Enhanced External Counterpulsation Efficacy on Exercise Endurance in COPD Patients and Healthy Subjects: A Pilot Randomized Clinical Trial

Mingming Zhao,¹,²,* Yanqun Huang,¹,* Lian Li,¹ Ling Zhou,¹ Zhixin Wu,³ Yujun Liu,¹ Haozhe Zhang,¹ Caiyou Hu¹

¹Department of Sports Medicine and Cardiopulmonary Rehabilitation Center, Jiangbin Hospital, Nanning, Guangxi, 530021, People’s Republic of China; ²Physical Fitness Surveillance and Health Management Association, Nanning, Guangxi, 530021, People’s Republic of China; ³Department of Intensive Medicine, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, People’s Republic of China

*These authors contributed equally to this work

Purpose: Enhanced external counterpulsation (EECP) is popular in China for the treatment of coronary heart diseases, but it may be an effective treatment for other populations. This study aimed to explore the effect of EECP on exercise endurance of healthy people and chronic obstructive pulmonary disease (COPD) patients and provide intervention measures to improve their physical condition.

Patients and methods: Patients were enrolled in this pilot randomized controlled trial at Jiangbin Hospital, China, between March 1st and May 30th, 2018. They were randomly divided into the EECP and non-EECP groups. According to their maximal oxygen uptake, the volunteers were also sub-grouped into the normal, low exercise endurance, and COPD subgroups.

Differences in exercise endurance were evaluated between the EECP and non-EECP groups before and after treatment. Cardiopulmonary exercise testing included anaerobic threshold oxygen uptake (AT-VO₂Kg), maximum oxygen uptake (Max-VO₂Kg), anaerobic threshold pulse (AT-O₂puls), anaerobic threshold metabolic equivalent (AT-Mets), and maximum metabolic equivalent (Max-Mets).

Results: 72 volunteers were enrolled. The EECP and non-EECP groups were similar in terms of age, sex, body mass index, blood pressure, heart rate, breathing frequency, AT-VO₂ Kg, Max-VO₂Kg, AT-O₂puls, AT-Mets, and Max-Mets (P > 0.05) before treatment. EECP significantly improved AT-VO₂Kg, Max-VO₂Kg, AT-O₂puls, AT-Mets, and Max-Mets compared with the non-EECP group (P<0.05). When analyzed according to sub-groups, the AT-VO₂ Kg, Max-VO₂Kg, AT-O₂puls, AT-Mets, and Max-Mets of the normal, low exercise endurance, and COPD subgroups were all significantly increased after EECP (P<0.05).

Conclusion: EECP significantly improved the exercise endurance of normal adults, low endurance adults, and COPD patients.

Registration number: ChiCTR1900021993.

Keywords: enhanced external counterpulsation, healthy volunteers, exercise tolerance, chronic obstructive pulmonary disease

Introduction

Sports ability is the ability to participate in sports and training, which is closely related to the comprehensive functions of the heart, brain, lung, skeletal muscle, and endocrine systems.¹ Sports ability can objectively reflect the overall function of the body and is a powerful predictor of death, even for healthy people with low exercise ability.² Therefore, exercise is of great significance to improve physical condition, enhance resistance of disease, and prolong life.³

This article was published in the following Dove Press journal: International Journal of Chronic Obstructive Pulmonary Disease
Enhanced external counterpulsation (EECP) is an effective method for the treatment of coronary heart disease and is used widely in China. It is a safe and effective non-invasive mechanical auxiliary circulation method. The technique mainly consists of three sets of airbags wrapped around the calf, thigh, and buttocks. EECP consists of applying intermittent positive pressure to the lower body, with this pressure being synchronized with the subject’s cardiac cycle, i.e., being sequentially applied distally to proximally at early diastole, and released at the end of diastole. The airbag is pumped up from the lower legs, thighs, and buttocks, which triggers an electrocardiogram (ECG) R wave, by squeezing the arteriovenous system of the lower half of the body. By pressing the lower body arterial system, the arterial blood flows to the upper body of the body, which can improve the blood perfusion of vital organs such as the heart and brain. Moreover, by pressing the lower body vein system, the venous reflux of the right heart is increased, and cardiac output is increased through the Frank-Starling mechanism.

