SOME RESULTS ON A CROSS-SECTION
IN THE TENSOR BUNDLE

A. GEZER AND M. ALTUNBAS

Abstract. The present paper is devoted to some results concerning with
the complete lifts of an almost complex structure and a connection in a manifold
to its (0,q)-tensor bundle along the corresponding cross-section.

1. Introduction

The behaviour of the lifts of tensor fields and connections on a manifold to its
different bundles along the corresponding cross-sections are studied by several
authors. For the case tangent and cotangent bundles, see [13, 14, 15] and also tangent
bundles of order 2 and order r, see [11, 3]. In [2], the first author and his collaborator
studied the complete lift of an almost complex structure in a manifold on the
so-called pure cross-section of its (p,q)-tensor bundle by means of the Tachibana
operator (for diagonal lift to the (p,q)-tensor bundle see [1] and for the (0,q)-tensor
bundle see [5]). Moreover they proved that if a manifold admits an almost complex
structure, then so does on the pure cross-section of its (p,q)-tensor bundle provided
that the almost complex structure is integrable. In [6], the authors give detailed
description of geodesics of the (p,q)-tensor bundle with respect to the complete

2. Preliminaries

Let M be a differentiable manifold of class C^∞ and finite dimension n. Then
the set $T_q^0(M) = \bigcup_{P \in M} T_q^0(P)$, $q > 0$, is the tensor bundle of type $(0,q)$ over M,
where \bigcup denotes the disjoint union of the tensor spaces $T_q^0(P)$ for all $P \in M$.

2000 Mathematics Subject Classification. Primary 53C15; Secondary 53B05.

Key words and phrases. Almost complex structure, almost analytic tensor, complete lift, connection, tensor bundle.
For any point \(\hat{P} \) of \(T^0_q(M) \) such that \(\hat{P} \in T^0_q(M) \), the surjective correspondence \(\hat{P} \to P \) determines the natural projection \(\pi : T^0_q(M) \to M \). The projection \(\pi \) defines the natural differentiable manifold structure of \(T^0_q(M) \), that is, \(T^0_q(M) \) is a \(\mathcal{C}^\infty \)-manifold of dimension \(n + n^q \). If \(x^j \) are local coordinates in a neighborhood \(U \) of \(P \in M \), then a tensor \(t \) at \(P \) which is an element of \(T^0_q(M) \) is expressible in the form \((x^j, t_{j_1...j_q})\), where \(t_{j_1...j_q} \) are components of \(t \) with respect to natural base.

We may consider \((x^j, t_{j_1...j_q})\) to the fibre is locally expressed by
\[x^k = x^k, \]
\[x^k = \xi_{k_1...k_q}(x^k) \]
with respect to the coordinates \((x^k, x^k)\) in \(T^0_q(M) \). Differentiating (2.3) by \(x^j \), we see that \(n \) tangent vector fields \(B_j \) to \(\sigma_\xi(M) \) have components
\[(B^K_j) = \frac{\partial x^K}{\partial x^j} = \left(\begin{array}{c} \delta^K_k \\ \delta^K_{j_1...j_q} \end{array} \right) \]
with respect to the natural frame \(\{\partial_k, \partial_k\} \) in \(T^0_q(M) \).

On the other hand, the fibre is locally expressed by
\[t_{k_1...k_q} \]
taking \(t_{k_1...k_q} \) being considered as parameters. Thus, on differentiating with respect to \(x^j = t_{j_1...j_q} \), we see that \(n^q \) tangent vector fields \(C^k_j \) to the fibre have components
\[(C^K_j) = \frac{\partial x^K}{\partial x^j} = \left(\begin{array}{c} 0 \\ \delta^K_{j_1...j_q} \end{array} \right) \]
with respect to the natural frame \(\{\partial_k, \partial_k\} \) in \(T^0_q(M) \).
We consider in $\pi^{-1}(U) \subset T^0_q(M)$, $n + n^q$ local vector fields B_j and C_j along $\sigma_\xi(M)$. They form a local family of frames $[B_j, C_j]$ along $\sigma_\xi(M)$, which is called the adapted (B, C)-frame of $\sigma_\xi(M)$ in $\pi^{-1}(U)$. Taking account of (2.2) on the cross-section $\sigma_\xi(M)$, and also (2.4) and (2.5), we can easily prove that, the complete lift $C V$ has along $\sigma_\xi(M)$ components of the form

$$C V = \begin{pmatrix} V^j \\
-L_V \xi_{j_1 \cdots j_q} \end{pmatrix}$$

with respect to the adapted (B, C)-frame. From (2.1), (2.4) and (2.5), the vertical lift $V A$ also has components of the form

$$V A = \begin{pmatrix} 0 \\
A_{j_1 \cdots j_q} \end{pmatrix}$$

with respect to the adapted (B, C)-frame.

