Современные возможности ранней лабораторной диагностики перипротезного остеолиза как предиктора развития асептической нестабильности эндопротеза тазобедренного сустава (обзор литературы)

С.В. Брагина

Федеральное государственное бюджетное образовательное учреждение высшего образования «Северный государственный медицинский университет» Минздрава России, г. Архангельск, Россия

Modern possibilities with early laboratory diagnosis of periprosthetic osteolysis predating aseptic loosening in total hip arthroplasty (literature review)

S.V. Bragina

Northern State Medical University, Arkhangelsk, Russia

ВВЕДЕНИЕ

Начиная со времен сэра John Charnley в мире происходит неуклонный прогрессивный рост выполняемых в ветвях тотальных эндопротезирований тазобедренных суставов (ТЭТС) и, как следствие, увеличивается количество проводимых ревизионных арthroplasty по причине развивающихся осложнений хирургических вмешательств [1, 2]. В настоящее время очень актуален вопрос возможного прогноза наиболее частого осложнения эндопротезирования суставов – асептической нестабильности имплантата [3–8]. Несмотря на большое количество публикаций на тему осложнений арthroplasty и широкое обсуждение этих вопросов на форумах специалистов, имеются противоречивые данные о возможностях прогноза, а значит, и профилактики отрицательных результатов ТЭТС [9–15].

Цель. Систематизация информации о современных возможностях ранней лабораторной диагностики остеолиза и попытках прогнозирования, а значит, и профилактики асептической нестабильности имплантата.

РЕЗУЛЬТАТЫ

Пока мировое научно-медицинское сообщество на пути более глубокого познания проблемы остеоартроза/остеоартрита, специалисты травматологи-ортопеды, хирурги-ортопеды продолжают выполнять радикальную операцию замены нативного сустава на эндопротез при тяжёлой степени заболевания. Это хирургическое вме-
чество частиц износа инородного материала выделяется в псеудосиновиальную жидкость и окружающие ткани. Состав частиц варьирует в зависимости от их происхождения между опорными поверхностями бедра, имплантата и сустава и разрушаются с течением времени, а большое количество индивидуальных реакций организма пациента. Точный размер, форма и химическая природа этого износа по определению, а поиски других механизмов этого явления продолжаются [32]. Так, есть мнение, что предполагаемые механизмы асептического расшатывания включают в себя значительные колебания давления суставной жидкости, stress shielding и развитие микродвижений между имплантатом и окружающей костью [33]. Другие авторы считают лучшей теорией «болезнь частиц» [23, 28, 30]. Из-за неизбежного механического контакта между опорными поверхностями бедра, имплантатом и костью компоненты эндопротеза медленно изнашиваются и разрушаются с течением времени, а большое количество частиц износа инородного материала выделяется в псевдосиновиальную жидкость и окружающие ткани. Точная размер, форма и химическая природа этого износа с частиц варьирует в зависимости от их происхождения и индивидуальной реакции организма пациента.

Чаще всего это частицы ультравысокомолекулярного полиэтилена, выделяющиеся с поверхности имплантата, когда металлическая головка бедренного компонента медленно воздействует на вкладыш вертлужного компонента со средним значением линейной скорости износа около 0,1 мм в год, что приводит к образованию огромного количества частиц ультравысокомолекулярного полиэтилена [29]. Пари трения «металл-металл» демонстрируют другие характеристики износа с уменьшенным объёмом, но также с выделением огромного количества наноразмерных частиц металла [34]. Дополнительные источники износа включают фрагментацию и расслаивание полиметилметакрилата, окружающего имплантат, а также металлические или керамические частицы, выделяющиеся из опорных поверхностей или модифицированной поверхности имплантата вследствие частиц износа [28, 30, 35]. Частицы, поступающие в псевдосиновиальную жидкость, распространяются в окружающие ткани от волн давления, генерируемых в жидкости во время использования искусственного сустава, и, как правило, окружающая ткань сильно загружена биоматериалом с частицами износа различных типов. Изучение частиц износа ультравысокомолекулярного полиэтилена показало значительную разницу их размера и морфологическую изменчивость. Чаще всего частицы имеют сфероидную форму с диаметром от 0,1 до 1 мм (средний диаметр от 0,5 до 0,7 мм) [36, 37].

