Intraskeletal variability in phosphate oxygen isotope composition reveals regional heterothermies in marine vertebrates.

Nicolas Séon¹, Romain Amiot², Guillaume Suan², Christophe Lécuyer²,a, François Fourel³, Fabien Demaret⁴, Arnauld Vinçon-Laugier², Sylvain Charbonnier¹ & Peggy Vincent¹

¹ Centre de Recherche en Paléontologie - Paris (CR2P), CNRS, Muséum national d’Histoire naturelle, Sorbonne Université, 57 rue Cuvier, 75231 Paris Cedex 05
² Univ Lyon, UCBL, ENSL, UJM, CNRS, LGL-TPE, F-69622, Villeurbanne, France.
³ Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, CNRS UMR 5023, Université Claude Bernard Lyon 1, Villeurbanne, France
⁴ Observatoire PELAGIS, UMS 3462 CNRS/Université de La Rochelle, Pôle Analytique, 5 allée de l’Océan, 17000 La Rochelle, France
⁵ Also at Institut Universitaire de France

Correspondence to: Nicolas Séon (nicolas.seon@edu.mnhn.fr)

Abstract. Strategies used by marine vertebrates to regulate their body temperature can result in local variations, and the knowledge of these regional heterothermies is crucial for better understanding the thermophysiology of extant and extinct organisms. In order to investigate regional heterothermy in vertebrates, we analysed the oxygen isotope composition of phosphatic skeletal elements (δ¹⁸Oₚ) of two poikilothermic (Atlantic bluefin tuna and swordfish) and three homeothermic endotherms (dolphins). We observed a consistent link between δ¹⁸Oₚ variations and temperature heterogeneities recorded by classical methods. Our δ¹⁸Oₚ data indicate that: (i) bone hydroxyapatite of the axial skeleton of dolphins mineralize at a warmer temperature than that of the appendicular one, (ii) the skull is the warmest body region in swordfish, and (iii) Atlantic bluefin tuna possesses high body temperature in the skull and visceral mass region. These results demonstrate the possibility of tracking regional heterothermies in extant marine vertebrates using the δ¹⁸Oₚ, paving the way to direct assessment of thermophysiological specificities of both living and extinct vertebrates. From a paleoenvironmental perspective, the significant observed δ¹⁸Oₚ variability questions the use of some taxa or random skeletal elements for the reconstruction of paleoceanographic parameters such as seawater temperature and δ¹⁸O.

Keywords: marine vertebrates, oxygen isotopes, regional heterothermy, thermophysiology, hydroxyapatite.
1 Introduction

Within vertebrates, ectotherms (e.g. crocodylomorphs, snakes, lizards, turtles, lissamphibians, chondrichthyans and osteichthyans) rely on environmental heat sources to reach their optimal functional body temperature (Rodbard, 1953) and use behavioural adaptations to maintain it (Crawshaw and Hammel, 1971; Smith, 1979; Hight and Lowe, 2007). Contrarily, endotherms (birds and mammals) produce their body heat physiologically through metabolic processes (e.g. Cannon and Nedergaard, 2004; Legendre and Davesne, 2020). Some of them, the homeotherms, maintain their organs and nervous system at a nearly constant temperature (within ± 2 °C) by regulating their thermogenesis and thermolysis (Scholander, 1955) while poikilotherms possess deep body temperature which covaries with environmental temperatures (Schmidt-Nielsen et al., 1966; Bennett et al., 1993; Sherwin, 2010; Allali et al., 2013; Nicol, 2017). Maintaining a high and constant temperature throughout the body in non-normothermic conditions is extremely energy-consuming for homeotherms. Consequently, many of them let the temperature of some areas of the body drop to reduce their energy need and limit heat losses (Irving and Hart, 1957; Rommel et al., 1992; Eichhorn et al., 2011). On the other hand, some poikilotherms are able to produce heat locally (Carey, 1982; Block, 1986; Dickson and Graham, 2004) to improve visual acuity in cold environment (Block, 1987; Fritsches et al., 2005), swim faster or migrate longer distances (Bernal et al., 2001; Blank et al., 2007; Watanabe et al., 2015). These two strategies lead to temperature heterogeneities called regional heterothermies which can be measured on extant organisms thanks to thermometer reading (Ponganis et al., 2003; Morkel et al., 2012) and thermal imagery (Hampton et al., 1971; Tattersall et al., 2009). However, such methods suffer from several types of limitation. Indeed, in situ temperature measurements require the handling of the animal, leading to stress-induced and thus punctual rises in body temperature (Bouwknecht et al., 2007), whereas the infrared thermography is inefficient underwater. It is also difficult to apply them to large and rare living organisms, and in any case impossible to apply on extinct ones.

A possible way to track intra-individual temperature heterogeneities and thus regional heterothermies of both extant and extinct marine vertebrates could be the use of the oxygen isotope composition of phosphate ($\delta^{18}O_p$) from bioapatite (the mineral forming the bones, teeth and scales of vertebrates). Indeed, vertebrate $\delta^{18}O_p$ values reflect both the oxygen isotope composition of their body water ($\delta^{18}O_{bw}$), stemming from ingested water in osteichthyans or from food for marine mammals (Telfer et al., 1970; Hui, 1981; Ortiz, 2001; Rosen and Worthy, 2018), and their body temperature due to the thermo-dependent oxygen
isotope fractionation between phosphatic tissues and body fluids ($\delta^{18}O_{bw}$) from which they mineralize (Longinelli and Nuti, 1973; Kolodny et al., 1983; Longinelli, 1984; Luz et al., 1984; Lécuyer et al., 2013). Based on these considerations, it is expected that homeothermic endotherms record homogeneous intra-skeletal $\delta^{18}O_p$ values, whereas in poikilothermic endotherms, intraskeletal $\delta^{18}O_p$ variability would highlight regional heterothermies. A few studies have investigated the intraskeletal $\delta^{18}O_p$ variability in some terrestrial and semi-aquatic extant organisms but the relatively reduced number of samples ($n < 10$ per individual) of these datasets considerably limits the significance of the $\delta^{18}O_p$ variability (Barrick, 1998; Stoskopf et al., 2001; Missell, 2004; Coulson et al., 2008; Clauzel et al., 2020). Some palaeontological studies were focused on the search of regional heterothermies in dinosaurs (Barrick and Showers, 1994, 1995; Barrick et al., 1996, 1998) but the observed variability in $\delta^{18}O_p$ through the skeleton was difficult to interpret without any present-day isotopic framework and concrete evidence that the isotopic method works for extant animals possessing regional heterothermies.

