Circadian regulation of night feeding and daytime detoxification in a formidable Asian pest *Spodoptera litura*

Jiwei Zhang¹,², Shenglong Li¹, Wanshun Li¹,², Zhiwei Chen¹, Huizhen Guo¹,², Jianqiu Liu², Yajing Xu¹,², Yingdan Xiao¹,², Liying Zhang¹,², Kallare P. Arunkumar³, Guy Smagghe⁴,⁵, Qingyou Xia¹,², Marian R. Goldsmith⁶, Makio Takeda⁷ & Kazuei Mita¹,²

Voracious feeding, trans-continental migration and insecticide resistance make *Spodoptera litura* among the most difficult Asian agricultural pests to control. Larvae exhibit strong circadian behavior, feeding actively at night and hiding in soil during daytime. The daily pattern of larval metabolism was reversed, with higher transcription levels of genes for digestion (amylase, protease, lipase) and detoxification (CYP450s, GSTs, COEs) in daytime than at night. To investigate the control of these processes, we annotated nine essential clock genes and analyzed their transcription patterns, followed by functional analysis of their coupling using siRNA knockdown of interlocked negative feedback system core and repressor genes (*SlituClk*, *SlituBmal1* and *SlituCwo*). Based on phase relationships and overexpression in cultured cells the controlling mechanism seems to involve direct coupling of the circadian processes to E-boxes in responding promoters. Additional manipulations involving exposure to the neonicotinoid imidacloprid suggested that insecticide application must be based on chronotoxicological considerations for optimal effectiveness.
S. litura belongs to the family Noctuidae, so-named because larvae feed and adults fly at night. This insect is called “night thief” in Japan, because the voracious feeding of the late instar larvae is intense at night, while, in contrast, they cryptically hide in the soil during the day. In addition, this species is highly polyphagous, ranging over 120 host plants (https://www.cabi.org/isc/datasheet/44520). Night feeding also determines the exposure time to plant secondary metabolites and xenobiotics such as insecticides. This dichotomous metabolic situation may explain why this species is considered a “super-pest” across Asia.

Comparative analyses using genome databases published for lepidopteran species, including Spodoptera frugiperda, Helicoverpa armigera, Helicoverpa zea, Manduca sexta, Plutella xylostella, Heliconius melpomene, and Bombyx mori1–6, reveal the extraordinary ability of S. litura for detoxification and tolerance to many plant secondary metabolites and xenobiotic agents, including pesticides, through a great expansion of detoxification gene families and gustatory receptor genes7. In addition, population genetic analysis of S. litura uncovered the long-distance migration by which this pest expanded its territories and established genomic uniformity in Asia2. These properties, along with its high fecundity, make S. litura one of the most difficult pests to control.

A similar expansion of detoxification gene families and long-range migration occurs in the congener, the fall armyworm S. frugiperda. Previously restricted to the American continent, in 2016 this species was reported to have invaded Africa with out-of-range migration occurs in the congener, the fall armyworm S. frugiperda. Previously restricted to the American continent, in 2016 this species was reported to have invaded Africa with outbreaks that caused extensive crop damage8. In the same year, it also appeared in India, expanding widely in South India9. The fast and extensive invasion of a highly pestiferous noctuid with similar genomic characteristics to S. litura highlights the urgency of disseminating new and effective control strategies to block the expansion of these highly destructive night-feeding insects.

Circadian clocks synchronize rhythms using a central timekeeper, which also controls numerous aspects of physiology and behavior, including feeding and locomotion, sleep/wake cycle, hormone and neurotransmitter secretion, and developmental events such as molting and metamorphosis10–14. The feeding and digestion of another congener, S. littoralis, are reported to be linked with circadian rhythms15, as are larval activity and feeding in Heliothis virescens, another noctuid pest16. This may be a common feature with S. litura, which exhibits similar circadian processes. The expression and activity of xenobiotic-metabolizing genes which fluctuate in daily rhythms in Drosophila melanogaster and mosquitoes17,18, as well as in mammalian systems19, have not yet been well-documented in Lepidoptera. Transcriptional activation, which is dependent on the two central circadian regulators, CLOCK (CLK) and CYCLE (rather, BMAL1 in Lepidoptera20,21), is initiated by the binding of their heterodimer to CACGTG, a canonical E-box element of target genes, including period (Per) and timeless (Tim) in D. melanogaster.22,23 After Per and Tim are transcribed and translated, PER forms a heterodimer with TIM, which translocates to the nucleus, where it inhibits the expression of CLK-CYC-mediated transcription of target genes including cwo itself24–26. The products of other circadian genes, including cryptochrome (Cry), vrille (Vri), Pdpe1, and double-time, assist the CLK-CYC feedback loops and act synergistically to render and stabilize a circadian oscillation in diurnal or nocturnal rhythms27–29. Some circadian clock genes, such as Pdpe1, were found in Drosophila to be involved in the detoxification response, which has also been implicated in mammalian Reb-Erb30–32. Whether the circadian network mechanism is shared in effecting downstream larval behavioral rhythms or insect adaptation to various host plants and related circumstances remains unknown.

