Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

CMS Collaboration; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Amsler, C; Canelli, F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; et al.

Abstract: Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

DOI: https://doi.org/10.1016/j.physletb.2014.06.077

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-102522
Journal Article
Accepted Version

Originally published at:
CMS Collaboration; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Amsler, C; Canelli, F; Chiochia, V; De Cosa, A; Hinzmann, A; Hreus, T; Kilminster, B; Lange, C; Mejias, B; Ngadiuba, J; Robmann, P; Ronga, F J; Taroni, S; Verzetti, M; Yang, Y; et al (2014). Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs. Physics Letters B, 736:64-85.
DOI: https://doi.org/10.1016/j.physletb.2014.06.077
Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

The CMS Collaboration

Abstract

Constraints are presented on the total width of the recently discovered Higgs boson, Γ_H, using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 fb$^{-1}$ at a centre-of-mass energy $\sqrt{s} = 7$ TeV and 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of $\Gamma_H < 22$ MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass of $m_H = 125.6$ GeV.

Published in Physics Letters B as [doi:10.1016/j.physletb.2014.06.077].
The discovery of a new boson consistent with the standard model (SM) Higgs boson by the ATLAS and CMS Collaborations was recently reported [1–3]. The mass of the new boson \(m_H \) was measured to be near 125 GeV, and the spin-parity properties were further studied by both experiments, favouring the scalar, \(J^{PC} = 0^{++} \), hypothesis [4–7]. The measurements were found to be consistent with a single narrow resonance, and an upper limit of 3.4 GeV at a 95% confidence level (CL) on its decay width \(\Gamma_H \) was reported by the CMS experiment in the four-lepton decay channel [7]. A direct width measurement at the resonance peak is limited by experimental resolution, and is only sensitive to values far larger than the expected width of around 4 MeV for the SM Higgs boson [8, 9].

It was recently proposed [10] to constrain the Higgs boson width using its off-shell production and decay to two Z bosons away from the resonance peak [11]. In the dominant gluon fusion production mode the off-shell production cross section is known to be sizable. This arises from an enhancement in the decay amplitude from the vicinity of the Z-boson pair production threshold. A further enhancement comes, in gluon fusion production, from the top-quark pair production threshold. The zero-width approximation is inadequate and the ratio of the off-shell cross section above \(2m_Z \) to the on-shell signal is of the order of 8% [11, 12]. Further developments to the measurement of the Higgs boson width were proposed in Refs. [13, 14].

The gluon fusion production cross section depends on \(\Gamma_H \) through the Higgs boson propagator

\[
\frac{d\sigma_{gg\to H\to ZZ}}{dm^2_{ZZ}} \sim \frac{g^2_{ggH} g^2_{HZZ}}{m_H^2 \Gamma_H^2} \left(m^2_{ZZ} - m^2_H \right)^2 + m^2_H \Gamma_H^2.
\]

where \(g_{ggH} \) and \(g_{HZZ} \) are the couplings of the Higgs boson to gluons and Z bosons, respectively. Integrating either in a small region around \(m_H \), or above the mass threshold \(m_{ZZ} > 2m_Z \), where \((m_{ZZ} - m_H) \gg \Gamma_H \), the cross sections are, respectively,

\[
\sigma^{\text{on-shell}}_{gg\to H\to ZZ} \sim \frac{g^2_{ggH} g^2_{HZZ}}{m_H \Gamma_H} \quad \text{and} \quad \sigma^{\text{off-shell}}_{gg\to H\to ZZ} \sim \frac{g^2_{ggH} g^2_{HZZ}}{2m^2_Z}.
\]

From Eq. (2), it is clear that a measurement of the relative off-shell and on-shell production in the \(H \to ZZ \) channel provides direct information on \(\Gamma_H \), as long as the coupling ratios remain unchanged, i.e. the gluon fusion production is dominated by the top-quark loop and there are no new particles contributing. In particular, the on-shell production cross section is unchanged under a common scaling of the squared product of the couplings and of the total width \(\Gamma_H \), while the off-shell production cross section increases linearly with this scaling factor.

The dominant contribution for the production of a pair of Z bosons comes from the quark-initiated process, \(q\bar{q} \to ZZ \), the diagram for which is displayed in Fig. [1](left). The gluon-induced diboson production involves the \(gg \to ZZ \) continuum background production from the box diagrams, as illustrated in Fig. [1](center). An example of the signal production diagram is shown in Fig. [1](right). The interference between the two gluon-induced contributions is significant at high \(m_{ZZ} \) [15], and is taken into account in the analysis of the off-shell signal.

Vector boson fusion (VBF) production, which contributes at the level of about 7% to the on-shell cross section, is expected to increase above \(2m_Z \). The above formalism describing the ratio of off-shell and on-shell cross sections is applicable to the VBF production mode. In this analysis we constrain the fraction of VBF production using the properties of the events in the on-shell region. The other main Higgs boson production mechanisms, \(t\bar{t}H \) and \(VH \ (V=Z,W) \), which contribute at the level of about 5% to the on-shell signal, are not expected to produce a significant off-shell contribution as they are suppressed at high mass [8, 9]. They are therefore neglected in the off-shell analysis.
In this Letter, we present constraints on the Higgs boson width using its off-shell production and decay to Z-boson pairs, in the final states where one Z boson decays to an electron or a muon pair and the other to either an electron or a muon pair, $H \rightarrow ZZ \rightarrow 4\ell$ (4ℓ channel), or a pair of neutrinos, $H \rightarrow ZZ \rightarrow 2\ell2\nu$ ($2\ell2\nu$ channel). Relying on the observed Higgs boson signal in the resonance peak region [7], the simultaneous measurement of the signal in the high-mass region leads to constraints on the Higgs boson width Γ_H in the 4ℓ decay channel. The $2\ell2\nu$ decay channel, which benefits from a higher branching fraction [16, 17], is used in the high-mass region to further increase the sensitivity to the Higgs boson width. The analysis is performed for the tree-level HVV coupling of a scalar Higgs boson, consistent with our observations [4, 7], and implications for the anomalous HVV interactions are discussed. The Higgs boson mass is set to the measured value in the 4ℓ decay channel of $m_H = 125.6$ GeV [7] and the Higgs boson width is set to the corresponding expected value in the SM of $\Gamma_H^{SM} = 4.15$ MeV [8, 9].

The measurement is based on pp collision data collected with the CMS detector at the LHC in 2011, corresponding to an integrated luminosity of 5.1 fb$^{-1}$ at the center-of-mass energy of $\sqrt{s} = 7$ TeV (4ℓ channel), and in 2012, corresponding to an integrated luminosity of 19.7 fb$^{-1}$ at $\sqrt{s} = 8$ TeV (4ℓ and $2\ell2\nu$ channels). The CMS detector, described in detail elsewhere [18], provides excellent resolution for the measurement of electron and muon transverse momenta (p_T) over a wide range. The signal candidates are selected using well-identified and isolated prompt leptons. The online selection and event reconstruction are described elsewhere [2, 3, 7, 16]. The analysis presented here is based on the same event selection as used in Refs. [7, 16].

The analysis in the 4ℓ channel uses the four-lepton invariant mass distribution as well as a matrix element likelihood discriminant to separate the ZZ components originating from gluon- and quark-initiated processes. We define the on-shell signal region as $105.6 < m_{4\ell} < 140.6$ GeV and the off-shell signal region as $m_{4\ell} > 220$ GeV. The analysis in the $2\ell2\nu$ channel relies on the transverse mass distribution m_T^2,}

$$m_T^2 = \left[\sqrt{p_{T,2\ell}^2 + m_{2\ell}^2} + \sqrt{E_T^{miss}^2 + m_{2\ell}^2} \right] - \left[\vec{p}_{T,2\ell} + E_T^{miss} \right]^2,$$

where $p_{T,2\ell}$ and $m_{2\ell}$ are the measured transverse momentum and invariant mass of the dilepton system, respectively. The missing transverse energy, E_T^{miss}, is defined as the magnitude of the transverse momentum imbalance evaluated as the negative of the vectorial sum of transverse momenta of all the reconstructed particles in the event. In the $2\ell2\nu$ channel, the off-shell signal region is defined as $m_T > 180$ GeV. The choice of the off-shell regions in both channels is done prior to looking at the data, based on the expected sensitivity.

Simulated Monte Carlo (MC) samples of $gg \rightarrow 4\ell$ and $gg \rightarrow 2\ell2\nu$ events are generated at leading order (LO) in perturbative quantum chromodynamics (QCD), including the Higgs boson.
signal, the continuum background, and the interference contributions using recent versions of two different MC generators, gg2VV 3.1.5 [11, 19] and MCFM 6.7 [20], in order to cross-check theoretical inputs. The QCD renormalization and factorization scales are set to \(m_{ZZ}/2 \) (dynamic scales) and MSTW2008 LO parton distribution functions (PDFs) [21] are used. Higher-order QCD corrections for the gluon fusion signal process are known to an accuracy of next-to-next-to-leading order (NNLO) and next-to-next-to-leading logarithms for the total cross section [8,9] and to NNLO as a function of \(m_{ZZ} \) [14]. These correction factors to the LO cross section (K factors) are typically in the range of 2.0 to 2.5. After the application of the \(m_{ZZ} \)-dependent K factors, the event yield is normalized to the cross section from Refs. [8,9]. For the \(gg \to ZZ \) continuum background, although no exact calculation exists beyond LO, it has been recently shown [22] that the soft collinear approximation is able to describe the background cross section and therefore the interference term at NNLO. Following this calculation, we assign to the LO background cross section (and, consequently, to the interference contribution) a K factor equal to that used for the signal [14]. The limited theoretical knowledge of the background K factor at NNLO is taken into account by including an additional systematic uncertainty, the impact of which on the measurement is nevertheless small.

Vector boson fusion events are generated with PHANTOM [23]. Off-shell and interference effects with the nonresonant production are included at LO in these simulations. The event yield is normalized to the cross section at NNLO QCD and next-to-leading order (NLO) electroweak (EW) [8,9] accuracy, with a normalization factor shown to be independent of \(m_{ZZ} \).

In order to parameterize and validate the distributions of all the components for both gluon fusion and VBF processes, specific simulated samples are also produced that describe only the signal or the continuum background, as well as several scenarios with scaled couplings and width. For the on-shell analysis, signal events are generated either with POWHEG [24–27] production at NLO in QCD and JHUGEN [28,29] decay (gluon fusion and VBF), or with PYTHIA 6.4 [30] (VH and t\(t \)H production).

In both the \(4\ell \) and \(2\ell2\nu \) channels the dominant background is \(q\bar{q} \to ZZ \). We assume SM production rates for this background, the contribution of which is evaluated by POWHEG simulation at NLO in QCD [31]. Next-to-leading order EW calculations [32,33], which predict negative and \(m_{ZZ} \)-dependent corrections to the \(q\bar{q} \to ZZ \) process for on-shell Z-boson pairs, are taken into account.

All simulated events undergo parton showering and hadronization using PYTHIA. As is done in Ref. [7] for LO samples, the parton showering settings are tuned to approximately reproduce the ZZ \(p_T \) spectrum predicted at NNLO for the Higgs boson production [34]. Generated events are then processed with the detailed CMS detector simulation based on GEANT4 [35,36], and reconstructed using the same algorithms as used for the observed events.

The final state in the \(4\ell \) channel is characterized by four well-identified and isolated leptons forming two pairs of opposite-sign and same-flavour leptons consistent with two Z bosons. This channel benefits from a precise reconstruction of all final state leptons and from a very low instrumental background. The event selection and the reducible background evaluation are performed following the methods described in Ref. [7]. After the selection, the \(4\ell \) data sample is dominated by the quark-initiated \(q\bar{q} \to ZZ \to 4\ell \) (\(q\bar{q} \to 4\ell \)) and \(gg \to 4\ell \) productions.

