The Elemental Composition of Atmospheric Particles and Dust Fall Rate in Erbil Governorate

Jamal K. Mohammed Amin¹, Sarkar S. Jalal², Faris Z. Jarjees³

¹- Environmental Science Department, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq.
²- Erbil Environment Office-Iraq.
³- Environmental Science Department, College of Science, Salahaddin University, Erbil, Kurdistan Region, Iraq.

ARTICLE INFO

Received: 12/6/2017
Accepted: 19/11/2017
Published: 23/1/2018

Key Words:
Dust Fall
Elements
Atmospheric Pollution
Erbil Governorate

ABSTRACT

Sand and Dust Storms are usually developed in arid and semi-arid regions. Dust and sand storms are a persistent problem in Iraq and other areas in the Middle East. Dust fall is one of the important air pollutants in the ambient air of Erbil governorate. This study was aimed to investigate the falling dust rate and their chemical element composition by percentage (%) using (CIT-3000SMP X-ray Fluorescence) from January to December 2013. We compared the dust fall rate and elemental composition of atmospheric particles in three different areas within Erbil governorate. The dust fall rate and the chemical element composition of dust particles were determined at four sampling locations in Erbil governorate, which were included (Erbil, koya, Makhmur and Pirmam). Our results showed that the maximum dust fall rate was recorded in Erbil (97.6 gm/m².year), whereas minimum concentration was found in Koya (59.24 gm/m².year). The higher of mean percentage by weight of some elements such as (Fe, Sb, Se, Nb, Tc, Te, Ag, Ta, Mo, Po, In, Cd, V, At and Zr) were higher in Erbil city compared to other areas of study.

1. INTRODUCTION

Iraq is geographically situates in a position where dust and sand storm hits and last for days. According to Ministry of Environment in Iraq, 122 dust storms and 283 dusty days have been recorded, and sources have predicted that dusty days and dust storms could reach 300 times in the next decade (Kobler, 2013). Considerable amount of techniques and programs to mitigate and assess air pollution are regarded, there have been few studies on dust fall and their health and environmental consequences as Iraq have been facing a drought condition in the last decade. A study by (Aziz and Dabagh, 2012) in Erbil on evaluation of outdoor and indoor dust deposition found that decomposed dust were not more than limited values or levels of most of other countries. Natural and anthropogenic air pollutants can be transported in the atmosphere from original places for long distances (Varga et al., 2013). Particulate Matter (PM) can be found in two different
physical state which are solid and liquid that
suspected in the air. These forms may include
dust, pollen, soot, smoke and liquid droplets
(WHO, 2003). Dust particles have a profound
impact on the properties of the soil, the
emissions of metals and their compounds can
be occurred in the dry and wet deposition
(Kalembkiewicz et al., 2014). Coarse
Particulate matter with a size of greater than 10
μm is the main component of dust fall (Sami et al.,
2006). Dust storms have the main role in
falling dust through erosion and deposition
(Feng et al., 2008). Gaseous and particulate
pollutants have the main role of atmospheric
air pollution. The particulate and gaseous
pollutants emitted into the atmosphere quickly
and uncontrolled, also they have bad effects on
living organisms (Krolak, 2000). Naturally dust
fall could be generated from weathering of dry
soil (Smith and Lee, 2003). However, motor
vehicles, open burning, coal burning and
industrial emissions are the main sources of
anthropogenic activities in urban atmosphere,
which causes air pollution (Cao et al., 2011).
Dust borne heavy metals could be accumulated
in topsoil due to atmospheric deposition via
sedimentation, impaction and interception (Lu
et al., 2009). Soil dust could be contributed to
the concentration of heavy metals in the air
(Chen et al., 1997). Mineral dust can affected
the visibility distance and may contain
pathogenic micro-organisms which may lead to
spread some diseases (Ghosh et al., 2014). The
present study was aimed to investigate the
falling dust rate and the elemental composition
of atmospheric particles.