In this study, we confirmed that S. litura larvae exhibited robust circadian rhythms in excretion and digestion from the 5th instar through the last (6th) instar, in synchrony with their typical rhythm behavior of hiding in the soil during the daytime, coming out from the soil in the evening to eat crops throughout the night, and then returning to the soil with sunrise. Genome-wide RNA-seq analysis revealed distinctive circadian expression of genes for enzymes involved in digestion and detoxification in the midgut and fat body, as well as for all 9 circadian rhythm genes newly annotated in this species. Functional studies including siRNA knockdown of selected circadian genes in vivo and over-expression in cultured cells provided evidence for their interaction with downstream detoxification genes via widely distributed promoter-element E-boxes. Altogether these studies provide a detailed look at mechanisms underlying circadian detoxification gene expression in a lepidopteran species and suggest an approach for insecticide treatment based on chronotoxicological considerations.

Results

Daily rhythms in locomotion and feeding of S. litura larvae. S. litura last instar larvae exhibited a daily rhythm in locomotion and feeding during days 1–3 under LD (12 h light: 12 h dark) with the acrophase at midnight, ZT 18, and the trough at ZT 6 (Fig. 1a, b, Supplementary Data 4). The free-running rhythm of feeding under DD (continued darkness) was somewhat less pronounced but weak peaks continued with the acrophase being slightly earlier, perhaps due to 4 being shorter than 24 h (Fig. 1b). Defecation activity was also rhythmic (Fig. 1c, Supplementary Data 4), peaking at ZT 9 during daytime in a 24 h cycle, suggesting that efficient digestion and excretion from the gut continued to occur in the day when the larvae appeared to be inactive or “sleeping”. However, although the free-running rhythm in feeding exhibited clear peaks, the intensity was weaker. S. litura larvae showed a clearer rhythmic pattern in locomotor activity with a more conspicuous free-running rhythm than in feeding and defecation (Fig. 1a). The free-running rhythm in locomotion (Fig. 1a) seemed phase-delayed relative to the entrained rhythm, suggesting a circadian period, \(\tau \), longer than 24 h, while that in feeding (Fig. 1b) was phase advanced, suggesting \(\tau \) shorter than 24 h.

Rhythm of digestive enzymes in midgut of S. litura. What follows feeding is sleep, digestion, and metabolism. Our question is whether the latter two processes are under circadian control. For 72 h of LD, we examined changes in the activity of \(\alpha \) amylyase, total protease, and lipoprotein lipase in the intestinal fluid and found digestive enzyme activity in the midgut lumen oscillated (Supplementary Fig. 1). Similar to S. littoralis15, the activity of \(\alpha \) amylyase peaked at dawn. However, the total protease and lipoprotein lipase activity peaked at dusk, resembling the defecation rhythm. Furthermore, annotation of 6 digestion-related genes involved in carbohydrate (Trehalase and Trehalose transporter), protein (Trypsin and Dipetidase), and lipid (Lipase and Fatty acid binding protein) metabolism in the midgut and measurement
of their transcriptional levels indicated higher expression during daytime (Supplementary Fig. 2). These data indicated that the life of this noctuid is characterized not only by nocturnal feeding but also intense activities of digestion during the day.

Rhythmic expression of detoxification genes in the fat body and midgut. Detoxification of abundant plant secondary compounds, much of which takes place in the fat body, is a vital process for survival on host plants. Detoxification of xenobiotics is also crucial for ecological adaptation to different host plants in highly polyphagous pests. In S. litura and S. frugiperda, expansion of detoxification genes, such as cytochrome P450 (P450), carboxylesterase (COE), and glutathione S-transferase (GST), is reported to have enhanced the insects’ detoxification ability. Using RNA-seq, we performed a transcriptome analysis of 313 previously annotated detoxification genes in the midgut and fat body of S. litura 6th-instar larvae every 3 h during 24 h. These consisted of 138 SlituP450s, 47 SlituGSTs, 110 SlituCOEs, and 18 S. litura Aminopeptidase N (SlituAPNs) based on the published S. litura genome. Two hundred eleven detoxification genes were expressed in the midgut, and 220 genes in the fat body. Most of these genes oscillated during the 24 h sampling period. To look for differentially expressed patterns in the data, we performed clustering analysis using Mfuzz software with FCM parameters of $c = 12$, $m = 1.25$. This classified all expression profiles into 12 different clusters and yielded two main detoxification clusters in midgut and fat body, Cluster A11 and Cluster B12 (Fig. 2a, Supplementary Fig. 3, Supplementary Data 4). We then plotted the peak expression profile of each detoxification gene in these two clusters against the time when the peak appeared (Fig. 2b, Supplementary Data 4). These patterns indicated that more than half (64.5%) of these detoxification genes were more highly expressed in daytime, i.e., ZT 3–6 (10 a.m.–1 p.m.) and ZT 9–12 (4 p.m.–7 p.m.) than at night with an antiphase to the feeding time. This suggested that the larvae could efficiently cope with the xenobiotic challenges in ingested food and insecticides during their inactive or “sleeping” daytime period.

