The association between serine hydroxymethyl transferase 1 gene hypermethylation and ischemic stroke

Junnan Wang¹, Junqing Gu², Yi Huang³, Yuanjian Fang⁴, Jinghui Lin*⁵

ABSTRACT

This study aimed to determine the correlation between serine hydroxymethyltransferase 1 (SHMT1) gene methylation and ischemic stroke. A total of 202 age- and sex-matched individuals were included. Quantitative methylation-specific polymerase chain reaction (qMSP-PCR) was used to analyze the DNA methylation level. The plasma homocysteine (Hcy) concentration was much higher in ischemic cases than in controls (p < 0.009), while the high-density lipoprotein (HDL) levels in stroke cases were considerably lower than in controls (p = 0.005). A significantly higher level of SHMT1 methylation was observed in the ischemic strokes (58.82 ± 17.83%) compared to that in the controls (42.59 ± 20.76%, p < 0.001). The SHMT1 methylation level was strongly correlated with HDL concentration in the healthy controls (r = 0.517, p < 0.001). Receiver operating characteristic (ROC) analysis of curve indicated that SHMT1 methylation has been an acceptable indicator for ischemic stroke in female patients [all sexes, area under the curve (AUC) = 0.71, p < 0.001; male patients AUC = 0.62, p = 0.032; and female patients AUC = 0.79, p < 0.001] and in all ages (AUC = 0.71, p < 0.001). In our samples, DNA methylation levels of the SHMT1 gene were significantly correlated with ischemic stroke in Han Chinese. SHMT1 hypermethylation was significantly associated with the high Hcy concentration in ischemic stroke and had value as a potential indicator for female ischemic stroke.

KEYWORDS: Ischemic stroke; DNA methylation; serine hydroxymethyl transferase 1; homocysteine; high-density lipoprotein; sex

INTRODUCTION

Ischemic stroke is an acute cerebrovascular disease associated with extremely high mortality. It has become the leading cause of disease-related death in China [1]. However, the pathogenesis of ischemic stroke is not fully understood. Ageing, hypertension, hyperlipidemia [2], genetics [3], and lifestyle [4] are reported as the main risk factors for ischemic stroke [5]. Several studies have shown that genetic and epigenetic factors play key roles in the development of ischemic stroke. DNA methylation was previously suggested to be involved in stroke pathogenesis by affecting the expression of stroke-related genes [6]. For example, one study showed that the low level of long interspersed nucleotide element 1 gene methylation is associated with a high risk for ischemic stroke in men [7], while another suggested that matrix metalloproteinase-2 gene demethylation is associated with ischemic stroke in a sex and stroke subtype-specific manner [8].

The serine hydroxymethyltransferase 1 (SHMT1) gene plays an important role in folate acid metabolism. SHMT1 can promote the formation of 5-methyltetrahydrofolate during folate metabolism and the homocysteine (Hcy) metabolism pathway in the methionine cycle [9]. Hcy was shown to increase brain lesions after stroke [10] and has been suggested as a high risk factor for the onset of stroke [11]. SHMT1 variants may be involved in Hcy metabolism and, therefore, contribute to an increased risk of ischemic stroke [12]. The methylation of SHMT1 gene may affect the expression of SHMT1 [13], a protein that plays a key role in promoting the conversion of serine and tetrahydrofolate to glycine and 5,10-methylenetetrahydrofolate [14]. Moreover, SHMT1 expression was shown to be associated with phosphate-induced vascular smooth muscle cell calcification [15] and a SHMT1 variant was suggested as a risk factor in early-onset ischemic stroke [16]. In addition, the altered expression of SHMT1 could block folate acid metabolism and abnormal Hcy remethylation pathways. This causes excessive accumulation of Hcy, which could increase the risk of ischemic stroke [17]. A previous study showed that SHMT1 promoter hypermethylation was confirmed in both, patients with essential hypertension, and patients with hyperhomocysteinemia [13]. However, DNA methylation of this gene had not been examined in the context of ischemic stroke. Therefore, we hypothesized that DNA methylation of SHMT1...
would be associated with ischemic stroke case-control status. The purpose of this study was to determine the correlation between SHMT1 gene methylation and ischemic stroke in a Chinese population. We also identified the effects of SHMT1 methylation on Hcy and circulating lipids in ischemic stroke patients.

