Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in in vitro tests

To cite this article: A Zykova et al 2016 J. Phys.: Conf. Ser. 700 012027

View the article online for updates and enhancements.

Related content
- Formation of alpha and beta tantalum at the variation of magnetron sputtering conditions
E O Nasakina, M A Sevostyanov, A B Mikhaylova et al.
- Chromium-nanodiamond coatings obtained by magnetron sputtering and their tribological properties
M V Atamanov, M M Khrushchov, E A Marchenko et al.
- Comparative analysis of electrophysical properties of ceramic tantalum pentoxide coatings, deposited by electron beam evaporation and magnetron sputtering methods
N Donkov, E Mateev, V Safonov et al.

Recent citations
- Mechanical properties of tantalum-based ceramic coatings for biomedical applications
N Donkov et al.
Surface modification of tantalum pentoxide coatings deposited by magnetron sputtering and correlation with cell adhesion and proliferation in \textit{in vitro} tests

A Zykova1,7, V Safonov1, A Goltsev2, T Dubrava2, I Rossokha2, N Donkov3, S Yakovin4, D Kolesnikov5, I Goncharov5 and V Georgieva6

1National Science Center “Kharkov Institute of Physics and Technology“, 1 Academicheskaya Str., 61108 Kharkov, Ukraine
2Institute for Problems of Cryobiology and Cryomedicine NASU, Kharkov, Ukraine
3Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria
4Department of Physical Technologies, Kharkov National University, 4 Svobody Sq., 61077 Kharkov, Ukraine
5Belgorod State National Research University, 85 Pobedy Str., 308015 Belgorod, Russia
6Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko chausssee blvd., 1784 Sofia, Bulgaria

E-mail: zykova.anya@gmail.com

\textbf{Abstract.} The effect was analyzed of surface treatment by argon ions on the surface properties of tantalum pentoxide coatings deposited by reactive magnetron sputtering. The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy, atomic force microscopy and scanning electron microscopy. X-ray diffraction profiles and X-ray photoelectron spectra were also acquired. The total surface free energy (SFE), the polar, dispersion parts and fractional polarities, were estimated by the Owens-Wendt-Rabel-Kaebble method. The adhesive and proliferative potentials of bone marrow cells were evaluated for both Ta\textsubscript{2}O\textsubscript{5} coatings and Ta\textsubscript{2}O\textsubscript{5} coatings deposited by simultaneous bombardment by argon ions in \textit{in vitro} tests.

1. \textbf{Introduction}

In recent years, a new branch of medicine has undergone rapid development based on the use of nanocomposite coatings that promote positive biological processes in a living organism. Medical products with ceramic coatings form normal biopotentials in damaged areas of tissue and organs, prevent the necrosis, tissue atrophy, significantly accelerate the healing process and the post-operative rehabilitation [1-5]. The novel implant and stent types coated by oxide and oxynitride coatings have demonstrated excellent biocompatibility. The positive effect results in lower rates of postoperative infections, inflammatory reactions and other complications [6-8].

7 To whom any correspondence should be addressed.
Tantalum and tantalum-based compounds are promising for biomedical applications due to their good dielectric properties. The results of tests on implanting Ta in both soft and hard tissue of rats showed the good biocompatibility and osteogenesis of this metal [9]. TaC and TaN materials possess relatively high hardness due to the covalent nature of their bond [10] and demonstrate high corrosion resistance [11]. The blood compatibility of TaN films was shown to be better than that of Ta [12]. The aim of the present work was to study the effect of surface treatment by argon ions on the structure and surface properties of tantalum pentoxide (Ta$_2$O$_5$) coatings deposited by reactive magnetron sputtering and, further, the correlation of the surface characteristics with the cell’s adhesion and proliferation.

