Review Article

The Antiplasmodial Potential of Medicinal Plants Used in the Cameroonian Pharmacopoeia: An Updated Systematic Review and Meta-Analysis

Arnaud Gabin N. Tepa,1 Panthaleon Ambassa,2 Lawrence S. Ayong,3 Prosper Cabral Biapa Nya,4 and Constant Anatole Pieme1

1Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, P.O. Box 1364, University of Yaoundé 1, Yaoundé, Cameroon
2Department of Organic Chemistry, Faculty of Sciences of the University of Yaoundé 1, P.O. Box 812, Yaounde, Cameroon
3Public Health and Epidemiology Unit, Centre Pasteur Du Cameroun, P. O. Box 1274, Yaoundé, Cameroon
4Department of Biochemistry, Faculty of Sciences, University of Dschang, Dschang, Cameroon

Correspondence should be addressed to Constant Anatole Pieme; apieme@yahoo.fr

Received 29 January 2022; Revised 5 May 2022; Accepted 9 July 2022; Published 8 October 2022

Academic Editor: Philip F. Uzor

Copyright © 2022 Arnaud Tepa et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Malaria is a real public health problem. It is the leading cause of morbidity and mortality in the world. Research in herbal medicine has so far shown that the use of plants against malaria is not to be neglected. This review aims to highlight the antiplasmodial potential of Cameroonian plants. In order to achieve this objective, we conducted a bibliographic search in April 2022 using the PubMed search engine. This research included both the published and unpublished studies. A narrative approach was used to describe the antiplasmodial potential of the various species of plants investigated. Quantitative data were analyzed using R studio 4.1.1 software and random effects model was used to estimate the effect size. The research of the antiplasmodial activity of Cameroonian plants dates back to 2000. This area of research has since provided extensive data to indicate the antiplasmodial potential of several plants, most of which originate from the central region. Despite the heterogeneity observed between the different plant families studied in Cameroon for their in vitro antiplasmodial effect, there is strong evidence that 17 active compounds from these plants would be ideal candidates for the synthesis of new antimalarial drugs. The Dacryodes edulis species could be considered as the best natural alternative in the treatment of uncomplicated malaria according to its properties. More studies need to be conducted to explore the multitude of unexplored plants that are used in traditional medicine. These studies should take into account the nature of the cell model used for cytotoxicity assessment.

1. Introduction

Malaria remains a global public health problem with about 228 million cases worldwide and 213 million cases (93%) recorded in Africa [1]. Multiple control strategies against this endemic, including vector control through the widespread use of long-lasting insecticide-treated nets or indoor residual spraying on the one hand and chemoprevention on the other hand, have so far largely contributed to reduce the incidence of malaria in the world [2, 3]. Unfortunately, these advances are constantly threatened by the emergence of resistance not only of the vectors to the insecticides used [4–6], but also of the parasite to the drugs. In the 1990s, the emergence of chloroquine resistance was associated with a dramatic increase in malaria mortality [7]. At the end of the last century, introduction of the artemisinin combination therapies (ACTs) provided a much needed, highly efficacious antimalarial treatment, which became the first-line treatment for uncomplicated falciparum malaria in all endemic countries [8]. The extremely rapid development of resistance to many antimalarials, and even the most recent, such as ACTs in five countries of the Greater Mekong
subregion [9, 10] and in Africa [11, 12], justifies continued research on the factors causing this resistance. Like antibiotic resistance, antimalarial drug resistance is caused by the massive and uncontrolled use of certain molecules that could lead to a selection of resistant strains of Plasmodium over time. Diversification of effective antimalarial drugs would therefore be a solution to significantly reduce the rapid progression of resistance and thus the malaria-related mortality.

It has been highlighted that the richness of plant biodiversity and the knowledge of traditional therapies are likely to open new avenues for antimalarial therapy [13]. This was for example the case of quinine and artemisinin, which are the two currently prescribed antimalarials from medicinal plants, traditionally used in their country of origin against fevers and malaria. Quinine is from the bark of a tree from the flanks of the Andean cordillera (Cinchona calisaya and other species of Cinchona) [14] and artemisinin is from a herb native to China, Artemisia annua [15]. The search for new antimalarial drugs could therefore be undertaken within plant biodiversity using ethnopharmacology. Through this approach, the potential antimalarial activity of plants could guide the scientific community towards more in-depth research. This review aims to highlight the antiplasmodial potential of the plants of the Cameroononian pharmacopeia while evaluating their ability to inhibit in vitro chloroquine-sensitive and chloroquine-resistant strains with the least cytotoxicity possible.

2. Methods

The proposed systematic review was conducted in accordance to the Cochrane Handbook [16] and PRISMA statement (i.e., Preferred Reporting Items for Systematic Reviews and Meta-analyses [17]).

The following research question was formulated to address the literature and outline the search strategy: are Cameroononian plants species or family able to be more effective with low toxicity in vitro against Plasmodium resistant-chloroquine strains compare to sensitive-chloroquine one?

2.1. Search Strategy. An electronic search on the PubMed database was performed up to April 06th, 2022. The search strategy aimed to locate both published and unpublished studies. The computer database search in PubMed was performed using the following keywords: ((((((“antimalarial activity”[Body—All Words] OR “antiplasmodial activity”[Body—All Words]) OR antimalarial[Abstract]) OR antiplasmodial[Abstract]) OR antimalarial[Title]) OR antiplasmodial[Title]) AND (“in vitro”[Body—All Words] OR in vitro [Body—All Words]) AND Cameroon[Body—All Words]) AND (IC50[Abstract] OR IC50[Body—All Words]). No publication year or language limit was considered.

2.2. Selection, Inclusion, and Exclusion Criteria. Following the search, all identified citations were collected and uploaded into the Zotero software and duplicates were removed. Titles and abstracts were then screened by one reviewer for assessment against the inclusion criteria for the review. Potentially relevant studies were retrieved in full and their citation details were imported into the Rayyan software [18]. The full text of selected citations was assessed in detail against the inclusion criteria by one reviewer. Reasons for exclusion of full text studies that do not meet the inclusion criteria were recorded and reported in the systematic review. Review considered studies that included Cameroononian plants assessed for their in vitro antiplasmodial activity. Only primary studies assessing the in vitro 50% inhibitor concentration (IC50) were included in the review. All review articles were excluded. The results of the search were reported in full in the final systematic review and presented in a Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) flow diagram [17].

2.3. Data Extraction. Data was extracted from papers and included in the review by one reviewer using a data extraction tool developed by the reviewer. The data extracted included specific details about the plants species, family, place of harvest, part use, extract, metabolite, used parasite, cell model, IC50, 50% cytotoxic concentration (CC50), standard deviation of each quantitative variable, sample size. The selectivity index (SI) of each extract was calculates as follows: CC50/IC50. The extracted data was presented in tabular form to align with the objective of this review. A narrative summary accompanied the tabulated results and described how the results relate to the reviews objective and question.

2.4. Risk of Bias Assessment. Eligible studies were critically appraised by one reviewer considering a score described in previous systematic reviews of in vitro studies [19]. The description of the following parameters was checked in each study: clear extraction method, appropriate in vitro method for antimalarial activity, appropriate number of replicate, resistant vs. sensitive Plasmodium strain comparison, appropriate in vitro method for cytotoxicity, culture of Plasmodium and control cells in the same condition, availability of all required outcome (IC50, CC50 and SDs) and quality control valid. If the parameter was described on the text, the study received a “yes” on that specific parameter, otherwise it had a “no.” The risk of bias was classified according to the sum of “yes” received as follows: 1–3 = high, 4–5 = medium, 6–8 = low risk of bias. The results of critical appraisal is reported in narrative form and in a table. Only the low risk of bias studies was included in the meta-analysis.

