ABSTRACT

Objective: Aim of the present investigation was to optimize the acid protease production from Aspergillus spp. through statistical method in solid state fermentation and to study the inhibitory enzyme kinetics.

Methods: To fulfill above mentioned aim, seven solid substrates were screened though using PBD (Plackett-Burman Design) and concentrations of three significant were determined by using one of the Response surface methodologies (RSM), Box-Behnken design (BBD). Inhibitory enzymatic effects were carried by using previously developed models.

Results: From PBD, wheat bran, soybean meal, and dried potato peel (DPP) were screened as major influencing nutritional factors for enzyme production. Better optimal values were determined by BBD at wheat bran: 8.841 g, soybean meal: 4.557 g, and DPP: 0.661 g with predicted protease activity as 817.83 U/g (±44.047 U/g). Linear, interactive, and quadratic effects of aforesaid substrates on enzyme activity were formulated by quadratic model through multiple regression model (R²adj: Adjusted R square = 94.78%; R²pred: Predicted R square = 98.13%). Partial substrate inhibition to crude acid protease activity was notified with casein concentration higher than 0.4 mmol and inhibitory constant, Kᵢ, was computed with previous developed mathematical models. Ratio of reaction rate constants, kᵣ/kᵢ, was found to be 0.233 that had confirmed partial casein inhibition to enzyme velocity. Improved activity and kinetics of caseinolysis make amicable for industrial applications.

Conclusion: Quick optimization was performed with statistical methodology over conventional approach. Inhibitory enzyme kinetic studies were important for industrial applications of acid protease.

Keywords: Acid protease, Optimization, Statistical methodology, Casein inhibition, Reaction velocity

INTRODUCTION

Proteases (E. C.3.4.21-25) catalyze proteolysis which are most industrially important hydrolases [1, 2]. Contribution of these enzymes to total enzyme sales is about 60% due to their exploitation in pharmaceutical, detergent, leather, and food industries [3, 4]. The increasing trend of microbial protease in pharmaceutical applications was summarized by [1]. Especially acid proteases from fungal species have promised applications in pharmaceutical, cheese, meat processed, baking, and soy sauce industries [5-7]. Moreover these function as therapeutic agents in development of clotting and anti-inflammatory, antimicrobial activities [5-7]. Mainly species of Mucor, Aspergillus, Penicillium, and Rhizopus are being capable of producing acid proteases [3, 8, 9].

Designing of suitable fermentation medium with economic concern is a challenge as it affects the product yield and it can be achieved through optimization techniques [10]. Several classical (OVAT: One variable at a time) and statistical methodologies are available for fermentation optimization [11]. In OVAT approach, one variable is changed by keeping others as constants which is a tedious method as it requires more number of experimental runs and ignores the interactions among selected parameters of fermentation [12, 13]. However, statistical methods establish a systematic relationship between input and output of fermentation to eliminate the drawbacks of classical approach [14, 15].

Substrate inhibitory studies are common in many enzymatic reactions as rate of reactions are inhibited by excess substrate which are crucial in the design of enzyme reactors and also in regulation of metabolic pathways [16-18]. Availability of literature on acid protease optimization and also on studies at substrate inhibitory level for enzymatic reactions is scanty. Therefore the present investigation was performed to identify the significant solid substrates for acid protease production from fungi, Aspergillus spp., using PBD (Plackett-Burman design) and to find out the optimum combination of screened substrates through BBD (Box-Behnken design) in solid state fermentation (SSF). Further study was extended to analyze the casein inhibition on initial velocity of crude protease through various kinetic models.

MATERIALS AND METHODS

Materials

Wheat bran and soybean meal were obtained from local market. Potato peel was collected from kitchen waste and allowed to air dried. Remaining chemicals were of analytical grade (Hi-Media).