Figure 2 presents the measured \(m_{4\ell} \) distribution over the full mass range, \(m_{4\ell} > 100 \text{ GeV} \), together with the expected SM contributions. The \(gg \to 4\ell \) contribution is clearly visible in the on-shell signal region and at the Z-boson pair production threshold, above the \(q\bar{q} \to 4\ell \) background. The observed distribution is consistent with the expectation from SM processes. We
observe 223 events in the off-shell signal region, while we expect 217.6 ± 9.5 from SM processes, including the SM Higgs boson signal.

Figure 2: Distribution of the four-lepton invariant mass in the range $100 < m_{4\ell} < 800$ GeV. Points represent the data, filled histograms the expected contributions from the reducible ($Z+X$) and $q\bar{q}$ backgrounds, and from the sum of the gluon fusion (gg) and vector boson fusion (VV) processes, including the Higgs boson mediated contributions. The inset shows the distribution in the low mass region after a selection requirement on the MELA likelihood discriminant $D_{\text{kin bkg}} > 0.5$ [7]. In this region, the contribution of the $t\bar{t}H$ and VH production processes is added to the dominant gluon fusion and VBF contributions.

In order to enhance the sensitivity to the gg production in the off-shell region, a likelihood discriminant D_{gg} is used, which characterizes the event topology in the 4ℓ centre-of-mass frame using the observables $(m_{Z_1}, m_{Z_2}, \vec{\Omega})$ for a given value of $m_{4\ell}$, where $\vec{\Omega}$ denotes the five angles defined in Ref. [28]. The discriminant is built from the probabilities P_{tot}^{gg} and P_{bkg}^{gg} for an event to originate from either the $gg \to 4\ell$ or the $q\bar{q} \to 4\ell$ process. We use the matrix element likelihood approach (MELA) [2, 29] for the probability computation using the MCFM matrix elements for both $gg \to 4\ell$ and $q\bar{q} \to 4\ell$ processes. The probability P_{tot}^{gg} for the $gg \to 4\ell$ process includes the signal (P_{sig}^{gg}), the background (P_{bkg}^{gg}), and their interference (P_{int}^{gg}), as introduced for the discriminant computation in Ref. [37]. The discriminant is defined as

$$D_{gg} = \frac{P_{\text{tot}}^{gg}}{P_{\text{tot}}^{gg} + P_{\text{bkg}}^{gg}} = \left[1 + \frac{P_{\text{bkg}}^{gg}}{a \times P_{\text{sig}}^{gg} + \sqrt{a} \times P_{\text{int}}^{gg} + P_{\text{bkg}}^{gg}} \right]^{-1},$$

where the parameter a is the strength of the unknown anomalous gg contribution with respect to the expected SM contribution ($a = 1$). We set $a = 10$ in the definition of D_{gg} according to the expected sensitivity. Studies show that the expected sensitivity does not change substantially when a is varied up or down by a factor of 2. It should be stressed that fixing the parameter a...
to a given value only affects the sensitivity of the analysis. To suppress the dominant $q\bar{q} \to 4\ell$ background in the on-shell region, the analysis also employs a MELA likelihood discriminant D_{bkg}, based on the JHUGEN and MCFM matrix element calculations for the signal and the background, as illustrated by the inset in Fig. 2 and used in Ref. [7].

As an illustration, Fig. 3(left) presents the 4ℓ invariant mass distribution for the off-shell signal region ($m_{4\ell} > 220$ GeV) and for $D_{\text{gg}} > 0.65$. The expected contributions from the $q\bar{q} \to 4\ell$ and reducible backgrounds, as well as for the total gluon fusion (gg) and vector boson fusion (VV) contributions, including the Higgs boson signal, are shown. The distribution of the likelihood discriminant D_{gg} for $m_{4\ell} > 330$ GeV is shown in Fig. 3(right), together with the expected contributions from the SM. The expected $m_{4\ell}$ and D_{gg} distributions for the sum of all the processes, with a Higgs boson width $\Gamma_H = 10 \times \Gamma_H^{\text{SM}}$ and a relative cross section with respect to the SM cross section equal to unity in both gluon fusion and VBF production modes ($\mu = \mu_{\text{ggH}} = \mu_{\text{VBF}} = 1$), are also presented, showing the enhancement arising from the scaling of the squared product of the couplings. The expected and observed event yields in the off-shell gg-enriched region defined by $m_{4\ell} \geq 330$ GeV and $D_{\text{gg}} > 0.65$ are reported in Table 1.

![Figure 3](image_url)

Figure 3: Distributions of (left) the four-lepton invariant mass after a selection requirement on the MELA likelihood discriminant $D_{\text{gg}} > 0.65$, and (right) the D_{gg} likelihood discriminant for $m_{4\ell} > 330$ GeV in the 4ℓ channel. Points represent the data, filled histograms the expected contributions from the reducible ($Z+X$) and $q\bar{q}$ backgrounds, and from the gluon fusion (gg) and vector boson fusion (VV) SM processes (including the Higgs boson mediated contributions). The dashed line corresponds to the total expected yield for a Higgs boson width and a squared product of the couplings scaled by a factor 10 with respect to their SM values. In the top plot, the bin size varies from 20 to 85 GeV and the last bin includes all entries with masses above 800 GeV.

The 2ℓ2ν analysis is performed on the 8 TeV data set only. The final state in the 2ℓ2ν channel is characterized by two oppositely-charged leptons of the same flavour compatible with a Z boson, together with a large E_T^{miss} from the undetectable neutrinos. We require $E_T^{\text{miss}} > 80$ GeV. The event selection and background estimation is performed as described in Ref. [16], with the exception that the jet categories defined in Ref. [16] are here grouped into a single category, i.e. the analysis is performed in an inclusive way. The m_T distribution in the off-shell signal region ($m_T > 180$ GeV) is shown in Fig. 4. The expected and observed event yields in a gg-enriched region defined by $m_T > 350$ GeV and $E_T^{\text{miss}} > 100$ GeV are reported in Table 1.
Table 1: Expected and observed numbers of events in the 4ℓ and 2ℓ2ν channels in gg-enriched regions, defined by $m_{4\ell} \geq 330$ GeV and $P_{gg} > 0.65$ (4ℓ), and by $m_T > 350$ GeV and $E_{miss} > 100$ GeV (2ℓ2ν). The numbers of expected events are given separately for the gg and VBF processes, and for a SM Higgs boson ($\Gamma_H = \Gamma_{SM}^H$) and a Higgs boson width and squared product of the couplings scaled by a factor 10 with respect to their SM values. The unphysical expected contributions for the signal and background components are also reported separately, for the gg and VBF processes. For both processes, the sum of the signal and background components differs from the total due to the negative interferences. The quoted uncertainties include only the systematic sources.

	4ℓ	2ℓ2ν
(a) Total gg ($\Gamma_H = \Gamma_{SM}^H$)	1.8 ± 0.3	9.6 ± 1.5
gg Signal component ($\Gamma_H = \Gamma_{SM}^H$)	1.3 ± 0.2	4.7 ± 0.6
gg Background component	2.3 ± 0.4	10.8 ± 1.7
(b) Total gg ($\Gamma_H = 10 \times \Gamma_{SM}^H$)	9.9 ± 1.2	39.8 ± 5.2
(c) Total VBF ($\Gamma_H = \Gamma_{SM}^H$)	0.23 ± 0.01	0.90 ± 0.05
VBF signal component ($\Gamma_H = \Gamma_{SM}^H$)	0.11 ± 0.01	0.32 ± 0.02
VBF background component	0.35 ± 0.02	1.22 ± 0.07
(d) Total VBF ($\Gamma_H = 10 \times \Gamma_{SM}^H$)	0.77 ± 0.04	2.40 ± 0.14
(e) q\bar{q} background	9.3 ± 0.7	47.6 ± 4.0
(f) Other backgrounds	0.05 ± 0.02	35.1 ± 4.2
(a+c+e+f) Total expected ($\Gamma_H = \Gamma_{SM}^H$)	11.4 ± 0.8	93.2 ± 6.0
(b+d+e+f) Total expected ($\Gamma_H = 10 \times \Gamma_{SM}^H$)	20.1 ± 1.4	124.9 ± 7.8

Observed | 11 | 91

Systematic uncertainties comprise experimental uncertainties on the signal efficiency and background yield evaluation, as well as uncertainties on the signal and background from theoretical predictions. Since the measurement is performed in wide m_{ZZ} regions, there are sources of systematic uncertainties that only affect the total normalization and others that affect both the normalization and the shape of the observables used in this analysis. In the 4ℓ final state, only the latter type of systematic uncertainty affects the measurement of Γ_H, since normalization uncertainties change the on-shell and off-shell yields by the same amount.

Among the signal uncertainties, experimental systematic uncertainties are evaluated from observed events for the trigger efficiency (1.5%), and combined object reconstruction, identification and isolation efficiencies (3–4% for muons, 5–11% for electrons) [7]. In the 2ℓ2ν final state, the effects of the lepton momentum scale (1–2%) and jet energy scale (1%) are taken into account and propagated to the evaluation of E_{miss}^T. The uncertainty in the b-jet veto (1–3%) is estimated from simulation using correction factors for the b-tagging and b-misidentification efficiencies as measured from the dijet and t\bar{t} decay control samples [38].

Theoretical uncertainties from QCD scales in the q\bar{q} background contribution are within 4–10% depending on m_{ZZ} [7]. An additional uncertainty of 2–6% is included to account for missing higher order contributions with respect to a full NLO QCD and NLO EW evaluation. The systematic uncertainty in the normalization of the reducible backgrounds is evaluated following the methods described in Refs. [7, 16]. In the 2ℓ2ν channel, for which these contributions are not negligible at high mass, the estimation from control samples for the Z+jets and for the sum of the t\bar{t}, tW and WW contributions leads to uncertainties of 25% and 15% in the respective background yields. Theoretical uncertainties in the high mass contribution from the gluon-
induced processes, which affect both the normalization and the shape, are especially important in this analysis (in particular for the signal and interference contributions that are scaled by large factors). However, these uncertainties partially cancel when measuring simultaneously the yield from the same process in the on-shell signal region. The remaining m_{ZZ}-dependent uncertainties in the QCD renormalization and factorization scales are derived using the K factor variations from Ref. [14], corresponding to a factor of two up or down from the nominal $m_{ZZ}/2$ values, and amount to 2–4%. For the $gg \rightarrow ZZ$ continuum background production, we assign a 10% additional uncertainty on the K factor, following Ref. [22] and taking into account the different mass ranges and selections on the specific final state. This uncertainty also affects the interference with the signal. The PDF uncertainties are estimated following Refs. [39, 40] by changing the NLO PDF set from MSTW2008 to CT10 [41] and NNPDF2.1 [42], and the residual contribution is about 1%. For the VBF processes, no significant m_{ZZ}-dependence is found regarding the QCD scales and PDF uncertainties, which are in general much smaller than for the gluon fusion processes [8, 9]. In the $2\ell 2\nu$ final state, additional uncertainties on the yield arising from the theoretical description of the parton shower and underlying event are taken into account (6%).