2.5. Data Synthesis. Selected studies were pooled in statistical meta-analysis using R Studio software V4.1.1. Effect sizes were expressed as standard mean difference (SMD) for selectivity index and 95% confidence level was considered for analysis. Heterogeneity was assessed statistically using the standard Chi-squared and I squared tests. Statistical analyses were performed using random effects model [20]. Plants or metabolites with SMD <0.8 were considered as
good antiplasmodial drug candidate against both chloroquine/multi-drug-resistant (experimental) and sensitive (control) Plasmodium strain. Forest plots were created to illustrate the meta-analysis. Where statistical pooling was not possible, the findings were presented in narrative form including tables to aid in data presentation where appropriate. A funnel plot was generated to assess publication bias. Egger’s test for funnel plot asymmetry was performed where appropriate.

3. Results

3.1. Search and Selection. A total of 220 articles were retrieved by automatic search on PubMed. Manual search based on reference screening completed our search with another 12 articles (Figure 1). From the 232 articles downloaded, 14 were duplicates and were removed. 46 were reviewed and therefore automatically excluded. The titles and abstracts of 218 articles were screened, 90 were excluded as not being on the topic of interest. Of the 128 eligible articles, 86 were excluded for various reasons such as: study population (28), type of publication (52), study design (7), and unavailability of full text (1). The remaining 42 articles were included in the qualitative analysis and assessed for risk of bias. Only 10 articles with low risk of bias were included in meta-analysis (Table S1).

3.2. Descriptive Analysis. Tables S2 and 1 show descriptive extracted data from the included studies in systematic review and meta-analysis, respectively. All studies were published between 2000 and 2021. More studies were conducted in the center region of Cameroon (n = 18) followed by the western region (n = 10). The rest of the plants were collected from South-west, Littoral, East, North-west, and Far north region. No plants were yet investigated in the North and Adamawa regions (Figure 2). Almost 90 plants species (31 families) have so far been tested for their in vitro antimalarial activities against both/only resistant P. falciparum strains (W2, W2mef, INDO, W32, FCM29, FCB1, K1, N54, and Dd2) and/or susceptible strains (3D7, D-6, HB3, SHF4, and F32). Some studies (n = 16) had assessed the cytotoxicity of study plants. The cell model used for cytotoxicity was also different between the studies. Models used were U2OS, Hep G2, Hela, HFF, MRC-5, MRC-7, WI-38, HEK 239T, A375, WI-38, LLC-MK2, and RAW cell.

3.3. Qualitative Synthesis

3.3.1. Acanthaceae. Stem bark of Thomandersia hensii was extracted with hexane, ethyl acetate, dichloromethane/methanol and methanol. They exerted an antimalarial activity against Plasmodium falciparum W2 strain with IC₅₀ values of 53.9, 24.7, 77.2 and 68.2 µg/ml respectively [31].

3.3.2. Anacardiaceae. Sorindeia juglandifolia is a tree with 23 m height with no specific uses and no pharmacological studies so far [32]. However, Kamkumo et al. showed that a hexane/ethyl acetate extract of fruits of S. juglandifolia exerted inhibitory effects against P. falciparum W2 strain and recombinant falcipain-2, respectively. The IC₅₀ values were 6.24 µg/ml for W2 and 8.22 µg/ml for falcipain-2 [32]. Secondary metabolites isolated, such as 2,3,6-trihydroxy benzoic acid and 2,3,6-trihydroxy methyl benzoate, demonstrated low inhibitory effects against P. falciparum strains, with IC₅₀ values of 16.47 and 13.04 µM against P. falciparum W2, and 35.41 and 6.09 µM against falcipain-2, respectively [32]. Otherwise, aqueous and ethanol extract of bark or leaves of Mangifera indica exhibited a high selectivity index for their antimalarial activity (SI > 50) [21].

3.3.3. Annonaceae. Several studies were performed to elucidate the pharmacological parameters of Annonaceae species commonly used in Cameroon against malaria and/or related symptoms. It was highlighted that methanol and/or ethanol extracts of Annona muricata (seeds), Anomandria mannii (leaves and twigs), Polyalthia oliveri (stem bark), Polyalthia suaveolens (twigs), Uvariastrongenkeri (twigs), Uvariospis congolana (stem), Enantia chlorantha (stem bark), Xylopia aethiopica (twigs, stem bark and roots), and Xylopia Africana (stem) exhibited antimalarial activities with IC₅₀ values lower than 5 µg/ml [33–35]. Moreover, both methanol and ethanol extracts of twigs of Monodora myristica, Piptostigma calophyllum, and Uvariodendron molundense, demonstrated an antimalarial activity with IC₅₀ lower than 10 µg/ml [33]. Similar results were found with the extracts of Xylopia parviflora (leaves and stem) and Annona reticulata (leaves) [33, 34]. Uvaria bannmanni and Uvariodendron calophyllum did not have a high antiplasmodial activity (IC₅₀ > 10 µg/ml) [33]. A previous study, published by Boyom et al. showed that some acetogenin-rich extracts of Uvariospis congolana, Polyalthia oliveri, and Enantia chlorantha exerted inhibitory effects against P. falciparum W2 strain [36]. The IC₅₀ values of aqueous stem bark extracts of Cleistopholis patens, Uvariastrum pierreanum, Xylopia phloioidora, Pachypodanthium confine, Xylopia aethiopica, and Hexalobus crispiflorus were, respectively, 9.19, 6.08, 17.9, 16.6, 17.8, and 2.0 µg/ml [36, 37]. Despite the good antimalarial activity of H. crispiflorus, few studies yet been done to isolate secondary metabolites responsible of this activity.

3.3.4. Apocynaceae. Ndjakou Lenta et al. showed that the IC₅₀ of methanol stem bark extract of Rauvolfia macrophylla was higher than 5 µg/ml, and their selectivity index (SI) was greater than ninety [38]. Fotie et al. showed that stem bark extracts of Holarrhena floribunda exerted inhibitory effects against P. falciparum W2 and D-6 strains [39]. However, no evidence of antimalarial effect was shown with isolated secondary metabolites [39]. The stem bark, the roots, the seeds, and the fruits of Picralima nitida are frequently used in Cameroonian traditional medicine to cure malaria or fever [31]. Only one study on the methanol extract of the stem bark of P. nitida, which showed the highest antimalarial activity (IC₅₀ = 10 µg/ml), has been performed [31]. The other extracts, (hexane and dichloromethane/methanol) showed low in vitro antimalarial activity against W2 strain
Recently, Ma’mag et al. and Bitombo et al. highlighted the antiplasmodial activity of two Apocynaceae, *Funtunia elastica* [30], and *Tabernaemontana penduliflora* [40]. Methanol extract of *Funtunia elastica* exhibited a very high antiplasmodial activity against both Dd2 and 3D7 *P. falciparum* strains (IC50 < 5 µg/ml). Terpenoid (3β-hydroxyurs-20(21)-en-29-oic acid, 2α,3β-hydroxyurs-20(21)-en-29-oic acid and 6'-O-acetylglucopyranosyl-3β-hydroxyurs-20(21)-en-29-oic acid) and alkaloid (1α, 11α, 17α-trihydroxy-3β-(N-benzamido)-5,6-dihydroantidysentericine) extracted from *Funtunia elastica* had a high selectivity index (SI > 37). The IC50 of hydroethanol extract of *Tabernaemontana penduliflora* was 15.76 and 18.46 µg/ml, respectively, against Dd2 and 3D7 *P. falciparum* strains.

