ABSTRACT
Academics and scholars need to publish their research results. In addition, they are required to publish scientific papers to prove their research commitment and to achieve certain academic titles in higher education institutions. Globally, there are many scientific journals of well-known publishing houses/universities, which offer opportunities to publish scientific work. One of the recent topics in academic circles is the increasing number of instances to publish scientific articles in quick journals, without going through the adequate review process. This phenomenon is threatening academic integrity, as these publishers/journals aim at financial benefits and not contributing to scientific development and progress. There is a gap in the knowledge of the scientific researchers regarding the journal selection to publish their work. Some of them are still unintentionally publishing in such journals, mainly as a lack of information about them. The main purpose of this study is awareness-raising, warning, and guidance of scientific researchers, particularly young researchers by providing information on how to avoid submitting manuscripts in these journals. To achieve this, we have consulted the recent literature and practices of different countries, summarized the most used tools/methods to identify predatory publishers and journals, and lastly, we have developed a guiding algorithm for evaluating them.

KEYWORDS
Blacklists, manuscript, open access, predatory journal, predatory publisher, scientific journal, whitelists

HOW TO CITE
Berisha Qehaja A. (2020) ‘Avoiding publishing in predatory journals: An evaluation algorithm’, Journal on Efficiency and Responsibility in Education and Science, vol. 13, no. 3, pp. 154-163. http://dx.doi.org/10.7160/eries.2020.130305

INTRODUCTION
Advances in contemporary science depend on the distribution of valuable and credible scientific papers, whereas the academic journal industry depends on a system where competent academics willingly assess the other scholars’ manuscripts. This correction (vetting) process, also known as peer review, highlights the ethical and quality lack in manuscripts. Authors usually benefit from this process because reviewers make recommendations that improve the quality of their manuscripts (Umlauf and Mochizuki, 2018). The concept of predatory publishing has been widely known since its publication years ago by librarian Jeffrey Beall (Xia, 2015). Except “predatory journals” used by Beall (2010), these journals are known also as “hijacked journals” (Jalalian, 2012; cited by Jalalian and Dadkhah, 2015), “dark side of publishing” (Butler, 2013), “ghost journals” (Memon, 2016). The names “fake journals” “sham journals” and “pseudojournals” are also used (Berger, 2017). Despite their naming, Laine and Winker (2017) emphasize that such journals do not apply the peer review process, which is a distinctive feature of scientific publications.

Electronic journals have multiplied very rapidly in recent years, especially those with open access (hereinafter often referred to as OA). Among them, the quantity of “predatory” journals has increased too. The latter have shown deceitful tendencies, including fake citations, scientific rigor deficiency, and their purpose is mainly the financial benefit (Kurt, 2018). Umlauf and Mochizuki (2018) point out that the consequences of publishing in predatory journals for honest researchers are: wasting time, using data in vain, wasted money and manuscripts that end up not being indexed or archived on proper databases. Thus, the identification of these journals is very crucial for writers, scholars, reviewers, and editors, because manuscripts that do not go through a peer review process should not be included in the register of scientific data (Laine and Winker, 2017). Hereupon, the main purpose of this study is awareness-raising, warning, and guidance of scientific researchers, particularly young researchers by providing information on how to avoid manuscript submitting in these journals. Accordingly, the following research tasks have been set:

• reviewing the literature on predatory publishers and journals,
• summarizing the most used tools/methods to identify predatory publishers and journals,
• developing a guiding algorithm for evaluating publishers and journals.

We believe that this paper will offer significant guidance on avoiding publishing in predatory journals. The paper is organized into five main sections. The first section provides a brief literature review on predatory publishers and journals, their characteristics, open access, article processing charges, and Bohannon’s experiment. Then it proceeds with materials and methods of the paper. Further, section three presents results, to continue with discussion in the fourth section. In the last section, the conclusion is summarized and the limitations and suggestions for future work are given as well.

