Pathology and protection in nephrotoxic nephritis is determined by selective engagement of specific Fc receptors

Yoshikatsu Kaneko,1 Falk Nimmerjahn,1 Michael P. Madaio,2 and Jeffrey V. Ravetch1

1Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10021
2Renal Electrolyte and Hypertension Division, The University of Pennsylvania, Philadelphia, PA 19104

Introduction of heterologous anti–glomerular basement membrane antiserum (nephrotoxic serum, NTS) into presensitized mice triggers the production of IgG anti-NTS antibodies that are predominantly IgG2b and the glomerular deposition of pathogenic immune complexes, leading to accelerated renal disease. The pathology observed in this model is determined by the effector cell activation threshold that is established by the coexpression on infiltrating macrophages of the IgG2a/2b restricted activation receptor FcγRIV and its inhibitory receptor counterpart, FcγRIIB. Blocking FcγRIV with a specific monoclonal antibody thereby preventing IgG2b engagement or treatment with high dose intravenous γ-globulin (IVIG) to down-regulate FcγRIV while up-regulating FcγRIIB, protects mice from fatal disease. In the absence of FcγRIIB, IVIG is not protective; this indicates that reduced FcγRIV expression alone is insufficient to protect animals from pathogenic IgG2b immune complexes. These results establish the significance of specific IgG subclasses and their cognate FcγRs in renal disease.
these avidity considerations than antibodies which interact with FcR with high A/I ratios (13, 14).

To investigate the consequences of subclass affinity for specific FcRs and the impact of Fc receptor modulation on IgG-mediated inflammation in an active model of inflammation, we selected the murine nephrotoxic nephritis model. This model resembles human Goodpasture’s Disease (20–22) by virtue of its dependence on the targeting effect of anti–glomerular basement membrane (GBM) antibodies to direct immune complex deposition to the GBM and initiate an inflammatory response. The introduction of heterologous rabbit or sheep anti–GBM antiserum (NTS) results in an acute, complement-dependent, transient phase of renal injury (day 0–4) that is characterized by mildly elevated blood urea nitrogen (BUN) and proteinuria (21–24). The development of mouse anti–rabbit or –sheep antibodies in the later, autologous phase of this model (day 4–14) results in immune complex deposition and frank glomerulonephritis with renal failure and death (21, 22, 25). This autologous phase has been shown to be FcγR dependent (25, 26); mice lacking the common γ chain are protected from renal failure and death. An accelerated model of nephrotoxic nephritis has been developed in which mice are presensitized to the heterologous anti–GBM serum by preimmunization with normal, heterologous serum at day −4, followed by introduction of the heterologous anti–GBM serum at day 0, thus initiating the autologous phase of disease concomitant with the introduction of the anti–GBM serum (25, 26). Renal disease is evident by day 4, with significant mortality by day 8 through an FcγR–dependent pathway.

We now report the contribution of specific IgG subclasses and their cognate FcγRs to this accelerated autologous model of nephrotoxic nephritis and demonstrate the role of FcR modulation by IVIG in this active model of inflammation. The intrinsic FcγR affinities of IgG2b for the specific activating (FcγRI) and inhibitory (FcγRIIB) receptor pair determines the pathology observed, whereas the selective receptor modulation by IVIG of both of these molecules alters their ratio on the infiltrating effector cells and contributes to the protection observed.

RESULTS

The nephrotoxic nephritis model

Presensitization of C57BL/6 mice with normal sheep IgG followed 4 d later by the introduction of sheep anti–mouse GBM serum induces acute glomerulonephritis with renal injury, as seen in Fig. 1. Elevated BUN was observed by day 4 in wild-type mice presensitized with normal sheep IgG and exposed to sheep NTS (CFA + NTS). Presensitization with sheep IgG alone, or exposure to anti–GBM serum alone did not result in elevated BUN (Fig. 1 A), despite the localization of the heterologous anti–GBM antibodies to the glomeruli (Fig. 1 C). Renal pathology was dependent, therefore, on the presence of mouse anti–sheep antibodies which colocalized to the glomeruli in the CFA + NTS–treated animals (Fig. 1 C) in a “ribbon” pattern, characteristic of Goodpasture’s Disease, and was completely dependent on FcR expression. Mice deficient in the common γ chain, hence deficient in surface expression of the activation Fc receptors FcγRI, III and IV, as well as FcεRI, were protected from the pathogenic consequences of CFA + NTS (Fig. 1 B).