3.3.5. Asteraceae. The carrot-like tubers of *Vernonia guinensis* are commonly used in ethnomedicine. Toyang et al. investigated the antiplasmodial activity of crude extracts and pure compounds of *V. guinensis*. These pure compounds and crude extracts from *V. guinensis* inhibited the growth of HB3 and Dd2 [41]. The IC50 values of extracts were similar for HB3 and Dd2, and ranged from 1.64–27.2 µg/ml for HB3 and 1.82–30.0 µg/ml for Dd2. The IC50 values of vernopicrin, vernomelitensin, and pentaisovalerylsucrose isolated from *V. guinensis* were similar to HB3 and Dd2 and ranged from 0.47–1.62 µg/ml for HB3 and 0.57–1.49 µg/ml for Dd2 [41]. Similar result was found with *Vernonia amygdalina* and *Vismia guinensis* which exhibited antiplasmodial activity without cytotoxicity [26].

3.3.6. Bignoniaceae. The ethyl acetate extract of *Stereospermum zenkeri* has moderate activity against *P. falciparum* K1 chloroquine-resistant strain, with IC50 values below 10 µg/ml [38]. However, it was been not clear if both ethyl acetate and methanol extracts of *Stereospermum acuminateissimum* could be active against *P. falciparum* K1 chloroquine-resistant strain (IC50 > 5 µg/ml) [38].

Figure 1: Flowchart diagram of study selection according to PRISMA statement.
References	Plants	Family	Place of harvest	Part use	Extract	CQ R	CQ S	Cell model
Tarkangetal.[21]	*Mangifera indica*	Anacardiaceae	Mballa II, Yaounde	Bark, leaves	Ethanol, Aqueous			
	Psidium guajava	Myrtaceae	Nkomo, Yaounde	Leaves	Ethanol, Aqueous			
	Carica papaya	Caricaceae	Nkoabang, Yaounde	Leaves	Ethanol, Aqueous			
	Cymbopogon citratus	Poaceae	Kombone, Kumba	Leaves	Ethanol, Aqueous			
	Citrus sinensis	Rutaceae	Mamfe	Leaves	Ethanol, Aqueous			
	Ocimum gratissimum	Lamiaceae	Buea	Leaves	Ethanol, Aqueous			
Rufin et al.[22]	*Alchornea Lacifolia*	Euphorbiaceae	Mount Kalla	Twig, stem	Ethanol			
	Annona senegalensis	Annonaceae	Bafia	Bark, leaves	Ethanol, Hydroethanol			
	Annona senegalensis	Annonaceae	Bafia	Stem	Hydroethanol			
	Drypetes principium	Euphorbiaceae	Mount Kalla	Leaves	Decoction, Ethanol			
	Ficus benjamina	Moraceae	Yaounde	Leaves	Aqueous			
	Terminalia catappa	Combretaceae	Yaounde	Leaves	Decoction			
	Terminalia mantaly	Combretaceae	Yaounde	Leaves, bark	Decoction			
Azebaze et al.[23]	*Allanblackia monticola*	Guttiferaceae	Western region	Leaves	1, 2, 3, 4	FcM29	F32	A375
Tchinda et al.[24]	*Strychnos malacolados*	Loganiaceae	Bertoua, Eastern region	Stem bark	5, 6	W32	3D7	WI-38
Zofou et al.[25]	*Kigelia africana*	Bignoniaceae	Bandjoun/West region	Stem bark	Hexane, Ethyl acetate, 7 Dichloromethane/Methanol	W2	3D7	LLC-MK2
	Cuviera longiflora	Rubiaceae	Batcham/West region	Leaves	1, 2, 3, 4			
Zofou et al.[26]	*Dacryodes edulis*	Burseraceae	Batcham/West region	Leaves	Dichloromethane/Methanol	W2	3D7	LLC-MK2
	Eucalyptus globulus	Myrtaceae	Batcham/West region	Leaves	Dichloromethane/Methanol	W2	3D7	LLC-MK2
	Kotschya speciosa	Leguminosae	Batcham/West region	Whole, aerial	Methanol	W2	3D7	LLC-MK2
	Coula edulis	Olaceae	Batcham/West region	Stem bark	Dichloromethane			
	Vernonia amygdalina	Asterolae	Batcham/West region	Leaves				
	Vismia guinensis	Asterolae	Batcham/West region	Stem bark	Dichloromethane, Dichloromethane/ Methanol			
Sidjui et al.[27]	*Pseudocedrela kostchyi*	Meliaceae	Karmai/Extreme Nord region	Roots	8, 9, 10, 11, 12, 13, 14, 15, 16, 17	INDO	3D7	HEK239T
Zofou et al.[28]	*Dacryodes edulis*	Burseraceae	Batcham/West region	stem bark	Dichloromethane/Methanol, 17, 18, 19, 20, 21	Dd2	3D7	LLC-MK2
Mboura et al.[29]	*Terminalia mantaly*	Combretaceae	Yaounde/Central region	Leaf, Stem bark, root	Aqueous, Methanol	INDO	3D7	HEK239T
Ma'mag et al.[30]	*Puntumia elastica*	Apocynaceae	Touessong, Center region	Leaves	Methanol, 22, 23, 24, 25	Dd2	3D7	RAW
Hexane and ethyl acetate extracts of *Markhamia tomentosa* [42] and *Kigelia africana* [43] exhibited a high antiplasmodial activity against W2 *P. falciparum* strain (IC50 < 5 µg/ml).

3.3.7. Burseraceae. Zofou et al. showed that leaves of *Dacyryodes edulis* exhibited an antiplasmodial activity against 3D7 strain of malaria parasite (IC50 = 6.45 µg/ml) [26]. Also, stem bark of *D. edulis* had an antiplasmodial activity against the same strain (IC50 = 4.34 µg/ml) [28]. No sign of cytotoxicity was observed with extracts from *D. edulis* on LLC/MK2 epithelial cells [26, 28]. Apart from Afzelin, the selectivity index of all secondary metabolites from *D. edulis* (quercitrin, quercetin, methyl 3,4,5-trihydroxybenzoate and sitosterol 3-O-β-D-glucopyranoside sterol) were higher than 10.

3.3.8. Caricaceae. Leaves of *Carica papaya* are constituents of Nefang, a traditional drug used to treat malaria in Cameroon. These leaves do not show any antiplasmodial activity against Dd2 strains of *P. falciparum* without toxicity [21].

3.3.9. Celastraceae. Crude dichloromethane/methanol and secondary metabolites extracts from *Salacia longipes* exhibited a very high antiplasmodial activity against W2 *P. falciparum* strain [44]. And cytotoxicity analysis was performed.

3.3.10. Clusiaceae. Ndjakou Lenta et al. tested fruits extracts and isolates compounds from *Pentadesma butyracea* for their antiplasmodial activity in vitro against the W2 strain chloroquine-resistant *P. falciparum* and other antimalarial drugs. Pericarp showed good antiplasmodial activity, with an IC50 of 1.83 µg/ml, while the seed extract was inactive. Among all isolated compounds, only the xanthones exhibited antiplasmodial activity against the W2 strain, with garcinone E showing the best potency and followed by α-mangostin, cratoxylose, and pentadexanthone [45].

Previous study, performed by Zelefack et al., showed that isolated molecules from stem bark of *Pentadesma butyracea* cannot be lead candidates for treatment of malaria because of their high cytotoxicity. Therefore, they found that butyraxanthone A, butyraxanthone B, mangostain, 1,3,6-trihydroxy-7-methoxy-2,8-diprenylxanthone, rubraxanthone, garcinone, gartanin, tovophyllin from the stem bark of *Pentadesma butyracea* showed good antiplasmodial activity [46].

