qPCR ANALYSIS OF MESENCHYMAL STEM CELL MARKER EXPRESSION DURING THE LONG-TERM CULTURE OF CANINE ADIPOCYTE DERIVED STEM CELLS

Rut Bryl¹, Claudia Dompe², Maurycy Jankowski¹, Katarzyna Stefańska¹, Afsaneh Golkar Narenji³, Jakub Kulus⁵, Magdalena Kulús⁶, Maria Wieczorkiewicz⁷, Grzegorz Wąsiatycz⁶, Jędrzej M. Jaśkowski⁵, Mariusz Kaczmarek⁸, James N. Petitte⁴, Paul Mozdziak⁴,⁹, Paweł Antosik⁶, Dorota Bukowska⁵

Abstract
Due to its availability and accessibility, adipose tissue has been the subject of various studies in many different medical fields and is believed to be a useful source of stem cells. The ability of ASCs to differentiate towards different cell lineages, with possibility of directing this differentiation, increases their possible clinical applications, and they have been widely employed in multiple therapies and treatment of different pathologies. However, a deeper understanding of the molecular mechanisms underlying the ASCs osteoblastic and chondrocyte differentiation may lead to novel applications treating a multitude of different bone-related diseases through techniques more likely meeting worldwide consensus. In this study, the RT-qPCR method was used to determine the changes in expression of ASC specific markers (CD105, CD73, CD14, CD34, CD90 and CD45) before and after long-term (14-day) in vitro cultures. To confirm the identity of the investigated cells, flow cytometry was used to evaluate the presence of positive (CD44, CD90) and negative (CD45, CD34) ASC markers. Overall, the results of the PCR analysis showed a significant change in expression of most of the marker genes, indicating significant changes in the cultured cells caused by their long-term culture, potentially altering their original stem-like characteristics.

Running title: ASC marker expression during long-term in vitro culture

Keywords: adipose, stem cells, long-term, culture, markers
Introduction

First described in 2001, ASCs are an effective source of mesenchymal progenitors [1]. In fact, they have mesenchymal stem cells-like characteristics and show great proliferation and differentiation potential and self-renewal ability, granting multiple and diverse clinical application and serving as a promising tool for gene-based therapies, including tissue engineering and regenerative medicine[2]. ASCs are multipotent and can differentiate into different cells types of the tri-germ lineages, as well as exhibit paracrine activity impacting immune responses [3]. They show ability to differentiate into many different cell types such as osteocytes, adipocytes, neural cells, vascular endothelial cells, cardiomyocytes, pancreatic cells, muscle cells and hepatocytes [4–8].

ASCs potential and qualities aside, this type of cells is readily accessible and is widely available. In fact, they are obtained through a minimally invasive procedure from adipose depots that are found at different locations throughout the body serving a variety of functions, including energy homeostasis of an organism. They can be isolated from tissues usually discarded upon surgery, for example excision of adipose tissue or liposuction, considered as the best method for storage preparation [9]. The analysis of samples obtained from liposuction do not show any significant loss of preadipocytes and no significant stroma damage. Since it is possible to obtain many ASCs from the adipose tissue, in vitro proliferation can be performed resulting in cells showing more predictable results [10].

Due to its availability and accessibility, adipose tissue has been the subject of various studies in many different medical fields and is believed to be a useful source of stem cells. The ability of ASCs to differentiate towards different cell lineages, with possibility of directing this differentiation, increases their possible clinical applications, and they have been widely employed in multiple therapies and treatment of different pathologies [11]. However, a deeper understanding of the molecular mechanisms underlying the ASCs osteoblastic and chondrocyte differentiation may lead to novel applications treating a multitude of different bone-related diseases through techniques more likely meeting worldwide consensus.

In this study, the RT-qPCR method was used to determine the changes in expression of ASC specific markers before and after long-term in vitro cultures. The results should aid the understanding of the influence of ex vivo conditions, similar to those employed during the usual procedures of ASC extraction and application, on the stemness and plasticity of the adipose progenitor cells.

Materials and Methods

Animals

Fat samples were obtained from adult dogs subjected to the routine sterilisation surgery at a commercial veterinary clinic. The process of material collection did not involve any additional medical procedures, as it was based on a usually discarded remnant tissue. Hence, the study did not necessitate obtaining of a bioethical committee approval.

