ON THE LOCAL LANGLAND CORRESPONDENCE
AND ARTHUR CONJECTURE
FOR EVEN ORTHOGONAL GROUPS

HIRAKU ATOBE AND WEE TECK GAN

Abstract. In this paper, we highlight and state precisely the local Langlands correspondence for quasi-split
$O_{2n}$ established by Arthur. We give two applications: Prasad’s conjecture and Gross–Prasad conjecture for
$O_n$. Also, we discuss the Arthur conjecture for $O_{2n}$, and establish the Arthur multiplicity formula for $O_{2n}$.

Contents
1. Introduction 1
2. Quasi-split orthogonal groups 3
3. Local Langlands correspondence for $SO(V_{2n})$ and $O(V_{2n})$ 7
4. Prasad’s conjecture 18
5. Gross–Prasad conjecture 23
6. Arthur’s multiplicity formula for $SO(V_{2n})$ 32
7. Arthur’s multiplicity formula for $O(V_{2n})$ 41
References 47

1. Introduction

In his long-awaited book [Ar], Arthur obtained a classification of irreducible representations of quasi-split
symplectic and special orthogonal groups over local fields of characteristic 0 (the local Langlands correspondence LLC) as well as a description of the automorphic discrete spectrum of these groups over number fields (the Arthur conjecture). He proved these results by establishing the twisted endoscopic transfer of automorphic representations from these classical groups to $GL_N$ by exploiting the stabilization of the twisted trace formula of $GL_N$ (which has now been completed by Waldspurger and Mœglin). However, for the quasi-split special even orthogonal groups $SO_{2n}$, the result is not as definitive as one hopes. More precisely, for a $p$-adic field $F$, Arthur only gave a classification of the irreducible representations of $SO_{2n}(F)$ up to conjugacy by $O_{2n}(F)$, instead of by $SO_{2n}(F)$. Likewise, over a number field $F$, he does not distinguish between a square-integrable automorphic representation $\pi$ and its twist by the outer automorphism corresponding to an element of $O_{2n}(F) \setminus SO_{2n}(F)$.

The reason for this less-than-optimal result for $SO_{2n}$ is that, for the purpose of the twisted endoscopic transfer, it is more natural to work with the orthogonal groups $O_{2n}$ instead of $SO_{2n}$. In fact, Arthur has obtained in [Ar] Theorems 2.2.1, 2.2.4] a full classification of the irreducible representations of $O_{2n}(F)$. It is from this that he deduced the weak LLC for $SO_{2n}(F)$ alluded to above. Indeed, the weak LLC for $SO_{2n}(F)$ is equivalent to the classification of irreducible representations of $O_{2n}(F)$ modulo twisting by the determinant character det.

Unfortunately, this rather complete result for $O_{2n}(F)$ was not highlighted in [Ar]. One possible reason is that $O_{2n}$ is a disconnected linear algebraic group and so does not fit in the framework of the classical Langlands program; for example, one does not have a systematic definition of the $L$-group of a disconnected reductive group and so one does not have the notion of Langlands parameters. In choosing to stick to the context of the Langlands program, Arthur has highlighted the results for $SO_{2n}$ instead. However, it has been
observed that a suitable $L$-group for $O_{2n}$ is the group $O_{2n}(\mathbb{C})$ and an $L$-parameter for $O_{2n}(F)$ should be an orthogonal representation of the Weil–Deligne group $WD_F$. A precise statement to this effect seems to be first formulated in the paper [P2] of D. Prasad.

The main goal of this paper is to highlight and state precisely the local Langlands correspondence for quasi-split $O_{2n}(F)$ established by Arthur in [Ar] using this notion of $L$-parameters, and to establish various desiderata of this LLC. We also formulate the natural extension of the LLC to the pure inner forms (using Vogan $L$-packets [V]). The statements can be found in Desiderata 3.6 and 3.9. We especially note the key role played by the local intertwining relation in Hypothesis 3.10. This local intertwining relation was established in [Ar] for quasi-split groups but is conjectural for pure inner forms.

Our main motivation for formulating a precise LLC for $O_{2n}$ is that the representations of $O_{2n}(F)$ arise naturally in various context, such as in the theory of theta correspondence. If one wants to describe the local theta correspondence for the dual pair $O_{2n}(F) \times \text{Sp}_{2n}(F)$, one would need a classification of irreducible representations of $O_{2n}(F)$. Thus, this paper lays the groundwork needed for our paper [AG] in which we determine the local theta lifting of tempered representations in terms of the local Langlands correspondence.

Having described the LLC for $O_{2n}$, we give two applications:

- (Prasad’s conjecture) We complete the results in the first author’s PhD thesis [At1], in which the local theta correspondences for the almost equal rank dual pairs $O_{2n}(F) \times \text{Sp}_{2n}(F)$ and $O_{2n}(F) \times \text{Sp}_{2n-2}(F)$ were determined in terms of the weak LLC for $O_{2n}(F)$. In particular, we describe these theta correspondences completely in terms of the LLC for $O_{2n}(F)$, thus completing the proof of Prasad’s conjecture (Conjectures 4.4 and 4.8). The result is contained in Theorem 4.6.

- (Gross–Prasad conjecture for $O_n$) In [At1], these theta correspondences were used to prove the Fourier–Jacobi case of the local Gross–Prasad (GP) conjecture for symplectic-metaplectic groups, by relating the Fourier–Jacobi case with the Bessel case of (GP) for $SO_n$ (which has been established by Waldspurger). For this purpose, the weaker version of Prasad’s conjecture (based on the weak LLC for $O_{2n}$) is sufficient. Now that we have the full Prasad’s conjecture, we use the Fourier–Jacobi case of (GP) to prove a version of (GP) for $O_n$. In other words, we shall extend and establish the Gross-Prasad conjecture to the context of orthogonal groups (Conjecture 5.3). The result is contained in Theorem 5.7.

These results are related in a complicated manner. The following diagram is a summary of the situation:
precisely formulated. In particular, we describe the automorphic discrete spectrum of $O_{2n}$ for symplectic-orthogonal dual pairs. This should lay the groundwork for a more precise study of the global theta correspondence

Notations. Let $F$ be a non-archimedean local field with characteristic zero, $\mathfrak{o}$ be the ring of integers of $F$, $\varpi$ be a uniformizer, $q$ be the number of elements in the residue class field $\mathfrak{o}/\varpi\mathfrak{o}$ and $|\cdot|_F$ be the normalized absolute value on $F$ so that $|\varpi|_F = q^{-1}$. We denote by $W_F$ and $WD_F = W_F \times \text{SL}_2(\mathbb{C})$ the Weil–Deligne groups of $F$, respectively. Fix a non-trivial additive character $\psi$ of $F$. For $c \in F^\times$, we define an additive character $\psi_c$ or $c\psi$ of $F$ by

$$
\psi_c(x) = c\psi(x) = \psi(cx).
$$

We set $\chi_c = (\cdot, c)$ to be the quadratic Hilbert symbol of $F$. For a totally disconnected locally compact group $G$, we denote the set of equivalence classes of irreducible smooth representations of $G$ by $\text{Irr}(G)$. If $G$ is the group of $F$-points of a linear algebraic group over $F$, we denote by $\text{Irr}_{\text{temp}}(G)$ (resp. $\text{Irr}_{\text{disc}}(G)$) the subset of $\text{Irr}(G)$ of classes of irreducible tempered representations (resp. irreducible discrete series representations). For a topological group $H$, we define the component group of $H$ by $\pi_0(H) = H/H^\circ$, where $H^\circ$ is the identity component of $H$. The Pontryagin dual (i.e., the character group) of a finite abelian group $A$ is denoted by $A^\vee$ or $\hat{A}$.

2. Quasi-split orthogonal groups

In this section, we summarize facts about quasi-split orthogonal groups and their representations.
2.1. Orthogonal spaces. Let $V = V_{2n}$ be a vector space of dimension $2n$ over $F$ and

$$
\langle \cdot, \cdot \rangle_V : V \times V \to F
$$

be a non-degenerate symmetric bilinear form. We take a basis $\{e_1, \ldots, e_{2n}\}$ of $V$, and define the discriminant of $V$ by

$$
disc(V) = (-1)^n \det((\langle e_i, e_j \rangle_V)_{i,j}) \mod F^{\times 2} \in F^{\times}/F^{\times 2}.
$$

Let $\chi_V = \langle \cdot, \text{disc}(V) \rangle$ be the character of $F^{\times}$ associated with $F(\sqrt{\text{disc}(V)})$. We call $\chi_V$ the discriminant character of $V$. The orthogonal group $O(V)$ associated to $V$ is defined by

$$
O(V) = \{g \in \text{GL}(V) \mid \langle gv, gv' \rangle_V = \langle v, v' \rangle_V \text{ for any } v, v' \in V\}.
$$

Fix $c, d \in F^{\times}$. Let

$$
V_{(d,c)} = F[X]/(X^2 - d)
$$

be a 2-dimensional vector space equipped with a bilinear form

$$
(\alpha, \beta) \mapsto (\alpha, \beta)_{V_{(d,c)}} := c \cdot \text{tr}(\alpha \beta),
$$

where $\beta \mapsto \overline{\beta}$ is the involution on $F[X]/(X^2 - d)$ induced by $a + bX \mapsto a - bX$. This involution is regarded as an element $\epsilon \in O(V_{(d,c)})$. The images of $1, X \in F[X]$ in $V_{(d,c)}$ are denoted by $e, e'$, respectively.

For $n > 1$, we say that $V_{2n}$ is associated to $(d, c)$ if

$$
V_{2n} \cong V_{(d,c)} \oplus \mathbb{H}^{n-1}
$$

as orthogonal spaces, where $\mathbb{H}$ is the hyperbolic plane, i.e., $\mathbb{H} = Fv_1 + Fv_2^*$ with $\langle v_1, v_1 \rangle = \langle v_2^*, v_2^* \rangle = 0$ and $\langle v_1, v_2^* \rangle = 1$. Note that $\text{disc}(V_{2n}) = d \mod F^{\times 2}$. The orthogonal group $O(V_{2n})$ is quasi-split, and any quasi-split orthogonal group can be obtained in this way. Note that $V_{2n} = V_{(d,c)} \oplus \mathbb{H}^{n-1} \cong V_{2n}' = V_{(d',c')} \oplus \mathbb{H}^{n-1}$ as orthogonal spaces if and only if $d \equiv d' \mod F^{\times 2}$ so that $E := F(\sqrt{d}) = F(\sqrt{d'})$ and $c \equiv c' \mod N_{E/F}(E^{\times})$.

2.2. Generic representations. Suppose that $n > 1$ in this subsection. Let $V = V_{2n}$ be an orthogonal space associated to $(d, c)$. We set

$$
X_k = Fv_1 \oplus \cdots \oplus Fv_k \quad \text{and} \quad X^*_k = Fv_1^* \oplus \cdots \oplus Fv_k^*
$$

for $1 \leq k \leq n-1$. We denote by $B_0 = TU_0$ the $F$-rational Borel subgroup of $\text{SO}(V_{2n})$ stabilizing the complete flag

$$
0 = \langle v_1 \rangle \subset \langle v_1, v_2 \rangle \subset \cdots \subset \langle v_1, \ldots, v_{n-1} \rangle = X_{n-1},
$$

where $T$ is the $F$-rational torus stabilizing the lines $Fv_i$ for $i = 1, \ldots, n-1$. We identify $O(V_{(d,c)})$ as a subgroup of $O(V_{2n})$ which fixes $\mathbb{H}^{n-1}$. Via the canonical embedding $O(V_{(d,c)}) \hookrightarrow O(V_{2n})$, we regard $\epsilon$ as an element in $O(V_{2n})$. Note that $\epsilon$ depends on $(d, c)$. We define a generic character $\mu_{\epsilon} \subset U_0$ by

$$
\mu_{\epsilon}(u) = \varphi(\langle uv_2, v_1^* \rangle_V + \cdots + \langle uv_n, v_{n-2}^* \rangle_V + \langle ue, v_n^* \rangle_V). \quad \text{Note that } \epsilon \text{ normalizes } U_0 \text{ and fixes } \mu_{\epsilon}.
$$

Put $E = F(\sqrt{d})$. If $\epsilon' \in cN_E/F(E^{\times})$, then we have an isomorphism $V_{2n} = V_{(d,c)} \oplus \mathbb{H}^{n-1} \to V_{2n}' = V_{(d',c')} \oplus \mathbb{H}^{n-1}$, and so that we obtain an isomorphism

$$
f : O(V_{2n}) \to O(V_{2n}').
$$

Moreover, we can take an isomorphism $f : O(V_{2n}) \to O(V_{2n}')$ such that $f(B_0) = B_0'$, $f(T) = T'$ and $f(O(V_{(d,c)})) = O(V_{(d',c')})$, where $B_0' = T'U_0'$ and $T'$ are the Borel subgroup and maximal torus of $\text{SO}(V_{2n}')$, respectively, defined as above. Let $\mathcal{F}$ be the set of such isomorphisms. Then the group $T' \rtimes \langle \epsilon' \rangle \cong O(V_{(d',c')}) \times (F^{\times})^{n-1}$ acts on $\mathcal{F}$ by

$$
(t' \cdot f)(g) = t' \cdot f(g)^{t'^{-1}}
$$

for $t' \in T' \rtimes \langle \epsilon' \rangle$ and $g \in O(V_{2n})$. Here, $\epsilon' \in O(V_{(d',c')})$ is an analogue to $\epsilon \in O(V_{(d,c)})$. Since $n > 1$, this action of $T' \rtimes \langle \epsilon' \rangle$ is transitive.

Choosing $f \in \mathcal{F}$, we regard $\mu_{\epsilon'}$ as a generic character of $U_0$ by

$$
U_0 \xrightarrow{f} U_0' \xrightarrow{\mu'_{\epsilon'}} C^{\times}.
$$

Note that the $T$-orbit of $\mu_{\epsilon'}$ is independent of the choice of $f$ since $\epsilon'$ fixes $\mu_{\epsilon'}$. 
We consider a 4-tuple \((V, B_0, T, \mu)\), where
- \(V = V_{2n}\) is an orthogonal space associated to some \((d, c)\);
- \(B_0\) is an \(F\)-rational Borel subgroup of \(\text{SO}(V)\);
- \(T\) is a maximal \(F\)-torus contained in \(B_0\);
- \(\mu\) is a generic character of \(U_0\), where \(U_0\) is the unipotent radical of \(B_0\).

We say that two tuples \((V, B_0, T, \mu)\) and \((V', B'_0, T', \mu')\) is equivalent if the following conditions hold:
1. there exists an isomorphism \(f : \text{O}(V) \to \text{O}(V')\);
2. \(f(B_0) = B'_0\) and \(f(T) = T'\) (so that \(f(U_0) = U'_0\));
3. there exists \(t \in T\) such that \(\mu' \circ f = \mu \circ \text{Int}(t)\).

**Proposition 2.1.** Fix \(d \in F^\times / F^{\times 2}\). For \(c \in F^\times\), we associate the 4-tuple \((V, B_0, T, \mu)\), where
- \(V = V_{2n}\) is an orthogonal space associated to \((d, c)\);
- \(B_0\) and \(T\) are as above;
- \(\mu = \mu_c\).

Then the map \(c \mapsto (V, B_0, T, \mu)\) gives a canonical bijection (not depending on \(\psi\))
\[F^\times / F^{\times 2} \to \{\text{equivalence classes of tuples } (V, B_0, T, \mu) \text{ with } \text{disc}(V) = d\}\].

**Proof.** Let \(V = V_{2n}\) be an orthogonal space associated to \((d, c)\). By [GGP] §12, the map \(c' \mapsto \mu_{c'} \circ f\) for \(f \in F\) gives a well-defined bijection
\[c\mathbb{N}_{E/F}(E^\times) / F^{\times 2} \to \{T\text{-orbits of generic characters of } U_0\}\],
where \(E = F(\sqrt{d})\). For \(c' \in c\mathbb{N}_{E/F}(E^\times)\), let \(V' = V'_{2n}\) be an orthogonal space associated to \((d, c')\). Then two tuples \((V, B_0, T, \mu_c \circ f)\) and \((V', B'_0, T', \mu_{c'}\)) are equivalent each other. This implies that the map
\[F^\times \to \{\text{equivalence classes of tuples } (V, B_0, T, \mu) \text{ with } \text{disc}(V) = d\}\]
is surjective. Also, we note that for a generic character \(\mu\), two tuples \((V, B_0, T, \mu_c)\) and \((V, B_0, T, \mu_d)\) are equivalent if and only if \(\mu = \mu_c \circ \text{Int}(t)\) for some \(t \in T\). This implies that the above map induces the bijection
\[F^\times / F^{\times 2} \to \{\text{equivalence classes of tuples } (V, B_0, T, \mu) \text{ with } \text{disc}(V) = d\}\],
as desired. \[\square\]

**Remark 2.2.** Let \((V, \langle \cdot, \cdot \rangle_V)\) be an orthogonal space associated to \((d, c)\). Fix \(a \in F^\times\). We define a new orthogonal \((V', \langle \cdot, \cdot \rangle_{V'})\) by \(V' = V\) as vector spaces and by
\[(x, y)_{V'} = a \cdot \langle x, y \rangle_V\].

Then \((V', \langle \cdot, \cdot \rangle_{V'})\) is associated to \((d, ac)\). As subgroup of \(\text{GL}(V) = \text{GL}(V')\), we have identifications
\[\text{O}(V) = \text{O}(V')\quad \text{and} \quad \text{SO}(V) = \text{SO}(V')\].

These identifications preserve \(F\)-rational Borel subgroups and maximal \(F\)-tori. Moreover, the generic character \(\mu_c\) of a maximal unipotent subgroup of \(\text{SO}(V)\) transfers \(\mu_{ac}\). More precisely, see [AI] Appendix A.5.

Since \(c'\) stabilizes \(\mu_{c'}\), we can extend \(\mu_{c'}\) to \(U' = U'_0 \rtimes \langle c' \rangle\). There are exactly two such extensions \(\mu_c^{\pm} : U' \to \mathbb{C}^\times\) which are determined by
\[\mu_c^{\pm}(c') = \pm 1\].

We say that an irreducible smooth representation \(\sigma\) of \(\text{O}(V_{2n})\) is \(\mu_c^{\pm}\)-generic if
\[\text{Hom}_{F^{-1}(U')} (\sigma, \mu_c^{\pm}) \neq 0\]
for some \(f \in F\). For \(\sigma_0 \in \text{Irr}(\text{SO}(V_{2n}))\), the \(\mu_c^{\pm}\)-genericity is defined similarly. The \(\mu_c^{\pm}\)-genericity and the \(\mu_{c'}\)-genericity are independent of the choice of \(f\). Note that \(f^{-1}(U'_0) = U_0\) for \(f \in F\), and
\[\dim_{\mathbb{C}}(\text{Hom}_{U_0}(\sigma_0, \mu_{c'})) \leq 1\]
for \(\sigma_0 \in \text{Irr}(\text{SO}(V_{2n}))\).

**Lemma 2.3.** Let \(\sigma_0 \in \text{Irr}(\text{SO}(V_{2n}))\).
(1) Assume that $\sigma_0$ can be extended to $O(V_{2n})$. Then there are exactly two such extensions. Moreover, the following are equivalent:

(A) $\sigma_0$ is $\mu_-^c$-generic;
(B) exactly one of two extensions is $\mu_+^c$-generic but not $\mu_-^c$-generic, and the other is $\mu_-^c$-generic but not $\mu_+^c$-generic.

(2) Assume that $\sigma_0$ can not be extended to $O(V_{2n})$. Then $\sigma = \text{Ind}_{SO(V_{2n})}^{O(V_{2n})}(\sigma_0)$ is irreducible. Moreover, the following are equivalent:

(A) $\sigma_0$ is $\mu_-^c$-generic;
(B) $\sigma$ is both $\mu_+^c$-generic and $\mu_-^c$-generic.

Proof. The first assertions of (1) and (2) follow from the Clifford theory. It is easy that (B) implies (A) in both (1) and (2).

We show (A) implies (B). Let $\sigma_0 \in \text{Irr}(SO(V_{2n}))$ be a $\mu_\varepsilon^c$-generic representation, i.e.,

$$\dim C(\text{Hom}_{U_0}(\sigma_0, \mu_\varepsilon^c \circ f)) = 1.$$ 

for some $f \in F$. By the Frobenius reciprocity, we have

$$\text{Hom}_{f^{-1}(U^c)}(\text{Ind}_{SO(V_{2n})}^{O(V_{2n})}(\sigma_0), \mu_+^c \circ f) \cong \text{Hom}_{SO(V_{2n})}(\text{Ind}_{f^{-1}(U^c)}^{O(V_{2n})}(\sigma_0), \text{Ind}_{f^{-1}(U^c)}^{O(V_{2n})}(\mu_+^c \circ f))$$

$$\cong \text{Hom}_{SO(V_{2n})}(\sigma_0, \text{Ind}_{f^{-1}(U^c)}^{O(V_{2n})}(\mu_+^c \circ f) \circ SO(V_{2n}))$$

$$\cong \text{Hom}_{SO(V_{2n})}(\sigma_0, \text{Ind}_{f^{-1}(U^c)}^{SO(V_{2n})}(\mu_+^c \circ f)) \cong \text{Hom}_{U_0}(\sigma_0, \mu_\varepsilon^c \circ f).$$

In particular, if $\sigma = \text{Ind}_{SO(V_{2n})}^{O(V_{2n})}(\sigma_0)$ is irreducible, then $\sigma$ is both $\mu_+^c$-generic and $\mu_-^c$-generic. This shows that (A) implies (B) in (2). If $\text{Ind}_{SO(V_{2n})}^{SO(V_{2n})}(\sigma_0) \cong \sigma_1 \oplus \sigma_2$, then

$$\text{Hom}_{U_0}(\text{Ind}_{SO(V_{2n})}^{SO(V_{2n})}(\sigma_0), \sigma) \cong \text{Hom}_{U_0}(\sigma_1, \sigma) \oplus \text{Hom}_{U_0}(\sigma_2, \sigma)$$

and $\text{Hom}_{U_0}(\sigma, \sigma)$ is $f^{-1}(\varepsilon')$-stable for $i = 1, 2$. Hence this subspace is an eigenspace of $f^{-1}(\varepsilon)$. Since both $\pm 1$ are eigenvalues of $f^{-1}(\varepsilon)$ in $\text{Hom}_{U_0}(\text{Ind}_{SO(V_{2n})}^{SO(V_{2n})}(\sigma_0), \mu_\varepsilon^c \circ f)$, exactly one of $\sigma_1$ and $\sigma_2$ is $\mu_+^c$-generic, and the other is $\mu_-^c$-generic. This shows that (A) implies (B) in (1).

2.3. Unramified representations. Let $V = V_{2n}$ be an orthogonal space associated to $(d, c)$. We say that $O(V_{2n})$ (or $SO(V_{2n})$) is unramified if $c, d \in \mathfrak{o}^\times$. In this subsection, we assume this condition. Recall that $V_{2n}$ has a decomposition

$$V_{2n} = Fv_1 + \cdots + Fv_{n-1} + V_{(d,c)} + Fv_1^* + \cdots + Fv_{n-1}^*$$

with $V_{(d,c)} = Fe + Fe'$. We set

$$v_0 = \frac{e + u^{-1}e'}{2}, \quad v_0^* = \frac{e - u^{-1}}{2c}$$

if $d = u^2$,

$$\mathfrak{o}_E \text{ to be the ring of integers of } E = F(\sqrt{d}) \cong V_{(d,c)}$$

if $d \notin \mathfrak{o}^{\times 2}$.

Note that $\langle v_0, v_0 \rangle v = \langle v_0, v_0^* \rangle = 0$ and $\langle v_0, v_0^* \rangle v = 1$. Let $L_{2n}$ be the $\mathfrak{o}$-lattice of $V_{2n}$ defined by

$$L_{2n} = \left\{ \mathfrak{o}v_1 + \cdots + \mathfrak{o}v_{n-1} + \mathfrak{o}v_0 + \mathfrak{o}v_0^* + \mathfrak{o}v_1^* + \cdots + \mathfrak{o}v_{n-1}^* \right\}$$

if $d \in \mathfrak{o}^{\times 2}$,

$$\mathfrak{o}v_1 + \cdots + \mathfrak{o}v_{n-1} + \mathfrak{o}_E + \mathfrak{o}v_0 + \mathfrak{o}v_0^* + \cdots + \mathfrak{o}v_{n-1}^*$$

if $d \notin \mathfrak{o}^{\times 2}$.

Let $K$ be the maximal compact subgroup of $O(V_{2n})$ which preserves the lattice $L_{2n}$. Note that $K$ contains $\varepsilon$ and satisfies

$$K = K_0 \times \langle \varepsilon \rangle,$$

where $K_0 = K \cap SO(V_{2n})$ is a maximal compact subgroup of $SO(V_{2n})$.

Let $\sigma \in \text{Irr}(O(V_{2n}))$ and $\sigma_0 \in \text{Irr}(SO(V_{2n}))$. We say that $\sigma$ (resp. $\sigma_0$) is unramified (with respect to $K$ (resp. $K_0$)) if $\sigma$ (resp. $\sigma_0$) has a nonzero $K$-fixed (resp. $K_0$-fixed) vector. In this case, it is known that

$$\dim(\sigma^K) = \dim(\sigma_0^{K_0}) = 1.$$
Lemma 2.4. Let \( \sigma_0 \in \text{Irr}(\text{SO}(V_{2n})) \) be an unramified representation. Then \( \text{Ind}_{\text{SO}(V_{2n})}^{\text{O}(V_{2n})}(\sigma_0) \) has a unique irreducible unramified constituent.

Proof. Note that the map
\[
\text{Ind}_{\text{SO}(V_{2n})}^{\text{O}(V_{2n})}(\sigma_0)^{K_0} \to \sigma_0^{K_0}, \ f \mapsto f(1)
\]
is a \( \mathbb{C} \)-linear isomorphism. Hence the assertion holds if \( \text{Ind}_{\text{SO}(V_{2n})}^{\text{O}(V_{2n})}(\sigma_0) \) is irreducible. Now suppose that \( \text{Ind}_{\text{SO}(V_{2n})}^{\text{O}(V_{2n})}(\sigma_0) \) is reducible. Then it decomposes into direct sum
\[
\text{Ind}_{\text{SO}(V_{2n})}^{\text{O}(V_{2n})}(\sigma_0) \cong \sigma_1 \oplus \sigma_2.
\]
We may assume that \( \sigma_1 \) and \( \sigma_2 \) are realized on the same space \( V \) as \( \sigma_0 \). Since \( \sigma_i(\epsilon) \) preserve the one dimension subspace \( V^{K_0} \), we have \( \sigma_i(\epsilon) = \pm \text{id} \) on \( V^{K_0} \). Since \( \sigma_1(\epsilon) = -\sigma_2(\epsilon) \), exactly one \( i \in \{1, 2\} \) satisfies that \( \sigma_i(\epsilon) = +1 \). Then \( \sigma_i \) is the unique irreducible unramified constituent of \( \text{Ind}_{\text{SO}(V_{2n})}^{\text{O}(V_{2n})}(\sigma_0) \).

3. Local Langlands Correspondence for \( \text{SO}(V_{2n}) \) and \( \text{O}(V_{2n}) \)

In this we explain the LLC for \( \text{SO}(V_{2n}) \) and \( \text{O}(V_{2n}) \).

3.1. Orthogonal representations of \( WD_F \) and its component groups. Let \( M \) be a finite dimensional vector space over \( \mathbb{C} \). We say that a homomorphism \( \phi: WD_F \to \text{GL}(M) \) is a representation of \( WD_F = W_F \times \text{SL}_2(\mathbb{C}) \) if
\[
\begin{align*}
\bullet \quad &\phi(\text{Frob}_F) \text{ is semi-simple, where Frob}_F \text{ is a geometric Frobenius element in } W_F; \\
\bullet \quad &\text{the restriction of } \phi \text{ to } W_F \text{ is smooth;} \\
\bullet \quad &\text{the restriction of } \phi \text{ to } \text{SL}_2(\mathbb{C}) \text{ is algebraic.}
\end{align*}
\]
We call \( \phi \) tempered if the image of \( W_F \) is bounded.

We say that \( \phi \) is orthogonal if there exists a non-degenerate bilinear form \( B: M \times M \to \mathbb{C} \) such that
\[
\begin{align*}
B(\phi(w)x, \phi(w)y) &= B(x, y), \\
B(y, x) &= B(x, y)
\end{align*}
\]
for \( x, y \in M \) and \( w \in WD_F \). In this case, \( \phi \) is equivalent to its contragredient \( \phi^\vee \). More precisely, see [GGP §3].

For an irreducible representation \( \phi_0 \) of \( WD_F \), we denote the multiplicity of \( \phi_0 \) in \( \phi \) by \( m_\phi(\phi_0) \). We can decompose
\[
\phi = m_1 \phi_1 + \cdots + m_s \phi_s + \phi' + \phi'^\vee,
\]
where \( \phi_1, \ldots, \phi_s \) are distinct irreducible orthogonal representations of \( WD_F \), \( m_i = m_\phi(\phi_i) \), and \( \phi' \) is a sum of irreducible representations of \( WD_F \) which are not orthogonal. We say that a parameter \( \phi \) is discrete if \( m_i = 1 \) for any \( i = 1, \ldots, s \) and \( \phi' = 0 \), i.e., \( \phi \) is a multiplicity-free sum of irreducible orthogonal representations of \( WD_F \).

For a representation \( \phi \) of \( WD_F \), the \( L \)-factor and the \( \varepsilon \)-factor associated to \( \phi \), which are defined in [T], are denoted by \( L(s, \phi) \) and \( \varepsilon(s, \phi, \psi) \), respectively. If \( (\phi, M) \) is an orthogonal representation with \( WD_F \)-invariant symmetric bilinear form \( B \), then we define the adjoint \( L \)-function \( L(s, \phi, \text{Ad}) \) associated to \( \phi \) to be the \( L \)-function associated to
\[
\text{Ad} \circ \phi : WD_F \to \text{GL}(\text{Lie}(\text{Aut}(M, B))).
\]
We say that \( \phi \) is generic if \( L(s, \phi, \text{Ad}) \) is regular at \( s = 1 \). Note that \( \text{Ad} \circ \phi \cong \wedge^2 \phi \) since \( B \) is symmetric. Hence the adjoint \( L \)-function \( L(s, \phi, \text{Ad}) \) is equal to the exterior square \( L \)-function \( L(s, \phi, \wedge^2) = L(s, \wedge^2 \phi) \).

Let \( \phi \) be a representation of \( WD_F = W_F \times \text{SL}_2(\mathbb{C}) \). We denote the inertia subgroup of \( W_F \) by \( I_F \). We say that \( \phi \) is unramified if \( \phi \) is trivial on \( I_F \times \text{SL}_2(\mathbb{C}) \). In this case, \( \phi \) is a direct sum of unramified characters of \( W_F^{ab} \cong F^\times \).

Let \( (\phi, M) \) be an orthogonal representation of \( WD_F \) with invariant symmetric bilinear form \( B \). Let
\[
C_\phi = \{ g \in \text{GL}(M) \mid B(gx, gy) = B(x, y) \text{ for any } x, y \in M, \text{ and } g\phi(w) = \phi(w)g \text{ for any } w \in WD_F \}.
\]
be the centralizer of \( \text{Im}(\phi) \) in \( \text{Aut}(M, B) \cong \text{O}(\dim(M), \mathbb{C}) \). Also we put 
\[
C_\phi^+ = C_\phi \cap \text{SL}(M).
\]

Finally, we define the large component group \( A_\phi \) by
\[
A_\phi = \pi_0(C_\phi).
\]

The image of \( C_\phi^+ \) under the canonical map \( C_\phi \to A_\phi \) is denoted by \( A_\phi^+ \), and called the component group of \( \phi \). By [GGP §4], \( A_\phi \) and \( A_\phi^+ \) are described explicitly as follows:

Let \( \phi = m_1 \phi_1 + \cdots + m_s \phi_s + \phi' + \phi'^\vee \) be an orthogonal representation as above. Then we have
\[
A_\phi = \bigoplus_{i=1}^s (\mathbb{Z}/2\mathbb{Z})a_i \cong (\mathbb{Z}/2\mathbb{Z})^s.
\]

Namely, \( A_\phi \) is a free \( \mathbb{Z}/2\mathbb{Z} \)-module of rank \( s \) and \( \{a_1, \ldots, a_s\} \) is a basis of \( A_\phi \) with \( a_i \) associated to \( \phi_i \). For \( a = a_{i_1} + \cdots + a_{i_k} \in A_\phi \) with \( 1 \leq i_1 < \cdots < i_k \leq s \), we put
\[
\phi^a = \phi_{i_1} \oplus \cdots \oplus \phi_{i_k}.
\]

Also, we put
\[
z_\phi := \sum_{i=1}^s m_i(\phi_i) \cdot a_i = \sum_{i=1}^s m_i \cdot a_i \in A_\phi.
\]

This is the image of \(-1_M \in C_\phi\). We call \( z_\phi \) the central element in \( A_\phi \). The determinant map \( \det: \text{GL}(M) \to \mathbb{C}^\times \) gives a homomorphism
\[
det: A_\phi \to \mathbb{Z}/2\mathbb{Z}, \quad \sum_{i=1}^s \varepsilon_i a_i \mapsto \sum_{i=1}^s \varepsilon_i \cdot \dim(\phi_i) \mod 2,
\]
where \( \varepsilon_i \in \{0, 1\} = \mathbb{Z}/2\mathbb{Z} \). Then we have \( A_\phi^+ = \ker(\det) \).