Ndjakou Lenta et al. investigated three Clusiaceae, *Allanblackia monticola*, *Harungana madagascariensis*, and *Symphonia globulifera*. Harungana madagascariensis methanolic extract (IC50 = 3.6 µg/mL) and *Symphonia globulifera* methanolic extract (IC50 = 4.1 µg/mL) exhibited good antiplasmodial activity against *P. falciparum* K1 chloroquine-resistant strain, with IC50 values lower than 5 µg/mL [38]. Whereas, they found that IC50 against *Plasmodium falciparum* K1 chloroquine-resistant strain of *Allanblackia monticola* was greater than 5 µg/mL [38]. However, previous results of Azebaze et al. against *P. falciparum* FCM29 and F32 strain showed that IC50 of *Allanblackia monticola* methanolic extract was, respectively, 3.1 µg/mL and 3.3 µg/mL [47]. Three molecules extracted from *Allanblackia monticola* (Allanxanthone C, norcowanin, mangostin) exhibited good antiplasmodial activity [47].

3.3.11. Combretaceae. Decoction extracts from the leaves of *Terminalia catappa* and leaves and bark of *Terminalia mantaly* exhibited very promising activity against *P. falciparum* 3D7 (IC50 = 2.49–6.41 µg/mL) and *P. falciparum* INDO (IC50 = 1.90–8.10 µg/mL) [22]. Moreover, Mbouna et al. showed that the aqueous extracts from leaf and stem bark of *Terminalia mantaly*, and the aqueous and methanolic extracts from leaf and root of *Terminalia superba* exhibited antiplasmodial activity [29].

3.3.12. Ebenaceae. Methanol extract from powdered stem bark of *Diospyros sanza-minika* exhibited strong antiplasmodial effects with IC50 values of 1.7 against *P. falciparum* K1. The secondary metabolites isolated from the stem bark of *D. sanza-minika* were norbergenin, 4-O-galloylnorbergenin, 11-O-p-hydroxybenzoylnorbergenin, 4-O-(3′-methylgalloyl) norbergenin, and 4-Osyringoylnorbergenin. Norbergenin and 4-Osyringoylnorbergenin were found to be inactive, 4-O-galloylnorbergenin and 11-O-p-hydroxybenzoylnorbergenin showed moderate activity with IC50 values of 3.9 and 4.9 µg/mL; 4-O-(3′-methylgalloyl)norbergenin showed the highest potency (IC50 value: 0.6 µg/mL) [48].

3.3.13. Euphorbiaceae. Ethyl acetate extracts of stems and twigs of *Alchornea laccifolia* displayed moderate antiplasmodial activity (IC50P3D7/INDO ranging 12.44–16.64 µg/mL) against both *P. falciparum* strains, whereas the corresponding aqueous extracts were weakly active or inactive (>25 to >100 µg/mL). Moreover, leaf and trunk extracts displayed weak antiplasmodial activity to inactivity against the sensitive and resistant *P. falciparum*.
strains [22]. Rufin Marie et al. also showed that the water maceration and decoction, and ethyl acetate extracts of leaves of Drypetes principum exhibited an antiplasmodial activity (IC\textsubscript{50} 3D7/INDO = 4.91/6.64, 5.49/5.98, and 6.49/7.10 \(\mu\)g/mL, respectively) [22]. Moreover, it was shown by Boyom et al. that the crude from the stem bark of Croton zambezensis and Neoboutonia glabrescens exhibited an antiplasmodial activity with an IC\textsubscript{50} value of 5.69 g/mL and 5.50 g/mL respectively [49]. However, aqueous extracts of Antidesma laciniatum did not show a good antiplasmodial activity (IC\textsubscript{50} = 29.4 \(\mu\)g/mL) [36]. Recently, Djouwoug et al. showed that Bridelia atrorvidis exhibited a high antiplasmodial activity with SI = 12 [50].

3.3.14. Fabaceae. Fabaceae extract was not widely investigated. The extracts of Senna alata were inactive [22].

3.3.15. Guttiferae. Three species of Guttiferae (Allanblackia floribunda, Allanblackia monticola, and Allanblackia gabonensis) were tested for their antiplasmodial activity by Azebaze et al. [23, 47, 51]. They found that, A. gabonensis did not show any antimalarial activity. However, A. floribunda an A. monticola exhibited strong antimalarial effects. Macluraxanthone isolated from A. floribunda was the most active compound on two strains of Plasmodium followed by volkensiflavone with an IC\textsubscript{50} of 0.46 and 0.99 \(\mu\)g/mL for the F32 and 0.33 and 0.93 \(\mu\)g/mL for the Fcm29 strains respectively [51]. Allaxanthone B isolated from A. monticola was responsible of its antimalarial property with IC\textsubscript{50} of 3.70 and 3.93 \(\mu\)g/mL for the F32 and Fcm29 strains respectively [51]. Five of other prenylated xanthones (\(\alpha\)-mangoxine, tovophiline A, allaxanthone C, rubraxanthone, norcowanine) isolated from A. monticola previously tested for antimalarial properties had displayed after 24 h of contact with the parasite a significant antimalarial activity (IC\textsubscript{50}: 1.96–3.16 \(\mu\)g/mL) on the F32 strain and (IC\textsubscript{50}: 1.72–3.22 \(\mu\)g/mL) on Fcm29 [23, 47].

3.3.16. Hypericaceae. Bazouanthonize and harunganin isolated from the root bark of Harungana madagascariensis were found to be active against W2 strain of P. falciparum with IC\textsubscript{50} of 5.4 and 8.1 \(\mu\)g/mL, respectively [52]. The hexane and ethanol extracts of the stem bark of Psorospermum glaberrimum showed good antimalarial activity against P. falciparum W2 strain, with IC\textsubscript{50} of 0.87 and 0.95 \(\mu\)g/mL, respectively [53]. Some isolated secondary metabolites (glaberianthrone, 3-geranyloxymedin anthrone, friedelan-3-one, 3-prenyloxymedin anthrone, acetylviomisonone D, betulinic acid, 2-geranylemodin, bianthrone 1a) from Psorospermum glaberrimum showed good antimalarial activity against P. falciparum W2 strain with 3acetyleviiomisonone D displaying the best potency (IC\textsubscript{50} of 0.05 \(\mu\)g/mL) [53]. Otherwise, two isolated secondary metabolites of Hypericum lanceolatum presented significant antimalarial activities (with IC\textsubscript{50} < 5 \(\mu\)g/mL) with 5-hydroxy-3-methoxyxanthone exerting the highest activity (IC\textsubscript{50} of 3.26 \(\mu\)g/mL), followed by betulinic acid (IC\textsubscript{50} of 4.50 \(\mu\)g/mL) [54].

3.3.17. Lamiaceae. Neither Ocimum basilicum and Ocimum canum, previously found as a repellent, and nor Ocimum gratissimum which is part of Nefang (a traditional remedy usually used in Cameroon to treat malaria) showed antimalarial activity [21, 22, 55].

3.3.18. Leguminosae. Only Kotschya speciosa was investigated in this family and was not found to be active against P. falciparum [28].

3.3.19. Loganiaceae. Tchinda et al. tested the stem bark of Stychnos malacoclados. They found that an ethyl acetate extract of this specie exhibited an antimalarial activity against the chloroquine-sensitive 3D7 strain of P. falciparum with IC\textsubscript{50} of 2.85 \(\mu\)g/mL [24]. All secondary metabolites extracted from S. malacoclados displayed an antimalarial activity against the chloroquine-sensitive 3D7 strain of P. falciparum [24]. From the stem bark of S. malacoclados, one new bisindole alkaloid, 3-hydroxylongicautadiyne Y, was isolated along with the known alkaloids vomicine, bisnor-dihydrotoxiferine, divarine, longicautadine, longicautadine Y, and longicautadine F [24]. Stychnobailonine from Stychnos icaja was found as a very high antimalarial compound with SI = 14 [56].