In order to verify the reliability of the transcriptome data, we used RT-qPCR to determine the expression trend of a representative detoxification gene from each of the three analyzed families. These genes were selected because they were all highly induced by the neonicotinoid insecticide imidacloprid, as we reported previously. Furthermore, their RT-qPCR patterns were consistent with the RNA-seq data (Fig. 2c, d, Supplementary Data 4).

Circadian gene annotation and expression analysis. To study the relationship of detoxification gene transcriptional activation with the circadian clock, we first annotated 9 core circadian genes, SlituClk, SlituBmal1, SlituPer, SlituTim, SlituCwo, SlituCry1, SlituCry2, SlituVri, and SlituPdp1e, in the S. litura genome by BLAST search with orthologous genes which have been reported in other lepidopteran insects (Supplementary Table 1). To investigate whether these identified clock genes were involved in the rhythmic output of feeding and locomotion, we then assayed their daily expression profiles using RNA-seq and RT-qPCR data measured systematically in three tissues/organs: head, midgut, and fat body (Supplementary Fig. 4). The results indicated that 6 of the annotated genes (SlituPer, SlituTim, SlituCry1, SlituCry2, and SlituVri) exhibited 24-hour circadian rhythms in the head, while the peak time lagged in the midgut and fat body. Additionally, the profiles of SlituClk and SlituBmal1 (and perhaps SlituPdp1e) showed a biphasic pattern in the head under LD.

To provide a more convincing demonstration of a circadian fluctuation in the expression of SlituClk, SlituBmal1, SlituPer, SlituTim, and SlituCwo, we extended the time for continuously checking the transcript levels in the brain under LD and DD conditions to 72 h at 3 h intervals (Fig. 3, Supplementary Data 1, 2). The expression of SlituPer and SlituTim manifested clear and strong rhythms in which peaks occurred at the middle of the dark phase, whereas, the SlituCwo rhythm was similar but slightly phase advanced relative to these two rhythms. SlituCwo showed a strong rhythm both in LD and DD; however, under DD, it was obvious that SlituTim did not freely run, nor probably did SlituPer. In contrast, SlituClk and SlituBmal1 showed a 12-hour rhythm with a peak in each 12 h segment and weaker intensity under free running conditions. In addition, SlituActin3, used as a reference gene in RT-qPCR, maintained a consistently level expression with no change throughout day or night (Fig. 3).

Effects of siRNA injection on the expression of detoxification genes. In order to determine the relationship between clock genes and their potential downstream clock-controlled genes we performed knockdown experiments for SlituClk, SlituBmal1, and SlituCwo, singly or collectively, by injecting 6th instar larvae with siRNA. Knockdown with combined siRNAs for SlituClk and SlituBmal1 caused a 36–42% decrease of transcription levels for representative detoxification genes SlituP450-082, SlituP450-132, SlituGST022, SlituGST035, SlituCOE051, and SlituCOE092 compared to controls injected with siRNA for green fluorescent protein (GFP) (Fig. 4a, Supplementary Data 4). On the contrary,
knockdown of SlituCwo alone enhanced expression of these detoxification genes by 37–46% compared to controls (Fig. 4b, Supplementary Data 4).

To test whether the observed alteration of putative detoxification gene expression affected insecticide sensitivity, at 24 h after siRNA injection we fed larvae artificial diet containing imidacloprid (30 μg g⁻¹), followed by measuring the percent of affected larvae in each group at 6, 12, 18, and 24 h after feeding the insecticide. We observed an increase (maximum of 69.6%) in sensitivity of the Clk+Bmal1 knockdown group compared to the control. By contrast, SlituCWO acted as a repressor whereby its knockdown decreased (around 36.1%) the sensitivity to the insecticide (Fig. 4c, d, Supplementary Data 4).

