Population estimation of freshwater crocodiles (Crocodylus novaeguineae) and tree vegetation diversity at wildlife reserve of Mamberamo Foja, Papua, Indonesia

SUHARNO1,*, AKHMAD KADIR2, EDWARD SEMBIRING3, ASKHARI DG. MASIKI3, TAUFIK MUBARAK3, NAFLI LESSIL2, LUSIANA D. RATNAWATI3, DANIAL IDRIS3, JOHAN G. IMBENAI3

1Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Cenderawasih. Jl. Kamp. Wolker, Waena, Jayapura 99224, Papua, Indonesia. *email: haris774@gmail.com
2Department of Anthropology, Faculty of Social and Political Sciences, Universitas Cenderawasih. Jl. Kamp. Wolker, Waena, Jayapura 99224, Papua, Indonesia
3Papua Natural Resources Conservation Center. Jl. Raya Aepura, Kotajar, Jayapura 99351, Papua, Indonesia
4Intsia Foundation in Tanah Papua. Jl. Wahno, Aepura, Jayapura 99224, Papua, Indonesia

Abstract. Suharno, Kadir A, Sembiring E, Masiki AD, Mubarak T, Lessil N, Ratnawati LD, Idris D, Imbenai JG. 2021. Population estimation of freshwater crocodiles (Crocodylus novaeguineae) and tree vegetation diversity at wildlife reserve of Mamberamo Foja, Papua, Indonesia. Biodiversitas 22: 2928-2936. The structure and composition of vegetation in the conservation area have a major influence on the existence of other flora and fauna, including freshwater crocodiles (C. novaeguineae). Wildlife Reserve of Mamberamo Foja (WRMF) is a conservation area in Papua that aims to protect the habitat and existence of freshwater crocodiles. The purpose of this study was to estimate the number of freshwater crocodile populations and tree species diversity in the WRMF, Papua. The method used was a field survey. The crocodile survey was carried out using the spotlight night count method. Tree species diversity was assessed using the line-transect plot method in 6 different locations representing the Upper, Central, and Lower Mamberamo. The results of the investigation showed that the freshwater crocodile population in the WRMF was around 0.3-19.7 individuals per kilometer. The population of this freshwater crocodile was very high, with an average of 4.5 individuals per 1-kilometer distance. The highest population numbers were found in the upstream Mamberamo River area 6.22 ind./km, followed by the central Mamberamo (2.21 ind./km) and downstream Mamberamo area (2.05 ind./km). Crocodiles were found in the Mamberamo River and other river systems, such as swamps and lakes. The tree vegetation in this area is still relatively good, and there are 112 species, dominated by the Moraceae, Burseraceae, Myrtaceae, Rubiaceae, Lauraceae, Dipterocarpaceae, and Euphorbiaceae families. The results of this study are important as a basis for determining the conservation policy for freshwater crocodiles that have limited distribution.

Keywords: Conservation, habitat, tree diversity, Mamberamo river, Papua

INTRODUCTION

Tropical rain forests have ecosystems with complex dynamics that contain a variety of habitats that support various species. As a country located in tropical region, Indonesia is rich in biological resources (Kartikasari et al. 2012). Indonesia is located on the equator has a large forest area to be one of the centers of biodiversity in the world (Kartikasari et al. 2012; Kadir et al. 2020), including Crocodylus novaeguineae Schmidt, 1928 in Papua (Cox 2010; Man et al. 2011; Murray et al. 2019).

The crocodile (C. novaeguineae), based on Wildlife Conservation Law, Number 5, 1990 and Government Regulation No. 7 Year 1999, C. novaeguineae is a protected species (Kurniati et al. 2017). Wild harvest of C. novaeguineae is only allowed in specific areas of Papua and West Papua Provinces (Indonesia), and Papua New Guinea (PNG) (Montague 1984; Hall and Johnson 1987; Britton 2012; Murray et al. 2019). Based on the status of freshwater crocodiles in CITES Appendix II in 1990 and decree of the Minister of Agriculture, revealed that the utilization of crocodiles for commercial purposes is widely done, so that the status of its population in nature can be endangered (Kurniati et al. 2017). According to the International Union for Conservation of Nature (IUCN) Red List of Threatened Species 2019 status C. novaeguineae including lower risk/least concern that needs attention (Solmu and Manolis 2019).

Wildlife sanctuary is a nature reserve area that has the peculiarity/uniqueness of the type of wildlife and/or diversity of wildlife that for its survival requires efforts to protect and foster the population and habitat. Wildlife Reserve of Mamberamo Foja (WRMF) with an area of about 1.7 million hectares aims to protect and preserve the survival of animals (C. novaeguineae) so as not to become extinct and maintain their habitat. The habitat of freshwater crocodiles in this area includes lowland swamps dominated by freshwater systems including Mamberamo rivers, small rivers, lakes, ponds, and swamps. The WRMF area crosses the Mamberamo watershed. WRMF is administratively located in 12 districts in Papua, namely: Jayapura, Mamberamo Raya, Keerom, Sarmi, Central Mamberamo, Yalimo, Puncak, Tolikara, Yahukimo, Pegunungan Bintang, Intan Jaya, and Puncak Jaya. In the management
system, intensive coordination between districts is required, and important flora and fauna data is needed in this region.

