Order estimates of best orthogonal trigonometric approximations of classes of infinitely differentiable functions

Tetiana A. Stepanyuk

Abstract In this paper we establish exact order estimates for the best uniform orthogonal trigonometric approximations of the classes of 2π-periodic functions, whose (ψ, β)-derivatives belong to unit balls of spaces L_p, $1 \leq p < \infty$, in the case, when the sequence $\psi(k)$ tends to zero faster, than any power function, but slower than geometric progression. Similar estimates are also established in the L_s-metric, $1 < s \leq \infty$ for the classes of differentiable functions, which (ψ, β)-derivatives belong to unit ball of space L_1.

1 Introduction

Let L_p, $1 \leq p < \infty$, be the space of 2π-periodic functions f summable to the power p on $[0, 2\pi)$, with the norm $\|f\|_p = \left(\frac{2\pi}{0} |f(t)|^p dt \right)^{\frac{1}{p}}$; L_∞ be the space of 2π- periodic functions f, which are Lebesque measurable and essentially bounded with the norm $\|f\|_\infty = \text{ess sup}_t |f(t)|$.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be the function from L_1, whose Fourier series is given by

$$\sum_{k=-\infty}^{\infty} \hat{f}(k)e^{ikx},$$

where $\hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t)e^{-ikt} dt$ are the Fourier coefficients of the function f. $\psi(k)$ is an arbitrary fixed sequence of real numbers and β is a fixed real number. Then, if

Institute of Analysis and Number Theory
Kopernikusgasse 24/II 8010, Graz, Austria, Graz University of Technology
Institute of Mathematics of Ukrainian National Academy of Sciences, 3, Tereshchenkivska st.,
01601, Kyiv-4, Ukraine
e-mail: tania$_\$stepaniuk@ukr.net
the series

\[\sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{\hat{f}(k)}{\psi(|k|)} e^{i(kx + \frac{\beta \pi}{2} \text{sign} k)} \]

is the Fourier series of some function \(\varphi \) from \(L_1 \), then this function is called the \((\psi, \beta)\)-derivative of the function \(f \) and is denoted by \(f^{\psi}_{\beta} \). A set of functions \(f \), whose \((\psi, \beta)\)-derivatives exist, is denoted by \(L^{\psi}_{\beta} \) (see [13]).

Let

\[B^p_\beta := \{ \varphi \in L_p : ||\varphi||_p \leq 1, \varphi \perp 1 \}, \quad 1 \leq p \leq \infty. \]

If \(f \in L^{\psi}_{\beta} \), and, at the same time \(f^{\psi}_{\beta} \in B^p_\beta \), then we say that the function \(f \) belongs to the class \(L^{\psi}_{\beta, p} \).

By \(M \) we denote the set of all convex (downward) continuous functions \(\psi(t) \), \(t \geq 1 \), such that \(\lim_{t \to \infty} \psi(t) = 0 \). Assume that the sequence \(\psi(k), \, k \in \mathbb{N} \), specifying the class \(L^{\psi}_{\beta, p}, \, 1 \leq p \leq \infty \), is the restriction of the functions \(\psi(t) \) from \(\mathcal{M} \) to the set of natural numbers.

Following Stepanets (see, e.g., [13]), by using the characteristic \(\mu(\psi; t) \) of functions \(\psi \) from \(\mathcal{M} \) of the form

\[\mu(t) = \frac{t}{\eta(t) - t}; \quad (1) \]

where \(\eta(t) = \eta(\psi; t) := \psi^{-1}(\psi(t)/2) \), \(\psi^{-1} \) is the function inverse to \(\psi \), we select the following subsets of the set \(\mathcal{M} \):

\[\mathcal{M}^+_{\infty} = \{ \psi \in \mathcal{M} : \mu(\psi; t) \uparrow \infty \}. \]

\[\mathcal{M}''_{\infty} = \{ \psi \in \mathcal{M}^+_{\infty} : \exists K > 0 \, \eta(\psi; t) - t \geq K \quad t \geq 1 \}. \]

The functions \(\psi_{r, \alpha}(t) = \exp(-\alpha t^r) \) are typical representatives of the set \(\mathcal{M}^+_{\infty} \). Moreover, if \(r \in (0, 1) \), then \(\psi_{r, \alpha} \in \mathcal{M}''_{\infty}. \) The classes \(L^{\psi}_{\beta, p} \), generated by the functions \(\psi = \psi_{r, \alpha} \) are denoted by \(L^{\psi}_{\beta, r, p} \).

