Coronary artery aneurysm (CAA) is generally defined as coronary dilatation that exceeds the diameter of normal adjacent segments or the diameter of the patient’s largest coronary vessel by 1.5 times. The prime cause of CAAs is atherosclerosis, and the most commonly affected artery is the right coronary artery. CAAs are quite commonly detected during X-ray coronary angiography. However, giant CAAs, especially with the diameter exceeding 100 mm, are extremely rare. The treatment method of choice of giant CAAs is the excision of aneurysm with coronary artery bypass grafting. We present a case of a 41-year-old apparently healthy woman with a giant right CAA. This was detected by noninvasive methods, including magnetic resonance coronary angiography, and its maximum diameter exceeded 100 mm. In emergency, the aneurysmal sac was excised and the aortocoronary saphenous vein graft was performed. We also present a review of the published studies of giant CAAs with the diameter exceeding 100 mm.
Figure 1. Computed tomographic images of the left anterior descending artery.

Figure 2. Computed tomographic images of the right coronary artery.

Figure 3. Coronary magnetic resonance image of giant aneurysm in coronal section compressing the inferior vena cava and right ventricle.

Figure 4. Giant right coronary artery aneurysm in the coronal section of CMR compressing the right ventricle (showing relationship with aortic arch).
femoral cardiopulmonary bypass cannulation - arterial (MEDTRONIC EOPA 77422) and atrio caval (Edwards Life sciences VEFM020) - were used. Following aortic cross-clamping, cold cardioplegic arrest was obtained and the giant aneurysm was possible to open (Figure 5). The aneurysmal sac was excluded by the closure of the proximal orifice with the 4-0 prolene and ligation of the artery distal to the aneurysm. There was no thrombus inside the aneurysm. Subsequently the aortocoronary saphenous vein graft was performed. Histologically, the aneurysmal wall revealed atherosclerotic plaques.

Postoperative transthoracic echocardiography showed the preserved ejection fraction of the left ventricle (EF=63%) and no segmental abnormalities of myocardial contractility. The postoperative course was uneventful, and the patient was discharged on the sixth postoperative day.

Eighteen months after the procedure, the patient was asymptomatic and worked full time.

Table 1. Reported cases of giant coronary artery aneurysms with a maximum diameter >100 mm.

Author	Year	Size	Sex	Coronary	Presentation	Cause
Gupta et al¹⁷	2010	180	M	LAD	N/A	Congenital
Kumar et al⁸	2006	160	F	RCA	SVC syndrome	Fibromuscular dysplasia
Kim et al¹⁷	1997	150	F	RCA	Dyspnea	Atherosclerotic
Zhang et al¹⁰	1988	150	F	RCA	Dyspnea	Congenital
Lim et al¹¹	1977	150	M	RCA	Dyspnea	Congenital
Wei et al¹⁴	1986	150	F	RCA	Dyspnea	Congenital
Burnside et al¹²	2012	150	F	RCA	Mediastinal mass	Myxoid degeneration
Li et al¹⁴	2012	144	F	LCx	Chest distress	CAF
Li et al¹⁵	2005	138	M	RCA	CHF	CAF
		130	F	LM+LAD	CHF	CAF
Llera et al¹⁶	2010	130	F	RCA	STEMI	Post-traumatic
Chazov et al¹⁷	1991	120	M	RCA	Chest heaviness	Unknown
Westaby et al¹⁸	1999	120	M	RCA	Angina, collapse	Atherosclerotic
Hirooka et al¹⁹	2009	120	F	LM	CHF	Unknown
Maria et al²⁰	2009	120	M	LCx	Angina	Atherosclerotic
Sareyyupoglu et al²¹	2009	114	F	RCA	CHF	Atherosclerotic
Mignosa et al²²	2004	110	M	RCA	Dysphagia	Williams syndrome
Topalian et al²²	2005	110	M	RCA	Angina	Cystic medial necrosis
Vlachou et al²⁴	2008	110	M	RCA	Nausea	Unknown
Keyser et al²⁵	2012	106	M	RCA	Angina	Atherosclerotic
Konen et al²⁶	2001	101	M	RCA	Fatigue	Unknown