On the other hand, population growth and land conversion are the main problems of forest area decline (Kadir et al. 2020). In such conditions, the susceptibility to forest destruction is quite high, which can result in the loss of various types of flora, fauna, and including the habitat where they live. To avoid the extinction of flora and fauna, one of the efforts is to conserve forest areas. Forest areas need to be protected and developed as an effort to maintain biodiversity (Indrawan et al. 2007; Hermawan et al. 2014).

The condition of plant diversity in conservation areas is very important because interactions of plants in forests affect the existence of living things of their inhabitants (Hunter 1996; Cape et al. 2012; IFACS 2014). Data on the diversity of tree species and their changes will be very important for monitoring conservation areas (Papua Regional Government 2012). The purpose of this study is to investigate the population of *C. novaeguineae*, habitat, and diversity of tree vegetation in the WRMF area, Papua. This data will be useful for planning, controlling, and monitoring conservation areas, especially the conformity of WRMF functions in Papua.

MATERIALS AND METHODS

Research area and period

This research was conducted in Wildlife Reserve of Mamberamo Foja (WRMF) conservation area, Papua, Indonesia. Field observations were conducted from November 2018 to January 2019. Sampling locations were conducted in four (6) different locations, namely Pagai Village in Airu Sub-district (Jayapura District/kabupaten), Dabra 2 Villages and Dormon River (Upper Mambearmo Sub-district) Korwate Pond (Rufaer Sub-district), and Kwerba Village (Central Mamberamo Sub-district), and Suaseso Village (Lower Mamberamo Sub-district) (Figure 1; Table 1). Plant species identification and data analysis were conducted in January-March 2019. Crocodile surveys were conducted spread within conservation areas (Table 2). Crocodile population data were obtained from the monitoring of Papua Natural Resources Conservation Agency (Balai Besar Konservasi Sumber Daya Alam, BBKSDA) Papua, which is conducted periodically every year with a location that is not always the same, but represents all regions.

![Figure 1. Study location of *Crocodylus novaeguineae* in the Wildlife Reserve of Mamberamo Foja (WRMF), Papua, Indonesia.](image_url)
Survey method of *Crocodylus novaeguineae*

The crocodile population survey was conducted with spotlight night count method (Mauger et al. 2012). Observations were made at night using a flashlight. Transportation tools used for surveying are speedboats, longboats, and boats. Some locations with difficult access conditions were reached on foot. Global Positioning System (GPS) is used to determine distance during the survey. Crocodiles found were recorded according to the age group, namely hatchlings (infants), juveniles (juvenile), and adults (Figure 2). The group of hatchling category crocodiles differs between the southern and northern populations of Papua, according to Cox (2010) the length of hatchlings ranges from 21-27 cm for the northern part of Papua. The habitat condition of freshwater crocodiles is qualitatively described.

Diversity of tree vegetation species

The research sampling site is part of the WRMF area representing all conservation areas. Six (6) designated locations represent areas spread from the Upper Mamberamo watershed to downstream in the Mamberamo river estuary area (Table 1). To see the diversity and structure of tree-level vegetation, it is done by transect method. Transect is done in every area of the village forest. Plot observation as much as 20 pieces each measuring 10 x 10 m for each location, so the total sampling vegetation about 2,000 m². The distance between the plots is about 20 m., which passes intermittently on the left and right of the transect line. The total plot carried out in 6 locations is 120 plots.

Identification of tree vegetation

Identification of tree vegetation species was conducted at the Biology Laboratory, Faculty of Mathematics and Natural Sciences, Cenderawasih University, Jayapura. Unidentified samples were sent to Herbarium Manokwariense for further identification.

Data analysis

The data were qualitatively analyzed. Data is organized in a table by taxonomic classes based on morphological recognition findings.

