Tetravalent s-Transitive Graphs of Order $4p^2$

Mohsen Ghasemi · Jin-Xin Zhou

Received: 21 June 2010 / Revised: 19 September 2011 / Published online: 11 October 2011
© Springer 2011

Abstract Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on $(s + 1)$-arcs. Let p be a prime. Zhou (Discrete Math 309:6081–6086, 2009) classified tetravalent s-transitive graphs of order $4p$. In this article a complete classification of tetravalent s-transitive graphs of order $4p^2$ is given.

Keywords s-Transitive graphs · Symmetric graphs · Cayley graphs

Mathematics Subject Classification (2000) 05C25 · 20B25

1 Introduction

In this paper we consider undirected finite connected graphs without loops or multiple edges. For a graph X we use $V(X)$, $E(X)$ and Aut(X) to denote its vertex set, edge set and its full automorphism group, respectively. For $u, v \in V(X)$, $\{u, v\}$ is the edge incident to u and v in X, and $N(u)$ is the neighborhood of u in X, that is, the set of vertices adjacent to u in X. A graph X is locally primitive if for any vertex $v \in V(X)$, the stabilizer Aut$(X)_v$ of v in Aut(X) is primitive on $N(v)$. An s-arc in a graph is an ordered $(s + 1)$-tuple $(v_0, v_1, \ldots, v_{s-1}, v_s)$ of vertices of the graph such that v_{i-1} is adjacent to v_i for $1 \leq i \leq s$, and $v_{i-1} \neq v_{i+1}$ for $1 \leq i \leq s - 1$. For a subgroup $G \leq$ Aut(X), a graph X is said to be (G, s)-arc-transitive or (G, s)-regular if G acts...
transitively or regularly on the set of s-arcs of X, respectively. A (G, s)-arc-transitive graph is said to be (G, s)-transitive if it is not $(G, s + 1)$-arc-transitive. In particular, an $(\text{Aut}(X), s)$-arc-transitive, $(\text{Aut}(X), s)$-regular or $(\text{Aut}(X), s)$-transitive graph is simply called an s-arc-transitive, s-regular or s-transitive graph, respectively. Note that 0-arc-transitive means vertex-transitive, and 1-arc-transitive means arc-transitive or symmetric. A graph is edge-transitive if $\text{Aut}(X)$ is transitive on $E(X)$. A vertex- and edge-transitive graph is said to be $\frac{1}{2}$-arc-transitive if it is not arc-transitive.

Edge-transitive graphs or s-transitive graphs of small valencies have received considerable attention in the literature. For instance, Tutte [24] initiated the investigation of cubic s-transitive graphs by proving that there exist no cubic s-transitive graphs for $s \geq 6$. Gardiner and Praeger [12,13] generally explored the tetravalent symmetric graphs by considering the automorphism groups. Let p be a prime. Conder [5] showed that for a fixed integer n and any integer $s > 1$, there are only finitely many cubic s-transitive graphs of order np. Li [16] generalized this result to connected symmetric graphs of any valency, and he also posed the following problem: for small values n and k, classify vertex-transitive locally primitive graphs of order np and valency k.

In this paper we classify all symmetric graphs of order np and valency k for certain values of n and k. The classification of s-transitive graphs of order np and of valency 3 or 4 can be obtained from [3,4,25], where $1 \leq n \leq 3$. Feng et al. [7–10] classified cubic s-transitive graphs of order np with $n = 4, 6, 8$ or 10. Recently, Feng et al. [11] classified tetravalent $\frac{1}{2}$-arc-transitive graphs of order $4p$, and Zhou and Feng [28,29] classified tetravalent s-transitive graphs of order $4p$ or $2p^2$. In this paper, a complete classification of tetravalent s-transitive graphs of order $4p^2$ is given.

2 Preliminaries

In this section, we introduce some notations and definitions as well as some preliminary results which will be used later in the paper.

For a regular graph X, use $d(X)$ to represent the valency of X, and for any subset B of $V(X)$, the subgraph of X induced by B will be denoted by $X[B]$. Let X be a connected vertex-transitive graph, and let $G \leq \text{Aut}(X)$ be vertex-transitive on X. For a G-invariant partition B of $V(X)$, the quotient graph X_B is defined as the graph with vertex set B such that, for any two vertices B, $C \in B$, B is adjacent to C if and only if there exist $u \in B$ and $v \in C$ which are adjacent in X. Let N be a normal subgroup of G. Then the set B of orbits of N in $V(X)$ is a G-invariant partition of $V(X)$. In this case, the symbol X_B will be replaced by X_N.

For a positive integer n, denote by \mathbb{Z}_n the cyclic group of order n as well as the ring of integers modulo n, by \mathbb{Z}_n^* the multiplicative group of \mathbb{Z}_n consisting of numbers coprime to n, by D_{2n} the dihedral group of order $2n$, and by C_n and K_n the cycle and the complete graph of order n, respectively. We call C_n an n-cycle.

For two groups M and N, $N \rtimes M$ denotes a semidirect product of N by M. For a subgroup H of a group G, denote by $C_G(H)$ the centralizer of H in G and by $N_G(H)$ the normalizer of H in G. Then $C_G(H)$ is normal in $N_G(H)$.