MATERIALS AND METHODS

Study participants

The study was approved by the Ethics Committee of the Ningbo First Hospital (2014-002 and 2017-R028) and written informed consent was given by all participants. The study group included 101 patients with ischemic stroke (51 males and 50 females, mean age 61.07 ± 11.56 years) and 101 age- and sex-matched healthy volunteers (51 males and 50 females, mean age 62.49 ± 8.93 years). All the individuals were recruited from the stroke center of Ningbo First Hospital between September 2013 and December 2019. The diagnoses of ischemic stroke patients were confirmed based on international standardized definitions, and magnetic resonance imaging (MRI) and cranial computed tomography (CT) scan findings. The control group individuals were recruited from the health center and those with serious liver disease, kidney disease, or any cerebral vascular diseases were excluded from the study.

Biochemical measurements

General information for the individuals, including sex, age, hypertension (self-reported a history of antihypertensive drug use), diabetes (self-reported positive history of type 1 or type 2), drinking history (self-reported positive history of drinking, more than 50 ml drinks/week), smoking history (self-reported positive history of smoking), and body mass index (BMI), were obtained. A total of 5 ml fasting venous blood was collected from the volunteers on the first morning of cerebral infarction and used for the detection of biochemical indicators; the remaining blood was used for DNA extraction. The plasma levels of Hcy were measured by cycling enzymatic method; triglycerides (TGs), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were determined by the enzymatic method; and apolipoprotein A (ApoA), apolipoprotein B (ApoB), and apolipoprotein E (ApoE) were estimated through the transmission turbidimetric method. All the biochemical measurements were tested using an automatic biochemical analyzer (AU2700; Olympus, Japan).

DNA methylation data collection

Blood DNA was extracted using magnetic bead isolation method and performed on the Lab-Aid 820 Nucleic Acid Extractor (Xiamen Zhishan Biological Technology Co. Ltd., China). DNA methylation was measured using quantitative methylation-specific polymerase chain reaction (qMSP-PCR) assay and performed on the LightCycler 480 (Roche Diagnostics, Mannheim, Germany). ACTB was selected as the internal reference gene to standardize the amount of target DNA, and completely methylated DNA was used as a positive control [18]. A fragment (GRCh37/hg19, chr17: 18266824–18266941) located in the SHMT1 CpG island was selected to determine the level of DNA methylation. The qMSP primers and PCR reaction conditions for SHMT1 (forward primer: 5′-cgagtttaggaaggttgtatt-3′, reverse primer: 5′-ccatcactactacgctctc-3′) and ACTB (forward primer: 5′-ccatcactactacgctctc-3′, reverse primer: 5′-ccatcactactacgctctc-3′) were the same as those presented in a previous study [13]. The percentage of methylated reference (PMR) was calculated by the 2−ΔΔCt method to represent gene methylation (methylation percentage ranged from 0% to 100%). [19], in which ΔΔCt = sample DNA (Ct_target gene – Ct_ACTB) – fully methylated DNA (Ct_target gene – Ct_ACTB) [20].

Statistical analysis

The data were expressed as mean ± standard deviation (SD) or number and analyzed by the t-test or Pearson Chi-square. The association between SHMT1 methylation and clinical data was assessed using the Spearman’s (Hcy) or Pearson’s (other factors normally distributed) correlation test and multivariate binary logistic regression analysis after adjustment for age, sex, BMI, Hcy, TG, TC, HDL, and LDL. In stratified analysis, ischemic stroke potential modifiers, such as sex (male or female) and age (<60 or ≥60 years), were assessed. The receiver operating characteristic (ROC) curve test was used to evaluate the sensitivity of SHMT1 methylation for ischemic stroke diagnosis. Data were analyzed using SPSS V20.0 (Armonk, NY, USA) and figures plotted using GraphPad Prism V8.0 (La Jolla, CA, USA). Statistical significance was considered at p < 0.05.