RESULTS AND DISCUSSION

Population of *Crocodylus novaeguineae*

Observations showed that freshwater crocodile populations in the WRMF area ranged from 0.3-19.7 individuals/km (data after 2001). This means that each kilometer-long cruising survey is found between 0.3-19.7 individuals (Table 2; Figure 3). The population of freshwater crocodiles was very high, with an average of 4.5 individuals per 1-kilometer distance passed in the survey. Mamberamo Foja area in the upper part (Dabra, Mamberamo to Pagai, Jayapura), is known to still have a higher population than the other two regions in central and downstream Mamberamo. In the central WRMF region, the population is only 2.21 individuals/km and the downstream is only 2.05 individuals/km. According to observations

Table 1. Observation sites in six (6) villages of WRMF area, Papua, Indonesia

Sub-district	Location (Village)	Coordinate	Alt. (m asl.)	Temp. (°C)
Airu	Pagai	S: 04°02’ 54.4”; E: 138°56’45.8”	60-100	26-28
Upper Mamberamo	Dabra 2	S: 03°16’32.2”; E: 138°37’11.2”	77-207	26-29
Upper Mamberamo	Dorman Times	S: 03°15’17.0”; E: 138°35’11.2”	52-93	26-30
Ruaer	Korwate Pond (Korwate)	S: 02°59’47.4”; E: 138°21’49.9”	51-55	26.5-30
Central Mamberamo	Kwerba	S: 02°38’27.3”; E: 138°24’93.3”	89-100	26-30
Downstream Mamberamo	Suaseso	S: 01°97’47.1”; E: 138°95’46.0”	50-100	27-29
made by Mauger et al. (2012) of *C. acutus* in the Pacific Costa Rica region between 2007 and 2009, the average was only about 1.2-4.3 ind./km., while in the Osa Conservation Area (ACOSA) between 2008 and 2009, about 2.9-14.1 ind./km.

The hatchling group was found to have a higher population than the juvenile and adult groups, based on the age groups of crocodiles found (Figure 3). The data revealed that the average population of adult crocodiles is smaller than that of hatchling and juvenile crocodiles. According to group interviews, crocodile hunting by the community has continued until the beginning of 2019. The study’s findings revealed that the WRMF habitat in the upper Mamberamo River (southern region) is in good shape. The habitat type of this area is a lowland swamp area dominated by sago plants (*Metroxylon sago*). The population in this area is not dense compared to the downstream which is the capital area of Central Mamberamo District. This condition supports the growth of crocodiles so that the crocodile population in WRMF is still high. The results of the 2018/2019 Evaluation of Functional Conformity Evaluation (EKF) team showed that this conservation area was inhabited by local residents who had existed before the establishment of Mamberamo area as WRMF.

The survey of crocodile population was conducted by means of transportation in the form of traditional boats, speed, longboats, and without means of transportation (walking). This method, of course, obtained diverse data. The utilization of boat transportation and without tools (walking) showed higher observations reaching 11.03 ind./km and 7.34 ind./km. The utilization of speedboats and longboats only obtained about 4.33 and 1.64 ind./km respectively (Figure 4). This suggests that crocodile observation by spotlight night count method is more effective by using traditional boats and on foot, compared to speedboats and longboats. This is likely due to the influence of machines used to affect crocodile activity. The sound of the machine will give the effect of crocodile discomfort on its habitat.

According to Richard et al. (2002), the crocodile population in the Mamberamo Foja area is very high. In fact, in addition to freshwater crocodiles (*C. novaeguineae*), some large reptiles such as giant labi-labi (*Pelochelys cantori*), and Irian turtles (*Elseya novaeguineae*) are also found in this area. These three types of fauna are known to be widely used by the community, and some are a source of food for local people. The implementation of freshwater crocodile population monitoring survey conducted by BBKSDA Papua Province, often faces various problems in the field. Similarly, when the survey team for this study. The rainy season is very disruptive to the observation process in the field, so the results are not maximized. The problem concerns the size of the area, the number of survey personnel, the costs needed, and most of the locations of the area are difficult to reach. Freshwater crocodile monitoring surveys have been started in 1987, and are still ongoing today.

Habitat of *Crocodylus novaeguineae*

The results showed that crocodiles are often found in freshwater water system areas. The condition of the area that has the majority of lowland swamp types becomes a suitable habitat for crocodile development. Lowland forest vegetation also supports the presence of crocodiles. Most crocodiles are found around the water system of rivers along the Mamberamo River. The water system of small and large rivers, swamps, ponds, and lakes becomes a comfortable habitat for freshwater crocodiles.

Good forest conditions support the development habitat of freshwater crocodiles in WRMF. Most of the swamp forest area in this lowland area is sago plantation forest, especially in upstream, and downstream areas. Some are hilly in the middle. Along with the Mamberamo River water system and river branches, it is known to grow various types of shrubs. *Saccharum spontaneum and Phragmites* and other grasses. According to Kurniati et al. (2017), crocodiles are often found in aquatic systems. The dominant plants in *Crocodylus siamensis* crocodile habitat found on the Mahakam River are *Hanguana malayana, Phragmites karka, and floating grass*. Furthermore, it is revealed that like most crocodiles, *C. novaeguineae* inhabits a variety of grassy and wooded swamps in lowland freshwater areas.

