Nodulin 41, a novel late nodulin of common bean with peptidase activity

Olivares et al.
Nodulin 41, a novel late nodulin of common bean with peptidase activity

Juan Elías Olivares1, Claudia Díaz-Camino1, Georgina Estrada-Navarrete1, Xochitl Alvarado-Affantranger1, Margarita Rodríguez-Kessler1, Fernando Z Zamudio2, Timoteo Olamendi-Portugal2, Yamile Márquez1, Luis Eduardo Servín1 and Federico Sánchez1*

Abstract

Background: The legume-rhizobium symbiosis requires the formation of root nodules, specialized organs where the nitrogen fixation process takes place. Nodule development is accompanied by the induction of specific plant genes, referred to as nodulin genes. Important roles in processes such as morphogenesis and metabolism have been assigned to nodulins during the legume-rhizobium symbiosis.

Results: Here we report the purification and biochemical characterization of a novel nodulin from common bean (Phaseolus vulgaris L.) root nodules. This protein, called nodulin 41 (PvNod41) was purified through affinity chromatography and was partially sequenced. A genomic clone was then isolated via PCR amplification. PvNod41 is an atypical aspartyl peptidase of the A1B subfamily with an optimal hydrolytic activity at pH 4.5. We demonstrate that PvNod41 has limited peptidase activity against casein and is partially inhibited by pepstatin A. A PvNod41-specific antiserum was used to assess the expression pattern of this protein in different plant organs and throughout root nodule development, revealing that PvNod41 is found only in bean root nodules and is confined to uninfected cells.

Conclusions: To date, only a small number of atypical aspartyl peptidases have been characterized in plants. Their particular spatial and temporal expression patterns along with their unique enzymatic properties imply a high degree of functional specialization. Indeed, PvNod41 is closely related to CDR1, an Arabidopsis thaliana extracellular aspartyl protease involved in defense against bacterial pathogens. PvNod41’s biochemical properties and specific cell-type localization, in uninfected cells of the common bean root nodule, strongly suggest that this aspartyl peptidase has a key role in plant defense during the symbiotic interaction.

Background

Leguminous plants can establish mutually beneficial associations with soil N₂-fixing bacteria, mainly belonging to the Rhizobiaceae family (rhizobia) [1,2]. This remarkable biological process culminates in the formation of specialized organs, the symbiotic nodules, where the N₂ fixation process takes place. The legume-rhizobium interaction initiates with an exchange of molecular signals, a chemical dialog that leads to mutual recognition, the attachment of the bacteria to the plant root hairs, and the formation of the nodule meristem.

Rhizobia invade plant roots via an infection thread made of plant material while a nodule primordium is simultaneously induced in the root cortex. Bacteria are released from infection threads into the cytoplasm of primordium cells by endocytosis and become surrounded by a plant-derived membrane, the peribacteroid membrane (PBM). The PBM is a physical and dynamic barrier between rhizobia and the cell’s cytoplasm. Inside the hosting cell, the bacteria multiply, undergo a dramatic differentiation process including extreme cell enlargement, and finally become specialized N₂-fixing bacteroids [3]. In fully developed bean nodules, two major tissues can be recognized: the peripheral tissue and the central tissue. Whereas the central tissue is composed mainly of large infected cells intercalated with smaller, vacuolated uninfected cells, the peripheral
tissue includes: from the outside to the inside, the outer cortex, the nodule endodermis, and the inner cortex (also called the nodule parenchyma), which contains the vascular bundles [4].

Several plant proteins involved in this symbiotic process show a specific or enhanced expression pattern in root nodules. These proteins are collectively termed nodulins and have been classified as early or late nodulins according to the timing of their expression during root nodule development [5-7]. In general, early nodulins are involved in initial signaling events, infection development, and nodule organogenesis, whereas late nodulins, which are induced just before or during the onset of the N2 fixation process, are involved mainly in nodule metabolism and function.

Large-scale transcriptome analyses conducted in the last decade have enabled the identification of plant peptidases whose expressions are up-regulated during rhizobium infection, nodule development and/or senescence [8-13], suggesting roles for these proteins in the symbiotic process.

Peptidases cleave covalent peptide bonds of proteins or peptides [14], an essential post-translational modification that alters the half-lives, subcellular trafficking and activities of a wide array of proteins [15]. In consequence, peptidases are potentially involved in a multitude of biological processes ranging from simple digestion of proteins to highly-regulated signaling cascades.

Plant aspartic peptidases (APs; EC 3.4.23), a relatively small class of endopeptidases, are composed of either one or two chains [16]. Their catalytic centre is formed by two Asp residues that activate a water molecule, and this event mediates the nucleophilic attack on the peptide bond [14]. Enzymes of this group are active at acidic pH and are generally inhibited by pepstatin A [16]. Although the biological function of most plant APs remains hypothetical, these enzymes have been implicated in protein processing and/or degradation, plant senescence and programmed cell death, stress responses, and reproduction [17].

APs are synthesized as inactive precursors (also known as zymogens), in which a hydrophobic N-terminal signal sequence is followed by the presence of a protein with an apparent molecular mass of 41 kDa. The fraction containing PvNod41 (Figure 1, lane 5), was collected and used for amino acid sequencing, interaction assays and proteolytic activity assays. The calculated purification factor from the crude extract was 250-fold.

