An Insight into Antioxidant and Antimicrobial Activities of Ethnotherapeutically Important Trans Himalayan Medicinal Plants: A Review

Anupama Sharma Avasthi**, Navkiran Kaur*, Shivani Sharda* and Sabari Ghosal*

*Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida, 201313, India.

Authors' contributions

This work was carried out in collaboration among all authors. Author ASA designed the study and collected the relevant material. Author NK analyzed the collected literature and wrote the first draft. Author SS managed the analyses of the study. Author SG finally reviewed and critically drafted the final draft. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i36A31942

Editor(s):
(1) Dr. Sawadogo Wamtinga Richard, Ministry of Higher Education, Scientific Research and Innovation, Burkina Faso.

Reviewer(s):
(1) Sima Obiang Cédric, University of Science and Technology of Masuku, Gabon.
(2) Iris Miraballes- Martínez, Universidad de la República, Uruguay.

Complete Peer review History: https://www.sdiarticle4.com/review-history/70139

Received 25 April 2021
Accepted 30 June 2021
Published 10 July 2021

ABSTRACT

The high altitude of the Himalayan cold desert represents a valuable habitat of natural resources. The extreme climatic condition manifested by intense mutagenic UV-radiation, physiological drought, desiccation and strong winds, makes the survival of plants really difficult. As a consequence of this atmospheric stressor, the plants produce unique metabolites which play a preventive role in intrinsic mechanism of sustenance. Many plant species of this region have been investigated in search of novel antioxidants and antimicrobials. Plants synthesize several antioxidants that aid in antioxidant defense system, thereby protecting plants against damage caused by active ROS. These compounds include chlorophyll derivatives, alkaloids, essential oils, phytosterols, phenolics and polyphenolics. Some of the antioxidants that have been isolated from plants include curcumin, quercetin, ascorbic acid, resveratrol amongst many other compounds. Additionally, the emergence of resistance to multiple antimicrobial agents has become a major threat to public health. Hence, fresh efforts towards new drug identification and development are greatly needed. Plants have long been used in traditional Indian medicine for numerous therapeutic
benefits and low toxicity. Considering the growing interest in quest for search of plant based antimicrobials and antioxidants; an effort has been carried to systematically record the antioxidants and antimicrobial potential of plants of Himalayan region.

Keywords: Trans-Himalayan region; secondary metabolites; antioxidant; antimicrobial; phenolics; flavonoids.

1. INTRODUCTION

The northern part of India, especially Himalayan terrain is a hot spot of medicinal plants. In particular, Indian Trans-Himalayan mountain range supports low vegetation cover due to harsh climatic conditions along with short growing season. More than 8000 species of angiosperms, 44 species of gymnosperms and 600 species of pteridophytes have been reported from the Indian Himalayas, and of these, 1748 species are known for their therapeutic potential [1]. The high altitudes of the Himalayan cold desert represent a valuable habitat of natural resources. The extreme climatic condition manifested by intense mutagenic UV-radiation, physiological drought, desiccation and strong winds, makes the survival of plants really difficult. As a consequence of this atmospheric stressor, the plants produce unique metabolites which play a preventive role in intrinsic mechanism of sustenance [2]. However, high altitude medicinal plants (HAMP) are amongst the least well studied organisms of terrestrial ecosystems. This is largely due to misconceptions about poor biodiversity, small number of individuals per species, reduced surface inaccessibility, and relative simplicity of these habitats. These plants are capable of growing successfully at altitudes surpassing 5000 m mainly because of specialized physiological processes that include synthesis of special lipids which alter the flexibility and water permeability of cell membranes, anti-freeze carbohydrates and other unique secondary metabolites [3,4]. These conditions induce the biosynthesis of UV protection and free radical scavenging compounds in these plants.

From this Trans Himalayan region, 414 species of higher plants covering 56 families and 202 genera have been recorded. Almost a quarter of the recorded species (102 species) are reported to be used in traditional system of medicine whereas over 80 species are largely associated with cultivated fields and human habitation. These also include 49 species of crop plants like barley and buckwheat [4]. The local medical practitioners of this region, Amchis, use local herbs either as extract or sometimes in combination with salts or minerals and these concoctions are well acclaimed for their

Fig. 1. Map of Trans Himalayan region of India
medicinal values for many disorders like memory loss, osteoporosis, age related disorders, AIDS and cancer [5]. This traditional knowledge is not only useful for local health care, but also for the conservation and sustainable use of medicinal plants. This knowledge has been slowly diminishing due to the changing socio-economic circumstances of the region, but there has been a renewal and a revitalization of this ancient and time-tested tradition of healing in recent times. Considering the growing interest in quest for search of plant based antimicrobials and antioxidants; an effort has been carried to systematically record the antioxidants and antimicrobial potential of plants of this Trans Himalayan region.

2. METHODOLOGY

A systematic web search analysis and review was conducted on research literature pertaining to medicinal plants from Trans Himalayan region of India with reported biological activities. The search engines used for retrieving published data (from 2000 to 2020) include universally recognized databases, specifically, Scopus, PubMed, ScienceDirect, and Google Scholar. The search strategy was to retrieve and download published literature dealing with medicinal plants and compounds having antibacterial and antioxidant activities. Specific keywords such as “Trans Himalyan”, “antioxidant”, “antimicrobial” and “in vitro or in vivo activity”. Studies reporting in vitro/in vivo efficacy of medicinal plants were included in this review.

3. PLANTS REPORTED WITH ANTIOXIDANT ACTIVITY

It is well established that plants have an innate ability to synthesize wide variety of non-enzymatic antioxidants which are capable of mitigating reactive oxygen species (ROS) induced oxidative damage. These antioxidants can delay or prevent the oxidation of various intracellular oxidizable substrates even at significantly lower concentrations than that of the substrate. It is believed that two-thirds of the available plants on this earth have at least some medicinal importance, and majority of them possess significant antioxidant potential [6]. The interest in the exogenous plant derived antioxidants was first aroused by the discovery and subsequent isolation of Vitamin C (ascorbic acid) from plants. Since then, the antioxidant potential of plants has received a boundless attention because increased oxidative stress has been recognised as a major causative factor in the development and progression of many life-threatening disorders, including neurodegenerative and cardiovascular diseases [7]. This antioxidant activity is mostly credited to the presence of phenolic acids, phenolic diterpenes, flavonoids and volatile oils as secondary metabolites in plants. Some plant pigments like anthocyanin also possess antioxidant activity [8]. For each of these metabolites, a distinct mechanism of action is followed which may include decreasing localized oxygen concentration in the tissues, preventing chain initiation by scavenging radicals, disintegrating lipid peroxides to peroxyl and alkoxyl radicals; decomposing peroxides by altering them to non-radical products or by terminating the free radical propagation to prevent sustained hydrogen abstraction [9].

