On a certain subalgebra of $U_q(\hat{\mathfrak{sl}}_2)$ related to the degenerate q-Onsager algebra

Tomoya Hattai and Tatsuro Ito

Division of Mathematical and Physical Sciences, Kanazawa University,
Kakuma-machi, Kanazawa 920-1192, Japan

Abstract

In [4], it is discussed that a certain subalgebra of the quantum affine algebra $U_q(\hat{\mathfrak{sl}}_2)$ controls the type I TD-algebra of the second kind (the degenerate q-Onsager algebra). The subalgebra, which we denote by $U_q'(\hat{\mathfrak{sl}}_2)$, is generated by $e_0^+, e_1^+, k_1^\pm 1 (i = 0, 1), e_0^-$ missing from the Chevalley generators $e_i^\pm, k_i^\pm 1 (i = 0, 1)$ of $U_q(\hat{\mathfrak{sl}}_2)$. In this paper, we determine the finite-dimensional irreducible representations of $U'_q(\hat{\mathfrak{sl}}_2)$. Intertwiners are also determined.

Keywords. Degenerate q-Onsager algebra, quantum affine algebra, TD-algebra, augmented TD-algebra, TD-pair, Terwilliger algebra, P- and Q-polynomial association scheme.

2010 Mathematics Subject Classification. Primary: 17B37. Secondary: 05E30.

1 Introduction

Throughout this paper, the ground field is \mathbb{C} and q stands for a nonzero scalar that is not a root of unity. The symbols $\varepsilon, \varepsilon^*$ stand for an integer chosen from $\{0, 1\}$. Let $A_q = A_q^{(\varepsilon, \varepsilon^*)}$ denote the associative algebra with 1 generated by z, z^* subject to the defining relations [4]

$$(TD) \quad \left\{ \begin{array}{l} [z, [z, [z, z^*]_q]_{q^{-1}}] = -\varepsilon(q^2 - q^{-2})^2[z, z^*], \\
[z^*, [z^*, [z^*, z]_q]_{q^{-1}}] = -\varepsilon^*(q^2 - q^{-2})^2[z^*, z], \end{array} \right. \quad (1)$$
where $[X, Y] = XY - YX$, $[X, Y]_q = qXY - q^{-1}YX$. This paper deals with a subalgebra of the quantum affine algebra $U_q(\widehat{sl}_2)$ that is closely related to A_q in the case of $(\varepsilon, \varepsilon^*) = (1, 0)$. If $(\varepsilon, \varepsilon^*) = (0, 0)$, A_q is isomorphic to the positive part of $U_q(\widehat{sl}_2)$. If $(\varepsilon, \varepsilon^*) = (1, 1)$, A_q is called the q-Onsager algebra. If $(\varepsilon, \varepsilon^*) = (1, 0)$, A_q may well be called the degenerate q-Onsager algebra.

The algebra A_q arises in the course of the classification of TD-pairs of type I, which is a critically important step in the study of representations of Terwilliger algebras for P- and Q- polynomial association schemes [3]. For this reason, A_q is called the TD-algebra of type I. Precisely speaking, the TD-algebra of type I is standardized to be the algebra A_q, where q is the main parameter for TD-pairs of type I; so $q \neq \pm 1$ and q is allowed to be a root of unity. In our case where we assume q is not a root of unity, to classify the TD-pairs of type I is to determine the finite-dimensional irreducible representations $\rho: A_q \rightarrow \text{End}(V)$ with the property that $\rho(z), \rho(z^*)$ are both diagonalizable, and vice versa. Such irreducible representations of A_q are determined in [4] via embeddings of A_q into the augmented TD-algebra T_q. (In the case of $(\varepsilon, \varepsilon^*) = (1, 1)$, the diagonalizability condition of $\rho(z), \rho(z^*)$ can be dropped, because it turns out that this condition always holds for every finite-dimensional irreducible representation ρ of the q-Onsager algebra A_q.) T_q is easier than A_q to study representations for, and each finite-dimensional irreducible representation $\rho: A_q \rightarrow \text{End}(V)$ with $\rho(z), \rho(z^*)$ diagonalizable can be extended to a finite-dimensional irreducible representation of T_q via a certain embedding of A_q into T_q.

The augmented TD-algebra $T_q = T_q^{(\varepsilon, \varepsilon^*)}$ is the associative algebra with 1 generated by $x, y, k^{\pm 1}$ subject to the defining relations

\[(\text{TD})_0 \left\{ \begin{array}{ll}
k k^{-1} = k^{-1}k = 1, \\
k^2 = q^2x, \\
k^{-1}y = q^{-2}y,
\end{array} \right. \tag{2}\]

and

\[(\text{TD})_1 \left\{ \begin{array}{ll}
[x, [x, [x, y]_q]_q^{-1}] = \delta(\varepsilon^*x^2k^2 - \varepsilon k^{-2}x^2), \\
[y, [y, [y, x]_q]_q^{-1}] = \delta(-\varepsilon^*k^2y^2 + \varepsilon y^2k^{-2}),
\end{array} \right. \tag{3}\]

where $\delta = -(q - q^{-1})(q^2 - q^{-2})(q^3 - q^{-3})q^4$. The finite-dimensional irreducible representations of T_q are determined in [4] via embeddings of T_q into the $U_q(sl_2)$-loop algebra $U_q(L(sl_2))$. 2
Let \(e_i^\pm, k_i^{\pm 1} (i = 0, 1) \) be the Chevalley generators of \(U_q(L(\mathfrak{sl}_2)) \). So the defining relations of \(U_q(L(\mathfrak{sl}_2)) \) are

\[
\begin{align*}
 k_0 k_1 &= k_1 k_0 = 1, \\
 k_i k_i^{-1} &= k_i^{-1} k_i = 1, \\
 k_i e_i^\pm k_i^{-1} &= q^{\pm 2} e_i^\pm, \\
 k_i e_j^\pm k_i^{-1} &= q^{\mp 2} e_j^\pm, \\
 [e_i^+, e_i^-] &= k_i - k_i^{-1}, \\
 [e_i^+, e_j^-] &= 0 \quad (i \neq j), \\
 [e_i^\pm, [e_i^\pm, e_j^\pm]]_{q^{-1}} &= 0 \quad (i \neq j).
\end{align*}
\tag{4}
\]

Note that if \(k_0 k_1 = k_1 k_0 = 1 \) is replaced by \(k_0 k_1 = k_1 k_0 \) in (4), we have the quantum affine algebra \(U_q(\widehat{\mathfrak{sl}}_2) : U_q(L(\mathfrak{sl}_2)) \) is the quotient algebra of \(U_q(\widehat{\mathfrak{sl}}_2) \) by the two-sided ideal generated by \(k_0 k_1 - 1 \). For a nonzero scalar \(s \), define the elements \(x(s), y(s), k(s) \) of \(U_q(L(\mathfrak{sl}_2)) \) by

\[
\begin{align*}
 x(s) &= -q^{-1}(q - q^{-1})^2 (se_0^+ + \varepsilon s^{-1} e_1^- k_1), \\
 y(s) &= \varepsilon^* se_0^- k_0 + s^{-1} e_1^+, \\
 k(s) &= sk_0.
\end{align*}
\tag{5}
\]

