HOLOMORPHIC RIEMANNIAN METRIC AND FUNDAMENTAL GROUP

INDRANIL BISWAS AND SORIN DUMITRESCU

Abstract. We prove that compact complex manifolds bearing a holomorphic Riemannian metric have infinite fundamental group.

1. Introduction

The complex analogue of a (pseudo)-Riemannian metric is a holomorphic Riemannian metric. Recall that a holomorphic Riemannian metric g on a complex manifold X is a holomorphic section of the vector bundle $S^2(T^*X)$ of complex quadratic forms on the holomorphic tangent bundle TX which is nondegenerate at every point of X (see Definition 2.1).

Given a holomorphic Riemannian metric g on X, there is a unique torsion-free holomorphic affine connection ∇ on the holomorphic tangent bundle TX such that g is parallel with respect to ∇, or in other words,

$$\xi \cdot (g(s, t)) = g(\nabla_\xi s, t) + g(s, \nabla_\xi t)$$

for all locally defined holomorphic vector fields ξ, s and t; this ∇ is known as the Levi-Civita connection for g. The curvature tensor of ∇ vanishes identically if and only if g is locally isomorphic to the standard flat model $dz_1^2 + \ldots + dz_n^2$ on \mathbb{C}^n, where $n = \dim X$. More details on the geometry of holomorphic Riemannian metrics can be found in [Le, Du3, DZ].

Compact complex manifolds X bearing holomorphic Riemannian metrics are rather special. First notice that g produces a holomorphic isomorphism between TX and its dual T^*X. In particular, the canonical bundle and the anticanonical bundle of X are isomorphic, which implies that the canonical bundle is of order two (the canonical line bundle of a certain unramified double cover of X is trivial). Moreover, if X is Kähler, the classical Chern–Weil theory shows that the Chern classes with rational coefficients $c_i(X, \mathbb{Q})$ must vanish [At, pp. 192–193, Theorem 4]. It now follows, using Yau’s theorem proving Calabi’s conjecture [Ya] (see also [Be] and [IKO]), that X admits a flat Kähler metric, and consequently, X admits a finite unramified cover which is a complex torus. Note that any holomorphic Riemannian metric on a complex torus is necessarily translation invariant and, consequently, flat.

An interesting family of compact complex non-Kähler manifolds which generalizes complex tori consists of those manifolds whose holomorphic tangent bundle is holomorphically trivial.

2010 Mathematics Subject Classification. 53B30, 53C50, 53A55.

Key words and phrases. Holomorphic Riemannian metric, algebraic dimension, Killing fields, fundamental group.
These, so called parallelizable manifolds, are biholomorphic to the quotient of a complex Lie group G by a co-compact lattice Γ in G \cite{Wa}. A parallelizable manifold G/Γ is Kähler if and only if G is abelian \cite{Wa}. Any nondegenerate complex quadratic form on the Lie algebra of G uniquely defines a right invariant holomorphic Riemannian metric on G which descends to the quotient G/Γ of G by a lattice Γ. In particular, the Killing quadratic form on the Lie algebra of a complex semi-simple Lie group G, being nondegenerate and invariant under the adjoint representation, furnishes a bi-invariant holomorphic Riemannian metric on G and a G-invariant holomorphic Riemannian metric on any quotient G/Γ by a lattice.

When G is $\text{SL}(2, \mathbb{C})$, exotic deformations of parallelizable manifolds $\text{SL}(2, \mathbb{C})/\Gamma$ bearing holomorphic Riemannian metrics were constructed by Ghys in \cite{Gh}. Let us briefly recall Ghys’ construction. Choose a uniform lattice Γ in $\text{SL}(2, \mathbb{C})$ as well as a group homomorphism $u : \Gamma \to \text{SL}(2, \mathbb{C})$, and consider the embedding

$$
\Gamma \to \text{SL}(2, \mathbb{C}) \times \text{SL}(2, \mathbb{C}), \quad \gamma \mapsto (u(\gamma), \gamma).
$$

