Innovative Molecular Imaging for Clinical Research, Therapeutic Stratification, and Nosography in Neuroscience

Marie Beaurain1,2*, Anne-Sophie Salabert1,2, Maria Joao Ribeiro3,4,5, Nicolas Arlicot3,4,5, Philippe Damier6, Florence Le Jeune7, Jean-François Demonet8 and Pierre Payoux1,2

1 CHU de Toulouse, Toulouse, France, 2 ToNIC, Toulouse Neuroimaging Center, Inserm U1214, Toulouse, France, 3 UMR 1253, iBrain, Université de Tours, Inserm, Tours, France, 4 Inserm UIC 1415, University Hospital, Tours, France, 5 CHRU Tours, Tours, France, 6 Inserm U913, Neurology Department, University Hospital, Nantes, France, 7 Centre Eugène Marquis, Rennes, France, 8 Leenards Memory Centre, Department of Clinical Neuroscience, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland

Over the past few decades, several radiotracers have been developed for neuroimaging applications, especially in PET. Because of their low sterically hindrance, PET radionuclides can be used to label molecules that are small enough to cross the blood brain barrier, without modifying their biological properties. As the use of 11C is limited by its short physical half-life (20 min), there has been an increasing focus on developing tracers labeled with 18F for clinical use. The first such tracers allowed cerebral blood flow and glucose metabolism to be measured, and the development of molecular imaging has since enabled to focus more closely on specific targets such as receptors, neurotransmitter transporters, and other proteins. Hence, PET and SPECT biomarkers have become indispensable for innovative clinical research. Currently, the treatment options for a number of pathologies, notably neurodegenerative diseases, remain only supportive and symptomatic. Treatments that slow down or reverse disease progression are therefore the subject of numerous studies, in which molecular imaging is proving to be a powerful tool. PET and SPECT biomarkers already make it possible to diagnose several neurological diseases in vivo and at preclinical stages, yielding topographic, and quantitative data about the target. As a result, they can be used for assessing patients' eligibility for new treatments, or for treatment follow-up. The aim of the present review was to map major innovative radiotracers used in neuroscience, and explain their contribution to clinical research. We categorized them according to their target: dopaminergic, cholinergic or serotoninergic systems, β-amyloid plaques, tau protein, neuroinflammation, glutamate or GABA receptors, or α-synuclein. Most neurological disorders, and indeed mental disorders, involve the dysfunction of one or more of these targets. Combinations of molecular imaging biomarkers can afford us a better understanding of the mechanisms underlying disease development over time, and contribute to early detection/screening, diagnosis, therapy delivery/monitoring, and treatment follow-up in both research and clinical settings.

Keywords: molecular imaging, clinical research, neurology, psychiatry, PET, SPECT
INTRODUCTION

Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in humans and other living systems (1). Over the past few years, rapid improvement in molecular imaging has led to gain in specificity and quantification helpful for early diagnosis and disease follow-up, particularly within the field of neurology. A key advantage of in vivo molecular imaging is its ability to identify pathological processes without the need for invasive biopsies or surgical procedures (2).

This imaging technique is currently performed with positron emission tomography (PET) and single-photon emission tomography (SPECT). Several PET and SPECT radiotracers have been developed for neuroimaging applications. The first ones, namely 123I-labeled amines, 99mTc-hexamethylpropyleneamine-oxime (99mTc-HMPAO), and 99mTc-ethyl cysteinate dimer (99mTc-ECD), were developed in the 1990s to measure regional cerebral blood flow in the presurgical evaluation of patients with refractory partial epilepsy (3). The 2000s saw the advent of PET with the use of fluorine-18 fluorodeoxyglucose ([18F]FDG) in clinical routine, for the assessment of cerebral glucose metabolism. As such, it has also been used in the preoperative evaluation of partial epilepsy, but its indications equally include the early diagnosis and differential diagnosis of dementing disorders, differential diagnosis of cerebral space-occupying lesions, detection of viable tumor tissue (recurrence), non-invasive grading, and differentiation between Parkinson's disease and atypical Parkinsonian syndromes (4).

During the past decade, advances in molecular imaging have enabled scientists to focus on specific brain targets, such as receptors, neurotransmitter transporters, or abnormal protein deposits. There are a growing number of radiotracers, which are regarded as valuable tools for many medical imaging applications, including early detection, diagnosis, and treatment follow-up (2). New imaging biomarkers (e.g., amyloid peptide) allow for the diagnosis of neurological diseases at an early stage, thus contributing to the emergence of the concept of preclinical disease (5, 6). Several PET and SPECT radiotracers are used for both routine clinical applications and research that aim to improve the prevention, diagnosis and treatment of brain diseases. For instance, molecular imaging biomarkers can be used for treatment follow-up, or for selecting patients to be included in clinical trials, or for exploring the neurobiological underpinnings of disease progression.

The aim of the present review was to map out the main innovative radiotracers used in neurology, and explain their role in clinical research. We did not explore 11C-labeled tracers in any depth, as they are not widely used for clinical purposes, owing to their short half-life (20 min). We classified the radiotracers according to their target.

DOPAMINERGIC SYSTEM

Today, the main class of radiotracers targeting neurotransmission is the one that enables the dopaminergic pathways to be explored (7). These molecules allow for the imaging of nigrostriatal neurons and dopamine receptors. They are used as PET or SPECT radiotracers and assist with the diagnosis of Parkinson's disease (PD), other Parkinsonian syndromes, and Lewy body dementia (LBD) (8).

The first radiotracer to be introduced for the non-invasive assessment of nigrostriatal terminals was [18F]-DOPA in 1983 (9). This radiotracer reflects the activity of aromatic amino acid decarboxylase (AADC), an enzyme that converts L-DOPA to dopamine, through its subsequent accumulation in the dopamine neurons (10). Striatal F-DOPA uptake has been found to be closely related to the nigral cell count (11), except at the beginning of the disease as a consequence of functional compensation (F-DOPA uptake is preserved while motor symptoms can be already present) (12). This molecule has a history of more than 30 years in clinical research and for the diagnosis of PD. However, in the past decade, the clinical practice led to prefer instead tracers targeting the plasma membrane dopamine transporter (DAT). The latter is easier to use and has a high sensitivity for detecting presynaptic dopaminergic degeneration at early-stage of PD. F-DOPA has recently regained interest in the context of regenerative therapy for PD such as the implantation of dopamine cells or the infusion of drugs with regenerating effects into the striatum (13, 14). The purpose of this therapy is to regenerate the dopaminergic presynaptic function by converting L-DOPA to dopamine. In that case, DAT tracers are considered to be less relevant for measuring therapeutic response than F-DOPA.

As mentioned above, the second presynaptic dopaminergic target is the DAT, located on dopamine nerve cell terminals. In contrast to the AADC, the DAT is only expressed within dopamine neurons. However, the ligands used for its imaging may also bind to related transporters, such as the serotonin reuptake transporter (SERT) or the norepinephrine reuptake transporter (10). In SPECT imaging, several radiotracers have been developed. The most commonly used are the two cocaine derivatives: [123I]-βCIT and [123I]-FP-CIT (8). Compared with [123I]-βCIT, [123I]-FP-CIT has better selectivity for DAT vs. SERT, and due to its lower DAT affinity, it has better kinetic properties, with a striatal peak time at 148 min after intravenous injection (15). Although direct comparison of FP-CIT SPECT and F-DOPA PET has shown that both FP-CIT SPECT scans and F-DOPA PET scans are able to distinguish patients with PD from healthy controls with high levels of sensitivity and specificity, the decrease in [123I]-βCIT binding more closely mirrors the reduction in dopaminergic neurons than the decrease in F-DOPA uptake does, suggesting that β-CIT binding is a better index of dopaminergic neuron loss (16). These different sensitivity of the two tracers to a reduction in dopamine transmission is linked to differing degrees of decrease in the striatal uptake of the two tracers, with less striatal FP-CIT uptake than F-DOPA uptake at the early phase of disease (17). [123I]-FP-CIT was licensed as DaTSCAN (Amersham Health) in Europe in 2000, and is now a frequently used SPECT radioligand in clinical routine, particularly as an ancillary tool for diagnosing patients with movement disorders, but also in clinical research (15). In the latter context, [123I]-FP-CIT has been used in numerous studies seeking to determine the sensitivity and specificity of this tracer.
in the differentiation of several causes of dementia (18), as well as to study variations in DAT density after different treatments, such as antipsychotics in patients with schizophrenia (19), or psychotherapy in individuals with depression (20).

Tropane derivatives have also been labeled with 99mTc: TRODAT-1 has been compared with F-DOPA in patients with PD (21), and may represent a reliable alternative. 99mTc-labeled ligands are less expensive, and may therefore be more easily accessible, and more suitable for routine use (22–24).

Another tracer has been developed to image the DAT: PE2I. Like FP-CIT and β-CIT, this molecule is a cocaine derivative, which can be labeled with iodine-123 or 125, carbon-11, or tritium (25). This ligand has about a 30-fold higher affinity for DAT than for SERT, and its lower affinity for DAT makes [123I]-PE2I kinetics better than that of [123I]-FPCIT, with a striatal peak time of 30–60 min. However, despite its favorable properties, [123I]-PE2I is not currently licensed as a SPECT radioligand for clinical use (15).

The excellent properties of PE2I mentioned above recently were exploited to develop a new DAT tracer: LBT-999, exploited by Zionexa, which could be used in future PET explorations using fluorine-18 (26–28). Because of its higher resolution, PET imaging is more useful than SPECT for accurate \textit{in vivo} quantification of DAT density. LBT-999 is a phenyltropane derivative that has demonstrated its suitability for \textit{in vivo} quantification of DAT in non-human primates (29). An \textit{in vivo} kinetic study in baboons confirmed that LBT-999 brain uptake is fast, high, and mainly located in the putamen and caudate, with peak uptake in these regions at 30 min postinjection.

A third way of investigating the function of dopamine terminals is to measure the density of vesicular monoamine transporter (VMAT2), which is responsible for taking up neurotransmitters into presynaptic secretory vesicles. Although a majority of VMAT2 are expressed in dopaminergic terminals, this transporter is also located in various monoaminergic neurons, and is involved in the vesicular trapping of a wide variety of neurotransmitters including dopamine, serotonin, norepinephrine, and epinephrine. This target can be investigated with [11C]-DBT, or more recently with fluorinated analog [18F]-AV-133, by PET (30). This presynaptic marker follows very typical patterns in several neurodegenerative diseases affecting dopaminergic function, such as PD, LBD, multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal syndrome (CBS). Their uptake/binding is altered in several brain areas, depending on the disease and its stage (31). In contrast to AADC activity or DAT binding, it has been suggested that VMAT2 activity is less inclined to changes induced by medication or compensatory mechanisms. However, VMAT2 activity can be impacted by the amount of vesicular dopamine, competing at the recognition site. Hence, the level of VMAT2 binding may decrease with levodopa administration (32). These tracers have a future in early detection/screening, diagnosis, and neuroprotective treatment follow-up of these neurodegenerative diseases, as well as in the monitoring of neural grafted cells after transplantation (8).

Dopaminergic neurotransmission can also be explored by visualizing postsynaptic D2 receptors. The binding potential of these receptors can be assessed using SPECT with the ligands [123I]-IBZM and 123I-IBF, as well as PET with [11C]-raclopride and [18F]-fallypride as radiotracers (Figure 1) (8, 31). The concomitant study of DAT and D2 receptors may improve the diagnostic value of molecular imaging in differentiating between PD and other parkinsonian syndromes (33, 34). Nowadays, however, the measurement of cardiac [123I]-MIBG uptake remains the most frequently used technique to differentiate PD and MSA (35). Molecular imaging of dopamine D2 receptors has also been used to study dopamine’s role in drug abuse and addiction (36), and to evaluate several neuropsychiatric disorders (37).

Key features of all these tracers are summarized in Figure 2 and Table 1.

AMYLOID IMAGING

β-amyloid (Aβ) plaques in the brain are one of the key histopathologic lesions of Alzheimer’s disease (AD) (80). Advances in the understanding of the physiopathology of AD suggest that progressive amyloid accumulation begins during the presymptomatic phase, followed by synaptic dysfunction, tau-mediated neuronal injury, a reduction in brain volume, and finally the emergence of cognitive symptoms, followed by a clinical syndrome of overt dementia (81). This suggest that Aβ imaging is a critical step for the early diagnosis of AD.

These deposits were first imaged in PET in 2002, using a thioflavin-T derivative: 11C-Pittsburgh compound B ([11C]-PIB) (82). Although this is the best known compound, its use is restricted to the research field, owing to the short half-life of 11C. Numerous studies have showed that [11C]-PIB binds to Aβ plaques in several cortical regions in patients with AD (82–84). [11C]-PIB binding is correlated with a reduction in cerebrospinal fluid Aβ42 (85), cerebral atrophy (86), and episodic memory impairment in apparently healthy elderly individuals and those with mild cognitive impairment (MCI) (87). These studies have paved the way for the development of several Aβ plaque PET tracers labeled with 18F. To date, three radiopharmaceuticals with equivalent diagnostic performances have been authorized by the European Medicines Agency and the US Food and
TABLE 1 | Main SPECT and PET dopaminergic tracers, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies
[18F]-DOPA	PET	AADC activity	Uptake	PD (10, 13, 14) LBD (38, 39) MSA (40) PSP (41)
[11C]-DTBZ	PET	VMAT2 density		Kᵢ = 2 (42) PD (43, 44) LBD (44, 45) MSA (46, 47)
[123I]-βCIT	SPECT	DAT density	Kᵢ = 27±2 (DAT) Kᵦ = 3±0.2 (SERT) Kᵦ = 80±28 (NET) (48)	PD (49-52) LBD (53) MSA (54)
[18F]-AV133	PET	VMAT2 density		Kᵢ = 0.19 (striatum) Kᵦ = 0.25 (hypothalamus) (54) PD (55) LBD (56)
[123I]-FPCIT	SPECT	DAT density	Kᵢ = 3.5 (DAT) Kᵦ = 9.7 (SERT) (48)	PD (57-59) LBD (60) MSA (61) PSP (62)
[123I]-IBZM	SPECT	D2 receptors density		Kᵢ = 3.1±0.62 Kᵦ = 0.32 (D2) Kᵦ = 4143 (D1) (62) MSA (63, 64) PSP (63, 65)
[99mTc]-TRODAT-1	SPECT	DAT density	Kᵢ = 14.1±2.1 (DAT) Kᵦ = 360±44 (SERT) (23)	PD (21, 66)
[123I]-PE2I	SPECT	DAT density	Kᵢ = 17±7 (DAT) Kᵦ = 500±30 (SERT) Kᵦ > 1000 (NET) (25)	PD (70, 71) LBD (72) PSP (73)
[18F]-LBT-999	PET	DAT density	Kᵦ = 9.15±2.8 (DAT) IC₅₀ > 1000 (SERT and NET) (28)	PD (77)*
[18F]-fallypride	PET	D2 receptors density		IC₅₀ = 0.6 (78) Epilepsy (79)

Kᵦ, dissociation constant; Kᵢ, inhibition constant; IC₅₀, half maximal inhibitory concentration. *Preclinical study.
FIGURE 2 | Schematic illustration of PET and SPECT techniques for assessing presynaptic and postsynaptic dopaminergic targets. L-DOPA is converted to dopamine by DOPA decarboxylase, then stored in vesicles by a vesicular monoamine transporter. Dopamine reuptake into presynaptic neurons occurs via a dopamine transporter (DAT). Two different types of dopamine receptors are expressed on postsynaptic neurons: D1 and D2.

Drug Administration: 18F-florbetapir, 18F-florbetaben, and 18F-flutemetamol (88) (Table 2).

