Molecular understanding of neutralizing antibody responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) could accelerate vaccine design and drug discovery. We analyzed 294 anti-SARS-CoV-2 antibodies and found that immunoglobulin G heavy-chain variable region 3-53 (IGHV3-53) is the most frequently used IGHV gene among these antibodies (Fig. 1A), with 10% encoded by IGHV3-53, compared with 0.5 to 2.6% (mean 1.8%) in the repertoire of naïve healthy individuals (29, 30). IGHV3-53 antibodies were found in seven of 12 studies and in 17 of 32 COVID-19 patient samples (17–28, 31). These IGHV3-53 antibodies not only had lower somatic mutation rates but also were more potent compared with other germ lines in the cohort investigated here (27) (fig. S1). The prevalence of IGHV3-53 in the antibody response in SARS-CoV-2 patients has also been recognized in other antibody studies (20, 22, 27).

To understand the molecular features that endow IGHV3-53 with favorable properties for RBD recognition, we determined the crystal structures of two IGHV3-53—neutralizing antibodies with RBD, with or without Fab CR3022, at 2.33- to 3.20-angstrom resolution revealed that the germline-encoded residues dominate recognition of the angiotensin I converting enzyme 2 (ACE2)—binding site. This binding mode limits the IGHV3-53 antibodies to short complementarity-determining region H3 loops but accommodates light-chain diversity. These IGHV3-53 antibodies show minimal affinity maturation and high potency, which is promising for vaccine design. Knowledge of these structural motifs and binding mode should facilitate the design of antigens that elicit this type of neutralizing response.

Fig. 1. Structures of two IGHV3-53 antibodies. (A) The distribution of IGHV gene usage is shown for a total of 294 RBD-targeting antibodies (17–28). (B to D) Crystal structures of (B) CC12.1 in complex with SARS-CoV-2 RBD, (C) CC12.3 with SARS-CoV-2 RBD, and (D) human ACE2 with SARS-CoV-2 RBD (PDB 6M0J) (12).
antibodies assayed against live replicating SARS-CoV-2 virus and pseudovirus (27). Although CC12.1 and CC12.3 are both encoded by IGHV3-53, CC12.1 uses IGHJ6, IGKV1-9, and IGKJ3, whereas CC12.3 uses IGHJ4, IGKV3-20, and IGKJ1. This variation in IGHJ, IGKV, and IGKJ usage indicates that CC12.1 and CC12.3 belong to different clonotypes but are encoded by a common IGHV3-53 germline gene (fig. S2). IgBlast analysis (32) showed that IGHV and IGKV of CC12.1 have acquired only four amino acid changes (somatic mutations) during affinity maturation from the original germline antibody sequence (fig. S2, A and B). Similarly, CC12.3 is also minimally somatically mutated, with three amino acid changes in IGHV and a single amino acid deletion in IGKV (fig. S2, A and C). The binding affinities (K_d) of the Fabs CC12.1 and CC12.3 to SARS-CoV-2 RBD are 17 and 14 nM, respectively (fig. S3). Moreover, competition experiments suggest that CC12.1 and CC12.3 bind to a similar epitope, which overlaps with the ACE2-binding site but not the CR3022 epitope (fig. S4).

Fig. 2. Epitopes of IGHV3-53 antibodies.

