One-step G-unimprovable numbers1

by Gennadiy Kalyabin2

Abstract: The infinitude is established of the set U_1 of all integers $N > 5$ whose Gronwall numbers $G(N)$ do not increase when replacing N by N/q or Np, where q,p are primes, $q | N$.

Keywords: Gronwall numbers, Ramanujan - Robin inequality, Caveney-Nicolas-Sondow Hypothesis

Bibliography: 6 items

1. Notations and problem setting

As usually let $\log x$ and $\sigma(n)$ stand (resp.) for the natural logarithm of a positive x and the sum of all divisors of a positive integer n. In 1913 T. Gronwall established [1] the limit relationship which involves the Euler-Masceroni constant $\gamma := \lim_{n \to \infty} \left(\sum_{k=1}^{\infty} \frac{1}{k} - \log n \right) = 0.577215..$:

$$\limsup_{n \to \infty} \frac{\sigma(n)}{n \log \log n} = e^\gamma = 1.78107.. \quad (1.1)$$

S. Ramanujan has noticed (in 1915, the first publication in 1997 [2]), that: if the Riemann Hypothesis on non-trivial zeros of $\zeta(s)$ holds true, then in addition to (1) for all sufficiently large n the strict inequality $\sigma(n) < e^\gamma n \log \log n$; $n > n_0$, $\quad (1.2)$
is fulfilled. 70 years later G. Robin [3] proved a paramount assertion which in a sense is inverse to Ramanujan’s result, namely:

if (1.2) holds true for all integers $n > 5040$, then RH is valid.

Detailed discussion of historical aspects and adjacent questions may be found in a remarkable Caveney-Nicolas-Sondow paper [4], (which in fact was the initial point for this author’s research) where it is proved that RRI is in turn equivalent to the statement:

1 This work was supported by the grant of Russian Foundation of Fundamental Research (project $\# 14 - 01 - 00684$.)

2 Samara State Technical University, Russia; gennadiy.kalyabin@gmail.com
Every integer \(N > 5 \) is \(G \)-improvable, i. e. either:

\[I^l : \text{there is a prime } q \mid N, \text{ such that } G(N/q) > G(N), \quad \text{or:} \]

\[I^x : \text{there is an integer } a > 1 \text{ such that } G(Na) > G(N). \]

Note that the numbers 3, 4 and 5 are not \(G \)-improvable.

We will consider a new class \(U_1 \) of all such integers \(N > 5 \) which cannot be \(G \)-improved neither by multiplication nor by division by any single prime.

Definition. An integer \(N > 5 \) is called 1-step \(G \)-umimprovable \((N \in U_1)\) if and only if the following two conditions hold:

\[U^l_1 : \text{for any prime } q \mid N, \text{ one has } G(N/q) \leq G(N), \quad \text{and:} \]

\[U^x_1 : \text{for any prime } p \text{ one has } G(Np) \leq G(N). \]

Remark 1. The condition \(U^l_1 \) (in [4], S. 5 it was studied under the name GA1) is exactly the negation of \(I^l \) whereas \(U^x_1 \) is essentially weaker than the negation of \(I^x \). Thus the CNSH is equivalent to \(U_1 \subset I^x \).

The purpose of this paper is to establish the infinitude of \(U_1 \) and to construct the explicit algorithm which successively calculates all elements of this class the least of them being equal

\[
N^*_1 = 2^5 \cdot 3^3 \cdot 5^2
\cdot 7
\cdot 11
\cdot 13
\cdot 17
\cdot 19
\cdot 23 = 160626866400; \ G(N^*_1) = 1.7374... \quad (1.3)
\]

The author believes this approach to be helpful for the proof of the CNSH.

