The human collagen beta (1-O)galactosyltransferase, GLT25D1, is a soluble endoplasmic reticulum-localised protein

BMC Cell Biol. 2010 May 14;11:33

Jolanda M.P. Liefhebber
Simone Punt
Willy J.M. Spaan
Hans C. van Leeuwen
Abstract

Glycosyl transferases transfer glycosyl groups onto their substrate. Localisation partially defines their function. Glycosyl transferase 25 domain 1 (GLT25D1) was recently shown to have galactosyltransferase activity towards collagens and another well known substrate, mannose binding lectin (MBL). To gain more insight in the role of galactosylation of lysines in the Gly-X-Lys repeats of collagenous proteins, we investigated the subcellular localisation of GLT25D1. Immunofluorescence analysis of GLT25D1 expressed in the human hepatoma cell line (Huh7), revealed a perinuclear lattice-like staining, resembling localisation to the endoplasmic reticulum (ER). Possible targeting signals, an N-terminal signal sequence and a C-terminal ER-retention signal, were identified using prediction programs. These signals were then investigated by constructing a series of epitope-tagged forms of GLT25D1 that were analysed by immunofluorescence and western blotting. In agreement with the predictions, our results show that GLT25D1 is directed to the ER lumen as a soluble protein and retained there. Moreover, using two endoglycosidase enzymes EndoH and EndoF, we demonstrate that the putative bi-functional glycosyl transferase itself is a glycoprotein. Additionally we examined co-localisation of GLT25D1 with MBL and lysyl hydroxylase 3 (LH3, PLOD3), which is a protein able to catalyse hydroxylation of lysine residues before they can be glycosylated. We demonstrate overlapping localisation patterns of GLT25D1, MBL and LH3. Taken together our data indicate that galactosylation of collagenous proteins by the soluble GLT25D1 occurs in the early secretory pathway.
Membrane association of NS4b-CTD

Chapter 5

Introduction

Hydroxylation and subsequent glycosylation of lysine residues is a characteristic of collagens and proteins containing a collagen-like region (collectins) 1-3. These proteins contain repeats of Gly-X-Y motifs, where lysines present at the Y-position can be galactosylated 4,5.

Collagens and collectins are built up of three polypeptide chains, which wind together to form a triple helix. The Gly-X-Y repeats, where X is often a proline, allow tight coiling of the chains as the small glycines fit into sterically restricted spaces where the three chains come together 6.

The function of the lysine linked sugars is not fully understood, but this posttranslational event occurs before triple helix formation 7 and mutations in these residues clearly affect the oligomerisation state resulting in aberrant secretion 8. Mutation of two lysines to arginines in the Gly-X-Lys repeat of mannose binding lectin (MBL), which is involved in neutralisation of invading micro-organisms by triggering the complement cascade, resulted in inefficient complement activation 8. At the protein level glycosylated lysines are suggested to play a role in folding, stability and prevention of inter-chain cross-linking 4,8,9.

Lysyl hydroxylase enzymes catalyse the hydroxylation reaction on lysines, after which the residue can be glycosylated 10. Recently, two new genes responsible for the galactosylation of Gly-X-Y repeats were described. Using affinity chromatography and tandem mass spectrometry, Schegg et al. identified two glycosyltransferase GT25 family members, GLT25D1 and GLT25D2, to encode galactosyltransferases involved in transfer of galactose to hydroxylysine residues in MBL and collagen 11. Attachment of galactose occurs via the β (1-O) bond to the hydroxylated lysine (Cδ), assigning these proteins to β (1-O) galactosyltransferases.

Most members of glycosyltransferases (GT) are localised to the Golgi, but GTs can also be observed in the cytosol, nucleus, mitochondria, endoplasmic reticulum (ER), on cellular membranes, secreted from the cell or widely distributed between all these 12. Their distinct subcellular localisation most likely reflects their role in glycosylation pathways. For example, the subsequent arrangement in which glycan synthesis takes place in the Golgi apparatus can often be related to the location of the glycosyltransferases in the cisternae 13. Here we examined the cellular localisation of GLT25D1 relative to one of its reported substrates, MBL, which is produced in
liver cells. We also identified ER-targeting signals within GLT25D1 causing it to localise to the early secretory pathway.

Methods

Signal predictions
Prediction of signal peptides: http://www.cbs.dtu.dk/services/SignalP/ 15. Prediction of N-glycosylation sites: http://www.cbs.dtu.dk/services/NetNGlyc/.

