J. H. Yin¹, Z. Y. You¹, B. X. Yu¹, C. X. Yu², J. S. Yu², T. Yu³, C. Z. Yuan⁴, X. Q. Yuan⁵, Y. Yuan³, C. X. Yue⁶, A. Yuncu⁷, A. A. Zafar⁸, Y. Zeng⁹, B. X. Zhang¹, B. Y. Zhang¹, C. C. Zhang¹, D. H. Zhang¹, H. H. Zhang¹, H. Y. Zhang¹, J. L. Zhang², J. Q. Zhang³, J. W. Zhang¹,², J. Y. Zhang¹, J. Z. Zhang³,¹, L. Zhang¹, Lei Zhang⁵, S. F. Zhang⁵, T. J. Zhang⁶, X. Y. Zhang⁷, Y. H. Zhang¹,², Y. T. Zhang⁵, Yau Zhang⁶, Yao Zhang¹, Yi Zhang⁹,³, Yu Zhang⁵¹, Z. H. Zhang⁶, Z. P. Zhang⁶, Z. Y. Zhang⁶⁴, G. Zhao¹, J. Zhao³², J. W. Zhao¹,², J. Y. Zhao¹,², J. Z. Zhao¹,², Lei Zhao⁵,⁹,⁷, Ling Zhao¹, M. G. Zhao⁶, Q. Zhao¹, S. J. Zhao⁷, T. C. Zhao¹, Y. B. Zhao¹,², Z. G. Zhao⁵,⁹,²⁴, A. Zhemchugov²⁸, B. Zheng⁶⁰, J. Y. Zheng¹, J. J. Zhao³², L. Zhang⁵, J. P. Zhou³⁴, T. C. Zhou¹,², J. J. Zhu²,³, J. L. Zhu²,³, K. Zhu¹, K. J. Zhu¹,², S. H. Zhu³⁸, W. J. Zhu³⁶, X. L. Zhu⁴⁹, Y. C. Zhu⁵⁹, Y. S. Zhu¹,¹, Z. A. Zhu¹,¹, J. Zhuang¹,², B. S. Zou¹, J. H. Zou¹

(BESIII Collaboration)

¹ Institute of High Energy Physics, Beijing 100049, People’s Republic of China
² Beijing University, Beijing 100191, People’s Republic of China
³ Beijing Institute of Petrochemical Technology, Beijing 102617, People’s Republic of China
⁴ Bochum Ruhr-University, D-44780 Bochum, Germany
⁵ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
⁶ Central China Normal University, Wuhan 430079, People’s Republic of China
⁷ China Center of Advanced Science and Technology, Beijing 100190, People’s Republic of China
⁸ COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, 54000 Lahore, Pakistan
⁹ Fudan University, Shanghai 200443, People’s Republic of China
¹⁰ G.I. Budker Institute of Nuclear Physics SB RAS (BINP), Novosibirsk 630090, Russia
¹¹ GSI Helmholtzzentrum for Heavy Ion Research GmbH, D-64291 Darmstadt, Germany
¹² Guangxi Normal University, Guilin 541004, People’s Republic of China
¹³ Guangxi University, Nanning 530004, People’s Republic of China
¹⁴ Hangzhou Normal University, Hangzhou 310036, People’s Republic of China
¹⁵ Helmholtz Institute Mainz, Johann-Joachim-Becher Weg 45, D-55099 Mainz, Germany
¹⁶ Henan Normal University, Xinxiang 453007, People’s Republic of China
¹⁷ Henan University of Science and Technology, Luoyang 471003, People’s Republic of China
¹⁸ Huangshan College, Huangshan 245000, People’s Republic of China
¹⁹ Hunan Normal University, Changsha 410081, People’s Republic of China
²⁰ Hunan University, Changsha 410082, People’s Republic of China
²¹ Indian Institute of Technology Madras, Chennai 600036, India
²² Indiana University, Bloomington, Indiana 47405, USA
²³ (A)INFN Laboratori Nazionali di Frascati, I-00044, Frascati, Italy; (B)INFN and University of Perugia, I-06100, Perugia, Italy
²⁴ (A)INFN Sezione di Ferrara, I-44122, Ferrara, Italy; (B)University of Ferrara, I-44122, Ferrara, Italy
²⁵ Institute of Modern Physics, Lanzhou 730000, People’s Republic of China
²⁶ Institute of Physics and Technology, Peace Ave. 54B, Ulaanbaatar 13330, Mongolia
²⁷ Johannes Gutenberg University of Mainz, Johann-Joachim-Becher Weg 45, D-55099 Mainz, Germany
²⁸ Joint Institute for Nuclear Research, 141980 Dubna, Moscow region, Russia
²⁹ Justus-Liebig-Universit"at Gießen, H. Physikalisches Institut, Heinrich-Buff-Ring 16, D-35392 Giessen, Germany
³⁰ KVI-CART, University of Groningen, NL-9747 AA Groningen, The Netherlands
³¹ Lanzhou University, Lanzhou 730000, People’s Republic of China
³² Liaoning Normal University, Dalian 116029, People’s Republic of China
³³ Liaoning University, Shenyang 110036, People’s Republic of China
³⁴ Nanjing Normal University, Nanjing 210023, People’s Republic of China
³⁵ Nanjing University, Nanjing 210023, People’s Republic of China
³⁶ Nankai University, Tianjin 300071, People’s Republic of China
³⁷ Peking University, Beijing 100871, People’s Republic of China
³⁸ Qufu Normal University, Qufu 273165, People’s Republic of China
³⁹ Shandong Normal University, Jinan 250014, People’s Republic of China
⁴⁰ Shandong University, Jinan 250100, People’s Republic of China
⁴¹ Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
⁴² Shandong University, Jinan 250014, People’s Republic of China
⁴³ Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
⁴⁴ Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
Using an e^+e^- annihilation data sample corresponding to an integrated luminosity of 2.93 fb^{-1} collected at the center-of-mass energy of 3.773 GeV with the BESIII detector, we measure the absolute branching fractions of $D^+ \rightarrow \eta \eta \pi^+$, $D^+ \rightarrow \eta \pi^+ \pi^0$, and $D^0 \rightarrow \eta \pi^+ \pi^-$ to be $(2.96 \pm 0.24 \pm 0.13) \times 10^{-3}$, $(2.23 \pm 0.15 \pm 0.11) \times 10^{-3}$, and $(1.20 \pm 0.07 \pm 0.04) \times 10^{-3}$, respectively, where the first uncertainties are statistical and the second ones systematic. The $D^+ \rightarrow \eta \pi^+$ decay is observed for the first time and the branching fractions of $D^{+ (0)} \rightarrow \eta \pi^+ \pi^0(-)$ are measured with much improved
I. INTRODUCTION