Preliminary results

Let \(\mathbb{N} \) be the set of all positive integers, \(\mathbb{N}_0 := \mathbb{N} \cup \{0\} \), \((a, b) := \gcd(a, b) \) — the greatest common divisor of \(a, b \in \mathbb{N} \); \(\mathbb{P} := \{p_k\}_1^\infty \) — increasing sequence of all primes; the notation

\[
N \parallel p^\alpha, \ p \in \mathbb{P}, \ \alpha \in \mathbb{N}_0, \text{ means that } N = p^\alpha m, \ (m, p) = 1. \quad (2.1)
\]

First we will study how the Gronwall number changes if one replaces \(N \) by \(Np, \ p \in \mathbb{P} \). Let us denote

\[
\lambda \equiv \lambda(p, \alpha) := \frac{p^{\alpha+2} - 1}{p^{\alpha+2} - p} = 1 + \frac{1}{p^2 + \ldots + p^{\alpha+1}}; \quad (2.2)
\]

and let \(\xi := \xi(p, \alpha) \) be the unique positive root of the equation

\[
\xi^{\lambda(p, \alpha)} = \xi + \log p \iff \xi^{\lambda(p, \alpha) - 1} = 1 + \frac{\log p}{\xi} \iff \log \xi = (p + p^2 + \ldots + p^{\alpha+1}) \log \left(1 + \frac{\log p}{\xi} \right). \quad (2.3)
\]
Lemma 1. Let \(N > 1, \ N \parallel p^\alpha; \) then three following conditions are equivalent (comp. the definition of \(U_1^x \)):

(i) \(G(Np) > G(N), \) (ii) \((\log N)\lambda > \log N + \log p, \) (iii) \(\log N > \xi(p, \alpha). \)

\(\triangle \) By virtue of the classical number theory formula (cf. [5], Ch 1, § 2d):

\[
(p, m) = 1 \Rightarrow \sigma(p^\alpha m) = \frac{p^{\alpha+1} - 1}{p - 1} \sigma(m); \tag{2.5}
\]

whence the identities follow:

\[
\frac{G(p^{\alpha+1}m)}{G(p^{\alpha}m)} = \frac{p^{\alpha+2} - 1}{p - 1} \cdot \frac{p - 1}{p^{\alpha+1} - 1} \cdot \frac{p^\alpha \log \log(p^\alpha m)}{p^{\alpha+1} \log \log(p^{\alpha+1}m)}
\]

\[
= \frac{\lambda \log \log(N)}{\log \log(N + \log p)} = \frac{(\log(N))\lambda}{\log \log(N + \log p)}.
\tag{2.6}
\]

Therefore the inequality \(G(Np) > G(N) \) is equivalent to

\[
\frac{G(p^{\alpha+1}m)}{G(p^{\alpha}m)} > 1 \iff (\log p^\alpha m)^\lambda > \log p^\alpha m + \log p; \tag{2.7}
\]

this proves the equivalence of (i) and (ii) in (2.4). It remains to note that since the function \(\lambda(p, \alpha) \) decreases as either \(p \) or \(\alpha \) increase (cf. (2.2)), the root \(\xi(p, \alpha) \) of (2.3) is an increasing function of both \(p \) and \(\alpha \) \(\square \)

Lemma 2. Let the exponent \(\alpha \) in Lemma 1 be positive; then the following three conditions are equivalent (cp. \(U^x \)):

(i) \(G(N/p) \leq G(N), \) (ii) \((\log N - \log p)^\lambda(p, \alpha - 1) \geq \log N, \)

(iii) \(\log N \geq \log p + \xi(p, \alpha - 1). \)

\(\triangle \) It suffices to apply Lemma 1 to the numbers \(p \) and \(\tilde{N} := N/p \parallel p^{\alpha-1} \) \(\square \)

Remark 2. The assertion of Lemma 2 in somewhat different form was given in [4, Proposition 15]. It was also observed that the integer

\[
\nu := 2^4 \cdot 3^3 \cdot 5^2 \cdot 7 \cdot 11 \cdot 13 \cdot 17 = 183 \, 783 \, 600 \tag{2.9}
\]

is the least \(N > 4 \) such that for all primes \(q \mid N, \) the inequality \(G(N/q) < G(N) \) is fulfilled. However \(G(19\nu) = 1.7238.. > G(\nu) = 1.7175.. \) and thus \(\nu \notin U_1. \)

Joining the two Lemmas yields the assertion helpful in the sequel.

