Rotors in triangles and tethrahedra

Javier Bracho and Luis Montejano

September 24, 2018

1 Introduction

A polytope P is circumscribed about a convex body $\phi \subset \mathbb{R}^n$ if $\phi \subset P$ and each facet of P is contained in a support hyperplane of ϕ. We say that a convex body $\phi \subset \mathbb{R}^n$ is a rotor of a polytope P if for each rotation ρ of \mathbb{R}^n there exist a translation τ so that P is circumscribed about $\tau \rho \phi$.

If Q^n is the n-dimensional cube then a convex body Φ is a rotor of Q^n if and only if Φ has constant width. However, there are convex polytopes that have rotors which are not of constant width.

A survey of results in this area has been given by Golberg [4]. See also the book Convex Figures of Blotyanskii and Yaglom [3].

It is well known that if Φ is a convex plane figure which is a rotor in the polygon P, then every support line of Φ intersects its boundary in exactly one point, and if Φ intersects each side of P at the points $\{x_1, \ldots, x_n\}$, then the normals of Φ at these points are concurrent.

In this paper we shall prove that if P is a triangle, then there is a baricentric formula that describes the curvature of bdΦ at the contact points. We prove also that if $\Phi \subset \mathbb{R}^3$ is a convex body which is a rotor in a tetrahedron T then the normal lines of Φ at the contact points with T generically belong to one ruling of a quadric surface.

2 Rotors in the triangle

Consider Φ a smooth rotor in the triangle T and suppose that the three sides of T intersect the boundary of Φ at the points x_1, x_2, x_3, respectively. As in the case of constant width bodies in which the radii of curvature of the boundary at the ends of a binormal sum to h, we are interested in a formula that involves the curvatures of the boundary of Φ at x_1, x_2, x_3.

A C^m framed curve (α, λ) is a curve of class C^m given by a parametrization of the following form: there is a support function $P : (-\delta, \delta) \to \mathbb{R}$ of class C^m, $m \geq 2$, such that $\alpha(\theta) = P(\theta)u(\theta_0 + \theta) + P'(\theta)u'(\theta_0 + \theta)$ and λ is the tangent line through $\alpha(0) = x$, in the direction x^\perp. Therefore, $P'(0) = 0$ and $\alpha(0) = P(0)u(\theta_0)$ is the closest point of the line λ to the origin and the normal
line of α at $\alpha(0)$ passes through the origin. Where $u(\theta) = (\cos \theta, \sin \theta)$ and $u'(\theta) = (-\sin \theta, \cos \theta)$, for every $\theta \in \mathbb{R}$.

A sliding along two given C^n framed curves (α_1, λ_1) and (α_2, λ_2) is a one parameter family of Euclidean isometries $L_\theta, \theta \in (-\epsilon, \epsilon), \epsilon > 0$, satisfying

- L_0 is the identity map,
- L_θ rotates the plane by an angle of θ,
- $L_\theta(\lambda_i)$ is a tangent line of the curve α_i, for each $\theta \in (-\epsilon, \epsilon)$ and $i = 1, 2$.

Lemma 1. Let (α_1, λ_1) and (α_2, λ_2) be two C^n framed curves. Suppose that their normal lines at $\alpha_1(0) = x_1$ and $\alpha_2(0) = x_2$ are not parallel and are concurrent at the origin. Then

1. there is a unique sliding $L_\theta, \theta \in (-\epsilon, \epsilon), \epsilon > 0$, along them,
2. there is a C^n map $f : (-\epsilon, \epsilon) \to \mathbb{R}^2$ such that $L_\theta(x) = R_\theta(x) + f(\theta)$, for every $x \in \mathbb{R}^2, f(0) = f'(0) = 0$, where R_θ is the rotation of the plane about the origin by an angle of θ.
3. If the origin does not lie in the line λ_3, then the envelope of $\{L_\theta(\lambda_3)\}_{\theta \in (-\epsilon, \epsilon)}$ is a C^n framed curve (α_3, λ_3), such that the tangent line at $\alpha_3(0)$ is λ_3 and the normal line at $\alpha_3(0)$ passes through the origin.

