A tale of two oxidation states: bacterial colonization of arsenic-rich environments.
Daniel Muller, Claudine Médigue, Sandrine Koechler, Valérie Barbe, mohamed Barakat, Emmanuel Talla, Violaine Bonnefoy, Evelyne Krin, Florence Arsène-Ploetze, Christine Carapito, et al.

To cite this version:
Daniel Muller, Claudine Médigue, Sandrine Koechler, Valérie Barbe, mohamed Barakat, et al.. A tale of two oxidation states: bacterial colonization of arsenic-rich environments.. PLoS Genetics, Public Library of Science, 2007, 3 (4), pp.e53. 10.1371/journal.pgen.0030053. hal-00340034

HAL Id: hal-00340034
https://hal.archives-ouvertes.fr/hal-00340034
Submitted on 1 Dec 2008

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments

Daniel Muller 1, Claudine Médigue 2, Sandrine Koechler 1, Valérie Barbe 2, Mohamed Barakat 3, Emmanuel Talla 4, Violaine Bonnefoy 4, Evelyne Krin 5, Florence Arsène-Ploetzé 1, Christine Carapito 6, Michael Chandler 7, Benoit Cournoyer 8, Stéphane Cruveiller 2, Caroline Dossat 2, Simon Duval 6, Michael Heymann 1, Emmanuelle Leize 6, Aurélie Lietaud 4, Didier Liévremon 1, Yuko Makita 5, Sophie Mangenot 2, Wolfgang Nitschke 9, Philippe Ortet 2, Nicolas Perdrial 10, Barbara Schoepp 9, Patricia Siguié 7, Diliana D. Simeonova 1, Zoé Rouy 5, Béatrice Segurens 2, Evelyne Turlin 5, David Vallenet 2, Alain Van Dorsselaer 6, Stéphanie Weiss 1, Jean Weissenbach 2, Marie-Claire Lett 1, Antoine Danchin 5, Philippe N. Bertin 1*

1 Génétique Moléculaire, Génomique et Microbiologie, UMR7156 CNRS and Université Louis Pasteur, Strasbourg, France, 2 Génoscope, UMR8030 CNRS, Evry Cedex, France, 3 Laboratoire d’Écologie Microbienne de la Rhizosphère et d’Environnements Extrêmes, UMR6191 CNRS, CEA and Université Aix-Marseille II, Saint-Paul-lez-Durance, France, 4 Laboratoire de Chimie Bactérienne, UPR9043 CNRS, Institut de Biologie Structurale et Microbiologie, Marseille, France, 5 Génétique des Gènome Bactériens, URA2171, Institut Pasteur, Paris, France, 6 Laboratoire de Spectrométrie de Masse Bio-Organique, Institut Pluridisciplinaire Hubert Curien, UMR7178 CNRS and Université Louis Pasteur, Strasbourg, France, 7 Laboratoire de Microbiologie et Génétique Moléculaires, UMR5100 CNRS, Toulouse, France, 8 Écologie Microbienne, UMR5557 CNRS and Université Claude Bernard–Lyon 1, Villeurbanne, France, 9 Laboratoire de Bioénergétique et Ingénierie des Protéines, UPR9036 CNRS, Institut de Biologie Structurale et Microbiologie, Marseille, France, 10 Centre de Géochimie de la Surface, UMR7517 CNRS and Université Louis Pasteur, Strasbourg, France

Microbial biotransformations have a major impact on contamination by toxic elements, which threatens public health in developing and industrial countries. Finding a means of preserving natural environments—including ground and surface waters—from arsenic constitutes a major challenge facing modern society. Although this metalloid is ubiquitous on Earth, thus far no bacterium thriving in arsenic-contaminated environments has been fully characterized. In-depth exploration of the genome of the β-proteobacterium Herminiimonas arsenicoxydans with regard to physiology, genetics, and proteomics, revealed that it possesses heretofore unsuspected mechanisms for coping with arsenic. Aside from multiple biochemical processes such as arsenic oxidation, reduction, and efflux, H. arsenicoxydans also exhibits positive chemotaxis and motility towards arsenic and metalloid scavenging by exopolysaccharides. These observations demonstrate the existence of a novel strategy to efficiently colonize arsenic-rich environments, which extends beyond oxidoreduction reactions. Such a microbial mechanism of detoxification, which is possibly exploitable for bioremediation applications of contaminated sites, may have played a crucial role in the occupation of ancient ecological niches on earth.

Citation: Muller D, Médigue C, Koechler S, Barbe V, Barakat M, et al. (2007) A tale of two oxidation states: Bacterial colonization of arsenic-rich environments. PLoS Genet 3(4): e53. doi:10.1371/journal.pgen.0030053

Introduction

Although arsenic is most notorious as a poison threatening human health [1], recent studies suggest that arsenic species may have been involved in the ancestral taming of energy and played a crucial role in early stages in the development of life on Earth [2,3]. Further speculations involve this metalloid in the colonization of extraterrestrial environments containing high arsenic levels [4,5]. Presently, arsenic contamination of drinking water constitutes an important public health problem in numerous countries throughout the world [6]. Elevated concentrations typically derive from the weathering of arsenic-bearing minerals or from geothermal sources; lower amounts are of anthropogenic origin, e.g., smelting and mining industries.

Microorganisms are known to influence arsenic geochemistry by their metabolism, i.e., reduction, oxidation, and methylation [7,8], affecting both the speciation and the toxicity of this element. Arsenite (As[III]) is less toxic than arsenate (As[V]), but, paradoxically, resistance to As[V] requires its reduction to As[III], which will be extruded. On the other hand, arsenite oxidation, which was primarily thought to constitute a detoxification mechanism [9], may serve as an energy source in chemolithotrophic microorganisms [10]. Bacteria metabolizing toxic elements represent therefore an attractive tool to restore contaminated sites. In

* To whom correspondence should be addressed. E-mail: philippe.bertin@gem.u-strasbg.fr
Author Summary

Microorganisms play a crucial role in nutrient biogeochemical cycles. Arsenic is found throughout the environment from both natural and anthropogenic sources. Its inorganic forms are highly toxic and impair the physiology of most higher organisms. Arsenic contamination of groundwater supplies is giving rise to increasingly severe human health problems in both developing and industrial countries. In this respect, *H. arsenicoxydans* strain ULPAs1, which oxidizes As(III) into its less toxic and more easily immobilized form As[V], has been proposed for use in the first steps of arsenic bioremediation [11].

This heterotrophic microorganism, formerly called *Caenobacter arsenicoxydans* ULPAs1, was isolated from the activated sludge of an industrial water treatment plant contaminated with heavy metals such as arsenic, lead, copper, and silver [12]. In the Burkholderiales order, its nearest phylogenetic relatives are members of the Oxalobacteraceae/Burkholderiaceae families, which contain several natural isolates with important biotechnological properties. For example, bacteria of the *Paucimonas* [13] and *Collimonas* [14] genera are known for their polyhydroxybutyrate depolymerase and chitinase activity, respectively. *H. arsenicoxydans* is a representative strain of a new genus comprising bacteria isolated from various aquatic environments, including contaminated, mineral and drinking water [12,15,16]. To gain further insight into the mechanisms that permit the microbial colonization of arsenic-rich environments, we investigated the physiology of *H. arsenicoxydans* by genetic and functional approaches. The results reported here, associated with descriptive and comparative genomics data, emphasize the metabolic versatility of this strain with regard to arsenic and the ability of microorganisms to restore liveable conditions within their ecological niche.

Results

General Genome Features

The *H. arsenicoxydans* genome consists of a single circular chromosome of 3,424,307 bp (Figure 1) with a total of 3,333 coding sequences (CDSs), among which 38% are of unknown function (Table 1). Surprisingly, any attempt to identify extrachromosomal elements in this strain by DNA sequencing, pulse-field electrophoresis, or plasmid purification was unsuccessful (unpublished data). This suggests that, unlike many microbes isolated from natural or anthropized environments, *H. arsenicoxydans* contains neither a second chromosome nor a (mega)plasmid. In bacteria, mobile genetic elements are known to play a major role in the acquisition of genes involved in adaptation to environmental stresses [17]. In line with this observation and in contrast to the situation in related microorganisms such as *Ralstonia metalidurans* [18], only a small number of complete or partial insertion sequences (IS) were identified in the genome of *H. arsenicoxydans* (Table S1). These IS elements represent 0.65% of the genome and belong to several families; i.e., IS3, IS30, and IS110. *H. arsenicoxydans* also contains more complex transposons or transposon remnants, but, unlike those identified in biomining strains used for metal recovery from gold-bearing arsenopyrite ores [19], they do not convincingly harbor arsenic-resistance determinants. Interestingly, all the complete ISs are inserted with their transposase genes in a clockwise orientation with respect to the orientation of the replication fork, suggesting some sort of interference between replication and IS stability.

