Enhanced piezoelectricity of PVDF nanofibers via a plasticizer treatment for energy harvesting

Bilal Zaarour
Textile Industries Mechanical Engineering and Techniques Department, Faculty of Mechanical and Electrical Engineering, Damascus University, Damascus, Syria
Syrian International Academy, Damascus, Syria
E-mail: bz@sia-sy.net

Abstract
Enhancing the electrical outputs of energy harvesters is a great demand for researchers in recent years. In this work, the effect of the plasticizer treatment (Tetrahydrofuran [THF]) on the β phase content (F[β]) of electrospun polyvinylidene fluoride (PVDF) fiber webs which are used as active layers to directly make a piezoelectric nanogenerator (PENG) is demonstrated. The results showed that during the plasticizer treatment, the F(β) of the web increases when the initial length of the web (L_0) equals the distance between the two ends of the solid support (L) which the web fixed on it, whereas the F(β) decreases when $L < L_0$ resulting in the formation of crimped fibers. Furthermore, the electrical outputs of the PENG based on the pristine web, and treated webs at different lengths are investigated. We believe this work can be used as a good reference for enhancing the electrical outputs of the PENG by enhancing the F(β) of PVDF nanofiber webs using a plasticizer treatment.

1. Introduction
In the last decade, the demand for energy harvesters has increased sharply as evident from the development of product prototypes and the rising number of publications [1–8]. Running microelectronic devices with batteries such as watches, sensors, light-emitting diodes, and many others have difficulties owing to the disadvantages of batteries such as occupying a major weight and percentage of portable products, the need to recharge or replace them, the possible seepage of electrolyte solutions, and producing a significant environmental impact [9, 10]. Therefore, energy harvesting which is defined as collecting different amounts of energy from the surrounding environment and converting them into electric power for later use is the best choice for overcoming these limitations [1].

Piezoelectric polymers that can transform mechanical vibration into electrical energy are usually used for multiple applications such as wearable energy harvesting, artificial skin, sensors, and so on [1, 11–15].

Polyvinylidene fluoride (PVDF) which is a semi-crystalline polymer is considered one of the most favorable piezoelectric polymers owing to its outstanding piezo-, pyro-, and ferroelectric properties, low cost, excellent mechanical properties, high flexibility, good chemical stability, low density, ability to be formed in different structures, and so on [1, 16–21]. PVDF can be found in five polymorphs (α, β, γ, δ, and ϵ) [22]. The piezoelectric response of the PVDF is correlated with β phase content [F(β)] and polarization condition [23]. However, fabricated PVDF fiber webs with high F(β) is still a big challenge for researchers. Different pre- and post-treatment methods were used to enhance the F(β) of PVDF such as the mechanical drawing [24, 25], electrospinning [26, 27], electric poling [28], inclusion of nanofillers [29, 30], thermal treatment [31], hydrated salt [32], and so on.

Electrospinning is an effective process for producing fibers with diameters ranging to a few hundred nanometers [33–37], and to prompt the F(β) of PVDF at the same time [1, 38, 39]. Poling and stretching of the
polymer at the high applied voltage during this technique can orientate the dipoles of PVDF molecular chains, resulting in an extra transformation of α to β crystalline phase [40–43].

Previously, our group demonstrated the fabrication and characterization of electrospun PVDF fiber webs with different surface morphologies (wrinkled, smooth, and porous) based on randomly oriented and aligned fiber webs that can be used directly as active layers to make a piezoelectric nanogenerator (PENG). The results showed that the PENG based on the aligned wrinkled fiber web has the highest electrical their pillar wrinkled surfaces, supreme F(β), interior pores, and fewer air gaps between the fibers [3].

Moreover, we studied the effect of the molecular weight of electrospun PVDF fibers (180000 g mol$^{-1}$, 275000 g mol$^{-1}$, and 530000 g mol$^{-1}$) on the electrical outputs of the PENG-based on the aligned wrinkled fiber webs [23]. We found that the electrical outputs of the PENG can be enhanced by increasing the molecular weight owing to their high F(β) and high roughness.

Furthermore, we explored the effect of relative humidity on the piezoelectric properties of the PENG based on electrospun PVDF nanofibers [44]. The result showed that there is a positive relationship between the relative humidity and electrical outputs of the PENG owing to enhancing the F(β) and the degree of roughness of nanofiber webs by increasing the relative humidity.

