CPM: A Large-scale Generative Chinese Pre-trained Language Model

Zhengyan Zhang, Xu Han, Hao Zhou, Pei Ke, Yuxian Gu, Deming Ye,
Yujia Qin, Yusheng Su, Haozhe Ji, Jian Guan, Fanchao Qi, Xiaozhi Wang, Yanan Zheng,
Guoyang Zeng, Huanqi Cao, Shengqi Chen, Daixuan Li, Zhenbo Sun,
Zhiyuan Liu†, Minlie Huang†, Wentao Han, Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun
Department of Computer Science and Technology, Tsinghua University & BAAI

Abstract

Pre-trained Language Models (PLMs) have proven to be beneficial for various downstream NLP tasks. Recently, GPT-3, with 175 billion parameters and 570GB training data, drew a lot of attention due to the capacity of few-shot (even zero-shot) learning. However, applying GPT-3 to address Chinese NLP tasks is still challenging, as the training corpus of GPT-3 is primarily English, and the parameters are not publicly available. In this technical report, we release the Chinese Pre-trained Language Model (CPM) with generative pre-training on large-scale Chinese training data. To the best of our knowledge, CPM, with 2.6 billion parameters and 100GB Chinese training data, is the largest Chinese pre-trained language model, which could facilitate several downstream Chinese NLP tasks, such as conversation, essay generation, cloze test, and language understanding. Extensive experiments demonstrate that CPM achieves strong performance on many NLP tasks in the settings of few-shot (even zero-shot) learning. The code and parameters are available at https://github.com/TsinghuaAI/CPM-Generate.

1 Introduction

Pre-trained Language Models (PLMs) (Peters et al., 2018; Radford et al., 2018; Devlin et al., 2019; Brown et al., 2020) have been developed for a variety of tasks in Natural Language Processing (NLP), as they can learn rich language knowledge from large-scale corpora, which is beneficial for downstream tasks. ELMo (Peters et al., 2018) first introduces bidirectional language models to learn contextual word vectors via large-scale pre-training. GPT (Radford et al., 2018) applies generative pre-training to a Transformer-based language model (Vaswani et al., 2017), which improves natural language understanding on a wide range of benchmarks. BERT (Devlin et al., 2019) is proposed to pre-train deep bidirectional representations on unlabeled texts by jointly conditioning on both left and right contexts. RoBERTa (Liu et al., 2019) and ALBERT (Lan et al., 2020) enhance BERT (Devlin et al., 2019) by dynamic masking, parameter sharing and modifying pre-training tasks. ERNIE (Zhang et al., 2019), KEPLER (Wang et al., 2019) and SentiLARE (Ke et al., 2020) introduce external knowledge to language representation learning by auxiliary pre-training tasks.

Among these PLMs, GPT-3 (Brown et al., 2020), with 175 billion parameters and 570GB training data, has been the center of attention and proven to be effective in various few-shot (even zero-shot) NLP tasks. The powerful text generation capability of GPT-3 makes it available to diverse applications, such as question answering, summarization, conversation, computing basic arithmetic, and generating kinds of text, including essay, fiction, code, spreadsheets, etc. However, incorporating GPT-3 to address Chinese NLP tasks is still challenging, as the training corpus of GPT-3 is primarily English (93% by word counting as reported by Brown et al. (2020)), and the parameters are not publicly available. Although there are some previous works providing powerful Chinese pre-trained language models (Cui et al., 2020; Xu et al., 2020; Wei et al., 2019; Sun et al., 2019; Cui et al., 2019a), their capabilities are limited due to the model size. Hence, how to pre-train a large-scale Chinese language model needs more exploration, such as the construction of Chinese vocabulary and the design of the training strategy.

In this technical report, we release the Chinese Pre-trained Language Model (CPM) with generative pre-training on large-scale Chinese corpora. CPM is a Transformer-based autoregressive
Table 1: Model sizes. n_{param} is the number of parameters. n_{layers} is the number of layers. d_{model} is the dimension of hidden states, which is consistent in each layer. n_{heads} is the number of attention heads in each layer. d_{head} is the dimension of each attention head.

Model	n_{param}	n_{layers}	d_{model}	n_{heads}	d_{head}
CPM-Small	109M	12	768	12	64
CPM-Medium	334M	24	1,024	16	64
CPM-Large	2.6B	32	2,560	32	80

Table 2: Details of training data.

