Role of Ce 4f hybridization in the origin of magnetism in nanoceria

V. K. Paidi, D. L. Brewe, J. W. Freeland, C. A. Roberts, and J. van Lierop

Phys. Rev. B 99, 180403 — Published 6 May 2019

DOI: 10.1103/PhysRevB.99.180403
Role of Ce 4f hybridization in the origin of magnetism in nanoceria

V. K. Paidi,1 D. L. Brewe,2 J. W. Freeland,2 C. A. Roberts,3 and J. van Lierop1

1 Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
2 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA
3 Toyota Motor Engineering and Manufacturing North America Inc., 1555 Woodridge Avenue, Ann Arbor, Michigan 48105, USA

Nanoscale CeO2 (nanoceria) is a prototypical system that presents d0 ferromagnetism. Using a combination of x-ray absorption spectroscopy, x-ray magnetic circular dichroism and modelling, we show that nanostructure, defects and disorder, and non-stoichiometry create magnetically polarized Ce 4f and O 2p hybridized states captured by the vacancy orbitals \(V_{orb} \) that are vital to ferromagnetism. Further, we demonstrate that foreign ions (Fe and Co) enhance the moment at Ce 4f sites while the number of \(V_{orb} \) is unchanged, pointing clearly to the mechanism of orbital hybridization being key missing ingredient to understanding the unexpected ferromagnetism in many nanoscale dilute magnetic oxides and semiconductors.

Defects, disorder, and non-stoichiometry are considered to be the key ingredients for d0 magnetism in nanoscale wide band-gap oxides. d0 magnetism has drawn significant interest as reflected by the many reproducible experimental observations of unexpected ferromagnetism in bulk-nonmagnetic oxides such as CeO2, ZnO, HfO2, Al2O3, In2O3, SnO2 and many dilute magnetic oxides[1–8]. In general these materials have been quite puzzling due to the challenge of identifying the exact origin of the magnetism and distinguishing its spin and orbital character. It has been shown that nanoscale CeO2 (nanoceria) is the prototypical system that has extensive spontaneous ferromagnetism with no magnetic cations[9]. The physics of this magnetism has been enigmatic. At first, the magnetism was attributed to most obvious candidate, exchange interactions between localized electron spin moments resulting from the oxygen vacancies [1]; first-principles calculations revealed that the vacancies (especially those at the surface) can induce magnetic moments in nanoceria[10, 11]. Later, the ferromagnetism was attributed to only sub-20 nm nanoceria with no obvious dependence on oxygen vacancies[12]. Others reported that mixed valence Ce\(^{3+}/\text{Ce}^{4+}\) pairs on the surface were responsible[13]. Recently, a model based on a giant orbital paramagnetism phenomenon[14] that occurs in a mesoscopic quasi-two-dimensional configuration with dilute magnetically active sites has been proposed. Despite d0 behavior in nanoceria being widely reproducible[1, 9, 10, 12, 14–18], an understanding of the physics behind the nanomagnetism with the three key ingredients is still lacking.

In this work, we focus on the fundamental problem related to identifying the origin of the magnetism in nanoceria and ascertaining the mechanisms that affect the magnetic properties. We use local probes of the electronic structure and magnetism (e.g. x-ray absorption spectroscopy and x-ray magnetic circular dichroism, Mössbauer spectroscopy) combined with conventional magnetometry to provide insights into the underlying physics. Although there are earlier reports on the element specific magnetism of nanoceria[17–19], because of the weak XMCD signal explicit evidence of the spin and orbital contributions to the magnetic moments of the Ce 4f states are still lacking. Using electronic structure, surface and bulk magnetism measurements and simulations we unambiguously demonstrate that vacancy orbitals \(V_{orb} \), Ce 4f – O 2p hybridization, and their affect on the Ce\(^{3+}\) spin and orbital angular momenta are fundamental to understanding the origins of the long range ferromagnetic order. Additionally, we have identified that foreign ions (Fe and Co) on nanoceria enhances the ferromagnetic moment at the Ce 4f sites, and a microscopic mechanism is proposed to explain the origin of magnetism in nanoscale oxide semiconductors.