We perform a simultaneous unbinned maximum likelihood fit of a signal-plus-background model to the measured distributions in the 4ℓ and $2\ell 2\nu$ channels. In the 4ℓ channel the analysis is performed in the on-shell and off-shell signal regions defined above. In the on-shell region, a
The total probability distribution function for the on-shell region is written as

\[P^{\text{on-shell}}_{\text{tot}}(\vec{x}) = \mu_{\text{ggH}} \times \left(\Gamma_H/\Gamma_0 \right) \times P^{\text{gg}}_{\text{sig}}(\vec{x}) + \sqrt{\mu_{\text{ggH}} \times (\Gamma_H/\Gamma_0) \times P^{\text{gg}}_{\text{int}}(\vec{x}) + P^{\text{gg}}_{\text{bkg}}(\vec{x})} \]

where \(\mu_{\text{ggH}} \) and \(\mu_{\text{VBF}} \) are the scale factors which modify the signal strength with respect to the reference parameterization. The parameter \((\Gamma_H/\Gamma_0) \) is the scale factor which modifies the observed width with respect to the \(\Gamma_0 \) value used in the reference parameterization.

The probability distribution functions are built using the full detector simulation or data control regions, and are defined for the signal, the background, or the interference between the two contributions, \(P_{\text{sig}}, P_{\text{bkg}}, \) or \(P_{\text{int}} \), respectively, as a function of the observables \(\vec{x} \) discussed above. Several production mechanisms are considered for the signal and the background, such as gluon fusion (gg), VBF, and quark-antiquark annihilation (q\bar{q}). The total probability distribution function for the on-shell region includes the interference of two contributions in each production process:

\[P^{\text{off-shell}}_{\text{tot}}(\vec{x}) = \mu_{\text{ggH}} \times \left(\Gamma_H/\Gamma_0 \right) \times P^{\text{gg}}_{\text{sig}}(\vec{x}) + \sqrt{\mu_{\text{ggH}} \times (\Gamma_H/\Gamma_0) \times P^{\text{gg}}_{\text{int}}(\vec{x}) + P^{\text{gg}}_{\text{bkg}}(\vec{x})} \]

The list of background processes is extended beyond those quoted depending on the final state (Z+X, top, Z+jets, WW, WZ). The parameters \(\mu_{\text{ggH}} \) and \(\mu_{\text{VBF}} \) are the scale factors which modify the signal strength with respect to the reference parameterization in each production mechanism independently. The parameter \((\Gamma_H/\Gamma_0) \) is the scale factor which modifies the observed width with respect to the \(\Gamma_0 \) value used in the reference parameterization.

In the on-shell region, the parameterization includes the small contribution of the t\bar{t}H and VH Higgs boson production mechanisms, which are related to the gluon fusion and VBF processes, respectively, because either the quark or the vector boson coupling to the Higgs boson is in common among those processes. Interference effects are negligible in the on-shell region. The total probability distribution function for the on-shell region is written as

\[P^{\text{on-shell}}_{\text{tot}}(\vec{x}) = \mu_{\text{ggH}} \times \left[P^{\text{gg}}_{\text{sig}}(\vec{x}) + P^{\text{ghH}}_{\text{sig}}(\vec{x}) \right] + \mu_{\text{VBF}} \times \left[P^{\text{VBF}}_{\text{sig}}(\vec{x}) + P^{\text{VH}}_{\text{sig}}(\vec{x}) \right] \]

The above parameterizations in Eqs. 5 and 6 are performed for the tree-level HVV coupling of a scalar Higgs boson, consistent with our observations. We find that the presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and a more stringent constraint on the width. It is evident that the parameterization in Eq. 5 relies on the modeling of the gluon fusion production with the dominant top-quark loop, therefore no possible new particles are considered in the loop. Further discussion can also be found in Refs. 43-45.

The three parameters \(\Gamma_H, \mu_{\text{ggH}}, \) and \(\mu_{\text{VBF}} \) are left unconstrained in the fit. The \(\mu_{\text{ggH}} \) and \(\mu_{\text{VBF}} \) fitted values are found to be almost identical to those obtained in Ref. 7. Systematic uncertainties are included as nuisance parameters and are treated according to the frequentist paradigm. The shapes and normalizations of the signal and of each background component are allowed to vary within their uncertainties, and the correlations in the sources of systematic uncertainty are taken into account.

The fit results are shown in Fig. 5 as scans of the negative log-likelihood, \(-2\Delta \ln L \), as a function of \(\Gamma_H \). Combining the two channels a limit is observed (expected) on the total width of \(\Gamma_H < \)
22 MeV (33 MeV) at a 95% CL, which is 5.4 (8.0) times the expected value in the SM. The best fit value and 68% CL interval correspond to $\Gamma_H = 1.8^{+7.7}_{-1.8}$ MeV. The result of the 4ℓ analysis alone is an observed (expected) limit of $\Gamma_H < 33$ MeV (42 MeV) at a 95% CL, which is 8.0 (10.1) times the SM value, and the result of the analysis combining the 4ℓ on-shell and $2\ell 2\nu$ off-shell regions is $\Gamma_H < 33$ MeV (44 MeV) at a 95% CL, which is 8.1 (10.6) times the SM value. The best fit values and 68% CL intervals are $\Gamma_H = 1.9^{+11.7}_{-1.9}$ MeV and $\Gamma_H = 1.8^{+12.4}_{-1.8}$ MeV for the 4ℓ analysis and for the analysis combining the 4ℓ on-shell and $2\ell 2\nu$ off-shell regions, respectively.

Figure 5: Scan of the negative log-likelihood, $-2\Delta \ln L$, as a function of Γ_H for the combined fit of the 4ℓ and $2\ell 2\nu$ channels (blue thick lines), for the 4ℓ channel alone in the off-shell and on-shell regions (dark red lines), and for the $2\ell 2\nu$ channel in the off-shell region and 4ℓ channel in the on-shell region (light red lines). The solid lines represent the observed values, the dotted lines the expected values.

The expected limit for the two channels combined without including the systematic uncertainties is $\Gamma_H < 28$ MeV at a 95% CL. The effect of systematic uncertainties is driven by the $2\ell 2\nu$ channel with larger experimental uncertainties in signal efficiencies and background estimation from control samples in data, while the result in the 4ℓ channel is largely dominated by the statistical uncertainty.

The statistical compatibility of the observed results with the expectation under the SM hypothesis corresponds to a p-value of 0.24. The statistical coverage of the results obtained in the likelihood scan has also been tested with the Feldman–Cousins approach [47] for the combined analysis leading to consistent although slightly tighter constraints. The analysis in the 4ℓ channel has also been performed in a one-dimensional fit using either $m_{4\ell}$ or D_{gg} and consistent results are found. The expected limit without using the MELA likelihood discriminant D_{gg} is 40% larger in the 4ℓ channel.

In summary, we have presented constraints on the total Higgs boson width using its relative...
on-shell and off-shell production and decay rates to four leptons or two leptons and two neutrinos. The analysis is based on the 2011 and 2012 data sets corresponding to integrated luminosities of 5.1 fb^{-1} at $\sqrt{s} = 7 \text{ TeV}$ and 19.7 fb^{-1} at $\sqrt{s} = 8 \text{ TeV}$. The four-lepton analysis uses the measured invariant mass distribution near the peak and above the Z-boson pair production threshold, as well as a likelihood discriminant to separate the gluon fusion ZZ production from the $q\bar{q} \to ZZ$ background, while the two-lepton plus two-neutrino off-shell analysis relies on the transverse mass distribution. The presented analysis determines the independent contributions of the gluon fusion and VBF production mechanisms from the data in the on-shell region. It relies nevertheless on the knowledge of the coupling ratios between the off-shell and on-shell production, i.e. the dominance of the top quark loop in the gluon fusion production mechanism and the absence of new particle contribution in the loop. The presence of anomalous couplings in the HVV interaction would lead to enhanced off-shell production and would make our constraint tighter. The combined fit of the 4ℓ and $2\ell 2\nu$ channels leads to an upper limit on the Higgs boson width of $\Gamma_H < 22 \text{ MeV}$ at a 95% confidence level, which is 5.4 times the expected width of the SM Higgs boson. This result improves by more than two orders of magnitude upon previous experimental constraints on the new boson decay width from the direct measurement at the resonance peak.

We wish to thank our theoretician colleagues and in particular Fabrizio Caola for providing the theoretical uncertainty in the $gg \to ZZ$ background K factor, Tobias Kasprzik for providing the numerical calculations on the EW corrections for the $q\bar{q} \to ZZ$ background process, Giampiero Passarino for his calculations of the m_{ZZ}-dependent K factor and its variations with renormalization and factorization scales, and Marco Zaro for checking the independence on m_{ZZ} of higher-order corrections in VBF processes. We also gratefully acknowledge Alessandro Ballestrero, John Campbell, Keith Ellis, Stefano Forte, Nikolas Kauer, Kirill Melnikov, and Ciaran Williams for their help in optimizing the Monte Carlo generators for this analysis.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

References

[1] ATLAS Collaboration, “Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC”, *Phys. Lett. B* **716** (2012) 1,
[2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC”, Phys. Lett. B 716 (2012) 30, doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.

[3] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp collisions at √s = 7 and 8 TeV”, JHEP 06 (2013) 081, doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.

[4] CMS Collaboration, “Study of the Mass and Spin-Parity of the Higgs Boson Candidate via its Decays to Z Boson Pairs”, Phys. Rev. Lett. 110 (2013) 081803, doi:10.1103/PhysRevLett.110.081803, arXiv:1212.6639.

[5] ATLAS Collaboration, “Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC”, Phys. Lett. B 726 (2013) 88, doi:10.1016/j.physletb.2013.08.010, arXiv:1307.1427.

[6] ATLAS Collaboration, “Evidence for the spin-0 nature of the Higgs boson using ATLAS data”, Phys. Lett. B 726 (2013) 120, doi:10.1016/j.physletb.2013.08.026, arXiv:1307.1432.

[7] CMS Collaboration, “Measurement of the properties of a Higgs boson in the four-lepton final state”, Phys. Rev. D 89 (2014) 092007, doi:10.1103/PhysRevD.89.092007, arXiv:1312.5353.

[8] LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables”, CERN Report CERN-2011-002, 2013, doi:10.5170/CERN-2011-002, arXiv:1101.0593.

[9] LHC Higgs Cross Section Working Group, “Handbook of LHC Higgs Cross Sections: 3. Higgs Properties”, CERN Report CERN-2013-004, 2013, doi:10.5170/CERN-2013-004, arXiv:1307.1347.

[10] F. Caola and K. Melnikov, “Constraining the Higgs boson width with ZZ production at the LHC”, Phys. Rev. D 88 (2013) 054024, doi:10.1103/PhysRevD.88.054024, arXiv:1307.4935.

[11] N. Kauer and G. Passarino, “Inadequacy of zero-width approximation for a light Higgs boson signal”, JHEP 08 (2012) 116, doi:10.1007/JHEP08(2012)116, arXiv:1206.4803.

[12] N. Kauer, “Inadequacy of zero-width approximation for a light Higgs boson signal”, Mod. Phys. Lett. A 28 (2013) 1330015, doi:10.1142/S0217732313300152, arXiv:1305.2092.

[13] J. M. Campbell, R. K. Ellis, and C. Williams, “Bounding the Higgs width at the LHC using full analytic results for gg → e⁺e⁻μ⁺μ⁻”, (2013), arXiv:1311.3589.

[14] G. Passarino, “Higgs CAT”, Eur. Phys. J. C 74 (2014) 2866, doi:10.1140/epjc/s10052-014-2866-7, arXiv:1312.2397.