IgG2b anti–sheep Ig is dominantly induced in the CFA + NTS model of nephrotoxic nephritis

Individual, γ chain–dependent FcRs interact with specific isotypes and subclasses of immunoglobulins (13, 14). To further define the pathology observed in the CFA + NTS model, wild-type mice were characterized for the specific subclasses of IgG anti–sheep GBM antibodies they produced at day 4 after CFA + NTS treatment. As shown in Fig. 2,
only mouse IgG2b anti–sheep Ig showed a statistically significant elevation (P < 0.001) after CFA + NTS treatment. NTS alone did not induce measurable levels of mouse anti–sheep Ig at day 4 after exposure to anti-GBM serum. IgG1 anti–sheep Ig was elevated, although the level was not statistically significant over baseline or NTS alone (Fig. 2).

The renal pathology induced by mouse IgG2b is FcγRIV dependent

We recently described a novel IgG Fc receptor in the mouse with selective specificity for IgG2a and 2b and with a binding affinity ~10-fold higher than that observed for these subclasses binding to FcγRIII (13). To determine the relative contributions of these Fc receptors to the renal pathology observed in the nephrotoxic nephritis model described here, we induced disease in either common γ chain–deficient (FcγRIγ−/−), FcγRIII–deficient (FcγRIII−/−) or wild-type mice treated with a monoclonal anti-FcγRIV antibody shown to specifically block this activation FcγR (13, 14; Fig. S1, available at http://www.jem.org/cgi/content/full/jem.20051900/DC1). Common γ chain–deficient mice were protected, as expected, as were mice treated with the anti-FcγRIV blocking mAb (Fig. 3, A and B, and Fig. S2). FcγRIII–deficient mice developed disease comparable with wild-type mice, whereas FcγRIIB–deficient mice displayed enhanced disease, as revealed by the accelerated mortality of this strain when treated with CFA + NTS (Fig. 3 B). We also induced nephrotoxic nephritis in FcγRI and RIIB double–deficient (FcγRI/RIIB−/−) mice, and these animals developed disease comparable with wild-type controls (Fig. 3, C and D and Fig. S2). Because no differences in the titer of mouse IgG2b anti–sheep Ig was observed for any of the genotypes studied (Fig. S3), the data indicate that the critical activation FcγR in this model is FcγRIV, which is consistent with studies in passive models of idiopathic thrombocytopenic purpura (ITP) and B cell and tumor cell clearance (13, 14; unpublished data). Staining of infiltrating macrophages with anti–FcγRIV antibody revealed accumulation of these cells in the
glomeruli of CFA + NTS–treated animals, thus providing a mechanism for their engagement of IgG2b immune complex deposited on the GBM and the inflammation observed in this model (Fig. 3 E).

Modulation of FcRs by IVIG attenuates disease in nephrotic nephritis

We have previously demonstrated in passive models of ITP and arthritis that IVIG is able to protect from the pathogenic consequences of cytotoxic antibodies or immune complex deposition by induction of the inhibitory receptor, FcγRIIB (18, 19). Similarly, IVIG treatment attenuates the renal pathology observed in CFA + NTS nephrotic nephritis and is dependent on the Fc fragment for its activity (Fig. 4 A). This protection results in extended survival for IVIG–treated animals (Fig. 4 B). IVIG treatment did not modify the development of mouse IgG2b anti–sheep Ig antibodies (Fig. S3) or the deposition of either sheep anti–GBM antibodies, total mouse IgG or IgG2b antibodies, or complement C3 in the glomeruli (Fig. 5). To determine the mechanism

Figure 4. IVIG protects mice from nephrotic nephritis. (A) Six C57BL/6 mice in each group were injected with IVIG (1 g/kg), IVIG–Fc portion (0.33 g/kg), IVIG–Fab portion (0.67 g/kg), or 10% maltose (vehicle of IVIG) 1 h before NTS administration. Serum samples were collected on day 8 after NTS administration. 1 g/kg of mouse weight of IVIG and equimolar concentrations of IVIG–Fc portion showed the same protective effect in NTS nephritis mice. The dagger indicates mice that died before day 8. (B) Kaplan–Meier analysis of survival rate in NTS nephritis mice treated with IVIG or its vehicle alone (n = 10). IVIG treatment improved survival rate of NTS mice. Significance of differences was verified by log rank test. Data shown are representative of three independent experiments.