Recent studies showed that EECP could significantly improve myocardial blood supply, and it may have a role in improving exercise endurance. This mechanism is different from that of BFRE, which induces hypoxia in the extremities by restricting the returned blood volume, increasing the tolerability of muscles to hypoxia. EECP is documented in the Expert Consensus and Guidelines for Cardiac Rehabilitation in China as an effective method for the treatment of chronic heart failure, and coronary heart diseases. EECP has the EC and FDA approvals.

Most studies of EECP involve patients with cardiovascular disease and have only undertaken a superficial investigation into exercise endurance. Other populations may benefit from receiving EECP, including healthy adults and those with chronic obstructive pulmonary disease (COPD). COPD is a common chronic respiratory disorder with airflow limitation and increased inflammatory response in the airways, and it is currently a massive global burden. Recurrent COPD attacks can lead to increased pulmonary arterial pressure, resulting in increased right atrial load and progression to pulmonary heart disease. Although the clinical symptoms of patients are relieved after an acute episode, pulmonary function continues to deteriorate, exercise endurance is significantly reduced, and the patient’s quality of life is seriously affected.

We hypothesized that EECP might be able to improve the exercise endurance of different groups of adults and might improve the physical condition and the prognosis of patients with COPD. Therefore, the aim of this study was to evaluate whether EECP could improve exercise endurance of healthy adults and those with COPD.

Materials and Methods

Subjects
The volunteers were enrolled at the Cardiopulmonary Rehabilitation Center of Jiangbin Hospital (China) from March 1st to May 30th, 2018. Inclusion criteria: 1) aged ≥18 years old; 2) healthy people and patients diagnosed with COPD but no acute attack according to the Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease 2017 guidelines; and 3) no operation and injury history. The subjects were excluded from the study if they had heart disease, cerebral disease, pneumonia, liver and kidney disease, neurological diseases, or other infections. As per the device’s indications, individuals with blood pressure ≥160/90 mmHg were excluded.

This preliminary randomized controlled trial was approved by the institutional review board of Jiangbin Hospital. Written informed consent was obtained from all the patients. The study was registered (ChiCTR1900021993).

Randomization, Subgroup, and Intervention
The subjects were randomized (1:1) into the EECP group and non-EECP group using a random number table. According to the maximal oxygen uptake (VO2max) of cardiopulmonary exercise testing (CPET), the subjects were also divided into subgroups as follows: normal subgroup (VO2max ≥84% prediction of VO2max), low exercise endurance subgroup (VO2max <84% prediction of VO2max), and COPD subgroup.

The EECP equipment (P-ECP/TI, Chongqing PSK-health Sci-Tech Development Co., Ltd., China) consisted of an ECG monitor and air compressor that could cover two legs and the hip. Before the treatment began, the air compressor cuffs were wrapped around the subject’s limbs. The primary cuff was empty without pressure. When EECP therapy began, a sequence of synchronized pressure was given according to the cardiac cycle. In early ventricular diastole, the compressor increased the pressure of the cuffs in sequence from the lower legs to the upper legs and the hips. This regular succession improved the arterial blood pressure and blood flow during the diastolic period. At the end of the diastole,
the air in the cuff was released promptly, which reduced vascular impedance. According to the instruction manual, the maximal cuff pressure was set as 0.03 mPa. An experienced and trained physician operated the equipment in this study. All subjects in the EECP group underwent EECP therapy for 1 hr/day, 5 days/week, for 3 weeks, and the non-EECP group did not.

Assessment

The German Cortex CPET system (CPX International, Germany) was used to test the anaerobic threshold of the subjects during exercise. The measurements included anaerobic threshold oxygen uptake (AT-VO$_2$Kg), maximum oxygen uptake (Max-VO$_2$Kg), anaerobic threshold pulse (AT-O$_2$puls), anaerobic threshold training load (AT-Load), anaerobic threshold metabolic equivalent (AT-Mets), and maximum metabolic equivalent (Max-Mets).

Symptom-limited cardiopulmonary exercise testing (CPET) on a bike was performed at baseline (the day before EECP treatment) and on the day after EECP treatment finished. Testing was terminated if there was the onset of angina pain, dizziness, dyspnea, or arrhythmia on 12-lead electric-cardiogram (ECG), or reluctance of the subject to continue the exercise testing.

Safety was assessed through adverse event monitoring such as skin damage, chest tightness, muscular pain, embolism, etc.

