Appendix to:

EFSA (European Food Safety Authority), 2017. Conclusion on the peer review of the pesticide risk assessment of the active substance oxasulfuron, EFSA Journal 2017;15(3):4722, doi:10.2903/j.efsajournal.publication.15110en

© European Food Safety Authority, 2017

Appendix A – List of end points for the active substance and the representative formulation

Identity, Physical and Chemical Properties, Details of Uses, Further Information (Regulation (EU) N° 283/2013, Annex Part A, points 1.3 and 3.2)

Active substance (ISO Common Name)	Oxasulfuron
Function (e.g. fungicide)	Herbicide
Rapporteur Member State	Italy
Co-rapporteur Member State	Austria

Identity (Regulation (EU) N° 283/2013, Annex Part A, point 1)

Chemical name (IUPAC)	oxetan-3-yl 2-[(4,6-dimethylpyrimidin-2-yl)carbamoylsulfamoyl]benzoate
Chemical name (CA)	3-oxetan-2-[[[(4,6-dimethyl-2-pyrimidinyl)-amino]carbonyl]amino]sulfonyl]benzoate
CIPAC No	626
CAS No	144651-06-9
EC No (EINECS or ELINCS)	604-430-5
FAO Specification (including year of publication)	Not available
Minimum purity of the active substance as manufactured	985 g/kg
Identity of relevant impurities (of toxicological, ecotoxicological and/or environmental concern) in the active substance as manufactured	None
Molecular formula	C_{17} H_{18} N_{4} O_{6} S
Molar mass	406.4 g/mol
Structural formula	![Structural formula image]
Physical and chemical properties (Regulation (EU) N° 283/2013, Annex Part A, point 2)

Property	Value
Melting point (state purity)	158°C with thermal decomposition (99.5%)
Boiling point (state purity)	Not measurable because of decomposition
Temperature of decomposition (state purity)	≥ 158°C (Purity: ≤99.5%)
Appearance (state purity)	White fine powder, odourless (Purity: 99.5%)
Vapour pressure (state temperature, state purity)	< 2·10⁻⁶ Pa at 25°C (Purity: 99.5%)
Henry’s law constant (state temperature)	2.5·10⁻³ Pa m³ mol⁻¹ (calculated, 25°C)
Solubility in water (state temperature, state purity and pH)	Solubility in water (25°C, Purity: 99.5%):
pH 5.1: 52 mg/l (pure water)	
pH 5.0: 63 mg/l (buffer solution)	
pH 6.8: 1700 mg/l (buffer solution)	
pH 7.8: 19 g/l (buffer solution)	
Solubility in water (20°C, Purity: 98.2%):	
pH 5: 65.5 mg/l (double distilled water)	
pH 4: 69.9 mg/l (buffer solution)	
pH 7: 1.78 g/l (buffer solution)	
pH 9: 7.91 g/l (buffer solution)	
Solubility in organic solvents (state temperature, state purity)	Solubility in organic solvents (25°C, Purity: 99.5%):
hexane: 0.002 g/L	
toluene: 0.32 g/L	
dichloromethane: 69 g/L	
methanol: 1.5 g/L	
octanol: 0.099 g/L	
acetone: 9.3 g/L	
ethylacetate: 2.3 g/L	
Surface tension (state concentration and temperature, state purity)	Data gap
Partition coefficient (state temperature, pH and purity)	log P_{OW} at 25°C (Purity: 99.5%), uncorrected:
0.75 ± (0.008) at pH 5.0	
-0.81 ± (0.006) at pH 7.0	
-2.2 ± (0.016) at pH 8.9	
Dissociation constant (state purity)	Dissociation constant (Purity: 99.5%):
 $pK_{a,1} = 5.10$ (acidic)
 $pK_{a,2} = < 1$ (basic) |

The acidic dissociation constant describes the dissociation of the acidic proton of oxasulfuron in water according to the following equation.
UV/VIS absorption (max.) incl. ε (state purity, pH)

State	λ_{max} (nm)	ε (L mol$^{-1}$ cm$^{-1}$)	
Methanol (99.5%)	232.7	237	919
	271.2	595	1
pH < 2 (0.1 mol/L aqueous HCl)	232	246	61
	271	595	0
pH > 10 (0.1 mol/L aqueous NaOH)	242	275	63

No absorption between 300 nm and 900 nm was observed.

UV/VIS of purified oxasulfuron (99.5%) in methanol:

λ_{max} (nm)	ε (L mol$^{-1}$ cm$^{-1}$)		
231	250	24	
271	613		
pH < 2 (0.1 mol/L aqueous HCl)	232	246	61
	271	595	0
pH > 10 (0.1 mol/L aqueous NaOH)	242	275	63

Flammability (state purity)

- Not highly flammable (Purity: 96.1%)
- Auto-flammability: data gap

Explosive properties (state purity)

- Not explosive (Purity: 96.1%)

Oxidising properties (state purity)

- Not oxidizing (Purity: 96.1%)
Summary of representative uses evaluated, for which all risk assessments needed to be completed (oxasulfuron) (Regulation (EU) No 284/2013, Annex Part A, points 3, 4)

Crop and/or situation (a)	Membe r State or Country	Produ c t name	F G or I (b)	Pests or Group of pests controll ed (c)	Preparatio n	Application	Application rate per treatment	PHI (days) (m)	Remark s					
Soya bean	S EU	Laguna 75 WG	F	Grass & Broad leaved weeds	WG	750 g/kg	spraying	between BBCH 10 and BBCH14 (from visible cotyledo n to fourth trifoliate leaf unfolded)	1 (in full dose)	18.7 kg a.s./hL min-max	100 - 400	0.075	-	0.1 kg/ha (product dose rate)

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant: type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. bentiavalcarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha)
(m) PHI - minimum pre-harvest interval
Summary of additional intended uses for which MRL applications have been made, that in addition to the uses above, have also been considered in the consumer risk assessment (name of active substance or the respective variant)
Regulation (EC) No 1107/2009 Article 8.1(g)

Important note: efficacy, environmental risk and risk to humans by exposure other than via their diet have not been assessed for these uses

Crop and/or situation (a)	Membe r State or Country	Product name	F or I (b)	Pests or Group of pests controlled (c)	Preparation	Application	Application rate per treatment	PHI (day(s)) (m)	Remarks					
					Type (d-f)	Conc. a.s. (i)	method kind (f-h)	range of growth stages & season (j)	number min-max (k)	Interval between application (min)	kg a.s./hL min-max (l)	Water L/ha min-max	kg a.s./ha min-max (l)	

(a) For crops, the EU and Codex classifications (both) should be taken into account; where relevant, the use situation should be described (e.g. fumigation of a structure)
(b) Outdoor or field use (F), greenhouse application (G) or indoor application (I)
(c) e.g. biting and sucking insects, soil born insects, foliar fungi, weeds
(d) e.g. wettable powder (WP), emulsifiable concentrate (EC), granule (GR)
(e) CropLife International Technical Monograph no 2, 6th Edition. Revised May 2008. Catalogue of pesticide
(f) All abbreviations used must be explained
(g) Method, e.g. high volume spraying, low volume spraying, spreading, dusting, drench
(h) Kind, e.g. overall, broadcast, aerial spraying, row, individual plant, between the plant- type of equipment used must be indicated
(i) g/kg or g/L. Normally the rate should be given for the active substance (according to ISO) and not for the variant in order to compare the rate for same active substances used in different variants (e.g. fluoroxypr). In certain cases, where only one variant is synthesised, it is more appropriate to give the rate for the variant (e.g. benthialvalcarb-isopropyl).
(j) Growth stage range from first to last treatment (BBCH Monograph, Growth Stages of Plants, 1997, Blackwell, ISBN 3-8263-3152-4), including where relevant, information on season at time of application
(k) Indicate the minimum and maximum number of applications possible under practical conditions of use
(l) The values should be given in g or kg whatever gives the more manageable number (e.g. 200 kg/ha instead of 200 000 g/ha or 12.5 g/ha instead of 0.0125 kg/ha
(m) PHI - minimum pre-harvest interval
Further information, Efficacy

Effectiveness (Regulation (EU) N° 284/2013, Annex Part A, point 6.2)

Oxasulfuron is a herbicide and target weeds are *Abutilon theophrasti*, *Amaranthus retroflexus*, *Chenopodium album*, *Echinochloa crus-galli*, *Sorghum halepense* and *Polygonum spp.* between the cotyledons and the 4 leaves stage (BBCH 10-14) in soybean.

After application of oxasulfuron, growth of susceptible plant species ceases, followed by yellow or red discoloration. Death of those species affected occurs within one to three weeks. The visible symptoms of affected plants are like those of other sulfonylurea herbicides.

Adverse effects on field crops (Regulation (EU) N° 284/2013, Annex Part A, point 6.4)

The repeated use of this product or with herbicides with the same mode of action may lead to selection of resistant weeds.

In order to prevent or slow down developing of resistant weed biotypes it is recommended to rotate with products having a different mode of action. The main emphasis should be on cultural options – rotation, cultivation and preventing weed spread.

Observations on other undesirable or unintended side-effects (Regulation (EU) N° 284/2013, Annex Part A, point 6.5)

Oxasulfuron and other sulfonylurea herbicides are given a classification B under Herbicide Resistance Action Committee (HRAC).

On 10th August 2015, 156 weed species were reported to have developed resistance to ‘Group B’ herbicides, among them 63 are reported for Europe.

The decision, if a resistance risk is acceptable, is following the EPPO (2003) guidelines, depends on whether the benefit of a compound is greater than a possible resistance risk.

Sulfonylurea herbicides are known to pose a higher resistance risk than other modes of action.

Groundwater metabolites: Screening for biological activity (SANCO/221/2000-rev.10-final Step 3 a Stage 1)

Activity against target organism	M3	M5(CGA 171895)	MT6	oxetan-3-ol(CGA 297691)	Saccharin (CGA 27913)
No information	No information	No information	Data gap	No	
Methods of Analysis

Analytical methods for the active substance (Regulation (EU) N° 283/2013, Annex Part A, point 4.1 and Regulation (EU) N° 284/2013, Annex Part A, point 5.2)

Method	Description
Technical a.s. (analytical technique)	HPLC-UV (220 nm)
Impurities in technical a.s. (analytical technique)	Karl Fischer titration
Plant protection product (analytical technique)	HPLC-UV (235 nm)

Analytical methods for residues (Regulation (EU) N° 283/2013, Annex Part A, point 4.2 & point 7.4.2)

Residue definitions for monitoring purposes

Environment	Residue definition
Food of plant origin	Oxasulfuron
Food of animal origin	None proposed
Soil	Oxasulfuron
Sediment	Oxasulfuron
Water surface	Oxasulfuron M3, MT6
Drinking/ground	Oxasulfuron
Air	Oxasulfuron
Body fluids and tissues	Oxasulfuron

Monitoring/Enforcement methods

Environment	Method and LOQ for methods for monitoring purposes
Food/feed of plant origin (analytical technique and LOQ for methods for monitoring purposes)	Substrates: soya beans
Analysis: LC-MS/MS	
Determined analyte: oxasulfuron	
LOQ=0,01 mg/kg	
Method fully validated	
data gap: ILV	
Food/feed of animal origin (analytical technique and LOQ for methods for monitoring purposes)	No method required.
Soil (analytical technique and LOQ)	Data gap
Water (analytical technique and LOQ)	Data gap
Air (analytical technique and LOQ)	Data gap
Body fluids and tissues (analytical technique and LOQ)	Data gap

Classification and labelling with regard to physical and chemical data (Regulation (EU) No. 283/2013, Annex Part A, point 10)

Substance	Description
oxasulfuron (ISO)	oxetan-3-yl 2-[(4,6-dimethylpyrimidin-2-yl)-carbamoylsulfamoyl]benzoate
Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]¹:

No current harmonised classification with regard to physical and chemical data.	

Peer review proposal ² for harmonised classification according to Regulation (EC) No 1272/2008:

None	

Impact on Human and Animal Health

Absorption, distribution, metabolism and excretion (toxicokinetics) (Regulation (EU) N° 283/2013, Annex Part A, point 5.1)

Rate and extent of oral absorption/systemic bioavailability	Rapidly and highly absorbed: >80% within 48 hours, based on urine excretion
Toxicokinetics	C_{max}: 20 ppm at a dose of 5 mg/kg bw and 200 ppm at 100 mg/kg bw
	T_{max}: 1h (rat)
	$T_{1/2}$: 6-8h (female), 11-14 h (male) in rat (blood)
Distribution	Widely distributed; highest levels in plasma, liver, kidneys and red blood cells
Potential for bioaccumulation	No evidence for accumulation
Rate and extent of excretion	Rapid (app. 84.4 to 97.2 % within 48 h), mainly via urine and faeces
Metabolism in animals	Up to 86% excreted as parent compound (CGA 277476). Metabolism included cleavage of the sulfonyl urea bridge, hydroxylation of the pyrimidinyl-methyl group, hydrolysis of the oxetanyl ester, and opening of the oxetane ring
In vitro metabolism	Data gap
Toxicologically relevant compounds (animals and plants)	Oxasulfuron (CGA 277476)
Toxicologically relevant compounds (environment)	oxetan-3-ol

Acute toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.2)

Rat LD$_{50}$ oral	> 5000 mg/kg bw
Rat LD$_{50}$ dermal	> 2000 mg/kg bw
Rat LC$_{50}$ inhalation	> 5082 mg/m³ (4h, nose-only exposure)
Skin irritation	Non-irritant
Eye irritation	Non-irritant
Skin sensitisation	Not- Sensitising (Buehler test, and Maximization)

¹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

² It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.
Phototoxicity

| Test | not phototoxic, unlikely to be photoreactive |

Short-term toxicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.3)

| Target organ / critical effect | Rat: liver (hepatocyte hypertrophy), spleen (hyperplasia of lymphatic follicles), urinary system (inflammation of urinary bladder, pelvis dilatation in the kidney)and testis (inflammation of epididymis) |
| Dog: peripheral nerves (degeneration), muscles (weakness), brain (vacuolation), testes (decreased spermatogenic activity, accumulation of atypical cells in the lumen of the seminiferous tubules and oligospermia in the epididymides) |
| Mouse: effect on the liver (increased serum 5’ nucleotidase) and red blood cells |

| Relevant oral NOAEL | Rat: 15.3 mg/kg bw per day (90-day) |
| Dog: 1.3 mg/kg bw per day (90-day and 1-yr) |
| Mouse: 672 mg/kg bw per day |

| Relevant dermal NOAEL | Rat: >1000 mg/kg bw per day (28-day) |

| Relevant inhalation NOAEL | No data - not required |

Genotoxicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.4)

In vitro studies

Bacterial gene mutation assay:	non mutagenic with and without metabolic activation in S. typhimurium and E. Coli
Mammalian gene mutation assay:	non mutagenic
Mammalian cytogenetic assay:	equivocal
Unscheduled DNA repair assay:	no induction of unscheduled DNA repair

In vivo studies

| Micronucleus test: | not clastogenic or aneugenic |

Photomutagenicity

| No data - not required |

Potential for genotoxicity

| Oxasulfuron is unlikely to be genotoxic |

Long-term toxicity and carcinogenicity (Regulation (EU) Nº 283/2013, Annex Part A, point 5.5)
Long-term effects (target organ/critical effect)

Mice: peripheral nerves (axonal degeneration), liver (hypertrophy).

Rats: peripheral nerves (axonal degeneration), kidney (nephritis), liver (bile duct hyperplasia/ fibrosis), spleen (lymphatic depletion, pigmentation), testes (degeneration), muscles (neurogenic atrophy).

Relevant long-term NOAEL

- **Mouse:** 1.5 mg/kg bw per day (18-month)
- **Rat:** 8.3 mg/kg bw per day (2-year)

Carcinogenicity (target organ, tumour type)

Mice: no carcinogenic potential

Rats: Schwannomas at MTD in males were considered related to specific toxicity to the nervous system and not carcinogenic effect relevant to humans.

Reproductive toxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.6)

Reproduction toxicity

Reproduction target / critical effect	Parental: decreased body weight gain, effects in testis	Repro. cat 2 H361f
	Offspring: decreased body weight gain	
	Reproductive: reduced number of pregnancies, increased number of post-implantation losses	

Relevant parental NOAEL	14.75 mg/kg bw per day
Relevant reproductive NOAEL	340.5 mg/kg bw per day
Relevant offspring NOAEL	340.5 mg/kg bw per day

Developmental toxicity

Developmental target / critical effect	Maternal: decreased body weight gain and food consumption (rats)
	Developmental: increased skeletal variations (rats)

Relevant maternal NOAEL	Rat: 300 mg/kg bw per day
	Rabbit: 1000 mg/kg bw per day

Relevant developmental NOAEL	Rat: 300 mg/kg bw per day
	Rabbit: 1000 mg/kg bw per day

Neurotoxicity (Regulation (EU) N° 283/2013, Annex Part A, point 5.7)

Acute neurotoxicity	NOAEL 10 mg/kg bw, based on decreased rectal body temperature in females

Repeated neurotoxicity	Peripheral neurotoxicity was observed in rats, mice and dogs in standard short- and long-term studies. It was	STOT RE 2; H373
characterised by axonal degeneration of peripheral (motor) nerves leading to neurogenic atrophy of skeletal muscle observed in several species at different dose level and by brain vacuolization observed at 10.7 mg/kg in dog.