Figure 5. Histopathology and deposition along the GBM of kidney section in NTS nephritis mice with or without IVIG treatment. (A) PAS staining of kidney section on day 8 from NTS nephritis mice treated with either 10% maltose (vehicle) alone or IVIG. Vehicle alone shows severe tissue damage with intracapillary cellular proliferation, glomerular thrombosis, and mesangiolysis. In contrast, renal pathology of NTS mice treated with IVIG was markedly attenuated. Kidney sections from mouse groups on day 4 were equally stained with FITC-conjugated anti–sheep IgG antibody, Cy3-conjugated anti–mouse IgG antibody, FITC-conjugated anti–mouse IgG2b antibody, and FITC-conjugated anti–mouse complement 3 antibody (Bar, 200 μm). (B) Quantitative immunofluorescence of glomerular deposits of sheep IgG, mouse IgG, mouse IgG2b, and mouse C3 on day 4. There was no significant difference between the groups. Data shown are representative of three independent experiments.

Figure 3 E).
by which IVIG protects CFA + NTS–treated mice from developing renal pathology, we examined the expression of FcγRIIB and FcγRIV on macrophages infiltrating the kidney in this disease. As shown in Fig. 6 A, IVIG significantly induces the surface expression of FcγRIIB on infiltrating macrophages (P = 0.004), as we have previously described for splenic (18) and infiltrating synovial macrophages (19). However, in contrast to these previous studies, IVIG treatment also resulted in reduced surface expression of FcγRIV (Fig. 6 B and Fig. S4, available at http://www.jem.org/cgi/content/full/jem.20051900/DC1). FcγRIII expression was unchanged (unpublished data) as was FcγRIIB and FcγRIV expression on granulocytes (unpublished data). The combined effect of reduced FcγRIV and elevated FcγRIIB alters the activation threshold for IgG2b engagement of FcγRIV and protects mice from the pathological consequences of IgG2b immune complex deposition in the glomeruli.

FcγRIIB up-regulation by IVIG is required to protect mice from NTS + CFA induced nephrotoxic nephritis

Because IgG2b can bind to both FcγRIII and FcγRIV, albeit with significantly different affinities, the relative contributions of FcγRIIB, FcγRIII and FcγRIV modulation to the protective effect of IVIG was examined. As we have observed previously (18, 19), IVIG protection was ablated in FcγRIIB-deficient mice (Fig. 7 and Fig. S5, available at http://www.jem.org/cgi/content/full/jem.20051900/DC1), which is consistent with FcγRIIB expression contributing to the protective effect of IVIG. Thus, the down-regulation of FcγRIV by IVIG treatment was not sufficient to provide protection, and thus required additional modulation of FcγRIIB. CFA + NTS–treated FcγRIIB-deficient mice were protected by anti-FcγRIV, indicating that FcγRIV is the sole activation FcR involved in the pathology of this disease, despite the ability of IgG2b to engage FcγRIII. Consistent with this observation, IVIG protection was not affected by FcγRIII deficiency (Fig. 7).

