5-1-2015

Comparative Analysis of Wolbachia Genomes Reveals Streamlining and Divergence of Minimalist Two-Component Systems

Steen Christensen
Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, christe@fiu.edu

Laura Renee Serbus
Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, lserbus@fiu.edu

Follow this and additional works at: http://digitalcommons.fiu.edu/cas_bio

Recommended Citation
Christensen, Steen and Serbus, Laura Renee, 'Comparative Analysis of Wolbachia Genomes Reveals Streamlining and Divergence of Minimalist Two-Component Systems' (2015). Department of Biological Sciences. 70.
http://digitalcommons.fiu.edu/cas_bio/70

This work is brought to you for free and open access by the College of Arts, Sciences & Education at FIU Digital Commons. It has been accepted for inclusion in Department of Biological Sciences by an authorized administrator of FIU Digital Commons. For more information, please contact dcc@fiu.edu.
Comparative Analysis of *Wolbachia* Genomes Reveals Streamlining and Divergence of Minimalist Two-Component Systems

Steen Christensen and Laura Renee Serbus
Department of Biological Sciences and Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199

ABSTRACT Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied *Caulobacter crescentus* system, which carries dozens of these pairs, the streamlined bacterial endosymbiont *Wolbachia* *pipientis* encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from *C. crescentus*, the related *Anaplasmataceae* species *Anaplasma phagocytophilum* and *Ehrlichia chaffeensis*, and 12 sequenced *Wolbachia* strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within *Wolbachia* and these other *Anaplasmataceae*. Genes involved in two-component signaling were positioned differently within the various *Wolbachia* genomes, whereas the local context of each gene was conserved. Unlike *Anaplasma* and *Ehrlichia*, *Wolbachia* two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in *Wolbachia*, although residues that specify cognate pairing diverged substantially from other *Anaplasmataceae*. These findings indicate that *Wolbachia* two-component signaling pairs share considerable functional overlap with other *α*-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.

KEYWORDS *Wolbachia* endosymbiont *α*-proteobacteria two-component signaling genome organization

Signaling mechanisms endow cells with the ability to sense and respond to environmental changes. One of the most-well studied types of signaling is that of two-component regulatory systems (TCSs), consisting of a sensor histidine kinase (HK) and paired response regulator (RR) (Mitrophanov and Groisman 2008; Capra and Laub 2012; Jung et al. 2012). TCS relays are the predominant form of signaling used in a majority of prokaryotes and can be found in fungi, slime molds, and plants as well (Krell et al. 2010; Stock et al. 2000; Grefen and Harter 2004; Capra and Laub 2012). A large body of research has determined that these sensor HKs are capable of recognizing stimuli such as oxygen, light, salinity, osmolarity, nutrients, or quorum sensing cues (Mascher et al. 2006). This leads to activation of cognate RRs, which coordinate a wide range of responses, including altering chemotaxis, activating sporulation, regulating bacterial differentiation, promoting binary fission, and regulating biofilm formation (Stock et al. 2000). TCSs have been found to regulate expression of genes that underlie key agricultural symbioses with *Rhizobium* and *Agrobacterium*, as well as virulence properties of pathogens like *Vibrio* sp., *Brucella* sp., and *Pseudomonas* sp. (Waters and Bassler 2005; Miller and Bassler 2001). In addition to positioning HK-RR pairs as desirable drug targets, this highlights the fundamental importance of TCS mechanisms.

The range of TCS proteins carried by each bacterium appears to correspond to the complexity of the bacterial life cycle. Some *α*-proteobacteria carry upwards of 100 HK and RR homologs, and the model system *Caulobacter crescentus*, which has a complex, dimorphic life cycle, encodes 62 HKs and 44 RRs (Galperin 2005; Purcell et al. 2008). In stark contrast, the obligate intracellular bacteria *Anaplasma phagocytophilum* and *Ehrlichia chaffeensis* have retained only 3 HKs and 3 RRs (Rikihisa 2010; Wakeel et al. 2010; Cheng et al. 2006;
Kumagai et al. 2006; Lai et al. 2009). These are the TCS pairs CckA/ CtrA, which coordinate gene expression and DNA replication, PleC/ PleD, which drive synthesis of cyclic-di-guanylic monophosphate (c-di-GMP), and NtrY/NtrX, which coordinate nitrogen sensing with changes in gene expression (Laub et al. 2002; Skerker and Laub 2004; Jacobs-Wagner 2004; Paul et al. 2004; Aldridge et al. 2003; Pawlowski et al. 1991; Carrica et al. 2012). Studies have shown that HK/RR relationships are generally maintained through specific HK and RR residues that interface with one another (Skerker et al. 2008; Capra et al. 2012b). As such, insulation against cross-talk between HK/RR pairs is regarded as essential for maintaining function in vivo (Siryaporn and Goulian 2008; Groban et al. 2009; Laub and Goulian 2007). The conservation of these three specific TCS pairs highlights their importance as core environmental response mechanisms within the Anaplasmataceae family.

The mechanisms used by the core TCS proteins of Anaplasmataceae have been investigated in several bacterial systems. Cell-cycle kinase A (CckA) is referred to as a “hybrid” histidine kinase (Laub and Goulian 2007). It has an N-terminal sensor region neighbored by a central dimerization and phosphotransfer domain (DHp), an internal catalytic domain (CA), and a C-terminal REC domain (Supporting Information, Figure S1A). On activation, the CA domain of CckA transfers a phosphate from hydrolyzed ATP to a conserved histidine (His) in the DHp domain (Jacobs et al. 1999). This phosphate is ultimately transferred to an N-terminal REC domain in its cognate RR, in this case cell-cycle transcriptional regulator A (CtrA) (Jacobs et al. 1999). This phosphoryltransfer to the CtrA REC is facilitated by intermediary REC domains, including a C-terminal REC domain on CckA, and in some cases single REC domain proteins such as ChpT in C. crescentus (Biondi et al. 2006; Laub et al. 2007). Receipt of a phosphate by CtrA activates the function of its output domain, a helix-turn-helix (HTH) DNA-binding domain (Figure S1A). This enables CtrA to function in both transcriptional regulation and inhibition of chromosome replication (Laub et al. 2002; Skerker and Laub 2004).

By contrast, PleC and NtrY HKs are classified as “canonical” histidine kinases (Laub and Goulian 2007). These proteins carry an N-terminal sensor region, an internal DHp domain, and a C-terminal CA domain (Figure S1B). The CA phosphorylates the conserved His within the DHp, which transfers the phosphate to the cognate RR, PleD or NtrX, respectively (Lai et al. 2009; Kumagai et al. 2006). These RRs carry one or more REC domains with conserved aspartate (Asp) residues. Functional data suggest that the N-terminal REC has the most significant regulatory impact on the C-terminal output region of the RR (Lai et al. 2009; Gao et al. 2007). For PleD, that output region is a C-terminal GGDEF domain that synthesizes the important second messenger, c-di-GMP (Ryjenkov et al. 2005; Römling and Amikam 2006). For NtrX, that output domain has DNA-binding capacity, which enables it to act as a transcription factor for genes involved in nitrogen metabolism (Pawlowski et al. 1991; Cheng et al. 2014).

One of the most widespread Anaplasmataceae species is Wolbachia pipientis, present in 40% of all insect species as well as some filamentary nematodes (Zug and Hammerstein 2012; Hedges et al. 2008; Cordaux et al. 2001; Taylor et al. 2005). Recent work has shown these bacterial endosymbionts to be closely linked with human health interests. Wolbachia underlie the neglected diseases African river blindness and lymphatic filariasis, which together threaten up to one-sixth of the world population (Hoeerauf 2008; Saint Andre et al. 2002; Taylor et al. 2000). Wolbachia also suppress replication and transmission of RNA viruses in insects, including Dengue fever and Chikungunya (Teixeira et al. 2008; Hedges et al. 2008; Moreira et al. 2009). This raises a number of fundamental questions about Wolbachia–host interactions. How do Wolbachia respond to environmental cues? To what extent are TCS-related genes shared between Wolbachia genotypes? Is there any evidence that putative TCS homologs are functional, and does variation between TCS genes in different Wolbachia strains help elucidate that function? TCS genes have previously been reported in Wolbachia, but very little is known about their function to date (Cheng et al. 2006; Brilli et al. 2010). Here, we investigate these questions, informed by publicly available bioinformatic data.

