An elementary proof of Poincare Duality with local coefficients

Fang Sun

September 5, 2017

1 Introduction

The statement and proof of the Poincare Duality for (possibly noncompact) orientable manifolds without boundary are abound. The duality has a version for possibly non-orientable manifolds using local coefficients. Several proofs of this result can be found in the literature (e.g. [Sp]). Yet these proof involves either sheaf theory or something equivalent and thus far from elementary. This note is written in the attempt to provide a record of this generalized Poincare Duality available to the general audience.

Readers are assumed to be familiar with basics of the theory of orientation of manifolds (the material of [Ha] Section 3.3 or any equivalent) and the theory of homology with local coefficients (e.g. [Wh] Chapter VI, Section 1,2,3).

Notations of [Ha] and [Wh] will be borrowed and used in this note.

Throughout our discussion, \(M \) will be a manifold of dimension \(n \).

Let \(R \) be a ring with identity such that \(2 \cdot \text{id} \neq 0 \).

2 Preliminaries

2.1 The Orientation Bundle

Let \(M_R = \bigcup_{x \in M} H_\pi(M|x; R) \), topologized as follows:

For any chart \(\varphi : W \to \mathbb{R}^n \), any \(B \subseteq W \) such that \(\varphi(B) \) is an open ball with finite radius and any element \(\alpha_B \in H_\pi(M|B; R) \), define \(U(\alpha_B) \) as the set of images of \(\alpha_B \) under the canonical \(H_n(M|B; R) \to H_n(M|x; R) \) as \(x \) ranges through \(B \). The collection of \(U(\alpha_B) \) forms a basis for a topology on \(M_R \). The canonical projection \(p : M_R \to M \) is a covering map.

Recall that a bundle of groups/modules/rings over a space \(X \) is defined as a functor from the fundamental groupoid of \(X \) to the category of groups/modules/rings.

There is a bundle of \(R \)-modules on \(M \), denoted also as \(M_R \), such that \(M_R(x) = p^{-1}(x) = H_n(M|x; R) \) (with the obvious module structure) and \(M_R([u]) = L_u \), where \(u \) is a path in \(M \) and \(L_u : p^{-1}(u(1)) \to p^{-1}(u(0)) \) is
the map defined as in [Hatcher p. 69] (this construction can also be found in [Whitehead V.1. Example 5]). M_R is called the (R)-orientation bundle of M.

2.2 The Canonical Double Cover

Let $\tilde{M} = \{ \pm \mu_x \otimes \text{id} \in H_n(M|x; R) | \mu_x \text{ is a generator of } H_n(M|x; \mathbb{Z}) \}$, here we are using the identification $H_n(M|x; R) \cong H_n(M|x; \mathbb{Z}) \otimes R$. The manifold \tilde{M} is oriented as follows:

For each $\mu_x \otimes \text{id} \in \tilde{M}$ where μ_x is a generator of $H_n(M|x; \mathbb{Z})$, let $B \subseteq M$ be an open ball with finite radius containing x. Let $\mu_B \in H_n(M|B; \mathbb{Z})$ be the element corresponding to μ_x via the canonical isomorphism $H_n(M|B) \rightarrow H_n(M|x)$. Then $\mu_B \otimes \text{id} \in H_n(M|B; R) \cong H_n(M|B; \mathbb{Z}) \otimes R$.

Let $\tilde{O}_{\mu_x \otimes \text{id}}$ be the element corresponding to $\mu_x \otimes \text{id}$ under the identification (each map below is an isomorphism):

$$H_n(\tilde{M}|\mu_x \otimes \text{id}; R) \leftarrow H_n(U(\mu_B \otimes \text{id})|\mu_x \otimes \text{id}; R) \xrightarrow{p_*} H_n(B|x; R) \rightarrow H_n(M|x; R)$$

Then $\tilde{O}_{\mu_x \otimes \text{id}}$ is independent of B and $\{\tilde{O}_{\mu_x \otimes \text{id}}\}$ is an orientation on \tilde{M}. This orientation will be referred to as the chosen orientation in what follows.

It is not hard to see that $\tilde{p} = p|_{\tilde{M}}$ is a covering space of index two.