Figure 3. The average number of *Crocodylus novaeguineae* populations by age found in the Wildlife Reserve of Mamberamo Foja area, Papua, Indonesia

Figure 4. The estimated number of *Crocodylus novaeguineae* populations is based on means/means of transportation for observation
Area of survey	Times (years)	Age category	No. of inds.	Dens. (ind./km²)
Upper Mamberamo (Pagai-Dabra)		H J A EO		
River of Mamberamo Mati	2002 1	1 0 53 55	2.5	
	2003 17	0 73 90	7.5	
	2008 3	0 19 22	8.8	
River of Mamb. Mati	2012 0	0 15 16	3.3	
	2015 0	0 18 18	3.5	
River of Mamb. Mati	2017 0	0 18 18	1.0	
River of Diaro	2012 1	0 25 26	4.3	
	2015 0	0 22 22	3.5	
	2016 0	0 18 18	2.4	
River of Baso	2012 0	0 9 10	3.2	
	2015 0	0 5 5	1.1	
Kamika Pond	2001 0	47 316	404 13.5	
	2002 4 20	6 287 317	12.7	
	2003 55 0	0 167 222	18.5	
Waropen Pond	2008 16 11	0 56 83	16.6	
	2002 0	3 32 35	14.0	
	2003 9 1	0 49 59	19.7	
	2008 5 1	0 38 44	17.6	
Kweri Sato Pond	2012 0	0 2 2	1.3	
Kweri Dua Pond	2002 1	2 47 50	12.5	
	2003 7 0	2 43 52	10.4	
	2008 3 2	0 36 41	13.7	
Apuse Pond	2012 0 1	0 2 3	1.67	
Berneka Dua Pond	2002 1 4	0 45 50	10.0	
	2003 7 0	2 43 52	10.4	
Berneka Satu Pond	2008 3 1	0 19 27	10.8	
	2012 0 0	0 2 2	2.9	
Cabang Tiga Satu Pond	2015 0 0	0 10 10	1.8	
Berneka Dua Pond	2016 1 0	0 11 12	1.2	
Cabang Tiga Dua Pond	2008 4 0	0 30 34	13.6	
	2012 0 0	0 9 9	2.0	
	2015 0 0	0 31 31	13.8	
Tanjung Putus Pond	2012 0 0	0 24 25	6.3	
	2015 0 0	0 74 74	10.3	
	2016 4 0	0 4 4	3.3	
Benjaminus Pond	2017 0 0	0 24 24	1.5	
Sungai Besar	2017 0 0	0 2 2	0.6	
Average				**6.22**

Central Mamberamo (Dabra - Fo) - Crocodylus novaeguineae

- **River of Tayefe**
 - 2014: 0 0 0 12 12 0.8
 - 2015: 0 0 0 9 9 0.6
- **River of Aruwe**
 - 2014: 0 0 0 7 7 1.4
 - 2015: 0 1 0 11 12 1.2
 - 2016: 0 0 0 2 2 0.3
 - 2017: 0 0 0 4 4 0.4
- **Ajam Pond**
 - 2014: 0 0 0 14 15 1.5
 - 2015: 0 0 0 4 4 0.9
 - 2017: 0 0 0 2 2 0.3
- **River of Pakuja**
 - 2015: 0 0 0 24 24 3.8
- **River of Soi**
 - 2017: 0 0 0 19 19 3.2
 - 2002: 0 0 0 39 39 3.3
 - 2014: 0 0 0 14 14 2.2
 - 2015: 0 0 0 20 20 2.9
 - 2016: 0 0 0 4 4 0.6
- **Sobaki Pond**
 - 2014: 0 0 0 17 17 2.4
 - 2015: 0 0 0 6 6 0.9
 - 2016: 1 0 0 10 11 1.3
 - 2017: 0 0 0 21 21 2.1
- **Korwate Pond**
 - 2015: 0 12 8 70 90 8.6
 - 2016: 0 6 0 65 71 4.6
 - 2017: 0 0 0 17 17 2.6
- **River of Haya/Hoi**
 - 2014: 0 0 0 18 18 4.7
 - 2015: 0 0 0 18 18 4.7
 - 2016: 0 0 0 12 12 3.0
 - 2017: 0 0 0 13 13 2.8
- **River of Mamb.-Rouffaer**
 - 2015: 0 0 0 218 218 1.9
 - 2016: 0 2 0 84 86 0.6
 - 2017: 8 0 0 73 81 0.4
 - **Average**: **2.21**

