *Extremal problems for a family of functions with positive real part and for some related families*, Ann. Polon. Math. 23 (1970/71), 159–177. https://doi.org/10.4064/ap-23-2-159-177

[9] S. Kanas and A. Wisniowska, *Conic regions and k-uniform convexity*, J. Comput. Appl. Math. 105 (1999), no. 1-2, 327–336. https://doi.org/10.1016/S0377-0427(99)00018-7

[10] R. Kargar, A. Ebadian, and J. Sokól, *On Booth lemniscate and starlike functions*, Anal. Math. Phys. 9 (2019), no. 1, 143–154. https://doi.org/10.1007/s13324-017-0187-3

[11] W. C. Ma and D. Minda, *A unified treatment of some special classes of univalent functions*, in Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157–169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.

[12] T. H. MacGregor, *Functions whose derivative has a positive real part*, Trans. Amer. Math. Soc. 104 (1962), 532–537. https://doi.org/10.2307/1993803

[13] R. Mendiță, S. N. Nagpal, and V. Ravichandran, *A subclass of starlike functions associated with lemniscate of Bernoulli*, Internat. J. Math. 25 (2014), no. 9, 1450090, 17 pp. https://doi.org/10.1142/S0129167X14500906

[14] R. Mendiță, S. N. Nagpal, and V. Ravichandran, *On a subclass of strongly starlike functions associated with exponential function*, Bull. Malays. Math. Sci. Soc. 38 (2015), no. 1, 365–386. https://doi.org/10.1007/s40840-014-0026-8

[15] R. K. Raina and J. Sokól, *Some properties related to a certain class of starlike functions*, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 973–978. https://doi.org/10.1016/j.crma.2015.09.011
[16] V. Ravichandran, F. Rønning, and T. N. Shanmugam, Radius of convexity and radius of starlikeness for some classes of analytic functions, Complex Variables Theory Appl. 33 (1997), no. 1-4, 265–280. https://doi.org/10.1080/17476939708815027

[17] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189–196. https://doi.org/10.2307/2160026

[18] G. M. Shah, On the univalence of some analytic functions, Pacific J. Math. 43 (1972), 239–250. http://projecteuclid.org/euclid.pjm/1102996657

[19] K. Sharma, N. K. Jain, and V. Ravichandran, Starlike functions associated with a cardioid, Afr. Mat. 27 (2016), no. 5-6, 923–939. https://doi.org/10.1007/s13370-015-0387-7

[20] J. Sokół, Radius problems in the class \mathcal{H}^*, Appl. Math. Comput. 214 (2009), no. 2, 569–573. https://doi.org/10.1016/j.amc.2009.04.031

[21] J. Sokół and J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 19 (1996), 101–105.

[22] B. A. Uralegaddi, M. D. Ganigi, and S. M. Sarangi, Univalent functions with positive coefficients, Tamkang J. Math. 25 (1994), no. 3, 225–230.

[23] L. A. Wani and A. Swaminathan, Radius problems for functions associated with a nephroid domain, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2020), no. 4, Paper No. 178, 20 pp. https://doi.org/10.1007/s13398-020-00913-4

KUSH ARORA
Department of Statistics
University of Warwick
Coventry CV4 7AL, UK
Email address: kush.arora1214@gmail.com

S. SIVAPRASAD KUMAR
Department of Applied Mathematics
Delhi Technological University
Delhi-110042, India
Email address: spkumar@dce.ac.in