The overall GC content of the *H. arsenicoxydans* genome is 54.3% but seven regions exhibit a lower content and one region a higher content than the average (Figure 1). The presence of ISs was recorded in six of the low-GC modules. Remarkably, the region with the highest GC content (63%), harbors several CDSs (coding sequences) identified as homologs of phase and/or plasmid-like genes coding for proteins involved in chromosome partitioning, DNA topoisomerase, DNA helicase, and DNA recombination and repair (Table S2). This region, which covers ~90 kb in the *H. arsenicoxydans* genome, is bordered by two tRNA genes at one end and one tRNA gene at the other end, and is flanked on one side by an integrase gene (Figure 2), suggesting a probable acquisition by an RNA-mediated horizontal gene transfer [20]. In terms of similarity, this island is clearly made of three main parts (Figure 2). The first one contains an arsenic-resistance cluster, also found in *R. metalidurans*, and, to a lesser extent, in *Azoarcus* sp. and *Pseudomonas fluorescens*. The second part of this region interacts with a set of genes highly similar to part of the *clc* genomic island originally discovered in *Pseudomonas* sp. strain B13, which is known for its ability to degrade chloroaromatic compounds [21]. The *clc* element is almost 100% identical over the whole length (102 kb) to a chromosomal region in the chlorobiphenyl-degrading bacterium *Burkholderia xenovorans* LB400 [22]. Interestingly, a similar region of conserved synteny was observed in various proteobacteria such as *R. metalidurans*, *P. fluorescens*, *Xanthomonas campestris*, and *Azoarcus* sp., but none of the catabolic properties described in the *clc* element, mainly the *clc* and the *amin* operons (allowing 3-chlorobenzoate and 2-aminophenol degradation, respectively), were found in this part of the *H. arsenicoxydans* island (Table S2). Specific metabolic capabilities are found in the third part of this region, especially glutathione-dependent and -independent enzymatic activities involved in formaldehyde oxidation. Finally, several resistance genes found in the *clc* element of the compared genomes (e.g., mercuric resistance in *R. metalidurans* or ultraviolet-light resistance in *P. fluorescens*, Table S2) support a role for this genomic island in the adaptive response to stressful environmental conditions.

Carbon and Energy Metabolism

Many bacterial strains of the *Burkholderiales* order are able to flourish in diverse ecological niches and grow on various carbon sources. Surprisingly, *H. arsenicoxydans* can metabolize only a limited number of organic acids such as lactate, oxalate, succinate, and acetate; this is consistent with the
presence of the corresponding functions on the chromosome and the absence of carbohydrate transporter genes such as those found in the phosphostranferase system (Table S3). In addition, the use of amino acids as a sole carbon and nitrogen source is supported by the ability of the strain to grow on tryptone and the presence in its genome of multiple operons coding for amino acid transport systems. In contrast, none of the pathways enabling carbon fixation from CO₂ (i.e., genes coding for ribulose 1,5-biphosphate carboxylase/oxygenase and those involved in the Calvin cycle) are present or complete, in conformity with the chemoheterotroph metabolism of H. arsenicoxydans.

Genes involved in the biosynthesis or degradation of glycogen were not identified in the genome of H. arsenicoxydans. In contrast, the presence of the phbA-phbB gene cluster, which encodes a β-ketothiolase and an acetoacetyl-coenzyme A reductase, and phbC, coding for a poly-beta-hydroxybutyrate polymerase, is consistent with the accumulation in H. arsenicoxydans of poly-beta-hydroxybutyrate as an intracellular energy storage material (unpublished data), as recently demonstrated in Ralstonia eutropha [23]. Moreover, the genome contains all the genes encoding the inorganic phosphate transport and the phosphate-specific transport systems [24,25], as well as genes possibly involved in the synthesis of high-energy polyphosphate granules (Table S3), which may constitute an additional means of energy storage for H. arsenicoxydans.

The diversity of electron transfer mechanisms is of prime importance in the management of energy in ecosystems subjected to frequent fluctuations in their oxygen content, such as water treatment plants. Genomic data analyses suggest that H. arsenicoxydans can accommodate a wider range of oxygen concentrations than was initially anticipated [12,26]. Indeed, the H. arsenicoxydans genome harbors multiple respiratory pathways, permitting microorganisms to grow under aerobic, microaerobic, and anoxic conditions (Table S3). Reducing equivalents derived from organic compounds can enter energy-conserving electron transfer chains via a succinate dehydrogenase and three distinct formate dehydrogenases, none containing selenocysteine. Possible inorganic electron donors are reduced sulfur compounds (with the notable exceptions of sulphite and dimethyl sulphite) and As[III]. In contrast, no hydrogenase-encoding genes have been detected, suggesting that the strain may not gain energy from the oxidation of H₂ to protons. At the oxidizing end of bioenergetic electron transfer chains, five terminal oxidases might be operative (Table S3). The two caa₃ cytochrome oxidases usually operate under high oxygen tension while bo₃,
cbb₃, and bd oxidases are more specific to low-oxygen conditions [27]. All enzymes involved in anaerobic respiration via denitrification have been identified in the genome, i.e., nitrate, nitrite, nitrous oxide, and nitric oxide reductases. A β-proteobacterial cytochrome bc₁-complex serves as a coupling site in many of these energy-conserving chains [28].

The genome was explored to identify genes coding for cytochrome proteins possibly facilitating electron transfer between the Aox system and the bc₁ complex and cbb₃ cytochrome oxidase. The consensus sequence for the cytochrome c center is Cys-x-x-Cys-His, in which the histidine residue is one of the two axial ligands of the heme iron. Among the 56 putative heme-binding proteins we identified, Hear0476 was a particularly attractive candidate, because this protein was not predicted as a subunit of a cytochrome containing system, its coding gene was located immediately downstream of the aoxABC operon, and its expression was induced in the presence of arsenic (Table 2). This putative protein belongs to the c₅₅₂ family and was named AoxD. Such a cytochrome has been shown to interact with the terminal cytochrome cbb₃ in Helicobacter pylori [29], to play the role of electron carrier to the bc₁ complex in ammonia-oxidizing bacteria [30], and to coprecipitate with As[III] oxidase protein in Alcaligenes faecalis [9]. We therefore propose that AoxD represents the electron transfer link between AoxAB proteins and the cbb₃ cytochrome oxidase and bc₁ complex in H. arsenicoxydans.

Table 1. General Features of the H. arsenicoxydans Genome

Category	Feature	Value
General characteristics	Size (bp)	3,424,307
	GC content (%)	54.3
	Coding density (%)	88.5
	16S-23S-5S rRNA operons	2
	tRNAs	45
	Predicted CDSs	3,333
Proteins with predicted function	Resistance (nb CDSs)	102
	Related to arsenic metabolism/ transport (nb CDSs)	19
	Insertion sequences/ transposases (nb CDSs)	52
	Phage related (nb CDSs)	83
Proteins without predicted function	Conserved hypothetical proteins (%)	21.2
	Hypothetical proteins (%)	13.6
	Doubtful CDSs (%)	1.8
	Percent of total CDSs	63.1
	Percent of total CDSs	36.6
	Percent of total CDSs	0.27

doi:10.1371/journal.pgen.0030053.t001

Figure 2. Detailed View of a GC-Rich Island

The chromosomal segment extends between positions 1.97 and 2.07 Mb on the H. arsenicoxydans chromosome. Frames display (from top to bottom): (1) %GC along this island; (2) annotated CDSs on the direct (D) and reverse (R) strand: arsIII gene cluster (six genes in red arrows), part of the clc element of plasmid (or phage) origin, initially described in Pseudomonas sp. strain B13 [22] (64 genes in light blue arrows), and phage-related function (DNA repair, integrase) associated with metabolic capabilities, such as formaldehyde oxidation (17 genes in light green arrows), small genes are represented by a line; (3) synteny maps, calculated on a set of selected genomes (RALME, Ralstonia mettallidurans CH34; BURXE, Burkholderia xenovorans LB400; AZOSE, Azoarcus sp. EbN1; PSEF5, Pseudomonas fluorescens Pf-5; and XANAC, Xanthomonas campestris 85–10). A line contains the similarity results between H. arsenicoxydans and one given genome. A rectangle represents a putative ortholog between one CDS of the compared genome and the CDS of the H. arsenicoxydans genome opposite. When, for several CDSs colocalized on the H. arsenicoxydans genome, several colocalized orthologs have been identified in the compared genome, the rectangles will be of the same color. Otherwise, the rectangle is white. A group of rectangles of the same color therefore indicates the existence of a synteny between H. arsenicoxydans and the compared genome, using a gap parameters of five genes maximum [63]. Details on correspondences between genes in the synteny (Table S2) show that the light blue section of this island in H. arsenicoxydans is also found at the same chromosomal location in the compared genomes.
doi:10.1371/journal.pgen.0030053.g002
Finally, any attempt to cultivate *H. arsenicoxydans* ULPAs1 with As[III] as an electron donor source was unsuccessful; this organism requires an organic compound as an energy source. Moreover, neither selenate reductase nor respiratory arsenic metabolism and resistance

