Effect of various commercial of Na$_2$SiO$_3$ on compressive strength of Fly ash-based alkaline activated mortar

Otman M. M. Elbasir1,*, M.J.A. Mijarsh2, Megat Azmi Megat Johari3, Mohamed O. M. Mashri3, Rahmi Karolina4 and Zainal Arifin Ahmad5

1High Institute of Science and Technology, Civil Engineering Department, Qaser bin Gashear (Libya).
2Civil Engineering Department, Faculty of Engineering, Elmergib University, Al-Khums (Libya).
3School of Civil Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 NibongTebal, Penang (Malaysia).
4Doctoral Program of Civil Engineering Department, Universitas Sumatera Utara, (Indonesia).
5Structural Materials Niche Area, School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, 14300 NibongTebal, Penang (Malaysia).

*Email: othmanelbasir@gmail.com

Abstract. This study aimed to assesses the effect of various commercial Na$_2$SiO$_3$ on the compressive strength (CS) of alkaline activated fly ash mortar (AAFM). The three mixture of alkaline activated mortar (AAM) C1, C2 and C3 were prepared from the source material of fly ash and alkaline activator solution (AAS). The initial AAS was comprised of NaOH (10M) and various grade of Na$_2$SiO$_3$. The various grades of Na$_2$SiO$_3$ were characterized by their SiO$_2$/Na$_2$O molar ratio of 2.0, 2.2, and 3.3, respectively. The sample from each mixture was characterized based on the CS and microstructure changes using useful tools of XRD and FTIR analysis. The results obtained indicated that the highest CS achieved among the three mixtures were 48.23MPa of mixture C2 prepared with SiO$_2$/Na$_2$O molar ratio of 2.2. This was mainly due to higher binder formation (N-A-S-H gel type) and a higher rate of reaction of the main source material. This result is in line with XRD and FTIR analysis results finding.

1. Introduction

A new type of cement is being constantly developed in order to meet the increasing demand for Ordinary Portland cement (OPC) as an essential construction material and to reduce the environmental impact on air quality and the ozone layer associated with the clinker production[1, 2]. The clinker production to produce cement emits to the atmosphere nearly 1.5 billion tons of CO$_2$ annually and this gives a share in about 6% of the total synthetic CO$_2$ emission in 2015 [3, 4]. Therefore, due to these problems apparent the research initiatives and efforts for the continuation of mitigating measures to lessen the unfriendly outcomes resulting from the continual emission. The substitution of cement via supplementary cementation masteries have been highly recommended for its contribution towards decreasing the global carbon warming. Despite all these efforts the production of OPC still to be unavoidable. The recycle of pozzolans as supplementary cementation masteries which is essentially industrial or agriculture by-products such as fly ash (FA), silica fume (SF), granulated blast furnace slag (GGBFS), and palm oil fuel ash (POFA) that helps to reduce the overall pollution from dumping these wastes in landfill and store this material in the earth [5, 6].
The synthesis of a new type of binder known as geopolymer in construction materials formed as the result of the alkaline activation of pozzolans materials that are rich in SiO$_2$, Al$_2$O$_3$ and/or CaO gives credit for this achievement to the work of German cement chemist and engineer Kuhl in 1930, to obtain an ordinary Portland cement (OPC) alternative material [7]. The synthesis of geopolymer via FA as the main source material rich in SiO$_2$ and Al$_2$O$_3$ based alkaline activated mortar have been widely investigated through various research [6, 8-13]. The ratio between the main oxide’s chemical composition of SiO$_2$ and Al$_2$O$_3$ demonstrated the effects of setting time and final strength of hardening geopolymer products [14, 15].