(A to C) Epitopes of (A) CC12.1, (B) CC12.3, and (C) B38 (PDB 7BZ5) (23). Epitope residues contacting the heavy chain are shown in orange and those contacting the light chain are shown in yellow. CDR loops are labeled in the left panels; epitope residues are labeled in the right panels. For clarity, only representative epitope residues are labeled. Epitope residues that are also involved in ACE2 binding are shown in red. (D) ACE2-binding residues are shown in blue. ACE2 is shown in green in the left panel in a semitransparent cartoon representation. ACE2-binding residues are labeled in the right panel. A total of 17 residues were used for ACE2 binding (12), but only 15 are labeled here because the other two are at the back of the structure in this view and do not interact with the antibodies here. (E) Epitope residues for CC12.1, CC12.3, and B38 were identified by PISA (41) and annotated on the SARS-CoV-2 RBD sequence, which is aligned to the SARS-CoV RBD sequence with nonconserved residues highlighted. The 17 ACE2-binding residues were identified from a SARS-CoV-2 RBD–ACE2 complex structure as described previously (12).
We determined four complex crystal structures, CC12.1/RBD, CC12.3/RBD, CC12.1/RBD/CR3022, and CC12.3/RBD/CR3022, at resolutions of 3.20, 2.33, 2.70, and 2.90 Å, respectively (table S2). CC12.1 and CC12.3 bind to the ACE2-binding site on SARS-CoV-2 RBD with an identical angle of approach (Fig. 1, B to D, and fig. S5). Another IGHV3-53 antibody, B38, the structure of which was determined recently (23), binds to the ACE2-binding site on SARS-CoV-2 RBD in a similar manner but with a K_d of 70.1 nM (fig. S6). Similar to the ACE2-binding site (11), the epitopes of these antibodies can only be accessed when the RBD is in the “up” conformation (fig. S7). Among 17 ACE2-binding residues on RBD, 15 and 16 are within the epitopes of CC12.1 and B38, respectively, and 11 are in the epitope of CC12.3 (Fig. 2, A to D). Many of the epitope residues are not conserved between SARS-CoV-2 and SARS-CoV (Fig. 2E), explaining their lack of cross-reactivity (27). The buried surface area (BSA) from the heavy-chain interaction is quite similar in CC12.1 (723 Å2), CC12.3 (698 Å2), and B38 (713 Å2). By contrast, the light-chain interaction is much smaller for CC12.3 (176 Å2) compared with CC12.1 (566 Å2) and B38 (495 Å2), consistent with different light-chain gene usage. Although both CC12.1 and B38 use IGKV1-9, CC12.3 uses IGKV3-20, which suggests that IGHV3-53 can pair with different light chains to target the ACE2-binding site of the SARS-CoV-2 RBD. CC12.1 (56% BSA from the heavy chain) binds the RBD with similar affinity to CC12.3 (80% BSA from the heavy chain) but with a slightly slower dissociation rate (fig. S3), which might be influenced by the different light chain and its greater contribution in CC12.1. Nevertheless, the light-chain identity seems not to be as critical as the heavy chain. In fact, among the RBD-targeting IGHV3-53 antibodies, nine different light chains are observed, although IGKV1-9 and IGKV3-20 are the most frequently found to date (fig. S8).

To understand why IGHV3-53 is elicited as a shared antibody response, the molecular interactions between the RBD and the heavy chains of CC12.1, CC12.3, and B38 were analyzed. The complementarity-determining regions (CDRs) H1 and H2 of these antibodies interact extensively with the RBD mainly through specific hydrogen bonds (Fig. 3, A and B). All residues on CDR H1 and H2 that hydrogen bond with the RBD are encoded by the germ line IGHV3-53 (fig. S2 and table S3). These interactions are almost identical among CC12.1, CC12.3, and B38, with the only difference at the variable region of immunoglobulin heavy chain (VH) residue 58. A somatic mutation VH Y58F in CC12.1 and CC12.3, but not in B38 (Fig. 3, A to C, boxed residues, and fig. S9), results in similar van der Waals interactions, with only a loss of a single hydrogen bond from the hydroxyl of the germ line Tyr in B38 to the RBD (Fig. 3C).

None of these antibody interactions mimics ACE2 binding (Fig. 3D).

