Residual stress determination using full-field optical methods

Drew V Nelson
Mechanical Engineering Department, Stanford University, Stanford, CA, 94305, United States of America
E-mail: dnelson@stanford.edu

Keywords: holographic, speckle, interferometric, Moire, digital image correlation, full-field optical, residual stress

Abstract
Residual stresses are created in engineering components during fabrication and processing. Such stresses can strongly influence structural behavior. They are generally found by experimental means. A widely used way of finding residual stresses is removal of a small volume of material containing stresses and measurement of the strains that develop in surrounding material as a result of stresses being released. The strains can then be used to compute residual stresses. Drilling a small shallow hole is the most common way of implementing this approach, with strains measured by nearby strain gages adhered to the surface. This paper provides an overview of how full-field optical methods can be used instead of strain gages with hole drilling, overcoming limitations associated with gages and expanding capabilities of the hole drilling approach. The methods considered are holographic and electronic speckle pattern interferometry, Moire interferometry and digital image correlation. Advantages of using optical methods to find residual stresses are shown. A variety of applications is presented, ranging from determination of stresses in underground piping to stresses in microscale specimens. In addition, optical approaches employing different ways of material removal for stress release are reviewed, as well as several non-destructive optical methods for determining residual stresses.

1. Introduction
Materials often experience stresses from externally applied loadings, but stresses can also exist in the absence of such loadings, known as residual stresses. They are generated during the forming, processing, and joining of engineering materials, for example by machining, surface treatments (e.g. shot peening), welding, and phase transformations. They are even found in biological structures such as arteries [1]. Residual stresses can be large, sometimes approaching yield strength in metallic materials. They exist over a broad range of sizes, from civil engineering structures to nano structures.

Knowledge of the magnitude and distribution of residual stresses is important to assess their effect on resistance to fatigue cracking, dimensional stability, and other important aspects of structural behavior. The prediction of residual stresses by computational modeling can be difficult owing to the complexity of processes that create those stresses, and experimental determinations of residual stresses are generally needed.

Information on how residual stresses vary with depth below a surface is frequently of interest. X-ray diffraction [2] combined with layer removal and hole drilling [3, 4] are two widely used methods for obtaining that information. In the latter method, a small (often ≈1.6 mm dia.) square bottomed hole is drilled into the surface to a shallow depth (often about half of the hole dia.). Strains develop near the hole as it releases residual stresses in the material removed by the hole. Residual stresses are then obtained from measured strains by a well-established computational methodology [3]. The hole drilling method is typically carried out by adhering a special type of strain gage rosette to the surface, depicted in figure 1, along with a guide to center the drilling of a hole in the rosette. To find how residual stresses vary with depth, a hole can be drilled in increments of depth and strains recorded as function of depth. Residual stresses vs. depth can then be computed from the strains [3, 4].

Use of strain gage rosettes restricts the hole drilling method to regions large enough to accommodate the setup shown in figure 1, provides strain data from just a few gage locations per rosette, and requires...
considerable time for installation. The primary purpose of this paper is to show how various full-field optical methods [5, 6] can overcome those drawbacks and expand potential applications of hole drilling as a valuable method for determining residual stresses. Another purpose is to provide an overview of optical methods that use different forms of stress release by material removal, as well as a number of non-destructive optical methods for finding residual stresses.

2. Holographic interferometry and hole drilling

2.1. Holographic interferometry

Holographic interferometry [7–11] enables the measurement of surface displacements on the order of tens of nanometers to tens of microns. Referring to figure 2(a), light from a laser illuminates the surface of a test object and is scattered towards a location where a hologram will be generated. Reference light also illuminates the hologram location. The reference and scattered object light interfere at the hologram location. The resulting intensity distribution can be recorded by analog means using a photographic plate, or more rapidly and conveniently using thermoplastic [10] or photorefractive materials [11].

After a hologram is recorded, suppose that it is illuminated with reference light. A reconstructed image of the test object can be seen through the hologram, even if the object is removed. Suppose that the object stays in place and is also re-illuminated. If the surface of the object deforms microscopically, the reconstructed light and light scattered from the object combine to produce optical interference fringes appearing on the surface of the object as viewed through the hologram.

Examples of fringes are shown in figures 2(b) and (c). Each fringe represents a phase difference $\Delta \varphi = 2\pi$ relative to an adjacent fringe. Phase difference data can be used to find surface displacements. As an illustration, figure 2(b) shows fringes resulting from in-plane displacements (i.e. in the plane of the figure). In that case, $\Delta \varphi = (2\pi/\lambda) d_{in}$, where λ is the wavelength of laser light, d_{in} is in-plane, fringe-to-fringe displacement, and angle $\alpha = 0^\circ$ in figure 2(a). Fringes from out-of-plane displacements (i.e. normal to the plane of the figure) with $\alpha = 90^\circ$ are shown in figure 2(c) and satisfy $\Delta \varphi = (4\pi/\lambda) d_{out}$ with $\Delta \varphi = 2\pi$. The out-of-plane, fringe-to-fringe displacement d_{out} is half of that for the in-plane case. For most test objects with displacements varying over their surface, fringes with different curved contours and unequal spacing will be observed, rather than parallel lines and concentric circles in figures 2(b) and (c).

Digital holographic interferometry [7, 12–14] provides an alternative to use of analog holograms. It can utilize a setup similar to that in figure 2(a). A holographic interference pattern prior to loading can be recorded by a charge coupled device (CCD) (or complementary-metal-oxide semiconductor (CMOS)) camera and stored digitally. After surface displacements occur, another digital hologram is recorded and
Figure 2. (a) Schematic of holographic interferometry set-up, (b) interference fringes from in-plane displacements of a thin plate, stretched uniformly and (c) fringes from out-of-plane displacements of a disc supported around its circumference and loaded by a force normal to its surface and slightly off-center.

stored. Numerical reconstruction (e.g. by a Fresnel transform) of ‘before’ and ‘after’ holograms enables retrieval of phase information, which can then be used to find surface displacements.

2.2. Hole drilling and holographic interferometry

With analog holography used in conjunction with hole drilling, the displacements resulting from release of residual stresses generate interference fringe patterns such as those in figure 3. The displacements are illustrated schematically by vectors d in figure 4, with in-plane components parallel to the surface and out-of-plane components normal to the surface. The unsymmetrical patterns (from right to left) in figure 3 stem from the illumination arriving from one side of a hole. Phase shifts associated with the displacement vectors are sensitive to the projection of the vectors along the direction bisecting the illumination and viewing directions in figure 4. The projections differ from one side of the hole to the other. In addition to varying radially as in figure 4, displacements are also a function of circumferential position around a hole.

When a hole is drilled to a given depth over which residual stresses are uniform (or nearly so), the resulting displacements are given by [15]:

$$
\begin{bmatrix}
 u_r \\
 u_\theta \\
 u_z
\end{bmatrix} =
\begin{bmatrix}
 A + B\cos 2\theta & A - B\cos 2\theta & 2B\sin 2\theta \\
 C\sin 2\theta & -C\sin 2\theta & -2C\cos 2\theta \\
 F + G\cos 2\theta & F - G\cos 2\theta & 2G\sin 2\theta
\end{bmatrix}
\begin{bmatrix}
 \sigma_x \\
 \sigma_\theta \\
 \tau_{xy}
\end{bmatrix}
$$

(1)

where radial (r) and circumferential directions (θ) are shown in figure 3(a), u_r, u_θ, u_z are in-plane displacements in those directions, u_z is out-of-plane displacement, σ_x, σ_θ and τ_{xy} are residual stress components, $A = r_o(1 + \nu)a/2E$, $B = r_o b/2E$, $C = r_o c/2E$, $F = r_o f/2E$, $G = 4\nu r_o g/2E$, r_o is hole radius, E is modulus of elasticity, ν is Poisson’s ratio, and a, b, c, f and g are nondimensional coefficients [15] expressed in terms of (r/r_o) and hole depth normalized by diameter (h/D). Full-field images can provide displacement data for many different combinations of r and θ for use in equation (1).

Phase differences represented by a fringe pattern from hole drilling can be related to the displacements by various approaches [e.g.,16–18]. If a fringe pattern observed in real time is perturbed by temporarily reducing the pathlength of reference light by a fraction of the wavelength of light being used, the resulting phase change causes fringes to ‘flow’ in directions that aid determination of the stresses by a simple fringe counting method [16]. The relation between displacements and stresses in equation (1) also applies if digital holographic interferometry or other full-field optical methods are used. To determine the profile of residual stresses vs. depth below a surface, a hole can be drilled incrementally, and fringe patterns recorded in real time after each increment of depth, using the same hologram. Stresses vs. depth can be found from the fringe patterns with a computational methodology [19] that relates phase shifts to displacements to stresses.
2.3. Examples of hole drilling and holographic interferometry

Holographic-hole drilling has been applied to determine residual stresses created by the widely used manufacturing process of shot peening [20]. A compact holographic system using thermoplastic recording has been used to find residual stresses in welded structures [21, 22]. Residual stresses in welded aluminum plates and tubular specimens have also been investigated [23–26]. More recently, a portable digital holographic camera has been developed and applied to determine residual stresses in a pressure vessel, aluminum cable and welds [27].
The author and a colleague (A. Makino) have used holographic-hole drilling to explore biaxial residual stresses vs. depth below the surface of a rolled, undercut fillet of a production crankshaft seen in figure 5(a). Rolling deforms surface layers elastic-plastically to produce beneficial compressive residual stresses upon unloading. A 0.8 mm diameter hole was drilled incrementally into fillets as in figure 5(b), producing a sequence of fringe patterns like those in figure 5(c). The effect of fillet curvature on fringe patterns was taken into account, and a finite element model in figure 5(d) provided a relation between fringes, surface displacements and residual stresses specific to the geometry of a fillet.

As another example, residual stresses adjacent to a weld bead were estimated by the author using the upper half of the fringe pattern in figure 6(a) and in the weld bead using the full pattern seen in figure 6(b). Use of a full-field optical method made estimates possible even with the surface undulations. (The effect of plastic deformation created by drilling into high residual stresses was taken into account [28, 29]).

