RESEARCH ARTICLE

Effect of Vitamin D Receptor Activators on Glomerular Filtration Rate: A Meta-Analysis and Systematic Review

Qian Zhang1☯, Ming Li2☯, Tiansong Zhang3☯, Jing Chen4*

1 Division of Nephrology, Huashan Hospital and Huashan Hospital North, Shanghai Medical College, Fudan University, Shanghai, China, 2 Department of Respiratory Medicine, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, China, 3 Department of TCM, Jing'an District centre hospital of Shanghai, Shanghai, China, 4 Division of Nephrology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China

☯ These authors contributed equally to this work.
* chenjing1998@fudan.edu.cn

Abstract

Background
Vitamin D receptor activators (VDRAs) can protect against mineral bone disease, but they are reported to elevate serum creatinine (SCr) and may also reduce glomerular filtration rate (GFR).

Methods
We conducted a systematic review and meta-analysis of randomized clinical trials (RCTs) to evaluate the effect of VDRAs on kidney function and adverse events. MEDLINE, EMBASE, the Cochrane Controlled Trials Register were searched for RCTs that evaluate vitamin D receptor activators (alfacalcidol, calcitriol, doxercalciferol, falecalcitriol, maxacalcitol and paricalcitol) up to March 2015.

Results
We included 31 studies, all of which were performed between 1976 and 2015, which enrolled 2621 patients. Patients receiving VDRAs had lower eGFR (weighted mean difference WMD -1.29 mL/min/1.73 m², 95% CI -2.42 to -0.17) and elevated serum creatinine (WMD 7.03 μmol/L, 95% CI 0.61 to 13.46) in sensitivity analysis excluding studies with dropout rate more than 30%. Subgroup analysis of the 5 studies that not use SCr-based measures did not indicated lower GFR in the VDRAs group (WMD -0.97 mL/min/1.73 m², 95% CI -4.85 to 2.92). Compared with control groups, there was no difference in all-cause mortality (relative risk RR 1.41, 95% CI 0.58 to 3.80), cardiovascular disease (RR 0.84, 95% CI 0.42 to 1.71), and severe adverse events (RR 1.15, 95% CI 0.75 to 1.77) for the VDRAs groups. Episodes of hypercalcemia (RR 3.29, 95% CI 2.02 to 5.38) were more common in the VDRAs group than in the control group.
Conclusions
Administration of VDRAs increased serum creatinine levels. Subgroup analysis of studies that did not use SCr-based measures did not indicate a lower GFR in the VDRA group. Future studies with non-SCr-based measures are needed to assess whether the mild elevations of serum creatinine are of clinical significance.

Introduction
Vitamin D is synthesized in the skin or ingested in the diet. It is subsequently converted to the active metabolite 1,25(OH)2 vitamin D [1]. The consequences of vitamin D deficiency are secondary hyperparathyroidism and bone loss, leading to osteoporosis and fractures, mineralization defects, causing falls and fractures [2]. Therefore, vitamin D receptor activators (VDRA), such as calcitriol, paricalcitol, or doxercalciferol, have been developed to treat osteoporosis, chronic kidney disease-mineral and bone disorder (CKD-MBD), and can also reduce podocyte injury, modulate immune responses, and improve insulin sensitivity [3–6].

The Vitamin D Receptor Activator for Albuminuria Lowering (VITAL) Study demonstrated that addition of paricalcitol to an inhibitor of the rennin-angiotensin-aldosterone system (RAAS) safely lowered residual albuminuria in patients with diabetic nephropathy [7]. However, patients given high-dose paricalcitol (2 μg daily) experienced significant declines in estimated glomerular filtration rate (eGFR). Although the eGFR values of these patients returned toward baseline after drug withdrawal, this raises a concern that VDRAs may lead to nephrotoxicity in CKD patients.

In 1978, Christiansen et al. reported that deterioration of renal function limited the use of calcitriol in non-dialysis patients with chronic renal failure [8]. More recently, Agarwal et al. indicated that short-term paricalcitol increased the level of serum creatinine (SCr), but it did not influence eGFR [9]. The Paricalcitol Capsule Benefits in Renal Failure–Induced Cardiac Morbidity (PRIMO) trial measured the effects of paricalcitol on left ventricular mass in patients with eGFRs of 15 to 60 mL/min/1.73 m² (calculated by creatinine-based equations). This study also reported a small but significant reduction of eGFR in the paricalcitol group [10].

Concerns about the possible acceleration of kidney function decline have long limited the use of VDRAs. Previous meta-analysis and systematic reviews confirmed that active vitamin D analogs suppress parathyroid hormone (PTH) and reduce proteinuria in CKD patients without increasing the risk of adverse events [11,12]. However, these studies did not include non-CKD patients or evaluate the changes in GFR and adverse events as primary endpoints. The effects of VDRAs on kidney function remain uncertain. Thus, we performed a systematic review and meta-analysis from randomized clinical trials (RCTs) that investigated the effect of VDRAs on GFR and other hard endpoints in both CKD and non-CKD patients. The aim of the study is to find out whether VDRAs reduce eGFR, increase SCr or have adverse reactions, and to comprehensive understand the role of VDRAs in patients.

Methods
Data sources and searches
We performed a systematic review of the available literature in accordance with the PRISMA guidelines [13]. This entailed searches of MEDLINE, EMBASE, and the Cochrance Controlled Trials Register up to March 2015 for relevant keywords, including all spellings of vitamin D
receptor activators (alfacalcidol, calcitriol, doxercalciferol, falecalcitriol, maxacalcitol and paricalcitol), and serum creatinine (SCr) or cystatin C or creatinine clearance (CCr) or glomerular filtration rate (GFR) or estimated glomerular filtration rate (eGFR). We excluded studies in which patients were given native vitamin D (ergocalciferol or cholecalciferol). When an abstract did not contain such data, but the presence of such data was expected in the full-text paper, the full-text paper was screened as well. We also searched for these terms in the abstracts of conference proceedings of the American Society of Nephrology and the European Renal Association-European Dialysis and Transplant Association. The references of all included trials and review articles were screened for additional studies. If necessary, the authors of the clinical trials were asked to provide additional data.

Study selection
Study reports were included if they: (i) were RCTs; (ii) enrolled adult subjects (CKD, osteoporosis, patients undergoing organ transplantation or any other reason receiving VDRA treatment) who received a VDRA or control treatment (placebo or no treatment); (iii) provided data on SCr, cystatin C, CCr, GFR, or eGFR; and (iv) were clinical trials regardless of publication status (published, conference proceedings, or unpublished), trial year, and language of publication. Two individuals (Q.Z. and M.L.) independently inspected each reference and applied the inclusion criteria. If data on the same patient population were in more than one study, the most recent study was included. For possibly relevant articles or in cases of disagreement, each author inspected the full article independently. The primary outcome was kidney function (eGFR and SCr) and the secondary outcomes were complications (death, cardiovascular disease [CVD], end stage renal disease [ESRD], adverse events, severe adverse events, and hypercalcemia). However, there was no registration number for this systematic review.