The most effective antioxidants are those which can interrupt free radical chain reactions, which starts under various stress conditions. They usually contain phenolic or aromatic rings and can donate hydrogen atom to the free radicals formed during oxidation (Fig. 2). The freshly formed phenolic radical intermediates are stabilized by resonance within the aromatic ring [10].

![Stable phenoxyl radical](image)

Fig. 2. Antioxidant activity of phenolic compounds
Fig. 3. Mechanism of antioxidant activity of flavonoids

Phenols (ArOH) donate H to scavenge the reactive free radical. They in turn gets converted into phenoxyl radical (ArO·). The phenoxyl radical is stabilised by resonance.

Phenolic compounds are also capable of suppressing lipid peroxidation by recycling other endogenous antioxidant Vitamin E (a-tocopherol). They can also bind to pro-oxidant metals, such as iron or copper and hence prevent the formation of free radicals [11]. They are also reported to induce synthesis of antioxidant proteins including antioxidant enzymes like SOD and CAT [12].

Similarly, flavonoids can also donate hydrogen and in turn forms stable flavonoid semiquinone radicals, which may later be scavenged by intracellular antioxidant glutathione (GSH, reduced state). The ratio of intracellular reduced glutathione to oxidized glutathione is often used measure of cellular oxidative stress. Glutathione acts as an electron donor to reduce the disulfide bonds formed within cytoplasmic proteins to cysteines. In the process, glutathione is converted to its oxidized form, glutathione disulfide (GSSG, oxidized state) [13] as depicted in Fig. 3. Once oxidized, the GSSG can be reduced back to GSH by another enzyme GR (glutathione reductase) that uses NADPH as an electron donor.

A flavonoid compound donates H to scavenge free radicals and gets converted to a stable flavonoid free radical. This radical is scavenged by intracellular non-enzymatic antioxidant glutathione (GSH).

Since flavonoids contain multiple hydroxyl groups, they are considered more effective antioxidants. The presence of the ortho- 3, 4-dihydroxy moiety further enhances the antioxidant activity of these secondary metabolites [14]. Additionally, flavones and some flavanones can favourably bind to prooxidant metals thus rendering them ineffective [15]. Apart from number and position of OH groups, it is the ability to partition between the lipid and hydrophilic phase also plays an important role in the bioactivity of these compounds. Compounds that are capable of correctly orienting at the interphase of oil droplet in emulsion can act as a better inhibitor of ROS induced lipid peroxidation [16].

4. PLANTS REPORTED WITH ANTIMICROBIAL ACTIVITY

Beside antioxidant potential plant secondary metabolites also exhibit multiple pharmacological activities including anti-inflammatory, antimicrobial, anti-cancer etc. Also, they play significant role in self-defence and ecology [17]. Bacterial species also have genetic ability to acquire and subsequently transfer resistance to subsequent generations against currently available antibiotics/antibacterial agents, thus, becoming multi-resistant to the commercially available medications [18]. Hence, as a substitute to commercially used antimicrobial drugs, bioprospecting of plants as a source for new and safe antimicrobials is now being explored globally. Antimicrobial properties in plants are also credited to the presence of bioactive secondary metabolites. Plant derived antimicrobial peptides are also a part of plant defense systems and these are analogous to human antimicrobial peptides in their structure and function [19]. The mode of action of these
natural plant derived antimicrobials include disintegration of cytoplasmic membrane, destabilization of the mitochondrial proton motive force (PMF), disruption of electron flow and ATP based active transport and coagulation of the cellular content [20].

Here, we present a few important classes of plant derived secondary metabolites with well-established antimicrobial potential for example quinones, alkaloids, flavonoids, coumarins, essential oils, tannins, lignans, glucosinolates and thionins.

Quinones are a class of compounds which possess fully conjugated cyclic dione structure, example benzoquinones. They are capable of binding to the bacterial cell wall and also inhibit key bacterial enzymes [21]. Lawsonia inermis, commonly known as henna, also contains quinones exhibiting antibacterial activity against Pseudomonas aeruginosa [22]. Quinone rich extract of Hypericum perforatum, has demonstrated general antimicrobial properties and has also been found to be active against meticillin-resistant and meticillin-sensitive Staphylococcus [23].

Another group of plant metabolites are alkaloids which contain a basic nitrogen atom. This group also comprises of some other related compounds which have neutral or weakly acidic properties. Their occurrence is common in angiosperms. The pharmacological importance of alkaloids was first recognized with the isolation of morphine from Papaver somniferum. Since then, many medicinally important alkaloids have been reported viz., berberine, caffeine, quinine, codeine, strychnine, ephedrine, emetine and narcotine. Many plant species like Berberis spp., Cortex phellodendri and Rhizoma coptidis have shown significant antimicrobial activity due to the presence of high concentrations of alkaloids in their extracts [24]. However, these compounds are not frequently used in folk medicine due to their associated toxic effects at higher concentrations.

Chemical structure of flavonoids can be abbreviated as C6-C3-C6 containing two phenyl rings and one heterocyclic ring. Flavonoids are widely distributed in plant kingdom [8]. They are also abundant in many plant products like honey, fruits, seeds, vegetables, wines and tea. Beside antioxidant activity, a number of flavonoids also possess antimicrobial, antiviral, antiallergic and anti-inflammatory properties [25]. Few flavonoids have shown significant antifungal activity against Botrytis cinerea and Aspergillus flavus [26]. Flavonoids from Galium fissurense, Viscum album ssp. album and Cirsis hystoecicum have been reported to have antibacterial activity against extended-spectrum β-lactamase, producing multidrug-resistant bacteria Klebsiella pneumoniae [27]. These compounds are able to bind to bacterial cell wall causing membrane disruption of the pathogenic organism [21].

Coumarins are phenolic secondary metabolites of benzopyrone chemical class, containing fused benzene and an alpha pyrone ring [28]. Extract of Ferulago campestris containing pyranocoumarins possess antibacterial activity against many Gram-positive and Gram-negative clinical isolates [29]. Similarly, coumarins from Angelica lucida L. have been found to be active against Streptococcus mutans and S. viridians, causative agents of oral cavity and dental infections [30].

Essential oils are present in almost all plants and are the largest group of plant derived secondary metabolites. This class constitutes mainly of a number fatty acids/esters and lower homologues of terpenoids. These oils often possess sweet aroma. Five carbon isoprene unit is the building block of all terpenes. When a terpene molecule contains an additional functional group they are called terpenoids. In general, terpenoids are reported to be active against bacteria, fungi, viruses, and protozoa. Some widely prevalent terpenoids with antimicrobial properties include menthol, citral, camphor, salvinorin A and cannabinoids. They are generally amphipathic and hence are able to cause membrane disruption in the target organisms [21].