The goal of the experimental studies of hadronic D meson decays is to explore strong and weak interaction effects. Various experiments have measured the branching fractions (BF) of hadronic decays of D mesons 1. However, measurements of singly Cabibbo-suppressed decays to final states containing one or more η mesons are still limited 1. Recently, the BESIII Collaboration presented measurements of $D^0 \rightarrow \eta \pi^0 \pi^0$ and $D^0 \rightarrow \eta \eta \pi^0$ 2. The isospin-related decay modes $D^+ \rightarrow \eta \pi^+ \pi^0$ and $D^0 \rightarrow \eta \pi^+ \pi^-$ were measured with large uncertainties by the CLEO Collaboration 2 and there is no measurement for $D^+ \rightarrow \eta \pi^+ \pi^-$. Improved measurements of $D^+ \rightarrow \eta \pi^+ \pi^0$, $D^0 \rightarrow \eta \pi^+ \pi^-$ and search for $D^+ \rightarrow \eta \pi^+ \eta$ will be useful to clarify the gaps between the inclusive and known exclusive $D \rightarrow \eta X$ decay rates. On the other hand, measurements of these decays provide important inputs for charm and B physics. For instance, these multibody hadronic D decays are crucial backgrounds in semi-tauonic decays of B mesons, thus precision measurements of these hadronic decays are important for the test of lepton flavor universality 4.

This paper presents the first measurement of the branching fraction of $D^+ \rightarrow \eta \eta \pi^+$ and the improved measurements of $D^{+\,(0)} \rightarrow \eta \pi^+ \pi^{0\,(\pm)}$ using an e^+e^- data sample of 2.93 fb$^{-1}$ taken at the center-of-mass energy $\sqrt{s} = 3.773$ GeV 5. In order to search for CP violation in D decays 2, 6, the asymmetries of the BFs of the charge-conjugate decays, defined as $A_{CP} = \frac{B(D \rightarrow f) - B(D \rightarrow \bar{f})}{B(D \rightarrow f) + B(D \rightarrow \bar{f})}$, have also been measured for the first time. Throughout the paper, charge conjugate modes are implied, except for the A_{CP} measurements.

II. BESIII DETECTOR AND MONTE CARLO SIMULATION

The BESIII detector is a magnetic spectrometer 8 located at the Beijing Electron Positron Collider (BEPCII) 4. The cylindrical core of the BESIII detector consists of a helium-based multi-layer drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a CsI(Tl) electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T magnetic field. The solenoid is supported by an octagonal flux-return yoke with resistive plate muon chambers interleaved with steel. The acceptance of charged particles and photons is 93% of the 4π solid angle. The charged-particle momentum resolution at 1 GeV/c is 0.5%, and the dE/dx resolution is 6% for the electrons from Bhabha scattering. The catalog 2, 6 includes production of the $\psi(3686)$ states, and the continuum processes incorporated in KKMC 11. The simulation includes the beam energy spread and initial state radiation (ISR) in the e^+e^- annihilations modelled with the generator KKMC 11.