Initial material preparation

After collection, the obtained tissue samples were placed in a DPBS solution supplemented with an antibiotic-antimycotic mix (Sigma-Aldrich, St. Louis, MO, USA). Afterwards, they were stored at 4°C until being transported to the laboratory for further processing no longer than 6h after collection. Upon arrival, the samples were subjected to a triple wash in ice-cold DPBS (to ensure the removal of remnant blood), minced with sterile surgical blades and placed in an 1mg/ml Collagenase I (solution in DMEM (Sigma-Aldrich, St. Louis, MO, USA) for the period of 40 minutes at 37°C. During that time, the sample was regularly vortexed to ensure maximum enzyme exposure. After the incubation period, the samples were centrifuged at 1200 x g for 20 mins. Furtherly, the resulting upper layer of mature adipocytes was discarded, while the pellet located at the bottom of the tube was resuspended in DMEM and centrifuged once more at 400 x g for 10 mins to ensure proper washing. Then, a fraction of the obtained cell solution was collected for identification analyses, while the remaining cells were seeded onto a 25cm² culture flask in 4mL of DMEM.

Cell culture

The cells were cultured for a period of 14 days, with the culture media changed every 72h. The pictures of cells were taken every day to analyse the culture-induced changes in morphology. After the culture period, the culture media were removed. The cells were then double washed with DPBS, with 1mL of trypsin added to facilitate their detachment. After 5 min of incubation, the culture flasks were analysed under a 10x magnification to confirm full detachment, after which the cell suspension was transferred to a conical tube. FBS was added to neutralise the remaining enzymes, after which the sample was centrifuged again and suspended in 1mL of TRI Reagent for RNA isolation or PBS for flow cytometry analysis.

Flow cytometry analysis

5 μL of antibodies were added to the bottom of flow cytometry tubes (following producer’s protocol), with around 100 μL of stained cell suspension.
After 30 min of incubation, the mix was washed twice in 5 mL of PBS and centrifuged at 200 x g for 6 min, removing the remnant unbound antibodies. The antibodies used were Anti-Dog CD44, Anti-Dog CD90, and negative isotype controls, Anti-Dog Anti-Dog CD45.

RNA isolation
Each of the analyzed groups was processed in three independent samples. Total RNA was extracted from the samples using the TRI Reagent® (Sigma, St Louis, MO, USA), following the Chomczynski-Sacchi method [12]. After being collected from the cultures, the samples were suspended in 1 ml of TRI Reagent (Sigma-Aldrich, Saint Louis, MO, USA), a mix of guanidine thiocyanate and phenol in monophasic solution. After the addition of chloroform, the samples were centrifuged to achieve separation of the 3 phases. The upper aqueous phase containing the RNA was collected with little or no contaminating DNA and proteins. The RNA was then stripped with 2-propanol (Sigma-Aldrich, Saint Louis, MO, USA) and washed with 75% ethanol. RNA, prepared in such way, was used for further analyses. Total mRNA was measured using the optical density at 260 nm, with the purity evaluated based on the 260/280 nm absorption ratio (above 1.8) (Nanodrop spectrophotometer, Thermo Scientific, ALAB, Poland). RNA was diluted to a 100 ng/L concentration with an OD260 / OD280 ratio of 1.8 / 2.0.

RT-qPCR analysis
To perform the RT-qPCR validation of the results, sequence specific primers for the genes of interest were designed using Primer 3 Software (Whitehead Institute, Cambridge, MA, USA. Gene sequences were obtained from Ensembl database, with the common parts of different transcript variants extracted by Clustal Omega Software (both EMBL, Heidelberg, Germany). All primers were designed as intron-intron border spanning to avoid genomic cDNA contamination (Tab. 1). The reaction mix was prepared on a dedicated 96-well plate and contained: 1 µL of cDNA matrix, 1 µL of forward + reverse primer mix, 5 µL of Sybr Green qPCR mix (Qiagen, Hilden, Germany) and 3 µL of PCR grade water (Roche Diagnostics, Manheim, Germany). The reactions were performed according to reagent producers’ guidelines, in primer specific temperatures, using LightCycler 96 Real-Time PCR System (Roche Diagnostics, Manheim, Germany). The specificity of the 15 reactions was confirmed based on the Tm calling, graphs generated by the software. The relative quantification was calculated based on the double delta Ct methods, with HPRT and ACTB used as housekeeping genes.

