CROSSED PRODUCTS OF LOCALLY

C^*-ALGEBRAS

MARIA JOIȚA

June 4, 2018

ABSTRACT. The crossed products of locally C^*-algebras are defined
and a Takai duality theorem for inverse limit actions of a locally compact
group on a locally C^*-algebra is proved.

2000 AMS Mathematics subject classification. Primary 46L05, 46L55.

1 Introduction

Locally C^*-algebras are generalizations of C^*-algebras. Instead of being
given by a single C^*-norm, the topology on a locally C^*-algebra is defined
by a directed family of C^*-semi-norms. In [9], Phillips defines the notion
of action of a locally compact group G on a locally C^*-algebra A whose
topology is determined by a countable family of C^*-semi-norms, and also
defines the crossed product of A by an inverse limit action $\alpha = \lim_{n} \alpha^{(n)}$ as
being the inverse limit of crossed products of A_n by $\alpha^{(n)}$. In this paper,
by analogy with the case of C^*-algebras, we define the concept of crossed
product, respectively reduced crossed product of locally C^*-algebras.
The Takai duality theorem says that if α is a continuous action of an abelian locally compact group G on a C^*-algebra A, then we can recover the system (G, A, α) up to stable isomorphism from the double dual system in which $G = \hat{G}$ acts on the crossed product $(A \times_\alpha G) \times_{\hat{\alpha}} \hat{G}$ by the dual action of the dual group. In [3], Imai and Takai prove a duality theorem for C^*-crossed products by a locally compact group that generalizes the Takai duality theorem [12]. For a given C^*-dynamical system (G, A, α), they construct a "dual" C^*-crossed product of the reduced crossed product $A \times_{\alpha,r} G$ by an isomorphism β from $A \times_{\alpha,r} G$ into $L(H)$, the C^*-algebra of all bounded linear operators on some Hilbert space H, and show that this is isomorphic to the tensor product $A \otimes K(L^2(G))$ of A and $K(L^2(G))$, the C^*-algebra of all compact operators on $L^2(G)$. If G is commutative, the "dual" C^*-crossed product constructed by Imai and Takai is isomorphic to the double crossed product $(A \times_{\alpha} G) \times_{\hat{\alpha}} \hat{G}$. Katayama [6] shows that a non-degenerate coaction β of a locally compact group on a C^*-algebra A induces an action $\tilde{\beta}$ of G on the crossed product $A \times_{\beta} G$ and proves that the C^*-algebras $(A \times_{\beta} G) \times_{\tilde{\beta},r} \hat{G}$ and $A \otimes K(L^2(G))$ are isomorphic. In [13], Vallin shows that there is a bijective correspondence between the set of all actions of a locally compact group G on a C^*-algebra A and the set of all actions of the commutative Kac C^*-algebra $C^*K_G^2$ associated with G on A. A coaction of G on A is an action of the symmetric Kac C^*-algebra $C^*K_G^2$ associated with G. If G is commutative, we can identified $C^*_r(G)$ with $C_0(\hat{G})$ via the Fourier transform, whence becomes clear that a coaction of G is the same thing as an action of G. Thus we can regard the coactions of a locally compact group G as "actions of the dual group even there isn’t any dual group". Also, Vallin shows that an action α (coaction β) of G on A induces
a coaction $\hat{\alpha}$ (action $\hat{\beta}$) of G on the crossed product $A \times_{\alpha,r} G$ (respectively $A \times_{\beta} G$) and proves a version of the Takai duality theorem showing that the double crossed product $(A \times_{\alpha,r} G) \times_{\hat{\alpha}} G$ is isomorphic to $A \otimes K(L^2(G))$. We propose to prove a version of the Takai duality theorem for crossed products of locally C^*-algebras.

The paper is organized follows. In Section 2 we present some basic definitions and results about locally C^*-algebras and Kac C^*-algebras. In Section 3 we define the notion of crossed product (reduced crossed product) of a locally C^*-algebra A by an inverse limit action α of a locally compact group G and prove some basic properties of these. Section 4 is devoted to actions of a Kac C^*-algebra on a locally C^*-algebra. We show that there is a bijective correspondence between the set of all inverse limit actions of a locally compact group G on a locally C^*-algebra A and the set of all inverse limit actions of the commutative Kac C^*-algebra C^*K_G on A, Proposition 4.4. As a consequence of this result we obtain: for a compact group G, any action of the Kac C^*-algebra $C^*K_G^b$ on A, $p \in S(A)$. In Section 5, using the same arguments as in [13], we show that any inverse limit action α (coaction β) of a locally compact group G on a locally C^*-algebra A induces an inverse limit coaction $\hat{\alpha}$ (action $\hat{\beta}$) of G on the crossed product $A \times_{\alpha,r} G$ (respectively $A \times_{\beta} G$), Proposition 5.5. Finally, we prove that if α is an inverse limit action of a locally compact group G on a locally C^*-algebra A, then there is an isomorphism of locally C^*-algebras from $(A \times_{\alpha,r} G) \times_{\hat{\alpha}} G$ onto $A \otimes K(L^2(G))$ and the inverse limit actions $\hat{\alpha}$ and $\alpha \otimes \text{ad} \rho$ are equivalent, Theorem 5.6.
2 Preliminaries

A locally C^*-algebra is a complete complex Hausdorff topological $*$-algebra A whose topology is determined by a family of C^*-semi-norms, see [1], [2], [4], [9], [10]. If $S(A)$ is the set of all continuous C^*-semi-norms on A, then for each $p \in S(A)$, $A_p = A/\ker(p)$ is a C^*-algebra with respect to the norm induced by p, and $A = \varprojlim_{p \in S(A)} A_p$. The canonical maps from A onto A_p, $p \in S(A)$ are denoted by π_p, the image of a under π_p by a_p, and the connecting maps of the inverse system $\{A_p\}_{p \in S(A)}$ by π_{pq}, $p, q \in S(A)$ with $p \geq q$.

A morphism of locally C^*-algebras is a continuous $*$-morphism Φ from a locally C^*-algebra A to a locally C^*-algebra B. An isomorphism of locally C^*-algebras is a morphism of locally C^*-algebras which is invertible and its inverse is a morphism of locally C^*-algebras. An S-morphism of locally C^*-algebras is a morphism $\Phi : A \rightarrow M(B)$, where $M(B)$ is the multiplier algebra of B, with the property that for any approximate unit $\{e_i\}_i$ of A the net $\{\Phi(e_i)\}_i$ converges to 1 with respect to the strict topology on $M(B)$. If $\Phi : A \rightarrow M(B)$ is an S-morphism of locally C^*-algebras, then it extends to a unique morphism $\overline{\Phi} : M(A) \rightarrow M(B)$ of locally C^*-algebras, see [5].

A Kac C^*-algebra is a quadruple $K = (B, d, j, \varphi)$, where B is a C^*-algebra, d is a comultiplication on B, j is a coinvolution on B, and φ is a semi-finite, lower semi-continuous, faithful weight on B, see [13].

