Ionic-liquid-like local structure in
\(\text{LiNO}_3 - \text{Ca(NO}_3)_2 - \text{H}_2\text{O}\) as studied by ion and
solvent nuclei NMR relaxation

Vladimir V Matveev1,3, Petri Ingman2, Erkki Lähderanta3

1 Department of Quantum Magnetic Phenomena, Physical Faculty, St.-Petersburg
State University, RU-198504 St.-Petersburg, Russia
E-mail: vmatveev@nmr.phys.spbu.ru
2 NMR Laboratory, Department of Chemistry, University of Turku, FI-20014 Turku, Finland
3 Laboratory of Physics, Lappeenranta University of Technology, Box 20, 53851
Lappeenranta, Finland

Abstract. Relaxation rates in the 13m\(\text{LiNO}_3 - 6,5\text{mCa(NO}_3)_2 - \text{H}_2\text{O}\) ternary
system have been measured for nuclei of water (\(^1\text{H}\) and \(^{17}\text{O}\)), anion (\(^{14}\text{N}\)), and both
cations (\(^7\text{Li}, ^{43}\text{Ca}\)). The data analysis reveals the system structure as consisting of
two main charged units: \([\text{Li(H}_2\text{O})_4]^+\) and \([\text{Ca(NO}_3)_4]^{2-}\). Thus the system presents
inorganic ionic liquid like structure.

PACS numbers: 76.60.-k, 75.47.Lx
1. Introduction

Ionic Liquids (ILs), i.e. room temperature molten salts attract growing attention as very promising systems both for academical knowledge and for industrial applications \[1, 2, 3, 4, 5\]. Therefore, investigation of their structure and dynamics by various methods is nowadays one of the leading topic in Physics and Chemistry of liquid systems. There are a number of NMR papers on ILs at the moment (see e.g. \[6, 7, 8, 9, 10, 11\]). However, they are still far from using the full potential of multinuclear NMR technique. During few last decades the technique has shown its high efficiency for various electrolyte solutions, see \[12, 13, 14, 15\] and references within.

Concentrated electrolyte solutions could be good models for ionic liquids due to clear similarity of the systems, and in this connection other potentialities of NMR might be demonstrated using these easier prepared samples. Here we report NMR study for the 13mLiNO\(_3\) – 6.5mCa(NO\(_3\))\(_2\) – H\(_2\)O ternary system where multinuclear relaxation data allow evaluation of the mobility of all nuclei both in solvent and solute.

NMR technique is an important information source on molecular mobility in neat ILs as well as in various electrolyte solutions as the NMR relaxation rates under certain experimental conditions are proportional to characteristic times of translational and/or rotational motion of ions and solvent. In the investigated system there are two different channels of spin-lattice relaxation which control the spin-lattice relaxation rate, \(T_{1}^{-1}\) (later denoted as \(R\) for simplicity). For \(^{14}\)N, \(^{17}\)O, and \(^{43}\)Ca nuclei the main contribution is due to quadrupolar interaction, and corresponding \(T_{1Q}^{-1}\) is given by \[16, 13\]

\[
\frac{1}{T_{1Q}} = \frac{3\pi^2}{10} \frac{2I + 3}{I(I^2 - 1)} \nu_Q^2 \tau_{eff} .
\]

Here \(\tau_{eff}\) is the effective correlation time, in many cases equal to the rotation reorientation time, \(\tau_r\), of ion/molecule which contains the investigated nucleus; \(I\) is the spin of the nucleus; the quadrupolar coupling constant, \(\nu_Q = e^2qQ/h\) where \(eQ\) is the electric field gradient at the nucleus and \(eQ\) is the nucleus quadrupole moment.

Equation (1) is valid only for nuclei with axial symmetry of the quadrupolar tensor. Another mechanism of relaxation, mostly relevant here for \(^1\)H nuclei, is magnetic or dipole-dipolar spin-spin interaction. Corresponding relaxation rate, \(T_{1m}^{-1}\) is proportional to the correlation time, \(\tau_c\) \[17, 10\]:

\[
\frac{1}{T_{1m}} = A\tau_c
\]

where \(\tau_c\) is, similar to \(\tau_{eff}\), typically equal to \(\tau_r\); \(A\) can be generally expressed in the form:

\[
A = \gamma_I^2\gamma_S^2h^2r^{-6}
\]

for two different nuclei \(I\) and \(S\) and

\[
A = (3/2)\gamma_I^4h^2r^{-6}
\]
for two equal nuclei I. Here γ_I and γ_S are the nuclear gyromagnetic ratios for nuclei I and S correspondingly, r is the internuclear distance. Both (1) and (2) are valid under the simplifying assumption of so-called "extreme narrowing" condition $\omega_0\tau_c \ll 1$. (3)

