Nuclear Pore Complex Assembly Studied with a Biochemical Assay for Annulate Lamellae Formation

Eva Meier,* Brian R. Miller,* and Douglass J. Forbes*

*Department of Biology, University of California at San Diego, La Jolla, California 92093; and*Scripps Clinic and Research Foundation, La Jolla, California 92093

Abstract. Formation of the nuclear pore is an intricate process involving membrane fusion and the ordered assembly of up to 1,000 pore proteins. As such, the study of pore assembly is not a simple one. Interestingly, annulate lamellae, a cytoplasmic organelle consisting of stacks of flattened membrane cisternae perforated by numerous pore complexes, have been found to form spontaneously in a reconstitution system derived from Xenopus egg extracts, as determined by electron microscopy (Dabauvalle et al., 1991). In this work, a biochemical assay for annulate lamellae (AL) formation was developed and used to study the mechanism of AL assembly in general and the assembly of individual nucleoporins into pore complexes in particular. Upon incubation of Xenopus egg cytosol and membrane vesicles, the nucleoporins nup58, nup60, nup97, nup153, and nup200 initially present in a disassembled form in the cytosol became associated with membranes and were pelletable. The association was time and temperature dependent and could be measured by immunoblotting. Thin-section electron microscopy as well as negative staining confirmed that annulate lamellae were forming coincident with the incorporation of pore proteins into membranes. Homogenization and subsequent flotation of the membrane fraction allowed us to separate a population of dense membranes, containing the integral membrane pore protein gp210 and all other nucleoporins tested, from the bulk of cellular membranes. Electron microscopy indicated that annulate lamellae were enriched in this dense, pore protein–containing fraction. GTPγS prevented incorporation of the soluble pore proteins into membranes. To address whether AL form in the absence of N-acetylglucosaminylated pore proteins, AL assembly was carried out in WGA-sepharose–depleted cytosol. Under these conditions, annulate lamellae formed but were altered in appearance. When the membrane fraction containing this altered AL was homogenized and subjected to flotation, the pore protein–containing membranes still sedimented in a distinct peak but were less dense than control annulate lamellae.

The nuclear pore is responsible for establishing the distinct nuclear and cytoplasmic compartments of the eukaryotic cell. The pore is a highly selective channel through which macromolecular traffic must pass to enter or exit the nucleus. Although ions and other small molecules freely diffuse through the pore, larger molecules require a specific targeting signal for transit (for reviews, see Goldfarb and Michaud, 1991; Forbes, 1992; Gerace, 1992; Osborne and Silver, 1993; Powers and Forbes, 1994).

The nuclear pore complex is a large and elaborate structure of ~120 million daltons and is comprised of ~1,000 proteins. Structurally, it appears to consist of three rings stacked one upon the other, with the central ring composed of eight spokes surrounding a central hub or transporter. Short fibers extend into the cytoplasm from the cytoplasmic ring of the pore, while an unusual basket structure extends from the nucleoplasmic ring (see Pante and Aebi, 1993, for a review). Of the estimated 60–100 different polypeptides that comprise the nuclear pore, only a handful have been identified. These include a component of the basket (nup153), proteins of the central region of the pore (p62/nup60, nup58, and nup54), components of the cytoplasmic filaments (nup180, nup200/CAN, and TPR), and integral membrane pore proteins (gp210 and POM121), among others (Davis and Blobel, 1986; Starr et al., 1990; Cordes et al., 1991; Finlay et al., 1991; Hallberg et al., 1993; Radu et al., 1993; Sukegawa and Blobel, 1993; Wilken et al., 1993; Byrd et al., 1994; see Rout and Wente, 1994, for a review). A family of pore glycoproteins that contain N-acetylglucosamine residues and consequently bind the lectin WGA are among these pore proteins (for reviews,
A number of pore proteins have also been characterized in yeast, and a subset have homologues in vertebrate pores (for reviews, see Fabre and Hurt, 1994; Rout and Wente, 1994). Nonetheless, the dozen or so vertebrate nucleoporins identified to date are estimated to constitute only 5–10% of the total mass of the pore (Snow et al., 1987; Finlay et al., 1991; Loeb et al., 1993).

While relatively little is known about the molecular composition of the pore, even less is known about the mechanism of pore assembly and disassembly. Studies of pore formation were hampered for many years by the lack of in vitro systems that would allow for biochemical analyses. More recently, it has been possible to examine nuclear envelope and pore assembly using nuclear reconstitution systems. A CHO cell extract derived from mitotic cells has been used to study lamin and nuclear envelope assembly (Burke and Gerace, 1986; Foisner and Gerace, 1993). Many groups have used a different cell-free extract derived from *Xenopus* eggs to study various nuclear processes (for review, see Leno and Laskey, 1990; Smythe and Newport, 1991; Almouzni and Wolffe, 1993). The *Xenopus* extract, which contains large stockpiles of disassembled nuclear components, readily reconstitutes nuclei in vitro.

Using the *Xenopus* system, reconstituted nuclei were observed to import nuclear proteins, indicating that nuclear pores were also being reconstituted in vitro (Newmeyer et al., 1986a, b). Biochemically altered nuclear pores were created by carrying out nuclear assembly in an egg extract depleted of the family of N-acetylglucosamine-modified nucleoporins. It was found that pores continued to form but were less dense in appearance and failed to import, indicating that this family of pore proteins is not absolutely required for nuclear pore assembly but is required for pore function (Finlay and Forbes, 1990). The effect of removing single pore proteins from the nuclear reconstitution system has also been examined and has proved enlightening on the topics of nuclear function and the function of specific nucleoporins (Dabauvalle et al., 1991; Finlay et al., 1991; Miller and Hanover, 1994; Powers et al., 1995, see Discussion). Focusing on the assembly of nuclear membranes, Wilson and Newport (1988) have shown that the egg contains a specific class of nuclear membrane vesicles, present in a disassembled state. Vigors and Lohka (1991, 1992), analyzing the membranes of the egg, identified two particulate fractions (NEP-A and NEP-B) which, in addition to cytosol, are required for proper nuclear envelope assembly. The molecular identity of these membrane-containing fractions has yet to be determined but should prove interesting for understanding the mechanism of nuclear envelope assembly. Interestingly, Sheehan et al. (1988), also using the egg extract, observed a putative intermediate in the pathway of pore assembly which occurs specifically at the end of mitosis (see Discussion).