3.3.20. Meliaceae. Happi et al. found that three secondary metabolites (prototiamins A, prototiamins B, prototiamins C, prototiamins E, prototiamins F, prototiamins G) extracted from Entandrophragma congoense displayed significant in vitro antimalarial activity against the erythrocytic stages of chloroquine-sensitive P. falciparum strain NF54 [57]. Prototiamin C was the most potent of the secondary metabolite isolated, with an IC\textsubscript{50} value of 1.32 \(\mu\)g/mL [57]. Several secondary metabolites (kotschyienone A, kotschyienone B, 7-deacetylgcdnun, 7-deacetyl-7-oxogcdnun, 3,6,8-trihydroxy-2-(3,4-dihydroxylphenyl)-4H-chrom-4-one, quercetin) isolated from Pseudocedrela kostchyi gave IC\textsubscript{50} values ranging from 0.75 to 4.61 \(\mu\)g/mL for antimalarial activity against chloroquine-sensitive (Pf3D7) and chloroquine-resistant (PfINDO) strains of P. falciparum [27]. However, extracts from Entandrophragma angolensis and Khaya grandifoliola did not show antimalarial activity [31, 58, 59].

3.3.21. Mimosaceae. The methanolic extract of Albizia zygia (IC\textsubscript{50} = 1.0 \(\mu\)g/mL) exhibited good antimalarial activity towards P. falciparum K1 chloroquine-resistant strain. However, cytotoxicity against L6 cell was found to be high (CC\textsubscript{50} = 4.5 \(\mu\)g/mL) [38].

3.3.22. Monimiaceae. A phytochemical study of the methylene chloride/methanol extract of leaves of Glossocalyx
Figure 3: Continued.
brevipes afforded three metabolites (methyl 2-(1′β-geranyl-5′β-hydroxy-2′-oxocyclohex-3″-eny) acetate, 2-(1′β-geranyl-5′β-hydroxy-2′-oxocyclohex-3″-eny) acetic acid, liriodene (alkaloid)) with modest in vitro activity against *P. falciparum* [60].

3.3.23. Moraceae. Boyom et al. showed that, only methanol leaves extracts of *Artocarpus communis* among the three Moraceae studied samples (*Artocarpus communis*-stem bark and leaf, *Dorstenia conweva*-twigs) showed high potency against W2 *P. falciparum* strain with IC50 values below 5 g/ml [35]. Moreover, Ruffin Marie et al. and Mbossou et al. found that some species of Ficus (*Ficus benjamina, Ficus exasperate, Ficus elastic*) did not exhibit antiparasitic activity [22, 61].

3.3.24. Myrtaceae. *Psidium guajava* which is a constituent of Nefang exhibited an antiparasitic activity with a very high selectivity index (SI > 77) [21]. Otherwise, *Eucalyptus globulus* did not exhibit good antiparasitic activity [26].

3.3.25. Olacaceae. Methanol extract of *Coula edulis* was found as effective against W2 and 3D7 *P. falciparum* strains (IC50: 5.79 and 13.8 μg/ml, respectively) with significant high selectivity index (SI > 10) [26].

3.3.26. Pittosporaceae. It had been shown that stem bark extract (methanol and 1-O-[-α-L-(Rhamnopyranosyl]-23-acetoxyimberbic acid 29-methyl ester) of *Pittosporum manni* exhibited a very high antiparasitic activity against K1 *P. falciparum* strain (IC50: 4.3 and 1.02 μg/ml respectively) [62].

3.3.27. Poaceae. Arrey Tarkang et al. found that ethanol leaves extracts of *Cymbopogon citratus*, which is another constituent of Nefang, were not active against *P. falciparum* [21]. However, Akono Ntonga et al. showed that aqueous leaf extracts of this plant exhibited an antimalarial activity, with IC50 of 4.2 μg/ml [55].

3.3.28. Rubiaceae. *Schumanniphyton magnificum* and *Cuviera longiflora* did not show a good antimalarial activity in vitro [26, 31].

3.3.29. Rutaceae. Ethanol leaves extracts of *Citrus sinensis* which equally constitute Nefang was not active against *P. falciparum* [21]. Moreover, Wansi et al. showed that, *Teclea afzelii* was not active against *P. falciparum* [63].

3.3.30. Selaginellaceae. *Selaginella vogelli* was more toxic than active against *P. falciparum* [61].

3.3.31. Zingiberaceae. Kenmogne et al. showed that some compound from seeds of *Aframomum zambesiacum* had a very low selectivity index (SI < 5) for their antiparasitic activity [64].

Figure 3: Results of the analysis of metabolites selectivity index to chloroquine resistant and susceptible strain, using random effect model.

Study or Subgroup	Weight (%)	Std. Mean Difference IV, Random, 95% CI	Std. Mean Difference IV, Random, 95% CI
Class_of_metabolite = flavonoide			
3 0.3394	9 2.2851	9 25.8 0.49 [−0.45; 1.43]	
2 3.7287	9 16.4796	9 25.9 0.08 [−0.85; 1.00]	
1 5.6001	9 0.2813	9 25.8 −0.63 [−1.58; 0.32]	
Class_of_metabolite = xanthone			
1 12.36	9 5.6000	9 25.8 −0.63 [−1.58; 0.32]	
2 16.78	9 3.7287	9 25.9 0.08 [−0.85; 1.00]	
3 3.04	9 0.3394	9 25.8 −0.63 [−1.58; 0.32]	

[Table 2]
Table 2: Molecules with the strong antiplasmodial potential activities isolated from Cameroonian pharmacopeia.

Metabolites	Structure	Class of metabolite	Family of metabolite
α-Mangostin	![Structure](image1.png)	xanthone	Polyphenol
Tovophyllin A	![Structure](image2.png)	xanthone	Polyphenol
1,7-Dihydroxy-3-methoxy-2-(3-methylbut-2-enyl) xanthone	![Structure](image3.png)	xanthone	Polyphenol
Amentoflavone	![Structure](image4.png)	flavonoid	Polyphenol
Metabolites	Structure	Class of metabolite	Family of metabolite
------------	-----------	---------------------	----------------------
5 Longicaudatine	![Structure](image1.png)	alkaloid	alkaloid
6 Longicaudatine F	![Structure](image2.png)	alkaloid	alkaloid
7 Atranorin	![Structure](image3.png)	benzoic acid	Polyphenol
Metabolites	Structure	Class of metabolite	Family of metabolite
-------------	-----------	---------------------	----------------------
8 & 9 kotschyienone A (R1 = R2 = H) and kotschyienone B (R1 = R2 = OH)	![Structure](image1)	limonoid	terpenoid
10 Andirobin	![Structure](image2)	limonoid	terpenoid
11 7-deacetylgedunin	![Structure](image3)	limonoid	terpenoid
12 7-deacetyl-7-oxogedunin	![Structure](image4)	limonoid	terpenoid
Metabolites	Structure	Class of metabolite	Family of metabolite
---------------------------	--	---------------------	----------------------
13 β-sitosterol	![β-sitosterol Structure](image)	terpenoid	steroid
14 Stigmasterol	![Stigmasterol Structure](image)	terpenoid	steroid
15 Betulinic acid	![Betulinic acid Structure](image)	terpenoid	triterpene
16 3,6,8-trihydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one	![3,6,8-trihydroxy-2-(3,4-dihydroxyphenyl)-4H-chromen-4-one Structure](image)	polyphenol	flavonoid
Metabolites	Structure	Class of metabolite	Family of metabolite
------------	-----------	---------------------	---------------------
17 & 18 Quercetin (R = H) And Quercitrin (R = Rha)	![Structure Image](#)	flavonoid	polyphenol
19 Afzelin	![Structure Image](#)	flavonoid	polyphenol
20 methyl -3,4,5-trihydroxybenzoate	![Structure Image](#)	Benzoic acid	polyphenol
21 sitosterol 3-O-β-Dglucopyranoside	![Structure Image](#)	steroid	terpenoid
Eggers’ test showed an asymmetry between the crude extract plant data ($P = 0.289$), suggesting a high risk of publication bias for these data (Table 3). In contrast, the secondary metabolite data did not show asymmetry ($P = 0.048$) suggesting a low risk of publication bias for these data (Table 3). Figure 4 shows the funnel plot of the selectivity index of the different secondary metabolites evaluated in these studies. The detailed analysis of this funnel plot shows a reservation on two of the compounds (7 and 10) previously considered as good candidates for their antimalarial activity ($P < 0.1$). Figure S2 shows the plants selectivity index to chloroquine resistant and susceptible strain, using random effect model.