By [GGP §4], for each \( c \in F^\times \), we can define a character \( \eta_{\phi,c} \) of \( A_\phi \) by
\[
\eta_{\phi,c}(a) = \det(\phi^a)(c).
\]

Note that \( \eta_{\phi,c}(z_\phi) = 1 \) if and only if \( c \in \ker(\det(\phi)) \).

3.2. \textbf{L-group and L-parameters of SO}(V_{2n}). Let \( V_{2n} \) be an orthogonal space associated to \((d, c)\) for some \( c, d \in F^\times \). We put \( E = F(\sqrt{d}) \). Then the Langlands dual group of \( \text{SO}(V_{2n}) \) is the complex Lie group \( \text{SO}(2n, \mathbb{C}) \). We use
\[
J = \begin{pmatrix}
1 & \cdots \\
\vdots & \ddots \\
1 & \cdots
\end{pmatrix}
\]
to define \( \text{O}(2n, \mathbb{C}) \), i.e., \( \text{O}(2n, \mathbb{C}) = \{g \in \text{GL}_{2n}(\mathbb{C}) \mid gJg = J\} \). We denote the L-group of \( \text{SO}(V_{2n}) \) by \( L(\text{SO}(V_{2n})) = \text{SO}(2n, \mathbb{C}) \rtimes W_F \). The action of \( W_F \) on the dual group \( \text{SO}(2n, \mathbb{C}) \) factors through \( W_F/W_E \cong \text{Gal}(E/F) \). If \( E \neq F \), i.e., \( \text{SO}(V_{2n}) \) is not split, then the generator \( \gamma \in \text{Gal}(E/F) \) acts on \( \text{SO}(2n, \mathbb{C}) \) by the inner automorphism of
\[
\epsilon = \begin{pmatrix} 1_{n-1} & 0 & 1 \\ 0 & 1 & 0 \\ 1_{n-1} \end{pmatrix} \in \text{O}(2n, \mathbb{C}).
\]

Hence by \( \gamma \mapsto \epsilon \), we have the homomorphism
\[
L(\text{SO}(V_{2n})) = \text{SO}(2n, \mathbb{C}) \rtimes W_F \to \text{SO}(2n, \mathbb{C}) \rtimes \text{Gal}(E/F) \cong \text{O}(2n, \mathbb{C}).
\]

On the other hand, if \( E = F \), i.e., \( \text{SO}(V_{2n}) \) is split, then \( W_F \) acts on \( \text{SO}(2n, \mathbb{C}) \) trivially so that we have the homomorphism
\[
L(\text{SO}(V_{2n})) = \text{SO}(2n, \mathbb{C}) \rtimes W_F \to \text{SO}(2n, \mathbb{C}) \cong \text{O}(2n, \mathbb{C}).
\]
An $L$-parameter of $\text{SO}(V_{2n})$ is an admissible homomorphism

$$\hat{\phi}: WD_F \to {}^L(\text{SO}(V_{2n})) = \text{SO}(2n, \mathbb{C}) \rtimes W_F.$$  

We put

$$\Phi(\text{SO}(V_{2n})) = \{\text{SO}(2n, \mathbb{C})\text{-conjugacy classes of } L\text{-parameters of } \text{SO}(V_{2n})\}.$$  

For an $L$-parameter $\phi: WD_F \to {}^L(\text{SO}(V_{2n}))$, by composing with the above map $^L(\text{SO}(V_{2n})) \to \text{O}(2n, \mathbb{C})$, we obtain a homomorphism

$$\phi: WD_F \to \text{O}(2n, \mathbb{C}).$$  

We may regard $\phi$ as an orthogonal representation of $WD_F$. Note that $\det(\phi) = \chi_V$ is the discriminant character of $V_{2n}$. The map $\hat{\phi} \mapsto \phi$ gives an identification

$$\Phi(\text{SO}(V_{2n})) = \{\phi: WD_F \to \text{O}(2n, \mathbb{C}) \mid \det(\phi) = \chi_V\}/(\text{SO}(2n, \mathbb{C})\text{-conjugacy}).$$  

Namely, we may regard $\Phi(\text{SO}(V_{2n}))$ as the set of $\text{SO}(M)$-conjugacy classes of orthogonal representations $(\phi, M)$ of $WD_F$ with $\dim(M) = 2n$ and $\det(\phi) = \chi_V$.

We denote the subset of $\Phi(\text{SO}(V_{2n}))$ consisting of $\text{SO}(M)$-conjugacy classes of tempered (resp. discrete, generic) representations $(\phi, M)$ by $\Phi_{\text{temp}}(\text{SO}(V_{2n}))$ (resp. $\Phi_{\text{disc}}(\text{SO}(V_{2n})), \Phi_{\text{gen}}(\text{SO}(V_{2n})))$. Then we have a sequence

$$\Phi_{\text{disc}}(\text{SO}(V_{2n})) \subset \Phi_{\text{temp}}(\text{SO}(V_{2n})) \subset \Phi_{\text{gen}}(\text{SO}(V_{2n})).$$  

We define $\Phi^*(\text{SO}(V_{2n}))$ to be the subset of $\Phi(\text{SO}(V_{2n}))$ consisting of $\phi$ which contains an irreducible orthogonal representation of $WD_F$ with odd dimension. We put $\Phi^*(\text{SO}(V_{2n})) = \Phi^*(\text{SO}(V_{2n})) \cap \Phi^*(\text{SO}(V_{2n}))$ for $* \in \{\text{disc, temp, gen}\}$.

### 3.3. Local Langlands correspondence for $\text{SO}(V_{2n})$.

Let $V_{2n}$ be an orthogonal space associated to $(d, c)$ for some $c, d \in F^\times$. The discriminant character is denoted by $\chi_V := \chi_d$. We set $V_{2n}'$ to be the orthogonal space such that

$$\dim(V_{2n}') = 2n \quad \text{and} \quad \text{disc}(V_{2n}') = \text{disc}(V_{2n})$$  

but $V_{2n}' \not\cong V_{2n}$ as orthogonal spaces. Such $V_{2n}'$ exists uniquely up to isomorphisms unless $n = 1$ and $d \in F^\times^2$. By a companion space of $V_{2n}$, we mean $V_{2n}$ or $V_{2n}'$.

Now we describe the desiderata for the local Langlands correspondence for $\text{SO}(V_{2n})$.

**Desideratum 3.1 (LLC for $\text{SO}(V_{2n})$).** *Let $V_{2n}$ be an orthogonal space associated to $(d, c)$, and $\chi_V = (\cdot, d)$ be the discriminant character of $V_{2n}$.

1. There exists a canonical surjection

$$\bigsqcup_{V_{2n}^*} \text{Irr}(\text{SO}(V_{2n}^*)) \to \Phi(\text{SO}(V_{2n})).$$

where $V_{2n}^*$ runs over all companion spaces of $V_{2n}$. For $\phi \in \Phi(\text{SO}(V_{2n}))$, we denote by $\Pi_\phi^0$ the inverse image of $\phi$ under this map, and call $\Pi_\phi^0$ the $L$-packet of $\phi$.

2. We have

$$\bigsqcup_{V_{2n}^*} \text{Irr}_*(\text{SO}(V_{2n}^*)) = \bigsqcup_{\phi \in \Phi_*(\text{SO}(V_{2n}))} \Pi_\phi^0$$

for $* \in \{\text{temp, disc}\}$.

3. For each $c' \in F^\times$, there exists a suitable bijection

$$\iota_{c'}: \Pi^0_\phi \to \hat{A}_\phi^{+}.$$  

4. For $\sigma_0 \in \Pi_\phi^0$ and $c' \in F^\times$, the following are equivalent:
   - $\sigma_0 \in \text{Irr}(\text{SO}(V_{2n}));$
   - $\iota_{c'}(\sigma_0)(z_\phi) = \chi_V(c'/c)$.  

Note that \((\phi, M) \in \Phi(SO(V_{2n}))\) is not an equivalence class but an \(SO(M)\)-conjugacy class. Because of this difficulty, Desideratum 3.1 has not been established. Arthur has established LLC for \(O(V_{2n})\), and deduced a weaker version of Desideratum 3.1 as follows. We introduce an equivalence relation \(\sim_{\epsilon}\) on \(\text{Irr}(SO(V_{2n}^\bullet))\). Choose an element \(\epsilon\) in \(O(V_{2n}^\bullet)\) such that \(\det(\epsilon) = -1\). For \(\sigma_{0} \in \text{Irr}(SO(V_{2n}^\bullet))\), we define its conjugate \(\sigma_{0}^{\epsilon}\) by \(\sigma_{0}^{\epsilon}(g) = \sigma_{0}(\epsilon^{-1}g\epsilon)\). Then the equivalence relation \(\sim_{\epsilon}\) on \(\text{Irr}(SO(V_{2n}))\) is defined by

\[
\sigma_{0} \sim_{\epsilon} \sigma_{0}^{\epsilon}.
\]

The canonical map \(\text{Irr}(SO(V_{2n}^\bullet)) \rightarrow \text{Irr}(SO(V_{2n}))\)/ \(\sim_{\epsilon}\) is denoted by \(\sigma_{0} \mapsto [\sigma_{0}]\). We say that \([\sigma_{0}] \in \text{Irr}(SO(V_{2n}))\)/ \(\sim_{\epsilon}\) is tempered (resp. discrete, \(\mu_{\nu}\)-generic, unramified) if so is some (and hence any) representative \(\sigma_{0}\).

Also, we introduce an equivalence relation \(\sim_{\epsilon}\) on \(\Phi(SO(V_{2n}))\). For \(\phi, \phi' \in \Phi(SO(V_{2n}))\), we write \(\phi \sim_{\epsilon} \phi'\) if \(\phi\) is \(O(2n, \mathbb{C})\)-conjugate to \(\phi'\), i.e., \(\phi\) is equivalent to \(\phi'\) as representations of \(WD_P\). The equivalence class of \(\phi\) is also denoted by \(\phi\).

The desiderata for the weaker version of the local Langlands correspondence for \(SO(V_{2n})\) is described as follows:

**Desideratum 3.2** (Weak LLC for \(SO(V_{2n})\)). Let \(V_{2n}\) be an orthogonal space associated to \((d, c)\), and \(\chi_V = (\cdot, d)\) be the discriminant character of \(V_{2n}\).

1. There exists a canonical surjection

\[
\bigsqcup_{V_{2n}^\bullet} \text{Irr}(SO(V_{2n}^\bullet))/\sim_{\epsilon} \rightarrow \Phi(SO(V_{2n}))/\sim_{\epsilon},
\]

where \(V_{2n}^\bullet\) runs over all companion spaces of \(V_{2n}\). For \(\phi \in \Phi(SO(V_{2n}))/\sim_{\epsilon}\), we denote by \(\Pi_{\phi}^{0}\) the inverse image of \(\phi\) under this map, and call \(\Pi_{\phi}^{0}\) the \(L\)-packet of \(\phi\).

2. We have

\[
\bigsqcup_{V_{2n}^\bullet} \text{Irr}_{*}(SO(V_{2n}^\bullet))/\sim_{\epsilon} = \bigsqcup_{\phi \in \Phi_{*}(SO(V_{2n}))/\sim_{\epsilon}} \Pi_{\phi}^{0}
\]

for \(\ast \in \{\text{temp, disc}\}\).

3. The following are equivalent:
   - \(\phi \in \Phi_{\epsilon}(SO(V_{2n}))\)/ \(\sim_{\epsilon}\);
   - some \([\sigma_{0}] \in \Pi_{\phi}^{0}\) satisfies \(\sigma_{0}^{c} \cong \sigma_{0}\);
   - all \([\sigma_{0}] \in \Pi_{\phi}^{0}\) satisfy \(\sigma_{0}^{c} \cong \sigma_{0}\).

Here, \(\Phi_{\epsilon}(SO(V_{2n}))/\sim_{\epsilon}\) is the subset of \(\Phi(SO(V_{2n}))/\sim_{\epsilon}\) consisting of \(\phi\) which contains an irreducible orthogonal representation of \(WD_P\) with odd dimension.

4. For each \(c' \in F^{\times}\), there exists a bijection (not depending on \(\psi\))

\[
\iota_{c'} : \Pi_{\phi}^{0} \rightarrow \mathcal{A}_{\phi}^{+},
\]

which satisfies the endoscopic and twisted endoscopic character identities.

5. For \([\sigma_{0}] \in \Pi_{\phi}^{0}\) and \(c' \in F^{\times}\), the following are equivalent:
   - \(\sigma_{0} \in \text{Irr}(SO(V_{2n}))\);
   - \(\iota_{c'}((\sigma_{0}))((z_{\phi})) = \chi_V(c'/c)\).

6. Assume that \(\phi = \phi_{\tau} + \phi_0 + \phi_{\tau}'\), where \(\phi_0\) is an element in \(\Phi_{\text{temp}}(SO(V_{2n_{0}}))/\sim_{\epsilon}\) and \(\phi_{\tau}\) is an irreducible tempered representation of \(WD_P\) which corresponds to \(\tau \in \text{Irr}_{\text{temp}}(GL_k(F))\) with \(n = n_{0} + k\). Then the induced representation

\[
\text{Ind}_{P}^{SO(V_{2n})}(\tau \otimes \sigma_{0})
\]

is a multiplicity-free direct sum of tempered representations of \(SO(V_{2n})\), where \(P\) is a parabolic subgroup of \(SO(V_{2n})\) with Levi subgroup \(M_{P} = GL_k(F) \times SO(V_{2n_{0}})\) and \(\sigma_{0}\) is a representative of an element in \(\Pi_{\phi_{0}}^{0}\). The \(L\)-packet \(\Pi_{\phi_{0}}^{0}\) is given by

\[
\Pi_{\phi_{0}}^{0} = \{([\sigma]) \mid \sigma \subset \text{Ind}_{P}^{SO(V_{2n})}(\tau \otimes \sigma_{0}) \text{ for some } [\sigma_{0}] \in \Pi_{\phi_{0}}^{0}\}.
\]

Moreover if \(\sigma \subset \text{Ind}_{P}^{SO(V_{2n})}(\tau \otimes \sigma_{0})\), then \(\iota_{c'}([\sigma])|\mathcal{A}_{\phi_{0}}^{+} = \iota_{c'}([\sigma_{0}])\) for \(c' \in F^{\times}\).
(7) Assume that

\[ \phi = \phi_{\tau_1} \cdot |f_1|^r \cdot \cdots \cdot |f_r|^r + \phi_0 + (\phi_{\tau_1} \cdot |f_1|^r \cdot \cdots \cdot |f_r|^r)^\vee, \]

where \( \phi_0 \) is an element in \( \Phi_{\text{temp}}(SO(V_{2n_0})) \) and \( \phi_{\tau_i} \) is an irreducible tempered representation of \( WD_F \) which corresponds to \( \tau_i \in \mathbb{I}_F^\ast(\mathbb{G}_{k_i}(F)) \) with \( n = n_0 + k_1 + \cdots + k_r \) and \( s_i \) is a real number with \( s_1 \geq \cdots \geq s_r > 0 \). Then the \( L \)-packet \( \Pi_{\phi}^0 \) consists of the equivalence classes of the unique irreducible quotients \( \sigma \) of the standard modules

\[ \text{Ind}^F_{\mathbb{G}_F}(\tau_1 \cdot |f_1|^r \cdot \cdots \cdot |f_r|^r \otimes \sigma_0), \]

where \( \sigma_0 \) runs over representatives of elements of \( \Pi_{\phi_0}^0 \) and \( P \) is a parabolic subgroup of \( SO(V_{2n}) \) with Levi subgroup \( M_P = \mathbb{G}_{k_i}(F) \times \cdots \times \mathbb{G}_{k_r}(F) \times SO(V_{2n_0}) \). Moreover if \( \sigma \) is the unique irreducible quotient of \( \text{Ind}^F_{\mathbb{G}_F}(\tau_1 \cdot |f_1|^r \cdot \cdots \cdot |f_r|^r \otimes \sigma_0) \), then \( \iota_{c'}([\sigma])A_c^+ = \iota_{c'}([\sigma_0]) \) for \( c' \in F^\times \).

In this paper, we take the position that the stabilization of the twisted trace formula used in \([\text{At}2]\) is complete. See the series of papers \([W, I], [W, II], [W, III], [W, IV], [W, V], [MW, VI], [W, VII], [W, VIII], [W, IX], \) and \([MW, X]\) of Waldspurger and Mœglin–Waldspurger, and papers of Chaudouard–Laumon \([CL1]\) and \([CL2]\). Then the following theorem holds.

**Theorem 3.3 (\([\text{At}2]\)).** Let \( V_{2n} \) be an orthogonal space associated to \((d,c)\). Put \( E = F(\sqrt{d}) \). Then there exist a surjective map

\[ \mathbb{I}_E^{\text{temp}}(SO(V_{2n}))/\sim_{c} \to \Phi_{\text{temp}}(SO(V_{2n}))/\sim_{c} \]

with the inverse image \( \Pi_{\phi}^0 \) of \( \phi \in \Phi_{\text{temp}}(SO(V_{2n}))/\sim_{c} \), and a bijection

\[ \iota_{c'}: \Pi_{\phi}^0 \to (A_c^+ / (z_{c_0})) \]

for \( c' \in cN_{E/F}(E^\times) \) satisfying Desideratum 3.2 (2), (3), (4), and (6). Moreover, using the Langlands classification, we can extend the map \( [\sigma] \mapsto \phi \) to a surjective map

\[ \text{Irr}(SO(V_{2n}))/\sim_{c} \to \Phi(SO(V_{2n}))/\sim_{c} \]

which satisfies Desideratum 3.2 (7).

**Remark 3.4.**

1. Mœglin’s work in \([\text{M2}]\) §1.4, Theorem 1.4.1 may have extended Theorem 3.3 to the pure inner forms as well, in which case Desideratum 3.2 would be known in general. However, we are not sure how her work fits with the general theory of T. Kaletha on the normalization of transfer factors for inner forms \([\text{Ka2}]\). In particular, we are not sure if the local character relation of Arthur \([\text{At1}]\) Theorems 2.2.1, 2.2.4 \((\text{the analog of Hypothesis 3.10 below}) \) holds in her work.
2. If \( d \notin F^\times^2 \), then \( SO(V_{2n}) \) is quasi-split for any companion space of \( V_{2n} \), so that we may define \( L \)-packets \( \Pi_{\phi}^0 \) and bijections

\[ \iota_{c_1}: \Pi_{\phi}^0 \cap \text{Irr}(SO(V_{2n}))/\sim_{c} \to (A_c^+ / (z_{c_0})) \]

\[ \iota_{c_2}: \Pi_{\phi}^0 \cap \text{Irr}(SO(V_{2n}))/\sim_{c} \to (A_c^+ / (z_{c_0})) \]

for \( c_1, c_2 \in F^\times \) with \( c_1 \in cN_{E/F}(E^\times) \) and \( c_2 \notin cN_{E/F}(E^\times) \). We define \( \iota_{c_2}([\sigma]) \) for \( [\sigma] \in \text{Irr}(SO(V_{2n}))/\sim_{c} \) by

\[ \iota_{c_2}([\sigma]) := \iota_{c_1}([\sigma]) \otimes \eta_{\phi,c_1/c_2}, \]

and define \( \iota_{c_1}([\sigma']) \) for \( [\sigma'] \in \text{Irr}(SO(V_{2n}))/\sim_{c} \) similarly. Then the character relations and local intertwining relations would continue to hold after modifying the transfer factor and the normalization of intertwining operators. See also \([\text{KMSW}]\), \([\text{Ka2}]\) §5.4 and \([\text{At1}]\) Appendix A.

There are some properties of \( \Pi_{\phi}^0 \).

**Proposition 3.5.** Assume Weak LLC for \( SO(V_{2n}) \) (Desideratum 3.2).

1. For \( c_1, c_2 \in F^\times \), we have

\[ \iota_{c_2}([\sigma_0]) = \iota_{c_1}([\sigma_0]) \otimes \eta_{\phi,c_2/c_1} \]

as a character of \( A_c^+ \).
(2) \( \phi \) is generic, i.e., \( L(s, \phi, \text{Ad}) \) is regular at \( s = 1 \) if and only if \( \Pi^0_\phi \) contains a \( \mu_\phi \)-generic class \([\sigma_0]\) for each \( \epsilon' \in F^\times \). Note that if \( \epsilon' \not\in cN_{E/F}(E^\times) \), then \( \sigma_0 \in \text{Irr}(SO(V_{2n}^\prime)) \).

(3) If \( \phi \) is generic, then for each \( \epsilon' \in F^\times \), \([\sigma_0]\) in \( \Pi^0_\phi \) is \( \mu_\phi \)-generic if and only if \( \iota_{\epsilon'}([\sigma_0]) \) is the trivial representation of \( A^+_\phi \).

(4) If both \( SO(V_{2n}) \) and \( \phi \) are unramified, then \( \Pi^0_\phi \) contains a unique unramified class \([\sigma_0]\), and it corresponds to the trivial representation of \( A^+_\phi \) under \( \iota_{\epsilon'} \).

In particular, these properties hold for the \( L \)-packets \( \Pi^0_\phi \cap \text{Irr}(SO(V_{2n})) / \sim_\epsilon \) of quasi-split \( SO(V_{2n}) \) and \( c_1, c_2, \epsilon' \in cN_{E/F}(E^\times) \) unconditionally.

Proof. (1) is given in [Ka1, Theorem 3.3]. (2) is a conjecture of Gross–Prasad and Rallis ([GP, Conjecture 2.6]), and has been proven by Gan–Ichino ([GI2, Appendix B]). For (3), it is shown in [A2, Proposition 8.3.2 (a)] supplemented by some results of many others that the class \([\sigma_0]\) corresponding to the trivial representation of \( A^+_\phi \) under \( \iota_{\epsilon'} \) is \( \mu_\phi \)-generic. A simple proof of the other direction is given by the first author [A2]. Also (3) is a special case of Gross–Prasad conjecture [GGP, Conjecture 17.1], which is proven by Waldspurger [W2, W3, W5 and W6]. Finally, (4) is proven by Meeglin [M1]. \( \square \)

3.4. Local Langlands correspondence for \( O(V_{2n}) \)

Let \( V_{2n} \) be an orthogonal space associated to \( (d, c) \), and \( \epsilon \in O(V_{2n}) \) be as in \([21]\). Put \( \theta = \text{Int}(\epsilon) \). It is an element in \( \text{Aut}(SO(V_{2n})) \). In [Ar], Arthur has established the local Langlands correspondence for not \( O(V_{2n}) \) but for

\[
SO(V_{2n}) \rtimes \langle \theta \rangle.
\]

As topological groups, \( O(V_{2n}) \) and \( SO(V_{2n}) \rtimes \langle \theta \rangle \) are isomorphic. However, it is not canonical. There are exactly two isomorphism \( O(V_{2n}) \cong SO(V_{2n}) \rtimes \langle \theta \rangle \) which are identity on \( SO(V_{2n}) \), and they are determined by \( \pm \theta \leftrightarrow \theta \). We use the isomorphism such that \( \pm \theta \leftrightarrow \theta \). Via this isomorphism, we translate LLC for \( SO(V_{2n}) \rtimes \langle \theta \rangle \) into LLC for \( O(V_{2n}) \). Note that the changing of the choice of the isomorphism corresponds to the automorphism

\[
O(V_{2n}) \rightarrow O(V_{2n}), \quad g \mapsto \det(g) \cdot g = \begin{cases} g & \text{if } g \in SO(V_{2n}), \\ -g & \text{otherwise.} \end{cases}
\]

Hence it induces the bijection

\[
\text{Irr}(O(V_{2n})) \rightarrow \text{Irr}(O(V_{2n})), \quad \sigma \mapsto (\omega_\sigma \circ \det) \otimes \sigma,
\]

where \( \omega_\sigma \) is the central character of \( \sigma \), which is regarded as a character of \( \{\pm 1\} \).

Let \( V_{2n}^\bullet \) be a companion space of \( V_{2n} \). We define an equivalence relation \( \sim_\det \) on \( \text{Irr}(O(V_{2n}^\bullet)) \) by

\[
\sigma \sim_\det \sigma \otimes \det
\]

for \( \sigma \in \text{Irr}(O(V_{2n}^\bullet)) \). The restriction and the induction give a canonical bijection

\[
\text{Irr}(O(V_{2n}^\bullet)) / \sim_\det \leftrightarrow \text{Irr}(SO(V_{2n}^\bullet)) / \sim_\epsilon.
\]

Put \( \Phi(O(V_{2n})) = \Phi(SO(V_{2n}))/\sim_\epsilon \) and \( \Phi_*(O(V_{2n})) = \Phi_*(SO(V_{2n}))/\sim_\epsilon \). Also, we define \( \Phi^r(O(V_{2n})) = \Phi^r(SO(V_{2n}))/\sim_\epsilon \). Namely, \( \Phi(O(V_{2n})) \) is the set of equivalence classes of orthogonal representations of \( WD_F \) with dimension \( 2n \) and determinant \( \chi_V \). We call an element in \( \Phi(O(V_{2n})) \) an \( L \)-parameter for \( O(V_{2n}) \).

We describe the local Langlands correspondence for \( O(V_{2n}) \).

Desideratum 3.6 (LLC for \( O(V_{2n}) \)). Let \( V_{2n} \) be an orthogonal space associated to \( (d, c) \), and \( \chi_V = (\cdot, d) \) be the discriminant character of \( V_{2n} \).

1. There exists a canonical surjection

\[
\bigsqcup_{V_{2n}^\bullet} \text{Irr}(O(V_{2n}^\bullet)) \rightarrow \Phi(O(V_{2n})).
\]

where \( V_{2n}^\bullet \) runs over all companion spaces of \( V_{2n} \). For \( \phi \in \Phi(O(V_{2n})) \), we denote by \( \Pi_\phi \) the inverse image of \( \phi \) under this map, and call \( \Pi_\phi \) the \( L \)-packet of \( \phi \).
We have
\[
\bigcup_{V_{2n}^*} \text{Irr}_*(O(V_{2n}^*)) = \bigcup_{\phi \in \Phi*(O(V_{2n}))} \Pi_\phi
\]
for \( * \in \{\text{temp}, \text{disc}\} \).

(3) The following are equivalent:
- \( \phi \in \Phi*(O(V_{2n})) \);
- some \( \sigma \in \Pi_\phi \) satisfies \( \sigma \otimes \det \not \cong \sigma \);
- all \( \sigma \in \Pi_\phi \) satisfy \( \sigma \otimes \det \not \cong \sigma \).

Here, \( \Phi*(O(V_{2n})) \) is the subset of \( \Phi(O(V_{2n})) \) consisting of \( \phi \) which contains an irreducible orthogonal representation of \( WD_F \) with odd dimension.

(4) For each \( c' \in F^x \), there exists a bijection (not depending on \( \psi \))
\[
\iota_{c'} : \Pi_\phi \to \widehat{A}_\phi,
\]
which satisfies the (twisted) endoscopic character identities.

(5) For \( \sigma \in \Pi_\phi \) and \( c' \in F^x \), the following are equivalent:
- \( \sigma \in \text{Irr}(O(V_{2n})) \);
- \( \iota_{c'}(\sigma)(z_\phi) = \chi_V(c'/c) \).

(6) Assume that \( \phi = \phi_\tau + \phi_0 + \phi_\tau^\vee \), where \( \phi_0 \) is an element in \( \Phi_{\text{temp}}(O(V_{2n})) \) and \( \phi_\tau \) is an irreducible tempered representation of \( WD_F \) which corresponds to \( \tau \in \text{Irr}_{\text{temp}}(GL_k(F)) \) with \( n = n_0 + k \). Then the induced representation
\[
\text{Ind}_{P}^{O(V_{2n})}(\tau \otimes \sigma_0)
\]
is a multiplicity-free direct sum of tempered representations of \( O(V_{2n}) \), where \( P \) is a parabolic subgroup of \( O(V_{2n}) \) with Levi subgroup \( M_P = GL_k(F) \times O(V_{2n_0}) \) and \( \sigma_0 \in \Pi_{\phi_0} \). The L-packet \( \Pi_\phi \) is given by
\[
\Pi_\phi = \{ \sigma \mid \sigma \subset \text{Ind}_{P}^{O(V_{2n})}(\tau \otimes \sigma_0) \text{ for some } \sigma_0 \in \Pi_{\phi_0} \}.
\]
Moreover if \( \sigma \subset \text{Ind}_{P}^{O(V_{2n})}(\tau \otimes \sigma_0) \), then \( \iota_{c'}(\sigma)|_{A_{\phi_0}} = \iota_{c'}(\sigma_0) \) for \( c' \in F^x \).

(7) Assume that
\[
\phi = \phi_{r_1} \cdot |e|_F^{s_1} + \cdots + \phi_{r_1} \cdot |e|_F^{s_1} + \phi_0 + (\phi_{r_1} \cdot |e|_F^{s_1} + \cdots + \phi_{r_1} \cdot |e|_F^{s_1})^\vee,
\]
where \( \phi_0 \) is an element in \( \Phi_{\text{temp}}(O(V_{2n})) \), \( \phi_{r_1} \) is an irreducible tempered representation of \( WD_F \) which corresponds to \( \tau_1 \in \text{Irr}_{\text{temp}}(GL_k(F)) \) with \( n = n_0 + k_1 + \cdots + k_r \) and \( s_i \) is a real number with \( s_1 \geq \cdots \geq s_r > 0 \). Then the L-packet \( \Pi_\phi \) consists of the unique irreducible quotients \( \sigma \) of the standard modules
\[
\text{Ind}_{P}^{O(V_{2n})}(\tau_1 | e|_F^{s_1} \otimes \cdots \otimes \tau_r | e|_F^{s_r}, | e|_F^{s_r} \otimes \sigma_0),
\]
where \( \sigma_0 \) runs over elements of \( \Pi_{\phi_0} \) and \( P \) is a parabolic subgroup of \( O(V_{2n}) \) with Levi subgroup \( M_P = GL_k(F) \times \cdots \times GL_k(F) \times O(V_{2n_0}) \). Moreover if \( \sigma \) is the unique irreducible quotient of \( \text{Ind}_{P}^{O(V_{2n})}(\tau_1 | e|_F^{s_1} \otimes \cdots \otimes \tau_r | e|_F^{s_r} \otimes \sigma_0) \), then \( \iota_{c'}(\sigma)|_{A_{\phi_0}} = \iota_{c'}(\sigma_0) \) for \( c' \in F^x \).

(8) For \( \phi \in \Phi(O(V_{2n})) = \Phi(SO(V_{2n})) / \sim_\epsilon \), the image of \( \Pi_\phi \) under the map
\[
\text{Irr}(O(V_{2n}^*)) \to \text{Irr}(SO(V_{2n}^*)) / \sim_{\text{det}} \to \text{Irr}(SO(V_{2n}^*)) / \sim_\epsilon
\]
is the packet \( \Pi_\phi^0 \) in Weak LLC for \( SO(V_{2n}) \), and the diagram
\[
\begin{array}{ccc}
\Pi_\phi & \overset{\iota_{c'}}{\longrightarrow} & \hat{A}_\phi \\
\downarrow & & \downarrow \\
\Pi_\phi^0 & \overset{\iota_{c'}}{\longrightarrow} & \hat{A}_\phi^0
\end{array}
\]
is commutative for \( c' \in F^x \).

(9) For \( c' \in F^x \) and \( \sigma \in \Pi_\phi \), the determinant twist \( \sigma \otimes \det \) also belongs to \( \Pi_\phi \), and
\[
\iota_{c'}(\sigma \otimes \det)(a) = \iota_{c'}(\sigma)(a) \cdot (-1)^{\det(a)}
\]
for \( a \in A_\phi \).
As Weak LLC for $\text{SO}(V_{2n})$, the following theorem holds.