The clinical criteria that are currently used for AD diagnosis have variable specificity and sensitivity, with pooled averages of 70 and 81% (100). A recent review assessing studies published from January 1980 to March 2014 on the diagnostic utility of these three radiotracers demonstrated a pooled weighted sensitivity and specificity of 89.6% and 87.2% for florbetapir, and 89.3 and 87.6% for florbetaben in differentiating patients with AD from age-matched normal controls (101). These results suggest that 18F-labeled tracers have better sensitivity and specificity than clinical diagnosis and other biomarkers commonly used in practice (89), and are comparable to 11C-PiB. They have also been shown to have good patient tolerability (96). However, the extent and distribution of Aβ plaques and amyloid PET tracer binding in patients are only moderately correlated with patterns of neurodegeneration and cognitive deficits (102–104). This suggests that Aβ deposition, which is a prerequisite for diagnosing AD, is just the starting-point of a cascade of other neuropathological events, rather than the actual driver of neurodegeneration and clinical disease progression (105).

In this respect, these tracers are chiefly useful for their good negative predictive value. A negative scan (i.e., amyloid burden undetectable or extremely low) is considered to be incompatible with a diagnosis of AD. Although a moderate-to-high amyloid plaque density may point to AD, a positive test is not sufficient to diagnose this disorder, especially in elderly participants. It was in this context that the Society of Nuclear Medicine and Molecular Imaging and the Alzheimer’s Association delineated “appropriate use criteria” in 2013, identifying three clinical circumstances in which amyloid PET imaging is recommended to clarify the diagnosis: “Patients with persistent or progressive unexplained mild cognitive impairment”, “Patients satisfying core clinical criteria for possible (as opposed to probable) Alzheimer’s disease (i.e., atypical clinical course or etiologically mixed presentation)”, and “Patients with atypically young-onset dementia” (106).

In spite of its excellent diagnostic capacity, the use of amyloid PET imaging in clinical practice is still limited. However, this technique has proved extremely useful in clinical
plaques are the earliest manifestation of the disease, a notion (PHF). According to the amyloid cascade hypothesis, toxic hyperphosphorylated tau protein in paired helicoid filaments and neurofibrillary tangles (NFTs) composed of aggregates of

Compounds	Target/ measure	Affinity (nM)	Clinical studies in AD
[11C]-PIB	Aβ plaques (fibrillar oligomer)	$K_i = 0.9$	(82–84)
[18F]-florbetapir	Aβ plaques (aggregated form)	$K_i = 2.2$	(89–92)
[18F]-flutemetamol	Aβ plaques (soluble form)	$K_i = 0.7$	(93–95)
[18F]-flortaucipir	Aβ plaques (aggregated form)	$K_i = 2.4$	(96–99)

The first radiotracer developed for tau imaging was [18F]-flortaucipir, previously known as T807), [18F]-T808, and the THK family [18F]-THK523, [18F]-THK5105, and [18F]-THK5351. These radiotracers have been synthesized, using structure–activity relationship software, from N-benzylidenebenzohydrazide compounds used for the detection of tau-paired helical filament (PHF) (88).

Over the past few years, six promising tau imaging agents have been developed: [11C]-PBB3, [18F]-AV-1451 (or flortaucipir, previously known as T807), [18F]-T808, and the THK family [18F]-THK523, [18F]-THK5105, and [18F]-THK5351. These radiotracers have been synthesized, using structure–activity relationship software, from N-benzylidenebenzohydrazide compounds used for the detection of tau-paired helical filament (PHF) (88).

One of the first radiotracers developed for tau imaging was [18F]-FDDNP. This tracer is rapidly metabolized in hydrophilic hypometabolism, disease severity, progression, and clinical presentation. Furthermore, clinical trials assessing monoclonal anti-amyloid antibodies have mostly failed to show a clinical benefit in AD. The other main histopathological figure of AD, abnormal tau protein aggregates, has therefore be considered with much interest. Several PET radiopharmaceuticals have therefore been developed to accurately target abnormal tau protein conformations. NFTs composed of aggregated hyperphosphorylated tau in paired helicoid filaments are one of the two key neuropathological substrates of AD, along with Aβ plaques (110). Whereas, Aβ levels stabilize at an early stage, the presence and extent of NFTs and neuronal injury increase in parallel with disease duration and severity of symptoms (111). Moreover, tau has been found to be more closely related to memory decline in post mortem studies of AD than amyloid pathology (112). Abnormal aggregation of tau protein has also been observed in the pathophysiology of other neurodegenerative diseases, including frontotemporal dementia (FTD), CBS, PSP and, to a smaller extent, LBD; the abnormal conformation of tau in these diseases are distinct from that observed in AD which involves paired helicoid filaments (PHF). These pathologies are collectively known as tauopathies. These tauopathies differ by the isomeric form and ultrastructural morphology of aggregated tau, affected brain regions, and spatial patterns of tau accumulation (110).

As previously indicated, several studies have reported that Aβ burden is only moderately correlated with glucose hypometabolism, disease severity, progression, and clinical presentation. Furthermore, clinical trials assessing monoclonal anti-amyloid antibodies have mostly failed to show a clinical benefit in AD. The other main histopathological figure of AD, abnormal tau protein aggregates, has therefore be considered with much interest. Several PET radiopharmaceuticals have therefore been developed to accurately target abnormal tau protein conformations. NFTs composed of aggregated hyperphosphorylated tau in paired helicoid filaments are one of the two key neuropathological substrates of AD, along with Aβ plaques (110). Whereas, Aβ levels stabilize at an early stage, the presence and extent of NFTs and neuronal injury increase in parallel with disease duration and severity of symptoms (111). Moreover, tau has been found to be more closely related to memory decline in post mortem studies of AD than amyloid pathology (112). Abnormal aggregation of tau protein has also been observed in the pathophysiology of other neurodegenerative diseases, including frontotemporal dementia (FTD), CBS, PSP and, to a smaller extent, LBD; the abnormal conformation of tau in these diseases are distinct from that observed in AD which involves paired helicoid filaments (PHF). These pathologies are collectively known as tauopathies. These tauopathies differ by the isomeric form and ultrastructural morphology of aggregated tau, affected brain regions, and spatial patterns of tau accumulation (110).

Over the past few years, six promising tau imaging agents have been developed: [11C]-PBB3, [18F]-AV-1451 (or flortaucipir, previously known as T807), [18F]-T808, and the THK family [18F]-THK523, [18F]-THK5105, and [18F]-THK5351. These radiotracers have been synthesized, using structure–activity relationship software, from N-benzylidenebenzohydrazide compounds used for the detection of tau-paired helical filament (PHF) (88).

One of the first radiotracers developed for tau imaging was [18F]-FDDNP. This tracer is rapidly metabolized in hydrophilic
compounds that cross the blood brain barrier (BBB), resulting in non-specific binding and therefore significant background noise. Furthermore, this tracer is not specific to NFTs, but also has an affinity for Aβ plaques, meaning that it is not the best choice for tau assessment (88, 113, 114).

The first tau-selective radioligand, [18F]-THK523 was synthesized by Okamura et al. (115), and its selectivity for phosphorylated tau was confirmed in post mortem studies, as well as in several in vitro, ex vivo, and in vivo experiments (116). However, this tracer is not able to bind to tau aggregates in non-AD tauopathies such as PSP and CBD, and is characterized by high retention in white matter (117, 118). New THK compounds have since been developed: [18F]-THK5105, [18F]-THK5117, and [18F]-THK5531. The latter has better kinetics, less white matter binding, and a higher affinity for tau than [18F]-THK523 (119). However, it also binds to MAO-B sites, and has a lower binding level in AD than AV-1451 does (110).

[11C]-PBB3 is another tau radiotracer with a high affinity for NFTs, a low level of white matter binding, good BBB penetration and rapid washout. The peculiarity of [11C]-PBB3 is its affinity for the tau isoforms of several non-AD tauopathies. However, it metabolizes to a radiolabeled compound that can cross the BBB, thus limiting its quantification (110).

[18F]-T807 ([18F]-AV-1451 developed by Lilly Research Laboratories) and [18F]-T808 belong to the benzimidazole pyrimidine family. They have a nanomolar affinity for the tau PHF found in AD, and are 25 times more selective for tau PHF than for Aβ (120, 121). Today, [18F]-AV-1451 is the most widely used tau radioligand. Like [11C]-PBB3, it has low retention in white matter. Several clinical studies have shown a close correlation between [18F]-AV1451 binding and the neuropathological stages of tau (122), cognitive decline and tau levels in cerebrospinal fluid (123, 124). However, a recent autoradiographic evaluation of AV1451 reported a lower level of binding in non-AD tauopathies, as well as off-target binding in the basal ganglia and substantia nigra in the absence of tau pathology (125).

Recently, another radioligand ([18F]-MK-6240, developed by Merck laboratories) was administered to patients with AD with promising results. This tracer showed a high specificity and selectivity for NFTs, good pharmacokinetic properties, and no apparent off-target binding, in contrast to [18F]-AV-1451 (110, 126–128).

As a link has been demonstrated between NFTs and AD symptoms, tau PET tracers are increasingly being used in AD clinical trials, especially those investigating drugs to reduce the tau or Aβ burden (129), such as Aβ monoclonal antibodies. The indirect effect of reducing Aβ on the rate of PHF deposition downstream further supports the amyloid hypothesis, and tau PET imaging may highlight the presumptive disease-modifying impact of these drugs. Furthermore, as tau monoclonal antibodies are designed and investigated, tau PET imaging will be helpful in demonstrating and quantifying the engagement of the molecular target. Many trials currently use cerebrospinal fluid (CSF) biomarkers of tau and phosphorylated tau to detect target engagement, but there are few data on how CSF biomarkers and tau PET imaging correlate. Tau PET imaging may also help to confirm that changes in tau deposition are correlated with clinical disease progression (130). Several tau vaccines have shown efficacy and safety in animal models (131). In a recent study, an anti-tau drug exhibited a good safety profile and even stimulated a positive immune response in human patients (132). Several other early-phase trials of drugs that target tau protein are currently underway, although the results are yet to be published (133).

In this context, like amyloid tracers, tau radioligands (summarized in Table 3) have an important role to play in clinical studies assessing new treatments and measuring disease progression.

NEUROINFLAMMATION

Neuroinflammation is an inflammatory and adaptive response within the central nervous system, and depends on several processes mediated by neuronal cells such as astrocytes, as well as by non-neuronal cells such as the brain’s resident macrophages and microglia.

Although initiation of an inflammatory response may be beneficial in response to injury of the nervous system, chronic or maladaptive neuroinflammation can have harmful outcomes in many neurological diseases. During inflammatory processes, cytokines, chemokines and reactive oxygen species (ROS) are produced by glial cells, and all these molecules can be targeted by molecular imaging (146).

The main target for imaging neuroinflammation is currently translocator protein (TSPO) overexpression in activated microglia. TSPO is a highly hydrophobic protein that is mainly situated in the outer mitochondrial membrane. Classically not present in healthy brain parenchyma, TSPO has been widely identified in microglial cells in dementia neuropathology, which involves neuroinflammatory processes and microglial activation. The most widely used TSPO PET radiopharmaceutical tracer used to be [11C]-(R)-PK11195. A new generation of fluorinated tracers has been developed in the past decade (147, 148), with different compound families such as phenoxazinylacetamides derivatives ([18F]-FEDAA1106, [18F]-FEPPA, [18F]-PBR06), imidazopyridine derivatives ([18F]-PBR111), and pyrazolopyrimidine derivatives ([18F]-DPA-714) (Figure 3). However, while these fluorinated compounds have turned out to be more sensitive and specific, with a clear improvement in the signal-to-noise ratio, a major additional problem has been identified, in the shape of a polymorphism in the TSPO gene (rs6971) that affects TSPO binding, with a significant impact on its visualization and its quantification. To circumvent this drawback, a new generation of rs6971-insensitive TSPO radioligands have been developed, such as flutriciclamide ([18F]-GE180) (149), and this latest generation of tracers is currently under evaluation (150).

Other PET tracers of gliosis have been tested, such as [11C]-DED, which binds to MAO-B, and some results in transgenic animals (151) seem to indicate that gliosis occurs early in AD and precedes the deposition of Aβ senile plaque. Cyclooxygenase was also investigated by Shukuri et al. (152), who showed that
TABLE 3 | Main tau PET tracers, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds	Target/measure	Affinity (nM)	Comments	Clinical studies
![F]-flortaucipir (AV1451, T807)	PHF-tau	$K_d = 14.6$ (88)	25 time more selective for tau than for Aβ. Low retention in white matter. Off-target binding has been reported in the basal ganglia and substantia nigra in the absence of tau pathology.	AD (134–137)
![F]-T808	PHF-tau	$K_d = 22$ (138)	Slow metabolic defluorination	AD (120)
![F]-THK523	PHF-tau	$K_d = 86$ (88)	12-fold selectivity for tau over Aβ. High retention in white matter.	AD (118)
![F]-THKS117	PHF-tau	$K_d = 5.19$ (88)	High binding selectivity to tau over Aβ. Substantial white matter binding.	AD (140)
![F]-THKS5105	PHF-tau	$K_d = 2.63$ (88)	Higher binding affinity to tau fibrils than to Aβ fibrils ($K_d = 35.9$ nM) Substantial white matter binding.	AD (115, 142)
![F]-THKS5351	PHF-tau	$K_d = 2.9$ (88)	Low binding affinity for white matter, and rapid pharmacokinetics. It also bind to MAO-B sites (110)	AD (119)
![Cl]-PBB3	PHF and non-PHF tau	$K_d = 100$ (88)	40-60 fold higher affinity for NFTs than for Aβ, rapid washout, minimal white matter binding, but it metabolizes to a radiolabeled compound that cross the BBB	AD (143), PSP (144), Amyotrophic lateral sclerosis/parkinsonism dementia complex [ALS/PDC (145)]
![F]-MK6240	PHF-tau	$K_i = 0.36±0.8$ (88)	Poor affinity for Aβ plaques ($K_i = 10$ µM) No apparent off-target binding.	AD (128)

[11C]-ketoprofen methyl ester, a specific tracer of COX1, is useful for imaging cerebral inflammation in injured rats, with very different kinetics from TSPO tracers. However, a study in humans with this ketoprofen derivative in 2016 (153) failed to yield positive results, suggesting that COX1 expression is more specific for acute inflammation than for chronic inflammation.

Recently, researchers have shown increasing interest in the ROS system. In cardiology, [18F]-DHMT makes it possible
to visualize early ROS activation prior to ventricular function deterioration induced by doxorubicin toxicity (154). In neurology, [18F]-ROStrace, a tracer trapped in the brain when it is metabolized by ROS is currently being assessed in models of AD, PD and other neurodegenerative diseases (155).

These tracers are summarized in Table 4.

GLUTAMATE RECEPTORS

Glutamate is the most abundant excitatory neurotransmitter, and glutamate receptors (GluRs) are implicated in plenty of neurological functions within the central nervous system (CNS). GluRs are classified into two groups: ionotropic receptors (iGluRs) and metabotropic receptors (mGluRs). iGluRs form ligand-gated ion channels and are divided into three subtypes based on their pharmacological properties: NMDA (N-methyl-D-aspartate receptors, NMDARs), AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptors, and kainate receptors. mGluRs are G-protein coupled receptors and include eight receptor subtypes, classified into three groups according to their sequence homology, signal transduction, and pharmacological profiles. Group I is comprised of mGluR1 and mGluR5, group II includes mGluR2 and mGluR3, and group III contains mGluR4, mGluR6, mGluR7, and mGluR8 (171). A dysfunction of these receptors may be involved in the pathophysiology of numerous brain disorders. Several PET and SPECT probes have been developed for GluRs imaging (Table 5).