An inherent complication of studying pore assembly using nuclear reconstitution assays is that the assembly of the pore cannot be examined independent of other nuclear events, such as chromatin decondensation and lamin assembly. One way to circumvent these constraints would be to study pore formation in annulate lamellae (Chen and Merisko, 1988; for review, see Kessel, 1992). Annulate lamellae (AL) are found in the cytoplasm and consist of stacks of flattened membrane cisternae perforated by numerous and densely packed pore complexes lacking both chromatin and a lamina. AL are frequently observed in rapidly growing or differentiating cells, such as male and female gametes, tumor cells, and virally infected cells. Although they may have an additional functional role, AL are believed to store excess nuclear envelope and pore components for later use (Kessel, 1983, 1992; Stafstrom and Stachelin, 1984; Merisko, 1989).

Nuclear and annulate lamellae pores appear morphologically indistinguishable in their basic structure when viewed by a number of different electron microscopy techniques (Smith and Berlin, 1977; for review, see Kessel, 1992; see Discussion for exceptions). Several nucleoporin-specific antibodies as well as gold-labeled WGA recognize AL pores (Chen and Merisko, 1988; Allen, 1990; Dabauvalle et al., 1991). Moreover, nucleoplasmic-coated gold particles associate with the pores of both the nuclear envelope and AL (Feldherr et al., 1984), mimicking the binding step of nuclear import (Newmeyer and Forbes, 1988; Richardson et al., 1988). It is not yet known whether AL pores are capable of translocating nuclear signal proteins.

Annulate lamellae disassemble, together with the oocyte nucleus, upon meiotic maturation of an oocyte into an egg (Stafstrom and Stachelin, 1984; Bement and Capco, 1989). The disassembled nuclear membrane and pore components derived from these events are present in the mature egg in amounts equal to that found in >4000 somatic nuclei. It is these disassembled components that provide the basis of the nuclear extract described previously. When DNA or chromatin is added to the extract, nuclei assemble (Lohka and Masui, 1983, 1984; Forbes et al., 1985; Newport, 1987). Interestingly, if no DNA or chromatin is added, Dabauvalle et al. (1991) found that AL assemble spontaneously in an extract. Specifically, employing immunofluorescence and electron microscopy, they observed the formation of stacks of AL replete with pore complexes. These findings suggest that if nuclear formation is prevented from proceeding normally around chromatin templates, the default pathway is to assemble pore and nuclear membrane components into AL.

Thus, the in vitro formation of annulate lamellae provides an attractive model system for studying pore assembly and disassembly, independent of the concomitant processes involved in nuclear assembly. Previously, pore assembly in both nuclei and AL could only be studied by using microscopy or, in the case of nuclei, by using functional assays. Here we describe the development of a biochemical assay that allowed us to study the assembly of nuclear pore proteins into the pore complexes of annulate lamellae. We used this assay to study the conditions necessary for AL assembly, the inhibitors of AL assembly, and an initial characterization of the nucleoporins present in annulate lamellae pores. In addition, we found that AL, once formed, can easily be recovered from a *Xenopus* assembly extract by pelleting. They can then be separated from a
large fraction of the other membranes in the Xenopus extract by homogenization and flotation, which potentially allows isolation of the vertebrate pore. A study of whether the N-acetylglucosaminylated nucleoporin family is necessary for assembly has also been pursued and characteristics of such modified AL examined.

Materials and Methods

Antibodies

The antibodies to the Xenopus nucleoporins nap60, nap97, and nap200 were raised against the appropriate gel-purified protein. Before use, they were affinity purified against their respective antigens immobilized on nitrocellulose strips (Macaulay et al., 1995; Powers et al., 1995). The antibody to rat nap58 has been previously described (Finlay et al., 1991). The integral membrane nucleoporin gp210 was detected with either Concanavalin A–horseradish peroxidase (Con A–HRP; E.Y. Laboratories, England). Rabbit anti-HSA was obtained from Calbiochem-Novabiochem Corp. (La Jolla, CA).

Preparation of Xenopus Egg Extracts

Both crude and fractionated Xenopus egg extracts were prepared in egg lysis buffer (ELB) (10 mM Hepes-NaOH, pH 7.4, 3 mM MgCl₂, 50 mM KCl, 250 mM sucrose, 1 mM DTT, 100 μg/ml cyclomeximide) as previously described (Newmeyer and Wilson, 1991), except for the following modifications. The cytosol was clarified by a second centrifugation at 200,000 g for 30 min, and 50-μl aliquots were stored at −70°C until use. Membranes were washed by dilution in at least 20 vol of membrane wash buffer (10 mM Hepes, pH 7.4, 250 mM sucrose, 250 mM KCl, 2.5 mM MgCl₂, 1 mM DTT) and recovered by centrifugation through a sucrose cushion for 20 min at 34,000 g (0.5 M sucrose in ELB); these membranes were fractionated from the bottom into 10 × 0.5 ml fractions. GSB was added to two duplicate 15-μl aliquots of each fraction, and the samples were resolved by SDS-PAGE. The gels were transferred to separate PVDF blots and were probed with anti-ribophorin monoclonal antibody to determine the position of ribophorin, or anti-WGA to determine the position of nucleoporin.
A Biochemical Assay for the Formation of Annulate Lamellae

To develop a biochemical assay for nuclear pore formation and to study the assembly of known nucleoporins into pore complexes, we focused on their potential incorporation into annulate lamellae (AL). AL reconstitution, as discussed earlier, represents a simplified system for studying nuclear envelope and pore formation in the absence of chromatin. It had been demonstrated that while annulate lamellae are abundant in the cytoplasm of Xenopus oocytes, fully mature eggs and extracts harbor no pore-containing membranes (Steinert et al., 1974; Kessel and Subtelny, 1981; Imoh et al., 1983; Larabell and Chandler, 1988; Bement and Capco, 1989; Dabauvalle et al., 1991). During meiotic maturation of the oocyte, AL respond to mitotic events in Spurres resin, cut into ultrathin sections, and poststained on grids with 2% uranyl acetate in H2O for 20 min. Micrographs were taken with an electron microscope (EM 300; Philips Technologies, Cheshire, CT).