Общепризнано, что эта интенсивная нагрузка частиц имплантата вызывает последующую реакцию хронического воспаления слабой степени и, в конечном итоге, остеолиз [28–31, 34]. Как признаки реакции на инородное тело появляются массивные макрофаги, и происходит формирование гигантских клеток, а также появление остеосклероза на границе «кость-мягкая ткань».

Некоторые авторы указывают на решающую роль биомеханических и трибологических факторов в патогенезе развития НЭ. К ним относится функциональная перегрузка, местную реакцию тканей на материалы имплантата, погрешности в хирургической технике, низкий предоперационный уровень минеральной плотности костной ткани и его отрицательную динамику в послеоперационном периоде, сосудистые нарушения с замедлением скорости кровотока, гиперкоагуляцией, поражение сосудистой стенки на фоне вазоконстрикторной реакции, усиливающейся после операции на пораженной конечности, синовит, реакции окружающих эндопротез тканей на дебрис, играющие ведущую роль в прогрессировании заболевания с массивным выбросом провоспалительных цитокинов [28, 29]. Хирургическая агрессия при артроскопии проявляется в объёме вмешательства, травматичности его, величине кровопотери и служит причиной вторичной иммунодепрессии и/или усугубляет её [38].

Исследователи изучают не только механическую составляющую износа компонентов эндопротеза, но и взаимодействие имплантата и организма человека с позиции биологического взаимодействия, учитывая, по- рой, непредсказуемость биохимических реакций этого симбиоза. Имплантат попадает в достаточно агрессивную по отношению к нему и изменчивую среду и сам, в свою очередь, влияет на ткани организма, вызывая неспецифические реакции и запуская специфические иммунные механизмы [34]. Выраженность иммунопатологических проявлений у пациента и характер иммунологических изменений в периоперационном периоде во многом определяют течение послеоперационной реабилитации и в целом ее результат.

Так, Е.В. Гладкова с соавт., И.В. Чеботарь уделяют внимание гемостазиологическим, биохимическим и иммунологическим тестам. Исследуют периферическую кровь пациентов до хирургического вмешательства, а также че-
рез 4–5 месяцев после его выполнения, дифференцируют лейкоциты по субпопуляциям (лимфоциты, моноциты, гранулоциты), проводят иммунофенотипирование лимфоцитов. Полученные при проведении исследования данные показывают достаточно выраженные иммунологические нарушения у больных с остеоартрозом крупных суставов нижних конечностей как до, так и после хирургического вмешательства. И в послеоперационном периоде зафиксированные отклонения от нормы этих показателей расцениваются как изменения клеточного и гуморального иммунитета, не обеспечивающие адекватную защитную реакцию организма на тяжёлое, агрессивное оперативное лечение – артропластику сустава [39, 40]. Предприняты попытки изучить дооперационный иммунологический статус пациентов, например, Е.В. Карякина с соавт. обнаружили активацию провоспалительного звена цитокинового баланса крови (ФНОα, ИЛ-1β, ИЛ-6) на фоне значительно более варьирующих изменений концентрации противовоспалительных цитокинов (ИЛ-4, ИЛ-10). Испытатели сделали выводы о недостаточной функциональной активности Т-хеллеров как проявления иммунодепрессии у больных остеоартрозом в дооперационном периоде [41].

Другие авторы отмечают, что у больных с ревизионным эндопротезированием тазобедренного сустава снижена фагоцитарная активность сегментоядерных нейтрофилов, повышен уровень Т- и В-лимфоцитов и содержание иммуноглобулинов [42–44]. Л.А. Дмитриева указывает на увеличение концентрации сывороточного IgA и высокий уровень продукции противополитических цитокинов клетками периферической крови у больных с тяжёлыми формами диспластического коксартроза, подчёркивает необходимость группирования пациентов с диспластическим коксартрозом в зависимости от характера и тяжести иммунопатологических реакций (с условно «компенсированной» и «субкомпенсированной» формами иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации иммунодефицитного состояния. Обнаруженная разница компонентов иммунного статуса и гипофизарно-тиреоидного звена эндокринной системы у пациентов с «компенсированной» формой иммунодефицитного состояния и «субкомпенсированной» формой иммунодефицитного состояния) и отмечает зависимость восстановительного периода, в том числе результатов хирургического вмешательства, от степени компенсации имму