As a further example, digital holographic interferometry has been applied in recent years to find residual stresses in a ceramic coating [30] by releasing stresses with holes, shallow slots and other geometries formed by pulsed laser ablation. Introducing holes by laser machining offers the prospect of access to regions that would be difficult to drill by conventional means. (Ablation would be performed in a manner to avoid generating significant residual stresses.)

3. Electronic speckle pattern interferometry (ESPI) and hole drilling

3.1. ESPI

ESPI [31–34] provides a useful alternative to holographic interferometry. The term speckle refers to a grainy image with small light and dark spots observed when laser light is scattered from a rough surface. Also referred to as digital speckle pattern interferometry, ESPI can be set up with optical components like those in figure 2(a), but with a CCD camera at the hologram location. Light scattered from a test object and reference light combine to generate a speckle interferogram that is acquired digitally. After surface displacements occur, a second interferogram is recorded. Fringes can be obtained by digital subtraction of the two interferograms.

The intensity variation \(I(x,y)\) over a fringe pattern produced by ESPI (or holographic interferometry) can be expressed in terms of phase difference \(\Delta \varphi(x,y)\) by:

\[
I(x,y) = c_1 + c_2 \cos \Delta \varphi(x,y)
\]
(2)

where \(c_1\) and \(c_2\) are constants. A technique known as phase shifting [32] can retrieve \(\Delta \varphi(x,y)\). A number of fringe patterns \((n)\) is acquired, each with a different phase shift \(\beta_i\). Equation (2) then becomes

\[
I_i(x,y) = c_1 + c_2 \cos [\Delta \varphi(x,y) + \beta_i] \ (i = 1 \to n).
\]
(3)

One way of introducing a known phase shift is to temporarily alter the path length of reference light by a carefully controlled, small amount. With different known values of \(\beta_i\), equation (3) can be solved to find \(\Delta \varphi(x,y)\), resulting in an arctangent function, which has the drawback of providing a phase map with \(2\pi\) discontinuities. Methods exist [35] to produce a continuous map, known as phase unwrapping. To achieve useful fringe patterns, an ESPI setup must be isolated sufficiently from vibration or other disturbances such
that the path lengths of reference and object light remain stable to within a small fraction of the wavelength of laser light [36]. The same applies to holographic interferometry. This constraint may not be as severe as it might appear, as illustrated in the following section.

3.2. ESPI and hole drilling
ESPI combined with hole drilling was developed in the years following introduction of holographic-hole drilling. Examples of fringe patterns generated by using ESPI-hole drilling are shown in figure 7, using a dual
Figure 7. Fringe patterns found by ESPI-hole drilling with (a) illumination and uniaxial stress in the same direction (horizontal), using and an optical set up sensitive to in-plane displacements only and (b) illumination at an angle to the direction of uniaxial stress. (Reprinted/Adapted) with permission from [43] © The Optical Society.

beam optical setup sensitive to in-phase displacements only. (Dual beams are not required to apply ESPI with hole drilling).

As with holographic interferometry, phase differences \(\Delta \varphi(x,y) \) associated with displacements from hole drilling enable residual stresses to be computed by various methods [37–40], including an incremental drilling approach [41] to find residual stresses vs. depth. Since small rigid body motions may occur in hole drilling systems (e.g. from drilling itself), computational methods [40, 42] have been developed to account for such unwelcome motions in case they occur and are of concern.

In the early 1990s, an ESPI-hole drilling system using single beam illumination became commercially available [44–46]. Various ESPI-hole drilling systems are shown in figure 8, as evidence of interest in the method. Systems have been developed for use outside of lab environments [47–49], including an instrument [50–52] in figure 8(d) with novel use of a diffractive optical element designed to be sensitive to radial in-plane displacements plus a laser diode as a light source, reducing size and cost.

3.3. Examples of use
ESPI-hole drilling been used to find residual stresses from manufacturing and fabrication processes, including shot peening [53], heat treatment [57], welding [47, 48], cold forming of pipes [58] and machining [59]. The instrument shown in figure 8(d) has measured stresses in a gas pipeline seen in figure 9, illustrating that hole drilling combined with a full-field interferometric method can be implemented in a challenging environment, without vibration isolation provided by optical tables in laboratories.

4. Moiré interferometry and hole drilling

4.1. Moiré interferometry
Moiré interferometry provides another means to determine surface displacements with high sensitivity [61–63]. Consider the Moiré interferometry setup in figure 10. A grating with finely spaced lines in both x and y directions has been applied to a flat surface region. Suppose that light from a low power laser illuminates the grating from the B1 and B2 directions (with B3 and B4 temporarily inactive). Light from each beam will be diffracted by the grating in the z-direction, towards an image plane of a recording device. Suppose that the surface region and grating displace. The relative path lengths of diffracted light will change, causing a phase difference and interference fringes to be observed at the image plane. For illumination by
beams B1 and B2, the fringes are related to in-plane \(x \)-displacements \(U_x \). If light from the B3 and B4 directions illuminates the grating instead of B1 and B2, fringes related to the \(y \)-displacements \(U_y \) will form. If a grating has, for example, a frequency of 1200 lines mm\(^{-1}\), the fringe-to-fringe displacement will be approximately 0.4 \(\mu \)m [64].

4.2. Moiré interferometry and hole drilling
An example of Moiré fringes from release of residual stress by hole drilling is shown in figure 11. As with holographic and ESPI-hole drilling, displacement data acquired from such patterns can be used to determine residual stresses [65–68]. A representative approach [67] will be summarized.
Figure 10. Moiré interferometry configuration with four beams. Reproduced with permission from [64].

Figure 11. Moiré-hole drilling fringes for \(U_x \) displacements from uniaxial stress in the horizontal direction. The pattern is nearly symmetrical since the fringes represent in-plane displacements, instead of the combination of in-plane and out-of-plane displacements in figure 3. Reproduced with permission from [67].

Figure 12 shows a schematic of \(U_y \) fringes from Moire-hole drilling. Away from the hole, the fringe order is zero. Fringe orders increase towards the hole. \((N_x \) fringe orders would be obtained from the \(U_x \) displacement field for the same hole).

For stress components \(\sigma_x \), \(\sigma_y \) and \(\tau_{xy} \) uniform with hole depth, in-plane radial displacements from equation (1) are:

\[
U_r (r, \theta) = A (\sigma_x + \sigma_y) + B \left[(\sigma_x - \sigma_y) \cos 2\theta + 2 \tau_{xy} \sin 2\theta \right]
\]

(4)

where \(A \) and \(B \) can be computed from non-dimensional coefficients [15] as a function of hole depth-to-diameter and radial position \((r/r_c) \). \(U_x \) and \(U_y \) displacements are related to fringe orders \(N_x \) and \(N_y \) [67] by

\[
U_x = (1/2f_s) N_x \text{ and } U_y = (1/2f_s) N_y \]

(5)

where \(f_s \) is the grating frequency.

Radial displacements can be related to \(U_x \) and \(U_y \) by

\[
u_r (r, \theta_i) = U_x (x_i, y_i) \cos \theta_i + U_y (x_i, y_i) \sin \theta_i
\]

(6)
Figure 12. Moiré-hole drilling fringes showing radial position \((r/r_o) = 1.2\) (dashed circle) and fringe orders \(N_y\) on one side of a different hole than in figure 11. Reproduced with permission from [67].

where \((x_i, y_i)\) is a location in figure 12 with corresponding known \(N_x\) and \(N_y\) values and angle \(\theta_i = \tan^{-1}(y_i/x_i)\). Equations (4)–(6) provide a relation (equation (7)) between fringe orders and residual stress components that can be solved with three pairs of \((N_x(x_i, y_i), N_y(x_i, y_i))\) data:

\[
\begin{bmatrix}
N_x(x_i, y_i) \\
N_y(x_i, y_i)
\end{bmatrix}
\begin{bmatrix}
\cos \theta_i \\
\sin \theta_i
\end{bmatrix}
= 2f_s \begin{bmatrix}
A + B \cos 2\theta_i & A - B \cos 2\theta_i & 2B \sin 2\theta_i \\
\sigma_x & \sigma_y & \tau_{xy}
\end{bmatrix}.
\]

The sign of stress can be deduced by perturbing a fringe pattern as described in [67]. Moiré-hole drilling can also be used to determine how residual stresses vs. depth using incremental drilling and a computational methodology [67] akin to those used in the ESPI or holographic-hole drilling methods.

4.3. Examples of use

Moiré-hole drilling has been used to find residual stresses from welding [68, 69], shot peening [67, 70, 71] and thermal spraying of a coating [72]. It has also explored residual stresses vs. depth in fiber reinforced polymeric (FRP) composite laminates [73, 74]. Computational methods have been developed to find residual stresses for through holes drilled in orthotropic materials [75, 76] or drilled incrementally, layer-by-layer in FRP laminates [77]. More recently, Moiré-hole drilling has been applied to characterize residual stresses in a woven composite [78]. As a final note, Moire and ESPI-hole drilling methods were compared in a study of residual stresses in an interference fit specimen [79]. Discrepancies between stresses found by those methods and by analysis were typically on the order of 5\%, with worst-case discrepancies of approximately 15\%.

5. Digital image correlation (DIC)

5.1. DIC

DIC [80–83] offers an alternative to interferometric methods for determining surface displacements. For 2D measurements, a digital camera views a surface region illuminated by ordinary light. An initial image of the region is acquired and digitized, known as a reference image. That image is divided into smaller regions called sub-sets, each of which should have features suitable for tracking its movement with loading. (If not, features can be added, such as by applying a random pattern of tiny black dots with a contrasting background.) A second image is captured after loading, and each deformed sub-set is matched to the corresponding one in the reference image using a correlation algorithm. For 3D measurements, two cameras are spaced sufficiently apart to enable stereovision. Images acquired by the cameras can be used to determine the 3D coordinates of surface locations by triangulation. Computational algorithms that track and match sub-sets and then find displacements and strains are included in a number of commercially available 2D and...
Figure 13. Example of displacements (color coded) in the (a) x-direction U_x and (b) y-direction U_y, from DIC-hole drilling of a polymeric specimen with stress in the y-direction. Reproduced from [90]. CC BY 4.0.

