Mitigating Memorization of Noisy Labels via Regularization between Representations

Hao Cheng∗†, Zhaowei Zhu∗†, Xing Sun‡, and Yang Liu†
† Computer Science and Engineering, University of California, Santa Cruz
‡ Tencent YouTu Lab

Abstract

Designing robust loss functions is popular in learning with noisy labels while existing designs did not explicitly consider the overfitting property of deep neural networks (DNNs). As a result, applying these losses may still suffer from overfitting/memorizing noisy labels as training proceeds. In this paper, we first theoretically analyze the memorization effect and show that a lower-capacity model may perform better on noisy datasets. However, it is non-trivial to design a neural network with the best capacity given an arbitrary task. To circumvent this dilemma, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of a DNN by a representation regularizer. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs. Our proposed framework is easily extendable and can incorporate many other robust loss functions to further improve performance. Extensive experiments and theoretical analyses support our claims. Code is available at github.com/UCSC-REAL/SelfSup_NoisyLabel.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable performance in many areas including speech recognition [Graves et al., 2013], computer vision [Krizhevsky et al., 2012, Lotter et al., 2016], natural language processing [Zhang and LeCun, 2015], etc. The high-achieving performance often builds on the availability of quality-annotated datasets. In a real-world scenario, data annotation inevitably brings in label noise [Wei et al., 2021b] which degrades the performance of the network, primarily due to DNNs’ capability in “memorizing” noisy labels [Zhang et al., 2016].

In the past few years, a number of methods have been proposed to tackle the problem of learning with noisy labels. Notable achievements include robust loss design [Ghosh et al., 2017, Liu and Guo, 2020, Zhang and Sabuncu, 2018], sample selection [Cheng et al., 2021, Han et al., 2018, Yu et al., 2019] and loss correction/reweighting based on noise transition matrix [Jiang et al., 2021, Liu and Tao, 2015, Natarajan et al., 2013, Patrini et al., 2017, Wei et al., 2022, Zhu et al., 2021b]. However, these methods still suffer from limitations because they are agnostic to the model complexity and do not explicitly take the over-fitting property of DNN into consideration when designing these methods [Liu et al., 2022, Wei et al., 2021a]. In the context of representation learning, DNN is prone to fit/memorize noisy labels as training proceeds [Wei et al., 2021b, Zhang et al., 2016], i.e.,
the memorization effect. Thus when the noise rate is high, even though the robust losses have some theoretical guarantees in expectation, they are still unstable during training [Cheng et al. 2021]. It has been shown that early stopping helps mitigate memorizing noisy labels [Li et al. 2020b, Rolnick et al. 2017, Xia et al. 2020]. But intuitively, early stopping will handle overfitting wrong labels at the cost of underfitting clean samples if not tuned properly. An alternative approach is using regularizer to punish/avoid overfitting [Cheng et al. 2021, Liu et al. 2020, Liu and Guo 2020], which mainly build regularizers by editing labels. In this paper, we study the effectiveness of a representation regularizer.

To fully understand the memorization effect on learning with noisy labels, we decouple the generalization error into estimation error and approximation error. By analyzing these two errors, we find that DNN behaves differently on various label noise types and the key to prevent over-fitting is to control model complexity. However, specifically designing the model structure for learning with noisy labels is hard. One tractable solution is to use representation regularizers to cut off some redundant function space without hurting the optima. Therefore, we propose a unified framework by utilizing DNN representation to mitigate the memorization of noisy labels. We summarize our main contributions below:

- We first theoretically analyze the memorization effect by decomposing the generalization error into estimation error and approximation error in the context of learning with noisy labels and show that a lower-capacity model may perform better on noisy datasets.
- Due to the fact that designing a neural network with the best capacity given an arbitrary task requires formidable effort, instead of changing the model architecture, we decouple DNNs into an encoder followed by a linear classifier and propose to restrict the function space of DNNs by the structural information between representations. Particularly, we require the distance between two self-supervised features to be positively related to the distance between the corresponding two supervised model outputs.
- The effectiveness of the proposed regularizer is demonstrated by both theoretical analyses and numerical experiments. Our framework can incorporate many current robust losses and help them further improve performance.

1.1 Related Works

Learning with Noisy Labels Many works design robust loss to improve the robustness of neural networks when learning with noisy labels [Feng et al. 2021, Ghosh et al. 2017, Liu and Guo 2020, Xu et al. 2019, Zhang and Sabuncu 2018, Ghosh et al. 2017] proves MAE is inherently robust to label noise. However, MAE has a severe under-fitting problem. [Zhang and Sabuncu 2018] proposes GCE loss which can combine both the advantage of MAE and CE, exhibiting good performance on noisy datasets. [Liu and Guo 2020] introduces peer loss, which is proven statistically robust to label noise without knowing noise rate. The extension of peer loss also shows good performance on instance-dependent label noise [Cheng et al. 2021, Zhu et al. 2021a]. Another efficient approach to combat label noise is by sample selection [Han et al. 2018, Jiang et al. 2018, Northcutt et al. 2021, Wei et al. 2020, Yao et al. 2020, Yu et al. 2019, Zhang et al. 2020]. These methods regard “small loss” examples as clean ones and always involve training multiple networks to select clean samples. Semi-supervised learning is also popular and effective on learning with noisy labels in recent years. Some works [Li et al. 2020a, Nguyen et al. 2020] first perform clustering on the sample loss and divide the samples into clean ones and noisy ones. Then drop the labels of the "noisy samples" and perform semi-supervised learning on all the samples.
Knowledge Distillation Our proposed learning framework is related to the research field of knowledge distillation (KD). The original idea of KD can be traced back to model compression [Bucilă et al., 2006], where authors demonstrate the knowledge acquired by a large ensemble of models can be transferred to a single small model. [Hinton et al., 2015] generalize this idea to neural networks and show a small, shallow network can be improved through a teacher-student framework. Due to its great applicability, KD has gained more and more attention in recent years and numerous methods have been proposed to perform efficient distillation [Mirzadeh et al., 2020, Zhang et al., 2019, 2018b]. However, the dataset used in KD is assumed to be clean. Thus it is hard to connect KD with learning with noisy labels. In this paper, we theoretically and experimentally show that a regularizer generally used in KD [Park et al., 2019] can alleviate the over-fitting problem on noisy data by using DNN features which offers a new alternative for dealing with label noise.

2 Preliminary

We introduce preliminaries and notations including definitions and problem formulation.

Problem formulation Consider a K-class classification problem on a set of N training examples denoted by $D := \{(x_n, y_n)\}_{n \in [N]}$, where $[N] := \{1, 2, \ldots, N\}$ is the set of example indices. Examples (x_n, y_n) are drawn according to random variables (X, Y) from a joint distribution \mathcal{D}. The classification task aims to identify a classifier C that maps X to Y accurately. In real-world applications, the learner can only observe noisy labels \tilde{y} drawn from $\tilde{Y}|X$ [Wei et al. 2021b], e.g., human annotators may wrongly label some images containing cats as ones that contain dogs accidentally or irresponsibly. The corresponding noisy dataset and distribution are denoted by $\tilde{D} := \{(x_n, \tilde{y}_n)\}_{n \in [N]}$ and $\tilde{\mathcal{D}}$. Define the expected risk of a classifier C as $R(C) = \mathbb{E}_{D} [\mathbb{1}(C(X) \neq Y)]$. The goal is to learn a classifier C from the noisy distribution $\tilde{\mathcal{D}}$ which also minimizes $R(C)$, i.e., learn the Bayes optimal classifier such that $C^*(x) = \arg \max_{i \in [K]} \mathbb{P}(Y = i|X = x)$.