**Theorem 3.7** \([\text{[Ar]}]\). Let $V_{2n}$ be an orthogonal space associated to $(d,c)$. Put $E = F(\sqrt{d})$. Then there exist a surjective map

$$\text{Irr}_{\text{temp}}(O(V_{2n})) \rightarrow \Phi_{\text{temp}}(O(V_{2n}))$$

with the inverse image $\Pi_\phi$ of $\phi \in \Phi_{\text{temp}}(O(V_{2n}))$, and a bijection

$$\iota_{c'} : \Pi_\phi \rightarrow (A_\phi/\langle z_\phi \rangle)$$

for $c' \in cN_{E/F}(E^\times)$ satisfying Desideratum $3.6$ (2), (3), (4), (6), (8), and (9). Moreover, using the Langlands classification, we can extend the map $\sigma \mapsto \phi$ to a surjective map

$$\text{Irr}(O(V_{2n})) \rightarrow \Phi(O(V_{2n}))$$

which satisfies Desideratum $3.6$ (7).

In fact, Arthur established Theorem 3.7 first and by using Desideratum $3.6$ (8), he then defined the $L$-packets $\Pi_\phi^0$ for $O(V_{2n})$ (Theorem $3.3$).

**Remark 3.8.** As we mentioned in Remark $3.4$, Mœglin’s work in [M2] \([1.4, \text{Theorem 1.4.1}]\) seems to extend Theorem $3.7$ to the pure inner forms as well. Also, when $d \notin F^\times$, we can define $L$-packets $\Pi_\phi$ and a bijection $\iota_{c'} : \Pi_\phi \rightarrow A_\phi$ for any $c' \in F^\times$ similar to Remark $3.4$. However, motivated by Prasad conjecture (Conjecture 4.4 below), we should define $\iota_{c'}(\sigma)$ for $\sigma \in \text{Irr}(O(V_{2n}))$ by

$$\iota_{c'}(\sigma) = \iota_c(\sigma) \otimes \eta_{\phi \chi_V,c'/c}.$$  

See also Desideratum $3.9$ and Hypothesis $3.10$ below.

The following is an analogue of Proposition $3.5$.

**Desideratum 3.9.** Let $V_{2n}$ be an orthogonal space associated to $(d,c)$. Let $\phi \in \Phi(O(V_{2n}))$ and $\sigma \in \Pi_\phi$. We write $\phi \chi_V = \phi \otimes \chi_V$.

1. For $c_1, c_2 \in F^\times$, we have

$$\iota_{c_2}(\sigma) = \iota_{c_1}(\sigma) \otimes \eta_{\phi \chi_V,c_2/c_1}$$

as a character of $A_\phi$.

2. $\phi$ is generic, i.e., $L(s, \phi, \text{Ad})$ is regular at $s = 1$ if and only if $\Pi_\phi$ contains a $\mu^\times_{c'}$-generic representation $\sigma$ for each $c' \in F^\times$ and $\varepsilon \in \{\pm 1\}$.

3. If $\phi$ is generic, then for each $c' \in F^\times$,
   - $\sigma^+ \in \Pi_\phi$ is $\mu^\times_{c'}$-generic if and only if $\iota_{c'}(\sigma^+)$ is the trivial representation of $A_\phi$;
   - $\sigma^- \in \Pi_\phi$ is $\mu^-_{c'}$-generic if and only if $\iota_{c'}(\sigma^-)$ is given by $A_\phi \ni a \mapsto (-1)^{\det(a)}$.

4. If both $O(V_{2n})$ and $\phi$ are unramified, then $\Pi_\phi$ contains a unique unramified representation $\sigma$, and it corresponds to the trivial representation of $A_\phi$ under $\iota_{c}$.

Under Desideratum $3.6$, Proposition $3.5$ and Hypothesis $3.10$, Desideratum $3.9$ will be proven in $3.6$ below. Note that $\eta_{\phi \chi_V,c_2/c_1}|A_\phi^+ = \eta_{\phi,c_2/c_1}$ since dim($\phi^\sigma$) is even for $a \in A_\phi^+$.

3.5. **Hypothesis.** To establish Desideratum $3.9$ and two main local theorems, we will use a very delicate hypothesis, which is an intertwining relation.

Let $V_{2n}$ be an orthogonal space associated to $(d,c)$, and $V$ be a companion space of $V_{2n}$. For a fixed positive integer $k$, we set

$$X = Fv_1 \oplus \cdots \oplus Fv_k, \quad X^* = Fv_1^* \oplus \cdots \oplus Fv_k^*$$

to be $k$-dimensional vector spaces over $F$. Let $V' = V \oplus X \oplus X^*$ be the orthogonal space define by

$$\langle v_i, v_j \rangle_{V'} = \langle v_i^*, v_j^* \rangle_{V'} = \langle v_i, v_0 \rangle_{V'} = \langle v_i^*, v_0 \rangle_{V'} = 0, \quad \langle v_i, v_j^* \rangle_{V'} = \delta_{i,j}$$

for any $i, j = 1, \ldots, k$ and $v_0 \in V$. Let $P = M_pU_p$ be the maximal parabolic subgroup of $O(V')$ stabilizing $X$, where $M_p$ is the Levi component of $P$ stabilizing $X^*$. Hence

$$M_p \cong \text{GL}(X) \times O(V).$$
Using the basis \( \{v_1, \ldots, v_k\} \) of \( X \), we obtain an isomorphism \( m_P : GL_k(F) \to GL(X) \). Let \( \phi_r \) be an orthogonal tempered representation of \( WD_F \) of dimension \( k \), and \( \tau \) be the tempered representation of \( GL_k(F) \) on a space \( V_\tau \) associated to \( \phi_r \). For \( s \in \mathbb{C} \), we realize the representation \( r_s := \tau \otimes |\det|_{F}^{s} \) on \( V_\tau \) by setting \( r_s(a) := |\det(a)|_{F}^{s} \tau(a)v \) for \( v \in V_\tau \) and \( a \in GL_k(F) \). Let \( \sigma \in \text{Irr}_{\text{temp}}(O(V)) \). Assume that \( \sigma \in \Pi_{\phi_r} \) with \( \phi_{\sigma} \in \Phi_{\text{temp}}(O(V_{2n})) \), i.e., \( \sigma \not\cong \sigma \otimes \det \) and \( \sigma|SO(V) \) is irreducible. We define a normalized intertwining operator

\[
R_c(w, r_s \otimes \sigma) : \text{Ind}_{P}^{O(V')}((r_s \otimes \sigma) \rightarrow \text{Ind}_{P}^{O(V')}(r_s \otimes \sigma)
\]

by (the meromorphic continuations of) the integral

\[
R_c(w, r_s \otimes \sigma)f_s(h') = e(V)^k \cdot \chi_V(c'/c)^k \cdot |c'|_{F}^{k \rho_P} \cdot r(r_s \otimes \sigma)^{-1} \cdot A_w \left( \int_{U_P} f_s(\tilde{w}_c^{-1} u_P h') du_P \right)
\]

for \( f_s \in \text{Ind}_{P}^{O(V')}(r_s \otimes \sigma) \).

- \( w \) is the non-trivial element in the relative Weyl group \( W(M_P)(\cong \mathbb{Z}/2\mathbb{Z}) \) for \( M_P \);
- \( \tilde{w}_c \in O(V) \) is the representative of \( w \) given by

\[
\tilde{w}_c = w_P \cdot m_P(c' \cdot a) \cdot ((-1)^k 1_V),
\]

where \( w_P \in O(V') \) is defined by \( w_P v_i = -v_i^* \), \( w_P v_i^* = -v_i \) and \( w_P |V = 1_V \), and \( a \in GL_k(F) \) is given by

\[
a = \begin{pmatrix}
(-1)^{n-k+1} & \cdots \\
\vdots & \\
(-1)^n & 
\end{pmatrix};
\]

- \( e(V) = \iota_c(z_{\phi_r}) \in \{\pm 1\} \), i.e.,

\[
e(V) = \begin{cases} 1 & \text{if } V \text{ is associated to } (d, c), \\ -1 & \text{otherwise}; \end{cases}
\]

- \( \rho_P = m + (k - 1)/2 \), so that the modulus character \( \delta_P \) of \( P \) satisfies that \( \delta_P(m_P(a)) = |\det(a)|_{F}^{2 \rho_P} \) for \( a \in GL_k(F) \);
- \( r(r_s \otimes \sigma) \) is the normalizing factor given by

\[
\frac{L(s, \phi_r \otimes \phi_{\sigma})}{\varepsilon(s, \phi_r \otimes \phi_{\sigma}) L(1 + s, \phi_r \otimes \phi_{\sigma})} \frac{L(-2s, (\wedge_2)^{\vee} \circ \phi_r)}{\varepsilon(-2s, (\wedge_2)^{\vee} \circ \phi_r) L(1 - 2s, (\wedge_2)^{\vee} \circ \phi_r)},
\]

where \( \wedge_2 \) is the representation of \( GL_k(\mathbb{C}) \) on the space of skew-symmetric \((k, k)\)-matrices, and \( \chi(E/F, \psi) \) is the Langlands \( \lambda \)-factor associated to \( E = F(\sqrt{\text{disc}(V)}) = F(\sqrt{d}) \).

- \( d_{U_P} \) is the Haar measure of \( U_P \) given in [Ar] (see also [AL] §6.1);
- \( A_w : w(\tau \otimes \sigma) \rightarrow \tau \otimes \sigma \) is the intertwining isomorphism defined in [Ar] (see also [AL] §6.3), where \( w(\tau \otimes \sigma)(m) := (\tau \otimes \sigma)(\tilde{w}_c^{-1} mw_c) \) for \( m \in M_P \).

We expect that the intertwining operators and the local Langlands correspondence are related as follows:

**Hypothesis 3.10.** Notation is as above.

1. The normalized intertwining operator \( R_c(w, r_s \otimes \sigma) \) is holomorphic at \( s = 0 \). We put \( R_c(w, \tau \otimes \sigma) := R_c(w, 0 \otimes \sigma) \).
2. Suppose that \( \phi_r \) is a multiplicity-free sum of irreducible orthogonal tempered representations. Put \( \phi_{r'} = \phi_r \oplus \phi_r \oplus \phi_r \), and denote by \( a \in A_{\phi_r} \) the element corresponding to \( \phi_r \). Let \( \sigma' \in \Pi_{\phi_{r'}} \) be an irreducible constituent of \( \text{Ind}_{P}^{O(V')}(\tau \otimes \sigma) \). Then we have

\[
R_c(w, \tau \otimes \sigma)|\sigma' = \iota_c(\sigma')(a)
\]

for any \( c' \in F^x \).

In special cases, Hypothesis 3.10 has been established:

**Theorem 3.11.** Hypothesis 3.10 holds in the following cases:
• The case when \( V = V_{2n} \) and \( c' \in cN_{E/F}(E^\times) \).
• The case when \( k \) is even and \( d \neq 1 \) in \( F^\times/F^{x^2} \) under assuming Desideratum 3.2.

Proof. In the first case, Hypothesis 3.10 is Proposition 2.3.1 and Theorems 2.2.1, 2.2.4, 2.4.1 and 2.4.4 in [At]. The second case follows from Arthur’s results above and [At] Proposition 3.3.

The cases when Hypothesis 3.10 has not yet been verified are
• the non-quasi-split even orthogonal case; and
• the case when \( k \) is odd and \( d \neq 1 \) in \( F^\times/F^{x^2} \).

In general, Hypothesis 3.10 would follow from similar results to [At] and [KMSW].

Remark 3.12. Recall that we need to choose an isomorphism
\[
O(V) \leftrightarrow SO(V) \times \langle \theta \rangle
\]
to translate Arthur’s result. There exist two choices of isomorphisms, which are determined by \( \pm \epsilon \leftrightarrow \theta \). We have chosen the isomorphism such that \( \epsilon \leftrightarrow \theta \). If one chooses the other isomorphism \( -\epsilon \leftrightarrow \theta \), one should replace the representative \( \bar{w}_{c'} \) of \( w \in W(M_P) \) as
\[
\bar{w}'_{c'} = -w_P \cdot m_P(c' \cdot a) \cdot ((-1)^k1_V) = -\bar{w}_{c'}.
\]

Note that
\[
f_s(\bar{w}_{c'}u_Ph') = \omega_\epsilon(1) \cdot f_s(\bar{w}_{c'}u_Ph')
\]
for \( f_s \in \text{Ind}_{O(V)}^{O(V)}(\tau_\epsilon \otimes \sigma) \), where \( \omega_\epsilon \) is the central character of \( \text{Ind}_{O(V)}^{O(V)}(\tau_\epsilon \otimes \sigma) \). This is compatible the bijection
\[
\text{Irr}(O(V)) \to \text{Irr}(O(V)), \sigma \mapsto (\omega_\epsilon \circ \text{det}) \otimes \sigma
\]
as in [3.4]. Hence all results below are independent of the choice of the isomorphism \( O(V) \cong SO(V) \times \langle \theta \rangle \).

3.6. Proof of Desideratum 3.9. In this subsection, we prove Desideratum 3.9 under Hypothesis 3.10. First, we treat the tempered case.

Theorem 3.13. Assume Desiderata 3.3, 3.6, and Hypothesis 3.10. Then Desideratum 3.9 holds for \( \phi \in \Phi_{\text{temp}}(O(V)) \). In particular, it holds for the L-packets \( \Pi_\phi \cap \text{Irr}(O(V_{2n})) \) of quasi-split \( O(V_{2n}) \) and \( c_1, c_2, c' \in cN_{E/F}(E^\times) \) unconditionally.

Proof. Note that Proposition 3.6 holds since we assume Desideratum 3.2.

First, we consider (1). Let \( \phi \in \Phi_{\text{temp}}(O(V)) \) and \( \sigma \in \Pi_\phi \). We have to show that
\[
\iota_{c_1}(\sigma)(a) = \iota_{c_2}(\sigma)(a) \cdot \det(\phi^a \chi_V)(c_1/c_2)
\]
for any \( a \in A_\phi \) and \( c_1, c_2 \in F^\times \). Fix \( a \in A_\phi \) and consider the parameter
\[
\phi' = \phi^a \oplus \phi \oplus \phi^a.
\]

Let \( \tau \in \text{Irr}(GL_k(F)) \) be the representation corresponding to \( \phi^a \), where \( k = \dim(\phi^a) \), and put \( \sigma' = \text{Ind}_{O(V)}^{O(V)}(\tau \otimes \sigma) \) as above. Then \( A_\phi = A_{\phi'} \) since \( \phi \) contains \( \phi^a \). Hence \( \sigma' \) is irreducible and \( \sigma' \in \Pi_{\phi'} \) by Desideratum 3.9 (6). Moreover, we have
\[
\iota_{c'}(\sigma')(A_\phi) = \iota_{c'}(\sigma)
\]
for any \( c' \in F^\times \). By Hypothesis 3.10, \( R_{c_1}(w, \tau \otimes \sigma) \) is the scalar operator with eigenvalue \( \iota_{c_1}(\sigma)(a) \) for \( i = 1, 2 \). By definition, we have
\[
R_{c_1}(w, \tau \otimes \sigma) = \chi_V(c_1/c_2)^k \cdot \omega_\epsilon(c_1/c_2) \cdot R_{c_2}(w, \tau \otimes \sigma),
\]
where \( \omega_\epsilon \) is the central character of \( \tau \), which is equal to \( \det(\phi^a) \). Since
\[
\chi_V(c_1/c_2)^k \cdot \omega_\epsilon(c_1/c_2) = \det(\phi^a \chi_V)(c_1/c_2),
\]
we have
\[
\iota_{c_1}(\sigma)(a) = \det(\phi^a \chi_V)(c_1/c_2) \cdot \iota_{c_2}(\sigma)(a),
\]
as desired.

The assertion (2) follows from Lemma 2.3 and Proposition 3.5 (2).
Next, we consider (3). Let \( \phi \in \Phi_{\text{temp}}(O(V)) \). Note that \( \phi \) is generic. By Proposition 3.3 (2) and Desideratum 3.9 (2), for each \( c' \in F^x \), there exists a \( \mu_{c'}^+ \)-generic representation \( \sigma \in \Pi_\phi \) such that \( \iota_{c'}(\sigma)|A_\phi^+ = 1 \). We may assume that \( \sigma \) is a representation of \( O(V) \) with \( V \) associated to \( (d,c') \). We have to show that 
\[
\iota_{c'}(\sigma) = 1.
\]
If \( \phi \notin \Phi'(O(V)) \), then \( A_\phi^+ = A_\phi \) so that we have nothing to prove. Hence we may assume that \( \phi \) contains an irreducible orthogonal representation \( \phi_0 \) with odd dimension \( k \). Let \( a_0 \in A_\phi \) be the element corresponding to \( \phi_0 \). For \( s \in \mathbb{C} \), consider the parameter 
\[
\phi' = \phi_0 + \phi + \phi_0.
\]
Let \( \tau_s = r \cdot |_F^+ \in \text{Irr}(GL_k(F)) \) be the representation corresponding to \( \phi_0 + r \cdot |_F^+ \). We may assume that \( \tau_s \) is realized on a space \( V \), which is independent of \( s \in \mathbb{C} \). Put \( \sigma_s^* = \text{Ind}_{O(V')}(\tau_s \otimes \sigma) \) as above. Then by Desideratum 3.6 (6), \( \sigma_s^0 \) is irreducible and \( \sigma_s^0 \in \Pi_{\phi'} \). Moreover, the canonical injection \( A_\phi \to A_{\phi'} \) is bijective, and we have 
\[
\iota_{c'}(\sigma_s^0)|A_\phi = \iota_{c'}(\sigma).
\]
Note that \( \tau = \tau_0 \) is tempered, so that generic. Fix a nonzero homomorphism 
\[
l : \tau \otimes \sigma \to \mathbb{C}
\]
such that 
\[
l(\sigma(u)v) = \mu_{c'}^+(u)\ell(v)
\]
for \( u \in U' \cap M_P \) and \( v \in \tau \otimes \sigma \), where \( U' = U_0' \rtimes (\epsilon) \) with the maximal unipotent subgroup \( U_0' \) of \( SO(V') \) as in 2.3 and \( M_P = GL_k(F) \times O(V) \) is the Levi subgroup of \( P \). For \( f_s \in \sigma_s^* \), we put 
\[
l_s(f_s) = \int_{U_0} l(f_s(\bar{w}_{c'}^{-1} u_0)) \mu_{c'}^{-1}(u_0) du_0,
\]
where \( \bar{w}_{c'} \in SO(V) \) is the representative of \( w \) defined in 3.3. Then by [CS Proposition 2.1] and [S1 Proposition 3.1], \( l_s(f_s) \) is absolutely convergent for \( Re(s) \gg 0 \), and holomorphic continuation to \( \mathbb{C} \). Moreover, \( l_0 \) gives a nonzero map 
\[
l_0 : \sigma_0^0 \to \mathbb{C}
\]
such that 
\[
l_0(\sigma_0'(u)f_0) = \mu_{c'}^+(u')l_0(f_0)
\]
for \( u' \in U' \) and \( f_0 \in \sigma_0^0 \). By a result of Shahidi ([2] Theorem 3.5]), we have 
\[
l_0 \circ R_{c'}(w, \tau \otimes \sigma) = l_0.
\]
See also [Ar Theorem 2.5.1]. This equation together with Hypothesis 3.10 shows that 
\[
\iota_{c'}(\sigma)(a_0) = \iota_{c'}(\sigma_0^0)(a_0) = 1.
\]
Since \( [A_\phi : A_\phi^+] = 2 \), we have \( \iota_{c'}(\sigma) = 1 \), as desired. Finally, we consider (4). Suppose that \( O(V) \) and \( \phi \in \Phi_{\text{temp}}(O(V)) \) are unramified. By Desideratum 3.2 and Lemma 2.4, \( \Pi_\phi \) contains a unique unramified representation \( \sigma \), which satisfies that \( \iota_{c'}(\sigma)|A_\phi^+ = 1 \). We have to show that \( \iota_{c'}(\sigma) = 1 \). We may assume that \( \phi \in \Phi'(O(V)) \). Since \( \iota_{c'}(\sigma)|A_\phi^+ = 1 \), by Proposition 3.5 (3), we see that \( \sigma \) is \( \mu_{c'} \)-generic, i.e., there is a nonzero homomorphism \( l : \sigma \to \mathbb{C} \) such that 
\[
l(\sigma(u_0)v) = \mu_{c'}(u_0)l(v)
\]
for \( u_0 \in U_0 \) and \( v \in \sigma \). By the Casselman–Shalika formula [CS Theorem 5.4], we have \( l(\sigma^{K_0} \neq 0 \), i.e., if \( v \in \sigma \) is a nonzero \( K_0 \)-fixed vector, then \( l(v) \neq 0 \). Since \( \sigma \otimes \epsilon \neq \sigma \), we have 
\[
l \in \text{Hom}_{U}(\sigma, \mu_{c'}^+)
\]
for some \( \delta \in \{ \pm 1 \} \). However, if \( v \in \sigma \) is a nonzero \( K \)-fixed vector, then we have 
\[
\delta \cdot l(v) = \mu_{c'}^+(\epsilon) \cdot l(v) = l(\sigma(\epsilon)v) = l(v).
\]
This shows that \( \sigma \) is \( \mu_{c'}^+ \)-generic, and so that \( \iota_{c'}(\sigma) = 1 \) by Lemma 2.4 and Desideratum 3.9 (3). □

Now we treat the general case.
Corollary 3.14. Assume Desiderata 3.2, 3.6 and Hypothesis 3.10. Then Desideratum 3.9 holds in general. In particular, it holds for the \( L \)-packets \( \Pi_\phi \cap \mathrm{Irr}(O(V_{2n})) \) of quasi-split \( O(V_{2n}) \) and \( c_1, c_2, c' \in cN_{E/F}(E^x) \) unconditionally.

Proof. This follows from the compatibility of LLC and the Langlands quotients (Desideratum 3.9 (7)). \( \square \)

Remark 3.15. (1) Kaletha proved Proposition 3.13 (1) in [Ka1] Theorem 3.3 by comparing transfer factors. One may feel that the proof of Theorem 3.13 (1) differs from Kaletha’s proof. However to prove Hypothesis 3.10, one would need a similar argument to [Ka1, Theorem 3.3]. The proof of Theorem 3.13 (1) would be essentially the same as the one of [Ka1] Theorem 3.3.

(2) In [At2], the first author gave a proof of “only if” part of Proposition 3.5 (3). This proof is essentially the same as the proof of Desideratum 3.9 (3) (Theorem 3.13).

4. Prasad’s Conjecture

Prasad’s conjecture describes precisely the local theta correspondence for \( (O(V_{2n}), Sp(W_{2n})) \) in terms of the local Langlands correspondence for \( O(V_{2n}) \) and \( Sp(W_{2n}) \). A weaker version of this conjecture has been proven by the first author [At1]. In this section, we state Prasad’s conjecture and give a proof for the full version.

4.1. Local Langlands correspondence for \( Sp(W_{2m}) \). Let \( W_{2m} \) be a symplectic space over \( F \) with dimension \( 2m \). The associated symplectic group is denoted by \( Sp(W_{2m}) \). Fix an \( F \)-rational Borel subgroup \( B' = T'U' \) of \( Sp(W_{2m}) \). By [GGP] §12, there is a canonical bijection (depending on the choice of \( \psi \))

\[
F^\times/F^{x2} \rightarrow \{T'\text{-orbits of generic characters of } U'\}, \ c \mapsto \mu_c'.
\]

The Langlands dual group of \( Sp(W_{2m}) \) is the complex Lie group \( SO(2m + 1, C) \), and \( W_F \) acts on \( SO(2m + 1, C) \) trivially. We denote the \( L \)-group of \( Sp(W_{2m}) \) by \( L(Sp(W_{2m})) = SO(2m + 1, C) \times W_F \). An \( L \)-parameter of \( Sp(W_{2m}) \) is an admissible homomorphism

\[
\phi: WD_F \rightarrow L(Sp(W_{2m})) = SO(2m + 1, C) \times W_F.
\]

We put

\[
\Phi(Sp(W_{2m})) = \{SO(2m + 1, C)\text{-conjugacy classes of } L\text{-parameters of } Sp(W_{2m})\}.
\]

For an \( L \)-parameter \( \phi : WD_F \rightarrow L(Sp(W_{2m})) \), by composing with the projection \( SO(2m + 1, C) \times W_F \rightarrow SO(2m + 1, C) \), we obtain a map

\[
\phi : WD_F \rightarrow SO(2m + 1, C).
\]

The map \( \phi \mapsto \phi \) gives an identification

\[
\Phi(Sp(W_{2m})) = \{\phi : WD_F \rightarrow SO(2m + 1, C)\}/(SO(2m + 1, C)\text{-conjugacy}).
\]

Namely, we regard \( \Phi(Sp(W_{2m})) \) as the set of equivalence classes of orthogonal representations of \( WD_F \) with dimension \( 2m + 1 \) and trivial determinant. We denote the subset of \( \Phi(Sp(W_{2m})) \) consisting of equivalence classes of tempered (resp. discrete, generic) representations by \( \Phi_{\text{temp}}(Sp(W_{2m})) \) (resp. \( \Phi_{\text{disc}}(Sp(W_{2m})) \), \( \Phi_{\text{gen}}(Sp(W_{2m})) \)). Then we have a sequence

\[
\Phi_{\text{disc}}(Sp(W_{2m})) \subset \Phi_{\text{temp}}(Sp(W_{2m})) \subset \Phi_{\text{gen}}(Sp(W_{2m})).
\]

The following theorem are due to Arthur [At1] supplemented by some results of many others (c.f., see the proof of Proposition 3.5. See also [At1] §3, §6.3 and [Ka1] Theorem 3.3).

Theorem 4.1. There exist a surjective map

\[
\mathrm{Irr}_{\text{temp}}(Sp(W_{2m})) \rightarrow \Phi_{\text{temp}}(Sp(W_{2m}))
\]

with the inverse image \( \Pi_\phi \) of \( \phi \in \Phi_{\text{temp}}(Sp(W_{2m})) \), and a bijection

\[
i_c' : \Pi_\phi \rightarrow \hat{A}_{\phi}^+
\]
for \( c \in F^\times \) which satisfy analogues of Desideratum 3.6 (2), (4), and (6). Moreover, using the Langlands classification, we can extend the map \( \pi \mapsto \phi \) to a surjective map

\[
\text{Irr}(\text{Sp}(W_{2m})) \to \Phi(\text{Sp}(W_{2m}))
\]

which satisfies an analogue of Desideratum 3.6 (7). In addition, an analogue to Proposition 3.5 holds. In particular, we have

\[
i'_{c_1}(\pi) = i'_{c_2}(\pi) \cdot \eta_{\phi,c_1/c_2}
\]

for \( \pi \in \Pi_\phi \) and \( c_1, c_2 \in F^\times \).

Note that for \( \phi \in \Phi(\text{Sp}(W_{2n})) \), we have

\[
A_\phi = A_\phi^+ \oplus \langle z_\phi \rangle.
\]

Hence we may identify \( \widehat{A_\phi^+} \) with

\[
(\langle z_\phi \rangle)^\widehat{\subset} \widehat{A_\phi^+}.
\]

Via this identification, we regard \( i'_c \) as an injection

\[
i'_c : \Pi_\phi \to \widehat{\Pi_\phi}.
\]

Let \( \phi_* \) be an orthogonal tempered representation of \( WD_F \), and \( \tau \in \text{Irr}(\text{GL}_k(F)) \) be the tempered representation corresponding to \( \phi_* \). In [Ar], Arthur has defined a normalized intertwining operator \( R(w', \tau \otimes \pi) \) on \( \text{Ind}_Q^{\text{Sp}(W_{2m'})}(\tau \otimes \pi) \) for \( \pi \in \text{Irr}_{\text{temp}}(\text{Sp}(W_{2m})), \) where \( m' = m + k \) and \( Q \) is a parabolic subgroup of \( \text{Sp}(W_{2m'}) \) whose Levi subgroup is \( M_Q \cong \text{GL}_k(F) \times \text{Sp}(W_{2m}). \) See also [At1, § 6.3]. Note that \( \text{Ind}_Q^{\text{Sp}(W_{2m'})}(\tau \otimes \pi) \) is multiplicity-free. An analogue of Hypothesis 6.3 is given as follows:

**Proposition 4.2.** Let \( \phi_\pi \in \Phi_{\text{temp}}(\text{Sp}(W_{2m})) \) and \( \pi \in \Pi_{\phi_\pi} \). We put \( \phi_{\pi'} = \phi_\tau \oplus \phi_\pi \oplus \phi_\tau \). We denote by \( a' \in A_{\phi_{\pi'}} \) the element corresponding to \( \phi_* \). Let \( \pi' \) be an irreducible constituent of \( \text{Ind}_Q^{\text{Sp}(W_{2m'})}(\tau \otimes \pi) \). Then we have

\[
R(w', \tau \otimes \pi) | \pi' = i'_c(\pi')(a').
\]

**Proof.** This follows from Theorems 2.2.1 and 2.4.1 in [At].

4.2. **Local theta correspondence.** We introduce the local theta correspondence induced by a Weil representation \( \omega_{W,V,\psi} \) of \( \text{Sp}(W_{2m}) \times \text{O}(V_{2n}) \), and recall some basic general results.

We have fixed a non-trivial additive character \( \psi \) of \( F \). We denote a Weil representation of \( \text{Sp}(W_{2m}) \times \text{O}(V_{2n}) \) by \( \omega = \omega_{W,V,\psi}. \) Let \( \sigma \in \text{Irr}(\text{O}(V_{2n})). \) Then the maximal \( \sigma \)-isotypic quotient of \( \omega \) is of the form

\[
\Theta(\sigma) \boxtimes \sigma,
\]

where \( \Theta(\sigma) = \Theta_{W,V,\psi}(\sigma) \) is a smooth representation of \( \text{Sp}(W_{2m}). \) It was shown by Kudla [Ku] that \( \Theta(\sigma) \) has finite length (possibly zero). The maximal semi-simple quotient of \( \Theta(\sigma) \) is denoted by \( \theta(\sigma) = \theta_{W,V,\psi}(\sigma) \).

Similarly, for \( \pi \in \text{Irr}(\text{Sp}(W_{2m})), \) we obtain smooth finite length representations \( \Theta(\pi) = \Theta_{V,W,\psi}(\pi) \) and \( \theta(\pi) = \theta_{V,W,\psi}(\pi) \) of \( \text{O}(V_{2n}). \) The Howe duality conjecture, which was proven by Waldspurger [W1] if the residue characteristic is not 2 and by Gan–Takeda [GT1], [GT2] in general, says that \( \theta(\sigma) \) and \( \theta(\pi) \) are irreducible (if they are nonzero).

4.3. **Prasad’s conjecture.** Let \( V \) be an orthogonal space associated to \( (d,c) \), and \( W \) be a symplectic space with \( \dim(V) = \dim(W) = 2n. \) We denote the discriminant character of \( V \) by \( \chi_V. \) Let \( \phi \in \Phi(\text{O}(V)), \) and put

\[
\phi' = (\phi \oplus 1) \otimes \chi_V.
\]

Then we have \( \phi' \in \Phi(\text{Sp}(W)). \) Moreover we have a canonical injection \( A_\phi \hookrightarrow A_{\phi'}. \) We denote the image of \( a \in A_\phi \) by \( a' \in A_{\phi'} \). One should not confuse \( z_\phi' \) with \( z_{\phi'}. \) They satisfy \( z_\phi' = e'_1 + z_{\phi'}. \) where \( e'_1 \in A_{\phi'} \) is the element corresponding to \( \chi_V \subset \phi' \).
Lemma 4.3. For any $\phi \in \Phi(O(V))$, the map 
$$A_{\phi} \rightarrow A_{\phi'} \rightarrow A_{\phi'}/(z_{\phi'})$$
is surjective. It is not injective if and only if $\phi$ contains 1. In this case, the kernel of this map is generated by $e_1 + z_{\phi}$, where $e_1 \in A_{\phi}$ is the element corresponding to 1.

Proof. The map $A_{\phi} \rightarrow A_{\phi'}$ is not surjective if and only if $\phi \in \Phi(O(V))$ and $\phi$ does not contain 1. In this case the cokernel of this map is generated by $e_1'$. Since $z_{\phi}' = e_1' + z_{\phi'}$, we have the surjectivity of $A_{\phi} \rightarrow A_{\phi'} \rightarrow A_{\phi'}/(z_{\phi'})$.

