Bird community structure as a function of habitat heterogeneity: A case of Mardi Himal, Central Nepal

NARESH PANDEY1, LAXMAN KHANAL1,2*, NEETI CHAPAGAIN2, K. DEEPAK SINGH4, BISHNU P. BHATTARAI1, MUKESH KUMAR CHALISE1

1Central Department of Zoology, Institute of Science and Technology, Tribhuvan University, Kirtipur, Kathmandu 44618, Nepal
Tel.: +977-9851084825, *email: lkhanal@cdztu.edu.np
2Department of Zoology, Amrit Science Campus, Tribhuvan University, Amrit Marg, Thanal, Kathmandu 44600, Nepal

Abstract. Pandey N, Khanal L, Chapagain N, Singh KD, Bhattarai BP, Chalise MK. 2021. Bird community structure as a function of habitat heterogeneity: A case of Mardi Himal, Central Nepal. Biodiversitas 22: 262-271. Community structure of birds at different habitat types is underexplored in the montane environment of the central Himalaya. Therefore, this study explored bird community structure in different habitat types in Mardi Himal of the Annapurna Conservation Area, central Nepal, and tested association of different feeding guilds with the habitats. Data on the avian richness and abundance were collected in the winter and the summer of 2019 by point count method along the elevational gradient in every 100 m rise and analyzed using ordination methods. A total of 673 individuals of 112 bird species from 35 families under 13 orders were recorded. Among the observed orders and families, the order Passeriformes (77 species) and family Muscicapidae (16 species) were the most dominant. A linear species accumulation curve was obtained in both seasons. Species richness and abundance were found higher at forest edges of mid elevations and insectivores were the most abundant birds. Frugivorous and carnivorous birds showed no specific association with habitat types, whereas, insectivores and omnivores were more abundant in pastureland and forest, respectively. Our results revealed that the community composition of birds varies with the habitat types and their feeding specialization is one of the major determinants.

Keywords: Bird community, elevation, feeding guilds, habitat, species accumulation curve

INTRODUCTION

Spatiotemporal distribution of some key environmental resources governs abundance of bird species (McCain 2009). Therefore, studies have attempted to study factors that affect bird abundance and distribution at spatial and temporal scales (He et al. 2019; Pandey et al. 2020). Studies have shown association of particular bird species to the specific habitat (Brawn et al. 2001; Seymour and Simmons 2008). Due to birds’ rapid response to changing habitat (Cresswell et al. 2007), they are good indicator of habitat quality, productivity, and stability (Vallecillo et al. 2016) and hence they are used as surrogates for assessing the impact of habitat changes (Chettri et al. 2001; Verraart et al. 2004). Basic information about explanatory factors of fluctuating bird population (Norrvell et al. 2003) and information for conservation and management of threatened species (Sauer and Link 2002) are provided by monitoring species abundance, habitat preference, and correlations between species abundance and habitat.

Seasonal change in climate of a mountain ecosystem affects the bird species richness, composition and abundance (Blake and Loiselle 2000; Shiu and Lee 2003; Shoo et al. 2005). Changes in abiotic and biotic factors force the bird species to ascend and descend avoiding the harsh environmental conditions (Amani et al. 2018). Seasonal change affects food, water, and cover availability of bird population, so, they shift/migrate to habitat/areas with surplus resources to maximize breeding success and to minimize physiological risk and low resource availability (Beuel et al. 2016; Girma et al. 2017; Kawamura et al. 2019), which ultimately brings change in seasonal site-wise richness pattern.

Annapurna Conservation Area (ACA) is one of the Important Bird and Biodiversity Areas (IBAs) and a global hotspot of bird diversity (BCN 2011; Pandey et al. 2020). It is one of the largest protected areas of Nepal covering an area of 7629 square kilometers. Its area stretches from the subtropical lowlands and lush temperate rhododendron forest in the south to dry alpine forest in the north. Apart from having spectacular landscapes, the ACA is known as a treasure house to 22 different forest types, 1226 species of flowering plants, 105 mammals, 518 birds, 40 reptiles, and 23 amphibians (NTNC-ACAP 2020). A total of 518 bird species representing 14 orders and 52 families were recorded in ACA (Inskipp and Inskipp 2003). Despite having large avian species richness, studies on avian species in the ACA are limited to the checklist or basic ecology of the single or few species.

Mardi Himal trek is a newly established (officially opened in 2012 AD) trekking trail that lies in the south-western side of the Annapurna mountain range in the ACA (Pandey et al. 2020). To date, research along this route to exhibit the avian species distribution and abundance on different habitat types is lacking. In order to fill this gap, which ultimately aids the conservation of species and
proper management of the mountain trail with potential anthropogenic pressure, this study was carried out in the Mardi Himal aiming to assess i) avian community structure ii) richness and abundance in different habitat types, and iii) habitat association of different feeding guilds of the birds.

MATERIALS AND METHODS

Study area

The central one-third stretch of the Himalayan range is the Nepal Himalaya. Mardi Himal, the southern summit (5578 m asl) of Annapurna mountain range, has a newly open trekking trail with panoramic view of Annapurna, Dhaulagiri, Macchapuchre, and Manaslu mountains that are the major attraction of this trekking trail. The trail has diverse vegetation types ranging from sub-tropical to sub-alpine grassland. The lowest elevational point (P1, 1030 m asl) of the study was the confluence site of Seti Gandaki and Mardi River; and the highest point (P21, 3050 m asl) was the Low-Camp of Mardi Himal (Figure 1).