Noise transition matrix The label noise of each instance is characterized by $T_{ij}(X) = \mathbb{P}(\tilde{Y} = j|X, Y = i)$, where $T(X)$ is called the (instance-dependent) noise transition matrix [Zhu et al. 2021b]. There are two special noise regimes [Han et al. 2018] for the simplicity of theoretical analyses: symmetric noise and asymmetric noise. In symmetric noise, each clean label is randomly flipped to the other labels uniformly w.p. ϵ, where ϵ is the noise rate. Therefore, $T_{ii} = 1 - \epsilon$ and $T_{ij} = \frac{\epsilon}{K-1}$, $i \neq j$, $i, j \in [K]$. In asymmetric noise, each clean label is randomly flipped to its adjacent label, i.e., $T_{ii} = 1 - \epsilon$, $T_{ii} + T_{i,(i+1)K} = 1$, where $(i+1)K := i \mod K + 1$.

Empirical risk minimization The empirical risk on a noisy dataset with classifier C writes as $\frac{1}{N} \sum_{n \in [N]} \ell(C(x_n), \tilde{y}_n)$, where ℓ is usually the cross-entropy (CE) loss. Existing works adapt ℓ to make it robust to label noise, e.g., loss correction [Natarajan et al., 2013, Patrini et al., 2017], loss reweighting [Liu and Tao 2015], generalized cross-entropy (GCE) [Zhang and Sabuncu, 2018], peer loss [Liu and Guo, 2020], f-divergence [Wei and Liu, 2021]. To distinguish their optimization from the vanilla empirical risk minimization (ERM), we call them the adapted ERM.

Memorization effects of DNNs Without special treatments, minimizing the empirical risk on noisy distributions make the model overfit the noisy labels. As a result, the corrupted labels will be memorized [Han et al., 2020, Wei et al., 2021b, Xia et al., 2020] and the test accuracy on clean data will drop in the late stage of training even though the training accuracy is consistently increasing. See Figure 1 for an illustration. Therefore, it is important to study robust methods to mitigate memorizing noisy labels.
Outline The rest of the paper is organized as follows. In Section 3, we theoretically understand the memorization effect by analyzing the relationship among noise rates, sample size, and model capacity, which motivate us to design a regularizer to alleviate the memorization effect in Section 4 by restricting model capacity. Section 5 empirically validates our analyses and proposal.

3 Understanding the Memorization Effect

We quantify the harmfulness of memorizing noisy labels by analyzing the generalization errors on clean data when learning on a noisy dataset \(\tilde{D} \) and optimizing over function space \(C \).

3.1 Theoretical Tools

Denote by the optimal clean classifier \(C_D := \arg\min_{C \in C} \mathbb{E}_D[\ell(C(X), Y)] \), the optimal noisy classifier \(\tilde{C}_D := \arg\min_{C \in C} \mathbb{E}_{\tilde{D}}[\ell(C(X), \tilde{Y})] \), and the learned classifier on the noisy dataset \(\hat{C}_D \) as \(\arg\min_{C \in C} \sum_{n \in [N]} \ell(C(x_n), \tilde{y}_n) \). The expected risk w.r.t. the Bayes optimal classifier \(C^\ast \) can be decomposed into two parts: \(\mathbb{E}[\ell(\hat{C}_D(f(X)), Y)] - \mathbb{E}[\ell(C^\ast(X), Y)] \) = \(\text{Error}_E(C_D, \hat{C}_D) + \text{Error}_A(C_D, C^\ast) \), where the estimation error \(\text{Error}_E \) and the approximation error \(\text{Error}_A \) can be written as \(\text{Error}_E(C_D, \hat{C}_D) = \mathbb{E}[\ell(\hat{C}_D(X), Y)] - \mathbb{E}[\ell(C_D(X), Y)] \) and \(\text{Error}_A(C_D, C^\ast) = \mathbb{E}[\ell(C_D(X), Y)] - \mathbb{E}[\ell(C^\ast(X), Y)] \). We analyze each part respectively.

Estimation error We first study the noise consistency from the aspect of expected loss.

Definition 1 (Noise consistency). One label noise regime satisfies the noise consistency under loss \(\ell \) if the following affine relationship holds: \(\mathbb{E}_D[\ell(C(X), Y)] = \gamma_1 \mathbb{E}_D[\ell(C(X), \tilde{Y})] + \gamma_2 \), where \(\gamma_1 \) and \(\gamma_2 \) are constants in a fixed noise setting.

To study whether popular noise regimes satisfy noise consistency, we need the following lemma:

Lemma 1. A general noise regime with noise transitions \(T_{ij}(X) : \mathbb{P}(\tilde{Y} = j|Y = i, X) \) can be...
decoupled to the following form:

\[E_{\tilde{D}} \left[\ell(C(X), \tilde{Y}) \right] = T E_{\tilde{D}}[\ell(C(X), Y)] + \sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y = i) E_{\tilde{D}|Y = i}[U_{ij}(X) \ell(C(X), j)], \]

where \(U_{ij}(X) = T_{ij}(X), \forall i \neq j; U_{jj}(X) = T_{jj}(X) - T \).

Lemma 1 shows the general instance-dependent label noise is hard to be consistent since the second term is not a constant unless we add more restrictions to \(T(X) \). Specially, in Lemma 2, we consider two typical noise regimes for multi-class classifications: symmetric noise and asymmetric noise.

Lemma 2. The symmetric noise is consistent with 0-1 loss: \(E_{\tilde{D}} \left[\ell(C(X), \tilde{Y}) \right] = \gamma_1 E_{\tilde{D}}[\ell(C(X), Y)] + \gamma_2 \), where \(\gamma_1 = \left(1 - \frac{\epsilon K}{K-1} \right), \gamma_2 = \frac{\epsilon}{K-1}. \) The asymmetric noise is not consistent: \(E_{\tilde{D}} \left[\ell(C(X), \tilde{Y}) \right] = (1 - \epsilon) \cdot E_{\tilde{D}}[\ell(C(X), Y)] + \epsilon \sum_{i \in [K]} \mathbb{P}(Y = i) E_{\tilde{D}|Y = i}[\ell(C(X), (i+1)K)]. \)

With Lemma 2, we can upper bound the estimation errors in Theorem 1.

