K-FRAMES IN HILBERT C^*-MODULES

GH. ABBASPOUR TABADKAN, A.A. AREFIJAMAAL, AND M. MAHMOUDIEH

Abstract. In this paper, firstly we investigate conditions under which the action of an operator on a K-frame, remain again a K-frame for Hilbert module E. We also give a generalization of Douglas Theorem and we shall use it to prove the sum of two K-frame under certain condition is again a K-frame. Finally, we characterize the K-frame generators for a unitary system in terms of operators.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [6]. Frames can be viewed as redundant bases which are generalization of orthonormal bases. Many generalizations of frames were introduced, e.g., frames of subspaces [4], Pseudo-frames [1], G-frames [17], and fusion frames [3]. Recently, L. Gavruta introduced the concept of K-frame for a given bounded operator K on Hilbert space in [9]. Hilbert C^*-modules arose as generalizations of the notion Hilbert space. The basic idea was to consider modules over C^*-algebras instead of linear spaces and to allow the inner product to take values in the C^*-algebra of coefficients being C^*-(anti-)linear in its arguments [13]. In [10] authors generalized frame concept for operators in Hilbert C^*-modules. The paper is organized as follows. In Section 2, some notations and preliminary results of Hilbert Modules, their frames and K-frames are given. In Section 3, we study the action of operators on K-frames and under certain conditions, we shall show that it is again a K-frame. The next section is devoted to sum of K-frames, to show that the sum of two K-frames under certain conditions is again a K-frame we need to say a generalization of the Douglas Theorem [18], which may interest by its own. Finally, in the last section, we consider a unitary system.

Date: August 27, 2017.
2010 Mathematics Subject Classification. Primary 42C15 Secondary 46C05, 47A05.
Key words and phrases. K-frame, C^*-algebra, Hilbert C^*-module.
of operators and characterize the K-frame generators in terms of operators. We also look forward to sum of two K-frame generators to be a K-frame generator.

2. Preliminaries

In this section we give preliminaries about frames, K-frames for Hilbert space and Hilbert module and related operators which we need in the sections following. A finite or countable sequence $\{f_k\}_{k \in J}$ is called a frame for a separable Hilbert space H if there exist constants $A, B > 0$ such that

$$A\|f\|^2 \leq \sum_{k=1}^{\infty} |\langle f, f_k \rangle|^2 \leq B\|f\|^2, \quad \forall f \in H.$$

Frank and Larson [10] introduced the notion of frames in Hilbert C^*-modules as a generalization of frames in Hilbert spaces. A (left) Hilbert C^*-module over the C^*-algebra A is a left A-module E equipped with an A-valued inner product satisfy the following conditions:

1. $\langle x, x \rangle \geq 0$ for every $x \in E$ and $\langle x, x \rangle = 0$ if and only if $x = 0$,
2. $\langle x, y \rangle = \langle y, x \rangle^*$ for every $x, y \in E$,
3. $\langle \cdot, \cdot \rangle$ is A-linear in the first argument,
4. E is complete with respect to the norm $\|x\|^2 = \|\langle x, x \rangle\|_A$.

Given Hilbert C^*-modules E and F, we denote by $L_A(E, F)$ or $L(E, F)$ the set of all adjointable operators from E to F i.e. the set of all maps $T : E \to F$ such that there exists $T^* : F \to E$ with the property

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$

for all $x \in E$, $y \in F$. It is well-known that each adjointable operator is necessarily bounded A-linear in the sense $T(ax) = aT(x)$, for all $a \in A, x \in E$. We denote $L(E)$ for $L(E, E)$. In fact $L(E)$ is a C^*-algebra. Let A be a C^*-algebra and consider

$$\ell^2(A) := \{\{a_n\}_n \subseteq A : \sum_n a_n a_n^* \text{ converges in norm in } A\}.$$

It is easy too see that $\ell^2(A)$ with pointwise operations and the inner product

$$\langle \{a_n\}, \{b_n\} \rangle = \sum_n a_n b_n^*,$$

becomes a Hilbert C^*-module which is called the standard Hilbert C^*-module over A. Throughout this paper, we suppose E is a Hilbert A-module, J a countable index set. Also we denote the range of $T \in L(E)$ by $R(T)$, and kernel of T by $N(T)$. A Hilbert A-module E
is called finitely generated (countably generated) if there exist a finite subset \(\{ x_1, ..., x_n \} \) (countable set \(\{ x_n \}_{n \in \mathbb{J}} \)) of \(E \) such that \(E \) equals the closed \(\mathcal{A} \)-linear hull of this set. The basic theory of Hilbert \(C^* \)-modules can be found in [13].

The following lemma found the relation between the range of an operator and kernel of its adjoint operator.

