Abstract

In this paper we describe the main features of the Bergm package for the open-source R software which provides a comprehensive framework for Bayesian analysis for exponential random graph models: tools for parameter estimation, model selection and goodness-of-fit diagnostics. We illustrate the capabilities of this package describing the algorithms through a tutorial analysis of two well-known network datasets.

1 Introduction

The Bergm package for R (R Development Core Team, 2011) implements Bayesian analysis for Exponential Random Graph Models (ERGMs) (Wasserman and Pattison (1996); Robins et al. (2007)) using the methods described by Caimo and Friel (2011) and Caimo and Friel (2013). The package provides a comprehensive framework for Bayesian inference and model selection using Markov chain Monte Carlo (MCMC) algorithms. It can also supply graphical Bayesian goodness-of-fit procedures that address the issue of model adequacy. Although computationally intensive, the package is simple to use and represents an attractive way of analyzing network data as it offers the advantage of a complete probabilistic treatment of uncertainty. Bergm is based on the ergm package (Hunter et al., 2008b) which is part of the statnet suite of packages (Handcock et al., 2007) and therefore it makes use of the same model set-up and network simulation algorithms. The Bergm package has been continually improved in terms of speed performance over the last two years and one of the purposes of this paper is to highlight these improvements. We
feel that this package now offers the end-user a feasible option for carrying out Bayesian inference for exponential random graphs.

Two well-known network datasets will be used throughout this tutorial for illustrative purposes: the first is the Kapferer Tailor Shop dataset (Kapferer, 1972) whose directed edges represent work interactions in a tailor shop in Zambia (then Northern Rhodesia) and nodal attributes refer to the job status. The second network is Zachary’s karate club (Zachary, 1977) which represents the undirected social network graph of friendships between 34 members of a karate club at a US university in the 1970s. Figure 1 displays the graphs of these two networks, The exact R code used to produce both of these plots is given in Appendix A.

In this paper we describe how to install and load Bergm (Section 2) providing a brief summary of what Bayesian ERGMs are (Section 3). Sections 4, 5, and 6 overview the algorithms and the functions used to produce posterior estimates for the parameters, Bayesian goodness-of-fit procedures and model selection respectively. Two examples are developed in Section 4.3 and Section 6.1. This paper does not provide an exhaustive description of all the functionality and options available, and more information about the commands and methods mentioned are available through the R help system within the package.

2 Getting Bergm

The Bergm package can be obtained and loaded in R using the following commands:

R> install.packages("Bergm")
R> library("Bergm")

Since Bergm depends on ergm (Hunter et al., 2008b) (which in turn depends on network (Butts, 2008)), coda (Plummer et al., 2006), and mvtnorm (Genz et al., 2012). Installing the package will automatically load all the dependencies. All of these packages are available on the Comprehensive R Archive Network (CRAN) at http://CRAN.R-project.org.

The results presented in this paper have been obtained using R version 2.15.1 on a Mac using Bergm version 2.5; ergm version 3.0-3; network version 1.7-1; coda version 0.15-2; and mvtnorm version 0.9-9993.
Figure 1: Kapferer Tailor Shop directed graph (top) and Zachary’s karate club undirected graph (bottom).
3 Bayesian exponential random graphs

The Bayesian approach to statistical problems is probabilistic. Inference is based on the posterior distribution which is the conditional probability of the unknown quantities given the observed ones. The posterior distribution extracts the information in the data and provide a complete summary of the uncertainty about the unknowns.

In the ERGM context (see Wasserman and Pattison (1996) and Robins et al. (2007)), the purpose of Bayesian inference is to learn about the posterior distribution of the model parameters θ of an observed graph y on n nodes:

$$p(\theta|y) = \frac{p(y|\theta) p(\theta)}{p(y)} = \frac{\exp\{\theta^t s(y)\}}{z(\theta)} \frac{p(\theta)}{p(y)},$$

where $s(y)$ is a known vector of sufficient network statistics (Figure 2) (Morris et al., 2008), $p(\theta)$ is a prior distribution placed on θ, $z(\theta)$ is the likelihood normalizing constant, and $p(y)$ is the model evidence. Equation 1 provides a probabilistic statement about how likely parameter values are after observing the data y. The likelihood $p(y|\theta)$ is translated into a proper probability distribution that can be summarised by computing expected values, standard deviations, quantiles, etc.