Using this homomorphism, Γ acts on $\text{SL}(2, \mathbb{C})$ via the left and right translations of $\text{SL}(2, \mathbb{C})$. More precisely, the action is given by:

$$
(\gamma, x) \mapsto u(\gamma^{-1})x\gamma \in \text{SL}(2, \mathbb{C})
$$

for all $(\gamma, x) \in \Gamma \times \text{SL}(2, \mathbb{C})$. It is proved in \cite{Gh} that for u close enough to the trivial homomorphism, the group Γ acts properly and freely on $\text{SL}(2, \mathbb{C})$ such that the corresponding quotient $M(u, \Gamma)$ is a compact complex manifold (covered by $\text{SL}(2, \mathbb{C})$). For a generic homomorphism u, these examples do not admit a parallelizable manifold as a finite cover. Since the Killing quadratic form is invariant by the adjoint representation, the induced holomorphic Riemannian metric is bi-invariant on $\text{SL}(2, \mathbb{C})$ and hence it descends to the quotients $M(u, \Gamma)$. Notice that g is locally isomorphic to the complexification of the spherical metric on S^3 and it has constant non-zero sectional curvature.

The general case of a compact complex threefold X bearing a holomorphic Riemannian metric g shares many features of the previous construction of Ghys. In this direction, it was proved in \cite{Du3, DZ} that g is necessarily locally homogeneous (see Section 2), and X admits a finite unramified cover bearing a holomorphic Riemannian metric of constant sectional curvature. In view of this we make the following:

Conjecture 1.1. *Any holomorphic Riemannian metric on a compact complex manifold X is locally homogeneous.*

Conjecture 1.1 implies that X must have infinite fundamental group (see Section 4).

The main result proved here is the following (see Theorem 4.2):

Compact complex manifolds bearing holomorphic Riemannian metrics have infinite fundamental group.

This generalizes Corollary 4.5 and Theorem 4.6 in \cite{BD}, where the same result was proved under the stronger hypothesis that the algebraic dimension of X is either zero or one.
Some parts of the method of proof of Theorem 4.2 generalize to the broader framework of *rigid geometric structures* in Gromov’s sense [DG, Gr] and give the following (see Theorem 4.3):

Let \(X \) be a compact complex manifold with trivial canonical bundle and algebraic dimension one. If \(X \) admits a holomorphic rigid geometric structure, then the fundamental group of \(X \) is infinite.

Theorem 4.3 was proved in [BD] under the hypothesis that \(X \) is of algebraic dimension zero. It may be mentioned that for general rigid geometric structures, some hypothesis on the algebraic dimension is needed. Indeed, projective embeddings of a compact projective Calabi–Yau manifold in some complex projective space are holomorphic rigid geometric structures that are not locally homogeneous [DG, Gr].

Nevertheless, we make the following general conjecture which encapsulates the case of holomorphic Riemannian metrics:

Conjecture 1.2. *Any holomorphic geometric structure of affine type \(\phi \) on a compact complex manifold with trivial canonical bundle \(X \) is locally homogeneous. Consequently, if \(\phi \) is rigid, then the fundamental group of \(X \) is infinite.*

Conjecture 1.2 was proved to be true in the contexts of Kähler (so Calabi–Yau) manifolds [Du2], and also when the holomorphic tangent bundle of the manifold is polystable with respect to some Gauduchon metric on it [BD].

2. Geometric structures and Killing fields

Let \(X \) be a complex manifold of complex dimension \(n \).

Definition 2.1. A *holomorphic Riemannian metric* on \(X \) is a holomorphic section

\[
g \in H^0(X, S^2((TX)^*))
\]

such that for every point \(x \in X \) the quadratic form \(g(x) \) on \(T_xX \) is nondegenerate.

Holomorphic Riemannian metrics and holomorphic affine connections are *rigid geometric structures* in Gromov’s sense [DG]. Let us briefly recall the definition of rigidity in the holomorphic category.

For any integer \(k \geq 1 \), we associate the principal bundle of \(k \)-frames \(R^k(X) \rightarrow X \), which is the bundle of \(k \)-jets of local holomorphic coordinates on \(X \). The corresponding structural group \(D^k \) is the group of \(k \)-jets of local biholomorphisms of \(\mathbb{C}^n \) fixing the origin. This \(D^k \) is known to be a complex algebraic group.