Data extraction and risk of bias
We developed a standard data form to record the following for each study: all authors, publication date, type of study, sample size, number of patients (in total and by treatment assignment), number of patients excluded, number of patients observed, number of patients lost to follow-up, population characteristics (age, sex, and menopausal status), stage of CKD, presence of diabetes, use of angiotensin converting enzyme inhibitor/angiotensin receptor blocker (ACEI/ARB), and laboratory results at randomisation. For each RCT, we also recorded the independent randomisation centre, type of blinding, random allocation, adequate concealment of allocation, intention to treat, withdrawal or dropout rate, and trial intervention. Two individuals (Q.Z. and M.L.) independently extracted data from all primary studies that fulfilled the inclusion criteria. Disagreements were resolved by consensus.

The same reviewers independently assessed the risk of bias in the included studies without blinding to authorship or journal name, to assess the risk of bias in sequence generation, allocation concealment, blinding, attrition, selection, and other areas. Studies were rated as having a high risk for bias when at least one of these was rated as “high risk”.

Data synthesis and analysis
For continuous variables, we pooled data by calculation of weighted mean differences (WMDs) of the groups so that more weight was given to superior studies. Means and SDs for changes from baseline in each group were obtained for all continuous variables. When these were not available, they were calculated from data provided by the investigators, from figures, or by recalculation from other effect estimates and dispersion measures [14]. We also computed correlation coefficients from one study [15], and calculated standard deviations for changes from
baseline using methods described in *Cochrane Handbook for Systematic Reviews of Interventions* (ver. 5.1.0) [14]. Dichotomous data were compared using relative risk (RR) and risk difference (RD) and 95% confidence intervals (CIs) were calculated for each estimate and presented in forest plots.

We combined our studies using the DerSimonian and Laird random effects model, because this method partially accounts for variability within and between studies [16]. We calculated the I^2 statistic to assess heterogeneity among studies, and classified values less than 50% as minimal, 50–75% as moderate, and >75% as substantial [14,17].

To assess clinical heterogeneity based on characteristics of study population and interventions, we performed subgroup analyses of: (i) patients given different VDRAs; (ii) patients with different baseline eGFRs (<60 mL/min/1.73 m2 vs. ≥60 mL/min/1.73 m2); We performed a sensitivity analysis on kidney function outcomes by excluding studies with a high risk of bias for one or more key domains using the Cochrane Collaboration tool for assessment of the risk of bias [18]. Further analyses were performed by excluding studies that had a dropout rate more than 30%. Meta-regression was undertaken to examine the effect of gender and hypercalcemia rate on the associations between VDRAs therapy and eGFR changes.

The potential presence of publication bias was examined by inspection of funnel plots and by the Egger linear regression test [19]. Stata (ver. 11.0) software that incorporated the updated metan meta-analysis package was used for all statistical analyses [20]. All statistical tests were two sided and a p-value less than 0.05 was considered significant.

Results

Study selection

We performed a systematic review of the available literature in accordance with the PRISMA guidelines (see S1 Table). Fig 1 shows the procedure used for selection of clinical studies that examined the effect of VDRAs on GFR. We identified 1935 articles in the initial search, and excluded 1781 of these by screening the titles and abstracts. Among the remaining 154 articles, 123 were excluded for reasons indicated in Fig 1. The 31 included studies were performed between 1976 and 2014 [7,10,15,21–48], and enrolled a total of 2621 patients. None of the reviewed conference abstracts met the inclusion criteria, so these were excluded from analysis. Multiple publications were excluded from the count of included studies because these were secondary publications of previous reports; however, any relevant and unique results from these secondary publications were extracted and included.

Study characteristics

We included studies which enrolled patients with CKD, transplant recipients, postmenopausal osteoporosis patients and elderly women. Table 1 summarizes the characteristics of the included studies and participants. These studies compared patients treated with a VDRA (alfacalcidol, calcitriol, doxercalciferol, or paricalcitol) with patients given a placebo or no treatment. None of RCTs of maxacalcitol or falecalcitriol met the inclusion criteria. Seventeen studies enrolled patients with CKD [7,10,15,21–22,24,26,28–29,33,37–40,45,47–48]; eight studies enrolled [23,25,30–32,34–35,44] transplant recipients, seven [23,25,30–32,35,44] of which were renal transplant recipients; five studies [27,36,41–42,46] enrolled postmenopausal osteoporosis patients; and one study [43] enrolled elderly women. Twenty-three [7,10,15,21–22,24,27–29,31,33–36,38,40–48] of the 31 included studies compared VDRAs with placebo, and eight studies [23,25–26,30,32,37,39,44] compared calcitriol with no treatment. The studies varied in sample size (13 to 415 patients), mean patient age (31.5 to 70.7 years), and treatment duration (1 month to 3 years).
Risk of bias

Nine studies [7,15,22–25,30,37,42,48] described the methods used for random sequence generation and eight studies [7,15,21,24–30,37,42] described the methods used for allocation concealment. Fourteen studies [7,10,15,21–22,24–26,28,35,37–39,43] described all expected outcomes, but eighteen studies [15,23,26,28–29,31,33,35–37,39–42,44,46–48] did not describe whether the analyses were by intention-to-treat. Overall, the risk of bias was high for 11 studies [23,25–26,30,32,37,39,43–44,46,48]. Eight of these studies [23,25–26,30,32,37,39,44] did not blind the participants or study personnel and four studies [32,43,46,48] described incomplete outcome data (see S2 and S3 Tables).

eGFR outcome

Twenty-six studies [7,10,15,21–29,32–33,35–37,39–43,45–47,48] (comprising 2391 patients) reported eGFR values. Analysis of these studies indicated a slight lower eGFR in the VDRA group than in the control group (WMD -1.29 mL/min/1.73 m², 95% CI -2.42 to -0.17, Fig 2). The heterogeneity across these studies was moderate (I^2 = 54.0%, $p<0.001$). Exclusion of studies with high risk of bias did not change the nature of the association between VDRA use and eGFR. There was no evident publication bias ($p = 0.24$).

Analysis of differences in eGFR according to the individual VDRAs indicated no significant decreases in eGFR in patients randomly assigned to receive alfacalcidol [26–29] (WMD -0.88 mL/min/1.73 m², 95% CI -4.66 to 2.91), calcitriol [32–33,35–37,39–43,45–47] (WMD -0.85 mL/min/1.73 m², 95% CI -2.51 to 0.81), doxercalciferol [48] (WMD -2.20 mL/min/1.73 m², 95% CI -6.82 to 2.42), or paricalcitol [7,10,15,21–25] (WMD -1.86 mL/min/1.73 m², 95% CI -3.94 to 0.22) rather than control treatment (Fig 2).