2. Materials and methods

Ta$_2$O$_5$ coatings were deposited on Petri dishes glass substrates in a high vacuum pumping system with a base pressure of about 10$^{-2}$ Pa by ion-source-assisted magnetron sputtering. For the reactive deposition, oxygen was delivered through the ICP plasma source, $q = 60$ sccm, the magnetron voltage was $U_m = 700$ V, and the magnetron current was about $I_m = 5.7$ A. The sputtering process was conducted in modes far from the target poisoning one for further oxide coatings deposition with highly stoichiometric composition. Also, such deposition conditions allowed us to avoid micro-arcs and micro-drops formation. The optimum conditions were implemented in the upper part of the volt-ampere characteristic curves of a magnetron discharge in argon with oxygen (figure 1). At sufficiently high mass-flow rates of oxygen, a hysteresis effect was observed.

For other substrates, the deposition process was carried out by a simultaneous bombardment of the growing film by argon ions using an ion source. The ion source parameters were: ion acceleration voltage of 2.5 kV, and ion current source of 30 mA.

The structural parameters of the as-deposited coatings were investigated by means of transmission electron microscopy (TEM) using a JEOL JEM 2100 instrument. The surface topography of the tantalum pentoxide ceramic coatings were evaluated by scanning electron microscopy (QUANTA 600 FEG) (SEM) and by atomic force microscopy (NTEGRA-AURA) (AFM). The coating thickness and cross-section structure were obtained using SEM (Nova NanoSEM, FEI) cross-section measurements. The X-ray diffraction profiles were acquired by means of a DRON-3 diffraction device. X-ray photoelectron spectroscopy (XPS) was carried out by an ESCALAB MkII (VG Scientific) electron spectrometer using an AlKalpa X-ray source (excitation energy $\hbar\nu = 1486.6$ eV).

The advancing contact angles were measured by Wilhelm’s method (Kruss K12) at a temperature of 20°C. Standard liquids with well-known values of the surface tension, dispersion component and polar interaction were used. The estimation of the surface free-energy SFE and its polar and dispersion parts were performed by means of the Owens-Wendt-Rabel-Kaelble’ method for thee liquid system α-bromonaphthalene-formamide-ethylene glycol-diiodomethane-glycerol-water.

Culturing of bone marrow (BM) cells (CBA/H) was performed with densities of 0.5–1×104 cells/cm2. After passage, the cells were removed by a trypsin-EDTA solution (Sigma-Aldrich, USA). The structural and functional characteristics of the BM cells were then evaluated. Visual control of the cell cultures was carried out using a Primo Star light phase-contrast microscope (Zeiss,
Germany) and an Axiovert 40C inverted microscope (Zeiss, Germany). The adhesive potential of the BM cells was also evaluated.

A statistical analysis of test results was performed using the non-parametric Mann-Whitney method. The difference was considered statistically significant at $P < 0.05$.

3. Results and discussion
The difference of the structural parameters of the deposited coatings was investigated by means of TEM (figure 2). The coatings had a nano-globular structure with characteristic sizes of the structural elements about 15 nm in the case of as-deposited tantalum pentoxide film and 20 nm after bombardment of the growing film. The deposition process carried out by simultaneous bombardment by argon ions resulted in surface structure changes of the growing films.

![Figure 2. Brightfield TEM images of as-deposited oxide ceramic coatings: a) Ta$_2$O$_5$ coatings, b) Ta$_2$O$_5$ coatings deposited with simultaneous bombardment by argon ions.](image)

X-ray diffraction profiles and XPS spectra of ceramic Ta$_2$O$_5$ coatings have been analyzed previously [13]. The as-deposited magnetron sputtered Ta$_2$O$_5$ coatings demonstrated an amorphous nature, i.e., no peaks were observed. All XPS spectra consisted of well-defined XPS lines of Ta 4f, 4d, 4p and 4s; O 1s; C 1s. Ta 4f doublets are typical for Ta$_2$O$_5$ coatings and have two peaks: Ta 4f7/2 at ~ 26.5 eV and Ta 4f5/2 whose binding energy is higher by 1.9 eV. The Ta 4f lines of the deposited films were in a good agreement with the Ta 4f doublet that is representative for the Ta-0 bond in Ta$_2$O$_5$. The Ta/O ratio estimated from the spectra was about 0.4 for all coatings investigated. The O 1s peaks were centered at binding energies of 530.6 eV for the deposited coatings.