Proposition 1. Let \(N \parallel p^\alpha, \alpha > 0; \) then following two properties are equivalent:
(i) N is G_p-unimprovable, i.e. $G(N) \leq \min(G(N/p), G(Np))$,

(ii) $\log N \in \Delta_{p,\alpha} := [\xi(p, \alpha - 1) + \log p, \xi(p, \alpha)]$. \hfill (2.10)

For fixed prime p the segments $\Delta_{p,\alpha}$, $\alpha \in \mathbb{N}$ are nonempty and disjoint; in the case when $\log N$ belongs to the junction interval $I_\alpha := (\xi(p, \alpha), \xi(p, \alpha) + \log p)$, the number Np is G_p-unimprovable, i.e. $G(Np) \leq \min(G(N), G(Np^2))$.

We also need the bilateral estimates for the roots of equations (2.3) (more sharp as $\alpha = 0$) which are obtained by standard Analysis techniques.

Lemma 3. For all $\alpha \in \mathbb{N}_0$, $p \in \mathbb{P}$ the following inequalities are fulfilled:

(i) $p - \log p < \xi(p, 0) < p$;

(ii) $\frac{p^{\alpha+1}}{\alpha + 1} < \xi(p, \alpha) < 3 \frac{p^{\alpha+1}}{\alpha + 1}$, $\alpha \in \mathbb{N}$. \hfill (2.11)

\(\triangle \quad (i) \) The determining equation (2.3) $\xi^{1+\frac{1}{p}} = \xi + \log p$ for $\xi(p, 0)$ may be rewritten in the form:

$$f(\xi) := \frac{\log \xi}{p} - \log \left(1 + \frac{\log p}{\xi}\right) = 0,$$ \hfill (2.12)

where $f(\xi)$ is a strictly increasing function for $\xi > 0$. From the first inequality

(i) $\log(1 + z) < z$, ($z > -1$, $z \neq 0$),

(ii) $\log(1 + z) > z - 0.5z^2$ ($z > 0$) \hfill (2.13)

and (2.12) it follows that $f(p) > 0$. Further for $\xi_1 := p - \log p$ one obtains analogously

$$f(\xi_1) = \frac{\log(p - \log p)}{p} - \log \left(1 + \frac{\log p}{p - \log p}\right)$$

$$= - \log p + \left(1 + \frac{1}{p}\right) \log(p - \log p) = \frac{\log p}{p} + \left(1 + \frac{1}{p}\right) \log \left(1 - \frac{\log p}{p}\right)$$

$$< \frac{\log p}{p} - \left(1 + \frac{1}{p}\right) \frac{\log p}{p} = - \frac{\log p}{p^2} < 0 \quad \square$$ \hfill (2.14)

\(\triangle \quad (ii) \) Now let $\alpha > 0$; by introducing two new notations:

$$w = w(p, \alpha) := 1 + \frac{1}{p} + \frac{1}{p^2} + \ldots + \frac{1}{p^\alpha}; \quad t := (\alpha + 1)\xi \quad \frac{p^{\alpha+1}}{p^{\alpha+1}}, \quad \text{i.e.} \quad \xi = \frac{tp^{\alpha+1}}{\alpha + 1}.$$ \hfill (2.15)
one can rewrite the determining equation (2.3) in the following equivalent form:

\[
g(t) := \log t - \log(\alpha + 1) + (\alpha + 1) \log p \]

\[-p^{\alpha+1}w \log \left(1 + \frac{(\alpha + 1) \log p}{t p^{\alpha+1}}\right) = 0. \tag{2.16}\]

For \(p, \alpha\) being fixed the function \(g(t)\) is strictly increasing; therefore the assertion (ii) of Lemma 3 is equivalent to two inequalities: \(g(3) > 0, g(1) < 0\).

