INTRODUCTION

Panic disorder (PD) is a common and serious psychiatric illness, characterized by sudden, unexpected, and recurring panic attacks.[1] Panic attack symptoms include palpitations, sweating, shaking, shortness of breath, and fear of losing control.[2] These symptoms resemble those of serious medical conditions such as myocardial infarction and stroke.

Serotonergic system dysfunction and serotonin (5-hydroxytryptamine [5-HT]) have been postulated to play a role in the neurobiology of PD. Furthermore, this hypothesis was supported by clinical and experimental studies, brain imaging, genetic studies, and pharmacotherapy of PD.[3] Two opposing hypotheses, 5-HT excess or over activity[4] and 5-HT deficit or under activity,[5] have been proposed for explaining the panic phenomenon. Excess theory suggested that patients with PD had increased level of 5-HT release or hypersensitivity in postsynaptic 5-HT receptors. Deficit theory suggested that 5-HT had restraining effects on PD, particularly in brain regions such as the dorsal periaqueductual, 5-HT deficit may facilitate panic episodes. The 5-HT system may have a dual role in the modulation of different forms of pathological anxiety; it not only inhibits panic responses but also contributes to anticipatory or generalized anxiety.[6]

5-HT is a neurotransmitter of the central nervous system (CNS), which plays a vital role in platelet aggregation and vascular tone regulation.[7] Platelet and serotonergic neurons use the same serotonin transporter to transport serotonin into their cells and ways to store it. These cells are major storage sites for serotonin.[8] Moreover, previous studies have indicated that serotonin levels in the cerebrospinal fluid and platelets are strongly correlated.[9] Platelet indices such as mean platelet volume (MPV) and platelet distribution width (PDW) were extensively studied in patients with depression, schizophrenia, and bipolar disorders for identifying the risk of developing cardiovascular diseases.[11-13] Furthermore, patients with PD are at increased risk of cardiovascular diseases.[14]

Until now, only few studies have been conducted to evaluate the MPV in patients with PD; however, their results were inconclusive and contradictory.[13-17] Furthermore, their findings were also limited because of small sample size, poor inclusion and exclusion criteria, and lack of use of standardized scales. To overcome these limitations, the present study primarily...
aimed to compare the MPV values in patients with PD and healthy controls. Furthermore, we aimed to compare the platelet and red blood cell (RBC) indices between patients with PD and healthy controls.

Materials and Methods

This case-control study was conducted for 6 months (January 1, 2016 to June 30, 2016) at tertiary care hospital and was approved by the Institutional Ethical Committee.

Sample size

For sample size calculation, we predicted the MPV (mean ± standard deviation [SD]) of patients with PD (cases) and controls (8.8 ± 0.9 fl vs. 9.2 ± 0.8 fl) on the basis of previously conducted studies. On the basis of the considerations (i.e. power of study, 95%; alpha risk, 5%; and equal number of cases and controls), a sample size of >118 in each group was considered adequate for the present study.

Patients

All patients attending emergency services of psychiatry department were evaluated by psychiatrist for the presence of PD. One hundred and twenty-three patients diagnosed as having PD (aged 18–45 years) with or without agoraphobia were included in the study following the criteria of the Diagnostic and Statistical Manual of Mental Disorders-fourth edition-text revision. Patients with comorbid substance abuse, major depression, dysthymia, acute or chronic medical illness, psychotic disorder, diabetes mellitus, and cardiovascular diseases including hypertension, pregnancy, neurological/neurodevelopmental disorder, smoking, and generalized anxiety disorder were excluded from the study. Age- and sex-matched 133 participants from a community with negative history for PD and fulfilling the exclusion criteria of cases (mentioned above) were included in the control group.

Assessment

After explaining the aims and purpose of the study, a written informed consent was obtained from each participant. Subsequently, they were assessed for sociodemographic data, MPV, and other hematological parameters. Three milliliters venous blood of each patient/participant was collected under aseptic precaution in ethylenediaminetetraacetic acid (EDTA)-containing sterile tubes, and the blood samples were shifted to the hematology laboratory of our hospital. The complete blood counts, platelet indices (MPV and PDW), and RBC indices (Red cell distribution width [RDW] and RBC count) were determined within 60 min using an automated hematology analyzer (Beckman coulter, AcT Diff 2[02020]) to minimize the potential influence of EDTA on the MPV. Peripheral blood smear examinations were also performed to provide visual confirmation of the automated results. The reference ranges for MPV and PDW were 8.6–15.5 fl and 8.1–25.0 fl, respectively. All the blood samples were analyzed daily to avoid systemic inconsistency at the same laboratory of our tertiary care teaching hospital.