Lemma 2.1. ([19], Lemma 15.3.5; [13], Theorem 3.2) Let \(T \in L(E, F) \), then

1. \(N(T) = N(|T|) \), \(N(T^*) = R(T) \perp \), \(N(T^*) \perp = R(T) \perp \supseteq \overline{R(T)} \);
2. \(R(T) \) is closed if and only if \(R(T^*) \) is closed, and in this case \(R(T) \) and \(R(T^*) \) are orthogonally complemented with \(\overline{R(T)} = N(T^*) \perp \) and \(\overline{R(T^*)} = N(T) \perp \).

The following theorem is extended Douglas theorem [7] for Hilbert modules.

Theorem 2.2. [18] Let \(T' \in L(G, F) \) and \(T \in L(E, F) \) with \(\overline{R(T^*)} \) orthogonally complemented. The following statements are equivalent:

1. \(T'T'^* \leq \lambda TT^* \) for some \(\lambda > 0 \);
2. There exists \(\mu > 0 \) such that \(\| T^*z \| \leq \mu \| Tz \| \) for all \(z \in F \);
3. There exists \(D \in L(G, E) \) such that \(T' = TD \), i.e. the equation \(TX = T'X \) has a solution;
4. \(R(T') \subseteq R(T) \).

Here, we recall the concept of frame in Hilbert \(C^* \)-modules which is defined in [10]. Let \(E \) be a countably generated Hilbert module over a unital \(C^* \)-algebra \(\mathcal{A} \). A sequence \(\{ x_n \} \subset E \) is said to be a frame if there exist two constant \(C, D > 0 \) such that

\[
C \langle x, x \rangle \leq \sum_n \langle x, x_n \rangle \langle x_n, x \rangle \leq D \langle x, x \rangle \quad \text{for all } x \in E. \tag{2.1}
\]

The optimal constants (i.e. maximal for \(C \) and minimal for \(D \)) are called frame bounds. If the sum in (2.1) converges in norm, the frame is called standard frame. In this paper all frames consider standard frames. The sequence \(\{ x_n \} \) is called a Bessel sequence with bound \(D \) if the upper inequality in (2.1) holds for every \(x \in E \). Let \(\{ x_j \}_{j \in \mathbb{J}} \) be a Bessel sequence for Hilbert module \(E \) over \(\mathcal{A} \). The operator \(T : E \to \ell^2(\mathcal{A}) \) defined by \(Tx = \{ \langle x, x_j \rangle \}_{j \in \mathbb{J}} \) is called the analysis operator. The adjoint operator \(T^* : \ell^2(\mathcal{A}) \to E \) is given by

\[
T^*\{ c_j \}_{j \in \mathbb{J}} = \sum_{j \in \mathbb{J}} c_j x_j,
\]
where is called the pre-frame operator or the synthesis operator. By composing \(T \) and \(T^\ast \), we obtain the frame operator \(S : E \to E \) given by

\[
Sx = T^*Tx = \sum_{j \in J} \langle x, x_j \rangle x_j, \quad x \in E.
\]

In the case where \(\{x_j\}_{j \in \mathbb{J}} \) is a frame, the frame operator is positive and invertible, also it is the unique operator in \(L(E) \) such that the reconstruction formula

\[
x = \sum_{j \in \mathbb{J}} \langle x, S^{-1} x_j \rangle x_j = \sum_{j \in \mathbb{J}} \langle x, x_j \rangle S^{-1} x_j, \quad x \in E,
\]

holds. It is easy to see that the sequence \(\{S^{-1} x_j\}_{j \in \mathbb{J}} \) is a frame for \(E \).

The frame \(\{S^{-1} x_j\}_{j \in \mathbb{J}} \) is said to be the canonical dual frame of \(\{x_j\}_{j \in \mathbb{J}} \).

Theorem 2.3. [see [14], proposition 2.2] Let \(\{x_n\}_{n \in \mathbb{J}} \) be a sequence in \(E \) such that \(\sum_{n \in \mathbb{J}} c_n x_n \) converges for all \(c = \{c_n\}_{n \in \mathbb{J}} \in \ell^2(A) \). Then \(\{x_n\}_{n \in \mathbb{J}} \) is a Bessel sequence in \(E \).

Theorem 2.4. [12] Let \(E \) be a finitely or countably generated Hilbert module over a unital \(C^* \)-algebra \(A \), and \(\{x_n\}_{n \in \mathbb{J}} \) be a sequence in \(E \). Then \(\{x_n\}_{n \in \mathbb{J}} \) is a frame for \(E \) with bounds \(C \) and \(D \) if and only if

\[
C \|x\|^2 \leq \| \sum_n \langle x, x_n \rangle \langle x_n, x \rangle \| \leq D \|x\|^2.
\]

In compare with to \(K \)-frames on Hilbert space, Najati in [14] define atomic system and a \(K \)-frame on Hilbert module.