Proof. Let E be the Lie Group of orientation-preserving isometries of the Euclidean space \mathbb{R}^2. Let R_θ denote the rotation about the origin by an angle of θ. Since every $g \in E$ takes the form $g(x) = R_\theta(x) + f$ for some θ and a fixed $f \in \mathbb{R}^2$, we will identify a neighborhood of the identity in E with $(-\gamma, \gamma) \times \mathbb{R}^2 \subset \mathbb{R}^3$, via the mapping $(\theta, f) \to R_\theta + f$. Observe that the identity in E is identified with the origin in \mathbb{R}^3.

Given a C^n framed curve (α, λ) with support function $\mathcal{P}(\theta)$, consider the set

$$\mathcal{S} = \{g \in E \mid g(\lambda) \text{ is a tangent line to } \alpha\}$$

defined in the neighborhood of the identity in E (or of the origin in \mathbb{R}^3). We shall prove that \mathcal{S} is a surface of class C^n. Indeed, we have the following explicit parametrization: consider the map $\psi : \mathbb{R}^2 \to \mathbb{R}^3$ given by $\psi(\theta, t) = (\theta, h(\theta, t))$, where $h(\theta, t) = (\mathcal{P}(\theta) - \mathcal{P}(0))u(\theta_0 + \theta) + tu'(\theta_0 + \theta)$. It is not difficult to verify that for every $-\delta \leq \theta \leq \delta$ and $t \in R$, the isometry $L_\theta + h(\theta, t)$ sends the line λ to a tangent line of α. Furthermore,

$$\frac{d\psi}{d\theta}(0) = (1, \mathcal{P}'(0)u(\theta_0)) = (1, 0, 0)$$

and

$$\frac{d\psi}{dt}(0) = (0, u'(\theta_0))$$

Moreover, it follows that the normal vector to \mathcal{S} at the origin is $(0, -u(\theta_0))$.

Now, given two C^m framed curves, (α_1, λ_1) and (α_2, λ_2), let S_1 and S_2 be their corresponding surfaces. If $\alpha_i(0) = P_i(0)u(\theta_i)$, then the normal vector to S_i at the origin is $(0, -u(\theta_i))$, $i = 1, 2$, and since $\theta_1 \neq \theta_2$, we have that in a neighborhood of the origin S_1 and S_2 intersect transversally in a curve of the form $(\theta, f(\theta))$ and hence the sliding can be written as

$$L_\theta = R_\theta + f(\theta)$$

where $f : (-\epsilon, \epsilon) \to \mathbb{R}^2$ is of class C^m.

Thus, for $i = 1, 2$ the support function of α_i is given by

$$P_i(\theta) = P_i(0) + \langle f(\theta), u(\theta_i + \theta) \rangle.$$

where $\langle \cdot, \cdot \rangle$ denotes the interior product.

This implies that $f(0) = 0$ and furthermore, $0 = P_i'(0) = \langle f'(0), u(\theta_i) \rangle$.

Since $\theta_1 \neq \theta_2$, then $f'(0) = 0$.

Finally, let θ_3 be such that $u(\theta_3)$ is orthogonal to the line λ_3 and let r_3 be the distance from λ_3 to the origin. Then the support function of α_3 is given by

$$P_3(\theta) = r_3 + \langle f(\theta), u(\theta_3 + \theta) \rangle$$

and $P_3'(0) = 0$ as we wished. \qed

For curves of constant width h, the sum of the radii of curvature at extreme points of every diameter is h. For rotors in a triangle, the analogous result is the following baricentric formula.

