Missing species among Mediterranean non-Siphonophoran Hydrozoa

Cinzia Gravili · Stanislao Bevilacqua · Antonio Terlizzi · Ferdinando Boero

Received: 1 July 2014 / Revised: 3 November 2014 / Accepted: 18 December 2014 / Published online: 20 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Hydrozoa of the Mediterranean Sea are well known and a recent monograph covers 457 species. Mediterranean non-Siphonophoran Hydrozoa comprises 398 species, an increasing number due to continuous updates, representing about 10 % of the 3,702 currently valid species reported in a recent world assessment of hydrozoan diversity. Many new records are non indigenous species, previously described species that occurred elsewhere and whose arrival was presumably caused by human activities. However, many species reported in the past are not recorded in recent times. Realistic assessments of species pools require addition of new species, but also subtraction of species not found since a certain period. With the confidence of extinction index, cases of putative extinction can be raised. Out of the 398 known species, only 162 (41 %) have been reported in the last decade, while 53 (13 %) are not recorded in the literature since at least 41 years. According to the confidence of extinction index, 60 % of the 53 missing species are extinct, and 11 % are putatively extinct from the basin. From a biogeographical point of view, the missing species are: 34 % endemic, 19 % boreal, 15 % Mediterranean-Atlantic, 11 % Indo-Pacific, 11 % circumtropical, 4 % cosmopolitan, 2 % tropical-Atlantic, 4 % non-classifiable. Fluctuations in species composition into a certain area cause heavy variability in the expression of both structural and functional biodiversity. As consequence, the regional biodiversity should be analyzed through its temporal evolution, to detect changes and their possible causes. This approach has profound consequences on biodiversity assessments and also on the compilation of red lists.

Keywords Biodiversity · Hydrozoa · Extinction · Confidence of extinction index
Introduction

The question “How many species are there in the oceans?” provides the key to discover what we know and what we do not know about the life in the seas (Mora et al. 2011). Conservation biologists try to identify the areas in the world where effective conservation actions could protect as many species as possible. The knowledge of species, however, is incomplete since many species are still unknown (Costello et al. 2013a, b) or poorly known. Myers et al. (2000) claim that biodiversity hotspots, areas characterized by high numbers of endemic species as well as high rates of habitat loss, are priority, but a question remains: does the cumulative evaluation of biodiversity, in terms of species additions through time, really represent the expression of biodiversity at a given place?

Appeltans et al. (2012) compiled WoRMS, the World Register of Marine Species (about 226,000 eukaryotic marine species) and used it as a starting point for estimating how many more species may still be discovered. WoRMS published online information on marine species, but many nomenclatural and classification problems remain (Costello et al. 2013a, b). The introduction rate of synonyms is expected to decline through updated taxonomic revisions (Appeltans et al. 2012).

A further problem with the estimation of biodiversity is that local lists are usually updated by adding new entries, but locally (or even finally) extinct species are seldom, if ever, removed from the lists (Boero and Gravili 2013), a task that only taxonomists can undertake through the critical analysis of species lists and the identification of putatively extinct species.

The sea has been far less studied than the land, and our taxonomic knowledge of many groups remains fragmentary (Hilchey 2003). Attempts to inventory all known species led to cover about two-thirds of all marine species (Appeltans et al. 2012), and half of all species (Bisby et al. 2009). Species lists and their distribution are basic to biodiversity research (Costello et al. 2001). May (1994) and Hammond (1994) reviewed a variety of approaches to predict the number of species that may exist on Earth. Moreover, Costello and Wilson (2011) proposed to predict the number of known and unknown species in European seas using rates of description. Biodiversity research has a long history the Mediterranean Sea, one of the best-known seas globally (Coll et al. 2010; Gravili et al. 2013). In particular, the diversity of Mediterranean Hydrozoa is well known and has been recently updated (Bouillon et al. 2004, 2006; Schuchert 2005, 2006, 2008a, b, 2009, 2010; Galea 2007; De Vito et al. 2008; Gravili et al. 2007, 2008, 2010, 2013; Morri et al. 2009; Mastrototaro et al. 2010). The biodiversity of the Mediterranean Sea is high due to ecological, historical, and paleogeographic reasons (Sarà 1985; Bianchi and Morri 2000; Bianchi 2007). The western Mediterranean has strong Atlantic affinities, due to the continued penetration of Atlantic species (Harmelin and d’Hont 1993). Conversely, after the opening of the Suez Canal, the Eastern Mediterranean is receiving species from the Red Sea (Galil 1993). The number of Lessepsian species, now acclimated in the Mediterranean (Golani 1998), is so high that Por (1999) proposed a separate biogeographic province for the Levant Sea.

Many tropical NIS became recently established even in the northwestern Mediterranean waters (Coll et al. 2010; Lejeusne et al. 2010; Zenetos et al. 2012), forming stable populations (Bianchi and Morri 1993) as a response to a warming trend (Sparnocchia et al. 1994; Astraldi et al. 1995).

Ecological and biogeographic theories, supported by significant data, predict that half of all present species may be extinct within the next 100–300 years due to climate change,
pollution, over-harvesting, habitat fragmentation and loss (Chapin et al. 2000; Jackson 2008; Costello and Wilson 2011). It is often claimed that extinction rates are on the increase both on land and in the oceans (Carlton et al. 1999; Dulvy et al. 2003; Costello and Wilson 2011), and that chances are good that species might go extinct even before a formal description (Costello et al. 2013a, b). Boero et al. (2013) stressed how well documented marine extinctions usually concern conspicuous species (e.g., the Caribbean monk seal Monachus tropicalis, the great auk Pinguinus impennis, and the Steller’s sea cow Hydrodamalis gigas), and that the number of proven marine extinctions is very low, if compared with the alarming predictions of most review. This is not due to lack of extinction risks but, instead, to poor knowledge of the conservation status of most species (Roberts and Hawkins 1999; Régnier et al. 2009). Boero et al. (2013), however, claimed that the analysis of the history of the records of each species in space and time might be conducive to roughly assess their state of conservation.

Changes in both the abundance and the distribution of species commonly happen due to the arrival of new species, the rarefaction of common species, or the increase in the abundance of formerly rare species (Boero 1994, 1996; Bonsdorff et al. 1997). These changes are a natural feature of all systems but the rate of change can become alarmingly fast (Boero and Bonsdorff 2007). Biotic assessments are increasingly carried out to detect NIS (Gravili et al. 2013; Katsanevakis et al. 2013), and might be used also for the purpose of testing hypotheses of putative extinctions.

The aim of this paper is to review the knowledge of the diversity of Mediterranean Non-Siphonophoran Hydrozoa (NSH), to detect species that are absent since decades, the “missing species”, so as to assess current estimate of the species pool-size and raise cases of either regional or local extinction.

Methods

The choice of 41 years as a threshold to consider a species as missing was decided based on the rather intense study of hydrozoan species in the Mediterranean in the last four decades, with the establishment of the Hydrozoan Society in 1985 (Boero 2007) that gathered a rather substantial scientific community focusing on the Mediterranean. Due to intensive sampling, thus, if a previously reported species fails to be recorded chances are good that, at least, it is more rare than before. The knowledge about each species is stored in the scientific literature. Every known species has been described in a taxonomic paper, and the date of its first finding is the beginning of the history of its knowledge. The type locality is the centre of origin of that species, even though it might not be representative of the core of its actual distribution. After the original description, species are usually recorded again in other taxonomic, faunistic, or ecological papers. Analyzing the temporal and spatial distribution of species, as recorded by the scientific literature, we can reconstruct maps of their recorded presence in both space and time. We examined current estimates of the size of the Mediterranean species pool, to detect species that might have gone locally or regionally extinct. Picard (1958a) produced the first modern list of Mediterranean NSH. Since then, the number of species almost doubled due to addition of new records to the new ones. To assess the current state of the Mediterranean species pool with the state of the fifties, we compared Picard’s list with the list of the species recorded in the last decade.

