Lack of calcium oscillation causes failure of oocyte activation after intracytoplasmic sperm injection in pigs

Michiko NAKAI1), Junya ITO2), Shun-ichi SUZUKI1), Dai-ichiro FUCHIMOTO1), Shoichiro SEMBON1), Misae SUZUKI1), Junko NOGUCHI1), Hiroyuki KANEKO1), Akira ONISHI3), Naomi KASHIWAZAKI2) and Kazuhiro KIKUCHI1, 4)

1)Division of Animal Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Ibaraki 305-8602, Japan
2)Laboratory of Animal Reproduction, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan
3)College of Bioresource Sciences, Nihon University, Kanagawa 252-0880, Japan
4)The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi 753-8515, Japan

Abstract. In pigs, the efficiency of embryo production after intracytoplasmic sperm injection (ICSI) is still low because of frequent failure of normal fertilization, which involves formation of two polar bodies and two pronuclei. To clarify the reasons for this, we hypothesized that ICSI does not properly trigger sperm-induced fertilization events, especially intracellular Ca2+ signaling, also known as Ca2+ oscillation. We also suspected that the use of in vitro-matured oocytes might negatively affect fertilization events and embryonic development of sperm-injected oocytes. Therefore, we compared the patterns of Ca2+ oscillation, the efficiency of oocyte activation and normal fertilization, and embryo development to the blastocyst stage among in vivo- or in vitro-matured oocytes after ICSI or in vitro fertilization (IVF). Unexpectedly, we found that the pattern of Ca2+ oscillation, such as the frequency and amplitude of Ca2+ rises, in oocytes after ICSI was similar to that in oocytes after IVF, irrespective of the oocyte source. However, half of the oocytes failed to become activated after ICSI and showed no Ca2+ oscillation. Moreover, the embryonic development of normal fertilized oocytes was reduced when in vitro-matured oocytes were used, irrespective of the fertilization method employed. These findings suggest that low embryo production efficiency after ICSI is attributable mainly to poor developmental ability of in vitro-matured oocytes and a lack of Ca2+ oscillation, rather than the pattern of oscillation.

Key words: Ca2+ oscillation, Fertilization, Intracytoplasmic sperm injection, Phospholipase C-ζ, Pig

Received: July 29, 2016
Accepted: September 8, 2016
Published online in J-STAGE: September 30, 2016

©2016 by the Society for Reproduction and Development
Correspondence: M Nakai (e-mail: nakai3@afric.go.jp)
This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License <http://creativecommons.org/licenses/by-nc-nd/4.0/>.
ICSI in pigs. Herein, we investigated the pattern of Ca2+ oscillation, such as the number, amplitude, and interval of Ca2+ rises, and \textit{in vitro} developmental capacity after ICSI or IVF using \textit{in vivo}- or \textit{in vitro}-matured pig oocytes.

Materials and Methods

Protocols for the use of animals were approved by the Animal Care Committee of the Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Japan. All reagents were purchased from Sigma Chemical Company (St. Louis, MO, USA) unless otherwise stated.

\textbf{Preparation of \textit{in vivo}-matured oocytes}

Prepubertal (< 6 months of age) crossbred gilts (Landrace, Large White, and Duroc breeds) received 1500 IU of equine chorionic gonadotropin (eCG: PMS A for Animal; ZENOAQ, Fukushima, Japan) and, 72 h later, 750 IU of human chorionic gonadotropin (hCG: Puberogen; ZENOAQ). At 44 h after administration of hCG, the gilts were euthanatized and their ovaries, oviducts, and uteri were collected. Cumulus-oocyte complexes (COCs) were collected by oviduct perfusion and washed with phosphate-buffered saline (PBS; Nissui Pharmaceutical, Tokyo, Japan) supplemented with 5 mg/ml bovine serum albumin (BSA; Fraction V) and 150 IU/ml hyaluronidase. Denuded oocytes with the first polar body were harvested under a stereomicroscope and used as \textit{in vivo}-matured oocytes.

