The entropic cost of quantum generalized measurements

Mancino, L., Sbroscia, M., Roccia, E., Gianani, I., Somma, F., Mataloni, P., ... Barbieri, M. (2018). The entropic cost of quantum generalized measurements. npj Quantum Information, 4(20), 1-6. https://doi.org/10.1038/s41534-018-0069-z

Published in:
npj Quantum Information

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2018 the authors. This is an open access article published under a Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
The entropic cost of quantum generalized measurements

Luca Mancino1, Marco Sbroscia1, Emanuele Roccia1, Ilaria Gianani1, Fabrizia Somma1, Paolo Mataloni2, Mauro Paternostro3 and Marco Barbieri1,4

INTRODUCTION

Manipulating the information content of a memory register has an associated thermodynamic cost: copying and erasing information can only be realized through physical operations whose implementation necessitates of appropriate resources.1–5 Landauer’s principle epitomizes such cost by quantifying the minimum amount of work required to reset a memory6,7 and thus entering the energetic balance of any physical process.

Controlling the conversion of information to energy will be key to the implementation of quantum-limited micro- and nano-engines and, in general, to the development of quantum technologies.8 In the light of Landauer’s principle, the simple act of monitoring a system through a quantum measurement implies a thermodynamic cost whose quantification has been the focus of recent debates.9–15 These studies have reinforced the view that changes in information theoretic entropies serve as indicators of corresponding variations in physical entropies, whose origin can be traced back to dissipative phenomena. Thus, the observation of information flows resulting from a physical process helps establishing fundamental bounds to the thermodynamic cost of the process itself. This is even more relevant given that a direct assessment of quantities such as work, heat, and entropy is in general hard to perform. In addition, such fundamental bounds are useful for comparing the cost of different measurement strategies used to infer the information–thermodynamic balance of a given process, regardless of the details of the implementation. To this purpose, not only such fundamental bounds should comprehensively take into account all sources of entropy, but also they need to be cast in terms of quantities directly accessible to the experimenter.

Weak measurements offer a valuable chance to balance the degree of information acquired through a detection strategy and the disturbance to the state of the monitored system.16,17 Such measurements are key for the control of the dynamics of a system, as experimentally demonstrated in the context of quantum metrology,18–21 communication,22–24 and error correction.25,26 To date, weak measurements have generally been characterized by inspecting the classical information extracted through their use, and how this limits the quantum information preserved in the post-measurement state.24,27–31 A complete understanding of this tool in the information–thermodynamic sense has not been completely achieved. In fact, current efforts have focused on understanding how purely thermodynamic contributions can be distinguished by weakly measuring the system along quantum trajectories.19

Here we investigate both the informational and thermodynamic cost of generalized measurements in a photonic architecture.27,22,23 Starting from the framework set in ref. 10, we introduce a figure of merit, the minimal energetic cost of measuring, which is attainable in a real experiment. Through the introduction of this quantitative instrument, we obtain a lower bound to the physical irreversible entropy associated with the act of observing, which is characteristic of and intrinsic to the measurement. The flexibility of our experimental apparatus allows for tuning the amount of information extracted from the system. Our measurement device can be tuned from the weak regime in which the state is only modestly perturbed, but little information is acquired, to the full strength regime encompassed by standard Von Neumann projections; these provide a large degree of information on the measured system, but its state is significantly altered. Our results show the energetic equivalence of performing measurements of arbitrary invasiveness on pure states. At variance with this, a weak measurement impacts in a less substantial way on the coherence of the quantum state of the measured system. Our endeavors, extending Landauer-like arguments, opens up the exploitation of...
generalized measurements in information-to-energy conversion processes.

RESULTS

Measurement protocol

In Fig. 1, we show the salient features of our protocol. A quantum system, initially in the quantum state ρ_μ, is sent to a non-destructive measurement device. Information is extracted by looking at an ancillary meter system, which we assume has initially been thermalized via the contact with a thermal bath at temperature T. As a result, the meter is prepared in the canonical Gibbs state $\rho_\mu = e^{-\beta H_\mu}/Z_\mu$, where $\beta = 1/k_B T$ (here k_B is the Boltzmann constant), H_μ is the free Hamiltonian of the meter, and $Z_\mu = \text{Tr}(e^{-\beta H_\mu})$ is the partition function (see Methods).