Data analysis

Data analysis was conducted using SPSS Version. 21.0 (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Armonk, NY). The categorical variables (e.g., gender, place of residence) were expressed in percentages and analyzed through independent Chi-square test and Fisher exact test. The quantitative data were expressed as mean ± SD and compared using the independent t-test. For each test, the significance level was set at P < 0.05.

Results

Table 1 shows the sociodemographic characteristics of patients with PD and healthy controls. The two groups did not have statistically significant differences in terms of their age, gender, and place of residence. Table 2 demonstrates the clinical characteristics of patients with PD and healthy controls. The MPV of the patients with PD was significantly lower than that of healthy controls (7.53 ± 0.93 fl vs. 8.91 ± 1.24 fl).

Table 1: Sociodemographic characteristic patients with panic disorder and healthy controls

Variables	Patients with PD (n=123)	Healthy controls (n=133)	Level of significance (P)
Age (years)†	31.85±11.48	31.28±9.99	t=0.42, df=254, P=0.66
Sex† (%)			
Male	52 (39.10)	65 (45.45)	P=0.32
Female	81 (60.90)	78 (54.55)	
Residence‡ (%)			
Urban	37 (30.08)	26 (19.55)	P=0.059
Rural	86 (69.92)	107 (80.45)	

†Unpaired t-test, ‡Fisher exact test. SD: Standard deviation, PD: Panic disorder

Table 2: Clinical characteristic of patients with panic disorder and healthy controls

Variables	Patients with PD (n=123)	Healthy controls (n=133)	Level of significance (P, df=254)
Hemoglobin (g/dl)	11.97±1.83	11.5±2.39	t=1.75, P=0.08
RBC count (×10¹²/L)	4.32±0.56	4.08±0.80	t=2.68, P=0.007
WBC count (×10⁹/L)	8.35±0.27	9.22±4.41	t=1.81, P=0.07
Platelet count (×10¹²/L)	274.2±80.66	243.1±93.89	t=2.82, P=0.005
MCV (fl)	84.96±10.14	83.08±10.53	t=1.45, P=0.14
MCH (pg)	27.91±3.91	28.3±4.44	t=0.76, P=0.44
MCHC (g/L)	32.77±1.35	34.09±1.47	t=7.48, P<0.0001
RDW (fl)	16.48±2.26	15.01±2.25	t=5.18, P<0.0001
MPV (fl)	7.53±0.93	8.91±1.24	t=10.04, P<0.0001
PCT (%)	0.20±0.06	0.2±0.07	t=0.55, P=0.58
PDW (fl)	16.96±0.85	14.71±2.07	t=11.16, P<0.0001

SD: Standard deviation, PD: Panic disorder, RBC: Red blood cell, WBC: White blood cell, MCV: Mean corpuscular volume, MCH: Mean corpuscular hemoglobin, MCHC: Mean corpuscular hemoglobin concentration, RDW: Red cell distribution width, MPV: Mean platelet volume, PDW: Platelet distribution width, PCT: Plateletcrit
The clinical utility of platelet indices and panic disorder

Comparison between patients with panic disorder and healthy controls in terms of mean platelet volume and platelet distribution width. Furthermore, patients with PD had significantly higher platelet count than did healthy controls (274.2 ± 80.66 × 10¹² L⁻¹ vs. 243.1 ± 93.89 × 10¹² L⁻¹).

Among the RBC indices, the RBC count was higher in patients with PD than in healthy controls (4.32 ± 0.56 × 10¹² L⁻¹ vs. 4.08 ± 0.80 × 10¹² L⁻¹, P < 0.001), and the mean corpuscular hemoglobin concentration (MCHC) was significantly lower in patients with PD than in healthy controls (32.77 ± 1.35 g/L vs. 34.09 ± 1.47 g/L, P < 0.0001). The two groups did not significantly differ in terms of their hemoglobin concentration, mean corpuscular volume, MCH, and plateletcrit (PCT).

DISCUSSION

Platelet indices, such as MPV, PCT, and platelet counts, reflect the central serotonergic functions and are considered windows of brain serotonergic functions because the CNS is the most difficult system to assess. The clinical utility of these platelet indices remains undetermined in psychiatry; despite, all modern hematological cell analyzers routinely produce platelet indices, and a clear evidence of the link between platelet indices and psychiatric disorders has been presented.