DISCUSSION

The selective engagement of IgG subclasses with specific FcγRs is a determining factor in the pathophysiology of a variety of antibody-mediated inflammatory disorders and antibody based immunotherapeutics. Simultaneous engagement of both activating (FcγRIII and FcγRIV in the mouse model; FcγRIIA and FcγRIIIA in the human model) and inhibitory receptors (FcγRIIB in both mouse and human models) determines the threshold for triggering activation of effector cells such as macrophages, mast cells, and neutrophils. Detailed studies performed in the murine system have revealed the specifics of these interactions. Thus, IgG1 antibodies mediate their in vivo activity through simultaneous engagement of the low-affinity receptors FcγRIIB and FcγRIII, whereas IgG2a and IgG2b are dependent on the FcγRIIB and FcγRIV pair. Several studies have confirmed the role of FcγRIIB and FcγRIV in IgG1-mediated inflammation in vivo, based on studies performed in experimental models of cytotoxic antibody–triggered clearance including ITP (13), hemolytic anemia (27, 28) B cell clearance (29) and tumor metastases (9); and immune complex–mediated diseases, such as the cutaneous and alveolar Arthus reactions (30) and KRNxNOD serum-induced arthritis (19). Passive models of IgG2a- and 2b-mediated clearance, although sensitive to deletion of the common γ chain and hence deficient in FcγRI, III and RIV, were not sensitive to either FcγRI or RIII deletion (13, 14). Instead, blockade of FcγRIV abrogates IgG2a- or 2b-mediated effector responses in vivo in passive models of ITP, B cell clearance; and tumor metastasis (13, 14; unpublished data). Thus, despite the ability of IgG2a to bind with high affinity to the activating receptor FcγRI (31), this receptor has not been shown to be central to the mechanism by which IgG2a mediates its biological activity in vivo (28, 32). This general lack of FcγRI involvement is likely to result from the occupancy of this receptor by circulating immunoglobulin during the steady state, thereby rendering it unavailable for specific IgG2a-mediated cross-linking.

Several active models of antibody-mediated inflammation have suggested that skewing of the IgG subclass response occurs in response to a variety of inflammatory stimuli. Thus, in spontaneous murine lupus models, anti-DNA antibodies of the IgG2a or 2b class appear to dominate (unpublished data). Similarly, active antiviral protection models have observed...
Figure 7. IVIG protection in nephrotoxic nephritis requires Fc RIIB. (A) Serum samples were collected on day 8 after administration of NTS from wild-type (WT), FcγRIIB−/−, or FcγRIII−/− presensitized mice treated with IVIG or its vehicle (10% maltose) alone (n = 10). Additionally, four FcγRIIB−/− mice in each group were treated with anti-FcγRI antibody or its isotype control antibody. The dagger indicates mice that died before day 8. IVIG was protective in wild-type and FcγRIII−/− mice, but not in FcγRIIB−/− mice. Anti-FcγRI antibody treatment in FcγRIIB−/− mice showed the same effect as IVIG on wild-type or FcγRII−/− mice. Significance was determined by log rank test. (B) PAS staining of kidney section on day 8 from NTS nephritis. FcγRIIB−/− treated with IVIG or its vehicle alone showed equally severe tissue damage with intracapillary cellular proliferation, glomerular thrombosis, and mesangiolysis. (C) Kaplan-Meier analysis of survival rate of FcγRIII−/− and FcγRIIB−/− mice treated with IVIG or its vehicle alone (n = 10). Survival rate was significantly improved by IVIG treatment in FcγRIII−/− mice, but not in FcγRIIB−/− mice. Significance was determined by log rank test.
sustained and inappropriate effector cell activation after resolution of an inflammatory state.

Our present study highlights the importance of specific IgG subclasses and their cognate Fc receptors in defining the pathophysiology of disease states. This knowledge is of importance in identifying the molecular pathways involved and thereby selecting the appropriate targets for intervention.

MATERIALS AND METHODS

Mice. C57BL/6 mice were purchased from the Jackson Laboratory. FcγRI/IIIB−/− (2), FcγRIII−/− (8), and FcγRIII−/− mice were generated in our laboratory and backcrossed for 12 generations to the C57BL/6 background. FcγRII/III−/− mice on a hybrid C57BL/6/129F2 background were compared with a genetically matched control line. Female mice at 6–10 wk of age were used for all experiments and maintained at the Rockefeller University animal facility. All experiments were done in compliance with federal laws and institutional guidelines and have been approved by the Rockefeller University.