3D DIC systems. Calibration of a DIC system [80] is needed prior to use, which involves accounting for camera characteristics such as possible distortion and, in the case of 3D DIC, the orientation of cameras with respect to each other. The interferometric methods considered in the previous section require stringent mechanical stability of test setups to enable highly sensitive measurement of displacements. DIC relaxes that requirement, a substantial advantage, but its displacement sensitivity may be less than that of interferometric approaches [81], depending on how it is implemented. Best practices for carrying out DIC are discussed in a series of articles beginning with [84].

5.2. DIC and hole drilling

Working independently, civil [85] and mechanical [86] engineering researchers appear to have been the first to apply DIC with the hole drilling method. Images ‘before’ and ‘after’ hole drilling are obtained, and displacements found by DIC software. An example of displacements is shown in figure 13. For a hole drilled to a depth over which residual stresses are uniform (or approximately so), one approach [86] for finding residual stresses is to take radial displacements found by DIC for different radial positions (r/r_o) and angles θ_i around a hole and solve equation (4) (section 4.2) for σ_x, σ_y and τ_{xy}. A minimum of three radial displacements are needed, but it may be desirable to use more values in a least-squares solution. Unlike the interferometric approaches, there is no need for an intermediate step of converting phase changes to displacements. Prior knowledge of the analytical form of displacement fields from hole drilling can be integrated into the DIC determination of residual stresses [87, 88], improving results. To determine how residual stresses vary with depth, incremental DIC-hole drilling has been performed [89].
5.3. Examples of use
In metallic specimens, DIC-hole drilling has characterized residual stresses created by an interference fit \[86\] and by processes such as shot peening \[89\], friction stir welding \[91\], and unloading from elastic-plastic bending \[92\]. It has also found the residual stresses in an FRP composite panel \[93\] and a pultruded composite \[94\].

6. Microscale residual stress determination by hole drilling, slotting and ring coring

6.1. Hole drilling
The versions of the hole drilling method for determining residual stresses described in the previous sections were developed for use with macroscale components (centimeters or larger). At the microscale, focused ion beam (FIB) milling can be used to remove material by hole drilling or related methods. As an example, figure 14 shows a 4 µm diameter hole used to study residual stresses in a peened specimen of a metallic glass. Images of surface regions before and after material removal are obtained with a scanning electron microscope (SEM). The release of stresses generates displacements that can be found from the images using DIC algorithms.

For the frequently encountered case of residual stresses that vary with depth, FIB milling can be used to make a blind micro-hole that increases in depth incrementally. The profile of stress vs. depth can then be found with a computational methodology \[95\] akin to that for larger holes. For a thin micro-membrane with residual stress equal in all directions and constant through its thickness, in-plane displacements from drilling a through hole enable the stress to be computed from available analytical relations \[96\].

6.2. Slotting
Slotting by FIB has been used to find residual stresses in thin coatings \[97, 98\], a thin membrane \[99\], small diameter steel wires \[100\] and specimens of zinc brass \[101\]. First a reference SEM image of a region is acquired, then a slot is made to release residual stresses. The resulting displacement field is found by DIC. Referring to figure 15, residual stresses normal to the slot can be determined by analytical expressions or finite element modeling with an input of displacements U_x in the same direction. Similar to hole drilling, residual stresses vs. depth can be found by incremental slotting \[102\].

A variant of FIB slotting is shown in figure 16. Material is removed on either side of region of interest, releasing residual stresses and generating displacements in the remaining material between the two slots. Residual stress can then be computed from the displacements found by DIC \[103\].

6.3. Ring coring
Ring coring is an established method for finding residual stresses in macroscale applications \[104, 105\]. It too has been extended to the microscale. A small circular region (a few microns in diameter) on the surface is selected and a pattern of small dots created by FIB to facilitate DIC. A ring like that in figure 17 is milled by FIB to release residual stresses in an island (pillar). The resulting displacements on the surface of the island are found by DIC. Residual stresses vs. depth are then found from the displacements with computational approaches such as one based on an integral method \[106\].

FIB ring coring with DIC has been applied to thin coatings, including TiN on a Wc-Co substrate and Au on a Si/SiO$_2$ substrate \[108\], CrN on steel and Au on Si \[109, 110\], individual thin splats of thermally sprayed...
Figure 15. (a) Schematic of an idealized slot made in a thin coating on a substrate. Reproduced with permission from [97]. (b) An example of a wedge slot in a metallic glass specimen. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Metallurgical and Materials Transactions A [98]. 2010.

Figure 16. Schematic of H-slot to release residual stress.

Figure 17. Ring coring with FIB milled dots for DIC. Reprinted from [107] Copyright 2013, with permission from Elsevier.

\(\text{Al}_2\text{O}_3, \text{Ni-Al and } \text{Al}_2\text{O}_3-\text{TiO}_2-\text{Zr}_2\text{-CeO}_2 \) [111], zirconia on stainless steel [112], dental materials (ceramic on zirconia and porcelain fused to metal) [113] and a multilayer of Si\text{$_3$N$_4$/ZnO/Ag/ZnO/Si$_3$N$_4$} [114]. Rather than a circular island as in ring coring, residual stresses have also been quantified using rectangular or square
islands in a carbon doped SiO$_2$ coating [115] and in coatings of CrN on steel and Cu on Si [116]. In addition, ring coring has been carried out with picosecond laser machining [117] rather than FIB milling to find residual stresses in a thermal barrier coating. The use of ring coring extends beyond coatings. It has also been applied to study residual stresses in martensite lath crystals [118] and a shot peened aluminum alloy [119].

Factors that may affect residual stress determinations by FIB-DIC include potentially significant effects of elastic anisotropy [120] and possible damage introduced by material removal via FIB [121]. Additional important considerations for implementing FIB-DIC are discussed in [122, 123]. Also, a new computational approach has recently been presented [124, 125] as an alternative to use of the integral method [104, 126] for finding residual stresses vs. depth.

Although the combination of FIB and DIC has dominated microscale studies of residual stresses, other optical methods may potentially be used instead of DIC. For instance, figure 18 shows Moire grating lines (frequency of 5000 lines mm$^{-1}$) inscribed by FIB in three directions on an island formed by FIB ring coring. An SEM scanning Moiré method [127] was used to measure displacements and strains on the island as residual stresses in a laser peened nickel alloy were released.

7. Other methods using residual stress release

Full-field optical methods can also be useful for finding residual stresses when stresses are released by means other than hole drilling, ring coring or slotting. Residual stress in thin beams and plates can be found by removing layers of material containing the stresses. The resulting curvature is measured layer-after-layer, providing an input to analytical relations [128, 129] for determining how stresses vary through the thickness. Curvature can also develop when residual stresses are generated by deposition of material. Measurement of out-of-plane displacements of a surface (i.e. normal to the surface) can be used to find curvature. For example, out-of-plane displacements of thin circular discs have been measured by ESPI as layers were removed by chemical etching [130]. Fringes similar to those in figure 2(c) were observed. The same type of approach has been used to investigate residual stresses in cantilevered beams using ESPI [131] and Moiré interferometry [132]. In the case of material deposition, curvature has been measured by ESPI for cantilevered beams being plated [133] and by DIC for thin strips being coated by thermal spraying [134]. Curvature measurements by DIC have also been applied to explore residual stresses formed during additive manufacturing [135].

Sectioning is another method for finding residual stress in suitable situations. The method involves cutting an object containing residual stresses into smaller pieces and measuring strains that develop upon release of residual stresses [136]. The strains can be used to deduce residual stresses [137, 138]. Full-field optical methods have been applied from time-to-time to determine those strains. For example, Moiré fringes generated by deep slots used to release residual stresses in a railway rail are shown in figure 19. The fringe pattern provided displacement and thus strain information.
High temperature grating interferometry has been used to map displacements and strains from releasing residual stresses by annealing a slice from a railway rail \[139\]. A slice was also cut into small pieces to release residual stresses \[140\], and grating interferometry used to find strains for comparison with those from annealing, with results revealing a dependence on the method of stress release. Grating interferometry has also provided residual strain data after annealing of an explosively formed tube \[139\] and cutting of a laser weldment \[141\]. The residual stress distribution across the laser weldment was found with a hybrid experimental-finite element model that used an input of residual strains plus stress–strain data for different regions of the weldment (obtained via speckle interferometry and tensile loading) \[142\].

To determine residual stresses vs. depth in objects such as plates, a slitting method can be used. As depicted in figure 20, a slit is gradually deepened to release residual stresses normal to the slit. The resulting strains near the slot are measured by strain gages as a function of slit depth to provide an input to computation of residual strains \[143, 144\]. In lieu of strain gages, DIC can be applied with slitting \[145, 146\] to measure displacements and strains.

8. **Nondestructive optical methods for residual stress determination**

Several optical methods for determining residual stresses that avoid the need for material removal are possible in certain situations, as summarized below.

8.1. **Photoelasticity, imaging polarimetry and stress tomography**

Both applied and residual stresses can cause certain materials to develop birefringence, known as the photoelastic effect. In thin specimens, stress induced birefringence produces different indices of refraction \(n_1\) and \(n_2\) in directions aligned with the axes of principal stresses \(\sigma_1\) and \(\sigma_2\) acting in the plane of the specimen. Linearly polarized light passing through a specimen will emerge as two waves oriented with the \(\sigma_1\) and \(\sigma_2\) directions, with a phase shift \(\delta\) between them given by \(\delta = \frac{2\pi}{\lambda}(n_2 - n_1) t\), where \(\lambda\) = wavelength, \(t\) = thickness. The difference \((n_2 - n_1)\) is related to the principal stresses by \((n_2 - n_1) = b (\sigma_1 - \sigma_2)\) where
Figure 21. (a) Plane polariscope and (b) circular polariscope with crossed fast and slow axes of quarter wave plates.

\(b = \) relative stress-optic coefficient. When the waves pass through a second polarizer (analyzer) with its axis of polarization at 90° to that of the first polarizer, the intensity at a given location in an image will be [147]:

\[I = I_0 \sin^2 \frac{\delta}{2} \sin^2 2\alpha \]

(8)

where \(\alpha \) is shown in figure 21(a). For monochromatic light, the image will contain dark fringes where \(I = 0 \), which occurs when either \(\alpha = n\pi/2 \) \((n = 0, \pm 1, \pm 2, \ldots)\) or \(N\delta/2\pi = 0,1,2, \ldots \). Some of the fringes are associated with \((\sigma_1 - \sigma_2)\) and others with directions of principal stresses \((\alpha)\). In most cases, \((\sigma_1 - \sigma_2)\) is of primary interest. A circular polariscope, as in figure 21(b), is used to remove fringes associated with \(\alpha \), leaving isochromatic fringes representing contours of constant \((\sigma_1 - \sigma_2)\) given by \((\sigma_1 - \sigma_2) = NK/t\), where \(N \) is the fringe order. Constant \(K = \lambda/b \) is found by calibration using a known stress distribution. For white light illumination, fringes become sequences of colors, and a relation between different sequences and \((\sigma_1 - \sigma_2)\) values can also be established by calibration. If desired, various approaches are available to separate \(\sigma_1, \sigma_2 \) [147].