Proposition 2.1 [15, Chapter I, Theorem 4.5] The quotient group $N_G(H)/C_G(H)$ is isomorphic to a subgroup of the automorphism group $\text{Aut}(H)$ of H.

\[\text{ Springer}\]
Let G be a permutation group on a set Ω and $\alpha \in \Omega$. Denote by G_α the stabilizer of α in G, that is, the subgroup of G fixing the point α. We say that G is semiregular on Ω if $G_\alpha = 1$ for every $\alpha \in \Omega$ and regular if G is transitive and semiregular. For any $g \in G$, g is said to be semiregular if $\langle g \rangle$ is semiregular. The following proposition gives a characterization of Cayley graphs in terms of their automorphism groups.

Proposition 2.2 [2, Lemma 16.3] A graph X is isomorphic to a Cayley graph on a group G if and only if its automorphism group has a subgroup isomorphic to G, acting regularly on the vertex set of X.

Let X_N be the quotient graph of X. If X_N and X have the same valency, then X is called a normal cover of X_N. Let X be a connected tetravalent symmetric graph and N an elementary abelian p-group. A classification of connected tetravalent symmetric graphs was obtained when N has at most two orbits in [12] and a characterization of such graphs was given when X_N is a cycle in [13].

The following proposition is due to Praeger et al., refer to [12, Theorem 1.1] and [20].

Proposition 2.3 Let X be a connected tetravalent $(G, 1)$-arc-transitive graph. For each normal subgroup N of G, one of the following holds:

1. N is transitive on $V(X)$;
2. X is bipartite and N acts transitively on each part of the bipartition;
3. N has $r \geq 3$ orbits on $V(X)$, the quotient graph X_N is a cycle of length r, and G induces the full automorphism group D_{2r} on X_N;
4. N has $r \geq 5$ orbits on $V(X)$, N acts semiregularly on $V(X)$, the quotient graph X_N is a connected tetravalent G/N-symmetric graph, and X is a G-normal cover of X_N.

Moreover, if X is also $(G, 2)$-arc-transitive, then case (3) cannot happen.

The following proposition characterizes the vertex stabilizer of the connected tetravalent s-transitive graphs, which can be deduced from [19, Lemma 2.5], or [18, Proposition 2.8], or [17, Theorem 2.2].

Proposition 2.4 Let X be a connected tetravalent (G, s)-transitive graph. Let G_v be the stabilizer of a vertex $v \in V(X)$ in G. Then $s = 1, 2, 3, 4$ or 7. Furthermore, G_v is a 2-group for $s = 1$; G_v is isomorphic to A_4 or S_4 for $s = 2$; G_v is isomorphic to $A_4 \rtimes \mathbb{Z}_3$, $\mathbb{Z}_3 \rtimes S_4$, or $S_3 \rtimes S_4$ for $s = 3$; G_v is isomorphic to $\mathbb{Z}_3^2 \rtimes \text{GL}(2, 3)$ for $s = 4$; and G_v is isomorphic to $[3^5] \rtimes \text{GL}(2, 3)$ for $s = 7$, where $[3^5]$ represents an arbitrary group of order 3^5.

For the definitions of the graphs in the following proposition we refer the reader to [6]

Proposition 2.5 [6, Theorem 5.1] Let p be a prime. Then a tetravalent graph of order $4p^2$ is one-regular if and only if it is isomorphic to one of the following graphs. Furthermore, all the graphs are pairwise non-isomorphic.
(1) $X \cong \mathcal{B}W_{12}[5, 1, 5], |V(X)| = 36$, and $\text{Aut}(X) \cong G_{36} \rtimes \mathbb{Z}_2^2$;
(2) $X \cong \mathcal{G}PS2[4, 3, (01): (12)], |V(X)| = 36, |\text{Aut}(X)| = 144$;
(3) $X \cong \mathcal{N}C_{4p^2}^0, |V(X)| = 4p^2, p > 7, p \equiv \pm 1 \pmod{8}, \text{Aut}(X)$ is given in [13, Lemma 8.4];
(4) $X \cong \mathcal{N}C_{4p^2}^1, |V(X)| = 4p^2, p > 7, or p \equiv \pm 1 or 3 \pmod{4} \text{Aut}(X)$ is given in [13, Lemma 8.7];
(5) $X \cong \mathcal{C}A_{4p^2}^0, |V(X)| = 4p^2, p \equiv 1 \pmod{4}, \text{Aut}(X) \cong (\mathbb{Z}_{2p^2} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_4$;
(6) $X \cong \mathcal{C}A_{4p^2}^1, |V(X)| = 4p^2, p > 2, \text{Aut}(X) \cong (\mathbb{Z}_{4p^2} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^2$;
(7) $X \cong \mathcal{C}A_{4p^2}^2, |V(X)| = 4p^2, p \equiv 1 \pmod{4}, \text{Aut}(X) \cong G_{4p^2}^3 \rtimes \mathbb{Z}_4$.

