A Thin Fundamental Set for $SL(2, \mathbb{Z})$

Hongyu He *
Department of Mathematics
Louisiana State University
email: hhe@lsu.edu

Abstract

Let $\Gamma = SL(2, \mathbb{Z})$ and $G = SL(2, \mathbb{R})$. Let $g = kan$ be the Iwasawa decomposition. Let ϵ be a small positive number. In this paper, we construct a fundamental set F_{ϵ} such that the k-component of $g \in F_{\epsilon}$ is within the ϵ-distance from the identity. We further prove an inequality for the L^2-norm of functions on G/Γ.

1 Introduction

We start with the projective group $PSL(2, \mathbb{R})$. Any element $g \in PSL(2, \mathbb{R})$ has an Iwasawa decomposition kan with $k \in PSO(2), a \in A, n \in N$, where A consists of diagonal matrices with positive entries (a, a^{-1}) and N consists of upper triangular unipotent matrices parametrized by $t \in \mathbb{R}$. Let $PSL(2, \mathbb{Z})$ be the modular group consisting of all matrices in $PSL(2, \mathbb{R})$ with integer entries. Automorphic forms on $PSL(2, \mathbb{R})/PSL(2, \mathbb{Z})$ play a central role in many branches of mathematics [2]. Their analytic properties were often obtained by analysis on the fundamental set F, explicitly

\[
\{kan : k \in PSO(2), |t| \leq \frac{1}{2}, a^{-4} + t^2 \geq 1\}.
\]

Here the fundamental set has a cusp at 0. This is consistent with [6] and [3], but differs from the one more commonly used by an inversion $a \rightarrow a^{-1}$ ([5]).

One advantage of using F as the fundamental set, is that analysis based on F will often involve computations on K-finite functions which can be expressed as hypergeometric functions $_{2}F_{1}$ or $_{1}F_{1}$ ([10]). However, the behavior of hypergeometric functions can be very complicated and precise computations are often impossible ([11]). In this paper, we shall construct a fundamental set that is not K-invariant. This fundamental set F_{ϵ} will only involve a small neighborhood of the compact group K. This small neighborhood of K can be made infinitesimally small.

To state our main result, we let $G = SL(2, \mathbb{R})$ and $\Gamma = SL(2, \mathbb{Z})$. Fix the standard Iwasawa decomposition KAN with N the unipotent upper triangular matrices parametrized by $t \in \mathbb{R}$, $K = SO(2)$ parametrized by $\theta \in \mathbb{R}/\mathbb{Z}$. Our main result can be stated as follows.

*Key word: Iwasawa decomposition, Siegel set, $SL(2, \mathbb{Z})$, fundamental domain
Theorem 1.1 Let $\mathcal{F}_c = \bigcup_{i=1}^{3} \mathcal{F}_c^i \subseteq G$ with
\[\mathcal{F}_c^1 = \{ g = \text{kan} : |\theta| < \epsilon, a^2 \leq \csc(\epsilon + |\theta|), |t| \leq \frac{1}{2} \}; \]
\[\mathcal{F}_c^2 = \{ g = \text{kan} : |\theta| < \epsilon, \csc(\epsilon+|\theta|) \leq a^2 \leq \csc(\epsilon-|\theta|), \sgn(\theta) t \in [-a^{-2} \cot(\epsilon-|\theta|), (1-\sqrt{1-a^{-4}})] \}; \]
\[\mathcal{F}_c^3 = \{ g = \text{kan} : |\theta| < \epsilon, \csc(\epsilon-|\theta|) \leq a^2 \leq \cot(\epsilon-\theta)+\cot(\epsilon+\theta), t \in [1-a^{-2} \cot(\epsilon+\theta), a^{-2} \cot(\epsilon-\theta)] \}; \]
\[\mathcal{F}_c^4 = \{ g = \text{kan} : |\theta| < \epsilon, \csc(\epsilon-|\theta|) \leq a^2, t \in [\sqrt{1-a^{-4}} - 1, 1 - \sqrt{1-a^{-4}}] \}. \]

The natural map $\pi|_{\mathcal{F}_c} : \mathcal{F}_c \subseteq G \rightarrow G/\Gamma$ is surjective. $\pi|_{\mathcal{F}_c}$ is injective on the interior of \mathcal{F}_c and finite on the boundary of \mathcal{F}_c.

The fundamental set \mathcal{F}_c is contained entirely in K_AN with K_c the segment of $SO(2)$ within ϵ-distance from the identity. See Theorem 6.1 for a stronger statement.

The main idea of the proof is to interpret G/Γ as the space of unital lattices in \mathbb{R}^2, namely those lattices with two generators that span an area of 1. Every fundamental set for G/Γ essentially corresponds to a parametrization of the unital lattices. In the classical reduction theory, the parametrization of a unital lattice is based on the minimal element in the unital lattice (3). In this paper, we modify the classical reduction theory by imposing a restriction on the K-component. Then the relations between a-component and t-component become a lot more complicated, but still tractable. We prove a sufficient and necessary condition that dictates the relation between a and t. This leads us to the construction of \mathcal{F}_c.

At the end of this paper, we also prove some integral inequality similar to (8). These bounds relate the L^2-norm on certain “conic” region to the L^2-norm on the fundamental set.

