ON q-DE RHAM COHOMOLOGY VIA Λ-RINGS

J.P. PRIDHAM

Abstract. We show that Aomoto’s q-deformation of de Rham cohomology arises as a natural cohomology theory for Λ-rings. Moreover, Scholze’s $(q-1)$-adic completion of q-de Rham cohomology depends only on the Adams operations at each residue characteristic. This gives a fully functorial cohomology theory, including a lift of the Cartier isomorphism, for smooth formal schemes in mixed characteristic equipped with a suitable lift of Frobenius. If we attach p-power roots of q, the resulting theory is independent even of these lifts of Frobenius, refining a comparison by Bhatt, Morrow and Scholze.

Introduction

The q-de Rham cohomology of a polynomial ring is a $\mathbb{Z}[q]$-linear complex given by replacing the usual derivative with the Jackson q-derivative $\nabla_q(x^n) = [n]_q x^{n-1} dx$, where $[n]_q$ is Gauss’ q-analogue $\frac{q^n - 1}{q-1}$ of the integer n. In [Sch2], Scholze discussed the $(q-1)$-adic completion of this theory for smooth rings, explaining relations to p-adic Hodge theory and singular cohomology, and conjecturing that it is independent of co-ordinates.

We show that q-de Rham cohomology naturally arises as a functorial invariant of Λ-rings (Theorem 1.11), and that its $(q-1)$-adic completion depends only on a Λ_P-ring structure (Theorem 2.7), for P the set of residue characteristics; a Λ_P-ring has a lift of Frobenius for each $p \in P$. This recovers the known equivalence between de Rham cohomology and complete q-de Rham cohomology over the rationals, while giving no really new functoriality statements for smooth schemes over \mathbb{Z}. However, in mixed characteristic, it means that complete q-de Rham cohomology depends only on a lift Ψ_P of absolute Frobenius locally generated by co-ordinates with $\Psi_P(x_i) = x_i^p$. Given such data, we construct (Proposition 2.8) a quasi-isomorphism between Hodge cohomology and q-de Rham cohomology modulo $[p]_q$, extending the local lift of the Cartier isomorphism in [Sch2] Proposition 3.4).

Taking the Frobenius stabilisation of the complete q-de Rham complex of A yields a complex resembling the de Rham–Witt complex. We show (Theorem 3.10) that up to $(q^{1/p^\infty} - 1)$-torsion, the p-adic completion of this complex depends only on the p-adic completion of $A[\zeta_{p^\infty}]$ (where ζ_n denotes a primitive nth root of unity), with no requirement for a lift of Frobenius or a choice of co-ordinates. The main idea is to show that the stabilised q-de Rham complex is in a sense given by applying Fontaine’s period ring construction A_{inf} to the best possible perfectoid approximation to $A[\zeta_{p^\infty}]$. As a consequence, this shows (Corollary 3.11) that after attaching all p-power roots of q, q-de Rham cohomology in mixed characteristic is independent of choices, which was already known after base change to a period ring, via the comparisons of [BMS] between q-de Rham cohomology their theory A_{Ω^\bullet}.

We expect that the dependence of these cohomology theories either on Adams operations at the residue characteristics (for de Rham) or on p-power roots of q (for variants of de Rham–Witt) is unavoidable, and that the conjectures of [Sch2] might thus be slightly
optimistic. Some of the strongest evidence for the conjectures is provided by the lifts of the Cartier isomorphisms, which rely on a choice of Frobenius. On the other hand, the comparison theorems of [BMS] can be seen as a manifestation of \(q\)-de Rham–Witt complexes; although they do not require a lift of Frobenius, they involve all \(p\)-power roots of \(q\).

The essence of our construction of \(q\)-de Rham cohomology of \(A\) over \(R\) is to set \(q\) to be an element of rank 1 for the \(\Lambda\)-ring structure, and to look at flat \(\Lambda\)-rings \(B\) over \(R[q]\) equipped with morphisms \(A \to B/(q - 1)\) of \(\Lambda\)-rings over \(R\). If these seem unfamiliar, reassurance should be provided by the observation that \((q - 1)B\) carries \(q\)-analogues of divided power operations (Remark 1.4).

For the variants of de Rham–Witt cohomology in \(\S 3\), the key to giving a characterisation independent of lifts of Frobenius is the factorisation of the tilting equivalence for perfectoid algebra via a category of \(\Lambda_p\)-rings.

I would like to thank Peter Scholze for many helpful comments, in particular about the possibility of a \(q\)-analogue of de Rham–Witt cohomology, and Michel Gros for spotting a missing hypothesis.

Contents

Introduction 1
1. Comparisons for \(\Lambda\)-rings 2
1.1. The \(\Lambda\)-ring \(\mathbb{Z}[q]\) 3
1.2. \(q\)-cohomology of \(\Lambda\)-rings 4
1.3. Completed \(q\)-cohomology 6
2. Comparisons for \(\Lambda_p\)-rings 8
2.1. \(q\)-cohomology for \(\Lambda_p\)-rings 8
2.2. Cartier isomorphisms in mixed characteristic 10
3. Functoriality via analogues of de Rham–Witt cohomology 11
3.1. Motivation 12
3.2. Almost isomorphisms 13
3.3. Perfectoid algebras 14
3.4. Functoriality of \(q\)-de Rham cohomology 14
References 17

1. Comparisons for \(\Lambda\)-rings

We will follow standard notational conventions for \(\Lambda\)-rings. These are commutative rings equipped with operations \(\lambda^i\) resembling alternating powers, in particular satisfying

\[
\lambda^k(a + b) = \sum_{i=0}^k \lambda^i(a)\lambda^{k-i}(b),
\]

with \(\lambda^0(a) = 1\) and \(\lambda^1(a) = a\). For background, see [Bor] and references therein. The \(\Lambda\)-rings we encounter are all torsion-free, in which case the \(\Lambda\)-ring structure is equivalent to giving ring endomorphisms \(\Psi^n\) for \(n \in \mathbb{Z}_{>0}\) with \(\Psi^{mn} = \Psi^m \circ \Psi^n\) and \(\Psi^p(x) \equiv x^p \mod p\) for all primes \(p\). If we write \(\lambda_t(f) := \sum_{i \geq 0} \lambda^i(f)t^i\) and \(\Psi_t(f) := \sum_{n \geq 1} \Psi^n(f)t^n\), then the families of operations are related by the formula

\[
\Psi_t = -i\frac{d\log \lambda^{-1}}{dt}.
\]

We refer to elements \(x\) with \(\lambda^i(x) = 0\) for all \(i > 1\) (or equivalently \(\Psi^n(x) = x^n\) for all \(n\)) as elements of rank 1.
1.1. The Λ-ring $\mathbb{Z}[q]$.

Definition 1.1. Define $\mathbb{Z}[q]$ to be the Λ-ring with operations determined by setting q to be of rank 1.

We now consider the q-analogues $[n]_q := \frac{q^n - 1}{q - 1} \in \mathbb{Z}[q]$ of the integers, with $[n]_q! = [n]_q[n-1]_q \ldots [1]_q$, and $\binom{n}{k}_q = \frac{[n]_q!}{[n-k]_q! [k]_q!}$.

Remark 1.2. To see the importance of regarding $\mathbb{Z}[q]$ as a Λ-ring observe that the binomial expressions

$$\lambda^k(n) = \binom{n}{k}, \quad \lambda^k(-n) = (-1)^k \binom{n+k-1}{k}$$

have as q-analogues the Gaussian binomial theorems

$$\lambda^k([n]_q) = q^{k(k-1)/2} \binom{n}{k}_q, \quad \lambda^k([-n]_q) = (-1)^k \binom{n+k-1}{k}_q,$$

as well as Adams operations

$$\Psi^i([n]_q) = [n]_{q^i}.$$

For any torsion-free Λ-ring, localisation at a set of elements closed under the Adams operations always yields another Λ-ring, since $\Psi^i(a^{-1}) - a^p = (\Psi^i(a)a^p)^{-1}(a^p - \Psi^i(a))$ is divisible by p.