Photoelasticity has become a standard test method [148, 149] for finding residual stress in transparent or translucent plastic specimens as well as glass. It has been used, for example, to investigate residual stresses arising from injection molding of plastic objects [150–152]. Fringes like those in figure 22 have been used to analyze the residual stresses [153] in ion-exchange glass (used in smartphones), which contains compressive residual stresses near the surface to increase its strength.

Using infrared light, photoelasticity has been applied to investigate residual stresses in semiconductor wafers and microelectronic components [154]. Additional examples of the use of photoelasticity to determine residual stresses in thin (2D) specimens are numerous, but not described here for the sake of brevity.

Polarimetric imaging characterizes the state of polarization of light and can be applied to find the stress-induced birefringence across a specimen. For instance, Bajor [155] developed a polarimeter using a setup similar to that in figure 21(a) except that the axes of polarization were at 45° rather than 0 and 90° as in a plane polariscope. The polarizers were rotated simultaneously and intensity data recorded by a CCD array. Analysis of the resulting intensity data as a function of rotation yielded birefringence data, which could, in turn, be used to find \((\sigma_1 - \sigma_2)\) over a region. The polarimeter was applied to map birefringence from residual stresses in wafers of silicon, gallium arsenide, silicon and gallium phosphide [156].

Different types of polarimetry systems have been developed, such as one with a back-scattering configuration of optical components used to map applied stresses in a Plexiglas plate under compression [157]. Another system [158] used an infrared laser to scan through a rotating gallium arsenide wafer to find
phase shift, which could then be converted to a map of principal stress difference τ shown in figure 23. These are but two examples of such systems.

Polarimetry has become a standard test method [159] to determine birefringence and stresses in glass, and a number of commercial polarimetry systems are available for that purpose. In addition to glass, one of those commercial systems has been used to map residual stresses in yttria partially stabilized zirconia (Y-TZP) ceramic restorations used in dentistry [160].

Various objects containing residual stresses have 3D geometries that make determination of those stresses much more challenging. Seeking to address that challenge, photoelastic tomography [161] has been developed for application to glass and other materials suited to photoelastic characterization. An object is illuminated with polarized light, and photoelastic data (birefringence and principal stress directions) collected. Data are obtained for different orientations θ in figure 24(a). This procedure is somewhat akin to that used in x-ray computed tomography scans, but with an important difference. In x-ray scans, scalar data (attenuation) are obtained for use in imaging of body structures. However, stress depends on both magnitude and direction and can be expressed in terms of six components (e.g. σ_x, σ_y, σ_z, τ_{xy}, τ_{xz}, τ_{yz} in Cartesian coordinates) acting in different directions, making 3D determination by photoelasticity much
more difficult. An analysis has been presented to enable stress component σ_z (figure 24(b)) to be found [162] as well as shear stress component τ_{rz} if stresses are axisymmetric (characterized by stress components σ_r, σ_z, σ_θ, τ_{rz}). Then stress components σ_r and σ_θ can be found using relations from the theory of elasticity [162]. Applications have included residual stresses in a high-pressure lamp, tempered glass tumbler and a bow-tie optical fiber [163]. A different, generalized approach has been proposed [164] for finding stress components by tomography, but has yet to be implemented as of this writing.

Finding residual stresses by reflection photoelasticity combined with hole drilling was explored more than five decades ago [165–168]. In that approach, a thin coating of photoelastically sensitive material is attached to a surface using a reflective adhesive (or backing) and a hole drilled through it into underlying material containing stresses. The coating is illuminated with light that first passes through a linear polarizer and quarter wave plate (as in a circular polariscope). The light then traverses the coating and is reflected. The reflected light is observed after passing through another quarter wave plate and analyzer. Fringes that develop in the coating from release of stress by a hole can be analyzed to find stresses [169] for the case of a hole drilled through stresses uniform with depth. A capability to determine residual stresses that vary with depth does not seem to have been developed. The photoelastic version of the hole drilling method has been relatively dormant until quite recently [90].

8.2. Thermoelastic stress analysis

When a specimen is tested by applying cyclic stresses under adiabatic conditions, the surface will experience a small cyclic temperature change ΔT that can be related to the change in the sum of principal stresses [170, 171] by

$$\Delta T = -\frac{\alpha T_0}{\rho c_p} \Delta (\sigma_1 + \sigma_2)$$

(9)

where $\alpha = \text{coefficient of thermal expansion}$, $T_0 = \text{absolute temperature}$, $\rho = \text{density}$, and $c_p = \text{specific heat}$ (at constant pressure). This relation assumes elastic stresses and isotropic material behavior but can be modified to accommodate orthotropic materials [170]. Adiabatic conditions are typically achieved by cycling at frequencies in the range of approximately 10–25 Hz [172]. The magnitude of ΔT can be quite small, with measurement resolution on the order of 0.001 C often needed [171]. The temperature change results in a flux of photons $\Delta \Phi$ emitted from a surface in the infrared regime. The flux is monitored by a highly
sensitive infrared camera (photon detector), resulting in a voltage signal. The change in principal stress sum can be expressed in terms of a camera signal S as \[\Delta(\sigma_1 + \sigma_2) = AS \] (10)

where constant A combines parameters such as detector responsivity, system amplification, surface emissivity, etc. and can be established by calibration. Thermoelastic data can be obtained over a desired surface region to map stress. Important practical considerations involved in making thermoelastic stress measurements are described in \[172\] Thermoelastic stress analysis has become a well-established method with numerous uses. A few examples include determination of fracture mechanics parameters \[173\], detection and monitoring of crack growth \[174\], and evaluation of the quality of adhesive joints \[175\]. Several methods have been developed for separating principal stresses σ_1 and σ_2 if desired \[170, 172\].

In addition to cyclic stress, a mean value of stress may be present in many practical situations. Several experimental studies reviewed in \[176\] indicate that mean stress can influence the thermoelastic behavior of materials. A theory has been proposed to explain the effect by considering the dependence of elastic constants such as modulus of elasticity on temperature \[177\]. If thermoelastic data can be analyzed to find mean stress separately from cyclic stress, then the prospect of determining residual stress (which may be considered a mean stress) exists. However, the mean stress effect in thermoelasticity is relatively small, making its use to find residual stresses problematic \[176, 178\]. Studies of the mean stress effect continue \[179, 180\] but, as of this writing, the ability of thermoelasticity to determine residual stresses remains to be demonstrated.

8.3. Piezospectroscopic methods

When a solid is illuminated with monochromatic light, some of the light is scattered. The bulk of scattering is elastic (Rayleigh) with the same wavelength as the light source, but a small portion is scattered inelastically with wavelengths that differ from that of the light source, known as Raman scattering \[181, 182\]. The inelastically scattered light can be processed with a spectrometer and plotted as a spectrum of intensity vs. wave number (reciprocal of wavelength). The wave numbers of peaks in the spectrum shift in response to applied or residual stresses \[183\]. Although the Raman effect is not active for all materials, it has been applied to characterize residual stresses in a variety of technologically important materials. Examples include silicon \[183–185\], ceramics \[184, 186\], polycrystalline graphite \[187\], amorphous carbon \[188\], epoxy \[189\] and nickel with silicon carbide particles serving as stress sensors \[190\].

In certain cases, illumination of a solid with light can cause a jump to a higher electronic state accompanied by a release of photons upon a return to a lower energy level. This phenomenon is known as photoluminescence and detailed descriptions of it can be found in references such as \[191\]. The emitted light can be processed to provide a spectrum of intensity vs. wavenumber. The wave numbers of luminescent peaks in the spectrum shift in response to applied or residual stresses \[192, 193\]. Residual stress studies have utilized small amounts of chromium ions typically present in aluminum oxide as a photoluminescent substance \[194\]. Examples of applications include exploration of residual stresses in thin aluminum oxide layers that form within thermal barrier coatings that protect components such as gas turbine blades \[195, 196\]. A portable stress measurement system \[197\] has been developed to investigate residual stresses in thermite welds in railway rails. Thermite welds also contain aluminum oxide. In another application, residual stresses have been characterized in semiconductor gallium arsenide wafers with chromium doping \[198\]. Chromium ions are not the only stress-sensitive photoluminescent substance. For instance, rare earth Europium ions introduced into a thermal barrier coating have also provided a means to determine residual stresses \[199\].

9. Discussion

Although nondestructive optical methods have numerous useful applications, x-ray diffraction and the hole drilling method with strain gages are the mainstays of residual stress measurement. Use of non-contacting, full field optical methods with hole drilling instead of strain gages offer significant advantages such as (a) avoiding the need for a relatively smooth and flat (or mildly curved) surface to bond a hole drilling rosette and allowing stresses to be found for geometries and surfaces unreceptive to strain rosettes, (b) eliminating the time and costs needed to attach a rosette(s) and a hole drilling guide, (c) avoiding errors when a hole is drilled off center in a rosette, (d) use in elevated temperature environments and (e) providing more data for use in determining residual stresses than from three locations in a strain gage rosette. The sensitive interferometric methods considered here are well matched to the displacements of a few microns generated in typical hole drilling applications. However, the methods do require a coherent light source and adequate mechanical stability in optical setups.

The DIC-hole drilling approach can be carried out with ordinary light illumination, avoids interferometric-level mechanical stability, and can correct for rigid body motions. Drawbacks of the
approach are the need to calibrate cameras prior to use (which is not burdensome) and generally less sensitivity to displacements than interferometric techniques.

The hole drilling method is typically limited to finding residual stresses vs. depth to depths of roughly half of a hole diameter [4]. This results from surface displacements being less responsive to stresses released as depth increases.