Let A and B be two locally C^*-algebras. The injective tensor product of the locally C^*-algebras A and B is denoted by $A \otimes B$, see [2], and the locally C^*-subalgebra of $M(A \otimes B)$ generated by the elements x in $M(A \otimes B)$ such that $x(1 \otimes B) + (1 \otimes B)x \subseteq A \otimes B$ is denoted by $M(A, B)$. If G is a
locally compact group, then \(M(A, C_0(G)) \) may be identified with the locally \(C^* \)-algebra \(C_b(G,A) \) of all bounded continuous functions from \(G \) to \(A \).

Let \(G \) be a locally compact group. \(C^*K^a_G = (C_0(G), d^a_G, j^a_G, ds) \) is the commutative Kac \(C^* \)-algebra associated with \(G \) and \(C^*K^s_G = (C^*_r(G), d^s_G, j^s_G, \varphi_G) \) is the symmetric Kac \(C^* \)-algebra associated with \(G \), see [13].

An action of a Kac \(C^* \)-algebra \(\mathbf{K} = (B, d, j, \varphi) \) on a \(C^* \)-algebra \(A \) is an injective \(S \)-morphism \(\alpha \) from \(A \) to \(M(A,B) \) such that \((\alpha \otimes \text{id}) \circ \alpha = (\text{id}_A \otimes \sigma_B \circ d) \circ \alpha \), see [13].

3 Crossed products

Let \(A \) be a locally \(C^* \)-algebra and let \(G \) be a locally compact group.

Definition 3.1 An action of \(G \) on \(A \) is a morphism \(\alpha \) from \(G \) to \(\text{Aut}(A) \), the set of all isomorphisms of locally \(C^* \)-algebras from \(A \) to \(A \). The action \(\alpha \) is continuous if the function \((t,a) \to \alpha_t(a)\) from \(G \times A \) to \(A \) is jointly continuous.

Definition 3.2 A locally \(C^* \)-dynamical system is a triple \((G,A,\alpha)\), where \(G \) is a locally compact group, \(A \) is a locally \(C^* \)-algebra and \(\alpha \) is a continuous action of \(G \) on \(A \).

Definition 3.3 We say that \(\{ (G,A_\delta, \alpha^{(\delta)}_t) \}_{\delta \in \Delta} \) is an inverse system of \(C^* \)-dynamical systems if \(\{ A_\delta \}_{\delta \in \Delta} \) is an inverse system of \(C^* \)-algebras and for each \(t \) in \(G, \{ \alpha_t^{(\delta)} \}_{\delta \in \Delta} \) is an inverse system of \(C^* \)-isomorphisms.
Let $A = \lim_{\delta \in \Delta} A_\delta$ and $\alpha_t = \lim_{\delta \in \Delta} \alpha_t^{(\delta)}$ for each $t \in G$. Then the map $\alpha : G \to \text{Aut}(A)$ defined by $\alpha(t) = \alpha_t$ is a continuous action of G on A and (G, A, α) is a locally C^*-dynamical system. We say that (G, A, α) is the inverse limit of the inverse system of C^*-dynamical systems $\left\{ \left(G_\delta, \alpha^{(\delta)}_t \right) \right\}_{\delta \in \Delta}$.

Definition 3.4 A continuous action α of G on A is an inverse limit action if we can write A as inverse limit $\lim_{\delta \in \Delta} A_\delta$ of C^*-algebras in such a way that there are actions $\alpha^{(\delta)}$ of G on A_δ such that $\alpha_t = \lim_{\delta \in \Delta} \alpha_t^{(\delta)}$ for all t in G (Definition 5.1, [9]).

Remark 3.5 The action α of G on A is an inverse limit action if there is a cofinal subset of G-invariant continuous C^*-semi-norms on A (a continuous C^*-semi-norm p on A is G-invariant if $p(\alpha_t(a)) = p(a)$ for all a in A and for all t in G).

The following lemma is Lemma 5.2 of [9].

Lemma 3.6 Any continuous action of a compact group G on a locally C^*-algebra A is an inverse limit action.

Let (G, A, α) be a locally C^*-dynamical system such that α is an inverse limit action. By Remark 3.5, we can suppose that $S(A)$ coincides with the set of all G-invariant continuous C^*-semi-norms on A.

Let $C_c(G, A)$ be the vector space of all continuous functions from G to A with compact support.
Lemma 3.7 Let $f \in C_c(G, A)$. Then there is a unique element $\int_G f(s)ds$ in A such that for any non-degenerate \ast-representation (φ, H_φ) of A

$$\left< \varphi(\int_G f(s)ds)\xi, \eta \right> = \int_G \left< \varphi(f(s))\xi, \eta \right> ds$$

for all ξ, η in H_φ. Moreover, we have:

(1) $p(\int_G f(s)ds) \leq M \sup\{p(f(s)); s \in \text{supp}(f)\}$ for some positive number M and for all $p \in S(A)$;

(2) $(\int_G f(s)ds)a = \int_G f(s)ads$ for all $a \in A$;

(3) $\Phi(\int_G f(s)ds) = \int_G \Phi(f(s))ds$ for any morphism of locally C^*-algebras $\Phi : A \to B$;

(4) $(\int_G f(s)ds)^* = \int_G f(s)^*ds$.

Proof. Let $p \in S(A)$. Then $\pi_p \circ f \in C_c(G, A_p)$ and so there is a unique element $\int_G (\pi_p \circ f)(s)ds$ in A_p such that for any non-degenerate \ast-representation $(\varphi_p, H_{\varphi_p})$ of A_p

$$\left< \varphi_p(\int_G (\pi_p \circ f)(s)ds)\xi, \eta \right> = \int_G \left< \varphi_p((\pi_p \circ f)(s))\xi, \eta \right> ds$$

for all ξ, η in H_{φ_p}, see, for instance, Lemma 7 of [11].

To show that $(\int_G (\pi_p \circ f)(s)ds)_p$ is a coherent net in A, let $p, q \in S(A)$ with $p \geq q$. Then we have

$$\pi_{pq}(\int_G (\pi_p \circ f)(s)ds)_p = \int_G \pi_{pq}((\pi_p \circ f)(s)) ds$$

using Lemma 7 of [11]

$$= \int_G (\pi_q \circ f)(s)ds.$$
Therefore \((f_p \circ f)(s)ds\) \(_p \in A\), and we define \(\int f(s)ds = (\int (\pi_p \circ f)(s)ds)_p\).

Suppose that there is another element \(b\) in \(A\) such that for any non-degenerate \(*\)-representation \((\varphi, H_\varphi)\) of \(A\)

\[
\langle \varphi(b) \xi, \eta \rangle = \int_G \langle \varphi(f(s)) \xi, \eta \rangle \, ds
\]

for all \(\xi, \eta\) in \(H_\varphi\). Then for any \(p \in S(A)\) and for any non-degenerate \(*\)-representation \((\varphi_p, H_{\varphi_p})\) of \(A_p\)

\[
\langle \varphi_p(\pi_p(b)) \xi, \eta \rangle = \int_G \langle \varphi_p((\pi_p \circ f)(s)) \xi, \eta \rangle \, ds
\]

for all \(\xi, \eta\) in \(H_{\varphi_p}\). From these facts and Lemma 7 of [11], we conclude that

\[
\pi_p(b) = \int_G (\pi_p \circ f)(s)ds
\]

for all \(p \in S(A)\). Therefore \(b = \int_G f(s)ds\) and the uniqueness is proved.

