\(\alpha \)-ideals in a 0-distributive lattice

R. M. Hafizur Rahman

Department of Mathematics, Begum Rokeya University, Rangpur, Bangladesh

E-mail: salim030659@yahoo.com

https://doi.org/10.26782/jmcms.2019.08.00006

Abstract

In this paper we have studied the \(\alpha \)-ideals in a 0-distributive lattice. We have described the \(\alpha \)-ideals by two definition and proved that these are equivalent. We have given several characterizations. They have proved that a lattice \(L \) is disjunctive if and only if each ideal is an \(\alpha \)-ideals. We have also included a prime separation theorem for \(\alpha \)-ideals. At the end we have studied the \(\alpha \)-ideals in a sectionally quasi-complemented lattice.

Keywords: \(\alpha \)-ideals, 0-distributive lattice, separation theorem, quasi-complemented lattice.

I. Introduction

\(\alpha \)-ideals have been studied by many authors concluding Cornish [V] in case of distributive lattices with 0. In a non-distributive lattice \(L \) with 0, if \(I(L) \) is pseudo complemented, then concept of \(\alpha \)-ideals is possible. Thus, in particular, we can study the \(\alpha \)-ideals for a 0-distributive lattice as a lattice \(L \) with 0 is 0-distributive if and only if \(I(L) \) is pseudo complemented. A lattice \(L \) with 0 is called a 0-distributive lattice if for all \(a, b, c \in L, a \wedge b = 0 = a \wedge c \) imply \(a \wedge (b \vee c) = 0 \). 0-distributive lattices were first studied by [XII]. Then a series of lattice theorists have studied the topic including [II], [III], [IV], [VIII], [IX], [X] and [XI]. In [VII], Jayaram has given a result on Prime Separation Theorem using \(\alpha \)-ideals in a 0-distributive lattice. On the other hand, Noor, Ayub and Islam [I] have generalized the result of [V] for distributive near lattices. In this paper, we would like to discuss the \(\alpha \)-ideals of a 0-distributive lattice in a very simple way. Then we generalized several results of [V] in a 0-distributive lattice.

For an ideal \(J \) in \(L \), we define \(\alpha(J) = \{ (x)^+ : x \in J \} \) is a filter in \(A_0(L) \), where \(A_0(L) \) is the set of all annihilator ideals of the form \((x)^+ \); \(x \in L \), which is a sublattice of lattice of annihilator ideals of \(L \). We also define \(\leftarrow \alpha(F) = \{ x \in L : (x)^+ \in F \} \) where \(F \) is any filter in \(A_0(L) \). It is easy to check that \(\leftarrow \alpha(F) \) is an ideal in \(L \).

We start with the following result which is due to [V] Problem 3.1.
Proposition 1.1. Let L be a lattice with 0. The following holds:

a) For an ideal J in L, $\alpha(J) = \{x^* : x \in J\}$ is a filter in $A_0(L)$,

b) For a filter F in $A_0(L)$, $\alpha(F) = \{x \in L : (x)^* \in F\}$ is an ideal in L,

c) If J_1, J_2 are ideals in L then $J_1 \subseteq J_2$ implies $\alpha(J_1) \subseteq \alpha(J_2)$ and F_1, F_2 are filter in $A_0(L)$ then $F_1 \subseteq F_2$ implies $\alpha(F_1) \subseteq \alpha(F_2)$,

d) The map $I \rightarrow \alpha(I) = \{(\alpha(I))\}$ is a closure operation on the lattice of ideals of L.

In a 0-distributive lattice L, an ideal J_0 is called an α-ideal if $\alpha \alpha(J) = J$. Thus α-ideals are simply the closed elements with respect to the closure operation of proposition 1.1. Thus the following result is an immediate consequence of above result.

Proposition 1.2. The α-ideals of a lattice L with 0 form a complete lattice isomorphic to the lattice of filters ordered by set inclusion of the lattice $A_0(L)$ of annulets of L.

The infimum of a set of α-ideals J_i is $\cap J_i$ is their set theoretic intersection. The supremum is $\alpha \alpha(v J)$ where $\vee J$ is the supremum in the lattice of ideals of L.

