Data Article

Pharmacokinetic characteristics of the triple inactivated plasma-derived Kedrion FIX concentrate: data from the KB037 clinical trial

Massimo Morfini a,∗, Chiara Guarnieri b, Roberta Macchia b, Manuela Scarpellini b, Prasad Mathew c,d

a Italian Association of Haemophilia Centres (AICE), Milan, Italy
b Kedrion Biopharma, Global Medical Affairs, Castelvecchio Pascoli, Lucca, Italy
c Presbyterian Hospital, Albuquerque, NM, USA
d Kedrion Biopharma, Global Medical Affairs, Fort Lee, NJ, USA

ABSTRACT

The pharmacokinetics data of phase I/II clinical trials (EudrACT Number: 2005-006186-14) of the new, triple inactivated plasma-derived Kedrion FIX concentrate was designed according to the recommendations of SSC-ISTH [1,2]: 11 post-infusion FIX/time points samples during the first 72 h. The PK data were also analysed by a modified, less dense, 9 FIX/time points, sample design. The outcomes of the safety and efficacy study and the pharmacokinetics’ results have been previously and partially described [3,4]. The single-dose PK at enrolment (PK I) and the end of the trial (PK II) were analyzed by WinNonlin 7.0 (Pharsight) and according to three different methods: Non-Compartment Analysis (NCA), One Compartment Method (OCM), and Two-Compartment Method (TCM).

The outcomes of PK parameters by TCM show that a higher number of FIX/time concentration points may not always give a better definition of the decay curve. On the other hand, the Terminal HL of NCA is deeply affected by the goodness of the last two-three points. The quite long Kedrion FIX HL may allow for a cost/effective tailoring of prophylaxis in haemophilia B patients.

DOI of original article: 10.1016/j.ejps.2020.105485
∗ Corresponding author.
E-mail address: drmassimomorfini@gmail.com (M. Morfini).

https://doi.org/10.1016/j.dib.2020.106164
2352-3409/© 2020 Elsevier Inc. This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Hematology
Specific subject area	Pharmacokinetics of a new plasma-derived FIX concentrate
Type of data	Tables, Graphs
How data were acquired	Pharmacokinetic data, FIX:C/times, at enrolment and after six months of
	treatment, (on-demand five patients, prophylaxis nine patients) have
	been collected at the end of a regulatory, clinical trial of new Kedrion
	FIX concentrate (See Supplementary data)
Instruments:	WinNonlin 7.0, Phoenix, Pharsight Corp, California, USA:
	Non-compartment Analysis (NCA) and Two Compartment Model (TCM or 2CP model)
Data format	Raw data Analyzed: FIX:C IU/dL, Lambda_2 1/hrs, HL_Lambda_2 hrs, Cmax/Dose
	IU/dL/IU/kg, AUC U^h/dL, AUMC U^h2/dL, V_d dl/kg, Cl dl/h/kg, MRT hrs,
	Alpha 1/hrs, Alpha_HL hrs, Beta_HL hrs, Vss dl/kg
Parameters for data collection	Haemophilia B severe or moderately severe patients underwent a single
	dose Kedrion FIX PK after 3-4 days wash out. FIX assay has been
	centralized in a single Laboratory
Description of data collection	The data were collected using a Case Report Form, according to the
	protocol approved, see Eudract-Code 2005-006186-14
Data source location	Institution: Kedrion Biopharma
	City/Town/Region: Barga (Lucca)
	Country: Italy
	Latitude and longitude (and GPS coordinates, if possible) for collected
	samples/data: Not available
	Primary data sources: Clinical Study Report KB037, 21/12/2001
Data accessibility	The source data, individual single-dose PK I and II, are hosted with the
	article as supplementary data.
Related research article	Castaman G., Borchiellini A., Santagostino E., Radossi P., Aksu S., Yilmaz
	M., Serban M., Uscatescu V., Truica C., Fasulo MR, Mancuso ME, Paladino
	E., Valpreda A., Guarnieri C., Macchia R., Scarpellini M., Mathew P., and
	Morfini M.
	Non-Compartment and Compartmental Pharmacokinetics, Efficacy, and
	Safety of Kedrion FIX concentrate Eur J Pharm Sci. 2020 Jul 23:105485.
	doi: 10.1016/j.ejps.2020.105485. Online ahead of print.PMID: 32712218