Plasmid construction
To construct epitope-tagged GLT25D1 expression plasmids; the sequence was amplified by PCR from GLT25D1 full-length clone, IRAKp961P01217Q (imaGenes, Berlin, Germany), using specific primers, see Table 1. The PCR products were digested with KpnI and XbaI and ligated into pCDNA3.1mychisB (Invitrogen) similarly digested with KpnI and XbaI. This resulted in the construction of expression vectors containing a 10-residue Myc-epitope-tag at its C-terminus. In order to construct C-terminal HA-epitope-tagged GLT25D1 expression constructs (GLT25D1-HA, ∆signal sequence-GLT25D1-HA), the Myc-epitope sequence was XbaI – Pmel cut and replaced with an XbaI – Pmel fragment coding for the HA-epitope. For construction of the RDEL at the extreme C-terminus (GLT25D1-MycRDEL, HA-GLT25D1-MycRDEL), the constructs were AgeI - Pmel cut and replaced with a fragment coding for RDEL. For construction of GLT25D1 with an internal Myc-epitope-tag (GLT25D1 FL Myc-int.) after the signal sequence, two annealed oligos with protruding TGCA nucleotides (see Table 1) were ligated into the GLT25D1 gene cut with restriction enzyme Sbf-I, which generates complementary ends (CCTGCA|GG).

Cell culture and transfection
Human hepatoma cell line Huh7 was grown in Dulbecco’s Modified Eagle’s Medium supplemented with non-essential amino acids, L-glutamate, Penicillin and Streptavadin. Trypsin was used to subculture the cells. Cells were transfected using Amaxa Cell line Nucleofactor kit T (Lonza), program T016 and 4µg of DNA.

Antibodies
The following antibodies were used: anti-PDI (Stressgen), anti-Giantin (Alexis Biochemicals), anti-ERGIC53 (Alexis Biochemicals), anti-LH3 (Abnova), anti-Myc
Membrane association of NS4b-CTD

(mouse, immunofluorescence) (Invitrogen), anti-Myc (rabbit, immunofluorescence) (Abcam), anti-Myc (mouse, western blotting) (Roche) and anti-HA (mouse) (Abcam), Donkey-anti-mouse-cy3 (Jackson), Donkey-anti-rabbit-cy3 (Jackson), Goat-anti-mouse-Alexa488 (Invitrogen), Goat-anti-rabbit-Alexa488 (Invitrogen), Goat-anti-mouse-Alexa633 (Invitrogen) and Goat-anti-mouse-HRP (Dako).

Table 1 - Primers used to generate expression constructs

Construct	Forward Primer	Reverse Primer
HA-GLT25D1-Myc (1)	GTGGGTACCATGTACCCATACGATGTTCCAGATTACGCCGCGGCGGCCGCCGCCGCCGCCGCCGC	TAGTCTAGAGAGAGTTCATCCCGGGCAGCAC
GLT25D1-Myc (2)	GTGGGTACCATGGCGGCGGCCCCACGCGC	Reverse primer as for HA-GLT25D1-Myc
∆ signal sequence -GLT25D1-Myc (3)	GTGGGTACCATGGCGGCGGCCCCACGCGC	Reverse primer as for HA-GLT25D1-Myc
GLT25D1-Myc (4)	GTGGGTACCATGGCGGCGGCCCCACGCGC	Reverse primer as for HA-GLT25D1-Myc
HA-GLT25D1-∆RDEL (9)	GTGGGTACCATGGCGGCGGCCCCACGCGC	Reverse primer as for HA-GLT25D1-Myc
GLT25D1-Myc internal tag (10)	Oligo 1, GGAACAAAAACTCATCTCAGAAGAGGATCTGCA	Oligo 2, GATCCTCTTCTGAGATGAGTTTTTGTTCCGAGCAC

Immunofluorescence

Cells were fixed with 3% paraformaldehyde in PBS (154 mM NaCl, 1.4 mM phosphate, pH 7.5) 24 h post transfection. PFA was quenched using 50 mM NH4Cl in blockbuffer, which contained 5% fetal calf serum (FCS) in PBS. The cells were permeabilised with 0.1% TritonX-100 in blockbuffer and stained with primary antibodies diluted in blockbuffer for 1 h. Next the coverslips were washed with blockbuffer and incubated with secondary antibody diluted in blockbuffer for 1 h. After washing with glycinebuffer (10 mM glycine in PBS), PBS and water, the coverslips were mounted with Prolong mounting medium (Invitrogen). Fluorescence images were captured using Leica TCS SL confocal microscope, 63x Plan Apo oil immersion objective (zoom approximately three times), appropriate filter settings
and sequential scan modes. Images were optimised with Adobe Photoshop CS2. Profile plots were generated using ImageJ (NIH).

SDS-PAGE and western blotting

After separation on SDS-PAGE gels, proteins were transferred to PVDF membranes (Hybond P, GE-Healthcare) using a Semi-Dry blot apparatus (Biorad). Membrane blocking and antibody incubations were performed using 0.5% Tween-20, 5% non-fat, dry milk (Campina) in PBS. Since all secondary antibodies were conjugated to horseradish peroxidase, the proteins were visualised using enzyme-catalysed chemiluminescence (ECL+, GE-Healthcare) and Typhoon Imager (GE-Healthcare).

