THE PARABOLIC INFINITE-LAPLACE EQUATION IN CARNOT GROUPS

THOMAS BIESKE AND ERIN MARTIN

Abstract. By employing a Carnot parabolic maximum principle, we show existence-uniqueness of viscosity solutions to a class of equations modeled on the parabolic infinite Laplace equation in Carnot groups. We show stability of solutions within the class and examine the limit as t goes to infinity.

1. Motivation

In Carnot groups, the following theorem has been established.

Theorem 1.1. [3, 16, 5] Let Ω be a bounded domain in a Carnot group and let $v : \partial \Omega \to \mathbb{R}$ be a continuous function. Then the Dirichlet problem

$$\begin{cases}
\Delta_\infty u = 0 & \text{in } \Omega \\
 u = v & \text{on } \partial \Omega
\end{cases}$$

has a unique viscosity solution u_∞.

Our goal is to prove a parabolic version of Theorem 1.1 for a class of equations (defined in the next section), namely

Conjecture 1.2. Let Ω be a bounded domain in a Carnot group and let $T > 0$. Let $\psi \in C(\Omega)$ and let $g \in C(\Omega \times [0, T))$ Then the Cauchy-Dirichlet problem

$$\begin{cases}
 u_t - \Delta_\infty u = 0 & \text{in } \Omega \times (0, T), \\
u(x, 0) = \psi(x) & \text{on } \overline{\Omega}
\end{cases}$$

(1.1)

$$u(x, t) = g(x, t) & \text{on } \partial \Omega \times (0, T)$$

has a unique viscosity solution u.

In Sections 2 and 3, we review key properties of Carnot groups and parabolic viscosity solutions. In Section 4, we prove uniqueness and Section 5 covers existence.

Date: January 15, 2015.

2010 Mathematics Subject Classification. Primary 53C17, 35K65, 35D40; Secondary 35H20, 22E25, 17B70.

Key words and phrases. parabolic p-Laplace equation, viscosity solution, Carnot groups.

The first author was partially supported by a University of South Florida Proposal Enhancement Grant.
2. Calculus on Carnot Groups

We begin by denoting an arbitrary Carnot group in \mathbb{R}^N by G and its corresponding Lie Algebra by g. Recall that g is nilpotent and stratified, resulting in the decomposition

$$g = V_1 \oplus V_2 \oplus \cdots \oplus V_l$$

for appropriate vector spaces that satisfy the Lie bracket relation $[V_i, V_j] = V_{i+j}$. The Lie Algebra g is associated with the group G via the exponential map $\exp : g \to G$. Since this map is a diffeomorphism, we can choose a basis for g so that it is the identity map. Denote this basis by $X_1, X_2, \ldots, X_{n_1}, Y_1, Y_2, \ldots, Y_{n_2}, Z_1, Z_2, \ldots, Z_{n_3}$

so that

$$V_1 = \text{span}\{X_1, X_2, \ldots, X_{n_1}\}$$
$$V_2 = \text{span}\{Y_1, Y_2, \ldots, Y_{n_2}\}$$
$$V_3 \oplus V_4 \oplus \cdots \oplus V_l = \text{span}\{Z_1, Z_2, \ldots, Z_{n_3}\}.$$

We endow g with an inner product $\langle \cdot, \cdot \rangle$ and related norm $\| \cdot \|$ so that this basis is orthonormal. Clearly, the Riemannian dimension of g (and so G) is $N = n_1 + n_2 + n_3$. However, we will also consider the homogeneous dimension of G, denoted Q, which is given by

$$Q = \sum_{i=1}^{l} i \cdot \dim V_i.$$

Before proceeding with the calculus, we recall the group and metric space properties. Since the exponential map is the identity, the group law is the Campbell-Hausdorff formula (see, for example, [7]). For our purposes, this formula is given by

$$p \cdot q = p + q + \frac{1}{2}[p, q] + R(p, q)$$

where $R(p, q)$ are terms of order 3 or higher. The identity element of G will be denoted by 0 and called the origin. There is also a natural metric on G, which is the Carnot-Carathéodory distance, defined for the points p and q as follows:

$$d_C(p, q) = \inf_{\Gamma} \int_0^1 \|\gamma'(t)\| dt$$

where the set Γ is the set of all curves γ such that $\gamma(0) = p, \gamma(1) = q$ and $\gamma'(t) \in V_1$. By Chow’s theorem (see, for example, [2]) any two points can be connected by such a curve, which means $d_C(p, q)$ is an honest metric. Define a Carnot-Carathéodory ball of radius r centered at a point p_0 by

$$B(p_0, r) = \{ p \in G : d_C(p, p_0) < r \}.$$
In addition to the Carnot-Carathéodory metric, there is a smooth (off the origin) gauge. This gauge is defined for a point \(p = (\zeta_1, \zeta_2, \ldots, \zeta_l) \) with \(\zeta_i \in V_i \) by
\[
N(p) = \left(\sum_{i=1}^{l} \| \zeta_i \|^{\frac{2l}{l+1}} \right)^{\frac{1}{2l}}
\]
and it induces a metric \(d_N \) that is bi-Lipschitz equivalent to the Carnot-Carathéodory metric and is given by
\[
d_N(p, q) = N(p^{-1} \cdot q).
\]
We define a gauge ball of radius \(r \) centered at a point \(p_0 \) by
\[
B_N(p_0, r) = \{ p \in G : d_N(p, p_0) < r \}.
\]
In this environment, a smooth function \(u : G \to \mathbb{R} \) has the horizontal derivative given by
\[
\nabla_0 u = (X_1 u, X_2 u, \ldots, X_{n_1} u)
\]
and the symmetrized horizontal second derivative matrix, denoted by \((D^2 u)^*\), with entries
\[
((D^2 u)^*)_{ij} = \frac{1}{2} (X_i X_j u + X_j X_i u)
\]
for \(i, j = 1, 2, \ldots, n_1 \). We also consider the semi-horizontal derivative given by
\[
\nabla_1 u = (X_1 u, X_2 u, \ldots, X_{n_1} u, Y_1 u, Y_2 u, \ldots, Y_{n_2} u).
\]
Using the above derivatives, we define the \(h \)-homogeneous infinite Laplace operator for \(h \geq 1 \) by
\[
\Delta_h^\infty f = \| \nabla_0 f \|^{h-3} \sum_{i,j=1}^{n_1} X_i f X_j f X_i X_j f = \| \nabla_0 f \|^{h-3} \langle (D^2 f)^* \nabla_0 f, \nabla_0 f \rangle.
\]
Given \(T > 0 \) and a function \(u : G \times [0, T] \to \mathbb{R} \), we may define the analogous subparabolic infinite Laplace operator by
\[
u_t - \Delta_h^\infty u = 0.
\]
and we consider the corresponding equation
\[
(2.3)
\]
We note that when \(h \geq 3 \), this operator is continuous. When \(h = 3 \), we have the subparabolic infinite Laplace equation analogous to the infinite Laplace operator in \([5]\). The Euclidean analog for \(h = 1 \) has been explored in \([14]\) and the Euclidean analog for \(1 < h < 3 \) in \([15]\).
We recall that for any open set \(\mathcal{O} \subset G \), the function \(f \) is in the horizontal Sobolev space \(W^{1,p}(\mathcal{O}) \) if \(f \) and \(X_i f \) are in \(L^p(\mathcal{O}) \) for \(i = 1, 2, \ldots, n_1 \). Replacing \(L^p(\mathcal{O}) \) by \(L^p_{\text{loc}}(\mathcal{O}) \), the space \(W^{1,p}_{\text{loc}}(\mathcal{O}) \) is defined similarly. The space \(W^{1,p}_{\text{loc}}(\mathcal{O}) \) is the closure in \(W^{1,p}(\mathcal{O}) \) of smooth functions with compact support. In addition, we recall a function \(u : G \to \mathbb{R} \) is \(C^2_{\text{sub}} \) if \(\nabla_1 u \) and \(X_i X_j u \) are continuous for all \(i, j = 1, 2, \ldots, n_1 \). Note that \(C^2_{\text{sub}} \) is not equivalent to (Euclidean) \(C^2 \). For spaces involving time, the space \(C(t_1, t_2; X) \) consists
of all continuous functions \(u : [t_1, t_2] \to X \) with \(\max_{t_1 \leq t \leq t_2} \| u(\cdot, t) \|_X < \infty \). A similar definition holds for \(L^p(t_1, t_2; X) \).