The identity of PvNod41 was partially determined by Edman degradation from purified trypsin-digested peptides (Figure 2). All of the partial amino acid sequences of PvNod41 were further identified in different expressed sequence tags (ESTs) of common bean (EST database at NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi), a fact that allowed us to deduce a virtually complete gene sequence, depicted in detail in Figure 2. Two primers were designed to amplify PvNod41 by PCR. A single ~1.5 kb PCR amplification product was obtained using either genomic DNA or cDNA of common bean as template, indicating that this gene contains no introns. The PvNod41 gene (GenBank: JN255164.1) encodes a 437 amino acid plant AP (GenBank:
Figure 1 Analysis of purified PvNod41. Protein profile on a Coomassie-stained 12% SDS-PAGE gel of collected fractions obtained during PvNod41 purification. Lane 1, protein marker; lane 2, crude protein extract from root nodules; lane 3, 1 M KCl washing; lane 4, fraction A (elution from the BSA-Affi-Gel 10 Gel column); lane 5, fraction B (flow-through of the chromatography on Affi-Gel Heparin).
were also obtained by using a chromogenic method that employs succinylated casein as a substrate (Quant-Cleave™ Peptidase Assay kit, Pierce). The maximum activity detected by this method was at pH 5.5 (see Additional file 2).

The effects of distinct class-specific inhibitors of known peptidases on PvNod41 activity were studied and the results are shown in Table 2. None of the AP inhibitors used could completely abolish the hydrolytic activity of PvNod41 on casein. Inhibition in response to pepstatin A (a widely used inhibitor of APs) was partial, as was that of 2-mercaptoethanol and Fe³⁺. The effect of SDS, known to stimulate peptidase activity, was also deleterious. As expected, EDTA, an inhibitor of metallo-peptidase activity, had no effect on PvNod41.

PvNod41 expression pattern in different bean organs and immunolocalization in root nodules

A specific antiserum raised in mouse against purified PvNod41 detected a single 41 kDa band in a crude extract of root nodule proteins, but no signal was detected in similar extracts from roots, nodule-stripped roots, stems, or leaves (Figure 6), confirming that PvNod41 is indeed a nodulin. The temporal expression

Figure 3 Relationship of PvNod41 to other plant aspartic proteases. Phylogenetic relationship between PvNod41 and aspartic peptidases of the A1B subfamily. Groups of representative aspartic peptidases such as CDR1 (A), nepenthesin (B), CND41 (C), PCS1 (D) and nucellin (E), were used for the analysis. Phytepsins of peptidase subfamily A1B were included as an outgroup. Database accession numbers are indicated. The phylogenetic tree was constructed using the Maximum Likelihood method based on protein sequences. Numbers represent number of substitutions per site along the branch. At, Arabidopsis thaliana; Gm, Glycine max; Hv, Hordeum vulgare; Le, Lycopersicon esculentum; Lj, Lotus japonicus; Mt, Medicago truncatula; Ng, Nepenthes gracilis; Ns, Nicotiana sylvestris; Nt, Nicotiana tabacum; Os, Oryza sativa; Ps, Picea pishensis; Pt, Populus trichocarpa; Pv, Phaseolus vulgaris; Vv, Vitis vinifera.

Table 1 Semi-quantitative assay of purified PvNod41 proteolytic activity

Protein substrates	Efficiency of cleavage (n = 5)
Casein	58% (± 2%)
Denatured casein	67% (± 5%)
BSA	n.c.
Denatured BSA	n.c.
Gelatin	n.c.
n.c. not cleaved.	

Proteolytic activity of purified PvNod41 was tested against several model substrates. The assays were performed as described in “Methods”. Efficiency of cleavage was compared to that of trypsin.
pattern of PvNod41 during root nodule development was also investigated. No signal was detected in 3-d-old uninoculated roots, 21 days post-inoculation (dpi) nodule-stripped roots, or 10 dpi root nodules (Figure 7). PvNod41 was just barely detected in 12 dpi root nodules, and accumulated in 14 to 30 dpi root nodules (Figure 7). Based on the fact that PvNod41 shows a late developmental expression pattern during root nodule development, correlating with other late nodulins such as leghemoglobin and uricase II [27], this protein should be considered a late nodulin. Additionally, PvNod41 transcript accumulation levels were determined by RT-qPCR. PvNod41 transcripts were found in 10 to 30 dpi root nodules, whereas no transcripts were detected in 3 d-old uninoculated roots. 21 dpi nodule-stripped roots contained a lower amount of transcript than did root nodules (Figure 7C).

Since the bean root nodule is formed by different tissues, each composed of particular cell types, we wanted to know if PvNod41 is expressed in different cells

Figure 5 Effect of pH on the activity of PvNod41. (A) Purified PvNod41 was tested for activity using casein as a substrate (1 h at 37°C) at pH values ranging from 2.5 to 9.5. Obtained samples were analyzed by 12% SDS-PAGE and stained with Coomassie Blue. (B) Densitometry analysis of degraded casein. Percentage (%) of degraded casein relative to control casein was plotted against pH. Means of three independent experiments ± SE are shown.
throughout the root nodule or only in a particular cell type. The anti-PvNod41 antiserum was used to specifically detect PvNod41 in root nodule sections by laser scanning confocal microscopy. The PvNod41 signal was restricted to the central tissue of mature nodules (Figure 8F), specifically in uninfected cells (Figure 8 and Additional file 3). PvNod41 signal was not associated with the cell wall, plasma membrane, or vacuole (Figure 8E). Instead, this protease displayed a punctate subcellular distribution that could be indicative of the endomembrane system. Interestingly, the distribution pattern of PvNod41 within the cell (Figure 8E) is similar to that of PCS1, an atypical AP of Arabidopsis thaliana that is localized to the ER [19].

Discussion

Proteolytic enzymes are usually associated with nutrient remobilization during starvation, and senescence, stress responses, and differentiation of cell components [15,28,29]. However, novel findings on plant peptidase functions have revealed their involvement in a broad range of inducible cellular processes [15,30].

