Vertical Flow Simulations Using the Mesoscale Model to Assess Impacts on Soaring Birds around Offshore Wind Turbines

Mizuki KONAGAYA※1, Maki TAKAHASHI ※1, Hideki KATO ※1, Etsuro INUI ※2, Shinichi SUGIOKA ※2, and Yoku TAKATSU ※2

(Received October 29, 2014)

Vertical velocity of the atmosphere around a floating offshore wind turbine situated in marine areas near Kaba Island, Goto City, Nagasaki Prefecture was predicted using the mesoscale meteorological model that can replicate not only ridge lift but also thermal lift. In addition, the possibility of impacts on soaring birds was investigated using vertical flow. As a result of the simulation, thermal lift and ridge lift of the area were accurately replicated. Around the coast of Kaba Island, ridge lift mainly prevailed, but almost no vertical flow was predicted above the marine waters near the wind turbine. Observations from a pre-construction survey of raptores such as ospreys and falcons revealed these birds frequently soar around the coastal areas of Kaba Island rather than in the waters where the turbine is installed, so the possibility of birds colliding with the turbine or using vertical flow from the turbine is very low.

Key Words
Mesoscale model, Offshore wind turbine, Bird collision, Vertical flow, Thermal lift

1. Introduction
In Japan, a country with huge areas of marine water, offshore wind power is a highly expected source of renewable energy. The Ministry of Environment is now conducting the first demonstration experimental project for floating offshore wind turbine in Japan. Small testing turbine (100 kW) was constructed in 2012, and then an actual testing turbine (2 MW) was constructed in 2013 off the coast of Kaba Island, Goto City in Nagasaki Prefecture 1). In this project, surveys for environmental impact assessment of birds, marine organisms, etc. have been conducted to study the effects of the floating wind turbine on the environment. Surveys of some species of raptores have been carried out near Kaba Island 3).

Bird collisions are considered one major concern with wind turbines. Raptores are known to use vertical air flow 4), and in the case of the griffon vulture (Gyps fulvus), bird collisions with turbines constructed in the mountains have been reported, when these birds use the vertical flow and soar close to the turbines 5). Also, replicate experiments with the mesoscale model conducted on an actual onshore wind farm site showed that birds flock at the same point,
where the simulation showed vertical air flow occurs. Above the sea, geographical effects can be considered small, but the characteristics of air flow vary with changes in season and distance from the coast. Almost no studies have examined the relationships between vertical flow around the offshore turbines and birds using numerical simulations. Therefore, we analyzed vertical flow for assessing the possibilities of bird impacts around offshore wind turbine in a quantitative and efficient way in this study. The place, time and wind conditions of vertical flow were predicted using a mesoscale meteorological model that can replicate not only ridge lift but also thermal lift, and we examined the possibility of impacts from offshore wind turbine on birds such as raptors that soar mainly with vertical air flow.

2. Area and Methods

The targeted area was near Kaba Island and had an area of 40-km square with installation of a floating wind turbine in the center (Fig. 1). One year of atmospheric vertical flow was calculated using the mesoscale meteorological model WRF (Weather Research and Forecasting), which was designed as a next generation model after NCAR-MM5 and has been widely used around the world. WRF is considered as a valuable tool for not only meteorology but also wind analysis because its dynamic core uses high-order accurate discretization schemes for time and space. This difference in the numerical scheme for the model dynamics, not in the cloud microphysics, allows WRF to use a more detailed vertical velocity field than MM5. Computational domain was scaled down through 3 steps of nesting. Table 1 shows the main calculations conditions and datasets. The study period was set as one year (August, 2011 - July, 2012), because meteorological observation data was available for validation of the numerical simulation for that period.

3. Validation of Simulation

The simulated results were validated using the wind conditions and temperature data of the wind observation tower set at W2 in Kaba Island (AGL: 40 m) and the wind conditions data recorded from the Doppler Lidar (AGL 150 m) at W1 (Fig. 1). The correlations between the simulated results and the actual data for both wind velocity (Doppler Lidar: BIAS=0.447, RMSE=1.901, R=0.93), wind direction and temperature (BIAS=-1.415, RMSE=1.931, R=0.99) were high (Fig. 2), indicating the simulation results were replicated accurately for the wind and thermal conditions of the data.