Screening of solid substrates

In the present work, Plackett-Burman design was summarized in table 1 and individual combination of fermentation medium was represented by each row. According to PBD design the fermentation media were prepared with composition of seven selected substrates. The frequencies of high (Codex a+1) level runs are same as that of low (-1) level runs (table-1). Then Erkenmeyer flasks with specified medium were moistened with 60% (v/w) salt mineral solution of composition: in (g/l) KH₂PO₄ 1, KH₂PO₄ 3, MgSO₄ 1, and CaCl₂ 0.1 and ZnSO₄ 0.01. Fungal spore Inoculum was prepared from the stock culture of Aspergillus spp. isolated from soil contaminated with abattoir waste [19]. Later sterilized medium was inoculated with 10% (v/w) fungal spore suspension. Then the contents of the flasks were mixed thoroughly and incubated at room temperature for 120 h (5 d) with an initial pH of 6.0. Crude protease was extracted by adding 50 ml of distilled water to flask, mixing at 150 rpm at room temperature for an hour. After incubation the dry weight of fungal biomass and
protease activity was performed [19]. Unit of protease was defined as liberation of one microgram of tyrosine from substrate per minute and the acid protease activity was expressed as U/g solid substrate. Protein content in the fungal filtrate was analyzed [20].

The regression analysis was employed to the best of experimental data through a first order linear model as follows:

\[Y_p = \beta_0 + \sum_{i=1}^{2} \beta_i X_i \quad \text{(1)} \]

Where \(Y_p \): Predicted protease activity, \(X_i \): Coded settings for seven substrates, \(\beta_0 \): Model intercept, \(\beta_i \): Linear coefficients of model

Optimization of significant substrates through Box-Behnken design

Based on PBD results, amounts of key factors wheat bran, soybean meal, and dried potato peel (DPP) were optimized by BBD which includes three levels as low (-1), center point (0), and high settings (+1). Fermentation medium was prepared as per table 3 and SSF and fermentation experiments were performed with substrate concentration range from 0.1 to 2.2 mmol. Resulted data were tried to fit to below mentioned mathematical models of substrate inhibition (SI) with the following reaction mechanism:

\[S + E \rightarrow E.S \rightarrow E + P \]

\[\text{Above reaction mechanism, Eq.3, was adopted from previous studies [16, 21, 22].} \]

Where \([S]\): Substrate concentration; \(E\): Enzyme; \(P\): Product

\(E.S \): Enzyme-Substrate complex; \(S.E.S \): Substrate–Enzyme–Substrate complex.

\(V\): Velocity of reaction; \(V_{max}\): Maximum reaction velocity

\(K_i, K_2\): Dissociation constants for \(E.S \) and \(S.E.S \) complexes

\(k_1, k_2\): Reaction rate constants

Model 1 (Andrew's model [21])

The assumption of rapid equilibrium yields

\[V = \frac{V_{max}[S]}{K_i + [S]/K_2} \quad \text{(4)} \]

At low substrate concentrations, \(S/K_i \), and inhibition effect was not observed and velocity was

\[V = \frac{V_{max}}{1+K_2/[S]} \quad \text{(5)} \]

At high casein concentrations, \(K_i/[S]<1\), the rate in this case was

\[V = \frac{V_{max}(1-\frac{K_i}{S})}{K_2} \quad \text{(6)} \]

RESULTS AND DISCUSSION

Current investigation was focused on easy way of the design of fermentation medium with inexpensive nutritional variables for optimization of extracellular acid protease production through SSF by Aspergillus spp. The use of quadratic response surface models makes the method much simpler than standard nonlinear techniques for determining optimal designs [10, 23].

Identification of influenced substrates through two-level PBD

Minimal and maximal response was observed as 54.12 and 307.30 U/g from selected carbon and nitrogen sources (table 1 and 2) through screening method. Discrimination between significant and non-significant substrates were based upon the calculated values of main effect and probability values (P-value) [24] which were summarized in table 2. Among the tested substrates, \(P \leq 0.01 \) revealed that wheat bran (Main carbon source), soybean meal (Main nitrogen source), and DPP (Additional carbon source) induced microbial growth as well as biocatalyst activity. However, negativity in enzyme production was observed with corn flour as it was in fourth place therefore it could not select for response surface methodology (RSM).

The remaining substrates groundnut meal, rice flour, and cracked wheat were neglected for further optimization studies as \(P > 0.01 \). Some authors optimized several physical, chemical, and nutritional parameters for the same enzyme from the same fungal culture through OVAT and revealed that cracked wheat was the preferable main carbon source to wheat bran [25]. Comparison between OVAT and PBD revealed that wheat bran was the more effective carbon source when it was supplemented with various combinations of other substrates as it was missing with non-statistical method. Based upon observations of two approaches viz, OVAT reported by [25] and the present investigation, conventional approach had led to wrong conclusions as suggested by [6].

