Sleeping Hours and Academic Achievements: A Study among Biomedical Science Students

Nihayah, M.*, Ismarulyusda I., Syarif, H.L., Nur Zakiah, M.S., Baharudin, O., Fadzil, M.H.

Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

Abstract

This study was carried out to determine the sleeping hours and their effect on the academic achievements among year 2 and year 3 Biomedical Science students of Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia for the session 2009/2010. A total of 104 subjects were involved in the study in which close-ended questionnaires were used. The result showed that there was no association (p>0.05) between sleeping hours and academic achievement (CGPA). There was also no association between stress level and CGPA (p > 0.05) and between study skill and CGPA (p>0.05). Using the Mann-Whitney test, there was no significant median difference seen in CGPA according to year of study (p>0.05). However, there was a significant (p<0.05) median difference in CGPA according to gender. The male CGPA was found to be higher than females. In conclusion, this report showed that sleeping hours did not affect students’ academic achievements CGPA. However, CGPA differs among gender with male of 3.52 and female of 3.27.

© 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Kongres Pengajaran & Pembelajaran UKM, 2010

Keywords: sleeping hours; academic achievements; stress level; study skill; CGPA;

1. Introduction

Sleep is one of our basic needs. It is important for our physical, intellectual and emotional health (Neinstein et al. 2008). According to Curcio et al. (2006), sleep is an active, repetitive and reversible behaviour serving several different functions, such as repair and growth, learning or memory consolidation, and restorative processes. All these occur throughout the brain and the body. Therefore, sleep deprivation would result in impairment of words, psychological and neurocognitive (Curcio et al. 2006). The integrity of learning and memory processes are

* Corresponding author. Tel.: +603-9289-7628; fax: +603-2692-9032
E-mail address: nini@fskb.ukm.my
fundamental in school achievement and academic performance, particularly in individuals like children and adolescents who are in a particular developmental phase. There are several parameters to be used as a measurement for school achievement, such as grade point average (GPA), self-reported average grades, teacher comments or behaviour ratings, parent reports, and school behavior.

Previous study by Trocker et al. (2000) to evaluate health related variables on academic performance found that sleep had the largest effect on semester GPA compared to the other health related variables such as exercise, nutrition intake, mental health, stress and time management. There was a significant relationship ($p<0.001$) between sleep habits and higher GPA. Long sleepers (sleep 9 or more hours a day) were found to achieve higher GPA’s than short sleepers (sleep 6 or fewer hours a day) (Kelly et al. 2001). The lower GPA’s of the short sleepers may have been the result of a decreased ability to focus on education-related activities. There may be other psychological variables that might help explain the results.

This study was carried out to determine the correlation between sleeping hours and the students’ academic achievements, and to establish a standard or ideal sleeping time among the students to help improve their studies. The parameters involved in the study include measuring of the sleeping hours, stress level, study skills and cumulative grade point average (CGPA) among the second and third year Biomedical Science students of the Faculty of Allied Health Sciences (FSKB) session 2009/2010; comparing the CGPA between gender and year of study; and the association of sleeping hours, stress level and study skills with CGPA of the subject.

2. Methodology

The survey was conducted at the Kuala Lumpur Campus of Universiti Kebangsaan Malaysia (UKM). There were a total of 177 students of second and third year Biomedical Science students of FSKB, UKM 2009/2010 session. The inclusion criteria included students who were in between 19-24 years old, with comfortable sleeping environment and leading a healthy lifestyle. The exclusion criteria were Year 1 and Year 4 Biomedical Science students, students with sleeping disorders such as insomnia, on medication or those who had taken beverage containing caffeine at night. Year I was excluded because they were in the process of adapting themselves with the university’s environment whereas Year 4 were involved with the final year thesis. A screening test was carried out to eliminate those with exclusion criteria from the study. The sample size comprised 104 students from Year 2 and Year 3 of Biomedical Science session 2009/2010 in UKM. Stratified random sampling was carried out. Two strata were formed (i.e. second year and third year students) and in each stratum, 52 samples were drawn randomly.

Close-ended questionnaire was used as an instrument for this study. The questionnaire consisted of three parts, i.e. general, stress scale and study skill. Close-ended question was designed for the general part, while Likert scale that was designed by the University of Minesota Morris (2007) was used in the assessment of stress level and study skill. In the general part, the data on student’s sleeping hours and academic achievements were collected. Students’ academic performance refers to the Cumulative Grade Point Average (CGPA). The sleeping hours included (1) short sleepers, individuals who sleep 6 or fewer hours, (2) average sleepers, individuals who sleep 7 to 8 hours, and (3) long sleepers, individuals who sleep 9 or more hours out of every 24 (Webb & Agnew 1970; Webb 1982).

The results were analysed by using SPSS version 16.0. Descriptive Statistic was used to measure the sleeping hours, stress level, study skills and CGPA among subjects. Mann-Whitney test was used to compare the CGPA with gender and year of study, whereas test of independence was used to find out the association of independent variables with CGPA.

