ATP-dependent Movement of Myosin In Vitro:
Characterization of a Quantitative Assay

MICHAEL P. SHEETZ,* REBECCA CHASAN, and JAMES A. SPUDICH
Department of Cell Biology, Sherman Fairchild Building, Stanford University School of Medicine, Stanford, California 94305; and
*Department of Physiology, University of Connecticut Health Center, Farmington, Connecticut 06032

ABSTRACT Sheetz and Spudich (1983, Nature (Lond.), 303:31-35) showed that ATP-dependent movement of myosin along actin filaments can be measured in vitro using myosin-coated beads and oriented actin cables from Nitella. To establish this in vitro movement as a quantitative assay and to understand better the basis for the movement, we have defined the factors that affect the myosin-bead velocity. Beads coated with skeletal muscle myosin move at a rate of 2-6 μm/s, depending on the myosin preparation. This velocity is independent of myosin concentration on the bead surface for concentrations above a critical value (~20 μg myosin/2.5 x 10^9 beads of 1 μm in diameter). Movement is optimal between pH 6.8 and 7.5, at KCl concentrations <70 mM, at ATP concentrations >0.1 mM, and at Mg^2+ concentrations between 2 and 6 mM. From the temperature dependence of bead velocity, we calculate activation energies of 90 kJ/mol below 22 °C and 40 kJ/mol above 22 °C. Different myosin species move at their own characteristic velocities, and these velocities are proportional to their actin-activated ATPase activities. Further, the velocities of beads coated with smooth or skeletal muscle myosin correlate well with the known in vivo rates of myosin movement along actin filaments in these muscles. This in vitro assay, therefore, provides a rapid, reproducible method for quantitating the ATP-dependent movement of myosin molecules on actin.

Movement of myosin on actin filaments is believed to drive many cellular motile processes. According to the model of H. E. Huxley (9), myosin converts the energy of ATP into mechanical energy through a conformational change while it is bound to actin. Furthermore, it is generally believed that each myosin molecule acts as an independent force generator (8) and that many molecules, when coupled and acting asynchronously, provide steady movement along polar actin filaments. Until recently, actual displacement of myosin relative to actin had only been quantitated in the muscle sarcomere. The development of an in vitro assay, using myosin-coated beads to follow the position of the myosin on oriented actin cables from Nitella (22), now allows measurement of the rate of movement of various types of myosin on actin filaments under controlled ionic conditions.

From our previous calculations (22), we expected that the myosin-bead velocity would be similar to the maximum velocity of contraction of the muscle from which the myosin was derived. Because the actin-activated ATPase activities of myosins generally correlate with the respective muscle contraction velocities, we expected a further correspondence between bead velocity and actin-activated ATPase activity. In this study we show that these correlations do indeed hold.

The oriented polar actin cables used in the in vitro assay are derived from a dissected Nitella cell. Thus, the actin substrate, aside from its high degree of spatial organization (10, 11), is not well defined. It was important, therefore, to define the limits of salt concentrations and other parameters that will support myosin motility along the Nitella substrate. These limits may reflect in part the limits of stability of the Nitella substrate or the actin cables per se, or relate to the presence of auxiliary proteins on the actin cables. In fact, however, the optimal conditions in our system are consistent with the previously described (1, 7, 26) optimal conditions for the interaction of purified actin and myosin using actin-activated ATPase as an assay, which suggests that the assay is not complicated by the possible presence of auxiliary proteins on the Nitella substrate.

The results presented in this paper establish that the Nitella-based in vitro motility system is a fast, reliable, and quantitative assay for the velocity of myosin movement along actin filaments.

MATERIALS AND METHODS

Materials: Nitella axillaris was cultured (16) from original stocks provided by Dr. L. Taiz (University of California, Santa Cruz) and Dr. P. Richmond (University of the Pacific). In this protocol, 40 ml of chow (a mixture of 16 parts loam, 5 parts leaf mold, 6 parts fine sand, 4 parts steer manure, and...
0.02 parts bone meal, by volume), 15 ml of potting soil, and 60 ml H2O were sterilized and then diluted in a 6 x 18 in cylindrical tank filled with distilled H2O. After waiting for 2 d to allow particles time to settle, several terminal internodal cells from a stock Nitella culture were added to the tank and it was placed under 100 foot-candles of fluorescent (blue-green) illumination. Cultures normally took 2–4 wk to mature.

