REVIEW ARTICLE

Neuroimaging features of angiocentric glioma: A case series and systematic review

Ryo Kurokawa1 ○ | Akira Baba1 | Pinarbasi Emile2 | Mariko Kurokawa1 ○ | Yoshiaki Ota1 ○ | John Kim1 | Aristides Capizzano1 | Ashok Srinivasan1 | Toshio Moritani1

1 Division of Neuroradiology, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
2 Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA

Correspondence
Ryo Kurokawa, Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, UH B2, Ann Arbor, MI 48109, USA. Email: kuroro63@gmail.com

Funding information
None.

Abstract

Background and Purpose: Angiocentric gliomas (AGs) are epileptogenic low-grade gliomas in young patients. We aimed to investigate the MRI findings of AGs and systematically review previous publications and three new cases.

Methods: We searched PubMed, Elsevier's abstract and citation database, and Embase databases and included 50 patients with pathologically proven AGs with analyzable preoperative MRI including 3 patients from our institution and 47 patients from 38 publications (median age, 13 years [range, 2-83 years]; 35 men). Two board-certified radiologists reviewed all images. The relationships between seizure/epilepsy history and MRI findings were statistically analyzed. Moreover, clinical and imaging differences were evaluated between supratentorial and brainstem AGs.

Results: Intratumoral T1-weighted high-intensity areas, stalk-like signs, and regional brain parenchymal atrophy were observed in 23 out of 50 (46.0%), 10 out of 50 (20.0%), and 14 out of 50 (28.0%) patients, respectively. Intratumoral T1-weighted high-intensity areas were observed significantly more frequently in patients with stalk-like signs (positive, 9/10 vs. negative, 14/40, \(p = .0031 \)) and regional atrophy (13/14 vs. 10/36, \(p = .0001 \)). There were significant relationships between the length of seizure/epilepsy history and presence of intratumoral T1-weighted high-intensity area (median 3 years vs. 0.5 years, \(p = .0021 \)), stalk-like sign (13.5 vs. 1 year, \(p < .0001 \)), and regional atrophy (14 vs. 0.5 years, \(p < .0001 \)). Patients with brainstem AGs (n = 7) did not have a seizure/epilepsy history and were significantly younger than those with supratentorial AGs (median, 5 vs. 13 years, \(p < .0001 \)).

Conclusions: Intratumoral T1-weighted high-intensity areas, stalk-like signs, and regional brain atrophy were frequent imaging features in AG. We also found that affected age was different between supratentorial and brainstem AGs.

KEYWORDS
angiocentric glioma, magnetic resonance imaging, systematic review

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
© 2022 The Authors. Journal of Neuroimaging published by Wiley Periodicals LLC on behalf of American Society of Neuroimaging.
INTRODUCTION

Angiocentric gliomas (AGs) are rare tumors of the central nervous system (CNS) that tend to occur in the supratentorial superficial regions of young patients. AGs were first recognized as distinct World Health Organization (WHO) grade 1 tumors owing to their indolent nature in the 2007 WHO classification of CNS tumors. Recently, revised WHO classification of CNS tumors in 2021 classified AG as one of the "Pediatric-type diffuse low-grade gliomas."1

Clinically, patients with AGs often present with pharmacoresistant seizures/epilepsies because AGs tend to be superficially located. Seizures/epilepsies improve in most cases where complete resection is performed.2 Radiologically, two characteristic features of AGs have been reported—high intensity on T1-weighted imaging (T1WI) and stalk-like T2-weighted imaging (T2WI)/fluid-attenuated inverted recovery (FLAIR) high-intensity lesions extending to the ventricle.3 However, the frequency of these MRI findings is unknown, and several authors have reported cases without these "pathognomonic" features.4–8

The purpose of this systematic review was to investigate the frequency of different MRI findings of AGs and to explore the yet unidentified features that may be characteristic. To the best of our knowledge, this systematic review presents the largest cohort (n = 50) with analyzable MR images, including three new cases from our hospital.