Unfortunately the posterior distribution (Equation 1) is doubly-intractable as both $z(\theta)$ and $p(y)$ cannot be evaluated analytically (Koskinen, 2004). This makes the use of standard MCMC procedures infeasible.

In order to carry out Bayesian inference for ERGMs, the Bergm package makes use of a combination of Bayesian algorithms and MCMC techniques. The exchange algorithm circumvents the problem of computing the normalizing constants of the ERGM likelihoods, while the use of multiple chains interacting with each others (population MCMC approach) by means of adaptive direction sampling is able to speed up the computations and improve chain mixing quite significantly.

4 Bayesian parameter estimation

In order to estimate Equation 1, the Bergm package uses the exchange algorithm described in Section 4.1 of Caimo and Friel (2011) to sample from the following distribution:

$$p(\theta', y', \theta|y) \propto p(y|\theta)p(\theta)\epsilon(\theta'|\theta)p(y'|\theta')$$

where $p(y'|\theta')$ is the likelihood on which the simulated data y' are defined, $\epsilon(\theta'|\theta)$ is any arbitrary proposal distribution for the augmented variable θ'. As we will see in the next section, this proposal distribution is set to be a normal centered at θ.

4
Figure 2: Some of the most used configurations for directed (a) and undirected (b) graphs.
At each MCMC iteration, the exchange algorithm consists of a Gibbs update of \(\theta' \) followed by a Gibbs update of \(y' \), which is drawn from the \(p(\cdot | \theta') \) via an MCMC algorithm (Hunter et al., 2008b). Then a deterministic exchange or swap from the current state \(\theta \) to the proposed new parameter \(\theta' \). This deterministic proposal is accepted with probability:

\[
\min \left(1, \frac{q_\theta(y)p(\theta')\epsilon(\theta'|\theta')q_\theta(y)}{q_\theta(y)p(\theta)\epsilon(\theta'|\theta)q_\theta(y')} \times \frac{z(\theta)z(\theta')}{z(\theta')z(\theta)} \right),
\]

where \(q_\theta \) and \(q_{\theta'} \) indicates the unnormalised likelihoods with parameter \(\theta \) and \(\theta' \), respectively. Notice that all the normalising constants cancel above and below in the fraction above, in this way avoiding the need to calculate the intractable normalising constant.

The exchange algorithm is implemented by the \texttt{bergm} function in the following way:

\begin{verbatim}
for i = 1,...,N
 1. generate \(\theta' \) from \(\epsilon(\cdot|\theta) \)
 2. simulate \(y' \) from \(p(\cdot|\theta') \)
 3. update \(\theta \rightarrow \theta' \) with the log of the probability
 \[
 \min \left(0, \left[\theta' - \theta \right]^t \left[s(y') - s(y) \right] + \log \left[\frac{p(\theta)}{p(\theta')} \right] \right)
 \]
end for
\end{verbatim}

where \(s(y) \) is the observed vector of network statistics and \(s(y') \) is the simulated vector of network statistics.

4.1 Block-update sampler

Step 1 of the algorithm consists in generating \(\theta' \) from some proposal distribution within each iteration. \texttt{Bergm} uses a block-update sampler with normal proposal to simultaneously update of the parameter values in the MCMC chain:

\[
\epsilon(\theta'|\theta) \sim \mathcal{N}(\theta, \Sigma_\epsilon).
\]

Typically, tuning the parameter \(\Sigma_\epsilon \) of the proposal distribution \(\epsilon \) from which \(\theta' \) is drawn represents the crucial part of the algorithm since a poor tuning of the proposal parameter \(\Sigma_\epsilon \) can slow down the chain’s mixing rate and therefore the algorithm can take a very long time to converge to the stationary posterior density.
4.2 Parallel adaptive direction sampler

In order to improve mixing a parallel adaptive direction sampler (ADS) (Gilks et al., 1994; Roberts and Gilks, 1994) is considered: at the i-th iteration of the algorithm we have a collection of H different chains interacting with one another. By construction, the state space consists of $\{\theta_1, \ldots, \theta_H\}$ with target distribution $p(\theta_1|y) \otimes \cdots \otimes p(\theta_H|y)$.