Given an open box \(O = (a_1, b_1) \times (a_2, b_2) \times \cdots \times (a_N, b_N) \), we define the parabolic space \(O_{t_1, t_2} \) to be \(O \times [t_1, t_2] \). Its parabolic boundary is given by \(\partial_{\text{par}} O_{t_1, t_2} = (\overline{O} \times \{ t_1 \}) \cup (\partial O \times \{ t_1, t_2 \}) \).

Finally, recall that if \(G \) is a Carnot group with homogeneous dimension \(Q \), then \(G \times \mathbb{R} \) is again a Carnot group of homogeneous dimension \(Q + 1 \) where we have added an extra vector field \(\frac{\partial}{\partial t} \) to the first layer of the grading. This allows us to give meaning to notations such as \(W^{1,2}(O_{t_1, t_2}) \) and \(\mathcal{C}^{2}_{\text{sub}}(O_{t_1, t_2}) \) where we consider \(\nabla_0 u \) to be \((X_1 u, X_2 u, \ldots, X_n u, \frac{\partial u}{\partial t})\).

3. Parabolic Jets and Viscosity Solutions

3.1. Parabolic Jets

In this subsection, we recall the definitions of the parabolic jets, as given in [4], but included here for completeness. We define the parabolic superjet of \(u(p, t) \) at the point \((p_0, t_0) \in O_{t_1, t_2}\), denoted \(P^{2,+}u(p_0, t_0) \), by using triples \((a, \eta, X) \in \mathbb{R} \times V_1 \oplus V_2 \times S^{n_1} \) so that \((a, \eta, X) \in P^{2,+}u(p_0, t_0) \) if

\[
\begin{align*}
 u(p, t) \leq u(p_0, t_0) + a(t - t_0) + \langle \eta, \frac{p_0^{-1} \cdot p}{|p_0^{-1} \cdot p|} \rangle + \frac{1}{2} \langle X_{\frac{p_0^{-1} \cdot p}{|p_0^{-1} \cdot p|}}, \frac{p_0^{-1} \cdot p}{|p_0^{-1} \cdot p|} \rangle + o(|t - t_0| + |p_0^{-1} \cdot p|^2) \quad \text{as} \quad (p, t) \to (p_0, t_0).
\end{align*}
\]

We recall that \(S^k \) is the set of \(k \times k \) symmetric matrices and \(n_i = \dim V_i \). We define \(p_0^{-1} \cdot p \) as the first \(n_1 \) coordinates of \(p_0^{-1} \cdot p \) and \(\frac{p_0^{-1} \cdot p}{|p_0^{-1} \cdot p|} \) as the first \(n_1 + n_2 \) coordinates of \(p_0^{-1} \cdot p \). This definition is an extension of the superjet definition for subparabolic equations in the Heisenberg group [4]. We define the subjet \(P^{2,-}u(p_0, t_0) \) by

\[
 P^{2,-}u(p_0, t_0) = -P^{2,+}(-u)(p_0, t_0).
\]

We define the set theoretic closure of the superjet, denoted \(\overline{P}^{2,+}u(p_0, t_0) \), by requiring \((a, \eta, X) \in \overline{P}^{2,+}u(p_0, t_0) \) exactly when there is a sequence \((a_n, p_n, t_n, u(p_n, t_n), \eta_n, X_n) \to (a, p_0, t_0, u(p_0, t_0), \eta, X) \) with the triple \((a_n, \eta_n, X_n) \in \overline{P}^{2,+}u(p_n, t_n) \). A similar definition holds for the closure of the subjet.

We may also define jets using appropriate test functions. Given a function \(u : O_{t_1, t_2} \to \mathbb{R} \) we consider the set \(\mathcal{A}u(p_0, t_0) \) given by

\[
 \mathcal{A}u(p_0, t_0) = \{ \phi \in \mathcal{C}^{2}_{\text{sub}}(O_{t_1, t_2}) : u(p, t) - \phi(p, t) \leq u(p_0, t_0) - \phi(p_0, t_0) = 0 \ \forall (p, t) \in O_{t_1, t_2} \},
\]

consisting of all test functions that touch \(u \) from above at \((p_0, t_0) \). We define the set of all test functions that touch from below, denoted \(\mathcal{B}u(p_0, t_0) \), similarly.

The following lemma relates the test functions to jets. The proof is identical to Lemma 3.1 in [4], but uses the (smooth) gauge \(\mathcal{N}(p) \) instead of Euclidean distance.

Lemma 3.1.

\[
 P^{2,+}u(p_0, t_0) = \{ (\phi_1(p_0, t_0), \nabla \phi(p_0, t_0), (D^2 \phi(p_0, t_0))^* : \phi \in \mathcal{A}u(p_0, t_0) \}.
\]
3.2. Jet Twisting. We recall that the set \(V_1 = \text{span}\{X_1, X_2, \ldots, X_{n_1}\} \) and notationally, we will always denote \(n_1 \) by \(n \). The vectors \(X_i \) at the point \(p \in G \) can be written as

\[X_i(p) = \sum_{j=1}^{N} a_{ij}(p) \frac{\partial}{\partial x_j} \]

forming the \(n \times N \) matrix \(A \) with smooth entries \(A_{ij} = a_{ij}(p) \). By linear independence of the \(X_i \), \(A \) has rank \(n \). Similarly,

\[Y_i(p) = \sum_{j=1}^{N} b_{ij}(p) \frac{\partial}{\partial x_j} \]

forming the \(n_2 \times N \) matrix \(B \) with smooth entries \(B_{ij} = b_{ij} \). The matrix \(B \) has rank \(n_2 \).

The following lemma differs from [5, Corollary 3.2] only in that there is now a parabolic term. This term however, does not need to be twisted. The proof is then identical, as only the space terms need twisting.

Lemma 3.2. Let \((a, \eta, X) \in \overline{P}_{\text{eucl}}^{2,+} u(p, t) \). (Recall that \((\eta, X) \in \mathbb{R}^N \times S^N \).) Then

\[(a, A \cdot \eta \oplus B \cdot \eta, AXA^T + M) \in \overline{P}^{2,+} u(p, t) \]

Here the entries of the (symmetric) matrix \(M \) are given by

\[
M_{ij} = \begin{cases}
\sum_{k=1}^{N} \sum_{l=1}^{N} \left(a_{il}(p) \frac{\partial}{\partial x_l} a_{kj}(p) + a_{jl}(p) \frac{\partial a_{ik}}{\partial x_l}(p) \right) \eta_k & \text{if } i \neq j, \\
\sum_{k=1}^{N} \sum_{l=1}^{N} a_{il}(p) \frac{\partial a_{ik}}{\partial x_l}(p) \eta_k & \text{if } i = j.
\end{cases}
\]

3.3. Viscosity Solutions. We consider parabolic equations of the form

\[u_t + F(t, p, u, \nabla_1 u, (D^2 u)^*) = 0 \]

for continuous and proper \(F : [0, T] \times G \times \mathbb{R} \times g \times S^n \rightarrow \mathbb{R} \). We recall that \(S^n \) is the set of \(n \times n \) symmetric matrices (where \(\text{dim} \, V_1 = n \) and the derivaties \(\nabla_1 u \) and \((D^2 u)^* \) are taken in the space variable \(p \). We then use the jets to define subsolutions and supersolutions to Equation (3.1) in the usual way.

Definition 1. Let \((p_0, t_0) \in O_{t_1, t_2} \) be as above. The upper semicontinuous function \(u \) is a *parabolic viscosity subsolution* in \(O_{t_1, t_2} \) if for all \((p_0, t_0) \in O_{t_1, t_2} \) we have \((a, \eta, X) \in \overline{P}^{2,+} u(p_0, t_0) \) produces

\[a + F(t_0, p_0, u(p_0, t_0), \eta, X) \leq 0. \]

A lower semicontinuous function \(u \) is a *parabolic viscosity supersolution* in \(O_{t_1, t_2} \) if for all \((p_0, t_0) \in O_{t_1, t_2} \) we have \((b, \nu, Y) \in \overline{P}^{2,-} u(p_0, t_0) \) produces

\[b + F(t_0, p_0, u(p_0, t_0), \nu, Y) \geq 0. \]
A continuous function u is a \textit{parabolic viscosity solution} in \mathcal{O}_{t_1, t_2} if it is both a parabolic viscosity subsolution and parabolic viscosity supersolution.