Additional studies (e.g. delayed neurotoxicity, developmental neurotoxicity)
Not required

Other toxicological studies (Regulation (EU) N° 283/2013, Annex Part A, point 5.8)

Supplementary studies on the active substance
Not required

Endocrine disrupting properties
Not conclusive (data gap)

Studies performed on metabolites or impurities oxetan-3-ol

Acute oral	LD₅₀ > 2000 mg/kg bw (rat)
Acute dermal	LD₅₀ > 4000 mg/kg bw (rat)
Acute inhalation	LC₅₀ > 4.6 mg/L (nose only)
Skin irritation	Not irritating
Eye irritation	Not irritating
Skin sensitisation	Not a sensitiser (M&K)

28-day dog oral
NOAEL = 20 mg/kg bw per day based on minimal hepatocyte hypertrophy

90-day dog oral
NOAEL = 50 mg/kg bw per day based on changes in erythropoietic system, liver and testes

Genotoxicity
Negative in bacterial reverse gene mutation assay and cytogenic test in Chinese hamster ovaries

by-product
Genotoxicity
Positive in gene mutation assay with E. coli without metabolic activation. No mutagenic activity observed with S. typhimurium.

Medical data (Regulation (EU) N° 283/2013, Annex Part A, point 5.9)

No adverse health effects were found in routine medical surveillance of manufacturing plant personnel. No cases of poisoning have been reported.

Summary³ (Regulation (EU) N° 1107/2009, Annex II, point 3.1 and 3.6)

oxasulfuron	Value	Study	Uncertainty factor
Acceptable Daily Intake (ADI)	0.013	1-year dog 90-day dog	100
Acute Reference Dose (ARfD)		Not allocated	
Acceptable Operator Exposure Level (AOEL)	0.013	dog, 90-day	100
Acute Acceptable Operator Exposure Level (AAOEL)

oxetan-3-ol	Not allocated

Acceptable Daily Intake (ADI)

saccharin (and OH saccharin)	0.05	16-week dog study	1000

Acceptable Daily Intake (ADI)

saccharin (and OH saccharin)	3.8	SCF (EC, 1997)

Dermal absorption (Regulation (EU) N° 284/2013, Annex Part A, point 7.3)

Representative formulation (Laguna 75 WG)

| Human/rat in vitro studies and rat in vivo (triple pack) with the formulation Dynam 75 WG: not representative
| Default values: 25% for the concentrate and 75% for the dilution |

Exposure scenarios (Regulation (EU) N° 284/2013, Annex Part A, point 7.2)

Operators

| Use: Soybean, tractor mounted equipment, application rate 75 g as/ha
| Exposure estimates (model): % of AOEL
| UK POEM
| Without PPE 3000%
| Gloves M/L and appl: 462%
| German model
| Without PPE: 336%
| Gloves M/L/Appl and coverall appl 20%
| EFSA guidance
| Without PPE 254%
| Gloves and work-wear M/L/Appl 2.36%

Workers

| EFSA guidance:
| 61% of the AOEL without PPE |

Bystanders and residents

| EFSA guidance:
| Bystander: 2%-20% (adult), 3%-25% (child)
| Resident: 2%-25% (adult), 4%-41% (child) (considering distances of 10m and 1m) |
Classification with regard to toxicological data (Regulation (EU) No 283/2013, Annex Part A, Section 10)

Substance: oxsulfuron (ISO)
oxetan-3-yl 2-[(4,6-dimethylpyrimidin-2-yl)-
carbamoysulfamoyl]benzoate

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]:

- STOT RE 2 - H373
 May cause damage to organs through prolonged or repeated exposure

Peer review proposal for harmonised classification according to Regulation (EC) No 1272/2008:

- Repr. Cat 2 - H361f
 Suspected of damaging fertility

Residues in or on treated products food and feed

Metabolism in plants (Regulation (EU) No 283/2013, Annex Part A, points 6.2.1, 6.5.1, 6.6.1 and 6.7.1)

Primary crops (Plant groups covered) OECD Guideline 501	Crop groups	Crop(s)	Application(s)	DAT (days)
Fruit crops				
Root crops				
Leafy crops				
Cereals/grass crops				
Pulses/Oilseeds	Soyabea n	Field application: pre-emergence, 1x 87 -111 g a.s./ha; post-emergence, 1x 89-90 g a.s./ha	Field application pre-emergence, 35, 42, 72 (1st, 2nd, 3rd thinning) and 134 (maturity) post-emergence, 0, 7, 37 (1st, 2nd thinning), 99 (maturity)	
		Greenhouse application: pre-emergence, 1x 381-326 g a.s./ha post-emergence, 1x 88-92 g a.s./ha	Greenhouse application: pre-emergence, 19-23, 27-31 (1st, 2nd thinning), 100-132 (maturity) post-emergence, 7 (2nd thinning) and 76-112 (maturity)	

4 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

5 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.
In the greenhouse metabolism studies only glucose and glutamine conjugates of the HO-pyrimidine amine (CGA-340355) were found at levels >10% TRR in soya beans equivalent to max. 0.012 mg/kg. In the field metabolism studies the predominant metabolites in soya bean foliage were glycerol ester of Oxsulfuron (CGA-310785), saccharin (CGA-27913) and sulfamoylbenzoic acid (CGA-177288). The highest residue was equivalent to 0.021 mg/kg. Only saccharin (CGA-27913) occurred at a level >10% TRR in mature beans but the actual concentration was very low (0.002 mg/kg).

Rotational crops (metabolic pattern)

Crop groups	Crop(s)	PBI (days)	Comments
Root/tuber crops	Turnip	35,120,383	Metabolism studies conducted with a bare soil application at 188 g/ha with 14C-phenyl and 168 g/ha with 14C-pyrimidinyl oxasulfuron.
Leafy crops	Mustard	35, 120, 383	
Cereal (small grain)	Wheat	35, 120, 383	
Pulses and oilseed	-	-	

Rotational crop and primary crop metabolism similar?

Open

Data gap: Since CGA 27913 and C 1801 were shown to be low to high persistent in soil (DT_{90} of 28.8-788 and 10.8-1560 days, respectively), the potential for residues of these compounds to be present in the rotational crops needs to be investigated. Furthermore and pending upon the outcome of the requested DT_{50}/DT_{90} values on the metabolites CGA 171895 (M5), M3, CGA 179710, CGA 297691 and MT6 (data gaps in section 4), further rotational crops studies addressing the nature and magnitude of residues in regards to these compounds might be needed.

Processed commodities (standard hydrolysis study)

Conditions	Hydrolysis studies not triggered as oxasulfuron residues in soya beans <0.01 mg/kg (LOQ).
20 min, 90°C, pH 4	
60 min, 100°C, pH 5	
20 min, 120°C, pH 6	

Plant residue definition for monitoring (RD-Mo)

OECD Guidance, series on pesticides No 31

Oxsulfuron

Plant residue definition for risk assessment (RD-RA)

Oxsulfuron

Conversion factor (monitoring to risk assessment)

None

Metabolism in livestock (Regulation (EU) No 283/2013, Annex Part A, points 6.2.2, 6.2.3, 6.2.4, 6.2.5 6.7.1)

OECD Guideline 503 and SANCO/11187/2013 rev. 3 (fish)	Animal	Dose (mg/kg bw/d)	Duration (days)	N rate/comment
Animals covered	Laying hen	6.25	8	6250

www.efsa.europa.eu/efsajournal 14 EFSA Journal 2017;15(3):4722
Goat & 3.27-3.54 & 4 & 3270-3910 &

Pig & - & - & Not triggered &

The major pathways are the oxidation of one of the pyrimidinyl methyl groups to form HO-oxasulfuron (OH-CGA-277476), the hydrolysis of the oxetane ring to form the glycerol ester of HO-oxasulfuron (HO-CGA-310785), prior to sulfonyleurea bridge cleavage and further transformation to saccharin (CGA 27913) and pyrimidine amine (C 1801). The metabolism pathways of oxasulfuron in rat and in ruminants are similar.

Time needed to reach a plateau concentration in milk and eggs (days)	Not provided
Animal residue definition for monitoring (RD-Mo)	Not required
OECD Guidance, series on pesticides No 31	
Animal residue definition for risk assessment (RD-RA)	Not required
Conversion factor (monitoring to risk assessment)	None
Metabolism in rat and ruminant similar (Yes/No)	Yes
Fat soluble residues (Yes/No) *(FAO, 2009)*	No

Residues in succeeding crops (Regulation (EU) N° 283/2013, Annex Part A, point 6.6.2)

Confined rotational crop study *(Quantitative aspect)*

OECD Guideline 502

Data gap: Since CGA 27913 and C 1801 were shown to be low to high persistent in soil (DT$_{90}$ of 28.8-788 and 10.8-1560 days, respectively), the potential for residues of these compounds to be present in the rotational crops needs to be investigated. Furthermore and pending upon the outcome of the requested DT$_{50}$/DT$_{90}$ values on the metabolites CGA 171895 (M5), M3, CGA 179710, CGA 297691 and MT6 (data gaps in section 4), further rotational crops studies addressing the nature and magnitude of residues in regards to these compounds might be needed.

Field rotational crop study

OECD Guideline 504

Open

Stability of residues (Regulation (EU) N° 283/2013, Annex Part A, point 6.1)

OECD Guideline 506

Plant products (Category)	Commodity	T (°C)	Stability (Months)
High water content			
High oil content	Soya bean	-20	24
High protein content			
High starch content			
High acid content

Other

Storage stability of oxasulfuron (CGA-277476) was demonstrated for a period of 24 months at -20 °C in soybean seeds and processed fractions (meal, hulls, oil).

Animal	Animal commodity	T (°C)	Stability (Months)
Beef	Muscle	-20	11
	Liver	-20	7
Kidney			
Milk		-20	10
Egg		-20	12
Summary of residues data from the supervised residue trials (Regulation (EU) N° 283/2013, Annex Part A, point 6.3) OECD Guideline 509, OECD Guidance, series on pesticides No 66 and OECD MRL calculator

Crop	Region/Indoor (a)	Residue levels (mg/kg) observed in the supervised residue trials relevant to the supported GAPs (b)	Recommendations/comments (OECD calculations)	MRL proposals (mg/kg)	HR (mg/kg) (c)	STMR (mg/kg) (d)
Soyabean	SEU	7x <0.01	MRL_{OECD}: 0.01 mg/kg	0.01(*)	0.01	0.01

MRL application
Not relevant

Summary of the data on formulation equivalence OECD Guideline 509
No information provided - Not relevant

Summary of data on residues in pollen and bee products (Regulation (EU) No 283/2013, Annex Part A, point 6.10.1)
No information provided

Data gap: The determination of the residues in pollen and bee products for human consumption resulting from residues taken up by honeybees from crops at blossom with regards to oxasulfuron and relevant metabolites and considering also the outstanding data on rotational crops is requested.

(a): NEU or SEU for northern or southern outdoor trials in EU member states (N+SEU if both zones), Indoor for glasshouse/protected crops, Country if non-EU location.
(b): Residue levels in trials conducted according to GAP reported in ascending order (e.g. 3x <0.01, 0.01, 6x 0.02, 0.04, 0.08, 3x 0.10, 2x 0.15, 0.17). When residue definition for monitoring and risk assessment differs, use Mo/RA to differentiate data expressed according to the residue definition for Monitoring and Risk Assessment.
(c): HR: Highest residue. When residue definition for monitoring and risk assessment differs, HR according to residue definition for monitoring reported in brackets (HR_{Mo}).
(d): STMR: Supervised Trials Median Residue. When residue definition for monitoring and risk assessment differs, STMR according to definition for monitoring reported in brackets (STMR_{Mo}).
Inputs for animal burden calculations

Feed commodity	Median dietary burden (mg/kg)	Comment	Maximum dietary burden (mg/kg)	Comment
Representative uses				
Soybean seed	0.01	STMR	0.01	STMR
Soybean meal	0.01	STMR	0.01	STMR
Soybean hulls	0.01	STMR	0.01	STMR
MRL application				
Not relevant				
Residues from livestock feeding studies (Regulation (EU) N° 283/2013, Annex Part A, points 6.4.1, 6.4.2, 6.4.3 and 6.4.4) OECD Guideline 505 and OECD Guidance, series on pesticides No 73

MRL calculations	Ruminant	Pig/Swine	Poultry	Fish
Highest expected intake				
(mg/kg bw/d)				
(mg/kg DM for fish)				
Beef cattle	0.0001		0.0001	
Ram/Ewe	0.0001			
Breeding	0.0001			
Broiler	0.0005			
Carp	-			
Dairy cattle	0.0001			
Lamb	0.0002			
Finishing	0.0002			
Layer	0.0003			
Trout	-			
Turkey	0.0005			
Fish intake >0.1 mg/kg DM				
Intake >0.004 mg/kg bw	No	No	No	No
Feeding study submitted	Not required	Not required	Not required	Not required
Representative feeding level (mg/kg bw/d, mg/kg DM for fish) and N rates	Level	N rate		
Beef: N	Estimated HR\(^{(a)}\) at 1N	MRL proposals		
Dairy: N	Level	MRL proposals		
Lamb: N	Estimated HR\(^{(a)}\) at 1N	MRL proposals		
Ewe: N	Level	MRL proposals		
N rate Breed/Finish	Level	MRL proposals		
8 or T: N Layer: N	Level	MRL proposals		
Carp/Trout	Level	MRL proposals		

Method of calculation\(^{(c)}\)
- Estimated HR calculated at 1N level (estimated mean level for milk).
- HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.
- The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.

Notes:
- \(^{(a)}\) Estimated HR calculated at 1N level (estimated mean level for milk).
- \(^{(b)}\) HR in meat calculated for mammalian on the basis of 20% fat + 80% muscle and 10% fat + 90% muscle for poultry.
- \(^{(c)}\) The OECD guidance document on residues in livestock (series on pesticides 73) recommends three different approaches to derive MRLs for animal products; by applying a transfer factor (Tf), by intrapolation (It) or by linear regression (Ln). Fill in method(s) considered to derive the MRL proposals.
Conversion Factors (CF) for monitoring to risk assessment

Animal products

Not relevant (RD-Mo = RD-RA)

Plant products

Not relevant (RD-Mo = RD-RA)

Processing factors (Regulation (EU) No 283/2013, Annex Part A, points 6.5.2 and 6.5.3)

OECD Guideline 508 and OECD Guidance, series on testing and assessment No 96

Crop (RAC)/Edible part	Crop (RAC)/Processed product	Number of studies^(a)	Processing Factor (PF)	Conversion Factor (CF_P) for RA^(b)	
			Individual values	Median PF	

Representative Uses

Processing residue trials are not triggered.

^(a): Studies with residues in the RAC at or close to the LOQ should be disregarded (unless concentration)

^(b): When the residue definition for risk assessment differs from the residue definition for monitoring

Consumer risk assessment (Regulation (EU) No 283/2013, Annex Part A, point 6.9)

Including all uses (representative uses and uses related to an MRL application).

ADI	
TMDI according to EFSA PRIMO	0.013 mg/kg bw per day
NTMDI, according to (to be specified)	Not relevant
IEDI (% ADI), according to EFSA PRIMO	Not provided, not required
NEDI (% ADI), according to (to be specified)	Not provided, not required
Factors included in the calculations	None
ARfD	
IESTI (% ARfD), according to EFSA PRIMO	Not allocated
NESTI (% ARfD), according to (to be specified)	-
Factors included in IESTI and NESTI	-

Consumer risk assessment limited to the representative uses⁽¹⁾

TMDI (% ADI), according to EFSA PRIMO	Highest TMDI: <1% of the ADI (WHO cluster diet F)
NTMDI (% ADI), according to (to be specified)	Not provided, not required
IEDI (% ADI), according to EFSA PRIMO	Not provided, not required
NEDI (% ADI), according to (to be specified)	Not provided, not required
Factors included in the calculations	None
IESTI (% ARfD, according to EFSA PRIMO)	Not provided, not required
NESTI (% ARfD, according to (to be specified)	Not provided, not required
Factors included in IESTI and NESTI	None
Additional contribution to the consumer intakes through drinking water resulting from groundwater metabolite expected to be present above 0.75 µg/L (1)

Metabolite	ADI (mg/kg bw per day)	Intake of groundwater metabolites (% ADI)
CGA 297691	0.05	Adult (60 kg bw, 2 L): 0.2 % ADI
		Child (10 kg bw, 1 L): 0.6 % ADI
		Infant (5 kg bw, 0.75 L): 0.9 % ADI

(1): The overall consumer exposure assessment cannot be finalised in view of the identified data gap for the potential for residues of CGA 27913 and C 1801 to be present in the rotational crops, the outstanding data regarding the metabolism and magnitude of the relevant compounds in rotational crops (see section 4) and the consumer exposure assessment through drinking water with regards to MT6, CGA 171895 (M5) and M3.