METHODS

Study selection

We searched PubMed, Elsevier’s abstract and citation database (SCOPUS), and Embase databases using the following search terms on July 6, 2021, without any language or date limits:

- (angiocentric glioma) AND ((radiology) OR (neuroradiology) OR (imaging) OR (magnetic resonance) OR (MRI)) for PubMed;
- ALL ((angiocentric AND glioma) AND ((radiology) OR (neuroradiology) OR (imaging) OR (magnetic AND resonance) OR (MRI))) for SCOPUS;
- angiocentric AND glioma AND ((radiology OR neuroradiology OR imaging) OR (magnetic AND resonance) OR MRI) for Embase.

Publications were considered eligible if they included all of the following criteria:

- The tumors were pathologically proven AGs.
- Preoperative T1WI (either pre-contrast or post-contrast enhanced) and T2WI or FLAIR images were available.
- Each patient’s demographic data were available.

Exclusion criterion was as follows:

- The full text was unavailable.

Non-English references were translated into English using Google Translate (www.translate.google.com) and reviewed. We also obtained our institutional review board exemption for the inclusion of three unpublished cases with pathologically proven AGs with preoperative MR images from our hospital. Data were acquired in compliance with all applicable Health Insurance Portability and Accountability Act regulations.

This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 statement.9

Data analyses

Two board-certified radiologists independently reviewed all studies and MR images of the eligible exams. When discrepancies arose between the two reviewers, another board-certified radiologist made the tiebreaker decisions.

Collected data

The following data were collected:

Demographic

- Patient age at diagnosis
- Sex

Clinical

- Presenting complaint
- Seizure/epilepsy history
- Treatment strategy
- Recurrence after complete resection
- Period between the initial surgery and tumor recurrence
- Survival status
- Follow-up duration

Imaging

- Tumor size, laterality, and region
- Tumor margin status
- Involvement of both cortex and subcortex
- Cystoid component: defined as a nonenhancing component with a cerebrospinal fluid-like high intensity on T2WI and low intensity on T1WI.
Surgery alone (39/48, 81.3%) was the recurrent pneumonia, and narrowed them down to 78 potentially eligi-
Perfusion MRI findings

The study selection process is summa-
Diffusion restriction: Mean apparent diffusion coefficient was calcu-
Stalk-like sign: defined as T2WI or FLAIR hyperintensity that tapers
Atrophy of the brain parenchyma near the tumor: We assumed that
MR spectroscopy findings
In six studies, cases that did not meet the crite-
Massive surrounding edema: determined when the area of the
double vision,
Contrast enhancement pattern

The frequency of high intensity on T1WI was compared between
The description of each study was extracted with respect to the
Risk of bias assessment

We employed a tool to evaluate the methodological quality of case
Statistical analysis

The frequency of high intensity on T1WI was compared between the
RESULTS

Study selection
A database search using PubMed, SCOPUS, and Embase identified
Risk of bias assessment

As we extracted data from case-based studies, where the selection
Demographic and clinical data

The demographic and clinical data of 50 patients are summarized in

formed using R software (version 4.0.0; R Foundation for Statistical Computing, Vienna, Austria).

EUROIMAGING OF ANGIOCENTRIC GLIOMA

computing, Vienna, Austria).

The majority of patients (36/50, 72.0%) had a history of seizure or
Surgery alone (39/48, 81.3%) was the
most commonly employed treatment strategy, and the incidence of tumor recurrence after complete resection was low (2/29, 6.9%).

Neuroimaging data

The neuroimaging findings are summarized in Table 3. AGs were located in the brainstem in seven patients (7/50, 14.0%; pons, n = 3 [16, 17]; midbrain, n = 2 [18, 32]; pons and medulla, n = 1 [case 1, Figure 2]; pons and cerebellum, n = 1 [35]). Most tumors involved both cortical and subcortical areas (39/50, 78.0%), followed by brainstem (7/50, 14.0%), subcortical area alone (2/50, 4.0%), diffusely (1/50, 2.0%), and thalamus (1/50, 2.0%). Cystoid components were observed in 28 out of 50 patients (56.0%). Contrast enhancement was observed in 11 out of 42 patients (26.8%); notably, brainstem AGs were not enhanced (0/7 patients, 0%). Intratumoral T1WI high-intensity areas, stalk-like sign, and atrophy of the brain parenchyma near the tumor were observed in 23 out of 50 (46.0%), 10 out of 50 (20.0%), and 14 out of 50 (28.0%) patients, respectively. Three patients were reported to have adjacent focal cortical dysplasia (FCD), including 2 patients with intratumoral T1WI high-intensity areas, stalk-like signs, and atrophy of the surrounding brain parenchyma. Perfusion MRI was performed in only one study in which elevated cerebral blood flow and volume were observed on dynamic susceptibility contrast perfusion MRI. On MR spectroscopy, decreased levels of N-acetyl aspartate, elevated creatine and choline, and lactate peaks were observed in 4 out of 4 (100%), 2 out of 4 (50.0%), and 2 out of 4 (50.0%) patients, respectively. The MRI findings of the three patients from our hospital are shown in Figures 2–4.