NMDARs

Linked to ligand- and voltage-gated ion channels, NMDARs play an important role in many biological functions, including neurotransmission, neuroprotection, neurodegeneration, long-term potentiation, memory, and neurogenesis (188). These receptors are heteromeric multimers composed of one GluN1 (NR1 subunit) and combinations of GluN2 (NR2 subunits) (189) and GluN3 (NR3 subunits) (190). NR2 subunits come in four subtypes (A-D) that determine the type of receptor, with A and B being the most widespread. NR2B subunits, preferentially

FIGURE 3 | [18F]-DPA-714 images obtained from two clinical studies: (A) Comparison between Amyotrophic Lateral Sclerosis (ALS) patients and healthy individuals, and (B) stroke patient.
TABLE 4 | Main PET tracers for neuroinflammation imaging, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds	Target/measure	Affinity (nM)	Clinical studies	Compounds	Target/measure	Affinity (nM)	Clinical studies

![Image 96x68 to 158x145] | TSPO density | $K_i = 9.3$ in rat (156) | AD (157, 158), PSP (157), multiple sclerosis (MS), PD, ALS, HI, Rasmussen’sencephalitis, Herpes encephalitis, Schizophrenia (156) |

![Image 185x421 to 263x491] | TSPO density | $K_i = 0.078$ in rat (156) | AD (161), MS (162) |

![Image 185x421 to 263x491] | TSPO density | $K_i = 0.07$ in rat (156) | AD (165) |

![Image 185x421 to 263x491] | TSPO density | $K_i = 0.30$ in monkey (156) | MS (167) |

![Image 185x421 to 263x491] | TSPO density | $K_i = 3.70$ in rat (156) | MS (168), Schizophrenia (169), Epilepsy (170) |

|

![Image 185x421 to 263x491] | TSPO density | $K_i = 7.0$ in rat (156) | AD (159, 160) |

![Image 185x421 to 263x491] | TSPO density | $K_i = 0.87$ in rats (153) | MS (164) |

![Image 185x421 to 263x491] | TSPO density | $K_i = 0.30$ in monkey (156) | AD (166) |

![Image 185x421 to 263x491] | MAO-B activity | NA | AD (166) |

|

![Image 446x421 to 531x490] | COX-1 IC$_{50}$ = 47 (COX-1) IC$_{50}$ = 2.9 µM (COX-2) (152) | AD (153) |

|

![Image 446x421 to 531x490] | ROS activity | NA | Preclinical studies |
TABLE 5 | Main SPECT and PET glutamatergic tracers, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies	Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies
	SPECT	NMDARs density	$K_i = 4.2$ (171)	Schizophrenia (172, 173)	[123,125]I-CNS-1261	PET	mGlu1Rs density	$IC_{50} = 1.8$ (171)	(174)
	PET	NMDARs density	$K_i = 2.4$ (171)	-	[18F]-GE-179	PET	mGlu5Rs density	$K_i = 0.2$ (171)	PD (175), alcohol dependence (176), depression (177), autism (178)
	PET	NMDARs density	$K_i = 3500$ (179)	Tourette’s syndrome (GlutaTour project, ToNIC TMBI)	[18F]-FNM	PET	mGlu5Rs density	$K_d = 5.7$ (171)	Cocaine addiction (180), depression (181), FTD (182), alcohol dependence (183)
	PET	mGlu1Rs density	$K_i = 12.6$ (184)	(E)-[11C]JNJ42491293	(E)-[11C]-ABP688	PET	mGlu5Rs density	$K_d = 1$ (186)	(F-isomer) (185)
	PET	mGlu2Rs density	$K_i = 13.3$ (187)	(11C)-ITMM: R = OCH3, (11C)-ITDM: R = CH3	[11C]-JNJ42491293	PET	mGlu5Rs density	$IC_{50} = 9.2$ (171)	(187)
expressed on primary afferent fibers (PAFs), play a particular role in the transmission of pain messages (191). NMDARs activation requires several types of agonists interacting in cooperation and the simultaneous presence of strong membrane depolarization. Furthermore, NMDARs activation is modulated by extracellular Mg2+, which exerts a voltage-dependent blockade of the open ion channel (192). First, two co-agonists, glutamate and glycine, have to simultaneously bind to their respective sites. Membrane depolarization then causes the release of Mg2+ from the channel to allow for the intraneuronal entry of calcium, the starting point for the synthesis of second and third messengers [e.g., prostaglandins and nitric oxide (NO)] (193). Under physiological conditions of synaptic transmission, NMDARs are activated for only brief periods of time. However, in pathological circumstances, their overactivation causes excessive Ca2+ influx into nerve cells, and can lead to cell death (194). This abnormal mechanism mediates excitotoxic neuronal injury after acute brain damage (195) and is thought to contribute to disorders of neuronal hyperexcitability (e.g., epilepsy) and chronic neurodegenerative (e.g., AD, Huntington’s) (196) and psychotic (197) disorders. Several tracers have been synthesized in order to better understand the physiopathology of these diseases. Most of them are phencyclidine site ligands (PCP) that selectively bind to ion channels in the open and active state. These tracers thus make it possible to visualize only activated NMDARs. Several 123I-, 125I-, 11C-, or 18F-labeled SPECT/PET radiotracers have been developed, based on phencyclidine (PCP), thienylcyclohexyl piperidine (TCP) (198, 199), ketamine (200), memantine (201, 202) or MK-801 (203, 204), as these ligands are known to inhibit the intrachannel PCP sites of NMDARs. Although most of these radiotracers have been found to cross the BBB, none of them have detectable specific binding in vivo, owing to high non-specific binding, poor brain retention, or insufficient affinity for the small number of specific binding sites (205, 206). To our knowledge, only few NMDARs radiotracers have been used in human studies. The diarylguanidine analog, [123I]-CNS-1261 exhibited limited success in a clinical study of patients with schizophrenia (207). In PET imaging, despite encouraging results (208), a recent preclinical study using [18F]GE-179 was unable to demonstrate displaceable in vivo binding that would have been evidence of an in vivo activity-dependent NMDA signal in rats and primates (209–211). Recently, a new [18F]-labeled derivative of memantine, [18F]-fluoroethylormemantine ([18F]-FNM), was synthesized. In vivo evaluation of this novel PET tracer has yielded encouraging results (179, 212), and it had been injected for the first time into humans, in a pilot study to explore the glutamatergic system in patients with Tourette syndrome (GlutaTour project, ToNIC TMBI) (Figure 4).

Other NMDAR binding sites, such as the glycine and NR2B sites located on the receptor’s extracellular domain, have been the subject of various studies aimed at developing new tracers. However, radiotracer development for these targets has so far been unsuccessful, owing to the ligands’ suboptimum physiochemical and pharmacological characteristics, such as affinity, lipophilicity, stability, BBB penetration and pharmacokinetics (171, 205, 206, 213–215).

mGluR

Group I

Group I mGluRs, predominantly expressed postsynaptically, are involved in modulation of synaptic plasticity, and their activation leads to increased neuronal excitability. They are implicated in the physiopathology of several neurological and psychiatric disorder, such as PD, motor dysfunction, multiple sclerosis, epilepsy and stroke, and are the target of recently developed PET probes (171).

mGluR1

mGluR1 are found extensively throughout the brain, but are highly expressed in the cerebellar cortex, hippocampus and thalamus. mGluR1 antagonists have shown promising anxiolytic and antidepressant effects, whereas positive modulators of mGluR1 have been reported to be useful for the treatment of schizophrenia (171). Among all developed molecules to image them, only two radioligands have been injected into humans. The first is [11C]-ITMM. In vitro and preclinical studies found that this ligand had high affinity and selectivity for mGluR1,

FIGURE 4 | Images from first-in-man injection of [18F]-FNM in a Tourette’s syndrome patient (GlutaTour project).
and displayed high brain uptake, with highest uptake in the cerebellum (richest mGlur1 area). This cerebellar uptake has also been observed in human PET studies, however, [11C]-ITMM showed relatively low uptake in the brain regions with modest expression of mGlur1, such as thalamus, hippocampus, and cerebral cortex, making it difficult to examine target density in these regions (184). Nevertheless, [11C]-ITMM could be used to evaluate alterations in cerebellar mGlur1 under pathological conditions, and further clinical studies may be needed to assess the usefulness of this radioligand as a PET probe for mGlur1 quantification. [11C]-ITDM, an analog of ITMM, was considered superior to [11C]-ITMM after in vivo studies in monkeys because of its higher regional distribution volume in the mGlur1-rich region (216). To our knowledge, clinical PET studies with this radiotracer have not been published.

Finally, [18F]-FIMX, is the second high affinity mGlur1 radioligand injected into humans. The rank order of this tracer uptake correlated well with mGlur1 expression levels in the human brain, with a highest uptake in the cerebellum (174).

mGlur5

mGlur5 are found in the cerebral cortex, hippocampus, accessory olfactory bulbs, and nucleus accumbens (171). In physiological conditions, mGlur5 activates an intracellular cascade by second messenger processes and modulates functions as diverse as memory, anxiety, or learning. It has been demonstrated that the disruption of brain homeostasis in pathological conditions causes hyperactivation of mGlur5, which then contributes to excitotoxicity. mGlur5 dysregulation is therefore implicated in a broad variety of neuropsychiatric disorders and mGlur5 is recognized as a relevant molecular biomarker of glutamate pathology in these diseases. PET imaging of mGlur5 has expanded in recent years and has contributed to go deeper in the pathophysiology of brain diseases and to better evaluate new treatment strategies. Several PET radioligands targeting mGlur5 have been synthetized (205, 217) and the most promising candidates are currently being investigated in several preclinical and clinical studies.

[18F]-FPEB has been developed by Merck Research Laboratories and, regarding its high specificity and selectivity for mGlur5, together with a suitable brain kinetics (218, 219), has been extensively used to investigate mGlur5 density in neurological disorders. In neurology, [18F]-FPEB has shown mGlur5 upregulation in Parkinson’s Disease (220), but recent main contributions of [18F]-FPEB imaging are about psychiatry and addictions. Thus, Leurquin-Sterk et al. studied the effects of acute alcohol intake on the glutamatergic system (221), and demonstrated that mGlur5 availability was lower in limbic regions of alcohol-dependent subjects than in healthy controls, suggesting that limbic mGlur5 was involved in a compensatory mechanism helping to reduce craving during abstinence (176). The alteration of mGlur5 availability was also demonstrated in posttraumatic stress disorder, with a higher cortical [18F]-FPEB in vivo binding that was positively correlated with avoidance symptoms (222). Besides, [18F]-FPEB PET imaging did not find any mGlur5 contribution in Major Depressive Disorder (177), whereas, considering neurodevelopmental diseases, an increased [18F]-FPEB binding was observed in postcentral gyrus and cerebellum of male individuals with autism Spectrum disorder (178).

[11C]ABP688 is a selective, high-affinity mGlur5 antagonist widely used in mGlur5 clinical PET imaging (223, 224). Recently, [11C]ABP688 revealed in vivo evidence of reduced availability of mGlur5 in behavioral variant frontotemporal dementia (182) and in focal cortical dysplasia, in tissue resected from epilepsy patients (225). Whereas, Akkus et al. reported no significance difference in [11C]ABP688 binding in individuals with schizophrenia compared with healthy controls (226), a multi-modal imaging approach, combining mGlur5 PET imaging with [11C]ABP688 together with fMRI reported a lower mGlur5 availability and related functional connectivity alterations in drug-naive young adults with major depression (227). Esterlis et al. confirmed this hypothesis and objectified an antidepressant response of ketamine through a change in [11C]ABP688 binding that was associated with a significant reduction in depressive symptoms following ketamine administration (228). In alcohol consumption abuse, [11C]ABP688 evidenced altered mGlur5 signaling in the amygdala, that was correlated with the temptation to drink (183).

Regarding the limitations in clinical availability of [11C]ABP688, due to the short physical half-life of carbon-11, fluorinated ABP688 derivatives have been proposed, including the promising radioligand [18F]PSS232. After a preclinical validation evidencing specific and selective in vitro and in vivo properties (185), Warnock et al. reported recently the first-in-human evaluation of this tracer, highlighting in healthy volunteers a favorable brain uptake pattern and kinetics of [18F]PSS232 (186).

These clinical studies, with sometimes ambiguous or even discordant results, must be put in perspective with regard to the influence of the intrasynaptic concentration in endogenous glutamate on the binding of radioligands. For that purpose, pharmacological challenges have been performed in both preclinical and clinical settings, using several glutamate modulators, including ceftriaxone, a potent GLT-1 activator that decreases extracellular levels of glutamate, N-acetylcysteine (NAC), a promoter of the cysteine–glutamate antiporter that increases extrasynaptic glutamate release, and ketamine, an NMDA glutamate receptor antagonist, that increases glutamate release when administered at subanesthetic doses. To date, these pharmacological explorations remain equivocal according to: 1- the pharmacological compound used; 2- the tested radioligand; 3- the studied species (rodents, non-human primates, or human subjects). Thus, whereas ketamine administration decreases [11C]ABP688 binding in vivo in human subjects (229), this result has not been confirmed in rats (230). On the other hand, [18F]PSS232 binding appears to be not impacted to neither acute glutamate shifts after stimulation with N-acetylcysteine (NAC) in human (231) nor ketamine and ceftriaxone infusions in the rat brain (232). This parameter has to be considered carefully to accurately quantify mGlur5 expression in vivo using PET.
Group II and III

Group II and III mGluRs are mostly located within presynaptic regions and involved in the inhibition of neurotransmitter release. Of all the subtypes, only an mGluR2 tracer has been the subject of a human PET study. [11C]JN42491293 is a selective, high-affinity radioligand for the positive allosteric modulator (PAM) site of mGluR2. This site is a potential target for treating anxiety, schizophrenia or addiction. In the first human study, its in vivo distribution was consistent with known mGluR2 expression patterns (highest uptake in the striatum and cerebellum) (187). Unfortunately, recent experiments showed an off-target binding in vivo and [11C]JN42491293 was considered unsuitable for in vivo imaging of mGluR2 (233).

CHOLINERGIC SYSTEM

The cholinergic system is well known to be involved in cognitive function, and cholinergic dysfunction has been shown to play a key role in the physiopathology of dementia. Targets have been identified by post mortem studies, which have highlighted alterations in functional components of the cholinergic system (234). These include both presynaptic dysfunction [e.g., in acetylcholinesterase (AChE) or vesicular acetylcholine transporters (VAChts)] and postsynaptic dysfunction [e.g., in nicotinic acetylcholine receptors (nAChR) or muscarinic acetylcholine receptors (mAChR)] (235, 236). Several radiotracers (summarized in Figure 2) have been developed for each of these targets.

There are two PET tracer substrates for AChE: [11C]-PMP and [11C]-MP4A. These have been used in several clinical studies over the past two decades to highlight modifications in AChE activity in patients with AD, PD, PSP or LBD (237–242). [11C]MP4A has a high specificity for AChE, but also a high rate of hydrolysis by this enzyme, and radioligand uptake in regions with high AChE activity is therefore strongly dependent on the rate of transport into the brain (243). By contrast, [11C]PMP exhibits a hydrolysis rate that is three to four times slower than that of [11C]MP4A, allowing for more precise estimates of AChE activity in regions of moderate-to-high AChE concentration (244). Presynaptic cholinergic terminal density can also be assessed with selective radioligands for presynaptic VAChts. This has been done in clinical studies with [123I]-IBVM (237, 245) and, more recently, in PET imaging with [18F]FEOBV (246). [18F]FEOBV exhibits lower binding in the mesopontine junction and medulla than [123I]IBVM, providing a robust index of VACht binding (247).

Postsynaptic cholinergic dysfunction has been assessed in patients with AD, using (S)-[11C]nicotine (248–250). However, these [11C]nicotine studies were hindered by high levels of non-specific binding, rapid metabolism, and washout from the brain, as well as a strong dependence on cerebral blood flow (234). New PET and SPECT radioligands have recently been developed to target α4β2 nAChR, which is the most severely affected receptor subtype in AD, with reductions of up to 50% in the neocortex, entorhinal cortex and hippocampus (251). Some clinical studies using either the SPECT tracer [123I]-5IA, or the PET tracer [18F]-2FA, in patients with AD have highlighted significant reductions in α4β2 nAChR in several brain areas, correlated with cognitive impairment (252, 253). Furthermore, another study found a negative correlation between α4β2 nAChR availability and Aβ load (measured by [11C]-PIB), suggesting that Aβ deposition induces the degeneration of cholinergic neurons (254). It was suggested 10 years ago that the α7 nAChR subtype plays a neuroprotective role, by modulating the neurotrophic system that is needed to maintain cholinergic neuron integrity, and by stimulating signal transduction pathways that support neuron survival. In AD, α7 nAChR is implicated in Aβ toxicity and tau phosphorylation (255). Moreover, deletion of the α7 nAChR gene has been shown to reduce cognitive impairment in animal models of AD (256). Further PET studies using radioligands specific to the α7 nAChR, such as [18F]ASEM, are needed to determine the relationship between α7 nAChR and AD pathology (234).