Data Source	Encyclopedia	Webpage	Story	News	Dialog
Size	~ 40GB	~ 39GB	~ 10GB	~ 10GB	~ 1GB

language model, with 2.6 billion parameters and 100GB Chinese training data. To the best of our knowledge, CPM is the largest Chinese pre-trained language model, which could facilitate downstream Chinese NLP tasks, such as conversation, essay generation, cloze test, and language understanding. Experiments on various Chinese NLP tasks demonstrate that CPM achieves strong performance on many NLP tasks in the few-shot (even zero-shot) settings. With the increase of parameters, CPM performs better on most datasets, indicating that larger models are more proficient at language generation and language understanding.

The main contributions of this technical report can be summarized as follows:

- We release a Chinese autoregressive language model with generative pre-training, called CPM, which has 2.6 billion parameters.
- We construct a new sub-word vocabulary based on the word segmented corpus to adapt for Chinese corpora and increase the batch size to 3,072 for more stable model training.
- Extensive experiments demonstrate that CPM achieves strong performance on many NLP tasks in the few-shot (even zero-shot) settings.

2 Our Approach

2.1 Chinese PLM

Our current model is a left-to-right Transformer decoder, which is similar to the model architecture of GPT (Radford et al., 2019). We pre-train three models with different sizes, as shown in Table 1. In order to adapt CPM to Chinese corpora, we build a new sub-word vocabulary and adjust the training batch size.

Vocabulary Construction: Previous works on Chinese pre-trained models usually adopt the sub-word vocabulary of BERT-Chinese (Devlin et al., 2019), which would split the input text to a character-level sequence. However, Chinese words usually contain several characters, and some important semantic meanings of words would be lost in the character-level sequence. To solve this problem, we construct a new sub-word vocabulary, containing both words and characters. For example, some common words would be added to the vocabulary.

Training Strategy: Since the sparseness of word distributions of Chinese is more serious than that of English, we adopt a large batch size to make the model training more stable. Compared to the batch size (1 million tokens) used in GPT-3 2.7B (Brown et al., 2020), our batch size (3 million tokens) is two times larger. For the largest model, which cannot be stored in a single GPU during training, we partition the model across GPUs along the width dimension to make the large-scale training available and reduce data-transfer among nodes.

2.2 Data Processing

Specifically, we construct a new sub-word vocabulary based on the word segmented corpus using unigram language model (Kudo and Richardson, 2018). Meanwhile, considering that the word segmentation introduces extra splitters between words, we set a special token as the splitter to make the sub-word process reversible. In contrast, the tokenizer of BERT-Chinese is irreversible because it will insert extra spaces between Chinese characters and treat the extra spaces as the same as the original spaces in the text.

We collect different kinds of texts in our pre-training, including encyclopedia, news, novels, and Q&A. The details of our training data are shown in Table 2. Since the input sequence length is usually larger than that of a single document, we concatenate different documents together by adding “end of document” token after each document to make full use of the input length.

2.3 Pre-training Details

Based on the hyper-parameter searching on the learning rate and batch size, we set the learning rate as 1.5×10^{-5} and the batch size as 3,072, which makes the model training more stable. In the first version, we still adopt the dense attention and the...
max sequence length is 1,024. We will implement sparse attention in the future. We pre-train our model for 20,000 steps, and the first 5,000 steps are for warm-up. The optimizer is Adam (Kingma and Ba, 2015). It takes two weeks to train our largest model using 64 NVIDIA V100.

3 Experiments

3.1 Text Classification

Dataset: We use TouTiao News Titles Classification (TNEWS), IFLYTEK app description classification (IFLYTEK), and Original Chinese NLI (OCNLI) as our benchmark datasets for text classification (Xu et al., 2020; Hu et al., 2020). Since we aim to evaluate the zero-shot ability of CPM on text classification tasks, we directly use the validation sets of these three datasets without any training instance. The amount of the validation set of TNEWS / IFLYTEK / OCNLI is 10K / 2.6K / 3K. Note that, we exclude the instances with the label “-” in OCNLI.

Implementation Details: We calculate the perplexity of each candidate sentence-label pair and treat the pair having the lowest perplexity as the prediction. The templates of these three tasks are formulated by

TNEWS: 这是关于L的文章：P
(This passage is about L: P),

IFLYTEK: 这是关于L的应用程序：P
(This application is about L: P),

OCNLI: S1? 是，S2 (S1? Yes, S2),
S1? 否，S2 (S1? No, S2),
S1? 也许，S2 (S1? Maybe, S2),

where L is the label name, P is the input text, S1 and S2 are the premise and hypothesis.

