Bioactive secondary metabolites in *Paris polyphylla* Sm. and their biological activities: A Review

Chandra Bahadur Thapa\(^a,b\), Mukti Ram Paudel\(^a\), Hari Data Bhattacharai\(^a\), Krishna Kumar Pant\(^a\), Hari Prasad Devkota\(^c\), Yagya Prasad Adhikari\(^d\), Bijaya Pant\(^b\)

\(^a\) Central Department of Botany, Tribhuvan University, Kirtipur, Nepal
\(^b\) Butwal Multiple Campus, Tribhuvan University, Butwal, Nepal
\(^c\) Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
\(^d\) Department of Disturbance Ecology, University of Bayreuth, Bayreuth, Germany

A R T I C L E I N F O

Keywords:
Biological activities
ICS
Paris saponin
Rhizome
Vulnerable

A B S T R A C T

Paris polyphylla Sm. is an important medicinal plant used to treat a variety of diseases through traditional medicine systems such as Ayurveda, Tibetan traditional medicines, Chinese traditional medicines, and others around the world. The IUCN red list has designated it as 'vulnerable' due to a decline in wild population by over-exploitation, habitat degradation, illegal collection for trade and traditional use. This review paper aims to summarize the bioactive secondary metabolites in *Paris polyphylla*. Paris saponins or steroid saponins are the main bioactive chemical constituents from this plant that account for more than 80% of the total compounds. For instance, polyphyllin D, diosgenin, paris saponins I, II, VI, VII, and H are steroid saponins having anticancer activity comparable to synthetic anticancer medicines. Antioxidant, anticancer, anti-leishmaniasis, antibacterial, antifungal, anthelmintic, antityrosinase, and antiviral effects of extracts and pure compounds were also demonstrated *in vivo* and *in vitro*. In conclusion, this review summarizes the bioactive components from the *P. polyphylla* which will be useful to researchers and scientists, and for the development of potential drugs.

1. Introduction

Previously, the genus *Paris* was assigned to the Liliaceae and Trilliaceae families, however in the APG III system, it is assigned to the Melanthiaceae family. *Paris* includes roughly 24 species found across the world, from Europe to Asia (Zhang et al., 2011). Except for the European *P. quadrifolia* and the Caucasian *P. incompleta*, practically all of the 24 species are restricted to East Asia (19 species in China) (Ji et al., 2006). *Paris* has 27 species globally, including 22 species and 12 endemic species in China (Cunningham et al., 2018); 33 species, and 15 varieties in Southwest China (Ding et al., 2021). The World Checklist of Selected Plant Families (WCSP) listed 32 Paris species and 8 varieties of *P. polyphylla* in 2020. *P. polyphylla* has four subspecies and one variety in Nepal (www.eFloras.org, 2/4/2021). The Department of Plant Resources, Government of Nepal (DPR, 2017) has classified *P. polyphylla* as a "medicinal plant prioritized for agrotechnology development". It is distributed from sub-tropical to sub-alpine regions in various parts of the world (IUCN, 2004; Kunwar et al., 2020). It is known as ‘Satuwa’ in Nepali, ‘Paris root’ in English, and ‘Haimavati’ in Sanskrit. The rhizomes are used in traditional medicine known as ‘Rhizoma Paridis’ in Chinese Pharmacopoeia (Chinese Pharmacopoeia Commission, 2015).

Paris polyphylla (Figure 1) flourishes on thickets, grassy or rocky slopes of damp, humus, nitrogen and phosphorus rich soil under the canopy of the forest (Paul et al., 2015; K.C. et al., 2010; Deb et al., 2015). It grows in undisturbed areas with a canopy cover of more than 80% (Deb et al., 2015). The wild population of *P. polyphylla* is declining due to habitat destruction, deforestation, over-exploitation, illegal collection and harvesting, and has listed as ‘vulnerable’ in the IUCN Red List of Threatened Species (Chauhan, 2020). Overharvesting mainly during the season earlier than seed maturation may result in infrequent seed formation and germination that appears to be a severe threat to plant regeneration (Negi et al., 2014).

The rhizome and other parts of *P. polyphylla* in the form of infusions, juices, powders and pastes have been used in the traditional medicine to treat cuts, wounds, blisters, scabies, rashes or itching, burns, sprain, headache, fever, anthelmintic, vermifuge, expectorant, antispasmodic, anti-inflammatory, and for the relief of pain.

\(^{a}\) Corresponding author.
E-mail address: b.pant@cdbtu.edu.np (B. Pant).

https://doi.org/10.1016/j.heliyon.2022.e08982
Received 8 November 2021; Received in revised form 1 December 2021; Accepted 14 February 2022

© 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
digestive, gastritis, diarrhoea, dysentery, menstruation pain, tonic, antidote of poison (aconite poisoning), antidote of poisonous insects and snake, antiseptic, jaundice, vasodilatation in the kidney, vasodilatation in spleen and limbs (Liang, 2000; Rajbhandari, 2001; Manandhar, 2002; DOA, 2003; IUCN, 2004; Bhattarai et al., 2006; Kunwar et al., 2006; Baral and Kurmi, 2006; Dutta, 2007; K.C. et al., 2010; Acharya, 2012; Jamir et al., 2012; Li et al., 2012; Shah et al., 2012; Luitel and Pathak, 2013; Lamichhane et al., 2014; Deb et al., 2015). *P. polyphylla* is widely used in traditional Chinese medicine (TCM) for the treatment of boils, venomous snake bites, carbuncles, sore throat, and traumatic discomfort (Chinese Pharmacopoeia Commission, 2015). The main raw material for ‘Yunnan Baiyao’ and ‘Gong Xue Ning (GXM) capsule’ is a rhizome of this plant. Back discomfort, bleeding, shattered bones, wound healing, pain, fungal illnesses, poisonous snakes or bugs bites, skin allergy, tumours, and a variety of disease conditions are treated with the ‘Yunnan Baiyao’ (Long et al., 2003). GXM capsules were developed in China using the saponin extract of *P. polyphylla* var. yunnanensis to treat abnormal uterine bleeding (Zhao and Shi, 2005; Guo et al., 2008). It is also a source for "Jidesheng Sheyaopian" a Chinese patent medicine. The objective of this review paper is to summarize the biological activities of the components of *P. polyphylla*.

2. Method

Research articles published between 1990 and 2021 on secondary metabolites and their biological activities of *Paris polyphylla* were accessed through Google Scholar, PubMed and ProQuest using phrases “*Paris polyphylla* secondary metabolites”, “anticancer activity of *Paris polyphylla*”, “antimicrobial activity of *Paris polyphylla*”, “antioxidant activity of *Paris polyphylla*” and “anthelmintic activity of *Paris polyphylla*”. This review does not include articles from conference proceedings and those written in languages other than English.

3. Bioactive compounds of *Paris polyphylla*

Terpenes, alkaloids, glycosides, phenolics, volatile oils, terpenoids, saponins, steroids and resins are active secondary metabolites found in medicinal and aromatic plants (MAPs) (Oubey, 1993; Ramawat and Goyal, 2004). Secondary metabolites of MAPs are used in drugs, perfumes, agrochemicals, flavouring agents and pigments (Ramawat and Goyal, 2004; Chawla, 2014). The existence of secondary metabolites in MAPs confers therapeutic properties, the majority of which likely originated as chemical defences against predation or infection. Because of the structural diversity of secondary metabolites and the wide spectrum of pharmacological activity, MAPs are regarded as excellent sources of novel pharmaceutical medicines (Pant, 2014).