Statistical Analysis

The full analysis set (all randomized participants who received at least one treatment and had at least one post-baseline efficacy assessment) and safety set (all randomized participants who received at least one treatment and had at least one post-baseline safety assessment) were used for analysis. All statistical analyses were performed using SPSS Statistics 17 for Windows (IBM, Armonk, NY, USA). Continuous variables are expressed as means ± standard deviations (SD). Comparisons between the EECP and non-EECP groups were made with the independent t-test. The paired t-test was used for comparison before and after EECP treatment. Categorical variables are expressed as numbers (percentages). Comparisons were made using the chi-square or Fisher’s exact test. The analyzed effects were the differences before and after the treatment and the corresponding P-value and 95% CIs. P<0.05 was stipulated for statistical significance.

Results

Eighty-two volunteers were eligible. Six volunteers withdrew their consent. One was lost to follow-up. Three discontinued intervention because of acute exacerbations of COPD (n=2) and burn injury (n=1). Finally, there were 39 males and 33 females, aged 27–82 years. They were divided into the EECP group (n=37, aged 57.30±21.16 years) and the non-EECP group (n=35, aged 54.23±23.37 years) (Figure S1). For the EECP group, there were 11, 13, and 13 volunteers in the normal, low exercise endurance, and COPD subgroups, respectively. For the non-EECP group, there were 15, 10, and 10 volunteers in the normal, low exercise endurance, and COPD subgroups, respectively.

The EECP and non-EECP groups were similar in terms of age, gender, body mass index (BMI), blood pressure, heart rate, breathing frequency, AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$puls, AT-Mets, and Max-Mets (P>0.05) before treatment, as shown in Table S1.

Comparison of Exercise Endurance

There were no statistically significant differences between the two groups before treatment in anaerobic threshold heart rate (AT-HR), anaerobic threshold inter-beat interval (AT-RR), anaerobic threshold systolic blood pressure (AT-SBP), anaerobic threshold diastolic blood pressure (AT-DBP), maximum systolic blood pressure (Max-SBP), maximum diastolic blood pressure (Max-DBP), AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$puls, and Max-Mets (all P>0.05); the same was found after EECP treatment (P>0.05). When the two groups were compared after treatment, there were significant differences of AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$puls, AT-Load, AT-Mets, and Max-Mets between the EECP and non-EECP groups (all P<0.05) (Table S2).

| Table 1 Comparison of General Data Between the Treatment Groups in the Normal Subgroup |

	EECP Group (n=11)	Non-EECP Group (n=15)	P
Age (years)	35.64±20.33	35.73±21.92	0.991
Sex, male (%)	2 (18.2%)	4 (26.7%)	0.612
BMI (kg/m2)	23.75±4.96	24.44±2.44	0.378
SBP (mmHg)	120.73±10.27	122.40±12.25	0.716
DBP (mmHg)	72.36±7.13	72.73±10.36	0.920
HR (bpm)	78.72±4.96	79.00±5.76	0.901
RR (bpm*)	18.09±2.12	18.52±2.20	0.610

Abbreviations: EECP, enhanced external counterpulsation; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; RR, respiratory rate; bpm, beats per minute; bpm*, breaths per minute.

Eighty-two volunteers were eligible. Six volunteers withdrew their consent. One was lost to follow-up. Three discontinued intervention because of acute exacerbations of COPD (n=2) and burn injury (n=1). Finally, there were 39 males and 33 females, aged 27–82 years. They were divided into the EECP group (n=37, aged 57.30±21.16 years) and the non-EECP group (n=35, aged 54.23±23.37 years) (Figure S1). For the EECP group, there were 11, 13, and 13 volunteers in the normal, low exercise endurance, and COPD subgroups, respectively. For the non-EECP group, there were 15, 10, and 10 volunteers in the normal, low exercise endurance, and COPD subgroups, respectively.

The EECP and non-EECP groups were similar in terms of age, gender, body mass index (BMI), blood pressure, heart rate, breathing frequency, AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$puls, AT-Mets, and Max-Mets (P>0.05) before treatment, as shown in Table S1.