The known decay modes of the D mesons and the charmonium states are modelled with EVTGEN 12 using BFs taken from the Particle Data Group 1, and the remaining unknown decays from the charmonium states with LUNDCHARM 13. Final state radiation is incorporated with the PHOTOS package 14.

III. MEASUREMENT METHOD

Using e^+e^- annihilations at $\sqrt{s} = 3.773$ GeV, we produce $D\bar{D}$ pairs with no additional hadrons. Events where one D meson is fully reconstructed are referred to as “single tagged” (ST). A correct tag guarantees the presence of the other D meson, and we search for the hadronic decays $D^{0(+)} \rightarrow \eta \eta \pi^+$ and $D^+ \rightarrow \eta \eta \pi^+$ recoiling against a tagged D meson. Events with both a tag and such a signal-mode candidate are referred to as “double-tag” (DT) events. In this analysis, the tagged D mesons are reconstructed using three hadronic decay modes: $K^+\pi^-$, $K^+\pi^-\pi^0$, and $K^+\pi^-\pi^+\pi^-$, while the tagged \bar{D} mesons are reconstructed using six hadronic decay modes: $K^+\pi^-\pi^-$, $K^0_S\pi^-$, $K^+\pi^-\pi^0\pi^0$, $K^0_S\pi^-\pi^0$, $K^0\pi^+\pi^-\pi^-$, and $K^+K^+\pi^-$. For a specific tag mode i, the yields of the tagged D mesons (N_{ST}^i) and of the DT events (N_{DT}^i) are

$$N_{ST}^i = 2N_{DD}B_{ST}^i\epsilon_{ST}^i, \quad N_{DT}^i = 2N_{DD}B_{ST}^iB_{Sig}^i\epsilon_{DT}^iB_{Sub}^i,$$

where N_{DD} is the number of $D\bar{D}$ pairs, B_{ST}^i and B_{Sig}^i are the BFs of the D tag decay mode i and the D signal decay mode, ϵ_{ST}^i is the efficiency for finding the tag candidate, ϵ_{DT}^i is the efficiency for simultaneously finding the tag D and the signal decay. Finally, B_{Sub}^i is the appropriate BF product of $\eta \rightarrow \gamma\gamma$ and $\pi^0 \rightarrow \gamma\gamma$ in the signal decay; i.e., B_{Sub}^i is equal to $B_{\eta\rightarrow\gamma\gamma}^2$, $B_{\eta\rightarrow\gamma\gamma}B_{\pi^0\rightarrow\gamma\gamma}$, and $B_{\eta\rightarrow\gamma\gamma}$
for $D^+ \rightarrow \eta \pi^+$, $D^+ \rightarrow \eta \pi^+ \pi^0$, and $D^0 \rightarrow \eta \pi^+ \pi^-$, respectively. Combining the above equation, the BF for the signal decay is given by

$$B_{\text{sig}} = \frac{N_{\text{DT}}}{N_{\text{ST}} \epsilon_{\text{sig}} B_{\text{sub}}},$$

(2)

where N_{ST} and N_{DT} are the total ST and DT yields, and ϵ_{sig} is the average efficiency of reconstructing the signal decay (with a tag present), weighted by the measured yields of tag modes in data which is given by

$$\epsilon_{\text{sig}} = \frac{\sum_i N_{\text{ST}}^i \epsilon_{\text{DT}}^i / \epsilon_{\text{ST}}^i}{\sum_i N_{\text{ST}}^i},$$

(3)

IV. EVENT SELECTION

The event selection criteria used in this work are the same as those used in Refs. [15–17]. All charged tracks are required to be within a polar-angle (θ) range of $|\cos \theta| < 0.93$. Except for those from K_S^0 decays, all tracks must originate from an interaction region defined by $V_{xy} < 1$ cm and $V_z < 10$ cm. Here, $V_{xy}(z)$ is the distance of the closest approach of the charged track to the interaction point perpendicular to (along) the beam.

Charged kaons and pions are identified with the information of the TOF and the dE/dx measured by the MDC. Confidence levels for pion and kaon hypotheses (CL_{π} and CL_K) are calculated. Kaon and pion candidates are required to satisfy $CL_K > CL_{\pi}$ and $CL_{\pi} > CL_K$, respectively.