Subgroup analysis based on baseline eGFR level indicated a significant difference of eGFR for VDRA patients relative to control patients in the 19 studies [7,10,15,21–26,28–29,32–33,35–40,43,45,47,48] that enrolled patients with baseline eGFRs lower than 60 mL/min/1.73 m² (WMD -1.58 mL/min/1.73 m², 95% CI -2.52 to -0.64, Fig 3). Meta-regression showed
Study	GFR estimation method	Baseline Disease	eGFR VDRA group (ml/min.1.73 m²)	eGFR Control group (ml/min.1.73 m²)	SCR VDRA group (μmol/L)	SCR Control (μmol/L)	Mean Age (years)	Sex (Male %)	Diabetes Mellitus (%)	ACEI/ARB Use (%)	Vitamin D group	Control group (n)	Follow-up	Risk of bias score								
		Baseline	After treatment																			
Alborzi 2002[10]	IDH/IDHamide	OKD	1μg/d:47.5 59.4±34 μg/d	44.0±12.0	5.3±3.1 1.4±0.9	NA	NA	NA	NA	69±5.2	83	70.8	100	Paricalcitol 1ug/d (9) 6ug/d (12)	Placebo (9)	1mo	Low 5					
Akia 1998[46]	OCI	Postmenopausal osteoporsis	69.4±6.9	50±12.0	89±6.1	3±12.4	NA	NA	NA	NA	64±1.7	62	NA	57.1	Calcitriol 0.8 μg/d (12)	Placebo (10)	24mo	High 4				
Amer 2013[23]	MEDR equation, IDH/IDHamide or CCI	Renal transplantation	45.0±15.4	51.2±15.4	52.7±14.1	NA	NA	NA	NA	48±1.0	66	18.0	NA	Paricalcitol 2ug/d (91)	Placebo (9)	4yr	High 3					
Baker 1998[47]	CCI	OKD	34±1.4	34±1.6	44±1.3	40±1.4	NA	NA	NA	NA	52±3.1-94	54	0.0	NA	Calcitriol 0.25-0.5 μg/d (9)	Placebo (9)	3wk	Unclear 4				
Coburn 2010[48]	CCI	CKD3-4	34±2.7	30.0±3.0	36.4±3.2	33.9±3.3	NA	NA	NA	NA	82	NA	NA	Dosecalcitrol 1.0 ug/d (27)	Placebo (38)	24wk	High 5					
Coyne 2008[15]	MEDR equation	CKD3-4	23.9±9.0	21.4±9.9	23.4±8.5	21.9±9.3	2.9±0.92	3.3±0.18	2.9±0.94	3.3±0.129	61±1.3	68	58.5	69.0	Paricalcitol 1.3 1 ug/d (109)	Placebo (15)	24wk	Unclear 5				
Custod- Marzano 2003[49]	NA	Renal transplantation	63.6±36-113	32.4±27-51	27.6±32-15	NA	NA	NA	NA	44±3.4	53	NA	NA	Calcitriol 0.25 0.5 μg/d (93)	Placebo (14)	1yr	High 2					
De Roer 2013[50]	OCI	CKD3-4	38.5±11.6	63.1-135	40±12.3	6.2±5.9	NA	NA	NA	NA	59±1.1	39	0	82.0	Paricalcitol 1ug/d (11)	Placebo (11)	24wk	Unclear 5				
De Savaux 2003[51]	CR, CG equation	Renal transplantation	NA	65±1.8	NA	64±1.9	84±2.8 (μL/L)	133±39 (μL/L)	830±209 (μL/L)	126±35 (μL/L)	41±1.4	59	6.3	NA	Calcitriol 0.5 0.6 0.8 μg/d (80)	Placebo (46)	6mo	High 3				
De Zernar 2010[52]	MEDR equation, Type 2 diabetes and albuminuria	40.2±15/μg/d 42.1±18 (μg/d)	1.0±1.0	4.6-7.6	1.0±1.0	4.6-7.6	1.0±1.0	4.6-7.6	0.8±1.0	4.0-9.0	60	160	150	140	Paricalcitol 0.5 μg/d (95)	Placebo (93)	24wk	Low 5				
El-Agedy 2003[53]	NA	Renal transplantation	NA	NA	NA	NA	1.3±0.5 (μg/d)	1.4±0.4	1.3±0.3	1.3±0.4	31±10.7	100	0	NA	Aflacitrol 0.5 μg/d (20)	Placebo (20)	1yr	Unclear 4				
El-Agedy 2003[54]	NA	Renal transplantation	NA	NA	NA	NA	1.2±0.3 (μg/d)	1.4±0.3	1.3±0.3	1.3±0.4	31±7.10	100	0	NA	Aflacitrol 0.5 μg/d (15)	Placebo (15)	1yr	Unclear 4				
Gallagher 1992[55]	OCI	Postmenopausal osteoporosis	1.0±0.23 (μL/L)	1.0±0.59 (μL/L)	1.0±0.33 (μL/L)	0.9±0.27 (μL/L)	7.1±10 (μL/L)	7.1±10 (μL/L)	7.0±5.7 (μL/L)	7.0±5.7 (μL/L)	61±9.1	0	0	NA	Calcitriol 0.5 μg/d (35)	Placebo (28)	2yr	Unclear 5				
Gallagher 2007[56]	CCI	Elderly women	50.9±7.9 (OC1=60) 80.5±6.8 (OC60)	50.9±7.9 (OC1=60) 80.5±6.8 (OC60)	48±6.2 (OC1=60) 83.8±1.8 (OC60)	NA	NA	NA	NA	70±2.4	70±2.4	71±10 (μL/L)	71±10 (μL/L)	51±16 (μL/L)	Placebo (12)	3yr	High 3					
Hamdy 1991[57]	OCI	OKD	-0.7±0.0	NA	-0.4±0.0	203±119 (μL/L)	78.8±15.6	383±127 (μL/L)	74±18.7	74±18.7	51±16 (μL/L)	61	NA	NA	Aflacitrol 0.25 μg/d (83)	Placebo (87)	2yr	Unclear 4				
Ivanovski 2012[58]	CCI	CKD 4	23.3±6.3	19.2±6.7	22.4±6.7	21.0±1.6	3.9±3.7	4.3±0.9	3.0±0.9	3.0±0.9	52.0±40.6	77	0	71.0	Aflacitrol 0.5 μg/d (8)	Placebo (7)	6mo	High 3				
Krausz-Bielfeld 2013[59]	MEDR equation	Diabetic kidney	37.3±19.3	36.9±18.3	38.6±17.3	35.1±6.5	2.3±1.4	4.0±0.9	3.0±0.9	3.0±0.9	61±11.9	47	100	57.1	Calcitriol 0.5 μg/d (64)	Placebo (46)	1wk	High 2				
Liu 2013[60]	MEDR equation	IgA Nephropathy	83.1±35.8	82.4±6.1	78±8.2	0.2±4.9	4.9	104±8.2	103±4.5	103±4.5	36±16	58	0	100	Calcitriol 0.5 μg/d (26)	Placebo (24)	4wk	High 3				
Study	GFR estimation method	Baseline Disease	eGFR VDRA group (mL/min/1.73 m²)	eGFR Control group/ VDRA group (mL/min/1.73 m²)	Scr VDRA (µmol/L)	Scr Control (µmol/L)	Mean Age (years)	Sex (Male %)	Diabetes Mellitus (%)	ACEI/ARB Use (%)	VDRA group (n)	Control group (n)	Follow-up	Risk of bias score	Jadad score							
-------	-----------------------	-----------------	-----------------	---------------------------------	-----------------	-----------------	-----------------	----------------	-------------------	-----------------	----------------	-----------------	-----------	-----------------	-------------							
Mecrel 1994[27]	CrCl	Postmenopausal osteoporosis	82±7	76±17	88±28	73±17	0.9±0.2 (mg/dL)	0.9±0.1 (mg/dL)	0.8±0.2 (mg/dL)	0.8±0.2 (mg/dL)	65±8±0 (placebo)	64±6±9 (VDRA)	0	NA	NA	Alfacalcidol 0.25µg twice daily (30)	Placebo (42)	3yr	Unclear	2		
Nordal 1988 [61]	CrCl	CKD	23.5±10.1	29±11	18.3±11.2	23±4±11	39±1.42	40±3±66	49±1.74	49±5.1±89	47±(23–71)	67	6.7	NA	Calcitriol (0.90 µg/d) (15)	Placebo (76)	8mo	Unclear	4			
Of 1988[41]	CrCl	Postmenopausal osteoporosis	1.0±0±0 µmol/L	3.6±4 µmol/L	1.0±6±0 µmol/L	6.6±5±6 µmol/L	7±2±(µmol/l)	NA	7±3±(µmol/l)	NA	67±1.2 (placebo)	67±9±0 (VDRA)	0	NA	NA	Calcitriol 0.43 µg/d (43)	Placebo (45)	2yr	Unclear	4		
Pénaz 2010 [59]	MDRD equation	Renal transplantation	4±0.4	4.3±1.3±3	4±9±6	9±1.7±0	14±4.96	16±6.4	12±8.5	13±8±1±3	5±3±0 (VDRA)	86	NA	NA	Paricalcitol 2.5 µg/d (5)	No treatment (17)	3mo	High	2			
Przylucki 1993[33]	MNT±Pr DTPA	CKD	21.5±3±2	18±7±5	31±3.4	26±3.7±	3±0±6.55 (µmol/L)	6±6.5	2±7.2	4±01±8	5±0.3±2±9 (placebo)	5±9±3.0 (VDRA)	50	0	NA	Calcitriol 0.25 µg/d (13)	Placebo (13)	9yr	Unclear	3		
Riga 1985 [36]	CrCl	Postmenopausal osteoporosis	7±0±2	7±5±2	8±3±6	4±3±5	NA	NA	NA	NA	6.4	0	NA	NA	Calcitriol 0.5–0.75 µg/d (30)	Placebo (36)	2yr	Unclear	4			
Riz 1995 [39]	NA	CKD	NA	NA	NA	NA	9±(3.3– 19.6)	7±(4.5–26.1)	10±6.6	3±2.5	4±01±8	5±0.3±2±9 (placebo)	5±9±3.0 (VDRA)	48	0	NA	Calcitriol 0.125 µg/d (33)	Placebo (38)	9yr	Unclear	3	
RY 2004 [39]	CrCl	CKD	4±9±0	2±6±4	3±9±13	2±6±5	NA	NA	NA	NA	5±2.5	69	NA	NA	Alfacalcidol 0.25–0.75 µg/d (18)	Placebo (36)	18mo	Unclear	5			
Sembrink 2000[34]	NA	Cardiac or lung transplantation	NA	NA	NA	NA	0±10±0.02	0±14±0.04	0±11±0.02	0±14±0.06	45±39±7–59 (placebo)	45±8±2–90 (VDRA)	72	NA	NA	Calcitriol 0.5–0.75 µg/d (44)	Placebo (21)	2y	Unclear	4		
Therdhna 2012[30]	SO-based and cystatin C-based equation	CKD	3(2–4)	-4.1±6.9	(4)	3±0(26–4)	-1.0±6.7	Σ	2±1(16– 27)	NA	1±9±1.6	2±4.1	6±2±2 (placebo)	6±4±4 (VDRA)	70	57.0	8±0	Paricalcitol 2 µg/d 9±1(35)	Placebo (112)	4wk	Unclear	5
Tomo 2004 [39]	CrCl	Renal transplantation	7.1±±6±2	8.0±30	6±9±2±6	7±5±0	1±3±9.4	1.3±7±0	4±0±5	1±3±4	5±1±1.9	(placebo)	46±7±12 (VDRA)	78	25.8	NA	Calcitriol 0.5 µg/d 48±45 (45)	Placebo (41)	5yr	Unclear	4	
Tougaard 1976[62]	EDTA	CKD	1.1±	-2.8±2.5	NA	1.3±	-1.3±1	NA	NA	NA	NA	20–70	63	NA	NA	Calcitriol 1 µg/d (12)	Placebo (12)	11wk	Unclear	3		
Wang 2014 [55]	MDRD equation	CKD3±5	19.7±6±0– 30.6	-4±0.6±(to –2.48)	23.9±2.5	±31.3	-3±2.5±(to –1.01)	NA	NA	NA	NA	62±2±7	(placebo)	60±8±0 (VDRA)	53	34.9	8.7	Paricalcitol 2 µg/d (30)	Placebo (30)	52wk	Unclear	5

