Effect of Aluminium and Aqueous extract of Rosmarinus officinalis on rat Brain: Impact on Neurobehavioral and Histological study

Zakia Lahouel1*, Omar Kharoubi1, Amina Boussadia1, Zohra Bekkouche1, Abdelkader Aoues1

1 Laboratory of Experimental biotoxicology, biodepollution and phyto remediation, Faculty of Natural and Life Sciences, University Oran1
Ahmed Ben Bella, Oran, Algeria

ABSTRACT

'Rosmarinus officinalis' is a plant used in Mediterranean diet and traditional medicine, possessing various antioxidant and cytoprotective bioactivities. In this study, we investigated the potential neuroprotective efficacy of aqueous Rosemary extract (AER) against neurotoxicity induced by Aluminum (Al), in terms of behavioral, biochemical and histological aspects in young rats. An intraperitoneal injection of Al, at the weekly dose of 60mg/Kg was given to the animals. A treatment of 150mg/Kg/day of AER was administered by gavage over periods of 6 or 12 weeks. Al caused intense changes over time in body and brain weight, increase in neurological disorders such as depression, anxiety, and deficiency in memory skills. Results show also disturbances in locomotors activity, with a significant inhibition of AchE and increase LDH activity compared to control. Additionally, Al induced structural damages in the cerebral cortex, and the CA1 region of hippocampus. However, treatment with AER resulted in improved depression and anxiety state, locomotors activity and restored memory skills. Results show that AER increase the AchE activity and decreased neuronal loss in the cerebral cortex and the CA1 region of hippocampus with the 6weeks treatment but induced disruption and structural modification of brain tissue after the 12 weeks treatment. The Aqueous extract of Rosemary possess a neuroprotector and corrective effect against neurological alterations induced by Aluminum, but when administered over a long period of time, the extract can cause a no beneficial effect and morphologic modifications in cerebral tissue and behavior test.

Keywords: Rosmarinus officinalis, Aluminum, neuro-behavior, brain structure.

INTRODUCTION

Metal interacting with biological components is receiving an unprecedented level of attention from the field of neuroscience. The accumulating evidence continues to substantiate the essential function of metals in the healthy brain1. However, impairment of metal homeostasis has been perceived as one of the key factors in the progression of neurodegeneration. Studies exploring the causative role of metals in the molecular pathogenesis of neurological disorders are rapidly expanding2. A metal of such interest is aluminum, which is widely used as an additive in our modern diet, incorporated in certain drugs (antacids, anti-diarrheal), and in cosmetology3.

Although Aluminum administered orally is poorly absorbed, it has been shown that some aluminum compounds such as maltolate, ascorbate, succinate, lactate or citrate are much more easily absorbed. For instance, citric acid increases aluminum absorption by 5 to 10 times in humans and animals4. Aluminum has been associated with many diseases such as Alzheimer's disease, Parkinson’s disease, amyotrophic lateral sclerosis and senile dementia of the Alzheimer type5. Transition metals, such as Al, can easily cross the blood-brain barrier, leading to significant accumulation in the brain. Once in the central nervous system the metal can form a stable complex with L-glutamic acid and accumulates in different regions of the brain in the striatum, hippocampus and cerebral cortex, causing neural and glial disorders6. And can also enter different parts of the cell, including mitochondria, lysosomes and the nucleus7. This is likely to cause morphological changes7, and participate in neural system failure and disturbance of brain function, like neurotransmitters metabolism between neurons8. Such as modifications in serotonin, noradrenaline, GABA, dopamine and glutamate rates9.

Further, Aluminum being a potent cholinotoxin it interferes with the synthesis of acetylcholine10, which is involved in...
regulating several functions in central nervous system such as cognition, memory, consciousness, attention and then the regulation of mood disorders such as depression and anxiety, and may cause apoptotic neuronal loss due to changes in acetylcholinesterase (AchE) levels in the brain. According to several studies, chronic exposure to aluminum induces changes in neurological behavior, neuropathological, neuro physical and neurochemical changes.

Rosmarinus officinalis L. (family: Lamiaceae) is a dense shrub, native to the Mediterranean basin. The plant is now grown all over the world for its Mediterranean culinary virtues, and its classification by the European Food Safety Authority (EFSA, 2008) as a safe natural antioxidant in food preservative and in traditional medicine. According to numerous studies, Rosemary may have antioxidant, anti-diabetic, anti-cancer activity and therapeutic effect against stress-related psychiatric disorders. The hexane-ultrasound rosemary extract can reduce neuropathic hypersensitivity and protect nervous tissues; and the hydroalcoholic extract of Rosemary has been shown to reduce the permeability of BBR, potentially leading to reduction in cerebral edema and intracranial pressure and restoring cerebral blood flow and energy.

In this study, we investigated the potential neuroprotective efficacy of Aqueous Extract of Rosemary (AER) against neurotoxicity induced by aluminum in terms of behavioral, biochemical and histological aspects in young rats.

Theory
A number of studies have pointed out that the compounds bio isolated assets of plant are potentially beneficial against the deleterious effects of the aluminum and on the activity glutamergic synaptic at the level of different regions of the brain and more particularly at the level of the hippocampus. As well, the orientation of our research toward the identification of new biomolecules potentially cytoprotective, can contribute positively to the reduction of the deleterious effects of aluminum on the brain functions and the appearance of the neurodegenerative disease.