Finally, we shall remark that most results in this paper should generalize to $SL(n, \mathbb{Z})$ and perhaps to all congruence subgroups. It will require deeper studies on unital lattices in \mathbb{R}^n. Even though the precise statement for \mathcal{F}_c will be difficult to write down, the Siegel sets of the same type may be obtained which will provide an equivalent norm for automorphic representations. Hence \mathcal{F}_c or related Siegel set is potentially useful in the study of automorphic functions. The fundamental set \mathcal{F}_c may also be studied from a topological viewpoint. It is not clear whether it can offer anything new.

Let $\lceil x \rceil$ be the ceiling function, namely the smallest integer bigger than or equal to x.

2 Parametrization of $SL(2, \mathbb{R})$: Setup

Let $g \in SL(2, \mathbb{R})$. Let
\[g = (u, v), \quad u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}, \quad v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}. \]

Let
\[u^+ = \begin{pmatrix} \frac{u_1}{\sqrt{u_1^2 + u_2^2}} \\ \frac{u_2}{\sqrt{u_1^2 + u_2^2}} \end{pmatrix}. \]

Then $\|u^+\| = \|u\|^{-1}$ and $v = u^+ + tu$. The Iwasawa decomposition of $SL(2, \mathbb{R})$ is given by
\[g = \left(\frac{u}{\|u\|}, \frac{u^+}{\|u^+\|} \right) \left(\begin{array}{cc} \|u\| & 0 \\ 0 & \|u^+\| \end{array} \right) \left(\begin{array}{cc} 1 & t \\ 0 & 1 \end{array} \right). \]
We may write this decomposition traditionally as \(g = kan \) with
\[
k = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}, \quad a = \begin{pmatrix} ||u|| & 0 \\ 0 & ||u^\perp|| \end{pmatrix}, \quad n = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix}.
\]

Here \(\theta \in \mathbb{R}/2\pi \mathbb{Z} \) and \(t \in \mathbb{R} \). We may abuse the notation by writing \(a = ||u|| \). Notice that \(||u^\perp|| = ||u||^{-1} = a^{-1} \) and
\[
\begin{pmatrix} u & u^\perp \\ ||u|| & ||u^\perp|| \end{pmatrix} = \begin{pmatrix} \frac{u}{||u||} & \frac{u^\perp}{||u||} \\ \frac{u}{||u||} & -\frac{u^\perp}{||u||} \end{pmatrix} \in SO(2).
\]

Since \(v = u^\perp + tu \), \(\langle v, u \rangle = t \langle u, u \rangle \). Hence \(t = \frac{\langle v, u \rangle}{\langle u, u \rangle} \).

Fix \(K = SO(2) \) and \(G = SL(2, \mathbb{R}) \). We also have a variant of the Iwasawa decomposition \(G = KNA \). The advantage of \(KNA \) decomposition is that the product of the invariant measures on \(K \), \(N \) and \(A \) is an invariant measure of \(G \). To distinguish \(KNA \) decomposition from \(KAN \) decomposition, we write \(g = kn(T)a \) in contrast with \(g = kan(t) \). In both decompositions, \(k \) and \(a \) remain the same. The parameter \(T \) is related to \(t \) by \(T = a^2 t \). In fact, \(T = \langle v, u \rangle \).

In any case, all parameters pertaining to \(g \in G, u, v, u^\perp, t, a, T, k, n \) should be understood as
\[
\begin{align*}
u(g), v(g), u^\perp(g), t(g), a(g), T(g), \theta(g), k(g), n(g)
\end{align*}
\]
for a fixed \(g \).

3 Parametrization of unital lattice in \(\mathbb{R}^2 \): \(K \)-invariant view

Let \(\Gamma = SL(2, \mathbb{Z}) \). By a rank 2 lattice in \(\mathbb{R}^2 \), we meant any additive subgroup of \(\mathbb{R}^2 \) with 2 linearly independent generators. We call it a unital lattice if any two generators of the lattice span a parallelogram of area 1. Denote the space of unital lattice in \(\mathbb{R}^2 \) by \(\mathcal{U} \). Let \(\mathcal{L} \in \mathcal{U} \). Then any pair of positively oriented generators \((u, v) \) of \(\mathcal{L} \) corresponds an element \((u, v) \) of \(G \) in a one-to-one fashion. Hence, the group \(G \) parametrizes all positively oriented generators of all \(\mathcal{L} \in \mathcal{U} \).

Let the group \(SL(2, \mathbb{Z}) \) acts on each lattice \(\mathcal{L} \in \mathcal{U} \) by changing the generators:
\[
(u, v) \rightarrow (pu + qv, ru + sv) = (u, v) \begin{pmatrix} p & r \\ q & s \end{pmatrix}, \quad \forall \begin{pmatrix} p & r \\ q & s \end{pmatrix} \in \Gamma.
\]

Thus permuting the lattice points in \(\mathcal{L} \). Clearly any two positively oriented generators of \(\mathcal{L} \) differs by an action of \(\gamma \in \Gamma \) and vice versa. Hence \(\mathcal{U} \) can be identified with \(G/\Gamma \) with \(\Gamma \) acting from the right. We have the natural projection
\[
\pi : G \rightarrow \mathcal{U}.
\]

The fiber will be the matrices \(\{(u, v)\} \) given by any two positively oriented generators \((u, v) \) of \(\mathcal{L} \). Furthermore, \(\mathcal{U} \) has a natural fibration \(\mathcal{U} \):
\[
\mathbb{Z}^2 \rightarrow \mathcal{U} \rightarrow \mathcal{U}
\]

with the group \(\Gamma \) acting on the fiber as additive group automorphisms.