The scanning electron microscopy images of the magneto-sputtered Ta$_2$O$_5$ ceramic coatings revealed a relatively flat surface without cracks. The coating thickness and cross-section structure were obtained from the SEM cross-section measurements (figure 3 a, b). The surface topography and roughness parameters were studied by AFM (figure 3 c, d). The ions bombardment resulted in a change of the surface roughness from $S_a = 0.9$ nm, $S_q = 1.2$ nm to $S_a = 0.6$ nm, $S_q = 0.7$ nm. The difference in the structural parameters of the Ta$_2$O$_5$ coatings and the Ta$_2$O$_5$ coatings deposited by simultaneous bombardment by argon ions was in a good agreement with the TEM results.

The changes in the surface structure parameters may lead to changes in the surface characteristics and functional properties of deposited coatings. An analysis has been previously performed of the capacity, dielectric constant, and dielectric loss tangent depending on the frequency of the electromagnetic field for tantalum pentoxide ceramic coatings deposited in different sputtering modes [13,14]. The magnetron-sputtered Ta$_2$O$_5$ ceramic coatings demonstrated high dielectric parameters. The effect of the deposition process conditions on the electrical behavior of the magnetron-sputtered Ta$_2$O$_5$ coatings was analyzed.
The surface free energy (SFE) plays an important role in the mechanism of cell/biometeral response [15]. The total SFE and its polar and dispersion parts and fractional polarities were estimated by the Owens-Wendt-Rabel-Kaeble method for the liquid system α-bromonaphthalene-formamide-ethylene glycol-diiodomethane-glycerol-water (table 1) at a temperature of 20 °C.

The data demonstrated that the surface free energy of Ta$_2$O$_5$ coatings thus calculated was in the range 41 – 44 mN/m, the SFE polar parts were in the range 11 – 13 mN/m, and the fractional polarity values were in the range 0.26 – 0.29.

Substrate/coating	Component of SFE mN/m	Total γ	Dispersion part γ^d	Polar part γ^p	Fractional polarity $\gamma^p / (\gamma^d + \gamma^p)$
Glass	56.28	30.31	25.97	0.46	
Glass/Ta$_2$O$_5$	43.96	31.06	12.90	0.29	
Glass/Ta$_2$O$_5$ (argon ions bombardment)	41.11	30.03	11.08	0.26	

The tantalum pentoxide ceramic coatings deposited by a simultaneous argon ion bombardment showed the minimal SFE and fractional polarity values. The properties of the oxide ceramic coatings shifted to the more hydrophobic region after the surface treatment by argon ions.

The BM cells were cultured during 18 – 20 days. The medium was changed every three days to achieve a sub-confluent monolayer, and then the culture was prepared for one passage. At the end of each passage, the cells were removed by a solution of trysin-EDTA (Sigma-Aldrich) using a standard method, inactivated by a medium containing 10% FCS, washed out and counted. The effect of the
conditions of depositing oxide ceramic coatings on the adhesive potential of the BM cells was registered (table 2).

During the culturing on the Ta$_2$O$_5$ coated substrates, a reduction of the BM cells adhesion potential was observed (table 2).

Table 2. Adhesive potential of the BM cells on glass and Ta$_2$O$_5$ coated substrates.

Substrate/coatings	Adhesive potential of BM cells, %	Percent of attached cells, %
Glass (control)	7,12±0,64	100
Glass/ Ta$_2$O$_5$	5,73±0,53*	80,46*
Glass/ Ta$_2$O$_5$ (argon ions bombardment)	3,00±0,24*	42,22*

*aStatistically significant difference to control, *P* < 0.05.

