Pattern of cancer risk in persons with AIDS in Italy in the HAART era

L Dal Mase1, J Polesel2, D Serraino1,2, M Lise1, P Piselli3, F Falcini4, A Russo5, T Intrieri6, M Vercelli7, P Zambon8, G Tagliabue9, R Zanetti10, M Federico11, RM Limina12, L Mangone13, V De Lis14, F Stracci15, S Ferretti16, S Piffer17, M Budroni18, A Donato19, A Giacomini20, F Belli21, M Fusco22, A Madeddu23, S Vitarelli24, R Tessandori25, R Tumino26, B Suligoi27, S Franceschi28 for the Cancer and AIDS Registries Linkage (CARL) Study29

1Epidemiology and Biostatistics Unit, Centro di Riferimento Oncologico IRCCS, Via Gallini 2, Aviano 33081, Italy; 2Friuli Venezia Giulia Cancer Registry, Agenzia Regionale di Sanità, Via Pozzuolo 330, Udine 33100, Italy; 3Epidemiology Department, INMI L’Spallanzani’ IRCCS, Via Portuense 292, Rome 00149, Italy; 4Romagna Cancer Registry, Department of Medical Oncology, Ramagna Cancer Institute (IRST), Via Piero Maranelli, 34136, Meldola 47014, Italy; 5Cancer Registry of Milan, Epidemiology Unit, Local Health Autonomy of Milan, Corso Italia 19, Milan 20122, Italy; 6Tuscany Cancer Registry, Unit of Epidemiology, Research Institute of the Tuscany Region, Via di S Salvi 12, Florence 50135, Italy; 7Genoa Province Cancer Registry and Genova University, Istituto Nazionale per la Ricerca sul Cancro IRCCS, Largo Rosanna Benzi 10, Genoa 16132, Italy; 8Università di Padova, Registro Tumori del Veneto, Istituto Oncologico Veneto IRCCS, Passaggio Gaudenzio 1, Padua 35131, Italy; 9Registro Tumori Lombardia – Provincia di Varese, Istituto Nazionale Tumori, Via Venezian 1, Milan 20133, Italy; 10Piedmont Cancer Registry, City of Torino, Centro di Prevenzione Oncologica, Via San Francesco da Paola 31, Torino 10123, Italy; 11Modena Cancer Registry, Department of Oncology and Haematology, University of Modena and Reggio Emilia, Via Dal Pozzo 71, Modena 41100, Italy; 12Brescia Health Unit Cancer Registry, Via Cantoare 20, Brescia 25128, Italy; 13Reggio Emilia Cancer Registry, Azienda Ospedaliera di Parma, Via dell’Abbeveratoia 4, Parma 43100, Italy; 14Umbria Cancer Registry, Dept. of Surg. Med. and Public Health, University of Perugia, Via del Giochetto, Perugia 06100, Italy; 15Ferrara Cancer Registry, Sez. Anatomia Patologica, Dip. Med. Sperimentale & Diagnostica, Ferrara University, Via Fossato di Mortara 64, Ferrara 44100, Italy; 16Trento Cancer Registry, Osservatorio Epidemiologico, Viale Verona, Trento 38100, Italy; 17Parma Province Cancer Registry, Azienda Ospedaliera di Parma, Via dell’Abbeveratoia 4, Parma 43100, Italy; 18Lombardia Cancer Registry, Associazione Ospedaliero Universitaria di Perugia, Via del Giochetto, Perugia 06100, Italy; 19Ferrara Cancer Registry, Sez. Anatomia Patologica, Dip. Med. Sperimentale & Diagnostica, Ferrara University, Via Fossato di Mortara 64, Ferrara 44100, Italy; 20Trento Cancer Registry, Osservatorio Epidemiologico, Viale Verona, Trento 38100, Italy; 21Modena Cancer Registry, Department of Medical Oncology, Ramagna Cancer Institute (IRST), Via Piero Maranelli, 34136, Meldola 47014, Italy; 22Campania Cancer Registry, Azienda Sanitaria Locale Napoli 4, Piazza San Giovanni, Bursianoe (NA) 80031, Italy; 23Syracuse Province Registry of Pathology (RTP), Corso Gelone 17, Syracuse 96100, Italy; 24Macerata Province Cancer and Mortality Registry, Dip. Medicina Sperimentale e Sanità Pubblica, Camerino University, Via Gentile III da Fabriano, Camerino (MC) 62032, Italy; 25Sandoz Cancer Registry, Azienda Sanitaria Locale, Via Sauro 38, Sondrio 23100, Italy; 26Ragusa Cancer Registry, Department of Oncology – Azienda Ospedaliera ‘Civile M.P.Arezzo’, Via Dante 109, Ragusa 97100, Italy; 27National Institute of Health, Viale Regina Elena 299, Rome 00161, Italy; 28International Agency for Research on Cancer, 150 cours Albert Thomas, Lyon cedex 08 69372, France