The K_S^0 mesons are reconstructed in the decay $K_S^0 \rightarrow \pi^+ \pi^-$. Two oppositely charged tracks are required to satisfy $V_z < 20$ cm, but without V_{xy} and PID requirements. The two tracks are constrained to originate from a common vertex, and their invariant mass is required to satisfy $|M_{\pi^+ \pi^-} - M_{K_S^0}| < 12$ MeV/c², where $M_{K_S^0}$ is the nominal mass [1]. The vertex of K_S^0 candidate is required to be more than two standard deviations of the vertex resolution away from the interaction point.

The π^0 and η mesons are reconstructed from their decay into two photons. Photon candidates are selected from the list of EMC showers. The shower time is required to be within 700 ns of the event start time. The shower energy is required to be greater than 25 (50) MeV if the crystal with the maximum energy deposit in that cluster is in the barrel (endcap) region [8]. The opening angle between the candidate shower and the nearest charged track must be greater than 10°. Photon pairs with an invariant mass in the interval $0.115 < M_{\gamma \gamma} < 0.150$ GeV/c² ($0.515 < M_{\gamma \gamma} < 0.570$ GeV/c²) are accepted as π^0 (η) candidates. To improve resolution, a one-constraint kinematic fit is imposed on each selected photon pair, in which the $\gamma \gamma$ invariant mass is constrained to the π^0 or η nominal mass [1].

In the selection of the tagged candidates of $\bar{D}^0 \rightarrow K^+ \pi^-$, backgrounds from cosmic rays and Bhabha events must be suppressed. First, the two charged tracks must have a TOF time difference less than 5 ns and they must not be consistent with being a muon pair or an electron–positron pair. Second, there must be at least one EMC shower with an energy larger than 50 MeV or at least one additional charged track detected in the MDC [19]. Also, for the $D^0 \rightarrow \eta \pi^+ \pi^-$ candidate events, the invariant mass of the $\pi^+ \pi^-$ combination is required to be outside the mass window of $|M_{\pi^+ \pi^-} - M_{K_S^0}| < 30$ MeV/c² to reject the backgrounds from the $D^0 \rightarrow K_S^0 \eta$ decays.

The tagged \bar{D} (signal D) meson is identified by two variables, the energy difference

$$\Delta E_{\text{tag}}(\text{sig}) \equiv E_{\text{tag}}(\text{sig}) - E_{\text{beam}}$$

and the beam-constrained mass

$$M_{\text{BC}}(\text{tag}) \equiv \sqrt{E_{\text{beam}}^2 - |\vec{p}_{\text{tag}}(\text{sig})|^2},$$

(5)

where the superscript tag (sig) represents the tagged \bar{D} candidate and signal D candidate, E_{beam} is the beam energy, $\vec{p}_{\text{tag}}(\text{sig})$ and $E_{\text{tag}}(\text{sig})$ are the momentum and energy of the \bar{D} (D) candidate in the rest frame of e^+e^- system. For each tag (signal) mode, if there are multiple candidates in an event, only the one with the minimum $|\Delta E_{\text{tag}}(\text{sig})|$ is kept. The tag side is required to satisfy $\Delta E_{\text{tag}} \in (-55, +40)$ MeV for the modes containing a π^0 in the final state and $\Delta E_{\text{tag}} \in (-25, +25)$ MeV for the other modes. The signal side is required to satisfy $\Delta E_{\text{sig}} \in (-42, +40)$ MeV, $(-68, +52)$ MeV, and $(-40, +38)$ MeV for $D^+ \rightarrow \eta \eta \pi^+$, $D^+ \rightarrow \eta \pi^+ \pi^0$, and $D^0 \rightarrow \eta \pi^+ \pi^-$, respectively.

V. SINGLE-TAG AND DOUBLE-TAG YIELDS

The ST yields are obtained from maximum likelihood fits to the $M_{\text{BC}}^{\text{tag}}$ distributions of the accepted tagged \bar{D} candidates in data, as shown in Fig. [1]. In the fits, the \bar{D} signal is modeled by an MC-simulated shape convolved with a double Gaussian function describing the resolution difference between data and MC simulation. The combinatorial background shape is described by the ARGUS function [20]. The ST yields and the ST efficiencies are summarized in Table [I]. The total ST yields (N_{ST}) are 1558195 ± 38 MeV for the modes containing a π^0 in the final state and 1558195 ± 38 MeV and 1558195 ± 38 MeV for the other modes. The signal-side yield is required to satisfy $\Delta E_{\text{sig}} \in (-42, +40)$ MeV, $(-68, +52)$ MeV, and $(-40, +38)$ MeV for $D^+ \rightarrow \eta \eta \pi^+$, $D^+ \rightarrow \eta \pi^+ \pi^0$, and $D^0 \rightarrow \eta \pi^+ \pi^-$, respectively.
FIG. 1: Fits to the M_{BC} distributions of the \bar{D}^0 (left column) and D^- (middle and right columns) tagging decay modes. Data are shown as dots with error bars. The blue solid and red dashed curves are the fit results and the fitted backgrounds, respectively.