For functions \(f \) from classes \(L^{\psi}_{\beta, p} \), we consider: \(L_{s} \)-norms of deviations of the functions \(f \) from their partial Fourier sums of order \(n - 1 \), i.e., the quantities

\[\| \rho_n(f; \cdot) \|_s = \| f(\cdot) - S_{n-1}(f; \cdot) \|_s, \quad 1 \leq s \leq \infty, \quad (2) \]

where

\[S_{n-1}(f; x) = \sum_{k=-n+1}^{n-1} \hat{f}(k) e^{ikx}; \]

and the best orthogonal trigonometric approximations of the functions \(f \) in metric of space \(L_s \), i.e., the quantities of the form

\[\| f - \hat{f} \|_s = \| f(\cdot) - \hat{f}(\cdot) \|_s. \]
Order estimates of best orthogonal trigonometric approximations

\[e_n^k(f)_s = \inf_{\gamma_n} \| f(\cdot) - S_{\gamma_n}(f; \cdot) \|_s, \ 1 \leq s \leq \infty; \] \hspace{1cm} (3)

where \(\gamma_n, m \in \mathbb{N} \), is an arbitrary collection of \(m \) integer numbers, and

\[S_{\gamma_n}(f; x) = \sum_{k \in \gamma_n} \hat{f}(k)e^{ikx}. \]

We set

\[\varepsilon_n(L_{\beta,p})_s = \sup_{f \in L_{\beta,p}} \| p_n(f; \cdot) \|_s, \ 1 \leq p, s \leq \infty; \] \hspace{1cm} (4)

\[e_n^\perp(L_{\beta,p})_s = \sup_{f \in L_{\beta,p}} e_n^\perp(f)_s, \ 1 \leq p, s \leq \infty. \] \hspace{1cm} (5)

The following inequalities follow from given above definitions [4] and [5]

\[e_{2n}\perp(L_{\beta,p})_s \leq e_{2n-1}\perp(L_{\beta,p})_s \leq \varepsilon_n(L_{\beta,p})_s, \ 1 \leq p, s \leq \infty. \] \hspace{1cm} (6)

In the case when \(\psi(k) = k^{-r}, r > 0 \), the classes \(L_{\beta,p}^\psi, 1 \leq p \leq \infty, \ \beta \in \mathbb{R} \) are well-known Weyl–Nagy classes \(W_{\beta,p}^\psi \). For these classes, the order estimates of quantities \(e_n(L_{\beta,p}^\psi)_s \) are known for \(1 < p, s < \infty \) (see [4], [5]), for \(1 \leq p < \infty, s = \infty, r > \frac{1}{p} \) and also for \(p = 1, 1 < s < \infty, r > \frac{1}{2}, \frac{1}{2} + \frac{1}{p} = 1 \) (see [5], [6]).

In the case, when \(\psi(k) \) tends to zero not faster than some power function, order estimates for quantities (6) were established in [1], [2], [11] and [12]. In the case, when \(\psi(k) \) tends to zero not slower than geometric progression, exact order estimates for \(e_n^\perp(L_{\beta,p})_s \) were found in [10] for all \(1 \leq p, s \leq \infty \).

Our aim is to establish the exact-order estimates of \(e_n^\perp(L_{\beta,p})_\infty, 1 \leq p < \infty \), and \(e_n^\perp(L_{\beta,1})_s, 1 < s < \infty \), in the case, when \(\psi \) decreases faster than any power function, but slower than geometric progression (\(\psi \in \mathcal{M}^\psi_\infty \)).

2 Best orthogonal trigonometric approximations of the classes \(L_{\beta,p}^\psi, 1 < p < \infty \), in the uniform metric

We write \(a_n \asymp b_n \) to mean that there exist positive constants \(C_1 \) and \(C_2 \) independent of \(n \) such that \(C_1 a_n \leq b_n \leq C_2 a_n \) for all \(n \).

Theorem 1. Let \(1 < p < \infty, \ \psi \in \mathcal{M}^\psi_\infty \) and the function \(\frac{\psi(t)}{\psi(t)} \uparrow \infty \) as \(t \to \infty \). Then, for all \(\beta \in \mathbb{R} \) the following order estimates hold

\[e_{2n-1}\perp(L_{\beta,p})_\infty \asymp e_{2n}\perp(L_{\beta,p})_\infty \asymp \psi(n)(\eta(n) - n)^{\frac{1}{p}}. \] \hspace{1cm} (7)

Proof. According to Theorem 1 from [8] under conditions \(\psi \in \mathcal{M}^\psi_\infty, \ \beta \in \mathbb{R}, \ 1 \leq p < \infty, \) for \(n \in \mathbb{N} \), such that \(\eta(n) - n \geq a > 2, \ \mu(n) \geq b > 2 \) the following esti-
mate is true
\[\varepsilon_n(L^\varphi_{\beta,p}) = K_{a,b} (2p)^{1 - \frac{1}{p}} \psi(n)(\eta(n) - n)^{\frac{1}{p}}, \]
(8)

where
\[K_{a,b} = \frac{1}{\pi} \max \left\{ \frac{2b}{b - 2} + \frac{1}{a}, \ 2\pi \right\}. \]

