Expression, purification and immuno-characteristics of recombination UreB protein of *H. pylori*

Chao Wu¹, Quan Ming Zou¹, Hong Guo², Xiao Peng Yuan¹, Wei Jun Zhang¹, Dong Shui Lu¹ and Xu Hu Mao¹

Subject headings *Helicobacter pylori*; urease; immunology; isolation; recombinant protein; purification

Wu C, Zou QM, Guo H, Yuan XP, Zhang WJ, Lu DS, Mao XH. Expression, purification and immuno-characteristics of recombination UreB protein of *H. pylori*. *World J Gastroenterol*. 2001;7(3):389-393

INTRODUCTION

Helicobacter pylori (*H. pylori*) is associated with the development of chronic gastritis, peptic ulcer and gastric cancer and gastric MALT lymphoma[1-9]. *H. pylori* has many antigens, including urease, heat shock protein and vacuolating cytotoxin and so on, and urease is an important factor in the colonization of the gastric mucosa and suspected to cause damage to the gastric mucosa[10-14]. At the same time, urease is also one of the important protective antigens. It consists of two distinct subunits with apparent molecular mass of 29.5 ku (UreA) and 66 ku (UreB), and urease B subunit is nontoxic, highly immunogenic, and an effective component of protective antigens[15-18]. In our study, Hp ureB gene was cloned in the fusion expression vector and expressed in *Escherichia coli*. We described the immunological characteristics of purified recombination UreB protein.

MATERIALS AND METHODS

Materials

pHp-UreB, plasmid that contains *H. pylori* urease B gene was constructed by Wu¹(Third Military Medical University, Chongqing); plasmid PinPointᵀᴹ Xa-3 (Promega, USA); *E. coli* JM109 (SupE44 endA1 hsdR17 gyrA96 relA1 thi-1 recA1 lac-proAB)Fᵀ[traD36 proAB lacIg lacZ Δ (M15)] was used as a host for analysis of urease B subunit expression; DNA Purification Kits (Sangon, Shanghai); a polyclonal antibody of rabbit directed against *H. pylori* was prepared by ourselves. Sera from *H. pylori* infected patients and sera from healthy people (Southwest Hospital, Chongqing); six-week-old female Balb/C mice were obtained from Laboratory Animal Centre, Third Military Medical University, Chongqing; mini-cycleᵀᴹ. PCR amplicon (PE Company, USA); UVP nucleic acid and protein analyser (UVP Company, USA); Bio-Rad mini-protein electrophoresis (Bio-Rad Company).

Construction of the expression vector

A 5' primer (CGTCAAGCTTATGAAA-AAGATTACGAC) and a 3' primer (CGTCGATACATCTTAAATGCTTAA) were used in a PCR with *Taq* polymerase to amplify the 1.7-kb fragment containing the sequences of ureB flanked by *Hind* III and *EcoR* V restriction enzyme digestion sites. The amplification cycles were an initial denaturation step of 94°C for 5 min, followed by 35 cycles of annealing at 55°C for 2 min, extension at 72°C for 2 min, and denaturation at 94°C for 1 min, then extension at 72°C for 2 min. PCR products were run on 10 g·L⁻¹ agarose gels (containing 0.5 mg·L⁻¹ ethidium bromide). The amplified product purified with DNA purification kits was digested with *Hind* III and *EcoR* V, and ligated into the corresponding sites of PinPointᵀᴹ Xa-3. The recombinant plasmid named pPin-UreB was introduced into *E. coli* JM109 by CaCl₂ perforation.