E-box involvement in the circadian transcriptional activation of detoxification genes. While examining transcriptional sequences and promoter regions in the genome data, we identified abundant conserved putative cis-regulatory elements on the promoters of some detoxification genes, including the six representative ones tested in knockdown experiments. Therefore, as potential binding sites for transcription factors we further annotated the locations of E-boxes (CACGTG) and non-canonical E-boxes (CANNTG) in the 5’ regulatory regions of all expressed detoxification genes, which included 142 daytime activated detoxification genes, 57 night activated detoxification genes, and 21 detoxification genes with no fluctuation (Supplementary Data 3, Fig. 5). It was evident that arrhythmic detoxification genes, without fluctuating expression, had few E-boxes (0.57 E-box per gene), clearly suggesting E-boxes are associated with rhythmic gene expression. Accordingly, E-box elements were more abundant (2.54 E-box per gene vs 1.77 E-box per gene) in the promoter regions of detoxification genes that were activated during the day compared with those activated at night. This was especially evident for some subfamilies previously reported to have efficient detoxification function and active response to toxins such as P450 Clan3, GST class ε, and lepidopteran type COE7 (Supplementary Data 3). In addition, clustered detoxification genes which were activated and highly expressed at the same time during the day had more E-box elements in their promoter regions within 3 kb upstream of their transcriptional start sites (Fig. 5a, Supplementary Data 3), which may be the key reason for their simultaneous activation and expression during the day.
average of 58.4%. However, the promoter activities of the test detoxification genes decreased by an average of 34.2% after transfection with the SlituPer overexpression vector. This finding was consistent with our previous observations of the likely role of SlituPER as a repressor and indicated that accumulated SlituPER protein could inhibit E-box binding of a putative CLK-BMAL1 heterodimer to mediate its own transcriptional repression and that of other E-box-dependent genes. By contrast, in the cells containing overexpressed SlituCwo, we detected a much lower level (average reduction of 124.1%) of test gene transcription. This suggested that SlituCWO might also act as a typical repressor involved in the regulation of the detoxification rhythm.

To test further whether circadian protein binding to E-box elements could alter the transcription of detoxification genes, we constructed a mutant vector for the promoter region of SlituP450-082, replacing the 3 normal E-box elements (CACGTG) with TGTAAC. The transcriptional activity of the mutant was lower (62.4%) than that of the positive control (Fig. 6c, Supplementary Data 4). This indicated that the presence of intact E-boxes was crucial for the efficient expression of detoxification genes, consistent with their proposed function as target sites for circadian rhythm regulators to control the periodic expression of detoxification genes.

Chronotoxicological consideration in agriculture: detoxification activity and sensitivity to pesticides. To further confirm the existence of a rhythmic xenobiotic detoxification process and determine optimal conditions for future insecticide applications in the field, we treated two groups of fourth-instar larvae topically by directly placing a solution of imidacloprid on their dorsal surface once each at a day or night circadian time under LD and DD conditions, followed by observations of the response rate (including mortality) over a 6 h period. The sensitivity to the same dose of insecticide averaged 21.6% higher when applied nocturnally than diurnally, indicating night to be a more effective time for use of agricultural pesticides (Fig. 7, Supplementary Data 4).

Discussion

Genetic systems supporting the core circadian system are basically conserved from Archaea to human,13,26,29. These are composed of an interlocked negative feedback system consisting of two loops. The first, core feedback loop is composed of two arms: a positive arm comprising CLK:BMAL1 in mammals and monarch butterfly and CLK:CYC in *Drosophila* which activates transcription of target genes, and a negative arm in which the negative elements PER/CRY in mammals and monarch, and PER/TIM in *Drosophila*, repress their own CLK:BMAL1-mediated transcription and those of other target genes. The second, stabilizing loop relies on RevErba/Rora in mammals and *Pdpe1*/*Vri* in insects10,20,30,33,34,41–43. Feeding and light cycle are two major cues that drive the circadian system, but feeding is accompanied by a massive flow of secondary metabolites and xenobiotic agents44. All CYPs require heme as a prosthetic group and heme availability is strongly circadian19,38, consistent with strong circadian control of their activity. Redox metabolites must depend on the energy flow starting with feeding, and effective feeding is guaranteed by the circadian system19,38. Thus, the coupling of xenobiotic responses and digestive mobilization must be adaptive.

In this report we introduce a molecular model for the coupling of behavior and metabolism in a formidable lepidopteran pest. Genome-wide transcriptomic and functional analyses in *S. littura* revealed a complementarity between periods of intensive digestion and detoxification activity during the daytime and
locomotion and feeding at night under control of a circadian system. Rhythmic feeding behavior is associated with the rhythmic activity of digestion enzymes accompanied by rhythmic expression of circadian genes in a previous report on *S. littoralis*. Although these and other polyphagous noctuid pests like *S. frugiperda*, *H. armigera*, and *H. zea* contain a great expansion of gene families associated with detoxification of plant secondary metabolites and insecticides, so far few studies have documented the transcriptional activity of these detoxification genes in relation to their distinctive circadian behaviors, nor have they elucidated the molecular mechanisms underlying these processes in Lepidoptera.