В представленном обзоре сделана попытка систематизировать информацию о понимании патогенеза перипротезного остеохондроза с дальнейшим развитием асептического рассасывания эндопротеза тазобедренного сустава, возможностях ранней лабораторной диагностики и прогнозирования этого осложнения. Учитывая понимание причин асептической нестабильности имплантата ТБС, как цепи биомеханических реакций в системе Гений Ортопедии, том 26, № 2, 2020 г.
«имплантат-организм пациента», трибологических ха-
рактеристик эндопротеза, погрешностей в хирургиче-
ской технике специалисты пытаются понять на про-
должительность срока службы искусственного сустава.
Но не всегда возможно однозначно указать вышеперечисленные факторы, влияющие на формирование НЭ у конкретного пациента. Проводится поиск маркеров, по-
зволяющих прогнозировать это грозное осложнение ещё
на предоперационном этапе или диагностировать реак-
цию остеолиза как можно раньше для предотвращения значительной потери костной ткани. Исследователями изучаются динамические изменения гемостазиологи-
ческих, биохимических и иммунологических показателей
пациентов до и после имплантации эндопротеза. Отме-
чается интерес познания особенностей иммунологиче-
ского статуса различных фенотипических групп пациентов:
диспластический, гипопластический коксартроз. При этом
хирургическое вмешательство рассматривается как причина вторичной иммунодепрессии, а результаты
восстановительного периода ставятся в зависимость от
степени компенсации иммунодефицитного состояния.
Перспективно изучение и других фенотипических групп
пациентов с остеоартрозом/остеоартритом: первичный,
возрастной, посттравматический, метаболический.
Динамика показателей стрессового ремоделиро-
вания периимплантатной костной ткани также вызы-
вает интерес в качестве маркёра ранней диагностики,
прогнозирования асептической нестабильности эндо-
протеза и контроля «мисшени» медикаментозного воз-
действия. А проспективное клиническое наблюдение
в ожидаемые сроки вероятного развития неблагопри-
ятных событий позволяет вовремя установить диагнос
НЭ. Требуется дальнейшее изучение чувствительности
и специфичности всех вышеперечисленных показате-
лей, так как в современном понимании патогенеза хро-
нического воспаления эти данные регистрируются при
различных нозологиях, включая остеоартроз/остеоа-
ртрит, другие ревматические системные заболевания,
метаболический синдром, злокачественные новообра-
зования и другие.

ЗАКЛЮЧЕНИЕ

Проведённый анализ литературного материала сви-
детельствует о глубоком понимании патогенетических
реакций в системе «кость-имплантат», влиянии опреде-
ленных биомеханических, трибологических факторов
на развитие перипротезного остеолиза и последующей
асептической нестабильности эндопротеза тазобедрен-
ного сустава. А немногочисленные и разрозненные дан-
ные поиска возможностей ранней диагностики и про-
гнозирования этого осложнения требуют дальнейшего
мультидисциплинарного изучения в понимании систем-
ного подхода к различным состояниям пациента со схо-
жими маркёрами патологических реакций.

