Role of endothelial dysfunction in relation to prothrombogenesis in polycythemia vera

Ibrahim A. Mahmood, Farqad B. Hamdan, Waseem F. Al-Tameemi

Abstract:

BACKGROUND: The morbidity and mortality in polycythemia vera (PV) are closely associated with cardiovascular diseases burden and clonal evolution. These complications were primarily attributed to abnormal rheology consequent to the raised hematocrit, leukocytosis, and thrombocytosis, and in vivo activation of leukocytes, thrombocytes, and endothelial cells. It has been established that damage of endothelium determines the release in circulation of specific markers including thrombomodulin (TM), selectins, and von Willbrand factor (vWF) which are released and favor the formation of cellular aggregates.

OBJECTIVES: The objective of this study is to evaluate the pathophysiological role of endothelial dysfunction (ED) in relation to increased risk of thrombosis in PV patients.

PATIENTS AND METHODS: In a case–control study, 53 patients enrolled in this study from Al-Imamain Al-Khadimiyan Medical City, and the National Center for Hematology Diseases and Researches. They comprised of thirty patients with PV with mean age of − 54.87 ± 13.44 years and another twenty-three patients with secondary polycythemia, whose mean age was 40.13 ± 12.21 years. Another thirty aged- and sex-matched, non-smokers healthy volunteers comprised 16 males and 14 females were also studied, their mean age was = 52.1 ± 11.16 years. JAK2 mutation was assessed for PV group while Serum erythropoietin (Epo), vWF and TM were determined for all patient and control group.

RESULTS: TM was significantly different among the three studied groups (P < 0.001) as well as vWF was significantly higher (P < 0.001) in patients with PV as compared to the patients with secondary polycythemia and controls. Epo level was significantly lower (P = 0.004) in the newly diagnosed patients with PV when compared to those with a history of thrombosis or longstanding disease. There is positive correlation between JAK2 and TM (√= 0.431, P = 0.017), while negative correlation with vWF (√= −0.565, P = 0.001) in PV patients.

CONCLUSION: ED is one of mechanisms that contribute in prothrombogenesis in PV patient.

Keywords: Endothelial dysfunction, polycythemia vera, thrombogenesis, thrombomodulin, von Willbrand factor

Introduction

Polycythemia vera (PV) is characterized by uncontrolled and autonomous hematopoiesis, especially erythropoiesis leading to hyperviscosity and an increased risk of thrombosis. [1-4]

In 2005, an acquired JAK2 mutation (termed JAK2V617F) was reported in association with PV and related myeloproliferative neoplasms (MPNs). After phosphorylation, it results in continuous signaling by signal transducer and activator of transcription leading to an uncontrolled proliferation of the erythroid cells independently of erythropoietin (Epo). [5-9]

PV is almost always associated with a JAK2 mutation (98% JAK2V617F and 2% other JAK2 mutations including exon 12 mutations). [7-9]

The morbidity and mortality in PV are closely associated with cardiovascular diseases (CVD) burden and clonal evolution. [10,11]

How to cite this article: Mahmood IA, Hamdan FB, Al-Tameemi WF. Role of endothelial dysfunction in relation to prothrombogenesis in polycythemia vera. Iraqi J Hematol 2018;7:8-13.
They are attributed to abnormal rheology consequent to the raised hematocrit, leukocytosis, and thrombocytosis, and in vivo activation of leukocytes, thrombocytes, and endothelial cells (ECs).\cite{12,13}

The active JAK2 mutation signaling may directly activate platelets and granulocytes, and indirectly lead to endothelial activation - through binding to ECs\cite{14,15} leading to endothelial injury, endothelial expression of tissue factor, and endothelial release of procoagulant factors such as von Willebrand Factor (vWF)\cite{16,17} as well as releasing other markers such as thrombomodulin (TM) and selectins that favor the formation of cellular aggregates.\cite{18-20}