By comparing the order of $A_{\phi}$ with the one of $A_{\phi'}/(z_{\phi'})$, we see that $A_{\phi} \rightarrow A_{\phi'} \rightarrow A_{\phi'}/(z_{\phi'})$ is not injective if and only if $\phi$ contains 1. In this case, the order of the kernel is 2. Since $(e_1 + z_{\phi})' = e_1' + z_{\phi'} = z_{\phi'}$, the kernel is generated by $e_1 + z_{\phi}$.

Prasad’s conjecture is stated as follows:

Conjecture 4.4 (Prasad’s conjecture for $(O(V_2), Sp(W_2))$). Let $V$ and $W$ be an orthogonal space associated to $(d, e)$ and a symplectic space with dim($V$) = dim($W$) = 2n, respectively. We denote by $\chi_V = \chi_d$ the discriminant character of $V$.

Hence Conjecture 4.4 (1) follows from (2) since $z_{\phi}' = e_1' + z_{\phi'}$.

Remark 4.5. (1) Recall that for $\pi \in \Pi_{\phi} \subset \text{Irr}(Sp(W_n))$, the character $\iota_{\phi}^t(\pi)$ of $A_{\phi}$ factors through $A_{\phi'}/(z_{\phi'})$. By Lemma 4.3, we see that $\iota_{\phi}^t(\pi)$ is determined completely by its restriction to $A_{\phi}$.

(2) By Theorem C.5, we know that

- if $\phi$ does not contain 1, then both $\Theta_{W,V^*,\phi}(\pi)$ and $\Theta_{W,V,\phi}(\pi \otimes \det)$ are nonzero;
- if $\phi$ contains 1, then exactly one of $\Theta_{W,V^*,\phi}(\pi)$ or $\Theta_{W,V,\phi}(\pi \otimes \det)$ is nonzero;
- if $\pi = \Theta_{W,V^*,\phi}(\pi)$ is nonzero, then $\pi \in \Pi_{\phi'}$.

Hence Conjecture 4.4 (1) follows from (2) since $z_{\phi}' = e_1' + z_{\phi'}$.

The first main theorem is as follows:

Theorem 4.6. Assume Desideratum 3.2 and Hypothesis 3.10. Then Prasad’s conjecture for $(O(V_2), Sp(W_2))$ (Conjecture 4.4) holds. In particular, it holds unconditionally when $V^* = V$ and $c' \in cN_{E/F}(E^\times)$ with $E = F(\sqrt{d})$.

A weaker version of Prasad’s conjecture (Conjecture 4.4), which is formulated by using Weak LLC for SO($V$) or its translation into O($V$) (i.e., by using $A_+^+$), was proven by [At1] under Desideratum 3.2 and Hypothesis 3.10.

Theorem 4.7 ([At1 §5.5]). Assume Desideratum 3.2 and Hypothesis 3.10 for every $k$. Let $\phi \in \Phi(O(V))$ and put $\phi' = (\phi \oplus 1) \otimes \chi_V \in \Phi(Sp(W))$ as in Conjecture 4.4. For $\sigma \in \Pi_{\phi}$, if $\pi = \Theta_{W,V^*,\phi}(\pi)$ is nonzero, then $\pi \in \Pi_{\phi'}$ and $\iota_{\phi}^t(\pi)|A_0^+ = \iota_{\phi}^t(\sigma)|A_0^+$ for $c' \in E^\times$. In particular, the same unconditionally holds when $V^* = V$ and $c' \in cN_{E/F}(E^\times)$ with $E = F(\sqrt{d})$.

We may consider the theta correspondence for $(Sp(W_{2n-2}), O(V_{2n}))$. There is also Prasad’s conjecture for $(Sp(W_{2n-2}), O(V_{2n}))$.

Conjecture 4.8 (Prasad’s conjecture for $(Sp(W_{2n-2}), O(V_{2n}))$). Let $V$ be an orthogonal space associated to $(d, e)$ with dim($V$) = 2n, and $W$ be a symplectic space with dim($W$) = 2n - 2. We denote by $\chi_V = \chi_d$ the discriminant character of $V$. Let $\phi' \in \Phi(Sp(W))$ and put $\phi = (\phi' \otimes \chi_V) \oplus 1 \in \Phi(O(V))$. For a companion space $V^*$ of $V$, we put

$$e(V^*) = \begin{cases} \chi_V(c'/c) & \text{if } V^* = V, \\ -\chi_V(c'/c) & \text{if } V^* \neq V \end{cases}$$
Let \( \pi \in \Pi_{\phi}. \)

1. \( \Theta_{V^{\cdot}, W, \psi}(\pi) = 0 \) if and only if \( \phi' \) contains \( \chi_V \) and \( \iota_{\phi'}(\pi)(e_1 + z_{\phi'}) = -e(V^{\cdot}). \)
2. Assume that \( \sigma = \theta_{V^{\cdot}, W, \psi}(\pi) \) is nonzero. Then \( \sigma \in \Pi_{\phi} \) and so that there is a canonical injection \( A_{\phi'} \hookrightarrow A_{\phi}. \) Moreover, \( \iota_{\phi'}(\sigma) \) satisfies that
   - \( \iota_{\phi'}(\sigma)(z_{\phi'}) = e(V^{\cdot}); \)
   - \( \iota_{\phi'}(\sigma)|A_{\phi'} = \iota_{\phi'}(\pi) \) for \( \phi' \in F^{\times}. \)

The following theorem shows that Conjecture 4.4 implies Conjecture 4.8.

**Theorem 4.9.** Assume Desideratum 3.6 and Hypothesis 3.10 (so that Conjecture 4.4 holds by Theorem 4.4). Then Prasad’s conjecture for \( (\text{Sp}(W_{2n-2}), \text{O}(V_{2n})) \) (Conjecture 4.8) holds. In particular, it holds unconditionally when \( V^{\cdot} = V \) and \( \phi' \in cN_{E/F}(E^{\times}) \) with \( E = F(\sqrt{d}). \)

**Proof.** The equation \( \iota_{\phi'}(\sigma)(z_{\phi'}) = e(V^{\cdot}) \) follows from Desideratum 3.6 (5) and Proposition 3.5 (1). Under assuming Desideratum 3.2 and Hypothesis 3.10 for even \( k \), the first author showed that \( \iota_{\phi'}(\sigma)|A_{\phi'} = \iota_{\phi'}(\pi)|A_{\phi'} \) for \( \phi' \in F^{\times} \) ([A1] Theorem 1.7). Hence it suffices to show the equation

\[ \iota_{\phi'}(\sigma)(e_1 + z_{\phi'}) = 1, \]

where \( e_1 \) is the element of \( A_{\phi} \) corresponding to \( 1. \) This equation follows from Conjecture 4.4 (Theorem 4.6) together with the tower property (see [Ku]). \( \square \)

### 4.4. Proof of Prasad’s conjecture

In this subsection, we prove Theorem 4.6.

Recall that there is a sequence

\[ \Phi_{\text{temp}}(O(V)) \subset \Phi_{\text{temp}}(O(V)) \subset \Phi(O(V)). \]

First, we reduce Conjecture 4.4 to the case when \( \phi \in \Phi_{\text{temp}}(O(V)). \)

**Lemma 4.10.** If Prasad’s conjecture (Conjecture 4.4) holds for any \( \phi_0 \in \Phi_{\text{temp}}(O(V)), \) then it holds for any \( \phi \in \Phi(O(V)). \)

**Proof.** This follows from a compatibility of LLC, Langlands quotients and theta lifts (Desideratum 3.2 (7) and [GI1] Proposition C.4). \( \square \)

**Lemma 4.11.** Assume Desideratum 3.2 and Hypothesis 3.10. Then Prasad’s conjecture (Conjecture 4.4) holds for any \( \phi \in \Phi_{\text{temp}}(O(V)) \setminus \Phi_{\text{temp}}(O(V)). \)

**Proof.** Since \( A_{\phi} = A_{\phi}, \) this follows from Theorem 4.7. \( \square \)

Hence Prasad’s conjecture (Conjecture 4.4) is reduced to the case when \( \phi \in \Phi_{\text{temp}}(O(V)). \) For this case, the following is the key proposition:

**Proposition 4.12.** Let \( V_{2n} \) and \( W_{2n} \) be an orthogonal space associated to \( (d, c) \) and a symplectic space with \( \dim(V_{2n}) = \dim(W_{2n}) = 2n, \) respectively. Fix a positive integer \( k. \) For a companion space \( V \) of \( V_{2n}, \) put \( V' = V \oplus \mathbb{H}^k. \) Also we set \( W_{2n+2k} = (V_{2n})', \) \( W = W_{2n} \) and \( W' = W_{2n+2k} = W \oplus \mathbb{H}^k. \) Let \( \phi_\tau \) be an irreducible orthogonal tempered representation of \( WD, \) and \( \tau \in \text{Irr}(GL_k(F)) \) be the corresponding representation. For \( \phi_\tau \in \Phi_{\text{temp}}(O(V_{2n})), \) put

\[ \phi_{\sigma'} = \phi_\tau \otimes \phi_\sigma \otimes \phi_\tau \in \Phi_{\text{temp}}(O(V_{2n+2k})), \]
\[ \phi_\pi = (\phi_{\sigma'} + 1) \otimes \chi_V \in \Phi_{\text{temp}}(\text{Sp}(W_{2n})) \]
\[ \phi_{\phi_\tau'} = (\phi_{\sigma'} + 1) \otimes \chi_V = \phi_\tau \chi_V \otimes \phi_\pi \otimes \phi_\tau \chi_V \in \Phi_{\text{temp}}(\text{Sp}(W_{2n+2k})). \]

Let \( \sigma \in \Pi_{\sigma}, \) \( \sigma' \in \Pi_{\sigma}, \) \( \pi \in \Pi_{\phi_\sigma} \) and \( \pi' \in \Pi_{\phi_\pi} \) such that \( \sigma \in \text{Irr}(O(V)) \) for a companion space \( V \) of \( V_{2n}, \)
\( \sigma' \subset \text{Ind}_P^{O(V')}(\tau \otimes \sigma) \) and \( \pi' \subset \text{Ind}_Q^{\text{Sp}(W')}(\tau \chi_V \otimes \pi), \) where \( P \subset O(V') \) and \( Q \subset \text{Sp}(W') \) are suitable parabolic subgroups. Suppose that

- \( \phi_\tau \) is not the trivial representation of \( WD; \)
- \( \pi' = \theta_{W', V', \psi}(\sigma'). \)
We denote by \( a \in A_{\phi_{\sigma}} \) and \( a' \in A_{\phi_{\sigma'}} \) the elements corresponding to \( \phi_{\sigma} \) and \( \phi_{\sigma'\chi_V} \), respectively. Then we have

\[
\iota_{\sigma'}(\sigma')(a) = \iota_{\sigma'}(\pi')(a')
\]

for \( c' \in F^\times \).

**Proof.** The argument is similar to those of [GI2 §8] and [AT1 §7], but it has one difference. So we shall give a sketch of the proof.

Let \( \omega = \omega_{W,V,\psi} \) and \( \omega' = \omega_{W',V,\psi} \). We use a mixed model \( S' = S(V' \otimes Y') \otimes S(X' \otimes W) \) for \( \omega' \), where \( S \) is a space of \( \omega \) (see [AT1 §6.2]). For \( \varphi \in S' \), we define a map \( \tilde{f}(\varphi) : \text{Sp}(W') \times O(V') \to S \) as in [GI2 §8.1] and [AT1 §7.1]. By a similar argument to the proof of [CS] Theorem 8.1, we have \( \pi = \theta_{W,V,\psi}(\sigma) \) (see also [GI1 Proposition C.4]). Fix a nonzero \( \text{Sp}(W) \times O(V) \)-equivariant map

\[
\mathcal{T}_{00} : \omega \times \sigma' \to \pi.
\]

For \( \varphi \in S' \), \( \Phi_{\tau} \in \text{Ind}_{\text{Sp}(W')}^{O(V')} (\tau | \sigma') \), \( g \in \text{Sp}(W') \), \( \tilde{v} \in \tau' \) and \( \tilde{v}_0 \in \pi' \), consider the integral

\[
\langle \mathcal{T}_{0}(\varphi, \Phi_{\tau})(g), \tilde{v} \otimes \tilde{v}_0 \rangle := L(s + 1, \tau)^{-1} \int_{U_{P,O(V')} \backslash O(V')} \langle \mathcal{T}_{00}(\tilde{f}(\varphi)(g, h)), (\Phi_{\tau}(h), \tilde{v}) \rangle, \tilde{v}_0 \rangle dh.
\]

Then one can show that

1. the integral \( \langle \mathcal{T}_{0}(\varphi, \Phi_{\tau})(g), \tilde{v} \otimes \tilde{v}_0 \rangle \) is absolutely convergent for \( \text{Re}(s) > -1 \) and admits a holomorphic continuation to \( \mathbb{C} \);
2. \( \mathcal{T}_{0} \) gives an \( \text{Sp}(W') \times O(V') \)-equivariant map

\[
\mathcal{T}_{0} : \omega' \otimes \text{Ind}_{\text{Sp}(W')}^{O(V')} (\tau | \sigma') \to \text{Ind}_{\text{Sp}(W')}^{\text{Sp}(W')}(\tau' \chi_V | \sigma').
\]

See [GI2 Lemmas 8.1–8.2] and [AT1 Proposition 7.2]. The one difference is that our case does not satisfy an analogue of [GI2 Lemma 8.3]. So we have to modify this lemma. One can show that

3. if \( L(-s, \tau') \) is regular at \( s = 0 \), then for any \( \Phi \in \text{Ind}_{\text{Sp}(W')}^{O(V')} (\tau \otimes \sigma') \) with \( \Phi \neq 0 \), there exists \( \varphi \in \omega' \) such that \( \tilde{T}_{0}(\varphi', \Phi) \neq 0 \).

Since \( \phi_{\sigma} \) is irreducible and tempered, \( L(-s, \tau') \) is regular at \( s = 0 \) if and only if \( \phi_{\sigma} \) is not the trivial representation of \( WD_F \).

By the same calculation as [GI2 Proposition 8.4] and [AT1 Corollary 7.4], one can show that

4. for \( \Phi \in \text{Ind}_{\text{Sp}(W')}^{O(V')} (\tau \otimes \sigma') \) and \( \varphi \in \omega' \), we have

\[
R(w', \tau' \chi_V \otimes \pi) \tilde{T}_{0}(\varphi, \Phi) = \omega_{\tau' \chi_V}(c') \cdot \tilde{T}_{0}(\varphi, R_{\psi}(w, \tau \otimes \sigma')) \Phi.
\]

Here, we use the fact that

\[
\gamma_{\pi}^{-1} \cdot \lambda(E/F, \psi) = e(V) \cdot \chi_V(c),
\]

where \( \gamma_{\pi} \) is the Weil constant associated to \( V \) which appears on the explicit formula for \( \omega' \), and \( \lambda(E/F, \psi) \) is the Langlands constant which appears on the normalizing factor of \( R_{\psi}(w, \tau \otimes \sigma') \).

By the same argument as [AT1 Lemma 7.5], (3) and (4) together with Hypothesis 3.10 and Proposition 4.2 imply that

5. \( \iota_{\sigma'}(\sigma')(a) = \omega_{\tau' \chi_V}(c') \cdot \iota_{\tau}(\sigma')(a') \).

Since \( \omega_{\tau' \chi_V}(c') = \det(\phi_{\tau' \chi_V})(c') = \det(\phi_{\tau' \chi_V}')(c') \), we have

6. \( \omega_{\tau' \chi_V}(c') \cdot \iota_{\tau}(\sigma')(a') = \iota_{\tau}(\sigma')(a') \).

The equations (5) and (6) imply the desired equation. \( \square \)

Theorem 4.7 and Proposition 4.12 imply Prasad’s conjecture (Theorem 4.6).

**Proof of Theorem 4.6.** By Remark 4.5 (2) and Lemmas 4.10 and 4.11 we only consider Conjecture 4.4 (2) for \( \phi_{\sigma} \in \Phi_{\text{temp}}(O(V)) \). Hence \( \phi_{\sigma} \) contains an irreducible orthogonal representation \( \varphi_0 \) with odd dimension \( k_0 \). Put \( \phi_{\sigma} = (\phi_{\sigma} \oplus 1) \otimes \chi_V \). Let \( \sigma \in \Pi_{\phi_{\sigma}} \) and assume that \( \pi = \theta_{W,V,\psi}(\sigma) \) is nonzero. Hence we have \( \pi \in \Pi_{\phi_{\sigma}} \).
Let \( a_0 \in A_{\phi_\sigma} \) (resp. \( a'_0 \in A_{\phi_n} \)) be the element corresponding to \( \phi_0 \) (resp. \( \phi_0 \chi_V \)). Since \([A_{\phi_\sigma}: A^+_{\phi_\sigma}] = 2\), by Theorem 4.14, it is enough to show that
\[
\iota'_{c'}(\sigma)(a_0) = \iota'_{c'}(\pi)(a'_0)
\]
for \( c' \in F^\times \). We choose an irreducible orthogonal tempered representation \( \phi_\tau \) of \( WD_F \) such that
- \( \phi_\tau \) is not the trivial representation;
- \( \phi_\tau \) is not contained in \( \phi_\sigma \);
- \( k = \dim(\phi_\tau) \) is odd.

Put \( \phi_{\sigma'} = \phi_\tau \oplus \phi_\sigma \oplus \phi_\tau \) and \( \phi_{\tau'} = \phi_\tau \chi_V \oplus \phi_\tau \oplus \phi_\tau \chi_V \). Let \( a_\tau \in A_{\phi_{\sigma'}} \) (resp. \( a'_\tau \in A_{\phi_{\tau'}} \)) be the element corresponding to \( \phi_\tau \) (resp. \( \phi_\tau \chi_V \)). The claims (2) and (3) in the proof of Proposition 4.12, there exist \( \sigma' \in \text{Ind}_{P}^{O(V'^*)}(\tau \otimes \sigma) \) and \( \pi' \in \text{Ind}_{Q}^{\text{Sp}(W')}((\tau \chi_V \otimes \pi) \) such that \( \pi' = \theta_{W', V'^*, \psi}(\sigma') \). By Proposition 4.12 we have
\[
\iota'_{c'}(\sigma')(a_\tau) = \iota'_{c'}(\pi')(a'_\tau).
\]

On the other hand, we know
\[
\iota'_{c'}(\sigma')(a_\tau + a_0) = \iota'_{c'}(\pi')(a'_\tau + a'_0)
\]
by Theorem 4.14. Hence we have
\[
\iota'_{c'}(\sigma')(a_0) = \iota'_{c'}(\pi')(a'_0).
\]
Since \( \iota'_{c'}(\sigma'|A_{\phi_\sigma} = \iota'_c(\sigma) \) and \( \iota'_{c'}(\pi'|A_{\phi_n} = \iota'_c(\pi) \), we have
\[
\iota'_{c'}(\sigma)(a_0) = \iota'_{c'}(\pi)(a'_0).
\]
This completes the proof. \( \square \)

**Remark 4.13.** One may feel that Prasad’s conjecture (Conjecture 4.4) can be proven by a similar way to [At1] Theorem 1.7 ([7]) without assuming the weaker version of Prasad’s conjecture (Theorem 4.7). However, because of the lack of an analog of [Gi2] Lemma 8.3, the same method as [At1] can not be applied to Prasad’s conjecture for \( (O(V_{2n}), \text{Sp}(W_2)) \) when \( \phi \in \Phi(O(V_{2n})) \) contains 1.

5. **Gross–Prasad conjecture**

Gross and Prasad gave a conjectural answer for a restriction problem for special orthogonal groups. For the tempered case, this conjecture has been proven by Waldspurger [W2], [W3], [W5], [W6]. In this section, we recall the Gross–Prasad conjecture and consider an analogous restriction problem for orthogonal groups.

5.1. **Local Langlands correspondence for \( O(V_{2n+1}) \).** Let \( V_m \) be an orthogonal space of dimension \( m \). Recall that the discriminant of \( V_m \) is defined by
\[
\text{disc}(V_m) = 2^{-m}(-1)^{\frac{m(m-1)}{2}} \det(V_m) \in F^\times / F^{\times 2}.
\]
An orthogonal space \( V_m^* \) is a companion space of \( V_m \) if \( \dim(V_m^*) = \dim(V_m) \) and \( \text{disc}(V_m^*) = \text{disc}(V_m) \).

Let \( V_{2n+1} \) be an orthogonal space over \( F \) with dimension \( 2n + 1 \). We denote the orthogonal group and the special orthogonal group associated to \( V_{2n+1} \) by \( O(V_{2n+1}) \) and \( SO(V_{2n+1}) \), respectively. Suppose that \( O(V_{2n+1}) \) is split.

We say that a representation \( \phi \) of \( WD_F \) is symplectic if \( \phi \) admits a non-degenerate symplectic bilinear form which is \( WD_F \)-invariant. More precisely, see [CGP] §3.

The Langlands dual group of \( SO(V_{2n+1}) \) is the complex Lie group \( \text{Sp}(2n, \mathbb{C}) \), and \( WD_F \) acts on \( \text{Sp}(2n, \mathbb{C}) \) trivially. We denote the \( L \)-group of \( SO(V_{2n+1}) \) by \( L(SO(V_{2n+1})) = \text{Sp}(2n, \mathbb{C}) \times WD_F \). An \( L \)-parameter of \( SO(V_{2n+1}) \) is an admissible homomorphism
\[
\phi: WD_F \to L(SO(V_{2n+1})) = \text{Sp}(2n, \mathbb{C}) \times WD_F.
\]
We put \( \Phi(SO(V_{2n+1})) = \{ \text{Sp}(2n, \mathbb{C}) \text{-conjugacy classes of } L \text{-parameters of } SO(V_{2n+1}) \} \).

For an \( L \)-parameter \( \phi: WD_F \to L(SO(V_{2n+1})) \), by composing with the projection \( \text{Sp}(2n, \mathbb{C}) \times WD_F \to \text{Sp}(2n, \mathbb{C}) \), we obtain a map
\[
\phi: WD_F \to \text{Sp}(2n, \mathbb{C}).
\]
The map \( \phi \mapsto \phi \) gives an identification
\[
\Phi(\text{SO}(V_{2n+1})) = \{ \phi : WD_F \to \text{Sp}(2n, \mathbb{C}) \}/(\text{Sp}(2n, \mathbb{C})\text{-conjugacy}).
\]
Namely, we regard \( \Phi(\text{SO}(V_{2n+1})) \) as the set of equivalence classes of symplectic representations of \( WD_F \) with dimension \( 2n \). We denote the subset of \( \Phi(\text{SO}(V_{2n+1})) \) consisting of equivalence classes of tempered (resp. discrete, generic) representations by \( \Phi_{\text{temp}}(\text{SO}(V_{2n+1})) \) (resp. \( \Phi_{\text{disc}}(\text{SO}(V_{2n+1})) \), \( \Phi_{\text{gen}}(\text{SO}(V_{2n+1})) \)).

Then we have a sequence
\[
\Phi_{\text{disc}}(\text{SO}(V_{2n+1})) \subset \Phi_{\text{temp}}(\text{SO}(V_{2n+1})) \subset \Phi_{\text{gen}}(\text{SO}(V_{2n+1})).
\]

We expect a similar desideratum for \( \text{SO}(V_{2n+1}) \) to Desideratum 3.6. Namely, for \( \phi \in \Phi(\text{SO}(V_{2n+1})) \), we expect there are an \( L \)-packet \( \Pi_0^{\phi} \subset \bigcup_{V_{2n+1}} \text{Irr}(\text{SO}(V_{2n+1})) \), and a canonical bijection
\[
\iota : \Pi_0^{\phi} \to \hat{A}_\phi,
\]
which satisfy similar properties to Desideratum 3.6. Here, \( V_{2n+1} \) runs over all companion spaces of \( V_{2n+1} \).

Note that \( A_\phi = A_\phi^+ \) for \( \phi \in \Phi(\text{SO}(V_{2n+1})) \).

For the (quasi-)split case, it is known by Arthur [Ar].

**Theorem 5.1.** There exist a surjective map
\[
\text{Irr}_{\text{temp}}(\text{SO}(V_{2n+1})) \to \Phi_{\text{temp}}(\text{SO}(V_{2n+1}))
\]
with the inverse image \( \Pi_0^{\phi} \) of \( \phi \in \Phi_{\text{temp}}(\text{SO}(V_{2n+1})) \), and a canonical bijection
\[
\iota : \Pi_0^{\phi} \to (A_\phi^+/\{z_\phi\})^\sim
\]
which satisfy analogues of Desideratum 3.6 (2), (4), and (6). Moreover, using the Langlands classification, we can extend the map \( \tau \mapsto \phi \) to a surjective map
\[
\text{Irr}(\text{SO}(V_{2n+1})) \to \Phi(\text{SO}(V_{2n+1}))
\]
which satisfies an analogue of Desideratum 3.6 (7).

Mœglin’s work in [M2 §1.4, Theorem 1.4.1] seems to extend This theorem to the pure inner forms as well. Since \( \text{O}(V_{2n+1}^\bullet) \) is the direct product
\[
\text{O}(V_{2n+1}^\bullet) = \text{SO}(V_{2n+1}^\bullet) \times \{ \pm 1_{V_{2n+1}^\bullet} \},
\]
any \( \tau \in \text{Irr}(\text{O}(V_{2n+1}^\bullet)) \) is determined by its restriction \( \tau|_{\text{SO}(V_{2n+1}^\bullet)} \in \text{Irr}(\text{SO}(V_{2n+1}^\bullet)) \) and its central character \( \omega_\tau \in \{ \pm 1_{V_{2n+1}^\bullet} \}^\sim \{ \pm 1 \} \). We define \( \Phi(\text{O}(V_{2n+1})) \) by
\[
\Phi(\text{O}(V_{2n+1})) := \Phi(\text{SO}(V_{2n+1})) \times \{ \pm 1 \}.
\]

For \( (\phi, b) \in \Phi(\text{O}(V_{2n+1})) \), we put
\[
\Pi_{\phi, b} = \{ \tau \in \text{Irr}(\text{O}(V_{2n+1}^\bullet)) \mid \tau|_{\text{SO}(V_{2n+1}^\bullet)} \in \Pi_0^{\phi}, \ \omega_\tau(-1) = b \}.
\]

Then we have a canonical bijection
\[
\Pi_{\phi, b} \xrightarrow{\text{Res}} \Pi_0^{\phi} \xrightarrow{\iota} \hat{A}_\phi,
\]
which is also denoted by \( \iota \). Also we have
\[
\Pi_{\phi, -b} = \Pi_{\phi, b} \otimes \text{det}.
\]
5.2. Gross–Prasad conjecture for special orthogonal groups. In this subsection, we recall the Gross–Prasad conjecture.

Let $V_{m+1}$ be an orthogonal space of dimension $m + 1$, and $V_m$ be a non-degenerate subspace of $V_{m+1}$ with codimension 1. We denote by $V_{\text{even}}$ (resp. $V_{\text{odd}}$) the space $V_m$ or $V_{m+1}$ such that dim($V_{\text{even}}$) is even (resp. dim($V_{\text{odd}}$) is odd). Suppose that $SO(V_m) \times SO(V_{m+1})$ is quasi-split. We put $c = -\text{disc}(V_{\text{odd}})/\text{disc}(V_{\text{even}}) \in F^*/F^{*2}$. Then $V_{\text{even}}$ is associated to $(\text{disc}(V_{\text{even}}), c)$. We say that a pair $(V_m^*, V_{m+1}^*)$ of companion spaces of $(V_m, V_{m+1})$ is relevant if $V_m \subset V_{m+1}$. Then we have a diagonal map

$$\Delta: O(V_m^*) \to O(V_m^*) \times O(V_{m+1}^*).$$

By [AGRS] and [W4], for $\sigma_0 \in \text{Irr}(SO(V_{\text{even}}^*))$ and $\tau_0 \in \text{Irr}(SO(V_{\text{odd}}^*))$, we have

$$\text{dim}_{\mathbb{C}} \text{Hom}_{\Delta SO(V_m^*)}((\sigma_0 \boxtimes \tau_0, \mathbb{C}) \leq 1.$$

Choose $\varepsilon \in O(V_m^*)$ such that det($\varepsilon$) = $-1$. We extend $\tau_0$ to an irreducible representation $\tau$ of $O(V_{\text{odd}}^*)$. For $\varphi \in \text{Hom}_{\Delta SO(V_m^*)}((\sigma_0 \boxtimes \tau_0, \mathbb{C})$, we put

$$\varphi' = \varphi \circ (1 \boxtimes \tau(\varepsilon)).$$

Then we have $\varphi' \in \text{Hom}_{\Delta SO(V_m^*)}(\sigma_0' \boxtimes \tau_0, \mathbb{C})$, and the map $\varphi \mapsto \varphi'$ gives an isomorphism

$$\text{Hom}_{\Delta SO(V_m^*)}(\sigma_0 \boxtimes \tau_0, \mathbb{C}) \cong \text{Hom}_{\Delta SO(V_m^*)}(\sigma_0' \boxtimes \tau_0, \mathbb{C}).$$

Therefore, $\text{dim}_{\mathbb{C}} \text{Hom}_{\Delta SO(V_m^*)}(\sigma_0 \boxtimes \tau_0, \mathbb{C})$ depends only on

$$((\sigma_0], \tau_0) \in \text{Irr}(SO(V_{\text{even}}^*)) / \sim_{\varepsilon} \times \text{Irr}(SO(V_{\text{odd}}^*).$$

The Gross–Prasad conjecture determines this dimension in terms of Weak LLC for $SO(V_{\text{even}}^*)$ and LLC for $SO(V_{\text{odd}}^*)$.

Let $\phi \in \Phi_{\text{temp}}(SO(V_{\text{even}}^*)) / \sim_{\varepsilon}$ and $\phi' \in \Phi_{\text{temp}}(SO(V_{\text{odd}}^*))$. Following [GGP §6], for semi-simple elements $a \in C_{\phi}$ and $a' \in C_{\phi'}$, we put

$$\chi_{\phi'}(a) = \varepsilon(\phi^a \otimes \phi') \cdot \det(\phi^a)(-1)^{\frac{1}{2}\text{dim}(\phi')},$$

$$\chi_{\phi}(a') = \varepsilon(\phi \otimes \phi'^a) \cdot \det(\phi)(-1)^{\frac{1}{2}\text{dim}(\phi'^a)}.$$ 

Here, $\varepsilon(\phi^a \otimes \phi') = \varepsilon(1/2, \phi^a \otimes \phi', \psi)$ and $\varepsilon(\phi \otimes \phi'^a) = \varepsilon(1/2, \phi \otimes \phi'^a, \psi)$ are the local root numbers, which are independent of the choice of $\psi$. By [GGP Proposition 10.5], $\chi_{\phi'}$ and $\chi_{\phi}$ define characters on $A_{\phi}$ and on $A_{\phi'}$, respectively.

The following is a result of Waldspurger [W2], [W3], [W5], [W6].

**Theorem 5.2** (Gross–Prasad conjecture for special orthogonal groups). Let $V_{m+1}$ be an orthogonal space of dimension $m + 1$, and $V_m$ be a non-degenerate subspace of $V_{m+1}$ with codimension 1. Suppose that $SO(V_m) \times SO(V_{m+1})$ is quasi-split. We put $c = -\text{disc}(V_{\text{odd}})/\text{disc}(V_{\text{even}}) \in F^*/F^{*2}$, so that $V_{\text{even}}$ is associated to $(\text{disc}(V_{\text{even}}), c)$. Assume

- Weak LLC for $SO(V_{\text{even}})$ (Desideratum 3.4);
- LLC for $SO(V_{\text{odd}})$ (an analogue of Desideratum 3.4 for $SO(V_{\text{odd}})$).

Let $\phi \in \Phi_{\text{temp}}(SO(V_{\text{even}}^*)) / \sim_{\varepsilon}$ and $\phi' \in \Phi_{\text{temp}}(SO(V_{\text{odd}}^*))$. Then there exists a unique pair $((\sigma_0], \tau_0) \in \Pi_{\phi}^0 \times \Pi_{\phi'}^0$ such that $\sigma_0 \boxtimes \tau_0$ is a representation of $SO(V_{\text{even}}^*) \times SO(V_{\text{odd}}^*)$ with a relevant pair $(V_{\text{even}}^*, V_{\text{odd}}^*)$ of companion spaces of $(V_{\text{even}}, V_{\text{odd}})$, and

$$\text{Hom}_{\Delta SO(V_m^*)}((\sigma_0 \boxtimes \tau_0, \mathbb{C}) \neq 0.$$

Moreover, $i_c([\sigma_0]) \times i(\tau_0)$ satisfies that

$$i_c([\sigma_0]) \times i(\tau_0) = (\chi_{\phi'}|_{A_{\phi}^+}) \times \chi_{\phi}.$$ 

In particular, the same unconditionally holds for quasi-split $SO(V_m) \times SO(V_{m+1})$. 