3 Examples

In this section, we introduce several families of connected tetravalent symmetric graphs. The first example is the lexicographic product of C_{2p^2} and $2K_1$.

Example 3.1 Let p be a prime. The lexicographic product $C_{2p^2}[2K_1]$ is defined as the graph with vertex set $V(C_{2p^2}) \times V(2K_1)$ such that for any two vertices $u = (x_1, y_1)$ and $v = (x_2, y_2)$ in $V(C_{2p^2}[2K_1])$, u is adjacent to v in $C_{2p^2}[2K_1]$ whenever $[x_1, x_2] \in E(C_{2p^2})$.

It can be obtained from [23, Theorem] and [27, Table 1] that $C_{2p^2}[2K_1]$ is a tetravalent 1-transitive graph and $\text{Aut}(C_{2p^2}[2K_1]) \cong (\mathbb{Z}_{2p^2}^2) \rtimes D_{4p^2}$.

Proposition 3.2 [1, Theorem 1.2] Let X be a connected tetravalent Cayley graph on an abelian group G of order $4p^2$, where $p > 2$ is a prime. Then either $G \leq A$, or $X \cong C_{2p^2}[2K_1]$.

The following graph was first defined by Praeger and Xu, see [21, Definition 2.1 (b)].

Example 3.3 Let p be an odd prime. The graph $C(2; p^2, 2)$ has vertex set $\mathbb{Z}_{p^2} \times (\mathbb{Z}_2 \times \mathbb{Z}_2)$ and its edges are defined by

$$\{(i, (x, y)), (i + 1, (y, z))\} \in E(C(2; p^2, 2))$$

for all $i \in \mathbb{Z}_{p^2}$ and $x, y, z \in \mathbb{Z}_2$. By Praeger and Xu [21, Lemma 2.12], $\text{Aut}(C(2; p^2, 2)) \cong \mathbb{Z}_{p^2}^2 \rtimes D_{2p^2}$ and hence $C(2; p^2, 2)$ is 1-transitive.

The following two examples are defined by Gardiner and Praeger, see [13, Definitions 2.2.2.3].

Example 3.4 Let $p > 3$ be a prime. The graphs $C^{\pm 1}(p; 4, 2)$ has vertex set $\mathbb{Z}_p^2 \times \mathbb{Z}_4$. For any $(i, j) \in \mathbb{Z}_p^2, (i, j; 0) \sim (i \pm 1, j; 1), (i, j; 1) \sim (i, j \pm 1; 2), (i, j; 2) \sim (i \pm 1, j; 3), (i, j; 3) \sim (i, j \pm 1; 0)$.
In this section, we classify tetravalent -transitive graphs of order 4 for each prime p. To do so, we need the following lemma.

Lemma 4.1 Let p be a prime and let n > 1 be an integer. Let X be a connected tetravalent graph of order 4p^n. If G ≤ Aut(X) is transitive on the arc set of X, then every minimal normal subgroup of G is solvable.
Proof Let $v \in V(X)$. Since G is arc-transitive on X, by Proposition 2.4, G_v either is a 2-group or has order dividing $2^4 \cdot 3^6$. It follows that $|G| \mid 2^6 \cdot 3^6 \cdot p^n$ or $|G| = 2^m + 2 \cdot p^n$ for some integer m. Let N be a minimal normal subgroup of G.

Suppose that N is non-solvable. Then $p > 3$ and $|G| \mid 2^6 \cdot 3^6 \cdot p^n$ because a $[2, p]$-group is solvable by a theorem of Burnside [22, Theorem 8.5.3]. It follows that X is $(G, 2)$-arc-transitive. Let $X(v)$ be the neighborhood of v in X. For any $v \in V(X)$, 3 $| |N_v|$ because $p > 3$, and the 2-arc-transitivity of G implies that N_v acts transitively on $X(v)$ because $N_v \trianglelefteq G_v$. By Proposition 2.3, N has at most two orbits on $V(X)$. Hence, $2p^n$ divides $|N|$. Since N is minimal, it is a product of isomorphic non-abelian simple groups. Since $|N| \mid 2^6 \cdot 3^6 \cdot p^n$, by Gorenstein [14, pp.12–14], each direct factor of N is one of the following:

$$A_5, A_6, \text{PSL}(2, 7), \text{PSL}(2, 8), \text{PSL}(2, 17), \text{PSL}(3, 3), \text{PSU}(3, 3) \text{ and } \text{PSU}(4, 2).$$

(2)

An inspection of the orders of such groups gives $n = 2$ and $N \cong A_5 \times A_5, A_6 \times A_6, \text{PSL}(2, 7) \times \text{PSL}(2, 7)$ or $\text{PSL}(2, 8) \times \text{PSL}(2, 8)$. Let $N \cong A_5 \times A_5$ or $A_6 \times A_6$. Then $p = 5$ and $|X| = 100$. However, from [26] we know that all tetravalent arc-transitive graphs of order 100 are 1-transitive, a contradiction. Let $N \cong \text{PSL}(2, 7) \times \text{PSL}(2, 7)$ or $\text{PSL}(2, 8) \times \text{PSL}(2, 8)$. If N is transitive on $V(X)$, then X must be $(N, 2)$-transitive. Clearly, a direct factor T of N has at least $p(= 5, 7)$ orbits on $V(X)$. This forces that T is semiregular on $V(X)$ which is impossible because $|V(X)| = 4p^n$. Thus, N has exactly two orbits on $V(X)$. Then $|N_v| = 2^5 \cdot 3^2$ or $2^5 \cdot 3^4$, which is impossible by Proposition 2.4. Thus, N is solvable.

