Some Pharmacological & Toxicological Activities of Calendula officinalis Linn. Flower 70% Ethanolic Extract

Hesham Elzorba*, Hossney El Banna, Dina Derbala

Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt

Email address: elzorba1@gmail.com (H. Elzorba), drelbanna3@yahoo.com (Hossney El B.), dina.derbala@gmail.com (D. Derbala)

*Corresponding author

To cite this article:
Hesham Elzorba, Hossney El Banna, Dina Derbala. Some Pharmacological & Toxicological Activities of Calendula officinalis Linn. Flower 70% Ethanolic Extract. Animal and Veterinary Sciences. Vol. 4, No. 2, 2016, pp. 26-31. doi: 10.11648/j.avs.20160402.13

Received: February 18, 2016; Accepted: April 20, 2016; Published: May 4, 2016

Abstract: Herbal medicine is the most widely used form of medicine in the world today as it contains curative bioactive ingredients such as alkaloids, coumarins, Saponins and flavonoids. Calendula officinalis Linn. (Asteraceae) is used medicinally in Europe, China and India amongst several places in the world. It is also known as “African marigold” and has been a subject of several chemical and pharmacological studies. It is used in traditional medicine, especially for wound healing, jaundice, blood purification, and as an antispasmodic. Therefore, the aim of the present study was to explore phytochemical, toxicological and some pharmacological activities of Calendula officinalis Linn. 70% ethanolic extract. The toxicological pattern of the ethanolic extract Calendula officinalis flowers was studied by the determination of LD50 in mice by oral administration of upgrading doses 70% ethanolic extract with continuous monitoring. The oral anti-inflammatory (Formalin induced edema), antipyretic (Brewer’s yeast induced hyperthermia) and analgesic (writhing test) effects of 70% ethanolic extract of Calendula officinalis were carried out on experimental animals. The obtained results revealed that phytochemical screening of 70% ethanolic extract of Calendula officinalis Linn. indicates the presence of alkaloid, tannin, Saponin, Glycosides, Resin and flavonoid. The toxicological studies revealed that the minimum lethal dose of Calendula officinalis Linn. 70% ethanolic extract was found to be 2000 mg/kg body weight and LD50 of the studied extract was found to be 2450 mg/Kg B.Wt. The pharmacological studies performed on Calendula officinalis Linn. ethanolic extract exhibited significant antipyretic, analgesic and Anti-inflammatory when given in a dose 250mg/Kg B.Wt.

Keywords: Calendula officinalis, Phytochemical, Toxicological, LD50, Antipyretic, Analgesic, Anti-inflammatory

1. Introduction

Medicinal plants are used from ancient times in treatment of various human & animal disorder. Medicinal and aromatic plants are the most widely used form of medicine in the world today where medicinal and aromatic plants contain biologically active chemical substances such as saponins, tannins, essential oils, flavonoids, alkaloids and other chemical compounds [1]. Natural products are gaining a revitalized attention in medical community and their therapeutic uses are gradually increasing. As many synthetic drugs have revealed serious side effects. Therefore, a better strategy is to look for natural substances with strong pharmacological action and less cytotoxicity. In the last few years much attention was directed to the potential health promoting properties of phenolic phytochemicals [2, 3, 4]. Search for safe herbal remedies with potent anti-inflammatory and antipyretic received momentum recently as the available paracetamol and aspirin have toxic effect to various organ of the body [5]. Calendula was cultivated by the Egyptians, Greeks, Hindus and Arabs, Calendula grew in European gardens and has been used medicinally since the 12th century [6]. The name Calendula is from the Middle English calendes derived from Latin calendae, which means the day of the new moon [7]. The flowers are used in diverse preparations, mainly ointments for the treatment of diverse dermatological conditions such as wounds, ulcers, eczema, burns, bruises, eruptions, varicoses and hemorrhoids [8]. Many other properties have been attributed to the flower preparations such as choleretic, anti-inflammatory, analgesic, anti-cancer, bactericidal,
diuretic and tonic actions [9]. For establishing and confirming of therapeutic role of Calendula officinalis Linn. in modern medicine, experimental studies are required. The aim of the present study is to explore and confirm phytochemical, toxicological and some pharmacological activities Calendula officinalis Linn. 70% ethanolic extract.

