Association Between *HLA* genotypes and Oxcarbazepine-induced Cutaneous Adverse Drug Reactions: A Systematic Review and Meta-Analysis

Wimonchat Tangamomsuksan, C.N. Scholfield, Manupat Lohitnavy

1. Center of Excellence for Environmental Health & Toxicology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand. 2. Pharmacokinetic Research Unit, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand. 3. Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand.

Received November 21, 2017; Revised, January 22, 2018; Accepted, January 23, 2018; Published, January 25, 2018.

ABSTRACT - PURPOSE: To systematically review and quantitatively synthesize associations between *HLA* genotypes and oxcarbazepine-induced cutaneous adverse drug reactions (OXC-cADRs), including Stevens–Johnson syndrome (SJS) and maculopapular rash.

METHODS: Studies investigating associations between *HLA* genotypes and OXC-cADRs were systematically searched irrespective of language, in PubMed, HuGENet (Human Genome Epidemiology Network), and the Cochrane Library from their inception until January, 2017. Inclusion criteria were studies investigating associations between *HLA* genotypes and OXC-cADRs that reported sufficient data for calculating the frequency of *HLA* genotype carriers among cases and controls. Overall odds ratios (ORs) with corresponding 95% CIs were calculated using a random-effects model to determine the association between *HLA* genotypes and OXC-cADRs.

RESULTS: The initial searches identified 91 articles, of which 6 studies met the selection criteria. The studies included 229 patients with OXC-cADRs, 251 OXC-tolerant patients, and 2,358 participants from general populations of Han Chinese, Korean, and Thai ethnicities. Associations between *HLA-B*1502 and OXC-induced SJS were found in both the general population [OR=30.2 (95%CI=3.45-264)] and in OXC-tolerant individuals [OR=26.4 (95%CI=7.98-87.6)]. An association between the *HLA-B*1502 and OXC-induced maculopapular rash was found in the general population [OR=5.67 (95%CI=2.03-15.9)] while *HLA-A*3101 also associated with OXC-induced maculopapular rash [overall OR=29.2 (95%CI=6.70-128)].

CONCLUSIONS: Strong associations between *HLA-B*1502 and OXC-cADRs were found in both controls from the general population and OXC-tolerant groups. There was also an association between *HLA-B*3101 and OXC-induced maculopapular rash. For patient safety, genetic screening especially for *HLA-B*1502 prior to OXC therapy at least in these closely related ethnicities is warranted. Further studies need to better define other ethnicities at risk and a wider range of MHC gene subtypes.

This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue’s contents page.

INTRODUCTION

Oxcarbazepine (OXC) is a keto-analogue of carbamazepine (CBZ) and approved as a monotherapy or adjunctive therapy to treat partial seizures in adults and children (1). It has less severe cutaneous adverse drug reactions (cADRs) and thus a safer choice for CBZ-intolerant patients (2). OXC-cADRs vary from mild maculopapular rash to severe reactions (i.e., Stevens–Johnson syndrome/toxic epidermal necrolysis, SJS/TEN), and drug rashes with eosinophilia and systemic symptoms with eosinophilia and systemic symptoms, DRESS). However, the most common OXC-cADR is maculopapular rash (3). 25-78% of CBZ-hypersensitive patients develop a cross reaction with OXC, while 29-40% of OXC-induced hypersensitive patients cross react with CBZ (4-6).

Several studies suggested that most cADRs caused by epileptic drugs (e.g., CBZ, phenytoin, lamotrigine) are drug-specific immune responses through human leukocyte antigens (HLAs) (7, 8). HLA is a gene group encoding the major histocompatibility complex (MHC) located on chromosome 6 in humans (9, 10). MHCs are cell-surface receptors that capture and present self- and pathogen-derived peptides to T-cell receptors. The associations among MHC class I and II...
cADRs have been studied in several epidemiological studies (11-14). However, these previous studies have shown a wide range of HLA genotypes (i.e., HLA-A*3101, HLA-B*1502), OXC-cADRs (i.e., maculopapular rash, SJS/TEN), and the magnitude of associations. A major limitation of the individual studies is the low incidence of OXC-cADRs. Small sample sizes among those studies may contribute observed variations. An important part of reducing cADRs is an understanding of population risks as well as HLA genotyping before drug treatment. Therefore, to better assess these risks, we aimed to review all relevant studies and to quantitatively synthesize the magnitude of the associations using a systematic review and meta-analysis technique.

METHODS

SEARCH STRATEGY AND SELECTION CRITERIA
PubMed, Human Genome Epidemiology Network (HuGENet) and the Cochrane Library were systematically searched from their inception until January 2017 using keyword combinations or synonyms for “HLA genotypes” and “oxcarbazepine” without language or study design restrictions. Only human studies were included. Additional studies were retrieved from bibliographies of the included articles. Two reviewers (WT, ML) independently screened titles and/or abstracts for relevance followed by full-text article assessments for inclusion. Studies were included if: (1) HLA genotypes/OXC-cADRs associations were investigated; (2) all patients received OXC before HLA genotypes screening, and; (3) sufficient data for calculating the frequency of HLA genotypes carriers were reported. When studies shared the same population, the one reporting most data and patients was selected. Where data was insufficient for meta-analysis, additional data was sought from corresponding authors.