Proposed MRLs (Regulation (EU) No 283/2013, Annex Part A, points 6.7.2 and 6.7.3)

Code(a)	Commodity/Group	MRL/Import tolerance(b) (mg/kg) and Comments
0401070	Soyabeans	0.01(*) Current MRL Reg EU 289/2014

(a): Commodity code number, as listed in Annex I of Regulation (EC) No 396/2005
(b): MRLs proposed at the LOQ, should be annotated by an asterisk (*) after the figure

Environmental fate and behaviour

Route of degradation (aerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.1)

| Mineralisation after 100 days | 0.1-57.4 % after 90-105 d, [14C-phenyl]-label (n=4)
| | 1.3-21.3 % after 90-83 d, [14C-pyrimidinyl]-label (n=3)
| | 80.4 % after 120 d, [14C-oxetan]-label (n=1) |
| Non-extractable residues after 100 days | 1.7-27 % after 90-105 d, [14C-phenyl]-label (n=4)
| | 25.5-53.9 % after 90-83 d, [14C-pyrimidinyl]-label (n=3)
| | 5.3 % after 120 d, [14C-oxetan]-label (n=1) |
| Metabolites requiring further consideration | saccharin CGA (27913) – 9-98.5 % at 9-90 d (n=9) [14C-phenyl]-label
| - name and/or code, % of applied (range and maximum) | M3 – 4.8-25 % at 0-65 d (n=6) [14C-phenyl] & [14C-pyrimidinyl] and [14C-oxetan]-label
| | M5 – 5.4-10.2 % at 9-2 d (n=2) [14C-phenyl]-label
| | C1801 – 29.2-54.7 % at 5-14 d (n=4) [14C-pyrimidinyl]-label
| | CGA 179710 – 1.3-27.5 % at 7-14 d (n=2) [14C-pyrimidinyl]-label
| | CGA 297691 – about 21 % at 4 d (n=1) [14C-oxetan]-label, field study only |
Route of degradation (anaerobic) in soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.2)

| Mineralisation after 100 days | 0.2-0.3 % at 90-120 d, 14C-phenyl-label (n=2)
| | 1.1-15.6 % at 90-127 d, 14C-pyrimidinyl-label (n=2)
| | 6.6 % at 90 d, 14C-oxetan-label (n=1)
| Non-extractable residues after 100 days | 3-3.6 % at 90-120 d, 14C-phenyl-label (n=2)
| | 19.3-50.1 % at 90-127 d, 14C-pyrimidinyl-label (n=2)
| | 20.2 % at 90 d, 14C-oxetan-label (n=1)
| Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) | saccharin (CGA 27913) – 86.5-96.8 % at 120-59 d (n=2)
| | 14C-phenyl-label
| | M3 – 30.2 % at 40 d (n=1)
| | 14C-pyrimidinyl-label
| | C1801 – 22.7-69 % at 8-59 d (n=2)
| | 14C-pyrimidinyl-label
| | CGA 297691 – 87.8 % at 62 d (n=1)
| | 14C-oxetan-label

Route of degradation (photolysis) on soil (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

| Metabolites that may require further consideration for risk assessment - name and/or code, % of applied (range and maximum) | saccharin (CGA 27913) – 90.5 % at 30 d (n=1)
| | 14C-phenyl-label
| | CGA 297691 – 58.8 % at 30 d (n=1)
| | 14C-oxetan-label
| | C1801 – 51.5 % at 30 d (n=1)
| | 14C-pyrimidinyl-label
| Mineralisation at study end | 0.2 % at 30 d, 14C-phenyl-label (n=1)
| | 0.4 % at 30 d, 14C-pyrimidinyl-label (n=1)
| | 16.3 % at 30 d, 14C-oxetan-label (n=1)
| Non-extractable residues at study end | 0.4 % at 30 d, 14C-phenyl-label (n=1)
| | 5.5 % at 30 d, 14C-pyrimidinyl-label (n=1)
| | 7.5 % at 30 d, 14C-oxetan-label (n=1)

Mineralisation at study end | 0.2 % at 30 d, 14C-phenyl-label (n=1)
| | 0.4 % at 30 d, 14C-pyrimidinyl-label (n=1)
| | 16.3 % at 30 d, 14C-oxetan-label (n=1)

Non-extractable residues at study end | 0.4 % at 30 d, 14C-phenyl-label (n=1)
| | 5.5 % at 30 d, 14C-pyrimidinyl-label (n=1)
| | 7.5 % at 30 d, 14C-oxetan-label (n=1)
Rate of degradation in soil (aerobic) laboratory studies active substance
(Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.1 and Regulation (EU)
N° 284/2013, Annex Part A, point 9.1.1.1)

Oxasulfuron	Dark aerobic conditions								
	Soil type	O.C. (%)	pH a)	t. °C / % MWHC	DT50/DT90 (d)	St. (χ²)	DT50 (d) 20 °C pF2/10kPa b)	St. (χ²)	Method of calculation §
Gartenacker, Silt loam	2.3	7.2	20°C/40%	8.4/27.9	3	8.4	3	SFO	
Speyer 2.2, Loamy sand	2.2	5.7	20°C/40%	29.3/97.3	6.9	29.3	6.9	SFO	
Weide, Sandy loam	1.3	7.6	20°C/40%	11.6/51	3.1	15.4	3.1	FOMC (DT90/3.32)	
Gartenacker, Silt loam	2.1	7.2	19.8°C/75% of field capacity	5.7/18.9	3.5	4.6	3.5	SFO	
Collombey, Loamy sand	1.6	7.4	19.8°C/75% of field capacity	6.7/35.5	2.5	8.6	2.5	FOMC (DT90/3.32)	
USA, Sandy loam a	1.1	6.8	25°C/75% of field capacity at 0.33 bar	4.2/14	6.1	5.5	6.1	SFO	
USA, Sandy loam b	1.1	6.8	25°C/75% of field capacity at 0.33 bar	3.2/10.6	9.9	4.2	9.9	SFO	
USA, Sandy loam c	1.5	7	25.5°C/75% of field capacity at 0.33 bar	3.7/20.1	6.7	8.3	6.7	FOMC (DT90/3.32)	
USA, Sandy loam d	1	7.5	25°C/75% of field capacity at 0.33 bar	7.2/24	1.4	9.5	1.4	SFO	
USA, Sandy loam e	1	7.5	25°C/75% of field capacity at 0.33 bar	8.3/27.5	3.7	10.9	3.7	SFO	
USA, Sand	0.5	8.3	25°C/75% of field capacity at 0.33 bar	10/33.3	3.3	13.1	3.3	SFO	
USA, Loam	1.4	6.7	25°C/75% of field capacity at 0.33 bar	9/29.9	3	11.8	3	SFO	
USA, Clay	1.2	7.3	25°C/75% of field capacity at 0.33 bar	7.4/24.7	2.9	9.7	2.9	SFO	

Geometric mean (if not pH dependent) | 9.4

pH dependence, No

1) Measured in water
2) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Non-normalised for trigger evaluation
§ For modelling purposes
Rate of degradation in soil (aerobic) laboratory studies transformation products (Regulation (EU) No 283/2013, Annex Part A, point 7.1.2.1.2 and Regulation (EU) No 284/2013, Annex Part A, point 9.1.1.1)

Saccharin (CGA 27913)	Dark aerobic conditions	Oxasulfuron dosed from which the f.f. was derived was 0.6							
Soil type	O.C. (%)	pH^{b)}	t. °C / % MWHC	DT₅₀/ DT₉₀ (d) #	f. f. k_r / k_d	St. (χ²)	DT₅₀ (d) 20 °C pF2/10kPa^{a)}	St. (χ²)	Method of calculation §
Gartenacker, Silt loam	2.3	7.2	20°C/40%	12.5/111 DFOP (decline phase)	1*	12.9	48	23.7	FOMC (DT₅₀/3.32)
Speyer 2.2, Loamy sand	2.2	5.7	20°C/40%	8.7/28.8 SFO+SFO	0.59	23.8	8.7	23.8	SFO+SFO
Weide, Sandy loam	1.3	7.6	20°C/40%	4.6/26.1 FOMC (decline phase)	1*	2.6	7.9	2.6	FOMC (DT₅₀/3.32)
Sandy loam[$]	-	5.7	20°C/50%	80.7/269	-	-	80.7	2	SFO
Silt loam-1[$]	-	7.7	20°C/50%	34.8/116	-	-	34.8	10	SFO
Silt loam-2[$]	-	6.4	20°C/50%	119/661	-	-	119	5	SFO
Mattapex, silt loam[$]	-	6.9	20°C	237.4/788.6	-	-	237.4	4	SFO
Speyer 2.2, loamy sand-1[$]	-	5.7	20°C	9.69/32.2	-	-	9.69	4.7	Modified HS
Speyer 3A, sandy loam-1[$]	-	7.3	20°C	10.2/34	-	-	9.53	5.3	Modified HS
Speyer 65, clay-1[$]	-	7.1	20°C	29.9/99.2	-	-	20.6	5.7	Modified HS
Speyer 2.2, loamy sand-2[$]	-	5.7	20°C	14.8/49.2	-	-	14.8	-	SFO
Speyer 3A, sandy loam-2[$]	-	6.88	20°C	9.1/30.1	-	-	8.45	-	SFO
Speyer 65, clay-2[$]	-	7.23	20°C	27.5/91.2	-	-	20.47	-	SFO

Geometric mean (if not pH dependent)

| Arithmetic mean | 24.7 |
| pH dependence, No | 0.86 |

^{a)} Measured in water
^{b)} Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
[#] Non-normalised for trigger evaluation
[§] For modelling purposes
[*] A worst-case value of 1 has been selected because no acceptable fit could be derived by modelling parent and metabolite together, therefore a suitable estimation of the formation fraction could not be achieved.
[$] These values were contained in the endpoints lists from the published finalised EFSA conclusions for the a.s. metsulfuron-methyl https://www.efsa.europa.eu/it/efsajournal/pub/3936 and ethametsulfuron-methyl https://www.efsa.europa.eu/it/efsajournal/pub/3508
M3

Soil type	O.C. (%)	pH^(a)	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	f. f. k_f / k_{dp}	St. (χ²)	DT₅₀ (d) 20 °C pF2/10kPa^(b)	St. (χ²)	Method of calculation §
Gartenacker, Silt loam	2.3	7.2	20°C/40%	122/406	0.25	20.7	122	53.2	SFO+SFO
Geometric mean							122		
Arithmetic mean						0.25			

*Measured in water
^a Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Non-normalised for trigger evaluation
§ For modelling purposes

M5 (CGA 171895)

Soil type	O.C. (%)	pH^(a)	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	f. f. k_f / k_{dp}	St. (χ²)	DT₅₀ (d) 20 °C pF2/10kPa^(b)	St. (χ²)	Method of calculation §
Speyer 2.2, Loamy sand	2.2	5.7	20°C/40%	12.7/321	1*	18.3	154	18.3	HS-K2 after lag phase
Weide, Sandy loam	1.3	7.6	20°C/40%	7.4/59.1	1*	19.1	17.8	19.1	FOMC (DT₉₀/3.32)
Geometric mean							52.4		
Arithmetic mean						1			

*Measured in water
^a Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Non-normalised for trigger evaluation
§ For modelling purposes
* A worst-case value of 1 has been selected because no acceptable fit could be derived by modelling parent and metabolite together, therefore a suitable estimation of the formation fraction could not be achieved.

C1801

Soil type	O.C. (%)	pH^(a)	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	f. f. k_f / k_{dp}	St. (χ²)	DT₅₀ (d) 20 °C pF2/10kPa^(b)	St. (χ²)	Method of calculation §
Gartenacker, Silt loam	2.1	7.2	19.8°C/75%	3.2/10.8	0.3	10.8	2.6	10.8	SFO+SFO
Collombey,	1.6	7.4	19.8°C/75%	14.8/49.2	0.8	10.8	11.8	10.4	FOMC+SFO

*Measured in water
^a Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Non-normalised for trigger evaluation
§ For modelling purposes
Peer review of the pesticide risk assessment of the active substance oxasulfuron

www.efsa.europa.eu/efsajournal

EFSA Journal 2017;15(3):4722

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Oyasulfuron	Aerobic conditions
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).
Loamy sand	Illinois
USA, Sandy loam b	North Carolina

CGA 179710	Dark aerobic conditions	Oxasulfuron dosed from which the f.f. was derived was 0.3						
Soil type	O.C. (%) pH	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	f. f. kₕ / kₕₚ	St. (χ²)	DT₅₀ (d) 20 °C pF₂/10kPa	St. (χ²)	Method of calculation
USA, Sandy loam b	1.1 6.8	25°C/75% of field capacity at 0.33 bar	298/989 SFO+SFO	0.3	10.8	389.2	10.8	SFO+SFO

Geometric mean (if not pH dependent)
Arithmetic mean
pH dependence, No

| MT6 | Data gap |

* Measured in water
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7
Non-normalised for trigger evaluation
§ For modelling purposes

Rate of degradation field soil dissipation studies (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.1)

Oyasulfuron	Aerobic conditions
Soil type (indicate if bare or cropped soil was used).	Location (country or USA state).
Loamy sand	Illinois
Loamy sand/sandy loam, cropped soil	North Carolina

Geometric mean (if not pH dependent)	pH dependence, No
4.3	4.3

* Measured in unknown medium
b) Normalised using a Q10 of 2.58 and Walker equation coefficient of 0.7, values are DegT50matrix
* Correlation coefficient n.c. Not calculated

www.efs.europa.eu/efsajournal
Combined laboratory and field kinetic endpoints for modelling (when not from different populations)*

Endpoint	Calculation	Relevance
Rate of degradation in soil active substance, normalised geometric mean (if not pH dependent)		Not relevant, since field data are not suitable for modelling purposes
Rate of degradation in soil transformation products, normalised geometric mean (if not pH dependent)		Not relevant
Kinetic formation fraction (f. f. k_r / k_dp) of transformation products, arithmetic mean		Not relevant

* Only relevant after implementation of the published EFSA guidance describing how to amalgamate laboratory and field endpoints.

Soil accumulation (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.2.2)

Soil accumulation and plateau concentration	Relevance
	Not relevant (Plateau concentration of 0.000 mg/kg reached after 0 years, based on calculation)

Rate of degradation in soil (anaerobic) laboratory studies active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.3 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

Oxasulfuron	Dark anaerobic conditions. Results not reported since anaerobic DT50 should not be used for the risk assessment			
Soil type	DT50 / DT90 (d)	DT50 (d) 20 °C(b)	St. (r^2)	Method of calculation
-------------	-----------------	------------------	----------	----------------------
Gartenacker, Silt loam	20°C/40%	-	-	-
Gartenacker, Silt loam	19.8°C/75% of field capacity	-	-	-
USA, Sandy loam a	25°C/17.7% of field capacity at 0.33 bar	-	-	-
USA, Sandy loam b	25°C/17.7% of field capacity at 0.33 bar	-	-	-
USA, Sandy loam c	25°C/17.2% of field capacity at 0.33 bar	-	-	-

Geometric mean (if not pH dependent)

Method of calculation
Measured in water
Normalised using a Q10 of 2.58

Rate of degradation in soil (anaerobic) laboratory studies transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.2.1.4 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.1.1)

| C1801 | Dark anaerobic conditions. Results not reported since anaerobic DT50 should not be used for the risk assessment |
Rate of degradation on soil (photolysis) laboratory active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.1.3)

Parent	Soil photolysis	Method of calculation					
Soil type	O.M. (%)	pH^b	t. °C / % MWHC	DT₅₀ / DT₉₀ (d)	DT₅₀ (d)	C.C.*	
Gartenacker, Silt loam	2.1	7.2	19.8°C/75 % of field capacity	-	-	-	-

Soil adsorption active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Oxasulfuron

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_f (mL/g)	K_{Foc} (mL/g)	1/n
Nassau, Silt loam	1.3	6.9	n.c.	n.c.	0.33	26	1.03
Niagara, Clay loam	1.9	6.8	n.c.	n.c.	0.33	17	0.86
Sequatchie, Sandy loam	0.9	7.7	n.c.	n.c.	0.16	17	1.36
Cajon, Loamy sand	0.4	6.4	n.c.	n.c.	0.12	30	0.91

Soil adsorption transformation products (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.3.1.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Saccharin (CGA 27913)

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_f (mL/g)	K_{Foc} (mL/g)	1/n	
Maryland, Clay	2.8	5.9	n.c.	n.c.	0.09	3	0.94	
Maryland, Sand	0.5	6.5	n.c.	n.c.	0	0	-	-
Maryland, Sandy loam	1.1	7.5	n.c.	n.c.	0.03	3	1.05	
Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n	
------------------------	------	---------------------	---------------------	-----------------------	---------------------	-----------------------	------	
California, Loam	0.5	6.7	n.c.	n.c.	0.03	6	0.53	
Gross-Umstadt, Silt loam	1.2	7.7	-	-	-	20	0.94	
Arrow, Sandy loam	2.3	5.7	-	-	-	14	0.88	
Mattapex, Silt loam	2.6	6.4	-	-	-	12	0.94	
Speyer 2.1, Sand	0.56	6	-	-	-	1.8	0.92	
soil 115, Clay loam	1.7	7.4	-	-	-	2.2	0.71	
soil 164, Silt loam	3	6.5	-	-	-	4.2	0.93	
soil 243, Sandy loam	1.1	4.3	-	-	-	4	1.01	
BBA 2.2, Loamy sand	2.5	6.1	-	-	-	5.2	0.95	
Hofchen, Silt loam	2.7	7.8	-	-	-	4.6	0.94	
Laacherhof, Silt loam	0.86	8.1	-	-	-	5.2	0.97	
Ephrata, Loamy sand	0.37	6.8	-	-	-	6.7	0.95	
Stilwell, Silty clay loam	1.6	6.7	-	-	-	15.5	0.92	

Geometric mean (if not pH dependent)*
Arithmetic mean (if not pH dependent)

pH dependence, No

- Measured in unknown medium
- Taken into account as 1 for the arithmetic mean
* Only relevant after implementation of the published EFSA guidance.

