Brief Rapid Communication

Restoration of Contractile Function in Isolated Cardiomyocytes From Failing Human Hearts by Gene Transfer of SERCA2a

Federica del Monte, MD, PhD; Sian E. Harding, PhD; Ulrich Schmidt, MD, PhD; Takashi Matsui, MD, PhD; Zhao Bin Kang, MD; G. William Dec, MD; Judith K. Gwathmey, VMD, PhD; Anthony Rosenzweig, MD; Roger J. Hajjar, MD

Background—Failing human myocardium is characterized by abnormal relaxation, a deficient sarcoplasmic reticulum (SR) Ca\(^{2+}\) uptake, and a negative frequency response, which have all been related to a deficiency in the SR Ca\(^{2+}\) ATPase (SERCA2a) pump.

Methods and Results—To test the hypothesis that an increase in SERCA2a could improve contractile function in cardiomyocytes, we overexpressed SERCA2a in human ventricular myocytes from 10 patients with end-stage heart failure and examined intracellular Ca\(^{2+}\) handling and contractile function. Overexpression of SERCA2a resulted in an increase in both protein expression and pump activity and induced a faster contraction velocity (26.7±6.7% versus 16.6±2.7% shortening per second, \(P<0.005\)) and enhanced relaxation velocity (32.0±10.1% versus 15.1±2.4%, \(P<0.005\)). Diastolic Ca\(^{2+}\) was decreased in failing cardiomyocytes overexpressing SERCA2a (270±26 versus 347±30 nmol/L, \(P<0.005\)), whereas systolic Ca\(^{2+}\) was increased (601±38 versus 508±25 nmol/L, \(P<0.05\)). In addition, the frequency response was normalized in cardiomyocytes overexpressing SERCA2a.

Conclusions—These results support the premise that gene-based therapies and targeting of specific pathways in human heart failure may offer a new modality for the treatment of this disease. (Circulation. 1999;100:2308-2311.)

Key Words: contractility • myocytes • gene therapy • sarcoplasmic reticulum

Contractions and relaxation in cardiac myocytes are tightly regulated by intrinsic mechanisms that govern the sequential rise and fall of cytosolic Ca\(^{2+}\). During depolarization, Ca\(^{2+}\) entry through the L-type Ca\(^{2+}\) channels triggers the release of Ca\(^{2+}\) from the sarcoplasmic reticulum (SR) through ryanodine receptors, resulting in activation of the contractile proteins. In human cardiomyocytes, the removal of Ca\(^{2+}\) from the cytoplasm is governed mainly by the SR Ca\(^{2+}\) ATPase (SERCA2a) pump and to a lesser extent the Na/Ca exchanger. Cardiomyocytes isolated from failing human hearts are characterized by contractile dysfunction, including prolonged relaxation, reduced systolic force, and elevated diastolic force. These contractile abnormalities are paralleled by abnormal Ca\(^{2+}\) homeostasis, such as reduced SR Ca\(^{2+}\) release, elevated diastolic Ca\(^{2+}\), and reduced rate of Ca\(^{2+}\) removal. In addition, failing human myocardium is characterized by a frequency-dependent decrease in systolic force and Ca\(^{2+}\), as opposed to normal myocardium, in which an increase in pacing rate results in potentiation of contractility and an increase in SR Ca\(^{2+}\) release. In the failing heart, the decrease in SR Ca\(^{2+}\) load has been linked to a decrease in SERCA2a function. However, there has been long-standing controversy as to whether the protein level of SERCA2a is decreased in failing human hearts. In addition, because human cardiomyocytes rely on the SERCA2a pump to a lesser degree than do rodents (≈60% versus ≈90%), the direct implication of a reduction in SERCA2a activity in human failing hearts for overall contractile function has not been clear. In this study, we overexpressed SERCA2a by adenoviral gene transfer in viable human cardiomyocytes from failing and nonfailing human hearts.