Table 1: Solid substrates with coded settings and actual concentrations (%w/w) with response of fermentation for PBD

Trial	\(X_1 \) Wheat bran	\(X_2 \) Cracked wheat	\(X_3 \) Groundnut meal	\(X_4 \) Soybean meal	\(X_5 \) Corn flour	\(X_6 \) Dried potato peel	\(X_7 \) Rice flour	Observed Protease activity (U/g)
R1	+1(10)	+1(10)	-1(0.5)	+1(5)	-1(2.5)	+1(1.0)	-1(0.5)	307.32
R2	-1(5.0)	+1(10)	+1(1.0)	-1(2.5)	+1(5)	+1(1.0)	-1(0.5)	61.76
R3	-1(5.0)	+1(10)	+1(1.0)	+1(5.0)	+1(2.5)	-1(0.5)	+1(1.0)	115.06
R4	+1(10)	-1(5.0)	+1(5.0)	+1(1.0)	+1(5.0)	+1(0.5)	-1(0.5)	160.56
R5	-1(5.0)	-1(5.0)	-1(0.5)	+1(5.0)	+1(5.0)	+1(1.0)	+1(1.0)	143.82
R6	+1(10)	+1(10)	+1(5.0)	-1(2.5)	-1(0.5)	+1(1.0)	-1(0.5)	81.40
R7	+1(10)	-1(5.0)	+1(1.0)	+1(2.5)	+1(1.0)	+1(1.0)	+1(0.5)	176.22
R8	-1(5.0)	-1(5.0)	-1(0.5)	-1(2.5)	-1(2.5)	-1(0.5)	-1(0.5)	54.12

*R1-R8 represented eight different fermentations; *Values in table were represented as mean of two trials, *Amount of each substrate was measured in grams.
Table 2: Calculation of main effects using MS excel-7 and Identification of significant and non-significant substrates from results of PBD for biocatalyst production

Factor	Main effect	Standard error	P value
Wheat bran (X₁)	43.84	7.50	<0.01 (Significant)
Cracked wheat (X₂)	3.85	8.78	0.70 (Non-Significant)
Groundnut meal (X₃)	-9.13	6.54	0.29 (Non-Significant)
Soybean meal (X₄)	44.15	7.50	<0.01 (Significant)
Corn flour (X₅)	-25.64	7.50	<0.05 (Non-Significant)
Dried potato peel (X₆)	34.74	7.50	≤0.01 (Significant)
Rice flour (X₇)	-8.41	7.00	0.35 (Non-Significant)

Fitness of experimental data to following proposed linear model for the present biocatalyst production was evaluated through regression analysis at 99% confidence level (P ≤ 0.01) and it was formulated in Eq. (8)

\[Y = 137.53 + 43.84X_1 + 3.85X_2 - 9.13X_3 + 44.15X_4 - 25.65X_5 + 34.74X_6 - 8.41X_7 \]
---(8)

Predicted activity of biocatalyst, \(Y_p \), was computed from Eq. (8) and the less deviation of predicted data from experimental activity was observed since the regression coefficient was 99.88% (Fig. 1). PBD could provide significant variables but not the optimal quantity of each substrate for optimum enzyme production as it ignores interactive effects of substrates as it had given an idea about potent nutritional variables from examined substrates.

![Fig. 1: Depiction of experimental and predicted acid protease activity using plackett-burman design of experiments](image)

Prediction of optimal combination through box-behnken design
Evaluation of screened nutritional factors at three levels (-1, 0, +1) was much useful in achieving the maximum productivity of protease. With BBD of keyfactors, the minimum and maximum protease activities were observed as 121.59 and 807.83 U/g (table 3). Biomass prediction was estimated from Eq.10.

Production of enzyme solely was a function of growth of Aspergillus spp. so that the profile of fungal biomass was shown in fig. 2.

