RELATIONSHIP OF VARIABLE REGION GENES EXPRESSED BY A HUMAN B CELL LYMPHOMA SECRETING PATHOLOGIC ANTI-PR$_2$ ERYTHROCYTE AUTOANTIBODIES

By LESLIE E. SILBERSTEIN,* SAMUEL LITWIN,† AND CONDIE E. CARMACK‡

From the *Department of Pathology and Laboratory Medicine, School of Medicine, University of Pennsylvania 19104; and the †Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111

Many autoimmune diseases are associated with autoantibody formation. Yet in only a few instances has it been clearly established that the autoantibody associated with the disease contributes to the pathogenic process. Cold agglutinins are autoantibodies that preferentially bind to RBC membrane antigens at low temperatures (1–3). Cold agglutinins may be pathologic, found in association with cold agglutinin disease (CAD)† or benign, found in the sera of healthy individuals. The antigenic specificities of benign and pathologic cold agglutinins are similar and include various glycolipids and glycoproteins (1, 4). CAD has been classified as either idiopathic (i.e., not associated with an underlying disease) or secondary to lymphoid neoplasms or infections (2). In cold agglutinin disease, whether idiopathic or secondary to lymphoid neoplasms, cold agglutinins are typically IgMk monoclonal autoantibodies, as defined by a homogeneous peak on the serum electrophoretic pattern.

To further examine the clonality and cellular origin of pathologic cold agglutinins we have studied B cell clones from a patient (RR) with a splenic lymphoma associated with immune hemolysis due to an anti-PR$_2$ cold autoantibody (5). Cytogenetic studies of splenic lymphocytes demonstrated an abnormal karyotype (51, XX, +3, +9, +12, +13, +18). After EBV transformation of splenic lymphocytes, seven clones were isolated; each clone had the same abnormal karyotype and secreted an IgMk anti-PR$_2$ cold agglutinin. Further studies of surface phenotype, Ig gene rearrangements, and antibody specificity suggested that the EBV-transformed clones secreted an RBC autoantibody that was identical to the pathogenic autoantibody causing immune hemolysis in the patient (6). However, while the IEF spectrotypes of the autoantibodies derived from five of the seven B cell clones were identical to the cold agglutinin isolated from the patient's serum, two of seven clones had distinctivespectrotypes. This finding indicated that the EBV-transformed B cell clones were structurally heterogeneous, even though they retained the same autoreactive specificity.

This work was supported by National Institutes of Health grants DK-39065-01AI, GM-20964-15, CA-06927, and by an appropriation from the Commonwealth of Pennsylvania. C. Carmack is a trainee of the American Cancer Society Postdoctoral Fellowship PF-3076. Address correspondence to Leslie E. Silberstein, Hospital of University of Pennsylvania, Department of Pathology and Laboratory Medicine, Founders 6-57, Philadelphia, PA 19104-4283.

† Abbreviations used in this paper: ALL, acute lymphoblastic leukemia; CAD, cold agglutinin disease; CDR, complementarity-determining region; CLL, chronic lymphocytic leukemia; m/bp/d, mutations/base pair/division; m/c/d, mutations/cell/division; MLE, maximum likelihood estimate; sIg, surface Ig.

J. Exp. Med. © The Rockefeller University Press · 0022-1007/89/05/1631/13 $2.00 1631
Volume 169 May 1989 1631-1643
Idiotype heterogeneity of human follicular lymphomas has been ascribed to a high rate of somatic mutations in the V region genes (7–10). If a similar somatic mutational process were taking place in the autoreactive tumor described here, we would predict that sequence variants could account for the observed spectrotypic diversity.

In this report, we have defined the molecular basis of autoantibody heterogeneity of B cell tumor origin through nucleotide sequence analysis of both heavy (V_H) and light (V_L) chain variable region genes. By comparing the junctional sequences formed by the joining of V_H, D_H, J_H, as well as V_K and J_K gene segments, we have evaluated the clonality of the seven clones at a molecular level. Additionally, a comparison of the V region sequences has allowed us to examine the frequency of nucleotide substitutions and to determine if the deduced amino acid sequences can explain the different IEF spectrotypes observed.

Materials and Methods

RNA Isolation. RNA was prepared from LS clones (1, 2, 4, 5–8) that had been established by EBV transformation as previously described (5). Cells (~3–5 × 10⁹) were grown in RPMI 1640 medium (Gibco Laboratories, Grand Island, NY) with 10% FCS. Cells were washed twice in PBS and frozen as pellets in liquid nitrogen and stored at −70°C. Total cellular RNA was prepared by the guanidinium isothiocyanate method as described by Chirgwin et al. (11). Poly(A)⁺ RNA was isolated on oligo(dT)-cellulose columns (12).