MATERIALS AND METHODS

Identification of TCS-related homologs

All sequenced Wolbachia strains available in Genbank were initially assessed for completion (http://www.ncbi.nlm.nih.gov/genome/?term=wolbachia). Genomes documented as fully complete or near-complete were selected for further analysis and classified according to supergroup identity, as indicated by prior phylogenetic analyses (Table 1) (Cordaux et al. 2008). These genomes were individually searched for homology to deduced-TCS sequences using the NCBI-blastp server tool along with published information for C. crescentus HK and RR protein sequences (protein–protein BLAST; http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Altschul et al. 1997, 2005). All such queries returned only CckA, PleC, CtrA, and PleD homologs. Full sequences of all Wolbachia TCS proteins were compared against E. chaffeensis homologs, and the resulting similarity/identity were compiled for the full sequences of all Wolbachia TCS proteins based on annotated *ab initio*Prodigal 2.00 or GeneMark+ predictions. Components with known functional interaction to the TCS regulatory network in C. crescentus were also identified and homology searches were performed in a similar manner, identifying Wolbachia homologs for DivL, DnaA, CcrM, and GpX/P. No other TCS-related homologs were identified, as per a cutoff e-value ≥ 1. Identity/similarity values to *E. chaffeensis* homologs were determined for all TCS-related proteins except CcrM, which was not found in other Anaplasmataceae species. Our results are consistent with other published data regarding the absence of NtrY/NtrX and single REC-phosphotransfer proteins (Brilli et al. 2010; Cheng et al. 2006).

Genome alignments and operon predictions

Genomic positions for TCS genes and the associated ORFs of interest were determined for the completely sequenced and assembled Wolbachia strains wOo, wBm, wMel, wPip Pe, wHa, wNo, and wRi, as well as for *A. phagocytophilum* and *E. chaffeensis*. First, the position and orientation of the origin of replication (ori) relative to *hemE* were identified (Ioannidis et al. 2007). Then, the distance between the first nucleotide position of each open reading frame (ORF) and the ori was calculated and set as a percentage of the total nucleotide size of each genome. The orientation of each ORF was also determined and positioned onto circular syntenic representations of each genome. Additional descriptive information for these genomes provided by Genbank (size, GC content, and estimates of gene/protein number) was included in Figure 1 for reference purposes.

Regions surrounding or adjacent to the identified TCS genes were further aligned using the Archaeal and Bacterial Synteny Explorer and using the “best genomic match” search parameter at a 10% minimal score threshold (http://archaea.u-psud.fr/absynte/) (Despalins et al. 2011). Scaled reproductions of these alignments were produced using information from the Arkin lab prokaryotic operon predictions program (www.microbesonline.org) and the program DOOR: Database of prokaryotic OpeRons (http://cclab.bmb.uga.edu/DOOR/) (Price et al. 2005a,b, Dam et al. 2007, Mao et al. 2009). Statistical calls regarding
the probability of operon structure were used to guide color-coding of ORFs. Cross-referencing of overlapping data sets from both programs was used to confirm predictions when available.

For CtrA binding site identification, perfect matches to the consensus α-proteobacterial CtrA binding site 8-mer (TTAACCAT) and 9-mer (TTAA-N7-TTAAC) sequences were identified on + or − strands, using the “find” function in CLC Sequence Viewer (version 7.5) (Brilli et al. 2010; Cheng et al. 2011). Fully sequenced Wolbachia genomes were used as input and site matches within −450 base pairs of the start of translation, defined by annotated ORF predictions, were

Wolbachia strain	Host Type	Host	Supergroup	Genome Sequence Status	Reference Sequence/Contig
wOo	Worm	Onchocerca ochengi	C	Complete: annotated	HE660029.1
wBm	Worm	Brugia malayi	D	Complete: annotated	AE017321.1
wUni	Wasp	Muscidifurax uniraptor	A	Near complete/annotated	ACFP01000001-ACFP01000256
wDi	Psyllid	Diaphorina citri	B	Near complete/annotated	AMZ01000001-AMZ01000124
wPip Pel	Mosquito	Culex quinquefasciatus Pel	B	Near complete/annotated	AM999887.1
wPip JHB	Mosquito	Culex quinquefasciatus JHB	B	Near complete/annotated	ABZA01000001-ABZA01000021
wAlbB	Mosquito	Aedes albopictus	B	Near complete/annotated	CAGB01000001-CAGB0100165
wNo	Fruit fly	Drosophila simulans	B	Complete: annotated	CP003883.1
wHa	Fruit fly	Drosophila simulans	A	Complete: annotated	CP003884.1
wRi	Fruit fly	Drosophila simulans	A	Complete: annotated	CP001391.1
wMelPop	Fruit fly	Drosophila melanogaster	A	Near complete/annotated	AQQE01000001-AQQE01000080
wMel	Fruit fly	Drosophila melanogaster	A	Complete: annotated	AE017196.1

a As of November 2014.

Figure 1 Syntenic alignments of the genomes from (A) Anaplasma phagocytophilum (APH) and Ehrlichia chaffeensis (ECH) and (B) various strains of Wolbachia. Representations of circular genomes are arranged in increasing size (not to scale). Arrows indicate relative genomic position, in minutes (±; as o’clock position), and orientation of predicted ORFs in relation to ori (0°; arrowhead size also not to scale). Similarly colored triangles represent homologous ORFs, white triangle is the predicted pleC pseudogene for wOo. Data in the associated tables, from NCBI genome reference information, are provided for comparison purposes.
selected as hits. Hits outside of these upstream regions were noted and are included in the total number of sites. Consensus sites contained within a previous ORF or positioned exactly at the starting nucleotide are included in the total number of sites for each strain. CcrM methylation sites were identified according to the consensus GANTC (Brilli et al. 2010; Stephens et al. 1996).

Locus sequence confirmation

GenBank-deposited ORF predictions specifically for pldD from wOo, and cckA of wAlbB and wMel strains, were confirmed using the alignment function of CLC sequence viewer (version 6.9.1; http://CLCbio.com). To confirm the wAlbB cckA sequence, genomic DNA samples of wAlbB were collected from Sua5B mosquito tissue culture cells and wAlbB-infected A. albopictus mosquitoes, kindly provided by Jason Rasgon, Pennsylvania State University. The DNeasy Blood and Tissue extraction kit was used to extract purified DNA (Qiagen, Louisville, KY). Wolbachia DNA was also harvested from several Wolbachia-infected Drosophila stocks using the same method. D. melanogaster stocks of the genotype w; Sp/Cyo; Sb/TM6B were used, which had been infected previously with the wMelPop or wMel Wolbachia strains (Serbus and Sullivan 2007). Independent lines of D. simulans carrying either wRi or wMel Wolbachia were also used (Veneti et al. 2003).

Full-length cckA was then PCR-amplified from fly-host Wolbachia samples with forward 5'-AAGGAACCTAATGATAGTTTGGATG and reverse 5'-AGCAAAAAGCGTGGAGATGAATG primers using FlexiTag DNA polymerase according to manufacturer's protocol (Promega, Madison, WI). For wAlbB, cckA fragments were PCR-amplified from both tissue culture and whole mosquito DNA samples using forward 5'-AAGGAACCTAATGATAGTTTGGATG and reverse 5'-AGCAAAAAGCGTGGAGATGAATG primers. Thirty rounds of PCR were performed at an annealing temperature of 56°C for 30 sec and product extension was performed at 72°C for 2 min. Resulting PCR fragments were analyzed on a 1% agarose gel and prepared for sequencing using ExoSAPIT according to the manufacturer's protocol (Affymetrix, Santa Clara, CA). ABI BigDye (R) Terminator v3.1 cycle sequencing reactions using the terminal forward and reverse primers, as well as specific internal primers, were analyzed on an ABI 3100 Genetic Analyzer with sequencing analysis and Genescan software (Applied Biosystems, CA). Coverage of greater than 6x was obtained for each sequence, and nucleotide identities were manually checked against alignments. Sequence information for the entire pldD region from each of the Wolbachia fly- host combinations was also obtained, confirming deposited sequences.