FIG. 2: Illustration of the distributions of M^{tag}_{BC} vs. M^{sig}_{BC} of the accepted DT hadronic DD candidate events.

BKGII, is from events spread along the diagonal, which are mainly from the $e^+e^- \rightarrow q\bar{q}$ processes. The third one, BKGIII, comes from events with both D and \bar{D} reconstructed incorrectly which spread out the full plot.

To extract the DT yield in data, a two-dimensional (2D) unbinned maximum likelihood fit \cite{21} on this distribution is performed. In the fit, the probability density functions (PDFs) of the four components mentioned above are constructed as

- signal: $a(M^{\text{sig}}_{BC}, M^{\text{tag}}_{BC})$,
BKGI: \(b(M_{\text{BC}}^{\text{sig}}) \cdot c(M_{\text{BC}}^{\text{tag}}, E_{\text{beam}}, \xi_{M_{\text{BC}}^{\text{tag}}}^{\text{BC}}) + b(M_{\text{BC}}^{\text{sig}}, E_{\text{beam}}, \xi_{M_{\text{BC}}^{\text{tag}}}^{\text{BC}}) \),

BKGII: \(c(M_{\text{BC}}^{\text{sig}} + M_{\text{BC}}^{\text{tag}})/\sqrt{2}, \sqrt{2}E_{\text{beam}}, \xi, 1/2 \cdot (G g((M_{\text{BC}}^{\text{sig}} - M_{\text{BC}}^{\text{tag}})/\sqrt{2}, 0, \sigma_1) + (1 - G) g((M_{\text{BC}}^{\text{sig}} - M_{\text{BC}}^{\text{tag}})/\sqrt{2}, 0, \sigma_2)) \),

BKGIII: \(c(M_{\text{BC}}^{\text{sig}}, E_{\text{beam}}, \xi_{M_{\text{BC}}^{\text{tag}}}^{1/2}) \cdot c(M_{\text{BC}}^{\text{sig}}, E_{\text{beam}}, \xi_{M_{\text{BC}}^{\text{tag}}}^{1/2}) \),

where \(g(x; 0, \sigma) \) denotes a Gaussian function with mean of zero and standard deviation of \(\sigma \), \(c(x; E_{\text{beam}}, \xi, 1/2) \) is an ARGUS function defined as \(A x(1 - \frac{x^2}{E_{\text{beam}}^2})^{1/2} e^{-\xi(x^2/E_{\text{beam}}^2)} \). Here, \(A \) is a normalization constant (independent for the ARGUS functions in the \(M_{\text{BC}}^{\text{sig}} \) and \(M_{\text{BC}}^{\text{tag}} \) directions) and \(E_{\text{beam}} \) is the endpoint which is fixed at 1.8865 GeV, and \(G \) is the fraction of two Gaussians. The PDFs of signal \(a(M_{\text{BC}}^{\text{sig}}, M_{\text{BC}}^{\text{tag}}) \), \(b(M_{\text{BC}}^{\text{sig}}, M_{\text{BC}}^{\text{tag}}) \), and \(c(M_{\text{BC}}^{\text{sig}}, M_{\text{BC}}^{\text{tag}}) \) are described by the corresponding MC-simulated shapes. Other parameters are left free.

There are some peaking backgrounds in \(M_{\text{BC}}^{\text{tag}} \) vs. \(M_{\text{BC}}^{\text{sig}} \) distribution to consider. For the decay \(D^+ \rightarrow \eta \pi^- \), the peaking backgrounds are from a correct tag with an incorrect signal (\(D^+ \rightarrow \pi^+ \pi^0 \pi^0 \)). For the decay \(D^+ \rightarrow \eta \pi^0 \pi^+ \), the peaking backgrounds are from a correct tag with an incorrect signal (\(D^+ \rightarrow K_1^0(K_2^0)\pi^+ \pi^0 \), \(K_2^0 \rightarrow \pi^0 \pi^0 \), or \(D^+ \rightarrow \pi^+ \pi^0 \pi^0 \)). For these peaking backgrounds, the shapes are modeled based on MC simulation and the normalizations are fixed according to the corresponding BFs in PDG [1].

Figure 3 shows the \(M_{\text{BC}}^{\text{tag}} \) and \(M_{\text{BC}}^{\text{sig}} \) projections of the 2D fits to data. From these 2D fits, we obtain the DT yields (\(N_{\text{DT}} \)) in the fitted \(M_{\text{BC}}^{\text{tag}(\text{sig})} \) region (1.8365, 1.8865) GeV/\(c^2 \), as shown in the second column of Table II. For each final state decay mode, the statistical significance is calculated according to \(\sqrt{-2 \ln(L_0/L_{\text{max}})} \), where \(L_{\text{max}} \) is the maximal likelihood of the nominal fit and \(L_0 \) is the likelihood of the corresponding fit without the signal component. The statistical significance for the three signal decays are all found to be greater than 10\(\sigma \).

