Classification of Grothendieck rings of complex fusion categories of multiplicity one up to rank six

Zhengwei Liu1,2 · Sebastien Palcoux2 · Yunxiang Ren3

Received: 1 September 2021 / Revised: 30 March 2022 / Accepted: 6 May 2022 / Published online: 5 June 2022 © The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
This paper classifies the Grothendieck rings of complex fusion categories of multiplicity one up to rank six. Among 72 possible fusion rings, 25 ones are filtered out by using categorification criteria. Each of the remaining 47 fusion rings admits a unitary complex categorification. We found 6 new Grothendieck rings, categorified by applying a localization approach of the pentagon equation.

Keywords Fusion ring · Grothendieck ring · Fusion category · Categorification · Classification · Multiplicity-free

Mathematics Subject Classification 18M20

Contents

1 Introduction ... 2
2 List of categorification criteria 3
 2.1 Schur product criterion 4
 2.2 Drinfeld center criterion 4
 2.3 d-number criterion .. 5

1 Department of Mathematics, Yau Mathematical Sciences Center, Tsinghua University, Beijing, China
2 Beijing Institute of Mathematical Sciences and Applications, Huairou District, Beijing, China
3 Department of Physics, Harvard University, Cambridge, MA 02138, USA
1 Introduction

A complex fusion category is a \mathbb{C}-linear semisimple rigid tensor category with finitely many simple objects and finite-dimensional spaces of morphisms, such that the neutral object is simple [8]. The Grothendieck ring of a fusion category is a fusion ring, first introduced (and called based ring) in [21]. A (complex/unitary) Grothendieck ring is a fusion ring admitting a categorification into a (complex/unitary) fusion category. One of the main challenges of the subject is to decide which fusion rings are Grothendieck rings; some ones (for example mentioned in this paper) are not. In theory, a fusion ring is a Grothendieck ring if and only if its pentagon equation (PE) admits a solution, but in practice, this direct approach is not workable without specific strategies. In this paper, we use two strategies: several criteria (necessary conditions) in Sect. 2 to rule out some fusion rings directly, and a localization of the PE to categorify the remaining ones, in Sect. 4. The notion of fusion ring is purely combinatorial and easy to list, and Sect. 3 provides the list of all the fusion rings of multiplicity one up to rank six, obtained by brute-force computation [25, 32] (see also the work of an independent group [31]), there are 72 ones, and (as we will show) exactly 47 of them are complex Grothendieck...
rings\(^1\), all of them are unitary. The main result is the following classification (proved in Subsection 3.7):

Theorem 1.1 The complex Grothendieck rings of multiplicity one up to rank six are given by the following:

- known fusion categories (see the references below):
 - \(\text{Vec}(G)\) with finite group \(G = C_n\) (\(n \leq 6\)), \(C_2^2\), \(S_3\),
 - \(\text{Rep}(G)\) with finite group \(G = S_3, S_4, D_n\) (\(4 \leq n \leq 7\)), \(D_9, Q_8, C_3 \times C_4, C_3 \rtimes S_3\),
 - near-group \(C_n + 0, n \leq 5\) (also called Tambara–Yamagami TY\((C_n)\)), see [12, 33],
 - \(SU(2)_n\) (\(n \leq 5\)), \(PSU(2)_n\) (\(3 \leq n \leq 11\)), \(SO(3)_2, SO(5)_2\), see [1, 3, 14],
 - even part of a 1-supertransitive subfactor of index \(3 + 2\sqrt{2}\), see [17],
 - products of two above,

where \(C_n, D_n, Q_n, S_n\) are, respectively, the usual notations for cyclic, dihedral, quaternion, and symmetric groups. Note that \(PSU(2)_k = SU(2)_k/C_2 \simeq\) even part of TLJ \(A_{k+1}\) subfactor.

- new fusion categories: all with non-self-adjoint objects, so none modular by Theorem 2.16; all weakly integral with \(FPdim < 84\), so all weakly group-theoretical by [9]; some come from the new zesting construction [5]. In the following table, \# counts the number of Grothendieck rings:

\#	\(FPdim\)	rank	type	zesting of
3	8	6	\([1, 1, 1, 1, \sqrt{2}, \sqrt{2}]\)	Vec\((C_2) \otimes SU(2)_2\)
1	12	5	\([1, 1, \sqrt{3}, \sqrt{3}, 2]\)	\(SO(3)_2\)
1	20	6	\([1, 1, 2, 2, \sqrt{5}, \sqrt{5}]\)	\(SO(5)_2\)
1	24	5	\([1, 1, 2, 3, 3]\)	

Partial classifications exist in the literature [2, 13]. Note that Sect. 4 computes some categorifications for each new ring, but does not state whether the zested ones are among them. Finally, Sect. 5 gives observations and questions.

2 List of categorification criteria

This section lists all the categorification criteria applied in this paper, we checked them on every fusion ring (when possible), and a posteriori it turns out that a strict subset of criteria cover all the exclusions of this specific classification (see Subsection 3.7), but

\(^1\) Below \(n_r\) and \(m_r\) are the numbers of fusion rings and complex Grothendieck rings, of multiplicity one and rank \(r\), see also [26, 27].

\[
\begin{array}{c|ccccccc}
 r & 1 & 2 & 3 & 4 & 5 & 6 \\
 n_r & 1 & 2 & 4 & 10 & 16 & 39 \\
 m_r & 1 & 2 & 4 & 9 & 10 & 21 \\
\end{array}
\]
it is still good to mention the complement subset as additional data. The first criterion
holds for unitary categorification, the next one for pivotal complex categorification,
the next two ones for (general) complex categorification, and the next two ones for
every categorification (over every field). Finally, the last two ones are specific to the
modular or quadratic case.

2.1 Schur product criterion

Let F be a commutative fusion ring. Let $\Lambda = (\lambda_{i,j})$ be the table coming from the
simultaneous diagonalization of its fusion matrices, with $\lambda_{i,1} = \max_j (|\lambda_{i,j}|)$. Here is
the commutative Schur product criterion [20, Corollary 8.5]:

Theorem 2.1 If F admits a unitary categorification, then for all triples (j_1, j_2, j_3) we have

$$\sum_i \frac{\lambda_{i,j_1} \lambda_{i,j_2} \lambda_{i,j_3}}{\lambda_{i,1}} \geq 0.$$

Note that Theorem 2.1 is the corollary of a (less tractable) noncommutative version
[20, Proposition 8.3].

2.2 Drinfeld center criterion

Let F be a commutative fusion ring of basis (b_i). Let (X_i) be the corresponding fusion
matrices. Let $A = \sum_i X_i X_i^\ast$, and (c_j) its eigenvalues (a commutative reformulation
of the formal codegrees in [23]). The fusion matrices commute over each other and
are normal (because $X_i^\ast = X_i^*)$, so are simultaneously diagonalizable, say as $(\lambda_{i,j})$,
called the character table of F. Then $c_j = \sum_i |\lambda_{i,j}|^2$.

Lemma 2.2 If F admits a complex pivotal categorification C, then there exists j such
that the categorical dimension of C equals the formal codegree c_j.

Proof Let a be a pivotal structure on C. By [7, Proposition 4.7.12], the dimension
function \dim_a on the objects of C induces a character χ on its Grothendieck ring F,
which then must be given by a column of the character table, i.e., there is j such that $\chi(b_i) = \lambda_{i,j}$. Then, the categorical dimension of C must be c_j. \square

Theorem 2.3 (Pivotal version of Drinfeld center criterion) If F admits a complex
pivotal categorification C, then there exists j such that for all i, c_j/c_i is an algebraic
integer.

Proof The result follows by Lemma 2.2 and [23, Corollary 2.14]. \square

Now $\max_j (c_j) = \text{FPdim}(F)$, say c_1. It is the categorical dimension in the pseudo-
unitary case (by definition), so:

Theorem 2.4 (Pseudo-unitary version of Drinfeld center criterion) If F admits a complex pseudo-unitary categorification C, then for all i, c_1/c_i is an algebraic integer.
If \mathcal{F} is the Grothendieck ring of $\text{Rep}(G)$ with G a finite group, then the numbers c_1/c_j are exactly the sizes of the conjugacy classes of G.

In general, if \mathcal{F} admits a complex pseudo-unitary categorification \mathcal{C} (so spherical), then by [23, Theorem 2.13] the numbers c_1/c_j are exactly the FPdim of the simple objects of the Drinfeld center which contains the trivial object in \mathcal{C} under the forgetful functor.

Note that Theorem 2.4 admits the following conjectural stronger version extending Theorem 3.7 of Isaacs’ book [15].

Conjecture 2.5 (Isaacs criterion) If \mathcal{F} is a complex pseudo-unitary commutative Grothendieck ring, then $\frac{\lambda_{i,j} c_1}{\lambda_{i,1} c_j}$ is an algebraic integer for all i, j.

Note that it should admit more general versions. As observed by P. Etingof [10] (and then [11]), it is related to Kaplansky’s 6th conjecture (generalized to fusion categories), because:

Proposition 2.6 Conjecture 2.5 implies that \mathcal{F} is of Frobenius type (i.e., $\frac{c_1}{\lambda_{i,1}}$ is an algebraic integer).

Proof First, $\lambda_{i,j}$ is an algebraic integer, and Conjecture 2.5 states that $\frac{\lambda_{i,j} c_1}{\lambda_{i,1} c_j}$ is an algebraic integer too, then

$$\sum_j \left(\frac{\lambda_{i,j} c_1}{\lambda_{i,1} c_j} \right) \overline{\lambda_{i',j}} = \frac{c_1}{\lambda_{i,1}} \sum_j \frac{1}{c_j} \lambda_{i,j} \overline{\lambda_{i',j}} = \frac{c_1}{\lambda_{i,1}} \delta_{i,i'},$$

is also an algebraic integer, which means Frobenius type. Note that the last equality (called Schur orthogonality relation) comes from [24, Lemma 2.3] and the fact that a finite-dimensional isometry is unitary. □

Conjecture 2.5 is true for the multiplicity one up to rank six case. There exists another criterion (also proved by V. Ostrik [23, Theorem 2.21]) using the formal codegrees. It is good to mention its commutative version here (as it is short to state):

Theorem 2.7 If $2 \sum_j 1/c_j^2 > 1 + 1/c_1$, then \mathcal{F} admits no pseudo-unitary complex categorification.

Note that up to rank six it applies at multiplicity at least two (so not the case concerned by this paper). It was visually compared in [20] with the criterion of Sect. 2.1.

2.3 d-number criterion

Let \mathcal{F} be a commutative fusion ring, and let (c_j) be its formal codegrees as defined in Sect. 2.2.

Definition 2.8 [24, Definition 1.1] An algebraic integer α is called a d-number if the ideal it generates in the ring of algebraic integers is invariant under the action of the absolute Galois group $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$.
Theorem 2.9 [24, Theorem 1.2] The formal codegrees of a complex (multi-)fusion category are d-numbers.

In particular, if F admits a complex categorification, then the formal codegrees (c_i) are d-numbers. Here is a practical way to check whether a number is a d-number.

Lemma 2.10 [24, Lemma 2.7]. An algebraic integer α is a d-number if and only if its minimal polynomial $p(x) = x^n + a_1 x^{n-1} + \cdots + a_n$ (where $a_i \in \mathbb{Z}$) satisfies that $(a_n)^i$ divides $(a_i)^n$ for all i.

2.4 Extended cyclotomic criterion

The following theorem is a slight extension of the usual cyclotomic criterion (on the simple object FPdms) of a fusion ring to all the entries of its formal character table, but in the commutative case only.