The following experimental approach may allow the hole drilling method to find stresses at greater depths. It becomes feasible with non-contacting, full-field optical means. It represents an improved version of an earlier approach proposed by Makino et al [200] by enabling: (a) measurement to be made over much smaller areas, (b) use of readily available small end mills for making holes, and (c) illumination directed normal to the surface. First, a small diameter hole would be milled incrementally in depth into a region of interest to find residual stress vs. depth, as usual. The smaller hole would reach a depth of one-half of its diameter. Next, a somewhat larger diameter hole would be milled over the smaller hole, removing it, as depicted in figure 25. The bottom of the larger hole would provide a fresh surface for illumination. A smaller diameter hole would then be milled incrementally into the bottom of the larger hole. Displacement data generated by the new smaller hole would be obtained on the bottom by DIC or from fringes (phase changes) using interferometric methods. The data would provide an input to compute stresses vs. depth beneath the bottom. A model for computing stresses probed by the smaller hole would need to correct for removal of material containing stresses by the previous larger hole. It would also have to account for the effect of the walls of the larger hole on the displacements measured on its bottom surface. Next, a second larger hole would be milled to remove the second smaller hole, providing a new surface for the next smaller hole. This process would continue until a desired total depth is reached.

Feasibility experiments were performed with smaller holes of 2.38 mm (0.094 in.) diameter. Larger ones were made with an end mill of 6.35 mm (0.25 in.) diameter. Holographic interferometry was used with a steep angle of illumination to allow the diameter of larger holes to have a relatively small footprint. Steep angles also minimized shadows cast by the walls of larger holes that could otherwise darken a substantial portion of fringe patterns observed on the bottoms of larger holes. A drawback of using steep angles is that fringe patterns from hole drilling then depend more on out-of-plane displacements than in-plane displacements, and out-of-plane displacements from hole drilling are smaller than in-plane displacements [16]. The purpose of the experiments was to see if enough fringes (phase differences) would be observed on the bottoms of larger holes to make the proposed approach feasible. The larger holes were gently milled using thin layers as the final depth of each hole was approached to minimize possible effects of residual stresses created by milling. Fringe patterns that resulted from reaching a depth of 4.75 mm (0.19 in.) in a 7075-T651 aluminum alloy specimen with a uniaxial stress of 190 MPa (approx. 36% of yield stress and nearly constant...
Figure 26. Fringe patterns at two ratios of hole depth-to-diameter (h/D) for (a) the first smaller hole drilled into the specimen surface, (b) the second smaller hole, drilled into the bottom of the first larger hole, (c) the third smaller hole, drilled into the bottom of the second larger hole and (d) the fourth smaller hole, drilled into the bottom of the third larger hole. Smaller and larger hole diameters = 2.38 and 6.35 mm, respectively.

In depth) are shown in figure 26. It appears that sufficient fringes/phase changes occur to make the approach feasible, at least in this case. This 'hole-within-a-hole' approach may provide an interesting opportunity for further experimental exploration and development of a computational model to reconstruct the residual stresses. Although holographic interferometry was used here, other non-contacting full-field optical methods could be considered instead.
10. Summary

Residual stresses are often measured by the hole drilling method, in which a rosette pattern of strain gages is attached to a surface and a small, shallow hole drilled in the center of the pattern, releasing residual stresses in the material removed by the hole. The resulting strains are measured and used to compute residual stresses. The use of strain gage rosettes restricts the approach to relatively flat and smooth surfaces large enough for the rosettes. Also, typical rosettes for use with the hole drilling method have had three strain gages, limiting the input of strain data for computing residual stresses to just a few locations.

The hole drilling approach can be based on displacements found by full-field optical methods and overcome limitations associated with strain gages. It also provides much more data than available from several gages. Holographic and ESPI, as well as Moire interferometry, have been applied successfully with hole drilling to find residual stresses and how they vary with depth below a surface. Their ability to determine surface displacements with high sensitivity is well-suited to typical magnitudes of displacements encountered with the hole drilling method. However, they do require optical setups with sufficient mechanical stability. DIC may have a lower sensitivity to displacements than the interferometric methods but can still be used successfully to find residual stresses with hole drilling, while avoiding the need for stringent mechanical stability. DIC has also been applied to microscale specimens, using SEM images and FIB milling to create holes or similar ways of releasing residual stresses (e.g. ring coring). Non-contacting optical methods allow access to many different surface geometries unreceptive to strain gages and can be applied from the macro- to micro-scale.

A limitation of stress release by the current hole drilling method is that it can determine stresses vs. depth to about half of the hole diameter, but this limitation could potentially be overcome by further development of an optically based ‘hole-within-a-hole’ method outlined in this paper.

Non-destructive optical methods are also available for determining residual stresses, including photoelasticity and imaging polarimetry for transparent objects, and Raman and luminescent piezospectroscopy for suitable materials.

Data availability statement

No new data were created or analyzed in this study.

ORCID iD

Drew V Nelson https://orcid.org/0000-0003-1623-3215

References

[1] Fung Y 1991 What are the residual stresses doing in our blood vessels? Annu. Biomed. Eng. 19 237–49
[2] Noyan I and Cohen J 1987 Residual Stress: Measurement by Diffraction and Interpretation (Berlin: Springer)
[3] Schajer G and Whitehead P 2018 Hole-Drilling Method for Measuring Residual Stresses (San Rafael, CA: Morgan-Claypool Publishers)
[4] Standard E837-08 Standard Test Method for Determining Residual Stresses by the Hole-Drilling Strain-Gage Method (West Conshohocken, PA: American Society for Testing and Materials)
[5] Grédiac M and Hild F ed 2013 Full-Field Measurements and Identification in Solid Mechanics (London and Hoboken, NJ: Wiley, ISTE Ltd)
[6] Rastogi P and Hack E ed 2012 Optical Methods for Solid Mechanics: A Full-Field Approach (Berlin: Wiley-VCH)
[7] Kreis T 2005 Handbook of Holographic Interferometry (Weinheim, Germany: Wiley-VCH)
[8] Przputniewicz R 2008 Holography Sharpe W Ed Handbook of Experimental Solid Mechanics (Berlin: Springer) pp 675–99
[9] Sihoni R 2018 Optical Methods of Measurement: Whole Field Techniques (Boca Raton, FL: CRC Press)
[10] Toal V 2011 Introduction to Holography (Boca Raton, FL: CRC Press)
[11] Georges M 2020 Holographic interferometry: from history to modern applications Optical Holography: Materials, Theory and Applications ed P Blanche (Amsterdam: Elsevier) pp 121–63
[12] Schnars U and Jueptner W 2005 Digital Holography (Berlin: Springer)
[13] Asundi A ed 2011 Digital Holography for MEMS and Microsystems Metrology (New York: Wiley)
[14] Stojnik M, Kujawinski M and Malarca-Hernandez D 2018 Optical metrology of diffuse objects: full-field methods Advanced Optical Instruments and Techniques vol 2, ed D Malarca-Hernandez and B Thompson (Boca Raton, FL: CRC Press) pp 213–44
[15] Makino A, Nelson D, Fuchs E and Williams D 1996 Determination of biaxial residual stresses by a holographic-hole drilling technique J. Eng. Mater. Technol. 118 583–8
[16] Makino A and Nelson D 1994 Residual-stress determination by single-axis holographic interferometry and hole drilling—part I: theory Exp. Mech. 34 66–78
[17] Lin S, Hsieh C and Lee C 1998 A general form for calculating residual stresses detected by using the holographic blind-hole method Exp. Mech. 38 235–40
[18] Baldi A and Bertolino F 2007 Sensitivity analysis of full field methods for residual stress measurement Opt. Lasers Eng. 45 651–60