Oligonucleotide Primers. Human μ and κ oligonucleotide primers were synthesized using phosphotriester chemistry by an oligonucleotide synthesizer (Applied Biosystems, Inc., Foster City, CA). Oligonucleotides were purified by electrophoresis through 20% polyacrylamide/7 M urea preparative gels, followed by passive elution and separated on Sep-Pak C₁₈ cartridges (Waters Associates, Milford, MA). Sequences used for Poly(A)⁺ RNA priming were (μ) 5'-CAGGAGACGAGGGGGAA-3' (9) and (κ) 5'-AGATGGCGGGAAGATGAAGAC-3'.

cDNA Synthesis and Cloning. Double-stranded cDNA was made by the method described by Gubler and Hoffman (13) as modified for Ig genes (14) using 5 μg of LS series RNA. Blunt-ended double-stranded cDNA was ligated into the phosphatased Smal site of phagemid pBS M13- (Stratagene, San Diego, CA). *Escherichia coli* strain bS]⁷² was transformed by recombinant phagemid DNA. Even though a highly enriched library containing human immunoglobulin genes was generated, it was necessary to screen the partial library with V_H (15) and V_L (16) gene probes. Northern blot analysis of isolated RNA (data not shown) indicated that the expressed V genes belonged to the V_H^{III} and V_L^{II} families. Agarose gel purification of probes proved essential since plasmid DNA would crosshybridize to the phagemid DNA on the filters.

Sequencing of cDNA Clones. After clones were identified as containing a human heavy or light chain cDNA insert, the phagemid clones, which contain the M13 origin of replication were grown with helper phage K07 (17) to rescue ssDNA. Since the pBS M13⁺ vector yields negative stranded ssDNA, the M13 reverse primer was used for sequencing. cDNA sequences were determined with the method of Sanger (18) using Sequenase (United States Biochemical Corp., Cleveland, OH) with [³⁵S]dATP. 5% PAGE/8 M urea gels (Model STS 45; 18l, New Haven, CT) were run according to manufacturer's recommendation. The gels were fixed, dried, and exposed overnight to XAR-5 film (Eastman Kodak Co., Rochester, NY). Sequences were then determined and analyzed with the Wisconsin Sequence Package (19) running on a VAX computer (Digital, Burlington, MA).

Statistical Analysis of Observed Somatic Mutations. Seven cells produced a pattern of mutations having three cells either unmutated or with identical mutations and four cells each having its own unique set of mutations. This 3-1-1-1 pattern was used to determine a maximum likelihood estimate (MLE) as well as confidence bounds on the underlying mutation rate. This was done by simulating the clonal proliferation process for this situation by adapting a previously developed general Monte-Carlo model (20). The computer model of cell proliferation starts with one cell and produces a random succession of left or right progeny until
a total of 40 divisions is reached (Fig. 1 A). Then the same tree is restarted picking left or right random progeny as before. This time the tree is merely followed if the chosen left or right progeny already exists. If the tree fails to contain the requested random branch, then a new cell is added in that direction and more new cells are again added until the 40th division is reached. This is continued until seven strands of the tree have been extended to 40 divisions. Note that the tree would contain $2^{40} (1.1 \times 10^{12})$ cells at its last level if completed, but our simulation generates only seven. These seven are a random selection of the entire set of 2^{40}. Each new cell acquires a random number of mutations determined from the Poisson distribution. The parameter or the mean of the Poisson distribution is the mutation rate. The mutation rate is defined by the user and we used a range to investigate the ability of clonal development to create the observed pattern of mutations. Since each cell contains a large number of independently mutating bases, each with very low probability (see Results), the Poisson distribution is appropriate for the number of mutations per cell per division.

The chance of silent, neutral, or defunctionalizing mutations has been determined both theoretically and empirically (20, Shlomchik, M. J., S. Litwin, and M. Weigert, manuscript in preparation). The probability of each type is taken into account in generating the tree so that the likelihood of a lineage is determined. If a pathway incurs a lethal mutation, then the program inserts a dead cell in the tree. The creation of dead cells puts blockages in the tree structure, since dead cells don't proliferate. Subsequent passes to generate the needed seven cells may encounter a dead cell. If this happens the program restarts the pass. In the

![Figure 1](image_url)
event that no path to 40 divisions exists by virtue of dead cells, the entire tree is aborted. When seven cell lines have been extended to 40 divisions, the clonal identity of each cell is determined. Two cells in the final division are regarded as identical if and only if they have a common ancestor from which neither has mutated. The possibility that two final division cells contain identical, independently derived mutations is ignored since it is so improbable. However, with a little additional programming individual base mutations could be recorded and this possibility taken into account.