De-glycosylation assay

Cells transfected with GLT25D1-FL-MycHis6 or GLT25D1-ΔSS-MycHis6 were lysed after 16 h in isotonic buffer, which contains 20 mM Tris pH 7, 1 mM MgCl₂, 15 mM NaCl, 240 mM sucrose and 10 mM imidazole, using a ball bearing homogeniser (Isobiotec, Heidelberg Germany). Following centrifugation of the cell lysates at 800 хg for 10 minutes, supernatants were incubated with cobalt-beads (Talon) for 2 h under continuous rotation. Proteins binding to the beads were eluted using the isotonic buffer now containing 190 mM imidazole. Eluates were split into three portions to de-glycosylate or not. One sample was boiled for 10 min in Laemmli buffer and subsequently treated with Endoglycosidase H (New England Biolabs) in 50 mM sodium citrate for 3.5 h or overnight at 37°C. Another sample was adjusted to 1% NP40, followed by boiling for 10 min. N-Glycosidase F (EndoF) (Roche) was added to this sample and incubated for 3.5 h or overnight at 37°C. The third sample was directly examined by SDS-PAGE.

Modular structures of GLT25D1

A multiple sequence alignment of the strongly similar sequences corresponding to GLT25D1 (Swiss-Prot:Q8NBJ5), GLT25D2 (Swiss-Prot:Q8IYK4) and GLT25D3 (Swiss-Prot: Q5T4B2) was created using AlignX (VectorNTI, invitrogen) with the ClustalW algorithm (default settings). This sequence alignment was used as input for the HHpred comparison tool (http://toolkit.tuebingen.mpg.de/hhpred). Selected: database pdb70, Max. PSI-BLAST iterations: 0, other settings default. The region corresponding to aa 48 - 299 of GLT25D1 produced a hit with the structure of pp-GalNAc-T10 (PDB ID: 2D7I, belonging to the CAZY family GT-2/PF00535), probability 92.6, E-value-0.006, P-value 3E-7. The region corresponding
to aa 331 - 525 of GLT25D1 produced a hit with the structure of the catalytic Domain Of Mouse Manic Fringe (PDB ID: 2J0A18, belonging to the CAZY family GT-3119, probability 43, E-value-0.15, P-value 0.00076. The indicated sequences of GLT25D1, including gaps and insertions created by the HHpred, were structurally modelled onto the backbone of these structures, 2D7I and 2J0A, using Protein Homology/analogY Recognition Engine20.

Results

GLT25D1 localises mainly to the ER

To elucidate to which particular compartment (tagged-) GLT25D1 was targeted, we compared the localisation with subcellular markers by immunofluorescence in human hepatoma cell line Huh7 (Fig.1). Dual staining of the internally Myc-tagged GLT25D1 transfected cells using antibody to the endoplasmic reticulum (ER)-resident protein, protein disulphide isomerase (PDI) together with the Myc-antibody demonstrated virtually complete overlap (yellow colouring), showing clear ER localisation of GLT25D1 (Fig.1). Co-localisation can be quantified using Pearsons correlation, where -1 means no overlap and 1 complete co-localisation. The Pearsons correlation calculated for PDI compared to GLT25D1 was 0.58, meaning considerable overlapping patterns. We furthermore examined the ER-Golgi intermediate compartment (ERGIC) and Golgi, using ERGIC53 and giantin respectively. Figure 1, however shows only minor overlap between GLT25D1 and ERGIC/ Golgi with Pearsons correlations of 0.13 and 0.04 respectively. Detailed inspection of many transfected cells showed no altered ER or Golgi distribution in GLT25D1 transfected compared to non-transfected cells (Fig. 1 and data not shown). Together these data indicate GLT25D1 mainly localises to the early secretory pathway; particularly ER.

Predictions of GLT25D1

A first step towards identifying the mechanisms responsible for directing GLT25D1 to the ER is defining subcellular localisation signals by using prediction algorithms (See Methods). Consistent with our observed ER localisation, we noted that the N-terminal 40 amino acids encompass a potential ER signal sequence, including a hydrophobic core region (h-region), a positively charged N-terminus (n-region) and a potential cleavage site between position 36 and 37 (Fig.2). Furthermore, upon
examining the C-terminus of the protein we noticed that the four extreme C-terminal residues Arg-Asp-Glu-Leu (RDEL) strongly resemble the tetrapeptide sequence KDEL, which causes retention in the ER21. Both predictions point to possible insertion of GLT25D1 into the ER and, if cleavage occurs, release from the ER membrane into the ER lumen. In order to investigate these potential targeting signals a series of deletions from the N-terminus as well as the C-terminus, including epitope tags on the opposite side, were made to observe their effect on localisation (Fig.3A).

N-terminal signal sequence targets GLT25D1 to the ER

We first studied the localisation of GLT25D1 with the putative signal sequence deleted (GLT25D1-ΔSS-Myc-tagged) compared to full-length GLT25D1 (GLT25D1 FL-HA-tagged). As shown in Figure 3B little overlap was evident with the full-length protein and the ΔSS protein, the latter displaying a diffuse cytosolic staining. This strongly suggests that the extreme N-terminus is a genuine signal sequence and targets the protein to the ER. Furthermore, when the N-terminal signal sequence of GLT25D1 was fused to GFP (SS-GFP), a reticular expression pattern was observed in a few cells (data not shown).