2. Materials and Methods

- Plant
 - Calendula officinalis Linn. flower:
 The flowers were collected & identified in faculty of pharmacy farm – Cairo University, then air dried, pulverized & stored tightly closed in glass container till subjected to phytochemical, toxicological & pharmacological studies.
- Preparation of flower extract
 In a glass jar dried Calendula officinalis Linn. flowers powder were extracted by percolation several times till exhaustion [10] using 70% ethanolic solution then filtered, most of the solvent was removed using Rotatory evaporator apparatus attached with vacuum pump & low temperature 50 c.
- Animals
 - Mice:
 Mature mice of both sexes and weighing (20-25 gm) were used for studying the acute toxicity, LD 50 and analgesic activity.
 - Rats:
 Mature albino rats of both sexes and weighing (200-250 gm) were used to reveal antipyretic and anti-inflammatory activity.

Phytochemical studies:
Phytochemical screening of the Calendula officinalis flower was carried out to identify the constituents, using standard phytochemical methods as described by [11, 12]. The screening involves detection of alkaloids, Saponins, tannins, flavonoids, Carbohydrates /glycosides and resin as shown in Table(1).

Test for	Positive result
1- Alkaloid and /or nitrogenous bases:	
Mayer’s test :	Yellow cream precipitate
Wagner’s test :	reddish brown precipitate
Dragendorff’s test:	Orange precipitate
2-Flavonoids:	
Lead acetate test:	Yellow precipitate
Shinoda test:	
Alcoholic solution of extract was added to	Magenta color after few min.
few fragments of magnesium ribbon and	
concentrated hydrochloric acid	
3- Carbohydrates/Glycosides:	
Fehling’s test:	Red precipitate
Benedict’s test:	Red orange precipitate
Molish Test:	n
Foam test:	Violet ring at the junctio
Small amount of extract was shaken with	Persistent foam for ten min.
little quantity of water	
5- Tannins:	
2 ml of the aqueous extract was stirred with	Ink color
2 ml of distilled water and few of ferric	
chloride solution were added	
6-Resins:	
0.5g extract was diluted with 10ml with water	
and shaken for 5 minutes	

Toxicological study:
- Determination of LD50:
Pilot studies was performed to determine minimum lethal dose of Calendula officinalis Linn. 70% ethanolic extract. LD50 of Calendula officinalis Linn. were determined [13].
For this purpose 5 groups of five mice each weighing 20-25gm injected intraperitoneally in upgrading doses ranging from 1500 to 3500 mg /Kg body weight. Another group was left as control and given diluent only. The toxic symptoms, mortality rate and post-mortem findings in each group was recorded 24 hours post administration. LD50 of tested extract was calculated according to the following formula:

\[
LD50 = DM - (\sum AXB)/N
\]

Where,
- DM: largest dose which kill all animals
- A: Mean of dead animals between 2 successive groups
- B: Dose difference between 2 successive groups
- N: number of animals in each group
- \(\sum\): summation of multiplying A and B
Pharmacological studies:

- Antipyretic activity:

 The method described by [14] was used for studying the antipyretic effect of 70% ethanolic extract of *Calendula officinalis*. Fifteen rats of both sex weighing 200-250 grams, rats were divided into three groups each of five rats. Basal rectal temperature was recorded for each rat, then all rats were made hyperthermic by subcutaneous injection of brewer's yeast in a physiological saline in a dose of 15 g/kg body weight. After 17 hours the body temperature of each rat was measured rectally using a medical thermometer. The first group was kept as control, the second group was given metamezole sodium 50 mg/Kg body weight as a standard. The third group was orally administered 250 mg/Kg B.Wt. of *Calendula officinalis* 70% ethanolic extract. The body temperature of each rat was then recorded every hour for 3 successive hours.