\textbf{Remark 3.3.} \textit{In the special case when $F(t, p, u, \nabla_1 u, (D^2 u)^*) = F^h_\infty(\nabla_0 u, (D^2 u)^*) = -\Delta_\infty^h u$, for $h \geq 3$, we use the terms “parabolic viscosity h-infinite supersolution”, etc.}

In the case when $1 \leq h < 3$, the definition above is insufficient due to the singularity occurring when the horizontal gradient vanishes. Therefore, following \cite{14} and \cite{15}, we define viscosity solutions to Equation (2.3) when $1 \leq h < 3$ as follows:

\textbf{Definition 2.} Let \mathcal{O}_{t_1, t_2} be as above. A lower semicontinuous function $v : \mathcal{O}_{t_1, t_2} \to \mathbb{R}$ is a \textit{parabolic viscosity h-infinite subsolution} of $u_t - \Delta_\infty^h u = 0$ if whenever $(p_0, t_0) \in \mathcal{O}_{t_1, t_2}$ and $\phi \in \mathcal{B}_u(p_0, t_0)$, we have

$$
\begin{align*}
\phi_t(p_0, t_0) - \Delta_\infty^h \phi(p_0, t_0) &\geq 0 & \text{when } \nabla_0 \phi(p_0, t_0) \neq 0 \\
\phi_t(p_0, t_0) - \min_{\|\eta\|=1} \langle (D^2 \phi)^*(p_0, t_0) \eta, \eta \rangle &\geq 0 & \text{when } \nabla_0 \phi(p_0, t_0) = 0 \text{ and } h = 1 \\
\phi_t(p_0, t_0) &\geq 0 & \text{when } \nabla_0 \phi(p_0, t_0) = 0 \text{ and } 1 < h < 3
\end{align*}
$$

An upper semicontinuous function $u : \mathcal{O}_{t_1, t_2} \to \mathbb{R}$ is a \textit{parabolic viscosity h-infinite supersolution} of $u_t - \Delta_\infty^h u = 0$ if whenever $(p_0, t_0) \in \mathcal{O}_{t_1, t_2}$ and $\phi \in \mathcal{A}_u(p_0, t_0)$, we have

$$
\begin{align*}
\phi_t(p_0, t_0) - \Delta_\infty^h \phi(p_0, t_0) &\leq 0 & \text{when } \nabla_0 \phi(p_0, t_0) \neq 0 \\
\phi_t(p_0, t_0) - \max_{\|\eta\|=1} \langle (D^2 \phi)^*(p_0, t_0) \eta, \eta \rangle &\leq 0 & \text{when } \nabla_0 \phi(p_0, t_0) = 0 \text{ and } h = 1 \\
\phi_t(p_0, t_0) &\leq 0 & \text{when } \nabla_0 \phi(p_0, t_0) = 0 \text{ and } 1 < h < 3
\end{align*}
$$

A continuous function is a \textit{parabolic viscosity h-infinite solution} if it is both a parabolic viscosity h-infinite subsolution and parabolic viscosity h-infinite supersolution.

\textbf{Remark 3.4.} \textit{When $1 < h < 3$, we can actually consider the continuous operator}

$$
(3.2) F^h_\infty(\nabla_0 u, (D^2 u)^*) = \begin{cases} -\|\nabla_0 u\|^h - 3 \langle (D^2 u)^*(\nabla_0 u, \nabla_0 u) = -\Delta_\infty^h u & \nabla_0 u \neq 0 \\
0 & \nabla_0 u = 0 \end{cases}
$$

\textit{Definitions 1 and 2 would then agree. (cf. \cite{15})}

We also wish to define what \cite{12} refers to as parabolic viscosity solutions. We first need to consider the set

$$
\mathcal{A}^- u(p_0, t_0) = \{ \phi \in C^2(\mathcal{O}_{t_1, t_2}) : u(p, t) - \phi(p, t) \leq u(p_0, t_0) - \phi(p_0, t_0) = 0 \text{ for } p \neq p_0, t < t_0 \}
$$

consisting of all functions that touch from above only when $t < t_0$. Note that this set is larger than $\mathcal{A} u$ and corresponds physically to the past alone playing a role in determining the present. We define $\mathcal{B}^- u(p_0, t_0)$ similarly. We then have the following definition.

\textbf{Definition 3.} An upper semicontinuous function u on \mathcal{O}_{t_1, t_2} is a \textit{past parabolic viscosity subsolution} in \mathcal{O}_{t_1, t_2} if $\phi \in \mathcal{A}^- u(p_0, t_0)$ produces

$$
\phi_t(p_0, t_0) + F(t_0, p_0, u(p_0, t_0), \nabla_1 \phi(p_0, t_0), (D^2 \phi(p_0, t_0))^*) \leq 0.
$$
An lower semicontinuous function \(u \) on \(O_{t_1,t_2} \) is a past parabolic viscosity supersolution in \(O_{t_1,t_2} \) if \(\phi \in \mathcal{B}^{-}u(p_0,t_0) \) produces
\[
\phi_t(p_0,t_0) + F(t_0,p_0,u(p_0,t_0),\nabla_1 \phi(p_0,t_0), (D^2 \phi(p_0,t_0))^{*}) \geq 0.
\]
A continuous function is a past parabolic viscosity solution if it is both a past parabolic viscosity supersolution and subsolution.

We have the following proposition whose proof is obvious.

Proposition 3.5. Past parabolic viscosity sub(super-)solutions are parabolic viscosity sub(super-)solutions. In particular, past parabolic viscosity h-infinite sub(super-)solutions are parabolic viscosity h-infinite sub(sub(super-)solutions for \(h \geq 1 \).

3.4. The Carnot Parabolic Maximum Principle

In this subsection, we recall the Carnot Parabolic Maximum Principle and key corollaries, as proved in [6].

Lemma 3.6 (Carnot Parabolic Maximum Principle). Let \(u \) be a viscosity subsolution to Equation (3.1) and \(v \) be a viscosity supersolution to Equation (3.1) in the bounded parabolic set \(\Omega \times (0,T) \) where \(\Omega \) is a (bounded) domain and let \(\tau \) be a positive real parameter. Let \(\phi(p,q,t) = \varphi(p \cdot q^{-1},t) \) be a \(C^2 \) function in the space variables \(p \) and \(q \) and a \(C^1 \) function in \(t \). Suppose the local maximum
\[
M_\tau \equiv \max_{\Omega \times [0,T]} \{ u(p,t) - v(q,t) - \tau \phi(p,q,t) \}
\]
occurs at the interior point \((p_\tau, q_\tau, t_\tau) \) of the parabolic set \(\Omega \times (0,T) \). Define the \(n \times n \) matrix \(W \) by
\[
W_{ij} = X_i(p)X_j(q)\phi(p_\tau, q_\tau, t_\tau).
\]
Let the \(2n \times 2n \) matrix \(\mathcal{W} \) be given by
\[
\mathcal{W} = \begin{pmatrix} 0 & \frac{1}{2}(W - W^T) \\ \frac{1}{2}(W^T - W) & 0 \end{pmatrix}
\]
and let the matrix \(\mathcal{W} \in S^{2N} \) be given by
\[
\mathcal{W} = \begin{pmatrix} D_{pp}^2 \phi(p_\tau, q_\tau, t_\tau) & D_{pq}^2 \phi(p_\tau, q_\tau, t_\tau) \\ D_{qp}^2 \phi(p_\tau, q_\tau, t_\tau) & D_{qq}^2 \phi(p_\tau, q_\tau, t_\tau) \end{pmatrix}
\]
Suppose
\[
\lim_{\tau \to \infty} \tau \phi(p_\tau, q_\tau, t_\tau) = 0.
\]
Then for each \(\tau > 0 \), there exists real numbers \(a_1 \) and \(a_2 \), symmetric matrices \(X_\tau \) and \(Y_\tau \), and vector \(\Upsilon_\tau \in V_1 \oplus V_2 \), namely \(\Upsilon_\tau = \nabla_1 \varphi(p_\tau, q_\tau, t_\tau) \), so that the following hold:

A) \((a_1, \tau \Upsilon_\tau, X_\tau) \in \mathcal{P}^{2,+} v(p_\tau, t_\tau) \) and \((a_2, \tau \Upsilon_\tau, Y_\tau) \in \mathcal{P}^{2,-} v(q_\tau, t_\tau) \).
B) \(a_1 - a_2 = \phi_t(p_\tau, q_\tau, t_\tau) \).
Remark 4.2. The functions \(\psi \) and \(g \) may be replaced by one function \(g \in C(\overline{\Omega_T}) \). This combines conditions (E) and (BC) into one condition
\[
(4.2) \quad u(p, t) = g(p, t), \quad (p, t) \in \partial_{par} \Omega_T \quad (IBC)
\]
Theorem 4.3. Let \(\Omega \) be a bounded domain in \(G \) and let \(h \geq 1 \). If \(u \) is a parabolic viscosity subsolution and \(v \) a parabolic viscosity supersolution to Problem (4.1) then \(u \leq v \) on \(\Omega_T \equiv \Omega \times [0, T) \).