Vegetation varies along the trekking trail. Lower elevational point count sites (around 1100 m asl), lies on upper sub-tropical bioclimatic zone which is characterized by presence of vegetation like Schima wallichii, Castanopsis indica, Alnus nepalensis, Holarrhena antidysenterica, etc. Vegetation found in the middle elevation (around 1600 m) area is Santalum spp. (dominant), Alnus nepalensis, Juglans regia, Prunus sp., Ficus auriculata, Prunus spp. etc. In the high elevational point, there is a dense forest of Osmania spp., Rhododendrom arboreum, Juniperus squamat, Quercus semecarpifolia, etc. Treeline ends and meadows with shrubs are found after this elevation. The landscape changes quite abruptly into a rugged high mountain landscape.

Figure 1. Map of the study area. A, Map of Nepal showing the Annapurna Conservation Area (ACA); B, Map of the ACA showing the elevational gradient; C, Map of south-western region of the ACA showing the point-count stations (P1-P21) and habitat types
Bird survey

Two seasonal field surveys were conducted in the winter (January-February) and the summer (May-June) of 2019. Point count method (Bibby et al. 2000) was used to survey bird abundance and diversity. Point count sites (n = 21) were set up with about every 100 m rise in elevation (Table 1), which was recorded by Garmin Etrex 10 GPS. Birds observed and heard within 50 m radius were recorded from a fixed point. Two censuses were conducted per season on each point. Time period for point count varied with habitat; for open space, it was 10 minutes and for dense forest, it was 20 minutes to detect rare and inconspicuous species (Aleixo and Galetti 1997; Dos Anjos and Boçon 1999). Bushnell Falcon 10x50 wide-angle binoculars were used and photographs were taken using Nikon p900 camera. Birds were observed from 30 minutes after dawn to 11:30 AM, and again from 3:00 PM till 30 minutes before sunset as practiced by (He et al. 2019). The field book ‘Birds of Nepal’ (Grimmett et al. 2016) was used for identification of birds.

Data analysis

Observed birds were classified into four feeding guilds: carnivorous, frugivorous, omnivorous, and insectivorous, based on the diet descriptions available in Grimmett et al. (2016). Then, birds were classified based on habitat types (i.e. forest, pastureland, water-dependent land and agricultural land and settlement). All types of forest were included in forest type habitat; meadows, grassland and shrubby habitat with trees were included in pastureland; riverbank and marshy land were included in water-dependent land; farmlands and adjacent settlements were included in agricultural and settlement habitat. Distance from the nearest water source referred to numerical description of how far the water bodies were from the point count site. In this study, the distance to the nearest water source was measured with references to the Mardi River, Modi River, and Pau Khola. To test whether the sampling effort was enough to detect all the species that occur in the study area, species accumulation curve was produced, by plotting the cumulative number of species detected against the sampling effort (Willett 2001). To display relative species abundance of birds, the Rank Abundance Curve (RAC) or Whittaker plot was constructed using the abundance rank on the x-axis and the relative abundance/proportion on the y-axis. The RAC can be effective in analyzing types of abundance distributions in communities and its shape is linked with ecological processes underpinning communities (Fisher et al. 1943; Izsák and Pavoine 2012). The relationships between bird species and different habitat types were analyzed using the ordination method- Canonical Correspondence Analysis (CCA). Species data on different feeding guilds were considered as response variable and habitat type data where those birds were recorded was predictor variable. All ordination plots were drawn using Canoco v.5.01 (Ter Braak & Smilauer 1998).

RESULTS AND DISCUSSION

Avian community structure

A total of 673 bird individuals belonging to 13 orders, 35 families, and 112 species were recorded (Table S1).

Table 1. The 21 point count stations along the Mardi Himal Trekking route with GPS details and habitat features

Point count station	Longitude	Latitude	Elevation (m asl)	Habitat type
P1	83.9316	28.296	1030	Riverbank
P2	83.8905	28.3295	1108	Riverbank
P3	83.8793	28.3518	1193	Agricultural land and Settlement
P4	83.8752	28.3541	1310	Forest (Sub-tropical)
P5	83.8775	28.3576	1410	Forest (Sub-tropical)
P6	83.8755	28.3008	1551	Agricultural land and Settlement
P7	83.8747	28.3695	1648	Forest (Upper Sub-tropical)
P8	83.8734	28.37009	1756	Forest (Upper Sub-tropical)
P9	83.8723	28.3718	1862	Agricultural land and Settlement
P10	83.8661	28.3728	1950	Pastureland
P11	83.854	28.3763	2084	Pastureland
P12	83.8533	28.3825	2175	Pastureland
P13	83.8499	28.3832	2263	Forest (Lower temperate)
P14	83.8472	28.3834	2342	Pastureland
P15	83.8433	28.3835	2449	Pastureland
P16	83.8447	28.3857	2515	Forest (Temperate)
P17	83.8481	28.3882	2615	Forest (Temperate)
P18	83.8514	28.3935	2735	Forest (Upper Temperate)
P19	83.8558	28.3985	2825	Forest (Upper Temperate)
P20	83.8565	28.4011	2945	Pastureland (Sub-alpine grassland)
P21	83.8565	28.4037	3020	Pastureland (Sub-alpine grassland)
Three globally threatened birds like Egyptian Vulture (*Neophron percnopterus*), Himalayan Vulture (*Gyps himalayensis*), River Lapwing (*Vanellus duvaucelli*) and the endemic bird of Nepal—Spiny Babbler (*Turdoides nipalensis*) were recorded. Birds from insectivorous (richness = 58, abundance = 250) feeding guild dominate the avian community, followed by frugivorous (richness = 26, abundance = 262), omnivorous (richness = 14, abundance = 116) and carnivorous (richness = 14, abundance = 45). Similar dominance of insectivores has been reported from the eastern Himalaya (Chhetri et al. 2018) and eastern part of the Nepal Himalaya (Kandel et al. 2018).