Then the mapping

\[
\varphi_s : \mathcal{T}_q \longrightarrow U_q(L(\mathfrak{sl}_2)) \quad (x, y, k \mapsto x(s), y(s), k(s))
\tag{6}
\]

gives an injective algebra homomorphism. If \((\varepsilon, \varepsilon^*) = (0, 0)\), the image \(\varphi_s(\mathcal{T}_q) \) coincides with the Borel subalgebra generated by \(e_i^+ \), \(k_i^{\pm 1} \) \((i = 0, 1)\). If \((\varepsilon, \varepsilon^*) = (1, 0)\), the image \(\varphi_s(\mathcal{T}_q) \) is properly contained in the subalgebra generated by \(e_0^+, e_i^\pm, k_i^{\pm 1} \) \((i = 0, 1)\), \(e_0^- \) missing from the generators; we denote this subalgebra by \(U_q'(L(\mathfrak{sl}_2)) \). Through the natural homomorphism \(U_q(\widehat{\mathfrak{sl}}_2) \longrightarrow U_q(L(\mathfrak{sl}_2)) \), pull back the subalgebra \(U_q'(L(\mathfrak{sl}_2)) \) and denote the pre-image by \(U_q'(\widehat{\mathfrak{sl}}_2) \):

\[
U_q'(\widehat{\mathfrak{sl}}_2) = \langle e_0^+, e_1^\pm, k_i^{\pm 1} \mid i = 0, 1 \rangle \subset U_q(\widehat{\mathfrak{sl}}_2).
\tag{7}
\]

In [4], it is shown that in the case of \((\varepsilon, \varepsilon^*) = (1, 0)\), all the finite-dimensional irreducible representations of \(\mathcal{T}_q \) are produced by tensor products of evaluation modules for \(U_q'(L(\mathfrak{sl}_2)) \) via the embedding \(\varphi_s \) of \(\mathcal{T}_q \) into \(U_q'(L(\mathfrak{sl}_2)) \). Using this fact and the Drinfel’d polynomials, we show in this paper that there are no finite-dimensional irreducible representations of \(U_q'(L(\mathfrak{sl}_2)) \)
and hence of \(U'_q(\hat{\mathfrak{sl}}_2) \) other than those afforded by tensor products of evaluation modules, if we apply suitable automorphisms of \(U'_q(L(\mathfrak{sl}_2)), U'_q(\hat{\mathfrak{sl}}_2) \) to adjust the types of the representations to be \((1, 1)\). Here we note that the evaluation parameters are allowed to be zero for \(U'_q(L(\mathfrak{sl}_2)), U'_q(\hat{\mathfrak{sl}}_2) \). Details will be discussed in Section 2, where the isomorphism classes of finite-dimensional irreducible representations of \(U'_q(\hat{\mathfrak{sl}}_2) \) are also determined. In Section 3, intertwiners will be determined for finite-dimensional irreducible \(U'_q(\hat{\mathfrak{sl}}_2) \)-modules.

Drinfel’d polynomials are not the main subject of this paper but the key tool for the classification of finite-dimensional irreducible representations of \(U_q(\hat{\mathfrak{sl}}_2), U'_q(\hat{\mathfrak{sl}}_2) \). They are defined in [4], directly attached to \(T_q \)-modules, not to \(U_q(\mathfrak{sl}_2) \)- or \(U'_q(\hat{\mathfrak{sl}}_2) \)-modules. (In the case of \((\epsilon, \epsilon^*) = (0, 0)\), they turn out to coincide with the original ones up to the reciprocal of the variable.) So if our approach is applied to the case of \((\epsilon, \epsilon^*) = (0, 0)\), finite-dimensional irreducible representations are naturally classified in the first place for the Borel subalgebra of \(U_q(\hat{\mathfrak{sl}}_2) \) and then for \(U_q(\hat{\mathfrak{sl}}_2) \) itself. This reverses the process adopted in [1] and will be briefly demonstrated in Section 2 as a warm-up for the case of \((\epsilon, \epsilon^*) = (1, 0)\), thus giving another proof to the classical result of Chari-Pressley [2].

2 Finite-dimensional irreducible representations of \(U'_q(\hat{\mathfrak{sl}}_2) \)

The subalgebra \(U'_q(\hat{\mathfrak{sl}}_2) \) of the quantum affine algebra \(U_q(\hat{\mathfrak{sl}}_2) \) is generated by \(e_0^+, e_1^\pm, k_i^{\pm 1} (i = 0, 1), e_0^- \) missing from the generators, and has by the triangular decomposition of \(U_q(\hat{\mathfrak{sl}}_2) \) the defining relations

\[
\begin{align*}
 k_0k_1 &= k_1k_0, \\
 k_ik_i^{-1} &= k_i^{-1}k_i = 1,
 k_0e_0^+k_0^{-1} &= q^2e_0^+, \\
 k_1e_0^+k_1^{-1} &= q^{-2}e_0^+,
 k_0e_0^+k_0^{-1} &= q^{-2}e_0^+,
 k_0e_0^+k_0^{-1} &= q^2e_0^+,
 [e_i^+, e_j^-] &= \frac{k_i - k_i^{-1}}{q - q^{-1}},
 [e_i^+, e_j^-] &= 0,
 [e_i^+, [e_i^+, e_j^+]_{q^{-1}}] &= 0 \quad (i \neq j).
\end{align*}
\]
Note that if \(k_0k_1 = k_1k_0 \) is replaced by \(k_0k_1 = k_1k_0 = 1 \) in (8), we have the defining relations for \(U_q'(L(\mathfrak{sl}_2)) \).

Let \(V \) be a finite-dimensional irreducible \(U_q'(\mathfrak{sl}_2) \)-module. Let us first observe that the \(U_q'(\mathfrak{sl}_2) \)-module \(V \) is obtained from a \(U_q'(L(\mathfrak{sl}_2)) \)-module by applying an automorphism of \(U_q'(\mathfrak{sl}_2) \). Since the element \(k_0k_1 \) belongs to the centre of \(U_q'(\mathfrak{sl}_2) \), \(k_0k_1 \) acts on \(V \) as a scalar \(s \) by Schur’s lemma. Since \(k_0k_1 \) is invertible, the scalar \(s \) is nonzero: \(k_0k_1 \mid_v = s \in \mathbb{C}^\times \). Observe that \(U_q'(\mathfrak{sl}_2) \) admits an automorphism that sends \(k_0 \) to \(s^{-1}k_0 \) and preserves \(k_1 \). Hence we may assume \(k_0k_1 \mid_v = 1 \). Then we can regard \(V \) as a \(U_q'(L(\mathfrak{sl}_2)) \)-module.