ЛИТЕРАТУРА

1. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030 / S. Kurtz, K. Ong, E. Lau, F. Mowat, M. Halpern // J. Bone Joint Surg. Am. 2007. Vol. 89, No 4. P. 780-785. DOI: 10.2106/JBJS.F.00222.
2. Complication rates of 127 surgical procedures performed in rheumatic patients receiving tumor necrosis factor alpha blockers / A. Ruyssen-Witrand, R. Glazier, N.N. Mahomed, H.J. Kreder, P.C. Coyte, J.G. Wright // Can. J. Surg. 2008. Vol. 51, No 6. P. 428-436.
3. Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review / P.L. Santaguida, G.A. Hawker, P.L. Hudak, N. E. Sharrock // Clin. Orthop. Relat. Res. 2009. Vol. 467, No 7. P. 1859-1867. DOI: 10.1007/s11999-008-0614-8.
4. Relationship between perioperative urinary tract infection and deep infection after joint arthroplasty / P. Koulouvaris, P. Sculco, E. Finerty, T. Sculco, N.E. Sharrock // Clin. Orthop. Relat. Res. 2005. Vol. 432, No 1. P. 63-74.
5. Circulating cytokines after hip and knee arthroplasty: a preliminary study / K. Shah, A. Mohammed, S. Patil, A. McFadyen, R.M. Meek // Clin. Orthop. Relat. Res. 2009. Vol. 467, No 4. P. 946-951. DOI: 10.1007/s11999-008-0562-3.
6. Localized infections and the incidence of postoperative infections following endoprosthetic joint replacement: a meta-analysis / E.A. Vologchina, O.P. Zayeva, D.A. Kolytchin, A.A. Vinnikov // Гений ортопедии. 2009. № 3. С. 71-77.
7. Слободской А.Б., Осинцев Е.Ю., Ляхов А.Г. Осложнения после имплантации тазобедренного сустава // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2011. № 3. С. 59-63.
8. Возможности прогноза инфекционных осложнений хирургического вмешательства при имплантации тазобедренного сустава / Ю.Л. Дорофеев, А.Ф. Калимуллина, Д.А. Пашников, С.А. Линк, А.Н. Ташемен, О.С. Жаровский // Вестник экспериментальной и клинической хирургии. 2014. Т. 7, № 3. С. 269-278.
9. Возможность прогнозирования поздних осложнений хирургического вмешательства после имплантации тазобедренного сустава / И.И. Жадёнов, А.М. Гнётнёв, В.Я. Позднякова, И.Б. Бабушкина, Ш.С. Байрамкулов, А.С. Колмыкова, М.В. Антонычева, Е.А. Пузракова // Травматология и ортопедия России. 2002. № 1. С. 72-75.
10. Применение математического компьютерного моделирования при разработке и прогнозировании биомеханического поведения эндопро-
тезов тазобедренного сустава / А.А. Ильин, А.М. Мамонов, В.Н. Карпов, Н.В. Загородний, А.В. Балабаркин // Вестник травматологии и ортопедии им. Н.Н. Приорова. 2009. № 3. С. 7-13.
11. Bongartz T. Elective orthopedic surgery and perioperative DMARD management: many questions, fewer answers, and some opinions ... // J. Rheumatol. 2007. Vol. 34, No 4. P. 653-655.
12. Increasing risk of revision due to deep infection after hip arthroplasty / H. Dale, G. Hallan, G. Hallan, B. Espehaug, L.H. Havelin, L.B. Engesaeter // Acta Orthop. 2009. Vol.80, No 6. P. 659-665. DOI: 10.3109/17453670903506658.
13. Risk factors for total joint arthroplasty infection in patients receiving tumor necrosis factor α-blockers: a case-control study / M. Gilson, L. Gossec, X. Mariette, D. Gherissi, M.H. Guyot, J.M. Berthelot, D. Wendling, C. Michelet, P. Demailleona, F. Tubuch, M. Dougados, D. Salmon // Arthritis Res. Ther. 2010. Vol. 12, No 4. P. R145. DOI: 10.1186/ar308.
14. Patient characteristics affecting the prognosis of total hip and knee joint arthroplasty: a systematic review / P.L. Santaguida, G.A. Hawker, P.L. Hudak, R. Glazier, N.N. Mahomed, H.J. Kreder, P.C. Coyte, J.G. Wright // Can. J. Surg. 2008. Vol. 51, No 6. P. 428-436.
15. Ахтямов И.Ф. К вопросу о препемствии в хирургическом лечении диспластического коксартроза // Гений травматологии и ортопедии. 2005. № 2. С. 63-70.
16. Макаров С.А., Макаров М.А., Павлов В.П. Изменение минеральной плотности костной ткани вокруг эндопротеза у больных с ревматическими заболеваниями после операции бессепментного тотального эндопротезирования тазобедренного сустава // Научно-практическая реабилитология. 2006. № 1. С. 63-67.
17. Волокитина Е.А., Чепелева М.В. Иммунологическая динамика у пациентов с гипопластическим коксартрозом после имплантации тазобедренного сустава // Гений ортопедии. 2006. № 2. С. 35-39.