Out of 13 orders, order Passeriformes had the highest (77) number of species recorded and lowest (1) from orders Bucerotiformes, Psittaciformes, Strigiformes and Anseriformes. Among the avian families, the highest number of species were recorded from family Muscicapidae (16), followed by family Leiothrichidae (8), and the least (1) were recorded from families—Anatidae, Cisticolidae, Psittacidae, Strigidae, Sturnidae, Upupidae, and Zosteropidae. Previous surveys and researches from the ACA found that avian community is dominated by order Passeriformes (Inskipp and Inskipp 2003; Neupane et al. 2020). Similar result was shown by other bird researches (Abbas et al. 2019; Abie et al. 2019; Adhikari et al. 2019; Chaudhari et al. 2009). The species accumulation curve based on observed species richness of both seasons is almost linear indicating the likelihood of encountering more species with increasing sampling effort. An almost similar type of pattern was observed for both the summer and winter seasons (Figure 2). The last point count site changes to high elevational meadows in the summer season and is covered by snow for more than nine months. Such type of habitat and presence of bird refugia in mountain might be the reason for linear nature of accumulation curve. Glacial mountains and high elevation topography have refugia for birds and animals from other taxa too (Wu et al. 2017; Abbas et al. 2019).

Avian richness and abundance

Species richness curve based on observed species richness showed that the richness initially was lesser, then gradually increased at mid-elevation and declined with further increase in elevation forming a hump-shaped pattern. Almost similar type of pattern was observed for both summer and winter season (Figure 3). However, the curves were not smoothly unimodal, indicating that elevation is not the sole driver of the avian richness. The lower richness in initial points might be due to high anthropogenic disturbances like roads and construction of hydropower stations. Though few generalist species might be benefitted (Marcum 2006) but, in general, anthropogenic disturbances have significant negative effects to bird richness and abundance (Canaday 1996; Gove et al. 2008; Marcum 2006). Omnivorous species have less effect of disturbances than other feeding guilds. Peak of the bird richness and abundance at mid-elevation might also be due to edge effect of agricultural fields and forest. Both farm and forest birds were recorded at this elevation. Edge effect has been observed in avian communities such that edge creates attractive habitats and have higher bird diversities due to heterogeneity of edge vegetation (Deikumah et al. 2017; Flaspohler et al. 2001).

The rank abundance curve (RAC) showed a steep gradient (Figure 4) indicating low evenness as the high-ranking species have much higher abundances than the low-ranking species. We observed a lognormal theoretical species abundance distribution that a convex segment of the RAC close to the y-axis is followed by a concave segment. This type of RAC is common mostly in cases of equilibrium communities subjected to many controlling factors (Izsák 2008).

![Figure 2. Species accumulation curve of birds recorded in the Mardi Himal, Nepal](image)

![Figure 3. Seasonal species richness curve and seasonal species abundance curve of birds recorded in the Mardi Himal, Nepal](image)
Season wise habitat association of avian community

The overall species abundance was the highest in agricultural land and settlement followed by forest and was found lowest in water-dependent habitat. Species abundance varies with season in different habitat types. In summer, abundance of agriculture/settlement and water-dependent habitat was found higher. Likewise, in winter, abundance of forest and pastureland reliant species was found higher (Figure 5).

Season wise habitat association was tested for selected habitat types- forest habitat, pastureland, wetland-dependent habitat, and agricultural land and settlement. The Monte-Carlo permutation test of significance of all canonical axes revealed significant preference of the insectivorous species in summer (Trace = 2.181, F-ratio = 1.289, P = 0.04) to different habitat types (Figure 6). Similarly, omnivorous birds also showed significant association with habitat types in both summer and winter season (summer: Trace = 1.524, F-ratio = 1.566, P = 0.047 and winter: Trace = 1.480, F-ratio = 2.169, P = 0.002). However, the Monte-Carlo permutation test of significance of all canonical axes showed no significant relationship of the insectivorous in winter (Trace = 1.928, F-ratio = 1.099, P = 0.202), carnivorous in both seasons (summer: Trace = 1.632, F-ratio = 1.277, P = 0.156 and winter Trace = 2.042, F-ratio = 0.742, P = 0.776) and frugivorous species in both seasons (summer: Trace = 1.577, F-ratio = 1.241, P = 0.14 and winter Trace = 1.516, F-ratio = 0.970, P = 0.536) to the habitat types (Figure 7).

Figure 4. Rank abundance curve of bird species recorded in the Mardi Himal, Nepal.

Figure 5. Habitat-wise bird species abundance for the two seasons recorded in Mardi Himal, Nepal.

Figure 6. CCA ordination diagram (biplot) showing response of insectivores and omnivores to habitat variables in two seasons. Abbreviations: Past: pastureland, WL: Wetland dependent habitat, Agstl: Agricultural land and settlement, and For: Forest. Codes used for bird species are included in Table S1.
Certain types of birds are confined to specific habitats such as agricultural fields, shrubs or forests, etc. These ranges of habitat provide different kinds of food, easy availability of water and mates for nesting or reproduction (Baschuk et al. 2012; Fernández Cañero and González Redondo 2010) thus are distributed heterogeneously. We observed a negative correlation of species richness with distance to the nearest water source (GLM; summer, $r = -0.004$, $p = 0.014$; winter, $r = -0.003$, $P = 0.109$) which means bird richness decreases with an increase in distance to water sources. Li et al. (2013) concluded that avian species richness is a hump-shaped function of energy availability, but a linear function of water availability and further emphasized that water availability has strong effects on plant richness and weaker effects on vertebrate richness. Likewise, Currie (1991) observed that the richness of vertebrates (birds, mammals, amphibians, and reptiles) is more influenced by energy while the same in the tree species are more influenced by water availability. The influence of water on plants presumably affects vertebrate species richness staunchly since plants are the chief source of food and habitat and fulfill their dietary requirements and niche (Kissling et al. 2007).