Using Lemma 7 of [11] it is easy to check that \(\int_G f(s)ds\) satisfies the conditions (1) – (4). ■

Let \(f, h\) in \(C_c(G, A)\). It is easy to check that the map \((s, t) \rightarrow f(t)\alpha_t(h(t^{-1}s))\)
from \(G \times G\) to \(A\) is an element in \(C_c(G \times G, A)\) and the relation

\[
(f \times h)(s) = \int_G f(t)\alpha_t(h(t^{-1}s)) \, dt
\]

defines an element in \(C_c(G, A)\), called the convolution of \(f\) and \(h\). Also it is not hard to check that \(C_c(G, A)\) becomes a \(*\)-algebra with convolution as product and involution defined by

\[
f^*(t) = \gamma(t)^{-1} \alpha_t(f(t^{-1})^*)
\]

where \(\gamma\) is the modular function on \(G\).
For any \(p \in S(A) \), define \(N_p \) from \(C_c(G,A) \) to \([0,\infty)\) by
\[
N_p(f) = \int_G p(f(s))ds.
\]

Straightforward computations show that \(N_p, p \in S(A) \) are submultiplicative \(*\)-semi-norms on \(C_c(G,A) \).

Let \(L^1(G,A,\alpha) \) be the Hausdorff completion of \(C_c(G,A) \) with respect to the topology defined by the family of submultiplicative \(*\)-semi-norms \(\{N_p\}_{p \in S(A)} \). Then by Theorem III 3.1 of [7]
\[
L^1(G,A,\alpha) = \Bigg(\lim_{p \in S(A)} L^1(G,A,\alpha) \Bigg)_p
\]
where \((L^1(G,A,\alpha))_p \) is the completion of the \(*\)-algebra \(C_c(G,A)/\ker(N_p) \) with respect to the norm \(\|\cdot\|_p \) induced by \(N_p \).

Lemma 3.8 Let \((G,A,\alpha)\) be a locally \(C^*\)-dynamical system such that \(\alpha \) is an inverse limit action. Then
\[
(L^1(G,A,\alpha))_p = L^1(G,A_p,\alpha^{(p)})
\]
for all \(p \in S(A) \), up to a topological algebraic \(*\)-isomorphism.

Proof. Let \(p \in S(A) \) and \(f \) in \(C_c(G,A) \). Then
\[
\|f + \ker(N_p)\|_p = \int_G p(f(s))ds = \int_G \|\pi_p(f(s))\|_p ds = \|\pi_p \circ f\|_1.
\]
Therefore we can define a linear map \(\psi_p \) from \(C_c(G,A)/\ker(N_p) \) to \(C_c(G,A_p) \) by
\[
\psi_p(f + \ker(N_p)) = \pi_p \circ f.
\]
It is not hard to check that \(\psi_p \) is a \(*\)-morphism, and since \(\psi_p \) is an isometric \(*\)-morphism from \(C_c(G,A)/\ker(N_p) \) to \(C_c(G,A_p) \), it can be
uniquely extended to an isometric \(\ast \)-morphism \(\psi_p \) from \((L^1(G,A,\alpha))_p \) to \(L^1\left(G, A_p, \alpha^{(p)}\right) \).

To show that \(\psi_p \) is surjective, let \(a \in A \) and \(f \in C_c(G) \). Define \(\tilde{f} \) from \(G \) to \(A \) by \(\tilde{f}(s) = f(s)a \). Clearly \(\tilde{f} \in C_c(G,A) \) and

\[
\psi_p \left(\tilde{f} + \ker(N_p) \right)(s) = f(s)\pi_p(a)
\]

for all \(s \) in \(G \). This implies that

\[
A_p \otimes_{\text{alg}} C_c(G) \subseteq \psi_p \left(\left(L^1(G,A,\alpha) \right)_p \right) \subseteq L^1(G,A_p,\alpha^{(p)})
\]

whence, since \(A_p \otimes_{\text{alg}} C_c(G) \) is dense in \(L^1(G,A_p,\alpha^{(p)}) \) and since \(\psi_p \) is an isometric \(\ast \)-morphism, we deduce that \(\psi_p \) is surjective and the proposition is proved.

Corollary 3.9 Let \((G,A,\alpha) \) be a locally \(C^\ast \)-dynamical system such that \(\alpha \) is an inverse limit action. Then

\[
L^1(G,A,\alpha) = \lim_{\leftarrow \atop {p \in S(A)}} L^1\left(G,A_p,\alpha^{(p)}\right)
\]

up to an algebraic and topological \(\ast \)-isomorphism.

Remark 3.10 If \(\{e_i\}_{i \in I} \) is an approximate unit for \(A \) and \(\{f_j\}_{j \in J} \) is an approximate unit for \(L^1(G) \), then \(\{\tilde{f}_{(i,j)}\}_{(i,j) \in I \times J} \), where \(\tilde{f}_{(i,j)}(s) = f_j(s)e_i \), \(s \in G \), is an approximate unit for \(L^1(G,A,\alpha) \), see Lemma XIV.1.2 of [7]. Then by Definition 5.1 of [1], we can construct the enveloping algebra of \(L^1(G,A,\alpha) \).
Definition 3.11 A covariant representation of \((G, A, \alpha)\) is a triple \((\varphi, u, H)\), where \((\varphi, H)\) is a \(*\)-representation of \(A\) and \((u, H)\) is a unitary representation of \(G\) such that

\[
\varphi(\alpha_t(a)) = u_t \varphi(a) u_t^*
\]

for all \(t \in G\) and for all \(a \in A\).

We say that the covariant representation \((\varphi, u, H)\) of \((G, A, \alpha)\) is non-degenerate if the \(*\)-representation \((\varphi, H)\) of \(A\) is non-degenerate.

Remark 3.12 (1). If \((\varphi, u, H)\) is a covariant representation of \((G, A, \alpha)\) such that \(\|\varphi(a)\| \leq p(a)\) for all \(a \in A\), then there is a unique covariant representation \((\varphi_p, u, H)\) of the \(C^*\)-dynamical system \((G, A_p, \alpha^{(p)})\) such that \(\varphi_p \circ \pi_p = \varphi\).

(2). If \((\varphi_p, u, H)\) is a covariant representation of the \(C^*\)-dynamical system \((G, A_p, \alpha^{(p)})\), then \((\varphi_p \circ \pi_p, u, H)\) is a covariant representation of the locally \(C^*\)-dynamical system \((G, A, \alpha)\).