To prove the first of them we again apply (2.12)(i), and taking into account that \(w < 2\), we obtain

\[
g(3) > \log 3 - \log(\alpha + 1) + (\alpha + 1) \log p - \frac{w}{3}(\alpha + 1) \log p \tag{2.17}\]

\[> \log 3 - \log(\alpha + 1) + \frac{\alpha + 1}{3} \log p \geq 1 + \log \log p \geq 1 + \log \log 2 = 0.633.\]

To demonstrate that \(g(1) < 0\), we take use of the inequality (2.12)(ii):

\[
g(1) < -\log(\alpha + 1) + (\alpha + 1) \log p - w(\alpha + 1) \log p \left(1 - \frac{(\alpha + 1) \log p}{2 p^{\alpha+1}}\right) \]

\[= -\log(\alpha + 1) + \left(1 - w\left(1 - \frac{(\alpha + 1) \log p}{2 p^{\alpha+1}}\right)\right)(\alpha + 1) \log p \tag{2.18}\]

\[< -\log(\alpha + 1) + \left(1 - \left(1 + \frac{1}{p}\right)\left(1 - \frac{(\alpha + 1) \log p}{2 p^{\alpha+1}}\right)\right)(\alpha + 1) \log p < 0.\]

Here we have taken into account the relationships valid for all \(p \geq 2, \alpha \geq 1\)

\[w \geq 1 + \frac{1}{p}; \quad \frac{(\alpha + 1) \log p}{2 p^{\alpha+1}} \leq \frac{\log p}{p^2} \implies \left(1 + \frac{1}{p}\right)\left(1 - \frac{\log p}{p^2}\right) > 1, \tag{2.19}\]

whence it follows that the large bracket in the last line (2.18) is also negative \(\square\)

The rather simple assertion concerning non-negative sequences will be also frequently helpful for us.

L e m m a 4. Let \(A > 0, B > 0\); denote by

\[\tau^* = \tau^*(A, B) := A + 0.5B(B + \sqrt{B^2 + 4A}) \tag{2.20}\]

the root of the equation \(\tau = A + B\sqrt{\tau}\); suppose that \(a_n \geq 0, a_{n+1} \leq A + B\sqrt{a_n}\) \(\forall n \in \mathbb{N}_0\); then if \(a_0 \leq \tau^*\), then \(a_n \leq \tau^*\) for all \(n\).

\(\triangle\) It suffices to consider the auxiliary sequence \(b_n \geq a_n\) defined recursively as \(b_0 := a_0, b_{n+1} = A + B\sqrt{b_n}\) which increases to its limit \(\tau^* \quad \square\)
3. Structure and properties of numbers from the class U_1

We will use the first and the second Chebyshev functions (cf. [6], 3.2, p. 104)

$$\theta(x) := \sum_{p \leq x} \log p; \quad \psi(x) := \sum_{p^k \leq x} \log p = \theta(x) + \theta(x^{1/2}) + \theta(x^{1/3}) + \ldots,$$ \hspace{1cm} (3.1)

as well as Chebyshev products $T(p_n) := \exp(\theta(p_n)) = p_1 \cdot p_2 \cdot \ldots \cdot p_n$.

Let $P(N)$ stand for the greatest prime factor of an integer $N > 1$.

Theorem 1. Let the integer $N > 5$ have the canonical factorization

$$N = p_1^{\alpha_1} p_2^{\alpha_2} p_3^{\alpha_3} \ldots p_k^{\alpha_k}, \quad \alpha_k > 0, \text{ i.e. } P(N) = p_k.$$ \hspace{1cm} (3.2)

Then (A): the belonging $N \in U_1$ is equivalent to the set of inequalities:

(i) $\xi(p_j, \alpha_j - 1) + \log p_j \leq \log N \quad \forall j \leq k$ such that $\alpha_j > 0$;

(ii) $\log N \leq \xi(p_i, \alpha_i) \quad \forall i \leq k$;

(iii) $\log N \leq \xi(p_{k+1}, 0).$ \hspace{1cm} (3.3)

(B1): the exponents α_j do not increase: $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_k$ and $\alpha_k = 1$.