Lemma 1.3. For the Λ-ring structure on $\mathbb{Z}[x, y]$ with x, y of rank 1, the elements

$$\lambda^n\left(\frac{y-x}{q-1}\right) \in \mathbb{Z}[q, \{(q^n - 1)^{-1}\}_{n \geq 1}, x, y]$$

are given by

$$\lambda^k\left(\frac{y-x}{q-1}\right) = \frac{(y - x)(y - qx) \ldots (y - q^{k-1}x)}{(q - 1)^k [k]_q!} = \sum_{j=0}^{k} q^{j(j-1)/2} (-x)^j y^{k-j} [j]_q! [k-j]_q!.$$

Proof. The second expression comes from multiplying out the Gaussian binomial expansions. The easiest way to prove the first is to observe that $\lambda^k\left(\frac{y-x}{q-1}\right)$ must be a homogeneous polynomial of degree k in x, y, with coefficients in the integral domain $\mathbb{Z}[q, \{(q^n - 1)^{-1}\}_{n \geq 1}]$, and to note that

$$\lambda^k\left(\frac{y-x}{q-1}\right) = \lambda^k([n]_q x) = q^{k(k-1)/2} \binom{n}{k}_q x^k.$$

Thus $\lambda^k\left(\frac{y-x}{q-1}\right)$ agrees with the homogeneous polynomial above for infinitely many values of $\frac{y}{x}$, so must be equal to it. \qed

Remark 1.4. Note that as $q \to 1$, Lemma 1.3 gives $(q - 1)^k \lambda^k\left(\frac{y-x}{q-1}\right) \to \frac{\exp(at) - 1}{\exp(at) - 1}$. Indeed, for any rank 1 element x in a Λ-ring we have $\lambda_{(q-1)t}\left(\frac{a}{q-1}\right) = e_q(xt)$, the q-exponential, with multiplicative and universality then implying that $\lambda_{(q-1)t}\left(\frac{a}{q-1}\right)$ is a q-deformation of $\exp(at)$ for all a. Thus $(q - 1)^k \lambda^k\left(\frac{y-x}{q-1}\right)$ is a q-analogue of the kth divided power $(a^k/k!)$. An explicit expression comes recursively from the formula

$$[k]_q(q - 1)\lambda^k\left(\frac{y-x}{q-1}\right) = \sum_{i>0} \lambda^i(a) \lambda^{k-i}\left(\frac{a}{q-1}\right).$$
Lemma 1.5. For elements x, y of rank 1, the Λ-subring of $\mathbb{Z}[q, \{(q^n - 1)^{-1}\}_{n \geq 1}, x, y]$ generated by $q, x, y, \frac{y - x}{q - 1}$ has basis $\lambda^i\left(\frac{y - x}{q - 1}\right)$ as a $\mathbb{Z}[q, x]$-module.

Proof. The Λ-subring clearly contains the $\mathbb{Z}[q, x]$-module M generated by the elements $\lambda^i\left(\frac{y - x}{q - 1}\right)$, which are also clearly linearly independent. Since $\mathbb{Z}[x, q]$ is a Λ-ring, it suffices to show that M is closed under multiplication.

By Lemma 1.3 we know that

$$\lambda^i\left(\frac{y - x}{q - 1}\right) \lambda^j\left(\frac{y - x}{q - 1}\right) = \binom{i + j}{i}_q \lambda^{i+j}\left(\frac{y - x}{q - 1}\right).$$

We can rewrite $\frac{y - x}{q - 1} = \frac{x - y}{q - 1} - [i]_q x$, so $\lambda^i\left(\frac{y - x}{q - 1}\right) - \lambda^j\left(\frac{y - x}{q - 1}\right)$ lies in the $\mathbb{Z}[q, x]$-module spanned by $\lambda^m\left(\frac{y - x}{q - 1}\right)$ for $m < j$. By induction on j, it thus follows that

$$\lambda^i\left(\frac{y - x}{q - 1}\right) \lambda^j\left(\frac{y - x}{q - 1}\right) - \lambda^i\left(\frac{y - x}{q - 1}\right) \lambda^j\left(\frac{y - x}{q - 1}\right) \in M,$$

so the binomial expression above implies $\lambda^i\left(\frac{y - x}{q - 1}\right) \lambda^j\left(\frac{y - x}{q - 1}\right) \in M$. \qed

1.2. q-cohomology of Λ-rings.

Definition 1.6. Given a Λ-ring R, say that A is a Λ-ring over R if it is a Λ-ring equipped with a morphism $R \to A$ of Λ-rings. We say that A is a flat Λ-ring over R if A is flat as a module over the commutative ring underlying R.

Definition 1.7. Given a morphism $R \to A$ of Λ-rings, we define the category $\text{Strat}^q_{A/R}$ to consist of flat Λ-rings B over $R[q]$ equipped with a compatible morphism $A \to B/(q - 1)$, such that the map $A \to B/(q - 1)$ admits a lift to B; a choice of lift is not taken to be part of the data, so need not be preserved by morphisms.

More concisely, $\text{Strat}^q_{A/R}$ is the Grothendieck construction of the functor

$$(\text{Spec} A)^q_{\text{strat}} : B \mapsto \text{Im}(\text{Hom}_{\Lambda, R}(A, B) \to \text{Hom}_{\Lambda, R}(A, B/(q - 1)))$$

on the category $fA(R[q])$ of flat Λ-rings over $R[q]$.

Definition 1.8. Given a flat morphism $R \to A$ of Λ-rings, define $qDR(A/R)$ to be the cochain complex of $R[q]$-modules given by taking the homotopy limit of the functor

$$\text{Strat}^q_{A/R} \to \text{Ch}(R[q])$$

$$B \mapsto B.$$

Equivalently, can we follow the approach of [Gro, Sim] towards the de Rham stack by regarding $qDR(A/R)$ as the quasi-coherent cohomology complex of $(\text{Spec} A)^q_{\text{strat}}$. Writing $\Omega: fA(R[q]) \to \text{Mod}_{R[q]}$ for the forgetful functor to the category of $R[q]$-modules, and $[fA(R[q]), \text{Set}]$ for the category of set-valued functors on $fA(R[q])$, we have

$$qDR(A/R) = R\text{Hom}_{fA(R[q]), \text{Set}}((\text{Spec} A)^q_{\text{strat}}, \Omega),$$

coming from the right-derived functor of the functor $\text{Hom}_{fA(R[q]), \text{Set}}((\text{Spec} A)^q_{\text{strat}}, -)$ of natural transformations with source $(\text{Spec} A)^q_{\text{strat}}$.

Definition 1.9. Given a polynomial ring $\mathbb{R}[x]$, recall from [Sch2] that the q-de Rham (or Aomoto–Jackson) cohomology $q\Omega^{\bullet}_{\mathbb{R}[x]/\mathbb{R}[q]}$ is given by the complex

$$\mathbb{R}[x][q] \xrightarrow{\nabla_q} \mathbb{R}[x][q] dx,$$

where

$$\nabla_q(f) = \left. \frac{f(qx) - f(x)}{x(q - 1)} \right| dx,$$
so \(\nabla_q(x^n) = [n]_q x^{n-1}dx. \)

Given a polynomial ring \(R[x_1, \ldots, x_d] \), the \(q \)-de Rham complex \(q\Omega^*_{R[x_1, \ldots, x_d]/R} \) is then set to be

\[
q\Omega^*_{R[x_1]/R} \otimes R[q] q\Omega^*_{R[x_2]/R} \otimes R[q] \cdots \otimes R[q] q\Omega^*_{R[x_d]/R},
\]

so takes the form

\[
R[x_1, \ldots, x_d][q] \xrightarrow{\nabla_q} \Omega^1_{R[x_1, \ldots, x_d]/R[q]} \xrightarrow{\nabla_q} \cdots \xrightarrow{\nabla_q} \Omega^d_{R[x_1, \ldots, x_d]/R[q]}.
\]

Proposition 1.10. If \(R \) is a \(\Lambda \)-ring and \(x \) of rank 1, then \(q\text{DR}(R[x]/R) \) can be calculated by a cosimplicial module \(U^* \) given by setting \(U^n \) to be the \(\Lambda \)-subring

\[
U^n \subset R[q, \{(q^n - 1)^{-1}\}_{m \geq 1}, x_0, \ldots, x_n]
\]

generated by \(q \) and the elements \(x_i \) and \(\frac{x_i - x_j}{q-1} \).

Proof. For \(X = \text{Spec } R[x] \), the set-valued functor \(X^q_{\text{strat}} \) is not representable, but it can be resolved by the simplicial functor \(X^q_{\text{strat}} \) given by taking the Čech nerve of \(\text{Hom}_{\Lambda, R}(A, B) \to \text{Hom}_{\Lambda, R}(A, B/(q-1)) \), so

\[
(X^q_{\text{strat}})_n(B) := \text{Hom}_{\Lambda, R}(A, B) \times_{\text{Hom}_{\Lambda, R}(A, B/(q-1)) \cdots \times_{\text{Hom}_{\Lambda, R}(A, B/(q-1))}} \text{Hom}_{\Lambda, R}(A, B)
\]

\[
= \text{Hom}_{\Lambda, R}(A, B \times_B/(q-1) \cdots \times_B/(q-1) B).
\]

Observe that any element of \((X^q_{\text{strat}})_n(B)\) gives rise to a morphism \(f: R[q, x_0, \ldots, x_n] \to B \) of \(\Lambda \)-rings over \(R[q] \), with the image of \(x_i - x_j \) divisible by \((q-1) \). Flatness of \(B \) then gives a unique element \(f(x_i - x_j)/(q-1) \in B \), so we have a map \(f \) to \(B \) from the free \(\Lambda \)-ring \(L \) over \(R[q, x_0, \ldots, x_n] \) generated by elements \(z_{ij} \) with \((q-1)z_{ij} = x_i - x_j \).