Proof. Our proof follows that of [8, Thm. 8.2] and so we discuss only the main parts. For \(\varepsilon > 0 \), we substitute \(\tilde{u} = u - \frac{\varepsilon}{T^2} \) for \(u \) and prove the theorem for

\[
(4.3) \quad u_t + F_h^\infty(\nabla_0 u, (D^2 u)^*) \leq -\frac{\varepsilon}{T^2} < 0
\]

\[
(4.4) \quad \lim_{t \uparrow T} u(p, t) = -\infty \text{ uniformly on } \overline{\Omega}
\]

and take limits to obtain the desired result. Assume the maximum occurs at \((p_0, t_0) \in \Omega \times (0, T)\) with

\[u(p_0, t_0) - v(p_0, t_0) = \delta > 0. \]

Case 1: \(h > 1 \).
Let \(H \geq h + 3 \) be an even number. As in Equation (3.8), we let

\[
\phi(p, q) = \frac{1}{H} \sum_{i=1}^{N} ((p \cdot q^{-1})_i)^H
\]

where \((p \cdot q^{-1})_i\) is the \(i\)-th component of the Carnot group multiplication group law. Let

\[
M_\tau = u(p_\tau, t_\tau) - v(q_\tau, t_\tau) - \tau \phi(p_\tau, q_\tau)
\]

with \((p_\tau, q_\tau, t_\tau)\) the maximum point in \(\overline{\Omega} \times \overline{\Omega} \times [0, T) \) of \(u(p, t) - v(q, t) - \tau \phi(p, q) \).

If \(t_\tau = 0 \), we have

\[
0 < \delta \leq M_\tau \leq \sup_{\Omega \times \Omega} (\psi(p) - \psi(q) - \tau \phi(p, q))
\]

leading to a contradiction for large \(\tau \). We therefore conclude \(t_\tau > 0 \) for large \(\tau \). Since \(u \leq v \) on \(\partial \Omega \times [0, T) \) by Equation (BC) of Problem (4.1), we conclude that for large \(\tau \), we have \((p_\tau, q_\tau, t_\tau)\) is an interior point. That is, \((p_\tau, q_\tau, t_\tau) \in \Omega \times \Omega \times (0, T)\). Using Corollary 3.7 Property A, we obtain

\[
(a, \tau \Upsilon(p_\tau, q_\tau), \mathcal{A}_\tau) \in \mathcal{P}_{2,+}^2 u(p_\tau, t_\tau)
\]

\[
(a, \tau \Upsilon(p_\tau, q_\tau), \mathcal{Y}_\tau) \in \mathcal{P}_{2,-}^2 v(q_\tau, t_\tau)
\]

satisfying the equations

\[
a + F_h^\infty(\tau \Upsilon(p_\tau, q_\tau), \mathcal{A}_\tau) \leq -\frac{\varepsilon}{T^2}
\]

\[
a + F_h^\infty(\tau \Upsilon(p_\tau, q_\tau), \mathcal{Y}_\tau) \geq 0.
\]
We then have

\[\begin{align*}
0 < \frac{\varepsilon}{T^2} \leq (\tau \Upsilon(p_r, q_r))^2 & \left((\mathcal{X}_r \Upsilon(p_r, q_r), \Upsilon(p_r, q_r)) - (\mathcal{Y}_r \Upsilon(p_r, q_r), \Upsilon(p_r, q_r)) \right) \\
\lesssim \tau^h((\varphi(p_r, q_r) - \frac{H^2 - 1}{H})^{2} & \varphi(p_r, q_r) - \frac{H^2 - 3}{H}) = (\tau \varphi(p_r, q_r))^h \varphi(p_r, q_r) \frac{H^2 - 3}{H}.
\end{align*}\]

Because \(H > h + 3\), we arrive at a contradiction as \(\tau \to \infty\).

If we have \(p_r = q_r\), we arrive at a contradiction since

\[F^h_\infty(\tau \Upsilon(p_r, q_r), \mathcal{X}_r) = F^h_\infty(\tau \Upsilon(p_r, q_r), \mathcal{Y}_r) = 0.\]

Case 2: \(h = 1\).

We follow the proof of Theorem 3.1 in [14]. We let

\[\varphi(p, q, t, s) = \frac{1}{4} \sum_{i=1}^{N} ((p \cdot q^{-1})_i)^4 + \frac{1}{2} (t - s)^2\]

and let \((p_r, q_r, t_r, s_r)\) be the maximum of

\[u(p, t) - v(q, s) - \tau \varphi(p, q, t, s)\]

Again, for large \(\tau\), this point is an interior point. If we have a sequence where \(p_r \neq q_r\), then Lemma 3.2 yields

\[\begin{align*}
(\tau(t_r - s_r), \tau \Upsilon(p_r, q_r), \mathcal{X}_r) & \in \mathcal{P}^2_{+} u(p_r, t_r) \\
(\tau(t_r - s_r), \tau \Upsilon(p_r, q_r), \mathcal{Y}_r) & \in \mathcal{P}^2_{-} v(q_r, s_r)
\end{align*}\]

satisfying the equations

\[\begin{align*}
\tau(t_r - s_r) + F^h_\infty(\tau \Upsilon(p_r, q_r), \mathcal{X}_r) & \leq -\frac{\varepsilon}{T^2} \\
\tau(t_r - s_r) + F^h_\infty(\tau \Upsilon(p_r, q_r), \mathcal{Y}_r) & \geq 0.
\end{align*}\]

As in the first case, we subtract to obtain

\[\begin{align*}
0 < \frac{\varepsilon}{T^2} \leq (\tau \Upsilon(p_r, q_r))^{-2} & \tau^2 \left((\mathcal{X}_r \Upsilon(p_r, q_r), \Upsilon(p_r, q_r)) - (\mathcal{Y}_r \Upsilon(p_r, q_r), \Upsilon(p_r, q_r)) \right) \\
\lesssim \varphi(p_r, q_r)^{-\frac{4}{3}} (\tau \varphi(p_r, q_r) \varphi(p_r, q_r)^{-\frac{4}{3}}) = \tau \varphi(p_r, q_r).
\end{align*}\]

We arrive at a contradiction as \(\tau \to \infty\).

If \(p_r = q_r\), then \(v(q, s) - \beta^\nu(q, s)\) has a local minimum at \((q_r, s_r)\) where

\[\beta^\nu(q, s) = -\frac{T}{4} \sum_{i=1}^{N} ((p_r \cdot q^{-1})_i)^4 - \frac{T}{2} (t_r - s)^2.\]

We then have

\[0 < \varepsilon(T - s_r)^{-2} \leq \beta^\nu_s(q_r, s_r) - \min_{\|\eta\| = 1} ((D^2 \beta^\nu)^*(q_r, s_r) \eta, \eta).\]
Similarly, \(u(p,t) - \beta u(p,t) \) has a local maximum at \((p_\tau, t_\tau)\) where
\[
\beta u(p,t) = \tau \sum_{i=1}^{N} ((p \cdot q^{-1})_i)^4 + \frac{\tau}{2} (t - s_\tau)^2.
\]

We then have
\[
0 \geq \beta_i u(p_\tau, t_\tau) - \max_{\|\eta\|=1} \langle (D^2 \beta u)(p_\tau, t_\tau) \eta, \eta \rangle
\]
and subtraction gives us
\[
0 < \varepsilon (T - s_\tau)^{-2} \leq \max_{\|\eta\|=1} \langle (D^2 \beta u)(p_\tau, t_\tau) \eta, \eta \rangle - \min_{\|\eta\|=1} \langle (D^2 \beta u)(q_\tau, s_\tau) \eta, \eta \rangle \\
+ \beta_s(q_\tau, s_\tau) - \beta_i u(p_\tau, t_\tau) \\
= \tau \max_{\|\eta\|=1} \langle (D^2 p \varphi(p \cdot q^{-1}))^*(p_\tau, t_\tau) \eta, \eta \rangle \\
- \tau \min_{\|\eta\|=1} \langle (D^2 q \varphi(p_\tau \cdot q^{-1}))^*(q_\tau, s_\tau) \eta, \eta \rangle \\
+ \tau (t_\tau - s_\tau) - \tau(t_\tau - s_\tau) = 0.
\]

Here, the last equality comes from the fact that \(p_\tau = q_\tau \) and the definition of \(\varphi(p \cdot q^{-1}) \).