Statistical analysis
Moderated t-statistics from the empirical Bayes method were preformed to determine the statistical significance of the genes analysed. The resulting p-value was corrected for multiple comparisons, using Benjamini and Hochberg’s false discovery rate. Genes were deemed to be significantly altered if they had a p-value below 0.05.

Ethical approval
The research related to animal use has been complied with all the relevant national regulations and institutional policies for the care and use of animals. As the study was based on a remnant waste material, the Bioethical Committee approval was not necessary.

Results

Morphological changes
The morphology of the cultured ASCs was evaluated under a light microscope at the beginning (after the initial 3 day period of adhesion) and endpoint of the primary culture. The results were compiled and presented in the form of figure 1.

As can be seen, the initial fibroblast-like morphology changed to epithelial-like after the period of 14 day *in vitro*. Furthermore, due to extensive cell

GENE NAME	FORWARD PRIMER	REVERSE PRIMER
CD105	CTCAAGTCCCAATGCTACC	GGTTGAAAGCCAGGTAGAGT
CD73	CCCATTGACGAAGCAGACAA	TATACCAAGTGAATTCCGCC
CD14	CACTAGAGCCCTGGGAGAAGT	CGACGGCAATCATACTGG
CD34	ATGAGACCTCAGCTGGT	AGGTAGACTCAGGCTTTCT
CD90	CGAGATTGCTACACCTGGC	AGCGGAGGTTCACATGTTGA
CD45	ACCTTGGCGAAACTGGGGAAGA	CTTCCAGATCAAATTTCCACG
HPRT	CCATCACATCGTAGCCCTC	ACTTTATATCGGCCCTGAC
ACTB	CCCCTTGCCCCTCGCCCTTC	GCAGCAAATATCGGTCATCATC
proliferation, the cell density increased, possibly inducing the change in cell shape.

Flow cytometry

The cultured cells were subjected to a flow cytometry assay using available canine antibodies targeting the known ASC markers. CD44 and CD90 expression was evaluated as positive, and lack of CD45 and CD34 as a negative marker. All of the antibodies were run along their respective isotype control to correct for non-specific binding. The results were presented in the form of Mean Fluorescence Intensity graph (Fig. 2).

As can be seen, CD44 and CD90 peaks present no significant overlap with their respective isotype controls, indicating the presence of these surface proteins on the analysed cells. In turn, CD45 and 34 show a major overlap with the isotype control, proving their expected lack of expression on the cells’ surface.

RT-qPCR

As the main aim of the study, the expression of MSC specific markers was evaluated in the cultured ASCs before and after the period of long-term *in vitro* cultures. According to literature, three positive (CD105, CD73 and CD90) and three negative (CD34, CD14 and CD45) markers were evaluated. The results were presented on a bar graph in the form of logFC, to allow for easy determination of the direction and scale of expression change (Fig. 3).

As can be seen, the analysed ASC markers showed differing changes of expression during long-term *in vitro* culture. One of the positive markers (CD105) showed a minor downregulation, while two others were majorly upregulated (CD73 and CD90). In the same time, two of the negative markers exhibited significant upregulation, more notable for CD34 than for CD14. CD45 was not presented on the graph, as its expression was not detected in any of the analysed time periods.

FIGURE 1. Photographs of morphological changes between the beginning and end-point of *in vitro* culture. Taken using an inverted microscope, using a relief contrast and 10x magnification.

FIGURE 2. The results of the flow cytometry analysis of the available canine ASC markers. The coloured peaks represent the cells stained by the specific antibodies, while the transparent peaks correspond to isotype controls.
Discussion

The recent literature places ASCs at the forefront of the potential candidates for stem cells based therapies for a variety of current diseases. This sparks a significant amount of *in vivo* and *in vitro* research, as well as a significant number of clinical trials [13]. However, there are still certain risks associated with stem cell application, mostly due to their property that is also considered their most notable advantage— the extraordinary plasticity [14]. While using the adult stem cells brings a significantly lower risk of malignancy compared pluripotent stem cells, a large number of their characteristics depend on their placement in a specific microenvironment and can potentially undergo significant alterations when subjected to *ex vivo* conditions [15]. This occurrence, resulting in gain of new stem-like properties has been demonstrated by a number of studies, focused on a large amount of different somatic cells, e.g. the ovarian granulosa [16]. This brings concern that the extraction and later application of stem cells can lead to the development of malignancies, especially if said cells were subjected to significant *ex vivo* modification, such as in the case of their induction towards a specific lineage e.g. osteogenic or chondrogenic. This proves to be problematic, as several approaches looking to employ ASCs in treatment of diseases such as osteoarthritis or osteoporosis often base on their *in vitro* differentiation into non-adipose related cells [17]. Hence, there is a large need for basic molecular studies focused on the mechanisms associated with *in vitro* cultures of ASCs, to enable full understanding of the processes that drive the potential changes in these cells induced by the absence of their usual environment.