Antibodies and transfectants. Human IVIG (5% in 10% maltose, chromatography purified) was purchased from Octapharma. Digestion of human IVIG was performed as described previously (19). In brief, IVIG was digested by 0.5 mg/ml papa in for 1 h at 37°C, and stopped by the addition of 2.5 mg/ml iodoscandarne. The resulting Fab and Fc fragments were separated from nondigested IVIG on a HiPrep 26/60 S-200HR column (GE Healthcare), and then Fc fragments were separated from Fab fragments using a protein G column (GE Healthcare) and a protein L column (Pierce Chemical Co.). Fragment purity was checked by immunoblotting using anti-human IgG Fab– or Fc-specific antibodies (Jackson ImmunoResearch Laboratories). Purity was judged to be >99%. Antibodies 2.4G2, Mac-1, Gr-1 were purchased from BD Biosciences. The anti-FLAG antibody was purchased from Sigma-Aldrich. The FcγRI/IIIB, FcγRIIB, FcγRIII, and FcγRIIV were generated in our laboratory (13).

Preparation of sheep NTS. Sheep anti-GBM antigen was prepared as described previously (43). In brief, glomeruli were isolated from normal sheep NTS (2.5 μg of sheep IgG (Serotec) in CFA, followed by intravenous injection of sheep NTS (2.5 μl of serum per gram of mouse) 4 d later. IVIG (1 g/kg) or its vehicle alone was injected 1 h before anti-GBM antisera injection.

Induction of anti-GBM glomerulonephritis. Mice were preimmunized intraperitoneally with 200 μg of sheep IgG (Serotec) in CFA, followed by intravenous injection of sheep NTS (2.5 μl of serum per gram of mouse) 4 d later. IVIG (1 g/kg) or its vehicle was injected 1 h before anti-GBM antisera injection.

Histological analysis. Kidneys were removed, fixed in 10% buffered formalin, and embedded in paraffin. 4 μm paraffin sections were stained with periodic acid-Schiff (PAS) and evaluated by light microscopy in a blind manner as previously described (44). In brief, the clinical scores of glomerular injury were graded into five grades: 0 (normal), 1 (mild increase in cellularity), 2 (definite glomerular enlargement, focal hypercellularity and mild increase of matrix), 3 (focal hypercellularity and proliferation in >50% of glomeruli), and 4 (diffuse proliferative change with crescents and sclerosis in >50% of glomeruli). Tubulointerstitial lesions were also graded from 0 to 4 according to the severity of inflammatory cell infiltration. Crescent formation was evaluated as the number of the crescents per 10 glomeruli. The mean number of macrophages infiltrating in the glomeruli were counted in 50 glomeruli in each sample.

Immunofluorescence and immunohistochemical staining. 4-μm frozen sections were fixed in acetone and stained with FITC-conjugated anti-sheep IgG, Cy3-conjugated anti-mouse IgG (Jackson ImmunoResearch), FITC-conjugated anti-mouse C3 (Cedarlane), and FITC-conjugated anti-mouse IgG2b (BD Biosciences) antibody, respectively. For quantitative immunofluorescence, blinded sections were examined at 100 magnification using MetaMorph version 6.1 (Molecular Devices). The mean intensity of 20 glomeruli for each sample was measured for evaluation. For immunohistochemical analysis, frozen sections were incubated with 5 μg/ml of biotinylated anti-FcγRIV monoclonal antibody (clone 9E9) after blocking with 500 μg/ml of hamster IgG in 5% goat serum and biotin blocking (DakoCytomation). After blocking of endogenous peroxidase was performed, HRP-conjugated rabbit antibasubtin antibody (DakoCytomation) was used as a secondary antibody and 3′-3-diaminobenzidine was used for visualization. Biotinylated anti-CD68 antibody (clone FA11) was used to detect macrophages in the kidney.

Measurement of sheep IgG-specific circulating IgG levels. 96-well ELISA plates coated with 5 μg/ml of sheep IgG were incubated with 1:500 diluted sera after blocking with 5% bovine serum albumin. After washing with PBS containing 0.05% Tween 20, the plates were incubated with HRP-conjugated anti-mouse IgG1, IgG2c (Igh 1b allele of IgG2a), IgG2b, or IgG3 antibody (Bethyl Laboratories). For the color development, 3,3′,5,5′-tetramethylbenzidine was used.

Measurement of blood urea nitrogen. BUN in sera was measured by the urease-indophenol method with an Enzymatic Urea Nitrogen kit (Stanbio Laboratory).