Comparison of Exercise Endurance

There were no statistically significant differences between the two groups before treatment in anaerobic threshold heart rate (AT-HR), anaerobic threshold inter-beat interval (AT-RR), anaerobic threshold systolic blood pressure (AT-SBP), anaerobic threshold diastolic blood pressure (AT-DBP), maximum systolic blood pressure (Max-SBP), maximum diastolic blood pressure (Max-DBP), AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$puls, and Max-Mets (all P>0.05); the same was found after EECP treatment (P>0.05). When the two groups were compared after treatment, there were significant differences of AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$puls, AT-Load, AT-Mets, and Max-Mets between the EECP and non-EECP groups (all P<0.05) (Table S2).
Table 2 Comparison of Exercise Endurance Between the Two Groups in the Normal Subgroup

Parameter	EECP Group (n=11)	Non-EECP Group (n=15)	P-value	95% CI				
Before	After	Δ(After–Before)	Before	After	Δ(After–Before)			
ATHR (bpm)	118.27±10.88	115.09±7.23	−3.18±5.74	113.67±15.53	116.87±15.33	3.2±1.86	0.000	−9.633,3.130
ATRR (bpm*)	25.18±3.25	24.6±2.66	−0.55±2.34	24.20±3.86	25.93±3.90	1.73±1.58	0.007	−3.862,−0.695
ATSBP (mmHg)	130.91±21.66	129.27±22.46	−1.64±4.41	132.73±14.94	134.07±13.61	1.33±4.45	0.105	−6.603,0.663
ATDBP (mmHg)	68.91±11.57	69.18±11.14	0.27±2.42	74.80±8.04	77.20±7.25	2.40±2.80	0.136	−4.974,0.719
Max SBP (mmHg)	161.18±26.97	162.91±26.50	1.73±3.93	155.93±20.10	159.73±20.17	3.80±2.81	0.129	−4.793,0.648
Max DBP (mmHg)	78.45±17.32	80.00±16.06	1.55±4.20	85.47±12.28	88.93±11.97	3.47±3.18	0.196	−4.906,1.063
ATVO2Kg (mL/min·kg)	14.00±3.41	15.64±3.64	1.64±0.67	14.67±5.70	14.32±5.50	−0.33±0.49	1.000	1.500,2.439
MaxVO2Kg (mL/min·kg)	23.91±6.09	26.18±5.76	2.27±1.10	24.53±4.83	23.87±8.24	−0.47±0.49	1.000	2.281,3.598
ATVO2puls (mL)	6.55±1.51	7.36±1.57	0.82±0.60	7.5±3.00	8.07±3.81	0.53±2.39	0.704	−1.242,1.812
ATLoad (watt)	66.27±16.53	73.55±16.00	7.27±0.29	68.60±24.20	66.47±24.22	−2.13±2.61	1.000	6.608,12.20
ATMets	4.5±0.89	5.15±1.26	0.61±0.70	4.5±1.54	4.43±1.52	−0.09±0.15	1.000	0.312,1.080
MaxMets	7.4±1.74	8.01±1.75	0.58±0.42	7.4±2.63	7.32±2.58	−0.11±0.16	1.000	0.452,0.938

Abbreviations: EECP, enhanced external counterpulsation; AT, anaerobic threshold; HR, heart rate; RR, respiratory rate; bpm, beats per minute; bpm*, breaths per minute; SBP, systolic blood pressure; DBP, diastolic blood pressure; VO2, oxygen uptake; Mets, metabolic equivalent.

Subgroup Analysis

Comparison of Exercise Endurance in the Normal Population Subgroup

There were no statistically significant differences between the two groups (EECP group, n=11; non-EECP group, n=15) before treatment in terms of AT-HR, AT-RR, AT-SBP, AT-DBP, Max-SBP, Max-DBP, AT-VO2Kg, Max-VO2Kg, AT-VO2puls, AT-O2puls, and Max-Mets (all P>0.05); the same was found after EECP treatment (all P>0.05). When the two groups were compared before and after treatment, AT-VO2Kg, Max-VO2Kg, AT-VO2puls, AT-O2puls, AT-Load, AT-Mets, and Max-Mets were all more significantly improved in the EECP group than in the non-EECP group (all P<0.05) (Tables 1 and 2).

Comparison of Exercise Endurance in the Low Exercise Endurance Subgroup

There were no statistically significant differences between the two groups before treatment in AT-HR, AT-RR, AT-SBP, AT-DBP, Max-SBP, Max-DBP, AT-VO2Kg, Max-VO2Kg, AT-VO2puls, and Max-Mets (all P>0.05); the same was found after EECP treatment (all P>0.05). When the two groups were compared before and after treatment, AT-VO2Kg, Max-VO2Kg, AT-VO2puls, AT-Load, AT-Mets, and Max-Mets were all more significantly improved in the EECP group compared with the non-EECP group (all P<0.05) (Tables 3 and 4).