Keywords: AIDS; epidemiology; HAART; human papillomavirus; hepatitis viruses

A record-linkage study was carried out between the Italian AIDS Registry and 24 Italian cancer registries to compare cancer excess among persons with HIV/AIDS (PWHA) before and after the introduction of highly active antiretroviral therapy (HAART) in 1996. Standardised incidence ratios (SIR) were computed in 21951 AIDS cases aged 16–69 years reported between 1986 and 2005. Of 101 669 person-years available, 45 026 were after 1996. SIR for Kaposi sarcoma (KS) and non-Hodgkin lymphoma greatly decreased in 1997–2004 compared with 1986–1996, but high SIRs for KS persisted in the increasingly large fraction of PWHA who had an interval of <1 year between first HIV-positive test and AIDS diagnosis. A significant excess of liver cancer (SIR = 14.9) emerged in 1997–2004, whereas the SIRs for cancer of the cervix (41.5), anus (44.0), lung (4.1), brain (3.2), skin (non-melanoma, 1.8), Hodgkin lymphoma (20.7), myeloma (3.9), and non-AIDS-defining cancers (2.2) were similarly elevated in the two periods. The excess of some potentially preventable cancers in PWHA suggests that HAART use must be accompanied by cancer-prevention strategies, notably antimoking and cervical cancer screening programmes. Improvements in the timely identification of HIV-positive individuals are also a priority in Italy to avoid the adverse consequences of delayed HAART use.

British Journal of Cancer (2009) 100, 840 – 847. doi:10.1038/sj.bjc.6604923 www.bjcancer.com

Published online 17 February 2009

© 2009 Cancer Research UK

Three types of cancer that occur in HIV-positive individuals, namely Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), and invasive cervical cancer (ICC), are currently included in the European clinical AIDS definition (Ancelle-Park, 1993). However, excesses of some non-AIDS defining cancers have been
consistently reported in persons with HIV/AIDS (PWHA), in particular Hodgkin lymphoma (HL), and cancers of the anus, lung, and liver (Grulich et al., 2007).

After the introduction of the highly active antiretroviral therapy (HAART) in 1996, huge declines in KS and NHL incidence have been consistently reported in high-resource countries (Grulich et al., 2002; Franceschi et al., 2003, 2008; Engels et al., 2008; Polesel et al., 2008). The ultimate influence of the partial immune reconstitution and improved survival made possible by HAART on the risk of ICC and non-AIDS-defining cancers, notably HL, anal and liver cancer is, however, still unclear (Herida et al., 2003; Clifford et al., 2005; Dal Maso et al., 2005; Biggar et al., 2006; Engels et al., 2006; Hessol et al., 2007; Patel et al., 2008).

In Italy, a high-quality centralised AIDS Registry is active on a nationwide scale (Centro Operativo AIDS, 2008), whereas cancer registries (CRs) cover nearly one-third of the population (Curado et al., 2007). The aim of the present study was to provide updated information on cancer incidence in Italian PWHA after the introduction of HAART, and compare it with corresponding findings prior to 1997. Attention will also be paid to the cancer pattern among the growing proportion of late presenters; that is, PWHA whose first HIV-positive test was concomitant with AIDS diagnosis (>50% of new AIDS cases since 2002 in Italy, Centro Operativo AIDS, 2008).

MATERIALS AND METHODS
The general design of our record-linkage study has been described previously (Franceschi et al., 1998; Dal Maso et al., 2003). In brief, reporting of AIDS cases to the Italian AIDS Registry started in 1982 on a voluntary basis and became mandatory in November 1986. At the end of 2005, a total of 57,531 AIDS cases had been reported nationwide (Centro Operativo AIDS, 2008). The AIDS Registry has been recording information on CD4+ cell count, and HAART use at AIDS diagnosis, since 1990 and 1999, respectively, and that on first HIV-positive test since 1996.

A network of CRs has been active in Italy since the early 1980s (AIRT Working Group, 2006). In the late 1990s, 24 CRs had been established and included a population of 17.3 million (30% of the total Italian population, Table 1, Curado et al., 2007). Cancer registries vary both in size, covering populations of approximately 180,000 to nearly 2.1 million, and in duration of activity (Table 1). Routine indicators of data completeness and quality in Italian CRs are, however, satisfactory (Curado et al., 2007).

