Modulation of Nitro-Fatty Acid Signaling: Prostaglandin Reductase-1 is a Nitroalkene Reductase

Dario A. Vitturi, Chen-Shan Chen, Steven R. Woodcock, Sonia R. Salvatore, Gustavo Bonacci, Jeffrey R. Koenitzer, Nicolas A. Stewart, Nobunao Wakabayashi, Thomas W. Kensler, Bruce A. Freeman and Francisco J. Schopfer

1Department of Pharmacology and Chemical Biology, 2Biomedical Mass Spectrometry Center. University of Pittsburgh. Pittsburgh, PA 15261, USA.

*Running title: Prostaglandin Reductase-1 as a functional nitroalkene reductase in vivo.

To whom correspondence may be addressed: Bruce A. Freeman, Ph.D. or Francisco J. Schopfer, Ph.D., Department of Pharmacology & Chemical Biology, Thomas E. Starzl Biomedical Science Tower E1340, 200 Lothrop St. University of Pittsburgh, Pittsburgh, PA 15213, USA; Tel: 648-9319; Fax: (412) 648-2229; Email: freerad@pitt.edu or fjs2@pitt.edu.

Keywords: Nitro-fatty acid, electrophile, nitrogen dioxide, nitroalkene, thiol, inflammation.

Background: Nitroalkenes are electrophilic anti-inflammatory mediators that signal via Michael addition and are metabolized in vivo.

Results: Prostaglandin reductase-1 is identified as a nitroalkene reductase.

Conclusion: Prostaglandin reductase-1 reduces fatty acid nitroalkenes to nitroalkanes, inactivating electrophilic reactivity.

Significance: A mammalian enzyme is identified that metabolizes fatty acid nitroalkenes in vivo to silence their signaling reactions.

SUMMARY

Inflammation, characterized by the activation of both resident and infiltrated immune cells, is accompanied by increased production of oxidizing and nitrating species. Nitrogen dioxide, the proximal nitrating species formed under these conditions, reacts with unsaturated fatty acids to yield nitroalkene derivatives. These electrophilic products modulate protein function via post-translational modification of susceptible nucleophilic amino acids. Nitroalkenes react with Keap1 to instigate Nrf2 signaling, activate heat shock response gene expression, inhibit NF-κB-mediated signaling and activate PPARγ, inducing net anti-inflammatory and tissue-protective metabolic responses. We report the purification and characterization of a NADPH-dependent liver enzyme that reduces the nitroalkene moiety of nitro-oleic acid, yielding the inactive product nitro-stearic acid. Prostaglandin reductase-1 (PtGR-1) was identified as a nitroalkene reductase by protein purification and proteomic studies. Kinetic measurements, inhibition studies, immunological and molecular biology approaches as well as clinical analyses confirmed this identification. Over-expression of PtGR-1 in HEK293T cells promoted nitroalkene metabolism to inactive nitroalkanes, an effect that abrogated the Nrf2-dependent induction of heme oxygenase-1 expression by nitro-oleic acid. These results situate PtGR-1 as a critical modulator of both the steady state levels and signaling activities of fatty acid nitroalkenes in vivo.

INTRODUCTION

Activation of the inflammatory response promotes the production of both superoxide (O2•-) and nitric oxide (NO). These two species react at diffusion-limited rates, giving rise to the formation of the oxidizing and nitrating product peroxynitrite (ONOO-) (1). The reactivity of ONOO- is broad, with physiological levels of carbon dioxide further promoting nitrination reactions secondary to the formation of an unstable nitrosoperoxocarbonate intermediate which immediately decomposes to generate carbonate radical and nitrogen dioxide (NO2•) (1,2). During inflammatory responses, neutrophil activation releases myeloperoxidase (MPO), which catalyzes hydrogen peroxide (H2O2)-dependent oxidation of both chloride and...
nitrite (NO$_2^-$) with the latter reaction yielding *NO$_2$ (3). Finally, gastric acidification of dietary NO$_2^-$ induces unsaturated fatty acid nitrations (4). The reactions of *NO$_2$ and unsaturated fatty acids during digestion and inflammation yields nitroalkene products such as nitro-oleic acid (NO$_2$-OA), nitro-linoleic acid (NO$_2$-LA) and nitro-conjugated linoleic acid (NO$_2$-CLA), as well as nitroalkene derivatives of other polyunsaturated fatty acids (4-6). The nitroalkene moiety renders the alkyl carbon β to the NO$_2$ substituent electrophilic. Consequently, nitroalkenes reversibly react with both low- and high molecular weight nucleophiles by Michael addition to exert redox-regulated signaling and modulate Cys- and Zn-Cys-dependent protein function (7,8). The levels of free nitroalkenes detected in healthy volunteers are 0.72 nM and 9.9 pmol/mg creatinine for human plasma and urine, respectively (4,9,10). During acute metabolic and inflammatory stress, free nitroalkene tissue levels can increase in murine hearts from undetectable to 9.5 nM and 17.3 nM for NO$_2$-OA and NO$_2$-CLA respectively, following an episode of focal cardiac ischemia-reperfusion (11). These concentrations are well within the range of those required for physiological signaling (12,13).

Addition of synthetic fatty acid nitroalkenes to biological systems induces a range of signaling actions that propagate overall anti-inflammatory and beneficial metabolic responses. In this regard, nitroalkenes inhibit neutrophil degranulation, superoxide production, pro-inflammatory cytokine release, and decrease the expression of adhesion molecules in both immune and endothelial cells (14-17). Additionally, treatment of endothelial cells with nitroalkenes induces the expression of heme oxygenase-1 (HO-1) and HIF-1α target genes (18,19). This effect is accompanied by Nrf2- and HSF-1-dependent gene upregulation, stimulating antioxidant defenses and the heat shock response (18,20). As a result, nitroalkenes exert protective effects in animal models of organ infarction, neointimal hyperplasia, hypertension and atherogenesis via non-cGMP-dependent mechanisms (11,13,21-23). Finally, nitroalkenes also function as partial agonists of PPARγ to ameliorate insulin resistance, normalize glycemia and improve lipid profiles in animal models of metabolic syndrome (12,24,25).

While many signaling actions of nitroalkene-containing lipids have been characterized, recent evidence shows that these molecules are also actively metabolized in biological systems. Notably, <5% of NO$_2$-OA is detectable as the native molecule in the circulation within minutes after intravenous injection (22). Michael addition accounts for one component of nitroalkene reactivity in the circulation, yielding protein and low molecular weight adducts (22). Additionally, fatty acid nitroalkenes are metabolized via a combination of β-oxidation and reduction to non-electrophilic nitroalkane derivatives (22,26). Since there is a central role for Michael addition in nitroalkene regulation of Nrf2, NFκB, HSF and PPARγ signaling (7), the relevance of an enzymatic system that inactivates the electrophilic reactivity of fatty acid nitroalkenes is underscored.

Most reports showing the formation of nitrated fatty acids in vivo are limited to vertebrates (7). However, biosynthesis of other nitroalkene-containing molecules has also been described in gram negative bacteria, fungi, plants and insects (27-30). Several enzymes capable of nitroalkene reduction have been described in these organisms, including pentaerythritol tetranitrate (PETN) reductase from *E. Cloacae* PB2 and members of the old yellow enzyme family such as *E. coli* N-ethylmaleimide (NEM) reductase, *Pseudomonas putida* M10 morphinone reductase and OYE1 from *S. carlsbergensis* (31-33).

Herein we report that prostaglandin reductase-1 (PIGR-1) mediates NADPH-dependent reduction of fatty acid nitroalkenes. This vertebrate enzyme modulates steady-state nitroalkene concentrations and the downstream signaling actions of these reactive lipid electrophiles.

EXPERIMENTAL PROCEDURES

Materials: Chemicals were of analytical grade and purchased from Sigma (St. Louis, MO, USA) unless otherwise stated. Oleic, linoleic and conjugated linoleic acids were obtained from Nu-Chek Prep, Inc (Elysin, MN, USA), 15-oxo-PGE$_2$ and 13,14-dihydro-15-oxo-PGE$_2$ were purchased from Cayman Chemical (Ann Arbor, MI, USA), and nitroalkenes synthesized as described previously (4,34). Nitroalkene
concentration was measured daily in all synthetic stocks by using the appropriate extinction coefficients: \(\text{NO}_2\text{-OA} \varepsilon_{268} \ 8.22 \text{mM}^{-1} \text{cm}^{-1} \), \(\varepsilon_{268} \text{NO}_2\text{-LA} 8.65 \text{mM}^{-1} \text{cm}^{-1} \) (20mM sodium phosphate, pH 7.0) and \(\varepsilon_{312} \text{NO}_2\text{-CLA} 11.2 \text{mM}^{-1} \text{cm}^{-1} \) (methanol) (35,36).