Statistical analyses

The results are summarized in the Table 4. Intratumoral T1WI high-intensity areas were observed significantly more frequently in cases with stalk-like signs (positive, 9/10 vs. negative, 14/40, p = .0031) and atrophy of the surrounding brain parenchyma of the tumor (positive, 13/14 vs. 10/36, p = .0001). Age at diagnosis was significantly lower in patients with brainstem AGs (median, 5 years [range, 2-7 years]) than in those with supratentorial AGs (median, 13 years [range, 2-83 years], p < .0001). Significant relationships were observed between the length of seizure/epilepsy and the presence of intratumoral T1WI high-intensity area (median, 3 years [range, <1-35 years] vs. absent, 0.5 [<1-10], p = .0021), stalk-like sign (13.5 years [<1-35] vs. 1 year [<1-14], p < .0001), and atrophy of the surrounding brain parenchyma of the tumor (14 years [1-35] vs. 0.5 [0-10], p < .0001).
TABLE 1
Demographic, clinical, and imaging data of the 3 patients with angiocentric gliomas in our hospital

Demographic & clinical data	Patient	1	2	3
Age at diagnosis (years)		2	43	10
Sex	Male	Male	Male	
Seizure/epilepsy	No	Yes	Yes	Yes
Seizure/epilepsy started (years)	8	10		
Surgery	No (biopsy-proven)	Yes	Yes	Yes
Chemotherapy	Yes	No	No	No
Recurrence, period (from surgery)				
Patient status	Survive	Survive	Survive	
Follow up duration (month)	39	72	38	
Imaging data				
Size (mm: Anteroposterior x transverse x craniocaudal)	38 x 40 x 41	8 x 9 x 10	24 x 28 x 21	
Laterality	Middle	Left	Left	
Tumor site	Pons, Medulla	Frontal lobe	Occipital lobe	
Tumor margin	Well	Well	Well	
Involvement of both cortex and subcortex	Yes	Yes	Yes	
Massive surrounding edema (≥ tumor size)	No	No	No	
Morphology	Solid	Cystoid	Solid	
MRI signal intensity	T2-weighted image (compared with cortex)	High	High	High
	Fluid-attenuated inversion recovery image (compared with cortex)	High	High & Low	High
	T1-weighted image (compared with cortex)	Low	High & Low	Low
Apparent diffusion coefficient (10^{-3}mm2/s)	1.6	1.04	1.34	
Stalk-like sign	No	Yes	Yes	Yes
Atrophy of the brain parenchyma near the tumor site	No	Yes	No	
Contrast enhancement	No	No	Nodular	

DISCUSSION

In this systematic review of 50 patients with AGs, we found that AGs were most frequent in the supratentorial regions (43/50, 86.0%), with frequent involvement of both cortical and subcortical regions (39/50, 78.0%), and that patients under 20 years of age were the most affected (39/50, 78.0%). The majority of the patients had a seizure/epilepsy history (36/50, 72.0%) with a variety of lengths (median, 2 years; range, <1-35 years). Other than these previously known features, we found the incidence of the characteristic neuroimaging features, including intratumoral T1WI high-intensity area (23/50, 46.0%), stalk-like sign (10/50, 20.0%), and atrophy of the surrounding brain parenchyma of the tumor (14/50, 28.0%). Furthermore, several unidentified clinical and imaging correlations were found: there were strong relationships between the length of seizure/epilepsy history and the presence of the aforementioned MRI findings; age at diagnosis was significantly lower in patients with brainstem AGs than in those with supratentorial AGs. To the best of our knowledge, this is the largest systematic review of neuroimaging findings in AGs.