Proposition 1.3. For an ideal J of a distributive lattice L, the following are equivalent:

a) J is an α-ideal

b) For $x, y \in L$, $(x)^* = (y)^*$ and $x \in J \Rightarrow y \in J$

c) $x \in J$ implies $(x)^* \subseteq J$.

Proof. (a) \Leftrightarrow (b) Suppose a) holds, so $\alpha \alpha(J) = J$. Let $(x)^* = (y)^*$ and $x \in J$. Then $(y)^* = (x)^* \in \alpha(J)$. So by the definition, $y \in \alpha \alpha(J) = J$. This implies $(x)^* \in \alpha(J)$. Then by definition of $\alpha(J)$, $(x)^* = (p)^*$ for some $p \in J$. Hence by (b) $x \in J$, and so $\alpha \alpha(J) \subseteq J$. Since by Proposition 1.1, reverse inclusion always holds. Thus $\alpha \alpha(J) = J$ and hence J is an α-ideal.

(b) \Leftrightarrow (c) Suppose (b) holds. Let $x \in J$ and $y \in (x)^*$. Then $(x)^* \subseteq (y)^*$. Thus, $(y)^* = (x)^* \cup (y)^* = ((x)^* \cap (y)^*)^* = (x \land y)^* = (x \land y)^*$. Moreover,
$x \wedge y \in J$ as $x \in J$. Hence applying (b), we have $y \in J$. This implies $(x)^* \subseteq J$ and so (c) holds. Finally suppose (c) holds. Let $x \in J$ and $(x)^* = (y)^*$, $y \in L$. By (c), $(x)^{**} \subseteq J$, and so $y \in (y)^{**} = (x)^{**} \subseteq J$ implies $y \in J$, which is (b).

Thus we can define an α - ideal as follows:

An ideal I in a 0-distributive lattice L is called an α - ideal if for each $x \in L$, $x \in I$ implies $(x)^{**} \subseteq I$.

We know that $A^\bot = \{x \in L : x \wedge a = 0 \text{ for all } a \in L\}$ is an ideal if L is 0-distributive and if A is an ideal, then $A^\bot = A^\bot$ is the annihilator ideal.

Theorem 1.4. For any ideal J in a 0-distributive lattice L, the set $I^\alpha = \{x \in L : (a)^* \subseteq (x)^* \text{ for some } a \in J\}$ is the smallest α - ideal containing J and ideal I in L is an α - ideal if and only if $I = I^\alpha$.

Proof. Let $x \in I^\alpha$. Then $(a)^* \subseteq (x)^*$ for some $a \in I$ and so $(x)^{**} \subseteq (a)^{**}$. Suppose $y \in (a)^{**}$. Thus $(y)^* \subseteq (a)^{**}$ and so $(a)^* \subseteq (y)^*$. This implies $x \in I^\alpha$. Therefore, $(a)^{**} \subseteq I^\alpha$ and so $(x)^{**} \subseteq I^\alpha$. It follows that I^α is an α - ideal. Now suppose $x \in I$, then by definition, $x \in I^\alpha$ and so $I \subseteq I^\alpha$. Suppose K is an α - ideal containing I. Let $x \in I^\alpha$. Then $(a)^* \subseteq (x)^*$ for some $a \in I \subseteq K$. This implies $(x)^{**} \subseteq (a)^{**} \subseteq K$ as K is an α - ideal. Thus $(x) \subseteq K$ and $x \in K$. Hence $I^\alpha \subseteq K$. That is I^α is the smallest α - ideal containing I.

Theorem 1.5. Every annihilator ideal in a 0-distributive lattice L is an α - ideal.

Proof. Let $I = A^\bot$ be the annihilator ideal of L. Suppose $y \in I = A^\bot$. Then $y \wedge a = 0$ for all $a \in A$. Then $(y)^\wedge (a)^* = (0)^*$ and so $(y)^* \subseteq (a)^*$. Thus $(y)^{**} \subseteq (a)^{**} = (a)^*$ for all $a \in A$. Hence, $(y)^{**} \subseteq \bigcap_{a \in A} (a)^* = A^\bot = I$ and so I is an α - ideal.