Downstream Mamberamo - Crocodylus novaeguineae

- **Kwala Pond**
 - 2014: 0 0 0 9 9 3.8
 - 2015: 1 0 10 13 5.4
- **River of Disimbo**
 - 2014: 0 0 0 6 6 1.1
 - 2015: 2 0 7 11 2.0
- **River of Nanesi**
 - 2014: 0 0 5 5 0.6
 - 2015: 0 0 5 5 0.6
- **River of Ibbai**
 - 2014: 0 0 5 5 0.8
 - 2015: 0 0 4 4 0.6
- **Warmarisya Pond**
 - 2014: 0 0 29 32 8.7
 - 2015: 0 0 11 11 0.9
 - 2016: 0 0 8 8 0.8
 - 2017: 0 0 10 10 1.4
 - 2015: 2 1 0 11 14 1.9
 - 2014: 0 0 20 20 1.2
 - 2015: 0 0 21 21 1.2
 - **Average**: **2.05**

Notes: Calculations of the number of individuals are based on cross-distance surveys; H: hatchling (infant); J: juvenile; A: adult; EO: eye only

In general, the presence of crocodiles in their habitat depends on the natural conditions of an area. Some crocodile nesting sites have diverse habitats in the Northern Territory of Australia. Crocodiles are found in closed high grasslands, waterlogged plains with dominant plant species *Oryza*, open forest with dominant plant species *Melaleuca*, closed forests with dominant plant species *Eucalyptus*, *Melaleuca*, and *Pandanus*, salt-tolerant grasslands mangrove fringes, and open forest area *Eucalyptus miniata* (Fukuda and Cuff 2013). This condition also affects the density of hatchlings found especially related to the rainy season (Fukuda and Saalfeld 2014).
Diversity of tree vegetation species

The observations showed that there were about 112 types of tree-level vegetation in the WRMF area in Papua (Table 3). Based on the appearance of topography, the area of WRMF is divided into two important parts, namely the marshy forest area and the hill-mountain area in the central part. This condition affects the composition of vegetation in the WRMF area. The marshy forest area in the northern part of WRMF (north coast, around Lake Rombebai, to Kasonaweja) is dominated by mangrove forests in coastal areas (Mamberamo Raya and Sarmi Districts), swamp forests with dominant vegetation sago (Metroxylon sago), and lowland forests dominated by ironwood (Intsia palembanica and I. bijuga) and matoa (Pometia pinnata). In the secondary forest area 7 types of Ficus plants were found, with some types of plants typical of secondary forests such as Macaranga, Glochidion, and Nauclea.

Based on 112 species of tree vegetation found, most of the diversity levels are found in the central area of WRMF, especially in the Kwerba with the number of types 56, followed by the forest area Dabra (Upper Mamberamo) 52 species, forest area of Suaseso Village (Mamberamo downstream) 49 species, Pagai forest (upper) 44 species, while in the lake area only found about 16 types of plant groups of trees (diameter more than 10 cm) (Table 3; Figure 6). In the lake area and its surroundings, the habitat of growing trees is dominated by swamps. This causes the type of plants that are able to grow and develop less. According to de Fretes et al. (2002) in Dabra Sub-district at least 121 species of tree group plants were found, especially in the Furu river area and 90 species in the Tiri river. Both areas are dominated by Vatica rassak, Hopea sp., P. pinnata, I. bijuga, I. palembanica, and Garcinia sp.

In the area of WRMF in the central part (Kwerba and its surroundings) with the topography of hills to mountains dominated by vegetation species of tree plants, while sago plants do not dominate. In this area are found species of plants Ficus, Intsia, Syzygium, and Pometia. In the southern area of WRMF (Airu Sub-district, Jayapura) the dominant vegetation found among others is I. bijuga, Michelia sp., P. pinnata, Nauclea papuana, and Palaquium spp. In Dabra sub-district is known to be dominated by Gymmacranthera farqhiarana, Cinamnorum culliawaran, Lithocarpus rufovillosus, Sterculia macrophylla, P. pinnata, and Intsia sp. According to Suharno and Tanjung (2011), the lowland area of Papua is dominated by specific plants such as matoa (P. pinnata) and merbau (I. bijuga).

In marshy forest and lake areas, the Korwate Pond area is known to have a lower diversity. Based on rapid assessment, 16 types of plants were found, and dominated by sbaki plants (local name), Dillenia alata, Decaspernum, Tabernaemontana aurantiaca, Neonauclea acuminata, Syzygium sp., Nauclea spp., Intsia spp., Garcinia spp., Macaranga spp., and Ficus spp. The number of such types is smaller than other areas in the WRMF area.

In general, the Mamberamo Foja area is known to have a high variety of species, albeit with a small number of families. The family with the dominant number of species in the region comes from the families Moraceae, Burseraceae, Myrtaceae, Rubiaceae, Lauraceae, Dipterocarpaceae, and Euphorbiaceae. This information is supported by Kartikasari et al. (2012) which shows that the diversity of flora in Papua is quite high, but with a smaller number of families compared to other areas in Indonesia.