In this study, we present new $\delta^{18}O_p$ data obtained from cephalic, axial and appendicular skeletal elements to document the $\delta^{18}O_p$ variability in selected marine vertebrates with well-documented regional heterothermies and contrasted thermoregulatory strategies. We compare the obtained $\delta^{18}O_p$ variations with available body temperature measurements obtained from classical methods and, finally, we discuss the possibility of using this proxy as a tool to identify thermoregulatory strategies and regional heterothermies of both extant and extinct marine vertebrates.

2. Materials and methods

2.1. Sampled specimens

Five wild specimens belonging to four fully aquatic marine species were studied. They consist of three homeothermic endotherms (Delphinidae Gray, 1821: two specimens of *Delphinus delphis delphis* Linnaeus, 1758 (M.1162 and MNHN-ZM-AC-1876-275), one specimen of *Cephalorhynchus commersonii kerguelensis* Robineau, Goodal, Pichler & Baker, 2007 (MNHN-ZM-AC-1983-058)) and two poikilothermic endotherms (Scombridae Rafinesque, 1815: one specimen of *Thunnus thynnus* Linnaeus, 1758; Xiphiidae Swainson, 1839: one specimen of *Xiphias gladius*). All the specimens sampled in our study are adult. Dolphins specimens were found stranded on the coasts of western France, Kerguelen archipelago and Algeria.
(Supplementary material, Table S1), and are curated at the Observatoire des mammifères et oiseaux marins (PELAGIS, France) and at the Museum national d’Histoire naturelle (MNHN, Paris, France), while the swordfish and Atlantic bluefin tuna specimens were obtained from a local fish shop (See supplementary information 1). Between 24 and 44 skeletal elements per specimen covering all body regions were analysed for their $\delta^{18}O_p$ values. About 50 mg of each skeletal element were ground into a fine powder using either a Dremel™ diamond-head drill or a mortar and pestle. The cortical part of the bone and areas with minimal physical degradation were selected during the sampling process.

2.2. Oxygen isotope analysis of biogenic apatite phosphate

To measure oxygen isotope ratios of biogenic apatite phosphate by gas mass spectrometry techniques, samples were treated according to the wet chemistry protocol described by Crowson et al. (1991) and slightly modified by Lécuyer et al. (2013). The protocol consists of the isolation of phosphate ions (PO_4^{3-}) from apatite as silver phosphate crystals (Ag_3PO_4). The Ag_3PO_4 crystals were filtered, dried and cleaned. For each sample, five aliquots of $300 \pm 20 \mu g$ of Ag_3PO_4 were mixed with $400 \pm 50 \mu g$ of graphite in silver foil capsules. Oxygen isotope compositions were measured using a high temperature vario PYRO cube™ elemental analyser (EA) equipped with the “purge and trap” technology (Fourel et al., 2011) and interfaced in continuous flow mode to an IsoPrime™ isotopic ratio mass spectrometer (Elementar UK Ltd Cheadle, UK) at the Plateforme d’Ecologie Isotopique du Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA, UMR5023, Université Claude Bernard Lyon 1, Lyon, France). Pyrolysis of Ag_3PO_4 was performed at 1450 °C. The measurements were calibrated against two standards: a silver phosphate precipitated from the international standards NBS120c (natural Miocene phosphorite from Florida), and from the NBS127 (barium sulfate precipitated using seawater from Monterey Bay, California, USA). The NBS120c $\delta^{18}O_p$ value was fixed at 21.7 ‰ V-SMOW (Vienna Standard Mean Ocean Water) according to Lécuyer et al.(1993), Chenery et al. (2010) and Halas et al. (2011), and that of NBS127 set at the certified value of 9.3 ‰ V-SMOW (see Hut, 1987; Halas and Szaran, 2001) for correction of instrumental mass fractionation during CO isotopic analysis. Silver phosphate precipitated from standard NBS120c were repeatedly analysed ($\delta^{18}O_p = 21.7 \pm 0.3$ ‰, $n = 46$) along with the silver phosphate
samples derived from bioapatite to ensure that no isotopic fractionation occurred during the wet chemistry. Data are reported as δ¹⁸O values normalized to V-SMOW (in ‰ δ units).

2.3. Statistical analyses

To increase sample size and statistical power for testing the intraskeletal variability of δ¹⁸Oₚ values, skeletal elements were grouped into several sets corresponding to different parts of the skeleton. The limit between the axial and appendicular skeleton is set at the articulation between the pectoral girdle and the stylopod for dolphins. For Atlantic bluefin tuna and swordfish, the fin rays and fin spines belonging to the fins were considered as appendicular skeleton. For the Atlantic bluefin tuna, we have distinguished anterior and posterior part of the axial skeleton at the limit between precaudal and caudal vertebrae. Since normality and homoscedasticity of the δ¹⁸Oₚ values were not validated, we used the non-parametric Mann-Whitney-Wilcoxon to compare median values between two observational series. Statistical tests were performed using R software (R Core Team, 2017) and the level of significance was set at p-value < 0.05. All the p-values resulting from the statistical tests are reported in supplementary material, Table S4.