Value of the Data

- The new Kedrion FIX concentrate was submitted to three different viral inactivation steps to improve the safety of a pdFIX product; thus, it is essential to evaluate its safety, efficacy, and pharmacokinetics.
- Physicians can use this information to better serve the needs of patients with FIX deficiency. Haemophilia B patients can achieve therapeutic levels of FIX from a safer and cheaper FIX concentrate.
- The accurate PK data according to TCM may be useful to tailor the dosing frequency of prophylaxis, according to individual clearance of the concentrate (personalized prophylaxis).
- The improvement of PK parameters observed in haemophilia B patients who undergo prophylaxis might convince them to switch from on-demand to prophylaxis, thus decreasing joint arthropathy, improving quality of life for the patient, and thus improving productivity for society.
- Compared to the new and expensive extended half-life rFIX concentrates, Kedrion FIX may be cost/effective.
Fig. 1a. Plots of FIX:C decay curve by means of NCA, according to 11 sample points, at enrollment (PK I)
Fig. 1b. Plots of FIX:C decay curve by means of NCA, according to 9 sample points, at enrollment (PK I)
Fig. 2a. Plots of FIX:C decay curve by means of NCA, according to 11 sample points, at the end of the trial (PK II)
Fig. 2b. Plots of FIX:C decay curve by means of NCA, according to 9 sample points, at the end of the trial (PK II)
Fig. 3a. Plots of FIX:C decay curve by means of 2CP model, according to 11 sample points, at enrollment (PK I)
Fig. 3b. Plots of FIX:C decay curve by means of 2CP model, according to 9 sample points, at enrollment (PK I)
Fig. 4a. Plots of FIX:C decay curve by means of 2CP model, according to 11 sample points, at the end of trial (PK II)
Fig. 4b. Plots of FIX:C decay curve by means of 2CP model, according to 9 sample points, at the end of trial (PK II)

Table 1a
Parameters of PK I and PK II by Non-Compartmental Analysis; as far as the Terminal HL (HL Lambda_Z), two outliers (patients 03 01 and 14 05, bold and in Italic) are present in the outcomes of PK II. Significant improvements of AUC, AUMC, CI, and MRT were observed at PK II

N	ID	Lambda_z	HL_Lambda_z	Cmax_D	AUC	Vd	CI	AUMC	MRT
		1/Hours	Hours	IU/dl/	U^2/h/dl	dl/kg	h/kg	U^2/h^2/dl	Hours
1	01	0.0191	36.21	1.07	1625	1.2917	0.0247	39989	24.62
1	01	0.0170	40.83	1.19	1386	1.3464	0.0229	34091	24.60
1	02	0.0194	35.78	1.30	1716	1.1562	0.0224	42385	24.70
1	03	0.0312	22.20	1.54	2082	0.6727	0.0210	46807	22.48
1	04	0.0193	35.98	1.54	2296	0.8378	0.0161	59408	25.88
1	09	0.0249	27.79	1.57	2275	0.7168	0.0179	57751	25.38
1	12	0.0256	27.03	2.20	2925	0.5373	0.0138	71187	24.33
1	12	0.0134	51.69	1.03	1697	1.5247	0.0204	44400	26.16
1	14	0.0232	29.91	1.22	1758	1.0074	0.0233	42524	24.20
1	14	0.0124	55.73	1.01	1222	2.0985	0.0261	29644	24.27
1	14	0.0138	56.15	1.09	1466	1.9417	0.0268	33383	22.77
1	14	0.0141	48.13	1.40	1755	1.5035	0.0212	39157	22.32
1	14	0.0250	27.72	1.22	1801	0.8923	0.0223	45350	25.18
1	15	0.0239	28.98	0.76	706	2.7376	0.0655	16897	23.92
14 Mean	0.0202	37.08	1.29	1765	1.3046	0.0246	43070	24.34	
Median	0.0193	35.88	1.22	1735	1.2239	0.0224	42459	24.47	
1	1 S.D.	0.0057	10.77	0.35	531	0.6209	0.0123	13472	1.18
Min	0.0124	22.20	0.76	706	0.5373	0.0138	16897	22.22	
Max	0.0312	53.73	2.20	2925	2.7376	0.0655	71187	26.16	

