Correlation of iron levels with glycemia and microvascular complications among type II diabetes mellitus patients in Najran university hospital

Nasser Alqahtani, Eisa Y. Ghazwani, Awad M. Al-Qahtani, Randah A. Elmahboub

Family and Community Medicine Department, Faculty of Medicine, Najran University, Najran, Kingdom of Saudi Arabia

ABSTRACT

Background: Diabetes is influenced by changes in the body's iron levels. Because iron deficiency anemia is common in diabetes, this study examines the link between iron, glycemic control, and complication in patients with type 2 diabetes mellitus (T2DM). Methods: The study is a cross-sectional study conducted from October 2019 to June 2020 at Najran university hospital in the Najran area, Saudi Arabia. All T2DM patients (N = 201) during the study were recruited by simple random sampling. A checklist was completed to extract the study variables from each patient's medical record. Results: There is a positive poor correlation between hemoglobin (Hb) and diabetic foot (r = 0.186, P < 0.05), but not with other diabetic microvascular complications (i.e., retinopathy, nephropathy, and peripheral neuropathy) or glycemic indicators fasting blood sugar, random blood sugar and hemoglobin A1C (i.e., FBS, RBS, and HbA1C). No link is found between ferritin and glycemic indicators or diabetic microvascular complications. Conclusion: The study suggests that particular attention be paid to regular monitoring of iron levels before modifying the treatment plans for type 2 diabetes mellitus (T2DM) patients. It raises critical inquiry about the reality of iron role in diabetes mellitus either in pathogenesis or treatment. It recommends accurately assessing body iron status with careful interpretation for better clinical judgment, encouraging large-scale and long-term epidemiological as well as interventional trials examining the effect of lowering iron in controlling glycemia.

Keywords: Glycemic control, Iron levels, Microvascular complications, Type 2 diabetes mellitus

Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common noncommunicable diseases globally. By 2045, the rate of diabetes is expected to affect 693 million people worldwide. Using epidemiological modeling, the prevalence of type two diabetes mellitus in Saudi Arabia is expected to reach 39.5% by 2022. Diabetic patients are at high risk to develop multiple complications, which may be acute or chronic. The chronic hyperglycemia of diabetes is associated with long-term damage, dysfunction, and failure of various organs. This particularly includes the eyes, kidneys, nerves, heart, and blood vessels. Attaining and maintaining healthy glycemic control is the cornerstone of the prevention and management of diabetes. If clients control diabetes properly with medication and regular medical checkups, it is possible to maintain adequate glycemic control and thus reduce diabetic complications. Optimal monitoring of glycemic control involves fasting or random plasma glucose level and hemoglobin A1C measurement. Although hemoglobin A1C is the essential test for glycemic control.
careful considerations must be taken either in the measurement method or the interpretation of the results. HbA1c is not only altered by glucose levels, but also by other conditions such as anemia (nutritional/hemoglobinopathies), pregnancy, and chronic kidney diseases. A prospective study carried out over one year (January 2016–January 2017) showed that anemia is a common finding in T2DM patients when compared to the general population. Anemia in people with diabetes has significant adverse effects on their quality of life, and is associated with disease progression and the development of comorbidities. Most studies suggest that iron deficiency anemia (IDA) can have a significant impact on HbA1c with spuriously high HbA1c in IDA compared to other markers of glycemia. In fact, some studies suggest that in patients both with and without diabetes, IDA is associated with higher HbA1c. IDA can increase red blood cell turnover, which can then increase glycation of Hb, leading to higher HbA1c values. These higher values can be observed in blood loss, hemolysis, hemoglobinopathies, red cell disorders, and myelodysplastic disease. There is research to support that diabetes is influenced by changes in the body's iron levels. Lower levels of serum iron or serum ferritin have been linked to increased glycation of HbA1c; however, other studies have shown no correlation between markers of iron storage (ferritin) and increased HbA1c. Iron deficiency anemia is a widespread diagnosis in primary health care centers, and it is easy to detect and treat. Consequently, raising awareness among primary care physicians of the association of this diagnosis with complications of diabetes may enhance doctors’ attention to examine the presence of iron deficiency anemia and treat it, and know its impact on the accuracy of Hemoglobin A1c readings and complications in patients with T2DM. This study evaluates the correlation between iron, glycemic control, and complication in patients with T2DM in family practice clinics, Najran university hospital.

Objectives

1. Examine the correlation between hemoglobin (Hb) levels, glycemic indicators, and microvascular complications.
2. Examine the correlation between ferritin levels, glycemic indicators, and microvascular complications.