Theorem 1. Let Φ be a rotor in the triangle T with vertices $\{A_1, A_2, A_3\}$. Suppose the boundary of Φ is twice continuous differentiable and let $x_3 = \Phi \cap A_1A_2$, $x_1 = \Phi \cap A_2A_3$ and $x_2 = \Phi \cap A_3A_1$. Let $\{a_1, a_2, a_3\}$ be the baricentric coordinates of the point O with respect to the triangle T, where O is the point at which the normal lines to T at the points x_1, x_2 and x_3 concur. If r_i is the distance from O to x_i and κ_i the curvature of the boundary of Φ at x_i, $i = 1, 2, 3$, then

$$\frac{a_1}{\kappa_1 r_1} + \frac{a_2}{\kappa_2 r_2} + \frac{a_3}{\kappa_3 r_3} = 1.$$
Proof. Let \(\alpha_i : (-\epsilon, \epsilon) \to \mathbb{R}^2 \) be a \(C^2 \)-parametrization of a neighborhood of the boundary of \(\Phi \) around \(x_i \), with \(\alpha_i(0) = x_i \) and let \(\lambda_i \) be the line through \(A_{i+1}A_{i+2} \mod 3 \), so that \((\alpha_i, \lambda_i) \) are \(C^2 \) framed curves, whose corresponding normal lines at \(x_i \) are concurrent at \(O \). Suppose without loss of generality that \(O \) is the origin. By Lemma 1, there is a sliding along the three framed curves. That is, there is a one parameter family of Euclidean isometries \(L_\theta \), \(\theta \in (-\epsilon, \epsilon), \epsilon > 0 \), satisfying

- \(L_0 \) is the identity map,
- \(L_\theta \) rotates the plane by an angle of \(\theta \),
- \(L_\theta(\lambda_i) \) is a tangent line of the curve \(\alpha_i \), for each \(\theta \in (-\epsilon, \epsilon) \) and \(i = 1, 2, 3 \).

Furthermore, there is a \(C^2 \) map \(f : (-\epsilon, \epsilon) \to \mathbb{R}^2 \) such that

\[
L_\theta(x) = R_\theta(x) + f(\theta),
\]

for every \(x \in \mathbb{R}^2 \), \(f(0) = f'(0) = 0 \), where \(R_\theta \) is the rotation of the plane through the origin by an angle of \(\theta \).

Let \(\mathcal{P}_i(\theta) \) be the pedal function of the framed curve \(\alpha_i \), with \(\mathcal{P}_i(0) = r_i = |x_i|, i = 1, 2, 3 \). Hence, \(\mathcal{P}_i'(0) = 0 \) and the radius of curvature of the boundary of \(\Phi \) at \(x_i \) is

\[
\frac{1}{\kappa_i} = \mathcal{P}_i(0) + \mathcal{P}_i''(0).
\]

On the other hand, \(\mathcal{P}_i(\theta) = |L_\theta(x_i)| = |R_\theta(x_i) + f(\theta)| \). Hence,

\[
\mathcal{P}_i(\theta)^2 = \langle R_\theta(x_i) + f(\theta), R_\theta(x_i) + f(\theta) \rangle.
\]

So,

\[
\mathcal{P}_i(\theta)\mathcal{P}_i'(\theta) = \langle R_\theta(x_i) + f(\theta), R_\theta(x_i) + f'(\theta) \rangle.
\]

Let \(h_i(\theta) = \langle R_\theta(x_i), f'(\theta) \rangle + \langle R_\theta(x_i), f'(\theta) \rangle + \langle f'(\theta), f'(\theta) \rangle \) in such a way that

\[
\mathcal{P}_i'(\theta) = \frac{h_i(\theta)}{\mathcal{P}_i(\theta)}
\]

and

\[
\mathcal{P}_i''(\theta) = \frac{h_i'(\theta)\mathcal{P}_i(\theta)^2 - h_i(\theta)^2}{\mathcal{P}_i(\theta)^3}.
\]

Note that \(h_i(0) = 0 \) and \(h_i'(0) = \langle f''(0), x_i \rangle \).

