Empirical Study on Maximum Traffic Throughputs at Intersections

Patikhom Cheeverunothai1 and Ruangsak Kaewpiku1

1Department of Civil and Environmental Engineering, Thammasat University, Pathumthani 12121, Thailand

Abstract. Traffic congestion in big cities of Thailand has been a major problem seriously deterring economy growth. An average travel speed has become lower than 15 km/hour during peak-hour periods. One of the current major questions is how to find the most optimum green time that minimizes vehicle delay at an intersection. Since the identification of this optimum green time significantly depends on the knowledge of how fast vehicles can pass through an intersection, the information of the maximum traffic throughputs at intersections at different locations is indispensable. In this study, therefore, traffic counts were extracted manually from the videos recorded at 4 major intersections in Saensuk city. After the data were analyzed, the maximum traffic throughputs for different lane numbers and configurations were calculated and summarized. A better understanding of this maximum traffic throughput at intersections will lead to more accurate estimation of optimal green time.

1 Introduction

Traffic congestion in Thailand has been a major problem slowing down economy growth. With the number of vehicles exceeding the available roadway capacity in the network, traffic condition during rush hours becomes extremely congested. For example, at present, there are about 7 million registered vehicles in Bangkok but the current roadway capacity is only available for 2.5 million vehicles. The rush-hour periods expand longer each year mainly because of the increasing number of personal vehicles.

For last 20 years, to minimize traffic congestion, several new roads and expressways were built. However, there has been no sign of improvement on travel time in the area. Under bad economy for about a decade and the unsuccessful outcomes from previous traffic congestion mitigation strategies, most of major cities have limited budget and less support for new road construction projects from the communities. Therefore, an improvement on the current operations of existing traffic systems becomes more feasible option.

In 2015, after experiencing severe traffic congestion on major roads during peak hours, Saensuk city started a new traffic mitigation program. This new program’s first phase started the work on major intersections with the highest congested level. The program emphasizes on the application of Intelligent Traffic Systems (ITS) to lessen the traffic congestion level. At the selected intersections, there was an attempt to use vehicle data collected from recorded videos to enhance an understanding of traffic congestion and identify the optimum green time that results in high intersection capacity. To be able to select the optimum green time, a good understanding of possible maximum traffic throughput at intersection is essential. As a result, the data on maximum traffic throughput for different lane numbers and configurations were collected and summarized in this study.

2 Literature review

There has been many researches with the effort to minimize vehicle delay at intersections. The work is related to important traffic parameters such as traffic capacity and saturation flow rate at an intersection. Samples of the researches can include the following works. In 1968, Miller [1] conducted a research to estimate capacity at signalized intersections in Australia. After that, Akcelik [2] analyzed not only capacity but also timing at signal intersections. Kimber et al. [3] developed a procedure to predict the saturation flow rate at an intersection that is controlled by traffic signals. Bester and Meyers [4] also worked on saturation flow rate at an intersection.

In recent years, non-motorized mode has become more popular. As a result, Li et al. [5] conducted a research on the saturation flow rate of shared non-motorized lane at intersections. Applying a better understanding of the traffic throughput at an intersection, many researchers had developed efficient ways to improve traffic throughputs, such as Liu and Chang who worked on an arterial signal optimization for intersections [6] and Li and Elefteriadou who worked on maximizing the throughput of turn bays at a signalized intersection [7]. Additional works may include the work from Zhou et al. [8], Wu et al. [9], and Chunhui et al. [10]. As advanced traffic-related and automobile technologies are rapidly growing and
increasingly play an important role in our present society, new research related to the reduction of vehicle delay at intersections has become broader.

3 Data source

Intersections with high traffic congestion level in the Saensuk city were selected for this study, which include 4 major intersections that are 1) Galaxy, 2) Burapa, 3) Kao Larm, and 4) Lam Tann. These intersections are on the major arterials in the city. Each intersection has different number of arms and lanes and/or lane configurations. For example, the Galaxy intersection is a three-way junction as shown in Fig. 1. The Southbound (SB) approach has 4 lanes. Similarly, the Northbound (NB) approach has 4 lanes. However, the Eastbound (EB) approach has 3 lanes. The lane type is also displayed by white arrows in Fig. 1.

![Figure 1. Galaxy Intersection](image1)

The Burapa intersection is also a three-way junction with 2 lanes EB, 3 lanes WB, and 3 lanes NB (shown in Fig. 2). The special thing at this intersection is the rightmost u-turn lane of the WB approach. The last two intersections are Kao Larm and Lam Tann intersections, which are four-way junctions (Fig. 3 and 4, respectively). The Kao Larm intersection has 2 lanes EB, 4 lanes WB, 2 lanes NB, and 3 lanes SB. Similarly, for the Lam Tann intersection, there are 1 lane EB, 2 lanes WB, 2 lanes NB, and 3 lanes SB.