□

Lemma 4.2 The graphs $C^{±1}(p; 4, 2)$ and $C^{±ε}(p; 4, 2)$ are connected tetravalent 1-transitive graphs.

Proof Set $X = C^{±1}(p; 4, 2)$ and $A = \text{Aut}(X)$. By Gardiner and Praeger [13, Definition 2.2], X is a connected tetravalent arc-transitive graph. Let $G = \langle α, β, σ, τ, γ \rangle$ which is given in Eq. (1). Then G acts transitively but not regularly on the arc set of X. Since $p > 3$, $N = \langle α, β \rangle \cong \mathbb{Z}_p \times \mathbb{Z}_p$ is a Sylow p-subgroup of A.

Suppose that A has no non-trivial normal p-subgroup. Let L be a minimal normal subgroup of A. By Lemma 4.1, L is an elementary abelian 2-group. Let M be the maximal normal 2-subgroup of A. Consider the quotient graph X_M of X relative to the orbit set of M, and let K be the kernel of A acting on $V(X_M)$. Since $p > 3$, every orbit of M has length 2 or 4, and hence $|X_M| = p^2$ or $2p^2$. By the symmetry of X, every orbit of M contains no edges and by Proposition 2.3, $d(X_M) = 2$ or 4.

Let $d(X_M) = 2$. Then $X_M \cong C_p^2$ or C_2p^2. It follows that $A/K \cong D_{2p^2}$ or D_{4p^2}. This forces that every Sylow p-subgroup of A is cyclic, contrary the fact that $N \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Let $d(X_M) = 4$. If $|X_M| = 2p^2$ then by Proposition 2.3, $M = K \cong \mathbb{Z}_2$. By Zhou and Feng [29, Theorem 3.3], A/M is a $(2, p)$-group and hence it is solvable. Since M is a maximal normal 2-subgroup of A, we can take a maximal normal p-subgroup, say T/M in A/M with $T/M \cong \mathbb{Z}_p$ or $\mathbb{Z}_p \times \mathbb{Z}_p$. By Sylow Theorem, $T = M \times L$ where L is a Sylow p-subgroup of T. Then L is characteristic in T and hence it is normal in
A because $T \trianglelefteq A$, a contradiction. Let $|X_M| = p^2$. If $d(X_M) = 4$ then by Proposition 2.3, $K = M$ is semiregular on $V(X_M)$. Therefore, $K = M \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, or \mathbb{Z}_4. Let P be a Sylow p-subgroup of A. Since $p > 3$, $PM = P \times M$ is abelian. Clearly, PM is transitive on $V(X)$. Then PM is regular on $V(X)$ because $|PM| = 4p^2$. By Proposition 2.2, X is a Cayley graph on PM. If $PM \trianglelefteq A$, then $P \trianglelefteq A$, a contradiction. If PM is not normal in A, then by Proposition 3.2, $X \cong C_{2p^2}[2K_1]$ ($p > 3$), and hence $A \cong \mathbb{Z}_2^{2p^2} \rtimes D_{4p^2}$. This forces that every Sylow p-subgroup of A is cyclic, contrary the fact that $N \cong \mathbb{Z}_p \times \mathbb{Z}_p$.

Therefore, A has a minimal normal p-subgroup, say U. If $U \cong \mathbb{Z}_p$, then $U \leq N$ and U is normal in G. However, by the argument following Example 3.4, N is a minimal normal subgroup of G, a contradiction. Thus, $U = N \cong \mathbb{Z}_p^{2p^2}$ is minimal in A. Since X is not one-regular, by Proposition 3.6, $|A| = 32p^2 = |G|$. Thus, $A = G = \langle \alpha, \beta, \sigma, \tau, \gamma \rangle$ and hence X is 1-transitive.

Similarly, we can show that $\text{Aut}(C_{\pm \varepsilon}(p; 4, 2)) = \langle \alpha, \beta, \sigma', \tau, \gamma \rangle$, and hence $C_{\pm \varepsilon}(p; 4, 2)$ is also 1-transitive. □

In what follows, the notation “$C_{4}[n, m]$” will refer to the mth graph of order n in the Wilson et al.’s census of all tetravalent edge-transitive graphs of order up to 150, and for their constructions, one may see [26].

Theorem 4.3 Let p be a prime and let X be a connected tetravalent graph of order $4p^2$. Then X is s-transitive for some positive integer s if and only if it is isomorphic to one of the graphs in Table 1. Furthermore, all graphs in Table 1, are pairwise non-isomorphic.