3. Almost complex structures on a pure cross-section in the $(0, q)$-tensor bundle

A tensor field $\xi \in \mathfrak{S}^0_q(M)$ is called pure with respect to $\varphi \in \mathfrak{S}^1_q(M)$, if \[3.1\]

$$\varphi^T_{j_1 \cdots j_q} = \cdots = \varphi^T_{j_1} \xi_{j_1} = \xi_{j_1 \cdots j_q}.$$

In particular, vector and covector fields will be considered to be pure.

Let $\mathfrak{S}^0_q(M)$ denotes a module of all the tensor fields $\xi \in \mathfrak{S}^0_q(M)$ which are pure with respect to φ. Now, we consider a pure cross-section $\sigma_\xi^q(M)$ determined by $\xi \in \mathfrak{S}^0_q(M)$. The complete lift $C \varphi$ of φ along the pure cross-section $\sigma_\xi^q(M)$ to $T^0_q(M)$ has local components of the form

$$C \varphi = \begin{pmatrix} \varphi^k_l \\
-(\Phi_\varphi \xi)_{l_1 \cdots l_q} \\
\varphi^T_{j_1} \delta^j_{k_2} \cdots \delta^q_{k_q} \end{pmatrix}$$

with respect to the adapted (B, C)-frame of $\sigma_\xi^q(M)$, where $(\Phi_\varphi \xi)_{l_1 \cdots l_q} = \varphi^m_l \partial_m \xi_{l_1 \cdots l_q} - \delta^*_{l_1} \delta^*_{l_2} \cdots \delta^*_{l_q} \delta^*_{k_1 \cdots k_q} + \sum_{a=1}^q (\partial_{k_a} \varphi^a) \xi_{l_1 \cdots l_q} \Delta_{k_a}$ is the Tachibana operator.

We consider that the local vector fields

$$C X(i) = C \left(\frac{\partial}{\partial x^i} \right) = \left(\delta^h_{i_1} \frac{\partial}{\partial x^{i_1}} \right)$$

and

$$V X(i) = V \left(dx^{i_1} \otimes \cdots \otimes dx^{i_q} \right) = V \left(\delta^i_{h_1} \cdots \delta^i_{h_q} dx^{h_1} \otimes \cdots \otimes dx^{h_q} \right) = \begin{pmatrix} 0 \\
\delta^i_{h_1} \cdots \delta^i_{h_q} \end{pmatrix}$$

$i = 1, ..., n, \overline{i} = n + 1, ..., n + n^q$ span the module of vector fields in $\pi^{-1}(U)$. Hence, any tensor fields is determined in $\pi^{-1}(U)$ by their actions on $C V$ and $V A$ for any
$V \in \mathfrak{X}_q^0(M)$ and $A \in \mathfrak{X}_q^0(M)$. The complete lift $C\varphi$ along the pure cross-section $\sigma^\varphi(M)$ has the properties

\begin{equation}
\begin{cases}
C\varphi(CV)^C = (\varphi(V))^C + V ((L_\varphi) \circ \xi), \forall V \in \mathfrak{X}_q^0(M), (i)
C\varphi(VA)^C = (\varphi(A)), \forall A \in \mathfrak{X}_q^0(M), \ (ii)
\end{cases}
\end{equation}

which characterize $C\varphi$, where $\varphi(A) \in \mathfrak{X}_q^0(M)$. Remark that $V ((L_\varphi) \circ \xi)$ is a vector field on $T_q^0(M)$ and locally expressed by

$$V ((L_\varphi) \circ \xi) = \begin{pmatrix} 0 \\
(L_\varphi)^C_{ij} \xi_{j_{i_2\ldots i_q}} \end{pmatrix}$$

with respect to the adapted (B,C)-frame, where $\xi_{i_1\ldots i_q}$ are local components of ξ in M [5].