Our list of non-Siphonophora Hydrozoan “Missing” species (NSHMs) of the Mediterranean Sea is based on a recent monograph (Bouillon et al. 2004), on taxonomic revisions (e.g. Schuchert 2007, 2008a,b, 2009, 2010), and on an assessment of Mediterranean
NSH (Gravili et al. 2013). To determine historical series and distributions, we consulted 749 faunistic studies published between 1850 and 2014. A database with 8,158 records was organized so as to provide the following information: species, family, author, life-cycle phase, reproductive state, location, date of collection e/o year of publication of the article, water depth, substrate type, synonymy, and cited references. Taxonomic records (i.e. records of each taxon, in any kind of report) are reported on a time scale from the original description to the last citation in the literature. The number of faunistic articles on Mediterranean Hydrozoa since 1850 was organized by decade (Fig. 1). The total number of articles (within the same time range) was then referred to each biogeographic sectors (A–M) identified by Bianchi (2007) (Fig. 2).

We identified NSHMs (not recorded since 41 years or more) examining records from the nineteenth century to 2014, to trace the origin, first and last Mediterranean records, current Mediterranean distribution, and global distribution of each species. With few exceptions, we named taxa according to Bouillon et al. (2006). The date and location of the first observation of each NSHMs in the Mediterranean Sea were extracted from the literature. Whenever possible, the actual date of first record was reported, along with its publication date, since the two dates coincide only in a few cases. Strauss and Sadler (1987, 1989) introduced the confidence of extinction index in paleobiology (Marshall 1990), as a method to calculate confidence intervals within local stratigraphic ranges. Boero et al. (2013) adapted this method to analyse cases of putative extinction in recent species. The confidence of extinction index was calculated for each species uncited since 41 years by using the following formula on historical taxonomic data:

$$C = 1 - \left(\frac{G}{R} + 1\right)^{-\frac{H}{C}}$$

C is the confidence of extinction, G is the number of years since last sighting, R is the number of years between original description and the last sighting, H is the number of individual years in which there is a record, C ≥ 95 % postulates a case of extinction; 80 % ≤ C ≤ 94 % raises a case of putative extinction.

![Figure 1](image-url)
Fig. 1 Number of total articles about Mediterranean Hydrozoa since 1850-today by decade: general trend (thin line), with mobile average over 2 year periods (thick line). Vertical lines separate five main periods within the trend.
All records were organized in a presence/absence data matrix of species (NSHMs included) in each biogeographic sector (A–M) for each historical period (>40 years ago, from 40 to 31 years ago (40 years), from 30 to 21 years ago (30 years), from 20 to 11 years ago (20 years), and from 10 years ago to nowaday (10 years)). A distance matrix based on Jaccard’s distance among sector × period centroids was then obtained. A canonical analysis of principal coordinates (CAP) (Anderson and Robinson 2003; Anderson and Willis 2003) based on the distance matrix was then performed for the factor period, in order to portray temporal changes in the whole Mediterranean species pool of NSH. Distinctness among locations was assessed using leave one-out allocation success (Anderson and Robinson 2003). Species most contributing to group differences in the CAP plot were investigated by calculating product–moment correlations (r) of original variables (species) with canonical axes (Anderson and Willis 2003). Only species with correlation values exceeding an arbitrarily chosen value of correlation $r \geq 0.2$ were considered.

The ‘average taxonomic distinctness’ (Δ^+) (Clarke and Warwick 1998) and ‘variation in taxonomic distinctness’ (Λ^+) (Clarke and Warwick 2001), complementing Δ^+, were employed to explore temporal changes in the taxonomic structure of NSH species pool in

Fig. 2 Number of articles that include faunistic studies about Mediterranean Hydrozoa since 1850-today by decade for biogeographic sectors (A–M) according to Bianchi (2007). See map legend (Fig. 3) for abbreviations.
the whole Mediterranean basin. Λ^+ represents the average taxonomic path length between two randomly chosen species in the taxonomic tree, whereas K^+ reflects the unevenness in the taxonomic tree of a given species’ list and represents the variance of these pair-wise path lengths. The indices are independent of the number of species in a sample and thus represent useful tools for analysing historical data (Bevilacqua et al. 2009). A reference list, from species to subclass, was made including all NSH species recorded. The list coupled with the presence/absence data matrix was used to calculate the values of Λ^+ and K^+ of Mediterranean NSH species pool in each period. The same step length (equal to 1) was used in weighting all distances between hierarchical taxonomic levels (Clarke and Warwick 1999). For both taxonomic distinctness indices, the 95 % confidence funnel was generated (Clarke and Warwick 1998, 2001) in order to test temporal departures from expectations of Λ^+ and K^+ (under the null hypothesis that the species pool in each period was a random subset of the full NSH species list).

Results

The updated list of NSH species, after an accurate systematic revision, sums up to 398 species, representing about 11 % of the 3,702 nominal known species of the superclass Hydrozoa reported by Bouillon et al. (2006). The species recorded from the Mediterranean Sea in the last decade sum up to 162, and 118 of them (73 %) are present in Picard’s (1958a) list of 191 species (180 valid species if cleaned up by synonyms); 53 species (13 %) are not recorded in the literature since at least 41 years (Table 1).

The assessment of the status of the unrecorded NSHMs with the Confidence of Extinction Index (C) shows that 32 species (60 %) have C ≥ 95 % so representing cases of extinction; 30 of these have C equal to 100 %; 6 species (11 %) have 80 % ≤ C ≤ 94 % and represent cases of putative extinction; the remaining 15 species (28 %) have C < 80 %. The largest contingent of the missing species is endemic to the Mediterranean (18 species, 34 %), followed by boreal ones (10 species, 19 %), 15 % (8 species) is Mediterranean-Atlantic; the Indo-Pacific and circumtropical contingents are represented by 6 species each (11 %), followed by the cosmopolitan contingent (2 species, 4 %), 1 tropical-Atlantic species (2 %), and 4 % (2 species) are non-classifiable.

Of the 18 endemic NSHMs of Mediterranean Sea, 10 have C ≥ 95 % so representing cases of extinction (*Merga galleri, Acauloides ilonae, Staurocladia portmanni, Branchiocerianthus italicus, Coryne caespes, Siphonohydra adriatica, Melicertissa adriatica, Eucheilota maasi, Plumularia syriaca, Cunina polygonia*), the remaining eight ones (*Lizzia octostyla, Tregoubovia atentaculata, Coryne fucicola, Hydranthea aloysii, Orchistomella graeffei, Octogonade mediterranea, Tiaropsidium mediterraneum, Cunina proboscidea*), having 80 % ≤ C ≤ 94 %, represent cases of putative extinction (see Table 1).