RESULTS

The clinical characteristics of all participants are shown in Table 1. The BMI was significantly different between the two groups (cases vs. controls: 24.45 ± 3.11 kg/m² vs. 23.43 ± 3.10 kg/m², respectively, p = 0.020). The plasma Hcy concentration was much higher in ischemic cases (18.48 ± 10.29 μmol/L) than in controls (15.27 ± 6.35 μmol/L, p = 0.009), while the HDL levels in stroke cases (1.05 ± 0.31 mmol/L) were considerably lower than in controls (1.16 ± 0.24 mmol/L, p = 0.005). In contrast, LDL concentration was higher in ischemic cases (2.91 ± 0.78 mmol/L) than in controls (2.64 ± 0.84 mmol/L, p = 0.011).

As shown in Figure 1, the SHMT1 methylation levels were significantly higher in the stroke patients (58.82 ± 17.83%) than
The clinical characteristics for all participants are shown in Table 1. The distribution of BMI, Hcy, LDL, and HDL concentration in controls was similar to ischemic stroke cases. The distributions of BMI, Hcy, LDL, and HDL concentration in controls were lower than those in ischemic cases (r = 0.517, p < 0.001), but not in ischemic cases (r = 0.153, p = 0.127, Pearson’s test). In contrast, the plasma level of Hcy showed strong association with SHMT1 methylation in ischemic stroke patients (r = 0.346, p < 0.001), but not in controls (r = 0.037, p = 0.715, Spearman’s test). In multivariate analysis, the levels of SHMT1 methylation were strongly related to ischemic stroke. The distributions of BMI, Hcy, LDL, and HDL concentration in controls showed no association with SHMT1 methylation through regression analysis.

As shown in Figure 4, the ROC analysis of curve showed that SHMT1 methylation had acceptable diagnostic value for ischemic stroke regardless of sex (area under the curve [AUC] = 0.71, p < 0.001; male patients, AUC = 0.62, p = 0.032; and female patients, AUC = 0.79, p < 0.001). The age subgroup analysis suggested similar results in all ages (age ≤ 60 years, AUC = 0.71, p < 0.001; age > 60 years, AUC = 0.71, p < 0.001).

DISCUSSION

In the present study, we explored the association between SHMT1 methylation and ischemic stroke. Our results showed that the methylation levels of SHMT1 were much higher in ischemic stroke patients than in healthy controls. STHMI hypermethylation was significantly associated with plasma

TABLE 1. The clinical characteristics for all participants

Characteristics	Stroke cases	Healthy controls	χ²	p
Age (years)	61.07±11.56	62.49±8.91	1.27	0.331
Sex (male)	51	51	0.01	0.980
Hypertension (n)	40	35	0.34	0.560
Diabetes (n)	33	28	0.38	0.539
Drinking (n)	41	33	1.04	0.307
Smoking (n)	20	18	0.03	0.857
BMI (kg/m²)	24.45±3.11	23.43±3.10	2.34	0.020
Hcy (μmol/L)	18.48±10.29	15.27±6.33	2.66	0.009
TG (mmol/L)	1.42±1.01	1.36±1.22	0.32	0.750
TC (mmol/L)	4.33±1.27	4.63±1.29	-1.60	0.111
HDL (mmol/L)	1.05±0.31	1.16±0.24	-2.05	0.005
LDL (mmol/L)	2.91±0.78	2.61±0.84	2.55	0.011
ApoA (mg/dL)	1.11±0.22	1.11±0.21	0.05	0.962
ApoB (mg/dL)	1.03±0.36	1.09±0.36	-1.06	0.289
ApoE (mg/dL)	45.36±16.31	46.04±21.41	0.24	0.808
SHMT1 (%)	58.82±17.83	42.59±20.76	5.96	<0.001

BMC: Body mass index; Hcy: Homocysteine; TG: Triglyceride; TC: Total cholesterol; HDL: High-density lipoprotein; LDL: Low-density lipoprotein; ApoA: Apolipoprotein A; ApoB: Apolipoprotein B; ApoE: Apolipoprotein E; SHMT1: Serine hydroxymethyl transferase 1. Data presented are mean±SD. p < 0.05 is bold. SD: Standard deviation.
Hcy concentration in ischemic stroke patients. In addition, ROC analysis suggested that SHMT1 methylation may be a useful predictor for female ischemic stroke.