LITERATURE REVIEW
Over the past decade, a group of scientific journals has spread rapidly and has become known as a group of “predatory journals” published by “predatory publishers” (Laine and Winker, 2017). Subsequently, the research community has fallen victim to cybercrime. According to Memon (2016: 1644), “when a manuscript is poorly written or the science poorly designed, this arrangement is ideal. On the other hand, honest and mistaken authors who discover their error and seek to withdraw their papers later come unstuck.” It is considered that predatory journals are the most widely spread category of pseudo journals, and recently they had significant growth (Laine and Winker, 2017). A total of 8,000 predatory journals published about 3,000 articles in 2014, following a pretty linear increase from 53,000 in 2010 (Shen and Björk, 2015). As stated by Frandsen (2017), possible explanations for the rapid growth are deceptive measures, titles of journals analogous to the titles of esteemed ones, the “presence” of academics/scientists from top universities and research institutes. According to Beall (2013: 84), “there are millions of researchers around the world desperate to publish, and predatory publishers are eager to have them as customers.”

Berger (2017: 206) describes the predatory publishing as “as low quality, amateurish, and often unethical academic publishing that is usually Open Access (OA).” Whereas, Umlauf and Mochizuki (2018) point out that the consequences of publishing in predatory journals for honest researchers are: wasting time, using data in vain, wasted money and manuscripts that end up not being indexed or archived on proper databases.

The open access movement (OA) and article processing charges (APCs)
Berger (2017: 208) thinks that “predatory publishing arose from two conditions: the availability of journal publishing platforms and potential revenue from author-paid article processing charges (APCs) for OA.” Whereas, Bolick et al (2017) consider that the OA is more appropriate than the traditional closed-ended publication for the needs and participation in a progressively scientific research community. Also, the peer reviewers from a wider community can often be harsher, replying to the progressively multidisciplinary essence of contemporary study. Moreover, Kurt (2018) explains that the conception of open access has to do with the permitting of research outcomes to be disposable free of charge to all. While open access is an initiative with good intentions, however, the essence of its open-source has exacerbated some problems, facilitating the imitation of legitimate journals by predatory journals.

Richtig et al (2018) explain several different APC models (hereinafter often referred to as APCs). The “gold” open access model (OA) obliges the researcher to spend up to a lot of money to maintain copyright in the work, to guarantee that the content is completely and openly accessible online so that it can be shared with anyone. Then, the “green” OA model constrains the copyright to the distribution, where researchers can only distribute their papers over a personal website or third-party archiving platform. Thus, there are other kinds of created models as hybrid access, where researchers make a payment for open access to a subscription-based journal. However, despite subscription-based journals that impose low taxes upon the article acceptance, researchers that send their work to open-access journals must make an additional payment of a considerable sum for publication as well, which is named the APC.

Certainly, the predatory publishing model is built on APCs (Berger, 2017). Until 2010 most of the articles were in print versions. Those journals had begun offering their free electronic version. Whereas since 2011, journals that were only printed are online demanded payment for article processing and grew into the dominant group. Furthermore, the participation of papers in journals based merely online has risen promptly (Björk, 2017). Today, publishers are publishing even in hybrid formats. As Umlauf and Mochizuki (2018) quote from statistics presented by Teixeira da Silva (2015), in 2015 predatory
reviewers who are also experts in their fields (though peer a) legitimate OA journals are usually (though not always) such as the following:

According to Kurt (2018: 144) 'beyond costs and peer review processes, though, there are further points that typically are subject to the review process for acceptance or rejection, nearly 60% of them were accepted without undergoing the real consideration of manuscripts. These journals have already been removed from the DOAJ list. North America and Western Europe and are published in other languages and not in English, are not part of it. Also according to Shen and Björk (2015), there are about 10,000 doubtful journals published by predatory publishers. These journals have already been removed from the DOAJ list. Whereas, Kozak and Hartley (2013) studied over 9,000 OA journals included in the DOAJ, and proved that only 28% of them have requested the APCs. On the contrary, the study of Xia (2015) examined OA predatory payments policies, which were listed on scholarlyoa.com at the time. He analyzed 298 predatory journals and compared the number of journals that took APCs (214) with the percentage of those listed in DOAJ. He determined links among the practices of predatory journals and the APCs. This study found that roughly 72% of predatory journals charge a fee for processing articles. This finding is considered higher compared to all earlier outcomes. Bohannon (2013) found that out of a total of 255 articles that were subject to the review process for acceptance or rejection, nearly 60% of them were accepted without undergoing the real process of review. According to Kurt (2018: 144) ‘beyond costs and peer review processes, though, there are further points that typically are subject to the review process for acceptance or rejection, nearly 60% of them were accepted without undergoing the real process of review.’

