Letter to the editor

Searching PubMed for articles relevant to clinical interpretation of rare human genetic variants

Andrew J. McMurry, PhD 1*

1 The Apache Software Foundation Dept. 9660 Los Angeles, CA 90084-9660 U.S.A.

*To whom correspondence should be addressed.
Contact: AndyMC@apache.org

To the editor:

While the speed and cost of genome sequencing has improved dramatically, the task of interpreting gene sequences for clinical purposes remains challenging [1-4]. Thousands of investigations into the pathogenicity of genetic variants have been completed and reported in peer-reviewed studies – however – which studies should be reviewed for each patient genome? The task of matching sequenced variants to the available evidence quickly exceeds human capacity.

Numerous challenges persist that delay clinical interpretation of human genetic variants, to name a few: (1) unstructured PubMed articles are the most abundant source of evidence, yet their variant annotations are difficult to query uniformly, (2) variants can be reported many different ways, for example as DNA sequence change or protein modification, (3) historical drift in annotations over time between various genome reference assemblies and transcript alignments, (4) no single laboratory has sufficient numbers of human samples, necessitating precompetitive efforts to share evidence for clinical interpretation.

Meaningful progress at the US National Library of Medicine and elsewhere provides improved capability to query and mine genetic databases [5-7] and PubMed articles [8-10] for rare genetic variants. Used together, these tools can be used to extract genetic variants from article text [10] and translate these mentions into formats recognized by the Human Genome Variation Society (HGVS) standards organization [11]. The implications of this capability are profound: PubMed articles can be indexed to provide near-real time lookup of articles relevant to a specific genetic variant.

Search PubMed for articles relevant to a patient genome

As an example, imagine a physician wants to rule out breast cancer for a patient, and orders genetic testing according to the approved guidelines for breast cancer [12]. In this example, a very rare genetic variant was found in the BRCA2 gene, with unknown disease pathogenicity. The standard list of widely cited databases is then checked: BIC – the breast cancer information core [13]; ClinVar – the NCBI repository of clinical variants [5]; and HGMD – the Human Gene Mutation Database [14]. It is rather typical that rare genetic sequence variants have no annotations available in any structured database, resulting in either a laborious review of potentially thousands of genetics articles or an uncertain interpretation -- Variant of Unknown Significance (VUS).

To aid clinical interpretation, Natural Language Processing (NLP) tools can be combined to extract mentions of genetic variants from PubMed article text [10]. Variant NLP tools exist for both rare and common genetic variants, germline and somatic. Relatively common genetic variants – variants having greater than 1% Minor Allele Frequency (MAF) -- may have standardized nomenclature and annotation available in dbSNP [7]. Intuitively, rare variants are rarely available in gene databases and thus present the greatest challenge for interpretation.

From DNA to RNA to protein

Results from published genetic studies may describe the variant of interest in terms of the genomic variant, DNA coding sequence, RNA transcript, or change in the resulting protein [15,16,17]. Modern variant tools such as tmVar [18] and SETH [9] extract mentions for all of these molecular types. These tools capture not only capture standard HGVS mentions of DNA, RNA, and protein mentions, but also improperly formatted mentions. Mappings between molecular types can be achieved using a wide range of open source tools. Importantly, variant mapping tools enable lookups of variants annotated in
previous genomic references – older articles annotated using outdated genome and transcript assemblies can still be indexed and searched.

Open source variant tools for searching PubMed

Multiple Open Source packages can be combined[10] to provide as comprehensive a literature search as possible (Table 1). PubMed abstracts are routinely indexed by NCBI for gene names using GNorm+[19,20] and textual mentions of genetic variants using NCBI tmVar [18]. NCBI conveniently provides downloadable files of the indexes in the NCBI public FTP site, which can be quickly downloaded and indexed in a local database [8]. For articles where abstract-text or full-text are available, SETH [9] can be used to extract variant mentions according to current and deprecated HGVS nomenclature.

