Conference Matrices and Unimodular Lattices

Robin Chapman
School of Mathematical Sciences
University of Exeter
Exeter, EX4 4QE, UK
rjc@maths.ex.ac.uk

19 July 2000

1 Introduction

We use conference matrices to define an action of the complex numbers on the real Euclidean vector space \mathbb{R}^n. In certain cases, the lattice D_n^+ becomes a module over a ring of quadratic integers. We can then obtain new unimodular lattices, essentially by multiplying the lattice D_n^+ by a non-principal ideal in this ring. We show that lattices constructed via quadratic residue codes, including the Leech lattice, can be constructed in this way.

Recall that a lattice Λ is a discrete subgroup of a finite dimensional real vector space V. We suppose that V has a given Euclidean inner product $(u, v) \mapsto u \cdot v$ and the rank of Λ equals the dimension of V. In this case Λ has a bounded fundamental region in V. We call the volume of such a fundamental region (measured with respect to the Euclidean structure on V) the volume of the lattice Λ.

The lattice Λ is integral if $u \cdot v \in \mathbb{Z}$ for all $u, v \in \Lambda$. It is even if $|u|^2 = u \cdot u \in 2\mathbb{Z}$ for all $u \in \Lambda$. Even lattices are necessarily integral. The lattice Λ is unimodular if Λ is integral and has volume 1. It is well known [8, Chapter VIII, Theorem 8] that if Λ is an even unimodular then the rank of Λ is divisible by 8.

For convenience we call the square of the length of a vector its norm. The minimum norm of a lattice is the smallest non-zero norm of its vectors.
2 Conference matrices

Let l be a positive integer. A conference matrix of order n [4, Chapter 18] is an n-by-n matrix W satisfying

(a) the diagonal entries of W vanish, while its off-diagonal entries lie in $\{-1, 1\}$,

(b) $WW^\top = (n - 1)I$, where I denotes the n-by-n identity matrix.

Let W_n denote the set of skew-symmetric conference matrices of order n.

Let $W \in W_n$. Then $H = I + W$ satisfies $HH^\top = (I + W)(I - W) = I - W^2 = I + WW^\top = nI$. As all the entries of H lie in $\{-1, 1\}$ then H is a Hadamard matrix. Consequently [7, Theorem 18.1] $n = 1, 2$ or is a multiple of 4.

Suppose that n is a multiple of 4 and let $l = n - 1$. Fix $W \in W_n$ and let $V = \mathbb{R}^n$ denote the n-dimensional real vector space under the standard Euclidean dot product. Then, since $W^2 = -lI$, V becomes also a complex vector space when we define

$$(r + s\sqrt{-l})v = v(r + sW)$$

for $r, s \in \mathbb{R}$. Let $|v| = \sqrt{v \cdot v}$ denote the Euclidean length of a vector $v \in \mathbb{R}^n$. This action of \mathbb{C} on \mathbb{R}^n transforms lengths in the obvious way. Let z^* denote the complex conjugate of the complex number z.

Lemma 2.1 (a) If $z_1, z_2 \in \mathbb{C}$ and $v_1, v_2 \in \mathbb{R}^n$ then $(z_1v_1) \cdot (z_2v_2) = (z_1\overline{z}_2)^*v_1 \cdot v_2$

(b) If $z \in \mathbb{C}$ and $v \in \mathbb{R}^n$ then $|zv| = |z||v|$.

Proof Let $z_j = r_j + s_j\sqrt{-l}$ with $r_j, s_j \in \mathbb{R}$. Then

$$(z_1v_1) \cdot (z_2v_2) = (z_1v_1)(z_2v_2)^\top$$

$= v_1(r_1I + s_1W)(r_2I + s_2W)^\top v_2^\top$

$= v(r_1I + s_1W)(r_2I - s_2W)v^\top$

$= v((r_1r_2 + ls_1s_2)I + (s_1r_2 - r_1s_2)W)v^\top$

$= (z_1\overline{z}_2v_1) \cdot v_2$

as claimed.

Consequently

$$|zv|^2 = (zv) \cdot (zv) = (zz^*v) \cdot v = |z|^2v \cdot v = |z|^2|v|^2.$$

Thus for fixed nonzero z, the map $v \mapsto vz$ is a similarity of \mathbb{R}^n with scale factor $|z|$.

[4]
3 Quadratic fields

We retain the previous notation. Suppose in addition that \(l = n - 1 \) is squarefree. Let \(K \) denote the quadratic field \(\mathbb{Q}(\sqrt{-l}) \). Since \(l \) is square-free, the ring of integers of \(K \) is

\[
\mathcal{O} = \mathbb{Z} \left[\frac{1 + \sqrt{-l}}{2} \right] = \left\{ \frac{a + b\sqrt{-l}}{2} : a, b \in \mathbb{Z}, a \equiv b \pmod{2} \right\}.
\]

In particular \(\mathcal{O} \) is a Dedekind domain. We shall show that some of the familiar lattices in \(\mathbb{R}^{l+1} \) are modules for the ring \(\mathcal{O} \).

Let

\[
L_0 = \{ (a_1, \ldots, a_n) \in \mathbb{Z}^n : a_1 + \cdots + a_n \equiv 0 \pmod{2} \}
\]

be the \(D_n \) root lattice.

Lemma 3.1 The lattice \(L_0 \) is an \(\mathcal{O} \)-module.

Proof It suffices to show that \(\frac{1}{2}(1 + \sqrt{-l})v = \frac{1}{2}v(I + W) \in L_0 \) whenever \(v \in L_0 \). Indeed it suffices to show this whenever \(v \) lies in a generating set for \(L_0 \). Now \(L_0 \) is generated by the vectors \(2e_j \) and \(e_j + e_k \) (for \(j \neq k \)) where \(e_j \) denotes the \(j \)-th unit vector. Firstly \(e_j(I + W) \) is a row of the Hadamard matrix \(I + W \). As it contains \(n \) instances of \(\pm 1 \) and \(n \) is even, it lies in \(L_0 \). Next \(\frac{1}{2}(e_j + e_k)(I + W) \) is the sum of two rows of the Hadamard matrix \(I + W \). Two rows of an \(n \)-by-\(n \) Hadamard matrix agree in exactly \(n/2 \) places. Hence \(\frac{1}{2}(e_j + e_k)(I + W) \) has \(n/2 \) zeros and \(n/2 \) instances of \(\pm 1 \). As \(n/2 \) is even then \(\frac{1}{2}(e_j + e_k)(I + W) \in L_0 \). This completes the proof. \(\square \)

Now consider the set

\[
S = \{(a_1, \ldots, a_n) : a_j \in \{-1/2, 1/2\}\}.
\]

The difference of two vectors in \(S \) lies in \(L_0 \) if and only if those vectors agree in an even number of places. Thus there are exactly two cosets \(v + L_0 \) as \(v \) runs through \(S \).