Record linkage between the AIDS Registry and CRs was performed using an updated version of an ‘ad hoc’ software application designed previously and validated (Dal Maso et al., 2001). Briefly, records were linked by last and first name, and by date of birth. The name–date algorithm required: (a) that the records be identical for at least one critical field and (b) that the other two critical fields, if not identical, differ only in prescribed ways. The procedures removed all personal identifiers and, hence, registry staff was blinded to which persons had been linked.

The present study was restricted to AIDS patients who: (1) were diagnosed with AIDS between 1986 and 2003; (2) were aged between 16 and 69 years at the time of AIDS diagnosis and (3) reported a ‘legal residence’ in areas covered by a CR. Person-years at risk were computed between 5 years prior to AIDS diagnosis, and the date of cancer or death or 10 years after AIDS diagnosis.

Table 1 Cancer registry characteristics, AIDS diagnoses, and linked cancers from 24 Italian cancer registries

Cancer registry	Pre-HAART Reporting period	Post-HAART Reporting period	Population (×1000)*	AIDS cases†	KS	NHL	ICC	Other	Pre-HAART	Post-HAART
Alto Adige/Sudtirol	1995–1996	1997–2002	460	230	7	4	0	4	7	8
Biella	1995–1996	1997–2002	189	268	4	8	1	3	6	10
Brescia	—	1999–2001	1012	1909	13	17	2	12	0	44
Ferrara	1991–1996	1997–2002	314	959	19	21	1	9	25	25
Florence	1985–1996	1997–2003	1162	1199	133	86	2	44	186	79
Friuli Venezia Giulia	1995–1996	1997–2003	1188	407	13	10	1	5	8	21
Genova	1986–1996	1997–2003	920	1775	91	85	10	46	155	77
Macerata	1991–1996	1997–2000	293	135	7	3	1	6	6	6
Milan	—	1999–2002	1256	4822	28	40	3	34	0	105
Modena	1988–1996	1997–2004	615	633	45	36	2	11	48	46
Naples	1996	1997–2003	541	110	5	2	0	1	1	7
Parma	1978–1996	1997–2003	394	368	24	21	1	11	31	26
Reggio Emilia	1981–1996	1997–2003	291	63	2	5	0	0	5	2
Romagna	1985–1996	1997–2004	450	412	15	24	2	8	11	38
Salerno	1996	1997–2001	803	1948	94	104	3	55	149	107
Sassari	1992–1996	1997–2001	1088	223	4	4	1	2	0	11
Sondrio	—	1998–2002	177	118	12	20	2	7	24	17
Syracuse	—	1999–2002	396	157	1	4	0	2	0	7
Trento	1995–1996	1997–2002	460	347	7	16	0	6	7	22
Turin	1985–1996	1997–2002	1091	1794	108	61	1	40	145	65
Umbria	1994–1996	1997–2003	831	435	18	28	1	9	30	26
Varese	1976–1996	1997–2002	800	1668	62	98	3	30	125	68
Veneto	1987–1996	1997–2002	2077	1599	88	74	2	42	129	77

| Total | | | 17277 | 21951 | 801| 772 | 39 | 383 | 1098 | 897 |

HAART = highly active antiretroviral therapy, KS = Kaposi sarcoma, NHL = non-Hodgkin lymphoma, ICC = invasive cervical cancer. *Observed population in 1997–2002. †AIDS cases notified in cancer registry areas in 1986–2005. A cancers reported to cancer registries in people with AIDS, aged 16–69 years, between 1986 and 2004 from 5 years prior to 10 years after AIDS diagnosis (at/after AIDS for AIDS-defining cancers).
Whenever occurred earlier. This interval was left or right censored if no complete CR data were available for the corresponding years. To reduce losses to follow-up, dates of death were updated through record linkage with the National Mortality Database.

Observed cases included incident cancer cases reported to CRs during the above-defined person-years at risk. Cancer site and type were classified according to the International Classification of Disease, 10th revision (World Health Organisation, 1992) and were checked for quality by CR coordinators. The basis of diagnosis was reported either as microscopic confirmation, including histological, haematological, or cytological confirmation, or as other, that is, clinical, instrumental diagnosis, or death-certificate-only. When an AIDS-defining cancer was mentioned in both the AIDS Registry and a CR, the earliest date of cancer diagnosis was retained. When KS was reported in a CR before the date of AIDS diagnosis in the AIDS Registry, AIDS onset was backdated. The same was done for NHL and ICC when they had been reported to a CR within 5 and 2 years, respectively, before AIDS diagnosis.

