Correlation between arm span and stature in different age groups - An anthropometric study in population of Rajasthan

Pinki Rai*1, U. K. Gupta2, Ashima2 and Aman Chawla2

1Department of Anatomy, SHKM Govt. Medical College, Nalhar (Nuh), India
2Department of Anatomy, NIMS Medical College, Jaipur (Rajasthan), India

*Correspondence Info:
Miss. Pinki Rai
Demonstrator,
Department of Anatomy,
SHKM Govt. Medical College, Nalhar (Nuh), India
E-mail: pinkirai89@gmail.com

Abstract

Background: The estimation of inter-relationship between arm span and stature has been an important tool in anthropometric measurements. It is found to be of great importance in such cases where direct measurement of stature is not possible.

Objective: To find the correlation between the arm-span and standing height of both males and females in the population of Rajasthan and to use the results for medico-legal and anthropometric purposes.

Materials and Methods: The study involved 600 participants (300 males and 300 females) grouped in 3 different age groups to find inter-relationship between arm-span and standing height among these age groups. The groups were divided as Group A (26-35 yr), Group B (36-45 yr), Group C (46-55). The data for study collected from different regions of Rajasthan by means of community visits. The standing height and arm-span were measured for each individual and analyzed.

Result: A positive correlation was found to exist between the arm-span and stature. The correlation coefficient ‘r’ was found to be 0.921, 0.956 and 0.956 for group A, B and C respectively.

Conclusion: It can be concluded that arm span can be used in estimation of the height of both males and females. Arm span is one of the most reliable body parameter for obtaining the stature of an individual, also useful in obtaining age-related loss in stature and in identifying individuals with disproportionate growth abnormalities and in medico-legal cases.

Keywords: Arm span, Stature, Anthropometry

1. Introduction

Anthropometry is the science dealing with measurement of size, weight and proportions of human body. It is being very popular nowadays in medical science for formulating correlations in relation to nutritional assessment and inter-relationship of various body parameters. Identity is the birth-right of every individual. Identity may be defined as the distinctive characteristic belonging to any given individual, or shared by all members of a particular social category or group [8]. Physical identity of a person is assessed by person’s height, weight, body build etc. So a person can be identified by stature and correlation with various body parts like arm span, hand length, foot length, demi-span etc. Relationships that exist between different parts of body and height have been of great interest to anthropologists, forensic and medical scientists for many years. This is because of the increase in the number of destructive events causing mass death from natural and man-made errors. Such disasters like flooding, tsunamis, earthquakes, plane crashes, train crashes and terrorist attacks usually requires the identification of victims from fragmentary and dismembered human remains. These estimations are also of prime importance in predicting age-related loss in stature, identifying individuals with disproportionate growth abnormalities and skeletal dysplasia or height loss during surgical procedures on the spine. These measurements also have found application in normalizing pulmonary function in scoliosis. [6] Stature is an important anthropometric tool in different clinical and non-clinical settings.

Arm span has been suggested as an alternative method for predicting stature in situations where direct measurement is not possible [17]. In some situations it is not possible to measure the...
stature of a person because of deformities of the limbs, in person who have undergone amputations or in unknown cadavers where lower limb (s) and / or trunk is mutated / absent. [16]. In such cases, stature has to be estimated using other body parameters. Among all body parameters, correlation between stature and the arm span was found to be most reliable. However the relation between arm span and stature is found to vary among race to race. Arm span is considered a useful alternative to stature, particularly in the elderly, since arm span does not vary significantly with age. [12]

2. Materials and methods

2.1 Study population and sample size

The study involved 600 participants (300 males and 300 females) which are grouped in 3 different age groups to find inter-relationship among these age groups. The data for study to be collected from different regions of Rajasthan. The various areas selected for collecting population sample included Ajmer (centre), Jaipur (East), Mount Abu (south), Shriganganagar (north) and Jaisalmer (west).