The measurement relies on the interaction of the signal and the meter ruled by a unitary operation U. The coupling links the two systems in such a way that a standard measurement on the meter delivers information on the state of the signal. Such information is in the form of a “classical” outcome k occurring with a probability p_k. The amount of classical information is then quantified by the Shannon entropy $H(p_k)$, associated with the probabilities $p_k = \text{Tr} \{ E_k \rho_\mu \}$, where we have introduced the set of measurement operators E_k such that $\sum_k E_k^2 = I$. Remarkably, the Shannon entropy has a clear thermodynamic interpretation as formulated by Landauer’s principle: an agent having the signal at their disposal might try to extract work from it by exploiting the information gathered through the measurement performed over the meter. In the simplest instances, the amount of work extractable from the measurement scheme being considered is then $k_B T (1 - H(p_k))$.

Our experiment proceeds in four steps: (i) the signal is initialized in a classical and a quantum output

Fig. 1 Conceptual scheme of the protocol. After the meter is kept in contact with a thermal bath at fixed temperature T, the two systems interact through a unitary operator. It is possible to infer information on the signal by performing a measurement on the meter resulting in a classical and a quantum output

[Image 55x107 to 284x235]

which describes the mutual information linked to the post-measurement states and their probabilities up to a sign. The energetic and informational balance resulting from the process being considered is condensed in the expression of the ensemble-average work W^{meas} needed for implementing the measurement itself. The balance can be cast into the form

$$ I_{\text{post}} = \sum_k \text{Tr} \left(\frac{\sqrt{E_k \rho_\mu} \sqrt{E_k}}{\sqrt{E_k \rho_\mu} \sqrt{E_k}} \right) \ln \left(\frac{\sqrt{E_k \rho_\mu} \sqrt{E_k}}{\sqrt{E_k \rho_\mu} \sqrt{E_k}} \right), $$

where ΔF_μ is the average variation in the Helmholtz free energy of the meter in the overall process, and S_{irr} is the irreversible entropy generated in the process of measuring. The complete information–thermodynamic balance can thus be understood in terms of a minimal irreversible entropy (see Methods), embodied by the left-hand side of the inequality above. This represents the minimal cost associated with the process of measuring, cast in the form of an unbalance between the GO (QC) information and the Shannon entropy.

In our experiment, we rely on Eq. (3) to explore how the lower bound on irreversible entropy is affected by the strength of the measurement. The role of the GO (QC) information in determining the efficiency of a feedback mechanism in a Maxwell-demon scenario has already been addressed. In contrast, the implications of Eq. (1) in the analysis of quantum measurements have not been explored, nor the lower bound investigated experimentally. Our work contributes to both these points both at the theoretical and experimental level. Landauer’s principle, cast in the form of Eq. (3), makes the lower bound accessible from information theoretic considerations, avoiding possible complications entailed by the (in principle difficult) direct assessment of the irreversible entropy $S_{irr} = \beta (W^{\text{meas}} - \Delta F_\mu)$ at the ultimate limit, which we remark is not observable. The identification of tight bounds to S_{irr} is an open area of investigation that is yet to deliver a bound able to provide a faithful estimate of the cost of acquiring or deleting information.

Here, we establish a minimal cost in terms of irreversible entropy in a two-photon experiment, with the aim of characterizing generalized measurements using information–thermodynamics. For our investigation, we use the experimental setup depicted in Fig. 2, where the polarization states photon pairs are used to encode the states of the signal and meter systems, assumed to be two-level system in the remainder of this work. The least (most) energetic state of each system is encoded in the horizontal $|H\rangle$ (vertical $|V\rangle$) polarization state of the respective photon.

Experiment

Our experiment proceeds in four steps: (i) the signal is initialized in a superposition of its levels $|D\rangle = \frac{1}{\sqrt{2}}(|H\rangle + |V\rangle)$ that is expected to deliver the highest entropy, while the meter is prepared in either the $|H\rangle$ or $|V\rangle$ state; (ii) the coupling is implemented by a controlled-sign (C-Sign) gate, which imparts a π-phase on the $|V\rangle$ of the input state only. Its strength is effectively controlled by rotating the state of the meter by means of a half wave plate before the gate, set at a rotation angle θ. We can then create an entangled state of the two systems, so that a measurement on the meter will deliver information on the H/V component of the signal without destroying it; (iii) for different settings of θ, we measure the probabilities p_D and p_μ of a standard polarization measurement performed on the meter. This allows us to compute the Shannon entropy associated to each coupling: we can then explore different regimes, ranging from strong von Neumann measurements to weak observations that minimally disturb the input signal state; (iv) we perform quantum state tomography.