Methods

Failing human ventricular myocardial tissue was obtained from 10 explanted hearts (5 ischemic and 5 dilated cardiomyopathy) and nonfailing tissue from 3 donor hearts. Myocytes were isolated from 1 g of endocardial tissue removed from the free wall of the left ventricle by enzymatic digestion as previously described. The proportions of rod-shaped viable cells at the time of isolation were 28±5% (n=10) for failing and 35±8% (n=3) for nonfailing
cardiomyocytes \((P>0.1)\), and at 24 hours after infection, they were 19±6\% (\(n=10\)) and 24±7\% (\(n=3\)) \((P>0.1)\). After isolation, the cells were resuspended in F10 medium with 0.164 U/100 mL insulin, 50 U/mL penicillin, and 50 U/mL streptomycin, equilibrated to pH 7.4 and infected with the adenoviruses at a multiplicity of infection (MOI) of 100. Two first-generation type 5 recombinant adenoviruses were used in the study: Ad.GFP, which carries the green fluorescent protein under the control of the cytomegalovirus promoter, and Ad.SERCA2a, which carries both the SERCA2a and GFP genes, under the control of separate cytomegalovirus promoters. After 24 hours, cardiomyocytes were placed in a flow chamber on the stage of an inverted microscope, superfused with oxygenated Krebs-Henseleit solution, and electrically stimulated with biphasic pulse (0.2 Hz, 50% above threshold).\(^5\) Contraction amplitude and rates of contraction and relaxation were recorded online with a video edge-detection system and data acquisition software (Ion Optix). The fluorescent
Ca2+ indicator fura 2 (Molecular Probes) was used to measure intracellular Ca2+ with a dual-excitation spectrofluorometer (IonOptix) as described previously.13 We isolated SR membranes from ventricular myocytes, and SERCA2a activity assays were carried out on the basis of a pyruvate/NADH coupled reaction at [Ca2+] of 10 \textmu mol/L as previously described.13 SDS-PAGE was performed on the isolated membranes under reducing conditions on a 7.5% separation gel with a 4% stacking gel and immunoblotted with 1:2500 diluted monoclonal anti-SERCA2 antibody (Affinity BioReagents). The blot was then incubated in a chemiluminescence system and exposed to an X-OMAT AR x-ray film (Fuji Films) for 1 minute. Data were presented as mean\pm SD and were analyzed with a 1-way ANOVA, with statistical differences identified at P<0.05.

Results
The coexpression of GFP allowed us to identify the cells that were infected and expressing the transgene (Figure 1a). Figure 1b shows tracings from representative cardiomyocytes isolated from failing hearts, which are characterized by decreased shortening and prolonged relaxation compared with the donor nonfailing cardiomyocytes. Overexpression of SERCA2a in failing cardiomyocytes induced a faster contraction velocity (26.7\pm6.7% versus 16.6\pm2.7% shortening per second, P<0.005) and enhanced relaxation velocity (32.0\pm10.1% versus 15.1\pm2.4%, P<0.005). Diastolic Ca2+ was decreased in failing cardiomyocytes overexpressing SERCA2a (270\pm26 versus 347\pm30 nmol/L, P<0.005), whereas systolic Ca2+ was increased (601\pm38 versus 508\pm25 nmol/L, P<0.05). Because a negative frequency response is a distinctive characteristic of failing myocardium, we tested whether an increase in SERCA2a expression restores the frequency response to normal. As shown in Figure 1c, increasing the frequency of stimulation in nonfailing cardiomyocytes induced an increase in contraction and intracellular Ca2+ with little change in diastolic Ca2+. In failing cardiomyocytes, increasing the frequency of stimulation induced a decrease in contraction and a large increase in diastolic cell length and diastolic Ca2+. Overexpression of SERCA2a in failing cardiomyocytes restored the frequency response, with increasing contraction at increasing frequencies. However, at high stimulation frequencies (2 Hz), both diastolic Ca2+ and cell length increased, but to a lesser degree than in failing cardiomyocytes infected with Ad.GFP. To verify that overexpression of SERCA2a in the human cardiomyocytes resulted in enhanced SERCA2a expression and increased SR pump activity, we also examined immunoblots from infected cardiomyocytes and measured enzymatic activity of the SERCA2a. As shown in Figure 2, infection of cardiomyocytes with Ad.SERCA2a resulted in increased expression of SERCA2a protein and enhanced Ca2+ ATPase activity (43.2\pm3.8 versus 72.6\pm5.1 nmol \cdot mg-1 \cdot min-1, n=6, P<0.01).