Two reviewers (WT, ML) extracted data by study design, eligibility criteria, definition, and diagnostic criteria for cases and controls, patient demographics, dose and duration of OXC exposure, the HLA genotyping technique and Hardy-Weinberg equilibrium (HWE) information. The genotype frequencies were examined by the HWE to determine whether the patients from the selected studies were representative of the population (15, 16). Study quality used the Newcastle-Ottawa scale (NOS) comprising three domains: selection, comparability, and outcome or exposure (17). All disagreements throughout were resolved by discussion between the reviewers until consensus was made.

DATA ANALYSIS

The included studies demonstrating an association between HLA genotypes and OXC-cADRs were characterized and summarized based on the most recent data. The overall odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to determine associations between HLA genotypes and OXC-cADRs. All analyses were performed using the DerSimonian and Laird method under a random-effects model (18). The analyses were also performed separately on studies using different types of control (e.g., general population or OXC-tolerant control), different design, different HLA genotypes, and different type of OXC-cADRs.

Information regarding HLA genotypes was obtained from the Allele Frequency Net Database, a genetic database, and from studies reporting allele frequencies of the genes; this group was defined as a general population control. Whereas OXC-tolerant control was defined by information of HLA genotypes in the control group obtained from patients who received OXC without any history of cADRs.

Statistical heterogeneity was assessed via the Q-statistics and I-squared tests. P-values≤0.10 indicated heterogeneity between studies (19). I-squared values of 25%, 50%, 75% denote a low, moderate, and high degree of heterogeneity across studies (20). All statistical analyses were performed using the R program (version 3.4.0) (R foundation for statistical computing, 2017).
RESULTS

SEARCH STRATEGY AND SELECTION CRITERIA
Searching results are depicted in Figure 1. In brief, 91 articles were identified, which was whittled down to 6 studies that met our criteria (12-14, 21-23). These comprised 229 patients with OXC-cADRs, 251 OXC-tolerant patients, and 2,358 participants from general populations (12-14, 21-23). Five studies were case-controlled (12, 14, 21-23) which formed our systematic review and meta-analysis, and one was a prospective cohort (13) (Table 1).

STUDY CHARACTERISTICS AND QUALITY ASSESSMENT
Characteristics of the included studies are summarized in Table 1 and 2. Mean ages of included patients were 26.7 years in cases (12-14, 21-23) and 34.0 years (22) in controls; males made up 44.3% (58 of 131) of cases (12-14, 21-23) and 8.9% (11 of 123) of controls (22). Age and gender data were not reported where controls were from the general population. The mean dose of OXC was 315.4 mg/day (range 75-600 mg/day) (12-14, 22). The mean delay in appearance of OXC-cADRs after initiating treatment was 13.9 days (range 1-53 days) (12-14, 22). The included studies identified HLA genotypes using polymerase chain reaction (PCR) as a sequence-based typing technique (12, 23), PCR sequence specific oligonucleotide primers (21) and PCR sequence specific primers (13, 14, 22). No study reported sample-size calculations before recruiting patients, nor HWE information. A mean quality assessment using NOS for case control studies (12, 14, 21-23) which formed our systematic review and meta-analysis, and one was a prospective cohort (13) (Table 1).

SYSTEMATIC REVIEW AND META-ANALYSIS RESULTS
MHC class I and OXC-cADRs
HLA-A genotypes
The associations between HLA-A genotypes and OXC-cADRs of the included studies are summarized in Table 3. Two studies (21, 24) investigated associations between HLA-A genotypes (i.e., HLA-A*3101 and HLA-A*3201) and several types of OXC-cADRs (i.e., maculopapular rash, SJS, DRESS and BFDE). However, there was only sufficient data to assess the association between HLA-A*3101 and OXC-induced maculopapular rash that could be meta-analysed. Associations between HLA-A*3201 and OXC-induced maculopapular rash were determined by Moon et al (21) in general population control and OXC-tolerant groups. An association between HLA-A*3201 and OXC-induced maculopapular rash was found in general population controls (overall OR=8.46, 95%CI=1.37-52.2) (Table 3). Moon et al (21) and Chen et al (23) found 8 out of 53 HLA-A*3101 carriers in their cases general population controls, the numbers of and controls were 5 out of 579. We found an association between HLA-A*3101 and OXC-induced maculopapular rash in the general population controls (overall OR=29.2, 95%CI=6.70-128; I²=0.0%, p=0.45) (Figure 2). In OXC-tolerant controls, the number of HLA-A*3101 carriers in cases was 6 out of 35 and 15 out of 156 for controls. However, there was no statistically significant association between HLA-A*3101 and OXC-induced maculopapular rash in OXC-tolerant group (Figure 2).

HLA-B genotypes
The associations between HLA-B genotypes and OXC-cADRs of the included studies are summarized in Table 3. Among all of the included studies (12-14, 21-23), 42 different HLA-B genotypes and several types of OXC-cADRs are investigated. Associations between HLA-B*1501, HLA-B*1502, and HLA-B*1511 and OXC-cADRs could be included into our further meta-analyses. Associations between HLA-B*1502 and OXC-cADRs were identified. All included studies (12-14, 21-23) investigated associations between HLA-B*1502 and different types of OXC- types of OXC-cADRs. Two studies (14, 23) investigated associations between HLA-B*1502 and OXC-induced SJS in general population controls and OXC-tolerant group. In the general population groups, there were 4 HLA-B*1502 carriers out of 5 cases and 14 out of 137 for controls. The overall OR was 30.2 (95%CI=3.45-264; I²=0.0%, p=0.80) (Figure 3A and Table 3). In OXC-tolerant controls, there were 13 HLA-B*1502 carriers out of 19 cases and 8 out of 109 for controls. The overall OR was 26.4 (95%CI=7.98-87.6; I²=0.0%, p=0.64) (Figure 3A and Table 3).