Tannins are a class of polyphenolic compounds containing large number of - OH and other functional groups like –COOH to form strong complexes with various macromolecules. The tannin compounds are also widely distributed in many plant species e.g., red wine and green tea, where they play a role in defense against microorganisms and pests. The tannin from Sorghum species had been active against S. aureus, Salmonella typhimurium, A. niger, A. flavus and Saccharomyces cerevisiae [31].

Lignans are a group of dimeric-phenylpropanoids formed by fusion of two cinnamyl alcohol/cinnamic acids via the β-carbon of the aliphatic chain. Some plant derived lignans also
possess antimicrobial activity e.g., lignans from *Pseudo larixkaempferi* were found to be active against *Candida albican* and *S. aureus* [32].

Glucosinolates present in many species of Brassicaceae family are sulphur and nitrogen containing secondary metabolites. They are abundant in broccoli, mustard and Brussels sprouts and have antifungal, antimicrobial, anticancer, antioxidant and anti-inflammatory activity [33].

Thionins are a group of small proteins found solely in higher plants. They have disulphide bonds and are positively charged. The positive charge of these thionins (antimicrobial peptides) can bind to negatively charged membrane constituents like phospholipids, teichoic acid and lipopolysacharide, and can disrupt membrane structure and result in death of the bacterial cell. For example fabatin which has been extracted from the fava beans contains 47 peptide residues that have shown antimicrobial activity against *P. aeruginosa* and *E. coli* [34].

5. ADAPTATIONS OF PLANTS IN NATURAL HABITAT OF HIMALAYAS

The plants of Himalayas are extremely specialized group that have metabolic and propagative adaptations suited for maximizing their activity under adverse harsh climatic conditions [35]. They exhibit many ecological, morphological and physiological adaptations which help them to offset the impact of severe climate prevailing in this area. They have developed a very deep and extensive root system which can absorb water even from great depth, and can also endure strong winds, snow blizzards and thus help in preventing damage due to prevalent subzero temperature during winter season. Another survival mechanism for these plants is the underground modified stem or rhizome and bulbs which help in the survival of the perennial herbs in harsh winters. The major physiological adaptation in these plants, however, is their resistance to frost, either through inhibition or reduction in the ice crystal formation. Due to short growing season, these plants have to complete their entire life cycle starting from seedling growth to sprouting of leaves and flowers, fruiting and dispersal of seeds in a span of few months. This is promoted through reproduction being carried out both by sexual as well as vegetative methods [36].

6. RESULTS AND DISCUSSION

The plants of Ladakh Himalaya are exposed to severe environmental stress which manifests in the production of high content of secondary metabolites. This has also been established that antioxidant potential of these plants is comparable and even greater than established commercially available antioxidant extracts like green tea and Indian gooseberry. Extracts of *Pyrus pashia*, *Ephedra gerardiana*, *Salvia sclarea*, *Gentiana spp*, *Potentilla fruticose*, *Rheum austral* collected from this region showed significant antioxidant property with IC$_{50}$ values less than 30μg/mL (DPPH) indicating promising free radical scavenging ability. The antioxidant activity is comparable to honey, a well-known dietary antioxidant that contains phenolic acids, flavonoids, vitamins, and enzymes. The Total phenolic content of honey is highly variable but can range from 100-200 mg GAE/g. The antioxidant activity measured by DPPH free radical scavenging ranging from 29-64 μg/mL (IC$_{50}$ values) [74].

Some of the commercially important compounds having antioxidant activity include quercetin, ascorbic acid (Vitamin C) and tocopherol (Vitamin E). These compounds showed similar IC$_{50}$ 9.479, 15.62, 11.23 μg/ml respectively, measured by DPPH assay [75-77]. In addition to high radical scavenging activities, few extracts also induced antioxidant defence systems by enhancing GST and SOD levels e.g., *Podophyllum hexandrum*. Hence these plants can reduce the free radicals induced oxidative damage through multi-functional approaches.