Moreover, there are difficulties to assess the validity of several NSHMs. It is the case, for example, of *S. adriatica* whose gonophores, as well as the fully-grown animal, remain unknown (for more details see Schuchert 2010). Kramp (1961) reported another case, where Picard (1958a) refers doubtfully *M. adriatica* to the Tiaropsidae as *O. mediterranea* Zoja 1896. *Hydranthea aloysii* is an insufficiently described species that could be any haleciid or lovenelliid (Bouillon et al. 2004). *Bougainvillia multicilia* is considered a doubtful species (see Kramp 1955; Schuchert 2007). Schuchert (2007) retained that new Mediterranean material is needed for a further evaluation of the status of the species *Amphinema turrida*. Concerning the species *Protiara tetranema*, recorded by Pell (1918, 1938) from the Adriatic
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
Class Hydroidomedusae						
Subclass Anthomedusae						
Bougainvillia multicilia (Haeckel, 1879)	Algeciras (Gibraltar): 1867 (Haeckel 1879) as Lizusa multicilia	Mediterranean-Atlantic	See original description	–	100 %	Doubtful species [see Kramp (1955), Schuchert (2007)]
Lizzia octostyla (Haeckel, 1879)	Corfu: 1877 [(Haeckel 1879) as Dymorphosa octostyla]	Endemic of the Mediterranean Sea	See original description	Trieste [Neppi and Stiasny (1911) as Podocoryne octostyla; Neppi and Stiasny (1913)]; Villefranche: 1954 Kramp (1957a) as Koellikerina fasciculata juv.	78 %	Northern driatic Sea [Benović and Lačić 1996] reported as last record in Adriatic Sea: (Neppi and Stiasny 1913)
Eudendrium arbuscula (Wright, 1859)	Queensferry (close to Edinburgh), Firth of Forth, Scotland: 1858 (Wright 1859)	Boreal (North Atlantic, Mediterranean)	France, Algeria, Syria (Marinopulos 1992) (but gives no records: in the absence of reliable data relating to the records, it has been hypothesized that the records in France, Algeria and Syria had occurred in three individual years)	–	26 %	The Mediterranean records of Marinopulos (1992) are likely misidentifications [see Schuchert (2008b)]
Podocoryna borealis (Mayer, 1900)	Eastport Harbor, Maine, USA: 1898 (Mayer 1900a) as Lymnorea borealis	Boreal (North Atlantic, Mediterranean)	Mediterranean Sea Trégouboff and Rose (1957) as Podocoryne borealis but give no records; Naples: 1952 (Riedl 1959) as P. borealis (uncertain reports)	–	100 %	The Mediterranean records are unreliable [Schuchert (2008a) as Hydractinia borealis; genus transfer by Schuchert (2013)]
Amphinema turrida (Mayer, 1900)	Tortugas, Florida, USA: 1897–1899 (Mayer 1900b) as Dissonema turrida	Circumtropical (Atlantic, Indo-Pacific, Mediterranean)	Villefranche-sur-Mer: 1964 (Goy 1973)	–	100 %	New Mediterranean material is needed for a further evaluation of the status of this form [see Schuchert (2007)]
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
----------------------	--	-----------------------------------	---------------------------	-------------------------------	-------------------------------	---
Merga galleri	Mergellina Harbour, Naples: 1960 (Brinckmann 1962)	Endemic of the Mediterranean Sea	See original description	–	100 %	The presence of this species in the Mediterranean is uncertain [see Schuchert (2007)]
Octotiara russelli	Great Barrier Reef, Southwestern Pacific: 1929 (Australia) (Kramp 1953)	Indo-Pacific, Mediterranean	Bay of Villefranche-sur-Mer: 1954 (Goy 1973) as *Octotiara violacea*	–	100 %	
Protiara tetranea	Coast of The Netherlands: 1809 Périon and Lesueur (1810) as *Tetranema Oceania*	Mediterranean-Atlantic	Adriatic (Pell 1918)	Adriatic: 1913–1914 (Pell 1938)	49 %	Doubtful, unrecognizable species [for more details see Schuchert (2009)]
Tregoubovia attenaculata	Villefranche-sur-Mer: 1955 (Picard 1958b)	Endemic of the Mediterranean Sea	See original description	Villefranche-sur-Mer: 1966 (Goy 1973)	81 %	Very rare species: only two or three specimens have been reported in the literature [see Schuchert (2009)]
Protohydra leuckarti	Ostende (Greeff 1869)	Boreal (circumglobal in temperate brackish waters of the northern hemisphere), Mediterranean	Canet Plage, Southern France: 1950 (Nyholm 1951)	–	100 %	
Acauloides amnisatum	Roscoff, English Channel Bouillon (1965)	Boreal (Northeastern Atlantic, Mediterranean)	Banyuls-sur-Mer: 1961 (Monniot 1962) as *Psammocoryne* (invalid nomen nudum).	–	100 %	It is unclear whether *A. amnisatum* occurs in the Mediterranean [for more details see Schuchert (2006)]
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
---	--	-------------------------------------	--	----------------------------------	-------------------------------	---
Acauloides ilonae (Brinckmann-Voss, 1966)	Gulf of Pozzuoli, Naples Brinckmann-Voss (1966) as Acaulis ilonae	Endemic of the Mediterranean Sea	Gulf of Pozzuoli, Naples: 1960–1961	–	100 %	The occurrence of this species outside the Mediterranean is uncertain [for more details see Schuchert (2006)]
Psammohydra nanna Schulz, 1950	Western Baltic Sea: 1948 (Schulz 1950)	Boreal (Western Baltic, Northeastern Atlantic, Mediterranean)	Marseille, Western Mediterranean (Swedmark 1956) Rovigno, Adriatic Sea: 1965 (Salvini-Plawen 1966)	74 %		The taxonomic position of this animal is unclear (Schuchert 2006)
Eleutheria claparedii Hartlaub, 1889	Tahitou near St. Vaast la Hogue (Normandy, France) (Hartlaub 1889)	Mediterranean-Atlantic	Naples (Hartlaub 1889) Naples: Pavesi in a letter to Spagnolini, published 1877 [see Mayer (1910c), Brinckmann-Voss (1970)]	100 %		The polyp has not yet been identified in the sea and only the young polyp without medusae buds is known from cultivation experiments [see Schuchert (2006)]
Staurocladia portmanni Brinckmann, 1964	Gulf of Sorrento (polyp stage), Ischia, Naples (medusa stage): 1963 (Brinckmann 1964)	Endemic of Mediterranean Sea	See original description Gulf of Naples: 1963 Brinckmann-Voss (1987); 1963 [see Bouillon et al. (1995)]	100 %		For more details about its behaviour see Brinckmann-Voss (1970)
Corymorpha forbesii (Mayer, 1894)	Nassau Harbour, Bahamas: 1893 (Mayer 1894) as Hybocodon forbesii	Circumtropical (Atlantic, Indo-Pacific, Red Sea, Mediterranean)	Gulf of Pozzuoli, Naples: 1962 (Brinckmann-Voss 1967) –	100 %		For more details about this species see Brinckmann-Voss (1970), Schuchert (2010)
Branchiocerianthus italicus Stechow, 1921	Gulf of Naples: 1905 [Lo Bianco (1909) as Branchiocerianthus sp.]	Endemic of Mediterranean Sea	See original description –	100 %		Stechow (1921) introduced the name B. italicus for Lo Bianco’s material [for more details see Schuchert (2010)]
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
------	--	--------------	-------------------------	-------------------------------	-------------------------------	---------
Coryne caespes Allman, 1871	Gulf of La Spezia (Allman 1871–1872)	Endemic of Mediterranean Sea	See original description	–	100 %	*C. caespes* could belong to *C. pintneri* or *C. muscoides* Schuchert (2001)
Coryne fucicola (De Filippi, 1866)	Turin (in an aquarium): 1864 [De Filippi (1866) as *Halobotrys fucicola*]: no type locality specified	Endemic of Mediterranean Sea	See original description	Villerfranche-sur-Mer, Balaguir, France (Du Plessis 1888)	84 %	For a complete redescription based on field collected material [see Schuchert (2005)]
Siphonohydra adriatica Salvini-Plawen, 1966	Rovigno: 1965 (Salvini-Plawen 1966)	Endemic of Mediterranean Sea	See original description	–	100 %	The gonophores of this animal must be known to assess the validity of the genus and species [see Schuchert (2010)]
Tricyclusa singularis (Schultze, 1876)	Bay of Muggia, Trieste: 1875 (Schulze 1876) as *Tiarella singularis*	Boreal (Northeastern Atlantic, Mediterranean)	Bay of Muggia, Trieste: 1875 (Schulze 1876)	–	100 %	After its discovery, it has never been found again in the Mediterranean Sea [for more details see Schuchert (2006)]
Ectopleura sacculifera Kramp, 1957	Pacific coast of Ecuador: 1926–1937 (Kramp 1957b)	Indo-Pacific, Mediterranean	Near Naples: 1963 (Brinckmann-Voss 1970)	–	100 %	For more details about this species see Schuchert (2010)
Tubularia indivisa Linnaeus, 1758	Northeastern Atlantic (Linnaeus 1758)	Boreal (Northern Atlantic and Pacific, Arctic Sea, Mediterranean)	Cap de Creus, Spanish coast: 1902–1904 Motz-Kossowska (1905)	Naples (Stechow (1923)	35 %	The Mediterranean records need reconfirmation [for more details see Schuchert (2010)]
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
------------------------------	--	--	--------------------------	-------------------------------	-----------------------------	--
Rosalinda incrustans	Off Southwestern of Portugal (Kramp 1947)	Atlantic Ocean, West of Gibraltar; Western Mediterranean (Costa Brava and Corsica)	Rosas, Spain: 1958 [see Bouillon et al. (1995)]	West of Corsica (42.355°N 09.611°W): 1958 [see Schuchert (2010)]	100 % For more details about this species [see Schuchert (2010)]	
Aequorea pensilis	? Mediterranean Eschscholtz (1829) as *Mesonema pensilis*	Indo-Pacific, Mediterranean	See original description	–	100 % Mediterranean record is doubtful [see Bouillon et al. (2004)]	
Zygocanna vagans	Philippines Bigelow (1912)	Non classifiable (mainly Indo-Pacific), Mediterranean	Split Canal, Adriatic Sea (Babnik 1948) as *Zygocanna* sp.	–	100 % For more details about this species [see Cornelius (1978, 1982, 1995)]	
Calycella syringa	No type locality specified (Linnaeus 1767) as *Sertularia syringa*	Boreal (occurs North to Arctic Ocean, Mediterranean)	Rovigno [Pieper (1884)—Heller’s collection]	–	100 % For more details about this species [see Cornelius (1978, 1982, 1995)]	
Eutonina scintillans	Pacific coast of Mexico: 1904–1905 (Bigelow 1909) as *Eutimalphes scintillans*	Indo-Pacific, Mediterranean	Gulf of Trieste: 1910 (Neppi and Stiasny 1911)	Gulf of Trieste: 1910 (Neppi and Stiasny 1913) as *Eutimium scintillans*; Ligurian Sea: 1963 (Goy 1973)	50 %	
Helgicirrha cari	Nice, France (Haeckel 1864) as *Tina cari*	Mediterranean-Atlantic	See original description	Naples: 1876 [Spagnolini (1877) as *Tina cari*; Mayer (1910c) as *Eirene viridula*]; Tunis: 1923–1924 [Ranson (1925) as *E. viridula*]	90 % Doubtful status [see Bouillon et al. (2004)]	
Laodicea neptuna	Tortugas, Florida: 1898 (Mayer 1900b)	Mediterranean-Atlantic	Gulf of Naples: 1962 (Brinckmann-Voss 1987)	–	100 %	