All included studies (12-14, 21-23) investigated associations between HLA-B*1502 and OXC-induced maculopapular rash. However, only case control studies were meta-analysed. In the case control studies (12, 14, 21-23), the incidence of HLA-B*1502 carriers in cases, general population control, and OXC-tolerant groups were 6 out of 67, 51 out of 1,930, and 15 out of 216 respectively. In general population controls, the
overall OR was 5.67 (95%CI=2.03-15.9; \(I^2=0.0\%\), \(p=0.76\)) (Figure 3B and Table 3).

In addition, we combined numbers of OXC-induced maculopapular rash and OXC-induced SJS events in to further investigate their associations between \(HLA-B*1502\) and OXC-induced maculopapular rash and SJS. In general population controls only, \(HLA-B*1502\) was associated with OXC-induced maculopapular rash and SJS; overall OR was 7.15 (95%CI=2.64-19.4; \(I^2=0.0\%\), \(p=0.50\)) (Figure 3C and Table 3).

Only Moon et al (21) studied the \(HLA-B*4002\) genotype and OXC-induced maculopapular rash by comparing cases with either the general population \([\text{OR}=4.04 (95\%\text{CI}=1.83-8.90)]\) or with their OXC-tolerant group \([\text{OR}=4.33 (95\%\text{CI}=1.36-13.8)]\) (Table 3).

Figure 1 Summary of study identification, inclusion, and exclusion

Figure 2 Forest plot of the associations between \(HLA-A*3101\) and OXC-induced maculopapular rash
Figure 3 Forest plots of the associations between HLA-B*1502 and OXC-induced Stevens-Johnson syndrome (A), the associations between HLA-B*1502 and OXC-induced maculopapular rash (B), and, the associations between HLA-B*1502 and OXC-induced Stevens-Johnson syndrome and maculopapular rash (C).
MHC class II and OXC-cADRs

The associations between MHC class II and OXC-cADRs are summarized in Table 3. Associations between \textit{HLA-DQBI*0501}, \textit{HLA-DQBI*0503}, \textit{HLA-DRB1*0403}, \textit{HLA-DRB1*0406}, and \textit{HLA-DRB1*1405} and with OXC-induced maculopapular rash in a Korean population were determined by Moon et al (21). \textit{HLA-DRB1*0403} was associated with OXC-induced maculopapular rash by comparing cases with either the general population or the OXC-tolerant group as controls; OR$=3.11$ (95%CI=1.27-7.59) and 14.64 (95%CI=1.73-124), respectively (Table 3).

DISCUSSION

To our knowledge, this is the first systematic review and meta-analysis study to identify the associations between \textit{HLA} genotypes and OXC-cADRs. In our study, 49 different \textit{HLA} genotypes were identified as risks of OXC-cADRs but meta-analysis could be applied to only 4 of these (i.e., \textit{HLA-A*3101}, \textit{HLA-B*1501}, \textit{HLA-B*1502}, and \textit{HLA-B*1511}). Of these \textit{HLA-A*3101} and \textit{HLA-B*1502} were associated with OXC-cADRs (Figure 2-3). All of the other \textit{HLA} genotypes and OXC-cADRs are summarized in Table 3.

Notably, we found associations between \textit{HLA-B*1502} and OXC-induced SJS in both general population control and OXC-tolerant groups. The ORs were close to those of the general population and OXC-tolerant control [OR=30.2 (95%CI=3.45-264) and OR=26.4 (95%CI=7.98-87.6), respectively] (Figure 3A). Nonetheless, due to limited number of studies, more studies investigating associations between \textit{HLA-B*1502} and OXC-induced SJS/TEN are needed. In addition, \textit{HLA-B*1502} was associated with OXC-induced maculopapular rash in general population controls (OR$=5.67$, 95%CI=2.03-15.9) (Figure 3B). To further investigate the associations between \textit{HLA-B*1502} and OXC-induced maculopapular rash and SJS, we combined OXC-induced maculopapular rash groups with OXC-induced SJS groups. Then, \textit{HLA-B*1502} was associated with the OXC-induced maculopapular rash/SJS group, comparing the general population [OR$=7.15$ (95%CI=2.64-19.4)] (Figure 3C). Nonetheless, the association between \textit{HLA-A*3101} and OXC-induced maculopapular rash was observed in general population controls [OR$=29.2$ (95% CI=6.70-128)] (Figure 2).

Other OXC-induced pathologies such as TEN are not well studied and, to our knowledge, are confined to studies where SJS and TEN data were pooled (7, 11, 25). Thus, based on current findings and the previous studies, subjects harboring the allele might develop TEN when given OXC.

All of the included studies were from Han-Chinese, Thai and Korean populations (12-14, 21-23). Whether these associations with OXC-cADRs are more widespread need large-scale studies in more ethnically diverse populations.