- Analgesic activity (Writhing test):

 This experiment was carried out as described by [15]. Fifteen mice of both sex weighing 20-25 g body weight each which previously showed positive writhing (stretch torsion to one side drawing up of hind limb, retraction of abdomen and opisthotonus, so that the belly of the mouse touch the floor) with glacial acetic acid were selected and divided into three groups. Mice of the first group were kept as control non-treated, those of the second group was orally administrated ketoprofen 50 mg/kg body weight as a standard group. Mice of the third group was orally administered *Calendula officinalis* Linn. ethanolic extract 250mg/Kg body weight. After 30 minutes, each mouse was intraperitoneally injected with 0.25 ml of 0.7% glacial acetic acid in distilled water, and the mice were then placed in transparent boxes for observation. The number of writhes were observed after 1, 2, 3, 4 and 5 hours post administration. Number of writhes for each animal in all groups were recorded and the analgesic potency of the tested extract was determined as protection% against writhing according to the following formula:

\[
\text{% of protection} = \frac{\text{Control mean} - \text{treated mean}}{\text{Control mean}} \times 100
\]

- Anti-inflammatory effect:

 The method described by [16] was used. Fifteen rats of both sex weighing 200-250 grams body weight were used. Edema or inflammation was induced in the right hand paw of all rats by subcutaneous injection of 0.1 ml formalin 6% solution in normal saline. After four hours, the thickness of each rat paw was measured in mm by Vernier caliber after 1, 2, 3, 4, 5, and 6 hours post administration.

 Statistical analysis:

 SPSS 16.0 software package was used for statistical analysis. Differences among means were determined using one. Differences were considered significant at p<0.05 and highly significant at p < 0.01

3. Results and Discussion

3.1. Phytochemical Screening

Preliminary phytochemical tests for detection of active principles in the *Calendula officinalis* Linn. flower were carried out & recorded in Table (2). The obtained results revealed the presence of tannin, Saponins, Glycosides, Resin and flavonoid and absence of alkaloids.

Test for	*Calendula officinalis* Linn.
1- Alkaloid and /or nitrogenous bases	-ve
2- Flavonoids	+ve
3- Carbohydrates/Glycosides	+ve
4- Saponins	+ve
5- Tannins	+ve
6- Resins	+ve

These obtained finding correlates with that obtained by [17, 18, 19] who reported that ethanolic extract of *Calendula officinalis* Linn. flower contains flavonoids.[18,19] specified that flavonoids present in *Calendula officinalis* flower are isorhamnetin-3-One-O- hesperidoside, quercetin. [19] suggested that these ingredients are responsible for *Calendula officinalis* antioxidant activities and [20] added that flavonoids has also antinociceptive and anti-inflammatory effect. [18] added that *Calendula officinalis* flower ethanolic extract contains other flavonoids as isoquer cetin, isorhamnetin-3-O-D-glycoside, narcissin, calendoflaside, calendoflavoside, calendoflavoidose, rutin, isoquericitrin, neohesperidoside, isorhamnetin-3-O-2 Ghrannosyl rutinoside, isorhamnetin-3-O-Orutinoside, quercetin-3-O-glucose and quercetin-3-O-rutinoside. *Calendula officinalis* methanolic extract contains also some of these flavonoids as Quercetin-3-o-glucoside, Rutin, and Isohamnetin-3-o-glucose and also gallic acid as mentioned by [21, 22] who added that these ingredients are present also in aqueous extract. [17] stated that *Calendula officinalis* ethanolic, aqueous and methanolic extract contains also Glycosides and Saponin. [6, 23] confirmed presence of these chemical compounds in methanolic extract. [24] reported that phytochemical analysis of *Calendula officinalis* Linn. aerial parts aqueous extract contains also flavonoids and tannins, but he diversely mentioned that it doesn’t contain Saponin and contains alkaloids.
3.2. Toxicological Study

Acute toxicity studies on the tested extract of *Calendula officinalis* Linn. was carried out in mice via intraperitoneal injection. The obtained data showed that minimum lethal dose of *Calendula officinalis* Linn. 70% ethanolic extract was found to be 2000mg/kg body weight. Symptoms of toxicity observed following *Calendula officinalis* Linn. injection was characterized by tremors, convulsions, arched back, sweating, rapid respiration, coma followed by death. Post mortem Examination revealed the presence of some petechial hemorrhages on liver and congestion in lungs, heart & Kidneys. LD50 of the studied extract was found to be 2450mg/Kg body weight.

This indicates for a great extent that this flower is nontoxic as LD50 value is very high. In this respect [25] mentioned that plants with LD50 less than 10 mg /Kg body weight are considered highly toxic and others with LD50 greater than 50 mg/Kg body weight are considered nontoxic.