MATERIALS AND METHODS
Preparation of the aqueous extract of Rosmarinus Officinalis
The Rosemary plant was grown and dried in the open air in the dark in Es-Senia Oran (Algeria), in October 2016. It was identified and authenticated at the Herbarium of Botany Directorate of the University Es-Senia (Oran). Fifty (50) Grams of the air part of Rosemary were extracted with 500 ml of distilled water by continuous hot extraction at 60°C twice during 30min, and the filtrate was lyophilized. The extraction yielded 7.06g (14.12%). When needed, the extract was dissolved in distilled water.

Animals and tissue preparation
In this study, sixty-four (64) male Wistar rats aged 5 weeks, weighing approximately 60 ± 10g were used. The rats were housed under normal conditions with free access to food and water (12hours light/dark, Temperature 22 ± 2°C). The study protocol was approved by the University’s Scientific Committee. The animals were divided into four groups of 16 rats each. The following protocol was used for each group:

Control: An intraperitoneal (I.P) injection of 0.9% saline solution (NaCl); Al: An I.P injection of 60mg/Kg body weight (BW) of Aluminum Chloride once a week at 8:00am; the used dose was based on different studies already carried out previously which showed that aluminum intoxication with a dose of 50mg/Kg three times a week or daily to young or adult male wistar rats for 6and 12weeks causes alterations in brain. Al+AER: this group received an I.P injection of 60mg/kg B.W (AlCl3) once a week and, concomitantly, a treatment with aqueous extract of rosemary (AER) at a dose of 150mg/kg(BW)/day by gavage at 5pm. AER; was used as controls treated with a dose of 150mg/kg(BW)/Day of aqueous extract of rosemary (AER) by gavage.

All group were treated under the same housing conditions. At the end of the experiment, behavioral tests were performed, and weight of each rat was recorded. Eight (8) rats from each group were sacrificed under anesthesia (I.P, Chloral Solution injection) after 6 weeks; while the remaining eight rats from each group continued the experiment until 12weeks. The brain of each rat was then removed, washed with an isotonic solution (0,9%), weighed, and stored at -80°C until use.

The brain of each rat was divided into two parts (Right and Left), the right part was crushed and homogenized with phosphate buffer (1/10 W/V, pH 7.4) with a homogenizer; and centrifuged at 3000g for 15min at 4°C. The supernatant was isolated and centrifuged at 10000g for 10min at 4°C. The final supernatant was separated then used for the estimation biochemical parameters.

Neurobehavioral study
Before starting, the behavioral tests are used in an isolated room with no noise; all rats were pre-trained for 7 days on all the behavioral tests employed. Behavioral tasks were started on the day following pre-training and continued for 15 days. Training was performed during the last treatment month.

Forced swimming test:
Forced swimming were performed according to the technique of Porsolt et al; this test were used to evaluate the animal’s depressive behavior, and consists of subjecting each rat to a forced swimming test inside a cylinder (20,7cm in diameter×39cm in height) filled with water at 22±2°C for 6minutes. The parameters recorded during the test were mobility time [MT], and immobility time [IT].

Dark/Light test:
This test is used against unconditioned anxiety in rodents, for 20minutes each rat was placed in a box consisting of two equal part compartments (44×8.5×25), One compartment illuminated by light, and one dark compartment, separated by a door, generally rats hated places with light, hence more the animal is not anxious, more its exploration would be reduced in the dark compartment. During testing the parameters recorded were time passed in the dark [TPDC], and light compartment [TPLC].

The Elevated Plus Maze:
This technique described by Pelow;21 the device is composed of four arms (I=50/L=10cm) that communicate through a central area (5×5cm), two arms closed by (20cm) high walls, placed at height of (50cm) from the ground. Each rat was placed in the central zone, facing a closed arm to explore the labyrinth for 20 minutes, in order to evaluate anxious behavior according to its spontaneous aversion to vacuum; the parameters measured were the time passed in the Open Arms [TPOA], and the Closed Arms [TPCA].

Radial Arm Maze:
To evaluate the working and reference memory of the animals, the radial arm labyrinth consisted of 8arms (20cm)
starting from a central area of (30cm), arranged at a height of 50cm from the ground; in short for 4 Days, a food reward system was placed at the end of each arm. Subsequently, each rat was positioned individually in the central area to explore this new environment for 10 minutes each day. Working memory errors [WME], were calculated (Number of repeated entries in the previously explored arms). On the 5th and 6th days the food reward was placed only in 4 arms (Arm n° 2, 4, 6, 8). The reference memory errors [RME] were calculated (Number of repeated entries in the unappetizing arms)18.

Open field:
The open field test is used to provide a qualitative and quantitative measure of exploratory and locomotor activity in rodents22. It is in the form of an open rectangular box of (75cm×40cm×35cm) with a black background with white lines on the ground delimiting the (20) tiles, each rat was placed in one of the four corners of the open field for 15 minutes, its locomotor activity will be evaluated according to the number of squares crossed by the animal every 5 minutes.