Let \(V \) be a finite-dimensional irreducible \(U_q'(L(\mathfrak{sl}_2)) \)-module. For a scalar \(\theta \), set \(V(\theta) = \{ v \in V \mid k_0v = \theta v \} \). So if \(V(\theta) \neq 0 \), \(\theta \) is an eigenvalue of \(k_0 \) and \(V(\theta) \) is the corresponding eigenspace of \(k_0 \). For an eigenvalue \(\theta \) and an eigenvector \(v \in V(\theta) \), it holds that \(e_0^+v \in V(q^2\theta) \) by the relation \(k_0e_0^+ = q^2e_0^+k_0 \) and \(e_1^+v \in V(q^{\pm 2}\theta) \) by \(k_0e_1^+ = q^{\pm 2}e_1^+k_0 \). We have

\[
e_0^+V(\theta) \subseteq V(q^2\theta), \quad e_1^+V(\theta) \subseteq V(q^{\pm 2}\theta).
\]

If \(\dim V = 1 \), then \(e_0^+V = 0, e_1^+V = 0 \) by (9) and \(k_0 \mid_V = \pm 1 \) by \([e_1^+, e_1^-] = (k_1 - k_1^{-1})/(q - q^{-1}) = (k_0^{-1} - k_0)/(q - q^{-1}) \). Such a \(U_q'(L(\mathfrak{sl}_2)) \)-module \(V \) is said to be trivial. Assume \(\dim V \geq 2 \). Choose an eigenvalue \(\theta \) of \(k_0 \) on \(V \). Then \(\sum_{i \in \mathbb{Z}} V(q^{\pm 2i}\theta) \) is invariant under the actions of the generators by (9), and so we have \(V = \sum_{i \in \mathbb{Z}} V(q^{\pm 2i}\theta) \) by the irreducibility of the \(U_q'(L(\mathfrak{sl}_2)) \)-module \(V \). Since \(V \) is finite-dimensional, there exists a positive integer \(d \) and a nonzero scalar \(s_0 \) such that the eigenspace decomposition of \(k_0 \) is

\[
V = \bigoplus_{i=0}^d V(s_0q^{2i-d}).
\]

We want to show that \(s_0 = \pm 1 \) holds in (10).

Consider the subalgebra of \(U_q'(L(\mathfrak{sl}_2)) \) generated by \(e_1^\pm, k_1^{\pm 1} \) and denote it by \(\mathcal{U} : \mathcal{U} = \langle e_1^\pm, k_1^{\pm 1} \rangle \). Regard \(V \) as a \(\mathcal{U} \)-module. Since \(\mathcal{U} \) is isomorphic to the quantum algebra \(U_q(\mathfrak{sl}_2) \), \(V \) is a direct sum of irreducible \(\mathcal{U} \)-modules, and for each irreducible \(\mathcal{U} \)-submodule \(W \) of \(V \), the eigenvalues of \(k_1 = k_0^{-1} \) on \(W \) are either \(\{ q^{2i-\ell} \mid 0 \leq i \leq \ell \} \) or \(\{ -q^{2i-\ell} \mid 0 \leq i \leq \ell \} \) for some nonnegative integer \(\ell \). In particular, if \(\theta \) is an eigenvalue of \(k_0 \), so is \(\theta^{-1} \). The collection of such eigenvalues gives rise to the eigenspace decomposition of (10). We obtain \(s_0 = \pm 1 \). Observe that \(U_q'(L(\mathfrak{sl}_2)) \) admits an automorphism that sends \(k_i \) to
\(-k_i (i = 0, 1) \text{ and } e_1^\pm \text{ to } -e_1^\pm.\) Hence we may assume \(s_0 = 1\) in (10). Note that in this case, \(k_1\) has the eigenvalues \(\{s_1q^{2i-\ell} \mid 0 \leq i \leq \ell\}\) with \(s_1 = 1.\) Such an irreducible module or the irreducible representation afforded by such is said to be of type \((1, 1)\), indicating \((s_0, s_1) = (1, 1)\). We conclude that the determination of finite-dimensional irreducible representations for \(U_q'(\mathfrak{sl}_2)\) is, via automorphisms, reduced to that of type \((1, 1)\) for \(U_q'(L(\mathfrak{sl}_2)).\)

In the rest of this section, we shall introduce evaluation modules for \(U_q'(L(\mathfrak{sl}_2))\) and show that every finite-dimensional irreducible representation of type \((1, 1)\) of \(U_q'(L(\mathfrak{sl}_2))\) is afforded by a tensor product of them. For \(a \in \mathbb{C}\) and \(\ell \in \mathbb{Z}_{\geq 0},\) let \(V(\ell, a)\) denote the \((\ell + 1)\)-dimensional vector space with a basis \(v_0, v_1, \ldots, v_\ell.\) Using (8), it can be routinely verified that \(U_q'(L(\mathfrak{sl}_2))\) acts on \(V(\ell, a)\) by

\[
\begin{align*}
 k_0 v_i &= q^{2i-\ell} v_i, \\
 k_1 v_i &= q^{\ell-2i} v_i, \\
 e_0^+ v_i &= a q^i [i + 1] v_{i+1}, \\
 e_1^+ v_i &= [\ell - i + 1] v_{i-1}, \\
 e_1^- v_i &= [i + 1] v_{i+1},
\end{align*}
\]

where \(v_{-1} = v_{\ell+1} = 0\) and \([t] = [t]_q = (q^t - q^{-t})/(q - q^{-1}).\) This \(U_q'(L(\mathfrak{sl}_2))-\)module \(V(\ell, a)\) is irreducible and called an evaluation module. The basis \(v_0, v_1, \ldots, v_\ell\) of the \(U_q'(L(\mathfrak{sl}_2))-\)module \(V(\ell, a)\) is called a standard basis. The vector \(v_0\) is called the highest weight vector. Note that the evaluation parameter \(a\) is allowed to be zero. Also note that if \(\ell = 0, V(\ell, a)\) is the trivial module. We denote the evaluation module \(V(\ell, 0)\) by \(V(\ell)\), allowing \(\ell = 0,\) and use the notation \(V(\ell, a)\) only for an evaluation module with \(a \neq 0\) and \(\ell \geq 1.\)

The \(U_q(\mathfrak{sl}_2)\)-loop algebra \(U_q'(L(\mathfrak{sl}_2))\) has the coproduct \(\Delta : U_q'(L(\mathfrak{sl}_2)) \to U_q'(L(\mathfrak{sl}_2)) \otimes U_q'(L(\mathfrak{sl}_2))\) defined by

\[
\begin{align*}
 \Delta(k_i^{\pm 1}) &= k_i^{\pm 1} \otimes k_i^{\pm 1}, \\
 \Delta(e_i^+ k_i) &= k_i \otimes e_i^+ k_i + e_i^- k_i \otimes 1, \\
 \Delta(e_i^- k_i) &= k_i \otimes e_i^- k_i + e_i^+ k_i \otimes 1.
\end{align*}
\]

The subalgebra \(U_q'(L(\mathfrak{sl}_2))\) is closed under \(\Delta.\) Thus given a set of evaluation modules \(V(\ell), V(\ell_i, a_i) (1 \leq i \leq n)\) for \(U_q'(L(\mathfrak{sl}_2))\), the tensor product

\[
V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)
\]
becomes a $U'_q(L(sl_2))$-module via Δ. Note that by the coassociativity of Δ, the way of putting parentheses in the tensor product of (13) does not affect the isomorphism class as a $U'_q(L(sl_2))$-module. Also note that if $\ell = 0$ in (13), then $V(0)$ is the trivial module and the tensor product of (13) is isomorphic to $V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ as $U'_q(L(sl_2))$-modules. Finally we allow $n = 0$, in which case we understand that the tensor product of (13) means $V(\ell)$.

With the evaluation module $V(\ell, a)$, we associate the set $S(\ell, a)$ of scalars $aq^{-\ell+1}, aq^{-\ell+3}, \ldots, aq^{\ell-1}$:

$$S(\ell, a) = \{aq^{2i-\ell+1} | 0 \leq i \leq \ell - 1\}. \quad (14)$$

The set $S(\ell, a)$ is called a q-string of length ℓ. Two q-strings $S(\ell, a), S(\ell', a')$ are said to be in general position if either

(i) the union $S(\ell, a) \cup S(\ell', a')$ is not a q-string, or

(ii) one of $S(\ell, a), S(\ell', a')$ includes the other.