Nanoceria[20], and Fe and Co decorated nanoceria were prepared as described in Ref. [21, 22]. The surface densities (chosen for no secondary phase formation) were 1.11 Fe/nm\(^2\) and 3.57 Co/nm\(^2\)[21, 22]. X-ray diffraction (XRD) pattern refinements yielded identical CeO2 cubic Fm\(\overline{3}\)m structures for all systems[23]. Transmission electron micrographs (TEM) and high-angle annular dark-field images were consistent with the XRD analysis. Crystallite sizes were of the order of 20 nm in diameter and lattice constants were \(5.411 \pm 0.001 \) Å. XRD, TEM and Mössbauer spectroscopy (see Ref. [23]) results confirmed that no secondary phases (e.g. metal oxides) were present, as do the hard and soft x-ray absorption measurements discussed below. To identify the overall magnetism \(M(\mu_0 H) \) measurements were performed[23]. \(M(\mu_0 H) \) of nanoceria shows a coercivity of \(\sim 50 \) mT and saturation magnetization \((M_s) \) of \(\sim 4 \) Am\(^{-1}\). Co and Fe decorated nanoceria \(M_s \)'s were \(\sim 4 \) Am\(^{-1}\) and 7 Am\(^{-1}\), respectively, in agreement with many reports in the literatures (see Ref. [9] and references therein).

Because the electronic and magnetic properties of Ce ions depend strongly on the localized and delocalized 4f electron states, x-ray absorption near edge structure (XANES) experiments were performed to identify and quantify the oxidation state of Ce ions in nanoceria, Fe-decorated nanoceria (Fe-CeO\(_2\)) and Co-decorated
nanoceria (Co-CeO₂). As shown in figure 1a, XANES spectra exhibit a doublet due to the interaction between the 4f orbitals of the Ce atoms and 2p orbitals of oxygen ligands. The peculiar doublet consists of four observed peaks[24-26]. Component A is assigned to the transition from the Ce 2p shell to 5d shell (final state 2p^64f^15d^1 with no f electrons) while component B is assigned to the excitation from the 2p shell to 5d shell along with an electron being excited from the O 2p shell to the Ce 4f shell, thus leaving a hole in the valence band (final state 2p^64f^15d^1v; v is the hole). Component C is assigned to Ce³⁺, and component D is assigned to the 2p⁴ → 4f quadrupole transition that is a consequence of 5d admixtures to the 4f states[27]. The concentrations of Ce³⁺ from spectral weighting were estimated to be 20 ± 2%. In nanoceria each Ce atom ([Xe]4f^35d^66s^2) can donate four electrons to bonding orbitals with two O (1s^22s^22p^2) atoms. When an oxygen vacancy is formed, the two electrons previously occupying p orbitals of the O atom are free to distribute. The localized electrons around Ce atoms changes the oxidation state from Ce⁴⁺ to Ce³⁺. The constant Ce³⁺(4f¹) is as expected since the Fe and Co ions are surface decorating the nanoceria (i.e. Fe and Co ions distributed randomly on the surface of the nanoceria crystallites, bonding covalently through available O ions, as shown experimentally in References [21, 22]).

In order to gain insights into the local environment around Ce ions, we examined the extended x-ray absorption fine structure (EXAFS). Fourier transformed data and the corresponding EXAFS oscillations are shown in figure 1b. Spectral fits identify that the bond distances of first shell Ce – O systems are of 2.31 ± 0.04 Å. The coordination number (see Ref. [23] for details) and structural disorder around Ce (identified by Debye-Waller factors) increases in Fe-CeO₂ and Co-CeO₂. The Ce L₃ edge XAS results show that for all systems, the Ce sites exist between Ce³⁺ (4f¹v) and Ce⁴⁺ (4f¹) character, with a hole (g) in the O 2p valence band.

