Detecting Relevance during Decision-Making from Eye Movements for UI Adaptation

Anna Maria Feit*
ETH Zurich

Lukas Vordemann*
ETH Zurich

Seonwook Park
ETH Zurich

Caterina Bérubé
ETH Zurich

Otmar Hilliges
ETH Zurich

ABSTRACT

This paper proposes an approach to detect information relevance during decision-making from eye movements in order to enable user interface adaptation. This is a challenging task because gaze behavior varies greatly across individual users and tasks and ground-truth data is difficult to obtain. Thus, prior work has mostly focused on simpler target-search tasks or on establishing general interest, where gaze behavior is less complex. From the literature, we identify six metrics that capture different aspects of the gaze behavior during decision-making and combine them in a voting scheme. We empirically show that, this accounts for the large variations in gaze behavior and out-performs standalone metrics. Importantly, it offers an intuitive way to control the amount of detected information, which is crucial for different UI adaptation schemes to succeed. We show the applicability of our approach by developing a room-search application that changes the visual saliency of content detected as relevant. In an empirical study, we show that it detects up to 97% of relevant elements with respect to user self-reporting, which allows us to meaningfully adapt the interface, as confirmed by participants. Our approach is fast, does not need any explicit user input and can be applied independent of task and user.

1 INTRODUCTION

Many decisions we make throughout the day are based on the information provided by a user interface (UI). For example, deciding which house appliance to order online, which job to apply for, or selecting a location for a hike. Designing UIs that support decision-making can be difficult. Showing all information might not be useful due to device constraints [Kajan et al. 2016] or to avoid information overload [Hwang and Lin 1999]. Showing the right information is crucial for the decision quality [Papismedov and Fink 2019], but identifying it can be hard since users perceive the relevance of information differently (e.g. [Orquin and Loose 2013]), an aspect that cannot be foreseen at design time. Thus there arises a need for adaptive UIs that understand which parts are relevant for a user, ideally without having to interrupt them.

In this paper, we propose an eye-tracking based approach to detect the relevance of displayed information while a user is making a decision. We demonstrate that it can be flexibly used for different UI adaptation schemes (such as the emphasis or suppression of relevant or irrelevant information) across different application domains without requiring any explicit user input. While directly asking the user is a good way to understand which part of a UI is relevant to them, this compromises user experience and can be unreliable [Aribarg et al. 2010; Lieberman et al. 2001]. Eye tracking has proven to be an objective measure for a person’s attention during visual search [Duchowski 2002; Salojärvi et al. 2005]. However, gaze behavior during decision-making is even more user- and context-dependent [Orquin and Loose 2013]. For instance, it can vary drastically across users who employ different decision strategies (see [Gigerenzer and Gaissmaier 2011; Orquin and Loose 2013; Payne et al. 1992; Simon 1957]), but also for the same user as they transition from obtaining an overview of the UI to comparing relevant information to finally validating their decision [Gidlof et al. 2013; Russo and Leclerc 1994]. This makes detecting information relevance during decision-making a challenging task and prior work mostly considers simpler visual search tasks.

The goodness of a relevance detector highly depends on the UI adaptation scheme it is applied to. In particular, it is important to minimize the risk of usability issues due to incorrect adaptations [Findlater and Gajos 2009]. For example, wrongly highlighting irrelevant elements in a menu can induce a performance cost [Findlater et al. 2009]. In such a case, a successful relevance detector should minimize false positives (content wrongly predicted as relevant). On the other hand, when removing irrelevant elements, we need to prioritize the maximization of true positives (content correctly identified as relevant) to not hide any relevant information. Ultimately, a good relevance detector should not reduce usability or induce any cognitive dissonance between the adapted UI, and what the user expects to see.
Embracing these requirements, we propose an approach to detect information relevance during decision-making from user eye movements. We build on prior work that showed the efficacy of simple gaze metrics (e.g., fixation duration and overall dwell time) in inferring covert attention (the mental focus of a person) from user gaze behavior [Alt et al. 2012; Faro et al. 2010; Kajan et al. 2016]. We select six well-established gaze metrics that capture different aspects of the gaze behavior during decision-making and can thus account for variations in decision strategies across users. Each metric can be seen as a weak relevance detector which makes a binary decision on whether an element is relevant or not. These decisions are considered as individual votes which are summed and thresholded to yield a final decision. This is motivated by the machine learning literature on multiple classifier systems [Polikar 2006] and, loosely speaking, has similarity to ensemble methods.