Theorem 1. With probability at least \(1 - \delta \), learning with symmetric/asymmetric noise has the following estimation error:

\[
\text{Error}_E(C_D, \tilde{C}_D) \leq \Delta_E(C, \varepsilon, \delta) := 16 \sqrt{\frac{|C| \log(Ne/|C|) + \log(8/\delta)}{2N(1 - \epsilon)^2}} + \text{Bias}(C_D, \tilde{C}_D),
\]

where \(|C| \) is the VC-dimension of function class \(C \) \cite{Bousquet2003, Devroye2013}. The noise rate parameter \(\varepsilon \) satisfies \(\varepsilon = \frac{\epsilon K}{K-1} \) for symmetric noise and \(\varepsilon = \epsilon \) for asymmetric noise. The bias satisfies \(\text{Bias}(C_D, \tilde{C}_D) = 0 \) for symmetric noise and \(\text{Bias}(C_D, \tilde{C}_D) = \frac{\epsilon}{K-1} \sum_{i \in [K]} \mathbb{P}(Y = i) E_{\tilde{D}|Y = i}[\ell(C(D(X), (i+1)K)] - \ell(C(D(X), (i+1)K)] \) for asymmetric noise.

Approximation error Analyzing the approximation error for an arbitrary DNN is an open-problem and beyond our scope. For a clean presentation, we borrow the following results from the literature.

Lemma 3 (Approximation error \cite{Barron1994}). For an \(M_C \)-node neural network with one layer of sigmoidal nonlinearities, there exist a constant \(\alpha_{C^*} \) such that the approximation error is upper bounded by

\[
\text{Error}_A(C_D, C^*) \leq \Delta_A(C) := \frac{\alpha_{C^*}}{\sqrt{M_C}}.
\]

With bounds for estimation error and approximation error, for any two function spaces \(C_1 \) and \(C_2 \), we are ready to reveal which one induces a better performance under different noise rates \(\epsilon \) in Theorem 2.

Theorem 2. Assume \(|C_1| > |C_2| \) and symmetric noise. The larger function class \(C_1 \) is worse than \(C_2 \) in terms of the upper bound of the expected generalization error \((\mathbb{E}_d |\Delta_E(C, \varepsilon, \delta)| + \Delta_A(C)) \) when

\[
1 - \frac{\epsilon K}{K-1} \leq \beta(C_1, C_2) := \frac{16 \sqrt{|C_1| \log(4Ne/|C_1|) - |C_2| \log(4Ne/|C_2|)}}{\alpha_{C^*}/\sqrt{M_{C_2}} - \alpha_{C^*}/\sqrt{M_{C_1}}}.
\]

Note \(\beta(C_1, C_2) > 0 \) due to \(|C_1| > |C_2| \). Consider a scenario when \(N \) is sufficiently large such that \(0 < \beta(C_1, C_2) < 1 \). Theorem 2 informs that, in the clean case, \(C_1 \) is always better since
the inequality does not hold by letting $\epsilon = 0$. However, there always exists a feasible noise rate $\epsilon^0 \in [0, (K - 1)/K)$ such that the larger function class \mathcal{C}_1 is worse than the other smaller one when $\epsilon > \epsilon^0$. This observation demonstrates that memorizing clean labels with a larger model is always beneficial when N is sufficiently large, while memorizing noisy labels with a larger model could be harmful given the same sample size N.

As indicated by Theorem 2, one solution to reduce the error caused by memorizing noisy labels is to restrict the function space by adopting a lower-capacity model. However, it is non-trivial to find the best function space or design the best neural network given an arbitrary task. We will introduce a tractable solution in the following sections.

3.2 Decoupled Classifiers: From Function Spaces to Representations

One tractable way to restrict the function space is fixing some layers of a given DNN model. Particularly, we can decouple C into two parts: $C = f \circ g$, where the encoder f extract representations from raw features and the linear classifier g maps representations to label classes, i.e., $C(X) = g(f(X))$. Clearly, the function space can be reduced significantly if we only optimize the linear classifier g. But the performance of the classifier depends heavily on the encoder f. By this decomposition, we transform the problem of finding good function spaces to finding good representations.

Now we analyze the effectiveness of such decomposition. Figure 2 illustrate three learning paths. *Path-1* is the traditional learning path that learns both encoder f and linear classifier g at the same time [Patrini et al. 2017]. In *Path-2*, a pre-trained encoder f is adopted as an initialization of DNNs and both f and g are fine-tuned on noisy data distributions \overline{D} [Ghosh and Lan 2021]. The pre-trained encoder f is also adopted in *Path-3*. But the encoder f is fixed/frozen throughout the later training procedures and only the linear classifier g is updated with \overline{D}. We compare the generalization errors of different paths to provide insights for the effects of representations on learning with noisy labels.

Now we instantiate function spaces \mathcal{C}_1 and \mathcal{C}_2 with different representations. With traditional training or an unfixed encoder (Path-1 or Path-2), classifier C is optimized over function space $\mathcal{C}_1 = \mathcal{G} \circ \mathcal{F}$ with raw data. With a fixed encoder (Path-3), classifier C is optimized over function space \mathcal{G} given representations $f(X)$.

Symmetric noise Let $\mathcal{C}_1 = \mathcal{G} \circ \mathcal{F}, \mathcal{C}_2 = \mathcal{G}|f$. The approximation errors ($\alpha_{C^*}/\sqrt{M_{\mathcal{C}_2}} - \alpha_{C^*}/\sqrt{M_{\mathcal{C}_1}}$) in Theorem 2 becomes ($\alpha'_{C^*}/\sqrt{M_{\mathcal{G}}} - \alpha_{C^*}/\sqrt{M_{\mathcal{G} \circ \mathcal{F}}}$). Note the constant α'_{C^*} is different from α_{C^*} since the model inputs in Path-3 are representations $f(X)$ instead of the raw X. In this setting, due to $\mathcal{C}_2 := \mathcal{G}|f \subseteq \mathcal{C}_1 := \mathcal{G} \circ \mathcal{F}$, we have $|\mathcal{C}_1| > |\mathcal{C}_2|$ and $\alpha'_{C^*}/\sqrt{M_{\mathcal{G}}} > \alpha_{C^*}/\sqrt{M_{\mathcal{G} \circ \mathcal{F}}}$. Therefore, the findings in Theorem 2 also hold in this setting. See Corollary 1

Corollary 1. A fixed encoder could be better than the unfixed one in terms of the upper bound of the expected generalization error when

$$1 - \frac{\epsilon K}{K - 1} \leq \beta'(\mathcal{G} \circ \mathcal{F}, \mathcal{G}|f) := \frac{16}{\sqrt{2N}} \left(\sqrt{|\mathcal{G} \circ \mathcal{F}| \log(4Ne/|\mathcal{G} \circ \mathcal{F}|)} - \sqrt{|\mathcal{G}| \log(4Ne/|\mathcal{G}|)}\right).$$

Corollary 1 implies that, for the symmetric noise, a fixed encoder is better in high-noise settings.

Other noise Based on Theorem 1 for asymmetric label noise, the noise consistency is broken and the bias term makes the learning error hard to be bounded. As a result, the relationship
between noise rate ϵ and generalization error is not clear and simply fixing the encoder may induce a larger generalization error. For the general instance-dependent label noise, the bias term is more complicated thus the benefit of fixing the encoder is less clear.

Insights and Takeaways With the above analyses, we know learning with an unfixed encoder is not stable, which may overfit noisy patterns and converge to a poor local optimum. Restricting the search space makes the convergence stable (reducing estimation error) with the cost of increasing approximation errors. This motivates us to find a way to compromise between a fixed and unfixed encoder. We explore towards this direction in the next section.