The comparison principle has the following consequences concerning properties of solutions:

Corollary 4.4. Let \(h \geq 1 \). The past parabolic viscosity \(h \)-infinite solutions are exactly the parabolic viscosity \(h \)-infinite solutions.

Proof. By Proposition 3.5, past parabolic viscosity \(h \)-infinite sub(super-)solutions are parabolic viscosity \(h \)-infinite sub(super-)solutions. To prove the converse, we will follow the proof of the subsolution case found in [12], highlighting the main details. Assume that \(u \) is not a past parabolic viscosity \(h \)-infinite subsolution. Let \(\phi \in A^{-u}(p_0, t_0) \) have the property that
\[
\phi_t(p_0, t_0) - \Delta^h \phi(p_0, t_0) \geq \epsilon > 0
\]
for a small parameter \(\epsilon \). We may assume \(p_0 \) is the origin. Let \(r > 0 \) and define \(S_r = B_N(r) \times (t_0 - r, t_0) \) and let \(\partial S_r \) be its parabolic boundary. Then the function
\[
\bar{\phi}_r(p,t) = \phi(p,t) + (t_0 - t)^{8!} - r^{8!} + (N(p))^{8!}
\]
is a classical supersolution for sufficiently small \(r \). We then observe that \(u \leq \bar{\phi}_r \) on \(\partial S_r \), but \(u(0, t_0) > \bar{\phi}(0, t_0) \). Thus, the comparison principle, Theorem 4.3, does not hold. Thus, \(u \) is not a parabolic viscosity \(h \)-infinite subsolution. The supersolution case is identical and omitted. \(\square \)

The following corollary has a proof similar to [14, Lemma 3.2].
Corollary 4.5. Let $u : \Omega_T \to \mathbb{R}$ be upper semicontinuous. Let $\phi \in Au(p_0, t_0)$. If

\begin{equation}
\phi_t(p_0, t_0) - \frac{1}{2} \Delta \phi(p_0, t_0) \leq 0 \quad \text{when} \quad \nabla \phi(p_0, t_0) \neq 0
\end{equation}

\begin{equation}
\phi_t(p_0, t_0) \leq 0 \quad \text{when} \quad \nabla \phi(p_0, t_0) = 0, (D^2 \phi)^*(p_0, t_0) = 0
\end{equation}

then u is a viscosity supersolution to (E) of Problem 4.1.

Proof. The function u satisfies Equation 4.1 with boundary data ϕ.

Corollary 4.6. Let $h \geq 1$. Let $g_1, g_2 \in C(\Omega_T)$ and u_1, u_2 be parabolic viscosity solutions to Equation 4.1 with boundary data g_1 and g_2, respectively. Then

\[\sup_{(p, t) \in \Omega_T} |u_1(p, t) - u_2(p, t)| \leq \sup_{(p, t) \in \partial_{par} \Omega_T} |g_1(p, t) - g_2(p, t)|. \]

Proof. The function $u^+(p, t) = u_2(p, t) + \sup_{(p, t) \in \partial_{par} \Omega_T} |g_1(p, t) - g_2(p, t)|$ is a parabolic viscosity supersolution with boundary data g_1 and the function $u^-(p, t) = u_2(p, t) - \sup_{(p, t) \in \partial_{par} \Omega_T} |g_1(p, t) - g_2(p, t)|$ is a parabolic viscosity subsolution with boundary data g_1. Moreover, $u^- \leq u_1 \leq u^+$ on $\partial_{par} \Omega_T$ and by Theorem 4.3 $u^- \leq u_1 \leq u^+$ in Ω_T. \qed

Corollary 4.7. Let $h \geq 1$. Let $g \in C(\Omega_T)$. Then every parabolic viscosity solution to Problem 4.1 satisfies

\[\sup_{(p, t) \in \Omega_T} |u(p, t)| \leq \sup_{(p, t) \in \partial_{par} \Omega_T} |g(p, t)| \]

Proof. The proof is similar to the previous corollary, but using the functions $u^\pm(p, t) = \pm \sup_{(p, t) \in \partial_{par} \Omega_T} |g(p, t)|$ instead. \qed

5. Existence of Viscosity Solutions

5.1. Parabolic Viscosity Infinite Solutions: The Continuity Case. As above, we will focus on the equations of the form (3.1) for continuous and proper $F : [0, T] \times G \times \mathbb{R} \times g \times S_{\eta_1}^n \to \mathbb{R}$ that possess a comparison principle such as Theorem 4.3 or [6, Thm. 3.6].

We will use Perron’s method combined with the Carnot Parabolic Maximum Principle to yield the desired existence theorem. In particular, the following proofs are similar to those found in [10, Chapter 2] except that the Euclidean derivatives have been replaced with horizontal derivatives and the Euclidean norms have been replaced with the gauge norm.

Lemma 5.1. Let \mathcal{L} be a collection of parabolic viscosity supersolutions to (3.1) and let $u(p, t) = \inf \{v(p, t) : v \in \mathcal{L}\}$. If u is finite in a dense subset of $\Omega_T = \Omega \times [0, T)$ then u is a parabolic viscosity supersolution to (3.1).

Proof. First note that u is lower semicontinuous since every $v \in \mathcal{L}$ is. Let $(p_0, t_0) \in \Omega_T$ and $\phi \in Au(p_0, t_0)$. Now let

\[\psi(p, t) = \phi(p, t) - (d_N(p_0, p))^{2l} - |t - t_0|^2 \]
and notice that $\psi \in \mathcal{A}u(p_0, t_0)$. Then
\[
(u - \psi)(p, t) - (d_N(p_0, p))^{2n} - |t - t_0|^2 = (u - \phi)(p, t)
\geq (u - \phi)(p_0, t_0)
= (u - \psi)(p_0, t_0)
= 0
\]
yields
\[
(5.1) \quad (u - \psi)(p, t) \geq (d_N(p_0, p))^{2n} + |t - t_0|^2.
\]
Since u is lower semicontinuous, there exists a sequence $\{ (p_k, t_k) \}$ with $t_k < t_0$ converging to (p_0, t_0) as $k \to \infty$ such that
\[
(u - \psi)(p_k, t_k) \to (u - \psi)(p_0, t_0) = 0.
\]
Since $u(p, t) = \inf \{v(p, t) : v \in \mathcal{L}\}$, there exists a sequence $\{ v_k \} \subset \mathcal{L}$ such that $v_k(p_k, t_k) < u(p_k, t_k) + 1/k$ for $k = 1, 2, \ldots$. Since $v_k \geq u$, (5.1) gives us
\[
(5.2) \quad (v_k - \psi)(p, t) \geq (u - \psi)(p, t) \geq (d_N(p_0, p))^{2n} + |t - t_0|^2.
\]
Let $B \subset \Omega$ denote a compact neighborhood of (p_0, t_0). Since $v_k - \psi$ is lower semicontinuous, it attains a minimum in B at a point $(q_k, s_k) \in B$. Then by (5.1) and (5.2) we have
\[
(u - \psi)(p_k, t_k) + 1/k > (v_k - \psi)(p_k, t_k) \geq (v_k - \psi)(q_k, s_k) \geq (d_N(p_0, q_k))^{2n} + |s_k - t_0|^2 \geq 0
\]
for sufficiently large k such that $(p_k, t_k) \in B$. By the squeeze theorem, $(q_k, s_k) \to (p_0, t_0)$ as $k \to \infty$. Let $\eta = \psi - (d_N(q_k, p))^{2n} - |s_k - t|^2$. Then $\eta \in \mathcal{A}v_k(q_k, s_k)$ and we have that
\[
\eta(q_k, s_k) + F(s_k, q_k, v_k(q_k, s_k), \nabla_1 \psi(q_k, s_k), (D^2 \psi(q_k, s_k))^*) \geq 0.
\]
This implies
\[
\psi_t(q_k, s_k) + F(s_k, q_k, v_k(q_k, s_k), \nabla_1 \psi(q_k, s_k), (D^2 \psi(q_k, s_k))^*) \geq 0.
\]
Letting $k \to \infty$ yields
\[
\phi_t(p_0, t_0) + F(t_0, p_0, u(p_0, t_0)\nabla_1 \phi(p_0, t_0), (D^2 \phi(p_0, t_0))^*) \geq 0.
\]
and that u is a parabolic viscosity supersolution as desired. \square

A similar argument yields the following.