Theorem 2.11 Let F be a commutative fusion ring. If there is a fusion matrix such that the splitting field of its minimal polynomial is a non-abelian extension of \mathbb{Q}, then F admits no complex categorification.

Proof First of all, a field extension of \mathbb{Q} is abelian if and only if it is cyclotomic [16]. So the statement says that the eigenvalues of the fusion matrices of a commutative complex fusion category are cyclotomic integers. Next, a fusion ring is commutative if and only if its irreducible representations are one-dimensional, so the result follows by [8, Theorem 8.51].

Question 2.12 Does Theorem 2.11 extend to noncommutative fusion rings?

2.5 Lagrange criterion

Let mention here the generalization of Lagrange’s theorem from finite groups to finite tensor categories. It will be used as a criterion of general categorification (over any field).

Theorem 2.13 [7, Theorem 7.17.6]. Let D be a finite tensor category, and $C \subset D$ be a tensor subcategory. Then, the ratio $\text{FPdim}(D)/\text{FPdim}(C)$ is an algebraic integer.

2.6 Zero spectrum criterion

Here is a general categorification obstruction over every field (and see Remark 4.3). It corresponds to the existence of an equation of the form $xy = 0$ with $x, y \neq 0$.

Theorem 2.14 [18] For a fusion ring F, if there are indices $i_j \in I$, $1 \leq j \leq 9$, such that $N_{i_4,i_1}^{i_6}, N_{i_5,i_4}^{i_2}, N_{i_5,i_6}^{i_3}, N_{i_7,i_9}^{i_1}, N_{i_2,i_7}^{i_8}, N_{i_8,i_9}^{i_5}$ are nonzero, and

$$\sum_k N_{i_4,i_7}^{i_k} N_{i_5,i_8}^{i_k} N_{i_6,i_9}^{i_k} = 0;$$

(1)
\[N_{i_2,i_4}^{i_3} = 1; \]
\[\sum_k N_{i_5,i_4}^k N_{i_3,i_1}^k = 1 \text{ or } \sum_k N_{i_2,i_4}^k N_{i_3,i_6}^k = 1 \text{ or } \sum_k N_{i_2,i_2}^k N_{i_6,i_1}^k = 1, \]
\[\sum_k N_{i_2,i_7}^k N_{i_3,i_9}^k = 1 \text{ or } \sum_k N_{i_8,i_7}^k N_{i_3,i_1}^k = 1 \text{ or } \sum_k N_{i_2,i_8}^k N_{i_1,i_9}^k = 1, \]
then \(\mathcal{F} \) cannot be categorified, i.e., \(\mathcal{F} \) is not the Grothendieck ring of a fusion category, over any field.

2.7 Quadratic fusion rings

Let \(\mathcal{F} \) be a fusion ring with basis \(B = \{ b_1, \ldots, b_r \} \). Let \(G \) be the group of invertible elements \(b_i \) of \(B \) (i.e., FPdim\((b_i) = 1 \)). The fusion ring \(\mathcal{F} \) is called **pointed** if \(B = G \), **near-group** if \(|B \setminus G| = 1 \), and more generally **quadratic** if the action of \(G \) on \(B \setminus G \) is transitive. A fusion category with a quadratic Grothendieck ring is called (in the literature) a **quadratic category** or a **generalized near-group category**.

Theorem 2.15 A categorification \(C \) of a quadratic fusion ring must admit a spherical (so pivotal) structure.

Proof By [34, Theorem IV.3.6.] \(C \) must be \(\varphi \)-pseudo-unitary (i.e., pseudo-unitary up to Galois automorphism), and then spherical (so pivotal) by [6, Proposition 2.16]. \(\square \)

Theorem 2.15 will be used to exclude from (general) complex categorification some quadratic fusion rings already excluded from pivotal complex categorification by Theorem 2.3.

2.8 Modular categorification criterion

Let mention the following result allowing us to see that some fusion rings admit no (complex) modular categorification.

Theorem 2.16 Let \(\mathcal{F} \) be a non-pointed weakly integral fusion ring of rank up to seven. If it is not a product and has non-self-adjoint objects, then it admits no complex modular categorification.

Proof It is an immediate consequence of [3, Theorem 1.2], because in the Ising and metaplectic categories, respectively, Grothendieck equivalent to PSU\((2)_3 \) and SO\((N)_2 \) (with \(N > 1 \) odd) the objects are self-adjoint (see Sect. 4.6). \(\square \)

3 The list of fusion rings of multiplicity one up to rank six

This section provides the full list of 72 fusion rings of multiplicity one up to rank 6, together with additional data as whether it is a complex Grothendieck ring, a fusion category model (when known), and properties (as quadratic).
3.1 Notations

If a fusion ring does not check the Schur product (resp. Drinfeld center, d-number, extended cyclotomic, Lagrange, zero spectrum) criterion Theorem 2.1 (resp. 2.3, 2.9, 2.11, 2.13, 2.14), then it will be qualified as non-Schur (resp. non-Drinfeld, non-d-number, non-cyclo, non-Lagrange, non-Czero) and so ruled out from unitary (resp. pivotal complex, complex, complex, any, any) categorification. Otherwise, it is Schur (resp. Drinfeld, d-number, cyclo, Lagrange, Czero) by default, except for the non-cyclo ones, on which the Drinfeld criteria, d-number, and Lagrange were not tested. The type of a fusion ring is the list of FPdim of the basic elements. Each commutative fusion ring is provided by its formal codegrees (with multiplicities) in decreasing order (exact form if quadratic, otherwise numerical with equation), then the reader can easily check the Drinfeld criterion in cyclo case. The non-Czero ones are also provided by indices \((i_1, \ldots, i_9)\) applying on Theorem 2.14. Let \(\alpha_r\) denote the number \(2\cos(\pi/r)\), so \(\alpha_3 = 1, \alpha_4 = \sqrt{2}, \alpha_5 = (1 + \sqrt{5})/2, \alpha_6 = \sqrt{3}\). For each rank, the fusion rings are numbered with \(\mathbb{N}_0^\alpha\). Finally, the fusion rings which admit a complex categorification are marked with \(\ast\).

3.2 Rank 2

- FPdim 2, type \([1, 1]\), one fusion ring (\(\mathbb{N}_0^\alpha 1\)):
 \[
 \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
 \end{bmatrix}, \begin{bmatrix}
 0 & 1 \\
 1 & 0 \\
 \end{bmatrix}
 \]
 - Formal codegrees: \([(2, 2)]\).
 - Properties: pointed, simple.
 - Model: Vec\((C_2)\).

- FPdim \(\alpha_5 + 2 \simeq 3.618\), type \([1, \alpha_5]\), one fusion ring (\(\mathbb{N}_0^\alpha 2\)):
 \[
 \begin{bmatrix}
 1 & 0 \\
 0 & 1 \\
 \end{bmatrix}, \begin{bmatrix}
 0 & 1 \\
 1 & 1 \\
 \end{bmatrix}
 \]
 - Formal codegrees: \([(5 + \sqrt{5})/2, 1], [(5 - \sqrt{5})/2, 1)]\).
 - Properties: near-group \(C_1 + 1\), simple.
 - Model: PSU\((2(2)3\).

3.3 Rank 3

- FPdim 3, type \([1, 1, 1]\), one fusion ring (\(\mathbb{N}_0^\alpha 1\)):
 \[
 \begin{bmatrix}
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 \end{bmatrix}, \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 \end{bmatrix}, \begin{bmatrix}
 0 & 0 & 1 \\
 1 & 0 & 0 \\
 0 & 1 & 0 \\
 \end{bmatrix}
 \]
 - Formal codegrees: \([(3, 3)]\).
 - Properties: pointed, simple.
 - Model: Vec\((C_3)\).
• FPdim 4, type [1, 1, α_4], one fusion ring (N°2):

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 0
\end{bmatrix}
\]

– Formal codegrees: [(4, 2), (2, 1)].
★ Properties: near-group $C_2 + 0$.
 – Model: SU(2)$_2$.

• FPdim 6, type [1, 1, 2], one fusion ring (N°3):

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

– Formal codegrees: [(6, 1), (3, 1), (2, 1)].
★ Properties: near-group $C_2 + 1$.
 – Model: Rep(S_3), PSU(2)$_4$.

• FPdim $\alpha_7^4 - \alpha_7^2 + 1 \simeq 9.296$, type [1, α_7, $\alpha_7^2 - 1$], one fusion ring (N°4):

\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{bmatrix}
\]

– Formal codegrees $\simeq [(9.296, 1), (2.863, 1), (1.841, 1)]$, roots of $x^3 - 14x^2 + 49x - 49$.
★ Properties: simple.
 – Model: PSU(2)$_5$.

3.4 Rank 4

• FPdim 4, type [1, 1, 1, 1], two fusion rings (N°1,2):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: [(4, 4)].
★ Properties: pointed.
 – Model: Vec(C_4).

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: [(4, 4)].
★ Properties: pointed.
 – Model: Vec(C_2^2).
• FPdim 6, type $[1, 1, 1, \alpha_6]$, one fusion ring (N°3):

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix}
$$

– Formal codegrees: $[(6, 2), (3, 2)]$.

★ Properties: near-group $C_3 + 0$.

– Model: $TY(C_3)$.

• FPdim $2\alpha_5 + 4 \simeq 7.236$, type $[1, 1, \alpha_5, \alpha_5]$, one fusion ring (N°4):

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1
\end{bmatrix}
$$

– Formal codegrees: $[(5 + \sqrt{5}, 2), (5 - \sqrt{5}, 2)]$.

★ Properties: quadratic with $G = C_2$.

– Model: $SU(2)_3$, Bisch–Haagerup BH_1, Vec(C_2) \otimes PSU($2)_3$.

• FPdim $(13 + \sqrt{13})/2 \simeq 8.302$, type $[1, 1, 1, (\sqrt{13} + 1)/2]$, one fusion ring (N°5):

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}
$$

– Formal codegrees: $[((13 + \sqrt{13})/2, 1), ((13 - \sqrt{13})/2, 1), (3, 2)]$.

– Properties: near-group $C_3 + 1$, non-Lagrange, non-d-number, non-Drinfeld.

– Note: the only exclusion up to rank four (and multiplicity one).

• FPdim 10, type $[1, 1, 2, 2]$, one fusion ring (N°6):

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 1 & 0
\end{bmatrix}
$$

– Formal codegrees: $[(10, 1), (5, 2), (2, 1)]$.

★ Properties: integral.

– Model: $Rep(D_5)$.

• FPdim $5\alpha_5^2 \simeq 13.090$, type $[1, \alpha_5, \alpha_5, \alpha_5 + 1]$, one fusion ring (N°7):

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
1 & 1 & 1 & 1
\end{bmatrix}
$$

– Formal codegrees: $[((15 + 5\sqrt{5})/2, 1), (5, 2), ((15 - 5\sqrt{5})/2, 1)]$.

★ Properties: perfect (the first non-simple one).

– Model: $PSU(2)^{\otimes 2}_3$.
FPdim $8 + 4\alpha_4 \simeq 13.657$, type $[1, 1, \alpha_4 + 1, \alpha_4 + 1]$, two fusion rings ($N_8^9$):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

- Formal codegrees: $[(8 + 4\sqrt{2}, 1), (4, 2), (8 - 4\sqrt{2}, 1)]$.
- Properties: quadratic (C_2, 1, 1).
- Model: PSU$(2)_6$, even part the 1-supertransitive subfactor of index $3 + 2\alpha_4$ without non-self-adjoint objects.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

- Formal codegrees: $[(8 + 4\sqrt{2}, 1), (4, 2), (8 - 4\sqrt{2}, 1)]$.
- Properties: quadratic with $G = C_2$.
- Model: even part of the 1-supertransitive subfactor of index $3 + 2\alpha_4$ with non-self-adjoint objects [17].

