COVID-19 and Media datasets: Period- and location-specific textual data mining
Mathieu Roche

To cite this version:
Mathieu Roche. COVID-19 and Media datasets: Period- and location-specific textual data mining. Data in Brief, Elsevier, 2020, 33, pp.106356. 10.1016/j.dib.2020.106356 . hal-03125806

HAL Id: hal-03125806
https://hal.inrae.fr/hal-03125806
Submitted on 29 Jan 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
COVID-19 and Media datasets: Period- and location-specific textual data mining

Mathieu Roche

CIRAD, UMR TETIS, F-34398 Montpellier, France
TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, INRAE, Montpellier, France

Article history:
Received 12 August 2020
Revised 10 September 2020
Accepted 16 September 2020
Available online 30 September 2020

Keywords:
Corpus
Text-mining
NLP
Terminology extraction
Classification
COVID-19

Abstract

The vocabulary used in news on a disease such as COVID-19 changes according the period [4]. This aspect is discussed on the basis of MEDISYS-sourced media datasets via two studies. The first focuses on terminology extraction and the second on period prediction according to the textual content using machine learning approaches.

Specifications Table

Subject area	Health Informatics
More specific subject area	Text-mining approaches for health and social analysis (COVID-19)
Type of data	Text
How data was acquired	Manual extraction from MEDISYS: https://medisys.newsbrief.eu/medisys/homeedition/fr/home.html
Data format	Raw: (1) Corpus for BioTex (*.txt) [repositories: *.MOOD_Corpus_BIOTEX], (2) Corpus for Weka (*.arff) [repositories: *.MOOD_Corpus_WEKA]
	Filtered: Terms extracted with BioTex from corpus (1) (*.csv)
Parameters for data collection	Dedicated keywords, locations and languages for selecting data from MEDISYS. Specific parameters and algorithms are applied for NLP and data mining tools (ranking measures, classification algorithms, etc.).

E-mail address: mathieu.roche@cirad.fr

https://doi.org/10.1016/j.dib.2020.106356
2352-3409/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Value of the Data

- This dataset is important for spatiotemporal analysis of media content regarding COVID-19. The methodology is generic and could be implemented for other study cases based on MEDISYS data.
- This data could be used by computer science scientists (NLP and data mining domains) and for social science and humanities research.
- The formats of these datasets are suitable for NLP approaches (e.g. BioTex) and data-mining tools (e.g. Weka).
- Other corpora could also be collected with the method outlined in this data paper. The code (Perl) enables the conversion of other textual data from MEDISYS in suitable formats for NLP and data-mining tools.

1. Data Description

These datasets contain a set of news articles in English, French and Spanish extracted from MEDISYS (i.e. advanced search) according the following criteria:

3- Keywords (at least): COVID-19, ncov2019, cov2019, coronavirus
3- Keywords (all words): mask (English), máscara (Spanish), masque (French)
3- 3 periods: March 2020, May 2020, July 2020
3- 3 locations: UK (English), Spain (Spanish), France (French)

Location-specific corpora were manually collected (copy/paste) by querying MEDISYS with the previous parameters (i.e. primary data sources). For each location, 100 snippets by period (1st, 10th, 15th and 20th of each month) were built. These data were preprocessed using a dedicated Perl program followed by text-mining algorithms (see section below) in order to produce the following datasets (i.e. secondary dataset - https://doi.org/10.18167/DVN1/ZUA8MF):

3- A corpus preprocessed for the BioTex tool - https://gitlab.irstea.fr/jacques.fize/biotex_python (*.txt) [~ 900 texts];
3- The same corpus preprocessed for the Weka tool - https://www.cs.waikato.ac.nz/ml/weka/ (*.arff);
3- Terms extracted with BioTex according spatiotemporal criteria (*.csv) [~ 9000 terms].

Other corpora can be collected with the same method. The code (Perl) required to preprocess textual data for terminology extraction (with BioTex) and classification (with Weka) tasks is available on Dataverse: https://doi.org/10.18167/DVN1/ZUA8MF.

1 Each article (line) is separated by a blank line.
2 https://www.cs.waikato.ac.nz/~ml/weka/arff.html
3 Each line includes the rank, term and presence (i.e. value = 1) of the term in UMLS (Unified Medical Language System) and the BioTex score based on the F-TFIDF-C measure.
The textual data acquisition phase is done manually by querying MEDISYS. The other tasks described in this paper are automatic (i.e. pre-processing, terminology extraction, classification). In future research, we plan to use RSS feeds provided by MEDISYS in order to collect data automatically.

2. Experimental Design, Materials and Methods

With these datasets, two experiments were conducted per location:

3- **Terminology extraction tasks using NLP approaches to highlight specific terms.** Terminology extraction is based on the BioTex system [2]. Several measures are implemented in BioTex for term ranking. The F-TFIDF-C criterion based on a combination of TF-IDF [3] and C-Value [1] were used for these datasets. TF-IDF highlights discriminative terms, while C-Value favors phrase (i.e. multiword term) extraction. The extraction results are available in the Dataverse repository associated with this study (BioTex parameters used: F-TFIDF-C measure, number of syntactic patterns: 10, 3 languages).