2. MATERIALS AND METHODS

2.1. Study Area

Dust sampling were taken at four sampling
sites, the first sampling site was located in the
Erbil city which is situated in South Kurdistan,
North of Federal Iraq. It is the capital of
Kurdistan Region; it is located at 44° 0’ 33.0 E
longitudes and 36° 11’ 28.0 N latitude. Second
site was in Koya districted, east of Erbil
province, it is located at 44°36’28.1 E
longitudes and 36°04’07.9 N latitude. Third site
was in Makhmoor districted which is located in
the South of Erbil province. It is located at
43°33’48.4 E longitudes and 35°46’34.9 N
latitude. Final and fourth site was in Pirmam
which is located in the North of Erbil province;
it is located at 44°11’21.4 E longitudes and
36°22’51.3 N latitude (Figure 1).

2.2. Sample Collection

Dust fall samples were collected monthly,
and weighed, then analyzed by CIT-
3000SMP X-ray Fluorescence at four sampling
sites to obtain the percentage of elemental
concentration, from January to December
2013, using dust collectors (dimensions 1m by
1m) as shown in Figure 2, which were put on
the roof of building at a height above 2 m to
prevent it from any interference from soil or
surface dust. Liquid samples especially from
winters, were evaporated and dried using oven
(T≤100°C) to obtain constant weight
(Kalembkiewicz et al., 2014).

Figure 2: Shows dust collector.
2.3. Statistical analysis

Statistical analysis was performed using a software program (SPSS version 21). All data were treated with Descriptive statistics for the percentage of elemental concentration and dust fall rate.

3. RESULTS

3.1. Dust fall rate

The maximum dust fall rate was recorded in Erbil (97.6 gm/m².year), followed by Makhmur (65.02 gm/m².year) and Pirmam (61.34 gm/m².year) respectively, whereas minimum concentration was found in Koya (59.24 gm/m².year). The results of dust fall rate at four sampling sites presented in Table (1).

3.2. Elemental composition analysis

Tables (2, 3, 4, 5) and figure (3) showed the percentages of each element concentration at the study areas, these results indicated that the percentage of elemental concentration of elements (Fe, Sb, Se, Nb, Tc, Te, Ag, Ta, Mo, Po, In, Cd, V, At and Zr) at Erbil city was relatively higher compared to the other sites, While the percentage of elemental concentration of other elements (Mn, Sn, As, Bi, W and Ni) were higher in Makhmur.

4. Discussion

Erbil city had the highest concentration of dust fall rate with (97.6 gm/m².year) as shown in table 1. The high concentration of dust fall rate at Erbil city, which might be due to deposited particulates are emitted from moving vehicles, vehicular fuel combustion and rapidly developing area with a high population within Erbil city. The urban area is consisting of varying concentrations of trace elements from anthropogenic and natural sources (Nwadiogbu et al., 2013). The deposited dust on roads don’t remain for long time, quickly and easily re-suspended back into the atmosphere, where they may contain an important amount of trace elements (Addo et al., 2012). Alahmr et al. (2012) reported that high automobile exhaust emissions in urban areas are the main source to generate particulate pollution and the result of road dust and emissions from moving vehicles. Kleeman and Cass (1998) argued that traffic is one of the important sources of atmospheric particulate pollution in urban areas. Moreover, Amato et al (2009) indicated that particulate matter of road dust on the pavement could be resuspended by traffic in urban area and become important sources of atmospheric particulate.

The higher deposition rates of each elements (Fe, Sb, Se, Nb, Tc, Te, Ag, Ta, Mo, Po, In, Cd, V, At and Zr) were obtained in Erbil city compared to other sites as shown in Tables (2, 3, 4, 5) and figure (3) which may be due to anthropogenic effects related to traffic sources and other activities. All of the motorway-related elements such as Cd, Cr, Cu, Fe, Mn, Mo, Ni, Pb, V, Zn, Al, Pt, Pd and Rh are dangerous in themselves, they are interact with other compounds and media in the environment that can lead to the most harmful consequences (Rayson, 1990). Elements including As, Sb, Cd, Cr, Hg, Pb and Be, have been identified as toxic air pollutants (Baird, 1995). Zhang, et al. (2010) found that most of mineral and pollutant element concentrations in particles were elevated in dusty days, about 2–4 times higher than the levels in non-dusty days. Each of Si, Ca, Fe and Al accounted for over 10% of the sums of total 20 elements in mass, for example, Si was in 44.3%, 38.7% for dusty and non-dusty cases, respectively.