C1801

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
824-3, Sandy loam	1.2	7.4	n.c.	n.c.	0.6	54	0.90
824-4, Loamy sand	0.3	6.2	n.c.	n.c.	6.2	2124	0.75
824-1, Silt loam	1.2	6.7	n.c.	n.c.	2.3	213	0.79
824-2, Clay	1.7	6.5	n.c.	n.c.	2.7	170	0.75

Geometric mean (if not pH dependent)*
Arithmetic mean (if not pH dependent)

pH dependence, No

- Measured in unknown medium
* Only relevant after implementation of the published EFSA guidance.

CGA 179710

Soil Type	OC %	Soil pH^a	K_d (mL/g)	K_{doc} (mL/g)	K_F (mL/g)	K_{Foc} (mL/g)	1/n
824-3, Sandy loam	1.2	7.4	n.c.	n.c.	1.5	143	0.77
824-4, Loamy sand	0.3	6.2	n.c.	n.c.	1.7	601	0.78
824-1, Silt loam	1.2	6.7	n.c.	n.c.	2.0	185	0.82
824-2, Clay	1.7	6.5	n.c.	n.c.	2.3	147	0.76

Geometric mean (if not pH dependent)*
Arithmetic mean (if not pH dependent)

pH dependence, No

- Measured in unknown medium
* Only relevant after implementation of the published EFSA guidance.

M3

Data gap

CGA 171895 (M5)

Data gap

CGA 297691

Data gap

MT6

Data gap
Mobility in soil column leaching active substance (Regulation (EU) N° 283/2013, Annex Part A, point 7.1.4.1.1 and Regulation (EU) N° 284/2013, Annex Part A, point 9.1.2.1)

Parameter	Value
Elution (mm)	300 mm
Time period (d)	< 1 d (lowest value of 28 tests)
Leachate: 94.5 % total residues/radioactivity in leachate (highest value of 28 tests)	
91.5 % active substance, 2.6 % C1801	
0 % total residues/radioactivity retained in top 30 cm (lowest value of 28 tests)	

Lysimeter / field leaching studies (Regulation (EU) N° 283/2013, Annex Part A, points 7.1.4.2 / 7.1.4.3 and Regulation (EU) N° 284/2013, Annex Part A, points 9.1.2.2 / 9.1.2.3)

Parameter	Value
Location	North Carolina
Study type (e.g. lysimeter, field)	lysimeter
Soil properties	texture loamy sand to sandy clay loam, pH 5.6-6.6, OC 0.1-0.8%, Field capacity = 10.37-17.81%
Dates of application	June 23, 1993
Number of applications	1 year, 1 applications per year
Duration	367 days
Application rate	117 g/ha/year
Average annual rainfall (mm)	4 mm
Average annual leachate volume (mm)	12.9 liters
% radioactivity in leachate (maximum/year)	1.2% AR
Individual annual maximum: 0.7 µg/L active substance	
Analyses for individual constituents in the leachates could not be performed.	
Amount of radioactivity in the soils at the end of the study = 8.4% AR; 0.62 % AR as parent, 7.78 % AR as C1801	
Location	North Carolina
Study type (e.g. lysimeter, field)	field
Soil properties	texture, pH=5-6, OC<0.6%, MWHC unknown
Dates of application	June 23, 1993
Crop: soybean /Interception estimated: 0%	(incorporation into soil)
Number of applications: 1 year, 1 application per year
Duration: 365 d
Application rate: 224 g/ha/year
Average annual rainfall (mm): 741 mm
\% radioactivity in leachate (maximum/year): 0 %

Individual annual maximum concentrations of all the substances were below the limit of detection (0.1 ppb), except for a single sample that was considered as contaminated. That sample was therefore not considered as valid.

Amount of radioactivity in the soils at the end of the study was below the limit of detection

Location: Wisconsin
Study type (e.g. lysimeter, field): field
Soil properties: texture, pH=5.7-6.8, OC<0.7%, MWHC unknown
Dates of application: June 22, 1994
Crop: soybean /Interception estimated: 0% (incorporation into soil)
Number of applications: 1 year, 1 application per year
Duration: 763 d
Application rate: 224 g/ha/year
Average annual rainfall (mm): 1002 mm

Oxasulfuron: no detections in any soil-pore water or groundwater samples through 736 DAA.
CGA 177288: no detections in any soil-pore water samples through 736 DAA. A single detection in groundwater (0.17 µg/l).
C 1801: one single pore water detection (0.12 µg/l). No groundwater detections.
saccharin (CGA 27913): sporadic low level detections (up to 0.4 µg/l) in soil-pore water at all depths through 490 DAA, as well as prior to the application (0.1 - 0.3 µg/l). Occasionally present in groundwater samples (up to 3 µg/l). 8 out of 12 samples taken before treatment contained residues of up to 1.5 µg/l.

Amount of radioactivity in the soils at the end of the study was below the limit of detection
Hydrolytic degradation (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.1.1)

Hydrolytic degradation of the active substance and metabolites > 10 %

pH 5: 6.3-17.2 d at 25-20 °C (pseudo-1st order, r²=0.998, χ²=2.6)	CGA 27913: 95.3 % AR (30 d)
C1801: 95.3 % AR (30 d)	CGA 297691: 93 % AR (30d)
pH 7: 8.3-22.7 d at 25-20 °C (pseudo-1st order, r²=0.999, χ²=2.7)	CGA 27913: 89.4 % AR (30 d)
C1801: 90.8 % AR (30d)	CGA 297691: 88 % AR (30d)
pH 9: 8.2-22.0 d at 25-20 °C (pseudo-1st order, r²=0.997, χ²=2.4)	CGA 27913: 87.2 % AR (30 d)
C1801: 88.2 % AR (30d)	CGA 297691: 88.6 % AR (30d)

Aqueous photochemical degradation (Regulation (EU) N° 283/2013, Annex Part A, points 7.2.1.2 / 7.2.1.3)

Photolytic degradation of active substance and metabolites above 10 %

DT₅₀: 3-4 d	C1801: 51 % AR (7 d)
saccharin (CGA 27913): 37 % AR (30 d)	CGA 297691: 91 % AR (30 d)

Estimated DT₅₀ at 40°N 4.7 days in mid summertime
Estimated DT₅₀ at 40°N 8.8 days in mid springtime
Estimated DT₅₀ at 50°N 11.4 days in mid summertime
Estimated DT₅₀ at 50°N 16.5 days in mid springtime

Quantum yield of direct phototransformation in water at Σ > 290 nm

7.57 · 10⁻³ mol · Einstein⁻¹ at pH 4
5.33 · 10⁻² mol · Einstein⁻¹ at pH 9

‘Ready biodegradability’ (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.1)

Readily biodegradable
(Yes/no)

No

Aerobic mineralisation in surface water (Regulation (EU) N° 283/2013, Annex Part A, point 7.2.2.2 and Regulation (EU) N° 284/2013, Annex Part A, point 9.2.1.1)

Oxasulfuron

System identifier (indicate fresh, estuarine or marine)	pH water phase	t°C	DT₅₀ / DT₉₀ Water (pelagic test)	St. (χ²)	Method of calculation
System identifier (indicate fresh, estuarine or marine)	pH water phase	Mineralisation x % after 30 d (end of the study)	Non-extractable residues. max x % after n d (suspended sediment test)	Non-extractable residues. max x % after n d (end of the study) (suspended sediment test)	
--	----------------	---	---	---	
Fresh, first label 9.4 μg/L appl	7.9	3.2	Not reported	Not reported	
Fresh, first label 93.1 μg/L appl	7.9	0.4	Not reported	Not reported	
Fresh, second label 10.3 μg/L appl	7.9	0.8	Not reported	Not reported	
Fresh, second label 105.9 μg/L appl	7.9	0.1	Not reported	Not reported	

Water / sediment study (Regulation (EU) Nº 283/2013, Annex Part A, point 7.2.2.3 and Regulation (EU) Nº 284/2013, Annex Part A, point 9.2.2)

Oxasulfuron

Water / sediment system	Distribution (total radiocarbon max in water 101.0% after 0 d. Max. sed 56.4 % after 57 d)	Method of calculation									
	Water / sediment system	pH water phase a)	pH sed b)	t °C a)	DT₅₀/DT₉₀ whole sys.	St. (χ²)	DT₅₀/DT₉₀ wate r	St. (χ²)	DT₅₀/DT₉₀ sed	St. (χ²)	Method of calculation
Rhine river-a	8.3	7	19.4	20.4/83.1	3	n.c.	n.c.	n.c.	n.c.	FOMC	
Rheinfelden pond	8.6	7.3	19.3	19.5/64.8	5.6	n.c.	n.c.	n.c.	n.c.	SFO	
Rhine river-b	8.6	7.4	19.6	21.5/71.3	5.7	n.c.	n.c.	n.c.	n.c.	SFO	

Geometric mean at 20°C

| Geometric mean at 20°C | 21.9 |

a) Temperature of incubation
b) Normalised using a Q10 of 2.58 to the temperature of the environmental media at the point of sampling. (note temp of x should be stated).
Metabolite C1801

Distribution unknown. Max in total system 66.7 % after 120 days, kinetic formation fraction \((k_t / k_{dp})\): 0.85 in pond experiment, 0.88 in river experiment from oxasulfuron. Whole system calculation.

Water / sediment system	pH water phase	pH sed	t. °C	DT\(_{50}\) / DT\(_{90}\) whole sys.	St. \((\chi^2)\)	DT\(_{50}\) / DT\(_{90}\) wate r	St. \((\chi^2)\)	DT\(_{50}\) / DT\(_{90}\) sed	St. \((\chi^2)\)	Method of calculation
Rheinfelden pond	8.6	7.3	19.3	108/359	7.1	n.c.	n.c.	n.c.	SFO+SFO	
Rhine river-b	8.6	7.45	19.6	232/772	3.7	n.c.	n.c.	n.c.	DFOP+SFO\(b\)	

Geometric mean at 20°C\(c\) 158.3

\(a\) Measured in [medium to be stated, usually calcium chloride solution or water]

\(b\) Normalised using a Q10 of 2.58

\(c\) Excluding latest time-step

Mineralisation and non extractable residues (from parent dosed experiments)

Water / sediment system	pH water phase	pH sed	Mineralisation x % after n d. (end of the study)	Non-extractable residues in sed. max x % after n d	Non-extractable residues in sed. max x % after n d (end of the study)
Rhine river-a	8.3	7	72.8% after 182 d	24.6% after 56 d	20.9% after 182 d
Rheinfelden pond	8.6	7.3	33.25% after 180 d	24.6% after 180 d	24.6% after 180 d
Rhine river-b	8.6	7.45	53.86% after 180 d	19.65% after 180 d	19.65% after 180 d

\(a\) During equilibration and incubation

\(b\) Measured in KCl

Fate and behaviour in air (Regulation (EU) N° 283/2013, Annex Part A, point 7.3.1)

Direct photolysis in air	Not studied - no data requested
Photochemical oxidative degradation in air	\(DT_{50}\) of 3-15 hours derived by the Atkinson model (version unknown), OH (12 h) concentration assumed = 1.5 \times 106 OH-radicals . cm\(^{-3}\)
Volatilisation	from plant surfaces (BBA guideline): considered as not relevant, in agreement with the Henry's law constant of <3.2 \times 10^{-5} Pa . m3 . mole-1 (20°C, calculated from vapour pressure and water solubility)
	from soil surfaces (BBA guideline): considered as not relevant, in agreement with the Henry's law constant of <3.2 \times 10^{-5} Pa . m3 . mole-1 (20°C, calculated from vapour pressure and water solubility)
Metabolites	No metabolites expected
Residues requiring further assessment (Regulation (EU) No 283/2013, Annex Part A, point 7.4.1)

Environmental occurring residues requiring further assessment by other disciplines (toxicology and ecotoxicology) and or requiring consideration for groundwater exposure

| Soil: Oxasulfuron, saccharin (CGA 27913), C1801, M3, M5 (CGA 171895), CGA 179710, CGA 297691, MT6 |
| Surface water: Oxasulfuron, saccharin (CGA 27913), C1801, M3, M5 (CGA 171895), CGA 179710, CGA 297691, guanidine, 3-guanidine-1-butene, MT6 |
| Sediment: Oxasulfuron, saccharin (CGA 27913), C1801, M3, M5 (CGA 171895), CGA 179710, CGA 297691, MT6 |
| Ground water: Oxasulfuron, saccharin (CGA 27913), C1801, M3, M5 (CGA 171895), CGA 179710, CGA 297691, MT6 |
| Air: Oxasulfuron |

Definition of the residue for monitoring (Regulation (EU) No 283/2013, Annex Part A, point 7.4.2)

| Soil: Oxasulfuron (CGA-277476) |
| Water: Oxasulfuron (CGA-277476) |
| Groundwater: Oxasulfuron (CGA-277476), M3 |

Monitoring data, if available (Regulation (EU) No 283/2013, Annex Part A, point 7.5)

Soil (indicate location and type of study)	None available from formal monitoring requests at EU or national level
Surface water (indicate location and type of study)	None available from formal monitoring requests at EU or national level
Ground water (indicate location and type of study)	None available from formal monitoring requests at EU or national level
Air (indicate location and type of study)	None available from formal monitoring requests at EU or national level

PEC soil (Regulation (EU) No 284/2013, Annex Part A, points 9.1.3 / 9.3.1)

| Oxasulfuron |
| Method of calculation |
| DT\text{soil} (d): 29.3 days |
| Kinetics: SFO |
| Field or Lab: representative worst case from lab studies |
Application data

PEC(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.065	-	-	-
Short term 24h	0.063	0.064	-	-
2d	0.062	0.063	-	-
4d	0.059	0.062	-	-
Long term 7d	0.055	0.060	-	-
28d	0.034	0.048	-	-
50d	0.020	0.038	-	-
100d	0.006	0.025	-	-

Plateau concentration 0.000 mg/kg

saccharin (CGA 27913)
Method of calculation
Molecular weight relative to the parent: 183.0/406.4 g/mol
DT_{50} (d): 237.4 days
Kinetics: SFO
Field or Lab: representative worst case from lab studies.

Application data
Application rate assumed: 33.27 g/ha (assumed CGA 27913 is formed at a maximum of 98.5 % of the applied dose)

PEC(s) (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.029	-	-	-
Short term 24h	0.029	0.029	-	-
2d	0.029	0.029	-	-
4d	0.028	0.029	-	-
Long term 7d	0.028	0.029	-	-
28d	0.027	0.028	-	-
50d	0.025	0.027	-	-
100d	0.022	0.025	-	-

Plateau concentration 0.004 mg/kg
C1801

Method of calculation

- Molecular weight relative to the parent: 123.0/406.4 g/mol
- DT$_{50}$ (d): 468 days
- Kinetics: SFO+SFO
- Field or Lab: lab

Application data

- Application rate assumed: 12.48 g/ha (assumed C1801 is formed at a maximum of 55 % of the applied dose)

PEC$_{(s)}$ (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.011	-	-	-
Short term 24h	0.011	0.011	-	-
2d	0.011	0.011	-	-
4d	0.011	0.011	-	-
Long term 7d	0.011	0.011	-	-
28d	0.010	0.011	-	-
50d	0.010	0.010	-	-
100d	0.010	0.010	-	-
Plateau concentration		0.004 mg/kg after 4 yr		

M3

Method of calculation

- Molecular weight relative to the parent: 436/406.4 g/mol
- DT$_{50}$ (d): 1000 days
- Kinetics: -
- Field or Lab: worst case assumption

Application data

- Application rate assumed: 20.12 g/ha (assumed M3 is formed at a maximum of 25 % of the applied dose)

PEC$_{(s)}$ (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.017	-	-	-
Short term 24h	0.017	0.017	-	-
2d	0.017	0.017	-	-
4d	0.017	0.017	-	-
Long term 7d	0.017	0.017	-	-
28d	0.017	0.017	-	-
50d	0.017	0.017	-	-
100d	0.016	0.017	-	-
Plateau concentration		0.015 mg/kg after 6 yr		
Concentration	Molecular weight relative to the parent: 124/406.4 g/mol	DT$_{50}$ (d): 1000 days	Kinetics: -	Field or Lab: worst case assumption
---	---	---	---	---
CGA 171895 (M5) Method of calculation	Application rate assumed: 2.33 g/ha (assumed M5 is formed at a maximum of 10.2 % of the applied dose)			

PEC$_{(s)}$ (mg/kg)	**Single application Actual**	**Single application Time weighted average**	**Multiple application Actual**	**Multiple application Time weighted average**
Initial	0.002	-	-	-
Short term 24h	0.002	0.002	-	-
2d	0.002	0.002	-	-
4d	0.002	0.002	-	-
Long term 7d	0.002	0.002	-	-
28d	0.002	0.002	-	-
50d	0.002	0.002	-	-
100d	0.002	0.002	-	-
Plateau concentration	0.002 mg/kg			

Concentration	Molecular weight relative to the parent: 166/406.4 g/mol	DT$_{50}$ (d): 1000 days	Kinetics: -	Field or Lab: worst case assumption
CGA 179710 Method of calculation	Application rate assumed: 8.42 g/ha (assumed CGA 179710 is formed at a maximum of 27.5 % of the applied dose)			