To collect traffic count data, the CCTV cameras were installed at these 4 major intersections (displayed in Fig. 2). Videos were recorded for 24 hours for the days with high traffic congestion. After the investigation of traffic condition, the time interval 16:00-20:00 has been identified as the time period with high traffic volume. Therefore, the manual traffic count was conducted for this time period and the results are summarized in this study.

![Figure 2. Installation of CCTV cameras and a snapshot of recorded videos](image2)

4 Maximum traffic throughout

To ensure the accuracy of the collected traffic data, vehicle counts were extracted manually for three signal cycles in every half hour between 16:00-20:00 and shown in Tables 1-4. Lane 1 is always the rightmost lane in each approach. According to Tables 1-4, the maximum number of vehicles that can pass an intersection on the left lane is always smaller than its adjacent right lane. For example, based on the median values of traffic counts on the NB Lanes 2 and 3 at the Galaxy intersection, the number of vehicles that could pass the intersection in the same time period on the left lane can be as low as 45% of the number of vehicles on the adjacent right lane on the same approach. Similarly, Lane 4 SB is the leftmost lane and the traffic count is only 548 vehicles compared to 1078 vehicles on Lane 3 SB.

Table 1. Maximum traffic throughout at Galaxy intersection

Time	Cycle	Lane 1	Lane 2	Lane 1	Lane 2
16:00	1	1,159	1,147	1,134	
	2	1,200	1,107	1,274	
	3	1,179	1,173	1,152	
16:30	1	1,572	1,559	1,084	
	2	1,208	1,248	1,114	
	3	1,207	1,110	1,291	
17:00	1	1,289	1,137	1,063	
	2	1,066	1,072	1,380	
	3	1,312	1,250	1,346	
17:30	1	1,228	1,124	1,251	
	2	1,002	1,026	1,508	
	3	1,009	1,154	1,388	
18:00	1	1,369	1,231	1,395	
	2	983	984	1,288	
	3	1,267	918	1,232	
18:30	1	1,127	1,044	1,020	
	2	1,093	889	1,147	
	3	1,279	1,227	1,020	

At the Burapa intersection, since Lane 1 is for through and U-turn traffic, its maximum traffic throughput is less than that of Lane 2, which is through-left-turn lane. At this intersection, traffic demands on Lane 3 NB, Lane 2 EB, and Lane 3 WB are significantly less than the capacity, so those lanes were not included in Table 2.

Table 2. Maximum traffic throughout at Burapa intersection

Time	Cycle	NB	EB	WB
16:00	1	1,159	1,147	1,134
	2	1,000	1,107	1,274
	3	1,179	1,173	1,152
16:30	1	1,572	1,559	1,084
	2	1,208	1,248	1,114
	3	1,207	1,110	1,291
17:00	1	1,289	1,137	1,063
	2	1,066	1,072	1,380
	3	1,312	1,250	1,346
17:30	1	1,228	1,124	1,251
	2	1,002	1,026	1,508
	3	1,009	1,154	1,388
18:00	1	1,369	1,231	1,395
	2	983	984	1,288
	3	1,267	918	1,232
18:30	1	1,127	1,044	1,020
	2	1,093	889	1,147
	3	1,279	1,227	1,020
The medians of vehicle numbers passing for Types 2 and 3. Webof 20.00 19:30 19:00 18:30 18:00 17:30 17:00 16:30 16:00 15:30 15:00 14:30 14:00 13:30 13:00 12:30 12:00 11:30 11:00 10:30 10:00 9:30 9:00 8:30 8:00 7:30 7:00 6:30 6:00 5:30 5:00 4:30 4:00 3:30 3:00 2:30 2:00 1:30 1:00 0:30 0:00

Table 3. Maximum traffic throughput at Kao Larm intersection

time	cycle	Lam Tann	SB	EB	WB
15:00	1	1,472	1,147	1,472	1,806
15:30	1	1,505	1,345	1,505	1,805
16:00	1	1,189	1,316	1,189	1,316
16:30	1	1,141	1,371	1,141	1,371
17:00	1	1,167	1,371	1,167	1,371
17:30	1	1,189	1,316	1,189	1,316
18:00	1	1,149	1,371	1,149	1,371
18:30	1	1,167	1,371	1,167	1,371
19:00	1	1,179	1,371	1,179	1,371
19:30	1	1,191	1,371	1,191	1,371
20:00	1	1,191	1,371	1,191	1,371

Because each traffic lane allows different kinds of movements (e.g., through, left turn, right turn) and maximum speed for each movement is different, we separated traffic lanes into 6 types: 1) through lane, 2) right-turn lane, 3) through-right-turn lane, 4) through-left-turn lane, 5) through-right-left-turn lane, and 6) through-U-turn lane. The possible maximum traffic throughputs for each lane type is summarized in Table 5.