FPdim $\alpha_9^4 + 2\alpha_9 + 3 \simeq 19.234$, type $[1, \alpha_9, \alpha_9^2 - 1, \alpha_9 + 1]$, one fusion ring ($N_9^{10}$):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1
\end{bmatrix}
\]

- Formal codegrees $\simeq [(19.234, 1), (5.445, 1), (3, 1), (2.31996, 1)]$, roots of $(x^3 - 27x^2 + 162x - 243)(x - 3)$.
- Properties: simple.
- Model: PSU$(2)_7$.

3.5 Rank 5

FPdim 5, type $[1, 1, 1, 1, 1]$, one fusion ring (N_9^{11}):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

- Formal codegrees: $[(5, 5)]$.
- Properties: simple.
- Model: Vec(C_5).

FPdim 8, type $[1, 1, 1, 1, 2]$, two fusion rings ($N_9^{2, 3}$):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

\[\text{Springer}\]
– Formal codegrees: [(8, 2), (4, 3)].
 ⋆ Properties: near-group $C_4 + 0$.
 – Model: $TY(C_4)$.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: [(8, 2), (4, 3)].
 ⋆ Properties: near-group $C_2^2 + 0$.
 – Model: $\text{Rep}(D_4), \text{Rep}(Q_8)$.

• FPdim $(\sqrt{17} + 17)/2 \simeq 10.562$, type $[1, 1, 1, 1, (\sqrt{17} + 1)/2]$, two fusion rings ($\mathbb{N}^04,5$):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: $[(17 + \sqrt{17})/2, 1, 1, (\sqrt{17} - \sqrt{17})/2, 1, 1, 1]$.
 – Properties: near-group $C_4 + 1$, non-Lagrange, non-d-number, non-Drinfeld.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: $[(12 + \sqrt{17})/2, 1, 1, (\sqrt{17} - \sqrt{17})/2, 1, 1, 1]$.
 – Properties: near-group $C_2^2 + 1$, non-Lagrange, non-d-number, non-Drinfeld.

• FPdim 12, type $[1, 1, \alpha_6, \alpha_6, 2]$, two fusion rings ($\mathbb{N}^06,7$):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: $[(12, 2), 1, 1, (3, 1)]$.
 ⋆ Properties: Extension of $\text{Vec}(C_2)$.
 – Model: $\text{SU}(2)_4, \text{SO}(3)_2$.

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

– Formal codegrees: $[(12, 2), 1, 1, (3, 1)]$.
 ⋆ Properties: unitarily categorified (see Sect. 4.2), non-modular, weakly group-theoretical,
 – Model: zesting of $\text{SO}(3)_2$, see Sect. 4.6.
• FPdim 14, type [1, 1, 2, 2, 2], one fusion ring (N^8):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0
\end{bmatrix}
\]

– Formal codegrees: [(14, 1), (7, 3), (2, 1)].
* Properties: integral.
– Model: Rep(D_7).

• FPdim $\sqrt{13} + 13 \simeq 16.606$, type [1, 1, 2, $(\sqrt{13} + 1)/2$, $(\sqrt{13} + 1)/2$], one fusion ring (N^9):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

– Formal codegrees: [(13 + $\sqrt{13}$, 1), (13 – $\sqrt{13}$, 1), (5 + $\sqrt{5}$ + 5, 1), (3, 1), (5 – $\sqrt{5}$, 1)].
– Properties: non-Schur, non-d-number, non-Drinfeld, non-Lagrange, non-Czero (3, 3, 2, 2, 4, 3, 3, 3, 3).

• FPdim 24, type [1, 1, 2, 3, 3], two fusion rings (N^10,11):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

– Formal codegrees: [(24, 1), (8, 1), (4, 2), (3, 1)].
* Properties: integral.
– Model: Rep(S_3).

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 0
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix}
\]

– Formal codegrees: [(24, 1), (8, 1), (4, 2), (3, 1)].
* Properties: extension of Rep(S_3), unitarily categorified (see Sect. 4.4), non-modular, weakly group-theoretical.
– Model: unknown, but see Question 4.8.

• FPdim $10\alpha_5^2 \simeq 26.180$, type [1, 1, $\alpha_5 + 1$, $\alpha_5 + 1$, 2α_5], one fusion ring (N^12):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 & 1
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

– Formal codegrees: [(15 + $5\sqrt{5}$, 1), (5 + $\sqrt{5}$, 1), (5, 1), (15 – $5\sqrt{5}$, 1), (5 – $\sqrt{5}$, 1)].
* Properties: extension of \(\text{Vec}(C_2) \).
- Model: \(\text{PSU}(2)_8 \).

- \(\text{FPdim} \ 16 + 10\alpha_4 \simeq 30.142 \), type \([1, 1 + \alpha_4, 1 + \alpha_4, 1 + \alpha_4, 2 + \alpha_4]\), one fusion ring (N\# 13):
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 1 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 1 & 0 & 1 & 0 \\
 0 & 0 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 0
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 1 \\
 0 & 1 & 0 & 1 \\
 0 & 1 & 1 & 1
 \end{bmatrix}
 \]
- Formal codegrees: \([(16 + 10\sqrt{2}, 1), (7, 3), (16 - 10\sqrt{2}, 1)]\).
- Properties: simple, non-Schur, non-d-number, non-Drinfeld, non-Czero (1, 1, 2, 1, 1, 2, 4, 1).

- \(\text{FPdim} \ \simeq 31.092 \), type \([1, 1, 2.903, 3.214, 3.214] \), two fusion rings (N\# 14, 15):
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 0 & 0 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 1 & 0 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 1 & 0 & 1 & 1 \\
 0 & 1 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 0 & 1 & 1 & 1
 \end{bmatrix}
 \]
- Formal codegrees \(\simeq [(31.092, 1), (5.346, 1), (4, 2), (3.561, 1)] \), roots of \(x^5 - 48x^4 + 632x^3 - 3600x^2 + 9472x - 9472 \).
- Properties: non-cyclo.

- \(\begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 0 \\
 1 & 0 & 1 & 1 \\
 0 & 0 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 1 \\
 1 & 0 & 1 & 1 \\
 1 & 1 & 1 & 1
 \end{bmatrix}
 \]
- Formal codegrees \(\simeq [(31.092, 1), (5.346, 1), (4, 2), (3.561, 1)] \), roots of \(x^5 - 48x^4 + 632x^3 - 3600x^2 + 9472x - 9472 \).
- Properties: non-cyclo.

- \(\text{FPdim} \ \alpha_{11}^8 - 5\alpha_{11}^6 + 8\alpha_{11}^4 - 3\alpha_{11}^2 + 3 \simeq 34.646 \), type \([1, \alpha_{11}, \alpha_{11}^2 - 1, \alpha_{11}^3 - 2\alpha_{11}, \alpha_{11}^4 - 3\alpha_{11}^2 + 1]\), one fusion ring (N\# 16):
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 1 & 0 & 1 & 0 \\
 0 & 0 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 1 & 0 & 1 & 1 \\
 0 & 0 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 1 & 1 & 1 & 1 \\
 0 & 1 & 1 & 1
 \end{bmatrix},
 \begin{bmatrix}
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 1 & 1 & 1 \\
 0 & 0 & 1 & 1
 \end{bmatrix}
 \]
- Formal codegrees \(\simeq [(34.646, 1), (9.408, 1), (4.815, 1), (3.324, 1), (2.807, 1)] \), roots of \(x^5 - 55x^4 + 847x^3 - 5324x^2 + 14641x - 14641 \).
- Properties: simple.
- Model: \(\text{PSU}(2)_9 \).
3.6 Rank 6

- FPdim 6, type [1, 1, 1, 1, 1, 1], two fusion rings (N\text{\textsuperscript{\textcircled{1,2}}}):

\begin{align*}
1 & 0 0 0 0 0 \\
0 & 1 0 0 0 0 \\
0 & 0 1 0 0 0 \\
0 & 0 0 1 0 0 \\
0 & 0 0 0 1 0 \\
0 & 0 0 0 0 1
\end{align*}

- Formal codegrees: [(6, 6)].

\begin{itemize}
 \item Properties: pointed, quadratic (C\textsubscript{3}, 1, 0).
 \item Model: Vec(C\textsubscript{6}).
\end{itemize}

\begin{itemize}
 \item Properties: quadratic with \(G = C\textsubscript{2}\).
 \item Model: Vec(S\textsubscript{3}).
\end{itemize}

- FPdim 8, type [1, 1, 1, 1, \(\alpha\text{\textsubscript{4}}, \alpha\text{\textsubscript{4}}\)], four fusion rings (N\text{\textsuperscript{\textcircled{2}}3-6}):

\begin{align*}
1 & 0 0 0 0 0 \\
0 & 1 0 0 0 0 \\
0 & 0 1 0 0 0 \\
0 & 0 0 1 0 0 \\
0 & 0 0 0 1 0 \\
0 & 0 0 0 0 1
\end{align*}

- Formal codegrees: [(8, 4), (4, 2)].

\begin{itemize}
 \item Properties: quadratic with \(G = C\textsubscript{2}\).
 \item Model: Vec(C\textsubscript{2}) \otimes SU(2)\textsubscript{2}.
\end{itemize}

\begin{itemize}
 \item Properties: quadratic with \(G = C\textsubscript{4}\), unitarily categorified (see Sect. 4.3), non-modular, weakly group-theoretical.
 \item Model: zesting of Vec(C\textsubscript{2}) \otimes SU(2)\textsubscript{2}, see Sect. 4.6.
\end{itemize}
– Model: zesting of $\text{Vec}(C_2) \otimes \text{SU}(2)_2$, see Sect. 4.6.

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\

\end{array}
\]

– Formal codegrees: $[(8, 4), (4, 2)]$.

* Properties: quadratic with $G = C_2^2$, unitarily categorified (see Sect. 4.3), non-modular, weakly group-theoretical.

– Model: zesting of $\text{Vec}(C_2) \otimes \text{SU}(2)_2$, see Sect. 4.6.

- FPdim 10, type $[1, 1, 1, 1, 1, \sqrt{5}]$, one fusion ring ($\mathbb{N}^27$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\

\end{array}
\]

– Formal codegrees: $[(10, 2), (5, 4)]$.

* Properties: near-group $C_5 + 0$.

– Model: $TY(C_5)$.

- FPdim $3\alpha_5 + 6 \simeq 10.854$, type $[1, 1, 1, \alpha_5, \alpha_5, \alpha_5, \alpha_5]$, one fusion ring ($\mathbb{N}^28$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\

\end{array}
\]

– Formal codegrees: $[(15 + 3\sqrt{5})/2, 3], ((15 - 3\sqrt{5})/2, 3)]$.

* Properties: quadratic with $G = C_3$.

– Model: $\text{Vec}(C_3) \otimes \text{PSU}(2)_2$.

- FPdim 12, type $[1, 1, 1, 1, 2, 2]$, two fusion rings ($\mathbb{N}^29, 10$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\

\end{array}
\]

– Formal codegrees: $[(12, 2), (6, 2), (4, 2)]$.

* Properties: quadratic with $G = C_4$.

– Model: $\text{Rep}(C_3 \rtimes C_4)$.

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\

\end{array}
\]

– Formal codegrees: $[((12, 2), (6, 2), (4, 2)$].
Classification of Grothendieck rings...

- Properties: quadratic with $G = C_2^2$.
 - Model: $\text{Vec}(C_2) \otimes \text{Rep}(S_3)$, $\text{Rep}(D_6)$.