For ^7Li coexist dipole-dipolar and quadrupolar relaxation channels and their relative contributions depend on molecular environment of the ion. As it is evident from (1) and (2) the relaxation rate is proportional to molecular correlation time and allows an evaluation of the τ_r value from NMR relaxation data. However, an absence of precise magnitudes of ν_Q and r prevent this evaluation in a number of cases. Especially it it true for concentrated solutions with unknown local structure of the ions and solvent environment. To overcome or at least to reduce this difficulty it is useful to explore molecules with fixed chemical environment (chemical structure) and with internal ν_Q value for quadrupolar nucleus. In such kind of samples one may assume an approximate conservation of ν_Q or r value and hence, an approximate constancy of the coefficients (factors) in (1) and/or (2). Then an increase of the relaxation rate reveals an increase of τ_r and allows a semi-quantitative comparison of solutions with different electrolyte concentrations at least in the form of the ratio of τ_r-s. For the investigated system such nuclei are ^{14}N in NO_3^- anion where ν_Q value is affected primarily by the nitrogen – oxygen chemical bond and ^1H where r is controlled by hydrogen–hydrogen distance in water molecule. For both these cases it is reasonable to assume that the coefficients in (1) and (2) are virtually independent of salt concentration. This assumption is used below to describe the main trends in relaxation rates.

2. Experimental procedures

The ternary system under study was prepared as described earlier [18]. Spin-lattice relaxation times, T_1, for ^1H and ^7Li nuclei were measured using a common inversion-recovery ($180 - \tau - 90$) technique at 8 MHz resonance frequency with a home-made relaxometer. The spectral linewidth, w, for ^{14}N, ^{17}O and ^{43}Ca nuclei were measured with Bruker AM-500 and AVANCE-400 spectrometers at magnetic field of 11.8 T and 9.4 T, correspondingly. Spin-spin relaxation time, T_2, was then calculated according to the common $T_2 = (\pi w)^{-1}$ relation. This was used instead of T_1 as the "extreme narrowing” condition (3) was valid for these nuclei. All measurements were carried out at room temperature.

3. Results and Discussion

Experimental relaxation rates for all nuclei in the mixture are collected on the Table 1. Also are included corresponding literature values, R_0, in pure water or in proper dilute solution with calculated R/R_0 ratios. As it is evident from (1) the R/R_0 values are not unambiguously proportional to increasing of τ_r. But even a qualitative analysis of the
Ionic-liquid-like local structure in a LiNO$_3$ – Ca(NO$_3$)$_2$ – H$_2$O

Table 1. Relaxation rates of the nuclei in the investigated solution.

nucleus; ion/solvent	R, s$^{-1}$	R_0, s$^{-1}$	R/R_0
1H; H$_2$O	4.95	0.29 [17, 14]	17.1
7Li; Li$^+$	1.04	0.055±0.005 [15, 20]	19±2
17O; H$_2$O	2.65 10^3	138±4 [21, 22]	19.2
17O; NO$_3^-$	32.7 10^3	317 [23]	103
14N; NO$_3^-$	1.58 10^3	7.69 [23]	205
43Ca; Ca$^{2+}$	198±18	0.80 [24]	240±20

Table 1 allows one to assume more or less clear picture of the short range order and dynamics in our system. First, the data reveal close R/R_0 values for 1H and 17O water nuclei. In the case of 17O it is reasonable to suggest, that ν_Q depends mainly on the chemical bond strength in the water molecule and remains more or less constant in the solution. Hence, an increasing of the relaxation rates for these nuclei reflects primarily an increase of τ_r due to the solute concentration increasing. The same estimation looks valid for proton relaxation due to its mainly intramolecular magnetic origin. Thus, the measurements show that the rotational correlation time for water molecule in the system exceeds that in pure water approximately by a factor of 20.

For 7Li nucleus the R/R_0 value is close to 1H and 17O ones for water. It is well known that the 7Li relaxation rate is the sum of the dipolar (magnetic) and quadrupolar terms [16, 6]. In the dilute aqueous solution it has been shown that these two contributions are practically equal [20]. However, some additional assumption is required to separate them in the studied solution as the coefficients in (1) and (2) could vary with concentration. Nevertheless, close R/R_0 values for 7Li cation and for water allow one to assume a conservation of 7Li dipolar to quadrupolar contribution ratio for this system and to attribute the R/R_0 increase to τ_r increasing. In any case an increasing of τ_r for 7Li relaxation is much less in comparison with other ions R/R_0s. In fact, for 14N and 17O nuclei in the NO_3^- anion R/R_0 values exceed those for dilute solutions by a factor of $n \cdot 10^2$, and the same is observed for 43Ca nucleus of Ca$^{2+}$ cation.

For 14N and 17O nuclei in the anion their ν_Q values are affected primarily by the nitrogen – oxygen chemical bond. However, equation (1) is valid only for 14N nucleus whereas τ_{eff} for 17O is not equal to τ_r for the anion; for more detail see [23, 25] and references within. Nevertheless, R/R_0 for 14N reveals unambiguously a huge increase of the anion τ_r. The environment of Ca$^{2+}$ cation has a high symmetry in dilute aqueous solutions and therefore, an increase of its relaxation rate is a product of two effects, namely (i) an increase of the correlation time for Ca$^{2+}$ cation and (ii) a distortion of symmetry of the cation leading to increase of ν_Q. As a result the 43Ca relaxation rate displays the maximal R/R_0 value.