Biochemical estimation
The activity of acetylcholinesterase was determined by the Ellman’s spectrophotometric method 23. Briefly, an aliquot of brain homogenate (0.05ml) was added to tubes containing (3ml) phosphate buffer, (0.02) acetylcholine solution with (0.1ml) DTNB. The absorbance was measured at 412nm in a UV spectrophotometer and expressed in µmol/min/mg of Protein. Lactate Dehydrogenase (LDH) activity in brain was measured spectrophotometrically, by using commercial reagent Kits. Briefly, an aliquot (100µl) of brain homogenate was mixed with (3ml) of working reagent, incubated for 1 minute and the absorbance at 340nm was measured. The total protein levels in homogenates were determined following the method of Lowry 24. Briefly, proteins were mixed with copper ions in alkaline medium and reduced by Folin reactive. The absorbance of the blue colored product was evaluated at 500nm.

The histological study
The left hemisphere of the brain was fixed by the formaldehyde buffer (10%), immersed in alcohol baths (24 Hours), poured into mold containing paraffin melted for inclusion, and then cooled. With a microtome, 3 micron tissue sections were selected, collected on glass slides, rehydrated, and then stained with hematoxylin and eosin as nuclear and cytoplasmic dyes25. The sections were analyzed using a microscope. This technique was performed at the west military Hospital of Oran.

Statistical analysis
Values are represented as mean±Standard deviation (SD). Statistical comparisons were performed using a one-way analysis of variance (ANOVA). If the ANOVA analysis indicated significant differences, Tukey’s post-hoc test was performed to compare mean values between treatment groups and controls. A value of P<0.05 was considered as statistically significant, P<0.01 a very significant and P<0.001 a highly significant.

RESULTS
Table 1 shows that Al induced a significantly decreased final body weight (P<0.05) of -21.79% and -12.79% after 6 and 12 weeks, respectively. Conversely, the statistical analyses show significantly enhanced relative whole brain weight of +17.68% and +9.31%, after 6 and 12 weeks, compared to the control group (P<0.05).

The Al+AER group exhibited an increase in final body weight (+19.67% and +28.67%; P<0.05), after 6 and 12 weeks, compared to the (Al) group; absolute whole brain weight was significantly higher at 6-weeks (by +12.31%) than the Al group, After 12 weeks, but no difference was noted at 12 weeks. On the other hand, the Al+AER group showed a significant reduction (-18.60%; p<0.05) of the relative whole brain weight after 12-weeks, compared to Al group. AER group show a significant increased value in final body weight (+11.77%; p<0.05) compared to controls, After 12-weeks.

Experimental Groups	Initial Body weight [g]	Final Body weight [g]	Absolute whole Brain weight [g]
		After 6 Weeks	
Control	67.30±2.82	158.19±4.15	1.71±0.07
Al	69.28±2.10	123.71±6.60*	1.57±0.10*
Al+AER	67.37±1.40	148.05±12.55#	1.77±0.09#
AER	66.87±1.45	153.97±15.09	1.73±0.05
		After 12 Weeks	
Control	66.82±2.52	202.97±12.99	1.85±0.04
Al	69.53±2.13	176.99±3.87*	1.80±0.06*
Al+AER	68.63±2.72	227.69±18.49#	1.88±0.02#
AER	69.20±3.86	230.06±29.89*	1.84±0.02

The parameters: **Final Body weight**: the mean weight of the rats in each group on the last day of the experiment. **Absolute whole Brain weight**: the mean brain weight of the rats in each group. [g]: Grammes. Values are represented as mean ± SD each group. :P<0.05, †:P<0.01, ‡:P<0.001 compared with control group; ‡:P<0.05, **:P<0.01 ***:P<0.001 compared with (Al) group. (one-way analysis of variance (ANOVA))
Effect of treatment on behavioral parameters

Forced swimming Test

The forced swimming test, evaluated by measurement of the immobility time (IT), is commonly used to assess depressive behaviour in animals. After 6 and 12 weeks, results show a higher score (-63.99%); p<0.001 in immobility time (IT) in the Al exposed animals compared to controls. There was no significant change in Al+AER group compared to the Al group (Table 2) after the 6-week exposure. However, treatment with AER for 12 weeks showed a significant decrease (p<0.001), relative to Al group. In addition, AER induced a significantly decreased score compared to control (Table 2).

Dark/Light Test

This test shows that compared to the control group, the Al group spent a significantly larger period in the dark area, but not the Al+AER or Al groups, after the 6-week study (Table 2).

Radial Arm maze test

The forced swimming test, evaluated by measurement of the immobility time (IT), is commonly used to assess depressive behaviour in animals. After 6 and 12 weeks, results show a higher score (-63.99%); p<0.001 in immobility time (IT) in the Al exposed animals compared to controls. There was no significant change in Al+AER group compared to the Al group (Table 2) after the 6-week exposure. However, treatment with AER for 12 weeks showed a significant decrease (p<0.001), relative to Al group. In addition, AER induced a significantly decreased score compared to control (Table 2).

Open field Test

Table 3 shows that the locomotor activity changed at 5 min in the Al group compared to the control group in the 6-week study. These changes were statistically significant at 5min (-35.46%; p<0.05). During the same 5 min period, the group treated with 150mg/Kg (BW)/day (AER) exhibited a rather significant increase of +30.38% (p<0.05) in the locomotor’s activity compared to the Al group. No additional differences were observed during the remainder of experiment.

Results show that chronic administration of Al induced hyperactivity in rats by increasing the locomotors activity significantly at 5min compared to control (P<0.001).

Results also show that AER induced a significant increase of +30.38% (p<0.05) in the locomotor’s activity compared to the Al group. No additional differences were observed during the remainder of experiment.