Figure 4: Funnel plots of meta-analysis of metabolites selectivity index.

| Table 3: Eggers’ test of the intercept. |
|-----------------|-----------------|-----------------|-----------------|
| | Intercept | Confidence Interval | t | p |
| Metabolites | 0.598 | 0.48–1.68 | 1.085 | 0.289 |
| Plants | −0.758 | −0.48–−1.69 | −2.029 | 0.048 |

4. **Discussion**

The fight against malaria is a great challenge characterized on the one hand by the resistance of the vector to the insecticides used and on the other hand by the resistance of the parasite to conventional drugs. It has to be noted that the discovery of new drugs against malaria is most often based on the results of research in natural pharmacopoeia as was the case for artemisinin and quinine [14, 15]. Some synthetic drugs such as dihydroartemisinin and chloroquine are based on active ingredients from natural plants. Given the rise of resistance,
especially to artemisinin and its derivatives used as the first line of defense against malaria, it is important to go back to the source of natural plants to look for potential candidates that could supplement this first line of defense while reducing the rapid emergence of resistance due to the massive use of a single type of drug. This review aimed at screening the antiplasmoidal potential of Cameroon plants and through a meta-analysis to bring out all the potential candidate active ingredients.

Taking into account the main goal of this systematic review, 42 in vitro studies were selected and 10 were submitted for meta-analysis. There is strong evidence that the dichloromethane extract of Vernonia amygdalina leaves [25], the dichloromethane and dichloromethane/methanol extracts of Vernonia amygdalina leaves [25], and also the dichloromethane/methanol extracts of the leaves and stem bark of Dacryodes edulis [26] could be used as an antiplasmoidal drug on chloroquine-sensitive and chloroquine-resistant strains (SI > 10). Despite the high risk of publication bias as revealed by Egger's test for crude extract results, the funnel plot showed us that studies on these above plants had a low risk of publication bias. Despite the fact that these plants had in common the type of extract used, our meta-analysis data did not support a significant effect of the type of extract used on the selectivity index of the plants for their antiplasmoidal activities. The antiplasmoidal potential of these plants would thus be particularly due to the nature of the active principles they contain. Indeed, the interactions between the compounds contained in the crude extracts of plants are often at the origin of a more or less high bioactivity of these crude extracts [65]. Antagonistic and synergistic interactions are the main causes. This review does not highlight the effect of these interactions on plant extracts, but we were able to demonstrate that 17 compounds extracted from plants, among which 5 (3 polyphenols and 2 terpenoids) extracts were from Dacryodes edulis [28], could be selected as ideal candidates for their antiplasmoidal effect not only in chloroquine-sensitive strains, but even more so in chloroquine-resistant strains. Dacryodes edulis (Safou) is known for its dietary properties via its edible fruit; its curative and suppressive properties on a mouse model infected with Plasmodium berghei were demonstrated by maximum inhibition of Plasmodium at 57% and chemosuppression of the parasite at 71% [66]. In addition, this plant has antioxidant [67], anticancer [68], antidiabetic [69] properties that make it a good research model for its multiple effects. The limitation of this review is that it does not allow to conclude on the effect of these molecules on artemisinin-resistant strains which for several years has been considered as a first-line drug instead of chloroquine.

5. Conclusion

Despite the heterogeneity observed between the different plant families studied in Cameroon for their in vitro antiplasmoidal effect, there is strong evidence that 17 active compounds from these plants would be ideal candidates for the synthesis of new antimalarial drugs. The Dacryodes edulis species, containing 5 of these active compounds, could be considered as a natural alternative in the treatment of uncomplicated malaria because of its inhibitory and suppressive capacities on the one hand and its relatively low cytotoxicity on the other hand.

Data Availability

All data generated or analyzed during this study are included within the article.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Supplementary Materials

Figure S1. Analysis of potential confounding factors; Figure S2. Plants’ selectivity index to chloroquine resistant and susceptible strain, using random effect model; Figure S3. Funnel plot for plants species; Table S1. Risk of bias assessment; Table S2. Characteristic of studies included in the systematic review. (Supplementary Materials)

References

[1] World Health Organisation, World Malaria Report 2019, World Health Organisation, Geneva, Switzerland, 2019.
[2] S. Bhatt, D. J. Weiss, E. Cameron et al., “The effect of malaria control on plasmodium falciparum in Africa between 2000 and 2015,” Nature, vol. 526, no. 7572, pp. 207–211, 2015.
[3] R. F. Daniels, S. F. Schaffner, A. Bennett et al., “Evidence for reduced malaria parasite population after application of population-level antimalarial drug strategies in southern province, Zambia,” The American Journal of Tropical Medicine and Hygiene, vol. 103, pp. 66–73, 2020.
[4] O. K. Gueye, M. Thouakui, A. K. Dia et al., “Insecticide resistance profiling of Anopheles coluzzii and Anopheles gambiae populations in the southern Senegal: role of target sites and metabolic resistance mechanisms,” Genes, vol. 11, no. 12, p. 1403, 2020.
[5] M. Flameu, P. Nwane, W. Toussile et al., “Pyrethroid and etofenprox resistance in Anopheles gambiae and Anopheles coluzzii from vegetable farms in Yaoundé, Cameroon: dynamics, intensity and molecular basis,” Molecules, vol. 26, no. 18, p. 5543, 2021.
[6] M. Tchouakui, L. M. J. Mugenzi, B. D Menze et al., “Pyrethroid resistance aggravation in Ugandan malaria vectors is reducing bednet efficacy,” Pathogens, vol. 10, no. 4, p. 415, 2021.
[7] J. F. Trape, G. Pison, M. P. Prestiosi et al., “Impact of chloroquine resistance on malaria mortality,” Comptes Rendus de l’Academie des Sciences - Series III: Sciences de la Vie, vol. 321, no. 8, pp. 689–697, 1998.
[8] WHO, Guidelines For the Treatment of Malaria, World Health Organization, Geneva, Switzerland, 2015.
[9] A. M. Dondorp, F. Nosten, P. Yi et al., “Artemisinin resistance in plasmodium falciparum malaria,” New England Journal of Medicine, vol. 361, no. 5, pp. 455–467, 2009.
[10] H. Noedl, Y. Se, K. Schaecher, B. L. Smith, D. Socheat, and M. M. Fukuda, “Evidence of artemisinin-resistant malaria in western Cambodia,” New England Journal of Medicine, vol. 359, no. 24, pp. 2619–2620, 2008.
Evidence-Based Complementary and Alternative Medicine

[11] B. Balikagala, N. Fukuda, M. Ikeda et al., “Evidence of artemisinin-resistant malaria in Africa,” New England Journal of Medicine, vol. 385, no. 13, pp. 1163–1171, 2021.

