Comparative Analysis of Enzymatic and Antioxidant Properties in Two Varieties of *Clitoria ternatea*

Moni Nishad¹, Yashodhara Verma²

Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad-211007 (UP), India

Abstract: The goal of the present study was to compare the enzymatic antioxidants viz., superoxide dismutase, catalase, lipid peroxidation, polyphenol oxidase, ascorbic acid oxidase and antioxidant properties in leaves and roots white flowered and purple flowered varieties of *Clitoria ternatea*. white flowered leaves showed higher enzymatic activity as compared to *Clitoria ternatea* purple flowered variety. In case of roots the purple flowered variety showed higher lipid peroxidation, superoxide dismutase and polyphenol oxidase as compared to white flowered variety. Whereas white flowered variety roots showed higher catalase and ascorbic acid oxidase activity as compared to purple flowered variety. *Clitoria ternatea* white flowered leaves and roots showed higher antioxidant activity as compared to purple flowered leaves and roots.

Keywords: *Clitoria ternatea*, enzymatic properties and antioxidants.

1. Introduction

Clitoria ternatea is a member of leguminoseae (Fabaceae). It is commonly called *Clitoria ternatea*, blue pea, butterfly pea, aparajita (India), kordofan pea (Sudan), cunha (Brazil) or pokindang (Philippines), is a vigorous, twinning summer growing, perennial legume of Old World Origin. The taxonomy, nomenclature and distribution of *Clitoria ternatea* have been reviewed by Fantz (1977). It is a deep rooted, tall slender and a climbing legume. *Clitoria ternatea* is self-pollinated however segregating genotype have been identified indicating partial out crossing probably exists. *Clitoria ternatea* is widely used in traditional Indian systems of medicine as a brain tonic and is believed to promote memory and intelligence. The study conducted on rats revealed that *Clitoria ternatea* root extracts increase rat brain acetyl choline content and acetyl choline esterase activity in a similar fashion to the standard cerebro drug pritinol (Taranalli and Cheeramkuzhy, 2003). The plant is considered as a good brain tonic and is useful for throat and eye infection, skin diseases, urinary troubles even in cattle, ulcer and antidiotal properties (Malabodi and Nataraja, 2001) besides its medicinal property *Clitoria ternatea* is also a good source of phytochemical substances. It contains antifungal proteins and has been shown to be homologous to plant defenses (ct-AMP1) (Thevissenet al., 2000).

2. Materials and Methods

The plants of two *Clitoria ternatea* varieties (purple and white flowered) were procured from the local nursery, Civil lines, Allahabad. Extraction of sample

The leaves and roots of two *Clitoria ternatea* varieties were washed under tap water separately. The fresh sample was used for antioxidant enzyme analysis. The samples used for enzyme analysis were homogenized by using different buffers.

Lipid peroxidation	**Purple flowered**	**White flowered**
Value	119.6 µM/g	22.62 µM/g

Lipid peroxidation was measured by estimating the end product malondialdehyde as per method of Heath and Packer (1968). Antioxidant activity was determined through DPPH free radical scavenging activity method given by (Yen and Duh, 1994). The superoxide dismutase activity was assayed the method of Bauchamp and Fridovich (1971). The method followed was given by Hosetti and Frost (1994). The polyphenol oxidase activity was assayed by measuring the increase in absorbance at 420 nm with the oxidation of catechol as substrate according to the method given by Liu et al. (2005). The ascorbic acid oxidase activity was assayed the method of (Bruning and Mohr, 1972).

3. Results and Discussion

In case of leaves the maximum lipid peroxidation was found to be 22.26 µM/g in white flowered and 21.55 µM/g in purple flowered respectively, in case of roots the two varieties of *Clitoria ternatea* under study, purple flowered shown the maximum lipid peroxidation 27.84 µM/g followed by white flowered 26.20 µM/g. The results of present study are in accordance to Becana et al. (1986) who observed the lipid peroxidation in leaves of *Medicago sativa* which was 119.6 mmol MDA/g dry wt and in roots was 26.2 mmol MDA/g dry wt.