The transcription patterns of most *S. littoralis* orthologs of *Drosophila* circadian genes were rhythmic, at least under an LD cycle. However, the patterns of *SlituClk* and *SlituBmal1* were biphasic (Fig. 3a,b), differing from *DmClk* which has an antiphase pattern to *DmPer* transcription in *Drosophila* where *DmPer* and *DmTim* mRNA levels start to rise at CT 4 during the natural daytime and reach peaks within 3 h of dusk. Although *SlituPer* and *SlituTim* showed rhythmic expression with an acrophase at ZT 18 (Fig. 3c, d), their peak expression was delayed compared to *Drosophila* where circadian genes were rhythmic, at least under an LD cycle.

The entrained rhythms of *SlituPer* and *SlituTim* had high amplitudes, but they did not free run in DD. This failure suggests the possibility that they are photo-induced and function together as an hourglass timer, so that alternative devices exist to measure time endogenously as changeable settings. By contrast, *SlituCwo* transcription showed a robust rhythm with high amplitude under an LD cycle and was partially rhythmic in the DD condition (Fig. 3e). *SlituPer* mRNA and *SlituCwo* mRNA were not in phase in the acrophase, suggesting that *SlituCwo* may play a role similar to that reported in *Drosophila*, in which CWO rhythmically binds E-boxes to promote PER-dependent removal of CLK-CYC and maintain repression of transcription. For now, without more evidence for the detailed network within the feedback loops of *S. littoralis*, it is difficult to interpret the effects of an individual knockdown targeting one member of the circadian system. Nevertheless, the results reported here, together with the results of the mixed siRNA injection targeting *SlituClk* and *SlituBmal1* and in vitro E-box modification studies, confirm the existence of a molecular link between the circadian system and detoxification rhythm in *S. littoralis*.

The reduced transcription of representative detoxification genes by larval injection of combined siRNAs targeting core circadian genes *SlituClk* and *SlituBmal1* (Fig. 4) suggested their diurnal expression is most likely driven by a circadian system. These observations were supported by the finding of multiple E-boxes on members of 3 families of detoxification genes along with experiments which showed that overexpression of *SlituClk* and *SlituBmal1* upregulated detoxification gene transcription in cultured cells, while *SlituCwo* acted as a repressor to downregulate their transcription (Fig. 6). Thus, we propose that the
heterodimer, SlituCLK-SlituBMAL1, as well as SlituCWO, can activate or repress transcription of detoxification genes competitively by binding to E-boxes to activate or mediate output behaviors under regulation of the circadian system. Given the knockdown results (Fig. 4), we propose that core genes SlituClk and SlituBmal1 are associated with SlituCwo as a negative regulator to control the oscillation of the detoxification process. E-boxes are especially enriched in the regulatory region of clustered detoxification genes, such as SlituP450-095–SlituP450-107 located on Chr29 (Fig. 5). In contrast to the night activated detoxification genes, which are scattered in the genome, daytime activated detoxification genes are neighboring and close enough in their clusters to be within the same chromatin loop. This structure could contribute to synchronously and efficiently initiating transcription of clustered detoxification genes via chromatin domain activation through binding of clock factors to E-box sequences and mediating the access of RNA polymerase to their transcriptional start sites.

Multiple E-boxes or non-canonical E-boxes were also found in the 5′ regulatory regions of the six digestion enzyme genes previously documented to show diurnal fluctuation in expression (Supplementary Fig. 6a). Although we did not test the circadian regulation of their transcriptional activity directly, the finding that altering the canonical E-box sequences of genes for digestion of carbohydrate and lipid was accompanied by abolishment of their activity in cultured cells is consistent with their involvement with circadian mechanisms similar to those documented for detoxification genes (Supplementary Fig. 6b, Fig. 6), and merits further study.

Biological clocks are reported to control various behaviors and physiological processes in Lepidoptera such as locomotor activity, feeding rhythms, mating behaviors, and other developmental and metabolic events. In this study, we not only analyzed the daily rhythm of larval activities and feeding behavior, but also strongly focused on detoxification metabolism, which was closely related to feeding. Our investigation showed that S. litura displayed circadian rhythms in the expression of detoxification genes as well as in insecticide sensitivity using the neonicotinoid imidacloprid. Similar findings have been reported in other insects. In fruit flies, the maximum expression of many xenobiotic metabolizing genes clustered in late afternoon, while the daily profiles of susceptibility to pesticide indicated increased resistance in midday in D. melanogaster. In a study of Anopheles gambiae, the GST activity of Pimperena strain mosquito lysates had peak phases at late-night to dawn, whereas in insecticide assays using the Mali strain, the mosquitoes showed rhythmic susceptibility to DDT with a peak at late afternoon. In exploring the daily rhythms of insecticide susceptibility in the bedbug, Cimex lectularius, Khalid et al. reported that the nocturnally active larvae repeatedly showed highest tolerance for deltamethrin during the late photophase at ZT9. Other insects such as spotted wing Drosophila, cotton aphid, and brown plant hopper are also reported to show circadian fluctuations in their detoxification metabolism and insecticide susceptibility. But as yet none of these...
studies have reported details of mechanisms driving these processes. Our study started with the rhythms of behaviors and then found a duality between rhythms of detoxification metabolism and feeding behavior. Further experiments showed that this duality was under the regulation of the circadian system, through binding of circadian elements to canonical E-boxes on responding downstream genes. We propose a molecular link between circadian clocks and daytime xenobiotic detoxification contributes to intensive larval night feeding in *S. litura* which enables it to evade the risks of insecticides and possible predators in daytime. Given the geographically widespread agricultural damage of this formidable insect, our results advance our understanding of the molecular basis underlying its ability to adapt to diverse adverse