Measurement of circulating nitroalkene levels: Male Sprague-Dawley rats (Harlan lab, Indianapolis, IN, USA) were injected intravenously with 16 mg/kg \text{NO}_2\text{-OA}. Blood was obtained as a function of time, plasma was promptly isolated and supplemented with \(^{13}\text{C}_{18}\text{NO}_2\text{-OA} \) internal standard. Nitrated fatty acids were extracted from plasma after protein precipitation with 4 volumes of acetonitrile and analyzed by LC-MS/MS as described in the following section. Quantification of \text{NO}_2\text{-OA}, nitro stearic acid (\text{NO}_2\text{-SA}) and its corresponding \(\beta \)-oxidation metabolites was performed by stable isotopic dilution analysis using \text{NO}_2\text{-OA} and \text{NO}_2\text{-SA} calibration curves in the presence of the \(^{13}\text{C}_{18}\text{NO}_2\text{-OA} \) internal standard (34). Preliminary experiments indicate that shorter chain nitroalkenes (6-nitronoenoic acid and 6-nitrododecenoic acid) displayed ionization efficiencies and detector responses that were similar to \text{NO}_2\text{-OA}. \text{NO}_2\text{-SA} was synthesized by sodium borohydride reduction of synthetic \text{NO}_2\text{-OA}, purified (>95% per NMR analysis) and determined to be undistinguishable from the product obtained upon total PtGR-1 reduction. Furthermore, comparison of calibration curves prepared with \text{NO}_2\text{-SA} and \text{NO}_2\text{-OA} in the presence of \(^{13}\text{C}_{18}\text{NO}_2\text{-OA} \) indicated a similar MS response towards both molecules, thus allowing the use of \text{NO}_2\text{-OA} calibration curves for quantification of both saturated and unsaturated nitro fatty acids. For detection of endogenous \text{NO}_2\text{-CLA} and its reduced derivative \text{NO}_2\text{-dihydroCLA} in human circulation, plasma (1mL) was treated with 1% sulfanilamide (final concentration) to quench any reactive nitrogen species that could be derived from the acidification of contaminating nitrite, and extracted with 2 volumes of hexane/isopropanol/formic acid 1M (30:20:2) followed by addition of 1 volume of hexane. The organic phase was isolated, dried under nitrogen and resolvated in acetonitrile for LC-MS/MS determination. Extracts were supplemented with \(^{15}\text{NO}_2\text{-CLA} \) and \(^{13}\text{NO}_2\text{-dihydroCLA} \) to confirm endogenous \text{NO}_2\text{-CLA} and \text{NO}_2\text{-dihydroCLA} identification. Animals were housed in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996). All rodent and clinical studies were approved by the University of Pittsburgh Institutional Animal Care and Use Committee (Approval 12070398) and the Institutional Review Board (Approval 09090105).

LC-ESI-MS/MS analysis: Fatty acids were resolved by HPLC with a C18 reversed phase column (Gemini 2 x 20mm, 3µm, Phenomenex, Torrance, CA) using a water/acetonitrile solvent system containing 0.1% acetic acid (HAc). Samples were loaded into the column at 0.75 mL/min in either 10% or 30% acetonitrile/HAc for determination of 15-oxo-PGE\(_2\) and nitro-fatty acid derivatives respectively. After loading, the percentage of organic phase was increased linearly for the next 5.1 min up to 70% for 15-oxo-PGE\(_2\) metabolites or 85% for nitro-fatty acids. The column was then washed with 100% organic phase (5.2-6.7min) and re-equilibrated to initial conditions for an additional 2.3 min. MS analysis was performed using either an API 5000 or an API Qtrap 4000 (Applied Biosystems, Framingham, MA) in the negative ion mode with the following settings: source temperature 550°C, curtain gas: 40, ionization spray voltage: -4500, GS1: 40, GS2: 40, declustering potential: -70V, entrance potential: -4V, collision energy: -15V and -35V (PGE\(_2\) derivatives and nitrated fatty acids respectively), collision cell exit potential: -5V. Nitrated fatty acids were detected by collision-induced fragmentation of the parent ions to a charged nitro group (m/z 46) following the specific transitions for: \text{NO}_2\text{-OA} (326.2/46), \text{NO}_2\text{-LA} (324.2/46), \text{NO}_2\text{-CLA} (324.2/46) and \text{NO}_2\text{-[^{13}\text{C}_{18}]OA} (344.2/46). Transitions corresponding to reduced derivatives were obtained by adding 2 mass units to each parent compound: \text{NO}_2\text{-SA} (328.2/46), \text{NO}_2\text{-dihydroCLA} (326.2/46) and \text{NO}_2\text{-dihydroCLA} (326.2/46). The molecular mass of the precursor ions for the \(\beta \)-oxidation products was determined by subtracting 28 mass units to the corresponding parent compound as described (22). 15-oxo-PGE\(_2\) and 13,14-dihydro-15-oxo-PGE\(_2\) were detected using MRM 349/331 and MRM 351/333 respectively.

Purification of nitroalkene-reductase from rat liver: Rat liver was homogenized using a Potter-Elvehjem tissue grinder and clarified by two successive centrifugations at 15,000g and
100,000g for 30 min followed by ammonium sulfate fractionation. Nitroalkene reductase activity was maximal in the 60-70% (NH₄)₂SO₄ pellet. This fraction was concentrated, adjusted to 1M (NH₄)₂SO₄ and subjected to hydrophobic exchange chromatography (HiPrep Phenyl FF, GE Healthcare). The resulting eluate was adjusted to pH 7.0 and subjected to two successive ion exchange chromatographies using DEAE- and SP-substituted resins (TOSOH Bioscience). Consistent with previous methods developed for PtGR-1 purification, nitroalkene reductase activity does not bind to cationic resins (37,38). Finally, the fraction with the highest activity collected from SP-chromatography was further purified using either an ADP-substituted sepharose (Sigma) or a Blue-HP (HiTrap BlueHP, GE Healthcare) column leading to comparable results. Similar purification procedures for PtGR-1 have been described previously (37-39). Proteins were resolved by SDS-PAGE and the three major bands were excised and digested for proteomic analysis following established protocols. Briefly, samples (1-5µg protein) in 50mM (NH₄)HCO₃ pH 8.0 were vacuum-dried, dissolved in 6M guanidine HCl followed by the addition of 20mM DTT and incubated for 1 hr at room temperature. Thiols were blocked with 100mM iodoacetamide for 1 hr in the dark and the sample digested with sequencing-grade modified trypsin (50:1 protein:trypsin) overnight at 37°C. Peptides were analyzed on a hybrid linear ion trap-orbitrap mass spectrometer (LTQ Orbitrap, ThermoFisher Scientific) by C18 reversed phase nanoflow HPLC (Ultimate 3000, Dionex) using a 90 min liquid chromatography run and a 60 min MS acquisition time using an integrated electrospray ionization (ESI)-fused silica capillary column (100 µM ID x 360µm OD x 200mm length) packed in-house (Jupiter 5µm, 300Å pore size stationary phase, Phenomenex). Full scan MS spectra were collected in the orbitrap; m/z range 350-1800 (R=60,000 at m/z 400), with the 7 most intense ions selected for collision-induced dissociation (CID) in the ion trap using a normalized CID energy of 35%. Dynamic exclusion of 90s was used for ions already selected for fragmentation to minimize redundancy. The resulting data set was searched against the UniProt rat (Rattus norvegicus) protein database (http://www.ebi.ac.uk/integr8; 10/11 release) using SEQUEST (ThermoFisher Scientific). Peptides with minimum Xc scores of 1.9 for [M+H]+, 2.2 for [M+2H]2+, and 3.5 for [M+3H]3+, and a minimum ΔCn of 0.08 were considered legitimate.

