Knowledge Distillation of Transformer-based Language Models Revisited

Chengqiang Lu \(^1\), Jianwei Zhang \(^1\), Yunfei Chu \(^1\), Zhengyu Chen \(^2\), Jingren Zhou \(^1\), Fei Wu \(^2\), Haiqing Chen \(^1\), and Hongxia Yang \(^1\)

\(^1\)Alibaba Group
\(^2\)Zhejiang University

Abstract
In the past few years, transformer-based pre-trained language models have achieved astounding success in both industry and academia. However, the large model size and high run-time latency are serious impediments to applying them in practice, especially on mobile phones and Internet of Things (IoT) devices. To compress the model, considerable literature has grown up around the theme of knowledge distillation (KD) recently. Nevertheless, how KD works in transformer-based models is still unclear. We tease apart the components of KD and propose a unified KD framework. Through the framework, systematic and extensive experiments that spent over 23,000 GPU hours render a comprehensive analysis from the perspectives of knowledge types, matching strategies, width-depth trade-off, initialization, model size, etc. Our empirical results shed light on the distillation in the pre-train language model and with relative significant improvement over previous state-of-the-arts (SOTA). Finally, we provide a best-practice guideline for the KD in transformer-based models.

1 Introduction
Recently, the emergence of pre-trained language models, especially the transformer-based model such as BERT \cite{Devlin2019BERTPO}, and GPT-3 \cite{Brown2020LanguageMA}, has revolutionized the research on various natural language processing (NLP), compute vision (CV), and multimodal tasks \cite{Dosovitskiy2021AnIC, Liu2021Swin:AN, Lin2021Detectron2:AC, Wang2022MMA} and achieve stunning success. These researches follow the pretrain-then-finetune paradigm: the models are first pre-trained on a large unlabeled corpus and then fine-tuned for specific downstream tasks. Even though these models are effective and prevalent, the heavy model size and high latency limit their application in real-world scenarios, particularly on resource-constrained devices, e.g. mobile phones, IoT devices, and autonomous cars \cite{Zualkernan2022IC, Li2021IC}.

Many model compression techniques have been proposed to obtain a much smaller and eco-friendly model with comparable performance to alleviate the former shortcomings. Among all these methods, knowledge distillation (KD) \cite{Hinton2015DistillingTO} is simple yet effective and has been frequently used \cite{Wang2020Fine-GrainedLM, Jiao2020NeMo:AM}. KD often trains a large and elaborate model as the teacher model to guide the training of a smaller model, named the student model. During the learning procedure, the student model is forced to mimic the behavior of the teacher so that the knowledge from the teacher model will be transferred to the student model.

Despite considerable previous literature having grown up to apply knowledge distillation to transformer-based models for model compression \cite{Wang2020Fine-GrainedLM, Jiao2020NeMo:AM, Sanh2019DistilBERTAD, Sun2020DistilBERTa}, there are still too many unexplored areas in the mechanism of KD. In this work, we attempt to provide a comprehensive overview of KD for transformer-based models. The main contributions of our work are summarized as follows.
We present a generic distillation framework that contains three main components: initialization, knowledge type, and matching strategy. Any existing method could be identified and incorporated into the framework. To tease apart, we categorize common initialization schemes, knowledge types, and matching strategies and propose a unified formulation of distillation.

We conduct systematic and extensive experiments which consist of about 30,000 experimental results and cost over 23,000 GPU hours to investigate the effects of different parts of the proposed framework. We provide exhaustive analyses about the initialization, temperature and hard label weight, layer match, width-depth trade-off, and teacher model size.

Based on the empirical results, we establish a best-practice guideline on the knowledge distillation of transformer-based models. The model following the guideline achieves better scores with a smaller size compared to previous compact models.

2 Preliminary

2.1 Distillation

Knowledge Distillation (KD) is a wide-used technique in deep learning due to its plug-and-play feasibility. It shares many core concepts with transfer learning, Ahn et al. (2019) label smoothing Yuan et al. (2020), ensemble learning, Hinton et al. (2015) and contrastive learning Tian et al. (2020). Although KD could achieve the purpose of model compression, inference acceleration, and generalization improvement Gou et al. (2021), we focus on model compression in this paper. The key idea of KD is to drive a large model (the teacher model T) to guide the learning of a small model (the student model S). Let Ω denote the function to extract part of “dark knowledge” from the model S/T and the input x. Aim to train the student model S to mimic the behaviors of the teacher model S, KD minimizes the following objective function:

$$L_{KD} = \sum_{x \in X} L(\Omega(T, x), \Omega(S, x))$$

where X is the dataset and L is the loss function. The choice of loss function L and the design of knowledge extractor Ω will significantly influence the effectiveness of knowledge distillation and we discuss them later in the Section 3.2 respectively.

2.2 Transformer

In this paper, our goal is to explore the distillation framework of language models which fit strict memory and computation constraints. Since Transformer-based language models have achieved much progress in a wide range of NLP tasks Vaswani et al. (2017); Devlin et al. (2019), we select the most popular Transformer as the backbone network and review its architecture first. The vanilla Transformer model follows the encoder-decoder architecture based on a multi-head attention mechanism. Therefore, Transformer consists of two types of building blocks: a self-attention module and a feed-forward network.

Self-attention Module The self-attention module utilizes the multi-head attention mechanism to generate outputs with a query and a set of key-value pairs. The output of each head is a weighted sum of values according to the attention distribution. The independent attention heads are concatenated and multiplied by a linear layer to match the desired output dimension:

$$\text{MultiHead}(Q, K, V) = \bigoplus (\text{head}_1, \cdots, \text{head}_H) W^O$$

$$\text{head}_i = \text{Attention}(QW^Q_i, KW^K_i, VW^V_i) = A^i VW^V_i = \text{softmax} \left(\frac{QW^Q_i(KW^K_i)^T}{\sqrt{d_k}} \right) VW^V_i$$

where \bigoplus denotes concatenation operation. W^Q, W^K, W^V and W^O are weight matrices for queries, keys, values, and outputs separately. A is the attention score of i-th head. d_k is the dimension of each head and $d_k \times H$ is equal to the hidden dimension h_b in Transformer.

Feed-forward Network The feed-forward network (FFN) is a two-layer network with two linear projection and an activation function (e.g. ReLU):

$$\text{FFN}(x) = \max(0, xW^{f_1} + b_1)W^{f_2} + b_2$$
3 The framework of Distillation

For the transformer-based model, as aforementioned in Section 2.2, it is convenient to regard the teacher-student architectures as homogeneous. Therefore, we choose the BERT as the backbone model without loss of generality in this paper. Given the teacher model, there are two main stages in the progress of distillation: the initialization of the student model and the distillation in the downstream task. We will discuss them in this section.

3.1 Initialization

Since the initialization is crucial (Zhang et al., 2021; Sutskever et al., 2013) in the distillation, a bunch of initialization schemes were proposed to speed up the training progress and improve the final performance (Jiao et al., 2020; Wang et al., 2020; Turc et al., 2019; Sun et al., 2020; Sanh et al., 2019). Generally speaking, there are four kinds of initialization schemes:

- Random initialization: train the student model from scratch.
- Pre-train: pre-train the student model on an unlabeled dataset with a masked LM objective.
- General distillation: pre-train the student model with the aid of the teacher model by introducing the distillation loss to the masked LM objective.
- Pre-load: load part of the weight of the teacher model directly.

Random initialization is the simplest way but usually suffers from the shortage of data in the downstream tasks. Pre-train has been shown to be effective (Devlin et al., 2019; Liu et al., 2019) recently. General distillation, also known as pre-train distillation, utilizes the power of the teacher model when pre-train the student model (Jiao et al., 2020; Wang et al., 2020; Sanh et al.). initialized the student from the selected layers of the teacher. We perform controlled experiments on these schemes to test their effect in Section 4.2.

3.2 Knowledge

In this subsection, we discuss the different categories of knowledge that transfer from the teacher model to the student model. Furthermore, how to calculate the distillation loss for different types of knowledge is also vital and worth investigating in knowledge distillation. Basically, the knowledge could be split into the following three categories: response-based knowledge, feature-based knowledge, and relation-based knowledge.

3.2.1 Response-Based Knowledge

A vanilla knowledge distillation utilizes the output logits of the teacher model as knowledge (Hinton et al., 2015; Ba and Caruana, 2014). The simple but effective method is widely used in model compression. Let \(z_t \) and \(z_s \) denote the logits of the teacher model and student model respectively, the response-based knowledge loss can be formulated as

\[
\mathcal{L}_{res}(z_t, z_s) = D(\varphi(z_t), \varphi(z_s))
\]

(5)

where \(D \) indicates the computation of the cost function. \(\varphi \) is the transformation function of logits and the simplest transformation function is \(\varphi(z) = z \). However, directly matching logits could be ineffective because the output logits of the cumbersome teacher model could be very noisy. A much more powerful and popular transformation is converting logits to soft targets (Hinton et al., 2015)

\[
\varphi(z_i) = \frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}
\]

(6)

where \(T \) is the temperature factor, \(z_i \) is the logit for the \(i \)-th class. The temperature \(T \) controls the "hardness" of soft targets and plays a vital role in knowledge distillation which will be discussed later in Section 4.3. Analogous to label smoothing and regularization (Yuan et al., 2020; Ding et al., 2019; Müller et al., 2019), the utilization of soft targets prevents the student model from overfitting and improves its performance significantly. However, merely using the output of the last layer as auxiliary information limits the competency of KD, especially when the teacher model is very deep or the data amount is small. Consequently, some techniques were proposed to exploit the intermediate-level supervision of the teacher model besides the response-based knowledge.
3.2.2 Feature-Based Knowledge
To provide auxiliary information for mimicking the behavior of the teacher model in intermediate layers rather than simply matching the output logits of the last layer, a considerable amount of literature has been worked on feature-based knowledge distillation (Romero et al., 2015; Zagoruyko and Komodakis, 2017; Kim et al., 2018; Passban et al., 2021). The inspiration of feature-based distillation is simple: directly match the intermediate feature between the teacher model and the student model. It could be formulated as

$$L_{\text{feat}}(f_t(x), f_s(x)) = D(\phi(f_t(x)), \phi(f_s(x))).$$

(7)

Here D is the similarity function to compute the feature loss. f_t and f_s indicate the function used to generate a feature map with input x in the teacher model and the student model respectively. As some similarity functions require the elements to share the same dimension, ϕ denotes the mapping function that transforms the features to a proper shape.

In practice of distilling transformer-based models (Jiao et al., 2020; Sun et al., 2020; Wang et al., 2020), the feature map $f(x)$ could be embeddings in the embedding layer, attention matrices A, and hidden states H. With regard to the similarity function D, cross-entropy loss, L_2-norm loss, and cosine similarity loss are common choices. Due to the dimension of the teacher model and the student model usually being different, ϕ is necessary for feature-based knowledge. The simplest way is to use some dimensionality reduction techniques (e.g. PCA, LDA). However, these methods are not flexible to achieve excellent performance. The most common way to address the problem is to introduce a trainable linear projection layer between the feature map of the teacher model and the student model.

3.2.3 Relation-Based Knowledge
Different from the previous two types of knowledge, which are the output of different layers, relation-based knowledge focus on the relationship of the representations of samples (Tung and Mori, 2019; Park et al., 2019). The core tenet is that the relations of the learned representations contain more and better knowledge than individual ones. The objective of relation-based knowledge loss is expressed as

$$L_{\text{rel}}(f_t(x), f_s(x)) = D(\psi(f_t(x)), \psi(f_s(x)))$$

(8)

where ψ denotes the relational potential function that measures a relationship of given inputs x. Here we only consider pair-wise relationship, $\hat{f}_t(x)$, $\hat{f}_s(x)$ are the feature map generator of the teacher model and the student model.

For example, neuron selectivity transfer (Huang and Wang, 2017) computes the similarity matrix of hidden states using Maximum Mean Discrepancy (MMD) in two models then compute the MSE loss between two similarity matrices. In this case, $\hat{f}_t(x) = H_t$, $\hat{f}_s(x) = H_t^T$ indicate the generation of hidden states in the i-th and j-th layer. $\psi(\cdot)$ here is simply matrix multiplication. Therefore, the objective function could be rewritten as $L_{\text{rel: mmd}}(z_t, z_s) = D_{\text{MSE}}(H_S \cdot H_T^T, H_T \cdot H_T^T)$. Other types relationship-based knowledge of transformer-based model include gram matrices (Yim et al., 2017), value relation (Wang et al., 2020), query and key relation (Wang et al., 2021). D could be mean square error, cross entropy loss, Frobenius norm, and KL divergence.

3.3 Matching Strategy
Section 3.2 addresses the problem of how to distill knowledge. In this section, we explore the problem of how to match the student model S and the teacher model T. If the depth of T is equal to the depth of S ($L_T = L_S$), it is easy to solve the problem by matching T and S layer by layer. However, in the most application of distillation, L_S is smaller than L_T in order to compress the student model. Since the representations learned in different layers and different trained models vary a lot (Kornblith et al., 2019; Li et al., 2015), it is vital to select the proper pair of layers to match between S and T. Generally, the matching strategy includes three types: 1) First-k: select the first k layers to match. 2) Last-k: select the last k layers to match. 3) Dilatation: evenly select the matching layers. Figure 1 demonstrates the three strategies when $L_T = 4$, $L_S = 2$, $k = 2$.

3.4 Objective Function
The overall objective function could be formulated as

$$\mathcal{L} = \mathcal{L}_{\text{res}} + \alpha \mathcal{L}_{\text{hard}} + \sum_k \sum_i \beta_{kl} \mathcal{L}_{\text{kl}}(f_t^i(x), f_s^i(x))$$

(9)
where L_{res} is the response-based knowledge loss (soft label loss). We add the hard label loss L_{hard} that is used in common supervised learning with the ground-truth label as a previous study (Hinton et al., 2015) found it could significantly improve the performance of the student model. L_{kl} denotes the k-th feature-based or relation-based knowledge loss which is applied in the l-th pairs of layers between T and S. α and β_{kl} are all hyper-parameters to balance these loss terms.

4 Empirical Results And Analyses

In this section, we conduct extensive and systematic experiments to investigate the effects of the different parts of knowledge distillation in the transformer-based model. We upload the source code to supplementary material.

4.1 Dataset & Settings

To evaluate different aspects of the distillation of the transformer-based language model, we select the commonly used GLUE benchmark (Wang et al., 2018). Especially, we conduct experiments on Paraphrase Similarity Matching on MPRC (Dolan and Brockett, 2005), QQP, and STS-B (Conneau and Kiela, 2018). For Sentiment Classification, we test on SST-2 (Socher et al., 2013); for Natural Language Inference, we test on QNLI (Rajpurkar et al., 2016) and RTE (Wang et al., 2018); for linguistic Acceptability, we test on CoLA (Warstadt et al., 2019).

We use the BERT$_{\text{base}}$ ($L = 12, d = 768$) as the structure of the teacher model unless otherwise specified. For the optimizer, AdamW (Loshchilov and Hutter, 2017, 2019) is used. For the evaluation metrics in most tasks, we use accuracy for the convenience of comparison. However, for the STS-B task, we select the Pearson correlation coefficient as the metric. For more details about the dataset and related experimental setting and hyperparameters, please refer to Appendix A.1.1.

4.2 Initialization

In this subsection, we test aforementioned four initialization schemes (see Section 3.1). In the setting of pre-train and general distillation, we train the model on the corpus that contains the English Wikipedia and the Toronto Book Corpus (Zhu et al., 2015) following the suggestion of original BERT. We select three structures of the student models: BERT$_{\text{tiny}}$ ($L = 2, d = 128$), BERT$_{\text{mini}}$ ($L = 4, d = 256$), and BERT$_{\text{small}}$ ($L = 4, d = 512$). As the pre-load scheme requires the same dimension between T and S, we train a student model with $d = 768$ in this setting.

Table 1 shows the results of different initialization schemes. The figures indicate that random initialization is the worst choice among all four methods. Besides, the pre-load technique shows little advantage in practice. The score of pre-load in the QQP and SST-2 task is relatively high because the width (768) here is much bigger than in others (128), which makes an unfair comparison. Generally speaking, the general distillation and pre-train are better initialization methods because the unsupervised representation of the student model is significant. As a rough guideline, for a comparatively small model size of S, just pre-train the student model is the best way to initialize it. If the model size of S increases, it is better to consider general distillation because the student model is able to take more advantage of complementary information provided by the teacher model (Turc et al., 2019).
Table 1: Experimental Results of Different Initialization Schemes

Initialization	Random	Pre-load	General Distillation	Pre-train	Random	Pre-load	General Distillation	Pre-train	Random	Pre-load	General Distillation	Pre-train
QNLI	0.6158	0.6711	0.6266	0.7943	0.6074	0.6711	0.8411	0.8428	0.6149	0.7439	0.8561	0.8673
MRPC	0.6838	0.7233	0.7034	0.7647	0.7010	0.7132	0.7843	0.7917	0.7313	0.7206	0.8015	0.7941
RTE	0.5307	0.5487	0.5487	0.6209	0.5487	0.5451	0.5776	0.6751	0.5596	0.5343	0.5704	0.657
STSB	0.0229	0.4081	0.0907	0.6289	0.0639	0.2448	0.7503	0.8523	0.158	0.217	0.8256	0.8654
QQP	0.7853	0.8826	0.8484	0.8563	0.8342	0.8649	0.8884	0.8914	0.8378	0.8813	0.9995	0.901
MNLI	0.5704	0.7270	0.6216	0.7016	0.6208	0.7479	0.7574	0.7664	0.6287	0.7613	0.7908	0.7891
SST2	0.6030	0.6329	0.6329	0.7046	0.6120	0.7386	0.7607	0.7695	0.6303	0.7695	0.7965	0.7893
CoLA	0.6913	0.6913	0.6922	0.6913	0.6913	0.6913	0.7450	0.6913	0.6989	0.7833	0.767	

4.3 Temperature and Hard Label

The temperature in the distillation plays an important role in controlling the communication between T and S. Higher temperature softens the distribution generated by the teacher model and works in a way that is similar to the label smoothing (Yuan et al., 2020). Hinton et al. found that a weighted average of soft logits loss and hard label loss helps the knowledge transfer from the cumbersome teacher model to the student model. Therefore, the weight of the hard label is also crucial.