We observed no specific association of the frugivorous and carnivorous birds with the habitat types or the resource availability. Frugivorous are relatively flexible to switch to other resources in response to fluctuations in fruit resource availability (Bender et al. 2017), and hence are less specific to the habitats and more specific to fruiting season. Ordination analysis revealed a significant relationship of insectivorous and omnivorous birds to specific habitats. Herzog et al. (2005) conducted avian research in Swiss agricultural landscape and found that pastureland didn’t contribute to bird diversity. Contrarily, this study showed that pasture grasslands support many insectivorous bird species, which is consistent with the results from previous studies (Söderström et al. 2001; Tanis et al. 2020; Zahn et al. 2010). Higher food availability in grasslands may be the reason for supporting bird diversity (Jokimäki et al. 1996; Nilsson 1979). Likewise, in our study, we found that omnivorous species are mostly found in forest habitats. Similar results were shown by studies around the globe (Dario 2017; Mahiga et al. 2019). Insectivorous birds are the habitat specialists and are least dispersive or residential (He et al. 2019), hence are more specialized to the habitat. Habitat conditions such as landscape-level habitat heterogeneity are important determinants of the distribution of avian species (Basnet et al. 2016). Therefore, the presence of multiple habitat types is also a driver of the avian species assemblage in Mardi Himal.

This study from Mardi Himal of central Nepal found that Muscicapidae family and order Passeriformes were dominant in avian community. Species richness curve peaked at mid-elevation and species accumulation curve was linear. The highest species abundance was recorded in agricultural land and settlement. Frugivorous and carnivorous birds did not show significant relationship to the habitat types whereas insectivorous and omnivorous

![CCA ordination diagram (biplot) showing response of carnivores and frugivores to habitat variables in two seasons. Abbreviations: Past: pastureland, WL: Wetland dependent habitat, Agstl: Agricultural land and settlement, and For: Forest. Codes used for bird species are included in Table S1](image-url)
bird species showed their significant association to pastureland and forest habitats, respectively. An extensive avian survey covering all seasons is important for further exploration, which might play a crucial role in developing baseline information and implementing conservation actions in the central Himalaya.

ACKNOWLEDGEMENTS

We would like to thank Department of National Parks and Wildlife Conservation, Government of Nepal, and Annapurna Conservation Area Project, Pokhara for granting research permission. We thank Shiva Prasad Bhandari of Mardi Himal Eco-Village for providing accommodation during field. NP, LK, and MKC conceptualized the study. NP, NC and KDS performed field survey and gathered data. NP, LK and BPB analyzed data. NP and LK prepared the manuscript. MKC supervised the research. All authors read the manuscript, contributed to its improvement, and approved for submission.

REFERENCES

Abbas S, Hussain E, Abbas H, Hussain S, Tabassum R, Khan MZ, Nabi M. 2019. Species diversity, feeding habits and conservation status of birds in Chitwan National Park, Gilgit-Baltistan, Pakistan. Int J Zool Invest 5 (2): 108-117. DOI: 10.3374/gjiz.2019.65570.009

Abhe K, Tilahun B, Feyisa A, Kumsa T, Alemneh A. 2019. Bird species diversity and distribution in case of protected area. Species 20: 90-100.

Adhikari JN, Bhattarai BP, Thapa TB. 2019. Factors affecting diversity and distribution of threatened birds in Chitwan National Park, Nepal. J Threat. Taxa 11 (5): 13511-13522. DOI: 10.11609/jott.4137.11.5.13511-13522

Alexio A, Galletti M. 1997. The conservation of the avifauna in a lowland Atlantic forest in south-east Brazil. Bird Conservation International 7 (3): 235-261. DOI: 10.1017/S0959270900001556

Amane M, Salehi B, Mahdavi S, Brisco B. 2018. Spectral analysis of wetlands using multi-source optical satellite imagery. ISPRS J. Photogramm. Remote Sens 144: 119-136. DOI: 10.1016/j.isprsjrs.2018.07.005

Baschuk MS, Koper N, Wrubleski DA, Goldsborough G. 2012. Effects of water depth, cover and food resources on habitat use of marsh birds and waterfowl in boreal wetlands of Manitoba, Canada. Waterbirds 35 (1): 44-55. DOI: 10.1675/063.035.0105.

Busnet TB, Rokaya MB, Bhattarai BP, Munzbergová Z. 2016. Heterogeneous landscapes on steep slopes at low altitudes as hotspots of bird diversity in a Hilly Region of Nepal in the Central Himalayas. PloS ONE 11 (3): e0150498. DOI: 10.1371/journal.pone.0150498.

BCM. 2011. The state of Nepal’s birds 2010. Bird Conservation of Nepal and Department of National Parks and Wildlife Conservation. Kathmandu, Nepal.

Bender IM, Kissling WD, Böhning-Gaese K, Hülle I, Wiegand T, Schleuning M. 2017. Functionally specialised birds respond flexibly to seasonal changes in fruit availability. J Anim Ecol 86 (4): 800-811. DOI: 10.1111/1365-2656.12683.

Beueil S, Alvarez M, Amler E, Bohn B, Kotze D, Kreye C, Ziegler S. 2016. A rapid assessment of anthropogenic disturbances in East African wetlands. Ecol Evol 6 (7): 684-692. DOI: 10.1002/ece3.2016.03.034.

Bibby CJ, Burgess ND, Hill DA, Mustoe S. 2000. Bird Census Techniques. Elsevier, Nederland.

Blake JG, Loiselle BA. 2000. Diversity of birds along an elevational gradient in the Cordillera Central, Costa Rica. The Auk 117: 663-686.