- FPdim $(\sqrt{21} + 21)/2 \simeq 12.791$, type $[1, 1, 1, 1, 1, (\sqrt{21} + 1)/2]$, one fusion ring (No.11):

 $$
 \begin{array}{cccccccccccc}
 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
 \\
 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
 \\
 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
 \\

 \end{array}
 $$

 - Formal codegrees: $[((21 + \sqrt{21})/2, 1), ((21 - \sqrt{21})/2, 1), (5, 4)]$.
 - Properties: near-group $C_5 + 1$, non-Lagrange, non-d-number, non-Drinfeld.

- FPdim $4\alpha_5 + 8 \simeq 14.472$, type $[1, 1, \alpha_4, \alpha_5, \alpha_5, \alpha_4\alpha_5]$, one fusion ring (No.12):

 $$
 \begin{array}{cccccccccccc}
 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
 \\
 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
 \\
 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
 \\

 \end{array}
 $$

 - Formal codegrees: $[(10 + 2\sqrt{5}, 2), (5 + \sqrt{5}, 1), (10 - 2\sqrt{5}, 2), (5 - \sqrt{5}, 1)]$.
 - Properties: extension of $\text{Vec}(C_2)$.
 - Model: $\text{PSU}(2)_3 \otimes \text{SU}(2)_2$.

- FPdim 18, type $[1, 1, 2, 2, 2, 2]$, two fusion rings (No.13,14):

 $$
 \begin{array}{cccccccccccc}
 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
 \\

 \end{array}
 $$

 - Formal codegrees: $[((18, 1), (9, 4), (2, 1)]$.
 - Properties: integral.
 - Model: $\text{Rep}(C_3 \rtimes S_3)$.

- FPdim $2(\alpha_7^2 - \alpha_7^2 + 1) \simeq 18.592$, type $[1, 1, \alpha_7, \alpha_7, \alpha_7^2 - 1, \alpha_7^2 - 1]$, one fusion ring (No.15):

 $$
 \begin{array}{cccccccccccc}
 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
 \\
 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
 \\
 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
 \\

 \end{array}
 $$

 - Formal codegrees: $[((18, 1), (9, 4), (2, 1)]$.
 - Properties: integral.
 - Model: $\text{Rep}(D_9)$.
– Formal codegrees $\simeq [(18.592, 2), (5.726, 2), (3.682, 2)]$ roots of $(x^2 + 28x^2 + 196x - 392)^2$.

– Properties: extension of $\text{Vec}(C_2)$
– Model: $SU(2)_5$.

• Fpdim $12 + 4\alpha_6 \simeq 18.928$, type $[1, 1, 1, 1, \alpha_6 + 1, \alpha_6 + 1]$, four fusion rings ($\mathbb{N}^{16-19}$):

\[
\begin{align*}
&100000 \ 100000 \ 010000 \ 001000 \ 000100 \ 000010 \ 000001 \\
&010000 \ 001000 \ 000100 \ 000010 \ 000001 \ 000000 \ 000000 \\
&001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000100 \ 001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \\
&000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001
\end{align*}
\]

– Formal codegrees: $[(12 + 4\sqrt{3}, 1), (8, 2), (12 - 4\sqrt{3}, 1), (4, 2)]$.

– Properties: quadratic with $G = C_4$, non-Drinfeld.

\[
\begin{align*}
&100000 \ 100000 \ 010000 \ 001000 \ 000100 \ 000010 \ 000001 \\
&010000 \ 001000 \ 000100 \ 000010 \ 000001 \ 000000 \ 000000 \\
&001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000100 \ 001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \\
&000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001
\end{align*}
\]

– Formal codegrees: $[(12 + 4\sqrt{3}, 1), (8, 2), (12 - 4\sqrt{3}, 1), (4, 2)]$.

– Properties: quadratic with $G = C_2^2$, non-Drinfeld.

\[
\begin{align*}
&100000 \ 100000 \ 010000 \ 001000 \ 000100 \ 000010 \ 000001 \\
&010000 \ 001000 \ 000100 \ 000010 \ 000001 \ 000000 \ 000000 \\
&001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000100 \ 001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \\
&000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001
\end{align*}
\]

– Formal codegrees: $[(12 + 4\sqrt{3}, 1), (8, 2), (12 - 4\sqrt{3}, 1), (4, 2)]$.

– Properties: quadratic with $G = C_4$, non-Drinfeld.

\[
\begin{align*}
&100000 \ 100000 \ 010000 \ 001000 \ 000100 \ 000010 \ 000001 \\
&010000 \ 001000 \ 000100 \ 000010 \ 000001 \ 000000 \ 000000 \\
&001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000100 \ 001000 \ 010000 \ 010000 \ 010000 \ 010000 \ 010000 \\
&000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \\
&000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001
\end{align*}
\]

– Formal codegrees: $[(12 + 4\sqrt{3}, 1), (8, 2), (12 - 4\sqrt{3}, 1), (4, 2)]$.

– Properties: quadratic with $G = C_2^2$, non-Drinfeld.

• Fpdim 20, type $[1, 1, 2, 2, \sqrt{5}, \sqrt{5}]$, two fusion rings ($\mathbb{N}^{20,21}$):

\[
\begin{align*}
&100000 \ 010000 \ 001000 \ 000100 \ 000010 \ 000001 \\
&010000 \ 100000 \ 001000 \ 000100 \ 000010 \ 000001 \\
&001000 \ 001000 \ 110100 \ 001100 \ 000111 \ 000111 \\
&000100 \ 000100 \ 000100 \ 110100 \ 000111 \ 000111 \\
&000010 \ 000010 \ 000010 \ 000010 \ 000010 \ 000010 \\
&000001 \ 000001 \ 000001 \ 000001 \ 000001 \ 000001
\end{align*}
\]

– Formal codegrees: $[(20, 2), (5, 2), (4, 2)]$.

– Properties: extension of $\text{Rep}(D_5)$.
– Model: $SO(5)_2$.

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

– Formal codegrees: [(20, 2), (5, 2), (4, 2)].

* Properties: extension of $\text{Rep}(D_5)$, unitarily categorified (see Sect. 4.5), non-modular, weakly group-theoretical.

– Model: zesting of $SO(5)_2$, see Sect. 4.6.

- Fpdim $12 + 6\alpha_4 \simeq 20.485$, type $[1, 1, \alpha_4 + 1, \alpha_4 + 1, \alpha_4 + 1]$, one fusion ring ($\mathbb{N}^{22}$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

– Formal codegrees: $[((12 + 6\sqrt{2})/2, 1), ((15 + 3\sqrt{5})/2, 2), ((15 - 3\sqrt{5})/2, 2), (12 - 6\sqrt{2}, 1)]$.

– Properties: quadratic with $G = C_3$, non-Schur, non-Drinfeld.

- Fpdim $12 + 6\alpha_5 \simeq 21.708$, type $[1, 1, \alpha_5, \alpha_5, 2, 2\alpha_5]$, one fusion ring ($\mathbb{N}^{23}$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
\end{array}
\]

– Formal codegrees: $[((15 + 3\sqrt{5})/2, 1), ((15 + 3\sqrt{5})/2, 1), (15 - 3\sqrt{5}, 1), (5 + \sqrt{5}, 1), (15 - 3\sqrt{5})/2, 1), (5 - \sqrt{5}, 1)]$.

* Properties: extension of $\text{Vec}(C_2)$.

– Model: $\text{PSU}(2)_3 \otimes \text{Rep}(S_3)$.

- Fpdim $21 + \sqrt{21} \simeq 25.583$, type $[1, 1, 2, 2, (1 + \sqrt{21})/2, (1 + \sqrt{21})/2]$, one fusion ring ($\mathbb{N}^{24}$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\end{array}
\]

– Formal codegrees: $[[21 + \sqrt{21}, 1], (21 - \sqrt{21}, 1), (5 + \sqrt{5}, 1), (5, 2), (5 - \sqrt{5}, 1)]$.

– Properties: extension of $\text{Rep}(D_5)$, non-Schur, non-d-number, non-Drinfeld, non-Lagrange.
• $\text{FPdim } 18 + 6\alpha_6 \simeq 28.392$, type $[1, 1, 2, 1 + \alpha_6, 1 + \alpha_6, 1 + \alpha_6]$, two fusion rings ($\mathbb{N}_{25, 26}$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\
\end{array}
\]

• Formal codegrees: $[(8 + 6\sqrt{3}, 1), (9, 3), (18 - 6\sqrt{3}, 1), (2, 1)]$.
• Properties: extension of $\text{Rep}(S_3)$, non-Schur, non-Drinfeld, non-Czero ($3, 3, 3, 2, 5, 4, 3, 3, 3$).

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
\end{array}
\]

• Formal codegrees: $[(8 + 6\sqrt{3}, 1), (9, 3), (18 - 6\sqrt{3}, 1), (2, 1)]$.
• Properties: extension of $\text{Rep}(S_3)$, non-Schur, non-Drinfeld, non-Czero ($3, 3, 4, 2, 5, 4, 4, 4, 3$).

• $\text{FPdim } (\alpha_5 + 2)(\alpha_2^3 - \alpha_2^7 + 1) \simeq 33.633$, type $[1, \alpha_5, \alpha_7, \alpha_2^3 - 1, \alpha_5\alpha_7, \alpha_5(\alpha_2^7 - 1)]$, one fusion ring ($\mathbb{N}_{27}$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

• Formal degrees $\simeq [(33.633, 1), (12.847, 1), (10.358, 1), (6.661, 1), (3.956, 1), (2.544, 1)]$ roots of $x^6 - 70x^5 + 1715x^4 - 19600x^3 + 111475x^2 - 300125x + 300125$.
• Properties: perfect.
• Model: $\text{PSU}(2)_3 \otimes \text{PSU}(2)_5$.

• $\text{FPdim } 24 + 4\sqrt{6} \simeq 33.798$, type $[1, 1, 2, 2, 1 + \sqrt{6}, 1 + \sqrt{6}]$, two fusion rings ($\mathbb{N}_{28, 29}$):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
\end{array}
\]

• Formal degrees $[(24 + 4\sqrt{6}, 1), (24 - 4\sqrt{6}, 1), (5, 2), (4, 2)]$.
• Properties: extension of $\text{Rep}(D_5)$, non-Lagrange, non-d-number, non-Drinfeld.
- Formal codegrees: \([\{24 + 4\sqrt{6}, 1\}, (24 - 4\sqrt{6}, 1), (5, 2), (4, 2)\}].
- Properties: extension of \(\text{Rep}(D_5)\), non-Lagrange, non-d-number, non-Drinfeld.

- \(\text{FPdim} \approx 35.725\), type \([1, 1, 1, (3 + \sqrt{13})/2, (3 + \sqrt{13})/2, (3 + \sqrt{13})/2]\), two fusion rings (\(N^\circ 30,31\)):

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

- Formal codegrees: \([(39 + 9\sqrt{13})/2, 1], (6, 4), ((39 - 9\sqrt{13})/2, 1], 1)\].
- Properties: quadratic \((C_3, 1, 1)\), non-Drinfeld.

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

* Properties: quadratic \((C_3, -1, 1)\), noncommutative.
- Model: Haagerup \(H_6\).

- \(\text{FPdim} \approx 36.779\), type \([1, 1, 2.709, 2.709, 3.170, 3.170]\), two fusion rings (\(N^\circ 32,33\)):

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

- Formal codegrees \([36.779, 1], (12.682, 1), (8, 2), (4, 1), (2.538, 1)\], roots of \(x^6 - 72x^5 + 1760x^4 - 19936x^3 + 112768x^2 - 303104x + 303104\).
- Properties: non-Schur, non-cyclo, non-Czero \((2, 4, 4, 2, 2, 4, 5, 2, 2)\).