Patients often have a long history of intractable seizures or epilepsy prior to surgical resection. Surgical resection is the mainstay treatment strategy, and the majority of AG cases are curable by complete...
TABLE 2 Demographic and clinical information of the 50 patients with angiocentric gliomas

Demographic	
Median age at diagnosis (years [range])	13 [2-83]
Sex	Male = 35, Female = 14, Not described = 1

Clinical	
Seizure/epilepsy	36/50 (72.0%)
Median length of seizure/epilepsy history (years [range])^a	2 [1-35]

Treatment strategy	
Surgery alone	39/48 (81.3%)
Surgery and radiation	1/48 (2.1%)
Surgery and chemotherapy	2/48 (4.2%)
Chemotherapy alone	3/48 (6.3%)
Chemotherapy and radiation	1/48 (2.1%)

Follow-up	
Recurrence after complete resection	2/29 (6.9%)
Patient status	Survive = 40/41 (97.6%), Death = 1/41 (2.4%)

| Follow-up duration (median [range]) | 16 months [2-84] |

^aThe length was calculated by subtracting the age of seizure/epilepsy onset from age at diagnosis. The length of the patients presenting with their first episode of seizure/epilepsy was calculated as zero (6 cases). Cases without a specific history length were excluded from the calculation (7 cases).

FIGURE 2 Brainstem angiocentric glioma in a 2-year-old boy presenting with right facial weakness (case 1). MRI shows a 38 × 40 × 41 mm mass in the pontomedullary region (A-H, arrows). The tumor shows high intensity on T2-weighted image (A) and fluid-attenuated inversion recovery image (B), low intensity on T1-weighted image (C) without contrast enhancement (D). T2*-weighted image does not show intratumoral calcification or hemorrhage (E). Diffusion restriction is not observed with the mean apparent diffusion coefficient value of 1.60 × 10⁻³ mm²/s (F, G). Fat-suppressed coronal T2-weighted image shows infiltrating growth of the tumor with an ill-defined margin (H)
Parameters	Value
Size (median [range]) (21 tumors)	26 mm [10-70]
Laterality	
Right	14/50 (28.0%)
Left	28/50 (56.0%)
Middle	7/50 (14.0%)
Diffuse	1/50 (2.0%)
Location	
Frontal lobe	22/50 (44.0%)
Parietal lobe	10/50 (20.0%)
Temporal lobe	15/50 (30.0%)
Insula	4/50 (8.0%)
Basal ganglia	4/50 (8.0%)
Corpus callosum	2/50 (4.0%)
Brainstem	7/50 (14.0%)
Involvement of both cortex and subcortex	39/50 (78.0%)
Cystoid component	28/50 (56.0%)
T2-weighted imaging signal intensity	
Noncystoid component	
High intensity	30/32 (93.8%)
Isointensity	2/32 (6.2%)
Cystoid component	
Fluid-attenuated inversion recovery signal intensity	
Noncystoid component	
High intensity	27/29 (93.1%)
Isointensity	2/29 (6.9%)
Low intensity	0
Cystoid component	
Low intensity	14/16 (87.5%)
T1-weighted imaging signal intensity	
Noncystoid component	
High intensity	15/40 (37.5%)
Isointensity	4/40 (10.0%)
Low intensity	13/40 (32.5%)
Cystoid component	
High and iso-intensity	1/40 (2.5%)
High and low intensity	5/40 (12.5%)
Iso- and low intensity	2/40 (5.0%)
Intratumoral T1-weighted imaging high-intensity area	23/50 (46.0%)
Massive surrounding edema (≥tumor size)	10/50 (20.0%)
Stalk-like sign	10/50 (20.0%)
Atrophy of the surrounding brain parenchyma of the tumor	14/50 (28.0%)
Contrast enhancement	
Any	11/41 (26.8%)
Homogeneous	1/41 (2.4%)
Heterogeneous	5/41 (12.2%)
Nodular	2/41 (4.9%)
Rim	2/41 (4.9%)
Scarce	1/41 (2.4%)
Diffusion restriction	1/8 (12.5%)