Various compounds have been isolated and characterized from the rhizomes, roots, aerial stem and leaves of *P. polyphylla* including steroidal saponins (Buckingham, 1994; Wang et al., 2005; Devkota et al., 2007; Xiao et al., 2009; Kang et al., 2012; Wu et al., 2012a; Li et al. 2012, 2013), flavonoid glycosides (Chen et al., 1995; Kang et al., 2012; Wu et al., 2012a), sterols (Chen et al., 1990; Wu et al., 2012a), triterpenoid saponins (Wu et al., 2012b) and polysaccharides (Zhou and Yang, 2003). From 1960 to 2010, more than 90 components were isolated, including steroidal saponins, phytosterols, flavones, and phytocytosynes (Zhang et al., 2011), and about 67 steroidal saponins were isolated from 11 species of the genus *Paris* (Huang et al., 2009). Till 2020, around 320 chemical components have been isolated, including steroidal saponins, C-21 steroids, phytosterols, insect hormones, pentacyclic triterpenes, flavonoids, and other chemical substances (Ding et al., 2021). More than 50 paris saponins have been identified from *P. polyphylla* var. yunnanensis (Chinese Pharmacopoeia Commission, 2015), however, only four paris saponins; paris saponins I, II, VI and VII have been officially recognized as quality standard components of the Chinese Pharmacopoeia (Qin et al., 2018). Saponins are a type of glycoside consists of aglycones (water-insoluble) such as steroids or triterpenoids, as well as one or more sugar chains (water-soluble) such as glucose, galactose, pentose, or methylpentose. Saponins have their aglycon constituents which are mainly diosgenin, penogenin, 24-hydroxy penogenin, 27-hydroxy penogenin, 23, 27-dihydroxy penogenin, 25S-isonutigenin, nutigenin, and C-21 steroidal saponins. Saponins in plants have diverse structures due to the presence of different sugars at different locations and orientations. Antitumor, anti-oxidative characteristics, expectorants, inhibition of platelet aggregation, insecticidal, anti-diabetic, anti-fungal/anti-yeast, antiparasitic, antibacterial, anti-hyperlipidemic, and anti-inflammatory qualities are just a few of the therapeutic applications of steroidal saponins (Sparg et al., 2004). Structures of some of the main compounds are represented in Figure 2.

Wang et al. (2005) isolated two new and six known compounds from the rhizome of *P. polyphylla*, including falcarindiol, β-ecdysterone, penogenin-3-O-α-L-arabinofuranosyl (1→4)-β-D-glucopyranoside, penogenin-3-O-α-L-arabinofuranosyl (1→4)-α-1-L-rhamnopyranosyl (1→2))-β-D-glucopyranoside, diosgenin-3-O-β-D-glucopyranoside, diosgenyl-3-O-α-L- rhamnopyranosyl (1→4)-β-D-glucopyranoside, diosgenin-3-O-α-L-
rhamnopyranosyl (1→2)β-D-glucopyranoside, & disogenin-3-O-α-L-rhamnopyranosyl (1→4)-α-L-rhamnopyranosyl (1→2)β-D-glucopyranoside. Devkota et al. (2007) isolated four known compounds from the rhizomes of *P. polyphylla* collected from Parbat district, Nepal, viz: przewalskinone B, polyphyllin C, polyphyllin D and dioscin. Xiao et al. (2009) isolated five pariposides: pariposide A, pariposide B, pariposide C, pariposide D, and dioscin. Devkota et al. (2007) isolated four known compounds from the rhizomes of *P. polyphylla*, viz: przewalskinone B, polyphyllin C, polyphyllin D and dioscin. Xiao et al. (2009) isolated five paris saponins: paris saponin I (PSI), paris saponin V (PSV), paris saponin VI (PSVI), paris saponin VII (PSVII) and Paris saponin H (PSH). The rhizome contains pariposide D, pariposide E, pariposide F, (3β,25R)-spirost-5-en-3-ol-3-O-α-L-arabinopyranosyl-(1→4)-β-D-glucopyranoside, (3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside, (3β,17α,25R)-spirost-5-ene-3,17-diol-3-O-α-L-arabinofuranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-β-D-glucopyranoside, (3β, 22E)-stigmasterol-5,22-dien 3-O-β-D-gluco pyranoside, β-daucosterol, 24-epi-pinnatasterone and 20-hydroxyecdysone. Wu et al. (2012b) also isolated six new oleanane-type triterpenoid saponins from the rhizome of *P. polyphylla*; paritrisides A-F along with nine known triterpenoid saponins; paritriside A, paritriside B, paritriside C, paritriside D, paritriside E, paritriside F, 3β-hydroxyoleane-12-en-28-oic acid-3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside, 3β-hydroxyoleane-12-en-28-oic acid-3-O-β-D-glucopyranosyl-(1→2)-β-D-xylopyranoside, 3β-hydroxyoleane-12-en-28-oic acid 3-O-β-D-glucuronide, 3β-hydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranoside, 3β-hydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranoside, 3β-hydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside, 3β-hydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside, and 3β,23-dihydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranosyl-(1→2)-β-D-glucopyranoside, 3β,23-dihydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside, and 3β,23-dihydroxyoleane-12-en-28-oic acid 3-O-β-D-glucopyranosyl-(1→4)-α-L-arabinopyranoside.

4. Biological activities of the secondary metabolites

Chemical components of *P. polyphylla* have anticancer, antioxidant, anti-leishmanial, anthelmintic, antibacterial, antifungal, antigynaecological disease, antiviral, and antityrosinase properties (Tables 1 and 2). The biological activity of components was examined...
Table 1. Biological activity of some important isolated compounds of *Paris polyphylla*.