For negative staining of AL, samples of extract were diluted in ELB and centrifuged onto a 2 M sucrose cushion, as described previously. The interface was removed, washed, and resuspended in 10 mM Heps, pH 7.4, 3 mM MgCl2. Ionized, carbon-coated grids were placed face down on a drop of the resuspended material for 1 min, washed in H2O, and placed on a drop of 2% uranyl acetate for 1 min. The grids were blotted dry and viewed with an electron microscope (EM 300; Philips Technologies).

Densitometry

The blots were scanned using an 8-bit CCD camera, and the intensities of the bands were quantitated by NIH Image (ver. 1.49) software. To facilitate scaling of the resulting graphs, values are expressed as a percentage of the most intense band.

Results

A Biochemical Assay for the Formation of Annulate Lamellae

To initiate a biochemical study of AL assembly, we first asked whether these proteins become associated with the membrane fraction during incubation, as would be expected if they were becoming assembled into pores. The cytosol and membrane fractions of an extract were mixed and incubated at room temperature. At various times, aliquots were removed, diluted, and centrifuged through a sucrose cushion to separate the membranes from the soluble material. Fig. 1 shows an immunoblot of the pelleted membrane fraction, probed with anti-nup60, anti-nup97, and anti-nup200 antibodies. At 0 h, no association of the soluble nucleoporins with the membranes was apparent (Fig. 1, lane 7). The presence of nucleoporins in the pellet increased with time (Fig. 1, lanes 8–9). By 90 min, a significant fraction of nup60, nup97, and nup200 had become associated with the membrane pellet. Incorporation of the soluble nucleoporins was in the range of 30–60% of the total, depending on the extract. The ability to pellet the nucleoporins was membrane dependent; it did not occur in the absence of membranes (Fig. 1, lanes 1–6). We also noted that, although not required, this association seemed enhanced by the addition of glycogen, which was purified from the gelatinous pellet of the 200,000 g centrifugation step (Fig. 1; compare lanes 8–9 with lanes 11–12). Glycogen alone, in the absence of membranes, did not cause any significant pelleting of the nucleoporins (Fig. 1, lanes 4–6). Because of this seemingly specific effect, glycogen was generally included in the assembly reactions. Interestingly, the optimal concentration of glycogen was found to be 20 mg/ml, the same concentration shown to be optimal for nuclear envelope formation around protein-free lambda phage DNA in a fractionated egg extract (Hartl et al., 1994).
It appeared from the data above that, upon incubation, the soluble nucleoporins became associated with the membrane fraction. When a similar AL assembly reaction was examined for the presence of nup58, which is found in a 600-kD complex with nup60 in the initial extract (Macaulay et al., 1995; see also Dabauvalle et al., 1990; Finlay et al., 1991; Haino et al., 1993), nup58 was also associated with the membrane pellet (Fig. 1 B). This association increased with time and paralleled the incorporation of nup60, nup97, and nup200 into membranes exactly.

Annulate Lamellae Are Present in the Membrane Pellet

To confirm that the association of nucleoporins with the membrane fraction represents true formation of annulate lamellae, we examined ultrathin sections of the pelleted membranes by transmission electron microscopy. Fig. 2 A shows an example of a stack of AL found after a 4-h incubation at room temperature. Such stacks were common in the pellet. In agreement with the results of others, we did not detect any pore-containing membranes at $t = 0$, confirming that intact NPCs were not being introduced by any of the individual components of the reaction mixture (Steinert et al., 1974; Kessel and Subtelny, 1981; Imoh et al., 1983; Larabell and Chandler, 1988; Bement and Capco, 1989; Dabauvalle et al., 1991).

Because the transmission electron microscopy used in this study requires a lengthy sample preparation, we asked whether the presence of AL could be detected by a simple negative-staining procedure. For this, a carbon-coated grid was placed on a drop of the resuspended membrane pellet from a 3-h incubation reaction. We found that, indeed, AL could be identified in this manner. A single lamella is shown in Fig. 2 B. These single lamellae were easy to visualize, but perhaps not surprisingly, most of the AL on the grid were present as large stacks, prohibiting good resolution of individual pores. However, the dense hexagonal packing characteristic of AL was clearly visible in the single sheets. In some patches, the eightfold symmetry of individual NPCs was also discernible when observed at higher magnification (Fig. 2 C).

Comigration of the WGABPs with the Integral Membrane Nucleoporin, gp210, in a Distinct Membrane Fraction

At this point, a correlation had been established between the presence of the nucleoporins nup58, nup60, nup97, and nup200 in the membrane pellet and detection of AL in this pellet by electron microscopy. There was still a possibility, however, that the pelleting of the nucleoporins with the membranes did not reflect AL assembly but some random process such as nonspecific sticking to membranes or sim-
Figure 3. Nup60 and nup200 cosediment with the pore integral membrane protein gp210 as well as with the ER membrane protein ribophorin. An AL assembly reaction was incubated for 4 h, diluted with ELB, and layered onto a sucrose gradient as described in Materials and Methods. After centrifugation at 300,000 g for 20 h, 0.5-ml fractions were collected from the bottom. Aliquots (15 μl) were resolved by SDS-PAGE in duplicate. One gel was probed with 125I-WGA to detect nup60 and nup200 (circled fraction; data not shown). The other blot (Fig. 3) was cut horizontally at a position corresponding to 70 kD. The top half was probed with 125I-Con A and the bottom with an antibody against the ER marker ribophorin followed by 125I-Protein A. The circled number indicates the fraction that contained the peak of the WGABPs, as determined by Western analysis with WGA. In the WGA blot, nup60, nup97, and nup200 were observed in a distinct peak in fraction 2. The positions of ribophorin and gp210 are shown. With each probe, the majority of the signal was detected in a distinct peak centered on fraction 2. The lane marked M contained 2 μl of total membranes.

Figure 2. In vitro synthesized AL are present in the membrane pellet. (A) Cytosol was incubated with membranes and glycogen for 4 h at room temperature. The assembly reaction was diluted in ELB and centrifuged through a layer of 0.5 M sucrose onto a 2 M sucrose cushion. The fluffy pellet at the interface between the two sucrose layers was removed, mixed with a drop of low-melting agarose, and processed for thin-section transmission electron microscopy as described in Materials and Methods. (B) Alternatively, the fluffy pellet was gently homogenized, applied to ionized, carbon-coated grids, washed with H2O, and negatively stained with uranyl acetate. (C) In some views, elements of the eightfold symmetry of individual nuclear pores could be seen.