A parallel ADS move consists of generating a new value θ'_h from the difference of two parameters θ_{h_1} and θ_{h_2} (randomly selected from other chains) multiplied by a scalar term γ which is called parallel ADS move factor plus a random term ϵ called parallel ADS move parameter (Figure 3) which is equivalent to the block-update sampler defined in (Equation 2). The algorithm can be summarised as follows:

\[
\begin{align*}
\text{for } i = 1, \ldots, N \\
\text{for } h = 1, \ldots, H \\
\quad \text{1. generate } h_1 \text{ and } h_2 \text{ such that } h_1 \neq h_2 \neq h \\
\quad \text{2. generate } \theta'_h \text{ from } \gamma(\theta_{h_1} - \theta_{h_2}) + \epsilon(\cdot|\theta_h) \\
\quad \text{3. simulate } y' \text{ from } p(\cdot|\theta'_h) \\
\quad \text{4. update } \theta_h \to \theta'_h \text{ with the log of the probability} \\
\quad \quad \min \left(0, [\theta_h - \theta'_h]^t [s(y') - s(y)] + \log \frac{p(\theta'_h)}{p(\theta_h)} \right)
\end{align*}
\]

end for
end for

4.3 Kapferer tailor shop network

Consider the Kapferer Tailor Shop network and a 3-dimensional model including the following network statistics: edges (\texttt{edges}), mutual edges (\texttt{mutual}) and cyclic triples (\texttt{ctriple}) involving nodes with the same job status, where the job status is represented by a categorical nodal attribute variable consisting of 8 levels:

\[
\begin{align*}
\text{edges} & \quad \sum_{i<j} y_{ij} \\
\text{mutual} & \quad \sum_{i<j} y_{ij} y_{ji} \\
\text{ctriple("job")} & \quad \sum_{i<j<k} y_{ij} y_{jk} y_{ki} \text{ where } i, j, k \text{ have the same job status}
\end{align*}
\]
Figure 3: The parallel ADS move of the current state (darker blue dot) consists of generating a new parameter value along the direction made by the difference of two randomly sampled parameter states (light blue dots) belonging to different chains plus a random term.

The format of the model specification is the same of an \texttt{ergm} formula:

\begin{verbatim}
R> formula <- y ~ edges + mutual + ctriple("job")
\end{verbatim}

Then we can use the \texttt{bergm} function to sample from the posterior distribution using the MCMC algorithm described above. In this example we use the parallel ADS procedure described in Section 4.2. By default, the number of chains in the population is set as twice the number of dimensions of the model. It is possible to choose a different number of chains by using the argument \texttt{nchains}. In order to perform the block-site update described in Section 4.1 it is necessary to set \texttt{nchains} = 1. For each chain, we can then set the number of burn-in iterations (\texttt{burn.in}) and the number of iterations after the burn-in (\texttt{main.iters}). The number of iterations used to simulate a network y' at each iteration is defined by the argument \texttt{aux.iters}.

\begin{verbatim}
R> post.est <- bergm(formula,
+ burn.in=200,
+ gamma=0.7,
+ main.iters=1000,
+ aux.iters=25000)
\end{verbatim}

The population MCMC with parallel ADS move is the default procedure of the \texttt{bergm} function. The total number of iterations, e.g., the size of the posterior sample, is \texttt{nchains} \times \texttt{main.iters}. The proposal covariance structure Σ_ϵ is defined by the argument \texttt{sigma.epsilon} which is set to be a diagonal matrix with every diagonal entry equal to a small number. In many cases, good mixing of the chain is ensured by a sensible
tuning of the parallel ADS move factor \texttt{gamma} and therefore the argument \texttt{sigma.epsilon} can be generally left at its default setting. As said above, parallel ADS is adopted as the default procedure but it is automatically disabled in the case of uni-dimensional models where the block-update sampler is used and the argument \texttt{gamma} is used to tune the variance of the normal proposal distribution ϵ.