3.3. Pharmacological Studies

Antipyretic effect:

The antipyretic effect of 70% ethanolic extract of *Calendula officinalis* Linn. was studied using brewer’s yeast to induce hyperthermia in rats Table (3).

Table (3). Showing the antipyretic effect of 70% ethanolic extract of *Calendula officinalis* Linn.in Hyperthermic rats (Mean ± SE, N=5).

Treatment	Dose in mg/Kg B.Wt	Mean Rectal Temperature in °C	Before treatment	1 hour	2 hours	3 hours
Control –ve (Non treated)	0	38.86±0.024(0)	39.06±0.06(0)	39.06±0.06(0)	39.06±0.06(0)	
Metamezole sodium	50	39.02±0.091(0)	36.88±0.08(3)	36.48±0.08(3)	36.48±0.08(3)	
Calendula officinalis Linn.	250	39.06±0.063(0)	38.16±0.16(0)	37.1±0.29(3)	36.76±0.11(3)	

Data were expressed as mean ±SE, means with different superscript letters (a, b, c) are significant different at P≤ 0.05

The subcutaneous injection of brewer’s yeast suspension markedly elevated the rectal temperature after 17hr of administration. It was noticed that oral administration of both *Calendula officinalis* ethanolic extract (250 mg / kg) body weight & the standard metamezole sodium (50 mg/Kg) body weight induce marked antipyretic activity as they significantly decrease rectal temperature after 3 hours post oral administration as compared with control non treated group. Significance was indicated by lowering the body temperature after their administration at 2 hours (37.1±0.29 and 36.48±0.08) of 250mg/Kg of tested extract and 50mg /kg of standard metamezole respectively and at 3 hours (36.76±0.11and 36.48±0.08) of 250mg/Kg of tested extract and 50mg /kg of standard metamezole respectively.

Hyperthermia due to the infected or damaged tissue promotes the formation of pro-inflammatory mediators (cytokines like interleukin 1β, α, β and TNF-α) which increase the synthesis of PGE2 near pre-optic hypothalamus area thereby triggering the hypothalamus to elevate the body temperature [26]. Its effect may be due to antagonizing the prostaglandins effect on hypothalamus.

Analgesic effect:

The peripheral anti-nociceptive activity of *Calendula officinalis* Linn. ethanolic extract studied using writhing technique in mice. The obtained results were registered in Table (4).

Table (4). Showing the analgesic activity of *Calendula officinalis* Linn. 70% ethanolic extract in mice using writhing test (n=5).

Groups	Dose mg/Kg B.Wt	Protection percentage against writhing after 5 hours				
		1 hr	2hr	3hr	4hr	5hr
Control	0	100	100	100	100	100
Standard Ketoprofen	50	100	20	20	20	20
Calendula officinalis Linn.	250	100	100	100	100	100

Standard group orally administered Ketoprofen (50 mg/Kg b.wt) showed 100% protection against writhing induced by glacial acetic acid for 5 hours. Oral administration of *Calendula officinalis* ethanolic extract in a dose of 250 mg/Kg body weight exhibited analgesic activity with 20% protection percentage against writhing for 5 hours. These results correlates with that obtained by [27] who reported that *Calendula officinalis* Linn. flower ethanolic extract has anti-nociceptive effects.Prostaglandins and sympathomimetic system mediators such as PGE2 and PGF2α were released by intraperitoneal administration of acetic acids. Also, levels of these mediators were increased in the peritoneal fluid of the acetic acid induced mice [28]. Thus, the anti-nociceptive effect of the hydroalcoholic extract could be mediated by peripheral effects, including the prostaglandin synthesis inhibition [20].

[29] reported that plants showing the antipyretic effect also possess analgesic activity. Obtained results matches with those obtained by [30] who reported that crude extract of *Calendula officinalis* Linn. exhibited significant antipyretic (74.95% inhibition) effects at a dose of 300 mg/Kg and analgesic (27.42% inhibition) effects.

Anti-inflammatory effect:

The anti-inflammatory effect of 70% ethanolic extract of *Calendula officinalis* Linn. was studied using formalin 6% solution induced inflammation in rats paw and the data was compared with that of control in Table (5).