The amount of dry deposition which occurred in the process of transportation and dust and sand storm and the distribution of elemental dust were not very different with previously collected data in Kurdistan Region.
(Aziz and Dabagh, 2012). Lai et al. (2007) showed that the abundance of Pb, Cd and Fe in the atmosphere might occur as the result of vehicle exhaust emissions, industrial discharge, oil lubricants, and automobile parts along with the corrosion of building materials. Oyeleke et al. (2016) stated that combustion source such as vehicle emission and non-combustion source such as industrial discharges can cause increasing heavy metals in urbanized areas. Dey et al. (2004) studied that mineral dust and sand could be bowed by dust storms and carries a cloud of minute particulates. Therefore, it transferred into the atmosphere and interacts with urban air pollution. Patel et al. (2001) reported that high concentration of heavy metals could be transferred from the atmosphere to the urban area and deposit through precipitation.

The main cause for developing a dust storm is years of inappropriate farming practice, mismanagement of water resources and climate change continue to contribute to reduced vegetation coverage, desertification and droughts, which directly contribute to the growing regional dust storm problem. Droughts and arid conditions favor the dissolution of soil particles, and wind contributes to the emergence of dust storm (Varoujan et al., 2013). To solve this issue serious measure are to taken by Kurdistan Region Government. One of these measures are designing green belt around cities and restoring agricultural lands.

5. CONCLUSIONS

We conclude that the traffic emissions and increasing the population density as anthropogenic sources, in addition to natural dust particles from dust fall and dust storm in Erbil governorate have been the main role for increasing dust fall rate and dust elements.

Figure 1: (A) Shows the Kurdistan Region of Iraq; (B) Shows the Erbil governorate with sampling sites.
Figure 3: The percentages of each element mean concentration at the study areas.
Table 1: Descriptive statistics for falling dust rate (gm/m².year) in the study area.

Locations	Minimum	Maximum	Sum	Mean	Std. Deviation
Makhmur	1.56	12.70	65.02	5.4183	3.68858
Koya	1.52	8.80	59.24	4.9367	2.67172
Pirmam	2.64	10.30	61.34	5.1117	2.17338
Erbil	2.23	23.23	97.60	8.1333	5.96046

Table 2: Descriptive statistics for the percentage value for each element concentration in Erbil.

Elements	Mean	Std. deviation	Interquartile Range 25	Interquartile Range 75
Phosphorus (P)	0.00189	0.00019	0.00187	0.00202
Calcium (Ca)	11.49409	1.48169	10.67649	12.71987
Manganese (Mn)	0.17502	0.12591	0.04849	0.25297
Vanadium (V)	0.00408	0.00961	0	0.00420
Sulfur (S)	2.23365	1.20465	1.56806	3.24411
Potassium (K)	2.86979	0.38525	2.60921	3.12835
Iron (Fe)	3.42150	0.70294	2.83044	4.06591
Molybdenum (Mo)	0.16053	0.02774	0.14394	0.19136
Nickel (Ni)	0.01338	0.00093	0.01260	0.01407
Arsenic (As)	0	0.005221	0.03217	0.04027
Zirconium (Zr)	0.00432	0.00048	0.00401	0.00450
Selenium (Se)	0.00349	0.00091	0.00298	0.00366
Niobium (Nb)	0.00478	0.00021	0.00459	0.00499
Strontium (Sr)	0.00156	0.00018	0.00140	0.0017
Cadmium (Cd)	0.02282	0.00191	0.02162	0.02343
Cerium (Ce)	0.00055	0.00003	0.00051	0.00058
Technetium (Tc)	0.00232	0.00031	0.00217	0.00242
Ruthenium (Ru)	0.00681	0.00019	0.00668	0.00698
Rhodium (Rh)	0.00650	0.00021	0.00634	0.00657
Palladium (Pd)	0.00465	0.00019	0.00455	0.00471
Indium (In)	0.00064	0.00002	0.00062	0.00065
Antimony (Sb)	1.86731	0.09601	1.79055	1.95018
Tellurium (Te)	0.00129	0.00015	0.00113	0.00144
Tungsten (W)	0.01378	0.00111	0.01294	0.01471
Tantalum (Ta)	0.00065	0.00006	0.0006	0.00071
Silver (Ag)	0.00148	0.00005	0.00143	0.00151
Tin (Sn)	0.12005	0.00826	0.11491	0.12568
Bismuth (Bi)	0.04982	0.00945	0.04257	0.05549
Thallium (Tl)	0.00048	0.00002	0.00046	0.00049
Polonium (Po)	0.01959	0.00205	0.01856	0.02069
Astatine (At)	0.00021	0.00005	0.00016	0.00024
Table 3: Descriptive statistics for the percentage value for each element concentration in Koya.