Comparison of Exercise Endurance in the COPD Subgroup

There were no statistically significant differences between the two groups before treatment in AT-HR, AT-RR, AT-SBP, AT-DBP, Max-SBP, Max-DBP, AT-VO2Kg, Max-VO2Kg, AT-VO2puls, and Max-Mets (all P>0.05); the same was found after EECP treatment (all P>0.05). When the two groups were compared before and after treatment, AT-VO2Kg, Max-VO2Kg, AT-VO2puls, AT-Mets, and Max-Mets were all more significantly improved in the COPD group compared with the non-EECP group (all P<0.05) (Tables 5 and 6).

Safety

No subject had any adverse event in this trial.

Discussion

The aim of this study was to investigate whether EECP was able to improve the exercise endurance of healthy adults, those with low exercise endurance, and patients with COPD. The results showed that EECP significantly improved AT-VO2Kg, Max-VO2Kg, AT-VO2puls, AT-Mets,
but previous studies of EECP were focused on patients with chronic obstructive pulmonary disease, and COPD subgroups were all significantly increased after EECP. Therefore, these results suggest that EECP is likely to improve exercise endurance in different populations of adults.

Study suggests that athletic ability is closely related to the mortality risk, but previous studies of EECP were focused on patients with coronary heart diseases, and there are relatively few studies on exercise endurance of other populations including normal and healthy people. Peak-VO$_2$Kg is the gold standard for the evaluation of cardiopulmonary fitness, Max-VO$_2$Kg is used to evaluate endurance, and AT-VO$_2$Kg is used in the evaluation of aerobic exercise capacity. The present study showed that exercise endurance evaluation indexes such as AT-VO$_2$Kg, Max-VO$_2$Kg, AT-O$_2$-puls, AT-Load, AT-Mets, and Max-Mets were improved after EECP therapy in the general population without cardiovascular diseases. This suggests that EECP can generally improve exercise endurance. This is contradicted by another study that was undertaken in 12 elite junior triathletes that looked at the role of EECP in recovery after a high-intensity interval training session (six bouts of 3-mins duration at maximal intensity interspersed with 3-min rest periods).

Table 4: Comparison of Exercise Endurance Between the Two Groups in the Low Exercise Endurance Subgroup

Parameter	EECP Group (n=13)	Non-EECP Group (n=10)	P-value	95% CI
Before	After	Δ(After−Before)		
ATP (bpm)	99.62±14.34	100.60±11.43	0.554	−2.093, 1.155
ATR (bpm)	23.46±3.83	22.20±4.08	0.028	−2.398, −0.155
ATSBP (mmHg)	142.23±23.85	148.70±14.10	0.145	−0.60±0.53
ATDBP (mmHg)	77.85±14.11	83.40±5.72	0.054	−7.340, 0.063
Max SBP (mmHg)	170.15±24.49	186.90±20.09	0.214	−1.469, 6.177
Max DBP (mmHg)	87.00±14.05	95.60±11.63	0.466	−4.886, 2.316
ATVO$_2$Kg (mL/min·kg)	10.85±2.64	11.40±2.07	0.000	2.004, 3.287
MaxVO$_2$Kg (mL/min·kg)	17.38±6.68	17.00±1.16	0.000	1.396, 2.603
ATPO$_2$-puls (mL)	9.85±7.93	7.90±1.91	0.000	0.990, 2.162
ATLoad (watt)	50.85±31.26	52.70±16.63	0.000	5.371, 9.166
ATMets	3.45±1.32	3.35±0.65	0.000	0.121, 0.433
MaxMets	5.12±1.85	4.78±0.83	0.005	0.134, 0.643

Abbreviations: EECP, enhanced external counterpulsation; AT, anaerobic threshold; HR, heart rate; RR, respiratory rate; bpm, beats per minute; bpm*, breaths per minute; SBP, systolic blood pressure; DBP, diastolic blood pressure; VO$_2$, oxygen uptake; Mets, metabolic equivalent.

