Draft Genome Sequence of the Biofuel-Relevant Microalga Desmodesmus armatus

Eric P. Knoshaug,a Ambarish Nag,b David P. Astling,c Damien Douchi,a Lieve M. L. Laurensa

a National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado, USA
b Computational Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
c Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA

ABSTRACT A draft genome of 906 scaffolds of 115.8 Mb was assembled for Desmodesmus armatus, a diploid, lipid- and storage carbohydrate-accumulating microalga proven relevant for large-scale, outdoor cultivation, and serves as a model alga platform for improving photosynthetic efficiency and carbon assimilation for next-generation bioenergy production.

Microalgae, having higher annual biomass production relative to terrestrial crops and potential for cultivation in salt water on nonarable lands, are critical future feedstocks for renewable liquid fuels (1–4). Desmodesmus, taxonomically divergent from the genus Scenedesmus (5, 6), has been shown to exhibit phenotypic plasticity and resilience, allowing survival in harsh and variable environments, including brackish and salt water (7–12), and to possess other beneficial traits for outdoor, large-scale, biofuel-relevant cultivation, as follows: it thrives in temperatures of 35 to 45°C (13–15), resists toxins (12) and grazers (16), accumulates microcrystalline guanine and polyphosphate (17) and lutein as an important coproduct for aquaculture (15), settles rapidly (13), and has diverse, sporopollenin-containing cell walls (18–20). Desmodesmus achieved areal harvest yield productivities of 9 to 20 g/m² day (annual average of 11.4 g/m² day) over the course of 2 years in outdoor, large-scale saltwater cultivation (2, 11, 21, 22) and can accumulate >55% dry cell weight (dcw) lipids (14, 23) or carbohydrates (13), both important cellular components for biofuels, making it amenable to a fractionation-based conversion pathway (24–26). Here, we report the draft nuclear and chloroplast genomes, ploidy, and potential bioenergy-relevant engineering targets of D. armatus.

D. armatus (Fig. 1), originally isolated from Las Cruces, NM, wastewater treatment ponds in 2012, was grown photoautotrophically in flat-sided bottles in modified artificial seawater medium (MASM) under constant illumination (4000K LED flat panels, 180 μmol photons/m²s), supplemented with 2% CO₂. MASM contains the following (g/liter): NaCl (8), MgSO₄·7H₂O (2.5), KCl (0.6), NaNO₃ (0.85), CaCl₂·2H₂O (0.3), Tris (1), KH₂PO₄ (0.05), NH₄Cl (0.03), thiamine-HCl (3.5 mM stock; 1 ml/liter), cyanocobalamin (10 μg/L stock; 1 ml/liter), cyanocobalamin (10 μg/L stock; 1 ml/liter), and trace element stock (6 ml/liter). Trace element stock was made up of the following (g/liter): Na₂-EDTA (1.0), FeCl₃·6H₂O (0.2), MnCl₂·4H₂O (0.072), ZnCl₂ (0.02), Na₂MoO₄·2H₂O (0.013), and CoCl₂·6H₂O (0.004). Genomic DNA was extracted from indexponential cells as described (27). PacBio sequence data consisted of average polymerase reads of 741,936 ± 76,024 bp, having a mean insert length of 6,026 ± 784 bp and generating a total assembly size of 116.31 Mb in 906 contigs with an N₅₀ value of 341,806 bp and a GC content of 56.6%, and was determined to be diploid (28). This compares with the genomes of Tetradesmus obliquus (108.72 Mb; 29) and Scenedesmus obliquus (207.97 Mb; 30). Sixteen scaffolds (totaling 112,885 bp) contain chloroplast sequences identified using BLAST against published chloroplast genomes for Chlorella vulgaris C-27 (31) and Monoraphidium neglectum (32). Proteins that may be beneficial for a robust, outdoor, bioenergy-relevant alga were identified.

Citation Knoshaug EP, Nag A, Astling DP, Douchi D, Laurens LML. 2020. Draft genome sequence of the biofuel-relevant microalga Desmodesmus armatus. Microbiol Resour Announc 9:e00896-19. https://doi.org/10.1128/MRA.00896-19.