PEC$_{(s)}$ (mg/kg)	**Single application Actual**	**Single application Time weighted average**	**Multiple application Actual**	**Multiple application Time weighted average**
Initial	0.007	-	-	-
Short term 24h	0.007	0.007	-	-
2d	0.007	0.007	-	-
4d	0.007	0.007	-	-
Long term 7d	0.007	0.007	-	-
28d	0.007	0.007	-	-
50d	0.007	0.007	-	-
100d	0.007	0.007	-	-
Plateau concentration	0.006 mg/kg			
CGA 297691
Method of calculation
Molecular weight relative to the parent: 74.1/406.4 g/mol
DT$_{50}$ (d): 1000 days
Kinetics:
Field or Lab: worst case assumption

Application data
Application rate assumed: 2.87 g/ha (assumed CGA 297691 is formed at a maximum of 21 % of the applied dose)

PEC$_{(s)}$ (mg/kg)	Single application Actual	Single application Time weighted average	Multiple application Actual	Multiple application Time weighted average
Initial	0.002	-	-	-
Short term 24h	0.002	0.002	-	-
2d	0.002	0.002	-	-
4d	0.002	0.002	-	-
Long term 7d	0.002	0.002	-	-
28d	0.002	0.002	-	-
50d	0.002	0.002	-	-
100d	0.002	0.002	-	-
Plateau concentration	0.002 mg/kg	-	-	-

Data gap

PEC ground water (Regulation (EU) N° 284/2013, Annex Part A, point 9.2.4.1)
Method of calculation and type of study (e.g. modelling, field leaching, lysimeter)
For FOCUS gw modelling,
Modelling using FOCUS model(s), with appropriate FOCUSgw scenarios, according to FOCUS guidance.
Model(s) used: FOCUS PEARL v. 4.4.4, FOCUS PELMO v. 5.5.3
Crop: soybeans
Crop uptake factor: 0
Oxasulfuron
Water solubility (mg/L): 1700 at pH 7 and 25°C
Vapour pressure: 0 Pa at 25°C
DT$_{50}$ lab: 9.4 d (geometric mean, normalisation to pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
K$_{OC}$: 17 mL/g (worst case), $1/n= 1.36$ (arithmetic mean).
Metabolites:
saccharin (CGA 27913)
DT$_{50}$ lab: 24.7d (geometric mean, normalisation to pF2, 20 °C with Q10 of 2.58 and Walker equation coefficient 0.7).
coefficients 0.7).
\(K_{OC} \): 6.7mL/g (arithmetic mean), \(\frac{1}{n} = 0.91 \) (arithmetic mean).
Formation fraction: 0.86 from oxasulfuron

C1801
\(DT_{50} \): 26.6 d (geometric mean).
\(K_{OC} \): 640 mL/g (arithmetic mean), \(\frac{1}{n} = 0.8 \) (arithmetic mean).
Formation fraction: 1\(^{st} \) from oxasulfuron

CGA 179710
\(DT_{50} \): 1000 d (worst-case default value).
\(K_{OC} \): 269 mL/g (arithmetic mean), \(\frac{1}{n} = 0.78 \) (arithmetic mean).
Formation fraction: 1 from oxasulfuron

CGA 297691
\(DT_{50} \): 1000 d (worst-case default value).
\(K_{OC} \): 0 mL/g (worst case default value), \(\frac{1}{n} = 1 \).
Formation fraction: 1 from oxasulfuron

CGA 171895 (M5)
Data gap

M3
Data gap

MT6
Data gap

For field and lysimeter studies
Location: North Carolina
Study type (e.g. lysimeter, field): lysimeter
Soil properties: pH 5.6-6.6, OC 0.1-0.8%, Field capacity = 10.37-17.81%
Dates of application: June 23, 1993
Number of applications: 1 year, 1 application per year
Duration: 367 days.
Average annual rainfall (mm): 4 mm
Average annual leachate volume (mm): 12.9 liters

Location: North Carolina
Study type (e.g. lysimeter, field): field
Soil properties: pH=5-6, OC<0.6%, MWHC unknown
Dates of application: June 23, 1993
Crop: soybean /Interception estimated: 0% (incorporation into soil)
Number of applications: 1 year, 1 application per...
Application rate

- Gross application rate: 75 g/ha.
- Crop growth stage: BBCH 10-14
- Canopy interception %: 35\(^{(b)}\)
- Application rate net of interception: 48.75 g/ha.
- No. of applications: 1
- Time of application (absolute or relative application dates): 1, 10 and 20 days after emergence (relative applications)

\(^{(a)}\) a value of 0.57 should be used for future calculations
\(^{(b)}\) canopy interception was specified in calculations performed by the applicant, while was calculated by the model in PEC\(_{gw}\) calculations for M3 (one application every third year) and CGA 297691 performed by the RMS

PEC(gw) - FOCUS modelling results (80\(^{th}\) percentile annual average concentration at 1m)

PELMO 5.5.3 / Soybeans	Scenario (annual appl)	Oxasulfuron (µg/L)	Metabolites (µg/L)
		CGA 27913	C1801
Piacenza, 1 day after emergence	0.007	0.449	0.000
Piacenza, 10 days after emergence	0.005	0.472	0.000
Piacenza, 20 days after emergence	0.006	0.471	0.000
PELMO 5.5.3 / Soybeans

Scenario (appl every third year)	Oxasulfuron (µg/L)	C1801	CGA 27913
Piacenza, 1 day after emergence	n.c.	0.182	n.c.
Piacenza, 10 days after emergence	n.c.	0.177	n.c.
Piacenza, 20 days after emergence	n.c.	0.184	n.c.

PEARL 4.4.4 / Soybeans

Scenario (annual appl)

Oxasulfuron (µg/L)	C1801	CGA 27913
Piacenza, 1 day after emergence	0.005	0.291
Piacenza, 10 days after emergence	0.004	0.362
Piacenza, 20 days after emergence	0.005	0.208

Scenario (appl every third year)

Oxasulfuron (µg/L)	C1801	CGA 27913
Piacenza, 1 day after emergence	n.c.	0.075
Piacenza, 10 days after emergence	n.c.	0.099
Piacenza, 20 days after emergence	n.c.	0.132

n.c. not calculated since an acceptable risk was found with annual applications

PELMO 5.5.3 / Soybeans

Scenario (annual appl)	Metabolites (µg/L)	
	CGA 179710	CGA 297691
Piacenza, 1 day after emergence	0.042	2.436
Piacenza, 10 days after emergence	0.038	2.437
Piacenza, 20 days after emergence	0.050	2.448

PELMO 5.5.3 / Soybeans

Scenario (appl every third year)	Metabolites (µg/L)	
	CGA 179710	CGA 297691
Piacenza, 1 day after emergence	n.c.	1.270
Piacenza, 10 days after emergence	n.c.	1.251
Piacenza, 20 days after emergence	n.c.	1.251
PEARL 4.4.4 / Soybeans

Scenario (annual appl)

	Metabolites (µg/L)		
	CGA 179710	CGA 297691	
Piacenza, 1 day after emergence	0.039	2.982	
Piacenza, 10 days after emergence	0.039	2.989	
Piacenza, 20 days after emergence	0.048	3.004	

Scenario (appl every third year)

	Metabolites (µg/L)		
	CGA 179710	CGA 297691	
Piacenza, 1 day after emergence	n.c.	1.029	
Piacenza, 10 days after emergence	n.c.	1.033	
Piacenza, 20 days after emergence	n.c.	1.039	

n.c. not calculated since an acceptable risk was found with annual applications

PEC\(_{(gw)}\) From lysimeter / field studies

	1\(^{st}\) year	2\(^{nd}\) year	3\(^{rd}\) year
Oxasulfuron	Not detected	Not detected	Not detected
CGA 27913	< 0.1	n.p.	n.p.

n.p.: not performed, since study duration was too short

PEC surface water and PEC sediment (Regulation (EU) N° 284/2013, Annex Part A, points 9.2.5 / 9.3.1)

	1\(^{st}\) year	2\(^{nd}\) year	3\(^{rd}\) year
Oxasulfuron			
Parameters used in FOCUSsw step 1 and 2	Version control no. of FOCUS calculator: STEPS 1-2 in FOCUS v. 3.2	Molecular weight (g/mol): 406.4	K\(_{OC}\)/K\(_{OM}\) (mL/g): 17/9.86 (worst case to take into account the pH effects)
Parameters used in FOCUSsw step 3 and 4	Version control no.‘s of FOCUS software: SPIN v. 2.2, SWASH v. 5.3, Drift calculator v. 1.1, MACRO v. 5.5.4, PRZM v. 4.3.1, TOXSWA v. 4.4.3	Water solubility (mg/L): 1700	
Application rate

Crop and growth stage: soybeans BBCH 10-14
Number of applications: 1
Interval (d): -
Application rate(s): 75 g a.s./ha
Application window:
Step 1-2: Mar-May (worst-case).
Step 3:

Scenario	Timing	
	Early	Late
R3	11 May-10 Jun	21 May-20 Jun
R4	11 Mar-11 Apr	21 Mar-20 Apr

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} (µg/L) TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} (µg/kg) TWA
0 h		25.1356	4.1558		
24 h		24.3377	24.7367	4.1374	4.1466
2 d		23.5795	24.3467	4.0085	4.0196
4 d		22.1331	23.5977	3.7626	3.9969
7 d		20.1283	22.5336	3.4218	3.8223
14 d		16.1282	20.2940	2.7418	3.4458
21 d		12.9231	18.3515	2.1969	3.1170
28 d		10.3549	16.6616	1.7603	2.8304
42 d		6.6483	13.8961	1.1302	2.3609

Treatments during March to May

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} (µg/L) TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} (µg/kg) TWA
Southern EU		6.4240	6.2199	6.3219	1.0574
24 h		6.0303	6.2235	1.0251	1.0576
2 d		5.6683	6.0357	0.9636	1.0259
4 d		5.1656	5.7690	0.8782	0.9806
7 d		4.1593	5.2068	0.7071	0.8851
14 d		3.3490	4.7178	0.5693	0.8020
21 d		2.6966	4.2912	0.4584	0.7295

Vapour pressure: 2×10^{-6} Pa at 25°C

K_{OC}/K_{OH} (mL/g): 17/9.86 (worst case to take into account the pH effects)

1/n: 1.36 (worst case to take into account the pH effects)

$Q_{10}=2.58$, Walker equation coefficient 0.7

Crop uptake factor: 0
Early application

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)		
			Actual	TWA	Actual	TWA
R3 stream	0 h	2.621	--	0.1506	--	0.064
	24 h	0.0027	1.511	0.046	0.064	0.090
	2 d	0.0005	0.758	0.2972	0.049	0.066
	4 d	0.347	0.379	0.6103	0.028	0.054
	7 d	0.000	0.239	0.117	0.017	0.038
	14 d	0.000	0.128	0.064	0.011	0.030
	21 d	0.000	0.085	0.011	0.008	0.025
	28 d	0.000	0.064	0.008	0.005	0.019
	42 d	0.000	0.043	0.008	0.005	0.019
R4 stream	0 h	0.272	--	0.008	--	0.002
	24 h	0.000	0.049	0.0209	0.011	0.004
	2 d	0.000	0.024	0.011	0.001	0.003
	4 d	0.000	0.012	0.001	0.001	0.002
	7 d	0.000	0.007	0.001	0.001	0.002
	14 d	< 1e-6	0.003	0.000	0.000	0.001
	21 d	< 1e-6	0.002	0.000	0.000	0.001
	28 d	< 1e-6	0.002	0.000	0.000	0.001
	42 d	< 1e-6	0.001	0.000	0.000	0.000

Late application

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)		
			Actual	TWA	Actual	TWA
R3 stream	0 h	0.5222	--	0.0387	--	0.0209
	24 h	0.0024	0.4397	0.0151	0.0108	0.0332
	2 d	0.0002	0.2338	0.0108	0.0081	0.0271
	4 d	0.0001	0.1170	0.0060	0.0040	0.0205
	7 d	< 1e-6	0.0669	0.0055	0.0020	0.0160
	14 d	< 1e-6	0.0372	0.0030	0.0010	0.0120
	21 d	< 1e-6	0.0292	0.0030	0.0010	0.0097
	28 d	< 1e-6	0.0237	0.0020	0.0010	0.0082
	42 d	< 1e-6	0.0159	0.0019	0.0010	0.0065
R4 stream	0 h	0.2715	--	0.0078	--	0.0021
	24 h	< 1e-6	0.0489	0.0021	0.0010	0.0040
	2 d	< 1e-6	0.0245	0.0015	0.0010	0.0029
	4 d	< 1e-6	0.0122	0.0010	0.0010	0.0021
	7 d	< 1e-6	0.0070	0.0007	0.0010	0.0016
	14 d	< 1e-6	0.0035	0.0007	0.0010	0.0011
	21 d	< 1e-6	0.0023	0.0007	0.0010	0.0008
	28 d	< 1e-6	0.0017	0.0007	0.0010	0.0007
	42 d	< 1e-6	0.0012	0.0007	0.0010	0.0005
Early application

FOCUS STEP 4 Scenario (20m vegetated filter strips)	Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} (µg/L) TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} (µg/kg) TWA
R3 stream	0 h	0.6203	--	0.0346	--	--
	24 h	0.0006	0.356	0.0146	0.0267	
	2 d	0.0001	0.1788	0.0105	0.0021	
	4 d	0.0770	0.08942	0.0110	0.0151	
	7 d	0.0000	0.05589	0.0063	0.0122	
	14 d	0.0000	0.02892	0.0038	0.0086	
	21d	0.0000	0.01928	0.0026	0.0068	
	28 d	0.0000	0.01446	0.0019	0.0057	
	42 d	0.0000	0.009667	0.0012	0.0043	
R4 stream	0 h	0.0316	--	0.0009	--	--
	24 h	0.0000	0.0057	0.0002	0.0005	
	2 d	< 1e-6	0.0028	0.0002	0.0003	
	4 d	< 1e-6	0.0014	0.0001	0.0002	
	7 d	< 1e-6	0.0008	0.0001	0.0002	
	14 d	< 1e-6	0.0004	0.0000	0.0001	
	21 d	< 1e-6	0.0003	0.0000	0.0001	
	28 d	< 1e-6	0.0002	0.0000	0.0001	
	42 d	< 1e-6	0.0001	0.0000	0.0001	

Late application

FOCUS STEP 4 Scenario (20m vegetated filter strips)	Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	PEC_{SW} (µg/L) TWA	PEC_{SED} (µg/kg) Actual	PEC_{SED} (µg/kg) TWA
R3 stream	0 h	0.1249	--	0.0088	--	--
	24 h	0.0278	0.1061	0.0048	0.0076	
	2 d	0.0001	0.0564	0.0034	0.0062	
	4 d	0.0000	0.0282	0.0024	0.0047	
	7 d	0.0000	0.0161	0.0018	0.0036	
	14 d	0.0000	0.0090	0.0013	0.0027	
	21d	0.0000	0.0062	0.0009	0.0022	
	28 d	0.0000	0.0051	0.0006	0.0018	
	42 d	< 1e-6	0.0034	0.0004	0.0014	
R4 stream	0 h	0.0316	--	0.0009	--	--
	24 h	0.0000	0.0057	0.0002	0.0005	
	2 d	< 1e-6	0.0028	0.0002	0.0003	
	4 d	< 1e-6	0.0014	0.0001	0.0002	
	7 d	< 1e-6	0.0008	0.0001	0.0002	
Metabolite saccharin (CGA 27913)

Parameters used in FOCUSsw step 1 and 2

Parameters	Value
Molecular weight	183.0
Soil or water metabolite	soil and water
Koc/Kom (mL/g)	6.7/3.9
Water solubility (mg/L)	1700
DT_{50} soil (d)	24.7 (geometric mean from lab)
DT_{50} water/sediment system (d)	1000 (worst case)
DT_{50} water (d)	1000 (worst case)
DT_{50} sediment (d)	1000 (worst case)
Crop interception (%)	35% (minimal crop cover)
Maximum occurrence observed (% molar basis with respect to the parent)	
Total Water and Sediment	54%
Soil	98.5%

Application rate

Crop and growth stage: soybeans BBCH 10-14
Number of applications: 1
Interval (d): -
Application rate(s): 75 g a.s./ha
Application window: Mar-May and Jun-Sep.