\textbf{Preparation of \textit{in vitro}-matured oocytes}

Ovaries from prepubertal crossbred gilts (Landrace, Large White, and Duroc breeds) were obtained at a local slaughterhouse and transported to the laboratory at 35°C. COCs were collected from follicles 2–6 mm in diameter in glucose-free, HEPES-buffered Tyrode medium [21]. Maturation culture was performed as reported previously [22]. In brief, COCs were cultured in six-well dishes (Research Institute for Functional Peptides, Yamagata, Japan) for 20–22 h in 100 μl of maturation medium, a modified North Carolina State University (NCSU)-37 solution [23] containing 10% (v/v) porcine follicular fluid, 0.6 mM cysteine, 50 μM β-mercaptoethanol, 1 mM dibutyl cAMP (dbcAMP), 10 IU/ml eCG, and 10 IU/ml hCG. They were subsequently cultured for 24 h in maturation medium without dbcAMP and hormones. Maturation culture was carried out at 39°C in an atmosphere of CO\textsubscript{2}, O\textsubscript{2}, and N\textsubscript{2} adjusted to 5%, 5%, and 90%, respectively (5% CO\textsubscript{2} and 5% O\textsubscript{2}). After maturation culture, cumulus cells were removed from the oocytes by treatment with 150 IU/ml hyaluronidase and gentle pipetting. Denuded oocytes with the first polar body were harvested under a stereomicroscope and used as \textit{in vitro}-matured oocytes.

\textbf{Preparation of sperm}

Epididymal spermatozoa were collected from a Landrace boar and cryopreserved [24, 25]. The spermatozoa were thawed in Medium 199 (with Earle's salts; Thermo Fisher Scientific, Waltham, MA, USA) adjusted to pH 7.8 and centrifuged at 600 × g for 2 min. For IVF, the sperm pellet was resuspended in Medium 199 (pH 7.8), preincubated at 38°C for 15 min in Medium199 (pH 7.8), and used for IVF. For ICSI, the sperm pellet was resuspended in PBS supplemented with 5 mg/ml BSA (PBS-BSA) and maintained at room temperature (25°C) until ICSI.

\textbf{Sperm injection procedure}

Two solutions were prepared for ICSI: (1) for oocytes: a modified NCSU-37 solution without glucose but supplemented with 0.17 mM sodium pyruvate, 2.73 mM sodium lactate (Kanto Chemical, Tokyo, Japan), 4 mg/ml BSA, 50 μM β-mercaptoethanol (IVC-PyrLac [22]) and 20 mM HEPES (Dojindo, Kumamoto, Japan), with the osmolality adjusted to 285 mOsm/kg (IVC-PyrLac-HEPES [26]); (2) for sperm: IVC-PyrLac-HEPES supplemented with 4% (w/v) polyvinyl pyrrolidone (PVP360) (IVC-PyrLac-HEPES-PVP). Spermatozoa were injected as described previously [26]. About 20 oocytes were transferred to a 20-μl drop of IVC-PyrLac-HEPES. The solution containing the mature oocytes was placed on the cover of a plastic dish (Falcon 35-1005; Becton Dickinson and Company, Franklin Lakes, NJ, USA). A small volume (0.5 μl) of the sperm suspension was then transferred to a 2-μl drop of IVC-PyrLac-HEPES-PVP, which had been placed close to the drops used for the oocytes. All drops were covered with paraffin oil (Parafin Liquid; Nacalai Tesque, Kyoto, Japan). The spermatozoa were immobilized and injected into the ooplasm using a piezo-actuated micromanipulator (PMAS-CT150; Tsuchiura, Japan). Sperm-injected oocytes were then cultured in IVC-PyrLac at 38.5°C, 5% CO\textsubscript{2}, and 5% O\textsubscript{2}.

\textbf{In vitro fertilization (IVF) procedure}

IVF was carried out according to the method described by Kikuchi \textit{et al.} [22]. The oocytes were washed three times in pig fertilization medium (Pig-FM [27]) and then placed in individual 80-μl drops of the same medium that had been covered with warm paraffin oil. Next, 10 μl of preincubation medium containing sperm was added to each fertilization drop to give a final concentration of 1 × 105 sperm/ml and then co-incubated for 3 h at 39°C under 5% CO\textsubscript{2} and 5% O\textsubscript{2}.

\textbf{In vitro culture (IVC)}

At 10 h after ICSI or insemination, oocytes were placed in 700 μl of IVC-PyrLac-HEPES and centrifuged at 10,000 × g at 37°C for 20 min in a microcentrifuge [28]. The centrifuged oocytes were examined for their content of PN and polar bodies under an inverted microscope. Normal fertilized oocytes that had two polar bodies and two PNs were cultured for 6 days.

Two types of IVC medium were prepared [22]. The first was IVC-PyrLac. The second contained 5.55 mM glucose (Wako Pure Chemical Industries, Osaka, Japan), as originally reported in the NCSU-37 medium, and supplemented with 4 mg/ml BSA and 50 mM β-mercaptoethanol (IVC-Glu). For the first 2 days, IVC-PyrLac was used. The medium was changed once, to IVC-Glu, on the second day and this medium was used for subsequent culture for 4 days. The IVC was carried out at 38.5°C, 5% CO\textsubscript{2}, and 5% O\textsubscript{2}.