Theorem 1. Let M be an almost complex manifold with an almost complex structure φ. Then, the complete lift $C\varphi \in \mathfrak{X}^1_q(T_q^0(M))$, when restricted to the pure cross-section determined by an almost analytic tensor ξ on M, is an almost complex structure.

Proof. If $V \in \mathfrak{X}_q^0(M)$ and $A \in \mathfrak{X}_q^0(M)$, in view of the equations (i) and (ii) of (3.2), we have

\begin{equation}
(C\varphi)^2(CV) = (\varphi^2)(CV) + V (N_\varphi \circ \xi)(CV)
\end{equation}

and

\begin{equation}
(C\varphi)^2(VA) = (\varphi^2)(VA),
\end{equation}

where $N_\varphi(X)(Y) = (L_\varphi X \varphi - \varphi(L_X \varphi))(Y) = [\varphi X, \varphi Y] - \varphi [X, \varphi Y] - \varphi [\varphi X, Y] + \varphi^2 [X, Y] = N_\varphi(X,Y)$ is nothing but the Nijenhuis tensor constructed by φ.

Let $\varphi \in \mathfrak{X}_q^1(M)$ be an almost complex structure and $\xi \in \mathfrak{X}_q^0(M)$ be a pure tensor with respect to φ. If $(\Phi_\varphi \xi) = 0$, the pure tensor ξ is called an almost analytic $(0,q)$-tensor. In [9] [7] [4], it is proved that $\xi \circ \varphi \in \mathfrak{X}_q^0(M)$ is an almost analytic tensor if and only if $\xi \in \mathfrak{X}_q^0(M)$ is an almost analytic tensor. Moreover if $\xi \in \mathfrak{X}_q^0(M)$ is an almost analytic tensor, then $N_\varphi \circ \xi = 0$. When restricted to the pure cross-section determined by an almost analytic tensor ξ on M, from (3.3), (3.4) and linearity of the complete lift, we have

$$\langle C\varphi \rangle^2 = C(\varphi^2) = C(-I_M) = -I_{T_q^0(M)}.$$

This completes the proof. \square

4. Complete lift of a symmetric affine connection on a cross-section in the $(0,q)$-tensor bundle

We now assume that ∇ is an affine connection (with zero torsion) on M. Let Γ^h_{ij} be components of ∇. The complete lift $C\nabla$ of ∇ to $T_q^0(M)$ has components $C\Gamma^I_{MS}$.
such that

\begin{align}
C^i_{m,s} &= \Gamma^i_{m,s}, \\
C^s_{m,s} &= C^i_{m,s} = C^i_{m,s} = C^i_{m,s} = C^i_{m,s} = 0,
\end{align}

\begin{align}
C^r_{m,s} &= -\sum_{c=1}^q (\Gamma^{s}_{mc} \delta^s_{i_1} ... \delta^s_{i_{c-1}} \delta^s_{i_{c+1}} ... \delta^s_{i_q}), \\
C^r_{m,s} &= -\sum_{c=1}^q (\Gamma^{m}_{sc} \delta^m_{i_1} ... \delta^m_{i_{c-1}} \delta^m_{i_{c+1}} ... \delta^m_{i_q}), \\
C^r_{m,s} &= \sum_{c=1}^q (\partial^m \Gamma_s^{i_c} + \Gamma^{r}_{mi_c} \Gamma_s^{i_r} + \Gamma^{r}_{ms_r} \Gamma_s^{i_r} t_{i_1 ... i_{c-1} a i_{c+1} ... i_q}) \\
&\quad + \frac{1}{2} \sum_{b=1}^q \sum_{c=1}^q (\Gamma^{l}_{mi_b} \Gamma_s^{i_l} + \Gamma^{l}_{mi_c} \Gamma_s^{i_l} t_{i_1 ... i_{b-1} a i_{b+1} ... i_{c-1} a i_{c+1} ... i_q}) \\
&\quad + \sum_{d=1}^q l_{i_1 ... i_q} R_{i_d km l}
\end{align}

with respect to the natural frame in $T^0_q(M)$, where δ^i_j is the Kronecker delta and $R_{ikm l}$ is components of the curvature tensor R of ∇ \cite{6}.