22
[19] Makino A and Nelson D 1997 Determination of sub-surface distributions of residual stresses by a holographic-hole drilling technique J. Eng. Mater. Technol. 119 95–103
[20] Xiao Z, Fok W and Livin D 1993 Parametric study of residual stresses due to shot peening J. Mater. Process. Technol. 39 469–83
[21] Lobanov L and Pivtorak V 2002 Diagnostics of residual stressed state of welded structures using the methods of holographic interferometry and electronic speckle-interferometry Mater. Sci. Forum 404–407 867–74
[22] Lobanov L and Pivtorak V 2002 Development of holographic interferometry for investigation of the stress-strain state and quality control of welded structures Weld. Res. Abroad 48 25–32
[23] Pisarev V, Balalov V, Aisotv V, Bondarenko M and Yustus M 2001 Reflection hologram interferometry combined with hole drilling technique as an effective tool for residual stress fields investigation in thin-walled structures Opt. Lasers Eng. 36 553–97
[24] Pisarev V, Aisotve V, Balalov V, Bondarenko M, Chumak S, Grigoriev V and Yustus M 2004 Metrological justification of reflection hologram interferometry with respect to residual stresses determination by means of blind hole drilling Opt. Lasers Eng. 41 353–410
[25] Balalov V, Pisarev V and Moshensky V 2007 Combined implementing the hole drilling method and reflection hologram interferometry for residual stress determination in cylindrical shells and tubes Opt. Lasers Eng. 45 661–76
[26] Apalkov A, Larkin A, Osintsev A, Odintsev I, Shchepinov V, Yu A, Schiikanov J and Fontaine J 2007 Holographic interference method for studying residual stresses Quantum Electron. 37 590–4
[27] Gyimesi F, Szigethy A, Borbély V and Kis R 2016 New measurement possibilities of deformation anomalies and complete stress field distributions by portable digital-holographic gauge camera Proc. Struct. Integ. 2 2307–14
[28] Beghini M, Bertini L and Santus C 2010 A procedure for evaluating high residual stresses using the blind hole drilling method, including the effect of plasticity J. Strain Anal. Eng. Des. 45 301–18
[29] Nobre J, Kormeier M and Scholtes B 2018 Plasticity effects in the hole-drilling residual stress measurement in peened surfaces Exp. Mech. 58 369–80
[30] Pedrini G, Martínez-García V, Weidmann P, Wenzelburger M, Killinger A, Weber U, Schmauder G, Gadow R and Osten W 2016 Residual stress analysis of ceramic coating by laser ablation and digital holography Exp. Mech. 56 689–701
[31] Rastogi P ed 2001 Digital Speckle Pattern Interferometry and Related Techniques (New York: Wiley)
[32] Gan Y and Steinchen W 2008 Speckle methods Handbook of Experimental Solid Mechanics ed J Sharpe (Berlin: Springer) pp 655–73
[33] Yang L and Ettemeyer A 2003 Strain measurement by three-dimensional electronic speckle pattern interferometry: potentials, limitations and applications Opt. Eng. 42 1257–66
[34] Clode G 2010 Optical Methods of Engineering Analysis (Cambridge: Cambridge University Press)
[35] Huntley J 2001 Automated analysis of speckle interferograms Digital Speckle Pattern Interferometry and Related Techniques ed P Rastogi (New York: Wiley) pp 59–139
[36] Soares O 1983 Review of resolution factors in holography Opt. Eng. 22 SR-107–SR-112
[37] Schmitt D and Hunt R 2000 Inversion of speckle interferometer fringes for hole-drilling residual stress determinations Exp. Mech. 40 129–37
[38] Diaz F, Kaufmann G and Moller O 2001 Residual stress determination using blind-hole drilling and digital speckle pattern interferometry with automated data processing Exp. Mech. 41 319–23
[39] Focht G and Schiffer K 2003 Determination of residual stresses by an optical correlative hole-drilling method Exp. Mech. 43 97–104
[40] Schajer G and Steinzig M 2005 Full-field calculation of hole drilling residual stresses from electronic speckle pattern interferometry data Exp. Mech. 45 526–32
[41] Schajer G and Rickert T 2011 Incremental computation technique for residual stress calculations using the integral method Exp. Mech. 51 1217–22
[42] Dolinko A and Kaufmann G 2006 A least-squares method to cancel rigid body displacements in hole drilling and DSPI systems for measuring residual stresses Opt. Lasers Eng. 44 1336–47
[43] Zhang J and Chong J 1998 Fiber electronic speckle pattern interferometry and its application in residual stress measurement Appl. Opt. 37 6707–13
[44] Steinzig M and Ponslet E 2003 Residual stress measurement using the hole drilling method and laser speckle interferometry, part I Exp. Tech. 27 43–46
[45] Ponslet E and Steinzig M 2003 Residual stress measurement using the hole drilling method and laser speckle interferometry, part II: analysis technique Exp. Tech. 27 17–21
[46] Ponslet E and Steinzig M 2003 Residual stress measurement using the hole drilling method and laser speckle interferometry, part III: analysis technique Exp. Tech. 27 45–48
[47] Lobanov L, Pivtorak V, Savitsky V and Tkachuk G 2010 Using electronic speckle interferometry for the accurate determination of the residual stresses in welded joints and structural members Weld. Int. 24 439–43
[48] Antonov A 2011 Operative determination of the stress-strain state of welded joints in objects in oil and gas industries Weld. Int. 25 795–9
[49] Viotti M, Dolinko A, Galizi G and Kaufmann G 2006 A portable digital speckle pattern interferometry device to measure residual stresses using the hole drilling technique Opt. Lasers Eng. 44 1052–66
[50] Viotti M, Kapp W and Albertazzi A 2009 Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element App. Opt. 48 2275–81
[51] Viotti M, Albertazzi A and Kapp W 2008 Experimental comparison between a portable DSPI device with diffractive optical element and a hole drilling strain gage combined system Opt. Lasers Eng. 46 835–84
[52] Viotti M and Albertazzi A 2013 Compact sensor combining digital speckle pattern interferometry and the hole-drilling technique to measure non-uniform residual stress fields Exp. Opt. 52 101905.1–101905.8
[53] Rickert T 2016 Residual stress measurement by ESPI hole-drilling Proc. CIRP 45 203–6
[54] Sedivy O, Krempaszky C and Holy S 2007 Residual stress measurement by electronic speckle pattern interferometry Proc. 5th Australasian Congress on Applied Mechanics ed M Veldt et al (Brisbane: Engineers Australia) pp 342–7
[55] Lobanov L and Savitsky V 2016 Residual stresses determination with plasticity effects by electron speckle-interferometry hole-drilling method Residual Stresses 2016: ICRS-10, Materials Research Proc. vol 2, ed T Holdon et al (Millersville, PA: Materials Research Forum LLC) pp 389–94
[56] Viotti M and Albertazzi A 2009 Industrial inspections by speckle interferometry: general requirements and a case study Proc. SPIE 7389 73890 G-1 to G-15
[57] Cheng J, Kwak S and Choi J 2008 ESPI combined with hole drilling method to evaluate the heat treatment induced residual stresses Proc. SPIE 7130 71302C–1
[58] Lothhammer L, Viotti M, Albertazzi A and Veiga C 2017 Residual stress measurements in steel pipes using DSPH and the hole-drilling technique Int. J. Press. Vessels Pip. 152 46e55
[59] Kremersky C, Werner E and Stockinger M 2005 Measurement of macroscopic residual stress and resulting distortion during machining MATEC Web Conf. (Cleveland: ASM International) pp 109–18
[60] Albertazzi A, Viotti M and Kapp M 2008 A radial In-plane DSPH interferometer using diffractive optics for residual stress measurement Proc. SPIE 7155 71552S–1 to 10
[61] Post D and Han B 2008 Moiré interferometry Handbook of Experimental Solid Mechanics ed W Sharpe (Berlin: Springer) pp 627–53
[62] Post D, Han B and Ifu P 1994 High Sensitivity Moiré (Berlin: Springer)
[63] Patorski K and Kujawinska M 1993 Handbook of the Moiré Fringe Technique (Amsterdam: Elsevier)
[64] Han B, Post D and Ifu P 2001 Moiré interferometry for engineering mechanics: current practices and future developments J. Strain Anal. Eng. Des. 36 101–17
[65] Nicoletto G 1988 Theoretical fringe analysis for a coherent optics method or residual stress measurement J. Strain Anal. 23 169–78
[66] Furgiuele F, Pagnotta L and Poggialini A 1991 Measuring residual stresses by hole-drilling and coherent optics techniques: a numerical calibration J. Eng. Mater. Technol. 113 41–50
[67] Wu Z, Lu J and Han B 1998 Study of residual stress distribution by a combined method of Moire interferometry and incremental hole drilling, part I: theory and part II: implementation J. Appl. Mech. 65 837–50
[68] Ya M, Marquette P, Belahcene F and Lu J 2004 Residual stresses in laser welded aluminum plate by use of ultrasonic and optical methods Mater. Sci. Eng. A 382 257–64
[69] McDonach A, McKelvie J, Mackenzie P and Walker C 1983 Improved Moire interferometry and applications in fracture mechanics, residual stress and damaged composites Exp. Tech. 7 20–24
[70] Ribeiro J, Monteiro J, Lopes H and Vaz M 2011 Moiré interferometry assessment of residual stress variation in depth on a shot peened surface Strain 47 e542–e550
[71] Min Y, Hong M, Xi Z and Lu J 2006 Determination of residual stress by use of phase shifting Moire interferometry and hole-drilling method Opt. Lasers Eng. 44 68–79
[72] Zhu J and Zhang B 2015 Experimental measurement of residual stress on thermal spray coatings with Moire interferometry and hole-drilling method Appl. Mech. Mater. 782 335–34
[73] Shankar K, Xie H, Wei R, Asundi A and Boay C 2004 A study on residual stresses in polymer composites using Moire interferometry Adv. Compos. Mater. 13 237–52
[74] Chen J, Xin Q and Yang F 2007 Relationship between the depth of drilling and residual strain relief in fiber reinforced composite materials J. Mater. Eng. Perform. 16 46–51
[75] Cardenas J, Ekvaro-Oise S, Berg J and Wilson W 2005 Non-linear least squares solution to the Moire hole method problem in orthotropic materials, part I: residual stresses Exp. Mech. 45 314–24
[76] Baldi A 2007 Full field methods and residual stress analysis in orthotropic material (1) linear approach Int. J. Solids Struct. 44 4829–43
[77] Sicot O, Gong X, Cherouat A and Lu J 2003 Determination of residual stress in composite laminates using the incremental hole-drilling method J. Compos. Mater. 37 831–41
[78] Wu L, Zhu J and Xie H 2013 Investigation of residual stress in 2D plane weave Aramid fibre composite plates using Moiré interferometry and hole-drilling technique Strain 51 429–43
[79] Ribeiro J, Monteiro J, Vaz M, Lopes H and Piloto P 2009 Measurement of residual stresses with optical techniques Strain 45 123–30
[80] Sutton M, Orteu J and Schreier H 2009 Image Correlation for Shape, Motion and Deformation Measurements (Berlin: Springer)
[81] Schmidt T, Tyson J and Galanulis K 2003 Full-field dynamic displacement and strain measurement using advanced 3D image correlation photogrammetry, part I Exp. Tech. 27 47–50
[82] Pan B 2018 Digital image correlation for surface deformation measurement: historical developments, recent advances and future goals Meas. Sci. Technol. 29 082001
[83] Bornert M et al 2013 Digital image correlation Full-Field Measurements and Identification in Solid Mechanics ed M Grédiac (New York: Wiley) pp 157–90
[84] Reu P 2012 Introduction to digital image correlation: best practices and applications Exp. Tech. 36 3–5
[85] McGinnis M, Pessiki S and Turker H 2005 Application of three-dimensional digital image correlation to the core-drilling method Exp. Mech. 45 359–67
[86] Nelson D, Makino A and Schmidt T 2006 Residual stress determination using hole drilling and 3D image correlation Exp. Mech. 46 31–38
[87] Gao J and Shang H 2009 Deformation-pattern-based digital image correlation method and its application to residual stress measurement Appl. Opt. 48 1371–81
[88] Baldi A 2014 Residual stress measurement using hole drilling and integrated digital image correlation techniques Exp. Mech. 54 379–91
[89] Lord J, Penn D and Whitehead P 2008 The application of digital image correlation for measuring residual stress by incremental hole drilling Appl. Mech. Mater. 13–14 65–73
[90] Bátor M, Hagara M, Virgala I, Kačvartiský A, Sapiecha A and Hagarová L 2021 Design of a unique device for residual stresses quantification by the drilling method combining the photostress and digital image correlation Materials 14 314
[91] Brynk T, Orłowska M and Lewandowska M 2020 Application of 3D DIC-assisted residual stress measurements for friction stir welding weld from ultrafine-grained aluminum Metall. Mater. Trans. A 52A 20–30
[92] Peng Y, Zhao J, Chen L and Dong J 2021 Residual stress measurement combining blind-hole drilling and digital image correlation approach J. Constr. Steel Res. 176 106346
[93] Babaeian M and Mohammadimehr M 2020 Investigation of the time elapsed effect on residual stress measurement in a composite plate by DIC method Opt. Lasers Eng. 128 106002
[94] Yauksa O, Barana I, Ersos N and Akkerman R 2019 Investigation of transverse residual stresses in a thick pultruded composite using digital image correlation with hole drilling Compos. Struct. 223 110954
[95] Winiarski B and Withers P 2012 Micron-scale residual stress measurement by micro-hole drilling and digital image correlation Exp. Mech. 52 417–28