[15] G. Passarino, “Higgs Interference Effects in gg → ZZ and their Uncertainty”, JHEP 08 (2012) 146, doi:10.1007/JHEP08(2012)146, arXiv:1206.3824.
[16] CMS Collaboration, “Search for a standard-model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC”, *Eur. Phys. J. C* **73** (2013) 2469, doi:10.1140/epjc/s10052-013-2469-8, arXiv:1304.0213

[17] CMS Collaboration, “Search for the standard model Higgs boson in the $H \rightarrow ZZ \rightarrow 2\ell 2\nu$ channel in pp collisions at $\sqrt{s} = 7$ TeV”, *JHEP* **03** (2012) 040, doi:10.1007/JHEP03(2012)040

[18] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004, doi:10.1088/1748-0221/3/08/S08004

[19] N. Kauer, “Interference effects for $H \rightarrow WW/ZZ \rightarrow \ell\nu\ell\nu$ searches in gluon fusion at the LHC”, *JHEP* **12** (2013) 082, doi:10.1007/JHEP12(2013)082, arXiv:1310.7011

[20] J. M. Campbell and R. K. Ellis, “MCFM for the Tevatron and the LHC”, *Nucl. Phys. Proc. Suppl.* **205** (2010) 10, doi:10.1016/j.nuclphysbps.2010.08.011, arXiv:1007.3492

[21] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, “Parton distributions for the LHC”, *Eur. Phys. J. C* **63** (2009) 189, doi:10.1140/epjc/s10052-009-1072-5, arXiv:0901.0002

[22] M. Bonvini et al., “Signal-background interference effects in $gg \rightarrow H \rightarrow WW$ beyond leading order”, *Phys. Rev. D* **88** (2013) 034032, doi:10.1103/PhysRevD.88.034032, arXiv:1304.3053

[23] A. Ballestrero et al., “PHANTOM: a Monte Carlo event generator for six parton final states at high energy colliders”, *Comput. Phys. Commun.* **180** (2009) 401, doi:10.1016/j.cpc.2008.10.005, arXiv:0801.3359

[24] S. Frixione, P. Nason, and C. Oleari, “Matching NLO QCD computations with parton shower simulations: the POWHEG method”, *JHEP* **11** (2007) 070, doi:10.1088/1126-6708/2007/11/070, arXiv:0709.2092

[25] S. Alioli, P. Nason, C. Oleari, and E. Re, “A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX”, *JHEP* **06** (2010) 043, doi:10.1007/JHEP06(2010)043, arXiv:1002.2581

[26] E. Bagnaschi, G. Degrassi, P. Slavich, and A. Vicini, “Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM”, *JHEP* **02** (2012) 088, doi:10.1007/JHEP02(2012)088, arXiv:1111.2854

[27] P. Nason and C. Oleari, “NLO Higgs boson production via vector-boson fusion matched with shower in POWHEG”, *JHEP* **02** (2010) 037, doi:10.1007/JHEP02(2010)037, arXiv:0911.5299

[28] Y. Gao et al., “Spin determination of single-produced resonances at hadron colliders”, *Phys. Rev. D* **81** (2010) 075022, doi:10.1103/PhysRevD.81.075022, arXiv:1001.3398

[29] S. Bolognesi et al., “On the spin and parity of a single-produced resonance at the LHC”, *Phys. Rev. D* **86** (2012) 095031, doi:10.1103/PhysRevD.86.095031, arXiv:1208.4018
[30] T. Sjöstrand, S. Mrenna, and P. Skands, “PYTHIA 6.4 physics and manual”, *JHEP* **05** (2006) 026, [doi:10.1088/1126-6708/2006/05/026](https://doi.org/10.1088/1126-6708/2006/05/026), [arXiv:hep-ph/0603175](https://arxiv.org/abs/hep-ph/0603175).

[31] T. Melia, P. Nason, R. Rontsch, and G. Zanderighi, “W^+W^-, WZ and ZZ production in the POWHEG BOX”, *JHEP* **11** (2011) 078, [doi:10.1007/JHEP11(2011)078](https://doi.org/10.1007/JHEP11(2011)078), [arXiv:1107.5051](https://arxiv.org/abs/1107.5051).

[32] A. Bierweiler, T. Kasprzik, and J. H. Kühn, “Vector-boson pair production at the LHC to $O(\alpha^3)$ accuracy”, *JHEP* **12** (2013) 071, [doi:10.1007/JHEP12(2013)071](https://doi.org/10.1007/JHEP12(2013)071), [arXiv:1305.5402](https://arxiv.org/abs/1305.5402).

[33] J. Baglio, L. D. Ninh, and M. M. Weber, “Massive gauge boson pair production at LHC: a next-to-leading order story”, *Phys. Rev. D* **88** (2013) 113005, [doi:10.1103/PhysRevD.88.113005](https://doi.org/10.1103/PhysRevD.88.113005), [arXiv:1307.4331](https://arxiv.org/abs/1307.4331).

[34] D. De Florian, G. Ferrera, M. Grazzini, and D. Tommasini, “Higgs boson production at the LHC: transverse momentum resummation effects in the $H \rightarrow \gamma\gamma$, $H \rightarrow WW \rightarrow \ell\nu\ell\nu$ and $H \rightarrow ZZ \rightarrow 4\ell$ decay modes”, *JHEP* **06** (2012) 132, [doi:10.1007/JHEP06(2012)132](https://doi.org/10.1007/JHEP06(2012)132), [arXiv:1203.6321v1](https://arxiv.org/abs/1203.6321v1).

[35] GEANT4 Collaboration, “GEANT4—a simulation toolkit”, *Nucl. Instrum. Meth. A* **506** (2003) 250, [doi:10.1016/S0168-9002(03)01368-8](https://doi.org/10.1016/S0168-9002(03)01368-8).

[36] J. Allison et al., “GEANT4 developments and applications”, *IEEE Trans. Nucl. Sci.* **53** (2006) 270, [doi:10.1109/TNS.2006.869826](https://doi.org/10.1109/TNS.2006.869826).

[37] I. Anderson et al., “Constraining anomalous HVV interactions at proton and lepton colliders”, *Phys. Rev. D* **89** (2014) 035007, [doi:10.1103/PhysRevD.89.035007](https://doi.org/10.1103/PhysRevD.89.035007), [arXiv:1309.4819](https://arxiv.org/abs/1309.4819).

[38] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* **8** (2013) P04013, [doi:10.1088/1748-0221/8/04/P04013](https://doi.org/10.1088/1748-0221/8/04/P04013), [arXiv:1211.4462](https://arxiv.org/abs/1211.4462).

[39] M. Botje et al., “The PDF4LHC Working Group Interim Recommendations”, (2011), [arXiv:1101.0538](https://arxiv.org/abs/1101.0538).

[40] S. Alekhin et al., “The PDF4LHC Working Group Interim Report”, (2011), [arXiv:1101.0536](https://arxiv.org/abs/1101.0536).

[41] H.-L. Lai et al., “New parton distributions for collider physics”, *Phys. Rev. D* **82** (2010) 074024, [doi:10.1103/PhysRevD.82.074024](https://doi.org/10.1103/PhysRevD.82.074024), [arXiv:1007.2241](https://arxiv.org/abs/1007.2241).

[42] NNPDF Collaboration, “Impact of Heavy Quark Masses on Parton Distributions and LHC Phenomenology”, *Nucl. Phys. B* **849** (2011) 296, [doi:10.1016/j.nuclphysb.2011.03.021](https://doi.org/10.1016/j.nuclphysb.2011.03.021), [arXiv:1101.1300](https://arxiv.org/abs/1101.1300).

[43] J. S. Gainer et al., “Beyond Geolocating: Constraining Higher Dimensional Operators in $H \rightarrow 4\ell$ with Off-Shell Production and More”, (2014), [arXiv:1403.4951](https://arxiv.org/abs/1403.4951).

[44] C. Englert and M. Spannowsky, “Limitations and Opportunities of Off-Shell Coupling Measurements”, (2014), [arXiv:1405.0285](https://arxiv.org/abs/1405.0285).

[45] M. Ghezzi, G. Passarino, and S. Uccirati, “Bounding the Higgs Width Using Effective Field Theory”, (2014), [arXiv:1405.1925](https://arxiv.org/abs/1405.1925).
[46] ATLAS and CMS Collaborations, LHC Higgs Combination Group, “Procedure for the LHC Higgs boson search combination in Summer 2011”, Technical Report ATL-PHYS-PUB 2011-11, CMS NOTE 2011/005, 2011.

[47] G. J. Feldman and R. D. Cousins, “A unified approach to the classical statistical analysis of small signals”, *Phys. Rev. D* 57 (1998) 3873, doi:10.1103/PhysRevD.57.3873, arXiv:physics/9711021.
A The CMS Collaboration

Yerevan Physics Institute, Yerevan, Armenia
V. Khachatryan, A.M. Sirunyan, A. Tumasyan

Institut für Hochenergiephysik der OeAW, Wien, Austria
W. Adam, T. Bergauer, M. Dragicevic, J. Erö, C. Fabjan\(^1\), M. Friedl, R. Frühwirth\(^1\), V.M. Ghete, C. Hartl, N. Hörmann, J. Hrubec, M. Jeitler\(^1\), W. Kiesenhofer, V. Knünz, M. Krämer\(^1\), I. Krätschmer, D. Liko, I. Mikulec, D. Rabady\(^2\), B. Rahbaran, H. Rohringer, R. Schöfbeck, J. Strauss, A. Taurok, W. Treberer-Treberspurg, W. Waltenberger, C.-E. Wulz\(^3\)

National Centre for Particle and High Energy Physics, Minsk, Belarus
V. Mossolov, N. Shumeiko, J. Suarez Gonzalez

Universiteit Antwerpen, Antwerpen, Belgium
S. Alderweireldt, M. Bansal, S. Bansal, T. Cornelis, E.A. De Wolf, X. Janssen, A. Knutsson, S. Luyckx, S. Ochesanu, B. Roland, R. Rougny, M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel, A. Van Spilbeeck

Vrije Universiteit Brussel, Brussel, Belgium
F. Blekman, S. Blyweert, J. D'Hondt, N. Daci, N. Heracleous, J. Keaveney, S. Lowette, M. Maes, A. Olbrechts, Q. Python, D. Strom, S. Tavernier, W. Van Doninck, P. Van Mulders, G.P. Van Onsem, I. Villella

Université Libre de Bruxelles, Bruxelles, Belgium
C. Caillol, B. Clerbaux, G. De Lentdecker, D. Dobur, L. Favart, A.P.R. Gay, A. Grebenyuk, A. Léonard, A. Mohammadi, L. Perniè\(^3\), T. Reis, T. Seva, L. Thomas, C. Vander Velde, P. Vanlaer, J. Wang

Ghent University, Gent, Belgium
V. Adler, K. Beernaert, L. Benucci, A. Cimmino, S. Costantini, S. Cruy, S. Dildick, A. Fagot, G. Garcia, J. Mccartin, A.A. Ocampo Rios, D. Ryckbosch, S. Salva Diblen, M. Sigamani, N. Strobbe, F. Thyssen, M. Tytgat, E. Yazgan, N. Zaganidis

Université Catholique de Louvain, Louvain-la-Neuve, Belgium
S. Basegmez, C. Beluffi\(^3\), G. Bruno, R. Castello, A. Caudron, L. Cead, G.G. Da Silveira, C. Delaere, T. du Pree, D. Favart, L. Forthomme, A. Giammanco\(^4\), J. Hollar, P. Jez, M. Komm, V. Lemaitre, C. Nettens, D. Pagano, L. Perrini, A. Pin, K. Piotrzkowski, A. Popov\(^5\), L. Quertenmont, M. Selvaggi, M. Vidal Marono, J.M. Vizan Garcia