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]

- Formal codegrees \([36.779, 1], (12.682, 1), (8, 2), (4, 1), (2.538, 1)\], roots of \(x^6 - 72x^5 + 1760x^4 - 19936x^3 + 112768x^2 - 303104x + 303104\).
- Properties: non-Schur, non-cyclo, non-Czero \((2, 4, 4, 2, 2, 4, 5, 3, 2)\).

- \(\text{FPdim} 24 + 12\alpha_6 \approx 44.785\), type \([1, 1, 1 + \alpha_6, 1 + \alpha_6, 2 + \alpha_6, 2 + \alpha_6], one fusion ring (\(N^\circ 34\)):

\[
\begin{array}{cccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
\end{array}
\]
– Formal codegrees: \([(24 + 12\sqrt{3}, 1, (12, 1), (6, 2), (4, 1), (24 - 12\sqrt{3}, 1)]\).
– Properties: extension of \(\text{Vec}(C_2)\).
– Model: \(\text{PSU}(2)_{10}\).

- \(\text{FPdim} \simeq 55.144, \text{type} \simeq [1, 1, 2.935, 3.681, 3.935, 3.935]\), two fusion rings (No35,36):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

– Formal codegrees \(\simeq [(55.144, 1, (8, 1), (7.313, 1, (4.543, 1, (4, 2)], \text{roots of } x^6 - 83x^5 + 1839x^4 - 18312x^3 + 92848x^2 - 234496x + 234496\).
– Properties: extension of \(\text{Vec}(C_2)\), non-Schur, non-cyclo, non-Czero (2, 2, 3, 4, 2).

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

– Formal codegrees \(\simeq [(55.144, 1, (8, 1), (7.313, 1, (4.543, 1, (4, 2)], \text{roots of } x^6 - 83x^5 + 1839x^4 - 18312x^3 + 92848x^2 - 234496x + 234496\).
– Properties: extension of \(\text{Vec}(C_2)\), non-Schur, non-cyclo, non-Czero (2, 2, 3, 4, 2).

- \(\text{FPdim} \alpha_{13}^{10} - 7\alpha_{13}^{8} + 17\alpha_{13}^{6} - 16\alpha_{13}^{4} + 6\alpha_{13}^{2} + 3 \simeq 56.747, \text{type} [1, \alpha_{13}, \alpha_{13}^2 - 1, \alpha_{13}^3 - 2\alpha_{13}, \alpha_{13}^4 - 3\alpha_{13}^2 + 1, \alpha_{13}^5 - 4\alpha_{13}^3 + 3\alpha_{13}], \text{one fusion ring} (\text{No37})\):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

– Formal codegrees \(\simeq [(56.747, 1, (15.049, 1), (7.391, 1, (4.799, 1, (3.717, 1, (3.298, 1)] \text{roots of } x^6 - 91x^5 + 2366x^4 - 26364x^3 + 142805x^2 - 371293x + 371293\).
– Properties: simple.
– Model: \(\text{PSU}(2)_{11}\).

- \(\text{FPdim} (65 + 17\sqrt{13})/2 \simeq 63.147, \text{type} [1, (\sqrt{13} + 3)/2, (\sqrt{13} + 3)/2, (\sqrt{13} + 3)/2, (\sqrt{13} + 5)/2, (\sqrt{13} + 5)/2], \text{two fusion rings} (\text{No38,39})\):

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\]

– Formal codegrees: \([((65 + 17\sqrt{13})/2, 1, (9, 4), ((65 - 17\sqrt{13})/2, 1)]\).
– Properties: simple, non-Schur, cyclo but not of Frobenius type, non-d-number, non-Drinfeld, non-Czero \((1, 1, 3, 1, 1, 1, 3, 4, 1)\).

\[
\begin{array}{cccccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\
& & & & & & & & & & & \\
\end{array}
\]

– Formal codegrees: \([(65 + 17\sqrt{13})/2, 1), (9, 4), ((65 − 17\sqrt{13})/2, 1)].

– Properties: simple, non-Schur, cyclo but not of Frobenius type, non-d-number, non-Drinfeld.

3.7 Proof of Theorem 1.1

A fusion ring is given by its fusion coefficients \(N_{i,j}^k \in \mathbb{Z}_{\geq 0}\), so at rank \(r\) and multiplicity \(m\), there are \(r^3\) variables and so \((m + 1)r^3\) possibilities to check (e.g., \(2^{216}\) ones if \(r = 6\) and \(m = 1\)). Fortunately, we can drastically reduce the number of variables by using the axioms of fusion rings reformulated in terms of \(N_{i,j}^k\):

- **Associativity:** \(\sum_s N_{ij}^s N_{sk}^l = \sum_s N_{jk}^s N_{is}^l\),
- **Neutral:** \(N_{ii}^j = N_{ij}^i = \delta_{ij}\),
- **Dual:** \(N_{i^*k}^l = N_{k,i^*}^l = \delta_{i,k}\),
- **Frobenius reciprocity:** \(N_{ij}^k = N_{i^*k}^j = N_{k,j}^i\)

where \(i \mapsto i^*\) is a dual structure fixed beforehand (there are few ones up to equivalence). Then, we can get the 72 fusion rings listed above in a reasonable time. The SageMath code (too long for this paper) is available in [25], together with the data. Now, let us provide the list of fusion rings which do not pass a given criterion:

Criterion type	\(\mathbb{N}^2\) at rank 4	\(\mathbb{N}^2\) at rank 5	\(\mathbb{N}^2\) at rank 6
Non-Schur	Unitary	9, 13	22, 24, 25, 26, 32, 33, 35, 36, 38, 39
Non-Drinfeld	Complex pivotal	5	4, 5, 9, 13, 11, 16, 17, 18, 19, 22, 24, 25, 26, 28, 29, 30, 38, 39
Non-d-number	Complex	5	4, 5, 9, 13, 11, 24, 28, 29, 38, 39
Non-cyclo	Complex	5	4, 5, 9, 14, 15, 32, 33, 35, 36
Non-Lagrange	General	5	4, 5, 9, 11, 24, 28, 29
Non-Czero	General	5	4, 5, 9, 11, 24, 28, 29

Observe that all the excluded fusion rings are non-Drinfeld, non-d-number, or non-cyclo, which means that the corresponding three criteria are sufficient for proving Theorem 1.1 (see their SageMath codes in Sect. 6). We still mentioned the three other criteria because they should be useful in the future (for example, see Subsection 5.2). The \(\mathbb{N}^2\), 16, 17, 18, 19, 22, 23, 30 at rank 6 are only excluded from pivotal complex categorification (non-Drinfeld), but they are all quadratic, so excluded from (general) complex categorification by Theorem 2.15. The non-excluded fusion rings are exactly the Grothendieck rings listed in Theorem 1.1, the new ones being categorified in Section 4. \(\Box\)
4 Unitary categorification of the new complex Grothendieck rings

In this section, we consider the new complex Grothendieck rings of multiplicity one up to rank 6 and provide some unitary solutions of their pentagon equation (PE).

4.1 The pentagon equation in multiplicity one

In this subsection, every hom-space \(\text{hom}_C(X_i \otimes X_j, X_k) \) is assumed to be of dimension \(N_{i,j}^k \leq 1 \), so that every morphism in it is completely determined by \(i, j, \) and \(k \), up to a multiplicative constant, which makes the PE much easier to deal with.

The F-symbols are defined as follows:

\[
\begin{align*}
\begin{pmatrix}
 i_1 & i_2 & i_3 \\
 i_3 & i_4 & i_5 \\
 i_5 & i_6 & i_7 \\
\end{pmatrix} &= \sum_{i_0} \begin{pmatrix}
 i_1 & i_2 & i_3 \\
 i_4 & i_5 & i_6 \\
\end{pmatrix} \begin{pmatrix}
 i_5 & i_4 & i_2 \\
 i_1 & i_3 & i_6 \\
\end{pmatrix}_F.
\end{align*}
\]

(5)

They satisfy the PE, Figure 1 being a pictorial representation [35], with the following algebraic reformulation:

\[
\begin{align*}
\begin{pmatrix}
 i_2 & i_7 & i_8 \\
 i_9 & i_3 & i_1 \\
\end{pmatrix}_F \begin{pmatrix}
 i_5 & i_4 & i_2 \\
 i_1 & i_3 & i_6 \\
\end{pmatrix}_F &= \sum_{i_0} \begin{pmatrix}
 i_5 & i_4 & i_2 \\
 i_1 & i_3 & i_6 \\
\end{pmatrix}_F \begin{pmatrix}
 i_5 & i_0 & i_8 \\
 i_7 & i_8 & i_0 \\
\end{pmatrix}_F \begin{pmatrix}
 i_4 & i_7 & i_0 \\
 i_9 & i_6 & i_1 \\
\end{pmatrix}_F.
\end{align*}
\]

(6)

Let \(d_i := \text{dim}_C(X_i) \). By using the following notation:

\[
\begin{pmatrix}
 i_1 & i_2 & i_3 \\
 i_4 & i_5 & i_6 \\
\end{pmatrix} := d_{i_6}^{-1} \begin{pmatrix}
 i_1 & i_2 & i_3 \\
 i_4 & i_5 & i_6 \\
\end{pmatrix}_F,
\]

the PE becomes:

\[
\begin{align*}
\begin{pmatrix}
 i_2 & i_7 & i_8 \\
 i_9 & i_3 & i_1 \\
\end{pmatrix} \begin{pmatrix}
 i_5 & i_4 & i_2 \\
 i_1 & i_3 & i_6 \\
\end{pmatrix} &= \sum_{i_0} d_{i_0} \begin{pmatrix}
 i_5 & i_4 & i_2 \\
 i_7 & i_8 & i_0 \\
\end{pmatrix} \begin{pmatrix}
 i_5 & i_0 & i_8 \\
 i_9 & i_3 & i_6 \\
\end{pmatrix} \begin{pmatrix}
 i_4 & i_7 & i_0 \\
 i_9 & i_6 & i_1 \\
\end{pmatrix}.
\end{align*}
\]

(7)

Proposition 4.1 (Pivotal axioms). *Let \(\mathcal{C} \) be a fusion category with above PE. If there are roots of unity \((t_i)\) such that:

- \(t_1 = 1 \),
- \(t_{i^*} = t_i^{-1} \),
- \(t_i^{-1} t_j t_k = d_{i^*} d_j d_k \begin{pmatrix}
 i & j & k \\
 k & i & j \\
\end{pmatrix} \begin{pmatrix}
 i^* & j^* & k^* \\
 i^* & j^* & k^* \\
\end{pmatrix}, \forall i, j, k \text{ with } N_{i,j}^k \neq 0,

then \(\mathcal{C} \) is pivotal and \((t_i)\) are called the pivotal coefficients. If moreover all \(t_i = \pm 1 \),
then \(\mathcal{C} \) is spherical.*

Proof It is a reformulation of [35, Proposition 4.16 (1)(2)], where \(F_{d;m,n}^{a,b,c} = \begin{pmatrix}
 a & b & m \\
 c & d & n \\
\end{pmatrix}_F = d_n \begin{pmatrix}
 a & b & m \\
 c & d & n \\
\end{pmatrix}. \)

\(\square \)
Corollary 4.2 A solution of the PE under below (a),(b),(c) gives a pseudo-unitary categorification of the fusion ring.