For each \(j \), \(\frac{1}{2}e_j(I + W) \in S \), and for each \(j \) and \(k \), \(\frac{1}{2}(e_j - e_k)(I + W) \in L_0 \) by Lemma 3.1. Thus the cosets \(\frac{1}{2}e_j(I + W) + L_0 \) are identical. Let

\[
S_+ = \{ v \in S : v - \frac{1}{2}e_1(I + W) \in L_0 \}
\]

and

\[
S_- = S \setminus S_+.
\]

As \(\frac{1}{2}e_j(I + W) - \frac{1}{2}e_j(-I + W) = e_j \notin L_0 \) then \(\frac{1}{2}e_j(-I + W) \in S_- \) for each \(j \).
If \(v \in S \) then \(2v \) has \(n \) entries \(\pm 1 \) and so \(2v \in L_0 \). It follows that \(L_0 \cup (v + L_0) \) is a lattice, which depends only on whether \(v \in S_+ \) or \(v \in S_- \). We write \(L_+ \) for \(L_0 \cup (v + L_0) \) when \(v \in S_+ \) and \(L_- \) for \(L_0 \cup (v + L_0) \) when \(v \in S_- \). Both \(L_+ \) and \(L_- \) are isometric to the lattice usually denoted by \(D_n^+ \) \cite[Chapter 4, §7.3]{[5]}. The lattice \(D_n^+ \) is unimodular for each \(n \) divisible by 4, and it is even unimodular whenever \(n \) is divisible by 8.

Lemma 3.2 If \(n \) is divisible by 8 then the lattices \(L_+ \) and \(L_- \) are \(\mathcal{O} \)-modules.

Proof Let \(L = L_+ \) or \(L_- \). Then \(L = L_0 + (v + L_0) \) for some \(v \in S \) and by Lemma 3.1 it suffices to show that \(\frac{1}{2}(1 + \sqrt{-l})v = \frac{1}{2}v(I + W) \in L \). Note that \(\frac{1}{4}(l + 1) \) is an even integer by the hypothesis.

We may assume that \(v = \frac{1}{2}e_1(\pm I + W) \). If \(v = \frac{1}{2}e_1(I + W) \) then
\[
\frac{1}{2}v(I + W) = \frac{1}{4}e_1(I + W)^2 = \frac{1}{4}e_1((1 - l)I + 2W) = \frac{1}{2}e_1(I + W) - \frac{l + 1}{4}e_1
\]
which lies in \(L \) as \(\frac{1}{2}e_1(I + W) \in L \).

If \(v = \frac{1}{2}e_1(-I + W) \) then
\[
\frac{1}{2}v(I + W) = \frac{1}{4}e_1(-I + W)(I + W) = \frac{1}{4}e_1(-(l + 1)I)
\]
which lies in \(L \). \(\square \)

Let \(\mathcal{I} \) be an ideal of \(\mathcal{O} \). If \(M \) is a \(\mathcal{O} \)-module, then \(\mathcal{I}M \), defined as the subgroup of \(M \) generated by the \(\alpha m \) for \(\alpha \in \mathcal{I} \) and \(m \in M \), is also a \(\mathcal{O} \)-module.

Theorem 3.1 Suppose that \(l \equiv 7 \pmod{8} \) and that \(\mathcal{I} \) is a nonzero ideal of \(\mathcal{O} \) with norm \(N = N(\mathcal{I}) \). If \(L = L_+ \) or \(L_- \) then
\[
L[\mathcal{I}] = \frac{1}{\sqrt{N}}\mathcal{I}L
\]
is an even unimodular lattice. Also if \(\mathcal{I} \) and \(\mathcal{J} \) lie in the same ideal class of \(\mathcal{O} \), the lattices \(L[\mathcal{I}] \) and \(L[\mathcal{J}] \) are isometric.

Proof First of all we show that the index \(|L : \mathcal{I}L| \) equals \(N^{n/2} \). As an \(\mathcal{O} \)-module, \(L \) is finitely generated. Also if \(\alpha \in \mathcal{O} \) and \(v \in L \) are nonzero, then \(|\alpha v| = |\alpha||v| \neq 0 \) by Lemma 2.1 and so \(L \) is torsion free as an \(\mathcal{O} \)-module.

By the theory of modules over Dedekind domains \cite[§9.6]{[4]}, as \(L \) is a finitely generated torsion-free module over the Dedekind domain \(\mathcal{O} \), then \(L = L_1 \oplus \cdots \oplus L_k \) where each \(L_j \) is isomorphic to a nonzero ideal \(\mathcal{A}_j \) of \(\mathcal{O} \).
Each of the A_j is a free abelian group of rank 2, and as L is a free abelian group of rank n it follows that $k = n/2$. Then $\mathcal{IL} = \mathcal{I}L_1 \oplus \cdots \oplus \mathcal{I}L_{n/2}$ and so $|L : \mathcal{IL}| = \prod_{j=1}^{n/2} |L_j : \mathcal{IL}_j|$. But

$$|L_j : \mathcal{IL}_j| = |A_j : \mathcal{IA}_j| = \frac{|O : \mathcal{IA}_j|}{|O : A_j|} = \frac{N(\mathcal{IA}_j)}{N(A_j)}.$$

But $N(\mathcal{IA}_j) = N(\mathcal{I})N(A_j)$ and so $|L_j : \mathcal{IL}_j| = N(\mathcal{I}) = N$. Consequently $|L : \mathcal{IL}| = N^{n/2}$ as claimed.

We now show that $L[\mathcal{I}]$ is unimodular. The lattice \mathcal{IL} is generated by elements $u = \alpha v$ where $\alpha \in \mathcal{I}$ and $v \in L$. Let $u_j = \alpha_j v_j (j = 1, 2)$ with $\alpha_j \in \mathcal{I}$ and $v_j \in L$. Then by Lemma 2.1,

$$u_1 \cdot u_2 = (\alpha_1 v_1) \cdot (\alpha_2 v_2) = (\alpha_1 \alpha_2^* v_1) \cdot v_2.$$

But $\alpha_1 \alpha_2^* \in \mathcal{II}^* = N(\mathcal{I})\mathcal{O}$ [3, §VIII.1] so that.

$$u_1 \cdot u_2 = N(\gamma v_1) \cdot v_2$$

where $\gamma \in \mathcal{O}$. As $\gamma v_1 \in L$ (by Lemma 3.2) and L is an integral lattice, then $u_1 \cdot u_2 \equiv 0 \pmod{N}$. Consequently $L[\mathcal{I}] = N^{-1/2} \mathcal{IL}$ is an integral lattice. But L is unimodular, so it has volume 1. Thus \mathcal{IL} has volume $|L : \mathcal{IL}| = N^{n/2}$ and so $L[\mathcal{I}] = N^{-1/2} \mathcal{IL}$ has volume 1. Thus $L[\mathcal{I}]$ is a unimodular lattice.