[96] Sabate N, Vogel D, Gollhardt A, Keller J, Cane C, Gracia I, Morante J and Michel B 2007 Residual stress measurement on a MEMS structure with high-spatial resolution J. Micromech. Syst. 16 365–72

[97] Kang K, Darzens S and Choi G 2004 Effect of geometry and materials on residual stress measurement in thin films by using the focused ion beam J. Eng. Mater. Technol. 126 457–64

[98] Winiarski B, Langford R, Tian J, Yokoyama Y, Liaw P and Withers P 2010 Mapping residual stress distributions at the micron scale in amorphous materials Metall. Mater. Trans. A 41 1743–51

[99] Sabate N, Vogel D, Gollhardt A, Keller J, Cane C, Gracia I, Morante J and Michel B 2006 Measurement of residual stress by slot milling with focused ion-beam equipment J. Micromech. Microeng. 16 254–9

[100] Yang Y, Bae J and Park C 2008 Measurement of residual stress by using focused ion beam and digital image correlation method in thin-sized wires used for steel cords J. Phys.: Conf. Ser. 100 012018

[101] Blair A, Daynes N, Hamilton D, Horne G, Heard P, Hodgson D, Scott T and Shterenlikht A 2009 Residual stress relaxation measurements across interfaces at macro- and micro-scales using slitting and DIC J. Phys: Conf. Ser. 181 012078

[102] Winiarski B, Gholia H, Tian J, Yokoyama Y, Liaw P and Withers P 2012 Submicron-scale depth profiling of residual stress in amorphous materials by incremental focused ion beam slotting Acta Mater. 60 2237–49

[103] Krottenthaler M, Schmid C, Schaffler J, Dürst K and Göken M 2013 A simple method for residual stress measurements in thin films by means of focused ion beam milling and digital image correlation Surf. Coat. Technol. 215 247–52

[104] Schajer G ed 2013 Practical Residual Stress Measurement Methods (New York: Wiley)

[105] Hu Z, Xie H, Lu J, Zhu J and Wang H 2013 Residual stresses measurement by using ring-core method and 3D digital image correlation technique Meas. Sci. Technol. 24 085604

[106] Ajovalasit A, Petrucci G and Zuccarello B 1996 Determination of nonuniform residual stresses using the ring-core method J. Eng. Mater. Technol. 118 224–8

[107] Korsunsky A, Sebastiani M and Bemporad E 2009 Focused ion beam ring drilling for residual stress evaluation Mater. Lett. 63 1961–3

[108] Korsunsky A, Sebastiani M and Bemporad E 2010 Residual stress evaluation at the micrometer scale: analysis of thin coatings by FIB milling and digital image correlation Surf. Coat. Technol. 205 2393–403

[109] Sebastiani M, Eberl C, Bemporad E and Pharr G 2011 Depth-resolved residual stress analysis of thin coatings by a new FIB-DIC method Mater. Sci. Eng. A 528 7901–8

[110] Bemporad E, Brisotto M, Depero L, Gelfi M, Korsunsky A, Lunt A and Sebastiani M 2014 A critical comparison between XRD and FIB residual stress measurement techniques in thin films Thin Solid Films 572 224–31

[111] Sebastiani M, Bolelli G, Lusvarghi L, Bandopadhyay P and Bemporad E 2012 High resolution residual stress evaluation on amorphous and crystalline plasma-sprayed single-splats Surf. Coat. Technol. 206 4872–80

[112] Li Y and Han G 2015 Residual stress measurement in micro-region using digital image correlation method Optics Express 23 49–32

[113] Sebastiani M, Massimia F, Merlati G and Bemporad E 2015 Residual micro-stress distributions in heat-pressed ceramic on zirconia and porcelain-fused to metal systems: analysis by FIB–DIC ring-core method and correlation with fracture toughness Dent. Mater. 31 1396–405

[114] Sebastiani M, Rossi E, Mughal M, Benedetto A, Jacques P, Salvati E and Korsunsky A 2020 Nano-scale residual stress profiling in thin multilayer films with non-equibiaxial stress state Nanomaterials 10 853

[115] Song X, Yiap K, Zhu J, Belhoun J, Sebastiani M, Bemporad E, Zeng K and Korsunsky A 2012 Residual stress measurement in thin films at sub-micron scale using focused ion beam milling and imaging Thin Solid Films 520 2073–6

[116] Sebastiani M, Eberl C, Bemporad E, Korsunsky A, Nix W and Carasiti F 2014 Focused ion beam four-slots milling for Poisson’s ratio and residual stress evaluation at the micron scale Surf. Coat. Technol. 251 151–61

[117] Zhang X, Li C, Withers P, Markocan N and Xiao P 2019 Determination of local residual stress in an air plasma spray thermal barrier coating (APS–TBC) by microscale ring coring using a picosecond laser Surf. Mater. 167 126–30

[118] Archie F, Mughal M, Sebastiani M, Bemporad E and Zaefferer S 2018 Anisotropic distribution of the micro residual stresses in laser maritensite revealed by FIB ring-core milling technique Acta Mater. 150 327–38

[119] Winiarski B, Benedetti M, Fontanari V, Allahkarami M, Hanan J, Schajer G and Withers P 2016 Comparative analysis of shot-peened residual stresses using micro-hole drilling, micro-slot cutting, X-ray diffraction methods and finite-element modelling of Residual Stress, Thermomechanics & Infrared Imaging, Hybrid Techniques and Inverse Problems vol 9, ed S Bossuyt et al (Berlin: Springer) pp 215–24

[120] Salvati E, Sui T and Korsunsky A 2016 Uncertainty quantification of residual stress evaluation by the FIB–DIC ring-core method due to elastic anisotropy effects Int. J. Solids Struct. 87 61–69

[121] Salvati E, Sui T, Lunt A and Korsunsky A 2016 The effect of eigenstrain induced by ion beam damage on the apparent strain relief in FIB–DIC residual stress evaluation Mater. Des. 92 649–58

[122] Lunt A and Korsunsky A 2015 A review of micro-scale focused ion beam milling and digital image correlation analysis for residual stress evaluation and error estimation Surf. Coat. Technol. 283 373–88

[123] Lord J, Cox D and Ratzke A 2018 A Good Practice Guide for Measuring Residual Stresses by FIB–DIC (Teddington, UK: National Physical Laboratory)

[124] Korsunsky A, Salvati E, Lunt A, Sui T, Mughal M, Daniel R, Keckes J, Bemporad E and Sebastiani M 2018 Nanoscale residual stress depth profiling by focused ion beam milling and eigenstrain analysis Mater. Des. 145 55–64

[125] Salvati E, Romano-Brandt L, Mughal M, Sebastiani M and Korsunsky A 2019 Generalised residual stress depth profiling at the nanoscale using focused ion beam milling J. Mech. Phys. Solids 125 488–501

[126] Schajer G and Prime M 2006 Use of inverse solutions for residual stress measurements J. Eng. Mater. Technol. 128 373–82

[127] Zhu R, Xie H, Zhu J, Li Y, Che Z and Zou S 2014 A micro-scale strain rosette for residual stress measurement by SEM Moiré method Sci. China Sci. 57 716–22

[128] Treuting R and Bead W 1951 A mechanical determination of biaxial residual stress in sheet materials J. Appl. Phys. 22 130–4

[129] Fang C and Wickert J 1996 Determining mean and gradient residual stresses in thin films using micromachined cantilevers J. Micromech. Microeng. 6 301–9

[130] Palma J, Rivero R, Lira I and Francois M 2009 Measurement of the residual stress tensor on the surface of a specimen by layer removal and interferometry: uncertainty analysis Meas. Sci. Technol. 20 115302–10

[131] Lira I, Vial C and Robinson K 1997 The ESPR measurement of the residual stress distribution in chemically etched cold-rolled metallic sheets Sci. Technol. 8 1250–7
[132] Li B, Tang X, Xie H and Zhang X 2004 Strain analysis in MEMS/NEMS structures and devices by using focused ion beam system Sensors Actuators A Phys. 111 57–62

[133] Kakunai S, Hayahira H, Sakamoto T and Matsuda H 2005 In-situ measurement of internal stress in electroless plating by television holographic interferometry Appl. Mech. Mater. 4 65–70

[134] Zhu J, Xie H, Hu Z, Chen P and Zhang Q 2011 Residual stress in thermal spray coatings measured by curvature based on a 3D digital image correlation technique Surf. Coat. Technol. 206 1396–402

[135] Bartletta J, Crooma B, Burdick J, Henkel D and Liu X 2018 Revealing mechanisms of residual stress development in additive manufacturing via digital image correlation Addit. Manuf. 22 1–12

[136] Tankovaa T, Da Silva L, Balakrishnana M, Rodrigues D, Launert D, Pasternak H and Tun T 2019 Residual stresses in welded I section steel members Eng. Struct. 197 109398

[137] Czarnek R, Skrzat A and Lin S 2011 Application of Moiré interferometry to reconstruction of residual stresses in cut railroad car wheels Measurement 44 569–79

[138] Wang Y and Chiang F 1993 Experimental study of residual stresses in Rail by Moiré interferometry Report DOT-VNTSC-FRA-93–24 (Washington, D.C.: U.S. Department of Transportation)

[139] Kujawinska M and Salbut L 1994 Grating interferometry for analysis of residual stresses relieved by annealing Proc. SPIE 2342 248–54

[140] Kujawinska M and Salbut L 1996 Automated moire interferometry for residual stress determination in engineering objects Handbook of Moire Measurement (Boca Raton, FL: CRC Press) pp 271–86