Since the radius of curvature of \(\partial \Phi \) at \(x_i \) is given by \(\mathcal{P}_i(0) + \mathcal{P}_i''(0) \), we have that for \(i = 1, 2, 3 \)

\[
\frac{1}{\kappa_i} = r_i + \frac{\langle f''(0), x_i \rangle}{r_i}.
\]
Let \(\{b_1, b_2, b_3\} \) be the baricentric coordinates of the origin \(O \) with respect to the triangle with vertices \(\{x_1, x_2, x_3\} \). That is: \(b_1 x_1 + b_2 x_2 + b_3 x_3 = 0 \), with \(b_1 + b_2 + b_3 = 1 \). Hence, for \(i = 1, 2, 3 \),

\[
\frac{b_i r_i^2}{\kappa_i r_i} = b_i r_i^2 + \langle f''(0), b_i x_i \rangle,
\]

and therefore,

\[
\sum b_i r_i^2 = \sum b_i r_i^2 + 0.
\]

To conclude the proof of the theorem, it will be enough to prove that

\[
a_i = \frac{b_i r_i^2}{b_1 r_1^2 + b_2 r_2^2 + b_3 r_3^2}.
\]

The basic property that defines \(A_i \) is

\[
\langle A_i, x_j \rangle = \langle x_j, x_j \rangle = r_j^2 \quad \text{for} \quad i \neq j.
\]

Using it, one easily obtains that

\[
\langle b_1 r_1^2 A_1 + b_2 r_2^2 A_2 + b_3 r_3^2 A_3, x_j \rangle = \langle r_j^2 A_j, b_1 x_1 + b_2 x_2 + b_3 x_3 \rangle = 0,
\]

for \(j = 1, 2, 3 \). This implies that \(b_1 r_1^2 A_1 + b_2 r_2^2 A_2 + b_3 r_3^2 A_3 = 0 \) because the \(x_j \) generate \(\mathbb{R}^2 \), and from here

\[
\sum b_i r_i^2 A_1 + \sum b_i r_i^2 A_2 + \sum b_i r_i^2 A_3 = 0.
\]

It follows that

\[
\frac{a_1}{\kappa_1 r_1} + \frac{a_2}{\kappa_2 r_2} + \frac{a_3}{\kappa_3 r_3} = 1,
\]

as we wished.

\[\square\]

3 The relation with immobilization problems

Immobilization problems were introduced by Kuperberg \[5\] and also appeared in \[8\]. They were motivated by grasping problems in robotics (\[6\] and \[7\]).

Let \(\Phi \subset \mathbb{R}^n \) be a convex body. A collection of points \(X \) on the boundary of \(\Phi \) is said to immobilize \(\Phi \) if any small rigid movement of \(\Phi \) causes one point in \(X \) to penetrate the interior of \(\Phi \). In the plane, for the case in which three points \(X = \{x_1, x_2, x_3\} \) lie in the boundary \(\Phi \), there is a baricentric formula involving the curvature of \(\partial \Phi \) at \(x_i \) that allows us to know if \(X \) immobilizes \(\Phi \). See \[1\].

Theorem 2. Let \(\Phi \) be a twice continuous differentiable convex figure and let \(X = \{x_1, x_2, x_3\} \) be three points in the boundary of \(\Phi \), whose normals are concurrent at the point \(O \). Let \(\{a_1, a_2, a_3\} \) be the baricentric coordinates of the point \(O \) with respect to the vertices of the triangle formed be the three support lines...
of Φ at x_1, x_2 and x_3. Also, let r_i be the distance from O to x_i, let κ_i be the curvature of the boundary of Φ at x_i, $i = 1, 2, 3$, and let

$$\omega = a_1 \kappa_1 r_1 + a_2 \kappa_2 r_2 + a_3 \kappa_3 r_3.$$

Then, if $\omega < 1$, \{x_1, x_2, x_3\} immobilize Φ, and if $\omega > 1$, they do not.

There is a duality between Theorem 2 and Theorem 1. While in Theorem 2, we have a rigid segment sliding along the boundary of the convex figure Φ, in Theorem 1, we have a rigid angle (formed by two lines) sliding along the boundary of Φ.

In dimension three, immobilization results are much more complicated. See [2]. To characterize when four points in the faces of a tetrahedron T immobilize T we require the following definition.