The maximum SOD activity was obtained 8.09 U/mg of protein in leaves of white flowered followed by in leaves of purple flowered 6.86 U/mg of protein respectively. Whereas in case of roots of two varieties of *Clitoria ternatea* the maximum activity 1.54U/mg of protein in purple flowered and 1.05 U/mg of protein in white flowered were found. The observations made on the parameter are in agreement with those of Padmaja et al. (2011) who also observed that 7.234 U/mg of protein in leaves of *Sesbania grandiflora*.

The maximum catalase activity was obtained 71.50 U/mg of protein in leaves of white flowered followed by in leaves of purple flowered 62.94 U/mg of protein respectively. Whereas in case of roots of two varieties of *Clitoria ternatea* the maximum activity 14.78 U/mg of protein in white
flourished and 13.55 U/mg of protein in purple flowered were found. The observations made on the parameter are in agreement with those of Padmaja et al. (2011) who also observed that the catalase activity 76.06 U/mg protein in leaves of Sesbania grandiflora.

The maximum polyphenol oxidase activity was obtained 12.71 µmol/g in leaves of white flowered followed by in leaves of purple flowered 11.85 µmol/g respectively. Whereas in case of roots of two varieties of Clitoria ternatea the maximum activity 15.16 µmol/g in purple flowered and 14.14 µmol/g in white flowered were found. The results of present study are in accordance with those of Omamiet al. (2013) who observed that the activity of polyphenol oxidase in whole parts of Evolvulus alsinoides was 6.78 µmol/g.

The maximum ascorbic acid oxidase activity was obtained 0.494 U/mg of protein in leaves of white flowered followed by in leaves of purple flowered 0.438 U/mg protein respectively. Whereas in case of roots of two varieties of Clitoria ternatea the maximum activity 0.378 U/mg protein in white flowered and 0.298 U/mg protein of protein in purple flowered were found. Similarly results were observed by Padmaja et al. (2011) which was 0.374 U/mg protein in leaves of Sesbania grandiflora. Accordingly Singh (2012) observed 6.392 U/mg protein activity of ascorbic acid oxidase in roots of Glycyrrhizaglabra.

It was observed from the Table 2 that methanolic extract of the roots and leaves shows an increase in scavenging activity of DPPH on increasing concentration. The percentage inhibition of DPPH highest in roots of white flowered varieties of Clitoria ternatea 57.10 at 400 µg/ml concentration as compare to roots of purple flowered varieties of Clitoria ternatea 44.95 % at 400 µg/ml concentration the percentage inhibition found in minimum leaves of purple flowered varieties of Clitoria ternatea 10.83 % at 100 µg/ml concentration followed by 54.28%,73.38% and 89.95% at 200, 300, 400 µg/ml concentration respectively. The lower IC50 represent the higher antioxidant activity of leaf and root extracts. Patil and Patil (2011) observed the IC50 value of methanolic extracts of roots of blue flowered varieties of Clitoria ternatea which was 492 µg/mL and in white flowered varieties of Clitoria ternatea which was 342 µg/mL. Accordingly Rabeta et al. (2013) also observed the % inhibition of DPPH scavenging in leaves of Clitoria ternatea which was 64.67 % at 25 µg/ml, 264% at 50 µg/ml, 408.67 % at 100 µg/ml and 472% at 125 µg/ml respectively.

The data have been reported as mean ± standard deviation (n=3). Students T-test were used for determination of statistical significance. p< 0.05 were regarded as significant.

| Table 1: Enzymatic analysis in leaves and roots of PF (Purple flowered) and WF (White flowered) varieties of Clitoria ternatea |
|-----------------|-----------------|-----------------|
| **Enzymatic analysis** | **Leaves** | **Roots** |
| Lipid peroxidation (nmol MDA/g dry wt) | | |
| 21.54±0.41 | 22.25±0.083 | 27.84±0.21 | 26.20±0.21 |
| Superoxide Dismutase (U/mg protein) | | |
| 6.86±0.44 | 8.09±0.84 | 1.54±0.077 | 1.05±0.035 |
| Catalase (U/mg protein) | | |
| 62.94±0.06 | 71.50±0.72 | 13.55±0.30 | 14.78±0.10 |
| Polyphenol oxidase (U/mg protein) | | |
| 11.85±0.15 | 12.71±0.16 | 15.16±0.16 | 14.14±0.14 |
| Ascorbic acid oxidase (U/mg protein) | | |
| 0.43±0.05 | 0.49±0.07 | 0.29±0.01 | 0.38±0.02 |