If \(R(G, A, \alpha)\) denotes the non-degenerate covariant representations of \((G, A, \alpha)\), then it is easy to check that

\[
R(G, A, \alpha) = \bigcup_{p \in S(A)} R_p(G, A, \alpha)
\]

where \(R_p(G, A, \alpha) = \{ (\varphi, u, H) \in R(G, A, \alpha); \|\varphi(a)\| \leq p(a)\) for all \(a \in A\}\). Also it is easy to check that the map \(\varphi_p \mapsto \varphi_p \circ \pi_p\) from \(R(G, A_p, \alpha^{(p)})\) to \(R_p(G, A, \alpha)\) is bijective.

Proposition 3.13 Let \((G, A, \alpha)\) be a locally \(C^*\)-dynamical system such that \(\alpha\) is an inverse limit action. Then there is a bijection between the covariant non-degenerate representations of \((G, A, \alpha)\) and the non-degenerate \(*\)-representations of \(L^1(G, A, \alpha)\).
Proof. Let \((\varphi, u, H) \in R(G, A, \alpha)\). Then, there is \(p \in S(A)\) and \((\varphi_p, u, H) \in R(G, A_p, \alpha^{(p)})\) such that \(\varphi = \varphi_p \circ \pi_p\). Since \((\varphi_p, u, H) \in R(G, A_p, \alpha^{(p)})\) there is a unique non-degenerate \(*\)-representation \((\varphi_p \times u, H)\) of \(L^1(G, A_p, \alpha^{(p)})\) such that

\[
(\varphi_p \times u)(f) = \int_G \varphi_p(f(t)) u_t dt
\]

for all \(f \in L^1(G, A_p, \alpha^{(p)})\), see, for instance, Proposition 7.6.4 of [8].

Let \(\varphi \times u = (\varphi_p \times u) \circ \tilde{\pi}_p\), where \(\tilde{\pi}_p\) is the canonical map from \(L^1(G, A, \alpha)\) to \(L^1(G, A_p, \alpha^{(p)})\), \(\tilde{\pi}_p(f) = \pi_p \circ f\) for all \(f\) in \(L^1(G, A, \alpha)\). Then, clearly \((\varphi \times u, H)\) is a non-degenerate \(*\)-representation of \(L^1(G, A, \alpha)\) and moreover,

\[
(\varphi \times u)(f) = (\varphi_p \times u)(\pi_p \circ f) = \int_G \varphi_p((\pi_p \circ f)(t)) u_t dt = \int_G \varphi(f(t)) u_t dt
\]

for all \(f \in L^1(G, A, \alpha)\). Thus we have obtained a map \((\varphi, u, H) \rightarrow (\varphi \times u, H)\) from \(R(G, A, \alpha)\) to \(R(L^1(G, A, \alpha))\). To show that this map is bijective, let \((\Phi, H)\) be a non-degenerate \(*\)-representation of \(L^1(G, A, \alpha)\). Then there is \(p \in S(A)\) and a non-degenerate \(*\)-representation \((\Phi_p, H)\) of \(L^1(G, A_p, \alpha^{(p)})\) such that \(\Phi = \Phi_p \circ \pi_p\). By Proposition 7.6.4 of [8] there is a unique non-degenerate covariant representation \((\varphi_p, u, H)\) of \((G, A_p, \alpha^{(p)})\) such that \((\phi_p, H) = (\varphi_p \times u, H)\). Therefore there is a non-degenerate covariant representation \((\varphi, u, H)\) of \((G, A, \alpha)\), where \(\varphi = \varphi_p \circ \pi_p\), such that \((\Phi, H) = (\varphi \times u, H)\).

To show that \((\varphi, u, H)\) is unique, let \((\psi, v, K)\) be another non-degenerate covariant representation of \((G, \alpha, A)\) such that \((\psi \times v, K) = (\Phi, H)\). Then there is \(q \in S(A)\) with \(q \geq p\) such that \((\psi, v, K) \in R_q(G, A, \alpha)\) and \((\Phi, K) \in R_q(L^1(G, A, \alpha))\). Therefore \(\Phi = \Phi_q \circ \tilde{\pi}_q\) with \((\Phi_q, H) \in R \left(L^1(G, A_q, \alpha^{(q)})\right)\) and \(\psi = \psi_q \circ \pi_q\) with \((\psi_q, v, K) \in R \left(G, A_q, \alpha^{(q)}\right)\) and moreover, \((\Phi_q, H) =
\((\psi_q \times v, K)\).

On the other hand, \((\varphi_p \circ \pi_{pq}, u, H) \in \mathcal{R}(G, A_q, \alpha(q))\) and

\[
((\varphi_p \circ \pi_{pq}) \times u)(f) = \int_G (\varphi_p \circ \pi_{pq})(f(t))u_t dt = \int_G \varphi_p(\tilde{\pi}_{pq}(f)(t)) u_t dt
\]

\[= \phi_p(\tilde{\pi}_{pq}(f)) = (\phi_p \circ \tilde{\pi}_{pq})(f) = \phi_q(f)
\]

for all \(f \in L^1(G, A_q, \alpha(q))\). From these facts and Proposition 7.6.4 of [8], we conclude that the covariant representations \((\psi_q, v, K)\) and \((\varphi_p \circ \pi_{pq}, u, H)\) of \((G, A_q, \alpha(q))\) coincide, and so the covariant representations \((\psi, v, K)\) and \((\varphi, u, H)\) of \((G, A, \alpha)\) coincide.

Definition 3.14 Let \((G, A, \alpha)\) be a locally \(C^*\)-dynamical system such that \(\alpha\) is an inverse limit action. The crossed product of \(A\) by the action \(\alpha\), denoted by \(A \times_\alpha G\), is the enveloping algebra of the complete locally \(m\)-convex \(*\)-algebra \(L^1(G, A, \alpha)\).

Remark 3.15 By Corollary 3.9 and Corollary 5.3 of [2], \(A \times_\alpha G\) is a locally \(C^*\)-algebra and

\[A \times_\alpha G = \lim_{\leftarrow \substack{p \in S(A) \\text{such that } \alpha(p) = G}}} A_p \times_{\alpha(p)} G\]

up to an isomorphism of locally \(C^*\)-algebras.

Proposition 3.16 Let \((G, A, \alpha)\) be a locally \(C^*\)-dynamical system such that \(\alpha\) is an inverse limit action. Then there is a bijection between non-degenerate covariant representations of \((G, A, \alpha)\) and the non-degenerate representations of \(A \times_\alpha G\).
Proof. Since $A \times_{\alpha} G$ is the enveloping locally C^*-algebra of the complete locally m-convex $*$-algebra $L^1(G, A, \alpha)$, there is a bijection between the non-degenerate representations of $A \times_{\alpha} G$ and the non-degenerate representations of $L^1(G, A, \alpha)$, [2, pp. 37]. From this fact and Proposition 3.13 we conclude that there is a bijection between the non-degenerate representations of $A \times_{\alpha} G$ and the non-degenerate covariant representations of (G, A, α).

For each $p \in S(A)$, we denote by $(\varphi_{p,u}, H_{p,u})$ the universal representation of A_p and by $(\varphi_p, H_{p,u})$ the representation of A associated with $(\varphi_{p,u}, H_{p,u})$ (that is, $\varphi_p = \varphi_{p,u} \circ \pi_p$).