Endothelial dysfunction (ED) is characterized by - reduced vasodilation, as proinflammatory state with prothrombotic properties. It is associated with most forms of CVD, such as hypertension, coronary artery disease, peripheral vascular disease and diabetes, etc.\cite{19,21}

The release of TM, selectins, and vWF from damaged endothelium will contribute in pathogenesis of thrombosis in MPNs.\cite{22}

TM is a surface, glycosylated protein that synthesized predominantly, but not exclusively by ECs.\cite{24-26}

It characterized by three independent anticoagulant activities: catalyzing thrombin-induced activation of protein C to activated protein C, binding with thrombin to prevent the conversion of fibrinogen to fibrin and activation of platelets, FV, FVIII, FXI, and FXIII, and catalyzing the inhibition of thrombin by antithrombin.\cite{27,28}

The vWF is a large glycoprotein - that mediates platelet tethering, translocation and finally adhesion to areas of injured endothelium under physiological high arterial blood flow conditions.\cite{29} It is synthesized by ECs and megakaryocytes.\cite{30}

vWF performs its hemostatic function through binding to factor VIII, to platelet surface glycoproteins, and to constituents of connective tissue.\cite{31}

This study aimed to evaluate the pathophysiological role of ED in relation to increased risk of thrombosis in PV patients.

**Patients and Methods**

In a case-control study, 53 patients were recruited from the outpatient clinic of the Clinical Hematology in Al-Imamain Al-Khadimiyan Medical City, and the National Center for Hematology Diseases and Researches, College of Medicine, Al-Mustansiriya University. They comprised of thirty patients with PV (13 males and 17 females with age range between 18 and 78 years with mean age of 54.87 ± 13.44 years) and another twenty three patients with secondary polycythemia (22 males and one female with age range between 25 and 65 years with mean age 40.13 ± 12.21 years).

Polycythemia had confirmed clinically by expert hematologist and via the laboratory parameters according to the WHO, 2008 criteria for polycythemia\cite{32,33} to define either primary or secondary type.

The patient was randomly selected as it defined with Hb 18.5 g/dL in men, 16.5 g/dL in women, or other evidence of increased red cell volume for newly diagnosed cases.

The PV patients group was subdivided into three subgroups (long standing who are under follow-up, those with thrombotic complication and newly diagnosed). The long-standing subgroup (13 patients) include those patients whose the diagnosis is already established for a long time. While the second subgroup for those with thrombotic events (7 patients), it includes any PV patients who had previous or recent thrombotic complication like (stroke, pulmonary embolism, DVT, etc.). The last subgroup included all newly diagnosed cases (10 patients).

Another thirty age- and sex-matched, non-smokers healthy volunteers comprised 16 males and 14 females were also studied. Their ages were between 20 and 68 years (mean ± standard deviation [SD] = 52.1 ± 11.16 years).

For all patients, and control group, CBC parameters were recorded, in addition, to report of JAK2 mutation for PV group (Quantitative PCR kit, Bioneer company/Korea), Serum Epo (Human EPO ELISA Kit, Elabscience, China), vWF (Human vWF ELISA Kit, Elabscience, China), and TM (Human TM ELISA Kit, Elabscience, China) were assessed for all patients.

The work was done in laboratories of Al-Imamain Al-Khadimiyan Medical City, and the National Center for Hematology Diseases and Researches, College of Medicine, Al-Mustansiriya University.

The study design is already approved by institutional review board by Al Nahrian University, college of medicine. All patients were informed and verbal consent was taken before enrollment in this study.

All statistical analysis was performed using statistical package for social science software (version 16, Chicago, SPSS Inc). Continuous variables were expressed by means ± SD. The analysis of variance test was used to compares between different groups where there is continuous variable. The association between different variables was examined with binary correlation test.
The causal relationships between some variables were investigated with regression test. \( P < 0.05 \) was considered statistically significant.