Lemma 5.2. Let \mathcal{L} be a collection of parabolic viscosity subsolutions to (3.1) and let $u(p, t) = \sup \{v(p, t) : v \in \mathcal{L}\}$. If u is finite in a dense subset of Ω_T then u is a parabolic viscosity subsolution to (3.1).

For the following lemmas, we need to recall the following definition.
Definition 4. The upper and lower semi-continuous envelopes of a function u are given by

$$u^*(p, t) := \limsup_{r \searrow 0} \{ u(q, s) : |q^{-1}p|_g + |s - t| \leq r \}$$

and

$$u_*(p, t) := \liminf_{r \searrow 0} \{ u(q, s) : |q^{-1}p|_g + |s - t| \leq r \},$$

respectively.

Lemma 5.3. Let h be a parabolic viscosity supersolution to (3.1) in Ω_T. Let S be the collection of all parabolic viscosity subsolutions v of (3.1) satisfying $v \leq h$. If for $\hat{v} \in S$, \hat{v}_* is not a parabolic viscosity supersolution of (3.1) then there is a function $w \in S$ and a point (p_0, t_0) such that $\hat{v}(p_0, t_0) < w(p_0, t_0)$.

Proof. Let $\hat{v} \in S$ such that \hat{v}_* is not a parabolic viscosity supersolution of (3.1). Then there exists $(\hat{p}, \hat{t}) \in \Omega_T$ and $\phi \in A\hat{v}_*(\hat{p}, \hat{t})$ such that

$$(\hat{v}_* - \phi)(p, t, \hat{v}_*(p, t), \nabla_1 \phi(p, t), (D^2 \phi(p, t))^*) > 0.$$ (5.3)

Let

$$\psi(p, t) = \phi(p, t) - (d_N(\hat{p}, p))^{2n} - |t - \hat{t}|^2$$

and notice that $\psi \in A\hat{v}_*(\hat{p}, \hat{t})$. As in Lemma 5.1.

$$(\hat{v}_* - \psi)(p, t) \geq (d_N(\hat{p}, p))^{2n} + |t - \hat{t}|^2.$$ (5.4)

Let B denote a compact neighborhood of (\hat{p}, \hat{t}) and let

$$B_{\epsilon} = B \cap \{(p, t) : (d_N(\hat{p}, p))^{2n} \leq k\epsilon \text{ and } |t - \hat{t}|^2 \leq k\epsilon \}.$$

Since $\hat{v} \in S$, we have that $\hat{v} \leq h$ and thus $\psi(\hat{p}, \hat{t}) = \hat{v}_*(\hat{p}, \hat{t}) \leq \hat{v}(\hat{p}, \hat{t}) \leq h(\hat{p}, \hat{t})$. However, if $\psi(\hat{p}, \hat{t}) = h(\hat{p}, \hat{t})$, then $\psi \in Ah(\hat{p}, \hat{t})$ and inequality (5.3) would be contradictory. Thus,

$$\psi(\hat{p}, \hat{t}) < h(\hat{p}, \hat{t}).$$

Since ψ is continuous and h is lower semicontinuous, there exists $\epsilon > 0$ such that

$$\psi(p, t) + 4\epsilon \leq h(p, t)$$

for $(p, t) \in B_{2\epsilon}$. Notice that $\psi + 4\epsilon$ is a subsolution of (3.1) on the interior of $B_{2\epsilon}$. Further, by (5.4)

$$(\hat{v}(p, t) \geq \hat{v}_*(p, t) \geq \psi(p, t) + 4\epsilon \text{ for } (p, t) \in B_{2\epsilon} \setminus B_{\epsilon}.$$ (5.5)

We now define ω by

$$\omega = \begin{cases} \max\{\psi(p, t) + 4\epsilon, \hat{v}(p, t)\} & (p, t) \in B_{\epsilon} \\ \hat{v}(p, t) & (p, t) \in \Omega_T \setminus B_{\epsilon} \end{cases}$$

But by (5.5)

$$\omega(p, t) = \max\{\psi(p, t) + 4\epsilon, \hat{v}(p, t)\} \text{ for } (p, t) \in B_{2\epsilon},$$
not just for \((p, t) \in B_\epsilon\). Then by Lemma 5.2, \(\omega\) is a subsolution in the interior of \(B_{2\epsilon}\) and thus a subsolution in \(\Omega_T\). Therefore, \(\omega \in \mathcal{S}\). Since

\[
0 = (\hat{v} - \psi)(\hat{p}, \hat{t}) = \lim_{r \to 0} \inf_{(p, t) \in B_r} \{(\hat{v} - \psi)(p, t) : (p, t) \in B_r\}
\]

there is a point \((p_0, t_0) \in B_\epsilon\) that satisfies

\[
\hat{v}(p_0, t_0) - \psi(p_0, t_0) < 4\epsilon
\]

which yields

\[
\hat{v}(p_0, t_0) < \psi(p_0, t_0) + 4\epsilon = \omega(p_0, t_0).
\]

Thus, we have constructed \(\omega \in \mathcal{S}\) that satisfies \(\hat{v}(p_0, t_0) < \omega(p_0, t_0)\).

We then have the following existence theorem concerning parabolic viscosity solutions.

Theorem 5.4. Let \(f\) be a parabolic viscosity subsolution to \((3.1)\) and \(g\) be a parabolic viscosity supersolution to \((3.1)\) satisfying \(f \leq g\) on \(\Omega_T\) and \(f_* = g^*\) on \(\partial_{\text{par}} O_{0,T}\). Then there is a parabolic viscosity solution \(u\) to \((3.1)\) satisfying \(u \in C(\Omega_T)\). Explicitly, there exists a unique parabolic viscosity infinite solution to Problem 4.1 when \(h > 1\).

Proof. Let

\[
S = \{\nu : \nu \text{ is a parabolic viscosity subsolution to } (3.1) \text{ in } \Omega_T \text{ with } \nu \leq g \text{ in } \Omega_T\}
\]

and

\[
u(p, t) = \sup \{\nu(p, t) : \nu \in S\}.
\]

Since \(f \leq g\), the set \(S\) is nonempty. Notice that \(f \leq u \leq g\) by construction. By Lemma 5.2, \(u\) is a parabolic viscosity subsolution. Suppose \(u_*\) is not a parabolic viscosity supersolution. Then by Lemma 5.3 there exists a function \(w \in S\) and a point \((p_0, t_0) \in \Omega_T\) such that \(u(p_0, t_0) < w(p_0, t_0)\). But this contradicts the definition of \(u\) at \((p_0, t_0)\). Thus \(u_*\) is a parabolic viscosity supersolution. By our assumptions on \(f\) and \(g\) on \(\partial_{\text{par}} O_{0,T}\),

\[
u = u_* \leq g^* = f_* \leq u_*
\]

on \(\partial_{\text{par}} O_{0,T}\). Then by the (assumed) comparison principle, \(u \leq u_*\) on \(\Omega_T\). Thus we have \(u\) is a parabolic viscosity solution such that \(u \in C(\Omega_T)\).

\[
\square
\]

5.2. **The \(h = 1\) case.** We begin by recalling the definition of upper and lower relaxed limit of a function. \([8][10]\).
Definition 5. For \(\varepsilon > 0 \), consider the function \(h_\varepsilon : O_T \subset G \to \mathbb{R} \). The upper relaxed limit \(\overline{h}(p, t) \) and the lower relaxed limit \(\underline{h}(p, t) \) are given by

\[
\overline{h}(p, t) = \lim_{\hat{p} \to p, \hat{t} \to t, \varepsilon \to 0} h_\varepsilon(\hat{p}, \hat{t}) = \lim_{\varepsilon \to 0} \sup_{0 < \delta < \varepsilon} \{ h_\delta(\hat{p}, \hat{t}) : O_T \cap B_\varepsilon(\hat{p}, \hat{t}) \},
\]

and

\[
\underline{h}(p, t) = \lim_{\hat{p} \to p, \hat{t} \to t, \varepsilon \to 0} h_\varepsilon(\hat{p}, \hat{t}) = \lim_{\varepsilon \to 0} \inf_{0 < \delta < \varepsilon} \{ h_\delta(\hat{p}, \hat{t}) : O_T \cap B_\varepsilon(\hat{p}, \hat{t}) \}.
\]