Nitroalkene reductase/prostaglandin reductase-1 activity assay: Nitroalkenones or 15-oxo-PGE₂ (10 µM, unless otherwise specified) were incubated with the different fractions from enzyme purification steps in 20 mM sodium phosphate buffer at pH 7.0 supplemented with 100 µM DTPA and 250 µM NADPH at the indicated temperatures and durations. Reactions were stopped by the addition of 4 volumes of methanol and products were analyzed by LC-MS/MS. Quantification of 15-oxo-PGE₂, 13,14-dihydro-15-oxo-PGE₂ and nitrated fatty acids was performed using calibration curves prepared from either synthetic or commercially-available standards. Electrophilicity of the reaction products was assessed by incubation with 500 mM β-mercaptoethanol in methanol/50mM sodium phosphate pH 7.5 (1:1) for 1 hr at 37°C prior to LC-MS/MS analysis. For enzyme kinetic studies, 36.2 ng FLAG-hPtGR-1 (11.69 nM, MW 38.7 kDa) were incubated with increasing concentrations of NO₂-OA in the presence of 250 µM NADPH. Reactions were performed in 20 mM sodium phosphate buffer pH 7.0 at 25°C in the presence of heptadecanoic acid as an internal standard. Rates of NO₂-SA formation were determined during the initial 10% of the reaction and non-linearly fitted to Michaelis-Menten kinetics using GraphPad Prism 5.0.

Nitroalkene reductase/prostaglandin reductase-1 immunodepletion: A solution containing 1µg rat liver-purified PtGR-1 in 20mM sodium phosphate pH 7.0 supplemented with 100µM DTPA was pre-incubated with 0.2 volumes of a 50% Protein A/G slurry (Santa Cruz) to immunoprecipitate non-specific binding proteins. The resulting solution was divided in half and incubated with or without 2.5µg anti-PtGR-1 (ProteinTech) for 1 hr at 25°C. PtGR-1 was immunoprecipitated by the addition of 0.33 volumes of 50% Protein A/G slurry followed by 2 hr incubation at 4°C and centrifugation at 10,000G. Nitroalkene and prostaglandin reductase activities were measured in the resulting supernatants.

Nitroalkene reductase/prostaglandin reductase-1 expression in HEK293T and HepG2 cells: HEK293T and HepG2 cells (ATCC. Manassas, VA, USA) were maintained in DMEM and EMEM media supplemented with 10% fetal
bovine serum (FBS) respectively. Cells were incubated at 37°C with 95% air and 5% carbon dioxide. To generate the pCMV-3Tag-hPtGR-1, the hPtGR-1 cDNA was inserted into pCMV-3Tag-1 (Stratagene), such that it was tagged in frame with a 3x FLAG epitope (40). HEK293T cells were plated in 100mm dishes at 60-70% cell density and allowed to attach overnight. pCMV-3Tag-hPtGR-1 or pCMV-3Tag-1 plasmids were transfected into cells with lipofectamine 2000 (Invitrogen) overnight. Rat-PtGR-1 over-expression was obtained by transfection with a pCAGGS-EGFP-rat-PtGR-1 plasmid in which rat-PtGR1 cDNA tagged with EGFP was ligated into the mammalian expression vector pCAGGS (41,42). Expression of recombinant, as well as endogenous PtGR-1 was assessed by western-blot analysis using FLAG (Santa Cruz), GFP (Sigma) and PtGR-1 (Aviva Systems Biology) antibodies respectively. For experiments following NO$_2$-OA metabolism by intact cells, growth media was collected as a function of time and nitro-fatty acids measured after protein precipitation by the 3Tag-hPtGR-1 or pCMV-3Tag-1 plasmids were transfected into cells with lipofectamine 2000 (Invitrogen) overnight. Rat-PtGR-1 over-expression was obtained by transfection with a pCAGGS-EGFP-rat-PtGR-1 plasmid in which rat-PtGR1 cDNA tagged with EGFP was ligated into the mammalian expression vector pCAGGS (41,42). Expression of recombinant, as well as endogenous PtGR-1 was assessed by western-blot analysis using FLAG (Santa Cruz), GFP (Sigma) and PtGR-1 (Aviva Systems Biology) antibodies respectively. For experiments following NO$_2$-OA metabolism by intact cells, growth media was collected as a function of time and nitro-fatty acids measured after protein precipitation by the addition of 4 volumes of methanol. HO-1, as well as endogenous and recombinant PtGR-1 expression was assessed by immunoblotting after 24 hr incubation with 0, 2.5 and 5 μM NO$_2$-OA in the presence of 5% FBS.

RESULTS

Nitroalkene reductase purification from rat liver: The identity of the enzyme catalyzing nitroalkene reduction is unknown. Given that crude liver homogenates mediated NO$_2$-OA reduction and the importance of the liver in lipid and xenobiotic metabolism (43), liver was chosen as the starting material for nitroalkene reductase purification. Figure 2A shows a representative reaction analysis where the two-electron reduction of synthetic NO$_2$-OA to NO$_2$-SA is determined by LC-MS/MS. At this stage, spectrophotometric assays based on UV monitoring of NADPH oxidation were complicated by optical interference, sample turbidity and non-specific NADPH consumption. The MS-based method sensitively, specifically and simultaneously reported substrate consumption and product formation regardless of the complexity of the sample, providing analytical rigor within the context of an enzyme purification procedure. As detailed in Experimental Procedures, the purification strategy gave fractions displaying increasing enzymatic activity and purity (Figure 2B-C). The last purification step, displaying a substantially enriched nitroalkene reductase fraction, consisted of either an ADP-substituted sepharose (39) or a Blue-HP column (37,38) that yielded similar results.

Nitroalkene reductase reduces nitroalkene moieties to non-electrophilic nitroalkanes: Nitroalkene reductase activity was greater with NADPH than with NADH as the reductant and functioned efficiently within a physiological pH range (not shown). Reaction of NO$_2$-OA, NO$_2$-LA or NO$_2$-CLA (corresponding to biologically relevant monounsaturated, bis-allylic and conjugated nitro dienes respectively) with the purified nitroalkene reductase fraction resulted in stoichiometric nitroalkene reduction to the corresponding nitroalkane or nitroalkane-alkene derivative (Figure 3A-C). Notably, even for polyunsaturated fatty acids, the purified nitroalkene reductase fraction was specific for the reduction of the nitroalkene moiety, yielding saturated non-electrophilic products that lost reactivity with β-mercaptopethanol. Only electrophilic nitroalkenenes reacted with β-mercaptopethanol to generate the corresponding Michael adducts (Figure 3D-F). There was no formation of NO$_2$-SA from either NO$_2$-LA or NO$_2$-CLA reduction, affirming enzyme specificity towards the nitroalkenyl double bond.
Nitroalkene reductase identification: Proteomic analysis of the highly enriched fraction identified prostaglandin reductase-1 (PtGR-1) as the most abundant protein (top 10 hits summarized in Table 1) with only two additional proteins having reductase/dehydrogenase activity: sorbitol dehydrogenase and biliverdin reductase B. Sorbitol dehydrogenase catalyzes the NAD(P)H-mediated oxidation of an alcohol group in sorbitol to yield fructose, while biliverdin reductase B mediates the NAD(P)H-dependent reduction of a double bond between the pyrrolic rings of biliverdin, yielding bilirubin. Nevertheless, both sorbitol dehydrogenase and biliverdin reductase B were identified at much lower yields than PtGR-1 (10-fold less, based on spectral count). Notably, PtGR-1 (MS coverage and western blot shown in Figure 1) with approximately 80% of the detected CID spectra located to the 36kDa band (see Figure 2C), catalyzes the NADPH-mediated reduction of 15-oxo-PGE\(_2\) to 13,14-dihydro-15-oxo-PGE\(_2\) and reduces electrophilic \(\alpha,\beta\)-unsaturated carbonyls (44,45). This reinforced the designation of this enzyme as a candidate nitroalkene reductase.

The presence of PtGR-1 activity was confirmed in the purified fraction by following NADPH-dependent 15-oxo-PGE\(_2\) reduction by MS-analysis (Figure 5). To probe whether PtGR-1 is responsible for nitroalkene reduction, the effect of increasing concentrations of the substrate 15-oxo-PGE\(_2\) on NO\(_2\)-OA reduction was evaluated (Figure 5A). There was a dose-dependent inhibition of nitroalkene reduction upon addition of both equimolar and 10-fold excess concentrations of 15-oxo-PGE\(_2\), consistent with substrate competition for the catalytic site. Moreover, 15-oxo-PGE\(_2\) reduction by PtGR-1 is inhibited by indomethacin (46), thus it was reasoned that if PtGR-1 is also responsible for nitroalkene reduction then both activities should be indomethacin sensitive. Accordingly, indomethacin dose-dependently inhibited both NADPH-dependent 15-oxo-PGE\(_2\) and NO\(_2\)-OA reduction in the purified fraction (Figure 5B). Nitroalkene reduction was also inhibited by the thiol oxidizing agent dithionitrobenzoate (DTNB, data not shown). Treatment of the purified fraction with DTNB induced similar extents of inhibition of both nitroalkene and 15-oxo-PGE\(_2\) reduction. In aggregate, Figure 5A-B support that PtGR-1 was responsible for the reduction of nitroalkene-containing fatty acids. At this juncture, the nitroalkene reductase fraction that was utilized was not purified to homogeneity (see Figure 2C). Therefore, to confirm the identity of PtGR-1 as a nitroalkene reductase, anti-PtGR-1 was used to immunodeplete PtGR-1 from the nitroalkene reductase-enriched fraction. This strategy completely abolished the ability of the purified fraction to catalyze both NADPH-dependent reduction of 15-oxo-PGE\(_2\) and NO\(_2\)-OA (Figure 5C), reinforcing the notion that PtGR-1 is responsible for nitroalkene reductase activity.