\textbf{Assessment of oocyte activation, normal fertilization, and embryonic development}

The oocytes and cultured embryos were mounted on glass slides and fixed in 25% (v/v) acetic acid in ethanol, stained with 1% (w/v) orcein in 45% (v/v) acetic acid, and observed under a phase-contrast microscope. The nuclear status of the oocytes was observed at 10 h.
after injection or insemination and was categorized into three states: (1) metaphase-II: M-II; (2) transitional period, in which oocytes had resumed meiosis but before any PN formation, i.e., all in anaphase-II, telophase-II, or metaphase-III; and (3) formation of more than 1 PN (1 PN < 2) [29]. We defined normal fertilization as a zygote with two polar bodies and two PNs. The rate of blastocyst formation and the mean number of cells per blastocyst were also examined on Day 6 (the day of injection or insemination was defined as Day 0).

Measurement of intracellular calcium

After sperm injection or insemination, each oocyte was loaded with 50 μg Fura-PE3 (Santa Cruz Biotechnology, Dallas, Texas, USA) supplemented with 0.02% Pluronic F-127 (Thermo Fisher Scientific) at 38°C for 30 min. The Fura-PE3 prelabeled oocytes were monitored in 50-μl drops of PyrLac-HEPES without BSA on a thin glass coverslip (Electron Microscopy Sciences, Hatfield, PA, USA) fitted into a stainless steel well, covered with paraffin oil. The Ca²⁺ imaging was performed using an inverted microscope and AQUACOSMOS (Hamamatsu Photonics, Hamamatsu, Japan). Measurements were taken every minute and are reported as the ratios of 340/380 nm fluorescence. The amplitude of Ca²⁺ rise was calculated by subtracting the fluorescence ratio before Ca²⁺ rise from that in the peak of Ca²⁺ rise. After measurement, PN formation in each oocyte was observed individually by aceto-orcein staining, and the Ca²⁺ response in normal fertilized oocytes was determined.

Statistical analysis

All percentage data were subjected to arcsine transformation [30] before statistical analysis. The data for activated oocytes, blastocyst formation, and number of cells per blastocyst were analyzed by two-way analysis of variance (ANOVA) using the Statcel 2 program (OMS Publishing, Saitama, Japan). Furthermore, the data for calcium measurement were analyzed by ANOVA and Tukey’s multiple range test. Differences were considered significant at P < 0.05. All data were expressed as mean ± SEM. Experiments were repeated more than three times.

Results

Failure of oocyte activation after ICSI

The nuclear status of in vivo- and in vitro-matured oocytes after IVF and ICSI (vivo-ICSI, vitro-ICSI, vivo-IVF, and vitro-IVF, respectively) was investigated (Fig. 1, Table 1). Regardless of their source, more than half of the oocytes after ICSI remained at the M-II stage (vivo-ICSI and vitro-ICSI, 51.7 ± 3.8% and 56.4 ± 5.2%, respectively). In contrast, all oocytes in the IVF groups resumed the second meiosis. Statistical analysis revealed that the method of fertilization significantly affected the resumption of second meiosis (P < 0.001). The proportions of oocytes showing formation of more than 1 PN after IVF (vivo-IVF and vitro-IVF, 100% and 88.2 ± 6.4%, respectively) were higher than those after ICSI (vivo-ICSI and vitro-ICSI, 44.8 ± 6.5% and 28.2 ± 5.1%, respectively). The differences in the two effects, oocyte source and method of fertilization, were also statistically significant (P < 0.01); the F-value for the fertilization method was particularly high, meaning that it had a more important effect on PN formation. In addition, in vivo-matured oocytes supported PN formation to a greater extent than in vitro-matured oocytes. There were no significant inter-group differences in the proportions of oocytes in the transitional period.