Now we seek to parametrize \(\mathcal{U} \). This is more or less equivalent to finding a fundamental set of \(G/\Gamma \) in the classical sense. For a comprehensive account of fundamental set for reductiove groups,
See [2] and the references therein. The fundamental sets in [2] are in fact the fundamental sets of $K \setminus G/\Gamma$. They can be viewed as a K-invariant set in G/Γ by the pullback map of the projection $G \to K \setminus G$. Due to the action of the nontrivial center of G, the pullback will be a double cover of G/Γ in the interior. In order to provide insight for the construction of non K-invariant fundamental set, we shall now review the basic ideas of the reduction theory in a K-invariant fashion.

For each $L \subseteq \mathbb{U}$, we shall now review the basic ideas of the reduction theory in G/Γ. We have the following is well-known.

Theorem 3.1 The natural map $\pi|_F : F \subset G \to G/\Gamma$ is surjective. It is two-to-one in the interior of F and finite on the boundary of F.

Proof: We already showed that if $\|u\|$ is minimal in L, then

$$a^2 \leq \frac{2}{\sqrt{3}}, \quad t^2 \geq 1 - a^{-4}, \quad t^2 \geq 1$$

The converse is true, but not quite trivial. Suppose that $g = \text{kan}$ with a, t satisfy the above properties. For each $m \in \mathbb{Z}$, define the line

$$u^{(m)} = mu^1 + R u.$$

Then $L \subseteq \cup_{m \in \mathbb{Z}} u^{(m)}$. If $|m| \geq 2$, then any $w \in u^{(m)}$ satisfies

$$\|w\|^2 \geq 4\|u^1\|^2 = 4\|u\|^2 - 2 = 2\frac{\sqrt{3}}{2} > \frac{2}{\sqrt{3}} \geq \|u\|^2.$$

For $m = \pm 1$, (u, v) or $(u, -v)$ is in G. Then $v = \pm u^1 + tu$. Our earlier discussion showed that $\|v\| \geq \|u\|$ for any $v \in u^{(\pm 1)} \cap L$. For $m = 0$, $w \in u^{(0)} \cap L$ means $w = ku$ for some $k \in \mathbb{Z}$. Hence $\|w\| \geq \|u\|$ unless $w = 0$.
Combining with the cases \(m = 0\) or \(m = \pm 1\), we see that the minimal vector \(u\) is unique up to a \(\pm\) sign if \(\frac{1}{t} > t^2 > 1 - \|u\|^{-4}\). Therefore \(\pi_F : F \to G/\Gamma\) is two-to-one in the interior of \(F\). Over the boundary of \(F\), it is not hard to see that \(\deg(\pi_F) \leq 6\). When \(t^2 = 1 - a^{-4}\), the vectors \(u\) and \(v\) form an isosceles triangle and the degree of \(\pi_F\) over these points is 4 with one exception: \(t^2 = 1 - a^{-4} = \frac{1}{4}\). This happens when \(L\) is generated by an equilateral triangle and \(deg = 6\) in this case. Of course, over \(t = \pm \frac{1}{2}\), the degree of \(\pi_F\) is also 4 with the equilateral triangle case as the exception. □

Corollary 3.1 Let \(L \in U\). If \(\Phi(L) < 1\), then there are only two vectors \(\pm u \in L\) such that \(\|u\| = \Phi(L)\).

The boundary of \(F\) can be seen more easily on the upper half plane model of the symmetric space \(K \setminus G\). The curve \(t^2 = 1 - a^{-4}\) corresponds to a segment of the unit circle and \(t = \pm \frac{1}{2}\) corresponds to two straight lines \(x = \pm \frac{1}{2}\). Also if we use the projective group \(PSL(2, \mathbb{R})\), then map \(\pi_F\) will be one-to-one in the interior of \(F\) and have degree at most 3 over the boundary.

Now we shall divide \(F\) into two regions:

\[
F^1 = \{g = kan \mid a \leq 1, |t| \leq \frac{1}{2}\};
\]

\[
F^2 = \{g = kan \mid 1 \leq a \leq (\frac{4}{3})^\frac{1}{4}, 1 - a^{-4} \leq t^2 \leq \frac{1}{4}\}.
\]

Then \(F = F^1 \cup F^2\).

4 *non* \(K\)-invariant Parametrization of unital lattices in \(\mathbb{R}^2\): main result

When we parametrize \(U\) in the last section, we allow the parameter \(\theta \in \mathbb{R}/2\pi\mathbb{Z}\) to be arbitrary. Fix \(0 < \epsilon \leq \frac{\pi}{6}\). We now consider only \(k\) with \(|\theta| \leq \epsilon\). Let \(C_\epsilon\) be defined as the open cone

\[
\left\{\begin{pmatrix} x \\ y \end{pmatrix} : x > 0, \frac{|y|}{x} < \tan \epsilon \right\} \subseteq \mathbb{R}^2.
\]

Let \(B(r) = \left\{\begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : x^2 + y^2 \leq r^2\right\}\).

Fix \(L \in U\). Let

\[
\Phi_\epsilon(L) = \min\{|\|u\| : u \in L \cap C_\epsilon\}.
\]

Lemma 4.1 \(\Phi_\epsilon(L)\) exists.