The plants of this region also possess significant antimicrobial activity against human pathogens. MIC values of 50μg/mL have been reported for *Pholidota articulata* against enteric pathogen *Salmonella entericitaphym*. Similarly *Dioscorea deltoidea* and *Arnebia benthamii* extracts exhibited MIC of 50 and 62.5μg/mL respectively against *P. aeruginosa*, which is considered to be a resistant organism. *Euphorbia wallichii* and *Valeriana wallichii* also demonstrated lower MIC values against *Staphylococcus aureus* and *Bacillus subtilis*. It is significant to note that antimicrobial activity is not restricted to a specific class of microbes but against both Gram positive and Gram negative bacteria as well as pathogenic fungi *Microspoum canis*, *Fusarium*
Species	Family	Location	Part/Extract/Fraction	Activity tested	Values	Ref.
Dracocephalum	Lamiaceae	Himalayan region of Ladakh	methanolic extract	DPPH	IC$_{50}$ of 37 μg/mL	[37]
heterophyllum	Benth.					
Rumex patientia	Polygonaceae	Himalayan region of Ladakh	acetone extract	TPC, TFC, DPPH, ABTS and FRAP	TPC value of 803mg GAE /100 g fresh weight, IC$_{50}$ DPPH (0.99 mg/ mL), ABTS (1.37 mg/ mL) and FRAP (0.261 mg/ mL) DPPH IC$_{50}$ of 2.306μg/ mg, 385.76 mM FeSO4.7H$_2$O	[38]
Saussurea lappa	Asteraceae	Himalayan region of Ladakh	80% methanol extract	DPPH, FRAP		[39]
Arnebia euchroma	Boraginaceae	Himalayan region of Ladakh	80% methanol extract	TPC, TFC	244.58μg GAE/mg, 17.77μg QE/mg	[39]
Inula racemose	Asteraceae	Himalayan region of Ladakh	80% methanol extract	Flavonol content	70μg QE/mg	[39]
Rhododendron	Ericaceae	Himalayan region of Ladakh	80% methanol extract	Proanthocyanidin content	108.33μg QE/mg	[39]
webbanium						
Pyrus pashia	Rosaceae	Himalayan region of Northeastern India	leaf- methanol extract	TPC, DPPH	356.47 mg/g GAE, DPPH IC$_{50}$ of 28.97 µg/ml	40
Oenanthe javanica	Apiaceae	Himalayan region of Northeastern India	shoot- methanol extract	TPC, DPPH	36.42 mg/g GAE, , DPPH IC$_{50}$ of 94.00μg/mL	[40]
Maianthemum	Asparagaceae	Himalayan region of Northeastern India	shoot- methanol extract	TPC	19.82mg/g GAE	[40]
purpureum						
Ephedra gerardiana	Ephedraceae	Himalayan region of Ladakh	leaf – ethanol extract	DPPH	IC$_{50}$ of 13.30 μg/mL	[41]
Salvia sclarea	Lamiaceae	Himalayan region of Ladakh	flower – ethanol extract	DPPH	IC$_{50}$ of14.97µg/mL	[41]
Senecio amplexicaulis	Asteraceae	Himalayan region of Uttarakhand	oil	DPPH, ABTS, Lipid peroxidation	DPPH IC$_{50}$ value of 81.6µg/mL, Inhibition of 44.8% of the	[42]
Species	Family	Location	Part/Extract/Fraction	Activity tested	Values	Ref.
---------------------------------	------------------	---------------------------------	-----------------------	-----------------	---	------
Gentiana spp	Gentianaceae	Himalayan region of western and central Himalayas	aerial part	DPPH	71% inhibition of lipid peroxidation at 100 μg/mL IC50 value of 13.6 μg/mL	[43]
Rheum australe	Polygonaceae	Himalayan region of western and central Himalayas	aerial part	DPPH	IC50 value of 18.9 μg/mL	[43]
Hippophae rhamnoides	Elaeagnaceae	Himalayan region of Ladakh	flavonoid rich fraction, seeds, stem bark	Peroxy radical scavenging, FRAP, DPPH	64.82 % scavenging, 12.61 mM FeSO4, IC50 ranges from 0.7 to 9.1 mg/mL for different parts	[44, 45]
Podophyllum hexandrum	Berberidaceae	Himalayan region of Ladakh	rhizome aqueous extract	GST (Glutathione S-transferase), CAT (catalase), SOD (superoxide dismutase) activities and lipid peroxidation (LPx)	Enhancement in GST and SOD levels, No significant change in catalase level.	[46]
Phytococktail of *Hippophae rhamnoides, Prunu sarmeniaca and Rhodiola imbricata*	-	Himalayan region of Ladakh	methanolic and n-hexane extracts	DPPH IC50 value of 393.5 and 319 μg/mL, FRAP of 8.21 × 10⁻³ and 1.03 X 10⁻³ mol Fe (II)/g, TPC 2.3 X 10⁻⁴ and 2.89 X 10⁻⁴ mol/g GAE, TFC 4.21 X 10⁻⁶ and 6.11 X 10⁻⁵ mol QE respectively for methanol and n-hexane extract	TPC 270 mg, 240 mg and 110 mg GAE/g, TFC 65,20 and 85μg QE/g, for	[47]
Eremurus Himalaicus	Asphodelaceae	North Western Himalayas (Kashmir)	methanol, ethylacetate and aqueous extracts	TPC, TFC, DPPH and H₂O₂ scavenging	TPC 270 mg, 240 mg and 110 mg GAE/g, TFC 65,20 and 85μg QE/g, for	[48]
Species	Family	Location	Part/Extract/Fraction	Activity tested	Values	Ref.
----------------------	----------------	---------------------------------	-----------------------	-----------------------	--	-------
Capparis spinosa	Capparaceae	Himalayan region of Ladakh	aerial part	TPC, TFC, DPPH, ABTS and FRAP	TPC 27.62-21.42 mg GAE/g DW and TPC 6.96-2.69 mg QE/g DW methanol, ethylacetate and aqueous extracts respectively. IC$_{50}$ value of 148.1788 and 182.3371μg/mL for DPPH and H$_2$O$_2$ scavenging respectively.	[49]
Potentilla fruticosa	Rosaceae	Himalayan region of Tibet	aerial part	DPPH, FRAP	DPPH IC$_{50}$ value of 9.2 μg/mL, FRAP 416.6 μmol equiv. Trolox/g.	[50]
Olea ferruginea	Oleaceae	Trans Himalayan region of Himachal Pradesh	mature fruits, methanolic extracts	TPC, DPPH, ABTS	2.30-3.41 TAE/g fw, IC$_{50}$ value of 0.15 - 0.24mg/ml, 0.0019 - 0.0138 AAE/g fw	[51]
Picrorhiza kurroa	Plantaginaceae	Trans Himalayan region of Ladakh	whole plant	DPPH, ABTS	IC$_{50}$ value of 67.48μg, 48.36μg respectively	[52]
Potentilla fulgens	Rosaceae	Western Himalayas	roots	ABTS, DPPH, FRAP	2.54, 2.41 and 3.57 mM TE/mg respectively	[53]
Acorus calamus	Aracacerae	Uttarakhand Himalayas	rhizome	TPC, ABTS	7.35 mg GAE/g, 23.28 mM AAE/100g respectively	[54]
Habenaria intermedia	Orchidaceae	Uttarakhand Himalayas	rhizome	TPC, ABTS, FRAP	2.74 mg GAE/g, 7.48 mM AAE/100g, 10.59 mM AAE/100g respectively	[54]
Hedychium spicatum	Zingiberaceae	Uttarakhand Himalayas	tuber	TPC, TFC	3.39 mg GAE/g, 6.85 mg QE/g respectively	[54]
Roscoea procera	Zingiberaceae	Uttarakhand Himalayas	rhizome	TPC, ABTS, DPPH	19.10 mg GAE/g, 13.71 mM AAE/100g, 12.13 mM AAE/100g respectively	[54]
Valeriana jatamansi	Valerianaceae	Uttarakhand	roots	TPC, ABTS	12.82 mg GAE/g, 77.17	[54]
Species	Family	Location	Part/Extract/Fraction	Activity tested	Values	Ref.
-------------------------	-------------------	-----------------------------------	-----------------------	---------------------	---	------
Mentha longifolia	Lamiaceae	Himalayan region of Ladakh	whole plant, methanolic and acetone extract	TPC, DPPH	mM AAE/100 g respectively	[55]
Allium schoenoprasum	Amaryllidaceae	Himalayan region of Ladakh	whole plant, methanolic and acetone extract	ABTS	96.2 mg GAE/g dry wt., DPPH IC₅₀ value of 39.2 µg/mL	[55]
Carum carvi	Apiaceae	Himalayan region of Ladakh	whole plant, methanolic and acetone extract	ABTS	IC₅₀ value of 78.0 µg/mL	[55]
Origanum vulgare	Lamiaceae	Himalayan region of Ladakh	whole plant, methanolic and acetone extract	ABTS, DPPH	IC₅₀ value of 18.8 and 25 µg/mL	[55]
Urtica hyperborean	Urticaceae	Himalayan region of Ladakh	whole plant, methanolic and acetone extract	TPC, TFC, DPPH	42 mg GAE/ g dry wt. and 4.0 mg QE/g, IC₅₀value of 50 µg/mL respectively	[55]
Hypericum perforatum	Hypericaceae	Higher reaches of Gulmarg (J&K, India) at an altitude of 2600 m	leaves	TPC, TFC	21.90 mg GAE/g and 17.10 mg RE/g respectively	[56]
Arnebia benthamii	Boraginaceae	Duksum and Sinthan Top, Kashmir Himalaya	aerial and roots	DPPH and lipid peroxidation	IC₅₀ value of 50 µg/ml, 72% inhibition of lipid peroxidation at 300 µg/mL	[57]
Primula denticulata	Primulaceae	Gulmarg region, Kashmir Himalayas	leaves, ethanolic extract	DPPH, H₂O₂ scavenging, DNA protection	IC₅₀ value of 300 µg/mL for DPPH and H₂O₂ scavenging,	[58]
Bistorta macrophylla	Polygonaceae	Tungnath, Chopta, Uttarakhand	whole plant	TPC, TFC, DPPH	76.14 mg GAE/ g, 51.55 GA/g, IC₅₀value of 58µg/mL for DPPH respectively	[59]
Bistorta	Polygonaceae	Tungnath, Chopta, Uttarakhand	whole plant	TPC, TFC, DPPH	54.57 mg GAE/ g, 49.05	[59]
Species	Family	Location	Part/Extract/Fraction	Activity tested	Values	Ref.
-------------------------	-------------------	---------------------	-----------------------	-----------------	--	------
Vaccinifolia		Chopta, Uttarakhand	GA/g, IC₅₀ value of 70μg/mL for DPPH respectively		Re: Rutin equivalent; TAE: Tannic acid equivalent; TPC: Total phenolic content; TFC: Total flavonoid content; QE: Quercetin equivalent; SOD: Superoxide dismutase; GST: Glutathione-S-Transferase	
Persicaria polystachya	Polygonaceae	Tungnath, Chopta	whole plant	TPC, TFC, DPPH	67.42 mg GAE/g, 43.16 GA/g, IC₅₀ value of 60μg/mL for DPPH respectively	[59]
Pholidota articulata	Orchidaceae	RudraprayagUttarakhand	whole plant, ethylacetate extract	Salmonella enterica typhi (ZOI 16 mm, MIC 50μg/mL), Escherichia coli (ZOI 14 mm), Klebsiella pneumoniae (ZOI 18 mm) at 10 mg/mL	[60]	
Senecio chrysanthemoides	Asteraceae	RudraprayagUttarakhand	whole plant, ethylacetate extract	S. enterica typhi (ZOI 17 mm, MIC 50μg/mL), E. coli (ZOI 19 mm), K. pneumoniae (ZOI 13 mm), Aspergillus parasiticus (ZOI 8 mm) at 10 mg/mL	[61]	
Cordyceps sinensis	Clavicipitaceae	Western Himalayas	whole plant	E. coli, P. aeruginosa and B. subtilis giving 9, 7 and 6.5 mm of zone of inhibition (ZOI) in 93.75, 93.75 and 45 μg concentration	[62]	
Dioscorea deltoidea	Dioscoreaceae	Chamoli Uttarakhand	tuber	P. aeruginosa (MIC 50μg/mL), ZOI of 19 mm, 17 mm and 15 mm against S. aureus, P. aeruginosa and E. coli	[63]	
Colocasia esculenta	Araceae	Uttarakhand Himalayas	leaves, aqueous extract	ZOI of 10 mm against S. mutans and K. pneumoniae	[64]	
Hypericum perforatum	Hypericaceae	Higher reaches of Gulmarg, Kashmir Himalayas	leaves	ZOI of 19.33 mm and 18.00 mm against B. subtilis and S. aureus respectively at the test concentration of 50 mg/mL	[56]	
Euphorbia wallichi	Euphorbiaceae	High altitude region of Kashmir	root, aerial part, hexane extract	MIC of 128μg/mL against S. aureus	[65]	