We finally show that $L[\mathcal{I}]$ is an even unimodular lattice. Since $L[\mathcal{I}]$ is integral, to show that it is even it suffices to show that each vector u in a generating set of $L[\mathcal{I}]$ has $|u|^2$ even. The vectors $u = N^{-1/2} \alpha v$ for $\alpha \in \mathcal{I}$ and $v \in L$ generate $L[\mathcal{I}]$. Then

$$|u|^2 = \frac{1}{N} |\alpha v|^2 = \frac{|\alpha|^2}{N} |v|^2.$$

But $|\alpha|^2 = \alpha \alpha^* \in \mathcal{II}^* = N\mathcal{O}$ and so $|\alpha|^2/N \in \mathbb{Q} \cap \mathcal{O} = \mathbb{Z}$ and $|v|^2$ is an even integer, as $v \in L$, an even lattice. Thus $|u|^2$ is an even integer. Thus $L[\mathcal{I}]$ is an even unimodular lattice.

Now suppose that \mathcal{I} and \mathcal{J} lie in the same ideal class of \mathcal{O}. Then $\mathcal{J} = \alpha \mathcal{I}$ where α is a nonzero element of K. Then $\mathcal{J}L = \alpha \mathcal{J}_L$ and so

$$L[\mathcal{J}] = \frac{1}{\sqrt{N(\mathcal{J})}} \mathcal{J}L = \frac{1}{\sqrt{N(\mathcal{J})}} \alpha \mathcal{IL} = \sqrt{\frac{N(\mathcal{I})}{N(\mathcal{J})}} \alpha L[\mathcal{I}].$$

Let $\gamma = \alpha \sqrt{N(\mathcal{I})/N(\mathcal{J})}$. Since $\mathcal{J} = \alpha \mathcal{I}$ then $N(\mathcal{J}) = |\alpha|^2 N(\mathcal{I})$ and so $|\gamma| = 1$. By Lemma 2.4, the map $v \mapsto \gamma v$ is an isometry of \mathbb{R}^n and as $L[\mathcal{J}] = \gamma L[\mathcal{I}]$, the lattices $L[\mathcal{I}]$ and $L[\mathcal{J}]$ are isometric. \qed
Given L, we can produce a maximum of h non-isometric lattices $L[I]$ where h denotes the class-number of the quadratic field K.

It is useful to note which for which ideals I is $IL_+ \subseteq \mathbb{Z}^n$.

Lemma 3.3 Let I be an ideal of \mathcal{O}. Then $IL_+ \subseteq \mathbb{Z}^n$ if and only if $I \subseteq \langle 2, \frac{1}{2}(1 - \sqrt{-l}) \rangle$. In this case also $N(I)\mathbb{Z}^n \subseteq IL_+$.

Proof Note that $L_+ \cap \mathbb{Z}^n = L_0$ and so $IL_+ \subseteq \mathbb{Z}^n$ if and only if $IL_+ \subseteq L_0$. This occurs if and only if I annihilates the \mathcal{O}-module $M = L_+/L_0$. This module has 2 elements, so it must be isomorphic to \mathcal{O}/\mathcal{J} where \mathcal{J} is an ideal of norm 2. As $\langle 2, \frac{1}{2}(1 - \sqrt{-l}) \rangle$ has norm 2 and is seen to annihilate M as $\frac{1}{2}(1 - \sqrt{-l})$ takes $\frac{1}{2}e_1(I + W)$ to $\frac{1}{2}(l + 1)e_1$, then $\mathcal{J} = \langle 2, \frac{1}{2}(1 - \sqrt{-l}) \rangle$. Thus \mathcal{J} is the annihilator of M and the first statement follows.

Suppose that $I \subseteq \langle 2, \frac{1}{2}(1 - \sqrt{-l}) \rangle$. The lattice $L_+[I]$ is unimodular so that if $u \cdot v \in \mathbb{Z}$ for all $v \in L_+[I]$ then $u \in L_+[I]$. If $u = \sqrt{N(I)}w$ with $w \in \mathbb{Z}^n$ then $u \cdot v \in \mathbb{Z}$ for all $v \in N(I)^{-1/2}\mathbb{Z}^n$ and as $L_+[I] \subseteq N(I)^{-1/2}\mathbb{Z}^n$ then $u \in L_+[I]$. Hence $\sqrt{N(I)}\mathbb{Z}^n \subseteq L_+[I]$ and so $N(I)\mathbb{Z}^n \subseteq IL_+$. □

In this case the lattice Λ is the inverse image of a subgroup C of $(\mathbb{Z}/N\mathbb{Z})^n$, where $N = N(I)$, under the projection $\pi : \mathbb{Z}^n \to (\mathbb{Z}/N\mathbb{Z})^n$. Such a subgroup is called a linear code of length n over $\mathbb{Z}/N\mathbb{Z}$. We also say that Λ is obtained from C by construction A_N.

The standard dot product is well-defined on the group $(\mathbb{Z}/N\mathbb{Z})^n$. If a subgroup $C \subseteq (\mathbb{Z}/N\mathbb{Z})^n$ satisfies $u \cdot v = 0$ for all $u, v \in C$ then C is self-orthogonal. Also C is self-dual if $u \cdot C = 0$ if and only if $u \in C$. By the nondegeneracy of the dot product, C is self-dual if and only if C is self-orthogonal and $|C| = N^{n/2}$.

Proposition 3.1 Let I be an ideal of \mathcal{O} with $I \subseteq \langle 2, \frac{1}{2}(1 - \sqrt{-l}) \rangle$ and $N(I) = N$. The lattice $L = IL_+$ is obtained from construction A_N from a self-dual linear code C of length n over $\mathbb{Z}/N\mathbb{Z}$.

If $I = \langle N, \frac{1}{2}(a - \sqrt{-l}) \rangle$ with $a \equiv 1 \pmod{4}$ and $a^2 \equiv -l \pmod{4N}$ then C is spanned by the vectors of the form $\frac{1}{2}(e_i + e_j)(aI - W)$ ($1 \leq i \leq j \leq n$).

Proof Apart from the self-duality of C we have already proved the first assertion. The self-duality of C follows from the unimodularity of $N^{-1/2}IL_+$. By volume considerations

$$N^{n/2} = |Z^n : IL_+| = |(\mathbb{Z}/N\mathbb{Z})^n : C|$$

and so $|C| = N^{n/2}$. Also if $u, v \in IL_+$ then $N^{-1/2}u$ and $N^{-1/2}v$ lie in the integral lattice $N^{-1/2}IL_+$ so that $N^{-1}u \cdot v \in Z$. Hence C is self-orthogonal, and as it has the correct order, it is self-dual.
The ideal \(\mathcal{I} \) contains the subgroup \(N\mathbb{Z} + \frac{1}{2}(a - \sqrt{-l})\mathbb{Z} \) of \(\mathcal{O} \) and as this subgroup also has index \(N \) in \(\mathcal{O} \) then \(\mathcal{I} = N\mathbb{Z} + \frac{1}{2}(a - \sqrt{-l})\mathbb{Z} \). It follows that \(N\mathcal{L}_+ = N\mathcal{L}_+ + \frac{1}{2}(a - \sqrt{-l})\mathcal{L}_+ \). As \(a \equiv 1 \pmod{4} \), \(\frac{1}{2}(a + \sqrt{-l}) - \frac{1}{2}(1 + \sqrt{-l}) \) is an even integer. It follows that \(L_0 + \frac{1}{2}\mathbf{e}_1(aI + W) = L_0 + \frac{1}{2}\mathbf{e}_1(I + W) \) and so \(L_+ \) is generated by \(L_0 \) and \(u = \frac{1}{2}\mathbf{e}_1(aI + W) \). Thus \(N\mathcal{L}_+ \) is generated by the \(\frac{1}{2}(\mathbf{e}_i + \mathbf{e}_j) \) and \(N\mathbf{u} \) and \(\frac{1}{2}(a - \sqrt{-l})\mathcal{L}_+ \) is generated by the \(\frac{1}{2}(\mathbf{e}_i + \mathbf{e}_j)(aI - W) \) and

\[
\frac{1}{2}\mathbf{u}(aI - W) = \frac{1}{4}\mathbf{e}_1(aI - W)(aI + W) = \frac{a^2 + l}{4}.
\]