Characteristics of predatory journals
It is considered that after the publication rate increased and a lot of improvements were made in the research field, the academic community began to be attacked and to fall victim to cybercrime. This was manifested as ghost journals, fake publishers and magic impact measures (Memson, 2016). Several authors have written about the characteristics of predatory journals. Except those of Kurt (2018) presented in the earlier paragraph, we have summarized the detailed characteristics of predatory journals by Berger (2017) and Shamseer et al. (2017) (Table 1).

Berger (2017) states that among the main features of predatory journals are: deceitful emails sent to addresses ending in .edu, to invite potential authors for journals/conferences; promises of fast peer review and fast publication; lack of focus on a particular field or very broad field; lack of transparency about author fees; contradictions and inconsistencies; editors are not authors; newness and quality; copycat names with and without copycat websites; author-editor nightmares; location information that is contradictory or missing; standards and identifiers missing, stolen or faked; false and fake bibliometrics; and fake and unsuitable statements of indexing and presence in databases; amateurish website etc. Shamseer et al. (2017) analyzed 93 predatory journals, 99 OA, and 100 subscription-based journals (all with biomedical focus) and identified 13 proven characteristics by which predatory journals can be probably differentiated from authentic genuine journals. These characteristics are presented in the following table.

1. The scope of interest includes non-biomedical subjects alongside biomedical topics
2. The website contains spelling and grammar errors
3. Images are distorted/fuzzy, intended to look like something they are not, or which are unauthorized
4. The homepage language targets authors
5. The Index Copernicus Value is promoted on the website
6. Description of the manuscript handling process is lacking
7. Manuscripts are requested to be submitted via email
8. Rapid publication is promised
9. There is no retraction policy
10. Information on whether and how journal content will be digitally preserved is absent
11. The Article processing/publication charge is very low (e.g. $150 USD)
12. Journals claiming to be open access either retain copyright of published research or fail to mention copyright
13. The contact email address is non-professional and non-journal affiliated (e.g., @gmail.com or @yahoo.com)

| Table 1: Salient characteristics of potential predatory journals (Source: Shamseer et al. (2017: 11)) |

Also, based on the distinctive characteristics of prestigious and predatory journals, the Open Acces Publishing (2012) has developed a Journal Evaluation Tool. This tool provides a guide for each listed characteristic and also guides you on how to consider specific criteria when evaluating a certain journal. Each criterion is evaluated with scores and at the end, the total scores define whether the journal is a proper choice or not for publishing your work. It is worth noting that this tool is easily accessible and usable.1

According to North America and Western Europe and are published in other languages and not in English, are not part of it. Also according to Shen and Björk (2015), there are about 10,000 doubtful journals published by predatory publishers. These journals have already been removed from the DOAJ list. North America and Western Europe and are published in other languages and not in English, are not part of it. Also according to Shen and Björk (2015), there are about 10,000 doubtful journals published by predatory publishers. These journals have already been removed from the DOAJ list.

Bohannon’s experiment
A journalist John Bohannon conducted a sting operation to 304 OA publishers. Out of the total, 167 journals were taken from the DOAJ, 121 journals from Beall’s list, and the last 16 were taken from both of them. He submitted a bogus medical paper which was accepted by 157 journals and rejected by 98. According to him, from the remaining 49 journals, 29 of them were abandoned by their creators, while the last 20 had common characteristics that was all saying that the manuscript is still in the process of review. Bohannon (2013: 61) highlighted that ‘the location of a journal’s publisher, editor, and bank account are often continents apart. Acceptance of the paper is not the exception. The paper was accepted by journals published by prestigious academic institutions such as Kobe University in Japan. It was accepted by scholarly society journals. It was even accepted by journals for which the paper’s topic was utterly inappropriate.’ Furthermore, Bohannon (2013) was very surprised that 45% of the publishers listed in DOAJ that completed the review process of the paper, accepted it.