Brawa JD, Robinson SK, Thompson III FR. 2001. The role of disturbance in the ecology and conservation of birds. Annu Rev Ecol Evol Syst 32 (1): 251-276. DOI: 10.1146/annurev.ecolsys.32.081501.114031.

Canaday C. 1996. Loss of insectivorous birds along a gradient of human impact in Amazonia. Biol Conserv 77 (1): 63-77. DOI: 10.1016/0006-3207/05/00115-8.

Chaudhuri UK, Kafle G, Baral HS. 2009. Avifaunal diversity of Khata Corridor Forest. J. Wetlands Ecol 2 (1): 48-56. DOI: 10.3126/jwe.v2i1.1857.

Chhetri A, Sharma K, Dewan S, Acharya BK. 2018. Bird diversity of tea plantations in Darjeeling Hills, Eastern Himalaya, India. Biodiversitas 19 (3): 1067-1073. DOI:10.13057/biodiv/d190339.

Chhetri N, Sharma E, Deb D. 2001. Bird community structure along a trekking corridor of Sikkim Himalaya: a conservation perspective. Ecol Conserv 102 (1): 1-16. DOI: 10.1006/ecol.2001.00092-1.

Cresswell WR, Wilson JM, Vicky J, Jones P, Holt S. 2007. Changes in densities of Sahelian bird species in response to recent habitat degradation. Ostrich 78 (2): 247-253. DOI: 10.2989/OSTRICH.2007.78.2.20.100.

Currie DJ. 1991. Energy and large-scale patterns of animal-and plant-species richness. Am Nat 137 (1): 27-49.

Dario FR. 2017. Diversity of frugivorous and omnivorous birds in different stages of ecological succession in Amazon Rainforest fragments. World News Nat Sci 15: 37-48.

Dekmajum PH, Kwafo R, Konadu VA. 2017. Land use types influenced avian assemblage structure in a forest-agriculture landscape in Ghana. Ecol Evol 7 (21): 8685-8697. DOI: 10.1002/ece3.3355.

Dos Anjos L, Boçon R. 1999. Bird communities in natural forest patches in southern Brazil. Wilson Bull 11 (3): 397-414.

Fernández Cañero R, González Redondo P. 2010. Green roofs as a habitat for birds: a review. J Anim Anim 9 (15): 2041-2052. DOI: 10.3923/javaa.2010.2041.2052.

Fisher RA, Corbet AS, Williams CB. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12: 42-58.

Flaspoehler DJ, Temple SA, Rosenfeld RN. 2001. Species-specific edge effects on nest success and breeding bird density in a forested landscape. Ecol Appl 11 (1): 32-46.

Girma Z, Mamo Y, Mengestha G, Verma A, Asfaw T. 2017. Seasonal abundance and habitat use of bird species in and around Wondo Genet Forest, south-central Ethiopia. Ecol Evol 7 (10): 3397-3405. DOI: 10.1002/ece3.2926.

Gove AD, Hylander K, Nemomisa S, Shimelis A. 2008. Ethiopian coffee cultivation—Implications for bird conservation and environmental certification. Conserv Lett 1 (3): 208-216.

Grimmett R, Inskipp C, Inskipp T, Baral HS. (2016). Birds of Nepal: Bloomsbury Publishing. New York, USA.

He X, Wang X, DuBay S, Reeve AH, Alström P, Ran J, Wu Y. 2019. Elevational patterns of bird species richness on the eastern slope of Mt. Gongga, Sichuan Province, China. Avian Res 10 (1). DOI: 10.1186/s40657-018-0140-7.

Hertzog F, Dreer S, Hofer G, Marfurt C, Schüpbach B, Spiess M, Walter T. 2005. Effect of ecological compensation areas on floristic and breeding bird diversity in Swiss agricultural landscapes. Agric Ecosyst Environ 108 (3): 189-204.

Inskipp C, Inskipp T. 2003. Bird conservation priorities of the Annapurna Conservation Area. Report submitted to UNEP-WCMC/King Mahendra Trust for Nature Conservation/Annapurna Conservation Area Project, Thailand.

Izák J, Pavone, S. 2012. Links between the species abundance distribution and the shape of the corresponding rank abundance curve. Ecol Indic 14 (1): 1-6. DOI: 10.1016/j.ecolind.2011.06.030.

Izák R. 2008. Maximum likelihood fitting of the Poisson lognormal distribution. Environ Ecol Stat 15: 143-156.

Jokimäki J, Suhonen J, Inki K, Jokinen S. 1996. Biogeographical baseline information and implementing conservation actions in the central Himalaya.

Kandel P, Thapa I, Chettri N, Pradhan R, Sharma E. 2018. Birds of the Kangchenjunga Landscape, the Eastern Himalaya: status, threats and implications for conservation. Avian Res 9 (1). DOI: 10.1186/s40657-018-0140-7.

Kawamura K, Yamaura Y, Senzaki M, Ueta M, Nakamura F. 2019. Seasonality in spatial distribution: Climate and land use have contrasting effects on the species richness of breeding and wintering birds. Ecol Evol 9 (13): 7549-7561. DOI: 10.1002/ece3.3207.

Kissling WD, Rahbek C, Böhning-Gaese K. 2007. Food plant diversity as a broad-scale determinant of avian frugivore richness. Proc Biol Sci 274 (1611): 799-808. DOI: 10.1098/rspb.2006.0311.
Li L, Wang Z, Zerbe S, Abdusalih N, Tang Z, Ma M, Fang J. 2013. Species richness patterns and water-energy dynamics in the drylands of Northwest China. PLoS ONE 8 (6): e66450. DOI: 10.1371/journal.pone.0066450

Mahiga SN, Webala P, Mware MJ, Nding’Ang’A PK. 2019. Influence of Land-Use Type on Forest Bird Community Composition in Mount Kenya Forest. Int J Ecol 8248270. DOI: 10.1155/2019/8248270

Marcum HA. 2006. The effects of human disturbance on birds in Bastrop State Park. A&M University, Texas USA.