After completing the estimation, \texttt{post.est} is an object of the class \texttt{bergm} and contains a list of attributes among which are the real and CPU time (in seconds) taken by the estimation process:

\begin{verbatim}
R> post.est$time
user system elapsed
99.083 0.759 100.659
\end{verbatim}

It is possible to visualise the results of the MCMC estimation by using the \texttt{bergm.output} function which is based on the \texttt{coda} package (Plummer et al., 2006) which is an R package for MCMC output analysis and diagnostics.

\begin{verbatim}
R> bergm.output(post.est,lag.max=50)
\end{verbatim}

MCMC results for Model: y \sim edges + mutual + ctrieple("job")

\begin{verbatim}
Posterior mean:
\begin{verbatim}
theta1 (edges) theta2 (mutual) theta3 (ctriple.job)
Chain 1 -3.4256853 3.7647452 0.8168465
Chain 2 -3.4091174 3.7447376 0.8567871
Chain 3 -3.4140165 3.7377072 0.8532598
Chain 4 -3.4366544 3.7868822 0.8585445
Chain 5 -3.4201932 3.8034972 0.8340857
Chain 6 -3.4009597 3.7021253 0.8433665
\end{verbatim}
\begin{verbatim}
Posterior sd:
\begin{verbatim}
theta1 (edges) theta2 (mutual) theta3 (ctriple.job)
Chain 1 0.2046574 0.4287769 0.1882377
Chain 2 0.2291025 0.4960458 0.1829550
Chain 3 0.1903504 0.4453100 0.1700874
Chain 4 0.2673414 0.5266250 0.1655076
Chain 5 0.2474045 0.4652013 0.1543426
\end{verbatim}
\end{verbatim}
Chain 6 0.2696806 0.4775102 0.1949814

Acceptance rate:
Chain 1 0.213
Chain 2 0.267
Chain 3 0.246
Chain 4 0.224
Chain 5 0.260
Chain 6 0.237

Overall posterior density estimate:

	theta1 (edges)	theta2 (mutual)	theta3 (ctriple.job)
Post. mean	-3.4177711	3.7499491	0.8438150
Post. sd	0.2373836	0.4768709	0.1782518

Overall acceptance rate: 0.241166666666667

The output above shows the results of the MCMC estimation: posterior means and standard deviations, and acceptance rates for every chain in the population and for the overall chain. Notice that the posterior summaries of each chain are consistent with each other. Figure 4 displays the MCMC diagnostic plots produced by the bergm.output function. In this example, we observe a low density effect expressed by the negative value of the posterior mean of the edge effect parameter (θ_1) combined with the positive mutuality and transitivity within people having the same job status expressed by the mutual edge parameter (θ_2) and cyclic triple parameter (θ_3) respectively. The overall acceptance rate is around 24% and the autocorrelation is negligible after lag 50.

5 Bayesian goodness-of-fit diagnostics

An important contribution of this article is to propose a Bayesian procedure to establish whether the estimated parameter posterior of the model achieves a good fit to the key topological features of the observed network.

The bgof function provides a useful tool for assessing Bayesian goodness-of-fit so as to examine the fit of the data to the posterior model obtained by the bergm function. The observed network data \mathbf{y} are compared with a set of networks $\mathbf{y}_1, \mathbf{y}_2, \ldots, \mathbf{y}_S$ simulated
MCMC output for Model: y ~ edges + mutual + ctriiple("job")

Figure 4: MCMC diagnostics for the overall chain.
from S independent realisations $\theta_1, \theta_2, \ldots, \theta_S$ of the posterior density estimate. This comparison is made in terms of high-level characteristics $g(\cdot)$ such as higher degree distributions, etc. (see Hunter et al. (2008a)). The algorithm can be summarised as follows:

\[
\text{for } i = 1, \ldots, S \\
\hspace{1em} 1. \text{ sample } \theta_i \text{ from the estimate of } p(\theta | y) \\
\hspace{1em} 3. \text{ simulate } y_i \text{ from } p(y | \theta_i) \\
\hspace{1em} 4. \text{ calculate } g(y_i) \\
\hspace{1em} \text{end for}
\]

For example, the code below is used to compare the Kapferer Tailor Shop network with a series of networks simulated from $S = 100$ random realisations (\texttt{sample.size}) of the estimated posterior distribution \texttt{post.est} using 50,000 iterations (\texttt{aux.iters}) for the network simulation step. The \texttt{bgof} function may take a few seconds to run and, at the end of the execution, it will automatically plot the results as shown in Figure 5.

\begin{verbatim}
R> bgof(post.est, \\
+ sample.size=100, \\
+ aux.iters=50000, \\
+ directed=TRUE, \\
+ n.ideg=20, \\
+ n.odeg=20, \\
+ n.dist=10, \\
+ n.esp=15)
\end{verbatim}

The set of statistics used for the comparison of directed networks includes the in-degree distribution, the out-degree distribution, the minimum geodesic distance distribution and the edgewise shared partner distribution. The arguments \texttt{n.ideg}, \texttt{n.odeg}, \texttt{n.dist}, and \texttt{n.esp} indicates the number of boxplots to plot for each distribution respectively.