Arsenic metabolism and resistance

Process	Function	Gene Identifier	Induction Factor
DNA recombination and repair	DNA repair protein RadA	HEAR1758*	8 (g)
	DNA recombination protein RecA	HEAR2628	
	DNA polymerase I PolA	HEAR0269*	4 (g)
	DNA polymerase III	HEAR1397	
	DNA polymerase IV	HEAR3363	
	Topoisomerase IV	HEAR0788	
	Ars enzyme oxidase	HEAR0478*, HEAR0479*	>10 (g)
	Aox two-component regulator	HEAR0482–0483	
	Arsenate reductase (thioredoxin family)	HEAR0500*, HEAR1963, HEAR3207*, HEAR3302	>10 (p)
	Arsenate reductase (glutaredoxin family)	HEAR0502*, HEAR1960	>10 (p)
	Arsene pump (ArcB-like)	HEAR0501*, HEAR3301*	>10 (m)
	Arsene pump (ArcC-like)	HEAR1962	
	Ars regulators	HEAR0499, HEAR1965, HEAR3303*, HEAR3206_2	>10 (p)
	ArsH	HEAR0503*, HEAR1959, HEAR3208*, HEAR3300	3 (p)
	AoxD	HEAR0476*	>10 (m)
Motility and biofilm	Flagellar gene cluster I	HEAR1294–1316 (HEAR1311*)	4 (g)
	Flagellar gene cluster II	HEAR1866–1904 (HEAR1883*)	4 (g)
	Exopolysaccharide operon	HEAR0712–0730 (HEAR0715*)	2 (m)
	Mannose-sensitive haemagglutinin operon	HEAR1937–1949	

aAsterisk indicates genes or proteins that were shown to be induced in response to arsenic.

bg, m, and p indicate that the induction factor, when measured, was obtained by β-galactosidase dosage from a gene fusion, quantitative mRNA analysis by slot-blotting, or protein accumulation measurement by differential proteomics, respectively (see text). These results were the mean values of three independent experiments.

doi:10.1371/journal.pgen.0030053.t002

Arsenic Stress and Metal Resistance

H. arsenicoxydans is not only resistant to arsenic but also to various heavy metals such as cadmium and zinc (Table S4). This observation is consistent with the presence in its genome of multiple metal-efflux operons (Figure S1), e.g., three cobalt-zinc-cadmium czc operons. However, except for arsenic, the resistance levels to toxic metals were much lower than those measured in the metallophilic *R. metallidurans* (Table S4), which contains multiple plasmid-encoded genes [18], suggesting a specific physiological adaptation of *H. arsenicoxydans* towards the arsenic.

Exposure to arsenic results in various biological effects, including DNA damage and oxidative stress [32,33]. *H. arsenicoxydans* exhibits both positive oxidase and catalase activities [12], in agreement with the presence of one catalase and two superoxide dismutase-encoding genes (Table 2). The genome also encodes at least one thioredoxin peroxidase, one peroxiredoxin, one thioredoxin reductase, and one hydroperoxide reductase. Moreover, genes coding for bacterioferritin and bacterioferritin comigratory protein, known to protect cells against toxic hydroxyl radicals resulting from iron overload, could also play a role in the adaptive response to oxidative stress [34]. In addition, the partial screening of a Tn5-lacZ mutant library demonstrated an induction of several genes involved in DNA recombination and repair, e.g., radA and polA, in the presence of arsenic (Table 2). Their inactivation in *H. arsenicoxydans* led to an important loss of viability following UV exposure, which was further decreased by arsenic (Figure S2). This suggests that the metalloid exerts a significant effect on DNA integrity.

Although arsenic methylation occurs widely in the environment, only a single bacterial methyltransferase (ArsM), has been characterized thus far [35]. Neither a homologous *arsM* gene nor arsenic methylation activity was detected in *H. arsenicoxydans* (unpublished data). In contrast, As[III] oxidation has been demonstrated in this organism [36], resulting from the expression of the *aoxB* operon (Table 2). The AoxA-Rieske protein-encoding gene is located upstream from the AoxB catalytic subunit gene [36]. Examination of available sequencing data, including those from the Sargasso Sea metagenome [37], suggests a similar organization of putative As[III] oxidase genes in various microorganisms, e.g., *Thermus thermophilus*, *Chloroflexus aurantiacus*, and *Aeropyrum pernix* (Figure 5), but not in the facultative autotrophic arsenite-oxidizing bacterium *Alkalilimnicola ehrlichei* MLHE-1.
in which no aox gene has been identified thus far [38]. However, comparison of the neighboring CDSs revealed a limited synteny of other genes belonging to the aoxAB cluster in most organisms, even though an “arsenic genes island” as defined in Alcaligenes faecalis [10] (i.e., aoxAB genes close to arsenate resistance genes [ars]), was found in H. arsenicoxydans and in other organisms such as Nitrobacter hamburgensis and Chloroflexus aurantiacus. Remarkably, the second phosphate-specific transport locus identified in H. arsenicoxydans, which shows similarity with phosphate-specific transport systems in Serratia marcescens [39] and in Pseudomonas putida [40], is located in the vicinity of the aoxRSAB locus (Figure 3). This supports a link between arsenate, a structural analogue of phosphate, and phosphate transport. Finally, homologs of aoxRS, a two-component signal-transduction system identi-

![Figure 3. Organization of the aox Gene Cluster in H. arsenicoxydans and Various Arsenic-Metabolizing Microorganisms](image)

The aoxAB operon is close to arsenic-resistance genes in H. arsenicoxydans, A. faecalis, X. autotrophicus, N. hamburgensis, and C. phaeobacteroides. In the first three bacteria, these genes are associated with an aoxRS two-component regulatory system. In H. arsenicoxydans, the CDS number of aoxABCD, aoxRS, and aoxSCBC are hear0472–0476, hear0483–0482, and hear0493–0503, respectively. Sequence information of other genes was obtained from GenBank database and their localization on the chromosome or the plasmid is given by nucleotide numbering. The following bacterial genomes were used: Alcaligenes faecalis, Agrobacterium tumefaciens, Burkholderia multivorans, Xanthobacter autotrophicus, Roseovarius sp217, Nitrobiacter hamburgensis, Chlorobium phaeobacteroides, Chloroflexus aurantiacus, Thermus thermophilus HB8, Aeropyrum pernix, Sulfolobus tokodai, Environmental sample 1, and Environmental sample 2.

doi:10.1371/journal.pgen.0030053.g003

Figure 4. Organization of Arsenate-Resistance Operons (ars) in H. arsenicoxydans

The three operons identified by complementation of an E. coli ars-deficient strain code for an ArsR regulator, one or two ArsC arsenate reductases, an ArsIII extrusion pump, and an ArsH putative flavoprotein. The fourth operon present in the genome lacks the ArsIII pump-encoding gene.

doi:10.1371/journal.pgen.0030053.g004
from a recent gene duplication within the Herminiimonas lineage (Figure 5). The same is true for the ArsR regulator and ArsH-encoding genes (unpublished data). Loci 2 and 3 operons additionally harbor a second reductase gene, \textit{arsCb} (Figure 4), which is homologous to that of the \textit{E. coli} R773 plasmid [45]. An extensive analysis of available bacterial genome data shows that the simultaneous presence of \textit{arsCa} and \textit{arsCb} genes in arsenic resistance operons is common among \textit{a}, \textit{b}-, and \textit{c}-proteobacteria. The frequent occurrence of both \textit{arsC}s in one operon argues against a mere redundancy of functions but is rather in favour of specific roles for each enzyme. The \textit{S. aureus} ArsC-type enzyme has been shown to use thioredoxin as a reductant [46] whereas the \textit{E. coli} ArsC-type protein works with glutaredoxin [47]. It therefore seems likely that the association of ArsCa and ArsCb enzymes enables various metabolic pathways to contribute reducing equivalents to the arsenic detoxification reaction, further enhancing the efficiency of this process.