The alkaline activator has been used in geopolymer production were prepared from various type combination and concentrations [8, 16-18]. The alkaline activator of NaOH and Na$_2$SiO$_3$ have mostly been used [5, 19]. Despite a few papers have been published to investigate the influence of different SiO$_2$/Na$_2$O molar ratio derived from the commercial-grade of Na$_2$SiO$_3$ on the reaction formation of final products [20-24]. The influence of total oxides concentrations of SiO$_2$ and Na$_2$O derived from the different grade of Na$_2$SiO$_3$ solution remains unclear [24, 25]. This going research aimed to investigate the influence of different grades of commercial Na$_2$SiO$_3$ on the reaction formation of gel binder based alkaline activated fly ash. It will also promote the utilization of locally available waste materials towards the development of alternative and sustainable construction material for general construction applications.

2. Materials and Methods

2.1. Materials

2.1.1. Fly Ash

The main source materials utilized in this research was fly ash from Lafarge Malaysia Berhad (Rawang Plant). According to ASTM:C618-12a, fly ash is specified into low-calcium fly ash (Class F, CaO< 10%). The oxides chemical composition and physical properties are shown in Tables (1) and (2), respectively.

Oxides (%)	SiO$_2$	Al$_2$O$_3$	Fe$_2$O$_3$	CaO	MgO	P$_2$O$_5$	K$_2$O	SO$_3$	TiO$_2$	Na$_2$O	LOI
FA	49.053	23.516	6.422	5.080	0.698	1.018	1.309	0.475	1.121	0.2102	2.130

Table 1. Chemical compositions of FA analysed by XRF.

Materials	Specific gravity	Median particle size, d_{50} μm	Surface area m^2/kg	Colour
FA	2.42	9.8	320	grey

Table 2. Physical properties of FA.

2.1.2. Alkaline activators

The combination of alkaline activator consists of NaOH, Na$_2$SiO$_3$ solutions and an additional amount of water. The analytical grade of NaOH was used in pellet form having CAS No: 1310-73-2 provided by QrecSdn. Bhd, Malaysia. Furthermore, the commercial grade of Na$_2$SiO$_3$ was characterized based on SiO$_2$/Na$_2$O molar ratio to three different types 2.0, 2.2, and 3.3, respectively.
2.1.3. Fine aggregates
The local natural river sand located in area of Nibong Tebal, Penang was used. The collected sand was sieved passed through a 1.18 mm and was retained on a 150 μm sieve as described in ASTM C778 (ASTM, 2000), having fineness modulus of 2.8, and a specific gravity of 2.65.

2.2. Design of mixtures
In this study, three mixtures of AAFM consist from the source material, alkaline activator and fine aggregate, which were designed per cubic meter using the absolute volume method are represented in Table 3. A homogenization mixes proportion from fine sand to the source material of 1.5 was used. The alkaline activator combination and concentration was exactly as described in previous study [19]. The added water was used as 5 wt.% from the total binder content [19].

2.3. Preparation geopolymer fly ash mortar and testing
The mixtures were prepared using source material of fly ash and alkaline activator solution in required quantities. The mixture was prepared by keeping the fly ash constant but changing the grades of Na$_2$SiO$_3$ solution with keeping the NaOH (10M) and water content constant as shown in Table 3. The thee various grades of Na$_2$SiO$_3$ solution was used which characterized by their SiO$_2$/Na$_2$O (S/N) molar ratio of 2.0, 2.2, and 3.0 depending on designed mixture of C1, C2, and C3, respectively. Period before the mixing process, a dry homogenization of source material and sand were performed. The dry solid material and activator solution was added to L5 automatic Hobart N50 mixer as illustrated in ASTM C305 [26] and the mixing process followed was exactly the same as previous research [27]. The prepared mixture were cast in to cubic molds and compacted in 2 layer according to ASTM C109 [28] and vibrated for 2 min to eliminate entrapped air bubbles during the mixing process. After 24 h the demolded samples were covered in plastic bag to diminish water evaporation and left for 24 h at room temperature, followed by curing for 24 h in an oven set at 75°. Samples were then cured in laboratory conditions until examination.

Table 3. The mixture proportions of the fly ash based geopolymer mortars (kg/M3).