In Figure 5 we see, based on the various goodness of fit statistics, that the networks simulated from the posterior distribution are in reasonable agreement with the observed network. We can therefore conclude that the data are a reasonable fit to the model, despite its simplicity.
Figure 5: Bayesian goodness-of-fit diagnostics. The red line displays the goodness of fit statistics for the observed data together with boxplots of goodness of fit statistics based on 100 simulated networks from the posterior distribution.
6 Bayesian model selection

An important problem in statistical analysis is the choice of an optimal model from a set of a priori competing models. In the ERGM context, this task translates into the choice of which subset of network statistics should be included into the model.

Let m indicate a particular model from a set of competing models with corresponding parameters θ. Following the Bayesian paradigm, interest focuses on exploring the posterior distribution,

$$p(m, \theta | y) \propto p(y|m, \theta) \ p(\theta|m) \ p(m)$$

where $p(\theta|m)$ and $p(m)$ are prior distributions within model m, and on model m, respectively. The reversible jump Markov chain Monte Carlo (RJMCMC) algorithm (Green, 1995) was designed to explore this type of posterior distribution across the joint model and parameter space. It is therefore a type of MCMC algorithm that allows one to jointly explore the uncertain between and within models.

This approach is very appealing since it relies exclusively on probabilistic considerations but is very challenging from a computational viewpoint. As stated above, the intractability of the likelihood normalising constant $z(\theta)$ in Equation 1 renders standard RJMCMC techniques infeasible. However, the exchange algorithm used for parameter estimation can be easily generalised so as to include model indicators.

The auto-RJ exchange algorithm described in Caimo and Friel (2013) represents a trans-dimensional RJMCMC extension of the exchange algorithm involving an independence sampler based on a distribution fitting a parametric density approximation to the within-model posterior. This approach overcomes the issue of the likelihood intractability sampling from:

$$p(\theta', \theta, m', m, y'|y) \propto p(y|\theta, m)p(\theta|m)p(m)w(\theta'|m')h(m'|m)p(y'|\theta', m')$$

where m and m' are two competing models, $p(y|\theta, m)$ and $p(y'|\theta', m')$ are the two likelihoods for the data y under model m and the simulated data y' under model m' respectively, $p(\theta|m)$ and $p(m)$ are the priors for the parameter and the respective model m, $w(\cdot)$ is a within-model proposal (independence sampler) which fit a parametric density approximation to the model posteriors and $h(\cdot)$ is a between-model proposal. Notice that the marginal distribution for θ' and m' in Equation 3) is the target distribution of interest $p(\theta, m|y)$.

The bergmS function implements the auto-RJ exchange algorithm which consists of two parts: an offline step and an online step. In the online step, samples from the
posterior $p(\theta | y, m)$ are gathered from each competing model using the `bergm` function and then approximated by normal distributions $\mathcal{N}(\hat{\mu}_m, \hat{\Sigma}_m)$ determined by the first and second moments from a sample from the model.

The second step (online run) of the algorithm consists of a Gibbs update of m' followed by a Gibbs update of θ' which is generated via the independence sampler $w(\theta' | m') \sim \mathcal{N}(\hat{\mu}_{m'}, \hat{\Sigma}_{m'})$. This is followed by a Gibbs update of y' which is generated from $p(\cdot | \theta', m')$. Then a deterministic exchange move from a current state (θ, m) to the proposed new state (θ', m') is accepted with probability:

$$\begin{align*}
\min \left\{ 1, \frac{q_{\theta, m}(y') q_{\theta', m'}(y)}{q_{\theta, m}(y) q_{\theta', m'}(y')} \frac{p(\theta | m') p(m')} {p(\theta | m) p(m)} \frac{w(\theta | \hat{\mu}_m, \hat{\Sigma}_m) h(m | m')}{w(\theta' | \hat{\mu}_{m'}, \hat{\Sigma}_{m'}) h(m' | m)} \right\}
\end{align*}$$

where $q_{\theta, m}$ and $q_{\theta', m'}$ indicates the unnormalised likelihoods under model m with parameter θ and under model m' with parameter θ' respectively.