The program requests the user to specify a mutation rate, then it determines if the observed pattern is likely to occur. It does this by simulating the process of cell proliferation 1,000 times, all at the same mutation rate. In each repetition the program checks if the seven cells alive at division 40 match the observed pattern. At the conclusion of the 1,000 repetitions the number of times the pattern was observed is tabulated. If the seven simulated cells make up 3 identical ones, i.e., each with either no mutations, or the same set of mutations, and four others that are each unique, then this simulation matches the observed outcome. The number of occurrences of this pattern among the 1,000 repetitions divided by 1,000 is an estimate of the probability of the observed outcome for this value of the mutation rate. By running the program several times, entering different mutation rates each time, we can determine what rate gives the biggest tally, and hence biggest estimate of the probability of the observation. The 1,000 trials are regarded as Bernoulli trials, and we are estimating the chance of success, in this case, the chance of the original observation of 3-1-1-1-1. The probability for success in a trial is the likelihood function that is to be maximized. It depends on the mutation rate, and would be conditioned on the fact that trials that are aborted should not be considered, since they cannot account for the observed data. It would also account for the patterns of all possible cell lineages after 40 divisions. We note that trial abortion is very rare at the mutation rates we are using (see Results), namely \(p \) (aborted tree) < 0.00178 (computation not shown). However, we can investigate the underlying process without explicitly knowing the likelihood function by using a computer simulation. When we run the program at a very low mutation rate (0.001 mutations per cell per division) it rarely produces five different clones, whereas at a high mutation rate (0.15 mutations per cell division) it produces six or seven different clones. Thus we adjust the mutation rate to an intermediate value so that the program reflects the observed data. By applying a series of different values for the mutation rate we identify one that maximizes the program's production of mutational patterns similar to that observed. This rate is our approximation to the maximum likelihood estimate of the true rate. Three similar statistics are collected. First, the outcome is tested for being identical to the observed 3-1-1-1-1 pattern. Next, the outcome is tested for containing at least five clones, finally it is tested for containing no more than five clones. The last two statistics are used to determine a 95% confidence bounds on the true mutation rate. These three statistics are tallied and the entire procedure is repeated 1,000 times. Finally, the program outputs the number of times the observed mutational pattern was obtained as well as the tallies of the other two statistics.

Results

Nucleotide Sequences of \(\nu \) and \(\nu \) Regions. The \(\nu \) and \(\nu \) region gene segments of the seven EBV lines were cloned as cDNAs by extending an oligonucleotide primer homologous to the 5' region of the human heavy and light chain constant regions (Figs. 2 and 3). The use of the \(\mu \) chain primer has been previously reported (8, 9). The choice of the \(\kappa \) primer was based on identifying a human \(C_\kappa \) region that was homologous to an evolutionary conserved \(C_\kappa \) sequence from the mouse (21). The \(\kappa \) primer consisted of a 21mer, 18 nucleotides from the 3' end of the J segment of a rearranged gene. Two or more independent cDNA clones were isolated and sequenced because of concern for sequencing or cloning artifacts. Clones were determined to be of independent origins on the basis of different cDNA sizes and orientation of inserts. Sequences of cDNA clones isolated from a particular LS cell line
were all identical indicating high fidelity of the reverse transcriptase. Of the several thousand nucleotides sequenced, no mutation due to polymerization of the reverse transcriptase was seen. Furthermore, to assess for mutations occurring due to tissue culture, cDNA clones of cell lines LS2 and 5 were isolated and sequenced at 6-mo intervals; no changes in nucleotide sequences were seen among repeat isolates.

The nucleotide sequences of the seven Vµ and Vλ genes are shown in Figs. 2 and 3, respectively. It is evident that except for a few nucleotide substitutions, the sequences are almost identical. Identical Vµ-Dµ, Dµ-Jµ, Vλ/Jλ, and N gene segments are all consistent with a clonal origin. Clonality is further supported by the unusual karyotype associated with the tumor and EBV transformed cells, as well as the Southern blot analyses of heavy and light chain loci showing identical Ig gene rearrangements (6).

Although the sequences are nearly identical, several nucleotide substitutions are seen that could only be attributed to somatic mutations if all cells were in fact derived from a single progenitor cell. Single T substitutions at amino acid positions 72 (LS4) and 78 (LS1) in the heavy chain gene and position 92 (LS6) in the light chain gene are shown in Fig. 2. The nucleotide sequences of these seven Vµ and Vλ genes are shown in Figs. 2 and 3, respectively. It is evident that except for a few nucleotide substitutions, these sequences are almost identical. Identical Vµ-Dµ, Dµ-Jµ, Vλ/Jλ, and N gene segments are all consistent with a clonal origin. Clonality is further supported by the unusual karyotype associated with the tumor and EBV transformed cells, as well as the Southern blot analyses of heavy and light chain loci showing identical Ig gene rearrangements (6).