Expected numbers of different cancers were computed for each CR from sex-, age-, and period-specific incidence rates (Parkin et al, 1992, 1997, 2002; Curado et al, 2007). Observed numbers of cancer in PWHA were compared with expected numbers by means of standardised incidence ratios (SIRs), and corresponding 95% confidence intervals (CI) were computed using the Poisson distribution (Breslow and Day, 1987).

SIR were calculated for calendar period, distinguishing the pre-HAART (1986–1996) from the post-HAART (1997–2004) period. For 1997–2004, and for cancers showing a significantly increased risk and at least 10 cases, SIRs were also computed separately by age group (16–34, and 35–69 years), HIV transmission category (injecting drug users (IDUs), men who have sex with men (MSM), heterosexuals) and country of birth (Italy or other).

Table 2. Observed (Obs) and expected (Exp) cancers in persons with HIV/AIDS, standardised incidence ratio (SIR), and corresponding 95% confidence interval (CI) by year of cancer diagnosis. Italy, 1986–2004

ICD10; Cancer type or site	1986–1996 (56 643 py)	1997–2004 (45 026 py)				
	Obs	Exp	SIR (95% CI)	Obs	Exp	SIR (95% CI)
AIDS-defining cancers						
C46; Kaposi sarcoma	507	0.3	1792 (1640–1956)	294	0.5	572 (508–641)
C82 – C88, C96; NHL	420	0.8	497 (450–546)	352	3.8	93.4 (819–104)
C53; Cervix uteri	9	0.2	510 (23.1–97.3)	30	0.7	415 (280–593)
Non-AIDS-defining cancers						
C00 – C14, C30 – C32; Head and neck						
C15; Oesophagus	6	4.4	1.4 (0.5–3.0)	11	6.0	1.8 (0.9–3.3)
C16; Stomach	0	0.6	2.1 (0.2–0.4)	2	0.8	2.5 (0.2–9.1)
C18; Colon	6	3.2	1.9 (0.7–4.1)	6	3.9	1.6 (0.6–3.4)
C19 – C20; Rectum and rectosigmoid junction	2	3.9	0.5 (0.0–1.9)	9	6.2	1.4 (0.7–2.7)
C21; Anus	6	0.2	35.5 (12.8–77.7)	11	0.3	44.0 (21.8–76.9)
C22; Liver	3	1.4	2.1 (0.4–6.4)	16	2.5	6.4 (3.7–10.5)
C23 – C24; Biliary tract	0	0.4	2.0 (0.2–6.6)	2	0.5	3.9 (0.4–14.5)
C25; Pancreas	2	1.2	1.7 (0.2–6.3)	2	1.8	1.1 (0.1–4.1)
C33 – C34; Trachea and lung	17	8.2	2.1 (1.2–3.3)	42	10.3	4.1 (2.9–5.5)
C37 – C38; Thymus, heart, mediastinum, pleura	1	0.3	3.9 (0.0–22.6)	1	0.3	3.3 (0.0–18.7)
C40 – C41; Bone and articular cartilages	1	0.4	2.5 (0.0–14.0)	1	0.4	2.6 (0.0–14.6)
C43; Melanoma	3	3.4	0.9 (0.2–2.6)	3	3.3	0.6 (0.1–1.7)
C44; Skin non-melanoma	18	8.7	2.1 (1.2–3.3)	28	15.6	1.8 (1.2–2.6)
C45; Mesothelioma	0	0.3	—	1	0.4	2.2 (0.0–12.8)
C47, C49; Peripheral nerves, soft/connective tissues	0	0.8	—	3	0.9	3.2 (0.6–9.5)
C50; Breast	3	4.0	0.8 (0.1–2.2)	5	8.7	0.6 (0.2–1.4)
C54; Endometrium	0	0.4	—	1	0.7	1.5 (0.0–8.3)
C56; Ovary	1	0.6	1.7 (0.0–9.7)	0	0.8	—
C51, C52, C57; Vulva and vagina	2	0.1	24.6 (2.3–90.6)	3	0.1	243.4 (46.7–71.8)
C55; Utero, unspecified	1	0.0	25.2 (0.0–145)	0	0.0	—
C60, C63; Penis	0	0.1	—	3	0.2	12.0 (2.3–35.5)
C61; Prostate	2	1.5	1.3 (0.1–4.7)	0	5.3	—
C62; Testis	5	3.5	1.4 (0.5–3.4)	2	2.9	0.7 (0.1–2.5)
C64 – C66, C68; Kidney	3	2.5	1.2 (0.2–3.6)	3	4.0	0.7 (0.1–2.2)
C67; Bladder	3	4.5	0.7 (0.1–2.0)	2	6.4	0.3 (0.0–12.0)
C70 – C72; Brain and central nervous system	8	2.3	3.5 (1.5–7.0)	8	2.5	3.2 (1.4–6.3)
C73; Thyroid	0	2.2	—	0	3.6	—
C81; Hodgkin lymphoma	47	2.6	180.0 (13.2–239)	37	1.8	207.0 (146–285)
C90; Multiple myeloma/plasma cell neoplasm	3	0.5	55.1 (1.0–16.4)	4	1.0	3.9 (1.0–10.0)
C91 – C95; Leukaemias, all	11	2.2	49.2 (2.4–8.8)	3	2.7	1.1 (0.2–3.3)
C26, C39, C48, C76, C80; Unk/Ill-defined primary site	3	1.2	2.5 (0.5–7.4)	5	1.3	3.9 (1.2–9.2)
Total non-AIDS-defining cancers	162	68.3	2.4 (2.0–2.8)	221	100.7	2.2 (1.9–2.5)