5.3. Gross–Prasad conjecture for orthogonal groups. Let $V_{m+1}$ be an orthogonal space of dimension $m+1$, and $V_m$ be a non-degenerate subspace of $V_{m+1}$ with codimension 1. In [AGRS], Aizenbud, Gourevitch, Rallis and Schiffmann showed that

$$\dim_C \text{Hom}_{O(V_{m+1})}(\sigma \boxtimes \tau, C) \leq 1$$

for $\sigma \in \text{Irr}(O(V_{\text{even}}))$ and $\tau \in \text{Irr}(O(V_{\text{odd}}))$. The following conjecture determines this dimension for $(\sigma, \tau) \in \text{Irr}(O(V_{\text{even}})) \times \text{Irr}(O(V_{\text{odd}}))$.

Let $\phi \in \Phi(O(V_{2n}))$. For $b \in \{\pm 1\}$ and $a \in C_{\phi}$, we put

$$d_{\phi,b}(a) = i^{\dim(\phi a)}.$$

By [GGP, §4], $d_{\phi,b}$ defines a character on $A_{\phi}$. Note that $d_{\phi,b}$ is trivial on $A_{\phi}^+$. 

**Conjecture 5.3** (Gross–Prasad conjecture for orthogonal groups). Let $V_{m+1}$ be an orthogonal space of dimension $m+1$, and $V_m$ be a non-degenerate subspace of $V_{m+1}$ with codimension 1. Suppose that $O(V_m) \times O(V_{m+1})$ is quasi-split. We put $c = -\text{disc}(V_{\text{odd}})/\text{disc}(V_{\text{even}}) \in F^*/F^{x^2}$, so that $O(V_{m+1})$ is associated to $(\text{disc}(V_{\text{even}}), c)$. Let $\lambda \in \Phi_{\text{temp}}(O(V_{\text{even}}))$ and $(\phi, b) \in \Phi_{\text{temp}}(O(V_{\text{odd}}))$. Then there exists a unique pair $(\sigma, \tau) \in \Pi \times \Pi$ such that $\sigma \boxtimes \tau$ is a representation of $O(V_{m+1}) \times O(V_{m+1})$ with a relevant pair $(V_{\text{even}}^*, V_{\text{odd}}^*)$ of companion spaces of $(V_{\text{even}}, V_{\text{odd}})$, and

$$\text{Hom}_{O(V_{m+1})}(\sigma \boxtimes \tau, C) \neq 0.$$ 

Moreover, $\iota_c(\sigma) \times \iota(\tau)$ satisfies that

$$\iota_c(\sigma) \times \iota(\tau) = (\chi_{\phi'} \cdot d_{\phi,b}) \times \chi_{\phi}.$$

**Remark 5.4.** Let $V_{2n+1} = V_{2n} \oplus L$ be an orthogonal space of dimension $2n+1$, and $V_{2n}$ be a non-degenerate subspace of $V_{2n+1}$ with codimension 1. The stabilizer of the line $L$ in $O(V_{2n+1})$ is the subgroup:

$$S(O(V_{2n}) \times O(L)) = \{(g_1, g_2) \in O(V_{2n}) \times O(L) \mid \det(g_1) = \det(g_2)\},$$

which is isomorphic to $O(V_{2n})$ by the first projection. Then the restriction problem of $O(V_{2n}) \subset O(V_{2n+1})$ is equivalent to the one of $S(O(V_{2n}) \times O(L)) \subset O(V_{2n+1})$. Indeed, let $\tau$ be an irreducible representation of $SO(V_{2n+1})$, and $\tau^b$ the extension of $\tau$ to $O(V_{2n+1})$ satisfying $\tau^b(-1_{V_{2n+1}}) = b \cdot \text{id}$ for $b \in \{\pm 1\}$. For $\sigma \in \text{Irr}(O(V_{2n}))$, define $\sigma^b \in \text{Irr}(O(V_{2n}))$ by

$$\sigma^b(g) = \begin{cases} \sigma(g) & \text{if } \det(g) = 1, \\ b \cdot \omega_{\sigma}(-1) \cdot \sigma(g) & \text{if } \det(g) = -1. \end{cases}$$

Here, $\omega_{\sigma}$ denotes the central character of $\sigma$, which is regarded as a character of $\{\pm 1\}$. We regard $\sigma^b$ as an irreducible representation of $S(O(V_{2n}) \times O(L))$ by pulling back via the first projection. Then we have an identification

$$\text{Hom}_{O(V_{2n})}(\tau^b \otimes \sigma, C) = \text{Hom}_{S(O(V_{2n}) \times O(L))}(\tau \otimes \sigma^b, C).$$

Using this equation, we see that a result of Prasad ([P3, Theorem 4]) follows from Conjecture 5.3 for $m = 2$.

In [5.3] we review another result of Prasad [P3] for a low rank case and check that it is compatible with Conjecture 5.3. In [5.5] we will prove Conjecture 5.3 under assuming LLC for $O(V_m) \times O(V_{m+1})$ and Hypothesis 8.10.

5.4. Low rank cases. In [P3], D. Prasad extended a theorem on trilinear forms of three representations of $GL_2(F)$ ([P1, Theorem 1.4]). In this subsection, we check this theorem follows from Conjecture 5.3.

First, we recall a theorem on trilinear forms. Let $D$ be the (unique) quaternion division algebra over $F$. For an irreducible representation $\pi$ of $GL_2(F)$, let $\pi'$ be the Jacquet–Langlands lift of $\pi$ if $\pi$ is an essentially discrete series representation, and put $\pi' = 0$ otherwise. Also, for a representation $\phi$ of $WD_F$, if $\det(\phi) = 1$, we write $\varepsilon(\phi) = \varepsilon(1/2, \phi, \psi)$, which is independent of a non-trivial additive character $\psi$ of $F$.

**Theorem 5.5** ([P1, Theorem 1.4]). For $i = 1, 2, 3$, let $\pi_i$ be an irreducible infinite-dimensional representation of $GL_2(F)$ with central character $\omega_{\pi_i}$. Assume that $\omega_{\pi_1} \omega_{\pi_2} \omega_{\pi_3} = 1$. We denote the representation of $WD_F$ corresponding to $\pi_i$ by $\phi_i$. Then:
Hence if representations, i.e., $\pi$ here, if $\pi$ of $\mathrm{GSO}(V)$ of trace zero elements (resp. reduced trace zero elements). Let $SO(V)$ be an orthogonal space with
\[
\langle x, y \rangle_{V} = \tau(xy^*),
\]
where $y \mapsto y^*$ is the main involution and $\tau(x)$ is the reduced trace of $x$; for an orthogonal space $V_{2n}$ with even dimension $2n$, the similitude special orthogonal group $\mathrm{GO}(V_{2n})$ is defined by
\[
\mathrm{GO}(V_{2n}) = \{ g \in \mathrm{GL}(V_{2n}) \mid \langle \varepsilon g_1, \varepsilon g_2 \rangle_{V} = \nu(g)\langle v_1, v_2 \rangle_{V_{2n}}, \nu(g) \in F^\times \text{ for any } v_1, v_2 \in V_{2n} \}
\]
and $\mathrm{GSO}(V_{2n})$ is defined by
\[
\mathrm{GSO}(V_{2n}) = \{ g \in \mathrm{GO}(V_{2n}) \mid \det(g) = \nu(g)^n \};
\]
- $\Delta_1$ and $\Delta_2$ are the diagonal embeddings;
- $\rho_1$ and $\rho_2$ are given by
  \[
  \rho_1(g_1, g_2)x = g_1 x g_2^{-1}, \quad \rho_2(g_1, g_2)x' = g_1' x' g_2^{-1}
  \]
  for $g_1, g_2 \in \mathrm{GL}(F), x \in V_4, g_1', g_2' \in D^\times$ and $x' \in V'_4$.
Hence if $\omega_{\pi_1} \omega_{\pi_2} = \omega_{\pi_3} = 1$, then $\pi_1 \otimes \pi_2$ (resp. $\pi'_1 \otimes \pi'_2$) is regarded as a representation $\tilde{\sigma}$ of $\mathrm{GSO}(V'_4)$ (resp. $\tilde{\sigma}'$ of $\mathrm{GSO}(V'_4)$). The restriction of $\tilde{\sigma}$ to $SO(V_4)$ (resp. $\tilde{\sigma}'$ to $SO(V'_4)$) decomposes into a direct sum of irreducible representations, i.e.,
\[
\tilde{\sigma}|SO(V_4) = \sigma_1 \oplus \cdots \oplus \sigma_r \quad (\text{resp. } \tilde{\sigma}'|SO(V'_4) = \sigma'_1 \oplus \cdots \oplus \sigma'_{r'}).
\]
Let $\phi_r = \phi_1 \otimes \phi_2$. Then we have $\phi_r \in \Phi(SO(V_4))/\sim_r$, and the $L$-packet $\Pi^{0}_{\phi_r}$ is given by
\[
\Pi^{0}_{\phi_r} = \{ [\sigma_i] \mid i = 1, \ldots, r \} \cup \{ [\sigma'_i] \mid i = 1, \ldots, r' \}.
\]
Here, if $\pi'_1 \otimes \pi'_2 = 0$, we neglect $\{ [\sigma'_i] \}$.

On the other hand, if $\omega_{\pi_1} = 1$, then $\pi_3$ (resp. $\pi'_3$) is regarded as a representation $\tau$ of $SO(V_3)$ (resp. $\tau'$ of $SO(V'_3)$), where $V_3$ (resp. $V'_3$) is the orthogonal space of dimension $3$, discriminant $-1$, and such that $\mathrm{SO}(V_3)$ is split (resp. $\mathrm{SO}(V'_3)$ is not split). We identify $V_3$ (resp. $V'_3$) with the subspace of $V_4$ (resp. $V'_4$) consisting of trace zero elements (resp. reduced trace zero elements). Let $\phi_r = \phi_3: WD_F \to \mathrm{SL}_2(\mathbb{C})$. Then we have $\phi_r \in \Phi(SO(V_3))$, and the $L$-packet $\Pi^{0}_{\phi_r}$ is given by
\[
\Pi^{0}_{\phi_r} = \{ \tau, \tau' \}.
\]
Here, if $\pi'_3 = 0$, we neglect $\tau'$.

We embed $\mathrm{GL}_2(F)$ into $\mathrm{GL}_2(F) \times \mathrm{GL}_2(F)$ (resp. $\mathrm{D}^\times$ into $\mathrm{D}_1^\times \times \mathrm{D}_2^\times$) as the diagonal subgroup. This embedding induces the inclusion $\mathrm{SO}(V_3) \to \mathrm{SO}(V_4)$ (resp. $\mathrm{SO}(V'_3) \to \mathrm{SO}(V'_4)$). Then we conclude that
- there exists a nonzero $\mathrm{GL}_2(F)$-invariant linear form on $\pi_1 \otimes \pi_2 \otimes \pi_3$ if and only if $\text{Hom}_{SO(V_3)}(\sigma_i \otimes \tau, \mathbb{C}) \neq 0$ for some $i = 1, \ldots, r$;
- there exists a nonzero $\mathrm{D}^\times$-invariant linear form on $\pi'_1 \otimes \pi'_2 \otimes \pi'_3$ if and only if $\text{Hom}_{SO(V'_3)}(\sigma'_i \otimes \tau', \mathbb{C}) \neq 0$ for some $i = 1, \ldots, r'$;
- $\varepsilon(\phi_1 \otimes \phi_2 \otimes \phi_3) = \varepsilon(\phi_r \otimes \phi_r) = \chi_{\phi_r}(z_{\phi_r}) = \chi_{\phi_r}(z_{\phi_r})$. 

EVEN ORTHOGONAL GROUPS 27
Hence Theorem 5.2 implies Theorem 5.5 for tempered $\pi_1, \pi_2$ and $\pi_3$ when $\omega_{\pi_1}, \omega_{\pi_2} = \omega_{\pi_3} = 1$.

Next, we recall [P3, Theorem 3], which is an extension of Theorem 5.3. This is the case when $\pi_1 = \pi_2$. Note that $\pi_1 \otimes \pi_1 = \text{Sym}^2(\pi_1) \oplus \Lambda^2(\pi_1)$. Also, for a representation $\phi_1$ of $W F$, we have $\phi_1 \otimes \phi_1 = \text{Sym}^2(\phi_1) \oplus \Lambda^2(\phi_1)$.

**Theorem 5.6 ([P3, Theorem 3]).** Let $\pi_1$ and $\pi_3$ be irreducible admissible infinite-dimensional representations of $GL_2(F)$. Assume that $\omega_{\pi_1}^2, \omega_{\pi_3} = 1$. We denote the representation of $W F$ corresponding to $\pi_1$ by $\phi_1$. Then:

- $\text{Sym}^2(\pi_1) \otimes \pi_3$ has a $GL_2(F)$-invariant linear form if and only if $\varepsilon(\text{Sym}^2(\phi_1) \otimes \phi_3) = \omega_{\pi_1}(-1)$ and $\varepsilon(\Lambda^2(\phi_1) \otimes \phi_3) = -\omega_{\pi_1}(-1)$;
- $\Lambda^2(\pi_1) \otimes \pi_3$ has a $GL_2(F)$-invariant linear form if and only if $\varepsilon(\text{Sym}^2(\phi_1) \otimes \phi_3) = -\omega_{\pi_1}(-1)$ and $\varepsilon(\Lambda^2(\phi_1) \otimes \phi_3) = -\omega_{\pi_1}(-1)$.

We check that GP conjecture (Conjecture 5.3) implies this theorem for tempered $\pi_1$ and $\pi_3$ such that $\omega_{\pi_1} = 1$ and $\omega_{\pi_3} = 1$. Consider the group $(GL_2(F) \times GL_2(F)) \times \langle c \rangle$, where $c^2 = 1$ and $c$ acts on $GL_2(F) \times GL_2(F)$ by the exchange of the two factors of $GL_2(F)$. Then $\rho_1 : GL_2(F) \times GL_2(F) \to \text{GSO}(V_4)$ gives a surjection

$$\rho_1 : (GL_2(F) \times GL_2(F)) \times \langle c \rangle \to \text{GSO}(V_4) \times \langle c \rangle \cong \text{GO}(V_4).$$

Here, we identify $c$ as the element in $O(V_4)$ which acts on $V_3$ by $-1$ and on the orthogonal complement of $V_3$ by $+1$. There are two extensions of the representation $\tilde{\sigma}|SO(V_4) = \sigma_1 \oplus \cdots \oplus \sigma_r$ of $SO(V_4)$ on $\pi_1 \otimes \pi_3 = \text{Sym}^2(\pi_1) \oplus \Lambda^2(\pi_1)$ to $O(V_4)$. We denote by $\tilde{\sigma}^\pm|O(V_4) = \sigma_1^\pm \oplus \cdots \oplus \sigma_r^\pm$ the extension such that $c$ acts on $\text{Sym}^2(\pi_1)$ by $\pm 1$ and on $\Lambda^2(\pi_1)$ by $\mp 1$, respectively. On the other hand, the representation $\tau$ of $SO(V_3)$ on $\pi_3$ has two extensions $\tau^\pm$ to $O(V_3)$, which satisfies that $\tau^\pm(-1) = \pm 1$. Since $c$ centralizes the diagonal subgroup $GL_2(F)$ of $GL_2(F) \times GL_2(F)$, we see that

- $\text{Sym}^2(\pi_1) \otimes \pi_3$ has a $GL_2(F)$-invariant linear form if and only if $\text{Hom}_{O(V_3)}(\sigma_i^\pm \otimes \tau^+, \mathbb{C}) \neq 0$ for some $i = 1, \ldots, r$;
- $\Lambda^2(\pi_1) \otimes \pi_3$ has a $GL_2(F)$-invariant linear form if and only if $\text{Hom}_{O(V_3)}(\sigma_i^\pm \otimes \tau^-, \mathbb{C}) \neq 0$ for some $i = 1, \ldots, r$.

Since $\pi_1$ is generic, $\sigma_i^\pm$ is $\mu_i$-generic for some $a \in F^\times$ and $b \in \{\pm\}$. We claim that $b = \pm \omega_{\pi_1}(a)$. Fix a nonzero $\psi$-Whittaker functional $l : \pi_1 \to \mathbb{C}$ and $x \in \pi_1$ such that $l(x) \neq 0$. For each $a \in F^\times$, put

$$l_a = l \circ \pi_1 \left( \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right), \quad x_a = \pi_1 \left( \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right)^{-1} x.$$

We define a basis $\{v, e_a, e'_a, v'\}$ of $V_4 = M_2(F)$ by

$$v = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad e_a = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}, \quad e'_a = \begin{pmatrix} 1 & 0 \\ 0 & -a \end{pmatrix}, \quad v = \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix}.$$

This basis makes $V_4$ the orthogonal space associated to $(1, a)$. Also we have

$$\rho_1 \left( \begin{pmatrix} 1 & n_1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & n_2 \\ 0 & 1 \end{pmatrix} \right) (v, e_a, e'_a, v') = (v, e_a, e'_a, v') \begin{pmatrix} 1 & n_1 a - n_2 & -n_1 a - n_2 & -n_1 n_2 \\ 0 & 1 & 0 & -n_1 \frac{n_1 + n_2 a}{2} \\ 0 & 0 & 1 & -n_1 n_2 \frac{a}{2} \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Hence $l_a \otimes l_{-a} : \pi_1 \otimes \pi_1 \to \mathbb{C}$ gives a $\mu_a$-Whittaker functional $l_0$ on $\tilde{\sigma}^\pm$. Let $v_0 = x_a \otimes x_{-a} \in \tilde{\sigma} = \pi_1 \otimes \pi_1$. Note that $V_3$ is the orthogonal complement of $F e_1$ in $V_4$. Since we regard $c$ as the nontrivial element in the center of $O(V_3)$, it acts on $v, e_1, e'_1, v'$ by

$$c v = -v, \quad c e_1 = e_1, \quad c e'_1 = -e'_1, \quad c v' = -v'.$$

We define $e_a \in O(V_4)$ so that $e_a v = v, e_a e_a = e_a, e_a e'_a = -e'_a$, and $e_a v' = v'$. Then

$$e_a = \rho_1 \left( \begin{pmatrix} -1 & 0 \\ 0 & a \end{pmatrix}, \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \right) c.$$
Therefore we have
\[
b \cdot l_0(v_0) = l_0(ε_a v_0)
\]
\[
= (l_a \otimes l_{-1}) \circ π_1 \left( \begin{pmatrix} -1 & 0 \\ 0 & a \end{pmatrix} \right) \otimes π_1 \left( \begin{pmatrix} -a & 0 \\ 0 & 1 \end{pmatrix} \right) \circ c(x_a \otimes x_{-1})
\]
\[
= ±ω_π(1) \cdot (l_a \otimes l_{-1}) \circ π_1 \left( \begin{pmatrix} -a & 0 \\ 0 & 1 \end{pmatrix} \right) \otimes π_1 \left( \begin{pmatrix} -a & 0 \\ 0 & 1 \end{pmatrix} \right)(x_{-1} \otimes x_a)
\]
\[
= ±ω_π(1) \cdot (l_a \otimes l_{-1})(x_a \otimes x_{-1})
\]
\[
= ±ω_π(1) \cdot l_0(v_0).
\]
Hence \(b = ±ω_π(1)\), as desired.

By Desideratum 3.9 (1) and (3), we have
\[
\iota_1(σ_i s) = (±ω_π(1))^{det(s)} \cdot η_{φ_+,λ}(s)
\]
for \(s ∈ A_{φ_+}\). In particular, if we denote the element in \(A_{φ_+}\) corresponding to \(ζ^2(φ_1) = det(φ_1) = ω_π(1)\) by \(s_0\), we have
\[
\iota_1(σ_i s_0) = ±1.
\]
Also we have
\[
(χ_{φ_+} \cdot d_{φ_+,±}) s_0 = ±ε(ζ(φ_1) \otimes φ_3) \cdot ω_π(1).
\]
Hence by GP conjecture (Conjecture 5.3), we see that:
• \(Hom_{SO(λ)}(σ_i s) \otimes τ_{±}, C) ≠ 0\) for some \(i = 1, \ldots, r\) if and only if \(±ε(ζ(φ_1) \otimes φ_3) \cdot ω_π(1) = ±1\).
This implies Theorem 5.6 for tempered \(π_1\) and \(π_3\) such that \(ω_π(1) = ω_π(2) = 1\).

In fact, there is an analogous theorem (P4, Theorem 6) for the quaternion algebra case (in which case the product of the two root numbers is \(-1\)). If one knew \(ι_1(σ_i s)\) explicitly (as we have done for \(σ_i s\) by using Desideratum 3.9 (3)), one would show that this theorem follows from Conjecture 5.3. Conversely, by using Prasad’s theorem (P4, Theorem 6) and Conjecture 5.3, we may conclude that
\[
ι_1(σ_i s_0) = ±1.
\]

5.5. Proof of Conjecture 5.3. In this subsection, we prove that Prasad’s conjecture (Conjecture 4.4) implies the Gross–Prasad conjecture (Conjecture 5.3). The second main theorem is as follows:

**Theorem 5.7.** Assume
• LLC for \(O(V_m) \times O(V_{m+1})\) (Desideratum 3.6 and the analogue of Desideratum 3.1 for \(SO(V_{odd})\));
• Hypothesis 3.10 (which implies Prasad’s conjecture 4.4 by Theorem 4.6).
Then the Gross–Prasad conjecture (Conjecture 5.3) holds. In particular, it unconditionally holds for quasisplit \(O(V_m) \times O(V_{m+1})\).

First, we consider the case when \(m = 2n\) is even. We need the following lemma for this case:

**Lemma 5.8.** Let \(σ_0 ∈ \text{Irr}(SO(V_{2n}^*)\) and \(τ_0 ∈ \text{Irr}(SO(V_{2n+1})\). For \(b ∈ \{±1\}\), we denote by \(τ^b\) the extension of \(τ\) to \(O(V_{2n+1}^*)\) such that \(τ^b(-1 V_{2n+1}) = b \cdot id\). Assume that
\[
Hom_{SO(V_{2n}^*)}(σ_0 ⊗ τ_0, C) ≠ 0.
\]

1. There exists a unique irreducible constituent \(σ^b\) of \(Ind_{SO(V_{2n})}^{O(V_{2n})}(σ_0)\) such that
\[
Hom_{O(V_{2n})}(σ^b ⊗ τ^b, C) ≠ 0.
\]
2. If \(σ^b_0 \cong σ_0\), then the correspondence
\[
\{±1\} \ni b ↦ σ^b \in \{\text{irreducible constituents of} \ Ind_{SO(V_{2n})}^{O(V_{2n})}(σ_0)\}
\]
is bijective.
Proof. By the Frobenius reciprocity, we have
\[
0 \neq \text{Hom}_{\text{SO}(V_{2n}^*)}(\sigma_0 \otimes \tau_0, \mathbb{C}) \cong \text{Hom}_{\text{SO}(V_{2n}^*)}(\tau_0, \sigma_0^*) \\
\cong \text{Hom}_{\text{SO}(V_{2n}^*)}(\tau^b \text{SO}(V_{2n}^*), \sigma_0^*) \cong \text{Hom}_{\text{O}(V_{2n}^*)}(\tau^b \text{O}(V_{2n}), \text{Ind}_{\text{SO}(V_{2n}^*)}^{\text{O}(V_{2n}^*)}(\sigma_0^*)) \\
\cong \text{Hom}_{\text{O}(V_{2n}^*)}(\text{Ind}_{\text{SO}(V_{2n}^*)}^{\text{O}(V_{2n}^*)}(\sigma_0) \otimes \tau^b, \mathbb{C})
\]
for any \( b \in \{ \pm 1 \} \). Hence if \( \sigma_0^* \not\cong \sigma_0 \), then \( \text{Ind}_{\text{SO}(V_{2n}^*)}^{\text{O}(V_{2n}^*)}(\sigma_0) \) is irreducible, so that the first assertion is trivial.

Next, suppose that \( \sigma_0^* \cong \sigma_0 \). Then \( \text{Ind}_{\text{SO}(V_{2n}^*)}^{\text{O}(V_{2n}^*)}(\sigma_0) \cong \sigma_1 \oplus \sigma_2 \), where \( \sigma_1, \sigma_2 \in \text{Irr}(\text{O}(V_{2n}^*)) \) satisfy \( \sigma_1 \not\cong \sigma_2 \) and \( \sigma_i \text{SO}(V_{2n}^*) = \sigma_0 \) for \( i \in \{ 1, 2 \} \). Let \( \epsilon \in \text{O}(V_{2n}^*) \) be as in [21]. It satisfies that \( \det(\epsilon) = -1 \) and \( \epsilon^2 = 1_{V_{2n}} \). Note that \( \sigma_2(\epsilon) = -\sigma_1(\epsilon) \). Fix a nonzero homomorphism \( f \in \text{Hom}_{\text{SO}(V_{2n}^*)}(\sigma_0 \otimes \tau_0, \mathbb{C}) \), and put
\[
f_i = f \circ (\sigma_i(\epsilon) \otimes \tau^b(\epsilon)).
\]
Then \( f_i \in \text{Hom}_{\text{SO}(V_{2n}^*)}(\sigma_0 \otimes \tau_0, \mathbb{C}) \), and we have \( (f_1)_1 = f \) and \( (f_1)_2 = -f \). Since \( \dim \text{Hom}_{\text{SO}(V_{2n}^*)}(\sigma_0 \otimes \tau_0, \mathbb{C}) = 1 \) by [4], there exists \( c_1 \in \{ \pm 1 \} \) such that \( f_1 = c_1 f \) and \( c_1 \neq c_2 \). If \( c_1 = +1 \), then \( f \in \text{Hom}_{\text{O}(V_{2n}^*)}(\sigma_1 \otimes \tau^b, \mathbb{C}) \). In this case, we have \( \sigma^b = \sigma_1 \). Also, if we replace \( b \) with \(-b \), then \( c_1 \) must be replaced by \(-c_2 \). Hence the second assertion holds.

Proof of Theorem 5.7 First, we consider the case when \( m = 2n \) is even. Let \( \phi \in \Phi_{\text{temp}}(\text{O}(V_{2n})) \) and \( (\phi', b) \in \Phi_{\text{temp}}(\text{O}(V_{2n}+1)) \). Theorem 5.2 and Lemma 5.8 imply that there exists a unique \( (\sigma, \tau) \in \Pi_\phi \times \Pi_{\phi', b} \) such that \( \sigma \otimes \tau \) is a representation of \( \text{O}(V_{2n}^*) \times \text{O}(V_{2n}+1) \) with a relevant pair \( (V_{2n}, V_{2n}+1) \) of companion spaces of \( (V_{2n}, V_{2n}+1) \), and
\[
\text{Hom}_{\triangle}(\text{O}(V_{2n}^*) \sigma \otimes \tau, \mathbb{C}) \neq 0.
\]
Moreover, we have \( \iota(\tau) = \chi_\phi \).

We show that \( \iota(\sigma) = \chi_{\phi'} \cdot d_{\phi, b} \). If \( \phi \not\in \Phi^\ell(\text{O}(V_{2n})) \), then \( A_\phi = A_\phi^+ \) and so that \( d_{\phi, b} = 1 \). Hence the desired equation follows from Theorem 5.2.

Now we assume that \( \phi \in \Phi_{\text{temp}}(\text{O}(V_{2n})) \). Then \( \sigma \not\cong \sigma \otimes \det \). Since \( d_{\phi, -1} \) is the non-trivial character of \( A_\phi \) which is trivial on \( A_\phi^+ \), by Lemma 5.8(2), it suffices to show that if
\[
b = \frac{1}{2} (\tau, \psi) \cdot e(V_{2n+1}^*)
\]
and \( (\sigma, \tau) \in \Pi_\phi \times \Pi_{\phi', b} \) satisfies that \( \text{Hom}_{\triangle}(\text{O}(V_{2n}^*) \sigma \otimes \tau, \mathbb{C}) \neq 0 \), then \( \iota(\sigma) = \chi_{\phi'} \cdot d_{\phi, b} \). Here, \( \varepsilon(\phi, \tau, \psi) \) is the standard \( \varepsilon \)-factor defined by the doubling method (see [LR] §10) and
\[
e(V_{2n+1}^*) = \begin{cases} 1 & \text{if } \text{O}(V_{2n+1}^*) \text{ is split,} \\ -1 & \text{otherwise.} \end{cases}
\]
Note that
\[
e(V_{2n+1}^*) = \iota(\tau)(z_{\phi'}) = \chi_\phi(z_{\phi'}) = \varepsilon(\phi \otimes \phi') \cdot \chi_{V_{2n}}(-1)^n
\]
by Theorem 5.2.

To obtain the desired formula, we shall use the theta correspondence as in [12]. Let \( W_{2n} \) be a symplectic space of dimension \( 2n \). We consider the theta correspondence for \( (\text{O}(V_{2n}^*), \text{Sp}(W_{2n})) \) and \( (\text{O}(V_{2n}^*+1), \text{Mp}(W_{2n})) \). Here, \( \text{Mp}(W_{2n}) \) is the metaplectic group associated to \( W_{2n} \), i.e., the unique topological double cover of \( \text{Sp}(W_{2n}) \). Since \( \omega_{\tau}(-1) = b = \varepsilon(1/2, \tau, \psi) e(V_{2n+1}^*) \), by [CHI] Theorem 11.1, we have
\[
\Theta_{W_{2n}, V_{2n+1}^*, \psi}(\tau) \neq 0,
\]
so that \( \rho := \theta_{W_{2n}, V_{2n+1}^*, \psi}(\tau) \) is an irreducible genuine representation of \( \text{Mp}(W_{2n}) \). Let \( L \) be the orthogonal complement of \( V_{2n}^* \) in \( V_{2n+1}^* \). Note that \( \text{disc}(L) = -c \). Considering the following see-saw
\[
\begin{array}{ccc}
\text{O}(V_{2n+1}^*) & \text{Sp}(W_{2n}) \times \text{Mp}(W_{2n}) \\
\text{O}(V_{2n}^*) \times \text{O}(L) & \text{Mp}(W_{2n})
\end{array}
\]
we see that
\[ \text{Hom}_{\text{Mp}(W_{2n})}(\Theta_{W_{2n}}, V_{2n}^\bullet, \psi(\sigma) \otimes \omega_{\psi_{-c}}, \rho) \neq 0. \]

In particular, \( \pi := \Theta_{W_{2n}, V_{2n}^\bullet, \psi}(\sigma) \) is nonzero. Since \( \sigma \) is tempered, by [GGP, Proposition C.4], \( \pi \) is irreducible, so that \( \pi = \theta_{W_{2n}, V_{2n}^\bullet, \psi}(\sigma) \). By Prasad’s conjecture (Conjecture [GGP]), we have \( \pi \in \Pi_{\phi} \) with \( \phi_{\pi} = (\phi \oplus 1) \otimes \chi_{V_{2n}} \) and
\[ t_{\pi}(a) \mid A_{\phi} = t_{\pi}(\sigma). \]

Here, we regard \( A_{\phi} \) as a subgroup of \( A_{\phi_{\pi}} \) via the canonical injection \( A_{\phi} \hookrightarrow A_{\phi_{\pi}} \). On the other hand, by the Gross-Prasad conjecture for the symplectic-metaplectic case, which has established by [AL] Theorem 1.3 (using Theorems [GGP] and results of [GS]) and [GGP] Proposition 18.1, we have
\[ t'(\pi)(a') = \varepsilon(\phi_{\pi} \otimes \phi_{\pi} \cdot r_{\phi_{\pi}}) \cdot r_{\phi_{\pi}}(\psi_{\pi} \otimes \phi_{\pi}) \cdot (\det(a') \cdot (\det(\phi_{\pi})(-1))^n \right) \]

for \( a' \in A_{\phi_{\pi}} \). Here, \( \phi_{\pi} \) is the L-parameter for \( \pi_{\phi_{\pi}} \). It is given by \( \phi_{\pi} = \phi_{\phi_{\pi}} \otimes \chi_{-1, V_{2n+1}} \) (see [AL, §3.6]).

Recall that \( t_{\pi}(\pi) \) is a priori a character of \( A_{\phi_{\pi}} \), but by using the isomorphism \( A_{\phi_{\pi}}^{\times} \cong A_{\phi_{\pi}} / \langle \sigma_{\phi_{\pi}} \rangle \), we regard \( t_{\pi}(\pi) \) as a character of \( A_{\phi_{\pi}} \) which is trivial at \( \sigma_{\phi_{\pi}} \). If \( a \in A_{\phi} \subset A_{\phi_{\pi}} \), then we have \( \phi_{\pi} = \phi \otimes \chi_{V_{2n}} \), so that
\[ \text{det}(\phi_{\pi})(-1) \cdot \chi_{V_{2n}}(-1)^{\dim(\phi_{\pi})} \]

Then we have
\[ t_{\pi}(\phi)(a) = t_{\pi}(\phi)(a) = \chi_{\phi}(a) \cdot b^{\dim(\phi_{\pi})} \]

for \( a \in A_{\phi} \). This completes the proof of Theorem 5.7 when \( m = 2n \).