Alignments, domain architecture, and cognate residue identification

The deduced amino acid sequences of predicted TCS ORFs in C. crescentus, A. phagocytophilum, E. chaffeensis, and all Wolbachia strains were compiled and cross-referenced to CLC Sequence Viewer-deduced sequences (version 6.9.1; http://CLCbio.com). Corresponding protein accessions, annotated lengths, and percent identity/similarity to E. chaffeensis homologs were compiled. Domain structure and conserved motifs/residues were then identified using Pfam database annotations and the Simple Modular Architecture Research Tool (SMART; http://smart.embl-heidelberg.de/) (Schultz et al. 1998; Letunic et al. 2012). These tools returned similarly significant e-values for the signaling-associated DHp, CA, and REC domains (Conserved Domain Database entries CDD119399, CDD238030, and CDD238088, respectively). Phospho-transfer and phospho-acceptor sites, as well as residues needed to confirm kinase/phosphatase-specific function, were identified by homology to Pfam annotations. Catalytic domain-specific Mg" binding sites were identified similarly. The HTH domain and the DNA recognition α3 helix were both identified by comparison against the conserved α-proteobacterial CtrA orthologs (Martinez-Hackett and Stock 1997; Quon et al. 1996; Lang and Bentley 2000; Bird and Mackrell 2011). For PleD homologs, all residues that form the active site, the metal-binding site, and I-site of the GGDEF domain were marked according to the Conserved Domains Database annotations for E. chaffeensis (CDD:143653) (Chan et al. 2004; Christen et al. 2006).

Deduced amino acid alignments were generated using the “create alignment” function of CLC-sequence viewer 6.9.1 based on the CLUSTALW alignment matrix/algorithm. The domains, residues, and sites described above were manually marked on the alignments. The positions of HK/RR cognate specificity residues were identified by comparison against C. crescentus. Additional alignments using the E. coli EnvZ histidine kinase and B. subtilis OmpR response regulator were also used to verify the alignment and cognate residue positioning for each TCS component (Skerker et al. 2008; Capra et al. 2012a). Comparisons between cognate-specifying residues on the DHp and its corresponding REC were then evaluated for covariation against their E. chaffeensis homologs.

The predictions of the transmembrane regions and PAS-associated domains for the N-terminal halves of CckA and PleC varied substantially between Wolbachia strains according to SMART/BLAST alignment analysis. Thus, we used the TransMembrane Helix Markov Model website (TMHMM Server 2.0; http://www.cbs.dtu.dk/services/TMHMM/) to determine the probability of membrane spanning helices (to a cut-off of P = 0.8) as well as the Phyre 2.0 server (http://www.sbg.bio.ic.ac.uk/phyre2) to determine the likelihood of secondary structure formation consistent with other predictions (Krogh et al. 2001; Kelley and Sternberg 2009). Because Phyre 2.0 predictions for PAS-like folds in C. crescentus CckA and DivL sequences were consistent with both BLAST-identified PAS domain e-value predictions and published results, this indicated Phyre to be a valid tool for predicting the presence of PAS-like folds.

First, the N-terminal halves of CckA sequences were submitted, followed by defined regions potentially containing PAS domains. This revealed the classic 5-beta strand PAS-fold feature for all PAS-like domains in Wolbachia DivL and CckA homologs, with notable variation in supergroups A and B Wolbachia CckA homologs. The PSIPRED Protein Sequence Analysis Workbench (http://bioinf.cs.ucl.ac.uk/psipred/) was used to further investigate PAS-domain secondary structure predictions in Wolbachia CckA. This program confirmed alpha-helix and beta-strand predictions consistent with the classic 5-beta strand PAS-fold for CckA from all Wolbachia strains. Additional ligand-binding potential was indicated by the Phyre 2.0 3DLigandSite server (http://www.sbg.bio.ic.ac.uk/3dligandsite/) for which confidence values had an average LnE ≥10 for all PAS domains (average LnE range of 9.0-13.4, with a value of >4.0 considered significant) (Wass et al. 2010). The resulting domain architecture was graphically represented.

RESULTS

Identification of core TCS genes in Wolbachia pipientis

The widespread use of TCS by eubacteria raises the question of how widely these genes have been retained in endosymbiotic Wolbachia bacteria. Prior studies indicate that the Wolbachia relatives A. phagocytophilum and E. chaffeensis carry the TCS pairs: cckA/ctrA, pleC/plcD and ntrY/ntrX (Kumagai et al. 2006; Lai et al. 2009). This annotation is based on deduced amino acid sequences, which exhibit 55–67% similarity to the TCS homologs in C. crescentus (Table S1). In accordance with this, we used predicted amino acid sequences from
the closer phylogenetic relative, *E. chaffeensis*, to identify TCS homologs in *Wolbachia* (Brouqui and Matsumoto 2007). We searched the genomes of 12 completely or nearly completely sequenced *Wolbachia* strains, which are classified in superfamilies A–D, and represent symbiosis with a range of insect and nematode hosts (Table 1). This revealed that, in addition to a few previously examined strains, all *Wolbachia* lack detectable homologs for *ntrY* and *ntrX*, whereas corresponding homologs for the four other TCS genes were ubiquitously detected (Table 2). One of the exceptions was *wOo*, in which *pleC* is annotated as a pseudogene. In three other cases, a single TCS gene is predicted to be split into multiple open reading frames (ORFs). This is seen for *pleD* of *wOo* as well as for *cckA* of *wAlbB* and *wMEL*.

A split ORF in any *Wolbachia* TCS gene could dramatically affect signaling processes in a system lacking functionally redundant genes. To confirm the basis for the split ORF predictions, we re-examined the deposited sequences of *wOo* *pleD*, *wAlbB* *cckA*, and *wMEL* *cckA* genes. For *wOo* *pleD*, nucleotide sequence alignments and visual inspection revealed multiple nucleotide substitutions leading to four stop codons between *wOo_06950* and *wOo_06960*. A frameshift was also detected that positions these ORFs in different reading frames. Because these data cannot be substantiated by any single sequencing error in relation to other *Wolbachia* *pleD* genes, these findings are consistent with a split ORF prediction in the *wOo* *pleD* locus.

Investigating the basis for the prediction in *wAlbB* *cckA* locus revealed live in-frame stop codons, partitioning the gene into two annotated ORFs, WALBB_620009 and WALBB_620010. Because all of these changes could be attributed to a single nucleotide deletion, it was unclear whether this change was genuine or reflected an artifact in the deposited sequence. Our re-sequencing of this *cckA* region, using *wAlbB* DNA isolated from both *A. albopictus* tissue culture cells and intact mosquitoes, revealed an exact match with the deposited sequence. Thus, data obtained from our two independent samples confirm the split ORF prediction for *wAlbB* *cckA*.

Analysis of the genomic region for *wMEL* *cckA* also indicated that the split ORF prediction was potentially attributable to a single nucleotide addition in the deposited sequence, creating a stop codon that partitioned *wMEL* *cckA* into the ORFs WD1215 and WD1216. To verify whether this split ORF prediction is accurate, we sequenced *cckA* of *wMEL* carried by *D. melanogaster* (Serbus and Sullivan

Table 2 TCS gene name, protein accession number, length, e-value, and amino acid identity/similarity to *Ehrlichia* homolog

Wolbachia Strain	cckA	ctrA	pleC	pleD	dvL
ECH	YP_507553.1 (828 aa)	YP_507798.1 (256 aa)	YP_507680.1 (470 aa)	YP_507571.1 (458 aa)	YP_507699.1 (381 aa)
wOo	wOo_05930	wOo_05560	[pseudogene]	[pseudogene]	[pseudogene]
wBm	Wbm0710	Wbm0596	Wbm0128	Wbm0184	Wbm0599
wUni	WuNi_006980	WuNi_002760	WuNi_005930	WuNi_003350	—
wDi	WDIAC_01745	WDIAC_02145	—	—	—
wPip Pel	WP_09177518	WP_001975355 (256 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)
wPip JHB	C1A_531	C1A_168	C1A_361	C1A_1169	C1A_164
wAlbB	EEB65349 (826 aa)	EEB65578 (256 aa)	EEB65719 (444 aa)	EEB64530 (458 aa)	EEB65574 (378 aa)
wBm	WBM0710	WBM0596	WBM0128	WBM0184	WBM0599
wUni	WuNi_006980	WuNi_002760	WuNi_005930	WuNi_003350	—
wDi	WDIAC_01745	WDIAC_02145	—	—	—
wPip Pel	WP_09177518	WP_001975355 (256 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)
wPip JHB	C1A_531	C1A_168	C1A_361	C1A_1169	C1A_164
wAlbB	EEB65349 (826 aa)	EEB65578 (256 aa)	EEB65719 (444 aa)	EEB65574 (378 aa)	EEB65574 (378 aa)
wBm	WBM0710	WBM0596	WBM0128	WBM0184	WBM0599
wUni	WuNi_006980	WuNi_002760	WuNi_005930	WuNi_003350	—
wDi	WDIAC_01745	WDIAC_02145	—	—	—
wPip Pel	WP_09177518	WP_001975355 (256 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)
wPip JHB	C1A_531	C1A_168	C1A_361	C1A_1169	C1A_164
wAlbB	EEB65349 (826 aa)	EEB65578 (256 aa)	EEB65719 (444 aa)	EEB65574 (378 aa)	EEB65574 (378 aa)
wBm	WBM0710	WBM0596	WBM0128	WBM0184	WBM0599
wUni	WuNi_006980	WuNi_002760	WuNi_005930	WuNi_003350	—
wDi	WDIAC_01745	WDIAC_02145	—	—	—
wPip Pel	WP_09177518	WP_001975355 (256 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)
wPip JHB	C1A_531	C1A_168	C1A_361	C1A_1169	C1A_164
wAlbB	EEB65349 (826 aa)	EEB65578 (256 aa)	EEB65719 (444 aa)	EEB65574 (378 aa)	EEB65574 (378 aa)
wBm	WBM0710	WBM0596	WBM0128	WBM0184	WBM0599
wUni	WuNi_006980	WuNi_002760	WuNi_005930	WuNi_003350	—
wDi	WDIAC_01745	WDIAC_02145	—	—	—
wPip Pel	WP_09177518	WP_001975355 (256 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)	WP_001977544 (475 aa)
wPip JHB	C1A_531	C1A_168	C1A_361	C1A_1169	C1A_164
wAlbB	EEB65349 (826 aa)	EEB65578 (256 aa)	EEB65719 (444 aa)	EEB65574 (378 aa)	EEB65574 (378 aa)
wBm	WBM0710	WBM0596	WBM0128	WBM0184	WBM0599
wUni	WuNi_006980	WuNi_002760	WuNi_005930	WuNi_003350	—
wDi	WDIAC_01745	WDIAC_02145	—	—	—