NA = not available. CKD = chronic kidney disease. eGFR = estimated glomerular filtration rate. ACEI = angiotensin-converting enzyme inhibitors. ARB = angiotensin receptor blocker. VDRA = Vitamin D receptor activation. µg = microgram. EDTA = ethylenediaminetetraacetic acid CrCl = 24-hour urine creatinine clearance CG equation = Cockcroft Gault equation.

\(^a \)Data expressed as percent change.

\(^b \)Data expressed as median (25% to 75%).

\(^c \)Data expressed as change from baseline.

\(^d \)Data expressed as age range.

\(^* \)The Jadad score is a statistical point system based on 5 components to evaluate the quality of studies: randomization, method of randomization being appropriate and described, double-blinding, double-blinding being appropriate and described, and description of withdrawal and dropouts.

doi:10.1371/journal.pone.0147347.t001
that gender and hypercalcemia were not significantly associated with eGFR decline in VDRAs group ($p = 0.833$ and $p = 0.302$, respectively, see S1 Fig, S2 Fig).

Scr outcome

Nineteen studies [10,15,23,26-35,38,40-42,44,47](comprising 927 patients) that recorded Scr values reported a slight increase of Scr in VDRA group relative to the control group (WMD 5.52 μmol/L, 95% CI -0.79 to 11.82, Fig 4). Heterogeneity across these studies was moderate ($I^2 = 67.1\%$, $p < 0.001$). Publication bias was not evident ($p = 0.62$). Sensitivity analysis by

Study ID	WMD (95% CI)	% Weight
Alfalcacidol	-1.70 (-6.09, 2.69)	3.64
Hamdy (1995)	-2.70 (-6.29, 0.89)	4.46
Iversen (2012)	9.00 (-0.96, 18.96)	1.10
Menczel (1994)	-2.00 (-14.55, 10.55)	0.73
Rix (2004)	0.00 (-4.66, 2.91)	9.93
Subtotal (I^2-squared = 36.3%, $p = 0.194$)	0.00 (-4.66, 2.91)	9.93
Calcitrol	-14.00 (-32.04, 4.04)	0.37
Aloia (1988)	1.20 (-6.74, 9.14)	1.61
Baker (1989)	-1.00 (-4.72, 2.72)	4.31
De Sevaux (2002)	8.40 (-3.84, 20.64)	0.77
Gallagher (1990)	0.05 (-2.70, 2.80)	5.49
Gallagher a (2007)	-5.00 (-7.64, -2.36)	5.62
Gallagher b (2007)	-2.00 (-4.49, 0.49)	5.83
Gallagher c (2007)	2.80 (0.04, 5.56)	5.47
Gallagher d (2007)	0.00 (-4.14, 4.14)	3.88
Kraiterrichai (2012)	-3.23 (-10.18, 3.72)	1.99
Liu (2012)	0.40 (-7.26, 8.06)	1.71
Nordal (1988)	2.40 (-5.93, 10.73)	1.49
Ott (1989)	2.20 (-4.99, 9.39)	1.89
Przedlacki (1995)	-6.00 (-9.87, -2.13)	4.15
Riggs (1985)	5.30 (-1.40, 12.00)	2.10
Torres (2004)	-1.70 (-3.95, 0.55)	6.14
Subtotal (I^2-squared = 55.9%, $p = 0.003$)	-0.85 (-2.51, 0.81)	52.81
Doxercalciferol	-2.20 (-6.82, 2.42)	3.44
Coburn (2004)	-2.20 (-6.82, 2.42)	3.44
Subtotal (I^2-squared = .%, $p = .$)	-2.20 (-6.82, 2.42)	3.44
Paricalcitol	11.70 (3.84, 19.56)	1.64
Alborzi (2008)	-1.20 (-4.59, 2.19)	4.68
Amer (2013)	-0.95 (-2.36, 0.46)	7.22
Coney (2006)	-6.10 (-15.50, 3.30)	1.22
De Boer (2013)	-2.47 (-7.88, 2.94)	2.83
Perez (2010)	-4.63 (-7.17, -2.09)	5.76
Thadhanee (2012)	-1.46 (-4.31, 1.39)	5.35
Wang (2014)	-4.35 (-7.39, -1.31)	5.11
de Zeeuw (2010)	-1.86 (-3.94, 0.22)	33.82
Subtotal (I^2-squared = 67.1%, $p = 0.003$)	-1.29 (-2.42, -0.17)	100.00
Overall (I^2-squared = 54.0%, $p = 0.000$)	-1.29 (-2.42, -0.17)	100.00