Table 2. The Himalayan plants reported to possess antimicrobial activity
Species	Family	Location	Part/Extract/Fraction	Activity against (Values)	Ref.
Valeriana wallichii	Valerianaceae	Himalayas Uttarakhand	aerial parts	ZOI of 18 mm against *B. subtilis* (MIC 125 μg/ml), 15 mm against *E. coli* and 12 mm	[66]
		Himalayas		against *S. aureus* for hexane extract	
*Centratherum	Malvaceae	Uttarakhand Himalayas	seeds, chloroform	MIC of 0.0020 μg/ml against *E. coli*, 0.025 μg/ml against *Colletotrichum*	[67]
anthelminticum			extract	*gloeosporioides, Phomopsis dalbergiae, Trichoderma piluliferum*	
Nepeta leucophylla	Lamiaceae	Uttarakhand Himalaya	aerial parts, oil	ZOI of 20.0 mm and MIC = 0.78 μL/mL against *C. ablicans*, ZOI of 27.4 mm, MIC = 0.42 μL/mL	[68]
				against *P. aeruginosa*	
				ZOI of 21.2 mm, MIC = 3.21 μL/mL; 16.4 mm; MIC = 1.78 μL/mL against *P. vulgaris* and *S. aureus*	
Nepeta discolor	Lamiaceae	Uttarakhand Himalaya	aerial parts, oil	ZOI of 18.2 mm, MIC of 1.42 μL/mL against *P. aeruginosa*	[68]
Nepeta govaniana	Lamiaceae	Uttarakhand Himalaya	aerial parts, oil	ZOI of 20.1 mm, MIC = 0.37 μL/mL against *P. aeruginosa*	[68]
Nepeta clarkei	Lamiaceae	Uttarakhand Himalaya	aerial parts, oil	ZOI of 22.0 mm, MIC = 0.15 μL/mL against *P. aeruginosa*	[68]
Nepeta elliptica	Lamiaceae	Uttarakhand Himalaya	aerial parts, oil	ZOI of 28.4 mm, MIC = 0.31 μL/mL against *P. aeruginosa*	[68]
				ZOI of 20.2 mm, MIC = 0.43 μL/mL against *S. marcescens*	
Nepeta erecta	Lamiaceae	Uttarakhand Himalaya	aerial parts, oil	ZOI of 28.0 mm, MIC = 0.62 μL/mL against *P. aeruginosa*	[68]
Arnebia benthamii	Boraginaceae	Duksum and Sinthan Top,	aerial parts and roots	MIC of 62.5 μg/mL against *P. aeruginosa*. MIC of 250 μg/mL against *Shigella flexneri* and *E.coli.*	[57]
		Kashimir Himalaya			
Heracleum Lanatum	Apiaceae	Gangotri, Uttarakhand	aerial parts, oil	MIC of 75 μL/mL against *S. aureus*, 125 μL/mL against *E.coli*, *P.aeruginosa* and *P. vulgaris*, 150 μL/mL against *Pichia guilliermondii*.	[69]
Species	Family	Location	Part/Extract/Fraction	Activity against (Values)	Ref.
-------------------------------	-------------------	-------------------------------	---------------------------	---	-------
Podophyllum hexandrum	Berberidaceae	Kashmir Himalayas	rhizome, methanolic and aqueous	ZOI of 9mm and 11 mm against *B. megaterium* and *P. aeruginosa* at 60 mg/mL. ZOI of 18mm and 15 mm against *A. flavus* and *F. solani*	[70]
Taxus wallichiana	Taxaceae	Kashmir Himalayas	leaf, bark, methanolic extract	MIC of 0.83 mg/mL against *E.coli*, 0.49 mg/mL against *S.aureus*, 0.42mg/mL against *S. typhi*, 0.78 mg/mL against *Microspoum canis*, and 0.11 mg/mL against *F. solani*	[71]
Primula denticulata	Primulaceae	Gulmarg region, Kashmir Himalayas	leaves, ethanol extract	ZOI of 15.66 mm against *E.coli*, 11.44 mm against *K. pneumoniae*	[49]
Tanacetum longifolium	Asteraceae	Milam glacier of Western Himalaya, Uttarakhand	whole plant, oil	ZOI of 22 mm against *E.coli* and 14 mm against *S. mutans*	[72]
Artemisia maritima	Asteraceae	Keylong (H.P.) Himalayas,	whole plant, oil	MIC of 1.2 µL against *Pseudomonas fluorescence*, 2 µL against *B. subtilis*, 6 µL against *S. aureus*, 7 µL against *S. epidermis* and 9 µL against *Salmonella typhimurium*	[73]