The structure of the `bergmS` function can be described in the following way:

```plaintext
for i = 1, ..., N
    1. generate $m'$ from $h(\cdot | m)$
    2. generate $\theta' \sim \mathcal{N}(\hat{\mu}_{m'}, \hat{\Sigma}_{m'})$
    3. simulate $y'$ from $p(\cdot | \theta', m')$
    4. update $(\theta, m) \rightarrow (\theta', m')$ with the log of the probability:

$$\min \left( 0, \theta'[s_m(y') - s_m(y)] + \theta'[s_{m'}(y') - s_{m'}(y)] + \log \left[ \frac{p(\theta') \, w(\theta | \hat{\mu}_m, \hat{\Sigma}_m)}{p(\theta) \, w(\theta' | \hat{\mu}_{m'}, \hat{\Sigma}_{m'})} \right] \right)$$

end for
```

where $s_m(y)$ and $s_{m'}(y)$ are the observed vectors of network statistics under model m and m' respectively, and $s_m(y')$ and $s_{m'}(y')$ are the simulated vector of network statistics under model m and m' respectively. Here, we have assumed the model priors and the between model proposals to be uniform. The reader is referred to Caimo and Friel (2013) for more details on this algorithm.

6.1 Karate club network

In this example, we consider the Karate club network and we propose three competing models to fit the data using a set of new specification statistics introduced by Snijders
et al. (2006): geometrically weighted edgewise shared partners (gwesp) and geometrically weighted degrees (gwdegree):

\[
gwesp = e^{\phi_v} \sum_{k=1}^{n-2} \left\{ 1 - (1 - e^{-\phi_v})^k \right\} EP_k(y)
\]
\[
gwdegree = e^{\phi_u} \sum_{k=1}^{n-1} \left\{ 1 - (1 - e^{-\phi_u})^k \right\} D_k(y)
\]

where the scale parameters \(\phi_v = 0.2 \) and \(\phi_u = 0.8 \). \(D_k(y) \) is the number of pairs that have exactly \(k \) common neighbours and \(EP_k(y) \) is the number of connected pairs with exactly \(k \) common neighbours.

The specification of these models requires the creation of a list of formulas:

```r
R> formulae <- c(y ~ edges + gwesp(0.2,fixed=TRUE),
+ y ~ edges + gwdegree(0.8,fixed=TRUE),
+ y ~ edges + gwesp(0.2,fixed=TRUE)
+ + gwdegree(0.8,fixed=TRUE))
```

The `bergmS` command is then used to carry out the algorithm. To do this we have to specify several arguments for both the offline and online step.

The offline run consists of running the `bergm` function for each of the models proposed. Therefore we set some arguments `main.iters`, `burn.ins`, `gammas` which are vectors containing values for `bergm` arguments: `main.iters`, `burn.in`, `gamma` for each competing model.

The argument `iters` refers to the number of iterations used for the online run. The number of MCMC steps used for network simulation is specified as usual by the argument `aux.iters` and this will be used in both the offline and the online step. The command below should take around 10 minutes depending on the CPU speed of the computer.

```r
R> mod.sel <- bergmS(formulae,
+     iters=25000,
+     aux.iters=15000,
+     main.iters=rep(700,3),
+     burn.ins=rep(100,3),
+     gammas=c(1,1,0.8))
```

The `bergmS.output` function produces the MCMC diagnostics for each competing model explored by the MCMC algorithm. Figure 6 and 7 display the plots regarding the posterior model and parameter density estimate for the best model, respectively.

```r
R> best.mod <- bergmS.output(mod.sel,lag.max=100)
```
BEST MODEL

Model 1: $y \sim \text{edges} + \text{gwesp}(0.2, \text{fixed} = \text{TRUE})$

Posterior parameter estimate:

Parameter	Post. mean	Post. sd
theta1 (edges)	-3.2574625	0.3278196
theta2 (gwesp.fixed.0.2)	1.1008261	0.2515162