Taking the relaxed limits as \(h \to 1^+ \) of the operator \(F^h_\infty(\nabla_0 u, (D^2 u)^*) \) in Equation 3.2, we have via the continuity of the operator

\[
F^1_\infty(\nabla_0 u, (D^2 u)^*) = F^1_\infty(\nabla_0 u, (D^2 u)^*) = \left\{ \begin{array}{ll}
-\|\nabla_0 u\|^2((D^2 u)^* \nabla_0 u, \nabla_0 u) & \nabla_0 u \neq 0 \\
0 & \nabla_0 u = 0.
\end{array} \right.
\]

We give this operator the label \(F(\nabla_0 u, (D^2 u)^*) \). Consider the relaxed limits \(\overline{u}(p, t) \) and \(\underline{u}(p, t) \) of the sequence of unique (continuous) viscosity solutions to Problem 4.1 \(\{ u_h(p, t) \} \) as \(h \to 1^+ \). By [10, Thm 2.2.1], we have \(\overline{u}(p, t) \) is a viscosity subsolution and \(\underline{u}(p, t) \) is a viscosity supersolution to

\[
u_t + F(\nabla_0 u, (D^2 u)^*) = 0.
\]

We have the following comparison principle, whose proof is similar to Theorem 4.3 in the case to \(h = 1 \) and is omitted.

Lemma 5.5. Let \(\Omega \) be a bounded domain in \(G \). If \(u \) is a parabolic viscosity subsolution and \(v \) a parabolic viscosity supersolution to

\[
u_t + F(\nabla_0 u, (D^2 u)^*) = 0,
\]

then \(u \leq v \) on \(\Omega_T = \Omega \times [0, T) \).

Corollary 5.6. \(\overline{u}(p, t) = \underline{u}(p, t) \).

Proof. By construction, \(\underline{u}(p, t) \leq \overline{u}(p, t) \). By the Lemma, \(\underline{u}(p, t) \geq \overline{u}(p, t) \).

Using the corollary, we will call this common relaxed limit \(u^1(p, t) \). By [10, Chapter 2] and [8, Section 6], it is continuous and the sequence \(\{ u_h(p, t) \} \) converges locally uniformly to \(u^1(p, t) \) as \(h \to 1^+ \).

We then have the following theorem.

Theorem 5.7. There exists a unique parabolic viscosity infinite solution to Problem 4.1 when \(h = 1 \).

Proof. Let \(\{ u_h(p, t) \} \) and \(u^1(p, t) \) be as above. Let \(\{ h_j \} \) be a subsequence with \(h_j \to 1^+ \) where \(u_h(p, t) \to u^1(p, t) \) uniformly. We may assume \(h_j < 3 \).
Let \(\phi \in \mathcal{A}u_1(p_0, t_0) \). Using the uniform convergence, there is a sequence \(\{p_j, t_j\} \to (p_0, t_0) \) so that \(\phi \in \mathcal{A}u_{h_j}(p_j, t_j) \). If \(\nabla_0 \phi(p_0, t_0) \neq 0 \), we have \(\nabla_0 \phi(p_j, t_j) \neq 0 \) for sufficiently large \(j \). We then have
\[
\phi_t(p_j, t_j) - \Delta_{\infty}^{h_j} \phi(p_j, t_j) \leq 0
\]
and letting \(j \to \infty \) yields
\[
\phi_t(p_0, t_0) - \Delta_{\infty}^1 \phi(p_0, t_0) \leq 0.
\]
Suppose \(\nabla_0 \phi(p_0, t_0) = 0 \). By Corollary 6.2 we may assume \((D^2 \phi)^*(p_0, t_0) = 0 \). Suppose passing to a subsequence if needed, we have \(\nabla_0 \phi(p_j, t_j) \neq 0 \). Then
\[
\phi_t(p_j, t_j) - \max_{||\eta||=1} \langle (D^2 \phi)^*(p_j, t_j) \eta, \eta \rangle \leq \phi_t(p_j, t_j) - \Delta_{\infty}^{h_j} \phi(p_j, t_j) \leq 0.
\]
Letting \(j \to \infty \) yields
\[
\phi_t(p_0, t_0) = \phi_t(p_j, t_j) - \max_{||\eta||=1} \langle (D^2 \phi)^*(p_0, t_0) \eta, \eta \rangle \leq 0.
\]
In the case \(\nabla_0 \phi(p_j, t_j) = 0 \), since \(h_j < 3 \), we have \(\phi_t(p_j, t_j) \leq 0 \) and letting \(j \to \infty \) yields \(\phi_t(p_0, t_0) \leq 0 \). We conclude that \(u_1 \) is a parabolic viscosity \(h \)-infinite subsolution. Similarly, \(u_1 \) is a parabolic viscosity \(h \)-infinite supersolution. \(\square \)

6. The limit as \(t \to \infty \).

We now focus our attention on the asymptotic limits of the parabolic viscosity \(h \)-infinite solutions. We wish to show that for \(1 \leq h \), we have the (unique) viscosity solution to
\[
u_t - \Delta_{\infty}^h \nu = 0
\]
approaches the viscosity solution of \(-\Delta_{\infty}^h \nu = 0 \) as \(t \to \infty \). Our goal is the following theorem:

Theorem 6.1. Let \(h > 1 \) and \(u \in C(\overline{\Omega} \times [0, \infty)) \) be a viscosity solution of
\[
\begin{align*}
\left\{ \begin{array}{l}
u_t - \Delta_{\infty}^h \nu = 0 \quad \text{in } \Omega \times (0, \infty), \\
u(p, t) = g(p) \quad \text{on } \partial_{\text{par}}(\Omega \times (0, \infty))
\end{array} \right.
\end{align*}
\]
with \(g : \overline{\Omega} \to \mathbb{R} \) continuous and assuming that \(\partial \Omega \) satisfies the property of positive geometric density (see [12] pg. 2909). Then \(u(p, t) \to U(p) \) uniformly in \(\Omega \) as \(t \to \infty \) where \(U(p) \) is the unique viscosity solution of \(-\Delta_{\infty}^h U = 0 \) with the Dirichlet boundary condition \(\lim_{q \to p} U(q) = g(p) \) for all \(p \in \partial \Omega \).

We first must establish the uniqueness of viscosity solutions to the limit equation. Note that for future reference, we include the case \(h = 1 \).

Theorem 6.2. Let \(1 \leq h < \infty \) and let \(\Omega \) be a bounded domain. Let \(u \) be a viscosity subsolution to \(\Delta_{\infty}^h u = 0 \) and let \(v \) be a viscosity supersolution to \(-\Delta_{\infty}^h u = 0 \). Then,
\[
\sup_{p \in \Omega} (u(p) - v(p)) = \sup_{p \in \partial \Omega} (u(p) - v(p)).
\]
Proof. Let u be a viscosity subsolution to $-\Delta^h_\infty u = 0$. Then choose $\phi \in C^2_{\text{sub}}(\Omega)$ such that $0 = \phi(p_0) - u(p_0) < \phi(p) - u(p)$ for $p \in \Omega$, $p \neq p_0$. If $\|\nabla_0 \phi(p_0)\| = 0$, then $-\langle (D^2\phi)\ast(p_0)\nabla_0 \phi(p_0), \nabla_0 \phi(p_0) \rangle = 0 \leq 0$. If $\|\nabla_0 \phi(p_0)\| \neq 0$, we then have

$$-\Delta^h_\infty \phi(p_0) = -\|\nabla_0 \phi(p_0)\|^h \langle (D^2\phi)\ast(p_0)\nabla_0 \phi(p_0), \nabla_0 \phi(p_0) \rangle \leq 0.$$

Dividing, we have $-\langle (D^2\phi)\ast(p_0)\nabla_0 \phi(p_0), \nabla_0 \phi(p_0) \rangle \leq 0$. In either case, u is a viscosity subsolution to $-\Delta^h_\infty u = 0$. Similarly, v is a viscosity supersolution to $-\Delta^3_\infty u = 0$. The theorem follows from the corresponding result for $-\Delta^3_\infty u = 0$ in [5, 3, 16]. \hfill \square