[141] Holstein D, Salbut L, Kujawinska M and Juptner W 2001 Hybrid experimental-numerical concept of residual stress analysis in laser weldments Exp. Mech. 41 343–50

[142] Cheng W and Finnie I 2007 Residual Stress Measurement and the Slitting Method (Berlin: Springer)

[143] Prime M 1999 Residual stress measurement by successive extension of a slot: the crack compliance method Appl. Mech. Rev. 52 75–96

[144] Xu Y and Bao R 2017 Residual stress determination in friction stir butt welded joints using a digital image correlation-aided slitting technique Chin. J. Aeronaut. 30 1258–69

[145] Salehi S, Rastak M, Shokrieh M, Barrallier L and Kubler R 2020 Full-field measurement of residual stresses in composite materials using the incremental slitting and digital image correlation techniques Exp. Mech. 60 1239–50

[146] Ramesh K 2008 Photoelasticity Springer Handbook of Experimental Solid Mechanics ed W Sharpe (Berlin: Springer) pp 701–42

[147] Standard test method for photoelastic measurements of birefringence and residual stresses in transparent or translucent plastic materials D4093–95 (West Conshohocken, PA: ASTM International)

[148] Standard test methods for polarsopic examination of glass containers C148–17 (West Conshohocken, PA: ASTM International)

[149] Lee S, Toeg H, Ou K, Yang J, Ho K, Lin C and Huzen H 2008 Residual stress patterns affect cell distributions on injection-molded poly-L-lactide substrate Ann. Biomed. Eng. 36 513–21

[150] Weng C, Lee W and To S 2009 Birefringence techniques for the characterization of residual micro stresses in injection-moulded micro-lens arrays Polym. Test. 28 709–14

[151] Adhikari A, Bourgade T and Asundi A 2016 Residual stress measurement for injection molded components Theor. Appl. Mech. Lett. 6 152–6

[152] Iannotti P, Subhash G, Ifju P, Kreusi P and Varshneya A 2011 Photoelastic measurement of high stress profiles in ion-exchanged glass Int J. Appl. Glass Sci. 2 275–81

[153] Horn G, Lesniak J, Mackin T and Boyce B 2005 Infrared grey-field polariscope: a tool for rapid stress analysis in microelectronic materials and devices Rev. Sci. Instrum. 76 045108

[154] Bajore A 1995 Automated polarimeter–macroscope for optical mapping of birefringence, azimuths, and transmission in large area wafers. Part I: Theory of the measurement Rev. Sci. Instrum. 66 2977–90

[155] Bajore A 1994 Investigation of stress-induced birefringence in large semiconductor wafers by imaging polarimetry Proc. SPIE 2265 431–42

[156] Richert M, Orlik X and De Martino A 2010 Imaging polarimetry for the determination of stress constraint in transparent solids EPJ Web Conf. 5 01003

[157] Geilera H, Kargoa H, Wagner M, Eichler S, Jurisch M, Kretzer U and Scheffer-Czygan M 2006 Photoelastic characterization of residual stress in GaAs-wafers Mater. Sci. Semicond. Process. 9 345–50

[158] Standard test method for measuring optical retardation and analyzing stress in glass F218–13 (West Conshohocken, PA: ASTM International)

[159] Tholey M, Swain M and Thiel N 2011 Thermal gradients and residual stresses in veneered Y-TZP frameworks Dent. Mater. 27 1102–11

[160] Aminola L and Aben H 2004 On the optical theory of photoelastic tomography J. Opt. Soc. Am. A 21 1093–101

[161] Aben H and Errapart A 2012 Photoelastic tomography with linear and non-linear algorithms Exp. Mech. 52 1179–93

[162] Aben H, Anton J and Errapart A 2008 Modern photoelasticity for residual stress measurement in glass Strain 44 40–48

[163] Tomlinson R, Yang H, Scotton D and Lionheart W 2006 The design and commissioning of a novel tomographic polarscope Proc. 2006 SEM Annual Conf. and Expo on Exp. and Appl. Mech. vol 3 pp 1141–7

[164] Nisida M 1965 A method for measuring stresses on metal surface photoelastically Sci. Papers Inst. Phys. Chem. Res. 59 69–77

[165] Nisida M and Takabayashi H 1965 Thickness effects in “hole method” and applications of the method to residual stress measurement Sci. Papers Inst. Phys. Chem. Res. 59 78–86

[166] Hooke C and Stagg J 1968 An approximate solution for the effect of “shear lag” in the measurement of residual stresses using a photoelastic gauge Int. J. Solids Struct. 4 139–57

[167] Matthews G and Hooke C 1972 The measurement of residual stresses by the use of photoelastic gauges Int. J. Solids Struct. 8 193–214

[168] Cardenas-Garcia J 2000 The hole drilling method in photoelasticity—application of an optimisation approach Strain 36 9–15

[169] Dullieu-Barton M and Stanley P 1998 Development and applications of thermoelastic stress analysis J. Strain Anal. 33 93–104

[170] Pitarresi G and Patterson E 2003 A review of the general theory of thermoelastic stress analysis J. Strain Anal. 38 405–17

[171] Greene R, Patterson E and Rowlands R 2008 Thermoelastic stress analysis Springer Handbook of Experimental Solid Mechanics ed W Sharpe (Berlin: Springer) pp 743–67

[172] Zanganah M, Tomlinson R and Yates J 2008 T-stress determination using thermoelastic stress analysis J. Strain Anal. 43 529–37
[174] Middleton C, Weihrauch M, Christian W, Greene R and Patterson E 2020 Detection and tracking of cracks based on thermoelastic stress analysis R. Soc. Open Sci. 7 200823
[175] De Finis R, Palumbo D and Galietti U 2020 Assessment of the quality of adhesive bond in t-joints coupons by using thermoelastic stress analysis Proc. SPIE 11409 11409G–1
[176] Robinson A, Dulieu-Barton J, Quinn S and Burguete R 2009 A review of residual stress analysis using thermoelastic techniques J. Phys.: Conf. Ser. 181 012029
[177] Wong A, Jones R and Sparrow J 1981 Thermoelastic constant or thermoelastic parameter? J. Phys. Chem. Solids 48 149–53
[178] Robinson A, Dulieu-Barton J, Quinn S and Burguete R 2013 The potential for assessing residual stress using thermoelastic stress analysis: a study of cold expanded holes Exp. Mech. 53 299–317
[179] Palumbo D and Galietti U 2016 Data correction for thermoelastic stress analysis on titanium components Exp. Mech. 56 451–62
[180] Di Carolo F, De Finis R, Palumbo D and Galietti U 2019 A thermoelastic stress analysis general model: study of the influence of biaxial residual stress on aluminium and titanium Metals 9 671
[181] Devone T and Adar F 2012 Raman spectroscopy of solids Characterization of Materials ed E Kaufmann (New York: Wiley) pp 1067–104
[182] Welsch D 1995 Raman spectroscopy An Introduction to Laser Spectroscopy ed D Andrews and A Demidov (New York: Plenum Press) pp 91–114
[183] De Wolf I 1996 Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits Semicond. Sci. Technol. 11 139–54
[184] Wermelinger T and Spolenak R 2011 Stress analysis by means of Raman microscopy Confocal Raman Microscopy ed T Dieing, O Hollricher and J Toporski (Berlin: Springer) pp 259–78
[185] Jana M and Singh R 2017 A study of evolution of residual stress in single crystal silicon electrode using Raman spectroscopy Appl. Phys. Lett. 111 063901
[186] Pezzotti G and Zhu W 2014 Raman spectroscopic method for analyzing residual stresses in ceramic composites Encyclopedia of Thermal Stresses ed R Hetnarski (Berlin: Springer) pp 4093–102
[187] Krishna R, Jones A, Edge R and Marsden B 2015 Residual stress measurements in polycrystalline graphite with micro-Raman spectroscopy Radiat. Phys. Chem. 111 14–23
[188] Shin J, Lee C, Lee K and Eun K 2001 Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films Appl. Phys. Lett. 78 631–3
[189] Abiko K, Kato Y, Hohjo H, Kishida Y and Sudo E 2020 Raman imaging of residual stress distribution in epoxy resin and metal interface J. Raman Spectrosc. 51 193–200
[189] Song G, Du L, Qi L, Li Y, Li X and Li Y 2017 Residual stress measurement in a metal microdevice by micro Raman spectroscopy J. Micromech. Microeng. 27 105014
[190] Shionoya S 1998 Photoluminescence Luminescence of Solids ed D Vij (New York: Plenum Press)
[191] Grabner L 1978 Spectroscopic technique for the measurement of residual stress in sintered Al2O3 J. Appl. Phys. 49 580–3
[192] Ma Q and Clarke D 1993 Stress measurement in single-crystal and polycrystalline ceramics using their optical fluorescence J. Am. Ceram. Soc. 76 1433–40
[193] Abbiss J and Heeg B 2008 Imaging piezospectroscopy Rev. Sci. Instrum. 79 123105
[194] Lima C, Dosta S, Gulejman G and Clarke D 2017 The application of photoluminescence piezospectroscopy for residual stresses measurement in thermally sprayed TBCs Surf. Coat. Technol. 318 147–56
[195] Schlichting K, Vaidyanathan K, Sohn Y, Jordan E, Gell M and Padture N 2000 Application of Cr3+ photoluminescence piezo-spectroscopy to plasma-sprayed thermal barrier coatings for residual stress measurement Mater. Sci. Eng. A 291 68–77
[196] Kim N and Yun H 2018 Noncontact mobile sensing for absolute stress in rail using photoluminescence piezospectroscopy Struct. Health Monit. 17 1213–24
[197] Fujiwara Y, Nishino T and Hamakawa Y 1986 Measurements of residual stress in semi-insulating GaAs by Cr-related luminescence lines Appl. Phys. A 41 115–22
[198] Zhao Y, Ma C, Huang F, Wang C, Zhao S, Cui Q, Cao X and Li F 2013 Residual stress inspection by Eu3+ photoluminescence piezo-spectroscopy: an application in thermal barrier coatings J. Appl. Phys. 114 073502
[199] Makino A, Nelson D and Hill M 2011 Hole-within-a-hole method for determining residual: stresses J. Eng. Mater. Technol. 133 021020–1