We found two studies (21, 23) that found associations between \textit{HLA-A*3101} and OXC-induced cADRs while for CBZ-induced cADRs (i.e., maculopapular rash) other ethnicities including Caucasian and Japanese are susceptible (26-30). Furthermore, associations between \textit{HLA-A*3101} and CBZ-induced SJS/TEN were also reported in some studies (26, 30) which suggests that \textit{HLA-A*3101} could also induce OXC-cADRs. Thus in further studies that we suggest using wider ethnic groups, a wider range of MHC genes should be included.

Recently, 3D molecular coupling models of \textit{HLA} protein molecules and carbamazepine, oxcarbazepine and abacavir were developed (31, 32). These models shed an understanding of how \textit{HLA} molecules binds specifically to their ligands and potentially causes those adverse drug reactions (i.e. Steven-Johnson syndrome, toxic epidermal necrolysis, DRESS) (31). Despite the structural similarities of OXC and CBZ and their reported cross-reactivity, OXC does not share the \textit{HLA}-related risk factors with CBZ-induced SJS/TEN which are 30-40 folds more than for OXC in Han Chinese (24). In addition, some patients carrying \textit{HLA-B*1502} with a history of CBZ-induced SJS could tolerate OXC (23). To understand the biological basis of this, the mechanism of the cross reactivity needs further studies.

CONCLUSION

Strong associations between the \textit{HLA-B*1502} and OXC-cADRs (SJS and maculopapular rash) were found in both controls from cases using either control from either the general population or and OXC-tolerant groups. In general population controls, OXC-induced maculopapular rash was associated with \textit{HLA-A*3101}. These strong links were detected in Korean, Han-Chinese and Thai ethnicities. Therefore, a genetic screening in these ethnicities should precede an OXC treatment. For other populations, genetic screening of \textit{HLA-B*1502} prior to OXC therapy may be warranted. However, screening for a wider range of both MHC genotype and ethnicities should be undertaken.
REFERENCES

1. Kalis M, Huff N. Oxcarbazepine, an antiepileptic agent. Clin Ther. 2001 May;23(5):680-700.
2. McAuley J, Biederman T, Smith J, Moore J. Newer therapies in the treatment of epilepsy. Ann Pharmacother. 2002 Jan;36(1):119-29.
3. Yang C, Dao R, Lee T, Lu C, Yang C, Hung S, et al. Severe cutaneous adverse reactions to antiepileptic drugs in Asians. Neurology. 2011 Dec 6;77(23):2025-33.
4. Alvestad S, Lydersen S, Brodtkorb E. Cross-reactivity pattern of rash from current aromatic antiepileptic drugs in Asians. Neurology. 2011 Dec 6;77(23):2025-33.
5. Hirsch L, Arif H, Nahm E, Buchsbaum R, Resor SJ, Bazil C. Cross-sensitivity of skin rashes with antiepileptic drug use. Neurology. 2008 Nov 4;71(19):1527-34.
6. Wang X, Lang S, Shi X, Tian H, Wang R, Yang F. Cross-reactivity of skin rashes with current antiepileptic drugs in Chinese population. Seizure. 2010 Nov;19(9):562-6.
7. Tangamornsuksan W, Chaiyakunapruk N, Somkrua R, Lohitnavy M, Tassaneeyakul W. Relationship Between the HLA-B*1502 Allele and Carbamazepine-Induced Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis: A Systematic Review and Meta-analysis. JAMA Dermatol 2013 Sep 1;149(9):1025-32.
8. Li X, Yu K, Mei S, Huo J, Wang J, Zhu Y, et al. HLA-B*1502 increases the risk of phenytoin or lamotrigine induced Stevens-Johnson Syndrome/toxic epidermal necrolysis: evidence from a meta-analysis of nine case-control studies. Drug Res (Stuttg). 2015 Feb;65(2):107-11.
9. Chung W, Hung S, Chen Y. Human leukocyte antigens and drug hypersensitivity. Current Opinion in Allergy & Clinical Immunology. 2007;7(4):317-23.
10. Bhardwaj M, Illing P, Kostenko L. Personalized medicine for HLA-associated drug-hypersensitivity reactions. Personalized Medicine. 2010;7(5):495-516.
11. Hung S, Chung WH, Liu ZS, Chen CH, Hsiao MS, Hui RC, et al. Common risk allele in aromatic antiepileptic-drug induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Han Chinese. Pharmacogenomics. 2010 Mar;11(3):349-56.
12. Hu F, Wu X, An D, Yan B, Stefan H, Zhou D. Pilot association study of oxcarbazepine-induced mild cutaneous adverse reactions with HLA-B*1502 allele in Chinese Han population. Seizure. 2011 Mar;20(2):160-2.
13. He N, Min FL, Shi YW, Guo J, Liu XR, Li BM, et al. Cutaneous reactions induced by oxcarbazepine in Southern Han Chinese: Incidence, features, risk factors and relation to HLA-B alleles. Seizure. 2012 Oct;21(8):614-8.
14. Sun D, Yu CH, Liu ZS, He XL, Hu JS, Wu GF, et al. Association of HLA-B*1502 and *1511 allele with antiepileptic drug-induced Stevens-Johnson syndrome in central China. J Huazhong Univ Sci Technolog Med Sci. 2014 Feb;34(1):146-50.
15. Smits K, Schouten J, Smits L, Stelma F, Nelemans P, Prins M. A review on the design and reporting of studies on drug-gene interaction. J Clin Epidemiol. 2005;58(7):651-4.
16. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attila J. A method formeta-analysis of molecular association studies. Stat Med. 2005;24(9):1291-306.
17. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. 2011; Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
18. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177-88.
19. Higgins J, Thompson S. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539-58.
20. Higgins J, Thompson S, Deeks J, Altman D. Measuring inconsistency in meta-analyses. BMJ. 2003 Sep 6;327(7414):557-60.
21. Moon J, Kim TJ, Lim JA, Sunwoo JS, Byun JJ, Lee ST, et al. HLA-B*40:02 and DRB1*04:03 are risk factors for oxcarbazepine-induced maculopapular eruption. Epilepsia. 2016 Nov;57(11):1879-86.
22. Ly V, Min FL, Liao WP, He N, Zeng T, Ma DH, et al. The association between oxcarbazepine-induced maculopapular eruption and HLA-B alleles in a northern Han Chinese population. BMC Neurol. 2013 Jul 8;13:75.
23. Chen C, Hsiao YH, Wu T, Hsh MS, Tassaneeyakul W, Jorns TP, et al. Risk and association of HLA with oxcarbazepine-induced cutaneous adverse reactions in Asians. Neurology. 2017 Jan 3;88(1):78-86.
24. Chen YC, Chu CY, Hsiao CH. Oxcarbazepine-induced Stevens-Johnson syndrome in a patient with HLA-B*1502 genotype. J Eur Acad Dermatol Venereol. 2009 Jun;23(6):702-3.
25. Nguyen D, Chu HC, Nguyen DV, Phan MH, Craig T, Baumgart K, et al. HLA-B*1502 and carbamazepine-induced severe cutaneous adverse drug reactions in Vietnamese. Asia Pac Allergy. 2015 Apr;5(2):68-77.
26. Genin E, Chen DP, Hung SI, Sekula P, Schumacher M, Chang PY, et al. HLA-A*31:01 and different types of carbamazepine-induced severe cutaneous adverse reactions: an international study and meta-analysis. Pharmacogenomics. 2014 Jun;14(3):281-8.
27. Ozeki T, Mushiroda T, Yowang A, Takahashi A, Kubo M, Shirakata Y, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced
cutaneous adverse drug reactions in Japanese population. Hum Mol Genet. 2011 Mar 1;20(5):1034-41.