py = person-years, NHL = non-Hodgkin lymphoma, Unk = unknown. *Cancers reported to cancer registries in people with AIDS, aged 16–69 years, between 1986 and 2004 from 5 years prior to 10 years after AIDS diagnosis (aflater AIDS for AIDS-defining cancers). Women only.
RESULTS

A total of 21,951 AIDS cases (78% men and 22% women) were reported in Italy between 1986 and 2005 in areas covered by a CR (Table 1). The number of person-years available (56,643 and 45,026, respectively), as well as number of cancers reported (1,098 and 897), was similar in 1986–1996 and 1997–2004 (Table 2). However, the proportion of IDUs (63 and 42%, respectively) and the median age (32 and 38 years) varied substantially in the two periods, as did the relative importance of different cancer types. Kaposi sarcoma and NHL represented 84.4% of all cancers in 1986–1996, but 72.0% in 1997–2004. Marked declines in SIR emerged for KS (from 1,792 to 572, respectively) and NHL (from 497 to 93), whereas the SIR for the combination of non-AIDS-defining cancers did not change (2.4; 95% CI: 2.0–2.8 and 2.2; 95% CI: 1.9–2.5).

A significantly elevated risk emerged in 1997–2004 for cancer of the liver (6.4; 95% CI: 3.7–10.5) and penis (12.0; 95% CI: 2.3–35.5), whereas the excess risk for leukaemia disappeared. Elevated SIRs for cancer of the anus (44.0; 95% CI: 21.8–78.9), vulva and vagina (24.3; 95% CI: 4.6–71.8), lung (4.1; 95% CI: 2.9–5.5), brain (3.2; 95% CI: 1.4–6.3), skin (non-melanoma, 1.8; 95% CI: 1.2–2.6), HL (20.7; 95% CI: 14.6–28.5), and multiple myeloma (3.9; 95% CI: 1.0–10.0) in 1997–2004 were similar to those found in 1986–1996 (Table 2). The comparison between the two periods was not modified by the exclusion of CRs that contributed information for the most recent period only (data not shown).

Persons with HIV/AIDS born outside Italy contributed 15% of person-years and 7.8% of cancer cases in 1997–2004. They showed similar SIR for AIDS-defining illnesses and slightly lower SIR of non-AIDS-defining cancers (1.5; 95% CI: 0.7–2.4) than PWHA born in Italy (data not shown).

Microscopic confirmation was available after 1996 for all ICC, anal cancer, and HL (16 mixed cellularity, 7 nodular sclerosis, and 14 HL of unspecified type), as well as 79% of lung cancer. Eleven out of 16 liver cancers were microscopically or instrumentally confirmed. Microscopic confirmation was available for only one (a glioma) out of eight brain tumours, and seven had a concomitant AIDS-defining illness in the brain (six toxoplasmosis and one leukoencephalopathy).
DISCUSSION

Our study showed substantial changes in the cancer pattern of Italian PWHA after the introduction of HAART in 1996. Non-Hodgkin lymphoma replaced KS as the most frequent cancer type and non-AIDS-defining cancers increased from 15 to 25% of all cancers. For the first time a significant excess of liver cancer emerged in the 3 months prior to or after AIDS diagnosis (Figure 1). Prior to AIDS diagnosis, a significant risk excess was only seen for HL (SIR = 11.2; 95% CI: 4.5 – 23.3), whereas elevated SIRs emerged for all examined cancers 4 – 120 months after AIDS diagnosis.