Table 1. Open access variant tools useful for searching PubMed

Software	Utility
PubTator	Download variants indexes from PubMed
Gnorm+	Normalize gene name synonyms
SR4GN	Recognize species reference
tmVar	Extract variants from PubMed articles
SETH	Extract variants from PubMed articles
Variation Reporter	HGVS parsing and transcript mapping
Biocommons	HGVS parsing and transcript mapping
Mutalyzer	HGVS parsing and transcript mapping

References

1. Burke, W, Kornegiebel, DM. Closing the gap between knowledge and clinical application: challenges for genomic translation. PLoS Genet. 2015; 11(2):e1004978. doi: 10.1371/journal.pgen.1004978.

2. Lee, H, et al. Clinical exome sequencing for genetic identification of rare Mendelian disorders. JAMA. 2014; 312(18):1880-7. doi: 10.1001/jama.2014.14604.

3. Atwal, PS, et al. Clinical whole-exome sequencing: are we there yet?. Genet. Med. 2014; 16(9):717-9. doi: 10.1038/gim.2014.10.

4. Duzkale, H, et al. A systematic approach to assessing the clinical significance of genetic variants. Clin. Genet. 2013; 84(5):453-63. doi: 10.1111/cge.12257.

5. Landrum M, Lee J, Riley G, et al. ClinVar. 2013 Nov 21. In: The NCBI Handbook [Internet]. 2nd edition. Bethesda (MD): National Center for Biotechnology Information (US); 2013-. Available from: http://www.ncbi.nlm.nih.gov/books/NBK174587

6. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2015; 44(D1):D7-D19. doi: 10.1093/nar/gkv1290.

7. SNP FAQ Archive [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005-. Classes of Genetic Variation Included in dbSNP. Available from http://www.ncbi.nlm.nih.gov/books/NBK44447/. Accessed 2015 Dec 1.

8. Wei, CH, et al. PubTator: a web-based text mining tool for assisting biocuration. Nucleic Acids Res. 2013; 41(Web Server issue):W518-22. doi: 10.1093/nar/gkt441.

9. Thomas P, Rocktaschel T, Mayer Y, and Leser U. (2014). SETH: SNP Extraction Tool for Human Variations. http://rockt.github.io/SETH accessed Dec 1, 2015.

10. Jimeno, Yepes, A, Verspoor, K. Mutation extraction tools can be combined for robust recognition of genetic variants in the literature. F1000Res. 2014; 3:18. doi: 10.12688/f1000research.3-18.v2.

11. Vis, JK, et al. An efficient algorithm for the extraction of HGVS variant descriptions from sequences. Bioinformatics. 2015; 31(23):3751-7. doi: 10.1093/bioinformatics/btv443.

12. Richards, S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015; 17(5):405-24. doi: 10.1038/gim.2015.30.

13. Szabo, C, et al. The breast cancer information core: database design, structure, and scope. Hum. Mutat. 2000; 16(2):123-31. doi: 10.1002/1098-1004(200008)16:2<123::AID-HUMU4>3.0.CO;2-Y.

14. Stenson et al (2003), The Human Gene Mutation Database (HGMD®): 2003 Update. Hum Mutat (2003) 21:577-581

15. Biocommons: a collection of software tools related in some way to sequence analysis, and particularly genome sequence analysis. Available from http://biocommons.bitbucket.org/. Accessed 2015 Dec 1.

16. Wildeman, M, et al. Improving sequence variant descriptions in mutation databases and literature using the Mutalyzer sequence variant nomenclature checker. Hum. Mutat. 2008; 29(1):6-13. doi: 10.1002/humu.20654.

17. NCBI Variation Reporter. Available from http://www.ncbi.nlm.nih.gov/variation/tools/reporter. Accessed 2015 Dec 1.

18. Wei C-H, Harris BR, Kao H-Y, Lu Z (2013) tmVar: A text mining approach for extracting sequence variants in biomedical literature. Bioinformatics, 29(11) 1433-1439, doi:10.1093/bioinformatics/btt156

19. Wei C-H, Kao H-Y, Lu Z (2015) ‘GNormPlus: An Integrative Approach for Tagging Gene, Gene Family and Protein Domain’, BioMed Research International Journal, Text Mining for Translational Bioinformatics special issue, in press.

20. Wei C-H, Kao H-Y, Lu Z (2012) SR4GN: a species recognition software tool for gene normalization, PLoS ONE, 7(6):e38460 doi:10.1371/journal.pone.0038460