The surprising finding is that the traffic throughputs on Type 1 lane is never higher than 1,500 vehicles/hour and the traffic throughputs for Types 2 and 3 lanes are always higher than that of Type 1 lane. According to Table 5, the medians of vehicle numbers passing through the selected intersection on Types 2 and 3 lanes are 1,310 and 1,402 vehicles/hour, but Type 1 lane has only 1,088 vehicles/hour.

Table 4. Maximum traffic throughput at Lam Tann intersection

time	cycle	Lam Tann	SB	EB	WB
16:00	1	1,403	1,353	1,572	525
16:30	1	1,118	1,245	1,021	1,419
17:00	1	1,372	1,611	1,089	1,745
17:30	1	1,513	1,204	1,079	1,881
18:00	1	1,289	1,585	758	1,148
18:30	1	1,320	1,365	1,789	1,511
19:00	1	1,586	1,101	1,102	1,558
19:30	1	1,406	1,901	1,579	1,747
20:00	1	1,305	1,356	826	1,749

Figure 2. Burapa Intersection

Figure 3. Kao Larm Intersection

Figure 4. Lam Tann Intersection
Table 5. Traffic throughput by lane type

Interaction	Direction	Lane#	Type 1	Type 2	Type 3	Type 4	Type 5	Type 6
Galaxy SB	1	1,477	1,335	840	771	1,610	1,602	1,079
	2	-	-	-	-	-	-	-
	3	1	1,437	1,283				
	4	3						
Burapa NB	1	1,168	2,057	1,134	1,140			
	2	1,148	1,288					
	WR	1	1,141					
	2	1,140						
Kao Larm NB	1	1,642	1,328	1,346				
	2	1,365	1,206					
	SB	1	1,666					
	2	1,396						
	WR	1	1,240					
	2	1,662						
	EB	1	1,007					
	2	1,253						
Linn NB	1	1,287						
	2	1,425						
	SB	1	846					
	2	846						
	EB	1	1,086					
	2	1,086						

5 Conclusions and recommendations

In this study, the information of possible maximum traffic throughputs at major intersections was collected using the traffic count data extracted from the videos recorded by deploying CCTV cameras. Four major intersections with high traffic congestion in Saensuk city were chosen and afterward new CCTV cameras were installed at these intersections. Traffic throughput data were manually extracted from the recorded videos for the time period of 16:00-20:00 because, after the visual observation, this time period covers peak traffic hours.

The maximum traffic throughputs for different number of lanes and lane configurations at the chosen intersections were collected and analyzed. There are two 3-way and two 4-way intersections. Traffic throughputs for different lane types should be treated separately. With a better understanding of possible maximum traffic throughputs, the identification of optimum green time to minimize vehicle delay would become more accurate. In the future work, a statistical analysis to identify a relationship among important parameters, such as green time vs. maximum throughput will be conducted.

References

1. A.J. Miller, The Capacity of Signalized Intersections in Australia. Australian Road Research Board, Bull. No. 3 (1968)
2. R. Akcelik, Traffic Signal: Capacity and Timing Analysis. Australian Road Research Board, Research Report ARR No.123 (1981)
3. R.M. Kimber, M. McDonald and N.B. Hounsell, The Prediction of Saturation Flows for Road Junctions Controlled by Traffic Signals. Transport and Road Research Laboratory, Research Report 67 (1986)
4. C.J. Bester, and Meyers W.L. Saturation Flow Rates. The 26th Southern African Transport Conference, Pretoria, South Africa (2007)
5. L. Li, D. Lin, X. Chen and W. Ma, Saturation Flow Rate of Shared Non-Motorized lane at intersections, Transportation Research Board 94th Annual Meeting, Washington, D.C., USA (2015)
6. Y. Liu and G. L. Chang, An Arterial Signal Optimization Model for Intersections Experiencing Queue Spillback and Lane Blockage, Transportation Research Part C: Emerging Technologies, Vol. 19, pg. 130-144 (2011)
7. Z. Li and L. Elefteriadou, Maximizing the Traffic Throughtput of Turn Bays at a Signalized Intersection Approach, Journal of Transportation Engineering, Vol. 139, Issue 5 (2013)
8. H. Zhou, H. G. Hawkins Jr., and Y. Zhang, Arterial Signal Coordination with Uneven Double Cycling, Transportation Research Part A: Policy and Practice, Vol. 103, pg. 409-429 (2017)
9. J. Wu, D. Ghosal, M. Zhang and C. N. Chuah, Delay-Based Traffic Signal Control for Throughput Optimality and Fairness at an Isolated Intersection, IEEE Transaction on Vehicular Technology, Vol. 67 Issue 2 (2018)
10. Y. Chunhui, F. Yiheng, L. Henry X, M. Wanjing, and Y. Xiaoguang, Integrated Optimization of Traffic Signals and Vehicle Trajectories at Isolated Urban Intersections, Transportation Research Part B: Methodological, Vol. 112, pg. 89-112 (2018)