The main objective of this work is to enhance the electrical outputs of the PENG by enhancing its F(β). In this work, a simple and cost-effective method is used to enhance the F(β) of PVDF nanofibers based on the interaction between a plasticizer and the polymer. Furthermore, the electrical outputs of the treated webs are measured. We believe this work can be used as a good reference for enhancing the piezoelectric properties of PENGs using a plasticizer treatment.

2. Experimental

2.1. Materials

PVDF pellets (Mw = 530000 g mol$^{-1}$) were purchased from Sigma- Aldrich, USA. N, N-Dimethylformamide (DMF) and tetrahydrofuran (THF) were purchased from Shanghai Chemical Reagents Co., Ltd, China. All chemicals were used without further purification.

3. Methods

After dissolving 15% (w/v) PVDF pellets in THF/DMF (1:2), the solution was added into a plastic syringe. A syringe needle with a 21 gauge was used as the spinneret and fixed on a syringe pump (KDS 100, KD Scientific Inc., USA) connected to a high-voltage supplier (Tianjin Dongwen Co., Ltd, China). A drum collector with a length of 40 cm length and a diameter of 20 cm was adjusted at the rotating speed of 2000 rpm to form aligned fibers (figure 1). The electrospinning process was performed at the relative humidity of 60%, working temperature of 22 °C, applied voltage of 18 kV, needle to collector distance of 18 cm, flow rate of 1.5 ml h$^{-1}$, which kept as constant for the entire study according to our previous works [3, 45–47].
4. Characterization

The surface morphology of the PVDF fibers was checked using field emission scanning electron microscopy (FE-SEM, S-4800 Hitachi, Japan). The diameter of fibers was measured using image analysis software (Adobe Acrobat X Pro 10.1.2.45). X-ray diffraction (XRD) was performed on a diffractometer (Panalytical XRD, Netherland) using Cu radiation 1.54 Å. All samples were scanned in the 2θ range of 5° to 30°. Fourier transform infrared (FTIR, USA) spectra were carried out on a Bruker Optics spectroscopy in ATR mode. Differential scanning calorimetry (DSC, USA) was measured by heating the samples from 40 to 190 °C at the heating rate of 10 °C min⁻¹ in a nitrogen atmosphere. The thickness of the webs was checked using a micrometer (Anytime, USA). The design, working area, test conditions of PENG used in this work followed the same procedure described in our previous study [3].

5. Post-processing treatment

The electrospun PVDF nanofiber webs were cut into strips with dimensions of 6 × 2.5 cm², and then fixed on two solid supports with different lengths: L = L₀ and L = L₀/2, where L is the length of the support and L₀ refers to the initial length of webs (6 cm). After that, the fixed PVDF nanofiber webs were treated with THF and kept for 24 h at room temperature (figure 2).

6. Results and discussion

PVDF nanofiber webs were electrospun using 15% PVDF/ (THF: DMF) at the solvent ratio of 1:2 and relative humidity of 60% (figure 3(A)). The fiber webs were cut into 3 samples with dimensions of 6 × 2.5 cm². Before THF treatment, two of them were fixed on 2 solid supports with the length of L = L₀ and L = L₀/2, respectively. When L was set to be the same as L₀, the web maintained its initial length during THF treatment.
while it was 57.9%, and 50.6%, for the THF-treated samples at L0.

Crystalline phase characterization

The crystalline phase characterization of the pristine and treated samples was checked. The XRD patterns of the pristine and treated PVDF fibers electrospun are shown in figure 4(A). The phase showed peak at 2θ = 18.4°, corresponding to the (020) crystal plane, while the sum of β phase exhibited peak at 2θ = 20.6°, corresponding to the (110) and (200) plane. The THF-treated sample at L/L0 = 100% has the highest intensity of the β crystal phase, whereas the treated sample at L/L0 = 50% had the lowest intensity of the β crystal phase. To confirm the crystal phase structure, FTIR spectrophotometry was used. Figure 4(B) showed that the characteristic bands of the β phase crystals were observed at 840 cm−1 (CH2 rocking) and 1274 cm−1 (trans band), while α phase crystals were identified at bands 762 and 976 cm−1. PVDF can be found in five polymorphic phases: β phase (TTTT) all trans, α and δ phases (TGTG'), trans-gauche-trans-gauche, and γ and ε phases (T3GT3G'). Importantly, the F(β) of the PVDF fibers is correlated with the piezoelectric response. F(β) of the studied samples can be determined using equation S1. The F(β) of the untreated web was 84.77%, while it was 93% and 79% for the THF-treated samples at L/L0 = 100%, and L/L0 = 50%, respectively. DSC analysis was used to determine the crystallinity of samples (ΔXc) (figure 4(C)). We calculate the ΔXc content according to equation S2. The ΔXc of the untreated web was 53.5%, while it was 57.9%, and 50.6%, for the THF-treated samples at L/L0 = 100%, and L/L0 = 50%, respectively.