Denote by τ the unique Deck transformation of \tilde{M} with no fixed points. Namely, $\tau(y) = -y$ for any $x \in M$ and $y \in H_n(M|x; R)$.

Lemma 1 The involution τ reverses the chosen orientation on \tilde{M}.

Proof This comes from the commutativity of the diagram

$$
\begin{array}{ccc}
H_n(\tilde{M}|\mu_x \otimes \text{id}; R) & \xrightarrow{\tau} & H_n(U(\mu_B \otimes \text{id})|\mu_x \otimes \text{id}; R) \\
\downarrow \tau & & \downarrow \tau \\
H_n(\tilde{M}| -\mu_x \otimes \text{id}; R) & \xleftarrow{\tau} & H_n(U(-\mu_B \otimes \text{id})| -\mu_x \otimes \text{id}; R)
\end{array}
$$

2.3 The Fundamental Class

Next we define a fundamental class for M.

Let $C_n(X; R)$ stands for the singular chain of a space X with coefficient in R. Define

$$C_n^+(\tilde{M}; R) = \{ \alpha \in C_n(\tilde{M}; R) | \tau(\alpha) = \alpha \}, C_n^-(\tilde{M}; R) = \{ \alpha \in C_n(\tilde{M}; R) | \tau(\alpha) = -\alpha \}$$

Let $K \subseteq M$ be a compact subspace. Define $\tilde{K} = \tilde{p}^{-1}(K)$ and

$$C_n^+(\tilde{M}|K; R) = C_n^+(\tilde{M}; R)/C_n^+(\tilde{M}; R) \cap C_n(\tilde{M} - \tilde{K})$$

$$C_n^-(\tilde{M}|K; R) = C_n^-(\tilde{M}; R)/C_n^-(\tilde{M}; R) \cap C_n(\tilde{M} - \tilde{K})$$

There are exact sequences
\[0 \rightarrow C_n^-(\tilde{M}|\tilde{K}; R) \rightarrow C_n(\tilde{M}|\tilde{K}; R) \rightarrow C_n^+(\tilde{M}|\tilde{K}; R) \rightarrow 0 \]
\[0 \rightarrow C_n^+(\tilde{M}|\tilde{K}; R) \rightarrow C_n(\tilde{M}|\tilde{K}; R) \rightarrow C_n^-(\tilde{M}|\tilde{K}; R) \rightarrow 0 \]
where \(\Sigma(\alpha) = \alpha + \tau(\alpha) \) and \(\Delta(\alpha) = \alpha - \tau(\alpha) \).

The chain complex \(C_* M[K; R] \) is isomorphic to \(C_*^+ (\tilde{M}|\tilde{K}; R) \) via \(\sigma \otimes r \rightarrow \tilde{\sigma}_1 \otimes r + \tilde{\sigma}_2 \otimes r \) where \(\tilde{\sigma}_1, \tilde{\sigma}_2 \) are the two liftings of \(\sigma : \Delta^n \rightarrow M \).

By Lemma 3.27(b) of [Ha], \(H_k(M[K; R]) = 0, k > n \). Thus (1) produces a long exact sequence
\[\cdots \rightarrow 0 \rightarrow H_n(C_*^- (\tilde{M}|\tilde{K}; R)) \rightarrow H_n(\tilde{M}|\tilde{K}; R) \rightarrow H_n(M[K; R]) \rightarrow \cdots \] (3)

There is a \(\mathbb{Z}_2 \) group action on \(\tilde{M} \) such that \(\bar{1} \in \mathbb{Z}_2 \) acts by \(\sigma \). \(\mathbb{Z}_2 \) also acts (as a group) on \(R \) with \(\bar{1} \cdot r = -r \). Thus one could define \(C_n(\tilde{M}|\tilde{K}; \mathbb{Z}) \otimes_{\mathbb{Z}_2} R \) using the routine method of treating a left \(\mathbb{Z}[[\mathbb{Z}_2]] \)-module as a right module.