Theorem 1.6. Let L be a 0-distributive nearlattice. A be a meet semilattice of L. Then A^0 is an α - ideal, where $A^0 = \{x \in L : x \wedge a = 0 \text{ for some } a \in A\}$.

Proof. By [6; Theorem 4.2.8], A^0 is an ideal. Now let $x \in A^0$ and $y \in (x)^{**}$. Clearly $x \in A^0$ implies $x \wedge a = 0$ for some $a \in A$. This shows that $y \in A^0$, consequently $(x)^{**} \subseteq A^0$. Hence A^0 is an α - ideal of L.

Copyright reserved © J. Mech. Cont.& Math. Sci.

R. M. Hafizur Rahman
Theorem 1.7. If a prime ideal \(P \) of a 0-distrbutive lattice \(L \) is non dense then \(P \) is an \(\alpha \) -ideal.

Proof. By assumption \(P^* \neq (0) \). Hence there exists \(x \in P^* \) such that \(x \neq 0 \).
But then \((x)^* \supseteq P^* \) gives \((x)^* \supset P \) as \(P \subseteq P^* \). Further if \(t \in (x)^* \), then \(x \land t = 0 \in P \). But as \(P \) is a prime ideal, so \(t \in P \) (since \(P \cap P^* = (0) \Rightarrow x \not\in P \)). This implies \((x)^* \subseteq P \). Combining both the inclusions, we get \(P = (x)^* \). Hence \(P \) is an annihilator ideal and so by Theorem 1.5, \(P \) is an \(\alpha \) -ideal.

Corollary 1.8. Every non-dense prime ideal of a 0-distributive lattice is an annulet.

Theorem 1.9. For an \(\alpha \) -ideal \(I \) of a 0-distributive lattice \(L \), \(I = \{ y \in L : (y) \subseteq (x)^* \text{ for some } x \in I \} \).

Proof. Let \(a \in I \). Then -ideal lattice, J. C. Varlet [12] introduced the notion of 0-distributive lattices. Then \((a) \subseteq (a)^* \) implies that \(a \in \{ y \in L : (y) \subseteq (x)^* \text{ for some } x \in I \} \).
Conversely, let \(a \in \{ y \in L : (y) \subseteq (x)^* \text{ for some } x \in I \} \). Then \((a) \subseteq (x)^* \) for some \(x \in I \). Since \(I \) is an \(\alpha \) -ideal, so \((x)^* \subseteq I \) and so \((a) \subseteq I \). Hence \(a \in I \).

Now we include a prime Separation Theorem for \(\alpha \)-ideals in a 0-distributive lattice. This result has also been proved in [1]. But we claim that our proof is much better and easier.

Theorem 1.10. Let \(F \) be a filter and \(I \) be an \(\alpha \) -ideal in a 0-distributive lattice \(L \) such that \(I \cap F = \phi \). Then there exists a prime \(\alpha \) -ideal \(P \supseteq I \) such that \(P \cap F = \phi \).

Proof. Let \(\chi \) be the collection of all filters containing \(F \) and disjoint from \(I \). \(\chi \) is non-empty as \(F \in \chi \). Then by [6; Lemma 3.3.3] there exists a maximal filter \(Q \) containing \(F \) and disjoint from \(I \). Suppose \(Q \) is not prime. Then there exist \(f, g \in Q \) such that \(f \lor g \) exists and \(f \lor g \in Q \). Then by [6; Lemma 3.3.4], there exist \(a \in Q, \ b \in Q \) such that \(a \land f \in I \) and \(b \land g \in I \). Thus we have \(a \land b \land f \in I \) and \(a \land b \land g \in I \). Then \((a \land b \land f) \subseteq (x)^* \) and \((a \land b \land g) \subseteq (y)^* \) for some \(x, y \in I \). Thus we have \((a \land b \land f) \land (x)^* = (0) = (a \land b \land g) \land (y)^* \). That is \((a \land b) \land (x)^* \land (a \land b) \land (y)^* \land (g) \). Since \(I(L) \) is 0-distributive, it follows that \((a \land b) \land (x)^* \land (y)^* \land ((f) \lor (g)) = (0) \).