Simple aggregation of the soluble pore proteins into a large, dense pelletable mass. We therefore attempted to isolate the AL away from free vesicles by centrifugation through a sucrose gradient to test whether nup60, nup97, and nup200 enriched together and did so in the fraction that contained AL. When the assembly reaction was centrifuged through the gradient, however, all of the particulate material visible by eye sedimented in one large peak near but not at the bottom of the gradient (at ~45% sucrose). Furthermore, when aliquots of the fractions from the gradient were resolved by SDS-PAGE and probed for various nuclear membrane and ER proteins, all of those proteins peaked in the same fraction (Fig. 3, fraction 2). The probes used were (1) WGA, to detect the glycosylated nucleoporins nup60, nup97, and nup200, (2) antibody to ribophorin, an integral membrane protein of the ER, and (3) Con A, which recognizes complex carbohydrate modifications common to ER integral membrane proteins. Note that gp210, an integral membrane pore protein recognized by Con A (Gerace et al., 1982; Wozniak et al., 1989; Greber et al., 1990), was present in fraction 2 (Fig. 3), as were nup60, nup97, and nup200 (indicated by the circled fraction number; data not shown).

It had been reported previously that in vivo annulate lamellae are often continuous with both the outer nuclear envelope and the ER network (for review see Kessel, 1992). It appeared that a similar phenomenon might be occurring in the extract, since all the vesicles had apparently fused into large membranous structures. It has also been shown that ER vesicles spontaneously fuse into tubules and sheets in this same type of extract reaction mix (Newport and Dunphy, 1992). We wished, therefore, to separate these membrane entities by homogenization, in an attempt to disperse them into discrete subpopulations of membranes. Following this treatment, we would then be able to determine whether the WGA-binding nucleoporins and the integral membrane pore protein gp210 were specifically enriched in a single fraction that was separate from other membrane proteins. To do this, an AL assembly reaction was set up and incubated at room tempera-
for 3 h. The reaction was homogenized as described in Materials and Methods, pelleted, applied to the bottom of a 32–65% concave sucrose gradient, and centrifuged at 300,000 g for 20 h to float the membrane-containing structures. As shown in Fig. 4 (upper portion), when the reaction mix was homogenized and subjected to flotation, the pore protein gp210 peaked in fractions 5–7 (at a density ~1.20 g/cc). In contrast, the majority of other Con A–binding proteins, as well as ribophorin, were dispersed throughout the gradient, peaking near the top of the gradient in fraction 15 (Fig. 4, lower portion).

When the fractions were probed with antisera to the initially soluble glycosylated nucleoporins, it was observed that fractions 5–7 also contained the peak of nup60, nup97, and nup200 (Fig. 5). These results demonstrate that the initial pelleting of the soluble nucleoporins is not due to aggregation or precipitation, because such nonmembranous structures would remain at the bottom of the flotation gradient. Instead, the cosedimentation of the initially soluble nucleoporins with the integral membrane pore protein gp210 in a dense fraction, separate from the bulk of the membrane proteins, supports the conclusion that these nucleoporins are incorporated into pore complexes within the membranes.

The number of vertebrate pore proteins that have been identified, and to which there are antibodies, is limited. One protein, nup153, is a pore protein found in the distal ring of the basket of the pore and on filaments extending from the basket into the nucleoplasm (Cordes et al., 1993; Sukegawa and Blobel, 1993). The Zn$^{2+}$ finger-containing nup153 protein contains GFXFG repeat sequences, as do nup200 and nup60, and is therefore recognized by the anti–GFXFG monoclonal antibody, mAb414. To determine whether nup153 cofractionates with the pore proteins gp210, nup58, nup60, nup97, and nup200, a blot of the same set of membrane vesicle fractions was probed with mAb 414 (Fig. 5). Nup153 can clearly be seen to cofractionate with the other pore proteins. In contrast, the soluble protein human serum albumin (HSA), which was added to the homogenized membranes before flotation as a negative control, did not float up with the membranes but remained at the bottom of the gradient (Fig. 5). Ribophorin, an ER protein, was also present in small amounts in the pore-containing fractions 5–7, as was a small amount of the ER integral membrane proteins visualized with Con A, consistent with the predicted derivation of AL membrane components from the ER (Kessel, 1983). The bulk of ribophorin, however, floated higher in the gradient (Fig.
When the fraction containing the peak of nucleoporins was fixed, sectioned, and examined by transmission electron microscopy, it was found to be enriched in small stacks of AL (not shown). In contrast, when the fraction containing the peak of the ConA-binding or ER proteins (fraction 15) was examined in the electron microscope, it was found to be devoid of AL and to consist entirely of a heterogeneous population of vesicles (not shown). We conclude that after AL formation and homogenization, the soluble pore proteins cofractionate with gp210 in an AL-containing membrane fraction. Furthermore, this dense membrane fraction can be separated from the bulk of the ER.

Association of Nucleoporins with the Membrane Pellet Is Blocked by GTPyS

Many cellular processes are known to require small GTP-binding proteins (Dickey and Birnbaumer, 1993). With respect to potential steps in AL formation, GTP might be expected to be involved in one or more steps in the actual assembly of the pore complex, and/or in the fusion of vesicles that would be required for forming a large membranous structure such as the AL (for reviews see Balch, 1989; Hall, 1990). Indeed, Boman et al (1992a) have shown that during nuclear envelope assembly in a Xenopus egg extract, GTP hydrolysis is required for the fusion of chromatin-bound, nuclear-specific vesicles into a double membrane nuclear envelope.