VI. BRANCHING FRACTIONS

To ensure the reliability of signal efficiency, we have examined the \(M_{\eta \rho} \), \(M_{\eta \pi^+} \), and \(M_{\rho^+} \) distributions of \(D \rightarrow \eta \rho \pi^+ \) candidate events after requiring \(|M_{\text{BC}}^{\text{tag}} - M_D| < 0.006 \text{ GeV/}c^2\). Here, \(\rho \) denotes the daughter particles of \(\eta \), \(\pi^0 \), and \(\pi^+ \) for \(D^+ \rightarrow \eta \rho \pi^+ \), \(D^+ \rightarrow \eta \pi^0 \pi^+ \), and \(D^0 \rightarrow \eta \pi^+ \pi^- \) decays, respectively. Figure 3 shows the Dalitz plots of these signal decay modes in data, and there are no significant \(\rho^0, \pm \) and \(a_0(980)^{0, \pm} \) signals in these Dalitz plots. However, due to some possible resonances, the phase-space MC distributions of \(M_{\eta \rho} \), \(M_{\eta \pi^+} \), and \(M_{\rho^+} \) do not agree well with the data distributions. To solve this problem, the MC generator is modified to produce the correct invariant mass distributions according to the Dalitz plots in data. In the Dalitz plot, the background component is modeled by the inclusive MC simulation, while the signal components generated according to an efficiency-corrected MC simulation. These modified MC samples are in good agreement with the data distributions and are therefore used to determine the averaged efficiencies of the signal decays (\(\epsilon_{\text{sig}} \)), which are summarized in Table II.

The absolute BFs of the signal decays obtained according to Eq. 2, are summarized in Table III.

The BFs of \(D \rightarrow f \) and \(D \rightarrow f \) are also measured separately for each final state \(f \). The asymmetry of the BFs of the \(D \) and \(D \) decays is determined by \(A_{\text{CP}} = \frac{B(D \rightarrow f) - B(D \rightarrow \bar{f})}{B(D \rightarrow f) + B(D \rightarrow \bar{f})} \). The ST yields (\(N_{\text{ST}} \)), and the DT yields (\(N_{\text{DT}} \)), the signal efficiencies (\(\epsilon_{\text{sig}} \)), and the obtained BFs (\(B_{\text{sig}} \)) for \(D \) and \(D \) decays, as well as the determined \(A_{\text{CP}} \) values are summarized in Table III.

VII. SYSTEMATIC UNCERTAINTIES

With the DT method, most of uncertainties related to the tagged \(D \) are canceled. A summary of the systematic uncertainties in the BF measurements is given in Table IV and are discussed below.
\[
M^2_{\eta\pi}(\text{GeV}/c^2) \quad M^2_{\eta\pi}(\text{GeV}/c^2) \quad M^2_{\eta\pi}(\text{GeV}/c^2)
\]

TABLE III: Summary of the ST yields (N_{ST}), the signal yields (N_{ST}), and the signal efficiencies (ϵ_{sig}) used to determine the BFAs (B_{sig}) and CP asymmetries (A_{CP}) for $D \to \text{sig}$ and $D \to \text{tag}$. For A_{CP}, the first and second uncertainties are statistical and systematic, respectively. The uncertainties for other values are only statistical.

Decay mode	N_{ST}	N_{DT}	ϵ_{sig} (\%)	B_{sig} (\times10^{-3})	B_{CLEO} (\times10^{-3})
$D^+ \to \eta\pi^-\pi^+$	777280±1466	81±10	25.08±0.17	2.69±0.34	1.31±0.09
$D^+ \to \eta\pi^+\pi^-$	777280±1466	81±10	25.08±0.17	2.69±0.34	1.31±0.09
$D^0 \to \eta\pi^0$	782704±1491	96±11	25.03±0.17	3.16±0.35	1.08±0.09
$D^0 \to \eta\pi^+\pi^-$	782704±1491	96±11	25.03±0.17	3.16±0.35	1.08±0.09

2D yield fits: The systematic uncertainty due to the 2D fits of the M_{BC}^{tag} vs. M_{BC}^{sig} distributions is evaluated by repeating the measurements with an alternative fit range of (1.8300, 1.8865) GeV/c^2, an alternative signal shape with different MC matching requirements, alternative endpoints of the ARGUS function, $E_{\text{beam}} \pm 0.2$ MeV/c^2, and with the quoted BFs of peaking backgrounds varied by ±1σ. The total systematic uncertainties are assigned based on the changes of the BFs from each of these sources summed in quadrature, yielding 1.0%, 2.1%, and 0.8% for $D^+ \to \eta\pi^+\pi^0$, $D^+ \to \eta\pi^+\pi^-$, and $D^0 \to \eta\pi^+\pi^-$, respectively.