FOCUS STEP 1 Scenario

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA
0 h	17.2176	1.1423		
24 h	17.2042	17.2109	1.1527	1.1475
2 d	17.1923	17.2046	1.1519	1.1499
4 d	17.1685	17.1925	1.1503	1.1505
7 d	17.1328	17.1745	1.1479	1.1499
14 d	17.0499	17.1329	1.1423	1.1475
21 d	16.9673	17.0915	1.1368	1.1449
28 d	16.8852	17.0502	1.1313	1.1422
42 d	16.7222	16.9680	1.1204	1.1367

Treatments during March to May

FOCUS STEP 2 Scenario

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA
Southern EU				
0 h	4.7542	---	0.3183	---
24 h	4.7504	4.7523	0.3181	0.3182
2 d	4.7471	4.7505	0.3178	0.3181
4 d	4.7406	4.7472	0.3174	0.3178
Peer review of the pesticide risk assessment of the active substance oxasulfuron

Molecular weight: 123.0
Soil or water metabolite: soil and water
Koc/Kom (mL/g): 640/371.2
Water solubility (mg/L): 1700
DT$_{50}$ soil (d): 26.6 days (geometric mean from lab studies)
DT$_{50}$ water/sediment system (d): 158.3 (geometric mean from sediment water studies)40
DT$_{50}$ water (d): 158.3 (whole system)
DT$_{50}$ sediment (d): 1000 (worst case)
Crop interception (%): 35 (minimal crop cover)
Maximum occurrence observed (% molar basis with respect to the parent):
Total Water and Sediment: 67%
Soil: 55%

Parameters used in FOCUSsw step 3

Vapour pressure: 0 Pa at 20°C
Koc/Kom (mL/g): 640/371.2
1/n: 0.8
Q10=2.58, Walker equation coefficient 0.7
Crop uptake factor: 0
Metabolite kinetically generated in simulation (yes/no): yes
Formation fraction in soil (k_f/k_{dp}): 1
Formation fraction in sediment water (k_f/k_{dp}): 1

Application rate

Crop and growth stage: soybeans BBCH 10-14
Number of applications: 1
Interval (d): -
Application rate(s): 75 g a.s./ha
Application window:
Step 1-2: Mar-May.
Step 3:

Scenario	Timing	
	Early	Late
R3	11 May-10 Jun	21 May-20 Jun
R4	11 Mar-11 Apr	21 Mar-20 Apr

Main routes of entry

Runoff

40 Simulation with DT50water=1000d and DT50sed=158.3d is not reported since it gave higher PECsed, but no risk assessment for the sediment compartment is needed for
FOCUS STEP 1 Scenario

Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
	Actual	TWA	Actual	TWA
0 h	5.0955	31.7202	32.0604	31.8903
24 h	5.0094	5.0525	31.9203	31.9403
2 d	4.9875	5.0255	31.7403	31.6406
4 d	4.9441	31.6420	31.6406	31.6783
7 d	4.8795	4.9597	31.2291	31.2291
14 d	4.7322	4.8826	30.2864	31.2168
21 d	4.5894	4.8085	29.3722	30.7535
28 d	4.4509	4.7364	28.4555	30.2968
42 d	4.1862	4.5966	26.7918	29.4079

Treatments during March to May

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
Northern EU	0 h	1.3802	8.7421	---	---
	24 h	1.3609	8.7187	8.7304	
	2 d	1.3573	8.6953	8.7187	
	4 d	1.3500	8.6489	8.6954	
	7 d	1.3392	8.5796	8.6606	
	14 d	1.3143	8.4201	8.5801	
	21 d	1.2899	8.2636	8.5006	
	28 d	1.2659	8.1101	8.4221	
	42 d	1.2193	7.8114	8.2680	

Early application

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)		
			Actual	TWA	Actual	TWA
R3	stream	0 h	0.1351	0.0609	---	---
		24 h	0.0003	0.0559	0.0559	
		2 d	0.0002	0.0393	0.0513	
		4 d	0.0261	0.0197	0.0527	
		7 d	0.0001	0.0130	0.0434	
		14 d	0.0000	0.0066	0.0323	
		21d	0.0000	0.0044	0.0270	
		28 d	0.0000	0.0035	0.0345	
		42 d	0.0000	0.0025	0.0347	
R4	stream	0 h	0.0030	0.0086	---	---
		24 h	< 1e-6	0.0025	0.0084	0.0085
FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)		
-----------------------	------------	---------------------------	-----------------	------------------		
		Actual	TWA	Actual	TWA	
R3 stream	0 h	0.0563	--	0.1006	--	
	24 h	0.0004	0.0475	0.0991	0.1002	
	2 d	0.0001	0.0253	0.0976	0.0996	
	4 d	0.0001	0.0127	0.0950	0.0983	
	7 d	0.0001	0.0073	0.0920	0.0965	
	14 d	0.0001	0.0055	0.0902	0.0943	
	21 d	0.0127	0.0037	0.0913	0.0935	
	28 d	0.0000	0.0032	0.0902	0.0930	
	42 d	0.0000	0.0024	0.0853	0.0924	
R4 stream	0 h	0.0071	--	0.0179	--	
	24 h	0.0000	0.0057	0.0173	0.0177	
	2 d	0.0000	0.0049	0.0167	0.0174	
	4 d	0.0058	0.0025	0.0158	0.0171	
	7 d	0.0000	0.0020	0.0170	0.0169	
	14 d	0.0000	0.0013	0.0146	0.0164	
	21 d	0.0000	0.0008	0.0132	0.0156	
	28 d	0.0000	0.0006	0.0123	0.0149	
	42 d	0.0000	0.0004	0.0112	0.0138	

Metabolite M3

Parameters used in FOCUSsw step 1 and 2

- Molecular weight: 436
- Soil or water metabolite: soil
- Koc/Kom (mL/g): 0/0
- Water solubility (mg/L): 1700
- DT_{50} soil (d): 1000 (worst case)
- DT_{50} water/sediment system (d): 1000 (worst case)
- DT_{50} water (d): 1000 (worst case)
- DT_{50} sediment (d): 1000 (worst case)
- Crop interception (%): 35 (minimal crop cover)
- Maximum occurrence observed (% molar basis with respect to the parent):
 - Total Water and Sediment: 0.001% (default as M3 was not listed in water/sediment studies but FOCUS Steps 1-2 will not accept 0 as input)
Parameters used in FOCUSsw step 3 and 4

- Soil: 25%
- Vapour pressure: 0 Pa at 20°C
- Kom/Koc (mL/g): 0/0
- 1/n: 1
- Q10=2.58, Walker equation coefficient 0.7
- Crop uptake factor: 0
- Metabolite kinetically generated in simulation (yes/no): yes
- Formation fraction in soil (k_f/k_dp): 1
- Formation fraction in sediment water (k_f/k_dp): 0

Application rate

- Crop and growth stage: soybeans BBCH 10-14
- Number of applications: 1
- Interval (d): -
- Application rate(s): 75 g a.s./ha
- Application window:
 - Step 1-2: Mar-May and Jun-Sep.
 - Step 3-4:

Main routes of entry

- Runoff

FOCUS STEP 1 Scenario	Day after overall maximum	PEC_{sw} (µg/L)	PEC_{sed} (µg/kg)	
	Actual	TWA	Actual	TWA
0 h	6.7055	--	0.0000	--
24 h	6.7008	6.7032	0.0000	0.0000
2 d	6.6962	6.7008	0.0000	0.0000
4 d	6.6869	6.6962	0.0000	0.0000
7 d	6.6730	6.6893	0.0000	0.0000
14 d	6.6407	6.6731	0.0000	0.0000
21 d	6.6086	6.6569	0.0000	0.0000
28 d	6.5766	6.6408	0.0000	0.0000
42 d	6.5131	6.6088	0.0000	0.0000

Treatment during March to May
FOCUS STEP 2 Scenario

Southern EU
Early application

FOCUS STEP	Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
3 Scenario	R3 stream	0 h	0.5241	0.02806
		24 h	0.0005	0.0119
		2 d	0.0001	0.0086
		4 d	0.1199	0.0116
		7 d	0.0000	0.0057
		14 d	0.0000	0.0034
		21 d	0.0000	0.0023
		28 d	0.0000	0.0017
		42 d	0.0000	0.0010
	R4 stream	0 h	0.000198	0.0000
		24 h	< 1e-6	0.0000
		2 d	< 1e-6	0.0000
		4 d	< 1e-6	0.0000
		7 d	< 1e-6	0.0000
		14 d	< 1e-6	0.0000
		21 d	< 1e-6	< 1e-6
		28 d	< 1e-6	< 1e-6
		42 d	< 1e-6	< 1e-6

Late application

FOCUS STEP	Water body	Day after overall maximum	PEC_{SW} (µg/L)	PEC_{SED} (µg/kg)
3 Scenario	R3 stream	0 h	0.5408	0.0368
		24 h	0.002508	0.0196
		2 d	0.000185	0.0138
		4 d	0.000062	0.0098
		7 d	0.000026	0.0072
		14 d	0.000016	0.0057
		21 d	0.002374	0.0039
		28 d	0.000004	0.0027
		42 d	0.000002	0.0016
	R4 stream	0 h	0.0081	0.0005
		24 h	0.0000	0.0002

www.efsa.europa.eu/efsajournal 52 EFSA Journal 2017;15(3):4722
Early application

FOCUS STEP 4 Scenario (20m vegetated filter strips)	Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
R3 stream	0 h	0.1241	--	0.0066	--	
	24 h	0.000128	0.0713	0.0028	0.0051	
	2 d	0.000021	0.0358	0.0020	0.0039	
	4 d	0.02665	0.0179	0.0026	0.0029	
	7 d	0.000005	0.0119	0.0013	0.0024	
	14 d	0.000002	0.0059	0.0008	0.0017	
	21 d	< 1e-6	0.0040	0.0005	0.0014	
	28 d	< 1e-6	0.0030	0.0004	0.0012	
	42 d	< 1e-6	0.0020	0.0002	0.0009	
R4 stream	0 h	0.00005	--	0.000003	--	
	24 h	< 1e-6	0.00003	0.000001	0.000002	
	2 d	< 1e-6	0.00001	< 1e-6	0.000001	
	4 d	< 1e-6	0.00001	< 1e-6	0.000001	
	7 d	< 1e-6	0.00000	< 1e-6	< 1e-6	
	14 d	< 1e-6	0.00000	< 1e-6	< 1e-6	
	21 d	< 1e-6	0.00000	< 1e-6	< 1e-6	
	28 d	< 1e-6	0.00000	< 1e-6	< 1e-6	
	42 d	< 1e-6	< 1e-6	< 1e-6	< 1e-6	

Late application

FOCUS STEP 4 Scenario (20m vegetated filter strips)	Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
R3 stream	0 h	0.1294	--	0.0088	--	
	24 h	0.0291	0.1100	0.0047	0.0076	
	2 d	0.0001	0.0586	0.0033	0.0062	
	4 d	0.0000	0.0293	0.0024	0.0046	
	7 d	0.0000	0.0167	0.0017	0.0036	
Metabolite CGA 297691
Parameters used in FOCUSsw step 1 and 2

Parameter	Value
Molecular weight	74.08
Soil or water metabolite:	water
Koc/Kom (mL/g)	0/0
Water solubility (mg/L)	1700
DT$_{50}$ soil (d)	1000 (worst case)
DT$_{50}$ water/sediment system (d)	1000 (worst case)
DT$_{50}$ water (d)	1000 (worst case)
DT$_{50}$ sediment (d)	1000 (worst case)
Crop interception (%)	35 (minimal crop cover)
Maximum occurrence observed (% molar basis with respect to the parent):	
Total Water and Sediment	93%
Soil	21%

Application rate

Crop and growth stage: soybeans BBCH 10-14
Number of applications: 1
Interval (d): -
Application rate(s): 75 g a.s./ha
Application window: Mar-May and Jun-Sep.

FOCUS STEP 1 Scenario	Day after overall maximum	PEC$_{sw}$ (µg/L) Actual	PEC$_{sw}$ (µg/L) TWA	PEC$_{sed}$ (µg/kg) Actual	PEC$_{sed}$ (µg/kg) TWA
	0 h	5.3134		0.0000	
	24 h	5.3098	5.3116	0.0000	0.0000
	2 d	5.3061	5.3098	0.0000	0.0000
	4 d	5.2987	5.3061	0.0000	0.0000
	7 d	5.2877	5.3006	0.0000	0.0000
	14 d	5.2621	5.2877	0.0000	0.0000
	21 d	5.2367	5.2750	0.0000	0.0000
	28 d	5.2113	5.2622	0.0000	0.0000
	42 d	5.1610	5.2368	0.0000	0.0000
Treatments during March to May

FOCUS STEP 2 Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
Southern EU	0 h	1.4321	---	0.0000	---
	24 h	1.4312	1.4317	0.0000	0.0000
	2 d	1.4302	1.4312	0.0000	0.0000
	4 d	1.4282	1.4302	0.0000	0.0000
	7 d	1.4252	1.4287	0.0000	0.0000
	14 d	1.4183	1.4252	0.0000	0.0000
	21 d	1.4115	1.4218	0.0000	0.0000
	28 d	1.4046	1.4183	0.0000	0.0000
	42 d	1.3911	1.4115	0.0000	0.0000

Metabolite CGA 171895 (M5)

Data gap

Metabolite CGA 179710

Parameters used in FOCUS\textsubscript{sw} step 1 and 2

- Molecular weight: 166.2
- Soil or water metabolite: soil
- Koc/Kom (mL/g): 269/156
- Water solubility (mg/L): 1700
- DT\textsubscript{50} soil (d): 1000 (worst case)
- DT\textsubscript{50} water/sediment system (d): 1000 (worst case)
- DT\textsubscript{50} water (d): 1000 (worst case)
- DT\textsubscript{50} sediment (d): 1000 (worst case)
- Crop interception (%): 3 (minimal crop cover)
- Maximum occurrence observed (% molar basis with respect to the parent):
 - Total Water and Sediment: 2.4%
 - Soil: 27.5%

Application rate

- Crop and growth stage: soybeans BBCH 10-14
- Number of applications: 1
- Interval (d): -
- Application rate(s): 75 g a.s./ha
- Application window: Mar-May.

FOCUS STEP 1 Scenario

FOCUS STEP 1 Scenario	Day after overall maximum	PEC\textsubscript{SW} (µg/L)	PEC\textsubscript{SED} (µg/kg)		
		Actual	TWA	Actual	TWA
0 h	2.2567	6.0524			
24 h	2.2534	6.0616	6.0570		
2 d	2.2518	6.0574	6.0583		
4 d	2.2487	6.0490	6.0557		
7 d	2.2440	6.0364	6.0502		
14 d	2.2332	6.0072	6.0360		
21 d	2.2224	5.9782	6.0216		
Treatments during March to May

FOCUS STEP 2 Scenario	Day after overall maximum	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
Southern EU	0 h	0.7088	---	1.9042	---
	24 h	0.7079	0.7084	1.9029	1.9035
	2 d	0.7074	0.7080	1.9015	1.9029
	4 d	0.7064	0.7074	1.8989	1.9015
	7 d	0.7049	0.7067	1.8950	1.8996
	14 d	0.7015	0.7050	1.8858	1.8950
	21 d	0.6981	0.7032	1.8767	1.8904
	28 d	0.6947	0.7015	1.8676	1.8858
	42 d	0.6880	0.6982	1.8495	1.8767

Early application

FOCUS STEP 3 Scenario	Water body	Day after overall maximum	PEC_{SW} (µg/L) Actual	TWA	PEC_{SED} (µg/kg) Actual	TWA
R3 stream	0 h	0.0541	--	0.0518	--	0.0518
	24 h	0.0001	0.0391	0.0480	0.0508	
	2 d	0.0001	0.0208	0.0480	0.0497	
	4 d	0.0378	0.0105	0.0424	0.0480	
	7 d	0.0001	0.0069	0.0375	0.0449	
	14 d	0.0000	0.0058	0.0456	0.0438	
	21 d	0.0000	0.0039	0.0373	0.0432	
	28 d	0.0001	0.0038	0.0391	0.0430	
	42 d	0.0000	0.0033	0.0411	0.0427	
R4 stream	0 h	0.0149	--	0.0172	--	0.0172
	24 h	0.0000	0.0094	0.0153	0.0166	
	2 d	0.0000	0.0087	0.0139	0.0159	
	4 d	0.0097	0.0044	0.0118	0.0146	
	7 d	0.0000	0.0037	0.0129	0.0140	
	14 d	0.0000	0.0023	0.0095	0.0127	
	21 d	0.0000	0.0015	0.0080	0.0115	
	28 d	0.0000	0.0011	0.0072	0.0106	
	42 d	0.0000	0.0008	0.0061	0.0093	
Late application

FOCUS STEP 3	Water body	Day after overall maximum	PEC$_{SW}$ (µg/L) Actual	PEC$_{SW}$ (µg/L) TWA	PEC$_{SED}$ (µg/kg) Actual	PEC$_{SED}$ (µg/kg) TWA
R3 stream	0 h	0.1507	..	0.1555	--	--
	24 h	0.0014	0.1267	0.1411	0.1518	--
	2 d	0.0006	0.0675	0.1402	0.1474	--
	4 d	0.0003	0.0340	0.1224	0.1412	--
	7 d	0.0001	0.0195	0.1083	0.1312	--
	14 d	0.0003	0.0190	0.1342	0.1279	--
	21 d	0.0882	0.0127	0.1105	0.1266	--
	28 d	0.0001	0.0124	0.1152	0.1265	--
	42 d	0.0002	0.0106	0.1195	0.149	--
R4 stream	0 h	0.03477	--	0.0366	--	--
	24 h	0.0000	0.0203	0.0321	0.0351	--
	2 d	0.0000	0.0192	0.0286	0.0335	--
	4 d	0.0208	0.0098	0.0241	0.0307	--
	7 d	0.0000	0.0085	0.0261	0.0291	--
	14 d	0.0000	0.0051	0.0191	0.0261	--
	21 d	0.0000	0.0034	0.0163	0.0235	--
	28 d	0.0000	0.0025	0.0146	0.0216	--
	42 d	0.0000	0.0017	0.0126	0.0190	--
Metabolite MT6

Data gap

Metabolites guanidine and 3-guanidine-1-butene

PECsw and PECSED calculation assumptions

PECsw were calculated for water phase metabolites guanidine and 3-guanidine-1-butene based on their maximum observed formation in water, the maximum Step 2 PECsw and PECSED for oxasulfuron (6.4 µg/L and 1.1 µg/kg) and assuming the same molecular weight as oxasulfuron in the absence of specific data for 3-guanidine-1-butene.