4 Combating Memorization Effect by Representation Regularization

Our understandings in Section 3 motivate us to use the information from representations to regularize the model predictions. Intuitively, as long as the encoder is not fixed, the approximation error could be low enough. If the ERM is properly regularized, the search space and the corresponding estimation error could be reduced.

4.1 Training Framework

The training framework is shown in Figure 3 where a new learning path (Self-supervised learning, SSL) $f \rightarrow h$ is added to be parallel to Path-2 $f \rightarrow g$ (SL-training) in Figure 2. The newly added projection head h is one-hidden-layer MLP (Multi Layer Perceptron) whose output represents SSL features (after dimension reduction). Its output is employed to regularize the output of linear classifier g. Given an example (x_n, \tilde{y}_n) and a random batch of features \mathcal{B} ($x_n \in \mathcal{B}$), the loss is defined as:

$$L((x_n, \tilde{y}_n); f, g, h) = \ell_{\text{SL Training}}(\tilde{y}_n, g(f(x_n))) + \ell_{\text{SSL Training}}(h(f(x_n)), \mathcal{B}) + \lambda \ell_{\text{Reg}}(h(f(x_n)), g(f(x_n)), \mathcal{B}),$$

where λ controls the scale of regularizer. The loss ℓ for SL training could be either the traditional CE loss or recent robust loss such as loss correction/reweighting [Liu and Tao 2015], [Patrini et al. 2017], GCE [Zhang and Sabuncu 2018], peer loss [Liu and Guo 2020]. The SSL features are learned by InfoNCE [Van den Oord et al. 2018]:

$$\ell_{\text{Info}}(h(f(x_n)), \mathcal{B}) := -\log \frac{\exp(\text{sim}(h(f(x_n)), h(f(x'_n)))))}{\sum_{x_n' \in \mathcal{B}, n' \neq n} \exp(\text{sim}(h(f(x_n)), h(f(x'_n))))},$$
Consider a randomly sampled batch large. The minimizer is approximate to the global minimizer when the scale is controlled by optimum should be at least affected by both SL training and representation regularization, where (for CE loss) or their claimed optimum (for other robust loss functions). Therefore, the global noisy data, when it achieves zero loss, the minimizer should be either memorizing each instance discussed previously, SSL features are supposed to pull the model away from memorizing wrong \(\ell \).

4.2 Theoretical Understanding

We theoretically analyze how \(\ell_{\text{reg}} \) mitigates memorizing noisy labels in this subsection. As we discussed previously, SSL features are supposed to pull the model away from memorizing wrong labels due to clusterability [Zhu et al., 2021b]. However, since the SL training is performed on the noisy data, when it achieves zero loss, the minimizer should be either memorizing each instance (for CE loss) or their claimed optimum (for other robust loss functions). Therefore, the global optimum should be at least affected by both SL training and representation regularization, where the scale is controlled by \(\lambda \).

For a clear presentation, we focus on analyzing the effect of \(\ell_{\text{reg}} \) in a binary classification, whose minimizer is approximate to the global minimizer when \(\lambda \) is sufficiently large.

Consider a randomly sampled batch \(B \). Denote by \(X^2 := \{(x_i, x_j)| x_i \in B, x_j \in B, i \neq j\} \) the set of data pairs, and \(d_{i,j} = d(\phi^w(t_i, t_j), \phi^w(s_i, s_j)) \). The regularization loss of batch \(B \) is decomposed as:

\[
\frac{1}{|B|} \sum_{n|x_n \in B} \ell_{\text{Reg}}(h(f(x_n)), g(f(x_n)), B) = \frac{1}{|X^2|} \left(\sum_{(x_i, x_j) \in X^2} d_{i,j} + \sum_{(x_i, x_j) \in X^2} d_{i,j} + \sum_{x_i \in X_T, x_j \in X_F} 2d_{i,j} \right). \tag{4}
\]

where \(X = X_T \cup X_F, X_T \cup X_F \) denotes the set of instances whose labels are true/false. Note the regularizer mainly works when SSL features “disagree” with SL features, i.e., Term-3. Denote by

\[
X_+ = X|Y = 1, \quad X_- = X|Y = 0, \quad X^T = X|Y = \bar{Y}, \quad X^F = X|Y \neq \bar{Y}.
\]

For further analyses, we write Term-3 in the form of expectation with \(d \) chosen as square \(l_2 \) distance, i.e., MSE loss:

\[
L_c = E_{X^T, X^F} \left(\frac{||g(f(X^T)) - g(f(X^F))||^1}{m_1} - \frac{||h(f(X^T)) - h(f(X^F))||^2}{m_2} \right)^2, \tag{5}
\]
where \(m_1 \) and \(m_2 \) are normalization terms in Eqn (3). Note in \(L_c \), we use \(w = 1 \) for SL features and \(w = 2 \) for SSL features. Denote the variance by \(\text{var}(\cdot) \). In the setting of binary classification, define notations: \(X^+_F := X|Y = 1, Y = 0 \), \(X^-_F := X|Y = 0, Y = 1 \).

To find a tractable way to analytically measure and quantify how feature correction relates to network robustness, we make three assumptions as follows:

Assumption 1 (Memorize clean instances). \(\forall n \in \{ n | \tilde{y}_n = y_n \}, \ell(g(f(x_n)), y_n) = 0 \).

Assumption 2 (Same overfitting). \(\text{var}(g(f(X^+_F))) = 0 \) and \(\text{var}(g(f(X^-_F))) = 0 \).

Assumption 3 (Gaussian-distributed SSL features). The SSL features follow Gaussian distributions, i.e., \(h(f(X^+_F)) \sim \mathcal{N}(\mu_1, \Sigma) \) and \(h(f(X^-_F)) \sim \mathcal{N}(\mu_2, \Sigma) \).

Assumption 1 implies that a DNN has confident predictions on clean samples. Assumption 2 implies that a DNN has the same degree of overfitting for each noisy sample. For example, an overparameterized DNN can memorize all the noisy labels [Liu, 2021; Zhang et al., 2016]. Thus these two assumptions are reasonable. Assumption 3 assumes that SSL features follow Gaussian distribution. Note other distribution form can also be assumed. We use Gaussian due to its simplicity and it can provide us a closed-form solution. Further, some works also observe that SSL features tend to follow Gaussians [Wang and Isola, 2020]. Note in Figure 3, SSL features are from \(h(f(X)) \) rather than \(f(X) \).

Based on Assumptions 1–3, we present Theorem 3 to analyze the effect of \(L_c \). Let \(e_+ = P(\tilde{Y} = 0|Y = 1), e_- = P(\tilde{Y} = 1|Y = 0) \), we have:

Theorem 3. When \(e_- = e_+ = e \) and \(P(Y = 1) = P(Y = 0) \), minimizing \(L_c \) on DNN results in the following solutions:

\[
\mathbb{E}_D [\mathbb{1}(g(f(X), Y))] = e \cdot \left(\frac{1}{2} - \frac{1}{2 + \Delta(\Sigma, \mu_1, \mu_2)} \right)
\]

where \(\Delta(\Sigma, \mu_1, \mu_2) := 8 \cdot \text{tr}(\Sigma)/||\mu_1 - \mu_2||^2 \), \(\text{tr}(\cdot) \) denotes the matrix trace.