These regions are selected randomly to get data from all directions. Age groups are classified as follows:

a.) Group A: 26 yr – 35 yr
b.) Group B: 36 yr – 45 yr
c.) Group C: 46 yr – 55 yr

Each group includes a total number of 200 participants with 100 males and 100 females. Where further division in group was settled to get mixture of population of various regions of Rajasthan. Again each 100 of the every group (say male or female) include 20 samples from each of the above said five different areas (Ajmer, Jaipur, Mount Abu, Jaisalmer and Shri Ganganagar) of Rajasthan. The data to be collected through community-visits to the above said regions of Rajasthan.

3. Results

The observations were done on 600 subjects and the analysis of data concludes following results:

| Table I: Descriptive Statistics for total samples of Group A (26-35) year |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Parameter | N | Minimum | Maximum | Mean | Standard Deviation |
| Stature | 200 | 143 | 184 | 161.30 | 10.08057 |
| Arm span | 200 | 142 | 187 | 164.70 | 10.713425 |

| Table II: Descriptive Statistics for Males and Females of Group A (26-35) year |
|-------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Parameter | N | Minimum | Maximum | Mean | Standard Deviation |
| Stature (male) | 100 | 154 | 184 | 169.58 | 6.20123 |
| Arm span(male) | 100 | 153 | 187 | 173.26 | 6.72169 |
| Stature(female) | 100 | 143 | 164 | 153.01 | 4.93823 |
| Arm span(female) | 100 | 142 | 169 | 156.15 | 6.00147 |

| Table III: Correlation between Stature and arm span of Group A (26-35) yr |
|-------------------------|-----------------|-----------------|-----------------|-----------------|
| Subject | Correlation coefficient (r) | Significant p-value |
| Total | 0.921 | 0.0001 |
| Male | 0.715 | 0.0001 |
| Female | 0.862 | 0.0001 |
Figure 1: Correlation & Regression analysis of arm span and height of Group A (26–35) year (Both male and female) N=200

\[y = 0.865x + 18.72; \quad r = 0.9217; \quad r^2 = 0.849 \]

\[y = \text{regression equation where 'x' is standing height of the person} \]

Table IV: Descriptive Statistics for total sample of Group B (36-45) year

Parameter	N	Minimum	Maximum	Mean	Standard Deviation
Stature	200	140	180	160.32	9.85574
Arm span	200	140	188	164.84	10.44588

Table V: Descriptive Statistics for both Males and Females of Group B (36-45) yr

Parameter	N	Minimum	Maximum	Mean	Standard Deviation
Stature (male)	100	150	180	168.71	6.03229
Arm span (male)	100	155	188	173.41	6.43255
Stature (female)	100	140	168	152.03	4.51498
Arm span (female)	100	140	169	156.27	5.62434

Table VI: Correlation between Stature and arm span of Group B (36-45) year

Subject	Correlation coefficient (r)	Significant p-value
Total	0.956	0.0001
Male	0.862	0.0001
Female	0.857	0.0001

Figure 2: Correlation & Regression analysis of arm span and height of Group B (36-45) year (Both male and female) N=200

\[y = 0.902x + 11.66; \quad r = 0.9561; \quad r^2 = 0.914 \]

\[y = \text{regression equation where 'x' is standing height of the person} \]
Table VII: Descriptive Statistics for total sample of Group C (46-55) year

Parameter	N	Minimum	Maximum	Mean	Standard Deviation
Stature	200	142	189	160	9.85574
Arm span	200	140	188	164	10.44588

Table VIII: Descriptive Statistics for Males and Females of Group C (46-55) year

Parameter	N	Minimum	Maximum	Mean	Standard Deviation
Stature (male)	100	150	180	168.71	6.03229
Arm span (male)	100	155	188	173.41	6.43255
Stature (female)	100	142	168	152.03	4.51498
Arm span (female)	100	140	169	156.27	5.62434

Table IX: Correlation between Stature and arm span of Group C (46-55) year

Subject	Correlation coefficient (r)	Significant p-value
Total	0.956	0.0001
Male	0.886	0.0001
Female	0.872	0.0001

Figure 3: Correlation & Regression analysis of arm span and height of Group C (46-55) year (Both male and female) N=200

y=0.9021x+11.66; R2=0.912; r=0.956
[y= regression equation where 'x' is standing height of the person]