4. Results

4.1 Thermal lift replication

Direct cause of thermal lift is the heating effect of solar radiation. Marine water surface has a high reflection (albedo) and high specific heat, so thermal lift does not occur as much as from the ground surface. The model showed that thermal lift occurs above the ground (island) when solar radiation is strong and wind is low.

Stability of the air layer is often determined by potential temperature. Potential temperature is temperature adiabatically converted to standard air pressure (normally 1000 hPa), and is used as a thermodynamically conserved quantity for dry air in many theories. Fig. 3 shows the potential temperature distributions when thermal lift
occurred in the study area. The horizontal axis in this figure corresponds with the red dashed line at the top of Fig. 4, so the figure shows a N-S cross section that includes the wind turbine. The potential temperature above the ground is relatively high compared to above the seawater, indicating an unstable stratification state. On the other hand, vertical flow occurred along the coast where the potential temperature was higher relative to the sea, meaning this vertical flow was calculated as thermal lift in the simulation. Above the sea, a relatively low and stable potential temperature is distributed, so considering the thermal characteristics of the environment, thermal lift rarely occurs above the sea.

Meteorological conditions that create thermal lift are limited, so thermal lift seldom occurs. In addition, thermal lift occurs on even fewer occasions in the marine areas where the wind turbine was constructed. Therefore it can be considered that no impacts appear to occur from thermal lift.

4.2 Ridge lift replication

The simulation results when horizontal wind (SE direction) prevails showed that ridge lift occurs following the topography of the land. Upward ridge lift occurred in the windward (SE) side and downward ridge lift occurred in the leeward side (NW), simulated with the model (Fig. 4 (bottom)). Generally speaking, upwind area widened in the northern side of the island when northern winds prevailed, and upwind area widened in the southern area of the island when southern winds prevailed. This correlates with existing reports showing typical air current patterns with the topography (e.g. Oke, 1987). Also, when ridge lift occurs, horizontal velocity and vertical wind flow is proportional, this is opposite to the thermal lift that occurs when winds are weak (Fig. 4 (bottom)).
5. Discussion

5.1 Annual relationship between vertical and horizontal flow

The monthly frequency of vertical flow was estimated from the results of the simulation for 1 year (Fig. 5 (top)). Classification of the vertical flow was upwind (over +0.5 m/s: Red), still (-0.5 ~ +0.5 m/s: White) and downwind (under -0.5 m/s: Blue). Reference area is the marine area shown with a black spot near Kaba Island in Fig. 1 and Fig. 3 (North of the offshore wind turbine).

As a result, upwind, downwind and still conditions occurred every month in the reference area with upwind prevailing in summer and downwind prevailing in winter. On the other hand, upwind and downwind rarely occurred in the marine areas where the turbine was constructed. Many of the birds used for analysis are diurnal (such as osprey), so the analysis was conducted during the daytime (9:00-17:00) only.

Also, Fig. 5 (bottom) shows the scatter diagram between horizontal wind velocity [horizontal] and absolute vertical wind velocity [vertical]. In the area where the offshore wind turbine is constructed, no correlation was observed between the horizontal velocity and vertical velocity. Clearly vertical flow did not occur. On the other hand, in the reference area, correlations between horizontal and vertical wind velocity was observed, suggesting on occasions of weak wind around 0-5 m/s, a vertical wind of 0.5 - 1.0 m/s occurs. This result shows that the ridge lift that flows along the coastal cliffs has a larger impact than thermal lift, and the vertical flow occurs when the slope of the approximate equation is large. In other words, the occurrence of vertical flow is accentuated when the slope of the approximate equation is large.

Fig. 6 shows the estimated horizontal distribution of the slope value of the approximate equation of Fig. 5 (bottom) in the surrounding area of the wind turbine site. This shows that vertical flow occurs from the coastal area of Kaba Island to inland areas mainly caused by ridge lift. It appears thermal lift occurs on more occasions above land than sea, but differences in the frequency of occurrence shown in Fig. 6 indicates impacts from ridge lift are dominant.