Next, we consider the case when \( m = 2n - 1 \) is odd. The proof is similar to that of [GGP] Theorem 19.1. Let \( \phi \in \Phi_{\text{temp}}(O(V_{2n})) \) and \( (\phi', b) \in \Phi_{\text{temp}}(O(V_{2n-1})) \). Suppose that \( V_{2n-1} \subset V_{2n} \). Let \( L' = F_{e_0} \) be the orthogonal complement to \( V_{2n-1} \) in \( V_{2n} \), and \( e_0 \in L' \) such that \( \langle e_0, e_0 \rangle_{V_{2n-1}} = 2c \). Set
\[ V_{2n+1} = V_{2n} \oplus (-L') = V_{2n} \oplus F_{e_0}, \]

where \( \langle f_0, f_0 \rangle_{V_{2n+1}} = -2c \). Put \( v_0 = e_0 + f_0 \) and \( X' = F_{v_0} \). Then we have
\[ V_{2n+1} = X' \oplus V_{2n-1} \oplus (X')^* \]

Let \( P = M_{P}U_{P} \) be the parabolic subgroup of \( O(V_{2n+1}) \) stabilizing the line \( X' \), where \( M_{P} \cong GL(X') \times O(V_{2n-1}) \) is the Levi subgroup of \( P \) stabilizing \( (X')^* \). Choose a unitary character \( \chi \in F^* \cong GL(X') \) which satisfies the condition of [GGP] Theorem 15.1, and such that the induced representation
\[ \text{Ind}_{P(X')}^{O(V_{2n+1})}(\chi \otimes \tau) \]

is irreducible for any \( \tau \in \Pi_{\phi_{\pi}} \). Note that in [GGP], one consider the unnormalized induction, but in this paper, we consider the normalized induction. Then by [GGP] Theorem 15.1, we have
\[ \text{Hom}_{O(V_{2n})}(\text{Ind}_{P(X')}^{O(V_{2n+1})}(\chi \otimes \tau) \otimes \sigma, \mathbb{C}) \cong \text{Hom}_{O(V_{2n-1})}(\tau \otimes \sigma, \mathbb{C}). \]

Put \( \phi'' = \chi \otimes \phi' \otimes \chi^{-1} \). Then
\[ \Pi_{\phi''}(\chi(-1)b) = \{ \text{Ind}_{P(X')}^{O(V_{2n+1})}(\chi \otimes \tau) \mid \tau \in \Pi_{\phi'} \} \]

and
\[ t(\text{Ind}_{P(X')}^{O(V_{2n+1})}(\chi \otimes \tau)) = t(\tau) \]

as a character of \( A_{\phi''} = A_{\phi'} \). Applying the even case above to \( \phi \in \Phi_{\text{temp}}(O(V_{2n})) \) and \( (\phi'', \chi(-1)b) \in \Phi_{\text{temp}}(O(V_{2n+1})) \), we see that there exists a unique pair \( (\sigma, \tau) \in \Pi_{\phi} \times \Pi_{\phi', b} \) such that \( \sigma \otimes \tau \) is a representation of \( O(V_{2n}) \times O(V_{2n-1}) \) with a relevant pair \( (V_{2n}, V_{2n-1}) \) of companion spaces of \( (V_{2n}, V_{2n-1}) \), and
\[ \text{Hom}_{\Delta O(V_{2n-1})}(\sigma \otimes \tau, \mathbb{C}) \neq 0. \]
Moreover, we have
\[ \iota_c(\sigma)(a) = \chi_{\phi'}(a) \cdot (\chi(-1)\dim(\phi')) \]
\[ \iota(\tau) = \iota(\Ind_{P(\mathbb{X}^* \chi)}^{\mathbb{O}(\mathbb{X}^* \chi)}(\chi \otimes \tau)) = \chi_{\phi}. \]

By the definition, we have
\[ \frac{\chi_{\phi'}(a)}{\chi_{\phi}(a)} = \varepsilon(\phi^a \otimes (\chi \otimes \chi^{-1})) \cdot \det(\phi^a)(-1) = \det(\phi^a \otimes \chi)(-1) \cdot \det(\phi^a)(-1) = \chi(-1)\dim(\phi'). \]

Hence we have
\[ \iota_c(\sigma)(a) = \chi_{\phi'}(a) \cdot t^{\dim(\phi')}, \]
as desired. This completes the proof of Theorem 5.7 when \( m = 2n - 1 \).

By Theorem 5.7, we have established the Gross–Prasad conjecture (Conjecture 4.4) under Prasad’s conjecture (Conjecture 4.4). As in [GGP], one may consider the general codimension case, and may prove this for tempered \( L \)-parameters similarly. Also, one may consider the generic case, i.e., the \( L \)-parameters \( \phi \) and \( \phi' \) are generic. It would follow from a similar argument to [MW].

6. Arthur’s multiplicity formula for \( \text{SO}(V_{2n}) \)

The final main theorem is the so-called Arthur’s multiplicity formula, which describes a spectral decomposition of the discrete automorphic spectrum for \( \mathbb{O}(V_{2n}) \). In this section, we recall the local and global \( A \)-parameters, and Arthur’s multiplicity formula for \( \text{SO}(V_{2n}) \). Then we will establish an analogous formula for \( \mathbb{O}(V_{2n}) \) in the next section.

6.1. Notation and measures. Let \( \mathbb{F} \) be a number field, \( \mathbb{A} \) be the ring of adeles of \( \mathbb{F} \). We denote by \( \mathbb{A}_{\text{fin}} = \prod_{v < \infty} \mathbb{F}_v \) and \( \mathbb{A}_{\infty} = \prod_{v \infty} \mathbb{F}_v \) the ring of finite adeles and infinite adeles, respectively. As in the precious sections, we write \( V_2 \) for an orthogonal space associated to \( (d, c) \) for some \( c, d \in \mathbb{F}^* \). Let \( \mathbb{O}(V_{2n}) \) (resp. \( \text{SO}(V_{2n}) \)) be a quasi-split orthogonal (resp. special orthogonal) group over \( \mathbb{F} \). We denote by \( \chi_V = \otimes_v \chi_{V,v} : \mathbb{A}^\times / \mathbb{F}^\times \to \mathbb{C}^\times \) the discriminant character.

For each \( v \), we fix a maximal compact subgroup \( K_v \) of \( \mathbb{O}(V_{2n})(\mathbb{F}_v) \) such that \( K_v \) is special if \( v \) is non-archimedean. Moreover, if \( \mathbb{O}(V_{2n})(\mathbb{F}_v) \) is unramified, we choose \( K_v \) as in \([2,3]\) which is hyperspecial. Also, we take \( \epsilon_v \in K_v \) such that \( \det(\epsilon_v) = -1, \epsilon_v^2 = 1_{V_{2n}} \) and that \( \epsilon = (\epsilon_v \in V_{2n}) \) is in \( \mathbb{O}(V_{2n})(\mathbb{A}) \) is in \( \mathbb{O}(V_{2n})(\mathbb{F}) \). Put \( K_0 = K_v \cap \text{SO}(V_n)(\mathbb{F}_v) \). Note that \( \epsilon_v^{-1}K_0, \epsilon_v = K_0 \).

Let \( \mu_2 = \{ \pm 1 \} \) be the group of order 2. We regard \( \mu_2 \) as an algebraic group over \( \mathbb{F} \). There exists an exact sequence of algebraic group over \( \mathbb{F} \):

\[
1 \longrightarrow \text{SO}(V_{2n}) \longrightarrow \mathbb{O}(V_{2n}) \overset{\text{det}}{\longrightarrow} \mu_2 \longrightarrow 1.
\]

For \( t = (t_v)_v \in \mu_2(\mathbb{A}) \), we define \( \epsilon_t = (\epsilon_{t,v})_v \in \mathbb{O}(V_{2n})(\mathbb{A}) \) by

\[
\epsilon_{t,v} = \begin{cases} 
1_{V_{2n}} & \text{if } t_v = 1, \\
\epsilon_v & \text{if } t_v = -1.
\end{cases}
\]

We take the Haar measures \( dg_v, dh_v \), and \( dt_v \) on \( \mathbb{O}(V_{2n})(\mathbb{F}_v) \), \( \text{SO}(V_{2n})(\mathbb{F}_v) \) and \( \mu_2(\mathbb{F}_v) \), respectively, so that

\[
\text{vol}(K_v, dg_v) = \text{vol}(K_0, dh_v) = \text{vol}(\mu_2(\mathbb{F}_v), dt_v) = 1.
\]

Then they induce the Haar measures \( dg, dh \) and \( dt \) on \( \mathbb{O}(V_{2n})(\mathbb{A}), \text{SO}(V_{2n})(\mathbb{A}) \) and \( \mu_2(\mathbb{A}) \), respectively, satisfying that

\[
\int_{\mathbb{O}(V_{2n})(\mathbb{F}) \setminus \mathbb{O}(V_{2n})(\mathbb{A})} f(g) dg = \int_{\mu_2(\mathbb{F}) \setminus \mu_2(\mathbb{A})} \left( \int_{\text{SO}(V_{2n})(\mathbb{F}) \setminus \text{SO}(V_{2n})(\mathbb{A})} f(h \epsilon_t) dh \right) dt
\]

for any smooth function \( f \) on \( \mathbb{O}(V_{2n})(\mathbb{F}) \setminus \mathbb{O}(V_{2n})(\mathbb{A}) \).
6.2. Local A-parameters. In this subsection, we fix a place $v$ of $\mathbb{F}$, and introduce local A-parameters for $\text{O}(2n)(\mathbb{F}_v)$ and $\text{SO}(2n)(\mathbb{F}_v)$.

Let $W_{\mathbb{F}_v}$ be the Weil group and $WD_{\mathbb{F}_v}$ be the Weil–Deligne group of $\mathbb{F}_v$, i.e.,

$$WD_{\mathbb{F}_v} = \begin{cases} W_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C}) & \text{if } v \text{ is non-archimedean}, \\ W_{\mathbb{F}_v} & \text{if } v \text{ is archimedean}. \end{cases}$$

A local A-parameter for $\text{SO}(2n)(\mathbb{F}_v)$ is an admissible homomorphism

$$\psi: WD_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C}) \to L^1(\text{SO}(2n)) = \text{SO}(2n, \mathbb{C}) \rtimes W_{\mathbb{F}_v}$$

such that $\psi(W_{\mathbb{F}_v})$ projects a relatively compact subset of $\text{SO}(2n, \mathbb{C})$. We put

$$\Psi(\text{SO}(2n)(\mathbb{F}_v)) = \{ \text{(SO}(2n, \mathbb{C}) \text{-conjugacy classes of local A-parameters of } \text{SO}(2n)(\mathbb{F}_v) \}. $$

In §3.2 we have defined a map $L^1(\text{SO}(2n)) \to \text{O}(2n, \mathbb{C})$. By composing with this map, $\psi \in \Psi(\text{SO}(2n)(\mathbb{F}_v))$ gives a representation

$$\psi: WD_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C}) \to \text{O}(2n, \mathbb{C}).$$

We may regard $\psi$ as an orthogonal representation of $WD_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C})$. The map $\psi \mapsto \psi$ gives an identification

$$\Psi(\text{SO}(2n)(\mathbb{F}_v)) = \{ \psi: WD_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C}) \to \text{O}(2n, \mathbb{C}) \mid \det(\psi) = \chi_{V,v}/(\text{SO}(2n, \mathbb{C}) \text{-conjugacy}).$$

Namely, we regard $\Psi(\text{SO}(2n)(\mathbb{F}_v))$ as the set of $(\psi,M)$-conjugacy classes of orthogonal representations $(\psi,M)$ of $WD_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C})$ with $\dim(M) = 2n$, and $\det(\psi) = \chi_{V,v}$. We say that $\psi \in \Psi(\text{SO}(2n)(\mathbb{F}_v))$ is tempered if $\psi|_{\text{SL}_2(\mathbb{C}) = 1}$, i.e., $\psi$ is a tempered representation of $WD_{\mathbb{F}_v}$. We denote by $\Psi_{\text{temp}}(\text{SO}(2n)(\mathbb{F}_v))$ the subset of $\Psi(\text{SO}(2n)(\mathbb{F}_v))$ consisting of the classes of tempered representation. Also we put $\Psi(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}$ to be the set of equivalence classes of orthogonal representations $(\psi,M)$ of $WD_{\mathbb{F}_v} \times \text{SL}_2(\mathbb{C})$ with $\dim(M) = 2n$ and $\det(\psi) = \chi_{V,v}$. Then there exists a canonical surjection

$$\Psi(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon} \to \Psi(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}$$

such that the order of each fiber is one or two. We also denote by $\Psi_{\text{temp}}(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}$ the image of $\Psi_{\text{temp}}(\text{SO}(2n)(\mathbb{F}_v))$.

On the other hand, we put

$$\Psi(\text{O}(2n)(\mathbb{F}_v)) = \{ \text{(O}(2n, \mathbb{C}) \text{-conjugacy classes of local A-parameters of } \text{SO}(2n)(\mathbb{F}_v) \}. $$

We call an element in $\Psi(\text{O}(2n)(\mathbb{F}_v))$ an A-parameter of $\text{O}(2n)(\mathbb{F}_v)$. Then we have a canonical identification $\Psi(\text{O}(2n)(\mathbb{F}_v)) = \Psi(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}$. Under this identification, we put $\Psi_{\text{temp}}(\text{O}(2n)(\mathbb{F}_v)) = \Psi_{\text{temp}}(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}$.

Let $\psi \in \Psi(\text{O}(2n)(\mathbb{F}_v)) = \Psi(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}$ be a local A-parameter. We put

$$S_{\psi} = \pi_0(\text{Cent}(\text{Im}(\psi), \text{O}(2n, \mathbb{C})/\{\pm1_{2n}\})) \quad \text{and} \quad S_{\psi}^+ = \pi_0(\text{Cent}(\text{Im}(\psi), \text{SO}(2n, \mathbb{C})/\{\pm1_{2n}\}))\,.$$ 

6.3. Local $A$-packets. We denote by $\text{Irr}_{\text{unit}}(\text{O}(2n)(\mathbb{F}_v))$ the set of equivalence classes of irreducible unitary representations of $\text{O}(2n)(\mathbb{F}_v)$. By Theorems 2.2.1 and 2.2.4 in [Ar], there exist a finite set $\Pi_{\psi}$ with maps

$$\Pi_{\psi} \to \text{Irr}_{\text{unit}}(\text{O}(2n)(\mathbb{F}_v))$$

and

$$\iota_c: \Pi_{\psi} \to \widehat{S}_{\psi},$$

which satisfy certain character identities. Using the multiplicity function

$$m_1: \text{Irr}_{\text{unit}}(\text{O}(2n)(\mathbb{F}_v)) \to \mathbb{Z}_{\geq 0}$$

which gives the order of the fibers in $\Pi_{\psi}$, we may regard $\Pi_{\psi}$ as a multiset on $\text{Irr}_{\text{unit}}(\text{O}(2n)(\mathbb{F}_v))$. We call $\Pi_{\psi}$ the local A-packets for $\text{O}(2n)(\mathbb{F}_v)$ associated to $\psi$. Note that $m_1(\sigma) = m_1(\sigma \otimes \det)$ by [Ar] Theorem 2.2.4. If $\psi$ is tempered, $\Pi_{\psi}$ coincides with the $L$-packet described in §3.4. In particular, if $\psi$ is tempered, then $\Pi_{\psi}$ is multiplicity-free.

We denote by $\Pi_{\psi}^0$ the image of $\Pi_{\psi}$ under the canonical map

$$\text{Irr}_{\text{unit}}(\text{O}(2n)(\mathbb{F}_v)) \to \text{Irr}_{\text{unit}}(\text{O}(2n)(\mathbb{F}_v)) / \sim_{\det} \to \text{Irr}_{\text{unit}}(\text{SO}(2n)(\mathbb{F}_v)) / \sim_{\epsilon}. $$
Namely, $\Pi_\psi^0$ is a multiset on $\text{Irr}_{\text{unit}}(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$ with the multiplicity function

$$m_0: \text{Irr}_{\text{unit}}(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon \to \mathbb{Z}_{\geq 0}$$

such that

$$m_0([\sigma]) = m_1(\sigma) = m_1(\sigma \otimes \text{det}),$$

where $[\sigma] \in \text{Irr}_{\text{unit}}(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$ is the image of $\sigma \in \text{Irr}_{\text{unit}}(\text{O}(V_{2n})(\mathbb{F}_v))$. We call $\Pi_\psi^0$ the local $A$-packets for $\text{SO}(V_{2n})(\mathbb{F}_v)$ associated to $\psi$. Moreover there exist a map

$$\iota_c: \Pi_\psi^0 \to \hat{S}_\psi^+$$

which satisfies certain character identities and such that the diagram

$$\begin{array}{ccc}
\Pi_\psi & \xrightarrow{\iota_c} & \hat{S}_\psi^+
\end{array}$$

is commutative.

Recall that the local $A$-packets $\Pi_\psi$ and $\Pi_\psi^0$ are multisets. However, it is expected that the $A$-packets are sets.

**Conjecture 6.1.** Let $\psi \in \Psi(\text{O}(V_{2n})(\mathbb{F}_v)) = \Psi(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$ be a local $A$-parameter, and $\Pi_\psi$ and $\Pi_\psi^0$ be the local $A$-packets. Then for $\sigma \in \text{Irr}_{\text{unit}}(\text{O}(V_{2n}))$ and $[\sigma] \in \text{Irr}_{\text{unit}}(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$, we have

$$m_1(\sigma) \leq 1 \quad \text{and} \quad m_0([\sigma]) \leq 1.$$  

In other words, $\Pi_\psi$ and $\Pi_\psi^0$ are subsets of $\text{Irr}_{\text{unit}}(\text{O}(V_{2n}))$ and $\text{Irr}_{\text{unit}}(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$, respectively.

**Proposition 6.2.** Conjecture 6.1 for $\psi$ holds for the following cases:

- when $\psi = \phi$ is tempered $A$-parameter;
- when $\mathbb{F}_v$ is non-archimedean.

**Proof.** For a tempered $A$-parameter $\psi = \phi$, the local $A$-packet $\Pi_\psi$ coincides with the local $L$-packet $\Pi_\phi$, which are (multiplicity-free) sets. When $\mathbb{F}_v$ is non-archimedean, Conjecture 6.1 is proven by Moeglin [M2]. See also Xu’s paper [X. Theorem 8.10].

**Remark 6.3.** By Proposition 6.2, only when $\mathbb{F}_v$ is archimedean and $\psi$ is non-tempered, Conjecture 6.1 for $\psi$ is not verified. However, it is known by [AMR] that a part of local $A$-packets (in the archimedean case) coincides with Adams–Johnson $A$-packets, which are (multiplicity-free) sets.

Let $\psi \in \Psi(\text{O}(V_{2n})(\mathbb{F}_v)) = \Psi(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$. Then $\psi$ gives a local $L$-parameter $\phi_\psi$ defined by

$$\phi_\psi(w) = \psi(w, \left( \begin{array}{cc} |w|_{\mathbb{F}_v}^{\frac{1}{2}} & 0 \\ 0 & |w|_{\mathbb{F}_v}^{-\frac{1}{2}} \end{array} \right)).$$

for $w \in WD_{\mathbb{F}_v}$. Here, $|w|_{\mathbb{F}_v}$ is the extension to $WD_{\mathbb{F}_v}$ of the absolute value on $WD_{\mathbb{C}}$, which is trivial on $\text{SL}_2(\mathbb{C})$. We put

$$S_{\phi_\psi}^- = \pi_0(\text{Cent}(\text{Im}(\phi_\psi), O_{2n}(\mathbb{C}))/\{\pm 1_{2n}\})$$

and

$$S_{\phi_\psi}^+ = \pi_0(\text{Cent}(\text{Im}(\phi_\psi), SO_{2n}(\mathbb{C}))/\{\pm 1_{2n}\}).$$

Then we have $L$-packets

$$\Pi_{\phi_\psi} \subset \text{Irr}_{\text{unit}}(\text{O}(V_{2n})(\mathbb{F}_v)) \quad \text{and} \quad \Pi_{\phi_\psi}^0 \subset \text{Irr}_{\text{unit}}(\text{SO}(V_{2n})(\mathbb{F}_v))/\sim_\epsilon$$

and bijections

$$\iota_c: \Pi_{\phi_\psi} \to \hat{S}_{\phi_\psi}^- \quad \text{and} \quad \iota_c: \Pi_{\phi_\psi}^0 \to \hat{S}_{\phi_\psi}^+. $$

Moreover we have a canonical surjection

$$S_\psi \to S_{\phi_\psi}^- \quad \text{and} \quad S_\psi^+ \to S_{\phi_\psi}^+. $$
Proposition 7.4.1 in [Ar] says that $\Pi_\phi^0$ is contained in $\Pi_\psi^0$ and the diagram

$$
\Pi_\phi^0 \longrightarrow \Pi_\psi^0 \\
\downarrow \quad \downarrow \\
\bar{S}_\phi^+ \longrightarrow \bar{S}_\psi^+
$$

is commutative. We prove an analogue of this statement.

**Proposition 6.4.** Assume Conjecture 6.1. Let $\psi \in \Psi(O(V_{2n})(F_v))$. We denote by $\phi_\psi$ the $L$-parameter given by $\psi$. Let $\Pi_\psi$ be the local $A$-packet of $\psi$, which is a multiset of $\text{Irr}_{\text{un}}(O(V_{2n})(F_v))$, and $\Pi_{\phi_\psi}$ be the local $L$-packet of $\phi_\psi$, which is a subset of $\text{Irr}_{\text{un}}(O(V_{2n})(F_v))$. Then $\Pi_{\phi_\psi}$ is contained in $\Pi_\psi$ and the diagram

$$
\Pi_{\phi_\psi} \longrightarrow \Pi_\psi \\
\downarrow \quad \downarrow \\
\bar{S}_{\phi_\psi} \longrightarrow \bar{S}_\psi
$$

is commutative.

**Proof.** The first assertion follows from the result for $\Pi_\phi^0$ and $\Pi_{\phi_\psi}$. We write $\imath_c^L = \imath_c : \Pi_{\phi_\psi} \to \bar{S}_{\phi_\psi}$ for the left arrow in the diagram, and $\imath_c^A = \imath_c : \Pi_\psi \to \bar{S}_\psi$ for the right arrow in the diagram. Let $a \in S_\psi$ and $s \in O_{2n}(C)$ be a (suitable) semi-simple representative of $a$. We denote by $\psi^a$ the $(-1)$-eigenspace of $s$ in $\psi$, which is a representation of $WD_{F_v} \times SL_2(C)$. For the last assertion, we may assume that $d = \dim(\psi^a)$ is odd. Put $\psi' = \psi + \psi^a + (\psi^a)^\vee$. Then we have

$$
\phi_{\psi'} = \phi_\psi + \phi_\psi^a + (\phi_\psi)^\vee.
$$

Take $\sigma \in \Pi_{\phi_\psi}$. Let $\tau$ be an irreducible representation of $GL_d(F_v)$ corresponding to $\phi_\psi^a$. We denote the normalized intertwining operator of $\text{Ind}^{O(V_{2n+2d})(F_v)}_P(\tau \boxtimes \sigma)$ by $R_c(w, \tau \boxtimes \sigma)$, where $P = MN$ is a suitable parabolic subgroup of $O(V_{2n+2d})(F_v)$ with the Levi factor $M \cong GL_d(F_v) \times O(V_{2n})(F_v)$, and $w$ is a suitable representative of an element in the relative Weyl group $W(M)$ of $M$. Let $\sigma'$ be an irreducible constituent of $\text{Ind}^{O(V_{2n+2d})(F_v)}_P(\tau \boxtimes \sigma)$. Then $\sigma' \in \Pi_{\phi_\psi}$. Regarding $\sigma'$ as an element in $\Pi_{\phi_\psi}$, by Theorems 2.2.4 and 2.4.4 in [Ar] together with Conjecture 6.1, $R_c(w, \sigma' \boxtimes \tau)$ induces a scalar operator on $\sigma'$ with eigenvalue $\imath^L_c(\sigma')(a)$. On the other hand, regarding $\sigma'$ as an element in $\Pi_{\phi_\psi}$, by the same theorems and conjecture, $R_c(w, \sigma \boxtimes \tau)$ induces a scalar operator on $\sigma'$ with eigenvalue $\imath^A_c(\sigma')(a)$. Hence

$$
\imath^L_c(\sigma')(a) = \imath^A_c(\sigma')(a).
$$

Since $\imath^L_c(\sigma')(a) = \imath^L_c(\sigma)(a)$ and $\imath^A_c(\sigma')(a) = \imath^A_c(\sigma)(a)$, we have

$$
\imath^L_c(\sigma)(a) = \imath^A_c(\sigma)(a),
$$

as desired. \qed

We remark on unramified representations. Suppose that $O(V_{2n})(F_v)$ is unramified, which is equivalent that $v$ is non-archimedean and $c, d \in H_v^+$, where $H_v$ is the ring of integers of $F_v$. We say that $\psi \in \Psi(O(V_{2n})(F_v))$ is unramified if $|\psi| WDF_v$ is trivial on $I_{F_v} \times SL_2(C)$, where $I_{F_v}$ is the inertia subgroup of $W_{F_v}$.

**Corollary 6.5.** If $\psi \in \Psi(O(V_{2n})(F_v))$ is unramified, then $\Pi_\psi$ has a unique unramified representation $\sigma$. It satisfies $\imath_c(\sigma) = 1$.

**Proof.** The uniqueness follows from [M1] p. 18 Proposition] and Lemma 2.4. The unique unramified representation $\sigma \in \Pi_\psi$ belongs to the subset $\Pi_{\phi_\psi}$. By Proposition 6.4 and Desideratum 5.9 (4), we have $\imath_c(\sigma) = 1$. \qed
6.4. Hypothetical Langlands group and its substitute. We denote the set of irreducible unitary cuspidal automorphic representations of $GL_m(A)$ by $\mathcal{A}_{\text{cusp}}(GL_m)$. Let $\mathcal{L}_G$ be the hypothetical Langlands group of $\mathbb{F}$. It is expected that there exists a canonical bijection

$$\mathcal{A}_{\text{cusp}}(GL_m) \leftrightarrow \{m\text{-dimensional irreducible unitary representations of } \mathcal{L}_G\}.$$  

We want to use $\mathcal{L}_G$ as a global analogue of Weil–Deligne group $WD_{\mathcal{F}_v}$. Namely, for a connected reductive group $G$, we want to define a global $A$-parameters of $G$ by an admissible homomorphism

$$\psi: \mathcal{L}_G \times SL_2(\mathbb{C}) \to {}^L G.$$  

In this paper, we do not assume the existence of $\mathcal{L}_G$. So we have to modify the definition of global $A$-parameters. For the definition of global $A$-parameters, we use elements in $\mathcal{A}_{\text{cusp}}(GL_m)$ instead of $m$-dimensional irreducible unitary representations of $\mathcal{L}_G$. For this reason, we will define not $\Psi_2(SO(V_{2n}))$ but only $\Psi_2(SO(V_{2n}))/\sim_{\epsilon}$ as well as $\Psi_2(O(V_{2n}))$ in the next subsection.

6.5. Global $A$-parameters and localization. Let $V_{2n}$ be an orthogonal space associated to $(d, c)$ for some $c, d \in \mathbb{F}^\times$. We denote by $\chi_V: A^\times/\mathbb{F}^\times \to \mathbb{C}^\times$ the discriminant character of $V_{2n}$. A discrete global $A$-parameter for $SO(V_{2n})$ and $O(V_{2n})$ is a symbol

$$\Sigma = \Sigma_1[d_1] \boxplus \cdots \boxplus \Sigma_l[d_l],$$

where

- $1 \leq l \leq 2n$ is an integer;
- $\Sigma_i \in \mathcal{A}_{\text{cusp}}(GL_{m_i})$;
- $d_i$ is a positive integer such that $\sum_{i=1}^l m_i d_i = 2n$;
- if $d_i$ is odd, then $L(s, \Sigma_i, \text{Sym}^2)$ has a pole at $s = 1$;
- if $d_i$ is even, then $L(s, \Sigma_i, \wedge^2)$ has a pole at $s = 1$;
- if we denote the central character of $\Sigma_i$ by $\omega_i$, then $\omega_1^{d_1} \cdots \omega_l^{d_l} = \chi_V$;
- if $i \neq j$ and $\Sigma_i \cong \Sigma_j$, then $d_i \neq d_j$.

Two global $A$-parameters $\Sigma = \Sigma_1[d_1] \boxplus \cdots \boxplus \Sigma_l[d_l]$ and $\Sigma' = \Sigma'_1[d'_1] \boxplus \cdots \boxplus \Sigma'_l[d'_l]$ are said equivalent if $l = l'$ and there exists a permutation $\sigma \in \Theta_l$ such that $d'_i = d_{\sigma(i)}$ and $\Sigma'_i \cong \Sigma_{\sigma(i)}$ for each $i$. We denote by $\Psi_2(O(V_{2n})) = \Psi_2(SO(V_{2n}))/\sim_{\epsilon}$ the set of equivalence classes of discrete global $A$-parameters for $SO(V_{2n})$ and $O(V_{2n})$. Let $\Psi_2^0(O(V_{2n}))$ be the subset of $\Psi_2(O(V_{2n}))$ consisting of $\Sigma = \boxplus_{i=1}^l \Sigma_i[d_i]$ as above such that $m_id_i$ is odd for some $i$. Also, we put

$$\Psi_{2,\text{temp}}(O(V_{2n})) = \{\Sigma = \Sigma_1[d_1] \boxplus \cdots \boxplus \Sigma_l[d_l] \in \Psi_2(O(V_{2n})) \mid d_i = 1 \text{ for any } i\},$$

and $\Psi_{2,\text{temp}}^0(O(V_{2n})) = \Psi_{2,\text{temp}}(O(V_{2n})) \cap \Psi_2^0(O(V_{2n}))$. We define $\Psi_2^0(SO(V_{2n}))/\sim_{\epsilon}$ and $\Psi_{2,\text{temp}}^0(SO(V_{2n}))/\sim_{\epsilon}$ similarly.

Let $\Sigma = \Sigma_1[d_1] \boxplus \cdots \boxplus \Sigma_l[d_l] \in \Psi_2(O(V_{2n}))$. For each place of $v$ of $\mathbb{F}$, we denote the $m_i$-dimensional representation of $WD_{\mathcal{F}_v}$ corresponding to $\Sigma_i$ for $\Sigma_{i,v} \in \text{Irr}(GL_{m_i}(\mathbb{F}_v))$ by $\phi_{i,v}$. Because of the lack of the generalized Ramanujan conjecture, $\phi_{i,v}$ is not necessarily a tempered representation. We define a representation $\Sigma_v: WD_{\mathcal{F}_v} \times SL_2(\mathbb{C}) \to GL_{2n}(\mathbb{C})$ by

$$\Sigma_v = (\phi_{i,v} \boxtimes S_{d_i}) \oplus \cdots \oplus (\phi_{i,v} \boxtimes S_{d_i}),$$

where $S_d$ is the unique irreducible algebraic representation of $SL_2(\mathbb{C})$ of dimension $d$. We call $\Sigma_v$ the localization of $\Sigma$ at $v$. By [AG] Proposition 1.4.2, the representation $\Sigma_v$ factors through $O_{2n}(\mathbb{C}) \hookrightarrow GL_{2n}(\mathbb{C})$. In particular, if $\Sigma \in \Psi_{2,\text{temp}}(O(V_{2n}))$, then $\Sigma_v \in \text{Irr}(O(2n)(\mathbb{F}_v))$.