Since \(B \) is flat, it embeds in \(B[(q^n - 1)^{-1}]_{m \geq 1} \) (the only hypothesis we really need) implying that the image of \(f \) factors through the image \(U^n \) of \(L \) in \(R[q, \{(q^n - 1)^{-1}\}_{m \geq 1}, x_0, \ldots, x_n] \). To see that \((X^q_{\text{strat}})_n \) is represented by \(U^n \), we only now need to check that \(U^n \) is itself flat over \(R[q] \), which follows because the argument of Lemma 1.4 gives a basis

\[
x_0^{\lambda_0^{\ell_0}}(\frac{x_1 - x_0}{q-1}) \cdots \lambda_n(\frac{x_n - x_{n-1}}{q-1})
\]

for \(U^n \) over \(R[q] \). We therefore have \(q\text{DR}(R[x]/R) \simeq U^* \). \(\Box \)

Theorem 1.11. If \(R \) is a \(\Lambda \)-ring, and the polynomial ring \(R[x_1, \ldots, x_d] \) is given the \(\Lambda \)-ring structure for which the elements \(x_i \) are of rank 1, then there are \(R[q] \)-linear zigzags of quasi-isomorphisms

\[
q\text{DR}(R[x_1, \ldots, x_n]/R) \simeq (\Omega^*_{R[x_1, \ldots, x_n]/R[q]}, (q-1)\nabla_q)
\]

\[
\text{L}_{n(q-1)}q\text{DR}(R[x_1, \ldots, x_n]/R) \simeq q\Omega^*_{R[x_1, \ldots, x_n]/R},
\]

where \(\text{L}_{n(q-1)} \) denotes derived décalage with respect to the \((q-1) \)-adic filtration.

Proof. It suffices to prove the first statement, the second following immediately by décalage. Since \((\text{Spec } A \otimes R A')^q_{\text{strat}}(B) = (\text{Spec } A)^q_{\text{strat}}(B) \times (\text{Spec } A')^q_{\text{strat}}(B)\), and coproducts of flat \(\Lambda \)-rings over \(R[q] \) is given by \(\otimes_{R[q]} \), we have \(q\text{DR}((A \otimes R A')/R) \simeq q\text{DR}(A/R) \otimes_{R[q]} q\text{DR}(A'/R) \), so we may reduce to the case \(A = R[x] \).
Proposition 1.10 gives $q\text{DR}(R[x]/R) \simeq U^\bullet$, and in order to compare this with q-de Rham cohomology, we now consider the cochain complexes $\tilde{Ω}^\bullet(U^n)$ given by
\[U^n \xrightarrow{(q-1)\nabla_q} \bigoplus_i U^ndx_i \xrightarrow{(q-1)\nabla_q} \bigoplus_{i<j} U^ndx_i \wedge dx_j \xrightarrow{(q-1)\nabla_q} \ldots. \]

In order to see that this differential is well-defined, observe that
\[
(q-1)\nabla_q x^k \left(\frac{y-x}{q-1} \right) = \frac{1}{y(x)} \left(\frac{y-x}{q-1} \right)\frac{1}{y(q-1)} dy = \frac{x^k \left(\frac{y-x}{q-1} \right)}{y(q-1)} dy = \frac{1}{y(q-1)} dx.
\]

The first calculation also shows that the inclusion $\tilde{Ω}^\bullet(U^{n-1}) \hookrightarrow \tilde{Ω}^\bullet(U^n)$ is a quasi-isomorphism, since
\[
(q-1)\nabla_{x_n} f(x_0, \ldots, x_{n-1}) \frac{x_k}{x_n} \frac{x_n-x_{n-1}}{q-1} = \frac{1}{x_n} \left(\frac{x_n-x_{n-1}}{q-1} \right) \frac{1}{x_n \cdot (q-1)} dx_n.
\]

By induction on n we deduce that the inclusion $\tilde{Ω}^\bullet(U^0) \hookrightarrow \tilde{Ω}^\bullet(U^n)$, and hence the retraction of it given by the diagonal, is a quasi-isomorphism.

Now the complexes $\tilde{Ω}^i(U^\bullet)$ are all acyclic for $i > 0$, consisting of cosimplicial tensor products of U^\bullet with cosimplicial symmetric powers of the acyclic complex given by $\mathbb{Z}dx_0 \oplus \cdots \oplus \mathbb{Z}dx_n$ in level n. We therefore have quasi-isomorphisms
\[
U^\bullet \leftarrow \text{Tot } \tilde{Ω}^\bullet(U^\bullet) \rightarrow \tilde{Ω}^\bullet(U^0)
\]
of flat cochain complexes over $R[q]$, so
\[
q\text{DR}(R[x]/R) \simeq \tilde{Ω}^\bullet(R[x]),
\]
and we just observe that $\eta(q-1)\tilde{Ω}^\bullet(R[x]) = (\Omega^\bullet_{R[x]/R[q]}(q-1)\nabla_q).
\]

Remark 1.12. Note that Theorem 1.11 implies that $q\Omega^\bullet_{R[x_1, \ldots, x_n]/R}$ naturally underlies the décalage of a cosimplicial A-ring over $R[q]$. Even the underlying cosimplicial commutative ring structure carries more information than an E_∞-structure when $Q \not\subseteq R$.

Remark 1.13. The complex $(\Omega^\bullet_{R[x_1, \ldots, x_n]/R}, (q-1)\nabla_q)$ is a more fundamental object than its décalage $q\Omega^\bullet_{R[x_1, \ldots, x_n]/R}$, since it has a vestigial memory of the Hodge filtration.

There might be a natural formulation of the theorem not involving décalage, in terms of a q-analogue of the crystalline site for a Λ-ring A over R, regarded as an $R[q]$-algebra via $R = R[q]/(q-1)$. Following Remark 1.12, this would involve extensions $B \rightarrow A$ of Λ-rings over $R[q]$ equipped with q-analogues of divided power operations on the augmentation ideals I, looking like $x \mapsto (q-1)^k \lambda^k(\frac{x}{q-1})$.

1.3. Completed q-cohomology.

Definition 1.14. Given a morphism $R \rightarrow A$ of Λ-rings, we define the category $\text{Strat}_{A/R} \subset \text{Strat}_{A/R}$ to consist of those objects which are $(q-1)$-adically complete.
Definition 1.15. Given a flat morphism $R \to A$ of Λ-rings, define $q\hat{\text{DR}}(A/R)$ to be the cochain complex of $R[[q-1]]$-modules given by taking the homotopy limit of the functor

$$\text{Strat}^q_{A/R} \to \text{Ch}(R[[q]])$$

$$B \mapsto B.$$

The following is immediate:

Lemma 1.16. Given a flat morphism $R \to A$ of Λ-rings, the complex $q\hat{\text{DR}}(A/R)$ is the derived $(q-1)$-adic completion of $q\text{DR}(A/R)$.

Definition 1.17. As in [Sch2], given a formally étale map $\square: R[x_1, \ldots, x_d] \to A$, define $q\hat{\Omega}^\bullet_{A/R, \square}$ to be the complex

$$A[[q-1]] \xrightarrow{\nabla_q} \Omega^1_{A/R}[q-1] \xrightarrow{\nabla_q} \cdots \xrightarrow{\nabla_q} \Omega^n_{A/R}[q-1],$$

where ∇_q is defined as follows. First note that the ring endomorphisms γ_i of $R[x_1, \ldots, x_d][q-1]$ given by $\gamma_i(x_j) = q^{v_i}x_j$ extend uniquely to endomorphisms of $A[[q-1]]$ which are the identity modulo $q-1$, then set

$$\nabla_q(f) := \sum_i \gamma_i(f) - f \frac{dx_i}{(q-1)x_i}.$$

Note that $q\hat{\Omega}^\bullet_{R[x_1, \ldots, x_d]/R}$ is just the $(q-1)$-adic completion of $q\hat{\Omega}^\bullet_{R[x_1, \ldots, x_d]/R}$.

Proposition 1.18. If R is a flat Λ-ring over \mathbb{Z} and $\square: R[x_1, \ldots, x_d] \to A$ is a formally étale map of Λ-rings, the elements x_i having rank 1, then there are zigzags of $R[[q]]$-linear quasi-isomorphisms

$$q\hat{\text{DR}}(A/R) \simeq (\Omega^\bullet_{A/R}[q-1], (q-1)\nabla_q), \quad \text{L}(\eta_{q-1})q\hat{\text{DR}}(A/R) \simeq q\hat{\Omega}^\bullet_{A/R, \square}.$$

The induced quasi-isomorphisms

$$q\hat{\text{DR}}(A/R) \otimes^L_{R[[q-1]]} R \simeq (\Omega^\bullet_{A/R}, 0), \quad (\text{L}(\eta_{q-1})q\hat{\text{DR}}(A/R)) \otimes^L_{R[[q-1]]} R \simeq \Omega^\bullet_{A/R}$$

are independent of the choice of framing.

Proof. This is much the same as the proof of Theorem 1.11. The complex $q\hat{\text{DR}}(A/R)$ can be realised as a cosimplicial Λ-ring U, with U^n the $(q-1)$-adically complete Λ-subring of $A^{\otimes(n+1)}[[q-1]]((q^n-1)^{-1})_{m \geq 1}$ generated by $A^{\otimes(n+1)}[[q-1]]$ and $(q-1)^{-1}\ker(A^{\otimes(n+1)} \to A)[[q-1]]$.