The analysis above may be summarized as follows:

(i) An increase of relaxation rates for 14N nucleus in the anion and 43Ca nucleus in calcium cation is much more pronounced than that for 7Li nucleus in lithium cation.
and for both 1H and 17O nuclei in water molecule.

(ii) The anion τ_r value obtained from the 14N R/R_0 under the assumption of $\nu_Q \approx const$ is well over τ_r value for Li$^+$ cation which can be obtained from 7Li R/R_0 with any reasonable ν_Q value.

(iii) water and Li$^+$ τ_r values are nearly the same.

In other words this analysis leads to the conclusion that Li$^+$ cation is surrounded by water only, whereas Ca$^{2+}$ cation and NO$_3^-$ anions combine themselves into some complex anions. The stoichiometry of the solution, Ca: 2Li: 4NO$_3$: 8.5H$_2$O, allows the almost complete distribution of solvent and anions among the cation surroundings. Therefore it is reasonable to assume that the local structure of the system consists of two main structural units or clusters:

$$[\text{Li}(\text{H}_2\text{O})_4]^+$$

and

$$[\text{Ca}(\text{NO}_3)_4]^{2-}.$$

The units are in 2:1 proportion and coulomb interaction determines mainly the middle-range order and dynamics of the system. It means that the electrolyte solution under investigation presents a kind of inorganic ionic liquid, and it is the first example of such kind, at least as far as the authors’ knowledge.

4. Conclusion

We have demonstrated some possibilities of multinuclear NMR technique to obtain information on local structure and dynamics of solvent and ions in a complex system consisting of water molecules and a number of counterions – concentrated electrolyte solution. The data obtained allow a description of the local structure of the system as a composition of two charged units - complex counterions - and lead to estimation of dynamics of solvent and ions. The same methodology can be used for investigation of properties of various ILs in neat state as well as in a mixture with solvent.

Acknowledgments

We gratefully acknowledge Prof Maria K. Khripoun for the sample. We also acknowledge Prof Sergei V. Dvinskikh and Prof Viktor I. Tarkhanov for fruitful discussions. V.V.M. much indebted to Ivan S. Podkorytov for his help during working at AM-500 spectrometer. The work was partly supported by Russian RFBR grant #07-08-00548.

References

[1] Welton T 1999 Chem. Rev. 99 2071
[2] 2007 Ionic Liquids Today: COIL-2 Special Issue. (Ionic Liquids Technologies) (http://www.iolitec.de/download/newsletter/Ionic Liquids Today 07-COIL Special Issue.pdf)
Ionic-liquid-like local structure in a LiNO₃ – Ca(NO₃)₂ – H₂O

[3] Malvald M and Chiappe C 2008 J. Phys.: Condens. Matter 20 035108
[4] Kitaoka S, Nobuoka K, Ishikawa Y and Wakisawa A 2008 Anal. Sci. 24 1311
[5] Tempel D J et al. 2008 J. Amer. Chem. Soc. 130 400
[6] Babkmann D and Grienoth R 2007 Pr. NMR Spectr. 51 63
[7] Sangoro J R, Serghei A, Naumov S, Galvosas P, Kärger J, Wespe C, Bordusa F and Kremer F 2008 Phys. Rev. E 77 051202
[8] Lyčka A, Doleček R, Šimušek P and Macháček V 2006 Magn. Reson. Chem. 44 521
[9] Imanari M, Nakakoshi M, Seki H and Nishikawa K 2008 Chem. Phys. Let. 459 89
[10] Moreno M, Castiglione F, Mele A, Pasqui C and Raos G 2008 J. Phys. Chem. B 112 7826
[11] Tsuchiya H, Imanari M, Ishihara S, Naakoshi M, Nishikawa K, Seki H and Tashiro M 2008 Anal. Sci. 24 1369
[12] Holz M 1986 Pr. NMR Spectr. 18 327
[13] Kowalewski J 1989 Ann. Reports NMR Spectr. 22 307
[14] Chizhik V I 1997 Molec. Phys. 90 653
[15] Matveev V V 1986 J. Structur. Chem. 27 455
[16] Abraham A 1961 The Principles of Nuclear Magnetism Oxford University Press
[17] Bloembergen N, Purcell E M, Pound R V 1948 Phys. Rev. 73 679
[18] Khripoun M K et al. 2000 Russ. J. Gen. Chem. 70 217
[19] Woessner D E, Snowden B S and Ostroff A G 1968 J. Chem. Phys. 49 371
[20] Mazitov R K, Samoilov O Ya, Bryushkova N V, Buslaeva M N and Dudnikova K T 1975 J. Struct. Chem 16 528
[21] Lang E and Ldermann H-D 1981 Ber. Bunsenges. phys. Chem. 85 603
[22] Hindman J C 1974 J. Chem. Phys. 60 4488
[23] Nicholas A M de P and Wasylishen R E 1987 Can. J. Chem. 65 951
[24] Bruker Almanach 1995 85
[25] Nicholas A M de P and Wasylishen R E 1985 J. Phys. Chem. 89 5446
[26] Adachi A, Kiyoyama M, Nakahara M et al. 1989 J. Chem. Phys. 90 392