Lemma 3.17 Let (G, A, α) be a locally C^*-dynamical system such that α is an inverse limit action. Then $(\widetilde{\varphi}_p, \lambda, L^2(G, H_{p,u}))$, where

$$\widetilde{\varphi}_p (a) (\xi) (t) = \varphi_p (\alpha_t^{-1} (a)) (\xi (t))$$

and

$$\lambda_s (\xi) (t) = \xi (s^{-1} t)$$

for all a in A, ξ in $L^2(G, H_{p,u})$ and s, t in G, is a non-degenerate covariant representation of (G, A, α).

Proof. It is a simple verification. ■

Let $p \in S(A)$. The map $r_p : L^1(G, A, \alpha) \to [0, \infty)$ defined by

$$r_p(f) = \| (\widetilde{\varphi}_p \times \lambda) (f) \|$$

is a C^*-semi-norm on $L^1(G, A, \alpha)$ with the property that $r_p(f) \leq N_p(f)$ for all f in $L^1(G, A, \alpha)$.

14
Let \(I = \bigcap_{p \in S(A)} \ker (r_p) \). Clearly \(I \) is a closed two-sided ideal of \(L^1(G, A, \alpha) \) and \(L^1(G, A, \alpha) / I \) is a pre-locally \(C^* \)-algebra with respect to the topology determined by the family of \(C^* \)-semi-norms \(\{ \widehat{r}_p \}_{p \in S(A)} \), \(\widehat{r}_p(f + I) = \inf \{ r_p(f + h); h \in I \} \).

Definition 3.18 The reduced crossed product of \(A \) by the action \(\alpha \), denoted by \(A \times_{\alpha, r} G \), is the Hausdorff completion of \(\left(L^1(G, A, \alpha), \{ r_p \}_{p \in S(A)} \right) \) (that is, \(A \times_{\alpha, r} G \) is the completion of the pre-locally \(C^* \)-algebra \(\left(L^1(G, A, \alpha) / I, \{ \widehat{r}_p \}_{p \in S(A)} \right) \)).

Lemma 3.19 Let \((G, A, \alpha) \) be a locally \(C^* \)-dynamical system such that \(\alpha \) is an inverse limit action. Then

\[
(A \times_{\alpha, r} G)_p = A_p \times_{\alpha(p), r} G
\]

for all \(p \in S(A) \), up to an isomorphism of \(C^* \)-algebras.

Proof. Let \(p \in S(A) \). If \(f \in L^1(G, A, \alpha) \), then we have

\[
\| (f + I) + \ker(\widehat{r}_p) \|_{\widehat{r}_p} = \widehat{r}_p(f + I) = \inf \{ \| (\widehat{\varphi}_p \times \lambda)(f + h) \|; h \in I \}
\]

\[
= \inf \{ \| (\widehat{\varphi}_p \times \lambda)(f) \|; h \in I \} = r_p(f) = \| f + \ker(r_p) \|_{r_p}.
\]

From this relation, we conclude that \((A \times_{\alpha, r} G)_p \) is isomorphic to the completion of \(L^1(G, A, \alpha) / \ker(r_p) \) with respect to the \(C^* \)-norm induced by \(r_p \).

On the other hand, \(A_p \times_{\alpha(p), r} G \) is the completion of \(L^1(G, A_p, \alpha^{(p)}) / I_p \), where \(I_p = \{ f \in L^1(G, A_p, \alpha^{(p)}) / (\widehat{\varphi}_{p, u} \times \lambda)(f) = 0 \} \), with respect to the norm \(\| \| \) \(^r \) given by \(\| f + I_p \| ^r = \| (\widehat{\varphi}_{p, u} \times \lambda)(f) \| \leq \| f \|_1 \). But the completion of \(L^1(G, A, \alpha) / \ker(r_p) \) with respect to the norm \(\| \|_{r_p} \) is isomorphic to the
completion of $L^1\left(G, A, \alpha^{(p)}\right)/I_p$ with respect to the norm $\|\cdot\|'$, since

$$
\|f + \ker(r_p)\|_{r_p} = r_p(f) = \|\widetilde{\phi_p} \times \lambda \circ f\| = \|\pi_p(f) + I_p\|'
$$

for all $f \in L^1(G, A, \alpha)$. Therefore the C^*-algebras $(A \times_{\alpha, r} G)_p$ and $A_p \times_{\alpha^{(p)}, r} G$ are isomorphic. □

Corollary 3.20 If (G, A, α) is a locally C^*-dynamical system such that α is an inverse limit action then

$$
A \times_{\alpha, r} G = \lim_{\leftarrow \delta \in \Delta} A_p \times_{\alpha^{(p)}, r} G
$$

up to an isomorphism of locally C^*-algebras.

4 **Actions of a Kac C^*-algebra on a locally C^*-algebra**

Let $C^*K = (B, d, j, \varphi)$ be a Kac C^*-algebra and let A be a locally C^*-algebra.

Definition 4.1 An action of C^*K on A is an injective S-morphism α from A to $M(A, B)$ such that

$$
(\alpha \otimes id_B) \circ \alpha = (id_A \otimes (\sigma_B \circ d)) \circ \alpha.
$$

An action α of C^*K on A is an inverse limit action if we can write A as an inverse limit $\lim_{\leftarrow \delta \in \Delta}$ such that there are actions $\alpha^{(\delta)}$ of C^*K on A_δ, $\delta \in \Delta$, such that $\alpha = \lim_{\leftarrow \delta \in \Delta} \alpha^{(\delta)}$.

16
Two actions α_1 and α_2 of $C^*\mathbb{K}$ on the locally C^*-algebras A_1 respectively A_2 are said to be equivalent if there is an isomorphism of locally C^*-algebras $\Phi : A_1 \to A_2$ such that $\alpha_2 \circ \Phi = (\Phi \otimes \text{id}_{B}) \circ \alpha_1$.

Proposition 4.2 Let G be a locally compact group. If α is an action of $C^*\mathbb{K}_G$ on A, then the map $\Sigma(\alpha)$ that applies $t \in G$ to a map $\Sigma(\alpha)_t$ from A to A defined by $\Sigma(\alpha)_t(a) = \alpha(t^{-1})a$, is a continuous action of G on A.

Proof. Since α is a continuous $*$-morphism from A to $C_b(G,A)$, $\Sigma(\alpha)_t$ is a continuous $*$-morphism from A to A for each $t \in G$. Using the same arguments as in the proof of Proposition 5.1.5 of [13], it is not difficult to see that $\Sigma(\alpha)_t$ is invertible and moreover, $(\Sigma(\alpha)_t)^{-1} = \Sigma(\alpha)_{t^{-1}}$ for all $t \in G$. Therefore $\Sigma(\alpha)_t \in \text{Aut}(A)$ for each $t \in G$.