MIC: Minimum inhibitory concentration; ZOI: Zone of inhibition
and Candida albicans. The antimicrobial potential of these plants is comparable to essential oils from clove (Syzygium aromaticum) and rosemary (Rosmarinus officinalis), both of which are commercially used in food with MIC ranging from 62.5 -500μg/ml against pathogenic Staphylococcus epidermidis, Escherichia coli and Candida albicans [78].

7. CONCLUSION

The plants of Ladakh, India are integral part of tribal diet, and are associated with many health protection benefits too. The literature search clearly showed that many plants of this region showed potential antioxidant and antimicrobial activities against human pathogenic bacteria in vitro. In addition, most of the antimicrobial and antioxidant active plants species are non-toxic. The results of this study suggest that extract of these species could be used as natural antioxidant to reduce free radical mediated disorders and may also be a source of active molecule against disease causing pathogens. Several antioxidant and antimicrobial compounds could be obtained from these plants resources. Therefore, further works of isolation and characterization of antioxidant and antimicrobial compounds merits from these plants resources.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

ACKNOWLEDGEMENTS

Authors acknowledge Dr. A.K. Chauhan, Founder President, Amity University, for his continuous motivation and encouragement and Dr. Chanderdeep Tandon, Director, Amity Institute of Biotechnology, Amity University for providing the infrastructure to carry out the investigations and Dr. Sabari Ghosal for her unrelenting support and encouragement.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Joshi PK, Rawat GS, Padilya H and Roy PS. Biodiversity characterization in Nubra valley, Ladakh with special reference to plant resource conservation and bioprospecting. Biodiversity & Conservation. 2006;15(13):4253–4270.

2. Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Toppo K, Arora R, Suseela MR and Srivastava RB. Chemical composition and biological activities of Trans-Himalayan alga Spirogyra porticalis (Muell.) Cleve. Public Library of Science one. 2015;10(2):e0118255.

3. Alonso-Amelot ME. High altitude plants, chemistry of acclimation and adaptation. Studies in Natural Products Chemistry. 2008;34:883-982.

4. Bilger W, Rolland M and Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochemical & Photobiological Sciences. 2007;6:190–95.

5. Ballabh B, Chaurasia OP, Ahmed Z and Singh SB. Traditional medicinal plants of cold desert Ladakh-used against kidney and urinary disorders. Journal of Ethnopharmacology. 2008;118(2):331-9.

6. Kasote DM, Katyare SS, Hegde MV and Hanhong B. Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences. 2015;11(8):982–991.

7. Krishnamurthy A, Rathinasabapathi B. Oxidative stress tolerance in plants Novel interplay between auxin and reactive oxygen species signaling. Plant Signaling and Behaviour. 2013;8 (10):e25761.

8. Sen S, Chakraborty R. Revival, modernization and integration of Indian traditional herbal medicine in clinical practice: Importance, challenges and future. Journal of Traditional and Complementary Medicine. 2017;7(2):234–244.

9. Nawar WF. Lipids. In: Food chemistry. Fennema O, editor, 3rd ed. Marcel Dekker, New York; 1996.

10. Brewer MS. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications, comprehensive reviews in food science and food safety. 2011;10:221-247.

11. Halliwell B, Rafter J, Jenner A. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: Direct or indirect effects? Antioxidant or not? The American Journal of Clinical Nutrition. 2005;81:268S–76S.
12. Miguel MG. Anthocyanins: Antioxidant and/or anti-inflammatory activities. Journal of Applied Pharmaceutical Science. 2011;1(6):7-15.
13. Lupea AX, Pop M, Cacic S. Structure-radical scavenging activity relationships of flavonoids from Ziziphus and Hydrangea extracts. Revista de Chimie. 2008;59(3):309–13.
14. Geldof N, Engeseth NJ. Antioxidant capacity of honeys from various floral sources based on the determination of oxygen radical absorbance capacity and inhibition of in vitro lipoprotein oxidation in human serum samples. Journal of Agricultural and Food Chemistry. 2002;50:3050–5.
15. Fernandez MT, Mira ML, Florencia MH and Jennings KR. Iron and copper chelation by flavonoids: An electrospray mass spectrometry study. Journal of Inorganic Biochemistry. 2002;92(2):105–111.
16. Alamed J, Chaiyasit W, McClements DJ, Decker EA. Relationships between free radical scavenging and antioxidant activity in foods. Journal of Agricultural and Food Chemistry. 2009;57(7):2969–76.
17. Kant MR, Jonckheere W, Knecht B, Lemos F, Liu J, Schimmel, BCJ, et al. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities, Annals of Botany. 2015;115(7):1015-1051.
18. Nascimento GGF, Locatelli J, Freitas PC and Silva GL. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria. Brazilian Journal of Microbiology. 2000;31(1):247-56.
19. Chandra H, Bishnoi P, Yadav A, Patni B, Mishra AP, Nautiyal AR. Antimicrobial resistance and the alternative resources with special emphasis on plant-Based antimicrobials—A Review, Plants. 2017; 6:16.
20. Burt S. Essential oils: Their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology. 2004;94(3): 233-53.
21. Cowan MM. Plant products as antimicrobial agents. Clinical Microbiology Reviews. 1999;12(4):564-82.
22. Habbal O, Hasson SS, El-Hag AH, Al-Mahroqui Z, Al-Hashmi N, Al-Balushi MS, Al-Jabr AA. Antibacterial activity of Lawsonia inermis Linn (Henna) against Pseudomonas aeruginosa. Asian Pacific Journal of Tropical Biomedicine. 2011;1(3):173–176.
23. Dadgar T, Asmar M, Saifi S, Mazandarani M, Bayat H, Moradi A, Bazueri M and Ghaemi F. Antibacterial activity of certain Iranian medicinal plants against methicillin resistant and methicillin sensitive Staphylococcus aureus. Asian Journal of Plant Sciences. 2006;5:861–866.
24. Peng L, Kang S, Yin Z, Jia R, Song X, Li L, Li Z, Zou Y, Liang X, Li L. Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. International Journal of Clinical and Experimental Pathology. 2015;8:5217–5223.
25. Gabor M. Anti-inflammatory and anti-allergic properties of flavonoids. In: Plant Flavonoids in Biology and Medicine: Biochemical, Pharmacological and Structure-Activity Relationships; Cody V, Middleton VE, Harbourne JB, Eds.; Alan R. Liss: New York, NY, USA. 1986; 471–480.
26. Thara S, Ingham J, Nakahara S, Mizutani J, Harborne JB. Fungitoxic dihydrofuranoisoflavones and related compounds in white lupin, Lupinus albus. Phytochemistry. 1984;23:1889–1900.
27. Ozcelikc B, Deliorman OD, Ozgen S and Ergun F. Antimicrobial activity of flavonoids against extended-spectrum beta lactamase (ESBL)-producing Klebsiella pneumoniae. Tropical Journal of Pharmaceutical Research. 2008;7:1151–1157.
28. O’Kennedy R, Thornes RD. Coumarins: Biology, applications and mode of action. JohnWiley & Sons, Inc. New York, NY, USA; 1997.
29. Basile A, Sorbo S, Spadaro V, Bruno M, Maggio A, Faraone N, Rosselli S. Antimicrobial and antioxidant activities of Coumarins from the roots of Ferulago campestris (Apiaceae). Molecules. 2009;14:939–952.
30. Wideliski J, Popova M, Graikou K, Glowniak K and Chinou I. Coumarins from Angelica lucida L- Antibacterial activities. Molecules. 2009;14:2729–2734.
31. Moneim A, Suleman E, Issa FM, Eklhalifa EA. Quantitative determination of tannin content in some sorghum cultivars and evaluation of its antimicrobial activity. Research Journal of Microbiology. 2007;2:284–288.
32. He WJ, Chu HB, Zhang YM, Han HJ, Yan H, Zeng GZ, Fu, ZH, Olubanke O, Tan NH.
Antimicrobial, cytotoxic lignans and terpenoids from the twigs of Pseudolarix kaempferi. Planta Medica. 2011;77:1924–1931.