The canonical surjection \(C_n(\tilde{M}|\tilde{K}; R) = C_n(\tilde{M}|\tilde{K}; \mathbb{Z}) \otimes R \rightarrow C_n(\tilde{M}|\tilde{K}; R) \otimes_{\mathbb{Z}_2} R \) has the same kernel as \(\Delta \) in (2): \(C_n^+(\tilde{M}|\tilde{K}; R) \). Thus we obtain an identification
\[C_n^-(\tilde{M}|\tilde{K}; R) \leftrightarrow C_n(\tilde{M}|\tilde{K}; \mathbb{Z}) \otimes_{\mathbb{Z}_2} R \]

On the other hand, let \(C_* M[K; M_R] \) be the chain complex of \((M, M - K) \) with coefficient in the bundle \(M_R \). We can define a homomorphism
\[\phi : C_* (\tilde{M}|\tilde{K}; \mathbb{Z}) \otimes_{\mathbb{Z}_2} R \rightarrow C_* (M[K; M_R], \phi(\bar{\sigma} \otimes_{\mathbb{Z}_2} r) = (r\bar{\sigma}(e_0))\bar{p} \circ \bar{\sigma} \]

where \(\bar{\sigma} : \Delta^n \rightarrow \tilde{M} \) and \((r\bar{\sigma}(e_0))\bar{p} \circ \bar{\sigma} \) is represented by the element of \(C_* (M; M_R) = \oplus_{\sigma : \Delta^n \rightarrow M} M_R(\sigma(e_0)) \) with \(r\bar{\sigma}(e_0) \) on the \(\bar{p} \circ \bar{\sigma} \) coordinate and 0 otherwise. It is not hard to verify that \(\phi \) is an isomorphism. Hence we obtain an identification \(C_*^- (\tilde{M}|\tilde{K}; R) \leftrightarrow C_* (M[K; M_R]). \) Explicitly this comes from the diagram
\[\begin{array}{ccc}
C_*^- (\tilde{M}|\tilde{K}; R) & \xrightarrow{\Delta} & C_* (\tilde{M}|\tilde{K}; \mathbb{Z}) \otimes R \\
\downarrow & & \downarrow \\
C_* (\tilde{M}|\tilde{K}; \mathbb{Z}) \otimes_{\mathbb{Z}_2} R & \xrightarrow{\phi} & C_* (M[K; M_R])
\end{array} \] (4)

The above identification is a chain isomorphism, thus we have
\[H_n(C_*^- (\tilde{M}|\tilde{K}; R)) \leftrightarrow H_n(M[K; M_R]) \]
where \(H_n(M[K; M_R]) \) is the homology group with coefficients in \(M_R \).

Plug this into (3), we get
\[\cdots \rightarrow 0 \rightarrow H_n(M[K; M_R]) \rightarrow H_n(\tilde{M}|\tilde{K}; R) \xrightarrow{\bar{p}_*} H_n(M[K; R]) \rightarrow \cdots \] (5)
Since (4) is natural with respect to compact subspaces $K_1 \subseteq K_2 \subseteq M$, so is (5).

The chosen orientation on \tilde{M} uniquely determines an element in $\nu_K \in H_n(M|\tilde{K}; R)$ that restrict to the orientation at each $\tilde{x} \in \tilde{K}$ (cf. Lemma 3.27 (a) of [Ha]).

Lemma 2 $\tilde{p}_*(\nu_K) = 0$ for any compact subspace $K \subseteq M$.

Proof By the uniqueness part of Lemma 3.27(a) of [Ha], it suffice to prove $\tilde{p}_*(\nu_K)$ restrict to 0 at each $x \in M$. Let $\tilde{p}^{-1}(x) = \{\tilde{x}, \tilde{x}'\}$. We have a commutative diagram

$$
\begin{array}{c}
H_n(M|\tilde{K}; R) \\ \downarrow \tilde{p}_* \end{array} \xrightarrow{k_*} \begin{array}{c} H_n(\tilde{M}|\{\tilde{x}, \tilde{x}'\}; R) \\ \downarrow \tilde{p}_* \end{array} \xrightarrow{i_*} H_n(M|x; R)
\end{array}
$$

where horizontal maps are induced by inclusions. Hence the goal become showing that ν_K maps to 0 via $H_n(M|\tilde{K}; R) \rightarrow H_n(\tilde{M}|\{\tilde{x}, \tilde{x}'\}; R) \rightarrow H_n(M|x; R)$.