To test the effect of two main hyper-parameters and tune them for experiments afterwards, we search from a grid of parameter values (temperature : {1, 2, 4, 8}, hard label weight : {0.1, 0.2, 0.5, 1.0, 2.0, 5.0}). Here, we use BERT$_{min}$ as the student model. Table 1 in Appendix A.3.1 illustrates some interesting facts about these two hyperparameters. First, when the data amount of the downstream task is small, the model distilled with a higher temperature (above 2) achieves better performance. On bigger datasets, lower temperatures result in higher scores. Secondly, although recent studies claim that the hard label is not necessary as the soft logits are sufficiently informative (Shen et al., 2019; Shen and Savvides, 2020), we found a slight hard label weight (e.g. 0.1 or 0.2) is always helpful. In the following experiments, we will use the best hyperparameter setting in Table 1 as the default setting.

4.4 Layer Match

As mentioned in Section 3.2, apart from the response-based knowledge (e.g. soft target) in original knowledge distillation, feature-based knowledge, and relation-based knowledge could provide more nuanced information to help the distillation of knowledge. In this subsection, we select several types of knowledge that are widely used. The core idea of KD is to let the student model learn the behavior of the teacher model. The soft target enables the imitation of the result and other knowledge strives to mimic the intermediate layers. Therefore, we name this part of the experiments as layer match experiments.

We select ten kinds of knowledge that widely used in previous studies (Wang et al., 2020, 2021; Sanh et al., 2019; Jiao et al., 2020; Sun et al., 2019; Huang and Wang, 2017; Yim et al., 2017), including five types of feature-based knowledge: attention mse, attention ce, hidden mse, cos, pkd; and five types of relation-based knowledge: mmd, gram, query relation, key relation, and value relation. See the Appendix A.2 for their definitions and formulas. Three student models are used in this group of experiments: BERT$_{tiny}$, BERT$_{min}$, and BERT$_{small}$. Not only the knowledge types, but we also conduct extensive experiments to test the effect of the three matching strategies mentioned in Section 3.3.

Knowledge Type For the knowledge types, we consider the situation of using only one layer match (single-match) firstly. Table 1 in Appendix A.3.2 shows the result of distilling different knowledge. Compared with solely using soft targets, almost adding any feature-based knowledge or relation-based knowledge improves the performance. When the size of T is smaller or the amount of data in the task is smaller, the model aided by relation-based knowledge tends to achieve a better score than feature-based ones. One reason is the inequality of the dimension of T and S necessitate a learnable projection matrix. However, for some tasks with data shortage, the labeled data is insufficient to train these matrices. Another reason is to preserve the relationship in the representation space of S is easier than mimicking the representation space of T directly. Besides, among the feature-based knowledge, the knowledge about the attention score is more tractable than hidden states as the attention itself.
could be regarded as a self-relation knowledge. In previous experiments, we set the hyperparameters of loss weight β_d to be 1. Nevertheless, the magnitudes of different types of knowledge vary a lot. Therefore, we designed an experiment to see if the loss of weight affects the final results. We tuned the weight so that the loss term value of a single-match reaches about 1/10 of the soft label loss. Table 3 in Appendix A.3.3 illustrates that even the roughly selected loss weight improves the performance of over 80% of the student models in different tasks.

To study the effect of the combination of different knowledge types, the second group of experiments tests the models that are distilled with two types of knowledge. We divide all the knowledge types into three categories by the region they take effect: attention (attention mse, attention ce), hidden state (hidden mse, mmd, gram, cos, pkd), query/key/value (query relation, key relation, value relation). Then we test the binary combinations of these 3 tuples. All the 31 double-match settings are applied in three kinds of student models and trained on 8 downstream tasks. The result in Appendix A.3.3 shows that not all double-match settings are better than single-match due to the conflict between different knowledge. However, some double-match could improve the performance significantly, especially the combination of attention ce and relation-based knowledge. It reveals a compound effect as they both respond to the self-attention module.

Matching Strategy

In the absence of theoretical underpinnings, the choice of matching strategy is really tricky. We conduct extensive controlled experiments to explore this area. Based on three matching strategies mentioned in Section 3.3, we design five settings: (1) match the first L_S layers (First), (2) match the first one layer (First-1), (3) match the last L_S layers (Last), (4) match the last one layer (Last-1), and (5) match the layers evenly (Dilatation).

In the single-match setting, the average variance of different matching strategies in different tasks and models is about only 0.00045. However, it does not reveal that the matching strategy is not important. In fact, among all experimental conditions in the single-match setting (3 model size × 9 downstream tasks), the best configuration in 25 out of 27 is Last-1 or First-1. Similarly, the ratio in the double-match setting is 22 out of 27 (see Appendix A.3.3). It is not a coincidence. Some previous studies point out that, from lower layers to higher layers, the function of each layer varies and function of the first or the last layer are comparably similar. Accordingly, the discrepancy of these layers between the teacher model and the student model is slighter. Therefore, a superior way to select a matching strategy is to use Last-1 or First-1 as the initial trial in the application.

4.5 Deeper or Wider

In the application of small pre-train language models, the limited computing power of mobile devices necessitates the compression of the student model. Given a typical BERT model, the space complexity is $O(L(hdn + h\eta^2))$ and the time complexity is $O(Lhdn^2)$. L is the number of transformer layers and d is the embedding dimension. η denotes the length of the input sequence and h is the number of heads in the multi-head attention layer. As the sequence length is usually determined by the input of the downstream task, the depth L and the width d are the main hyper-parameters to reduce the model size and speed up inference time. Along this line, one crucial problem is the trade-off between the depth and the width. The width not only influences the number of parameters in transformer layers but also affects the embedding layer. The space complexity of the embedding layer is $O(|V|d)$ where $|V|$ is the fixed vocabulary size (set to be 30,522 in BERT). Therefore, the smaller a model is, the larger the proportion of the embedding layers to the total model. For instance, the embedding layer in BERT$_{tiny}$ makes up 71% of all parameters and embedding layer parameters account for a over 90% proportion in BERT$_{tiny}$ ($L = 2, d = 128$).

Levine et al. proved that for models with $L > L_{th}(d) \sim \log(d)$, the ability to model input dependencies increases similarity with depth and width. For small models, the network with the depth of $\log(d)$ is too shallower for good performance. Therefore the theoretical findings are not helpful in this situation. We design a bunch of experiments to probe into the matter. We construct several student models with 1) fixed model size of about 6 million parameters, 2) fixed flops (floating-point of
operations) of 2G, and uncover how student models perform vary with width and depth. These models were firstly general distilled with the aid of the same teacher model and then distilled in downstream tasks of GLUE. In the setting of fixed model size, the experimental results in Table 2 illustrates that depth-efficiency takes place in transformer-based models. Under the same hyperparameters except for the width and depth, the deeper models in different tasks usually outperform the other models. In the tasks with small datasets (MRPC, CoLA, STS-B, and RTE), relatively shallower (than the deepest) models achieve the best score. Besides, the results are similar to the conclusion of Kaplan et al.. However, the conclusion is contrary in the setting of fixed flops. The results in the bottom half of Table 2 reveals depth inefficiency. Another perspective is the time-space trade-off. In the first experiment, fixing the model size, the models take more time (bigger flops and higher latency) to perform better; in the second experiment, with similar time consumption, bigger models achieve better scores.

Teacher Model	Student Model
bert-base	bert-mini
bert-larg	bert-larg

In previous experiments, we fix the teacher model to study the behavior of the student model. Another crucial part to be explored is the teacher model. In this experiment, we mainly answer the research question: does the larger teacher model teach better? Two teacher models are tested here: BERT\textsubscript{base} (L = 12, d = 1024) and BERT\textsubscript{large} (L = 12, d = 1024). The left side of the Table 3 is the performance of these two teacher models, in all tasks the larger teacher gets better scores (better scores are bolded). However, when teaching students models, the conclusion of "the larger the better" does not hold true. Table 3 indicates that the larger \(T \) teaches better students when the model size of \(T \) is relatively larger (BERT\textsubscript{small}). Conversely, when the capacity of \(S \) is lower, the smaller teacher teaches better because of the capacity gap (Mirzadeh et al., 2020).

4.7 Best Practices of Distilling Extremely Small Models for On-device Application

Constraints

Recently, high-end mobile phones have strong computing power. For instance, the A15 Bionic chip in iPhone 13 performs up to 1500 GFLOPS (Giga Floating Point Of Per Second) and the GPU FP32 floating point in Qualcomm 8 Gen 1 is 1800 GFLOPS. However, most devices in the world including low-to-mid-end mobile phones and IoT devices are not so fast. Therefore, considering the required runtime latency in the common device, we follow the constraints in previous studies (Ge and Wei, 2022) and use the 2G flops (floating-point of operations) as the restrictions.
Besides, we limit the model size up to 14 million parameters including the embedding layer following previous work (Wu et al., 2020). Therefore, the $\text{BERT}_{\text{mini}}$ model that contains 11 million parameters is a proper structure for the on-device application.

Based on the empirical results above, we provide several rules of thumb. The first step is to tune the three hyperparameters: learning rate, temperature, and hard label weight (See Section 4.3 for the guideline for tuning temperature and hard label weight). The second step is to choose the initialization method. We recommend the pre-train method for $\text{BERT}_{\text{mini}}$ and the general-distillation method for larger student models. Then, for the matching strategy, we suggest the First-1 or Last-1 as mentioned in Section 4.4. With regard to the knowledge types, relation-based knowledge is preferred and for smaller models (e.g. $\text{BERT}_{\text{tiny}}$) combining attention-related knowledge could further improve the performance. Besides, several tricks are also exceedingly useful including data augmentation and label smoothing (Jiao et al., 2020; Yuan et al., 2020). Finally, the student model after distillation achieves the comparative score while reducing about 20% model size of the previous SOTA (see Table 7 in Appendix A.3.4).

5 Conclusion

In this paper, we propose a generic framework to distill the transformer-based models, which includes the initialization schemes, knowledge types, and matching strategies. We conduct extensive experiments to investigate the effect of different components in knowledge distillation. Moreover, we provide a best-practice guideline to distill the $\text{BERT}_{\text{mini}}$ for on-device applications.

References

S. Ahn, S. X. Hu, A. C. Damianou, N. D. Lawrence, and Z. Dai. Variational information distillation for knowledge transfer. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 9155–9163, 2019.

J. Ba and R. Caruana. Do deep nets really need to be deep? In NIPS, 2014.

T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. J. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot learners. ArXiv, abs/2005.14165, 2020.

A. Conneau and D. Kiela. Senteval: An evaluation toolkit for universal sentence representations. ArXiv, abs/1803.05449, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. ArXiv, abs/1810.04805, 2019.

Q. Ding, S. Wu, H. Sun, J. Guo, and S. Xia. Adaptive regularization of labels. ArXiv, abs/1908.05474, 2019.

W. B. Dolan and C. Brockett. Automatically constructing a corpus of sentential paraphrases. In IJCNLP, 2005.

A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. ArXiv, abs/2010.11929, 2021.

T. Ge and F. Wei. Edgeformer: A parameter-efficient transformer for on-device seq2seq generation. ArXiv, abs/2202.07959, 2022.

J. Gou, B. Yu, S. J. Maybank, and D. Tao. Knowledge distillation: A survey. ArXiv, abs/2006.05525, 2021.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. ArXiv, abs/1503.02531, 2015.

Z. Huang and N. Wang. Like what you like: Knowledge distill via neuron selectivity transfer. ArXiv, abs/1707.01219, 2017.

G. Jawahar, B. Sagot, and D. Seddah. What does bert learn about the structure of language? In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, 2019.
A. Simoulin and B. Crabbé. How many layers and why? an analysis of the model depth in transformers. In Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing: Student Research Workshop, pages 221–228, 2021.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Ng, and C. Potts. Recursive deep models for semantic compositionality over a sentiment treebank. In EMNLP, 2013.

S. Sun, Y. Cheng, Z. Gan, and J. Liu. Patient knowledge distillation for bert model compression. In EMNLP, 2019.

Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou. Mobilebert: a compact task-agnostic bert for resource-limited devices. ArXiv, abs/2004.02984, 2020.

I. Sutskever, J. Martens, G. E. Dahl, and G. E. Hinton. On the importance of initialization and momentum in deep learning. In ICML, 2013.

Y. Tian, D. Krishnan, and P. Isola. Contrastive representation distillation. ArXiv, abs/1910.10699, 2020.

F. Tung and G. Mori. Similarity-preserving knowledge distillation. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pages 1365–1374, 2019.

I. Turc, M.-W. Chang, K. Lee, and K. Toutanova. Well-read students learn better: The impact of student initialization on knowledge distillation. ArXiv, abs/1908.08962, 2019.

A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polosukhin. Attention is all you need. In NIPS, 2017.

A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. ArXiv, abs/1804.07461, 2018.

P. Wang, A. Yang, R. Men, J. Lin, S. Bai, Z. Li, J. Ma, C. Zhou, J. Zhou, and H. Yang. Unifying architectures, tasks, and modalities through a simple sequence-to-sequence learning framework. arXiv preprint arXiv:2202.03052, 2022.

W. Wang, F. Wei, L. Dong, H. Bao, N. Yang, and M. Zhou. Minilm: Deep self-attention distillation for task-agnostic compression of pre-trained transformers. ArXiv, abs/2002.10957, 2020.

W. Wang, H. Bao, S. Huang, L. Dong, and F. Wei. Minilmv2: Multi-head self-attention relation distillation for compressing pretrained transformers. In FINDINGS, 2021.

A. Warstadt, A. Singh, and S. R. Bowman. Neural network acceptability judgments. Transactions of the Association for Computational Linguistics, 7:625–641, 2019.

Z. Wu, Z. Liu, J. Lin, Y. Lin, and S. Han. Lite transformer with long-short range attention. ArXiv, abs/2004.11886, 2020.

Z. Yang, Y. Cui, Z. Chen, W. Che, T. Liu, S. Wang, and G. Hu. TextBrewer: An Open-Source Knowledge Distillation Toolkit for Natural Language Processing. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 9–16. Association for Computational Linguistics, 2020. URL https://www.aclweb.org/anthology/2020.acl-demos.2.

J. Yim, D. Joo, J.-H. Bae, and J. Kim. A gift from knowledge distillation: Fast optimization, network minimization and transfer learning. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 7130–7138, 2017.

L. Yuan, F. E. H. Tay, G. Li, T. Wang, and J. Feng. Revisiting knowledge distillation via label smoothing regularization. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 3902–3910, 2020.

S. Zagoruyko and N. Komodakis. Paying more attention to attention: Improving the performance of convolutional neural networks via attention transfer. ArXiv, abs/1612.03928, 2017.

T. Zhang, F. Wu, A. Katiyar, K. Q. Weinberger, and Y. Artzi. Revisiting few-sample bert fine-tuning. ArXiv, abs/2006.05987, 2021.

Y. Zhu, R. Kiros, R. S. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fidler. Aligning books and movies: Towards story-like visual explanations by watching movies and reading books. 2015 IEEE International Conference on Computer Vision (ICCV), pages 19–27, 2015.

I. A. Zualkernan, S. Dhou, J. Judas, A. R. Sajun, B. R. Gomez, and L. A. Hussain. An iot system using deep learning to classify camera trap images on the edge. Comput., 11:13, 2022.
Checklist

1. For all authors...
 (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope? [Yes]
 (b) Did you describe the limitations of your work? [Yes]
 (c) Did you discuss any potential negative societal impacts of your work? [Yes]
 (d) Have you read the ethics review guidelines and ensured that your paper conforms to them? [Yes]

2. If you are including theoretical results...
 (a) Did you state the full set of assumptions of all theoretical results? [N/A]
 (b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
 (a) Did you include the code, data, and instructions needed to reproduce the main experimental results (either in the supplemental material or as a URL)? [Yes]
 (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were chosen)? [Yes]
 (c) Did you report error bars (e.g., with respect to the random seed after running experiments multiple times)? [Yes]
 (d) Did you include the total amount of compute and the type of resources used (e.g., type of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
 (a) If your work uses existing assets, did you cite the creators? [Yes]
 (b) Did you mention the license of the assets? [Yes]
 (c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
 (d) Did you discuss whether and how consent was obtained from people whose data you’re using/curating? [N/A]
 (e) Did you discuss whether the data you are using/curating contains personally identifiable information or offensive content? [N/A]

5. If you used crowd sourcing or conducted research with human subjects...
 (a) Did you include the full text of instructions given to participants and screenshots, if applicable? [N/A]
 (b) Did you describe any potential participant risks, with links to Institutional Review Board (IRB) approvals, if applicable? [N/A]
 (c) Did you include the estimated hourly wage paid to participants and the total amount spent on participant compensation? [N/A]
A Appendix

A.1 Reproducibility

A.1.1 Settings

In most experiments, we use the following default settings unless otherwise specified:

- The hyperparameters of loss weight β_{kl} is set to be 1.
- The temperature and hard label weight are tuned by grid search and select the best one in other experiments (See Section 4.3).
- The initialization scheme is pre-train (See Section 4.2).