a e-values using Wolbachaecea organism data-set cutoff in NCBI Bacterial genome BLAST; % identity/similarity based on ECH sequence or region indicated.

b Genome sequence incomplete; nearest contigs ends before the start of dlVL ORF.

c Multiple ORFs; e-value is for longest ORF (wOo_06950 and WALBB_620009)

d Accessions based on Genbank entries for this region; deduced amino acid length and comparison values based on nucleotide information in Figure S2.
2007) and in a transinfected D. simulans strain (Poinot et al. 1998). As controls, cckA was also sequenced from wMelPop and wRi, attained from lab strains of D. melanogaster and D. simulans, respectively. We found that the ~2.5-kb fragment sequenced from wMelPop and wRi cckA exactly matched the Genbank record. This was also the case for nearly all of the wMel cckA sequence from both Drosophila hosts, including the wMel-associated SNP found at position 2402 (Chrostek et al. 2013). However, both of the re-sequenced wMel cckA samples lacked the frame-shifting cytosine at position 1149 of the deposited wMel cckA sequence (Figure S2). This indicates that wMel cckA is more likely encoded by a single ORF, analogous to cckA in other Wolbachia strains. Further analysis of wMel CckA, presented below, is done in accordance with this finding.

Identification of TCS-related genes in Wolbachia pipiens

The presence of TCS genes in Wolbachia raises other questions about how well the overall TCS regulatory network is conserved. In the Caulobacter system, a complex network of kinases and phosphotransfer proteins affects the signaling ability of CckA and PleC (Aussmees and Jacobs-Wagner 2003; Biondi et al. 2006). These include DivL, an HK-related tyrosine kinase that promotes CckA signaling; ChpT, an intermediary phosphotransfer protein; CpdR and DivK, response regulators that can also interact with CckA; and DivJ, an HK whose activity directly opposes that of PleC. No homologs for chpT, cpdR, divK, or divL have been reported for Anaplasmataceae or Ehrlichia, and our analyses did not identify homologs in Wolbachia (Brilli et al. 2010). However, coding sequence homologous to Caulobacter divL was widely shared between the Anaplasmataceae and Wolbachia (Table 2, Table S1). This sequence, encoding an approximately 400-amino-acid-long N-terminal fragment of DivL, will be referred to as divL (for DivL-like) in this analysis. A. phagocytophilum, E. chaffeensis, and 11 of 12 Wolbachia strains analyzed all contained divL. The status of divL was inconclusive in the wRi/Wolbachia strain due to lack of sequence coverage in that region of the genome (Table 2). The importance of DivL in well-characterized bacterial systems and the conservation of divL in Wolbachia open the possibility that DivL interacts with other Wolbachia TCS components.

α-Proteobacteria are known to carry other factors that modulate CtrA activity as well (Christen et al. 2006; McGrath et al. 2006; Gorbatyuk and Marczynski 2005). These include CcrM, a methyltransferase that modifies the ctra promoter region; GcrA, a transcriptional activator of ctra; and Scip, a transcriptional repressor of CtrA-regulated genes. Neither Anaplasma nor Ehrlichia has been reported to carry homologs for ccrM, gcra, or scip (Brilli et al. 2010; Tan et al. 2010; Fioravanti et al. 2013; Stephens et al. 1996). However, the majority of sequenced mosquito and fruit fly Wolbachia strains contained anywhere from one to three copies of the ccrM gene (Table S2). Because these strains also carried 2 CcrM methylation sites within 400 base pairs of the ctra start site (unpublished observation), the presence of ccrM has possible implications for Wolbachia TCS and cell cycle regulation.

Many α-proteobacteria have been shown to use additional regulatory proteins to drive shutdown of CtrA and PleD outputs through degradation (Christen et al. 2006; McGrath et al. 2006; Gorbatyuk and Marczynski 2005). These include ClpXP, a protease that degrades CtrA, clearing the origin of replication (ori) for DnaA to bind and initiate DNA replication; RcdA and PopA, which facilitate CtrA interaction with ClpXP; and EAL-domain phosphodiesterase proteins, which hydrolyze the c-di-GMP second messenger produced by PleD (McGrath et al. 2006; Ryan et al. 2004; Jenal and Fuchs 1998; Simm et al. 2004; Christen et al. 2005). Consistent with prior analyses of other Anaplasmataceae, rcdA, popA, and any EAL domain–encoding genes could not be identified in sequenced Wolbachia strains (Taylor et al. 2009; Ozaki et al. 2014; Cheng et al. 2006). However, homologs were identified for clpX and clpP, as well as for dnaA in 12 of 12 sequenced Wolbachia strains (Table S1, Table S2). These results taken together indicate that Wolbachia have retained a subset of factors that regulate TCS activity.

Genome-wide positioning of TCS-related genes in Wolbachia pipientis

The positioning of genes throughout the bacterial genome has a strong impact on relative expression throughout the cell cycle (Condon et al. 1992). Given the evidence that Wolbachia share core TCS-related genes with Anaplasmataceae and Ehrlichia, we asked whether the overall positioning of these genes is also conserved in Wolbachia. To address this, we created syntenic alignments using the genomes of completely assembled Wolbachia strains. These were aligned with respect to the ori locus and oriented according to the proximal hemE gene (Ioannidis et al. 2007). The relative positions of conserved TCS-related genes were then plotted on this map, with the ori for all genomes shown at position 0’ and the terminus at the relative position of 6’ (Figure 1, Table S3).

This analysis indicated that a subset of TCS-related genes was similarly positioned with respect to the ori in A. phagocytophilum, E. chaffeensis, and Wolbachia. This includes ctra, positioned approximately 2’–3’ distant from the ori, divL, closely associated with ctra in Wolbachia; and pleD, positioned approximately 3’–5’ from the ori. Positioning trends for cckA, pleC, and clpXP were also visible between A. phagocytophilum and E. chaffeensis, as well as between Wolbachia strains, but not between the three genera collectively. Copies of the ccrM gene, absent from A. phagocytophilum and E. chaffeensis, were generally positioned 4’–5’ distant from the ori in fly and mosquito Wolbachia strains. Wolbachia cckA and pleC were positioned closer to the ori, whereas clpXP was positioned more distantly than in A. phagocytophilum and E. chaffeensis. In addition, the clustering of divL and clpXP genes seen in A. phagocytophilum and E. chaffeensis was not shared by the Wolbachia genomes, which consistently showed divL proximal to the ctra locus (Figure 1, Table S3). This differential positioning raises the possibility that Wolbachia TCS gene dosage may differ appreciably from A. phagocytophilum and E. chaffeensis during the cell cycle (Couturier and Rocha 2006).