3. Results

The δ¹⁸Oₚ values of *D. delphis delphis*, *C. commersonii kerguelensis*, *T. thynnus* and *X. gladius* are reported in supplementary materials, Tables S2 and S3. A synthesis is provided in Table 1. Intraskeletal δ¹⁸Oₚ variability is represented in Fig.1A for the north Atlantic *D. delphis delphis* and in Fig.2A and 2B for osteichthyans. The results of the two others Delphinidae studied are available in supplementary material, Fig. S1. Intra-bone homogeneity was measured by paired samples on vertebrae in dolphins and osteichthyans and on fin rays in osteichthyans and is systematically lower than inter-bone variability (Table 1). As expected, the inter-bone δ¹⁸Oₚ variability is higher in poikilothermic endotherms than homeothermic endotherms (Table 1). For dolphins, δ¹⁸Oₚ values from the axial skeleton are significantly lower than those of the appendicular ones (p-values <
Teeth δ^{18}O$_p$ values of dolphins are higher than those from axial skeletal (Table 1). Nonetheless, the significance of these differences cannot be tested due to the small number of teeth and skull samples (n = 1 to 3). In *T. thynnus*, the highest mean value of 21.6 ± 0.2 ‰ (1SD, n = 6) is recorded in the posterior part of the axial skeleton, whereas the lowest values (Table 1) are recorded in the skull (20.6 ± 0.5 ‰, 1SD, n = 5) and teeth (20.1 ‰, n = 1). The skull δ^{18}O$_p$ values are significantly lower than those of all the other body parts except from those of the anterior part of the axial skeleton (p-value > 0.05; Fig. 2C). The δ^{18}O$_p$ values of the skeletal elements belonging to the anterior part of the axial skeleton are significantly lower than those belonging to the posterior part of the axial skeleton (p-value < 0.05; Fig. 2C). The mean δ^{18}O$_p$ value of *X. gladius* whole skeleton is 22.0 ± 0.5 ‰ (1SD, n = 33), with the highest mean δ^{18}O$_p$ value corresponding to the rostrum (22.3 ± 0.3 ‰, 1SD, n = 5) and the minimum mean value in the skull (20.7 ± 0.6 ‰, n = 3; Table 1). No significant differences in δ^{18}O$_p$ values are observed between either axial skeleton and fins or axial skeleton and rostrum, but the δ^{18}O$_p$ values are significantly different between fins and rostrum (p-value < 0.05; Fig. 2C). Despite the small number of samples from the skull (n = 3), the δ^{18}O$_p$ values from this body region are lower than all the other ones.

To sum up, phosphate oxygen isotope compositions reveal variations for all studied specimens: the appendicular skeleton in dolphins is significantly 18O-enriched compared to the axial skeleton. Swordfish has the lowest δ^{18}O$_p$ values in the skull and Atlantic bluefin tuna has the lowest δ^{18}O$_p$ values in the skull and skeletal elements positioned near the visceral mass.

4. Discussion

4.1. Sources of intraskeletal δ^{18}O$_p$ Variability

The measured intraskeletal δ^{18}O$_p$ variability may result from two main factors identified as the difference in temperature of bone mineralization across the skeleton as well as changing isotopic compositions of oxygen sources throughout the animal life. We found significant δ^{15}O$_p$ differences (~ 0.5‰) between axial and appendicular bones in dolphins that possess the same mineralization process, strongly suggesting a dominant temperature control (Fig.1B). By contrast, the differences in δ^{18}O$_p$ recorded between bones and teeth of dolphins (Table 1; Fig.1B and supplementary materials, Fig. S2) cannot be exclusively
attributed to variable body temperature since these elements mineralize at distinct times during ontogeny and possess different rates of remodelling (Myrick, 1991; Ungar, 2010). For osteichthyan taxa with high metabolic rates such as tunas and billfishes, mineralization timing should affect $\delta^{18}O_p$ minimally because all skeletal elements are remodelled (Rosenthal, 1963; Atkins et al., 2014) and teeth are continuously renewed in tunas. The differences in $\delta^{18}O_p$ values between skeletal elements with comparable timing of mineralization and remodelling rates can therefore be confidently attributed to differences in body temperature (Fig.2C). Besides, studied organisms are nektonic predators that feed on fish and invertebrates (Young and Cockcroft, 1994; Kastelein et al., 2000), which in turn possess $\delta^{18}O_{bw}$ values similar to that of their surrounding water (Picard et al., 1998; Pucéat et al., 2003) but vary depending on the geographical area where they live. The food being the main source of water in dolphins, the consumption of preys coming from different water masses should cause variations in their $\delta^{18}O_{bw}$.

Nevertheless, the seasonal changes in $\delta^{18}O_{bw}$ of the water masses in which the sampled organisms fed are relatively small ($\pm 0.4 \%o$; supplementary material, table S5) and cannot fully explain the inter-bone $\delta^{18}O_p$ variability reported herein in dolphins and osteichthyans. Therefore, the link between $\delta^{18}O_p$ values and the intra-individual body temperature differences previously documented among the studied animals strongly suggest that the recorded isotopic variability is mainly due to differences in mineralization temperature rather than different timing of mineralization.

4.2. $\delta^{18}O_p$ variations linked to regional heterothermies in homeothermic and poikilothermic endotherms

4.2.1. Homeothermic endotherms

Intraskeletal $\delta^{18}O_p$ variability of homeothermic endotherms (mapped in Fig. 1A, and supplementary material, Fig.S1) shows an isotopic enrichment in the appendicular skeleton relative to the axial one. This indicates a lower mineralization temperature in these skeletal regions. This observation is consistent with the thermoregulatory strategies used by cetaceans having a trunk at a nearly constant temperature of $36 \pm 2^\circ C$ (Morrison, 1962; Hampton et al., 1971), in agreement with their high metabolic activity (Williams et al., 2001), a thick layer of blubber (Lockyer, 1986; Hashimoto et al., 2015) and counter-current heat exchangers which limit heat losses at the extremities (Scholander and Schevill, 1955). Counter-current heat exchangers,
defined by a particular spatial arrangement of the cardiovascular system, causes cooling of the blood from the arteries in contact with the veins and results in body temperature proximodistal gradient (Irving and Hart, 1957). The few information available for dolphins mentioned body temperature variation of 9°C in the limbs whereas trunk body temperature remains constant (Tomilin, 1950).

Assuming light seasonal changes in marine mammal δ¹⁸Obw values throughout the seasons and considering the δ¹⁸Op values obtained (Table 1), our new isotope data can be used to estimate the temperature differences between limb and trunk in the sampled dolphins using the phosphate-water temperature scale published by Lécuyer et al. (2013):

\[T°C = 117.4 - 4.5 (\delta^{18}O_p - \delta^{18}O_{bw}) \]

(Eq.1)

The obtained differences in mineralization temperature are of 2 ± 0.5°C for *D. delphis delphis*, and 1 ± 0.5°C for *C. commersonii kerguelensis*. In other words, our data show that the mineralization temperature of the bone is about 2°C lower in the limbs than in the rest of the skeleton in *D. delphis delphis* and 1°C in *C. commersonii kerguelensis*. The estimated temperature differences are lower than those recorded by classical methods. This difference could be explained by the time average recorded in the bones. The time record being long, in the order of several years (Rosenthal, 1963; Riccialdelli et al., 2010; Browning et al., 2014), the estimates inferred from bone δ¹⁸Op represents long term trend rather than precise temperature at a specific time and probably mitigate these temperature differences.