Subclass Leptomedusae
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
Melicertissa adriatica	Adriatic Sea: 1913–1914 (Neppi 1915)	Endemic of Mediterranean Sea	See original description	Adriatic Sea [Neppi (1922) about the Najade Expedition results]	100 %	Picard refers this species to Octogonade mediterranea [see Addenda in Kramp (1961)]
Eucheilota maasi	Trieste, Adriatic Sea: 1910 (Neppi and Stiasny 1911)	Endemic of Mediterranean Sea	See original description	Trieste: 1910 (Neppi and Stiasny 1913); Adriatic: 1913–1914 (Pell 1918, 1938)	96 %	Hydroid doubtfully reported from Mediterranean; medusa never collected in Mediterranean Sea [see Bouillon et al. (2004)]
Eucheilota maculata	Heligoland, North Sea Hartlaub (1894) as Eucheilota maculata	Non classifiable	Illes Medes: 1977–1982 Gili (1982) as Campanulina	Illes Medes: 1977–1982 (Gili et al. 1984); North coast of Cape of Creus (Northeastern Spain): 1980–1981 (Gili and Castelló 1985) all as Campanulina hincksi	26 %	
Hydranthea aloysii	Naples: 1891 (Zoja 1893) as Umbrellaria aloysii	Endemic of Mediterranean Sea	See original description	Trieste [Hadzi (1914) as Georginella diaphana]; Marseille: 1953 (Huvé 1954)	74 %	This species is insufficiently described (could be any haleciid or lovenelliid, probably a juvenile of H. margarica) [see Bouillon et al. (2004)]
Orchistomella graeffei	Trieste: 1910 (Neppi and Stiasny 1911)	Endemic of Mediterranean Sea	See original description	Ligurian Sea: 1966 (Goy 1973)	46 %	
Plumularia syriaca	Gulf of Alexandrette, Syria coast: 1929 (Billard 1931)	Endemic of Mediterranean Sea	See original description	–	100 %	
Sertularella tenella	No type locality was given by Alder (1856), probably Northumberland, England [see Cornelius (1979)]	Cosmopolitan (Northern Atlantic, Caribbean Sea, North Pacific Ocean, Mediterranean)	Monaco: 1929 by Leloup [see Bouillon et al. (1995)]	–	100 %	Doubtful species, probably conspecific with Sertularella rugosa [see Cornelius (1995)]
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
-----------------------------	--	--------------------------------------	--------------------------	---------------------------------	-------------------------------	--
Thyroscyphus fruticosus	Type locality unknown (Esper (1793) as Spongia fruticosa)	Indo-Pacific, Mediterranean	Adriatic: 1885 Marktanner-Turneretscher (1890) as Campanularia fruticosa	–	100 % Schmidt (1973) considered the migration of this species through the Suez-Canal	
Octogonade mediterranea	Messina, Sicily: 1894 (Zoja 1896)	Endemic of Mediterranean Sea	See original description	Dalmatian coast, Adriatic Sea: 1913–1914 (Pell 1918)	83 %	Dalmatian coast, Adriatic Sea: 1913–1914 (Pell 1918)
Tiaropsidium mediterraneum	Messina, Sicily: 1883 (Metschnikoff 1886a) as Tiaropsis mediterranea	Endemic of Mediterranean Sea	See original description	Kvamerola, Adriatic Sea (Hadzi 1916), 1914 as Camella vilae-velebiti and Tiaropsis mediterranea; Gulf of Marseille (Picard 1951b)	73 %	Doubtful record in the South Adriatic Sea, Otranto Channel, Apulia, Italy: 2003 (Piraino et al. 2013)
Hartlaubella gelatinosa	Belgian coast, specimen not located (Pallas 1766) as Sertularia gelatinosa	Mainly boreal: Northeastern Atlantic, Western Atlantic and Indo-Pacific (New Zealand), Mediterranean	Lesina Adriatic Sea [Heller (1868)] as Laomedea gelatinosa	Naples (Du Plessis 1881) as Obelia gelatinosa; Trieste (Adriatic Sea) (Graefte 1884) as Obelia gelatinosa; Naples: 1905 Lo (Bianco 1909) as Obelia gelatinosa; Gulf of Rapallo (Ligurian Sea: 1948 (Rossi 1950) as Laomedea gelatinosa	70 %	
Laomedea neglecta	Cullercoats and Tynemouth, UK (Alder 1856)	Boreal (Northeastern Atlantic, Mediterranean)	Rovigno (Adriatic Sea): 1896 (Schneider 1898) as Campanularia neglecta	Kotora; Jablanac (Adriatic Sea): 1907 (Babic 1910) as Campanularia neglecta; Canale della Corsia, Quamerolo: 1911 (Broch 1912); Split, Adriatic Sea: 1931 (Broch 1933) as Laomedea (Gonothyrea) neglecta	89 %	
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
---	--	------------------------	----------------------------------	-------------------------------	-------------------------------	---------
Subclass Limnomedusae						
Armorhydra janowiczi	Roscoff, France (Swedmark and Teissier, 1958)	Mediterranean-Atlantic	Rovigno: 1965 (Salvini Plawen 1966)	Ischia (Clausen 1971)	76 %	
Class Automedusa						
Subclass Actinulidae						
Halammohydra octopodides	Kieler Bucht (Baltic Sea): 1924 (Remane 1927)	Cosmopolitan	Marseille (Swedmark 1956)	Rovigno: 1965 (Salvini Plawen 1966)	54 %	
Subclass Narcomedusae						
Cunina polygonia (Haeckel, 1879)	Corfu and Messina: 1877–1878 (Haeckel 1879) as Cunoctantha polygonia	Endemic of Mediterranean Sea	See original description	–	100 % Doubtful status [see Bouillon et al. (2004)]	
Cunina proboscidea (E. & L. Metschnikoff, 1871)	Messina (Gegenbaur 1857) as Cunina vitrea	Endemic of Mediterranean Sea	See original description	Mediterranean (E. and L. Metschnikoff 1871); Naples [Mayer (1910a) as Cunina vitrea = C. proboscidea]; Spanish Mediterranean coast (Ranson 1936); Naples: 1962 [see Bouillon et al. (1995)]	80 %	
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
----------------------	--	---	--------------------------	-------------------------------	------------------------------	---
Pegantha rubiginosa (Kölliker, 1853)	Messina: 1852 Kölliker (1853) as *Eurystoma rubiginosum*	Circumtropical (Atlantic, Indo-Pacific, Mediterranean)	See original description	Messina (Gegenbaur 1857) as *Aegineta prolifera*; Villefranche-sur-Mer, Nice (Haeckel 1864); Naples (Spagnolini 1871), Pavesi (1878) as *Aegineta prolifera*; Naples: 1859 Keferstein and (Ehlers 1861), (Spagnolini 1871) as *Aegineta gemmifera*; (Carus 1884); Capri: 1902 (Lo Bianco 1903) as *Cunina rhododactyla*; Eolie 1902 (Lo Bianco 1903) as *Cunina rhododactyla*; Naples [Lo Bianco (1909) as *Cunina rhododactyla*; Ebbecke (1957) as *C. rhododactyla*; Vannucci (1966)]; Adriatic Sea (Expedition ‘Najade’) Grobben (1915); Neppi (1915) as *Cunina prolifera*; Villefranche-sur-Mer (Caziot 1921 as *C. prolifera*); Balearic Sea; Tyrrenian Sea, Strait of Messina, weastern Mediterranean: 1910-1911 (Kramp 1924 as *C. rubiginosa*); Villefranche-sur-Mer: 1954 (Kramp 1957b); Strait of Gibraltar: 1967 (Casanova 1980); Naples: 1956–1962 (see Bouillon et al. 1995); Ligurian Sea: 1963 (Goy 1973)	99	
Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
--------------------------	--	--	--------------------------	--------------------------------	--------------------------------	--
Pegantha trifolia	Zanzibar, East Africa (Haeckel 1879)	Circumtropical (Atlantic, Indo-Pacific, Mediterranean)	Balearics (Vanhoffen 1913)	–	100 %	For more details about its records [see Kramp (1961)]
Solmaris corona	Naples: 1859 (Keferstein and Ehlers 1861) as *Aegineta corona*	Circumtropical (Atlantic, Indo-Pacific, Mediterranean)	See original description	Naples (Haeckel 1879 as *Solmaris corona* and *S. coronantha*); Balearics: 1909 (Ranson 1936); Strait of Gibraltar: 1967 (Casanova 1980)	66 %	
Subclass Trachymedusae						
Petasus atavus	Izmir (Smyrna), Turkey: 1873 (Haeckel 1879) and Canary Islands as *Petasus tetranema*	Mediterranean-Atlantic	See original description	–	100 %	
Amphogona pusilla	Djibuti, East Africa: 1904 (Hartlaub 1909)	Indo-Pacific, Mediterranean	Villefranche-sur-Mer (Ligurian Sea): 1964 (Goy 1973)	–	100 %	
Table 1 continued