Through varying the threshold of votes we obtain a set of recognizers that trade-off true positives and false positives in different ways. This allows us to easily choose the right recognizer for a specific UI adaptation scheme. We validate this on a pilot dataset of stock-trading decisions and choose two thresholds that yield different trade-offs. We develop a proof-of-concept application of a realistic apartment share website and apply the resulting recognizers to visually highlight relevant information or fade out irrelevant ones, based on the gaze data of user deciding whether they should apply for a room. In an empirical study with 19 participants, all but one stated that the adaptation correctly highlighted relevant information and faded the irrelevant ones, without experiencing any usability issues. We find that the two applied voting schemes correctly recognize 97% and 80% of elements reported as relevant by participants, at a false positive rate of 42% and 17% respectively.

In summary, we propose an unobtrusive approach to detect information relevance from eye movements during decision-making. It combines six gaze metrics in a voting scheme which captures the different gaze characteristics during decision-making. Varying the number of votes yields different recognizers that are effective in emphasizing or suppressing information in an adaptive UI. Our method is simple to understand and can be easily implemented, for which we will provide an open-source implementation.

2 BACKGROUND & RELATED WORK

To detect the relevance of information or infer user’s interest or intent, researchers have explored the use of implicit feedback mechanisms, such as mouse and keyboard interactions [Jayaratna et al. 2015; Kelly and Belkin 2001]. This line of work, eye tracking has proven to be an unobtrusive and objective measure for a person’s attention [Duchowski 2002; Salojarvi et al. 2005] and was suggested to be more reliable than feedback from mouse movements, clicks, or scrolling [Buscher et al. 2012b; Kelly and Teevan 2003; Navalpakkam et al. 2013]. However, it is a major challenge to infer covert attention (i.e., the mental focus of a person) from eye movements and relate it to the relevance of the displayed information. One reason is that eye gaze is not always strategically controlled but also stimulus-driven [Borji and Itti 2013], i.e., attracted by visually salient features of a UI. Therefore, researchers have proposed various gaze metrics to aggregate the noisy eye movements and analyze the underlying cognitive processes (e.g., see [Jacob and Karn 2003] for an overview).

In particular, the sum of fixations (the number of times the user focuses an area of interest (AOI)) and the overall dwell time (time spent looking at an AOI) have been successfully used to infer users’ interest. However, most of the prior work focused on well-defined tasks, such as visual target-search, where the ground truth is well-defined (e.g., [Aula et al. 2005; Dumais et al. 2010; Gwizdka 2014; Kajan et al. 2016; Salojarvi et al. 2003]). Only few researchers have considered more unconstrained settings where ground truth labels are not available, mostly to establish general interest in displayed information [Alt et al. 2012; Nguyen and Liu 2016; Qvarfordt and Zhai 2005]. These combine few well-established gaze metrics but are highly tuned to their specific applications.

This paper is one of few that tackles the more complex task of analyzing gaze behavior during decision-making. In the following, we give a brief introduction to the decision-making literature that informed our approach and review prior work that used eye movements to adapt a UI.

2.1 Gaze behavior during decision-making

Decision-making is a complex cognitive process, during which eye movements play an important role in order to retrieve displayed information, e.g., to encode and process it for the first time or to update a person’s working-memory [Orquin and Loose 2013]. However, the relevance of information varies even during the decision process of an individual. We refer to Orquin and Loose [2013] for an extensive review of eye movements during decision-making and here summarize the phenomena fundamental to our work.