Published in partnership with The University of New South Wales
Quantum state tomography (QST) is performed then measured in the diagonal basis while on the quantum output a splitters (PPBSs) and HWPs (see Methods). The classical output is in an entangling C-Sign gate realized with partially polarized beam performed via a half wave plate (HWP). The two photons then enter can be adjusted with a rotation of the polarization of the meter starts in a

\[
H_D
\]

The experimental apparatus. In our work, instead, we focus on how

offs between classical and quantum information at the outputs of

\[
T = \theta
\]

The entropic cost of quantum generalized measurements

The Shannon entropy, the mutual information from the post-

measurement states of the signal, thus deviating from the theoretical expectations. Differently, the behavior of the Shannon entropy remains close to the predictions.

More generally, the state of the meter is assumed to be in a canonical distribution at temperature \(T \), due to its interaction with a thermal bath. We simulate this mixed state by adding, with suitable weights associated to a temperature \(T \), the coincidence counts relative to the least \(\langle H \rangle \) and the most \(\langle V \rangle \) energetic states of the meter, while keeping the signal prepared in \(|D\rangle \).

The GO (QC) information term is not directly accessible through the experiment. The reason is that the overall measurement apparatus actually performs distinct operations, depending on the preparation of the meter. The operator describing the post-measurement state of the signal when a meter photon prepared in \(|H\rangle \) is injected is \(M_j \rho \otimes M_j \otimes \rho_k \) with \(M_j M_k = E_k \). Conversely, when a meter \(|V\rangle \) is chosen, the state of the signal associated to the same output is now \(N_j \rho \otimes N_j \otimes \rho_k \), where \(N_j = -i \sigma_z M_k \). However, we still have \(N_j N_k = E_k \). As the meter is kept in a mixed state, the measurement will output a mixture of the aforementioned states of the signal. The definition of the GO (QC) information in Eq. (1), instead, considers only the case where \(M_j = N_j = \sqrt{E_k} \), thus resulting in the discrepancy between the expected and observed values of such contribution.

In order to go beyond such limitations and consider a figure of merit that is more faithful to the experimental setting being studied, we introduce a (related) figure of merit defined as

\[
\bar{I} = S(\rho_o) + H(\rho_k) + \sum_i \text{Tr}[\tilde{\rho}_o \ln \tilde{\rho}_o^k],
\]

where \(\tilde{\rho}_o = 1/2 \left[e^{-\beta_k} \left(M_0 \rho \otimes M_0 \right) + e^{-\beta_k} \left(N_0 \rho \otimes N_0 \right) \right] \) is the actual output state of the signal up to normalization. Such a state can be accessed experimentally by QST, and the resulting quantity \(\bar{I} \) can be used to modify Eq. (3). As it is straightforward to verify, we have \(\bar{I} < I \), which implies that we still have a meaningful bound (see Methods). An intuitive justification can be obtained by comparing Eqs. (1) and (4). In the former, the mutual information considers the quantum output conditioned to the ideal measurement operators \(\sqrt{E_k} \). These only have an information theoretical meaning and represent a purified version of the actual physical states \(\tilde{\rho}_o \), which neglects their dependence on the temperature of the meter. The modified GO (QC) information \(\bar{I} \) captures such an additional contribution to mixedness, which lowers the information content brought about by \(I \), which hence provides a lower bound to \(l \).

The results are summarized in Fig. 4, which shows how the increase in the temperature of the meter, thus its mixedness, reflects in the dispersion of the correlation term \(\bar{I} - H \). The data confirm that, in the 'worst case scenario' of injecting the state delivering the highest entropy, the degree of irreversibility generated by the implementation of the measurement addressed in our experiment is lower bounded by a quantity that is insensitive of the information gathered on the state of the signal through the meter. Thermodynamically, this implies that the
minimum cost for the implementation of a measurement, as measured by the information-theoretical lower bound in Eq. (3) or the version proposed here involving \(I \) is not linked to the back-action induced to the state of the probed system, but intrinsic in the act of measuring itself.