Let $\Sigma = \Sigma_1[d_1] \boxplus \cdots \boxplus \Sigma_l[d_l] \in \Psi_2(O(V_{2n}))$ be a global $A$-parameter with $\Sigma_i \in \mathcal{A}_{\text{cusp}}(GL_{m_i})$, and $\Sigma_v = (\phi_{1,v} \boxtimes S_{d_1}) \oplus \cdots \oplus (\phi_{l,v} \boxtimes S_{d_l})$ be the localization at $v$. We also write $\Sigma_{i,v} = \phi_{i,v} \boxtimes S_{d_i}$. We put

$$A_\Sigma = \bigoplus_{i=1}^l (\mathbb{Z}/2\mathbb{Z})^{a_{\Sigma_i}[d_i]} \cong (\mathbb{Z}/2\mathbb{Z})^l.$$
Namely, $A_S$ is a free $(\mathbb{Z}/2\mathbb{Z})$-module of rank $l$ and \( \{a_{\Sigma_i[d_i]} : \cdots, a_{\Sigma_i[d_i]}\} \) is a basis of $A_S$ with $a_{\Sigma_i[d_i]}$ associated to $\Sigma_i[d_i]$. We define $A^+_S$ by the kernel of the map $A_S \ni a_{\Sigma_i[d_i]} \mapsto (-1)^{m_i d_i} \in \{\pm 1\}$. Also, we put
\[
\Sigma_i = \sum_{i=1}^l m_i d_i \cdot a_{\Sigma_i[d_i]} \in A^+_S \subset A_S.
\]
We define the global component groups $S^\Sigma$ and $S^+\Sigma$ by
\[
S^\Sigma = A_S/\langle \phi \rangle \quad \text{and} \quad S^+\Sigma = A^+_S/\langle \phi \rangle.
\]
On the other hand, as in Proposition 6.7, we put
\[
S_{\Sigma_v} = \pi_0(\text{Cent}(\text{Im}(\Sigma_v), O_{2n}(\mathbb{C}))/\{\pm 1_{2n}\}) \quad \text{and} \quad S^+_{\Sigma_v} = \pi_0(\text{Cent}(\text{Im}(\Sigma_v), SO_{2n}(\mathbb{C}))/\{\pm 1_{2n}\}).
\]
Then we have a map
\[
S^\Sigma \to S_{\Sigma_v}, \quad a_{\Sigma_i[d_i]} \mapsto -1_{\Sigma_i,v}
\]
for each place $v$, where $-1_{\Sigma_i,v}$ is the image of the element in $\text{Cent}(\text{Im}(\Sigma_v), O_{2n}(\mathbb{C}))$ which acts on $\Sigma_i,v$ by $-\text{id}$ and acts on $\Sigma_j,v$ trivially for any $j \neq i$. Hence we obtain the diagonal maps
\[
\Delta: S^\Sigma \to \prod_v S^\Sigma_v \quad \text{and} \quad \Delta: S^+\Sigma \to \prod_v S^+\Sigma_v.
\]
Let $\Sigma \in \Psi_2(O(V_{2n}))$ be a global $A$-parameter and $\psi = \Sigma_v$ be the localization at $v$. We emphasize that $\psi$ does not necessarily belong to $\Psi(O(V_{2n})(\mathbb{F}_v))$ defined in [6.2]. We can decompose
\[
\psi = \psi_1 | \cdot |_{\Sigma_1}^{\psi_1} \oplus \cdots \oplus \psi_r | \cdot |_{\Sigma_r}^{\psi_r} \oplus \psi_0 | \cdot |_{\Sigma_0}^{\psi_0} \oplus \psi_1 | \cdot |_{\Sigma_1}^{\psi_1} \oplus \cdots \oplus \psi_r | \cdot |_{\Sigma_r}^{\psi_r} | \cdot |_{\Sigma^r}^{\psi^r},
\]
where
- $\psi_i$ is an irreducible representation of $Wd_{\Sigma_i} \times \text{SL}_2(\mathbb{C})$ of dimension $d_i$ such that $\psi_i(Wd_{\Sigma_i})$ is bounded;
- $\psi_0 \in \Psi(O(V_{2n_0})(\mathbb{F}_v))$;
- $d_1 + \cdots + d_r + n_0 = n$ and $s_1 \geq \cdots \geq s_r > 0$.

We define a representation $\phi_{\psi_i}$ of $Wd_{\Sigma_i}$ by
\[
\phi_{\psi_i}(w) = \psi_i(w, \begin{pmatrix} w & 0 \\ 0 & w^{-\frac{1}{2}} \end{pmatrix}),
\]
and we denote by $\tau_{\psi_i}$ the irreducible representation of $\text{GL}_{d_i} \times \text{SL}_2(\mathbb{C})$ corresponding to $\phi_{\psi_i}$. Let $\Pi_{\psi_0}$ be the local $A$-packet associated to $\psi_0$, which is a multiset of $\text{Irr}_{\text{unit}}(O(V_{2n_0})(\mathbb{F}_v))$. For $\sigma_0 \in \Pi_{\psi_0}$, we put
\[
I(\sigma_0) = \text{Ind}_{P_{\Sigma_0}(\mathbb{F}_v)}^{O(V_{2n_0})(\mathbb{F}_v)}(\tau_{\psi_0} | \cdot |_{\Sigma_0}^{\psi_0} \otimes \cdots \otimes \tau_{\psi_r} | \cdot |_{\Sigma_r}^{\psi_r} | \cdot |_{\Sigma^r}^{\psi^r}),
\]
where $P$ is a parabolic subgroup of $O(V_{2n})$ with Levi subgroup $M_P = \text{GL}_{d_1} \times \cdots \times \text{GL}_{d_r} \times O(V_{2n_0})$. Note that $I(\sigma_0)$ depends on not only $\sigma_0$ but also $\psi$.

To establish the global main result (Theorem 7.1 below), we need the following conjecture (see [AR Conjecture 8.3.1]).

**Conjecture 6.6.** Let $\Sigma \in \Psi_2(O(V_{2n}))$ be a global $A$-parameter. We decompose $\Sigma_v$ as above, so that $\psi_0 \in \Psi(O(V_{2n_0})(\mathbb{F}_v))$. Then the induced representation $I(\sigma_0)$ is irreducible for $\sigma_0 \in \Pi_{\psi_0}$. Moreover, if $I(\sigma_0) \cong I(\sigma_0')$ for $\sigma_0, \sigma_0' \in \Pi_{\psi_0}$, then $\sigma_0 \cong \sigma_0'$.

For tempered $A$-parameters, the irreducibility and the disjointness follows from a result of Heiermann [H].

**Proposition 6.7.** Conjecture 6.6 holds for the following cases:
- when $\Sigma \in \Psi_{2\text{temp}}(O(V_{2n}))$;
- when $\mathbb{F}_v$ is non-archimedean.
Proof. The second case is [M3 Proposition 5.1]. So we shall prove the first case. 

Let $\Sigma$ be an element in $\Psi_{2,\text{temp}}(O(V_{2n}))$, $\phi = \Sigma_v$ be the localization of $\Sigma$ at $v$, and $\phi_0 = \psi_0$ be as above. Note that $\phi \in \Phi(O(V_{2n})(F_v))$. Then the $L$-packet $\Pi_\phi$ is equal to the set of the Langlands quotients of the standard module $I(\sigma_0)$, where $\sigma_0$ runs over $\Pi_{\phi_0}$. Heiermann’s result [H] (together with the Clifford theory) asserts that if $\phi \in \Phi_{\text{gen}}(O(V_{2n})(F_v))$, then $I(\sigma_0)$ is irreducible for any $\sigma_0 \in \Pi_{\phi_0}$. Namely, to show the irreducibility of $I(\sigma_0)$, it suffices to prove that $L(s, \phi, \text{Ad})$ is regular at $s = 1$.

We decompose

$$\phi = \phi_1 \cdot |\tau'_v| \odot \cdots \odot |\tau_r| \cdot \phi_0 \odot \phi_1^\vee \cdot \phi_1^* \odot \cdots \odot \phi_r^* | \cdot |\tau'_s| \odot \cdots \odot |\tau'_1|,$$

where

- $\phi_i$ is an irreducible tempered representation of $WD_{g_v}$ of dimension $d_i$;
- $\phi_0 \in \Phi_{\text{temp}}(O(V_{2n_0})(F_v))$;
- $d_1 + \cdots + d_r + n_0 = n$ and $s_1 \geq \cdots \geq s_r > 0$.

Then $L(s, \phi, \text{Ad})$ is equal to

$$L(s, \phi_0, \text{Ad}) \left( \prod_{i=1}^r L(s, \phi_i, \text{Ad}_{\text{GL}_i}) L(s + s_1, \phi_0 \otimes \phi_1) L(s - s_1, \phi_0 \otimes \phi_1^\vee) L(s + 2s_i, \phi_i, \wedge^2) L(s - 2s_i, \phi_i^\vee, \wedge^2) \right) \times \left( \prod_{1 \leq i < j \leq r} L(s + s_i + s_j, \phi_i \otimes \phi_j) L(s + s_i - s_j, \phi_i \otimes \phi_j^\vee) L(s - s_i + s_j, \phi_i^\vee \otimes \phi_j) L(s - s_i - s_j, \phi_i^\vee \otimes \phi_j^\vee) \right),$$

where $\text{Ad}_{\text{GL}_i}$ is the adjoint representation of $GL_m(C)$ on $\text{Lie}(GL_m(C))$ for a suitable $m$.

Since $\phi$ corresponds to an irreducible representation of $GL_{2n}(F_v)$, which is a local constituent of $\Sigma = \coprod_{i=1}^l \Sigma_i$, we have $|s_i| < 1/2$ for any $i$. See e.g., [JS] (2.5 Corollary) and [RS] Appendix. Note that for tempered representations, all $L$-functions appeared in the above equation are regular for $\text{Re}(s) > 0$. Hence we conclude that $L(s, \phi, \text{Ad})$ is regular at $s = 1$.

Since $I(\sigma_0)$ is a standard module, the last assertion of Conjecture 6.6 follows from the Langlands classification.

Go back to the general situation. Let $\Sigma \in \Psi_2(O(V_{2n}))$ be a global $A$-parameter, and $\psi = \Sigma_v, \psi_0$ and $I(\sigma_0)$ for $\sigma_0 \in \Pi_{\psi_0}$ be as above. We define the local $A$-packet $\Pi_\psi$ associated to $\psi = \Sigma_v$, which is a multiset on $\text{Irr}(O(V_{2n})(F_v))$, by

$$\Pi_\psi = \bigsqcup_{\sigma_0 \in \Pi_{\psi_0}} \{ \sigma | \sigma \text{ is an irreducible constituent of } I(\sigma_0) \}.$$ 

Namely, $\Pi_\psi$ is the disjoint union of the multisets of the Jordan–Hölder series of $I(\sigma_0)$. Similarly, we can define the local $A$-packet $\Pi^0_\psi$, which is a multiset on $\text{Irr}(SO(V_{2n})(F_v))/\sim_e$. Since $\mathcal{S}_\psi = \mathcal{S}_{\psi_0}$ and $\mathcal{S}^+_{\psi} = \mathcal{S}^+_{\psi_0}$, we can define maps

$$\iota_e : \Pi_\psi \to \mathcal{S}_{\psi} \quad \text{and} \quad \iota_e : \Pi^0_\psi \to \mathcal{S}^+_{\psi},$$

by

$$\iota_e(\sigma) := \iota_e(\sigma_0) \quad \text{and} \quad \iota_e(\sigma) := \iota_e(\sigma_0)$$

if $\sigma$ is an irreducible constituent of $I(\sigma_0)$.

### 6.6. Global $A$-packets

Let $\mathcal{H}(O(V_{2n})) = \otimes_v' \mathcal{H}(O(V_{2n})(F_v))$ (resp. $\mathcal{H}(SO(V_{2n})) = \otimes_v' \mathcal{H}(SO(V_{2n})(F_v))$) be the global Hecke algebra on $O(V_{2n})(\mathbb{A})$ (resp. $SO(V_{2n})(\mathbb{A})$) with respect to the maximal compact subgroup $K = \prod_v K_v$ (resp. $K_0 = \prod_v K_{0,v}$) fixed in §6.1. Namely, $\mathcal{H}(O(V_{2n})(F_v))$ (resp. $\mathcal{H}(SO(V_{2n})(F_v))$) is the algebra of smooth, left and right $K_v$-finite (resp. $K_{0,v}$-finite) functions of compact support on $O(V_{2n})(F_v)$ (resp. $SO(V_{2n})(F_v)$). We denote by $\mathcal{H}'(SO(V_{2n})(F_v))$ the subspace of functions in $\mathcal{H}(SO(V_{2n})(F_v))$ which are invariant under $e_v$. We put $\mathcal{H}'(SO(V_{2n})) = \otimes_v' \mathcal{H}'(SO(V_{2n})(F_v))$. We say that two admissible representations of $SO(V_{2n})(\mathbb{A})$ of the form

$$\sigma_0 = \otimes_v' \sigma_{0,v} \quad \text{and} \quad \sigma'_0 = \otimes_v' \sigma'_{0,v}$$

...
are \(\epsilon\)-equivalent if \(\sigma_{0,v} \sim_{\epsilon_v} \sigma_{0,v'}\) for each \(v\). The \(\epsilon\)-equivalence class of \(\sigma_0\) is denoted by \([\sigma_0] = \otimes_v [\sigma_{0,v}]\). For \(f \in \mathcal{H}'(\text{SO}(V_{2n}))\) and any \(\sigma_0\) as above, the operator \(\sigma_0(f)\) depends only on the class \([\sigma_0]\).

Let \(\Sigma \in \Psi_2(\text{O}(V_{2n}))\) be a global \(A\)-parameter. We attach a global \(A\)-packets
\[
\Pi_{\Sigma} = \{ \sigma = \otimes_v \sigma_v \mid \sigma_v \in \Pi_{\Sigma_v}, \quad \iota_v(\sigma_v) = 1 \text{ for almost all } v \}
\]
of equivalence classes of irreducible representations of \(\text{O}(V_{2n})(\mathbb{A})\), and a global \(A\)-packets
\[
\Pi^0_{\Sigma} = \{ [\sigma_0] = \otimes_v [\sigma_{0,v}] \mid [\sigma_{0,v}] \in \Pi^0_{\Sigma_v}, \quad \iota_v([\sigma_{0,v}]) = 1 \text{ for almost all } v \}
\]
of \(\epsilon\)-equivalence classes of irreducible representations of \(\text{SO}(V_{2n})(\mathbb{A})\). Note that an element \(\sigma \in \Pi_{\Sigma}\) and a representative \(\sigma_0\) of \([\sigma_0] \in \Pi^0_{\Sigma}\) are not necessarily unitary. For \(\sigma \in \Pi_{\Sigma}\) and \([\sigma_0] \in \Pi^0_{\Sigma}\), the operators \(\sigma(f)\) and \(\sigma_0(f_0)\) are well-defined for \(f \in \mathcal{H}(\text{O}(V_{2n}))\) and \(f_0 \in \mathcal{H}'(\text{SO}(V_{2n}))\), respectively.

For \(\sigma = \otimes_v \sigma_v \in \Pi_{\Sigma}\) and \([\sigma_0] = \otimes_v [\sigma_{0,v}] \in \Pi^0_{\Sigma}\), we define characters \(\iota_v(\sigma)\) of \(\prod_v \mathcal{S}_{\Sigma_v}\) and \(\iota_v([\sigma_0])\) of \(\prod_v \mathcal{S}^0_{\Sigma_v}\) by
\[
\iota_v(\sigma) = \prod_v \iota_v(\sigma_v) \quad \text{and} \quad \iota_v([\sigma_0]) = \prod_v \iota_v([\sigma_{0,v}]),
\]
respectively.

### 6.7. Arthur’s multiplicity formula for \(\text{SO}(V_{2n})\)

We say that a function \(\varphi : \text{O}(V_{2n})(\mathbb{A}) \to \mathbb{C}\) is an automorphic form on \(\text{O}(V_{2n})(\mathbb{A})\) if \(\varphi\) satisfies the following conditions:

- \(\varphi\) is left \(\text{O}(V_{2n})(\mathbb{F})\)-invariant;
- \(\varphi\) is smooth and moderate growth;
- \(\varphi\) is right \(K\)-finite, where \(K = \prod_v K_v\) is the maximal compact subgroup of \(\text{O}(V_{2n})(\mathbb{A})\) fixed in \([6.1]\);
- \(\varphi\) is \(A\)-finite, where \(A\) is the center of the universal enveloping algebra of \(\text{Lie}(\text{O}(V_{2n})(\mathbb{F}_\infty)) \otimes \mathbb{R} \mathbb{C}\).

We define automorphic forms on \(\text{SO}(V_{2n})(\mathbb{A})\) similarly. More precisely, see \([31]\) §4.2. Let \(\mathcal{A}(\text{O}(V_{2n}))\) be the space of automorphic forms on \(\text{O}(V_{2n})(\mathbb{A})\). We denote by \(\mathcal{A}_2(\text{O}(V_{2n}))\) the subspace of \(\mathcal{A}(\text{O}(V_{2n}))\) consisting of square-integrable automorphic forms on \(\text{O}(V_{2n})(\mathbb{A})\). Similarly, we define \(\mathcal{A}(\text{SO}(V_{2n}))\) and \(\mathcal{A}_2(\text{SO}(V_{2n}))\).

We call \(\mathcal{A}_2(\text{O}(V_{2n}))\) (resp. \(\mathcal{A}_2(\text{SO}(V_{2n}))\)) the automorphic discrete spectrum of \(\text{O}(V_{2n})\) (resp. \(\text{SO}(V_{2n})\)).

The Hecke algebra \(\mathcal{H}(\text{O}(V_{2n}))\) (resp. \(\mathcal{H}(\text{SO}(V_{2n}))\)) acts on \(\mathcal{A}(\text{O}(V_{2n}))\) (resp. \(\mathcal{A}(\text{SO}(V_{2n}))\)) by
\[
(f : \varphi)(g) = \int_{\text{O}(V_{2n})(\mathbb{A})} \varphi(gx)f(x)dx
\]
(resp.
\[
(f_0 \cdot \varphi_0)(g_0) = \int_{\text{SO}(V_{2n})(\mathbb{A})} \varphi_0(g_0x_0)f_0(x_0)dx_0
\]
for \(f \in \mathcal{H}(\text{O}(V_{2n}))\) and \(\varphi \in \mathcal{A}(\text{O}(V_{2n}))\) (resp. \(f_0 \in \mathcal{H}(\text{SO}(V_{2n}))\) and \(\varphi_0 \in \mathcal{A}(\text{SO}(V_{2n}))\)). This action preserves \(\mathcal{A}_2(\text{O}(V_{2n}))\) (resp. \(\mathcal{A}_2(\text{SO}(V_{2n}))\)).

Arthur’s multiplicity formula for \(\text{SO}(V_{2n})\) is formulated as follows:

**Theorem 6.8 (Arthur’s multiplicity formula ([A], Theorem 1.5.2)).** Let \(V_{2n}\) be the orthogonal space over a number field \(\mathbb{F}\) associated to \((d,c)\) for some \(c,d \in \mathbb{F}^\times\). Then for each \(\Sigma \in \Psi_2(\text{SO}(V_{2n}))/\sim\), there exists a character
\[
\varepsilon_\Sigma : \mathcal{S}_\Sigma \to \{\pm 1\}
\]
defined explicitly in terms of symplectic \(\epsilon\)-factors such that
\[
\mathcal{A}_2(\text{SO}(V_{2n})) \cong \bigoplus_{\Sigma \in \Psi_2(\text{SO}(V_{2n}))/\sim, \; [\sigma_0] \in \Pi^0_{\Sigma}(\varepsilon_\Sigma)} m_\Sigma \bigoplus [\sigma_0]
\]
as \(\mathcal{H}'(\text{SO}(V_{2n}))\)-modules. Here for \(\Sigma = \bigoplus_i \Sigma_i, [d_i] \in \Psi_2(\text{SO}(V_{2n}))/\sim\), with \(\Sigma_i \in \mathcal{A}_{\text{cusp}}(\text{GL}_{n_i})\), we put
\[
m_\Sigma = \begin{cases} 
1 & \text{if } \Sigma \in \Psi_2(\text{SO}(V_{2n}))/\sim, \text{i.e., } \text{m}_i \text{d}_i \text{ is odd for some } i, \\
2 & \text{otherwise,}
\end{cases}
\]
and we put
\[
\Pi^0_{\Sigma}(\varepsilon_\Sigma) = \{ [\sigma_0] \in \Pi^0_{\Sigma} \mid \iota_v([\sigma_0]) \circ \Delta = \varepsilon_\Sigma | \mathcal{S}_\Sigma^c \}.
\]
Moreover, if \(\Sigma \in \Psi_2,\text{temp}(\text{SO}(V_{2n}))\), then \(\varepsilon_\Sigma\) is the trivial representation of \(\mathcal{S}_\Sigma\).
For the definition of $\epsilon_\Sigma$, see the remark after [Ar] Theorem 1.5.2.

**Remark 6.9.** In fact, Arthur described a spectral decomposition of $L^2_{\text{disc}}(SO(V_{2n})(F)\setminus SO(V_{2n})(A))$. However it is well understood (by Harish-Chandra, Langlands etc) that $A_2(SO(V_{2n}))$ is a dense subspace of $L^2_{\text{disc}}(SO(V_{2n})(F)\setminus SO(V_{2n})(A))$. So we shall work with $A_2(SO(V_{2n}))$ in this paper.

**Remark 6.10.** Taïbi [14] prove the multiplicity formula for $SO(V_{2n})$ when $SO(V_{2n})(F_{\infty})$ is compact and $SO(V_{2n})(F_v)$ is quasi-split at all finite places $v$ of $F$.

6.8. **Arthur’s multiplicity formula for $SO(V_{2n})(A) \cdot O(V_{2n})(F)$**. Theorem 6.8 follows from a more precise result. In this subsection, we recall this result.

Let $\epsilon \in O(V_{2n})(F)$ be as in 3.1. We may consider $\mathcal{H}(SO(V_{2n})) \times \langle \epsilon \rangle$, where $\epsilon$ acts on $\mathcal{H}(SO(V_{2n}))$ by

$$(\epsilon f \epsilon^{-1})(x) := f(\epsilon^{-1}x\epsilon)$$

for $f \in \mathcal{H}(SO(V_{2n}))$. We say that $(\sigma, V_{\sigma})$ is an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module if

- $(\sigma, V_{\sigma})$ is an $\mathcal{H}(SO(V_{2n}))$-module;
- there is an automorphism $\sigma(\epsilon)$ on $V_{\sigma}$ such that $\sigma(\epsilon)^2 = 1_{V_{\sigma}}$;
- $\sigma(\epsilon f \epsilon^{-1}) \circ \sigma(\epsilon) = \sigma(\epsilon) \circ \sigma(f)$ for any $f \in \mathcal{H}(SO(V_{2n}))$.

We define an action of $\epsilon$ on $A_2(SO(V_{2n}))$ by

$$(\epsilon \cdot \varphi)(h_0) = \varphi(\epsilon^{-1} h_0 \epsilon).$$

It makes $A_2(SO(V_{2n}))$ an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module.

For an $\mathcal{H}(SO(V_{2n}))$-module $(\sigma, V_{\sigma})$, we define an $\mathcal{H}(SO(V_{2n}))$-module $(\sigma^\epsilon, V_{\sigma^\epsilon})$ by $V_{\sigma^\epsilon} = V_{\sigma^\epsilon}$ and

$$\sigma^\epsilon(f)v = \sigma(\epsilon f \epsilon^{-1})v$$

for $f \in \mathcal{H}(SO(V_{2n}))$ and $v \in V_{\sigma}$.

**Lemma 6.11.** If $V_0 \subset A_2(SO(V_{2n}))$ is an irreducible $\mathcal{H}(SO(V_{2n}))$-summand isomorphic to $\sigma$, then the subspace

$$V_0^\epsilon = \{ \epsilon \cdot \varphi \mid \varphi \in V_0 \}$$

is an irreducible $\mathcal{H}(SO(V_{2n}))$-summand isomorphic to $\sigma^\epsilon$.

**Proof.** Obvious. □

Now, we recall a result of Arthur [Ar] which states a decomposition of $A_2(SO(V_{2n}))$ as an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module by using global $A$-parameters. Let $\Sigma = \bigoplus_{i=1}^n \Sigma_i[d_i] \in \Psi_2(SO(V_{2n}))/\sim_{\epsilon}$ and $[\sigma_0] \in \Pi_0^\Sigma$. We take a representative $\sigma_0$ which occurs in $A_2(SO(V_{2n}))$, and we denote by $V_0$ a subspace of $A_2(SO(V_{2n}))$ which realizes $\sigma_0$. We distinguish 3 cases as follows:

- (A) Suppose that $\Sigma \in \Psi_2^0(SO(V_{2n}))/\sim_{\epsilon}$. In this case, we have $m_\Sigma = 1$. Hence $V_0$ is stable under the action of $\epsilon$, and so that $\sigma_0^\epsilon \cong \sigma_0$. The space $V_0$ realizes a distinguished extension of $\sigma_0$ to an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module.
- (B) Suppose that $\Sigma \notin \Psi_2^0(SO(V_{2n}))/\sim_{\epsilon}$ and $\sigma_0^\epsilon \not\cong \sigma_0$. In this case, $m_\Sigma = 2$ and $V_0 \not\cong V_0$. This shows that both $\sigma_0$ and $\sigma_0^\epsilon$ occur in $A_2(SO(V_{2n}))$. This explains why $m_\Sigma = 2$.
- (C) Suppose that $\Sigma \notin \Psi_2^0(SO(V_{2n}))/\sim_{\epsilon}$ and $\sigma_0^\epsilon \cong \sigma_0$. Then there are exactly two extensions $\sigma_1$ and $\sigma_2$ of $\sigma_0$ to $(\mathcal{H}(SO(V_{2n})), \epsilon)$-modules. Moreover, [Ar] Theorem 4.2.2 (a)] implies that both $\sigma_1$ and $\sigma_2$ occur in $A_2(SO(V_{2n}))$. This explains why $m_\Sigma = 2$.

In the case (A), there are exactly two extensions $\sigma_1$ and $\sigma_2$ of $\sigma_0$ to $(\mathcal{H}(SO(V_{2n})), \epsilon)$-modules. The above argument shows that exactly one of $\sigma_1$ or $\sigma_2$ occurs in $A_2(SO(V_{2n}))$. The following theorem determines which extension occurs.

**Theorem 6.12** ([Ar] Theorem 4.2.2)]. Let $\Sigma \in \Psi_2^0(SO(V_{2n}))/\sim_{\epsilon}$ and $[\sigma_0] \in \Pi_0^\Sigma$. Assume that an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module $\sigma_0 = \bigotimes_v \sigma_{0,v}$ occurs in $A_2(SO(V_{2n}))$, so that $\iota_{\epsilon}(\sigma_0) \circ \Delta = \epsilon_\Sigma \otimes_F \mathcal{S}_\Sigma^F$ by Arthur’s multiplicity formula. For each place $v$ of $F$, take an extension $\sigma_0,v$ to an $(\mathcal{H}(SO(V_{2n})(F_v)), \epsilon_v)$-module such that $\iota_{\epsilon}(\sigma_v) = 1$ for almost all $v$. Put $\sigma = \bigotimes_v \sigma_v$. Let $\iota_{\epsilon}(\sigma)$ be the character of $\prod_v \mathcal{S}_{\sigma_v}$ defined by

$$\iota_{\epsilon}(\sigma) = \prod_v \iota_{\epsilon}(\sigma_v).$$
Then as an \((\mathcal{H}(\text{SO}(V_{2n})), \epsilon)\)-module, \(\sigma\) occurs in \(A_2(\text{SO}(V_{2n}))\) if and only if \(\iota_c(\sigma) \circ \Delta = \epsilon_\Sigma\).

## 7. Arthur’s multiplicity formula for \(O(V_{2n})\)

In this section, we prove Arthur’s multiplicity formula for \(O(V_{2n})\), which is the third main theorem in this paper.

### 7.1. Statements

The global main theorem is Arthur’s multiplicity formula for \(O(V_{2n})\), which is formulated as follows:

**Theorem 7.1** (Arthur’s multiplicity formula for \(O(V_{2n})\)). Assume Conjectures 6.4 and 6.6. Let \(\Sigma \in \Psi_2(O(V_{2n}))\) and

\[\epsilon_\Sigma: \mathcal{S}_\Sigma \rightarrow \{\pm 1\}\]

be the character of \(\mathcal{S}_\Sigma\) as in Theorem 6.3, which is trivial if \(\Sigma \in \Psi_{2,\text{temp}}(O(V_{2n}))\). Then we have a decomposition

\[A_2(O(V_{2n})) \cong \bigoplus_{\Sigma \in \Psi_2(O(V_{2n}))} \bigoplus_{\sigma \in \Pi_\Sigma(\epsilon_\Sigma)} \sigma\]

as \(\mathcal{H}(O(V_{2n}))\)-modules. Here we put

\[\Pi_\Sigma(\epsilon_\Sigma) = \{\sigma \in \Pi_\Sigma \mid \iota_c(\sigma) \circ \Delta = \epsilon_\Sigma\} \]

Also, we will show the following:

**Proposition 7.2.** Assume Conjectures 6.4 and 6.6. Then for an irreducible \(\mathcal{H}(O(V_{2n}))\)-module \(\sigma\), we have

\[\dim_C \text{Hom}_{\mathcal{H}(O(V_{2n}))}(\sigma, A_2(O(V_{2n}))) \leq 1.\]

In other words, \(A_2(O(V_{2n}))\) is multiplicity-free as an \(\mathcal{H}(O(V_{2n}))\)-module.

### 7.2. Propositions and Remark

**Remark 7.3.** The arguments in the proofs of Theorem 7.1 and Proposition 7.2 work when we restrict to \(\Sigma \in \Psi_{2,\text{temp}}(O(V_{2n}))\). In this case, Proposition 6.6, which shows Conjecture 6.7 for \(\Sigma \in \Psi_{2,\text{temp}}(O(V_{2n}))\), also implies that the local \(A\)-packet \(\Pi_\Sigma\) associated to the localization \(\Sigma_\circ\) becomes a local \(L\)-packet, which is multiplicity-free, i.e., which satisfies Conjecture 6.7. Hence without assuming any conjectures, Theorem 7.1 and Proposition 7.2 hold for \(\Sigma \in \Psi_{2,\text{temp}}(O(V_{2n}))\). In particular, the tempered part of the automorphic discrete spectrum of \(O(V_{2n})\)

\[A_{2,\text{temp}}(O(V_{2n})) := \bigoplus_{\Sigma \in \Psi_{2,\text{temp}}(O(V_{2n}))} \bigoplus_{\sigma \in \Pi_\Sigma(\epsilon_\Sigma)} \sigma\]

is multiplicity-free as an \(\mathcal{H}(O(V_{2n}))\)-module unconditionally.

The rest of this section is devoted to the proofs of Theorem 7.1 and Proposition 7.2.

### 7.2. Restriction of automorphic forms

Now we compare \(A_2(O(V_{2n}))\) with \(A_2(\text{SO}(V_{2n}))\). To do this, we consider the restriction map

\[\text{Res}: \mathcal{A}(O(V_{2n})) \rightarrow \mathcal{A}(\text{SO}(V_{2n})), \varphi \mapsto \varphi|_{\text{SO}(V_{2n})(A)}.\]

**Lemma 7.4.** We have \(\text{Res}(A_2(O(V_{2n}))) \subset A_2(\text{SO}(V_{2n})).\)

**Proof.** Let \(\varphi \in A_2(O(V_{2n})).\) Then

\[\int_{O(V_{2n})(F) \backslash O(V_{2n})(A)} |\varphi(g)|^2 dg = \int_{\mu_2(F) \backslash \mu_2(A)} \left( \int_{\text{SO}(V_{2n})(F) \backslash \text{SO}(V_{2n})(A)} |\varphi(h)\epsilon_t)|^2 dh \right) dt\]

is finite. By Fubini’s theorem, we see that for almost everywhere \(t \in \mu_2(F) \backslash \mu_2(A),\) the function \(h \mapsto |\varphi(h)\epsilon_t)|^2\) is integrable on \(\text{SO}(V_{2n})(F) \backslash \text{SO}(V_{2n})(A).\)
Since $\varphi(g)$ is right $K$-finite, there exists a finite set $S$ of finite places of $F$ containing all infinite places of $F$ such that $\varphi$ is right $\epsilon_1$-invariant for any $t \in \prod_{v \in S} \mu_2(F_v)$. Since $\mu_2(F_\infty)$ is finite, we see that $\prod_{v \in S} \mu_2(F_v)$ is open in $\mu_2(\mathbb{A})$ (not only in $\mu_2(\mathbb{A}_{\text{fin}})$). This implies that

$$\int_{\SO(V_{2n})(\mathbb{F}) \setminus \SO(V_{2n})(\mathbb{A})} |\varphi(\xi)|^2 d\theta < \infty$$

for some (hence any) $t \in \prod_{v \in S} \mu_2(F_v)$. In particular, $\text{Res}(\varphi)$ is square-integrable. \hfill $\Box$

**Proposition 7.5.** We have $\text{Res}(A_2(O(V_{2n}))) = A_2(\SO(V_{2n}))$.

**Proof.** Let $\varphi_0 \in A_2(\SO(V_{2n}))$. Since $\varphi_0$ is $K_0$-finite, there exists a compact open subgroup $K_1$ of $K_0 \cap \SO(V_{2n})(\mathbb{A}_{\text{fin}})$ such that $\varphi_0$ is right $K_1$-invariant. We may assume that $K_1$ is of the form $K_1 = \prod_{v < \infty} K_{1,v}$ for some compact open subgroup $K_{1,v}$ of $K_{0,v}$ such that $\epsilon_v^{-1}K_{1,v}\epsilon_v = K_{1,v}$ for any $v < \infty$. Moreover, we can find a finite set $S$ of places of $F$ containing all infinite places of $F$ such that $K_{1,v} = K_{0,v}$ for any $v \notin S$. We fix a complete system $B$ of representative of

$$\mu_2(F) \setminus \left( \prod_{v \in S} \mu_2(F_v) \right).$$

We may assume that $B$ contains the identity element $1 \in \prod_{v \in S} \mu_2(F_v)$.