Since TNEWS and IFLYTEK have more than 10 kinds of labels, we adopt a simpler validation setting, which randomly samples 3 false labels for each instance and performing 4-class classification for better efficiency. To make it more stable, we repeat it three times and report the averaged results. For OCNLI, which only has 3 kinds of labels, we hold the original validation set. However, the validation set of OCNLI is unbalanced, where the amount of “entailment” / “neutral” / “contradiction” is 947 / 1103 / 900. If the model only predicts the label “neutral”, the accuracy is about 0.374.

Results: As shown in Table 3, CPM-large achieves promising results on these classification datasets without any training samples. Compared to random prediction, the knowledge learned from pre-training significantly improves the performance. Although the medium model is three times as large as the small model, the performances on TNEWS and OCNLI are very close. However, CPM-Large significantly outperforms these two smaller models on all three datasets. It indicates that the magic of the model size is not linear and would happen when the model size exceeds a specific boundary. Besides, the results of CPM-small and CPM-medium on OCNLI are close to that of the strategy only predicting the label “neutral”. It suggests that natural language inference is harder than other downstream tasks in the setting of zero-shot learning, which is consistent with the observation in Brown et al..

3.2 Chinese Idiom Cloze

Dataset: We use the Chinese Idiom cloze test dataset (ChID) (Zheng et al., 2019) as our benchmark dataset. Each passage in the dataset may contain multiple blanks. For each blank, there are 10 candidate idioms with 1 golden truth. Some of the false candidates are similar to the answer in meanings. The amount of training / validation / test set is 520K / 20K / 20K.

Implementation Details: For the supervised setting, we use a template to convert the passage and the candidates to a natural language question. Given the passage P and 10 candidate idioms I1, I2, ..., I10, the template can be formulated as

Dataset	TNEWS	IFLYTEK	OCNLI
CPM-Small	0.626	0.584	0.378
CPM-Medium	0.618	0.635	0.379
CPM-Large	0.703	0.708	0.442

Table 3: Zero-shot performance on text classification tasks (accuracy). Random prediction would have 0.25 on TNEWS and IFLYTEK, 0.33 on OCNLI.

Dataset	Supervised	Unsupervised
CPM-Small	0.657	0.433
CPM-Medium	0.695	0.524
CPM-Large	0.804	0.685

Table 4: Results on ChID dataset in the supervised and unsupervised settings. The random prediction would have 0.10 in the unsupervised setting.
We report the accuracy on the test set of each model. For the fully supervised setting, we can see that CPM produces promising results. Specifically, when we are predicting one idiom, we leave its blank in the passage and remove the blanks of other idioms from the passage.

For the unsupervised setting, we fill the candidate idioms into the blank to form a group of complete passages. We also consider each idiom blank individually if there are multiple blanks in a passage. For each blank, we can get 10 passages corresponding to the 10 candidate idioms. Then we calculate the perplexity of each passage and treat the one with the lowest perplexity as the prediction.

Results: The results are shown in Table 4. We report the accuracy on the test set of each model. For the fully supervised setting, we can see that CPM can be fine-tuned for the specific input template, solving multiple-choice tasks by uni-direction auto-regressive language modeling. In our experiments, we didn’t take much time to design the input template for this task, and thus there might exist better templates that can help the model to show its full ability. We will leave this part as future work. For the unsupervised setting, we can see that CPM produces promising results. The unsupervised result of CPM-Large even outperforms the result of CPM-Medium and is comparable to CPM-Small in the supervised setting, reflecting the strong power of CPM in Chinese language modeling.

3.3 Dialogue Generation

Dataset: We use Short-Text Conversation (STC) (Shang et al., 2015) as our benchmark dataset for dialogue generation, which consists of post-response pairs from Weibo. We adopt the same data split as the existing work (Wang et al., 2020). The amount of training / validation / test set is 4.4M / 20K / 20K, respectively. The average length of posts / responses is 20.6 / 15.4.

Baseline: We choose CDial-GPT (Wang et al., 2020) as our baseline, which is the state-of-the-art pre-trained model for Chinese dialogue generation. We directly use the codes and the pre-trained model released by the original paper.

Implementation Details: In the supervised experiment, we utilize a similar hyper-parameter setting as pre-training and fine-tune CPM on the training set of STC. In the few-shot experiment which doesn’t include the fine-tuning process, we follow the existing work (Radford et al., 2019; Brown et al., 2020) to condition the language model on a context of 4 examples pairs of the format Context:

Average	Extrema	Greedy	Dist-1	Dist-2	
CDial-GPT	0.889	0.797	0.810	1.963 / 0.011	20.814 / 0.126
CPM-Large	0.928	0.805	0.815	3.229 / 0.007	68.008 / 0.154

Table 5: Results on STC dataset in the few-shot and supervised settings.