ST yields: The uncertainties in the total ST yields come from the fits to the M_{BC} spectra of the tagged D^0 and D^- candidates. They have been previously estimated to be 0.5% for both neutral and charged D in Refs. [15, 17].

Tracking (PID) of π^\pm: The tracking (PID) efficiencies of π^\pm are investigated with DT \bar{D} hadronic events by using a partial reconstruction technique. The systematic uncertainty for each charged particle due to tracking (PID) is estimated to be 0.5%.

$\pi^0(\eta)$ reconstruction: The efficiency of π^0 reconstruction is studied with the DT \bar{D} hadronic decays $D^0 \to K^-\pi^+, K^-\pi^+\pi^+\pi^- \to K^+\pi^-\pi^0, K^0_S\pi^0$ [13, 14]. A small data-MC difference in the π^0 reconstruction efficiency is found. The momentum weighted data-MC difference in π^0 reconstruction efficiencies is found to be (0.5 ± 1.0)%, where the uncertainty is statistical. After correcting the MC efficiencies by the momentum weighted data-MC difference in π^0 reconstruction efficiency, the systematic uncertainty due to π^0 reconstruction is assigned as 1.0% per π^0. The systematic uncertainty due to η reconstruction is assumed to be the same as π^0 reconstruction and fully correlated.
• \(\Delta E_{\text{sig}} \) requirement: The systematic uncertainties due to the \(\Delta E_{\text{sig}} \) requirement are assigned by comparing the DT efficiencies with and without smearing by the data-MC difference of the \(\Delta E_{\text{sig}} \) resolution for the signal MC events. Here, the \(\Delta E_{\text{sig}} \) resolution differences are obtained by using larger DT samples of \(D^0 \to K^-\pi^+\eta, D^0 \to K_S^0\eta, \) and \(D^+ \to \pi^+\pi^0\pi^0 \) with the same tags. The maximum change of the DT efficiency is taken to be the systematic uncertainties, which is 0.3\% for \(D^+ \to \eta\eta\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \).

• Modified MC generator: The systematic uncertainty in the modified MC generator is studied with an alternative input Dalitz plot obtained by varying the MC-simulated background sizes. The largest changes of the detection efficiencies, 2.1\%, 3.3\%, and 1.8\% for \(D^+ \to \eta\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \) are taken as the systematic uncertainties.

• MC statistics: The uncertainties due to the limited MC statistics are 0.5\%, 0.5\%, and 0.4\% \(D^+ \to \eta\eta\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \), respectively.

• \(K_S^0 \) rejection: The efficiency uncertainty from \(K_S^0 \) rejection is estimated by using an alternative rejection window of \(\pm 40 \text{ MeV}/c^2 \) around the \(K_S^0 \) nominal mass. The change in the BF, 1.4\%, is assigned as the systematic uncertainty for \(D^0 \to \eta\pi^+\pi^- \).

• Quoted BFs: The uncertainties of the quoted BFs of \(\eta \to \gamma\gamma \) and \(\pi^0 \to \gamma\gamma \) are 0.5\% and 0.03\%, respectively. The associated systematic uncertainties are 1.0\%, 0.5\%, and 0.5\% for \(D^+ \to \eta\pi^+\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \), respectively.

• Asymmetry of \(CP\pm \) components: The measurement of the BF of \(D^0 \to \eta\pi^+\pi^- \) is affected by \(CP\pm \) eigenstate components in the \(D^0 \to \eta\pi^+\pi^- \) decay. The asymmetry of \(CP+ \) and \(CP- \) components in this decay is examined by the \(CP+ \) tag of \(D^0 \to K^+K^- \) and \(CP- \) tag of \(D^0 \to K_S^0\pi^0 \). Combined with the strong-phase factors of the flavor tags \(D^0 \to K^-\pi^+, D^0 \to K^+\pi^-\pi^0, \) and \(D^0 \to K^-\pi^+\pi^-\pi^0 \), the impact on the BF of \(D^0 \to \eta\pi^+\pi^- \) is found to be (1.0±0.9)\% with the same method described in Ref. 24. After correcting the BF of \(D^0 \to \eta\pi^+\pi^- \) by this factor, 0.9\% is assigned as an associated uncertainty.

• Measurement method: The reliability of the measurement method has been validated with ten sets of inclusive MC samples. Each data set has equivalent integrated luminosity of data. It is found that the measured BFs of \(D^+ \to \eta\eta\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \) are shifted by 3.0\%, 1.8\%, and 1.7\%, respectively, which are directly taken as a systematic uncertainty due to measurement method.