Université de Mons, Mons, Belgium
N. Beliy, T. Caebers, E. Daubie, G.H. Hammad

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil
W.L. Aldá Júnior, G.A. Alves, L. Brito, M. Correa Martins Junior, T. Dos Reis Martins, M.E. Pol

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
W. Carvalho, J. Chinellato\(^6\), A. Custódio, E.M. Da Costa, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, L. Mundim, H. Nogima, W.L. Prado Da Silva, J. Santaolalla, A. Santoro, A. Sznajder, E.J. Tonelli Manganote\(^6\), A. Vilela Pereira

Universidade Estadual Paulista \(^a\), Universidade Federal do ABC \(^b\), São Paulo, Brazil
C.A. Bernardes\(^b\), T.R. Fernandez Perez Tomei\(^a\), E.M. Gregores\(^b\), P.G. Mercadante\(^b\), S.F. Novaes\(^a\), Sandra S. Padula\(^a\)
Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria
A. Aleksandrov, V. Genchev², P. Iaydjiev, A. Marinov, S. Piperov, M. Rodozov, G. Sultanov, M. Vutova

University of Sofia, Sofia, Bulgaria
A. Dimitrov, I. Glushkov, R. Hadjiiska, V. Kozhuharov, L. Litov, B. Pavlov, P. Petkov

Institute of High Energy Physics, Beijing, China
J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, R. Du, C.H. Jiang, D. Liang, S. Liang, R. Plestina⁷, J. Tao, X. Wang, Z. Wang

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China
C. Asawatangtrakuldee, Y. Ban, Y. Guo, Q. Li, W. Li, S. Liu, Y. Mao, S.J. Qian, D. Wang, L. Zhang, W. Zou

Universidad de Los Andes, Bogota, Colombia
C. Avila, L.F. Chaparro Sierra, C. Florez, J.P. Gomez, B. Gomez Moreno, J.C. Sanabria

Technical University of Split, Split, Croatia
N. Godinovic, D. Lelas, D. Polic, I. Puljak

University of Split, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, K. Kadija, J. Luetic, D. Mekterovic, L. Sudic

University of Cyprus, Nicosia, Cyprus
A. Attikis, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis

Charles University, Prague, Czech Republic
M. Bodlak, M. Finger, M. Finger Jr.⁸

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt
Y. Assran⁹, A. Ellithi Kamel¹⁰, M.A. Mahmoud¹¹, A. Radi¹²,¹³

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
M. Kadastik, M. Murumaa, M. Raidal, A. Tiko

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, G. Fedi, M. Voutilainen

Helsinki Institute of Physics, Helsinki, Finland
J. Härkönen, V. Karimäki, R. Kinnunen, M.J. Kortelainen, T. Lampén, K. Lassila-Perini, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, T. Peltola, E. Tuominen, J. Tuominiemi, E. Tuovinen, L. Wendland

Lappeenranta University of Technology, Lappeenranta, Finland
T. Tuuva

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France
M. Besancon, F. Couderc, M. Dejardin, D. Denegri, B. Fabbro, J.L. Faure, C. Favaro, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, E. Locci, J. Malcles, J. Rander, A. Rosowsky, M. Titov
Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France
S. Baffioni, F. Beaudette, P. Busson, C. Charlot, T. Dahms, M. Dalchenko, L. Dobrzynski, N. Filipovic, A. Florent, R. Granier de Cassagnac, L. Mastrolorenzo, P. Miné, C. Mironov, I.N. Naranjo, M. Nguyen, C. Ochando, P. Paganini, R. Salerno, J.B. Sauvan, Y. Sirois, C. Veelken, Y. Yilmaz, A. Zabi

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
J.-L. Agram, J. Andrea, A. Aubin, D. Bloch, J.-M. Brom, E.C. Chabert, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, C. Goetzmann, A.-C. Le Bihan, P. Van Hove

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France
S. Gadrat

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France
S. Beauceron, N. Beaupere, G. Boudoul, E. Bouvier, S. Brochet, C.A. Carrillo Montoya, J. Chasserat, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fan, J. Fay, S. Gascon, M. Gouzevitch, B. Ille, T. Kurca, L. Letouzey, L. Mirabito, S. Perries, J.D. Ruiz Alvarez, D. Sabes, L. Sgandurra, V. Sordini, M. Vander Donckt, P. Verdier, S. Viret, H. Xiao

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia
Z. Tsamalaidze

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany
C. Autermann, S. Beranek, M. Bonenackels, M. Edelhoff, L. Feld, O. Hindrichs, K. Klein, A. Ostapchuk, A. Perieanu, F. Raupach, J. Sammet, S. Schael, H. Weber, B. Wittmer, V. Zhukov

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany
M. Ata, E. Dietz-Laursonn, D. Duchardt, M. Erdmann, R. Fischer, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, D. Klingebiel, S. Knutzen, P. Kreuzer, M. Merschmeyer, A. Meyer, P. Millet, M. Olschewski, K. Padelen, P. Papacz, H. Reithler, S.A. Schmitz, L. Sonnenschein, D. Teyssier, S. Thüer, M. Weber

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
V. Cherepanov, Y. Erdogan, G. Flügge, H. Geenen, M. Geisler, W. Haj Ahmad, F. Hoehle, B. Kargoll, T. Kress, Y. Kuessel, J. Lingemann, A. Nowack, I.M. Nugent, L. Perchalla, O. Pooth, A. Stahl

Deutsches Elektronen-Synchrotron, Hamburg, Germany
I. Asin, N. Bartosik, J. Behr, W. Behrenhoff, U. Behrens, A.J. Bell, M. Bergholz, A. Bethani, K. Borras, A. Burgmeier, A. Cakir, L. Calligaris, A. Campbell, S. Choudhury, F. Costanza, C. Diez Pardos, S. Dooling, T. Dorland, G. Eckerlin, D. Eckstein, T. Eichhorn, G. Flucke, J. Garay Garcia, A. Geiser, P. Gunnellini, J. Hauk, G. Hellwig, M. Hempel, D. Horton, H. Jung, A. Kalogeropoulos, M. Kasemann, P. Katsas, J. Kieseler, C. Kleinwort, D. Krücker, W. Lange, J. Leonard, K. Lipka, A. Lobanov, W. Lohmann, B. Lutz, R. Mankel, I. Marfin, I.-A. Melzer-Pellmann, A.B. Meyer, J. Mnich, A. Mussgiller, S. Naumann-Emme, A. Nayak, O. Novgorodova, F. Nowak, E. Ntomari, H. Perrey, D. Pitzl, R. Placakyte, A. Raspereza, P.M. Ribeiro Cipriano, E. Ron, M.O. Sahin, J. Salfeld-Nebgen, P. Saxena, R. Schmidt, T. Schoerner-Sadenius, M. Schröder, C. Seitz, S. Spannagel, A.D.R. Vargas Trevino, R. Walsh, C. Wissing
University of Hamburg, Hamburg, Germany
M. Aldaya Martin, V.Blobel, M. Centis Vignali, A.r. Draeger, J. Erfle, E. Garutti, K. Goebel, M. Görner, J. Haller, M. Hoffmann, R.S. Höing, H. Kirschenmann, R. Klanner, R. Kogler, J. Lange, T. Lapsien, T. Lenz, I. Marchesini, J. Ott, T. Peiffer, N. Pietsch, T. Pöhlsen, D. Rathjens, C. Sander, H. Schettler, P. Schleper, E. Schlieckau, A. Schmidt, M. Seidel, J. Sibiel16, V. Sola, H. Stadie, G. Steinbrück, D. Troendle, E. Usai, L. Vanelderen

Institut für Experimentelle Kernphysik, Karlsruhe, Germany
C. Barth, C. Baus, J. Berger, C. Böser, E. Butz, T. Chwalek, W. De Boer, A. Descroix, A. Dierlamm, M. Feindt, F. French, M. Giffels, F. Hartmann, T. Hauth, U. Husemann, I. Katkov, A. Kornmayer, E. Kuznetsova, P. Lobelle Pardo, M.U. Mozer, Th. Müller, A. Nürnberg, G. Quast, K. Rabbertz, F. Ratnikov, S. Röcker, H.J. Simonis, F.M. Stober, R. Ulrich, J. Wagner-Kuhr, S. Wayand, S. Weiler, R. Wolf

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece
G. Anagnostou, G. Daskalakis, T. Geralis, V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, A. Markou, C. Markou, A. Psallidas, I. Topsis-Giotis

University of Athens, Athens, Greece
A. Panagiotou, N. Saoulidou, E. Stiliaris

University of Ioánnina, Ioánnina, Greece
X. Aslanoglou, I. Evangelou, G. Flouris, C. Foudas, P. Kokkas, N. Manthos, I. Papadopoulos, E. Paradas

Wigner Research Centre for Physics, Budapest, Hungary
G. Bencze, C. Hajdu, P. Hidas, D. Horvath, F. Sikler, V. Veszpremi, G. Vesztergombi, A.J. Zsigmond

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
N. Beni, S. Czellar, J. Karancsi, J. Molnar, J. Palinkas, Z. Szillasi

University of Debrecen, Debrecen, Hungary
P. Raics, Z.L. Trocsanyi, B. Ujvari

National Institute of Science Education and Research, Bhubaneswar, India
S.K. Swain

Panjab University, Chandigarh, India
S.B. Beri, V. Bhatnagar, N. Dhingra, R. Gupta, U. Bhawandeep, A.K. Kalsi, M. Kaur, M. Mittal, N. Nishu, J.B. Singh

University of Delhi, Delhi, India
Ashok Kumar, Arun Kumar, S. Ahuja, A. Bhardwaj, B.C. Choudhary, A. Kumar, S. Malhotra, M. Naimuddin, K. Ranjan, V. Sharma

Saha Institute of Nuclear Physics, Kolkata, India
S. Banerjee, S. Bhattacharya, K. Chatterjee, S. Dutta, B. Gomber, Sa. Jain, Sh. Jain, R. Khurana, A. Modak, S. Mukherjee, D. Roy, S. Sarkar, M. Sharan

Bhabha Atomic Research Centre, Mumbai, India
A. Abdulsalam, D. Dutta, S. Kailas, V. Kumar, A.K. Mohanty, L.M. Pant, P. Shukla, A. Topkar

Tata Institute of Fundamental Research - EHEP, Mumbai, India
T. Aziz, S. Bhowmik, R.M. Chatterjee, S. Ganguly, S. Ghosh, M. Guchait, A. Gurtu, G. Kole,
S. Kumar, M. Maity20, G. Majumder, K. Mazumdar, G.B. Mohanty, B. Parida, K. Sudhakar, N. Wickramage23

Tata Institute of Fundamental Research - HECR, Mumbai, India
S. Banerjee, R.K. Dewanjee, S. Dugad

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
H. Bakhshiansohi, H. Behnamian, S.M. Etesami24, A. Fahim25, R. Goldouzian, A. Jafari, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, S. Paktinat Mehdiabadi, B. Safarzadeh26, M. Zeinali

University College Dublin, Dublin, Ireland
M. Felcini, M. Grunewald

INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa, b, L. Barborea, b, C. Calabriaa, b, S.S. Chhibraa, b, A. Colaleoa, D. Creanzaa, c, N. De Filippisa, c, M. De Palmaa, b, L. Fiorea, G. Iasellia, c, G. Maggia, c, M. Maggia, S. Mya, c, S. Nuzzoa, b, A. Pompilia, b, G. Pugliesea, c, R. Radognaa, b, 2, G. Selvaggia, b, L. Silvestrisa, 2, G. Singha, b, R. Venditi, b, P. Verwilligena, G. Zitoa