Theorem 3 reveals a clean relationship between the quality of SSL features (given by \(h(f(X)) \)) and the network robustness on noisy samples. When \(\text{tr}(\Sigma) \rightarrow 0 \) or \(||\mu_1 - \mu_2|| \rightarrow \infty \), the expected risk of the model \(\mathbb{E}_D [\mathbb{1}(g(f(X), Y))] \) will approximate to 0. I.e., for any sample \(x \), the model will predict \(x \) to its clean label. Note the proof of Theorem 3 does not rely on any SSL training process. This makes it possible to use some pre-trained encoders from other tasks. In the Appendix, we also provide an theoretical understanding on the regularizer from the perspective of Information Theory.

5 Empirical Evidences

5.1 The Effect of Representations

We perform experiments to study the effect of representations on learning with noisy labels. Figure 5 shows the learning dynamics on symmetric label noise while Figure 4 shows the learning dynamics on asymmetric and instance-dependent label noise. From these two figures, given a good representation, we have some key observations:

- **Observation-1:** Fix encoders for high symmetric label noise

1 Practically, different choices make negligible effects on performance. See more details in Appendix.
Figure 5: (a) (b) (c): Performance of CE on DogCat, CIFAR10 and CIFAR100 under symmetric noise rate. For each noise rate, the best epoch test accuracy is recorded. The blue line represents training with fixed encoder and the red line represents training with unfixed encoder; (d): test accuracy of CIFAR10 on each training epoch under symmetric 0.6 noise rate. We use ResNet50 [He et al., 2016] for DogCat and ResNet34 for CIFAR10 and CIFAR100. Encoder is pre-trained by SimCLR [Chen et al., 2020]. Detailed settings are reported in the Appendix.

- **Observation-2**: Do not fix encoders for low symmetric label noise
- **Observation-3**: Do not fix encoder when bias exists
- **Observation-4**: A fixed encoder is more stable during learning

Figure 4: (a) performance of CE on asymmetric label noise. (b) performance of CE on instance-dependent label noise. The generation of instance-dependent label noise follows from CORES [Cheng et al., 2021].

Observation-1, Observation-2 are verified by Figure 5 (a) (b) (c) and Observation-3 is verified by Figure 4 (a) (b). Observation-4 is verified by Figure 5 (d). These four observations are consistent with our analyses in Section 3. We also find an interesting phenomenon in Figure 4 (b) that down-sampling (making $P(\tilde{Y} = i) = P(\tilde{Y} = j)$ in the noisy dataset) is very helpful for instance-dependent label noise since down-sampling can reduce noise rate imbalance (we provide an illustration on binary case in the Appendix) which could lower down the estimation error. Ideally, if down-sampling could make noise-rate pattern be symmetric, we could achieve noise consistency (Definition 1). In the next subsection, we perform experiments to show our proposed framework can well compromise between a fixed and unfixed encoder to alleviate over-fitting problem.

5.2 The Performance of Using Representations as a Regularizer

Experiments on synthetic label noise We first show that Regularizer can alleviate the over-fitting problem when ℓ in Equation (2) is simply chosen as Cross-Entropy loss. The experiments are shown in Figure 6. Regularizer is added at the very beginning since recent studies show that for a randomly initialized network, the model tends to fit clean labels first [Arpit et al., 2017] and we hope the regularizer can improve the network robustness when DNN begins to fit noisy labels. From Figure 6 (c) (d), for CE training, the performance first increases then decreases since the network over-fits noisy labels as training proceeds. However, for CE with the regularizer, the performance is more stable after it reaches the peak. For 60% noise rate, the peak point is also much higher than vanilla CE training. For Figure 6 (a) (b), since the network is not randomly initialized, it over-fits noisy labels at the very beginning and the performance gradually decreases. However, for CE with the regularizer, it can help the network gradually increase the performance as the network reaches
Figure 6: Experiments w.r.t. regularizer ($\lambda = 1$) on CIFAR10. ResNet34 is deployed for the experiments. (a) (b): Encoder is pre-trained by SimCLR. Symmetric noise rate is 20% and 40%, respectively; (c) (d): Encoder is randomly initialized with noise rate 40% and 60%, respectively.

Table 1: Comparison of test accuracies with each method on CIFAR10. The model is learned from scratch for all methods with $\lambda = 1$. Best and last epoch accuracies are reported: best/last.

Method	Symm. CIFAR10 $\varepsilon = 0.6$	Asymm. CIFAR10 $\varepsilon = 0.8$	$\varepsilon = 0.4$
CE	61.29/32.83	38.46/15.05	67.28/56.6
CE + Regularizer	69.02/65.13	61.94/56.78	73.38/58.51
GCE [Zhang and Sabuncu, 2018]	72.56/62.84	40.71/20.53	69.19/53.24
GCE + Regularizer	72.61/68.38	63.63/63.05	69.79/61.32
FW [Patrini et al., 2017]	65.95/60.13	40.08/26.7	68.62/58.01
FW + Regularizer	68.73/65.90	60.94/59.88	75.64/67.66
HOC [Zhu et al., 2021b]	62.53/46.17	39.61/16.90	85.88/78.89
HOC + Regularizer	70.07/66.94	60.9/34.90	83.53/82.56
Peer Loss [Liu and Guo, 2020]	77.52/76.07	15.60/10.00	84.47/68.93
Peer Loss + Regularizer	77.61/73.26	61.64/53.52	81.58/75.38

Table 2: Test accuracy for each method on CIFAR10N and CIFAR100N.

Dataset	CE	GCE	Co-Teaching+	Peer Loss	JoCoR	ELR	CE + Regularizer
CIFAR10N (Worst)	77.69	80.66	83.26	82.53	83.37	83.58	88.74
CIFAR100N	55.50	56.73	57.88	57.59	59.97	58.94	60.81

the lowest point (over-fitting state). This observation supports Theorem 3 that the regularizer can prevent DNN from over-fitting.

Next, we show the regularizer can complement any other loss functions to further improve performance on learning with noisy labels. I.e., we choose ℓ in Equation (2) to be other robust losses. The overall experiments are shown in Table 1. It can be observed that our regularizer can complement other loss functions or methods and improve their performance, especially for the last epoch accuracy. Note that we do not apply any tricks when incorporating other losses since we mainly want to observe the effect of the regularizer. It is possible to use other techniques to further improve performance such as multi-model training [Li et al., 2020a] or mixup [Zhang et al., 2018a].

Experiments on real-world label noise We also test our regularizer on the datasets with real-world label noise: CIFAR10N, CIFAR100N [Wei et al., 2021b] and Clothing1M [Xiao et al., 2015]. The results are shown in Table 2 and Table 3. We can find that our regularizer is also effective on the datasets with real-world label noise even when ℓ in Equation (2) is simply chosen to be Cross Entropy. More experiments, analyses, and ablation studies can be found in the Appendix.
Table 3: Test accuracy for each method on Clothing1M dataset. All the methods use ResNet50 backbones. DS: Down-Sampling. Reg: With structural regularizer.