Finally, the membrane transporter proteins differ strongly between the first two loci and locus 3 (Figure 4). The latter contains an Acr3-type transporter [48]. Moreover, ArsB-type efflux pumps seem to be the main rule in Firmicutes, \textit{e}-, and \textit{g}-proteobacteria (Figure 5). \textit{H. arsenicoxydans} thus stands out among \textit{b}-proteobacteria by its possession of two ArsB-type transporters in its \textit{ars} operons.

Regulation and Colonization Functions

Natural isolates have to constantly monitor the physico-chemical parameters of their environment, which explains why numerous regulator-encoding genes have usually been identified in their genomes. Except for histone-like nucleoid structuring protein (H-NS), a RNA/DNA-associated protein widespread in proteobacteria [49], the \textit{H. arsenicoxydans} genome contains a complete set of genes coding for nucleoid-associated proteins such as HU, IHF, FIS, and Hfq. No gene coding for catabolite activator protein was identified, consistent with the lack of carbohydrate metabolism in \textit{H. arsenicoxydans}. In contrast, the genome codes for the \textit{O2} responsive protein Fnr, enabling the modulation of the various respiratory pathways [50]. Moreover, 42 genes coding for histidine kinases and response regulators were identified, which correspond to more than 1% of the whole genome. They include those involved in the regulation of the resistance to or the detoxification of toxic metals and

Figure 5. Phylogenetic Tree of ArsCa Arsenate Reductases in Various Arsenic-Resistant Microorganisms

The proteins of loci 1 (HEAR3302), 2 (HEAR0500), and 4 (HEAR3207) in cluster with reductases present in \textit{acr3}-type transporter operons. In \textit{H. arsenicoxydans}, two of them are, however, associated with an ArsB-type transporter. Protein sequences involved in arsenate reduction were retrieved from the National Center for Biotechnology Information GenBank database (http://www.ncbi.nlm.nih.gov/entrez) and phylogenetic trees were reconstructed from multiple sequence alignments using the neighbor-joining algorithm implemented in ClustalX. The following sequences were used as references: \textit{Roseovarius nubinhibens}, \textit{Xanthobacter autotrophicus}, \textit{Rhodosporillum rubrum}, \textit{Bradyrhizobium japonicum}, \textit{Rhodopseudomonas palustris}, \textit{Nitrobacter winogradskyi}, \textit{Nitrobacter hamburgensis}, \textit{Xanthobacter autotrophicus}, \textit{Acidovorax sp.}, \textit{Comamonas sp.}, \textit{Rubrivivax gelatinosus}, \textit{Delftia acidovorans}, \textit{Azotobacter vinelandii}, \textit{Rubrivivax gelatinosus}, \textit{Burkholderia multivorans}, \textit{Ralstonia metallidurans}, \textit{Shigella flexneri}, \textit{Shigella flexneri}, \textit{Polaromonas naphthalivorans}, \textit{Comamonas testosteroni}, \textit{Burkholderia vietnamiensis}, \textit{Burkholderia pseudomallei}, \textit{Burkholderia mallei}, \textit{Azotobacter sp.}, \textit{Methyllobacillus flagellatus}, \textit{Alcaligenes faecalis}, \textit{Rhodotherrix ferrireducens}, \textit{Pseudomonas syringae}, \textit{Pseudomonas putida}, \textit{Pseudomonas aeruginosa}, \textit{Shewanella oneidensis}, \textit{Wolinella succinogenes}, \textit{Corynebacterium efficiens}, \textit{Corynebacterium efficiens}, \textit{Alkalilimnicola ehrlichei}, and \textit{Chlorobium phaeobacteroides}.

\textit{doi}:10.1371/journal.pgen.0030053.g005

Deciphering the Genome of \textit{H. arsenicoxydans
metalloids such as arsenic (Figure S3) and presumably copper (Figure S1). The genome also contains genes coding for a QseBC two-component regulatory system known to control flagellum synthesis and motility by quorum sensing. No gene leading to autoinducer synthesis was identified, but this does not rule out the existence of an unidentified quorum-sensing system.

Flagellar genes are mainly clustered at two loci in the chromosome and were shown to encode a polar flagellum (Figure S5 and Table 2). The rotation of this appendix is driven by sodium motive force, as demonstrated by the loss of motility of ULPAs wild-type strain and of its aoxAB knockout derivative was evaluated as the diameter of the swimming ring expressed in millimeters. The results are the mean value of three independent experiments. doi:10.1371/journal.pgen.0030053.g006

Figure 6. Effect of Metal and Metalloid Concentration on Swimming Properties in H. arsenicoxydans
Motility assays were performed in the presence of an increasing concentration of As[III], Co[II], or Fe[III]. The level of motility of ULPAs wild-type strain and of its aoxAB knockout derivative was evaluated as the diameter of the swimming ring expressed in millimeters. The results are the mean value of three independent experiments. doi:10.1371/journal.pgen.0030053.g006

Figure 7. Chemotaxis and EPS Synthesis in H. arsenicoxydans in Response to Arsenic
(A) Chemoattraction to As[III]. Left: low melting agar with chemotaxis buffer, right: low melting agar with chemotaxis buffer supplemented with 2 mM As[III]. Bright ring of cells around agarose plugs is indicative of chemotaxis.
(B) Transmission electron microscopy (TEM) picture of H. arsenicoxydans grown in As-enriched medium. Circles represent the X-ray spot of analysis, while I and II are the energy dispersive X-Ray spectroscopy corresponding values. Cl and K peaks show organic constituents and Cu labels represent peaks due to supporting grid. Arsenic content is 16.5 % weight as As2O3 in I. and 0.0% weight in II; both including microgrid C-coating quantification. doi:10.1371/journal.pgen.0030053.g007

arsenicoxydans contains 12 methyl-accepting chemotaxis proteins–encoding genes. As most of these genes have no predicted function, it is tempting to speculate that at least one of them plays a role in this mechanism.

To determine how arsenic contributes to motility, GFP strains were constructed and their swimming behaviour was studied using video microscopy methods. While the average swimming speed of H. arsenicoxydans was 30 μm/s, a 2-fold increase was observed in the presence of 2 mM As[III]. Disruption of aoxA or aoxB gene by a transposon insertion located at the 84th or the 335th codon, respectively, abolished the improvement in the swimming performances in the presence of As[III] but not in the presence of Fe[III] (Figure 6), which suggests that the strain may gain additional energy from the arsenic-oxidation process. The presence of aoxD, a cytochrome c552–encoding gene, in the vicinity of the aoxAB operon (Figure 3) further supports this hypothesis.

Finally, in contrast to related β-proteobacteria such as R. metallidurans, the genome of H. arsenicoxydans contains a type IV pilin gene cluster. This mannose-sensitive haemagglutinin-
encoding gene may be of importance in the interaction between *H. arsenicoxydans* and the microflora present in its environment. Moreover, electron microscopy examination revealed the induction of a thick capsule when *H. arsenicoxydans* was cultivated in As[III]-containing medium (Figure S5). An operon of 18 genes present in the genome, induced in response to arsenic (Table 2) and possibly involved in the synthesis of exopolysaccharides (EPS), may play a role in this process. In addition, nanoparticles were shown to accumulate in the capsule of *H. arsenicoxydans* as compared to *H. fonticola*, a phylogenetically related strain that does not oxidize arsenic (Figure S7). Physicochemical analysis by transmission electron microscopy/energy dispersive X-Ray spectroscopy demonstrated the existence of a high arsenic content, suggesting for the first time a role for EPS in the scavenging of this toxic element (Figure 7B).

Discussion

Within the Oxalobacteraceae family, *H. arsenicoxydans* and the closely related strains *H. aquatilis* and *H. fonticola* represent a new genus comprising bacteria isolated from diverse aquatic environments. Microorganisms of this novel taxonomic group may therefore be widespread in such natural or anthropized ecosystems. The genome sequence and the physiology of *H. arsenicoxydans* further support the ability of this strain to grow in a wide range of environmental conditions, in particular with respect to oxygen concentrations. Moreover, genomic and experimental data demonstrated that this organism is capable of accommodating the presence of high concentrations of various toxic metals. More importantly, *H. arsenicoxydans* has evolved multiple processes not only to resist arsenic toxicity, such as DNA repair, oxidative stress resistance, and As[III] extrusion, but also to detoxify it for its own profit, such as As[III] oxidation and its probable involvement in energy metabolism. Some of these unusual genetic determinants, acquired most probably by horizontal gene transfer, are organized as genomic islands.