Option	Post:	CDial-GPT:	CPM-Large:
1	你算算这道题?	Do you really believe it?	Math lets us learn a lot. Study hard and go home, tomorrow.
1 (Few-shot)	Do you really believe it?	Math lets us learn a lot. Study hard and go home, tomorrow.	
1 (Supervised)	Do you really believe it?	Math lets us learn a lot. Study hard and go home, tomorrow.	
10	这是必杀技吗?	Is this going to kill me?	I can’t answer any question.
10	Is this going to kill me?	Is this going to kill me?	I can’t answer any question.
10	要不要把我和你一起扔进深海去?	Do you really believe it?	Math lets us learn a lot. Study hard and go home, tomorrow.
10	Do you really believe it?	Math lets us learn a lot. Study hard and go home, tomorrow.	
10 (Supervised)	Do you really believe it?	Math lets us learn a lot. Study hard and go home, tomorrow.	

Table 6: Examples of generated responses on STC.
Table 7: Results of CPM with different amounts of parameters on STC dataset in the few-shot setting.

	Average	Dist-1	Dist-2
CPM-Small	0.928	2.201 / 0.004	22.754 / 0.046
CPM-Medium	0.910	2.842 / 0.005	31.934 / 0.058
CPM-Large	0.928	3.229 / 0.007	68.008 / 0.154

Table 8: Zero-shot (zs) and one-shot (os) results on Question Answering (QA) datasets, including DuReader (Zhida and Search) and CMRC2018, we did experiments on models with three different sizes: small (s), medium (m) and large (l).

	Zhida	Search	CMRC2018			
	F1	EM	F1	EM		
s + zs	4.01	0.18	4.15	0.65	6.03	0.20
s + os	4.75	0.34	4.45	0.59	6.14	0.22
m + zs	5.29	0.29	5.03	0.61	8.60	0.53
m + os	5.76	0.47	5.14	0.55	9.00	0.75
l + zs	5.18	0.27	5.08	0.59	13.37	1.31
l + os	6.08	0.56	5.19	0.68	16.56	3.73

3.4 Question Answering

Dataset: We adopt CMRC2018 (Cui et al., 2019b) and DuReader (He et al., 2018) as our benchmark for Question Answering (QA). CMRC2018 requires the model to extract an answer span from a Wikipedia passage for the given question, which is similar to SQuAD (Rajpurkar et al., 2016). DuReader consists of questions from real-world user logs from Baidu Search and Baidu Zhidao.

Results: As shown in Table 8, we perform the experiments on three datasets and compare models with different sizes: small (s), medium (m) and large (l). From the table, we can see that with the size growing, CPM is performing better. Among all the models, large is always the best. And, the results in the one-shot setting are better than those in the zero-shot setting. We guess CPM is able to imitate the format in previous sequences and organize the language accordingly. We also analyze the generated answer and find that CPM prefers to generate long and repetitive sentences instead of a short and precise one, which results in low scores. We believe it is worth exploring how to make CPM generate brief and proper answers in the future. In general, CPM does not achieve very high scores in either benchmark. We guess it’s related to the format of the pre-training data.

3.5 Entity Generation

Dataset: We use XLORE, which includes 446,236 relations and 16,284,901 entities, as our benchmark dataset for entity generation. These relations and
Table 9: BLEU-1 results of CPM with different amounts of parameters on XLORE dataset in the few-shot setting.

Relation	Prompt	CPM
首都 (Capital)	美国首都华盛顿	东京
	China Capital Beijing	Tokyo
	日本首都	
	Japan Capital	

Relation	Prompt	CPM
主要工艺 (Main Process)	酱焖辣椒 (Main Process) Stew	煎
	当归鸭肉煲 (Main Process) Boil	
	菠菜煎蛋饼 (Main Process)	

Relation	Prompt	CPM
学科 (Subject)	恒星级黑洞 学科宇宙论	地质学
	(Stellar Black Hole) Subject Cosmology	Geology
	品类需求强度 学科 品牌经济学	
	(Category Demand Intensity) Subject Economics	
	大地构造学 学科	
	(Tectonic Geology) Subject	

Table 10: Examples of generated entities on XLORE with CPM-Large.

entities are from Wikipedia and Baidu Baike.