28. Hung S, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics. 2006 Apr;16(4):297-306.

29. Amstutz U, Ross CJ, Castro-Pastrana LI, Rieder MJ, Shear NH, Hayden MR, et al. HLA-A 31:01 and HLA-B 15:02 as genetic markers for carbamazepine hypersensitivity in children. Clin Pharmacol Ther. 2013 Jul;94(1):142-9.

30. McCormack M, Alfirevic A, Bourgeois S, Farrell JJ, Kasperavičiūtė D, Carrington M, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med. 2011 Mar 24;364(12):1134-43.

31. Teh LK, Selvaraj M, Bannur Z, Ismail MI, Rafia H, Law WC, et al. Coupling Genotyping and Computational Modeling in Prediction of Anti-epileptic Drugs that cause Stevens Johnson Syndrome and Toxic Epidermal Necrolysis for Carrier of HLA-B*15:02. J Pharm Pharm Sci. 2016;19(1):147-60.

32. Illing P, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012 Jun 28;486(7404):554-8.
Table 1. Summary of studies investigating the association between HLA genotypes and OXC-cADRs

Author (Year)	Country	Ethnicity	Study design	cADRs	Case (N)	Control (N)	MHC class I genotypes	MHC class II genotypes		
Hu et al, 2011 (12)	Sichuan, China	Han Chinese	Case control	MP rash	9	OXC-tolerant: 9 General population: 72	ND	HLA-B*1302		
He et al, 2012 (13)	Guangzhou, China	Han Chinese	Prospective cohort	MP rash	14	OXC-tolerant: 35 General population: 264 (southern Han Chinese population), 569 (Hong Kong Chinese population), 106 (Guangzhou Han Chinese population)	ND	ND		
Lv et al, 2014 (22)	Jilin, China	Han Chinese	Case control	MP rash	14	OXC-tolerant: 28 General population: 618 (Beijing Shijiazhuang Tianjin Han population), 105 (North Han Chinese population)	ND	ND		
Sun et al, 2014 (14)	Wuhan, China	Han Chinese	Case control	MP rash	1	OXC-tolerant: 8	ND	HLA-B*1502	ND	ND
----------------------	--------------	-------------	--------------	---------	---	----------------	----	------------	----	-----
				SJS	2	General population: 38				
Moon et al, 2016 (21)	Korea	Korean	Case control	MP rash	40	OXC-tolerant: 70	HLA-A*3101	HLA-B*1501	ND	HLA-DQBI*0501
							HLA-A*3201	HLA-B*1502		HLA-DRBI*0503
							HLA-B*1511	HLA-B*4002		HLA-DRBI*0403
							HLA-DQBI*0503	HLA-DRBI*0406		HLA-DRBI*1405
Chen et al, 2017 (23)	Taiwan	Han Chinese	Case control	MP rash	21	General population: 101	HLA-A*3101	HLA-B*1502	ND	ND
	Thailand	Thai		SJS	17					
				DRESS	6					
				BFDE	101					
				MP rash	1	OXC-tolerant: 99	HLA-A*3101	HLA-B*1502	ND	ND
Table 2 Summary of cutaneous adverse drug reactions (cADRs) definition and diagnostic criteria of the selected studies