Using inequalities (6) and (8), we obtain
\[e_\perp^2_n(L^\varphi_{\beta,p}) \leq e_\perp^2_n(L^\varphi_{\beta,p}) \leq K_{a,b} (2p)^{1 - \frac{1}{p}} \psi(n)(\eta(n) - n)^{\frac{1}{p}}. \]
(9)

Let us find the lower estimate for the quantity \(e_\perp^2_n(L^\varphi_{\beta,p}) \). With this purpose we construct the function
\[f_{p,n}(t) = f_{p,n}(\psi; t) := \frac{\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p}}} \left(\frac{1}{2} \psi(1) \psi(2n) + \sum_{k=1}^{n-1} \psi(k) \psi(2n - k) \cos kt + \sum_{k=n}^{2n} \psi^2(k) \cos kt \right), \quad \frac{1}{p} + \frac{1}{p'} = 1. \]
(10)

Let us show that \(f_{p,n} \in L^\varphi_{\beta,p} \). The definition of \((\psi, \beta)\)-derivative yields
\[(f_{p,n}(t))^{\psi}_{\beta} = \frac{\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p}}} \left(\sum_{k=1}^{n-1} \psi(2n - k) \cos \left(kt + \frac{\beta \pi}{2} \right) \right. \]
\[\left. + \sum_{k=n}^{2n} \psi(k) \cos \left(kt + \frac{\beta \pi}{2} \right) \right). \]
(11)

Obviously
\[|(f_{p,n}(t))^{\psi}_{\beta}| \leq \frac{\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p}}} \left(\sum_{k=1}^{n-1} \psi(2n - k) + \sum_{k=n}^{2n} \psi(k) \right) < \]
\[\frac{2\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p}}} \left(\sum_{k=n}^{2n} \psi(k) \right) \leq \frac{2\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p}}} \left(\psi(n) + \int_{n}^{m} \psi(u) du \right). \]
(12)

To estimate the integral from the right part of formula (12), we use the following statement [7, p. 500].

Proposition 1. If \(\psi \in \mathfrak{M}_{\varphi}^\infty \), then for arbitrary \(m \in \mathbb{N} \), such that \(\mu(\psi, m) > 2 \) the following condition holds
\[\int_{m}^{\infty} \psi(u) du \leq \frac{2}{1 - \frac{2}{\mu(m)}} \psi(m)(\eta(m) - m). \]
(13)
Formulas (12) and (13) imply that
\[|(f_{p,n}(t))_\beta^\gamma| \leq \frac{2\lambda_p}{\psi(n) \psi(\eta(n) - n)} \left(\psi(n) + \frac{2b}{b-2} \psi(n)(\eta(n) - n) \right) < \frac{5\lambda_p b}{b-2} (\eta(n) - n)^\gamma. \] (14)

We denote
\[D_{k,\beta}(t) := \frac{1}{2} \cos \frac{\beta \pi}{2} + \sum_{j=1}^{k} \cos \left(j t + \frac{\beta \pi}{2} \right). \] (15)

Applying Abel transform, we have
\[\sum_{k=1}^{n-1} \psi(2n - k) \cos \left(\frac{kt + \beta \pi}{2} \right) = \sum_{k=1}^{n-2} (\psi(2n - k + 1) - \psi(2n - k))D_{k,\beta}(t) + \psi(n + 1) D_{n-1,\beta}(t) - \psi(2n - 1) \frac{1}{2} \cos \frac{\beta \pi}{2} \] (16)

and
\[\sum_{k=n}^{2n} \psi(k) \cos \left(\frac{kt + \beta \pi}{2} \right) = \sum_{k=n}^{2n-1} (\psi(k) - \psi(k+1))D_{k,\beta}(t) + \psi(2n) D_{2n,\beta}(t) - \psi(n) D_{n-1,\beta}(t). \] (17)

Since
\[\sum_{k=0}^{N-1} \sin(\gamma + kt) = \sin \left(\gamma + \frac{N-1}{2} \right) \sin \frac{N\gamma}{2} \sin \frac{t}{2} \] (18)