Compound name (1)	Biological activity	Reference	
Polyphyllin D	Breast cancer: *In vitro*: Induced apoptosis in estrogen-sensitive MDA-MB-231 cells with IC\textsubscript{50} of 5 μM and μ2.5 M, respectively. *In vivo*: Reduced tumour growth by 50% in nude mice carrying MCF-7 cells at 2.73 mg/kg body weight.	Lee et al. (2005)	
	Ovary cancer: *In vitro*: Anti-proliferative effects against SKOV3, A2780CP, A2780S, M41, M41-R, TK4N4, TYK5N4-R, OVCARB, HAYAB, OVCARS, MCAS, PE01, KGR-OV1, IMCCS, OVCAR2, OVCAR40, OVCAR432, OVCAR433, TOV-112D cell lines with IC\textsubscript{50} ranging from 0.2 to 1.4 μM.	Al-Sawah et al. (2015)	
	Leukemia: *In vitro*: Induced apoptosis in the erythroleukaemia cell line (K562) and peripheral blood mononuclear cells (PBMC) with an IC\textsubscript{50} of 0.8 ± 0.1 μM.	Yang et al. (2016)	
	Anthelmintic activity: *In vivo*: Inhibited the activity of *Dacylogyra intermedia* (a freshwater fish ectoparasite) with EC\textsubscript{50} of 0.70 μM, which was higher than of the mebendazole (EC\textsubscript{50} = 1.25 mg/L).	Wang et al. (2010)	
	Leukemia: *In vitro*: Induced apoptosis in drug-resistant K562/A02 human leukaemia cells, with an IC\textsubscript{50} of 0.9 μM in K562 cells and 0.8 μM in K562/A02 cells, respectively.	Wu et al. (2013)	
	Hepatocellular cancer: *In vitro*: Induced apoptosis in the HepG2 and R-HepG2 liver cancer cell lines with the IC\textsubscript{50} of 7μM and 5μM, respectively, compared to Cisplatin (50μM and 167μM) and Taxol (2μM and 50μM).	Cheung et al. (2005)	
	Brain cancer: *In vitro*: Induced apoptosis in U87 human glioma cells with an IC\textsubscript{50} of 4.94 × 10–5 M.	Yu et al. (2014)	
	Antiangiogenesis in the tumour: *In vitro*: Decreased endothelial cell migration and capillary tube formation at 0.3 μM and 0.4 μM in a human microvascular endothelial cell line (HMEC-HMEC-1 cells).	Chan et al. (2011)	
	Paris saponin VI (PSVI) (2)		
	Hepatocellular toxicity: *In vitro*: Induced apoptosis in HL-7702 and HepAR cells with an IC\textsubscript{50} of 8.18 μM and 6.65 μM, respectively.	Wang et al. (2019)	
	Lung cancer: *In vitro*: PSVI triggered apoptosis in lung cancer cells (A549 and NCI-H299) with IC\textsubscript{50} of 4.53 ± 0.56 μM in A549 cells and 5.46 ± 0.45 in NCI-H299 cells after 48 h. *In vivo*: In nude mice bearing A549 tumour xenografts, tumour inhibitory rates of PSVI in A549 cells were 25.74%, 34.62%, and 40.43% at 2, 3, and 4 mg/kg, respectively.	Lin et al. (2015)	
	Brain cancer: *In vitro*: PSVI induced apoptosis in glioma cell lines (U251, U343, LN229, and HEB) with IC\textsubscript{50} value of 3.65 ± 0.428 μM in LN229 cells, 5.00 ± 0.372 μM in U87 cells, 5.13 ± 0.528 μM in 2512 cells, and 3.99 ± 0.397 μM in U343 cells after 24 h. *In vivo*: PSVI normal HEB cells showed only minor cytotoxicity.	Liu et al. (2020)	
	Human cervical cancer: *In vitro*: Induced apoptosis in human cervical carcinoma Hela cells with an IC\textsubscript{50} of 2.62 ± 0.11 μM, When cells were exposed to 0.8, 1.6, and 2.4 μM of PSVI for 24 h, the proportion of apoptotic cells was 15.50%, 17.37%, and 38.60%, respectively.	Zhang et al. (2014)	
	Liver cancer: *In vitro*: PSVI induced apoptosis in HEPG2 cells with IC\textsubscript{50} of 0.80 and 2.75 μM, respectively.	Wang et al. (2019)	
	Liver cancer: *In vitro*: PSVI induced apoptosis in the HepG2 cell line with IC\textsubscript{50} of 0.88, 1.32, 1.98, and 2.97 μM for 24 h.	Yang et al., (2015b)	
	Paris saponin VII (PSVII) (3)		
	Hepatocellular carcinoma: *In vitro*: Lowered cell viability in PLC/PRF/5 and Huh7 cells at 1.25–20 μM, increased apoptosis at 1.25 and 20 μM, and elevated caspase-3 at 2.5, 5.0, and 10 μM. *In vivo*: Inhibited tumour growth in hepatocellular carcinoma (HCC) xenograft model of nude mice, at doses of 5 mg/kg and 10 mg/kg of PSH.	Chen et al. (2019)	
	Dioxygenin (5)	Anthelmintic activity: *In vitro*: Inhibited the activity of *Dacylogyra intermedia* with EC\textsubscript{50} of 0.44 μg/mL. It was more efficacious than mebendazole (EC\textsubscript{50} = 1.25 μg/mL).	Wang et al. (2010)
	Lung cancer: *In vitro*: Induced apoptosis in the lung adenocarcinoma cell line (A795S) from mice with an IC\textsubscript{50} of 149.75 ± 10.43 μM/L after 24 h.	Yan et al. (2009)	
	Human gastric cancer: *In vitro*: Inhibited tumour growth in SGC-7901 cell lines after 24 h in 2.5, 5.0, and 10 μM. *In vivo*: Inhibited tumour growth in gastric cancer (SGC-7901) cell line with an IC\textsubscript{50} of 2.51, 2.07, and 1.53 μg/mL after 24, 48, and 72 h of incubation.	Zhao et al. (2015)	
	Pennogenin (6)	Hepatocellular toxicity: *In vitro*: Induced apoptosis in SKOV3 cells with an IC\textsubscript{50} of 15 μM/L.	Xiao et al. (2009)
	Lung cancer: *In vitro*: PSI combined with hyperthermia at 43 °C induced apoptosis on a non-small cell lung cancer (NSCLC) PC 9 cell line with IC\textsubscript{50} of 1.21 μg/mL. When compared to the PSI alone, the percentage of cells in the G2/M phase arrest increased from 33.59 to 42.58%.	Song et al. (2016)	
	Human gastric cancer: *In vitro*: PSI sensitized the human gastric cancer cell line (SGC-7901) to the cisplatin with minimal damage. PSI had an IC\textsubscript{50} of 1.12 μg/mL in SGC-7901 cell lines after 48 h at 0.2-6.4 μg/mL. Cisplatin had an IC\textsubscript{50} of 30.4 μM in SGC-7901 cell lines after 48 h at 1–64 μM concentration. The IC\textsubscript{50} of Cisplatin was reduced to 20.3 μM when it was coupled with PSI (0.3 μg/mL).		
against cancer cell lines, bacteria, enzymes and other parasites in the form of crude extract, a mixture of compounds (steroidal saponins), or pure compounds.

4.1. Anticancer activity

Cancer is a non-communicable disease in which some of the body's cells grow out of control, resulting in malignant tumours that spread to other regions of the body via metastasis. The rate of cell division and cellular attrition determine the proliferation of cancer cells. The rate of cell growth in cancer cells is uncontrolled resulting in tumour invasion. Due to its high mortality rate, cancer is a severe problem in both developed and developing nations. According to the American Cancer Society, there were 1,762,450 new cancer cases and 606,880 cancer deaths in the United States in 2019 (Siegel et al., 2019). As a result, several strategies have been developed to combat cancer, including surgery, chemotherapy, radiotherapy, and immunotherapy. These treatments are successful for certain individuals, but they come with a slew of side effects, including

Compound name	Biological activity	Reference
Table 1 (continued)		