Fig. 6 Effects of core circadian gene overexpression on detoxification gene transcription through E-box binding in cultured cells. **a** Location of canonical (CAGCTG, red) and non-canonical (CACCTG, yellow; CATGTG, green; CAACCTG, orange) E-boxes in 5′ regulatory regions of *SlituCOE051*, *SlituGST035*, and *SlituP450-082*. **b** Relative luciferase activity for the promoters of *SlituP450-082*, *SlituGST035*, and *SlituCOE051* induced by co-transfection of Spli-221 cells with *SlituClk* (OE Clk), *SlituBmal1* (OE Bmal1), *SlituPer* (OE Per), *SlituCwo* (OE Cwo), and combined *SlituClk* + *Bmal1* (OE 2 core) overexpression vectors (red). Control vectors overexpress *EGFP* (blue). **c** Relative luciferase activity of mutated (TGTACT, red) and normal (CACGTG, Ctrl, blue) E-box sequences for *SlituP450-082* induced by co-transfection of *SlituClk* and *SlituBmal1*. The results are given as mean ± SEM of three repeated experiments and statistically significant difference was set at *P* value < 0.05, **P** value < 0.01 and ***P** value < 0.001.

Fig. 7 Topical treatment of imidacloprid on 4th instar larvae. **a** Outline of day-night settings and timing of imidacloprid treatment. **b** The effect of imidacloprid exposure on normal larvae. The experiments were performed during daytime (10 a.m.–4 p.m., red) and night (10 p.m.–4 a.m., blue) in normal LD (12 h:12 h) and DD (continued darkness) conditions based on a preliminary LD₅₀ test (see Methods). Larvae were scored as “affected” when they rounded up, stiffened and did not move when touched, as if dead (“suspended animation”). Three groups of 10 4LD₂ larvae were used; each group was treated once during the day or night. The mean percentage of larvae affected after direct exposure to imidacloprid solution on their dorsal surface is shown ± SEM with three repeated tests and statistically significant difference was set at *P* value < 0.05, **P** value < 0.01 and ***P** value < 0.001.
environmental conditions and promise to contribute to more effective management of this pest.

Methods

 Larvae preparation and sample collection. Larvae were from the inbred Ishihara strain described in a previous paper. All larvae were reared on artificial diet (Silk Mate, Japan) at 25 ± 2 °C with 60 ± 5% relative humidity under 12 h:12 h light–darkness (LD) conditions where Zeitgeber time 0 (ZT0) is the time of lights on and ZT12 is the time of lights off. Since larvae began to show circadian rhythms in feeding behavior from the 5th instar, 6LD1 (6th instar day 1) to 6LD3 larvae were used for all experiments. For transcriptome analysis, heads, fat bodies, and midguts from 6LD1 larvae were dissected at 3 h intervals for 24 h. Tissues were rinsed once in PBS buffer, transferred to Trizol reagent (Invitrogen, USA), and stored at −80 °C until use. Each sample had 3 replicates for a total of 9 individuals at each time-point.

RNA extraction and sequencing. Total RNA of the head, midgut, and fat body was extracted from excised tissues using Trizol reagent according to the manufacturer’s instructions (Invitrogen, USA), and contaminating genomic DNA was digested with RNA-free DNase I (Takara, Japan). Approximately 1 μg total RNA was used to construct cDNA libraries using a TruSeq RNA sample preparation kit (Illunima, USA). The library was sequenced with an Illumina HiSeq4000 system (Illunima, USA).

Transcriptome analysis. After removal of polyA, rRNA, tRNA, and low-quality reads (QV < 20) from raw reads as described in a previous paper16,17, RSEM software (version 1.2.2) was used to count the number of mapped reads and estimate the FPKM (fragments per kilobase per million mapped fragments) value of each gene as a measure of the gene expression level. Significant differential expression of genes was determined using a false discovery rate of <0.01 and a ratio of intensity against control of >2 for induction or <0.5 for reduction. We integrated specific genes was determined using a false discovery rate of <0.01 and a ratio of intensity against control of >2 for induction or <0.5 for reduction. We integrated specific