Author (Year)	Country	Ethnicity	Type of cADRs	Definition of cADRs	Diagnostic criteria	cADRs evaluation	Assessing attribution of cADRs to OXC	NOS	
Hu et al, 2011 (12)	Sichuan, China	Han Chinese	MP rash	MP rash was characterized by cutaneous itchy and erythematous macules and papules.	Subjects who had MP rash after administration of antiepileptic drugs, and spontaneously resolved within 1-2 weeks after withdrawing the causative drugs	General population: Healthy control	OXC-tolerant: Subjects who had administered OXC more than 3 months without any cADRs	NA	6
He et al, 2012 (13)	Guangzhou, China	Han Chinese	MP rash	MP rash was characterized by erythematous exanthema without blistering or postulation.	Subjects who had initial symptoms of cADRs within the first 8 weeks of OXC administration	General population: Using the HLA-B allele frequency reported in the Allele Frequency Net Database and Trachtenberg et al., 2007	OXC-tolerant: Subjects who had administered OXC more than 3 months without any cADRs	Dermatologist and dermatologist	9
Lv et al, 2014 (22)	Jilin, China	Han Chinese	MP rash	MP rash was defined as erythematous exanthema without blistering or postulation.	NA	General population: Using the HLA-B allele frequency reported in the Allele Frequency Net Database.	OXC-tolerant: Subjects who had administered OXC more than 3 months without any cADRs	NA	6
Sun et al, 2014 (14)	Wuhan, China	Han Chinese	MP rash	NA	Subjects who had cADRs within the first 8 weeks of exposure with improvement after drug withdrawal	General population: Healthy Han Chinese children	OXC-tolerant: Subjects who had been on OXC for more than 2 months and no cADRs	NA	6
Moon et al, 2016 (21)	Korea	Korean	MP rash	NA	Patients who experienced OXC-induced MP rash	General population: Using the HLA-B allele frequency reported Lee et al, 2005	NA	NA	5
Table 2.	Continued..				OXC-tolerant: Patients who tolerant of OXC				
---	---	---	---	---					
	Taiwan	Han Chinese	MP rash	MP rash was defined as self-limited diffuse erythematous macules and papules without systemic involvement.					
	Thailand	Thai	SJS	SJS was characterized by a rapidly developing blistering exanthema of purpuric macules and target-like lesions accompanied by mucosal involvement and skin detachment less than 10% body surface area skin detachment.					
Chen et al, 2017 (23)			cADRs were determined by the ALDEN algorithm of drug causality assessment and the Naranjo algorithm. Only patients with probable or definite cause of OXC (ALDEN score ≥4 or Naranjo algorithm ≥ 5) were recruited.						
	Thailand	Thai	DRESS	DRESS was characterized by using the criteria and scoring system of the RegiSCAR group include cutaneous involvement with typical skin eruptions (e.g., exfoliative dermatitis, generalized maculopapular exanthema), fever, atypical lymphocytosis, eosinophilia, lymphadenopathy, systemic involvement (e.g., liver, kidney, and lung), time of resolution, and the evaluation of other potential causes.					
			At least 2 dermatologists	NA	6				
		BFDE	BFDE was characterized by recurrent with dusky						
Table 2. Continued..

| | | | red or heavy pigmented eruptions with blisters mostly on the same sites with re-exposure to the causative agents. |

Abbreviations: ALDEN = Algorithm of drug causality for epidermal necrolysis; BFDE = bullous fixed drug eruption; cADRs = cutaneous adverse drug reactions; DRESS = drug rash with eosinophilia and systemic symptoms; HLA = human leukocyte antigen; MP rash = maculopapular rash; NA = Not applicable; NOS = The Newcastle-Ottawa scale; NR = Not report; OXC = oxcarbazepine; SJS = Stevens-Johnson syndrome.

Table 3. Summary odds ratios of the included studies categorized by HLA genotypes and OXC-cADRs