In this study, six MSC markers were analysed, as suggested by Dominici et al. [18]. The first one, CD105 is a well-known receptor for TGF-β [19]. It has been widely researched in the topic of cancer, especially tumour angiogenesis [20]. However, while it is also expressed in stem cells, its role is currently not fully elucidates, as it was demonstrated that its expression has no effect on differentiation ability and does not allow to distinguish a population of MSCs able to progress towards a chondrogenic lineage fate [21]. In this analysis, CD105 was the only positive marker that decreased in expression. The second surface protein, CD73, facilitates the conversion of mononucleotides to nucleosides, playing an important role in the maintenance of immune system homeostasis [22]. It has also been investigated in the context of cancer and was found to be a suppressor of antitumor immune response [23]. Hence, it has been a subject of studies targeting this surface protein in antitumor therapy [24]. In our study, this marker was notably upregulated in ASC primary *in vitro* culture. The final positive marker, CD90 was found to be majorly upregulated...
in this analysis. While the function of this protein has not been yet fully elucidated, it has been previously implicated in mechanisms associated with cell-cell and cell-matrix interactions and is, hence, associated with a range of physiological, e.g. nerve growth and regeneration, as well as pathological processes, e.g. fibrosis or tumour metastasis. Because of the latter, it has been largely investigated in the processes associated with the progression of a range of cancers [25]. While its levels in the primary cell cultures were not fully established, it has been proposed as a biomarker that could be used to purify the cultures of fibroblast contamination [26]. Furthermore, it has been reported that its increased expression is linked to the expanded differentiation potential of MSCs, which is especially interesting in the context of this study [27].

When it comes to negative markers, two of them were upregulated during the course of primary in vitro culture. First of them, CD34, was first identified in hematopoietic cells and is still used as a method of stem cell enrichment for bone marrow transplants. It is an important cell adhesion molecule, that has important roles in immune response, mostly through its ability to facilitate cell migration [28]. It needs to be noted that while the majority of scientific community considers lack of its expression as a characteristic MSC marker, there are some reports stating the contrary and even indicating it as a surface protein characteristic for progenitor populations [29]. The second upregulated negative marker, CD14, plays a major role in the immune system, mediating the response to bacterial infections through its lipopolysaccharide receptor action [30]. It has been suggested as a marker for cancer stem cells, specifically in breast cancer stem lines [31]. Furthermore, it has been found to increase the response of certain types of stem cells to Toll-Like Receptor 2 Agonists [32]. The last negative marker, CD45 was, as expected, not detected in the initial time of culture, as well as during its course.

Conclusions

Overall, the change in the expression of MSC markers during long-term primary culture suggests at least a partial loss of ASC characteristics, most probably caused by the influence of ex vivo conditions. Furthermore, highly elevated expression of CD90 might suggest a gain of expanded plasticity, possibly connecting extended periods of in vitro culture to a gain of new stem-like properties by ASCs. This brings further attention to the fact that there is a need for a large amount of molecular studies analysing the internal mechanisms of stem cells before a widespread application can be introduced to a clinical setting.

Acknowledgments

This publication and its results are an outcome of a cooperation between Poznan University of Medical Sciences (Poznań, Poland) and Polish Ministry of Science and Higher Education, with Cellivia 3 SA (Poznań, Poland), as a part of the “Professional PhD” program.

Corresponding author

Dorota Bukowska, Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun, Poland, email: dbukowska@umk.pl

Conflict of interest statement

The authors declare they have no conflict of interest.

References

1. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 2001;7:211–28; DOI:10.1089/107632701300026559.

2. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonzo ZC, Fraser JK, Benhaim P, Hedrick MH. Human Adipose Tissue Is a Source of Multipotent Stem Cells. Mol Biol Cell. 2002;13:4279–95; DOI:10.1091/mbc.E02-02-0105.

