Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19, myocardial edema and dexamethasone

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of coronavirus disease-2019 (COVID-19) after emerging in China in late 2019 is spreading rapidly across the world.

The most common cause of death in patients with COVID-19 is the rapid progression of acute respiratory distress syndrome (ARDS) shortly after the beginning of dyspnea and hypoxemia. Patients with severe COVID-19 may also develop acute cardiac, kidney and liver injury that are associated with poor prognosis and can lead to high mortality rate.

Numerous randomized trials are ongoing to find an effective, safe and widely available treatment. Remdesivir is the only FDA-approved antiviral agent for treatment of severe COVID-19. Glucocorticoids (GCs) have been used for treatment of cytokine storm syndrome and respiratory failure in hospitalized patient with severe covid-19. One of the therapeutic effects of GCs is stability of vascular endothelial barrier and decreasing tissue edema.

In our opinion, the decreasing vascular permeability effect of glucocorticoids in the injured myocardium might has an important additional factor in reducing mortality in severe, hospitalized COVID-19 patients.

Introduction

From the beginning of the coronavirus disease 2019 outbreak in December 2019, in Wuhan China, the COVID-19 rapidly spread across the world [1] with an actual international public health emergency.

Myocardial Injury in COVID-19

Acute myocardial injury, mainly defined by elevated cardiac biomarkers is not uncommon in COVID-19 patients with an incidence ranging from 7.2% to 12% and considered as a risk factor for in-hospital mortality among severe COVID-19 patients [2].

A recent study from China documented that 15.8% of all admitted patients had myocardial injury based on high blood level of troponin I (cTnI) and also patients who died had suffered more often from myocardial injury during hospitalization compared with survivors 75.8% vs. 9.7% [3].

Although the exact pathophysiologic mechanism of myocardial injury in COVID-19 remains under investigation, there are multiple possible etiologies, including acute viral myocarditis, acute ischemic injury due to coronary artery obstruction, and inflammatory myocardial edema due to the systemic immune response [4].

Mounting evidence indicates that vascular leakage and tissue edema play a main role in the pathogenesis of acute lung injury (ARDS) and myocardial injury in patients with severe COVID-19 [5]. Several mechanisms may contribute in the pathogenesis of myocardial edema: First, there is invasion of endothelial cells (EC) by SARS-CoV-2. The resultant endotheliitis is characterized by EC dysfunction, cell lysis and a subsequent necrotic response. Second, there is a downregulation of the angiotensin-convertase enzyme 2 (ACE2), SARS-CoV-2 enters cells via binding to the cellular membrane receptor ACE2 [6], which in turn reduces ACE2 availability, leading to and increase of angiotensin 2 and an activation of the kallikrein–bradykinin pathway and eventually to an increased vascular permeability. As a third mechanism, the surge of inflammatory cytokines and vasoactive molecules leads to augmented EC contractility and loosening of inter-endothelial junctions [7].

Cardiac magnetic resonance (CMR) has recently emerged as the most sensitive noninvasive imaging modality for confirming myocardial injury. In a recently published autopsy series in patients with COVID-19, no significant diffuse lymphocytic inflammatory infiltration in the heart muscle or large areas of myocardial necrosis were observed [8]. There is a significant correlation between published CMR case reports and autopsy based finding in showing absence of late gadolinium enhancement which indicates lack of myocyte necrosis and scar formation in most of COVID-19 related-cardiac injury. However, CMR consistently demonstrates diffuse myocardial edema by transitional increasing left ventricular wall thickness and high signal intensity on water-sensitive T2 -weighted images (T2 mapping and T2-STIR) [9–12].

Prolonged episodes of myocardial edema not only affect systolic and diastolic function with reduced ventricular compliance, but also may lead to the formation of diffuse myocardial fibrosis [13]. The latter may be irreversible and have therefore longstanding consequences for ventricular functional capacity.

Dexamethasone

Preliminary report of the RECOVERY trial has shown reduced death rates of more than 20% in hospitalized COVID-19 patients who received dexamethasone [14,15].

Glucocorticoids (GCs) are steroid hormones that have inflammatory and immunosuppressive effects on a different cells group and lead to different physiological and pathological effects.

One of the systemic effects of GCs is diminishing edema formation by altering endothelial cell barrier function. Decreasing brain edema especially after pathologic events like acute ischemic stroke, post surgery and radiotherapy has been recognized for many years [16].