Proof: Pick a generator \(v \in L\). Consider the lines \(\{v^{(m)} : m \in \mathbb{Z}\}\). There are infinitely many \(m_i\) with \(v^{(m_i)} \cap C_\epsilon \neq \emptyset\). If one of \(v^{(m_i)} \cap C_\epsilon\) is of infinite length, then there must be infinitely many lattice points on \(v^{(m_i)} \cap C_\epsilon\). If not, the lengths of \(v^{(m_i)} \cap C_\epsilon\), in ascending order, are of arithmetic progression, thus go to infinity. Recall that \(L \subseteq \cup v^{(m)}\) and \(L \cap v^{(m_i)}\) are equally spaced for all \(m_i\). There must be infinitely many lattice points on these line segments. This show that the set \(\{|\|u\| : u \in L \cap C_\epsilon\}\) is infinite. Therefore \(I = \inf\{|\|u\| : u \in L \cap C_\epsilon\}\) exists.
To show that $\Phi_c(L)$ exists, we must show that this infimum is a minimum. If not, there are infinitely many lattice point w_i such that $\|w_i\| \in [0, I + 1]$. Then there must be infinitely many lattice points in the ball $B(I + 1)$. This is not possible because $B(I + 1)$ is compact. □

Now fix $u \in L$ such that $\|u\| = \Phi_c(L)$. Strictly speaking, we should write $u_c(L)$ for u. To simply our notation, we may write u or u_c, with the understanding ϵ and L are fixed. With u_c selected for $L \in U$, we have the k parameter $(\cos \theta, \sin \theta) = u/\|u\|$ and $a = \|u\|$. For the t parameter, we choose $t \in \mathbb{R}/\mathbb{Z}$.

Define

$$F^1_\epsilon = \{ g = \text{kan} : |\theta| < \epsilon, a^2 \leq \csc(\epsilon + |\theta|), |t| \leq \frac{1}{2} \};$$

$$F^2_\epsilon = \{ g = \text{kan} : |\theta| < \epsilon, \csc(\epsilon+|\theta|) \leq a^2 \leq \csc(\epsilon-|\theta|), t \in [-\text{sgn}(\theta)a^{-2} \cot(\epsilon+|\theta|), \text{sgn}(\theta)(1-\sqrt{1-a^{-4}})] \};$$

$$F^3_\epsilon = \{ g = \text{kan} : |\theta| < \epsilon, \csc(\epsilon-|\theta|) \leq a^2 \leq \cot(\epsilon-\theta)+\cot(\epsilon+\theta), t \in [1-a^{-2} \cot(\epsilon+\theta), a^{-2} \cot(\epsilon-\theta)] \};$$

Define $F_\epsilon = \bigcup_{i=1}^{4} F^i_\epsilon \subseteq G$.

Theorem 4.1 The natural map $\pi|_{\mathcal{F}_\epsilon} : \mathcal{F}_\epsilon \subseteq G \rightarrow G/\Gamma$ is surjective. $\pi|_{\mathcal{F}_\epsilon}$ is injective on the interior of \mathcal{F}_ϵ and finite on the boundary of \mathcal{F}_ϵ.

The condition that $\epsilon \leq \frac{\pi}{6}$ allows us to claim that

$$\csc(\epsilon - |\theta|) \leq \cot(\epsilon - |\theta|) + \cot(\epsilon + |\theta|).$$

Hence F^3_ϵ is not empty.

5 Parametrization of \mathcal{U}: necessary and sufficient condition for t

Let L be a unital lattice in \mathbb{R}^2. Fix a u in $L \cap C_\epsilon$ such that $\|u\| = \Phi_c(L)$. u must be primitive, namely there is no $u' \in L$ such that $u = q u'$ with $|q| > 1$. Then all lattice points of L must lay on one of the lines $u^{(m)}$ with $m \in \mathbb{Z}$. The lattice points on the line $u^{(m)}$ must be of the form $nu^t + (t + q)u$ for $t \in \mathbb{R}$ and $q \in \mathbb{Z}$. Hence t is in \mathbb{R}/\mathbb{Z}. In this section, we choose $t \in [0, 1]$. Let $v = u^t + tu$. Then $L = Zu + Zv$. Clearly, u and t parametrizes L. For each (a, θ) determined by u, we need to find the range of t, i.e., a necessary and sufficient condition for t such that

for any $l \in L \cap C_\epsilon$, $\|l\| \geq \|u\|$.

Let us call this property ϵ. In contrast to the K-invariant parametrization where $\|u\|$ is bounded from above, $\|u_c(L)\|$ is unbounded.

Define the (vertical) stripe

$$S = \{ su^t + tu \mid s \in \mathbb{R}, t \in (0, 1) \}.$$

Lemma 5.1 Let $v = u^t + tu \in L$ with $t \in [0, 1]$. Then property ϵ is equivalent to the condition that for any $l \in C_\epsilon \cap L \cap S$, $\|l\| \geq \|u\|$.
Proof: For \(w = su^+ + tu \) with \(t \leq 0 \), \(w \notin C_\epsilon \). For \(w = su^+ + tu \) with \(t \geq 1 \), \(\|w\| \geq \|u\| \). Hence we are only concerned with \(w \in C_\epsilon \cap L \) with \(w = su^+ + tu \ (t \in (0,1)) \). The equivalence with property \(\epsilon \) follows immediately. \(\square \)

Even though our lemma provide a necessary and sufficient condition, it is hard to manage the lattice points in \(S \cap C_0^\epsilon \). If we fix a lattice point \(v = u^+ + tu \), then the number of \(pu +qv \) in the triangle \(S \cap C_0^\epsilon \) may depend on how \(t \) is located near the rational points \(\mathbb{Q} \). This turns out to be a difficult problem.