Remarkably, the versatile regulatory system of *H. arsenicoxydans* enables it to sense dynamic changes in arsenic concentration and to initiate motility and EPS synthesis for attachment to this metalloid. Such adaptive mechanisms may play a key role in the environment, allowing microorganisms to efficiently flourish and colonize arsenic-rich ecosystems. Moreover, recent results suggest that microbial biofilms are involved in the adsorption and immobilization of metals such as Pb[II] [52] and Cr[III] [53]. These properties have been used in bioremediation of aqueous solutions contaminated with heavy metals [54]. The ability of *H. arsenicoxydans* to scavenge arsenic in an EPS matrix may be of prime importance in the context of bioremediation of contaminated environments, leading to the sequestration of this toxic metalloid.

To our knowledge, the genome of *H. arsenicoxydans* is the first to be fully characterized for an arsenic-metabolizing microorganism. The results presented here provide evidence that the ability of microbes to colonize arsenic-rich environments extends beyond the biotransformation of this toxic element. Although biochemical processes play an important role in arsenic release into the environment [7,8], the physiology of the microbes inhabiting extreme ecological niches may not be restricted solely to oxidoreduction reactions. In this respect, the positive chemotactic response to the presence of arsenic and the scavenging of this element, associated with the transformation of As[III] into its less toxic form As[V], may have been key mechanisms in the colonization of the ancient environment on earth, allowing for the development of other microorganisms. In the near future, sequencing data for other arsenic-metabolizing organisms, combined with molecular biology, genetics, biochemistry, and biophysical approaches, will lead us to identify new arsenic-dependent processes. *H. arsenicoxydans* may therefore constitute a reference bacterium for further research towards a comprehensive analysis of the molecular mechanisms governing biological arsenic responses.

Materials and Methods

Genome sequencing, assembly, and annotation. The complete genome sequence of *H. arsenicoxydans* was determined using the whole-genome shotgun method. Three genomic libraries were constructed, i.e., two plasmid libraries (obtained after mechanical shearing of DNA and cloning of generated 3–4 kb and 8–10 kb fragments into plasmids pDNA2.1 (Invitrogen, http://www.invitrogen.com) and pCNS (a pcDNA2.1 derivative), respectively) and one BAC library to order contigs (obtained by partial digestion with Sau3A of the genomic DNA and the introduction of ~20-kb fragments into pBeloBac11 (New England Biolabs, http://www.neb.com). From these libraries, 26,112, 6,980 and 3,840 clones, respectively, were end-sequenced using dye-terminator chemistry on ABI3730 sequencers (Applied Biosystems, http://www.appliedbiosystems.com). The Phred/Phrap/Consed software package (http://www.phrap.com) was used for sequence assembly and quality assessment [55–57]. About 792 additional reactions were necessary to complete the genomic sequence.

Using the AMIGene software (Annotation of Microbial Genes) [58], a total of 3,355 CDSs were predicted (and assigned a unique identifier prefixed with “HEAR”) and submitted to automatic functional annotation: BLAST searches against the UniProt database (http://www.uniprot.org) were performed to determine significant homology. Based on the biological representation of the translation process, we applied Bayesian statistics to create a score function for predicting translation start sites. We integrated together the ribosome binding site sequence, the distance between the translation start site and the ribosome binding site sequence, the base composition of the start codon, the nucleotide composition following start codons, and the expected distribution of proteins length. To further increase the prediction accuracy, we took into account the predicted operon structures. These elements were combined to create a score function and the highest score was selected for the identification of start site prediction (Y. Makita, unpublished data).

Protein motifs and domains were documented using the InterPro database (http://www.ebi.ac.uk/interpro). In parallel, genes coding for enzymes were classified using the PRIAM software [59]. TMHMM v. 2.0 was used to identify transmembrane domains [60], and SignalP 3.0 was used to predict signal peptide regions [61]. Finally, TRNAS were identified using tRNAscan-SE [62]. Sequence data for comparative analyses were obtained from the NCBI database (RefSeq section, http://www.ncbi.nlm.nih.gov/RefSeq). Putative orthologs and syntenic groups (i.e., conservation of the chromosomal colocalisation between pairs of orthologous genes from different genomes) were computed between all *arsenicoxydans* and all the other complete genomes as previously described [63]. Manual validation of the automatic annotation was performed using the MaGe (Magnifying Genomes, http://www.genoscope.cns.fr) interface, which allows graphic visualization of the *H. arsenicoxydans* annotations enhanced by a synchronized representation of syntenic groups in other genomes. The *H. arsenicoxydans* nucleotide sequence and annotation data have been deposited in the EMBL database (http://www.ebi.ac.uk/embld; see accession numbers list below).

All these data (i.e., syntactic and functional annotations, and results of comparative analysis) were stored in a relational database, called ArsenoScope [63]. This database is publicly available via the MaGe interface at https://www.genoscope.cns.fr/agc/image.

Genetic and molecular biology. Mutations in genes induced by arsenic or mutant strains expressing GFP were obtained by random insertion of a mini-Tn5 and of a mini-Tn5 harboring a modified GFP-encoding gene [64], respectively. DNA manipulation and sequence analysis were performed as previously described [36]. These analyses showed that the KDM-7 gfp mutant strain used in the present study...
carries a mini-Tn5 insertion in *halor1692*, a CDS coding for a conserved hypothetical protein. RNA preparation, probe construction, and quantitative analysis of transcripts were performed as previously described [65].

The *H. arsenicoxydans* genomic library was constructed in plasmid pcDNA 2.1 (Invitrogen) as previously described [66]. About 60,000 clones on LB plates were plated and supplemented with 10 μg/ml ampicillin and pooled. Large-scale plasmid DNA isolation was carried out using the JETstar kit (GenoMed, http://www.genomed.com). This library was used to transform the *E. coli* arsenic-susceptible strain AW3110. Clones of interest were selected on LB medium supplemented with 3mM As(III).

Microbiological methods. Strains were cultivated in a chemically defined medium (CDM) or in tryptone medium at 25 °C supplemented with 1.5% agar when required [12]. Minimal inhibitory concentrations and arsenite oxidase activity were determined on agar plates as described [36]. CDM supplemented with 1% tryptone and 0.3% agar was used to test bacterial motility as previously described [67]. Bacterial cell tracking was performed as follows: ULPAs1 strain was grown in CDM for 72 h and 0.5 ml of the cell culture was then transferred into 4.5 ml of fresh CDM medium containing 1% tryptone. Half of the cell culture was further incubated for 24 h in the presence of 50 ppm As(III), and the other half was incubated without As(III). 30 min prior to the cell tracking procedure, 100 ppm As(III) was added to the samples incubated with arsenic.

Bacterial survival after UV treatment was determined using a spotting technique [68]. Serially diluted cultures (10^−10^ fold) were spotted (5 μl) in triplicate onto CDM agar plates. Plates were then incubated for 72 h at 25 °C in the dark. Dilution with spots containing five to 30 colonies were counted, and the resulting average was expressed as the ratio of viable cells in treated cultures to those in untreated cultures. The wild-type strain *H. arsenicoxydans* and mutants strains *polA::Tn5*, *recQ::Tn5*, and *radA::Tn5* were grown in CDM or CDM supplemented with 300 ppm As(III). Plates were irradiated for different lengths of time with UV light (254 nm) from a germicidal lamp at a rate of 5 J m^−2^·s^−1^ and then incubated in the dark as described [65].

Chemotaxis assays were performed using a modified agarose plug method [69]. The sides of the chemotaxis chamber each consisted of two plastic strips 15 mm apart placed on a glass slide. A drop of molten low melting point agarose containing the substrate to be tested was placed on a coverslip that was reversed onto the plastic strips to form a chamber. Cells intended for chemotaxis assays were grown in the presence of arsenite As(III), collected, resuspended in chemotaxis buffer, and supplied with 0.5 mM acetate as an energy source before being flooded into the chamber.