Expression of the ureB gene

E. coli JM109 containing the expression plasmid pPin-UreB was grown in Luria-Bertani broth containing ampicillin(100 mg·L⁻¹) and biotin (2 µmol·L⁻¹ final concentration). The culture was incubated at 37°C and shaken at 200 r·min⁻¹, until the A600 was 0.8. Prior to adding 1 mmol·L⁻¹ IPTG to cultures, a 1 mL sample was taken (noninduced cell). Cultures were incubated for a further 5 h, at which time another 1 mL sample (induced cell) was taken. The noninduced and induced cell samples were later analyzed by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Following electrophoresis, the proteins were transferred onto a nitrocellulose membrane by electroblotting. The membrane was incubated in TBST buffer for 60 min firstly, then in 15 mL TBST buffer containing 3 µL streptavidin-alkaline phosphatase for 30 min at room temperature with gentle agitation. After washed with TBST for 5 min, the membrane was incubated with Promega’s Western Blue R stabilized substrate for alkaline phosphatase at room temperature until the bands appear. Dark purple bands will indicate the location of the biotinylated protein species in the lanes containing cellular extracts.

Purification of the recombinant fusion protein
IPTG-induced cultures were spun at 8000 r·min⁻¹ for 10 min at 4°C. Pellets were resuspended in cell lysis buffer (50 mmol·L⁻¹ Tris·HCl pH 7.5, 50 mmol·L⁻¹NaCl,50 g·L⁻¹ glycerol) and sonicated on ice. Cellular debris were removed by centrifugation (10 000 r·min⁻¹, 4°C, 15 min). The supernatant was added into the column containing SoftLink™-Resin, and the cell extract was captured efficiently. To elute the protein, adding a stabilizing buffer containing 50 mmol·L⁻¹ biotin, when a volume of elution buffer equal to one-half the volume of resin in the column had been applied, stop the flow from the column. Wait 15min to allow for release of the fusion protein. The fractions containing higher concentration fusion protein were collected in the eluate. The purified fusion protein was cleaved by factor Xa protease at 37°C. The reaction products were added into SoftLink™-Resin Column again. In the process of elution, the purified UreB protein was collected.

Immunogenicity of recombinant UreB
Two groups of 10 Balb/C female mice (six week old) including controls were used as follows: (1) NS control group was non-immunized mice that received NS; (2) UreB group was the mice immunized with 200 µL NS containing purification rUreB protein (50 g·L⁻¹) each time and once a week for 4 weeks under the skin of the back, and added in Freund's incomplete adjuvant for the first time. Thirty-five days after the immunization, blood was collected from the retro-orbital sinus and the antibody titer was measured with enzyme-linked immunosorbent assay (ELISA). The purified recombination UreB protein was used to coat 96-well microtiter plates (Corning-Coster Company, USA) and sheep anti-mouse IgG antibody conjugated with horseradish peroxidase (HRP) was used in the assay.

Immunoreactivity of recombinant UreB
Microtiter ELISA plates were coated by incubating the plates with 5 mg·L⁻¹ recombinant UreB 0.1 mL diluted in phosphate-buffered saline (PBS) at 37°C for 4 h. After washing plates twice with PBS, the remaining binding sites were blocked by incubating the plates with 10 g·L⁻¹ bovine serum albumin (BSA) at 37°C for 30 min (200 mL·well⁻¹). The human antisera against Hp and control sera from healthy people were added to the coated well and incubated for 2 h at 37°C. After another washing procedure, HRP-conjugated sheep anti-human IgG antibody 100 µL diluted in PBS (working dilution, 1:5000) was added to each well and incubated for 1h at 37°C and σ-phenylenediamine in PBS was used as the substrate. The enzyme substrate reaction was read with Spectra Classic spectrophotometer (Tecan, Austria) at 492 nm.

RESULTS

Construction of the expression vector
The PCR product amplified from plasmid pHp-UreB was analyzed under ultraviolet light after 10 g·L⁻¹ agarose gel electrophoresis (Figure 1). The 1.7kbPCR product was digested with Hind III and EcoRV restriction enzyme and ligated into the corresponding sites of PinPoint™ Xa-3. The recombinant expression plasmid was named pPin-UreB. pPin-UreB was identified by digesting with Hind III and EcoRV, and the 1.7kb ureB fragment was separated by electrophoresis in 10 g·L⁻¹ agarose gel (Figure 2). Analysis of DNA sequencing, showed that the nucleotide sequence of ureB gene in plasmid pPin-UreB was the same as reported in the reference[19].