(see, e.g., [2, p.43]), for \(N = k + 1 \), \(\gamma = (\beta - 1)\frac{\pi}{2} \), the following inequality holds
\[|D_{k,\beta}(t)| = \left| \frac{\cos \left(\frac{k\pi + \beta \pi}{2} \right) \sin \frac{k+1}{2} t}{\sin \frac{\pi}{2}} - \frac{1}{2} \cos \frac{\beta \pi}{2} \right| \]
\[= \left| \sin \left((k + \frac{1}{2}) t + \frac{\beta \pi}{2} \right) - \cos \frac{\beta \pi}{2} \sin \frac{\beta \pi}{2} \frac{\pi}{2} \frac{\pi}{2} \right| \leq \frac{\pi}{t}, \quad 0 < |t| \leq \pi. \] (19)

According to (11), (16), (17) and (19), we obtain
\[|(f_{p,n}^*)(t))_\beta | \leq \frac{\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p'}}} \frac{\pi}{|t|} \sum_{k=1}^{n-2} |\psi(2n - k) - \psi(2n - k - 1) + \psi(n + 1) + \psi(2n - 1) + \sum_{k=n}^{2n-1} |\psi(k) - \psi(k + 1)| + \psi(2n) + \psi(n)| \]
\[= \frac{\lambda_p}{\psi(n)(\eta(n) - n)^{\frac{1}{p'}}} \frac{2\pi}{|t|} (\psi(n + 1) + \psi(n)) \leq \frac{4\pi \lambda_p}{(\eta(n) - n)^{\frac{1}{p'}}} \frac{1}{|t|}. \] (20)

So, (14) and (20) imply
\[\| (f_{p,n}^*)(t))_\beta \|_p \leq \lambda_p \max\left\{ \frac{5b}{b - 2}, 4\pi \right\} \left(\int_{|t| \leq \eta(n) - n} (\eta(n) - n) dt + \frac{1}{(\eta(n) - n)^{\frac{1}{p'}}} \int_{\eta(n) - n \leq |t| \leq \pi} dt \right)^{\frac{1}{p'}} \]
\[\leq 2\lambda_p \max\left\{ \frac{5b}{b - 2}, 4\pi \right\} \left(1 + \frac{1}{p - 1}\right)^{\frac{1}{p'}} = 2\lambda_p \max\left\{ \frac{5b}{b - 2}, 4\pi \right\} (p')^{\frac{1}{p'}}. \]

Hence, for
\[\lambda_p = \frac{1}{2(p')^{\frac{1}{p'}} \max\left\{ \frac{5b}{b - 2}, 4\pi \right\}} \]
the embedding \(f_{p,n}^* \in L_{\beta,p}^\psi \) is true.

Let us consider the quantity
\[I_1 := \inf_{\gamma_{2n}} \left| \int_{-\pi}^{\pi} (f_{p,n}^*(t) - S_{\gamma_{2n}}(f_{p,n}^*(t))V_{2n}(t)) dt \right|, \] (21)
where \(V_{2n} \) are de la Vallée-Poisson kernels of the form
\[V_m(t) := \frac{1}{2} + \sum_{k=1}^{m} \cos kt + \sum_{k=m+1}^{2m-1} \left(1 - \frac{k}{2m}\right) \cos kt, m \in \mathbb{N}. \] (22)

Proposition A1.1 from [3] implies
\[I_1 \leq \inf_{\gamma_{2n}} \| f_{p,n}^*(t) - S_{\gamma_{2n}}(f_{p,n}^*(t)) \|_\infty \| V_{2n} \|_1 = e^{\frac{1}{2n}}(f_{p,n}^*)_\infty \| V_{2n} \|_1. \] (23)

Since (see, e.g., [14, p.247])
\[\| V_m \|_1 \leq 3\pi, \ m \in \mathbb{N}, \] (24)
from (23) and (24) we can write down the estimate.
Order estimates of best orthogonal trigonometric approximations

\[e_{2n}^1(f_{p,n}) \geq \frac{1}{3\pi} I_1. \]

(25)

Notice, that

\[f_{p,n}(t) - S_{2n}(f_{p,n}^{*}t) \]

\[= \frac{\lambda_p}{2\psi(n)(\eta(n) - n)} \int \left(\sum_{|k| \leq n-1, \ k \neq 0} \psi(|k|) \psi(2n - |k|)e^{ikt} + \sum_{n \leq |k| \leq 2n, \ k \neq 0} \psi^2(|k|)e^{ikt} \right) \]

(26)

where \(\psi(0) := \psi(1) \)

Whereas

\[\int_{-\pi}^{\pi} e^{ikt} e^{imt} dt = \begin{cases} 0, & k + m \neq 0, \\ 2\pi, & k + m = 0, \ k, m \in \mathbb{Z}, \end{cases} \]

(27)

and taking into account [22], we obtain

\[\int_{-\pi}^{\pi} (f_{p,n}^{*}(t) - S_{2n}(f_{p,n}^{*}t))V_{2n}(t)dt \]