On one hand, this calls for the research of bounds to the cost of measuring that are more sensitive to the explicit degree of back-action induced by the measuring step, much along the lines of recent attempts made in the context of the Landauer principle itself.\(^{41,42,48}\) On the other hand, \(I \) accounts explicitly for the impossibility of an experimental apparatus such as ours to distinguish among the conditional states resulting from the recording of a given measurement outcome. Its introduction highlights the need for experiment-tailored quantities apt to quantify appropriately the energetic and information balance. The second law of “information-thermodynamics”, cast in the form of Eq. (3), makes the lower bound accessible from information theoretic considerations, avoiding possible complications entailed by the direct assessment of the irreversible entropy at the ultimate limit. Our experiment gives us access to the possibility of estimating \(W^\text{meas} \) and \(\Delta F^\text{irr} \) from the registered counts (see Methods), although this is not tantamount to measuring actual changes in thermodynamic quantities; remarkably, these are expected to be independent on the strength as well. Figure 5 illustrates the observed behavior of thermodynamic quantities for \(\theta = 0.21 \): as the temperature raises, the work does not account for the increase in the Helmholtz free energy. These trends are reflected in the negative behavior of the irreversible entropy production \(S^\text{irr} \), which can be justified by the fluctuation theorem, here compared with its information-theoretical lower bound: this is far from being strict, but provides information about the actual trend as a function of the initial temperature of the meter qubit.

CONCLUSIONS

The physical act of measuring has a cost that can be interpreted, thermodynamically, in terms of an entropy production. Although the latter is typically not observable, it can be bound by information-theoretical quantities of easier experimental accessibility. This work aimed precisely at the experimental characterization of the minimum entropy cost necessary for the implementation of the measurement on the quantum state of an elementary system. Our experiment has been able to highlight the fundamental insensitivity of such entropic bound to the invasiveness of the measurement itself. Our approach is based on the use of generalized quantum measurements, spanning from weak to strong projective ones. It demonstrates the viability of such an important tool for experimental investigations on the information–thermodynamics of fundamental quantum processes.

METHODS

Theoretical details

The free Hamiltonian of the meter is assumed to be, without loss of generality, \(H_\mu = \varepsilon_0 |H⟩⟨H| + \varepsilon_1 |V⟩⟨V| \), with \(\varepsilon_0(\varepsilon_1) = 0(1) \). The key step of our protocol is represented by the interaction of the signal and the meter via the unitary operator \(U^\mu = N^\mu(σ^R ⊗ R_\mu) \), which encompasses the rotation of the meter \(I_R ⊗ B_\mu \) and the C-sign gate \(N^\mu \). It is worth remarking that the rotation allows to control the invasiveness of the measurement process\(^{32,33}\) by rotating the state of the meter.

When the meter is in state \(\rho_\mu = |H⟩⟨H| \), the gate delivers a measurement operator acting like

\[
M^\mu_\rho \mathcal{M}^\mu_\rho = |ψ_0⟩⟨ψ_0|,
\]

where:

\[
|ψ_0⟩ = \frac{1}{\sqrt{2}} (|2θ + \frac{\pi}{2}) V_0 + \cos(2θ + \frac{\pi}{2}) |H⟩_0,
|ψ_1⟩ = \frac{1}{\sqrt{2}} (|2θ - \frac{\pi}{2}) V_0 - \cos(2θ - \frac{\pi}{2}) |H⟩_0,
\]

are the states of the signal after the meter measurement. Such post-measurement states of the signal are useful for the calculation of the lower bound on the irreversible entropy, which does not depend on the von Neumann entropy of the signal state as \(\rho_\mu \) is pure. In the limiting case of \(T \to 0 \), the mutual information reduces to the opposite of the Shannon entropy, thus giving a null GO (QC) information. As the temperature of the
the following probabilities
\[W = N \rho \] irreversible entropy
invasiveness of the measurement process. In fact, we get the expression
lower bound in Eq. (3), the irreversible entropy does not depend on the
measurement invasivity. On the other hand, is less strict but provides indications on the irreversible
thermodynamic meaning is attached. These would rather represent informational estimates to which a
quantities. This prompts to introduce a modified GO (QC) information
\[I = (1/3) \] and Hadamard gates. This experimental gate acts transforming
the state of the meter, which can be only considered via Eq. (4).

Experimental details
We built our investigation on the possibility to use pair of photons to
encode both signal and meter systems. Photons are generated via a
borate crystal (Type I): the source produces photon pairs at 810 nm—
when pumped with a 405 nm Continuous-Wave (CW) laser at 80 mW. The

Data availability
Data are available to any reader upon reasonable request.