Δ The equivalence of conditions $N \in U_1$ and (3.3)(i)-(iii) follows immediately from definitions of $U_1^/$ and U_1^\times and assertions of lemmas 2 and 1 with taking into account that $\xi(p_n, 0) > \xi(p_{k+1}, 0)$ for all $n > k + 1$.

Further assuming that $\alpha_i < \alpha_j$ for some $i, j, 1 \leq i < j \leq k$, one obtains bearing in mind the monotone increase of $\xi(p, \alpha)$ with respect to both p and α

$$\xi(p_j, \alpha_j - 1) + \log p_j \geq \xi(p_j, \alpha_i) + \log p_j > \xi(p_i, \alpha_i),$$

and thus for all $N > 5$ the violation the exponents monotonicity would lead to the incompatibility of inequalities (3.3)(i) and (3.3)(ii) for $\log N$.

At last, if one supposes $\alpha_k \geq 2$, then from (3.3)(i), (2.11)(ii) it follows that

$$\log N \geq \xi(p_k, 1) + \log p_k > 0.5p_k^2 + \log p_k > p_{k+1} > \xi(p_{k+1}, 0),$$ \hspace{1cm} (3.4)

which is in contradiction with (3.3)(iii) for $k \geq 2$ \hspace{1cm} \square

4. Locally G-extremal numbers

We will start with the algorithm which generates the uniquely defined sequence of positive integers V_k, possessing some part of properties, prescribed by Theorem 1, and then we will prove that the class U_1 of all one-step G-unimprovable numbers, i. e. such that satisfy all inequalities (3.3), is its infinite subsequence $\{V_{k_m}\} =: \{N_m^*\}$, with indices $k_1 < k_2 < \ldots < k_m < \ldots$ also constructively calculated.
Theorem 2. (I) For any fixed $k \geq 4$ there exists the least (and thus unique) integer $V_k := p_1^{\alpha_{1,k}} \cdot \ldots \cdot p_k^{\alpha_{k,k}}$, where the exponents $\alpha_{j,k}, 1 \leq j \leq k$ satisfy the condition (B_1) of Theorem 1, and the inequalities are fulfilled:

$$\xi(p_j, \alpha_{j,k} - 1) + \log p_j \leq \log V_k \leq \xi(p_j, \alpha_{j,k}); \quad 1 \leq j < k; \quad (4.1)$$

(II) If some other integer $\tilde{V}_k := p_1^{\tilde{\alpha}_{1,k}} \cdot \ldots \cdot p_k^{\tilde{\alpha}_{k,k}}$ possesses the same properties as V_k (with replacing V_k by \tilde{V}_k and $\alpha_{j,k}$ by $\tilde{\alpha}_{j,k}$), then $V_k | \tilde{V}_k$.

(III) Moreover the relationship $\log V_k - \theta(p_k) = C_k \sqrt{p_k}$ holds where $0.5 < C_k < 3$.

\triangle Step 1. According to Lemmas 1 and 2 the left and the right inequalities (4.1) are equivalent (respectively) to the fulfilment for the number V_k of the conditions U_1^\prime and U_1^\times in which the primes q, p are subject to the restrictions $q, p < p_k$; in other words in definition of U_1 the transitions $V_k \to V_k/p_k$ and $V_k \to V_k p_n, n \geq k$ are excluded.

Let us put $Y_k^{(0)} = T(p_k) := p_1 \cdot \ldots \cdot p_k$ (cf. (3.1)), and then define inductively for $s \in \mathbb{N}$:

$$\beta_{j,k,s} := \max \{ \beta \in \mathbb{N} : \xi(p_j, \beta - 1) + \log p_j \leq Y_k^{(s-1)} \}; \quad j < k;$$

$$\beta_{k,k,s} := 1; \quad Y_k^{(s)} := \prod_{j=1}^{k} p_j^{\beta_{j,k,s}}. \quad (4.2)$$

For $k \geq 4$ one has $\log Y_k^{(0)} = \theta(p_k) \geq \log 210 = 5.347.. > \xi(2, 1) + \log 2 = 2.56..$; therefore by virtue of Lemma 2 (cf. (2.8)(iii) the relationship $\beta_{1,k,1} \geq 2$ holds, and hence $Y_k^{(1)} > Y_k^{(0)}$. The increase of function $\xi(p, \alpha)$ with respect to both p and α implies the condition (B_1) of Theorem 1 for the exponents $\{\beta_{j,k,s}\}_{s=0}$, $j < k$; k, s being fixed.