To test the dependence of AL formation on GTP hydrolysis, GTPyS was added to an assembly reaction at \(t = 0' \). GTP was added to a control sample to the same final concentration. AL were allowed to form for 0-3 h as usual, after which the membranes were recovered by centrifugation. Fig. 6 shows an immunoblot of the pelleted membranes, using anti-nup60, anti-nup97, and anti-nup200 antibodies as probes. No incorporation was observed if the reaction was carried out at \(0^\circ \text{C} \) (Fig. 6 A, lanes 4-6). Incorporation of the nucleoporins into membranous structures proceeded normally either under control conditions (lanes 1-3) or in the presence of added GTP (lanes 7-9). However, the incorporation was essentially blocked by addition of the nonhydrolyzable analogue, GTPyS (lanes 10-12). When the fractions in Fig. 6 A were probed with the mAb414 for the presence of the nucleoporin nup153, this nucleoporin's incorporation into AL was also found to be blocked by GTPyS in the assembly reaction (Fig. 6 B, lanes 10-12). A protein of \(\approx 270 \) kD, which reacts with the anti-GXFXG mAb 414, also failed to incorporate into the membrane pellet (Fig. 6 B). We do not know if this protein is a pore protein but assume it is because it coenriches on sucrose gradients with AL and known pore proteins. These results indicate that AL assembly, measured by pore protein association with the membranes, requires GTP hydrolysis. Indeed, when the samples incubated in the presence of GTPyS were examined by thin-section electron microscopy, no AL were observed. The bulk membranes appeared identical to membranes at \(t = 0' \), that is, the vesicles had undergone no membrane fusion (data not shown).

Discussion.

With respect to the amount of incorporation of the different nucleoporins into AL, the efficiency of incorporation of nup153 into AL is somewhat lower than that of the WGABPs (Fig. 6, A and B; compare lanes 2–3 with lane 13 in both figures; lane 13 contains 30% of the input cytosol). At the present time the significance of this observation is unclear as it is not known whether the cytosolic fraction contains equivalent stoichiometric amounts of each pore protein. However, it is possible that the apparent excess of the WGABPs over nup153 in AL may be related to the way that pore complexes and individual pore proteins are assembled in annulate lamellae. The amount of incorporation of the nup60 and nup97 was relatively high, usually 30–80% (see Fig. 6 A). The degree of incorporation of nup200, a presumed component of the cytoplasmic filaments extending from the nuclear pore, was consistently less (Fig. 6 A). Possible reasons for the lower amounts of incorporation of nup153 and nup200 are addressed in the Discussion.
Annulate Lamellae Pore Formation Occurs in Extracts Depleted of WGABPs

Finlay and Forbes (1990) showed that when the WGABPs are removed from egg cytosol prior to nuclear reconstitution, an intact nuclear envelope still forms around exogenously added sperm chromatin. This envelope is studded with numerous nuclear pore complexes which are incompetent for import. By transmission electron microscopy, the nuclear pores appeared relatively normal in structure but were less densely stained by uranyl acetate (Finlay and Forbes, 1990). It was concluded that the major structural scaffold of the nuclear pore assembles independent of the WGABPs. This finding corroborated much EM labeling data, which showed a nonscaffold location for the WGABPs in the pore (Finlay et al., 1987; Akey and Goldfarb, 1989; Pante et al., 1994). In other studies, nuclear pores failed to form in a WGA-depleted extract (Dabauvalle et al., 1990) or were structurally defective (Miller and Hanover, 1994). It may be that slight differences in experimental protocol are the cause of these discrepancies, since multiple complex processes must occur for nuclear formation to take place. To analyze the pore protein requirements for AL assembly, we wished to determine whether AL can assemble independent of the WGABPs. Cytosol was depleted of WGABPs by passage over WGA-sepharose. The depleted cytosol was then mixed with membrane vesicles and glycogen, and incubated at room temperature for 4 h. A mock-depleted sample was prepared simultaneously by incubation of the cytosol with the lectin-sepharose in the presence of the competing sugar N-acetylglucosamine, followed by incubation with membranes for 4 h. The assembly reactions were diluted and pelleted through a sucrose cushion as described above. The membrane pellets were then prepared for thin sectioning as detailed in Materials and Methods and observed in the electron microscope. Examination of a number of sections revealed that both the mock-depleted and the depleted samples contained stacks of AL, although the AL in both were somewhat smaller and had fewer pores/area than those typically found in untreated cytosol. Fig. 7 A shows a cross-section of a representative patch of AL which was formed in the depleted cytosol. An en face view is shown in Fig. 7 B. This result indicates that the pores of both nuclear envelopes and annulate lamellae can form in the absence of WGABPs.

As stated earlier, previous work indicated that WGABP-depleted pores in nuclei showed a loss of electron density by thin-section electron microscopy (Finlay and Forbes, 1990). When WGABP-depleted AL were formed, homogenized, and then assayed biochemically for their migration in a sucrose density flotation gradient, they were found to have a different buoyant density than control AL. To locate the position of the depleted AL, an immunoblot for nup153 was used (Fig. 8, A and B, open circles). We have observed that this nucleoporin is not significantly removed by WGA-sepharose depletion (Finlay and Forbes, 1990; Fig. 8). As shown in Fig. 8 B, the depleted nup153-containing membranes were found at a lighter position in the gradient (fractions 8–11) than in the control reaction, where the majority of the nup153 was found in fractions 6–10 (Fig. 8 A). Note that the gradients were altered slightly from those in Figs. 4 and 5 to obtain better separation of depleted AL from control AL (see Materials and Methods). The peak position of the control AL in Fig. 8 corresponds to a density of 1.20 g/cc, whereas the density of the WGA-depleted AL had a density of 1.185 g/cc. In both cases, the position of the nup153 pore protein in the gradients corresponded with the position of the integral mem-

Figure 7. AL form in an extract depleted of WGABPs. Cytosol was depleted of WGABPs by two consecutive 1-h incubations with 0.5 volume WGA-sepharose. A control sample was incubated with WGA-sepharose in the presence of the competing sugars (HS/ELB). The depleted or mock-depleted cytosol was then mixed with glycogen (20 mg/ml final concentration) and membranes (1× final concentration) and allowed to incubate at room temperature for 4 h. The reaction mixes were diluted 20-fold in ELB and centrifuged through a 0.5 M sucrose layer onto a 2 M sucrose cushion. The fluffy pellet at the interface between the 0.5 M and 2 M layers was removed and processed for thin sectioning as described in Materials and Methods. Shown in the upper panel is a cross-section of a small stack of AL formed in the depleted cytosol; shown in the lower panel is an en face view of AL found in the same sample. These stacks are representative of what was found in both the depleted and the mock-depleted samples. The arrowheads mark pore complexes.
Molecular Composition of Annulate Lamellae Pores

It is generally believed that the structure and molecular composition of the nuclear pore, at a basic level, is similar to that of pores of annulate lamellae. Because the elaborate imaging and Fourier averaging techniques used to study nuclear pores have not yet been applied to AL and because little biochemical work has been done on AL, this conclusion is based largely on microscopic observations (for review see Kessel, 1992). Such structural work indicates that both types of pores have eightfold radial symmetry. Both consist of two large rings stacked above and below a smaller central ring of spokes (for review, see Hinchliffe et al., 1992; Kessel, 1992; Key and Radermacher, 1993). Movement of substrates through the nuclear pore is thought to be mediated by a transporter located at the center of this spoke ring (Akai and Goldfarb, 1989; Akai and Radermacher, 1993; Dingwall, 1990). Although tran-
port through AL pores cannot be assayed, these pores, like nuclear pores, have been shown to bind gold particles coated with nuclear transport substrate (Feldherr et al., 1984).