To describe the f electrons, their occupancy, and electronic structure at the Ce sites, we used the Ce M₄,₅ edge XAS (probes directly the valence 4f states by exciting electrons from 3d core orbitals, and gives insights to the ground state) in combination with atomic multiplet calculations based on a simplified Anderson impurity model[28, 29]. The M₄,₅ edge XAS spectra (Fig. 1c) of nanoceria consists of main peaks at 884.6 and 902.4 eV and additional weaker satellite peaks at 899.8 and 908.0 eV. The energy splitting between Ce M₄,₅ edges is due to the spin-orbit coupling with the 3d½ and 3d¾ core-holes. The primary features of the Ce M₄,₅ edge XAS spectra originate from electric-dipole allowed transitions from 3d^⁴4f^n → 3d^⁴4f^n+1[29]. For nanoceria, experimental spectra are simulated including Coulomb, exchange, and spin-orbit interactions by considering only 3d^¹⁰4f^⁴ → 3d^⁹4f^⁴ and 3d^¹⁰⁴f^¹ → 3d^⁹⁴f^² configurations. Results indicated that if we assumed only oxygen vacancies and the ground states were due to 4f⁰ and 4f¹ atomic-like multiplets, the experimental spectra could not be modelled successfully (see Fig. 5 of Ref. [23]). In order to understand the Ce M₄,₅ edge XAS spectra, especially the origin of the higher energy satellites, we focused on the ligand hole contribution to the 3d^¹⁰⁴f⁰ ground state (from charge fluctuations in initial and final states due to hole on oxygen ligand). A schematic representation of a cluster consisting of a Ce ion surrounded by eight O ions is shown in Fig. 1d. Because of the strong Ce 4f – O 2p hybridization, the initial state of the transition is described by 3d^¹⁰⁴f⁰ + 3d^¹⁰⁴f¹ and the final state by 3d^⁹⁴f¹ + 3d^⁹⁴f² (where L describes a hole in the O 2p band[30]). The two configurations in the final state form bonding (3d^⁹⁴f¹) and antibonding (3d^⁹⁴f²) orbital combinations. Four additional terms ∆E_gs, Tgs, ∆E_fj, and T_fj, are defined to describe the relative energies and interactions of these initial and final states[29, 31]. Here ∆E_gs = E(3d^¹⁰⁴f¹) – E(3d^¹⁰⁴f⁰) is the charge transfer energy between two ground states, and Tgs = (3d^¹⁰⁴f¹)(H(3d^¹⁰⁴f⁰)) is the effective hopping-integral connecting the two ground state configurations. Similarly ∆E_fj = E(3d^⁹⁴f²) – E(3d^⁹⁴f¹) and T_fj = (3d^⁹⁴f²)(H(3d^⁹⁴f¹)) are charge transfer
and hopping integrals of the final state[23]. Our simulation was modelled with 77% 3d^{10}4f^0 and 23% 3d^{10}4f^1 ground state configuration and ΔE_{gs} = 2.0 eV and T_{gs} = 0.77 eV. The ΔE_{fs} is defined as the sum of ΔE_{gs} + U_{ff} − U_{fd}, where U_{ff} represent the Coulomb repulsion and U_{fd} the core-valence repulsion integrals. Our simulation agrees best with the experimental data with ΔE_{fs} = −2.5 eV. For a purely Ce^{4+} based system the Ce M_{4,5} edge ΔE_{fs} = −1.5 eV[32]. In lanthanides it is expected that U_{ff} > U_{fd} due to the smaller orbital radius[28]. However, in nanoceria, U_{fd} > U_{ff} indicates that the charge transfer energy is reduced due to covalent Ce 4f−O 2p states in this mixed valency system. Earlier, on the basis of band-structure calculations it was shown that ceria is less ionic[33].