SIR years for KS, NHL, and HL were lower among PWHA younger than 35 compared with older ones, whereas those for non-AIDS-defining cancers other than HL were higher (Table 3). Women showed higher SIR of KS, NHL, and cancer of the liver and lung than men, whereas the opposite was found for HL. With respect to HIV transmission category, SIRs were especially high for cancer of the liver and lung among IDUs, and for KS and HL among MSM. For all non-AIDS-defining cancers, the SIR was 3.6 (95% CI: 2.9 – 4.3) among IDUs, 1.4 (95% CI: 1.1 – 1.8) among heterosexuals, and 2.0 (95% CI: 1.5 – 2.6) among MSM (Table 3).

Persons with HIV/AIDS who had less than 1-year interval between first HIV-positive test and AIDS diagnosis differed from other PWHA in many ways (Table 4). Among these late presenters, the contribution of person-years was much larger among heterosexuals, MSM, and PWHA born outside Italy, whereas HAART use was rarer and median CD4 + cell count at AIDS diagnosis was lower than in other PWHA. The SIR for KS (1252) was also higher in late presenters than in other PWHA (Table 4). Conversely, SIR for non-AIDS-defining cancers increased from 1.3 (95% CI: 1.0 – 1.7) in PWHA whose interval between first HIV-positive test and AIDS diagnosis was less than 1 year, to 2.8 (95% CI: 2.2 – 3.5) and 3.9 (95% CI: 2.9 – 5.0), respectively, in PWHA in whom the corresponding interval was 1 – 9 years and 10 years or more (Table 4).
Table 4 Distribution of selected characteristics at AIDS diagnosis, observed (Obs) cancers, standardised incidence ratio (SIR), and corresponding 95% confidence interval (CI) by time elapsed since first HIV-positive test and AIDS, Italy, 1997 – 2004

Characteristics	< 1 (14 868 py)	1 – 9 (13 994 py)	≥ 10 (9028 py)
PWHA born outside Italy	7%	61%	66%
Median age (years) at AIDS diagnosis (IQR)	39 (33–49)	36 (32–41)	38 (35–41)
Median CD4 (cells/ml) at AIDS diagnosis (IQR)	47 (17–110)	80 (26–193)	102 (38–215)
PWHA using HAART at AIDS diagnosis	7%	61%	66%
ICD10; Cancer type or site			
C46; Kaposi sarcoma	162	1252 (1067–1461)	77
C82–C85; C88, C96; NHL	114	100 (82.5–120)	110
CS3; Cervix uteri	5	27.7 (7.2–71.7)	9
Total non-AIDS-defining cancers	58	1.3 (1.0–1.7)	74

py = person-years, IDU = injecting drug users, MSM = men who have sex with men, IQR = interquartile range (25 – 75 percentile), NHL = non-Hodgkin lymphoma. *Cancers reported to cancer registries in people with AIDS, aged 16 – 69 years from 5 years prior to 10 years after AIDS diagnosis (at/after AIDS for AIDS-defining cancers). **Twelve (7%) cancers and 19% of py were excluded, as date of first HIV-positive test was missing.

An increased risk for lung cancer among Italian PWHA was also confirmed (Grulich et al, 2007), but it is likely to derive mainly from the high proportion of smokers, notably among IDUs (Clifford et al, 2005). Conversely, we found no excess for head and neck cancers, which are also associated with smoking and, in a fraction of cases, HPV infection (Clifford et al, 2005; Kreimer et al, 2005). In respect to brain cancer, microscopic confirmation continues to be very rare and misclassification with other HIV-related diseases located in the brain cannot be ruled out.

Skin cancer (non-melanoma) was increased by two-fold in PWHA as in previous reports (Franceschi et al, 1998; Allardice et al, 2002; Dal Maso et al, 2003; Clifford et al, 2005). The excess risk observed in PWHA was confirmed, however, to be weaker than among transplant recipients (Grulich et al, 2007; Serraino et al, 2007).

Standardised incidence ratios for a broad range of cancer sites, including common neoplasms such as stomach, colon, breast, and prostate, were close to unity and hence compatible with no influence of immune status on the risk of several types of cancer.