Mix	Solid material (kg)	Sand (kg)	Alkaline Activator	Added Water (kg)		
C1 Ms (2.0)	Fly ash 847	1270	303	40	8	6
C2 Ms (2.2)	Fly ash 847	1270	303	40	8	6
C3 Ms (3.3)	Fly ash 847	1270	303	40	8	6

2.4. Samples characterization
The development of microstructure and gel binder formation of AAFM samples were examined by compressive strength according to ASTM C109 [28], XRD diffraction patterns recorded on Bruker D8 Advance instrument diffractometer using CuKa radiation (1.5406 Å) in a range of 10-65° of 2θ and FTIR analysis using KBr binder for preparing the sample while the wavenumber was ranged from 400 to 4000 cm$^{-1}$ were conducted on dried samples.

3. Results and discussion

3.1. Effect of initial silica modulus of Na$_2$SiO$_3$
Fig. 1 shows the variation of CS with different grade of Na$_2$SiO$_3$. This effect was studied by varying
grades of Na$_2$SiO$_3$ solution which characterized by their SiO$_2$/Na$_2$O (S/N) molar ratio of 2.0, 2.2, and 3.0 depending on a designed mixture of C1, C2, and C3, respectively. The CS increased with S/N molar ratio up to the certain limit but reversed when the S/N molar ratio increased. The strength obtained was 46.737 MPa and increased to 48.723 MPa when the S/N molar ratio increased to 2.2. By increasing the S/N molar ratio from 2.2 to 3.3, the maximum CS decreased by 29.64%. It was revealed that the CS increased as S/N molar ratio increased up to 2.2 but beyond that, it reduces linearly. The current outcome results are in line with other research finding [29]. The observation also could be attributed to the higher dissolution rate of the complex aluminosilicate minerals in the Fly ash as the prime or source material at different grades of Na$_2$SiO$_3$ solution[29].

Figure 1. Compressive strength of alkali activated AAMFA mortar at3, 7, 14, and 28 days.

3.2. Mineralogical analysis result
The X-ray diffraction was performed to identify the phase compositions in the alkaline activated fly ash (AAMFA). The phase changes were investigated within curing time of 28 day. The results of mixtures (C1-C3) indicated the presence of mullite with chemical composition of (Al$_6$Si$_2$O$_{13}$) (ICSD no. 98-006-4581) and quartz (ICSD no. 98-004-6928). The peak at 29.7° 2Ɵ was attributed to the formation of N-A-S-H type gel with a structure close to mullite. The peak intensity increased with the increase in S/N molar ratio but beyond that, it decreased. The CS increased with the peak intensity to a certain extent but reversed in the presence of excess S/N molar ratio. The molar ratio of S/N in the mixture determines the rate of dissolution and activation of fly ash as source material. Furthermore, the presence of high SiO$_2$(OH)$_2^-$ or SiO(0H)$_3^-$ species, derived from alkaline activator solution that would react with dissolved Al(OH)$_3$ species to form the gel binder which results in a high rate of reaction. Besides, the high concentration of Na$_2$O that leads to higher pH values which plays a crucial role in degree of condensation process of main gel binder [30].
Figure 2. XRD diffractograms of AAMFA ash mortar mixture # C1, C2, and C3.

3.3. Fourier transform infrared spectroscopy (FTIR)

Figure 3 presents the FTIR spectra of different mixtures (C1, C2, and C3) synthesized from different concentration S/N ratio after 28 days. The results are tabulated in table (6), which depict the FTIR data associated with band positions and assignments of AAFA. The results in dictated through the change in band vibration of AAFA backbone in the region 900-1200 cm\(^{-1}\). This region of vibration frequency is the main feature in AAMFA [18]. The change in the ratio of S/N ratio from 2.0 to 3.3 was found to influence the gel binder formation by providing a reasonable quantity of dissolved SiO\(_2\) to the system since the early stage of the reaction. The main vibration modes at 1024.72 Cm\(^{-1}\) observed at C1 related to bending vibration mode of the Al-O-Si bonds. The formation of this band stated to increase at C2 rather than C1 and C3, which vibration moved close to 1000 Cm\(^{-1}\) then stated to increase in C3. This was attributed to a highly crosslinked of N-A-S-H gel binder framework as it’s also confirmed by XRD analysis.