2.1.1 Decision strategies. The theory of bounded rationality suggests that people prioritize information according to their individual decision strategy or heuristics [Simon 1957], as a consequence of their cognitive capacity limitations (for a review see e.g. [Gigerenzer and Gaissmaier 2011; Orquin and Loose 2013]). Accordingly, gaze behavior varies according to a person’s decision strategy. At the same time, learning influences the eye movements, in that repeated exposure to the same decision decreases the time it takes to fixate relevant elements, while the duration of fixations increases [Jovancevic-Misic and Hayhoe 2009]. Characteristic for the gaze behavior during decision-making, are strategic just-in-time return-fixations on relevant information in order to reduce the working-memory load. The specific trade-off between retrieving information through fixations or from working memory varies across users and tasks [Droll and Hayhoe 2007]. Our selection of gaze metrics is motivated by these findings.

2.1.2 Cognitive stages during decision-making. Several researchers have argued that the decision-making process can be separated into three cognitive stages which are characterized by different eye movements [Gidlof et al. 2013; Russo and Leclerc 1994]. Following Russo and Leclerc [1994], we refer to them as (1) Orientation, (2) Evaluation, and (3) Verification. In the orientation stage the user obtains an overview of the available options or information. It is characterized by a scanning pattern with a series of shorter fixations without any return-fixations on already encoded information. During the evaluation stage, the user compares the information determined as relevant during orientation, which is marked by many return-fixations. The final verification stage again uses short
fixations on the most relevant information to validate the decision (see [Orquin and Loose 2013]). An exact separation of these stages based on changes in gaze behavior is difficult and disputed in the literature [Gidlof et al. 2013; Russo and Leclerc 1994]. However, we can use them as a theoretical motivation for choosing gaze metrics that each capture a different aspect of the decision process in order to obtain a more holistic view of a person’s gaze behavior than overall dwell time or number of fixations alone could provide.

2.2 UI adaptation from gaze behavior

Eye gaze has been recognized as an unobtrusive feedback channel that provides important information about a user’s attention [Qvarfordt and Zhai 2005]. This opens opportunities for adaptive user interfaces. A large body of work has focused on enhancing the query-based search of images [Faro et al. 2010; Klami 2010; Klami et al. 2008] or text-documents [Aula et al. 2003; Bhatattacharya et al. 2020; Buscher et al. 2008; Dumais et al. 2010]. There, information about eye gaze provides feedback on the relevance of the displayed search results or text documents. Similarly, advertisements on a website were adapted based on relevance inferred from overall dwell time [Alt et al. 2012]. Several works have analyzed the gaze behavior while exploring a map [Krejtz et al. 2017], for example to adapt complex legends to only show relevant items [Göbel et al. 2018], to highlight important points of interest to facilitate planning [Göbel and Kiefer 2019], or to follow-up on user’s interests [Qvarfordt and Zhai 2005]. Other systems extract relevant information to compile a summary for later use [Buscher et al. 2012a; Nguyen and Liu 2016].

UI adaptation based on user’s cognitive load or context has recently been shown for mixed-reality settings [Gebhardt et al. 2019; Lindlbauer et al. 2019] where the design of a good UI can be difficult as the user’s context frequently changes, similar to other applications of ubiquitous computing [Dourish 2004].

Most of these work detect relevance by using well-established gaze metrics often in a way that is highly tuned to their specific application. The most related work to ours is Gebhardt et al. [2019], where they detect relevance during purchasing decisions in an unsupervised fashion using a reinforcement learning approach. Their method is highly task specific and requires retraining for each new task. In the following, we show that our relevance detector is successful across the very different decision tasks of financial trading and room search, and works without any prior training.

3 SUCCESSFUL RELEVANCE DETECTION FOR ADAPTING A USER INTERFACE

The goal of our work is to detect the relevance of information displayed by a user interface (i.e. of UI elements) in order to enable adaptation of the UI. The adaptation techniques considered here can, broadly speaking, be divided into two types. They either (1) emphasize relevant content, e.g. through coloring, rearranging, or replicating UI elements; or (2) suppress irrelevant information, e.g. by greying out, removing, or hiding elements in a different part of the UI (see e.g. [Deuschel and Scully 2016; Findlater and Gajos 2009]).