Note that \((a^2 + l)/4 \) is a multiple of \(N \). It follows that \(\mathcal{C} \) is generated by \(N\mathbf{u} \) and the \(\frac{1}{2}(\mathbf{e}_i + \mathbf{e}_j)(aI - W) \). But \(N\mathbf{u} = (N/2)\mathbf{e}_1(I + W) \) is congruent modulo \(N \) to the word consisting of all \(N/2s \). Also \((N/2)\mathbf{e}_1(aI - W) \) is congruent to the same word. We can drop the generator \(N\mathbf{u} \) and deduce that \(\mathcal{C} \) is generated by the \(\frac{1}{2}(\mathbf{e}_i + \mathbf{e}_j)(aI - W) \).

\[\blacksquare \]

4 Quadratic residue codes

To use the above construction of lattices, we need a supply of skew-symmetric conference matrices. Paley [8] constructed a family of such matrices of order \(n = l + 1 \) whenever \(l \equiv 3 \pmod{4} \) is prime. To apply our theory we stipulate in addition that \(l \equiv 7 \pmod{8} \). We find that the lattices \(\mathcal{I}\mathcal{L}_+ \) are derived from quadratic residue codes in this case.

We define a conference matrix \(W \in \mathcal{W}_n \) as follows. Let

\[
W = \begin{pmatrix}
0 & 1 & \cdots & 1 \\
-1 & \ddots & \ddots & \ddots \\
\vdots & \ddots & \ddots & \ddots \\
-1 & \ddots & \ddots & \ddots \\
\end{pmatrix}
\]

where the \(l \)-by-\(l \) matrix \(W' \) is the circulant matrix whose \((i, j)\)-entry is

\[
W'_{ij} = \frac{\left(\frac{j-i}{l} \right)}{}
\]

where \(\left(\frac{\cdot}{l} \right) \) denotes the Legendre symbol. This matrix \(W \) is called a conference matrix of Paley type. For the rest of this section \(W \) will denote this particular matrix.

We follow the usual practice with quadratic residue codes and label the entries of a typical vector of length \(n = l + 1 \) using the elements of the projective line over \(\mathbb{F}_l \) as follows: \(\mathbf{v} = (v_\infty, v_0, v_1, v_2, \ldots, v_{l-1}) \). We let \(\mathbf{e}_\infty, \mathbf{e}_0, \mathbf{e}_1, \ldots, \mathbf{e}_{l-1} \) denote the corresponding unit vectors, that is, \(\mathbf{e}_\mu \) has a one in the position labelled \(\mu \), and zeros elsewhere.
Lemma 4.1 (Paley) The matrix W is a skew-symmetric conference matrix.

Proof See for instance [7, Chapter 18]. □

In \mathcal{O}, the ideal $2\mathcal{O}$ splits as a product of two distinct prime ideals: $2\mathcal{O} = \mathcal{P}\mathcal{Q}$ where $\mathcal{P} = \langle 2, \frac{1}{2}(1 + \sqrt{\ell}) \rangle$ and $\mathcal{Q} = \mathcal{P}^* = \langle 2, \frac{1}{2}(1 - \sqrt{\ell}) \rangle$. We shall investigate the lattices $L_+[\mathcal{P}^r]$ and $L_+[\mathcal{Q}^r]$ for integers $r \geq 0$. (The discussion for $L_-[\mathcal{P}^r]$ and $L_-[\mathcal{Q}^r]$ is similar.)

We first need a lemma on the structure of the ideals \mathcal{P}^r and \mathcal{Q}^r.

Lemma 4.2 Let r be a positive integer. Then

$$\mathcal{P}^r = 2^r\mathbb{Z} + \frac{1}{2}(t + \sqrt{\ell})\mathbb{Z}$$

and

$$\mathcal{Q}^r = 2^r\mathbb{Z} + \frac{1}{2}(t - \sqrt{\ell})\mathbb{Z}$$

where t is any integer with $t^2 \equiv -l \pmod{2^{r+2}}$ and $t \equiv 1 \pmod{4}$.

Proof It is well-known that if $s \geq 3$, and $a \equiv 1 \pmod{8}$ then the congruence $x^2 \equiv a \pmod{2^s}$ is soluble. Thus there exists t with $t^2 \equiv -l \pmod{2^{r+2}}$. By replacing t by $-t$ if necessary, we may assume that $t \equiv 1 \pmod{4}$.

Consider the ideal $\mathcal{I} = \langle 2^r, \frac{1}{2}(t + \sqrt{\ell}) \rangle$ of \mathcal{O}. As $2^r \in \mathcal{I}$ then \mathcal{I} is a factor of $2^r\mathcal{O} = \mathcal{P}^r\mathcal{Q}^r$. But as $\frac{1}{2}(t + \sqrt{\ell}) = \frac{1}{2}(1 + \sqrt{\ell}) + 2(t - 1)/4 \in \mathcal{P}$ then \mathcal{P} is a factor of \mathcal{I}. But $\frac{1}{4}(t + \sqrt{\ell}) \notin \mathcal{O}$, and so $2\mathcal{O}_K = \mathcal{P}\mathcal{Q}$ is not a factor of \mathcal{I}. Hence $\mathcal{I} = \mathcal{P}^r$ where $1 \leq r' \leq r$. Letting $\alpha = \frac{1}{2}(t + \sqrt{\ell})$ we have

$$\mathcal{I}^* = \langle 2^r, \alpha \rangle \langle 2^r, \alpha^* \rangle$$

$$= \langle 2^{2r}, 2^r\alpha, 2^r\alpha^*, \alpha\alpha^* \rangle$$

$$= \langle 2^{2r}, 2^r\alpha, 2^r\alpha^*, (t^2 + l)/4 \rangle$$

$$\subseteq 2^r\mathcal{O}$$

as $t^2 \equiv -l \pmod{2^{r+2}}$. But $\mathcal{I}^* = N(\mathcal{I})\mathcal{O} = 2^r\mathcal{O}$ and so $r = r'$, that is $\mathcal{I} = \mathcal{P}^r$.