Cleavage of the GLT25D1 signal sequence

Next to the signal sequence a potential cleavage site is predicted (c-region, Fig.2). Cleavage of this N-terminal signal of GLT25D1 was analysed by blotting total cell lysate of cells transfected with N-terminally HA-tagged GLT25D1 construct (Fig.3A: HA-FL-Myc, construct 1). As shown in Figure 3C, the N-terminal HA-tagged GLT25D1 protein (Fig.3C: lane1, Total, anti-HA) was not visible with an anti-HA antibody, suggesting that the N-terminus was cleaved off. This construct is also tagged at the C-terminus with a Myc-tag that was detected in the total cell lysate, showing that the protein was indeed correctly expressed (Fig.3C: lane1, Total, anti-Myc). When Huh7 cells were transfected with GLT25D1 only Myc-tagged at the C-terminus (Fig.3A: FL-Myc, construct 2) identical protein size was detected compared to GLT25D1 tagged on both sides (Fig.3C: lane1 and 2, Total, anti-Myc). This furthermore indicates that the N-terminal signal sequence must be cleaved, since both proteins have a distinct N-terminus, which should have resulted in a different size in the absence of cleavage. Note the size difference between the full-length GLT25D1 construct and the GLT25D1 construct with a deleted signal sequence (Fig.3C: compare lanes 2 and 3, Total, anti-Myc), which is caused by protein
Figure 1 - Subcellular localization of Glycosyltransferase 25 domain 1 protein

Huh7 cells were transfected with full-length Glycosyltransferase 25 domain 1 containing an internal Myc-tag (GLT25D1) (See Methods for more details). After 24 h of expression, cells were fixed and subjected to immunofluorescence analysis. Cells were double labelled for GLT25D1 by anti-Myc (shown in red) and for the cellular markers (shown in green). ER is visualised by anti-protein disulfide isomerase (PDI) (top panels), ER-Golgi intermediate compartment by anti-ERGIC53 (middle panels) or Golgi by anti-giantin (bottom panels). Yellow observed in the overlay indicates overlap of red and green signal. Pearsons correlation of PDI and GLT25D1 is 0.58, ERGIC53 and GLT25D1 is 0.13, and giantin and GLT25D1 is 0.04.
glycosylation and will be explained below. Our findings are furthermore confirmed with other constructs, FL-MycRDEL, HA-FL-MycRDEL, HA-FL and HA-ΔRDEL (Fig. 3C: lanes 6, 7, 8 and 9, Total, anti-Myc and anti-HA). The N-terminal HA-tag is not detected in lanes 7, 8 and 9 and a similar molecular weight of the constructs HA-FL-MycRDEL and FL-MycRDEL is observed. Hence, apparent by these results, the signal sequence of GLT25D1 is cleaved.

Carboxy terminal RDEL retains GLT25D1 in the ER

Proteins targeted to the ER that lack a specific retention signal are secreted or transported to the plasma membrane. Since the hydrophobic signal sequence of GLT25D1 is clearly cleaved off and its potential hydrophobic membrane anchor lost, the protein could be secreted in the cell culture medium. In contrast, if the C-terminal residues RDEL represent an ER retrieval signal, GLT25D1 would be

![Schematic representation of Glycosyltransferase 25 domain 1, including various predicted motifs](image)

Figure 2 - Schematic representation of Glycosyltransferase 25 domain 1, including various predicted motifs

Top: Homology based structural models of the tandem glycosyltransferase domains. Bottom: Linear representation of GLT25D1 with possible signal sequence, ER retention signal and N-linked glycosylation sites indicated. Verification and discussion of these predictions are described in this article.
retained. We therefore examined the presence of the tagged GLT25D1 constructs in the cell culture medium. The constructs HA-FL and HA-FL with RDEL deleted (HA-FL-ΔRDEL) could not be shown to be present in the medium (Fig.3C: lanes 8 and 9, Medium, anti-HA), because the HA recognition epitope tag is cleaved off together with the signal sequence. Transfected HA-FL-Myc, FL-Myc and FL-HA could be detected with a C-terminal tag in the medium of Huh7 cells (Fig.3C: lanes 1, 2, and 4, Medium, anti-Myc and anti-HA). However, addition of an epitope tag (either Myc or HA) at the C-terminus of GLT25D1 could interfere with the RDEL retention function, resulting in (partial) secretion. When we compare localisation of GLT25D1-HA tagged and GLT25D1 internally Myc-tagged (GLT25D1 FL Myc-int.), we observe large overlapping patterns (Supplemental figure 1). Assuming that the internal tag reflects endogenous proteins best, the tagging seems to influence localisation only slightly.

In order to preserve the RDEL at the extreme C-terminus, we constructed RDEL at the end of two constructs, HA-FL-MycRDEL and FL-MycRDEL. In contrast to HA-FL-Myc and FL-Myc, both these constructs could not be detected in the medium (Fig.3C: lanes 6 and 7, Medium, anti-Myc), indicating that the RDEL is an ER-retention signal for GLT25D1. Additionally, as anticipated protein without the signal sequence ΔSS-Myc and ΔSS-HA, which are located in the cytosol, were not observed in the hepatocyte cell culture medium (Fig.3C: lanes 3 and 5, Medium, anti-Myc and anti-HA). Taken together these data clearly indicate that RDEL retrieves GLT25D1 to the ER.