Cell culture and dual-luciferase reporter assay. The S. litura embryonic cell line Spli-221 was maintained in Grace medium (Thermo, USA) supplemented with 10% HyClone fetal bovine serum (GE Healthcare Life Sciences, USA) at 27 °C. The ORF sequences for SlituClk, SlituBmal1, SlituPer, and SlituCwo (or GenBank under BioProject PRJNA348815) were subsequently cloned into the S. litura embryonic cell line Spli-221 with the shuttle vector pSFLa1180a modified and stored in our laboratory56. As a negative control a vector was also constructed for cloning potential promoter regions that harbored one or tandem E-box elements located up to around 3 kb upstream of TSS sites (Supplementary Data 3). After restriction enzyme digestion and purification, the fragments were cloned into the plasmid pGL3-basic (Promega, USA) and used to construct luciferase reporter vectors. Transfection using lipotropic vectors was performed following the manufacturer’s instructions. Cell-fect II reagent (Thermo, USA) according to the manufacturer’s instructions. After an additional 48 h of incubation, cells were collected for RT-qPCR analysis of the target genes, and subjected to a luminometer-based dual-luciferase assay (Promega, USA) in accordance with the manufacturer’s protocol.

Western blotting. To test whether the circadian proteins (SlituCLK, SlituBMAL1, SlituPER, and SlituCWO) were successfully overexpressed in Spli-221 cells, we performed Western blotting analysis after 48 h transfection. The cells were extracted in lysis buffer (300 mM NaCl, 3 mM MgCl2, 100 mM Hepes-NaOH, 20% glycerol, 1 mM EDTA, 1% sodium deoxycholate, 2% TX-100, 0.2% SDS, pH 7.5) and the protein concentrations were estimated using a bicinchoninic acid (BCA) assay (Beyotime, China). Twenty μg protein per sample was separated on 12% PAGE gels and subsequently transferred to a nitrocellulose membrane (Bio-Rad, USA), followed by immunoblotting using primary antibodies targeting HA (or FLAG) and anti-mouse IgG(+L) antibodies (Sigma, USA). The signal was visualized with chemiluminescence using a SuperSignal West Femto Maximum Sensitivity Substrate kit (Thermo, USA).

Topical treatment to test insecticide sensitivity of fourth-instar larvae. The LD50 of fourth-instar larvae was previously measured with concentrations at 0.5, 0.1, 0.05, 0.01, 0.005, and 0 mg/ml. Two μl of imidacloprid solution (at approximate LD50 concentration of 0.01 mg/ml in acetone) was placed on the dorsal surface of each larva at the beginning of the day or night circadian cycle and the toxicity was recorded in two time frames, from 10 a.m. to 4 p.m. and from 10 p.m. to 4 a.m. under LD and DD conditions. After six hours, infection rate (including dead larvae) statistics were determined as F values described in the section “Results” and “Supplementary Data 1,” and the LD50 measurement and topical treatment and the experiments were repeated three times.
6. International Silkworm Genome Consortium. The genome of a lepidopteran
7. Cheng, T. C. et al. Genomic adaptation to polyphagy and insecticides in a
8. Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report
9. Swamy, H. M. M. et al. Prevalence of
14. Di Cara, F. & King-Jones, K. The circadian clock is a key driver of steroid
15. Suszczynska, A., Kaniewska, M. M., Bebas, P., Giebultowicz, J. M. & Kotwica-
18. Balmert, N. J., Rund, S. S. C., Ghazi, J. P., Zhou, P. & Duf
20. Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-
21. Zheng, X., Koh, K., Sowcik, M., Smith, C. J., Chen, D., Wu, M. N. & Sehgal, A.
22. Zhu, H., Sauman, I., Yuan, Q., Casselman, A., Emery-Le, M., Emery, P. &
23. Zhu, H., Yuan, Q., Briscoe, A. D., Froy, O., Casselman, A. & Reppert, S. M. The
two CRYs of the butter
24. Lee, C. G., Bae, K. H. & Edery, I. The Drosophila CLOCK protein undergoes
daily rhythms in abundance, phosphorylation, and interactions with the PER-
TMD complex. Neuron 21, 857–867 (1998).
25. Taylor, P. & Hardin, P. E. Rhythmic E-box binding by CLK-CYC controls daily
26. Yu, W., Zheng, H., Houl, J. H., Dauwalder, B. & Hardin, P. E. PER-dependent
27. You, M. et al. A heterozygous moth genome provides insights into herbivory
28. Darlington, T. K. et al. Closing the circadian loop: clock-induced transcription
29. Chiou, Y.-Y., Yang, Y. Y., Rashid, N., Ye, R., Selby, C. P. & Sancar, A.
30. Lim, C. et al. clockwork orange encodes a transcriptional repressor important
31. Matsumoto, A. et al. A functional genomics strategy reveals clockwork orange as
32. Matsumoto, A. et al. A functional genomics strategy reveals clockwork orange via
33. Darlington, T. K. et al. Closing the circadian loop: clock-induced transcription
34. You, M. et al. A heterozygous moth genome provides insights into herbivory and
detoxification. Nat. Genet. 45, 220–225 (2013).
35. Eckel-Mahan, K. L., Patel, V. R., Mohney, R. P., Vignola, K. S., Baldi, P. &
36. International Silkworm Genome Consortium. The genome of a lepidopteran
37. Zheng, X., Koh, K., Sowcik, M., Smith, C. J., Chen, D., Wu, M. N. & Sehgal, A.
38. Cheng, T. C. et al. Genomic adaptation to polyphagy and insecticides in a
39. Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report
40. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
41. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
42. Zhu, H., Sauman, I., Yuan, Q., Casselman, A., Emery-Le, M., Emery, P. &
43. Giebultowicz, J. M. & Kotwica-
44. Patel, S. A., Velingkaar, N., Makwana, K., Chavdhari, A. & Kondratov, R.
45. You, M. et al. A heterozygous moth genome provides insights into herbivory and
detoxification. Nat. Genet. 45, 220–225 (2013).
46. International Silkworm Genome Consortium. The genome of a lepidopteran
47. Goergen, G., Kumar, P. L., Sankung, S. B., Togola, A. & Tamò, M. First report
48. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
49. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
50. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
51. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
52. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
53. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
54. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
55. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
56. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
57. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
58. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
59. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
60. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
61. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
62. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
63. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
64. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
65. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
66. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
67. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
68. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
69. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
70. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
71. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
72. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
73. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
74. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
75. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
76. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
77. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
78. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
79. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
80. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
81. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
82. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
83. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
84. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
85. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
86. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
87. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
88. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
89. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
90. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
91. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
92. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
93. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
94. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
95. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
96. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
97. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
98. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
99. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
100. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
101. Swamy, H. M. M. et al. Prevalence of ‘R” strain and molecular diversity of fall
45. Zhou, J., Yu, W. & Hardin, P. E. CLOCKWORK ORANGE enhances PERIOD-mediated rhythms in transcriptional repression by antagonizing E-box binding by CLOCK-CYCLE. *PLoS Genet*. 12, e1006430 (2016).