Definition 2.2. A holomorphic geometric structure \(\phi \) of order \(k \) on \(X \) is a holomorphic \(D^k \)-equivariant map from \(R^k(X) \) to a complex algebraic manifold \(Z \) endowed with an algebraic action of \(D^k \). The geometric structure \(\phi \) is said to be of affine type if \(Z \) is a complex affine variety.
Holomorphic tensors are holomorphic geometric structures of affine type of order one, and holomorphic affine connections are holomorphic geometric structures of affine type of order two. Holomorphic embeddings in projective spaces, holomorphic foliations and holomorphic projective connections are holomorphic geometric structure of non-affine type [DG, Gr].

A (local) biholomorphism \(f \) between two open subsets of \(X \) is a (local) isometry (automorphism) for a geometric structure \(\phi \) if the canonical lift of \(f \) to \(R^k(X) \) preserves the fibers of \(\phi \).

The associated notion of a (local) infinitesimal symmetry is the following:

Definition 2.3. A (local) holomorphic vector field on \(Y \) is a (local) Killing field of a holomorphic geometric structure \(\phi : R^k(X) \rightarrow Z \) if its canonical lift to \(R^k(X) \) preserves the fibers of \(\phi \).

In other words, \(Y \) is a Killing field of \(\phi \) if and only if its (local) flow preserves \(\phi \). The Killing vector fields form a Lie algebra with respect to the Lie bracket of vector fields.

A classical result in Riemannian geometry shows that \(Y \) is a Killing field of a holomorphic Riemannian metric \(g \) on \(X \) if and only if \(v \mapsto \nabla_v Y \) is a skew-symmetric section of \(\text{End}(TX) \) with respect to \(g \), where \(\nabla \) is the Levi-Civita connection of \(g \) [Ko].

A holomorphic geometric structure \(\phi \) is rigid of order \(l \) in Gromov’s sense if any local automorphism of \(\phi \) is completely determined by its \(l \)-jet in any given point (see [DG, Gr]).

Holomorphic affine connections are rigid of order one in Gromov’s sense. The rigidity arises from the fact that the local biholomorphisms fixing a point and preserving a connection actually linearize in exponential coordinates, so they are completely determined by their differential at the fixed point. Holomorphic Riemannian metrics, holomorphic projective connections and holomorphic conformal structures for dimension at least three are rigid holomorphic geometric structures. On the other hand, holomorphic symplectic structures and holomorphic foliations are not rigid [DG].

Local Killing fields of a holomorphic rigid geometric structure \(\phi \) form a locally constant sheaf of Lie algebras [DG, Gr]. The typical fiber is a finite dimensional Lie algebra called the Killing algebra of \(\phi \). The geometric structure \(\phi \) is called locally homogeneous if its Killing algebra acts transitively on \(X \).

The standard facts about smooth actions of Lie groups preserving an analytic rigid geometric structure and a finite volume are adapted to our holomorphic set-up (compare with [Gr, Section 3.5]).

Lemma 2.4. Let \(X \) be a compact complex manifold endowed with a holomorphic rigid geometric structure \(g \). Assume that the automorphism group \(G \) of \((X, g) \) preserves a smooth volume on \(X \) and is noncompact. Then at a general point \(x \in X \) there exists at least one local Killing field \(Y \) of \(g \) such that \(Y(x) = 0 \).

Proof. Let \(\phi : R^k(X) \rightarrow Z \) be a holomorphic rigid geometric structure of order \(k \). Then there exists \(l \in \mathbb{N} \) large enough such that the \(l \)-jet \(\phi^{(l)} : R^{k+l} \rightarrow Z^{(l)} \) of \(\phi \) satisfies the
condition that the orbits of the local automorphisms of φ are the projections on X of the inverse images, through φ(t), of the Dk+l-orbits in Z(t) [DG, Gr]. Recall that the map φ(t) is Dk+l-equivariant.

Since the automorphism group G preserves the finite smooth measure, by Poincaré recurrence theorem, for any generic point x ∈ X there exists an unbounded sequence of elements g j ∈ G, j ≥ 1 (meaning sequence leaving every compact subset in G) such that g j · x converges to x. We lift the G-action in the bundle Rk+l and we consider the orbit g j · ˆx of a lift of x in Rk+l. There exists a sequence {g j} j=1 to Dk+l such that g j(ˆx) · p−1 j converges to ˆx. Notice that {g j} j=1 is an unbounded sequence in Dk+l, since the lifted G-action on Rk+l is proper. Using the equivariance property of φ(t) we get that p j · φ(t)(ˆx) converges to φ(t)(ˆx).