Compound name	Biological activity	Reference
In vivo: The 18F-fluorodeoxyglucose microPET scan for glucose metabolic activity in tumours in xenograft nude mice revealed a lower tumour SUV in the PSI treatment groups compared to the control group.	Jang et al., (2014b)	
Lung cancer: In vivo: With an IC50 of 2.51±2 μg/mL, PSI reduced the proliferation of gefitinib-resistant lung cancer cell line (PC9ZD cells) over 24 h.	Liu et al. (2016)	
Lung cancer: In vivo: PSI reduced the proliferation of three non-small cell lung cancer (NSCLC) cells (H1299, H520, H460) and one small cell lung cancer (SCLC) cell (H446). PSI at 4 mM caused early-stage apoptosis in H1299 and H520 cells, with the latter reaching a high of 73.54 ± 3.44%. However, at 4 mM, the H446 cells went into late-stage apoptosis.	Xiao et al. (2018)	
Liver cancer: In vivo and in vitro: PSI reduced vacuole mimics (VM) production in hepatocellular carcinoma (HCC) cell lines (SMCC7721, PLC, HepG2, Hep3B, and Bel7402), as well as transplanted hepatocellular carcinoma cells. Patients with HCC who were given PSI before surgery had lower microvesicle density (MVD) and VM than those who were not.	Han et al. (2015)	
Liver cancer: In vivo: PSI (at 0.5–2 μg/mL) sensitized HepG2 cells to cisplatin-induced cytotoxicity after 24 h of treatment with 0.2–100 μM cisplatin.	Chang et al. (2015)	
Bone tumour: In vivo: PSI induced apoptosis at 0–2.5 μM in MG-63, Saos-2, and U-2 OS human osteosarcoma cells.	Feng et al. (2019)	
Lung cancer: In vivo: PSI caused apoptosis in the cisplatin-resistant human non-small cell lung cancer cell line (A549/DDP) with an IC50 of 1.54 ± 0.26 μM/mL in the A549 and 1.08 ± 0.20 μM/mL in the A549/DDP cell lines.	Zhang et al., (2016a,b)	
Parus saponin II (PSII) (9)	Anthelmintic activity; In vivo: Dioscin had a substantial IC50 of 0.44 mg/L against Dactylogyrus intermedius (a freshwater fish ectoparasite), which was higher than the mebendazole (IC50 = 1.25 mg/L).	Wang et al. (2010)
Lung cancer: In vivo: PSI induced apoptosis in human lung cancer cells (NCI-H446 and A549) as soon as 2 h after 1 μM treatment, but did not affect normal human pulmonary epithelial cells (BEAS-2B). The production of cytoplasmic acidic vesicular organelles (AVOs) was reduced and apoptosis was promoted in NCI-H446 cells treated with 1 μM PSI in the presence or absence of 10 mM CQ over 24 h.	Huang et al. (2019)	
Hepatocellular toxicity: In vivo: PSI-induced apoptosis in HL-7702 and HepaRG cells, with IC50s of 1.88 and 3.74 μM, respectively.	Xiao et al.(2014)	
Ovary cancer: In vivo: PSI-induced apoptosis in human ovarian cancer cells (OC SKOV3 and OC HOC-7) with lower IC50s of 7.17 μM and 6.44 μM, respectively, when compared to PV16 (chemotherapeutic drug) with higher IC50s of 14.67 μM and 6.44 μM, respectively.	Yang et al., (2015a)	
Ovary cancer: In vivo: PSI-induced apoptosis in human ovary cancer SKOV3 cell proliferation after 72 h of therapy at 1 μM.	Yang et al., (2015a)	
Ovary cancer: In vivo: PSI-induced apoptosis in human ovary cancer SKOV3 cell proliferation after 72 h of therapy at 1 μM.	Yang et al., (2015a)	
Colorectal cancer: In vivo: PSI-induced apoptosis in colorectal cancer cell lines (HT 29 and HCT 116) with an IC50 of 1.89 μM in HT 29 cells and 2.43 μM in HCT 116 cells, respectively. PSI, on the other hand, showed an IC50 of 18.96 μM in human colon cancer cell lines (Hct81P), about 10 times higher than in colon cancer cells.	Chen et al. (2018)	
Ovarian cancer cells: In vivo: PSI had a 90.0% inhibition index after 7 days of therapy at 1 μM, compared to PSI (80.3%) and the etoposide (69.2%) in the human ovarian cancer cell line (SKOV3). On PS II-treated SKOV3 cells, the IC50 and total growth-inhibiting concentration (TGI) were 2.4 μM and 6.3 μM, respectively, compared to PSI (3.1 μM and 9.3 μM) and etoposide (3.2 μM and 9.7 μM).	Xiao et al. (2012)	
Polyphyllin VII (PPVII) (10)	Hepatocellular carcinoma: In vivo: PPVII-induced apoptosis in hepatocellular carcinoma HepG2 cells with an IC50 of 1.32 μM, 0.85 μM, 0.78 μM at 24 h, 48 h, and 72 h. Other hepatocellular carcinoma cell lines (Hep3B, Be1702, and 7721) also induced cytotoxicity with IC50s of 2.61 μM, 2.86 μM, and 2.30 μM, respectively, after 24 h.	Zhang et al., (2016a,b)
Lung cancer: In vivo: PPVII-induced apoptosis in A549 human lung cancer cells with an IC50 of 0.41 ± 0.10 μM after 24 h.	He et al. (2020)	
Nasopharyngeal carcinoma: In vivo: PPVII-induced apoptosis in human nasopharyngeal carcinoma (NPC) cells such as HONE-1 and NPC-09 cells with IC50 of 2.33 ± 0.22 μM and 2.30 ± 0.31 μM, respectively.	Chen et al. (2016)	
Lung cancer: In vivo: PPVII-induced apoptosis and autophagy in the cisplatin (DDP)-resistant human non-small cell lung cancer (NSCLC) cell line (A549/DDP), with an IC50 of 2.26 ± 0.30 μM/mL in the A549 and 1.84 ± 0.23 μM/mL in the A549/DDP cell lines.	Feng et al. (2019)	
Lung cancer: In vivo: PPVII-triggered apoptosis in lung cancer cells such as A549 and NCI-H1299 cells, with an IC50 of 1.59 ± 0.12 μM in A549 cells and 1.87 ± 0.09 in NCI-H1299 cells at 48 h.	Lin et al. (2015)	
Brain cancer: In vivo: PPVII-triggered apoptosis in glioma cell lines such U87-MG and U251 cells with IC50 of 4.24 ± 0.87 μM and 2.17 ± 0.14 μM respectively.	Pang et al. (2019)	
Methanol, ethanol, petroleum ether, water and dichloromethane extracts as well as steroidal saponins obtained from various parts of *P. polyphylla* such as the rhizome, root, leaves, stem and whole plant have shown anticancer activity against lung cancer (Yan et al., 2009; Li et al., 2013; He et al., 2014; Hu et al., 2017; Qin et al., 2018), oesophageal cancer (Li et al., 2012), bone cancer (Ruamrungsri et al., 2016), prostate cancer (Zhang et al., 2018), breast cancer (Qin et al., 2018), bladder cancer (Guo et al., 2018), liver cancer (Qin et al., 2019), colon cancer (Qin et al., 2019) and digestive cell cancer (Sun et al., 2007). Methanol extract had the lowest IC$_{50}$ of <10 μg/mL in both chondrosarcoma cell lines and normal canine primary chondrocyte cells (Ruamrungsri et al., 2016). Similarly, ethanol extract had IC$_{50}$ ranging from 10 μg/mL to 30 μg/mL than the aqueous extracts on the six human digestive tumour cell lines (Sun et al., 2007). Ethanol extracts induced an anti-tumour response in vivo in PC3 xenograft development in BALB/c nude mice, in which the highest dose exhibited an effect similar to that of 5-FU (positive control) (Zhang et al., 2018). Saponins can cause cell death in a variety of ways including programmed (apoptosis and autophagy) and non-programmed routes (Escobar-Sánchez et al., 2015). Total saponins, on the other hand, were found to be cytotoxic against five cancer cell lines (human leukaemia, lung cancer, liver cancer, breast cancer and colon cancer) (Qin et al., 2018). They were utilized as agents to limit cell proliferation and necrotic induction since their effect on tumour cells was assessed with a lower IC$_{50}$.