From the structural similarity of the pores, the nucleoporins nup60 and nup58, located near the central transporter, and the membrane pore protein gp210 could be predicted to be present in AL, as these proteins are integral to pore structure and function. Previously, AL pores have been shown to be recognized by antibodies to the nucleoporin nup60 (also known as p62; Allen, 1990; Dabauvalle et al., 1991). Indeed, we confirmed biochemically the presence of nup60 in the AL fraction; by immunoblotting, we find that nup58 is also present. In addition, we find that the dense AL-containing fraction contains the integral membrane nucleoporin gp210. All the gp210 present in the egg extract, upon incubation, becomes incorporated in this densely sedimenting membrane population. These results support the conclusion that the nucleoporins are becoming incorporated into AL pores. A further conclusion that can be derived from the presence of gp210 in AL is that AL and nuclear pores must share, at least in part, a common membranous precursor.

Until recently the nuclear pore appeared bilaterally symmetrical. High-resolution electron microscopy has now revealed additional structural elements which indicate that the nuclear pore has a polar nature. On the nucleoplasmic side, eight long filaments of 1,000Å project away from the pore and join at their distal ends to a terminal ring; the entire structure is termed the nuclear basket (Ris, 1990; Goldberg and Allen, 1992; Pante and Aebi, 1993; Pante et al., 1994). Extending from the cytoplasmic ring of the pore is a set of eight short fibers termed the cytoplasmic filaments. Biochemically, the nuclear basket contains the pore protein nup153, while the cytoplasmic filaments contain the proteins CAN/nup214, nup180, and TPR/nup265 (Snow et al., 1987; Cordes et al., 1993; Sukegawa and Blobel, 1993; Wilken et al., 1993; Byrd et al., 1994; Kraemer et al., 1994; Pante et al., 1994). Both CAN and TPR have been associated with oncogenesis in humans when fused to other genes, presenting the intriguing possibility that a new class of oncogenes causes tumorigenesis by altering the function of the nuclear pore.

The asymmetry of the nuclear pore may be generated by internal nuclear constituents. DNA could direct polar assembly of the basket, as at least one component of the basket, nup153, has intrinsic DNA-binding ability (Sukegawa and Blobel, 1993). Alternatively, since the nuclear pore is imbedded in the nuclear lamina, the lamina may play a role in seeding the assembly of the basket so that it occurs exclusively on the nuclear face of the pore. A third possibility is that the newly described nuclear lattice may initiate polarity of the pore (Goldberg and Allen, 1992). A priori there is no reason to assume that the pores of the AL would be polar, that is, that they would contain nuclear baskets and/or cytoplasmic filaments. Indeed, the tight packing of the adjacent membrane stacks in AL might seem to preclude the existence of at least one of these extended structures, there being less than 1,000Å between stacks. The reconstitution assay developed here allowed us to determine whether constituents of the basket and cytoplasmic filaments were present in AL. Upon analysis, we found that both the nucleoporin nup200, which is the Xenopus equivalent of CAN/p214 (Powers, M., C. Macaulay, and D. Forbes, manuscript in preparation), and the basket protein nup153 are incorporated into AL. Although we do not know whether egg extracts contain stoichiometric amounts of all the pore proteins, both nup153 and nup200 do seem to be incorporated at lower efficiencies into AL when compared to nup60 (see Figs. 1 and 6). In explanation of this, it is possible that the AL pore is indeed polar but has only remnant (or incipient) structures corresponding to the basket and cytosolic filaments. The tight packing of the stacks would prevent full assembly on all but the outermost stacks. Alternatively, it is possible that, without topological cues such as chromatin or a lamina, the AL pore is inherently an apolar structure. Limited amounts of filament assembly may then occur randomly on either face of the pore, so that each pore contains small amounts of nup153 and nup200 on both sides. Further examination of the specific location of nup153 and nup200 in AL needs to be addressed by immunoelectron microscopy.

Nup153, in addition to being a basket component, is also found on fibers extending from the basket farther into the nucleus (Cordes et al., 1993). The WGA-binding protein, nup97, may have a similar nuclear localization pattern. By immunofluorescence, nup97 is a component of both the nuclear pores and the nuclear interior (Powers et al., 1995). Peptide sequence analysis (Powers et al., 1995) indicates that nup97 has regions of strong similarity to the yeast GLFG nucleoporin, nup116, and other members of the GLFG nucleoporin family (Wente et al., 1992; see Rout and Wente, 1994, for review). When AL were examined biochemically for the presence of nup97, it was found that this protein clearly associates with the dense gp210- and AL-containing membranes. Thus, all the nucleoporins examined, which now include gp210, nup58, nup60, nup97, nup153, and nup200, become incorporated into the same physically distinct, pore-containing fraction in the assembly reaction.

Biochemically Altered Pores of AL

We examined whether AL were able to form in the absence of the WGA-binding nucleoporins nup60, nup97, and nup200. We found that AL do indeed form in such depleted extracts, as judged both biochemically and by electron microscopy. In this instance, nup153 was used as a marker for the assembly of AL. The initially soluble nucleoporin nup153 was found to cofractionate with the integral membrane pore protein gp210, both in normal extracts and in extracts lacking WGA-binding proteins. However, the density of the depleted AL (1.185 g/cc) was lighter than that of control AL (1.20 g/cc). The distribution and peak position of ER membranes in both gradients were identical (peak 1.16 g/cc). These results indicate that depleted AL are still formed as a discrete structure separable from the ER, but that this structure has an altered density.