A variety of up-regulated genes encoding members of the large peptidase family have been discovered during all stages of the legume-rhizobium symbiosis [8-13], suggesting that peptidases may play an important role in the symbiotic process. Indeed, rhizobium-induced peptidases have been isolated from various nodulating plants. MtMMPL1, a Medicago truncatula matrix metalloendopeptidase has been shown to be involved in the Sinorhizobium meliloti infection process [31]. cg12, a subtilisin-like serine peptidase gene from Casuarina glauca, was shown to be specifically expressed during plant cell infections induced by Sinorhizobium meliloti in transgenic Medicago truncatula plants [32], whereas Sbts, a Lotus japonicus serine peptidase of the subtilase superfamily, is transiently expressed during the first two weeks after inoculation with Mesorhizobium loti and is proposed to be involved in nodule formation and maintenance [33]. Cysteine peptidases have been implicated

Table 2 Proteolytic activity of purified PvNod41

Inhibitor	Concentration	% of residual activity (n = 3)
Pepstatin A	2 μM	55 (± 5)
2-mercaptoethanol	25 mM	62 (± 5)
Fe³⁺	10 mM	39 (± 4)
SDS	0.09%	47 (± 5)
EDTA	5 mM	100

Purified PvNod41 was tested for activity using casein as a substrate in 50 mM sodium citrate, pH 4.5 at 37°C. The enzyme was preincubated in the presence of the indicated inhibitor for 15 min at 37°C before adding the substrate.
Figure 8

PvNod41 protein is located in uninfected cells. Immunolocalization of PvNod41 in root nodule transverse sections with counterstained cell walls. (A) anti-PvNod41 antibodies visualized with a secondary antibody conjugated to Alexa Fluor® 633 (red); (B) differential interference contrast (DIC) image; (C) cell wall staining (green); (D) merge of A and C; (E) Image magnification of an uninfected cell of D; (F) Immunolocalization of PvNod41 at whole root nodule level. The images were taken by laser scanning confocal microscopy. IC, Infected Cell; UC, Uninfected Cell; ICN, Infected Cell Nucleus; C, Cortex; IC, Inner Cortex; VB, Vascular Bundle.
in molecular processes such as defense against root invasion by soil microorganisms, protein turnover to create new tissues, cellular homeostasis, and metabolism [34]. In addition, some of them have been identified in the cytoplasm of infected nodule cells and their activity appears to increase markedly during senescence [34,35].

In this work we describe a novel nodulin that has aspartic peptidase (AP) activity and is expressed exclusively in nitrogen-fixing root nodules during the symbiosis of Phaseolus vulgaris with rhizobia (Figure 6). Even though AP activity has been previously observed during nodule senescence [36], to our knowledge this is the first time that a specific AP has been isolated and characterized during nodule development.

Partial protein sequencing and in silico translation indicated that PvNod41 encodes a 437 amino acid single polypeptide containing Asp-Thr-Gly and Asp-Ser-Gly sequences (DTG and DSG, underlined in Figure 2). DTG and DSG are conserved motifs found in all plant APs and are responsible for their catalytic activity. Similarity searches of PvNod41 indicate that this protein indeed belongs to the A1B peptidase subfamily (MEROPS peptidase database, http://merops.sanger.ac.uk/) and shares significant sequence similarity with a plant atypical AP, CDR1, a protein involved in pathogen defense in Arabidopsis thaliana (Figure 3 and Additional file 1) [22].

The biochemical characterization of PvNod41 indicates that this enzyme displays unique enzymatic properties, as compared to other APs. Although PvNod41 is able to bind to a variety of denatured peptidase model substrates (Figure 4), it only partially cleaves casein at mildly acidic pH values (Table 1 Figure 5). Similar to CDR1 and also PCS1, another atypical AP involved in cell survival [19], PvNod41 is most active at mildly acidic pH and is incompletely inhibited by the archetypical AP inhibitor pepstatin A (Table 2).

Plant atypical APs are distinguished from typical APs by the absence of the plant-specific insert (PSI). Whereas the PSI is not involved in the catalytic activity of plant APs, it is definitively required for vacuolar localization [37]. Indeed, most typical APs accumulate inside protein storage vacuoles [17]. By contrast, characterized plant atypical APs display unexpected localizations; for example, tobacco CND41 is located in chloroplast nucleoids [38], APs from Nepenthes are secreted to the pitchers [21], and Arabidopsis PSC1 is retained in the ER [19]. Likewise, PvNod41 expression is induced in common bean exclusively during root nodule development (Figure 7) and has a specific subcellular localization (Figure 8).

Startlingly, in spite of its sequence similarity to CDR1, PvNod41 is not an extracellular AP. Instead, this particular AP is located exclusively in uninfected cells of the root nodule central tissue (Figure 8), and its pattern of distribution within the cell (Figure 8E) resembles that of Arabidopsis PCS1, which is localized to the ER [19]. Arabidopsis PCS1 and PvNod41 share some other characteristics: both enzymes are able to hydrolyze casein but are inactive against other peptidase model substrates, both are most active at a mildly acidic pH but retain residual activity at a wider range of pH values, and both are only partially inhibited by pepstatin A.

Whereas the biological role of PvNod41 is still unknown, it is tempting to speculate that this protein might contribute to maintaining the integrity of uninfected root nodule cells via a mechanism analogous to that of CDR1 [22]. In the central zone of bean root nodules, interconnected rows of uninfected cells are arranged throughout the central region in such a way that they are in direct contact with virtually all infected cells [4]. In this scenario, the putative peptide produced by the activity of PvNod41 could induce a mild defense response in uninfected cells, which in turn could constrain the spread of the bacteria out of the infected cells of the root nodule. The induction of PvNod41 during nodulation in both effective and ineffective nodules (Figure 7 and data not shown) in addition to its absence from uninfected roots supports the hypothesis that PvNod41 is involved in defense.