Our present study has strengths and weaknesses. Strengths include the large number of AIDS cases and person-years available before and after HAART introduction. The completeness and quality of the AIDS Registry (Conti et al, 1997) and Italian CRs (Curado et al, 2007) have been shown to be satisfactory, and the linkage procedures are accurate (Dal Maso et al, 2001; Clifford et al, 2005). The limited population mobility, the strict rules for maintenance of ‘legal residence’ in Italy, and the possibility of verifying the vital status of PWHA with national mortality records provided reassurance on the accuracy of follow-up and allowed us to extend our observation period to 10 years after AIDS diagnosis. Censoring at 5 years after AIDS diagnosis would not, however, have modified our findings. Finally, microscopic or instrumental confirmation was available for most cancer sites for which we report risk increases. In particular, we were confident that no in situ carcinomas were misclassified as ICC or anal cancer.

Systematic reporting of HIV cases in Italy is limited to a few areas (Centro Operativo AIDS, 2008), and therefore a major weakness of our present study is reliance on AIDS case reporting only. The yearly number of AIDS cases has diminished three-fold in Italy between the peak in the mid-1990s and 2000 (Centro Operativo AIDS, 2008) and, most important, the meaning of AIDS onset has changed. Formerly an irreversible stage of HIV progression, AIDS often indicates, in the post-HAART era, poor adherence to treatment or development of resistance (Kaldor et al, 2009).

The availability (as from 1996) of information on the date of first HIV-positive test in the AIDS Registry allowed us, however, to focus on PWHA who had concomitant, or nearly concomitant, HIV infection and AIDS-defining illness. Such late presenters increased in Italy from 20.5% in 1996 to 55.5% of AIDS cases in 2007 (Centro Operativo AIDS, 2008). They were in the vast majority individuals who had acquired HIV through sexual intercourse and, unlike IDUs in the early phase of the HIV epidemic, did not perceive themselves as at high risk for the infection (Borghi et al, 2008). Persons with HIV/AIDS born outside Italy were also frequent. In addition, late presenters had never taken HAART and were severely immunocompromised more often than AIDS cases who had been HIV-positive for many years prior. With respect to cancer pattern, KS greatly predominated over all other tumours.

Our study showed that to prevent cancer in PWHA with increasing life expectancy, the use of HAART must be accompanied by more effective cancer-prevention strategies (Massad et al, 2004), notably antismoking, cervical cancer screening programmes, and, possibly, hepatitis C virus treatment. Improvements in the timely identification of HIV-positive individuals is also a priority in Italy to avoid the immunological deterioration associated with delayed HAART use, and also to provide a better tool to monitor the HIV epidemic (Borghi et al, 2008).

ACKNOWLEDGEMENTS

This study was supported by two Grants (No. 20G.3 and No. 20G.12) from the Istituto Superiore di Sanità, Rome and a Grant from Oncosuisse (ICP OCS 01355-03-2003). The authors thank Mrs Luigina Mei and Mrs Trudy Perdrix-Thoma for editorial assistance.
REFERENCES

Ahdieh-Grant L, Li R, Levine AM, Massad LS, Strickler HD, Minkoff H, Mozley M, Palefsky J, Sacks H, Burd RD, Gange S (2004) Highly active antiretroviral therapy and cervical squamous intraepithelial lesions in human immunodeficiency virus-positive women. J Natl Cancer Inst 96: 1067 – 1076

AIR Working Group (2006) Italian cancer figures—report 2006: 1. Incidence, mortality and estimates. Epidemiol Prev 30: 8 – 28

Allardice GM, Hole DJ, Brewster DH, Boyd J, Goldberg J (2003) Incidence of malignant neoplasms among HIV-infected persons in Scotland. Br J Cancer 89: 505 – 507

Ancelle-Park R (1993) Expanded European AIDS case definition. Lancet 341: 441

Biggar RJ, Jaffe ES, Goedert JJ, Chaturvedi A, Pfeiffer R, Engels EA (2006) Human papillomavirus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. J Natl Cancer Inst 92: 1500 – 1510

Calceran J, Marcos-Gragera R, Soler M, Romaguera A, Ameijeida J, Izquierdo A, Borras J, de Sanjose SL, Casabona J (2007) Cancer incidence in AIDS patients in Catalonia, Spain. Eur J Cancer 43: 1085 – 1091

Grulich AE, Li Y, McDonald A, Correll PK, Law MG, Kaldor JM (2002) Rates of non-AIDS-defining cancers in people with HIV infection before and after AIDS diagnosis. AIDS 16: 1155 – 1161