Instead, we shall consider a necessary condition, namely, for all lattice points \(l \in u^{(\pm)} \cap L \cap C_\epsilon \), \(\|l\| \geq \|u\| \).

Lemma 5.2 Let \(u_\epsilon(L) = a \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \) with \(\theta \in [0, \epsilon) \). Fix \(t_\epsilon(L) \in [0,1] \). Write \(u,t \) for \(u_\epsilon(L), t_\epsilon(L) \).

1. For any \(l \in L \cap C_\epsilon \cap u^{(1)} \), \(\|l\| \geq \|u\| \) if and only if one of the following is true
 (a) If \(a^2 \leq \csc(\epsilon - \theta) \), then \(t \in [0,1] \);
 (b) If \(a^2 \geq \csc(\epsilon - \theta) \), then \(t \in [0, a^{-2} \cot(\epsilon - \theta)] \cup [\sqrt{1-a^{-4}}, 1] \).

2. For any \(l \in L \cap C_\epsilon \cap u^{(-1)} \), \(\|l\| \geq \|u\| \) if and only if one of the following is true
 (a) If \(a^2 \leq \csc(\epsilon + \theta) \), then \(t \in [0,1] \);
 (b) If \(a^2 \geq \csc(\epsilon + \theta) \), then \(t \in [1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0,1 - \sqrt{1-a^{-4}}] \).

Proof: Let \(v = u^+ + tu \). By the proof of Lemma 5.1, we only need to find those \(t \in [0,1] \) such that either \(v \notin C_\epsilon \), or \(v \in C_\epsilon \) and \(\|v\| \geq a \). By basic trigonometry,

\[
v \notin C_\epsilon \iff \frac{\|tu\|}{\|u^+\|} \leq \cot(\epsilon - \theta) \iff t \leq a^{-2} \cot(\epsilon - \theta).
\]

On the other hand, if \(v \in C_\epsilon \),

\[
\|v\|^2 = t^2 \|u\|^2 + \|u^+\|^2 = a^2 t^2 + a^{-2} \geq a^2 = \|u\|^2 \iff t^2 \geq 1 - a^{-4}.
\]

Hence either \(t \in [0, a^{-2} \cot(\epsilon - \theta)] \cap [0,1] \) or \(t \in [\sqrt{1-a^{-4}}, 1] \). If \(a^{-2} \csc(\epsilon - \theta) \geq 1 \), the union of these two sets is \([0,1]\). If \(a^{-2} \csc(\epsilon - \theta) \leq 1 \), then the union of these two sets is \([0, a^{-2} \cot(\epsilon - \theta)] \cup [\sqrt{1-a^{-4}}, 1] \). The first statement is proved.

For the second statement, let \(v = -u^+ + (1-t)u \). Then \(1 - t \) should satisfy similar inequalities for the angle \(\epsilon + \theta \). The second statement follows immediately. \(\square \)

Certainly, in order that \((u_\epsilon, t_\epsilon)\) parametrizes \(L \), both conditions (1) and (2) must be met. We have

Corollary 5.1 Fix a \(u \in L \) such that \(\|u\| = \Phi_\epsilon(L) \). Suppose that \(\theta \in [0,\epsilon) \) and \(t_\epsilon(L) \in [0,1] \). Then

\[
t_\epsilon(L) \in ([0, a^{-2} \cot(\epsilon - \theta)] \cup [\sqrt{1-a^{-4}}, 1]) \cap ([1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0,1 - \sqrt{1-a^{-4}}]) \cap [0,1].
\]

What is difficult and perhaps surprising is that these conditions turn out to be sufficient.

We consider the horizontal direction (along \(u \)). Define \(u^+ \) to be the half plane \(\{ w \in \mathbb{R}^2 : \langle w, u^+ \rangle > 0 \} \) and \(u^- \) to be \(\{ w \in \mathbb{R}^2 : \langle w, u^- \rangle < 0 \} \). Then \(\mathbb{R}^2 = u^+ \cup u^0 \cup u^- \).
Lemma 5.3 Suppose that \(u = a \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} \) with \(\theta \in [0, \epsilon) \) and \(a > 1 \). If
\[
t \in ([0, a^{-2} \cot(\epsilon - \theta)] \cup \left[\sqrt{1 - a^{-4}}, 1\right]) \cap ([1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0, 1 - \sqrt{1 - a^{-4}}]) \cap [0, 1],
\]
then the lattice \(\mathcal{L} \) generated by \(u \) and \(u^+ + tu \) is in \(\mathcal{U} \) and satisfies the property that \(\|u\| = \Phi_c(\mathcal{L}) \), the minimal norm of all lattice points in \(\mathcal{L} \cap C_c \).

Remark: When \(a \leq 1 \), Lemma 5.2 says that \(t \in \mathbb{R}/\mathbb{Z} \) can be arbitrary. This also turns out to be sufficient. More precisely, the set
\[
\{\theta \in (-\epsilon, \epsilon), \quad a \leq 1, \quad t \in \mathbb{R}/\mathbb{Z}\}
\]
is already contained in the fundamental set \(\mathcal{F} \). The corresponding \(u \) satisfies \(\|u\| = \phi(\mathcal{L}) = \phi_c(\mathcal{L}) \).