The action of the algebraic group Dk+l on Z(t) is algebraic. This implies that the Dk+l-orbits in Z(t) are locally closed [Ro]. In particular, this also stands for the orbit O of φ(t)(ˆx). Let us denote by I the stabilizer of φ(t)(ˆx) in Dk+l. The orbit O with the induced topology coming from Z(t) is homeomorphic to the quotient Dk+l/I. The above observation that p j · φ(t)(ˆx) converges to φ(t)(ˆx) is equivalent to the existence of a sequence (η j) in Dk+l converging to identity such that η j · p j ∈ I. Since I contains an unbounded sequence in Dk+l and it is an algebraic group — hence having only finitely many connected components — it follows that its connected component of identity I0 is a connected complex algebraic subgroup in Dk+l of complex dimension at least one. Any one parameter subgroup in I0 integrates a local Killing field Y vanishing at x (see Corollary 1.6 C in Gr).

□

Given a holomorphic Riemannian metric g, there is a holomorphic volume form ωg associated to it, and hence there is an associated volume form given by ωg ∧ ̅ωg. The automorphism group for g preserves the smooth measure associated to ωg ∧ ̅ωg.

It was noted that the automorphism group in Lemma 2.4 has finitely many connected components [Gr, Section 3.5]. Therefore, this automorphism group is compact if and only if its connected component of the identity is compact.

3. Algebraic reduction and orbits of Killing fields

Recall that the algebraic dimension of a compact complex manifold X is the transcendence degree of the field of meromorphic functions M(X) on X over the field of complex numbers. The algebraic dimension of a projective manifold coincides with its complex dimension. In general, the algebraic dimension of a compact complex manifold X of complex dimension n may be less than n and in fact takes all integral value between 0 and n. Compact complex manifolds of maximal algebraic dimension n are called Moishezon. They are known to be bi-meromorphic to projective manifolds [M]. More generally we have the following classical result called the algebraic reduction theorem (see [Ue]):

Theorem 3.1 ([Ue]). Let X be a compact connected complex manifold of algebraic dimension a(X) = d. There exists a bi-meromorphic modification

Ψ : ˆX → X

where ˆX is a projective manifold of algebraic dimension d. The proof of this theorem is based on the use of the algebraic reduction theorem and the compactness of the automorphism group of X.
and a holomorphic map
\[t : \tilde{X} \to V \]
with connected fibers onto a \(d \)-dimensional algebraic manifold \(V \) such that \(t^*(\mathcal{M}(V)) = \Psi^*(\mathcal{M}(X)) \).

Let \(\pi : X \to V \) be the meromorphic map given by \(t \circ \Psi^{-1} \); it is called the algebraic reduction of \(X \).

Theorem 3.2. Let \(X \) be a compact, connected and simply connected complex manifold of complex dimension \(n \) and of algebraic dimension \(d \). Suppose that \(X \) admits a holomorphic rigid geometric structure \(g \). Then \(H^0(X, TX) \) admits an abelian subalgebra \(A \) acting on \(X \) preserving \(g \) and satisfying the condition that the generic orbits of the algebraic reduction of \(X \) lie in the orbits of \(A \) (hence the dimension of \(A \) is at least \(n - d \)). Moreover, \(A \) is the Lie algebra of the connected component of the identity of the automorphism group of the rigid geometric structure \(g' \) which is a juxtaposition of \(g \) with a maximal family of commuting Killing fields of \(g \).

Proof. By the main theorem in [Du1] (see also [Du2]) the Lie algebra of local holomorphic vector fields on \(X \) preserving \(g \) acts on \(X \) with generic orbits containing the orbits of the algebraic reduction \(\pi \) of \(X \).

Since \(X \) is simply connected, by a result due to Nomizu [No] generalized first by Amores [Am] and then by Gromov [DG, p. 73, 5.15], local vector fields preserving \(g \) extend to all of \(X \). Thus we get a finite dimensional complex Lie algebra \(\mathcal{G} \), formed by holomorphic vector fields \(X_i \) preserving \(g \), which acts on \(X \) with orbits containing the generic fibers of \(\pi \).