The minimal values of cell adhesive potential were found in the case of Ta$_2$O$_5$ coatings deposited by a simultaneous bombardment by argon ions (figure 4). Therefore, the low adhesive and proliferative activity suggest the possibility of applying the Ta$_2$O$_5$ coatings investigated to angioplasty and vascular surgery in view of reducing the likelihood of thrombosis.

Figure 4. Morphology of adhesive BM cells by means of inverted microscopy: a) Ta$_2$O$_5$ coatings, b) Ta$_2$O$_5$ coatings deposited by simultaneous bombardment by argon ions (phase contrast, magnification 1000).

4. Conclusions
The deposition process carried out by a simultaneous bombardment by argon ions resulted in a surface modification of the growing films. The surface roughness parameters decreased from $S_a = 0.9$ nm to $S_a = 0.6$ nm following the ion bombardment. The changes in the surface structure parameters led to changes in the surface characteristics. The minimal values of SFE and the fractional polarity were exhibited by the tantalum pentoxide ceramic coatings deposited by a simultaneous bombardment. The properties of the oxide ceramic coatings shifted to the more hydrophobic region after a surface treatment by argon ions.

It was shown that the argon ions bombardment during tantalum pentoxide coating deposition process reduces the adhesive and proliferative potential of BM cells. Therefore, the Ta$_2$O$_5$ coatings are promising for application to angioplasty and vascular surgery due to the low adhesive and proliferative activity.
Acknowledgment
This work was supported under a program for international scientific collaboration between the Bulgarian Academy of Science and the National Academy of Science of Ukraine, research program of NASU No 24-04-14 and program of RFBR research project No №14-02-90457.

References
[1] Dalby M J, Riehle M O, Sutherland D S, Agheli H and Curtis A S G 2004 Biomaterials 25 5415
[2] Mendonca G, Mendonca D B S, Simoes L G P, Araujo A L, Leite E R, Duarte W R, Aragao F J L and Cooper L F 2009 Biomaterials 30 4053
[3] Goltsev A N, Rassokha I V, Dubrava T G, Ostankova L V, Ostankov M V, Gordienko E A, Safonov V I and Zykova A V 2013 Cell Transplant. Tissue Eng. 8 46
[4] Georges P C and Janmey P A 2005 J. Appl. Physiol. 98 1547
[5] Safonov V, Zykova A, Smolik J, Rogowska R, Luk’yanchenko V and Kolesnikov D 2014 J. Appl. Surf. Sci. 310 174
[6] Karjalainen P P, Ylitalo A, Airaksinen J K and Nammas W 2011 J. Interven Cardiol. 24 1
[7] Zhang F, Zheng Z, Chen Y, Liu X, Chen A and Jiang Z 1998 J. Biomed. Mater. Res. 42 128
[8] Tsyganov I, Maitz M F, Wieser E, Richter E and Reuther H 2005 Surf. Coat. Technol. 200 1041
[9] Matsuno H, Yokoyama A, Watari F, Uo M and Kawasaki T 2001 Biomaterials 22 1253
[10] Miyazaki T, Kim H M, Kokubo T, Ohtsuki C and Nakamura T 2002 Biomaterials 23 827
[11] Georgiev G, Fescheshiev N, Popov D and Uzunov Z 1989 Vacuum 36 595
[12] Leng X Y, Sun H, Yang P, Chen J Y, Wang J, Wan G J, Huang N, Tian X B, Wang L P and Chu P K 2001 Thin Solid Films 398/399 471
[13] Donkov N, Mateev E, Zykova A, Safonov V, Kolesnikov D, Goncharov I, Sudzhanskaia I and Yakovin S 2014 J. Phys.: Conf. Series 558 012036
[14] Atanassova E, Kalitsova M, Zollo G, Paskaleva A, Peeva A, Georgieva M and Vitali G 2003 Thin Solid Films 426 191
[15] Hallab N J, Bundy K J, O’Connor K, Moses R L and Jacobs J J 2001 Tissue Eng. 7 55