Definition 2.5. A sequence \(\{x_n\}_{n \in \mathbb{J}} \) of \(E \) is called an atomic system for \(K \in L(E) \) if the following statement hold:

1. The series \(\sum_{n \in \mathbb{J}} c_n x_n \) converges for all \(c = \{c_n\}_{n \in \mathbb{J}} \in \ell^2(A) \);
2. There exists \(C > 0 \) such that for every \(x \in E \) there exists \(\{a_{n,x}\}_{n \in \mathbb{J}} \in \ell^2(A) \) such that \(\sum_{n \in \mathbb{J}} a_{n,x} a^*_{n,x} \leq C \langle x, x \rangle \) and

\[
Kx = \sum_{n \in \mathbb{J}} a_{n,x} x_n.
\]

By Theorem 2.3, the condition (1), in the above definition, actually says that \(\{x_n\}_{n \in \mathbb{J}} \) is a Bessel sequence.

Theorem 2.6. [14] If \(K \in L(E) \), then there exists an atomic system for \(K \).

Theorem 2.7. [14] Let \(\{x_n\}_{n \in \mathbb{J}} \) be a Bessel sequence for \(E \) and \(K \in L(E) \). Suppose that \(T \in L(E, \ell^2(A)) \) is given by \(T(x) = \{\langle x, x_n \rangle\}_{n \in \mathbb{J}} \) and \(R(T) \) is orthogonally complemented. Then the following statements are equivalent:
(1) \(\{x_n\}_{n \in J} \) is an atomic system for \(K \);
(2) There exist \(C, B > 0 \) such that
\[
B\|K^*x\|^2 \leq \sum_n \langle x, x_n \rangle \langle x_n, x \rangle \leq C\|x\|^2;
\]
(3) There exist \(D \in L(E, \ell^2(A)) \) such that \(K = T^* D \).

Definition 2.8. Let \(E \) be a Hilbert \(\mathcal{A} \)-module, \(\{x_n\}_{n \in J} \subset E \) and \(K \in L(E) \). The sequence \(\{x_n\}_{n \in J} \) is said to be a \(K \)-frame if there exist constant \(C, D > 0 \) such that
\[
C\langle K^*x, K^*x \rangle \leq \sum_n \langle x, x_n \rangle \langle x_n, x \rangle \leq D\langle x, x \rangle, \ x \in E. \quad (2.2)
\]

The following theorem gives a characterization of \(K \)-frames using linear adjointable operators.

Theorem 2.9. [14] Let \(K \in L(E) \) and \(\{x_n\}_{n \in J} \) be a Bessel sequence for \(E \). Suppose that \(T \in L(E, \ell^2(A)) \) is given by \(T(x) = \{\langle x, x_n \rangle\}_{n \in J} \) and \(R(T) \) is orthogonally complemented. Then \(\{x_n\}_{n \in J} \) is a \(K \)-frame for \(E \) if and only if there exist a linear bounded operator \(L : \ell^2(A) \to E \) such that \(Le_n = x_n \) and \(R(K) \subseteq R(L) \), where \(\{e_n\} \) is the canonical orthonormal basis for \(\ell^2(A) \).

3. Operators On \(K \)-frames

In this section we study the action of an operator on a \(K \)-frame. The following lemma shows that the action of an adjointable operator on a Bessel sequence is again a Bessel sequence.

Lemma 3.1. Let \(E \) be a Hilbert \(\mathcal{A} \)-module and \(\{x_n\}_{n \in J} \) be a Bessel sequence, then \(\{Mx_n\}_{n \in J} \) is a Bessel sequence for every \(M \in L(E) \).

Proof. Since \(\{x_n\}_{n \in J} \) is a Bessel sequence then there exists constant \(D \) such that
\[
\sum_n \langle x, x_n \rangle \langle x_n, x \rangle \leq D\langle x, x \rangle
\]
for every \(x \in E \). So
\[
\sum_n \langle x, Mx_n \rangle \langle Mx_n, x \rangle = \sum_n \langle M^*x, x_n \rangle \langle x_n, M^*x \rangle \leq D\langle M^*x, M^*x \rangle = D\langle MM^*x, x \rangle \leq D\|M\|^2\langle x, x \rangle
\]
for every \(x \in E \). \(\square \)
Theorem 3.2. Let E be a Hilbert A-module, $K \in L(E)$ and $\{x_n\}_{n \in \mathbb{J}}$ be a K-frame for E. Let $M \in L(E)$ with $R(M) \subset R(K)$ and $R(K^*)$ orthogonally complemented. Then $\{x_n\}_{n \in \mathbb{J}}$ is an M-frame for E.