In the 12-week study, Aluminium caused a highly significant increase in time spent in dark compartments compared to control (+40.23%; p<0.001). Inversely, the AER treated animals spent significantly less time in the dark (-17.89%), relative to Al group (Table 2).

Elevated Plus Maze Test

At 6 weeks of treatment, compared to control, the Al group spent significantly less time (P<0.001) in the open arms than in the closed arms (-97.38%), indicating that Aluminium induced an enhanced stress. No significant changes were noted between Al+AER group and the intoxicated group (Table 2).

The results at 12 weeks showed that the time spent in open arms was significant decreased (-83.69%, p<0.001) in Al group compared to control. However, the AER treated group (Al+AER group) exhibited a significant increase in score due to longer period of time (+89.61%) spent in open arms, compared to Al group by (Table 2).

Table 2: Effects of Rosemary Extract on Behavioural Test after Intoxication by Aluminium

Experimental Groups	Forced Swimming Test IT [S]	Dark/Light Test TPDC [S]	Elevated Plus Maze Test TPOA [S]	Radial Arm maze test
	After 6 Weeks			
Control	77.50±20.29	733.10±49.80	168±74.73	33±9.59
Al	215.20±38.20***	967.20±90.50***	21.20±20.22***	51.87±9.40***
Al+AER	192.30±31.24	920.30±62.80**	33±58.34	9.62±4.53**
AER	147.30±33.60	815.70±124.80	125.60±38.16	15.87±5.98***
	After 12 Weeks			
Control	169.60±40.2	628.20±136	191.10±45.83	30.33±13.92
Al	257.10±25.20*	1046.1±90.50***	31.10±11.03***	63.66±15.29**
Al+AER	194.30±15.20^a	858.80±186.40	300.25±32***	41.16±15.03
AER	111.60±30.40''	729.75±106	156.60±27.35	44.66±18.09

The parameters: IT: Immobility time, TPDC: The time passed in the dark compartment, TPOA: The time passed in the open arms, and WME: Working Memory errors, RME: Reference Memory errors were evaluated respectively in the test. [S]: Seconds. Values are represented as mean ± SD each group. *:P<0.05, **:P<0.01, ***:P<0.001 compared with control group; #:P<0.05, ^a:P<0.01, ^as:P<0.001 compared with Al group (one-way analysis of variance (ANOVA))
Table 3: Effects of Rosemary on Locomotors Activity at the End of 6 And 12 Weeks of Treatment

Experimental Groups	Locomotion [Score]	5min	10min	15min
After 6 Weeks				
Control	207.25±36.79	104.50±47.73	52.12±41.76	
Al	133.75±30.29*	89.50±37.02	32.37±26.13	
Al+AER	192.12±36.37#	99±42.44	44.62±38.65	
AER	216.75±70.77	162.25±12.29	44.75±40.82	
After 12 Weeks				
Control	143±20.29	114.12±22.66	107.12±18.34	
Al	180.37±6.50***	117.12±36.29	71.00±16.50	
Al+AER	155.37±17.99#	145.50±23.21	62.00±15.22	
AER	197.75±30.55	155.87±30.60	133.75±61.91	

Values are represented as mean ± SD each group. [Score]: the mean number of squares crossed by the animal every 5 minutes. Values are represented as mean ± SD each group. *P<0.05, **P<0.01, ***P<0.001 compared with control group; #P<0.01, ##P<0.01, ###P<0.001 compared with (Al) group (one-way analysis of variance (ANOVA))

Effect of treatment on AchE Activity

In this study we investigated the changes in AchE activity after exposure and treatment with Al and AER. Compared to controls, Administration of Al for 6 and 12 weeks induced a highly significant inhibited in AchE activity, -73.35% (p<0.001) and -66.15% (p<0.01), respectively (Fig. 1). Nonetheless, the Acetylcholinesterase activity was significantly increased, +67.43% and, after the co-administration of 150mg/Kg(B.W)/Day of AER and Al compared to Al only group after 6weeks. But no changes after 12 weeks.

![Figure 1](image)

Figure 1: The Effects of Rosemary Extract on Acetylcholinesterase Activity after 6 And 12 Weeks of Aluminum Intoxication

Values are represented as mean ± SD each group. **P<0.05, ***P<0.01, **P<0.001 compared with control group; #P<0.01, ##P<0.01, ###P<0.001 compared with (Al) group (one-way analysis of variance (ANOVA))

Histopathological study

Examination the slides of rat cerebral cortex revealed that after 6 and 12 weeks shows that aluminum induced cellular degeneration, necrosis, fibrosis, and vacuolated neuronal cells; In addition, the CA1 region of Hippocampus showed pyknosis of pyramidal cells (Al-B).

However, AER treatment seems to inhibit the effect of aluminium as evident with the increase in number of cellular units, reduced neuronal death, absence of fibrosis and of vacuolated neuronal cells (Al+AER-C). Indeed, in the CA1 region of hippocampus we observed less pyknosis of the pyramidal cells after 6 weeks. After 12 weeks, most hippocampal neurons exhibited pyknosis of pyramidal cells (PPc) compared to Al group. Examination of slides of treated group (AER) showed no changes in the structure of cerebral cortex and CA1 region of Hippocampus after 6 and 12weeks compared to control (AER-D).
Figure 2: Effect of Rosemary Extract on Brain Structure of Cortex and CA1 Region of Rat after Aluminum Intoxication (H&E, ×40)

Showing: Control-A: NORMAL HISTO-ARCHITECTURE (Ge) GLIAL CELLS, (N)NEURO, (Nc) NEURONAL CELLS, (Pl) PYRAMIDAL LAYER.