Taxa	Type locality and original description	Distribution	1st Mediterranean record	Other records in Mediterranean	Confidence of extinction index	Remarks
Arctapodema ampla	Bouvet Island (South Atlantic): 1898	Circumtropical (Antarctic, southern and tropical Atlantic, Mediterranean)	Algeria coast, off Mostaganem: 1908 (Ranson 1936) as Arctapodema amplum	Adriatic Sea: 1913-1914 (Pell 1938) as Isonema najadis Villefranche-sur-Mer: 1963-1964 (Goy 1971); Nice, Corsica: 1963 (Goy 1973)	69 %	

- **Pantachogon militare** (Maas, 1893)
 - North of Bermudas: 1889 (Maas 1893)
 - Tropical-Atlantic
 - Capri: 1902 (Lo Bianco 1903) as Homoeonema militare
 - –
 - 100 %

__Taxa__ Class, subclass, species

C Confidence of extinction index (C ≥ 95 % to postulate a case of extinction; 80 % ≤ C ≤ 94 % to raise a case of putative extinction)

? Psammocoryne Monniot, 1962 (invalid nomen nudum). Monniot (1962) identified it as Psammocoryne. This name is not a valid genus as it was not associated with a valid nominal species. Furthermore, Monniot’s hydroid could easily also be referred to *A. ilonae* and it is therefore also somewhat unclear whether *A. ammisatum* also occurs in the Mediterranean (Schuchert, 2006)
Sea, based on unclear criteria, Schuchert (2009) suggested that it is a doubtful, unrecognizable species. Finally, Bouillon et al. (2004) listed *C. polygonia* as doubtful.

Uncertain records concern species as *Eudendrium arbuscula*, whose Mediterranean records are likely misidentifications (Schuchert 2008b); the records of *Podocoryna borealis* are unreliable according to Schuchert (2008a). The presence of *Octotitara russelli* in the Mediterranean Sea is uncertain. Goy (1973) published the only European record of this species, as *Octotitara violacea*, but this reporting should be re-examined due to the state of preservation of the specimen that impedes certain identification (Schuchert 2007). *Tiaropsidium mediterraneum* was recorded for the first time in Messina (Metschnikoff 1886a) as *Tiaropsis mediterranea*, whereas its record in the South Adriatic (see Piraino et al. 2013) is doubtful.

Moreover, particular problems are related to records of the micro-meiobenthos NSH species that might be underestimated due to paucity of research in this field, namely: *Acauloides ammisatum* (whose presence in Mediterranean Sea is unclear; see Schuchert 2006), *A. ilonae*, *Psammohydra nanna* (whose taxonomic position is unclear; see Schuchert 2006), *Armorhydra janowiczi*, and *Halammohydra octopodides*. A particularly significant example of species that is absent since a very long time is *Tricyclusa singularis* (Schulze 1876). This species of boreal affinity and, since its original description from Trieste, the sole Mediterranean record, it has never been recorded again from the Mediterranean Sea. Its disappearance represents not only a case of Mediterranean extinction of a species, but also of the whole family Tricyclusidae that comprises only this species and genus (Boero and Bonsdorff 2007).

Studies of the Mediterranean Hydrozoa suffered several temporal gaps during the considered period (Fig. 1). The whole trend, expressed in number of papers per decade, can be divided into five periods, marked by changes in the patterns of scientific production (Fig. 1):

- 1850s–1870s, with an average of over 10 papers/decade;
- 1880s–1910s, with an average of about 30 papers/decade: about 20 papers/decade in the sub-period 1880s–1890s, and about 40 papers/decade in 1990s–1910s, with an increase of scientific production until a peak in the 1910s (51 papers) followed by a sharp decrease due to First World War;
- 1920s–1940s, (average of over 25 papers/decade) with a marked decrease coinciding with Second World War;
- 1950s–2000s, with an average of almost 80 papers/decade;
- 2010s–2014s, with an average of about 55 papers/decade, but monitoring of the entire decade (2010–2020) is still incomplete.

Figure 2 shows that since the 19th century many studies were carried out at the Zoological Station of Naples (biogeographic sector C). Messina also attracted high attention (biogeographic sector M), due to the strong currents of its Strait characterized by animals of deep waters. Kölliker (1853), Keferstein and Ehlers (1861), Metschnikoff (1886a, b), worked extensively at Messina contributing to the knowledge of the Hydrozoa. Other Mediterranean places where research on Hydrozoa became prominent were Trieste and Rovinj (biogeographic sector F), Split (biogeographic sector G) and, in France, Villefranche-sur-Mer, Endoume, and Banyuls (biogeographic sector E). In particular, a long series of papers mainly by Picard (1951a,b, 1958b) and Goy (1973) gave a great contribution to the knowledge of the Hydrozoa. Moreover, between the years 1960s and 1970s several researchers (among these, Bouillon, Brinckmann-Voss, Haeckel, Tardent, Uchida,
Vannucci, Yamada) worked at the Naples Zoological Station to describe the life cycles of Hydrozoan species.