Uniqueness of lifts with respect to the formally étale framing ensures that the endomorphisms γ_i commute with the Adams operations, so are Λ-ring endomorphisms of R. Since the formal completion of $A \otimes_R A \to A$ is just the Λ-ring

$$A[[x_1 - y_1], (x_2 - y_2), \ldots, (x_d - y_d)],$$

the calculations of Theorem 1.11 now adapt to give quasi-isomorphisms

$$(\Omega^\bullet_{A/R}[q], (q-1)\nabla_q) \leftarrow \text{Tot}^\bullet(U^n) \to U^\bullet,$$

where $\text{Tot}^\bullet(U^n)$ is the $(q-1)$-adic completion of $(U^n \otimes_{A^{\otimes(n+1)}} (\Omega^\bullet_{A/R})^{\otimes(n+1)}, (q-1)\nabla_q))$. Reduction of this or its décalage modulo $(q-1)$ replaces ∇_q with d, removing the dependence on co-ordinates. \qed
Remark 1.19. As in [Sch2, Definition 7.3], there is a notion of q-connections on projective $A[q-1]$-modules M. Adapting the ideas of Proposition 1.18 these will be equivalent to projective modules over X^q_{strat}, so flat Cartesian $q\text{DR}(A/R)$-modules N with $N \otimes_{q\text{DR}(A/R)} A[q-1] = M$, together with a condition that the $(q\text{DR}(A/R)/(q-1))$-module $N/(q-1)$ is just given by pullback of the A-module $M/(q-1)$.

Via Lemma [La] these data are equivalent to specifying an operator $\partial^1: M \to \bigoplus_{k_1,\ldots,k_d} M \lambda^{k_1}(\frac{y_1^1-x_1^1}{q-1}) \cdots \lambda^{k_d}(\frac{y_d^d-x_d^d}{q-1})$ satisfying a cocycle condition and congruent to the identity modulo $(q-1)$. Such operators then arise from q-connections $(\nabla_1,q,\ldots,\nabla_d,q)$ as q-Taylor series

$$\partial^1(f) := \sum_{k_1,\ldots,k_d} (q-1)\sum_{k_i}(\nabla_{1,q}^{k_1} \cdots \nabla_{d,q}^{k_d})(f) \lambda^{k_1}(\frac{y_1^1-x_1^1}{q-1}) \cdots \lambda^{k_d}(\frac{y_d^d-x_d^d}{q-1}).$$

2. Comparisons for Λ_P-rings

Since very few étale maps $R[x_1,\ldots,x_d] \to A$ give rise to Λ-ring structures on A, Proposition [La] is fairly limited in its scope for applications. We now show how the construction of $q\text{DR}$ and the comparison quasi-isomorphism survive when we weaken the Λ-ring structure by discarding Adams operations at invertible primes.

2.1. q-cohomology for Λ_P-rings. Our earlier constructions for Λ-rings all carry over to Λ_P-rings, as follows.

Definition 2.1. Given a set P of primes, we define a Λ_P-ring A to be a $\Lambda_{\mathbb{Z},P}$-ring in the sense of [Bot]. This means that it is a coalgebra in commutative rings for the comonad given by the functor $W(P)$ of P-typical Witt vectors. When a commutative ring A is flat over \mathbb{Z}, giving a Λ_P-ring structure on A is equivalent to giving commuting Adams operations Ψ^p for all $p \in P$, with $\Psi^p(a) \equiv a^p \mod p$ for all a.

Thus when P is the set of all primes, a Λ_P-ring is just a Λ-ring; a Λ_0-ring is just a commutative ring; for a single prime p, we write $\Lambda_p := \Lambda_{\{p\}}$, and note that a Λ_p-ring is a δ-ring in the sense of [Joy].

Definition 2.2. Given a Λ_P-ring R, say that A is a Λ_P-ring over R if it is a Λ_P-ring equipped with a morphism $R \to A$ of Λ_P-rings. We say that A is a flat Λ_P-ring over R if A is flat as a module over the commutative ring underlying R.

Definition 2.3. Given a morphism $R \to A$ of Λ_P-rings, we define the category $\text{Strat}^q_{A/R}$ to consist of flat Λ_P-rings B over $R[q]$ equipped with a compatible morphism $A \to B/(q-1)$, such that the map $A \to B/(q-1)$ admits a lift to B. We define the category $\text{Strat}^q_{A/R} \subset \text{Strat}^q_{A/R}$ to consist of those objects which are $(q-1)$-adically complete.

More concisely, $\text{Strat}^q_{A/R}$ (resp. $\text{Strat}^q_{A/R}$) is the Grothendieck construction of the functor

$$(\text{Spec} A^q_{\text{strat}})_R: B \mapsto \text{Im} \left(\text{Hom}_{\Lambda_P,R}(A,B) \to \text{Hom}_{\Lambda_P,R}(A,B/(q-1)) \right)$$

of the category of flat Λ_P-rings (resp. $(q-1)$-adically complete flat Λ_P-rings) over $R[q]$.
Definition 2.4. Given a flat morphism $R \to A$ of Λ_P-rings, define $q\operatorname{DR}_P(A/R)$ to be the cochain complex of $R[q]$-modules given by taking the homotopy limit of the functor

$$\operatorname{Strat}^q_{A/R} \to \operatorname{Ch}(R[q])$$

$$B \mapsto B.$$

Define $q\operatorname{DR}_P(A/R)$ to be the cochain complex of $R[q - 1]$-modules given by the corresponding homotopy limit over $\operatorname{Strat}^q_{A/R}$.

Thus when P is the set of all primes, we have $q\operatorname{DR}_P(A/R) = q\operatorname{DR}(A/R)$. At the other extreme, for A smooth, $q\operatorname{DR}_Q(A/R)$ is the Rees construction of the Hodge filtration on the infinitesimal cohomology complex of A over R, with formal variable $(q - 1)$. In more detail, there is a decreasing filtration F of \mathcal{O}_{inf} given by powers of the augmentation ideal $\mathcal{O}_{\text{inf}} \to \mathcal{O}_{\text{zar}}$, and $q\operatorname{DR}_Q(A/R) \simeq \bigoplus_{v \in \mathbb{Z}} (q - 1)^{-v} \Gamma(\text{Spec } A, F'_{\mathcal{O}_{\text{inf}}})(q - 1)^{-v}$.

Lemma 2.5. For a set P of primes, the forgetful functor from Λ-rings to Λ_P-rings has a right adjoint $W^{(\mathbb{F}_P)}$. There is a canonical ghost component morphism

$$W^{(\mathbb{F}_P)}(B) \to \prod_{n \in \mathbb{N}, n \neq 1, \forall \nu \in P} B,$$

which is an isomorphism when P contains all the residue characteristics of B.

Proof. Existence of a right adjoint follows from the comonadic definitions of Λ-rings and Λ_P-rings. The ghost component morphism is given by taking the Adams operations Ψ^n given by the Λ-ring structure on $W^{(\mathbb{F}_P)}(B)$, followed by projection to B. When P contains all the residue characteristics of B, a Λ-ring structure is the same as a Λ_P-ring structure with compatible commuting Adams operations for all primes not in P, leading to the description above. \qed

Note that the big Witt vector functor W on commutative rings thus factorises as $W = W^{(\mathbb{F}_P)} \circ W^{(P)}$, for $W^{(P)}$ the P-typical Witt vectors.

Proposition 2.6. Given a morphism $R \to A$ of Λ-rings, and a set P of primes, there are natural maps

$$q\operatorname{DR}_P(A/R) \to q\operatorname{DR}(A/R), \quad q\operatorname{DR}_P(A/R) \to q\operatorname{DR}(A/R),$$

and the latter map is a quasi-isomorphism when P contains all the residue characteristics of A.

Proof. We have functors

$$(\text{Spec } A)^q_{\text{strat}} \circ W^{(\mathbb{F}_P)} : B \mapsto \text{Im}(\operatorname{Hom}_{A,R}(A, W^{(\mathbb{F}_P)}B) \to \operatorname{Hom}_{A,R}(A, (W^{(\mathbb{F}_P)}B)/(q - 1)))$$

$$(\text{Spec } A)^q_{\text{strat}}' : B \mapsto \text{Im}(\operatorname{Hom}_{A,P,R}(A, B) \to \operatorname{Hom}_{A,P,R}(A, B/(q - 1)))$$

on the category of flat Λ_P-rings over $R[q]$. There is an obvious map

$$(W^{(\mathbb{F}_P)}B)/(q - 1) \to W^{(\mathbb{F}_P)}(B/(q - 1)),$$

and hence a natural transformation $(\text{Spec } A)^q_{\text{strat}} \circ W^{(\mathbb{F}_P)} \to (\text{Spec } A)^q_{\text{strat}}'$, which induces the morphism $q\operatorname{DR}_P(A/R) \to q\operatorname{DR}(A/R)$ on cohomology.
When P contains all the residue characteristics of A, the map $(W(\xi P)B)/(q - 1) \to W(\xi P)(B/(q - 1))$ is just
\[\prod_{n \in \mathbb{N}} B/(q^n - 1) \to \prod_{n \in \mathbb{N}} B/(q - 1), \]
since the morphism $R[q] \to W(\xi P)B$ is given by Adams operations, with $\Psi^n(q - 1) = q^n - 1$.