Below is the main theorem of this paper. It classifies the isomorphism classes of the finite-dimensional irreducible $U'_q(L(sl_2))$-modules of type $(1,1)$.

Theorem 1. The following (i), (ii), (iii) holds.

(i) A tensor product $V = V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ of evaluation modules is irreducible as a $U'_q(L(sl_2))$-module if and only if $S(\ell_i, a_i), S(\ell_j, a_j)$ are in general position for all $i, j \in \{1, 2, \ldots, n\}$. In this case, V is of type $(1,1)$.

(ii) Consider two tensor products $V = V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n), V' = V(\ell') \otimes V(\ell'_1, a'_1) \otimes \cdots \otimes V(\ell'_m, a'_m)$ of evaluation modules and assume that they are both irreducible as a $U'_q(L(sl_2))$-module. Then, V, V' are isomorphic as $U'_q(L(sl_2))$-modules if and only if $\ell = \ell', n = m$ and $(\ell_i, a_i) = (\ell'_i, a'_i)$ for all i ($1 \leq i \leq n$) with a suitable reordering of the evaluation modules $V(\ell_1, a_1), \ldots, V(\ell_n, a_n)$.

(iii) Every non-trivial finite-dimensional irreducible $U'_q(L(sl_2))$-module of type $(1,1)$ is isomorphic to some tensor product $V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ of evaluation modules.
Discard the evaluation module \(V(\ell) \) from the statement of Theorem 1 and replace \(U'_q(L(sl_2)) \) by \(U_q(L(sl_2)) \) or \(B \), where \(B \) is the Borel subalgebra of \(U_q(L(sl_2)) \) generated by \(e_i^+, k_i^{\pm 1} \) \((i = 0, 1) \). Then it precisely describes the classification of the isomorphism classes of finite-dimensional irreducible modules of type \((1, 1)\) for \(U_q(L(sl_2)) \) \([2]\) or \(B \) \([1]\). There is a one-to-one correspondence of finite-dimensional irreducible modules of type \((1, 1)\) between \(U_q(L(sl_2)) \) and \(B \): every finite-dimensional irreducible \(U_q(L(sl_2)) \)-module of type \((1, 1)\) is irreducible as a \(B \)-module and every finite-dimensional irreducible \(B \)-module of type \((1, 1)\) is uniquely extended to a \(U_q(L(sl_2)) \)-module.

This sort of correspondence of finite-dimensional irreducible modules exists between \(U'_q(L(sl_2)) \) and \(T_q \) via the embedding \(\varphi \) of (6), where \(T_q \) is the augmented TD-algebra with \((\varepsilon, \varepsilon^*) = (1, 0)\), and this gives a proof of Theorem 1. The key to our understanding of the correspondence is the following two lemmas. Let \(\mathcal{U} \) denote the quantum algebra \(U_q(sl_2) \): \(\mathcal{U} \) is the associative algebra with 1 generated by \(X^\pm, K^{\pm 1} \) subject to the defining relations

\[
\begin{align*}
K K^{-1} &= K^{-1} K = 1, \\
K X^\pm K^{-1} &= q^{\pm 2} X^\pm, \\
[X^+, X^-] &= \frac{K - K^{-1}}{q - q^{-1}}.
\end{align*}
\] (15)

Lemma 1. [4, Lemma 7.5] Let \(V \) be a finite-dimensional \(\mathcal{U} \)-module that has the following weight-space \((K\text{-eigenspace})\) decomposition:

\[
V = \bigoplus_{i=0}^{d} U_i, \quad K |_{U_i} = q^{2i-d} \quad (0 \leq i \leq d).
\]

Let \(W \) be a subspace of \(V \) as a vector space. Assume that \(W \) is invariant under the actions of \(X^+ \) and \(K \):

\[
X^+ W \subseteq W, \quad KW \subseteq W.
\]

If it holds that

\[
\dim (W \cup U_i) = \dim (W \cup U_{d-i}) \quad (0 \leq i \leq d),
\]

then \(X^- W \subseteq W \), i.e., \(W \) is a \(\mathcal{U} \)-submodule.

Lemma 2. If \(V \) is a finite-dimensional \(\mathcal{U} \)-module, the action of \(X^- \) on \(V \) is uniquely determined by those of \(X^+, K^{\pm 1} \) on \(V \).
\textbf{Proof.} The claim holds if \(V \) is irreducible as a \(\mathcal{U} \)-module. By the semi-simplicity of \(\mathcal{U} \), it holds generally. \hfill \Box

As a warm-up for the proof of Theorem 1, we shall demonstrate how to use these lemmas in the case of the corresponding theorem \cite{2} for \(U_q(L(\mathfrak{sl}_2)) \). We want, and it is enough, to show part (iii) of the theorem for \(U_q(L(\mathfrak{sl}_2)) \) by using the classification of finite-dimensional irreducible \(\mathcal{B} \)-modules, since the parts (i), (ii) are well-known in advance of \cite{2} and the finite-dimensional irreducible \(\mathcal{B} \)-modules are classified in \cite{4} without using the part (iii) in question.

Let \(V \) be a finite-dimensional irreducible \(U_q(L(\mathfrak{sl}_2)) \)-module of type \((1,1)\). Then \(V \) has the weight-space decomposition

\[V = \bigoplus_{i=0}^{d} U_i, \quad k_0 |_{U_i} = q^{2i-d} \quad (0 \leq i \leq d). \]

Regard \(V \) as a \(\mathcal{B} \)-module. Let \(W \) be a minimal \(\mathcal{B} \)-submodule of \(V \). Note that \(W \) is irreducible as a \(\mathcal{B} \)-module. We want to show \(W = V \), i.e., \(V \) is irreducible as a \(\mathcal{B} \)-module. Since the mapping \((e_1^+)^{d-2i} : U_i \to U_{d-i}\) is a bijection and \(W \cap U_i \) is mapped into \(W \cap U_{d-i} \) by \((e_1^+)^{d-2i}\), we have \(\dim (W \cap U_i) \leq \dim (W \cap U_{d-i}) \) \((0 \leq i \leq [d/2])\). Similarly from the bijection \((e_1^+)^{d-2i} : U_{d-i} \to U_i\), we get \(\dim (W \cap U_{d-i}) \leq \dim (W \cap U_i) \). Thus it holds that

\[\dim (W \cap U_i) = \dim (W \cap U_{d-i}) \quad (0 \leq i \leq d). \]

Consider the algebra homomorphism from \(\mathcal{U} \) to \(U_q(L(\mathfrak{sl}_2)) \) that sends \(X^+, X^-, K^{\pm 1} \) to \(e_0^+, e_0^-, k_0^{\pm 1} \), respectively. Regard \(V \) as a \(\mathcal{U} \)-module via this algebra homomorphism. Then \(X^+W \subseteq W, KW \subseteq W \). Since \(\dim (W \cap U_i) = \dim (W \cap U_{d-i}) \) \((0 \leq i \leq d)\), we have by Lemma 1 that \(X^-W \subseteq W \), i.e., \(e_0^-W \subseteq W \). Similarly, Lemma 1 can be applied to the \(\mathcal{U} \)-module \(V \) via the algebra homomorphism from \(\mathcal{U} \) to \(U_q(L(\mathfrak{sl}_2)) \) that sends \(X^+, X^-, K^{\pm 1} \) to \(e_1^+, e_1^-, k_1^{\pm 1} \), respectively, in which case the weight-space decomposition of the \(\mathcal{U} \)-module \(V \) is \(V = \bigoplus_{i=0}^{d} U_{d-i}, K|_{U_{d-i}} = q^{2i-d} \) \((0 \leq i \leq d)\). Consequently, we get \(X^-W \subseteq W \), i.e., \(e_1^-W \subseteq W \). Thus \(W \) is \(U_q(L(\mathfrak{sl}_2)) \)-invariant and we have \(W = V \) by the irreducibility of the \(U_q(L(\mathfrak{sl}_2)) \)-module \(V \). We conclude that every finite-dimensional irreducible \(U_q(L(\mathfrak{sl}_2)) \)-module of type \((1,1)\) is irreducible as a \(\mathcal{B} \)-module.