INITIALIZER	FORWARD-T	CO-TEACHING	CORES+DS	ELR+DS	CE	CE + DS	CE + DS + REG
Accuracy	70.83	69.21	73.24	72.87	70.90	72.95	**73.48**

6 Conclusions

In this paper, we theoretically analyze the memorization effect by showing the relationship among noise rates, sample size, and model capacity. By decoupling DNNs into an encoder followed by a linear classifier, our analyses help reveal the tradeoff between fixing or unfixing the encoder during training, which inspires us a new solution to restrict overfitting via representation regularization. Our observations and experiments can serve as a guidance for further research to utilize DNN representations to solve noisy label problems.
References

D. Arpit, S. Jastrzebski, N. Ballas, D. Krueger, E. Bengio, M. S. Kanwal, T. Maharaj, A. Fischer, A. Courville, Y. Bengio, et al. A closer look at memorization in deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, pages 233–242. JMLR. org, 2017.

A. R. Barron. Approximation and estimation bounds for artificial neural networks. Machine learning, 14(1):115–133, 1994.

M. I. Belghazi, A. Baratin, S. Rajeswar, S. Ozair, Y. Bengio, A. Courville, and R. D. Hjelm. Mine: mutual information neural estimation. arXiv preprint arXiv:1801.04062, 2018.

O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In Summer school on machine learning, pages 169–207. Springer, 2003.

C. Buciluă, R. Caruana, and A. Niculescu-Mizil. Model compression. In Proceedings of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 535–541, 2006.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning of visual representations. In International conference on machine learning, pages 1597–1607. PMLR, 2020.

H. Cheng, Z. Zhu, X. Li, Y. Gong, X. Sun, and Y. Liu. Learning with instance-dependent label noise: A sample sieve approach. In International Conference on Learning Representations, 2021.

T. M. Cover. Elements of information theory. John Wiley & Sons, 1999.

L. Devroye, L. Györfi, and G. Lugosi. A probabilistic theory of pattern recognition, volume 31. Springer Science & Business Media, 2013.

L. Feng, S. Shu, Z. Lin, F. Lv, L. Li, and B. An. Can cross entropy loss be robust to label noise? In Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pages 2206–2212, 2021.

A. Ghosh and A. Lan. Contrastive learning improves model robustness under label noise. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 2703–2708, 2021.

A. Ghosh, H. Kumar, and P. Sastry. Robust loss functions under label noise for deep neural networks. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

A. Graves, A.-r. Mohamed, and G. Hinton. Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing, pages 6645–6649. IEEE, 2013.

B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy labels. In Advances in neural information processing systems, pages 8527–8537, 2018.

B. Han, Q. Yao, T. Liu, G. Niu, I. W. Tsang, J. T. Kwok, and M. Sugiyama. A survey of label-noise representation learning: Past, present and future. arXiv preprint arXiv:2011.04406, 2020.
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 770–778, 2016.

G. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network. *arXiv preprint arXiv:1503.02531*, 2015.

R. D. Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bachman, A. Trischler, and Y. Bengio. Learning deep representations by mutual information estimation and maximization. *arXiv preprint arXiv:1808.06670*, 2018.

L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. Mentornet: Learning data-driven curriculum for very deep neural networks on corrupted labels. In *International Conference on Machine Learning*, pages 2304–2313. PMLR, 2018.

Z. Jiang, K. Zhou, Z. Liu, L. Li, R. Chen, S.-H. Choi, and X. Hu. An information fusion approach to learning with instance-dependent label noise. In *International Conference on Learning Representations*, 2021.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In *Advances in neural information processing systems*, pages 1097–1105, 2012.

J. Li, R. Socher, and S. C. Hoi. Dividemix: Learning with noisy labels as semi-supervised learning. In *International Conference on Learning Representations*, 2020a. URL `https://openreview.net/forum?id=HJgExaVtwr`

M. Li, M. Soltanolkotabi, and S. Oymak. Gradient descent with early stopping is provably robust to label noise for overparameterized neural networks. In *International conference on artificial intelligence and statistics*, pages 4313–4324. PMLR, 2020b.

S. Liu, J. Niles-Weed, N. Razavian, and C. Fernandez-Granda. Early-learning regularization prevents memorization of noisy labels. *Advances in neural information processing systems*, 33:20331–20342, 2020.

S. Liu, Z. Zhu, Q. Qu, and C. You. Robust training under label noise by over-parameterization. *arXiv preprint arXiv:2202.14026*, 2022.

T. Liu and D. Tao. Classification with noisy labels by importance reweighting. *IEEE Transactions on pattern analysis and machine intelligence*, 38(3):447–461, 2015.

Y. Liu. Understanding instance-level label noise: Disparate impacts and treatments. In *International Conference on Machine Learning*, pages 6725–6735. PMLR, 2021.

Y. Liu and H. Guo. Peer loss functions: Learning from noisy labels without knowing noise rates. In *International Conference on Machine Learning*, pages 6226–6236. PMLR, 2020.

W. Lotter, G. Kreiman, and D. Cox. Deep predictive coding networks for video prediction and unsupervised learning. *arXiv preprint arXiv:1605.08104*, 2016.

S. I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and H. Ghasemzadeh. Improved knowledge distillation via teacher assistant. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 5191–5198, 2020.

N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy labels. In *Advances in neural information processing systems*, pages 1196–1204, 2013.
D. T. Nguyen, C. K. Mummadi, T. P. N. Ngo, T. H. P. Nguyen, L. Beggel, and T. Brox. Self: Learning to filter noisy labels with self-ensembling. In International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=HkgsPhNYP5.

C. Northcutt, L. Jiang, and I. Chuang. Confident learning: Estimating uncertainty in dataset labels. Journal of Artificial Intelligence Research, 70:1373–1411, 2021.

W. Park, D. Kim, Y. Lu, and M. Cho. Relational knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3967–3976, 2019.

G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu. Making deep neural networks robust to label noise: A loss correction approach. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1944–1952, 2017.

D. Rolnick, A. Veit, S. Belongie, and N. Shavit. Deep learning is robust to massive label noise. arXiv preprint arXiv:1705.10694, 2017.

S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: From theory to algorithms. Cambridge university press, 2014.

A. Van den Oord, Y. Li, and O. Vinyals. Representation learning with contrastive predictive coding. arXiv e-prints, pages arXiv–1807, 2018.

T. Wang and P. Isola. Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In International Conference on Machine Learning, pages 9929–9939. PMLR, 2020.

H. Wei, L. Feng, X. Chen, and B. An. Combating noisy labels by agreement: A joint training method with co-regularization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13726–13735, 2020.

H. Wei, L. Tao, R. Xie, and B. An. Open-set label noise can improve robustness against inherent label noise. Advances in Neural Information Processing Systems, 34, 2021a.

H. Wei, R. Xie, L. Feng, B. Han, and B. An. Deep learning from multiple noisy annotators as a union. IEEE Transactions on Neural Networks and Learning Systems, 2022.

J. Wei and Y. Liu. When optimizing f-divergence is robust with label noise. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=WesiCoRVQ15.