Results

	Max occ %	Molecular weight	PECsw µg/L	PECsed µg/kg
Oxasulfuron	-	406.4	6.4	1.1
guanidine	33	59.07	0.31	0.05
3-guanidine-1-butene	24	406.4	1.54	0.26

Estimation of concentrations from other routes of exposure (Regulation (EU) N° 284/2013, Annex Part A, point 9.4)

Method of calculation

PEC calculation from other routes of exposure is not necessary

PEC

Maximum concentration

PEC calculation from other routes of exposure is not necessary
Ecotoxicology

Effects on birds and other terrestrial vertebrates (Regulation (EU) N° 283/2013, Annex Part A, point 8.1 and Regulation (EU) N° 284/2013, Annex Part A, point 10.1)

Species	Test substance	Time scale	End point	Toxicity (mg/kg bw per day)
Birds				
Bobwhite quail	a.s.	Acute	LD$_{50}$	>2250
Mallard duck	a.s.	Acute	LD$_{50}$	>2250
Bobwhite quail	a.s.	Short-term	LD$_{50}$	>1613
Mallard duck	a.s.	Short-term	LD$_{50}$	>1831
Bobwhite quail	a.s.	Long-term	NOEL	6.91
Mallard duck	a.s.	Long-term	NOEL	12.67
Mammals				
Rat	a.s.	Acute	LD$_{50}$	>5000
Rat	a.s.	Long-term	NOAEL	8.3

- **Endocrine disrupting properties (Annex Part A, points 8.1.5)**
 - No indication for potential endocrine disrupting properties from the data available in the section of ecotoxicology
- **Additional higher tier studies (Annex Part A, points 10.1.1.2):**
 - No higher tier studies submitted
- **Terrestrial vertebrate wildlife (birds, mammals, reptile and amphibians) (Annex Part A, points 8.1.4, 10.1.3):**
 - No available data

Toxicity/exposure ratios for terrestrial vertebrates (Regulation (EU) N° 284/2013, Part A, Annex point 10.1)

Soybean (BBCH 10-14): 0.1 kg formulated product/ha corresponding to 75 g oxasulfuron/ha

Growth stage	Indicator or focal species	Time scale	DDD (mg/kg bw per day)	TER	Trigger
Screening Step (Birds)					
BBCH 10-14	Small omnivorous bird	Acute	11.91	>189	10
BBCH 10-14	Small omnivorous bird	Long-term	2.58	**2.68**	5
Tier 1 (Birds)					
BBCH 10-14	Small granivorous bird (finch)	Long-term	0.453	15.25	5
BBCH 10-14	Small omnivorous bird (lark)	Long-term	0.433	15.96	5
BBCH 10-14	Medium herbivorous/granivorous bird (pigeon)	Long-term	0.902	7.66	5
BBCH 10-14	Small insectivorous bird (wagtail)	Long-term	0.449	15.40	5
Screening Step (Mammals)					
BBCH 10-14	Small herbivorous mammal	Acute	10.23	>489	10
Peer review of the pesticide risk assessment of the active substance oxasulfuron

www.efsa.europa.eu/efsajournal

60

EFSA Journal 2017;15(3):4722

BBCH 10-14	Tier 1 (Mammals)
BBCH 10-14	Large herbivorous mammal “lagomorph”
BBCH 10-14	Small omnivore mammal “mouse”
BBCH 10-14	Small insectivore mammal “shrew”

Risk from bioaccumulation and food chain behaviour – not necessary (log K\text{ow} < 3 for active substance and metabolites)

Risk from consumption of contaminated water

Puddle scenario, Screening step

Application rate (g a.s./ha)/relevant endpoint ≤ 50 (koc<500 L/kg), TER calculation not needed

Bold values do not meet the trigger

Toxicity data for all aquatic tested species (Regulation (EU) N° 283/2013, Annex Part A, points 8.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.2)

* This section does not yet reflect the new EFSA Guidance Document on aquatic organisms which has been noted in the meeting of the Standing Committee on Plants, Animals, Food and Feed on 11 July 2014.

1 (nom) nominal concentration; (im) initial measured concentration; (mm) mean measured concentration; prep.: preparation; a.s.: active substance

Group	Test substance	Time-scale (Test type)	End point	Toxicity
Laboratory tests				
Fish	Lepomis macrochirus a.s.	96 hr (flow-through)	Mortality, LC\text{50}	> 111 (mm)
Oncorhynchus mykiss a.s.	96 hr (flow-through)	Mortality, LC\text{50}	> 116 (mm)	
Cyprinodon variegatus a.s.	96 hr (flow-through)	Mortality, LC\text{50}	> 113 (mm)	
Pimephales promelas a.s.	35 d (flow-through)	Survival and Growth NOEC	114 (mm)	
Oncorhynchus mykiss CGA 297691 (CA2013A)	96 hr (flow-through)	Mortality, LC\text{50}	> 100 (nom)	
Oncorhynchus mykiss C1801 (CA2006A)	96 hr (static)	Mortality, EC\text{50}	> 100 (nom)	
Aquatic invertebrates				
Daphnia magna a.s.	48 h (flow-through)	Immobility, EC\text{50}	>89.4 (mm)	
Crassostea virginica a.s.	96 h (flow-through)	Shell deposition, EC\text{50}	>132 (mm)	
Mysisopsis bahia a.s.	48 h (flow-through) 96 h (flow-through)	Mortality, LC\text{50} Mortality, LC\text{50}	>109 (mm) 82.6 (mm)	
Daphnia magna a.s.*	48 h (flow-through)	Immobility, EC\text{50}	>136 (mm)	
Daphnia magna a.s.	21 d (flow-through)	Reproduction, NOEC Reproduction, EC\text{10}	14 (mm) 14.3 (mm) 28.85 (mm)	
Peer review of the pesticide risk assessment of the active substance oxasulfuron

www.efsa.europa.eu/efsajournal

Group Test substance Time-scale (Test type) End point Toxicity

Group	Test substance	Time-scale (Test type)	End point	Toxicity	
Daphnia magna	CGA 297691 (CA2013A)	48 h (static)	Reproduction, EC₅₀	>100 (nom)	
Daphnia magna	C1801 (CA2006A)	48 h (static)	Immobility, EC₅₀	>100 (nom)	
Algae\^\^	Navicula pelliculosa	a.s.	72 h (static)	72h EC₅₀	>100 (nom)
				72h EC₅₀	>100 (nom)
	Pseudokirchneriella subcapitata	a.s.	72 h (static)	72h EC₅₀	0.256 (mm)
				2.25 (a.s., mm)	1.30 (mm)
	Pseudokirchneriella subcapitata	Laguna 75 WG	72 h (static)	EC₅₀	>0.097 (mm)
				0.097 (mm)	>0.097 (mm)
	Pseudokirchneriella subcapitata	CGA 297691 (CA2013A)*	120h (static)	72h EC₅₀	0.0015 (mm)
				72h EC₅₀	0.00324 (mm)
				72h EC₅₀	0.00020 (mm)
	Selenastrum capricornutum	CGA 297691 (CA2013A)	72 h (static)	EC₅₀	>96.8 (mm)
				14d, frond count	>96.8 (mm)
Higher plant	Lemna gibba	a.s.*	14 d (static)	7d , frond count	0.0015 (mm)
				6d , frond count	0.00324 (mm)
				14d, frond count	0.00020 (mm)
	Lemna gibba	Laguna 75 WG	7 d (semi-static)	Biomass: EC₅₀	2.23 (mm)
				Growth rate: EC₅₀	5.59 (mm)
	Lemna gibba	CGA 297691 (CA2013A)*	14 d (static)	Frond count, dry weight, EC₅₀	>0.08 (mm)

Further testing on aquatic organisms

No further tests submitted

Potential endocrine disrupting properties (Annex Part A, point 8.2.3)

No indication for potential endocrine disrupting properties from the data available in the section of ecotoxicology

* (nom) nominal concentration; (mm) mean measured concentration; (im) initial measured concentration; prep.: preparation; a.s.: active substance

* radiolabelled active substance

Endpoint marked in bold used in the risk assessment

Bioconcentration in fish (Annex Part A, point 8.2.2.3)

Active substance	C1801 (CA2006A)	CGA 297691 (CA2013A)	CGA 171895	CGA 179710	CGA 297691
logP_{O/W}	-0.81	0.97*	0.45*	1.30*	0.835*
Steady-state bioconcentration factor (BCF) (total wet weight/normalised to 5% lipid content)	Not required				
Uptake/depuration kinetics BCF	Not performed				
Annex VI Trigger for the bioconcentration factor					
---	---				
Clearance time (days) (CT₅₀)	Not performed				
(CT₉₀)	Not performed				
Level and nature of residues (%) in organisms after the 14 day depuration phase	Not performed				
Higher tier study	No higher tier studies submitted				

Values estimated by the WSKOWWIN V1.67 program contained in the US EPA’s EPISUITE package of predictive models
Toxicty/exposure ratios for the most sensitive aquatic organisms (Regulation (EU) No 284/2013, Annex Part A, point 10.2)

Maximum PECsw values and TER values for oxasulfuron for FOCUS Step 1 Scenario – application to Soybean (BBCH 10-14): 0.1 \text{L kg formulated product/ha} corresponding to 75 \text{g oxasulfuron/ha}

Scenario	PEC Step 1 (µg/L)	Fish acute	Fish prolonged	Invertebrate acute	Invertebrate prolonged	Algae	Aquatic plants
	L. macrochirus	P. promelas	Mysis b.	D. magna	P. subcapitata	L. gibba	
oxasulfuron				E₅₀	E₅₀	E₅₀	E₅₀
	LC₅₀	NOEC	EC₅₀	NOEC	E₅₀	E₅₀	
	>111000 µg/L	114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L	
O. mykiss				E₅₀	E₅₀	E₅₀	E₅₀
	LC₅₀	NOEC	EC₅₀	NOEC	E₅₀	E₅₀	
	>1000000 µg/L	>1000000 µg/L	>10000 µg/L	>97 µg/L	>80 µg/L	3.24 µg/L	
C1801 (CA2006A)	5.12	>19607	>19607		254	0.63	
	L. macrochirus	P. promelas	Mysis b.	D. magna	P. subcapitata	L. gibba	
				E₅₀	E₅₀	E₅₀	E₅₀
	LC₅₀	NOEC	EC₅₀	NOEC	E₅₀	E₅₀	
	>100000 µg/L	>100000 µg/L	>97 µg/L	>80 µg/L	>80 µg/L	3.24 µg/L	
CGA 297691	5.31	>18832	>18832		>18.27	>15.1	
	P. promelas	D. magna	P. subcapitata	L. gibba			
			E₅₀	E₅₀			
	LC₅₀	NOEC	EC₅₀	E₅₀			
	17300 µg/L	86200 µg/L	1300 µg/L	3.24 µg/L	3.24 µg/L		
CGA 27913	17.22	1004	5000		75	0.19	
	L. macrochirus	Mysis b.	P. subcapitata	L. gibba			
			E₅₀	E₅₀			
	LC₅₀	NOEC	EC₅₀	E₅₀			
	>111000 µg/L	82600 µg/L	1300 µg/L	3.24 µg/L	3.24 µg/L		
CGA 179710	2.26	>49115	36415		575	1.43	
	L. macrochirus	Mysis b.	P. subcapitata	L. gibba			
			E₅₀	E₅₀			
	LC₅₀	NOEC	EC₅₀	E₅₀			
	>111000 µg/L	82600 µg/L	1300 µg/L	0.324 µg/L	0.324 µg/L		
M3	6.71	>1654	1230		19.37	0.05	

Annex VI Trigger

	100	10	100	100	10	10

www.efsa.europa.eu/efsajournal
Surrogate value, conservatively assuming acute toxicity to be ×10 higher than that of the parent active substance.

Surrogate value, conservatively assuming toxicity to be equal to that of the parent active substance.

Bold values do not meet the trigger.

Maximum PECsw values and TER values for oxasulfuron for FOCUS Step 2 Scenario – application to Soybean (BBCH 10-14): 0.1 kg formulated producta corresponding to 75 g oxasulfuron/ha

Scenario	PEC Step 2 (SEU) (µg/L)	Fish acute	Fish prolonged	Invertebrate acute	Invertebrate prolonged	Algae	Aquatic plants
		L. macrochirus	P. promelas	Mysis bahia	D. magna	P. subcapitata	L. gibba
oxasulfuron	6.42	>111000 µg/L	82600 µg/L	14000 µg/L	1300µg/L	3.24 µg/L	
C1801 (CA2006A)	1.38	>72464 µg/L	>72464 µg/L	942 µg/L	2.35 µg/L		
CGA 297691 (CA2013A)	1.43	>69930 µg/L	>69930 µg/L	>97 µg/L	>80 µg/L		
CGA 27913 (saccharin)	4.75	17300 µg/L	86200 µg/L	>100000 µg/L	3.24 µg/L		
CGA 179710	0.71	>11100 µg/L	8260 µg/L	130 µg/L	0.324 µg/L		
TER calculation for FOCUS Step 3-4 (20m VFS) Scenario for oxasulfuron—application to Soybean (BBCH 10-14): 0.1 L kg formulated product/ha corresponding to 75 g oxasulfuron/ha (worst case between early and late application)

Scenario	PEC (µg/L)	Fish acute	Fish prolonged	Invertebrate acute	Invertebrate prolonged	Algae	Aquatic plants
Fish acute	L. macrochirus						
	LC₅₀						
	NOEC						
>111000 µg/L	>114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L		
Fish prolonged	P. promelas						
	EC₅₀						
	NOEC						
114000 µg/L	114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L		
Invertebrate acute	Mysidopsis bahia						
	EC₅₀						
	NOEC						
114000 µg/L	114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L		
Invertebrate prolonged	D. magna						
	EC₅₀						
	NOEC						
114000 µg/L	114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L		
Algae	P. subcapitata						
	EᵣC₅₀						
	EᵣC₅₀						
114000 µg/L	114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L		
Aquatic plants	L. gibba						
	EᵣC₅₀						
	EᵣC₅₀						
114000 µg/L	114000 µg/L	82600 µg/L	14000 µg/L	1300 µg/L	3.24 µg/L		

Step 3

- **R3**
 - 2.621
 - 42350
 - 43495
 - 31515
 - 5341
 - 496
 - **1.24**

- **R4**
 - 0.272
 - 408088
 - 419118
 - 303676
 - 51471
 - 4779
 - 11.91

Step 4 (20m VFS)

- **R3**
 - 0.620
 - 179032
 - 183871
 - 133226
 - 22581
 - 2097
 - **5.23**

- **R4**
 - 0.033
 - 3468750
 - 3562500
 - 2581250
 - 437500
 - 40625
 - 101

Bold values do not meet the trigger.

TER calculation for FOCUS Step 3 Scenario for C1801 (CA2006A)—application to Soybean (BBCH 10-14): 0.1 L kg formulated product/ha corresponding to 75 g oxasulfuron/ha (worst case between early and late application)

Scenario	PEC (µg/L)	O. mykiss	D. magna	P. subcapitata	L. gibba
		LC₅₀	EC₅₀	EᵣC₅₀	EᵣC₅₀
Fish acute	n.a.				
		>100000 µg/L	>100000 µg/L	1300 µg/L	3.24 µg/L
Fish prolonged	n.a.				
		>100000 µg/L	>100000 µg/L	1300 µg/L	3.24 µg/L
Invertebrate acute	n.a.				
		>100000 µg/L	>100000 µg/L	1300 µg/L	3.24 µg/L
Invertebrate prolonged	n.a.				
		>100000 µg/L	>100000 µg/L	1300 µg/L	3.24 µg/L
Algae	P. subcapitata				
	EᵣC₅₀				
	EᵣC₅₀				
>100000 µg/L	>100000 µg/L	1300 µg/L	3.24 µg/L		
Aquatic plants	L. gibba				
	EᵣC₅₀				
	EᵣC₅₀				
>100000 µg/L	>100000 µg/L	1300 µg/L	3.24 µg/L		

Step 3

- **R3**
 - 0.135
 - 740741
 - 740741
 - 9630
 - 24

- **R4**
 - 0.007
 - 14285714
 - 14285714
 - 185714
 - 463

Surrogate value, conservatively assuming toxicity to be equal to that of the parent active substance.
TER calculation for FOCUS Step 3 Scenario for CGA 179710 – application to Soybean (BBCH 10-14): 0.1 L kg formulated product./ha corresponding to 75 g oxasulfuron/ha (worst case between early and late application)

Scenario	PEC (µg/L)	Fish acute	Fish prolonged	Invertebrate acute	Invertebrate prolonged	Algae	Aquatic plants
L. macrochirus	n.a.	Mysis spp. bahia	n.a.	P. subcapitata	E₅₀	L. gibba	
LC₅₀	>111000² µg/L	82600² µg/L	1300² µg/L	3.24² µg/L			

Step 3

| R3 | 0.151 | 735099 | 547020 | 8609 | 21 |
| R4 | 0.035 | 3171429| 2360000| 37143 | 93 |

² Surrogate value, conservatively assuming toxicity to be equal to that of the parent active substance.

TER calculation for FOCUS Step 3-4 (20m VFS) Scenario for M3— application to Soybean (BBCH 10-14): 0.1 kg formulated product/ha corresponding to 75 g oxasulfuron/ha (worst case between early and late application)

Scenario	PEC (µg/L)	Fish acute	Fish prolonged	Invertebrate acute	Invertebrate prolonged	Algae	Aquatic plants
L. macrochirus	n.a.	Mysis spp. bahia	n.a.	P. subcapitata	E₅₀	L. gibba	
LC₅₀	>111000² µg/L	82600² µg/L	1300² µg/L	0.324² µg/L			

Step 3

| R3 | 0.54 | 20518 | 15268 | 240 | 0.60 |
| R4 | 0.008 | 1387500 | 1032500 | 16250 | 41 |

Step 4 (20m VFS)

| R3 | 0.129 | 86047 | 64031 | 1008 | 2.51 |
| R4 | 0.002 | 5550000 | 4130000 | 65000 | 162 |

² Surrogate value, conservatively assuming acute toxicity to be ×10 higher than that of the parent active substance.