Although the sequences are nearly identical, several nucleotide substitutions are seen that could only be attributed to somatic mutations if all cells were in fact derived from a single progenitor cell. Single T substitutions at amino acid positions 72 (LS4) and 78 (LS1) in the heavy chain gene and position 92 (LS6) in the light chain gene are shown in Fig. 2. The nucleotide sequences of these seven Vµ and Vλ genes are shown in Figs. 2 and 3, respectively. It is evident that except for a few nucleotide substitutions, these sequences are almost identical. Identical Vµ-Dµ, Dµ-Jµ, Vλ/Jλ, and N gene segments are all consistent with a clonal origin. Clonality is further supported by the unusual karyotype associated with the tumor and EBV transformed cells, as well as the Southern blot analyses of heavy and light chain loci showing identical Ig gene rearrangements (6).
From this cell mass number, we calculated that 40 (±0.8 = 1.1 x 10^12) cells existed at the time of splenectomy and EBV transformation.

To estimate the mutation frequency, we assumed that a tumor mass of at least 10^12 cells (based on weight and immunohistochemistry of the spleen) existed at the time of splenectomy and EBV transformation. From this cell mass number, we calculated that ~40 (2^40 = 1.1 x 10^12) cell
divisions had taken place and on the average, $4/7$ (0.571) somatic mutations per cell had accumulated from the single tumor cell to the time of splenectomy and transformation. Since there are 696 bp in both heavy and light chain genes, these figures allow us to estimate a mutation frequency of 0.01427 mutations/division or 2.05×10^{-5} mutations/base pair/division ($m/bp/d$). With the mutation rate of 0.031 mutations per cell ($4.45 \times 10^{-5} m/bp/div$) per division, the chance of the observed pattern was maximized and was about 27%, i.e., the $1,000$ repetitions produced 266 outcomes each of which contained a set of three identical cells plus four completely unique cells (Fig. 1B). This is the MLE for the mutation rate. Setting the mutation rate to 0.0085 mutations per cell per division ($1.22 \times 10^{-6} m/bp/div$) the chance of observing at least five clones was reduced to 0.028 and by setting it to 0.12 mutations per cell per division ($1.72 \times 10^{-4} m/bp/div$) the chance of observing five or fewer clones was reduced to 0.023. Thus an approximate 95% confidence interval for the mutation rate is $(-0.0085, 0.12)$ mutations per cell per division and $(-1.22 \times 10^{-6}, 1.72 \times 10^{-4})$ mutations per base pair per division.

Our estimate of tumor cell mutation rate rests on the assumption that tumor cells do not die. Thus, it must be taken as an upper band until better approximations to tumor cell birth and death rates are available.

Discussion

The humoral immune repertoire is produced by B lymphocytes that have the ability to respond to a wide range of antigenic specificities. The differentiation of B lymphocytes can be divided into two stages. The first stage is antigen independent in-

Figure 4. Comparison of the V_H and V_L nucleotide sequences of the anti-Pr$_2$ autoantibodies reported here (LS lines) and (A) GL 1-1, germline V_{H1} gene (23); (B) GL-KVL, germline V_{H11} gene (24). Dashes indicate sequence homology with the LS sequence. Listed above the nucleotide sequence are the position numbers of the corresponding amino acids listed according to reference 22. Leader and CDR regions are as indicated.
volving the development of stem cells into B cells. After acquiring antigen binding receptors, B cells migrate to the peripheral organs such as lymph nodes and spleen where they encounter various antigens. The second stage involves the proliferation and subsequent differentiation of B cells into Ig-secreting plasma cells. Since autoantigens are ubiquitous, it follows that autoimmune responses must be controlled by regulatory mechanisms such as clonal deletion and/or T cell suppression.