Table 3: Box-behnken design for three substrates with coded values with observed and predicted enzyme activity from Aspergillus spp. in SSF

Trial	Wheat bran (X₁)	Soybean meal (X₂)	Dried potato peel (X₃)	Acid protease activity (U/g)
1	-1(5.00)	-1(2.50)	0(0.75)	109.08
2	-1(5.00)	1(5.00)	0(0.75)	213.26
3	1(1.00)	-1(2.50)	0(0.75)	525.4
4	1(1.00)	1(5.00)	0(0.75)	747.07
5	-1(5.00)	0(3.75)	-1(0.50)	119.08
6	-1(5.00)	0(3.75)	1(1.00)	339.21
7	1(1.00)	0(3.75)	-1(0.50)	687.05
8	1(1.00)	0(3.75)	1(1.00)	573.49
9	0(7.50)	-1(2.50)	-1(0.50)	417.28
10	0(7.50)	-1(2.50)	1(1.00)	271.31
11	0(7.50)	1(5.00)	-1(0.50)	565.72
12	0(7.50)	1(5.00)	1(1.00)	541.17
13	0(7.50)	0(3.75)	0(0.75)	496.71
14	0(7.50)	0(3.75)	0(0.75)	807.83
15	0(7.50)	0(3.75)	0(0.75)	807.83

*Values in above table were represented as mean of two trials, *Amount of each substrate was measured in grams, *\(R^2_{Adj} \) (Adjusted R square) = 94.78% R(^2) (Predicted R square) = 98.13%
Scattered data obtained from 15 experimental runs was depicted in response surface plot in fig. 3. Surface plot fairly indicated a general increase in model response as concentrations of wheat bran and soybean meal increased from their center (‘0’) to higher (‘+’) values. Interactions among selected carbon and nitrogen sources were depicted in fig. 4 to 6 with respective slices of DPP (fig. 4a), soybean meal (fig. 5a), and wheat bran (fig. 6a) in three dimensional form.
Predicted mass of Aspergillus spp.:

\[Y_{\text{mass}} = 1.393 + 0.348 X_1 + 0.129 X_2 - 0.026 X_3 + 0.068 X_1 X_2 - 0.075 X_1 X_3 + 0.031 X_2 X_3 + 0.016 X_1^2 + 0.030 X_2^2 + 0.027 X_3^2 \]

Predicted acid protease activity:

\[Y_{\text{Protease activity}} = 807.83 + 219.04 X_1 + 87.46 X_2 - 13.55 X_3 + 29.37 X_1 X_2 - 83.42 X_1 X_3 + 19.24 X_2 X_3 - 208.57 X_1^2 - 200.525 X_2^2 - 169.52 X_3^2 \]

Key outcome from two-way interactions was cooperation between carbon sources, \(X_1 X_2 \) for growth as well as enzyme production (*P<0.01) (Fig.5b). All three quadratic effects: \(X_1^2, X_2^2, X_3^2 \) (*P<0.01) were significant and negative coefficients had indicated that higher levels of \(X_1, X_2, X_3 \) would reduce response. Computed F-value (Fisher’s Statistical Test: 29.26) from ANOVA table (table 5) was an indication of better fitness of polynomial model to experimental data from design matrix (*P<0.001) (table 3). Multiple correlation coefficient \(R^2 \) (99.06%) had enlightened that the second order polynomial model could explain 99.06% of variability in the response and only 0.094% of the total variations were not explained by the model. Variations in predicted \(R^2 \) (98.13%) was corrected by adjusted \(R^2 \) (94.70%), both were suggesting a high significance model used for analyzing the data. The predicted results of RSM were confirmed by experimental verification. For this, fermentation was carried out with the above mentioned optimized medium and resultant response of fermentation was observed as 815.279 U/g (±12.48 U/g) which was in accordance with predicted value.
The activity of 8.93 x 10^25 (577 U/ml), 31 (148.28 U/g)]]. However, the highest acid protease was comparable with earlier studies of [4 (2500 U/l), 7 (183.13 U/ml), 31].