In the survey that has been conducted, it is indicated that in this area found another type of crocodile, namely C. porosus, although it can not be proven in detail because the crocodile samples found have not been caught. According to Hall (1989) that the C. novaeguineae and C. porosus species are two endemic crocodile species found in New Guinea, including Papua. C. porosus crocodile is an estuary crocodile that has a wide distribution and is mostly found in coastal lowland areas. According to Brackhane et al. (2018), the potential habitat for C. porosus in East Timor is limited to a narrow plain between the coast and the mountain ridges, and includes mangroves.

The existence of C. novaeguineae is found in the northern and southern parts of the Central Highlands, which stretch from east to west dividing the entire island into the north and south. However, the population of C. novaeguineae is not yet known for certain throughout the region (Hall 1989; Murray et al. 2019). Areas with aquatic systems, including freshwater and brackish water in coastal areas, are suitable habitats for crocodile development, including C. porosus (Britton 2012; Brackhane et al. 2018).

Crocodile conservation challenges in WRMF Area

The main challenges in managing and controlling crocodile populations at WRMF are land cover changes, land conversion, and crocodile hunting. The results of the identification of land closures in this area show that most of the population lives within the WRMF area. Population development and community migration culture are still the main problems in land use for housing needs. Population growth also affects the conversion of land into farmland, and other infrastructure facilities. Regional development is growing rapidly, so the development of the region both central and local government programs must be in line and need to consider the concept of sustainable development. The level of hunting of local communities also affects the population of freshwater crocodiles C. novaeguineae.

![Figure 5. Tree group plant diversity in WRMF, Papua, Indonesia](Image 300x109 to 546x254)
Table 3. Diversity of tree plants in the WRMF area, Papua, Indonesia

Types of plant	Location/Villages				
	Papua	Daha	Dorman	Kewa	Nossa
Aceratium sinuatum	+	+			
Actinodaphne nitida	+	+	+		
Aeglaia sp.		+	+	+	
Alphitonia mollucana	+	+	+	+	
Alstonia scholaris	+	+	+	+	
Antidesma baccatum	+	+	+	+	
Artocarpus sp.	+	+	+	+	+
Baccaraeaceae racemosa	+	+	+	+	
Barringtonia sp.		+	+	+	
Blumeodendron sp.		+	+	+	
Calophyllum euryphillum	+	+	+	+	
Canarium decumatum		+	+	+	
Canarium indicum	+	+	+	+	
Canarium sp.		+	+	+	
Canarium sp1.		+	+	+	
Canarium sp2.	+	+	+	+	+
Chisocheton ceramiques	+				
Cinammonum cullilawan		+	+	+	
Cryptocarya sp.	+				
Cynometra caulislaw	+	+	+	+	
Decasperma parviflorum	+				
Dillenia alata		+	+	+	
Dillenia sp.	+	+	+	+	
Dracontomelium edale	+	+	+	+	
Dracontomon sp.	+	+	+	+	
Dracontomon dao		+	+	+	
Elaeocarpus sphaericus	+	+	+	+	+
Euphorbiaceae (sp)	+	+	+	+	+
Ficus microcarpa	+	+	+	+	+
Ficus macrophylla	+	+	+	+	+
Ficus melanoncarpa	+	+	+	+	+
Ficus simplicissima	+				
Ficus variegate	+	+	+	+	+
Ficus treubii	+	+	+	+	+
Ficus sp.		+	+	+	
Ficus nodosa	+	+	+	+	+
Ficus villosa	+				
Filebrunea sp.		+	+	+	
Gaua bolageana	+	+	+	+	
Garcinia dulcis	+	+	+	+	
Garcinia picrophiza	+				
Garcinia sp.	+	+	+	+	
Geniostoma antherohricum	+	+	+	+	+
Geniostoma rupestre	+	+	+	+	+
Glochidion sp.	+	+	+	+	+
Gnetum gnemon	+	+	+	+	+
Gonolobas taxifolius	+	+	+	+	+
Haplopholis lanceolata	+	+	+	+	+
Hibiscus tiliaceus	+	+	+	+	+
Homalium fogifolium	+	+	+	+	+
Hopea iriana	+	+	+	+	+
Hopea papauna	+	+	+	+	+
Horsfieldia sylvestris	+	+	+	+	+
Hydrastis sp.	+	+	+	+	+
Intsia acumina	+	+	+	+	+
Intsia bijuga	+	+	+	+	+
Intsia palebanica	+	+	+	+	+
Leguminosae	+				
Lithocarpus aspericuspus	+	+	+	+	+
Lithocarpus rufivillosus	+	+	+	+	+
Litsea firma	+				
Litsea sp.	+	+	+	+	+
Litsea timoriana	+	+	+	+	+
Litsea tislingensis	+	+	+	+	+
Lithocarpus sp.					
Palaquium amboinenses	+	+	+	+	+
Palaquium sp.	+				
Pongos versteeghi	+	+	+	+	+
Pisonia umbelliflora	+	+	+	+	+
Pohon Sego (local name)	+				
Pohon Spagu (local name)	+				
Polyalthia sp.	+	+	+	+	+
Polyalia sp.	+	+	+	+	+
Pometia sp.	+	+	+	+	+
Pometia sp2.	+	+	+	+	+
Pometia sp3.	+	+	+	+	+
Sbaki (local name)	+				
Senonis grandifolius	+	+	+	+	+
Slowania sp.	+	+	+	+	+
Sterculia macrophylla	+	+	+	+	+
Sterculia sp.	+	+	+	+	+
Syzygium papauna	+	+	+	+	+
Syzygium sp.	+	+	+	+	+
Syzygium sp4.	+	+	+	+	+
Syzygium sp1.	+	+	+	+	+
Syzygium sp2.	+	+	+	+	+
Syzygium sp3.	+	+	+	+	+
Tabernaemontana aurantiaca	+				
Theobroma caco	+				
Timoniopsis sp.	+	+	+	+	+
Vatica papauna	+	+	+	+	+
Vatica rassak	+	+	+	+	+