Discussion
Cardiac myocytes from failing human hearts of any etiology show a significant impairment of velocities of contraction and relaxation under low stimulation rate, and an alteration of contraction amplitude occurs at higher frequencies of stimulation than with nonfailing myocytes,13–15 contributing to the systolic and diastolic dysfunction in failing hearts. Abnormalities of the Ca2+ uptake by SERCA2a have been shown both in animal models of heart failure and in humans to account for the described functional abnormalities. Restoring the protein levels and function therefore represents a strategy to revoice the defects. Overexpressing SERCA2a was shown to reverse the contractile abnormalities of failing hearts, as we and others have validated in animal models.13–15 Transgenic mice overexpressing SERCA2a were characterized by higher myocardial contractility, including increased rates of pressure development for contraction and relaxation.16,17 Furthermore, in animal models in vivo, overexpressing SERCA2a improved contractile parameters,18 indicating that enhancing contractility at the cellular level does translate into improved ventricular performance. However, species-dependent differences need to be evaluated in the interpretation of a model and its translation to pathophysiology in humans. In particular, species-dependent differences are known to exist at the level of the SR in terms of Ca2+ removal during relaxation. Therefore, it was not clear whether gene transfer of SERCA2a could be used to restore contractility in human
cardiomyocytes isolated from failing hearts. The difficulties in manipulating human myocytes, especially from diseased hearts, have thus far limited studies on the feasibility and efficacy of gene therapy in humans, with a growing experience in animal models. In this study, we were able to overexpress SERCA2a in human cardiac myocytes, and we showed that this translated into a normalization of the major characteristic abnormalities of contraction and calcium handling at the cellular level with an enhanced contraction amplitude and velocities of contraction and relaxation, an increase in peak Ca^{2+}, and abbreviation of the calcium transient.

Heart failure continues to be a growing health problem in the United States, especially as the population ages. Up to now, treatment regimens can slow the progress of the disease without clearly reversing it. Gene-based therapies and treatment regimens can slow the progress of the disease in the United States, especially as the population ages. Up to now, treatment regimens can slow the progress of the disease without clearly reversing it. Gene-based therapies and targeting specific pathways in human heart failure may offer a new modality for the treatment of this disease. Overexpression of SERCA2a increases contractility in the short term, but whether targeted gene transfer has long-term benefits, as opposed to the long list of failed inotropic agents, is not yet known. Further experimental work will be necessary to validate the premise that improving contractile parameters at the cellular level can affect overall ventricular performance and survival in heart failure.

Acknowledgments

This work was supported in part by NIH grants HL-50361 and HL-57623 (Dr Hajjar), HL-54202 and HL-59521 (Dr Rosenzweig), and HL-49574 and HL-60323 (Dr Gwathmey); a Doris Duke Charitable Foundation Clinician Scientist Award and American Federation of Aging Research Grant (Dr Hajjar); and British Heart Foundation Grants 97064 and 98043 (Dr Harding). Dr Rosenzweig is an Established Investigator of the American Heart Association. The authors would like to thank the cardiac surgeons at Massachusetts General Hospital for assistance in tissue acquisition and the National Disease Research Interchange (NDRI) for technical assistance.