(28)

\[= \frac{\lambda_p}{4\psi(n)(\eta(n) - n)^2} \int_{-\pi}^{\pi} \left(\sum_{0 \leq k \leq n-1, \ k \neq 0} \psi(k) \psi(2n - k)e^{ikt} + \sum_{-n+1 \leq k \leq -1, \ k \neq 0} \psi(|k|) \psi(2n - |k|)e^{ikt} \right. \]

\[+ \sum_{n \leq k \leq 2n, \ k \neq 0} \psi^2(k)e^{ikt} + \sum_{-2n \leq k \leq -n, \ k \neq 0} \psi^2(|k|)e^{ikt} \]

\[\times \left(\sum_{0 \leq k \leq 2n} e^{ikt} + \sum_{2n+1 \leq |k| \leq 4n-1} 2 \left(1 - \frac{|k|}{4n} \right) e^{ikt} \right) dt \]

(29)

\[= \frac{\lambda_p \pi}{2\psi(n)(\eta(n) - n)^2} \left(\sum_{|k| \leq n-1, \ k \neq 0} \psi(|k|) \psi(2n - |k|) + \sum_{n \leq |k| \leq 2n, \ k \neq 0} \psi^2(|k|) \right). \]

(30)

The function \(\phi_n(t) := \psi(t)\psi(2n - t) \) decreases for \(t \in [1, n] \). Indeed

\[\phi_n'(t) = |\psi'(t)| |\psi'(2n - t)| \left(\frac{\psi(t)}{\psi'(t)} - \frac{\psi(2n - t)}{\psi'(2n - t)} \right) \leq 0, \]

because \(\frac{\psi(t)}{\psi'(t)} \uparrow \infty \) for large \(n \).

Thus, the monotonicity of function \(\phi_n(t) \) and [50] imply
\[I_1 = \frac{\pi \lambda_p}{2 \psi(n)(\eta(n) - n)^p} \left(\psi^2(n) + \sum_{n+1 \leq |k| \leq 2n} \psi^2(|k|) \right) \]
\[> \frac{\pi \lambda_p}{2 \psi(n)(\eta(n) - n)^p} \sum_{k=n}^{2n} \psi^2(k) \geq \frac{\pi \lambda_p}{2 \psi(n)(\eta(n) - n)^p} \int_n^{\eta(n)} \psi^2(t) dt \]
\[> \frac{\pi \lambda_p}{2 \psi(n)(\eta(n) - n)^p} \psi^2(\eta(n)) (\eta(n) - n) = \frac{\pi \lambda_p}{8} \psi(n)(\eta(n) - n)^{\frac{1}{p}}. \quad (31) \]

By considering (25) and (31) we can write
\[e_\perp^2 n(L^\psi_{\beta, p})_{\infty} \geq e_\perp^2 n(f_{p,n})_{\infty} \geq \frac{1}{3\pi} I_1 \geq \frac{\lambda_p}{24} \psi(n)(\eta(n) - n)^{\frac{1}{p}}. \quad (32) \]

Theorem 1 is proved.

Remark 1. Let \(\psi \in \mathcal{M}^+_\infty \), \(\beta \in \mathbb{R} \), \(1 < p < \infty \), \(\frac{1}{p} + \frac{1}{p'} = 1 \), and the function \(\frac{\psi(t)}{|\psi'(t)|} \uparrow \infty \) for \(t \to \infty \). Then for \(n \in \mathbb{N} \) the following estimates hold
\[K_{b,p} \psi(n)(\eta(n) - n)^{\frac{1}{p}} \leq e_\perp^2 n(L^\psi_{\beta, p})_{\infty} \leq \frac{1}{3\pi} I_1 \geq \frac{\lambda_p}{24} \psi(n)(\eta(n) - n)^{\frac{1}{p}}. \quad (33) \]

where
\[K_{a,b,p} = \frac{1}{\pi} \max \left\{ \frac{2b}{b-2} + \frac{1}{a}, \frac{2\pi}{2p} \right\} (2p)^{\frac{1}{p'}}. \quad (34) \]
\[K_{b,p} = \frac{1}{48} \max \left\{ \frac{2b}{b-2}, \frac{4\pi}{4\pi} \right\} (p')^{\frac{1}{p'}}. \quad (35) \]

3 Best orthogonal trigonometric approximations of the classes \(L^\psi_{\beta, 1} \) in the uniform metric

Theorem 2. Let \(\psi \in \mathcal{M}^+_\infty \). Then for all \(\beta \in \mathbb{R} \) order estimates are true
\[e_\perp^2 n(L^\psi_{\beta, 1})_{\infty} \asymp e_\perp^2 n(f_{1,n})_{\infty} \asymp \psi(n)(\eta(n) - n). \quad (36) \]