Now consider the class of finite-dimensional irreducible \(\mathcal{B} \)-modules \(V \), where \(V \) runs through all tensor products of evaluation modules that are
irreducible as a $U_q(L(\mathfrak{sl}_2))$-module:

$$V = V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n).$$

Then it turns out that the Drinfel’d polynomials $P_V(\lambda)$ of the irreducible \mathcal{B}-modules V exhaust all that are possible for finite-dimensional irreducible \mathcal{B}-modules of type $(1, 1)$, as shown in [4] by the product formula

$$P_V(\lambda) = \prod_{i=1}^{n} P_{V(\ell_i, a_i)}(\lambda),$$

$$P_{V(\ell_i, a_i)}(\lambda) = \prod_{\zeta \in S(\ell_i, a_i)} (\lambda + \zeta).$$

Since the Drinfel’d polynomial $P_V(\lambda)$ determines the isomorphism class of the \mathcal{B}-module V of type $(1, 1)$ [4, the injectivity part of Theorem 1.9'], there are no other finite-dimensional irreducible \mathcal{B}-modules of type $(1, 1)$. This means that every finite-dimensional irreducible \mathcal{B}-module of type $(1, 1)$ comes from some tensor product of evaluation modules for $U_q(L(\mathfrak{sl}_2))$. Let V be a finite-dimensional irreducible $U_q(L(\mathfrak{sl}_2))$-module of type $(1, 1)$. Then V is irreducible as a \mathcal{B}-module and so there exists an irreducible $U_q(L(\mathfrak{sl}_2))$-module $V' = V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ such that V, V' are isomorphic as \mathcal{B}-modules. By Lemma 2, V, V' are isomorphic as $U_q(L(\mathfrak{sl}_2))$-modules. This completes the proof of part (iii) of the theorem for $U_q(L(\mathfrak{sl}_2))$. The proof of Theorem 1 can be given by an argument very similar to the one we have seen above for the case of $U_q(L(\mathfrak{sl}_2))$. We prepare two more lemmas for the case of $U'_q(L(\mathfrak{sl}_2))$ to make the point clearer. Set $(\varepsilon, \varepsilon^*) = (1, 0)$ and let \mathcal{T}_q be the augmented TD-algebra defined by (TD)$_0$, (TD)$_1$ in (2), (3). For $s \in \mathbb{C}^\times$, let φ_s be the embedding of \mathcal{T}_q into $U'_q(L(\mathfrak{sl}_2))$ given by (5), (6).

Lemma 3. Let V_1, V_2 be finite-dimensional irreducible $U'_q(L(\mathfrak{sl}_2))$-modules. If V_1, V_2 are isomorphic as $\varphi_s(\mathcal{T}_q)$-modules for some $s \in \mathbb{C}^\times$, then V_1, V_2 are isomorphic as $U'_q(L(\mathfrak{sl}_2))$-modules.

Proof. By (5), $\varphi_s(\mathcal{T}_q)$ is generated by $s e_0^+ + s^{-1} e_1^-$, e_1^+ and $k_i^{1 \pm 1}$ ($i = 0, 1$). Since $(e_1^+, k_1^{1 \pm 1})$ is isomorphic to the quantum algebra $U_q(\mathfrak{sl}_2)$, the action of e_1^+ on V_i ($i = 1, 2$) is uniquely determined by those of $e_1^+, k_1^{1 \pm 1} \in \varphi_s(\mathcal{T}_q)$ by Lemma 2. Apparently the action of e_0^+ on V_i ($i = 1, 2$) is uniquely determined by those of $s e_0^+ + s^{-1} e_1^-$, e_1^-, k_1, and hence by that of $\varphi_s(\mathcal{T}_q)$. So the action of $U'_q(L(\mathfrak{sl}_2))$ on V_i ($i = 1, 2$) is uniquely determined by that of $\varphi_s(\mathcal{T}_q)$. \qed
Lemma 4. Let V be a finite-dimensional irreducible $U_q'(L(sl_2))$-module of type $(1, 1)$. Then there exists a finite set Λ of nonzero scalars such that V is irreducible as a $\varphi_s(T_q)$-module for each $s \in \mathbb{C}^\times - \Lambda$.

Proof. For $s \in \mathbb{C}^\times$, regard V be a $\varphi_s(T_q)$-module. Let W be a minimal $\varphi_s(T_q)$-submodule of V. It is enough to show that $W = V$ holds if s avoids finitely many scalars. By (10) with $s_0 = 1$, the eigenspace decomposition of $k_1 = k_0^{-1}$ on V is $V = \bigoplus_{i=0}^d U_{d-i}$, $k_1 |_{U_{d-i}} = q^{2i-d}$ $(0 \leq i \leq d)$. The subalgebra $\langle e_1^\pm, k_1 \pm 1 \rangle$ of $U_q'(L(sl_2))$ is isomorphic to the quantum algebra $U = U_q(sl_2)$ in (15) via the correspondence of $e_1^\pm, k_1 \pm 1$ to X^\pm, K^\pm. The element $(e_1^+)^{d-2i}$ maps U_{d-i} onto U_i bijectively $(0 \leq i \leq \lfloor d/2 \rfloor)$. Also $(e_1^- k_1)^{d-2i}$ maps U_i onto U_{d-i} bijectively $(0 \leq i \leq \lfloor d/2 \rfloor)$.

The element $(e_1^+)^{d-2i}$ belongs to $\varphi_s(T_q)$. So $(e_1^+)^{d-2i}W \subseteq W$. Since the mapping $(e_1^+)^{d-2i} : U_{d-i} \rightarrow U_i$ is a bijection, we have $\dim(W \cap U_{d-i}) \leq \dim(W \cap U_i)$ $(0 \leq i \leq \lfloor d/2 \rfloor)$.

The element $(e_1^- k_1)^{d-2i}$ does not belong to $\varphi_s(T_q)$, but $(e_1^+ - s^2 e_1^- k_1)^{d-2i}$ does. By (9), $(e_1^+ - s^2 e_1^- k_1)^{d-2i}$ maps U_i to $U_{d-i} (0 \leq i \leq \lfloor d/2 \rfloor)$. We want to show it is a bijection if s avoids finitely many scalars. Identify U_{d-i} with U_i as vector spaces by the bijection $(e_1^-)^{d-2i}$ between them. Then it makes sense to consider the determinant of a linear map from U_i to U_{d-i}. Set $t = s^{-2}$ and expand $(e_1^+ + te_1^- k_1)^{d-2i}$ as

$$t^{d-2i}(e_1^- k_1)^{d-2i} + \text{lower terms in } t.$$

Each term of the expansion gives a linear map from U_i to U_{d-i}. So the determinant of $(e_1^+ + te_1^- k_1)^{d-2i} |_{U_i}$ equals

$$t^{(d-2i)\dim U_i} \det(e_1^- k_1)^{d-2i} |_{U_i} + \text{lower terms in } t,$$

and this is a polynomial in t of degree $(d-2i)\dim U_i$, since $\det(e_1^- k_1)^{d-2i} |_{U_i} \neq 0$. Let Λ_i be the set of nonzero s such that $t = s^{-2}$ is not a root of the polynomial in (16). Then if $s \in \mathbb{C}^\times - \Lambda_i$, $(e_1^+ + s^2 e_1^- k_1)^{d-2i}$ maps U_i to U_{d-i} bijectively.