Table 5: Comparison of General Data Between the Groups in the COPD Subgroup

Parameter	EECP Group (n=13)	Non-EECP Group (n=10)	P
Before	After	Δ(After−Before)	
Age (years)	73.00±7.33	80.90±4.23	0.133
Sex, male (%)	81 (84.6%)	80.0%	0.772
BMI (kg/m2)	23.75±4.96	24.44±2.44	0.639
SBP (mmHg)	123.08±13.44	122.60±11.06	0.928
DBP (mmHg)	78.00±7.90	79.10±5.22	0.708
HR (bpm)	76.54±8.75	80.90±4.23	0.133
RR (bpm*)	19.54±1.61	19.60±2.55	0.948

Abbreviations: COPD, chronic obstructive pulmonary disease; EECP, enhanced external counterpulsation; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart rate; RR, respiratory rate; bpm, beats per minute; bpm*, breaths per minute.
Table 6 Comparison of Exercise Endurance Between the Two Groups in the COPD Subgroup

Parameter	EECP Group (n=13)	Non-EECP Group (n=10)	P-value	95% CI				
Before	After	Δ (After−Before)	Before	After	Δ (After−Before)			
ATHR (bpm)	102.7±17.24	108.6±16.57	5.85±5.87	93.10±15.84	97.40±15.20	4.30±1.89	0.434	−2.484, 5.576
ATRR (bpm*)	24.1±4.90	26.0±3.83	1.8±2.30	23.3±3.23	25.5±3.14	2.2±0.92	0.653	−1.965, 1.257
ATSBP (mmHg)	147.1±15.52	151.2±17.17	4.0±4.95	144.9±2.81	145.0±5.77	0.1±4.19	0.067	−0.299, 8.252
ATDBP (mmHg)	80.5±15.01	83.0±14.10	2.6±3.6	81.0±3.40	80.4±3.58	−0.6±1.2	0.073	−0.306, 6.431
Max SBP (mmHg)	169.23±32.59	169.6±21.09	0.4±1.68	170.4±10.02	171.6±9.83	1.2±1.99	0.829	−11.88, 10.40
Max DBP (mmHg)	88.0±19.78	88.4±13.47	0.3±1.2	88.0±14.29	93.7±9.50	5.7±8.39	0.247	−14.60, 3.971
ATVO₂Kg (mL/min·kg)	9.7±2.59	11.3±2.87	1.6±1.26	9.3±2.45	8.7±2.63	−0.6±0.52	0.000	1.330, 3.099
Max XO₂Kg (mL/min·kg)	11.3±2.82	14.6±2.22	1.2±2.4	17.0±3.94	13.2±3.94	−0.8±0.42	0.000	1.179, 2.882
ATVO₂,puls (mL)	5.92±1.80	7.3±1.93	1.4±0.87	6.8±1.23	6.2±1.62	−0.6±0.56	0.000	1.337, 2.631
ATLoad (kcal/h)	35.0±17.40	41.4±18.36	6.8±3.44	42.4±14.07	41.9±12.49	−0.4±2.0	0.000	3.482, 10.29
ATMets	2.9±0.68	3.3±0.85	0.4±0.35	2.8±0.87	2.7±0.83	−0.9±0.14	0.000	0.263, 0.747
MaxMets	3.8±0.75	4.2±0.64	0.4±0.41	4.2±1.19	4.1±1.17	−0.8±0.06	0.002	0.183, 0.730

Abbreviations: COPD, chronic obstructive pulmonary disease; EECP, enhanced external counterpulsation; AT, anaerobic threshold; HR, heart rate; RR, respiratory rate; bpm, beats per minute; bpm*, breaths per minute; SBP, systolic blood pressure; DBP, diastolic blood pressure; VO₂, oxygen uptake; Mets, metabolic equivalent.

In theory, EECP can improve blood rheology, microcirculation, visceral tissue perfusion, blood flow to the lungs, and pulmonary ventilation/blood flow ratio, thus improving pulmonary oxygenation. In patients with COPD, the present study showed that EECP could also improve exercise endurance in this population. Although the pulmonary function was not determined in this group, a small sample study showed improvement of pulmonary function in patients with COPD and improvement of their 6-mins walking distance with EECP. In theory, EECP can improve blood rheology, microcirculation, visceral tissue perfusion, blood flow to the lungs, and pulmonary ventilation/blood flow ratio, thus improving pulmonary oxygenation function. Therefore, taken together, the results suggest that EECP could improve the cardiopulmonary functions of healthy adults and those with lower physical condition. In addition, even patients with a disease known to limit the physical condition severely may benefit from EECP. Considering that this intervention is non-invasive and is relatively inexpensive, it is worth popularization. The exact mechanisms by which EECP improves the cardiopulmonary functions still need to be determined, as well as the populations of individuals who may benefit the most from EECP.