At the end of 2013, as a reaction to the Sting, the Open Access Publishing (2012) developed a “Principles of Transparency and Best Practice in Scholarly Publishing” in cooperation with other crucial players2 to support best practices (Berger, 2017).

Materials and methods
This paper is mainly based on the literature review. In line with Fink (2013), the literature review is designed to provide a thorough coverage of the relevant research on a particular topic. More concretely, an integrative review was used as the main review method. Furthermore, Whittemore and Knaff (2005: 547) define the integrative review as the ‘the process of reviewing published research in order to make simultaneous inclusion of experimental and non-experimental research in order to more fully understand a phenomenon of concern. Integrative reviews may also combine data from the theoretical as well as empirical literature. In addition, integrative reviews incorporate a wide range of purposes: to define concepts, to review theories, to review evidence, and to analyse methodological issues of a particular topic.’

The review includes 28 scientific articles on predatory publishers and journals. We searched DOAJ and google Scholar with the terms predatory publisher and predatory journal. Selected articles for analysis belong to the period 2013-2018. Thus, to investigate the ways of identifying predatory journals, we have used relevant literature published mainly recently. Based on it, we have presented the main findings in the form of lists, methods, results and conclusions. These lists, methods, results and conclusions are based on the academic circles and easily accessible form new researchers. Also, we have developed a guiding algorithm for evaluating publishers and journals.

Results
Academics that mainly carry out their scientific activity outside the main industrial states are faced with tough dilemmas for choosing journals to publish. The acceptance of their manuscripts by world-renowned journals is not frequent, and this is due to the different linguistic aspects, then the content of the manuscripts, since they often deal with specific issues of their own countries. This explains the unvaried position of their manuscripts compared to researchers in developed countries. At the same time, they face a lot of pressure to publish in “international journals”. As a result of this pressure, the phenomenon of OA predatory publishers poses a serious threat to the scholars. The number of OA predatory publishers has recently emerged. In most cases, they lack the peer-review process. These journals always require authors to pay for publication (Björk, 2017). Rightly Kurt (2018) points out that there is a great need to raise awareness about the importance of selecting the right journals for publication, especially for young researchers in developing countries who are in the early stages of building their academic careers.

1 This tool can be downloaded from the following link: https://digitalcommons.lmu.edu/librarian_pubs/40/.
2 DOAJ, the Committee on Publication Ethics (COPE), and the World Association of Medical Editors. These organizations, along with the Scholarly Publishing and Academic Resources Coalition (SPARC) and its partner affiliates, continue to provide critically-needed guidance and resources.

156 ERIES Journal volume 13 issue 3
1803-1617

157 ERIES Journal volume 13 issue 3
1803-1617

Printed ISSN 2336-2375
Electronic ISSN 1803-1617

Printed ISSN 2336-2375
Electronic ISSN 1803-1617

156 ERIES Journal volume 13 issue 3
1803-1617

157 ERIES Journal volume 13 issue 3
1803-1617

156 ERIES Journal volume 13 issue 3
1803-1617

157 ERIES Journal volume 13 issue 3
1803-1617

156 ERIES Journal volume 13 issue 3
1803-1617

157 ERIES Journal volume 13 issue 3
1803-1617
According to Beall (2013), a blacklist is easier to compose than a whitelist. We will examine and discuss the main black and whitelists, proceeding further with other methods.

Blacklists

According to Beall (2013), a blacklist is easier to compose and less costly than a whitelist. It also has more up-to-date information than a whitelist.