Now $\mathcal{P}^r \subseteq 2^r\mathbb{Z} + \frac{1}{2}(t + \sqrt{\ell})\mathbb{Z}$, but both these groups have index 2^r in \mathcal{O} so they are equal. The statement about \mathcal{Q}^r now follows by complex conjugation. □

We now consider the lattices \mathcal{Q}^rL_+ for $r \geq 1$. Since $\mathcal{Q}^r \subseteq \mathcal{Q}$ and $\mathcal{Q} = \langle 2, \frac{1}{2}(1 - \sqrt{\ell}) \rangle$ then by Proposition [3.4] \mathcal{Q}^rL_+ is obtained by construction Λ_{2^r} from a self-dual code \mathcal{C}_r over $\mathbb{Z}/2^r\mathbb{Z}$. We shall show that \mathcal{C}_r is the Hensel lift of an extended quadratic residue code in the sense of [1].
Recall that the integer \(t \) satisfies \(t \equiv 1 \pmod{4} \) and \(t^2 \equiv -l \pmod{2^{r+2}} \). By Proposition \([\ref{prop:1}]\) it follows that \(C_r \) is generated by the vectors \(\frac{1}{2}(e_i + e_j)(W - tI) \). It is plain that we need only these vectors with \(i = \infty \) and so \(C_r \) is spanned by \(u = e_\infty(W - tI) \) and \(v_j = \frac{1}{2}(e_\infty + e_j)(W - tI) \) for \(0 \leq j < l \).

Let \(\phi : (\mathbb{Z}/2^r\mathbb{Z})^n \to (\mathbb{Z}/2^r\mathbb{Z})^l \) be the map given by deleting the first coordinate of the vector. The code \(C_r \) contains the vector \(u = (-t, 1, 1, \ldots, 1) \).

As \(r \) is odd and \(C_r \) is self-dual, the intersection of \(C_r \) and the kernel of \(\phi \) is trivial. Thus \(C_r' = \phi(C_r) \) has the same order as \(C_r \). Then \(\phi(u) \) is the all-ones vector, and \(\phi(v_j) \) are cyclic shifts of \(\phi(v_0) \). Also \(\phi(v_0) = (c_0, c_1, \ldots, c_{p-1}) \) where

\[
c_j = \begin{cases}
(1 - t)/2 & \text{if } j = 0, \\
1 & \text{if } j \text{ is a quadratic residue modulo } l, \\
0 & \text{if } j \text{ is a quadratic nonresidue modulo } l.
\end{cases}
\]

Thus \(C_r' \) is a cyclic code over \(\mathbb{Z}/2^r\mathbb{Z} \).

We recall the definition of quadratic residue codes. Consider the polynomial \(X^l - 1 \) over the field \(\mathbb{F}_2 = \mathbb{Z}/2\mathbb{Z} \). Then \(X^l - 1 \) splits into linear factors in some finite extension \(\mathbb{F}_{2^k} \) of \(\mathbb{F}_2 \). In fact

\[
X^l - 1 = \prod_{j=0}^{l-1} (X - \zeta^j)
\]

where \(\zeta \) is a primitive \(l \)-th root of unity in \(\mathbb{F}_{2^k} \). We write

\[
X^l - 1 = (X - 1)f_+(X)f_-(X)
\]

where

\[
f_+(X) = \prod_{(j, l) = 1} (X - \zeta^j) \quad \text{and} \quad f_-(X) = \prod_{(j, l) = -1} (X - \zeta^j).
\]

As \(l \equiv 7 \pmod{8} \), then 2 is a quadratic residue modulo \(l \), and so the coefficients of both \(f_+ \) and \(f_- \) are invariant under the Frobenius automorphism \(\delta \mapsto \delta^2 \) of \(\mathbb{F}_{2^k} \). Consequently both \(f_+ \) and \(f_- \) have coefficients in \(\mathbb{F}_2 \). The labelling of these factors as \(f_+ \) and \(f_- \) depends on the choice of \(\zeta \). Replacing \(\zeta \) by another primitive \(l \)-th root of unity either preserves or interchanges \(f_+ \) and \(f_- \). The coefficients of \(X^{(l-3)/2} \) in \(f_+ \) and \(f_- \) are 0 and 1 is some order, so we can, and shall, choose \(\zeta \) such that

\[
f_+(X) = X^{(l-1)/2} + 0X^{(l-3)/2} + \cdots \quad \text{and} \quad f_-(X) = X^{(l-1)/2} + X^{(l-3)/2} + \cdots.
\]

The cyclic codes of length \(l \) over \(\mathbb{F}_2 \) with generator polynomials \(f_+(X) \) and \(f_-(X) \) are called the quadratic residue codes.
Bonnecaze, Solé and Calderbank \cite{BN97} extended the notion of quadratic residue code to codes over \(\mathbb{Z}/2^r\mathbb{Z} \). By Hensel’s lemma there exist unique polynomials \(f_+(X) \) and \(f_-(X) \) with coefficients in \(\mathbb{Z}/2^r\mathbb{Z} \) such that

\[
X^l - 1 = (X - 1)f_+(X)f_-(X),
\]

\[
f_+(X) \equiv f_+(X) \pmod{2} \quad \text{and} \quad f_-(X) \equiv f_-(X) \pmod{2}.
\]

The cyclic codes over \(\mathbb{Z}/2^r\mathbb{Z} \) with generator polynomials \(f_+(X) \) and \(f_-(X) \) are called lifted quadratic residue codes over \(\mathbb{Z}/2^r\mathbb{Z} \).

Theorem 4.1 The code \(C'_r \) is the lifted quadratic residue code over \(\mathbb{Z}/2^r\mathbb{Z} \) with generator polynomial \(f_+(X) \).

Proof Cyclic codes of length \(l \) over \(R = \mathbb{Z}/2^r\mathbb{Z} \) correspond to ideals of the polynomial ring \(R[X]/\langle X^l - 1 \rangle \). The code \(C'_r \) corresponds to the ideal \(I = \langle g, h \rangle \) where

\[
g(X) = \sum_{j=0}^{p-1} X^j
\]

and

\[
h(X) = \frac{1 - t}{2} + \sum_{(j/l)=1} X^j.
\]

We first consider the case where \(r = 1 \). Then \(I = \langle u(X) \rangle \) where \(u(X) \) is the greatest common divisor of \(g(X) \) and \(h(X) \). Let \(\zeta \) be a root of \(f_+(X) = 0 \) in an extension field of \(\mathbb{F}_2 \). The roots of \(g(X) \) are the \(\zeta^j \) where \(p \nmid j \). As \(t \equiv 1 \pmod{4} \) then \(\frac{1}{2}(1 - t) \) is even and so \(h(X) = \sum_{(j/l)=1} X^j \). Now

\[
\sum_{(j/l)=1} \zeta^j = 0 \quad \text{and} \quad \sum_{(j/l)=-1} \zeta^j = 1.
\]

It follows that

\[
h(\zeta^a) = \sum_{(j/l)=1} (\zeta^a)^j = 0
\]

if and only if \(\left(\frac{a}{l} \right) = 1 \). Thus \(u(X) = f_+(X) \).