Two-dimensional electrophoresis, mass spectrometry, and protein identification. Isoelectric focusing was conducted using the Multiphor II system (Pharmacia) from 60 μg of protein loaded onto an 18 cm pH 4–7 immobilized pH gradient strip. To account for unspecific variations, eight gels—obtained by using two independent protein preparations extracted from four independent cultures—were run in the same batch in the absence or in the presence of 20 μM arsenite. In-gel protein digestion of the spots was performed with an automated protein digestion system, MassPREP Station (Waters, http://www.waters.com), and the resulting peptide extracts were then directly analysed by nanoLC-MS/MS on an Agilent 1100 Series capillary LC system (Agilent Technologies, http://www.home.agilent.com) coupled to a HCT Plus ion trap (Bruker Daltonics, http://www.bdal.com) as previously described [65].

Protein identifications were performed directly in the uninterpreted genome database. The complete genome sequence of *H. arsenicoxydans* was fragmented in regular length segments of 7,500 bases with 2,000 overlapping bases, translated in the six possible reading frames, and imported into a local Mascot (Matrix Science, http://www.matrixscience.com) proteomic search engine. The matching peptides thus allowed the identification of the coding region directly on the genome sequence. These matching peptides were then exported to the ‘Melt’ tool of BLASTN to identify the function of the proteins by homology with proteins of organisms that are present in the databases. Aside from the identification of proteins differentially regulated in the presence of arsenic, a large proteome map was generated. These proteomic results were compared to the computational genome annotation results, which allowed the correct assignment of the ORFs and therefore start codons, therefore start codons, therefore start codons, therefore start codons.

Steps of the interpretation were automated and compiled thanks to homemade software and the interactive proteomic map of *H. arsenicoxydans* is publicly available via the InPact interface at http://impact.u-strasbg.fr.

Electron and fluorescence microscopy. Bacterial cells were grown in CDM medium and stained with 0.1% (v/v) osmium tetroxide prepared in water as previously described [12]. *H. arsenicoxydans* gfp cells were tracked as follows: 600 μl of each cell suspension was poured onto LB plate and the cells were exposed to UV light for 200 ms. The image acquisition was performed with a Nikon 2000 Eclipse epifluorescence microscope (http://www.nikonusa.com) equipped with a CCD camera and gray scale 16-bit images were recorded. The frame of the image was 100 μm in size. The digitized fluorescent signals emitted by GFP-positive cells were taken every 243 ms during 25-s time periods. These sequences of images were further analyzed in the form of stacks using the image analysis software package ImageJ (http://rsb.info.nih.gov/ij). The swimming speed was measured in the absence or the presence of sublethal arsenic concentration as follows: all pictures in each dynamic image sequence (stack) were normalized by subtracting the background and the resulting image was run through a sharpening edges filter. The signal was then enhanced and a crosshair (mark and count) tool was used to manually mark each displacement of a given cell through the stack. A manual threshold was applied to remove any remaining background noise and all the stacks were transformed into 8-bit binarized images. The distance traveled by a cell between two positions (from one image to another) was calculated using a 2-D coordinate system. The (x, y) coordinates of the bacterial cells were evaluated and the distance traveled was calculated according to the following equation:

\[s = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}, \]

where \(y_1\) and \(y_2\) are the positions of the marked pixels (cell) on the y-axis and \(x_1\) and \(x_2\) those on the x-axis in two adjacent images. The time taken by the bacteria to perform this movement was calculated as the number of images containing the bacterium (traced frames) divided by the frame capture interval of four pictures per second, i.e.,

\[t = 4 \times N_{\text{traces}}. \]

All the displacements of each tracked cell were then combined and the average speed of each cell in μm/s was calculated using the velocity formula:

\[v = \frac{\sum_{i=1}^{N_{\text{traces}}} \sqrt{(x_{i+1} - x_i)^2 + (y_{i+1} - y_i)^2}}{4 \times N_{\text{traces}}}. \]

Three separate cell cultures, each in triplicate samples, were assayed. For each sample, three stacks of images were analyzed.

Physicochemical analysis of the nanoparticles contained in the capsule of *H. arsenicoxydans* and mutants was performed using transmission electron microscopy/energy dispersive X-ray spectroscopy. In order to provide such observations, bacteria were grown in enriched arsenic medium for 48 hours. A 6 μl drop of 20-fold diluted suspension was put onto a C-coated copper microgrid and air-dried. The transmission electron microscope used is a Philips STEM 420 (http://www.research.philips.com) operated at 120 kV. Qualitative and quantitative analyses were carried out using an INCA (Oxford Instruments, http://www.oxford-instruments.com) X-ray microanalyser. Analyses demonstrated that nanoparticles contain a high amount of arsenic.

Supporting Information

Figure S1. Comparative Chromosomal Arrangement of Metal Resistance Cluster Genes in *H. arsenicoxydans* and *R. metaliludans*.

The synteny region between two species was defined to include both conservation of the gene content and order. Genes in the *R. metaliludans* genome were predicted from the DOE Joint Genome Institute data. In the absence of complete functional studies, in particular the detection of transcription terminators, we assume that each cluster is represented by the longest DNA segment delimited by conserved ORFs in at least one of the clusters. The genes present in each cluster are indicated by arrows (not drawn to scale) indicating the direction of transcription. The genes of conserved synteny are identified by color coding and labeled with the annotation gene names.

(A) Cadmium-zinc-cobalt–resistance operons.
(B) Copper–resistance operons.
(C) Chromate–resistance operons.

Found at doi:10.1371/journal.pgen.0030053.sg001 (2.5 MB JPG).
Figure S2. Arsenic Stress and DNA Repair

(A) Effect of arsenic on gene expression. The expression of several genes known to play a role in DNA recombination and repair and/or stress adaptation (Table 2) was evaluated by comparing their mRNA content by slot-blotting hybridisation experiments after exposure to 300 ppm As(III) for 15 min. The ribosomal rrn mRNA was used as a control.

(B) Survival of DNA repair and recombination Tn5 mutants after UV irradiation in the presence or absence of arsenic. To evaluate the effect of UV exposure on the survival of strains mutated in polA, radC, or recQ, plates were irradiated for different times with UV light (254 nm) from a germicidal lamp at a rate of 5 J m⁻² s⁻¹ and then incubated in the dark. In addition, to determine the possible concomitant effect of arsenic, cells subjected to UV irradiation were incubated in the presence of 300 ppm As (III). In each case, survival was evaluated by determination of colony forming units (CFU) on CDM medium. The results are representative of 3 independent experiments.

Found at doi:10.1371/journal.pgen.0030053.sg007 (613 KB JPG).

Table S1. Insertion Sequences Identified in the Hermannimonas arsenicoxidans Genome

Only ISs with at least one complete copy in the genome are named (http://www.is.biotoul.fr).

Table S2. Description of the H. arsenicoxidans GC-Rich Island

Locus tag, gene name, and description for H. arsenicoxidans are colored according to Figure 2 (red for arsIII cluster, blue for the part of the cl element, and green for the more specific metabolic capabilities found in the third part of this island). For each of the proteobacteria compared, the CDS locus tag and the percent identity of the match between the two proteins are given using the color scheme found in the synteny map (see Figure 2). Only orthologs in synteny with H. arsenicoxidans genes are listed; comments in black provide a description of the functions encoded by genes of the compared genomes that are not similar to H. arsenicoxidans genes in this GC-rich island.

Found at doi:10.1371/journal.pgen.0030053.s002 (55 KB XLS).

Table S3. Carbon and Energy Metabolism in Hermannimonas arsenicoxidans

Found at doi:10.1371/journal.pgen.0030053.s003 (62 KB DOC).

Table S4. Minimal Inhibitory Concentration of Toxic Ions in Hermannimonas arsenicoxidans ULPAs1, H. fonticola S94, and Ralstonia metallidurans CH34

H. fonticola S94, which has been isolated from a non-contaminated environment, was used as a control.

Found at doi:10.1371/journal.pgen.0030053.s004 (41 KB DOC).

Accession Numbers

The EMBL (http://www.ebi.ac.uk/embl) accession number for the genome of H. arsenicoxidans is CU207211.