Beall’s list

With the rise of open access and the movement to publish articles online instead of in print, the number of publishers and journals using the open-access model also increased (Richgelt et al., 2018). This drastic increase was also noted by Jeffrey Beall, a librarian, and researcher at the University of Colorado, Denver. Beall began to notice an influx of emails from new journals, asking him to send articles or act as referees. He decided to devote himself to these journals, and in 2010, he published his first list, known as the Beall’s list. The list is updated regularly, and as of 2021, it contains over 12,000 entries.

Beall’s list is considered the second database at world level, i.e., after the Web of Science. Although on their official website, it is presented as “the largest abstract and citation database of peer-reviewed literature: scientific journals, books, and conference proceedings.” It is a registered trademark of Elsevier Company and dates back to 1970. It has over 5,000 publishers, 22,800 serial titles, and 150,000 books and has about 33 billion cited references from the early start (Scopus, 2018).

Scopus also has a database that includes indexed journal titles, but to access it easily you need to be registered with Scopus. In addition, Elsevier offers access for free to the updated Scopus list on the official website, which is an Excel workbook, but usually, you cannot find it easily. This list can be accessed through the following link: https://www.elsevier.com/solutions/scopus/how-scopus-works/content. As well, Scopus always updates the list of journal titles that have been removed from its database for various reasons and this list can be found in the same place.

Whitekist

Whitekists

Academics have sought a credible whitelist to identify legitimate academic journals as an alternative to the blacklist (Ulmaaf and Mochinazi, 2018). Meinon and Park (2018) emphasize that DOAJ is not an all-inclusive list of all genuine OA journals. If a journal is not listed, it is probably does not control or filter the content of the papers uploaded. This is why the reason we encounter articles from predatory journals on ResearchGate.

Think. Check. Submit. approach

As cited by Forrester, Björk and Tenopir (2017: 281), many studies over the last two decades have examined that decision process, and it is a complex array of competing criteria, including, among other factors, time from submission to publication; acceptance/rejection rate; potential audience, fees, impact factor, and perceptions of prestige (Björk and Holmström, 2006; Björk and Öörni, 2009; Coonin and Younce, 2010; Jamali et al., 2014; Mabe, 2009; Mabe and Amin, 2002; Mabe and Mulligan, 2011; Wallance and Perri, 2018).

On the other hand, although there are many debates and discussions in academic circles regarding predatory publishers, the evidence is obvious that they exist in the academic world and as a result, it is clear that we need to be very careful when accepting invitations to publish in various journals and not to get excited without casting a second glance at the invitation source (Quek and Teo, 2018). Kurt (2018) points out that the pressure to publish often causes researchers to fall prey to advertising used by predatory journals because they do not analyze the credentials of the journal at all before sending the manuscript for publication.

According to the official website, “Think. Check. Submit.” is a campaign to help researchers to identify predatory journals and find a reputable one. It is a simple checklist that researchers can use to assess the credentials of a journal or publisher. The campaign has been produced
We have developed a guiding algorithm for evaluating predatory publishers and journals based on our observations. Since the practice has proved that despite attempts not to fall into the trap set up by these predatory publishers and journals, often young researchers inadvertently found themselves part of them. As mentioned earlier, the most popular whitelists are available in the Web of Science and Scopus databases. The Web of Science database should be the first whitelist taken into consideration by researchers and scholars to select journals for publication, followed by Scopus.

DISCUSSION

Predatory journals are a blight on science, and something needs to be done to curtail these unethical journals (Clark, 2018). Their number has increased rapidly in the last five years however, it is difficult to measure. Some studies confirm that the country’s regional distribution of publication and authorship is highly skewed and lead by Asian and African researchers (Frandsen, 2017). Whereas, Kurt (2018) think that numerous scholars from developing countries have the impression that western journals will reject them and so they seek alternative journals for publication. Severin et al (2020: 10) discuss that: ‘inexperienced scholars and scholars in developing countries might be more likely to be tricked into believing that they review for a legitimate journal. It is also possible that predatory journals provide an opportunity for marginalized members of the global academic community to survive in the “publish or perish” culture.”