Table X: Comparison between the result of three groups A, B and C

Subject	Correlation coefficient (r)	R²	P-value
Group A	0.921	0.849	0.0001
Group B	0.956	0.914	0.0001
Group C	0.956	0.912	0.0001

Table XI: The value of correlation coefficient (r) individually for males and females

	Group A	Group B	Group C
Male	0.715	0.862	0.886
Female	0.862	0.857	0.872

4. Discussion

The present study deals with the observations on correlation of Total Standing Height with arm span in various age groups. Total 600 living subjects taken for study from different regions of Rajasthan. The age groups of 26-35 year (Group A), 36-45 year (Group B), 46-55 year (Group C) were selected and in present study, approximate stature has been estimated from arm span. The stature of an individual mainly being genetically predetermined is an inherent characteristic, the estimate of which is considered to be an important assessment in the identification of unknown human remains. Height-estimation formulae based on arm span show similar levels of accuracy to the calculations based on the length of other body parameters. This is supported by
the standard errors of the estimations reported in several studies. The value of “r” implied that there was a positive correlation. The simple linear regression equation which has so far been derived can be used for the estimation of the height. The Height is more if the arm span is more. This holds true for the sample size taken. ‘t’ test for regression coefficient was found to be statistically significant. It suggests that a significant contribution of arm span towards height. Two separate formulae were derived. The average height of adult males within a population is significantly higher than that of adult females. The results obtained in this study also show the similar results as that of previous studies.

In present study we have selected both sexes of 3 different age groups and the results a found to be correlation coefficient for group A (26-35), group B and Group C were 0.921, 0.956 and 0.956 respectively.

The result shows that there is Positive Correlation between stature and arm span. However the estimation of height using various physical measurements has been attempted by many authors. Chumlea in 1985, estimated stature from knee height [5], while Mitchel in 1982, correlated arm length with height [15]. The one variable that proved to be consistently reliable in estimating height was the arm span. Steele and Chenier in a study on black and white women in the age group 35–89 reported correlations of arm span and height of 0.852 and 0.903 for black and white women, respectively [24].

In a similar study of blacks of both sexes in the age group 22–49, a correlation of 0.87 was observed between arm span and height. These results are almost similar to the correlation obtained in the present study. Simple linear regression equation so far derived by present study can be used for estimation of height. These are y=0.666x+54.27 for males and y’=0.709x’+42.243 of age group 26-35 year, y =0.807x+28.68 for males and y’=0.688x’+44.50 for females of age 36-45 year and y’=0.814x+24.88 for males and y’=0.7101x’+39.46 for females of age 46-55 year, where y and y’ are height and x and x’ are arm span of males and females respectively.

Even though these relations are similar, the estimation equations which we obtained are clearly different from those of other populations. This emphasizes the need for developing separate models for each population group based on the racial and ethnic differences in anthropometric measurements.

5. Conclusion

It can be concluded that arm-span can be used in estimation of the height of both males and females. Arm span is one of the most reliable body parameter for obtaining the stature of an individual.