[12] A. Owoloye, M. Olufemi, E. T. Idowu, and K. M. Oyebola, “Prevalence of potential mediators of artemisinin resistance in African isolates of plasmodium falciparum,” Malaria Journal, vol. 20, no. 1, p. 451, 2021.

[13] V. P. K. Titanji, D. Zofou, and M. N. Ngemenya, “The antimarial potential of medicinal plants used for the treatment of malaria in Cameroon: folk medicine,” African Journal of Traditional, Complementary and Alternative Medicines: AJTCAM, vol. 5, no. 3, pp. 302–321, 2008.

[14] V. F. Andrade-Neto, M. G. L. Brandão, J. R. Stehmann, L. A. Oliveira, and A. U. Kretti, “Antimalarial activity of cinchona-like plants used to treat fever and malaria in Brazil,” Journal of Ethnopharmacology, vol. 87, no. 2-3, pp. 253–256, 2003.

[15] D. L. Klayman, “Qinghaosu (artemisinin): an antimalarial drug from China,” Science, vol. 228, no. 4703, pp. 1049–1055, 1985.

[16] J. Higgins, J. Thomas, J. Chandler et al., “Cochrane handbook for systematic reviews of interventions version 6.3,” 2022, https://www.training.cochrane.org/handbook.

[17] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and J. Higgins, J.J.khomas, J.Chandler etal., “Cochrane handbook for systematic reviews of interventions version 6.3,” 2022, https://www.training.cochrane.org/handbook.

[18] M. Ouzzani, H. Hammady, Z. Fedorowicz, and D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and J. Higgins, J.J.khomas, J.Chandler etal., “Cochrane handbook for systematic reviews of interventions version 6.3,” 2022, https://www.training.cochrane.org/handbook.

[19] F.Z.M.Soares, A.Follak, L.daRosa etal., “Bovinetoothis chalky,” Medicine and Parasitology, vol. 101, no. 1, pp. 23–30, 2007.

[20] A.Owoloye, M.Olufemi, E.T.Idowu, and K.M.Oyebola, “Evidence of malaria during early and established plasmodium infection,” Malaria Journal, vol. 13, no. 1, p. 456, 2014.

[21] V.P.K.Titanji, D.Zofou, and M.N.Ngemenya, “Anti-plasmodial and antileishmanial inhibitory activity of terpenes and steroid alkaloid from the leaves of fumaria elastica (preuss) staff (Apocynaceae),” Fitoterapia, vol. 151, Article ID 104869, 2021.

[22] L.K. Ma’mag, A.A.A. Zintchem, K.K. Theodora etal., “Antiplasmodial and antileishmanial inhibitory activity of terpenes and steroid alkaloid from the leaves of fumaria elastica (preuss) staff (Apocynaceae),” Fitoterapia, vol. 151, Article ID 104869, 2021.

[23] A.O. Owoloye, M.Olufemi, E.T.Idowu, and K.M.Oyebola, “Antimalarial activity in crude extracts of some Cameroonian medicinal plants,” African Journal of Traditional, Complementary and Alternative Medicines: AJTCAM, vol. 4, no. 1, pp. 107–111, 2006.

[24] R.G. Kamkumo, A.M. Ngoutane, L.R.Y. Tkohouah etal., “Compounds from sorindeia juglandifolia (anaclardiaceae) exhibit potent anti-plasmodial activities in vitro and in vivo,” Malaria Journal, vol. 11, no. 1, p. 382, 2012.

[25] F.F. Boyom, P.V.T. Fokou, L. R. T. Yamthe et al., “Potent antimalarial extracts from Cameroonian Annonaceae,” Journal of Ethnopharmacology, vol. 134, no. 3, pp. 717–724, 2011.

[26] L.R.T. Yamthe, P.V.T. Fokou, C.J.D. Mbouna etal., “Extracts from Annona muricata L. And Annona reticulata L. (Annonaceae) potently and selectively inhibit plasmodium falciparum,” Medicines, vol. 2, pp. 55–66, 2015.

[27] E.A.M. Kemgne, W.F. Mbacham, F.F. Boyom, P.H.A. Zollo, E. Tsamo, and P.J. Rosenthal, “In vitro sensitivity of Plasmodium falciparum field isolates to extracts from Cameroonian Annonaceae plants,” Parasitology Research, vol. 110, no. 1, pp. 109–117, 2012.

[28] F.F. Boyom, V.Ngouana, P.H.A. Zollo etal., “Composition and anti-plasmodial activities of essential oils from some Cameroonian medicinal plants,” Phytochemistry, vol. 64, no. 7, pp. 1269–1275, 2003.

[29] F.F. Boyom, V.Ngouana, E.A.M. Kemgne etal., “Anti-plasmodial volatile extracts from Cleistopholis patens engler & diels and Uvariastrum pierreanum engl. & diels and Uvariastrum pierreanum engl. (Annonaceae) growing in Cameroon,” Parasitology Research, vol. 108, no. 5, pp. 1211–1217, 2011.

[30] B. Ndjakou Lenta, C. Vonthron-Sénécheau, R. Fongang Soh etal., “In vitro antiprotozoal activities and cytotoxicity of some selected Cameroonian medicinal plants,” Journal of Ethnopharmacology, vol. 111, no. 1, pp. 8–12, 2007.

[31] J. Fotie, D.S. Bohle, M.L. Leimanis, E. Georges, G. Rukunga, and A.E. Nkengfack, “Lupelol long-chain fatty acid esters with antimalarial activity from Holarrhena floribunda,” Journal of Natural Products, vol. 69, no. 1, pp. 62–67, 2006.

[32] A.N. Bitombo, A.A.A. Zintchem, A.D.T. Atchad’ etal., “Antiplasmodial activities of indole alkaloids from Tabernaemontana penduliflora K. Schum. (Apocynaceae),” Fitoterapia, vol. 153, Article ID e109491, 2021.

[33] N.J. Toyang, M.A. Krause, R.M. Fairhurst, P. Tane, J. Bryant, and R. Verpoorte, “Antiplasmodial activity of sesquiterpene lactones and a sucrose ester from Vernonia guineensis benth. (Asteraceae),” Journal of Ethnopharmacology, vol. 147, no. 3, pp. 618–621, 2013.
[42] F. Tantangmo, B. N. Lenta, F. F. Boyom et al., “Antiprotozoal activities of some constituents of Markhamia tomentosa (bignoniaceae),” Annals of Tropical Medicine and Parasitology, vol. 104, no. 5, pp. 391–398, 2010.

[43] D. Zofou, M. Tene, P. Tane, and V. P. K. Titanji, “Antimalarial drug interactions of compounds isolated from Kigelia africana (bignoniaceae) and their synergism with artemether, against the multidrug-resistant W2meF plasmodium falciparum strain,” Parasitology Research, vol. 110, no. 2, pp. 539–544, 2012.

[44] B. M. Mbakening, B. N. Lenta, D. T. Noundou et al., “Antiprotozoal sesquiterpenes from the seeds of Salacia longipes var. Camerunensis,” Phytochemistry, vol. 96, pp. 347–352, 2013.