Take an open neighborhoods U of x such that $\tilde{p}^{-1}(U) = \tilde{U} \sqcup \tilde{U}'$ and $\tilde{x} \in \tilde{U}, \tilde{x}' \in \tilde{U}'$. Consider the following commutative diagrams

$$
\begin{array}{c}
H_n(\tilde{M}|\tilde{x}; R) \oplus H_n(\tilde{M}|\tilde{x}'; R) \\ \downarrow j_* \oplus j'_* \end{array} \xrightarrow{k_*} \begin{array}{c} H_n(\tilde{M}|\{\tilde{x}, \tilde{x}'\}; R) \\ \downarrow \tilde{p}_* \end{array} \xrightarrow{i_*} H_n(M|x; R)
\end{array}
$$

where j, j', i, k are inclusions. By excision and additivity, $\tau_* \oplus \tau'_* \circ j_* \oplus j'_*$ is an isomorphism. On the other hand, it is not hard to observe that $(j_* \oplus j'_*) \circ (\tau_* \oplus \tau'_*) = (j_* \circ \tau_*) \oplus (j'_* \circ \tau'_*)$. Obviously τ_* is also an isomorphism.

For any $\alpha \in H_n(\tilde{M}|\tilde{K}; R)$, $k_*(\alpha) = \nu_*(\beta) + i'_*(\gamma)$. Hence $(j_* \oplus j'_*) \circ k_*(\alpha) = j_* \circ k_*(\alpha) + i'_* \circ j'_*(\gamma)$. Note that $j_* \circ k_*(\alpha)$ and $j'_* \circ k'_*(\alpha)$ are orientations at \tilde{x}, \tilde{x}' respectively. So $\tau_* \circ j_* \circ k_*(\alpha) = -j'_* \circ k'_*(\alpha)$. This implies $\tau_*(\beta) = -\gamma$. But $\tilde{p}_* \circ \tau = \tilde{p}_*$, whence $\tilde{p}_*(\beta, \gamma) = \tilde{p}_*(\beta) + \tilde{p}_*(\gamma) = \tilde{p}_* \circ \tau_*(\beta) + \tilde{p}_* \circ \tau_*(\gamma) = \tilde{p}_*(-\gamma) + \tilde{p}_*(\gamma) = 0$. Thus $\tilde{p}_* \circ k_*(\alpha) = \tilde{p}_* \circ (i_* \oplus i'_*)(\beta, \gamma) = i_* \circ \tilde{p}_*(\beta, \gamma) = 0$. □
By Lemma 2 and the exactness of (5), the orientation of \(\tilde{M} \) uniquely determines an element of \(H_n(M|K; M_R) \), denoted also as \(\nu_K \). The naturality of (4) show that \(\{ \nu_K | K \subseteq M \text{ compact} \} \) is compatible with respect to inclusion of \(K \)'s and thus define an element \([M]\) of \(\lim_K H_n(M|K; M_R) \) where the inverse limit is taken with respect to all compact \(K \subseteq M \) and inclusions \(K_1 \subseteq K_2 \subseteq M \). \([M]\) is called the fundamental class of \(M \).

2.4 Restricting to open subspaces; Compatibility

Let \(U \subseteq M \) be an open subset. Here is a few elementary facts we shall need:

Proposition 1

i) There is a canonical embedding \(\tilde{U} \hookrightarrow \tilde{M} \) induced by the excision \(H_n(U|x; R) \rightarrow H_n(M|x; R), x \in U \).

ii) The bundle \(U_R \) (of \(R \)-modules) is canonically isomorphic to the restriction of the bundle \(M_R \) to \(U \).

iii) The chosen orientation of \(\tilde{M} \) restrict to the chosen orientation on \(\tilde{U} \).

iv) For any \(K \subseteq U \) compact, the excision \(H_n(\tilde{U}|\tilde{K}; R) \rightarrow H_n(\tilde{M}|\tilde{K}; R) \) sends \(\nu_{U|K}^U \) to \(\nu_{M|K}^M \) where \(\nu_{U|K}^U, \nu_{M|K}^M \) are elements determined by the chosen orientation.

v) There diagram

\[
\begin{array}{ccc}
H_n(M|K; M_R) & \rightarrow & H_n(\tilde{M}|\tilde{K}; R) \\
\uparrow & & \uparrow \\
H_n(U|K; M_R) & \rightarrow & H_n(\tilde{U}|\tilde{K}; R)
\end{array}
\]

commutes, where horizontal maps are those in (5) and vertical ones are induced by inclusion.