Al-B) IN THE CEREBRAL CORTEX (H&E, ×100): NECROSIS (N), FIBROSIS (F), VACUOLATED NEURONAL CELLS (V); IN THE HIPPOCAMPUS, THE MAJORITY OF HIPPOCAMPAL NEURONS EXHIBITED PYKNOSIS OF PYRAMIDAL CELLS (PPc) WITH DEEP STAINING.

Al+AER-C) CO-ADMINISTRATION AER+AI TREATMENT SHOWING IN CEREBRAL CORTEX: REDUCE NEURONAL DEATH, ABSENCE OF FIBROSIS, WITH PERSISTENT VACUOLATED NEURONAL CELLS. IN THE HIPPOCAMPUS THERE WERE LESS PYKNOSIS OF THE PYRAMIDAL CELLS AFTER 6WEEKS, AND MOST HIPPOCAMPAL NEURONS EXHIBITED PYKNOSIS OF PYRAMIDAL CELLS (PPc) AFTER 12 WEEKS.

AER-D) AFTER AER TREATMENT SHOWING NORMAL HISTO-ARCHITECTURE.

Effect of treatment on LDH Levels

The LDH activity was significantly increased in Al group after 6 weeks (+64.19%, p<0.001) and 12 weeks (+65.20%, p<0.01) of aluminum exposure, compared to controls.

However, the Al+AER treated group showed a significant decrease in LDH activity by -57.90% after 6 weeks (P<0.001) compared to the untreated Al group. There were no significant changes in LDH activity within the 12-week groups (Fig. 3).

Figure 3: Role of Rosemary Extract on LDH Activity after 6 And 12 Weeks of Aluminum Intoxication

Values are represented as mean ± SD each group. *P<0.05, **P<0.01, ***P<0.001 compared with control group; *P<0.05, **P<0.01 ***P<0.001 compared with (Al) group. (One-way analysis of variance (ANOVA))
DISCUSSION

In the Algerian tradition Rosmarinus officinalis (Rosemary) plant is widely known for its therapeutic and antioxidant potential in the treatment of neurodegenerative diseases. To examine this, we investigated the neuroprotective efficacy of Aqueous Extract of Rosemary on the behavioral, biochemical, and structural changes induced by the administration of Aluminum in young rats after 6 weeks and 12 weeks of treatment.

In our experiment, administration of Al after 6 and 12 weeks resulted in a decrease in the final body weight of the rats comparable to those obtained by El-Shafie and al. Such decreases could be attributed to the interaction of Aluminum with the hormonal status and/or protein synthesis.

Additionally, the total whole brain weight was significantly reduced when compared to controls. This supports earlier findings of Bhilla and Dhawan, maybe due to deleterious effect of increased lipids peroxidation in oxidative stress. Contrarily, simultaneous administration AER and Al, at both 6- and 12-week treatments, resulted in an increase in the final body weight and the absolute whole brain weight, compared to the (Al) group. This effect is probably due to the beneficial effect of phenolic compounds in this extract.

The compartmental studies showed that chronic and sub-chronic exposure to Aluminum causes an increased immobility time of rats in the forced swimming test; reflecting the depressed state of animal. This state is due to the reduction of serotonin level in central serotoninergic system, in cortex, hippocampus, striatum, and spinal cord brain regions of rat pups following oral exposure to Al.

Administration of AER to Al group (AI+AER) and treated group by only the aqueous extract of rosemary (AER) at the dose of 150 mg/Kg(B.W)/day increase the mobility time after 12 weeks, perhaps indicating that the R. officinalis possesses an antidepressant potential that when interacting with the monoaminergic system, leads to improved serotonergic functions within the brain.

The Dark/light and elevated plus maze tests indicate that Al is inducing an anxiety state, confirming earlier findings. However, the mechanisms responsible for the induction of anxiety are not well defined. Zald and Prdo observed an increase in blood flow to the hippocampus and amygdala, while others histological studies have implicated apoptosis and necrosis in the different part of the brain following aluminum intoxication. There are also reports suggesting that dysfunction of the GABAergic system (noradrenergic, serotonergic and dopaminergic neurons) contribute to the development of anxiety. Finally, aluminum affects the CYP (corticotrophin releasing factor) could have played a role in the development of anxiety. After 12-week of study, Al+AER group spent less time in the dark compartment, compared to the Al group. This observation suggests that Rosemary has an important anxiolytic potential due, perhaps, to increased levels of 5-hydroxytryptamine and dopamine in rat brain as well as decreased levels of norepinephrine.

After chronic and sub-chronic intoxication, the Al group presented a deficit of memory performances compared to control, supporting previous findings. A deficit in memory performance after Aluminum exposure could be explained by degeneration of cholinergic terminals in the cortex and hippocampus, as well as deterioration in hippocampal function. Relative to Al group, the co-administration of AER to the intoxicated group attenuated both working and references memory errors and enhanced memory after 6 weeks of treatment. However, this benefit appears to be short term only, and not after long period of intoxication by aluminum.