Future identification of loss-of-function and gain-of-function mutants, as well as the identification of the natural substrate of PvNod41, will be necessary to understand better the functional role of this enzyme during nodulation.

Conclusions

Although a large number of plant AP-like proteins have been identified, so far only a few of them have been isolated and characterized. In this work we isolate and characterize a novel nodulin of Phaseolus vulgaris with AP activity. PvNod41 is expressed exclusively during the symbiotic process in root nodules and is confined to the uninfected cells of the nodule central zone. Here, we have cloned and purified PvNod41, and our results indicate that this enzyme displays some unique properties and others that are shared by Arabidopsis CDR1 and PCS1, two atypical APs involved in cell defense and survival.

Methods

Plant material

Seeds of common bean (Phaseolus vulgaris L. cv. Negro Jamapa) were surface sterilized with a solution of 10% (v/v) commercial bleach, rinsed with plenty of water and allowed to germinate for three days on water-saturated towels in the dark at 28°C. Seedlings were then transferred to vermiculite, inoculated with Rhizobium tropici CIAT899 [39] and grown in the greenhouse. 3-d-old...
roots, as well as root nodules, stems, leaves and nodule-striped roots from 21-days-post-inoculation (dpi) plants were harvested, immediately frozen in liquid nitrogen, and stored at -70°C until use.

Protein extraction and purification of PvNod41 protein

To prepare crude protein extracts, 5 g of 21 dpi root nodules were frozen in liquid nitrogen, ground with a mortar and pestle to a fine powder, and mixed for 10 min at 4°C in 50 ml of phosphate-buffered saline (PBS) buffer (137 mM NaCl, 2.7 mM KCl, 4.3 mM Na2HPO4, 1.4 mM KH2PO4, pH 7.3) containing 2% (w/v) polyvinyl-polypyrrolidone (PVPP). The homogenate was then centrifuged at 12, 000 g for 10 min and the supernatant was recovered.

For PvNod41 purification, bovine serum albumin (BSA) was immobilized on Affi-Gel 10 Gel (Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions and transferred to a column. Coupled BSA was denatured by washing with 5 volumes of 100 mM NaOH. The column was later equilibrated with 20 volumes of PBS buffer. The protein extract was passed through the column and unbound and weakly bound proteins were washed off of the column with 20 volumes of PBS buffer, followed by 5 volumes of 1 M KCl, 10 mM NH4OH. PvNod41 was eluted with 100 mM NH4OH and 150 mM NaCl. This fraction was immediately neutralized by the addition of Tris-HCl pH 6.8 (250 mM final concentration), and then concentrated by precipitation with 80% ammonium sulfate. After centrifugation (12, 000 g for 10 min at 4°C) the protein pellet was recovered and re-suspended in 1 ml volume so of PBS buffer, followed by 5 volumes of 1 M KCl, 10 mM NH4OH. PvNod41 was eluted with 100 mM NH4OH and 150 mM NaCl. This fraction was immediately neutralized by the addition of Tris-HCl pH 6.8 (250 mM final concentration), and then concentrated by precipitation with 80% ammonium sulfate. After centrifugation (12, 000 g for 10 min at 4°C) the protein pellet was recovered and re-suspended in 1 ml of PBS buffer, de-salted against PBS (generating fraction A, see Figure 1), and passed through an Affi-Gel Heparin Gel column (Bio-Rad Laboratories, Hercules, CA, USA) previously equilibrated with PBS buffer. Heparin is a linear glycosaminoglycan able to bind to a wide range of proteins with some exceptions, including PvNod41, so it was employed to remove contaminating proteins present in fraction A. The Affi-Gel Heparin Gel flow-through fraction contained PvNod41 that was practically pure (fraction B, Figure 1).

Amino acid sequencing, PCR amplification and cloning of PvNod41

100 µg of pure PvNod41 were digested with 5 µg of trypsin (sequencing grade; Roche, Mannheim, Germany) in 50 mM Tris-HCl pH 8.0 and the resulting peptides were purified by reversed-phase HPLC by using a C-18 analytical column (Vydac, Hesperia, CA, USA). Three selected peptides, as well as the N-terminal end of the entire protein, were sequenced in an automated gas-phase sequencer (LF 3000 Protein Sequencer; Beckman, Fullerton, CA, USA). All partial amino acid sequences were BLASTed against the common bean Expressed Sequence Tag (EST) database (NCBI, http://blast.ncbi.nlm.nih.gov/Blast.cgi) [40], and a virtually complete gene sequence was generated. Two specific primers aimed at amplifying PvNod41 by PCR were designed: 5’-CTCCCTCCTCTAACAACGCT-3’ and 5’-CATAC-CAATCTCAGTAATGCTC-3’. The amplified PCR product was cloned into the pCR®T7/CT-TOPO® expression vector (Invitrogen, Carlsbad, CA, USA) and sequenced by Taq FS Dye Terminator Cycle Sequencing Fluorescence-Based Sequencing in a Perkin Elmer/ Applied Biosystems 3730 apparatus to confirm the nucleotide sequence of PvNod41.

Sequence alignment and Phylogenetic analysis

The deduced amino acid sequence of PvNod41 was BLASTed against different databases at NCBI, as well as in the MEROPS database, the Glyma1 assembly of the Soybean (Glycine max) genome project http://www.phytozone.net/soybean.php, the Lotus japonicus and Medicago truncatula databases of The Gene Index Project http://compbio.dfcì.harvard.edu/cgi/, and the Populus trichocarpa database of The Joint Genome Institute http://genome.jgi-psf.org/. Related protein sequences were aligned (ClustalW Multiple Sequence Alignment Program http://www.ch.embnet.org/software/ClustalW.html) and displayed using BOXSHADE 3.21 http://www.ch.embnet.org/software/BOX_form.html.