Hcy was a sulfur-containing amino acid produced by the demethylation of methionine [21]. The previous studies had demonstrated that plasma Hcy was an independent risk factor for stroke [22,23]. Hcy could increase the risk of developing ischemic stroke and lacunar infarction [23]. Plasma Hcy concentration in the acute phase was suggested to associate with ischemic stroke mortality in patients [24]. SHMT1 was an important supplier of carbon unit in the process of folate metabolism [25]. The SHMT1 hypermethylation could reduce the expression of SHMT1 [13] causing folic acid metabolism and Hcy remethylation pathways to be blocked [26]. Subsequently, excessive accumulation of Hcy caused to hyperhomocysteinemia [27], which led to stroke. Our results showed that the plasma Hcy concentration was much higher in ischemic stroke patients and was significantly associated with SHMT1 methylation. These associations were consistent with the above inference.

Genetic factors and environmental factors are known to participate in the pathological process of ischemic stroke development, with several studies suggesting that patients with a high BMI may have a higher risk for ischemic stroke [28] due to higher blood lipid levels [29]. In fact, serum levels of HDL and LDL are significantly associated with increased risk of ischemic stroke [30] and people with lower concentration of LDL have a lower risk of subsequent stroke [31]. The current
study showed that HDL concentration was associated with the ischemic stroke severity, and the level of HDL was much higher in severe stroke compared with mild stroke [32]. HDL has been suggested as a new target for stroke treatment, which might impact the care of stroke patients [33]. Other studies showed that the high level of HDL cholesterol was associated with a decreased risk of ischemic stroke [34]. Low level of HDL cholesterol was associated with increased risk of ischemic stroke [35]. In this study, the results showed that BMI and LDL levels were significantly higher in ischemic stroke patients. Moreover, the HDL concentration was lower in the ischemic stroke patients and the SHMT1 methylation levels were associated with HDL concentration in controls. The previous studies showed that altered Hcy metabolism can have an effect on HDL levels [36], which may partly explain this association in the controls.

Age and sex are well-known risk factors for ischemic stroke [37]. With age, the risk of stroke in the elderly increased significantly.
and other conditions related to aging might aggravate clinical and functional consequences [38]. Margaret et al. showed that older age (age >60 years) of stroke onset is associated with greater disability [39]. Stroke has shown to affect females more than males because of their physical characteristics and living habits [40]. Females have also shown to have a much higher prevalence of stroke after age 45 [41], which largely due to a sharp increase risk in older postmenopausal female [42]. The previous studies suggested that there were sex differences in methylation of ischemic stroke-related genes [43]. Such as, the DNA methylation level of long interspersed nucleotide element 1 gene was associated with a higher risk for ischemic stroke in male, but not in female patients [7]. Our results showed that SHMT1 methylation levels were associated with ischemic stroke in both sexes, regardless of age. Moreover, the ROC analysis showed that SHMT1 methylation had better diagnostic value in female patients.

There are some limitations to our study that need to be considered. First, this was a candidate gene study, we had not studied how DNA methylation affected gene expression and other factors (such as cell-type heterogeneity), SHMT1 methylation and expression. These confounding factors should be studied in the future. Second, SHMT1 played an important role in the folic acid metabolism, so the function of other genes should be considered in future research. Third, the sample size was small and, therefore, we could not find any association between ischemic stroke and other clinical characteristics such as smoking, drinking, hypertension, diabetes, and blood lipids. Thus, future studies with larger samples that include multiple ethnic populations are needed to confirm our findings.

CONCLUSION

In our samples, DNA methylation levels of the STHMI gene were significantly correlated with ischemic stroke. STHMI hypermethylation was significantly associated with Hey concentration in ischemic stroke and was shown to be a potential diagnostic tool for ischemic stroke in females. However, future studies to confirm these findings are required prior to potential clinical application of these results.

ACKNOWLEDGMENTS

This study was supported by grants from the Medicine and Health Science and Technology Projects of Zhejiang Province (2017KY610, 2018KY674) and the Ningbo Health Branding Subject Fund (PPXK2018-04).

REFERENCES

[1] Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, et al. Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol 2019(8)(4):394-405.

[2] Langsted A, Nordestgaard BG, Kastrup PR. Elevated lipoprotein(a) and risk of ischemic stroke. J Am Coll Cardiol 2019;74(1):154-66. https://doi.org/10.1016/j.jacc.2019.03.524

[3] Meschia JF, Worrall BB, Rich SS. Genetic susceptibility to ischemic stroke. Nat Rev Neurol 2011;7(7):369-78.