Covalent orbitals play a major role in understanding the origin of magnetism. In trivalent Ce compounds such as CeRh$_3$B$_2$ and CeCuSi the magnetism is due to highly localized 4f electrons. By contrast in tetravalent α−cerium compounds CeFe$_2$ or CeCo$_5$, the magnetism is from hybridization between 4f and conduction electrons[34]. The results of density functional theory calculations (LDA+U, LSDA+U, LDA/GGA + U) of nanoceria are controversial. Some studies support charge localization in the oxygen vacancies[10, 11] as the source of the magnetism. Other studies identify Ce vacancies[35, 36] as responsible for ferromagnetism (via superexchange between localized electrons in vacancies and neighboring Ce sites). Finally, some challenge both arguments[37], leaving the question unresolved. Identifying the origin of magnetism in nanoceria (via bulk magnetization techniques such as magnetochemistry and susceptibility) is complex due to the challenges in decoupling the contributions from Ce mixed valence states and oxygen vacancies. X-ray magnetic circular dichroism (XMCD) is a sensitive tool to investigate the source of magnetism at an elemental atomic level via the excitation of core level electrons to unoccupied states above the Fermi level (E_F). XMCD experiments have the advantage of being site and orbital selective due to the electric (or quadrupole) selection rules. To gain insights into the role of the 4f electrons’ contribution (conduction or hybridized) we performed surface and bulk sensitive XMCD measurements simultaneously using total electron yield (TEY) and total fluorescence yield (TFY) over the M_{4,5} edges; TEY probes the first ~2 nm of the surface while TFY measures the complete sample but is prone to self-absorption effects[38]. In Fig. 2a we present the 10 K artifact free[39] ±5 T XMCD spectra, the TEY Co-CeO$_2$ Ce M$_{5,4}$ XMCD, is most representative due to the least amount of surface charging. Note that ceria is a poor conductor, and Co-CeO$_2$’s conductivity is high compared to that of Fe-CeO$_2$ and CeO$_2$ which made it difficult to measure a clean XMCD spectra in TEY for the Fe and CeO$_2$ samples. Both TEY and TFY XMCD spectra clearly identify that the Ce 4f electrons unambiguously carry a magnetic moment on both the surface and in the bulk.

To quantify the magnetic moment, XMCD spectra were simulated using Xclaim[40] for the 3d104f1 → 3d104f2 transition in the atomic limit. The contributions of the XMCD spectral orbital and spin magnetic moments obtained from the surface and bulk contributions

![FIG. 2. Ce M_{4,5} TEY(surface) and TFY(bulk) XMCD spectra evidencing the magnetic moment at Ce 4f sites. (a) Co-CeO$_2$ TEY XMCD and simulation are shown. (b,c) A comparison of Ce M_{4,5} XAS and XMCD is shown. The origin of the energy axis of the simulated spectra has been chosen to align with the maximum intensity peak of the M_{5,4} edge and the simulated spectra is reduced by a factor of twelve to match the experimental intensity of nanoceria.](image-url)
are in table I. This dichroic signal is explicit evidence of Ce sites carrying magnetizable moments. In general, the spectral shape of the Ce $M_{4.5}$ edges are indicative of a ground state total angular momentum ($J = \frac{7}{2}$ for a pure state 4f^1 state). Any changes in the XMCD spectral shape can be attributed to different values of J contributing to the ground state[34, 41]. It is important to note that the simulated spectra are for a pure $J = \frac{7}{2}$ state and are not in complete agreement with experiment (e.g. Fig. 2a – negative peak present at the M$_5$ edge and an overestimation/underestimation) of M$_5$(M$_1$) dichroic signals).