References

1. Arai M, Matsui H, Periasamy M. Sarcoplasmic reticulum gene expression in cardiac hypertrophy and heart failure. Circ Res. 1994;74:555–564.
2. Gwathmey JK, Copelas L, Mackinnon R, Schoon FJ, Feldman MD, Grossman W, Morgan JP. Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res. 1987;61:70–76.
3. Gwathmey JK, Slawsky MT, Hajjar RJ, Briggs GM, Morgan JP. Role of intracellular calcium handling in force-interval relationships of human ventricular myocardium. J Clin Invest. 1990;85:1599–1613.
4. Harding SE, Jones SM, O’Gara P, del Monte F, Vescovo G, Poole-Wilson PA. Isolated ventricular myocytes from failing and non-failing human heart: the relation of age and clinical status of patients to isoprotrenol response. J Mol Cell Cardiol. 1992;24:549–564.
5. del Monte F, O’Gara P, Poole-Wilson PA, Yacoub M, Harding SE. Cell geometry and contractile abnormalities of myocytes from failing human left ventricle. Cardiovasc Res. 1995;30:281–290.
6. Schmidt U, Hajjar RJ, Helm PA, Kim CS, Doye AA, Gwathmey JK. Contribution of abnormal sarcoplasmic reticulum ATPase activity to systolic and diastolic dysfunction in human heart failure. J Mol Cell Cardiol. 1998;30:1929–1937.
7. Muller LA, Hasenfuss G, Leavitt B, Allen PD, Alpert NR. Altered myocardial force-frequency relation in human heart failure. Circulation. 1992;85:1743–1750.
8. Davies CH, Davia K, Bennett JG, Pepper JR, Poole-Wilson PA, Harding SE. Reduced contraction and altered frequency response of isolated ventricular myocytes from patients with heart failure. Circulation. 1995;92:2540–2549.
9. Hasenfuss G, Reinheke H, Studer R, Meyer M, Peske B, Holtz J, Holubarsch C, Posival H, Just H, Drexler H. Relation between myocardial function and expression of sarcoplasmic reticulum Ca$^{2+}$-ATPase in failing and nonfailing human myocardium. Circ Res. 1994;75:434–442.
10. Meyer M, Schillinger W, Peske B, Holubarsch C, Heilmann C, Posival H, Kuwajima G, Mikoshiba K, Just H, Hasenfuss G. Alterations of sarcoplasmic reticulum proteins in failing human dilated cardiomyopathy. Circulation. 1995;92:778–784.
11. Mercadier J, Lompre AM, Duc P, Boheler KR, Frayssie JB, Wisnewsky C, Allen PD, Komajda M, Schwartz K. Altered sarcoplasmic reticulum Ca$^{2+}$-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest. 1990;85:305–309.
12. Schwinger RH, Bohm M, Schmidt U, Karczewski P, Bavendiek U, Flesch M, Krause EG, Erdmann E. Unchanged protein levels of SERCA II and phospholamban but reduced Ca$^{2+}$ uptake and Ca$^{2+}$-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Circulation. 1995;92:3220–3228.
13. Hajjar RJ, Kang JX, Gwathmey JK, Rosenzweig A. Physiological effects of adenoaviral gene transfer of sarcoplasmic reticulum calcium ATPase in isolated rat myocytes. Circulation. 1997;95:423–429.
14. Hajjar RJ, Schmidt U, Kang JX, Matsui T, Rosenzweig A. Adenoviral gene transfer of phospholamban in isolated rat cardiomyocytes: rescue effects by concomitant gene transfer of sarcoplasmic reticulum Ca$^{2+}$-ATPase. Circ Res. 1997;81:145–153.
15. Giordano FJ, He H, McDonough P, Meyer M, Sayen MR, Dillmann WH. Adenovirus-mediated gene transfer reconstitutes depressed sarcoplasmic reticulum Ca$^{2+}$-ATPase levels and shortens prolonged cardiac myocyte Ca$^{2+}$ transients. Circulation. 1997;96:400–403.
16. Baker DL, Hashimoto K, Grupp IL, Ji Y, Reed T, Loukanov E, Grupp G, Bhagwath A, Hoi B, Walsh R, Marban E, Periasamy M. Targeted overexpression of the sarcoplasmic reticulum Ca$^{2+}$-ATPase increases cardiac contractility in transgenic mouse hearts. Circ Res. 1998;83:1205–1214.
17. He H, Giordano FJ, Hidal-Dandan R, Choi DJ, Rockman HA, McDonough PM, Bluhm WF, Meyer M, Sayen MR, Swanston E, Dillmann WH. Overexpression of the rat sarcoplasmic reticulum Ca$^{2+}$ ATPase gene in the heart of transgenic mice accelerates calcium transients and cardiac relaxation. J Clin Invest. 1997;100:380–389.
18. Miyamoto MI, Guerrero JL, Schmidt U, Gwathmey JK, Dec GW, Rosenzweig A, Hajjar RJ. Adenoviral gene transfer of SERCA2a improves LV function in aortic-banded rats in transition to heart failure. Circulation. 1998;98:736. Abstract.
19. Stevenson LW. Inotropic therapy for heart failure. N Engl J Med. 1998;339:1848–1850.
Restoration of Contractile Function in Isolated Cardiomyocytes From Failing Human Hearts by Gene Transfer of SERCA2a

Federica del Monte, Sian E. Harding, Ulrich Schmidt, Takashi Matsui, Zhao Bin Kang, G. William Dec, Judith K. Gwathmey, Anthony Rosenzweig and Roger J. Hajjar

Circulation. 1999;100:2308-2311
doi: 10.1161/01.CIR.100.23.2308

Circulation is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1999 American Heart Association, Inc. All rights reserved.
Print ISSN: 0009-7322. Online ISSN: 1524-4539

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://circ.ahajournals.org/content/100/23/2308

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Circulation_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Circulation_ is online at:
http://circ.ahajournals.org//subscriptions/