In the experiments about temperature and hard label weight in Section 4.3, no feature-based or relation-based knowledge distillation is used.

A.1.2 Code

We provide source code of this paper in the supplementary material. The main file is `main.py`. We modified the implementation of BERT in huggingface in `custom_bert.py` for the convenience of distillation. In the environment of distributed multi-GPU, we use the DistributedDataParallel (DDP) provided by PyTorch and the main file is `distributed_wrapper.py`. For part of the implementations of knowledge distillation, we use the TextBrewer ([Yang et al., 2020] under Apache 2.0 license).

A.1.3 Teacher Models

We download the fine-tuned BERT$_{\text{base}}$ teacher models of different GLUE task in huggingface:

- MNLI: https://huggingface.co/ishan/bert-base-uncased-mnli
- QQP: https://huggingface.co/textattack/bert-base-uncased-QQP
- QNLI: https://huggingface.co/textattack/bert-base-uncased-QNLI
- SST-2: https://huggingface.co/textattack/bert-base-uncased-SST-2
- CoLA: https://huggingface.co/textattack/bert-base-uncased-CoLA
- STS-B: https://huggingface.co/textattack/bert-base-uncased-STS-B
- MRPC: https://huggingface.co/textattack/bert-base-uncased-MRPC
- RTE: https://huggingface.co/textattack/bert-base-uncased-RTE

The BERT$_{\text{large}}$ models are downloaded from https://huggingface.co/yoshitomo-matsubara.

A.2 Knowledge Types

In this subsection, we introduce the definitions of the knowledge used in Section 4.4. T and S denote the teacher model and the student model here. l and r indicate the layer number of T and S respectively. N_h is the number of attention heads. A is the attention matrix and H is the hidden state. W indicates the learnable projection matrix.

- Attention mse: the mse loss of the sum of attention heads between T and S

$$
\mathcal{L} = D_{\text{mse}}(\sum_{a=1}^{N^g_h} A^S_{a,l}, \sum_{a=1}^{N^g_h} A^T_{a,r})
$$

- Attention ce: the cross-entropy loss of the mean of attention heads between T and S

$$
\mathcal{L} = D_{\text{ce}}\left(\frac{1}{N^g_h} \sum_{a=1}^{N^g_h} A^S_{a,l}, 1 \frac{1}{N^g_h} \sum_{a=1}^{N^g_h} A^T_{a,r}\right)
$$
• Hidden mse: the mse loss of the hidden states between T and S

\[\mathcal{L} = D_{\text{mse}}(H^S_T, H^T_r W_r) \]
(12)

• Cos: the cosine similarity loss between the hidden states between T and S

\[\mathcal{L} = D_{\text{cos}}(H^S_T, H^T_r W_r) = 1 - \cos(H^S_T, H^T_r W_r) \]
(13)

• Pkd: the normalized mse loss of the hidden states between T and S

\[\mathcal{L} = D_{\text{mse}} \left(\frac{H^S_T}{|H^S_T|}, \frac{H^T_r W_r}{|H^T_r W_r|} \right) \]
(14)

• Mmd: the mse loss between the similarity matrices of hidden states. H_1 and H_2 are two hidden states in models. \top indicates the matrix transpose.

\[\mathcal{L} = D_{\text{mse}}(H^T_1 \cdot H^T_2 \top, H^S_1 \cdot H^S_2 \top) \]
(15)

• Gram: the mse loss between the similarity matrices of hidden states. The difference between mmd and gram is the order of matrix multiplication.

\[\mathcal{L} = D_{\text{mse}}(H^{1T} \cdot H^{2T} \top, H^{S1} \cdot H^{S2} \top) \]
(16)

• Query relation: the KL-divergence loss of the query relation between T and S

\[\mathbf{VR}^T_{l,a} = \text{softmax} \left(\frac{V^T_{l,a} \cdot V^{TT}_{l,a}}{\sqrt{d}} \right) \]

\[\mathbf{VR}^S_{r,a} = \text{softmax} \left(\frac{V^S_{r,a} \cdot V^{ST}_{r,a}}{\sqrt{d}} \right) \]

\[\mathcal{L} = \frac{1}{N_h} \sum_{a=1}^{N_h} D_{\text{KL}}(\mathbf{VR}^T_{l,a}, \mathbf{VR}^S_{r,a}) \]

• Key relation: the KL-divergence loss of the key relation between T and S. The definition is similar to the query relation above, just replace Q with K.

• Value relation: the KL-divergence loss of the value relation between T and S. The definition is similar to the query relation above, just replace Q with V.

A.3 Detailed Experimental Results

A.3.1 Temperature & Hard Label Weight

Table 4: Hyper-parameters experiments about temperature and hard label weight

Temperature	1	2	4	8			
Hard Label Weight							
MRPC							
0.1	0.701	0.7181	**0.7206**	0.701			
0.2	0.701	0.7034	0.7083	0.7059			
0.5	0.7034	0.7034	0.701	0.7059			
1	0.7034	0.701	0.7059	0.7132			
2	0.7034	0.7059	0.7059	0.7083			
5	0.701	0.7034	0.7083	0.7059			
SST-2							
0.1	**0.8716**	0.8693	0.8681	0.8647			
0.2	0.8658	0.8670	0.8658	0.8624			
0.5	0.8647	0.8658	0.8681	0.8647			
Hard Label Weight	QQP	QNLI	RTE	CoLA	STS-B	MNLI-mm	MNLI-m
-------------------	-------	--------	-------	--------	---------	---------	----------
0.1	0.8926	0.84	0.6751	0.7373	0.8552	0.7775	0.7664
0.2	0.8925	0.8433	0.657	0.7469	0.8591	0.7775	0.7664
0.5	0.889	0.8422	0.6643	0.7421	0.8454	0.7783	0.7545
1	0.8903	0.842	0.6643	0.7402	0.8421	0.7783	0.7545
2	0.8901	0.8424	0.6643	0.7421	0.8451	0.7783	0.7545
5	0.8864	0.8456	0.6643	0.7229	0.8424	0.7783	0.7545
	0.8601	0.8647	0.8681	0.8601	0.8635	0.8624	0.7533
	0.8635	0.8578	0.8635	0.8624	0.8635	0.8624	0.7533
	0.8624	0.8624	0.8601	0.8647	0.8624	0.8624	0.7533
					0.8925	0.8926	0.8926
					0.8901	0.8901	0.8901
					0.889	0.89	0.89
					0.8903	0.8903	0.8903
					0.8907	0.8907	0.8907
					0.8864	0.8864	0.8864
A.3.2 Single-Match Experiments

MRPC	bert-small	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.7868	0.7672	0.799	0.7917	0.8137	
attention_ce_mean	0.7843	0.7819	0.7819	0.7892	0.8015	
hidden_mse	0.7598	0.7672	0.7623	0.7917	0.7966	
mmd	0.8113	0.7843	0.799	0.7917	0.799	
gram	0.8064	0.8162	0.8235	0.799	0.8064	
cos	0.7721	0.7598	0.7721	0.8186	0.7868	
pkd	0.7525	0.8456	0.8284	0.8284	0.8407	
query_relation	0.8137	0.799	0.799	0.799	0.8134	
key_relation	0.8088	0.8015	0.8039	0.8137	0.7892	
value_relation	0.8015	0.8015	0.8039	0.799	0.8039	
bert-mini	First	Last	Dilatation	First-1	Last-1	
attention_mse_sum	0.7941	0.7353	0.7426	0.8088	0.826	
attention_ce_mean	0.8088	0.8137	0.7917	0.8186	0.8186	
hidden_mse	0.75	0.75	0.7598	0.8088	0.8186	
mmd	0.8333	0.8186	0.8431	0.8186	0.8064	
gram	0.8333	0.8064	0.8358	0.8064	0.8186	
cos	0.7549	0.7451	0.7475	0.8186	0.7721	
pkd	0.7426	0.826	0.7941	0.8113	0.8088	
query_relation	0.8211	0.8211	0.8235	0.8333	0.8145	
key_relation	0.8284	0.8211	0.8235	0.8235	0.777	
value_relation	0.8186	0.826	0.8284	0.8162	0.8137	
bert-tiny	First	Last	Dilatation	First-1	Last-1	
attention_mse_sum	0.7647	0.7623	0.7623	0.7598	0.7377	
attention_ce_mean	0.7672	0.7623	0.7647	0.7647	0.7279	
hidden_mse	0.7475	0.7451	0.7475	0.7672	0.723	
mmd	0.7549	0.7647	0.7672	0.7574	0.7304	
gram	0.7721	0.7647	0.7721	0.7745	0.7206	
cos	0.7328	0.723	0.7328	0.7598	0.723	
pkd	0.6838	0.723	0.7255	0.7402	0.7328	
query_relation	0.7304	0.7279	0.7279	0.7328	0.7347	
key_relation	0.7377	0.7304	0.7328	0.7279	0.7206	
value_relation	0.7328	0.7328	0.7304	0.7304	0.7402	
SST2	bert-small	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.8922	0.8956	0.8922	0.8865	0.8922	
attention_ce_mean	0.8968	0.8956	0.8956	0.8865	0.8922	
hidden_mse	0.8819	0.8853	0.8842	0.8968	0.8991	
mmd	0.8876	0.8979	0.8922	0.8933	0.8933	
gram	0.8911	0.8911	0.8922	0.8911	0.8956	
cos	0.8807	0.8796	0.8807	0.8899	0.8968	
pkd	0.8704	0.8819	0.8796	0.8899	0.8968	
query_relation	0.8899	0.8911	0.8899	0.8933	0.8934	
key_relation	0.8865	0.8853	0.8876	0.8911	0.8968	
value_relation	0.8933	0.8876	0.8911	0.8865	0.8968	
bert-mini	First	Last	Dilatation	First-1	Last-1	
attention_mse_sum	0.8612	0.8693	0.8589	0.8635	0.8704	
Table 5 continued from previous page						

attention_ce_mean	0.8612	0.8681	0.8727	0.8647	0.867	0.8578
hidden_mse	0.8681	0.8716	0.8784	0.8681	0.8739	0.867
mmd	0.867	0.8658	0.867	0.867	0.867	
gram	0.8291	0.8349	0.8337	0.8647	0.867	
cos	0.82	0.8429	0.8452	0.8578	0.8681	
pkd	0.8647	0.8567	0.8693	0.8612	0.8646	
query_relation	0.8624	0.8658	0.8647	0.8635	0.8727	
value_relation	0.8624	0.8635	0.8578	0.8589	0.8693	

bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.8257	0.8257	0.8222	0.82	0.8245
attention_ce_mean	0.8234	0.8222	0.8211	0.8234	0.8234
hidden_mse	0.8234	0.8245	0.828	0.8234	0.8257
mmd	0.8291	0.8234	0.8222	0.8234	0.8257
gram	0.8234	0.8211	0.8245	0.8222	0.8257
cos	0.82	0.8222	0.8268	0.8211	0.8291
pkd	0.82	0.8257	0.8245	0.8245	0.8314
query_relation	0.8222	0.8314	0.8222	0.8234	0.8245
key_relation	0.8314	0.8222	0.8314	0.8245	0.8268
value_relation	0.8245	0.8245	0.8245	0.8245	0.8257

QQP

bert-small	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.9003	0.8999	0.9002	0.901	0.8934
attention_ce_mean	0.9005	0.9007	0.9008	0.9001	0.8955
hidden_mse	0.8983	0.9013	0.9009	0.8995	0.8962
mmd	0.9001	0.9002	0.9021	0.8995	0.895
gram	0.9	0.9028	0.9023	0.9011	0.8953
cos	0.8979	0.9	0.9017	0.9007	0.8977
pkd	0.8953	0.9014	0.9037	0.8987	0.8982
query_relation	0.8941	0.8938	0.8947	0.895	0.8939
key_relation	0.8945	0.8952	0.8938	0.8941	0.8955
value_relation	0.8943	0.8959	0.8948	0.8936	0.8943

bert-mini	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.8909	0.8887	0.889	0.8939	0.8899
attention_ce_mean	0.8914	0.894	0.893	0.8945	0.8895
hidden_mse	0.8896	0.8926	0.8937	0.8918	0.8907
mmd	0.8919	0.8916	0.8917	0.8921	0.8898
gram	0.8928	0.8933	0.8931	0.8928	0.8922
cos	0.8876	0.8874	0.8884	0.8916	0.8925
pkd	0.8857	0.8911	0.8903	0.8919	0.894
query_relation	0.8906	0.8895	0.8911	0.8897	0.8878
key_relation	0.8897	0.8896	0.8901	0.8908	0.8909
value_relation	0.8903	0.8904	0.8911	0.8908	0.8888

bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.8634	0.8644	0.866	0.8663	0.8719
attention_ce_mean	0.8657	0.8645	0.8659	0.8643	0.872
hidden_mse	0.8615	0.8613	0.864	0.8607	0.8707
mmd	0.8665	0.8628	0.8642	0.8655	0.8719
gram	0.8666	0.8657	0.867	0.8659	0.872
cos	0.8626	0.8651	0.8626	0.8606	0.8689
pkd	0.8619	0.8671	0.8685	0.8591	0.8734
query_relation	0.8708	0.8714	0.8714	0.8703	0.8715
key_relation	0.8714	0.8711	0.8716	0.8699	0.8716
Table 5 continued from previous page

	QNLI	RTE	
	bert-small	bert-mini	bert-tiny
value_relation	0.8713	0.8718	
	0.8708	0.874	
	0.8716		
	0.8718		
attention_mse_sum	0.8602	0.8378	
attention_ce_mean	0.8706	0.8417	
hidden_mse	0.842	0.8329	
mmd	0.8695	0.8418	
gram	0.8666	0.8422	
cos	0.8389	0.8272	
pkd	0.8221	0.806	
query_relation	0.8695	0.8446	
key_relation	0.8724	0.8475	
value_relation	0.8726	0.8431	
attention_mse_sum	0.8706	0.8378	
attention_ce_mean	0.8706	0.8417	
hidden_mse	0.842	0.8329	
mmd	0.8695	0.8418	
gram	0.8666	0.8422	
cos	0.8389	0.8272	
pkd	0.8221	0.806	
query_relation	0.8695	0.8446	
key_relation	0.8724	0.8475	
value_relation	0.8726	0.8431	
attention_mse_sum	0.8706	0.8378	
attention_ce_mean	0.8706	0.8417	
hidden_mse	0.842	0.8329	
mmd	0.8695	0.8418	
gram	0.8666	0.8422	
cos	0.8389	0.8272	
pkd	0.8221	0.806	
query_relation	0.8695	0.8446	
key_relation	0.8724	0.8475	
value_relation	0.8726	0.8431	
Table 5 continued from previous page			

cos	0.5812 0.5957 0.574 0.6715 0.6209		
pkd	0.556 0.5776 0.5812 0.657 0.6245		
query_relation	0.6859 0.6823 0.6823 0.6787 0.6789		
key_relation	0.6715 0.6715 0.6715 0.6751 0.6426		
value_relation	0.6823 0.7004 0.6823 0.6715 0.6715		
bert-tiny	First Last Dilatation First-1 Last-1		
attention_mse_sum	0.6173 0.5957 0.6029 0.6209 0.6101		
attention_ce_mean	0.6173 0.6065 0.6065 0.6173 0.6173		
hidden_mse	0.5993 0.6209 0.6101 0.6173 0.5884		
mmd	0.6173 0.5957 0.5957 0.6209 0.6137		
gram	0.6137 0.6065 0.6209 0.6173 0.6209		
cos	0.5921 0.6209 0.6065 0.6065 0.5812		
pkd	0.6137 0.6065 0.6245 0.6137 0.5993		
query_relation	0.6354 0.6426 0.6426 0.639 0.6354		
key_relation	0.639 0.6354 0.6354 0.6354 0.6101		
value_relation	0.6245 0.6354 0.6245 0.639 0.6282		
bert-small	First Last Dilatation First-1 Last-1		
attention_mse_sum	0.767 0.7383 0.7478 0.768 0.7766		
attention_ce_mean	0.7718 0.7613 0.7603 0.7632 0.7881		
hidden_mse	0.6932 0.6913 0.7066 0.768 0.7804		
mmd	0.7574 0.7517 0.7565 0.7603 0.7766		
gram	0.7747 0.7603 0.7641 0.7555 0.7804		
cos	0.6942 0.6942 0.6989 0.7593 0.7718		
pkd	0.6913 0.7066 0.7057 0.7661 0.768		
query_relation	0.7709 0.7651 0.7718 0.7718 0.7745		
key_relation	0.7718 0.7728 0.7728 0.7728 0.7756		
value_relation	0.7689 0.7776 0.7737 0.7728 0.7795		
bert-mini	First Last Dilatation First-1 Last-1		
attention_mse_sum	0.6922 0.6989 0.6932 0.7392 0.745		
attention_ce_mean	0.7354 0.7354 0.7383 0.744 0.745		
hidden_mse	0.6951 0.6951 0.6932 0.7383 0.743		
mmd	0.7229 0.698 0.6951 0.744 0.7459		
gram	0.7488 0.7354 0.744 0.7363 0.745		
cos	0.6942 0.6913 0.6913 0.7248 0.7181		
pkd	0.6913 0.6913 0.6913 0.743 0.7335		
query_relation	0.7459 0.7469 0.744 0.744 0.7457		
key_relation	0.7469 0.7411 0.745 0.745 0.745		
value_relation	0.7392 0.7383 0.7469 0.743 0.743		
bert-tiny	First Last Dilatation First-1 Last-1		
attention_mse_sum	0.6932 0.6913 0.6913 0.6913 0.6913		
attention_ce_mean	0.6913 0.6913 0.6961 0.6913 0.6999		
hidden_mse	0.6913 0.6913 0.6913 0.6913 0.6913		
mmd	0.6913 0.6913 0.6932 0.6922 0.6989		
gram	0.6913 0.6942 0.6913 0.6932 0.6951		
cos	0.6951 0.6913 0.6913 0.6951 0.6913		
pkd	0.6913 0.6922 0.6913 0.6913 0.6913		
query_relation	0.6913 0.6913 0.6913 0.6913 0.6913		
key_relation	0.6913 0.6913 0.6913 0.6913 0.6942		
value_relation	0.6913 0.6913 0.6913 0.6913 0.6942		