Figure 3. FTIR spectra AAMFA ash mortar mixture C1, C2, and C3 at 28 days.
Table 4. FTIR vibration bands of AAMFA mixtures at 28 days.

Vibration bands #	Mixture C1	Mixture C2	Mixture C3	Assignment
1	455.43	438.52	459.34	δ Si–O (SiO_4Td)
2	-	471.83	-	δ Si–O–Si
3	695.22	692.54	692.54	δ Si–O–Si
4	776.15	775.82	777.9	Quartz double band
5	1024.72	1007.20	1032.90	Alkaline aluminosilicate (N–A–S–H) gel band (T–O, T=Si or Al)
6	1415.2	1398.4	1423.4	δ_3 C–O (CO$_3^{2-}$)
7	1644.76	1647.67	1645.97	δO–H (H_2O)
8	3466.68	3467.56	3468.70	δ O–H (H_2O)

4. Conclusion

The impact of initial silica modulus of sodium silicate on the compressive strength of alkali-activated mortar (AAMFA) has been investigated in this research. The high compressive strength of 48.723 MPa was achieved with $\text{SiO}_2/\text{Na}_2\text{O}$ ratio of 2.2 and reduce or increase in this ratio caused a reduction in resultant compressive strength. This was mainly due to the high concentration of Na_2SiO_3 activating solution lowers pH and raises solution viscosity, inducing a weakening in the degree of reaction of fly ash with low gel binder formation of N-A-S-H. This was also consistency with XRD and FTIR analysis.

Acknowledgements

The authors gratefully acknowledge the Ministry of Higher Education, Malaysia and Universiti Sains Malaysia for providing financial support through the Fundamental Research Grant Scheme (203/PAWAM/6071365) for the undertaking of the research work. Special thanks are due to Lafarge Malaysia Berhad, (Associated Pan Malaysia Cement SdnBhd) for providing the fly ash.

References

[1] S Ahmari X Ren V Toufigh and L Zhang 2012 *Production of geopolymeric binder from blended waste concrete powder and fly ash* Cons Build Mater 35 718-729.

[2] M Schneider M Romer M Tschudin and H Bolio 2011 *Sustainable cement production—present and future* Cem Concrr Res 41(7) 642-650.

[3] J S Damtoft, J Lukasik, D Herfort, D Sorrentino and E M Gartner 2008 *Sustainable development and climate change initiatives* Cem Concrr Res 38 (2) 115-127.

[4] J Davidovits 1994 *Global warming impact on the cement and aggregates industries* World RESREV 6(2) 263-278.

[5] M J A Mijarsh, M A Megat Johari and Z A Ahmad 2014 *Synthesis of geopolymer from large amounts of treated palm oil fuel ash: Application of the Taguchi method in investigating the main parameters affecting compressive strength* Cons Build Mater 52 473-481.

[6] M R bin Mohamed Rashid, M J A Mijarsh, H Seli, M A M Johari and Z A Ahmad 2018 *Sago pith waste ash as a potential raw material for ceramic and geopolymer fabrication* J MATER CYCLES WASTE 20 (2) 1090-1098.

[7] J.L. Provis 2018 *Alkali-activated materials* Cem Concrr Res 114 40-48.
[8] T A Aiken, J Kwasny, W Sha and M.N. Soutsos 2018 Effect of slag content and activator dosage on the resistance of fly ash geopolymer binders to sulfuric acid attack Cem Concr Res 111 23-40.

[9] S K Saxena, M Kumar and N B Singh 2018 Effect of Alccofine powder on the properties of Pond fly ash based Geopolymer mortar under different conditions ENVIRON TECHNOL INNOV 9 232-242.

[10] C B Cheah, L E Tan and M Ramli 2019 The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume COMPOS PART B-ENG 160 558-572.

[11] G F Huseien, A R M. Sam, K W Shah, M A Asaad, M M Tahir and J Mirza 2019 Properties of ceramic tile waste based alkali-activated mortars incorporating GBFS and fly ash Cons Build Mater 214 355-368.