3. Results

3.1. Descriptive Analysis on Sleeping Hours, Stress Level and Study Skill

Among the subjects, 22.1 % ($n=23$) were male and the rest of 77.9 % ($n=81$) were female. The results showed that 35.6 % ($n=37$) were short sleepers (sleep 6 hours or less), 62.5 % ($n=65$) were average sleepers (sleep 7 – 8 hours) and 1.9 % ($n=2$) were long sleepers (sleep 9 hours or more) among the subjects. The percentage of stress level among the subjects showed that 19.2 % ($n=20$) of them were not stressful, 75 % ($n=78$) of subjects’ had a good balance in the ability to handle and control stress, 5.8 % ($n=6$) of subjects’ stress level were at the borderline and none of the subjects were extremely or seriously stress. As for the assessment of the study skills, 96.2 % ($n=100$) of
the subjects exhibited poor study skills and the remaining 3.8% (n=4) had an average study skill and none of them seemed to have good study skills. Table 1 showed the descriptive analysis on sleeping hours, stress level and study skills and the CGPA among the variables.

Table 1. Descriptive Analysis on Sleeping Hours, Stress Level and Study Skill

Demographic Factors	Frequency (n)	Percentage (%)	CGPA (Mean ± Standard Deviation)
Gender Male	23	22.1	3.46 ± 0.31
Female	81	77.9	3.29 ± 0.32
Years of Study Year 2	52	50.0	3.28 ± 0.31
Year 3	52	50.0	3.36 ± 0.34
Independent Variables			
Sleeping Hours			
Short Sleepers	37	35.6	3.22 ± 0.37
Moderate Sleepers	65	62.5	3.39 ± 0.29
Long Sleepers	2	1.9	2.90 ± 0.14
Not Stressful	20	19.2	3.44 ± 0.24
Balance	78	75.0	3.30 ± 0.11
Stress Levelsa			
Not Stressful	20	19.2	3.44 ± 0.24
Balance	78	75.0	3.30 ± 0.11
Seriously Stress	0	0	-
Poor	100	96.2	3.32 ± 0.33
Study Skillsb			
Average	4	3.8	3.49 ± 0.16
Good	0	0	-

a. Stress Levels Score

Score of 45 or higher : Seriously stress
Score 39 – 45 : Moderate stress level
Score 24 – 38 : Balance stress level
Score 15 – 23 : Not stressful

b. Study skill test Score

Score 94 – 105 : Good study skills
Score 84 – 93 : Average study skills
Score less than 83 : Poor study skills

3.2. Overall Cumulative Grade Point Average (CGPA)

The mean and standard deviation for the overall CGPA was 3.32 ± 0.33. The 95% of Confidence Interval was between 3.26 to 3.39. The median of CGPA was 3.30. According to the Kolmogorov-Smirnov Test of Normality, the data is not normally distributed (p<0.05).

3.3. CGPA among Demographic Factors

There was a significant (p < 0.05) median difference in CGPA between male (3.52) and female (3.27). On the other hand, there was no significant (p > 0.05) median difference in CGPA between year 2 and year 3 biomedical science students.
3.4. Independent Variables and CGPA

The test of independence showed that there was no association in between sleeping hours and CGPA ($\chi^2 = 0.34, p>0.05$), stress level and CGPA ($p>0.05$) and in between study skills and CGPA ($p>0.05$) (Table 2).

Table 2. The association between CGPA and sleeping hours stress level study skills
CGPA

Sleeping Hours
≤ 6 hours
>6 hours
Stress Level
15 – 23
> 23
Study Skills
Poor
Average

4. Discussion

In this study, significant median differences in CGPA between male and female students were obtained. Male students had higher median of CGPA (3.52) than female students (3.27). Adolescents with depression were vulnerable to educational under achievement (Chen & Li 2000). Depression impairs cognitive function and blocks cognitive sources and many of the academic performance and also homework depend on the ability to sustain attention and concentration. Thus, depression which is known to disrupt concentration and attention in school is likely to undermine academic performance (Frojd et al. 2008). Girls were found to have slightly higher grades of depression than boys in a study with 1821 respondents among adolescents from USA (Linver et al. 2002). Therefore, depressed mood was related to academic achievement (Chen & Li 2000). This indicates gender impact on academic achievement among respondents. A biological study asserts that males had larger average brain sizes than females and therefore, would have higher average IQ (Lynn & Paul 2004; Lynn et al. 2004). Thus, this may also account for better academic achievement in male students.