Proof. Since $\{x_n\}_{n \in \mathbb{J}}$ is a K-frame then there exist positive numbers μ and λ such that

$$\lambda \langle K^* x, K^* x \rangle \leq \sum_n \langle x, x_n \rangle \langle x_n, x \rangle \leq \mu \langle x, x \rangle \tag{3.1}$$

Using the theorem 2.2 by the fact that $R(M) \subset R(K)$ shows that, $MM^* \leq \lambda' KK^*$ for some $\lambda' > 0$. So

$$\frac{\lambda}{\lambda'} \langle MM^* x, x \rangle \leq \lambda \langle K^* x, K^* x \rangle$$

From (3.1), we have

$$\frac{\lambda}{\lambda'} \langle MM^* x, x \rangle \leq \sum_n \langle x, x_n \rangle \langle x_n, x \rangle \leq \mu \langle x, x \rangle.$$

Therefor $\{x_n\}_{n \in \mathbb{J}}$ is an M-frame with bound $\frac{\lambda}{\lambda'}$ and μ for E. \qed

Theorem 3.3. Let E be a Hilbert A-module and $K \in L(E)$ with the dense range. Let $\{x_n\}_{n \in \mathbb{J}}$ be a K-frame for E and $T \in L(E)$ has closed range. If $\{Tx_n\}_{n \in \mathbb{J}}$ is a K-frame for E, then T is surjective.

Proof. Suppose that $K^* x = 0$ for $x \in E$, then for each $y \in E$, $\langle Ky, x \rangle = \langle y, K^* x \rangle = 0$. So $\langle z, x \rangle = 0$ for each $z \in E$, since $R(K)$ is dense in E. Thus $x = 0$ and K^* is injective. We shall show that T^*
is injective too. Note that \(\{Tx_n\}_{n \in J} \) is a \(K \)-frame for \(E \) with bounds \(\lambda \) and \(\mu \), hence
\[
\lambda \|K^*x\|^2 \leq \left\| \sum_n \langle x, Tx_n \rangle \langle Tx_n, x \rangle \right\| \leq \mu \|x\|^2.
\]
for \(T^*x \in E \) and therefore,
\[
\lambda \|K^*x\|^2 \leq \left\| \sum_n \langle T^*x, x_n \rangle \langle x_n, T^*x \rangle \right\| \leq \mu \|x\|^2.
\]
If \(x \in N(T^*) \) then \(T^*x = 0 \) so \(\langle T^*x, x_n \rangle = 0 \) for each \(n \in \mathbb{N} \), and so \(K^*x = 0 \) by the last inequality. On the other hand \(K^* \) is injective, so \(x = 0 \), and so \(T^* \) is injective. Therefore
\[
E = N(T^*) + R(T) = R(T) = R(T),
\]
and this complete the proof. \(\square \)

Theorem 3.5. Let \(K \in L(E) \) and \(\{x_n\}_{n \in J} \) be a \(K \)-frame for \(E \). If \(T \in L(E) \) with closed range such that \(R(TK) \) is orthogonal complemented and \(KT = TK \). Then \(\{Tx_n\}_{n \in J} \) is a \(K \)-frame for \(R(T) \).

Proof. Xu and Sheng in [20] show that if \(T \) has closed range then \(T \) has Moore-Penrose inverse operator \(T^\dagger \) such that \(TT^\dagger T = T \) and \(T^\dagger TT^\dagger = T^\dagger \). So \(TT^\dagger \big|_{R(T)} = I_{R(T)} \) and \((TT^\dagger)^* = I^* = I = TT^\dagger \). For every \(x \in R(T) \) we have
\[
\langle K^*x, K^*x \rangle = \langle (TT^\dagger)^*K^*x, (TT^\dagger)^*K^*x \rangle
\]
\[
= \langle T^\dagger T^*K^*x, T^\dagger T^*K^*x \rangle
\]
\[
\leq \|T^\dagger\|^2 \langle T^*K^*x, T^*K^*x \rangle
\]
and so
\[
\|T^\dagger\|^2 \langle K^*x, K^*x \rangle \leq \langle T^*K^*x, T^*K^*x \rangle.
\]
Since \(\{x_n\}_{n \in J} \) is a \(K \)-frame and \(R(T^*K^*) \subset R(K^*T^*) \), if \(\lambda \) is a lower bound then by using Theorem 2.2, there exists some \(\lambda' > 0 \) such that
\[
\sum_n \langle x, Tx_n \rangle \langle Tx_n, x \rangle = \sum_n \langle T^*x, x_n \rangle \langle x_n, T^*x \rangle
\]
\[
\geq \lambda \langle K^*T^*x, K^*T^*x \rangle
\]
\[
\geq \lambda' \lambda \langle T^*K^*x, T^*K^*x \rangle
\]
\[
\geq \lambda' \lambda \|T^\dagger\|^2 \langle K^*x, K^*x \rangle.
\]
This is the lower inequality for \(\{Tx_n\}_{n \in J} \). On the other hand by Lemma 3.1, \(\{Tx_n\}_{n \in J} \) is a Bessel sequence, so \(\{Tx_n\}_{n \in J} \) is a \(K \)-frame for Hilbert module \(R(T) \).