We have $(q^n - 1) = (q - 1)[n]_q$, and $[n]_q$ is a unit in $\mathbb{Z}[[1/n]]$, hence a unit in B when n is coprime to the residue characteristics. Thus the map $(W(\xi P)B)/(q - 1) \to W(\xi P)(B/(q - 1))$ gives an isomorphism whenever B is $(q - 1)$-adically complete and admits a map from A, so the transformation $(\text{Spec } A)^q_{\text{strat}} \circ W(\xi P) \to (\text{Spec } A)^q_{\text{strat}}$ is a natural isomorphism on the category of flat $(q - 1)$-adically complete Λ_P-rings over $R[q]$, and so $q\Omega_{R,P}(A/R) \to q\Omega_{R}(A/R)$. \qed

Over $\mathbb{Z}[\frac{1}{\mathfrak{p}}]$, every Λ_P-ring can be canonically made into a Λ-ring, by setting all the additional Adams operations to be the identity. However, this observation is of limited use in establishing functoriality of ξ-de Rham cohomology, because the resulting Λ-ring structure will not satisfy the conditions of Proposition 1.18. We now give a more general result which does allow for meaningful comparisons.

Theorem 2.7. If R is a flat Λ_P-ring over \mathbb{Z} and \square: $R[x_1, \ldots, x_d] \to A$ is a formally étale map of Λ_P-rings, the elements x_i having rank 1, then there is a zigzag of $R[q]$-linear quasi-isomorphisms
\[L\eta(q-1)\hat{q}\Omega_{R,P}(A/R) \simeq q\Omega_{\hat{A}/\hat{R},\square} \]
whenever P contains all the residue characteristics of A.

Proof. The key observation to make is that formally étale maps have a unique lifting property with respect to nilpotent extensions of flat Λ_P-rings, because the Adams operations must also lift uniquely. In particular, this means that the operations γ_i featuring in the definition of q-de Rham cohomology are necessarily endomorphisms of A as a Λ-ring.

Similarly to Proposition 1.18 $\hat{q}\Omega_{R,P}(A/R)$ is calculated using a cosimplicial Λ_P-ring given in level n by the $(q - 1)$-adic completion $\hat{U}_{P,A}$ of the Λ_P-ring over $R[q]$ generated by $A^{\oplus n(n+1)}[q]$ and $(q - 1)^{-1}\ker(A^{\oplus n(n+1)}[q] \to A)[q]$. The observation above shows that $\hat{U}_{P,A} \cong \hat{U}_{P,R[x_1, \ldots, x_d]} \otimes_{R[x_1, \ldots, x_d]} A$, changing base along \square applied to the first factor.

As in Proposition 2.6 $\hat{U}_{P,R[x_1, \ldots, x_d]}$ is just the $(q - 1)$-adic completion of the complex U^* from Proposition 1.10. Further application of the key observation above then allows us to adapt the constructions of Theorems 1.11 giving the desired quasi-isomorphisms. \qed

2.2. Cartier isomorphisms in mixed characteristic.

The only setting in which Theorem 2.7 leads to results close to the conjectures of Scholze is when $R = W(p)(k)$, the p-typical Witt vectors of a field of characteristic p, and $A = \lim_{\leftarrow n} A_n$ is a formal deformation of a smooth k-algebra A_0. Then any formally étale morphism $W(p)(k)[x_1, \ldots, x_d] \to A$ gives rise to a unique compatible lift Ψ of absolute Frobenius on A with $\Psi(x_i) = x_i^p$, so gives A the structure of a topological Λ_p-ring. The framing still affects the choice of Λ_p-ring structure, but at least such a structure is
guaranteed to exist, giving rise to a complex $q \text{DR}_p(A/R)^{\wedge_p} := \varprojlim_n q \text{DR}_p(A/R) \otimes_R R_n$
depending only on the choice of Ψ, where $R_n = W'_n(k)$.

Our constructions now allow us to globalise the quasi-isomorphism

$$(q'\Omega_{A/R,\square}^{\wedge_p})^{/[p]}_q \simeq (\Omega_{A/R}^*)^{\wedge_p}[q-1]/[p]_q$$

of [Sch2 Proposition 3.4], where $\Omega_{A/R}^*$ denotes the complex $A \to A^1_B \to \Omega_{A/R}^2 \to \ldots$.

Proposition 2.8. Take a smooth formal scheme \mathfrak{X} over $R = W^{(p)}(k)$ equipped with a lift Ψ of Frobenius which étale locally admits co-ordinates $\{x_i\}$ as above with $\Psi(x_i) = x_i^p$.

Then there is a global quasi-isomorphism

$$C^{-1}_q: (\Omega_{\mathfrak{X}/R}^*)^{\wedge_p}[q-1]/[p]_q \to (\mathcal{L}n_{(q-1)}q \text{DR}_p(\mathcal{O}_{\mathfrak{X}/R}))^{\wedge_p}/[p]_q$$
in the derived category of étale sheaves on \mathfrak{X}.

Proof. Functoriality of the construction $q \text{DR}_p$ for rings with Frobenius lifts gives us a sheaf $q \text{DR}_p(\mathcal{O}_{\mathfrak{X}/R})^{\wedge_p}$ on \mathfrak{X}. We then have maps

$$\Psi^p: q \text{DR}_p(\mathcal{O}_{\mathfrak{X}/R})^{\wedge_p} \to q \text{DR}_p(\mathcal{O}_{\mathfrak{X}/R})^{\wedge_p}$$

and thus, denoting good truncation by τ,

$$(q-1)^i\Psi^p: \tau^{\leq i}(q \text{DR}_p(\mathcal{O}_{\mathfrak{X}/R})^{\wedge_p}/(q-1)) \to (\mathcal{L}n_{(q-1)}q \text{DR}_p(\mathcal{O}_{\mathfrak{X}/R})^{\wedge_p})/[p]_q;$$

the left-hand side is quasi-isomorphic to $\bigoplus_{j \leq i} (\Omega_{\mathfrak{X}/R}^j)^{\wedge_p}[-j]$ by Proposition 1.18.

Extending the construction $R[q]$-linearly and restricting to top summands therefore gives us the global map C^{-1}_q. For a local choice of framing, the map Ψ^p necessarily corresponds via Theorem 2.7 to the chain map $adx^i \mapsto \Psi^p(a)x^i(x-1)dx^i$ on the complex $(\Omega_{A/R}^*[q-1],(q-1)(-1)\nabla_q)$. This gives equivalences

$$(q-1)^i\Psi^p \simeq \sum_{j \leq i} (q-1)^{-j}(\tilde{C}^{-1})^j$$

for Scholze’s locally defined lifts $\langle \tilde{C}^{-1} \rangle: (\Omega_{A/R}^j)^{\wedge_p}[-j] \to (q'\Omega_{A/R,\square}^{\wedge_p})^{/[p]}_q$ of the Cartier quasi-isomorphism. The local calculation of [Sch2 Proposition 3.4] then ensures that C^{-1}_q is a quasi-isomorphism. \square

3. Functoriality via analogues of de Rham–Witt cohomology

In order to obtain a cohomology theory for smooth commutative rings rather than for Λ_p-rings, we now consider q-analogues of de Rham–Witt cohomology. Our starting point is to observe that if we allow roots of q, we can extend the Jackson differential to fractional powers of x by the formula

$$\nabla_q(x^{m/n}) = \frac{q^{m/n} - 1}{q - 1} x^{m/n} d \log x,$$

so terms such as $[n]_{q^{1/n}} x^{m/n}$ have integral derivative, where $[n]_{q^{1/n}} = \frac{q^{-1}}{q^{1/n} - 1}$.

3.1. Motivation.

Definition 3.1. Given a Λ_p-ring B, define $\Psi^{1/p^\infty}B$ to be the smallest Λ_p-ring containing B on which the Adams operations are automorphisms.