Corollary 1 The homomorphism \(H_n(U|K; U_R) \rightarrow H_n(M|K; M_R) \) induced by inclusion sends \(\nu_{U|K}^U \) to \(\nu_{M|K}^M \), where \(\{ \nu_{U|K}^U \}, \{ \nu_{M|K}^M \} \) define \([U], [M]\) respectively.

Thus \(\nu_{U|K}^U \) is compatible with respect to inclusions of open \(U \)'s as well as compact \(K \)'s.

2.5 Cap Products

We start with defining tensor product of bundle of modules. Let \(G \) (resp. \(G' \)) be a bundle of left (resp. right) \(R \)-modules over a space \(X \). The tensor product \(G \otimes_R G' \) is defined as the bundle of abelian groups where \(G \otimes_R G'(x) = G(x) \otimes_R G'(x) \) and \(G \otimes_R G'(\{u\}) = G(\{u\}) \otimes_R G'(\{u\}) \) for any \(x \in X \) and \(u : I \rightarrow X \).

Denote the vertices of \(\Delta^n \) as \(e_0, e_1, \cdots, e_n \). Let \(\sigma : \Delta^n \rightarrow X \) be a continuous map. For \(0 \leq i_1 < i_2 < \cdots < i_k \leq n \), let \(\sigma_{[i_1, i_2, \cdots, i_k]} \) denote \(\sigma \) restricted to the simplex \(e_{i_1}, e_{i_2}, \cdots, e_{i_k} \).
Now we are able to define the cap product on (absolute) chains. Assume that G (resp. G') is a bundle of left (resp. right) R-modules over a space X, the cap product is defined as

$$C^k(X; G) \otimes_R C_n(X; G') \longrightarrow C_{n-k}(X; G \otimes_R G')$$

where $c \in C^k(X; G) = \prod_{\rho: \Delta^n \rightarrow X} G(\rho(e_0))$, $g \in G(\sigma(e_0))$, and $g \sigma \in C_n(X; G') = \bigoplus G'(\eta(e_0))$ denotes the element which has value g on the σ-coordinate and 0 otherwise.

If A_1, A_2 are subspaces of X, the above absolute cap product induces a relative

$$C^k(X, A_1; G) \otimes_R C_n(X, A_1 + A_2; G') \longrightarrow C_{n-k}(X, A_2; G \otimes_R G')$$

where the relative C_\ast, C^\ast are defined in the obvious way.

The cap product satisfies the identity

$$\partial(c \smile \alpha) = c \smile (\partial\alpha) - (\delta c) \smile \alpha, c \in C^k(X; G), \alpha \in C_n(X; G')$$

Note that the sign appearing in the above equation is a result of our adopting the definition in [Wh].

There is thus an induced cap product on (co)homology

$$H^k(X, A_1; G) \otimes_R H_n(X, A_1 + A_2; G') \longrightarrow H_{n-k}(X, A_2; G \otimes_R G')$$

For the special case where $X = M, A_1 = M - K, A_2 = \emptyset$ and $G' = M_R$, we obtain

$$H^k(M|K; G) \otimes_R H_n(M|K; M_R) \longrightarrow H_{n-k}(M; G \otimes_R M_R) \quad (5)$$

Naturality with respect to inclusion of compact subspaces can be easily verified, thus (5) produces

$$\lim_{K} H^k(M|K; G) \otimes_R \lim_{K} H_n(M|K; M_R) \longrightarrow H_{n-k}(M; G \otimes_R M_R)$$