\(Copyright\ reserved\ ©\ J.\ Mech.\ Cont.&\ Math.\ Sci.\ \\
R. M. Hafizur Rahman \)

69
Let \(I \) is an ideal, which is contradiction to \(F \). Moreover, by proposition 1.1, both ideals \(L \) where \(b \), such that \(P \) is a prime ideal. Thus, \(P \) is an \(\alpha \)-ideal.

For an \(\alpha \)-ideal \(I \), \(\alpha \alpha(I) = I \). Also, it is clear that for any filter \(F \) of \(A_b(L) \), \(\alpha \alpha(F) = F \). Moreover, by proposition 1.1, both \(\alpha \) and \(\alpha \) are isotone. Hence the lattice of \(\alpha \)-ideals of \(L \) is isomorphic to the lattice of filters.

Corollary 1.11. Let \(L \) be a 0-distributive lattice. Then the set of prime \(\alpha \)-ideals of \(L \) are isomorphic to the set of prime filters of \(A_b(L) \).

A 0-distributive lattice \(L \) is called disjunctive if for there is an element \(x \in L \) such that \(a \land x = 0 \) where \(0 \leq a < b \). It is easy to check that is \(L \) is disjunctive if and only \((a) = (b) \) implies \(a = b \) for any \(a, b \in L \).

Proposition 1.12. In a 0-distributive lattice \(L \) the following conditions are equivalent:

(i) each ideal is an \(\alpha \)-ideal.

(ii) each prime ideal is an \(\alpha \)-ideal.

(iii) \(L \) is disjunctive.

Proof. (i) \(\Rightarrow \) (ii); Suppose \(P \) is any prime ideal of \(L \) then by (i) \(P \) is an \(\alpha \)-ideal, that is \(\alpha \alpha(P) = P \). Let \(I \) be any ideal of \(L \) then we have \(I = \cap(P : P \supseteq I) \) implies \(\alpha \alpha(I) = \alpha \alpha(\cap(P : P \supseteq I)) = \cap(\alpha \alpha(P) : P \supseteq I) = \alpha \alpha(\cap(P : P \supseteq I)) \) implies that \(\alpha \alpha(I) = I \). So \(I \) is an \(\alpha \)-ideal.

(ii) \(\Rightarrow \) (i) is trivial.

(i) \(\Rightarrow \) (iii); For any \(x, y \in L \), \((x) = (y) \). Since \((x) \) is an \(\alpha \)-ideal, so by definition of \(\alpha \)-ideal, \(y \in (x) \). Therefore, \(y \leq x \). Similarly, \(x \leq y \). Hence \(L \) is disjunctive.
(iii) \(\Rightarrow\) (i); Suppose \(I\) is any ideal of \(L\). By proposition 1.1, \((x)^* \subseteq \alpha \alpha(I)\).

For the reverse inclusion, let \(x \in \alpha \alpha(I)\). Then by definition \((x)^* \in \alpha(I)\), and so \((x)^* = (y)^*\) for some \(y \in (x)^*\). This implies \(x = y\), as \(L\) is disjunctive. So \(x \in L\) and hence \(\alpha \alpha(I) = I\). Therefore \(I\) is an \(\alpha\)-ideal of \(L\).

Lemma 1.13. A 0-distributive lattice \(L\) is relatively complemented if and only every prime filter is an ultra filter (Proper and maximal).

Proof. By Theorem 2.11 in [XII] we have \(L\) is relatively complemented if and only if its prime ideals are unordered. Thus the result follows.

A lattice \(L\) with 0 is called a quasi-complemented lattice if for each \(x \in L\), there exists \(y \in L\) such that \(x \land y = 0\) and \(((x) \lor (y))^* = (x)^* \land (y)^* = (0)\).

A 0-distributive lattice \(L\) is called quasi-complemented if for each \(x \in L\), there exists \(x' \in L\) such that \(x \land x' = 0\) and \(((x) \lor (x'))^* = (0)\).

A lattice \(L\) with 0 is called sectionally quasi-complemented if each interval \([0, x], x \in L\) is quasi-complemented.