In the present study, we observed lower MPV in patients with PD. This finding was consistent with the findings of Göğçegöz Gül et al. and contradictory to those of Kokacya et al. and Asoglu. In contrast to the study conducted by Göğçegöz Gül et al., patients included in our study did not have any comorbid illnesses, such as dysthymia and depression. In addition, adequate sample size was used in our study compared with that in a previously conducted study. Moreover, this finding of the present study was contradictory to that of the postulated hypothesis, which suggested that increased sympathetic activity in cardiovascular diseases and depression can result in higher MPV values. Furthermore, sympathoadrenal activation may stimulate platelets through 2-adrenoreceptor activation, and consequently, platelet activation may cause shape change, thereby increasing MPV. However, the mechanism of increased platelet activity and increased MPV in psychiatric population remains unclear.

In this study, lower values of MPV may be due to abnormal 5-HT transporter rate and its metabolism; this finding was consistent with those of a previously conducted study. Disordered platelets and decreased platelet activity share a pathophysiology for some mental disorders, and PD may be one of them. Modification in serotonin levels and its activity and abnormalities in 5-HT1A receptor functioning in PD has been reported by many researchers. In addition, this finding provides indirect evidence for the 5-HT deficit hypothesis postulated for PD instead of the 5-HT excess hypothesis.

Platelet reactivity was measured in terms of MPV, PDW, and platelet count. PDW represents the variability in platelet size and is a more specific marker of platelet activation than MPV.

In general, MPV and PDW are inversely related to each other; therefore, patients with statistically low MPV value should have high PDW. In the present study, PDW was higher in patients with PD than in healthy controls. The findings of our study are in accordance with the MPV–PDW relationship and provide more marked clinical relevance. Kokacya et al. did not report the status of PDW, and Göğçegöz Gül et al. reported that the difference was insignificant. A substantial significant increase in MPV without any changes in PDW and platelet count is highly unlikely to occur; therefore, we tentatively believe that abnormal 5-HT metabolism reflects abnormal function of the platelets. This leads to decreased MPV and increased PDW, which are markers and the determinants of platelet functions. This abnormal function of platelets may be due to different variations in genetic composition of the Indian population. Increased PDW is one of the crucial prognostic factors in patients with myocardial infarction and patients with PD are at increased risk of cardiac diseases. Therefore, increased PDW may be a useful predictor for cardiac diseases in patients with PD and may help in early detection of individuals at risk for cardiac diseases.

In the present study, patients with PD had increased RBC count and RDW, which support findings of previously conducted retrospective study. An increased value of RDW in an otherwise normal complete blood count...
The findings of our study suggest that the governing hematological parameters (RDW, RBC count, MPV, and PDW) may have an etiological role and a prognostic significance in patients with PD, either independently or interdependently. Therefore, further research is warranted to study the combined effect of these parameters rather than that of individual parameters. One remarkable finding of our study was that variability in any of the RBC indices (RDW) or platelet indices (PDW) may be clinically important in identifying the risk of coronary artery diseases and may have a prognostic significance in patients with PD. Furthermore, Current study findings and previous literature suggest that the combination of PDW-RDW may have clinical significance than the MPV-RDW or MPV-PDW in patients with PD.[15,17]

In addition, MCHC was significantly lower in patients with PD than in healthy controls. MCHC is defined as the average hemoglobin level in RBC, and lower MCHC is associated with poorer outcomes in patients with myocardial infarction.[40] MCHC is an independent prognostic factor and an inflammatory marker similar to RDW. The most novel and crucial finding of previous study is that the inflammatory process reduces MCHC,[41] which is supports the inflammatory or immunological origin of PD and risk to cardiovascular diseases. In addition, we reported increased RDW and PDW values.[42] All these hematological parameters can be documented in routine practice.

Strength and limitations
The present study was a case-control study with an adequate sample size. All other hematological parameters were also considered while interpreting the results. Though there are few studies which suggest the contradictory evidence of MPV-RDW or MPV-PDW in patients with PD. This study suggests that the elevated RDW and PDW may have better clinical significance rather than MPV. The results of this study certainly lead to strong, albeit, indirect conclusions, which will help clinicians and researchers in elucidating the possible role of serotonergic stress in the genesis of PD. In addition, the levels of inflammatory markers such as interleukin (IL)-6, IL-3, thyroid peroxidase, which were positively associated with platelet indices were not measured. Prospective, comprehensive, multicentric, and large-scale studies are warranted to explore the role of these indices in patients with PD and any possible link with cardiovascular diseases.