Proof: The key here is to treat \(\mathcal{L} \cap u^+ \) separately. Consider the half plane \(u^+ \). Set
\[
t \in [0, a^{-2} \cot(\epsilon - \theta)] \cup \left[\sqrt{1 - a^{-4}}, 1\right]
\]
and \(v = u^+ + tu \). Define the line
\[
v^{(m)} = mu + Rv, \quad (m \in \mathbb{Z}).
\]
The lattice \(\mathcal{L} \) is contained in the union of the lines \(v^{(m)} \) with \(m \in \mathbb{Z} \). In fact, we have
\[
\mathcal{L} \cap u^+ = \mathbb{Z}^+ v + Zu.
\]

1. Suppose that \(t \in [0, a^{-2} \cot(\epsilon - \theta)] \). Then \(v = u^+ + tu \) lies outside the cone \(C_c \). For \(m \leq 0 \), \(v^{(m)} \cap u^+ \) lies entirely outside the cone \(C_c \). It suffice to show that for \(m \in \mathbb{Z}^+ \),
\[
w \in v^{(m)} \cap u^+ \cap \mathcal{L}, \quad \|w\| \geq \|u\|.
\]
Observe that \(w = mu + jv \) for \(j \in \mathbb{Z}^+ \) and
\[
\|mu + jv\| = \|(m + jt)u + ju^+\| \geq \|u\|.
\]
Hence for any \(w \in C_c \cap u^+ \cap \mathcal{L}, \|w\| \geq \|u\| \).

2. Suppose that \(t' \in [\sqrt{1 - a^{-4}}, 1] \). Let \(t = t' - 1 \). Then \(t \in [\sqrt{1 - a^{-4}} - 1, 0] \). Let \(v = u^+ + tu \).
Consider the semilattice \(\mathbb{Z}^+ v + Zu \). This is the same semilattice as if we use \(v = u^+ + t'u \).
(a) for \(m \leq 0 \) the lattice points in \(v^{(m)} \cap u^+ \) are of the form \(mu + Z^+ v \). They lay entirely outside \(C_c \).
(b) For \(m > 1 \) and \(m, j \in \mathbb{Z}^+ \), we have \(mu + jv = (m + jt)u + ju^+ \). If \(|m + jt| \geq 1 \), then \(\|mu + jv\| \geq \|u\| \) automatically. If \(m + jt \in (-1, 1) \), then \(jt < 1 - m \). Hence
\[
j > \frac{1 - m}{t} = \frac{-m - 1}{-t} \geq \frac{1}{1 - \sqrt{1 - a^{-4}}} > a^4.
\]
It follows that \(\|mu + jv\| \geq \|ju^+\| > a^3 > a = \|u\| \).
(c) For \(m = 1 \), we would like to show that for \(j \geq 1 \),
\[
\|u + jv\|^2 = \|u + jv\|^2 = (1 +jt)^2u + jv^2 = (1 + jt)^2a^2 + j^2a^{-2} \geq a^2 = \|u\|^2.
\]
This is equivalent to \((1 + j)^2 \geq 1 - j^2a^{-4} \). This follows from the fact that
\[
2t + j(t^2 + a^{-4}) \geq 2t + t^2 + a^{-4} = (1 + t)^2 - 1 + a^{-4} \geq 0.
\]
Hence for any \(w \in C_\epsilon \cap u^+ \cap L\), \(\|w\| \geq \|u\|\).

Next consider the half plane \(u^−\). Set

\[
t' \in [0, a^{-2} \cot(\epsilon + \theta)] \cup [\sqrt{1-a^{-4}}, 1]
\]

and \(v' = -u^\perp + t'u\). By essentially the same argument,

\[
\|u\| \leq \min\{\|w\| : w \in u^− \cap L \cap C_\epsilon\}.
\]

The only difference is that the angle \(\epsilon - \theta\) becomes \(\epsilon + \theta\) because in \(u^−\), the angle between the boundary of \(C_\epsilon\) and \(u\) is \(\epsilon + \theta\). Notice this angle is less than \(\pi/3\). Since \(\det(u, v') = -1\) in this setting, we switch back to the positive orientation and obtain \(v = u^\perp + (1-t')u\). Since \(t \in \mathbb{R}/\mathbb{Z}\) is chosen to be in \([0, 1]\), we have

\[
t \in ([1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0, 1 - \sqrt{1-a^{-4}}])
\]

if \(a^{-2} \cot(\epsilon + \theta) \leq \sqrt{1-a^{-4}}\); \(t \in [0, 1]\) if \(a^{-2} \cot(\epsilon + \theta) \geq \sqrt{1-a^{-4}}\).

Observe that the range of \(t\) we obtain is precisely the range of \(t\) specified in Lemma 5.3 \(\Box\)

6 Proof of the main result

We shall prove our main theorem for \(\theta \in [0, \epsilon)\). For \(\theta \in (-\epsilon, 0]\), the proof is similar.

Let \(\theta \in [0, \epsilon)\). If \(a = \Phi_\epsilon(L) \leq 1\), by Lemma 5.2 \(t \in [0, 1]\). Conversely, for any such pair of \((a, t) \in (0, 1) \times [0, 1]\), there is one unique lattice with generators \((u, v)\) satisfying \(\|u\| = a\) and \(v = u^\perp + tu\). In fact, this part of \(\mathcal{F}_\epsilon\) overlaps with a small section of \(K\)-invariant \(\mathcal{F}^1\).