We conclude the paper with the following result.

Theorem 1.14. Let \(L\) be a 0-distributive lattice. Then the following conditions are equivalent:

(i) \(L\) is sectionally quasi-complemented.

(ii) each prime \(\alpha\)-ideal is a maximal prime ideal.

(iii) each \(\alpha\)-ideal is an intersection of minimal prime ideals.

Moreover, the above conditions are equivalent to \(L\) being quasi-complemented if and only if there is an element \(d \in L\) such that \((d)^* = (0)\).

Proof. (i) \(\Rightarrow\) (ii); Suppose \(L\) is a sectionally quasi-complemented. Then by [6; Theorem 4.3.7], \(A_q(L)\) is relatively complemented. Hence its every prime filter is an ultra filter. Then by Corollary 1.11, each prime \(\alpha\)-ideal is a minimal prime ideal.

(ii) \(\Rightarrow\) (iii); It is not hard to show that each ideal of \(L\) is an intersection of prime \(\alpha\)-ideals. This shows (ii) \(\Rightarrow\) (iii).

(iii) \(\Rightarrow\) (ii); This is obvious by the minimality property of prime \(\alpha\)-ideals.
(ii) \Rightarrow (i); Suppose (ii) holds. Then by Corollary 1.11, each prime filter of $A_0(L)$ is maximal. Then by Lemma 1.13, $A_0(L)$ is relatively complemented and so by Proposition 2.7 in [5] L is sectionally quasi-complemented.

Conclusion. This paper shows that α-ideals can be studied in non-distributive lattices by the 0-distributive property of a lattice. Following the technique of this paper, one can generalize those results for a 0-distributive near lattice.

References

I. Ayub Ali, Noor, A. S. A. and Islam, A. K. M. S. *Annulets in a Distributive Nearlattice*; Annals of Pure and Applied Mathematics, Vol. 3, No. 1, (2012), 91-96.

II. Ayub Ali, R. M. Hafizur Rahman and A. S. A. Noor; *Prime Separation Theorem for α-ideals in a 0-distributive Lattice*; Journal of Pure and Applied Science, Assam, India. 12(1) (2012), pp. 16-20.

III. Ayub Ali, R. M. Hafizur Rahman & A. S. A. Noor; *On Semi prime n-ideals in Lattices*; Annals of Pure and Applied Mathematics. Vol. 2, No.-1, Page: 10-17 (2012).

IV. Md. Ayub Ali, R. M. Hafizur Rahman, A. S. A. Noor & Jahanara Begum; *Some characterization of n-distributive lattices*; Institute of Mechanics of Continua and Mathematical Sciences, Township, Madhyamgram, Kolkata-700129, Volume-7, Number-2, Page: 1045-1055 (2013).

V. Cornish, W. H., *Annulets and α-ideals in a distributive lattice*; J. Aust. Math. Soc. 15(1) (1975), 70-77.

VI. Jaidur Rahman, A study on 0-distributive near lattice; Ph. D Thesis, Khulna university of Engineering and Technology.

VII. Jayaram, C., *Prime α – ideals in a 0-distributive lattice*; Indian J. Pure Appl. Math. 173 (1986), 331-337.

VIII. Pawar, Y. S and Thakare, N. K., *0-Distributive semilattice*; Canad. Math. Bull. Vol. 21(4) (1978), 469-475.

IX. Pawar, Y. S and Thakare, N. K., *0-Distributive semilattices*; Canad. Math. Bull. Vol. 21(4) (1978), 469-475.
X. R. M. Hafizur Rahman; Annulates in a 0-distributive lattice, Annals of Pure and Applied Mathematics, Vol. 3, No. 1, (2012), 91-96.

XI. R. M. Hafizur Rahman, Md. Ayub Ali & A. S. A. Noor; On Semi prime Ideals of a Lattice; Journal Mechanics of Continua and Mathematical Sciences, Township, Madhyamgram, Kolkata-700129. Volume-7, Number-2, Page: 1094-1102 (2013).

XII. Varlet, J. C., A generalization of the notion of pseudo-complementedness; Bull. Soc. Sci. Liege, 37 (1968), 149-158.