Within-model acceptance rate: 0.26

Model 3: $y \sim \text{edges} + \text{gwesp}(0.2, \text{fixed} = \text{TRUE}) + \text{gwdegree}(0.8, \text{fixed} = \text{TRUE})$

Posterior parameter estimate:

Parameter	Post. mean	Post. sd
theta1 (edges)	-3.4916584	0.5146103
theta2 (gwesp.fixed.0.2)	1.1824831	0.2737858
theta3 (gwdegree)	0.4783638	0.5852124

Within-model acceptance rate: 0.14

$BF_{13} = 13.4508670520231$

Between-model acceptance rate: 0.04

In the results above we have the posterior parameter estimates for two of the competing models (Model 2 has not been visited through the MCMC runs) with respective within-model acceptance rates and an estimate of the Bayes Factor (about 13) for the comparison between Model 1 and Model 3 which makes clear that there is evidence that Model 1 is the best model of the set. This implies that the observed network is not enhanced by the effect captured by the geometrically weighted degree network statistic.

After running the command `bergmS.output`, it is possible to perform a Bayesian goodness-of-fit tests. In this case, since the observed network is undirected, the set of high-level statistics include the degree distribution in place of the in-degree and out-degree distributions.
Figure 6: MCMC diagnostics: posterior model probabilities.

Figure 7: MCMC diagnostics: posterior parameter probabilities.
In this example, the observed data appears to be a reasonable fit to the posterior distribution of the model selected (Model 1), based on the goodness of fit geodesic and the shared partners statistics displayed in Figure 8.

Figure 8: Bayesian goodness-of-fit diagnostics.

7 Discussion

The software package Bergm aims to help researchers and practitioners in two ways. Firstly, it is currently the only package for R that provides a simple and complete range of tools for conducting Bayesian analysis for exponential random graph models. Secondly, Bergm makes available a platform that can be easily customised, extended, and adapted to address different requirements.

The software package is under continual development and it is far from finished. The main limitation of the software is its computational cost which makes it unsuitable for managing network graphs larger than hundreds of nodes, however it is perfectly suited for networks involving up to a hundred nodes. An important improvement in terms of computational time and efficiency will be done by turning some of the R functions into C functions integrated with the ergm package. We expect that will yield further reductions in computational run time.
Future versions of the **Bergm** package will address several issues including Bayesian analysis of Curved Exponential Random Graph Models (Hunter and Handcock, 2006) and exponential random graph models with missing data (Koskinen et al., 2010).

References

Butts CT (2008). “network: A Package for Managing Relational Data in R.” *Journal of Statistical Software*, **24**(2), 1–36. URL http://www.jstatsoft.org/v24/i02.

Caimo A, Friel N (2011). “Bayesian Inference for Exponential Random Graph Models.” *Social Networks*, **33**(1), 41 – 55.

Caimo A, Friel N (2013). “Bayesian Model Selection for Exponential Random Graph Models.” *Social Networks*. To appear.

Genz A, Bretz F, Miwa T, Mi X, Leisch F, Scheipl F, Hothorn T (2012). **mvtnorm**: Multivariate Normal and t Distributions. URL http://CRAN.R-project.org/package=mvtnorm.

Gilks WR, Roberts GO, George EI (1994). “Adaptive Direction Sampling.” *Statistician*, **43**(1), 179–189.

Green PJ (1995). “Reversible Jump Markov Chain Monte Carlo Computation and Bayesian Model Determination.” *Biometrika*, **82**, 711–732.

Handcock MS, Hunter DR, Butts CT, Goodreau SM, Morris M (2007). “**statnet**: Software Tools for the Representation, Visualization, Analysis and Simulation of Network Data.” *Journal of Statistical Software*, **24**(1), 1–11. URL http://www.jstatsoft.org/v24/i01.

Hunter DR, Goodreau SM, Handcock MS (2008a). “Goodness of Fit of Social Network Models.” *Journal of the American Statistical Association*, **103**(481), 248–258.

Hunter DR, Handcock MS (2006). “Inference in Curved Exponential Family Models for Networks.” *Journal of Computational and Graphical Statistics*, **15**, 565–583.