Similarly, pure compounds extracted from *P. polyphylla* were found to have anticancer properties against a variety of cancer cells. Polyphyllin D was the most frequently studied steroidal saponin for cancer treatment and it was found to have the activity against breast cancer (Lee et al., 2005), ovary cancer (AlSawah et al., 2015), leukemia (Yang et al., 2016; Wu et al., 2013), liver cancer (Cheung et al., 2005), brain tumour (Yu et al., 2014) and antiangiogenesis in the tumour (Chen et al., 2011). In cancer cell lines, it works as a strong anticancer agent with an IC$_{50}$ ranging from 0.2 to 1.4 μM in ovary cancer cells (AlSawah et al., 2015), 0.8–0.9 μM in leukaemia cells (Yang et al., 2016; Wu et al., 2013). Paris saponin VI showed anticancer activity toward the liver cancer line with IC$_{50}$ of 8.18 μM and 6.65 μM (Wang et al., 2019). Paris saponin inhibited the growth of human cervical cancer cells with an IC$_{50}$ of 2.62 ± 0.11 μM (Zhang et al., 2014), liver cancer cells with an IC$_{50}$ of 0.80–2.75 μM (Wang et al., 2019; Tang et al., 2019) and drug-resistant ovarian cancer cell lines (Yang et al., 2015). Similarly, polyphyllin H inhibited the growth of liver cancer cells with an IC$_{50}$ of 1.25 μM (Chen et al., 2019), diosgenin lung cancer cells with IC$_{50}$ of 149.75 ± 10.43 μM (Yan et al., 2009), penogenins liver cancer cells with IC$_{50}$ of 9.7–13.5 μM (Zhu et al., 2011). Paris saponin I inhibited the growth of ovarian cancer cells with IC$_{50}$ of <15 μM (Xiao et al., 2009), liver cancer cells with IC$_{50}$ of 0.84–4.66 μM (Wang et al., 2019), gastric cancer cells with IC$_{50}$ from 30.4 to 20.3 μM (Song et al., 2016) and lung cancer cells with IC$_{50}$ from 1.21 to 2.54 μg/mL (Jiang et al., 2014a, 2014b; Liu et al., 2016; Zhao et al., 2015). Likewise, paris saponin II inhibited the growth of lung cancer cells (Zhang et al., 2015), liver cancer cells (Wang et al., 2019), and ovary cancer cells (Xiao et al., 2012, 2014; & Yang et al., 2015); polyphyllin I inhibited the growth of liver cancer cells (Xiao et al., 2018; Han et al., 2015), bone cancer cells (Chang et al., 2015) and lung cancer cells (Feng et al., 2019); polyphyllin VII inhibited the growth of lung cancer cells (Lin et al., 2015; He et al., 2020; Feng et al., 2019; Lin et al., 2015), liver cancer cells (Zhang et al., 2016a,b), nasopharyngeal cancer cells (Chen et al., 2016) and brain cancer cells (Pang et al., 2019; Liu et al., 2020). The data reveals that IC$_{50}$ of saponins is comparable to that of synthetic chemotherapeutic drugs, and the same saponin type has anticancer action against multiple types of cancer. Because, drug resistance and clinical relapse are widespread in cancer treatment, the use of *P. polyphylla* steroidal saponins maybe a dependable source. Natural products inhibited the growth of human cancer cells in *vitro* and in *vivo* by triggering apoptosis and cell cycle arrest, with only minor harmful side effects on the host’s normal tissues and cells (Hannin, 1997; Zhang et al., 2018). Excessive consumption of paris saponins resulted in nausea, vomiting, diarrhoea, and possibly heart palpitations and seizures (Liu et al., 2012). As a result, natural products extracted from *P. polyphylla* such as steroidal saponins and triterpenoid saponins have fewer negative effects in humans than synthetic drugs, and can thus be developed as natural drugs for cancer treatment. Because, the amount of steroidal saponin generated in vivo cannot meet the requirement, the approach for in *vivo* enhancement of these chemicals using tissue culture technology will be advantageous in future.

These compounds have also demonstrated suppression of carcinoma cell proliferation, cell autophagy and cell death occurs on the types of cancer cell lines and the compounds/drugs used via numerous routes based such as mitochondrial dysfunction (Lee et al., 2005; Cheung et al., 2005; Xiao et al., 2009; AlSawah et al., 2015; Wu et al., 2013; Zhang et al., 2014; Jiang et al., 2014a, 2014b; Zhao et al., 2015; Song et al., 2016; Yang et al., 2016; Tang et al., 2019; Wang et al., 2019), cell arrest at G2/M phase (Xiao et al., 2009; Jiang et al., 2014a, 2014b; Zhao et al., 2015; Lin et al., 2015; Song et al., 2016), cell arrest at G1-phase (Chen et al., 2018), cell arrest at G2/S-phase (Wang et al., 2019), ROS-oxidative stress pathway (Wang et al., 2019), mitogen-activated protein kinase (MAPK) pathways (Xiao et al., 2009; Chen et al., 2016), suppress pathological angiogenesis (Xiao et al., 2014; Yang et al., 2015a,b), suppress nuclear factor-xB (NF-xB) pathway (Yang et al., 2015a,b; Han et al., 2015; Chang et al., 2015; Chen et al., 2018; He et al., 2020), suppress vasculogenic mimicry (Xiao et al., 2018), suppress the CIP2A/ AKT/mTOR pathway (Feng et al., 2019), suppress PI3K/Akt pathway (He et al., 2020) and suppress ROS induced AKT/mTORC1 activity (Pang et al., 2019).

4.2. Antioxidant activity

Antioxidants are chemicals that prevent proteins, lipids, DNA, and other molecules within cells from free radicals and oxidative stress. Oxidative stress is reported to result in ageing and diseases such as cancer, heart disease, cognitive decline and immune system decline. Water-soluble antioxidants, on the other hand, react with oxidants in the cell cytosol and blood plasma, whereas lipid-soluble antioxidants protect cell membranes from lipid peroxidation (Vertuani et al., 2004). Methanol, ethanol, petroleum ether, water extracts and steroidal saponins derived from the rhizome of *P. polyphylla* showed antioxidant activity (Mayirmao and Bhat, 2017; Devi et al., 2018; Lepcha et al., 2019). Ethanol extract of *P. polyphylla* had a strong antioxidant activity with an IC$_{50}$ value of 68 μg/mL (Devi et al., 2018), but the methanol extract had a very weak antioxidant activity with an IC$_{50}$ value of 1.09 mg/mL (Mayirmao and Bhat, 2017). Antioxidant activity of sample or extract is classified as strong if the IC$_{50}$ value is 50–100 μg/mL, moderate if the IC$_{50}$ value is 100–150 μg/mL and weak if the IC$_{50}$ is 151–200 μg/mL (Prakash and Okawa, 2001; Diantini et al., 2013).

4.3. Antimicrobial activity

Methanol, ethanol and water extracts from the leaves, rhizome and whole plant of *P. polyphylla* showed antifungal activity (Mayirmao and Bhat, 2017; Deng et al., 2008; Qin et al., 2018; Joshi et al., 2020) and antibacterial activity (Mayirmao and Bhat, 2017; Qin et al., 2018; Joshi et al., 2020). Similarly, pure compounds isolated from *P. polyphylla* also showed antifungal activities in *vitro*. Penoginons showed antifungal activity with minimal inhibitory concentration (MIC) of 0.6 mg/mL to toxicity, tumour spread and a high rate of tumour recurrence (Song et al., 2015; Chen et al., 2018). Chemotherapy has several drawbacks including multidrug resistance and significant dose-related toxicity limit its practical application (Han et al., 2015; Feng et al., 2019). There is a pressing need to find more effective and less hazardous anticancer drugs. Many clinically utilized cancer chemotherapy drugs are derived from natural products, which are still hotspots for innovative lead discovery (Newman and Cragg, 2012).
Table 2. Biological activity of crude extracts of Paris polyphylla.

