Complete mitochondrial genome of the calanoid copepod *Eurytemora affinis* (Calanoida, Temoridae)

Beom-Soon Choi*a*, Jeonghoon Hanb*, Dae-Sik Hwangc, Sami Souissid,e, Atsushi Hagiwaraf,g and Jae-Seong Leeb

*aPhyzen Genomics Institute, Seongnam, South Korea; bDepartment of Biological Science, College of Science, Sungkyunkwan University, Suwon, South Korea; Research Institute of Environmental Health and Safety, Bucheon, South Korea; cCNRS, University of Lille, Lille, France; dLaboratoire d’Océanologie et de Géosciences, Université du Littoral Côte d’Opale, Wimereux, France; eInstitute of Integrated Science and Technology, Nagasaki University, Nagasaki, Japan; fOrganization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan

ABSTRACT

The complete mitochondrial genome was sequenced from the calanoid copepod *Eurytemora affinis*. The sequenced total genome size was 18,553 bp. The mitochondrial genome of *E. affinis* has 13 protein-coding genes (PCGs), two rRNAs, and 22 tRNAs. Of 13 PCGs, ND1, ND5, and ATP6 genes had incomplete stop codons TA–, T–, and TA–, respectively. Furthermore, the stop codons of the remaining eleven PCGs were TAG or TAA while the start codon of 13 PCGs was ATG (Cytb, ATP8, ATP6, and CO3 genes), ATT (CO1, ND2, ND3, ND4L, ND5, and ND6 genes), and ATA (ND1, ND4, and CO2 genes), respectively. The ratio of A + T and G + C nucleotides of 13 PCGs of *E. affinis* mitogenome showed 63.9% and 36.1%, respectively while those ratio of the entire sequences were 65.5% and 34.5%, respectively.

To date, 12 species have been retrieved in the genus *Eurytemora* (http://v3.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=5798); however, not a single complete mitochondrial genome has been reported from those species. Despite the limited mitochondrial genome information of these species, the population genetic analyses were examined to reveal how they invade freshwater ecosystems. To date, 12 species have been retrieved in the genus *Eurytemora* (http://v3.boldsystems.org/index.php/Taxbrowser_Taxonpage?taxid=5798); however, not a single complete mitochondrial genome has been reported from those species. Despite the limited mitochondrial genome information of these species, the population genetic analyses were examined to reveal how they invade freshwater ecosystems.

The complete mitochondrial genome of the calanoid copepod *Eurytemora affinis* was obtained from the laboratory cultures that originated from the sample copepods on September 2014 from the oligohaline zone of the Seine Estuary (49°45′34.38″N, 0°17′33.68″E) by Prof. Sami Souissi (Michalec et al. 2017) and maintained in Nagasaki University in Japan. The specimen was deposited in the copepod collection of the Fisheries Science Museum of Nagasaki University, Nagasaki University under the accession no. FFNU-Cr-00393.

We sequenced 300 bp paired-end library of *E. affinis* from the whole body genomic DNA using the Illumina HiSeq 2500 platform (GenomeAnalyzer, Illumina, San Diego, CA). De novo assembly was conducted using spades v3.13.0 (http://cab.spbu.ru/software/spades/) with K-mer auto. Of the assembled *E. affinis* 729,332 contigs (N50 = 2051 bp) with Newbler (version 2.9; identity 100) (http://www.454.com), one supercontig was obtained. After a manual curatation of one supercontig with Consed (version 19.0) (http://www.phrap.org/consed/consed.html) with a gap closing, a single supercontig was mapped to the mitochondrial DNA of *E. affinis*. The total length of the complete mitochondrial genome of *E. affinis* was 18,553 bp (GenBank accession no. MN043905). The mitochondrial genome of *E. affinis* contained 13 protein-coding genes (PCGs), two rRNAs, and 22 tRNAs. The direction of 13 PCGs of *E. affinis* was mostly different to those of other copepods but the directions of the mitochondrial genome of the harpacticoide copepods *Tigriopus japonicus* and *Tigriopus californicus* were identical (Figure 1). The ratio of A + T and G + C nucleotides of 13 PCGs of *E. affinis* mitogenome showed 63.9% and 36.1%, respectively, while those ratio of all the sequences were 65.5% and 34.5%, respectively.