Some of the previous studies used similar approach of sequential steps of PBD followed by RSM for optimization of both acid and alkaline proteases production from various microbial sources [6, 7, 26-30]. Acid protease activity from *Aspergillus niger* reported in present study was comparable with earlier studies of [4 (2500 U/l), 7 (183.13 U/ml), 25 (577 U/ml), 31 (1482.8 U/g)]. However, the highest acid protease activity of 8.93 x 10^25 U/g from *Aspergillus oryzae* from wheat bran was achieved by [6]. Ligno-cellulosic materials, wheat bran and DPP were evaluated as carbon sources for the maximum yield of acid protease in the current study. Similarly, previous report [31] revealed that agro industrial waste, sugarcane bagasse, was a suitable substrate for alkaline protease from *Bacillus* spp. through statistical method. In addition, another study [32] have reported that agro residues/wastes can be utilized as low cost materials for production of enzymes, biofuel, organic and amino acids thereby reducing pollution. On the same traits, corncobs and coffee pulp waste were tested for alkaline protease optimization by BBD and observed the maximum yield of 920 U/ml [33].

Nitrogen source plays an important role in the production of protease. Therefore, the present study revealed that soybean meal was proved to be the potential nitrogen source. Similarly, protease production media were designed with sole nitrogen source, peptone, and other factors (pH and moisture content) and achieved an enzyme activity of 94.30 U/ml from *Penicillium citrinum*, isolated from fermented fish sauce [29].

Partial casein inhibition kinetics

In the present work we obtained maximum yield of enzyme through RSM method. Further study was carried out to achieve better yield with casein as assay substrate. In order to find out of suitable concentration of substrate on protease activity, the effect of substrate concentration in a range of 0.1 to 2.2 mmol was studied. The velocity of caseinolysis by crude acid protease was shown by Michaelis-Menten plot (fig. 7a) and Lineweaver-Burk plot (Fig.7b). It was noticed that velocity deviation from normal rectangular hyperbola to decreased pattern at excess casein and it was due to partial SI. Experimental velocity of casein hydrolysis reached to a maximum velocity of 5.956 µmol/s when casein concentration range is 0 to 0.4 mmol and then reduced to 2.89 µmol/s beyond 0.4 mmol. It was also noticed that a linear increase in velocity up to 0.4 mmol of casein concentration and an immediate decrease in velocity was observed till 1 mmol of concentration. Later the velocity reached to a steady value even the increase in substrate concentration (fig. 7a).

Table 4: Results of regression analysis of the second order polynomial model with MATLAB (R2012a)

Terms	Coefficient	Standard error	P value	
Intercept	-	807.83	32.60	<0.01 (Significant)
Wheat bran (X1)	Linear term	219.04	19.96	<0.01 (Significant)
Soybean meal (X2)	87.46	19.96	0.527	
Dried potato peel (X3)	-13.55	19.96	0.527	
X1X2	Interaction terms	29.37	28.23	0.345
X1X3	-83.42	28.23	0.031	
X2X3	19.24	28.23	0.525	
X1^2	Quadratic terms	-208.57	29.38	<0.01 (Significant)
X2^2	-200.52	29.38	<0.01 (Significant)	
X3^2	-169.52	29.38	<0.01 (Significant)	

Summary of ANOVA for biomass was given in table 6 which indicated that biomass concentration was well described by proposed polynomial model given in Eq.10 (F-Value: 36.612).

Table 5: Analysis of variance for the fitted second order regression model for acid protease activity (MS Excel-7)

Df (Degrees of freedom)	SS (Sum of squares)	MS (Mean of squares)	F (Fischer’s test value)	P value (Probability value)	
Regression	9	839807.91	93311.99	29.25	0.0008
Residual	5	15945.74	3189.15		
Total	14	855753.60			

Multiple R: 99.25%; R^2= 98.50; R^2(adj)=95.81

Table 6: Analysis of variance for the fitted second order regression model—Growth of Aspergillus spp

Df (Degrees of freedom)	SS (Sum of squares)	MS (Mean of squares)	F (Fischer’s test value)	P value (Probability value)	
Regression	9	2.460	0.273	36.612	0.0005
Residual	5	0.037	0.007		
Total	14	2.497			