Note that $\lim_{K} H^k(M|K; G)$ is canonically isomorphic to $H^k(M; G)$, the cohomology of M with compact support and with coefficient in G (the proof of this in the case of ordinary coefficients can be found in [Ha] Section 3.3). So the above becomes

$$H^k_c(M; G) \otimes_R \lim_{K} H_n(M|K; M_R) \longrightarrow H_{n-k}(M; G \otimes_R M_R)$$

If one choose the fundamental class $[M] \in \lim_{K} H_n(M|K; M_R)$, there is a homomorphism

$$H^k_c(M; G) \stackrel{[M]}{\longrightarrow} H_{n-k}(M; G \otimes_R M_R)$$

6
3 Proof of the Duality Theorem

Lemma 3 Let U, V be open subsets of M with $U \cup V = M$. $K \subseteq U, L \subseteq V$ are compact subspaces. Let G be a bundle of right R-modules over M. Then the following diagram commutes up to sign

\[
\begin{array}{ccc}
\delta & H^k(M|K \cap L; G) & H^k(M|K; G) \oplus H^k(M|L; G) & H^k(M|K \cup L; G) \\
\downarrow & \downarrow & \downarrow & \downarrow \sim \nu^M_{K \cup L} \\
H^k(U \cap V|K \cap L; G) & H^k(U|K; G) \oplus H^k(V|L; G) & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} \\
\downarrow & \downarrow & \downarrow & \downarrow \\
H^k(U \cap V|K \cap L; G) & H^k(U|K \cap L; G) & H^k(U|K; G) & H^k(U|L; G) \\
\sim \nu^U_{K \cap L} & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} & \sim \nu^V_{K \cap L} \\
H^k(U \cap V|K \cap L; G) & H_{n-k}(U \cap V; G \otimes_R L) \oplus H_{n-k}(U \cap V; G \otimes_R M_R) & H_{n-k}(U \cap V; G \otimes_R M_R) & H_{n-k}(U \cap V; G \otimes_R M_R) \\
\sim \nu^U_{K \cap L} & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} & \sim \nu^V_{K \cap L} \\
H^k(U \cap V|K \cap L; G) & H_{n-k}(U \cap V; G \otimes_R (U \cap V) \cap R) & H_{n-k}(U \cap V; G \otimes_R M_R) & H_{n-k}(U \cap V; G \otimes_R M_R) \\
\sim \nu^U_{K \cap L} & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} & \sim \nu^V_{K \cap L} \\
H^k(U \cap V|K \cap L; G) & H_{n-k}(U \cap V; G \otimes_R U_R) & H_{n-k}(U \cap V; G \otimes_R U_R) & H_{n-k}(U \cap V; G \otimes_R U_R) \\
\end{array}
\]

where the two rows are Mayer-Vietoris sequences (see Appendix), the upper left and upper middle maps are induced by inclusions.

Proof We begin with the two blocks without δ or ∂. Commutativity of the one on the left would follow once we establish the commutativity of the following

\[
\begin{array}{ccc}
H^k(M|K \cap L; G) & H^k(M|K; G) & H^k(U|K; G) \\
\downarrow & \downarrow & \downarrow \sim \nu^U_{K \cap L} \\
H^k(U \cap V|K \cap L; G) & H^k(U|K \cap L; G) & \sim \nu^U_{K \cap L} \\
\downarrow & \downarrow & \downarrow \\
H^k(U \cap V|K \cap L; G) & H_{n-k}(U \cap V; G \otimes_R (U \cap V) \cap R) & H_{n-k}(U \cap V; G \otimes_R U_R) \\
\sim \nu^U_{K \cap L} & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} \\
H^k(U \cap V|K \cap L; G) & H_{n-k}(U \cap V; G \otimes_R M_R) & H_{n-k}(U \cap V; G \otimes_R M_R) \\
\sim \nu^U_{K \cap L} & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} \\
H^k(U \cap V|K \cap L; G) & H_{n-k}(U \cap V; G \otimes_R V_R) & H_{n-k}(U \cap V; G \otimes_R V_R) \\
\sim \nu^U_{K \cap L} & \sim \nu^U_{K \cap L} & \sim \nu^V_{K \cap L} \\
\end{array}
\]

in which all arrows that is not a cap product is induced by inclusion.