STSB
bert-small
attention_mse_sum
Table 5 continued from previous page

	bert-mini	First	Last	Dilatation	First-1	Last-1
attention_ce_mean	0.8702	0.8699	0.8651	0.8646	0.8724	
hidden_mse	0.8689	0.8696	0.8687	0.8597	0.8735	
mmd	0.8725	0.8708	0.8693	0.8705	0.8724	
gram	0.8726	0.8718	0.873	0.8716	0.8737	
cos	0.8726	0.8661	0.8692	0.8626	0.8725	
pkd	0.864	0.8672	0.8678	0.8594	0.873	
query_relation	0.8697	0.8711	0.87	0.8715	0.8731	
key_relation	0.8731	0.8712	0.8704	0.8714	0.8733	
value_relation	0.87	0.8708	0.8706	0.8711	0.8718	
	bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.8669	0.865	0.8653	0.8556	0.8652	
attention_ce_mean	0.8656	0.8643	0.8645	0.8671	0.8634	
hidden_mse	0.8637	0.8613	0.8494	0.8675	0.8636	
mmd	0.8574	0.8485	0.866	0.8536	0.8627	
gram	0.8651	0.8648	0.8652	0.8585	0.863	
cos	0.8634	0.8533	0.8633	0.8598	0.8647	
pkd	0.8402	0.8384	0.8595	0.8519	0.865	
query_relation	0.862	0.8622	0.8611	0.8627	0.8663	
key_relation	0.8631	0.8612	0.8598	0.8624	0.8674	
value_relation	0.8615	0.861	0.8604	0.8632	0.8646	
	bert-small	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.7761	0.7822	0.6231	0.7797	0.8165	
attention_ce_mean	0.7813	0.7816	0.7871	0.6145	0.8167	
hidden_mse	0.7796	0.7848	0.7859	0.6546	0.8166	
mmd	0.7879	0.6161	0.6075	0.6266	0.8168	
gram	0.7802	0.7758	0.7795	0.6325	0.8166	
cos	0.6664	0.7857	0.6735	0.6776	0.8163	
pkd	0.6745	0.6911	0.7814	0.6685	0.8156	
query_relation	0.7969	0.7969	0.8058	0.8065	0.8155	
key_relation	0.804	0.7969	0.7969	0.8065	0.8173	
value_relation	0.8065	0.797	0.7989	0.797	0.8166	
	MNLI-mm	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.7861	0.7811	0.787	0.7886	0.8008	
attention_ce_mean	0.788	0.7877	0.7916	0.79	0.8011	
hidden_mse	0.7764	0.776	0.779	0.7862	0.8003	
mmd	0.7895	0.7911	0.7866	0.7876	0.7998	
gram	0.7867	0.7881	0.7881	0.79	0.8001	
cos	0.7679	0.7735	0.7833	0.7851	0.8014	
pkd	0.7483	0.7883	0.7936	0.7872	0.8098	
query_relation	0.7916	0.7917	0.7918	0.7918	0.7995	
key_relation	0.7926	0.7916	0.7894	0.7923	0.7983	
value_relation	0.7912	0.7927	0.7905	0.7922	0.8008	
	bert-mini	First	Last	Dilatation	First-1	Last-1
attention_mse_sum	0.761	0.7457	0.7522	0.7717	0.7831	
attention_ce_mean	0.7722	0.774	0.7722	0.7736	0.7829	
hidden_mse	0.7476	0.7492	0.76	0.7674	0.7833	
mmd	0.7724	0.7686	0.773	0.7729	0.782	
gram	0.7707	0.7653	0.7727	0.7723	0.7847	
cos	0.7388	0.7485	0.7459	0.7632	0.7859	
pkd	0.7294	0.7632	0.7645	0.7672	0.7928	
query_relation	0.7728	0.7749	0.7726	0.7736	0.7844	
key_relation	0.7735	0.7731	0.7733	0.7743	0.7833	
Table 5 continued from previous page						

value_relation						
value_relation						
bert-tiny						
First						
Last						
Dilatation						
First-1						
Last-1						
0.7731						
0.7728						
0.7743						
0.7732						
0.7826						
attention_mse_sum						
0.7072						
0.7013						
0.702						
0.7036						
0.7181						
attention_ce_mean						
0.702						
0.7063						
0.7035						
0.7024						
0.7191						
hidden_mse						
0.6974						
0.7035						
0.6995						
0.7007						
0.7284						
mmd						
0.7043						
0.7063						
0.704						
0.7053						
0.7287						
gram						
0.7041						
0.7002						
0.7005						
0.7035						
0.7175						
cos						
0.6915						
0.6928						
0.6961						
0.6988						
0.7233						
pkd						
0.5794						
0.6989						
0.7002						
0.6969						
0.7321						
query_relation						
0.711						
0.71						
0.71						
0.7112						
0.7282						
key_relation						
0.709						
0.7088						
0.7083						
0.7104						
0.7281						
value_relation						
0.7097						
0.7074						
0.7087						
0.7089						
0.7276						

MNLI-m
bert-small
First
Last
Dilatation
First-1
Last-1
0.7943
0.7877
0.7893
0.7915
0.8047
attention_ce_mean
0.7915
0.7917
0.7946
0.7947
0.7954
hidden_mse
0.7853
0.7818
0.7873
0.7944
0.8004
mmd
0.7911
0.7921
0.7887
0.7885
0.7991
gram
0.7949
0.7912
0.7959
0.7896
0.799
cos
0.781
0.7824
0.787
0.7928
0.8013
pkd
0.7686
0.7905
0.7947
0.7924
0.807
query_relation
0.792
0.7926
0.7926
0.7926
0.793
key_relation
0.7934
0.7929
0.791
0.7938
0.8011
value_relation
0.7936
0.7933
0.7941
0.7917
0.7946
bert-mini
First
Last
Dilatation
First-1
Last-1
0.7606
0.7532
0.7555
0.7631
0.7785
attention_mse_sum
0.7643
0.7661
0.7627
0.766
0.7787
attention_ce_mean
0.7575
0.7555
0.761
0.7614
0.7783
hidden_mse
0.7655
0.7628
0.7624
0.7678
0.7788
mmd
0.7619
0.7637
0.7669
0.7668
0.7763
gram
0.7493
0.7511
0.7583
0.7578
0.7798
cos
0.7244
0.7576
0.7588
0.7602
0.7827
pkd
0.7694
0.7689
0.7698
0.7697
0.7744
query_relation
0.7702
0.767
0.7694
0.7699
0.776
key_relation
0.7691
0.7676
0.7665
0.7693
0.7753
value_relation
0.7025
0.6977
0.6977
0.7056
0.7172
bert-tiny
First
Last
Dilatation
First-1
Last-1
0.7025
0.6977
0.6977
0.7056
0.7172
attention_mse_sum
0.7069
0.7028
0.7043
0.7038
0.7196
attention_ce_mean
0.7028
0.7049
0.7033
0.7018
0.7252
hidden_mse
0.7083
0.7006
0.702
0.7043
0.726
mmd
0.7035
0.7052
0.7042
0.7038
0.7158
gram
0.6977
0.7018
0.6993
0.7016
0.7261
cos
0.6772
0.6968
0.6975
0.6997
0.7202
pkd
0.7074
0.7086
0.7075
0.7082
0.70456
query_relation
0.7088
0.7087
0.7087
0.709
0.7242
key_relation
0.709
0.708
0.7092
0.7106
0.7169

A.3.3 Double-Match Experiments

MRPC
bert-small
First
Last
Dilatation
First-1
Last-1

21
	bert-mini	First	Last	Dilatation	First-1	Last-1
attention_ce_mean.cos	0.7623	0.7304	0.7451	0.8309	0.7745	
attention_ce_mean.gram	0.8431	0.8186	0.8407	0.8211	0.8186	
attention_ce_mean.hidden_mse	0.75	0.7475	0.7475	0.8309	0.8088	
attention_ce_mean.key_relation	0.799	0.777	0.777	0.826	0.777	
attention_ce_mean.mmd	0.8211	0.8162	0.8137	0.8211	0.8039	
attention_ce_mean.pkd	0.6838	0.8162	0.777	0.8284	0.8137	
attention_ce_mean.query_relation	0.7892	0.7745	0.7794	0.8162	0.7794	
attention_ce_mean.value_relation	0.8039	0.8064	0.8088	0.8015	0.8113	
attention_mse_sum.cos	0.7623	0.7157	0.7377	0.8235	0.7966	
attention_mse_sum.gram	0.8064	0.7328	0.7549	0.8186	0.826	
attention_mse_sum.hidden_mse	0.7598	0.723	0.7475	0.8431	0.8211	
attention_mse_sum.key_relation	0.8088	0.7304	0.7426	0.8162	0.7966	
attention_mse_sum.mmd	0.8113	0.7304	0.7353	0.8333	0.8235	
attention_mse_sum.pkd	0.6838	0.7451	0.7574	0.8358	0.8137	
attention_mse_sum.query_relation	0.8113	0.7304	0.7377	0.8333	0.7974	
attention_mse_sum.value_relation	0.8039	0.7549	0.7574	0.8358	0.8235	
cos.key_relation	0.7525	0.7353	0.7451	0.8235	0.7745	
cos.query_relation	0.7525	0.7328	0.7525	0.826	0.7549	
cos.value_relation	0.75	0.7377	0.7426	0.8309	0.777	
gram.key_relation	0.8309	0.7696	0.7672	0.8211	0.777	
gram.query_relation	0.7966	0.7574	0.7745	0.826	0.7721	
gram.value_relation	0.8137	0.8064	0.8064	0.8235	0.8309	
hidden_mse.key_relation	0.75	0.7549	0.7598	0.799	0.8015	
hidden_mse.query_relation	0.7525	0.7549	0.7598	0.799	0.8015	
hidden_mse.value_relation	0.7549	0.7549	0.7598	0.799	0.8015	
mmd.key_relation	0.8015	0.7721	0.7868	0.799	0.799	0.799
mmd.query_relation	0.7941	0.7868	0.7868	0.799	0.799	0.799
mmd.value_relation	0.8284	0.8088	0.799	0.799	0.799	0.799
pkd.key_relation	0.777	0.7745	0.7794	0.8162	0.8088	
pkd.query_relation	0.7721	0.777	0.7843	0.8088	0.8309	
pkd.value_relation	0.7647	0.8211	0.8211	0.8088	0.8358	
mmd, key_relation	0.8211	0.7574	0.7794	0.8235	0.7696	
------------------	--------	--------	--------	--------	--------	
mmd, query_relation	0.8064	0.7696	0.7745	0.8186	0.7745	
mmd, value_relation	0.8235	0.8186	0.8186	0.826	0.8162	
pkd, key_relation	0.6838	0.7696	0.7745	0.828	0.7868	
pkd, query_relation	0.6863	0.7696	0.7672	0.8309	0.7941	
pkd, value_relation	0.6863	0.8088	0.7917	0.824	0.8113	

bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_ce_mean, cos	0.7353	0.7206	0.7108	0.7402	0.7059
attention_ce_mean, gram	0.7206	0.7328	0.7304	0.7304	0.723
attention_ce_mean, hidden mse	0.7353	0.7304	0.7255	0.7353	0.7206
attention_ce_mean, key_relation	0.7279	0.7157	0.7206	0.723	0.7181
attention_ce_mean, mmd	0.7353	0.7451	0.7475	0.7426	0.7206
attention_ce_mean, pkd	0.6838	0.7475	0.7475	0.7598	0.7328
attention_ce_mean, query_relation	0.7255	0.7279	0.7206	0.7255	0.7279
attention_ce_mean, value_relation	0.7206	0.7377	0.7304	0.723	0.7377
attention_mse_sum, cos	0.7279	0.7206	0.7108	0.7426	0.723
attention_mse_sum, gram	0.7402	0.7255	0.7377	0.7279	0.7304
attention_mse_sum, hidden mse	0.7328	0.7206	0.7132	0.7353	0.7181
attention_mse_sum, key_relation	0.7451	0.723	0.7279	0.7206	0.7328
attention_mse_sum, mmd	0.7475	0.7353	0.7377	0.7451	0.7304
attention_mse_sum, pkd	0.6838	0.75	0.7647	0.7574	0.7402
attention_mse_sum, query_relation	0.7353	0.7328	0.723	0.7206	0.7328
attention_mse_sum, value_relation	0.7353	0.7328	0.7328	0.723	0.7451
cos, key_relation	0.7353	0.7206	0.7181	0.7426	0.7206
cos, query_relation	0.7353	0.7157	0.7108	0.7402	0.7157
cos, value_relation	0.7279	0.723	0.7206	0.7402	0.723
gram, key_relation	0.723	0.7279	0.7255	0.7279	0.7206
gram, query_relation	0.7279	0.7279	0.7279	0.7279	0.7206
gram, value_relation	0.7255	0.7279	0.7255	0.7353	0.7304
hidden mse, key_relation	0.7353	0.7304	0.7402	0.723	0.7206
hidden mse, query_relation	0.7426	0.7304	0.7377	0.7255	0.7206
hidden mse, value_relation	0.7279	0.7304	0.7255	0.723	0.7328
mmd, key_relation	0.7353	0.7574	0.7451	0.7353	0.7206
mmd, query_relation	0.7353	0.7525	0.7353	0.7304	0.7255
mmd, value_relation	0.7353	0.7525	0.7475	0.7451	0.7328
pkd, key_relation	0.6838	0.7525	0.7451	0.7574	0.7304
pkd, query_relation	0.6838	0.7475	0.7451	0.7549	0.7304
pkd, value_relation	0.6838	0.7426	0.7451	0.7598	0.7426

bert-small	First	Last	Dilatation	First-1	Last-1
attention_ce_mean, cos	0.8853	0.8888	0.8865	0.8899	0.8979
attention_ce_mean, gram	0.8956	0.8922	0.8922	0.8979	0.8922
attention_ce_mean, hidden mse	0.8876	0.8956	0.8968	0.8911	0.8968
attention_ce_mean, key_relation	0.8956	0.8968	0.9014	0.8956	0.8979
attention_ce_mean, mmd	0.8922	0.8956	0.8888	0.8956	0.8945
attention_ce_mean, pkd	0.8739	0.8922	0.8922	0.8911	0.8945
attention_ce_mean, query_relation	0.9002	0.8876	0.8933	0.8979	0.8899
attention_ce_mean, value_relation	0.8979	0.8933	0.8968	0.8888	0.8991
attention_mse_sum, cos	0.8796	0.8899	0.9002	0.8933	0.8899
attention_mse_sum, gram	0.8956	0.9002	0.8956	0.8876	0.8968
attention_mse_sum, hidden mse	0.8865	0.8945	0.8956	0.8922	0.8979
attention_mse_sum, key_relation	0.8979	0.8979	0.8865	0.8933	0.8979
attention_mse_sum, mmd	0.8991	0.8979	0.8956	0.8945	0.8911
attention_mse_sum, pkd	0.8976	0.8899	0.8876	0.8945	0.9002
attention_mse_sum, query_relation	0.8888	0.8956	0.8933	0.8865	0.8956
attention_mse_sum, value_relation	0.8899	0.8968	0.8945	0.8853	0.8922
	First	Last	Dilatation	First-1	Last-1
----------------	--------	--------	------------	---------	--------
cos, key_relation	0.883	0.8876	0.8888	0.8911	0.8911
cos, query_relation	0.8819	0.8899	0.8911	0.8945	0.8956
cos, value_relation	0.8876	0.8922	0.8888	0.9002	0.8933
gram, key_relation	0.8933	0.8933	0.8899	0.8865	0.8888
gram, query_relation	0.8979	0.8979	0.8945	0.8853	0.8979
gram, value_relation	0.8991	0.9014	0.8979	0.8911	0.8922
hidden_mse, key_relation	0.8899	0.8899	0.8865	0.8876	0.906
hidden_mse, query_relation	0.8956	0.8865	0.8876	0.8945	0.9037
hidden_mse, value_relation	0.8922	0.8945	0.8922	0.8979	0.9025
mmd, key_relation	0.8933	0.9002	0.8991	0.8865	0.8956
mmd, query_relation	0.8968	0.8979	0.8979	0.8968	0.8945
mmd, value_relation	0.8888	0.8911	0.8956	0.8979	0.8899
pkd, key_relation	0.8819	0.8888	0.8899	0.8911	0.8956
pkd, query_relation	0.8761	0.8865	0.8876	0.8888	0.8933
pkd, value_relation	0.883	0.8933	0.8999	0.8911	0.8979

