In a recent paper, we showed that leadership arises from individual behavioral differences in pairs of foraging stickleback (*Gasterosteus aculeatus*). Foraging data from randomly combined pairs of fish were analyzed using Markov Chain models to infer the individual movement rules underlying joint behavior. While both fish responded to partner movement, bolder individuals were the least responsive and showed greater individual initiative. Shy partners were more faithful followers and were also found to bring about greater leadership tendencies in their bold partners. The ability of such followers to inspire bolder fish suggests that leadership may be dependent on individual temperament differences, reinforced by social feedback.

Group living is an essential strategy for many species in the animal kingdom. In order to maintain cohesion, coordination is required, and “leaders” may be seen to emerge at the front of collective movement patterns. Studies have found leadership to correlate with a range of factors including size, activity levels and boldness but have previously not investigated the social interactions that result in leadership status being achieved.

Having established that three-spined stickleback consistently differed in their propensity to leave cover independently, we used a simple scenario in which pairs of fish were forced to look for food in a “risky” environment to investigate how individuals responded to each other. Each individual could be considered in two states, either “safe” (under cover) or “exposed” (no cover). Using a continuous-time Markov Chain Monte Carlo (MCMC) model we estimated the tendency for each fish to leave or return to cover. When paired, fish synchronized their behavior, being more likely to go out if the other was out and return if the other already had done so. Our method allowed us to explicitly quantify the behavioral responses to the different foraging states as illustrated in Figure 1. We were able to consider the role that individual boldness differences have in driving pair-wise foraging interactions using temperament scores reflecting the propensity for fish to leave and return to cover when in isolation. Bold individuals showed greater initiative when paired and shy fish were the most likely to return to cover if their partner had, illustrating that bold and shy fish differed in their social tendencies. Most interestingly, we also discovered that an individual’s leadership and followership potential was influenced by the behavior of its partner; the most outgoing individuals enhanced shy fish joining tendencies while very shy individuals elicited greater leadership tendencies in their more outgoing partner.

This experiment uses a novel method to give us a descriptive insight into the conditions necessary for producing leaders in groups. While MCMC models have been used previously to investigate behavioral phenomena, they enable us here to determine, for the first time, the specific mechanisms responsible for the emergence of leadership. Bold fish were most commonly found to become leaders, but this was due to their limited responsiveness...
Leadership, personality and social feedback

to shy fish movement and to the enhanced followership by their partners as well as a naturally greater tendency to leave cover. Contrary to the idea that certain individual consistently appear at the forefront of coordinated movement,10 this suggests that leadership may not be fixed and social feedback is an important source of reinforcement.

Models and studies of self-organization have shown that complex patterns of group behavior can emerge from the interaction of individuals following simple rules.11,12 Typically, such studies adopt a "bottom-up" approach, in which more or less detailed knowledge of individual behavior is used to construct a realistic set of individual "rules", from which one attempts to predict the group-level patterns to which these rules will give rise.13,14,16 By contrast, the simplicity of our system (the interaction of just two individuals in a controlled and simple experimental setting) allows us to take a "top down" approach, in which we start with the observed pattern of pair behavior, and use maximum likelihood methods to infer the parameters of the underlying individual rules that best explain the data.

One of our key findings is that bolder and shyer fish in a pair adopt different rules. In particular, they respond differently to one another’s movements. This difference is reinforced by social feedback, such that shyer individuals encourage greater initiative on the part of their bolder partners, while bolder individuals inspire their companions to follow them more faithfully. Leadership emerges from these differences in individual behavior. Since most models of self-organization have focused on the behavior of homogeneous groups,17-19 and have ignored individual differences, our results suggest some new directions for future modeling efforts.20 Moreover, the few existing attempts to incorporate individual differences into models of collective behavior have tended to focus on state variables that affect individual expected payoffs—such as differences in individual energetic reserves21,22 or information.11 Our findings, by contrast, suggest that there may be consistent temperamental differences among individuals in the way in which they respond to one another, differences that do not reflect immediate payoffs. This raises the intriguing question whether such personality variation enhances group coordination and efficiency, and whether selection for effective collective action might thus help to explain the evolution of personality differences in the first place.

