Optimized Biocatalytic Synthesis of 2-Selenopyrimidine Nucleosides by Transglycosylation**

Katja F. Hellendahl*, Felix Kaspar*, Xinrui Zhou, Zhaoyi Yang, Zhen Huang, Peter Neubauer, and Anke Kurreck*
Section	Page
Author contributions	1
Data availability	1
Plots for pKₘ determination	2
Solubility of the 2-Se-bases	2
Specific activity of PyNP Y04 in phosphorolysis reactions	3
Specific activity of PyNP Y04 for the synthesis of 2b via direct glycosylation	4
Stability of 2	4
Overview of the equilibrium constants and prices of potential sugar donors	5
Purification of 2-Se-nucleosides by semi-preparative HPLC	5
HPLC and MS data of 1a	6
HPLC and MS data of 1b	7
HPLC and MS data of 2a	8
HPLC and MS data of 2b	9
References	10

Author Contributions (with definitions as recommended by Brand et al.[1])

Conceptualization, K.F.H., F.K., P.N. and A.K.; methodology, K.F.H., F.K. and A.K.; software, F.K.; validation, K.F.H.; formal analysis, K.F.H and F.K.; investigation, K.F.H and F.K.; resources, X.Z., Z.Y., Z.H., A.K and P.N.; writing – original draft, K.F.H and F.K; writing – review and editing, K.F.H., F.K., X.Z., Z.Y., Z.H., A.K. and P.N.; visualization, K.F.H, F.K. and A.K., supervision, A.K. and P.N.; project administration K.F.H, F.K., A.K. and P.N.; Funding acquisition, A.K. and P.N.

All authors have read and agree to the published version of the manuscript.

Data availability

All data depicted visually in the items in the main text as well as in the Supplementary Information is available from an externally hosted Supporting Information.[2]
Figure S1. Plots for the pKₐ determination of 1 (A) and 2 (B). The 2-Se-nucleobases were dissolved to a concentration of 100 µM in 50 mM MOPS buffer. The pH was adjusted with HCl and NaOH at RT. Samples were analysed by spectral unmixing² using the isosbestic points of 282 nm for 1 and 279 nm for 2. The pKₐ for 1 was 7.21 ± 0.03 and 7.49 ± 0.006 for 2.

Figure S2. Solubility of 20 mM (A) and 10 mM (B) of 1 and 2 in 50 mM MOPS pH 7 and 50 mM Glycine pH 9 at RT.
Figure S3. Specific activity of PyNP Y04 in phosphorolysis reactions (A) under different conditions (B). Standard phosphorolysis reactions were performed with 1 mM a, 50 mM K$_2$HPO$_4$ in 50 mM glycine/NaOH buffer pH 9 in a total volume of 0.5 mL at 80 °C. Final concentrations of PyNP Y04 of 150 to 750 ng mL$^{-1}$ were applied. To study the impact of substrates (b, c), temperature and reducing conditions on the enzyme activity. Reactions were performed at 60°C and pH 7, under N$_2$ atmosphere or with the addition of 5 mM DTT. Samples were analysed via spectral unmixing.\cite{ref11}
Figure S4. Specific activity of PyNP Y04 for the synthesis of 2b via direct glycosylation. Reactions were performed with 1 mM 2, 10 mM b’ and 70 µg mL⁻¹ PyNP Y04 in 50 mM glycine/NaOH pH 9 in a total volume of 250 µL at 60 °C. Samples were analysed via spectral unmixing.[2]

Figure S5. Stability of 5 mM 2 at 80 °C in 50 mM glycine/NaOH buffer pH 9 without additives (A), with 5 mM DTT (B), saturated with nitrogen (C) and the combination of 5 mM DTT and nitrogen (D). Samples were diluted to 1 mM in MeOH and analysed at 260 nm (black) and 307 nm (red) by HPLC. Retention time of 2 is 6 min and the degradation peak is at 12.44 min.
Table S1 Overview of equilibrium constants and prices of potential sugar donors.

Sugar donor	Equilibrium constant	Price [€ g⁻¹][b]
Uridine	0.18[a]	4.5
		(100 g 450 €)
Ribose	5-Ethynyluridine	11,000
	0.61[a]	(5 mg 55 €)
	7-Methylguanosine	1188
		(250 mg 297 €)
Deoxyribose	Thymidine	13.52
	0.15[a]	(25 g 338 €)
	5-Ethynyl-2'-deoxyuridine	1948
	0.35[a]	(500 mg 974 €)

[a] at 40 °C from [3–5]
[b] Prices were calculated from the biggest pack size available for Germany on the Sigma-Aldrich website. Last access 28.09.2020.

Table S2 Purification of 2-Se-nucleosides by semi-preparative HPLC.

Product	Total sample volume [mL]	HPLC gradient
1a	40	Initial: 3% ACN, 97% water
		10 min: 3% ACN, 97% water
		18 min: 40% ACN, 60% water
1b	30	18.5 min: 3% ACN, 97% water
		20 min: 3% ACN, 97% water
2a	40	Initial: 3% ACN, 97% water
		7 min: 3% ACN, 97% water
		18 min: 40% ACN, 60% water
2b	10	18.5 min: 3% ACN, 97% water
		20 min: 3% ACN, 97% water

A flow rate of 21.24 mL min⁻¹ was used. Acetonitrile (ACN) and deionized water were applied as solvents. Samples were analysed at 210 nm.
Figure S6. Product 1a was analysed by HPLC (A) and ESI-Orbitrap-MS (B: extracted ion chromatogram, C: MS spectrum).
Figure S7. Product 1b was analysed by HPLC (A) and ESI-Orbitrap-MS (B: extracted ion chromatogram, C: MS spectrum).
Figure S8. Product 2a was analysed by HPLC (A) and ESI-Orbitrap-MS (B: extracted ion chromatogram, C: MS spectrum).
Figure S9. Product 2b was analysed by HPLC (A) and ESI-Orbitrap-MS (B: extracted ion chromatogram, C: MS spectrum).
References

[1] A. Brand, L. Allen, M. Altman, M. Hlava, J. Scott, Learn. Publ. 2015, 28, 151–155.
[2] F. Kaspar, K. F. Hellendahl, Zenodo 2020, DOI 10.5281/zenodo.4302012.
[3] F. Kaspar, R. T. Giessmann, S. Westarp, K. F. Hellendahl, N. Krausch, I. Thiele, M. C. Walczak, P. Neubauer, A. Wagner, Chembiochem 2020, DOI 10.1002/cbic.202000204.
[4] F. Kaspar, R. T. Giessmann, P. Neubauer, A. Wagner, M. Gimpel, Adv. Synth. Catal. 2020, 362, 867–876.
[5] F. Kaspar, Zenodo 2020, DOI 10.5281/ZENODO.3723806.