Immediate context of the core Wolbachia TCS genes

To further evaluate the genomic context immediately flanking the TCS genes of A. phagocytophilum, E. chaffeensis, and Wolbachia, we aligned these regions and analyzed them with several operon prediction programs (Table S4) (Price et al. 2005a,b; Dam et al. 2007; Mao et al. 2009). This revealed some variation in the context of all shared TCS loci. For A. phagocytophilum and E. chaffeensis, the cckA gene was closely flanked by the genes o-methyltransferase and cutA, which encode a cation tolerance protein (Figure 2A). However, cckA in all Wolbachia strains was neighbored at its 5’ end by the hemF gene, which supports heme biosynthesis (Heinemann et al. 2008). Furthermore, all sequenced Wolbachia genomes, except the phylogenetically distant strains wBm and wOo, showed cckA as being flanked at its 3’ end by parA and parB, which encode chromosomal partitioning proteins (Figure 2A) (Foster et al. 2005).

A similar type of contextual variation was evident for Wolbachia ctra. In A. phagocytophilum and E. chaffeensis, ctra was flanked upstream by a gene encoding a helix-turn-helix (ht) DNA binding protein and downstream by nxse, which encodes a 3’–5’ exonuclease.
family protein (Figure 2B). However, in nearly all sequenced Wolbachia strains, cctA appeared to share an upstream region with an operon that contains dvlL, as well as the genes glycerol-3-phosphate dehydrogenase, phosphotidylglycerophosphatase A, and an acetyltransferase (Table S4). This genomic arrangement was similar in wBm and wOo, although the neighboring operon may be fragmented or incomplete. The 3' end of Wolbachia cctA was flanked by a variety of genetic regions that differed according to supergroup (Figure 2B). Thus, the genomic context of cctA and cctA is generally conserved between Wolbachia strains, although not between Wolbachia and other Anaplasmataceae.

In contrast, the immediate context of pleC and pleD appeared relatively more conserved. Analysis of the A. phagocytophilum and E. chaffeensis pleC region suggested that pleC shares a promoter with the nitrogen metabolism gene argD (Velasco et al. 2002), with its 3' end flanked by either hypothetical genes or the mutL membrane protein gene (Figure 2C). Interestingly, in all sequenced Wolbachia genomes except wOo, which lacks detectable homologs for both genes, pleC ORFs were predicted to share a promoter with argD, analogous to Anaplasma and Ehrlichia. However, Wolbachia pleC was also flanked by peroxiredoxin and the recombination gene recF at its 3' end, indicating that the pleC genomic region is not entirely conserved (Figure 2C).

Examination of the pleD region suggested a similar extent of conservation between species. In A. phagocytophilum and E. chaffeensis, pleD was neighbored at the 5' end by glutamate dehydrogenase B and a short hypothetical protein ORF denoted as hp (Figure 2D). This gdhB-hp-pleD cluster was predicted to form an operon in Ehrlichia (Table S4). Interestingly, a gdhB-hp-pleD–containing operon was also consistently predicted in Wolbachia, with the addition of a chaperonin gene, clpB, included at the 5' end of the operon (Figure 2D). Thus, considerable homology is evident in the genomic context of pleC and pleD among Wolbachia strains, some of which is shared with other Anaplasmataceae.

Comparison of domain structure between TCS homologs

If Wolbachia TCS proteins are functional, then the predicted products should carry the domains and key residues important for activity. To resolve this issue, we compared the predicted functional domains of the Caulobacter TCS proteins against A. phagocytophilum, E. chaffeensis, and Wolbachia. A. phagocytophilum and E. chaffeensis CckA exhibited features typical of a hybrid-HK (Figure 3A, Figure S1) (Dutta et al. 1999). The N-terminal sensor region of CckA contained a transmembrane domain, followed by a region of predicted secondary structure indicating classic PAS-fold architecture (see Materials and Methods; Table S5, Table S6). Two of these "PAS-like" domains were found in A. phagocytophilum and one was found in E. chaffeensis. Neighboring this N-terminal "sensor" portion, a dimerization/
histidine phosphotransfer (DHp) domain was predicted. The DHp contained the conserved His residue, as well as two closely flanking residues that impart both kinase and phosphatase capabilities to the DHp (Figure 4A) (Willett and Kirby 2012). Following the DHp domain was an internal ATP-catalysis domain (CA) with a conserved asparagine (Asn), and a C-terminal REC domain with a conserved Asp (Figure 3A, Table S5) (West and Stock 2001).

Analogous to other Anaplasmataceae, most Wolbachia CckAs were predicted to carry internal DHp and CA domains, a C-terminal REC domain, and all the key functional residues associated with those domains (Figure 3A, Table S5) (Cheng et al. 2006; Kumagai et al. 2006). One exception to this was wAlbB, truncated partway into the C-terminal REC due to a split ORF and lacking the conserved Asp residue, confirmed by our sequencing results. All Wolbachia CckAs were predicted to have two N-terminal transmembrane domains, except wNo. Predicted secondary structures also indicated that all Wolbachia CckAs carried at least one PAS-like domain (Figure 3A, Table S5, Table S6). The conservation of these structural features suggests a functional role for CckA has been conserved in Wolbachia. Furthermore, examination of DvlL domain structure indicated the three previously identified PAS domains, as well as complete conservation of DvlL between all Wolbachia strains (Figure S3, Table S5) (Childers et al. 2014). This raises the possibility that CckA regulation, as seen in the well-defined free-living α-proteobacterial model Caulobacter, may be at least partly conserved in Wolbachia as well.

The response regulator CtrA was strikingly conserved in its domain structure between C. crescentus, A. phagocytophilum, E. chaffeensis, and Wolbachia. In all cases, CtrA was predicted to carry an N-terminal REC domain with a conserved Asp residue (Figure 3A, Figure S1, Table S5). The C-terminal helix-turn-helix (HTH) domain was also confirmed, and all Wolbachia strains carried the conserved α3-helical residues required for DNA binding (Figure 3A, Figure 5A) (Martinez-Hackert and Stock 1997; Quon et al. 1996; Lang and Beatty 2000; Bird and Mackrell 2011). This conservation suggests that the phospho-acceptor and DNA-binding properties of Wolbachia CtrA are analogous to CtrA in other α-proteobacteria. Analysis of seven Wolbachia genomes also identified 34 to 55 ORFs with upstream consensus CtrA binding sites, further supporting a role for Wolbachia CtrA in vivo (Table S7).

Predicted structural domains were also examined in PleC and PleD. A. phagocytophilum and E. chaffeensis PleC domain structure was similar to C. crescentus PleC, with predicted N-terminal transmembrane domains, an internal DHp domain, and a C-terminal CA domain, all carrying key functional residues, although no PAS or PAS-like domains were detected (Figure 3B, Figure 4C, Figure S1, Table S5, Table S6). The Wolbachia PleCs were similarly organized in nearly all strains, carrying a pair of transmembrane domains, an internal DHp domain, a C-terminal CA domain, and all key residues. PleC of wPip JHB was distinctive in the loss of a transmembrane domain, and wOo was, as noted, predicted to lack PleC altogether (Figure 3B). This
suggests that most Wolbachia PleC proteins function similarly to PleC in other Anaplasmataceae (Kumagai et al. 2006; Lai et al. 2009).

The predicted domain structure of the PleD RR also appears widely conserved. As detected in C. crescentus, A. phagocytophilum, and E. chaffeensis, nearly all Wolbachia PleD proteins were predicted to carry two N-terminal REC domains with conserved Asp residues (Figure 3B, Table S3). One exception was wAlbB PleD, which carried an Asp-to-Tyrosine substitution in the internal REC domain. The other exception was wOo PleD, in which the REC domains were separated by a split ORF, and the dissociated REC carried an Asp to Asn substitution. The GGDEF domain at the PleD C-terminus was also shared between Wolbachia and other Anaplasmataceae (Figure 3B). Twelve out of 14 key catalytic residues in the GGDEF were identical between all species and strains examined (Figure 5B) (Chan et al. 2004). Complete conservation was observed in all key residues of the GGDEF I-site, which is known to inhibit catalytic function in response to c-di-GMP binding (Christen et al. 2005; Christen et al. 2006). These results suggest that the majority of Wolbachia PleDs have similar functional and regulatory capacity as PleD of related bacteria.

Analysis of cognate specificity residues in Wolbachia TCS proteins

The conservation of key functional domains in Wolbachia TCS proteins raises the question of whether they interact as exclusive functional pairs or are capable of cross-talk. Prior work comparing HK/RR pairs from 200 bacterial genomes has indicated a subset of residues that specify interaction within a cognate pair (Skerker et al. 2008; Capra et al. 2010). Nine residues in the HK DHp domain form a spatially constrained interface with seven residues in the REC domain of the cognate RR. Pairs of residues within this interface have been shown to co-vary between species. In *in vitro* studies also show that mutating two to three residues in the HK DHp domain or three to four residues in the RR REC domain changes the specificity of HK/RR interaction (Skerker et al. 2008; Bell et al. 2010; Capra et al. 2010, 2012a). To assess the likelihood of exclusive CckA/CtrA and PleC/PleD interactions in Wolbachia, we examined the cognate specificity residues in these proteins through amino acid alignments with other Anaplasmataceae homologs informed with data from co-crystalized HK/RR pairs of major model systems (Casino et al. 2009; Capra et al. 2012a; Capra et al. 2010).