Now we consider the general case. The reduction of \(C'_r \) modulo 2 is \(C'_1 \). Any liftings to \(C'_r \) of a basis of \(C'_1 \) generate a free \(R \)-module (of rank \(\frac{1}{2}(l+1) \)), and so they generate the whole code \(C'_r \). As \(C_r \) is free over \(R \), it is generated as an ideal by a monic polynomial \(F(X) \), of degree \(\frac{1}{2}(l+1) \). As \(F(X) \) reduces to \(f_+(X) \) modulo 2, and \(F(X) \mid X^l - 1 \) it follows that \(F(X) = f_+(X) \) as required. \(\square \)
Given the code \(C'_r \), the code \(C_r \) can be reconstructed, since for each element of \(C'_r \) the corresponding element of \(C_r \) is uniquely determined as it is orthogonal to \((-t, 1, 1, \ldots, 1)\).

We now turn to \(P^r L_+ \). This is no longer a sublattice of \(\mathbb{Z}^n \).

Lemma 4.3 Let \(r \) be a positive integer. The index \(|P^r L_+ : P^r L_+ \cap \mathbb{Z}^n| = 2 \). The lattice \(P^r L_+ \cap \mathbb{Z}^n \) is generated by the vectors \(2^r(e_\infty + e_\mu) \) (\(\mu \in \{\infty, 0, 1, 2, \ldots, l-1\} \)), the vector \(u = e_\infty(W + tI) \) and the vectors \(v_j = \frac{1}{2}(e_\infty + e_j)(W + tI) \) (\(0 \leq j < l \)). Also \(P^r L_+ \) is generated by \(P^r L_+ \cap \mathbb{Z}^n \) and \(\frac{1}{2}u - \frac{1}{4}(t^2 + l)e_\infty \).

Proof We have \(P^r = 2^r\mathbb{Z} + \frac{1}{2}(t + \sqrt{-l})\mathbb{Z} \). Let \(\Omega_0 \) denote the lattice generated by the \(2^r(e_\infty + e_\mu), u \), and the \(v_j \). The lattice \(L_+ \) is generated by the \(e_\infty + e_\mu \) and \(\frac{1}{2}e_\infty(tI + W) \). Thus \(2^r(e_\infty + e_\mu), u = \frac{1}{2}(t + \sqrt{-l})2e_\infty \) and \(v_j = \frac{1}{2}(t + \sqrt{-l})(e_\infty + e_j) \) all lie in \(P^r L_+ \). These vectors all have integer coordinates, and so \(\Omega_0 \subseteq P^r L_+ \cap \mathbb{Z}^n \).

Let \(\Omega \) be the lattice generated by \(\Omega_0 \) and \(\frac{1}{2}u - \frac{1}{4}(t^2 + l)e_\infty \). Now

\[
\frac{1}{2}(t + \sqrt{-l})\frac{1}{2}e_\infty(tI + W) = \frac{1}{4}(t + \sqrt{-l})^2e_\infty
= \left[\frac{1}{2}(t + \sqrt{-l}) - \frac{t^2 + l}{4} \right] e_\infty
= \frac{t}{2}u - \frac{t^2 + l}{4}e_\infty.
\]

As \(t \) is odd and \(u \in \Omega_0 \) then \(\Omega \subseteq P^r L_+ \).

The lattice \(P^r L_+ \) is generated by \(\Omega \) and \(2^{r-1}e_\infty(tI + W) = 2^{r-1}u \). But \(u - \frac{1}{2}(t^2 + l)e_\infty \in \Omega \) and as \(t^2 + l \) is divisible by \(2^{r+1} \) then \(u \in \Omega_0 \) and so \(\Omega = P^r L_+ \). As \(\frac{1}{2}u - \frac{1}{4}(t^2 + l)e_\infty \) is not in \(\mathbb{Z}^n \) but its double is in \(\Omega_0 \), then \(|\Omega : \Omega_0| = |P^r L_+ : P^r L_+ \cap \mathbb{Z}^n| = 2 \) and so \(\Omega_0 = P^r L_+ \cap \mathbb{Z}^n \). \(\square \)

One can now proceed to express the lattices \(P^r L_+ \) and \(P^r L_+ \cap \mathbb{Z}^n \) in terms of lifted quadratic residue codes over \(\mathbb{Z}/2^r\mathbb{Z} \). For simplicity we present the details only for \(r = 1 \). Let \(D' \) denote the cyclic quadratic residue code of length \(l \) over \(\mathbb{F}_2 \) with generator polynomial \(f_\cdot(X) \), and let \(D \) denote its extension obtained by appending a parity check bit at the front.

Theorem 4.2 The lattice \(PL_+ \cap \mathbb{Z}^n \) consists of those vectors reducing modulo 2 to elements of \(D \) and the sum of whose entries is a multiple of 4. The lattice \(PL_+ \) is obtained from \(PL_+ \cap \mathbb{Z}^n \) by adjoining the extra generator \(\frac{1}{2}((1 - l), 1, 1, \ldots, 1) \).
Proof. We may take \(t = 1 \) in the proof of Lemma 4.3. In this case the vector \(\mathbf{u} \) is the all-ones vector while each \(\mathbf{v}_j \) consists of \(\frac{1}{2}(l+1) \) ones and \(\frac{1}{2}(l+1) \) zeros. As \(\frac{1}{2}(l+1) \) is a multiple of 4 the sum of the entries of each of these vectors is a multiple of 4. As this is manifestly true for the vectors \(2(e_\infty + e_\mu) \) too, then the sum of the entries of each vector in \(PL_+ \cap \mathbb{Z}^n \) is a multiple of 4.

If we delete the first entry of the given generators of \(PL_+ \) and reduce modulo 2 we get the all-ones vector of length \(l \) and the cyclic shifts of the vector \(w_0 = (d_0, d_1, \ldots, d_{l-1}) \) where

\[
d_j = \begin{cases}
1 & \text{if } j = 0 \text{ or if } j \text{ is a quadratic residue modulo } l, \\
0 & \text{if } j \text{ is a quadratic nonresidue modulo } l.
\end{cases}
\]

By a similar argument to the proof of Theorem 4.1 these vectors generate the cyclic quadratic residue code \(D' \). Hence each element of \(PL_+ \cap \mathbb{Z}^n \) reduces modulo 2 to an element of \(D \). If \(\Omega \) denotes the sublattice of \(\mathbb{Z}^n \) consisting of vectors reducing modulo 2 to \(D \) and with the entries summing to a multiple of 4, then \(|\mathbb{Z}^n : \Omega| = 2^{1+n/2} = |\mathbb{Z}^n : PL_+ \cap \mathbb{Z}^n| \). Thus \(\Omega = PL_+ \cap \mathbb{Z}^n \).

Now letting \(t = 1 \) we see that \(\frac{1}{2}\mathbf{u} - \frac{1}{4}(t^2 + l)e_\infty = \frac{1}{2}(\frac{1}{2}(1-l), 1, 1, \ldots, 1) \) and so this vector together with \(PL_+ \cap \mathbb{Z}^n \) generates \(PL_+ \). \(\square \)

In the terminology of Conway and Sloane [5, Chapter 5, §3], the lattice \(PL_+ \) is obtained from the code \(D \) by construction B. Then the lattice \(PL_+ \) is obtained by density doubling. One can extend these notions to lifted quadratic residue codes to produce the lattices \(PL_r \).