In the case $P = \{p\}$, the Λ_p-ring $\Psi^{1/p^\infty}B$ is thus the colimit of the diagram

$$B \xrightarrow{\Psi^p} B \xrightarrow{\Psi^p} B \xrightarrow{\Psi^p} \ldots$$

The proof of Theorem 3.2 allows us to replace $\widehat{qDR_p}(A/R)$ with the complex $(\Omega_{A/R}^{*}[q-1], (q-1)\nabla_q)$; under this quasi-isomorphism, the Adams operations on A extend to $\Omega_{A/R}^{*}[q-1]$ by setting $\Psi^n(dx_i) := x_i^{n-1}dx_i$. As an immediate consequence we have:

Lemma 3.2. If R is a flat Λ_p-ring over \mathbb{Z} with $\Psi^{1/p^\infty}R = R$ and residue characteristic p, then $\Psi^{1/p^\infty}qDR_p(R[x]/R) \simeq (\Omega_{R[x]}^{*}[q^{1/p^\infty}]/(q-1)\nabla_q)$, so the décalage $L_{(q-1)}\Psi^{1/p^\infty}qDR_p(R[x]/R)$ is quasi-isomorphic to the $(q-1)$-adic completion of the complex

$$\{a \in R[x^{1/p^\infty}, q^{1/p^\infty}] : \nabla_q a \in R[x^{1/p^\infty}, q^{1/p^\infty}]d\log x\} \xrightarrow{\nabla_q} \{b d\log x \in R[x^{1/p^\infty}, q^{1/p^\infty}]d\log x : b(0, q) = 0\}$$

Thus in level 0 (resp. level 1), $L_{(q-1)}\Psi^{1/p^\infty}qDR_p(R[x]/R)$ is spanned by elements of the form $[p^n]_{q^{1/p^n}}, x^m/p^n$ (resp. $x^m/p^n d\log x$), so setting $q^{1/p^\infty} = 1$ gives a complex whose p-adic completion is the p-typical de Rham–Witt complex.

Lemma 3.3. Let R and A be flat p-adically complete Λ_p-algebras over \mathbb{Z}_p, with $\Psi^{1/p^\infty}R = R$ and, for elements x_i of rank 1, a map $\square : R[x_1, \ldots, x_d]^{\psi_p} \to A$ of Λ_p-rings which is a flat p-adic deformation of an étale map. Then the map

$$L_{(q-1)}\Psi^{1/p^\infty}qDR_p(A/R)^{\psi_p} \to L_{(q-1)}(\Psi^{1/p^\infty}qDR_p(A/R))^{\psi_p}$$

is a quasi-isomorphism.

Proof. The map $\Psi^p : A \otimes_R[x_1, \ldots, x_d] R[x^{1/p}, \ldots, x_d^{1/p}] \to A$ becomes an isomorphism on p-adic completion, because \square is flat and we have an isomorphism modulo p. Thus $\Psi^{1/p^\infty}A \simeq A[x_1^{1/p^\infty}, \ldots, x_d^{1/p^\infty}]^{\psi_p} := (A \otimes_R[x_1, \ldots, x_d] R[x^{1/p^\infty}, \ldots, x_d^{1/p^\infty}])^{\psi_p}$.

Combined with the calculation of Lemma 3.2 this gives us a quasi-isomorphism between $(\Psi^{1/p^\infty}qDR_p(A/R))^{\psi_p}$ and the $(p, q - 1)$-adic completion of

$$\bigoplus_{\alpha} A[[q-1]]_{x_1}^{\alpha_1} \ldots x_d^{\alpha_d} dx^I,$$

where $\alpha \in p^{-\infty}\mathbb{Z}^d$ such that $0 \leq \alpha_i < 1$ if $i \notin I$ and $-1 < \alpha_i \leq 0$ if $i \in I$.

We then observe that the contributions to the décalage $\eta_{(q-1)}$ from terms with $\alpha \neq 0$ must be acyclic, via a contracting homotopy defined by the restriction to $\eta_{(q-1)}$ of the q-integration map

$$f x_1^{a_1} \ldots x_d^{a_d} dx^I \mapsto f x_1^{a_1} \ldots x_d^{a_d} \sum_{i \in I} \pm x_i [\alpha_i]_q^{-1} d x_i^{(I \setminus i)},$$

where $[\frac{m}{p^n}]_q^{-1} = [m]_{q^{1/p^n}}^{-1}$ for m coprime to p, noting that $[m]_{q^{1/p^n}}$ is a unit in $\mathbb{Z}_{q^{1/p^n}}^{\psi_p}(p, q - 1)$. \square
Remark 3.4. The endomorphism given on $\Psi^{1/P^\infty}_q\hat{\text{DR}}_P(A/R)$ by

$$a \mapsto \Psi^{1/n}([n]_q a) = [n]_{q^{1/n}} \Psi^{1/n}a$$

descends to an endomorphism of $H^0(\Psi^{1/P^\infty}_q\hat{\text{DR}}_P(A/R)/(q-1))$, which we may denote by V_n because it mimics Verschiebung in the sense that $\Psi^n V_n = n \cdot \text{id}$.

For A smooth over \mathbb{Z}, we then have

$$H^0(\Psi^{1/P^\infty}_q\hat{\text{DR}}_P(A/\mathbb{Z})/(q-1))/(V_p : p \in P) \cong A[q^{1/P^\infty}]/([p]_{q^{1/p}} : p \in P) \cong A[\zeta_{P^\infty}],$$

for ζ_n a primitive nth root of unity.

By adjunction, this gives an injective map

$$H^0(\Psi^{1/P^\infty}_q\hat{\text{DR}}_P(A/\mathbb{Z})/(q-1)) \hookrightarrow W^P(A[\zeta_{P^\infty}])$$

of A_P-rings, which becomes an isomorphism on completing $\Psi^{1/P^\infty}_q\hat{\text{DR}}(A/\mathbb{Z})$ with respect to the system $\{(\mathbb{Z}[q^{1/n}])_{n \in \mathbb{P}}\}$ of ideals, where we write P^∞ for the set of integers whose prime factors are all in P. This implies that the cokernel is annihilated by all elements of $(q^{1/P^\infty})_P^{-1}$, so leads us to consider almost mathematics as in [GR].

3.2. Almost isomorphisms. Combined with Lemma 3.3 Remark 3.4 allows us to regard $L_{(q-1)}\Psi^{1/P^\infty}_q\hat{\text{DR}}_P(A/\mathbb{Z})_{/P}$ as being almost a q^{1/P^∞}-analogue of P-typical de Rham–Witt cohomology. (From now on, we consider only the case $P = \{p\}$.)

The ideal $(q^{1/P^\infty} - 1)^{(1/p - 1)} = \ker(Z[q^{1/P^\infty}]^{1/(p-1)} \rightarrow Z_p)$ is equal to the p-adic completion of its square, since we may write it as the kernel $W^P(m)W^P(F_p[q^{1/P^\infty}]^{1/(p-1)}) \rightarrow W^P(F_p)$, for the idempotent maximal ideal $m = ((q-1)^{1/P^\infty})^{1/(p-1)}$ in $F_p[q^{1/P^\infty}]^{1/(p-1)}$.

If we set h^{1/P^∞} to be the Teichmüller element $[q^{1/P^\infty} - 1] = \lim_{r \to \infty} (q^{1/r^{nr}} - 1)^{nr} \in Z[q^{1/P^\infty}]^{1/(p-1)}$, then $W^P(m) = (h^{1/P^\infty})^{1/(p-1)}$. Although $W^P(m)/p^n$ is not maximal in $Z[h^{1/P^\infty}]^{1/(p-1)}/p^n$, it is idempotent and flat, so gives a basic setup in the sense of [GR] 2.1.1. We thus regard the pair $(Z[q^{1/P^\infty}]^{1/(p-1)}, W^P(m))$ as an inverse system of basic setups for almost ring theory.

We then follow the terminology and notation of [GR], studying p-adically complete $(Z[q^{1/P^\infty}]^{1/(p-1)})^a$-modules (almost $Z[q^{1/P^\infty}]^{1/(p-1)}$-modules) given by localising at almost isomorphisms, the maps whose kernel and cokernel are $W^P(m)$-torsion.

The obvious functor $(-)^a$ from modules to almost modules has a right adjoint $(-)_a$, given by $N_a := \text{Hom}_{Z[q^{1/P^\infty}]^{1/(p-1)}}(W^P(m), N)$, the module of almost elements. Since the counit $(M_a)^a \rightarrow M$ of the adjunction is an (almost) isomorphism, we may also regard almost modules as a full subcategory of the category of modules, consisting of those M for which the natural map $M \rightarrow (M_a)^a$ is an isomorphism. We can define p-adically complete $(Z[q^{1/P^\infty}]^{1/(p-1)})^a$-algebras similarly, forming a full subcategory of $Z[q^{1/P^\infty}]^{1/(p-1)}$-algebras.

Lemma 3.5. For any $Z[q - 1]$-module M, we may recover the $Z[q^{1/P^\infty}]^{1/(p-1)}$-module $(M \otimes_{Z[q]} Z[q^{1/P^\infty}]^{1/P})$ as the module of almost elements of the associated almost $Z[q^{1/P^\infty}]^{1/(p-1)}$-module.

Proof. Since $M \otimes_{Z[q]} Z[q^{1/P^\infty}] = \bigoplus_\alpha M \otimes q^\alpha$ for $\alpha \in p^{-\infty}\mathbb{Z}$ with $0 \leq \alpha < 1$, calculation shows that $(M \otimes_{Z[q]} Z[q^{1/P^\infty}]^{1/P}) \rightarrow (M \otimes_{Z[q]} Z[q^{1/P^\infty}])^a$ must be an isomorphism. □
3.3. Perfectoid algebras. We now relate Scholze’s perfectoid algebras to a class of \(\Lambda_p \)-rings.