CONCLUSION
The MPV decreased in patients with PD, whereas the PDW, RDW, and RBC count increased; these findings were in accordance with the inflammatory origin of PD. The individual platelet indices may have little clinical significance; however, a combination of RBC and platelet indices more likely to have an etiological role and a prognostic significance in patients with PD. These factors may provide a link between PD and cardiac diseases.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Freire RC, Zugliani MM, Garcia RF, Nardi AE. Treatment-resistant panic disorder: A systematic review. Expert Opin Pharmacother 2016;17:159-68.
2. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV). Washington, DC: American Psychiatric Association; 2000.
3. Maron E, Shlik J. Serotonin function in panic disorder: Important, but why? Neuropsychopharmacology 2006;31:1-11.
4. Iversen SD. 5-HT and anxiety. Neuropsychopharmacology 1984;23:1553-60.
5. Bell CJ, Nutt DJ. Serotonin and panic. Br J Psychiatry 1998;172:465-71.
6. Deakin JF, Graeff FG. 5-HT and mechanisms of defence. J Psychopharmacol 1991;5:103-15.
7. Vanhoute PM. Platelet-derived serotonin, the endothelium, and cardiovascular disease. J Cardiovasc Pharmacol 1991;17 Suppl 5:56-12.
8. Mercado CP, Kilic F. Molecular mechanisms of SERT in platelets: Regulation of plasma serotonin levels. Mol Interv 2010;10:231-41.
9. Audhya T, Adams JB, Johansen L. Correlation of serotonin levels in CSF, platelets, plasma, and urine. Biochim Biophys Acta 2012;1820:1496-501.
10. Yan D, Uranos T, Pietrzak MH, Shimoyama I, Uemura K, Kojima Y, et al. Correlation between serotonergic measures in cerebrospinal fluid and blood of subhuman primate. Life Sci 1993;52:745-9.
11. Canan F, Dikici S, Kutlucan A, Celbek G, Coskun H, Gungor A, et al. Association of mean platelet volume with DSM-IV major depression in a large community-based population: The MELEN study. J Psychiatr Res 2012;46:298-302.
12. Wysokinski A, Szczepocka E. Platelet parameters (PLT, MPV, P-LCR) in patients with schizophrenia, unipolar depression and bipolar disorder. Psychiatry Res 2016;237:238-45.
13. Correll CU, Frederickson AM, Kane JM, Manu P. Metabolic syndrome and the risk of coronary heart disease in 367 patients treated with second-generation antipsychotic drugs. J Clin Psychiatry 2006;67:575-83.
14. Katemdhal DA. The association between panic disorder and coronary artery disease among primary care patients presenting with chest pain: An updated literature review. Prim Care Companion J Clin Psychiatry 2008;10:276-85.
15. Göggegöz Gül I, Eryilmaz G, Ozten E, Hizli Sayar G. Decreased mean platelet volume in panic disorder. Neuropsychiatr Dis Treat 2014;10:1665-9.
16. Kokacya MH, Copoglu US, Kivrak Y, Ari M, Sahpolat M, Ulutas KT. Increased mean platelet volume in patients with panic disorder. Neuropsychiatr Dis Treat 2015;11:2629-33.
17. Asoglu M, Aslan M, Imre O, Kivrak Y, Akil O, Savik E, et al. Mean platelet volume and red cell distribution width levels in initial evaluation of panic disorder. Neuropsychiatr Dis Treat 2016;12:2435-8.
18. Daniel WW. Hypothesis testing – Determining sample size to control type-II error. Biostatistics: A Foundation for Analysis in the Health Sciences. New York: Wiley and Sons; 1999.
19. Sachdev R, Tiwari AK, Goel S, Raina V, Sethi M. Establishing biological reference intervals for novel platelet parameters (immature platelet fraction, high immature platelet fraction, platelet distribution width, platelet large cell ratio, platelet-X, plateletcrit, and platelet distribution width) and their correlations among each other. Indian J Pathol Microbiol 2014;57:231-5.
20. Koudouovoh-Tripp P, Sperner-Unterweger B. Influence of mental stress on platelet bioactivity. World J Psychiatry 2012;2:134-47.
21. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012;37:137-62.
22. Vizioli L, Muscari S, Muscari A. The relationship of mean platelet volume with the risk and prognosis of cardiovascular diseases. Int J Clin Pract 2009;63:1509-15.
23. Hausberg M, Hillebrand U, Kisters K. Addressing sympathetic overactivity in major depressive disorder. J Hypertens 2007;25:205-6.