Analysis of CckA DHp cognate specificity residues revealed that seven out of nine key amino acids were identical between other Anaplasmataceae and Wolbachia (Figure 4A). Both of the nonhomologous amino acids in Wolbachia CckA were at positions known to co-vary in other species (Figure 6A) (Bell et al. 2010; Capra et al. 2010, 2012b). Furthermore, the amino acid identities of these key residues were identical in all Wolbachia strains (Figure 6A). By contrast, the cognate specificity residues of the CtrA REC domain displayed little homology between Anaplasmataceae and Wolbachia, with only two out of seven amino acid identities shared between the genera (Figure 4B). The majority of these nonconserved residues in Wolbachia CtrA were not explainable by covariation (Figure 6A). However, the identity of cognate specificity residues in CtrA was shared between all Wolbachia strains (Figure 4B). This indicates that, overall, CcK and CtrA residues that specify cognate pairing are highly conserved within Wolbachia. However, it is unclear whether they have retained an exclusive pairing affinity (Cheng et al. 2006; Kumagai et al. 2006).

We also investigated potential for specificity of Wolbachia PleC/PleD interaction. Compared against E. chaffeensis PleC, most Wolbachia PleC proteins were homologous at six out of nine cognate specificity residues in the DHp domain (Figure 4C). Supergroup B Wolbachia strains were distinct, showing homology at five out of nine residues (Table 1, Figure 4C). These divergent Wolbachia PleC residues...
Wolbachia did coincide with the four positions with strongest potential for covariation. Interestingly, the four positions with strongest potential for covariation corresponded to sites of predicted covariation (Figure 6B) (Capra et al. 2012a). By contrast, the PleD N-terminal REC domain was less conserved, with only two to four out of seven cognate specificity residues conserved between E. chaffeensis and Wolbachia (Figure 4D). The nonhomologous residues varied along phylogenetic lines, with wOo PleD of supergroup C showing the greatest divergence. Interestingly, the four positions with strongest potential for covariation did coincide with Wolbachia PleD polymorphisms (Figure 6B). These data indicate that PleC/PleD cognate specificity residues are less conserved between Wolbachia than those seen for CckA/CtrA. However, as divergence of Wolbachia PleC and PleD sequences could largely be explained by covariation, it remains possible that PleC/PleD function as a cognate pair.

DISCUSSION

This study has revealed that the core TCS factors CckA, CtrA, PleC, and PleD and several of their interacting proteins were conserved between C. crescentus, A. phagocytophilum, E. chaffeensis, and 12 sequenced Wolbachia strains. The genome-wide positioning of TCS genes was not well-conserved between Wolbachia or in relation to other Anaplasmataceae, in keeping with the extensive genomic rearrangements noted in other studies (Klasson et al. 2008, 2009; Wu et al. 2004). The immediate context of the core TCS loci was appreciably conserved, especially within host/supergroup divisions. Much of the domain structure and key functional residues of the predicted TCS proteins were conserved between Wolbachia strains and the other Anaplasmataceae, although cognate specificity residues between CckA/CtrA and PleC/PleD showed considerable divergence. This suggests that while these core TCS relays are generally retained in Wolbachia, there are important regulatory and functional differences in usage of Wolbachia TCS proteins relative to other characterized systems (Figure 7, Figure S1).

Extensive prior analysis of TCS genes has indicated that functional TCS pairs often occupy single operons (Laub and Goulian 2007), as is seen for 46 out of 106 TCS genes in C. crescentus (Nierman et al. 2001; Skerker et al. 2005). This was not the case for A. phagocytophilum, E. chaffeensis, or Wolbachia. The condensation of genes flanking TCS ORFs in Wolbachia suggests distinctive regulatory streamlining. For example, Wolbachia TCS genes appear to share upstream regions with metabolic genes, such as cckA with hemF, and the pleC operon with the argD operon. Perhaps Wolbachia TCS gene expression benefits from consistent metabolic coupling in specific invertebrate host backgrounds, whereas the context of Anaplasma and Ehrlichia TCS genes provides more flexibility to adapt to changing host environments of tick, deer, and mammalian immune cells (Bakken and Dumler 2008; Jongejan and Uilenberg 2004).

The well-conserved domain structures of predicted Wolbachia TCS proteins highlight the functional importance of those domains. Given the nearly complete conservation between predicted CckA proteins, the wAlb CckA protein lacking a C-terminal REC domain stands out as a notable exception (Figure 3A). Prior studies have suggested that C-terminal REC domains of hybrid HKs serve as an “insulator” that prevents nondiscriminate phosphorylation of multiple RRs (Capra et al. 2012a,b). Thus, loss of the C-terminal REC is expected to lead to increased promiscuity and/or cross-talk, particularly in complex bacterial systems that carry dozens of TCS pairs (Laub and Goulian 2007). Perhaps the extremely low number of TCS proteins in Wolbachia endosymbionts reduces the requirement for an analogous insulatory function in the CckA hybrid HK.

The consistent detection of PAS-like domains in the predicted Wolbachia CckAs was also very striking. This groups Wolbachia CckA with a wide range of bacterial and eukaryotic PAS domain proteins, from redox-potential receptors in E. coli to human cardiac myocytes (Taylor and Zhulin 1999; Gu et al. 2000). Alignment of Wolbachia CckA to solved crystal structures further suggested that these PAS-like domains consistently associate with heme and may interact with FAD or FMN ligands as well. This invokes a conserved “sensor” capacity for CckA that could influence the potential for CckA-based regulation of the Wolbachia cell cycle.

The strong conservation of DvIL sequences between Wolbachia strains suggests an important functional role for this protein. Wolbachia DvIL was found to form three PAS-like folds, as also reported in C. crescentus, A. tumefaciens, and other species (Childers et al. 2014).
Notably, DvlL of Wolbachia and the other Anaplasmataceae consistently lacked a C-terminal catalytic domain. Elegant experiments demonstrated that DivL catalytic activity is not required for regulation of the CckA-ChpT-CtrA pathway in Caulobacter (Reisinger et al. 2007; Iniesta et al. 2010). Thus, it is formally possible that DvlL affects CckA signaling function in the streamlined Wolbachia system as well (Figure 7). The close genetic association of dvll with the ctrA locus in all Wolbachia genomes also suggests a conserved relationship that bears closer scrutiny. However, it cannot be ruled out that DvlL may have been repurposed for one or more other essential functions in Wolbachia.

Of all Wolbachia TCS proteins examined, CtrA showed the strictest conservation. As seen in Caulobacter and E. chaffeensis, dozens of Wolbachia genes also appear to be regulated by CtrA, including genes of diverse functional classes as well as ctrA itself (Table S7) (Laub et al. 2002; Cheng et al. 2011; Brilli et al. 2010). Conservation of dnaA in all Wolbachia strains analyzed also supports an important role for CtrA in regulating genome replication. A recent study analyzing eight strains of Wolbachia identified three DnaA binding sites and up to five CtrA consensus binding sites per ori (Ioannidis et al. 2007). These findings highlight CtrA as a “master regulator” of both gene expression and chromosome replication within the Wolbachia genus.

TCS domain comparisons highlight distinctions between the PleC sensing capacity in Caulobacter compared with the Anaplasmataceae. Although PleC is generally conserved between these species, no sensory PAS domains were detected in A. phagocytophilum, E. chaffeensis, or Wolbachia PleC (Cheng et al. 2006). It is possible that Wolbachia PleC functions in an unregulated manner. Because PleC contains residues essential for both kinase and phosphatase activity, its function may also be heavily influenced by ATP availability. It is also possible that Anaplasmataceae PleC senses periplasmic cues through non-PAS structural features or is regulated by factors associated with the plasma membrane, as has been shown in Caulobacter (Paul et al. 2008; Smith et al. 2012).