Although autoantibodies are associated with many autoimmune disorders, their role in the pathogenesis of disease in most cases is unclear. In contrast, the pathologic role of RBC autoantibodies in immune hemolysis is well established (1). To study the biology of these pathogenic RBC autoantibodies, we have established seven EBV-transformed B cell clones from a patient (RR) with splenic lymphoma and immune hemolysis due to an anti-Pr2 RBC autoantibody. Previously, we had demonstrated that these EBV-transformed clones secreted the same pathogenic autoantibody as present in the serum of the patient. The sequence data of this report confirm the clonal relatedness of these lines. By IEF analysis, however, two of seven clones secreted autoantibodies with different spectrotypes. The different IEF banding patterns could be explained by a post-translational event, such as glycosylation, or by somatic mutation of the primary nucleotide sequence. Altered glycosylation could result from a change in primary sequence leading to the appearance or disappearance of glycosylation sites, or by variable glycosylation at a particular amino acid without a change in the primary amino acid sequence (27). The observed somatic mutations in the LS cell lines are either silent or conservative and thus do not account for any charge differences. Although the conservative, serine to threonine substitution (LS8; Vn; position 30), occurred in one of the autoantibodies with a different spectrotpe, this somatic mutation did not involve an Asn-X-Ser/Thr recognition sequence required for N-linked glycosylation (27). O-linked glycosylation of a serine residue in the V region has been reported only once in an abnormal human myloma λ light chain (28). It is therefore unlikely that the two distinctive spectrotypes result from the nucleotide substitutions found in the Vn and Vc region genes of the seven clones. Variable glycosylation and/or mutations in the Ig constant regions are alternative causes for spectrotypic differences and cannot be ruled out.

The small number of somatic mutations, i.e., only 4 in >5,000 bases sequenced, shows that at the time of sampling, a low somatic mutation frequency existed in this B cell tumor population. One can speculate that the mutation rate may have been high at one point but then slowed or even stopped. Alternatively, a high somatic mutation rate may never have existed.

The idea that the mutation rate can vary in the expansion and maturation of a B cell clone is supported by data from murine cell lines with various specificities (including autoantigens) and representing different stages of B cell differentiation (20, 29, 30). Mutations appear to be infrequent in the preimmune repertoire and primary immune response (estimated at <10^{-5} m/bp/d) (31, 32). However, during subsequent steps of B cell maturation, characteristic of secondary immune responses, somatic point mutations are introduced in a stepwise fashion at a rate approximating 10^{-3} m/bp/d (33, 34). At later stages of B cell differentiation, as demonstrated in studies of transformed plasma cells, somatic mutations are considered to occur again at a lower rate (estimated mutation frequency between 10^{-6} and 10^{-7} m/bp/d) (35).

The type of lymphoma analyzed in this report differs in several aspects from other
B cell malignancies of which V regions have been analyzed (36, 37). First, the B cell tumor of the patient in this report consists of early plasmacytoid cells, which represent a more mature stage of B cell differentiation than the types involved in acute lymphoblastic leukemia (pre-B cell) (38), chronic lymphocytic leukemia (immature-mature B cell) (39), and follicular lymphoma (follicular center cell, activated B cell) (8, 9). Second, the B cell tumor described here, is unique in that its specificity is well defined.

Based on the available V region sequences from these four different types of B cell lymphomas, a correlation is proposed between the stage of B cell ontogeny and the estimated mutation frequencies (see Fig. 5). In a recent study of VH sequence analysis from patients of acute lymphoblastic leukemia (ALL), no somatic mutations were found in >15,000 nucleotide sequences (38). Based on this finding it was calculated that the prevalence of mutations in these ALL tumors was $<6.7 \times 10^{-6}$ m/bp/d. In the two cases of CLL, no evidence for sequence heterogeneity of expressed V genes was observed; the V\textsubscript{\kappa} sequences isolated from two unrelated individuals are highly homologous to each other and to a previously published germline

![Hypothetical correlation of differentiation stage of different B cell tumors and somatic mutation rate.](image)

Figure 5. Hypothetical correlation of differentiation stage of different B cell tumors and somatic mutation rate. I. ALL; pre-B cell; low somatic mutation rate estimated (39). II. CLL; immature-mature B cell; low somatic mutation rate estimated (40, 41). III. Follicular lymphomas; activated B cell, likely of follicular center cell origin; somatic mutation rate is high (8, 9). IV. Well-differentiated lymphoma; anti-Pr\textsubscript{2} secreting B cell lymphoma, early plasmacytoid cell type; low somatic mutation rate estimated (this paper). Solid line indicates somatic mutation rates estimated for four types of B cell lymphomas representing different stages of B cell differentiation. The dotted line reflects the rare occurrence of somatic mutations in non-Ig variable region loci (32).
V\textsubscript{\kappa} sequence (39, 40). In contrast, a relatively high frequency of somatic mutation occurs in follicular B cell lymphomas similar to the mutational process found in normal differentiating B cells (8, 9). The mutation rate has not been determined for these human B cell tumors, because the number of cell divisions is not known. However, with some assumptions we have estimated the mutation rate of the lymphoma described in this report, to be 4.45×10^{-5} (see Results). Similarly, a mutation rate has also been estimated for cases of ALL. These estimated rates imply that somatic mutation rates that are significantly lower than those found in activated B cells would occur in lymphomas representing both earlier and more mature stages of differentiation (Fig. 5). We next determined if the prevalence of somatic mutations was significantly different among the various types of lymphomas by comparing the frequency of silent mutations found in the previously published V\textsubscript{\kappa} and V\textsubscript{\lambda} sequences (8, 9, 38-40). Only silent mutations were considered in order to exclude any bias due to selection. Using Fisher's exact test for the hypergeometric distribution, the frequency of silent mutations in the plasmacytoid B cell lymphoma (3/4,992 bp sequenced) was significantly lower than in follicular lymphoma (16/2,124 bp sequenced; $p < 0.00001$), but was not significantly different ($p > 0.5$) from the observed frequency in ALL (0/15,000) and CLL (0/1,428) (39). This difference can be explained as either a higher mutation rate in follicular lymphomas or by the possibility that these lymphomas represented a larger number of cell divisions allowing for a greater number of observed mutations. The result of this statistical analysis also fits with the proposed model illustrated in Fig. 5. Thus, this model proposes that B cell tumors with low somatic mutation frequencies will include cases of ALL and CLL, consisting of pre-B and intermediate B-cells, as well as lymphomas representing plasmacytic, more mature stages of B cell differentiation.