**Results**

Epo level was significantly higher \( (P < 0.001) \) in patients with secondary polycythemia than patients with PV and controls. Meanwhile, no difference was noticed between the latter two groups [Table 1].

TM was significantly different among the three studied groups \( (P < 0.001) \) as well as vWF was significantly higher \( (P < 0.001) \) in patients with PV as compared to the patients with secondary polycythemia and control subjects but no difference in their level was noticed between the latter two groups [Table 1].

Epo level was significantly lower \( (P = 0.004) \) in the newly diagnosed patients with PV when compared to those with a history of thrombosis or longstanding disease. While no difference between the latter 2 groups. On the contrary, vWF was significantly higher \( (P = 0.001) \) in those newly diagnosed as compared with the other two subgroups in whom no difference was demonstrated in Table 2.

On the other hand, TM level was significantly lower \( (P < 0.001) \) in those with the longstanding disease when compared to the other two subgroups. Moreover, the latter two subgroups show no difference in the level of TM as shown in Table 2.

Considering ED markers (TM and vWF), patients with PV demonstrate positive correlation between JAK2 and TM \( (r = 0.431, P = 0.017) \). In addition, TM was negatively correlated with vWF \( (r = -0.565, P = 0.001) \) as shown in Table 3 and Figures 1 and 2.

Unlike significant realtionship in primary polycythemia; in secondary polycythemia group, there was no correlation reported between Epo and either TM or vWF as parameters of ED \( (r = 0.089, P = 0.688 \text{ and } r = 0.186, P = 0.396, \text{respectively}) \) as shown in Table 4 as well as in Control groups \( (r = 0.035, P = 0.854, r = 0.154, P = 0.417, \text{respectively}) \) as shown in Table 5.

**Discussion**

It is clear that Epo level is markedly higher in secondary polycythemia, a result which goes in accordance with that of other researchers,\(^{14-30} \) which can signify that secondary polycythemia is limited to overproduction of RBCs as a consequence of a high secretion of Epo to achieve an improvement of the \( O_2 \) carrying capacity of the blood.

The TM level also found to be remarkably increased in PV when compared to other two groups, similar to Falanga et al. when compared with controls \( (57 \pm 8 \text{ ng/ml vs. } 27 \pm 2 \text{ ng/ml}).^{[10]} \)

Physiologically, the endothelium facilitates blood flow by providing an antithrombotic surface that inhibits platelet adhesion and coagulation activation.\(^{[38]} \) The increased hypercoagulable TM marker level confirm the ECs damage in PV patients which indicate an endothelium perturbation.\(^{[10]} \)

In addition, membrane-bound TM is likely shed and released into the circulation by the action of leukocyte-derived proteases and cytokines from

---

**Table 1: Biochemical parameters of patients with polycythemia and control subjects**

| Parameter | Polycythemia patients \((n=30)\) | Control subjects \((n=30)\) |
|-----------|---------------------------------|-----------------------------|
| Epo (pg/ml) | 2323.3±656.29 | 2186.3±220.5 |
| TM (pg/ml) | 3327.4±222.58 | 2223.7±338.9 |
| vWF (ng/ml) | 58.99±14.84 | 43.26±5.47 |

\( P<0.001 \) (secondary vs. primary polycythemia and control), \( *P<0.001 \) (primary vs. secondary polycythemia), \( **P<0.001 \) (secondary polycythemia vs. control), \( †P<0.001 \) (control vs. primary polycythemia), \( ‡P<0.001 \) (primary vs. secondary polycythemia and control). Epo=Erythropoietin, TM=Thrombomodulin, vWF=von Willbrand factor

---

**Table 2: Biochemical parameters of polycythemia vera subgroups**

| Parameter | Newly diagnosed \((n=10)\) | With thrombosis \((n=7)\) | Longstanding \((n=13)\) |
|-----------|---------------------------|-------------------------|---------------------|
| Epo (pg/ml) | 1853±485.58 | 2838.1±414.14 | 2407.9±656.99 |
| TM (pg/ml) | 3659.5±232.59 | 3774.3±166.73 | 3483.9±123.06 |
| vWF (ng/ml) | 75.66±12.58 | 50.93±8.68 | 50.52±5.35 |