From the first line of defining formula (4.2) it follows that $\beta_{j,k,s} \geq \beta_{j,k,s-1}$, and thus $Y_k^{(s)} \geq Y_k^{(s-1)}$. Moreover, by virtue of the same formula one obtains for all $j \in \{1, 2, \ldots, k - 1\}, s \in \mathbb{N}$:

$$\xi(p_j, \beta_{j,k,s} - 1) + \log p_j \leq \log Y_k^{(s-1)} < \xi(p_j, \beta_{j,k,s}) + \log p_j. \quad (4.3)$$

Step 2. Further, let us denote $q_{m}^{(1)} := \max \{ p_j : \beta_{j,k,1} \geq m \}, m = 1, 2, \ldots, \beta_{1,k,1}$. It is clear that $q_1^{(1)} = p_k > q_2^{(1)} = \ldots \geq q_{\beta_{1,k,1}}^{(1)} = 2$. From the estimates (2.11)(ii) one may conclude that for all sufficiently large k (for small k the numbers C_k in (III) are calculated directly) and for all $m > 1$ there holds $q_m^{(1)} = \tilde{C}_{k,m}^{(1)} p_k^{1/m}, 0.7 < \tilde{C}_{k,m}^{(1)} < 2; \quad \beta_{1,k,1}^{(1)} < 1.5 \log \log Y_k^{(0)}$, and hence:
\(\log Y_k^{(1)} = \log(Y_k^{(0)}) + C_k^{(1)} \sqrt{Y_k^{(0)}} + O(p_k^{1/3} \log \log Y_k^{(0)}) < \theta(p_k) + 2\sqrt{Y_k^{(0)}}. \) (4.4)

Going on to argue in the same way as in Step 1 (with replacing the upper index (1) by (s)), one obtains \(\log Y_k^{(s)} < \log Y_k^{(0)} + 2\sqrt{Y_k^{(s-1)}}. \)

According to Lemma 4 these relationships imply the upper estimate: \(\log Y_k^{(s)} < \theta(p_k) + 2 + 2\sqrt{1 + \theta(p_k)} \) for all \(s \in \mathbb{N} \), and because the sequence \(\{Y_k^{(s)}\}_{s=0}^{\infty} \) does not decrease and is integer-valued, it necessarily stabilizes beginning with certain number \(s_0 := s_0(k) \), and then, by virtue of definition (??), beginning with the same number the exponents sequences \(\beta_{j,k,s} \) stabilize as well, and the inequalities \(\xi(p_j, \beta_{j,k} - 1) + \log p_j \leq \log Y_k < \xi(p_j, \beta_{j,k}) + \log p_j \) hold true.

Step 3. Now introduce the set of indices \(E_0 := \{ j < k : \log Y_k > \xi(p_j, \beta_{j,k}) \} \). It will turn out to be empty then all conditions of Theorem 2 are fulfilled for \(V_k^{(0)} := Y_k \). Otherwise, i.e. if \(\log Y_k \in I_{p_j, \beta_{j,k}} \) for some \(j < k \) (cf. (2.10) ff), we put \(\alpha_{j,k}^{(0)} := \beta_{j,k} \), and in accordance with Proposition 1 define recurrently for \(s \in \mathbb{N} \):

\[
\alpha_{j,k}^{(s)} := \beta_{j,k} + 1, \ j \in E_{s-1}; \quad \alpha_{j,k}^{(s)} := \beta_{j,k}, \ j \notin E_{s-1};
\]

\[
V_k^{(s)} := \prod_{j=1}^{k} p_j^{\alpha_{j,k}^{(s)}}, \quad E_s := \{ j < k : \log V_k^{(s)} > \xi(p_j, \beta_{j,k}) \}. \quad (4.5)
\]