Correspondingly, a successful recognizer in the first case identifies a subset of relevant UI elements (true positives), whereas in the second, we are interested in identifying non-relevant ones (true negatives). At the same time, it is important to consider the consequences of misrecognitions: if incorrect adaptations lead to usability issues or high interaction costs, the adaptive interface is not successful [Findlater and Gajos 2009].

In the first case, emphasizing content that is not considered as relevant by the user (false positives) could result in cognitive dissonance. For example, highlighting irrelevant information through coloring deflects attention and makes it harder for the user to focus on relevant content. In contrast, failing to emphasize an element regarded as relevant by the user (false negatives) has a comparably low cost, since its appearance does not change in comparison to the non-adapted version. As a result, a successful recognizer for emphasizing information should achieve a low false positive rate.

In the second case of suppressing less relevant information, an incorrect adaptation can hide information that is regarded as relevant (false negatives). This can lead to high interaction costs in order to recover such information, if even possible. In contrast, failing to hide an element because it is wrongly recognized as relevant (false positives) does not change the user interface in comparison to a non-adapted version. As a result, a successful recognizer for suppressing information should achieve a high true positive rate.

In conclusion, depending on the adaptation scheme, emphasizing or suppressing information, a recognizer has to trade-off true positives and false positives differently. In the following we present our voting scheme and show that it allows us to flexibly choose a good trade-off by simply adjusting the number of votes required to recognize a UI element as relevant.

4 METHOD

As discussed above, gaze behavior during decision-making varies significantly across people depending on their decision strategy. At the same time, the eye movements of a single user vary as she goes through different stages of decision-making (orientation, evaluation, an verification). As a consequence, often-used gaze metrics, such as overall dwell time or number of fixations alone cannot suffice to capture the relevance of each UI element, hereafter called area of interest (AOI). For example, when comparing two AOIs during the evaluation phase, the gaze frequently returns to the same AOI albeit for a short amount of time. The refixation count is a good indicator of its relevance, which would not be captured by the overall dwell time. To account for these variations, we select six well-established gaze metrics from the literature (see Table 1) that are able to capture the relevance of elements from the different gaze characteristics at each decision-making phase. We propose to combine them in a voting scheme with which one can flexibly trade-off true positives and false positives by changing the minimum number of metrics required to indicate relevance of the AOI. This is shown based on a pilot dataset of stock investment decisions.

4.1 Gaze metrics

Table 1 shows the six gaze metrics we selected to capture different characteristics of the gaze behavior associated with the three stages of decision-making. It includes metrics that capture the relevance of AOIs for establishing an initial overview of available information; metrics that capture the in-depth analysis of relevant information; and metrics that summarize the overall attention given to an AOI.
We collected a pilot dataset of gaze behavior during decision-making. We recorded eye gaze using a Tobii Pro Spectrum with a frequency of 150 Hz. Information about the stock was organized within 12 AOIs. For each participant, we cast a vote in order for an AOI to be detected as relevant. In the next section, we exhaustively analyze the effect of varying the number of metrics required to determine if a vote was cast by any of the six gaze metrics associated to the same stage as redundant and require votes on an AOI’s relevance, we imitate a single-expert-classifier system while avoiding the need for training data.

4.2 Voting approach

Our proposed voting scheme considers each metric as informing a single-expert-classifier. For instance, by comparing ODT values across n AOIs in an interface, we can determine if the value of a specific AOI is comparably high, indicating its relevance. By allowing multiple metrics to vote on an AOI’s relevance, we imitate a multiple-classifier system while avoiding the need for training data.