The role of exogenous and autoantigens in clonal selection and expansion of antigen-specific B cell during an immune response has been studied in several animal model systems (28-30). Although binding of sIg with autoantigen (i.e., Pr\textsubscript{2}) may be important in driving a specific B cell clone to expand, other secondary factors such as increased oncogene expression are likely to contribute to the malignant transformation of these autoreactive B cell clones (41, 42). This view of lymphoma development, where clonal expansion and malignant transformation are separate and independent events, is supported by the observed clinical spectrum of cold hemagglutinin disease (1). At one end of the spectrum are patients with an expanded B cell clone producing a monoclonal cold agglutinin, identified as a homogeneous band on serum protein electrophoresis; these patients have no evidence for lymphoma and are diagnosed as having idiopathic cold hemagglutinin disease. At the other end of the spectrum are patients with the secondary form of cold hemagglutinin disease, whose expanded B cell clone has undergone malignant transformation; these patients present with or eventually develop clinical lymphoma.

In summary, the low mutation frequency observed in this Pr\textsubscript{2}-specific B cell tumor, may not only be related to the tumor differentiation stage but also may reflect selection by autoantigen to retain Ig structure and specificity. The conserved nature of sIg receptors expressed by B cell tumors of this type would predict a good response to antiidiotypic therapy (43). Additional studies of V genes from different types of B cell lymphomas, representing various stages of differentiation, will contribute to understanding the biology of B cell neoplasia and also define the potential for passive immunotherapy.
Summary

To study the biology of cold agglutinin disease we previously established EBV-transformed B cell clones isolated from a patient with splenic lymphoma of an early plasmacytic cell type and immune hemolysis due to an anti-Pr2 cold agglutinin. These clones had an aberrant chromosomal marker identical to the patient's B cell lymphoma and each secreted IgMk anti-Pr2 similar to the pathologic autoantibody in the serum of the patient. In this study, we have further investigated the Pr2-specific autoimmune response through nucleotide sequencing of VH and VL region genes. We have shown that the seven clones share the same VDJ/VJ gene segments and junctional elements confirming their clonal origin. The VH sequences were 88% homologous to a VHI germline gene while the VL sequences were 97% homologous to a VKIII germline gene. Only 4 somatic mutations (3 silent and 1 conservative) were found in >5,000 bp sequenced, suggesting that a low mutation rate existed. Based on a tumor mass of 10^{12} cells and a minimum of 40 divisions, we estimated the somatic mutation rate to be 4.45×10^{-5} m/bp/d.

This somatic mutation rate is similar to those estimated for acute lymphocytic leukemia (pre-B cell) and chronic lymphocytic leukemia (intermediate B cell), but significantly lower than the mutation frequency in follicular lymphomas (activated B cell). We propose that the difference in somatic mutation frequency of a B cell tumor may be related to the stage of B cell differentiation. In addition, the low mutation frequency observed in the Pr2-specific B cell tumor may also reflect, in part, selection by autoantigen to conserve slg structure and specificity.

We thank Dr. H. G. Zachau for the Vx11 probe, Dr. Tasuku Honjo for the use of the VHI probe, Dr. Steve Henikoff for his gift of bSJ72 bacteria used in the transformations, and Ms. Joni Brill Dashoff and Ms. Anita Cynwinsk for excellent technical help with the blots, probe preparations, and sequencing. We are also very grateful to Dr. Martin Weigert for helpful and constructive suggestions.

Received for publication 28 September 1988 and in revised form 18 January 1989.