It’s clear that \(V_k^{(s)} \geq V_k^{(s-1)}, E_{s-1} \subset E_s, \alpha_{j,k}^{(s)} \geq \alpha_{j,k}^{(s-1)} \). It should be emphasized that no integer \(j \in E_{s-1} \) may repeatedly arise in \(E_s \setminus E_{s-1} \), because this would imply that \(\sum \{ \log p : p \in E_{s-1} \} > \xi(p_j, \beta_{j,k} + 1) - \xi(p_j, \beta_{j,k}) - \log p_j \) what is impossible by virtue of estimates adduced earlier.

Now using the arguments analogous to those of Step 2 one may deduce the estimate \(\log V_k^{(s)} \leq \log V_k^{(0)} + C_k \sqrt{\log V_k^{(s-1)}} \), and hence again follows the stabilization of \(V_k^{(s)} \), \(\alpha_{j,k}^{(s)} \), \(E_s \) for all \(s \geq s^* := s^*(k) \). By the very construction the established value \(V_k := V_k^{(s^*)} \) satisfies all inequalities (4.1).

Step 4. It is easy to check that all constructions of the Steps 1 – 3 have been accomplished by supplementing of minimally required prime factors to the initial number \(T(p_k) \). Therefore if for some \(\tilde{V}_k \) the assertions of the part (I) of the Theorem 2 hold true, then necessarily \(\tilde{V}_k \geq V_k \), and by virtue of these very inequalities (4.1) one has \(\tilde{\alpha}_{j,k} \geq \alpha_{j,k} \) for all \(j \leq k \), i.e. \(V_k \mid \tilde{V}_k \).

Step 5. The estimates of the part (III) were obtained during the proof.
The comparison of Theorems 1 and 2 (cf. (3.3), (4.1)) yields the assertion

Proposition 2. In order the number \(V_k, k \geq 4 \), constructed in Theorem 2, to be a one-step \(G \)-unimprovable \((V_k \in U_1)\) it is necessary and sufficient that in addition to (4.1) two more inequalities:

\[
\xi(p_k, 0) + \log p_k \leq \log V_k \leq \xi(p_{k+1}, 0)
\]
(4.6)

hold true.

Table 1: The first 6 one-step \(G \)-unimprovable numbers computed by Maple - 13 according to algorithms given in Theorem 2 with taking into account the filtering relationships (4.6).

The last column contains the numbers in the estimates of part (III).

\(m \)	\(k_m \)	\(N_m^* := V_{k_m} \)	\(G(N_m^*) \)	\(C_{k_m} \)
1	9	\(T(23) \cdot T(5) \cdot 3 \cdot 2^3 = 160 \, 626 \, 866 \, 400 \)	1.7374..	1.37..
2	11	\(T(31) \cdot T(7) \cdot 3^4 \cdot 2^4 = 2.02.. \cdot 10^{15} \)	1.7368..	1.65..
3	16	\(T(53) \cdot T(7) \cdot 3^2 \cdot 2^3 = 1.97.. \cdot 10^{24} \)	1.7434..	1.51..
4	34	\(T(139) \cdot T(13) \cdot T(5) \cdot 3^2 \cdot 2^6 = 5.19.. \cdot 10^{63} \)	1.7582..	1.70..
5	99	\(T(523) \cdot T(29) \cdot T(7) \cdot 5 \cdot 3^4 \cdot 2^8 = 4.08.. \cdot 10^{233} \)	1.770728..	1.67..
6	101	\(T(547) \cdot T(31) \cdot T(7) \cdot 5 \cdot 3^4 \cdot 2^8 = 3.75.. \cdot 10^{240} \)	1.770765..	1.78..

5. The infinitude of the set \(U_1 \).

The key role in proving this assertion play simple sufficient conditions of \(G \)-improvability of the numbers \(V_k \) in terms of the values \(p_k, p_{k+1}, \theta(p_k) \) only.