Table 1 presents a sample of these results, i.e. terminology selected with the word *mask* from UK_MOOD_Terms, SP_MOOD_Terms and FR_MOOD_Terms raw data. We found that the vocabulary could be period- and location-specific, but similar trends were also noted for some aspects like mandatory mask-wearing in July for all locations (e.g. *mandatory mask*, *mandatory mask-wearing*, *máscara obligatoria en comercios*, *máscara obligatoria*, *masque obligatoire*).

3- **Classification tasks using machine learning approaches for period prediction.** Based on a vector space model representation (i.e. bag-of-words), the objective is to predict periods using machine learning approaches. Note that each month represents the class to predict with supervised learning techniques (i.e. in the ARFF files, each article has a label associated with the month).

Table 1
Terms obtained with BioTex filtered with the word *mask* (*máscara, masque*) and the associated rank for the 3 locations.

UK	Period 1 (March 2020)	Period 2 (May 2020)	Period 3 (July 2020)
1	face mask (10)	coronavirus mask (19)	masks (2)
2	gas mask (59)	masks (40)	mask (17)
3	protective mask (167)	mask mess (53)	mandatory mask (237)
4	mask (202)	surgical mask (57)	mandatory mask-wearing (238)
5	masks (227)	face masks (80)	mandatory masks (239)

Spain	Period 1 (March 2020)	Period 2 (May 2020)	Period 3 (July 2020)
1	máscara de protección (1)	máscara facial (87)	máscaras antigás con filtro (10)
2	máscara de snorkel (34)	máscaras quirúrgicas (152)	máscaras antigás (21)
3	máscara antigás (47)	máscaras (170)	máscara obligatoria en comercios (23)
4	máscara (80)	máscara (212)	máscaras obligatoria (37)
5	máscara de tristeza (489)	máscara marrón (366)	diseños de máscaras (86)

France	Period 1 (March 2020)	Period 2 (May 2020)	Period 3 (July 2020)
1	masques (3)	masques (1)	port du masque (21)
2	masque à abidjan (21)	masque de protection (161)	masque (32)
3	masques en tissu (43)	port du masque (201)	masque obligatoire (75)
4	masque sur le visage (86)	chant du masque (441)	masque sur le visage (77)
5	masques chirurgicaux (119)	fabricants de masques (442)	masque de protection (110)
Table 2 presents the results obtained with 3 supervised algorithms (i.e. Support Vector Machine (SMO with PolyKernel), Random Forest (bagSizePercent = 100, maxDepth = 0, numIterations = 100) and Naive Bayes) with the raw data UK_MOOD_Corpus_WEKA, SP_MOOD_Corpus_WEKA, FR_MOOD_Corpus_WEKA. Other Weka algorithms can also be used with these corpora.

Ethics Statement

The author confirms compliance with the ethical policies of the journal, as noted on the journal’s author guidelines page. No ethical approval was required because this study did not involve any experimental protocol on humans or animals, and only open source online data were used. This work is based on a sample of data from MEDISYS (public site) that is an open access system available for all users4.

Declaration of Competing Interest

The author declares no conflicts of interest.

Acknowledgements

This work was partly funded by the H2020 'Monitoring outbreak events for disease surveillance in a data science context' (MOOD) project under grant agreement No. 874850 (https:

4 https://external.ecdc.europa.eu/EL_Tutorial/modulo01/unita02/html/MedISys_tutorial.pdf
the French General Directorate for Food (DGAL), the French Agricultural Research Centre for International Development (CIRAD) and the SONGES Project (FEDER and Occitanie). This work was supported by the French National Research Agency (ANR) under the Investments for the Future Program (ANR-16-CONV-0004). The author thanks Jens LINGE (Joint Research Centre (JRC) - European Commission) for data sharing.

Supplementary Materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106356.

References

[1] K.T. Frantzi, S. Ananiadou, H. Mima, Automatic recognition of multi-word terms: the C-value/NC-value method, Int. J. on Digital Libraries 3 (2) (2000) 115–130.

[2] J.A. Lossio-Ventura, C. Jonquet, M. Roche, M. Teisseire, Biomedical term extraction: overview and a new methodology, Inform. Retrieval J. 19 (1) (2016) 59–99.

[3] G. Salton, M.J. McGill, Introduction to Modern Information Retrieval, McGraw-Hill, 1983.

[4] S. Valentin, A. Mercier, R. Lancelot, M. Roche, E Arsevska, Monitoring online media reports for early detection of unknown diseases: Insight from a retrospective study of COVID-19 emergence, Trans. Emerging Dis. (2020).