Study design

The study was cross-sectional, conducted from October 2019 to June 2020 at Najran university hospital in the Najran area, in the Southern region of Saudi Arabia. The Najran university hospital serves all university staff, students, and their families. The hospital served 41,048 patients in 2018.

All T2DM patients (N = 201) treated at the out-patient clinic during the study were recruited by simple random sampling. A checklist was completed to extract the study variables from each patient’s medical record.

The primary intended study variable was iron levels in the forms of Hb and ferritin. For ferritin, participants were classified into three groups: low (less than 30 µg/L), normal (30 µg/L to 400 µg/L), and high (greater than 400 µg/L). Regarding Hb levels, participants were classified into low (less than 13.5 g/dL), normal (13.5 g/dL to 17 g/dL), and high (greater than 17 g/dL).

The study’s dependent variables were indicators of glycemic status, hemoglobin A1C (HbA1c), preprandial capillary plasma glucose, and postprandial capillary plasma glucose. According to the American Diabetes Association’s (ADA) Standards of Care recommendations, participants were considered to have controlled diabetes if their HbA1c was less than 7%, preprandial capillary plasma glucose 80–130 mg/dL (4.4–7.2 mmol/L), and peak postprandial capillary plasma glucose <180 mg/dL (10.0 mmol/L). In addition, controlled diabetes excluded diagnosed microvascular complications (retinopathy, nephropathy, peripheral neuropathy, and diabetic foot).

The ethical committee of the faculty of medicine at Najran university along with Najran university hospital administration approved the study with the agreement that study’s researchers were committed to using the data for study purposes only and would self-fund all associated costs.

All statistical analyses were carried out using R Statistical Software (Version 3.6.0). The mode was estimated for each variable of interest. Spearman’s ρ was computed for variables of interest. An 0.10 ≤ ρ ≤ 0.20 was considered a poor correlation between pairs; an 0.3 ≤ ρ ≤ 0.50 was considered a fair correlation between pairs; a 0.6 ≤ ρ ≤ 0.70 was considered a moderate correlation between pairs; a 0.8 ≤ ρ ≤ 0.90 was considered a strong correlation; ρ = ±1 was considered a perfect positive or negative correlation between pairs. The level of statistical significance was set at 0.05. The listwise method was used for handling missing data. We did not use mode, or hot or cold deck imputation as they increase the chance of committing type I error. The effect size (ES) of differences for each variable of interest was estimated using Cohen’s d. The most promising correlation coefficients were then identified as those with moderate (0.3) or large (0.5) ES for each comparison of interest.

Results

The majority of the sample contained male participants (n = 121, 60.2%), mostly aged between 30 and 60 years (n = 131, 65.2%). Of the 201 patients, 63.7% (n = 128) received oral antiglycemic medications, followed by 29.4% (n = 59) who received a mixed treatment and 6% (n = 12) who received injections.

Table 1 shows a positive poor correlation between Hb and diabetic foot (ρ = 0.186, P < 0.05), but no correlation was
found for the other diabetic microvascular complications’ variables of interest (i.e., retinopathy, nephropathy, and peripheral neuropathy). Likewise, no correlation was observed between Hb and glycemic indicators (i.e., FBS, RBS, and HbA1c).

Table 2 shows no correlation between ferritin and glycemic indicators (i.e., FBS, RBS, and HbA1c). Likewise, there was no correlation between ferritin and diabetic microvascular complications (i.e., retinopathy, nephropathy, peripheral neuropathy, and diabetic foot).

Discussion

A number of recent studies have shown a relationship between changes in iron levels and the emergence of T2DM, and its complications.[8] The present study aimed to investigate this relationship more in-depth.

The majority of iron is contained in red blood cell Hb and circulating ferritin, and generally correlates with body iron stores.[21] While a proper state of glycemic control is assessed through glycemic indicators (e.g., HbA1C, FBS, and RBS), treatment usually targets lipid and renal profiles, as well as the occurrence of diabetic microvascular complications.