Fig 2. Forest plot comparison of eGFR changes, according to type of vitamin D receptor activators. Weighted mean difference in eGFR (ml/min) in patients who received VDRAs compared with control therapy. Weights are from random effects analysis.

doi:10.1371/journal.pone.0147347.g002
excluding the study [27] with higher dropout rate demonstrated a higher SCr in the VDRAs group than in the control group (WMD 7.03 μmol/L, 95% CI 0.61 to 13.46, Fig 5).

Subgroup analysis based on the type of VDRAs indicated no significant increase of SCr in patients randomly assigned to alfacalcidol (WMD 0.19 μmol/L, 95% CI -12.29 to 12.67), calcitriol (WMD 4.09 μmol/L, 95% CI -1.61 to 9.80), and paricalcitol (WMD 17.60 μmol/L, 95% CI -12.14 to 47.33) relative to those receiving control treatment (Fig 6).

Subgroup analysis based on baseline eGFR level indicated no significant increases of SCr in patients receiving VDRAs among studies that enrolled patients with baseline eGFR values less than or more than 60 mL/min/1.73 m² (Fig 7).

Table: Study ID, WMD, 95% CI, and Weight

Study ID	WMD (95% CI)	Weight
Alborzi (2008)	11.70 (3.84, 19.56)	1.64
Amer (2013)	-1.20 (-4.59, 2.19)	4.68
Baker (1989)	1.20 (-6.74, 9.14)	1.61
Coburn (2004)	-2.20 (-6.82, 2.42)	3.44
Coyne (2006)	-0.95 (-2.36, 0.46)	7.22
De Boer (2013)	-6.10 (-15.50, 3.30)	1.22
De Sevaux (2002)	-1.00 (-4.72, 2.72)	4.31
Gallagher a (2007)	0.05 (-2.70, 2.80)	5.49
Gallagher c (2007)	-2.00 (-4.49, 0.48)	5.83
Hamdy (1995)	-1.70 (-6.09, 2.69)	3.64
Iversen (2012)	-2.70 (-6.29, 0.89)	4.46
Krairi-Tichai (2012)	0.00 (-4.14, 4.14)	3.88
Nordal (1988)	0.40 (-7.26, 8.06)	1.71
Perez (2010)	-2.47 (-7.88, 2.94)	2.83
Przedlacki (1995)	2.20 (-4.99, 9.39)	1.89
Rix (2004)	-2.00 (-14.55, 10.55)	0.73
Thadhani (2012)	-4.63 (-7.17, -2.09)	5.76
Tougaard (1976)	-1.70 (-3.95, 0.55)	6.14
Wang (2014)	-1.46 (-4.31, 1.39)	5.35
de Zeeuw (2010)	-4.35 (-7.39, -1.31)	5.11
Subtotal (I²-squared = 26.6%, p = 0.133)		
Alloa (1988)	-14.00 (-32.04, 4.04)	0.37
Gallagher (1990)	8.40 (-3.84, 20.64)	0.77
Gallagher b (2007)	-5.00 (-7.64, -2.36)	5.62
Gallagher d (2007)	2.80 (0.04, 5.56)	5.47
Liu (2012)	-3.23 (-10.18, 3.72)	1.99
Menczel (1994)	9.00 (-0.96, 18.96)	1.10
Ott (1989)	2.40 (-5.93, 10.73)	1.49
Riggs (1985)	-6.00 (-9.87, -2.13)	4.15
Torres (2004)	5.30 (-1.40, 12.00)	2.10
Subtotal (I²-squared = 77.1%, p = 0.000)		
Overall (I²-squared = 54.0%, p = 0.000)		

Fig 3. Forest plot comparison of eGFR changes, according to baseline eGFR level. Weighted mean difference in eGFR (ml/min) in patients who received VDRAs compared with control therapy. Weights are from random effects analysis.

doi:10.1371/journal.pone.0147347.g003
Other outcomes

Table 2 shows the pooled results for secondary outcomes. Sixteen studies [7,10,15,22–23,25–26,28,30–33,41–43,48] (1753 patients, 18 events) provided data on all-cause mortality. Altogether, mortality was not significantly different in the VDRA and control groups (RR 1.49, 95% CI 0.58 to 3.80; RD 0.00, 95% CI -0.00 to 0.01).

CVDs were reported in 12 studies [7,10,21–22,24–25,32,42,44,46–48] (1027 patients, 34 events). Again, there was no significant difference in the VDRA and control groups (RR 0.84, 95% CI 0.42 to 1.71; RD -0.00, 95% CI -0.03 to 0.03). However, there was a slight but not significant increase in ESRD among patients receiving paricalcitol rather than control. [7,10,22,48] (RR 3.02, 95% CI 0.91 to 10.09; RD 0.03, 95% CI 0.00 to 0.05).

Adverse events occurred in 647 of 1858 patients from 18 studies [7,10,15,21–22,25,32–39,41–44]. Adverse events were slightly more common in the VDRA group than the control group (RR 1.24, 95% CI 1.04 to 1.47; RD 0.07, 95% CI 0.02 to 0.19). However, the pooled RR of severe adverse events after VDRA therapy was comparable that of controls in five studies [7,10,15,22,25] (RR 1.15, 95% CI 0.75 to 1.77; RD 0.02, 95% CI -0.07 to 0.12). Hypercalcemia was reported in 24 studies [7,10,15,21–22,25,27–29,31–39,41–43,45,47–48] (2240 patients, 199 events). Overall, VDRA therapy was associated with a higher risk of hypercalcemia than control therapy (RR 3.29, 95% CI 2.02 to 5.38; RD 0.09, 95% CI 0.04 to 0.13).