Notes: sampling area is 12,000 m²; + present

Crocodiles in the category of children are often hunted for enlargement purposes and sold, while large size crocodiles are taken skin and part of the meat for consumption. Based on interviews with the public, it is known that crocodile hunting in this area is still high.
People hunt crocodiles for their skin and meat. Crocodile meat can be consumed by the community as a source of animal protein needs, while the skin is of high economic value. Some people make the hunt to increase the family’s economic income. Crocodile skin is sold in inches. One inch ranges from Rp. 25,000,- to Rp. 35,000,-. According to Brauer (2003), Brackhane et al. (2018), and Handono et al. (2014) the socioeconomic condition of the community is one of the factors to evaluate conditions related to the conservation status of flora and fauna.

Until now the hunt is still ongoing even with varying intensity for each region. Based on the results of interviews with the community, hunting is carried out to meet economic needs, especially from the processing of crocodile skin. In these conditions, the economic needs of the people in this region rest on local natural resources. The northern area of Mamberamo bordering the beach is dominated by mangrove plants. Magnuson (1980), Read et al. (2004), and Murray et al. (2019), revealed that one of the comfortable crocodile habitats is the mangrove area. According to Hall and Johnson (1987), the existence of *C. novaeguineae* had a major influence on the cultural and economic development of the local community. Therefore, According to Salem (2013), the great concern that needs to be protected is habitat and keeping crocodile populations stable which does not lead to the extinction process. Yule (2010) and Salem (2013) suggest that one of the potential loss of biological resources is habitats that affect ecosystems in an area. Related to this function, maintaining the integrity of the wildlife sanctuary becomes absolutely done. The business is not easy because WRMF has a large area that requires a lot of energy, cost, and time. Therefore, good cooperation between regional managers, governments, communities and stakeholders must be in line and sustainable.

ACKNOWLEDGEMENTS

We would like to express our gratitude to the head of BKKSDA Papua for granting permission for this study. We also appreciate the facilities and staff provided by the Function Conformity Evaluation Team (EKF) Mamberamo Foja 2018/2019 and the Head of Intsia Foundation in Tanah Papua (INTSIA) during the field survey.

REFERENCES

Brackhane S, Xavier FME, Gusmao M, Fukuda Y. 2018. Habitat mapping of the saltwater crocodile (*Crocodylus porosus*) in Timor-Leste. Herpetol Rev 49 (3): 439-441.

Brauer I. 2003. Money as a indicator: to make use of economics evaluation for biodiversity conservation. Agric Ecosyst Environ 98: 483-491. DOI: 10.1016/S0167-8809(03)00107-5.

Britton A. 2012. *Crocodylus novaeguineae* (Schmidt, 1928). Crocodilian species list. (online). Accessed December 5, 2019 at http://crocodilian.com/cnhc/csp_cnov.htm

Cox JH. 2010. New Guinea freshwater crocodile *Crocodylus novaeguineae*. In: Manolis SC, Stevenson C. (eds.) Crocodiles. Status Survey and Conservation Action Plan. 3rd ed. Crocodile Specialist Group, Darwin.

de Fretes Y, Rachman IA, Wally E. 2002. Vegetation of the Dabra Area, Mamberamo River Basin, Papua, Indonesia. RAP Bulletin of Biological Assesment No. 25. Conservation International, Washington DC., USA.

Fukuda Y, Cuff N. 2013. Vegetation communities as nesting habitat for the saltwater crocodiles in the Northern Territory of Australia. Herpetol Conserv Biol 8 (3): 641-651.

Fukuda Y, Saalfeld K. 2014. Abundance of saltwater crocodile hatchlings is related to rainfall in the preceding wet season in Northern Australia. Herpetologica 70 (4): 439-448. DOI: 10.1655/HERPETOLOGICA-D-13-00096R3.