CAF: Coronary artery fistula, LAD: left anterior descending artery, LCx: left circumflex artery, CHF: congestive heart failure, LM: left main coronary artery, N/A: not available, RCA: right coronary artery, STEMI: ST-elevation myocardial infarction, SVC: superior vena cava, F: female, M: male
DISCUSSION
CAAs are noted in approximately 0.9% to 4.9% of patients undergoing coronary angiography and are more common in men. RCA is also the most common site for CAAs.1

The prime cause of CAAs is atherosclerosis, followed by Kawasaki disease, polyarteritis nodosa, systemic lupus erythematosus, infection, trauma, angioplasty, and congenital malformations. CAAs are also the complication of coronary artery stenting and have been increasingly reported as a complication of drug-eluting stenting.2

Our patient had no history of Kawasaki disease, other connective tissue diseases, or chest trauma, and there was no coronary artery disease in coronary CTA and MRCA. The histopathologic examination of the excised aneurysm showed atherosclerotic plaques suggesting that her aneurysm had the most frequent background, atheromatosis.

CAAs, especially giant CAAs, may be detected noninvasively with the use of echocardiography, computed tomography, and magnetic resonance imaging.3 We made a presumptive diagnosis using TEE, which was confirmed by performing coronary CTA, CMR, and MRCA. Coronary CTA showed no coronary artery disease, and MRCA revealed the precise anatomy, size, and position of aneurysm, which were helpful for defining the range of surgical procedure.

According to ACCF/ACR/AHA/NASCI/SCMR 2010 Expert Consensus Document on CMR, MRCA may be used for identifying coronary artery anomalies and aneurysms. It may be particularly useful in younger individuals with signs or symptoms of myocardial ischemia for the purpose of identifying anomalous origins of coronary arteries.4 However, the gold standard for diagnosis of coronary aneurysms still remains x-ray coronary angiography.1 In the light of obtaining precise details from coronary CTA and MRCA, there was no need to perform x-ray coronary angiography in the described case.

Treatment options in CAAs consist of medical, surgical, and percutaneous approaches. To prevent thromboembolic complications, antiplatelet and/or antithrombotic drugs should be considered.5 Excision of CAA with CABG is the most frequently performed procedure as the treatment of giant CAAs, especially with a diameter exceeding 50 mm.6

To the best of our knowledge, the biggest CAA with a maximum diameter of 180 mm was described by Gupta et al.7 We present a case of 102 mm aneurysm, which is one of the biggest described in the literature (Table 1). We believe that only 23 cases (including the described one) have been reported to date in the English literature, with a maximum diameter exceeding 100 mm. We assume that our case is the first case of an atheromatous giant CAA in quadragenarian female described so far.

In conclusion, giant CAAs exceeding 100 mm are extremely rare, and MRCA is a useful noninvasive method in confirming diagnosis. This is also helpful in planning of surgical treatment without exposure to ionizing radiation or iodinated contrast medium particularly in young patients. It provides the precise anatomy, size, and position of aneurysm at least equivalent to x-ray coronary angiography.

Conflict of Interest
The authors do not report any conflict of interest regarding this work.
case report