We shall now figure out precisely the range of \(t\) for \(a > 1\). Write

\[
I_{a, \theta} = ([0, a^{-2} \cot(\epsilon - \theta)] \cup [\sqrt{1-a^{-4}}, 1]) \cap ([1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0, 1 - \sqrt{1-a^{-4}}]) \cap [0, 1].
\]

1. If \(a^2 \leq \csc(\epsilon + \theta)\), then \(a^2 \leq \csc(\epsilon - \theta)\). We have

\[
a^{-2} \cot(\epsilon - \theta) \geq a^{-2} \cot(\epsilon + \theta) \geq \sqrt{1-a^{-4}}.
\]

Hence \(t \in [0, 1]\). Combined with the \(a \leq 1\) case, \(L \in \mathcal{F}_\epsilon^1\).

2. If \(\csc(\epsilon + \theta) \leq a^2 \leq \csc(\epsilon - \theta)\), then

\[
a^{-2} \cot(\epsilon - \theta) \geq \sqrt{1-a^{-4}} \geq a^{-2} \cot(\epsilon + \theta).
\]

We have \(t \in [1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0, 1 - \sqrt{1-a^{-4}}]\). Since \(t \in \mathbb{R}/\mathbb{Z}\), we can make this set into a single interval: \(t \in [-a^{-2} \cot(\epsilon + \theta), 1 - \sqrt{1-a^{-4}}]\). We obtain \(L \in \mathcal{F}_\epsilon^2\).

3. Suppose that \(a^2 > \csc(\epsilon - \theta)\). Then

\[
I_{a, \theta} = ([0, a^{-2} \cot(\epsilon - \theta)] \cup [\sqrt{1-a^{-4}}, 1]) \cap ([1 - a^{-2} \cot(\epsilon + \theta), 1] \cup [0, 1 - \sqrt{1-a^{-4}}])
\]
We check that
\[a^{-2} \cot(\epsilon - \theta) \geq 1 - \sqrt{1 - a^{-4}}, \quad \sqrt{1 - a^{-4}} \geq 1 - a^{-2} \cot(\epsilon + \theta) \]
by setting \(a^{-2} = \sin \alpha \) and \(0 < \alpha < \epsilon - \theta \). Then these two inequalities can be derived easily from the fact that
\[\cot(\epsilon - \theta) \geq \cot(\epsilon + \theta) \geq \cot(\frac{\pi}{3}) = \frac{1}{\sqrt{3}} \geq \tan(\frac{\epsilon}{2}) \geq \tan(\frac{\alpha}{2}) \].

Hence
\[I_{a,\theta} = [\sqrt{1 - a^{-4}}, 1] \cup [0, 1 - \sqrt{1 - a^{-4}}] \cup ([0, a^{-2} \cot(\epsilon - \theta)] \cap [1 - a^{-2} \cot(\epsilon + \theta), 1]). \]
If \(a^2 \geq \cot(\epsilon + \theta) + \cot(\epsilon - \theta) \), then \(I_{a,\theta} = [\sqrt{1 - a^{-4}}, 1] \cup [0, 1 - \sqrt{1 - a^{-4}}] \). If \(a^2 \leq \cot(\epsilon + \theta) + \cot(\epsilon - \theta) \), then
\[I_{a,\theta} = [\sqrt{1 - a^{-4}}, 1] \cup [0, 1 - \sqrt{1 - a^{-4}}] \cup [1 - a^{-2} \cot(\epsilon + \theta), a^{-2} \cot(\epsilon - \theta)]. \]

Using a shift, we combine \([0, 1 - \sqrt{1 - a^{-4}}]\) with \([\sqrt{1 - a^{-4}} - 1, 0]\) and obtain
\[t \in [\sqrt{1 - a^{-4}} - 1, 1 - \sqrt{1 - a^{-4}}]. \]
Hence we obtain \(\mathcal{F}^3_\epsilon \) and \(\mathcal{F}^4_\epsilon \). We shall remark that \(\cot(\epsilon + \theta) + \cot(\epsilon - \theta) \geq \csc(\epsilon - \theta) \) since \(\epsilon \leq \frac{\pi}{3} \). Therefore \(\mathcal{F}^3_\epsilon \) is nonempty.

\[\square \]

It is interesting to try to compare \(\mathcal{F}_\epsilon \) with \(\mathcal{F} \). Perhaps the most distinctive feature is that there is another ”cusp” of the shape \(|t| \leq 1 - \sqrt{1 - a^{-4}} \geq \frac{1}{2}a^{-4} \) as \(a \to \infty \) in \(\mathcal{F}_\epsilon \).