To show that the map $(t, a) \to \Sigma(\alpha)_t(a)$ from $G \times A$ to A is continuous, let $(t_0, a_0) \in G \times A$ and let $W_{p,\varepsilon} = \{ a \in A; p(a - \Sigma(\alpha)_{t_0}(a_0)) < \varepsilon \}$ be a neighborhood of $\Sigma(\alpha)_{t_0}(a_0)$. Since $\alpha(a_0) \in C_b(G,A)$, there is a neighborhood U_0 of t_0 such that
\[
p\left(\alpha(a_0)(t^{-1}) - \alpha(a_0)(t_0^{-1})\right) < \frac{\varepsilon}{2}
\]
for all t in U_0, and since α is a continuous $*$-morphism, there is a neighborhood V_0 of a_0 such that
\[
\|\alpha(a) - \alpha(a_0)\|_p = \sup\{p(\alpha(a)(t) - \alpha(a_0)(t)); t \in G\} < \frac{\varepsilon}{2}
\]
for all a in V_0. Then
\[
p\left(\Sigma(\alpha)_t(a) - \Sigma(\alpha)_{t_0}(a_0)\right) \leq p\left(\alpha(a)(t^{-1}) - \alpha(a_0)(t^{-1})\right)
\]
\[
+ p\left(\alpha(a_0)(t^{-1}) - \alpha(a_0)(t_0^{-1})\right)
\]
\[
\leq \|\alpha(a) - \alpha(a_0)\|_p + \frac{\varepsilon}{2} < \varepsilon
\]
for all \((t, a) \in U_0 \times V_0\) and the proposition is proved. ■

Remark 4.3 According to Proposition 4.2, we can define a map \(\Sigma\) from the set of all actions of \(C^*K_G\) on \(A\) to the set of all continuous actions of \(G\) on \(A\) by \(\alpha \rightarrow \Sigma(\alpha)\). Moreover, \(\Sigma\) is injective.

The following proposition is a generalization of Proposition 5.1.5 of [13] for inverse limit actions of locally compact groups on locally \(C^*\)-algebras.

Proposition 4.4 Let \(G\) be a locally compact group. Then the map \(\Sigma\) defined in Proposition 4.2 is a bijective correspondence between the set of all inverse limit actions of \(C^*K_G\) on \(A\) and the set of all continuous inverse limit actions of \(G\) on \(A\).

Proof. Let \(\alpha\) be an inverse limit action of \(C^*K_G\) on \(A\). Then \(A\) may be written as an inverse limit \(\lim_{\delta \in \Delta} A_\delta\) of \(C^*\)-algebras and there are actions \(\alpha^{(\delta)}\) of \(C^*K_G\) on \(A_\delta\), \(\delta \in \Delta\) such that \(\alpha = \lim_{\delta \in \Delta} \alpha^{(\delta)}\).

According to Proposition 5.1.5 of [13], for each \(\delta \in \Delta\) there is a continuous action \(\Sigma(\alpha^{(\delta)})\) of \(G\) on \(A_\delta\) such that \(\Sigma(\alpha^{(\delta)})(a_\delta)(t^{-1}) = \alpha^{(\delta)}(a_\delta)(t^{-1})\) for all \(a_\delta\) in \(A_\delta\) and for all \(t\) in \(G\). Since \(\{\alpha^{(\delta)}\}_{\delta \in \Delta}\) is an inverse system of \(C^*\)-algebras, it is not difficult to check that \(\{\Sigma(\alpha^{(\delta)})(t)\}_{\delta \in \Delta}\) is an inverse system of \(C^*\)-isomorphisms for each \(t\) in \(G\). Also it is easy to check that \(\Sigma(\alpha)(t) = \lim_{\delta \in \Delta} \Sigma(\alpha^{(\delta)})(t)\) for each \(t\) in \(G\).

To show that \(\Sigma\) is surjective, let \(\beta\) be a continuous inverse limit action of \(G\) on \(A\). Then \(A\) may be written as an inverse limit \(\lim_{\delta \in \Delta} A_\delta\) of \(C^*\)-algebras and there are continuous actions \(\beta^{(\delta)}\) of \(G\) on \(A_\delta\) such that \(\beta_t = \lim_{\delta \in \Delta} \beta^{(\delta)}(a_\delta)(t^{-1})\) for all \(a_\delta\) in \(A_\delta\) and for all \(t\) in \(G\). Since \(\{\beta^{(\delta)}\}_{\delta \in \Delta}\) is an inverse system of \(C^*\)-algebras, it is not difficult to check that \(\Sigma(\beta)(t) = \lim_{\delta \in \Delta} \Sigma(\beta^{(\delta)})(t)\) for each \(t\) in \(G\).
β_t(δ) for each t in G. By Proposition 5.1.5 of [13], for each δ ∈ Δ there is an action α(δ) of C∗KG on A_δ such that Σ(α(δ)) = β(δ). It is not difficult to verify that \{α(δ)\}_{δ∈Δ} is an inverse system of injective S-morphisms of C∗-algebras. Let α = \lim_{δ∈Δ} α(δ). Then α is an injective S-morphism of locally C∗-algebras and

\((\alpha \otimes \text{id}_{C_0(G)}) \circ \alpha = \lim_{δ∈Δ} (\alpha(δ) \otimes \text{id}_{C_0(G)}) \circ \alpha(δ) = \lim_{δ∈Δ} (\text{id}_{A_δ} \otimes \sigma_{C_0(G)} \circ \delta_G) \circ \alpha(δ) = (\text{id}_A \otimes \sigma_{C_0(G)} \circ \delta_G) \circ \alpha. \)

Therefore α is an inverse limit action of C∗KG on A and Σ(α) = β. Thus we showed that Σ is bijective. ■

Corollary 4.5 If G is compact, then any action of C∗KG on A is an inverse limit action.

Proof. Let α be an action of C∗KG on A. By Proposition 4.2, Σ(α) is a continuous action of G on A which is an limit inverse action, since the group G is compact, Lemma 3.6. From this fact and Proposition 4.4 we conclude that α is an inverse limit action. ■

5 **The Takai duality theorem**

Let G be a locally compact group and let A be a locally C∗-algebra.

Lemma 5.1 Let α be an inverse limit action of G on A. Then the reduced crossed product of A by the action α is isomorphic to the locally C∗-
subalgebra of \(M(A \otimes \mathcal{L}(L^2(G))) \) generated by \(\{ \alpha(a)(1_{M(A)} \otimes \lambda(f)) : a \in A, f \in C_c(G) \} \), where \(\lambda \) is the left regular representation of \(L^1(G) \).

Proof. Let \(p \in S(A) \). By Remark 5.2.1.1 of [13], the map \(\Phi_p \) from the \(C^* \)-subalgebra of \(M(A_p \otimes \mathcal{L}(L^2(G))) \) generated by \(\{ \alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f)) : a_p \in A_p, f \in C_c(G) \} \) to \(A_p \times \alpha^{(p)},r G \), that applies \(\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f)) \) to \(\tilde{f} + I_p \), where \(\tilde{f}(t) = f(t)a_p, t \in G \), see the proof of Lemma 3.19, is an isomorphism of \(C^* \)-algebras.