Set $\Lambda = \bigcup_{i=0}^{\lfloor d/2 \rfloor} \Lambda_i$. Choose $s \in \mathbb{C}^\times - \Lambda$. Then the mapping $(e_1^+ + s^2 e_1^- k_1)^{d-2i} : U_i \rightarrow U_{d-i}$ is a bijection for $0 \leq i \leq \lfloor d/2 \rfloor$. Since $(e_1^+ + s^2 e_1^- k_1)$ belongs to $\varphi_s(T_q)$, we have $(e_1^+ + s^2 e_1^- k_1)^{d-2i}W \subseteq W$ and so $\dim(W \cap U_i) \leq \dim(W \cap U_{d-i})$. Since we have already shown $\dim(W \cap U_{d-i}) \leq \dim(W \cap U_i)$, we obtain $\dim(W \cap U_i) = \dim(W \cap U_{d-i}) (0 \leq i \leq \lfloor d/2 \rfloor)$. Therefore by Lemma 1, we have $e_1^i W \subseteq W$. Since $(e_1^+ + s^2 e_1^- k_1)W \subseteq W$, the inclusion
Proof of Theorem 1. We use the classification of finite-dimensional irreducible \mathcal{T}_q-modules in the case of $(\varepsilon, \varepsilon^*) = (1, 0)$ [4, Theorem 1.18]:

(i) A tensor product $V = V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ of evaluation modules is irreducible as a $\varphi_s(\mathcal{T}_q)$-module if and only if

$$s^{-2} \notin S(\ell_i, a_i)$$

for all $i \in \{1, \ldots, n\}$ and $S(\ell_i, a_i), S(\ell_j, a_j)$ are in general position for all $i, j \in \{1, \ldots, n\}$.

(ii) Consider two tensor products $V = V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$, $V' = V(\ell') \otimes V(\ell'_1, a'_1) \otimes \cdots \otimes V(\ell'_m, a'_m)$ of evaluation modules and assume that they are both irreducible as a $\varphi_s(\mathcal{T}_q)$-module. Then, V, V' are isomorphic as $\varphi_s(\mathcal{T}_q)$-modules if and only if $\ell = \ell'$, $n = m$ and $(\ell_i, a_i) = (\ell'_i, a'_i)$ for all $i \in \{1, \ldots, n\}$ with a suitable reordering of the evaluation modules $V(\ell_1, a_1), \ldots, V(\ell_n, a_n)$.

(iii) Every finite-dimensional irreducible \mathcal{T}_q-module V ($\dim V \geq 2$) is isomorphic to a \mathcal{T}_q-module $V' = V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ on which \mathcal{T}_q acts via some embedding $\varphi_s : \mathcal{T}_q \rightarrow U'_q(L(\mathfrak{sl}_2))$.

Part (i) of Theorem 1 follows immediately from the part (i) above, due to Lemma 4. Part (ii) of Theorem 2 follows immediately from the part (ii) above, the ‘if’ part due to Lemma 3 (and Lemma 4) and the ‘only if’ part due to Lemma 4.

We want to show part (iii) of Theorem 1. Let V be a finite-dimensional irreducible $U'_q(L(\mathfrak{sl}_2))$-module of type $(1, 1)$. By Lemma 4, there exists a nonzero scalar s such that V is irreducible as a $\varphi_s(\mathcal{T}_q)$-module. By the part (iii) above, the \mathcal{T}_q-module V via φ_s is isomorphic to some \mathcal{T}_q-module $V'' = V(\ell) \otimes V(\ell_1, a_1) \otimes \cdots \otimes V(\ell_n, a_n)$ via some embedding $\varphi_{s'}$ of \mathcal{T}_q into $U'_q(L(\mathfrak{sl}_2))$. Since k_0 has the same eigenvalues on V, V', we have $s = s'$ and so V, V'' are isomorphic as $\varphi_s(\mathcal{T}_q)$-modules. By Lemma 3, V, V'' are isomorphic as $U'_q(L(\mathfrak{sl}_2))$-modules. This completes the proof of Theorem 1.

3 Intertwiners

In this section, we show that for $\ell, m \in \mathbb{Z}_{\geq 0}, a \in \mathbb{C}^\times$, there exists an intertwiner between the $U'_q(L(\mathfrak{sl}_2))$-modules $V(\ell, a) \otimes V(m), V(m) \otimes V(\ell, a)$, i.e.,
a nonzero linear map \(R \) from \(V(\ell, a) \otimes V(m) \) to \(V(m) \otimes V(\ell, a) \) such that

\[
R \Delta(\xi) = \Delta(\xi)R \quad (\forall \xi \in U'_q(L(\mathfrak{sl}_2))).
\]

(17)

If such an intertwiner \(R \) exists, then it is routinely concluded that \(V(\ell, a) \otimes V(m) \) is isomorphic to \(V(m) \otimes V(\ell, a) \) as \(U'_q(L(\mathfrak{sl}_2)) \)-modules and any other intertwiner is a scalar multiple of \(R \); since \(V(m) \otimes V(\ell, a) \) is irreducible as a \(U'_q(L(\mathfrak{sl}_2)) \)-module by Theorem 1.

Using the theory of Drinfel’d polynomials [4] for the augmented TD-algebra \(T_q = T_q(\varepsilon, \varepsilon^*) \) with \((\varepsilon, \varepsilon^*) = (1, 0) \), we shall firstly show that \(V(\ell, a) \otimes V(m) \) is isomorphic to \(V(m) \otimes V(\ell, a) \) as \(U'_q(L(\mathfrak{sl}_2)) \)-modules. We shall then construct an intertwiner explicitly.

Let us denote the \(U'_q(L(\mathfrak{sl}_2)) \)-modules \(V(\ell, a) \otimes V(m) \), \(V(m) \otimes V(\ell, a) \) by \(V, V' \):

\[
V = V(\ell, a) \otimes V(m), \quad V' = V(m) \otimes V(\ell, a).
\]

Recall we assume that the integers \(\ell, m \) and the scalar \(a \) are nonzero. Let us denote a standard basis of the \(U'_q(L(\mathfrak{sl}_2)) \)-module \(V(\ell, a) \) (resp. \(V(m) \)) by \(v_0, v_1, \ldots, v_\ell \) (resp. \(v'_0, v'_1, \ldots, v'_m \)) in the sense of (11). Recall \(V(m) \) is an abbreviation of \(V(m, 0) \) and the action of \(U'_q(L(\mathfrak{sl}_2)) \) on \(V, V' \) are via the coproduct \(\Delta \) of (12).