The eleven protein sequences with the highest identity to PvNod41, as well as representative aspartic peptidases of the A1B subfamily (MEROPS database) were aligned using ClustalX [41]. Four phytpepsins members of the A1A subfamily were also included as an outgroup. A phylogenetic tree was constructed using the Maximum Likelihood method based on protein sequences. The topology was inferred using the PHYML package with the WAG substitution matrix (loglk = -22012.58462 1). The tree was edited with MEGA 3.1 software [42].

Protein binding assays

BSA, lysozyme and α2-macroglobulin were immobilized on agarose beads (Affi-Gel 10 Gel, Bio-Rad Laboratories, Hercules, CA, USA) according to the manufacturer’s instructions. α-casein-agarose and gelatin-agarose were purchased from Sigma (Sigma-Aldrich, St. Louis, MO, USA). One half of each preparation was treated for 10 min with 100 mM NaOH to induce the denaturation of the bound protein, whereas the second half was untreated, maintaining the protein in its native state. Both samples of each preparation were then abundantly washed using 20 volumes of PBS buffer. 50 µl of each sample (with native or denatured proteins) were incubated for 1 h at room temperature with purified...
PvNod41. After extensive washing with PBS buffer, PvNod41 that was bound to immobilized proteins on the matrix was recovered by boiling the sample with Laemmli buffer 2x [125 mM Tris-HCl pH 6.8, 4% SDS, 20% glycerol, 10% 2-mercaptoethanol, 0.02% (w/v) bromophenol blue] and analyzed by 12% SDS-PAGE and Coomassie Blue staining.

PvNod41 binding preferences to BSA and casein were also evaluated using a far western blot assay (also known as an overlay assay). Briefly, 20 μg of native or denatured casein or BSA were transferred by vacuum to nitrocellulose membranes (Hybond-C Extra; Amersham Biosciences, Little Chalfont, Bucks, UK). Blotted membranes were blocked for 1 h at room temperature in 0.5% Triton X-100 dissolved in Tris-Buffered Saline (TBS) buffer (30 mM Tris pH 8.0, 150 mM NaCl) and incubated for 3 h at room temperature with 10 μg/ml of PvNod41 dissolved in TBS [TBS, 0.1% (v/v) Triton X-100]. After washing three times for 15 min each with TBST, the blots were incubated with anti-PvNod41 antiserum diluted 1:5000 in TBST. Immunodetection of PvNod41 was performed according to the western blot protocol described below.

Peptidase activity assay
Proteolytic activity of PvNod41 was tested against several model substrates such as casein, BSA, and gelatin according to established protocols. Briefly, 10 μg of native or trichloroacetic acid (TCA)-denatured casein, or native or TCA-denatured BSA, were mixed with 300 ng of PvNod41 and incubated for 1 h at 37°C in 50 mM of sodium citrate, pH 4.5. The same assay was carried out using 300 ng of TPCK Trypsin (EC 3.4.21.4) (QuantiCleave™ Peptidase Assay kit; Pierce, Rockford, IL, USA) as a positive control in 50 mM of sodium citrate, pH 4.5-5.5; sodium phosphate, pH 6.5-7.5; or sodium borate, pH 8.5-9.0. After digestion, the fragments were separated by 12% SDS-PAGE, stained with Coomassie blue and analyzed by densitometry as described.

The effect of diverse peptidase inhibitors such as EDTA and pepstatin A, among others, was tested by preincubating PvNod41 with the inhibitor for 15 min at 37°C before adding casein. Samples were incubated for 1 h at 37°C. The amount of residual casein was determined by 12% SDS-PAGE.

Raising of PvNod41 antiserum and western blotting
13 μg of pure PvNod41 were mixed with 100 μl of complete Freund’s adjuvant (Gibco-BRL, Grand Island, NY, USA) and injected subcutaneously to BALB/c mice. Boost injections were prepared in the same manner but using incomplete Freund’s adjuvant instead, and were administered at two-week intervals. The antiserum was obtained 14 days after the last injection.

Plant tissue samples were resolved by 12% SDS-PAGE and electrophoretically transferred to nitrocellulose membranes (Hybond-C Extra; Amersham Biosciences, Little Chalfont, Bucks, UK). Blotted membranes were blocked for 1 h at room temperature in 5% (w/v) nonfat dried milk dissolved in Tris-Buffered Saline Triton-X100 (TBST) buffer [30 mM Tris pH 8.0, 150 mM NaCl, 0.1% (v/v) Triton X-100] and incubated for 1 h at room temperature with anti-PvNod41 antiserum diluted 1:5000 in TBST. After washing three times for 15 min each with TBST, the blots were incubated for 1 h at room temperature with goat anti-mouse IgG (1:5000) in TBST, followed again three times for 15 min each with TBST, and developed with NBT and BCIP (Zymed Laboratories, Inc., San Francisco, CA, USA) diluted 1:5000 in TBST. Washed again three times for 15 min each with TBST, and developed with NBT and BCIP (Zymed Laboratories, Inc., San Francisco, CA, USA).