aIn cases where measurements in multiple directions were performed, the maximum value was used for the calculation of the tumor diameter.
FIGURE 3 Supratentorial angiocentric glioma in a 43-year-old male presenting with refractory focal epilepsy, which started 35 years prior (case 2). MRI shows an 8 × 9 × 10 mm mass in the left frontal lobe (white arrows). The tumor contains a cystic area that is hyperintense on T2-weighted image (A) and hypointense on fluid-attenuated inversion recovery image (B). The stalk-like sign (A, dotted lines) with focal atrophy of the surrounding brain parenchyma are observed on T2-weighted coronal image. The rim of the tumor shows high intensity on precontrast enhanced T1-weighted image (C, white arrowhead). No contrast enhancement is observed (D). Diffusion restriction is not observed with the mean apparent diffusion coefficient value of 1.04 × 10^{-3} \text{mm}^2/\text{s} (not shown). Hematoxylin and eosin sections of the tumor demonstrate monomorphic low-grade glial cells with an angiocentric growth pattern (E, black arrowheads; 40x) and extensive infiltration along blood vessels (F, black arrow; 10x). No calcification nor hemosiderin-laden macrophages are observed. The main imaging features are represented in the illustration: The tumor (white arrow), the stalk-like sign (dotted lines), focal atrophy (black arrowheads), and intratumoral T1-weighted high intensity (white arrowhead) (G)

FIGURE 4 Supratentorial angiocentric glioma in a 10-year-old male presenting with the first episode of epilepsy (case 3). The tumor shows high intensity on fat-suppressed T2-weighted image (A) and fluid-attenuated inversion recovery image (not shown) and low intensity on T1-weighted image (B). The stalk-like sign is observed without evidence of atrophy in the surrounding brain parenchyma (A, dotted lines). Diffusion restriction is not observed with the mean apparent diffusion coefficient value of 1.34 × 10^{-3} \text{mm}^2/\text{s} (D, E). Nodular enhancement is observed in the postcontrast sagittal T1-weighted image (C, F, thick arrows)
TABLE 4 Statistical analyses of clinical and imaging findings

Relationship between MRI findings	Intratumoral T1WI high-intensity area	p-value
Stalk-like sign		
Positive (n = 10)	9/10 (90.0%)	.0031† (Fisher’s exact test)
Negative (n = 40)	14/40 (35.0%)	
Atrophy of the surrounding brain parenchyma of the tumor		
Positive (n = 14)	13/14 (92.9%)	.0001† (Fisher’s exact test)
Negative (n = 36)	10/36 (27.8%)	
Tumor location (n = 50)	Age at diagnosis (median years [range])	p-value
Supratentorial angiocentric glioma (n = 43)	13 [2-83]	
Brainstem angiocentric glioma (n = 7)	5 [2-7]	
MRI findings in patients with seizure/epilepsy history (n = 29)	Seizure/epilepsy history length (median years [range])a	p-value
Positive (n = 15)	3 (<1-35)	.0021† (Mann-Whitney U-test)
Negative (n = 14)	0.25 (<1-10)	
Stalk-like sign		
Positive (n = 8)	13.5 (<1-35)	<.0001† (Mann-Whitney U-test)
Negative (n = 21)	1 (<1-14)	
Atrophy of the surrounding brain parenchyma of the tumor		
Positive (n = 9)	14 [1-35]	<.0001† (Mann-Whitney U-test)
Negative (n = 20)	0.5 (<1-10)	

Abbreviations: n, number; T1WI, T1-weighted image.

The length was calculated by subtracting the age of seizure/epilepsy onset from age at diagnosis. Length for the patients who presented with the first episode of seizure/epilepsy was calculated as zero (n = 6). Cases without mentioning the specific history length were excluded from the calculation (n = 7).