Proposition 3. (i) For any \(n > 4 \)

\[
p_{n+1} < \theta(p_n) + 0.5 \sqrt{p_n} \Rightarrow G(V_n p_{n+1}) > G(V_n).
\]

(ii): For any \(m > 4 \)

\[
p_m > \theta(p_m) + 4 \sqrt{p_m} \Rightarrow G(V_m/p_m) > G(V_m).
\]

\(\Delta \) Indeed, in the case (i), taking into account of the part (III) of the Theorem 2 with the lower \(C_k > 0.5 \) one can conclude that:

\[
\log V_n > \theta(p_n) + 0.5 \sqrt{p_n} > p_{n+1} > \xi(p_{n+1}, 0),
\]

and then apply Lemma 1.

In the case (ii), analogously from the same relationship (III) with the upper estimate \(C_k < 4 \) we can derive the chain of inequalities

\[
\log V_m < \theta(p_m) + 4 \sqrt{p_m} < p_m < \xi(p_m, 0) + \log p_m,
\]

and then take use of Lemma 2 \(\square \)
Now we can formulate the main result of this paper.

Theorem 3. For any $M > 0$ there exists an integer r such that $p_r > M$ and the number V_r is one-step G-unimprovable, i.e. $V_r \in U_1$.

\triangle According to the known Littlewood theorem (1914, cf. [6], Thm 6.20 and notations on p. (xi)) the difference $\psi(x) - x = \Omega_{\pm}(\sqrt{x \log \log \log x})$.

In particular, from here it follows (and that’s enough for us), that for arbitrary $M > 100$ there are the numbers $x, y, y > 2x > M$ such that

$$x < \theta(x) - 10\sqrt{x}, \quad y > \theta(y) + 10\sqrt{y}$$ \hspace{1cm} (5.5)

Let us denote $p_n := \max\{p \in \mathbb{P} : p \leq x\}, \ p_m := \min\{p \in \mathbb{P} : p \geq y\}$.

For any $A \in [-10, 10]$ the function $t - \theta(t) - A\sqrt{t}$ has the jumps $(- \log p_k)$ at the points p_k and increases on every semi-segment $(p_k, p_{k+1}]$, $p_k > 100$; therefore for the numbers p_n and p_m the inequalities:

$$p_n < \theta(p_n) - 8\sqrt{p_n} < \theta(p_{n-1}); \quad p_m > \theta(p_m) + 6\sqrt{p_m}.$$ \hspace{1cm} (5.6)

hold true.

Now choose $r \in \{n - 1, \ldots, m\}$ such that

$$G(V_r) = \max\{G(V_k) : k \in \{n - 1, \ldots, m\}\}.$$ \hspace{1cm} (5.7)

Proposition 3 jointly with (5.6) yield the inequalities:

$$G(V_n) \geq G(V_{n-1}p_n) > G(V_{n-1}); \ G(V_{m-1}) \geq G(V_m/p_m) > G(V_m).$$ \hspace{1cm} (5.8)

Hence in turn it follows that r is strictly in between of $n - 1$ and m, and thus V_r is necessarily one-step G-unimprovable \square
LIST OF REFERENCES

[1] Gronwall T.H. Some asymptotic expressions in the theory of numbers. Trans. Amer. Math. Soc. V. 14 (1913), pp. 113-122.

[2] Ramanujan S. Highly composite numbers, annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J. V. 1, 1997, pp. 119 - 153.

[3] Robin G. Grandes valeurs de la fonction somme des diviseurs et hypothèse de Riemann. J. Math. Pures Appl. V. 63 (1984), pp. 187 – 213.

[4] Caveney G., Nicolas J.-L., Sondow J. Robin’s theorem, primes, and a new elementary reformulation of Riemann Hypothesis. INTEGERS 11 (2011), #A33, pp 1-10.

[5] Vinogradov I. M. Vvedenie v teoriyu chisel (Russian), Moscow.: Nauka, 1972.

[6] Narkiewicz W. The Development of Prime Number Theory. Springer-Verlag Berlin Heidelberg, 2000.