Insights into Wolbachia PleD function are also suggested by variation in the PleD REC domains of two Wolbachia strains. Previous work suggests that the PleD N-terminal REC is mainly responsible for regulating PleD GGDEF activity (Aldridge et al. 2003; Lai et al. 2009). If this paradigm extends to Wolbachia, loss of an Asp residue from the internal REC domain of wAlbB PleD may have little functional impact. In wOo PleD, however, the original N-terminal REC lacks this key Asp residue and is further predicted to be physically separate from the fully conserved GGDEF domain. In this case, the remaining REC domain may regulate the GGDEF, analogous to the WspR protein in P. aeruginosa (De et al. 2008, 2009). Alternatively, the I-site that downregulates GGDEF activity in response to c-di-GMP binding may have a primary regulatory role (Chan et al. 2004; De et al. 2008; Lai et al. 2009). Conservation of I-site functional residues in all Wolbachia PleDs, including wOo, is consistent with this possibility. Because the complexity of second messenger signaling by c-di-GMP has been underaddressed in Wolbachia and many other symbiotic bacteria, this remains a poorly understood area of host–microbe interaction studies.

Analysis of the key residues that specify pairing between TCS proteins has also shown differences between Wolbachia and other systems including A. phagocytophilum and E. chaffeensis (Capra and Laub 2012; Capra et al. 2010; Cheng et al. 2006; Kumagai et al. 2006; Lai et al. 2009). Although the overall amino acid identity of Wolbachia CckA largely matched those of Ehrlichia, Wolbachia CtrA, PleC, and PleD cognate specificity residues varied extensively, consistent with the potential for loss of HK/RR interaction specificity of other systems (Capra et al. 2010; Bell et al. 2010). Surprisingly, the identity of nearly every cognate specificity residue was conserved between Wolbachia strains. Perhaps CckA/CtrA and PleC/PleD have co-evolved in a manner that preserved spatially constrained, specific interactions between these TCS pairs. An alternative explanation is that cross-talk is common and necessary in the streamlined Wolbachia system (Figure 7). Future experiments are needed to determine the absolute requirements for TCS regulation of Wolbachia in the context of the host environment. Together, work on this important endosymbiont and its divisional regulation will help to inform the mechanisms underlying Wolbachia titer regulation and interactions between Wolbachia and host.

ACKNOWLEDGMENTS

We thank Paul Sharp at the Florida International University DNA Core facility for assistance in DNA sequencing and Jason Rasgon of Pennsylvania State University for sharing wAlbB DNA and wAlbB-infected mosquitoes. We also thank Michael Turelli, Kostas Bourtzis, Roberto Bogomolni, and William Sullivan of UC Santa Cruz for their support and helpful discussions. Funding for this study was provided by Florida International University.

LITERATURE CITED

Aldridge, P., R. Paul, P. Goyer, P. Rainey, and U. Jenal, 2003 Role of the GGDEF regulator PleD in polar development of Caulobacter crescentus. Mol. Microbiol. 47: 1695–1708.

Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., 1997 Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

Altschul, S. F., J. C. Wootton, E. M. Gertz, R. Agarwala, A. Morgulis et al., 2005 Protein database searches using compositionally adjusted substitution matrices. FEBS J. 272: 5101–5109.

Ausmees, N., and C. Jacobs-Wagner, 2003 Spatial and temporal control of differentiation and cell cycle progression in Caulobacter crescentus. Annu. Rev. Microbiol. 57: 225–247.

Bakken, J. S., and S. Dumler, 2008 Human granulocytic anaplasmosis. Infect. Dis. Clin. North Am. 22: 433–448.

Bell, C. H., S. L. Porter, A. Strawson, D. I. Stuart, and J. P. Armitage, 2010 Using structural information to change the phosphotransfer domain in...
specificity of a two-component chemotaxis signalling complex. PLoS Biol. 8: e1000306.
Biondi, E. G., S. J. Reisinger, J. M. Skerker, M. Arif, B. S. Perchuk et al., 2006 Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 444: 899–904.
Bird, T. H., and A. MacKrell, 2011 A CtrA homolog affects swarming motility and encystment in Rhodospirillum centenum. Arch. Microbiol. 193: 451–459.
Brilli, M., M. Fondi, R. Fani, A. Mengoni, L. Ferri et al., 2010 The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis. BMC Syst. Biol. 4: 52.
Brouqui, P., and K. Matsumoto, 2007 Bacteriology and phylogeny of Anaplasmataceae, pp. 179–198 in Rickettsial Diseases, CRC Press, Boca Raton, USA.
Capra, E. J., and B. S. Perchuk, O. Ashenberg, C. A. Seid, H. R. Snow et al., 2012a Spatial tethering of kinases to their substrates relaxes evolutionary- constraint on specificity. Mol. Microbiol. 86: 1393–1403.
Capra, E. J., B. S. Perchuk, J. M. Skerker, and M. T. Laub, 2012b Adaptive mutations that prevent crosstalk enable the expansion of paralogous signaling protein families. Cell 150: 222–232.
Carrica, M. C., I. Fernandez, M. A. Marti, G. Paris, and F. A. Goldbaum, 2012 The NtrY/X two-component system of Brucella spp. acts as a redox sensor and regulates the expression of nitrogen respiration enzymes. Mol. Microbiol. 85: 39–50.
Casino, P., V. Rubio, and A. Marina, 2009 Structural insight in partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139: 325–336.
Chan, C., R. Paul, D. Samoray, N. C. Amiot, B. Giese et al., 2004 Structural basis of activity and allosteric control of diguanylate cyclase. Proc. Natl. Acad. Sci. USA 101: 17084–17089.
Cheng, Z., Y. Kumagai, M. Lin, C. Zhang, and Y. Rikihisa, 2006 Intra- leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel. Cell. Microbiol. 8: 1241–1252.
Cheng, Z., M. Lin, and Y. Rikihisa, 2014 Ehrlichia chaffeensis proliferation begins with NtrY/NtrX and PutA/GlnA upregulation and CtrA degrada- tion induced by proline and glutamine uptake. MBio 5: e012141.
Cheng, Z., K. Miura, V. L. Popov, Y. Kumagai, and Y. Rikihisa, 2011 Insights into the CtrA regulon in development of stress resistance in obligatory intracellular pathogen Ehrlichia chaffeensis. Mol. Microbiol. 82: 1217–1234.
Childers, W. S., Q. Xu, T. H. Mann, I. I. Mathews, J. A. Blair et al., 2014 Cell fate regulation governed by a repurposed bacterial histidine kinase. PLoS Biol. 12: e1001979.
Christen, B., M. Christen, R. Paul, F. Schmid, M. Folcher et al., 2006 Allosteric control of cyclic di-GMP signaling. J. Biol. Chem. 281: 32015–32024.
Christen, M., B. Christen, M. Folcher, A. Schauerte, and U. Jenal, 2005 Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. J. Biol. Chem. 280: 30829–30837.
Chrostek, E., M. S. Marialva, S. S. Esteves, L. A. Weintert, J. Martinez et al., 2013 Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 9: e1003896.
Condon, C., J. Philips, Z.-Y. Fu, C. Squires, and C. L. Squires, 1992 Comparison of the expression of the seven ribosomal RNA operons in Escherichia coli. EMBO J. 11: 4175.
Cordaux, R., A. Michel-Salzat, and D. Bouchon, 2001 Wolbachia infection in crustaceans: novel hosts and potential routes for horizontal transmis- sion. J. Evol. Biol. 14: 237–243.
Cordaux, R., S. Pichon, A. Ling, P. Perez, C. Delaunay et al., 2008 Intense transpositional activity of insertion sequences in an ancient obligate endosymbiont. Mol. Biol. Evol. 25: 1889–1896.
Couturier, E., and E. P. Rocha, 2006 Replication-associated gene dosage effects shape the genomes of fast-growing bacteria but only for transcription and translation genes. Mol. Microbiol. 59: 1506–1518.
Dam, P., V. Olman, K. Harris, Z. Su, and Y. Xu, 2007 Operon prediction using both genome-specific and general genomic information. Nucleic Acids Res. 35: 288–298.
De, N., M. V. Navarro, R. V. Raghavan, and H. Sondermann, 2009 Determinants for the activation and autoinhibition of the digua- nylate cyclase response regulator WspR. J. Mol. Biol. 393: 619–633.
Despalins, A., S. Marsit, and J. Oberto, 2011 Absynte: a web tool to analyze the evolution of orthologous archaeal and bacterial gene clusters. Bioin- formatics 27: 2905–2906.
Dutta, R., L. Qin, and M. Inouye, 1999 Histidine kinases: diversity of domain organization. Mol. Microbiol. 34: 633–640.
Fioravanti, A., C. Fumeaux, S. S. Mohapatra, C. Bompard, M. Brilli et al., 2013 DNA binding of the cell cycle transcriptional regulator GcrA depends on N6-adenosine methylation in Caulobacter crescentus and other Alphaproteobacteria. PLoS Genet. 9: e1003541.
Foster, J., M. Ganatra, I. Kamal, J. Ware, K. Makarova et al., 2005 The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3: e121.
Galperin, M. Y., 2005 A census of membrane-bound and intracellular sig- nal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol. 5: 35.
Gao, R., T. R. Mack, and A. M. Stock, 2007 Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem. Sci. 32: 225–234.
Gorbatyuk, B., and G. T. Marczynski, 2005 Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter cres- centus. Mol. Microbiol. 55: 1233–1245.
Grefen, C., and K. Harter, 2004 Plant two-component systems: principles, functions, complexity and cross talk. Planta 219: 733–742.
Groban, E. S., E. J. Clarke, H. M. Salis, S. M. Miller, and C. A. Voigt, 2009 Kinetic buffering of cross talk between bacterial two-component sensors. J. Mol. Biol. 390: 380–393.
Gu, Y.-Z., J. B. Hogenosch, and C. A. Bradfield, 2000 The PAS superfam- ily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40: 519–561.
Hedges, L. M., J. C. Brownlie, S. L. O’Neill, and K. N. Johnson, 2008 Wolbachia and virus protection in insects. Science 322: 702.
Heinemann, I. U., M. Jahn, and D. Jahn, 2008 The biochemistry of heme biosynthesis. Arch. Biochem. Biophys. 474: 238–251.
Hoerauf, A., 2008 Filariasis: new drugs and new opportunities for lym- phatic filariasis and onchocerciasis. Curr. Opin. Infect. Dis. 21: 673–681.
Iniesta, A. A., N. J. Hillson, and L. Shapiro, 2010 Cell pole-specific activa- tion of a critical bacterial cell cycle kinase. Proc. Natl. Acad. Sci. USA 107: 7012–7017.
Ioannidis, P., J. C. Hotopp, P. Sapountzis, S. Sioszos, G. Tsimas et al., 2007 New criteria for selecting the origin of DNA replication in Wolbachia and closely related bacteria. BMC Genomics 8: 182.
Jacobs, C., I. J. Domian, J. R. Maddock, and L. Shapiro, 1999 Cell cycle- dependent polar localization of an essential bacterial histidine kinase that controls DNA replication and cell division. Cell 97: 111–120.
Jacobs-Wagner, C., 2004 Regulatory proteins with a sense of direction: cell cycle signalling network in Caulobacter. Mol. Microbiol. 51: 7–13.
Jenal, U., and T. Fuchs, 1998 An essential protease involved in bacterial cell-cycle control. EMBO J. 17: 5658–5669.
Jongejan, F., and G. Uilenberg, 2004 The global importance of ticks. Parasitology 129: S3–S14.
Jung, K., L. Fried, S. Behr, and R. Heermann, 2012 Histidine kinases and response regulators in networks. Curr. Opin. Microbiol. 15: 118–124.
Kellely, L. A., and M. J. Sternberg, 2009 Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4: 363–371.