Expression of UreB gene and detection of the fusion protein
The plasmid pPin-UreB was induced to express H. pylori UreB protein by IPTG in E.coli JM109, and produced the fusion protein with predicted molecular masses of 79ku (Figure 3). The fusion protein on 100 g·L⁻¹ polyacrylamide gel was transferred by electroblotting onto an NC membrane and was detected with Streeptavidin-Alkaline Phosphatase Detection System. The result showed that there was a positive band on the site of the fusion protein in pPin-UreB strain but not in control strains (Figure 4). Measured by UVP Protein Analyser, the biotinylated fusion protein was 150 g·kg⁻¹ in the total bacterium protein.

Purification of recombinant UreB protein
The recombinant fusion protein expressed in E. coli was separated and purified by affinity chromatography with the SoftLink™ Soft Release Avidin Resin. The biotinylated fusion protein was cleaved into two parts with Factor Xa proteinase: UreB protein (66ku) and biotin tag protein (13ku).
With purification of column chromatography, the recombinant UreB protein was obtained and analyzed by SDS-PAGE and Western blotting. The purified UreB protein had predicted molecular masses of approximately 66ku and its purity was more than 95% (Figure 5).

Figure 1 Analysis of the PCR product of *H. pylori* ureB gene by 1.0% agarose gel electrophoresis. 1: 200 bp DNA ladder marker; 2: PCR product of ureB gene.

Figure 2 Identification of recombinant plasmids pPin-UreB digested with *Hind* III and *Eco* RV. 1: PCR product of ureB gene; 2: pPin-UreB plasmid digested by *Hind* III and *Eco* RV; 3: PinPoint™Xa-3 plasmid digested with *Hind* III and *Eco* RV; 4: λDNA/*Hind* III marker.

Figure 3 Analysis of expression product of recombinant plasmid pPin-UreB in *E.coli* JM109 by 10% SDS-PAGE. 1,2,3: *E.coli* JM109; 4: *E.coli* JM109/PinPoint™ Xa-3 before induction; 5: *E.coli* JM109/PinPoint™Xa-3 after induction with IPTG; 6,7: *E.coli* JM109/pPin-UreB before induction; 8,9: *E.coli* JM109/pPin-UreB after induction with IPTG; M: Molecular weight marker (212, 116, 97, 66.2, 57.5, 40)x10^3.

Figure 4 Analysis of recombinant fusion protein by Western blotting. 1,2,3: *E.coli* JM109; 4: *E.coli* JM109/PinPoint™ Xa-3 before induction; 5: *E.coli* JM109/PinPoint™Xa-3 after induction with IPTG; 6,7: *E.coli* JM109/pPin-UreB before induction; 8,9: *E.coli* JM109/pPin-UreB after induction with IPTG; M: Protein molecular weight marker (212, 116, 97, 66.2, 57.5, 40)x10^3.

Figure 5 Determination of the purified rUreB by 10% SDS-PAGE. 1: Protein molecular weight marker; 2: The purified rUreB.

Immunology character of recombinant UreB protein

Balb/C mice, immunized with recombinant UreB, generated anti-UreB antibody and the titer was detected to be 1:3000 with ELISA. However, in the mice of the control group no antibody was found. Forty antisera against *H. pylori* and 20 control sera from healthy people were detected by ELISA with recombinant UreB protein, the coincidence ratio being 100%.