Preparation of kidney-infiltrating cells and flow cytometric analysis. Kidneys were pressed through a mesh, and the cells were resuspended in PBS. After washing, the cells were suspended in 33% Percoll solution and centrifuged 2,000 rpm for 20 min at room temperature. After red blood cell lysis, the cells were stained with the indicated monoclonal antibodies, and were subjected to flow cytometric analysis. 2,000 F4/80-positive cells infiltrating in the kidneys of each mouse were evaluated for mean fluorescence intensity of FITC-conjugated Ly 17.2 or Alexa 647–conjugated 9G8.1 antibody.

Statistical analysis. Statistical differences in each group for the BUN, circulating IgG levels, and mean fluorescent intensity, were calculated with Student’s t test. Mann-Whitney U test was used for histological analysis. Survival rate was analyzed with Kaplan-Meier estimates, and groups were compared with the log rank test. P < 0.05 was considered significant. SPSS version 11.0 for Windows (SPSS Inc.) was used for statistical analysis.

Online supplemental material. Fig. S1 shows specificity of anti-FcγRIV monoclonal antibody 9E9. Fig. S2 demonstrates histological evaluation of kidney sections from wild-type C57BL/6 mice, anti-FcγRIV antibody–treated or isotype-matched antibody–treated wild-type C57BL/6 mice, FcγRI/IIIB−/− mice or its genetically matched control (129/B6) mice on day 8 from NTS injection. Fig. S3 contains serum titer of each isotype of autologous mouse anti–sheep IgG-specific IgG. Fig. S4 shows histograms of FcγRIIIB and FcγRIV expression on F4/80-positive cells infiltrating in the kidney on day 8. Fig. S5 demonstrates histological evaluation of kidney sections from wild-type C57BL/6 mice and FcγRIIIB−/− mice treated with IVIG or its vehicle on day 8 from NTS injection. Supplemental figures are available at http://www.jem.org/cgi/content/full/jem.20051900/DC1.
REFERENCES