PtGR-1 over-expression in HEK293T cells promotes nitroalkene reductase activity: Both the rat and the human PtGR-1 were transfected and over-expressed in HEK293T cells (Figure 6A and 8B). Over-expression of human PtGR-1 significantly increased the formation of NO\(_2\)-SA and its \(\beta\)-oxidation metabolites (Figure 6B-E) in concert with decreased generation of shorter-chain unsaturated derivatives (Suppl. Figure 1). Similar results were observed upon over-expression of the rat isoform of PtGR-1 (not shown). Analysis of the reduction of NO\(_2\)-OA by affinity-purified recombinant human PtGR-1 (Figure 7), yielded typical Michaelis-Menten kinetics (\(K_M \sim 85\) nM) and relatively high \(k_{cat}/K_M\) ratios (\(4.87 \times 10^6\) M\(^{-1}\) min\(^{-1}\)), consistent with the observation that nitroalkenes are reduced under physiological conditions to non-electrophilic products (Figure 1A-C).

PtGR-1 modulates nitroalkene signaling: Elimination of the electrophilic site upon nitroalkene reduction should be accompanied by a loss in signaling activity (7). Consistent with this notion, over-expression of either the human or rat isoform of PtGR-1 in HEK293T cells inhibited the induction of Nrf2-dependent HO-1 expression by NO\(_2\)-OA (Figure 8A-B). This affirms that PtGR-1 regulates nitroalkene signaling by the reduction of nitroalkenes to non-electrophilic nitroalkane derivatives. Furthermore, Figure 8C shows that treatment of HepG2 cells with NO\(_2\)-OA concomitantly leads to induction of significant PtGR-1, indicating the existence of a feedback mechanism capable of modulating nitroalkene signaling via regulation of PtGR-1 expression.

PtGR-1 reduction products are detected in human plasma: NO\(_2\)-CLA is present in human plasma (4), permitting the evaluation of whether reduced nitroalkane metabolites might also be present in the circulation. To verify this possibility, a reduced \(^{15}\)NO\(_2\)-dihydro-CLA standard was generated by incubation of synthetic
DISCUSSION

Partially-reduced oxygen species and oxides of nitrogen such as ONOO⁻ and *NO₂ are typically viewed as toxic products of inflammatory or photochemical reactions and indices of the oxidative inactivation of endogenous *NO signaling (47). While certainly robust mediators of oxidizing and nitrating reactions at high concentrations, it is now apparent that these products also instigate salutary physiological responses. New perspective has come from the study of the electrophilic species that are present in foodstuffs and generated as byproducts of inflammatory reactions. The fact that many electrophiles limit inflammatory responses and promote beneficial metabolic reactions supports that electrophilic species can also regulate physiological homeostasis (7,48-50).

In particular, electrophilic fatty acid nitroalkenes are generated from the reaction of unsaturated fatty acids with *NO₂ derived from a) NO₈ protonation during digestion and subsequent HNO₂ disproportionation and b) *NO and NO₈-dependent oxidative inflammatory reactions (4,51). The signaling events elicited by nitroalkenes rely on Michael addition between thiols and the electrophilic carbon β to the nitro group (7). Consistent with this notion, nitroalkenes alkylate multiple functionally-significant cysteines in the transcriptional regulatory protein Keap1, the p65 subunit of NFκB and the ligand-binding domain of PPARγ, leading to the regulation of >300 genes critical for metabolic, antioxidant defense and tissue repair responses (12,15,52). While electrophilic reactivity and signaling actions are often similar for NO₂-OA, NO₂-LA, NO₂-CLA and NO₂-α,ω-unsaturated fatty acid, there are also unique and functionally-significant reactions of NO₂-OA with xanthine oxidoreductase and NO₂-ω-unsaturated fatty acid with cyclooxygenase (53,54).

Inactivation of the electrophilic nature of nitroalkenes will abrogate any signaling actions that rely on post-translational protein modifications. While nitroalkenes had been observed to be reduced in vivo, a mammalian nitroalkene reductase had not been identified (22,26). Most current knowledge regarding the metabolism of nitroalkenes comes from bioremediation studies, since bacteria metabolize nitroaromatics by either denitrification or via reduction of the nitro group to a hydroxylamine (27,33). Additionally, the two electron reduction of non-aromatic nitroalkenes to nitroalkanes occurs in both bacteria and yeast (55,56). In particular, OYE (EC 1.6.99.1) the archetypical member of the Old Yellow Enzyme flavoprotein family, reacts with non-native, non-aromatic nitroalkenes such as nitrocyclohexene, nitrostyrene and nitrovinylthiophene via NADPH-dependent mechanisms to generate the corresponding nitroalkane by the intermediate formation of a nitronate derivative (32). Finally, mammalian enzymes such as thioredoxin reductase, NAD(P)H:quinone oxidoreductases, NADPH: cytochrome P450 reductase and ferredoxin:NADP⁺ reductase reduce nitroaromatic compounds either by one- or two-electron transfer to the nitro moiety, yielding the corresponding nitroso, hydroxylamine or amine derivatives (57-61). The efficiency (kCAT/KM) of nitro reduction by these enzymes is typically lower than that reported herein for nitroalkane reduction by PtGR-1 (60,61) and none of these enzymes were identified in the nitroalkene reductase purified fraction. Finally, no products suggesting reduction of the nitroalkene to nitroso-, hydroxylamine- or amine derivatives were observed either in vivo or in cellular studies, supporting that fatty-acid containing nitroalkenes are not substrates for these reported activities.

PtGR-1 reduced fatty acid nitroalkene derivatives in vivo and in vitro. This is the first report of a mammalian enzyme capable of catalyzing nitroalkene reduction via conjugate hydride addition to the electrophilic π-bond. The similar electron-withdrawing character of nitro and keto groups also suggests that the mechanism of nitroalkene reduction by PtGR-1 is similar to that reported for α,ω-unsaturated carbonyls (62). PtGR-1 is the product of the DIG-1 gene and is identical to the leukotriene-B₄ dehydrogenase that catalyzes the oxidation of leukotriene B₄ (LTB₄) to 12-oxo-LTB₄ in humans and rats (37). PtGR-1 is broadly distributed in mammalian tissues and also functions as a NADP(H)-dependent oxidoreductase in the inactivation of 15-oxo-prostaglandin-E₂ and other α,ω-unsaturated carbon containing molecules, motivating the more inclusive name alkenal/one oxidoreductase (40,44,45,63). PtGR-1 reduces fatty acid...
nitroalkenes to non-electrophilic nitroalkanes, as evidenced by MS analysis and a lack of reactivity of products with β-mercaptoethanol. In the case of both the bis-allylic and conjugated isomers of nitro-linoleic acid, only the nitro-containing double bond was reduced. There was no detectable formation of fully double-bond saturated NO₂-SA, demonstrating that reduction by PtGR-1 is specific for the nitroalkene moiety. Comparison of kinetic analyses (Figure 7) with other reports (40,45) support that nitroalkenes exhibit some of the lowest K_M values reported for PtGR-1 (K_M = 0.001, 0.15 and 0.12 mM for 15-oxo-PGE₂, acrolein and 4-hydroxy-2-nonenal respectively) and k_cat/K_M ratios reflective of those for α,β-unsaturated carbonyls (k_cat/K_M = 2.4x10⁹, 1.5x10⁶ and 3.3x10⁷ M⁻¹min⁻¹ for 15-oxo-PGE₂, acrolein and 4-hydroxy-2-nonenal respectively). This supports that PtGR-1 will efficiently reduce and inactivate nitroalkenes under physiological conditions. Consistent with this, over-expression of PtGR-1 in HEK293T cells shifted nitroalkene metabolism, promoting a decrease in the levels of electrophilic NO₂-OA metabolites and a concurrent increase in saturated derivatives. Furthermore, Nrf2-dependent induction of HO-1 by NO₂-OA was completely abolished by PtGR-1 over-expression. This reinforces that a) PtGR-1 is a negative modulator of nitroalkene signaling in vivo and b) nitroalkene signaling is dependent on the post-translational modification of critical thiols in transcriptional regulatory proteins. Since PtGR-1 expression is also regulated by Nrf2 activation, the linkages between nitroalkene signaling and PtGR-1 induction are strengthened (37,64). Notably, PtGR-1 was induced in HepG2 cells upon treatment with NO₂-OA (Figure 8), consistent with previous work showing that electrophiles efficiently induce PtGR-1 in these and other cell lines (65). Furthermore, global gene expression studies of human endothelial cells showed that PtGR-1 is among the top 4 transcripts induced upon treatment with NO₂-OA (18). These results support that there is feedback regulation between nitroalkene levels and PtGR-1 expression, which would be expected to modulate the signaling actions of fatty acid nitroalkenes. Finally, the detection of saturated derivatives of NO₂-CLA in human circulation suggests that PtGR-1 modulates steady state nitroalkene levels in healthy humans.