[45] B. Ndjou Lenta, L. M. Kamdem, S. Ngouela et al., “Antiplasmodial constituents from the fruit pericarp of Pentadesma butyracea,” Planta Medica, vol. 77, no. 04, pp. 377–379, 2011.

[46] F. Zelefack, D. Guilet, N. Fabre et al., “Cytotoxic and antiplasmodial xanthones from Pentadesma butyracea,” Journal of Natural Products, vol. 72, no. 5, pp. 954–957, 2009.

[47] A. G. B. Azebaze, M. Meyer, A. Valentin, E. L. Nguefmo, Z. T. Fonum, and A. E. Nkengfack, “Prenylated xanthone derivatives with antimalarial activity from Allamblakia monticola STANER L.C,” Chemical and Pharmaceutical Bulletin, vol. 54, no. 1, pp. 111–113, 2006.

[48] J. G. Tangmouo, R. Ho, A. Matheussen et al., “Antimalarial activity of extract and norbergenin derivatives from the stem bark of Diospyros sanza-minika A. Chevalier (ebenaceae),” Phytotherapy Research, vol. 24, no. 11, pp. 1676–1679, 2010.

[49] F. F. Boyom, E. M. Kemgne, R. Tepongning et al., “Antiplasmodial activity of extracts from seven medicinal plants used in malaria treatment in Cameroon,” Journal of Ethno-pharmacology, vol. 123, no. 3, pp. 483–488, 2009.

[50] C. N. Djouwoug, R. K. Gounoue, F. T. Nguegum et al., “In vitro and in vivo antimalarial activity of hydroethanolic bark extract of Bridelia atroviridis måll. Arg. (Euphorbiaceae) and lc-ms-based phytochemical analysis,” Journal of Ethno-pharmacology, vol. 266, Article ID 113424, 2021.

[51] A. G. B. Azebaze, J. E. M. Teinkela, E. L. Nguefmo, A. Valentin, A. B. Dongmo, and J. C. Vardamides, “Antiplasmodial activity of some phenolic compounds from Cameroonian Allamblakia,” African Health Sciences, vol. 15, no. 3, pp. 835–840, 2015.

[52] B. Ndjakou Lenta, S. Ngouela, F. Fekam Boyom et al., “Antiplasmodial activity of some constituents of the root bark of Harungana madagascariensis LAM. (Hypericaceae),” Chemical and Pharmaceutical Bulletin, vol. 55, no. 3, pp. 464–467, 2007.

[53] B. N. Lenta, K. P. Devkota, S. Ngouela et al., “Antiplasmodial and cholinesterase inhibiting activities of some constituents of Psorospermum glaberrimum,” Chemical and Pharmaceutical Bulletin, vol. 56, no. 2, pp. 222–226, 2008.

[54] D. Zofou, T. K. Kowa, H. K. Wabo, M. N. Ngemenya, P. Tane, and V. P. K. Titanji, “Hypericum lanceolatum (hypericaceae) as a potential source of new anti-malarial agents: a bioassay-guided fractionation of the stem bark,” Malaria Journal, vol. 10, no. 1, p. 167, 2011.

[55] P. Akono Ntonga, N. Baldovini, E. Mouray, L. Mambu, P. Belong, and P. Grelier, “Activity of Ocimum basilicum, Ocimum canum, and cymbopogon citratus essential oils against plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s,” Parasite, vol. 21, p. 33, 2014.

[56] A. T. Thindha, O. Jansen, J.-N. Nyemb et al., “Strychnos baillonine, an unsymmetrical bisindole alkaloid with an unprecedented skeleton from Strychnos icaja roots,” Journal of Natural Products, vol. 77, no. 4, pp. 1078–1082, 2014.

[57] G. M. Happi, S. F. Kouam, F. M. Talontsi, S. Zülhike, M. Lamshöft, and M. Spiteller, “Minor secondary metabolites from the bark of Entandrophragma congoense (Meliaceae),” Fitoterapia, vol. 102, pp. 35–40, 2015.

[58] J. Bickii, N. Njifute, A. J. Foyere, L. K. Basco, and P. Ringwald, “In vitro antimalarial activity of limonoids from Khaya grandifoliola C.D.C. (Meliaceae),” Journal of Ethnopharmacology, vol. 69, no. 1, pp. 27–33, 2000.

[59] J. Bickia, G. Tchouyab, J. Tchouankeub, and E. Tsimoko, “The antimalarial properties of the stem bark of Entandrophragma angolense (meliaceae),” African Journal of Traditional, Complementary and Alternative Medicines, vol. 4, no. 2, 2008.

[60] J. A. Mba, P. Tane, B. T. Ngadju et al., “Antiplasmodial agents from the leaves of Glossocalyx brevipes,” Planta Medica, vol. 70, no. 5, pp. 437–440, 2004.

[61] J. E. Mbosso Teinkela, X. Siwe Noundou, E. L. Nguefmo et al., “Biological activities of plant extracts from Ficus elastica and selaginella vogelli: an antimalarial, antityprynomosomal and cytotoxicity evaluation,” Saudi Journal of Biological Sciences, vol. 25, no. 1, pp. 117–122, 2018.

[62] K. D. Nyongbela, A. M. Lannang, G. A. Ayimele, M. N. Ngemenya, Q. Bickle, and S. Efanfe, “Isolation and identification of an antiparasitic triterpenoid estersaponin from the stem bark of Pittosporum manni (pittosporaceae),” Asian Pacific Journal of Tropical Disease, vol. 3, no. 5, pp. 389–392, 2013.

[63] J. D. Wansi, H. Hussain, A. T. Tcho et al., “Antiplasmodial activities of furoquoline alkaloids from Teclea azefili,” Phytotherapy Research: PT, vol. 24, no. 5, pp. 775–777, 2010.

[64] M. Kenmogne, E. Prost, D. Harakat et al., “Five labdane diterpenoids from the seeds of Aframomum zambesiaca,” Phytochemistry, vol. 67, no. 5, pp. 433–438, 2006.

[65] D. M. Silva, P. A. D. Costa, A. O. B. Ribon, G. A. Purgato, D.-M. Gaspar, and M. A. N. Diaz, “Plant extracts display synergistic activities of different classes of antibiotics,” Anais da Academia Brasileira de Ciencias, vol. 91, no. 2, Article ID c20180117, 2019.

[66] P. F. Uzor, C. K. Onyishi, A. P. Omaliko, S. A. Nworgu, O. H. Ugwu, and N. J. Nwodo, “Study of the antimalarial activity of the leaf extracts and fractions of persea americana and Dacryodes edulis and their HPLC analysis,” Evidence-Based Complementary and Alternative Medicine, vol. 2021, p. 11, 2021.

[67] O. A. Conrad and A. I. Uche, “Assessment of in vivo anti-oxidant properties of Dacryodes edulis and Ficus exasperata as anti-malaria plants,” Asian Pacific Journal of Tropical Disease, vol. 3, no. 4, pp. 294–300, 2013.

[68] M. A. Mvondo, M. T. Wego Kamgaing, and S. L. Wansi Ngokam, “Aqueous extract of Dacryodes edulis (Burseraceae) leaves inhibited tumor growth in female wistar rats with 7,12-Dimethylbenz[a]Anthracene-Induced breast cancer,” Evidence-Based Complementary and Alternative Medicine, vol. 2021, p. 14, 2021.

[69] C. J. Ononamadu, J. T. Datt, and A. A. Imam, “Insecticide resistance profile of Anopheles gambiae mosquitoes: a study of a residential and industrial breeding sites in kano metropolis, Nigeria,” Environmental Health Insights, vol. 14, Article ID 117863021989727, 2020.