Similarity of Ca²⁺ oscillation patterns in oocytes after ICSI and IVF

The frequency, amplitude and interval of Ca²⁺ oscillations in normal fertilized oocytes after IVF or ICSI were investigated (Table 2). The typical patterns of Ca²⁺ oscillation in each treated oocyte are shown in Fig. 2. We consider that the pattern of Ca²⁺ oscillation in vivo-matured oocytes, penetrated and activated by sperm, is closest to that in the in vivo “physiologically fertilized” oocytes. Therefore, the pattern of Ca²⁺ oscillation such as number, interval, and amplitude of Ca²⁺ rises in the vivo-IVF group was set as the basis for comparison among the patterns of Ca²⁺ oscillation in each group. The pattern from the vivo-IVF group was characterized as a low frequency of oscillation (1–2 times/4 h), a long interval between each Ca²⁺ rise (156 ± 19.7 min), and a rise in Ca²⁺ level of 0.97 ± 0.07. It seems that this Ca²⁺ oscillation pattern is typical in pigs. The vitro-IVF and vivo-ICSI groups also showed similar frequencies, amplitudes, and intervals of Ca²⁺ oscillation compared with the
vivo-IVF group because there was no significant difference among those categories. The vitro-ICSI also showed a low frequency of oscillation (1–4 times/4 h) and a rise in Ca\(^{2+}\) level of 0.92 ± 0.06; however, the interval between each Ca\(^{2+}\) rise in vitro-matured oocytes after ICSI was shorter (37.1 ± 6.6 min) than that in the other groups. Nevertheless, more than half of the oocytes with Ca\(^{2+}\) oscillation in the vitro-ICSI group showed a single Ca\(^{2+}\) rise like the other groups. These data indicated that the sperm-injected oocytes and in vitro-matured oocytes are able to develop a Ca\(^{2+}\) oscillation pattern which is similar to that of in vivo-matured oocytes after IVF. Yet, most of the oocytes that failed to undergo PN formation after ICSI showed no Ca\(^{2+}\) signal. Lastly, in a few oocytes that remained at the M-II stage, a low amplitude Ca\(^{2+}\) oscillation was observed (Fig. 3, Table 3).

Developmental ability of normal fertilized oocytes after ICSI and IVF

We compared the ability of embryos to develop into blastocysts, and the mean number of cells per blastocyst, after ICSI or IVF (Fig. 4, Table 4). The proportions of embryos undergoing blastocyst formation in the vivo-IVF, vivo-ICSI, vitro-IVF, and vitro-ICSI groups were 80.8 ± 7.1%, 85.7 ± 6.3%, 71.9 ± 6.2%, and 65.0 ± 10.9%, respectively. Statistical analysis revealed that blastocyst formation was affected by the oocyte source, and not by the fertilization method. The mean number of cells per blastocyst in the vivo-IVF, vivo-ICSI, vitro-IVF, and vitro-ICSI groups were 91.8 ± 7.0, 65.6 ± 6.7, 67.1 ± 5.6, and 54.3 ± 7.0, respectively. Statistical analysis revealed that the differences between the two effects were significant (P < 0.05). These data suggested that in vitro-matured embryos were inferior to in vivo-matured embryos in terms of developmental ability and embryo quality. Fertilization by ICSI also had a negative effect on embryo quality.

Discussion

The low efficiency of in vitro embryo production by ICSI in pigs has been an unresolved problem. We hypothesized that in vitro-matured oocytes or sperm-injected oocytes were unable to generate the pattern of Ca\(^{2+}\) oscillation in “physiological fertilization", and this might

Table 2. Ca\(^{2+}\) responses in normal fertilized* pig oocytes after IVF or ICSI

Source of oocytes	Fertilization methods	Total no. of oocytes	No. of 2PB2PN	No. of oocytes with Ca\(^{2+}\) signal	Ca\(^{2+}\) rise number	No. of oocytes (\%) **	Amplitude of Ca\(^{2+}\) rise **	Ca\(^{2+}\) rise interval (min) **
In vivo ICSI	41	17	9	1	5 (55.6 ± 17.4)	0.78 ± 0.07	120 ± 23.7	
In vivo ICSI	97	32	18	1	11 (61.1 ± 13.7)	0.92 ± 0.06	37.1 ± 6.6	
In vivo IVF	56	17	7	1	4 (22.2 ± 11.3)	0.97 ± 0.07	156 ± 19.7	
In vitro IVF	117	30	15	1	11 (73.3 ± 12.4)	0.9 ± 0.06	106.5 ± 21.4	

* Oocytes formed two polar bodies and two pronuclei. ** Mean ± SEM for oocytes that exhibited Ca\(^{2+}\) oscillations. *a*–b* Values with different superscripts within same column are significantly different (P < 0.01).