33. Mazumdaer A, Dwivedi A, du Plessis J. Sinigrin and its therapeutic benefits. Molecules. 2016;21:416.

34. Zhang Y, Lewis K. Fabatins: New antimicrobial plant peptides. Federation of European Microbiological Societies (FEMS) Microbiology Letters. 1997;149:59–64.

35. Bilger W, Rolland M, Nybakken L. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochemical & Photobiological Sciences. 2007;6:190–95.

36. Alonso-Amelot ME. High altitude plants, chemistry of acclimation and adaptation. Studies in Natural Products Chemistry. 2008;34:883-982.

37. Janifer Raj X, Chaurasia OP, Vajpayee PK, Pal MM, Singh SB. Antioxidative activity and phytochemical investigation on a high altitude medicinal plant Dracocephalum heterophyllum Benth. Pharmacognosy Journal. 2009;1(4):246-251.

38. Arya JS, Singh N, Rinchen T, Maurya SB, Korekar G. Genotypes, geographical regions and solvents dependent antioxidant activity of Rumex patientia L., in cold desert of trans-Himalaya Ladakh, India. Australian Journal of Crop Science. 2015;9(2):98-104.

39. Tiga S, Sarangi, Chaurasia OP and Kumar B. Antioxidant potential of selected medicinal plants of trans-himalayan region. International Journal of Science and Research. 2016;5(5):1123-28.

40. Tag H, Tsering J, Hui PK, Gogoi BJ, Veer V. Nutritional potential and traditional uses of high altitude wild edible plants in Eastern Himalayas, India. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering. 2014;8(3):238-243.

41. Phani Kumar G, Kumar R, Badere R, Singh SB. Antibacterial and antioxidant activities of ethanol extracts from trans Himalayan medicinal plants. Pharmacognosy Journal. 2010;2(17):66-69.

42. Singh R, Ahluwalia V and Sati N. Antioxidant activity of Senecio amplexicalus Kunth. Essential oil growing in high altitude Himalayan region.

European Journal of Pharmaceutical and medical research. 2015;2(7):169-172

43. Neupane P, Chapagain S, Khatri A, Lamichhane J. Screening of phytochemicals and bioactivity testing of high altitude medicinal plant extracts. Biodiversity and Natural product. 2016;ICBB2016.

44. Chawa R, Arora R, Singh S, Sagar RK, Sharma RK, Kumar R, et al. Radioprotective and antioxidant activity of fractionated extracts of berries of Hippophae rhamnoides. Journal of Medicinal Food. 2007;10(1):101-109.

45. Stobdan T, Dolkar P, Chaurasia OP, Kumar B. Seabuckthorn (Hippophae rhamnoides L.) in trans-Himalayan Ladakh. India Defence Life Science Journal. 2017;2(1):46-53.

46. Mittal A, Pathania V, Agrawala PK, Prasad J, Singh S, Goel HC. Influence of podophyllum hexandrum on endogenous antioxidant defence system in mice: Possible role in radioprotection. Journal of Ethnopharmacology 2001;76(3):253-62.

47. Dhar P, Bajpai PK, Tayade AB, Chaurasia OP, Srivastava RB, Singh SB. Chemical composition and antioxidant capacities of phytococktail extracts from trans-Himalayan cold desert, BioMed Central Complementary and Alternative Medicine. 2013;13:259-73.

48. Mushtaq A, Masoodi MH, Wali AF, Ganai BA. Total phenolic content, total flavonoid content, in vitro antioxidant activity and antimicrobial activity against human pathogenic bacteria of Eremurus Himalaicus–An edible herb of North Western Himalayas. Free Radicals and Antioxidants. 2017;7(1):90-94.

49. Bhoyar MS, Mishra GP, Naik PK, Srivastava RB. Estimation of antioxidant activity and total phenolics among natural populations of Caper (Capparis spinosa) leaves collected from cold arid desert of trans-Himalayas. Australian Journal of Crop Science. 2011;5(7):912-919.

50. Liu W, Yin D, Li N, Hou X, Wang D, Li D, Liu J. Influence of environmental factors on the active substance production and antioxidant activity in Potentilla fruticosa L. and its quality assessment. Scientific Reports. 2016;6:28591.

51. Sharma RK, Sharma N, Samant SS, Nandi SK, PaIni LMS. Antioxidant activities in methanolic extracts of olea ferruginea royle fruits. International Journal of Bioscience,
Biochemistry and Bioinformatics. 2013;3(2):154-56.

52. Kant K, Walia MV, Agnihotri VK, Pathania V, Singh B. Evaluation of antioxidative activity of Picrorhiza kurroa (leaves) extracts. Indian Journal of Pharmaceutical Sciences. 2013;75(3):324-329.