Funding – none

Conflict of interest – None

References

[1] Aggarwal AN, Gupta D, Jindal SK. Interpreting spirometric data. Impact of substitution of arm span for standing height in adults from North India. Chest 1999; 115: 557–562.
[2] Bjelica, D.; Popovic, S.; Kezunovic, M.; Petkovic, J.; Jurak, G. & Grasgruber, P. Body height and its estimation utilizing arm span measurements in Montenegrin adults. Anthropological Notebooks, 2012; 18 (2): 69-83.
[3] Canda A. Stature estimation from body segment lengths in young adults—application to people with physical disabilities. J Physiol Anthropol 2009; 28:71–82.
[4] Chhabra SK. Using arm span to derive height: Impact of three estimates of height on interpretation of spirometry. Ann Thorac Med 2008; 3: 94–99.
[5] Chumlea WC, Roche AE and Steinbearnagh ML. Estimating stature from knee height for persons 60 to 90 years of age. J Amer Geri Soc 1985, 33:116–20.
[6] Hepper NGG, Black LF, Fowler WS. Relationships of lung volume to height and arm-span in normal subjects and in patients with spinal deformity. Am Rev Resp Dis 1965; 91:356.
[7] Hickson, M. & Frost, G. A comparison of three methods for estimating height in the acutely ill elderly population. J. Hum. Nutr. Diet., 2003; 16(1):13-20.
[8] Identity (SocialScience) Available at http://en.wikipedia.org/wiki/Identity (social science)
[9] J. P. Patel, Bharat Patel, Sanjay Kanani; Estimating stature from Arm Span measurement in Gujarat Region; GCSMC J Med Sci Vol (II) No (II) July-December 2013
[10] Jalzem PF, Gledhill RB. Predicting height from arm measurements. J Pediatr Orthop 1993; 13(6): 761–65.
[11] John P. Principles and practice of geriatric medicine 4th ed. Vol 2. England: Wiley, 2006.
[12] Lucia E, Leema F, Tesfaye F, Demissie F,Ismail S. The uses of arm span measurement to assess the multinational status of adults in four Ethiopian ethnic groups. European Journal of Clinical Nutrition [Online], 56.
[13] Manonai J, Khanacharoen A, Theppisai U, Chittacharoen A. Relationship between height
and arm span in women of different age groups. J Obstet Gynaecol Res 2001; 27: 325–327.
[14] Mazicioglu MM, Hatipoglu N, Ozturk A, Gun I, Ustunbas HB, Kurtoglu S. Age references for the arm span and stature of Turkish children and adolescents. Ann Hum Biol 2009; 36: 308–319.
[15] Mitchell CO, Lipschitz DA. Arm length measurement as an alternative to height in nutritional assessment of the elderly. J Parenter and Enteral Nutr 1982; 6: 226.
[16] Mohanty SP, Babu SS, Nair NS. The use of arm span as a predictor of height: A study of South Indian women. Journal of Orthopaedic Surgery [Online]: 9(1).
[17] Osborne, J.W., Practical Assessment, Research and Evaluation, 7 (2000)
[18] Physical or Biological Anthropology available at: http://anthropology.utoronto.ca/about/research/physical-or-biological Accessed on Feb 23, 2012.
[19] Portney, L. G., M. P. Watkins: Foundation of Clinical Research: Application to Practice. 2nd Ed (Prentice-Hall Incorporated, New Jersey, 2000)
[20] Reeves SL, Varakamin C, Henry CJ. The relationship between arm span measurement and height with special reference to gender and ethnicity. Eur J Clin Nutr 1996; 50(6): 398–400.
[21] Santos J.L., Albala C., Lera L, et al. Anthropometric measurements in the elderly population of Santiago, Chile. Nutrition. 2004; 20: 452–7.
[22] Sathyavathi K, Agarwal KN, Rao NSN, Reddy PR. Arm-span and height measurement during adolescence. Ind Pediatr 1979; 14(10): 839–47.
[23] Shahar S, Pooy NS. Predictive equations for estimation of stature in Malaysian elderly people. Asia Pac J Clin Nutr 2003; 12:80–84.
[24] Steele MF, Chenier TC. Arm-span, height, and age in black and white women. Ann Hum Biol 1990; 17(6): 533–41.
[25] Steele MF, Mattox JW. Correlation of arm-span and height in young women of two races. Ann Hum Biol 1987; 15:445–447.
[26] Suriah AR, T J Chong, B.Y. Yeoh. Nutritional situation of Chinese community. Singapore Medical Journal, 1998; 39: 348-52.
[27] Yabanci N, Kilic¸ S, Sims¸ek I. The relationship between height and arm span, mid-upper arm and waist circumferences in children. Ann Hum Biol 2010; 37:70–75.
[28] Yun DJ, Yun DK, Chang YY, Lim SW, Lee MK, Kim SY. Correlations among height, leg length and arm span in growing Korean children. Ann Hum Biol 1995, 22(5):443–58.
[29] Zverev, Y. P.; Relationship between arm span and stature in Malawian adults, Ann. Hum. Biol., 2003; 30: 739.