Cleavage and retrieval of GLT25D1 could indicate that the protein is soluble. To confirm this we performed a membrane-floatation gradient experiment (Supplemental figure 2). As marker for integral membrane proteins we used calnexin and PDI was used as a type of ER soluble protein. As anticipated, calnexin is observed in the membrane-floating fractions with a peak signal present in fraction 7, while PDI is mainly found in the non-floating, bottom fractions. The bulk of GLT25D1 is observed in the bottom fractions of the gradient, indicating the protein is not an integral membrane protein.

GLT25D1 is N-linked glycosylated

Unexpectedly there is a substantial size difference between full-length GLT25D1 proteins, which are cleaved in the ER, and proteins with a deleted ER signal sequence (ΔSS) (Fig.4A: compare lane 1 with 2 and Fig.3C: compare lanes 1, 2 and 4 with lanes 3 and 5, Total, anti-Myc and anti-HA). The signal sequence deletion constructs
A)

	N-tag	C-tag	Construct	FL	ΔSS	RDEL
1	HA		HA-FL-Myc	FL		
2			FL-Myc	ΔSS	HA	
3			ΔSS-Myc		HA	
4			FL-HA		HA	
5			ΔSS-HA		HA	
6			FL-MycRDEL		HA	
7	HA		HA-FL-MycRDEL		HA	
8	HA		HA-FL		HA	
9	HA		HA-ΔRDEL		HA	

B) GLT25D1 FL-HA (4) GLT25D1 ΔSS-Myc (3) Overlay

C)

Construct	1	2	3	4	5	6	7	8	9
N-tag	HA						HA		
C-tag	Myc	HA		HA		HA			
Total									

| anti-Myc | | | | | | | | | |
| anti-HA | | | | | | | | | |

Medium									
anti-Myc									
anti-HA									
were made starting at the predicted signal cleavage site and should therefore be of equal size. The higher molecular weight of the processed full-length proteins might be explained by posttranslational modifications occurring in the ER, which cannot take place on proteins with a deleted signal sequence contained in the cytosol. A potential modification increasing the molecular weight of a protein occurring in the ER is Asn-linked glycosylation. To assess glycosylation, we employed digestion with Endoglycosidase H and F (EndoH, EndoF), which cleave high mannose-containing oligosaccharides. GLT25D1 was purified from Huh7 cells transfected with FL-Myc (Fig.3A: construct 2) or ∆SS-Myc (Fig3A: construct 3), then treated with EndoH/EndoF, separated by SDS-PAGE and western blot analysis (Fig.4A) (See for more details Methods). Figure 4A shows that after de-glycosylation the full-length protein decreases in molecular weight similar to the delta-signal sequence protein. This illustrates that the size difference is caused by glycosylation. When the full-length protein was only shortly incubated with EndoH or EndoF, we could discern, besides the full-length protein, three additional products (Fig.4B). These four bands likely correspond to three glycosylations of GLT25D1.

GLT25D1 co-localises with mannose binding lectin and lysyl hydroxylase

The report by Schegg et al., which elegantly demonstrated that GLT25D1 shows a strong galactosyltransferase activity towards mannose binding lectin (MBL), prompted us to compare the intracellular location of GLT25D1 and its substrate MBL. To correlate the expression of GLT25D1 with MBL in liver cells, where MBL is synthesised, we transfected GFP-tagged MBL and internal Myc-tagged GLT25D1 into Huh7 cells and performed immunofluorescence analysis. In Figure 5A GLT25D1 is shown in red and MBL in green (Fig.5A: top, first two panels), they both have a...
perinuclear and reticular staining. MBL localises intracellular predominantly to the ER, though also accumulates in foci (Fig.5A: top, first panel) that were previously shown by Nonaka et al. to be ER exit sites. In accordance with ER localisation, substantial co-localisation of GLT25D1 with MBL is illustrated by yellow colouring in the overlay (Fig.5A: bottom, first panel).

Hydroxylation of lysines, to which galactosyltransferases transfer galactose, is carried out by lysyl hydroxylases (LH). These enzymes act upstream of glycosyltransferases. We therefore triple labelled the cells with LH3, which is one of the three LH isoforms in humans, depicted in blue (Fig.5A: top, third panel). The reticular and perinuclear staining of LH3 is similar to GLT25D1, which is also shown in the overlay of Figure 5A in purple (Pearson correlation: 0.42) (Fig.5A: bottom, second panel). In summary, there seem to be partially overlapping patterns of GLT25D1, MBL and LH3 (Fig.5A: bottom, third panel, white staining). To further substantiate co-localisation, we generated an intensity graph of the signals from each of these three proteins (Figure 5B). In the plot we observe similar profiles, indicating comparable sub-cellular localisation of GLT25D1, MBL and LH3, with exception of structures close to the nucleus containing MBL.