The total systematic uncertainty obtained by adding the above contributions in quadrature is 4.5\%, 4.9\%, and 3.7\% for \(D^+ \to \eta\eta\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \), respectively.

TABLE IV: Relative systematic uncertainties (in \%) in the BF measurements.

Source	\(\eta\eta\pi^+ \)	\(\eta\pi^+\pi^0 \)	\(\eta\pi^+\pi^- \)
ST yield	0.5	0.5	0.5
Tracking of \(\pi^\pm \)	0.5	0.5	1.0
PID of \(\pi^\pm \)	0.5	0.5	1.0
\(\pi^0 \) reconstruction	2.0	2.0	1.0
2D fit on \(M_{BC}^{\text{tag}} \) vs. \(M_{BC}^{\text{sig}} \)	1.0	2.1	0.8
\(\Delta E_{\text{sig}} \) requirement	0.3	0.3	0.3
Modified MC generator	2.1	3.3	1.8
MC statistics	0.5	0.5	0.4
\(K_S^0 \) rejection	–	–	1.4
Quoted BFs	1.0	0.5	0.5
Asymmetry of \(CP\pm \) components	–	–	0.9
Measurement method	3.0	1.8	1.7

The total systematic uncertainty obtained by adding the above contributions in quadrature is 4.5\%, 4.9\%, and 3.7\% for \(D^+ \to \eta\eta\pi^+, D^+ \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \), respectively.

VIII. SUMMARY

With a data sample corresponding to an integrated luminosity of 2.93 fb\(^{-1}\) taken at \(\sqrt{s} = 3.773 \text{ GeV} \) with the BESIII detector, we measure the absolute BFs of the singly Cabibbo-suppressed decays \(D^\pm \to \eta\eta\pi^+, D^\pm \to \eta\pi^+\pi^0, \) and \(D^0 \to \eta\pi^+\pi^- \). The BF of \(D^+ \to \eta\eta\pi^+ \) is measured for the first time. The BFs of \(D^+ \to \eta\eta\pi^+ \) and \(D^0 \to \eta\pi^+\pi^- \) are consistent with the CLEO-c’s results \(\mathcal{B} \) within 2.2\% and 0.6\%, respectively. The asymmetries of the BFs of \(D \) and \(\bar{D} \) decays in the three channels have also been examined, no evidence of \(CP \) violation is found. In the near future, amplitude analyses of these three decays with larger data samples at BESIII and Belle II will offer opportunity to explore two-body decays \(D \to \rho\eta, a_0(980)\pi, \) and \(a_0(980)\eta \).
The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract Nos. 2015CB856700; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11475123, 11625523, 11635010, 11775230, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U1532101, U1732263, U1832207, U1932102; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; German Research Foundation DFG under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069.

[1] M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).
[2] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 781, 368 (2018).
[3] M. Artuso et al. (CLEO Collaboration), Phys. Rev. D 77, 092003 (2008).
[4] R. Aaij et al. (LHCb Collaboration), Synergy of BESIII and LHCb physics programmes, LHCb-PUB-2016-025.
[5] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 37, 123001 (2013); Phys. Lett. B 753, 629 (2016).
[6] H. N. Li, C. D. Lu, and F. S. Yu, Phys. Rev. D 86, 036012 (2012).
[7] H. Y. Cheng and C. W. Chiang, Phys. Rev. D 86, 014014 (2012).
[8] M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Meth. A 614, 345 (2010).
[9] C. H. Yu et al., Proceedings of IPAC2016, Busan, Korea, 2016, doi:10.18429/JACoW-IPAC2016-TUYA01.
[10] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Method A 506, 250 (2003).
[11] S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63, 113009 (2001); Comput. Phys. Commun. 130, 260 (2000).
[12] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
[13] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000); R. L. Yang, R. G. Ping and H. Chen, Chin. Phys. Lett. 31, 061301 (2014).
[14] E. Richter-Was, Phys. Lett. B 303, 163 (1993).
[15] M. Ablikim et al. (BESIII Collaboration), Eur. Phys. J. C 76, 369 (2016).
[16] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 40, 113001 (2016).
[17] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 121, 171803 (2018).
[18] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 123, 231801 (2019).
[19] M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B 734, 227 (2014).
[20] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[21] S. Dobbs et al. (CLEO Collaboration), Phys. Rev. D 76, 112001 (2007).
[22] Heavy Flavor Averaging Group (HFALV), https://hflav.web.cern.ch/content/charm-physics.
[23] T. Evans et al., Phys. Lett. B 757, 520 (2016), Phys. Lett. B 765, 402 (2017).
[24] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100, 072006 (2019).