Theorem 3.6. Let \(E \) be a Hilbert \(A \)-module, \(K \in L(E) \) and \(\{x_n\}_{n \in J} \) be a \(K \)-frame for \(E \), and \(T \in L(E) \) is a co-isometry such that \(R(T^*K^*) \subset R(K^*T^*) \) with \(R(TK) \) orthogonal complemented. Then \(\{Tx_n\}_{n \in J} \) is a \(K \)-frame for \(E \).

Proof. Using Lemma 3.1 \(\{Tx_n\}_{n \in J} \) is a Bessel sequence. By Theorem 2.2, there exist \(\lambda' > 0 \) such that

\[
\|T^*K^*x\|^2 \leq \lambda'\|K^*T^*x\|^2,
\]

for each \(x \in E \). Suppose \(\lambda \) is a lower bound for the \(K \)-frame \(\{x_n\}_{n \in J} \). Since \(T \) is a co-isometry, then

\[
\frac{\lambda}{\lambda'}\|K^*x\|^2 = \frac{\lambda}{\lambda'}\|T^*K^*x\|^2
\leq \lambda\|K^*T^*x\|^2
\leq \sum_n \langle T^*x_n, x_n \rangle \langle x_n, T^*x \rangle
= \sum_n \langle x, Tx_n \rangle \langle Tx_n, x \rangle.
\]

which implies that \(\{Tx_n\}_{n \in J} \) is a \(K \)-frame for \(E \).

Remark 3.7. If \(K \in L(E) \) with dense range, \(T \in L(E) \) with closed range such that \(TK = KT \) and \(\{x_n\}_{n \in J} \) is a \(K \)-frame for \(E \). Then \(\{Tx_n\}_{n \in J} \) is a \(K \)-frame for \(E \) if and only if \(T \) is surjective.

Theorem 3.8. Let \(K \in L(E) \) with dense range and \(\{x_n\}_{n \in J} \) is a \(K \)-frame for \(E \). Let \(T \in L(E) \) with closed range. If \(\{Tx_n\}_{n \in J} \) and \(\{T^*x_n\}_{n \in J} \) are \(K \)-frames for \(E \) then \(T \) is invertible.

Proof. By Theorem 3.4, \(T \) is surjective. Since \(\{T^*x_n\}_{n \in J} \) is a \(K \)-frame for \(E \) then there exist positive numbers \(\mu \) and \(\lambda \) such that for every \(x \in E \)

\[
\lambda\|K^*x\|^2 \leq \|\sum_n \langle x, T^*x_n \rangle \langle T^*x_n, x \rangle\| \leq \mu\|x\|^2
\]

So for \(x \in N(T) \) we have

\[
\lambda\|K^*x\|^2 \leq \sum_n \langle x, T^*x_n \rangle \langle T^*x_n, x \rangle = 0
\]

Then \(\|K^*x\|^2 = 0 \), so \(x \in N(K^*) \). On the other hand \(K \in L(E) \) has dense range so \(K^* \) is injective and so \(T \) is injective.
4. Sums of K-frames

In this section we shall show that the sum of two K-frames in a Hilbert C^*-module under certain conditions is again a K-frame. It is proved, in Hilbert space case, by Ramu and Johnson [15]. In the proof of Theorem 3.2 of [13] indicates that if T has closed range then $R(T^*T)$ is closed and $R(T) = R(T^*T)$. The following theorem says that this result still holds for adjointable operators between Hilbert C^*-modules (even though $R(T^*)$ may not be complemented).

Theorem 4.1. [13] For T in $L(E,F)$, the sub-spaces $R(T^*)$ and $R(T^*T)$ have the same closure.

In [16], Sharifi show that the conversely of the above theorem is also true.

Theorem 4.2 (Lemma 1.1, [16]). Suppose $T \in L(E)$, then the operator T has closed range if and only if $R(TT^*)$ has closed rang. In this case, $R(T) = R(TT^*)$.

Corollary 4.3. Suppose $T \in L(E^+)$, then $R(T)$ is closed if and only if $R(T^{1/2})$ is closed. In this case, $R(T) = R(T^{1/2})$.