We say that a metric casts a vote for a given AOI as being relevant, if its standard score (z-score) for the AOI is positive. Intuitively, this means that for the given AOI, the gaze characteristic captured by the metric deviates from the average across all AOIs. Note, that in the case of TFF, a negative z-score indicates relevance (shorter time to first fixation). The z-score is computed per stimuli (i.e. for each decision made with a UI). If gaze data of several stimuli is available, the z-scores are averaged before a vote is cast. To finally detect the relevance of an AOI, we count the number of votes cast by the 6 metrics and compare it to a threshold. Requiring a higher number of votes would yield a lower number of AOIs being classified as relevant. In the next section, we exhaustively analyze the effect of this threshold on the true and false positive rate of the voting scheme based on a pilot dataset of financial trading decisions.

In contrast to prior work, our voting approach requires no ground-truth data from a target person in order to tune thresholds for combining different metrics [Klami 2010; Kozma et al. 2009]. Moreover, it assumes no fixed number of relevant AOIs [Klami 2010; Kozma et al. 2009] but can flexibly select a varying number of AOIs.

4.3 Effect of vote threshold

We conclude that a good trade-off for emphasizing relevant information is achieved when requiring a minimum of 3 votes each from a different stage (hereafter called Vote3Stages). Here, this
yields a low false positive rate (18%) reducing the risk to induce cognitive dissonance by emphasizing irrelevant information, while still detecting 48% of relevant elements. In the case of suppressing irrelevant information, a threshold of 2 votes (hereafter called Vote2Metrics) yields a high true positive rate (80%), reducing the risk of suppressing relevant information which would result in a higher interaction cost. The false positive rate of 44% is acceptable, given that this is achieved after observing only one decision and without any explicit user input.

5 APPLICATION TO UI ADAPTATION

We developed a proof-of-concept application that visually adapts the interface using the Vote2Metrics and Vote3Stages recognizers. We chose a more commonly encountered scenario where users are faced with a decision whether to apply for an advertised apartment. This allows for natural and diverse personal preferences to exist. Indeed, a brief survey among university students indicated that while most found information such as price, location, and contact duration to be highly important, the relevance of information on potential cohabitants, amenities, or nearby landmarks varied.

To maximize the external validity of our findings, we carefully designed a realistic and useful interface in terms of content, layout, and adaptation method. The application shows individual room advertisements with information structured into 13 AOIs (including title), telling about a the room, its price and location, roommates, and additional details such as estimated commute time to the university (see Figure 2a). These were scraped from public apartment share websites, generated via the Google Maps API, or synthesized. We implement two UI adaptation schemes with the goal to guide users’ attention without being obtrusive. The application can suppress irrelevant AOIs as detected by Vote2Metrics through reducing their opacity to 0.5. Thus, they blend into the background while still being legible (see Figure 2b). Image-based AOIs such as embedded maps and photos are made to be monochrome to further reduce their visual saliency. The application can highlight relevant AOIs as detected by Vote3Stages by drawing thick-bordered red boxes around them (see Figure 2c).

5.1 User study

We assessed the performance of our relevance detectors and their usefulness for UI adaptation in a lab study where we asked participants to use our adaptive room search application to decide whether they would apply to a displayed advertisement.

5.1.1 Participants. Twenty participants (9 male, 11 female) were recruited through university mailing lists. The majority of them were students from various backgrounds. The average age was 26.2 years (SD = 4.6). The requirement for participation was having experience in searching for a room in a shared apartment and having a reasonable monetary budget. One participant had to be excluded for being beyond the budget (= 1700 Swiss Francs) that our application could support in displaying realistic advertisements. All the other participants (N=19) had searched for a room in a shared apartment in the past 3.73 months on average (SD = 2.93) and had a mean budget of 810.50 Swiss Francs (SD = 225.31). 10 participants had vision corrections (6 with glasses, 4 with contact lenses).