Several published studies have shown that dexamethasone has a positive effect on myocardial vascular permeability and helps maintain the barrier function of endothelial cells during ischemic stress [17,18].

https://doi.org/10.1016/j.mehy.2020.110307

Received 20 July 2020; Received in revised form 24 August 2020; Accepted 24 September 2020

Available online 28 September 2020

0306-9877/ Crown Copyright © 2020 Published by Elsevier Ltd. All rights reserved.
Conclusion

We think that dexamethasone may play a pivotal role in decreasing deaths in COVID-19 patients by helping maintain vascular permeability. Such a therapeutic effect not only resolve edema and inflammation in the lung but also on the myocardial tissue will likely lead to a decrease of myocardial edema and thereby improves systolic and diastolic ventricular function. Furthermore, it may prevent the formation of global fibrosis as a chronic, potentially irreversible complication of COVID-19.

This hypothesis should be tested using CMR in patients with COVID-19-related acute cardiac injury before and after dexamethasone treatment.

Funding

Authors declare not using any grants.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.mehy.2020.110307.

References

[1] Wu Z, Mc Googan J. Characteristic and important lessons from the Coronavirus Disease 2019 (COVID-19) outbreak in china. JAMA 2020;323(13):1239–42.
[2] Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, Wang B, Xiang H, Cheng Z, Xiong Y, Zhao Y, Li Y, Wang X, Peng Z. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020;323(11):1061. https://doi.org/10.1001/jama.2020.1585.
[3] Shaoao Shi et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J 2020;41:2070–9.
[4] Clerkin KJ, Fried IA, Raikhelkar J, Sayer G, Griffin JM, Masoomi A, Jain SS, Burkhoff D, Kumaraih D, Rabbani LeRoy, Schwartz A, Urol N. COVID-19 and cardiovascular disease. Circulation 2020;141(20):1648–55.
[5] Varga Z, Flammer AJ, Steiger P, Habererrer M, Andermab R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moeh J. Endothelial cell infection and endotheliitis in COVID-19. Lancet 2020;395(10234):1417–8.
[6] Hoffmann M, Kleine-Weber H, Schroder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu N-H, Nitsche A, Muller MA, Drosten C, Pohlsinn M. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020;181(2):271–280.e8.
[7] Laure-Anne T, et al. COVID-19: the vasculature unleashed. Nat Rev/Immunol 2020;20:389–91.
[8] Fox Sharon E, et al. Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans. Lancet Respir Med 2020;20:3043–5.
[9] Lubzens JA, Issak A, Zimmer S, Nattermann J, Sprinkart AM, Booese c, Rieke GJ, Zachoval C, Heine A, Velten M, Duer GD. Diffuse myocardial inflammation in COVID-19 associated myocarditis detected by multiparametric cardiac magnetic resonance imaging. Circ Cardiovasc Imag 2020;13(5). https://doi.org/10.1161/ CIRCIMAGING.120.010997.
[10] Manka R, Karolyi M, Polacin M, Holy EW, Nemeth J, Steiger P, Schuepbach RA, Zinkernagel AS, Alkadhi H, Mehra MR, Ruschitzka F. Myocardial edema in COVID-19 on cardiac MRI. J Heart Lung Transpl 2020;39(7):730–2.
[11] Bernardi Nicola et al. Covid-19 pneumonia, Takotsubo syndrome and left ventricle thrombi JACC case reports; 2020.
[12] Philippe Meyer et al. Typical takotsubo syndrome triggered by SARS-CoV-2 infection, Eur Heart J, online publish-ahead-of-print 14 April 202.
[13] Desai KV, Laine GA, Stewart RH, Cox CS, Quick CM, Allen SJ, et al. Mechanics of the left ventricular myocardial interstitium: effects of acute and chronic myocardial edema. Am J Physiol Heart Circ Physiol 2008;294:H4248–34.
[14] Mahane Elisabeth, Covid-19: Low dose steroid cuts death in ventilated patients by one third, trial finds. BMJ2020;369.
[15] The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with COVID-19– preliminary report. NEJM 2020; Jul. 17.
[16] Ellaine S, et al. Glucocorticoids and endothelial cell barrier function. Cell Tissue Res 2014;355:597–605.
[17] Lefer AM, Crossley K, Grigonis G, Lefer DJ. Mechanism of the beneficial effect of dexamethasone on myocardial cell integrity in acute myocardial ischemia. Basic Res Cardiol 1980;75(2):328–39.
[18] Oakleyand RH, Cendrowski JA. Glucocorticoid signaling in the heart: a cardiomyocyte perspective. J Steroid Biochem Mol Biol 2015;153:27–34.

Moezedin Javad Rafieee⁎, Faranak Babaki Fardb, Matthias G. Friedrichc

⁎ Corresponding author.