Study ID	WMD (95% CI)	Weight
Baker (1989)	24.00 (-61.56, 109.56)	0.52
Coyne (2006)	7.90 (-12.32, 28.12)	5.22
Cueto-Manzano (2000)	8.84 (-1.25, 18.93)	8.75
De Sevaux (2002)	0.00 (-13.23, 13.23)	7.54
El-Agroudy (2003)	-8.84 (-23.74, 6.06)	6.92
El-Agroudy (2005)	17.68 (3.96, 31.40)	7.35
Gallagher (1990)	-2.00 (-8.12, 4.12)	10.19
Hamdy (1995)	4.70 (-43.03, 52.43)	1.51
Iversen (2012)	15.00 (53.48, 83.48)	0.79
Menczel (1994)	-8.84 (-15.79, -1.89)	9.92
Nodal (1988)	-20.80 (-138.72, 97.12)	0.28
Ott (1989)	-2.90 (-9.96, 4.16)	9.88
Perez (2010)	-1.91 (-19.68, 15.86)	5.95
Przedlacki (1995)	-21.30 (-191.03, 148.43)	0.14
Ritz (1995)	30.10 (-191.13, 251.33)	0.08
Rix (2004)	0.00 (-34.63, 34.63)	2.56
Sambrook (2000)	20.00 (8.10, 31.90)	8.05
Thadhani (2012)	46.86 (28.11, 65.61)	5.65
Torres (2004)	7.07 (-3.15, 17.30)	8.70
Overall (I-squared = 67.1%, p = 0.000)	5.52 (-0.79, 11.82)	100.00

Fig 4. Forest plot comparison of serum creatinine changes for each type of vitamin D receptor activators. Weighted mean difference in serum creatinine (umol/L) in patients who received VDRAs compared with control therapy. Weights are from random effects analysis.

doi:10.1371/journal.pone.0147347.g004
Discussion

This study reviewed existing RCTs to evaluate the effects of VDRAs on kidney function. Ultimately, 31 trials that enrolled a total of 2621 patients met our inclusion criteria. The results indicated a slightly lower eGFR and increase of SCr in the VDRAs group, especially in the sensitivity analysis by excluding studies that had a dropout rate more than 30%. However, subgroup analysis of the 5 studies that not use SCr-based measures did not indicated lower GFR in the VDRAs group.

Precise measurement of GFR is obtained by calculating the urinary or plasma clearance of an exogenous filtration marker, such as inulin, iothalamate, ethylenediaminetetraacetic acid (EDTA), or diethylene triamine pentaacetic acid (DTPA) [49,50]. Among the 31 included studies, one study used the isotope method with 99mTc DTPA [33] and one study used EDTA to measure GFR before and after clinical intervention [45]. Two studies [24,25] calculated GFR by subcutaneous infusion of nonradioactive iothalamate and one study estimated GFR based on measurement of cystatin C [10]. In most of the included studies, the 24-h urinary creatinine and SCr were evaluated for determination of creatinine clearance and eGFR using the Modification of Diet in Renal Disease (MDRD) or Cockcroft-Gault equations.

The main pitfall of using 24-h urinary creatinine clearance for estimation of GFR is the difficulty and potential inaccuracy of urine collection. In particular, this method overestimates...
GFR by ~10% in individuals with normal renal function, but the overestimation increases to 30% for a patient with low GFR [49]. As an index of GFR, SCr also has limited sensitivity. Some research has examined the effect of VDRAs on serum creatinine generation and clearance. For example, Bertoli et al.[51] showed that treatment with calcitriol for 4 months increased measured SCr and decreased creatinine clearance, but there were no significant changes in measured inulin clearance. Furthermore, SCr fell to the baseline value within 60 days after discontinuation of calcitriol therapy. The authors attributed the increase of SCr to the increased release of creatinine from muscular tissue, probably due to the improvement of uremic myopathy induced by calcitriol. Perez et al.[52] examined the effect of oral calcitriol in treatment of plaque-type psoriasis (baseline creatinine clearance: 103.8 ± 40.1 mL/min/1.73 m²). After 6 months, there was a 22.5% decline in creatinine clearance but no significant changes in clearance of inulin or para-aminohippurate (PAH), suggesting that calcitriol altered creatinine metabolism or secretion but did not affect renal function. Recently, Agarwal et al.[9] tested the effect of paricalcitol on SCr in 16 patients with chronic kidney disease (measured GFR: 47.8 ± 17.1 mL/min/1.73 m²). The key findings were that short-term paricalcitol
treatment led to significant increases in SCr and 24-h urinary creatinine output, but no changes in clearance of creatinine, urea, or iothalamate. Such findings are consistent with the interpretation that VDRA alters creatinine metabolism but does not harm kidney function. In our study, subgroup analysis of the 5 studies that not use SCr-based measures did not indicated lower GFR in the VDRAs group (WMD -0.97 mL/min/1.73 m², 95% CI -4.85 to 2.92). Hence, it is important to select the most appropriate method to measure renal function in patients taking VDRAs, such as iothalamate or cystatin C.

Vitamin D and its analogs suppress renin expression [53,54], so an increased SCr concentration may have indicated a true decline in GFR, which was seen with use of ACEIs. Thus, we cannot exclude the possibility that VDRAs may have induced or accelerated the progression of renal dysfunction.

Our findings indicated that the VDRA and control groups had no significant differences in the hard endpoints (e.g. all-cause mortality and CVD) and severe adverse events. Episodes of hypercalcemia were more common in the VDRA group than in the control group. In general, treatment with active vitamin D analogs was well tolerated and only a few patients had to stop treatment.

Study ID	WMD (95% CI)	Weight
eGFR < 60 ml/min		
Baker (1989)	24.00 (−61.56, 109.56)	0.52
Coyne (2006)	7.90 (−12.32, 28.12)	5.22
De Sevaux (2002)	0.00 (−13.23, 13.23)	7.54
El-Agroudy (2003)	-8.84 (−23.74, 6.06)	6.92
El-Agroudy (2005)	17.68 (−3.96, 31.40)	7.35
Hamdy (1995)	4.70 (−43.03, 52.43)	1.51
Iversen (2012)	15.00 (−53.48, 83.48)	0.79
Nordal (1988)	-20.80 (−138.72, 97.12)	0.28
Perez (2010)	-1.91 (−19.68, 15.86)	5.95
Przedziacki (1995)	-21.30 (−191.03, 148.40)	14
Ritz (1995)	30.10 (−191.13, 251.33)	0.08
Rix (2004)	0.00 (−34.63, 34.63)	2.56
Thadhani (2012)	46.86 (28.11, 65.61)	5.65
Subtotal (I−squared = 55.0%, p = 0.009)	8.81 (−2.64, 20.26)	44.51
eGFR >= 60 ml/min		
Cueto–Manzano (2000)	8.84 (−1.25, 18.93)	8.75
Gallagher (1990)	-2.00 (−8.12, 4.12)	10.19
Menczel (1994)	-8.84 (−15.79, −1.89)	9.92
Ott (1989)	-2.90 (−9.96, 4.16)	9.88
Sambrook (2000)	20.00 (8.10, 31.90)	8.05
Torres (2004)	7.07 (−3.15, 17.30)	8.70
Subtotal (I−squared = 78.2%, p = 0.000)	2.68 (−4.57, 9.93)	55.49
Overall (I−squared = 67.1%, p = 0.000)	5.52 (−0.79, 11.82)	100.00

Fig 7. Forest plot comparison of serum creatinine changes, according to baseline eGFR level. Weighted mean difference in serum creatinine (umol/L) in patients who received VDRAs compared with control therapy. Weights are from random effects analysis.