J. Wei, Z. Zhu, H. Cheng, T. Liu, G. Niu, and Y. Liu. Learning with noisy labels revisited: A study using real-world human annotations. arXiv preprint arXiv:2110.12088, 2021b.

X. Xia, T. Liu, B. Han, C. Gong, N. Wang, Z. Ge, and Y. Chang. Robust early-learning: Hindering the memorization of noisy labels. In International conference on learning representations, 2020.

T. Xiao, T. Xia, Y. Yang, C. Huang, and X. Wang. Learning from massive noisy labeled data for image classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 2691–2699, 2015.

Y. Xu, P. Cao, Y. Kong, and Y. Wang. L_dmi: A novel information-theoretic loss function for training deep nets robust to label noise. In Advances in Neural Information Processing Systems, volume 32, 2019.
Q. Yao, H. Yang, B. Han, G. Niu, and J. T. Kwok. Searching to exploit memorization effect in learning with noisy labels. In *Proceedings of the 37th International Conference on Machine Learning, ICML ’20*, 2020.

X. Yu, B. Han, J. Yao, G. Niu, I. W. Tsang, and M. Sugiyama. How does disagreement help generalization against label corruption? *arXiv preprint arXiv:1901.04215*, 2019.

C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.

H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. Mixup: Beyond empirical risk minimization. In *International Conference on Learning Representations*, 2018a. URL https://openreview.net/forum?id=r1Ddp1-Rb.

L. Zhang, J. Song, A. Gao, J. Chen, C. Bao, and K. Ma. Be your own teacher: Improve the performance of convolutional neural networks via self distillation. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 3713–3722, 2019.

X. Zhang and Y. LeCun. Text understanding from scratch. *arXiv preprint arXiv:1502.01710*, 2015.

X. Zhang, X. Wu, F. Chen, L. Zhao, and C.-T. Lu. Self-paced robust learning for leveraging clean labels in noisy data. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 34, pages 6853–6860, 2020.

Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep mutual learning. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 4320–4328, 2018b.

Z. Zhang and M. Sabuncu. Generalized cross entropy loss for training deep neural networks with noisy labels. In *Advances in neural information processing systems*, pages 8778–8788, 2018.

Z. Zhu, T. Liu, and Y. Liu. A second-order approach to learning with instance-dependent label noise. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10113–10123, 2021a.

Z. Zhu, Y. Song, and Y. Liu. Clusterability as an alternative to anchor points when learning with noisy labels. *arXiv preprint arXiv:2102.05291*, 2021b.
Appendix

Outline The Appendix is arranged as follows: Section 7 proves Lemmas and Theorems in Section 3. Section 8 proves Theorem 3 in Section 4 and provides an high level understanding on the regularizer from the perspective of Information Theory. Section 9 illustrates why down-sampling can decrease the gap of noise rates. Section 10 provides the effect of distance measure in Eqn (3) \((w = 1 \text{ or } 2)\); ablation study in Section 4 the effect of different SSL pre-trained methods. Section 11 elaborates the detailed experimental setting of all the experiments in the paper.

7 Proof for Lemmas and Theorems in Section 3

7.1 Proof for Lemma 1

Let \(T := \arg \min_{X,i} T_{ii}(X) \).

Considering a general instance-dependent label noise where \(T_{ij}(X) = \mathbb{P}(\tilde{Y} = j|Y = i, X) \), we have \(\text{Cheng et al., 2021} \)

\[
\mathbb{E}_{D}[\ell(C(X), \tilde{Y})] = \sum_{j \in [K]} \int_x \mathbb{P}(\tilde{Y} = j, X = x)\ell(C(X), j) \, dx
\]

\[
= \sum_{i \in [K]} \sum_{j \in [K]} \int_x \mathbb{P}(\tilde{Y} = j, Y = i, X = x)\ell(C(X), j) \, dx
\]

\[
= \sum_{i \in [K]} \sum_{j \in [K]} \mathbb{P}(Y = i) \int_x \mathbb{P}(\tilde{Y} = j|Y = i, X = x)\mathbb{P}(X = x|Y = i)\ell(C(X), j) \, dx
\]

\[
= \sum_{i \in [K]} \sum_{j \in [K]} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[\ell(C(X), j)]
\]

\[
= \sum_{i \in [K]} \sum_{j \in [K]} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[T_{ij}(X)\ell(C(X), j)]
\]

\[
= \sum_{i \in [K]} \sum_{j \in [K]} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[\ell(C(X), i)] + \sum_{i \in [K]} \sum_{j \in [K], j \neq i} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[T_{ij}(X)\ell(C(X), j)]
\]

\[
= T \sum_{i \in [K]} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[\ell(C(X), i)] + \sum_{i \in [K]} \sum_{j \in [K], j \neq i} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[U_{ij}(X)\ell(C(X), j)]
\]

\[
= T \mathbb{E}_{D}[\ell(C(X), Y)] + \sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y = i) \mathbb{E}_{D|Y=i}[U_{ij}(X)\ell(C(X), j)]
\]

where \(U_{ij}(X) = T_{ij}(X), \forall i \neq j, U_{jj}(X) = T_{jj}(X) - T \).
7.2 Proof for Lemma 2

Consider the symmetric label noise. Let \(T(X) \equiv T, \forall X \), where \(T_{ii} = 1 - \epsilon, T_{ij} = \frac{\epsilon}{K-1}, \forall i \neq j \). The general form in Lemma 1 can be simplified as

\[
E_\tilde{D}[\ell(C(X), \tilde{Y})] = (1 - \epsilon)E_\tilde{D}[\ell(C(X), Y)] + \frac{\epsilon}{K-1} \sum_{j \in [K]} \sum_{i \in [K], i \neq j} \mathbb{P}(Y = i)E_\tilde{D}|_{Y=i}[\ell(C(X), j)]
\]

\[
= (1 - \epsilon - \frac{\epsilon}{K-1})E_\tilde{D}[\ell(C(X), Y)] + \frac{\epsilon}{K-1} \sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y = i)E_\tilde{D}|_{Y=i}[\ell(C(X), j)]
\]

When \(\ell \) is the 0-1 loss, we have

\[
\sum_{j \in [K]} \sum_{i \in [K]} \mathbb{P}(Y = i)E_\tilde{D}|_{Y=i}[\ell(C(X), j)] = 1
\]

and

\[
E_\tilde{D}[\ell(C(X), \tilde{Y})] = (1 - \frac{\epsilon K}{K-1})E_\tilde{D}[\ell(C(X), Y)] + \frac{\epsilon}{K-1}
\]

Consider the asymmetric label noise. Let \(T(X) \equiv T, \forall X \), where \(T_{ii} = 1 - \epsilon, T_{i(i+1)} = \epsilon \). The general form in Lemma 1 can be simplified as

\[
E_\tilde{D}[\ell(C(X), \tilde{Y})] = (1 - \epsilon)E_\tilde{D}[\ell(C(X), Y)] + \epsilon \sum_{i \in [K]} \mathbb{P}(Y = i)E_\tilde{D}|_{Y=i}[\ell(C(X), (i + 1)_{K})]
\]