Editor Jason E. Stajich, University of California, Riverside
This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Address correspondence to Eric P. Knoshaug, eric.knoshaug@nrel.gov.
Received 30 July 2019
Accepted 14 January 2020
Published 6 February 2020
The presence of homologs of *Chlamydomonas reinhardtii* STT7 and LHCSR1/3 and the dioxygen reductases Flv3 and PTOX confirms the ability for state transition and nonphotochemical quenching processes involved in energy dissipation essential for maintaining photosynthetic electron transport chain integrity in high or fluctuating irradiances (33) and may be useful targets for the improvement of photosynthetic efficiency and harvest yields in open ponds. Polyphosphate kinase was also identified, suggesting polyphosphate production as an energy or phosphate reserve. In conclusion, the innate robustness and proven reliability of *D. armatus* in outdoor mass culture provides a robust yet flexible chassis for genetic engineering efforts, potentially leading to the commercial use of *D. armatus* as a bioenergy-relevant alga.

Data availability. This whole-genome shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number VIIQ00000000.

ACKNOWLEDGMENTS

We are grateful for the contribution of this strain and associated data from Craig Behnke at Sapphire Energy. This work was authored in part by the National Renewable Energy Laboratory, operated by the Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under contract number DE-AC36-08GO28308. We acknowledge Nick Sweeney of NREL for the micrographs of *D. armatus*.

Funding was provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy and by the Rewiring Algal Carbon Energetics for Renewables (RACER) consortium. Additional support was provided by the National Renewable Energy Laboratory Research Data Initiative.

The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government.

This research was designed by E.P.K. and L.M.L.M., E.P.K., and D.P.A. directed the PacBio sequencing and assembly. A.N. determined ploidy. D.D. identified proteins of interest.

REFERENCES

1. Davis R, Coleman A, Wigmosta M, Markham J, Kinchin C, Zhu Y, Jones S, Han J, Canter C, Li Q. 2017. 2017 Algae harmonization study: evaluating the potential for future algal biofuel costs, sustainability, and resource assessment from harmonized modeling. NREL/TP-5100–70715. NREL, Golden, CO.

2. White RL, Ryan RA. 2015. Long-term cultivation of algae in open-raceway ponds: lessons from the field. Ind Biotechnol 11:213–220. https://doi.org/10.1089/ind.2015.0006.

3. Knoshaug EP, Darzins A. 2011. Algal biofuels: the process. Chem Eng Prog 107:37–41.
1. Vanormelingen P, Hegewald E, Brabant A, Kitzchke M, Friedl T, Sabbe K, Vyverman W. 2007. The systematics of a small spineless Desmodesmus species, D. costato-granulatus (Sphaeropleales, Chlorophyceae), based on ITS2 rDNA sequence analysis and cell wall morphology. J Phycol 43:378–396. https://doi.org/10.1111/j.1529-8817.2007.00325.x.

2. Knousha EP, Wolfrum E, Laurens MLM, Harmon VL, Dempster TA, McGowen J. 2018. Unified field studies of the Algae Testbed Public-Private Partnership as the benchmark for algae agronomics. Sci Data 5:180267. https://doi.org/10.1038/sdata.2018.267.

3. Huntley ME, Johnson ZL, Brown SL, Sills DL, Gerber L, Archibald I, Machesky SC, Granados J, Beal C, Greene CH. 2015. Demonstrated large-scale production of marine microalgae for fuels and feed. Algal Res 10:249–265. https://doi.org/10.1016/j.algal.2015.04.016.

4. Knaus BJ, Grunwald NJ. 2018. Inferring variation in copy number using high throughput sequencing data in R. Front Genet 9:123. https://doi.org/10.3389/fgene.2018.00123.

5. Carreres BM, de Jaeger L, Springer J, Barbosa MJ, Breuer G, van den Ende EJ, Kleinegris DMM, Schaffers I, Wolbert EJH, Zhang H, Lamers PP, EJ, Kleinegris DMM, Schaffers I, Wolbert EJH, Zhang H, Lamers PP, D. costato-granulatus (Sphaeropleales, Chlorophyceae), based on ITS2 rDNA sequence analysis and cell wall morphology. J Phycol 43:378–396. https://doi.org/10.1111/j.1529-8817.2007.00325.x.

6. Vanormelingen P, Hegewald E, Brabant A, Kitzchke M, Friedl T, Sabbe K, Vyverman W. 2007. The systematics of a small spineless Desmodesmus species, D. costato-granulatus (Sphaeropleales, Chlorophyceae), based on ITS2 rDNA sequence analysis and cell wall morphology. J Phycol 43:378–396. https://doi.org/10.1111/j.1529-8817.2007.00325.x.

7. Moudrikova S, Nedbal L, Solovchenko A, Mozjes P. 2017. Raman microcopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Res 23:216–222. https://doi.org/10.1016/j.jalgal.2017.02.009.

8. Trainor FR, 1998. Nova Hedwigia biological aspects of Scenedesmus (Chlorophyceae) photoplasticity, vol 117. J. Cramer, Berlin, Germany.