References

1. Pruzanski, W., and K. H. Shumak. 1977. Biologic activity of cold-reacting antibodies Part I. N. Engl. J. Med. 297:538.
2. Pruzanski, W., and K. H. Shumak. 1977. Biologic activity of cold-reacting antibodies Part II. N. Engl. J. Med. 297:583.
3. Pruzanski, W., and A. Katz. 1984. Cold agglutinins. Antibodies with biological diversity. Clin. Immunol. Rev. 3:131.
4. Uemura, K., D. Roelcke, Y. Nagai, and T. Feizi. 1984. The reactivities of human erythrocyte autoantibodies anti-Pr2, anti-Gd, F1 and Sa with gangliosides in a chromatogram binding assay. J. Biochem. 219:865.
5. Silberstein, L. E., G. A. Robertson, A. C. Hannam Harris, L. Moreau, E. Besa, and P. C. Nowell. 1986. Etiologic aspects of cold agglutinin disease: Evidence for cytogenetically defined clones of lymphoid cells and the demonstration that an anti-Pr cold autoantibody is derived from a chromosomally aberrant B-cell clone. Blood. 67:1705.
6. Silberstein, L. E., Y. Goldman, J. A. Kant, and S. L. Spitalnik. 1988. Comparative biochemical and genetic characterization of clonally related human B-cell lines secreting pathogenic anti-Pr2 cold agglutinins. Arch. Biochem. Biophys. 264:244.
7. Levy, R., S. Levy, M. L. Cleary, W. Carroll, S. Kon, J. Bird, and J. Sklar. 1987. Somatic mutation in human B-cell tumors. Immunol. Rev. 96:43.
8. Kon, S., S. Levy, and R. Levy. 1987. Retention of an idiotypic determinant in a human B-cell lymphoma undergoing immunoglobulin variable-region mutation. Proc. Natl. Acad. Sci. USA. 84:5053.

9. Cleary, M., T. C. Meeker, S. Levy, E. Lee, M. Trela, J. Sklar, and R. Levy. 1986. Clustering of extensive somatic mutations in the variable region of an immunoglobulin heavy chain gene from a human B cell lymphoma. Cell. 44:97.

10. Levy, S., E. Mendel, S. Kon, Z. Avnur, and R. Levy. 1988. Mutational hot spots in IgV region genes of human follicular lymphomas. J. Exp. Med. 168:475.

11. Chirgwin, J., A. Przybyla, R. MacDonald, and W. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 18:5294.

12. Maniatis, T., E. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratories, Cold Spring Harbor, NY. 545 pp.

13. Gubler, U., and B. Hoffman. 1983. A simple and very efficient method for generating cDNA libraries. Gene (Amst.). 25:263.

14. Levy, S., E. Mendel, and S. Kon. 1987. A rapid method for cloning and sequencing variable-region genes of expressed immunoglobulins. Gene (Amst.). 54:167.

15. Noma, Y., Y. Yaoita, N. Matsunami, A. Rosen, G. Klein, and T. Honjo. 1984. Immunoglobulin gene organization of ultraviolet-illuminated human lymphoblastoid cell lines producing both IgM and IgG. Mol. Biol. Med. 2:337.

16. Klobeck, H.-G., A. Meindl, G. Combriato, A. Solomon, and H. G. Zachau. 1985. Human immunoglobulin kappa light chain genes of subgroups II and III. Nucleic Acids Res. 13:6499.

17. Vieira, J., and J. Messing. 1987. Production of single-stranded plasmid DNA. Methods Enzymol. 153:3.

18. Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA. 74:5463.

19. Devereux, J., P. Haebertz, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387.

20. Shlomchik, M. J., A. Marshak-Rothstein, C. B. Woldwiez, T. Rothstein, and M. G. Weigert. 1987. The role of clonal selection and somatic mutation in autoimmunity. Nature (Lond.). 328:805.

21. Kabat, E. A., T. T. Wu, M. Reid-Miller, H. Perry, and K. S. Gottesman. 1987. Sequences of Protein of Immunological Interest. 4th ed. U.S. Department of Health and Human Services, Public Health Service, National Institutes of Health, Bethesda, MD.

22. Berman, J. E., S. J. Mellis, R. Pollock, C. L. Smith, H. Suh, B. Heinke, C. Kowal, U. Surti, L. Chess, C. R. Cantor, and F. W. Alt. 1988. Content and organization of the human Ig Vκ families and linkage to the Ig Cκ locus. EMBO (Eur. Mol. Biol. Organ.) 7:727.

23. Pech, M., and H. G. Zachau. 1984. Immunoglobulin genes of different subgroups are interdigitated within the V-K locus. Nucleic Acids Res. 12:9229.