bert-mini

	First	Last	Dilatation	First-1	Last-1
attention_ce_mean, cos	0.8544	0.8452	0.8544	0.8704	0.8693
attention_ce_mean, gram	0.8761	0.8727	0.8727	0.8693	0.8693
attention_ce_mean, hidden_mse	0.867	0.8635	0.8704	0.8693	0.8727
attention_ce_mean, key_relation	0.8693	0.8727	0.867	0.867	0.8773
attention_ce_mean, mmd	0.867	0.8727	0.8693	0.8658	0.8704
attention_ce_mean, query_relation	0.8314	0.8578	0.8704	0.8647	0.8704
attention_ce_mean, value_relation	0.8704	0.8727	0.8739	0.8739	0.8704
attention_mse_sum, cos	0.8578	0.8463	0.844	0.8704	0.8704
attention_mse_sum, gram	0.8647	0.8761	0.8589	0.8704	0.8739
attention_mse_sum, hidden_mse	0.8635	0.8567	0.8601	0.8704	0.8773
attention_mse_sum, key_relation	0.867	0.8693	0.8658	0.8647	0.8739
attention_mse_sum, mmd	0.8635	0.875	0.8681	0.8658	0.8739
attention_mse_sum, query_relation	0.8211	0.8452	0.8486	0.867	0.8716
attention_mse_sum, value_relation	0.8704	0.8796	0.867	0.8681	0.8693
cos, key_relation	0.8658	0.8693	0.8739	0.8681	0.867
cos, query_relation	0.8612	0.8555	0.8635	0.8681	0.867
cos, value_relation	0.8555	0.8532	0.8658	0.8693	0.8704
gram, key_relation	0.8578	0.8498	0.8567	0.8658	0.8716
gram, query_relation	0.8727	0.867	0.8773	0.8716	0.8693
gram, value_relation	0.8739	0.8624	0.8727	0.8704	0.8693
hidden_mse, key_relation	0.8716	0.8727	0.8853	0.8704	0.8647
hidden_mse, query_relation	0.867	0.8589	0.8624	0.8693	0.8739
hidden_mse, value_relation	0.867	0.8589	0.867	0.8704	0.8693
mmd, key_relation	0.867	0.8567	0.8681	0.8681	0.8704
mmd, query_relation	0.867	0.8567	0.8681	0.8681	0.8704
mmd, value_relation	0.8624	0.8681	0.8693	0.8761	0.867
pkd, key_relation	0.8349	0.8498	0.8612	0.8612	0.8693
pkd, query_relation	0.8337	0.8417	0.8589	0.8612	0.875
pkd, value_relation	0.8394	0.8624	0.8681	0.8635	0.8704

bert-tiny

	First	Last	Dilatation	First-1	Last-1
attention_ce_mean, cos	0.8234	0.828	0.8314	0.8245	0.828
attention_ce_mean, gram	0.8234	0.8245	0.8234	0.8257	0.828
attention_ce_mean, hidden_mse	0.8257	0.8268	0.828	0.8257	0.8257
attention_ce_mean, key_relation	0.8234	0.8257	0.8234	0.8222	0.8245
attention_ce_mean, mmd	0.8257	0.8257	0.8245	0.8268	0.8245
attention_ce_mean, pkd	0.8291	0.8257	0.8326	0.8268	0.8326
attention_ce_mean, query_relation	0.8222	0.8234	0.8245	0.8245	0.8245
attention_ce_mean, value_relation	0.8234	0.8211	0.8211	0.8291	0.8257
Table 6 continued from previous page					

attention_mse_sum,cos	0.8268	0.8291	0.8291	0.8211	0.8245
attention_mse_sum,gram	0.8268	0.8303	0.836	0.8257	0.8268
attention_mse_sum,hidden_mse	0.8257	0.8257	0.828	0.8222	0.8268
attention_mse_sum,key_relation	0.8245	0.8291	0.828	0.828	0.8234
attention_mse_sum,mmd	0.8291	0.8211	0.8245	0.8291	0.8245
attention_mse_sum,pkd	0.8211	0.8326	0.8314	0.8268	0.8303
attention_mse_sum,query_relation	0.8268	0.8245	0.8245	0.8245	0.8257
attention_mse_sum,value_relation	0.8245	0.828	0.8291	0.828	0.828
cos,key_relation	0.8257	0.8268	0.8268	0.828	0.828
cos,query_relation	0.8245	0.8245	0.8268	0.828	0.8291
cos,value_relation	0.8245	0.828	0.8291	0.8234	0.8268
gram,key_relation	0.8245	0.8234	0.8268	0.8268	0.8268
gram,query_relation	0.8303	0.8268	0.8245	0.8268	0.8245
gram,value_relation	0.8268	0.8268	0.8222	0.828	0.828
hidden_mse,key_relation	0.8234	0.8291	0.8257	0.828	0.8245
hidden_mse,query_relation	0.8245	0.828	0.8268	0.8268	0.8291
hidden_mse,value_relation	0.828	0.8268	0.8268	0.828	0.828
mmd,key_relation	0.828	0.82	0.8234	0.8245	0.8268
mmd,query_relation	0.8257	0.8234	0.8257	0.8245	0.8257
mmd,value_relation	0.8222	0.8177	0.8211	0.8234	0.8234
pkd,key_relation	0.8268	0.8337	0.828	0.8268	0.8291
pkd,query_relation	0.8257	0.8314	0.828	0.828	0.8291
pkd,value_relation	0.8234	0.8326	0.8349	0.8234	0.836

bert-small	First	Last	Dilatation	First-1	Last-1
attention_ce_mean,cos	0.8936	0.8995	0.8969	0.8946	0.8977
attention_ce_mean,gram	0.8916	0.8953	0.8925	0.8922	0.8925
attention_ce_mean,hidden_mse	0.8946	0.8974	0.8993	0.8936	0.8968
attention_ce_mean,key_relation	0.8956	0.8953	0.8957	0.8923	0.8925
attention_ce_mean,mmd	0.8956	0.8952	0.8955	0.893	0.8922
attention_ce_mean,pkd	0.8921	0.8989	0.899	0.8936	0.8952
attention_ce_mean,query_relation	0.8951	0.8956	0.8947	0.8951	0.8957
attention_ce_mean,value_relation	0.8915	0.8931	0.8907	0.8958	0.8932
attention_mse_sum,cos	0.8916	0.8956	0.8966	0.8951	0.8966
attention_mse_sum,gram	0.892	0.8964	0.894	0.8954	0.8952
attention_mse_sum,hidden_mse	0.8923	0.896	0.8956	0.8953	0.8982
attention_mse_sum,key_relation	0.8945	0.8897	0.8932	0.8922	0.8961
attention_mse_sum,mmd	0.8943	0.8932	0.8933	0.8929	0.8966
attention_mse_sum,pkd	0.8923	0.8978	0.8997	0.8921	0.8969
attention_mse_sum,query_relation	0.8924	0.8916	0.8919	0.8918	0.8955
attention_mse_sum,value_relation	0.8973	0.8919	0.8971	0.8912	0.8961
cos,key_relation	0.8937	0.8958	0.8972	0.8927	0.8987
cos,query_relation	0.8905	0.8968	0.899	0.8956	0.895
cos,value_relation	0.8922	0.8982	0.8969	0.8925	0.8937
gram,key_relation	0.8915	0.8949	0.8937	0.893	0.891
gram,query_relation	0.8926	0.8942	0.8962	0.8918	0.893
gram,value_relation	0.8938	0.8952	0.8935	0.8926	0.8928
hidden_mse,key_relation	0.8938	0.8976	0.8989	0.8918	0.8929
hidden_mse,query_relation	0.8941	0.8985	0.8991	0.8917	0.8937
hidden_mse,value_relation	0.8917	0.8979	0.8965	0.8921	0.8933
mmd,key_relation	0.8922	0.8923	0.8927	0.8914	0.8959
mmd,query_relation	0.8924	0.8926	0.8921	0.8928	0.8932
mmd,value_relation	0.8915	0.8932	0.8945	0.893	0.8926
pkd,key_relation	0.8914	0.8982	0.8987	0.8917	0.896
pkd,query_relation	0.8914	0.8978	0.9002	0.892	0.8948
pkd,value_relation	0.8939	0.8979	0.9005	0.8949	0.8959
bert-mini	First	Last	Dilatation	First-1	Last-1
-------------------	-------	--------	------------	---------	--------
attention_ce_mean.cos	0.8885	0.8938	0.8918	0.8904	0.8919
attention_ce_mean,gram	0.8867	0.8912	0.8923	0.8866	0.8868
attention_ce_mean,hidden_mse	0.8879	0.8908	0.8917	0.8882	0.8913
attention_ce_mean,key_relation	0.8904	0.8867	0.8888	0.8901	0.8886
attention_ce_mean,pkd	0.8888	0.8867	0.8699	0.8869	0.8888
attention_ce_mean,query_relation	0.8886	0.8899	0.8959	0.8882	0.8893
attention_mse_sum,cos	0.8879	0.8908	0.887	0.8908	0.8873
attention_mse_sum,gram	0.8876	0.8897	0.8875	0.8903	0.8904
attention_mse_sum,hidden_mse	0.8841	0.8888	0.891	0.8906	0.8888
attention_mse_sum,key_relation	0.8862	0.8892	0.8859	0.8913	0.8909
attention_mse_sum,pkd	0.8884	0.8901	0.8893	0.892	0.8913
attention_mse_sum,query_relation	0.8884	0.8951	0.8949	0.8899	0.8932
attention_mse_sum,value_relation	0.8904	0.8881	0.8856	0.8893	0.8904
cos,key_relation	0.8867	0.892	0.8942	0.8909	0.8897
cos,query_relation	0.8848	0.892	0.8924	0.888	0.8891
cos,value_relation	0.8876	0.8898	0.8927	0.8892	0.8925
gram,key_relation	0.8904	0.8926	0.8906	0.8877	0.8878
gram,query_relation	0.8881	0.8927	0.8988	0.8864	0.888
gram,value_relation	0.8874	0.8911	0.8881	0.8858	0.8895
hidden_mse,key_relation	0.8909	0.8923	0.8952	0.887	0.8902
hidden_mse,query_relation	0.8886	0.8931	0.8952	0.8881	0.8891
hidden_mse,value_relation	0.8904	0.8922	0.8908	0.8882	0.8907
mmd,key_relation	0.8884	0.8899	0.8868	0.8906	0.8904
mmd,query_relation	0.8876	0.8904	0.8893	0.8874	0.8919
mmd,value_relation	0.8872	0.8892	0.8889	0.889	0.8877
pkd,key_relation	0.8876	0.8929	0.8943	0.8893	0.8915
pkd,query_relation	0.8856	0.8929	0.8949	0.8889	0.8917
pkd,value_relation	0.8847	0.8942	0.8956	0.8895	0.8926

bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_ce_mean.cos	0.8645	0.8702	0.868	0.8688	0.8707
attention_ce_mean,gram	0.8701	0.8671	0.8695	0.8691	0.8695
attention_ce_mean,hidden_mse	0.8691	0.8661	0.8681	0.8694	0.8722
attention_ce_mean,key_relation	0.8724	0.8717	0.8718	0.8719	0.8694
attention_ce_mean,mmd	0.8707	0.8683	0.87	0.8712	0.8725
attention_ce_mean,pkd	0.8659	0.871	0.8706	0.8678	0.8733
attention_ce_mean,query_relation	0.869	0.8717	0.871	0.8676	0.8712
attention_ce_mean,value_relation	0.8689	0.8721	0.872	0.8707	0.8688
attention_mse_sum,cos	0.8653	0.864	0.8677	0.8704	0.8712
attention_mse_sum,gram	0.87	0.8697	0.8637	0.8721	0.8715
attention_mse_sum,hidden_mse	0.8678	0.8616	0.865	0.8699	0.8713
attention_mse_sum,key_relation	0.8699	0.869	0.8704	0.8718	0.8708
attention_mse_sum,mmd	0.8689	0.8637	0.8657	0.867	0.8705
attention_mse_sum,pkd	0.8686	0.8696	0.8724	0.869	0.8718
attention_mse_sum,query_relation	0.8692	0.8698	0.8675	0.8724	0.871
attention_mse_sum,value_relation	0.8708	0.8695	0.8684	0.8707	0.8665
cos,key_relation	0.8669	0.8691	0.8656	0.8679	0.8701
cos,query_relation	0.8659	0.8716	0.8648	0.8653	0.8698
cos,value_relation	0.8658	0.8682	0.8667	0.8711	0.8697
gram,key_relation	0.8692	0.8682	0.872	0.8695	0.869
gram,query_relation	0.8681	0.8689	0.8681	0.8726	0.8699
gram,value_relation	0.8696	0.8726	0.867	0.8683	0.87
hidden_mse,key_relation	0.8682	0.8673	0.8682	0.867	0.8705
Table 6 continued from previous page

qnli	bert-small	First	Last	Dilatation	First-1	Last-1	
attention_ce_mean.cos	0.8521	0.8504	0.8574	0.8686	0.868	0.8686	0.868
attention_ce_mean.gram	0.8677	0.857	0.864	0.8717	0.871	0.8711	0.871
attention_ce_mean.hidden_mse	0.8554	0.8506	0.855	0.8667	0.866	0.8662	0.8662
attention_ce_mean.key_relation	0.872	0.8717	0.8666	0.8724	0.872	0.87	
attention_ce_mean.mmd	0.8722	0.8656	0.8713	0.8722	0.872	0.8724	0.8724
attention_ce_mean.pkd	0.8272	0.8647	0.8627	0.8711	0.871	0.8682	0.8682
attention_ce_mean.query_relation	0.8744	0.8699	0.8678	0.8719	0.871	0.8724	0.8724
attention_ce_mean.value_relation	0.8704	0.8735	0.8752	0.8744	0.874	0.8706	0.8706
attention_mse_sum.cos	0.849	0.8351	0.8534	0.8678	0.867	0.871	0.871
attention_mse_sum.gram	0.8602	0.8547	0.8708	0.8708	0.8708	0.8739	0.8739
attention_mse_sum.hidden_mse	0.8492	0.8444	0.8512	0.8667	0.866	0.8735	0.8735
attention_mse_sum.key_relation	0.8666	0.8651	0.8682	0.8715	0.871	0.8742	0.8742
attention_mse_sum.mmd	0.866	0.8592	0.8728	0.8726	0.872	0.8741	0.8741
attention_mse_sum.pkd	0.8395	0.858	0.8603	0.8728	0.872	0.87	0.87
attention_mse_sum.query_relation	0.8724	0.8622	0.8717	0.8711	0.871	0.8735	0.8735
attention_mse_sum.value_relation	0.8618	0.8678	0.8699	0.8722	0.872	0.8713	0.8713
cos.key_relation	0.8508	0.8473	0.8554	0.8688	0.868	0.8655	0.8655
cos.query_relation	0.8523	0.8528	0.8552	0.8678	0.867	0.8658	0.8658
cos.value_relation	0.8499	0.8504	0.8558	0.87	0.8622	0.8622	0.8622
gram.key_relation	0.871	0.857	0.8684	0.8722	0.872	0.8691	0.8691
gram.query_relation	0.8689	0.8602	0.8651	0.8722	0.872	0.871	0.871
gram.value_relation	0.8711	0.8569	0.8629	0.8761	0.876	0.8717	0.8717
hidden_mse.key_relation	0.8525	0.8495	0.8563	0.8667	0.866	0.8689	0.8689
hidden_mse.query_relation	0.8541	0.8526	0.8552	0.8673	0.867	0.8667	0.8667
hidden_mse.value_relation	0.8528	0.8514	0.8536	0.8664	0.866	0.8656	0.8656
mmd.key_relation	0.8702	0.8653	0.8726	0.875	0.8719	0.8719	0.8719
mmd.query_relation	0.8686	0.8653	0.8669	0.8717	0.872	0.8724	0.8724
mmd.value_relation	0.87	0.8673	0.8695	0.8719	0.871	0.8691	0.8691
pkd.key_relation	0.8312	0.8603	0.8629	0.8684	0.868	0.8671	0.8671
pkd.query_relation	0.8318	0.8633	0.8634	0.8713	0.871	0.8653	0.8653
pkd.value_relation	0.838	0.8625	0.8633	0.8706	0.870	0.8678	0.8678