We state some obvious corollaries:

Corollary 6.3. Let $1 \leq h < \infty$ and let $g : \partial \Omega \to \mathbb{R}$ be continuous. Then there exists exactly one solution to

$$\begin{cases} -\Delta^h_\infty u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial \Omega. \end{cases}$$

Corollary 6.4. Let $1 \leq h < \infty$ and let $g : \partial \Omega \to \mathbb{R}$ be continuous. The unique viscosity solution to

$$\begin{cases} -\Delta^h_\infty u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

is the unique viscosity solution to

$$\begin{cases} -\Delta^3_\infty u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial \Omega. \end{cases}$$

Our method of proof for Theorem 6.1 follows that of [12, Theorem 2], the core of which hinges on the construction of a parabolic test function from an elliptic one. In order to construct such a parabolic test function, we need to examine the homogeneity of Equation (6.1). A quick calculation shows that for a fixed $h > 1$, $k^{1-h}u(x, kt)$ is a C^2_{sub} solution to Equation (6.1) if $u(x, t)$ is a C^2_{sub} solution. A routine calculation then shows parabolic viscosity h-infinite solutions share this homogeneity. We use this property in the following lemma, the proof of which can be found in [9, pg. 170]. (Also, cf. [6, Lemma 6.2] and [12].)

Lemma 6.5. Let u be as in Theorem 6.1 and $h > 1$. Then for every $(x, t) \in \Omega \times (0, \infty)$ and for $0 < T < t$, we have

$$|u(x, t-T) - u(x, t)| \leq \frac{2 \|g\|_{\infty, \Omega}}{h-1} \left(1 - \frac{T}{t}\right) \frac{h}{t} T.$$

Proof. [Theorem 6.1] Fix $h > 1$. Let u be a viscosity solution of (6.1). The results of [9, Chapter III] imply that the family $\{u(\cdot, t) : t \in (0, \infty)\}$ is equicontinuous. Since it is uniformly bounded due to the boundedness of g, Arzela-Ascoli’s theorem yields that there exists a sequence $t_j \to \infty$ such that $u(\cdot, t_j)$ converge uniformly in Ω to a function $U \in C(\Omega)$ for which $U(p) = g(p)$ for all $p \in \partial \Omega$. Since it is known from [5, Lemma 5.5] that the Dirichlet problem for the subelliptic p-Laplace equation possesses a unique solution, it is enough to show that U is a viscosity p-subsolution to $-\Delta_p U = 0$ on Ω. With
that in mind, let \(p_0 \in \Omega \) and choose \(\phi \in C^2_{\text{sub}}(\Omega) \) such that \(0 = \phi(p_0) - U(p_0) < \phi(p) - U(p) \) for \(p \in \Omega, p \neq p_0 \). Using the uniform convergence, we can find a sequence \(p_j \to p_0 \) such that \(u(t, p_j) - \phi \) has a local maximum at \(p_j \). Now define

\[
\phi_j(p, t) = \phi(p) + C \left(\frac{t}{t_j} \right)^{\frac{h}{t_j}} - \phi(p) - C \left(\frac{t}{t_j} \right)^{\frac{h}{t_j}} \]

where \(C = 2||g||_{\infty, \Omega}/(h - 1) \). Note that \(\phi_j(p, t) \in C^2_{\text{sub}}(\Omega \times (0, \infty)) \). Then using Lemma 6.5,

\[
u(p_j, t_j) - \phi(p_j, t_j)
\geq u(p, t) - \phi(p) - C \left(\frac{t}{t_j} \right)^{\frac{h}{t_j}} - \phi(p) \]

for any \(p \in \Omega \) and \(0 < t < t_j \). Thus we have that \(\phi_j \) is an admissible test function at \((p_j, t_j) \) on \(\Omega \times [0, T] \). Therefore,

\[
(\phi_j)_t(p_j, t_j) - \Delta^h_{\infty} \phi_j(p_j, t_j) \leq 0.
\]

This yields

\[
-\Delta^h_{\infty} \phi(p_j) \leq \frac{C}{t_j}.
\]

The theorem follows by letting \(j \to \infty \).

Combining the results of the previous sections, we have the following theorem:

Theorem 6.6. The following diagram commutes:

\[
u(h, t) - \Delta^h_{\infty} u(h, t) = 0 \quad \xrightarrow{h \to 1} \quad u^1_{(t)} - \Delta^1_{\infty} u^1_{(t)} = 0
\]

\[
\begin{array}{ccc}
\downarrow & & \downarrow \\
\lim_{h \to 1^{+}} & & \lim_{t \to \infty}
\end{array}
\]

\[
-\Delta^h_{\infty} u^{h, \infty} = 0 \quad \xrightarrow{h \to 1^{+}} \quad -\Delta^1_{\infty} u^{1, \infty} = 0
\]

Proof. By Theorem 6.1, Corollary 6.4, and Theorem 5.7, the top, bottom and left limits exist, with the left limit being a uniform limit. By results of iterated limits (see, for example, [1]), we have the fourth limit exists, as does the full limit. In particular,

\[
\lim_{h \to 1^{+}} \lim_{t \to \infty} u^{h, t} = \lim_{h \to 1^{+}} \lim_{t \to \infty} u^{h, t} = \lim_{t \to \infty} \lim_{h \to 1^{+}} u^{h, t} = u^{1, \infty}
\]

\[
\Box
\]

References

[1] Bartle, Robert G. *The Elements of Real Analysis*; Second Edition, John Wiley & Sons: Hoboken, NJ, 1976.

[2] Bellaïche, André. The Tangent Space in Sub-Riemannian Geometry. In *Sub-Riemannian Geometry*; Bellaïche, André., Risler, Jean-Jacques., Eds.; Progress in Mathematics; Birkhäuser: Basel, Switzerland.1996; Vol. 144, 1–78.
[3] Bieske, Thomas. On Infinite Harmonic Functions on the Heisenberg Group. Comm. in PDE. 2002, 27 (3&4), 727–762.
[4] Bieske, Thomas. Comparison principle for parabolic equations in the Heisenberg Group. Electron. J. Diff. Equns. 2005, 2005 (95), 1–11.
[5] Bieske, Thomas. A Sub-Riemannian Maximum Principle and its application to the p-Laplacian in Carnot Groups. Ann. Acad. Sci. Fenn. 2012, 37, 119–134.
[6] Bieske, Thomas; Martin, Erin. The parabolic p-Laplace equation in Carnot groups. Ann. Acad. Sci. Fenn. 2014, 39, 605–623.
[7] Bourbaki, Nicolas, Lie Groups and Lie Algebras, Chapters 1–3, Elements of Mathematics, Springer-Verlag, 1989.
[8] Crandall, Michael.; Ishii, Hitoshi.; Lions, Pierre-Louis. User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations. Bull. of Amer. Math. Soc. 1992, 27 (1), 1–67.
[9] DiBenedetto, Emmanuele. Degenerate Parabolic Equations; Springer-Verlag: New York, 1993.
[10] Giga, Yoshikazu. Surface Evolution Equations: A Level Set Approach; Monographs in Mathematics (99); Birkhäuser Verlag: Basel, Switzerland, 2006.
[11] Haller, E. Comparison Principles for Fully Nonlinear Parabolic Equations and Regularity Theory for Weak Solutions of Parabolic Systems in Carnot Groups. Ph.D. Dissertation, University of Arkansas (2008).
[12] Juutinen, Petri. On the Definition of Viscosity Solutions for Parabolic Equations. Proc. Amer. Math. Soc. 2001, 129 (10), 2907–2911.
[13] Juutinen, Petri.; Lindqvist, Peter.; Manfredi, Juan. On the Equivalence of Viscosity Solutions and Weak Solutions for a Quasi-linear Equation. Siam. J. Math. Anal. 2001, 33 (3), 699–717.
[14] Juutinen, Petri.; Kawohl, Bernd. On the Evolution governed by the Infinite Laplacian. Math. Ann. 2006, 335 (4), 819–851.
[15] Portilheiro, Manuel; Vázquez, Juan Luis. Degenerate homogeneous parabolic equations associated with the infinity-Laplacian. Calc. Var. Partial Differential Equations 2013, 46, (3 & 4), 705–724.
[16] Wang, C.Y. The Aronsson equation for gradient minimizers of L^∞-functionals associated with vector fields satisfying Hörmander’s condition. Trans. Amer. Math. Soc. 2007, 359, 91–113.