Klassen, L., T. Walker, M. Sebaihia, M. J. Sanders, M. A. Quail et al., 2008 Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol. Biol. Evol. 25: 1877–1887.

Klassen, L., J. Westberg, P. Sapountzis, K. Nääsund, Y. Lutnaes et al., 2009 The mosaic genome structure of the Wolbachia wRi strain infecting Drosophila simulans. Proc. Natl. Acad. Sci. USA 106: 5752–5753.

Krell, T., J. Lacal, A. Busch, H. Silva-Jimenez, M.-E. Guazzaroni et al., 2010 Bacterial sensor kinases: diversity in the recognition of environmental signals. Annu. Rev. Microbiol. 64: 539–559.

Krogh, A., B. Larsson, G. Von Heijne, and E. L. Sonnhammer, 2001 Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305: 567–580.

Kumagai, Y., Z. Cheng, M. Lin, and Y. Rikihisa, 2006 Biochemical activities of three pairs of Ehrlichia chaffensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74: 5014–5022.

Lai, T.-H., Y. Kumagai, M. Hyodo, Y. Hayakawa, and Y. Rikihisa, 2009 The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J. Bacteriol. 191: 693–700.

Lang, A. S., and J. Beatty, 2000 Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97: 859–864.

Laub, M. T., and M. Goulain, 2007 Specificity in two-component signal transduction pathways. Annu. Rev. Genet. 41: 121–145.

Laub, M. T., S. L. Chen, L. Shapiro, and H. H. McAdams, 2002 Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc. Natl. Acad. Sci. USA 99: 4632–4637.

Laub, M. T., L. Shapiro, and H. H. McAdams, 2007 Systems biology of Caulobacter. Annu. Rev. Genet. 41: 429–441.

Letunic, I., T. Doerks, and P. Bork, 2012 SMART 7: recent updates to the domain architecture database. Nucleic Acids Res. 37(Suppl 1): D459–D463.

Lai, T.-H., Y. Kumagai, M. Hyodo, Y. Hayakawa, and Y. Rikihisa, 2009 The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J. Bacteriol. 191: 693–700.

Lang, A. S., and J. Beatty, 2000 Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97: 859–864.

Kumagai, Y., Z. Cheng, M. Lin, and Y. Rikihisa, 2006 Biochemical activities of three pairs of Ehrlichia chaffensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74: 5014–5022.

Lai, T.-H., Y. Kumagai, M. Hyodo, Y. Hayakawa, and Y. Rikihisa, 2009 The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J. Bacteriol. 191: 693–700.

Lang, A. S., and J. Beatty, 2000 Genetic analysis of a bacterial genetic exchange element: the gene transfer agent of Rhodobacter capsulatus. Proc. Natl. Acad. Sci. USA 97: 859–864.

Kumagai, Y., Z. Cheng, M. Lin, and Y. Rikihisa, 2006 Biochemical activities of three pairs of Ehrlichia chaffensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74: 5014–5022.
Tan, M. H., J. B. Kozdon, X. Shen, L. Shapiro, and H. H. McAdams, 2010 An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation. Proc. Natl. Acad. Sci. USA 107: 18985–18990.

Taylor, B. L., and I. B. Zhulin, 1999 PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol. Mol. Biol. Rev. 63: 479–506.

Taylor, J. A., J. D. Wilbur, S. C. Smith, and K. R. Ryan, 2009 Mutations that alter RcdA surface residues decouple protein localization and CtrA proteolysis in Caulobacter crescentus. J. Mol. Biol. 394: 46–60.

Taylor, M. J., H. F. Cross, and K. Bilo, 2000 Inflammatory responses induced by the filarial nematode Brugia malayi are mediated by lipopolysaccharide-like activity from endosymbiotic Wolbachia bacteria. J. Exp. Med. 191: 1429–1436.

Taylor, M. J., C. Bandi, and A. Hoerauf, 2005 Wolbachia bacterial endosymbionts of filarial nematodes. Adv. Parasitol. 60: 245–284.

Teixeira, L., Á. Ferreira, and M. Ashburner, 2008 The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 6: e1000002.

Velasco, A., J. Leguina, and A. Lazcano, 2002 Molecular evolution of the lysine biosynthetic pathways. J. Mol. Evol. 55: 445–449.

Veneti, Z., M. E. Clark, S. Zabalou, T. L. Karr, C. Savakis et al., 2003 Cytoplasmic incompatibility and sperm cyst infection in different Drosophila-Wolbachia associations. Genetics 164: 545–552.

Wakeel, A., B. Zhu, X.-j. Yu, and J. W. McBride, 2010 New insights into molecular Ehrlichia chaffeensis-host interactions. Microbes Infect. 12: 337–345.

Wass, M. N., L. A. Kelley, and M. J. Sternberg, 2010 3DLigandSite: predicting ligand-binding sites using similar structures. Nucleic Acids Res. 38: W469–W473.

Waters, C. M., and B. L. Bassler, 2005 Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21: 319–346.

West, A. H., and A. M. Stock, 2001 Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem. Sci. 26: 369–376.

Willet, J. W., and J. R. Kirby, 2012 Genetic and biochemical dissection of a HisKA domain identifies residues required exclusively for kinase and phosphatase activities. PLoS Genet. 8: e1003084.

Wu, M., L. V. Sun, J. Vamathevan, M. Riegler, R. Deboy et al., 2004 Phylogenomics of the reproductive parasite Wolbachia piipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol. 2: e69.

Zug, R., and P. Hammerstein, 2012 Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE 7: e38544.

Communicating editor: B. J. Andrews