Table 1 Tetravalent s-transitive graphs of order $4p^2$

X	s-Transitivity	$\text{Aut}(X)$
$C_{4}[16, 2]$	2-Transitive	For construction see [26]
$C_{4}[16, 1]$	1-Transitive	For construction see [26]
$C_{4}[36, m]$ ($1 \leq m \leq 6$)	1-Transitive	For construction see [26]
$C_{4}[100, m]$ ($1 \leq m \leq 6, m = 11$)	1-Transitive	For construction see [26]
$C_{2p^2}[2K_1]$	1-Transitive	$\mathbb{Z}_2^{2p^2} \rtimes D_{4p^2}$
$C(2; p^2, 2)$	1-Transitive	$\mathbb{Z}_2^{p^2} \rtimes D_{2p^2}$
$C_{\pm 1}(p; 4, 2)$	1-Transitive	For construction see [13]
$C_{\pm \varepsilon}(p; 4, 2)$	1-Transitive	For construction see [13]
$BW_{12}[5, 1, 5]$	1-Transitive	$G_{36} \times \mathbb{Z}_2^2$
$G_2\mathcal{P}S2[4, 3, (01) : (12)]$	1-Transitive	For construction see [6]
$\mathcal{N}C_{4p^2}$	1-Transitive	For construction see [13]
$\mathcal{N}C_{4p^2}$	1-Transitive	For construction see [13]
$\mathcal{C}A_{4p^2}$	1-Transitive	$(\mathbb{Z}_2^{p^2} \times \mathbb{Z}_p) \rtimes \mathbb{Z}_4$
$\mathcal{A}A_{4p^2}$	1-Transitive	$(\mathbb{Z}_4 \times \mathbb{Z}_p) \rtimes \mathbb{Z}_2^{2p^2}$
$\mathcal{C}A_{4p^2}$	1-Transitive	$G_3 \times \mathbb{Z}_2^{p^2}$
Proof Let \(X \) be a tetravalent \(s \)-transitive graph of order \(4p^2 \) for a positive integer \(s \). To finish the proof it suffices to show that \(X \) is one of the graphs listed in Table 1. If \(p \leq 5 \), then \(|X| = 16, 36 \) or 100 and by Wilson and Potočnik [26], \(X \) is isomorphic either to 2-transitive \(C4[16, 2] \), or to one of the following 1-transitive graphs: \(C4[16, 1], C4[36, m] (1 \leq m \leq 6) \) and \(C4[100, m] (1 \leq m \leq 6 \text{ or } m = 11) \). If \(X \) is one-regular then \(X \) is one of the graphs in Proposition 2.5. In what follows, we assume that \(p > 5 \) and that \(X \) is not one-regular. Set \(A = \text{Aut}(X) \) and let \(P \) be a Sylow \(p \)-subgroup. First we prove two claims.

Claim I If \(P \leq A \) then \(X \cong C^{\pm_1}(p; 4, 2) \) or \(C^{\pm_2}(p; 4, 2) \).

If \(P \) is a minimal normal subgroup of \(A \) then by Proposition 3.6, \(X \cong C^{\pm_1}(p; 4, 2) \) or \(C^{\pm_2}(p; 4, 2) \). Suppose that \(P \) contains a non-trivial subgroup, say \(N \), which is normal in \(A \). Consider the quotient graph \(X_N \) of \(X \) relative to the orbit set of \(N \), and let \(K \) be the kernel of \(A \) on \(V(X_N) \). Since \(p > 5 \), one has \(|X_N| = 4p \), and hence \(d(X_N) = 2 \) or 4 by Proposition 2.3.

Let \(d(X_N) = 2 \). Then \(X_N \cong C_{4p} \) and hence \(A/K \cong \text{Aut}(C_{4p}) \cong D_{8p} \). Let \(\Delta \) and \(\Delta' \) be two adjacent orbits of \(N \) in \(V(X) \). Then the subgraph \(X[\Delta \cup \Delta'] \) of \(X \) induced by \(\Delta \cup \Delta' \) has valency 2. Since \(p > 5 \), one has \(X[\Delta \cup \Delta'] \cong C_{2p} \). The subgroup \(K^* \) of \(K \) fixing \(\Delta \) pointwise also fixes \(\Delta' \) pointwise. The connectivity of \(X \) and the transitivity of \(A/K \) on \(V(X_N) \) imply that \(K^* = 1 \), and consequently, \(K \cong \text{Aut}(X[\Delta \cup \Delta']) \cong D_{4p} \). Since \(K \) fixes \(\Delta \), one has \(|K| \leq 2p \). It follows that \(|A| = |A/K||K| \leq 16p^2 \), and hence \(X \) is one-regular, a contradiction.