We look briefly at the lattices \(IL_+ \) for more general ideals \(I \). Consider the case where \(I = A \), an ideal of norm \(p \), an odd prime. Then \(A = \langle p, t + \sqrt{-l} \rangle \) where \(t^2 \equiv -l \pmod{p} \). The rows of the matrix \(tI + W \) generate a self-dual linear code \(C \) over \(\mathbb{F}_p \) which turns out to be an extended quadratic residue code. The coordinates of vectors in \(L_+ \) are half-integers, and it is meaningful to reduce these modulo the odd prime \(p \). Then the lattice \(AL_+ \) simply consists of the vectors in \(L_+ \) which reduce modulo \(p \) to elements of \(C \). More generally \(A^rL_+ \) will have a similar description in terms of an extended lifted quadratic residue code over \(\mathbb{Z}/p^r\mathbb{Z} \). Finally by splitting a general ideal \(I \) into a product of powers of prime ideals \(A^r \), we can describe \(IL_+ \) in terms of the various \(A^r \) using the Chinese remainder theorem.

5 Examples

Since the ring \(\mathbb{Z}[[\frac{1}{2}(1 + \sqrt{-7})]] \) has class number 1 (and each even unimodular rank 8 lattice is isometric to the \(E_8 \) root lattice) the first interesting examples
occur when \(l = 15 \) and the first interesting examples with Paley matrices occur when \(l = 23 \).

5.1 \(l = 23 \) and \(l = 31 \)

In both these cases we take \(W \) to be the Paley matrix. We first consider the case \(l = 23 \).

The class group of \(\mathcal{O} = \mathbb{Z}[(1 + \sqrt{-23})/2] \) has order 3, and the class of each of its ideals \(\mathcal{P} = \langle 2, \frac{1}{2}(1 + \sqrt{-23}) \rangle \) and \(\mathcal{Q} = \langle 2, \frac{1}{2}(1 - \sqrt{-23}) \rangle \) generates its class group. The lattice \(L_+ \) itself is the lattice \(D_{24}^+ \). The lattices \(Q^rL_+ \) are obtained by applying construction \(A_r^+ \) to the lifted quadratic residue codes \(C_r^+ \). The code \(C_1^+ \) is the extended binary Golay code. It is plain that \(Q^2L_+ \) is obtained by applying construction \(A \) [Chapter 5, §2] to the binary Golay code, and so \(L_+[Q] \) is isometric to the Niemeier lattice with root system \(A_{24}^+ \).

The isometry classes of the unimodular lattices \(L_+[Q^r] \) depend only on the congruence class of \(r \) modulo 3. If \(r \equiv 0 \) (mod 3) then \(L_+[Q^r] \) is isometric to \(D_{24}^+ \) while if \(r \equiv 1 \) (mod 3) then \(L_+[Q^r] \) is isometric to the Niemeier lattice with root system \(A_{24}^+ \). To identify \(L_+[Q^r] \) when \(r \equiv 2 \) (mod 3) note that \(Q^2 \) lies in the same ideal class as \(P \). Hence for \(r \equiv 2 \) (mod 3), \(L_+[Q^r] \) is isometric to \(L_+[\mathcal{P}] \). By Theorem 4.2 it is plain that \(L_+[\mathcal{P}] \) is the Leech lattice, as given by Leech’s original construction \(\mathcal{L} \). Applying Theorem 3.1 gives an explicit isomorphism between \(L_+[\mathcal{P}] \) and \(L_+[Q^2] \) which is equivalent to that constructed in \(\mathcal{L} \).

In general if \(s \) is the order of the class of the ideal \(\mathcal{P} \) in the class group of \(\mathcal{O} \), then up to isometry \(L_+[\mathcal{P}^r] \) and \(L_+[Q^r] \) depend only on the congruence class of \(r \) modulo \(s \). Also \(L_+[\mathcal{P}^r] \) and \(L_+[Q^r] \) will be isometric whenever \(r \equiv -r' \) (mod \(s \)). For \(l = 31 \) we also have \(s = 3 \) and the above discussion is valid for \(l = 31 \) too. In particular \(L_+[\mathcal{P}] \) is isometric to \(L_+[Q^2] \), and we recover \(\mathcal{L} \) Theorem 1.

We can give alternative constructions of the Leech lattice at will simply by writing down ideals of \(\mathbb{Z}[(1 + \sqrt{-23})/2] \) equivalent to \(\mathcal{P} \). Let \(\mathcal{I} = \langle 3, \frac{1}{2}(1 + \sqrt{-23}) \rangle \) and \(\mathcal{J} = \langle 3, \frac{1}{2}(-1 + \sqrt{-23}) \rangle \). Then \(\mathcal{P}, \mathcal{J} \) and \(Q\mathcal{I} = \langle 6, \frac{1}{2}(-5 + \sqrt{-23}) \rangle \) all lie in the same ideal class.

The lattice \(\mathcal{J}L_+ \) is generated using density doubling from the lattice \(L' \) consisting of all vectors in \(\mathbb{Z}^{24} \) whose entries sum to zero and which reduce modulo 3 to elements of the extended ternary quadratic residue code with generator matrix \(I - W \). Then \(\mathcal{J}L_+ \) is generated by \(L' \) and the vector \(\frac{1}{2}(5, 1, 1, \ldots, 1) \). The lattice \(L_+[\mathcal{J}] = 3^{-1/2}\mathcal{J}L_+ \) is isometric to the Leech lattice.
Next consider the lattice $\mathbb{Q}\mathcal{I}L_+$. This consists of the vectors in \mathbb{Z}^{24} reducing modulo 2 and modulo 3 to elements of appropriately chosen binary and ternary quadratic residue codes. The binary code in question is that generated by vectors $\frac{1}{2}(e_\infty + e_\alpha)(I - W)$ for $\alpha \in \{\infty, 0, 1, 2, \ldots, l - 1\}$ and the ternary code is generated by the rows of $I + W$. Then $L_+[\mathcal{I}] = 6^{-1/2}Q\mathcal{I}L_+$ is isometric to the Leech lattice.

\section*{5.2 $l = 47$}

Again we take W to be the Paley matrix. In [3, Chapter 7, §7] the lattice $\Lambda = P_{48q}$ is described. This is an even unimodular lattice of rank 48 and minimum norm 6. It is generated by the following vectors $(a_\infty, a_0, a_1, \ldots, a_{46})$:

(i) $(1/\sqrt{12})(-5, 1, 1, \ldots, 1),$

(ii) those vectors of the shape $(1/\sqrt{3})(1^{24}, 0^{24})$ supported on the translates modulo 47 of the set $\{0\} \cup Q$ where Q is the set of quadratic residues modulo 47,

(iii) all vectors of the shape $(1/\sqrt{3})(\pm 3^2, 0^{46}).$

It is more convenient to consider instead the equivalent lattice Λ' generated by the vectors

(i)' $(1/\sqrt{12})(5, 1, 1, \ldots, 1),$

(ii)' those vectors of the shape $(1/\sqrt{3})(1^{24}, 0^{24})$ supported on the translates modulo 47 of the set $\{0\} \cup N$ where N is the set of quadratic nonresidues modulo 47,