We can now rewrite \(\mathcal{F}_\epsilon \) in the \(KNA \) decomposition.
\[\mathcal{F}^1_\epsilon = \{ g = kan : |\theta| < \epsilon, a^2 \leq \csc(\epsilon + |\theta|), |T| \leq \frac{1}{2}a^2 \}; \]
\[\mathcal{F}^2_\epsilon = \{ g = kan : |\theta| < \epsilon, \csc(\epsilon + |\theta|) \leq a^2 \leq \csc(\epsilon - |\theta|), \text{sgn}(\theta)T \in [-\cot(\epsilon + |\theta|), (a^2 - \sqrt{a^4 - 1})] \}; \]
\[\mathcal{F}^3_\epsilon = \{ g = kan : |\theta| < \epsilon, \csc(\epsilon - |\theta|) \leq a^2 \leq \cot(\epsilon - \theta) + \cot(\epsilon + \theta), T \in [a^2 - \cot(\epsilon + \theta), \cot(\epsilon - \theta)] \}; \]
\[\mathcal{F}^4_\epsilon = \{ g = kan : |\theta| < \epsilon, \csc(\epsilon - |\theta|) \leq a^2, T \in [\sqrt{a^4 - 1} - a^2, a^2 - \sqrt{a^4 - 1}] \}. \]
For \(\mathcal{F}^3_\epsilon \) and \(\theta \in [0, \epsilon) \), we can shift the parameter \(T \) to \((- \cot(\epsilon + \theta), \cot(\epsilon - \theta) - a^2)\).

Theorem 6.1 Let \(\epsilon \in (0, \frac{\pi}{3}) \). The fundamental set can be chosen inside
\[\{ \theta \in (-\epsilon, \epsilon), a \in (0, \infty), |T| \leq \cot(\epsilon + |\theta|) \} \subseteq G. \]

Proof: Since \(\epsilon + |\theta| < \frac{\pi}{3} \), in \(\mathcal{F}^1_\epsilon \),
\[|T| \leq \frac{1}{2}a^2 \leq \frac{1}{2} \csc(\epsilon + |\theta|) < \cot(\epsilon + |\theta|). \]
In \(\mathcal{F}^2_\epsilon \), since \(a^2 \geq \csc(\epsilon + |\theta|) \),
\[a^2 - \sqrt{a^4 - 1} \leq \cot(\epsilon + |\theta|). \]
Hence $|T| \leq \cot(\epsilon + |\theta|)$. In \mathcal{F}_ϵ^3, if $\theta \in (-\epsilon, 0)$, then $T \in [a^2 - \cot(\epsilon + \theta), \cot(\epsilon - \theta)]$. Clearly $|T| \leq \cot(\epsilon + |\theta|)$. If $\theta \in [0, \epsilon)$, then $T \in (-\cot(\epsilon + \theta), \cot(\epsilon - \theta) - a^2)$. We also have $|T| \leq \cot(\epsilon + |\theta|)$.

In \mathcal{F}_ϵ^4, we clearly have $a^2 - \sqrt{a^4 - 1} \leq \cot(\epsilon + |\theta|)$.

Hence \mathcal{F}_ϵ can be put entirely inside

\[\{ \theta \in (-\epsilon, \epsilon), a \in (0, \infty), |T| \leq \cot(\epsilon + |\theta|) \} . \]

When $a^2 \in [\csc(\epsilon + |\theta|), \cot(\epsilon + \theta) + \cot(\epsilon - \theta)]$, this is the best approximation. For a small or big, we have two cusps: one at 0 and one at ∞. □

Notice that $\tan(\epsilon + |\theta|) \geq \tan(\epsilon) \geq \epsilon$. Hence $\cot(\epsilon + \theta) \leq \frac{1}{\epsilon}$. In \mathcal{F}_ϵ, there is a "duality" between the k parameter and T parameter, namely as the size of $|\theta|$ shrinks, the range of T can increase to size $\frac{1}{\epsilon}$.

Now we shall give an integral inequality on functions on G/Γ. Since $\cot(\epsilon + |\theta|) \leq \cot(\epsilon) < \frac{1}{\epsilon}$, the following theorem is an immediate consequence of Theorem 6.1.

Theorem 6.2 Let $f \in L^2(G/\Gamma)$. Then

\[
\int_{-\epsilon}^{\epsilon} \int_{-\frac{\epsilon}{3}}^{\frac{\epsilon}{3}} \int_0^\infty |f(k_\theta n_T a)|^2 \frac{da}{a} dT d\theta \geq \| f \|^2_{L^2} .
\]

Here $k_\theta n_T a$ is the KNA decomposition and $\frac{da}{a} dT d\theta$ is the G-invariant measure.

References

[1] H. Bateman, *Higher Transcendental Functions Vol.I-III*, McGraw-Hill Book Company, 1953.

[2] A. Borel *Automorphic forms on SL(2)* Cambridge Tracts in Mathematics, 130. Cambridge University Press, Cambridge, 1997.

[3] A. Borel *Introduction to Arithmetic Groups*, American Mathematical Society, Providence 2019.

[4] A. Borel and Harish-Chandra, “Arithmetic subgroups of Algebraic groups,” *Annals of Math.* Vol. 75, (485-535) 1962.

[5] D. Goldfeld *Automorphic Forms and L-functions for the Group GL(n, R)*, Cambridge University Press, Cambridge 2006.

[6] Harish-Chandra *Automorphic Forms on Semisimple Lie Groups*, Notes by J. G. M. Mars, LNM 62, Springer-Verlag, 1968.

[7] H. He, “Representations of ax + b group and Dirichlet Series,” J. Ramanujan Math. Soc., Vol. 36 2021 (73-84).

[8] H. He “Certain L^2-norms on authomorphic representations of $SL(2, \mathbb{R})$, ”submitted.

[9] A. Knapp *Representation theory of semisimple groups*, Princeton University Press 2002.

[10] N. Vilenkin *Special Functions and the Theory of Group Representations*, American Mathematical Society, Providence, 1983.