This study has some limitations. The sample size was small, and the follow-up time was short. Therefore, the subgroup analyses must be considered as bases for future studies. Finally, stratified randomization was not used. The results need to be confirmed using a large-scale multicenter clinical trial.

Conclusion
In conclusion, this pilot study suggests that EECP leads to a certain improvement effect on the exercise endurance of different adult populations, from healthy adults to those with COPD. Whether EECP can improve exercise tolerance of other diseases needs further study.

Ethics Approval and Informed Consent
This trial was conducted in accordance with the Declaration of Helsinki, and this preliminary randomized controlled trial was approved by the institutional review board of Jiangbin Hospital. Written informed consent was obtained from all the patients. The study was registered (ChiCTR1900021993).

Data Sharing Statement
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Funding
This study was funded by the Project for Guangxi Medical and Health Technologies (Grant Number: S20181116), Guangxi Health Commission Project (Grant Numbers: Z20190770, Z20190766), Science and Technology Foundation of Foshan City, China (Grant Number: 2017AG100061).
Disclosure
The authors report no conflicts of interest in this work.

References
1. Vina J, Sanchis-Gomar F, Martinez-Bello V, Gomez-Cabrera MC. Exercise acts as a drug; the pharmacological benefits of exercise. Br J Pharmacol. 2012;167(1):1–12. doi:10.1111/j.1476-5381.2012.01970.x
2. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801. doi:10.1056/NEJMoa011858
3. Bouaziz W, Lang PO, Schmitt E, Kaltenbach G, Gutty B, Vogel T. Health benefits of multicomponent training programmes in seniors: a systematic review. Int J Clin Pract. 2016;70(7):520–536. doi:10.1111/ijcp.12822
4. Qin X, Deng Y, Wu D, Yu L, Huang R. Does enhanced external counterpulsation (EECP) significantly affect myocardial perfusion? A systematic review & meta-analysis. PLoS One. 2016;11(4): e0151822. doi:10.1371/journal.pone.0151822
5. Raza A, Steinberg K, Tartaglia J, Frishman WH, Gupta T. Enhanced external counterpulsation therapy: past, present, and future. Cardiol Rev. 2017;25(2):39–67. doi:10.1097/CRD.0000000000000122
6. Sharma U, Ramsay HK, Tak T. The role of enhanced external counterpulsation therapy in clinical practice. Clin Med Rev. 2013;11(4):226–232. doi:10.1126/cm-2013.1162
7. Soroff HS, Hui JCK, Giron F. Historical review of the development of enhanced external counterpulsation technology and its physiologic rationale. Cardiovasc Rev. Rep. 1997;18:28–32.
8. Arora RR, Chou TM, Jain D, et al. The multicenter study of enhanced external counterpulsation (MUST-EECP): effect of EECP on exercise-induced myocardial ischemia and angina episodes. J Am Coll Cardiol. 1999;33(7):1833–1840. doi:10.1016/S0735-1097(99)01040-0
9. Nichols WW, Estrada JC, Braith RW, Owens K, Conti CR. Enhanced external counterpulsation treatment improves arterial wall properties and wave reflection characteristics in patients with refractory angina. J Am Coll Cardiol. 2006;48(6):1208–1214. doi:10.1016/j.jacc.2006.04.094
10. Enhanced External Counterpulsation (EECP). An evidence-based analysis. Ont Health Technol Assess Ser. 2006;6(5):1–70.
11. May O, Lynggaard V, Mortensen J, Malczynski J. Enhanced external counterpulsation – effect on angina pectoris, QoL and exercise capacity after 1 year. Scand Cardiovasc J. 2015;49(1):1–6.
12. Patterson SD, Hughes L, Warmington S, et al. Blood flow restriction exercise position stand: considerations of methodology, application, and safety. Front Physiol. 2019;10:533. doi:10.3389/fphys.2019.00533
13. Chinese Society of Cardiology of Chinese Medical A, Cardiovascular Committee of Chinese Association of Rehabilitation B, Committee of Cardio-Cerebral-Vascular Diseases of Gerontological Society of C. [Chinese experts consensus on cardiac rehabilitation/secondary prevention for coronary artery disease]. Zhonghua Xin Xue Guan Bing Za Zhi. 2013;41(4):267–275.
14. Smith MC, Wrobel JP. Epidemiology and clinical impact of major comorbidities in patients with COPD. Int J Chron Obstruct Pulmon Dis. 2014;9:871–888. doi:10.2147/COPD