Sequence information corresponding to genes or proteins identified in other genomes and presented in Figures 2, 3, and 5, respectively, was obtained from the National Center for Biotechnology Information GenBank database (http://www.ncbi.nlm.nih.gov/entrez) under the following accession numbers:

- Figure 2 accession numbers: Azoarcus sp. EhN1 (NC_000563), Burkholderia xenovorans LB400 (NC_007531), Pseudomonas fluorescens Pf-5 (NC_001429), Ralstonia metallidurans CH34 (NC_007973), and Xanthomonas campestris pv. 85–10 (NC_007508).
- Figure 3 accession numbers: A. ferrooxidans (NC_000854), Agrobacterium tumefaciens (DOQ15159), Alcaligenes faexalis (AY297781), Burkholderia multivorans (NC_007951), Chlorobium phaeobacteroides (NC_1A1C01000001), Chloroflexus aurantiacus (NC_1AAH02000003), Environmental sample 1 (AACY0108243), Environmental sample 2 (AACY0108242), Nitrobacter hamburgensis (NC_007960), Ralstonia metallidurans (NC_007908), Roseovarius sp.217 (NZ_AAMV01000021), Sulfobacter tokohadai (BA00009232), Thermus thermophilus HB8 (NC_0006461), and Xanthobacter autotrophicus (NZ_AAPCO0100006).
- Figure 5 accession numbers: Acidovorax sp. (YP_987260), Alcaligenes faexalis (AA451513), Alkalitolerans ehrlichii (YP_745542), Azoarcus sp. (YP_158866), Azotobacter vinelandii (YP_0416369), Bradyrhizobium japonicum (NP_679726), Burkholderia mallei (YP_150326), Burkholderia multivorans (YP_01573331), Burkholderia pseudomallei (ZP_01333850), Burkholderia vietnamiensis (ZP_00422769), Chlorobium phaeobacteroides (YP_910947), Comamonas sp. (AB194677), Comamonas testosterone (YP_01519258), Corynebacterium efficiens (NP_737187), Corynebacterium efficiens (NP_738111), Delfius acidovorax (YP_0158501), Methylobacterium flagellatus (YP_545692), Nitrobacter hamburgensis (YP_571847), Nitrobacter winogradskyi (YP_319723), Polynomonas naphthaleneovorans (YP_259069), Pseudomonas putida (NP_741860), Ralstonia metallidurans (YP_582486), Ralstonia solanacearum (YP_524897), Rhodopseudomonas palustris (NP_948893), Roseovarius rubinus (NP_0096053), and Rubrivivax...
gelatinosus (ZP_00242261.1), Rubrivivax gelatinosus (ZP_00243884.1), Shawnella oneidensis (NP_716169.1), Shigella flexneri (AAP17870.1), Shigella flexneri (NP_838060.1), Wolinella succinogenes (NP_906976.1), Xanthobacter autotrophicus (ZP_01198809.1), and Xanthobacter autotrophicus (ZP_01199778.1)

Acknowledgments

We thank C. Sasakawa for fruitful comments and F. Elsass and the Laboratory of Analytical Electron Microscopy (Institut National de la Recherche Agronomique, Versailles, France) for technical assistance in transmission electron microscopy experiments.

Author contributions. DM contributed to genome annotation and data analysis and to the writing of the manuscript, and performed genome and molecular biology experiments. CM contributed to genome annotation and to the writing of the manuscript, and coordinated software development for genome analysis (MaGe). SK and SW contributed to genome annotation and data analysis, and to physiology experiments. VB, CD, SM, BS, and JW performed the sequencing and finishing of the genome. MB, ET, VB, EK, and PO contributed to genome annotation and data analysis. WN analyzed the data. SC, ZR, and DV contributed to the automatic and manual annotation, to the analysis of genome information and to MaGe development. FAP, CC, EL, ET, and AVD contributed to proteomic data analysis. MH contributed to genome annotation and proteomic data analysis, and to the development of InPact web interface. AL contributed to genome annotation. DL contributed to genome annotation and electron microscopy experiments. YM contributed to software development. MC, DS, PS, and BS contributed to genome data analysis. BC, DDS, and NP contributed to physiology, biochemistry or biophysics experiments. MCL initiated the experimental work on H. arsenicoxydans and contributed to genome annotation. AD contributed to genome annotation and data analysis and to the writing of the manuscript. PNB coordinated the project, contributed to the analysis of genome information, and wrote the manuscript.

Funding. DM was supported by a grant from the French Ministry of Education and Research and CC by a Bruker Daltonics company fellowship. Financial support came from the Institut Pasteur, the Université Louis Pasteur (ULP), the Consortium National de Recherche en Génomique (CNRG), and the Centre National de la Recherche Scientifique (CNRS). Transmission electron microscopy analysis was performed at the platform of the IBMP-CNRS (Strasbourg) cofinanced by CNRS, Région Alsace, ULP, and the Association de la Recherche contre le Cancer (ARC). ISindre contributed to the analysis of genome information, and has received some support from the ARC. This work was done in the frame of the Groupement de Recherche–Métabolisme de l’Arsenic chez les Procaryotes (GDR2909-CNRS) (http://gdr2909.u-strasbg.fr).

Competing interests. The authors have declared that no competing interests exist.

References

1. Vaughan DJ (2006) Arsenic. Elements 2: 71–75.
2. Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archael aroE. The sequence suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3: 18.
3. Lebrun F, Brugna M, Baymann F, Muller D, Liévrément D, et al. (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20: 686–698.
4. Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, et al. (2005) A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308: 1305–1308.
5. Oberhacker CA, Kunin V, Darzentas N, Goldovsky L (2006) A minimal estimate for the gene content of the last universal common ancestor—eubiology from a terrestrial perspective. Res. Microbiol. 157: 57–68.
6. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health. Elements 2: 71–75.
7. Van Regenmortel MH. Contributed to genome annotation and proteomic data analysis. WN analyzed the data. SC, ZR, and DV contributed to the automatic and manual annotation, to the analysis of genome information and to MaGe development. FAP, CC, EL, ET, and AVD contributed to proteomic data analysis. MH contributed to genome annotation and proteomic data analysis, and to the development of InPact web interface. AL contributed to genome annotation. DL contributed to genome annotation and electron microscopy experiments. YM contributed to software development. MC, DS, PS, and BS contributed to genome data analysis. BC, DDS, and NP contributed to physiology, biochemistry or biophysics experiments. MCL initiated the experimental work on H. arsenicoxydans and contributed to genome annotation. AD contributed to genome annotation and data analysis and to the writing of the manuscript. PNB coordinated the project, contributed to the analysis of genome information, and wrote the manuscript.

Funding. DM was supported by a grant from the French Ministry of Education and Research and CC by a Bruker Daltonics company fellowship. Financial support came from the Institut Pasteur, the Université Louis Pasteur (ULP), the Consortium National de Recherche en Génomique (CNRG), and the Centre National de la Recherche Scientifique (CNRS). Transmission electron microscopy analysis was performed at the platform of the IBMP-CNRS (Strasbourg) cofinanced by CNRS, Région Alsace, ULP, and the Association de la Recherche contre le Cancer (ARC). ISindre contributed to the analysis of genome information, and has received some support from the ARC. This work was done in the frame of the Groupement de Recherche–Métabolisme de l’Arsenic chez les Procaryotes (GDR2909-CNRS) (http://gdr2909.u-strasbg.fr).

Competing interests. The authors have declared that no competing interests exist.

References

1. Vaughan DJ (2006) Arsenic. Elements 2: 71–75.
2. Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archael aroE. The sequence suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3: 18.
3. Lebrun F, Brugna M, Baymann F, Muller D, Liévrément D, et al. (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20: 686–698.
4. Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, et al. (2005) A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308: 1305–1308.
5. Oberhacker CA, Kunin V, Darzentas N, Goldovsky L (2006) A minimal estimate for the gene content of the last universal common ancestor—eubiology from a terrestrial perspective. Res. Microbiol. 157: 57–68.
6. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health. Elements 2: 71–75.
7. Van Regenmortel MH. Contributed to genome annotation and proteomic data analysis. WN analyzed the data. SC, ZR, and DV contributed to the automatic and manual annotation, to the analysis of genome information and to MaGe development. FAP, CC, EL, ET, and AVD contributed to proteomic data analysis. MH contributed to genome annotation and proteomic data analysis, and to the development of InPact web interface. AL contributed to genome annotation. DL contributed to genome annotation and electron microscopy experiments. YM contributed to software development. MC, DS, PS, and BS contributed to genome data analysis. BC, DDS, and NP contributed to physiology, biochemistry or biophysics experiments. MCL initiated the experimental work on H. arsenicoxydans and contributed to genome annotation. AD contributed to genome annotation and data analysis and to the writing of the manuscript. PNB coordinated the project, contributed to the analysis of genome information, and wrote the manuscript.