Many studies have established a clear contribution of iron in T2DM pathogenesis; however, the exact relationship is still not fully understood.[21-23] It appears that iron has multiple effects on beta cells, which can be either pro- or anti-diabetic. A certain level of iron is needed for metalation of proteins for glucose’s oxidation and sensing, but excess iron is also toxic.[21]

The current study showed a positive poor correlation between Hb and diabetic foot (r = 0.186, P < 0.05), but no correlation with other diabetic microvascular complications (i.e., retinopathy, nephropathy, and peripheral neuropathy). This finding is consistent with recent literature showing that in patients with diabetic foot ulceration, anemia is a common problem.[29] The present findings are in contrast with other cross-sectional studies, which have suggested that lower hemoglobin levels were associated with an increased risk of diabetic peripheral neuropathy (DPN).[28] Although recent studies have reported that DPN is commonly associated with a greater degree of anemia and have shown a significant correlation between a lower Hb and a decline in the GFR, these studies have identified diabetic patients with anemia as an at-risk group when requiring renal replacement therapy.[30]

This study did not find an association between HB and nephropathy in diabetes, nor did it find an association between low Hb and retinopathy among diabetics. This is in contrast to certain studies that reported that anemia contributes to diabetic retinopathy (DR), and that there is an association between the grades of anemia and severity of DR.[27,28] Another cross-sectional study with a large sample (N = 2123) conducted in Korea concluded that high Hb is significantly linked to a low risk of retinopathy.[29] This difference between the results of this study and previous studies can be explained by the fact that we relied on the information available in patients’ records. There may have been either undiagnosed or undocumented diabetic microvascular complications (i.e., retinopathy, nephropathy, and peripheral neuropathy).

Regarding a link between Hb and glycemic indicators (i.e., FBS, RBS, and HbA1c), the present study did not show any association.

Table 1: Correlation coefficient between Hb, glycemic indicators, and microvascular complications

Hb	Retinopathy	Nephropathy	P. Neuropathy	D. Foot	FBS	RBS	HbA1c
Hb	1	-0.011	-0.069	0.186*	-0.017	0.105	0.022
Retinopathy	1	0.321***	0.161*	0.052	-0.073	-0.050	0.014
Nephropathy	1	0.052	0.088	0.003	-0.059	-0.040	
P. Neuropathy	1	0.172*	-0.194*	-0.122	-0.164*		
D. Foot	1	-0.005	0.148	-0.051			
FBS	1	0.337***	0.366***				
RBS	1	0.377***	0.366***				
HbA1c	1						

NS=not significant (P>0.05), *P<0.05, **P<0.01, ***P<0.001

Table 2: Correlation between ferritin, glycemic indicators, and microvascular complications

Ferritin	Retinopathy	Nephropathy	P. Neuropathy	D. Foot	FBS	RBS	HbA1c	
Ferritin	0.125	-0.154	-0.083	0.082	-0.024	0.118	0.081	0.107
Retinopathy	1	0.321***	0.161*	0.052	-0.073	-0.050	0.014	
Nephropathy	1	0.052	0.088	0.003	-0.059	-0.040		
P. Neuropathy	1	0.172*	-0.194*	-0.122	-0.164*			
D. Foot	1	-0.005	0.148	-0.051				
FBS	1	0.337***	0.366***					
RBS	1	0.377***	0.366***					
HbA1c	1							

NS=not significant (P>0.05), *P<0.05, **P<0.01, ***P<0.001
In contrast, one study suggested that low Hb plays a significant role in elevating A1C even with controlled blood glucose levels. These authors confirmed that Hb levels are positively correlated with insulin resistance and insulin secretion. However, a study conducted in Japan suggested that hemoglobin levels have a significantly negative effect on early-phase insulin secretion in nondiabetic males. The discrepancy between these findings can be explained by the different methods used, and/or by other physiological/analytical factors. If anemia is highly prevalent in diabetes, there might be an increase in microvascular complications. Thus, we suggest that particular attention be paid to regular monitoring of Hb, considering low Hb before modifying treatment plans, and reducing the occurrence and/or progression of diabetic microvascular complications.

Looking now to ferritin, this study observed no relationship between ferritin and blood sugar indicators, nor with microvascular complications. Similarly, in other studies, there was no association between ferritin and glycemic indices, where adjustment of metabolic syndrome components produced a null result; however, a systematic review and meta-analysis involving 185,462 participants found associations between body iron levels and diabetes. While decreased serum ferritin is a sensitive and specific test of low body iron stores, elevated serum ferritin is sensitive but very nonspecific. About 90% of causes of high ferritin are inflammation, infection, obesity, diabetes, metabolic syndrome (dysmetabolic hypersecretotena), alcohol, and malignancy.