The above diagram commutes because of the compatibility of $\nu^U_{K \cap L}$'s.

Similarly, commutativity of the block on the right in (6) follows from commutativity of

\[
\begin{array}{ccc}
H^k(M|L; G) & H^k(M|K \cup L; G) \\
\downarrow & \downarrow \sim \nu^M_{K \cup L} \\
H^k(V|L; G) & H_{n-k}(M; G \otimes_R M_R) \\
\sim \nu^V_{L} & \sim \nu^V_{L} \\
H_{n-k}(V; G \otimes_R V_R) & H_{n-k}(V; G \otimes_R V_R) \\
\end{array}
\]

Again such commutativity comes from compatibility of ν^V_{L}'s.

For the block involving ∂ and δ, [Ha] presented a detailed proof (p. 246-247) which carries verbatim to the case of twisted coefficients. So I shall not rewrite
it in this note. Due to the difference in the convention of signs defining \(\delta, \partial \), the block commutes up to a factor of \(-1\) instead of \((-1)^{k+1}\).

Corollary 2 Let \(U, V \) be open subsets of \(M \) with \(U \cup V = M \). Let \(G \) be a bundle of right \(R \)-modules over \(M \). Then there is a (up to sign) commutative diagram

\[
\begin{array}{cccc}
H^k_c(U \cap V; G) & \longrightarrow & H^k_c(U; G) \oplus H^k_c(V; G) & \longrightarrow & H^k_c(M; G) \\
\downarrow & & \downarrow & & \downarrow \\
H_{n-k}(U \cap V; G \otimes_R M_R) & \longrightarrow & H_{n-k}(U; G \otimes_R M_R) \oplus H_{n-k}(V; G \otimes_R M_R) & \longrightarrow & \oplus H_{n-k}(V; G \otimes_R M_R)
\end{array}
\]

where vertical maps are cap products with respective fundamental classes and the two rows are Mayer-Vietoris sequences.

Proof This follows from the preceding Lemma by taking the direct limit of (6) with respect to the directed set \(\{(K, L) | K \subseteq U \text{ exact}, L \subseteq V, (K, L) \leq (K', L') \text{ iff } K \subseteq K', L \subseteq L'\} \).

Now we can prove the Poincare Duality.

Theorem 1 For any manifold \(M \) and any bundle of right \(R \)-modules \(G \), the homomorphism

\[
H^k_c(M; G) \xrightarrow{\sim [M]} H_{n-k}(M; G \otimes_R M_R)
\]

is an isomorphism.

Proof The proof of [Ha] Theorem 3.35 applies with one exception. In the case when \(M = \mathbb{R}^n \), one use the fact that \(\mathbb{R}^n \) is contractible to deduce that \(G \) and \((\mathbb{R}^n)_R\) is isomorphic to a constant bundle. Choose and fix a base point of \(\mathbb{R}^n \), say \(0 \). Define \(G_0 = G(0) \). Identify \((\mathbb{R}^n)_R(0)\) with \(R \). Then \(H^k_c(\mathbb{R}^n; G) \), \(\lim_{K \uparrow} H_\ast(\mathbb{R}^n|K; M_R) \) and \(H_{n-k}(\mathbb{R}^n; G \otimes_R (\mathbb{R}^n)_R) \) can be canonically identified with \(H^k_c(\mathbb{R}^n; G_0) \), \(\lim_{K \uparrow} H_\ast(\mathbb{R}^n|K; R) \) and \(H_{n-k}(\mathbb{R}^n; G_0 \otimes_R R) \) respectively. Such identifications are compatible with the cap product. Under such identification, it is not hard to check from the definition that \([M] = [\mathbb{R}^n] \in \lim_{K \uparrow} H_\ast(\mathbb{R}^n|K; M_R)\) as defined in this note is an fundamental class in \(\lim_{K \uparrow} H_\ast(\mathbb{R}^n|K; R) \), i.e. an element that restrict to the local orientation at each \(x \in \mathbb{R}^n \) for a chosen orientation. Thus the Poincare Duality for the \(R \)-orientable manifold \(\mathbb{R}^n \) (the one we apply here is slightly more general than what appears in [Ha] since the coefficients can be in any \(R \)-module, but the same proof as in the simpler case carries verbatim to prove this generalized case) proves that \(\sim [M] \) is an isomorphism.
It should be mentioned that our result concerns merely cohomology with compact support. There is a version of Poincare duality for ordinary cohomology as recorded in [Sp], which is an isomorphism between Alexander cohomology and locally finite homology. The proof of this result, however, seems to require sheaf theory or some equally sophisticated machinery.