Proof. According to formula (48) from [8] under conditions \(\psi \in \mathcal{M} \), \(\sum_{k=1}^{\infty} \psi(k) < \infty \), \(\beta \in \mathbb{R} \), for all \(n \in \mathbb{N} \) the following estimate holds
\[e_n(L^\psi_{\beta, 1})_{\infty} \leq \frac{1}{\pi} \sum_{k=n}^{\infty} \psi(k). \quad (37) \]

Using Proposition 1, we have
In [14, p. 263–265] it was shown that
\[\|e_{2n}^\psi(L_{\beta,1})\|_\infty \leq e_{2n-1}^\psi(L_{\beta,1}) \leq e_n^\psi(L_{\beta,1}) \leq \frac{1}{\pi} \sum_{k=n}^m \psi(k) \]
\[\leq \frac{1}{\pi} \left(\psi(n) + \int_n^\infty \psi(u) du \right) \leq \frac{\psi(n)}{\pi} \left(1 + \frac{b}{b-2}(\eta(n) - n) \right). \quad (38) \]

Let us find the lower estimate for the quantity \(e_{2n}^\psi(L_{\beta,1}) \).

We consider the quantity
\[I_2 := \inf_{\gamma_{2n}} \left| \int_0^\pi (f_{2n}^\psi(t) - S_{\gamma_{2n}}(f_{2n}^\psi; t)) V_{2n}(t) dt \right|, \quad (39) \]

where \(V_m \) are de la Vallée-Poisson kernels of the form (22), and
\[f_{2n}^\psi(t) = f_{2n}^\psi(t) := \frac{1}{\pi m} \left(\psi(1) + \sum_{k=1}^m k \psi(k) \cos kt + \sum_{k=m+1}^{2m} (2m+1-k) \psi(k) \cos kt \right). \quad (40) \]

In [14, p. 263–265] it was shown that \(\|f_{2n}^\psi\|_1 \leq 1 \), i.e., \(f_{2n}^\psi \) belongs to the class \(L_{\beta,1}^\psi \) for all \(m \in \mathbb{N} \).

Using Proposition A1.1 from [13] and inequality (24), we have
\[I_2 \leq \inf_{\gamma_{2n}} \|f_{2n}^\psi(t) - S_{\gamma_{2n}}(f_{2n}^\psi; t)\|_1 \|V_{2n}\|_1 \leq 3\pi e_{2n}^\psi(f_{2n}^\psi) \|V_{2n}\|_1. \quad (41) \]

Assuming again \(\psi(0) := \psi(1), \) from (22) and (40), we derive
\[I_2 = \frac{1}{20\pi n} \inf_{\gamma_{2n}} \left| \int_0^\pi \left(\sum_{|k| \leq 2n} |k| \psi(|k|) e^{ikt} + \sum_{2n+1 \leq |k| \leq 4n} (4n+1-|k|) \psi(|k|) e^{ikt} \right) \times \right. \]
\[\left. \times \left(\sum_{|k| \leq 2n} e^{ikt} + 2 \sum_{2n+1 \leq |k| \leq 4n-1} \left(1 - \frac{|k|}{4n} \right) e^{ikt} \right) dt \right| \]
\[= \frac{1}{10n} \inf_{\gamma_{2n}} \left(\sum_{|k| \leq 2n} |k| \psi(|k|) + \sum_{2n+1 \leq |k| \leq 4n} \left(1 - \frac{|k|}{4n} \right) \psi(|k|) \right) \]
\[> \frac{1}{10n} \inf_{\gamma_{2n}} \sum_{|k| \leq 2n} |k| \psi(|k|) = \frac{1}{10n} \left(n \psi(n) + 2 \sum_{k=n+1}^{2n} k \psi(k) \right) \]
\[> \frac{1}{10} \sum_{k=n}^{2n} \psi(k) > \frac{1}{10} \int_n^\infty \psi(t) dt > \frac{1}{20} \psi(n)(\eta(n) - n). \quad (42) \]

Formulas (41) and (42) imply
Theorem 3. Let
\[e_{2n}(L_{β,1}^γ) ≥ e_{2n}(f_{2n}^*=) ≥ \frac{1}{3π}l_2 > \frac{1}{60π}ψ(n)(η(n) - n). \]

Theorem 2 is proved.