Proof. The proof is immediately consequence of replacement T by $T^{1/2}$ in the above theorem. □

Theorem 4.4. Let E be a Hilbert module and $A,B \in L(E)$ such that $R(A) + R(B)$ is closed. Then

$$R(A) + R(B) = R((AA^* + BB^*)^{1/2})$$

Proof. Define $T \in L(E \oplus E)$ by $T := \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$ then $T^* = \begin{bmatrix} A^* & 0 \\ B^* & 0 \end{bmatrix}$ and

$$TT^* = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A^* & 0 \\ B^* & 0 \end{bmatrix} = \begin{bmatrix} AA^* + BB & 0 \\ 0 & 0 \end{bmatrix}.$$

So we have

$$(TT^*)^{1/2} = \begin{bmatrix} (AA^* + BB^*)^{1/2} & 0 \\ 0 & 0 \end{bmatrix}.$$

On the other hand

$$T \begin{bmatrix} E \\ E \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E \\ E \end{bmatrix}$$

thus

$$R(T) = R(A) + R(B) \oplus \{0\}.$$
Since $R(T) = (R(A) + R(B))$ is closed then by Theorem 4.2, $R(T) = R(TT^*)$, but by the Corollary 4.3, $R(TT^*) = R((TT^*)^{1/2})$. So we have

$$R(A) + R(B) = R((AA^* + BB^*)^{1/2}).$$

□

The following theorem is a generalization of Douglas theorem [Theorem 1.1, [18]], for Hilbert modules.

Theorem 4.5. Let $A, B_1, B_2 \in L(E)$ and $R(B_1) + R(B_2)$ is closed. The following statements are equivalent.

1. $R(A) \subset R(B_1) + R(B_2)$;
2. $AA^* \leq \lambda(B_1B_1^* + B_2B_2^*)$ for some $\lambda > 0$;
3. There exist $X, Y \in L(E)$ such that $A = B_1X + B_2Y$.

Proof. (1) \implies (2): Suppose $R(A) \subset R(B_1) + R(B_2)$ then by Theorem 4.4, we have

$$R(A) \subset R(B_1) + R(B_2) = R((B_1B_1^* + B_2B_2^*)^{1/2})$$

thus by Theorem 2.2, $AA^* \leq \lambda(B_1B_1^* + B_2B_2^*)$ for some $\lambda > 0$.

(2) \implies (1): By Theorems 2.2, and 4.5, it is clear.

(3) \implies (1): It is obvious.

(1) \implies (3): Define $S, T \in L(E \oplus E)$

$$S = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \quad T = \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix}$$

. Then $R(S) \subset R(T)$, by Theorem 2.2, suppose

$$X = \begin{bmatrix} X_1 & X_3 \\ X_2 & X_4 \end{bmatrix}$$

is the solution of $S = TX$, so we have $A = B_1X_1 + B_2X_2$. This completes the proof.

□

Now we want to show that under certain conditions the sum of two K-frame, is a K-frame. Firstly suppose $\{x_n\}_{n \in J}$ and $\{y_n\}_{n \in J}$ are two Bessel sequences in Hilbert module E, then by the Minkowski’s inequality it is easy to see that $\{x_n + y_n\}_{n \in J}$ is also a Bessel sequence for E.

Theorem 4.6. Let $\{x_n\}_{n \in J}$ and $\{y_n\}_{n \in J}$ be two K-frames for E and also let the corresponding operators in Theorem 2.9, be L_1 and L_2 respectively. If $L_1L_2^*$ and $L_2L_1^*$ are positive operators and $R(L_1) + R(L_2)$ is closed, then $\{x_n + y_n\}_{n \in J}$ is a K-frame for E.
Proof. By the hypothesis we have

\[L_1 e_n = x_n, \quad L_2 e_n = y_n, \quad R(K) \subset R(L_1), R(K) \subset R(L_2), \]

where \(\{e_n\}_{n \in J} \) is the canonical orthonormal basis of \(\ell^2(A) \). So \(R(K) \subset R(L_1) + R(L_2) \), by Theorem 4.5, \(KK* \leq \lambda (L_1 L_1^* + L_2 L_2^*) \) for some \(\lambda > 0 \). On the other hand for each \(x \in E \),

\[
\sum_{n=1}^{\infty} \langle x, x_n + y_n \rangle \langle x_n + y_n, x \rangle = \sum_{n=1}^{\infty} \langle (L_1^* + L_2^*)x, e_n \rangle \langle e_n, (L_1 + L_2)^*x \rangle \\
= \sum_{n=1}^{\infty} \langle (L_1 + L_2)^*x, e_n \rangle \langle e_n, (L_1 + L_2)^*x \rangle \\
= \| (L_1 + L_2)^*x \|_{\ell^2(A)} \\
= \langle (L_1^* + L_2^*)x, L_1^*x \rangle \\
= \langle L_1^*x, L_1^*x \rangle + \langle L_1^*x, L_2^*x \rangle \\
+ \langle L_2^*x, L_1^*x \rangle + \langle L_2^*x, L_2^*x \rangle \\
\geq \| (L_1 L_1^* + L_2 L_2^*)x \| \\
\geq \frac{1}{\lambda} \langle KK^*x, x \rangle \\
\geq \frac{1}{\lambda} \langle K^*x, K^*x \rangle.
\]