Definition 3.6. Define a perfectoid \(\Lambda_p \)-ring to be a flat \(p \)-adically complete \(\Lambda_p \)-algebra over \(\mathbb{Z}_p \), on which the Adams operation \(\Psi_p \) is an isomorphism.

For a perfectoid field \(K \) in the sense of [Sch1], there is a tilt \(K^\flat \) (a complete perfect field of characteristic \(p \)). The subring of power-bounded elements is denoted \(K^\diamond \subset K \).

Lemma 3.7. Given a perfectoid field \(K \), we have equivalences

\[
\begin{array}{c|c}
\text{perfectoid almost } K^\diamond\text{-algebras} & \mathcal{A}_{\text{inf}}(K^\diamond) \\
\hline
\mathbb{F}_p \otimes \mathbb{Z}_p & W(p) \\
\hline
\text{perfectoid almost } \Lambda_p\text{-rings over } \mathcal{A}_{\text{inf}}(K^\diamond) \\
\hline
\end{array}
\]

of categories, where \(\mathcal{A}_{\text{inf}}(C) := \varprojlim_{q \rightarrow 0} W^{(q)}(C) \).

Proof. A perfectoid \(\Lambda_p \)-ring \(B \) is a deformation of the \(\mathbb{F}_p \)-algebra \(B/p \). As in [Sch1 Proposition 5.13], a perfect \(\mathbb{F}_p \)-algebra \(C \) has a unique deformation \(W^{(q)}(C) \) over \(\mathbb{Z}_p \), to which Frobenius must lift uniquely; this gives the bottom pair of equivalences.

We then observe that since \(B := \mathcal{A}_{\text{inf}}(C) \) is a perfectoid \(\Lambda_p \)-ring for any flat \(p \)-adically complete \(\mathbb{Z}_p \)-algebra \(C \), we must have \(B \cong W^{(q)}(B/p) \). Comparing rank 1 elements then gives a monoid isomorphism \((B/p) \cong \varprojlim_{x \rightarrow x^p} C \), from which it follows that

\[\mathbb{F}_p \otimes \mathbb{Z}_p \mathcal{A}_{\text{inf}}(C) \cong \varprojlim_{q \rightarrow 0} \varprojlim_{C/p} C^\diamond \]

whenever \(C \) is perfectoid. Since tilting gives an equivalence of almost algebras by [Sch1 Theorem 5.2], this completes the proof. \(\square \)

We will only apply Lemma 3.7 to perfectoid almost \(\Lambda_p \)-rings over \(\mathbb{Z}[q^{1/p\infty}]^{\wedge(p-1)} \), in which case it shows that reduction modulo \([p]_{q^{1/p}} \) (resp. \(p \)) gives an equivalence with perfectoid \((\mathbb{Z}[q^{1/p\infty}]^{\wedge(p-1)})^\diamond \)-algebras (resp. perfectoid \((\mathbb{F}_p[q^{1/p\infty}]^{\wedge(q-1)})^\diamond \)-algebras).

3.4. Functoriality of \(q \)-de Rham cohomology. Since \((\Psi^{1/p\infty}_q \mathcal{D} \mathbb{R}^p_A(A/\mathbb{Z}_p))^\wedge(p) \) is represented by a cosimplicial perfectoid \(\Lambda_p \)-ring over \(\mathbb{Z}[q^{1/p\infty}]^{\wedge(p-1)} \) for any flat \(\Lambda_p \)-ring \(A \) over \(\mathbb{Z}_p \), it corresponds under Lemma 3.7 to a cosimplicial perfectoid \((\mathbb{Z}[\zeta_p^{1/p\infty}]^{\wedge(p-1)})^\diamond \)-algebra, representing the following functor:

Lemma 3.8. For a perfectoid \((\mathbb{Z}[\zeta_p^{1/p\infty}]^{\wedge(p)})^\diamond \)-algebra \(C \), and a \(\Lambda_p \)-ring \(A \) over \(\mathbb{Z}_p \) with \(X = \text{Spec} A \), there is a canonical isomorphism

\[X^q_p \text{strat}(\varprojlim_{q \rightarrow 0} W^{(p)}(C)_*) \cong \text{Im} \left(\varprojlim_{q \rightarrow 0} X(C_*) \rightarrow X(C_*) \right),\]

for the ring \(C_* \) of almost elements.

Proof. By definition, \(X^q_p \text{strat}(\varprojlim_{q \rightarrow 0} W^{(p)}(C)_*) \) is the image of

\[\text{Hom}_{\Lambda_p}(A, \varprojlim_{q \rightarrow 0} W^{(p)}(C)_*) \rightarrow \text{Hom}_{\Lambda_p}(A, (\varprojlim_{q \rightarrow 0} W^{(p)}(C)_*)/(q - 1)).\]
Since right adjoints commute with limits, we may rewrite the first term as $$\lim_{\Psi p} \text{Hom}_{A_p}(A, W^{(p)}(C *)) = \lim_{\Psi p} X(C_*)$$.

Setting $$B := \lim_{\Psi p} W^{(p)}(C)_*$$, observe that because $$[p^n]_{q^{1/p^n}} (q^{1/p^n} - 1) = (q - 1)$$, we have $$\bigcap [p^n]_{q^{1/p^n}} B = (q - 1)B$$, any element on the left defining an almost element of $$(q - 1)B$$, hence a genuine element since $$B = B_*$$ is flat. Then note that since the projection map $$\theta : B \rightarrow C_*$$ has kernel $$([p]_{q^{1/p^n}})$$, the map $$\theta \circ \Psi^{p - 1}$$ has kernel $$([p]_{q^{1/p^n}}$$), and so $$B \rightarrow W^{(p)}C_*$$ has kernel $$\bigcap [p^n]_{q^{1/p^n}} B$$. Thus

$$\text{Hom}_{A_p}(A, \lim_{\Psi p} W^{(p)}(C)_*) / (q - 1) \rightarrow \text{Hom}_{A_p}(A, W^{(p)}(C)_*) = X(C_*)$$.

\[\Box\]

In fact, the tilting equivalence gives $$\lim_{\Psi p} X(C_*) \cong X(C_*^\circ)$$, so the only dependence of $$((\Psi^{1/p^n} \hat{\text{DR}}_p(A/\mathbb{Z}_p))^{\wedge p})^a$$ on the Frobenius lift $$\Psi^p$$ is in determining the image of $$X(C_*^\circ) \rightarrow X(C_*)$$.

Although this map is not surjective, it is almost so in a precise sense, which we now use to establish independence of $$\Psi^p$$, showing that, up to faithfully flat descent, $$\hat{\text{DR}}_p(A/\mathbb{Z}_p)^{\wedge p} / [p]_{q^{1/p^n}}$$ is the best possible perfectoid approximation to $$A[\kappa^{\infty}]^{\wedge p}$$.

Definition 3.9. Given a functor $$X$$ from $$(\mathbb{Z}[\kappa^{\infty}]^{\wedge p})^{\wedge p}$$-algebras to sets and a functor $$\mathcal{A}$$ from perfectoid $$(\mathbb{Z}[\kappa^{\infty}]^{\wedge p})^{\wedge p}$$-algebras to abelian groups, we write

$$\text{R} \Gamma_{\text{Pfd}}(X, \mathcal{A}) := \text{R} \text{Hom}_{\text{Pfd}(\mathbb{Z}[\kappa^{\infty}]^{\wedge p})}$$. Set}(X, \mathcal{A})$$,

where Pfd($$S^a$$) denotes the category of perfectoid almost $$S$$-algebras, and $$(C, \text{Set})$$ denotes set-valued functors on $$C$$. When $$X$$ is representable by a $$(\mathbb{Z}[\kappa^{\infty}]^{\wedge p})^{\wedge p}$$-algebra $$C$$, we simply denote this by $$\text{R} \Gamma_{\text{Pfd}}(C, \mathcal{A})$$ — when $$C$$ is perfectoid, this will just be $$\mathcal{A}(C)$$.

The following gives a refinement of [BMS Theorem 1.17], addressing some of the questions in [BMS, Remark 1.11]:

Theorem 3.10. If $$R$$ is a $$p$$-adically complete $$\Lambda_p$$-ring over $$\mathbb{Z}_p$$, and $$A$$ a formal $$R$$-deformation of a smooth ring over $$(R/p)$$, then the complex

$$\text{R} \Gamma_{\text{Pfd}}((A[\kappa^{\infty}] \otimes_R \Psi^{1/p^n} R)^{\wedge p}, \mathcal{A}_{\text{inf}})$$

of $$\mathbb{Z}[q^{1/p^n}]^{\wedge p}$$-modules is almost quasi-isomorphic to $$(\Psi^{1/p^n} \hat{\text{DR}}_p(A/R))^{\wedge p}$$ for any $$\Lambda_p$$-ring structure on $$A$$ coming from a framing over $$R$$ as in Theorem 2.7.