The density difference between glycoprotein-depleted and normal AL could result from one of two possibilities. The most prominent of the Xenopus WGA-binding nucleoporins, nup60, nup97, and nup200, have been shown by gel filtration to be present in the cytosol initially as dis-
distinct, high molecular weight, protein complexes (Dabau-
valle et al., 1990; Finlay et al., 1991; Macaulay et al., 1995).
Based on the elution profile, nup60 is found with nup58 and
nup54 in a 600-kD complex, nup97 in a 450-kD com-
plex, and nup200 in a 1,000-kD complex. A simplistic pre-
diction stemming from the eightfold radial symmetry of
the pore might suggest that there are eight copies of each
complex in the pore. If this is so, depletion of these pro-
teins would reduce the mass of the pore by 16 MD. Using a
value of 120 MD for the mass of an unaltered pore, the
reduction would represent an ~13% decrease in protein
mass, resulting in a lower overall density for the AL. This
estimate is, of course, highly speculative because the exact
stoichiometry of the WGABPs in the pores is not known
and, as mentioned earlier, because nup200 may be present
in lower amounts in AL. Moreover, the lack of these pro-
teins could lead to a greater change in density if they
themselves are required for incorporation of other pore or
lamella-specific proteins. In an alternate explanation, the
biochemical data would be consistent with there being
fewer pores/membrane area in the depleted AL. Initial
electron microscopy of the mock-depleted and WGA-
depleted samples does not support this latter alternative.
To determine the actual change in density of the glycopro-
tein-depleted pores in AL, it would be useful in the future
to combine the AL isolated here (Fig. 2 C) with the STEM
mass determination technique used to calculate the mass
of the nuclear pore (Reichelt et al., 1990).

Models for the Assembly of Pore Complexes

How do pore complexes assemble in an envelope? For nu-
clei, there may be two such mechanisms. There is a great
deal of evidence for the de novo assembly of pores in pre-
existing nuclear envelopes. For example nuclear pore
number increases twofold during S phase, in preparation
for cell doubling (Maul, 1977a). Pore number also in-
creases after lymphocyte activation as well as during oo-
cyte growth (Franke and Scheer, 1970; Maul et al., 1972;
Wunderlich et al., 1974). Moreover, in yeast and other or-
ganisms that undergo closed mitosis, the increase in pore
number before cell division must occur by assembly into
an intact envelope, as the nuclear envelope does not break
down at mitosis. When modeling a mechanism by which
the pore can assemble in intact membranes, it would be
logical to propose that a lateral association of individual
integral-membrane pore proteins within the bilayer would
occur first. This association might then lead to formation
of a circular multimer capable of inducing fusion between
the inner and outer nuclear membranes, yielding a "donut
hole" in the double membrane system. Such holes have
been observed in electron micrographs of mitotic cells
during disassembly of the pore (Maul, 1977a, b). Concomi-
tant with the fusion and formation of a membrane hole,
the myriad soluble proteins of the pore would then assem-
ble, forming a complete pore complex. An interesting
question to ask would be whether the association of any of
the soluble nucleoporins is required early in the process,
perhaps to induce aggregation of the pore membrane pro-
teins. In our experiments, GTPγS could be acting at one or
more of these steps to block incorporation of the initially
soluble pore proteins into pore complexes.

A second model for pore formation was proposed by
Sheehan et al. (1988). Their model does not explain pore
assembly in intact nuclear envelopes or in AL but instead
was invoked to explain the assembly of a nuclear envelope
around chromatin at the end of an open mitosis. At this
point in the cell cycle, it is known that the nuclear enve-
lopes form using chromatin as a substrate. Indeed, a class
of nuclear-specific vesicles has been shown to bind to
chromatin and fuse to form a nuclear envelope (Lohka
and Masui, 1983, 1984; Sheehan et al., 1988; Wilson and
Newport, 1988; Newport et al., 1990; Pfaller et al., 1991;
Vigers and Lohka, 1991; Boman et al., 1992a, b; Newport
and Dunphy, 1992; Chaudhary and Courvalin, 1993; Sulli-
van et al., 1993). Sheehan et al. (1988), using a Xenopus
nuclear assembly system with very limiting amounts of
membranes, observed electron-dense, circular structures
of pore-like diameter lining the surface of their decon-
densing chromatin templates. They interpreted these cir-
cular structures, which were completely unassociated with
membrane, to be immature or "half pores" in the process
of formation. Membrane later associated with the half
pores, and eventually full pores were formed. It may be
that nuclei pore formation occurs by two pathways—a
chromatin-dependent pathway used at the end of open mi-
tosis, and a chromatin-independent pathway used more
generally in intact nuclei. The formation of pores in AL
would be predicted to occur by a mechanism similar to the
latter pathway.

Futures Uses for the Assembly System

In summary, we have developed a biochemical assay for
annulate lamellae formation and have used it to examine
the assembly of specific nucleoporins into pore complexes.
In the course of this study we have shown that a dense
membrane fraction highly enriched in all nucleoporins
tested can be separated from the bulk of other cellular
membranes. The assembly system and/or the pore-con-
taining membranes can now be used in a number of ways.
First, using immunoblotting, comigration with the pore-
containing fraction can be used as a powerful screen for
whether a given-candidate pore protein is in fact a nucle-
oporin. Previously, immunoelectron microscopy was the
only method for establishing whether a protein was a com-
ponent of the pore, a technique dependent on the posses-
sion of an antibody functional for electron microscopy.
Second, with the recent identification of new nucleopor-
ins, antibodies to their Xenopus homologs can be used to
deplete these proteins from the extract to determine the
role of the proteins in pore assembly. Third, biochemical
manipulation of the assembly system should prove useful
in trapping intermediates in pore assembly. These can
then be used to establish the order of incorporation of spe-
cific proteins into pores. Lastly, in vitro–reconstituted AL
can be used as starting material for the isolation of verte-
brate pores. To date, free pores have been successfully iso-
lated only from the nuclei of budding yeast (Rout and Blo-
bel, 1993), most likely because of differences in the
nucleoskeletal components, such as the lamina between
yeast and higher eukaryotes. However, the properties
unique to yeast nuclear pores, which include smaller size,
an absence of WGABPs, and a lack of similar assembly
and disassembly processes due to the closed form of mitosis, may reflect an even greater difference in the substructure of the yeast nuclear pore from that of vertebrates (Allen and Douglas, 1989; Davis and Fink, 1990; Nehrbs et al., 1990; Wente et al., 1992; Rout and Blobel, 1993; for reviews, see Osborne and Silver, 1993; Fabre and Hurt, 1994; Rout and Wente, 1994). Since AL lack a nuclear lamina, contain a high density of pores, and can be separated from contaminating membranes, in vitro-synthesized annulate lamellae hold promise for being the first system from which the pores of higher eukaryotes can be purified.