(iii)' all vectors of the shape $(1/\sqrt{3})(\pm 3^2, 0^{46}).$

We claim that Λ' is the lattice $L_+[\mathcal{I}]$ where $\mathcal{I} = \langle 3, \frac{1}{2}(1 - \sqrt{-47}) \rangle$. Note that the norm of \mathcal{I} is 3. It suffices to show that each of the generating vectors for Λ' is contained in $L_+[\mathcal{I}]$. Since each vector of shape $(\pm 1^2, 0^{46})$ lies in L_+ and $3 \in P$ then it is immediate that the vectors of type (iii)' lie in $L_+[\mathcal{I}]$. The vectors of type (ii)' are the differences of the first row and an arbitrary other row of the matrix $(1/2\sqrt{3})(I - W)$. Since $\frac{1}{2}(1 - \sqrt{-47}) \in \mathcal{I}$, the vectors of type (ii)' lie in $L_+[\mathcal{I}]$. Finally, $\frac{1}{2}(1, -1, -1, \ldots, -1)$, the first row of $\frac{1}{2}(I - W)$, lies in $2\mathcal{I}L_+$. Also $v_0 = \frac{1}{2}e_0(I + W) \in L_+$ and $3v_0 = \frac{1}{2}(3, 3, 3, \ldots, 3) \in 3\mathcal{I}L_+$. Adding these two vectors gives $\frac{1}{2}(5, 1, 1, \ldots, 1) \in 2\mathcal{I}L_+$ so that the vector of type (i)' does lie in $L_+[\mathcal{I}]$.

The ideal $\langle \frac{1}{2}(1 - \sqrt{-47}) \rangle$ has norm 12 and factors as $\mathcal{O}\mathcal{I}^2$. The class number of $\mathcal{O}(\sqrt{-47})$ is 5, and so $[\mathcal{I}] = [P^2] = [Q^5]$. Thus Λ' is isometric to
which is constructed using construction A from the quadratic residue code of length 48 over \(\mathbb{Z}/8\mathbb{Z} \).

5.3 \(l = 15 \)

In this case there is no Paley matrix. We consider two different conference matrices of order 16.

If \(W \in \mathcal{W}_n \) then the \(2n \times 2n \) matrix

\[
W' = \begin{pmatrix} W & I + W \\ -I + W & -W \end{pmatrix}
\]

is a skew-symmetric conference matrix of order \(2n \). Applying this construction four times to the zero matrix in \(\mathcal{W}_1 \) gives the matrix

\[
W_1 = \begin{pmatrix}
0 & + & + & + & + & + & + & + & + & + & + & + & + & + & + & + \\
- & 0 & - & + & - & + & - & + & - & - & + & - & - & + & - & - \\
- & + & 0 & - & - & + & + & - & - & + & - & + & - & + & - & - \\
- & - & + & 0 & - & + & - & - & + & + & - & + & - & + & - & - \\
- & + & + & 0 & - & + & - & - & + & + & - & + & - & + & - & - \\
- & - & - & + & 0 & - & + & - & + & + & - & - & + & + & - & - \\
- & + & - & - & + & 0 & + & - & + & - & - & - & - & - & - & - \\
- & - & + & + & 0 & - & - & + & + & + & + & + & + & + & + & + \\
- & + & + & 0 & - & + & + & + & + & + & + & + & + & + & + & + \\
- & - & - & + & + & 0 & + & - & + & - & - & - & - & - & - & - \\
- & + & - & - & + & 0 & + & + & - & + & - & - & - & - & - & - \\
- & - & + & + & 0 & + & - & + & - & - & - & - & - & - & - & - \\
- & + & - & - & + & 0 & + & + & - & + & - & - & - & - & - & - \\
- & - & + & + & 0 & - & + & + & + & + & + & + & + & + & + & + \\
- & - & - & + & + & - & - & + & + & + & + & + & + & + & + & + \\
- & + & - & - & + & 0 & + & + & - & + & - & - & - & - & - & - \\
\end{pmatrix}
\]

where, for convenience, we have denoted 1 and \(-1\) by + and - respectively. The ideal class group of \(\mathbb{Z}[(1 + \sqrt{-15})/2] \) has order 2. The ideal \(\mathcal{I} = \langle 2, \frac{1}{2}(1 - \sqrt{-15}) \rangle \) is not principal and \(\mathcal{I}L^+ \) is given by construction A
from the binary code with the generator matrix
\[
\begin{pmatrix}
1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{pmatrix}.
\]
Thus \(L_+[I] \) is isometric to the orthogonal direct sum of two copies of the \(D_8^+ \) lattice. This is not isometric to \(L_+ \).

Another conference matrix of order 16 is
\[
W_2 = \begin{pmatrix}
0 & + & + & + & + & + & + & + & + & + & + & + & + & + & + & + \\
- & 0 & + & + & - & - & - & + & - & + & - & - & + & - & - & - \\
- & - & 0 & + & + & - & - & + & - & + & - & - & + & - & - & + \\
- & - & - & 0 & + & + & - & - & + & - & - & + & - & - & - & - \\
- & - & - & - & - & - & - & 0 & + & + & - & - & + & - & - & - \\
- & - & - & - & - & - & - & - & 0 & + & + & - & - & + & - & - & - \\
- & - & - & - & - & - & - & - & 0 & + & + & - & - & + & - & - & - \\
- & - & - & - & - & - & - & - & 0 & + & + & - & - & + & - & - & - \\
\end{pmatrix}.
\]
In this case the lattice \(IL_+ \) is obtained using construction A applied to the binary code with generator matrix
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\
\end{pmatrix}.
\]
Thus $L_+[\mathcal{I}]$ is isometric to the D_{16}^+ lattice and so to L_+. This example shows that the isometry class of $L_+[\mathcal{I}]$ depends on the choice of the conference matrix W, and also that $L_+[\mathcal{I}]$ and $L_+[\mathcal{J}]$ may be isometric even when \mathcal{I} and \mathcal{J} are in different ideal classes.

References

[1] A. Bonnecaze, P. Solé & A. R. Calderbank, ‘Quaternary quadratic residue codes and unimodular lattices’ IEEE Trans. Inform. Theory 41 (1995), 366–377.

[2] R. Chapman & P. Solé, ‘Universal codes and unimodular lattices’, J. Théor. Nombres Bordeaux 8 (1996), 369–376.

[3] H. Cohn, A Second Course in Number Theory, John Wiley & Sons, 1962.

[4] P. M. Cohn, Algebra vol. 2 (2nd ed.), John Wiley & Sons, 1989.

[5] J. H. Conway & N. J. A. Sloane, Sphere Packings, Lattices and Groups, Springer-Verlag, 1988.

[6] J. Leech, ‘Notes on sphere packing’, Canad. J. Math. 19 (1967) 251–267.

[7] J. H. van Lint & R. M. Wilson, A Course in Combinatorics, Cambridge University Press, 1992.

[8] R. E. A. C. Paley, ‘On orthogonal matrices’, J. Math. Phys. 12 (1933), 311–320.

[9] J.-P. Serre, A Course in Arithmetic, Springer-Verlag, 1973.