3. Zhu M, Zhou Z, Chen Y, Schreiber R, Ransoms JT, Fraser JK, Hedrick MH, Pinkernelle K, Kuo HC. Supplementation of fat grafts with adipose-derived regenerative cells improves long-term graft retention. Ann Plast Surg. 2010;64:222–8; DOI:10.1097/SAP.0b013e3181f0ae5e.

4. Majumdar MK, Banks V, Peluse DP, Morris EA. Isolation, characterization, and chondrogenic potential of human bone marrow-derived multipotent stromal cells. J Cell Physiol. 2000;185:98–106; DOI:10.1002/1097-4652(200010)185:1<98::AID-JCP9>3.0.CO;2-1.

5. Planat-Bénard V, Menard C, André M, Fucuet M, Perez A, Garcia-Verdugo JM, Pénaud L, Castella L. Spontaneous Cardiomyocyte Differentiation from Adipose Tissue Stem Cells. Circ Res. 2004;94:223–9; DOI:10.1161/01.RES.0000019792.24327.47.

6. Halvorsen YDC, Franklin D, Bond AL, Hitt DC, Auckter C, Boskey AL, Paschalip EF, Wilkinson WN, Gimble JM. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng. 2001;7:729–41; DOI:10.1089/107632701300026559.

7. Li H, Zhu L, Chen H, Li T, Han Q, Wang S, Yao X, Feng H, Fang L, Gao S, Zhao R, Cao X, Zhu P, Li J, Keating A, Su X, Zhao RC. Generation of Functional Hepatocytes from Human Adipose-Derived MYC+ KLF4+ GPN1+ Stem Cells Analyzed by Single-Cell RNA-Seq Profiling. Stem Cells Transl Med. 2018;7:792–805; DOI:10.1002/stcm.17-0273.

8. Abdaniou A, Tariabli T, Delshad AR. Trans-differentiation of the adipocyte-differentiated stem cells into neuron-like cells expressing neurotrophins by selegiline. Iran Biomed J. 2011;15:113–21; DOI:10.6091/ibj.1011.2012.

9. Keck M, Kober J, Riedl O, Kitzinger HB, Wolf S, Stulnig TM, Zeyda M, Gugerell A. Power assisted liposuction to obtain adipose-derived stem cells: Impact on viability and differentiation to adipocytes in comparison to manual aspiration. J Plast Reconstr Aesthetic Surg. 2014;67:e1; DOI:10.1016/j.bjps.2013.08.019.

10. Tanikawa DYS, Aqueu M, Bueno DF, Passos-Bueno MR, Alonso N. Fat grafts supplemented with adipose-derived stromal cells in the rehabilitation of patients with craniofacial microsomia. Plast Reconstr Surg. 2013;132:141–52; DOI:10.1097/PRS.0b013e3182910a92.

11. Domp C, Wasiatycz G, Mozdzik P, Jankowski M, Kempisty B. Current clinical applications of adipose-derived stem cells in humans and animals. Med J Cell Biol. 2019;7; DOI:10.2478/acb-2019-0014.

12. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1993;162:156–9; DOI:10.1016/0003-2697(93)90021-2.

13. Palmbo P, Lombardi F, Siragusa G, Cifone M, Cinque B, Giuliani M. Methods of Isolation, Characterization and Expansion of Human Adipose-Derived Stromal Cells (ASCs): An Overview. Int J Mol Sci. 2010;11:1907; DOI:10.3390/ijms11111907.

14. Miana VV, Prieto González EA. Adipose tissue stem cells in regenerative medicine. Eancermedicalscience. 2018;12; DOI:10.3332/ecancer.2018.022.

15. Baciałowa I, Zaroubová J, Travinicková M, Musilová J, Pajerová J, Slepčick P, Kasalkova NS, Svořick V, Kolška Z, Matomaj H, Molitor M. Stem cells: their source, potency and use in regenerative therapies with focus on
adipose-derived stem cells – a review. Biotechnol Adv. 2018;36:1111–26; DOI:10.1016/J.BIOTECHADV.2018.03.011.