Statistically significant.

resection.³ On the other hand, we found that patients with brainstem AGs did not have a history of seizure or epilepsy (n = 7).¹⁷,¹⁸,³²,³⁵ This discrepancy indicates that the epileptogenesis of AG may be caused by its frequent location involving the cortex, not by its histopathological profile. There was also a significant difference in the age at diagnosis between patients with supratentorial and brainstem AGs (median, 13 years vs. 5 years, p < .0001, respectively). We suspect that patients with brainstem AGs were more likely to present with symptoms that required brain imaging, such as cranial nerve palsy and intracranial hypertension. To clarify this hypothesis, further studies with more cases of brainstem AG are necessary.

Neuroimaging features of AGs, such as high intensity on T1WI, nonenhancement, superficial location, and stalk-like sign on T2WI/FLAIR images, have been noted in previous studies,⁶,²⁷,³⁰,³¹,⁴⁴,⁴⁵; however, information on the frequency of each finding has been limited. In this study, we demonstrated the frequency of each neuroimaging finding. For example, the well-known stalk-like sign was found not to be frequent (10/50, 20.0%). Contrast enhancement was observed in more than one-fourth of patients (11/41, 26.8%), even though AGs are generally considered to have no contrast enhancement.

Intratumoral T1WI high-intensity areas were significantly more common in patients with regional atrophy and stalk-like signs. The length of seizure/epilepsy history was significantly longer in patients with intratumoral T1WI high-intensity areas, stalk-like signs, and regional atrophy. These findings suggest that T1WI high-intensity areas in AGs may reflect some chronic process, although we were not able to confirm the correlation with pathological findings in the literature and our own cases.⁸ Regarding the stalk-like sign, we assume that it reflects several different pathologies, such as tumor infiltration along with the vessels extending from near the brain surface toward the ventricle, peritumoral gliosis caused by long-standing tumor existence or seizure-induced oxidative stress, and coexisting FCD, as is the case with polymorphous low-grade neuroepithelial tumor of the young.⁴⁶ Indeed, the coexistence of AG and FCD was pathologically proven in three cases,²⁵,⁴³ including two cases with stalk-like signs. FCD may cause longstanding seizure/epilepsy, and conversely, a long seizure/epilepsy history may cause regional atrophy and brain parenchymal degeneration around the tumor. The longstanding presence of AG also explains the high incidence of tumor-associated seizure/epilepsy-induced brain atrophy and stalk-like tumor extension. Further studies with a radiology-pathology correlation may help elucidate the pathological background of the imaging findings.

There were some limitations to this study. First, the number of patients was small, although this study presented the largest cohort of AGs with analyzable neuroimaging findings. Second, neuroimaging findings were evaluated using limited images attached to each article and not by serial images. However, to mitigate the risk of inappropriate assessment, we performed an imaging investigation with the help of
three board-certified radiologists. Third, there was an uncertainty about the presence/absence of some signs in the missing sets of images in the literature cases. This may have introduced the bias on the frequency of each imaging finding. Fourth, there were missing data due to the heterogeneity of the collected studies, including tumor size and findings of advanced MRI sequences, such as perfusion MRI and MR spectroscopy. Further studies using these advanced sequences are required.

CONCLUSION

AGs are epileptogenic low-grade gliomas that frequently occur in superficial supratentorial regions in patients under 20 years of age. Brainstem AGs were observed in younger patients and did not cause seizures or epilepsy. Characteristic imaging findings of AGs (i.e., intratumoral T1WI high-intensity areas, stalk-like signs, and atrophy of the surrounding brain parenchyma) may be induced by the indolent nature of AGs and associated longstanding seizure/epilepsy and/or coexisting FCD and gliosis.

ACKNOWLEDGMENTS AND DISCLOSURE

We would like to thank Editage (http://www.editage.com) for editing and reviewing this manuscript for English language.