McCain CM. 2009. Global analysis of bird elevational diversity. Glob Ecol Biogeogr 18 (3): 346-360. DOI: 10.1111/j.1466-8238.2008.00443.x

Neupane J, Khanal L, Chalise MK. 2020. Avian diversity in Kaligandaki River basin, Annapurna Conservation Area, Nepal. International Journal of Ecology and Environmental Sciences 46(2): 99-110.

Nilsson SG. 1979. Density and species richness of some forest bird communities in South Sweden. Oikos 33 (3): 392-401.

Norvell RE, Howe FP, Parrish JR. 2003. A seven-year comparison of relative-abundance and distance-sampling methods. The Auk 120 (4): 1013-1028. DOI: 10.1093/auk/120.4.1013

Pandey N, Khanal L, Chalise MK. 2020. Correlates of avifaunal diversity along the elevational gradient of Mardi Himal in Annapurna Conservation Area, Central Nepal. Avian Res 11 (1): 31. DOI:10.1186/s40657-020-00217-6

Sauer JR, Link WA. 2002. Hierarchical modeling of population stability and species group attributes from survey data. Ecology 83 (6): 1743-1751. DOI: 10.1890/0012-9658(2002)083[1743:HMOPSA]2.0.CO;2

Seoane J, Villen-Perez S, Carrascal LM. 2013. Environmental determinants of seasonal changes in bird diversity of Mediterranean oakwoods. Ecol Res 28 (3): 435-445. DOI: 10.1007/s11284-013-1032-2

Seymour C, Simmons R. 2008. Can severely fragmented patches of riparian vegetation still be important for arid-land bird diversity? J Arid Environ 72 (12): 2275-2281. DOI: 10.1016/j.jaridenv.2008.07.014

Shiu HJ, Lee PF. 2003. Seasonal variation in bird species richness along elevational gradients in Taiwan. Acta Zoologica Taiwanica 14: 1-21.

Shoo LP, Williams SE, Hero JM. 2005. Climate warming and the rainforest birds of the Australian Wet Tropics: Using abundance data as a sensitive predictor of change in total population size. Biol Conserv 125: 335-343.

Söderström B, Part T, Linnarsson E. 2001. Grazing effects on between-year variation of farmland bird communities. Ecol Appl 11 (4): 1141-1150. DOI: 10.1890/1051-0761(2001)011[1141:GEOBYV]2.0.CO;2

Tanis MM, Marshall L, Biesmeijer JK, van Kolfschoten L. 2020. Grassland management for meadow birds in the Netherlands is unfavourable to pollinators. Basic Appl Ecol 43: 52-63. DOI: 10.1016/j.baae.2019.12.002.

Ter Braak CJF, Smilauer P. 1998. CANOCO reference manual and user’s guide to Canoco for Windows: software for canonical community ordination (version 4). Microcomputer Power, Ithaca, NY.

Vallecillo S, Maes J, Polce C, Lavalle C. 2016. A habitat quality indicator for common birds in Europe based on species distribution models. Ecol Indic 69: 488-499. DOI: 10.1016/j.ecolind.2016.05.008.

Veraart J, De Groot R, Perelló G, Redford N, Ronjackers R. 2004. Selection of (bio) indicators to assess effects of freshwater use in wetlands: a case study of s’ Albufera de Mallorca, Spain. Reg Environ Change 4 (2-3): 107-117. DOI: 10.1007/s10113-004-0070-2.

Willott, S. 2001. Species accumulation curves and the measure of sampling effort. J Appl Ecol 38:484-486.

Wu Y, DaBay SG, Colwell RK, Ran J, Lei F. 2017. Mobile hotspots and refugia of avian diversity in the mountains of south-west China under past and contemporary global climate change. J Biogeogr 44 (3): 615-626. DOI: 10.1111/jbi.12862.

Wuczyński A. 2016. Farmland bird diversity in contrasting agricultural landscapes of southwestern Poland. Landsc Urban Plan 148: 108-119. DOI: 10.1016/j.landurbplan.2015.11.010.