\( †P<0.004 \) (newly diagnosed vs. with thrombosis and longstanding), \( †P=0.001 \) (longstanding vs. newly diagnosed and those with thrombosis), \( †P<0.001 \) (newly diagnosed vs. with thrombosis and longstanding), Epo=Erythropoietin, TM=Thrombomodulin, vWF=von Willebrand factor

---

**Table 3: The correlations between JAK2 and erythropoietin with thrombomodulin and von Willebrand factor parameters in polycythemia vera group**

| Parameter | JAK2 | Epo | TM | vWF |
|-----------|------|-----|----|-----|
| JAK2 | \( r \) | 1 | -0.040 | 0.431* | -0.048 |
| | \( P \) | 0.834 | 0.017 | 0.802 |
| Epo | \( r \) | 1 | 0.238 | -0.307 |
| | \( P \) | 0.205 | 0.099 |
| TM | \( r \) | 1 | -0.565** | 0.001 |
| | \( P \) | 1 |

\( *\text{Correlation is significant at the } 0.05 \text{ level (two-tailed), } **\text{Correlation is significant at the } 0.01 \text{ level (two-tailed), Epo=Erythropoietin, vWF=von Willebrand factor, TM=Thrombomodulin} \)
An elevated TM level in secondary polycythemia as compared to the control group can be attributed to the hyperviscosity of blood that may cause shedding of the ECs membrane. However, smoking history has a positive significant correlation with TM levels. In addition to role of other accompanied chronic diseases (i.e., hypertension, diabetes mellitus and myocardial infarction) may enhance the shedding of ECs.[39,40] However still, there is no definite evidence that secondary polycythemia per se increases the risk of thromboembolism.[41]

Similar to the results of TM, marked increase in the level of vWF is documented in PV compared to the other two groups that is similar to report Falanga et al. in view of to control (180% ± 12% vs. 105% ± 13%, P < 0.01).[37]

Whenever there is vascular damage, vWF will get activated and facilitate platelets adhesion as well as aggregation.[42] In addition, to role of hyperviscosity induced by high hematocrit in PV.[43]

Constitutively, the active JAK2 signaling may directly drive activation of platelets and granulocytes and indirectly lead to endothelial activation through platelet and leukocyte binding to ECs.[14,15,17]

Such interactions may provoke further endothelial injury by inducing detachment or lysis of ECs, affecting functions involved in thromboregulation. Hence, greater neutrophil activation could render PV patients more susceptible to vascular damage.[19,38]

Besides, high circulating levels of endothelial activation markers, such as TM, selectins, and vWF, are released and favor the formation of cellular aggregates as proved by other studies.[20]
resulting in overexpression of endothelial markers of prothrombogenesis such as TF, TM, and vWF that collectively contribute in relation to the effect of JAK2 mutation in increasing chance of thrombotic complication.[48]

**Conclusion**

Endothelial dysfunction is one of mechanisms that contribute in prothrombogenesis in polycythemia patients.

**Declaration of patient consent**

The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

**Financial support and sponsorship**

Nil.

**Conflicts of interest**

There are no conflicts of interest.