(a) \(d_i = FPdim(X_i) \),

(b) evaluation when one object is trivial:

\[
\begin{pmatrix}
 i_1 & i_2 & i_3 \\
 1 & i_3 & i_2
\end{pmatrix} = d_2^{-1/2} d_3^{-1/2},
\]

(c) \(A_4 \)-symmetry:

\[
\begin{pmatrix}
 i_1 & i_2 & i_3 \\
 i_4 & i_5 & i_6
\end{pmatrix} = \begin{pmatrix}
 i_2 & i_3 & i_1^* \\
 i_5 & i_6 & i_4
\end{pmatrix} = \begin{pmatrix}
 i_2 & i_6 & i_4 \\
 i_5 & i_3 & i_1^*
\end{pmatrix}.
\]

The point (c) is realized as the (orientation-preserving) symmetry of the following tetrahedron, assuming the 2nd and 3rd Frobenius–Schur indicators to be trivial.

Furthermore, if the reflection of the tetrahedron is its complex conjugate, in other words,

\[
\begin{pmatrix}
 i_1^* & i_3 & i_2 \\
 i_4 & i_6 & i_5
\end{pmatrix} = \begin{pmatrix}
 i_1 & i_2 & i_3 \\
 i_4 & i_5 & i_6
\end{pmatrix},
\]
then the categorification is unitary.

Proof Suppose we have a solution of the PE, then we obtain a fusion category, see [7] or [4]. Now by assumption (a), \(d_i^* = \text{FPdim}(X_i^*) = \text{FPdim}(X_i) = d_i \). So by assumption (c) and then (b), we get that

\[
\begin{align*}
 d_i^* d_j^* d_k^* & \left(\begin{array}{ccc}
 i & j & k \\
 k^* & 1 & i^*
 \end{array} \right) \left(\begin{array}{ccc}
 j & k^* & i^* \\
 i & 1 & j^*
 \end{array} \right) \left(\begin{array}{ccc}
 k^* & i & j^* \\
 j & 1 & k
 \end{array} \right) \\
 & = d_i d_j d_k \left(\begin{array}{ccc}
 j & k^* & i^* \\
 1 & i^* & k^*
 \end{array} \right) \left(\begin{array}{ccc}
 k^* & i & j^* \\
 1 & j^* & i
 \end{array} \right) \left(\begin{array}{ccc}
 i & j^* & k \\
 1 & k & j
 \end{array} \right) \\
 & = d_i d_j d_k [d_k d_i]^{-1/2} [d_i d_j]^{-1/2} [d_j d_k]^{-1/2} = 1.
\end{align*}
\]

Then, by Proposition 4.1, it is pivotal by taking \(t_i = 1 \) for all \(i \), and so spherical. By assumption (a), it is pseudo-unitary. We refer to [18] for the details about the tetrahedral realization. If the tetrahedron has reflection symmetry, then we obtain an involution of the spherical category mapping the generating morphisms to their duals. The unitary condition follows from the fact that \(\text{FPdim}(X_i) > 0 \).

\[\Box\]

Modulo its \(A_4 \)-symmetry and when all labels and morphisms are nonzero, each tetrahedron is considered as a *complex variable* of the PE, which becomes:

\[
\begin{align*}
 \sum_{i_0} d_{i_0} & = i_1 i_2 i_3 i_4 i_5 i_6 i_7 i_8 i_9 \\
 & = \sum_{i_0} d_{i_0}
\end{align*}
\]

(8)

Remark 4.3 In [18], the set of \(i_0 \) for which every hom-space in RHS of (8) with \(i_0 \) is not zero-dimensional is called the spectrum \(\sigma \) of the equation. The name of Theorem 2.14 (zero spectrum criterion) means that it corresponds to an equation with \(|\sigma| = 0 \). That paper contains also a criterion for when \(|\sigma| = 1 \) denoted *one spectrum criterion*.

By Corollary 4.2, a solution of the PE, assuming (a), (b), (c) and the equality between reflection and complex conjugate of tetrahedra, gives a unitary categorification. By [18], LHS and RHS of (8) can be visualized as two ways to evaluate the following triangular prism.

The action of \(D_6 \) (the symmetry group of the triangular prism) provides equivalent equations, so we only need to consider the equations modulo these symmetries. The
variables are invariant, up to complex conjugate, by the action of S_4 (the symmetry group of the tetrahedron). A variable invariant by reflection will be called a \textit{real variable}.

In the next subsections, we solve (with SageMath) by ordering the equations according to the number of variables (called \textit{localization} here). Now, such a resolution works much better if there is no use of complex conjugate, so we choose to split each non-real variable into two (itself and its reflection, i.e., to consider the variables only modulo the orientation-preserving symmetry group A_4), but then only the unitary solutions (i.e., when these two variables are complex conjugate) provide (proved) categorifications. To save space and time, we use the one-line notation:

$$\left(\begin{array}{cc}
i_1
\end{array} \right) = \left[\begin{array}{cc}i_2^*, i_3^*, i_1, i_6^*, i_4^*, i_5^* \end{array} \right].$$

\section*{4.2 Rank 5, FPdim 12, and type $[1, 1, \sqrt{3}, \sqrt{3}, 2]$}

Let us consider the fusion matrices:

$$\begin{pmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}, \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}, \begin{pmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0
\end{pmatrix}, \begin{pmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0
\end{pmatrix}. $$

There are 12 real variables: $[1, 1, 2, 2, 2, 2, 3], [1, 2, 2, 3, 1, 2], [1, 2, 2, 4, 1, 4], [1, 4, 4, 4, 4, 4], [2, 2, 4, 2, 4, 4], [2, 2, 4, 3, 4, 4], [2, 2, 4, 4, 2, 3], [2, 2, 4, 4, 3, 2], [2, 3, 4, 3, 4, 4], [2, 3, 4, 4, 2, 2], [2, 4, 3, 4, 4, 2], [4, 4, 4, 4, 4, 4]$; 4 complex (non-real) variables: $[1, 2, 2, 4, 4, 4], [1, 2, 2, 4, 4, 4], [1, 2, 2, 4, 3, 4], [2, 2, 4, 4, 2, 2]$; and then their reflection. Then, we consider 20 variables, ordered as above. Here are some solutions of the PE (where I is the imaginary unit):

$$\left(\begin{array}{cc}i_1
\end{array} \right) = \left[\begin{array}{cc}i_2^*, i_3^*, i_1, i_6^*, i_4^*, i_5^* \end{array} \right].$$

with 8 variations by (pointwise) multiplying by $(s_1, 1, 1, 1, s_2, s_1s_2, 1, -s_1, -s_1s_2, 1, -s_2, 1, 1, 1, -s_1, s_3, 1, 1, -s_1, -s_3)$ with $s_i \in \{-1, 1\}$. The unitary case corresponds to $|r|^4 = 1/12$.

\textbf{Remark 4.4 (Resolution mode).} We listed all the possible equations, up to symmetry, by a straightforward code. Note that there is no equation containing all the above variables together; the maximum number of variables in a single equation is 7 here (where a complex variable and its reflection count for one). There are exactly 59, 53, 39, 64, 44, 13, 4 (non-trivial) such equations with 1, 2, \ldots, 7 variables, respectively. We first solved the equations with less than 4 variables, which provided 16 variations, but only 8 variations survived after checking the rest of the equations.
Remark 4.5 (Variation). In this paper, a solution is called a variation of an other one, if they are equal up to (pointwise) signs. We did not check whether they define the same fusion category (gauge equivalent).

4.3 Rank 6, FPdim 8 and type $[1, 1, 1, 1, \sqrt{2}, \sqrt{2}]$

Consider the three first such fusion rings, in the same order than in §3.6.

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}.$$

There are 4 real variables $[1, 1, 3, 3, 1, 2], [1, 4, 4, 4, 3, 5], [1, 5, 5, 5, 3, 4], [3, 4, 5, 4, 3, 4]$, 3 complex (non-real) variables $[1, 1, 3, 4, 5, 5], [1, 1, 3, 5, 4, 4], [1, 4, 4, 5, 1, 4]$ and then their reflection. So we need to consider 10 variables. Here are some solutions of the equations.

$$\begin{pmatrix}
-1, -\sqrt{2} & 2 \frac{\sqrt{2}}{2}, -\sqrt{2} & 2 \frac{\sqrt{2}}{2} \\
-1 & 1 + I & 2 \frac{\sqrt{2}}{2} & 1 - I \frac{2}{2}
\end{pmatrix},$$

together with 8 variations given by (pointwise) multiplying by $(1, s_1, -s_1, 1, s_2, 1, s_3, -s_2, 1, -s_3)$ with $s_i \in \{-1, 1\}$. The unitary case corresponds to $|r|^4 = 1/2$.

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix}.$$

There are 5 real variables $[1, 1, 3, 3, 1, 2], [1, 4, 5, 4, 3, 5], [1, 5, 4, 5, 3, 4], [3, 4, 4, 4, 3, 4], [3, 5, 5, 5, 3, 5]$, 4 complex (non-real) variables $[1, 1, 3, 4, 5, 5], [1, 1, 3, 5, 4, 4], [1, 4, 4, 5, 1, 4], [1, 4, 5, 5, 2, 4]$ and then their reflection. So we need to consider 13 variables. Here are some solutions of the equations.

$$\begin{pmatrix}
-1, -\sqrt{2} & 2 \frac{\sqrt{2}}{2}, -\sqrt{2} & 2 \frac{\sqrt{2}}{2} \\
-1 & 1 + I & 2 \frac{\sqrt{2}}{2} & 1 - I \frac{2}{2}
\end{pmatrix},$$

together with 4 variations given by (pointwise) multiplying by $(1, s_1, -s_1, 1, 1, 1, s_2, 1, s_2, 1, -s_2, 1, s_2)$ with $s_i \in \{-1, 1\}$. The unitary case corresponds to $|r_1|^4 = |r_2|^2 = \ldots$
Consider the fusion matrices:

There are 5 real variables \([1, 4, 5, 4, 1, 4], [1, 4, 5, 5, 2, 5], [1, 4, 5, 5, 3, 5], [2, 4, 4, 5, 2, 4], [3, 4, 4, 5, 3, 4]\); 4 complex (non-real) variables \([1, 2, 3, 3, 1, 2], [1, 2, 3, 4, 5, 4], [1, 2, 3, 5, 4, 5], [2, 4, 4, 5, 3, 4]\); and then their reflection. So we need to consider 13 variables. Here are some solutions of the equations:

\[
\begin{pmatrix}
-\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{1}{2r_1r_2} & \frac{1}{2r_1} & \frac{1}{2r_2} & 4r_1^2r_2^2 & \sqrt{2}r_1r_2
\end{pmatrix},
\]

together with 4 variations given by (pointwise) multiplying by \((1, s_1, -s_1, s_2, -s_2, 1, -s_2, 1, 1, 1, -s_2, 1, 1)\) with \(s_i \in \{-1, 1\}\). The unitary case corresponds to \(|r_1|^4 = |r_2|^2 = 1/2\).

4.4 Rank 5, FPdim 24, and type \([1, 1, 2, 3, 3]\)

Consider the fusion matrices:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
\]

\[
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix},
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix},
\]

\[
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1
\end{bmatrix},
\]

There are 16 real variables \([1, 2, 2, 2, 1, 2], [1, 2, 2, 2, 2, 2], [1, 3, 3, 3, 2, 4], [1, 3, 3, 4, 1, 3], [2, 2, 2, 2, 2, 2], [2, 2, 2, 3, 3, 3], [2, 2, 2, 3, 3, 4], [2, 2, 2, 3, 4, 4], [2, 2, 2, 4, 4, 4], [2, 3, 3, 3, 2, 4], [2, 3, 3, 4, 2, 3], [2, 3, 3, 4, 3, 3], [2, 3, 4, 4, 3, 4], [2, 3, 4, 4, 4, 4], [2, 4, 3, 4, 3, 4]; 16 complex variables \([1, 2, 2, 3, 3, 4], [1, 3, 3, 3, 3], [1, 3, 3, 4, 2, 3], [1, 3, 3, 4, 3, 3], [2, 3, 3, 3, 2, 3], [2, 3, 3, 3, 3, 3], [2, 3, 3, 4, 3, 3], [2, 3, 3, 4, 4, 4], [3, 3, 3, 3, 3], [3, 3, 3, 4, 3], [3, 3, 3, 4, 4, 4], [3, 3, 4, 3, 3, 3]; and then their reflection. So we need to consider 48 variables. The PE has 1053 equations and Krull dimension three.