End of the study

N	ID	Lambda_z	HL_Lambda_z	Cmax_D	AUC	Vd	CI	AUMC	MRT
		1/Hours	Hours	IU/dl/	U^2/h/dl	dl/kg	h/kg	U^2/h^2/dl	Hours
1	01	0.0236	29.42	1.19	1826	0.9800	0.0231	45565	24.95
1	01	0.0134	51.69	1.14	1586	1.3284	0.0178	42590	26.86
1	02	0.0162	42.70	1.26	1742	1.3063	0.0212	43846	24.96
1	03	0.1655	4.19	1.78	2552	0.1182	0.0196	55461	21.73
1	04	0.0210	32.98	1.44	2098	0.8745	0.0184	52282	24.90
1	09	0.0221	31.41	1.70	2922	0.6341	0.0140	76497	26.18
1	12	0.0184	37.63	1.86	3092	0.6961	0.0128	79465	25.70
1	12	0.0211	32.79	0.91	1299	1.4636	0.0309	33729	25.96
1	14	0.0359	19.31	1.28	2055	0.6014	0.0216	51279	24.96
1	14	0.0181	38.38	1.32	1716	1.1614	0.0210	41122	23.96
1	14	0.0259	26.72	1.24	1958	0.8362	0.0217	47885	24.46
1	14	0.0252	27.56	1.34	1979	0.7963	0.0200	49563	25.04
1	14	0.0022	321.84	1.28	2097	1.9595	0.0042	61379	29.27
14 Mean	0.0160	43.19	0.55	950	2.5193	0.0404	25992	27.35	
Median	0.0303	52.84	1.31	1991	1.0911	0.0205	50446	25.45	
1	S.D.	0.0211	32.89	1.28	1968	0.9273	0.0205	48724	25.00
Min	0.0022	4.19	0.55	950	0.1182	0.0042	25992	21.73	
Max	0.1655	321.84	1.86	3092	2.5193	0.0404	79465	29.27	

Wilcoxon signed-rank test

| Z | P | 0.360 | 0.450 | 0.660 | 0.013 | 0.097 | 0.036 | 0.013 | 0.026 |

1. Data Description

The raw data of Kedrion FIX concentrate PK performed in 14 haemophilia B patients [on demand (n = 5) or continuous prophylaxis (n = 9)], at enrolment in the clinical trial and after six months of treatment, are reported in the supplementary data file (Kedrion FIX PK I data.xls)
Table 1b
– Parameters of PK I and PK II by Non-Compartmental Analysis according to 9 post-infusion FIX/time points; a significant improvement of AUC, AUMC, Cl, and MRT was observed at PK II