Let \(\mathcal{U} \) denote the subalgebra of \(U'_q(L(\mathfrak{sl}_2)) \) generated by \(e_1^\pm, K_1^\pm \). The subalgebra \(\mathcal{U} \) is isomorphic to the quantum algebra \(U_q(\mathfrak{sl}_2) \). Let \(V(n) \) denote the irreducible \(\mathcal{U} \)-module of dimension \(n + 1 \): \(V(n) \) has a standard basis \(x_0, x_1, \ldots, x_n \) on which \(\mathcal{U} \) acts as

\[
\begin{cases}
 k_1 x_i = q^{n-2i} x_i, \\
 e_1^+ x_i = [n-i+1] x_{i-1}, \\
 e_1^- x_i = [i+1] x_{i+1},
\end{cases}
\]

(18)

where

\[
[t]_q = (q^t - q^{-t})/(q - q^{-1}), \quad x_{-1} = x_{n+1} = 0. \quad \text{We call } x_n \text{ (resp. } x_0) \text{ the lowest (highest) weight vector: } k_1 x_n = q^{-n} x_n, e_1^- x_n = 0 \quad (k_1 x_0 = q^n x_0, e_1^+ x_0 = 0). \quad \text{Note that } V(\ell, a) \text{ is isomorphic to } V(\ell) \text{ as } \mathcal{U} \text{-modules.}
\]

By the Clebsch-Gordan formula, \(V = V(\ell, a) \otimes V(m) \) is decomposed into the direct sum of \(\mathcal{U} \)-submodules \(\tilde{V}(n) \) \((|\ell - m| \leq n \leq \ell + m, \ n \equiv \ell + m \mod 2) \), where \(\tilde{V}(n) \) is the unique irreducible \(\mathcal{U} \)-submodule of \(V \) isomorphic to \(V(n) \).

With \(n = \ell + m - 2\nu \), we have

\[
V = V(\ell, a) \otimes V(m) = \bigoplus_{\nu=0}^{\min\{\ell, m\}} \tilde{V}(\ell + m - 2\nu).
\]

(19)
Let \tilde{x}_n denote a lowest weight vector of the U-module $\tilde{V}(n)$. So

$$\begin{align*}
\Delta(k_1)\tilde{x}_n &= q^{-n}\tilde{x}_n, \\
\Delta(e_{-1})\tilde{x}_n &= 0.
\end{align*}$$

(20)

Since V has a basis $\{v_{\ell-i} \otimes v_{m-j}' \mid 0 \leq i \leq \ell, 0 \leq j \leq m\}$ and k_1 acts on it by $\Delta(k_1)(v_{\ell-i} \otimes v_{m-j}') = q^{-(\ell+m)+2(i+j)}v_{\ell-i} \otimes v_{m-j}'$, the lowest weight vector \tilde{x}_n of $\tilde{V}(n)$ can be expressed as

$$\tilde{x}_n = \sum_{i+j=\nu} c_j v_{\ell-i} \otimes v_{m-j}' \quad (n = \ell + m - 2\nu).$$

(21)

Solving $\Delta(e_{-1})\tilde{x}_n = 0$ for the coefficients c_j, we obtain

$$\frac{c_j}{c_{j-1}} = -q^{m-2j+2} \frac{[\ell - \nu + j]}{[m - j + 1]}$$

and so with a suitable choice of c_0

$$\tilde{x}_n = \sum_{j=0}^{\nu} (-1)^j q^{j(m-j+1)}[\ell - \nu + j]![m - j]! v_{\ell-\nu+j} \otimes v_{m-j}'.$$

(22)

where $n = \ell + m - 2\nu$ and $[t]! = [t][t-1] \cdots [1]$.

Lemma 5. $\Delta(e_{0}^+)\tilde{x}_n = aq\tilde{x}_{n+2}$.

Proof. By (12), we have $\Delta(e_{0}^+) = e_{0}^+ \otimes 1 + k_0 \otimes e_{0}^+$. By (11), the element e_{0}^+ vanishes on $V(m)$ and acts on $V(\ell, a)$ as aqe_{-1}^-. Since $e_{-1}^-v_{\ell-\nu+j} = [\ell - (\nu - 1) + j]v_{\ell-(\nu-1)+j}$, the result follows from (22), using $v_{\ell+1} = 0$. \square

Corollary 1. Any nonzero $U'_q(L(\mathfrak{sl}_2))$-submodule of $V(\ell, a) \otimes V(m)$ contains $\tilde{x}_{\ell+m}$, the lowest weight vector of the U-module $V(\ell, a) \otimes V(m)$.

We are ready to prove our second main result.

Theorem 2. The $U'_q(L(\mathfrak{sl}_2))$-modules $V(\ell, a) \otimes V(m)$, $V(m) \otimes V(\ell, a)$ are isomorphic for every $\ell, m \in \mathbb{Z}_{>0}$, $a \in \mathbb{C}^\times$.

Proof. Let $T_q = T_q^{(\varepsilon, \varepsilon^*)}$ be the augmented TD-algebra with $(\varepsilon, \varepsilon^*) = (1, 0)$. Let $\varphi_a : T_q \rightarrow U'_q(L(\mathfrak{sl}_2))$ denote the embedding of T_q into $U'_q(L(\mathfrak{sl}_2))$ given
in (6). By Theorem 5.2 of [4], the Drinfel’d polynomial \(P_V(\lambda) \) of the \(\varphi_s(\mathcal{T}_q) \)-module \(V = V(\ell, a) \otimes V(m) \) turns out to be

\[
P_V(\lambda) = \lambda^m \prod_{i=0}^{\ell-1} (\lambda + aq^{2i-\ell+1}). \tag{23}
\]

(Note that the parameter \(s \) of the embedding \(\varphi_s \) does not appear in \(P_V(\lambda) \).

So the polynomial \(P_V(\lambda) \) can be called the Drinfel’d polynomial attached to the \(U'_q(\mathfrak{sl}_2) \)-module \(V \).)

Let \(W \) be a minimal \(U'_q(\mathfrak{sl}_2) \)-submodule of \(V \). By Corollary 1, \(W \) contains the lowest and hence highest weight vectors of \(V \). In particular, the irreducible \(U'_q(\mathfrak{sl}_2) \)-module \(W \) is of type \((1, 1)\). By Lemma 4, there exists a finite set \(\Lambda \) of nonzero scalars such that \(W \) is irreducible as a \(\varphi_s(\mathcal{T}_q) \)-module for any \(s \in \mathbb{C}^\times - \Lambda \). By the definition [4, (25)], the Drinfel’d polynomial \(P_W(\lambda) \) of the irreducible \(\varphi_s(\mathcal{T}_q) \)-module \(W \) coincides with \(P_V(\lambda) \):

\[
P_W(\lambda) = P_V(\lambda). \tag{24}
\]

By Theorem 1, \(V' = V(m) \otimes V(\ell, a) \) is irreducible as a \(U'_q(\mathfrak{sl}_2) \)-module. So by Lemma 4, there exists a finite set \(\Lambda' \) of nonzero scalars such that \(V' \) is irreducible as a \(\varphi_s(\mathcal{T}_q) \)-module for any \(s \in \mathbb{C}^\times - \Lambda' \). By Theorem 5.2 of [4], the Drinfel’d polynomial \(P_{V'}(\lambda) \) of the irreducible \(\varphi_s(\mathcal{T}_q) \)-module \(V' \) coincides with \(P_V(\lambda) \):

\[
P_{V'}(\lambda) = P_V(\lambda). \tag{25}
\]