5.1.2 Setup & experimental design. The task consisted of a repetitive binary decision. Participants examined 35 room advertisements and decided for each whether they would apply for the particular room. After announcing a decision they were asked about their confidence on a 7-point Likert scale. Advertisements were shown in one of three conditions: default (no adaptation), highlighting and fading, referring to the adaptations described above and shown in Figure 2. We used a within-subjects design and randomized the order of conditions as described below. We used a Tobii Pro Spectrum screen-based eye-tracker (with chin rest) recording at 150 Hz with a 24-inch monitor.

5.1.3 Procedure. The user study was conducted in German. Participants first gave their informed consent for data collection. Before starting the task they were asked to describe the criteria they consider important when searching for a room in a shared apartment. This was done for participants to form a mental model of their preferences beforehand. After that, we showed them a randomly generated set of 35 room advertisements, none of which were more than 10% above their stated budget. During the first 4 advertisements, participants could familiarize with the interface. Eye-tracking data from the subsequent 10 advertisements (without any adaptation) were used to detect the relevance of each AOI. The last 21 advertisements were split into three blocks, each displaying 7 advertisements in one of the three conditions, where the order of conditions was randomized. After every advertisement, the user was asked to state whether they would apply for this room. The person’s eye gaze was recorded while the advertisements were displayed. The eye-tracker was calibrated using the built-in 5-point calibration procedure at the beginning of the study and between every block. The recorded gaze data was of high quality with a low calibration error ($M = 0.14^\circ$) and high precision ($SD = 0.23^\circ$,
Table 2: Average true and false positive rates for recognizing relevance of AOIs. The chosen thresholds achieve different trade-offs and perform better than single metrics.

Metric	TP rate (SD)	FP rate (SD)
Vote2Metrics	97% (7)	42% (12)
Vote3Stages	80% (19)	17% (11)
TFF	54% (18)	44% (15)
FPG	79% (24)	31% (9)
SPG	74% (20)	32% (7)
RFX	79% (19)	27% (14)
SFX	89% (15)	28% (12)
ODT	87% (15)	26% (13)

Table 3: Overview of the dependent variables measured in the three study conditions.

Metric	Default	Fading	Highl.	Note
Task execution	20.22s	20.8s	19.9s	
time (SD)	(6.12)	(7.87)	(6.54)	
Confidence	5.55	5.6	5.61	1 (not confident) -
(SD)	(0.5)	(0.74)	(0.66)	7 (very confident)
Perceived inform. density (SD)	4.53	4.68	4.9	1 (overwhelming) –
(SD)	(1.61)	(0.95)	(1.52)	7 (balanced)
Adapt. facilitates	-	3.21	4.63	1 (never) –
task (SD)	-	(1.51)	(2.11)	7 (always)
Preference count	8	4	6	1 undecided
We proposed an approach to detect the relevance of information displayed by a UI during decision-making from user gaze behavior. Informed by the eye-tracking and decision-making literature, we carefully selected a set of six gaze metrics which each capture different aspects of people’s gaze behavior. By combining them in a voting scheme we can obtain a more holistic view of a person’s attention during the decision process to infer the relevance of the displayed information. At the same time, this makes the detection robust against variations in the gaze behavior across users due to differences in decision strategies. Indeed, our voting schemes (Vote2Metrics and Vote3Stages) performed decidedly better compared to the individual metrics (cf. Table 2). Although there are several more gaze metrics used by prior work such as duration of last fixation, inter-saccadic jumps or Krejtz’s coefficient κ [Krejtz et al. 2017], we limited our approach to the most commonly used ones that covered gaze characteristics during the different stages of decision-making. This also ensures that our relevance detector is not tuned to a specific task but applicable to very different domains, as shown in this paper.

6.1 Generalizability of the approach

We evaluated our approach with data from two applications. Both had a static graphical layout and presented the user with a yes / no decision. The latter is not a requirement for the applicability of the voting scheme. The three stages of decision-making which form the theoretical basis of our approach were associated also with other types of decisions, such as when choosing between different alternatives [Russo and Leclerc 1994]. However, future works needs to assess the applicability of our approach for dynamic interfaces. In such a case, the voting scheme could be changed to take into account a longer or re-occurring orientation phase of the user for example by reducing the weight of votes casted by metrics associated with the first stage. We organized the presented information into well-structured AOIs to ensure reliable gaze data. As eye tracking technology improves, the same approach can be used to detect information relevance for individual pieces of information also in less structured interfaces.