Enrollment	Lambda_z	H.L_Lambda_z	Cmax_D	AUC	Vd	Cl	AUMC	MRT	
Hours	1/Hours	Hours	IU/dL/IU/kg	h/dL	h/dL/kg	h/dL/kg	h^2/dL	Hours	
1	01 01	0.0248	27.90	1.07	1632	1.0432	0.0259	39710	24.33
2	01 02	0.0230	30.09	1.19	1409	1.0515	0.0242	34568	24.53
3	02 01	0.0191	36.31	1.30	1721	1.1668	0.0223	42265	24.56
4	03 01	0.0302	22.93	1.54	2100	0.7043	0.0213	46185	21.99
5	04 01	0.0191	36.31	1.54	2312	0.8392	0.0160	59599	25.78
6	09 02	0.0229	30.28	1.57	2183	0.8934	0.0204	50864	23.30
7	12 01	0.0256	27.06	2.20	2876	0.5456	0.0140	68524	23.83
8	12 02	0.0204	33.91	1.03	1708	1.1213	0.0229	44040	25.79
9	14 01	0.0231	29.98	1.22	1768	1.0044	0.0232	42406	23.98
10	14 02	0.0188	36.94	1.01	1195	1.6462	0.0309	28097	23.51
11	14 03	0.0297	23.31	1.09	1446	0.8020	0.0316	32293	22.33
12	14 04	0.0305	22.69	1.40	1725	0.8519	0.0260	36470	21.14
13	14 05	0.0237	29.20	1.22	1724	1.0222	0.0243	40791	23.67
14	15 01	0.0252	27.55	0.76	716	2.5930	0.0652	17045	23.79
15	Mean	0.0240	29.60	1.29	1751	1.1104	0.0263	41633	23.75

Non-Compartmental Analysis
(9 post-infusion points)

End of the study

| Wilcoxon signed-rank test | p | 0.129 | 0.158 | 0.659 | 0.019 | 0.864 | 0.022 | 0.013 | 0.028 |

Data.xls).
Figs. 1a/1b and 2a/2b show the plots according to the two, 11 or 9, Fix/time sample point designs of PK I and PK II, using NCA. The different Terminal HlLs are shown as the result of the selection of the last best fitting points. Tables 1a and 1b report in detail the parameters of PK I and PK II achieved by NCA, according to a 11 or 9 sample points design. Figs. 3a/3b and 4a/4b show the data obtained using TCM again according to
Table 2a
Outcomes of TCM at PK I and II, according to a post-infusion FIX/time 11 points. Two patients at PK I and five at PK II showed extremely high and unbelievable parameters due to the very flat disposition of the last part of the decay curve

Two Compartment Model (11 points)

At enrolment	End of the study																	
N	**ID**	**Alpha_HL**	**AUC**	**Beta_HL**	**CL**	**K10_HL**	**MRT**	**Vss**	**N**	**ID**	**Alpha_HL**	**AUC**	**Beta_HL**	**CL**	**K10_HL**	**MRT**	**Vss**	
1	01 01	1.58	1892	26.77	0.0271	23.42	38.29	1.0379	1	00 01	0.84	2148	27.25	0.0239	23.73	39.13	0.9342	
1	01 02	7.89	1857	43.27	0.0231	25.30	54.35	1.2544	1	00 02	5.64	2205	42.15	0.0194	31.19	57.95	1.1262	
1	02 01	6.09	2191	36.64	0.0228	23.98	48.22	1.1004	1	00 03	3.33	2127	30.97	0.0235	22.82	42.96	1.0097	
1	03 01	16.90	>5000	>200	0.0090	50.29	>200	4.2810	1	00 01	0.71	2398	25.79	0.0203	23.07	37.09	0.7544	
1	04 01	4.99	2977	35.86	0.0164	27.34	49.49	0.8110	1	00 02	10.76	>10000	>200	0.0001	>200	>200	3.2759	
1	09 02	10.76	>10000	>200	0.0001	>200	>200	>200	3.2759	1	12 01	2.24	3432	27.65	0.0139	22.18	39.09	0.5447
1	12 02	3.53	2153	33.53	0.0239	28.07	47.39	1.1326	1	12 02	12.13	2362	62.09	0.0212	23.36	60.55	1.2821	
1	14 01	6.88	2123	31.46	0.0235	23.91	42.25	0.9951	1	14 01	8.13	1830	60.02	0.0260	26.44	71.70	1.8661	
1	14 02	4.45	1629	24.44	0.0327	19.67	33.71	1.1035	1	14 04	12.13	2362	62.09	0.0212	23.36	60.55	1.2821	
1	14 05	12.25	2843	70.90	0.0176	32.64	81.56	1.4346	1	14 05	12.25	2843	70.90	0.0176	32.64	81.56	1.4346	
1	15 01	0.36	797	24.64	0.0697	10.56	34.86	2.4283	13	*	Outliers							