A link between ferritin and nephropathy among diabetes has indeed been reported. The progression of diabetic nephropathy can be prevented either by an iron-deficient diet or by chelators. Conversely, one study suggested that iron plays no major role in the development of DR; however, it has been noted that iron overload appears to be the result of complex processes involved in DR. Despite the lack of consistent findings, hyperglycemia is still the primary pathogenic factor contributing to diabetic neuropathy. Also, several factors may contribute to diabetic neuropathy based on iron dysregulation. An in vitro study at a molecular model found an association between diabetic neuropathy and high iron under high-glucose concentration. In summary, considering the high number of contradictions in findings with similar studies, this study raises critical inquiry about the reality of iron role in diabetes mellitus either in pathogenesis or treatment.

Conclusion

The relationship between iron dysregulation, glycemia, and microvascular complications in diabetes is conflicted. Is there an established link? Is the relationship causal? If so, which might affect the other? To better understand this complex relationship, we recommend the following:

1. To develop better clinical judgment regarding iron, in terms of accurately assessing body iron status with careful interpretation.

2. To gain a deep understanding of the role of iron levels in diabetes, involving large-scale and long-term epidemiological studies of different age groups, genders, and ethnicities.

3. To increase the number of interventional trials examining the effect of lowering iron in controlling glycemia, and the prevention of microvascular complications among diabetes.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

References

1. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohrooge AW, et al. IDF diabetes atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 2018;138:271-81.

2. Aljulifi MZ. Prevalence and reasons of increased type 2 diabetes in Gulf Cooperation council countries. Saudi Med J 2021;42:481-90.

3. Harding JL, Pavkov ME, Magliano DJ, Shaw JE, Gregg EW. Global trends in diabetes complications: A review of current evidence. Diabetologia 2019;62:3-16.

4. American Diabetes Association. 6. Glycemic targets: Standards of medical care in diabetes-2018. Diabetes Care 2018;41:S55-64.

5. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2009;32(Suppl 1):S62-7.

6. Nitin S. HbA1C and factors other than diabetes mellitus affecting it. Singapore Med J 2010;51:1616-22.

7. Powers AC. Diabetes mellitus: Diagnosis, classification, and pathophysiology. In: Jameson JL, Fauci AS, Kasper DL, Hauser SL, Longo DL, Loscalzo J, editors. Harrison’s Principles of Internal Medicine. 20th ed. USA: McGraw-Hill Education; 2018.

8. Guo W, Zhou O, Jia Y, Xu J. Increased levels of glycated hemoglobin A1c and iron deficiency anaemia: A review. Med Sci Monit 2019;25:8371-8.

9. Lundholm MD, Emanuele MA, Ashraf A, Nadeem S. Applications and pitfalls of hemoglobin A1C and alternative methods of glycemic monitoring. J Diabetes Complications 2020;34:107585. doi: 10.1016/j.jdiacomp.2020.107585.

10. Valarmathi A, Kumar R. Prevalence of anaemia among type 2 diabetes mellitus patients in correlation with Hba1C levels a prospective study. Int Arch Integr Med 2018;5:21-7.

11. Angelousi A, Larger E. Anaemia, a common but often unrecognized risk in diabetic patients: A review. Diabetes Metab 2015;41:18-27.

12. Solomon A, Hussein M, Negash M, Ahmed A, Bekele F, Kahase D. Effect of iron deficiency anaemia on HbA1c in diabetic patients at Tikur Anbessa specialized teaching hospital, Addis Ababa Ethiopia. BMC Hematol 2019;19:1-5.

13. Coban E, Ozdogan M, Timurragaoglu A. Effect of iron deficiency anaemia on the levels of hemoglobin A1c in nondiabetic patients. Acta Haematol 2004;112:126-8.

14. Kim C, Bullard KM, Herman WH, Beckles GL. Association between iron deficiency and A1C Levels among adults without diabetes in the National Health and Nutrition Examination...
15. Franco RS. The measurement and importance of red cell survival. Am J Hematol 2009;84:109-14.

16. Asiani SA, Nugraha GI, Sudigdoadi S. A literature review on the relationship between iron and zinc levels in diabetes mellitus and the effects of their supplementation. Budapest International Research and Critics Institute-Journal (BIRCI-Journal); Humaitan Soc Sci 2021;4:675-64.

17. Hashimoto K, Noguchi S, Morimoto Y, Hamada S, Wasada K, Imai S, et al. A1C but not serum glycated albumin is elevated in late pregnancy owing to iron deficiency. Diabetes Care 2008;31:1945-8.

18. Christy AL, Manjrekar PA, Babu RP, Hegde A, Rukmini MS. Influence of iron deficiency anemia on hemoglobin A1c levels in diabetic individuals with controlled plasma glucose levels. Iran Biomed J 2014;18:88-93.