Interestingly, nanoceria’s Ce $M_{4.5}$ XMCD spectral line shape is different from CeRh$_2$B$_2$ and CeCuSi[34] (where the ground state is pure $J = \frac{5}{2}$ and magnetism is due to 4f conduction electrons) but quite similar to the XMCD spectra of CeFe$_2$ and a Ce/Fe multilayer (ground state is a mixture of $J = \frac{7}{2}$ and $J = \frac{5}{2}$[34, 42]). This is indicative of Ce 4f electrons being strongly hybridized with the O 2p valence band. At the M edges, although the TFY XMCD signal is distorted[43] because of self absorption (Fig. 2b) the TFY XMCD (Fig. 2c) signal is similar to TEY XMCD (surface). The TFY XMCD magnitude increases in the order of CeO$_2$ < Fe-CeO$_2$ < Co-CeO$_2$. Results identify that foreign ions with intrinsic moments (such as Fe and Co) enhances[23] the overall magnetic moment as 0.18 μ_B (0.5 to 0.8 nm diameter) of the Ce$_4$V$_4$ crystallites are expected to show \sim2000 μ_B/crystallite. In contrast SQUID magnetometry measures the magnetization from the Ce 4f, V_{orb}, and hybridization contributions with $M_s = 2$ μ_B/crystallite identifying that the ferromagnetic volume fraction is only 0.1% (see Ref. [23] for XMCD and SQUID magnetometry moment calculations). Clearly, not all Ce 4f states are involved in the magnetism; only the fraction associated with the V_{orb} and/or hybridization (it follows that because of the low fraction, only Ce 4f – O 2p hybridized states that are captured in the delocalized V_{orb} are associated) are responsible.

The radial extent of Ce 4f orbitals[44] are very small (0.54 Å) and that limits the Ce 4f – O 2p covalent mixing to be relatively low as supported by various DFT/LDA/GGA calculations[45]. However, the size (0.5 to 0.8 nm diameter) of the V_{orb} are large (see Ref. [23] for calculation) and less localized compared to the Ce 4f states. This is consistent with first principle calculations that found the size of V_{orb} at \sim1.0 nm[46]. Note that only the trapped Ce 4f states in the V_{orb} can polarize spin moments (due to their delocalized nature) on the hybridized states and be responsible for the long range ferromagnetic order. The residual 4f states that are not in the vicinity of V_{orb} cannot contribute to the ferromagnetism due to the lack of the hybridized magnetic states. If the number of V_{orb} are constant, introducing foreign transition metal ions (Fe or Co) impacts Ce 4f – O 2p hybridization and further promotes a robust, yet weak, ferromagnetism. Figure 3 shows the illustration of this microscopic model. This description is consistent with the observation that air or O$_2$ annealed d0 nanoscale magnetic oxides exhibit reduced or annihilated magnetism[1, 9, 47], as O$_2$ fills the vacancies resulting in a deficiency of V_{orb} coupling channels.

In summary, we have found a possible pathway to explain the origin of ferromagnetism in the dilute magnetic oxide nanoceria. Using a combination of electronic structure, elemental and bulk sensitive magnetism techniques we show that V_{orb}, Ce 4f spin and orbital angular momentum, and hybridization with O 2p states are crucial for the magnetic ordering. The concept of magnetism from hybridized Ce 4f – O 2p states in trapped V_{orb} is a missing link to understand the ferromagnetism in nanoceria. In closing, this work provides unambiguous experimental evidence of the origin of ferromagnetism in nanoceria, and demonstrates that this hybridization concept may be a solid foundation from which to explain the unexpected ferromagnetism in ZnO, HfO$_2$, Al$_2$O$_3$, In$_2$O$_3$, SnO$_2$ and many other dilute magnetic oxides and semiconductors (where O 2p hole states are key players, and their hybridization with host or guest metal ions changes the density of states) that present similar magnetism.