1. Ravetch, J.V., and R.A. Clynes. 1998. Divergent roles for Fc receptors and complement in vivo. Annu. Rev. Immunol. 16:421–432.
2. Takai, T., M. Li, D. Sylvestre, R. Clynes, and J.V. Ravetch. 1994. FcR γ chain deletion results in pleiotropic effector cell defects. Cell. 76:519–529.
3. Sylvestre, D.L., and J.V. Ravetch. 2001. IgG Fc receptors. J. Clin. Invest. 109:1451–1456.
4. Clynes, R., and J.V. Ravetch. 1995. Cytotoxic antibodies trigger inflammation through Fc receptors. Immunity. 3:387–390.
5. Clynes, R., C. Dumitru, and J.V. Ravetch. 1998. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science. 279:1105–1108.
6. Clynes, R., and J.V. Ravetch. 1996. A dominant role for mast cell Fc receptors in the Arthus reaction. Immunity. 5:387–390.
7. Takai, T., M. Ono, M. Hikida, H. Ohmori, and J.V. Ravetch. 1996. Fc receptor III (CD16)-deficient mice show IgG subclass specificity. Immunity. 10:347–349.
8. Nimmerjahn, F., P. Bruhns, K. Hornuchi, and J.V. Ravetch. 2005. FcγRI: a novel FcR with distinct IgG subclass specificity. Immunity. 23:41–51.
9. Clynes, R.A., T.L. Towers, L.G. Presta, and J.V. Ravetch. 2000. Inhibitory Fc receptors modulate in vivo cytotoxicity against tumor targets. Nat. Med. 6:443–446.
10. Yuasa, T., S. Kubo, T. Yoshino, A. Ujike, K. Matsumura, M. Ono, J.V. Ravetch, and T. Takai. 1999. Deletion of Fcγ receptor IIB renders H-2d mice susceptible to collagen-induced arthritis. J. Exp. Med. 189:187–194.
11. Nakamura, A., T. Yuasa, A. Ujike, M. Ono, T. Nukiwa, J.V. Ravetch, and T. Takai. 2000. Fcγ receptor IIIC–deficient mice develop Goodpasture’s syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J. Exp. Med. 191:899–905.
12. Ravetch, J.V., and S. Bolland. 2001. IgG Fc receptors. Annu. Rev. Immunol. 19:275–290.
13. Nimmerjahn, F., P. Bruhns, K. Hornuchi, and J.V. Ravetch. 2005. FcγRII: a novel FcR with distinct IgG subclass specificity. Immunity. 10:347–349.
14. Nimmerjahn, F., and J.V. Ravetch. 2005. Divergent immunoglobulin G subclass activity through selective Fc receptor binding. Science. 310:1510–1512.
15. Guyre, P.M., P.M. Morganelli, and R. Miller. 1983. Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes. J. Clin. Invest. 72:393–397.
16. Shishkova, N., J. Sokkowa, J. Schulman, U. Baumann, J. Zwierner, R.E. Schmidt, and J.E. Gesner. 2002. C5a anaphylatoxin is a major regulator of activating versus inhibitory FcγRs in immune complex-induced lung disease. J. Clin. Invest. 110:1823–1830.
17. Ravetch, J.V. 2002. A full complement of receptors in immune complex disease. J. Clin. Invest. 110:1759–1761.
18. Samuelson, A., T.L. Towers, and J.V. Ravetch. 2001. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science. 291:484–486.
19. Bruhns, P., A. Samuelson, J.W. Pollard, and J.V. Ravetch. 2003. Colony-stimulating factor–dependent macrophages are responsible for IVIG protection in antibody-induced autoimmune disease. Immunity. 18:573–581.
20. Lerner, R.A., R.J. Glassock, and F.J. Dixon. 1967. The role of anti-glomerular basement membrane antibody in the pathogenesis of human glomerulonephritis. J. Exp. Med. 126:989–1004.
21. Kerr, P.G., S.J. Chadban, and R.C. Atkins. 2001. Rapidly progressive glomerulonephritis. In Diseases of the Kidney and Urinary Tract, seventh edition. R.W. Schrier, editor. Lippincott Williams & Wilkins, Philadelphia, PA. 1665–1690.
22. Falk, R.J., J.C. Jennette, and P.H. Nachman. 2004. Primary glomerular disease. In Brenner & Rector’s The Kidney, seventh edition. B.M. Brenner, editor. Saunders, Philadelphia, PA. 1293–1380.
23. Groggel, G.C., D.J. Salant, C. Darby, H.G. Rennke, and W.G. Cousser. 1985. Role of terminal complement pathway in the heterologous phase of anti-glomerular basement membrane nephritis. Kidney Int. 27:643–651.
24. Schrijver, G., M.J. Bogman, K.J. Assmann, R.M. de Waal, H.C. Robben, H. van Gasteren, and R.A. Koene. 1990. Anti-GBM nephritis in the mouse: role of granulocytes in the heterologous phase. Kidney Int. 38:86–95.
25. Park, S.Y., S. Ueda, H. Ohno, Y. Hamano, M. Tanaka, T. Shiratori, T. Yamazaki, H. Arase, N. Arase, A. Karasawa, et al. 1998. Resistance of Fc receptor-deficient mice to fatal glomerulonephritis. J. Clin. Invest. 102:1229–1238.
26. Morishita, Y., I. Shirato, K. Okumura, J.V. Ravetch, T. Takai, Y. Tomino, and C. Ra. 1998. Distinct contribution of Fc receptors and antigen II-dependent pathways in anti-GBM glomerulonephritis. Kidney Int. 54:1166–1174.
27. Meyer, D., C. Schiller, J. Westermann, S. Izu, W.L.W. Hazenbos, J.S. Verbeek, R.E. Schmidt, and J.E. Gesner. 1998. FcγRIII (CD16)–deficient mice show IgG isotype-dependent protection to experimental autoimmune hemolytic anemia. Blood. 92:3997–4002.
28. Fossati-Junack, L., A. Iacon-Fiasmay, L. Reminger, Y. Chicheportiche, N. Watanabe, T. Saito, F.M.A. Hofhuis, J.E. Gesner, C. Schiller, R.E. Schmidt, et al. 2000. Markedly different pathogenicity of four immunoglobulin G isotype-switch variations of an antilymphocyte autoantibody is based on their capacity to interact in vivo with the low-affinity Fc receptor III. J. Exp. Med. 191:1293–1302.
29. Uchida, J., Y. Hamaguchi, J.A. Oliver, J.V. Ravetch, J.C. Poe, K.M. Haas, and T.F. Tedder. 2004. The innate mononuclear phagocyte network depletes B lymphocytes through Fc receptor–dependent mechanisms during anti-CD20 antibody immunotherapy. J. Exp. Med. 199:1659–1669.
30. Hazenbos, W.L.W., J.E. Gesner, F.M.A. Hofhuis, H. Kuipers, D. Meyer, I.A.F.M. Heijnen, R.E. Schmidt, M. Sander, P.J.A. Capel, M. Dassen, et al. 1996. Impaired IgG-dependent anaphylaxis and Arthus reaction in FcγRIII (CD16) deficient mice. Immunity. 5:181–188.
31. Ravetch, J.V., and J.P. Kinet. 1991. Fc receptors. Annu. Rev. Immunol. 9:457–492.
32. Barnes, N., A.L. Gavio, P.S. Tan, P. Mottram, F. Koentgen, and P.M. Hogarth. 2002. FcγRII-deficient mice show multiple alterations to inflammatory and immune responses. Immunity. 16:379–389.
33. Couteleur, J.P., J.T. van der Logt, P.W. Heesen, G. Lauren, and J. van Snick. 1987. IgG2a restriction of murine antibodies elicited by viral infections. J. Exp. Med. 165:64–69.
34. Baldrige, J.R., and M.J. Buchmeier. 1992. Mechanism of antibody-mediated protection against lymphocytic choriomeningitis virus infection: mother-to-baby transfer of humoral protection. J. Virol. 66:4252–4257.
35. Markine-Goraynovoff, D., and J.P. Couteleur. 2002. Increased efficacy of the immunoglobulin G2a subclass in antibody-mediated protection against lactic dehydrogenase-elevating virus-induced polioencephalomyelitis revealed with switch mutants. J. Virol. 76:432–435.
36. Coimbra, T., R. Wiggins, J.W. Noh, S. Merritt, and S.H. Phan. 1991. Transforming growth factor–β production in anti-glomerular basement membrane disease in the rabbit. Am. J. Pathol. 138:223–234.
37. Border, W.A., and N.A. Noble. 1994. Transforming growth factor β in tissue fibrosis. N. Engl. J. Med. 331:1286–1292.
38. Kitamura, M., and T.S. Sütö. 1997. TGF-β and glomerulonephritis: anti-inflammatory versus prosclerotic actions. Nephrol. Dial. Transplant. 12:669–679.
39. Coffman, R.L., D.A. Lebman, and B. Shrader. 1989. Transforming growth factor β specifically enhances IgA production by lipopolysaccharide-stimulated murine B lymphocytes. *J. Exp. Med.* 170:1039–1044.