Hunter DR, Handcock MS, Butts CT, Goodreau SM, Morris M (2008b). “**ergm**: A Package to Fit, Simulate and Diagnose Exponential-Family Models for Networks.” *Journal of Statistical Software*, **24**(3), 1–29. URL http://www.jstatsoft.org/v24/i03.
Kapferer B (1972). *Strategy and Transaction in an African Factory: African Workers and Indian Management in a Zambian Town*. 10. Manchester University Press.

Koskinen JH (2004). “Bayesian Analysis of Exponential Random Graphs - Estimation of Parameters and Model Selection.” *Research Report 2004:2, Department of Statistics, Stockholm University*.

Koskinen JH, Robins GL, Pattison PE (2010). “Analysing Exponential Random Graph (p-star) Models with Missing Data using Bayesian Data Augmentation.” *Statistical Methodology, 7*(3), 366–384.

Morris M, Handcock MS, Hunter DR (2008). “Specification of Exponential-Family Random Graph Models: Terms and Computational Aspects.” *Journal of Statistical Software, 24*(4). URL http://www.jstatsoft.org/v24/i04.

Plummer M, Best N, Cowles K, Vines K (2006). “*coda*: Convergence Diagnosis and Output Analysis for MCMC.” *R News, 6*(1), 7–11. URL http://CRAN.R-project.org/doc/Rnews/.

R Development Core Team (2011). *R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Roberts GO, Gilks WR (1994). “Convergence of Adaptive Direction Sampling.” *Journal of Multivariate Analysis, 49*(2), 287–298.

Robins G, Pattison P, Kalish Y, Lusher D (2007). “An Introduction to Exponential Random Graph Models for Social Networks.” *Social Networks, 29*(2), 169–348.

Snijders TAB, Pattison PE, Robins GL, S HM (2006). “New Specifications for Exponential Random Graph Models.” *Sociological Methodology, 36*, 99–153.

Wasserman S, Pattison P (1996). “Logit Models and Logistic Regression for Social Networks: I. An Introduction to Markov graphs and \(p^* \).” *Psicometrika, 61*, 401–425.

Zachary W (1977). “An Information Flow Model for Conflict and Fission in Small Groups.” *Journal of Anthropological Research, 33*, 452–473.
A. R code for loading and plotting the network data

Here we give the code to load the datasets presented in this paper and to plot the network graphs displayed in Figure 1. The main functions to load and plot network data are `network` and `plot.network` respectively. They are both included in the `network` package which is one of the dependencies of `Bergm` and it is automatically loaded by typing the `library("Bergm")` command (see Section 2). We include the `set.seed` statement in order to produce exactly the same graphs of Figure 1. Both the datasets used in this paper can be downloaded from the author’s online network repository at .

The Kapferer Taylor Shop network and nodal attribute data can be loaded into R by typing:

```r
R> y <- read.table("kapferer_y.dat")
R> y <- network(as.matrix(y),matrix.type="adjacency",directed=TRUE)
R> x <- read.table("kapferer_x.dat")
R> y %v% 'job' <- x
```

The last command is used to attach the nodal covariate “job” represented by the object `x` to the network object `y`.

To plot the network graph as in Figure 1 (top) we used the following code:

```r
R> CC <- colors()[c(24,135,53,142,258,28,551,119)]
R> set.seed(20)
R> par oma=rep(0,4),mar=rep(0,4))
R> plot(y,
+   vertex.col=CC[x[,1]],
+   edge.col=colors()[c(229)],
+   vertex.cex=1.5,
+   usearrows=TRUE)
R> legend(8,8,
+   legend=seq(1,8),
+   col=CC,
+   yjust=0,
+   pch=19)
```

The `legend` function creates a legend showing the colors associated to the levels of the “job” nodal attribute. For more information about this function type `?legend`.

Similarly to above, the following code was used to load the Zachary Karate Club network and to plot it as in Figure 1 (bottom):
R> y <- read.table("zachary_y.dat")
R> y <- network(as.matrix(y),matrix.type="adjacency",directed=FALSE)
R> par(oma=rep(0,4),mar=rep(0,4))
R> plot(y,
 + vertex.col=colors()[123],
 + edge.col=colors()[c(229)],
 + vertex.cex=1.5)

More details about the commands used in this section can be found in the help files by typing \texttt{?network} and \texttt{?plot.network}. More information about the \texttt{network} package can be found in Butts (2008).