We thank Dr. D. J. Keavney for assistance with the XAS and XMCD measurements, and Dr. S. M. Heald for helping with the XAFS measurements on Co-CeO$_2$. VKP and JV acknowledge funding from the Natural Sciences and Engineering Research Council of Canada (RGPIN-2018-05012) and the Canada Foundation for Innovation. Use of the Advanced Photon Source at Argonne National Laboratories was supported by the US DOE under con-
[1] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, and C. Rao, Physical Review B 74, 161306 (2006).
[2] B. B. Straumal, A. A. Mazilkin, S. G. Prosotasov, A. A. Myatiev, P. B. Straumal, G. Schütz, P. A. Van Aken, E. Goering, and B. Baretzky,Physical Review B 79, 205206 (2009).
[3] J. Chaboy, R. Bonda, C. Piquer, M. Laguna-Marco, M. García-Hernández, N. Carmona, J. Llopis, M. Ruiz-González, J. González-Calbet, J. Fernández, et al., Physical Review B 82, 064411 (2010).
[4] A. S. Esmaeili, M. Venkatesan, S. Sen, and J. Coey, Physical Review Materials 2, 054405 (2018).
[5] J. Coey, Solid State Sciences 7, 660 (2005).
[6] J. Coey and S. Chambers, MRS bulletin 33, 1053 (2008).
[7] T. Dietl, Nature materials 9, 965 (2010).
[8] R. Green, T. Regier, B. Leedahl, J. McLeod, X. Xu, G. Chang, E. Kurmaev, and A. Moewes, Physical review letters 115, 167401 (2015).
[9] K. Ackland and J. Coey, Physics Reports (2018).
[10] M. Ge, H. Wang, E. Liu, J. Liu, J. Jiang, Y. Li, Z. Xu, and H. Li, Applied Physics Letters 93, 062505 (2008).
[11] X. Han, J. Lee, and H.-I. Yoo, Physical Review B 79, 100403 (2009).
[12] Y. Liu, Z. Lockman, A. Aziz, and J. MacManus-Driscoll, Journal of Physics: Condensed Matter 20, 165201 (2008).
[13] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, and S. Yan, Applied Physics Letters 94, 152511 (2009).
[14] M. Coey, K. Ackland, M. Venkatesan, and S. Sen, Nature Physics 12, 694 (2016).
[15] N. Paumović, Z. Dohtcvić-Mitrović, R. Scurtu, S. Aškračić, M. Preklajski, B. Matović, and Z. V. Popović, Nanoscale 4, 5469 (2012).
[16] K. Ackland, L. M. Monzon, M. Venkatesan, and J. Coey, IEEE transactions on magnetics 47, 3500 (2011).
[17] S.-Y. Chen, C.-H. Tsai, M.-Z. Huang, D.-C. Yan, T.-W. Huang, A. Gloter, C.-L. Chen, H.-J. Lin, C.-T. Chen, and C.-L. Dong, The Journal of Physical Chemistry C 116, 8707 (2012).
[18] W. Lee, S.-Y. Chen, Y.-S. Chen, C.-L. Dong, H.-J. Lin, C.-T. Chen, and A. Gloter, The Journal of Physical Chemistry C 118, 26359 (2014).
[19] D.-Z. Peng, S.-Y. Chen, C.-L. Chen, A. Gloter, F.-T. Huang, C.-L. Dong, T.-S. Chan, J.-M. Chen, J.-F. Lee, H.-J. Lin, et al., Langmuir 30, 10430 (2014).
[20] C.I. Kasei Co., Ltd. NanoTek powder.
[21] C. A. Roberts, D. Prieto-Centurion, Y. Nagai, Y. F. Nishimura, R. D. Desautels, J. Van Lierop, P. T. Fanson, and J. M. Notestein, The Journal of Physical Chemistry C 119, 4224 (2015).
[22] T. C. Peck, G. K. Reddy, M. Jones, and C. A. Roberts, The Journal of Physical Chemistry C 121, 8435 (2017).
[23] See Supplemental Material at [URL will be inserted by publisher] for details of XRD, TEM, HAADF, BET, ICP, XAS simulations, XAFS analysis, SQUID magnetometry and Vo_b orb calculations.