The phylogenetic placement of *E. affinis* was obtained using previously reported complete copepod mitogenomes.
The phylogenetic placement of the two calanoid copepods *Calanus hyperboreus* and *E. affinis* were in the same clade, but their orientations of 13 PGCs and tRNAs were different, indicating rearrangements of those particular components of mitochondrial DNA in the calanoid copepods over evolution. This information will be helpful for a better understanding of mitogenome evolution in the genus *Eurytemora*.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Funding

This work was supported by a grant from the Korea Polar Research Institute [PE19100] funded to Jae-Seong Lee.

ORCID

Jae-Seong Lee http://orcid.org/0000-0003-0944-5172

References

Hwang D-S, Choi B-S, Lee M-C, Han J, Kim S, Lee J-S. 2019. Complete mitochondrial genome of the Antarctic copepod *Tigriopus kingsejongensis* (Harpacticoida, Harpacticidae). Mitochondrial DNA B. 4:1470–1471.

Karlsson K, Puiac S, Winder M. 2018. Life-history responses to changing temperature and salinity of the Baltic Sea copepod *Eurytemora affinis*. Mar Biol. 165:30.

Lee B-Y, Lee M-C, Jeong C-B, Kim H-J, Hagiwara A, Souissi S, Han J, Lee J-S. 2018. RNA-Seq-based transcriptome profiling and expression of 16 cytochrome P450 genes in the benzo[a]pyrene-exposed estuarine copepod *Eurytemora affinis*. Comp Biochem Physiol D Genomics Proteomics. 28:142–150.

Lee CE. 1999. Rapid and repeated invasions of fresh water by the copepod *Eurytemora affinis*. Evol Appl. 10:813–828.

Lee CE. 2000. Global phylogeography of a cryptic copepod species complex and reproductive isolation between genetically proximate “populations”. Evolution. 54:2014–2027.

Lee CE. 2016. Evolutionary mechanisms of habitat invasions, using the copepod *Eurytemora affinis* as a model system. Evol Appl. 9:248–270.

Legrand E, Boulangé-Lecomte C, Restoux G, Trémolet G, Duflot A, Forget-Leray J. 2017. Individual and mixture acute toxicity of model pesticides chlordecone and pyriproxyfen in the estuarine copepod *Eurytemora affinis*. Environ Sci Pollut Res Int. 24:5976–5984.

Legrand E, Forget-Leray J, Duflot A, Olivier S, Thomé JP, Danger JM, Boulangé-Lecomte C. 2016. Transcriptome analysis of the copepod *Eurytemora affinis* upon exposure to endocrine disruptor pesticides: focus on reproduction and development. Aquat Toxicol. 176:64–75.

Michaels F-G, Fouzon I, Souissi S, Holzner M. 2017. Zooplankton can actively adjust their motility to turbulent flow. Proc Natl Acad Sci USA. 114:E11199–E11207.
Sukhikh N, Souissi A, Souissi S, Winkler G, Castric V, Holl AC, Alekseev V. 2016. Genetic and morphological heterogeneity among populations of *Eurytemora affinis* (Crustacea: Copepoda: Temoridae) in European waters. C R Biol. 339:197–206.

Winkler G, Dodson JJ, Lee CE. 2008. Heterogeneity within the native range: population genetic analyses of sympatric invasive and noninvasive clades of the freshwater invading copepod *Eurytemora affinis*. Mol Ecol. 17:415–430.

Zidour M, Boubechiche Z, Pan YJ, Bialais C, Cudennec B, Grard T, Drider D, Flahaut C, Ouddane B, Souissi S. 2019. Population response of the estuarine copepod *Eurytemora affinis* to its bioaccumulation of trace metals. Chemosphere. 220:505–513.