19. Hospital NU. Najran Hospital Annual Report. Najran University Publishing; Najran. 2018.

20. Borah M, Goswami R. Evaluation of serum ferritin in in type II diabetes mellitus: A hospital based observational study from Dibrugarh, Assam, India. Int J Res Med Sci 2016;4:4916-21.

21. Simcox JA, McClain DA. Iron and diabetes risk. Cell Metab 2013;17:329-41.

22. Dev S, Babitt JL. Overview of iron metabolism in health and disease. Hemodlal Int 2017;21(Suppl 1):S6-20.

23. Rajpathak SN, Crandall JP, Wylie-Rosett J, Kabat GC, Rohan TE, Hu FB. The role of iron in type 2 diabetes in humans. Biochim Biophys Acta 2009;1790:671-81.

24. Wright JA, Oddy MJ, Richards T. Presence and characterisation of anaemia in diabetic foot ulceration. Anemia 2014;2014:104214.

25. Yang J, Yan PJ, Wan Q, Li H. Association between hemoglobin levels and diabetic peripheral neuropathy in patients with type 2 diabetes: A cross-sectional study using electronic health records. J Diabetes Res 2017;2017:2835981. doi: 10.1155/2017/2835981.

26. Craig KJ, Williams JD, Riley SG, Smith H, Owens DR, Worthing D, et al. Anemia and diabetes in the absence of nephropathy. Diabetes Care 2005;28:1118-23.

27. Idiculla J, Nithyanandam S, Joseph M, Christeena J. Anemia as a risk factor for diabetic retinopathy (DR) with special reference to nutritional etiology. Diabetes 2018;67:591-P.

28. Bahar A, Kashfi Z, Amiri AA, Nabipour M. Association between diabetic retinopathy and hemoglobin level. Caspian J Intern Med 2013;4:759-62.

29. Lee MK, Han KD, Lee JH, Sohn SY, Jeong JS, Kim MK, et al. High hemoglobin levels are associated with decreased risk of diabetic retinopathy in Korean type 2 diabetes. Sci Rep 2018;8:5538. doi: 10.1038/s41598-018-23905-2.

30. Yang YS, Wu CZ, Lin JD, Hsieh CH, Chen YL, Pei D, et al. The relationships between hemoglobin and insulin resistance, glucose effectiveness, and first- and second-phase insulin secretion in adult Chinese. Arch Endocrinol Metab 2019;63:309-15.

31. Sani M, Ayubi E, Khazaei S, Mansori K. Investigation of the relationship between hemoglobin and serum iron levels and early-phase insulin secretion in non-diabetic subjects: Statistical and methodological issues. Acta Diabetol 2017;54:513-4.

32. Basuli D, Stevens RG, Torti FM, Torti SV. Epidemiological associations between iron and cardiovascular disease and diabetes. Front Pharmacol 2014;5:117. doi: 10.3389/fphar.2014.00117.

33. Sharifi F, Sazandeh S. Serum ferritin in type 2 diabetes mellitus and its relationship with HbA1c. Acta Med Iran 2004;42:142-5.

34. Kunutsor SK, Apekey TA, Walley J, Kain K. Ferritin levels and risk of type 2 diabetes mellitus: An updated systematic review and meta-analysis of prospective evidence. Diabetes Metab Res Rev 2013;29:308-18.

35. Goot K, Hazeldine S, Bentley P, Olynyk J, Crawford D. Elevated serum ferritin what should gps know? Aust Fam Physician 2012;41:945-9.

36. Ramprasad K, Siddappa MN. Assessment of serum ferritin level and its correlation with HbA1c in diabetic nephropathy. Asian J Med Sci 2020;11:46-51.

37. Targher G, Franchini M, Montagnana M, Lippi G. The role of iron in diabetes and its complications: Reponse to Swaminathan et al. Diabetes Care 2007;30:e132. doi: 10.2337/dc07-1633.

38. Elis A, Ferencz JR, Gilady G, Livne A, Assia EI, Lishner M. Is serum ferritin high in patients with diabetic retinopathy? A controlled study. Endocr Res 2004;30:141-7.

39. Ciudin A, Hernandez C, Simo R. Iron overload in diabetic retinopathy: A cause or a consequence of impaired mechanisms? Exp Diabetes Res 2010;2010. doi: 10.1155/2010/714108.

40. Levi S, Taveggia C. Iron homeostasis in peripheral nervous system, still a black box? Antioxid Redox Signal 2014;21:634-48.

41. Zhao S, Zhang L, Xu Z, Chen W. Neurotoxic effects of iron overload under high glucose concentration. Neural Regen Res 2013;8:3429-33.