Some of the previous studies used similar approach of sequential steps of PBD followed by RSM for optimization of both acid and alkaline proteases production from various microbial sources [6, 7, 26-30]. Acid protease activity from *Aspergillus niger* reported in present study was comparable with earlier studies of [4 (2500 U/l), 7 (183.13 U/ml), 25 (577 U/ml), 31 (1482.8 U/g)]. However, the highest acid protease activity of 8.93 x 10^25 U/g from *Aspergillus oryzae* from wheat bran was achieved by [6]. Ligno-cellulosic materials, wheat bran and DPP were evaluated as carbon sources for the maximum yield of acid protease in the current study. Similarly, previous report [31] revealed that agro industrial waste, sugarcane bagasse, was a suitable substrate for alkaline protease from *Bacillus* spp. through statistical method. In addition, another study [32] have reported that agro residues/wastes can be utilized as low cost materials for production of enzymes, biofuel, organic and amino acids thereby reducing pollution. On the same traits, corncobs and coffee pulp waste were tested for alkaline protease optimization by BBD and observed the maximum yield of 920 U/ml [33].

Nitrogen source plays an important role in the production of protease. Therefore, the present study revealed that soybean meal was proved to be the potential nitrogen source. Similarly, protease production media were designed with sole nitrogen source, peptone, and other factors (pH and moisture content) and achieved an enzyme activity of 94.30 U/ml from *Penicillium citrinum*, isolated from fermented fish sauce [29].

Partial casein inhibition kinetics

In the present work we obtained maximum yield of enzyme through RSM method. Further study was carried out to achieve better yield with casein as assay substrate. In order to find out of suitable concentration of substrate on protease activity, the effect of substrate concentration in a range of 0.1 to 2.2 mmol was studied. The velocity of caseinolysis by crude acid protease was shown by Michaelis-Menten plot (fig. 7a) and Lineweaver-Burk plot (Fig.7b). It was noticed that velocity deviation from normal rectangular hyperbola to decreased pattern at excess casein and it was due to partial SI. Experimental velocity of casein hydrolysis reached to a maximum velocity of 5.956 µmol/s when casein concentration range is 0 to 0.4 mmol and then reduced to 2.89 µmol/s beyond 0.4 mmol. It was also noticed that a linear increase in velocity up to 0.4 mmol of casein concentration and an immediate decrease in velocity was observed till 1 mmol of concentration. Later the velocity reached to a steady value even the increase in substrate concentration (fig. 7a). Similar behavior for phosphofructokinase was observed [18] and the authors were described this trend was due to partial SI. In addition, the biological significance of SI was well illustrated for various biocatalysts [16].
As mathematical models of normal competitive, non-competitive, and uncompetitive inhibition kinetics will not fit to present study, another simple proposed model of \cite{18} and Andrew’s model were employed to explain the impact of SI on enzyme velocity. For this purpose, a plot of $1/V$ vs. $1/S$ at lower casein (fig. 8) was used to calculate V_{max} and dissociation constant for ES complex, K_s, from its slope and intercept as 6.849 µM/s and 0.062 mmol. At lower casein amounts, substrate (S) binds to the active site of acid protease (E) forms ES. Without inhibition, complex ES dissociates into product (P) with lower concentrations of casein and theoretical V_{max} was obtained (Eq.3 and Eq. 4).

![Fig. 8: Normal trend of double reciprocal graph for calculation on maximum velocity of reaction at lower concentrations of casein (Vmax: 6.849 µM/s and $K_s = 0.062$ mmol)](image)

The most important parameter for SI was determination of dissociation constant for SES complex, K_N which was found to be 2.849 mmol (Fig.9a-Model 1) and the same was 0.659 mmol (Fig.9b-Model 2). It was understood that both above mentioned models were satisfactory to explain the modeling of SI. It was understood that promised value of K_N at higher substrate concentration was explained the role of SES complex on enzyme velocity. Same effect was shown of substrate inhibition (Eq. 3), excess amount of casein further binds to complex ES then forms more complicated complex SES. Especially in partial substrate inhibition, dissociation of this complex is much slower than ES complex and reduces the velocity of reaction. This was confirmed with reduced V_{max} from: 6.849 (Fig.8) to 4.807 µM/s (fig. 9a). Further reaction rate constant ratio k_4/k_2 was computed as 0.233 from the intercept of $V/(V_{\text{max}}-V)$ vs. $1/S$ (Fig.9b). Rate constant ratio for partial SI must be less than 1 ($k_4/k_2 < 1$) \cite{18}. Reported value of k_4/k_2 had confirmed that velocity of hydrolysis of casein was inhibited by partial substrate inhibition. Model 2 was the better fit to experimental data reaction rate with casein as R^2: 90.5% (fig. 9b). Enzymatic kinetic studies were performed for detergent-compatible protease from *Aspergillus terreus* and reported kinetic parameters were V_{max}: 12.8 U/ml and K_m of 5.4 mg/ml \cite{34}.