Skeletal myosin was prepared from rabbit muscle by the method of Kielty and Harrington (12), and was stored as a stock solution in 0.6 M KCl, 50 mM potassium phosphate, pH 7.0, 0.2 mM DTT, and 0.03 mM EDTA. Beads were allowed to incubate with myosin on ice for at least 1 h before they were assayed for motility. Most often the beads aggregate into distinct groups ~5–10 µm in diameter, but the rates of movement are independent of bead diameter between 0.6 and 120 µm (22, 23). While it was possible to disrupt bead aggregates by mild sonication without affecting motility, generally this was not done.

Nitella Dissection: A Nitella internodal cell (2–4 cm in length and ~1 mm in diameter) was trimmed free of branch cells. The cell was rinsed briefly with distilled H2O and placed in 10 ml of dissection buffer (10 mM potassium phosphate, pH 7.0, 50 mM KCl, 0.2 mM DTT, and 0.03 mM EDTA). Beads were diluted 10-fold to a concentration of 2.5 × 10^9 beads/ml. Each point represents the average velocity of five to 10 bead velocities measured. These rates were consistent from one N. axillaris cell to another. Different skeletal muscle myosin preparations, however, moved at considerably different rates, between 2 to 6 µm/s. Furthermore, we observed that over a period of weeks, beads coated with myosin from the same preparation moved at progressively slower rates. This effect was reduced by the addition of DTT to the myosin storage buffer, suggesting that oxidation was responsible for the rate decrease. To more directly test the requirement for active myosin, we determined the effect of NEM-inactivated myosin on bead motility when mixed with active myosin. The presence of NEM-mysosin dramatically slowed bead movement. When only 20% of the myosin on the beads was NEM-inactivated, movement was slowed by 50%. Therefore, it is likely that the variability of myosin-bead velocity found in beads coated with myosin from different preparations or from a single preparation over time is due to partial inactivation of the myosin.

With the bead concentration in our standard assay (where beads were diluted 10-fold to a concentration of 2.5 × 10^9 beads/ml; see Materials and Methods), bead velocity was constant as long as the myosin concentration in the bead they settled onto the Nitella substratum. Within 1–2 min, many beads and bead aggregates became attached to the chloroplast rows, ceased their Brownian motion, and began to move unidirectionally along the rows. As reported earlier (22), the direction of movement reversed across each of the two Nitella indifferent zones, consistent with the reverse in polarity of actin filaments on either side of these zones (11). The direction of movement was from the pointed ends of the actin filaments toward their barbed ends, as described previously (22). Myosin-bead movement proceeded over long distances (>100 µm) and at a constant rate independent of the size of the bead aggregate. Over time, often within 20–30 min after dissection, bead movement became less consistent; it sometimes appeared as if the beads were caught by and then broke free from invisible restraints, and some beads stopped moving altogether. The same Nitella could be used for measurements for ~1 h after dissection, until few enough beads were still moving smoothly and continuously for the data to be useful.

The rates of movement of beads coated with a fresh myosin preparation were highly reproducible (standard error was ~10% when 10 bead velocities were measured). These rates were consistent from one N. axillaris cell to another. Different skeletal muscle myosin preparations, however, moved at considerably different rates, between 2 to 6 µm/s. Furthermore, we observed that over a period of weeks, beads coated with myosin from the same preparation moved at progressively slower rates. This effect was reduced by the addition of DTT to the myosin storage buffer, suggesting that oxidation was responsible for the rate decrease. To more directly test the requirement for active myosin, we determined the effect of NEM-inactivated myosin on bead motility when mixed with active myosin. The presence of NEM-mysosin dramatically slowed bead movement. When only 20% of the myosin on the beads was NEM-inactivated, movement was slowed by 50%. Therefore, it is likely that the variability of myosin-bead velocity found in beads coated with myosin from different preparations or from a single preparation over time is due to partial inactivation of the myosin.