Funding. DM was supported by a grant from the French Ministry of Education and Research and CC by a Bruker Daltonics company fellowship. Financial support came from the Institut Pasteur, the Université Louis Pasteur (ULP), the Consortium National de Recherche en Génomique (CNRG), and the Centre National de la Recherche Scientifique (CNRS). Transmission electron microscopy analysis was performed at the platform of the IBMP-CNRS (Strasbourg) cofinanced by CNRS, Région Alsace, ULP, and the Association de la Recherche contre le Cancer (ARC). ISindre contributed to the analysis of genome information, and has received some support from the ARC. This work was done in the frame of the Groupement de Recherche–Métabolisme de l’Arsenic chez les Procaryotes (GDR2909-CNRS) (http://gdr2909.u-strasbg.fr).

Competing interests. The authors have declared that no competing interests exist.

References

1. Vaughan DJ (2006) Arsenic. Elements 2: 71–75.
2. Jackson CR, Dugas SL (2003) Phylogenetic analysis of bacterial and archael aroE. The sequence suggests an ancient, common origin for arsenate reductase. BMC Evol Biol 3: 18.
3. Lebrun F, Brugna M, Baymann F, Muller D, Liévrément D, et al. (2003) Arsenite oxidase, an ancient bioenergetic enzyme. Mol Biol Evol 20: 686–698.
4. Oremland RS, Kulp TR, Blum JS, Hoeft SE, Baesman S, et al. (2005) A microbial arsenic cycle in a salt-saturated, extreme environment. Science 308: 1305–1308.
5. Oberhacker CA, Kunin V, Darzentas N, Goldovsky L (2006) A minimal estimate for the gene content of the last universal common ancestor—eubiology from a terrestrial perspective. Res. Microbiol. 157: 57–68.
6. Smith AH, Lopipero PA, Bates MN, Steinmaus CM (2002) Public health. Elements 2: 71–75.
7. Van Regenmortel MH. Contributed to genome annotation and proteomic data analysis. WN analyzed the data. SC, ZR, and DV contributed to the automatic and manual annotation, to the analysis of genome information and to MaGe development. FAP, CC, EL, ET, and AVD contributed to proteomic data analysis. MH contributed to genome annotation and proteomic data analysis, and to the development of InPact web interface. AL contributed to genome annotation. DL contributed to genome annotation and electron microscopy experiments. YM contributed to software development. MC, DS, PS, and BS contributed to genome data analysis. BC, DDS, and NP contributed to physiology, biochemistry or biophysics experiments. MCL initiated the experimental work on H. arsenicoxydans and contributed to genome annotation. AD contributed to genome annotation and data analysis and to the writing of the manuscript. PNB coordinated the project, contributed to the analysis of genome information, and wrote the manuscript.

Funding. DM was supported by a grant from the French Ministry of Education and Research and CC by a Bruker Daltonics company fellowship. Financial support came from the Institut Pasteur, the Université Louis Pasteur (ULP), the Consortium National de Recherche en Génomique (CNRG), and the Centre National de la Recherche Scientifique (CNRS). Transmission electron microscopy analysis was performed at the platform of the IBMP-CNRS (Strasbourg) cofinanced by CNRS, Région Alsace, ULP, and the Association de la Recherche contre le Cancer (ARC). ISindre contributed to the analysis of genome information, and has received some support from the ARC. This work was done in the frame of the Groupement de Recherche–Métabolisme de l’Arsenic chez les Procaryotes (GDR2909-CNRS) (http://gdr2909.u-strasbg.fr).

Competing interests. The authors have declared that no competing interests exist.
arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl Environ Microbiol 68: 4795–4892.
39. Lee SJ, Lee YS, Lee YC, Choi YL (2006) . Lee SJ, Lee YS, Lee YC, Choi YL (2006) Molecular characterization of polyphosphate (PolyP) operon from Serratia marcescens J Basic Microbiol 46: 108–115.
40. Wu H, Kosaka H, Kato J, Kuroda A, Ikeda T, et al. (1999) Cloning and characterization of Pseudomonas putida genes encoding the phosphate-specific transport system. J. Biose Bioeng 87: 273–279.
41. Kashyap DR, Botero LM, Franck WL, Hassett DJ, McDermott TR (2006) Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol 188: 1081–1088.
42. Butcher BG, Deane SM, Rawlings DE (2006) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66: 1826–1833.
43. Lopez-Maury L, Florencio FJ, Reyes JC (2003) Arsenic sensing and resistance system in the cyanobacterium Synechocystis sp. strain PCC 6803 J Bacteriol 185: 5563–5571.
44. Zegers I, Martina JC, Willem R, Wynn L, Messens J (2001) Arsenate reductase from S. aureus plasmid pE258 is a phosphatase drafted for redox duty. Nat Struct Biol 8: 843–847.
45. Martin P, DeMel S, Shi J, Gladysheva T, Gatti DL, et al. (2001) Insights into the structure, solvation, and mechanism of ArsC arsenate reductase, a novel arsenic detoxification enzyme. Structure 9: 1071–1081.
46. Ji G, Garber EA, Armes LG, Chen CM, Fuchs JA, et al. (1994) Arsenate reductase of Staphylococcus aureus plasmid pE258. Biochemistry 33: 7294–7299.
47. Liu J, Rosen BP (1997) Ligand interactions of the ArsC arsenate reductase. J Biol Chem 272: 21084–21089.
48. Rosen BP (1999) Families of arsenic transporters. Trends Microbiol 7: 207–212.
49. Tendeng C, Bertin PN (2003) H-NS in Gram-negative bacteria: A family of multifaceted proteins. Trends Microbiol 11: 511–518.
50. Kornel H, Sofia HJ, Zamit WG (2003) Phylogeny of the bacterial superfamily of Cpr-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27: 559–592.
51. Soutourina OA, Bertin PN (2005) Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 27: 505–523.
52. Templeton A, Spormann A, Brown G (2003) Speciation of Pb(II) sorbed by Burkholderia cepacia alginate poly-3-hydroxyalkanoate composite. Environ Sci Technol 37: 2166–2172.
53. Kang S, Bremer P, Kim K, McQuillan A (2006) Monitoring metal ion binding in single-layer Pseudomonas aeruginosa biofilms using ATR-IR spectroscopy. Langmuir 22: 286–291.
54. Chang W, Huo G, Chiang S, Su M (2006) Heavy metal removal from aqueous solution by wasted biomass from a combined AB-biofilm process. Bioresour Technol 185.
55. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8: 175–185.
56. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8: 186–194.
57. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8: 195–202.
58. Bocs S, Cruveiller S, Vallenet D, Nuel G, Méniguet C (2003) AMIGene: Annotation of Microbial Genes. Nucleic Acids Res 31: 3725–3726.
59. Claudel-Renaud C, Chevalet C, Faraut T, Kahn D (2003) Enzyme-specific profiles for genome annotation: PRIAM. Nucleic Acids Res 31: 6653–6659.
60. Krog HL, Larsson B, von Heijne G, Sonnhammer ELL (2001) Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes. J Mol Biol 305: 567–580.
61. Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340: 783–795.
62. Lowe TM, Eddy SR (1997) tRNAScan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955–964.
63. Vallenet D, Labarre L, Rouy Z, Barbe V, Bocs S, et al. (2006) MaGe: A microbial genome annotation system supported by synteny results. Nucleic Acids Res 34: 53–63.
64. Tang X, Lu BF, Fan SQ (1999) A bifunctional transposon mini-Tn5gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens. FEMS Microbiol Lett 179: 37–42.
65. Carapito C, Muller D, Turlin E, Koehlner S, Danchin A, et al. (2006) Identification of genes and proteins involved in the pleiotropic response to arsenic stress in Caenobacter arsenovorans, a metalloresistant beta-proteobacterium with an unsequenced genome. Biochimie 88: 595–606.
66. Hommais F, Kim E, Laurent-Winter C, Soutourina O, Malpertuy A, et al. (2001) Large-scale monitoring of pleiotropic regulation of gene expression by the prokaryotic nucleoid-associated protein, H-NS. Mol Microbiol 49: 20–36.
67. Méniguet C, Kim E, Pascal G, Barbe V, Bernsel A, et al. (2005) Coping with cold: The genome of the versatile marine Antarctica bacterium Pseudobacterium haloplanktis TAC125. Genome Research 15: 1325–1335.
68. Kayser MF, Stumpf MT, Vuilleumier S (2000) DNA polymerase I is essential for growth of Methylobacterium dichloromethanum DM4 with dichloromethane. J Bacteriol 182: 5433–5439.
69. Parales RE, Ditty JL, Harwood CS (2000) Toluene-degrading bacteria are complex regulation of arsenite oxidation in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 97: 20–36.
70. Shevchenko A, Sunyaev S, Loboda A, Shevchenko A, Bork P, et al. (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73: 1917–1926.