Partially-reduced oxygen species and nitrogen oxides are now appreciated to mediate signaling reactions that are critical for both the maintenance of the homeostasis of an organism and its responses to metabolic and inflammatory stress (66-68). Cell signaling reactions are typically defined by the actuation of a reversible modification that induces specific changes either in protein or gene function, promoting the concerted propagation and amplification of cell and organ responses. Reactive species often display a broad reactivity and impact different targets at diverse reaction rates, thus potentially limiting the specificity of downstream signaling events. The reactivity and downstream responses to different redox mediators will be determined by kinetic parameters, sub-cellular compartmentalization and by inactivation reactions mediated by enzymes such as catalase, glutathione peroxidase and S-nitroso-glutathione reductase, thus modulating both the intensity and anatomic location of productive redox signals in tissue compartments. In this context, inflammatory-derived electrophilic products efficiently modulate cell signaling responses. Importantly, the reaction rates of nitroalkenes and α,β-unsaturated carbonyls with thiols is more than two orders of magnitude faster than H₂O₂ (35). Consequently, nitroalkenes effectively target specific residues in transcriptional regulatory proteins via Michael addition (C285 in PPARγ, C273 and 288 in Keap1, C38 in p65) which can be reversed by thiol exchange with glutathione and further modulated by endogenous hydrogen sulfide generation (12,15,49,52,69). The formation of nitroalkene-glutathione adducts not only reverses electrophilic modifications but also promotes cellular export via the multidrug resistance protein 1 (MRP-1) and excretion in urine (10,70).

The identification of PtGR-1 as a nitroalkene reductase provides an additional mechanism for inactivation of nitroalkene reactivity, thereby defining the terminal step in the functional cycle of these signaling electrophiles (Scheme 1). Thus, electrophilic fatty acids are signaling mediators that a) undergo relatively controlled generation during inflammatory conditions and metabolic stress; b) display specificity in their reactivity, c) mediate reversible modification of molecular targets and d) are inactivated by the efficient enzymatic mechanism reported herein. While the evidence presented herein implies an important role for PtGR-1 in nitroalkene reduction, no conclusion can be
obtained regarding the possible existence of other enzymes also capable of reducing nitroalkenes in extra-hepatic tissues.

The present results also infer a new component of the multifaceted interactions between eicosanoid, nitric oxide and nitroalkene metabolism. Comparison of the kinetic parameters that govern NO\textsubscript{2}-OA reduction by PtGR-1 with those reported for 15-oxo-PGE\textsubscript{2} saturation suggest the latter as a preferential substrate for the enzyme. This observation suggests that the signaling actions of nitroalkenes might be influenced by steady state levels of PGE\textsubscript{2} and 15-oxo-PGE\textsubscript{2}. In this scenario, elevated levels of PGE\textsubscript{2} and 15-oxo-PGE\textsubscript{2} might inhibit nitroalkene reduction by PtGR-1, thus enhancing the protective signaling actions of nitroalkenes during inflammatory conditions where significant increases in cyclooxygenase activity occur (71).

In summary, PtGR-1 mediates the reduction of fatty acid nitroalkenes to non-electrophilic products that lack signaling capabilities. This represents a controlled physiological mechanism for modulating steady-state levels as well as downstream metabolic and anti-inflammatory signaling actions of lipid electrophiles.
Prostaglandin Reductase-1 as a functional nitroalkene reductase in vivo.

References

1. Pacher, P., Beckman, J. S., and Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. *Physiol Rev* **87**, 315-424
2. Gow, A., Duran, D., Thom, S. R., and Ischiropoulos, H. (1996) Carbon dioxide enhancement of peroxynitrite-mediated protein tyrosine nitration. *Arch Biochem Biophys* **333**, 42-48
3. Eiserich, J. P., Hristova, M., Cross, C. E., Jones, A. D., Freeman, B. A., Halliwell, B., and van der Vliet, A. (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. *Nature* **391**, 393-397
4. Bonacci, G., Baker, P. R., Salvatore, S. R., Shores, D., Khoo, N. K., Koenitzer, J. R., Vitturi, D. A., Woodcock, S. R., Golin-Bisello, F., Cole, M. P., Watkins, S., St Croix, C., Batthyany, C. I., Freeman, B. A., and Schopfer, F. J. (2012) Conjugated linoleic acid is a preferential substrate for fatty acid nitration. *J Biol Chem* **287**, 44071-44082
5. Ferreira, A. M., Ferrari, M. I., Trostchansky, A., Batthyany, C., Souza, J. M., Alvarez, M. N., Lopez, G. V., Baker, P. R., Schopfer, F. J., O'Donnell, V., Freeman, B. A., and Rubbo, H. (2009) Macrophage activation induces formation of the anti-inflammatory lipid cholesteryl-nitrolinoleate. *Biochem J* **417**, 223-234
6. Manini, P., Camera, E., Picardo, M., Napolitano, A., and d'Ischia, M. (2008) Biomimetic nitration of the linoleic acid metabolite 13-hydroxyoctadecadienoic acid: isolation and spectral characterization of novel chain-rearranged epoxy nitro derivatives. *Chem Phys Lipids* **151**, 51-61
7. Schopfer, F. J., Cipollina, C., and Freeman, B. A. (2011) Formation and signaling actions of electrophilic lipids. *Chem Rev* **111**, 5997-6021
8. Schopfer, F. J., Cole, M. P., Groeger, A. L., Chen, C. S., Khoo, N. K., Woodcock, S. R., Freeman, B. A., and Schopfer, F. J. (2013) Characterization and quantification of endogenous fatty acid nitroalkene metabolites in human urine. *J Lipid Res* **54**, 1998-2009
9. Rudolph, V., Rudolph, T. K., Schopfer, F. J., Bonacci, G., Woodcock, S. R., Cole, M. P., Baker, P. R., Ramani, R., and Freeman, B. A. (2010) Endogenous generation and protective effects of nitro-fatty acids in a murine model of focal cardiac ischaemia and reperfusion. *Cardiovasc Res* **85**, 155-166
Prostaglandin Reductase-1 as a functional nitroalkene reductase in vivo.

15. Cui, T., Schopfer, F. J., Zhang, J., Chen, K., Ichikawa, T., Baker, P. R., Batthyany, C., Chacko, B. K., Feng, X., Patel, R. P., Agarwal, A., Freeman, B. A., and Chen, Y. E. (2006) Nitrated fatty acids: Endogenous anti-inflammatory signaling mediators. J Biol Chem 281, 35686-35698

16. Ichikawa, T., Zhang, J., Chen, K., Liu, Y., Schopfer, F. J., Baker, P. R., Freeman, B. A., Chen, Y. E., and Cui, T. (2008) Nitroalkenes suppress lipopolysaccharide-induced signal transducer and activator of transcription signaling in macrophages: a critical role of mitogen-activated protein kinase phosphatase 1. Endocrinology 149, 4086-4094

17. Wang, H., Liu, H., Jia, Z., Olsen, C., Litwin, S., Guan, G., and Yang, T. (2010) Nitro-oleic acid protects against endotoxin-induced endotoxemia and multiorgan injury in mice. Am J Physiol Renal Physiol 298, F754-762

18. Kansanen, E., Jyrkkanen, H. K., Volger, O. L., Leinonen, H., Kivela, A. M., Hakkinen, S. K., Woodcock, S. R., Schopfer, F. J., Horrevoets, A. J., Yla-Herttuala, S., Freeman, B. A., and Levonen, A. L. (2009) Nrf2-dependent and -independent responses to nitro-fatty acids in human endothelial cells: identification of heat shock response as the major pathway activated by nitrooleic acid. J Biol Chem 284, 33233-33241