**References**

1. Stuart BJ, Viera AJ. Polycythemia vera. Am Fam Physician 2004;69:2139-44.
2. Roda P, Ferrari A, Tang X, Erlich P, Eisenhower C, Patel MD, et al. Determination of accuracy of polycythemia vera diagnoses and use of the JAK2V617F test in the diagnostic scheme. Ann Hematol 2014;93:1467-72.
3. Spivak JL. Polycythemia vera: Myths, mechanisms, and management. Blood 2002;100:4272-90.
4. Radia D, Geyer HL. Management of symptoms in polycythemia vera and essential thrombocythemia patients. Hematology Am Soc Hematol Educ Program 2015;2015:340-8.
5. Kaushansky K. On the molecular origins of the chronic myeloproliferative disorders: It all makes sense. Blood 2005;105:4187-90.
6. Helbig G, Kyrecz-Krzemier S. Recent advances in pathogenesis and treatment of classical philadelphia-negative myeloproliferative neoplasms. Postepy Nauk Med T 2011;24:512-20.
7. Oh ST, Simonds EF, Jones C, Hale MB, Goltsev Y, Gibbs KD Jr., et al. Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. Blood 2010;116:988-92.
8. Pardanani A, Lasho TL, Finke CM. Tefferi A. Infrequent occurrence of mpl exon 10 mutations in polycythemia vera and post-polycythemia vera myelofibrosis [letter]. Am J Hematol 2011;86:701-2.
9. Brosèus J, Park JH, Carillo S, Hermouet S, Girodon F. Presence of calreticulin mutations in JAK2-negative polycythemia vera. Blood 2014;124:3964-6.
10. Falanga A, Marchetti M. Thrombotic disease in the myeloproliferative neoplasms. Hematology Am Soc Hematol Educ Program 2012;2012:571-81.
11. Elliott MA, Tefferi A. Thrombosis and haemorrhage in polycythemia vera and essential thrombocythaemia. Br J Haematol 2005;128:275-90.
12. Campbell PJ, Green AR. The myeloproliferative disorders. N Engl J Med 2006;355:2452-66.
13. Barbui T, Carobbio A, Rambaldi A, Finazzi G. Perspectives on thrombosis in essential thrombocythemia and polycythemia vera: Is leukocytosis a causative factor? Blood 2009;114:759-63.
14. Dole VS, Bergmeier W, Mitchell HA, Eichenberger SC, Wagner DD. Activated platelets induce Weibel-Palade-body secretion and leukocyte rolling in vivo: Role of P-selectin. Blood 2005;106:2334-9.
15. Lu WJ, Lin KC, Huang SY, Thomas PA, Wu YH, Wu HC, et al. Role of a Janus kinase 2-dependent signaling pathway in platelet activation. Thromb Res 2014;133:1088-96.
16. Cervantes F, Arellano-Rodrigo E, Alvarez-Larrán A. Blood cell activation in myeloproliferative neoplasms. Haematologica 2009;94:1484-8.
17. Kroll MH, Michaelis LC, Verstovsek S. Mechanisms of thrombogenesis in polycythemia vera. Blood Rev 2015;29:215-21.
18. Santilli F, Romano M, Recchiuti A, Dragani A, Falco A, Lessiani G, et al. Circulating endothelial progenitor cells and residual in vivo thromboxane biosynthesis in low-dose aspirin-treated polycythemia vera patients. Blood 2008;112:1085-90.
19. Morris CR, Gladwin MT, Kato GJ. Nitric oxide and arginine dysregulation: A novel pathway to pulmonary hypertension in hemolytic disorders. Curr Mol Med 2008;8:620-32.
20. Cella G, Marchetti M, Vianello F, Panova-Noeva M, Vignoli A, Russo L, et al. Nitric oxide derivatives and soluble plasma selectins in patients with myeloproliferative neoplasms. Thromb Haemost 2010;104:151-6.
21. Galarraga B, Khan F, Kumar P, Pullar T, Belch JJ. C-reactive protein: The underlying cause of microvascular dysfunction in rheumatoid arthritis. Rheumatology (Oxford) 2008;47:1780-4.
22. Totoson P, Maguin-Gaté K, Prati C, Wendling D, Demougeot C. Mechanisms of endothelial dysfunction in rheumatoid arthritis: Lessons from animal studies. Arthritis Res Ther 2014;16:202.
23. Abebe W, Mozaffari M. Endothelial dysfunction in diabetes: Potential application of circulating markers as advanced diagnostic and prognostic tools. EPMA J 2010;1:32-45.
24. van Hinsbergh VW. Endothelium – Role in regulation of coagulation and inflammation. Semin Immunopathol 2012;34:95-106.
25. Davidson SJ. Inflammation and acute phase proteins in haemostasis. In: Jancauskienė S, editor. Acute Phase Proteins. Ch. 2. InTech Publisher; 2013. p. 31.
26. Ikezeo T. Thrombomodulin/activated protein C system in septic disseminated intravascular coagulation. J Intensive Care 2015;3:1.
27. Gale AJ. Continuing education course #2: Current understanding of hemostasis. Toxicol Pathol 2011;39:273-80.
28. Anastasiou G, Gialeraki A, Merkouri E, Politou M, Travlou A. Nitric oxide derivatives and soluble plasma selectins in patients with myeloproliferative neoplasms. Haematologica 2005;94:1484-8.
29. van Hinsbergh VW. Endothelium – Role in regulation of coagulation and inflammation. Semin Immunopathol 2012;34:95-106.
30.我已经处理了文档中的所有中文信息，因为它是从英文翻译过来的，所以不需要额外处理。
Mahmood, et al.: Endothelial dysfunction and prothrombogenesis in PV