In our results, the sub-chronic and chronic administration to Al affected the locomotor activity in the OFT; sub-chronic exposure the Aluminum induced a decrease locomotors, supporting with previous studies, but not others, after 6 weeks to exposure to Al. On the other hand, after 12-weeks of exposition, the Aluminum induce an hyperactivity, a similar increase was observed after administration 50mg/Kg/day of Aluminum for 12 weeks in the drinking water and other works show a significant decrease in locomotors activity. After chronic Aluminum exposure, this could be explained by the altered function of GABA receptors, which could be responsible of increased excitability.

The Co-administration of aqueous extract of rosemary and Al, after both 6 and 12 weeks, induce a reduction of locomotor activity; a similar results were observed in animal model of depression. On the other hand, after 12 weeks the AER induced increase the locomotors activity, this effect maybe due to the antidepressant and anxiolytic potential of AER, but the AER mechanisms involved in behavior effects are not yet clear.

Acetylcholinesterase (AChE) is the primary cholinesterase in the body. It is an enzyme that catalyses the breakdown of acetylcholine and other choline esters that function as neurotransmitters. Cholinergic neurotransmissions play key roles in promoting secretion of the soluble fragment of the β-amyloid precursor protein, known to affect neurite outgrowth and to promote neuronal survival. The cholinergic system play an important role in the regulation of central nervous system function and cognitive disorders which are often observed in depression, stress and memory.

Data obtained in this study shows that the administration of Al inhibited of AChE activity after chronic and sub-chronic exposure; This could be explained by the direct neurotoxic effect of Aluminum and by the disturbance of the cell membrane phospholipids associated with an increase in lipid peroxidation. Similar results were reported previously when animals were exposed for 4 weeks of 84mg/Kg of aluminum. Other studies showed that after 12 weeks of Al intoxication at a dose of 50mg/Kg, acetylcholinesterase activity decreased in striatum and hypothalamus but decreased in cerebellum, hippocampus and cerebral cortex.

The discrepancy in AChE activity observations may be related to the dose of Al, to the membrane composition, to the presence of different AChE molecular forms or to a reflection of the biphasic effect of aluminum.

Our results show that the Co-treatment with AER induced an increase of AChE activity after 6 weeks, in agreement with previous findings. This effect, as well as the partial improvement of memory, may be due to the presence in the extract of polyphenolic and terpenic compounds, such as rosmarinic and carnosic acid. However, the duration of treatment with rosemary aqueous extract gives an opposite effect after long period (12 weeks).

This histological study supports previous investigations that Aluminum exposure leads to progressive alterations in the rat brain. This is manifested by decrease in the number of cellular units relative to controls, fibrosis and vacuolation of neuronal cells in the cerebral cortex, as well as necrosis of...
pyramidal cells in the CA1 region of hippocampus (Al-B). The hippocampus and the cerebral cortex are the key structures of memory formation5, which could imply that morphologic abnormalities could partially explain the deficits of memory performances caused by AI.

On the other hand, after the administration of 150mg/Kg/day of aqueous extract of rosemary, the severity of tissue damage observed in Al group was considerably reduced in (AER+AL) group. Observation of histological sections at the cerebral cortex shows an increase in the number of neuronal cells, associated with reduced neuronal degeneration and cell death in the cerebral cortex after 6 and 12 weeks of treatment with an absence of fibrosis but the presence of vacuolated neuronal cells persisting.

In addition, histological examination of sections of the hippocampus showed less apoptotic cells, after 6 weeks; the same observations were inferred by administration at the dose of (20,40,80mg/ml) for 7 days and 100mg/Kg/day for 23 days6. However, after 12 weeks there was degeneration of the granular layer, compared with aluminum exposed group at 6 weeks, which could be explained by the impact of aluminum on brain cells over a long period of time.

This reduction in neuronal degeneration and cell death in the cerebral cortex and hippocampus could be due to the presence of phenolic compounds that inhibit and protect against cell death5,8,9,10.

A key signature of necrotic cells is the permeabilization of the plasma membrane. This event can be quantified in tissue culture settings by measuring the release of the intracellular enzyme lactate dehydrogenase (LDH). To confirm results of our histological study and detect cell damage and or death, we analyzed the level of this enzyme in the brain; our histological study and detect cell damage and or death, indicating damaged membranes and cell necrosis [6,12].

But there persisting.

The biochemical (AchE and LDH activities) and the plasma membrane. This event can be quantified in tissue culture settings by measuring the release of the intracellular enzyme lactate dehydrogenase (LDH). To confirm results of our histological study and detect cell damage and or death, we analyzed the level of this enzyme in the brain; our histological study and detect cell damage and or death, indicating damaged membranes and cell necrosis [6,12]. Consistent with other results in this study, the Al+AER treated group induced decrease in LDH activity. But there was no change in LDH activity after 12 weeks; these results could explain the persistence of pyramidal cell necrosis.

The biochemical (AdhE and LDH activities) and the histological results of this study strongly indicate that short term AER treatment appears to slow neuronal death, prevent fibrosis and persistent vacuolated neuronal cells in the cerebral cortex in rats exposed to Aluminum.

CONCLUSIONS

The results of the present study reveal that aluminum mediates progressive alterations in the rat brain. Administration of 150mg/Kg (B.W)/day aqueous extract of rosemary could restore and protect the neuronal function capacities after 6-weeks. However, administration of plant extract over a long period of time may cause a no beneficial effect on tissue and enzymes activities.