The authors thank Drs. Colin Macauley, Maureen Powers, Katie Ullman, John Newport, and Vivek Malhotra for helpful discussions. The authors also thank Dr. David Meyer for the gift of the anti-ribophorin antibody and Dr. Richard Wozniak for the rat gp210 cDNA clone.

This work was supported by a National Institutes of Health RO1 grant (No. GM33279) to D. Forbes, a National Institutes of Health Predoctoral Training Grant to E. Meier, and an American Cancer Society Postdoctoral Fellowship to B. R. Miller.

Received for publication 9 February 1995 and in revised form 27 March 1995.

References

Akey, C. W., and D. S. Goldfarb. 1989. Protein import through the nuclear pore complex is a multistep process. J. Cell Biol. 109:971-982.

Akey, C. W., and M. Radermacher. 1993. Architecture of the Xenopus nuclear pore complex revealed by three-dimensional cryo-electron microscopy. J. Cell Biol. 122:1-19.

Allen, E. D. 1990. Pores of annulate lamellae and nuclear bind wheat germ agglutinin and monoclonal antibody similarly. J. Struct. Biol. 103:140-151.

Allen, J. L., and M. G. Douglas. 1989. Organization of the nuclear pore complex in Saccharomyces cerevisiae. J. Ultrastruct. Mol. Struct. Res. 102:95-108.

Almouzni, G., and A. Wolff. 1993. Nuclear assembly, structure, and function: the use of Xenopus in vitro systems. Exp. Cell Res. 205:1-15.

Bail, W. F. 1989. Biochemistry of interorganelle transport: a new frontier in enzymology emerges from vertebrate in vitro model systems. J. Biol. Chem. 264:16965-16968.

Bement, W. M., and D. G. Capco. 1989. Intracellular signals trigger ultrastructural events characteristic of mitotic maturation in oocytes of Xenopus laevis. Cell Tissue Res. 255:183-191.

Benavente, R. M. C. Dabaubou, U. Scheer, and N. Chaly. 1989. Functional role of newly formed pore complexes in postmitotic nuclear reorganization. Chromosoma 98:243-248.

Boman, A. L., M. R. Delannoy, and K. L. Wilson. 1992a. GTP hydrolysis is required for vesicle fusion during nuclear envelope assembly in vitro. J. Cell Biol. 116:281-294.

Boman, A. L., T. C. Taylor, P. Melancon, and K. L. Wilson. 1992b. A role for ADP-ribosylation factor in nuclear vesicle dynamics. Nature (Lond.) 358:512-514.

Burke, B., and L. Gerace. 1986. A cell free system to study reassembly of the nuclear envelope at the end of mitosis. Cell. 44:9a.

Byrd, D. A., D. J. Sweet, N. Pante, K. Konstantinov, T. Guan, A. C. S. Saphire, Boman, A. L., M. R. Delannoy, and K. L. Wilson. 1992. High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J. Cell Biol. 119:1426-1440.

Goldfarb, D., and N. Michaud. 1991. Pathways for the nuclear transport of proteins and RNAs. Trends Cell Biol. 1:20-24.

Greber, U. F., A. Senior, and L. Gerace. 1990. A major glycoprotein of the nuclear pore complex is a membrane-spanning polypeptide with a large lumenal domain and a small cytoplasmic tail. EMBO (Eur. Mol. Biol. Organ.) 9:1495-1502.

Haino, M., S. Kawahire, S. Omata, and T. Horigome. 1993. Purification of a 60 kDa nuclear localization signal binding protein in rat liver nuclear envelopes and characterization of its properties. J. Biochem. 113:308-313.

Halla, A. 1990. The cellular functions of small GTP-binding proteins. Science (Wash. DC) 249:640-653.

Halfberg, E., R. W. Wozniak, and G. Blobel. 1993. An integral membrane protein of the pore membrane domain of the nuclear envelope contains a nuclear pore-like region. J. Cell Biol. 122:513-521.

Hart, G. W., R. S. Haltiwanger, G. D. Holt, and W. G. Kelly. 1989. Glycosylation in the nucleus and cytoplasm. Annu. Rev. Biochem. 58:841-874.

Hart, P. E., E. Olson, T. Dang, and D. J. Forbes. 1994. Nuclear assembly with lambda DNA in fractionated Xenopus egg extracts: an unexpected role for glycogen in formation of a higher order chomatoin intermediate. J. Cell Biol. 124(3):235-248.

Hirschaw, J. E., B. O. Carragher, and R. A. Milligan. 1992. Architecture and design of the nuclear pore complex. Cell. 69:1133-1141.

Imoh, H., M. Okamoto, and G. Eguchi. 1983. Accumulation of annulate lamellae in the subcortical layer during progesterone-induced maturation in Xenopus laevis. Dev. Growth Differ. 25:1-10.

Kessel, R. G. 1983. The structure and function of annulate lamellae: porous cytoplasmic and intranuclear membranes. Int. Rev. Cytol. 82:181-303.

Kessel, R. G. 1992. Annulate lamellae: a last frontier in cellular organelles. Int. Rev. Cytol. 133:43-120.

Kessel, R. G., and S. Subtelny. 1981. Alteration of annulate lamellae in the in vitro progesterone-treated, full-grown Rana pipiens oocyte. J. Exp. Zool. 217:119-135.

Kraemer, B. R., R. W. Wozniak, G. Blobel, and A. Radu. 1994. The human CAN protein, a putative oncogene product associated with myeloid leukemia, is a nuclear pore complex protein that faces the cytoplasm. Proc. Natl. Acad. Sci. USA 91:1519-1523.

Krajewski, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (Lond.) 227:680-685.

Larabell, C. A., and D. E. Chandler. 1988. Freeze-fracture analysis of structural reorganization during mitotic maturation in oocytes of Xenopus laevis. Cell Tissue Res. 251:129-136.

Leno, G. H., and R. A. Laskey. 1990. Assembly of the cell nucleus. Trends Genet. 6:406-410.

Loeb, J. D., L. I. Davis, and G. R. Fink. 1993. NUP2, a novel yeast nucleoporin,