DISCUSSION

H. pylori urease is a nickel metalloenzyme, which hydrolyzes urea and is 50-100 g·kg⁻¹ in total protein of the cell. *H. pylori* urease is a 550ku enzyme, consisting of two distinct subunits: UreA (29.5ku) and UreB (66ku). The ratio of subunits is approximately 1:1, suggesting a stoichiometry of...
(29.5ku-66ku)6 for the native enzyme. The research of
H. pylori urease genes suggest that ureA and
ureB are structural genes, which are required for
the synthesis and assembly of the 550ku apoenzyme
[13], and these additional genes (ureC, ureD, ureE,
ureF, ureG and ureH) are required for the expression
of urease activity[13,20,21]. To express recombinant
UreB protein (rUreB), we cloned H. pylori ureB
gene by PCR and constructed the expression
plasmid pPin-UreB containing H. pylori ureB gene.
The purified rUreB was absent of urease activity
in our study, which is different from what
Li et al[22] reported. At the same time, the cloned
ureB gene was sequenced and the sequence
homology of nucleotide and predicted amino acid
were 96.44% and 99.65% with those reported by
Labigne et al[23]. The difference of nucleotide was
due to the difference strains and gene diversity,
but the obvious DNA homology suggested that the
main antigenic determinants which encode H. pylori
UreB protein were similar in difference strains[13,24,25].

Urease is the important antigen of H. pylori, which
can stimulate significant immune response. These
results suggested that the significant
immunoprotection against H. pylori infection was
induced after the purified native urease from H. pylori
and recombinant urease were used to immune mice, and that the recombinant UreB but
not rUreA protein produced immunoprotective
response against H. pylori infection in mice after
immunization separately[26-30]. In our study, the
purified rUreB protein was used to immune Balb/C
mice under the skin, and the antibody against
rUreB was produced successfully. These
demonstrated that the rUreB protein had obvious
immunogenicity, and could be used in H. pylori
vaccine research[31-33].

Individuals infected with H. pylori produce vast
quantities of specific immunoglobulin G (IgG)
antibodies in the serum[34,36]. Serum antibodies
against H. pylori can be detected by a variety of
methods including complement fixation, bacterial
agglutination and immunofluorescence but enzyme-
linked immunosorbent assay (ELISA) is usually
used due to speed, simplicity and reproducibility
[37-41]. H. pylori urease is a key protein used for
detection of the organism by measuring serum antibody against the protein[43]. We discovered that
the purified rUreB protein had a positive reaction with specific antibodies against H. pylori in sera
of patients and negative reaction with the control
sera from healthy people. The specificity and
sensitivity of rUreB to H. pylori antisera of patients will
be used in the diagnosis, assessment of curative effect
and epidemiological investigation of H. pylori.