Remark 2. Let \(ψ \in \mathcal{M}_{k∞}^∞ \) and \(β \in \mathbb{R} \). Then for \(n \in \mathbb{N} \), such that \(μ(n) ≥ b > 2 \) the following estimate holds

\[\frac{1}{60π}ψ(n)(η(n) - n) ≤ e_{2n}(L_{β,1}^γ) ≤ e_{2n−1}(L_{β,1}^γ) ≤ \frac{1}{π} \left(\frac{1}{b} + \frac{b}{b-2} \right)ψ(n)(η(n) - n). \] (43)

Corollary 1. Let \(r \in (0, 1) \), \(α > 0 \), \(1 ≤ p < ∞ \) and \(β \in \mathbb{R} \). Then for all \(n \in \mathbb{N} \) the following estimates are true

\[e_n^1(L_{β,p}^α) ≥ \exp(-αn^p) n^{-p}. \] (44)

4 Best orthogonal trigonometric approximations of the classes \(L_{β,1}^γ \) in the metric of spaces \(L_s \), \(1 < s < ∞ \)

Theorem 3. Let \(1 < s < ∞ \), \(ψ \in \mathcal{M}_{k∞}^∞ \) and function \(\frac{ψ(t)}{ψ(0)} \uparrow ∞ \) as \(t \to ∞ \). Then for all \(β \in \mathbb{R} \) order estimates hold

\[e_{2n−1}(L_{β,1}^γ) ≥ e_{2n}(L_{β,1}^γ) ≥ ψ(n)(η(n) - n)^{\frac{s}{s'}} ≥ \frac{1}{s} + \frac{1}{s'} = 1. \] (45)

Proof. According to Theorem 2 from [8] under conditions \(ψ \in \mathcal{M}_{k∞}^∞ \), \(β \in \mathbb{R} \), \(1 < s ≤ ∞ \) for \(n \in \mathbb{N} \), such that \(η(n) − n ≥ a > 2 \), \(μ(n) ≥ b > 2 \) the following estimate holds

\[e_n(L_{β,1}^γ) ≤ K_{a,b} (2s')^{\frac{1}{s}}ψ(n)(η(n) - n)^{\frac{1}{2}}. \] (46)

Using inequalities (6) and (46), we get

\[e_{2n}(L_{β,1}^γ) ≤ e_{2n−1}(L_{β,1}^γ) ≤ K_{a,b,s'} (2s')^{\frac{1}{s'}}ψ(n)(η(n) - n)^{\frac{1}{2}}. \] (47)

Let us find the lower estimate of the quantity \(e_{2n}(L_{β,1}^γ) \).

We consider the quantity

\[I_3 := \inf_{\gamma_{2n}} \left| \frac{π}{2n} \int_{-π}^{π} (f_{2n}^{*}\gamma(t) - S_{2n}(f_{2n}^{*}\gamma(t)))f_{s,p}^{*}\gamma(t)dt \right|, \] (48)

where

\[f_{m}^{*}\gamma(t) = \frac{1}{3π}V_m(t), \]
and $f^*_{s,n}$ is defined by formula (10).

On the basis of Proposition A1.1 from [3] we derive

$$I_3 = \inf_{\gamma} \| f^*_{2n} - S_{\gamma}(f^*_{2n}) \|, \| f^*_{s,n} \| \leq e_{2n}(f^*_{2n}),$$ \hspace{1cm} (49)

On other hand, using formulas (27), we write

$$I_3 = \frac{\lambda_s}{6\psi(n)(\eta(n) - n)^{\frac{1}{2}}} \inf_{\gamma} \left(\sum_{|k| \leq n, k \neq \gamma} \psi(|k|)\psi(2n - |k|) + \sum_{n \leq |k| \leq 2n} \psi^2(|k|) \right)$$

$$= \frac{\lambda_s}{6\psi(n)(\eta(n) - n)^{\frac{1}{2}}} \left(\psi^2(n) + 2 \sum_{k=n+1}^{2n} \psi^2(k) \right) \geq \frac{\lambda}{6\pi \psi(n)(\eta(n) - n)^{\frac{1}{2}}} \sum_{k=n}^{2n} \psi^2(k)$$

$$> \frac{\lambda_s}{6\psi(n)(\eta(n) - n)^{\frac{1}{2}}} \left(\psi^2(n) + 2 \sum_{k=n+1}^{2n} \psi^2(k) \right) \geq \frac{\lambda}{6\pi \psi(n)(\eta(n) - n)^{\frac{1}{2}}} \sum_{k=n}^{2n} \psi^2(k) \geq \frac{\lambda_s}{24} \psi(n)(\eta(n) - n)^{\frac{1}{2}}. \hspace{1cm} (50)$$

Hence, formulas (49) and (50) imply

$$e_{2n}(L^\psi f_{s,n}) \geq e_{2n}(f^*_{s,n}) \geq I_3 \geq \frac{\lambda_s}{24} \psi(n)(\eta(n) - n)^{\frac{1}{2}}. \hspace{1cm} (51)$$

Theorem 3 is proved.