Figure 4: N-linked glycosylation of Glycosyl transferase 25 domain 1

A. Full-length GLT25D1 (FL) or GLT25D1 with the signal sequence deleted (∆SS) constructs were transfected into Huh7 cells. Both constructs were carboxy terminal tagged with MycHis6, to purify proteins using Co²⁺-beads and to detect in western blotting. Cell lysates are shown in the first two lanes after separation on SDS-PAGE and western blotting using an antibody against Myc. The purified proteins were subjected to either none (-) or Endoglycosidase H (EndoH) or F (EndoF) treatment (See for more details Methods). Results for FL protein are shown in lanes 3 to 5 and for ∆SS protein in lanes 6 to 8.

B. Partial de-glycosylation treatment of GLT25D1 full-length (FL).
Figure 5: Co-localisation of Glycosyl transferase 25 domain 1 with Mannose binding lectin and Lysyl hydroxylase 3

A. Huh7 cells were co-transfected with Mannose binding lectin fused to GFP (MBL-GFP) and full-length GLT25D1 tagged with Myc internally (GLT25D1), and analysed by immunofluorescence after 24 h of expression. MBL was detected directly due to GFP and is shown in green. GLT25D1 and lysyl hydroxylase 3 (LH3) were visualised using antibodies against Myc or LH3 and are presented in red and blue respectively. When red and green signals overlap this is observed as yellow, red and blue as purple and red, blue and green as white. Pearson correlation of GLT25D1 and MBL is 0.53, GLT25D1 and LH3 is 0.42, and LH3 and MBL is 0.45.

B. A profile plot with signal intensities from MBL (green), GLT25D1 (red) and LH3 (blue) along the line drawn in the overlay on the left.
Discussion

The human protein GLT25D1 was reported to have galactosyltransferase activity towards mannose binding lectin (MBL), transferring galactose to hydroxyllysine residues in the Gly-X-Lys repeats \(^\text{11}\). In this report, we examined the GLT25D1 localisation by immunofluorescence and made deletion mutants of GLT25D1 to ascertain whether the predicted subcellular targeting signal sequences were functional (Fig.2 and Fig.3A). It should be noted that exogenous over-expression might influence localisation due to saturation of the transport machinery. We performed our studies with a human hepatoma cell line, Huh7, because MBL is produced mainly by liver cells \(^\text{14}\). Additionally, we confirmed by mass spectrometry analysis that GLT25D1 is normally expressed in these cells (Observed peptides are shown in Supplemental figure 3). Moreover, identical results were obtained in an additional cell line VERO, derived from monkey kidney epithelial cells. We found that GLT25D1, after being targeted to and cleaved in the ER (Fig.1 and Fig.3C), appears primarily in the ER most likely due to a functional ER retention signal, RDEL (Fig.3C). Although GLT25D1 gets secreted when a C-terminal tag is present, no secretion was found when the extreme four amino acids are RDEL, showing that these represent a functional ER retention signal (Fig.3C). This modified but related to KDEL carboxyl-terminal tetrapeptide has been shown to direct intracellular retention for several other proteins \(^\text{21}\). Moreover GLT25D1 is highly sensitive to Endoglycosidase H, which is able to cleave non-complex N-linked oligosaccharides present in the ER \(^\text{23}\). This not only shows targeting to the ER lumen, but also ER-retention of the soluble GLT25D1 (Fig.4A).

We furthermore demonstrate by partial digestion with Endoglycosidase H or F that at least three asparagine residues become N-glycosylated (Fig.4B). In accordance with the number of glycosylated forms we distinguish, the NetNglyc server exactly predicted three asparagines to be N-glycosylated (residues 96, 184, 404) (Fig.2), suggesting that all these three residues are modified.

GLT25D1 is able to galactosylate MBL and other collagens \(^\text{11}\). Interestingly, we observe co-localisation between GLT25D1 and MBL. Intracellularly, MBL forms oligomers before it moves from the ER to the Golgi apparatus \(^\text{8}\) and is secreted to serve as an activator of the lectin complement pathway. Binding of MBL to
carbohydrates on pathogens not only can mediate an innate immune response towards microbes, but more and more data indicate a potential defence against viruses24, 25. The envelope glycoproteins of human immunodeficiency virus (HIV), Ebola and Influenza A virus were demonstrated to attach to serum MBL26-28. Additionally a subcellular interaction between HIV glycoprotein gp120 and MBL was shown22. The presence of GLT25D1 mainly in the ER, where it co-localises with MBL and LH3, suggests that galactosylation by GLT25D1 occurs early in biosynthesis before being transported to the Golgi. This would be in line with the results of Heise et al., which demonstrate that glycosylation of MBL continues while transport to the Golgi complex is blocked by Brefeldin A treatment8.