As we have seen, the “academic pollution” has affected a number of prestigious institutions. Clark (2018) considers that even the most prestigious institutions in the world have been affected, although the cases are few, 9 articles from Harvard University and 11 from Mayo Clinic. Bohannon (2013) found that 45% of the publishers listed in DOAJ that completed the bogus paper review process, have accepted it. Fortunately, the “Bohannon Sting” operation resulted in certain noteworthy changes (Berger, 2017). Wallace and Perri (2018) found that in 2015 an unexpected number of scholars who are in the top 5% in RePEc, have also published in predatory journals. Beall had only scientific journals as an initial focus. But the same strategies of predatory publishers are being used to organize fake conferences, to deceive academics, to hijack legitimate journal websites, to offer low-quality science without proper academic values, and to give space to unethical authors. Consequently, these cybercriminals are missing the necessity of academics and researchers to publish their work. Also, they are getting rich because many dishonest authors are willing to pay to publish low-quality manuscripts for the purpose of professional advancement (Umlauf and Mochizuki, 2018). As stated by Richtig et al. (2018: 3), ‘Although Beall’s list had certain shortcomings, it represented a valuable tool that researchers could use to assess journals on the basis of their credibility, raised awareness about this important issue and provided guidance for other institutions to create their own whitelists.’

Academics involved in the staff advancement process should warn and advise young researchers on where to submit their manuscripts for publication. Review committees for academic commissions, or who will determine which journals are good and which ones are bad?

Rightly Strielkowski (2018) raises the concern that there is no clear recommendation as to what to do with journals that Beall suspected of having fraudulent practices that are indexed in respected databases such as Web of Science and Scopus. Should the researchers continue to publish on them or should they seek other blacklists and guidelines from ethics commissions for publication? If so, who would select such commissions, or who will determine which journals are good and which ones are bad?

According to Memon (2016: 1645), ‘ResearchGate has been lenient in its policies and has created a space for predatory journals to enter the website. Some of the journals displaying fake impact factor on their website (previously mentioned) are available in ResearchGate with an impact factor - a misleading factor. Some journals have been caught engaging in unethical practices to publish low-quality manuscripts for the purpose of professional advancement (Umlauf and Mochizuki, 2018). As mentioned earlier, the most popular whitelists are available in the Web of Science and Scopus databases. The Web of Science database should be the first whitelist taken into consideration by researchers and scholars to select journals for publication, followed by Scopus.

CONCLUSION

This paper aims to provide information on recognizing and avoiding publishing in predatory journals. We have consulted the recent literature and practices of different countries, and we have summarized the most used tools/methods to identify predatory publishers and journals. In addition, we have developed a guiding algorithm for evaluating articles published in predatory or captured journals. Consequently, the identification of these journals is very important for authors, researchers, reviewers, and editors, because scientific work that does not go through the proper review process should not be included in the register of scientific data (Laine and Winker, 2017). Richtig et al (2018) propose that a new system would have to be implemented to identify predatory journals.

Figure 1: Predatory journals evaluation algorithm

*With other databases, we mean all other reliable academic databases.
** Since the predatory journals are on the rise, Scopus has taken rigorous measures and is constantly re-evaluating the titles listed to ensure titles continue to meet high quality standards. Thus, if a journal is on the Beall’s list and the same is on WoS/Scopus, it is suggested not to submit the manuscript since such journal in the near future may be removed by them.
***It is recommended to visit websites of journals and analyze them according to the characteristics given by many authors on predatory journals/publishers. This review should be based on the published papers in these journals. The more such features are present, the more you should hesitate to submit the manuscript for publication.

3 Association of Learned & Professional Society Publishers (ALPS/P), BioMed Central, Committee on Publication Ethics (COPE), Directory of Open Access Journals (DOAJ), International Centre, Ligne des Bibliothèques Européennes de Recherche – Association of European Research Libraries (LIBER), Open Access Scholarly Publishers Association (OASPA), Springer Nature, International Association of STM Publishers (STM), Ubiquity Press
This paper is mainly based on the literature review. In the future, the empirical aspect should be included as well. Hence, the rate of publications in predatory journals should also be researched. Besides this, the reasons and motives of publication in these journals should be examined.