Now put together \(g \) and a family of global holomorphic vector fields \(X_i \) spanning \(\mathcal{G} \), to form another rigid holomorphic geometric structure \(g' = (g, X_i) \); see [DG] (Section 3.5.2 A) for details about the fact that the juxtaposition of a rigid geometric structure with another geometric structure is still a rigid geometric structure in Gromov’s sense. Considering \(g' \) instead of \(g \) and repeating the same argument as before, the complex Lie algebra \(A \) of those holomorphic vector fields preserving \(g' \) acts on \(X \) with generic orbits containing the fibers of \(\pi \). But preserving \(g' \) means preserving \(g \) and commuting with the vector fields \(X_i \). Hence \(A \) coincides with the center of \(\mathcal{G} \). In particular, \(A \) is a complex abelian Lie algebra acting on \(X \) preserving \(g \) and with orbits containing the generic fibers of the algebraic reduction \(\pi \). \(\Box \)

3.1. Maximal algebraic dimension.

Assume that \(X \) is a Moishezon manifold, so the algebraic dimension of \(X \) is \(n = \text{dim}_\mathbb{C} X \).

Proposition 3.3. If \(TX \) admits a holomorphic connection, then \(X \) admits a finite unramified covering by a compact complex torus.

The first step of the proof of Proposition 3.3 is the following:

Lemma 3.4. Let \(X \) be a complex manifold endowed with an affine holomorphic connection. Then there is no nonconstant holomorphic map from \(\mathbb{C}P^1 \) to \(X \).
Proof. Let ∇ be a holomorphic connection on X. Let
$$f : \mathbb{CP}^1 \rightarrow X$$
be a holomorphic map. Consider the pulled back connection $f^*\nabla$ on f^*TX. Since $\text{dim}_{\mathbb{C}} \mathbb{CP}^1 = 1$, the connection $f^*\nabla$ is flat. Moreover, \mathbb{CP}^1 being simply connected, $f^*\nabla$ has trivial monodromy, implying that the holomorphic vector bundle f^*TX is trivial.

Now consider the differential of f
$$df : T\mathbb{CP}^1 \rightarrow f^*TX.$$ There is no nonzero holomorphic homomorphism from $T\mathbb{CP}^1$ to the trivial holomorphic line bundle, because $\text{degree}(T\mathbb{CP}^1) > \text{degree}(\mathcal{O}_{\mathbb{CP}^1}) = 0$. This implies that $df = 0$. Therefore, f is a constant map. □

Proof of Proposition 3.3. Since the Moishezon manifold X does not admit any nonconstant holomorphic map from \mathbb{CP}^1, it is a complex projective manifold [Ca, p. 307, Theorem 3.1].

As TX admits a holomorphic connection, $c_i(X, \mathbb{Q}) = 0$ for all $i > 0$ [At, p. 192–193, Theorem 4], where $c_i(X, \mathbb{Q})$ denotes the i-th Chern class of TX with rational coefficients. Therefore, X being complex projective, from Yau’s theorem proving Calabi’s conjecture, [Ya], it follows that X admits a finite unramified covering by a compact complex torus (see also [Be, p. 759, Theorem 1] and [IKO]). □

4. Rigid geometric structures and fundamental group

In this section we prove the two main results mentioned in the introduction.

Let us first address the easy case where the geometric structure is supposed to be locally homogeneous.

Proposition 4.1. Let X be a compact complex manifold with trivial canonical bundle. If X is endowed with a locally homogeneous holomorphic rigid geometric structure g, then the fundamental group of X is infinite.

Proof. Assume, by contradiction, that the fundamental group of X is finite. So replacing X by its universal cover we may assume that X is simply connected. Since g is locally homogeneous, and local Killing fields extend to all of X by Nomizu’s theorem [No, Am, Gr], it follows that TX is generically spanned by globally defined holomorphic Killing vector fields. Let $\{X_1, \cdots, X_n\}$ a family of linearly independent holomorphic vector fields on X which span TX at the generic point. Consider a nontrivial holomorphic section vol of the canonical line bundle, and evaluate it on $X_1 \wedge \cdots \wedge X_n$ to get a holomorphic function $\text{vol}(X_1 \wedge \cdots \wedge X_n)$. This holomorphic function on X is constant and nonzero at the generic point. This immediately implies that $\{X_1, \cdots, X_n\}$ span TX at every point in X. Consequently, TX admits a holomorphic trivialization and, by Wang’s theorem [Wa], X is a quotient of a connected complex Lie group by a lattice in it. In particular, the fundamental group of X is infinite: a contradiction. □
Theorem 4.2. Let X be a compact complex manifold admitting a holomorphic Riemannian metric g. Then the fundamental group of X is infinite.