bert-mini	First	Last	Dilatation	First-1	Last-1		
attention_ce_mean.cos	0.8349	0.8263	0.8351	0.844	0.844	0.8422	0.8422
attention_ce_mean.gram	0.8439	0.8433	0.8406	0.8442	0.844	0.8455	0.8455
attention_ce_mean.hidden_mse	0.8367	0.8358	0.838	0.8444	0.844	0.8431	0.8431
attention_ce_mean.key_relation	0.8448	0.8402	0.8426	0.8439	0.843	0.8446	0.8446
attention_ce_mean.mmd	0.8455	0.8455	0.8415	0.8437	0.843	0.8468	0.8468
attention_ce_mean.pkd	0.8179	0.8426	0.8431	0.8407	0.840	0.8479	0.8479
attention_ce_mean.query_relation	0.8486	0.8409	0.8411	0.8444	0.844	0.8428	0.8428
attention_ce_mean.value_relation	0.845	0.8413	0.8418	0.8433	0.843	0.8439	0.8439
attention_mse_sum.cos	0.8298	0.8188	0.8234	0.8409	0.840	0.8439	0.8439
attention_mse_sum.gram	0.8382	0.8342	0.8356	0.8481	0.848	0.845	0.845
attention_mse_sum.hidden_mse	0.8309	0.8272	0.8281	0.8462	0.846	0.8411	0.8411
attention_mse_sum.key_relation	0.8373	0.8391	0.8349	0.8435	0.843	0.8422	0.8422
attention_mse_sum.mmd	0.8396	0.8342	0.8331	0.8435	0.843	0.8417	0.8417
attention_mse_sum.pkd	0.8226	0.8384	0.842	0.84	0.8484	0.8484	0.8484
Table 6 continued from previous page							

attention_mse_sum,query_relation	0.8417	0.8367	0.8378	0.8435	0.8424		
attention_mse_sum,value_relation	0.8393	0.8365	0.8378	0.8435	0.8424		
cos,key_relation	0.8371	0.8338	0.8384	0.8387	0.8431		
cos,query_relation	0.8367	0.832	0.8365	0.8389	0.8415		
cos,value_relation	0.8351	0.8321	0.8369	0.8387	0.8431		
gram,key_relation	0.8424	0.8411	0.8413	0.8446	0.844		
gram,query_relation	0.8435	0.8389	0.8393	0.8439	0.8422		
gram,value_relation	0.8411	0.8406	0.8422	0.8457	0.845		
hidden_mse,key_relation	0.8413	0.8353	0.8406	0.8387	0.8418		
hidden_mse,query_relation	0.8411	0.8386	0.8437	0.8391	0.8411		
hidden_mse,value_relation	0.838	0.838	0.8411	0.8387	0.8413		
mmd,key_relation	0.842	0.8	0.8439	0.8444	0.8442		
mmd,query_relation	0.8437	0.8429	0.8415	0.8437	0.8435		
mmd,value_relation	0.8422	0.8413	0.8413	0.8426	0.8437		
pkd,key_relation	0.8212	0.8415	0.8415	0.8471	0.8477		
pkd,query_relation	0.8234	0.8437	0.8428	0.8418	0.8462		
pkd,value_relation	0.8213	0.8426	0.8415	0.8429	0.847		

bert-tiny First Last Dilatation First-1 Last-1
attention_ce_mean.cos
attention_ce_mean,gram
attention_ce_mean,hidden_mse
attention_ce_mean,key_relation
attention_ce_mean,mmd
attention_ce_mean,pkd
attention_mse_sum,cos
attention_mse_sum,gram
attention_mse_sum,hidden_mse
attention_mse_sum,key_relation
attention_mse_sum,mmd
attention_mse_sum,pkd
attention_mse_sum,query_relation
attention_mse_sum,value_relation
cos,key_relation
cos,query_relation
cos,value_relation
gram,key_relation
gram,query_relation
gram,value_relation
hidden_mse,key_relation
hidden_mse,query_relation
hidden_mse,value_relation
mmd,key_relation
mmd,query_relation
mmd,value_relation
pkd,key_relation
pkd,query_relation
pkd,value_relation

bert-small First Last Dilatation First-1 Last-1
attention_ce_mean.cos
attention_ce_mean,gram
attention_ce_mean,hidden_mse
attention_ce_mean,key_relation
attention_ce_mean,mmd

rte First Last Dilatation First-1 Last-1
attention_ce_mean.cos
attention_ce_mean,gram
attention_ce_mean,hidden_mse
attention_ce_mean,key_relation
attention_ce_mean,mmd
Table 6 continued from previous page

Term	bert-mini	First	Last	Dilatation	First-1	Last-1
attention_ce_mean, cos		0.5884	0.5596	0.5704	0.6679	0.6065
attention_ce_mean, gram		0.6779	0.6534	0.6498	0.6787	0.6751
attention_ce_mean, hidden_mse		0.5993	0.556	0.5596	0.657	0.6498
attention_ce_mean, key_relation		0.6462	0.6209	0.6282	0.6787	0.639
attention_ce_mean, mmd		0.6462	0.6715	0.657	0.6751	0.6606
attention_ce_mean, pkd		0.5596	0.5884	0.6029	0.6534	0.6209
attention_ce_mean, query_relation		0.6426	0.6209	0.6354	0.6787	0.639
attention_ce_mean, value_relation		0.6426	0.6498	0.6426	0.6895	0.6606
attention_mse_sum, cos		0.5921	0.5415	0.5415	0.6426	0.6245
attention_mse_sum, gram		0.6245	0.6209	0.6245	0.6643	0.6643
attention_mse_sum, hidden_mse		0.5632	0.5451	0.5848	0.6498	0.6426
attention_mse_sum, key_relation		0.6282	0.6065	0.5812	0.6787	0.6462
attention_mse_sum, mmd		0.6462	0.6173	0.6137	0.6643	0.6534
attention_mse_sum, pkd		0.5523	0.6245	0.6137	0.6426	0.6282
attention_mse_sum, query_relation		0.6426	0.6137	0.5812	0.6751	0.6534
attention_mse_sum, value_relation		0.6318	0.6282	0.6209	0.6751	0.6534
cos, key_relation		0.5921	0.5596	0.5812	0.657	0.6173
cos, query_relation		0.5921	0.5523	0.5668	0.6498	0.6101
cos, value_relation		0.5848	0.574	0.5704	0.6462	0.6101
gram, key_relation		0.657	0.6245	0.6318	0.6787	0.639
gram, query_relation		0.6679	0.639	0.6462	0.6787	0.6209
gram, value_relation		0.6498	0.6426	0.6498	0.6787	0.6643
hidden_mse, key_relation		0.5884	0.5632	0.5776	0.6643	0.6426
hidden_mse, query_relation		0.5921	0.5596	0.5848	0.6498	0.6426
hidden_mse, value_relation		0.5884	0.5884	0.5921	0.6715	0.6462
mmd, key_relation		0.6462	0.6173	0.5812	0.6751	0.6354
mmd, query_relation		0.6426	0.6137	0.5812	0.6751	0.6354
mmd, value_relation		0.6318	0.6282	0.6209	0.6751	0.6534
pkd, key_relation		0.5921	0.5596	0.5812	0.657	0.6173
pkd, query_relation		0.5921	0.5523	0.5668	0.6498	0.6101
pkd, value_relation		0.5848	0.574	0.5704	0.6462	0.6101
bert-mini		0.5921	0.5596	0.5812	0.657	0.6173
		0.5921	0.5523	0.5668	0.6498	0.6101
		0.5848	0.574	0.5704	0.6462	0.6101
		0.657	0.6245	0.6318	0.6787	0.639
		0.6498	0.6426	0.6498	0.6787	0.6643
		0.5884	0.5632	0.5776	0.6606	0.6354
		0.5921	0.5596	0.5848	0.6498	0.6101
		0.5884	0.5884	0.5921	0.6715	0.6462
		0.6534	0.639	0.6462	0.6787	0.6318
		0.657	0.6462	0.6498	0.6715	0.6354
		0.6354	0.6534	0.657	0.6751	0.6643
		0.556	0.6029	0.639	0.6498	0.6354
		0.556	0.5993	0.6137	0.6534	0.6318
Table 6 continued from previous page

	bert-tiny	bert-small			
	First	Last	Dilatation	First-1	Last-1
pkd, value_relation	0.556	0.610	0.606	0.6534	0.6209
attention_ce_mean, cos	0.6282	0.5776	0.6173	0.6101	0.5776
attention_ce_mean, gram	0.6209	0.6137	0.6209	0.6101	0.6173
attention_ce_mean, hidden_mse	0.5921	0.5921	0.5921	0.5993	0.5921
attention_ce_mean, key_relation	0.6173	0.6173	0.6137	0.6173	0.6065
attention_ce_mean, mmd	0.6354	0.5993	0.6173	0.6282	0.6209
attention_ce_mean, pkd	0.5523	0.5921	0.5993	0.574	0.5957
attention_ce_mean, query_relation	0.6137	0.5957	0.5921	0.6173	0.5957
attention_ce_mean, value_relation	0.6209	0.6245	0.6318	0.6245	0.6245
attention_mse_sum, cos	0.5993	0.5596	0.5848	0.6209	0.5848
attention_mse_sum, gram	0.6101	0.6029	0.6245	0.6173	0.6065
attention_mse_sum, hidden_mse	0.5993	0.5884	0.5921	0.6137	0.5921
attention_mse_sum, key_relation	0.6137	0.6029	0.6101	0.6245	0.6065
attention_mse_sum, mmd	0.6354	0.6245	0.6245	0.6282	0.6065
attention_mse_sum, pkd	0.556	0.5921	0.5884	0.5812	0.5957
attention_mse_sum, query_relation	0.6173	0.6029	0.6101	0.6245	0.6029
attention_mse_sum, value_relation	0.6101	0.6029	0.6245	0.6137	0.6173
cos, key_relation	0.6173	0.5957	0.6173	0.6137	0.5812
cos, query_relation	0.6137	0.5848	0.6029	0.6173	0.5848
cos, value_relation	0.6173	0.5884	0.5884	0.6101	0.5776
gram, key_relation	0.6209	0.6245	0.6209	0.6282	0.5993
gram, query_relation	0.6029	0.6029	0.5993	0.6245	0.5957
gram, value_relation	0.6245	0.639	0.6245	0.6209	0.6245
hidden_mse, key_relation	0.5957	0.5812	0.5884	0.6137	0.5848
hidden_mse, query_relation	0.5921	0.5848	0.5921	0.6065	0.5812
hidden_mse, value_relation	0.6029	0.5993	0.5993	0.6137	0.5921
mmd, key_relation	0.6318	0.6101	0.6245	0.6318	0.6137
mmd, query_relation	0.6318	0.6065	0.6101	0.6318	0.6065
mmd, value_relation	0.6462	0.6101	0.6209	0.6354	0.6245
pkd, key_relation	0.5523	0.6029	0.6029	0.5812	0.5921
pkd, query_relation	0.5451	0.5993	0.5957	0.5848	0.5993
pkd, value_relation	0.5487	0.6065	0.5993	0.5704	0.5957

cola

	bert-small	bert-tiny			
	First	Last	Dilatation	First-1	Last-1
attention_ce_mean, cos	0.7181	0.7018	0.7133	0.7747	0.7728
attention_ce_mean, gram	0.7747	0.7804	0.7785	0.7747	0.7795
attention_ce_mean, hidden_mse	0.7565	0.72	0.7402	0.7728	0.768
attention_ce_mean, key_relation	0.7747	0.7613	0.767	0.7833	0.7728
attention_ce_mean, mmd	0.7804	0.7709	0.7689	0.7776	0.7747
attention_ce_mean, pkd	0.7143	0.7469	0.7296	0.7756	0.768
attention_ce_mean, query_relation	0.7747	0.7728	0.768	0.7747	0.7824
attention_ce_mean, value_relation	0.7785	0.7814	0.7814	0.7776	0.7756
attention_mse_sum, cos	0.7277	0.7124	0.7306	0.7766	0.7689
attention_mse_sum, gram	0.7737	0.767	0.7689	0.7766	0.7776
attention_mse_sum, hidden_mse	0.7651	0.7287	0.7392	0.7737	0.7689
attention_mse_sum, key_relation	0.7766	0.7641	0.7709	0.7747	0.7689
attention_mse_sum, mmd	0.7766	0.7718	0.7718	0.7804	0.7737
attention_mse_sum, pkd	0.7181	0.7344	0.743	0.7728	0.7709
attention_mse_sum, query_relation	0.7766	0.768	0.7737	0.7728	0.7766
attention_mse_sum, value_relation	0.7776	0.7574	0.7718	0.7766	0.7709
cos, key_relation	0.7296	0.7085	0.721	0.7737	0.7641
cos, query_relation	0.7354	0.7152	0.7191	0.7737	0.767
cos, value_relation	0.7191	0.7028	0.7162	0.7747	0.767
gram, key_relation	0.7747	0.7651	0.768	0.7756	0.7728
gram, query_relation	0.7737	0.7718	0.7661	0.7766	0.7709
Table 6 continued from previous page					

gram, value_relation	0.7728	0.7766	0.7766	0.7747	0.7795
hidden_mse, key_relation	0.7584	0.72	0.7421	0.7766	0.767
hidden_mse, query_relation	0.7661	0.7296	0.743	0.7747	0.7718
hidden_mse, value_relation	0.7536	0.7152	0.7373	0.7718	0.7709
mmd, key_relation	0.7824	0.767	0.7709	0.7804	0.7709
mmd, query_relation	0.7756	0.7709	0.7814	0.7737	0.7737
mmd, value_relation	0.7728	0.7737	0.7766	0.7756	0.7804
pkd, key_relation	0.7076	0.7277	0.7306	0.7766	0.7661
pkd, query_relation	0.7114	0.7421	0.7315	0.7766	0.7689
pkd, value_relation	0.7306	0.7411	0.7344	0.7728	0.7728

bert-mini	First	Last	Dilatation	First-1	Last-1
attention_ce_mean.cos	0.698	0.6922	0.6951	0.7536	0.7239
attention_ce_mean.gram	0.7459	0.7469	0.7488	0.7517	0.7488
attention_ce_mean.hidden_mse	0.7066	0.7037	0.7105	0.7469	0.743
attention_ce_mean.key_relation	0.7421	0.7392	0.7536	0.7402	0.7383
attention_ce_mean.mmd	0.7421	0.7335	0.7392	0.7411	0.7507
attention_ce_mean.pkd	0.6913	0.697	0.6922	0.7469	0.7373
attention_ce_mean.query_relation	0.7478	0.7478	0.7565	0.744	0.745
attention_mse_sum.cos	0.6913	0.6913	0.6932	0.7498	0.7267
attention_mse_sum.gram	0.7383	0.7028	0.697	0.7459	0.7421
attention_mse_sum.hidden_mse	0.698	0.6942	0.6922	0.7507	0.7402
attention_mse_sum.key_relation	0.7421	0.721	0.7066	0.7411	0.7402
attention_mse_sum.mmd	0.7306	0.7018	0.7085	0.745	0.745
attention_mse_sum.pkd	0.6913	0.6942	0.6922	0.7469	0.7354
attention_mse_sum.query_relation	0.7469	0.7191	0.7066	0.7421	0.7411
attention_mse_sum.value_relation	0.7459	0.7315	0.72	0.7402	0.7383
cos, key_relation	0.6932	0.6989	0.6999	0.7488	0.7172
cos, query_relation	0.6961	0.6942	0.6913	0.7584	0.7267
cos, value relation	0.6989	0.6932	0.698	0.743	0.7277
gram, key_relation	0.745	0.7392	0.7478	0.745	0.7507
gram, query_relation	0.745	0.7267	0.7383	0.745	0.7469
gram, value_relation	0.7565	0.7421	0.7469	0.7488	0.743
hidden_mse.key_relation	0.7133	0.7018	0.7037	0.7478	0.7402
hidden_mse.query_relation	0.7066	0.697	0.6989	0.7478	0.7383
hidden_mse.value_relation	0.7009	0.7037	0.7028	0.7507	0.7402
mmd.key_relation	0.7478	0.7363	0.7383	0.7421	0.7459
mmd.query_relation	0.7507	0.7143	0.7335	0.743	0.7469
mmd.value_relation	0.7507	0.7277	0.7296	0.7411	0.7402
pkd, key_relation	0.6913	0.7018	0.697	0.7488	0.7315
pkd, query_relation	0.6932	0.6999	0.697	0.7402	0.7344
pkd, value_relation	0.697	0.7009	0.7057	0.743	0.7383

bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_ce_mean.cos	0.6913	0.6913	0.6913	0.6913	0.6913
attention_ce_mean.gram	0.6932	0.6961	0.6932	0.6913	0.697
attention_ce_mean.hidden_mse	0.6913	0.6913	0.6913	0.6913	0.6913
attention_ce_mean.key_relation	0.6922	0.6913	0.6951	0.6989	0.6913
attention_ce_mean.mmd	0.697	0.6922	0.6922	0.6913	0.6942
attention_ce_mean.pkd	0.6913	0.6913	0.6913	0.6913	0.6913
attention_ce_mean.query_relation	0.6989	0.698	0.6951	0.6999	0.6942
attention_ce_mean.value_relation	0.6913	0.698	0.6942	0.697	0.6913
attention_mse_sum.cos	0.6942	0.6913	0.6913	0.6913	0.6913
attention_mse_sum.gram	0.6913	0.6913	0.6922	0.6913	0.6913
attention_mse_sum.hidden_mse	0.6913	0.6932	0.6913	0.6922	0.6913
attention_mse_sum.key_relation	0.6922	0.6913	0.6913	0.6961	0.6913
attention_mse_sum.mmd	0.6922	0.6913	0.6913	0.6913	0.6913
Table 6 continued from previous page