ACKNOWLEDGEMENTS
The authors thank Roberto Raimondi, Maria Antonietta Ricci, and Fabio Bruni for
useful discussions and comments, Paolo Aloe for technical assistance, Carlo
Meneghini and Francesca Paolucci for the loan of scientific equipment. M.P. is
supported by the EU Collaborative Project TherMQ (Grant Agreement 618074), the
Julian Schwinger Foundation (grant Nr. JSF-14-7-0000), the Royal Society Newton
Mobility Grant (grant Ni160057), the DFG-SFI Investigator Programme (grant 15/IA-
2864). M.B. is supported by a Rita Levi-Montalcini fellowship of MIUR. Part of this work
was supported by COST Action MP1209 Thermodynamics in the quantum regime.
This project has received funding from the European Commission Horizon 2020
research and innovation programme under grant agreement N. 665148.

AUTHOR CONTRIBUTIONS
The project has been conceived by M.B. and P.M., and refined by L.M. and M.P., who
have also conducted the full theoretical analysis. The experiment has been carried
out by L.M. and M.S., with assistance by E.R. and I.G. All authors discussed the
interpretation of the data, wrote the manuscript, based on a draft by L.M. and M.B.,
and approved the completed version. All authors are accountable for questions
related to the accuracy or integrity of the work.

ADDITIONAL INFORMATION
Competing interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

REFERENCES
1. Plenio, M. B. & Vitelli, V. The physics of forgetting: Landauer’s erasure principle
and information theory. Contemp. Phys. 42, 25 (2001).
2. Piekarciszka, B. Information erasure. Phys. Rev. A 61, 062314 (2000).
3. Lloyd, S. Ultimate physical limits to computation. Nat. (Lond.) 406, 1047–1054
(2000).
4. Bennett, C. H. Notes on Landauer’s principle, reversible computation and Max-
well’s demon. Stud. Hist. Philos. Mod. Phys. 34, 501 (2003).
5. Maruyama, K., Non, F. & Vedral, V. Colloquium: The physics of Maxwell’s demon
and information. Rev. Mod. Phys. 81, 1 (2009).
6. Landauer, R. Irreversibility and heat generation in the computing process. IBM J.
Res. Dev. 5, 183 (1961).
7. Landauer, R. Information is physical. Phys. Today 44, 23 (1991).
8. de Touzalin, A. et al. Quantum Manifesto: A New Era of Technology. http://qurope.
eu/manifesto (2016).
9. Sagawa, T. & Ueda, M. Second law of thermodynamics with discrete quantum
feedback control. Phys. Rev. Lett. 100, 80403 (2008).
10. Sagawa, T. & Ueda, M. Minimal energy cost for thermodynamic information
processing: measurement and information erasure. Phys. Rev. Lett. 102, 250602
(2009).
11. Granger, L. & Kast, H. Thermodynamic cost of measurements. Phys. Rev. E 84,
061110 (2011).
12. Jacobs, K. Quantum measurement and the first law of thermodynamics: The
energy cost of measurement is the work value of the acquired information. Phys.
Rev. E 86, 040106(R) (2012).
13. Alonso, J. J., Lutz, E. & Romito, A. Thermodynamics of weakly measured quantum
systems. Phys. Rev. Lett. 116, 080403 (2016).
14. Elouard, C. et al. The role of quantum measurement in stochastic thermo-
dynamics. Preprint at https://arxiv.org/abs/1607.02404 (2016).
15. Bera, M. N. et al. Universal Laws of Thermodynamics. Preprint at https://arxiv.org/
abs/1612.04779 (2016).
16. Aharonov, Y., Albert, D. Z. & Vaidman, L. How the result of a measurement of a
component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett.
60, 1351 (1988).
17. Aharonov, Y. & Vaidman, L. Aharonov and Vaidman reply. Phys. Rev. Lett. 62, 2327
(1989).
18. Hosten, O. & Kwiat, P. Observation of the spin Hall effect of light via weak
measurements. Science 319, 787 (2008).
19. Dixon, P. B., Starling, D. J., Jordan, A. N. & Howell, J. C. Ultrasmall beam
deflection measurement via interferometric weak value amplification. Phys. Rev.
Lett. 102, 173601 (2009).