doi:10.1371/journal.pone.0147347.g007
Our study has several strengths, including the use of a comprehensive search strategy (S2 Appendix) and the large study sample. We included all studies that examined the effect of VDRAs on GFR and SCr. This study is the first meta-analysis to assess the effect of VDRAs on kidney function and safety endpoints. Our study has several limitations. Firstly, most of the included studies were not designed to directly examine SCr or GFR as primary endpoints. Secondly, the dosages of VDRA of the included studies were also different. However, we excluded the study with the highest dosage of calcitriol [45] and the result did not change. Finally, the generalizability of all meta-analyses is limited by protocol heterogeneity and differences among study populations. We attempted to account for heterogeneity by conducting subgroup analysis according to baseline GFR level. This analysis indicated that a VDRA-induced decrease in eGFR was more likely in patients with baseline eGFRs below 60 mL/min/1.73 m². In other words, patients with poor kidney function are more likely to be adversely affected by VDRAs. The treatment durations of the included studies ranged from 1 month to 3 years, a time during which true changes in renal function could occur. Hence, our results should be interpreted with some caution.

In conclusion, the main finding of this systematic review and meta-analysis of RCTs is that VDRAs can lead to elevation of serum creatinine. Future long-duration RCTs with large sample sizes are needed to assess the effects and safety of VDRAs on renal function as the primary endpoint, using non SCr-based measurements.

Supporting Information

S1 Appendix. Means and standard deviations or frequencies of the included studies. (ZIP)

S2 Appendix. Search strategy. (DOC)

S1 Fig. Metaregression of eGFR reduction against female proportion (size of circle is proportional to size of trial). (TIF)

S2 Fig. Metaregression of eGFR reduction against hypercalcemia rate (size of circle is proportional to size of trial). (TIF)
S1 Table. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram of the systematic literature search.
(DOC)

S2 Table. Risk of bias in included studies.
(TIF)

S3 Table. Risk of bias in included studies.
(TIF)

Acknowledgments

This work was supported by 973 program of China (374 2012CB517700), Specialized Research Fund for the Doctoral Program of Higher Education (20120071110068) and the China Natural Science Foundation (81170684) to Jing Chen. This work was also supported by Shanghai Sailing Program of Science and Technology Commission (14YF1400900), the China Natural Science Foundation (81400745), and Scientific Research Project supported by Huashan Hospital (2013QD24) to Qian Zhang. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The authors declare that they have no other relevant financial interests.

Author Contributions

Conceived and designed the experiments: JC. Performed the experiments: QZ ML TZ. Analyzed the data: QZ ML TZ. Contributed reagents/materials/analysis tools: QZ ML TZ. Wrote the paper: JC. Critically revised the manuscript for intellectual content, discussion of findings, and overall conclusions: QZ ML TZ JC.

References

1. Heaney RP. Vitamin D in health and disease. Clin J Am Soc Nephrol. 2008; 3:1535–1541. doi:10.2215/CJN.01160308 PMID: 18525006

2. Lips P, van Schoor NM. The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab. 2011; 25:585–591. doi:10.1016/j.beem.2011.05.002 PMID: 21872800

3. Zhang Z, Zhang Y, Ning G, Deb DK, Kong J, Li YC. Combination therapy with AT1 blocker and vitamin D analog markedly ameliorates diabetic nephropathy: blockade of compensatory renin increase. Proc Natl Acad Sci U S A. 2008; 105: 15896–15901. doi:10.1073/pnas.0803751105 PMID: 1838678

4. He W, Kang YS, Dai C, Liu Y. Blockade of Wnt/beta-catenin signaling by paricalcitol ameliorates proteinuria and kidney injury. J Am Soc Nephrol. 2010; 22: 90–103. doi:10.1681/ASN.2009121236 PMID: 21030600

5. Tan X, Wen X, Liu Y. Paricalcitol inhibits renal inflammation by promoting vitamin D receptor-mediated sequestration of NF-kappaB signaling. J Am Soc Nephrol. 2008; 19: 1741–1752. doi:10.1681/ASN.2007060666 PMID: 18525004

6. de Boer IH. Vitamin D and glucose metabolism in chronic kidney disease. Curr Opin Nephrol Hypertens. 2008; 17: 566–572. doi:10.1097/MNH.0b013e32830fe377 PMID: 18941348

7. de Zeeuw D, Agarwal R, Amdahl M, Audhya P, Coyne D, Garimella T, et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet. 2010; 376: 1543–1551. doi:10.1016/S0140-6736(10)61032-X PMID: 21055801

8. Christiansen C, Rodbro P, Christensen MS, Hartnack B, Transbol I. Deterioration of renal function during treatment of chronic renal failure with 1,25-dihydroxycholecalciferol. Lancet. 1978; 2: 700–703. PMID: 60633

9. Agarwal R, Hynson JE, Hecht TJ, Light RP, Sinha AD. Short-term vitamin D receptor activation increases serum creatinine due to increased production with no effect on the glomerular filtration rate. Kidney Int. 2011; 80: 1073–1079. doi:10.1038/ki.2011.207 PMID: 21716260
10. Thadhani R, Appelbaum E, Pritchett Y, Chang Y, Wenger J, Tamez H, et al. Vitamin D therapy and cardiac structure and function in patients with chronic kidney disease: the PRIMO randomized controlled trial. JAMA. 2012; 307: 674–684. doi: 10.1001/jama.2012.120 PMID: 22337679

11. de Borst MH, Hajhosseiny R, Tamez H, Wenger J, Thadhani R, Goldsmith DJ. Active vitamin D treatment for reduction of residual proteinuria: a systematic review. J Am Soc Nephrol. 2013; 24: 1863–1871. doi: 10.1681/ASN.2013030203 PMID: 23929770

12. Cheng J, Zhang W, Zhang X, Li X, Chen J. Efficacy and safety of paricalcitol therapy for chronic kidney disease: a meta-analysis. Clin J Am Soc Nephrol. 2012; 7: 391–400. doi: 10.2215/CJN.03000311 PMID: 22223607

13. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009; 151: 264–269, W264. PMID: 19622511

14. Higgins JPT, Green S, editors. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [updated March 2011]. http://handbook.cochrane.org/.

15. Coyne D, Acharya M, Qiu P, Abboud H, Batlle D, Rosansky S, et al. Paricalcitol capsule for the treatment of secondary hyperparathyroidism in stages 3 and 4 CKD. Am J Kidney Dis. 2006; 47: 263–276. PMID: 16431255

16. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986; 7: 177–188. PMID: 3802833

17. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003; 327: 557–560. PMID: 12958120

18. Harris RJ, Bradburn MJ, Deeks JJ, Harbord RM, Altman DG, Sterne JAC. metan: fixed- and random-effects meta-analysis. Stata J. 2008; 8: 3–28.