ID = 03 01: An error occurred during curve stripping. Initial estimates cannot be determined for this model.

the two different, 11 or 9, sample point designs of PK I and PK II. Alpha and Beta HL of each PK are also added to each plot. Tables 2a and 2b report in detail the parameters of PK I and PK II achieved by TCM, according to a 11 or 9 sample points design. The source data, the assays of FIX:C (IU/dL), the bodyweight of the patient, the infused dose of Kedron FIX (IU/kg), and the post-infusion sample times are reported in the files provided as Supplementary data. The data are reported according to the format required by WinNonlin.

2. Experimental Design, Materials and Methods

Fourteen severe or moderately severe haemophilia B patients from eight Comprehensive Haemophilia Centres (4 in Italy, 3 in Romania, and 1 in Turkey) were enrolled in a new clinical trial plasma-derived FIX concentrate [KB037 trial]. The poor-platelet citrated plasmas have been collected before and after 0.25, 0.5, 1, 3, 9, 24, 32, 48, 50, and 72 of the test dose of Kedron FIX (11 points), according to a dense sample times design (SSE_ISTH). Fresh frozen plas-
mas have been frozen, stored at -40°C and shipped in dry ice to the Reference Laboratory of the Haemophilia Centre of Florence, within 30 days from the end of PK I or PKII, respectively. The FIX:C assay has been done by the One Stage clotting assay. For more details, see the previously published report [1]. The PK data have been analysed by Non-Compartment Analysis (NCA), One and Two Compartment Method (OCM and TCM). We consider only NCA and TCM results, being
the diagnostic tests for best fitting in favour of TCM [2]. A simplified sample design was also used to analyze the PK data, only 9 points, eliminating the 30 and 50 h FIX/time values.

Ethics Statement

The clinical trial was approved by Central Authorities of each country and local Ethics Committees. All haemophilia B patients signed a detailed and specific form for informed consent.

Declaration of Competing Interest

MM received a fee from Kedrion Biopharma for Compartmental analysis of the PKs and acted as a paid consultant to Kedrion SpA. CG, MS, RM, and PM are employees of Kedrion Spa.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106164.

References

[1] M Morfini, M Lee, A Messori, The design and analysis of half-life and recovery studies for factor VIII and factor IX. Factor VIII/Factor IX scientific and standardization committee of the international society for thrombosis and haemostasis. Thromb. Haemost. 66 (1991) 384–386.
[2] M. Lee, M. Morfini, S. Schulman, J. Ingerslev, and the Factor VIII/Factor IX Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis, https://c.ymcdn.com/sites/www.isth.org/resource/group/d4a6f49a-f4ec-450f-9e0f-7be9f0c2ab2e/officialcommunications/fviiipharmaco.pdf?hhSearchTerms=%22morfini%22 (Accessed on July 29, 2020).
[3] G. Castaman, A Borchiellini, E. Santagostino, et al., Pharmacokinetics of a new human plasma-derived double virus inactivated and nanofiltered factor IX concentrate in previously treated severe or moderately severe haemophilia B patients, Haemophilia 25 (6) (2019 Nov) e364–e367 Epub 2019 Sep 11, doi:10.1111/hae.13828.
[4] G. Castaman, A. Borchiellini, E. Santagostino, et al., Non-Compartment and Compartmental Pharmacokinetics, Efficacy, and Safety of Kedrion FIX concentrate, Eur. J. Pharm. Sci. (2020 Jul 23) 105485 Online ahead of print. PMID:32712218, doi:10.1016/j.ejps.2020.105485.