ORCID

Ryo Kurokawa https://orcid.org/0000-0002-1186-8900
Mariko Kurokawa https://orcid.org/0000-0002-3907-9188
Yoshiaki Ota https://orcid.org/0000-0001-8992-2156

REFERENCES

1. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97-109.
2. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO classification of tumors of the central nervous system: a summary. Neuro Oncol 2021;23:1231-51.
3. Ampie L, Choy W, DiDomenico JD, et al. Clinical attributes and surgical outcomes of angiocentric gliomas. J Clin Neurosci 2013;26:117-22.
4. Li JY, Langford LA, Adesina A, et al. The high mitotic count detected by phospho-histone H3 immunostain does not alter the benign behavior of angiocentric glioma. Brain Tumor Pathol 2012;29:68-72.
5. Koral K, Koral KM, Sklar F. Angiocentric glioma in a 4-year-old boy: imaging characteristics and review of the literature. Clin Imaging 2012;36:61-4.
6. Kakkar A, Sharma MC, Suri V, et al. Angiocentric glioma: a treatable cause of epilepsy: report of a rare case. Neuroul India 2012;62:677-9.
7. Harmsen H, Mobjley BC, Davis LT. Angiocentric glioma mimicking encephalomalacia. Radiol Case Rep 2019;14:700-3.
8. Amemiya S, Shibahara J, Aoki S, et al. Recently established entities of central nervous system tumors: review of radiological findings. J Comput Assist Tomogr 2008;32:279-85.
9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71.
10. Al-Hajri A, Al-Mughairi S, Somani A, et al. Pathology-MRI correlations in diffuse low-grade epilepsy associated tumors. J Neuropathol Exp Neur 2017;76:1023-33.
11. Murad MH, Sultan S, Haffar S, et al. Methodological quality and synthesis of case series and case reports. BMJ Evid Based Med 2018;23:60-3.
12. Barman A, Nath A, Thakur D. Identification and characterization of fungi associated with blister blight lesions of tea (Camellia sinensis L. kuntze) isolated from Meghalaya, India. Microbiol Res 2020;240:126561.
13. Han G, Zhang J, Ma Y, et al. Clinical characteristics, treatment and prognosis of angiocentric glioma. Oncol Lett 2020;20:1641-8.
14. O’Halloran PJ, Amoo M, Dablouk MO, et al. Angiocentric glioma: drop metastases to the spinal cord. World Neurosurg 2020;136:110-6.
15. Gupta S, Rangari KV, Mehrotra A, et al. Temporal lobe angiocentric glioma with oligodendroglioma-like areas: a rare association of an uncommon tumor. A case report with review of literature. Childs Nerv Syst 2020;36:641-6.
16. Taschner CA, Sankowski R, Scheiwe C, et al. Freiburg neuropathology case conference: hypersalivatory seizures in a 6-year-old child. Clin Neuroradiol 2019;29:581-6.
17. D’Aronco L, Rouleau C, Gayden T. Brainstem angiocentric gliomas with MYB-QKI rearrangements. Acta Neuropathol 2017;134:667-9.
18. Weaver KJ, Crawford LM, Bennett JA, et al. Brainstem angiocentric glioma: report of 2 cases. J Neuросurg Pediatr 2017;20:347-51.
19. Gonzalez-Quarante LH, Fernández Carballal C, Agarwal V, et al. Angiocentric glioma in an elderly patient: case report and review of the literature. World Neurosurg 2017;97:755.e5-10.
20. McCracken JA, Gonzales MF, Phal PM, et al. Angiocentric glioma transformed into anaplastic ependymoma: review of the evidence for malignant potential. J Clin Neurosci 2016;34:47-52.
21. Adamek D, Siwek GP, Chrobak AA, et al. Angiocentric glioma from a perspective of A-B-C classification of epilepsy associated tumors. Folia Neuropathol 2016;54:40-9.
22. Cheng S, Liu Y, Xu S, et al. Cystoid angiocentric glioma: a case report and literature review. J Radiol Case Rep 2015;9:1-9.
23. Whitehead MT, Veza G. MR spectroscopic profile of an angiocentric glioma. Anticancer Res 2015;35:6267-70.
24. Erson A, Canda MS, Men S, et al. Angiocentric glioma: the infiltrative glioma with ependymal differentiation. Turk Patoloji Derg 2017;33:251-5.