With the bead concentration in our standard assay (where beads were diluted 10-fold to a concentration of 2.5 × 10^9 beads/ml; see Materials and Methods), bead velocity was constant as long as the myosin concentration in the bead

RESULTS

When Covaspheres coated with skeletal myosin were expelled from the microcapillary, they exhibited Brownian motion as

Figure 1 The velocity of movement of skeletal muscle myosin-coated beads is plotted versus the concentration of myosin in the bead incubation mixture for bead concentrations of (a) 6 × 10^8 beads/ml, (b) 2.5 × 10^9 beads/ml (standard assay), and (c) 1 × 10^10 beads/ml. Each point represents the average velocity of five to fifteen distinct beads or bead aggregates and standard assay conditions were used (see Materials and Methods).
incubation was at least 20 μg/ml. This result was true for smooth muscle myosin and Dictyostelium myosin (data not shown) as well as for skeletal myosin (Fig. 1). Below 20 μg/ml there was a sharp decrease in bead velocity, and no movement at all was observed when beads were incubated with <10 μg/ml of myosin in the standard assay. The minimum concentration of myosin required for movement was found to depend on bead concentration (Fig. 1). When one-fourth the normal amount of beads was used, incubation with myosin at 5 μg/ml caused the beads to move. Conversely, when four times as many beads were used, the myosin concentration required for movement was 30 μg/ml.

We tested the relative rates of movement of myosin from skeletal muscle, smooth muscle and a nonmuscle cell (Fig. 2). The greatest velocity was observed with skeletal muscle myosin. The data shown in Fig. 2 derive from skeletal muscle myosin preparations that moved from 3 to 6 μm/s. As mentioned above, different preparations moved at different rates, but all preparations moved between 2 and 6 μm/s. Phosphorylated gizzard smooth muscle myosin, in contrast, moved at only 0.1–0.6 μm/s. Dictyostelium myosin moved at 0.5–1.5 μm/s. These rates of movement are thus characteristic of the type of myosin used. In addition, the rates of movement of the different myosins correlate with their relative actin-activated ATPase activities (2, 17).

The high reproducibility of the velocity measurements show that this assay is clearly a useful tool for investigating factors affecting myosin motility. To find the optimal assay conditions (defined as giving the maximum velocities) and to define boundary conditions outside of which the assay does not work, we varied several experimental parameters. As shown in Fig. 3, there is a sharp decrease in velocity below pH 6.8; above pH 7.5, there is a more gradual decline. From pH 6.8 to pH 7.5, velocity is relatively constant. Imidazole buffer and Tris-HCl buffer gave the same results. We also investigated the effect of the MgCl₂ concentration in the dissection buffer (Fig. 4). At 1 mM MgCl₂, no movement occurred. This may be because ATP, an effective chelator of Mg²⁺, was present at 1 mM as well, and free Mg²⁺ may be required for movement. Bead velocity was maximal at 4 mM MgCl₂ and then gradually declined at concentrations of up to 20 mM, the highest tested.

A third dissection buffer parameter we explored was KCl concentration. Dissection is usually performed in 25 mM KCl, but normal movement occurs in KCl concentrations as low as 10 mM or as high as 70 mM. At KCl concentrations of 70–100 mM, myosin-beads sometimes moved. The variability at these KCl concentrations could reflect effects on the Nitella substratum that differ somewhat from cell to cell. At 150 mM KCl and above no movement was observed.

Myosin-bead movement on actin cables was also found to depend on ATP concentration (Fig. 5). The velocity was half-maximal at an ATP concentration of 50 μM. The final parameter tested was the temperature at which the assay is performed. As Fig. 6 shows, velocity was found to be strongly temperature-dependent. When graphed as an Arrhenius plot the slope indicates activation energies of 90 kJ/mol from 10 to 22°C and 40 kJ/mol from 23 to 39°C.

![Figure 3](image-url)
Figure 3 Bead velocity is plotted versus pH of the dissection medium with 10 mM imidazole (O) or Tris-HCl buffer (■) for skeletal muscle myosin using the standard assay.

![Figure 4](image-url)
Figure 4 Bead velocity is plotted versus MgCl₂ concentration in the dissection buffer for skeletal muscle myosin.

![Figure 5](image-url)
Figure 5 Bead velocity is plotted versus ATP concentration for skeletal muscle myosin (■ and ○ denote two different myosin preparations).
to date to suggest that this complication is a serious one. Gy6rgyi, and M. P. Sheetz, manuscript submitted for publication.

There could be trace amounts of the maximal rate of cellular movements that are not biochemically defined. There could be trace amounts of the maximal rate of cellular movements that are not yet apparent. Thus, the critical question as to whether HMM free of any trace of myosin can move must be addressed directly. The value we obtained for half-maximal velocity of shortening. Our results suggest that it is unlikely that this level of contamination could account for the movement that we have seen repeatedly with HMM preparations made as described in the Sheetz and Spudich report (22). However, all experiments to obtain movement with highly purified HMM have failed, for reasons that are not yet apparent. Thus, the critical question as to whether HMM free of any trace of myosin can move must await further experimentation.