We now study the affine connection induced from C^i_j on the cross-section $\sigma_\xi(M)$ determined by the $(0, q)$-tensor field ξ in M with respect to the adapted (B, C)-frame of $\sigma_\xi(M)$. The vector fields $\tilde{\Gamma}^r_{m,s}$ given by (2.5) are linearly independent and not tangent to $\sigma_\xi(M)$. We take the vector fields $\tilde{\Gamma}^r_{m,s}$ as normals to the cross-section $\sigma_\xi(M)$ and define an affine connection $\tilde{\nabla}$ induced on the cross-section. The affine connection $\tilde{\nabla}$ induced $\sigma_\xi(M)$ from the complete lift C^i_j of a symmetric affine connection ∇ in M has components of the form

\begin{align}
\tilde{\Gamma}^h_{ji} = (\partial_j B^h_i A^C + C^h_{CB} B^C_i B^A_j) B^h_A,
\end{align}

where B^h_A are defined by

\begin{align}
(B^h_A, C^h_A) = (B^h_A, C^h_A)^{-1}
\end{align}

and thus

\begin{align}
B^h_A = (\delta^h_j 0, C^h_A) = (-\partial_j \xi_{k_1 ... k_q}, \delta^h_{k_1} ... \delta^h_{k_q}).
\end{align}

Substituting (4.1), (2.4), (2.5) and (4.3) in (4.2), we get

\begin{align}
\tilde{\Gamma}^h_{ji} = \Gamma^h_{ji},
\end{align}

where Γ^h_{ji} are components of ∇ in M.

From (4.2), we see that the quantity

\begin{align}
\partial_j B^A_i + C^A_{CB} B^C_i B^A_j - \Gamma^h_{ji} B^h_A
\end{align}

is a linear combination of the vectors $C^h_{ji} A$. To find the coefficients, we put $A = \tilde{h}$ in (4.4) and find

\begin{align}
\nabla_j \nabla_i \xi_{h_1 ... h_q} + \sum_{\lambda=1}^q \xi_{h_1 ... l_{h_q}} R_{l_{h_q} i_j l}.
\end{align}
Hence, representing (4.4) by \(\tilde{\nabla}_j B_i^A \), we obtain

\[
(4.5) \quad \tilde{\nabla}_j B_i^A = (\nabla_j \nabla_i \xi_{h_1 \ldots h_q} + \sum_{\lambda=1}^q \xi_{h_1 \ldots h_q} R^A_{h\lambda ij} l) C^A_{h}.
\]

The last equation is nothing but the equation of Gauss for the cross-section \(\sigma_\xi(M) \) determined by \(\xi_{h_1 \ldots h_q} \). Hence, we have the following proposition.

Proposition 1. The cross-section \(\sigma_\xi(M) \) in \(T^0_q(M) \) determined by a \((0, q)\) tensor \(\xi \) in \(M \) with symmetric affine connection \(\nabla \) is totally geodesic if and only if \(\xi \) satisfies

\[
\nabla_j \nabla_i \xi_{h_1 \ldots h_q} + \sum_{\lambda=1}^q \xi_{h_1 \ldots h_q} R^A_{h\lambda ij} l = 0.
\]

Now, let us apply the operator \(\tilde{\nabla}_k \) to (4.5), we have

\[
(4.6) \quad \tilde{\nabla}_k \tilde{\nabla}_j B_i^A = \nabla_k (\nabla_j \nabla_i \xi_{h_1 \ldots h_q} + \sum_{\lambda=1}^q \xi_{h_1 \ldots h_q} R^A_{h\lambda ij} l) C^A_{h}.
\]