In PD, LBD or PSP, mAChR has also been imaged with [123I]QNB and [11C]NMPB (257, 258), which are high-affinity mAChR antagonists with similar chemical structures and regional brain distributions. These radiotracers are able to penetrate the BBB efficiently, but non-specifically in relation to the mAChR subtype (234).

All these cholinergic tracers are resumed in Figure 5 and Table 6.

GABA_A RECEPTORS

γ-Amino butyric acid (GABA), is the predominant inhibitory neurotransmitter in the central nervous system. This neurotransmitter is able to bind to two types of receptor: ionotropic GABA_A/C and metabotropic GABAB. GABA_A receptors, also known as the central benzodiazepine receptor, are found on most neurons in the brain, and are part of a superfamily of ligand-gated ion channels. They have a primary binding site for GABA, as well as multiple allosteric modulatory sites. When benzodiazepines, or other allosteric modulators such as barbiturates, bind to GABA_A receptors, conformational changes increase the permeability of the central pore to chloride ions, resulting in a chloride flux that hyperpolarizes the neuron (271). GABA_A receptors can be composed of several subunit isoforms (272), but only pentamers containing α1, α2, α3, α4, or α5 subunits are benzodiazepine sensitive. These various subunits have a region-specific distribution in the brain, and are believed to subserve different functional and physiological roles and mediate a variety of pharmacological effects. Impairment of GABA_A receptor function is increasingly recognized to play a major role in the pathophysiology of several neuropsychiatric diseases such as AD, epilepsy, panic disorders, major depression, cortical brain damage following an acute stroke, anxiety disorders, and chronic alcohol dependency (273). Radiotracers that bind to benzodiazepine sites on GABA_A receptors (GABA_A-BZ sites) have been shown to be useful for investigating these
disorders (274). The first molecules developed for GABAA receptor imaging was carbon-11 labeled benzodiazepines such as [11C]flunitrazepam, [11C]diazepam, or [11C]fludiazepam, but the lack of specificity and in vivo affinity of these ligands (Kd ≥ 10 nM) did not allow accurate determination of GABAA receptor density (275). The triazolobenzodiazepine [11C]alprazolam have also been investigated. Despite an increased affinity (Kd = 3.4 nM), PET studies in six healthy volunteers showed a low extraction into brain (<1% of injected dose), and a substantial depot effect probably into the lungs (276). Finally, the imidazobenzodiazepine flumazenil (Ro 15-1788 or N-methyl-11C[flumazenil]), became the most commonly used radioligand for GABAA receptor imaging and is still extensively used to quantify benzodiazepine binding in the human brain (277–279). It was used to measure changes in GABA levels (280), as well as to quantify BZ receptors density in the epileptic foci of patients with partial epilepsy (281–283), in schizophrenic patients (284), neuronal loss in stroke (285), and more recently as a tool in clinical research to evaluate GABAA receptor occupancy using molecules with potential anxiolytic properties (286). [123I]iomazenil, a iodo-analog of flumazenil with very similar binding profile, has also been widely used in clinical studies (287–289).

[11C]Ro15-4513 is a partial inverse agonist at the GABAA-BZ site, preferentially targeting α5 subunits (290, 291). Like the previous ones, this tracer has also been used in clinical studies to understand the precise involvement of GABAA receptors in different neuropsychiatric diseases and the relationship between GABAA receptor density and clinical symptoms (292, 293).

Several attempts of fluorine-18 labeling of flumazenil were performed. Thus, [18F]-FEF, [18F]-FFMZ, and [18F]-flumazenil have been tested. Studies have demonstrated the superiority of [18F]-flumazenil because of a higher affinity and lower levels of radiometabolites in brain (275, 294). Because of the longer half-life of the isotope, this tracer could become the “gold standard” in benzodiazepine PET studies.

The development of GABAA radioligands (summarized in Table 7) need several improvements. Several improvements are needed. First, is to develop receptor subtype specific radioligands such as [11C]Ro15-4513. Radioligands specific for all the GABA A receptor subtypes would be of great importance to PET imaging. The second important enhancement is to develop and apply

![Schematic illustration of the main cholinergic PET and SPECT radioligands, and their presynaptic or postsynaptic targets.](image-url)
Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies	Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies
[11C]-PMP	TEP	AChE activity	NA	AD (237, 239, 240, 259), PD (239)	[123I]-5IA	SPECT	ω4β2 nAChR density	Kᵦ = 0.011 in rats (260)	AD (252)
[11C]-MP4A	TEP	AChE activity	NA	AD (242), PD (238, 241), LBD (261), PSP (238)	[18F]-2FA	TEP	ω4β2 nAChR density	Kᵦ = 0.046 in rats (262)	AD (253)
[123I]-IBVM	SPECT	VAChT density	IC₅₀ = 2.5±0.2 in rats (263)	MSA (245)	[123I]-QNB	SPECT	mAChR density	IC₅₀ = 0.8 in mouse (264)	AD (265), PD, LBD (258)
[18F]-FEOBV	TEP	VAChT density	AD (266), LBD (246)		[11C]-NMPB	TEP	mAChR density	IC₅₀ = 1.8 in mouse (264)	AD (267), PD, PSP (257)
[11C]-nicotine	TEP	ω4β2 nAChR density	Kᵦ = 2.4 in rats (268)	AD (248–250)	[18F]-ASEM	TEP	α7 nAChR density	Kᵦ = 0.3 in HEK293 cells stably transfected with rat α7 nAChR (269)	Schizophrenia (270)
TABLE 7 | Main radioligands for GABAA receptors imaging, molecular structures, pharmacological properties, and examples of clinical studies.

Compounds	Imaging modality	Target/ measure	Affinity (nM)	Clinical trials
11C-FMZ	PET	GABA_A-BZ sites (α1, α2, α3, and α5 subunits)	\(K_i \approx 1.3 \) (BZRs containing α1, α2, α3, or α5 subunits) \(K_i \approx 150 \) (BZRs containing α4, or α6 subunits) \(295 \)	Epilepsy (281–283) Stroke (285) Schizophrenia (284)
123I-IMZ	SPECT	GABA_A-BZ sites	\(K_i = 0.47 \) (in primates) \(296 \)	Stroke (287) Epilepsy (288) Anorexia nervosa (289)
11C-Ro15-4513	PET	GABA_A-BZ sites α5 subtype	\(K_i = 0.3 \) (BZRs containing α5 subunits) \(290 \)	Alcohol dependence (292) Schizophrenia (293) Autism (297)
[18F]-flumazenil	PET	GABA_A-BZ sites	–	Epilepsy (298, 299)

full agonist radioligands sensitive to changes in endogenous neurotransmitter levels. Finally, development of radiotracers specific to other sites than the BZ binding site will be important in order to further investigate GABAA pharmacology as well as to investigate the role of GABAA receptors in various disease states (275).

SEROTONINERGIC SYSTEM

The serotonergic system plays an important modulatory role in many central nervous system functions. It is the target of many drugs commonly used to treat brain disorders, either through reuptake blockade or via interactions with serotonin (5-HT) receptors. Serotonergic dysfunction has been involved in the etiology of many psychiatric disorders, including depression, anxiety and schizophrenia, as well as neurological diseases such as AD and epilepsy. Currently available radiotracers for *in vivo* brain imaging of the 5-HT system in humans include radioligands for the 5-HT1A, 5-HT1B, 5-HT2A and 5-HT4 receptors, and for the 5-HT transporter (SERT) (300).

The 5-HT1A receptor is one of the most extensively studied receptors in the serotonergic family. Like most 5-HT receptors, it is a G protein-coupled receptor (GPCR) with seven membrane-spanning domains. It serves as an inhibitory autoreceptor in the raphe nuclei, and is targeted by serotonin reuptake inhibitors. It also plays a role with 5-HT4 and 5-HT6 receptors in learning and memory (301, 302). Several radioligands have been synthesized up to now, but only three are in frequent use in clinical studies. The two most widely used are [carbonyl-11C]WAY-100635 and [18F]MPPF (300). These two radioligands are selective and high-affinity 5-HT1A receptor antagonists with a high target-to-background ratio. These tracers have been used in numerous studies of patients with psychiatric disorders such as panic disorder (303), bipolar depression (218) and anorexia nervosa (304), as well as in neurological disorders such as epilepsy, cognitive impairment, AD and migraine (305–311). The third 5-HT1A antagonist radioligand used in clinical studies is [18F]-FCWAY (312), a fluorinated analog of WAY-100635, which also has high 5-HT1A affinity and a high hippocampal-to-cerebellar binding ratio (313–317). However, this compound undergoes
high deflourination in vivo, leading to high bone radioactivity uptake. Although this radiodeflourination has been prevented in humans by preadministering disulfiram, this drawback may explain why its use has not been expanded beyond a single PET center (300). A novel and promising 18F-labeled radiotracer, [18F]MefWAY, that is thought to be resistant to deflourination in vivo was recently administered to healthy humans, but no clinical study has yet been published (318). There has been recent interest in the use of 5-HT1A agonists to study variations in endogenous 5-HT levels. [11C]CUMI-101 shows high affinity, but its sensitivity to endogenous 5-HT variations in vivo has not yet been reported (319).

Because they are involved in the etiology and treatment of many psychiatric disorders, 5-HT2A receptors have also been imaged. Five specific radioligands of this receptor have successfully been used in clinical studies: [123I]-R91150, and the PET radioligands [18F]setoperone, [18F]altanserin, [18F]deuteroaltanserin, and [11C]MDL 100, 907. Despite its low signal-to-noise ratio, [123I]-R91150 has often been used in drug occupancy studies, on account of the widespread availability of SPECT (320, 321). It has also been used to study changes in 5-HT2A receptor density that are implicated in various diseases, including cognitive decline (322), suicidal behavior (323), and anorexia nervosa (324). [18F]altanserin is the most frequently used PET tracer. Although it is metabolized to lipophilic radiometabolites, which contribute to non-specific binding, like the previous one, this tracer has been used to determine 5-HT2A receptor density in relation to several psychiatric diseases, such as depression (325), cognitive decline (326), Tourette's syndrome (327), schizophrenia (328) and other neuropsychiatric disorders (329, 330).

Another target allowing for serotoninergic system imaging is the SERT. Interest in SERT imaging has been stimulated by the success of serotonin reuptake inhibitors. The three most widely used belong to the diarylsulfide family: [11C]-DASB, [11C]-MADAM, [123I]-ADAM (300). These radiotracers have been successfully used to estimate SERT occupancy by selective serotonin reuptake inhibitors (331–337), in order to demonstrate changes in SERT density in several neuropsychiatric disorders and throughout their treatment (338–344), as well as in healthy individuals to investigate physiological variations such as personality traits (345) or seasonal changes (346). Other specific radiotracers for this target are still being developed: 4-[18F]ADAM has yielded promising results (347, 348). All these serotoninergic tracers are summarized in Table 8.

α-SYNucleIN

α-synuclein (α-Syn) is a phosphoprotein found in Lewy bodies (LBs), pathological inclusions that are the hallmark of PD and LBD, as well as in the glial cytoplasmic inclusions (GCIs) that are typical of MSA. All these diseases fall now under the heading of synucleinopathies (363). α-Syn aggregates might induce mitochondrial and proteasomal dysfunction, and interfere with vesicular trafficking within dopamine neurons, leading to their degeneration (364). These protein aggregates have been shown to spread from cell to cell via the extracellular space, and the presence of α-Syn has been demonstrated in extracellular matrices such as plasma, conditioned cell media, and cerebrospinal fluid (365, 366). It is thought that occult α-Syn deposition may occur years before the onset of motor symptoms. Hence, accurate and early detection of premotor synucleinopathies may benefit more from α-Syn imaging, rather than from evidence of dopaminergic changes (367, 368).

Although several molecules are able to bind to aggregated α-Syn, a selective imaging biomarker has not been found yet. A sensitive and specific α-Syn radiotracer would have to fulfill several criteria. First, α-Syn exist in different forms, including soluble and insoluble oligomers. An imbalance between these two species led to the formation of pathologic aggregates (369, 370), which have to be recognized by the tracer. Secondly, α-Syn aggregates have distinct cellular localization patterns according to the synucleinopathy, with intraneuronal aggregates (e.g., LBs) in PD, and oligodendrocytic aggregates (e.g., GCIs) in MSA. The ideal α-Syn radiotracer would be able to detect and differentiate these different locations, thereby providing a potential tool for differential diagnosis. Third, colocalization between α-Syn aggregates and other aggregating proteins, such as tau and Aβ (371), has frequently been reported. The optimum tracer would have to be able to specifically detect α-Syn with regard to other deposits, despite their small size and low density. Finally, α-Syn undergoes various posttranslational modifications, such as oxidative modification (372), phosphorylation (373, 374), and N-terminal acetylation, all of which the tracer should be able to detect (363).

As explained above, several molecules are able to cross the BBB and bind to aggregated α-Syn. Unfortunately, these molecules also tend to bind to other aggregated proteins, including Aβ plaques. In this context, diverse Aβ-binding compounds have been investigated for potential affinity for α-Syn, such as [11C]-PIB (375), and more especially [18F]-BF227. In vitro binding studies indicate that [18F]-BF227 binds with high affinity to two binding sites on Aβ1–42 fibrils, and to one class of binding site on α-Syn fibrils. [18F]-BF227 has been found to bind to Aβ-containing AD brain, but failed to bind to Aβ-free LBD or age-matched control homogenates. Furthermore, [18F]-BF227 labeled both Aβ plaques and LBs in an immunohistochemical/fluorescence analysis of human AD and PD brain sections (376). [18F]-BF227 has also been reported to stain GCIs in post mortem tissues, and [11C]-BF227 PET was used to measure the aggregated α-Syn load in eight cases of probable MSA (377). This study demonstrated high signals in GCI-rich brain regions, including subcortical white matter and the putamen, globus pallidus, primary motor cortex, and anterior and posterior cingulate cortex. However, a very recent autoradiography study failed to support binding of [18F]BF-227 to CGI at concentrations typically achieved in PET experiments (378). The lack of specificity and affinity of [18F]-BF227 means that it cannot be used to diagnose synucleinopathies, although it could, theoretically, still be used to monitor changes in α-Syn aggregate load after interventions such as immunotherapy. Levels of other aggregated proteins, such as Aβ, would first have to be independently determined (368).
Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies	Compounds	Imaging modality	Target/measure	Affinity (nM)	Clinical studies
[11C]-WAY-100635	PET	5-HT_{1A} density (antagonist)	$K_d = 0.2–0.4 \ (300)$	PD (306), depression (349), panic disorder (303), social anxiety disorder (302), anorexia nervosa (304)	[11C]MDL-100,907	PET	SERT density	$K_i = 1.02 \ (356)^*$	Depression (340), schizophrenia (341), alcohol dependence (343), obsessive compulsive disorder (342), bipolar disorder (344)
[18F]MPPF	PET	5-HT_{1A} density (antagonist)	$K_d = 0.3 \ (300)$	AD (308), epilepsy (282, 307, 311), migraine (309, 310)	[18F]FCWAY	PET	5-HT_{2A} density	–	AD (350)
[18F]FCWAY	PET	5-HT_{1A} density (antagonist)	$K_i = 0.25 \ (300)$	Epilepsy (313–315), panic disorder (316)	[18F]MefWAY	PET	5-HT_{2A} density	$K_d = 0.14–0.19 \ (300)$	Depression (351), obsessive compulsive disorder (352)
[11C]JMDL-100,907	PET	SERT density	$K_i = 0.97±0.07 \ (354)$	–	[11C]JMDL-100,907	PET	SERT density	$K_d = 0.02 \ (356)^*$	–
[11C]JUMI-101	PET	5-HT_{1A} density (partial agonist)	$K_i = 0.15 \ (300)$	Measure of endogenous changes in serotonergic neurotransmission (355)	[11C]JUMI-101	PET	SERT density	$K_d = 0.03 \ (356)$	Depression (338), migraine (339)
[123I]N91150	SPECT	5-HT_{2A} density	$K_d = 0.11 \ (300)$	AD (322), anorexia nervosa (324), suicidal behavior (323)	[123I]N91150	SPECT	SERT density	$K_d = 0.03 \ (356)$	Depression (338), migraine (339)
[18F]setoperone	PET	5-HT_{2A} density	$K_d = 0.7 \ (357)$	AD (358), migraine (359), stroke (360), depression (361)	[18F]setoperone	PET	SERT density	$K_i = 0.081 \ (362)$	Depression (348)

* Determined for [3H]MADAM.
The last reported α-Syn radioligand is [125I]-SIL23 (379). This tracer has been found to bind to α-Syn fibrils in post mortem brain tissue from patients with PD, as well as to α-Syn in a transgenic mouse model for PD. However, the affinity of SIL23 for α-Syn vs. Aβ and tau fibrils is not optimum for imaging fibrillar α-Syn in vivo. Moreover, high non-specific binding, including non-specific binding in white matter liable to be secondary to lipophilic interactions, also appeared to limit autoradiography with SIL23 in preliminary experiments.