There are good correlations between the velocity of muscle shortening and of actin-activated myosin ATPase activity (2). With regard to ATP concentration dependence, however, the half-maximal velocity of muscle shortening under zero load occurs at ~200 μM ATP (4), whereas the half-maximal value for actin-activated HMM ATPase in vitro occurs at 6 μM (18). In the case of the ATPase measurement, each myosin is expected to behave independently, so that a half-maximal rate of hydrolysis should be a reflection of 50% of the myosin ATP-binding sites being filled. On the other hand, in the case of the measurement of the velocity of shortening, the myosin molecules are not behaving independently. A small percentage of the molecules lacking ATP in their active sites would be expected to result in very strong actin-myosin interactions (rigor bonds), which should exert a substantial drag on the relative movement of thick and thin filaments. Thus, considerably more than 50% saturation of the ATP-binding sites may be required for half-maximal velocity of shortening. Our myosin-bead assay would be expected to mimic muscle shortening in this regard. The value we obtained for half-maximal velocity of movement of skeletal myosin-coated beads was 50 μM ATP, which, like the value for muscle shortening, is considerably higher than the ATP concentration required for half-maximal ATPase activity.

With regard to temperature dependence, the activation...
energy measured for the velocity of shortening of intact muscle fibers is 60 kJ/mol myosin (25) and that measured for the actin-activated HMM ATPase is 120 kJ/mol (18). Interestingly, the temperature dependence of the myosin-bead velocity proved to be biphasic. This biphasic nature of the Arrhenius plot may be revealing an important property of the myosin molecule. Levy et al. (14, 15) showed nearly identical temperature dependence for actin-activated myosin ATPase activity under certain conditions. They calculated energies of activation of 50 kJ/mol >16°C and 104 kJ/mol <16°C, whereas our values for myosin movement in vitro are 40 kJ/mol and 90 kJ/mol with an inflection point at ~22°C. Levy et al. (14, 15) interpreted the biphasic character of their Arrhenius plots to reflect a reversible flexibility of the conformational state of the S1 heads of the myosin molecule. Strikingly, a very similar biphasic Arrhenius plot was obtained for the rate of decay of tension in muscle fibers by Stein et al. (25). They reported energies of activation of 70 kJ/mol >20°C and 117 kJ/mol <20°C. They interpreted the biphasic nature of the temperature dependence as reflecting a rate limiting step in the sequestering of calcium ion by the sarcoplasmic reticulum. It seems likely from the studies of Levy et al. (14, 15) that this phenomenon is an important property of the myosin molecule itself, and this conclusion is supported by our findings, where calcium ion sequestration is not an issue.

From these studies it is evident that the rapid movement of myosin past actin in the sarcomere, as well as presumably in nonmuscle cells such as Dictyostelium, can be reproduced in vitro with myosin-coated beads and Nitella actin cables, and easily measured by means of light microscopy. The rate of bead movement depends on the source of myosin, and correlates with the in vivo rates of muscle contraction as well as with the corresponding actin-activated ATPase activities. As defined here, the Nitella assay allows a quantitative way to study the effects of various biochemical conditions or modifications of the myosin molecule on the ability of myosin to convert chemical energy into movement.

We wish to thank Dr. Lincoln Taiz and Dr. Paul Richmond for generously providing initial Nitella stocks and helping us to establish cultures in our own laboratory.

These studies, initiated when Dr. Sheetz was on sabbatical from the Department of Cell Biology at Stanford University, were supported by National Institutes of Health grants GM33289 and GM30387 to J. A. Spudich and GM33351 to M. P. Sheetz. Dr. Sheetz is an American Heart Association Established Investigator.

Received for publication 29 May 1984, and in revised form 30 July 1984.