Appendix: The (Relative) Mayer Vietoris sequences with local coefficients

We shall need the following lemma, whose proof is essentially identical to that of corresponding results for (co)homology with constant coefficients:

Lemma 4 Let \(X = \bigcup \alpha \text{ Int} X_\alpha \) where \(X_\alpha \)'s are subspaces. Let \(G \) be a bundle of groups on \(X \). Define \(C^* \left(\sum \alpha X_\alpha; G \right) = \left\{ \sum_i g_i \sigma_i \in C^* (X; G) \mid \text{each } \sigma_i(\Delta^n) \text{ is contained in some } X_\alpha \right\} \).

Define \(C^* \left(\sum \alpha X_\alpha; G \right) \rightarrow C^* (X; G) \) and \(C^* (X; G) \rightarrow C^* \left(\sum \alpha X_\alpha; G \right) \) induce isomorphism on homology.

Given a pair \((X, Y) = (A \cup B, C \cup D)\) with \(C \subseteq A, D \subseteq B \) and \(X = \text{Int} X A \cup \text{Int} X B, Y = \text{Int} Y C \cup \text{Int} Y D \). For a bundle of groups \(G \) on \(X \), there are Mayer-Vietoris sequences:

\[
\cdots \longrightarrow H_n(A \cap B, C \cap D; G) \longrightarrow H_n(A, C; G) \oplus H_n(B, D; G) \longrightarrow H_n(X, Y; G) \longrightarrow \cdots
\]

and

\[
\cdots \longrightarrow H^n(X, Y; G) \longrightarrow H^n(A, C; G) \oplus H^n(B, D; G) \longrightarrow H^n(A \cap B, C \cap D; G) \longrightarrow \cdots
\]

The sequence for homology is deduced by essentially the same way as ordinary (untwisted) coefficients (cf. Hatcher). On the other hand, the proof for the cohomological Mayer-Vietoris sequence with untwisted coefficients (cf Hathcer pp. 204) almost carries to the twisted case except when proving

\[
0 \longrightarrow C^n (A+B, C+D; G) \xrightarrow{\varphi} C^n (A, C; G) \oplus C^n (B, D; G) \xrightarrow{\varphi} C^n (A \cap B, C \cap D; G) \longrightarrow 0
\]

is exact. This sequence no longer comes from dualizing the corresponding sequence for homology. Thus one has to prove the exactness by hand. The non-trivial part is proving the surjectivity of \(\varphi \). We will show this by constructing for any \(\alpha \in C^n (A \cap B, C \cap D; G) \) a pair \((\beta, \gamma) \in C^n (A, C; G) \oplus C^n (B, D; G)\) as follows:

\[
\beta(\sigma) = \begin{cases} 0 & \sigma(\Delta^n) \not\subseteq A \cap B \\
\sigma(\Delta^n) & \sigma(\Delta^n) \subseteq C \\
\alpha(\sigma) & \text{otherwise}
\end{cases}
\]

\[
\gamma(\sigma) = \begin{cases} -\alpha(\sigma) & \sigma(\Delta^n) \subseteq C \\
0 & \text{otherwise}
\end{cases}
\]

It is not hard to verify that \(\varphi(\beta, \gamma) = \alpha \). Thus \(\varphi \) is surjective.
4 Acknowledgement

The author would like to thank Prof. Kwasik for his generous help during the time of writing.

5 Bibliography

[Ha] A. Hatcher, Algebraic Topology(2002)
[Sp] E. Spanier, Algebraic Topology(1966), Springer-Verlag
[Wh] G. Whitehead, Elements of Homotopy Theory(1978), Springer-Verlag