To conclude, the development of an α-Syn PET radiotracer is particularly challenging, and although several studies have tried to develop suitable PET α-Syn radiotracers (380), the ideal candidate remains elusive. These three radiotracers and their main properties are resumed in Table 9.

DISCUSSION

Molecular imaging agents have evolved from non-specific agents to ligands with very high selectivity for specific brain targets such as receptors, neurotransmitter transporters, or abnormal protein deposits over the last decades. Through the nine targets mentioned above, we have seen that the specificity of the ligands for their target is of paramount importance. Indeed, cross binding affinities of several radioligands could reduce the specificity of the results and may interfere with diagnosis.

More and more the diagnosis of dopaminergic disorders is sustained by molecular imaging combined with clinical examination and have been included in guidelines (383, 384). Thus, molecular imaging is used as an ancillary tool when clinical symptoms are insufficient to confirm a diagnosis. Dopaminergic imaging rests on F-DOPA, but mostly on DAT imaging (especially [123I]-FP-CIT), which is considered more relevant to evaluate dopaminergic neuron loss. Thus, LBT-999 could be of great interest in the future because of its better sensitivity, and the higher resolution of PET imaging. In parallel, the increase in attempted to graft dopaminergic neurons may drive up F-DOPA imaging to monitor cell survival. An interesting target remains particularly challenging: indeed, to date, α-Syn cannot be specifically detected with existing radiotracers. This target constituting the hallmark of PD, LBD and MSA, its early visualization could be considerably helpful for diagnosis.

In regards to AD imaging, the first investigations was the assessment of cerebral perfusion. Then, [18F]FDG has allowed to assess cerebral glucose metabolism, and remains a widely prescribed exam at present. Within the last decades, amyloid imaging became the most specific examination because of its excellent negative predictive value, and allow therapeutic stratification in clinical trials. In 2007 (later updated in 2010), Dubois and al. published revised criteria for AD that for the first time included AD biomarkers (amyloid PET and CSF Aβ42) as a supportive criteria. However, Aβ plaques are not correlated with cognitive decline, therefore, clinical research is increasingly turning to tau and neuroinflammation imaging to assess new treatments and follow-up disease progression. Further radiotracers targeting other mechanisms, such as [18F]FMN or [18F]-2FA, could be used in AD studies to improve understanding of the cascades of events leading to neurodegeneration.

Psychiatric diseases diagnosis does not call for molecular imaging in clinical routine. However, in psychiatry, physiopathological modifications behind the symptoms remain not well known and understood. Hence, PET and SPECT radioligands such as, serotonergic, GABAergic or glutamatergic tracers, are a powerful tool to improve psychiatric nosography. Nowadays, it is possible to quantify receptors and transporters imbalances in numerous psychiatric diseases including depression, anxiety and schizophrenia, and explore different treatments options. Moreover, several hypothesis suggest a potential link between excitotoxicity and psychiatries disorders especially schizophrenia. The hypothesis suggest that progressive excitotoxic neural cell death in hippocampal and cortical areas occurs via “disinhibition” of glutamatergic projection to these areas. Disinhibited glutamatergic activity could result from

Table 9

Main PET and SPECT radiotracers relevant to α-Syn imaging, molecular structures, pharmacological properties, and examples of clinical trials. *determined for [3H]-PIB.

Compounds	Imaging modality	Affinity for α-Syn fibrils (nM)	Affinity for Aβ fibrils (nM)	Clinical trials
[11C]-PIB	PET	$K_d = 4.16^* (381)$	$K_{f1} = 0.71^*$	
$K_{f2} = 19.80^* (Aβ_{1-42} \text{ fibrils}) (382)$	Not used in clinical trials for α-Syn imaging			
[18F]-BF227	PET	$K_d = 14.03 \pm 43.52 (380)$	$K_{f1} = 0.82 \pm 1.08$	
$K_{f2} = 125.42 \pm 29.05 (Aβ_{1-42} \text{ fibrils}) (380)$	MSA (377)			
[125I]-SIL23	SPECT	$K_d = 148 (379)$	$K_d = 635 (379)$	–

* K_d refers to the dissociation constant.
inhibition of glutamate-mediated neurotransmission and a consequent failure to stimulate inhibitory GABAergic neurons, and/or degeneration of inhibitory GABAergic interneurons (385). Unfortunately, too few studies have been performed yet to highlight this hypothesis. Today, more tracers are needed to explore glutamatergic and GABAergic systems.

CONCLUSION

After several decades of research, some radiotracers targeting a hallmark of a disease are valuable diagnostic tools in clinical routine and research, and are used on a large scale. Recently, numerous radiotracers have been developed in order to detect primary changes in brain tissue, and improve our understanding of physiopathological mechanisms of neuropsychiatric diseases. These radioligands provide quantitative and topographical information on the evolution of their target during the course of the disease. More than diagnostic tools, they are one of the only ways to better understand the functioning of the brain in the healthy man and in pathological conditions. Their future usefulness is more focused on therapy monitoring than on the diagnosis itself. As in oncology, molecular neuroimaging is now becoming a therapeutic assistance tool, for screening patient’s eligibility for drugs and monitoring the proper functioning of therapy. These new companion drugs are a new challenge for molecular imaging, and quantitative and kinetic analyses seem to be increasingly relevant for image interpretation. Further development in understanding radiotracer metabolism, binding characteristics, BBB crossing, and clinicopathologic correlations of all these imaging probes will assert their clinical utility, and will lead to the development of more neuroimaging probes in the future.

AUTHOR CONTRIBUTIONS

This review was written by MB, A-SS and NA. Correction was made by MR, PD, FL, J-FD, and PP. PP was also involved in the plan development.

FUNDING

This work was supported by Labex IRON (ANR-11-LABX-18-01).

REFERENCES

1. Mankoff DA. A definition of molecular imaging. J Nucl Med Off Publ Soc Nucl Med. (2007) 48:18N, 21N.
2. Pyrz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. (2010) 65:500–16. doi: 10.1016/j.crad.2010.03.011
3. O’Brien TJ, So EL, Mullan BP, Hauser MF, Brinkmann BH, Bohnen NI, et al. Subtraction ictal SPECT co-registered to MRI improves clinical usefulness of SPECT in localizing the surgical seizure focus. Neurology. (1998) 50:445–54. doi: 10.1212/WNL.50.2.445
4. Varrone A, Asenbaum S, Vander Borch T, Booj I, Nobili F, Nägren K, et al. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2. Eur J Nucl Med Mol Imaging. (2009) 36:2103–10. doi: 10.1007/s00259-009-1264-0
5. Goldman JG, Holden SK, Litvan I, McKeith I, Stobbins GT, Taylor JP. Evolution of diagnostic criteria and assessments for Parkinson’s disease mild cognitive impairment. Mov Disord Off J Mov Disord Soc. (2018) 33:503–10. doi: 10.1002/mds.27232
6. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement. (2016) 12:292–323. doi: 10.1016/j.jalz.2016.02.002
7. Finnema SJ, Schein M, Shahid M, Lehto J, Borroni E, Bang-Andersen B, et al. Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology. (2015) 232:4129–57. doi: 10.1007/s00213-015-3938-6
8. Baulieu J-L, Le-Pogam A, Leborgne A, Guilleateau D, Prunier-Aesch C. Imagerie moléculaire de la maladie de Parkinson : données actuelles. Médecine Nucl. (2008) 32:236–41. doi: 10.1016/j.mednucl.2008.02.001
9. Garnett ES, Fienau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature. (1983) 305:137–8. doi: 10.1038/305137a0
10. Becker G, Müller A, Braune S, Büttner T, Benecke R, Greulich W, et al. Early diagnosis of Parkinson’s disease. J Neurol. (2002) 249:ii40–8. doi: 10.1007/s00415-002-1109-9
11. Snow BJ, Tooyama I, McGeer EG, Yamada T, Calne DB, Takahashi H, et al. Human positron emission tomographic [18F]fluorodopa studies correlate with dopamine cell counts and levels. Ann Neurol. (1993) 34:324–30. doi: 10.1002/ANA.4103403034
12. Ribeiro MJ, Remy P, Bendriem B, Almeida P, Brulon V, Samson Y, et al. Comparison of clinical data sets acquired on different tomographs using 6-18F-L-dopa. Eur J Nucl Med. (2000) 27:707–12. doi: 10.1007/s002590050856
13. Ma Y, Tang C, Chaly T, Greene P, Breeze R, Fahn S, et al. Dopamine cell implantation in Parkinson’s disease: long-term clinical and (18F)-FDOPA PET outcomes. J Nucl Med Off Publ Soc Nucl Med. (2010) 51:7–15. doi: 10.2967/jnumed.109.066811
14. Akamatsu G, Ohnishi A, Aita K, Nishida H, Ikari Y, Sasaki M, et al. A revisit to quantitative PET with 18F-FDOPA of high specific activity using a high-resolution condition in view of application to regenerative therapy. Ann Nucl Med. (2017) 31:163–71. doi: 10.1007/s12149-016-1143-2
15. Ziebell M, Holm-Hansen S, Thomsen G, Wagner A, Jensen P, Pinborg LH, et al. Serotonin transporters in dopamine transporter imaging: a head-to-head comparison of dopamine transporter SPECT radioligands 123I-FP-CIT and 123I-PETL. J Nucl Med Off Publ Soc Nucl Med. (2010) 51:1885–91. doi: 10.2967/jnumed.110.078337
16. Ito Y, Fujita M, Shimada S, Watanabe Y, Okada T, Kusuoaka H, et al. Comparison between the decrease of dopamine transporter and that of L-DOPA uptake for detection of early to advanced stage of Parkinson’s disease in animal models. Synap N Y N. (1999) 31:178–85. doi: 10.1002/SICD.199930313:3:178–AID-SYN2-3.0.CO;2-M
17. Eshuis SA, Maguire RP, Leenders KL, Jonkman S, Jager PL. Comparison of FP-CIT SPECT with F-DOPA PET in patients with de novo and advanced Parkinson’s disease. Eur J Nucl Med Mol Imaging. (2006) 33:200–9. doi: 10.1007/s00259-005-1904-y
18. McKeith I, O’Brien J, Walker Z, Tatsch K, Booj J, Darcourt J, et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CITPECT in dementia with Lewy bodies: a phase III, multicentre study. Lancet Neurol. (2007) 6:305–13. doi: 10.1016/S1474-4422(07)70057-1
19. Mateos JJ, Lomeña F, Parellada E, Mireia F, Fernandez-Egea E, Pavia J, et al. Lower striatal dopamine transporter binding in neuroleptic-naive schizophrenic patients is not related to antipsychotic treatment but it suggests an illness trait. Psychopharmacology. (2007) 191:805–11. doi: 10.1007/s00213-006-0570-5
20. Lehto SM, Tolmunen T, Joutsuu M, Saarinen PL, Valkonen-Korhonen M, Vanninen R, et al. Changes in midbrain serotonin...
transporter availability in atypically depressed subjects after one year of psychotherapy. Prog Neuropsychopharmacol Biol Psychiatry. (2008) 32:229–37. doi: 10.1016/j.pnpbp.2007.08.013

21. Huang W-S, Chiang Y-H, Lin J-C, Chou Y-H, Cheng C-Y, Liu R-S. Crossover study of [99mTc-TRODAT-1 SPECT and (18)F-FDOPA PET in Parkinson's disease patients. Nucl Med Off Publ Soc Nucl Med. (2003) 44:999–1005.

22. Mozley PD, Schneider JS, Acton PD, Püssl K, Stern MB, Siderowf A, et al. Binding of [99mTc]TRODAT-1 to dopamine transporters in patients with Parkinson's disease and in healthy volunteers. J Nucl Med Off Publ Soc Nucl Med. (2000) 41:584–9.

23. Kung MP, Stevenson DA, Püssl K, Meegalla SK, Beckwith A, Essman WD, et al. [99mTc]TRODAT-1: a novel technetium-99m complex as a dopamine transporter imaging agent. Eur J Nucl Med. (1997) 24:372–80. doi: 10.1007/BF00881808

24. Huang WS, Lin SZ, Lin JC, Wey SP, Ting G, Liu RS. Evaluation of early-stage Parkinson's disease with 99mTc-TRODAT-1 imaging. J Nucl Med Off Publ Soc Nucl Med. (2001) 42:1303–8.

25. Emond P, Guilloteau D, Chalon S. PE2I: a radiopharmaceutical for in vivo exploration of the dopamine transporter. CNS Neurosci Ther. (2008) 14:47–64. doi: 10.1111/j.1755-5949.2007.00033.x

26. Chalon S, Hall H, Saba W, Garreau L, Döllé F, Hallidin C, et al. Pharmacological characterization of (E)-N-(4-fluorobut-2-enyl)-2beta-carbomethoxy-3beta-(4'-tolyl)nortropane (LBT-997) as a highly promising fluorinated ligand for the dopamine transporter. J Pharmacol Exp Ther. (2006) 317:147–52. doi: 10.1124/jpet.105.096792

27. Döllé F, Emond P, Mavel S, Demphel S, Hinnen F, Mincheva Z, et al. Synthesis, radioisotopy and in vivo preliminary evaluation of [11C]LBT-997: a selective radioligand for the visualisation of the dopamine transporter with PET. Bioorg Chem. (2006) 41:1115–25. doi: 10.1016/j.biochem.2005.09.035

28. Saba W, Valette H, Schöllhorn-Peyronneau M-A, Coulon C, Ottaviani M, Chalon S, et al. [11C]LBT-997: a suitable radioligand for investigation of extra-striatal dopamine transporter with PET. Synapse Y N Y N. (2007) 61:617–23. doi: 10.1002/syn.20337

29. Varrone A, Stepanov V, Nakao R, Tóth M, Gulyás B, Emond P, et al. Imaging of the striatal and extrastriatal dopamine transporter with (18)F-LBT-997: quantification, biodistribution, and radiation dosimetry in nonhuman primates. J Nucl Med Off Publ Soc Nucl Med. (2011) 52:1313–21. doi: 10.2967/jnumed.111.089593

30. Brooks DJ. Technology insight: imaging neurodegeneration in Parkinson's disease. Nat Clin Pract Neurol. (2008) 4:267–77. doi: 10.1038/ncpneuro0773

31. Ghadery C, Strafella AP. New imaging markers for movement disorders. Curr Neurol Neurosci Rep. (2018) 18:222. doi: 10.1007/s11910-018-0830-x

32. Fuente-Fernández R de la, Sossi V, McCormick S, Schulzer M, Ruth TJ, Brooks DJ, et al. REM sleep behavior disorder is related to striatal monoaminergic deficit in MSA. Neurology. (2009) 71:758–66. doi: 10.1212/00011243-2014-000700-0560

33. Plotkin M, Amthauer H, Klaffke S, Kühn A, Lüdemann L, Arnold G, et al. Correlation of Parkinson disease severity and 18F-dopa PET study of dopamine's role in drug abuse and addiction. Neurology. (2012) 78:494–500. doi: 10.1212/WNL.0b013e31824907ab

34. Knudsen GM, Karlsborg M, Thomsen R, Krabbe K, Regeur L, Nygaard MJ. SPECT imaging of dopamine transporters in patients with Parkinson's disease and in healthy volunteers. J Nucl Med Off Publ Soc Nucl Med. (2003) 44:999–1005.