19. Rudnicki, M., Faine, L. A., Dehne, N., Namgaladze, D., Ferderbar, S., Weinlich, R., Amarante-Mendes, G. P., Yan, C. Y., Krieger, J. E., Brune, B., and Abdalla, D. S. (2011) Hypoxia inducible factor-dependent regulation of angiogenesis by nitro-fatty acids. Arterioscler Thromb Vasc Biol 31, 1360-1367

20. Bates, D. J., Smitherman, P. K., Townsend, A. J., King, S. B., and Morrow, C. S. (2011) Nitroalkene fatty acids mediate activation of Nrf2/ARE-dependent and PPARgamma-dependent transcription by distinct signaling pathways and with significantly different potencies. Biochemistry 50, 7765-7773

21. Cole, M. P., Rudolph, T. K., Khoo, N. K., Motanya, U. N., Golin-Bisello, F., Wertz, J. W., Schopfer, F. J., Rudolph, V., Woodcock, S. R., Bolisetty, S., Ali, M. S., Zhang, J., Chen, Y. E., Agarwal, A., Freeman, B. A., and Bauer, P. M. (2009) Nitro-fatty acid inhibition of neointima formation after endoluminal vessel injury. Circ Res 105, 965-972

22. Rudolph, V., Schopfer, F. J., Khoo, N. K., Rudolph, T. K., Cole, M. P., Woodcock, S. R., Bonacci, G., Groeger, A. L., Golin-Bisello, F., Chen, C. S., Baker, P. R., and Freeman, B. A. (2009) Nitro-fatty acid metabolome: saturation, desaturation, beta-oxidation, and protein adduction. J Biol Chem 284, 1461-1473

23. Liu, H., Jia, Z., Soodvilai, S., Guan, G., Wang, M. H., Dong, Z., Symons, J. D., and Yang, T. (2008) Nitro-oleic acid protects the mouse kidney from ischemia and reperfusion injury. Am J Physiol Renal Physiol 295, F942-949

24. Wang, H., Liu, H., Jia, Z., Guan, G., and Yang, T. (2010) Effects of Endogenous PPAR Agonist Nitro-Oleic Acid on Metabolic Syndrome in Obese Zucker Rats. PPAR Res 2010, 601562

25. Gorczynski, M. J., Smitherman, P. K., Akiyama, T. E., Wood, H. B., Berger, J. P., King, S. B., and Morrow, C. S. (2009) Activation of peroxisome proliferator-activated receptor gamma (PPARgamma) by nitroalkene fatty acids: importance of nitration position and degree of unsaturation. J Med Chem 52, 4631-4639

26. Schopfer, F. J., Batthyany, C., Baker, P. R., Bonacci, G., Cole, M. P., Rudolph, V., Groeger, A. L., Rudolph, T. K., Nadrochyi, S., Brookes, P. S., and Freeman, B. A. (2009) Detection and quantification of protein adduction by electrophilic fatty acids: mitochondrial generation of fatty acid nitroalkene derivatives. Free Radic Biol Med 46, 1250-1259

27. Ju, K. S., and Parales, R. E. (2010) Nitroaromatic compounds, from synthesis to biodegradation. Microbiol Mol Biol Rev 74, 250-272

28. Winkler, R., and Hertweck, C. (2007) Biosynthesis of nitro compounds. Chembiochem 8, 973-977

29. Vrkoč, J., and Ubik, K. (1974) 1-Nitro-trans-1-pentadecene as the defensive compound of termites. Tetrahedron Lett 15, 1463-1464
30. Piskorski, R., Hanus, R., Vasickova, S., Cvacka, J., Sobotnik, J., Svatos, A., and Valterova, I. (2007) Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland of three prorhinotermes termite species. *J Chem Ecol* 33, 1787-1794

31. French, C. E., Nicklin, S., and Bruce, N. C. (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. *Appl Environ Microbiol* 64, 2864-2868

32. Meah, Y., and Massey, V. (2000) Old yellow enzyme: stepwise reduction of nitro-olefins and catalysis of aci-nitro tautomerization. *Proc Natl Acad Sci U S A* 97, 10733-10738

33. Williams, R. E., and Bruce, N. C. (2002) ‘New uses for an Old Enzyme’--the Old Yellow Enzyme family of flavoenzymes. *Microbiology* 148, 1607-1614

34. Woodcock, S. R., Bonacci, G., Gelhaus, S. L., and Schopfer, F. J. (2013) Nitratated fatty acids: synthesis and measurement. *Free Radic Biol Med* 59, 14-26

35. Baker, L. M., Baker, P. R., Golin-Bisello, F., Schopfer, F. J., Fink, M., Woodcock, S. R., Branchaud, B. P., Radi, R., and Freeman, B. A. (2007) Nitro-fatty acid reaction with glutathione and cysteine. Kinetic analysis of thiol alkylation by a Michael addition reaction. *J Biol Chem* 282, 31085-31093

36. Baker, P. R., Lin, Y., Schopfer, F. J., Woodcock, S. R., Groeger, A. L., Batthyany, C., Sweeney, S., Long, M. H., Iles, K. E., Baker, L. M., Branchaud, B. P., Chen, Y. E., and Freeman, B. A. (2005) Fatty acid transduction of nitric oxide signaling: multiple nitratated unsaturated fatty acid derivatives exist in human blood and urine and serve as endogenous peroxisome proliferator-activated receptor ligands. *J Biol Chem* 280, 18128-18135

37. Hansen, H. S. (1979) Purification and characterization of a 15-ketoprostaglandin delta 13-reductase from bovine lung. *Biochim Biophys Acta* 574, 136-145

38. Yu, X., Egner, P. A., Wakabayashi, J., Wakabayashi, N., Yamamoto, M., and Kensler, T. W. (2006) Nrf2-mediated induction of cytoprotective enzymes by 15-deoxy-Delta12,14-prostaglandin J2 is attenuated by alkenal/one oxidoreductase. *J Biol Chem* 281, 26245-26252

39. Niwa, H., Yamamura, K., and Miyazaki, J. (1991) Efficient selection for high-expression transfecants with a novel eukaryotic vector. *Gene* 108, 193-199

40. Anggard, E., Larsson, C., and Samuelsson, B. (1971) The distribution of 15-hydroxy prostaglandin dehydrogenase and prostaglandin-delta 13-reductase in tissues of the swine. *Acta Physiol Scand* 81, 396-404

41. Dick, R. A., Kwak, M. K., Sutter, T. R., and Kensler, T. W. (2001) Antioxidative function and substrate specificity of NAD(P)H-dependent alkenal/one oxidoreductase. A new role for leukotriene B4 12-hydroxydehydrogenase/15-oxoprostaglandin 13-reductase. *J Biol Chem* 276, 40803-40810

42. Clish, C. B., Sun, Y. P., and Serhan, C. N. (2001) Identification of dual cyclooxygenase-icosanoid oxidoreductase inhibitors: NSAIDs that inhibit PG-LX reductase/LTB(4) dehydrogenase. *Biochem Biophys Res Commun* 288, 868-874

43. Beckman, J. S., and Koppenol, W. H. (1996) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and the ugly. *Am J Physiol* 271, C1424-1437
Prostaglandin Reductase-1 as a functional nitroalkene reductase in vivo.

48. Higdon, A., Diers, A. R., Oh, J. Y., Landar, A., and Darley-Usmar, V. M. (2012) Cell signalling by reactive lipid species: new concepts and molecular mechanisms. Biochem J 442, 453-464

49. West, J. D., and Marnett, L. J. (2006) Endogenous reactive intermediates as modulators of cell signaling and cell death. Chem Res Toxicol 19, 173-194

50. Kansanen, E., Jyrkkänen, H. K., and Levonen, A. L. (2012) Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic Biol Med 52, 973-982

51. Rocha, B. S., Gago, B., Barbosa, R. M., Lundberg, J. O., Radi, R., and Laranjinha, J. (2012) Intragastric nitration by dietary nitrile: implications for modulation of protein and lipid signaling. Free Radic Biol Med 52, 693-698

52. Kansanen, E., Bonacci, G., Schopfer, F. J., Kuosmanen, S. M., Tong, K. I., Leinonen, H., Woodcock, S. R., Yamamoto, M., Carlberg, C., Yla-Herttuala, S., Freeman, B. A., and Levonen, A. L. (2011) Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem 286, 14019-14027

53. Kelley, E. E., Batthyany, C. I., Hundley, N. J., Woodcock, S. R., Bonacci, G., Del Rio, J. M., Schopfer, F. J., Lancaster, J. R., Jr., Freeman, B. A., and Tarpey, M. M. (2008) Nitro-oleic acid, a novel and irreversible inhibitor of xanthine oxidoreductase. J Biol Chem 283, 36176-36184