There was no significant median difference in CGPA pertaining to years of study ($p>0.05$). This indicates that academic achievement may be due to some other factors such as their personalities, time and planning management, concentration and attendance (Nouhi et al. 2008). It is reported that self-regulated students report systematically check over their work before handing it to their teachers (Zimmerman et al. 1998). Academically successful students report scheduling regular daily time slots to compare their homework and studying. Disciplined students are keen to achieve higher grades in their academic performances (Kovach 1997). According to Zimmerman et al. (1998), self-regulated students often motivated themselves by imagining the consequences of failing to study, such as the reactions of friends, classmates, and family members. Consequently, they have achieved better academic achievements.

There was no association between students’ sleeping hours, stress level and study skills with their CGPA. The research conducted by Eliasson et al. (2002) was also unable to show a significant association between sleeping hours and CGPA. This may be due to the student’s mood, sleepiness and stress level while answering the questionnaires. The students may have higher level of stress or sleepiness on certain time of the day and this may affect their consistency in answering the questionnaire. Furthermore, this study was conducted in a short term scale, which is within a few weeks. Previous study showed that students’ sleeping hours and stress level may vary significantly throughout the year (Flood et al. 2008). However, this study was conducted in a short term scale, which
is within a few weeks. Other multi-centered studies using larger samples could help in generalizing the results of our work.

5. Conclusion

Sleeping hours do not significantly affect students’ CGPA, but the CGPA differ significantly among gender.

Acknowledgement

The authors would like to show their gratitude to Jing Jye, Ruahida, Nadia, Yap Hoon, Huan Ching, Pek Lian, Faizal, Khadijah, Halimatun, Zalikha, Hafiz, Bara, Sobreere and Azam for their help in conducting the survey. The authors would also wish to thank all the subjects who have kindly taken part in the study that has made the study possible.

References

Chen, X.Y. & Li, B.S. 2000. Depression Mood in Chinese Children: Development Significance for Social and School Adjustment. *International Journal of Behavioral Development.* 24 : 472-479.
Curcio, G., Ferrara, M. & Luigi De Gennaroa. 2006. Sleep Loss, Learning Capacity and Academic Performance. *Sleep Medicine Reviews.* 10: 323–337.
Eliasson, A., Eliasson, A., King, J., Gould, B. & Eliasson, A. 2002. Association of Sleep and Academic Performance. *Sleep Breath.* 6 (1) :45-48.
Flood, J., Brensinger, B. & Cheek, S. 2008. The Impact of Sleepiness Levels on Academic Achievement for College Students. *Undergraduate Research Journal for the Human Sciences.* 7: 338 – 349.
Frojd, S.A., Nissinen, E.S., Pelknen, M.U.I., Marttunen, M.J., Koivisto, A.M. & Kaltiala Heinom R. 2008. Depression and School Performance in Middle Adolescent Boys and Girls. *Journal of Adolescence.* 31 (4) : 485-498.
Kelly, W.E., Kelly, K.E. & Clanton, R.C. 2001. The Relationship between Sleep Length and Grade-Point Average Among College. *College Student Journal.* 35: 84 -87.
Kovach, R. 1997. Academic Achievement and the Self-regulation of Study Time : Quantitative and Qualitative Dimensions. Unpublished doctoral dissertation. City University of New York.
Linver, M.R., Davis-Kean, P.E. & Eccles, G.S. 2002. Influences of Gender on Academic Achievement. Presented at the Biennial Meetings of the Society for Research on Adolescence. Held by Society of Research on Adolescence, New Orleans, LA, April.
Lynn, R. & Paul, I. 2004. Sex Differences on the Progressive Matrices: A Meta-Analysis. *Intelligence.* 32 (5) : 481–498.
Lynn, R., Juri Allik, Helle Pullmann & Kia Lairda. 2004. Sex Differences on the Progressive Matrices among Adolescents: Some Data from Estonia. *Personality and Individual Differences.* 36 (6) : 1249–1255.
Neinstein, L.S, Gordon, C.M., Katzaman, D.K., Rosen, D.S. & Woods, E.R. 2008. *Adolescent Health Care: A Practical Guide.* Fifth Edition. USA : Lippincott Williams & Wilkins.
Nouhi, E., Shakoori, A. & Nakhei, N. 2008. Study Habits and Skills, and Academic Achievement of Students in Kerman University ofMedical Sciences. *Journal of Medicine Education* 12 (3,4) : 77-80.
Trockel, M. T.; Barnes, M. D.; Egget, D. L. 2000. Health-Related Variables and Academic Performance among First-Year College Students : Implications for Sleep and Other Behaviors. *Journal of American College Health.* 49 (3) : 125-131.
Webb, W.B. & Agnew Jr., H.W. 1970. Sleep Stage Characteristic of Long and Short Sleepers. *Science.* 168 (3927) : 146 – 147.
University of Minesota Morris. 2007. Study Skill Quiz.
http://www.morris.umn.edu/services/dsoaac/aac/StudySkills.html [15th January 2010].
Zimmerman, B.J. 1998. Academic Studying and the Development of Personal Skill: A Self-Regulatory Perspective. *Educational Psychologist.* 33 (2/3) : 73-86.