25. Ni H-C, Chen S-Y, Chen L, et al. Angiocentric glioma: a report of nine new cases, including four with atypical histological features. Neuropathol Appl Neurobiol 2015;41:333-46.
26. Chen G, Wang L, Wu J, et al. Intractable epilepsy due to angiocentric glioma: a case report and minireview. J Radiol Case Rep 2015;9:61-5.
27. Aguilar HN, Hung RW, Mehta V, et al. Imaging characteristics of an unusual, high-grade angiocentric glioma: a case report and review of the literature. J Radiol Case Rep 2012;6:1-10.
28. Kumar M, Ramakrishnaiah R, Samant R. Angiocentric glioma, a recently added WHO grade-I tumor. Radiol Case Rep 2015;8:782.
29. Lu J-Q, Patel S, Wilson BA, et al. Malignant glioma with angiocentric features. J Neurosurg Pediatr 2013;11:350-5.
30. Miyata H, Ryufuku M, Kubota Y, et al. Adult-onset angiocentric glioma of epithelioid cell-predominant type of the mesial temporal lobe suggestive of a rare but distinct clinicopathological subset within a spectrum of angiocentric cortical ependymal tumors. Neuropathology 2012;32:479-91.
31. Hu X-W, Zhang Y-H, Wang J-J, et al. Angiocentric glioma with rich blood supply. J Clin Neurosci 2010;17:917-8.
32. Covington DB, Rosenblum MK, Brathwaite CD, et al. Angiocentric glioma-like tumor of the midbrain. Pediatr Neurosurg 2009;45:429-33.
33. Shaku SF, McGirt MJ, Johnson MW, et al. Angiocentric glioma: a case series. J Neurosurg Pediatr 2009;3:197-202.
34. Preusser M, Hoischen A, Novak K, et al. Angiocentric glioma: report of clinico-pathologic and genetic findings in 8 cases. Am J Surg Pathol 2007;31:1709-18.
35. Almubarak AO, Alahmari A, Al Hindi H, et al. Angiocentric glioma of brainstem. Neurosciences (Riyadh) 2020;25:416-20.
36. Cavalheiro S, da Costa MDS, Schaurich CG, et al. An 8-year-old girl with blepharospasm and left thalamic tumor. Brain Pathol 2019;29:457-8.
37. Chatterjee D, Gupta K, Singla N, et al. Angiocentric glioma of hippocampus–report of a rare intractable epilepsy-related tumor. Brain Pathol 2019;29:457-8.
38. Chatterjee D, Gupta K, Singla N, et al. Angiocentric glioma: a rare intractable epilepsy-related tumour in children. Folia Neuropathol 2014;52:253-9.
39. Liu CQ, Zhou J, Qi X, et al. Refractory temporal lobe epilepsy caused by angiocentric glioma complicated with focal cortical dysplasia: a surgical case series. J Neurooncol 2012;110:375-80.
40. Taschner CA, Staszewski O, Zentner J, et al. Freiburg neuropathology case conference: a mass lesion of the mesial temporal lobe in a child. Clin Neuroradiol 2011;21:171-6.
41. Buccoliero AM, Castiglione F, Degl’innocenti DR, et al. Angiocentric glioma: clinical, morphological, immunohistochemical and molecular features in three pediatric cases. Clin Neuropathol 2013;32:107-13.
42. Kadak MT, Demirel A, Demir T. Angiocentric glioma manifesting as psychotic symptoms in an adolescent: a case report. Neurol Psychiatry Brain Res 2013;19:197-200.
43. Takeda M, Kasai T, Morita K, et al. Cytopathological features of mammary analogue secretory carcinoma–review of literature. Diagn Cytopathol 2015;43:131-7.
44. Rosenzweig I, Bodi I, Selway RP, et al. Paroxysmal ictal phonemes in a patient with angiocentric glioma. J Neuropsychiatry Clin Neurosci 2010;22:123.E18-20.
45. Ma X, Ge J, Wang L, et al. A 25-year-old woman with a mass in the hippocampus. Brain Pathol 2010;20:503-6.
46. Kurokawa M, Kurokawa R, Capizzano AA, et al. Neuroradiological features of the polymorphous low-grade neuroepithelial tumor of the young; five new cases with a systematic review of the literature. Neuroradiology 2022. https://doi.org/10.1007/s00234-021-02879-5.

How to cite this article: Kurokawa R, Baba A, Emile P, Kurokawa M, Ota Y, Kim J, et al. Neuroimaging features of angiocentric glioma: A case series and systematic review. 2022;32:389–399. https://doi.org/10.1111/jon.12983