4.2.2. Poikilothermic endotherms

Locally high body temperatures have been recorded in several species of tunas (Carey and Lawson, 1973; Graham and Dickson, 2001) and billfishes (Carey, 1982) using classical methods. Heat in tunas is generated using their red swimming and extraocular muscles (Guppy et al., 1979) and is retained by counter-current heat exchangers (Block and Finnerty, 1994; Dickson and Graham, 2004). Unlike most teleosts, tunas have red muscles positioned close to the spine, limiting heat transfer from the body to the surrounding aquatic medium (Graham and Dickson, 2004). Our δ¹⁸Op values and their variations across the body are in agreement with the temperature heterogeneities previously measured by other techniques (e.g. Carey and Teal, 1966; Carey et al., 1971, 1984; Graham and Dickson, 2001), with in particular the lowest δ¹⁸Op values measured in the skull...
and vertebrae near the visceral mass (Table 1 and Fig. 2C). Estimated temperature heterogeneities of tuna assuming slight seasonal changes in $\delta^{18}O_{bw}$ are of $2 \pm 0.5^\circ$C between fins and the visceral mass region and $4 \pm 0.5^\circ$C between fins and teeth (Fig. 3A). These results are consistent with in situ body temperature measurements which indicate a strong thermal gradient of 4 to 20°C between core temperature and environmental water (Carey and Teal, 1966; Carey et al., 1971; Carey and Lawson, 1973; Carey et al., 1984). However, the absolute temperature differences inferred from the two methods are difficult to compare as for dolphins. The high $\delta^{18}O_p$ variability observed in branchial arches can be explained by variable thermal exchanges between hot blood and cold environmental water.

Swordfish has warm brain and eyes through a unique heater organ associated with the rectus eye muscle (Carey, 1982; Block, 1987) linked to a system of counter-current exchangers and buried in a thick adipose mass that stores the heat produced (Block, 1986, 1991). This mechanism allows the swordfish brain temperature to be 5°C to 30°C warmer than the surrounding water while the rest of its body remains close to water temperature (Carey, 1982, 1990; Schwab, 2002; Stoehr et al., 2018). Our $\delta^{18}O_p$ values and the use of the Eq.(1) indicate that the skull temperature is approximately $7 \pm 0.5^\circ$C warmer than the rest of the body which is consistent with the global trend provided by in situ temperature measurements (Carey, 1982, 1990; Fritsches et al., 2005).

4.3. Implications for extant and extinct marine vertebrates

The proposed oxygen isotope thermometry complements conventional approaches and thermal imaging methods. The use of oxygen isotopes represents a valuable alternative method to access temperature heterogeneities over the body in marine vertebrates for which logger is difficult to install and operate. Unlike techniques involving surgical implants (Carey and Teal, 1966; Ponganis et al., 2008), isotopic method does not require the handling of living animals, that can punctually increase their body temperature due to stress (Bouwknecht et al., 2007). Moreover, isotopic thermometry provides internal temperature data contrary to infrared thermal imagery that limits information to skin temperature (Tattersall et al., 2009; McCafferty et al., 2015). These results open up new perspectives for thermophysiological studies both on extant organisms that are difficult to handle (e.g. whales) or which are rare (abyssal organisms), but also on extinct organisms for which only skeleton is available.
(e.g. Steller’s sea cow, extinct cetaceans, ichthyosaurs, plesiosaurs…). Beyond these (paleo-)biological implications, our results also highlight a major issue concerning the use of random skeletal elements of marine vertebrates (e.g. chondrichthyan and osteichthyan or cetacean bones and teeth) for the reconstruction of paleoceanographic parameters based on the oxygen isotope composition of bioapatite (e.g. seawater temperatures and \(\delta^{18}O_{sw} \) values). Intraskelatal variability resulting from regional heterothermies can lead to overestimate seawater temperature or underestimate \(\delta^{18}O_{sw} \) values when applying specific fractionation equations to isolated skeletal elements (Fig. 3A, B). For example, the maximum \(\delta^{18}O_p \) difference of 2.8 \(\%\) measured between two bones of the swordfish can result in an overestimation of 10°C of seawater temperature when applying the phosphate-water temperature scale of Lécuyer et al. (2013) (Fig. 3A). In the same idea, the maximum \(\delta^{18}O_p \) difference of 1.8 \(\%\) measured between two bones of the North Atlantic short-beaked common dolphin can result in an \(\delta^{18}O_{sw} \) underestimation of 1.7 \(\%\) when applying the fractionation equation published by Ciner et al. (2016; Fig. 3B). It is noteworthy that existing fractionation equations available for chondrichthynans and osteichthyan or cetacean were established mixing various skeletal elements including axial or appendicular bones and teeth (Longinelli and Nuti, 1973; Kolodny et al., 1983; Yoshida and Miyazaki, 1991; Lécuyer et al., 2013; Ciner et al., 2016). In order to perform accurate paleoceanographic reconstructions, existing fractionation equations will therefore need to be updated to take into account regional heterothermies.

5. **Conclusion**

Detailed intraskeletal \(\delta^{18}O_p \) mapping allows to document regional heterothermies in marine vertebrates. Calculated \(\delta^{18}O_p \)-derived temperatures are consistent with temperature heterogeneities recorded by classical methods. This opens up new perspectives on the determination of the thermoregulatory strategies of present-day marine vertebrates for which conventional methods of body temperature measurements are difficult to apply. This also allows to investigate thermophysiologies of extinct vertebrates since the oxygen isotope composition of hydroxyapatite phosphate can be preserved in the fossil record due to its good resistance to chemical processes that take place during burying and fossilization (e.g. Blake et al., 1997; Lécuyer et al., 1999; Kral et al., 2021). However, these results highlight the need to update the existing fractionation equations established
for chondrichthyans and osteichthyans or cetaceans as they do not take into account the significant intraskeletal δ18Op variability caused by regional heterothermies.