We regard $\varphi_0$ as a function on $O(V_{2n})(F) \cdot \SO(V_{2n})(\mathbb{A})$, which is left $O(V_{2n})(F)$-invariant. For $t \in \mu_2(\mathbb{A})$, we define a function $\varphi_t : O(V_{2n})(F) \cdot \SO(V_{2n})(\mathbb{A}) \to \mathbb{C}$ by

$$\varphi_t(\xi) = \begin{cases} \varphi_0(\xi) & \text{if } (t_v)v \in S \in B, \\ \varphi_0(\xi) & \text{if } (t_v)v \notin S \end{cases}$$

for $h \in O(V_{2n})(F) \cdot \SO(V_{2n})(\mathbb{A})$. Then we see that

$$\varphi_{ta}(h) = \varphi_t(h), \quad \varphi_{-t}(h) = \varphi_t(h\epsilon)$$

for $t \in \mu_2(\mathbb{A})$ and $a \in \prod_{v \in S} \mu_2(F_v)$ since $\epsilon^2 = 1_{V_{2n}}$. Moreover, $\varphi_t$ is right $K_1$-invariant for any $t \in \mu_2(\mathbb{A})$.

Now we define a function $\varphi : O(V_{2n})(\mathbb{A}) \to \mathbb{C}$ by

$$\varphi(g) = \varphi_{\det(g)}(g\epsilon_{\det(g)}^{-1})$$

for $g \in O(V_{2n})(\mathbb{A})$. Then we have $\text{Res}(\varphi) = \varphi_0$. We show that $\varphi \in A_2(O(V_{2n}))$.

Let $\gamma \in O(V_{2n})(F)$. If $\det(\gamma) = 1$, we have

$$\varphi(\gamma g) = \varphi_{\det(g)}(\gamma g\epsilon_{\det(g)}^{-1}) = \varphi_{\det(g)}(g\epsilon_{\det(g)}^{-1}) = \varphi(g).$$

If $\det(\gamma) = -1$, we have

$$\varphi(\gamma g) = \varphi_{-\det(g)}(g\epsilon_{\det(g)}^{-1}) = \varphi_{\det(g)}(g\epsilon_{\det(g)}^{-1}) = \varphi(g).$$

Hence $\varphi$ is left $O(V_{2n})(F)$-invariant. It is easy to see that $\varphi$ is right $(K_1 \cdot \prod_{v \in S} K_v)$-invariant and is a $C^\infty$-function on $O(V_{2n})(F_{\infty})$. Hence $\varphi$ is a smooth function on $O(V_{2n})(\mathbb{A})$.

We denote the space spanned by $k \cdot \varphi$ for $k \in K$ (resp. for $k \in K_0$) by $K\varphi$ (resp. $K_0\varphi$). Since any $\varphi' \in K\varphi$ is right $\prod_{v \in S} K_v$-invariant, the finiteness of $\dim(K\varphi)$ is equivalent to the one of $\dim(K_0\varphi)$. So we shall prove that $\dim(K_0\varphi) < \infty$. Let

$$\varphi' = \sum_{i=1}^r c_i(k_i \cdot \varphi) \in K_0\varphi$$

with $c_i \in \mathbb{C}$ and $k_i \in K_0$. Then for $a \in \prod_{v \in S} \mu_2(F_v)$ and $x \in \SO(V_{2n})(\mathbb{A})$, we have

$$(\epsilon_a \cdot \varphi')(x) = \varphi'(x\epsilon_a) = \sum_{i=1}^r c_i \varphi(x\epsilon_a k_i) = \sum_{i=1}^r c_i \varphi(x(\epsilon_a k_i \epsilon_a^{-1})\epsilon_a).$$

Since $\epsilon_a k_i \epsilon_a^{-1} \in K_0$, we have

$$(\epsilon_a \cdot \varphi')(\SO(V_{2n})(\mathbb{A})) \in K_0((\epsilon_a \cdot \varphi)(\SO(V_{2n})(\mathbb{A}))).$$
Hence we may consider the map
\[ \Phi: K_0 \varphi \rightarrow \bigoplus_a K_0((\epsilon_a \cdot \varphi)|_{\SO(V_{2n})}(A)), \quad \varphi' \mapsto \oplus_{\alpha}((\epsilon_a \cdot \varphi')|_{\SO(V_{2n})}(A))_a, \]
where \( a \) runs over \( \prod_{v \in S} \mu_2(F_v) \). Since any \( \varphi' \in K_0 \varphi \) is right \( \prod_{v \in S} K_v \)-invariant and the map
\[ \prod_{v \in S} \mu_2(F_v) \rightarrow \SO(V_{2n})(A) \backslash O(V_{2n})(A)/ \prod K_v, \quad a \mapsto \epsilon_a \]
is bijective, we see that \( \Phi \) is injective. Since \((\epsilon_a \cdot \varphi)|_{\SO(V_{2n})}(A) \in \mathcal{A}(\SO(V_{2n}))\), it is \( K_0 \)-finite. Hence we have \( \dim(K_0 \varphi) < \infty \), and so that we get the \( K \)-finiteness of \( \varphi \). Similarly, we obtain the \( 3 \)-finiteness of \( \varphi \).

Note that \( \Lie\SO(V_{2n})(F) = \Lie\SO(V_{2n})(F_\infty) \). Therefore we conclude that \( \varphi \in \mathcal{A}_2(O(V_{2n})) \). This completes the proof.

7.3. Near equivalence classes. Let \( \sigma = \otimes_v' \sigma_v \) and \( \sigma' = \otimes_v' \sigma'_v \) be two admissible representations of \( \mathcal{H}(O(V_{2n})) \). We say that \( \sigma \) and \( \sigma' \) are nearly equivalent if \( \sigma_v \cong \sigma'_v \) for almost all \( v \). In this case, we write \( \sigma \sim_{ne} \sigma' \). Similarly, let \([\sigma_0] = \otimes_v' [\sigma_0,v] \) and \([\sigma'_0] = \otimes_v' [\sigma'_0,v] \) be two equivalence classes of admissible representations of \( \mathcal{H}(\SO(V_{2n})) \). We say that \([\sigma_0] \) and \([\sigma'_0] \) are \( \epsilon \)-equivalent if \([\sigma_0,v] = [\sigma'_0,v] \), i.e., \( \sigma'_0,v \cong \sigma_0,v \) or \( \sigma'_0,v \) for almost all \( v \). In this case, we write \([\sigma_0] \sim \epsilon [\sigma'_0] \).

By a near equivalence class in \( \mathcal{A}_2(O(V_{2n})) \), we mean a maximal \( \mathcal{H}(O(V_{2n})) \)-submodule \( \mathcal{V} \) of \( \mathcal{A}_2(O(V_{2n})) \) such that
- all irreducible constituents of \( \mathcal{V} \) are nearly equivalent each other;
- any irreducible \( \mathcal{H}(O(V_{2n})) \)-submodule of \( \mathcal{A}_2(O(V_{2n})) \) which is orthogonal to \( \mathcal{V} \) is not nearly equivalent to the constituents of \( \mathcal{V} \).

We define a \( \epsilon \)-near equivalence class in \( \mathcal{A}_2(\SO(V_{2n})) \) similarly.

We relate \( \epsilon \)-near equivalence classes in \( \mathcal{A}_2(\SO(V_{2n})) \) with elements in \( \Psi_2(\SO(V_{2n}))/ \sim \epsilon \).

**Proposition 7.6.** The there exists a canonical bijection
\[ \{ \epsilon \text{-near equivalence classes in } \mathcal{A}_2(\SO(V_{2n})) \} \leftrightarrow \Psi_2(\SO(V_{2n}))/ \sim \epsilon. \]

**Proof.** Suppose that \([\sigma_0] \) and \([\sigma'_0] \) appear in \( \mathcal{A}_2(\SO(V_{2n})) \). Let \( \Sigma \) and \( \Sigma' \in \Psi_2(\SO(V_{2n}))/ \sim \epsilon \) be \( A \)-parameters associated to \([\sigma_0] \) and \([\sigma'_0] \), i.e., \([\sigma_0] \in \Pi^\Sigma \) and \([\sigma'_0] \in \Pi^\Sigma' \), respectively. We claim that \([\sigma_0] \sim_{ne} [\sigma'_0] \) if and only if \( \Sigma = \Sigma' \). Suppose that \([\sigma_0], [\sigma'_0] \in \Pi^\Sigma \). Note that both of \( \sigma_0,v \) and \( \sigma'_0,v \) are unramified for almost all \( v \). By \[\text{[M]} \S 4.4 Proposition\], for such \( v \), we have \([\sigma_0,v] = [\sigma'_0,v] \). Hence \([\sigma_0] \sim_{ne} [\sigma'_0] \).
Conversely, suppose that $[\sigma_0] \sim_{ne} [\sigma'_0]$. For each place $v$ of $F$, we decompose
\[
\Sigma_v = (\phi_{1,v} \boxtimes S_{d_1}) \oplus \cdots \oplus (\phi_{l,v} \boxtimes S_{d_l}), \quad \Sigma'_v = (\phi'_{1,v} \boxtimes S'_{d'_1}) \oplus \cdots \oplus (\phi'_{l,v} \boxtimes S'_{d'_l}),
\]
where $\phi_{i,v}$ and $\phi'_{j,v}$ are representations of $WD_{F_v} = W_{F_v} \times \text{SL}_2(\mathbb{C})$. Note that for almost all $v$, $\phi_{i,v}$ and $\phi'_{j,v}$ are trivial on $\text{SL}_2(\mathbb{C})$. Hence by [MII §4.2 Corollaire], we have $\Sigma_v \cong \Sigma'_v$ for almost all $v$. As in [AI §1.3], $\Sigma$ and $\Sigma'$ define isobaric sums of representations $\phi_\Sigma$ and $\phi_{\Sigma'}$ which belong to the discrete spectrum of $GL(2_n)$. It follows by the generalized strong multiplicity one theorem of Jacquet–Shalika ([JS2, (4.4) Theorem]) that $\phi_\Sigma \cong \phi_{\Sigma'}$. Since the map $\Sigma \mapsto \phi_\Sigma$ is injective, we conclude that $\Sigma = \Sigma'$. \qed

**Corollary 7.7.** Let $\Sigma, \Sigma' \in \Psi_2(\text{SO}(2n))/ \sim_\epsilon$. If $\Sigma \neq \Sigma'$, then $\Pi^0_\Sigma \cap \Pi^0_{\Sigma'} = \emptyset$.

This corollary together with Arthur's multiplicity formula (Theorem 6.8) and the argument in [6.8] gives the multiplicity in $\mathcal{A}_2(\text{SO}(2n))$.

**Corollary 7.8.** Assume Conjectures 6.1 and 6.6.

1. For $[\sigma_0] \in \Pi^0_\Sigma$, we have
\[
\dim_{\mathbb{C}} \text{Hom}_{\mathcal{H}(\text{SO}(2n))}([\sigma_0], \mathcal{A}_2(\text{SO}(2n))) = \begin{cases} m_\Sigma & \text{if } \iota(\sigma_0) = \epsilon_\Sigma, \\ 0 & \text{otherwise.} \end{cases}
\]

2. For any irreducible $(\mathcal{H}(\text{SO}(2n)), \epsilon)$-module $\sigma$, we have
\[
\dim_{\mathbb{C}} \text{Hom}_{\mathcal{H}(\text{SO}(2n)), \epsilon}(\sigma, \mathcal{A}_2(\text{SO}(2n))) \leq 1.
\]

In other words, $\mathcal{A}_2(\text{SO}(2n))$ is multiplicity-free as an $(\mathcal{H}(\text{SO}(2n)), \epsilon)$-module.

In particular, the same properties unconditionally hold for the tempered part of the automorphic discrete spectrum of $\text{SO}(2n)$
\[
\mathcal{A}_{2,\text{temp}}(\text{SO}(2n)) := \bigoplus_{\Sigma \in \Psi_{2,\text{temp}}(\text{SO}(2n))/ \sim_\epsilon} \bigoplus_{[\sigma_0] \in \Pi^0_\Sigma(\epsilon_\Sigma)} m_\Sigma[\sigma_0].
\]

**Proof.** By Arthur's multiplicity formula (Theorem 6.8), we have
\[
\mathcal{A}_2(\text{SO}(2n)) \cong \bigoplus_{\Sigma \in \Psi_2(\text{SO}(2n))/ \sim_\epsilon} \bigoplus_{[\sigma_0] \in \Pi^0_\Sigma(\epsilon_\Sigma)} m_\Sigma[\sigma_0]
\]
as $\mathcal{H}(\text{SO}(2n))$-modules. Since $\Pi^0_\Sigma \cap \Pi^0_{\Sigma'} = \emptyset$ for $\Sigma \neq \Sigma'$ by Corollary 7.7 and $\Pi^0_\Sigma$ is a multiplicity-free set by Conjectures 6.1 and 6.6, we have
\[
\dim_{\mathbb{C}} \text{Hom}_{\mathcal{H}(\text{SO}(2n))}([\sigma_0], \mathcal{A}_2(\text{SO}(2n))) = \begin{cases} m_\Sigma & \text{if } \iota(\sigma_0) = \epsilon_\Sigma, \\ 0 & \text{otherwise.} \end{cases}
\]

This is (1). The proof of (2) is similar. \qed

Recall that by Proposition 7.5 there exists a surjective linear map
\[
\text{Res}: \mathcal{A}_2(\text{O}(2n)) \twoheadrightarrow \mathcal{A}_2(\text{SO}(2n)).
\]
It is easy to see that Res is an $(\mathcal{H}(\text{SO}(2n)), \epsilon)$-homomorphism.

**Proposition 7.9.** The map Res induces a bijection
\[
\{\text{near equivalence classes in } \mathcal{A}_2(\text{O}(2n))\} \xrightarrow{\text{Res}} \{\text{ } \epsilon\text{-near equivalence classes in } \mathcal{A}_2(\text{SO}(2n))\}.
\]
Proof. Let $\Phi$ be a near equivalence class in $A_2(O(V_{2n}))$. Then $\text{Res}(\Phi)$ will a priori meet several $\epsilon$-near equivalence classes. Suppose that for an irreducible $H(O(V_{2n}))$-module $\sigma$ belonging to $\Phi$, $\text{Res}(\sigma)$ contains an irreducible $H(O(V_{2n}))$-module $\sigma_0$ and $[\sigma_0]$ belongs to an $\epsilon$-near equivalence class $\Phi_0$. Then we claim that 
\[
\text{Res}(\Phi) \subseteq \Phi_0.
\]
Indeed, suppose that $\sigma' \in \Phi$, $\text{Res}(\sigma') \supset [\sigma'_0]$, and $[\sigma'_0]$ belongs to an $\epsilon$-near equivalence class $\Phi'_0$. Then for almost all $v$, we have $\sigma'_0 \cong \sigma_v$ so that $\sigma'_0 \supset \sigma'_0 \supset [\sigma'_0]$. This means that $[\sigma_0] \sim_{\text{ne}} [\sigma'_0]$ so that $\Phi_0 = \Phi'_0$. Therefore if we define $r(\Phi) = \Phi_0$, then $r$ is well-defined.

For the injectivity, if $r(\Phi) = r(\Phi')$, then for $\sigma \in \Phi$ and $\sigma' \in \Phi'$, one has $\sigma'_v \cong \sigma_v$ or $\sigma'_v \otimes \det$ for almost all $v$. Since $\sigma_v$ and $\sigma'_v$ are unramified with respect to $K_v$ for almost all $v$, we must have $\sigma'_v \cong \sigma_v$ for almost all $v$ (see Lemma 7.4). Hence we have $\Phi = \Phi'$.

For the surjectivity, we decompose 
\[
A_2(O(V_{2n})) \cong \bigoplus_{\lambda} \sigma_{\lambda}
\]
into a direct sum of irreducible $H(O(V_{2n}))$-modules. Then we may decompose
\[
\sigma_{\lambda} \cong \bigoplus_{\kappa} \sigma_{\lambda,\kappa}
\]
into a direct sum of irreducible $H(O(V_{2n}))$-modules. Since $\text{Res}: A_2(O(V_{2n})) \to A_2(O(V_{2n}))$ is a surjective $H(O(V_{2n}))$-equivariant map, any irreducible $H(O(V_{2n}))$-submodule $\sigma_0$ of $A_2(O(V_{2n}))$ is isomorphic to some $\sigma_{\lambda,\kappa}$ via $\text{Res}$. Then we have $\text{Res}(\sigma_{\lambda}) \supset [\sigma_0]$. This shows that if $\sigma_0$ (resp. $\sigma_{\lambda}$) is the $\epsilon$-near equivalence class of $\sigma_0$ (resp. the near equivalence class of $\sigma_{\lambda}$), then $r(\Phi_\lambda) = \Phi_0$. \hfill $\square$

7.4. Proof of Theorem 7.11 In this subsection, we will complete the proof of Theorem 7.1 and show Proposition 7.2.

Recall that $\Psi_2(O(V_{2n})) = \Psi_2(O(V_{2n}))/\sim_{\epsilon}$. By Propositions 7.6 and 7.9, we obtain a canonical bijection 
\[
\{\text{near equivalence classes in } A_2(O(V_{2n}))\} \longleftrightarrow \Psi_2(O(V_{2n})).
\]
In other words, we obtain a decomposition 
\[
A_2(O(V_{2n})) = \bigoplus_{\Sigma \in \Psi_2(O(V_{2n}))} A_{2,\Sigma},
\]
where $A_{2,\Sigma}$ is the direct sum over the near equivalence class corresponding to $\Sigma$. Moreover, we have 
\[
A_{2,\Sigma} = \bigoplus_{\sigma \in \Pi_{\Sigma}} m(\sigma)\sigma
\]
for some $m(\sigma) \in \mathbb{Z}_{\geq 0}$. We have to show that 
\[
m(\sigma) = \begin{cases} 1 & \text{if } I_v(\sigma) \circ \Delta = \Delta_v, \\ 0 & \text{otherwise}. \end{cases}
\]

Consider the restriction map $\text{Res}: A_2(O(V_{2n})) \to A_2(O(V_{2n}))$. This is an $(H(O(V_{2n})), \epsilon)$-equivariant homomorphism.

Lemma 7.10. Assume Conjectures 6.1 and 6.6. Let $\sigma$ be an irreducible $H(O(V_{2n}))$-submodule of $A_2(O(V_{2n}))$. Then $\text{Res}(\sigma)$ is nonzero and irreducible as an $(H(O(V_{2n})), \epsilon)$-module.

Proof. It is clear that $\text{Res}(\sigma)$ is nonzero. Decompose $\sigma \cong \otimes_v \sigma_v$. If $\sigma_v \otimes \det \not\cong \sigma_v$ for any $v$, then $\sigma$ is irreducible as an $(H(O(V_{2n})), \epsilon)$-module. Hence so is $\text{Res}(\sigma)$.

We may assume that $\sigma_v \otimes \det \cong \sigma_v$ for some $v$. This is in the case (B) as in 6.3. We decompose 
\[
\sigma \cong \bigoplus_{\lambda \in \Lambda} \sigma_{\lambda}
\]
to a direct sum of irreducible $(H(O(V_{2n})), \epsilon)$-modules. Here, $\Lambda$ is an index set. Then $\text{Res}(\sigma) \cong \bigoplus_{\lambda \in \Lambda_0} \sigma_{\lambda}$ for some non-empty subset $\Lambda_0$ of $\Lambda$. As an $\text{H}'(O(V_{2n}))$-module, each $\sigma_{\lambda}$ is a direct sum of two copies of an...
irreducible $\mathcal{H}'(SO(V_{2n}))$-module $[\sigma_0]$. Hence $\text{Res}(\sigma) \cong [\sigma_0]^{[\mathbb{Z}]/2[\mathbb{A}_0]}$ as $\mathcal{H}'(SO(V_{2n}))$-modules. By Corollary 7.8 (which we have shown using Conjectures 6.1 and 6.6), we have

$$\dim_{\mathbb{C}} \text{Hom}_{\mathcal{H}'(SO(V_{2n}))}([\sigma_0], A_2(SO(V_{2n}))) \leq 2.$$ 

This implies that $|\mathbb{A}_0| = 1$. Hence $\text{Res}(\sigma)$ is irreducible as an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module. □

By Arthur’s multiplicity formulas for $SO(V_{2n})$ and $SO(V_{2n})(A) \cdot O(V_{2n})(F)$ (Theorems 6.8 and 6.12), we see that if $\sigma \in \Pi_{V_2}$ occurs in $A_2(O(V_{2n}))$, then $\text{Res}(\sigma) \neq 0$ so that $\iota_c(\sigma) \circ \Delta = \varepsilon_{\Sigma}$. In other words, if $\sigma \in \Pi_{V_2}$ satisfies $\iota_c(\sigma) \circ \Delta \neq \varepsilon_{\Sigma}$, then $\sigma$ does not occur in $A_2(O(V_{2n}))$, i.e., $m(\sigma) = 0$.

Now consider the case when $\iota_c(\sigma) \circ \Delta = \varepsilon_{\Sigma}$.

**Proposition 7.11.** Assume Conjectures 6.1 and 6.6. Let $\sigma = \otimes_v \sigma_v \in \Pi_{V_2}$ such that $\iota_c(\sigma) \circ \Delta = \varepsilon_{\Sigma}$. Then there exists an $\mathcal{H}(O(V_{2n}))$-subspace $A_2$ of $A_2$ such that $A_2$ acts by $\sigma$.

**Proof.** Let $[\sigma_0] \in \Pi_{V_2}$ be an element satisfying $\sigma_0 \otimes \sigma_0 \subset \sigma_0 \otimes \sigma_0(SO(V_{2n}))$ for each $v$. By Arthur’s multiplicity formula (Theorem 6.8), we see that $[\sigma_0]$ occurs in $A_2(SO(V_{2n}))$ as an $\mathcal{H}'(SO(V_{2n}))$-module. We may assume that $\sigma_0$ occurs in $A_2(SO(V_{2n}))$ as an $\mathcal{H}(SO(V_{2n}))$-module. Since $\text{Res}: A_2(O(V_{2n})) \to A_2(SO(V_{2n}))$ is surjective (Proposition 7.5), and $A_2(O(V_{2n}))$ is a direct sum of irreducible $\mathcal{H}(O(V_{2n}))$-modules, we can find an irreducible $\mathcal{H}(O(V_{2n}))$-module $\sigma'$ such that $\sigma'$ occurs in $A_2(O(V_{2n}))$ and $\text{Res}(\sigma') \supseteq \sigma_0$. By (the proof of) Proposition 7.9, we see that $\sigma' \in \Pi_{V_2}$ and

$$\sigma' \cong \sigma \otimes \det_S$$

for some finite set $S$ of places of $F$. Here, $\det_S$ is the determinant for places in $S$ and trivial outside $S$. We consider 3 cases (A), (B) and (C) as in [6,8] separately.

We consider the case (A). Suppose that $\Sigma \subset \Pi_{V_2}$. Then $[\Sigma] = 2$ and $[\Sigma_{\Sigma,v}] = 2$ for any place $v$ of $F$. By Conjectures 6.1 and 6.6, we see that

$$\iota_c(\sigma) = \iota_c(\sigma) \otimes \left( \prod_{v \in S} \eta_{0,v} \right),$$

where $\eta_{0,v}$ is the non-trivial character of $\Sigma_{\Sigma,v}/\Sigma_{\Sigma,v}^+$. Hence we have

$$\iota_c(\sigma') \circ \Delta = (\iota_c(\sigma) \circ \Delta) \cdot \eta_0^{|S|} = \varepsilon_{\Sigma} \cdot \eta_0^{|S|},$$

where $\eta_0$ is the non-trivial character of $\Sigma_{\Sigma}/\Sigma_{\Sigma}^+$. Since $\text{Res}(\sigma')$ occurs in $A_2(SO(V_{2n}))$ as an $(\mathcal{H}(SO(V_{2n})), \epsilon)$-module, by Theorem 6.12, the number of $S$ must be even. Hence if $\varphi' \in A_2(O(V_{2n}))$, then

$$\varphi(g) := \det_S(g) \cdot \varphi'(g) \in A_2(O(V_{2n})).$$

This implies that $\sigma$ also occurs in $A_2(O(V_{2n}))$.

We consider the case (B). Suppose that $\Sigma \not\subset \Pi_{V_2}(O(V_{2n}))$ and $\sigma_0 \not\subset \sigma_0$. Then $\sigma_v \otimes \det_v \cong \sigma_v$ for some $v$. Hence we can take $S$ such that $|S|$ is even, and we see that $\sigma$ also occurs in $A_2(O(V_{2n}))$.

We consider the case (C). Suppose that $\Sigma \not\subset \Pi_{V_2}(O(V_{2n}))$ and $\sigma_0 \not\subset \sigma_0$. Then there are two extension of $\sigma_0$ to irreducible $(\mathcal{H}(SO(V_{2n})), \epsilon)$-modules, and both of them occur in $A_2(SO(V_{2n}))$. Note that $\text{Res}(\sigma') \cong \text{Res}(\sigma' \otimes \det_S)$ as $(\mathcal{H}(SO(V_{2n})), \epsilon)$-modules if and only if $|S|$ is even. This implies that $\sigma \cong \sigma' \otimes \det_S$ occurs in $A_2(O(V_{2n}))$ for any $S$. This completes the proof. □
is injective. Hence by Corollary 7.8, we have
\[ \dim \text{Hom}_H(O(V_{2n})) (\sigma, A_2(O(V_{2n}))) \leq \dim \text{Hom}_H(SO(V_{2n})),\epsilon) (\sigma, A_2(SO(V_{2n}))) \leq 1. \]

Now suppose for the sake of contradiction that \( \sigma \) is an irreducible \( H(O(V_{2n})) \)-module such that
\[ \dim \text{Hom}_H(O(V_{2n})) (\sigma, A_2(O(V_{2n}))) > 1. \]

We know that as an \( (H(SO(V_{2n})),\epsilon) \)-module, \( \sigma \) is a multiplicity-free sum
\[ \sigma = \bigoplus \lambda \sigma_\lambda \]
of irreducible \( (H(SO(V_{2n})),\epsilon) \)-modules \( \sigma_\lambda \). For a fixed nonzero \( f_1 \) in the above Hom space, we have shown that \( \text{Res}(f_1(\sigma)) \) is irreducible (Lemma 7.10), so say \( \text{Res}(f_1(\sigma)) = \sigma_{\lambda_1} \). Consider the natural map
\[ \text{Hom}_H(O(V_{2n})) (\sigma, A_2(O(V_{2n}))) \to \text{Hom}_H(H(SO(V_{2n})),\epsilon) (\sigma_{\lambda_1}, A_2(SO(V_{2n}))) \]
given by
\[ f \mapsto \text{Res} \circ f \circ \iota_1, \]
where \( \iota_1 : \sigma_{\lambda_1} \hookrightarrow \sigma \) is a fixed inclusion. We have shown that the right hand side has dimension one (Corollary 7.8), so this map has nonzero kernel, i.e., there is \( f_2 \) in the left hand side such that \( 0 \neq \text{Res}(f_2(\sigma)) = \sigma_{\lambda_2} \), with \( \lambda_1 \neq \lambda_2 \). This shows that \( A_2(SO(V_{2n})) \) contains \( \sigma_{\lambda_1} \oplus \sigma_{\lambda_2} \) as an \( (H(SO(V_{2n})),\epsilon) \)-module, which implies that \( A_2(SO(V_{2n})) \) contains 4\( [\sigma_0] \) as an \( H'(SO(V_{2n})) \)-module. This contradicts Corollary 7.3 (1). This completes the proof. \( \square \)

By Propositions 7.2 and 7.11, we see that if \( \epsilon_\sigma(\sigma) \circ \Delta = \varepsilon_{\Sigma} \), then \( m(\sigma) > 0 \). This completes the proof of Theorem 7.1.

References

[AGRS] A. Aizenbud, D. Gourevitch, S. Rallis and G. Schiffmann, Multiplicity one theorems, Ann. of Math. (2) 172 (2010), no. 2, 1407–1434.

[AMR] N. Arancibia, C. Moeglin and D. Renard, Paquets d’Arthur des groupes classiques et unitaires, \text{arXiv:1507.01432v1}.

[Ar] J. Arthur, The endoscopic classification of representations. Orthogonal and symplectic groups, American Mathematical Society Colloquium Publications, 61.

[At1] H. Atobe, The local theta correspondence and the local Gan–Gross–Prasad conjecture for the symplectic-metaplectic case, \text{arXiv:1502.08528v1}.

[At2] H. Atobe, On the uniqueness of generic representations in an L-packet, \text{arXiv:1511.08897v1}.

[AG] H. Atobe and W. T. Gan, Local Theta correspondence of Tempered Representations and Langlands parameters, preprint.

[BJ] A. Borel and H. Jacquet, Automorphic forms and automorphic representations, Proc. Sympos. Pure Math. 33 Part 1, pp. 189–207, Amer. Math. Soc., Providence, R.I., 1979.

[CL1] P.-H. Chaaudour and G. Laumon, Le lemme fondamental pondéré. I. Constructions géométriques, Compos. Math. 146 (2010), no. 6, 1416–1506.

[CL2] P.-H. Chaudo and G. Laumon, Le lemme fondamental pondéré. II. Énoncés cohomologiques, Ann. of Math. (2) 176 (2012), no. 3, 1647–1781.

[CS] W. Casselman and J. Shahidi, The unramified principal series of \( p \)-adic groups. II. The Whittaker function, Compos. Math. 41 (1980), 207–231.

[GGP] W. T. Gan, B. H. Gross and D. Prasad, Symplectic local root numbers, central critical L-values, and restriction problems in the representation theory of classical groups. Sur les conjectures de Gross et Prasad. I. Astérisque. No. 346 (2012), 1–109.

[GII] W. T. Gan and A. Ichino, Formal degrees and local theta correspondence. Invent. Math. 195 (2014), no. 3, 599–672.

[GII] W. T. Gan and A. Ichino, The Gross–Prasad conjecture and local theta correspondence, \text{arXiv:1409.6824v2}.

[GP] B. H. Gross and D. Prasad, On the decomposition of a representation of \( SO_n \) when restricted to \( SO_{n-1} \), Canad. J. Math. 44 (1992), no. 5, 974–1002.

[GS] W. T. Gan and G. Savin, Representations of metaplectic groups I: epsilon dichotomy and local Langlands correspondence, Compos. Math. 148 (2012), 1655–1694.

[GT1] W. T. Gan and S. Takeda, On the Howe duality conjecture in classical theta correspondence, \text{arXiv:1405.2626v3}.

[GT2] W. T. Gan and S. Takeda, A proof of the Howe duality conjecture, \text{arXiv:1407.1955v4}.

[H] V. Heiermann, A note on standard modules and Vogan L-packets, \text{arXiv:1504.04524v1}.

[JS] H. Jacquet and J. A. Shalika, On Euler products and the classification of automorphic representations. I. Amer. J. Math. 103 (1981), 499–558.
[W, VIII] J.-L. Waldspurger, *Stabilisation de la formule des traces tordue VIII: l’application ε_S sur un corps de base local non-archimédien*, arXiv:1410.1124.

[W, IX] J.-L. Waldspurger, *Stabilisation de la formule des traces tordue IX: propriétés des intégrales orbitales pondérées ω-équivariantes sur le corps réel*, arXiv:1412.2565.

[X] B. Xu, *On Mœglin’s parametrization of Arthur packets for p-adic quasisplit Sp(N) and SO(N)*, arXiv:1507.08024v1.

Department of Mathematics, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
E-mail address: atobe@math.kyoto-u.ac.jp

Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore 119076
E-mail address: matgwt@nus.edu.sg