24. Hjemdahl P, Larsson PT, Wallen NH. Effects of stress and beta-blockade on platelet function. Circulation 1991;84 6 Suppl: V144-61.
25. Thompson CB, Eaton KA, Princiotta SM, Rushin CA, Valeri CR. Size dependent platelet subpopulations: Relationship of platelet volume to ultrastructure, enzymatic activity, and function. Br J Haematol 1982;50:509-19.
26. Marazziti D, Rossi A, Dell’Osso L, Palego L, Placidi GP, Giannaccini G, et al. Decreased platelet 3H-paroxetine binding in untreated panic disorder patients. Life Sci 1999;65:2735-41.
27. Lesch KP, Wolozin BL, Murphy DL, Reiderer P. Primary structure of the human platelet serotonin uptake site: Identity with the brain serotonin transporter. J Neurochem 1993;60:2319-22.
28. De Luca G, Venegoni L, Iorio S, Secco GG, Cassetti E, Verdoia M, et al. Platelet distribution width and the extent of coronary artery disease: Results from a large prospective study. Platelets 2010;21:508-14.
29. Vagdatli E, Gounari E, Lazaridou E, Katsibourlia E, Tsikopoulo F, Labranou I. Platelet distribution width: A simple, practical and specific marker of activation of coagulation. Hippokratia 2010;14:28-32.
30. Wendland AE, Farias MG, Manfroi WC. Mean platelet volume and cardiovascular disease. J Bras Patol Med Lab 2009;45:371-8.
31. Shen J, Ran ZH, Zhang Y, Cai Q, Yin HM, Zhou XT, et al. Biomarkers of altered coagulation and fibrinolysis as measures of disease activity in active inflammatory bowel disease: A gender-stratified, cohort analysis. Thromb Res 2009;123:604-11.
32. Cetin M, Bakirci EM, Baysal E, Tasolar H, Balli M, Cakici M, et al. Increased platelet distribution width is associated with ST-segment elevation myocardial infarction and thrombolysis failure. Angiology 2014;65:737-43.
33. Tully PJ, Wittert GA, Turnbull DA, Beltrame JF, Horowitz JD, et al. Panic disorder and incident coronary heart disease: A systematic review and meta-analysis protocol. Syst Rev 2015;25:4-33.
34. Madjid M, Fatemi O. Components of the complete blood count as risk predictors for coronary heart disease: In-depth review and update. Tex Heart Inst J 2013;40:17-29.
35. Yu C, Chen M, Chen Z, Lu G. Predictive and prognostic value of admission neutrophil-to-lymphocyte ratio in patients with CHD. Herz 2016;41:605-13.
36. Danesh J, Collins R, Peto R, Lowe GD. Haematocrit, viscosity, erythrocyte sedimentation rate: Meta-analyses of prospective studies of coronary heart disease. Eur Heart J 2000;21:515-20.
37. Gotoh S, Hata J, Ninomiya T, Hirakawa Y, Nagata M, Mukai N, et al. Hematocrit and the risk of cardiovascular disease in a Japanese community: The Hisayama Study. Atherosclerosis 2015;242:199-204.
38. Skjelbakken T, Lappegård J, Ellingsen TS, Barrett-Connor E, Brox J, Lachen ML, et al. Red cell distribution width is associated with incident myocardial infarction in a general population: The Tromsø Study. J Am Heart Assoc 2014;3. pii: e001109.
39. Wang P, Wang Y, Li H, Wu Y, Chen H. Relationship between the red blood cell distribution width and risk of acute myocardial infarction. J Atheroscler Thromb 2015;22:21-6.
40. Khaki S, Mortazavi SH, Bozorgi A, Sadeghian S, Khoshnevis M, Mahmoodian M. Relationship between red blood cell distribution width and mortality of patients with acute myocardial infarction referring to Tehran Heart Center. Crit Pathw Cardiol 2015;14:112-5.
41. Demircan F, Gözel N, Kılınc F, Ulu R, Atmaca M. The impact of red blood cell distribution width and neutrophil/lymphocyte ratio on the diagnosis of major depressive disorder. Neurol Ther 2016;5:27-33.
42. Huang YL, Hu ZD. Lower mean corpuscular hemoglobin concentration is associated with poorer outcomes in intensive care unit admitted patients with acute myocardial infarction. Ann Transl Med 2016;4:190.
43. Ganz T, Nemeth E. Iron sequestration and anemia of inflammation. Semin Hematol 2009;46:387-93.
44. McClung JP, Karl JP. Iron deficiency and obesity: The contribution of inflammation and diminished iron absorption. Nutr Rev 2009;67:100-4.
45. Vogelzangs N, Beekman AT, de Jonge P, Penninx BW. Anxiety disorders and inflammation in a large adult cohort. Transl Psychiatry 2013;3:c249.