	bert-small	bert-mini			
	First	Last	Dilatation	First-1	Last-1
attention_ce_mean.cos	0.8722	0.8715	0.8712	0.874	0.8721
attention_ce_mean,gram	0.8732	0.8717	0.8731	0.8724	0.8745
attention_ce_mean,hidden_mse	0.8723	0.8703	0.8695	0.8736	0.872
attention_ce_mean,key_relation	0.8748	0.8724	0.8721	0.8741	0.8735
attention_ce_mean,mmd	0.8721	0.8748	0.8737	0.8726	0.8736
attention_ce_mean,pkd	0.8665	0.869	0.8694	0.8727	0.8726
attention_ce_mean,query_relation	0.8722	0.8729	0.8731	0.8738	0.8721
attention_ce_mean,value_relation	0.8735	0.872	0.8737	0.8717	0.8735
attention_mse_sum,cos	0.87	0.8686	0.8695	0.8748	0.8739
attention_mse_sum,gram	0.8719	0.8745	0.8744	0.8745	0.8749
attention_mse_sum,hidden_mse	0.8684	0.8703	0.8706	0.8724	0.8728
attention_mse_sum,key_relation	0.8734	0.8732	0.875	0.8731	0.8737
attention_mse_sum,mmd	0.874	0.8726	0.872	0.873	0.8735
attention_mse_sum,pkd	0.8666	0.8686	0.8685	0.8706	0.8738
attention_mse_sum,query_relation	0.8722	0.8724	0.8734	0.8727	0.8749
attention_mse_sum,value_relation	0.8727	0.8727	0.8748	0.8732	0.8753
cos,key_relation	0.8727	0.87	0.87	0.8729	0.8708
cos,query_relation	0.8721	0.8697	0.8698	0.873	0.8718
cos,value_relation	0.8722	0.8704	0.8685	0.8751	0.8728
gram,key_relation	0.8732	0.8722	0.8712	0.8725	0.8754
gram,query_relation	0.8728	0.8732	0.8723	0.8729	0.8724
gram,value_relation	0.8727	0.8717	0.8729	0.873	0.8721
hidden_mse,key_relation	0.8716	0.8697	0.8695	0.8736	0.8717
hidden_mse,query_relation	0.8724	0.8718	0.8712	0.8751	0.8723
hidden_mse,value_relation	0.8707	0.8711	0.8707	0.8712	0.8726
mmd,key_relation	0.8742	0.8729	0.8736	0.8753	0.8745
mmd,query_relation	0.8721	0.8717	0.8723	0.8756	0.8734
mmd,value_relation	0.8733	0.8752	0.8731	0.8731	0.8741
pkd,key_relation	0.8672	0.8693	0.8677	0.8716	0.8733
pkd,query_relation	0.8678	0.8708	0.8684	0.8719	0.8742
pkd,value_relation	0.8664	0.8694	0.8689	0.8708	0.8742

	First	Last	Dilatation	First-1	Last-1
attention_ce_mean.cos	0.8648	0.8541	0.8566	0.8661	0.8661
attention_ce_mean,gram	0.865	0.8646	0.8635	0.8624	0.8636
attention_ce_mean,hidden_mse	0.8667	0.8605	0.8625	0.8648	0.8638
attention_ce_mean,key_relation	0.8659	0.866	0.8652	0.8644	0.8643

32
Metric	bert-tiny	First	Last	Dilatation	First-1	Last-1
attention_ce_mean,cos	0.8178	0.8189	0.8154	0.8175	0.8166	
attention_ce_mean,gram	0.8165	0.814	0.816	0.8168	0.8164	
attention_ce_mean,key_relation	0.8153	0.8157	0.8157	0.8167	0.8158	
attention_ce_mean,mmd	0.817	0.8158	0.8148	0.8155	0.8156	
attention_ce_mean,pkd	0.8156	0.8155	0.8155	0.8149	0.8155	
attention_ce_mean,value_relation	0.8155	0.8153	0.8153	0.8155	0.8157	
attention_mse_sum,cos	0.8169	0.8155	0.8174	0.8171	0.8154	
attention_mse_sum,gram	0.8172	0.8146	0.8173	0.8169	0.8161	
attention_mse_sum,key_relation	0.8173	0.8147	0.8142	0.8144	0.8156	
attention_mse_sum,mmd	0.8155	0.8154	0.8155	0.8154	0.8156	
attention_mse_sum,pkd	0.8154	0.814	0.8152	0.815	0.8159	
attention_mse_sum,value_relation	0.817	0.8152	0.8151	0.817	0.8163	
cos,key_relation	0.8169	0.816	0.8167	0.8167	0.8149	
cos,query_relation	0.8174	0.8156	0.8152	0.8175	0.8169	
cos,value_relation	0.8178	0.8158	0.818	0.8173	0.8142	
gram,key_relation	0.8167	0.8171	0.8151	0.8142	0.8154	
gram,query_relation	0.8154	0.8171	0.817	0.8168	0.817	
gram,value_relation	0.8158	0.816	0.8149	0.8153	0.8156	
hidden_mse,key_relation	0.8154	0.8142	0.8164	0.8141	0.8143	
hidden_mse,query_relation	0.8173	0.8143	0.8138	0.8167	0.8144	
hidden_mse,value_relation	0.8138	0.8149	0.8148	0.8142	0.8148	
mmd,key_relation	0.8164	0.8146	0.815	0.8147	0.8156	
mmd,query_relation	0.8155	0.8145	0.8149	0.8152	0.8172	
mmd,value_relation	0.8162	0.816	0.8142	0.8152	0.8152	
pkd,key_relation	0.8129	0.8144	0.8128	0.8145	0.8164	

Table 6 continued from previous page
Metric	bert-small	bert-mini			
	First	Last	Dilatation	First-1	Last-1
pkd,query_relation	0.8163	0.8147	0.8132	0.8145	0.8169
pkd,value_relation	0.814	0.8141	0.8101	0.8144	0.8155
mnli_mismatched					
attention_ce_mean.cos	0.7888	0.8099	0.8111	0.7968	0.8063
attention_ce_mean.gram	0.801	0.8037	0.8027	0.8017	0.8012
attention_ce_mean.hidden_mse	0.79	0.8067	0.8094	0.7984	0.8018
attention_ce_mean,key_relation	0.7988	0.7952	0.8034	0.803	0.7987
attention_ce_mean.mmd	0.7981	0.7992	0.804	0.7986	0.8016
attention_ce_mean.pkd	0.7855	0.8128	0.8164	0.8009	0.8063
attention_ce_mean.query_relation	0.8001	0.7988	0.7986	0.7988	0.8004
attention_ce_mean,value_relation	0.7971	0.7977	0.8003	0.7986	0.8007
attention_mse_sum.cos	0.7884	0.8082	0.8131	0.7972	0.8066
attention_mse_sum.gram	0.7977	0.8039	0.8013	0.799	0.8013
attention_mse_sum.hidden_mse	0.7866	0.8056	0.8086	0.7981	0.8027
attention_mse_sum,key_relation	0.7986	0.7924	0.7989	0.8032	0.8002
attention_mse_sum.mmd	0.7964	0.7974	0.7986	0.8036	0.8007
attention_mse_sum.pkd	0.7874	0.8094	0.8155	0.8	0.8076
attention_mse_sum.query_relation	0.7988	0.7914	0.7962	0.8001	0.8003
attention_mse_sum,value_relation	0.7987	0.7924	0.7994	0.8005	0.8009
cos,key_relation	0.7917	0.8118	0.8123	0.7981	0.8038
cos,query_relation	0.7922	0.8111	0.8119	0.7977	0.8044
cos,value_relation	0.7892	0.8108	0.8111	0.7988	0.8059
gram,key_relation	0.8007	0.7961	0.8024	0.8019	0.8011
gram,query_relation	0.7972	0.7974	0.7995	0.8	0.7991
gram,value_relation	0.799	0.8037	0.8002	0.8017	0.7986
hidden_mse,key_relation	0.7932	0.8053	0.8056	0.7999	0.8007
hidden_mse,query_relation	0.7935	0.8095	0.8069	0.8011	0.8009
hidden_mse,value_relation	0.7909	0.8067	0.8082	0.797	0.8016
mmd,key_relation	0.7971	0.7997	0.7976	0.8022	0.7991
mmd,query_relation	0.801	0.7975	0.7987	0.8036	0.8027
mmd,value_relation	0.7978	0.7986	0.7995	0.803	0.8005
pkd,key_relation	0.7869	0.8104	0.8116	0.8	0.8037
pkd,query_relation	0.7888	0.8081	0.8115	0.8032	0.8009
pkd,value_relation	0.7847	0.8103	0.8154	0.8002	0.8046

Table 6 continued from previous page
Table 6 continued from previous page
gram,query_relation
gram,value_relation
hidden_mse,key_relation
hidden_mse,query_relation
hidden_mse,value_relation
mmd,key_relation
mmd,query_relation
mmd,value_relation
pkd,key_relation
pkd,query_relation
pkd,value_relation
bert-tiny
attention_ce_mean,cos
attention_ce_mean,gram
attention_ce_mean,hidden_mse
attention_ce_mean,key_relation
attention_ce_mean,mmd
attention_ce_mean,pkd
attention_ce_mean,query_relation
attention_ce_mean,value_relation
attention_mse_sum,cos
attention_mse_sum,gram
attention_mse_sum,hidden_mse
attention_mse_sum,key_relation
attention_mse_sum,mmd
attention_mse_sum,pkd
attention_mse_sum,query_relation
attention_mse_sum,value_relation
cos,key_relation
cos,query_relation
cos,value_relation
gram,key_relation
gram,query_relation
gram,value_relation
hidden_mse,key_relation
hidden_mse,query_relation
hidden_mse,value_relation
mmd,key_relation
mmd,query_relation
mmd,value_relation
pkd,key_relation
pkd,query_relation
pkd,value_relation
mnl_match
bert-small
attention_ce_mean,cos
attention_ce_mean,gram
attention_ce_mean,hidden_mse
attention_ce_mean,key_relation
attention_ce_mean,mmd
attention_ce_mean,pkd
attention_ce_mean,query_relation
attention_ce_mean,value_relation
attention_mse_sum,cos
attention_mse_sum,gram
attention_mse_sum,hidden_mse

35
Table 6 continued from previous page

Term	bert-mini	bert-tiny
attention_mse_sum, key_relation	0.7995	0.7223
attention_mse_sum, mmd	0.8008	0.7251
attention_mse_sum, pkd	0.7941	0.7226
attention_mse_sum, query_relation	0.8019	0.7922
attention_mse_sum, value_relation	0.7983	0.7962
cos, key_relation	0.7933	0.7375
cos, query_relation	0.794	0.7372
cos, value_relation	0.7938	0.7373
gram, key_relation	0.8037	0.7377
gram, query_relation	0.7993	0.7368
gram, value_relation	0.8033	0.7372
hidden_mse, key_relation	0.7956	0.7372
hidden_mse, query_relation	0.7969	0.7373
hidden_mse, value_relation	0.7952	0.7368
mmd, key_relation	0.7995	0.7372
mmd, query_relation	0.7979	0.7368
mmd, value_relation	0.7996	0.7372
pkd, key_relation	0.7945	0.7372
pkd, query_relation	0.7893	0.7372
pkd, value_relation	0.7912	0.7372
bert-mini First Last Dilatation First-1 Last-1		
attention_ce_mean, cos	0.7751	0.7751
attention_ce_mean, gram	0.7745	0.7745
attention_ce_mean, hidden_mse	0.7751	0.7751
attention_ce_mean, key_relation	0.7749	0.7749
attention_ce_mean, mmd	0.7771	0.7771
attention_ce_mean, pkd	0.7701	0.7701
attention_ce_mean, query_relation	0.7773	0.7773
attention_ce_mean, value_relation	0.777	0.777
attention_mse_sum, cos	0.7707	0.7707
attention_mse_sum, gram	0.7768	0.7768
attention_mse_sum, hidden_mse	0.7782	0.7782
attention_mse_sum, key_relation	0.7739	0.7739
attention_mse_sum, mmd	0.7734	0.7734
attention_mse_sum, pkd	0.765	0.765
attention_mse_sum, query_relation	0.7768	0.7768
attention_mse_sum, value_relation	0.7751	0.7751
cos, key_relation	0.7737	0.7737
cos, query_relation	0.7734	0.7734
cos, value_relation	0.7751	0.7751
gram, key_relation	0.7775	0.7775
gram, query_relation	0.7792	0.7792
gram, value_relation	0.7727	0.7727
hidden_mse, key_relation	0.7743	0.7743
hidden_mse, query_relation	0.7752	0.7752
hidden_mse, value_relation	0.7761	0.7761
mmd, key_relation	0.7787	0.7787
mmd, query_relation	0.7748	0.7748
mmd, value_relation	0.7753	0.7753
pkd, key_relation	0.7695	0.7695
pkd, query_relation	0.7722	0.7722
pkd, value_relation	0.7683	0.7683
bert-tiny First Last Dilatation First-1 Last-1		
attention_ce_mean, cos	0.7223	0.7223
attention_ce_mean, gram	0.7251	0.7251
attention_ce_mean, hidden_mse	0.7226	0.7226
Table 6 continued from previous page

Score	attention_ce_mean, key_relation	attention_ce_mean, mmd	attention_ce_mean, pkd	attention_ce_mean, query_relation	attention_ce_mean, value_relation	attention_mse_sum, cos	attention_mse_sum, gram	attention_mse_sum, hidden_mse	attention_mse_sum, key_relation	attention_mse_sum, mmd	attention_mse_sum, pkd	attention_mse_sum, query_relation	attention_mse_sum, value_relation	
	0.7241	0.725	0.7257	0.7223	0.7248	0.7246	0.7274	0.7266	0.7258	0.7242	0.7117	0.7207	0.7261	0.72

A.3.4 Best Practices Experiments

Table 7: Best Practice for BERT\textsubscript{mini}

	#para (M)	SST-2	STS-B	QQP	MRPC	RTE	MNLI	QNLI	average	
BERT\textsubscript{base}	109	0.923	0.88	0.909	0.877	0.725	0.845	0.915	0.8715	
Previous SOTA (ELECTRA-small)	14	0.912	0.875	0.89	0.88	0.667	0.813	0.884	0.8513	
Ours (BERT\textsubscript{mini})	11	0.91	0.873	0.903	0.874	0.7003	0.797	0.805	0.872	0.8554

A.3.5 Weighted Single-Match Experiments

Table 8: Weighted Single Match Experiments

MRPC	bert-small First	Last	Dilatation	First1	Last1
attention_mse_sum	0.8015	0.7868	0.8162	0.7966	0.8284
attention_ce_mean	0.799	0.799	0.8088	0.799	0.799
hidden_mse	0.75	0.7328	0.7377	0.7745	0.7892
mmd	0.7966	0.8407	0.8407	0.8113	0.8235
cos	0.7843	0.7157	0.7402	0.826	0.8186
pkd	0.7696	0.7549	0.7574	0.7941	0.7941
query_relation	0.8137	0.7745	0.7794	0.826	0.8015
	bert-mini	bert-tiny	bert-small	SST-2	
----------------	-----------	-----------	------------	-------	
key_relation	0.8431	0.8162	0.8257	0.8268	
value_relation	0.8382	0.8162	0.8257	0.8268	
bert-mini	First	Last	Dilatation	First	
attention_mse_sum	0.7892	0.723	0.7402	0.7279	
attention_ce_mean	0.8211	0.8137	0.8235	0.7279	
hidden_mse	0.723	0.7108	0.7181	0.7328	
mmd	0.7647	0.8113	0.7892	0.8186	
gram	0.6863	0.7206	0.7157	0.7181	
cos	0.7525	0.7402	0.7402	0.7451	
pkd	0.6838	0.8186	0.7745	0.7475	
query_relation	0.799	0.7794	0.777	0.7623	
key_relation	0.8162	0.7623	0.777	0.7623	
value_relation	0.8186	0.7892	0.799	0.7892	
bert-tiny	First	Last	Dilatation	First	
attention_mse_sum	0.7426	0.7157	0.7279	0.7279	
attention_ce_mean	0.7255	0.7279	0.7255	0.7279	
hidden_mse	0.723	0.723	0.7255	0.7255	
mmd	0.7353	0.723	0.7328	0.7328	
gram	0.7181	0.7059	0.7206	0.7181	
cos	0.7328	0.7255	0.7181	0.7181	
pkd	0.6838	0.7475	0.7451	0.7475	
query_relation	0.7402	0.7549	0.775	0.7549	
key_relation	0.7525	0.7623	0.7598	0.7598	
value_relation	0.7353	0.7549	0.7475	0.7549	
bert-small	First	Last	Dilatation	First	
attention_mse_sum	0.8933	0.8888	0.8922	0.8922	
attention_ce_mean	0.8899	0.8899	0.8865	0.8922	
hidden_mse	0.8761	0.8853	0.883	0.8922	
mmd	0.8899	0.8979	0.9025	0.8933	
gram	0.8807	0.8842	0.8956	0.8979	
cos	0.8807	0.8899	0.8888	0.8999	
pkd	0.8819	0.8933	0.8888	0.8865	
query_relation	0.8922	0.8945	0.8922	0.8933	
key_relation	0.8911	0.8876	0.8945	0.8933	
value_relation	0.8876	0.8842	0.8853	0.8865	
bert-mini	First	Last	Dilatation	First	
attention_mse_sum	0.8693	0.8704	0.8555	0.8704	
attention_ce_mean	0.8716	0.8681	0.8716	0.8716	
hidden_mse	0.8394	0.8509	0.8647	0.8819	
mmd	0.8658	0.8727	0.8635	0.8761	
gram	0.8601	0.8291	0.8555	0.8601	
cos	0.8647	0.8612	0.8567	0.8693	
pkd	0.8291	0.8704	0.8681	0.8635	
query_relation	0.8716	0.8589	0.8727	0.8658	
key_relation	0.8704	0.8647	0.8681	0.8681	
value_relation	0.8716	0.875	0.8727	0.8761	
bert-tiny	First	Last	Dilatation	First	
attention_mse_sum	0.8257	0.8314	0.8349	0.8291	
attention_ce_mean	0.828	0.828	0.828	0.828	
hidden_mse	0.8291	0.8268	0.8291	0.8303	
mmd	0.8257	0.8314	0.8257	0.8257	
gram	0.8268	0.8314	0.836	0.8326	
	QQP	QNLI			
-----	-----	-----			
cos	0.8257	0.8288			
pkd	0.8188	0.8291			
query relation	0.828	0.8291			
key relation	0.8326	0.8337			
value relation	0.8234	0.8257			