46. Kadauke, S. & Blobel, G. A. Chromatin loops in gene regulation. *Biochim. Biophys. Acta* 1789, 17–25 (2009).

47. Merlin, C., Lucas, P., Rochat, D., Françoise, M.-C., Maibèle-Coisne, M. & Jacquin-Joly, E. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth *Spodoptera littoralis*. *J. Biol. Rhythm.* 22, 502–514 (2007).

48. Kadauke, S. & Blobel, G. A. Chromatin loops in gene regulation.

49. Hamby, K. A., Kwok, R. S., Zalom, F. G. & Chiu, J. C. Integrating circadian rhythms in insecticide susceptibility, metabolic enzyme activity, and gene expression in *Cnexis lectularia* (Hemiptera: Cimicidae). *PLoS One* 14, e0218343 (2019).

50. Bagheri, F. et al. Circadian rhythmicity of diazinon susceptibility, detoxifying enzymes, and energy reserves in *Aphis gossypii* (Hemiptera: Aphididae). *J. Econ. Entomol.* 109, 1651–1659 (2016).

51. Kang, K., Yang, P., Pang, P., Yue, L. & Zhang, W. Cycle affects imidacloprid efficiency by mediating cytochrome P450 expression in the brown planthopper *Nilaparvata lugens*. *Insect Mol. Biol.* 26, 522–529 (2017).

52. Chen, Z. et al. A comprehensive analysis of the chorion locus in silkmoth. *J. Biol. Rhythm.* 26, 522–529 (2010).

53. Darvishzadeh, A., Hosseininaveh, V. & Rizi, S. S. Enzymatic activity of α-amylase in alimentary tract *Spodoptera littoralis* (Boisduval) (Lepidoptera-Noctuidae): characterization and compartmentalization. *Arthropods* 3, 138–146 (2014).

54. Matsui, T. et al. The pars intercerebralis as a modulator of locomotor rhythms and feeding in the American cockroach. *Periplaneta americana*. *Physiol. Behav.* 96, 548–556 (2009).

55. Horn, C. & Wimmer, E. A. A versatile vector set for animal transgenesis. *Dev. Genes Evol.* 210, 630–637 (2000).

56. Hughes, M. E., Hogenesch, J. B. & Kornacker, K. JTK_CYCLE: an efficient nonparametric algorithm for detecting rhythmic components in genome-scale data sets. *J. Biol. Rhythm.* 25, 372–380 (2010).

57. Abbondante, S., Eckel-Mahan, K. L., Ceglia, N. J., Baldi, P. & Sassone-Corsi, P. Comparative circadian metabolomics reveal differential effects of nutritional challenge in the serum and liver. *J. Biol. Chem.* 291, 2812–2828 (2016).