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
G. Abbiendia, A.C. Benvenutia, D. Bonacorsia, b, S. Braibant-Giacomellia, b, L. Brigliadoria, b, R. Campaninia, b, P. Capiluppia, b, A. Castrob, F.R. Cavalloa, G. Codispotia, b, M. Cuffiania, b, G.M. Dallavallea, F. Fabbri, a, A. Fanfania, b, D. Fasanellaa, b, P. Giacomellia, C. Grandia, L. Guiduccia, b, S. Marcellinia, G. Masettia, 2, A. Montanaria, F.L. Navarriaa, b, A. Perrottaa, F. Primaveraa, b, A.M. Rossia, b, T. Rovellia, b, G.P. Siriolia, b, N. Tosia, b, R. Travaglinia, b

INFN Sezione di Catania a, Università di Catania b, CSFNSM c, Catania, Italy
S. Albergoa, b, G. Cappelloa, M. Chiorbolia, b, S. Costaa, b, F. Giordanoa, 2, R. Potenzaa, b, A. Tricomia, b, C. Tuvea, b

INFN Sezione di Firenze a, Università di Firenze b, Firenze, Italy
G. Barbaglia, V. Ciullia, b, C. Cividinia, R. D’Alessandroa, b, E. Focardia, b, E. Galloa, S. Gonzia, b, V. Goria, b, 2, P. Lenzia, b, M. Meschinia, S. Paolettia, G. Sguazzonia, A. Tropianoa, b

INFN Laboratori Nazionali di Frascati, Frascati, Italy
L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Sezione di Genova a, Università di Genova b, Genova, Italy
F. Ferroa, M. Lo Veterea, b, E. Robuttia, S. Tosia, b

INFN Sezione di Milano-Bicocca a, Università di Milano-Bicocca b, Milano, Italy
M.E. Dinardoa, b, S. Fiorea, b, 2, S. Gennaia, 2, R. Gerosaa, A. Ghezzia, b, P. Govonia, b, M.T. Lucchinia, b, 2, S. Malvezzia, R.A. Manzonia, b, A. Martellia, b, B. Marzocchi, D. Menascea, L. Moronia, M. Paganonia, b, D. Pedrinia, S. Ragazzia, b, N. Redaellia, T. Tabarelli de Fatisa, b

INFN Sezione di Napoli a, Università di Napoli ‘Federico II’ b, Università della Basilicata (Potenza) c, Università G. Marconi (Roma) d, Napoli, Italy
S. Buontempoa, N. Cavalloa, c, 2, S. Di Guidaa, d, 2, F. Fabozzia, c, A.O.M. Iorioa, b, L. Listaa, S. Meolaa, d, 2, M. Merolaa, P. Paoluccia, 2

INFN Sezione di Padova a, Università di Padova b, Università di Trento (Trento) c, Padova, Italy
P. Azzia, N. Bacchettaa, D. Biselloa, b, A. Brancaa, b, R. Carlina, b, P. Checchiaa, M. Dall’Ossoa, b, T. Dorigoa, U. Dossellia, M. Galantia, b, F. Gasparinia, b, U. Gasparinia, b, P. Giubilatoa, b,
A. Gozzelinoa, K. Kanishchcheva,b, S. Lacapraraa, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b, F. Simonettoa,b, E. Torassaa, M. Tosia,b, P. Zottoa,b, A. Zucchettaa,b, G. Zumerlea,b

\textbf{INFN Sezione di Pavia} a, \textbf{Università di Pavia} b, \textbf{Pavia, Italy}
M. Gabusia,b, S.P. Rattia,b, C. Riccardia,b, P. Salvinia,b, P. Vituloa,b

\textbf{INFN Sezione di Perugia} a, \textbf{Università di Perugia} b, \textbf{Perugia, Italy}
M. Biasinia,b, G.M. Bileia, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, G. Mantovania,b, M. Menichellia, F. Romeoa,b, A. Sahaa, A. Santocchiaa,b, A. Spieziaa,b,2

\textbf{INFN Sezione di Pisa} a, \textbf{Università di Pisa} b, \textbf{Scuola Normale Superiore di Pisa} c, \textbf{Pisa, Italy}
K. Androsova,27, P. Azzurria, G. Bagliesia, J. Bernardinia, T. Boccalia, G. Broccoloa,c, R. Castaldia, M.A. Cioccia,27, R. Dell’Orsoa, S. Donatoa,c, F. Fioria,c, L. Foàa,c, A. Giassia, M.T. Grippoa,27, F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, C.S. Moona,28, F. Pallaa,2, A. Rizzia,b, A. Savoy-Navarroa,29, A.T. Serbana, P. Spagnoloa, P. Squillaciotia, R. Tencinia, G. Tonellia,b, A. Venturia, P.G. Virdinia, C. Vvernieria,b,c,2

\textbf{INFN Sezione di Roma} a, \textbf{Università di Roma} b, \textbf{Roma, Italy}
L. Baronea,b, F. Cavallaria, G. D’Imperioa,b, D. Del Rea,b, M. Diemoza, M. Grassia,b, C. Jordaa, E. Longoa,b, F. Margarolia,b, P. Meridiania, F. Michelia,b,2, S. Nourbakhsha,b, G. Organtinia,b, R. Paramattia, S. Rahatloua,b,c, C. Rovellia, F. Santanastasioa,b, L. Soffia,b,2, P. Traczyka,b

\textbf{INFN Sezione di Torino} a, \textbf{Università di Torino} b, \textbf{Università del Piemonte Orientale (Novara)} c, \textbf{Torino, Italy}
N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b,2, M. Arneodoa,c, R. Bellana,b, C. Biinoa, N. Cartigliaa, S. Casassoa,b,2, M. Costaa,b, A. Deganoa,b, N. Demariaa, L. Fincoa,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, M. Musicha, M.M. Obertinoa,c,2, G. Ortonaa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Potenzaa,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, A. Solanoa,b, A. Staianoa, U. Tamponia

\textbf{INFN Sezione di Trieste} a, \textbf{Università di Trieste} b, \textbf{Trieste, Italy}
S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, G. Della Riccaa,b, B. Gobboa, C. La Licataa,b, M. Maronea,b, D. Montaninoa,b, A. Schizzia,b,2, T. Umera,b,2, A. Zanettia

Chonbuk National University, Chonju, Korea
T.J. Kim

Kangwon National University, Chunchon, Korea
S. Chang, A. Kropivnitskaya, S.K. Nam

Kyoungpook National University, Daegu, Korea
D.H. Kim, G.N. Kim, M.S. Kim, D.J. Kong, S. Lee, Y.D. Oh, H. Park, A. Sakharov, D.C. Son

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
J.Y. Kim, S. Song

Korea University, Seoul, Korea
S. Choi, D. Gyun, B. Hong, M. Jo, H. Kim, Y. Kim, B. Lee, K.S. Lee, S.K. Park, Y. Roh

University of Seoul, Seoul, Korea
M. Choi, J.H. Kim, I.C. Park, S. Park, G. Ryu, M.S. Ryu

Sungkyunkwan University, Suwon, Korea
Y. Choi, Y.K. Choi, J. Goh, D. Kim, E. Kwon, J. Lee, H. Seo, I. Yu
Vilnius University, Vilnius, Lithuania
A. Juodagalvis

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia
J.R. Komaragiri, M.A.B. Md Ali

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico
H. Castilla-Valdez, E. De La Cruz-Burelo, I. Heredia-de La Cruz, R. Lopez-Fernandez, A. Sanchez-Hernandez

Universidad Iberoamericana, Mexico City, Mexico
S. Carrillo Moreno, F. Vazquez Valencia

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico
I. Pedraza, H.A. Salazar Ibarguen

Universidad Autonoma de San Luis Potosi, San Luis Potosi, Mexico
E. Casimiro Linares, A. Morelos Pineda

University of Auckland, Auckland, New Zealand
D. Krofcheck

University of Canterbury, Christchurch, New Zealand
P.H. Butler, S. Reucroft

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan
A. Ahmad, M. Ahmad, Q. Hassan, H.R. Hoorani, S. Khalid, W.A. Khan, T. Khurshid, M.A. Shah, M. Shaib

National Centre for Nuclear Research, Swierk, Poland
H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, K. Nawrocki, K. Romanowska-Rybinska, M. Szleper, P. Zalewski

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
G. Brona, K. Bunkowski, M. Cwiok, W. Dominik, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Miura, M. Olszewski, W. Wolszczak

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal
P. Bargassa, C. Beirão Da Cruz E Silva, P. Faccioli, P.G. Ferreira Parracho, M. Gallinaro, F. Nguyen, J. Rodrigues Antunes, J. Seixas, J. Varela, P. Vischia

Joint Institute for Nuclear Research, Dubna, Russia
S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavin, V. Konoplyanikov, A. Lanev, A. Malakhov, V. Matveev, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, N. Skatchkov, V. Smirnov, A. Zarubin

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia
V. Golovtsov, Y. Ivanov, V. Kim, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev, An. Vorobyev

Institute for Nuclear Research, Moscow, Russia
Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Tlisov, A. Toropin

Institute for Theoretical and Experimental Physics, Moscow, Russia
V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, G. Safronov, S. Semenov, A. Spiridonov, V. Stolin, E. Vlasov, A. Zhokin
P.N. Lebedev Physical Institute, Moscow, Russia
V. Andreev, M. Azarkin, I. Dremin, M. Kirakosyan, A. Leonidov, G. Mesyats, S.V. Rusakov, A. Vinogradov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
A. Belyaev, E. Boos, V. Bunichev, M. Dubinin, L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin, O. Kodolova, I. Lokhtin, S. Obraztsov, S. Petrushanko, V. Savrin

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, V. Kachanov, A. Kalinin, D. Konstantinov, V. Krychkine, V. Petrov, R. Ryutin, A. Sobol, L. Tourtchanovitch, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
P. Adzic, M. Ekmedzic, J. Milosevic, V. Rekovic

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
J. Alcaraz Maestre, C. Battilana, E. Calvo, M. Cerrada, M. Chamizo Llatas, N. Colino, B. De La Cruz, A. Delgado Peris, D. Domínguez Vázquez, A. Escalante Del Valle, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, P. Garcia-Abia, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, G. Merino, E. Navarro De Martino, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, A. Quintario Olmeda, I. Redondo, L. Romero, M.S. Soares

Universidad Autónoma de Madrid, Madrid, Spain
C. Albajar, J.F. de Trocóniz, M. Missiroli, D. Moran

Universidad de Oviedo, Oviedo, Spain
H. Brun, J. Cuevas, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, L. Lloret Iglesias

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain
J.A. Brochero Cifuentes, I.J. Cabrillo, A. Calderon, J. Duarte Campderros, M. Fernandez, G. Gomez, A. Graziano, A. Lopez Virto, J. Marco, R. Marco, C. Martinez Rivero, F. Matorras, F.J. Munoz Sanchez, J. Piedra Gomez, T. Rodrigo, A.Y. Rodríguez-Marrero, A. Ruiz-Jimeno, L. Scodellaro, I. Vila, R. Vilar Cortabitarte