Both of the irreducible \(\varphi_s(\mathcal{T}_q) \)-modules \(W, V' \) have type \(s \), diameter \(d = \ell + m \) and the Drinfel’d polynomial \(P_V(\lambda) \). By Theorem 1.9’ of [4], \(W \) and \(V' \) are isomorphic as \(\varphi_s(\mathcal{T}_q) \)-modules. By Lemma 3, \(W \) and \(V' \) are isomorphic as \(U'_q(\mathfrak{sl}_2) \)-modules. In particular, \(\dim W = \dim V' \). Since \(\dim V' = \dim V \), we have \(W = V \), i.e., \(V \) and \(V' \) are isomorphic as \(U'_q(\mathfrak{sl}_2) \)-modules. \(\Box \)

Finally we want to construct an intertwiner \(R \) between the irreducible \(U'_q(\mathfrak{sl}_2) \)-modules \(V, V' \). Regard \(V' = V(m) \otimes V(\ell, a) \) as a \(\mathcal{U} \)-module. By the Clebsch-Gordan formula, we have the direct sum decomposition

\[
V' = V(m) \otimes V(\ell, a) = \bigoplus_{\nu=0}^{\min\{\ell, m\}} \tilde{V}'(\ell + m - 2\nu), \tag{26}
\]

15
where \(\tilde{V}'(n) \) is the unique irreducible \(\mathcal{U} \)-submodule of \(V' \) isomorphic to \(V(n) \) \((n = \ell + m - 2\nu)\). Let \(\tilde{x}_n' \) be a lowest weight vector of the \(\mathcal{U} \)-module \(\tilde{V}'(n) \). By (22), we have

\[
\tilde{x}_n' = \sum_{j=0}^{\nu} (-1)^j q^{j(\ell-j+1)} [m - \nu + j]! [\ell - j]! v'_{m-\nu+j} \otimes v_{\ell-j}
\]

(27)

up to a scalar multiple, where \(n = \ell + m - 2\nu \). It can be easily checked as in Lemma 5 that the lowest weight vectors \(\tilde{x}_n' \) \((n = \ell + m - 2\nu, 0 \leq \nu \leq \min\{\ell, m\}\)) are related by

\[
(e_1 \otimes 1) \tilde{x}_n' = \tilde{x}_{n+2}',
\]

(28)

where \(V' = V(m) \otimes V(\ell, a) \) is regarded as a \((\mathcal{U} \otimes \mathcal{U})\)-module in the natural way.

Lemma 6. \(\Delta(e_0^+) \tilde{x}_n' = -aq \cdot q^{n+2} \tilde{x}_{n+2}'. \)

Proof. We have \(\Delta(e_0^+) \tilde{x}_n' = aq \,(k_1^{-1} \otimes e_1^-) \tilde{x}_n' \), since \(\Delta(e_0^+) = e_0^+ \otimes 1 + k_0 \otimes e_0^+ \), and \(e_0^+ \) vanishes on \(V(m) \) and acts on \(V(\ell, a) \) as \(aq e_1^- \). Express \(k_1^{-1} \otimes e_1^- \) as

\[
k_1^{-1} \otimes e_1^- = (k_1^{-1} \otimes 1) (1 \otimes e_1^-) = (k_1^{-1} \otimes 1) (\Delta(e_1^-) - e_1^- \otimes k_1^{-1}) = (k_1^{-1} \otimes 1) \Delta(e_1^-) - k_1^{-1} e_1^- \otimes k_1^{-1} = (k_1^{-1} \otimes 1) \Delta(e_1^-) - q^2 (e_1^- \otimes 1) \Delta(k_1^{-1}).
\]

Since \(\Delta(e_1^-) \tilde{x}_n' = 0 \), \(\Delta(k_1^{-1}) \tilde{x}_n' = q^a \tilde{x}_n' \), the result follows from (28). \(\square \)

There exists a unique linear map

\[
R_n : V = V(\ell, a) \otimes V(m) \longrightarrow \tilde{V}'(n)
\]

that commutes with the action of \(\mathcal{U} \) and sends \(\tilde{x}_n \) to \(\tilde{x}_n' \). The linear map \(R_n \) vanishes on \(\tilde{V}(t) \) for \(t \neq n \) and affords an isomorphism between \(\tilde{V}(n) \) and \(\tilde{V}'(n) \) as \(\mathcal{U} \)-modules. If \(R \) is an intertwiner in the sense of (17), \(R \) can be expressed as

\[
R = \sum_{\nu=0}^{\min\{\ell, m\}} \alpha_\nu R_{\ell+m-2\nu},
\]

(29)

regarding \(R \) as an intertwiner for the \(\mathcal{U} \)-modules \(V, V' \). By (17), we have

\[
R \Delta(e_0^+) = \Delta(e_0^+) R.
\]

(30)

16
Apply (30) to the lowest weight vector \tilde{x}_n in (22). By Lemma 5, $\Delta(e_0^+) \tilde{x}_n = aq \tilde{x}_{n+2}$ and so with $n = \ell + m - 2\nu$, we have

$$R \Delta(e_0^+) \tilde{x}_n = aq \alpha_{\nu-1} \tilde{x}_{n+2}'.$$ \hspace{1cm} (31)

On the other hand, $R \tilde{x}_n = \alpha_\nu \tilde{x}_n' (n = \ell + m - 2\nu)$ and so by Lemma 6, we have

$$\Delta(e_0^+) R \tilde{x}_n = -aq \alpha_\nu q^{n+2} \tilde{x}_{n+2}'.$$ \hspace{1cm} (32)

By (31), (32), we have $\alpha_\nu/\alpha_{\nu-1} = -q^{-n+2} = -q^{-\ell-m+2(\nu-1)}$ and so

$$\alpha_\nu = (-1)^\nu q^{-\nu(\ell+m-\nu+1)}$$ \hspace{1cm} (33)

with a suitable choice of α_0. An intertwiner exists by Theorem 2. If it exists, it has to be in the form of (29), (33). Thus we obtain our third main result.

Theorem 3. The linear map

$$R = \sum_{\nu=0}^{\min\{\ell,m\}} (-1)^\nu q^{-(\ell+m-\nu+1)} R_{\ell+m-2\nu}$$

is an intertwiner between the $U'_q(L(\mathfrak{sl}_2))$-modules $V(\ell, a) \otimes V(m)$, $V(m) \otimes V(\ell, a)$.

References

[1] G. Benkart, P. Terwilliger, Irreducible modules for the quantum affine algebra $U_q(\hat{\mathfrak{sl}}_2)$ and its Borel subalgebra, J. Algebra 282 (2004) 172-194.

[2] V. Chari, A. Pressley, Quantum affine algebras, Commun. Math. Phys. 142 (1991) 261-283.

[3] T. Ito, K. Tanabe, P. Terwilliger, Some algebra related to P- and Q-polynomial association schemes, in: Codes and Association Schemes (Piscataway NJ, 1999), Amer. Math. Soc., Providence RI, 2001, pp. 167-192.

[4] T. Ito, P. Terwilliger, The Augmented Tridiagonal Algebra, Kyushu J. Math. 64 (2010) 81-144.
Tomoya Hattai
Division of Mathematical and Physical Sciences
Kanazawa University
Kakuma-machi, Kanazawa 920–1192, Japan

Tatsuro Ito
Division of Mathematical and Physical Sciences
Kanazawa University
Kakuma-machi, Kanazawa 920–1192, Japan
E-mail: ito@se.kanazawa-u.ac.jp