[4] Ruten-Jacobs LC, Larsson SC, Malik R, Rannikmae K, Consortium M, International Stroke Genetics C, et al. Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: Cohort study of 306,473 UK biobank participants. BMJ 2018;363:k4168. https://doi.org/10.1136/bmj.k4168

[5] Li Q, Wu H, Yue W, Dai Q, Liang H, Bian H, et al. Prevalence of stroke and vascular risk factors in China: A nationwide community-based study. Sci Rep 2017;7(1):16102. https://doi.org/10.1038/s41598-017-06694-1

[6] Deng GX, Xu N, Huang Q, Tan Y, Zhang Z, Li XF, et al. Association between promoter DNA methylation and gene expression in the pathogenesis of ischemic stroke: Aging (Albany NY) 2019;11(8):7663-7. https://doi.org/10.1080/23739748.2019.165628

[7] Lin RT, Hsi E, Lin HF, Liao YC, Wang YS, Joo SH. LINE-1 methylation is associated with an increased risk of ischemic stroke in men. Curr Neurovasc Res 2014;11(1):1-9.

[8] Lin HF, Hsi E, Huang LC, Liao YC, Joo SH, Lin RT. Methylation in the matrix metalloproteinase-2 gene is associated with cerebral ischemic stroke. J Investig Med 2017;65(4):722-49. https://doi.org/10.1152/jimd.2016.000277

[9] Macfarlane AJ, Perry CA, McIntosh MF, Lin DM, Stover PJ. Shmt1 heterozygosity impairs folate-dependent thymidine synthase capacity and modifies risk of ApoE-mediated intracerebral cancer risk. Cancer Res 2011;71(6):2098-107. https://doi.org/10.1158/0008-5472.can-10-1886

[10] Ganguly P, Alam SF. Role of homocysteine in the development of cardiovascular disease. Nutr J 2015;14:6.

[11] Jindal A, Rajagopal S, Winter L, Miller JW, Jacobsen DW, Brigman J, et al. Hyperhomocysteinemia leads to exacerbation of ischemic brain damage: Role of GnlzA NMDA receptors. Neurobiol Dis 2019;127:287-302. https://doi.org/10.1016/j.nbd.2019.04.012

[12] Low HQ, Chen CP, Kasiman K, Thalanthu A, Ng SS, Foo JN, et al. A comprehensive association analysis of homocysteine metabolic pathway genes in Singaporean Chinese with ischemic stroke. PLoS One 2011;6(9):e24757. https://doi.org/10.1371/journal.pone.0024757

[13] Xu G, Wang C, Ying X, Kong F, Ji H, Zhao J, et al. Serine hydroxymethyltransferase 1 promoter hypermethylation increases the risk of essential hypertension. J Clin Lab Anal 2018;33(5):e22712. https://doi.org/10.1002/jcla.22712

[14] Yang M, Vousden KH. Serine and one-carbon metabolism in cancer. Nat Rev Cancer 2016;16(10):650-62. https://doi.org/10.1038/nrc.2016.81

[15] Boehme B, Schelski N, Makridakis M, Hengsberger V, Vlahou A, Lang F, et al. Role of cytosolic serine hydroxymethyl transferase 1 (SHMT1) in phosphate-induced vascular smooth muscle cell calcification. Kidney Blood Press Res 2013;38(4):1124-21. https://doi.org/10.1007/s41022-012-0214-2

[16] Giusti B, Saracini C, Bolli P, Magi A, Martinelli I, Pevani F, et al. Early-onset ischaemic stroke: Analysis of 58 polymorphisms in 17 genes involved in methionine metabolism. Thromb Haemost 2010;104(2):231-42. https://doi.org/10.1160/09-11-074

[17] Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, et al. Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation 2017;14(1):87. https://doi.org/10.1186/s12974-017-0693-3

[18] Jia J, Zhou C, Pan R, Han L, Chen W, Xu X, et al. APOE hypermethylation is significantly associated with coronary heart disease in males. Gene 2019;689:84-9. https://doi.org/10.1016/j.gene.2018.11.088