Before galactosylation of the lysine in the Gly-X-Lys repeat, the lysine is hydroxylated. LH3 has hydroxylase, galactosyltransferase and glucosyltransferase activity (Reviewed in10). When performing domain prediction analysis of GLT25D1 (see Methods), we noticed that GLT25D1 is a modular glycosyltransferase (GT) composed of two GT family members, with the C-terminal one related to glycosyltransferase of family 25 (hence its name) and an additional N-terminal domain which displays distant relation to family GT2 transferases (Fig.2 and Supplemental figure 4). In both domains the conserved DxD motif, which binds one of the ribose hydroxyl groups, could be observed (See Supplemental figure 4; Bernard Henrissat personal communications). Other examples of modular GTs are Heparin synthase, Chondroitin synthase and hyaluronan synthase, each involved in addition of alternating sugars, and each containing an N-terminal GT2 domain29. Part of this GT2 domain of GLT25D1 surprisingly shows sequence homology to LH3, which suggests that they might function similarly either in substrate recognition or in glucosyltransferase activity.

It is interesting to note that in a search for tumor-specific markers both GLT25D1 and LH3 genes were up regulated in a large majority of human malignancies30, but the biological pathway involved is unknown. The location of a particular glycosyltransferase in the cell clearly defines its function and biological importance. Most glycosyltransferases reside in the Golgi, where glycan synthesis takes place in a sequential order12, 13. The presence of GLT25D1 early in the secretory pathway indicates its enzyme activity is displayed there, confirming that collagens and collectins are likely to be glycosylated in the ER before they move to the Golgi apparatus and are secreted. Yet, the exact role of glycosylated hydroxylysine residues
in collagenous proteins is still poorly understood. Nonetheless, our results strengthen the hypothesis that glycosylation of collagens and collectins occurs early in their biosynthesis.

Conclusions

Our experiments show that GLT25D1 is a soluble protein present in the lumen of the ER, is cleaved after its signal sequence and is N-glycosylated at three positions. The occurrence of GLT25D1 early in the secretory pathway, mainly ER, suggests that collagens and collectins are likely to be galactosylated before trafficking to the Golgi and are secreted.

Acknowledgments

We thank Prof. Dr. T. Kawasaki for providing the pEGFP-MBL construct, P.A. van Veelen for mass spectrometry analysis and K. Knoops for critical reading of this manuscript.
Supplemental figure 1 - Localisation of GLT25D1-HA compared to internally Myc-tagged GLT25D1

Huh7 cells were co-transfected with full-length GLT25D1-HA (GLT25D1 FL-HA) and internally Myc-tagged full-length GLT25D1 (GLT25D1 FL Myc-int.). 24 h after transfection the cells were subjected to immunofluorescence analysis. GLT25D1 FL-HA and GLT25D1 FL Myc-int. were detected by antibodies against HA (green) and Myc (red), respectively. Pearson correlation of GLT25D1 FL-HA and GLT25D1 FL Myc-int. is 0.83.

Supplemental figure 2 - GLT25D1 is a luminal ER protein

After 24 h, Huh7 cells transfected with GLT25D1 FL-HA were subjected to sucrose density gradient centrifugation. Cell lysates were loaded under a sucrose gradient from 10-80% w/v. Fractions were taken from top (fraction 1) to bottom (fraction 12) and separated by SDS-PAGE, followed by immunoblot analysis for calnexin and PDI (protein disulfide isomerase). GLT25D1 FL-HA was visualised using an antibody against HA-epitope.
Supplemental figure 3 - GLT25D1 peptide coverage

Huh7 cell lysates were subjected to two-dimensional PAGE, followed by silverstaining. Spots, corresponding to Mw 72 kDa and isoelectric point ~7 were digested with trypsin and analysed by ESI tandem MS. The obtained peptide sequences from GLT25D1 are shown in bold in the primary sequence of the protein.

Supplemental figure 4 - Sequence alignment of human GLT25D1, LH3(PLOD3) and close homologues

Alignment was generated using the ClustalX program. DXD motif is indicated (red box). Yellow indicates putative glycosyltransferase folds. Fell_Oxy indicates a predicted Fe(II)-dependent oxygenase superfamily. Numbers indicate amino acid position.
References