Fig. 2. The typical pattern of intracellular Ca\(^{2+}\) responses in 2PB2PN formed pig oocytes, matured in vivo or in vitro after IVF and ICSI. vivo- or vitro-ICSI: in vivo- or in vitro-matured oocytes injected with sperm, vivo- or vitro-IVF: in vivo- or in vitro-matured oocytes inseminated. Data show the ratiometric value of 340/380 nm fluorescence over time.
lead to failure of oocyte activation, fertilization, and embryonic development. The pattern of Ca2+ oscillation has been suggested to play an important role in the completion of oocyte activation events, fertilization, and embryonic development [17, 18, 31]. Contrary to our expectations, the pattern of Ca2+ oscillation was not affected by two factors (ICSI and in vitro matured oocyte) because oocytes in the vivo-ICSI and vitro-IVF groups showed a similar pattern of Ca2+ oscillation compared with that of the vivo-IVF group (Fig. 2, Table 2). Some of the in vitro-matured oocytes after ICSI showed a short interval of Ca2+ rise (Table 2). Considering the fact that the pattern was observed in normal fertilized in vitro-matured oocytes after ICSI, the short interval of Ca2+ rise might not have caused the failure of oocyte activation. However, in the present study, whether the short interval of Ca2+ rise shows negative effects on embryonic development is not yet clear.

Half of the in vivo- and in vitro-matured oocytes injected with sperm remained at the M-II stage (Fig. 1) and most of them exhibited no Ca2+ signals (Fig. 3, Table 3). The membranes of pig sperm can be damaged during the freezing and thawing processes associated with cryopreservation [32], and such damage can lead to leakage of intracellular PLC\zeta [29]. Indeed, immediately after thawing, more than half of the pig sperm were found to have lost PLC\zeta immunoreactivity, leading to failure of oocyte activation after ICSI [33]. Use of sperm with appropriate levels of PLC\zeta for ICSI actually increases the efficiency of oocyte activation and normal fertilization [33]. Our findings suggest that the primary reason for failure of oocyte activation after ICSI may be a deficit, rather than a difference, in the pattern of Ca2+ oscillation. Some oocytes that failed to become activated showed small-amplitude Ca2+ oscillation (Fig. 3). Sperm containing an insufficient quantity of PLC\zeta probably induce this kind of small-amplitude Ca2+ oscillation. Even if the level of intracellular Ca2+ increases, Ca2+ signals below a minimum threshold may not be able to induce oocyte activation.

The frequency of Ca2+ oscillation induced by one sperm in a single oocyte is much lower in pig than in hamster (20–30 times/h [34]) and mouse (5–30 times/h [35–37]). Considering that injection of pig sperm into mouse oocytes triggers an extremely high frequency of Ca2+ oscillation [7], the activity of PLC\zeta in pig may be higher than that in mouse. Thus, it appears that the sensitivity of the IP\textsubscript{3}Rs to IP\textsubscript{3} or the speed of Ca2+ refilling of ER varies among species.

Use of in vitro-matured oocytes led to a low efficiency of blastocyst formation and a decline in the number of cells per blastocyst (Fig. 4, Table 4). It has been reported that the level of glutathione (GSH) in in vitro-matured oocytes is lower than that in in vivo-matured oocytes [19]. GSH is one of the most important antioxidants, and GSH levels affect oocyte maturation, fertilization, embryonic development, and quality [38–40]. Therefore, increasing the level of GSH in in vitro-matured oocytes may improve the efficiency of embryo production. Moreover, fertilization by ICSI caused no decline in developmental ability (Table 4). Thus, if oocytes show normal

Source of oocytes	No. of oocytes failed in PN formation	No. of oocytes with Ca2+ signal	Ca2+ rise number	No. of oocytes	Amplitude of Ca2+ rise *	Ca2+ rise interval (min)*
in vivo	22	3	1	3	0.49 ± 0.16	—
			2	0	—	—
			3 <	0	—	—
in vitro	50	5	1	3	0.51 ± 0.06	49.6 ± 12.06
			2	0	—	—
			3 <	2	—	—

* Mean ± SEM for oocytes that exhibited Ca2+ oscillations.
fertilization after ICSI, they appear to develop better. However, the number of cells per blastocyst after ICSI was lower than that after IVF (Table 4). It has been reported that mouse embryos activated without Ca^{2+} oscillation have a smaller number of inner mass cells and a higher proportion of apoptotic cells than embryos with Ca^{2+} oscillation [41]. Therefore, we considered that the small number of cells per blastocyst in ICSI-derived pig embryos might relate to a lack of Ca^{2+} oscillation. However, in this study, most of the normally fertilized oocytes after ICSI exhibited a pattern of Ca^{2+} oscillation similar to that after IVF. Thus, the number of cells per blastocyst appears to be influenced by other factors, such as mitochondrial function and expression of genes associated with apoptosis [42, 43]. Further studies will be needed to determine the reason for the small number of cells in ICSI-derived embryos.