Published in partnership with The University of New South Wales
npj Quantum Information (2018) 20
20. Brunner, N. & Simon, C. Measuring small longitudinal phase shifts: weak measurements or standard interferometry? Phys. Rev. Lett. 105, 010405 (2010).
21. Zhang, L., Datta, A. & Walmsley, I. A. Precision metrology using weak measurements. Phys. Rev. Lett. 114, 210801 (2015).
22. Levenson, J. A. et al. Quantum optical cloning amplifier. Phys. Rev. Lett. 70, 267 (1993).
23. Biggerstaff, D. N. et al. Cluster-state quantum computing enhanced by high-fidelity generalized measurements. Phys. Rev. Lett. 103, 240504 (2009).
24. Gillett, G. G. et al. Experimental feedback control of quantum systems using weak measurements. Phys. Rev. Lett. 104, 080503 (2010).
25. Kammerlander, P. & Anders, J. Coherence and measurements in quantum thermodynamics. Sci. Rep. 6, 22174 (2016).
26. Blok, M. S. et al. Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback. Nat. Phys. 10, 189–193 (2014).
27. Pryde, G. J. et al. Measuring a photonic qubit without destroying it. Phys. Rev. Lett. 92, 190402 (2004).
28. Sciarrino, F., Ricci, M., De Martini, F., Filip, R. & Mitič, L. Jr. Realization of a minimal disturbance quantum measurement. Phys. Rev. Lett. 96, 020408 (2006).
29. Barbieri, M., Goggin, M. E., Almeida, M. P., Lanyon, B. P. & White, A. G. Complementarity in variable strength quantum non-demolition measurements. New. J. Phys. 11, 093012 (2009).
30. Lim, H.-T., Ra, Y.-S., Hong, K.-H., Lee, S.-W. & Kim, Y.-H. Fundamental bounds in measurements for estimating quantum states. Phys. Rev. Lett. 113, 020504 (2014).
31. Kammerlander, P. & Anders, J. Coherence and measurements in quantum thermodynamics. Sci. Rep. 6, 22174 (2016).
32. Pryde, G. J. et al. Measurement of quantum weak values of photon polarization. Phys. Rev. Lett. 94, 220405 (2005).
33. Ralph, T. C. et al. Quantum nondemolition measurements for quantum information. Phys. Rev. A. 73, 012113 (2006).
34. Maruyama, K., Morikoshi, F. & Vedral, V. Thermodynamical detection of entanglement by Maxwell’s demons. Phys. Rev. A. 71, 012108 (2005).
35. Ciampini, M. A. et al. Experimental extractable work-based multipartite separability criteria. NPJ Quantum Inf. 3, 10 (2017).
36. Funo, K., Watanabe, Y. & Ueda, M. Integral quantum fluctuation theorems under measurement and feedback control. Phys. Rev. E 88, 05212 (2013).
37. Camati, P. A. et al. Experimental rectification of entropy production by a Maxwell’s Demon in a quantum system. Phys. Rev. Lett. 117, 240502 (2016).
38. Groenewold, H. J. Int. J. Theor. Phys. 4, 327 (1971).
39. Ozawa, M. On information gain by quantum measurements of continuous observables. J. Math. Phys. 27, 759 (1986).
40. Buscemi, F., Hayashi, M. & Horodecki, M. Global information balance in quantum measurements. Phys. Rev. Lett. 100, 210504 (2008).
41. Reeb, D. & Wolf, M. M. An improved Landauer principle with finite-size corrections. New. J. Phys. 16, 103011 (2014).
42. Goold, J., Paternostro, M. & Modi, K. Nonequilibrium quantum Landauer principle. Phys. Rev. Lett. 114, 060602 (2015).
43. Langford, N. K. et al. Demonstration of a simple entangling optical gate and its use in Bell-state analysis. Phys. Rev. Lett. 95, 210504 (2005).
44. Kiesel, N., Schmid, C., Weber, U., Ursin, R. & Weinfurter, H. Linear optics controlled-phase gate made simple. Phys. Rev. Lett. 95, 210505 (2005).
45. Okamoto, K., Hofmann, H. F., Takeuchi, S. & Sasaki, K. Demonstration of an optical quantum Controlled-NOT gate without path interference. Phys. Rev. Lett. 95, 210506 (2005).
46. Higgins, B. H. et al. Mixed state discrimination using optimal control. Phys. Rev. Lett. 103, 220503 (2009).
47. Abdelkhaled, K., Nakata, Y. & Reeb, D. Fundamental energy cost for quantum measurement. Preprint at https://arxiv.org/abs/1609.06981 (2016).
48. Guarnieri, G. et al. Full counting statistics approach to the quantum non-equilibrium Landauer bound. New. J. Phys. 19, 103038 (2017).