S.N.	Extract	Source	Biological Activity	Reference
1.	Methanol extract	Rhizome	Lung cancer: In vivo: The extract (2.5, 5.0, and 7.5 mg/kg) inhibited tumour growth, volume, and weight in Lewis bearing-C57BL/6 mice at a rate of 26.49 ± 17.30%, 40.32 ± 18.91%, and 54.94 ± 16.48%, respectively. In vivo: The extract (0.25, 0.50, and 0.75 mg/mL) induced apoptosis in human lung adenocarcinoma A549 cell lines.	Li et al. (2013)
			Antioxidant activity: In vivo: Methanol extracts of rhizomes collected from two places Tholung (PPT) and Uttaray (PPU) showed free radical scavenger of DPPH with an IC₅₀ of 2.01 μg/mL and 2.55 μg/mL, respectively. PPT had an IC₅₀ of 2.22 μg/mL and PPU had an IC₅₀ of 2.57 μg/mL, according to the ABTS test.	Lepcha et al. (2019)
			Cytotoxicity on HeLa, HepG2, and PC3: In vivo: Methanol extracts inhibited HeLa cell (cervical cancer cell) growth > 90% at 100 μg/mL. PPT and PPU both had a moderate effect on HepG2 cells (non-tumorigenic hepatic cells) growth up to 30 μg/mL concentration, whereas PPT inhibited growth by 73.47% at 100 μg/mL concentration. Both extracts inhibited PC3 (prostate cancer cell line) cells at a dosage of 100 μg/mL.	
			Antioxidant activity: In vivo: Methanol extract has a stronger antioxidant activity with an IC₅₀ of 1.09 mg/mL.	
			Antimicrobial activity: In vivo: At 5 mg/mL, methanol extract inhibited the growth of Aspergillus niger (97.74%), Staphylococcus aureus (95.58%), Escherichia coli (95.58%), and Trichoderma reesi (74.41%). The antifungal activity was best against A. niger, with a zone of inhibition diameter of 33 mm, and lowest against T. reesi, with a zone of inhibition diameter of 31 mm. The antibacterial activity was best against E. coli, with a zone of inhibition diameter of >31 mm.	
			Anthelmintic activity: In vivo: With an EC₅₀ of 18.06 μg/L, methanol extract exhibited substantial efficacy against Dacydogyra intermedius (a freshwater fish ectoparasite).	Wang et al. (2010)
			Antiviral activity: In vivo: With an IC₅₀ of 8.74 μg/mL and a SI/selectivity index (IC₅₀/EC₅₀) of 1.75, methanol extract exhibited antiviral activity against Chikungunya virus (CHIKV).	Joshi et al. (2020)
			Antifungal activity: In vivo: At 1000 μg/mL, methanol extract inhibited the growth of Candida albicans (99 % inhibition).	
			Antibacterial activity: In vivo: At 1000 μg/mL, methanol extract inhibited the growth of Pseudomonas aeruginosa (100%), Staphylococcus aureus (98%), Listeria innocua (65%), Escherichia coli (57%), Salmonella enteritc (67%), and Shigella sonnei (47%).	
	Leaves		Antioxidant activity: In vivo: The total phenol concentration was 0.68 mg/g catechol and 0.47 mg/g catechol with the ethanol and petroleum ether extracts respectively by Folin’s Ciocalteu reagent, and the inhibitory concentration value of ethanol extract was 68.047 mg/g catechol with the ethanol and petroleum ether extracts respectively.	
2.	Dichloromethane and methanol extract	Rhizome	Bone cancer: Dichloromethane extracts induced apoptosis in SW1353 chondrosarcoma cells with an IC₅₀ of 9.74 ± 0.36 μg/mL, but had a less effect on the percentage of viability and necrosis of normal canine primary chondrocyte cells (IC₅₀ of 382.70 μg/mL). In both primary chondrocytes and SW1353 chondrosarcoma cells, methanol extract showed the lowest IC₅₀ of <10 μg/mL.	Ramaunguris et al. (2016)
			Antioxidant activity: In vivo: The total phenol concentration was 0.68 μg/g catechol and 0.47 μg/g catechol with the ethanol and petroleum ether extracts respectively by Folin’s Ciocalteu reagent, and the inhibitory concentration value of ethanol extract was 68 μg/mL (ascorbic acid 7.8 μg/mL). It means that the ethanol extract has a larger total phenolic content and, as a result, has more antioxidant activity.	
			Antifungal activity: In vivo: Ethanol extract showed antifungal activity against Cladosporium cladosporioides.	Deng et al. (2008)
			Abnormal uterine bleeding (AUB): In vivo: Using myometrial strips from estrogen-primed or pregnant rats, ethanol extract increased the frequency and intensity of phasic myometrial contractions with 23.19 ± 0.27% of the potassium response, and the EC₅₀ of 19.82 ± 0.42 mg/mL.	Guo et al. (2008)
			Antimicrobial activity: In vivo: Using myometrial strips from estrogen-primed or pregnant rats, ethanol extract increased the frequency and intensity of phasic myometrial contractions with 23.19 ± 0.27% of the potassium response, and the EC₅₀ of 19.82 ± 0.42 mg/mL.	
3.	Ethanol extract	Roots	Human oesophageal cancer cells: In vivo: ethanol extract induced apoptosis at 25 μg/mL, 50 μg/mL, 100 μg/mL, and 200 μg/mL concentrations, and increased the expression of the cancer suppressor gene (connexin26) at the mRNA level and proteins level in oesophageal cancer ECA109 cells.	Li et al. (2012)
			Antioxidant activity: In vivo: The total phenol concentration was 0.68 μg/g catechol and 0.47 μg/g catechol with the ethanol and petroleum ether extracts respectively by Folin’s Ciocalteu reagent, and the inhibitory concentration value of ethanol extract was 68 μg/mL (ascorbic acid 7.8 μg/mL). It means that the ethanol extract has a larger total phenolic content and, as a result, has more antioxidant activity.	Devi et al. (2018)
			Antifungal activity: In vivo: Ethanol extract showed antifungal activity on Cladosporium cladosporioides.	Deng et al. (2008)
			Abnormal uterine bleeding (AUB): In vivo: Using myometrial strips from estrogen-primed or pregnant rats, ethanol extract increased the frequency and intensity of phasic myometrial contractions with 23.19 ± 0.27% of the potassium response, and the EC₅₀ of 19.82 ± 0.42 mg/mL.	Guo et al. (2008)
			Digestive cell cancer: In vivo: The six human digestive tumour cell lines (SMMC-7721, HepG-2, BGC-823, SW-116, LoVo, and CaEs-17) demonstrated apoptosis with IC₅₀ ranging from 10 to 30 μg/mL. The two liver cancer cell lines, SMMC-7721 and HepG-2, showed the lowest IC₅₀ of 12 μg/mL and 10 μg/mL, respectively.	Sun et al. (2007)
			Lung cancer: In vivo: ethanol extract inhibited the growth of A549 human lung cancer cells, that was 47.76 %, 50.24 %, 53 %, and 64.17 % at 25, 50, 100, and 200 μg/mL, respectively.	Hu et al. (2017)
			Human prostate cancer: In vivo: PPEE induced apoptosis in PC3 and DU145 prostate cancer cells, with IC₅₀ values of 3.98 μg/mL and 8 μg/mL, respectively. Cisplatin (a positive control) inhibited prostate cancer cell viability more effectively than PPEE. In vivo: In BALB/c nude mice, PPEE at 100 mg/kg resulted in a tumour volume of 333.01 ± 34.77 mm³, representing a 51.65% inhibition rate in PC3 xenograft development.	Zhang et al. (2018)
			Bladder cancer: In vivo: Ethanol extracts induced apoptosis on bladder cancer cells with mutant p53, such as HT1197 and J82 cells, with an IC₅₀ of 1.2 μg/mL, comparable to the action of cisplatin (chemotherapy drug).	Guo et al. (2018)
			Colon, lung, liver, leukaemia & breast cancer: In vivo: TSSAPs had IC₅₀ ranging from 8.12 to 12.61 μg/mL, while TSSHs had IC₅₀ ranging from 1.75 to 6.62 μg/mL in five tumour cell lines (human leukaemia: HL-60, human lung cancer: A-594, human liver	Qin et al. (2018)
4.4. Antiviral activity