19. de Boer IH, Sachs M, Hoofnagle AN, Utzschneider KM, Kahn SE, Kestenbaum B, et al. Paricalcitol does not improve glucose metabolism in patients with stage 3–4 chronic kidney disease. Kidney Int. 2012; 83: 329–330. doi: 10.1038/ki.2012.311 PMID: 22913981

20. Wang AY, Fang F, Chen J, Wen YY, Qing S, Chan IH, et al. Effect of paricalcitol on left ventricular mass and function in CKD—the OPERA trial. J Am Soc Nephrol. 2013; 25: 175–186. doi: 10.1681/ASN.2013010103 PMID: 24052631

21. Perez V, Sanchez A, Bayes B, Navarro-Munoz M, Lauzurica R, Pastor MC, et al. Effect of paricalcitol on the urinary peptidome of kidney transplant patients. Transplant Proc. 2010; 42: 2924–2927. doi: 10.1016/j.transproceed.2010.07.077 PMID: 20976572

22. Menczel J, Foldes J, Steinberg R, Leichter I, Shalita B, Bdolah-Abram T, et al. Alfalcacidol and calcium in osteoporosis. Clin Orthop Relat Res. 1994: 241–247.

23. Hamdy NA, Kanis JA, Beneton MN, Brown CB, Juttman JR, Jordans JG, et al. Effect of alfalcacidol on natural course of renal bone disease in mild to moderate renal failure. BMJ. 1995; 310: 358–363. PMID: 787827

24. Rix M, Eskildsen P, Olgaard K. Effect of 18 months of treatment with alfalcacidol on bone in patients with moderate chronic renal failure. Nephrol Dial Transplant. 2004; 19: 870–876. PMID: 15031343

25. El-Agroudy AE, El-Husseini AA, El-Sayed M, Mohsen T, Ghoneim MA. Preventing bone loss in renal transplant recipients with vitamin D. J Am Soc Nephrol. 2003; 14: 2975–2979. PMID: 14569109
32. De Sevaux RG, Hoitsma AJ, Corstens FH, Wetzels JF. Treatment with vitamin D and calcium reduces bone loss after renal transplantation: a randomized study. J Am Soc Nephrol. 2002; 13: 1608–1614. PMID: 12039990

33. Przedlacki J, Manelius J, Huttunen K. Bone mineral density evaluated by dual-energy X-ray absorptiometry after one-year treatment with calcitriol started in the predialysis phase of chronic renal failure. Nephron. 1995; 69: 433–437. PMID: 777109

34. Sambrook P, Henderson NK, Keogh A, MacDonald P, Gianville A, Spratt P, et al. Effect of calcitriol on bone loss after cardiac or lung transplantation. J Bone Miner Res. 2000; 15: 1818–1824. PMID: 10977001

35. Torres A, Garcia S, Gomez A, Gonzalez A, Barrios Y, Concepcion MT, et al. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int. 2004; 65: 705–712. PMID: 14717945

36. Riggs BL, Nelson KL. Effect of long term treatment with calcitriol on calcium absorption and mineral metabolism in postmenopausal osteoporosis. J Clin Endocrinol Metab. 1985; 61: 457–461. PMID: 3926808

37. Liu LJ, Lv JC, Shi SF, Chen YQ, Zhang H, Wang HY. Oral calcitriol for reduction of proteinuria in patients with IgA nephropathy: a randomized controlled trial. Am J Kidney Dis. 2011; 59: 67–74. doi: 10.1053/j.ajkd.2011.09.014 PMID: 22019331

38. Ritz E, Kuster S, Schmidt-Gayk H, Stein G, Scholz C, Kraatz G, et al. Low-dose calcitriol prevents the rise in 1,84-IPTH without affecting serum calcium and phosphate in patients with moderate renal failure (prospective placebo-controlled multicentre trial). Nephrol Dial Transplant. 1995; 10: 2228–2234. PMID: 8808216

39. Kraititchai U, Mahannopkul R, Bunnag S. An open label, randomized controlled study of oral calcitriol for the treatment of proteinuria in patients with diabetic kidney disease. J Med Assoc Thai. 2012; 95 Suppl 3: S41–47. PMID: 22619886

40. Nordal KP, Dahl E. Low dose calcitriol versus placebo in patients with predialysis chronic renal failure. J Clin Endocrinol Metab. 1988; 67: 929–936. PMID: 3182964

41. Ott SM, Chesnut CH 3rd. Calcitriol treatment is not effective in postmenopausal osteoporosis. Ann Intern Med. 1989; 110: 267–274. PMID: 2913914

42. Gallagher JC, Goldgar D. Treatment of postmenopausal osteoporosis with high doses of synthetic calcitriol. A randomized controlled study. Ann Intern Med. 1990; 113: 649–655. PMID: 2221645

43. Gallagher JC, Rapuri PB, Smith LM. An age-related decrease in creatinine clearance is associated with an increase in number of falls in untreated women but not in women receiving calcitriol treatment. J Clin Endocrinol Metab. 2007; 92: 51–58. PMID: 17032712

44. Cueto-Manzano AM, Konel S, Freemont AJ, Adams JE, Mawer B, Gokal R, et al. Effect of 1,25-dihydroxyvitamin D3 and calcium carbonate on bone loss associated with long-term renal transplantation. Am J Kidney Dis. 2000; 35: 227–236. PMID: 10676721

45. Tougaard L, Soerensen E, Brochner-Mortensen J, Christensen MS, Rodbro P, Soerenso AW. Controlled trial of 1alpha-hydroxycholecalciferol in chronic renal failure. Lancet. 1976; 1: 1044–1047. PMID: 57451

46. Aloia JF, Vaswani A, Yeh JK, Ellis K, Yasumura S, Cohn SH. Calcitriol in the treatment of postmenopausal osteoporosis. Am J Med. 1988; 84: 401–408. PMID: 3279769

47. Baker LR, Abrams L, Roe CJ, Faugere MC, Fanti P, Subayti Y, et al. 1,25(OH)2D3 administration in moderate renal failure: a prospective double-blind trial. Kidney Int. 1989; 35: 661–669. PMID: 2651758

48. Coburn JW, Maung HM, Elangovan L, Germain MJ, Lindberg JS, Sprague SM, et al. Doxercalciferol safely suppresses PTH levels in patients with secondary hyperparathyroidism associated with chronic kidney disease stages 3 and 4. Am J Kidney Dis. 2004; 43: 877–890. PMID: 15112179

49. Fesler P, Mimran A. Estimation of glomerular filtration rate: what are the pitfalls? Curr Hypertens Rep. 2011; 13: 116–121. doi: 10.1007/s11906-010-0176-5 PMID: 21207252

50. Stevens LA, Levey AS. Measured GFR as a confirmatory test for estimated GFR. J Am Soc Nephrol. 2009; 20: 2305–2313. doi: 10.1681/ASN.2009020171 PMID: 19833901

51. Bertoil M, Lusietto G, Ruffatti A, Urso M, Romagnoli G. Renal function during calcitriol therapy in chronic renal failure. Clin Nephrol. 1990; 33: 98–102. PMID: 2311310

52. Perez A, Raab R, Chen TC, Turner A, Holick MF. Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol. 1990; 134: 1070–1078. PMID: 8765427

53. Li YC, Kong J, Wei M, Chen ZF, Liu SQ, Cao LP. 1,25-Dihydroxyvitamin D(3) is a negative endocrine regulator of the renin-angiotensin system. J Clin Invest. 2002; 110: 229–238. PMID: 12122115
54. Zhang Y, Kong J, Deb DK, Chang A, Li YC. Vitamin D receptor attenuates renal fibrosis by suppressing the renin-angiotensin system. J Am Soc Nephrol. 2010; 21: 966–973. doi: 10.1681/ASN.2009080872
PMID: 20378820