[12] G F Huseien, A R M. Sam, K W Shah, M A Asaad, M M Tahir and J Mirza 2019 Evaluation of alkali-activated mortars containing high volume waste ceramic powder and fly ash replacing GBFS Cons Build Mater 210 78-92.

[13] M Kumar, S K Saxena and N B Singh 2019 Influence of some additives on the properties of fly ash based geopolymer cement mortars SN APPL SC 1(5) 481.

[14] P De Silva, K Sagoe-Crentsil 2008 The effect of Al2O3 and SiO2 on setting and hardening of Na2O-Al2O3-SiO2-H2O geopolymer systems J. Aust. Ceram. Soc 44(1) 39-46.

[15] P Chindapasirirt, P De Silva, K Sagoe-Crentsil and S Hanjitsuwon 2012 Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems J MATER SCI 47(12) 4876-4883.

[16] S Y Kim, Y Jun, D Jeon and J E Oh 2017 Synthesis of structural binder for red brick production based on red mud and fly ash activated using Ca(OH)2 and Na2CO3 CONSTR BUILD MATER 147 101-116.

[17] T. Yang, H. Zhu, Z. Zhang, Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars, CONSTR BUILD MATER, 153 284-293.

[18] M Palacios, M Alonso, C Varga, F Puertas 2019 Influence of the alkaline solution and temperature on the rheology and reactivity of alkali-activated fly ash pastes CONSTR BUILD MATER 95 277-284.

[19] M J A Mijarsh, M A Megat Johari, Z A Ahmad 2015 Compressive strength of treated palm oil fuel ash based geopolymer mortar containing calcium hydroxide, aluminum hydroxide and silica fume as mineral additives CEMENT CONCRETE COMP 60, 65-81.

[20] T T Tran and H M Kwon 2018 Influence of Activator Na2O Concentration on Residual Strengths of Alkali-Activated Slag Mortar upon Exposure to Elevated Temperatures Mater 11(8) 1296.

[21] M Criado, A Fernández-Jiménez, A G de la Torre, M A G Aranda and A Palomo 2007 An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash Cem Concr Res 37(5) 671-679.

[22] M Criado, A Fernández-Jiménez and A Palomo 2007 Alkali activation of fly ash: Effect of the SiO2/Na2O ratio: Part I: FTIR study MICROPOR MESOPOR MAT 106 (1–3) 180-191.

[23] M Criado, A Fernández-Jiménez, A Palomo, I Sobrados and J Sanz 2008 Effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Part II: 29 Si MAS-NMR Survey MICROPOR MESOPOR MAT 109(1) 525-534.

[24] M C Bignozzi, S Manzi, M E Natali, W D A Rickard and A van Riessen. Room temperature alkali activation of fly ash: The effect of Na2O/SiO2 ratio CONSTR BUILD MATER 2014 69 262-270.

[25] O M Elbasir, M Johari, M Azmi and Z A Ahmad 2015 Influence of Initial Silica Modulus of Na2SiO3 on the Compressive Strength of Alkali Activated Ultrafine Palm Oil Fuel Ash Based Mortar APPL MECH MATER 202-207.

[26] ASTM C305. Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency Annual book of ASTM standards, (2006).
[27] M Mijarsh, M M Johari, Z A Ahmad 2015 Effect of delay time and Na$_2$SiO$_3$ concentrations on compressive strength development of geopolymer mortar synthesized from TPOFA CONSTR BUILD MATER 86 64-74.

[28] ASTM C109/C109M -99, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens). West Conshohocken, (1999), 6.

[29] M O Yusuf, M A Megat Johari, Z A Ahmad, M. Maslehuddin 2015 Impacts of silica modulus on the early strength of alkaline activated ground slag/ultrafine palm oil fuel ash based concrete MATER STRUCT 48(3) 733-741.

[30] L N Tchadjie, S O Ekolu 2018 Enhancing the reactivity of aluminosilicate materials toward geopolymer synthesis J MATER SC 1 53(7) 4709-4733.