If \(\pi'_{pq}, p, q \in S(A), p \geq q \) are the connecting maps of the inverse system \(\{ M(A_p \otimes \mathcal{L}(L^2(G))) \}_{p \in S(A)} \) and \(\hat{\pi}_{pq}, p, q \in S(A), p \geq q \) are the connecting maps of the inverse system \(\{ A_p \times \alpha^{(p)},r G \}_{p \in S(A)} \), then we have

\[
(\Phi_q \circ \pi'_{pq})(\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f))) = \Phi_q(\alpha^{(q)}(\pi_{pq}(a_p))(1_{M(A_q)} \otimes \lambda(f)))
\]

\[
= \pi_{pq}(a_p) \otimes f + I_p = \tilde{\pi}_{pq}(a_p \otimes f) + I_p
\]

\[
= (\tilde{\pi}_{pq} \circ \Phi_p)(\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f)))
\]

for all \(a_p \) in \(A_p \), for all \(f \) in \(C_c(G) \) and for all \(p, q \in S(A) \) with \(p \geq q \).

Therefore \(\{ \Phi_p \}_{p \in S(A)} \) is an inverse system of isomorphisms of \(C^* \)-algebras and the lemma is proved. \(\blacksquare \)

Definition 5.2 A coaction of \(G \) on \(A \) is an action \(\beta \) of \(C^*\mathcal{K}^*_G \) on \(A \). We say that a coaction \(\beta \) of \(G \) on \(A \) is an inverse limit coaction if it is an inverse limit action of \(C^*\mathcal{K}^*_G \) on \(A \).

The reduced crossed product of \(A \) by the coaction \(\beta \), denoted by \(A \times_\beta G \), is the locally \(C^* \)-subalgebra of \(M(A \otimes \mathcal{L}(L^2(G))) \) generated by \(\{ \beta(a)(1_{M(A)} \otimes f) : a \in A, f \in C_c(G) \} \).
Remark 5.3 Let \(\beta = \lim\limits_{\delta \in \Delta} \beta^{(\delta)} \) be an inverse limit coaction of \(G \) on \(A \) such that the connecting maps of the inverse system \(\{ A_\delta \}_{\delta \in \Delta} \) are all surjective. Then, by Theorem 3.14 of [10]

\[
M(A \otimes \mathcal{L}(L^2(G))) = \lim\limits_{\delta \in \Delta} M(A_\delta \otimes \mathcal{L}(L^2(G)))
\]

up to an isomorphism of locally \(C^* \)-algebras, and by Lemma III 3.2 of [7],

\[
A \times_{\beta} G = \lim_{\delta \in \Delta} A_\delta \times_{\beta^{(\delta)}} G
\]

up to an isomorphism of locally \(C^* \)-algebras.

Remark 5.4 Let \(G \) be a commutative locally compact group. Exactly as in the proof of Proposition 5.1.6 of [13] we show that if \(\beta \) is an inverse limit coaction of \(G \) on \(A \), then \(\beta' = (\text{id}_A \otimes \text{ad}F) \circ \beta \), where \(F \) is the Fourier-Plancherel isomorphism from \(L^2(G) \) onto \(L^2(\hat{G}) \), is an inverse limit action of \(\hat{G} \) on \(A \) and conversely, if \(\alpha \) is an inverse limit action of \(\hat{G} \) on \(A \) then \(\alpha' = (\text{id}_A \otimes \text{ad}F^*) \circ \alpha \) is an inverse limit coaction of \(G \) on \(A \). Therefore an inverse limit coaction of \(G \) can be identified with an inverse limit action of \(\hat{G} \) and \(\text{id}_A \otimes \text{ad}F \) is an isomorphism between \(A \times_{\beta} G \) and \(A \times_{\beta',r} \hat{G} \).

The following proposition is a generalization of Theorem 5.2.6 of [13] for inverse limit actions of a locally compact group on a locally \(C^* \)-algebra.

Proposition 5.5 Let \(A \) be a locally \(C^* \)-algebra and let \(G \) be a locally compact group.

1. If \(\alpha \) is an inverse limit action of \(G \) on \(A \), then there is an inverse limit coaction \(\tilde{\alpha} \) of \(G \) on \(A \times_{\alpha, r} G \), called the dual coaction associated to \(\alpha \),
such that
\[
\hat{\alpha}(\alpha(a)(1_{M(A)} \otimes \lambda(f))) = (\alpha(a) \otimes 1_G)(1_{M(A)} \otimes d_G^s(\lambda(f))) \quad (*)
\]
for all \(a\) in \(A\) and for all \(f\) in \(C_c(G)\).

(2). If \(\beta = \lim_{\delta \in \Delta} \beta^{(\delta)}\) is an inverse limit coaction of \(G\) on \(A\) such that the connecting maps of the inverse system \(\{A_\delta\}_{\delta \in \Delta}\) are all surjective, then there is an inverse limit action \(\hat{\beta}\) of \(G\) on \(A \times \beta G\), called the dual action associated to \(\beta\), such that
\[
\hat{\beta}(\beta(a)(1_{M(A)} \otimes f)) = (\beta(a) \otimes 1_G)(1_{M(A)} \otimes (id_{C_0(G)} \otimes j_G^a) d_G^s(f)) \quad (**)
\]
for all \(a\) in \(A\) and for all \(f\) in \(C_c(G)\).

Proof. (1). Since \(\alpha\) is an inverse limit action, \(\alpha = \lim_{\leftarrow p \in S(A)} \alpha^{(p)}\), where \(\alpha^{(p)}\) is a continuous action of \(G\) on \(A_p\). By Theorem 5.2.6 (i) of [13], for each \(p \in S(A)\) there is a dual coaction \(\hat{\alpha}^{(p)}\) of \(G\) on \(A_p \times_{\alpha^{(p)}, r} G\) such that
\[
\hat{\alpha}^{(p)}(\alpha^{(p)}(a_p)(1_{M(A_p)} \otimes \lambda(f))) = (\alpha^{(p)}(a_p) \otimes 1_G)(1_{M(A_p)} \otimes d_G^s(\lambda(f)))
\]
for all \(a_p\) in \(A_p\) and for all \(f\) in \(C_c(G)\). It is not difficult to check that \(\{\hat{\alpha}^{(p)}\}_{p \in S(A)}\) is an inverse system of injective \(S\)-morphisms and \(\hat{\alpha} = \lim_{\leftarrow p \in S(A)} \hat{\alpha}^{(p)}\) is a coaction of \(G\) on \(A \times_{\alpha, r} G\) which verifies the condition (\(*\)).

(2). By Theorem 5.2.6 (ii) of [13], for each \(\delta \in \Delta\) there is a continuous action \(\hat{\beta}^{(\delta)}\) of \(G\) on \(A_\delta \times_{\beta^{(\delta)}, G} G\) such that
\[
\hat{\beta}^{(\delta)}(\beta^{(\delta)}(a_\delta)(1_{M(A_\delta)} \otimes f)) = (\beta^{(\delta)}(a_\delta) \otimes 1_G)(1_{M(A_\delta)} \otimes (id_{C_0(G)} \otimes j_G^a) d_G^s(f))
\]
for all \(a_\delta\) in \(A_\delta\) and for all \(f\) in \(C_c(G)\). Using this relation and Remark 5.3 it is not difficult to check that \(\{\hat{\beta}^{(\delta)}\}_{\delta \in \Delta}\) is an inverse system of injective
S-morphisms. Let $\hat{\beta} = \lim_{\delta \in \Delta} \hat{\beta}(\delta)$. Then $\hat{\beta}$ is a continuous action of G on $A \times_{\beta} G$ and moreover, it verifies the condition (**) .