REFERENCES

Bagues, M., Sylas-Labini, M. and Zinovyeva, N. (2018) ‘A walk on the wild side: Predatory journals and information asymmetries in scientific evaluations’, Research Policy, [Online], Available: http://hdl.handle.net/10419/171022 [15 May 2020].

Beall, J. (2010). “Predatory” open-access scholarly publishers. The Charleston Advisor, Vol. 11, No. 4, pp. 10-17.

Beall, J. (2013) ‘Predatory publishing is just one of the consequences of gold open access’, Learned Publishing, Vol. 26, No. 2, pp. 79-84. https://doi.org/10.1080/20026843.2013.751144

Beall, J. (2016) ‘Ban predators from the scientific record’, Nature, Vol. 534, No. 7607, pp. 326-327. https://doi.org/10.1038/534326a

Berger, M. (2017) ‘Everything you ever wanted to know about the empirical aspects should be included as well. Hence, the rate of publications in predatory journals should also be researched. Besides this, the reasons and motives of publication in these journals should be examined.’

Björk, B. C. (2017) ‘Journal portals—an important infrastructure for open access science. 342, 6154, 60-65. Vol. 342, No. 6154, pp. 60-65. https://doi.org/10.1126/science.aao4060

Beall, J. (2013) ‘Predatory publishing is just one of the consequences of gold open access’, Learned Publishing, Vol. 26, No. 2, pp. 79-84. https://doi.org/10.1080/20026843.2013.751144

Beall, J. (2016) ‘Ban predators from the scientific record’, Nature, Vol. 534, No. 7607, pp. 326-327. https://doi.org/10.1038/534326a

Berger, M. (2017) ‘Everything you ever wanted to know about predatory publishing but were afraid to ask’, ACRL 2017 Conference, Baltimore, Maryland, pp. 206-217.

Björk, B. C. (2017) ‘Journal portals—an important infrastructure for non-commercial scholarly open access publishing’, Online Information Review, Vol. 41, No. 5, pp. 643-654. https://doi.org/10.1108/01442641711763988

Boklan, J. (2013) ‘Who’s afraid of peer review?’, Science, Vol. 342, No. 6154, pp. 60-65. https://doi.org/10.1126/science.1247582

Bolkic, J., Emmett, A., Greenberg, M. L., Rosenblum, B., and Peterson, A. T. (2017) ‘How open access is crucial to the future of science’, The Journal of Wildlife Management, Vol. 81, No. 4, pp. 564-566. https://doi.org/10.1002/jwmg.21216

Butler, D. (2013) ‘The dark side of publishing’, Nature, Vol. 495, No. 7424, pp. 433-435. https://doi.org/10.1038/495433a

Clark, J. (2018) ‘Letter to the editor–predatory journals: Bad as well as people.’ The Directory of Open Access Journals (2018), [Online], Available: https://www.doaj.org. [27 Sep 2018].

Fink, A. (2013) Conducting research literature reviews: From the Internet to paper, Thousand Oaks: Sage Publications.

Forrester, A., Björk, B. C., and Tenopir, C. (2017) ‘New web services that help authors choose journals’. Learned Publishing, Vol. 30, No. 4, pp. 281-287. https://doi.org/10.1080/1049888X.2017.1321112

Frandsen, T. F. (2017) ‘Predatory journals undermining the credibility of science? A bibliometric analysis of citations’, Scientometrics, Vol. 113, No. 3, pp. 1513-1528. https://doi.org/10.1007/s11192-017-2520-4

Jalalian, M., and Dadkhah, M. (2015) ‘The full story of 90 hijacked journals from August 2011 to June 2015’, Geographica Pannonica Vol. 19, No. 2, pp. 73-87. http://doi.org/10.15241/191.97.06

Kozak, M., and Hartley, J. (2013) ‘Publication fees for open access journals: Different disciplines-different methods’, Journal of the American Society for Information Science and Technology, Vol. 64, No. 12, pp. 2591-2594. http://doi.org/10.1002/asi.22972

Kurt, S. (2018) ‘Why do authors publish in predatory journals?’, Learned Publishing, Vol. 31, No. 2, pp. 141-147. https://doi.org/10.1002/leap.1150

Laine, C., and Winker, M. A. (2017) ‘Identifying predatory or pseudo-journals’, Biochimia Medica, Vol. 27, No. 2, pp. 285-291. https://doi.org/10.1615/BM.2017031

Memon, A. R. (2016) ‘ResearchGate is no longer reliable: leniency towards ghost journals may decrease its impact on the scientific community’, Journal of Pakistan Medical Association, Vol. 66, No. 12, pp. 1643-1647.