Zahn A, Englmair I, Drobný M. 2010. Food availability for insectivores in grasslands- arthropod abundance in pastures, meadows and fallow land. Appl Ecol Environ Sci 8 (2): 87-100.
Bird	Scientific Name	Order	Family	Feeding Guild	Bird Code
Himalayan Vulture	Gyps himalayensis	Accipitiformes	Accipitridae	Carnivorous	C1
Egyptian Vulture	Neophron percnopterus	Accipitiformes	Accipitridae	Carnivorous	C2
Black Kite	Milvus migrans	Accipitiformes	Accipitridae	Carnivorous	C3
Himalayan Buzzard	Buteo buteo	Accipitiformes	Accipitridae	Carnivorous	C4
Goosander	Mergus merganser	Anseriformes	Anatidae	Carnivorous	C5
Hoopoe	Upupa epops	Bucerotiformes	Upupidae	Insectivorous	C6
Red-wattled Lapwing	Vangula indicus	Charadriiformes	Charadriidae	Insectivorous	C7
River Lapwing	Vangula duculaeiculus	Charadriiformes	Charadriidae	Carnivorous	C8
Oriental Turtle Dove	Streptopelia orientalis	Columbiformes	Columbidae	Frugivorous	C9
Spotted Dove	Stignatopelia chinensis	Columbiformes	Columbidae	Frugivorous	C10
Speckled Wood Pigeon	Columba hodgsonii	Columbiformes	Columbidae	Frugivorous	C11
Common Pigeon	Columba livia	Columbiformes	Columbidae	Frugivorous	C12
Barred Cuckoo Dove	Macrocygla unchall	Columbiformes	Columbidae	Frugivorous	C13
Wedge-tailed Green Pigeon	Treron sphenurus	Columbiformes	Columbidae	Frugivorous	C14
Common Kingfisher	Alcedo atthis	Coraciiformes	Alcedinidae	Carnivorous	C15
Blue-eared Kingfisher	Garciavirgatus	Coraciiformes	Alcedinidae	Carnivorous	C16
White-throated Kingfisher	Halcyon smyrnensis	Coraciiformes	Alcedinidae	Carnivorous	C17
Lesser Coucal	Centropus bengalensis	Cuculiformes	Cuculidae	Insectivorous	C18
Eurasian Cuckoo	Cuculus canorus	Cuculiformes	Cuculidae	Insectivorous	C19
Indian Cuckoo	Cuculus micropterus	Cuculiformes	Cuculidae	Insectivorous	C20
Black Francolin	Francolinus franzolinus	Galliformes	Phasianidae	Frugivorous	C21
Kalij Pheasant	Lophura leucomelanos	Galliformes	Phasianidae	Carnivorous	C22
Black-throated Tit	Aegithalos concinnus	Passeriformes	Aegialthidae	Insectivorous	C23
Rufous-fronted Tit	Aegithalos iouschiostos	Passeriformes	Aegialthidae	Insectivorous	C24
Scarlet Minivet	Perricocetus flammeus	Passeriformes	Campephagidae	Insectivorous	C25
Black-winged Cuckooshrike	Coracina melaschistos	Passeriformes	Campephagidae	Insectivorous	C26
Striated Prinia	Prinia crinigera	Passeriformes	Cisticolidae	Insectivorous	C27
House Crow	Corvus splendens	Passeriformes	Corvidae	Carnivorous	C28
Grey Treepie	Dendrocttona formosa	Passeriformes	Corvidae	Omnivorous	C29
Common Green Magpie	Cissa chinensis	Passeriformes	Corvidae	Carnivorous	C30
Large-billed Crow	Corvus macrorhynchos	Passeriformes	Corvidae	Omnivorous	C31
Yellow-billed Blue Magpie	Uroocissa flavirostris	Passeriformes	Corvidae	Omnivorous	C32
Red-billed Blue Magpie	Uroocissa erythrohyncha	Passeriformes	Corvidae	Omnivorous	C33
Red-billed Chough	Pyrrhocorax pyrrhocorax	Passeriformes	Corvidae	Insectivorous	C34
Alpine Chough	Pyrrhocorax gracilis	Passeriformes	Corvidae	Omnivorous	C35
Black Drongo	Dicrurus macrocercus	Passeriformes	Dicridae	Insectivorous	C36
Ashy Drongo	Dicrurus leucophaeus	Passeriformes	Dicridae	Insectivorous	C37
Rock Bunting	Emberiza cia	Passeriformes	Emberizidae	Omnivorous	C38
Crested Bunting	Melophos lathami	Passeriformes	Emberizidae	Frugivorous	C39
Dark-breasted Rosefinch	Carpodacus nipalensis	Passeriformes	Fringillidae	Frugivorous	C40
Spot-winged Rosefinch	Carpodacus rodopiplus	Passeriformes	Fringillidae	Frugivorous	C41
Spot-winged Grosbeak	Mycrobos melancanthos	Passeriformes	Fringillidae	Frugivorous	C42
Common Rosefinch	Carpodacus erythrinus	Passeriformes	Fringillidae	Frugivorous	C43
Barn Swallow	Hirundo rustica	Passeriformes	Hirundinidae	Insectivorous	C44
Eurasian Crag Martin	Ptenonoprogne rupestris	Passeriformes	Hirundinidae	Insectivorous	C45
Long-tailed Shrike	Lanius schach	Passeriformes	Laniidae	Insectivorous	C46
Grey-backed Shrike	Lanius reifrotorius	Passeriformes	Laniidae	Insectivorous	C47
White-crested Laughingthrush	Garrulax leucomelas	Passeriformes	Leioptrichidae	Insectivorous	C48
Rufous Sibia	Malacius capistratus	Passeriformes	Leioptrichidae	Carnivorous	C49
Varied Laughingthrush	Garrulax variagatus	Passeriformes	Leioptrichidae	Insectivorous	C50
Striated Laughingthrush	Garrulax striatus	Passeriformes	Leioptrichidae	Insectivorous	C51
Streaked Laughingthrush	Garrulax squamatus	Passeriformes	Leioptrichidae	Insectivorous	C52
Hoary-throated Barwing	Actinodura nipalensis	Passeriformes	Leioptrichidae	Insectivorous	C53
White-throated Laughingthrush	Garrulax albogetherius	Passeriformes	Leioptrichidae	Insectivorous	C54
Spiny Babbler	Turdoides nipalensis	Passeriformes	Leioptrichidae	Insectivorous	C55