Data accessibility.

Stable oxygen isotope compositions are provided in Excel tables as electronic supplementary materials. Informations about Atlantic bluefin tuna are also mentioned in supplementary materials.

Funding.

This work was supported by the ANR-18-CE31-0020 “Oxymore” program (N.S., R.A., G.S., C.L., S.C., P.V.).

Author contribution.

P. Vincent, G. Suan, R. Amiot and N. Séon contributed to the study conception and design. Material preparation and data collection were performed by N. Séon, R. Amiot, F. Fourel, F. Demaret, A. Vinçon-Lauginier, S. Charbonnier and P. Vincent. Material analysis were performed by N. Séon, R. Amiot and C. Lécuyer,. The first draft of the manuscript was written by N. Séon, R. Amiot and P. Vincent, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Competing interests.

The authors declare that they have no conflict of interest.
Acknowledgments.

The authors thank C. Lefèvre (MNHN) and W. Dabin (PELAGIS) for providing materials.

References

Allali, K. E., Achaâban, M. R., Bothorel, B., Piro, M., Bouâouda, H., Allouchi, M. E., Ouassat, M., Malan, A., and Pévet, P.: Entrainment of the circadian clock by daily ambient temperature cycles in the camel (*Camelus dromedarius*), Am. J. Physiol.-Regul. Integr. Comp. Physiol., 304, R1044–R1052, 2013.

Atkins, A., Dean, M. N., Habegger, M.-L., Motta, P. J., Ofer, L., Repp, F., Shipov, A., Weiner, S., Currey, J. D., and Shahar, R.: Remodeling in bone without osteocytes: billfish challenge bone structure–function paradigms, Proc. Natl. Acad. Sci., 111, 16047–16052, 2014.

Barrick, R. E.: Isotope paleobiology of the vertebrates: ecology, physiology, and diagenesis, Paleontol. Soc. Pap., 4, 101–137, 1998.

Barrick, R. E. and Showers, W. J.: Thermophysiology of *Tyrannosaurus rex*: evidence from oxygen isotopes, Science, 265, 222–224, 1994.

Barrick, R. E. and Showers, W. J.: Oxygen isotope variability in juvenile dinosaurs (*Hypacrosaurus*): evidence for thermoregulation, Paleobiology, 21, 552–560, 1995.

Barrick, R. E., Showers, W. J., and Fischer, A. G.: Comparison of thermoregulation of four ornithischian dinosaurs and a varanid lizard from the Cretaceous Two Medicine Formation: evidence from oxygen isotopes, Palaios, 295–305, 1996.

Barrick, R. E., Stoskopf, M. K., Marcot, J. D., Russell, D. A., and Showers, W. J.: The thermoregulatory functions of the Triceratops frill and horns: heat flow measured with oxygen isotopes, J. Vertebr. Paleontol., 18, 746–750, 1998.

Bennett, N. C., Jarvis, J. U. M., and Cotterili, F. P. D.: Poikilothermic traits and thermoregulation in the Afrotropical social subterranean Mashona mole-rat (*Cryptomys hottentotus darlingi*) (Rodentia: Bathyergidae), J. Zool., 231, 179–186, 1993.

Bernal, D., Dickson, K. A., Shadwick, R. E., and Graham, J. B.: Analysis of the evolutionary convergence for high performance swimming in lamnid sharks and tunas, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 129, 695–726, 2001.

Blake, R. E., O’neil, J. R., and Garcia, G. A.: Oxygen isotope systematics of biologically mediated reactions of phosphate: I. Microbial degradation of organophosphorus compounds, Geochem. Cosmochim. Acta, 61, 4411–4422, 1997.

Blank, J. M., Morrisette, J. M., Farwell, C. J., Price, M., Schallert, R. J., and Block, B. A.: Temperature effects on metabolic rate of juvenile Pacific bluefin tuna *Thunnus orientalis*, J. Exp. Biol., 210, 4254–4261, 2007.

Block, B. A.: Structure of the brain and eye heater tissue in marlins, sailfish, and spearfishes, J. Morphol., 190, 169–189, 1986.
Block, B. A.: Billfish brain and eye heater: a new look at nonshivering heat production, Physiology, 2, 208–213, 1987.

Block, B. A.: Evolutionary novelties: how fish have built a heater out of muscle, Am. Zool., 31, 726–742, 1991.

Block, B. A. and Finnerty, J. R.: Endothermy in fishes: a phylogenetic analysis of constraints, predispositions, and selection pressures, Environ. Biol. Fishes, 40, 283–302, 1994.

Bouwknecht, J. A., Olivier, B., and Paylor, R. E.: The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: a review of pharmacological and genetic studies in the mouse, Neurosci. Biobehav. Rev., 31, 41–59, 2007.

Browning, N. E., Dold, C., I-Fan, J., and Worthy, G. A.: Isotope turnover rates and diet–tissue discrimination in skin of ex situ bottlenose dolphins (Tursiops truncatus), J. Exp. Biol., 217, 214–221, 2014.

Cannon, B. and Nedergaard, J. A. N.: Brown adipose tissue: function and physiological significance, Physiol. Rev., 84, 277–359, 2004.

Carey, F. G.: A brain heater in the swordfish, Science, 216, 1327–1329, 1982.

Carey, F. G.: Further observations on the biology of the swordfish, Plan. Future Billfishes Natl. Coalit. Mar. Conserv. Inc Savannah Ga., 102–122, 1990.

Carey, F. G. and Lawson, K. D.: Temperature regulation in free-swimming bluefin tuna, Comp. Biochem. Physiol. A Physiol., 44, 375–392, 1973.

Carey, F. G. and Teal, J. M.: Heat conservation in tuna fish muscle, Proc. Natl. Acad. Sci. U. S. A., 56, 1464, 1966.

Carey, F. G., Teal, J. M., Kanwisher, J. W., Lawson, K. D., and Beckett, J. S.: Warm-bodied fish, Am. Zool., 11, 137–143, 1971.

Carey, F. G., Kanwisher, J. W., and Stevens, E. D.: Bluefin tuna warm their viscera during digestion, J. Exp. Biol., 109, 1–20, 1984.