The results showed that the THF treated sample at L/L0 = 100% has the highest F(β) and ΔXc, whereas the THF treated sample at L < L0 has the lowest ones (table 1). These results should be ascribed to this reason. The PVDF polymer chains release the residual stress during THF treatment and thereby enhance the crystallinity if the length of the web is retained or induce the creation of a crimped structure if the length is allowed to shrink [48]. In other words, when the length of the nanofiber web retains, the energy released from the fibers during THF treatment will be used to rise the crystallinity. In contrast, when shrinkage is involved, the energy released from the fibers during THF treatment will be used to retract the fibers and create a crimped structure.

7. Crystalline phase characterization

To detect the effect of the THF treatment on the crystalline phases of the PVDF nanofibers webs, the crystal structure of the pristine and treated samples was checked. The XRD patterns of the pristine and treated PVDF fibers electrospun are shown in figure 4(A). The phase showed peak at 2θ = 18.4°, corresponding to the (020) crystal plane, while the sum of β phase exhibited peak at 2θ = 20.6°, corresponding to the (110) and (200) plane. The THF-treated sample at L/L0 = 100% has the highest intensity of the β crystal phase, whereas the treated sample at L/L0 = 50% had the lowest intensity of the β crystal phase. To confirm the crystal phase structure, FTIR spectrophotometry was used. Figure 4(B) showed that the characteristic bands of the β phase crystals were observed at 840 cm−1 (CH2 rocking) and 1274 cm−1 (trans band), while α phase crystals were identified at bands 762 and 976 cm−1. PVDF can be found in five polymorphic phases: β phase (TTTT) all trans, α and δ phases (TGTG'), trans-gauche-trans-gauche, and γ and ε phases (T3GT3G'). Importantly, the F(β) of the PVDF fibers is correlated with the piezoelectric response. F(β) of the studied samples can be determined using equation S1. The F(β) of the untreated web was 84.77%, while it was 93% and 79% for the THF-treated samples at L/L0 = 100%, and L/L0 = 50%, respectively. DSC analysis was used to determine the crystallinity of samples (ΔXc) (figure 4(C)). We calculate the ΔXc content according to equation S2. The ΔXc of the untreated web was 53.5%, while it was 57.9%, and 50.6%, for the THF-treated samples at L/L0 = 100%, and L/L0 = 50%, respectively.

The results showed that the THF treated sample at L/L0 = 100% has the highest F(β) and ΔXc, whereas the THF treated sample at L < L0 has the lowest ones (table 1). These results should be ascribed to this reason. The PVDF polymer chains release the residual stress during THF treatment and thereby enhance the crystallinity if the length of the web is retained or induce the creation of a crimped structure if the length is allowed to shrink [48]. In other words, when the length of the nanofiber web retains, the energy released from the fibers during THF treatment will be used to rise the crystallinity. In contrast, when shrinkage is involved, the energy released from the fibers during THF treatment will be used to retract the fibers and create a crimped structure.

F(β)(%)	ΔXc (%)		
Samples	Pristine	L/L0 = 100%	L/L0 = 50%
F(β)(%)	84.77	93%	79%
ΔXc (%)	53.5	57.9	50.6

(figure 3(B)). In contrast, when L < L0, the nanofibers were initially in a loose state resulting in the formation of the crimped fiber after THF treatment (figure 3(C)). The crimped structure was formed owing to the retraction of the elongated polymer chains in each fiber [48]. The diameter of the fibers increased from ~400 nm for the pristine web to ~825 nm after the THF treatment at L/L0 = 50% (Figure S1 and S2 (available online at stacks.iop.org/MRX/8/125001/mmedia)).
8. Piezoelectric properties of PVDF nanofiber webs

To explore the effect of the plasticizer treatment on the electrical outputs of the PENG, three PENGs based on pristine electrospun PVDF fiber web, THF-treated PVDF fiber web at $L/L_0 = 100\%$, and THF-treated PVDF fiber web at $L/L_0 = 50\%$ were fabricated. For an accurate comparison, the PENGs were tested under the same conditions (impact frequency of 5 Hz and peak force 10 N). The results exhibited that the electrical outputs of the PENGs were 2.1 V and 2.9 μA at the pristine web, 2.98 V and 4.2 μA at THF- treated web ($L/L_0 = 100\%$), and 1.69 V and 2.43 μA at THF- treated web ($L/L_0 = 50\%$) (figure 5 and S3). Herein, the highest voltage and current outputs of the PENGs based on the THF- treated web ($L/L_0 = 100\%$) is attributed to its high $F(\beta)$.