HLA genotypes	cADRs	Author Year Race (Country)	Study design	Case (HLA positive)	Control (HLA positive)	OR (95%CI)					
MHC class I HLA-A genotypes				HLA positive	HLA negative	HLA positive	HLA negative				
		MP rash									
		General population control									
		Moon et al (21) 2016 Korean (Korea)	Case control	6	34	2	483	38.4 (7.46-198)			
		Chen et al (23) 2017 Thai (Thailand)	Case control	0	1	3	96	9.20 (0.31-268)			
		Subtotal ($I^2 = 0.0\%, \ P = 0.45$)					29.2 (6.70-128)\dagger				
		OXC-tolerant									
		Moon et al (21) 2016 Korean (Korea)	Case control	6	34	12	58	0.90 (0.29-2.50)			
		Chen et al (23) 2017 Han Chinese (Taiwan)	Case control	2	19	3	98	3.44 (0.54-22.0)			
		Subtotal ($I^2 = 39\%, \ P = 0.20$)					1.38 (0.38-5.11)				
		SJS									
		General population control									
		Chen et al (23) 2017 Thai (Thailand)	Case control	0	3	3	96	3.94 (0.17-91.9)			
		OXC-tolerant									
		Chen et al (23) 2017 Han Chinese (Taiwan)	Case control	1	16	3	98	2.04 (0.20-20.9)			
		DRESS OXC-tolerant									
		Chen et al (23) 2017 Han Chinese (Taiwan)	Case control	0	6	3	98	2.16 (0.10-46.5)			
		BFDE OXC-tolerant									
		Chen et al (23) 2017 Han Chinese (Taiwan)	Case control	0	2	3	98	5.63 (0.23-141)			
HLA-A*3201	MP rash	General population control	Moon et al (21)	2016	Korean (Korea)	Case control	2	38	3	482	8.46 (1.37-52.2)a
MP rash	OXC-tolerant	Moon et al (21)	2016	Korean (Korea)	Case control	2	38	1	69	3.63 (0.32-41.4)	
HLA-B genotypes											
HLA-B*0705	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*1301	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	1	27	2.08 (0.12-35.9)
HLA-B*1302	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	3	11	3	32	2.91 (0.51-16.6)
HLA-B*1315	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*1501	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	2	26	1.00 (0.08-12.1)
Moon et al (21)	2016	Korean (Korea)	Case control	2	38	16	54		0.18 (0.04-0.82)		
Subtotal (I²= 27%, P = 0.24)										0.32 (0.06-1.58)	
HLA-B*1502	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	3	32	0.82 (0.08-8.63)
General population control			Hu et al (12)	2011	Han Chinese (China)	Case control	4	5	6	66	8.80 (1.85-41.8)
Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	29	1207	2.09 (0.08-52.6)			
Sun et al (14)	2014	Han Chinese (China)	Case control	0	3	2	36	3.20 (0.41-25.3)			
Moon et al (21)	2016	Korean (Korea)	Case control	0	40	2	483	2.30 (0.11-50.6)			
Chen et al (23)	2017	Thai (Thailand)	Case control	1	0	12	87	21.0 (0.18-544)			
Subtotal (I²= 0.0%, P = 0.76)										5.67 (2.03-15.9)a	
OXC-tolerant			Hu et al (12)	2011	Han Chinese (China)	Case control	4	5	1	8	6.40 (0.55-74.9)
Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	5	23	0.35 (0.04-3.36)			
Sun et al (14)	2014	Han Chinese (China)	Case control	0	3	0	8	(Excluded)			
Moon et al (21)	2016	Korean (Korea)	Case control	0	40	1	69	0.57 (0.02-14.4)			
Chen et al (23)	2017	Han Chinese (Taiwan)	Case control	1	20	8	93	0.58 (0.07-9.91)			
Subtotal (I²= 10%, P = 0.03)										0.91 (0.25-3.29)	
Study	Year	Population	Design	Cases	Controls	RR (95% CI)					
------------------	------	------------	-----------------	-------	----------	-------------					
SJS											
OXC-tolerant											
He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	2.37 (0.11-15.2)					
Sun et al (14)	2014	Han Chinese (China)	Case control	1	2	36.0 (0.90-406)					
Chen et al (23)	2017	Thai (Thailand)	Case control	3	0	87.0 (2.39-1006)					
General population control											
Sun et al (14)	2014	Han Chinese (China)	Case control	1	0	8.0 (0.45-648)					
Chen et al (23)	2017	Han Chinese (Taiwan)	Case control	12	5	93.0 (7.84-99.2)					
Subtotal						30.2 (3.42-264)					
OXC-tolerant											
Sun et al (14)	2014	Han Chinese (China)	Case control	1	0	8.0 (0.45-648)					
Chen et al (23)	2017	Han Chinese (Taiwan)	Case control	12	5	93.0 (7.84-99.2)					
Subtotal						26.4 (7.98-87.6)					
MP rash+SJS											
OXC-tolerant											
Hu et al (12)	2011	Han Chinese (China)	Case control	4	5	66.0 (1.85-41.8)					
Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	29.0 (0.41-25.3)					
Sun et al (14)	2014	Han Chinese (China)	Case control	1	3	2.0 (0.41-87.0)					
Moon et al (21)	2016	Korean (Korea)	Case control	0	40	483.0 (0.11-50.6)					
Chen et al (23)	2017	Thai (Thailand)	Case control	4	0	87.0 (3.20-1242)					
Subtotal						7.15 (2.64-19.4)					
DRESS											
OXC-tolerant											
Hu et al (12)	2011	Han Chinese (China)	Case control	4	5	1.0 (0.55-74.9)					
Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	5.0 (0.04-3.36)					
Sun et al (14)	2014	Han Chinese (China)	Case control	1	0	8.0 (0.19-170)					
Moon et al (21)	2016	Korean (Korea)	Case control	0	40	69.0 (0.02-14.4)					
Chen et al (23)	2017	Han Chinese (Taiwan)	Case control	13	25	93.0 (3.20-1242)					
Subtotal						2.58 (0.71-9.44)					
BFDE											
OXC-tolerant											
Chen et al (23)	2017	Han Chinese (Taiwan)	Case control	0	2	93.0 (0.04-16.3)					
HLA-B*1511											
MP rash											
Moon et al (21)	2016	Korean (Korea)	Case control	1	39	466.0 (0.11-6.97)					
OXC-tolerant											
Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	2.0 (0.02-8.14)					
Moon et al (21)	2016	Korean (Korea)	Case control	1	39	69.0 (0.11-29.1)					
Subtotal						0.87 (0.11-6.97)					
HLA-B*1513											
MP rash											
Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	27.0 (0.02-16.5)					
HLA-B*1519											
MP rash											
He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	35.0 (0.30-206)					
HLA-B*1527											
MP rash											
OXC-tolerant											
Table 3. Continued…	Study	Population	Design	n	Cases	Controls	OR				
------------------------	-------	------------	--------	----	-------	----------	------				
HLA-B*1542	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	0	28	6.33 (0.24-166)
HLA-B*1558	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	0	28	6.33 (0.24-166)
HLA-B*2704	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	2	12	0	35	14.2 (0.64-316)
HLA-B*2705	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*2709	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	0	35	7.89 (0.30-206)
HLA-B*3508	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	2	26	0.37 (0.02-8.14)
HLA-B*3531	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*3710	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*3801	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*3802	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*3901	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*3905	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	0	35	7.89 (0.30-206)
HLA-B*4001	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	3	11	10	25	0.68 (0.16-2.97)
HLA-B*4002	MP rash	General population control	Moon et al (21)	2016	Korean (Korea)	Case control	10	30	37	448	4.04 (1.83-8.90)*
HLA-B*4006	MP rash	OXC-tolerant	Moon et al (21)	2016	Korean (Korea)	Case control	10	30	5	65	4.33 (1.36-13.8)*
HLA-B*4402	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
HLA-B*4402	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	0	28	6.33 (0.24-166)
HLA-B*	MP rash	OXC-tolerant	Study	Year	Population	Design	Case	Control	Odds Ratio (95% CI)		
--------	---------	-------------	-------	------	------------	--------	------	---------	-------------------		
B*4403	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	2	12	4	24	1.00 (0.16-6.25)
B*4601	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	3	11	11	24	0.60 (0.14-2.6)
	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	3	25	0.64 (0.06-6.79)
B*4701	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
B*4801	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	4	24	0.19 (0.01-3.74)
B*4804	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	0	35	7.89 (0.30-206)
	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	24	0.56 (0.02-14.8)
B*4901	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	0	35	7.89 (0.30-206)
B*5101	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	3	32	0.82 (0.08-8.63)
	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	1	27	2.08 (0.12-35.9)
B*5102	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
B*5201	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	0	28	6.33 (0.24-166)
B*5301	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	0	28	6.33 (0.24-166)
B*5401	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	0	35	7.89 (0.30-206)
B*5501	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
B*5502	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	1	27	2.08 (0.12-35.9)
B*5601	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	1	13	0	28	6.33 (0.24-166)
B*5604	MP rash	OXC-tolerant	He et al (13)	2012	Han Chinese (China)	Prospective cohort	1	13	0	35	7.89 (0.30-206)
	MP rash	OXC-tolerant	Lv et al (22)	2014	Han Chinese (China)	Case control	0	14	1	27	0.63 (0.02-16.5)
Table 3. Continued...