Chenery, C., Müldner, G., Evans, J., Eckardt, H., and Lewis, M.: Strontium and stable isotope evidence for diet and mobility in Roman Gloucester, UK, J. Archaeol. Sci., 37, 150–163, 2010.

Ciner, B., Wang, Y., and Parker, W.: Oxygen isotopic variations in modern cetacean teeth and bones: implications for ecological, paleoecological, and paleoclimatic studies, Sci. Bull., 61, 92–104, 2016.

Clauzel, T., Richardin, P., Ricard, J., Le Béchennec, Y., Amiot, R., Fourel, F., Phouybanhdyt, B., Vinçon-Laugier, A., Flandrois, J.-P., and Lécuyer, C.: The Gauls experienced the Roman Warm Period: Oxygen isotope study of the Gallic site of Thézy-Glimont, Picardie, France, J. Archaeol. Sci. Rep., 34, 102595, 2020.

Coulson, A. B., Kohn, M. J., Shirley, M., Joyce, W. G., and Barrick, R. E.: Phosphate–oxygen isotopes from marine turtle bones: Ecologic and paleoclimatic applications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 264, 78–84, 2008.

Crawshaw, L. I. and Hammel, H. T.: Behavioral thermoregulation in two species of antarctic fish, Life Sci., 10, 1009–1020, 1971.

Crowson, R. A., Showers, W. J., Wright, E. K., and Hoering, T. C.: Preparation of phosphate samples for oxygen isotope analysis, Anal. Chem., 63, 2397–2400, 1991.
Dickson, K. A. and Graham, J. B.: Evolution and consequences of endothermy in fishes, Physiol. Biochem. Zool., 77, 998–1018, 2004.

Eichhorn, G., Grosclos, R., Le Glaunec, G., Parisel, C., Arnold, L., Medina, P., and Handrich, Y.: Heterothermy in growing king penguins, Nat. Commun., 2, 1–7, 2011.

Fourel, F., Martineau, F., Lécuyer, C., Kupka, H.-J., Lange, L., Ojeimi, C., and Seed, M.: \(^{18}\)O/\(^{16}\)O ratio measurements of inorganic and organic materials by elemental analysis–pyrolysis–isotope ratio mass spectrometry continuous-flow techniques, Rapid Commun. Mass Spectrom., 25, 2691–2696, 2011.

Fritsches, K. A., Brill, R. W., and Warrant, E. J.: Warm eyes provide superior vision in swordfishes, Curr. Biol., 15, 55–58, 2005.

Graham, J. B. and Dickson, K. A.: Anatomical and physiological specializations for endothermy, Fish Physiol., 19, 121–165, 2001.

Graham, J. B. and Dickson, K. A.: Tuna comparative physiology, J. Exp. Biol., 207, 4015–4024, 2004.

Guppy, M., Hulbert, W. C., and Hochachka, P. W.: Metabolic sources of heat and power in tuna muscles: II. Enzyme and metabolite profiles, J. Exp. Biol., 82, 303–320, 1979.

Halas, S. and Szaran, J.: Improved thermal decomposition of sulfates to SO2 and mass spectrometric determination of \(\delta^{34}\)S of IAEA SO-5, IAEA SO-6 and NBS-127 sulfate standards, Rapid Commun. Mass Spectrom., 15, 1618–1620, 2001.

Halas, S., Skrzypek, G., Meier-Augenstein, W., Pelc, A., and Kemp, H. F.: Inter-laboratory calibration of new silver orthophosphate comparison materials for the stable oxygen isotope analysis of phosphates, Rapid Commun. Mass Spectrom., 25, 579–584, 2011.

Hampton, I. F. G., Whittow, G. C., Szekerczes, J., and Rutherford, S.: Heat transfer and body temperature in the Atlantic bottlenose dolphin, *Tursiops truncatus*, Int. J. Biometeorol., 15, 247–253, 1971.

Hashimoto, O., Ohtsuki, H., Kakizaki, T., Amou, K., Sato, R., Doi, S., Kobayashi, S., Matsuda, A., Sugiyama, M., and Funaba, M.: Brown adipose tissue in cetacean blubber, PLoS One, 10, 2015.

Hight, B. V. and Lowe, C. G.: Elevated body temperatures of adult female leopard sharks, *Triakis semifasciata*, while aggregating in shallow nearshore embayments: evidence for behavioral thermoregulation?, J. Exp. Mar. Biol. Ecol., 352, 114–128, 2007.

Hui, C. A.: Seawater consumption and water flux in the common dolphin *Delphinus delphis*, Physiol. Zool., 54, 430–440, 1981.

Hut, G.: Consultants’ group meeting on stable isotope reference samples for geochemical and hydrological investigations, 1987.

Huxley, T. H.: On the application of the laws of evolution to the arrangement of the Vertebrata and more particularly of the Mammalia, in: Proceedings of the Zoological Society of London, 649–662, 1880.

Irving, L. and Hart, J. S.: The metabolism and insulation of seals as bare-skinned mammals in cold water, Can. J. Zool., 35, 497–511, 1957.
Irving, L. and Krog, J.: Temperature of skin in the arctic as a regulator of heat, J. Appl. Physiol., 7, 355–364, 1955.

Kastelein, R. A., Macdonald, G. J., and Wiepkema, P. R.: A note on food consumption and growth of common dolphins (Delphinus delphis), J. Cetacean Res. Manag., 2, 69–74, 2000.

Kolodny, Y., Luz, B., and Navon, O.: Oxygen isotope variations in phosphate of biogenic apatites, I. Fish bone apatite—rechecking the rules of the game, Earth Planet. Sci. Lett., 64, 398–404, 1983.

Kral, A. G., Ziegler, A., Tütken, T., and Geisler, T.: Experimental Aqueous Alteration of Cortical Bone Microarchitecture Analyzed by Quantitative Micro-Computed Tomography, Front. Earth Sci., 9, 136, 2021.

Lécuyer, C., Grandjean, P., O’Neil, J. R., Cappetta, H., and Martineau, F.: Thermal excursions in the ocean at the Cretaceous—Tertiary boundary (northern Morocco): δ¹⁸O record of phosphatic fish debris, Palaeogeogr. Palaeoclimatol. Palaeoecol., 105, 235–243, 1993.

