Universal Metric Spaces According to
W. Holsztynski

Sergei Ovchinnikov
Mathematics Department
San Francisco State University
San Francisco, CA 94132
sergei@sfsu.edu

October 27, 2018

Abstract
In this note we show, following W. Holsztynski, that there is a continuous
metric d on \mathbb{R} such that any finite metric space is isometrically embeddable
into \mathbb{R}.

Let \mathcal{M} be a family of metric spaces. A metric space U is said to be a
universal space for \mathcal{M} if any space from \mathcal{M} is (isometrically) embeddable in
U.

Fréchet [2] proved that ℓ^∞ (the space of all bounded sequences of real num-
bers endowed with the sup norm) is a universal space for the family \mathcal{M} of all
separable metric spaces. Later, Uryson [5] constructed an example of a separable
universal space for this \mathcal{M} (ℓ^∞ is not separable).

In this note we establish the following result which is Theorem 5 in [3].

Theorem 1. There exists a metric d in \mathbb{R}, inducing the usual topology, such
that every finite metric space embeds in (\mathbb{R}, d).

Our proof essentially follows the original Holsztynski’s approach [4].

We say that a metric space (X, d) is ε–dispersed if $d(x, y) \geq \varepsilon$ for all $x \neq y$
in X ($\varepsilon > 0$). Clearly, any ε– metric space is also ε'–dispersed for any positive
$\varepsilon' < \varepsilon$. The following proposition will be used to construct universal spaces for
particular families \mathcal{M}.

Proposition 1. Let $f : X \to Y$ be a continuous surjection from a metric space
(X, d) onto a metric space (Y, D). Then (X, d_ε) where

$$d_\varepsilon(x, y) = \max\{\min\{d(x, y), \varepsilon\}, D(f(x), f(y))\}$$

is a universal space for the family of ε–dispersed subspaces of (Y, D) and metrics
d and d_ε are equivalent on X.

\[\]
Proof. \(d_\varepsilon \) is a distance function. Indeed, \(d_\varepsilon \) is symmetric and \(d_\varepsilon(x, y) = 0 \) if and only if \(x = y \). We have
\[
\max\{ \min\{d(x, y), \varepsilon\}, D(f(x), f(y))\} + \max\{ \min\{d(y, z), \varepsilon\}, D(f(y), f(z))\} \geq D(f(x), f(y)) + D(f(y), f(z)) \geq D(f(x), f(z))
\]
and
\[
\max\{ \min\{d(x, y), \varepsilon\}, D(f(x), f(y))\} + \max\{ \min\{d(y, z), \varepsilon\}, D(f(y), f(z))\} \geq \min\{d(x, y), \varepsilon\} + \min\{d(y, z), \varepsilon\} = \min\{d(x, y) + d(y, z), \varepsilon\} \geq \min\{d(x, z), \varepsilon\}
\]
Hence, \(d_\varepsilon(x, y) + d_\varepsilon(y, z) \geq d_\varepsilon(x, z) \).

Let \(Z \) be an \(\varepsilon \)-dispersed subspace of \(Y \). Since \(f \) is surjective, for any \(z \in Z \), there is \(x_z \in X \) such that \(f(x_z) = z \). Let \(X' = \{x_z : z \in Z\} \). By (\(I \)), \(d_\varepsilon(x, y) = D(f(x), f(y)) \) for all \(x, y \in X' \). Thus \(f \) establishes an isometry between \((Z, D)\) and \((X', d_\varepsilon)\). \(\square \)

In what follows, \(\mathcal{M} \) is the family of all finite metric spaces.

We define
\[
I^n = \{ \bar{x} = (x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \leq x_i \leq n, \ 1 \leq i \leq n \}
\]
and \(J_n = [n - 1, n] \) for \(n \geq 1 \). \(I^n \) is a metric space with the distance function
\[
D(\bar{x}, \bar{y}) = \max\{|x_i - y_i| : 1 \leq i \leq n\},
\]
and \(J_n \) is a metric space with the usual distance.

Let \((X, d)\) be a finite metric space. We define
\[
p = |X|, \ q = [\text{Diam}(X)], \ r = [\varepsilon^{-1}],
\]
where \(\varepsilon = \min\{d(x, y) : x \neq y\}, \) and \(n = \max\{p, q, r\} \). Clearly, \((X, d)\) is \(\frac{1}{n} \)-dispersed.

Proposition 2. (The Kuratowski embedding) \((X, d)\) is embeddable into \(I^n \).

Proof. Let \(X = \{x_1, \ldots, x_p\} \). We define \(f : X \to I^n \) by
\[
f(x_i) = (d(x_i, x_1), \ldots, d(x_i, x_p), 0, \ldots, 0),
\]
for \(1 \leq i \leq p \). (Since \(n \geq \text{Diam}(X) \), \(f(x_i) \in I^n \).) We have, by the triangle inequality,
\[
D(f(x_k), f(x_m)) = \max_j \{|d(x_k, x_j) - d(x_m, x_j)|\} \leq d(x_k, x_m).
\]
On the other hand, \(|d(x_k, x_j) - d(x_m, x_j)| = d(x_k, x_m) \) for \(j = m \). Therefore, \(D(f(x_k), f(x_m)) = d(x_k, x_m) \) for all \(1 \leq k, m \leq p \). \(\square \)
Let f_n be a continuous surjection from J_n onto I^n (a “Peano curve” IV(4)) and $d_n(x, y)$ be the distance function on J_n defined by (1) for $\varepsilon = \frac{1}{n}$. Note, that d_n is equivalent to the usual distance on J_n. By Proposition 1, J_n is a universal space for any $\frac{1}{n}$-dispersed subspace of I^n. By Proposition 2, any finite metric space is embeddable in (J_n, d_n) for some n.

It is easy to show that there is a continuous distance function on \mathbb{R} that coincides with $d_n(x, y)$ on J_n for all n. Indeed, let $d_1(x, y)$ and $d_2(x, y)$ be two continuous distance functions on intervals $[a, b]$ and $[b, c]$, respectively. Then $d(x, y)$ defined by

$$d(x, y) = \begin{cases} d_1(x, y), & \text{if } x, y \in [a, b], \\ d_2(x, y), & \text{if } x, y \in [b, c], \\ d_1(x, b) + d_2(b, y), & \text{if } x \in [a, b] \text{ and } y \in [c, d]. \end{cases}$$

is a continuous distance function on $[a, c]$. In fact, thus defined d is equivalent to the usual metric on $[a, c]$.

By applying this process consecutively, we obtain a required distance function on \mathbb{R}.

References

[1] Dugundji, J. *Topology* (Wm. C. Brown Publishers, Dubuque, Iowa, 1989).

[2] Fréchet, M., Les dimensions d’un ensemble abstrait, *Math. Ann.* 68 (1910), 145–168.

[3] Holsztynski, W., \mathbb{R}^n as universal metric space, *Notices Amer. Math. Soc.* 25 A–367, 1978.

[4] Holsztynski, W., Personal communication, 2000.

[5] Uryson, P.S., Sur un espace métrique universel, *Bull. de Sciences Math.* 5 (1927), 1–38.