24. Ichihara, Y., M. Abe, H. Yasui, H. Matsuoka, and Y. Kurosawa. 1988. At least five Dκ genes of human immunoglobulin heavy chains are encoded in 9-kilobase DNA fragments. Eur. J. Immunol. 18:649.

25. Siebenlist, U., J. V. Ravetch, S. Korsmeyer, T. Waldmann, and P. Leder. 1981. Human immunoglobulin D segments encoded in tandem multigenic families. Nature (Lond.). 294:631.

26. Wang, A. C., H. H. Fudenberg, J. V. Wells, D. Roelcke. 1973. A new subgroup of the kappa chain variable region associated with anti-Pr cold agglutinins. Nature (Lond.). 243:126.

27. Kobata, A. 1984. The carbohydrates of glycoproteins. In Biology of Carbohydrates. Vol. 2. V. Ginsburg and P. W. Robbins, editors. John Wiley and Sons, NY. 87-162.
clonal immunoglobulin light chain. *J. Biol. Chem.* 256:1549.

29. Chaflin, J. L., J. Berry, D. Flaherty, and W. Dunnick. 1987. Somatic Evolution of Diversity among anti-phosphocholine antibodies induced with *Proteus morganii*. *J. Immunol.* 138:3060.

30. Wysocki, L., T. Manser, and M. L. Gefter. 1986. Somatic evolution of variable region structures during an immune response. *Proc. Natl. Acad. Sci. USA.* 83:1847.

31. Siekevitz, M., C. Kocks, K. Rajewsky, and R. Diklo. 1987. Analysis of somatic mutation and class switching in naive and memory B cells generating adoptive primary and secondary responses. *Cell.* 48:757.

32. Wabl, M., P. D. Burrows, A. von Gabain, and C. Steinberg. 1985. Hypermutation at the immunoglobulin heavy chain locus in a pre-B-cell line. *Proc. Natl. Acad. Sci. USA.* 82:479.

33. McKeon, D., K. Huppi, M. Bell, L. Staudt, W. Gerhard, and M. Weigert. 1984. Generation of antibody diversity in the immune response of BALB/c mice to influenza virus hemagglutinin. *Proc. Natl. Acad. Sci. USA.* 81:3180.

34. Clarke, S. H., K. Huppi, D. Ruezinsky, L. Staudt, W. Gerhard, and M. Weigert. 1985. Inter- and intraclonal diversity in the antibody response to influenza hemagglutinin. *J. Exp. Med.* 161:687.

35. Brügemann, M., H.-J. Müller, C. Burger, and K. Rajewsky. 1986. Idiotypic selection of an antibody mutant with changed hapten binding specificity, resulting from a point mutation in position 50 of the heavy chain. *EMBO (Eur. Mol. Biol. Organ.)* 5:1561.

36. Magrath, I. T. 1981. Lymphocyte differentiation: An essential basis for the comprehension of lymphoid neoplasia. *J. Natl. Cancer Inst.* 67:501.

37. Foon, K. A., and K. F. Todd, III. 1986. Immunologic classification of leukemia and lymphoma. *Blood.* 68:1.

38. Bird, J., N. Galili, M. Link, D. Stites, and J. Sklar. 1988. Continuing rearrangement but absence of somatic hypermutation in immunoglobulin genes of human B cell precursor leukemia. *J. Exp. Med.* 168:229.

39. Kipps, T. J., E. Tomhave, P. P. Chen, and D. H. Carson. 1988. Autoantibody-associated light chain variable region gene expressed in chronic lymphocytic leukemia with little or no somatic mutation. *J. Exp. Med.* 167:840.

40. Meeker, T. C., J. C. Grimaldi, R. O'Rourke, J. Loeb, G. Julliusson, and S. Einhorn. 1988. Lack of detectable somatic hypermutation in the V region of the Ig H chain gene of a human chronic B lymphocytic leukemia. *J. Immunol.* 141:3994.

41. Alexander, W. S., J. W. Schrader, and J. W. Adam. 1987. Expression of the c-myc oncogene under control of an immunoglobulin enhancer in Em-myc transgenic mice. *Mol. Cell. Biol.* 7:1436.

42. Cory, S. 1986. Activation of cellular oncogenesis in haemopoietic cells by chromosome translocations. *Adv. Cancer Res.* 47:189.

43. Lowder, J. H., T. C. Meeker, M. Campbell, C. F. Garcia, J. Gralow, R. A. Miller, R. Warnke, and R. Levy. 1987. Studies on B lymphoid tumors treated with monoclonal anti-idiotype antibodies: correlation with clinical responses. *Blood.* 69:199:17.