MHC class II	MP rash	General population control	Han Chinese (China)	Case control	0	14	3	25	0.25 (0.01-5.21)	
HLA-DQBI*0501	MP rash	General population control	Moon et al (21)	Korean (Korea)	Case control	1	39	3	482	4.12 (0.42-40.54)
	OXC-tolerant	Moon et al (21)	Korean (Korea)	Case control	1	39	7	63	0.23 (0.03-1.95)	
HLA-DQBI*0503	MP rash	General population control	Moon et al (21)	Korean (Korea)	Case control	3	37	46	439	0.77 (0.23-2.61)
	OXC-tolerant	Moon et al (21)	Korean (Korea)	Case control	3	37	14	56	0.31 (0.09-1.21)	
HLA-DRBI*0403	MP rash	General population control	Moon et al (21)	Korean (Korea)	Case control	7	33	31	454	3.11 (1.27-7.59)
	OXC-tolerant	Moon et al (21)	Korean (Korea)	Case control	7	33	1	69	14.64 (1.73-124)	
HLA-DRBI*0406	MP rash	General population control	Moon et al (21)	Korean (Korea)	Case control	2	38	39	446	0.60 (0.14-2.59)
	OXC-tolerant	Moon et al (21)	Korean (Korea)	Case control	2	38	11	59	0.28 (0.06-1.34)	
HLA-DRBI*1405	MP rash	General population control	Moon et al (21)	Korean (Korea)	Case control	3	37	22	463	1.71 (0.49-5.97)
	OXC-tolerant	Moon et al (21)	Korean (Korea)	Case control	3	37	11	59	0.43 (0.11-1.66)	

Abbreviations: cADRs = cutaneous adverse drug reactions; BFDE = bullous fixed drug eruption; DRESS = drug rash with eosinophilia and systemic symptoms; HLA = human leukocyte antigen; MHC = major histocompatibility complex; MP rash = maculopapular rash; OR = odds ratio; OXC = oxcarbazepine; SJS = Stevens–Johnson syndrome

Footnote: *Association with a statistical significance