Elements	Mean	Std. deviation	Interquartile Range 25	Interquartile Range 75
Phosphorus (P)	0.00183	0.00030	0.00173	0.00202
Calcium (Ca)	10.93161	2.30803	10.55751	12.24374
Manganese (Mn)	0.17436	0.09810	0.08011	0.24875
Vanadium (V)	0.00312	0.00749	0.00176	
Sulfur (S)	2.23158	1.16145	1.82259	2.62270
Potassium (K)	2.83693	0.33400	2.73598	3.03324
Iron (Fe)	3.17342	0.90113	2.55182	3.76370
Molybdenum (Mo)	0.11814	0.06750	0.06125	0.16595
Nickel (Ni)	0.01318	0.00125	0.01225	0.01363
Arsenic (As)	0.03549	0.00335	0.03234	0.03815
Zirconium (Zr)	0.00398	0.00044	0.00369	0.00429
Selenium (Se)	0.00310	0.00050	0.00269	0.00361
Niobium (Nb)	0.00435	0.00063	0.004211	0.00466
Strontium (Sr)	0.00148	0.00023	0.00126	0.00166
Cadmium (Cd)	0.02099	0.00371	0.01931	0.02306
Cerium (Ce)	0.00057	0.00004	0.00055	0.00060
Technetium (Tc)	0.00192	0.00050	0.00155	0.00231
Ruthenium (Ru)	0.00674	0.00047	0.00645	0.00697
Rhodium (Rh)	0.00620	0.00063	0.00602	0.00656
Palladium (Pd)	0.00447	0.00050	0.00421	0.00477
Indium (In)	0.00058	0.00009	0.00058	0.00063
Antimony (Sb)	1.35383	0.58048	1.36677	1.73913
Tellurium (Te)	0.00078	0.00043	0.00065	0.00113
Tungsten (W)	0.01375	0.00140	0.01274	0.01411
Tantalum (Ta)	0.00063	0.00007	0.00058	0.00067
Silver (Ag)	0.00131	0.00021	0.00136	0.00150
Tin (Sn)	0.08840	0.02984	0.07746	0.10903
Bismuth (Bi)	0.05065	0.00656	0.04404	0.05556
Thallium (Tl)	0.00048	0.00002	0.00046	0.0005
Polonium (Po)	0.01930	0.00237	0.01796	0.01996
Astatine (At)	0.00019	0.00005	0.00014	0.00023
Table 4: Descriptive statistics for the percentage value for each element concentration in Makhmur.

Elements	Mean	Std. deviation	Interquartile	Mean	Std. deviation	Interquartile
			Range 25	Range 75	Range 25	Range 75
Phosphorus (P)	0.00187	0.00015	0.00174	0.00202		
Calcium (Ca)	10.95817	0.90135	10.45097	11.81887		
Manganese (Mn)	0.18735	0.11539	0.09350	0.26776		
Vanadium (V)	0.00136	0.00402	0	0	0.00046	
Sulfur (S)	2.89524	1.57334	1.60315	4.63130		
Potassium (K)	2.88123	0.17770	2.74745	3.04197		
Iron (Fe)	3.08803	0.56810	2.60148	3.64724		
Molybdenum (Mo)	0.15627	0.05744	0.11704	0.20023		
Nickel (Ni)	0.01359	0.00086	0.01311	0.01430		
Arsenic (As)	0.03616	0.00481	0.03359	0.03963		
Zirconium (Zr)	0.00416	0.00030	0.00398	0.00419		
Selenium (Se)	0.00322	0.00041	0.0029	0.00356		
Niobium (Nb)	0.00466	0.00035	0.00442	0.00496		
Strontium (Sr)	0.00168	0.00022	0.00149	0.00184		
Cadmium (Cd)	0.02173	0.00175	0.02009	0.02325		
Cerium (Ce)	0.00057	0.00003	0.00055	0.00060		
Technetium (Tc)	0.00220	0.00013	0.00214	0.00228		
Ruthenium (Ru)	0.00700	0.00018	0.00684	0.00712		
Rhodium (Rh)	0.00648	0.00020	0.00642	0.00656		
Palladium (Pd)	0.00463	0.00018	0.00447	0.00478		
Indium (In)	0.00060	0.00004	0.00056	0.00064		
Antimony (Sb)	1.644389	0.38162	1.32701	2.00454		
Tellurium (Te)	0.00096	0.00055	0.00057	0.00146		
Tungsten (W)	0.01419	0.00110	0.01394	0.01465		
Tantalum (Ta)	0.00065	0.00004	0.00061	0.00069		
Silver (Ag)	0.00144	0.00010	0.00137	0.00153		
Tin (Sn)	0.12455	0.02912	0.10815	0.14665		
Bismuth (Bi)	0.05137	0.00916	0.04550	0.05626		
Thallium (Tl)	0.00044	0.00002	0.00041	0.00046		
Polonium (Po)	0.01927	0.00166	0.01812	0.02074		
Astatine (At)	0.00019	0.00004	0.00015	0.00023		
Table 5: Descriptive statistics for the percentage value for each element concentration in Pirmam.