REFERENCES
1 Raderer M, Pfeiff F, Pohl G, Mannhalter C, Valencak J, Chott A.
Regression of colonic low grade B cell lymphoma of the mucosa
associated lymphoid tissue type after eradication of Helicobacter pylori.
Gut, 2000;46:133-135
2 Gao LL, Liang ZC, Liu MC, Ouyang NT. Studies on gastric epi-
stomach cancer. Shijie Huaren Xiaohua Zazhi, 1999;7:789-790
3 Peng ZS, Liang ZC, Liu MC, Ouyang NT. Studies on gastric epi-
thelial cell proliferation and apoptosis in Hp associated gastric
ulcer. Shijie Huaren Xiaohua Zazhi, 1999;7:218-219
4 Quan J, Fan XG. Progress in experimental research of Helicobacter pylori
infection and gastric carcinoma. Shijie Huaren Xiaohua Zazhi, 1999;7:1068-1069
5 Stolte M, Meining A. Helicobacter pylori gastritis of the gastric
protective hormones: a review. World J Gastroenterol, 2000;6:20-31
6 Zhuang QX, Lin SR. Progress in research on the relation
ship between H pylori infection and gastric carcinomas. World J Gastroenterol, 2000;6:428-429
7 Vandenplas Y. Helicobacter pylori infection. World J Gastroenterol, 2000;6:20-31
8 Huang QX. Helicobacter pylori infection and gastrointestinal
hormones: a review. World J Gastroenterol, 2000;6:783-788
9 Wu P, Tu ZX, Xu GM, Gong YF, Ji LH, Li ZS. Helicobacter pylori vacA
genotypes and cagA status and their relationship to associated diseases. World J Gastroenterol, 2000;6:605-607
10 Hou P, Tu ZX, Xu GM, Gong YF, Ji LH, Li ZS. Helicobacter pylori vacA
genotypes and cagA status and their relationship to associated diseases. World J Gastroenterol, 2000;6:605-607
11 Sheng T, Zhang IZ. Current situation on studies of Hp urease.
Shijie Huaren Xiaohua Zazhi, 1999;7:1-2
12 Hou P, Tu ZX, Xu GM, Gong YF, Ji LH, Li ZS. Helicobacter pylori vacA
genotypes and cagA status and their relationship to associated diseases. World J Gastroenterol, 2000;6:605-607
13 Sheng T, Zhang IZ. Current situation on studies of Hp urease.
Shijie Huaren Xiaohua Zazhi, 1999;7:1-2
14 Hocking D, Webb E, Radcliff F, Rothel L, Taylor S, Pinczewer G,
Kapoules C, Braley H, Lee A, Doidge C. Isolation of recombinant
protective Helicobacter pylori antigens. Infect Immun, 1999;67:
4713-4719
15 Novak MJ, Smythies LE, McPherson SD, Smith PD. Low grade B cell
lymphoma of the gastric epithelial type after eradication of
Helicobacter pylori infection in mice. Infect Immun, 1999;67:
4713-4719
16 Myers GA, Ernak TH, Georgakopoulos K, Tiritas T, Ingrais J,
Gray H, Kleanthous H, Lee CK, Monath TP. Oral immunization
with recombinant Helicobacter pylori urease confers long-lasting
immunity against Helicobacter felis infection. Vaccine, 1999;17:
1394-1403
17 Solnick JV, Canfield DR, Hansen LM, Torabian SZ. Immunization
with recombinant Helicobacter pylori in specific-patho-
genic-free rhesus monkeys (Macaca Mulatta). Infect Immun, 2000;
68:2560-2565
18 Dietrich C, Bouzourenne H, Blum AL, Corthey-Theulaz IE. Ure-
ase-based mucosal immunization against Helicobacter heilmanni
infection induces corpus atrophy in mice. Infect Immun, 1999;
67:6206-6209
19 Wu C, Zou QM, Zhang WJ, Guo XQ. Cloning and characterization
of ureB gene sequences of clinical isolated Hp strain in China.
Mianyixue Zazhi, 2000;16:328-330
20 Scott DR, Marcus EA, Weeks DL, Lee A, Melchers K, Sachs G.
Expression of the Helicobacter pylori ureI gene is required for
acidic pH activation of cytoplasmonic urease. Infect Immun, 2000;
68:470-477
21 McGee DJ, May CA, Garner RM, Himpsl JM, Mobley HLT. Isola-
tion of recombinant Helicobacter pylori porin: a new potential therapeutic
target for Helicobacter pylori infection. Infect Immun, 2000;
68:2560-2565