Lécuyer, C., Grandjean, P., and Sheppard, S. MF.: Oxygen isotope exchange between dissolved phosphate and water at temperatures ≤ 135 C: inorganic versus biological fractionations, Geochim. Cosmochim. Acta, 63, 855–862, 1999.

Lécuyer, C., Amiot, R., Touzeau, A., and Trotter, J.: Calibration of the phosphate δ¹⁸O thermometer with carbonate–water oxygen isotope fractionation equations, Chem. Geol., 347, 217–226, 2013.

Legendre, L. J. and Davesne, D.: The evolution of mechanisms involved in vertebrate endothermy, Philos. Trans. R. Soc. B, 375, 20190136, 2020.

Lockyer, C.: Body fat condition in Northeast Atlantic fin whales, Balaenoptera physalus, and its relationship with reproduction and food resource, Can. J. Fish. Aquat. Sci., 43, 142–147, 1986.

Longinelli, A.: Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research?, Geochim. Cosmochim. Acta, 48, 385–390, 1984.

Longinelli, A. and Nuti, S.: Revised phosphate-water isotopic temperature scale, Earth Planet. Sci. Lett., 19, 373–376, 1973.

Luz, B., Kolodny, Y., and Horowitz, M.: Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water, Geochim. Cosmochim. Acta, 48, 1689–1693, 1984.

McCafferty, D. J., Gallon, S., and Nord, A.: Challenges of measuring body temperatures of free-ranging birds and mammals, Anim. Biotelemetry, 3, 1–10, 2015.

Missell, C. A.: Thermoregulatory adaptations of Acrocanthosaurus atokensis - evidence from oxygen isotopes, 2004.

Morkel, P. vdB, Miller, M., Jago, M., Radcliffe, R. W., Du Preez, P., Olea-Popelka, F., Sefton, J., Taft, A., Nydam, D., and Gleed, R. D.: Serial temperature monitoring and comparison of rectal and muscle temperatures in immobilized free-ranging black rhinoceros (Diceros bicornis), J. Zoo Wildl. Med., 120–124, 2012.

Morrison, P.: Body temperatures in some Australian mammals. III. Cetacea (Megaptera), Biol. Bull., 123, 154–169, 1962.

Myrick, A. C.: Some new and potential uses of dental layers in studying delphinid populations, Pages 251-279 K Pryor KS Norris Eds Dolphin Soc. Discov. Puzzles Univ Calif. Press Be, 1991.

Nicol, S. C.: Energy homeostasis in monotremes, Front. Neurosci., 11, 195, 2017.
Ortiz, R. M.: Osmoregulation in marine mammals, J. Exp. Biol., 204, 1831–1844, 2001.

Picard, S., Garcia, J.-P., Lécuyer, C., Sheppard, S. M., Cappetta, H., and Emig, C. C.: δ18O values of coexisting brachiopods and fish: Temperature differences and estimates of paleo-water depths, Geology, 26, 975–978, 1998.

Ponganis, P. J., Van Dam, R. P., Levenson, D. H., Knower, T., Ponganis, K. V., and Marshall, G.: Regional heterothermy and conservation of core temperature in emperor penguins diving under sea ice, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 135, 477–487, 2003.

Ponganis, P. J., Kreutzer, U., Stockard, T. K., Lin, P.-C., Sailsuta, N., Tran, T.-K., Hurd, R., and Jue, T.: Blood flow and metabolic regulation in seal muscle during apnea, J. Exp. Biol., 211, 3323–3332, 2008.

Pucéat, E., Lécuyer, C., Sheppard, S. M., Dromart, G., Reboulet, S., and Grandjean, P.: Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels, Paleoceanography, 18, 2003.

R Core Team: R: A language and environment for statistical computing, Vienna, Austria: R Foundation for Statistical Computing., 2017.

Riccialdelli, L., Newsome, S. D., Fogel, M. L., and Goodall, R. N. P.: Isotopic assessment of prey and habitat preferences of a cetacean community in the southwestern South Atlantic Ocean, Mar. Ecol. Prog. Ser., 418, 235–248, 2010.

Rodbard, S.: Warm-bloodedness, Sci. Mon., 77, 137–142, 1953.

Rommel, S. A., Pabst, D. A., McLellan, W. A., Mead, J. G., and Potter, C. W.: Anatomical evidence for a countercurrent heat exchanger associated with dolphin testes, Anat. Rec., 232, 150–156, 1992.

Rosen, D. A. and Worthy, G. A.: Nutrition and energetics, in: CRC handbook of marine mammal medicine, CRC Press, 695–738, 2018.

Rosenthal, H. L.: Uptake, turnover and transport of bone seeking elements in fishes, Ann. N. Y. Acad. Sci. US, 109, 1963.

Rummel, A. D., Swartz, S. M., and Marsh, R. L.: Warm bodies, cool wings: regional heterothermy in flying bats, Biol. Lett., 15, 20190530, 2019.

Schmidt-Nielsen, K., Dawson, T. J., and Crawford, E. C.: Temperature regulation in the echidna (Tachyglossus aculeatus), J. Cell. Physiol., 67, 63–71, 1966.

Scholander, P. F.: Evolution of climatic adaptation in homeotherms, Evolution, 15–26, 1955.

Scholander, P. F. and Schewill, W. E.: Counter-current vascular heat exchange in the fins of whales, J. Appl. Physiol., 8, 279–282, 1955.

Schwab, I. R.: These eyes are hot..., Br. J. Ophthalmol., 86, 266–266, 2002.

Sherwin, C. M.: The husbandry and welfare of non-traditional laboratory rodents, Hubrecht R Kirkw. J UFAW Handb. Care Manag. Lab. Anim. Wiley-Blackwell, 359–369, 2010.

Smith, E. N.: Behavioral and physiological thermoregulation of crocodilians, Am. Zool., 19, 239–247, 1979.
Stoehr, A., St. Martin, J., Aalbers, S., Sepulveda, C., and Bernal, D.: Free-swimming swordfish, *Xiphias gladius*, alter the rate of whole body heat transfer: morphological and physiological specializations for thermoregulation, ICES J. Mar. Sci., 75, 858–870, 2018.

Stoskopf, M. K., Barrick, R. E., and Showers, W. J.: Oxygen isotope variability in bones of wild caught and constant temperature reared sub-adult American alligators, J. Therm. Biol., 26, 183–191, 2001.