53. Jaitaka V, Sharma K, Kaliaa K, Kumar N, Singh HP, Kaul VK, Singh B. Antioxidant activity of Potentilla fulgens: An alpine plant of western Himalaya. Journal of Food Composition and Analysis. 2010;23(2):142-147.

54. Rawat S, Jugran AK, Bahukhandi A, Bahuguna A, Bhatt ID, Rawal RS, Dhar U. Anti-oxidant and anti-microbial properties of some ethno-therapeutically important medicinal plants of Indian Himalayan Region. 3 Biotech. 2016;6(2):154–66.

55. Xavier JR, Bajpai PK, Muthiah PM, Dhar P, Kumar J, Chaurasia OP, Srivastava RB, Singh SB. Trans-Himalayan phytofoods – A rich source of antioxidants. Journal of Medicinal and Aromatic Plant Sciences. 2011;33(1):21-26.

56. Yousuf M, Aslam K, Wani BA, Aslam N, Dar NA, Navchoo IA. In vitro antibacterial activity and phytochemical studies of methanolic extract of leaves of Hypericum perforatum L. growing wild in Kashmir Himalaya. Asian Journal of Plant Science and Research. 2012;2(4):414-420.

57. Shameem N, Kamili AN, Parray JA, Hamid R, Bandh SA. Antimicrobial and antioxidant activity of methanol extracts of Arnebia benthamii (Wall ex. G. Don) Johnston—a critically endangered medicinal plant of North western Himalaya. Journal of Analytical Science and Technology. 2015;6:36-44.

58. Aslam K, Nawchoo IA and Ganai BA. In vitro antioxidant, antibacterial activity and phytochemical studies of Primula denticulata – An important medicinal plant of Kashmir Himalaya. International Journal of Pharmacological Research. 2015;5(3):49-56.

59. Chandra S, Saklani S, Mishra AP, Agrawal RK. In vitro antioxidant activity and phytochemical screening of Garhwal Himalaya medicinal plants. International Journal of Medical Research & Health Sciences. 2016;5(8):35-43.

60. Singh D, Sati SC, Sati MD. In vitro antimicrobial activity of Himalayan medicinal plant Pholidota articulate. International Journal of Herbal Medicine. 2016;4(6):1-03.

61. Singh D, Sati SC, Sati MD. In vitro antimicrobial activity of Himalayan medicinal plant Senecio chrysanthemoides. European Journal of Pharmaceutical Sciences. 2017;4(5):587-590.

62. Mamta Mehrotra S, Amitabh Kirar V, Vats P, Nandi SP, Negi PS, Misra K. Phytochemical and antimicrobial activities of Himalayan Cordyceps sinensis (Berk.) Sacc. Indian Journal of Experimental Biology. 2015;53(1):36-43.

63. Chandra S, Saklani S, Mishra AP. In vitro antimicrobial activity of Garhwal Himalaya medicinal plant Dioscorea deltoidea tuber. International Journal of Herbal Medicine. 2013;1(4):67-70.

64. Singh B, Namrata, Kumar L, Dwivedi SC. Antibacterial and antifungal activity of Colocasia esculenta aqueous extract: An Edible Plant. Journal of Pharmacy Research. 2011;4(5):1459-1460.

65. Mushtaq S, Hassan QP, Sharma R, Majeed R, Dar AH, Sultan S, Khan IA, Ali SA, Ali MN. Evaluation of anticancer and antimicrobial activities of selected medicinal plants of Kashmir Himalayas, India. Indian journal of traditional knowledge. 2017;16(1):141-45.

66. Sati SC, Khulbe K, Joshi S. Antibacterial evaluation of the Himalayan medicinal plant Valeriana wallichii DC. (Valerianaceae), Research Journal of Microbiology. 2011;6:289-296.

67. Negi DS, Semwal A, Juyal V, Joshi A, Rana R. Antibacterial and antifungal activity of Centrtherum anthemínticum seeds Asteraceae (Compositae). International Journal of Pharmaceutical and Medical Research. 2014;2(5):136-139.

68. Bisht DS, Padalia RC, Singh L, Lal P, Mathela CS. Constituents and antimicrobial activity of the essential oils of six Himalayan Nepeta species. Journal of Serbian Chemical Society. 2010;75(6):739–747.

69. Kharkwal GC, Pande C, Tewari G, Panwar A, Pande V. Composition and antimicrobial activity of the essential oil of Heracleum lanatum Michx. from Uttarakhand Himalaya. International Journal of Scientific & Technology Research. 2014;3(12):60-64.

70. Ahmad T, Salam MD. Antimicrobial Activity of methanolic and aqueous extracts of
rheum emodi and podophyllum hexandrum. International Journal of Pharmaceutical Sciences Review and Research. 2015;30(1):182-185.
71. Nisar M, Khan I, Ahmad B, Ali I, Ahmad W, Choudhary MI. Antifungal and antibacterial activities of Taxus wallichiana Zucc. Journal of Enzyme Inhibition and Medicinal Chemistry. 2008;23(2):256-60.
72. Joshi RK, Bisht BS. Antibacterial activity of volatile oil of Tanacetum longifolium from western Himalayan region of Uttrakhand, India. Journal of Natural Product and Plant Resources. 2012;2(6):721-724.
73. Sharma V, Singh B, Gupta RC, Dhaliwal HS, Srivastava DK. In vitro antimicrobial activity and GCMS analysis of essential oil of Artemisia maritima (Linn.) from Lahaul & Spiti (Cold Desert) region of North-Indian higher altitude Himalayas. Journal of Medicinal Plants Studies. 2014;2(1):45-52.
74. Neupane BP, Malla KP, Kaundinnyayana A, Poude P, Thapa R, Shrestha S. Antioxidant properties of honey from different altitudes of Nepal Himalayas. Polish Journal of Food and Nutrition Sciences. 2015;65(2):87–91.
75. Majewska M, Skrzyczki M, Podisiad M, Czeczot H. Evaluation of antioxidant potential of flavonoids: An In vitro study. Acta Poloniae Pharmaceutica ñ Drug Research. 2011;68(4):611-615.
76. Olugbami JO, Gbadegesin MA, Odunola OA. In vitro free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Pharmacognosy Research. 2015;7(1):49–56.
77. Di Mambro VM, Azzolini AE, Valim YM, Fonseca MJ. Comparison of antioxidant activities of tocopherols alone and in pharmaceutical formulations. International Journal of Pharmaceutics, 2003;262(1-2):93-9.
78. Fu Y, Zu Y, Chen L, Shi X, Wang Z, Sun S, Efferth T. Antimicrobial activity of clove and rosemary essential oils alone and in combination. Phytotherapy Research. 2007;21(10):989-94.

© 2021 Avasthi et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.