Note: The obtained data was used to calculate the protection percentage against writhing after 5 hours. These results were used to determine the anti-inflammatory and analgesic effects of the studied extract.
Formalin injected subcutaneously in the planter surface of rat’s paw in all groups rapidly induced a significant increase in the paw thickness. It was noticed that oral administration of ethanolic extract of Calendula officinalis in a dose of (250 mg / kg) body weight and Diclofenac sodium in a dose of (30 mg / Kg) body weight induced a significant decrease in inflamed rat paw thickness when compared with control non treated group for 6 hours Induction of edema in rat’s paw by formalin is a bi phasic response, in which the first phase is mediated by histamine, serotonin and kinins whereas the second phase is mediated by prostaglandins (cyclooxygenase product of arachidonic acid metabolism) and production of reactive oxygen species [31,32]. The present findings show that anti-inflammatory actions associated with ethanol extract results from inhibition of one or more signaling intracellular pathways which are involved with effects from these mediators. Calendula officinalis extract potent anti-inflammatory response may be mediated by the inhibition of pro-inflammatory cytokines and Cox-2 and subsequent prostaglandin synthesis [33]. The ethanolic extract of Calendula officinalis ethanolic extract at both 250 mg/kg b. wt. possessed significant reduction in paw edema at 1and 3 hours when its potency is compared to standard diclofenac sodium. The effectiveness of the ethanolic extract to reduce edema at 1and 6 hours may attributed its antagonist effect to first phase products (histamine, serotonin, and kinins) or its antagonist effect to second phase products (prostaglandins)or its synthesis by inhibition of cyclooxygenase enzyme leading to subsequent reduction in prostaglandins production and may attributed to inhibit liberation of the reactive oxygen species (second phase mediator) from phagocytes invading the site of inflammation and leading to tissue damage [34, 35, 36]. These Results matches also with that obtained by [18, 37, 19] who reported that Ethyl acetate soluble fraction of the methanol extract of Calendula officinalis flowers exhibited the most potent inhibition (84%) of 12-o-tetradecanoylphorbol-13-acetate (TPA)-induced inflammation and with [38] who reported that the ethanolic extract of Calendula officinalis Linn. possessed significant anti-inflammatory activity.

Also, the link between both anti-nociceptive activity and moderate anti-inflammatory effect observed with the extract has been indicated in non-steroidal anti-inflammatory drugs (NSAIDs). It is a well-established fact that NSAIDs exert their analgesic and anti-inflammatory activity by the inhibition of cyclooxygenase activity [39]. Based on the pharmacological tests results, the Calendula officinalis hydroalcoholic extract has antinociceptive and anti-inflammatory activities. [20] who reported also anti-nociceptive effect and anti-inflammatory effects of hydroalcoholic extract of Calendula officinalis Linn. aerial part in both chemical pain and anti-inflammatory tests.

4. Conclusion

Calendula officinalis Linn. Flower is a safe flower as it’s LD50 is 2000 mg/Kg body weight with many pharmacological activities as it is proved to have antipyretic, analgesic and anti-inflammatory actions that may be a result of its active biochemical ingredients Flavonoids, glycosides, Saponin, Tannin and resin.

References

[1] Okigo, R. N.; Anuagasi, C. L. and Amadi, J. E. (2009): Advances in selected medicinal and aromatic plants indigenous to Africa. Journal of Medicinal Plants Research, 3 (2): 86-95.
[2] Clerk Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2. Oxford: Clarendon, 1892, pp. 68–73.
[3] Block, G. (1992): The data support a role for antioxidants in reducing cancer risk. Nutrition reviews Journal, 50(7): 207-213.
[4] Block, G. and Langseth, L. (1994): Antioxidant vitamins and disease prevention. Food Tech. 48: 80-84.
[5] Guyton, A. C. and J. E. Hall, (1998): Textbook of Medical Physiology. 9th ed. W.B. Saunders Company, 920-922.
[6] Kemper, K. J. (1999): Calendula (Calendula officinalis). The Centre for Holistic Pediatric Education and Research cited in Saltfar, W.; Majeed, H.; Naveed, I.; Kayani, W. K.; Ahmed, H.; Hussian, S. and Kamal, A.(2010): Pharmacognostical study of the Medicinal plant Calendula officinalis L. (Family Compositae). International Journal of Cell & Molecular Biology, 1(2): 108-11
[7] Talbert, R. (2015): An Herb Society of America Guide. The Herb Society of America cited in http://www.herbsoociety.org/factsheets/Calendula Guide.pdf
[8] Zitterl-Eglseer, K.; Sosa, S.; Jurenitsch, J., Schubert-Zsilavecz, M.; Loggia, D.R.; Tubaro, A.; Bertoldi, M, Franz C. (1997): Anti-oedematous activities of the main triterpenol esters of marigold (Calendula officinalis L.). Journal of Ethnopharmacology 57: 139–144.