In conclusion, in vitro- and in vivo-matured oocytes after ICSI were able to mount a Ca^{2+} oscillation similar to that of in vivo- and in vitro-matured oocytes after IVF. The main cause of oocyte activation failure in some oocytes after ICSI appeared to be a lack of Ca^{2+} oscillation, rather than a difference in the pattern of Ca^{2+} oscillation. Furthermore, normal fertilized oocytes after ICSI showed in vitro developmental ability equivalent to those after IVF.

Acknowledgments

We would like to thank Ms Iijima K for technical assistance. This study was supported in part by a Grant-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science (JSPS) to MN (26850172).

Fig. 4. Effects of the source of oocytes (in vivo- or in vitro-matured) and the fertilization method (IVF or ICSI) on blastocyst formation (a) and number of cells per blastocyst (b). Data are presented as mean ± SEM for more than three separate experiments.

Table 4. Two-way ANOVA of the rate of blastocyst formation and number of cells per blastocyst

Source	DF^a	F-value	Blastocyst formation	No. of cells per blastocyst
Source of oocyte	1	8.62204 *	5.61664 *	
Fertilization method	1	0.73464	6.80907 *	

*^a^ degree of freedom. ^b^ in vivo- or in vitro-matured oocytes. ^c^ IVF or ICSI. * P < 0.05.

References

1. Miyazaki S, Ito M. Calcium signals for egg activation in mammals. J Pharmacol Sci 2006; 100: 545-552. [Medline] [CrossRef]
2. Saunders CM, Larman MG, Parrington J, Cox LJ, Royse J, Blayney LM, Swann K, Lai FA. PLCζ: a sperm-specific trigger of Ca^{2+} oscillations in eggs and embryo development. Development 2002; 129: 3533-3544. [Medline]
3. Ito M, Shikano T, Oda S, Horiguchi T, Tanimoto S, Awaji T, Mitani H, Miyazaki S. Difference in Ca^{2+} oscillation-inducing activity and nuclear translocation ability of PLCζ1, an egg-activating sperm factor candidate, between mouse, rat, human, and medaka fish. Biol Reprod 2005; 73: 1901-1909. [Medline] [CrossRef]
4. Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA. Sperm phospholipase Czeet from humans and cyamogolus monkeys triggers Ca^{2+} oscillations, activation and development of mouse oocytes. Reproduction 2002; 124: 611–623. [Medline] [CrossRef]
5. Malecüt C, Knott JG, He C, Wainwright T, Parsy JB, Rohl JM, Fissore RA. Fertilization and inositol 1,4,5-trisphosphate (IP3)-induced calcium release in type-1 inositol 1,4,5-trisphosphate receptor down-regulated bovine eggs. Biol Reprod 2005; 73: 2-13. [Medline] [CrossRef]
6. Ross PJ, Beyhan Z, Jager AE, Yoon SV, Malecüt C, Schellander K, Fissore RA, Cibelli JB. Parthenogenetic activation of bovine oocytes using bovine and murine phospholipase C zeta. BMC Dev Biol 2008; 8: 16. [Medline] [CrossRef]
7. Kurokawa M, Sato K, Wu H, He C, Malecüt C, Black SJ, Fukami K, Fissore RA. Functional, biochemical, and chromatographic characterization of the complete [Ca^{2+}]-oscillation-inducing activity of porcine sperm. Dev Biol 2005; 285: 376-392. [Medline] [CrossRef]
8. Yoneda A, Kashima M, Yoshida S, Teraa K, Nakagawa S, Sakamoto A, Hayakawa K, Suzuki K, Ueda J, Watanabe T. Molecular cloning, testicular postnatal expression, and oocyte-activating potential of porcine phospholipase Czeta. Reproduction 2006; 132: 393–401. [Medline] [CrossRef]
9. Bedford-Guasa SJ, McPartlin LA, Xie J, Westmiller SL, Buffone MG, Roberson MS. Molecular cloning and characterization of phospholipase Cζ in equine sperm and tests reveals species-specific differences in expression of catalytically active protein. Biol Reprod 2011; 85: 78–88. [Medline] [CrossRef]
10. Sato K, Wakai T, Seita Y, Takizawa A, Fissore RA, Ito J, Kashiwazaki N. Molecular characteristics of horse phospholipase C zeta (PLCζ). Anim Sci J 2013; 84: 359–368. [Medline] [CrossRef]
Ca²⁺ Oscillation in Porcine ICSI Oocytes