40. McIntyre, T.M., D.R. Klinman, P. Rothman, M. Lugo, J.R. Dasch, J.J. Mond, and C.M. Snapper. 1993. Transforming growth factor β1 selectively stimulates immunoglobulin G2b secretion by lipopolysaccharide-activated murine B cells. *J. Exp. Med.* 177:1031–1037.

41. Fujii, T., Y. Hamano, S. Ueda, B. Akikusa, S. Yamazaki, M. Ogawa, H. Saisho, J.S. Verbeek, S. Taki, and T. Saito. 2003. Predominant role of FcγRIII in the induction of accelerated nephrototoxic glomerulonephritis. *Kidney Int.* 64:1406–1416.

42. Tarzi, R.M., K.A. Davies, J.W.C. Claassens, J.S. Verbeek, M.J. Walport, and H.T. Cook. 2003. Both Fcγ receptor I and Fcγ receptor III mediate disease in accelerated nephrototoxic nephritis. *Am. J. Pathol.* 162:1677–1683.

43. Madaio, M.P., D.J. Salant, S. Adler, C. Darby, and W.G. Couser. 1984. Effect of antibody charge and concentration on deposition of antibody to glomerular basement membrane. *Kidney Int.* 26:397–403.

44. Chan, O., M.P. Madaio, and M.J. Shlomchik. 1997. The role of B cells in MRL/lpr murine lupus. *Ann. N.Y. Acad. Sci.* 815:75–87.