22 Dieterich C, Bouzourene H, Blum AL, Corthey-Theulaz IE. Ure-
ase-based mucosal immunization against Helicobacter heilmanni
infection induces corpus atrophy in mice. Infect Immun, 1999;
67:6206-6209
23 Labigne A, Cussac V, Courcoux P. Shuttle cloning and nucleotide
sequences of Helicobacter pylori genes responsible for urease
activity. J Bacteriol, 1999;181:2477-2481
24 Li MF, Lin Z, Ma AX, Zhao JH, Sun JX, Yu SZ, Wu XF. Cloning,
expression and immunogenicity of Hp UreB gene. Shijie Huaren
Xiaohua Zazhi, 1999;7:596-600
25 Hua JS, Zheng PY, Ho B. Species differentiation and identification
in the genus of Helicobacter. World J Gastroenterol, 1999;5:7-9
26 Luo ZB, Xu CP. Progress in studies on Hp vaccines. *Shijie Huaren Xiaohua Zazhi*, 2000;8:449-451
27 Wang FK, Yu CQ, Zou QM. Studies on polymer microparticle encapsulated Hp vaccines. *Shijie Huaren Xiaohua Zazhi*, 2000;8:452-453
28 Weltzin R, Guy B, Thomas WD, Giannasca PJ, Monath TP. Parenteral adjuvant activities of Escherichia coli heat-labile toxin and its B subunit for immunization of mice against gastric *Helicobacter pylori* infection. *Infect Immun.*, 2000;68:2775-2782
29 Wu C, Zou QM. Progress in research of Hp mucosal vaccine. *Shijie Huaren Xiaohua Zazhi*, 2000;8:203-205
30 Lee CK, Soike K, Giannasca P, Hill J, Weltzin R, Kleanthous H, Blanchard J, Monath TP. Immunization of rhesus monkeys with a mucosal prime, parenteral boost strategy protects against infection with *Helicobacter pylori*. *Vaccine*, 1999;17:3072-3082
31 Michetti P. Oral immunization against *Helicobacter pylori*-a future concept. *J Gastroenterol*, 1998;33(Suppl X):66-68
32 Gómez-Duarte OG, Bumann D, Meyer TF. The attenuated *Salmonella* vaccine approach for the control of *Helicobacter pylori*-related diseases. *Vaccine*, 1999;17:1667-1673
33 Gómez-Duarte OG, Lucas B, Yan ZX, Panthal K, Haas R, Meyer TF. The attenuated Salmonella vaccine approach for the control of *Helicobacter pylori* infection. *Vaccine*, 1998;16:460-470
34 Birkholz S, Schneider T, Knupp U, Stallmach A, Zeitz M. Decreased *Helicobacter pylori* specific gastric secretary IgA antibodies in infected patients. *Digestion*, 1998;59:638-645
35 Kawahara Y, Yokota K, Mizuno M, Yunoki N, Uesu T, Okada H, Kobayashi K, Hirai Y, Oguma K, Tsuchi T. Antibodies to human gastric epithelial cells and heat shock protein 60 in *Helicobacter pylori* positive mucosa associated lymphoid tissue lymphoma. *Gut*, 1999;45:20-23
36 Futagami S, Takahashi H, Norose Y, Kobayashi M. Systemic and local immune responses against *Helicobacter pylori* urease in patients with chronic gastritis: distinct IgA and IgG productive sites. *Gut*, 1999;43:168-175
37 Rocha GA, Oliveira AMR, Queiroz DMM, Carvalho AST, Nogueira AMMF. Immunoblot analysis of humoral immune response to *Helicobacter pylori* in children with and without duodenal ulcer. *J Clin Microbiol.*, 2000;38:1777-1781
38 Marshall B, Howat AJ, Wright PA. Oral fluid antibody detection in the diagnosis of *Helicobacter pylori* infection. *J Med Microbiol.*, 1999;48:1043-1046
39 Han FC, Yan XJ, Hou Y, Xiao LY, Guo YH, Su CZ. Gold immunochromatographic assay for anti-*Helicobacter pylori* antibody. *Shijie Huaren Xiaohua Zazhi*, 1999;7:743-745
40 Maeda S, Yoshida H, Ogura K, Yamaji Y, Ikemune T, Mitsushima T, Tagawa H, Kawaguchi R, Mori K, Mafune Ki, Kawabe T, Shiratori Y, Omata M. Assessment of gastric carcinoma risk associated with *Helicobacter pylori* may vary depending on the antigen used: CagA specific enzyme-linked immunosorbent assay (ELISA) versus commercially available *H. pylori* ELISAs. *Cancer*, 2000;88:1530-1535

Edited by Ma JY