5.2 Relationship between vertical flow prediction and birds

The impact area of vertical flow from the ridge lift in this marine area, it distributes within 1 km from the coast, but impacts appear considerably minute beyond that distance. This correlates with the results of Fig. 5 (top). That is, impacts from the vertical flow from ridge lift are small beyond 1 km from the coast of Kaba Island. The offshore wind turbine is situated further than 2 km south of the island, so vertical flow does not occur near the wind turbine. Therefore, impacts on birds from vertical flow are small for the offshore turbine.

Vertical flow caused both from thermal lift and ridge lift occurs in the marine area within 1 km of Kaba Island, so birds may use these flow patterns. According to an ornithological survey observed from a point on Kaba Island, raptors such as ospreys and falcons soar in the coastal area rather than the wind turbine construction site (Fig. 7), supporting the results of this study. Furthermore, bird observations using marine surveillance radar (Fig. 8) detected flying birds in the bay area at a higher frequency than around the wind turbine construction site, thus further supporting our analysis results.
Fig. 5 Monthly frequency distribution of vertical flow (Top) and scatter diagrams of horizontal wind velocity [horizontal] and absolute vertical wind velocity [vertical] (Bottom) (Left: Reference area, Right: Wind turbine marine site)

Fig. 6 Estimated horizontal distribution for frequency of occurrence in vertical flow (= value of the slope of the approximate equation in Fig. 5 (bottom))

Fig. 7 Soaring routes of observed for raptors that do not migrate (24-26 September 2012)
6. Conclusion

Based on the mesoscale meteorological model for wind prediction, we showed that ridge lift caused by topography and thermal lift caused by thermal flow can be simulated.

In the coastal areas of Kaba Island, vertical flow caused by ridge lift prevailed, whereas in the sea areas around the offshore turbine, vertical flow did not occur because the area is far from the coast. Raptors such as osprey and falcons were frequently seen to soar catching the vertical flow on Kaba Island. These observations are mostly in the coastal areas correlate well with the simulation results of this study.

Based on the above prediction, the risk of bird collisions with wind turbine in areas where the floating wind turbine is installed and collision risks due to vertical flow are unlikely because vertical flow caused by either thermal or ridge flow rarely occurs.

In the future, when selecting sites for offshore and onshore wind generation, if there is a possibility of vertical flow occurring, the impact assessment of birds is important. When conducting the environmental impact assessment in such cases, the vertical flow simulation introduced in this study should be effective during consideration of the impacts. Furthermore, accurate evaluations with high resolution and reliability can be achieved by combining other engineering models such as CFD (Computational Fluid Dynamics) with the mesoscale meteorological models that can simulate thermal factors.

In this demonstration experiment, a marine wind observation floating tower was also installed, and the wind conditions were continuously measured. In the future, it may be necessary to compare the actual measured vertical wind flow elements with the simulation results.

Acknowledgements

This research is part of the environmental impact assessment investigation related research in the Floating Offshore Wind Turbine Demonstration Experiment by the Ministry of Environment off the coast of Kaba Island, Goto Islands. We would like to thank everyone who supported us in this study.

References

1) Webpage of Floating offshore wind turbine demonstration project of Ministry of the Environment, http://goto-fowt.go.jp/english/ (Last access: 2015.9.15)
2) Toda Corporation, Hitachi, Ltd., Fuyo Ocean Development & Engineering Co., Ltd., Kyoto University, National Maritime Research Institute, FY2012 Progress Report on Floating Offshore Wind Turbine Demonstration Project, Ministry of the Environment report (2013) (in Japanese)
3) Koch, G. J., Journal of Field Ornithology, 77(3), 315-318 (2006)
4) Barrios, L.; Rodriguez, A., Journal of Applied Ecology, 41, 72-81(2004)
5) Ainslie, B.; Alexander, N.; Johnston, N.; Bradley, J.; Pomroy, A. C.; Jackson, P. L.; Otter, K. A., International Journal of Biometeorology, 58, 17-30 (2014)
6) Kusaka, H.; Crook, A.; Dudhia, J.; Wada, K., SOLA (Scientific Online Letters on the Atmosphere), 1, 197-200 (2005)
7) Oke, T. R., Boundary Layer Climates 2nd ed., Routledge. (1987)