16. Dompe C, Kranz W, Jopek K, Kowalska K, Ciesiółka S, Cermula B, Bryja A, Jankowski M, Perek J, Józkowiak M, Moncrieff L, Hutchings G, Janowicz K, Pawełczyk L, Bruska M, Petitte J, Mozdziak P, Kulus M, Piotrowska-Kempisty H, Spaczyński R, Nowicki M, Kempisty B. Muscle Cell Morphogenesis, Structure, Development and Differentiation Processes Are Significantly Regulated during Human Ovarian Granulosa Cells In Vitro Cultivation. J Clin Med. 2020;9:2006; DOI:10.3390/jcm9062006.

17. Jankowski M, Dompe C, Sibiak R, Wąsiatycz G, Mozdziak P, Jaśkowiak J, Antosik P, Kempisty B, Dyszkiewicz-Konwińska M. In Vitro Cultures of Adipose-Derived Stem Cells: An Overview of Methods, Molecular Analyses, and Clinical Applications. Cells. 2020;9:1783; DOI:10.3390/cells9081783.

18. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7; DOI:10.1080/14653240600855905.

19. Dallas NA, Samuel S, Xia L, Fan F, Gray MJ, Lim SJ, Ellis LM. Endoglin (CD105): A marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14:1931–7; DOI:10.1158/1078-0432.CCR-07-4478.

20. Ollauri-Ibáñez C, Núñez-Gómez E, Egido-Turrión C, Silva-Sousa L, Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novo JM, Pércacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis. 2020;23:231–47; DOI:10.1007/s10456-019-09703-y.

21. Díaz-Rodríguez E, Rodríguez-Barbero A, López-Novo JM, Pércacho M. Continuous endoglin (CD105) overexpression disrupts angiogenesis and facilitates tumor cell metastasis. Angiogenesis. 2020;23:231–47; DOI:10.1007/s10456-019-09703-y.

22. Cleary MA, Narcisi R, Pocke K, van der Linden R, Braja PM, van Osch GJVM. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthr Cartil. 2016;24:868–72; DOI:10.1016/j.joca.2015.11.018.

23. Antoniodi L, Pacher P, Vizi ES, Haskó G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19:355–67; DOI:10.1016/j.it.2012.02.009.

24. De Leve S, Wirsdörfer F, Jendrossek V. Targeting the immunomodulatory CD73/adenosine system to improve the therapeutic gain of radiotherapy. Front Immunol. 2019;10:698; DOI:10.3389/fimmu.2019.00698.

25. Sauzay C, Voutetakis K, Chatziioannou AA, Chevet E, Avril T. CD90/Thy-1, a cancer-associated cell surface signaling molecule. Front Cell Dev Biol. 2019;7:698; DOI:10.3389/fcell.2019.00698.

26. Kisselbach L, Merges M, Bossie A, Boyd A. CD90 expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology. 2009;59:31–44; DOI:10.1007/s10616-009-9190-3.

27. Moraes DA, Sibov TT, Pavon LF, Alvim PQ, Da Silva JR, Pic-Taylor A, Toledo OA, Marti LC, Azevedo RB, Oliveira DM. A reduction in CD90 (THY-1) expression results in increased differentiation of mesenchymal stromal cells. Stem Cell Res Ther. 2016;7:10; DOI:10.1186/s13287-016-0359-3.

28. AbuSamra DB, Aleisa FA, Al-Amoodi AS, Ahmed HMJ, Chin CJ, Abuelela AF, Bergam P, Sougrat R, Merzaban JS. Not just a marker: CD34 on human hematopoietic stem/progenitor cells dominates vascular selectin binding along with CD44. Blood Adv. 2017;1:2799–816; DOI:10.1182/bloodadvances.2017004317.

29. Sidney LE, Branch MJ, Dunphy SE, Dua HS, Hopkinson A. Concise review: Evidence for CD34 as a common marker for diverse progenitors. Stem Cells. 2014;32:1380–9; DOI:10.1002/stem.1661.

30. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science (80). 1990;249:1431–3; DOI:10.1126/science.1698311.

31. Loboa ARM, Forni MF, Carreira AC, Sogayar MC. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytom Part A. 2012;81A:1084–91; DOI:10.1002/cyt.a.22220.

32. Behn C, Bliufstein A, Gahn J, Norozzkhani N, Moritz A, Rausch-Fan X, Andrushkiv O. Soluble CD14 enhances the response of periodontal ligament stem cells to toll-like receptor 2 agonists. Mediators Inflamm. 2019;2019; DOI:10.1155/2019/8127301.