Bold values do not meet the trigger.
Effects on bees (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.1 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.1)*

* This section does reflect the new EFSA Guidance Document on bees which has not yet been noted by the Standing Committee on Plants, Animals, Food and Feed.

Species	Test substance	Time scale/type of endpoint	End point	toxicity
Apis mellifera	a.s.	Acute	Oral toxicity (LD50)	>100 µg/bee
Apis mellifera	a.s.	Acute	Larval toxicity (single exposure)* (LD50)	>20 µg/bee
Apis mellifera	Laguna 75 WG	Chronic	LC50	>6.847 g product/kg food (5.136 g a.s./kg food)
			NOEC	≥6.847 g product/kg food (5.136 g a.s./kg food)
			LDD50	>191.4 µg product/bee/day (>143.5 µg a.s./bee/day)
			NOED	≥191.4 µg product/bee/day (143.5 µ µg a.s./bee/day)

Semi-field test (Cage and tunnel test)
No further tests submitted

Field tests
No further tests submitted

*Risk assessment was not used in the risk assessment, since it is not considered suitable

Risk assessment for bees from contact and oral dietary exposure - application to Soybean (BBCH 10-14): 0.1 kg formulated product./ha corresponding to 75 g oxasulfuron/ha

Species	Test substance	Scenario	Risk quotient	HQ/ETR	Trigger
Consumption of pollen and nectar - Screening level assessment					
Apis mellifera	a.s.	Not relevant	ETR_{acute adult oral}	< 0.0057 < 0.004	0.2 < 0.03
Apis mellifera	a.s.	Not relevant	ETR_{chronic adult oral}	<0.006 < 0.002	0.2 < 0.03

Consumption of guttation water - Screening level assessment

| Apis mellifera| a.s. | Not relevant | ETR_{acute adult oral} | < 0.006 < 0.002 | 0.2 < 0.03 |
| Apis mellifera| a.s. | Not relevant | ETR_{chronic adult oral} | <0.006 < 0.002 | 0.2 < 0.03 |

Consumption of surface water* - Screening level assessment

| Apis mellifera| a.s. | Not relevant | ETR_{acute adult oral} | < 0.000003 < 0.000002 | 0.2 < 0.03 |
| Apis mellifera| a.s. | Not relevant | ETR_{chronic adult oral} | <0.000003 < 0.000002 | 0.2 < 0.03 |

*PEC_{SW} calculated at Step1
Effects on other arthropod species (Regulation (EU) N° 283/2013, Annex Part A, point 8.3.2 and Regulation (EU) N° 284/2013 Annex Part A, point 10.3.2)

Laboratory tests with standard sensitive species

Species	Test Substance	End point	Toxicity
Typhlodromus pyri	Laguna 75 WG	Mortality, LR_{50}	3.23 g a.s./ha <50% at the highest tested rate with sufficient survivors for reproduction assessment (7.8% at 3.19 g a.s./ha)
		Reproduction, reduction %	
Aphidius rhopalosiphi	Laguna 75 WG	Mortality LR_{50}	>75 g a.s./ha <50% (25.9% at 37.5 g a.s./ha)
		Reproduction, reduction %	

Additional species

None submitted

First tier risk assessment for – Soybean (BBCH 10-14): 0.1 kg formulated product/ha corresponding to 75 g oxasulfuron/ha

Test substance	Species	Effect (LR_{50} g/ha)	HQ in-field	HQ off-field (1 m)	Trigger
Laguna 75 WG	*Typhlodromus pyri*	3.23 g a.s./ha	23.2	0.6	2
Laguna 75 WG	*Aphidius rhopalosiphi*	>75 g a.s./ha	<1	<0.03	2

Extended laboratory tests, aged residue tests

Species	Life stage	Test substance, substrate	Time scale	Dose (g product/ha)	End point	% effect*
Typhlodromus pyri	Protonymphs and adults	Laguna 75 WG, leaf bean discs	14 d of exposure	4.688 9.375 18.75 37.5 75	reproduction	8 8.2 0.5 3.8 1.3
Poecilus cupreus	Adults	Laguna 75 WG, sandy soil	14 d of exposure	4.688 9.375 18.75 37.5 75	Food consumption	25.9 12.9 2.9 15.1 12.2

Semi-field tests

No studies submitted

Field studies

No studies submitted

Additional specific test

No studies submitted

(positive values = adverse effects)
Effects on non-target soil meso- and macro fauna; effects on soil nitrogen transformation (Regulation (EU) No 283/2013, Annex Part A, points 8.4, 8.5, and Regulation (EU) No 284/2013 Annex Part A, points 10.4, 10.5)

Test organism	Test substance	Application method of test a.s./OM	Time scale	End point	Toxicity (mg/kg d.w. soil)
Earthworms					
Eisenia foetida	a.s.	Incorporated into soil / 10% OM	Acute (14d)	Mortality	LC$_{50}$ >1000
Eisenia foetida	Laguna 75 WG	Incorporated into soil / 10% OM	Chronic (56d)	Reproduction	NOEC= 2
Eisenia foetida	CGA 27913*	Incorporated into soil / 10% OM	Chronic (56d)	Reproduction	NOEC=0.04

Other soil macroorganisms

No studies submitted

*endpoint (metabolite IN-00581) from the EFSA conclusion on metsulfuron-methyl (EFSA, 2015)

Higher tier testing (e.g. modelling or field studies)

No studies submitted

Nitrogen transformation

Nitrogen transformation	Test substance	Maximum tested rate of 0.5 kg product/ha (0.67 mg test item/kg soil dry weight), corresponding to 375 g a.s./ha (0.50 mg a.s./kg soil dry weight); Sandy loam soil.	11.5% effect at day 70 at 0.50 mg a.s./kg soil dry weight (=375 g a.s./ha)
Laguna 75 WG*		Maximum tested rate of 0.5 kg product/ha (0.67 mg test item/kg soil dry weight), corresponding to 375 g a.s./ha (0.50 mg a.s./kg soil dry weight); Sandy loam soil.	11.5% effect at day 70 at 0.50 mg a.s./kg soil dry weight (=375 g a.s./ha)

*Considering the length of the study, the DT50 in soil and the % of formation of the metabolites reached the maximum in the degradation studies in soil (both aerobic and anaerobic) in short times, metabolites are covered in the study.

Toxicity/exposure ratios for soil organisms

Soybean (BBCH 10-14): 0.1 kg formulated product/ha corresponding to 75 g oxasulfuron/ha

Test organism	Test substance	Time scale	Soil PEC (actual)	TER	Trigger
Earthworms					
a.s.	Acute	0.065	15384.62	10	
a.s.	Chronic	0.065	30.77	5	
Other soil macroorganisms

\[\text{CGA 27913} \quad \text{Chronic} \quad 0.029 \quad \text{1.38}^b \quad 5 \\
\text{C 1801 (CA2006A)} \quad \text{Chronic} \quad 0.011 \quad 18.18^a \quad 5 \\
\text{CGA171895} \quad \text{Chronic} \quad 0.002 \quad 100^a \quad 5 \\
\text{CGA 179710} \quad \text{Chronic} \quad 0.007 \quad 28.6^a \quad 5 \\
\text{CGA 297691 (CA2013A)} \quad \text{Chronic} \quad 0.0025 \quad 80^a \quad 5 \\
\text{M3} \quad \text{Chronic} \quad 0.017 \quad 11.76^a \quad 5 \\
\]

\footnote{\textit{a} assuming toxicity to be \(\times 10 \) higher than that of the parent active substance

\footnote{\textit{b} based on worst case toxicity endpoint from EFSA conclusion for metsulfuron-methyl (EFSA Journal 2015;13(1):3936), acceptable risk demonstrated by higher tier risk assessment.}

Effects on terrestrial non target higher plants (Regulation (EU) N° 283/2013, Annex Part A, point 8.6 and Regulation (EU) N° 284/2013 Annex Part A, point 10.6)

Screening data

Not required for herbicides or plant growth regulators as \(\text{ER}_{50} \) tests should be provided

Laboratory dose response tests

Test substance	Species	\(\text{ER}_{50} \) (g a.s./ha)	\(\text{ER}_{50}^{**} \) (g a.s./ha)
		vegetative vigour	emergence
Laguna 75 WG	Oat	-	122
	Corn	152	
	Ryegrass	24	
	Onion	149	
	Radish	129	
	Cabbage	225	
	Lettuce	>75	
	Tomato	>75	
	Cucumber	>375	
	Pea	>215.6	

\footnote{\textit{*}Risk assessment for non-target terrestrial plants could not be finalised due to the lack of data on vegetative vigour.

\footnote{\textit{**ER50s} are based on shoot height. Please note, that for all the tested species, except the most sensitive one (ryegrass) the endpoint based of fresh weight is lower}

Effects on biological methods for sewage treatment (Regulation (EU) N° 283/2013, Annex Part A, point 8.8)

Test type/organism	end point
Activated sludge	3-hour EC\(_50\) > 1000 mg a.s./L
Activated sludge	3-hour EC\(_50\) > 1000 mg CA 2006A/L
\textit{Pseudomonas sp}	No data were available

Monitoring data (Regulation (EU) N° 283/2013, Annex Part A, point 8.9 and Regulation (EU) N° 284/2013, Annex Part A, point 10.8)

Available monitoring data concerning adverse effect of the a.s.

No data available

Available monitoring data concerning effect of the PPP.

No data available
Definition of the residue for monitoring (Regulation (EU) N° 283/2013, Annex Part A, point 7.4.2) Ecotoxicologically relevant compounds

Compartment	Ecotoxicologically relevant compounds
soil	Oxasulfuron (CGA-277476), CGA 27913 (saccharin)
water	Oxasulfuron (CGA-277476), M3 (pending), MT6 (pending), CGA 171895 (Pending)
sediment	-
groundwater	-

1 metabolites are considered relevant when, based on the risk assessment, they pose a risk comparable or higher than the parent

Classification and labelling with regard to ecotoxicological data (Regulation (EU) N° 283/2013, Annex Part A, Section 10)

Substance

Harmonised classification according to Regulation (EC) No 1272/2008 and its Adaptations to Technical Process [Table 3.1 of Annex VI of Regulation (EC) No 1272/2008 as amended]

| oxasulfuron (ISO) oxetan-3-yl 2-[(4,6-dimethylpyrimidin-2-yl)-carbamoylsulfamoyl]benzoate |
|Aquatic Acute 1 – H400 |
|Aquatic Chronic 1 - H410 |

Peer review proposal7 for harmonised classification according to Regulation (EC) No 1272/2008:

| Aquatic Acute 1 – H400 (M=100) |
|Aquatic Chronic 1 - H410 (M=100) |

Proposal is based upon the endpoint for aquatic plants

6 Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006. OJ L 353, 31.12.2008, 1-1355.

7 It should be noted that harmonised classification and labelling is formally proposed and decided in accordance with Regulation (EC) No 1272/2008. Proposals for classification made in the context of the evaluation procedure under Regulation (EC) No 1107/2009 are not formal proposals.
Abbreviations

1/n slope of Freundlich isotherm
λ wavelength
ε decadic molar extinction coefficient
a.s. active substance
AChE acetylcholinesterase
ADE actual dermal exposure
ADI acceptable daily intake
AF assessment factor
AAOEL acute acceptable operator exposure level
AOEL acceptable operator exposure level
AP alkaline phosphatase
AR applied radioactivity
ARfD acute reference dose
AST aspartate aminotransferase (SGOT)
AUC area under the blood concentration/time curve
AV avoidance factor
BCF bioconcentration factor
BUN blood urea nitrogen
bw body weight
CAS Chemical Abstracts Service
CFU colony-forming units
ChE cholinesterase
CI confidence interval
CIPAC Collaborative International Pesticides Analytical Council Limited
CL confidence limits
Cmax concentration achieved at peak blood level
DAA days after application
DAT days after treatment
DDD daily dietary dose
DM dry matter
DT_{50} period required for 50% dissipation (define method of estimation)
DT_{90} period required for 90% dissipation (define method of estimation)
dw dry weight
EbC_{50} effective concentration (biomass)
EC_{50} effective concentration
ECHA European Chemicals Agency
Acronym	Description
EEC	European Economic Community
EMDI	estimated maximum daily intake
ER$_{50}$	emergence rate/effective rate, median
ErC$_{50}$	effective concentration (growth rate)
ETR	exposure toxicity ratio
ETR$_{acute}$	exposure toxicity ratio for acute exposure
ETR$_{larvae}$	exposure toxicity ratio for chronic exposure
ETR$_{larvae}$	exposure toxicity ratio for larvae
ETR$_{HPG}$	exposure toxicity ratio for effects on honeybee hypopharygeal glands
EU	European Union
EUROPOEM	European Predictive Operator Exposure Model
f(twa)	Time-weighted average factor
FAO	Food and Agriculture Organization of the United Nations
FID	flame ionisation detector
FIR	food intake rate
FOB	functional observation battery
FOCUS	Forum for the Co-ordination of Pesticide Fate Models and their Use
GAP	Good Agricultural Practice
GC	gas chromatography
GCPF	Global Crop Protection Federation (formerly known as International Group of National Associations of Manufacturers of Agrochemical Products; GIFAP)
GGT	gamma glutamyl transferase
GM	geometric mean
GS	growth stage
GSH	glutathione
Hb	haemoglobin
Hct	haematocrit
HPLC	high-pressure liquid chromatography
HPLC-MS	high-pressure liquid chromatography–mass spectrometry
HPG	hypopharygeal glands
HQ	hazard quotient
HQ$_{contact}$	hazard quotient for contact exposure
HR	hazard rate
IEDI	international estimated daily intake
IESTI	international estimated short-term intake
ISO	International Organization for Standardization
IUPAC	International Union of Pure and Applied Chemistry
iv	intravenous
Acronym	Definition
---------	------------
JMPR	Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues (Joint Meeting on Pesticide Residues)
K_{soc}	organic carbon linear adsorption coefficient
K_{Fre}	Freundlich organic carbon adsorption coefficient
LC	liquid chromatography
LC_{50}	lethal concentration, median
LC-MS	liquid chromatography–mass spectrometry
LC-MS-MS	liquid chromatography with tandem mass spectrometry
LD_{50}	lethal dose, median; dosis letalis media
LDD_{50}	lethal dietary dose; median
LDH	lactate dehydrogenase
LOAEL	lowest observable adverse effect level
LOD	limit of detection
LOQ	limit of quantification
M/L	mixing and loading
MAF	multiple application factor
MCH	mean corpuscular haemoglobin
MCHC	mean corpuscular haemoglobin concentration
MCV	mean corpuscular volume
mm	millimetre (also used for mean measured concentrations)
mN	milli-newton
MRL	maximum residue level
MS	mass spectrometry
MSDS	material safety data sheet
MTD	maximum tolerated dose
MWHC	maximum water-holding capacity
NESTI	national estimated short-term intake
NOAEC	no observed adverse effect concentration
NOAEL	no observed adverse effect level
NOEC	no observed effect concentration
NOEL	no observed effect level
NPD	nitrogen–phosphorus detector
OECD	Organisation for Economic Co-operation and Development
OM	organic matter content
Pa	pascal
PD	proportion of different food types
PEC	predicted environmental concentration
PEC_{air}	predicted environmental concentration in air
Glossary

Acronym	Definition
PEC_{gw}	predicted environmental concentration in groundwater
PEC_{sed}	predicted environmental concentration in sediment
PEC_{soil}	predicted environmental concentration in soil
PEC_{sw}	predicted environmental concentration in surface water
PHED	pesticide handler’s exposure data
PHI	pre-harvest interval
PIE	potential inhalation exposure
pH_a	negative logarithm (to the base 10) of the dissociation constant
P_{ow}	partition coefficient between n-octanol and water
PPE	personal protective equipment
ppm	parts per million (10⁻⁶)
PT	proportion of diet obtained in the treated area
PTT	partial thromboplastin time
QSAR	quantitative structure–activity relationship
r²	coefficient of determination
RPE	respiratory protective equipment
RUD	residue per unit dose
SC	suspension concentrate
SD	standard deviation
SFO	single first-order
SMILES	simplified molecular-input line-entry system
SPG	specific protection goal
SSD	species sensitivity distribution
STMR	supervised trials median residue
t_{1/2}	half-life (define method of estimation)
TER	toxicity exposure ratio
TER_A	toxicity exposure ratio for acute exposure
TER_{LT}	toxicity exposure ratio following chronic exposure
TER_{ST}	toxicity exposure ratio following repeated exposure
TK	technical concentrate
TWA	time-weighted average
TLV	threshold limit value
Tmax	time until peak blood levels achieved
TMDI	theoretical maximum daily intake
TRR	total radioactive residue
TSH	thyroid-stimulating hormone (thyrotropin)
TWA	time-weighted average
UDS	unscheduled DNA synthesis
UF	uncertainty factor
Abbreviation	Description
--------------	--------------------------------------
UV	ultraviolet
W/S	water/sediment
w/v	weight per unit volume
w/w	weight per unit weight
WBC	white blood cell
WG	water-dispersible granule
WHO	World Health Organization