54. Trostchansky, A., Bonilla, L., Thomas, C. P., O'Donnell, V. B., Marnett, L. J., Radi, R., and Rubbo, H. (2011) Nitroarachidonic acid, a novel peroxidase inhibitor of prostaglandin endoperoxide H synthases 1 and 2. J Biol Chem 286, 12891-12900

55. Stuermer, R., Hauer, B., Hall, M., and Faber, K. (2007) Asymmetric bioreduction of activated C=C bonds using enoate reductases from the old yellow enzyme family. Curr Opin Chem Biol 11, 203-213

56. Messiha, H. L., Munro, A. W., Bruce, N. C., Barsukov, I., and Scrutton, N. S. (2005) Reaction of morphinone reductase with 2-cyclohexen-1-one and 1-nitrocyclohexene: proton donation, ligand binding, and the role of residues Histidine 186 and Asparagine 189. J Biol Chem 280, 10695-10709

57. Boland, M. P., Knox, R. J., and Roberts, J. J. (1991) The differences in kinetics of rat and human DT diaphorase result in a differential sensitivity of derived cell lines to CB 1954 (5-(aziridin-1-yl)-2,4-dinitrobenzamide). Biochem Pharmacol 41, 867-875

58. Cenas, N., Prast, S., Nivinskas, H., Sarlauskas, J., and Arner, E. S. (2006) Interactions of nitroaromatic compounds with the mammalian selenoprotein thioredoxin reductase and the relation to induction of apoptosis in human cancer cells. J Biol Chem 281, 5593-5603

59. Knox, R. J., Boland, M. P., Friedlos, F., Coles, B., Southan, C., and Roberts, J. J. (1988) The Nitroreductase Enzyme in Walker Cells That Activates 5-(Aziridin-1-Yl)-2,4-Dinitrobenzamide (Cb-1954) to 5-(Aziridin-1-Yl)-4-Hydroxylamino-2-Nitrobenzamide Is a Form of Nad(P)H Dehydrogenase (Quinone) (Ec-1.6.99.2). Biochem Pharmacol 37, 4671-4677

60. Knox, R. J., and Chen, S. (2004) Quinone Reductase–Mediated Nitro-Reduction: Clinical Applications. in Methods Enzymol (Helmut, S., and Lester, P. eds.), Academic Press. pp 194-221

61. Nemeikaite-Ceniene, A., Sarlauskas, J., Misviciene, L., Anusevicius, Z., Maroziene, A., and Cenas, N. (2004) Enzymatic redox reactions of the explosive 4,6-dinitrobenzofuroxan (DNBF): implications for its toxic action. Acta Biochim Pol 51, 1081-1086

62. Dick, R. A., and Kensler, T. W. (2004) The catalytic and kinetic mechanisms of NADPH-dependent alkenal/one oxidoreductase. J Biol Chem 279, 17269-17277

63. Dick, R. A., Yu, X., and Kensler, T. W. (2004) NADPH alkenal/one oxidoreductase activity determines sensitivity of cancer cells to the chemotherapeutic alkylation agent irofulven. Clin Cancer Res 10, 1492-1499

64. Zhang, Y., and Munday, R. (2008) Dithiolethiones for cancer chemoprevention: where do we stand? Mol Cancer Ther 7, 3470-3479

65. Yu, X., Erzinger, M. M., Pietsch, K. E., Cervoni-Curet, F. N., Whang, J., Niederhuber, J., and Sturla, S. J. (2012) Up-regulation of human prostaglandin reductase 1 improves the efficacy of
hydroxymethylacylfulvene, an antitumor chemotherapeutic agent. *J Pharmacol Exp Ther* **343**, 426-433

66. Winterbourn, C. C. (2008) Reconciling the chemistry and biology of reactive oxygen species. *Nat Chem Biol* **4**, 278-286

67. Dickinson, B. C., and Chang, C. J. (2011) Chemistry and biology of reactive oxygen species in signaling or stress responses. *Nat Chem Biol* **7**, 504-511

68. Sena, L. A., and Chandel, N. S. (2012) Physiological roles of mitochondrial reactive oxygen species. *Mol Cell* **48**, 158-167

69. Nishida, M., Sawa, T., Kitajima, N., Ono, K., Inoue, H., Ihara, H., Motohashi, H., Yamamoto, M., Suematsu, M., Kurose, H., van der Vliet, A., Freeman, B. A., Shibata, T., Uchida, K., Kumagai, Y., and Akaike, T. (2012) Hydrogen sulfide anion regulates redox signaling via electrophile sulfhydration. *Nat Chem Biol* **8**, 714-724

70. Alexander, R. L., Bates, D. J., Wright, M. W., King, S. B., and Morrow, C. S. (2006) Modulation of nitrated lipid signaling by multidrug resistance protein 1 (MRP1): glutathione conjugation and MRP1-mediated efflux inhibit nitrolinoleic acid-induced, PPARgamma-dependent transcription activation. *Biochemistry* **45**, 7889-7896

71. Giroux, M., and Descoteaux, A. (2000) Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-alpha. *J Immunol* **165**, 3985-3991
Footnotes

Acknowledgements: This study was supported by NIH grants R01-HL058115, R01-HL64937, P30-DK072506, P01-HL103455 (BAF), R01 AT006822-01 (FJS). This project used UPCI shared resources that are supported in part by award P30CA047904.

Competing financial interests. BAF and FJS acknowledge financial interest in Complexa, Inc.

Abbreviations: LC-MS/MS, high-performance liquid chromatography-electrospray ionization tandem mass spectrometry; HIC, hydrophobic interaction chromatography; IS, internal standard; BME, betamercaptoethanol; DTPA, diethylene-triaminepentaacetic acid; 'NO, nitric oxide; 'NO2, nitrogen dioxide; HNO2, nitrous acid; ONOO', peroxynitrite/peroxynitrous acid; NOS, nitric oxide synthase; MPO, myeloperoxidase; NO2-OA (nitro-oleic acid), equimolar mixture of 9- and 10-nitro-octadec-9-enoic acid; NO2-LA (nitro-linoleic acid), mixture of positional isomers of 9,10,12 and 13-nitro-octadeca-9,12-dienoic acid; NO2-CLA (conjugated nitro-linoleic acid), mixture of positional isomers of 9- and 12-nitro-octadeca-9,11-dienoic acid; NO2-SA (nitro-stearic acid), equimolar mixture of 9- and 10-nitro-octadecanoic acid; DIG-1, dithiolethione-inducible gene-1; LTB4, leukotriene B4; PGE2, prostaglandin E2; Dinor-NO2-OA (mixture of 7- and 8-nitro-hexadec-7-enoic acid), tetranor-NO2-OA (mixture of 5- and 6-nitro-tetradec-5-enoic acid), hexanor-NO2-OA (mixture of 3- and 4-nitro-dodec-3-enoic acid). Dinor-NO2-SA (mixture of 7- and 8-nitro-hexadecanoic acid), tetranor-NO2-SA (mixture of 5- and 6-nitro-tetradecanoic acid), hexanor-NO2-SA (mixture of 3- and 4-nitro-dodecanoic acid).

Figure Legends

Figure 1: Time-dependent changes in plasma nitroalkene metabolites after a single i.v. injection of NO2-OA in rats. Concentrations of 18-carbon (A), 16-carbon (B) and 14-carbon (C) nitro fatty acid derivatives were calculated by stable isotopic dilution analysis LC-MS/MS using synthetic [13C18]NO2-OA as internal standard and NO2-OA and NO2-SA calibration curves. Data are means ± SEM, n=3 animals per treatment.

Figure 2: Nitroalkene reductase purification from rat liver. A) Representative LC-MS/MS trace illustrating the conversion of synthetic NO2-OA (MRM 326/46, solid line) into NO2-SA (MRM 328/46, dashed line) by the nitroalkene reductase activity present in the enzyme-purified fraction prepared in B-C. B) NO2-SA production from the reduction of 50µM NO2-OA in the presence of 250µM NADPH at 37°C after 10 min of incubation with different fractions obtained during the purification procedure. Fractions are: 1- Clarified rat liver homogenate; 2- 70% (NH4)2SO4 precipitate; 3- Eluate from HIC chromatography; 4- Eluate from DEAE chromatography; 5- Eluate from SP chromatography; 6- Eluate from Blue-HP chromatography. Data are means ± SD n=3. C: Silver stained SDS-PAGE showing increases in protein purity concomitant to the purification procedure. Arrow indicates the migration distance of PtGR-1.