6.2 Trading-off true and false positives

For an adaptive UI to be successful, special care needs to be taken in order to avoid wrong adaptations that could increase the interaction cost or induce cognitive dissonance [Findlater and Gajos 2009]. Accordingly, in this paper, we have argued that depending on whether a UI emphasizes relevant content or suppresses irrelevant information, a recognizer should aim to minimize its false positive rate or focus on maximizing true positives. We have shown that by varying the minimum number of required votes, the trade-off between true and false positives can be easily adjusted in a predictable way. Figure 5 shows that this is the case in both the stock-trading as well as the room-search dataset, indicating that this property generalize across different task domains and holds from the first observed decision, as well as for ten observations. Our work enables UI designers to easily determine the voting scheme that yields the best trade-off for their specific application.

6.3 Effectiveness of the UI adaptation

The large majority of users confirmed the efficacy of our room search application in detecting relevant information and many preferred the adapted version. By using different recognizers for
highlighting and fading we could minimize the risk of cognitive dissonances or usability issues due to wrong adaptations. Nevertheless, on average we did not find a significant impact on task execution time, confidence in decision-making or perceived information load. At the same time, participants showed large individual differences. For example, we could observe individual cases where the adaptation guided the eye gaze of the participant, allowing them to better focus their information retrieval process, as shown for an exemplary participant in Figure 4. A possible explanation could be that the chosen adaptations (red boxes and reduced opacity) are not effective in facilitating the decision process in the first place. The few studies that assess the effect of visual adaptations of graphical UIs are often contradictory and do not consider a large range of adaptation techniques [Deuschel and Scully 2016]. While this paper offers a method to detect information relevance, we need future work to establish better ways to effectively adapt UIs to facilitate the decision-making process. Such work should take into account the concern of some users that they are manipulated by the application and therefore preferred the default and non-adapted version. Similar concerns were observed by prior work [Park et al. 2018; Yang and Wigdor 2014]. Adaptive interfaces could offer explicit control mechanisms for users to customize adaptations or to review and change the inferences made about them.

6.4 Relation to supervised classification

While prior work introduced no directly comparable methods, machine learning methods such as logistic regression have been employed in related areas of visual target search and image relevance [Klami 2010]. Unlike our method, such learning-based methods require ground-truth data from the exact same task and setting. For a fair comparison in the case where the task is known, we performed a leave-one-out cross-validation on our room-search data for several machine learning methods. Table 4 summarizes the results and compares them against Vote2Metrics and Vote3Stages. It shows a clear dominance in true positive rates for both our methods, with Vote3Stages having a comparably low false positive rate. We also find that our methods score well in terms of F1 score – a metric often used for evaluating binary classifier systems.

More interesting, however, is to see how these methods generalize to new tasks and settings. We thus performed two experiments: (a) one where we train the machine learning methods on the room search data (10 decisions), and evaluate on the stock trading data (1 decision), and (b) the other way around. As seen in Figure 5, our approach shows the predictable trade-off through varying the number of votes in both task domains, whereas the machine learning methods have no clear consistency in performance, all achieving low false positive rates in one and high true positive rates in the other case. This would make it challenging for a UI designers to anticipate how their system would perform in practice, whereas our method enables them to fit the system’s behavior to the chosen adaptation scheme by selecting an appropriate threshold.