In vitro: TSSRs inhibited the growth of E. coli, Candida albicans (5314), and Candida albicans (Y0109) with MIC values of 156, 5.15, and 10.3 µg/mL, respectively.

4. Chloroform, ethyl acetate, and butanol extracts

Rhizome	Tyrosinase enzyme: All the extracts showed mild to moderate inhibitory potentials against the enzyme tyrosinase.
	Devkota et al. (2007)

5. Paris polyphylla steroidal saponins (PPSS)

Rhizome and Root	Lung cancer: In vitro: PFSE at 0, 20, 40, and 80 mg/mL induced apoptosis in human lung cancer A549 cells with IC50 values of 72.55, 49.96, and 21.01 mg/L at 12, 24, and 48 h, respectively.
	He et al. (2014)

2.5 mg/mL (Zhu et al., 2011). Steroidal saponins showed antifungal effects on Candida albicans with the minimum inhibitory concentrations (MIC) of 5.15 and 10.3 µg/mL respectively (Qin et al., 2018). Penngogenin steroidal saponins showed 0.6–2.5 mg/mL MIC against Saccharomyces cerevisiae, and 0.6–1.2 mg/mL MIC against Candida albicans (Zhu et al., 2011). It shows that penngogenin steroidal saponins were more effective against Candida albicans than others. The steroidal saponins were selective in their activity against different types of bacteria such as Pseudomonas aeruginosa (100%), Staphylococcus aureus (80%), Listeria innocua (65%), Escherichia coli (57%), Salmonella enteric (67%), and Shigella sonnet (47%) (Mayirnao and Bhat, 2017; Qin et al., 2018; Joshi et al., 2020).

4.4. Antiviral activity

Methanol extracts from P. polyphylla leaves were found to be active against Chikungunya virus with an IC50 of 8.74 µg/mL (Joshi et al., 2020). Polyphyllin I derived from P. polyphylla was found to have antiviral action against the influenza A virus (Pu et al., 2015). On MDCK cells, polyphylla saponin I at 40 µg/mL inhibited 91.4% of influenza A virus infection, while oseltamivir (positive control) at the same dose inhibited 91.7% of influenza A virus infection (Pu et al., 2015).

4.5. Antileishmanian activity

Leishmaniasis is an intracellular protozoan parasitic disease caused by approximately twenty Leishmania species. It is spread through the bite of female phlebotomine sandflies of over 90 different species. Every year, between 700,000 and 1 million new cases of leishmaniasis emerge (WHO, 2022). In vitro antileishmanian activity was found in steroidal saponins extracted from the rhizome of P. polyphylla (Devkota et al., 2007). Strong (IC50 = 0.23 µM), mild (IC50 = 0.93–36.87 µM), and moderate (IC50 = 1.59–83.72 µg/mL) antileishmanian activity were observed in chloroform, ethyl acetate and butanol extracts of the plant.

4.6. Anthelmintic activity

The anthelmintic activity evaluation of the methanol extract of P. polyphylla rhizome showed an EC50 value of 18.06 mg/L (Wang et al., 2010). Polyphyllin D (EC50 of 0.70 mg/L) and dioscin (EC50 of 0.44 mg/L) were extracted from crude methanol extract and showed greater anthelmintic activity than crude methanol extract (Wang et al., 2010).

4.7. Gynaecological disorder

One of the most prevalent illnesses in women is abnormal uterine bleeding (AUB). AUB refers to abnormal uterine bleeding caused by structural issues, pregnancy difficulties (Ely et al., 2006) and contraception (Schrager, 2002). It could also be caused by benign and malignant tumours as well as pregnancy-related diseases and endocrine disorders. In vitro, steroidal saponins derived from the rhizome of P. polyphylla reduced abnormal uterine bleeding in rats by eliciting phasic myometrial contractions (Guo et al., 2018). Total steroidal saponins (TSSS) produced a response in the rat myometrium that was 23.19 ± 0.27% of the potassium response, and the EC50 value of TSSS was 19.82 ± 0.42 µg/mL. Under the same conditions, the highest potassium responses to oxytocin and PGF-2a (labor-inducing drugs) were 51.09 ± 0.03% and 42.00 ± 0.05%, respectively. It shows that TSSS has a stronger effect on rat myometrial contraction than oxytocin or PGF-2a.

4.8. Anti-tyrosinase enzyme activity (Cosmetic value)

Copper-containing tyrosinase enzymes found inside melanosomes in plant and animal tissues catalyze the oxidation of tyrosine to produce melanin (black pigment) and other pigments. Tyrosinase inhibitors have shown to be effective in the treatment of melanin hyperpigmentation-related skin diseases or melanin-biosynthesis-related skin diseases. P. polyphylla rhizome extracts in chloroform, ethyl acetate and butanol demonstrated weak to moderate inhibition of the tyrosinase enzyme (Devkota et al., 2007). Similarly, przewalskinone B, isolated from the rhizome of P. polyphylla, had an IC50 of 0.25 mM against the tyrosinase enzyme (Devkota et al., 2007).

5. Conclusion

Due to the existence of useful secondary metabolites, it has been identified as a potential candidate for the treatment of several types of cancer and other disorders in modern medicine. The rhizome is the most extensively used plant part, and it has more activity against cancer cell lines, pathogens, and parasites as compared to above-ground parts. Based on in vitro and in vivo experiments, several pure steroidal saponins and crude extracts of P. polyphylla showed potent activity against carcinoma cell lines, bacteria, and parasites. As a result, it will be a promising plant for future studies of anticancer medications.

6. Future perspectives

Paris polyphylla is an endangered plant species that have been used as high-valued medicinal herb in traditional medicine. The natural population is decreasing due to over-exploitation and collection to meet the demand in traditional medicine. It is necessary to conserve its natural population through plant tissue culture technique and production of high-valued secondary metabolites in culture for sustainable utilization of such compounds in the production of pharmaceutical drugs.