Our structural analysis reveals two key motifs in the IGHV3-53 germline sequence that are important for RBD binding: an NY motif at VH residues 32 and 33 in the CDR H1 and an SGGS motif at VH residues 53 to 56 in the CDR H2 (Fig. 3 and fig. S10). The side chain of VH N32 in the NY motif hydrogen bonds with the backbone carbonyl of A475 on the RBD, and this interaction is stabilized by an extensive network of hydrogen bonds with other antibody residues as well as a bound water molecule (Fig. 4A). VH N32 also hydrogen bonds with VH R94, which in turn hydrogen bonds with N487 and Y489 on the RBD (Fig. 4A). These polar contacts not only enhance the RBD-Fab interaction but also stabilize the CDR conformations with the surrounding residues (framework). VH Y33 in the NY motif inserts into a hydrophobic cage formed by RBD residues Y421, F456, and L455 and the aliphatic component of K417 (Fig. 4B). A hydrogen bond between VH Y33 and the carbonyl oxygen of L455 on the RBD further strengthens the interaction. The second key motif, SGGS, in CDR H2 forms an extensive hydrogen bond network with the RBD (Fig. 4C), including four hydrogen bonds that involve the hydroxyl side chains of VH S53 and VH S56 and four water-mediated hydrogen bonds to the backbone carbonyl of VH G54, the backbone amide of VH S56, and the

![Fig. 3. Interactions between the RBD and heavy-chain CDR loops. (A to C) Highly similar interaction modes between SARS-CoV-2 RBD and the antibody CDR H1 and H2 loops, but not the H3 loop, are observed for (A) CC12.1, (B) CC12.3, and (C) B38 (PDB 7BZ5) (23). The RBD is shown in white and antibody residues in cyan, pink, and dark gray, respectively. Oxygen atoms are shown in red and nitrogen atoms in blue. Hydrogen bonds are represented by dashed lines. (D) Interaction between ACE2 (green) and residues of the RBD (PDB 6M0J) (12) shown in (A) to (C).](image-url)
...of CC12.3 and B38 do not form such a bond RBD Y453 through a hydrogen bond, CDR H3 ple, whereas CDR H3 of CC12.1 interacts with...ifferences in the CDR H3 sequences and CC12.3, and B38, the interaction of CDR H3 H2 to RBD is highly similar among CC12.1, evidently not required from affinity maturation.

The SARS-CoV-2 RBD, with mutations apparent in healthy individuals (29), this particular antibody response could be commonly elicited during vaccination (40).

REFERENCES AND NOTES

1. S. M. Kisler, C. Tedjnantio, E. Goldsten, T. H. Grad, M. Lipsitch, Science 368, 860–868 (2020).
2. N. Lurie, M. Saville, R. Hatchett, J. Halton, Nat. Engl. J. Med. 382, 1969–1973 (2020).
3. S. F. Andrews, B. A. McDermott, Curr. Opin. Immunol. 53, 95–101 (2018).
4. M. Yuan et al., Cell Host Microbe 13, 691–700 (2013).
5. K. Pfeifer et al., Nature 548, 597–601 (2017).
6. I. Settifeti et al., Cell Host Microbe 23, 845–854.e6 (2018).
7. N. C. Wu, I. A. Watson, Nat. Struct. Mol. Biol. 25, 115–121 (2018).
8. A. Lanzavecchia, A. Frithrigh, L. Perez, D. Corti, Curr. Opin. Immunol. 41, 62–67 (2016).
9. P. Zhuo et al., Nature 579, 270–273 (2020).
10. M. Lefko, A. Marczi, V. Munster, Nat. Microbiol. 5, 562–569 (2020).
11. R. Yan et al., Science 367, 1444–1448 (2020).
12. J. Lan et al., Nature 583, 215–220 (2020).
13. W. Li et al., bioRxiv 2020.05.03.093088 [Preprint] (2 June 2020), https://doi.org/10.1101/2020.05.03.093088.
14. E. Andriano et al., bioRxiv 2020.05.05.078154 [Preprint] (9 May 2020), https://doi.org/10.1101/2020.05.05.078154.
15. S. J. Zost et al., Nat. Med. 10.1038/s41591-020-0999-x (2020).
16. A. Z. Wec et al., Science 548, 235 (2020).
17. M. Yuan et al., Science 358, 630–633 (2012).
18. D. Pinto et al., Nature 583, 290–295 (2020).
19. B. Ju et al., bioRxiv 2020.03.21.990770 [Preprint] (26 March 2020), https://doi.org/10.1101/2020.03.21.990770.
20. Y. Cao et al., Cell 10.1016/j.cell.2020.05.025 (2020).
21. P. J. M. Brouwer et al., Science 368, 650–655 (2020).
22. D. F. Robbiani et al., Nature 10.1038/s41586-020-2456-9 (2020).
23. Y. Wu et al., Science 368, 1274–1278 (2020).
24. X. Chi et al., Science 365, 650–655 (2019).
25. E. Seydoux et al., Immunity 10.1016/j.immuni.2020.06.001 (2020).
26. R. Shi et al., Nature 10.1038/s41586-020-2381-y (2020).
27. T. F. Rogers et al., Science 5792 (2020).
28. C. O. Barnes et al., Cell 10.1016/j.cell.2020.05.29.12533 (2020).
29. S. D. Boyd et al., J. Immunol. 184, 6968–6992 (2010).
ACKNOWLEDGMENTS