Table (5). Showing the anti-inflammatory effect of 70% ethanolic extract of Calendula officinalis Linn. in rats.

Treatment	Dose mg / Kg	Mean of right paw thickness in mm					
	Pre- treat	1hr. post-treat	2hr. post-treat	3hr. post-treat	4hr. post-treat	5hr.post-treat	6hr. post-treat
	B.Wt.						
C -ve	0	7.75±0.12	7.87±0.13	7.87±0.13	7.87±0.13	7.87±0.13	7.87±0.13
Diclo-fenac sodium	30	7.75±0.12	6.16±0.39	6.16±0.39	5.74±0.15	5.49±0.30	4.74±0.32
C. officinalis Linn.	250	7.142±0.44	5.87±0.15	5.87±0.15	5.49±0.30	4.61±0.22	4.41±0.02

Data were expressed as mean ±SE, means with different superscript letters (a, b, c) are significant different at P < 0.01
[9] Duke, J. A. (1991): Handbook of Medicinal Herbs. Boca Raton: Cancer Research center Press. 87-88

[10] Egyptian pharmacopeia (1984): Cairo organization for government printing office, 2 (3): 1158.

[11] Evans, W. C. (1996): Trease and Evans Pharmacognosy 14th Ed., W. B. Souners Company limited, 1545-1546.

[12] Sofowora, A. (1993): Medicinal Plants and Traditional Medicines in Africa. The Journal of alternative and Complementary Medicine, 2(3): 365-372.

[13] Kerber, G. (1941) Pharmakolgishe Methoden Zur Auffindung Von Arzneimitten Und Gifter Und Analyse Ihrer Wirkungsweise Vor. Dr. Med Leopold Ther Wissen schaftliche Verlage Gerlame Geese Gesellschaft M. B. H.

[14] Alperman, H. (1972): Bericht Uber Pharmakologische Untersuchungen Mit Fenbendazol. Abteilung Fur Pharmakologie, 863: 1-9.

[15] Okun, R.; Liddon,S.G. and Lasagana,L. (1963): Screening methods in pharmacology. Journal of Pharmacology and Experimental Therapeutics,139: 107-114.

[16] Domenjoz, R.; Theobald, W. and Morsdorf, K. (1955): The Effect of Anti-Inflammatory Agents on formalin edema and on the vitamin C and cholesterol content of the adrenal glands in hypophysectomized Rats. Archives internationales de pharmacodynamie et de Therapie 103(2-3): 341-352

[17] Roopashree, T. S.; Dang, R.; Shobha, R. H. and Narendra, C. (2008): Antibacterial Activity of Antipsoriatic Herbs: Cassia Tora, Momordica Charantia and Calendula officinalis Linn. International Journal of applied research in natural products. 1(3): 20-28

[18] Muley, B. P.; Khababadi, S. S. and Banarase, N. B. (2009) Phytochemical Constituents and Pharmacological activities of Calendula officinalis Linn. (Asteraceae). Tropical Journal of Pharmaceutical research 8(5): 455-465.

[19] Mullaicharam, A. R.; Amarendra, N. and Balasubramanian, H. (2014): Phytochemistry and Pleiotropic Pharmacological Properties of Calendula officinalis Linn. - A Review. Journal of Pharmacognosy and phytochemistry, 2 (4): 1-10.

[20] Farahpour, M. R. (2014): Antioxidant activity, antinociceptive and anti-inflammatory effects of pot marigold hydroalcoholic extract on experimental animals. International journal of pharmtech research 6(1): 12-27

[21] Kumar, A.; Singh, P. and Dora, J. (2013) Phytochemistry and Pharmacological activities of Calendula officinalis. International Journal of Inventions in Pharmaceutical Sciences, 1(1): 59-63.