Remark 4.6 In general, the dimension of the affine variety defined by an ideal \(I\) in a polynomial ring \(R\) is the Krull dimension of \(R/I\). So here, it is the dimension \(d\) of the variety of solutions of the PE. But SageMath needs dimension zero to provide explicit solutions. By fixing \(d\) variables appropriately, we get a non-empty subvariety of dimension zero.

So, by fixing three variables appropriately, we got some unitary solutions:
• for the 16 real variables (with $\epsilon \in \{-1, 1\})$:

$$\left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{3}, \frac{1}{3}, 0, -\epsilon \sqrt{\frac{3}{6}}, \epsilon \sqrt{\frac{3}{6}}, -\epsilon \sqrt{\frac{3}{6}}, \epsilon \sqrt{\frac{3}{6}}, -\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, -\frac{1}{6}, \frac{1}{6}, -\frac{1}{6}, -\frac{1}{6} \right),$$

• for the 16 complex variables:

$$\left((1 - I) \sqrt{\frac{3}{6}}, (1 - I) \sqrt{\frac{3}{6}}, -\frac{1}{3}, -\frac{1}{3}, 0, -\epsilon \sqrt{\frac{3}{6}}, \epsilon \sqrt{\frac{3}{6}}, -\epsilon \sqrt{\frac{3}{6}}, \epsilon \sqrt{\frac{3}{6}}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6}, -\frac{1}{6} \right),$$

and then their complex conjugate (for the reflections).

4.5 Rank 6, FPdim 20, and type $[1, 1, 2, 2, \sqrt{5}, \sqrt{5}]$

Consider the fusion matrices:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}.$$

There are 29 real variables $[1, 2, 2, 2, 1, 2], [1, 2, 2, 2, 3, 2], [1, 2, 2, 3, 2, 3], [1, 2, 3, 3, 1, 3], [1, 3, 3, 2, 3], [1, 4, 4, 4, 2, 5], [1, 4, 4, 4, 3, 5], [1, 4, 4, 5, 1, 4], [2, 2, 2, 3, 2, 2], [2, 2, 3, 4, 4], [2, 2, 3, 4, 5, 5], [2, 2, 3, 5, 4, 4], [2, 2, 3, 5, 5, 5], [2, 2, 3, 5, 5, 5], [2, 3, 3, 4, 4, 4], [2, 3, 3, 5, 4, 5], [2, 3, 3, 5, 5, 5], [2, 4, 4, 4, 2, 5], [2, 4, 4, 4, 3, 5], [2, 4, 4, 5, 2, 4], [2, 4, 4, 5, 3, 4], [2, 4, 5, 4, 3, 4], [2, 4, 5, 4, 3, 5], [2, 5, 4, 5, 3, 5], [3, 4, 4, 3, 5], [3, 4, 4, 5, 3, 4], [3, 4, 5, 4, 3, 4]; 16 complex variables $[1, 2, 2, 4, 4, 5], [1, 2, 2, 4, 5, 5], [1, 3, 3, 4, 4, 5], [1, 3, 3, 4, 5, 5], [1, 4, 4, 4, 5, 5], [1, 4, 4, 5, 4, 5], [1, 4, 4, 5, 5, 5], [2, 2, 3, 3, 2, 3], [2, 2, 3, 4, 4, 5], [2, 2, 3, 4, 4, 5], [2, 2, 3, 4, 5, 5], [2, 3, 3, 4, 4, 5], [2, 3, 3, 4, 5, 5], [2, 4, 4, 4, 4, 5], [2, 4, 4, 4, 4, 5], [2, 4, 4, 4, 5, 5], [2, 4, 4, 4, 5, 5], [2, 4, 4, 5, 4, 5], [2, 4, 4, 5, 4, 5], [2, 4, 4, 5, 4, 5], [2, 4, 5, 4, 3, 4], [2, 4, 5, 4, 3, 4], [2, 5, 4, 5, 3, 5], [3, 4, 4, 3, 5], [3, 4, 4, 3, 4], [3, 4, 4, 4, 4], [3, 4, 4, 5, 3, 4], [3, 4, 4, 5, 3, 4];$ and then their reflection. So we need to consider 61 variables. The polynomial ring modulo the ideal generated by the (1231) equations is of Krull dimension two (see Remark 4.6). So, by fixing two variables appropriately, we got some unitary solutions:

• for the 29 real variables:

$$\left(\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -a, -a, a, 0, \epsilon_2b, \epsilon_2b, -\epsilon_2b, -\epsilon_2b, 0, \right).$$
\[\epsilon_2 b, -\epsilon_2 b, \epsilon_2 b, -\epsilon_2 b, c, -d, -c, -c, d, -d, c, -c, -c, c, -c, -c \),

- for the 16 complex variables:

\[
\left(e, e, -\epsilon_1 \epsilon_2 e, -\epsilon_1 \epsilon_2 e, -a, -a, \frac{1}{2}, b, -b, -b, \epsilon_3 f I, -\epsilon_2 \epsilon_3 g I, d, \epsilon_2 \epsilon_3 g I, -\epsilon_3 f I \right),
\]

and then their complex conjugate (for the reflections), with \(\epsilon_i \in \{ -1, 1 \} \) and

\[
(a, b, c, d, e, f, g) = \left(\frac{\sqrt{5}}{5}, 80^{-1/4}, \frac{5 + \sqrt{5}}{20}, \frac{5 - \sqrt{5}}{20}, 20^{-1/4}, \sqrt{\frac{5 - \sqrt{5}}{40}}, \sqrt{\frac{5 + \sqrt{5}}{40}} \right).
\]

4.6 Models by zesting construction

E.C. Rowell pointed out to us a new construction called *zesting* [5], providing models for some of the new Grothendieck rings mentioned in this section. The metaplectic categories are those Grothendieck equivalent to \(\text{SO}(N)_2 \) with \(N = 2n + 1 \geq 1 \). At fixed \(n \), it is of multiplicity one, rank \(n + 4 \), type \([1, 2], [2, n], [\sqrt{N}, 2] \). Let \(z \) be the non-trivial object of \(\text{FPdim} \ 1 \), \((y_i) \) those of \(\text{FPdim} \ 2 \), and \(x_1, x_2 \) those of \(\text{FPdim} \ \sqrt{N} \).

As mentioned in [1,§3], the (commutative) fusion rules are the following:

1. \(z y_i = y_i \), \(z x_1 = x_2 \), \(z x_2 = x_1 \), \(z^2 = 1 \),
2. \(x_i^2 = 1 + \sum y_i \),
3. \(x_1 x_2 = z + \sum y_i \),
4. \(y_i y_j = y_{\text{min}(i+j, N-i-j)} + y_{|i-j|} \), for \(i \neq j \), \(y_i^2 = 1 + z + y_{\text{min}(2i, N-2i)} \).

Theorem 4.7 (Twisted metaplectic categories) *The exchange of 1 and z in (2) and (3) above produces a new family of complex Grothendieck rings.*

Proof The result follows from the new zesting construction [5, Proposition 6.3] using the braiding of \(\text{SO}(N)_2 \) and its \(\text{C}_2 \)-grading, which twists the associativity by a 3-cocycle. E.C. Rowell provided more details about that in [28]. \(\square \)

The cases \(n = 1, 2 \) correspond to the new (unitary) Grothendieck rings of Sect.4.2 and Sect.4.5, respectively (and \(n = 0 \) to \(\text{Vec}(C_4) \)). Note that in the same way, the ones of §4.3 are zestings of \(\text{Vec}(C_2) \otimes \text{SU}(2)_2 \). Finally, the one of Sect.4.4 cannot be a zesting, because there is no grading. But observe that we can produce two new families of fusion rings, the first one by adding \(n(x_1 + x_2) \) to the right-hand side of (2) and (3) above (which recovers \(\text{Rep}(S_4) \) when \(n = 1 \)) and the second one by twisting the first one as in Theorem 4.7, which (for \(n = 1 \)) would provide a model for the new (unitary) Grothendieck ring of §4.4.
Question 4.8 Are the fusion rings of these two new families, (unitary) Grothendieck rings?

5 Observations and questions

This classification leads to many observations and questions, grouped in this section.

5.1 All criteria passed and categorification

Every fusion ring ruled out here was directly excluded by some of the criteria mentioned in Sect. 2 (without considering that of Sect. 2.8).

Question 5.1 Is there a fusion ring of multiplicity one which passes all the criteria of Sect. 2 without being categorifiable?

Note that without the multiplicity one assumption (but pivotal or characteristic zero), the above question already admits a negative answer in [18] with the fusion ring denoted \(F_{210} \), of multiplicity 2, rank 7, FPdim 210, type \([1, 5, 5, 5, 6, 7, 7]\), and fusion matrices:

\[
\begin{bmatrix}
1000000 \\
0100000 \\
0010000 \\
0001000 \\
0000100 \\
0000010 \\
0000001
\end{bmatrix}, \quad \begin{bmatrix}
1100011 \\
0100111 \\
0010111 \\
0100111 \\
0010111 \\
0101111 \\
0111111
\end{bmatrix},
\]

\[
\begin{bmatrix}
0000001 \\
0111111 \\
0111111 \\
0111111 \\
0111111 \\
0111111 \\
0111111
\end{bmatrix}, \quad \begin{bmatrix}
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010
\end{bmatrix}, \quad \begin{bmatrix}
0000001 \\
0000001 \\
0000001 \\
0000001 \\
0000001 \\
0000010 \\
0000010
\end{bmatrix},
\]

It corresponds to the case \(q = 6 \) of the interpolated family of fusion rings of Lie type in [19], all of them being of multiplicity 2 or 3, and satisfying all the criteria of Sect. 2. (The existence of a categorification is open for all non-prime power \(q \neq 6 \).)

There are fusion rings of multiplicity one and rank 7 which pass all these criteria but not the one of Conjecture 2.5; one of them is of FPdim \(20 + 4\sqrt{5} \), type \([1, 1, 1, 1, 2, 1 + \sqrt{5}, 1 + \sqrt{5}]\) and fusion matrices:

\[
\begin{bmatrix}
1000000 \\
0100000 \\
0010000 \\
0001000 \\
0000100 \\
0000010 \\
0000001
\end{bmatrix}, \quad \begin{bmatrix}
1100011 \\
0100111 \\
0010111 \\
0100111 \\
0010111 \\
0101111 \\
0111111
\end{bmatrix},
\]

\[
\begin{bmatrix}
0000001 \\
0111111 \\
0111111 \\
0111111 \\
0111111 \\
0111111 \\
0111111
\end{bmatrix}, \quad \begin{bmatrix}
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010
\end{bmatrix}, \quad \begin{bmatrix}
0000001 \\
0000001 \\
0000001 \\
0000001 \\
0000001 \\
0000001 \\
0000001
\end{bmatrix},
\]

\[
\begin{bmatrix}
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010
\end{bmatrix}, \quad \begin{bmatrix}
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010
\end{bmatrix}, \quad \begin{bmatrix}
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010 \\
0000010
\end{bmatrix},
\]
5.2 Categorification in positive characteristic

Among the 25 fusion rings ruled out from complex categorification, 16 are also ruled out from any categorification (over any field) by Theorem 2.14 or 2.13. So, among the remaining 9 ones (N\#14, 15 at rank 5 and N\#16-19, 22, 30, 39 at rank 6):

Question 5.2 Which ones admit a categorification over a field of positive characteristic?