bert-small	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.8932	0.8899	0.8937	0.8915	0.8953
attention_ce_mean	0.8922	0.891	0.8918	0.8913	0.8929
hidden_mse	0.8887	0.899	0.8982	0.8916	0.8961
mmd	0.8925	0.8935	0.8951	0.8922	0.895
gram	0.8926	0.8972	0.8994	0.8914	0.8967
cos	0.8918	0.8963	0.8965	0.893	0.8953
pkd	0.8909	0.8971	0.8975	0.8922	0.8972
query_relation	0.8755	0.8756	0.8758	0.8774	0.8801
key_relation	0.8763	0.8811	0.8801	0.8756	0.8795
value_relation	0.881	0.8765	0.8737	0.8787	0.8775

bert-mini	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.8865	0.8768	0.882	0.8861	0.888
attention_ce_mean	0.8881	0.8883	0.8855	0.8864	0.8897
hidden_mse	0.8842	0.8893	0.8927	0.8886	0.8906
mmd	0.8897	0.8825	0.892	0.8856	0.8918
gram	0.8888	0.8829	0.8949	0.8884	0.8923
cos	0.8874	0.8921	0.8933	0.8881	0.8893
pkd	0.8863	0.8939	0.8959	0.8886	0.8936
query_relation	0.8742	0.8751	0.8749	0.8733	0.8743
key_relation	0.8754	0.878	0.8763	0.8762	0.877
value_relation	0.8775	0.8757	0.8752	0.8762	0.8743

bert-tiny	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.8688	0.8651	0.8657	0.8684	0.8689
attention_ce_mean	0.8699	0.8682	0.8687	0.8682	0.8699
hidden_mse	0.8633	0.8666	0.8624	0.8656	0.871
mmd	0.8657	0.8471	0.8633	0.8651	0.8684
gram	0.8662	0.8664	0.8712	0.8657	0.8734
cos	0.8696	0.8694	0.8686	0.8681	0.8707
pkd	0.869	0.8718	0.8698	0.8618	0.8687
query_relation	0.8644	0.8618	0.8602	0.8619	0.8633
key_relation	0.8597	0.8642	0.857	0.8612	0.8569
value_relation	0.8619	0.8564	0.8588	0.864	0.8602

bert-small	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.8592	0.8627	0.8717	0.8722	0.8742
attention_ce_mean	0.8728	0.8728	0.8704	0.8722	0.8704
hidden_mse	0.8287	0.8256	0.842	0.8508	0.8612
mmd	0.8583	0.8592	0.8634	0.8715	0.8744
gram	0.8514	0.8298	0.8426	0.8739	0.8741
cos	0.8528	0.8528	0.8572	0.8693	0.864
pkd	0.8298	0.8678	0.8605	0.8717	0.8651
query_relation	0.8726	0.8689	0.8742	0.8719	0.8715
key_relation	0.8691	0.864	0.8644	0.8686	0.8667
value_relation	0.8662	0.8667	0.864	0.8684	0.8684

bert-mini	First	Last	Dilatation	First1	Last1	
attention_mse_sum	0.8369	0.8272	0.8298	0.8455	0.8442	
	bert-tiny	First	Last	Dilatation	First1	Last1
---------------------	-----------	-------	------	------------	--------	-------
attention_ce_mean	0.8437	0.844	0.844	0.8442	0.8439	
hidden_mse	0.8045	0.7884	0.8105	0.838	0.8391	
mmd	0.8356	0.816	0.8371	0.8422	0.8457	
gram	0.831	0.6447	0.8133	0.8446	0.844	
cos	0.8334	0.827	0.8354	0.8387	0.8426	
pkd	0.8195	0.8428	0.8439	0.8418	0.8473	
query_relation	0.8473	0.8437	0.8444	0.8475	0.8477	
key_relation	0.8448	0.8424	0.8402	0.8459	0.8445	
value_relation	0.8459	0.8387	0.8386	0.8424	0.8418	

	bert-small	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.7932	0.7924	0.7877	0.7915	0.7946	
attention_ce_mean	0.7968	0.7977	0.797	0.7966	0.797	
hidden_mse	0.7728	0.7712	0.7712	0.7877	0.7825	
mmd	0.7871	0.78	0.7867	0.791	0.7917	
gram	0.7752	0.7593	0.7748	0.7922	0.7899	
cos	0.7833	0.7811	0.7816	0.7913	0.791	
pkd	0.7791	0.79	0.7899	0.7941	0.7904	
query_relation	0.8089	0.8076	0.8083	0.8089	0.8098	
key_relation	0.8062	0.7988	0.7977	0.8069	0.8018	
value_relation	0.8052	0.7985	0.801	0.804	0.8025	

	bert-mini	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.639	0.6065	0.5957	0.6751	0.6643	
attention_ce_mean	0.6787	0.6787	0.6751	0.6787	0.6823	
hidden_mse	0.5451	0.5596	0.556	0.6245	0.6354	
mmd	0.6173	0.6245	0.6245	0.6643	0.6498	
gram	0.5921	0.5596	0.574	0.6643	0.6643	
cos	0.5632	0.5668	0.556	0.6787	0.6354	
pkd	0.5776	0.6209	0.6065	0.6462	0.6426	
query_relation	0.6751	0.6462	0.6534	0.6643	0.6498	
key_relation	0.6498	0.6282	0.6137	0.6715	0.657	
value_relation	0.639	0.6823	0.6839	0.6606	0.6751	

	RTE	bert-tiny	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.6282	0.5632	0.5921	0.657	0.6534		
attention_ce_mean	0.6679	0.6679	0.6643	0.6787	0.6787		
hidden_mse	0.5776	0.5632	0.556	0.6462	0.6209		
mmd	0.6282	0.6354	0.6462	0.6498	0.6282		
gram	0.574	0.5415	0.5596	0.6895	0.6354		
cos	0.5884	0.5632	0.5668	0.6679	0.6209		
pkd	0.5632	0.5921	0.5993	0.657	0.6245		
query_relation	0.6462	0.639	0.6426	0.6679	0.6354		
key_relation	0.6534	0.6282	0.639	0.6679	0.6173		
value_relation	0.6462	0.6354	0.6282	0.6498	0.6498		

	bert-tiny	First	Last	Dilatation	First1	Last1
attention_mse_sum	0.6101	0.6137	0.6065	0.6282	0.5957	
attention_ce_mean	0.6318	0.6209	0.6137	0.6173	0.6209	
hidden_mse	0.5921	0.5812	0.5812	0.6101	0.5957	
mmd	0.6101	0.6173	0.6029	0.6173	0.639	
gram	0.5812	0.5704	0.5812	0.6137	0.5848	
cos	0.6065	0.5884	0.6065	0.6101	0.5884	
pkd	0.5451	0.5993	0.5957	0.574	0.5993	
query_relation	0.6354	0.6101	0.6029	0.6282	0.6029	
key_relation	0.6426	0.6245	0.6173	0.6209	0.6245	
	bert-small	bert-mini	bert-tiny			
---------	------------	-----------	-----------	---------		
	First	Last	Dilatation	First1	Last1	
value_relation	0.6245	0.6029	0.5921	0.6426	0.6065	
CoLA						
attention_mse_sum	0.7747	0.7574	0.7747	0.7747	0.7737	
attention_ce_mean	0.7766	0.7747	0.7776	0.7766	0.7728	
hidden_mse	0.697	0.6961	0.6961	0.7824	0.7584	
mmd	0.745	0.7459	0.767	0.7955	0.767	
gram	0.7306	0.7018	0.7114	0.7689	0.7728	
cos	0.7181	0.7114	0.7133	0.7776	0.7718	
pkd	0.7095	0.7373	0.7277	0.7709	0.768	
query_relation	0.7766	0.7699	0.7689	0.7785	0.7747	
key_relation	0.7709	0.7603	0.7709	0.7824	0.7603	
value_relation	0.7776	0.7756	0.7689	0.7814	0.7689	
STS-B						
attention_mse_sum	0.6922	0.697	0.7057	0.7469	0.7335	
attention_ce_mean	0.745	0.7421	0.7469	0.7478	0.743	
hidden_mse	0.6932	0.6961	0.6951	0.7344	0.7229	
mmd	0.6942	0.7152	0.7162	0.7517	0.7354	
gram	0.6942	0.6913	0.6913	0.745	0.7344	
cos	0.6932	0.6942	0.698	0.7478	0.7181	
pkd	0.6913	0.6999	0.6942	0.7392	0.7335	
query_relation	0.7555	0.7325	0.7488	0.7555	0.743	
key_relation	0.7507	0.7277	0.7507	0.7565	0.7421	
value_relation	0.7593	0.7411	0.7392	0.7507	0.7546	
bert-tiny	First	Last	Dilatation	First1	Last1	
attention_mse_sum	0.6942	0.6913	0.6913	0.6932	0.6913	
attention_ce_mean	0.697	0.6913	0.6951	0.6961	0.697	
hidden_mse	0.6913	0.6913	0.6922	0.6913	0.6913	
mmd	0.6922	0.6922	0.6922	0.6913	0.6913	
gram	0.6913	0.6932	0.6913	0.6913	0.6932	
cos	0.6922	0.6913	0.6922	0.6913	0.6913	
pkd	0.6913	0.6913	0.6961	0.6913	0.6913	
query_relation	0.6913	0.6922	0.6922	0.6913	0.6951	
key_relation	0.6942	0.6913	0.6913	0.6913	0.6913	
value_relation	0.6932	0.6913	0.6951	0.6961	0.6951	
STS-B						
attention_mse_sum	0.8731	0.8705	0.8727	0.8739	0.8745	
attention_ce_mean	0.8731	0.8735	0.8727	0.8732	0.8725	
hidden_mse	0.8656	0.8646	0.8642	0.8718	0.8717	
mmd	0.8727	0.8678	0.8685	0.8752	0.8748	
gram	0.8715	0.8458	0.862	0.8728	0.8723	
cos	0.8724	0.8708	0.8694	0.874	0.8733	
pkd	0.8663	0.8698	0.8693	0.8726	0.873	
query_relation	0.8773	0.8772	0.876	0.8762	0.8753	
key_relation	0.8766	0.8734	0.8748	0.8772	0.8744	
value_relation	0.8745	0.8757	0.8741	0.877	0.8752	
bert-mini	First	Last	Dilatation	First1	Last1	
attention_mse_sum	0.8674	0.8249	0.8431	0.8655	0.8638	
attention_ce_mean	0.865	0.8641	0.8629	0.8627	0.8656	
hidden_mse	0.8549	0.8455	0.8511	0.8665	0.8675	
mmd	0.8657	0.8608	0.8654	0.8678	0.866	
gram	0.8551	0.7472	0.8283	0.8677	0.8643	
	bert-tiny			bert-small		
----------------	-----------	---------------	---------------	-----------	---------------	---------------
	First	Last	Dilatation	First	Last	Dilatation
cos	0.8626	0.8552	0.8568	0.8684	0.8667	
pkd	0.8558	0.8591	0.855	0.8607	0.865	
query_relation	0.8693	0.8686	0.8679	0.8688	0.8684	
key_relation	0.869	0.8689	0.8683	0.8688	0.8697	
value_relation	0.8696	0.869	0.8693	0.8688	0.8701	
attention_mse_sum	0.8164	0.8139	0.8171	0.8163	0.8161	
attention_ce_mean	0.8168	0.8168	0.8168	0.8156	0.8168	
hidden_mse	0.8176	0.8191	0.8169	0.8192	0.8165	
mmd	0.8095	0.812	0.8123	0.8119	0.8187	
gram	0.8185	0.8046	0.8105	0.8149	0.8176	
cos	0.8181	0.8185	0.8184	0.8175	0.8163	
pkd	0.8146	0.8156	0.8145	0.8151	0.8126	
query_relation	0.8229	0.823	0.8231	0.8227	0.823	
key_relation	0.8187	0.8213	0.821	0.8194	0.822	
value_relation	0.8212	0.8167	0.8169	0.8203	0.8214	

MNLI-mm

	bert-small			bert-mini		
	First	Last	Dilatation	First	Last	Dilatation
attention_mse_sum	0.7965	0.7938	0.8004	0.8001	0.8036	
attention_ce_mean	0.7991	0.7993	0.8003	0.8008	0.8027	
hidden_mse	0.784	0.8166	0.814	0.7944	0.8087	
mmd	0.7947	0.802	0.8034	0.7975	0.8049	
gram	0.7859	0.7966	0.8043	0.8002	0.8064	
cos	0.7908	0.8086	0.8102	0.7974	0.8037	
pkd	0.7903	0.8135	0.8127	0.7992	0.8098	
query_relation	0.7973	0.7957	0.7952	0.7994	0.7984	
key_relation	0.8012	0.7912	0.7957	0.7982	0.7971	
value_relation	0.7957	0.7915	0.7931	0.7956	0.7937	

MNLI-m

	bert-tiny			bert-small		
	First	Last	Dilatation	First	Last	Dilatation
attention_mse_sum	0.7249	0.7156	0.7079	0.7236	0.7248	
attention_ce_mean	0.7272	0.724	0.7275	0.7231	0.7281	
hidden_mse	0.7189	0.7304	0.7288	0.7228	0.729	
mmd	0.7234	0.6882	0.7191	0.724	0.7269	
gram	0.7224	0.7023	0.7245	0.7253	0.7316	
cos	0.7234	0.7273	0.7297	0.7252	0.7317	
pkd	0.7148	0.7268	0.7306	0.7254	0.7321	
query_relation	0.7246	0.7266	0.7243	0.7248	0.723	
key_relation	0.7265	0.72	0.723	0.7259	0.721	
value_relation	0.7248	0.7165	0.7145	0.727	0.7215	

	bert-small				
	First	Last	Dilatation		
attention_mse_sum	0.7942	0.7923	0.8001	0.8015	0.8043
	First	Last	Dilatation	First1	Last1
---------------------	-----------	-----------	------------	-----------	-----------
attention_ce_mean	0.7978	0.8003	0.8006	0.801	0.8021
hidden_mse	0.7912	0.8057	0.8093	0.7955	0.8017
mmd	0.7963	0.8016	0.8056	0.8012	0.802
gram	0.7977	0.8025	0.8098	0.7996	0.8059
cos	0.796	0.8016	0.8052	0.7981	0.8021
pkd	0.7902	0.8095	0.8084	0.7961	0.807
query_relation	0.7911	0.7874	0.7905	0.791	0.7954
key_relation	0.7909	0.7927	0.7934	0.7894	0.7943
value_relation	0.7878	0.7925	0.7907	0.79	0.7927
bert-mini					
attention_mse_sum	0.767	0.7513	0.7617	0.775	0.7801
attention_ce_mean	0.7779	0.7776	0.7748	0.7749	0.7789
hidden_mse	0.7723	0.7869	0.7851	0.7785	0.7819
mmd	0.775	0.7787	0.7836	0.7805	0.7779
gram	0.7754	0.7763	0.7882	0.7764	0.7823
cos	0.7752	0.7815	0.7826	0.7764	0.7794
pkd	0.7715	0.7858	0.7863	0.7769	0.7828
query_relation	0.7682	0.7705	0.7721	0.7679	0.7705
key_relation	0.7693	0.7725	0.7686	0.7689	0.7721
value_relation	0.7697	0.7658	0.7686	0.771	0.771
bert-tiny					
attention_mse_sum	0.7224	0.7166	0.7174	0.7226	0.7218
attention_ce_mean	0.7252	0.7244	0.7253	0.725	0.7238
hidden_mse	0.7187	0.7215	0.7194	0.7188	0.7243
mmd	0.7178	0.7047	0.7222	0.7208	0.7203
gram	0.7202	0.7208	0.7231	0.7245	0.7253
cos	0.7211	0.7259	0.7227	0.7228	0.7246
pkd	0.7112	0.7227	0.7241	0.7205	0.7256
query_relation	0.7261	0.7242	0.7231	0.7261	0.7223
key_relation	0.7246	0.7271	0.7264	0.7251	0.7283
value_relation	0.7285	0.7148	0.7244	0.7279	0.7261