Let \(d(X_N) = 4 \). Then \(N = K \) and \(X_N \) is \(A/N \)-symmetric. Clearly, \(P/N \leq A/N \). Consider the quotient graph \(X_{P/N} \) of \(X_N \) relative to the orbit set of \(P/N \) in \(V(X_N) \). Let \(H/N \) be the kernel of \(A/N \) acting on \(V(X_{P/N}) \). Then \(|X_{P/N}| = 4 \) and by Proposition 2.3, \(X_{P/N} \cong C_4 \) and \((A/N)/(H/N) \cong D_8 \). Let \(\Delta \) and \(\Delta' \) be two adjacent orbits of \(P/N \) in \(V(X_N) \), and let \(X_N[\Delta \cup \Delta'] \) be the subgraph of \(X_N \) induced by \(\Delta \cup \Delta' \). Since \(X_N \) is \(A/N \)-symmetric, each orbit of \(P/N \) has no edges, implying that \(X_N[\Delta \cup \Delta'] \cong C_{2p} \). Since \(p > 3 \), \(H/N \) acts faithfully on \(\Delta \). Therefore, \(H/N \) can be regarded as a group of automorphisms of \(C_{2p} \). It follows that \(|H/N| \leq 2p \) and hence \(|A/N| = 16p \) because of the symmetry of \(X \). Thus, \(|A| = 16p^2 \) and hence \(X \) is one-regular, a contradiction.

Claim II If \(A \) has a non-trivial normal 2-subgroup, then \(X \) is isomorphic to \(C^{\pm_1}(p; 4, 2), C^{\pm_2}(p; 4, 2), C_{2p^2}[2K_1], \) or \(C(2; p^2, 2) \).

Let \(M \) be the maximal normal 2-subgroup of \(A \) and assume \(M > 1 \). Consider the quotient graph \(X_M \) of \(X \) relative to the orbit set of \(M \), and let \(K \) be the kernel of \(A \) acting on \(V(X_M) \). Since \(p > 5 \), every orbit of \(M \) has length 2 or 4, and hence \(|X_M| = p^2 \) or \(2p^2 \). By the symmetry of \(X \), every orbit of \(M \) contains no edges and by Proposition 2.3, \(X_M \) is of valency 2 or 4.

Let \(|X_M| = 2p^2 \). If \(d(X_M) = 2 \) then \(X \cong C_{2p^2}[2K_1] \). Let \(d(X_M) = 4 \). Then \(K = M \cong \mathbb{Z}_2 \) and by Zhou and Feng [29, Theorem 3.3], \(A/M \) is a \((2, p)\)-group and hence it is solvable. Since \(M \) is a maximal normal 2-subgroup of \(A \), we can take a maximal normal \(p \)-subgroup, say \(T/M \) in \(A/M \) with \(T/M \cong \mathbb{Z}_p \) or \(\mathbb{Z}_p \times \mathbb{Z}_p \). By Sylow Theorem, \(T = M \times L \) where \(L \) is a Sylow \(p \)-subgroup of \(T \). Then \(L \) is characteristic in \(T \) and hence it is normal in \(A \) because \(T \leq A \). Clearly, \(L \cong \mathbb{Z}_p \times \mathbb{Z}_p \) or \(\mathbb{Z}_p \)
\mathbb{Z}_p. For the former, by Claim I, $X \cong C^{\pm 1}(p; 4, 2)$ or $C^{\pm \varepsilon}(p; 4, 2)$. Assume $L \cong \mathbb{Z}_p$. Then $T \cong \mathbb{Z}_{2p}$. Let $C = C_A(T)$. Then $T \leq C$ and by Proposition 2.1, $A/C \leq \text{Aut}(T) \cong \mathbb{Z}_{p-1}$. Clearly, $PC/C \leq A/C$, where P is a Sylow p-subgroup of A. If $C = T$ then $PT = P \times M \trianglelefteq A$, and hence $PM/M \trianglelefteq A/M$. This is contrary to the fact that L/M a maximal normal p-subgroup of A/M. Thus, $C \triangleright T$. Let H/T be a minimal normal subgroup of A/T contained in C/T. Then $H = H_1 \times H_2$, where H_1 and H_2 are Sylow 2-subgroup and Sylow p-subgroup of H, respectively. It is easy to see that $H_i \unlhd A$ with $i = 1$ or 2. Since M is a maximal normal 2-subgroup of A, one has $H_1 = M$. Then $H_2 = P$ because $H \triangleright T$. By Claim I, $X \cong C^{\pm 1}(p; 4, 2)$ or $C^{\pm \varepsilon}(p; 4, 2)$.

Let $|X_M| = p^2$. If $d(X_M) = 4$ then by Proposition 2.3, $K = M$ is semiregular on $V(X_M)$. Therefore, $K = M \cong \mathbb{Z}_2 \times \mathbb{Z}_2$, or \mathbb{Z}_4. Since $p > 3$, $PM = P \times M$ is abelian. Clearly, PM is transitive on $V(X)$. Then PM is regular on $V(X)$ because $|PM| = 4p^2$. By Proposition 2.2, X is a Cayley graph on PM. If PM is not normal in A, then by Proposition 3.2, $X \cong C_{2p^2}[K_4](p > 3)$. If $PM \trianglelefteq A$, then $P \trianglelefteq A$ because P is characteristic in PM. By Claim I, $X \cong C^{\pm 1}(p; 4, 2)$ or $C^{\pm \varepsilon}(p; 4, 2)$.