It is worth mentioning that the plasticizer treatment under specific conditions played a vital role in determining the electrical outputs of the PENG.

9. Conclusions

In summary, we demonstrated the effect of the THF treatment on the $F(\beta)$ of the electrospun PVDF nanofiber webs which can be used directly as active layers to make a PENG. The results showed that the $F(\beta)$ and ΔX_c of the PVDF fiber webs can be enhanced using THF-treatment at $L/L_0 = 100\%$ because the PVDF polymer chains released the residual stress during THF treatment. Whereas, the $F(\beta)$ and ΔX_c of the PVDF fiber webs decreased after the THF- treatment at $L/L_0 = 50\%$ because the retracted energy released from the shrinkage fibers during THF- treatment was used to create a crimped structure. Moreover, we found that the voltage and current outputs of the PENG based on the THF treated webs at $L/L_0 = 100$, are the highest compared with other studied samples owing to its high $F(\beta)$. We hope that this work can be used as a good reference for enhancing the electrical outputs of the PENG.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

ORCID iDs

Bilal Zaarour © https://orcid.org/0000-0001-6572-872X

References

[1] Zaarour B et al 2021 A review on piezoelectric fibers and nanowires for energy harvesting J. Ind. Text. 51 297–340
[2] Curry E J et al 2020 Biodegradable nanofiber-based piezoelectric transducer Proc. Natl Acad. Sci. USA 117 214–20
[3] Zaarour B et al 2019 Enhanced piezoelectric properties of randomly oriented and aligned electrospun PVDF fibers by regulating the surface morphology J. Appl. Polym. Sci. 136 495–56
[4] Li Z et al 2017 Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting Nano Energy 36 341–8
[5] Pan H et al 2021 Kinetic energy harvesting technologies for applications in land transportation: A comprehensive review Appl. Energy 286 116518
[6] Xu C et al 2021 Portable and wearable self-powered systems based on emerging energy harvesting technology Microsyst. Nanoeng. 7 1–14
[7] Fu H et al 2021 Rotational energy harvesting for self-powered sensing Joule 5 1074–118
[8] Lv H et al 2021 A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting Nano Energy 88 106260
[9] Lee J et al 2014 Unlocking the potential of cation–disordered oxides for rechargeable lithium batteries Sci. 343 519–22
[10] Kang B and Ceder G 2009 Battery materials for ultrafast charging and discharging Nat. 458 190–3
[11] Liu X et al 2017 Polymeric nanofibers with ultrahigh piezoelectricity via self-orientation of nanocrystals ACS nano. 11 1901–10
[12] Kim M-S et al 2014 A dome-shaped piezoelectric tactile sensor array fabricated by an air infiltration technique Sens. Actuators, A 212 151–8
[13] Beringer L T et al 2015 An electrosprun PVDF-TrFE fiber sensor platform for biological applications Sens. Actuators, A 222 293–300
[14] Mei H et al 2015 A flexible pressure-sensitive array based on soft substrate Sens. Actuators, A 222 80–6
[15] Zhang W et al 2020 A comparative study of electrosprun polyvinylidene fluoride and poly (vinylidenefluoride-co-trifluoroethylene) fiber webs: Mechanical properties, crystallinity, and piezoelectric properties J. Eng. Fibers Fabr. 15 1–8
[16] Cho Y et al 2015 Enhanced energy harvesting based on surface morphology engineering of P (VDF-TrFE) film Nano Energy 16 524–32
[17] Zampetti E, Bearzotti A and Macagnano A 2014 Flexible piezoelectric transducer based on electrosprun PVDF nanofibers for sensing applications Procedia Eng. 87 1509–12
[18] Bayramol D V et al 2017 Energy Harvesting Smart Textiles Smart Textiles. (Berlin: Springer) 199–231
[19] Lang C et al 2016 High sensitivity acoustic sensors from nanofibre webs Nat. Commun. 7 1108–14
[20] Priya S et al 2017 A review on piezoelectric energy harvesting: materials, methods, and circuits Energy Harvesting and Systems. 4 3–39
[21] Chang J et al 2012 Piezoelectric nanofibers for energy scavenging applications Nano Energy. 1 356–71
[22] Schmeeges S and Amft O 2017 Smart Textiles: Fundamentals Design, and Interaction. (Berlin: Springer)