35. Orimo S, Suzuki M, Inaba A, Mizusawa H, et al. 123I-MIBG PET study of striatal dopamine uptake in the diagnosis of dementia with Lewy bodies. Neurology. (2000) 55:1575–7. doi: 10.1212/01.WNL.0000000000000000

36. Lewis SJ, Pavese N, Rivero-Bosch M, Eggett K, Oertel W, Mathias CJ, et al. Brain monoamine systems in multiple system atrophy: a positron emission tomography study. Neurobiol Dis. (2012) 46:130–6. doi: 10.1016/j.nbd.2011.12.053

37. Shen L-H, Liao M-H, Tseng Y-C. Recent advances in imaging of monoamine neurotransmitter transporters. Nucl Med Biol. (1997) 24:6615–9. doi: 10.1016/S0969-8051(97)00101-7

38. Martin WRW, Wieler M, Stoessl AJ, Schulzer M. Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson's disease. Ann Neurol. (2008) 63:388–94. doi: 10.1002/ana.21320

39. Hu XS, Okamura N, Arai H, Higuchi M, Matsui T, Tashiro M, et al. Correlation of Parkinson disease severity and 18F-dopa PET study of dopamine neurotransmitter changes in dementia with Lewy bodies and Alzheimer disease. Arch Neurol. (2011) 68:905–12. doi: 10.1001/archneurol.2011.142
57. Mocchia M, Erro R, Picillo M, Santangelo G, Spina E, Allocca R, et al. A four-year longitudinal study on restless legs syndrome in Parkinson Disease. Sleep. (2016) 39:405–12. doi: 10.5665/sleep.5452
58. Filippi L, Manni C, Pierantozzi M, Brusa L, Danieli R, Stanzione P, et al. 123I-FP-CIT in progressive supranuclear palsy and in Parkinson’s disease: a Q-BECCS semiquantitative study. Nucl Med Commun. (2006) 27:381–9. doi: 10.1097/01.mnm.0000202898.45522.df
59. Booo J, Tissington G, Boer GJ, Speelman JD, Stoff JG, Janssen AG, et al. [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. (1997) 62:133–40. doi: 10.1136/jnnp.62.2.133
60. Walker Z, Moreno E, Thomas A, Inglis F, Tabet N, Rainer M, et al. Clinical usefulness of dopamine transporter SPECT imaging with 123I-FP-CIT in patients with possible dementia with Lewy bodies: randomised study. Br J Psychiatry J Ment Sci. (2013) 206:145–52. doi: 10.1192/bjp.bp.114.148634
61. El Fakhri G, Habert M-O, Maksud P, Ask A, Malek Z, Kijewski MF, et al. Quantitative simultaneous (99mTc)-ECD/123I-FP-CIT SPECT in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging. (2006) 33:87–92. doi: 10.1007/s00259-005-1920-y
62. Brücke T, Yuan Feen Tsai, McClean C, Singhanyom W, Kung HF, Cohen RM, et al. In vitro binding properties and autoradiographic imaging of 3-iodobenzamide ([125I]-IBZM): A potential imaging ligand for D-2 dopamine receptors in spect. Life Sci. (1988) 42:2097–104. doi: 10.1016/0024-3205(88)90212-8
63. van Rooyen E, Verhoef NF, Speelman JD, Wolters EC, Kuiper MA, Janssen AG. Multiple system atrophy and progressive supranuclear palsy. Diminished striatal D2 dopamine receptor activity demonstrated by 123I-IBZM single photon emission computed tomography. Arch Neurol. (1993) 50:513–6. doi: 10.1001/archneur.1993.00540050063017
64. Seppi K, Schocke MFH, Donnemiller E, Kremser G, et al. Comparison of diffusion-weighted imaging and [123I]IBZM-SPECT for the differentiation of patients with the Parkinson variant of multiple system atrophy from those with Parkinson’s disease. Mov Disord Off J Mov Disord Soc. (2004) 19:1438–45. doi: 10.1002/mds.20229
65. Arnold G, Tatsch K, Oertel WH, Vogl T, Schwarz J, Kraft E, et al. Clinical progressive supranuclear palsy: differential diagnosis by IBZM-SPECT and MRI. J Nucl Transl Suppl. (1994) 42:111–8. doi: 10.1097/00003739-199409000-00010
66. Van Laere K, De Ceuninck I, Dom R, Van den Eynde J, Vanbilloen H, et al. Combined imaging of 3-iodobenzamide ([125I]-IBZM) and [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging. (2010) 37:600–08. doi: 10.1007/s00259-010-1509-3
67. Kung MP, Kung HF, Billings J, Yang Y, Murphy RA, Alavi A. The relationship of regional brain β-amyloid to gait speed. J Neurol Neurosurg Psychiatry. (2015) 86:36–43. doi: 10.1136/jnnp-2014-310222
68. Kung MP, Kung HF, Billings J, Yang Y, Murphy RA, Alavi A. The relationship of regional brain β-amyloid to gait speed. J Neurol Neurosurg Psychiatry. (2015) 86:36–43. doi: 10.1136/jnnp-2014-310222
69. Chételat G, Villemagne VL, Bourgeat P, Pike KE, et al. Decreased dopamine D2/D3-receptor binding in temporal lobe epilepsy: an [18F]fallypride PET study. Epilepsia. (2006) 47:1392–6. doi: 10.1111/j.1365-2123.2006.09561.x
70. Mathis CA, Mason NS, Lopresti BJ, Klunk WE. Development of positron emission tomography β-amylloid plaque imaging agents. Semin Nucl Med. (2012) 42:423–32. doi: 10.1053/j.semnuclmed.2012.07.001
71. Jack CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. (2010) 9:119–28. doi: 10.1016/S1474-4422(09)70299-6
72. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol. (2004) 55:306–19. doi: 10.1002/ana.20009
73. Bacskai BJ, Frosch MP, Freeman SH, Raymond SB, Augustinack JC, Johnson KA, et al. Molecular imaging with Pittsburgh Compound B confirmed at autopsy: a case report. Arch Neurol. (2007) 64:431–4. doi: 10.1001/archneur.64.4.431
74. Hatashita S, Yamashita K. Clinically different stages of Alzheimer’s disease associated by amyloid deposition with [11C]-PIB PET imaging. J Alzheimers Dis JAD. (2010) 21:995–1003. doi: 10.3233/JAD-2010-100222
75. Fagan AM, Minton MA, Mach RH, Lee S-Y, Dence CS, Shah AR, et al. Inverse relation between in vivo amyloid imaging load and cerebrospinal fluid Aβ42 in humans. Ann Neurol. (2006) 59:512–9. doi: 10.1002/ana.20730
76. Chételat G, Villemagne VL, Bourgeat P, Pike KE, Jones G, Ames D, et al. Relationship between atrophy and beta-amyloid deposition in Alzheimer disease. Ann Neurol. (2010) 67:317–24. doi: 10.1002/ana.21953
77. Pike KE, Savage G, Villemagne VL, Ng S, Moss SA, Maruff P, et al. Beta-amyloid imaging and memory in non-demented individuals: evidence for preclinical Alzheimer’s disease. Brain J Neurol. (2007) 130(Pt 11):2837–44. doi: 10.1093/brain/awm238
78. Payoux P, Salabert AS. New PET markers for the diagnosis of dementia. Curr Opin Neurol. (2017) 30:608–16. doi: 10.1097/WCO.0000000000000489
79. Newberg AB, Arnold SE, Wintering N, Rovner BW, Alavi A. Initial clinical comparison of 18F-florbetapir and 18F-FDG PET in patients with Alzheimer disease and controls. J Nucl Med Off Publ Soc Nucl Med. (2012) 53:902–7. doi: 10.2967/jnumed.111.099606
80. Del Campo N, Payoux P, Djilali A, Delrieu J, Hoogendijk EO, Roland Y, et al. Relationship of regional brain β-amyloid to gait speed. Neurology. (2016) 86:36–43. doi: 10.1212/WNL.0000000000002325
81. Beaurain et al. Molecular Imaging in Neuropsychiatry
Emission Tomography (PET) Imaging Agent for Quantification of Neurofibrillary Tangles (NFTs). J Med. Chem. (2016) 59:4778–89. doi: 10.1021/acs.jmedchem.6b00166

127. Hostetler ED, Walji AM, Zeng Z, Miller P, Benacceff I, Salinas C, et al. Preclinical characterization of 18F-MK-6240, a promising PET tracer for in vivo quantification of Alzheimer’s neurofibrillary tangles. J Nucl Med Off Publ Soc Nucl Med. (2016) 57:1599–606. doi: 10.2967/jnumed.116.171678

128. Lohith TG, Bennacef I, Vandenbergh R, Vandenbulcke M, Salinas-Valenzuela C, Declercq R, et al. First-in-human brain imaging of Alzheimer dementia patients and elderly controls with 18F-MK-6240, a PET tracer targeting neurofibrillary tangle pathology. J Nucl Med Off Publ Soc Nucl Med. (2016) 60:107–14. doi: 10.2967/jnumed.115.158021

129. Pedersen SF, Sandholt BV, Keller SH, Hansen AE, Clemmensen AE, Sillestved H, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques. Arterioscler Thromb Vasc Biol. (2015) 35:1696–703. doi: 10.1161/ATVBAHA.114.305967

130. Brosch JR, Farlow MR, Risacher SL, Apostolova LG. Tau imaging in Alzheimer’s disease diagnosis and clinical trials. Neurotherapeutics. (2017) 14:62–8. doi: 10.1007/s13311-016-0490-y

131. Rosenmann H. Immunotherapy for targeting tau pathology in Alzheimer’s disease and tauopathies. Curr Alzheimer Res. (2013) 10:217–28. doi: 10.2174/1567205011310030001

132. Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skrabana R, et al. Safety and immunogenicity of the tau vaccine AAVVac in patients with Alzheimer’s disease: a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurol. (2017) 16:1234–34. doi: 10.1016/S1474-4422(16)30331-3

133. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, et al. Tau-based therapeutics for Alzheimer’s disease: active and passive immunotherapy. Immunotherapy. (2016) 8:1119–34. doi: 10.2217/imt-2016-0019

134. Barret O, Alagille D, Sanabria S, Comley RA, Weimer RM, Borroni E, et al. Tau imaging detects distinctive distribution of tau pathology in ALS/PDC on the Kii Peninsula. Neurology. (2019) 92:e136–47. doi: 10.1212/WNL.0000000000007676

135. Rodriguez-Vieitez E, Ni R, Gulyás B, Tóth M, Häggkvist J, Hallidin C, et al. Astrocytosis precedes amyloid plaque deposition in Alzheimer APPsw mouse brain: a correlative positron emission tomography and in vitro imaging study. Eur J Nucl Med Mol Biol. (2015) 42:1119–32. doi: 10.1007/s00259-015-3047-0

136. Shukuri M, Takashima-Hirano M, Tokuda K, Takashima T, Matsumura K, Inoue O, et al. In vivo expression of cyclooxygenase-1 in activated microglia and macrophages during neuroinflammation visualized by PET with 11C-ketoprogen methyl ester. J Nucl Med Off Publ Soc Nucl Med. (2011) 52:1094–101. doi: 10.2967/jnumed.110.084046

137. Ohnishi A, Senda M, Yamane T, Mikami T, Nishida H, Nishio T, et al. Exploratory human PET study of the effectiveness of (11)C-ketoprogen methyl ester, a potential biomarker of neuroinflammatory processes in Alzheimer’s disease. Nucl Med Biol. (2016) 43:438–44. doi: 10.1016/j.nuclmedbio.2016.04.005

138. Boulay EG, Wu J, Cai Z, Zhang W, Booth CJ, Kyriakides TC, et al. In vivo reactive oxygen species detection with a novel positron emission tomography tracer, 18F-DHMT, allows for early detection of anthracycline-induced cardiotoxicity in rodents. JACC Basic Transl Sci. (2018) 3:578–90. doi: 10.1016/j.jacbts.2018.02.003

139. Hou C, Hsieh C-J, Li S, Lee H, Graham TJ, Xu K, et al. Development of a positron emission tomography radiotracer for imaging elevated levels of superoxide in neuroinflammation. ACS Chem Neurosci. (2018) 9:578–86. doi: 10.1021/acschemneuro.7b00385

140. Alam MM, Lee J, Lee S-Y. Recent progress in the development of TSPO PET ligands for neuroinflammation imaging in neurological diseases. Nucl Med Mol Imaging. (2017) 51:283–96. doi: 10.1016/j.nuclmed.2017.01-0747-8

141. Passamonti L, Rodriguez PV, Hong YT, Allison KSJ, Bevan-Jones WR, Williamson D, et al. [11C]PK11195 binding in Alzheimer disease and progressive supranuclear palsy. Neurology. (2018) 90:e1989–96. doi: 10.1212/WNL.0000000000005610

142. Edison P, Archer HA, Gerhard A, Hinz R, Paves N, Turkheimer FE, et al. Microglia, amyloid, and cognition in Alzheimer’s disease: An [11C](R)PK11195-PET and [11C]PBB3-PET study. Neurobiol Dis. (2008) 32:412–9. doi: 10.1016/j.nbd.2008.08.001

143. Hamelin L, Lagarde J, Dorothy G, Leroy C, Labit M, Comley RA, et al. Early and protective microglial activation in Alzheimer’s disease: a prospective
study using 18F-DPA-714 PET imaging. Brain J Neurol. (2016) 139(4 Pt 4):1252–64. doi: 10.1093/brain/aww1017

160. Golla SSV, Boellaard R, Otkonen V, Hoffmann A, van Berckel BNM, Windhorst AD, et al. Quantification of [18F]DPA-714 binding in the human brain: initial studies in healthy controls and Alzheimer’s disease patients. J Cereb Blood Flow Metab. (2013) 33:566–72. doi: 10.1038/jcbfm.2014.261

161. Varrone A, Mattsson P, Forsberg A, Takano A, Nag S, Guylay B, et al. In vivo imaging of the 18-kDa translocator protein (TSP0) with [18F]FEDAA1106 and PET does not show increased binding in Alzheimer’s disease patients. J Nucl Med Mol Imaging. (2013) 40:921–31. doi: 10.2967/jnmm.112.123591

162. Takano A, Piehl F, Hillert J, Varrone A, Nag S, Guylay B, et al. In vivo TSP0 imaging in patients with multiple sclerosis: a brain PET study with [18F]FEDAA1106. EJNMMI Res. (2013) 3:30. doi: 10.1186/2191-219X-3-30

163. Wadsworth H, Jones PA, Chau W-F, Durrant G, Fouladi N, Passmore J, et al. [18F]FFE-180: a novel fluorine-18 labelled PET tracer for imaging Translocator protein 18 kDa (TSP0). Bioorg Med Chem Lett. (2012) 22:1308–13. doi: 10.1016/j.zdb.2011.12.084