Assume $d(X_M) = 2$. Then $X_M \cong C_{p^2}$ and $A/K \cong D_{2p^2}$. It is easy to see that K is a 2-group. By the maximality of M, one has $M = K$. Let Δ and Δ' be two adjacent orbits of M in $V(X)$. Then the subgraph $X[\Delta \cup \Delta']$ of X induced by $\Delta \cup \Delta'$ has valency 2. Thus $X[\Delta \cup \Delta'] \cong C_8$ or $2C_4$. Let $X[\Delta \cup \Delta'] \cong C_8$. Since $p > 5$, K acts faithfully on Δ. Therefore, $K \leq \text{Aut}(X[\Delta \cup \Delta']) \cong D_{16}$. Since K fixes Δ, one has $K \cong D_8$. Clearly, $PK/K \leq A/K$, namely, $PK \leq A$. Since $p > 5$ and $K \cong D_8$, one has $P \leq PK$. Then P is characteristic in PK and hence P is normal in A. By Claim I, $X \cong C^{\pm 1}(p; 4, 2)$ or $C^{\pm \varepsilon}(p; 4, 2)$. Now let $X[\Delta \cup \Delta'] \cong 2C_4$. Since $A/K \cong D_{2p^2}$ and $p > 5$, P is cyclic of order p^2. Set $P = \langle \alpha \rangle$. Without loss of generality, let

$$
\alpha = \left(x_{0,0}^0 x_{0,0}^0 \ldots x_{0,0}^{p^2-1} \right) \left(x_{1,0}^0 x_{1,0}^1 \ldots x_{1,0}^{p^2-1} \right) \left(x_{0,1}^0 x_{0,1}^1 \ldots x_{0,1}^{p^2-1} \right).$
$$

Consider a 4-cycle C in the induced subgraph $X[\Delta \cup \Delta']$ and let n be the number of edges of C which are on some orbit of α. Then $n = 0$, 1 or 2 and, consequently, $X[\Delta \cup \Delta']$ is one of the three cases:
It is easy to see that for Case III, \(X \cong 2C_{p^2}[2K_1] \), contrary to the connectivity of \(X \). For Case I, we have \(X \cong C_{2p^2}[2K_1] \), and for Case II, we have \(X \cong C(2; p^2, 2) \).

Now we are ready to complete the proof. By Claim II, if \(A \) has a non-trivial normal 2-subgroup, then \(X \cong C_{\pm 1}(p; 4, 2), C_{\pm 2}(p; 4, 2), C_{2p^2}[2K_1] \), or \(C(2; p^2, 2) \). In the remainder of proof, assume that \(A \) has no non-trivial normal 2-subgroups. Let \(M \) be a maximal normal \(p \)-subgroup of \(A \). It follows from Lemma 4.1 that \(|M| = p \) or \(p^2 \).

If \(|M| = p^2 \) then \(M = P \) is a Sylow \(p \)-subgroup of \(A \). By Claim I, \(X \cong C_{\pm 1}(p; 4, 2) \) or \(C_{\pm 2}(p; 4, 2) \). Suppose that \(|M| = p \). Consider the quotient graph \(X_M \) of \(X \) relative to the orbit set of \(M \), and let \(K \) be the kernel of \(A \) acting on \(V(X_M) \). Then \(X_M \) is a tetravalent symmetric graph of order \(4p \). Let \(C = C_A(M) \). Then \(M \leq C \) and \(A/C \leq \text{Aut}(M) \cong \mathbb{Z}_{p-1} \). If \(C = M \), then \(A/K \) is abelian. This forces that \(A/K \) is regular on \(V(X_M) \), contrary to the arc-transitivity of \(A/K \) on \(X_M \). Thus, \(C > M \). Let \(T/M \) be a minimal normal subgroup of \(A/M \) contained in \(C/M \). If \(T/M \) is solvable, then the maximality of \(M \) implies that \(T/M \) is an elementary abelian 2-subgroup. Since \(T \leq C \), one has \(T = M \times Q \), where \(Q \) is Sylow 2-subgroup of \(C \). Then \(Q \) is characteristic in \(C \) and hence normal in \(A \), a contradiction. Thus, \(T/M \) is non-solvable. By Zhou [28, Theorem 4.1], \(A/M \leq \text{Aut}(G_{28}) \cong \text{PGL}(2,7) \times \mathbb{Z}_2 \). It follows that \(T/M \cong \text{PSL}(2,7) \). Let \(T' \) be the derived subgroup of \(T \). If \(T = T' \), then \(T \) is a covering group of \(\text{PSL}(2,7) \). However, the Schur multiplier of \(\text{PSL}(2,7) \) is \(\mathbb{Z}_2 \), a contradiction. Thus, \(M' < M \), and hence \(T = M' \times M \cong \text{PSL}(2,7) \times \mathbb{Z}_p \). Then \(M' \) is characteristic in \(T \), and hence it is normal in \(A \). Consider the quotient graph \(X_{M'} \), and let \(L \) be the kernel of \(A \) acting on \(V(X_{M'}) \). If \(X_{M'} \) has valency 4 then by Proposition 2.3, \(M' \) is semiregular, a contradiction. If \(X_{M'} \) has valency 2, then the induced subgraph by any two adjacent orbits of \(M' \) is a cycle of length \(2p \). Since \(p > 5 \), \(L \) acts faithfully on each orbit. It follows that \(M' \leq \text{Aut}(C_{2p}) \cong D_{4p} \), and hence \(M' \) is solvable, a contradiction. \(\square \)

Acknowledgments This work was supported by the National Natural Science Foundation of China (10901015), and the Fundamental Research Funds for the Central Universities (2011JBM127).