RNA isolation and quantitative RT-PCR
Total RNA was isolated using Trizol reagent (Invitrogen, Carlsbad, CA, USA). RNA samples were treated with DNase I (Invitrogen) followed by cDNA synthesis using the Revert Aid H Minus first strand cDNA synthesis kit (Fermentas, St. Leon-Rot, Germany). Gene-specific primers to generate 140–150 bp PCR products were designed using the OligoPerfect™ (Invitrogen) software (Table 3). Real-time RT-PCR reactions were performed
in optical reaction tubes using an iCycler iQ5 apparatus (BioRad, Hercules, CA, USA). PvNod41 transcript levels were determined with Maxima™ SYBR Green qPCR Master Mix (Fermentas) according to the manufacturer’s protocol in a final volume of 15 μl. The cycling conditions were: preheating for 5 min at 95°C followed by 40 cycles (denaturing for 15 s at 95°C, annealing and elongation for 15 s at 55.8°C and data acquisition at 81°C). A negative control reaction without template was also included for each primer combination. The melting curve protocol began immediately after amplification and consisted of 1 min at 55°C followed by 80-10 s steps with a 0.5°C increase in temperature at each step. Threshold values for threshold cycle (Ct) determination were generated automatically by the iCycler iQ5 software. Eight technical replicates were analyzed for each biological replicate. Transcript amounts of PvNod41 in each sample were obtained by comparison to a PvNod41 standard curve. The standard curve was prepared by serial dilution of a known plasmid concentration containing the coding sequence of PvNod41. Primer and cycling conditions were performed as above described. Each standard point had six technical replicates. Additionally, a similar analysis was performed using the bean elongation factor (PvEf1-α) as a reference gene due to its minimal variability between different treatments. Similar PvNod41 expression data were obtained (data not shown).

Immunohistochemistry

Freshly harvested 20 dpi *P. vulgaris* root nodules were collected, fixed, dehydrated, methacrylate-embedded, and polymerized as previously reported [43]. For the visualization of cell walls, a method based on the modified pseudo-Schiff propidium iodide (mPS-PI) staining technique [44], with some further modifications, was followed. Rehydrated nodule sections were incubated in 1% periodic acid at 40°C for 20 min and washed five times for 5 min each with distilled water. The sections were then incubated in Schiff reagent (100 mM sodium metabisulphite, 0.15 N HCl) for 40 min at room temperature and washed twice with distilled water. Following, 50 μg/ml propidium iodide incubation for 10 min at room temperature was performed. Then, sections were washed three times with distilled water. The PvNod41 immunolocalization was performed on these sections. Nodule sections were blocked for 2 h at room temperature in 5% (w/v) nonfat dried milk dissolved in Tris-Buffered Saline Tween 20 (TBST) buffer [0.01 M Tris pH 8.0, 0.15 M NaCl, 0.05% (v/v) Tween 20] and incubated overnight at 4°C with the anti-PvNod41 antiserum diluted 1:50 (v/v) in TBST plus 5% (w/v) nonfat dried milk. After washing three times for 10 min each with TBST, nodule sections were incubated at 4°C for 4 hrs with Alexa Fluor® 633 goat anti-mouse IgG H+L (Invitrogen) diluted 1:100 (v/v) in TBST. The sections were washed three times for 10 min each with TBST at 4°C and mounted with Citifluor (Ted Pella, Inc., Redding, CA, U.S. A.). Analysis was performed using a Zeiss LSM 510 Meta confocal microscope (Carl Zeiss Advanced Imaging Microscopy, Jena, Thübingen, Germany) attached to an Axiovert 200 M. Alexa Fluor® excitation was obtained at 633 nm, using a He/Ne laser, a HFT UV 488/543/633 nm dual dichroic excitation mirror and a NFT 545 secondary dichroic beam splitter with a BP 650-710 IR emission filter for detection. Cell walls were observed simultaneously via excitation at 488 nm with an Ar2 laser, using a HFT UV 488/543/633 nm dual dichroic excitation mirror with a LP 505 emission filter. Images were processed using Adobe Photoshop 7.0 software (Adobe Systems Inc., Mountain View, CA, U.S.A.). The images shown were acquired from a single optical section.

In addition, the presence of bacteroids in the infected root nodule cells was confirmed by the Sytox Green nucleic acid staining method [45]. PvNod41 was immunodetected as previously described with a specific antiserum. Anti-PvNod41 antibodies were visualized with a secondary antibody conjugated to Alexa Fluor® 633 (red) (Additional file 3). Bacteroid’s DNA and nuclei were stained with Sytox Green (green). Uninfected cells, containing PvNod41 antigen in the cytoplasm were clearly distinguished from infected cells containing bacteroids, heavily stained with Sytox Green. Nodule sections were obtained from fixed, dehydrated, methacrylate-embedded, and polymerized *Phaseolus vulgaris* root nodules [43].

Table 3 Primer sequences used for RT-qPCR

Primer name	Accession number	Primer sequence (5'→3', forward, reverse)
Pv_Ef1-alpha Fwd	CV30481	GGTCATTGCTGATCTGCACTCTCGG
Pv_Ef1-alpha Rv		GCACCCAGGCACCTGGAATGACC
Pv_Nod41 Fwd	JN253164	TTCACAATCCGGTACACAAATCG
Pv_Nod41 Rv		AACCACGGTTTCATTATCATCGG
sequence (TC30331); MT TC1, Medicago truncatula TC sequence 1 (TC12304); MT TC2, Medicago truncatula TC sequence 2 (TC124863); At CDR1-like 1, Arabidopsis thaliana CDR1-like sequence 1 (MER056113); At CDR1-like 2, Arabidopsis thaliana CDR1-like sequence 2 (MER015587); At CDR1-like 3, Arabidopsis thaliana CDR1-like sequence 3 (MER011958); At CDR1, Arabidopsis thaliana CDR1 (MER015420); Pt GENMOD, Populus trichocarpa gene model (gwi1XW2158); Vv CDR1-like 1, Vitis vinifera CDR1-like sequence 1 (MER100604); Vv CDR1-like 2, Vitis vinifera CDR1-like sequence 2 (MER100605). The alignment was done with ClustalW

Multiple Sequence Alignment Program http://www.ch.embnet.org/software/ClustalW.html and displayed using BOXSHADE 3.21 http://www.embnet.org/software/BOX_form.html. Gaps were inserted to maximize the similarities. Identical conserved amino acid residues are highlighted in black. Catalytic sequence motifs for aspartic proteases are marked by asterisks and red boxes, whereas cysteines are highlighted in yellow boxes.