Proof. Assume, by contradiction, that X is endowed with a holomorphic Riemannian metric g and has finite fundamental group. Replacing X by its universal cover we can assume that X is simply connected. Denote also by g the symmetric bilinear form associated to the quadratic form g. The holomorphic tangent bundle TX is endowed with the (holomorphic) Levi-Civita connection of g. If X is Moishezon, Proposition 3.3 shows that X admits a finite unramified cover which is a complex torus: a contradiction (for X supposed Moishezon).

Therefore, the algebraic dimension d of M is strictly less than the complex dimension n of M. Consequently the algebraic reduction of M admits fibers of positive dimension $n - d$.

By Theorem 3.2 there exists a finite dimensional abelian Lie algebra A lying inside the Lie algebra of global holomorphic vector fields on X which preserves g and acts transitively on the generic orbits of the algebraic reduction, meaning the generic fibers of the algebraic reduction are contained in the leaves of the foliation generated by A. Let $X_1, X_2, \ldots, X_k \in H^0(X, TX)$ be a basis of A, with $k \geq n - d > 0$.

For all $i, j \in \{1, \ldots, k\}$, the functions $g(X_i, X_j)$ on X are holomorphic and hence constant.

Assume first that there exists $X_i \in A$ as above such that the dual one-form ω_i defined by $\omega_i(v) := g(X_i, v)$ vanishes on A (equivalently, $g(X_i, X_j) = 0$, for all $j \in \{1, \ldots, k\}$). This implies that ω_i vanishes on the generic fibers of the algebraic reduction $\pi : X \longrightarrow V$. Since $\Psi^*(\omega_i)$ (see Theorem 3.1 for Ψ) vanishes on the generic fibers of t (and hence on all fibers), which are compact and connected, this implies that $\Psi^*(\omega_i)$ is the pull-back $t^*(\tilde{\omega}_i)$ of a holomorphic one-form $\tilde{\omega}_i$ defined on the complex algebraic manifold V. Notice that singular fibers give no problem by Lemma 3.3 in [En]. Since holomorphic forms on algebraic manifolds are closed, it follows that $d\Psi^*(\omega_i) = d\tilde{\omega}_i = 0$. Consequently, we have $d\omega_i = 0$.

Since X is simply connected, ω_i must be exact. This implies ω_i vanishes identically, and hence X_i vanishes identically: a contradiction.

Thus we are left with the case where g restricted to A is nondegenerate. In particular, vector fields in A do not vanish on X. Consequently, the foliation generated by A is nonsingular and is of complex dimension k. Lemma 2.4 implies that the corresponding connected Lie group G, meaning the connected component of the automorphism group of the holomorphic rigid geometric structure $g' = (g, X_1, \ldots, X_k)$, is compact. It must be isomorphic to a compact complex torus T of dimension $n - d$.

The action of $G = T$ on X is locally free. We show that this action must be free. Indeed, assume that an element $f \in G$ fixes $x_0 \in X$. Since G is abelian, the differential $df(x_0)$ at x_0 acts trivially on A. It must preserve its orthogonal part A^\perp. Moreover, since f preserves each orbit of G, the action of $df(x_0)$ must also be trivial on A^\perp. Recall that g restricted to A is nondegenerate, which implies that $A \oplus A^\perp = TX$. It now follows that $df(x_0)$ is the identity map, and so f must be trivial: it is the identity element in G.
The action of G being free, X is a holomorphic G-principal bundle over some compact complex manifold N. Since X is simply connected and G is connected, N must be simply connected. Since the G-action preserves A and g, the restriction of g to A^\perp defines a transverse holomorphic Riemannian metric to the foliation defined by the G-action. This transverse holomorphic Riemannian metric descends to a holomorphic Riemannian metric on N. But the complex dimension of N is strictly less then the complex dimension of X. We conclude by induction on the complex dimension of X (the only Riemann surfaces admitting holomorphic Riemannian metrics are elliptic curves and they have infinite fundamental group).