[23] Zaarour B, Zhu L and Jin X 2019 Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrosprun PVDF nanofibers by maneuvering molecular weight Soft Mater. 17 181–9
[24] Li L et al 2014 Studies on the transformation process of PVDF from α to β phase by stretching RSC Adv. 4 3938–43
[25] Da Silva A B et al 2010 Effect of drawing on the dielectric properties and polarization of pressed solution cast β-PVDF films J. Mater. Sci. 45 4206–15
[26] Shao H, Wang H and Fang J Piezoelectric energy conversion performance of electrosprun nanofibers Zaarour B, Zhu L and Jin X 2020 Direct generation of electrosprun branched nanofibers for energy harvesting Polym. Adv. Technol. 31 2659–66
[27] Mohammadzadeh M and Yousefi A A 2016 Deposition of conductive polythiophene film on a piezoelectric substrate: effect of corona poling and nano-inclusions Iran. Polym. J. 25 415–22
[28] Ma J et al 2018 Piezoelectric and optoelectronic properties of electrosprun hybrid PVDF and ZnO nanofibers Mater. Res. Express 5 055057
[29] Xin Y et al 2016 Full-fiber piezoelectric sensor by straight PVDF/nanoclay nanofibers Mater. Lett. 164 136–9
[30] Pan H et al 2012 Polar phase formation in poly (vinylidene fluoride) induced by melt annealing I. Polym. Sci., Part B: Polym. Phys. 50 1433–7
[31] Mokhtari F, Shamshiraz M and Latifi M 2016 Investigation of β phase formation in piezoelectric response of electrosprun polyvinylidene fluoride nanofibers: LiCl additive and increasing fibers tension Polym. Eng. Sci. 56 61–70
[32] Zaarour B, Zhu L and Jin X 2020 Direct fabrication of electrosprun branched nanofibers with tiny diameters for oil absorption J. Dispersion Sci. Technol. 1–7
[33] Zhu L, Zaarour B and Jin X 2020 Direct generation of electrosprun interconnected macroporous nanofibers using a water bath as a collector Mater. Res. Express 7 015082
[34] Zaarour B et al 2020 Branched nanofibers with tiny diameters for air filtration via one-step electrosprining J. Ind. Text. (https://doi. org/10.1177/1528083720923773)
[35] Zhu L Z B and Jin X 2019 Fabrication of perfect CMCS/PVA nanofibers for keeping food fresh via an in situ mixing electrosprinning Mater. Res. Express 6 125001
[36] Zhu L Z B and Jin X 2019 Unexpectedly high oil cleanup capacity of electrosprun poly (vinylidene fluoride) fiber webs induced by spindle porous bowl like beads Soft Mater. 17 410
[37] Zaarour B, Zhu L and Jin X 2020 A Review on the Secondary Surface Morphology of Electrosprun Nanofibers: Formation Mechanisms, Characterizations, and Applications ChemistrySelect 5 1335–48
[38] Zaarour B et al 2020 A mini review on the generation of crimped ultrathin fibers via electrosprining: Materials, strategies, and applications Polym. Adv. Technol. 31 1449–62
[39] Shao H et al 2015 Effect of electrosprun parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrosprun poly (vinylidene fluoride) nanofiber mats RSC Adv. 5 14345–50
[40] Priya S and Inman D J 2009 Energy harvesting technologies. (Berlin: Springer)
[41] Dasari A and Njuguna J 2016 Functional and Physical Properties of Polymer Nanocomposites Wiley Online Library
[42] Gheibi A et al 2014 Piezoelectric electrosprun nanofibrous materials for self-powering wearable electronic textiles applications J. Polym. Res. 21 469–75
[43] Zaarour B et al 2018 Fabrication of a polyvinylidene fluoride cactus-like nanofiber through one-step electrosprining RSC Adv. 8 42353–60
[44] Zaarour B, Zhu L and Jin X 2019 Maneuvering the secondary surface morphology of electrosprun poly (vinylidene fluoride) nanofibers by controlling the processing parameters Mater. Res. Express 7 015008–17
[45] Zaarour B et al 2019 Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration Text. Res. J. 89 2406–22
[46] Zaarour B et al 2018 Controlling the Secondary Surface Morphology of Electrosprun PVDF Nanofibers by Regulating the Solvent and Relative Humidity Nanoscale Res. Lett. 13 285–96
[47] Liu W et al 2019 Generation of Electrosprun Nanofibers with Controllable Degrees of Crimping Through a Simple, Plasticizer-Based Treatment Adv. Mater. 27 2583–8