[24] H. Dexpert, R. Karnatak, J.-M. Esteva, J. Connerade, M. Gasgnier, P. Caro, and L. Albert, Physical Review B 36, 1750 (1987).
[25] G. Kaindl, G. Schmister, E. Sampathkumaran, and P. Wachter, Physical Review B 38, 10174 (1988).
[26] A. Soldatov, T. Ivanchenko, S. Della Longa, A. Kotani, Y. Iwamoto, and A. Bianconi, Physical Review B 50, 5074 (1994).
[27] T. Sham, R. Gordon, and S. Heald, Physical Review B 72, 035113 (2005).
[28] F. De Groot, Coordination Chemistry Reviews 249, 31 (2005).
[29] B. Thole, G. Van der Laan, J. Fuggle, G. Savatzky, R. Karnatak, and J.-M. Esteva, Physical Review B 32, 5107 (1985).
[30] S. Butorin, D. Mancini, J.-H. Guo, N. Wassdahl, J. Nordgren, M. Nakazawa, S. Taniaka, T. Uozumi, A. Kotani, Y. Ma, et al., Physical review letters 77, 574 (1996).
[31] R. D. Cowan, The theory of atomic structure and spectra, 3 (Univ of California Press, 1981).
[32] M. W. Loble, J. M. Keith, A. B. Altman, S. C. E. Stieber, E. R. Batista, K. S. Boland, S. D. Conradson, D. L. Clark, J. Lezama Pacheco, S. A. Kozimor, et al., Journal of the American Chemical Society 137, 2506 (2015).
[33] D. Koelling, A. Boring, and J. Wood, Solid state communications 47, 227 (1983).
[34] J. P. Schillé, F. Bertran, M. Finazzi, C. Brouder, J. Kappler, and G. Krill, Physical Review B 50, 2985 (1994).
[35] V. Fernandez, R. Mossanek, P. Schio, J. Klein, A. De Oliveira, W. Ortiz, N. Mattoso, J. Varalda, W. Schreiner, M. Abbate, et al., Physical Review B 80, 035202 (2009).
[36] L. Zhan-Sheng, M. Dong-Wei, Z. Jing, X. Guo-Liang, and Y. Zong-Xian, Chinese Physics B 21, 047505 (2012).
[37] P. Keating, D. Scanlon, and G. Watson, Journal of Physics: Condensed Matter 21, 405502 (2009).
[38] W. Fuhrman, J. Leiner, J. Freeland, M. van Veenendaal, S. Kooiphayeh, W. A. Phelan, T. McQueen, and C. Broholm, Physical Review B 99, 020401 (2019).
[39] The XMCD spectra were obtained as the difference of the corrected x-ray-absorption spectra for both left and right circularly polarizations. To make sure that the final XMCD spectra were free of experimental artifacts, such as those from charging effects, spectra were also collected for the opposite applied field direction.
[40] J. Fernández-Rodriguez, B. Toby, and M. van Veenendaal, Journal of Electron Spectroscopy and Related Phenomena 202, 81 (2015).
[41] G. Van der Laan, B. Thole, G. Savatzky, J. Fuggle, and R. Karnatak, Journal of Physics C: Solid State Physics 19, 817 (1986).
[42] M. Finazzi, F. De Groot, A.-M. Dias, B. Kierren, F. Bertran, P. Sainctavit, J.-P. Kappler, O. Schulte, W. Felsch, and G. Krill, Physical review letters 75, 4654 (1995).
[43] S. Butorin, D. Mancini, J.-H. Guo, N. Wassdahl, and J. Nordgren, Journal of Alloys and Compounds 225, 230 (1995).
[44] Z. Barandiarran and L. Seijo, The Journal of chemical physics 119, 3785 (2003).
[45] J. Paier, C. Penschke, and J. Sauer, Chemical reviews 113, 3949 (2013).
[46] T. Herng, D.-C. Qi, T. Berlijn, J. Yi, K. Yang, Y. Dai, Y. Feng, I. Santosco, C. Sánchez-Hanke, X. Gao, et al., Physical review letters 105, 207201 (2010).
[47] N. H. Hong, N. Poirot, and J. Sakai, Applied physics letters 89, 042503 (2006).