Grulich AE, Tvan Leeuwen M, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370: 59 – 67

Hall HI, Palefsky JM, Koblin B, Goedert JJ (2004) The impact of HIV antiretroviral therapy on human papillomavirus (HPV) infections and HPV-related diseases. Antivir Ther 9: 13 – 22

Herida M, Krause M, Kaphan R, Cadranel J, Poizot-Martin I, Ranaudo C, Plaisance N, Tissot-Dupont H, Boue F, Lang JM, Costagliola D (2003) Incidence of non-AIDS-defining cancers before and during the highly active antiretroviral therapy era in a cohort of human immunodeficiency virus-infected patients. Clin Oncol 21: 3447 – 3453

Hessol NA, Pipkin S, Schwarzw S, Cress RD, Bacchetti P, Scheer S (2007) The Impact of Highly Active Antiretroviral Therapy on Non-AIDS-Defining Cancers among Adults with AIDS. Am J Epidemiol 165(10): 1143 – 1153

IARC (2007) Monographs on the Evaluation of carcinogenic risks to Humans Volume 90: Human papillomaviruses. IARC Press: Lyon

Kaldor JM, Delpech V, Guy RJ (2009) AIDS case reporting: do we still need it? Lancet 373(9688): 181 – 183

Kreimer AR, Biggar GM, Boyle P, Franceschi S (2005) Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 14: 467 – 475

Massad LS, Seagar EC, Watts DH, Hessol NA, Melnick S, Bittman P, Anastos K, Silver S, Levine AM, Minkoff H (2004) Low incidence of invasive cervical cancer among HIV-infected US women in a prevention program. AIDS 18: 109 – 113

Murr R, Franceschi S, Ravizza M, Fiore S, Bini T, Mussini C, Pasolo M, Liuzzi G, Ippolito G, D'Arminio MA (2006) Access to gynecological services and Papanicolau tests in HIV-infected Italian women: a questionnaire survey. AIDS Care 18: 376 – 378

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. VII. IARC Scientific Publications No. 115 International Agency for Research on Cancer: Lyon

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. VI. IARC Scientific Publications No. 110 International Agency for Research on Cancer: Lyon

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. V. IARC Scientific Publications No. 104 International Agency for Research on Cancer: Lyon

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. IV. IARC Scientific Publications No. 103 International Agency for Research on Cancer: Lyon

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. III. IARC Scientific Publications No. 102 International Agency for Research on Cancer: Lyon

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. II. IARC Scientific Publications No. 101 International Agency for Research on Cancer: Lyon

Parker DM, Whelan SL, Gerber J, Raymond L, Young J (1997) Cancer Incidence in Five Continents Vol. I. IARC Scientific Publications No. 100 International Agency for Research on Cancer: Lyon
Appendix

Members of the CARL study include: Antonella Zucchetto, Angela De Paoli (Epidemiology and Biostatistics Unit, Aviano); Americo Colamartini (Romagna Cancer Registry, Meldola); Mariangela Autelitano (Cancer Registry of Milan); Emanuele Crocetti (Tuscany Cancer Registry); Enza Marani (Genoa Province Cancer Registry, Genova); Anna Rita Fiore (Registro Tumori del Veneto, Padova); Andrea Tittarelli (Registro Tumori Lombardia – Provincia di Varese); Stefano Rosso (Piedmont Cancer Registry, City of Torino); Ivan Rashid (Modena Cancer registry); Francesco Donato (Brescia Health Unit Cancer Registry); Annamaria Pezzarossi (Reggio Emilia Cancer Registry); Paolo Sgargi (Parma Province Cancer Registry); Francesco La Rosa (Umbria Cancer Registry); Silva Franchini (Trento Cancer Registry); Loris Zanier (Friuli Venezia Giulia Cancer Registry); Rosaria Ceseraccio (Cancer Registry of Sassari); Gennaro Senatore (Salerno Cancer Registry); Pier Carlo Vercellino (Piedmont Cancer Registry, Province of Biella); Fabio Vittadello (Alto Adige/ Südtirol Cancer Registry); Raffaele Palombino (Campania Cancer Registry); Maria Lia Contrino (Syracuse Province Registry of Pathology); Silvia Antonini (Macerata Cancer Registry); Sergio Maspero (Sondrio Cancer Registry); Maria Guglielmina La Rosa (Ragusa Cancer Registry); Stefano Boros, Maria Cristina Salà (National Institute of Health, Rome)