11. Coward K, Ponting CP, Zhang N, Young C, Huang CJ, Chou CM, Kashir J, Fissore RA, Parrington J. Identification and functional analysis of an ovarian form of the egg activation factor phospholipase Cζ (PLCζ) in pufferfish. Mol Reprod Dev 2011; 78: 48–56. [Medline] [CrossRef]

12. Coward K, Ponting CP, Chang HY, Hibbitt O, Savolainen P, Jones KT, Parrington J. Phospholipase Czeta, the trigger of egg activation in mammals, is present in a non-mammalian species. Reproduction 2005; 130: 157–163. [Medline] [CrossRef]

13. Mizunuma S, Takagi S, Ono T, Atsumi Y, Tsukada A, Saito N, Shimada K. Phospholipase Czeta mRNA expression and its potency during spermatogenesis for activation of quail oocyte as a sperm factor. Mol Reprod Dev 2009; 76: 1200–1207. [Medline] [CrossRef]

14. Miyazaki S, Yuzaki M, Nakada K, Shirakawa H, Nakashima S, Nakade S, Mikohihbka K. Block of Ca²⁺ wave and Ca²⁺ oscillation by antibody to the inositol 1,4,5-trisphosphate receptor in fertilized hamster eggs. Science 1992; 257: 251–255. [Medline] [CrossRef]

15. Tesarik J, Sousa M. Comparison of Ca²⁺ responses in human oocytes fertilized by subzonal insemination and by intracytoplasmic sperm injection. Fertil Steril 1994; 62: 1197–1204. [Medline] [CrossRef]

16. Schultz RM, Kopf GS. Molecular basis of mammalian egg activation. Curr Top Dev Biol 1995; 30: 21–62. [Medline] [CrossRef]

17. Ducibella T, Huneau D, Angelichio E, Xu Z, Schultz RM, Kopf GS, Fissore R, Madoux S, Ozil JP. Egg-to-embryo transition is driven by differential responses in Ca²⁺ oscillation number. Dev Biol 2002; 250: 280–291. [Medline] [CrossRef]

18. Ozil JP, Banrezes B, Töth S, Pan H, Schultz RM. Ca²⁺ oscillatory pattern in fertilized mouse eggs affects gene expression and development to term. Dev Biol 2006; 300: 534–544. [Medline] [CrossRef]

19. Brad AM, Bornmann CL, Swain JE, Durkin RE, Johnson AE, Clifford AL, Krissher RL. Glutathione and adenosine triphosphate content of in vivo and in vitro matured porcine oocytes. Mol Reprod Dev 2003; 64: 492–498. [Medline] [CrossRef]

20. Mann JS, Loughter KM, Mehlmann LM. Reorganization of the endoplasmic reticulum and development of Ca²⁺ release mechanisms during meiotic maturation of human oocytes. Biol Reprod 2010; 83: 578–583. [Medline] [CrossRef]

21. Bavister BD, Leibfried ML, Lieberman G. Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod 1983; 28: 235–247. [Medline] [CrossRef]

22. Kikuchi K, Onishi A, Kashizazaki N, Iwamoto J, Noguchi J, Kaneko H, Akita T, Nagal T. Successful piglet production after transfer of blastocysts produced by a modified in vitro system. Biol Reprod 2002; 66: 1033–1041. [Medline] [CrossRef]

23. Petters RM, Wells KD. Culture of pig embryos. J Reprod Fertil Suppl 1993; 48: 61–73. [Medline] [CrossRef]

24. Kikuchi K, Nagal T, Kashizazaki N, Ikeda H, Noguchi J, Shimada A, Solay E, Kaneko H. Cryopreservation and ensuing in vitro fertilization ability of boar spermatozoa from epididymides stored at 4°C. Theriogenology 1998; 50: 615–623. [Medline] [CrossRef]

25. Ikeda H, Kikuchi K, Noguchi J, Takeda H, Shimada A, Mizokami T, Kaneko H. Effect of preincubation of cryopreserved porcine epididymal sperm. Theriogenology 2002; 57: 1309–1318. [Medline] [CrossRef]

26. Nakai M, Kashizazaki N, Takizawa A, Hayashi Y, Nakao-Bakase A, Fuchimoto D, Noguchi J, Kaneko H, Shinohara K, Kikuchi K. Viable piglets generated from porcine oocytes matured in vitro and fertilized by intracytoplasmic sperm injection head injection. Biol Reprod 2003; 68: 1003–1008. [Medline] [CrossRef]