Proof. First observe that $$(\Psi^{1/p^n} \hat{\text{DR}}_p(A/R))^{\wedge p}$$ is the completion of $$\hat{\text{DR}}_p(A/R)$$ with respect to the category of cosimplicial perfectoid almost $$\Lambda_p$$-rings over $$\mathbb{Z}[q^{1/p^n}]^{\wedge p}$$.

Combining the definition of $$\hat{\text{DR}}_p$$ with Lemma 3.7, it then follows that for $$X = \text{Spec} A$$ and $$Y = \text{Spec} R$$, the complex $$(\hat{\text{DR}}_p(A/R))^{\wedge p}$$ is given by the homotopy limit

$$\text{R} \Gamma_{\text{Pfd}}((X^q_\text{strat} \times Y^q_\text{strat} Y) \circ (\mathcal{A}_{\text{inf}})_*, (\mathcal{A}_{\text{inf}})_*)$$.

Writing $$X^\infty(C) := \text{Im}(\lim_{\Psi p} X(C_*) \rightarrow X(C_*)$$), Lemma 3.8 then combines with the description above to give

$$(\hat{\text{DR}}_p(A/R))^{\wedge p} \simeq \text{R} \Gamma_{\text{Pfd}}(X^\infty \times Y^\infty \lim_{\Psi p} Y, (\mathcal{A}_{\text{inf}})_*)$$,

$$\simeq \text{R} \Gamma_{\text{Pfd}}(X^\infty \times Y^\infty \lim_{\Psi p} Y, (\mathcal{A}_{\text{inf}})_*)$$.
We now introduce a Grothendieck topology on the category [Pfd],[\mathbb{Z}][\mathbb{Z}_p]\),\mathbb{Z}^\infty,\mathbb{Z}_p]\), by taking covering morphisms to be those maps \(C \rightarrow C'\) of perfectoid algebras which are almost faithfully flat modulo \(p\). Since \(C^p = \lim_{\Phi} (C/p)\), the functor \(\mathcal{A}_{\text{inf}}\) satisfies descent with respect to these coverings, so the map

\[
R\Gamma_{\text{Pfd}}((X^\infty \times Y \lim_{\mathcal{X}_p}) X_{p}), (\mathcal{A}_{\text{inf}})_*) \rightarrow R\Gamma_{\text{Pfd}}(X^\infty \times Y \lim_{\mathcal{X}_p}) X_{p}, (\mathcal{A}_{\text{inf}})_*)
\]

is a quasi-isomorphism, where \((-)^{\flat}\) denotes sheafification.

In other words, the calculation of \((q^\text{DR}_p(A/R))^\wedge_p\) is not affected if we tweak the definition of \(X^\infty\) by taking the image sheaf instead of the image presheaf. We then have

\[
(X^\infty)^\sharp(C) = \bigcup_{C \rightarrow C'} \text{Im}(X(C_*) \times X(C'_*) \lim_{\mathcal{X}_p} X(C'_*) \rightarrow X(C_*)),
\]

where \(C \rightarrow C'\) runs over all covering morphisms.

Now, \(\lim_{\mathcal{X}_p} X\) is represented by the perfectoid algebra \((\Psi^1/p^\infty A)^\wedge_p\), which is isomorphic to \(A[x_1/p^\infty, \ldots, x_d/p^\infty]^\wedge_p\) as in the proof of Lemma 3.3. This allows us to appeal to Andrè’s results \([\text{And.} \quad \frac{2.5}{\text{Bha.}}\)] as generalised in \([\text{Bha.} \quad \text{Theorem} 2.3]\). For any morphism \(f : A \rightarrow C\), there exists a covering morphism \(C \rightarrow C_1\) such that \(f(x_i)\) has arbitrary \(p\)-power roots in \(C_1\). Setting \(C' := C_1 \otimes C \ldots \otimes C C_d\), this means that the composite \(A \rightarrow C \rightarrow C'\) extends to a map \((\Psi^1/p^\infty A)^\wedge_p \rightarrow C'\), so \(f \in (X^\infty)^\sharp(C)\). We thus have shown that \((X^\infty)^\sharp = X\), giving the required equivalence

\[
((\Psi^1/p^\infty q^\text{DR}_p(A/R))^\wedge_p)_* \simeq R\Gamma_{\text{Pfd}}(X \times Y \lim_{\mathcal{X}_p}) X_{p}, (\mathcal{A}_{\text{inf}})_*).
\]

\[\square \]

Corollary 3.11. If \(R\) is a \(p\)-adically complete \(\Lambda_p\)-ring over \(\mathbb{Z}_p\), and \(A\) a formal \(R\)-deformation of a smooth ring over \((R/p)\), then the \(q\)-de Rham cohomology complex \((q(\Omega^\bullet_{A/R,\Box} \otimes R[q])(\Psi^1/p^\infty R[q^1/p^\infty])^\wedge_p\) is, up to quasi-isomorphism, independent of a choice of co-ordinates \(\square\). It is naturally an invariant of the commutative \(p\)-adically complete \((\Psi^1/p^\infty R)[\mathbb{Q}_p^\wedge]/p^\wedge\)-algebra \(A[\mathbb{Q}_p^\wedge] \otimes R \Psi^1/p^\infty R)^\wedge_p\).

Proof. By Theorem 3.10 we know that the complex \(((\Psi^1/p^\infty q^\text{DR}_p(A/R))^\wedge_p)_*\) depends only on \((A[\mathbb{Q}_p^\wedge] \otimes R \Psi^1/p^\infty R)^\wedge_p\). Since

\[
\Psi^1/p^\infty q^\text{DR}_p(A/R) = \Psi^1/p^\infty q^\text{DR}_p((A \otimes_R \Psi^1/p^\infty R)/\Psi^1/p^\infty R),
\]

Theorem 2.7 combines with Lemmas 3.3 and 3.5 to give

\[
(q(\Omega^\bullet_{A/R,\Box} \otimes R[q])(\Psi^1/p^\infty R[q^1/p^\infty])^\wedge_p) \simeq L\eta_{(q-1)}((\Psi^1/p^\infty q^\text{DR}_p(A/R))^\wedge_p)_*,
\]

which completes the proof. \[\square \]

Remark 3.12 (Scholze’s conjectures). If we weaken the conjectures of \([\text{Sch2} \quad \text{Conjecture} 3.1]\) (co-ordinate independence of \(q\)-de Rham cohomology over \(\mathbb{Z}\)) via an arithmetic fracture square. Taking more general base rings \(R\) in Corollary 3.11 gives an analogue of \([\text{Sch2} \quad \text{Conjecture} 7.1]\), further weakened by having to invert all Adams operations on \(R\).

The description of Theorem 3.10 is very closely related to the definition of \(A\Omega^\bullet\) in \([\text{BMS} \quad \text{Definition} 1.12]\), giving an analogue of \([\text{Sch2} \quad \text{Conjecture} 4.3]\), and hence the comparison with singular cohomology in \([\text{Sch2} \quad \text{Conjecture} 3.3]\). The operations
described in [Sch2, Conjectures 6.1 and 6.2] correspond to the Adams operations on $q\text{-DR}$ respectively at and away from the residue characteristics. Remark 1.19 provides a category of q-connections as described in [Sch2, Conjecture 7.5]; these will correspond via Theorem 1.11 to projective \mathcal{A}_{inf}-modules on the site of integral perfectoid algebras over $A[\zeta_{p^\infty}]^{1/p}$, so are again independent of co-ordinates after base change to $\mathbb{Z}[\eta^{1/p^\infty}]$.

References

[And] Y. Andre. La conjecture du facteur direct. arXiv: 1609.00345 [math.AG], 2016.
[Bha] B. Bhatt. On the direct summand conjecture and its derived variant. arXiv:1608.08882 [math.AG], 2016.
[BMS] B. Bhatt, M. Morrow, and P. Scholze. Integral p-adic Hodge theory. arXiv:1602.03148 [math.NT], 2016.
[Bor] James Borger. The basic geometry of Witt vectors, I: The affine case. Algebra Number Theory, 5(2):231–285, 2011.
[GR] Ofer Gabber and Lorenzo Ramero. Almost ring theory, volume 1800 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2003. arXiv:math/0201175v3 [math.AG].
[Gro] A. Grothendieck. Crystals and the de Rham cohomology of schemes. In Dix Exposés sur la Cohomologie des Schémas, pages 306–358. North-Holland, Amsterdam, 1968.
[Joy] André Joyal. δ-anneaux et vecteurs de Witt. C. R. Math. Rep. Acad. Sci. Canada, 7(3):177–182, 1985.
[Sch1] Peter Scholze. Perfectoid spaces. Publ. Math. Inst. Hautes Études Sci., 116:245–313, 2012.
[Sch2] Peter Scholze. Canonical q-deformations in arithmetic geometry. Ann. Fac. Sci. Toulouse Math., to appear. arXiv:1606.01796v1 [math.AG].
[Sim] Carlos Simpson. Homotopy over the complex numbers and generalized de Rham cohomology. In Moduli of vector bundles (Sanda, 1994; Kyoto, 1994), volume 179 of Lecture Notes in Pure and Appl. Math., pages 229–263. Dekker, New York, 1996.