REFERENCES

1. Adelstein, R. S., and E. Eisenberg. 1980. Regulation and kinetics of the actin-myosin-ATP interaction. Annu. Rev. Biochem. 49:921-956.
2. Barány, M. 1967. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50:197-218.
3. Crowder, M. S., and R. Cooke. 1984. The effect of myosin sulfhydryl modification on the mechanics of fiber contraction. J. Muscle Res. Cell Motil. 5:131-146.
4. Cooke, R., and W. Baltz. 1979. The contraction of glycogenated muscle fibers as a function of the ATP concentration. Biophys. J. 28:241-258.
5. Dillon, P. F., and R. A. Murphy. 1982. Tonic force maintenance with reduced shortening velocity in arterial smooth muscle. J. Physiol. 247:102-108.
6. Edman, K. A. P. 1979. The velocity of shortening at zero load: its relation to sarcomere length and degree of activation of vertebrate muscle fibers. In Cross-Bridge Mechanism in Muscle Contraction. H. Sugi and G. H. Pollack, editors. University Press, Baltimore. 347-363.
7. Goody, R. S., and K. C. Holmes. 1983. Cross-bridges and the mechanism of muscle contraction. Biophys. Biophys. Acta. 736:13-39.
8. Huxley, A. F. 1974. Muscular contraction. J. Physiol. (Lond.). 243:1-43.
9. Huxley, H. E. 1969. The mechanism of muscular contraction. Science (Wash. DC). 164:1356-1366.
10. Kamiya, N. 1981. Physical and chemical basis of cytoplasmic streaming. Annu. Rev. Plant Physiol. 32:205-236.
11. Kress, Y. M., P. K. Hepler, A. P. Palevitz, and N. K. Wessells. 1976. Polarity of actin filaments in Chara cells. Proc. Natl. Acad. Sci. USA. 73:165-167.
12. Kress, W. W., and W. F. Harrington. 1960. A model for the myosin molecule. Biophys. Biophys. Acta. 41:401-421.
13. Korn, E. D. 1982. Actin polymerization and its regulation by proteins from nonmuscle cells. Physiol. Rev. 62:672-737.
14. Levy, H. M., N. Sharon, and D. E. Koehl. Jr. 1959. Purified muscle proteins and the walking rate of ants. Proc. Natl. Acad. Sci. USA. 45:785-791.
15. Levy, H. M., N. Sharon, F. M. Ryan, and D. E. Koehl, Jr. 1962. Effect of temperature on the rate of hydrolysis of adenosine triphosphate and inosine triphosphate by myosin with and without modifiers. Evidence for a change in protein conformation. Biochim. Biophys. Acta. 56:118-126.
16. Méraria, J.-F., and L. Taiz. 1977. Cell wall extension in Nitella as influenced by acids and ions. Proc. Natl. Acad. Sci. USA. 74:1565-1569.
17. Mockrin, S. C., and J. A. Spudich. 1976. Calcium control of actin-activated myosin ATPase from Dictyostelium discoideum. Proc. Natl. Acad. Sci. USA. 73:2231-2235.
18. Moon, C. 1973. Actin activation of heavy meromyosin and subfragment-1 ATPases: steady state kinetic studies. Cold Spring Harb. Symp. Quant. Biol. 37:137-143.
19. Moon, R. L., and R. A. Haworth. 1984. Contraction of rabbit skin skeletal muscle fibers at low levels of magnesium adenosine triphosphate. Biophys. J. 45:733-742.
20. Nothnagel, E. A., J. W. Sanger, and W. W. Webb. 1982. Effects of exogenous proteins on cytoplasmic streaming in perfused Chara cells. J. Cell Biol. 93:735-742.
21. Rüegg, J. C. 1971. Smooth muscle tone. Physiol. Rev. 51:201-248.
22. Sheetz, M. P., and J. A. Spudich. 1983. Movement of myosin-coated fluorescent beads on actin cables in vitro. Nature (Lond.). 303:33-35.
23. Sheetz, M. P., and J. A. Spudich. 1983. Movement of myosin-coated structures on actin cables. Cell Motility 3:485-489.
24. Spudich, J. A., J. S. Kron, and M. P. Spudich. 1984. Reconstituted, oriented actin filaments support movement of myosin-coated beads. J. Cell Biol. In press. (Abstr.)
25. Stein, R. B., T. Gordon, and J. Shriver. 1981. Physical and chemical basis of cytoplasmic streaming. Annu. Rev. Biophys. 11:679-737.
26. Taylor, E. W. 1979. Mechanism of actomyosin ATPase and the problem of muscle contraction. CRC Crit. Rev. Biochem. 6:103-164.
27. Uyemura, D. G., and J. A. Spudich. 1980. Biochemistry and regulation of nonmuscle actins. In Biological Regulation of Development. Vol. 2. R. F. Goldberger, editor. Plenum Press, New York. 317-338.