References

1. Baik, Y.G., Feng, Y.-Q., Sim, H.S., Xu, M.Y.: On the normality of Cayley graphs of abelian groups. Algebra Colloq. 5, 297–304 (1998)
2. Biggs, N.: Algebraic Graph Theory, 2nd edn. Cambridge University Press, Cambridge (1993)
3. Chao, C.Y.: On the classification of symmetric graphs with a prime number of vertices. Trans. Am. Math. Soc. 158, 247–256 (1971)
4. Cheng, Y., Oxley, J.: On weakly symmetric graphs of order twice a prime. J. Combin. Theory B 42, 196–211 (1987)
5. Conder, M.: Orders of Symmetric Cubic Graphs. The Second Internentional Workshop on Group Theory and Algebraic Combinatorics. Peking University, Beijing (2008)
6. Feng, Y.-Q., Kutnar, K., Marušič, D., Zhang, C.: Tetravalent one-regular graphs of order \(4p^2 \) (submitted)
7. Feng, Y.-Q., Kwak, J.H.: Classifying cubic symmetric graphs of order \(10p \) or \(10p^2 \). Sci. China A 49, 300–319 (2006)
8. Feng, Y.-Q., Kwak, J.H.: Cubic symmetric graphs of order twice an odd prime power. J. Aust. Math. Soc. 81, 153–164 (2006)
9. Feng, Y.-Q., Kwak, J.H.: Cubic symmetric graphs of order a small number times a prime or a prime square. J. Combin. Theory B 97, 627–646 (2007)
10. Feng, Y.-Q., Kwak, J.H., Wang, K.S.: Classifying cubic symmetric graphs of order $8p$ or $8p^2$. Eur. J. Combin. 26, 1033–1052 (2005)
11. Feng, Y.-Q., Wang, K.S., Zhou, C.X.: Tetravalent half-transitive graphs of order $4p$. Eur. J. Combin. 28, 726–733 (2007)
12. Gardiner, A., Praeger, C.E.: On 4-valent symmetric graphs. Eur. J. Combin. 15, 375–381 (1994)
13. Gardiner, A., Praeger, C.E.: A characterization of certain families of 4-valent symmetric graphs. Eur. J. Combin. 15, 383–397 (1994)
14. Gorenstein, D.: Finite Simple Groups. Plenum Press, New York (1982)
15. Huppert, B.: Endliche Gruppen I. Springer, Berlin (1967)
16. Li, C.H.: Finite s-arc-Transitive Graphs. The Second Internationaal Workshop on Group Theory and Algebraic Combinatorics. Peking University, Beijing (2008)
17. Li, C.H.: The finite vertex-primitive and vertex-biprimitive s-transitive graphs for $s \geq 4$. Trans. Am. Math. Soc. 353, 3511–3529 (2001)
18. Li, C.H., Lu, Z.P., Marušič, D.: On primitive permutation groups with small suborbits and their orbital graphs. J. Algebra 279, 749–770 (2004)
19. Li, C.H., Lu, Z.P., Zhang, H.: Tetravalent edge-transitive Cayley graphs with odd number of vertices. J. Combin. Theory B 96, 164–181 (2006)
20. Praeger, C.E.: An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs. J. Lond. Math. Soc. 47, 227–239 (1992)
21. Praeger, C.E., Xu, M.Y.: A characterization of a class of symmetric graphs of twice prime valency. Eur. J. Combin. 10, 91–102 (1989)
22. Robinson, D.J.S.: A Course in the Theory of Groups. Springer, New York (1982)
23. Sabidussi, G.: The composition of graphs. Duke Math. J. 26, 693–696 (1959)
24. Tutte, W.T.: A family of cubical graphs. Proc. Camb. Philos. Soc. 43, 621–624 (1947)
25. Wang, R.J., Xu, M.Y.: A classification of symmetric graphs of order 3p. J. Combin. Theory B 58, 197–216 (1993)
26. Wilson, S., Potočnik, P.: A Census of edge-transitive tetravalent graphs. http://jan.ucc.nau.edu/swilson/C4Site/index.html
27. Xu, J., Xu, M.Y.: Arc-transitive Cayley graphs of valency at most four on abelian groups. Southeast Asian Bull. Math. 25, 355–363 (2001)
28. Zhou, J.-X.: Tetravalent s-transitive graphs of order 4p. Discrete Math. 309, 6081–6086 (2009)
29. Zhou, J.-X., Feng, Y.-Q.: Tetravalent s-transitive graphs of order twice a prime power. J. Aust. Math. Soc. 88, 277–288 (2010)