164. Vomacka L, Albert NL, Lindner S, Unterrainer M, Mahler C, Brendel M, et al. Evaluation of NMDA receptors with [18F]FDG PET. J Nucl Med. (2010) 5:242–7. doi: 10.2967/jnmm.110.097570

165. Leurquin-Sterk G, Ceccarini J, Crunelle CL, de Laat B, Verbeek J, Deman SM, et al. Radiolabeling of [18F]-fluoroethynormemantine and initial in vivo evaluation of this innovative PET tracer for imaging the PCP sites of NMDA receptors. Nucl Med Biol. (2015) 42:643–53. doi: 10.1016/j.nucmedbio.2015.04.001

166. Martinez D, Slifstien M, Nabulsi N, Grassetti A, Urban NBL, Perez A, et al. Imaging glutamate homeostasis in cocaine addiction with the metabotropic glutamate receptor 5 positron emission tomography radiotracer [(11)C]ABP688 and magnetic resonance spectroscopy. Biol Psychiatry. (2014) 75:165–71. doi: 10.1016/j.biopsych.2013.06.026

167. Salabert A-S, Fonta C, Fontan C, Adel D, Alonso M, Pestourie G, et al. Radiolabeling of [18F]-fluoroethylnormemantine and in vivo evaluation of this innovative PET tracer for imaging the PCP sites of NMDA receptors. Nucl Med Biol. (2015) 42:643–53. doi: 10.1016/j.nucmedbio.2015.04.001

168. Rodriguez-Vieitez E, Saint-Aubert L, Carter SE, Almkvist O, Farid K, Scholl M, et al. Diverging longitudinal changes in astrocytosis and amyloid PET in autosomal dominant Alzheimer’s disease. Brain J Neurol. (2016) 139(Pt 3):922–36. doi: 10.1093/brain/awv004

169. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. (2003) 55:1112–8. doi: 10.1186/s13550-017-0340-x

170. Leuzy A, De Picker L, Verhaeghe A, Broucke J, Vrain J, et al. In vivo assessment of brain white matter inflammation in multiple sclerosis with [18F]FPR111 PET. J Nucl Med Off Publ Soc Nucl Med. (2014) 55:1112–8. doi: 10.2967/jnmm.113.135129

171. Leuzy A, De Picker L, Verhaeghe A, Broucke J, Vrain J, et al. In vivo assessment of brain white matter inflammation in multiple sclerosis with [18F]FPR111 PET. J Nucl Med Off Publ Soc Nucl Med. (2014) 55:1112–8. doi: 10.2967/jnmm.113.135129

172. Laere KV, Koole M, Hoon J de, Hecken AV, Langlois X, Andres JI, et al. In vivo characterization of metabotropic glutamate receptor type 5 abnormalities in behavioral variant FTD. Brain Struct Funct. (2016) 221:1387–402. doi: 10.1007/s00429-014-0978-3

173. Akkus F, Mihov Y, Treyer V, Ametamey SM, Johayem A, Senn S, et al. Metabotropic glutamate receptor 5 binding in male patients with alcohol use disorder. Transl Psychiatry. (2018) 8:17. doi: 10.1038/s41398-017-0066-6

174. Toyohara J, Sakata M, Oda K, Ishii K, Ito K, Hiura M, et al. Reduced metabotropic glutamate receptor type 1 ligand 11C-ITM in human PET studies of metabolic glutamate receptor type 1 ligand 11C-ITM. J Nucl Med Off Publ Soc Nucl Med. (2013) 54:1302–7. doi: 10.2967/jnmm.113.119891

175. Sephton SM, Herde AM, Mu L, Keller C, Rudišilši A, Auberson Y, et al. Preclinical evaluation and test-retest studies of [(18)F]PS2322, a novel radioligand for targeting metabotropic glutamate receptor 5 (mGlu5). Eur J Nucl Med Mol Imaging. (2013) 42:1288–37. doi: 10.1007/s00259-014-2883-7

176. Wannock G, Sommerauer M, Mu L, Iba Gonzalez G, Geistlich S, Treyer V, et al. A first-in-man PET study of [(18)F]PS2322, a fluorinated ABP688 derivative for imaging metabotropic glutamate receptor subtype 5. Eur J Nucl Med Mol Imaging. (2018) 45:1041–51. doi: 10.1007/s00259-017-3879-x

177. Laere KV, Kooele M, Hoon J de, Hecken AV, Langlois X, Andres JI, et al. Biodistribution, dosimetry and kinetic modeling of [11C]JNJ-42491293, a PET tracer for the mGlur2 receptor in the human brain. J Nucl Med. (2012) 55(Suppl 1):355.

178. Sahai S. Glutamate in the mammalian CNS. Eur Arch Psychiatry Clin Neurosci. (1990) 240:121–33. doi: 10.1007/BF02189982

179. Villmann C, Strutz N, Morth T, Hollmann M. Investigation by channel domain transplantation of rat glutamate receptor subunits, orphan receptors and a putative NMDA receptor subunit. Eur J Neurochem. (1999) 11:1765–78. doi: 10.1046/j.1460-9568.1999.00594.x

180. Paarmann I, Ferrmann D, Keller BU, Villmann C, Breitinger HG, Hollmann M. Kinetics and subunit composition of NMDA receptors in respiratory-related neurons. J Neurochem. (2005) 93:812–24. doi: 10.1111/j.1471-4159.2005.03027.x

181. Petrenko AB, Yamakura T, Baba H, Shimoji K. The role of N-methyl-D-aspartate (NMDA) receptors in pain: a review. Anesth Analg. (2003) 97:1108–16. doi: 10.1213/01.ANE.0000081061.12235.55

182. Dingledine R, Borges K, Bowie D, Traynelis SF. The glutamate receptor ion channels. Pharmacol Rev. (1999) 51:7–61.
193. Song XJ, Zhao QZ. Cooperative interaction among the various regulatory sites within the NMDA receptor-channel complex in modulating the evoked responses to noxious thermal stimuli of spinal dorsal horn neurons in the cat. Exp Brain Res. (1998) 120:257–62. doi: 10.1007/s002210050399

194. Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF, Tymianski M. Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PDS-95 protein. Science. (1999) 284:1845–8. doi: 10.1126/science.284.5421.1845

195. Leker RR, Shoehami E. Cerebral ischemia and trauma-different disorders yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev. (2002) 39:55–73. doi: 10.1016/S0165-0173(02)00157-1

196. Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excursive times ahead. Lancet Neurol. (2008) 7:742–55. doi: 10.1016/S1474-4422(08)70165-0

197. Lau CG, Zukin RS. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat Rev Neurosci. (2007) 8:143–6. doi: 10.1038/nrn2153

198. Ponchant M, Kamenkaj M, Crouzel C. Synthesis of 3-[18F]-fluoromethyl-TCFP1, A potential tool for pet study of the nmda receptor channel complex. J Label Compd Radiopharm. (1992) 31:955–60. doi: 10.1002/jlr.2580311115

199. Ponchant M, Crouzel C, Kamenka M, Pappata S. Synthesis of a new analog of PCP Fluorine-18 3-fluoromethyl-TCFP, a potent ligand for the NMDA glutamate receptor. J Label Compd Radiopharm. (1993) 32:352–3.

200. Shiue C-Y, Vallabhahosula S, Wolf AP, Dewey SL, Fowler JS, Slichter DJ, et al. Carbon-11 labelled ketamine—Synthesis, distribution in mice and PET studies in baboons. Nucl Med Biol. (1997) 24:145–50. doi: 10.1016/S0969-8051(96)00186-2

201. Ametamey SM, Bruheimle M, Kneife S, Kocik M, Honer M, Arigoni M, et al. PET studies of 18F-memantine in healthy volunteers. Nucl Med Biol. (2002) 29:227–31. doi: 10.1016/S0969-8051(01)00293-1

202. Ametamey SM, Samnick S, Leenders KL, Vontobel P, Leenders KL, Vontobel P, et al. Fluorine-18 radiolabelling, biodistribution studies and preliminary pet evaluation of a new memantine derivative for imaging the NMDA receptor. J Recept Signal Transduct. (1999) 19:129–41. doi: 10.3109/1040944990936640

203. Kiesewetter DO, Finn RD, Rice KC, Monn JA. Synthesis of 11C-labeled (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine [(+)-[11C]MK801]. Int J Rad Appl Instrum. (1990) 41:139–42. doi: 10.1080/06832889.1990.990098-2

204. Brown DR, Wyper DJ, Owens J, Patterson J, Kelly RC, Hunter R, et al. 123Iodo-MK-801: a spot agent for imaging the pattern and extent of glutamate (NMDA) receptor activation in Alzheimer’s disease. J Psychiatric Res. (1997) 31:605–19. doi: 10.1016/S0022-3956(97)00031-9

205. Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD. PET and SPECT imaging in drug development and neuroimaging. J Nucl Med Mol Imaging. (2014) 4:260–9.

206. Pilall RLL, Tippe DN. Metabolotropic glutamate receptor 5 – a promising target in drug development and neuroimaging. Eur J Nucl Mol Imaging. (2016) 43:1151–70. doi: 10.1007/s00239-015-3303-1

207. Labas R, Gilbert G, Nicole O, Dhilly M, Mayer D, Bell R, McBride W, et al. Longitudinal brain magnetic resonance imaging study of the alcohol-prefering rat. Part I: adult brain growth. Alcohol Clin Exp Res. (2006) 30:1234–47. doi: 10.1111/j.1530-2778.2006.00145.x

208. Sullivan JM, Lim K, Labaree D, Lin S, McCarthy TJ, Seibyl JP, et al. Kinetic analysis of the metabolotropic glutamate subtype 5 tracer [18F]FPEB in bolus and bolus-plus-constant-infusion studies in humans. J Cereb Blood Flow Metab. (2013) 33:532. doi: 10.1038/jcbfm.2012.195

209. Kang Y, Henschliffe C, Verma A, Vallabhajosula S, He R, Kothari P, et al. [18F]-FPEB PET/CT shows mGluR5 upregulation in Parkinson’s disease. J Neuroimaging Off J Am Soc Neuroimaging. (2019) 29:97–103. doi: 10.1111/jonis.12363

210. de Laat B, Weerasekera A, Leurquin-Sterk G, Gsell W, Bormans G, Himmelreich U, et al. Effects of alcohol exposure on the glutamatergic system: a combined longitudinal 18 F-FPEB and 1 H-MRS study in rats. Addict Biol. (2018) 24:696–706. doi: 10.1111/adb.12635

211. Holmes SE, Girgenti MJ, Davis MT, Pietrzak RH, Dellagioia N, Nuβsi N, et al. Altered metabolotropic glutamate receptor 5 markers in PTSD: in vivo and postmortem evidence. Proc Natl Acad Sci USA. (2017) 114:8390–5. doi: 10.1073/pnas.1702105114

212. Salabert A-S, Mora-Ramirez E, Beaurain M, Alonso M, Fontan C, Tarach K, et al. PET studies of 18F-memantine in healthy volunteers. J Nucl Med. (2009) 50:2594–7. doi: 10.2967/jnumed.109.071581

213. DuBois JM, Rousset OG, Guiot M-C, Hall JA, Reader AJ, Soucy J-P, et al. Metabolotropic Glutamate Receptor Type 5 ([mGluR5] cortical abnormalities in focal cortical dysplasia identified in vivo with [11C]ABP688 Positron-Emission Tomography (PET) imaging, Cereb Cortex N Y. (2016) 26:4170–9. doi: 10.1093/cercor/bhw249

214. Akkus F, Treyer V, Ametamey SM, Joheyam A, Mancosu B, Wys M, et al. Evaluation of a bolus/infusion protocol for [11C]ABP688, a PET tracer for mGluR5. Nucl Med Biol. (2010) 37:845–51. doi: 10.1016/j.nucmedbio.2010.04.107

215. DuBois JM, Rousset OG, Guiot M-C, Hall JA, Reader AJ, Soucy J-P, et al. Metabolotropic Glutamate Receptor Type 5 ([mGluR5] cortical abnormalities in focal cortical dysplasia identified in vivo with [11C]ABP688 Positron-Emission Tomography (PET) imaging, Cereb Cortex N Y. (2016) 26:4170–9. doi: 10.1093/cercor/bhw249

216. Esterlis I, Dellagioia N, Pietrzak RH, Matuskey D, Nabulsi N, Abdallah CG, et al. Ketamine-induced reduction in mGluR5 availability is associated with an antidepressant response: an [11C]ABP688 and PET imaging study in depression. Mol Psychiatry. (2018) 23:824–32. doi: 10.1038/mp.2017.58
229. DeLorenzo C, DellaGioia N, Bloch M, Sanacora G, Nabulsi N, Abdallah C, et al. In vivo ketamine-induced changes in [11C]PET binding to metabolotropic glutamate receptor subtype 5. Biol Psychiatry. (2015) 77:266–75. doi: 10.1016/j.biopsych.2014.06.024

230. Kosten L, Verhaeghe J, Wytels L, Stroobants S, Staelens S. Acute ketamine infusion in rat does not affect in vivo [11C]PET binding to metabolotropic glutamate receptor subtype 5. Mol Imaging. (2018) 17:1536011218788636. doi: 10.1533/2011.78836

231. O’Gorman Tuura R, Warnock G, Amentsey T, Treyer V, Noeske R, Buck A, et al. Imaging glutamate redistribution after acute N-acetylcysteine administration: a simultaneous PET/MR study. Neuroimage. (2019) 184:826–33. doi: 10.1016/j.neuroimage.2018.10.017

232. Müller Herde A, Boss SD, He Y, Schibli R, Mu L, Aметамей SM. Ketamine and ceftriaxone-induced alterations in glutamate levels do not impact the specific binding of metabolotropic glutamate receptor subtype 5 radioligand [18F]FPSS232 in the rat brain. Pharm Basic Biol. (2011) 21:11E3. doi: 10.3390/ph10130083

233. Leurquin-Sterk G, Celen S, Laere KV, Koole M, Bormans G, Langlois X, et al. Cortical acetylcholine esterase activity in human brain. J Neurosci Lett. (1986) 85:38–42. doi: 10.1016/0304-3940(86)90258-3

234. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, et al.ees, Ch5-Ch6. JG, et al. Cortical cholinergic function is more severely affected in Alzheimer’s disease and progressive supranuclear palsy. J Nucl Med. (2005) 380:127–32. doi: 10.1093/jnnp/2006.10.82089

235. Kosten L, Verhaeghe J, Wyffels J, Staelens S, Stroobants S, Staelens S. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Nucl Transl Park Dis Dement Syst. (1990) 2:215–24. doi: 10.1007/BF02257652

236. Kadir A, Almkvist O, Wall A, Långström B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology. (2008) 188:509–20. doi: 10.1007/s00213-006-0447-7

237. Kuhl DE, Koeppe RA, Minoshima S, Snyder SE, Ficaro EP, Foster NL, et al. Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Nucl Transl Park Dis Dement Syst. (1990) 2:215–24. doi: 10.1007/BF02257652

238. Kothari R, Almkvist O, Wall A, Långström B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology. (2008) 188:509–20. doi: 10.1007/s00213-006-0447-7

239. Beaurain et al. Molecular Imaging in Neuropsychiatry
disease by PET. *Neurology.* (2009) 73:273–8. doi: 10.1212/WNL.0b013e3181ab2b58

264. Aghourian M, Legault-Denis C, Soucy J-P, Rosa-Neto P, Gauthier S, Kostikov A, et al. Quantification of brain cholinergic degeneration in Alzheimer’s disease using PET imaging with [18F]-FE0018. *Mol Psychiatry.* (2017) 22:1531–8. doi: 10.1038/mp.2017.183

265. Yoshida T, Kuwabara Y, Ichiya Y, Sasaki M, Fukumura T, Ichimiya A, et al. Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate–comparison with cerebral blood flow and cerebral glucose metabolism. *Ann Nucl Med.* (1998) 12:35–42. doi: 10.1021/BF03165441