Thus \(\{x_n + y_n\}_{n \in J} \) is a \(K \)-frame. \(\Box \)

5. \(K \)-frame vectors for unitary systems

A unitary system is a set of unitary operators contains the identity operator. A vector \(\psi \) in \(E \) is called a \textit{complete} \(K \)-frame vector for a unitary system \(U \) on \(E \) if \(U \psi = \{ U \psi \mid U \in U \} \) is a \(K \)-frame for \(E \). If \(U \psi \) is an orthonormal basis for \(E \), then \(\psi \) is called a \textit{complete wandering} vector for \(U \). The set of all complete \(K \)-frame vectors and complete wandering vectors for \(U \) is denoted by \(F_K(U) \) and \(\omega(U) \), respectively. In this section we characterize \(F_K(U) \) in terms of operators and elements of \(\omega(U) \). Also we give conditions under which a linear operation on given elements of \(F_K(U) \) remain an element of \(F_K(U) \).

Definition 5.1. For unitary system \(U \) on Hilbert module \(E \) and \(\psi \in E \), the local commutant \(C_\psi(U) \) of \(U \) at \(\psi \) is defined by

\[C_\psi(U) = \{ T \in L(E) \mid TU \psi = UT \psi, \quad U \in U \}. \]

Also let \(\ell^2(U) \) be the Hilbert \(A \)-module defined by

\[\ell^2(U) = \{ \{ a_U \} \subset A : \sum a_U a_U^* \text{ converges in } \| \cdot \| \}. \]
The following theorem characterizes complete K-frame vectors in terms of operators on complete wandering vectors.

Theorem 5.2. Suppose U is a unitary system of E, $K \in L(E)$, $\psi \in \omega(U)$, $\eta \in E$, and suppose that $\psi_\eta \in L(E, \ell^2_U(A))$ is given by $T_\eta(x) = \{\langle x, U_\eta \rangle \}_{U \in U}$ and $R(T_\eta^*)$ is orthogonal complemented. Then $\eta \in F_K(U)$ if and only if there exist an operator $A \in C_\psi(U)$ with $R(K) \subset R(A)$ such that $\eta = A\psi$.

Proof. (\Rightarrow) Suppose $\{e_U\}_{U \in U}$ denote the standard orthonormal basis of $\ell^2_U(A)$, where e_U takes value 1_A at U and 0_A at every where else. Now suppose $\eta \in F_K(U)$, define operator T_ψ from E to $\ell^2_U(A)$ by $T_\psi x = \sum_{U \in U} \langle x, U\psi \rangle U_\eta e_U$. It is easy to check that T_ψ is well defined, adjointable and invertible. Let $A = T_\eta^* T_\psi$. Then for any $x \in E$, we have $Ax = \sum_{U \in U} \langle x, U\psi \rangle U_\eta$ and $A^* x = \sum_{U \in U} \langle x, U_\eta \rangle U\psi$, also

$$\langle A^* x, A^* x \rangle = \left\langle \sum_{U \in U} \langle x, U\eta \rangle U_\psi, \sum_{U \in U} \langle x, U\eta \rangle U_\psi \right\rangle$$

$$= \sum_{U \in U} \langle x, U\eta \rangle \langle U\eta, x \rangle \geq c \langle K^* x, K^* x \rangle,$$

where $c > 0$ is the lower bound for K-frame $\{U_\eta \mid U \in U\}$. On the other hand $R(A) = R(T_\eta^*)$ and so by Theorem 2.2, we have $R(K) \subset R(A)$. To complete the proof, it remains to prove that $\eta = A\psi$ and $A \in C_\psi(U)$. For any U and V in U

$$\langle V_\eta, AU_\psi \rangle = \langle V_\eta, \sum_{U \in U} \langle U_\psi, W_\psi \rangle W_\eta \rangle$$

$$= \sum_{U \in U} \langle V_\eta, W_\eta \rangle \langle W_\psi, U_\psi \rangle \geq c \langle V_\eta, AU_\psi \rangle = \langle V_\psi, U_\psi \rangle.$$

This implies that $AU_\psi = U_\eta$, so $A\psi = \eta$. Also $AU_\psi = U_\eta = UA_\psi$, hence $A \in C_\psi(U)$ and this completes the proof of this part.