The data have been reported as mean ± standard deviation (n=3). Students T-test were used for determination of statistical significance, p< 0.05 were regarded as significant.

| Table 2: Antioxidant activity in leaves and roots of two varieties of Clitoria ternatea |
|-----------------|-----------------|-----------------|
| **Concentration (µg/ml)** | **% Inhibition of DPPH radicals** |
| | Leaves of purple flowered Clitoria ternatea | Leaves of white flowered Clitoria ternatea | Roots of purple flowered Clitoria ternatea | Roots of white flowered Clitoria ternatea |
| 100 | 10.83±0.35 | 12.95±0.03 | 19.54±0.31 | 26.29±0.54 |
| 200 | 54.28±0.09 | 52.79±0.1 | 23.73±0.45 | 35.57±1.0 |
| 300 | 73.38±0.26 | 81.64±0.1 | 35.88±0.58 | 45.92±0.28 |
| 400 | 89.95±0.26 | 94.30±0.27 | 44.95±2.41 | 57.10 ± 1.52 |

The data have been reported as mean ± standard deviation (n=3). Students T-test were used for determination of statistical significance, p< 0.05 were regarded as significant.

| Table 3: IC50 value in ethanolic extracts of two varieties of Clitoria ternatea |
|-----------------|-----------------|-----------------|
| **S. No.** | **Leaves and roots of two varieties of Clitoria ternatea** | **IC50 (µg/ml)** |
| 1. | Purple flowered leaves | 174.4 |
| 2. | White flowered leaves | 189.3 |
| 3. | Purple flowered roots | 424.8 |
| 4. | White flowered roots | 378.3 |

4. Conclusion

Clitoria ternatea white flowered leaves and roots showed higher antioxidant activity as compared to purple flowered leaves and roots.
References

[1] Fantz, P.R. (1977) A monograph of the genus *Clitoria* (Leguminosae: Glycineae). Ph.D. dissertation, University of Floride; Gainesville, Floride.

[2] Gomathi D., Kalaiselvi M., Ravikumar G. and Uma C. (2012) Evaluation of enzymatic and non-enzymatic antioxidant potential of *Evolvulus alsinoides* (L.) L. Asian Journal of Pharmacology and Clinical Research 5(2).

[3] Liu H. X., Jiang W. B., Bi Y and Luo Y. B (2005) Postharvest BHT treatment induces resistance of peach fruit to infection by *Penicillium expansum* and enhances activity of fruit defence mechanisms. Postharvest Biological Technology 35: 263-269.

[4] Malabadi R.B. and K. Nataraja (2001) Shoot regeneration in leaf explants of *Clitoria ternatea* L. cultured *in vitro*. Phytomorphology 51: 169-171.

[5] Padmaja M., Sravanthi M. and Hemalatha K.P.J. (2011) Evaluation of Antioxidant Activity of Two Indian Medicinal Plants. Journal of Phytochemistry 3(3): 86-91

[6] Patil A.P. and Patil V.R. (2011) Evaluation of *in vitro* antioxidant activity of seeds of blue and white flowered varieties of *Clitoria ternatea* L. International Journal of Pharmacy and Pharmacological Sciences 3(4).

[7] Rabeta M. S. and Nabil A., Z. (2013) Total phenolic compounds and scavenging activity in *Clitoria ternatea* and *Vitex negundo* L. International Food Research Journal 20(1): 495-500.

[8] Singh M. (2012) Comparative phytochemical & antioxidant study of aqueous extracts of *Glycyrhiza glabra* (mulethi) & *Piper longum* (long pepper). International Journal of Drug Research and Technology 2(2): 203-207

[9] Taranalli A.D. and T.C. Cheeramkuzhy. (2003) Influence of *Clitoria ternatea* extracts on memory and cerebro cholinergic activity in rats. Pharmaceutical Biology 38:51-56

[10] Thevissen K., Osborn R.W., Achand D. P. and Brockaert W. F. (2000) Specific binding sites for an antifungal plant defensing from Dahlia (*Dahlia mercki*) on fungal cells are required for antifungal activity. Molecular Plant Microbe Interaction 13:54-61