1. Brodsky B, Persikov AV Molecular structure of the collagen triple helix. Adv Protein Chem 2005;70:301-39.
2. Hakansson K, Reid KB Collectin structure: a review. Protein Sci 2000;9:1607-17.
3. van de Wetering JK, van Golde LM, Batenburg JJ Collectins: players of the innate immune system. Eur J Biochem 2004;271:1229-49.
4. Colley KJ, Baenziger JU Identification of the post-translational modifications of the core-specific lectin. The core-specific lectin contains hydroxyproline, hydroxylysine, and glucosylgalactosylhydroxylysine residues. J Biol Chem 1987;262:10290-5.
5. Sipila L, Ruotsalainen H, Sormunen R, Baker NL, Lamande SR, Vapola M, Wang C, Sado Y, Aszodi A, Myllyla R Secretion and assembly of type IV and VI collagens depend on glycosylation of hydroxylysines. J Biol Chem 2007;282:33381-8.
6. Montserret R, ubert-Foucher E, McLeish MJ, Hill JM, Ficheux D, Jaquinod M, van der RM, Deleage G, Penin F Structural analysis of the heparin-binding site of the NC1 domain of collagen XIV by CD and NMR. Biochemistry 1999;38:6479-88.
7. Kadler K Extracellular matrix. 1: fibril-forming collagens. Protein Profile 1994;1:519-638.
8. Heise CT, Nicholls JR, Leamy CE, Wallis R Impaired secretion of rat mannose-binding protein resulting from mutations in the collagen-like domain. J Immunol 2000;165:1403-9.
9. Yamauchi M, Noyes C, Kuboki Y, Mechanic GL Collagen structural microheterogeneity and a possible role for glycosylated hydroxylysine in type I collagen. Proc Natl Acad Sci U S A 1982;79:7684-8.
10. Myllyla R, Wang C, Heikkinen J, Juffer A, Lampela O, Risteli M, Ruotsalainen H, Salo A, Sipila L Expanding the lysyl hydroxylase toolbox: new insights into the localisation and activities of lysyl hydroxylase 3 (LH3). J Cell Physiol 2007;212:323-9.
11. Schegg B, Hulsmeyer AJ, Rutschmann C, Maag C, Hennet T Core glycosylation of collagen is initiated by two beta(1-O)galactosyltransferases. Mol Cell Biol 2009;29:943-52.
12. Kikuchi N, Kwon YD, Gotoh M, Narimatsu H Comparison of glycosyltransferase families using the profile hidden Markov model. Mol Cell Biol 2009;29:943-52.
13. Tu L, Banfield DK Localisation of Golgi-resident glycosyltransferases. Cell Mol Life Sci 2009.
14. Wagner S, Lynch NJ, Walter W, Schwaebel WJ, Loos M Differential expression of the murine mannose-binding lectins A and C in lymphoid and nonlymphoid organs and tissues. J Immunol 2003;170:1462-5.
15. Bendtsen JD, Nielsen H, von HG, Brunak S Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 2004;340:783-95.
16. Soding J, Biegert A, Lupas AN The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 2005;33:W244-W248.
17. Kubota T, Shiba T, Sugio K, Furukawa S, Sawai H, Kato R, Wakatsuki S, Narimatsu H Structural basis of carbohydrate transfer activity by human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (pp-GalNAc-T10). J Mol Biol 2006;359:708-27.
18. Jinek M, Chen YW, Clausen H, Cohen SM, Conti E Structural insights into the Notch-modifying glycosyltransferase Fringe. Nat Struct Mol Biol 2006;13:945-6.
19. Liu J, Mushegian A Three monophyletic superfamilies account for the majority of the known glycosyltransferases. Proc Natl Acad Sci 2003;12:1418-31.
20. Kelley LA, Sternberg MJ Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 2009;4:363-71.
21. Andres DA, Rhodes JD, Meisel RL, Dixon JE Characterization of the carboxyl-terminal sequences responsible for protein retention in the endoplasmic reticulum. J Biol Chem 1991;266:14277-82.
22. Nonaka M, Ma BY, Ohtani M, Yamamoto A, Murata M, Totani K, Ito Y, Miwa K, Nogami W, Kawasaki N, Kawasaki T Subcellular localisation and physiological significance of intracellular mannann-binding protein. J Biol Chem 2007;282:17908-20.
23. Hubbard SC, Ivatt RJ Synthesis and processing of asparagine-linked oligosaccharides. *Annu Rev Biochem* 1981;50:555-83.

24. Brown KS, Ryder SD, Irving WL, Sim RB, Hickling TP Mannan binding lectin and viral hepatitis. *Immunol Lett* 2007;108:34-44.

25. Ji X, Gewurz H, Spear GT Mannose binding lectin (MBL) and HIV. *Mol Immunol* 2005;42:145-52.

26. Hart ML, Saifuddin M, Spear GT Glycosylation inhibitors and neuraminidase enhance human immunodeficiency virus type 1 binding and neutralisation by mannose-binding lectin. *J Gen Virol* 2003;84:353-60.

27. Ji X, Olinger GG, Aris S, Chen Y, Gewurz H, Spear GT Mannose-binding lectin binds to Ebola and Marburg envelope glycoproteins, resulting in blocking of virus interaction with DC-SIGN and complement-mediated virus neutralisation. *J Gen Virol* 2005;86:2535-42.

28. Kase T, Suzuki Y, Kawai T, Sakamoto T, Ohtani K, Eda S, Maeda A, Okuno Y, Kurimura T, Wakamiya N Human mannan-binding lectin inhibits the infection of influenza A virus without complement. *Immunology* 1999;97:385-92.

29. Coutinho PM, Deleury E, Davies GJ, Henrissat B An evolving hierarchical family classification for glycosyltransferases. *J Mol Biol* 2003;328:307-17.

30. Lu Y, Yi Y, Liu P, Wen W, James M, Wang D, You M Common human cancer genes discovered by integrated gene-expression analysis. *PLoS One* 2007;2:e1149.