Numbers of Non-Siphonophoran Hydrozoa Missing species (NSHMs) in each biogeographic sector within the Mediterranean Sea is shown in Fig. 3 reporting percentages of missing species/total number species for each sector. It is clear that the highest percentage of disappearance is linked to the colder biogeographic sectors of the Mediterranean basin: 11 % in the deep waters of the Strait of Messina (biogeographic sector M), 8 % in the Gulf of Lions and Ligurian Sea (biogeographic sector E), 7 % both in the Northern and Central Adriatic Sea (respectively, biogeographic sectors F and G).

CAP analysis showed a clear separation of points of > 40 years (left down corner of the plot) from those of 10 years (right down corner), with intermediate position of points of 40, 30, and 20 years (Fig. 4), indicating a temporal gradient of species composition of NSH in the Mediterranean. A total of 171 NSH species showed a correlation value > 0.2 with canonical axes, the 35 % of them being NSHMs (20 %) or NIS (15 %).

Results from analyses on taxonomic distinctness highlighted a decrease of both Δ^+ and Λ^+ of the Mediterranean NSH species pool through time (Fig. 5). The species pool of >40y showed significantly higher values ($P < 0.05$) of Δ^+ and Λ^+, indicating a higher breadth and heterogeneity of taxonomic structure. In contrast, the species pool in the last decade (10 years) exhibited values of Δ^+ and Λ^+ significantly below random expectation, indicating that Mediterranean NSH species were more closely related than expected by chance, with a significant reduction of taxonomic distinctness (Fig. 5).

Discussion

The scarcity of well-documented cases of extinction in the marine environment shows how difficult it is to deal with the conservation status of marine invertebrates (Boero et al. 2013).
Boero and Bonsdorff (2007) wondered if this is the consequence of low global risks of extinction in the sea or, rather, if we fail to notice that species become extinct. According to Roberts and Hawkins (1999), there might have been numerous extinctions in recent times that we failed to realise. Fontaine et al. (2007) addressed the problem of the current indicators that do not cover the species at risk of extinction, as most of rare species are not considered in the European Union’s 2020 target. Alternative indicators about rare species must be developed, in addition to the existing ones that provide information on biodiversity trends (Butchart et al. 2005; De Heer et al. 2005). Indeed, the choice of indicator species should be expanded through a rigorous assessment based on various parameters which take into account also rarity (Fontaine et al. 2007). Moreover, the fundamental question is how soon such changes will occur (Hughes 2000), as well as the particular time ranges chosen for the data sets can greatly affect apparent trends (Hughes 2000). Carlton et al. (1999) observed that the processes of species extinction run at different paces, involving several mechanisms working at different spatial scales. In general, the three main changes in response to environmental stress of the marine communities consist in regression to dominance by opportunist species, reduction of the dominating species resulting in lower diversity (Pearson and Rosenberg 1978; Gray 1989). The features of species that have gone extinct or are nearly extinct (population turnover, reproduction, capacity for recovery, range and distribution, commonness and/or rarity, trophic level) often contribute to their disappearance (Dayton et al. 1995; Roberts and Hawkins 1999).

The Mediterranean Sea is predisposed to local extinction because it is almost closed and much smaller than the open ocean, responding more quickly to environmental change and, furthermore, has a high rate of endemism (Boero and Gravili 2013). This sea is characterized by a particular biota made of highly seasonal species, tropical and boreal

![Fig. 4](https://example.com/figure4.png)

Fig. 4 Canonical analysis of principal coordinates (CAP) for the factor period based on the distance matrix (Jaccard’s distance) among sector × period points. Open triangle >40 years, open diamond 40 years, open square 30 years, open circle 20 years, asterisk 10 years.
contingents being present respectively in the summer, and in the winter (Bavestrello et al. 2006). The Mediterranean marine ecosystem, being subjected to a period of temperature increase that is tropicalizing its biota, represents a model basin for oceans and other seas (Bianchi 2007; Boero and Bonsdorff 2007; Lejeusne et al. 2010).

It is very difficult to confirm the disappearance of a species in the marine environment, mostly due to lack of taxonomist and the existence of synonyms in the species lists (different names attributed to the same species). Therefore, simple lack of suitable sampling or of expertise in recognizing synonyms in previous samplings, might determine their absence from subsequent records. It is debatable whether lack of records is due either to changing of abiotic or biotic factors, or to low sampling efforts or, eventually, to the combination of these causes. Surely, the Mediterranean Sea is going through a radical change that is almost unparalleled in respect to any other part of the world (Boero 2014; Templado 2014).

The absence of a species, furthermore, might be only apparent, due to the existence of resting stages that can remain dormant for long periods and that, when activated, are responsible for the so-called “Lazarus effect” (Jablonsky 1986).

As expected by Boero et al. (2008), global warming is favouring the tropical contingent, whereas the boreal one is in distress. If global warming can damage species, the potential sufferers are Mediterranean endemic species (34 % of the NSHMs), those of cold water affinity (19 %) or Mediterranean Atlantic ones (15 %). Indo-Pacific and circumtropical contingents represent each 11 % of the total NSHMs, extinctions in the Mediterranean being probably linked to lack of establishment of species that recently reached the basin. The results of this study confirm the trend characterized at a first time by the abiotic change, induced by increasing temperatures, and followed, at a later time, by biotic change, since the arrival of aliens of tropical affinity (Zenetos et al. 2012; Gravili et al. 2013; Çınar et al. 2014), or the prevalence of the summer contingent that competes against the species of cold water affinity (Puce et al. 2009).

The results of this study, as well as the data analyzed over the long term by Puce et al. (2009), suggest that the regional species pools tend to remain stable in terms of species numbers but not in terms of species identity. In fact, the number of present-day Mediterranean NSH species (162) matches closely the number of species (180 valid species) that Picard (1958a) recorded in his first assessment, cumulating all previous knowledge on the group. However, our finding showed that the composition of the species pool at basin scale changed through time, with changes heavily driven by NSHMs and NIS. Moreover, we detected a progressive contraction of the taxonomic width of NSH, imputable to the loss of taxa poor in species or monotypic, which raises concerns about potential ensuing depletion of taxonomic and functional diversity.

The tropical NIS, colonising the Mediterranean Sea, are probably filling the ecological spaces of species that are becoming rare or are locally extinct. Bianchi (2007) predicted that the northern areas of the Mediterranean Sea will be invaded by warm-water native species, while the southern areas of the basin will be occupied by tropical exotic species. Furthermore, the warming of the Mediterranean Sea might probably cause a decrement of native cold-water species, or even their disappearance (Bianchi 2007).

Boero et al. (2008) proposed the so-called ‘cold engines’ (the northernmost part of the Western Mediterranean, the Northern Adriatic, and the Northern Aegean) as the areas with greater probability of presence of putatively extinct species in a period of global warming. These places, the drivers of the vertical remixing of Mediterranean waters, are significantly colder than the rest of the basin. They are inhabited by many species of cold-water affinity. The compilation of lists of species for all significant taxonomic groups that live only in
these areas might provide a tool for creating lists of putatively extinct species, and allow the programming of surveys to ascertain their conservation state (Boero and Gravili 2013). The results shown here suggest that species lists are dynamic, requiring continual updating (introduced species) and putative subtractions of missing species. Without these subtractions, biodiversity is always on the rise due to the arrival of NIS and the species lists will never show possible biodiversity crises at the level of species pools.