The following theorem is a version of the Takai duality theorem for inverse limit actions of a locally compact group on a locally C^*-algebra.

Theorem 5.6 Let G be a locally compact group, let A be a locally C^*-algebra and let α be an inverse limit action of G on A. Then there is an isomorphism Π from $A \otimes K(L^2(G))$ onto $(A \times_{\alpha,r} G) \times_{\hat{\alpha}} G$ such that

$$\hat{\alpha} \circ \Pi = (\hat{\Pi} \otimes \text{id}_{C_0(G)}) \circ (\alpha \otimes \text{ad} \rho)$$

where ρ is the right regular representation of $L^1(G)$.

Proof. By Proposition 3.2 of [10],

$$A \otimes K(L^2(G)) = \lim_{p \in S(A)} A_p \otimes K(L^2(G))$$

up to an isomorphism of locally C^*-algebras

Since α is an inverse limit action, according to the proof of Proposition 5.5 (1),

$$\hat{\alpha} = \lim_{p \in S(A)} \hat{\alpha}^{(p)}$$

where $\hat{\alpha}^{(p)}$ is the dual coaction associated to $\alpha^{(p)}$ for each $p \in S(A)$. Then, since the connecting maps of the inverse system $\{A_p \times_{\alpha^{(p)},r} G\}_{p \in S(A)}$ are all surjective, by Proposition 5.5 (2),

$$\hat{\alpha} = \lim_{p \in S(A)} \hat{\alpha}^{(p)}$$

and by Remark 5.3,

$$(A \times_{\alpha,r} G) \times_{\hat{\alpha}} G = \lim_{p \in S(A)} \left(A_p \times_{\alpha^{(p)},r} G \right) \times_{\hat{\alpha}^{(p)}} G$$
up to an isomorphism of locally C^*-algebras.

Let $p \in S(A)$. According to Theorem 5.2 of [13], there is an isomorphism

$$\Pi(p)$$

from $A_p \otimes \mathcal{K}(L^2(G))$ onto $\left(A_p \times_{\alpha(p), r} G \right) \times_{\hat{\alpha}(p)} G$ such that

$$\hat{\alpha}(p) \circ \Pi(p) = (\Pi(p) \otimes \text{id}_{C_0(G)}) \circ (\alpha(p) \otimes \text{ad}\rho).$$

Moreover,

$$\Pi(p)(\alpha(p)(a_p)(1_M(A_p) \otimes \lambda(f) h)) = \hat{\alpha}(p)(\alpha(p)(a_p)(1_M(A_p) \otimes \lambda(f)))(1_M(A_p) \otimes 1_G \otimes h)$$

and

$$\Pi(p)((1_M(A_p) \otimes \lambda(f) h) \alpha(p)(a_p)) = \hat{\alpha}(p)((1_M(A_p) \otimes \lambda(f)) \alpha(p)(a_p))(1_M(A_p) \otimes 1_G \otimes h)$$

for all f and h in $C_c(G)$ and for all a_p in A_p. Using these relations and the fact that $A_p \otimes \mathcal{K}(L^2(G))$ is the C^*-subalgebra of $M(A_p \otimes \mathcal{K}(L^2(G)))$ generated by $\{\alpha(p)(a_p)(1_M(A_p) \otimes \lambda(f)h), (1_M(A_p) \otimes \lambda(f)h) \alpha(p)(a_p); f, h \in C_c(G), a_p \in A_p\}$, see Lemma 5.2.10 of [13], it is not difficult to check that

$$\{\Pi(p)\}_{p \in S(A)}$$

is an inverse system of C^*-isomorphisms.

Let $\Pi = \lim_{\leftarrow} \Pi(p)$. Then, clearly Π is an isomorphism of locally C^*-algebras from $A \otimes \mathcal{K}(L^2(G))$ onto $\left(A \times_{\alpha, r} G \right) \times_{\hat{\alpha}} G$ which satisfies the condition

$$\hat{\alpha} \circ \Pi = (\Pi \otimes \text{id}_{C_0(G)}) \circ (\alpha \otimes \text{ad}\rho)$$

and the theorem is proved. ■

Since any action of a compact group on a locally C^*-algebra is an inverse limit action, we have:

Corollary 5.7 Let G be a compact group, let A be a locally C^*-algebra and let α be a continuous action of G on A. Then there is an isomorphism Π
from $A \otimes K(L^2(G))$ onto $(A \times_{\alpha,r} G) \times_{\hat{\alpha}} G$ such that

$$\hat{\alpha} \circ \Pi = (\Pi \otimes \text{id}_{C_0(G)}) \circ (\alpha \otimes \text{ad} \rho)$$

where ρ is the right regular representation of $L^1(G)$.

Acknowledgment. The author is grateful to the referee for several suggestions that improved the presentation of the paper.

References

[1] M. Fragoulopoulou, An introduction to the representation theory of topological \ast-algebras, Schriftenreihe, Univ. Münster, 48(1988), 1-81.

[2] M. Fragoulopoulou, Tensor products of enveloping locally C^\ast-algebras, Schriftenreihe, Univ. Münster, 21(1997), 1-81.

[3] S. Imai and H. Takai, On a duality for C^\ast-crossed products by a locally compact group, J. Math. Soc. Japan, 30(1978), 495-504.

[4] A. Inoue, Locally C^\ast-algebras, Mem. Faculty Sci. Kyushu Univ. Ser. A, 25(1971), 197-235.

[5] M. Joiţa, Locally Hopf C^\ast-algebras, Stud. Cerc. Mat., 50(1998), 3-4,175-196.

[6] Y. Katayama, Takesaki’s duality for a non-degenerate co-action, Math. Scand. 55(1984), 141-151.

[7] A. Mallios, Topological Algebras: Selected Topics, North-Holland, Amsterdam, 1986.
[8] G. K. Pedersen, *C*-algebras and their automorphism groups, Academic Press, London, New-York, San Francisco, 1979.

[9] N.C. Phillips, *Representable K*-theory for σ -C*-algebras, K-Theory, 3(1989), 5, 441-478.

[10] N.C. Phillips, *Inverse limits of C*-algebras*, J. Operator Theory, 19(1988), 159-195.

[11] I. Raeburn, *On crossed products and Takai duality*, Proc. Edinburgh Math. Soc., 31(1988), 321-330.

[12] H. Takai, *On duality for crossed products of C*-algebras*, J. Func. Analysis, 19(1975), 25-39.

[13] J. M. Vallin, *C*-algèbres de Hopf et C*-algèbres de Kac, Proc. London Math. Soc.(3), 50(1985), 131-174.

Department of Mathematics, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr.4-12, Bucharest, Romania

e-mail address: mjoita@fmi.unibuc.ro