Let $\{L_1, L_2, L_3, L_4\}$ be four directionally independent lines in \mathbb{R}^3. We say that they belong generically to one ruling of a quadric surface if

- they are concurrent,
- they belong to one ruling of a quadric surface, or
- they meet in pairs and the planes these pairs generate meet in the line through the intersecting points.

Theorem 3. A necessary and sufficient condition for four points $\{x_1, x_2, x_3, x_4\}$, in the corresponding four faces of a tetrahedron T, to immobilize it, is that the normal lines to T at x_1, x_2, x_3 and x_4 belong generically to one ruling of a quadratic surface.

The “duality” mentioned above, gives us the following theorem for rotors in a tetrahedron.

Theorem 4. Let Φ a twice continuous differentiable rotor in the tetrahedron T, and let $\{x_1, x_2, x_3, x_4\}$ be the points of the boundary of Φ that intersect the four faces of T. Then, the normal lines to T at x_1, x_2, x_3 and x_4 belong generically to one ruling of a quadratic surface.

Proof. Consider a tetrahedron T that circumscribes Φ. For every $\rho \in SO(3)$, let $T(\rho)$ be the tetrahedron directly homothehtic to ρT circumscribing Φ and let $V_\Phi(\rho)$ be the volume of of $T(\rho)$. It is not difficult to see that $V_\Phi(\rho)$ depends continuously on ρ.

We will prove that if ρ_0 is a local maximum of $V_\Phi(\rho)$, then the four normal lines to the boundary of Φ at the points that touch the four faces of $T(\rho_0)$, belong generically to one ruling of a quadratic surface. If this is so, then the proof the theorem is complete because Φ is a rotor in T if and only if $V_\Phi(\rho)$ is constant. For the proof of the above statement, it will be sufficient to consider the case in which Φ is a tetrahedron. The reason is that if a, b, c and d are the points in which the sides of $T(\rho_0)$ touch the boundary of Φ, then ρ_0 is also a local maximum of $V_K(\rho)$, where K is the tetrahedron with vertices $\{a, b, c, d\}$.

6
Let H_a, H_b, H_c and H_d be four planes containing the faces of the tetrahedron $T(\rho_0)$, in such a way that $a \in H_a, b \in H_b, c \in H_c$ and $d \in H_d$, respectively. Assume now that $a T(\rho_0)$ is a rigid tetrahedron sliding along a, b, c. That is, $T(\rho_0)$ is sliding rigidly in such a way that the points a, b, c remain fixed but inside the planes H_a, H_b and H_c, and during the rigid sliding movement of $T(\rho_0)$, the fixed point d is always inside $T(\rho_0)$.

The proof of Theorem 4 now follows straightforward from the proof or Theorem 3 in [2], but this time we consider, instead of a rigid triangle sliding along three fixed planes, the dual situation of a 3-dimensional rigid sector (the angle between three planes H_a, H_b and H_c) sliding along three fixed points a, b, c.

\[\square \]

References

[1] Bracho J., Montejano L. and Urrutia J. Immobilization of smooth convex curves. *Geometriae Dedicata*. 53 (1994), 119-131.

[2] Bracho J., Fetter H., Mayer D. and Montejano L. Immobilization of solids and mondriga quadratic forms. *Journal of the London Math. Soc.* 51 (1995), 189-200.

[3] Boltianski, W.G. and Yaglom, I.M., *Convex Figures*. Holt Rinehart and Winston, New York 1961.

[4] Golberg, M., Rotors in polygons and polyhedra. *Math. Comput.* 14, (1960), 229-239.

[5] Kuperberg W., DIMACS Workshop in Polytopes *Rutgers University*. Jan. 1990.

[6] Markenscoff X., Ni L. and Papadimitrou CH. H., Optimal grid of a polygon. *Int. J. Robotics Research*. 8(2) (1989), 17-29.

[7] Markenscoff X., Ni L. and Papadimitrou CH. H., The geometry gof grasping. *Int. J. Robotics Research*. 9(1) (1990), 61-74.

[8] O’Rourke. J. Comptutational Geometry, column 9 *SIGACT News*. 21(1) (1990), 18-20, No.74.