27. Suzuki K, Asano A, Eriksson B, Niwa K, Nagal T, Rodriguez-Martinez H. Capacitation status and in vitro fertility of boar spermatozoa: effects of seminal plasma, cumulus-oocyte complexes-conditioned medium and hyaluronan. Int J Androl 2002; 25: 84–93. [Medline] [CrossRef]

28. Sonmii T, Graza M, Noguchi J, Kaneko H, Karja NWK, Fahrudin M, Nakai M, Maedomari N, Dinyés A, Nagal T, Kikuchi K. In vitro development of polyspermic porcine oocytes: Relationship between early fragmentation and excessive number of penetrating spermatozoa. Anim Reprod Sci 2008; 107: 131–147. [Medline] [CrossRef]

29. Nakai M, Ito J, Sato K, Noguchi J, Kaneko H, Kashizazaki N, Kikuchi K. Pre-treatment of sperm reduces success of ICSI in the pig. Reproduction 2011; 142: 285–293. [CrossRef]

30. Snedecor GW, Cochran WG. 1989 Statistical Methods, edn 8, pp273–296: The Iowa State University Press.

31. Bos-Mikich A, Whittingham DG, Jones KT. Meiotic and mitotic Ca²⁺ oscillations affect cell composition in resulting blastocysts. Dev Biol 1997; 182: 172–179. [Medline] [CrossRef]

32. Medrano A, Watson PF, Holt VW. Importance of cooling rate and animal variability for boar sperm cryopreservation: insights from the cryomicroscope. Reproduction 2002; 123: 315–322. [Medline] [CrossRef]

33. Nakai M, Suzuki S, Ito J, Fuchimoto D, Sembon S, Noguchi J, Onishi A, Kashizazaki N, Kikuchi K. Efficient pig ICSI using Percoll-separated spermatozoa; evidence for the essential role of phospholipase η in ICSI success. J Reprod Dev 2016; 62: 639–643. [CrossRef]

34. Miyazaki S, Hashimoto N, Yoshimoto Y, Kishimoto T, Igunsa Y, Hiramoto Y. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev Biol 1986; 118: 259–267. [Medline] [CrossRef]

35. Klime JT, Kline D. Regulation of intracellular calcium in the mouse egg: evidence for inositol triphosphate-induced calcium release, but not calcium-induced calcium release. Biol Reprod 1994; 50: 193–203. [Medline] [CrossRef]

36. Klime D, Klime JT. Reptitive calcium transients and the role of calcium in oocytes and in cell cycle activation in the mouse egg. Dev Biol 1992; 149: 80–89. [Medline] [CrossRef]

37. Nakano Y, Shirakawa H, Mitsuhashi N, Kubwaba Y, Miyazaki S. Spatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon. Mol Hum Reprod 1997; 3: 1087–1093. [Medline] [CrossRef]

38. de Matos DG, Furrus CC. The importance of having high glutathione (GSH) level after bovine in vitro maturation on embryo-development effect of beta-mercaptoethanol, cysteine and cystine. Theriogenology 2000; 53: 761–771. [Medline] [CrossRef]

39. Kishida R, Lee ES, Fukui Y. In vitro maturation of porcine oocytes using a defined medium and developmental capacity after intracytoplasmic sperm injection. Theriogenology 2004; 62: 1663–1676. [Medline] [CrossRef]

40. Jeon Y, Kwak SS, Cheong SA, Seong YH, Hyun SH. Effect of trans-c-viniferin on in vitro porcine oocyte maturation and subsequent developmental competence in preimplantation embryos. J Vet Med Sci 2013; 75: 1277–1286. [Medline] [CrossRef]

41. Rogers NT, Halet G, Piao Y, Carroll J, Ko MSH, Swann K. The absence of a Ca²⁺ signal during mouse egg activation can affect parthenogenetic preimplantation development, gene expression patterns, and blastocyst quality. Reproduction 2006; 132: 45–57. [Medline] [CrossRef]

42. Li XX, Lee DS, Kim KJ, Lee JH, Kim EY, Park JY, Kim MK. Leptin and nonessential amino acids enhance porcine preimplantation embryo development in vitro by intracytoplasmic sperm injection. Theriogenology 2013; 79: 291–298. [Medline] [CrossRef]

43. Schatten H, Sun QY, Prather R. The impact of mitochondrial function/dysfunction on IVF and new treatment possibilities for infertility. Reprod Biol Endocrinol 2014; 12: 111. [Medline] [CrossRef]