Elements	Mean	Std. deviation	Interquartile	
			Range 25	Range 75
Phosphorus (P)	0.00196	0.00019	0.00181	0.00205
Calcium (Ca)	11.85008	1.32782	10.63674	13.02502
Manganese (Mn)	0.15098	0.12054	0.04451	0.26161
Vanadium (V)	0.00138	0.00441	0	0
Sulfur (S)	2.52013	1.21184	1.42348	3.35988
Potassium (K)	2.78299	0.44601	2.38628	3.10647
Iron (Fe)	3.00396	0.69191	2.40350	3.62680
Molybdenum (Mo)	0.12724	0.06993	0.08070	0.18043
Nickel (Ni)	0.01310	0.00077	0.01237	0.01385
Arsenic (As)	0.03369	0.00549	0.03159	0.03718
Zirconium (Zr)	0.00427	0.00034	0.00397	0.00462
Selenium (Se)	0.00329	0.00043	0.00294	0.00369
Niobium (Nb)	0.00456	0.00039	0.00413	0.00483
Strontium (Sr)	0.00148	0.00024	0.00145	0.00165
Cadmium (Cd)	0.02132	0.00193	0.01989	0.02270
Cerium (Ce)	0.00058	0.00002	0.00055	0.00061
Technetium (Tc)	0.00220	0.00033	0.00202	0.00237
Ruthenium (Ru)	0.00685	0.00036	0.00675	0.00702
Rhodium (Rh)	0.00635	0.00028	0.00616	0.00650
Palladium (Pd)	0.00454	0.00023	0.00438	0.00474
Indium (In)	0.00060	0.00004	0.00057	0.00062
Antimony (Sb)	1.59008	0.30344	1.26857	1.85978
Tellurium (Te)	0.00095	0.00033	0.00070	0.00118
Tungsten (W)	0.01367	0.00089	0.01295	0.01440
Tantalum (Ta)	0.00065	0.00004	0.00061	0.00068
Silver (Ag)	0.00141	0.00010	0.00129	0.00149
Tin (Sn)	0.10119	0.01795	0.09085	0.11722
Bismuth (Bi)	0.04689	0.01018	0.04237	0.05064
Thallium (Tl)	0.00045	0.00003	0.00043	0.00047
Polonium (Po)	0.01849	0.00207	0.01714	0.02035
Astatine (At)	0.00020	0.00003	0.00017	0.00024
REFERENCES

Addo M, Darko E, Gordon C, Nyarko B and Gbadago J. 2012. Heavy metal concentrations in road deposited dust at Ketu-south district, Ghana. International Journal of Science and Technology, 2:28-39.

Alahmr F, Othman M, Wahid N, Halim A and Latif M. 2012. Compositions of dust fall around semi-urban areas in Malaysia. Aerosol Air Qual Res, 12: 629-642.

Amato F, Pandolfi M, Escrig A, Querol X, Alastuey A, Pey J and Hopke P. 2009. Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmospheric Environment, 43: 2770-2780.

Aziz F. and Dabagh J 2012. Evaluation of outdoor and indoor dust deposition as environmental pollution in Erbil province. Transactions on Ecology and Environment. 157:352-363.