REFERENCES

1. Swaye PS, Fisher LD, Litwin P, et al: Aneurysmal coronary artery disease. Circulation 1983; 67:134-138.
2. Nichols L, Lagana S, Parwani A: Coronary artery aneurysm: a review and hypothesis regarding etiology. Arch Pathol Lab Med 2008; 132:823-828.
3. Pahlavan PS, Niroomand F: Coronary artery aneurysm: a review. Clin Cardiol 2006; 29:439-443.
4. Hundley WG, Bluemke DA, Finn JP, et al: ACCF/ACR/AHA/NASCI/SCMR 2010 expert consensus document on cardiovascular magnetic resonance: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. J Am Coll Cardiol 2010; 55:2614-2662.
5. Cohen P, O’Gara PT: Coronary Artery Aneurysms: a review of the natural history, pathophysiologic, and management. Cardiol Rev 2008; 16:301-304.
6. Ramos SG, Mata K, Martins C, et al: Giant right coronary artery aneurysm presenting as a pericardial mass. Cardiovasc Pathol 2008; 17:329-333.
7. Gupta A, Devagorou V, Makhija N: Giant congenital coronary aneurysm of the left anterior descending artery. Thorac Cardiovasc Surg 2010; 58:368-369.
8. Kumar G, Karon BL, Edwards WD, et al: Giant coronary aneurysm causing superior vena cava syndrome and congestive heart failure. Am J Cardiol 2006; 98:986-988.
9. Kim SH, Jang IS, Buck CCD, et al: Giant atherosclerotic aneurysm of the sinoatrial nodal artery. J Thorac Cardiovasc Surg 1997; 114:280-282.
10. Zhang CC, Hu LX, Hsieh SW, et al: Echocardiographic features of a giant congenital aneurysm of the right coronary artery. J Clin Ultrasound 1988; 16:502-505.
11. Lim CH, Tan NC, Tan L, et al: Giant congenital aneurysm of the right coronary artery. Am J Cardiol 1977; 39:751-753.
12. Wei J, Wang DJ: A giant congenital aneurysm of the right coronary artery. Ann Thorac Surg 1986; 41:322-324.
13. Burnside N, Nzewi OC, Sidhu PS: A 15-cm aneurysm of the right coronary artery presenting as a pericardial cyst. Interact Cardiovasc Thorac Surg 2012; 14:483-484.
14. Li Q, Zi J, Zhang H, et al: Easy operation for a huge coronary artery aneurysm. Eur Heart J 2012; 33:1437.
15. Li D, Wu Q, Sun L, et al: Surgical treatment of giant coronary artery aneurysm. J Thorac Cardiovasc Surg 2005; 130:817-821.
16. Llera LD, Romero-Rodríguez N, Dominguez J: Giant post-traumatic coronary aneurysm as an infrequent cause of inferior ST elevation myocardial infarction. Eur Heart J 2010; 31:581.
17. Chazov E, Akchurin R, Lepilin M, et al: Giant aneurysm of the coronary artery. Int Angiol 1991; 10:106-111.
18. Westaby S, Vaccari G, Katsumata T: Direct repair of giant coronary aneurysm. Ann Thorac Surg 1999; 68:1401-1403.
19. Hirooka K, Watanabe T, Ohnuki M: Giant coronary artery aneurysm complicated with aortic regurgitation. Ann Thorac Surg 2009; 87:935-938.
20. Marla R, Ebel R, Crosby M, et al: Multiple Giant Coronary Artery Aneurysms, Tex Heart Inst J 2009; 36:244-246.
21. Sareeyupoglu B, Davies JE, Lin G, et al: Congenital giant coronary artery and coronary sinus aneurysms. J Thorac Cardiovasc Surg 2009; 137:763-765.
22. Milgrosa C, Agati S, Bianca I, et al: Acute respiratory insufficiency and giant coronary artery aneurysm with fistula. Ann Thorac Surg 2004; 77:1823-1825.
23. Topalian SK, Chiu K, Reining M, et al: Right coronary artery: the largest aneurysm reported. Chest 2005; 128:418S.
24. Vlachou P, Mulcahy K, Adair W: Giant coronary artery aneurysm: an unusual case of mediastinal mass. Eur Radiol 2008; 18:3007-3009.
25. Keyser A, Hilker MK, Hussner O, et al: Giant coronary aneurysms exceeding 5 cm in size. Interact Cardiovasc Thorac Surg 2012; 15:33-36.
26. Koenen E, Feinberg MS, Morag B, et al: Giant right coronary aneurysm: CT angiographic and echocardiographic findings. Am J Roentgenol 2001; 177:689-691.