Mendelson et al. (2006) required an unprecedented conservation response to stop the loss of species and populations. The rates of marine species description, driven by the increasing ability to explore previously unknown geographic areas, have never been higher, as well as the challenge to estimate the diversity of cryptic species through molecular studies (Appeltans et al. 2012). The rapid influx of NIS and the disappearance of the species of cold-water affinity are heavily influencing the rich but vulnerable Mediterranean ecosystem, heavily affected already by a host of multiple impacts (Claudet and Fraschetti 2010; Boero 2014).

The application of the present analysis to all other taxa will allow for a better assessment of the state of biodiversity in all seas and oceans.

Fig. 5 Average taxonomic distinctness (a) and variation in taxonomic distinctness (b) of Mediterranean NSH species pool in each of the five periods (>40, 40, 30, 20, 10 years) plotted against the corresponding total number of species characterizing each period. For both indices, the expected mean (dotted line) and the 95% confidence limits (solid lines) were also plotted from 1,000 independent simulations drawn randomly from the full list of Mediterranean NSH species.
Acknowledgments Work supported by Ministero dell’Università e della Ricerca Scientifica e Tecnologica (COFIN, PRIN and FIRB projects), by the CONISMA-CMCC project ‘The impacts of biological invasions and climate change on the biodiversity of the Mediterranean Sea’ and by the European Commission Seventh Framework Programme (FP7) projects ‘Vectors of Change in Oceans and Seas Marine Life, Impact on Economic Sectors’ (VECTORS), ‘Towards coast to coast networks of marine protected areas (from the shore to the high and deep sea), coupled with seabased wind energy potential’ (COCONET), and ‘Policy-oriented marine Environmental Research in the Southern European Seas’ (PERSEUS). The publication of this paper is supported by CONISMA, the Italian National Interuniversity Consortium for Marine Sciences and the Flagship project RITMARE.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Alder J (1856) A notice of some new genera and species of British hydroid zoophytes. Ann Mag Nat Hist 2(18):353–362

Allman GJ (1871-1872) A monograph of the gymnoblastic or tubularian hydroids. Ray Society, London

Anderson MJ, Robinson J (2003) Generalized discriminant analysis based on distances. Aust N Z J Stat 45:301–318

Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525

Appeltans W, Ahyong ST, Anderson G et al (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

Astraldi M, Bianchi CN, Gasparini GP et al (1995) Climatic fluctuations, current variability and marine species distribution: a case study in the Ligurian Sea (north-west Mediterranean). Oceanol Acta 18:139–149

Babic K (1910) Prilog fauni Jadranskoga mora. Rad jugosl Akad Znan Umjetn 183:207–232

Babnik P (1948) Hidromeduze iz srednjega in junega Jadrana v letih 1939 in 1940. Hydromedusae from the middle and South Adriatic 1939 and 1940. Acta Adriat 3:275–340

Bavestrello G, Puce S, Cerrano C et al (2006) The problem of seasonality of benthic hydroids in temperate waters. Chem Ecol 22:197–205

Benović A, Lučić D (1996) Comparison of hydromedusae findings in the northern and southern Adriatic Sea. In: Piraino S, Boero F, Bouillon J et al (eds) Advances in Hydrozoan Biology. Sci Mar 60:129–135

Bevilaqua S, Fraschetti S, Terlizzi A et al (2009) The use of taxonomic distinctness indices in assessing patterns of biodiversity in modular organisms. Mar Ecol 30:151–163

Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21

Bianchi CN, Morri C (1993) Range extension of warm-water species in the northern Mediterranean: evidence for climatic fluctuations? Porcup Newsl 5:156–159

Bianchi CN, Morri C (2000) Marine biodiversity of the Mediterranean Sea: situation, problems and prospects for future research. Mar Pollut Bull 40:367–376

Bigelow HB (1909) Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge of Alexander Agassiz, by the U.S. Fish Commission steamer “Albatross” from October, 1904, to March, 1905. XVI. Medusae. Mem Mus Comp Zool Harv 37:1–243

Bigelow HB (1912) Preliminary account of one new genus and three new species of medusae from the Philippines. Scientific results of the Philippine cruise of the fisheries steamer “Albatross”, 1907–1910. No. 22. Proc US Natl Mus 43(1931):253–260

Billard A (1931) Hydroïdes des côtes de Syrie (Mission Gruvel). In: Gruvel A (ed) Les états de Syrie. Richesse marines et fluviales. Exploitation actuelle Avenir. Biblique Faune Colon, Françaises 3:389–395

Bisby FA, Roskov YR, Orrell TM et al (eds) (2009) Species 2000 & ITIS Catalogue of Life: 2009 annual checklist. CD-ROM. Species 2000, Reading, UK

Boero F (1994) Fluctuations and variations in coastal marine environments. PSZNI; Mar Ecol 15:3–25

Boero F (1996) Episodic events: their relevance in ecology and evolution. PSZNI; Mar Ecol 17:237–250

Boero F (2007) The history of the Hydrozoan Society, 1983–2007. Invertebr Zool 4:209–215
Gili JM, Garcia A, Colomer PL (1984) Els Cnidaris bentonicis de les illes Medes. In: Ros J, Olivella I, Gili JM (eds) Els sistemes naturals de les illes Medes 73. Arxiu de la Secció de Ciències, no 73 I.E.C., Barcelona, pp 407–427

Golani D (1998) Impact of Red Sea fish migrants through the Suez Canal on the aquatic environment of the eastern Mediterranean. Bull Yale Univ Sch For Environ Stud 103:375–387

Goy J (1971) Sur la répartition bathymétrique des hydromédues en mer de Ligurie. Rapp P-v Réun Commn Int Explor Scient Mer Méditerr 20:397–400

Goy J (1973) Les Hydromédues de la mer Ligure. Bull Mus Nat Hist Nat Paris 3, (83), Zool 62:965–1008

Graeff E (1884) Uebersicht der Seethierfauna des Golfes von Triest, nebst Notizen über Vorkommen, Lebensweise, Erscheinungs- und Fortpflanzungszeit der einzelnen Arten. III Coelenteraten. Arb Zool Inst Univ Wien 5:333–362

Gravili C, Bouillon J, D’Elia A et al (2007) The life cycle of Gastroblasta raffaelei (Cnidaria, Hydrozoa, Leptomedusae, Campanulariidae) and a review of the genus Gastroblasta. Ital J Zool 74:395–403

Gravili C, D’Ambrosio P, Di Camillo C et al (2008) Clytia hummelincki (Hydroidomedusae: Leptomedusae) in the Mediterranean Sea. J Mar Biol Assoc UK 88:1547–1553

Gravili C, Belmonte G, Cecere E et al (2010) Nonindigenous species along the Apulian coast, Italy. Chem Ecol 26(Supplement):121–142

Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:1–32

Gray JS (1989) Effects of environmental stress on species rich assemblages. Biol J Linn Soc 37:19–32

Greeff R (1869) Protohydra Leuckarti. Eine marine Stammform der Coelenteraten. Z wiss Zool 20:37–54

Grobben K (1915) Adriatic medusae collected by S.M.S. 'Najade'. Anz Akad Wiss Wien 52:2–5

Hadzi J (1914) Poredbena hidroidska istraivanja. III. Haleciella microtheca g. n., sp.n.; Georginella dia- phana g. n., sp. n.; Halanthus adriaticus g. n., sp. n.; Campanopsis clausa (Hadzi) i o porodici Campanopsis uoepe. Rad jugosl Akad Znan Umjetn, Mat Prirod Razr 202:191–241

Hadzi J (1916) Rezultati biolokih istraivanja Jadranjskoga mora. Hidroidi I. Ergebnisse biologischer Er- forschungen des adriatischen Meeres. Hydroiden I. Camella vilae velaebit g. n., sp. n. Croatella g. n. Prirod Istra hrv slav, mat-prirod Razreda (Bull Trav Cl Sci Mat Nat) 7:23–81

Haeckel E (1864) Beschreibung neuer Craspedoder Medusen aus dem Golfe von Nizza. Jena Z Med Naturwiss 1:326–342

Haeckel E (1879) Das System der Medusen. Erster Teil einer Monographie der Medusen. Denkschr Med Naturwiss Ges Jena 1:1–360

Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc Lond 345:119–136

Harmelin J-G, d’Hont J-L (1993) Transfers of bryozoan species between the Atlantic Ocean and the Mediterranean Sea via the Strait of Gibraltar. Oceanol Acta 16:63–72

Hartlaub C (1889) Ueber die Clapare`de’sche ‘‘Eleutheria’’. Zool Anz 12:665–671

Hartlaub C (1894) Die Coelenteraten Helgolands. Vorläufiger Bericht. Wiss Meeresunters N Ser 1:161–206

Hartlaub C (1909) U¨ ber einige von Ch. Gravier in Djibuti gesammelte Medusen. Zool Jb Syst 27:447–476

Heller C (1868) Die zoophyten und Echinodermen des Adriatischen Meeres. Hydroiden I. Camella vilae-velaebit g. n., sp. n. Croatella g. n. Prirod Istra hrv slav, mat-prirod Razreda (Bull Trav Cl Sci Mat Nat) 7:23–81

Hilchey J (2003) The importance of protecting marine biodiversity. http://www.marinebiodiversity.ca/en/pdfs/Jeff_Hilcheys_Essay.pdf. Accessed 30 June 2014

Hughes L (2000) Biological consequences of global warming: is the signal already. Tree 15:56–61

Huvé P (1954) Hydranthea et Campalecium, genres méditerranéens aberrants d’Hydroides de la famille des Haleciides. Recl Trav Stn Mar Endoume 13:173–192

Jablonski D (1986) Causes and mass extinctions: a comparative approach. In: Elliott DK (ed) Dynamics of extinction. Wiley, New York, pp 183–229

Jackson JBC (2008) Ecological extinction and evolution in the brave new ocean. Proc Natl Acad Sci USA 105:11458–11465

Katsanevakis S, Gatto F, Zenetos A, Cardoso AC (2013) How many marine aliens in Europe? Manag Biol Invasion 4:37–42

Keferstein W, Ehlers E (1861) Zoologische Beiträge gesammelt in winter 1859–1860 in Neapel und Messina. W Engelmann, Leipzig, p 112

Kölliker A (1853) Bericht über einige im Heroste 1852 in Messina angestellte vergleichend-anatomische Untersuchungen, in Gegenbaur, Kölliker & Muller, 1853. Z Wiss Zool 4:298–370

Krampl PL (1924) Medusae. In: Report on the Danish oceanographical expeditions, 1908–1910, vol 2. Biol H1: 1–67

Krampl PL (1947) Hydrozoans collected by the “Skagerak” expedition in the eastern Atlantic 1946. Göteb Kungl Vetens-och Vitterh-Samh Hand 5:1–16
Neppi V, Stiasny G (1913) Die Hydromedusen des Golfes von Triest. Arb Zool Inst Univ Wien Zool Stn Triest 20:23–92
Nyholt KG (1951) A contribution to the study of the sexual phase of *Protohydra leuckarti*. Ark Zool 2:593–590
Pallas PS (1766) Elenchus zoophytorum sistens generum adumbrationes generaliores et specierum cognitarum succinctas descriptiones, cum selectis auctorum synonymis. Hagae Comitum i–xxviii: 451
Pavesi P (1878) I Celenterati. Enciclopedia medica italiana del dott. Francesco Vallardi, Milano
Pearson TH, Rosemberg R (1978) Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr Mar Biol Annu Rev 16:229–311
Pell M (1918) Hydromedusae of Hungarian Adriatic (‘Najade’) expeditions 1913, 1914. Allat Kösem 17:22–32
Pell M (1938) The hydromedusae of the Adriatic, collected by the “Najade”. Mat Termész Ert 57:919–930
Péron F, Lesueur CA (1810) Tableau des caractères génériques et spécifiques de toutes les espèces de méduses connues jusqu’à ce jour. Ann Mus Hist Nat Paris 14:325–366
Picard J (1951a) Les hydrides des formations coralligènes des côtes françaises de la Méditerranée. Vie Milieu 2:255–261
Picard J (1951b) Note sur les hydrides littoraux de Banyuls-sur-Mer. Vie Milieu 2:338–349
Picard J (1958a) Origines et affinités de la faune d’hydropolypes (Gymnoblastes et Calyptoblastes) et d’hydroméduses (Antheméduses et Leptoméduses) de la Méditerranée. Rapp P-v Réun Commn Int Explor Scient Mer Méditerr 14:187–199
Picard J (1958b) *Tregoubovia* n. gen. *attenculata* n. sp. Nouvelle Antheméduse, dépourvue de tentacules récoltée dans le plancton profond de Villefranche-sur-mer. Rapp P-v Réun Commn Int Explor Scient Mer Méditerr 14:185–186
Pieper FW (1884) Ergänzungen zu “Heller’s Zoophyten etc. des adriatischen Meeres”. Zool Anz 7:148–152, 164–169, 185–188, 216–221
Piraino S, De Vito D, Brodbeck E et al (2013) Destructive standard squares or low-impact visually driven collection? A comparison of methods for quantitative samplings of benthic hydrozoans. Ital J Zool 80:424–436
Por FD (1999) The great levantine landbridge and the resilient fragment of Tethys. Contributions to the Zoogeography and Ecology of the Eastern Mediterranean Region. 7th International congress of the zoogeography and ecology of Greece and adjacent regions 1:27–36
Puce S, Bavestrello G, Di Camillo CG et al (2009) Long-term changes in hydroid (Cnidaria, Hydrozoa) assemblages: effect of Mediterranean warming? Mar Ecol Evol Perspect 30:313–326
Ranson G (1925) Quelques observations sur le plancton et liste des méduses recueillis par La Tanche pendant sa croisière de 1924. Bull Mus Nat Hist Nat Paris 31:379–382
Ranson G (1936) Méduses provenant des Campagnes du Prince Albert I de Monaco. Rés Camp Scient Prince Albert I Monaco 92:1–245
Régnier C, Fontaine B, Bouchet P (2009) Not knowing, not recording, not listing: numerous unnoticed mollusk extinctions. Conserv Biol 23:1214–1221
Remane A (1927) *Halammohydra*, ein eigenartiges Hydrozoon der Nord- und Ostsee. Z Morph Ökol Tiere 7:643–677
Riedl R (1959) Die Hydroiden des Golfes von Neapel und ihr Anteil an der Fauna unterseeischen Höhlen. In: Ergebnisse der österreichischen Turrhena-Expedition 1952, Teil xvi. Pubbl Staz Zool Napoli 30:591–755
Roberts CM, Hawkins JP (1999) Extinction risk in the sea. Trends Ecol Evol 14:241–246
Rossi L (1950) Celenterati del Golfo di Rapallo (Riviera Ligure), Boll Mus Zool Univ Torino 2:193–235
Salvini-Plawen LV (1966) Zur Kenntnis der Cnidaria des nordadriatischen Mesopsammon. Veröff Inst Meeresforsch Bremerhav, Sonderbd 2:165–186
Sarà M (1985) Ecological factors and their biogeographic consequences in the Mediterranean ecosystem. In: Moraitous-Apostolopoulou M, Kiortsis V (eds) Mediterranean Marine Ecosystems. Plenum Press, New York, pp 1–17
Schmidt HE (1973) Biogeographical problems of the Red Sea area exemplified by hydroids. In: Zeitschel B (ed) The biology of the Indian Ocean (J. Jacobs et al, Ecological studies, analysis and synthesis 3). Springer, New York, pp 283–287
Schuchert P (1898) Hydrodolypen von Rovigno, nebst Uebersicht über das System der Hydrodolypen in allgemeinen. Zool Jb Syst 10:472–555
Schuchert P (2001) Survey of the family Corynidae (Cnidaria, Hydrozoa). Rev Suisse Zool 108:739–878
Schuchert P (2005) Rediscovery of *Coryne fucicola* (de Filippi, 1866) (Cnidaria: Hydrozoa). Cah Biol Mar 46:305–310