Quirk, H. K., and Teo, E. C. (2018) ‘Predatory publishing: pressures, promotions and perils’, Proceedings of Singapore Healthcare, Vol. 27, No. 1, pp. 3-5. https://doi.org/10.1177/1010181794602

Preston, A. (2020) ‘Solving the Mystery of Peer Review for Predatory Journals’, [Online]. Available: https://clarivate. web.com/sciencesciencemagazine/article/solving-the-mystery-of-peer-review-for-predatory-journals [4 July 2020].

Rele, Sh., Kennedy, M., and Bisas, N. (2017), Journal Evaluation Tool. LMU Librarian Publications & Presentations, [Online]. Available: http://digitalcommons.lmu.edu/librarian_pubs/40 [10 Jun 2020].

Richtig, G., Berger, M., Lange-Asschenfeldt, B., Aberer, W., and Richtig, E. (2018) ‘Problems and challenges of predatory journals’, Journal of the European Academy of Dermatology and Venereology, Vol. 32, No. 9, pp. 1-9. https://doi.org/10.1111/jdv.15039

Scopus (2018a) ‘The Scopus solution to predatory journals’, [Online]. Available: https://conf.neon.com/materials/28-Sem0417/170417_0930_Steigunga.pdf [27 Sep 2018].

Scopus (2018b), [Online], Available: https://www.scopus.com [27 Sep 2018].

Shen, C., and Björk, B. C. (2015). ‘Predatory/open access: a longitudinal study of article volumes and market characteristics’ BMC Medicine Vol. 13, No. 1, pp. 1-15. https://doi.org/10.1186/s12916-015-0469-2

Strielkowski, W. (2018) ‘Setting new publishing standards after the ‘Beall’s list’, The International Journal of Occupational and Environmental Medicine, Vol. 9, No. 2, pp. 108-110. https://doi.org/10.1177/2010105817749602

The Directory of Open Access Journals (2018), [Online], Available: https://doaj.org [24 Sep 2018].

Think. Check. Submit (2018), [Online], Available: http://think.check.submit [23 Sep 2018].

Umlauf, M. G., and Mochizuki, Y. (2018) ‘Predatory publishing and cybercrime targeting academics’, International Journal of Nursing Practice, Vol. 24, No. S1, pp. 1-7. https://doi.org/10.1111/1466-7800.13568

Wallace, F. H., and Perri, T. J. (2018), ‘Economists behaving badly: publications in predatory journals’, Scientometrics Vol. 115, No. 2, pp. 749-766. https://doi.org/10.1007/s11192-018-2690-1

Web of Science (2018), [Online]. Available: https://clarivate.com/products/web-of-science [27 Sep 2018].

Whitemore, R., and Knaff, K. (2005) ‘The integrative review: Updated methodology’, Journal of Advanced Nursing, Vol. 52, No. 5, pp. 546-553. https://doi.org/10.1111/j.1365-2648.2005.03652.x

Xia, J. (2015) ‘Predatory journals and their article publishing charges’ Learned Publishing, Vol. 28, No. 1, pp. 69-74. https://doi.org/10.1017/S0958423914000111

Xia, J., Harmon, J. L., Connolly, K. G., Donnelly, R. M., Anderson, M. R., and Howard, H. A. (2015) Who publishes in “predatory journals”? Journal of the Association for Information Science and Technology, Vol. 66, No. 7, pp. 1406-1417. https://doi.org/10.1002/asi.23365

EERIES Journal
volume 13 issue 3

EERIES Journal
volume 13 issue 3