We thank R. Stanfield for assistance in data collection, B. Briney for naïve antibody germline analysis, and the staff of Stanford Synchrotron Radiation Laboratory (SSRL) Beamline 12-1 for assistance. Funding: This work was supported by the NIH (grant no. K09 AI1330445 to N.C.W.), the Bill and Melinda Gates Foundation (grant no. OPP1702336 to I.A.W. and D.R.B.), NIH NIAID CHAVD (grant no. UMI AI44462 to I.A.W., D.S., and D.R.B.), and the IAVI Neutralizing Antibody Center. Use of the SSRL, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract no. DE-AC02-76SF00515. The SSRL Structural Molecular Biology Program is supported by the DOE Office of Biological and Environmental Research and by the National Institutes of Health, National Institute of General Medical Sciences (including P41GM103393). Author contributions: M.Y., H.L., N.C.W., F.Z., D.H., T.F.R., E.L., D.S, J.G.J., D.R.B., and I.A.W. conceived and designed the study. F.Z., D.H., T.F.R., E.L., D.S., J.G.J., and D.R.B. isolated the antibodies and provided clones and sequences. M.Y., H.L., N.C.W., C.-C.D.L., W.Y., and Y.H. expressed and purified the proteins. M.Y. and C.-C.D.L. performed biolayer interferometry binding assays. M.Y., H.L., N.C.W., X.Z., and H.T. performed the crystallization and x-ray data collection. M.Y. and X.Z. determined and refined the x-ray structures. M.Y., H.L., N.C.W., C.-C.D.L., and X.Z. analyzed the data. M.Y., H.L., N.C.W., and I.A.W. wrote the manuscript, and all authors reviewed and/or edited the manuscript. Competing interests: D.R.B., D.H., J.G.J., E.L., T.F.R., D.S., and F.Z. are listed as inventors on pending patent applications describing the SARS-CoV-2 antibodies originally published in Rogers et al. (27). Data and materials availability: X-ray coordinates and structure factors are deposited in the RCSB Protein Data Bank under identification nos. 6XC2, 6XC3, 6XC4, and 6XC7. Antibody plasmids are available from D.R.B. under a material transfer agreement from The Scripps Research Institute. Other materials are available from I.A.W. on request. This work is licensed under a Creative Commons Attribution 4.0 International (CC BY 4.0) license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To view a copy of this license, visit https://creativecommons.org/licenses/by/4.0/. This license does not apply to figures/photos/artwork or other content included in the article that is credited to a third party; obtain authorization from the rights holder before using such material.

SUPPLEMENTARY MATERIALS

science.sciencemag.org/content/369/6507/1119/suppl/DC1
Materials and Methods
Figs. S1 to S3
Tables S1 to S3
References (42–50)
MDAR Reproducibility Checklist

View/request a protocol for this paper from Bio-protocol.

9 June 2020; accepted 7 July 2020
Published online 13 July 2020
10.1126/science.abe2321