CONCLUSION

Present study had revealed that the statistical methodology could be adopted easily for the design of suitable medium for the optimal production of acid protease with low cost substrates in SSF against OVAT. PBD had allowed the quick identification of significant solid substrates and BBD determined the combination of carbon and nitrogen supplements for better protease activity in simple experiments. The experimental data of RSM was best fit to predicted quadratic model. Kinetic studies on partial casein inhibition were understood with simple reaction mechanisms. Both above mention models of SI were very useful in understanding of deviation of rate of enzymatic reaction with substrate. Calculation of inhibitory constant, K_N and rate constant ratio (k_4/k_2) was more useful in substrate inhibition.

ABBREVIATION

ANOVA: Analysis of variance, BBD: Box Behnken design, DPP: Dried potato peel, OVAT: One variable at a time, PBD: PlackettBurman design, RSM: Response Surface Methodology, R^2_{Adj}: Adjusted R square, R^2_{Pre}: Predicted R square, Spp.: Species, SSF: Solid state fermentation

ACKNOWLEDGEMENT

The authors express thank to Department of Biotechnology, Sri Venyavikethan Engineering College and Department of Virology, Sri Venkateswara University, Tirupati, for providing laboratory facilities to perform the present experimental study.

AUTHORS CONTRIBUTIONS

Radha Seela: Carried out the Research work.
REFERENCES

1. Azzam A, Ramzi AAA, Avnish P, Nor Zalina O, Roslinda AM, El Enshasy HA. Biotechnological aspects and pharmaceutical applications of bacterial proteases. Pharm Lett 2017;9:9-20.

2. Rao MB, Tanksale AM, Ghatge MS, Desphande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 1998;62:97-635.

3. Souza PM, Bittencourt MLA, Caprara CC, Freitas M. Biotechnology perspective of fungal proteases—a review. Braz J Microbiol 2015;46:337-46.

4. Venkat KS, Ashok Rao, Joshua RN. Screening, media optimization and partial purification of protease by Trichosporon japonicum VIT VR1. Int J Pharm Pharm Sci 2015;7:187-91.

5. Kalaskar W, Narayanan K, Subrahmanyam VM, Rao VJ. Partial characterisation and therapeutic application of protease from a fungal species. Indian Drugs 2012;49:42-6.

6. Viswanatha KS, Appu Rao AG, Singh SA. Acid protease production using solid-state fermentation by Aspergillus oryzae MTCC 5341: optimization of process parameters. J Indian Microbiol Biotechnol 2009;37:129-38.

7. Siala R, Frihda F, Mhamdi S, Naar M, Sellami AK. Optimization of acid protease production by Aspergillus niger 11 on shrimp peptone using statistical experimental design. Sci World J 2012;11. DOI:10.1100/2012/564932.

8. Djamel C, Ali T, Nelly C. Acid protease production by isolated species of Penicillium. Eur J Sci Res 2009;25:469-77.

9. Soares WF, Castilho LR, Bon EP, Freire DM. High-yield Bacillus subtilis for protease production by solid-state fermentation. Appl Biochem Biotechnol 2005;121:124-311-9.

10. Aravindhan R, Asbumathi M, Viruthagiri T. Evaluation of medium components by Plackett-Burman statistical design for lipase production by Candida rugosa and kinetic modeling. Chinese J Biotechnol 2008;2:436-44.

11. Vasanthabharathi V, Shellarani S, Lakshminarayanan, Rajalakshmi S. Statistical optimization and production of protease from estuarine Crobatoderivarsus. Int Res J Biol Sci 2016;5:18-25.

12. Xiong ZQ, Tu XR, Tu GQ. Optimization of medium composition for actinomyces X2 production by Streptomyces spp. JAU 4234 using response surface methodology. J Indian Microbiol Biotechnol 2008;35:729–34.