Question 5.3 In general, is there a fusion ring without categorification in characteristic zero but positive?

5.3 Unitary categorification

Corollary 5.4 A complex Grothendieck ring of multiplicity one up to rank six is unitary.

Question 5.5 Is there a complex Grothendieck ring of multiplicity one which is not unitary?

Note that without the multiplicity one assumption, the above question already admits a negative answer in [29] providing a complex non-pseudo-unitary Grothendieck ring of multiplicity 2, rank 6, FPdim $9(3 + 3a_1 - a_4) \simeq 74.6177$ (with $a_k = 2 \cos(k\pi/9)$), type $[1, 1 + a_1, 1 + a_1, 1 + a_1, 1 + 2a_1 - a_4, 2 + 2a_1 - a_4]$ and fusion matrices:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}, \quad
\begin{bmatrix}
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0
\end{bmatrix}
\]

More generally (a particular case of [7, Question 4.8.3]):

Question 5.6 Does every complex fusion category admit a pivotal structure? A spherical structure?

Recall that in the list “unitary, pseudo-unitary, φ-pseudo-unitary, spherical, pivotal,” one implies its successor.

5.4 Non-cyclotomic fusion categories

On page 591 of [8], it is asked whether any (multi-)fusion category is defined over a cyclotomic field. This question was answered negatively in [22]. Now, Sect. 4.2 and Sect. 4.5 mention non-cyclotomic solutions of their PE: They have F-symbols equal to $\pm \frac{3^{3/4}}{6}, \ 20^{-1/4}$ or $80^{-1/4}$. By Kronecker–Weber theorem and the following SageMath computation, all these numbers are non-cyclotomic.
sage: x=(3^(3/4))/6 # or 20^(-1/4) or 80^(-1/4)
sage: f=minpoly(x)
sage: K.<a> = f.splitting_field() sage: K.is_abelian()
False

To be non-cyclotomic, a fusion category must have non-cyclotomic F-symbols for every choice of basis, whereas the solutions mentioned above come from a single choice.

Question 5.7 Is the fusion category mentioned in Sect. 4.2 or Sect. 4.5 non-cyclotomic?

5.5 Integral Grothendieck rings

Corollary 5.8 A weakly integral fusion ring of multiplicity one up to rank six is always unitarily categorifiable.

There are integral fusion rings of multiplicity one without any categorification. Below is an example at rank 7, FPDim 42, and type [1, 1, 2, 3, 3, 3, 3] which is non-Czero (3, 3, 2, 2, 4, 3, 3, 3, 3):

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix},
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

5.6 Simple Grothendieck rings

A fusion ring is called *simple* if it has no proper non-trivial fusion subring. A Grothendieck ring is called simple if it is so as fusion ring.

Corollary 5.9 A simple complex Grothendieck ring of multiplicity one up to rank six is given by the following:

- Vec(\(C_p\)), with \(C_p\) the cyclic group of order \(p\) prime,
- PSU(2)_{2n+1}, with \(n \geq 0\).

Question 5.10 Is there a simple complex Grothendieck ring of multiplicity one, not in the above families?

Acknowledgements The authors would like to thank Eric C. Rowell for pointing out the new zesting construction [5], Andrew Schopieray for pointing out the PhD thesis of Josiah E. Thornton about generalized near-group categories [34], Ricardo Buring for his help with SageMath [32], Joost Slingerland and Gert Verheyen for useful discussions and AnyonWiki [30], Arthur Jaffe for his constant encouragement and helpful discussions, and finally the anonymous referee for careful proofreading and relevant comments.

The first author would like to thank Harvard University for his hospitality. The first author is supported by
Grant 04200100122 from Tsinghua University and 2020YFA0713000 from NKPs. The second author is supported by BIMSA. The third author is supported by Grant TRT 0159, ARO Grants W911NF-19-1-0302 and W911NF-20-1-0082.

Availability of data and materials The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declaration

Conflict of interests On behalf of all authors, the corresponding author states that there is no conflict of interest.

6 Appendix: SageMath code

This section provides the SageMath code for the criteria of Theorems 2.3, 2.9, and 2.11 (the only criteria needed to prove Theorem 1.1). They apply in the commutative case only (as needed). Just apply the function Checking below to a fusion ring written as a list M, for example, the following computation shows that the fusion ring N_5 at rank 4 is non-Drinfeld and non-d-number (as written in Sect. 3.7).

```
sage: M=[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], ....
    [[0, 1, 0, 0], [0, 0, 1, 0], [1, 0, 0, 0], [0, 0, 0, 1]], ....
    [[0, 0, 1, 0], [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]], ....
    [[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 1], [1, 1, 1, 1]]
sage: Checking(M) non-Drinfeld non-d-number
```

Here is the code of the function Checking:

```python
def Checking(M):
    r=len(M)
    N=zero_matrix(QQ,r)
    for i in range(r):
        Mi=matrix(QQ,M[i])
        for j in range(i):
            Mj=matrix(QQ,M[j])
            if Mi*Mj!=Mj*Mi:
                return 'non-commutative'
        Ti=Mi.transpose()
        Ni=Mi*Ti
        N+=Ni
    f = N.minpoly()
    ff=N.charpoly()
    if not Cyclo(M):
        return 'non-cyclo'  # Extended cyclotomic criterion
    K.<a> = f.splitting_field()
    n = K.conductor()
    L=ff.roots(CyclotomicField(n))
    LL=[UCF(l[0]) for l in L]
    rL=[l[0].n() for l in L]
```

Springer
mm=max(rL)
for ii in range(len(L)):
 if mm==rL[ii]:
 dim=LL[ii]
 break

for x in LL:
 d=0
 for y in LL:
 yy=UCF(x/y)
 if '/' in list(str(yy)):
 d=1
 break
 if d==0:
 c=1
 if c==0:
 print('non-Drinfeld') # Drinfeld center criterion

for x in LL:
 p=list(UCF(x).minpoly())
 n=len(p)-1
 A=p[0]
 d=0
 for i in range(n+1):
 a=p[i]
 j=n-i
 y=UCF((a^n)/(A^j))
 if '/' in list(str(y)):
 d=1
 break
 if d==1:
 print('non-d-number') # d-number criterion
 break

def Cyclo(M):
 r=len(M)
 for k in range(len(M)):
 N=matrix(QQ,M[k])
 f = N.minpoly()
 K.<a> = f.splitting_field()
 if not K.is_abelian():
 return False
 return True

References

1. Ardonne, E., Cheng, M., Rowell, E.C., Wang, Z.: Classification of metaplectic modular categories. J. Algebra 466, 141–146 (2016)
2. Bonderson, P.H.: Non-Abelian anyons and interferometry. Ph.D. Thesis, California Institute of Technology Pasadena (2007)
3. Bruillard, P., Galindo, C., Ng, S.H., Plavnik, J., Rowell, E.C., Wang, Z.: On the classification of weakly integral modular categories. J. Pure Appl. Algebra 220–6, 2364–2388 (2016)
4. Davidovich, O., Hagge, T., Wang, Z.: On Arithmetic Modular Categories. arXiv:1305.2229 (2013)
5. Delaney, C., Galindo, C., Plavnik, J., Rowell, E.C., Zhang, Q.: Braided zesting and its applications. Commun. Math. Phys. 386(1), 1–55 (2021)
6. Drinfeld, V., Gelaki, S., Nikshych, D., Ostrik, V.: On braided fusion categories. I., Selecta Math. (N.S.) 16(1), 1–119 (2010)
7. Etingof, P., Gelaki, S., Nikshych, D., Ostrik, V.: Tensor Categories, Mathematical Surveys and Monographs Volume 205 (2015)
8. Etingof, P., Nikshych, D., Ostrik, V.: On fusion categories. Ann. Math. 162, 581–642 (2005)
9. Etingof, P., Nikshych, D., Ostrik, V.: Weakly group-theoretical and solvable fusion categories. Adv. Math. 226, 176–205 (2011)
10. Etingof, P.: Private communication (2020)
11. Etingof, P., Nikshych, D., Ostrik, V.: On a necessary condition for unitary categorification of fusion rings. arXiv:2102.13239 (2021)
12. Evans, D.E., Gannon, T.: Near-group fusion categories and their doubles. Adv. Math. 255, 586–640 (2014)
13. Gepner, D., Kapustin, A.: On the classification of fusion rings. Phys. Lett. B 349, 71–75 (1995)
14. Hastings, M.B., Nayak, C., Wang, Z.: On metaplectic modular categories and their applications. Commun. Math. Phys. 330(1), 45-68 (2014)
15. Isaacs, I.M.: Character theory of finite groups. Corrected reprint of the 1976 original, AMS Chelsea Publishing, xii+310 (2006)
16. Lang, S.: Cyclotomic fields I and II, Graduate Texts in Mathematics, 121, xviii+433 pp (1990)
17. Liu, Z., Morrison, S., Penneys, D.: 1-supertransitive subfactors with index at most $6^{1/2}$. Commun. Math. Phys. 334(2), 889–922 (2015)
18. Liu, Z., Palcoux, S., Ren, Y.: Triangular prism equations and categorification. arXiv:2203.06522
19. Liu, Z., Palcoux, S., Ren, Y.: Interpolated family of non group-like simple integral fusion rings of Lie type. arXiv:2012.01663
20. Liu, Z., Palcoux, S., Wu, J.: Fusion bialgebras and Fourier analysis. Adv. Math. 390, 107905 (2021)
21. Lusztig, G.: Leading coefficients of character values of Hecke algebras. Proc. Symp. Pure Math. 47, 235–262 (1987)
22. Morrison, S., Snyder, N.: Non-cyclotomic fusion categories. Trans. Am. Math. Soc. 364(9), 4713–4733 (2012)
23. Ostrik, V.: Pivotal fusion categories of rank 3. Mosc. Math. J., 15, pp. 373–396, 405 (2015)
24. Ostrik, V.: On formal codegrees of fusion categories. Math. Res. Lett. 16(5), 895–901 (2009)
25. Palcoux, S.: https://sites.google.com/view/sebastienpalcoux/fusion-rings (2020)
26. Palcoux, S.: Number of fusion rings of multiplicity one and rank n, OEIS. http://oeis.org/A348305
27. Palcoux, S.: Number of complex Grothendieck rings of multiplicity one and rank n, OEIS. http://oeis.org/A352506
28. Rowell, E.C.: Existence of twisted metaplectic categories, MathOverflow. https://mathoverflow.net/a/369169/34538
29. Schopieray, A.: Non-pseudounitary fusion. J. Pure Appl. Algebra 226(5), Paper No. 106927, 19 pp (2022)
30. Slingerland, J., Verheyen, G.: AnyonWiki. http://www.thphys.nuim.ie/AnyonWiki
31. Slingerland, J., Verheyen, G.: On low rank fusion rings. arXiv:2205.15637
32. THE SAGE DEVELOPERS, SageMath, the Sage Mathematics Software System (Version 9.0), sage.math.org (2020)
33. Tambara, D., Yamagami, S.: Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra 209, 692–707 (1998)
34. Thornton, J.E.: Generalized near-group categories, Thesis (Ph.D.)-University of Oregon, 72 pp (2012)
35. Wang, Z.: Topological quantum computation, CBMS Reg. Conf. Ser. Math. (112) xiii + 115 pp (2010)