Implementation Details: We evaluate CPM on the few-shot setting with different amounts of parameters and report BLEU-1 results. In detail, we randomly select triples (head entity, relation, tail entity) by the same relations from XLORE and combine \(N \) triples and an incomplete triple (head entity, relation) into a prompt. Then, given the prompt, the models need to predict the corresponding tail entity.

Results: We present the results in Table 9. As we can see from the table, CPM-large achieves the best performance among these three models. Surprisingly, given a prompt with two triples, CPM can achieve comparable results to that with four triples. It indicates that CPM can imitate the format and probe factual knowledge to generate a proper tail entity in the extreme few-shot scenarios. We also provide some cases in Table 10 to demonstrate the ability of CPM.

4 Future Work

In the future, we will further explore the power of large-scale pre-trained models on Chinese by adding more training data and increasing the model size. Due to the extremely expensive cost of pre-training, we will try to optimize the training framework, such as the data-transfer scheme between different nodes, to accelerate the process. There are some previous works including LAMB (You et al., 2020) and DeepSpeed (Rasley et al., 2020). Besides, it is important to reduce the model size by model compression (Sanh et al., 2019; Jiao et al., 2019; Zhang et al., 2020).

Meanwhile, we will also include diverse data to enhance model performance. For text data, we will add a multi-lingual corpus to train a large-scale Chinese-centered multi-lingual language model. For structured data such as knowledge graphs, which is important for PLMs (Peters et al., 2019; Xiong et al., 2020; Su et al., 2020), we will explore new learning algorithms to train a joint model, which can learn from both texts and knowledge graphs for better general intelligence.

Acknowledgments

Thanks to the Beijing Academy of Artificial Intelligence (BAAI) for providing the computing resources and web services of this work. In addition,
we would like to thank NetEase Inc., zhihu.com, and aminer.cn for the support in collecting the Chinese corpus.

Disclaimer of Warranties
The text generated by CPM is automatically generated by a neural network model trained on a large number of texts, which does not represent our official attitudes and preferences. The text generated by CPM is only used for technical and scientific purposes. If it infringes on your rights and interests or violates social morality, please do not propagate it, but contact us and we will deal with it promptly.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. 2020. Language models are few-shot learners. arXiv preprint arXiv:2005.14165.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin Wang, and Guoping Hu. 2020. Revisiting pretrained models for Chinese natural language processing. In Findings of EMNLP.

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, and Guoping Hu. 2019a. Pre-training with whole word masking for Chinese bert. arXiv preprint arXiv:1906.08101.

Yiming Cui, Ting Liu, Wanxiang Che, Li Xiao, Zhipeng Chen, Wentao Ma, Shijin Wang, and Guoping Hu. 2019b. A span-extraction dataset for Chinese machine reading comprehension. In Proceedings of EMNLP.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of NAACL-HLT.

Jesse Dodge, Gabriel Ilharco, Roy Schwartz, Ali Farhadi, Hannaneh Hajishirzi, and Noah Smith. 2020. Fine-tuning pretrained language models: Weight initializations, data orders, and early stopping. arXiv preprint arXiv:2002.06305.

Wei He, Kai Liu, Jing Liu, Yajian Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua Wu, Qiaoqiao She, Xuan Liu, Tian Wu, and Haifeng Wang. 2018. DuReader: a Chinese machine reading comprehension dataset from real-world applications. In Proceedings of ACL Workshop.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The curious case of neural text degeneration. In Proceedings of ICLR.

Hai Hu, Kyle Richardson, Liang Xu, Lu Li, Sandra Kuebler, and Lawrence S Moss. 2020. Ocnli: Original Chinese natural language inference. arXiv preprint arXiv:2010.05444.

Xiaqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. 2019. TinyBERT: Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351.

Pei Ke, Jian Guan, Minlie Huang, and Xiaoyan Zhu. 2018. Generating informative responses with controlled sentence function. In Proceedings of ACL.

Pei Ke, Haozhe Ji, Siyang Liu, Xiaoyan Zhu, and Minlie Huang. 2020. SentiLARE: Sentiment-aware language representation learning with linguistic knowledge. In Proceedings of EMNLP.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In 3rd International Conference on Learning Representations.

Taku Kudo and John Richardson. 2018. Sentencpiece: A simple and language independent subword tokenizer and detokenizer for neural text processing. In Proceedings of EMNLP.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. 2020. ALBERT: A lite bert for self-supervised learning of language representations. In Proceedings of ICLR.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang. 2020. Mixout: Effective regularization to finetune large-scale pretrained language models. In Proceedings of ICLR.

Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. 2016. A diversity-promoting objective function for neural conversation models. In Proceedings of NAACL-HLT.

Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. 2016. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. In Proceedings of EMNLP.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint arXiv:1907.11692.

Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. 2020. On the stability of fine-tuning bert: Misconceptions, explanations, and strong baselines. arXiv preprint arXiv:2006.04884.
Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings of NAACL-HLT.

Matthew E. Peters, Mark Neumann, Robert L. Logan IV, Roy Schwartz, Vidur Joshi, Sameer Singh, and Noah A. Smith. 2019. Knowledge enhanced contextual word representations. In Proceedings of EMNLP.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018. Improving language understanding by generative pre-training. In Proceedings of OpenAI Technical report.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. 2019. Language models are unsupervised multitask learners. In Proceedings of OpenAI Technical report.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. 2016. SQuAD: 100,000+ questions for machine comprehension of text. In Proceedings of EMNLP.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. 2020. Deepspeed: System optimizations enable training deep learning models with over 100 billion parameters. In Proceedings of KDD, pages 3505–3506.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. 2019. DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108.

Lifeng Shang, Zhengdong Lu, and Hang Li. 2015. Neural responding machine for short-text conversation. In Proceedings of ACL-IJCNLP.

Yida Wang, Pei Ke, Yinhe Zheng, Kaili Huang, Yong Jiang, Xiaoan Zhu, and Minlie Huang. 2020. A large-scale chinese short-text conversation dataset. In Proceedings of NLPCC.

Junqiu Wei, Xiaozhe Ren, Xiaoguang Li, Wenyong Huang, Yi Liao, Yasheng Wang, Jiaishu Lin, Xin Jiang, Xiao Chen, and Qun Liu. 2019. Nezha: Neural contextualized representation for chinese language understanding. arXiv preprint arXiv:1909.00204.

Chen Xing, Wei Wu, Yu Wu, Jie Liu, Yalou Huang, Ming Zhou, and Wei-Ying Ma. 2017. Topic aware neural response generation. In Proceedings of AAAI.

Wenhan Xiong, Jingfei Du, William Yang Wang, and Veselin Stoyanov. 2020. Pretrained encyclopedia: Weakly supervised knowledge-pretrained language model. In Proceedings of ICLR.

Liang Xu, Xuanwei Zhang, Lu Li, Hai Hu, Chenjie Cao, Weitang Liu, Junyi Li, Yudong Li, Kai Sun, Yechen Xu, et al. 2020. Clue: A chinese language understanding evaluation benchmark. arXiv preprint arXiv:2004.05986.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. 2020. Large batch optimization for deep learning: Training bert in 76 minutes. In Proceedings of ICLR.

Zhengyan Zhang, Xu Han, Zhiyuan Liu, Xin Jiang, Maosong Sun, and Qun Liu. 2019. ERNIE: Enhanced language representation with informative entities. In Proceedings of ACL.

Zhengyan Zhang, Fanchoa Qi, Zhiyuan Liu, Qun Liu, and Maosong Sun. 2020. Know what you don’t need: Single-shot meta-pruning for attention heads. arXiv preprint arXiv:2011.03770.

Chujie Zheng, Minlie Huang, and Aixin Sun. 2019. ChID: A large-scale Chinese IDiom dataset for cloze test. In Proceedings of ACL.

A Contributions

Zhengyan Zhang, Xu Han, and Hao Zhou implemented the large-scale models and model-parallel strategies.

Huanqi Cao, Shengqi Chen, Daixuan Li, and Zhenbo Sun built the training infrastructure.

Pei Ke, Deming Ye, Jian Guan, Fanchao Qi, and Xiaozhi Wang collected, filtered, deduplicated the training data.
Zhengyan Zhang, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, Yusheng Su, and Haozhe Ji implemented the downstream tasks and the software framework for supporting them.

Hao Zhou, Guoyang Zeng, Xu Han, and Yanan Zheng implemented the demos of language generation and knowledge retrieval using our CPM.

Guoyang Zeng conducted the human evaluations of the model.

Hao Zhou, Zhengyan Zhang, Pei Ke, Yuxian Gu, Deming Ye, Yujia Qin, and Yusheng Su wrote the paper.

Zhiyuan Liu, Minlie Huang, and Wentao Han designed and led the research.

Jie Tang, Juanzi Li, Xiaoyan Zhu, Maosong Sun provided valuable advices to the research.