Figure 3: Analysis of the electrophilic reactivity of nitro fatty acid derivatives. A-C): Representative LC-MS/MS peaks for both native (continuous lines) and reduced forms (dashed lines) of NO2-OA (A); NO2-LA (B) and NO2-CLA (C). D-F) Incubation with BME leads to the disappearance of peaks corresponding to the electrophilic NO2-OA (D), NO2-LA (E) and NO2-CLA (F) species while no reaction is observed with the enzymatic reduction products. Early-eluting peaks corresponding to transitions associated with the unsaturated nitroalkenes reflect in-source fragmentation of the BME-adducts. The grey continuous lines show the appearance of the expected Michael adducts formed upon reaction of BME with the corresponding nitroalkenes. Nitroalkenes were incubated with 7.3 µg/mL of enzyme enriched fraction for 1 hr at 37°C and electrophilicity assessed as described in the methods section.
Figure 4: Identification of PtGR-1 in the nitroalkene reductase fraction. A) PtGR-1 sequence showing peptide coverage obtained upon digestion and nanoLC-MS/MS analysis of the enriched enzyme fraction. PtGR-1 was found predominantly at the 36kDa band, consistent with the reported molecular weight for this protein. B) PtGR-1 Immunoblot blot analysis of the fractions collected during the purification process. Fractions are: 1- Clarified rat liver homogenate; 2- 70% (NH₄)₂SO₄ precipitate; 3- Eluate from HIC chromatography; 4- Eluate from DEAE chromatography; 5- Eluate from SP chromatography; 6- Eluate from Blue-HP chromatography.

Figure 5: PtGR-1 is responsible for nitroalkene reduction in purified liver fractions. A) Dose-dependent inhibition of NO₂-OA (10µM) reduction by 10µg/mL PtGR-1 purified fraction in the presence of 15-oxo-PGE₂. Data are means ± SD n=3. Dose-dependent inhibition by 15-oxo-PGE₂ is statistically significant as determined by two-way ANOVA and Bonferroni post-test (* p < 0.01 versus control). B) Effect of indomethacin and DTNB on both NO₂-OA and 15-oxo-PGE₂ reduction by 7.5µg/mL enzyme-purified fraction after a 10 min incubation. *,# p < 0.0001 versus respective ethanol vehicle control (EtOH) by one-way ANOVA and Bonferroni post-test. Data are means ± SD n=3. C) Concomitant loss of NO₂-OA and 15-oxo-PGE₂ reductase activities upon PtGR-1 immunoprecipitation from a solution of enzyme-purified fraction containing approximately 1µg PtGR-1. Data are means ±SD n=3. Inhibition is significant for both OA-NOS and 15-oxo-PGE₂ reduction as determined by two way ANOVA and Bonferroni post-test versus non-immunodepleted controls. *,# p<0.0001.

Figure 6: Human PtGR-1 over-expression increases cellular nitroalkene reductase activity. A) HEK293T cells were transfected either with an empty or a FLAG-tagged human PtGR-1 expression vector. Recombinant FLAG-hPtGR-1 migrates at ~40kDa (shown via anti-FLAG immunoblotting), endogenous PtGR-1 is detected at 36kDa. (B-E) Time-dependent generation of reduced NO₂-OA (15µM) metabolites in HEK293T growth media upon cell transfection with either empty vector or human PtGR-1 gene. Data are means ±SEM n=3. hPtGR-1 transfection increases the generation of the reduced 18-, 16-, 14- and 12-carbon metabolites of NO₂-OA as determined by two-way ANOVA and Bonferroni post test, *p < 0.01.

Figure 7: Kinetic analysis of NO₂-OA reduction by purified human PtGR-1. A) Representative silver stained SDS-PAGE and FLAG immunoblot of the purified FLAG-hPtGR-1 protein utilized for kinetic analysis (purity >90%). B) Michaelis-Menten plot for the enzymatic reduction of NO₂-OA by the recombinant FLAG-hPtGR-1 fraction shown in panel A. Parameters are K_M =84.71nM, V_MAX = 10.67 nmoles/min.mg, k_cat = 0.413 min⁻¹, R² = 0.9839.

Figure 8: PtGR-1 modulates cellular nitroalkene signaling. A-B) Representative western blots showing loss of dose-dependent HO-1 induction by NO₂-OA in HEK293T cells transfected with either human (A) or rat (B) PtGR-1 expression vectors. Numbers below each blot represent mean band densitometry values obtained after normalization to the corresponding loading control with SEM values between brackets. hPtGR-1 over-expression inhibits HO-1 induction as determined by two way ANOVA and Bonferroni post-test, n=3, * p <0.01. C) NO₂-OA treatment induces PtGR-1 expression in HepG2 cells (see Insert) as determined by two way ANOVA and Bonferroni post-test, * p <0.01. PtGR-1 band densities are normalized to actin. Data are means ±SD n=3.

Figure 9: Detection of the reduction product of NO₂-CLA (NO₂-dihydro-CLA) in human plasma. A-B) Representative LC-MS-MS data showing the chromatographic profile of exogenous ¹⁵NO₂-CLA and ¹⁵NO₂-dihydro-CLA added to human plasma after extraction (MRM: 325/47 and 327/47, respectively). C-D) Detection of endogenous NO₂-CLA and NO₂-dihydro-CLA in healthy human plasma (MRM: 324/46 and 326/46, respectively). The reduced ¹⁵NO₂-dihydro-CLA derivative was obtained by the reaction of ¹⁵NO₂-CLA with PtGR-1 in the presence of NADPH for 1 hr at 37°C, pH 7.0. The ¹⁵NO₂-CLA standard is a mixture of the positional isomers 9-¹⁵NO₂- and 12-¹⁵NO₂-CLA which are resolved into two peaks during LC separations.
Table 1: Summary of the most abundant proteins detected in the liver nitroalkene reductase-purified fraction. Relative abundance is represented by total spectral count. No. of different peptides: Number of unique peptide sequences identified. Unique: Number of peptides deemed protein-specific (proteotypic) by Sequest analysis. Total Spectral Count: Total number of CID spectra detected per protein.

Scheme 1: Nitroalkene metabolic disposition, reactivity and signaling.

Reference	Protein	No. of Different Peptides	Unique	Total Spectral Count
P97584	Prostaglandin reductase-1	55	55	538
P00481	Ornithine carbamoyltransferase	33	1	95
Q63276	Bile acid-CoA:amino acid N-acyltransferase	34	34	82
P27867	Sorbitol dehydrogenase	22	14	44
B5DF65	Biliverdin reductase B (Flavin reductase (NADPH))	12	12	43
P00884	Fructose-bisphosphate aldolase B	19	0	42
B6DYP8	Glutathione S-transferase	8	1	40
P09034	Argininosuccinate synthase	21	21	38
P07824	Arginase-1	18	18	37
P12346-1	Serotransferrin	23	0	29
Figure 1 - Vitturi et al
Figure 2 - Vitturi et al
Figure 3 - Vitturi et al
Prostaglandin Reductase-1 (P97584)

MVQAKTWTLLKHFEFGFTDSNFELRTTELPPPLNNGEVLLLEALFLSVDPYMRVAAKKLKEG
DSMMGEQVARVVEKNSAFPTGTIVVALLGWTSHSIDNGNLRLPAEWDPKLPCLPSLALS
TVGMPGLTAYFGLLDICGLKGETVLVNAAGAVGSVVGGQIAKLKGCKVVGTAGSDEKVA
YLKLGFDVAFNYKTVKSLEEALRTASPDGYDCYFDNVGGEFSNTVILQMQKFGRIAICG
AISQYNRTGPPGPGPSPEVIYQQLMRMEGFIVTRWQGQVEVRQKALTDLMNWSEGKIRYHE
YITEGFEKMPAAFMGMLKGDNLGKTIVKA

Figure 4 - Vitturi et al
Figure 5 - Vitturi et al
Figure 6 - Vitturi et al
Figure 7 - Vitturi et al
Figure 8 - Vitturi et al
Figure 9 - Vitturi et al
Scheme 1- Vitturi et al
Modulation of Nitro-Fatty Acid Signaling: Prostaglandin Reductase-1 is a Nitroalkene Reductase

Dario A. Vitturi, Chen-Shan Chen, Steven R. Woodcock, Sonia R. Salvatore, Gustavo Bonacci, Jeffrey R. Koenitzer, Nicolas A. Stewart, Nobunao Wakabayashi, Thomas W. Kenlser, Bruce A. Freeman and Francisco J. Schopfer

J. Biol. Chem. published online July 22, 2013

Access the most updated version of this article at doi: 10.1074/jbc.M113.486282

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2013/07/22/M113.486282.DC1