13. Wang Q, Yanhua H, Zhong X, Jinli M, Guangou L. Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. with response surface methodology. Bioresour Technol 2008;99:1926-31.

14. Hong G, Mei L, Jintao L, Haomin D, Xianlong Z, Xiangyang L, et al. Medium optimization for the production of avermectin B1a by Streptomyces avermitilis 14-12A using response surface methodology. Bioresour Technol 2009;100:4012-6.

15. Assis KM, Sudir KR. A statistical approach for the enhanced production of alkaline protease showing the fibrinlytic activity from a newly isolated gram-negative Bacillus sp. strain AS-520. I. New Biotechnol 2011;28:182-9.

16. Reed MC, Anna L, Frederik NH. The biological significance of substrate inhibition: a mechanism with diverse functions. Bioessays 2010;32:422-9.

17. Nejad ZG, Soheila Y, Nazanin M, Bahareh S. Some investigations on protease enzyme production kinetics using Bacillus licheniformis BBRC 160053 and effects of inhibitors on protease activity. Int J Chem Engg 2014. http://dx.doi.org/10.1155/2014/949860

18. Yoshino M, Murakam K. Analysis of the substrate inhibition of complete and partial types. Springerplus 2015:4:292.

19. Radha S, Sridevi A, Himaikiran BR, Nithya VJ, Prasad NBL, Narasimha G. Isolation and screening of proteolytic fungal cultures from soil contaminated with abattoir waste. Biochem BCAIJ 2012;6:226-30.

20. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J Biol Chem 1951;193:265-75.

21. Shuler ML, Kargi F, Enzymes. A text book of Bioprocess Engineering–Basic Concepts. 2nd Edition. Pearson Education; India; 2003. p.60-73.

22. Ojkopoulosi GC, Nweke CO. Microbial growth and substrate utilization kinetics. Afr J Biotechnol 2005;5:305-7.

23. Lu-ESH, Guo-Qing Y, Xiao-Ying Z, Xin-Teng J, Jian-Shu C, Wen-Yue X, et al. Medium optimization for S-Phosphodiesterase production from Penicillium citrinum using response surface methodology. Food Technol Biotechnol 2007;45:126-33.

24. Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika 1946;3:3:305-25.

25. Radha S, Sridevi A, Meenakshisundaram R, Nithya VJ, Prasad NBL, Narasimha G. Medium optimization for acid protease production from Aspergillus sp. under solid state fermentation and mathematical modeling of protease activity. J Microbiol Biotechnol Res 2012;6:2-16.

26. Chauhan B, Gupta R. Application of statistical experimental design for optimization of alkaline protease production from Bacillus sp. RGR-14. Process Biochem 2004;39:2115–22.

27. Rajshree S, Rajni S. Statistical optimization of conditions for protease production from Bacillus sp. Acta Biologica Szegedensis 2014;5:43-141.

28. Govarthanan M, Lee J, Cho M, Seralathan K, Byung-Taek, O. Statistical optimization of alkaline protease production from brazhick environment Bacillus sp. SKK 11 by SSF using horse gram husk. Preparative Biochem Biotechnol 2014;4:119–31.

29. Xiao X, Wu D, Zhao S, Lin W, Gao X. Statistical optimization of alkaline protease production from Penicillium citrinum L-1 under solid-state fermentation. Preparative Biochem Biotechnol 2015;45:447-62.

30. Kshetri P, Ningombam O, Ningombam DS. Optimization of alkaline protease production by alkaliphilic Bacillus sp. KW2 in low cost medium using statistical approaches. Appl Microbiol 2016:2:2.

31. Rathakrishnan P, Nagarajan P, Rajeshkannan R. Optimization of protease production by Bacillus licheniformis sugarcane bagasse using statistical experimental design. Resin Biotechnol 2012;3:1-10.

32. Qureshi AS, Dahot UM. Production of proteases by Staphylococcus epidermidis EFRL using cost effective substrate (molasses) as a carbon source. Pakistan J Biotechnol 2009;6:55-60.

33. Kandasamy S, Mathusamy G, Balakrishnan S, Duraisamy S, Thangasamy S. Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 2015;6:167.

34. Nyonzima FN, More SS. Purification and characterization of detergent-compatible protease from Aspergillus terreus gr. 3 Biotech 2015;5:61–70.