CERN, European Organization for Nuclear Research, Geneva, Switzerland
D. Abbaneo, E. Auffray, G. Auzinger, M. Bachtis, P. Baillon, A.H. Ball, D. Barney, A. Benaglia, J. Bendavid, L. Benhabib, J.F. Benitez, C. Bernet, G. Bianchi, P. Bloch, A. Bocci, A. Bonato, O. Bondu, C. Botti, H. Breuker, T. Camporesi, G. Cerminara, S. Colafranceschi, M. D’Alfonso, D. d’Enterria, A. Dabrowski, A. David, F. De Guio, A. De Roeck, S. De Visscher, M. Dobson, M. Dordevic, N. Dupont-Sagorin, A. Elliott-Peisert, J. Eugster, G. Franzoni, W. Funk, D. Gigi, K. Gill, D. Giordano, M. Girone, F. Glege, R. Guida, S. Gundacker, M. Guthoff, J. Hammer, M. Hansen, P. Harris, J. Hegeman, V. Innocente, P. Janot, K. Kousouris, K. Krajczar, P. Lecoq, C. Lourenço, N. Magini, L. Malgeri, M. Mannelli, J. Marrouche, L. Masetti, F. Meijers, S. Mersi, E. Meschi, F. Moortgat, S. Morovic, M. Mulders, P. Musella, L. Orsini, L. Pape, E. Perez, L. Perrozzi, A. Petrilli, G. Petracciani, A. Pfeiffer, M. Pierini, M. Pimià, D. Piparo, M. Plagge, A. Racz, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwik, A. Sharma, P. Siegrist, P. Silva, M. Simon, P. Sphicas, D. Spiga, J. Steggemann, B. Stieger, M. Stoye, D. Treille, A. Tsirou, G.I. Veres, J.R. Vlimant, N. Wardle, H.K. Wöhri, H. Wollny, W.D. Zeuner
Paul Scherrer Institut, Villigen, Switzerland
W. Bertl, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, D. Renker, T. Rohe

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland
F. Bachmair, L. Bäni, L. Bianchini, P. Bortignon, M.A. Buchmann, B. Casal, N. Chanon, A. Deisher, G. Dissertori, M. Dittmar, M. Donegà, M. Dünser, P. Eller, C. Grab, D. Hits, W. Lustermann, B. Mangano, A.C. Marini, P. Martinez Ruiz del Arbol, D. Meister, N. Mohr, C. Nägele39, F. Nessi-Tedaldi, F. Pandolfi, F. Pauss, M. Peruzzi, M. Quittnat, L. Rebane, M. Rossini, A. Starodumov40, M. Takahashi, K. Theofilatos, R. Wallny, H.A. Weber

Universität Zürich, Zurich, Switzerland
C. Amsler41, M.F. Canelli, V. Chiochia, A. De Cosa, A. Hinzmann, T. Hreus, B. Kilminster, C. Lange, B. Millan Mejias, J. Ngadiuba, P. Robmann, F.J. Ronga, S. Taroni, M. Verzetti, Y. Yang

National Central University, Chung-Li, Taiwan
M. Cardaci, K.H. Chen, C. Ferro, C.M. Kuo, W. Lin, Y.J. Lu, R. Volpe, S.S. Yu

National Taiwan University (NTU), Taipei, Taiwan
P. Chang, Y.H. Chang, Y.W. Chang, Y. Chao, K.F. Chen, P.H. Chen, C. Dietz, U. Grundler, W.-S. Hou, K.Y. Kao, Y.J. Lei, Y.F. Liu, R.-S. Lu, D. Majumder, E. Petrakou, Y.M. Tzeng, R. Wilken

Chulalongkorn University, Bangkok, Thailand
B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Cukurova University, Adana, Turkey
A. Adiguzel, M.N. Bakirci42, S. Cerci43, C. Dozen, I. Dumanoglu, E. Eskut, S. Girgis, G. Gokbulut, E. Gurpinar, I. Hos, E.E. Kangal, A. Kayis Topaksu, G. Onengut44, K. Ozdemir, S. Ozturk42, A. Polatoz, K. Sogut45, D. Sunar Cerci43, B. Tali43, H. Topakli42, M. Vergili

Middle East Technical University, Physics Department, Ankara, Turkey
I.V. Akin, B. Bilin, S. Bilmis, H. Gamsizkan, G. Karapinar46, K. Ocalan, S. Sekmen, U.E. Surat, M. Yalvac, M. Zeyrek

Bogazici University, Istanbul, Turkey
E. Gülmez, B. Isildak47, M. Kaya48, O. Kaya49

Istanbul Technical University, Istanbul, Turkey
H. Bahtiyar50, E. Barlas, K. Cankocak, F.I. Vardarli, M. Yücel

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine
L. Levchuk, P. Sorokin

University of Bristol, Bristol, United Kingdom
J.J. Brooke, E. Clement, D. Cussans, H. Flacher, R. Frazier, J. Goldstein, M. Grimes, G.P. Heath, H.F. Heath, J. Jacob, L. Kreczko, C. Lucas, Z. Meng, D.M. Newbold51, S. Paramesvaran, A. Poll, S. Senkin, V.J. Smith, T. Williams

Rutherford Appleton Laboratory, Didcot, United Kingdom
K.W. Bell, A. Belyaev52, C. Brew, R.M. Brown, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, W.J. Womersley, S.D. Worm

Imperial College, London, United Kingdom
M. Baber, R. Bainbridge, O. Buchmuller, D. Burton, D. Colling, N. Cripps, M. Cutajar, P. Dauncey, G. Davies, M. Della Negra, P. Dunne, W. Ferguson, J. Fulcher, D. Futyana, A. Gilbert,
G. Hall, G. Iles, M. Jarvis, G. Karapostoli, M. Kenzie, R. Lane, R. Lucas, L. Lyons, A.-M. Magnan, S. Malik, B. Mathias, J. Nash, A. Nikitenko, J. Pela, M. Pesaresi, K. Petridis, D.M. Raymond, S. Rogerson, A. Rose, C. Seez, P. Sharp, A. Tapper, M. Vazquez Acosta, T. Virdee

Brunel University, Uxbridge, United Kingdom
J.E. Cole, P.R. Hobson, A. Khan, P. Kyberd, D. Leggat, D. Leslie, W. Martin, I.D. Reid, P. Symonds, L. Teodorescu, M. Turner

Baylor University, Waco, USA
J. Dittmann, K. Hatakeyama, A. Kasmi, H. Liu, T. Scarborough

The University of Alabama, Tuscaloosa, USA
O. Charaf, S.I. Cooper, C. Henderson, P. Rumerio

Boston University, Boston, USA
A. Avetisyan, T. Bose, C. Fantasia, A. Heister, P. Lawson, C. Richardson, J. Rohlf, D. Sperka, J. St. John, L. Sulak

Brown University, Providence, USA
J. Alimena, E. Berry, S. Bhattacharya, G. Christopher, D. Cutts, Z. Demiragli, A. Ferapontov, A. Garabedian, U. Heintz, G. Kukartsev, E. Laird, G. Landsberg, M. Luk, M. Narain, M. Segala, T. Sintuprasith, T. Speer, J. Swanson

University of California, Davis, Davis, USA
R. Breedon, G. Breto, M. Calderon De La Barca Sanchez, S. Chauhan, M. Chertok, J. Conway, R. Conway, P.T. Cox, R. Erbacher, M. Gardner, W. Ko, R. Lander, T. Miceli, M. Mulhearn, D. Pellett, J. Pilot, F. Ricci-Tam, M. Searle, S. Shalhout, J. Smith, M. Squires, D. Stolp, M. Tripathi, S. Wilbur, R. Yohay

University of California, Los Angeles, USA
R. Cousins, P. Everaerts, C. Farrell, J. Hauser, M. Ignatenko, G. Rakness, E. Takasugi, V. Valuev, M. Weber

University of California, Riverside, Riverside, USA
J. Babb, K. Burt, R. Clare, J. Ellison, J.W. Gary, G. Hanson, J. Heilman, M. Ivova Rikova, P. Jandir, E. Kennedy, F. Lacroix, H. Liu, O.R. Long, A. Luthra, M. Malberti, H. Nguyen, M. Olmedo Negrete, A. Shrinivas, S. Sumowidagdo, S. Wimpenny

University of California, San Diego, La Jolla, USA
W. Andrews, J.G. Branson, G.B. Cerati, S. Cittolin, R.T. D’Agnolo, D. Evans, A. Holzner, R. Kelley, D. Klein, D. Kovalskyi, M. Lebourgeois, J. Letts, I. Macneill, D. Olivito, S. Padhi, C. Palmer, M. Pieri, M. Sani, V. Sharma, S. Simon, E. Sudano, Y. Tu, A. Vartak, C. Welke, F. Würthwein, A. Yagil, J. Yoo

University of California, Santa Barbara, Santa Barbara, USA
D. Barge, J. Bradmiller-Feld, C. Campagnari, T. Danielson, A. Dishaw, K. Flowers, M. Franco Sevilla, P. Geffert, C. George, F. Golf, L. Gouskos, J. Incandela, C. Justus, N. Mccoll, J. Richman, D. Stuart, W. To, C. West

California Institute of Technology, Pasadena, USA
A. Apresyan, A. Bornheim, J. Bunn, Y. Chen, E. Di Marco, J. Duarte, A. Mott, H.B. Newman, C. Pena, C. Rogan, M. Spiropulu, V. Timciuc, R. Wilkinson, S. Xie, R.Y. Zhu
Carnegie Mellon University, Pittsburgh, USA
V. Azzolini, A. Calamba, T. Ferguson, Y. Iiyama, M. Paulini, J. Russ, H. Vogel, I. Vorobiev

University of Colorado at Boulder, Boulder, USA
J.P. Cumalat, W.T. Ford, A. Gaz, E. Luiggi Lopez, U. Nauenberg, J.G. Smith, K. Stenson, K.A. Ulmer, S.R. Wagner

Cornell University, Ithaca, USA
J. Alexander, A. Chatterjee, J. Chu, S. Dittmer, N. Eggert, N. Mirman, G. Nicolas Kaufman, J.R. Patterson, A. Ryd, E. Salvati, L. Skinnari, W. Sun, W.D. Teo, J. Thom, J. Thompson, J. Tucker, Y. Weng, L. Winstrom, P. Wittich

Fairfield University, Fairfield, USA
D. Winn

Fermi National Accelerator Laboratory, Batavia, USA
S. Abdullin, M. Albrow, J. Anderson, G. Apollinari, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, H.W.K. Cheung, F. Chlebana, S. Cihangir, V.D. Elvira, I. Fisk, J. Freeman, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, D. Hare, R.M. Harris, J. Hirschauer, B. Hooberman, S. Jindariani, M. Johnson, U. Joshi, K. Kaadze, B. Klima, B. Kreis, S. Kwan, J. Linacre, D. Lincoln, R. Lipton, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, V.I. Martinez Outsochorn, S. Maruyama, D. Mason, P. McBride, K. Mishra, S. Mrenna, Y. Musienko, S. Nahn, C. Newman-Holmes, V. O’Dell, O. Prokofyev, E. Sexton-Kennedy, S. Sharma, A. Soha, W.J. Spalding, L. Spiegel, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, R. Vidal, A. Whitbeck, J. Whitmore, F. Yang

University of Florida, Gainesville, USA
D. Acosta, P. Avery, D. Bourilkov, M. Carver, T. Cheng, D. Curry, S. Das, M. De Gruttola, G.P. Di Giovanni, R.D. Field, M. Fisher, I.K. Furic, J. Hugon, J. Konigsberg, A. Korytov, T. Kypreos, J.F. Low, K. Matchev, P. Milenovic, G. Mitselmakher, L. Muniz, A. Rinkevicius, L. Shchutska, N. Skhirtladze, M. Snowball, J. Yelton, M. Zakaria

Florida International University, Miami, USA
S. Hewamanage, S. Linn, P. Markowitz, G. Martinez, J.L. Rodriguez

Florida State University, Tallahassee, USA
T. Adams, A. Askew, J. Bochenek, B. Diamond, J. Haas, S. Hagopian, V. Hagopian, K.F. Johnson, H. Prosper, V. Veeraraghavan, M. Weinberg