Note, that functions

1) $e^{-\alpha t^2}$, $\alpha > 0$, $r \in (0, 1)$, $\gamma \in \mathbb{R}$;

2) $e^{-\alpha t \ln(t + K)}$, $\alpha > 0$, $r \in (0, 1)$, $K > e - 1$, etc., can be regarded as examples of functions ψ, which satisfy the conditions of Theorem 1 and Theorem 3.

Remark 3. Let $\psi \in M^+_n$, $\beta \in \mathbb{R}$, $1 \leq p < \infty$ and function $\frac{\psi(t)}{|\psi(t)|} \uparrow \infty$ as $t \to \infty$. Then for all $n \in \mathbb{N}$, such the following estimates are true

$$K_{p,b,\alpha} \psi(n)(\eta(n) - n)^{\frac{1}{p}} \leq e_{2n}^{\\psi}(L^\psi f_{s}) \leq e_{2n}^{\\psi}(L^\psi f_{s,n}) \leq K_{p,b,\alpha} \psi(n)(\eta(n) - n)^{\frac{1}{p}}, \hspace{1cm} (52)$$

where $K_{p,b,\alpha}$ and $K_{p,b,\alpha}$ are defined by formulas (54) and (55) respectively.
Corollary 2. Let $r \in (0,1)$, $\alpha > 0$, $1 < s < \infty$ and $\beta \in \mathbb{R}$. Then for all $n \in \mathbb{N}$ the following estimates are true
\[
e_n^\perp (L^{\alpha,r}_{\beta,1})_r \asymp \exp(-\alpha n^r) n^{\frac{1}{r}}, \quad \frac{1}{s} + \frac{1}{s'} = 1. \tag{53}
\]

Acknowledgements

The author is supported by the Austrian Science Fund FWF project F5503 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”)

References

1. A. S. Fedorenko, On the best m-term trigonometric and orthogonal trigonometric approximations of functions from the classes $L^{\psi}_{p,p}$, Ukr. Math. J., 51:12 (1999), 1945–1949.
2. I. S. Gradshtein, I. M. Ryzhik, Tables of Integrals, Sums, Series, and Products [in Russian], Fizmatgiz, Moscow (1963).
3. N. P. Korneichuk, Exact Constants in Approximation Theory, 38, Cambridge Univ. Press, Cambridge, New York (1990).
4. A. S. Romanyuk, Approximation of classes of periodic functions of many variables, Mat. Zametki, 71:1 (2002), 109121 .
5. A. S. Romanyuk, Best trigonometric approximations of the classes of periodic functions of many variables in a uniform metric, Mat. Zametki, 81:2 (2007), 247261 .
6. A. S. Romanyuk, Approximate Characteristics of Classes of Periodic Functions of Many Variables [in Russian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv (2012).
7. A. S. Serdyuk, Approximation by interpolation trigonometric polynomials on classes of periodic analytic functions, Ukr. Mat. Zh., 64:5 (2012), 698712; English translation: Ukr. Math. J., 64:5, (2012), 797815.
8. A. S. Serdyuk, T. A. Stepaniuk, Order estimates for the best approximation and approximation by Fourier sums of classes of infinitely differentiable functions, Zb. Pr. Inst. Mat. NAN Ukr. 10:1 (2013), 255-282. [in Ukrainian]
9. A. S. Serdyuk, T. A. Stepaniuk, Order estimates for the best orthogonal trigonometric approximations of the classes of convolutions of periodic functions of low smoothness, Ukr. Math. J., 67:7 (2015), 1-24.
10. A. S. Serdyuk, T. A. Stepaniuk, Estimates of the best m-term trigonometric approximations of classes of analytic functions, Dopov. Nats. Akad. Nauk Ukr., Mat. Pryr. Tekh. Nauky, No. 2 (2015), 32–37. [in Ukrainian]
11. V. V. Shkapa, Estimates of the best M-term and orthogonal trigonometric approximations of functions from the classes $L^{\psi}_{p,p}$ in a uniform metric, Differential Equations and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, 11:2 (2014), 305–317.
12. V. V. Shkapa, *Best orthogonal trigonometric approximations of functions from the classes L^p_{ψ}*, Approximation Theory of Functions and Related Problems [in Ukrainian], Institute of Mathematics, Ukrainian National Academy of Sciences, Kyiv, **11**:3 (2014), 315–329.

13. A. I. Stepanets, *Methods of Approximation Theory*, VSP: Leiden, Boston (2005).

14. T. A. Stepaniuk, *Estimates of the best approximations and approximations of Fourier sums of classes of convolutions of periodic functions of not high smoothness in integral metrics*, Zb. Pr. Inst. Mat. NAN Ukr. **11**:3 (2014), 241-269. [in Ukrainian]