266. Koren AO, Horti AG, Mukhin AG, Gündisch D, Franceschini MP, et al. PET imaging of [11C]figlumazeln binding in the human brain as an agonist for the benzodiazepine receptor. *J Med Chem.* (2018) 21:656–67. doi: 10.1039/c7jm01232i

267. Wong DF, Kuwabara H, Horti AG, Roberts JM, Nandi A, Cascella N, et al. Brain PET imaging of α7 nicotinic acetylcholine receptor with [11C]AEM. *Nucl Med Biol.* (2019) 16:149–84. doi: 10.1111/gbb.12321

268. Rodnick ME, Hockley BG, Sherman P, Quesada C, Battle MR, Jackson A, et al. Novel fluorine-18 PET radiotracers based on flumazenil for GABAA receptor imaging. *J Nucl Med Biol.* (2013) 40:901–5. doi: 10.1016/j.ejnm.2013.06.004

269. Baldwin RM, Horti AG, Bremer JD, Stratton MD, Dannals RF, Ravert HH, et al. Synthesis and PET imaging of the benzodiazepine receptor tracer [N-methyl-11C]iomazenil. *Nucl Med Biol.* (1995) 22:659–65. doi: 10.1016/0969-8051(94)00139-B

270. Andersson JD, Halldin C. PET radioligands targeting the brain GABAA/benzodiazepine receptor complex. *J Label Compd Radiopharm.* (2013) 56:196–206. doi: 10.1002/jlcr.3008

271. Dobbs FR, Banks W, Fleishaker JC, Valentine AD, Kinsey BM, Franceschini MP, et al. Studies with [11C]flumazenil: a agonist for the benzodiazepine receptor. *Nucl Med Biol.* (1995) 22:149–66. doi: 10.1016/0969-8051(94)00131-3

272. Persson A, Ehrin A, Eriksson L, Farde L, Hårdqvist CG, Litton JE, et al. Imaging of [11C]-labelled Ro 15-1788 binding to benzodiazepine receptors in the human brain by positron emission tomography. *J Psychiatr Res.* (1985) 19:609–22. doi: 10.1016/0022-3956(85)90080-9

273. Pike VW, Halldin C, Crawzel C, Barré L, Nutt DJ, Osman S, et al. Radioligands for PET studies of central benzodiazepine receptors and PK (peripheral benzodiazepine) binding sites–current status. *Nucl Med Biol.* (1993) 20:503–25. doi: 10.1016/0969-8051(93)90082-8

274. Abadie P, Rioux P, Scatton B, Zarifian E, Barré L, Patat A, et al. Central benzodiazepine receptor occupancy by zolpidem in the human brain as assessed by positron emission tomography. *Eur J Pharmacol.* (1996) 295:35–44. doi: 10.1016/0014-2999(95)90633-8

275. Franklin WG, Cho KY, Narendran R, Mason NS, Vora S, Litschge C, et al. Tiagabine increases [11C]flumazenil binding in cortical brain regions in healthy control subjects. *Neuropsychopharmacology.* (2009) 34:624–33. doi: 10.1038/nnp.2008.104

276. Savid C, Pauli S, Thorell JO, Blomqvist G. In vivo demonstration of altered benzodiazepine receptor density in patients with generalised epilepsy. *J Neurog Psychiatry.* (1994) 57:797–804. doi: 10.1136/jnp.57.7.797

277. la Fougère C, Rominger A, Forster S, Grießer J, Bartenstein P. PET and SPECT in epilepsy: a critical review. *Epilepsy Behav.* (2009) 15:50–5. doi: 10.1016/j.yebeh.2009.02.025

278. Savid C, Roland P, Seddai G, Persson A, Pauli S, Widen L. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic FOCI. *Lancet.* (1988) 332:863–6. doi: 10.1016/S0140-6736(88)92468-3

279. Egerton A, Modinos G, Ferrera D, McGuire P. Neuroimaging studies of GABA in schizophrenia: a systematic review with meta-analysis. *Transl Psychiatry.* (2017) 7:e1147. doi: 10.1038/tp.2017.124

280. Heiss WD, Sobesky J, Smekal UV, Kracht LW, Lehnhardt FG, Thiel A, et al. Probability of cortical infarction predicted by flumazenil binding and diffusion-weighted imaging signal intensity. *Stroke.* (2004) 35:1892–8. doi: 10.1161/01.STR.0103.18353.9b
position emission tomography study. *Neuropsychopharmacol*. (2013) 68:195–201. doi: 10.1016/j.neuropharm.2012.04.008

298. Vivash L, Gregoire M-C, Lau EW, Ware RE, Binns D, Roselt P, et al. 18F-flumazenil: a γ-aminobutyric acid A-specific PET radiotracer for the localization of drug-resistant temporal lobe epilepsy. *J Nucl Med Off Publ Soc Nucl Med*. (2013) 54:1270–7. doi: 10.2967/jnm.112.107359

299. Hodolie M, Topakian R, Pichler R. (18)F-fluorodeoxyglucose and (18)F-flumazenil positron emission tomography in patients with refractory epilepsy. *Radiol. Oncol*. (2016) 50:247–53. doi: 10.1515/raon-2016-0032

300. Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM, 5-HT 2A radioligands for human brain imaging with PET and SPECT. *Med. Res Rev*. (2013) 33:54–111. doi: 10.1002/med.20234

301. King MV, Marsden CA, Fone KCF. A role for the 5-HT(1A), 5-HT4 and 5-HT6 receptors in learning and memory. *Trends Pharmacol Sci*. (2008) 29:482–92. doi: 10.1016/j.tips.2008.07.001

302. Akimova E, Lanzenberger R, Kasper S. The serotonin-1A receptor in anxiety disorders. *Biol Psychiatry*. (2009) 66:627–35. doi: 10.1016/j.biopsych.2009.03.012

303. Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, et al. Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study. *Br J Psychiatry J Ment Sci*. (2009) 193:229–34. doi: 10.1192/bjp.bp.107.041186

304. Bailer UF, Frank GK, Henry SE, Price JC, Meltzer CC, Mathis CA, et al. Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. *Biol Psychiatry*. (2007) 61:1090–9. doi: 10.1016/j.biopsych.2006.07.018

305. Kumar JSD, Mann JJ. PET tracers for 5-HT(1A) receptors and uses thereof. *Drug Discov Today*. (2007) 12:748–56. doi: 10.1016/j.drudis.2007.07.008

306. Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ, 11C-WAY 282 radioligand for 5-HT1A receptors. *Br J Psychiatry*. (2008) 192:318–23. doi: 10.1192/bjp.bp.107.049028

307. Merlet I, Ostrowsky K, Costes N, Ryvlin P, Isnard J, Faillenot I, et al. Reduced serotonin type 1A receptor binding after partial-volume correction. *Eur J Nucl Med Mol Imaging*. (2010) 37:2236–51. doi: 10.1007/s00259-010-1562-1

308. van Heeringen C, Audenaert K, Van Laere K, Dumont P, Goethals I, Vervaet M, Audenaert K, Jacobs F, Ham H, Van de Wiele C, et al. Differences of cortical 5-HT2A receptor binding index with SPECT in subtypes of anorexia nervosa: relationship with personality traits? *J Psychiatr Res*. (2007) 41:455–8. doi: 10.1016/j.jpsychires.2005.04.002

309. Sheline YI, Mintun MA, Barch DM, Wilkins C, Snyder AZ, Moller SM. Decreased hippocampal 5-HT(2A) receptor binding in older depressed patients using [18F]altanserin positron emission tomography. *Neuropsychopharmacol. Off Publ Am Coll Neuropsychopharmacol*. (2004) 29:2233–41. doi: 10.1038/sj.npp.1300555

310. Meltzer CC, Price JC, Mathis CA, Greer PJ, Cantwell MN, Hawick PR, et al. PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. *Am J Psychiatry*. (1999) 156:1871–8.

311. Haugbol S, Pinborg LH, Regeur L, Hansen ES, Bolwig TG, Nielsen FA, et al. Cerebral 5-HT2A receptor binding is increased in patients with Tourette's syndrome. *Int J Neuropsychopharmacol*. (2010) 13:245–52. doi: 10.1017/s1468732710000311

312. Erlandsson K, Sivananthan T, Lui D, Spezzi A, Townsend CE, Mu S, et al. Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nucleus. *Neuropsychopharmacol*. (2008) 33:423–41. doi: 10.1038/sj.npp.1301656

313. Pickard CC, Price HC, Mathis CA, Greer PJ, Cantwell MN, Hawick PR, et al. PET imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. *Am J Psychiatry*. (1999) 156:1871–8.

314. Adams KH, Hansen ES, Pinborg LH, Hasselbalch SG, Svarer C, Holm S, et al. Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nucleus. *Int J Neuropsychopharmacol*. (2008) 11:505–10. doi: 10.1017/s1468732710000311

315. Klein N, Sacher J, Geiss-Granadia T, Attarbaschi T, Mossaheb N, Lanzenberger R, et al. In vivo imaging of serotonin transporter occupancy by means of SPECT and [123I]ADAM in healthy subjects administered...
different doses of escitalopram or citalopram. Psychopharmacology. (2006) 188:263–72. doi: 10.1007/s00213-006-0486-0

333. Herold N, Uebelhach K, Franke L, Amthauer H, Ludemann L, Bruhn H, et al. Imaging of serotonin transporters and its blockade by citalopram in patients with major depression using a novel SPECT ligand [123I]-ADAM. J Nucl Med Off Publ Soc Nucl Med. (2005) 46:973–7.

340. Sullivan GM, Osundo MA, Simpson N, Van Heerum RL, Mann JJ, Parsley RV. Brain serotonin1A receptor binding in major depression is related to psychic and somatic anxiety. Biol Psychiatry. (2005) 58:947–54. doi: 10.1016/j.biopsych.2005.05.006

347. Huang Y-Y, Huang W-S, Ma K-H, Chou T-K, Kuo Y-Y, Cheng C-Y, et al. Synthesis and comparison of [18F]-F-ADAM, [18F]-F-ADAM, N-Demethyl-4-[18F]-F-ADAM and [18F]-AFM as serotonin transporter imaging agents. Appl Radiat Isot. (2012) 70:2298–307. doi: 10.1016/j.apradiso.2012.06.005

353. Saigal N, Pichia R, Easwaramoorthy B, Collins D, Christian BT, Shi B, et al. Synthesis and biologic evaluation of a novel serotonin 5-HT1A receptor radioligand, 18F-labeled mefway, in rodents and imaging by PET in a nonhuman primate. J Nucl Med Off Publ Soc Nucl Med. (2006) 47:1697–706.
367. Dickson DW, Braak H, Duda JE, Duyckaerts C, Gasser T, Halliday GM, et al. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. *Lancet Neurol.* (2009) 8:1150–7. doi: 10.1016/S1474-4422(09)70238-8

368. Brooks DJ, Tambasco N. Imaging synucleinopathies. *Mov Disord Off J Mov Disord Soc.* (2016) 31:814–29. doi: 10.1002/mds.26547

369. Paleologou KE, Kragh CL, Mann DMA, Salem SA, Al-Shami R, Allsop D, et al. Detection of elevated levels of soluble alpha-synuclein oligomers in post-mortem brain extracts from patients with dementia with Lewy bodies. *Brain J Neurol.* (2009) 132(Pt 4):1093–101. doi: 10.1093/brain/awn349

370. Choi JH, Stubblefield B, Cookson MR, Goldin E, Velayati A, Tayebi N, et al. Aggregation of α-synuclein in brain samples from subjects with glucocerebrosidase mutations. *Mol Genet Metab.* (2011) 104:185–8. doi: 10.1016/j.ymgen.2011.06.008

371. Kotzbauer PT, Cairns NJ, Campbell MC, Willis AW, Racette BA, Tabbal SD, et al. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. *Arch Neurol.* (2012) 69:1326–31. doi: 10.1001/archneurol.2012.1608

372. Schildknecht S, Gending HR, Karreman C, Drescher M, Lashuel HA, Outeiro TF, et al. Oxidative and nitrative alpha-synuclein modifications and proteostatic stress: implications for disease mechanisms and interventions in synucleinopathies. *J Neurochem.* (2013) 125:491–511. doi: 10.1111/jnc.12226

373. Uchihara T, Nakamura A, Mochizuki Y, Hayashi M, Orimo S, Isozaki E, et al. Silver stainings distinguish Lewy bodies and glial cytoplasmic inclusions: comparison between Gallyas-Braak and Campbell-Switzer methods. *Acta Neuropathol.* (2005) 110:255–60. doi: 10.1007/s00401-005-1044-2

374. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. *J Biol Chem.* (2006) 281:29739–52. doi: 10.1074/jbc.M6009 3200

375. Maetzler W, Reimold M, Liepelt I, Solbach C, Lavehe T, Schweitzer K, et al. [11C]PBR binding in Parkinson’s disease dementia. *NeuroImage.* (2008) 39:1027–33. doi: 10.1016/j.neuroimage.2007.09.072

376. Fodero-Tavoletti MT, Mulligan RS, Okamura N, Furumoto S, Rowe CC, Kudo Y, et al. In vitro characterisation of BF227 binding to alpha-synuclein/Lewy bodies. *Eur J Pharmacol.* (2009) 617:54–8. doi: 10.1016/j.ejphar.2009.06.042

377. Kikuchi A, Takeda A, Okamura N, Tashiro M, Hasegawa T, Furumoto S, et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-fluoroethoxy]benzoxazole positron emission tomography in multiple system atrophy. *Brain J Neurol.* (2010) 133(Pt 6):1772–8. doi: 10.1093/brain/awq091

378. Verdurand M, Levigoureux E, Lancelot S, Zeinyeh W, Billard T, Quadrio I, et al. Amyloid-beta radiotracer [18F]BF-227 does not bind to cytoplasmic glial inclusions of postmortem multiple system atrophy brain tissue. *Contrast Media Mol Imaging.* (2018) 2018:9165458. doi: 10.1155/2018/9165458

379. Bagchi JP, Yu L, Perlmuter JS, Xu X, Mach RH, Tu Z, et al. Binding of the radioligand SIL23 to α-synuclein fibrils in Parkinson disease brain tissue establishes feasibility and screening approaches for developing a Parkinson disease imaging agent. *PLoS ONE.* (2013) 8:e55031. doi: 10.1371/journal.pone.0055031

380. Verdurand M, Levigoureux E, Zeinyeh W, Berthier L, Mendjel-Herda M, Cadarossanesaib F, et al. *In silico, in vitro, and in vivo evaluation of new candidates for α-synuclein PET imaging. Mol Pharm.* (2018) 15:3153–66. doi: 10.1021/acs.molpharmaceut.8b00229

381. Ye L, Velasco A, Fraser G, Beach TG, Sue L, Ozedkar T, et al. In vitro high affinity alpha-synuclein binding sites for the amyloid imaging agent PIB are not matched by binding to Lewy bodies in postmortem human brain. *J Neurochem.* (2008) 105:1428–37. doi: 10.1111/j.1471-4159.2008.05245.x

382. Fodero-Tavoletti MT, Smith DP, McLean CA, Adlard PA, Barnham KJ, Foster LE, et al. *In vitro characterization of pittsburgh compound-B binding to lew y bodies. J Neurosci.* (2007) 27:10365–71. doi: 10.1523/JNEUROSCI.0630-07.2007

383. McKeith IG. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the Consortium on DLB International Workshop. *J Alzheimers Dis JAD.* (2006) 9(Suppl. 3):417–23. doi: 10.3233/JAD-2006-9S347

384. Gilman S, Low PA, Quinn N, Albanese A, Ben-Shlomo Y, Fowler CJ, et al. Consensus statement on the diagnosis of multiple system atrophy. *J Neurol Sci.* (1999) 163:94–8. doi: 10.1016/S0022-510X(98)00304-9

385. Deutsch SI, Rosse RB, Schwartz BL, Mastro Paolo J. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. *Clin Neuropharmacol.* (2001) 24:43. doi: 10.1097/00003286-200101000-00008

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.