33. Thiele J, Kvasnicka HM. The 2008 WHO diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis. Curr Hematol Malig Rep 2009;4:33-40.
34. Sasidharan PK. Polycythemia – How and how much to investigate? Vol. 18, Ch. 48. Medicine Update. Mumbai/India; 2008, p. 358-67.
35. Tefferi A, Vainchenker W. Myeloproliferative neoplasms: Molecular pathophysiology, essential clinical understanding, and treatment strategies. J Clin Oncol 2011;29:573-82.
36. Barbui T, Finazzi MC, Finazzi G. Front-line therapy in polycythemia vera and essential thrombocythemia. Blood Rev 2012;26:205-11.
37. Falanga A, Marchetti M, Evangelista V, Vignoli A, Licini M, Balicco M, et al. Polymorphonuclear leukocyte activation and hemostasis in patients with essential thrombocythemia and polycythemia vera. Blood 2000;96:4261-6.
38. Popov VM, Onisai M, Găman M, Vladareanu AM. The role of JAK2 mutation in thrombotic complications of chronic myeloproliferative neoplasms. Eur Med J Hematol 2014;1:106-13.
39. Califano F, Giovannelli T, Pantone P, Campana E, Parlapiano C, Alegiani F, et al. Clinical importance of thrombomodulin serum levels. Eur Rev Med Pharmacol Sci 2000;4:59-66.
40. Ruddock MW, Simoes R, de M, O’Rourke D, Duggan B, Stevenson M, et al. Urinary thrombomodulin levels were significantly higher following occupational exposure to chemicals, in the presence of dipstick protein, but not in the presence of dipstick blood. Biol Med 2015;8:1000260.
41. Bhatt VR. Secondary polycythemia and the risk of venous thromboembolism. J Clin Med Res 2014;6:395-7.
42. Yawn B, Nichols WL, Rick ME. Diagnosis and management of von willebrand disease: Guidelines for primary care. Am Fam Physician 2009;80:1261-8.
43. Chen H, Angerer JL, Napoleone M, Reininger AJ, Schneider SW, Wixforth A, et al. Hematocrit and flow rate regulate the adhesion of platelets to von willebrand factor. Biomicrofluidics 2013;7:64113.
44. De Caterina R, Husted S, Wallentin L, Andreotti F, Arnesen H, Bachmann F, et al. General mechanisms of coagulation and targets of anticoagulants (Section I). Position paper of the ESC Working Group on Thrombosis – Task force on anticoagulants in heart disease. Thromb Haemost 2013;109:569-79.
45. Aksu K, Donmez A, Keser G. Inflammation-induced thrombosis: Mechanisms, disease associations and management. Curr Pharm Des 2012;18:1478-93.