REFERENCES

[1] Atzemian E, Mastroberardino PG, Metal and neurodegeneration, Neurobio Dis., 2015; 81:1-3.
[2] Sinhaab N, Dhawan DK, Zinc modulates aluminum-induced oxidative stress and cellular injury in rat brain. Metallomics., 2014; 6(10):1941-1950.
[3] Di Paolo C, Reverte I, Colomina MT, Domingo JL, Gómez M, Chronic exposure to aluminum and melatonin through the diet: Neurobehavorial effects in a transgenic mouse model of Alzheimer disease, Food chem Toxicol., 2014; 69:328-329.
[4] Farhat SM, Mahboob A, Iqbal G, Ahmed T, Aluminum induced cholinergic deficits in different brain parts and its implications on sociability and cognitive functions in mouse, Biol Trace Elem Res., 2017; 177(1):115-121.
[5] Delonec E, Guallard O, Huguet F, Claret F, Modification of the Blood-Brain-Barrier through Chronic Intoxication by Aluminum Glutamate Possible Role in the etiology of Alzheimer's disease, BioTrace Elem Res., 1995; 47(1-3):227-233.
[6] Dobson CB, Day JP, King SJ, Itzhaki RF, Location of aluminum and gallium in human neuroblastoma cells treated with metal-chelating agent complexes, ToxicolAppl Pharmacol., 1998, 152(1):145-152.
[7] Amjé S, Umesma S, Protective effect of centellaasiatica against Aluminum induced neurotoxicity in cerebral cortex, striatum, hypothalamus and hippocampus of rat brain histological and biochemical approach, Journal of Molecular biomarkers & diagnosis, 2015; 6,212.
[8] Herbholz K, Weisenbach S, Kalbe E, Diederich NJ, Heiss W, Cerebral acetylcholine esterase activity in mild cognitive impairment, NeuroReport. 2005, 16(13):1431-1434.
[9] Ravi SM, Prabhau BM, Raju TR, Bindu PN, Long-term effects of postnatal aluminum exposure on acetylcholinesterase activity and biogenic amine neurotransmitters in rat brain, Indian J PhysioPharmacol., 2000; 44(4):473-478.
[10] Stevanovik JD, Jovanovik MD, Cölek M, Jelenković A, Bokonjic D, Ninkovic M, Nitric oxide synthase inhibitors protect cholinergic neurons against AICD excitotoxicity in rat brain, Brain Res Bull. 2010; 81(6):639-646.
[11] Dagtyé G, DenBoer JA, Trentani A, The cholinergic system and depression, Behav Brain Res. 2011; 10(221):574-582.
[12] Kakkav V, Kaur IP, Evaluating potential of curcumin loaded solid lipid nanoparticles in aluminum induced behavioral, biochemical and histopathological alterations in mice brain, Food Chem Toxicol. 2011; 49(11):2906-13.
[13] Tair K, Khareoubi O, Tair OA, Helal N, Beneytout I, Aoues A, Aluminum-induced acute neurotoxicity in rats: Treatment with aqueous extract of Arbutusun (Hammadsacoparia), Journal of acute disease, 2016; 5(6):470-482.
[14] Hamidpour R, Hamidpour RS, Elias G, Rosmarinus Officinalis (Rosemary): A novel Therapeutic agent for antioxidant, antimicrobial, anticancer, anti-diabetic, antidepressant, neuroprotective, anti-inflammatory, and anti-obesity treatment, Biomed J Sci & Tech Res. 2017; 1(3):1-6.
[15] Villaeire MO, Ikeya A, Sasaki K, Ben Arfa A, Neffati M, Isoda H, Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. essential oil, BMC ComplementAlternative Med. 2017; 17(1):549.
[16] Mannelli LDC, Micheli L, Maresca M, Cravotto G, Belhimer M, Innocenti M, Mulinacci N, Ghelardini C, Anti neuropathic effects of Rosmarinus Officinalis L. terpenoid fraction: relevance of nicotinic receptors, SciRep. 2016; 6:34852.
[17] Seyedemadi P, Rahmema M, Reza Bigdeli M, Oryan S, Rafati H, Neuroprotective effect of Rosemary (Rosmarinus Officinalis L) Hydro-alcoholic extract on cerebral ischemic Tolerance in experimental stroke, Iran J of Pharma Res. 2016; 15(4):875-883.
[18] Allguiri MS, Ferreria A, Saoudi M, Badraoui R, Bouzii N, Cravotto G, Bellumori M, Reddy MR, Efeksi A, Effects of melatonin on aluminum-induced neurobehavioral and neurochemical changes in aging rats, Food and chem Toxicol 2014; 70:84-93.
[19] Porsolt RD, Berthin A, Jafre M, Behavioral despair in mice: a primary screening test for antidepressants, Arch Int PharmacodynTher. 1977; 229(2):327-36.
[20] Arrant AE, Schramm-Sapyta ML, Kuhn CM, Use of the light/dark test for anxiety in adult and adolescent male rats, Behav Brain Res. 2013; 256:119-27.
[21] Pellow S et al., Validation of open: closed arm entries in an elevated plus maze as a measure of anxiety in the rat, J Neurosci methods. 1985; 14(3):49-67.
[22] Khareoubi O, Benyamina A, Hallal N, Benyaytout I, Aoues A, Slimani M, Aluminum induced the oxidative stress modification and behavioral variation in rat, International Journal of preventive medicine research. 2016, 6(1):1-7.
[23] Blum GL, Courtney KD, Andrews VR, Featherstone RM, A new and rapid colorimetric determination of acetylcholinesterase activity, Biochemical Pharmacology. 1961; 7:88-95.
[24] Lowry OH, Rosebrough NJ, Lewis Farr A, Randall RJ, Protein measurement with the folin phenol reagent, J Biology chem. 1951; 193(1):265-275.
without altering learning deficit in olfactory bulbectomized mice, J Ethnopharmacol. 2012; 143(1):158-69.