Florida Institute of Technology, Melbourne, USA
M.M. Baarmand, M. Hohlmann, H. Kalakhety, F. Yumiceva

University of Illinois at Chicago (UIC), Chicago, USA
M.R. Adams, L. Apanasevich, V.E. Bazterra, D. Berry, R.R. Betts, I. Bucinskaite, R. Cavanaugh, O. Evdokimov, L. Gauthier, C.E. Gerber, D.J. Hofman, S. Khalatyan, P. Kurt, D.H. Moon, C. O’Brien, C. Silkworth, P. Turner, N. Varelas

The University of Iowa, Iowa City, USA
E.A. Albayrak, B. Bilki, W. Clarida, K. Dilsiz, F. Duru, M. Haytmyradov, J.-P. Merlo, H. Mermerkaya, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, R. Rahmat, S. Sen, P. Tan, E. Tiras, J. Wetzel, T. Yetkin, K. Yi

Johns Hopkins University, Baltimore, USA
I. Anderson, B.A. Barnett, B. Blumenfeld, S. Bolognesi, D. Fehling, A.V. Gritsan, P. Maksimovic, C. Martin, U. Sarica, M. Swartz, M. Xiao
The University of Kansas, Lawrence, USA
P. Baringer, A. Bean, G. Benelli, C. Bruner, J. Gray, R.P. Kenny III, M. Malek, M. Murray, D. Noonan, S. Sanders, J. Sekaric, R. Stringer, Q. Wang, J.S. Wood

Kansas State University, Manhattan, USA
A.F. Barfuss, I. Chakaberia, A. Ivanov, S. Khalil, M. Makouski, Y. Maravin, L.K. Saini, S. Shrestha, I. Svintradze

Lawrence Livermore National Laboratory, Livermore, USA
J. Gronberg, D. Lange, F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, B. Calvert, S.C. Eno, J.A. Gomez, N.J. Hadley, R.G. Kellogg, T. Kolberg, Y. Lu, M. Marionneau, A.C. Mignerey, K. Pedro, A. Skuja, M.B. Tonjes, S.C. Tonwar

Massachusetts Institute of Technology, Cambridge, USA
A. Apyan, R. Barbieri, G. Bauer, W. Busza, I.A. Cali, M. Chan, L. Di Matteo, V. Dutta, G. Gomez Ceballos, M. Goncharov, D. Gulhan, M. Klute, Y.S. Lai, Y.-J. Lee, A. Levin, P.D. Luckey, T. Ma, C. Paus, D. Ralph, C. Roland, G. Roland, G.S.F. Stephans, F. Stöckli, K. Sumorok, D. Velicanu, J. Veverka, B. Wyslouch, M. Yang, M. Zanetti, V. Zhukova

University of Minnesota, Minneapolis, USA
B. Dahmes, A. Gude, S.C. Kao, K. Klapoetke, Y. Kubota, J. Mans, N. Pastika, R. Rusack, A. Singovsky, N. Tambe, J. Turkewitz

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
E. Avdeeva, K. Bloom, S. Bose, D.R. Claes, A. Dominguez, R. Gonzalez Suarez, J. Keller, D. Knowlton, I. Kravchenko, J. Lazo-Flores, S. Malik, F. Meier, G.R. Snow

State University of New York at Buffalo, Buffalo, USA
J. Dolen, A. Godshalk, I. Iashvili, A. Kharchilava, A. Kumar, S. Rappoccio

Northeastern University, Boston, USA
G. Alverson, E. Barberis, D. Baumgartel, M. Chasco, J. Haley, A. Massironi, D.M. Morse, D. Nash, T. Orimoto, D. Trocino, R.j. Wang, D. Wood, J. Zhang

Northwestern University, Evanston, USA
K.A. Hahn, A. Kubik, N. Mucia, N. Odell, B. Pollack, A. Pozdnyakov, M. Schmitt, S. Stoynev, K. Sung, M. Velasco, S. Won

University of Notre Dame, Notre Dame, USA
A. Brinkerhoff, K.M. Chan, A. Drozdetskiy, M. Hildreth, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Luo, S. Lynch, N. Marinelli, T. Pearson, R. Ruchti, N. Valls, M. Wayne, M. Wolf, A. Woodard

The Ohio State University, Columbus, USA
L. Antonelli, J. Brinson, B. Bylsma, L.S. Durkin, S. Flowers, C. Hill, R. Hughes, K. Kotov, T.Y. Ling, D. Puigh, M. Rodenburg, G. Smith, B.L. Winer, H. Wolfe, H.W. Wulsin

Princeton University, Princeton, USA
O. Driga, P. Elmer, P. Hebda, A. Hunt, S.A. Koay, P. Lujan, D. Marlow, T. Medvedeva, M. Mooney, J. Olsen, P. Piroué, X. Quan, H. Saka, D. Stickland^{2}, C. Tully, J.S. Werner, S.C. Zenz, A. Zuranski
University of Puerto Rico, Mayaguez, USA
E. Brownson, H. Mendez, J.E. Ramirez Vargas

Purdue University, West Lafayette, USA
E. Alagöz, V.E. Barnes, D. Benedetti, G. Bolla, D. Bortoletto, M. De Mattia, Z. Hu, M.K. Jha, M. Jones, K. Jung, M. Kress, N. Leonardo, D. Lopes Pegna, V. Maroussov, P. Merkel, D.H. Miller, N. Neumeister, B.C. Radburn-Smith, X. Shi, I. Shipsey, D. Silvers, A. Svyatkovskiy, F. Wang, W. Xie, L. Xu, H.D. Yoo, J. Zabolocki, Y. Zheng

Purdue University Calumet, Hammond, USA
N. Parashar, J. Stupak

Rice University, Houston, USA
A. Adair, B. Akgun, K.M. Ecklund, F.J.M. Geurts, W. Li, B. Michlin, B.P. Padley, R. Redjimi, J. Roberts, J. Zabel

University of Rochester, Rochester, USA
B. Betchart, A. Bodek, R. Covarelli, P. de Barbaro, R. Demina, Y. Eshaq, T. Ferbel, A. Garcia-Bellido, P. Goldenzwieg, J. Han, A. Harel, A. Khukhunaishvili, G. Petrillo, D. Vishnevskiy

The Rockefeller University, New York, USA
R. Ciesielski, L. Demortier, K. Goulianos, G. Lungu, C. Mesropian

Rutgers, The State University of New Jersey, Piscataway, USA
S. Arora, A. Barker, J.P. Chou, C. Contreras-Campana, E. Contreras-Campana, D. Duggan, D. Ferencek, Y. Gershtein, R. Gray, E. Halkiadakis, D. Hidas, A. Lath, S. Panwalkar, M. Park, R. Patel, S. Salur, S. Schnetzer, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

University of Tennessee, Knoxville, USA
K. Rose, S. Spanier, A. York

Texas A&M University, College Station, USA
O. Bouhali57, R. Eusebi, W. Flanagan, J. Gilmore, T. Kamon58, V. Khotilovich, V. Krutelyov, R. Montalvo, I. Osipenkov, Y. Pakhotin, A. Perloff, J. Roe, A. Rose, A. Safonov, T. Sakuma, I. Suarez, A. Tatarinov

Texas Tech University, Lubbock, USA
N. Akchurin, C. Cowden, J. Damgov, C. Dragoiu, P.R. Dudero, J. Faulkner, K. Kovitanggoon, S. Kunori, S.W. Lee, T. Libeiro, I. Volobouev

Vanderbilt University, Nashville, USA
E. Appelt, A.G. Delannoy, S. Greene, A. Gurrola, W. Johns, C. Maguire, Y. Mao, A. Melo, M. Sharma, P. Sheldon, B. Snook, S. Tuo, J. Velkovska

University of Virginia, Charlottesville, USA
M.W. Arenton, S. Boutle, B. Cox, B. Francis, J. Goodell, R. Hirosky, A. Ledovskoy, H. Li, C. Lin, C. Neu, J. Wood

Wayne State University, Detroit, USA
R. Harr, P.E. Karchin, C. Kottachchi Kankanamge Don, P. Lamichhane, J. Sturdy

University of Wisconsin, Madison, USA
D.A. Belknap, D. Carlsomth, M. Cepea, S. Dasu, S. Duric, E. Friis, R. Hall-Wilton, M. Herndon, A. Hervé, P. Klubbers, A. Lanaro, C. Lazaridis, A. Levine, R. Loveless, A. Mohapatra, I. Ojalvo, T. Perry, G.A. Pierro, G. Polese, I. Ross, T. Sarangi, A. Savin, W.H. Smith, C. Vuosalo, N. Woods
1: Also at Vienna University of Technology, Vienna, Austria
2: Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland
3: Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France
4: Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
5: Also at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia
6: Also at Universidade Estadual de Campinas, Campinas, Brazil
7: Also at Laboratoire Leprince-Ringuet, École Polytechnique, IN2P3-CNRS, Palaiseau, France
8: Also at Joint Institute for Nuclear Research, Dubna, Russia
9: Also at Suez University, Suez, Egypt
10: Also at Cairo University, Cairo, Egypt
11: Also at Fayoum University, El-Fayoum, Egypt
12: Also at British University in Egypt, Cairo, Egypt
13: Now at Ain Shams University, Cairo, Egypt
14: Also at Université de Haute Alsace, Mulhouse, France
15: Also at Brandenburg University of Technology, Cottbus, Germany
16: Also at The University of Kansas, Lawrence, USA
17: Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary
18: Also at Eötvös Loránd University, Budapest, Hungary
19: Also at University of Debrecen, Debrecen, Hungary
20: Also at University of Visva-Bharati, Santiniketan, India
21: Also at Tata Institute of Fundamental Research - HECR, Mumbai, India
22: Now at King Abdulaziz University, Jeddah, Saudi Arabia
23: Also at University of Ruhuna, Matara, Sri Lanka
24: Also at Isfahan University of Technology, Isfahan, Iran
25: Also at Sharif University of Technology, Tehran, Iran
26: Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
27: Also at Università degli Studi di Siena, Siena, Italy
28: Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France
29: Also at Purdue University, West Lafayette, USA
30: Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico
31: Also at National Centre for Nuclear Research, Swierk, Poland
32: Also at Institute for Nuclear Research, Moscow, Russia
33: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
34: Also at California Institute of Technology, Pasadena, USA
35: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
36: Also at Facoltà Ingegneria, Università di Roma, Roma, Italy
37: Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy
38: Also at University of Athens, Athens, Greece
39: Also at Paul Scherrer Institut, Villigen, Switzerland
40: Also at Institute for Theoretical and Experimental Physics, Moscow, Russia
41: Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland
42: Also at Gaziosmanpasa University, Tokat, Turkey
43: Also at Adiyaman University, Adiyaman, Turkey
44: Also at Cag University, Mersin, Turkey
45: Also at Mersin University, Mersin, Turkey
46: Also at Izmir Institute of Technology, Izmir, Turkey
47: Also at Ozyegin University, Istanbul, Turkey
48: Also at Marmara University, Istanbul, Turkey
49: Also at Kafkas University, Kars, Turkey
50: Also at Mimar Sinan University, Istanbul, Istanbul, Turkey
51: Also at Rutherford Appleton Laboratory, Didcot, United Kingdom
52: Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom
53: Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia
54: Also at Argonne National Laboratory, Argonne, USA
55: Also at Erzincan University, Erzincan, Turkey
56: Also at Yildiz Technical University, Istanbul, Turkey
57: Also at Texas A&M University at Qatar, Doha, Qatar
58: Also at Kyungpook National University, Daegu, Korea