Additional file 2: PvNod41 peptide activity detected with a chromogenic method. (A) Activity of PvNod41 on succinylated casein was assayed by using the QuantiCleaveTM Peptidase Assay kit (Pierce). Purified PvNod41 was incubated overnight at 37°C in different buffers at pH values between pH 4.5 and 9.0. The color produced by peptide activity was measured at 450 nm and plotted against pH. Results of two independent experiments are shown. (B) Representative output of this assay on 12% SDS-PAGE analysis. The gel was stained with Coomassie Blue.

Additional file 3: Immunolocalization of PvNod41 in uninected cells of common bean root nodule sections. PvNod41 was immunodetected with a specific antiserum. Anti-PvNod41 antibodies were visualized with a secondary antibody conjugated to Alexa Fluor® 633 (red), whereas bacteroids and nuclei were stained with Sytox Green (green). Uninfected cells (UC) containing PvNod41antigen can be clearly distinguished from infected cells (IC) containing bacteroids. ICN, Infected Cell Nucleus; UCN, uninfected cell nucleus.

Acknowledgements and funding
We thank Dr. Elizabeth Mata, Graciela Cabeza and the staff of the animal room at the Instituto de Biotechnología-UNAM for the handling of laboratory animals, Selene Napsucialy for her help in staining cell walls and in the statistical analysis of the peptidase activity, Gabriel Guillén for his technical assistance in PCR data analysis, and Olivia Santana for her help in plant care. This work was partially supported by grants from the Consejo Nacional de Ciencia y Tecnología (CONACYT), México No. 0083324 and the Universidad Nacional Autónoma de México, DGAPA No. IN214909-3.

Author details
1Departamento de Biología Molecular de Plantas, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México. 2Departamento de Medicina Molecular y Bioprocessos, Instituto de Biotecnología/Universidad Nacional Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos, 62210, México.

Authors’ contributions
JEO purified PvNod41, determined its biochemical performance, carried out the immunoasays, and drafted the manuscript. CDC performed the quantitative RT-PCR analysis, designed and wrote the manuscript. GEN isolated the PvNod41 gene. XAX carried out the immunohistochemistry, cell walls staining and confocal microscopy analysis. MRK carried out RT-PCR preliminary experiments. FZZ and TOH purified and sequenced the PvNod41 peptide. YL and LS participated in the sequence alignment and worked on the phylogenetic analysis. FS conceived of the study, and participated in designing and coordinating research activities and in drafting the manuscript. All authors reviewed and approved the final manuscript.

Received: 15 July 2011 Accepted: 10 October 2011
Published: 10 October 2011

References
1. Dénaré J, Debelé F, Promé JC. Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Ann Rev Biochem 1996, 65:503-535.

2. Untergasser A, Bisseling T, Geurts R. Making rhizobium-infected root nodules. In Prokaryotic Symbioses in Plants, Volume 8. Edited by: Pavlovski K, Springer Berlin/Heidelberg, 2009:45-69.

3. Hirsch AM. Developmental biology of legume nodulation. New Phytol 1992, 122(2):211-237.

4. Taté R, Panzarca JE, Riccio A, Defo R, Laccario M. Development of Phaseolus vulgaris root nodules. Mol Plant Microb Interact 1994, 7(5):582-589.

5. Nap JP, Bisseling T. Developmental biology of a plant-prokaryote symbiosis: the legume root nodule. Science 1990, 250:948-954.

6. Sánchez F, Padilla JE, Pérez H, Lara M. Control of nodulin genes in root-nodule development and metabolism. Ann Rev Plant Physiol Plant Mol Biol 1991, 42:507-528.

7. Mylona P, Pavlovski K, Bisseling T. Symbiotic nitrogen fixation. Plant Cell 1995, 7:869-885.

8. Gamas P, de Carvalho-Niebel F, Lescure N, Cullimore JV. Use of a subtractive hybridization approach to identify new Medicago truncatula genes induced during root nodule development. Mol Plant Microb Interact 1996, 9:233-242.

9. Colebatch G, Kloska S, Trevaskis B, Freund S, Altman T, Udvardi MK. Novel aspects of symbiotic nitrogen fixation uncovered by transcript profiling with cDNA arrays. Mol Plant Microb Interact 2002, 15:411-420.

10. Fedorova M, van del Mortel J, Matsumoto PA, Cho J, Town CD, Vanderbosch KA, Gartt JS, Vance CP. Genome-wide identification of nodule specific transcripts in the model legume Medicago truncatula. Plant Physiol 2002, 130:519-527.

11. Asamizu E, Nakamura Y, Sato S, Tabata S. Comparison of the transcript profiles from the root and the nodulating root of the model legume Lotus japonicus by serial analysis of gene expression. Mol Plant Microb Interact 2003, 18:487-498.

12. Ramírez M, Graham MA, Blanco-Lopez L, Silvente S, Medina-Soto A, Brar MW, Hernandez G, Vance CP, Lara M. Sequencing and analysis of common bean ESTs. Building a foundation for functional genomics. Plant Physiol 2005, 137:1211-1227.

13. Tesfaye M, Samac DA, Vance CP. Insights into symbiotic nitrogen fixation in Medicago truncatula. Mol Plant Microb Interact 2006, 19:330-341.