Reference
1. Fischhoff IR, Sundaresan SR, Cordingley J, Larkin HM, Sellier M-J, Rubenstein DL. Social relationships and reproductive state influence leadership rules in movements of plains zebra, Equus burchellii. Anim Behav 2007; 73:825-31.
2. Krause J, Hoare D, Krause S, Hemelrijk C, Rubenstein D. Leadership in fish shoals. Fish Fisheries 2000; 1:82-9.
3. Rees S. Influence of body size on leadership in shoals of Golden Shiners (Notemigonus crysoleucas). Behaviour 2001; 138:797-809.
4. Beauchamp G. Individual differences in activity and exploitation influence leadership in pairs of foraging zebra finches. Behaviour 2000; 137:301-14.
5. Leblond C, Rees S. Individual leadership and boldness in shoals of golden shiners (Notemigonus crysoleucas). Behaviour 2006; 143:1263-90.
6. Harcourt JL, Ang TZ, Sweetman G, Johnstone RA, Manica A. Social feedback and the emergence of leaders and followers. Curr Biol 2009; 19:248-52.
7. Bremaud P. Markov Chains: Gibbs Fields, Monte Carlo Simulations and Queues. New York: Springer 2001.
8. Haccou P, Dienske H, Meelt E. Analysis of time-inhomogeneity in Markov chains applied to mother-infant interactions of rhesus monkeys. Anim Behav 1983; 31:927-45.
9. Metz H, Dienske H, De Jonge G, Putters F. Continuous-time Markov-chains as models for animal behaviour. Bull Math Biol 1983; 45:643-58.
10. Dumont B, Boissy A, Achard C, Sibbald AM, Erhard HW. Consistency of animal order in spontaneous group movements allows the measurement of leadership in a group of grazing heifers. Appl Anim Behav Sci 2005; 95:55-66.
11. Couzin ID, Krause J, Franks NR, Levin SA. Effective leadership and decision-making in animal groups on the move. Nature 2005; 433:513-6.
12. Sumpter D. The principles of collective animal behaviour. Phil Trans R Soc B 2006; 361:5-22.
13. Pratt SC, Sumpter DJT, Mallon EB, Franks NR. An agent-based model of collective nest choice by the ant Temnothorax albipennis. Anim Behav 2005; 70:1023-36.
14. Seeley TD, Camazine S, Sneyd J. Collective decision-making in honey bees: how colonies choose among nectar sources. Behav Ecol Sociobiol 1991; 28:287-90.
15. Sellers WL, Hill RA, Logan BS. An agent-based model of group decision making in baboons. Phil Trans R Soc Lond B Biol Sci 2007; 362:1059-70.
16. Sumpter D, Pratt A. A modelling framework for understanding social insect foraging. Behav Ecol Sociobiol 2003; 53:131-44.
17. Breo D, Sumpter DJT, Meade J, Guilford T. From compromise to leadership in pigeon homing. Curr Biol 2006; 16:2123-8.
18. Couzin ID, Krause J, Self-organisation and collective behaviour in vertebrates. Adv Study Behav 2003; 32:1-75.
19. Ward AJW, Sumpter DJT, Couzin ID, Hart PJB, Krause J. Quorum decision-making facilitates information transfer in fish shoals. Proc Nat Acad Sci USA 2008; 105:6948-53.
20. Conradi L, Krause J, Couzin ID, Roper TJ. ‘Leading According to Need’ in self-organizing groups. Amer Nat 2009; 173:304-12.
21. Rands SA, Colishaw G, Pettifor RA, Rowcliffe JM. The emergence of leaders and followers in foraging pairs when the qualities of individuals differ. BMC Ecol Evol 2008; 8:51.
22. Rands SA, Pettifor RA, Rowcliffe JM, Cowlishaw G. State-dependent foraging rules for social animals in selfish herds. Proc Royal Soc B Biol Sci 2004; 271:2613-20.