[54] Reid MM, Rabo MM, 1996. Protective effects of eugenol against aluminum induced toxicity in the rat brain, Arh HigRadova. 2017; 68(1):27-37.

[55] Bilhagi SW, Sharma M, Singh AP, Tiwari M. Neuroprotective role of Convolvulus pluricaulis on aluminum induced neurotoxicity in rat brain, J Ethnopharmacology. 2009; 124(3):409-415.

[56] Abdelfattah EG, Junkyu H, H Ron, BA Manel, J Hiroko, Anti-Neurotoxic stress effect of Tunisian Rosmarinus officinalis Extract, Journal of Arid Land Studies. 2009; 19(1):117-120.

[57] MF Syeda, M Aamra, I Ghazala, A Touquer, Aluminum-Induced Cholinergic deficits in different brain parts and its implications on sociability and cognitive functions in mice, Biol Trace Elem Res. 2017; 177(1):115-124.

[58] Kumar A, Dogra S. Effect of carvedilol on behavioral, mitochondrial dysfunction, and oxidative damage against D-Galactose induced senescence in mice, Naunynschmiedebergs Arch of Pharmacol. 2009; 380(5):431-441.

[59] Kaizer RR, Corrêa MC, L R S Gris, C S da Rosa, D Bohrer, V M Morsch, Maria Rosa Chitolina Schetinger. Effect of long term exposure to aluminum on the acetylcholinesterase activity in the central nervous system and erythrocytes, NeurochemRess. 2008; 33(11):2294-301.

[60] Kumar S, Biphasic effect of aluminum on cholinergic enzyme of rat brain, J Ethnopharmacol. 1998; 62(4):119-24.

[61] Amjad S, Umesima S. Protective effect of centellasiamta against Aluminum induced neurotoxicity in cerebral cortex, striatum, hypothalamus and hippocampus of rat brain histological and biochemical approach, J Integr Oncol. 2015; 13:2-10.

[62] Naderali N, Nibakhft F, Norouzi Ofogh S, Rasoolizai H, The role of rosemary extract (40% carnosic acid) in degeneration of hippocampal neurons induced by kainic acid in the rat: The behavioral and histochemical approach, J Integr Oncol. 2017; 17(1):1-13.

[63] Sohan T, Shohana C, Thangarajeswari M, Usha R, Protective effect of L-Theanine against aluminum induced neurotoxicity in cerebral cortex, hippocampus and cerebellum of rat brain histopathological, and biochemical approach, J Ethnopharmacol. 2015; 38(1):22-31.

[64] Reito B, Alessio BT, Cristina MA, The neurological bases of memory formation: from physiological conditions to psychopathology, Psychopathol. 2014; 47(6):347-356.

[65] Naderali N, Nibakhft F, Norouzi Ofogh S, Rasoolizai H, The role of rosemary extract (40% carnosic acid) in degeneration of hippocampal neurons induced by kainic acid in the rat: The behavioral and histochemical approach, J Integr Oncol. 2017; 17(1):1-13.

[66] Song H, Xu L, Zhang R, Z Cao, H Zhang, L Yang, Z Guo, Y Qu, J Yu, Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocystosis and neuronal degeneration in hippocampus, Neurosci Lett. 2015; 622(95-100).

[67] Rasoolizai H, Mehidizadeh M, Soleimani F, Nikbakhte, ME Farsani, S Abazr, The effect of rosemary extract on spatial memory, learning and antioxidant enzymes activities in the hippocampus of middle-aged rats. Med J Islam Repub Iran 2015; 29:187.

[68] Tanam F, Ignowski E, Duval N, Linseman DA, Neuroprotection Comparison of Rosmarin Acid and Carnosic Acid in Primary Cultures of Cerbellar Granule Neurons, Molecules 2018; 23(1):1-13.

[69] Oliveira MR, Peres A, Ferreira GC, Schack PF, Dal Bosco SM, Carnosic Acid Affords Mitochondrial Protection in Chlorpyrifos- Treated Sh-Sy5y Cells. Neurotox Res. 2016; 30:367-379.

[70] Hajjipour S, Sarkaki A, Farbod Y, Eidi A, Mortazavi P, Valizadeh Z, Effect of Gallic Acid on Dementia Type of Alzheimer Disease in Rats: Electrophysiological and Histological Studies, Basic and Clinical Neuroscience. 2016; 7(2):97-106.

[71] Jovanovic P, Zoric Z, Pikula A, Stamenov I, Djordjevic-Babic B, Djordjevic-Jovic J, Radenkovic M, Jovanovic M, Lactate dehydrogenase and oxidative stress activity in primary open-angle glaucoma aqueous humour, Bosnian journal of basic medical sciences. 2010; 10(1):83-88.

[72] Akirinrade D, Ogundele OM, Memunudu AE, Dare BJ, Dehydrogenase activity in the brain of fluoride and aluminum induced Wistar rats, Biological Systems. 2013; 2:110.