Declarations

Author contribution statement

All authors listed have significantly contributed to the development and the writing of this article.
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Data availability statement

Data included in article/supplementary material/referenced in article.

Declarations of interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

Acharya, R. 2012. Ethnobotanical study of medicinal plants of resunga hill used by Magar community of badagasun VDC, guli district, Nepal. Sci. World J. 10 (10), 54–65.
Allawat, M., Marchion, D.C., Xiong, Y., Ramirez, I.J., Abassi, F., Boac, B.M., Bush, S.H., Zhou, B.; Mc Clung, E.C., Khulapatane, R.B., Berry, A., Hakama, A., Wenham, R.M., Lancaster, J.M., Judson, P., 2015. The Chinese herb polyphenol D sensitizes ovarian cancer cells to cisplatin-induced growth arrest. J. Cancer Res. Clin. Oncol. 141 (2), 237–242.
Baral, S.R., Kumi, P.P., 2006. A Compendium of Medicinal Plants in Nepal. Mrs. Rachana Sharma, Kathmandu, Nepal.
Bhattarai, S., Chaudhary, R.P., Taylor, R.S.L., 2006. Ethnomedical plants used by the people of Manang district, Central Nepal. J. Ethnobiol. Ethnomed. 2 (1), 41.
Buchheim, J., 1994. Dictionary of Natural Products (Executive editor), 7. Chapman & Hall, 26 Boundary Row, London SE1 8HN, UK.
Chan, J.Y.W., Koob, J.C., Liou, K.C., Detmar, M., Yud, B., Kong, S.K., Funga, K.P., Yue, B., Konga, S.K., 2005. Polyphyllin D is a potent apoptosis inducer in β select breast cancer cells via down-regulating MMP-2 and MMP-9. Int. J. Cancer. Exp. Med. 12 (8), 2875–2889.
Chen, C.X., Zhang, Y.T., Zhou, J., 1990. Steroid saponins of aerial parts of Paris polyphylla. Acta Bot. Yunnanica 12, 323–329.
Chen, C.X., Zhang, Y.T., Zhou, J., 1995. The glycosides of aerial parts of Paris polyphylla var. yunnanensis. Acta Bot. Yunnanica 1, 597–606.
Chen, C., Ye, K., Zhang, B., Xin, Q., Li, P., Kong, A-Ng., Wen, X., Yang, J., 2018. Paris polyphylla and Cell Death in Cancer. Licensee InTech. http://creativecommons.org/licenses/by/3.0/
Dubey, R.C., 1993. A Text Book of Biotechnology. S. Chand Publishing, New Delhi.
Dutta, I.C., 2007. Non-Timber Forest Products Of Nepal: Identification, Classification, Ethnobotany and Cultivation. Hillside Press, Kathmandu.
Peych, J.W., Kennedy, C.M., Clark, E.C., Bowler, N.C., 2006. Abnormal uterine bleeding: a management algorithm. J. Am. Board Fam. Med. 19, 590–602.
Escobar-Sánchez, M.L., Sánchez-Sánchez, L., Sandoval-Ramírez, J., 2015. Steroidal Saponins of Paris polyphylla Section Pseudopyllium and their cytotoxicity against cancer cell lines. J. Ethnopharmacol. 177, 325–333.
Funga, K.P., Yue, B., Konga, S.K., 2005. Polyphyllin D is a potent apoptosis inducer in β select breast cancer cells via down-regulating MMP-2 and MMP-9. Int. J. Cancer. Exp. Med. 12 (8), 2875–2889.
He, H., Xu, C., Zheng, L., Wang, K., Jin, M., Sun, Y., Yue, Z., 2020. Polyphenol VII induces apoptotic cell death via inhibition of the PI3K/Akt and NF-kB pathways in A549 lung cancer cells. Med. Sci. Monit. 26, 957–966.
He, H., Zheng, L., Sun, Y.P., Zhang, G.W., Yue, Z.G., 2014. Steroidal saponins from Paris polyphylla suppress adhesion, migration, and invasion of human lung cancer A549 cells via down-regulating MMP-2 and MMP-9. Asian Pac. J. Cancer Prev. AJP CV 15 (24), 10991–10996.
Huang, X.X., Gao, W.Y., Man, S.L., Zhao, Z.Y., 2009. Advances in studies on saponins in plants of Paris L. and their biosynthetic approach. Tradit. Herb. Drugs 40, 483–489.
IUCN, 2004. National Register Of Medicinal And Aromatic Plants (Revised and Updated). IUCN-The World Conservation Union, Kathmandu, Nepal.
Jain, S.S., Kanchan, R., Pongner, N., 2012. Medicinal-herbal medicine practiced by the naga tribes in the state of Nagaland (India). Ind. J. Fund. Appl. Life Sci. 2, 328–333.
Jiang, H., Gao, W.Y., Lu, H., Chen, C.X., Zhu, Z., 2006. Analys of Botany. 98, pp. 293–298.
Jiang, H., Zhao, P.-J., Su, D., Feng, J., Ma, S., 2014a. Paris saponin I induces apoptosis via increasing the Bad/Bcl-2 ratio and caspase-3 expression in gefitinib-resistant non-small cell lung cancer in vitro and in vivo. Mol. Med. Rep. 9, 2265–2272.
Jiang, H., Zhao, P., Feng, J., Ma, S., 2014b. Effect of Paris saponin I on radiosensitiveness in a gefitinib-resistant lung adenocarcinoma cell line. Oncol. Lett. 7, 2059–2064.
Joshi, B., Panda, S.K., Joungneghi, R.S., Liu, M., Parajuli, N., Leysan, P., Nefts, J., Luyten, W., 2020. Antibacterial, antifungal, antiviral, and antimicrobial activities of medicinal plants of Nepal selected based on ethnobotanical evidence. Evid. base Compil. Alternative Med. 1–14. Article ID 1043471.
K.C., M., Phoob, S., Sha, P.K., 2010. Ecological study of paris polyphylla Sm. ECOPRINT 17, 87–95. Ecological Society (ECOS), Nepal. www.nepalinfo.info/index.php/eco, www.ecoconpal.com.
Kumar, R.M., Nepal, B.K., Khibhetti, H.B., Rai, S.K., Bussmann, R.W., 2006. Ethnomedicine in himalaya: a case study from dolpa, humla, jumla, and mustang districts of Nepal. J. Ethnobiol. Ethnomed. 2, 27. http://www.ethnobiomed.com/content/2/1/27.
Kumar, R.M., Adhikari, Y.P., Sharma, H.P., Rimal, B., Devkota, H.P., Chakravarthy, A., Acharya, R.P., Baral, K., Ansari, A.S., Bhattarai, R., Thapa, S., Paudel, H.R., Baral, S., Sakpotha, P., Upetre, Y., Lehoia, C., Jentic, A., 2020. Distribution, use, trade, and conservation of Paris polyphylla Sm. In: Nepal, Global Ecology and Conservation. Lamichhane, D., Baral, D., Nepal, K.M., 2014. Documentation of medicinal plants conserved in national botanical garden. Godawari Lalitpur. IBH Publishing Co., Kathmandu, Nepal.
Lee, M.S., Yuet-Wa, J.C., Kong, S.K., Yu, B., Cheng, Y-H.C., Chung-anez, L., Sandoval-Ramírez, J., 2015. Steroidal Saponins of Paris polyphylla Section Pseudopyllium and their cytotoxicity against cancer cell lines. J. Ethnopharmacol. 177, 325–333.