White-browed Wagtail	Motacilla maderaspatenisis	Passeriformes	Motacillidae	Insectivorous	C56
Upland pipt	Anthus Sylvanus	Passeriformes	Motacillidae	Insectivorous	C57
Paddyfield Pipit	Anthus rufus	Passeriformes	Motacillidae	Insectivorous	C58
Grey Wagtail	Motacilla cinera	Passeriformes	Motacillidae	Insectivorous	C59
Spotted Forktail	Enicurus maculatus	Passeriformes	Muscicapaedae	Insectivorous	C60
Plumbeous Water Redstart	Rhyacornis fuliginosa	Passeriformes	Muscicapaedae	Omnivorous	C61
Grey Bushchat	Saxicola ferreus	Passeriformes	Muscicapaedae	Insectivorous	C62
Blue Whistling Thrush	Myiopica caeruleus	Passeriformes	Muscicapaedae	Insectivorous	C63
Scientific Name	Common Name	Order	Family	Diet	Code
-----------------	-------------	-------	--------	------	------
Saxicola caprata	Pied Bushchat	Passeriformes	Passeridae	Insectivorous	C64
Chlamarronis leucocephalus	White-capped Redstart	Passeriformes	Passeridae	Insectivorous	C65
Eumyias thalassinus	Verditer Flycatcher	Passeriformes	Passeridae	Insectivorous	C66
Niltava sundara	Rufous-bellied Niltava	Passeriformes	Passeridae	Insectivorous	C67
Monticola cinclorhynchos	Blue-capped Rock Thrush	Passeriformes	Passeridae	Insectivorous	C68
Ficedula westermanni	Little Pied Flycatcher	Passeriformes	Passeridae	Insectivorous	C69
Tarsiger indicus	White-browed Bush Robin	Passeriformes	Passeridae	Insectivorous	C70
Cyornis unicolor	Pale Blue Flycatcher	Passeriformes	Passeridae	Insectivorous	C71
Luscinia striata	Indian Blue Robin	Passeriformes	Passeridae	Insectivorous	C72
Saxicola leucura	Common Stonechat	Passeriformes	Passeridae	Insectivorous	C73
Phoenicurus hodgsoni	Hodgson's Redstart	Passeriformes	Passeridae	Insectivorous	C74
Tarsiger rufilatus	Himalayan Bluetail	Passeriformes	Passeridae	Insectivorous	C75
Aethopyga nipalensis	Green-tailed Sunbird	Passeriformes	Passeridae	Insectivorous	C76
Nectarinidae	Black-throated Sunbird	Passeriformes	Passeridae	Frugivorous	C77
Aethopyga gouldiae	Mrs Gould Sunbird	Passeriformes	Passeridae	Frugivorous	C78
Parus monticulus	Green-backed Tit	Passeriformes	Passeridae	Omnivorous	C79
Parus xanthogenys	Black-lored Tit	Passeriformes	Passeridae	Insectivorous	C80
Passer domesticus	Great Tit	Passeriformes	Passeridae	Frugivorous	C81
Passer rutilans	House Sparrow	Passeriformes	Passeridae	Frugivorous	C82
Phylloscopus maculipennis	Ashy-throated Warbler	Passeriformes	Passeridae	Insectivorous	C83
Phylloscopus xanthochistos	Grey-hooded Warbler	Passeriformes	Passeridae	Insectivorous	C84
Pycnonotus cafer	Red-vented Bulbul	Passeriformes	Passeridae	Frugivorous	C85
Hypsipetes leucocephalus	Black Bulbul	Passeriformes	Passeridae	Frugivorous	C86
Pycnonotus leucogenys	Himalayan Bulbul	Passeriformes	Passeridae	Frugivorous	C87
Pycnonotus sinensis	Striated Bulbul	Passeriformes	Passeridae	Omnivorous	C88
Isos melelelandii	Mountain Bulbul	Passeriformes	Passeridae	Frugivorous	C89
Cettia brunnifrons	Grey-sided Bush Warbler	Passeriformes	Passeridae	Insectivorous	C90
Cettia flavolivacea	Aberrant Bush Warbler	Passeriformes	Passeridae	Insectivorous	C91
Tichodroma muraria	Wallcreeper	Passeriformes	Sittidae	Insectivorous	C92
Sitta himalayensis	White-tailed Nuthatch	Passeriformes	Sittidae	Insectivorous	C93
Acridotheres tristis	Common Myna	Passeriformes	Sturnidae	Omnivorous	C94
Turdus boulboul	Grey-winged Blackbird	Passeriformes	Turdidae	Insectivorous	C95
Zoothera dauma	Scaly Thrush	Passeriformes	Turdidae	Insectivorous	C96
Zoothera citrina	Orange-headed Thrush	Passeriformes	Turdidae	Insectivorous	C97
Zosterops palpebrosus	Oriental White-eye	Passeriformes	Zosteropidae	Omnivorous	C98
Casmerodius albus	Great Egret	Pelecaniformes	Ardeidae	Carnivorous	C99
Ardea cinerea	Indian Pond Heron	Pelecaniformes	Ardeidae	Carnivorous	C100
Egretta garzetta	Little Egret	Pelecaniformes	Ardeidae	Carnivorous	C101
Bubulcus ibis	Cattle Egret	Pelecaniformes	Ardeidae	Insectivorous	C102
Mesophoyx intermedia	Intermediate Egret	Pelecaniformes	Ardeidae	Carnivorous	C103
Megalaima virens	Great Barbet	Piciformes	Megalaimidae	Frugivorous	C104
Megalaima asiatica	Blue-throated Barbet	Piciformes	Megalaimidae	Frugivorous	C105
Megalaima franklinii	Golden-throated Barbet	Piciformes	Megalaimidae	Frugivorous	C106
Dendrocopos macei	Fulvous-breasted Woodpecker	Piciformes	Picidae	Insectivorous	C107
Picus canus	Grey-headed Woodpecker	Piciformes	Picidae	Insectivorous	C108
Dendrocopos darjellensis	Darjeeling Woodpecker	Piciformes	Picidae	Insectivorous	C109
Psittacula himalayana	Slaty-headed Parakeet	Psittaciformes	Psittacidae	Frugivorous	C110
Glaucidium brodiei	Collared Owlet	Strigiformes	Strigidae	Carnivorous	C111