Tattersall, G. J., Andrade, D. V., and Abe, A. S.: Heat exchange from the toucan bill reveals a controllable vascular thermal radiator, science, 325, 468–470, 2009.

Telfer, N., Cornell, L. H., and Prescott, J. H.: Do dolphins drink water?, J. Am. Vet. Med. Assoc., 157, 555–558, 1970.

Tomilin, A. G.: Notes on Siberian white-sided dolphin, Rybn. Khozaistvo, 26, 50–53, 1950.

Ungar, P. S.: Mammal teeth: origin, evolution, and diversity, JHU Press, 2010.

Watanabe, Y. Y., Goldman, K. J., Caselle, J. E., Chapman, D. D., and Papastamatiou, Y. P.: Comparative analyses of animal-tracking data reveal ecological significance of endothermy in fishes, Proc. Natl. Acad. Sci., 112, 6104–6109, 2015.

Williams, T. M., Haun, J., Davis, R. W., Fuiman, L. A., and Kohin, S.: A killer appetite: metabolic consequences of carnivory in marine mammals, Comp. Biochem. Physiol. A. Mol. Integr. Physiol., 129, 785–796, 2001.

Yoshida, N. and Miyazaki, N.: Oxygen isotope correlation of cetacean bone phosphate with environmental water, J. Geophys. Res. Oceans, 96, 815–820, 1991.

Young, D. D. and Cockcroft, V. G.: Diet of common dolphins (*Delphinus delphis*) off the south-east coast of southern Africa: opportunism or specialization?, J. Zool., 234, 41–53, 1994.
Figure 1. A. Oxygen isotope variability within the skeleton of a North Atlantic *D. delphis delphis* (M.1162). Bone $\Delta^{18}O_p$ correspond to the difference between bone $\delta^{18}O_p$ value and an average value of the skeleton expressed as its mid-range value ($(\delta^{18}O_{max} - \delta^{18}O_{min})/2$). For paired skeletal elements as well as vertebrae centra and neural spines, the mean value is used. B. Boxplots showing the $\delta^{18}O_p$ values of skeletal regions for a North Atlantic *D. delphis delphis*. Asterisks indicate the significance of the observed differences between pairs of groups: ** for $p < 0.01$. Outliers are plotted as small black circles. Abbreviation = App.: appendicular skeleton.
Figure 2. Oxygen isotope variability within the skeleton of *T. thynnus* (A) and *X. gladius* (B). For each specimen, bone $\Delta^{18}O_p$ correspond to the difference between bone $\delta^{18}O_p$ value and an average value of the skeleton expressed as its mid-range value ($\left(\frac{\delta^{18}O_{\text{max}} - \delta^{18}O_{\text{min}}}{2}\right)$). For paired skeletal elements as well as vertebrae centra and neural spines and fin spines and rays, the mean value is used. Stars represented on the swordfish’s skull represents the precise location of the sampling. C. Boxplots showing the $\delta^{18}O_p$ values of skeletal regions for *T. thynnus* and *X. gladius*. Asterisks indicate the significance of the observed differences between pairs of groups: ns (not significant) for $p > 0.05$, * for $p < 0.05$, ** for $p < 0.01$ (highly significant difference). Outliers are plotted as small black circles. Abbreviations = Ax.a: axial anterior, Ax.p: axial posterior, Bran.: branchial arches and Ros.: rostrum.
Figure 3. A. Estimated hydroxyapatite mineralization temperature from the phosphate-water oxygen fractionation equation published by Lécuyer et al. (2013), where body water oxygen isotope composition (δ^{18}O$_{bw}$) for osteichthyans is assumed to be equals to the δ^{18}O$_{sw}$ value. Temperature estimates were done with the mean annual oxygen isotope composition of the Mediterranean Sea (δ^{18}O$_{sw}$ = 1.5 ± 0.4 ‰; electronic supplementary material, table S5). B. Estimated δ^{18}O$_{sw}$ from the
phosphate-water oxygen fractionation equation published by Ciner et al. (2016). Abbreviations = Med.: Mediterranean sea, Atl.: Atlantic Ocean.

Table caption

Table 1. Summary of the mean oxygen isotopic composition (‰, V-SMOW) of dolphins and osteichtyans.

Species	D. delphis delphis	D. delphis delphis	C. commersoni	T. thynnus	X. gladius					
	M.1162 n	Mean ± SD	MHNN-ZC-AC-1876-275 n	Mean ± SD	MHNN-ZC-AC-1983-058 n	Mean ± SD	n	Mean ± SD	n	Mean ± SD
Global Rostrum	46	18.3 ± 0.4	33	18.9 ± 0.4	29	18.1 ± 0.4	48	21.3 ± 0.6	33	22.0 ± 0.5
Teeth	3	18.7 ± 0.2	1	19.0	1	18.6	1	20.1	5	22.3 ± 0.3
Skull	1	18.0	1	18.0	1	20.6 ± 0.5	5	21.4 ± 0.8	3	20.6 ± 0.6
Branchial arches	35	18.1 ± 0.3	25	18.8 ± 0.3	19	18.0 ± 0.4	6	21.0 ± 0.5	9	22.2 ± 0.3
Axial skeleton anterior part posterior part	35	18.1 ± 0.3	25	18.8 ± 0.3	19	18.0 ± 0.4	6	21.0 ± 0.5	9	22.2 ± 0.3
Appendicular skeleton Fins	7	18.7 ± 0.3	7	19.3 ± 0.4	8	18.3 ± 0.3	18	21.5 ± 0.4	16	22.0 ± 0.3
δ²⁸O intra-bone variability	16	0.3 ± 0.2	7	0.5 ± 0.2	3	0.1 ± 0.1	2	1.1 ± 0.7	4	0.4 ± 0.3
Max. δ²⁸O₀,₉	19.2*	19.8*	19.0*	22.5	22.8					
Min. δ²⁸O₀,₉	17.4*	18.3*	17.5*	20.0	20.0					
Mid-range	18.3*	19.0*	18.2*	21.2	21.4					
Δδ²⁸O₀,₉	1.8*	1.5*	1.5*	2.5	2.8					

* Teeth are not taken into account in this calculation

Table 1. Summary of the mean oxygen isotopic composition (‰, V-SMOW) of dolphins and osteichtyans.