Hall PM. 1989. Variation in geographic isolates of the New Guinea crocodile (*Crocodylus novaeguineae* Schmidt) compared with the similar, allopatic, Philippine crocodile (*C. mindorensis* Schmidt). Copeia 1: 71-80. DOI: 10.2307/1445607.

Hall PM, Johnson DR. 1987. Nesting biology of *Crocodylus novaeguineae* in Lake Murray District, Papua New Guinea. Herpetologica 43 (2): 249-258.

Handono N, Tanjung RHR, Zebua LI. 2014. Structure of vegetation and economic value of mangrove forest in Youtefa Bay, Jayapura City Regency, Papua. J Biologi Papua 6 (1): 1-11. [Indonesian]

Hergolacich, B., Karmenta, R., Atmajaya, S., Martius, C., Murdiyarso, D., Purnomo H. 2018. Managing peatlands in Indonesia: Challenges and opportunities for local and global communities. Center for International Forestry Research (CIFOR), Bogor, Indonesia.

Hermawan MT, Faida LRW, Wianto KF, Marhaento H, Anindia A. 2014. Pengelolaan Kawasan Konservasi. Gadjah Mada University Press., Yogyakarta. [Indonesian]

Hunter Jr. ML. 1996. Fundamental of conservation biology. Blackwell Science, Cambridge.

Indonesia Forest and Climate Support (IFACS). 2014. Planning of landscape conservation of Mamberamo Raya Regency, Papua Province. USAID-Indonesia Forest and Climate Support (IFACS), Jakarta. [Indonesian]

Indrawan M, Primarck RB, Supriatna J. 2007. Habitat and keeping crocodile populations stable which does not lead to the extinction process. Yule (2010) and Salem (2013) suggest that one of the potential loss of biological resources is habitats that affect ecosystems in an area. Related to this function, maintaining the integrity of the wildlife sanctuary becomes absolutely done. The business is not easy because WRMF has a large area that requires a lot of energy, cost, and time. Therefore, good cooperation between regional managers, governments, communities and stakeholders must be in line and sustainable.

Montague JJ. 1984. Morphometric analysis of *Crocodylus porosus* in Lake Murray District, Papua New Guinea. Aus. Wildl Res 7 (1): 149-156. 10.1071/WR9800149.

Man Z, Yishu W, Peng Y, Xiaobing W. 2011. Crocodilian phylogeny inferred from twelve mitochondrial protein-coding genes, with new complete mitochondrial genomic sequences for *Crocodylus acutus* and *Crocodylus novaeguineae*. Mol Phylogenet Evol 60 (1): 62-67. DOI: 10.1016/j.ympev.2011.03.029.

Mauger LA, Velez E, Cherksiss MS, Brien ML, Boston M, Mazzotti FJ, Spotila JR. 2012. Population assessment of the American crocodile, *Crocodylus acutus* (Crocodilia: Crocodylidae) on the Pacific coast of Costa Rica. Rev Biol Trop 60 (4): 1889-1901. DOI: 10.15517/btr.v60i4.2188.

Papua Regional Government. 2012. Kajian Lingkungan Hidup Strategis Raperdaya RTRW Provinsi Papua 2010-2030. Propinsi Papua, Jayapura. [Indonesian]

Read MA, Miller JD, Bell IP, Felton A. 2004. The distribution and abundance of the estuarine crocodile, *Crocodylus porosus*, in Queensland. Wildl Res 31: 527-534. DOI: 10.1071/wr02025.

Richard S, Iskandar DT, Tjatjaradu B. 2002. Amphibians and reptiles of the Dabra areas, Papua, Indonesia. RAP Bulletin of Biological
Assessment No. 25. Conservation International, Washington DC., USA.

Salem AHL. 2013. Habitat vulnerability for the Nile Crocodile (Crocodylus niloticus) in Nasser Lake (Egypt). Transylv Rev Syst Ecol Res 15 (1): 19-32. DOI: 10.2478/trser-2013-0003.

Solmu G, Manolis C. 2019. Crocodylus novarginaeae. The IUCN Red List of Threatened Species 2019: e.T46591A3010398. DOI: 10.2305/IUCN.UK.2019-2.RLTS.T46591A3010398.en.

Suharno, Tanjung RHR. 2011. Matoua (Pometia sp): Potency, domestification, and their agriculture. Pustaka Pelajar, Yogyakarta.

Tanjung RHR, Suharno, Kalor JD. 2012. Vegetation analysis and potency of non-timber forest in forest area at Pagai, Aim District, Jayapura Regency, Papua. Jurnal Biologi Papua 4 (2): 54-62. [Indonesian]

Yule CM. 2010. Loss of biodiversity and ecosystem function in Indomalayan peat swamp forests. Biodivers Conserv 19: 393-409. DOI: 10.1007/s10531-008-9510-5.