Baird, C. 1995. Environmental Chemistry. 2nd Ed. W.H. Freeman and Company, New York. pp. 347–381.

Cao Z, Yang Y, Lu J and Zhang C. 2011. Atmospheric Particle Characterization, Distribution, and Deposition in Xi’an, Shaanxi Province, Central China. Environ. Pollut. 159: 577–584.

Chen, T. B., Wong, J. W. C., Zhou, H. Y. & Wang, M. H. (1997). Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environmental pollution, 96(1), 61-68.

Dey S, Tripathi S, Singh R and Holben B. 2004. Influence of Dust Storms on the Aerosol Optical Properties Over the IndoGangetic Basin. J. Geophys. Res. 109: 1984–2012.

Feng J, Zhu L, Ju J, Zhou L, Zhen X, Zhang W and Gao S. 2008. Heavy dust fall in Beijing, on April 16-17, 2006: Geochemical properties and indications of the dust provenance. Geochemical Journal, 42: 221-236.

Ghosh S, Gupta T, Rastogi N, Gaur A, Misra A, Tripathi S and Dwivedi A. 2014. Chemical characterization of summertime dust events at Kanpur: insight into the sources and level of mixing with anthropogenic emissions. Aerosol and air quality research, 14: 879-891.

Kalembkiewicz J, Sitcar-Palczak E, Soó E, Nowak D and Trojnar I. 2014. Mobile fractions in dustfall and possible migration of metals to soil. Soil Science Annual, 65: 126-129.

Kleeman M and Cass G. 1998. Source contributions to the size and composition distribution of urban particulate air pollution. Atmospheric Environment, 32: 2803-2816.

Kobler, M. 2013. Dust storms of Iraq, UN Secretary General for Iraq, A ministerial meeting in Nairobi, Kenya.

Krolak E. 2000. Heavy metals in falling dust in Eastern Mazowieckie province. Polish Journal of environmental studies, 9: 517-522.

Lai O, Salmijah S, Ismail B and Aminah A 2007. The Impact of Traffic Causing Lead Exposure to Malaysian School Children. Global J. Environ. Res. 1: 43–48.

Lu X, Wang L, Lei K, Huang J and Zhai Y. 2009. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baqiao, NW China. Journal of hazardous materials, 161: 1058–1062.

Nwadiogbu J, Nwankwere E, Eze K and Chime C. 2013. Trace Metals Airborne Harmattan Dust in Ahmadu Bello University Zaria, Nigeria. Achieves of Applied Science Research, 5: 159-163.

Oyeleke P, Abiodun O, Salako R, Odeyemi O and Abejide T. 2016. Assessment of some heavy metals in the surrounding soils of an automobile battery factory in Ibadan, Nigeria. African Journal of Environmental Science and Technology, 10: 1-8.

Patel K, Shukla A, Tripathi A and Hoffmann P. 2001. Heavy metal concentrations of precipitation in east Madhya Pradesh of India. Water, Air, and Soil Pollution, 130: 463-468.

Rayson, M. J. T. 1990. An investigation into the effects of vehicular pollution on the U.K. and North American environments. M.Sc. Thesis. Univ. of Surrey, UK.

Sami M, Waseem A and Akbar S. 2006. Quantitative Estimation of Dust Fall and Smoke Particles in Quetta Valley. J. Zhejiang Univ. Sci. B 7: 542–547.

Smith J and Lee K. 2003. Soil as a source of dust and implications for human health. Advances in Agronomy, 80: 1-32.

Varga G, Kovács J and Újvári G. 2013. Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979-2011. Global and Planetary Change, 100: 333-342.
Varoujan K. Sissakian, Nadhir Al-Ansari, Sven Knutsson 2013. Sand and dust storm events in Iraq. *Natural Science*, 5:1084-1094

World Health Organization. 2003. Health aspects of air pollution with particulate matter, ozone and nitrogen dioxide: report on a WHO working group, Bonn, Germany 13-15 January 2003.

Zhang, R., Shen, Z., Cheng, T., Zhang, M., & Liu, Y. 2010. The elemental composition of atmospheric particles at Beijing during Asian dust events in spring 2004. *Aerosol and Air Quality Research*, 10(1), 67-75.