(\Leftarrow): Suppose that there exists an operator $A \in C_\psi(U)$ with $R(K) \subset R(A)$ such that $\eta = A\psi$. Then for any $x \in E$, we have
\[
\sum_{U \in \mathcal{U}} \langle x, U\eta \rangle \langle U\eta, x \rangle = \sum_{U \in \mathcal{U}} \langle x, UA\psi \rangle \langle UA\psi, x \rangle = \sum_{U \in \mathcal{U}} \langle A^*x, U\psi \rangle \langle U\psi, A^*x \rangle = \langle A^*x, A^*x \rangle \leq \|A^*\|^2 \|x\|^2 \tag{5.3}
\]

So \(\{U\eta \mid U \in \mathcal{U}\} \) is a Bessel sequence for \(E \). Now let \(T_\eta \) and \(T_\psi \) be the operators as we defined in the first part of the proof, since \(\eta = A\psi \) so we have \(T_\eta = T_\psi A^* \). Since \(\psi \in w(\mathcal{U}) \), it is easy to see that \(T_\psi^* \) is invertible and hence \(R(T_\eta^*) = R(A) \). So \(R(K) \subset R(T_\eta^*) \). Therefore by using Theorem 3.2 of [10] \(\eta \in \mathcal{U}_K(\mathcal{U}) \).

\[\Box\]

References

1. Benedetto, JJ., Li, S. The theory of multiresolution analysis frames and applications to filter banks. Applied and Computational Harmonic Analysis. 5(4), 389-427. (1998).
2. Casazza, P.G., Christensen, O. and Stoeva, DT. Frame expansions in separable Banach spaces. Journal of mathematical analysis and applications. 307(2), 710-723. (2005).
3. Casazza, P.G., Kutyniok, G. and Li, S. Fusion frames and distributed processing. Applied and computational harmonic analysis, 25(1), pp.114-132. (2008).
4. Casazza, P.G., Kutyniok, G. Frames of subspaces. Contemporary Mathematics 345 87-114. (2004).
5. Christensen O. An introduction to frames and Riesz bases. Boston. Birkhuser. (2003).
6. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341366, (1952).
7. Douglas, R.G. On majorization, factorization and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17 (2) 413415. (1966).
8. Grchenig, K. Describing functions: atomic decompositions versus frames. Monatshefte fr Mathematik. 112(1), 1-42. (1999).
9. Gvruta, L. Frames for operators. Appl. Comput. Harmon. Anal. 32, 139144 (2012).
10. Frank, M., Larson, DR. A module frame concept for Hilbert. The Functional and Harmonic Analysis of Wavelets and Frames: AMS Special Session on the Functional and Harmonic Analysis of Wavelets. San Antonio, Texas. 207-247. (1999).
11. Jalalian, M. Sultanzadeh, F. and Hassani, M. On operator ranges in hilbert \(C^\ast \)-module, The 4th Seminar on Functional Analysis and its Applications. Ferdowsi University of Mashhad, Iran. (2016).
12. Jing, W. Frames in Hilbert \(C^\ast \)-modules, Ph.D. Thesis, University of Central Florida. (2006).
13. Lance, E. C. Hilbert C*-modules, A Toolkit for Operator Algebraists: University of Leeds, Cambridge University Press, (1995).
14. Najati, A., Saem, MM. and Gavruta, P. Frames and operators in Hilbert C*-modules. arXiv preprint arXiv. 1403.0205. (2014).
15. Ramu, G., Johnson, PS. Frame operators of K-frames. SeMA Journal. 73(2), 171-181. (2016).
16. Sharifi, K. The product of Operators with closed range in Hilbert C*-modules. Linear Algebra and its Application, vol. 435 1122-1130. (2011).
17. Sun, W. G-frames and G-Riesz bases. Journal of Mathematical Analysis and Applications 322.1, 437-452. (2006).
18. Fang, X., Yu, J. and Yao, H. Solutions to operator equations on Hilbert C-modules. Linear Algebra and its Applications, 431(11), pp.2142-2153. (2009).
19. Wegge-Olsen, N.E. K-Theory and C-Algebras: A Friendly Approach, Oxford University Press, Oxford, (1993).
20. Xu, Q. Sheng, L. Positive semi-definite matrices of adjointable operators on Hilbert C-modules. Linear Algebra and its Applications, 428(4), pp.992-1000. (2008).

DEPARTMENT OF MATHEMATICS, SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE, DAMGHAN UNIVERSITY, DAMGHAN, IRAN,

E-mail address: abbaspour@du.ac.ir

FACULTY OF MATHEMATICS AND COMPUTER SCIENCES, HAKIM SABZEVARI UNIVERSITY, SABZEVAR, IRAN

E-mail address: arefijamal@sttu.ac.ir

DEPARTMENT OF MATHEMATICS, SCHOOL OF MATHEMATICS AND COMPUTER SCIENCE, DAMGHAN UNIVERSITY, DAMGHAN, IRAN,

E-mail address: mahmoudieh@du.ac.ir