[22] Rigane, G.; Ben Younes S.; Ghazghazi, H. and Ben Salem (2013): Investigation into the biological activities and chemical composition of Calendula officinalis Linn. L. growing in Tunisia. International Food Research Journal, 20(6): 3001-3007.

[23] Nand, P.; Drabu, S. and Gupta, R. K. (2012): Phytochemical and Antimicrobial Screening of Medicinal Plants for the treatment of acne. Indian Journal of natural Products and Resources, 3 (1): 28-32.

[24] Leffa, D. D.; Da Rosa, R.; Munhoz, B. P.; Mello, A. D. M; Mandelli, F. D.; Amaral, P. D.; Rossatto, A. E. and De Andrade, V. M. (2012): Genotoxic and antigenotoxic properties of Calendula. Advances in life sciences 2(2): 21-28.

[25] Buck, W.B.; Osweiter, G.D and Van Gelder, A.G. (1976): Clinical and diagnostic veterinary toxicology 2nd ed. Kendall/Hunt publishing company, Dubuque, Iowa: 69-75.

[26] Spacer, C. B. and Breder, C. D. (1994): The neurologic basis of fever. New England Journal of Medicine. 330(26):1880-1886.

[27] Farahmandlou, N.; Shahidi, S.; Mahmoodi, M. (2012): Effects of Calendula officinalis Linn. On pain threshold in male rats. International Conference on Chemical, Biological and Medical Sciences.

[28] Deraedt, R.; Jouquey, S.; Delevallée, F.; Flahaut M. (1980): Release of prostaglandins E and F in an allogenic reaction and its inhibition. European Journal of Pharmacology, 61(1): 17-24.

[29] Dewan, S.; Kumar, S. and Kumar, V. (2000): Antipyretic effect of latex of Calotropis procera. Indian journal of Pharmacology, 32(3): 252-315.

[30] Ahmad, S.; Qureshi, S.; Atiq-ur-Rehman and Badar, Y. (2000): Antipyretic and analgesic activity in crude ethanolic extract of Calendula officinalis Linn. Pakistan journal of scientific and industrial research, 43(1), 50-54.

[31] Chen, Q. (1993): Methodology in pharmacological study on Chinese materia medica. 7 people's medical publishing house, 360.

[32] Panthong, A.; Kanjanapothi, D.; Taesotikul, T.; Phankummoon, A.; Panthog, K.; Neutrakul, V. (2004): Anti-inflammatory activity of methanolic extracts from ventilago harmandiana pierre., Journal of Ethnopharmacology,91 (2-3): 237-242.

[33] Preethi, K. C.; kuttan, G.; Kuttan, R. (2009): Anti-inflammatory activity of flower extract of Calendula officinalis Linn. and its possible mechanism of action. Indian journal of experimental biology, 47(2): 113-120.

[34] Cross, C. E.; Halliwell, B.; Borish, E.T.; Pryor, W. A.; Ames, B. N. and Saul, R.L.(1987): Oxygen radicals and human diseases. Annal. Int. Med, 107(4): 526-545.

[35] Winrow, V. R.; Winyard, P. G.; Morris, C. J.; Blake, D. R. (1993): Free radicals in inflammation:second messangers and mediators of tissue destruction. British Medical Bulletin, 49(3): 506-522.

[36] Parke, D. V.; Sapota, A. (1996): Chemical toxicity and reactive oxygen species. International Journal of Occupational Medicine and Environmental Health, 9(4): 331–340

[37] Khalid, K. A. and Da Silva, J.A.T. (2012): Biology of Calendula officinalis Linn. Focus On Pharmacology, Biological Activities and Agronomic Practices. Medicinal and Aromatic Plant Science and Biotechnology.6(1):12-27

[38] Singh, M. K.; Sahu, P.; Nagori K.; Dewangan, D., Kumar, T.; Alexander, A.; Badwai, H. and Tripathi, D. K. (2011): Organoleptic Properties In-Vitro and In-Vivo Pharmacological Activities of Calendula officinalis Linn. Journal of Chemical and Pharmaceutical Research, 3(4): 655-663.

[39] Vane, J. R. (1971): Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature new biology, 231 (25): 232-5.