14. Dodson G, Wlodawer A. Catalytic triads and their relatives. Trends Biochem Sci 1998, 23:347-352.

15. Beers EP, Jones AM, Dickerman AW. The C8 serine, C1A cysteine and A1 aspartic protease families in Arabidopsis. Plant Physiol 2002, 130:519-527.

16. Rawlings ND, Morton FR, Kok CY, Kong J, Barrett AJ. MEROPS: the peptidase database. Nucleic Acids Res 2008, 36:D520-325.

17. Simões I, Faro R. Structure and function of plant aspartic proteinases. Eur J Biochem 2004, 271:2067-2075.

18. Chen F, Foolad MR. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol Biol 1997, 35(6):821-831.

19. Ge X, Dietrich C, Matsuno M, Li G, Berg H, Xia Y. An Arabidopsis aspartic protease functions as an anti-cell-death component in reproduction and embryogenesis. EMBO Rep 2005, 6(3):282-288.

20. Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F. The DNA-binding protease, CND41, and the degradation of ribulose-1, 5-bisphosphate carboxylase/oxygenase in senescent leaves of tobacco. Planta 2000, 210(3):97-104.

21. Takahashi K, Athauda SB, Matsumoto K, Rajapakshe S, Kurayashii M, Kojima M, Kubomura-Yoshida N, Iwamatsu A, Shibata C, Inoue H. Nepenthesin, a unique member of a novel subfamily of aspartic proteinases: enzymatic and structural characteristics. Curr Protein Pept Sci 2005, 6(5):313-525.

22. Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C. An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 2004, 23:980-988.

23. Simões I, Faro R, Bur D, Faro C. Characterization of recombinant CDR1, an Arabidopsis aspartic protease involved in disease resistance. J Biol Chem 2007, 282:31358-31365.
24. Campos F, Cansolino C, Kuhn H, Biseling T, Rocha-Sosa M, Sánchez F: Characterization and gene expression of nodulin Npv30 from common bean. Plant Physiol 1995, 109:363-70.

25. Koetsch G, Mares M, Metcalf F, Furse M: Multiple functions of pro-parts of aspartic proteinasezymogens. FEBS Lett 1994, 343:6-10.

26. Prasad BD, Creissen G, Lamb C, Chattoo B: Overexpression of rice (Oryza sativa L) OsCDR1 leads to constitutive activation of defense responses in rice and Arabidopsis. Mol Plant Microb Interact 2009, 22:1635-1644.

27. Bergmann H, Predvik E, Verna DPS: Nodulin 41: a subunit of specific uricase (uricase II) induced and localized in the uninfected cells of soybean nodules. EMBO J 1983, 2:2333-2339.

28. Solomon M, Belenghi B, Delledonne M, Menachem E, Levine A: The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 1999, 11:431-443.

29. Jones AM: Programmed cell death in development and defense. Plant Physiol 2003, 125:94-87.

30. Takeda N, Kistner C, Kosuta S, Winzer T, Pitzschke A, Groth M, Sato S, Kaneko T, Tabata S, Parniske M: Proteases in plant root symbiosis. Phytochem 2007, 68:111-121.

31. Combier JP, Vemillé T, de Billy F, El Yahyaoui F, Mathis R: The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol 2007, 144:703-716.

32. Svistoonoff S, Laplaze L, Liang J, Ribeiro A, Gouveia MC, Auguy F, Severo MD, Franche C, Bogusz D: Infection-related activation of the cg12 promoter is conserved between actinorhizal and legume-rhizobia root nodule symbiosis. Plant Physiol 2004, 136:3191-3197.

33. Kistner C, Winzer T, Pitzschke A, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougard J, Webb KI, Szczygłowski K, Parniske M: Seven Lotus japonicus genes required for transcriptional reprogramming of the root during fungal and bacterial symbiosis. Plant Cell 2005, 17:2217-2229.

34. Sheekand S, Brewin NJ: Cysteine proteases in nodulation and nitrogen fixation. Indian J Exp Biol 2003, 41:1124-1132.

35. Alesandrini F, Mathis R, Van de Sype G, Hérouart D, Puppo A: Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 2003, 158(1):131-138.

36. Puppo A, Groten K, Bastian F, Carzana R, Sousi M, Lucass LM, De Felipe MR, Hanson J, Vanacker H, Foyer C: Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. New Phytol 2005, 165(3):683-701.

37. Tormakangas K, Hadlington JL, Pimpl P, Hiltnner S, Brandizi F, Teeri TH, Denecke J: A vacuolar sorting domain may also influence the way in which proteins leave the endoplasmic reticulum. Plant Cell 2001, 13:2013-2032.

38. Murakami S, Kondo Y, Nakano T: Protease activity of CND41, a chloroplast nucleoid DNA-binding protein, isolated from cultured tobacco cells. FEBS Lett 1991, 288:15-18.

39. Martínez-Romero E, Segovia L, Mercante FM, Franco AA, Graham P, Pardo MA: Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. Int J Syst Bacteriol 1991, 41:417-426.

40. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997, 25:3389-3402.

41. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997, 24:4876-4882.

42. Kumar S, Tamura K, Nei M: MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 2004, 5:150-163.

43. Estrada-Navarrete G, Alvarado-Affantranger X, Olivares J-E, Díaz C, Santana O, Murrillo E, Guillet G, Sánchez-Guevara N, Acosta J, Quinto C, Li D, Greshoff PM, Sánchez F: Agrobacterium rhizogenes-transformation of the genus Phaseolus: a tool for functional genomics is available. Mol Plant Microb Interact 2006, 9:1385-1393.

44. Truertit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthelemy J, Palauquí JC: High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 2008, 20:1494-1503.

45. Roth BL, Pot M, Yue ST, Millard PJ: Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl Environ Microbiol 1977, 63:2421-2431.