Recalling that

\[
\nabla_k \nabla_j B_i^A - \nabla_j \nabla_k B_i^A = \tilde{R}_{DCB}^A B_k^D B_j^C B_i^B - R^A_{kji} B_h^A,
\]

and using the Ricci identity for a tensor field of type \((0, q)\), from (4.6) we get

\[
\tilde{R}_{DCB}^A B_k^D B_j^C B_i^B - R^A_{kji} B_h^A
\]

\[
= \sum_{\lambda=1}^q (\nabla_k R^A_{h\lambda ij} l - \nabla_j R^A_{h\lambda ik} l) \xi_{h_1 \ldots h_q} - R^A_{kji} \xi_{l} \nabla_i \xi_{h_1 \ldots h_q}
\]

\[
- \sum_{\lambda=1}^q R^A_{kji} \nabla_k \xi_{h_1 \ldots h_q} - \sum_{\lambda=1}^q R^A_{h\lambda ij} \xi_{l} \nabla_i \xi_{h_1 \ldots h_q} - \sum_{\lambda=1}^q R^A_{h\lambda ij} \xi \nabla_i \xi_{h_1 \ldots h_q} - \sum_{\lambda=1}^q R^A_{h\lambda ij} \xi \nabla_i \xi_{h_1 \ldots h_q}
\]

Thus we have the result below.

Proposition 2. \(\tilde{R}_{DCB}^A B_k^D B_j^C B_i^B \) is tangent to the cross-section \(\sigma_\xi(M) \) if and only if

\[
\sum_{\lambda=1}^q (\nabla_k R^A_{h\lambda ij} l - \nabla_j R^A_{h\lambda ik} l) \xi_{h_1 \ldots h_q} = R^A_{kji} \xi \nabla_i \xi_{h_1 \ldots h_q} - \sum_{\lambda=1}^q R^A_{h\lambda ij} \xi \nabla_i \xi_{h_1 \ldots h_q}
\]

\[
+ \sum_{\lambda=1}^q R^A_{h\lambda ij} \xi \nabla_i \xi_{h_1 \ldots h_q}.
\]

References

[1] A. Gezer, A. Salimov, Diagonal lifts of tensor fields of type \((1, 1)\) on cross-sections in tensor bundles and its applications. J. Korean Math. Soc. 45 (2008), no. 2, 367–376.

[2] A. Gezer, A. A. Salimov, Almost complex structures on the tensor bundles. Arab. J. Sci. Eng. Sect. A Sci. 33 (2008), no. 2, 283–296.

[3] C. Houh, S. Ishihara, Tensor fields and connections on a cross-section in the tangent bundle of order \(r \) . Kodai Math. Sem. Rep. 24 (1972), 234–250.

[4] S. Koto, On almost analytic tensors in almost complex spaces. Tensor (N.S.) 12 (1962), 110–132.
[5] A. Magden, A. A. Salimov, Complete lifts of tensor fields on a pure cross-section in the tensor bundle. J. Geom. 93 (2009), no. 1-2, 128–138.

[6] A. Ma˘ gden, A. A. Salimov, Geodesics for complete lifts of affine connections in tensor bundles. Appl. Math. Comput. 151 (2004), no. 3, 863–868.

[7] Y. Muto, On some almost analytic tensor fields in almost complex manifolds. Kodai Math. Sem. Rep. 19 (1967), 454–469.

[8] A. Salimov, A. Gezer, S. Aslancı, On almost complex structures in the cotangent bundle. Turkish J. Math. 35 (2011), no. 3, 487–492.

[9] A. Salimov, On operators associated with tensor fields. J. Geom. 99 (2010), no. 1-2, 107–145.

[10] S. Tachibana, Analytic tensor and its generalization, Tohoku Math. J., 12 (1960), no.2, 208-221.

[11] M. Tani, Tensor fields and connections in cross-sections in the tangent bundle of order 2. Kodai Math. Sem. Rep. 21 1969 310–325.

[12] K. Yano, M. Ako, On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20 (1968), 414-436.

[13] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, Marcel Dekker, Inc., New York 1973.

[14] K. Yano, Tensor fields and connections on cross-sections in the cotangent bundle. Tohoku Math. J. (2) 19 1967 32–48.

[15] K.Yano, Tensor fields and connections on cross-sections in the tangent bundle of a differentiable manifold. Proc. Roy. Soc. Edinburgh Sect. A 67 (1968), 277–288.

ATATÜRK UNIVERSITY, FACULTY OF SCIENCE, DEPARTMENT OF MATHEMATICS, 25240, ERZURUM, TURKEY.

E-mail address: agezer@atauni.edu.tr

ERZINCAN UNIVERSITY, FACULTY OF SCIENCE AND ART, DEPARTMENT OF MATHEMATICS, 24030, ERZINCAN-TURKEY.

E-mail address: maltunbas@erzincan.edu.tr