7 CONCLUSION

This paper contributes an approach for detecting the relevance of information displayed by a UI during the decision-making process of a user. This could enable new adaptive applications that change their interface in response to the interest of a specific user to increase the user’s experience and facilitate her decision-making. Based on two empirical datasets, we show that our approach can trade-off true and false positive rates in a manner where performance changes can be anticipated. It does this without requiring any explicit feedback from users by only observing their gaze behavior during the decision process. Therefore, we combine well-established metrics from the eye-tracking literature in a voting approach which ensure that the recognition is robust to the large variations in gaze behavior during the decision process and across users who might employ different decision strategies. In contrast to supervised learning approaches, it does not require any training or parameter-tuning and is simple to understand, implement and adjust. An open-source python implementation of our approach is available at https://ait.ethz.ch/projects/2020/relevance-detection

ACKNOWLEDGMENTS

The authors thank Christoph Gebhardt for insightful discussions. This project has received funding from the European Union’s Horizon 2020 research and innovation program / from the European Research Council under the Grant Agreement No. StG-2016-717054.
Munich.
Seonwook Park, Christoph Gebhardt, Roman Rädele, Anna Maria Feit, Hana Vrzakova,
Niraj Ramesh Dayama, Hui-Shyong Yeo, Clemens N. Klokmose, Aaron Quigley,
Antti Oulasvirta, and Otmar Hilliges. 2018. AdaM: Adapting Multi-User Interfaces
for Collaborative Environments in Real-Time. In Proceedings of the 2018 CHI Con-
ference on Human Factors in Computing Systems (CHI ’18). ACM, New York, NY,
USA, Article 184, 14 pages. https://doi.org/10.1145/3173574.3173758
John W Payne, James R Bettman, Eloise Coupey, and Eric J Johnson. 1992. A construc-
tive process view of decision making: Multiple strategies in judgment and choice.
Acta Psychologica 80, 1-3 (1992), 107–141.
Robi Polikar. 2006. Ensemble based systems in decision making. IEEE Circuits and
systems magazine 6, 3 (2006), 21–45.
Pernilla Qvarfordt and Shumin Zhai. 2005. Conversing with the User Based on Eye-gaze
Patterns. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (CHI ’05). ACM, New York, NY, USA, 221–230. https://doi.org/10.1145/
1054972.1055004
J Edward Russo and France Leclerc. 1994. An eye-fixation analysis of choice processes
for consumer nondurables. Journal of consumer research 21, 2 (1994), 274–290.
Jarkko Salojarvi, Ilpo Kojo, Jaana Simola, and Samuel Kaski. 2005. Can relevance be
inferred from eye movements in information retrieval. In Proceedings of WSOM,
Vol. 3. 261–266.
Jarkko Salojarvi, Kai Puolamäki, Jaana Simola, Lauri Kovanen, Ilpo Kojo, and Samuel
Kaski. 2005. Inferring relevance from eye movements: Feature extraction. In Work-
shop at NIPS 2005, in Whistler, BC, Canada, on December 10, 2005. 45.
Herbert A Simon. 1957. Models of man; social and rational. (1957).
Jishuo Yang and Daniel Wigdor. 2014. Panelrama: Enabling Easy Specification of
Cross-device Web Applications. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’14). ACM, New York, NY, USA, 2783–2792.
https://doi.org/10.1145/2556288.2557199
A APPENDIX

The following image shows the financial trading interface used in the pilot study. Participants were asked to evaluate a stock quote and make an investment decision. The displayed information is organized into 12 AOIs. The recorded gaze was used to test our voting approach in comparison to self-reported ground-truth.

The following image shows a larger version of Figure 2, the room search application. Similar to the financial dashboard above, information about a room is spatially grouped into 12 AOIs to ensure reliable gaze information.

12m2-Zimmer, zentral und ruhig in Zürich-Altstetten

Fall	Preis	CHF
Zimmergroesse	32m²	
Eingemeindung	26.07.2019	
Laufzeit: Unbegrenzt		

Objekt	Wohnungsnummern	65.2m²
Stockwerk: 1		
Zimmerzahl: 3		
Rechts: 1		
Haupthaus: geheimer Altar		

Zusammensetzung

Sprachen	Deutsch
Raucher: Nichtraucher auf dem Balkon	

Fahrzeuge

| ETN Baselland: 32.01.2019 |
|---|---|
| ETN Holzingerberg: 24.03.2019 |