Recall that it was proved in [BD, Proposition 4.4] that compact complex manifolds with trivial canonical bundle and algebraic dimension zero admitting holomorphic rigid geometric structures have infinite fundamental group.

We prove here the following:

Theorem 4.3. Let X be a compact complex manifold with trivial canonical bundle and algebraic dimension one. If X admits a holomorphic rigid geometric structure, then the fundamental group of X is infinite.

Proof. Let X be a compact complex manifold bearing a holomorphic rigid geometric structure g. Assume, by contradiction, that the fundamental group of X is finite. Replacing X by its universal cover we assume that X is simply connected.

We now use Theorem 3.2 to get an abelian subalgebra A of $H^0(X, TX)$ which acts on X preserving g and satisfying the condition that the generic orbits of the algebraic reduction of X lie in the A-orbits (hence the dimension of A is at least $n - 1$). Choose elements X_1, \cdots, X_{n-1} of A which span, at the generic point $x \in X$, the tangent space of the fiber $\pi^{-1}(\pi(x))$ of the algebraic reduction of X.

Consider vol a nontrivial holomorphic section of the canonical bundle of X. Then the holomorphic one-form ω on X defined by $v \mapsto -vol(X_1 \wedge \cdots \wedge X_{n-1} \wedge v)$ vanishes on the fibers of the algebraic reduction. As in the proof of Theorem 4.2, the form $\Psi^\ast(\omega)$ (see Theorem 3.1 for Ψ) descend to the projective manifold V, the basis of the algebraic reduction (once again, singular fibers give no problem by Lemma 3.3 in [En]). In particular, ω is closed. This implies that the fundamental group of X is infinite.

Acknowledgements

We thank Ben McKay for interesting discussions on the subject. I.B. is partially supported by a J. C. Bose Fellowship.

References

[Am] A. M. Amores, Vector fields of a finite type G-structure, *Jour. Diff. Geom.* 14 (1980), 1–6.
[At] M. F. Atiyah, Complex analytic connections in fibre bundles, *Trans. Amer. Math. Soc.* 85 (1957), 181–207.
1. Biswas and S. Dumitrescu, Holomorphic Affine Connections on Non-Kähler manifolds, *Internat. J. Math.* 27 (2016).

2. S. Dumitrescu, Meromorphic almost rigid geometric structures, *Geometry, Rigidity and Group Actions*, Editors Benson Farb and David Fisher, Chicago Lectures in Mathematics Series, 32–58.

3. S. Dumitrescu, Structures géométriques holomorphes sur les variétés complexes compactes, *Ann. Scient. Éc. Norm. Sup* 34 (2001), 557–571.

4. S. Dumitrescu and A. Zeghib, Global rigidity of holomorphic Riemannian metrics on compact complex 3-manifolds, *Math. Ann.* 345 (2009), 53–81.

5. M. Inoue, S. Kobayashi and T. Ochiai, Holomorphic affine connections on compact complex surfaces, *Jour. Fac. Sci. Univ. Tokyo* 27 (1980), 247–264.

6. S. Kobayashi, *Transformation groups in differential geometry*, Springer, (1995).

7. C. LeBrun, H-spaces with cosmological constant, *Proc. Royal Soc. London*, Ser. A, 380 (1982) 171–185.

8. B. Moishezon, On n dimensional compact varieties with n independent meromorphic functions, *Amer. Math. Soc. Transl.* 63 (1967), 51–77.

9. K. Nomizu, On local and global existence of Killing vector fields, *Ann. of Math.* 72 (1960), 105–120.

10. M. Rosenlicht, A remark on quotient spaces, *An. Acad. Bras. Cienc.*, 35(4), (1963), 483–489.

11. K. Ueno, *Classification theory of algebraic varieties and compact complet spaces*, Springer Lectures Notes, 439, (1975).

12. H.-C. Wang, Complex Parallelisable manifolds, *Proc. Amer. Math. Soc.* 5 (1954), 771–776.

13. S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, *Comm. Pure Appl. Math.* 31 (1978), 339–411.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India

E-mail address: indranil@math.tifr.res.in

Université Côte d’Azur, CNRS, LJAD

E-mail address: dumitres@unice.fr