7.3 Proof for Theorem 1

For symmetric noise, we have:

\[
E_D\left[\ell(\tilde{C}_D(X), Y)\right] = \frac{E_\tilde{D}\left[\ell(\tilde{C}_D(X), \tilde{Y})\right]}{1 - \epsilon K/(K-1)} - \frac{\epsilon/(K-1)}{1 - \epsilon K/(K-1)}
\]

Thus the learning error is

\[
E_D\left[\ell(\tilde{C}_D(X), Y)\right] - E_D\left[\ell(C_D(X), Y)\right]
\]

\[
=\frac{1}{1 - \epsilon K/(K-1)} \left(E_\tilde{D}\left[\ell(\tilde{C}_D(X), \tilde{Y})\right] - E_\tilde{D}\left[\ell(C_D(X), \tilde{Y})\right] \right)
\]

Let

\[
\hat{E}_D\left[\ell(C(X), \tilde{Y})\right] := \frac{1}{N} \sum_{n \in [N]} \ell(C(x_n), \tilde{y}_n).
\]

Noting \(\hat{E}_D\left[\ell(C_D(X), \tilde{Y})\right] - \hat{E}_D\left[\ell(\tilde{C}_D(X), \tilde{Y})\right] \geq 0 \), we have the following upper bound:

\[
E_D\left[\ell(\tilde{C}_D(X), \tilde{Y})\right] - E_D\left[\ell(C_D(X), \tilde{Y})\right]
\]

\[
= E_D\left[\ell(\tilde{C}_D(X), \tilde{Y})\right] - \hat{E}_D\left[\ell(\tilde{C}_D(X), \tilde{Y})\right] + \hat{E}_D\left[\ell(C_D(X), \tilde{Y})\right] - E_D\left[\ell(C_D(X), \tilde{Y})\right]
\]

\[
\leq |E_D\left[\ell(\tilde{C}_D(X), \tilde{Y})\right] - \hat{E}_D\left[\ell(\tilde{C}_D(X), \tilde{Y})\right]| + |\hat{E}_D\left[\ell(C_D(X), \tilde{Y})\right] - E_D\left[\ell(C_D(X), \tilde{Y})\right]|
\]

18
Recall \(C \in \mathcal{C} \). Denote the VC-dimension of \(\mathcal{C} \) by \(|\mathcal{C}|\) \cite{Bousquet2003, Devroye2013}. By Hoeffding inequality with function space \(\mathcal{C} \), with probability at least 1 – \(\delta \), we have

\[
|\mathbb{E}_D[\ell(\hat{C}_D(X), Y)] - \hat{\mathbb{E}}_D[\ell(C_D(X), Y)]| + |\hat{\mathbb{E}}_D[\ell(C_D(X), Y)] - \mathbb{E}_D[\ell(C_D(X), Y)]| \\
\leq 2 \text{arg max}_{g \in \mathcal{G}} |\mathbb{E}_D[\ell(C(X), Y)] - \hat{\mathbb{E}}_D[\ell(C(X), Y)]| \\
\leq 16 \sqrt{|\mathcal{C}| \log(Ne/|\mathcal{C}|) + \log(8/\delta)} / 2N.
\]

Thus

\[
\mathbb{E}_D[\ell(\hat{C}_D(X), Y)] - \mathbb{E}_D[\ell(C_D(X), Y)] \leq 16 \sqrt{|\mathcal{C}| \log(Ne/|\mathcal{C}|) + \log(8/\delta)} / 2N(1 - \frac{eK}{K - 1})^2.
\]

Similarly, for asymmetric noise, we have:

\[
\mathbb{E}_D[\ell(\hat{C}_D(X), Y)] = \frac{\mathbb{E}_D[\ell(\hat{C}_D(X), \tilde{Y})]}{1 - \epsilon} - \text{Bias}(\hat{C}_D),
\]

where

\[
\text{Bias}(\hat{C}_D) = \frac{\epsilon}{1 - \epsilon} \sum_{i \in [K]} P(Y = i) \mathbb{E}_{D|Y=i}[\ell(\hat{C}_D(X), (i + 1)K)].
\]

Thus the learning error is

\[
\mathbb{E}_D[\ell(\hat{C}_D(X), Y)] - \mathbb{E}_D[\ell(C_D(X), Y)] \\
= \frac{1}{1 - \epsilon} \left(\mathbb{E}_D[\ell(\hat{C}_D(X), \tilde{Y})] - \hat{\mathbb{E}}_D[\ell(C_D(X), \tilde{Y})] \right) + \left(\text{Bias}(C_D) - \text{Bias}(\hat{C}_D) \right).
\]

By repeating the derivation for the symmetric noise, we have

\[
\mathbb{E}_D[\ell(\hat{C}_D(X), Y)] - \mathbb{E}_D[\ell(C_D(X), Y)] \leq 16 \sqrt{|\mathcal{C}| \log(Ne/|\mathcal{C}|) + \log(8/\delta)} / 2N + \left(\text{Bias}(C_D) - \text{Bias}(\hat{C}_D) \right).
\]

7.4 Proof for Theorem 2

From Lemma A.4 in \cite{Shalev-Shwartz2014} and our Theorem 1, we know

\[
\mathbb{E} |\text{Error}_E(C_D, \hat{C}_D)| \leq 16 \sqrt{|\mathcal{C}| \log(4Ne/|\mathcal{C}|) + 2} / \sqrt{2N}.
\]

Therefore,

\[
\mathbb{E}_0[\Delta_\epsilon(C_1, \epsilon, \delta)] = \Delta_\epsilon(C_1) - \mathbb{E}_0[\Delta_\epsilon(C_2, \epsilon, \delta)] + \Delta_\epsilon(C_2) \geq 0 \\
\iff 16 \frac{\sqrt{|\mathcal{C}_1| \log(4Ne/|\mathcal{C}_1|) + 2}}{\sqrt{2N(1 - \frac{eK}{K - 1})^2}} - 16 \frac{\sqrt{|\mathcal{C}_2| \log(4Ne/|\mathcal{C}_2|) + 2}}{\sqrt{2N(1 - \frac{eK}{K - 1})^2}} + \frac{\alpha_{C^*} \sqrt{M_{C_1}}}{\sqrt{M_{C_2}}} - \frac{\alpha_{C^*} \sqrt{M_{C_2}}}{\sqrt{M_{C_1}}} \geq 0 \\
\iff 1 - \frac{eK}{K - 1} \leq \frac{16 \frac{\sqrt{|\mathcal{C}_1| \log(4Ne/|\mathcal{C}_1|) - \sqrt{|\mathcal{C}_2| \log(4Ne/|\mathcal{C}_2|)}}}{\alpha_{C^*} \sqrt{M_{C_2}} - \alpha_{C^*} \sqrt{M_{C_1}}}}{\sqrt{2N}}.
\]
8 Proof for Theorems in Section 4

Lemma 4. If X and Y are independent and follow gaussian distribution: $X \sim \mathcal{N}(\mu_X, \Sigma_X)$ and $Y \sim \mathcal{N}(\mu_Y, \Sigma_Y)$, Then: $\mathbb{E}_{X,Y}(||X - Y||^2) = ||\mu_X - \mu_Y||^2 + tr(\Sigma_X + \Sigma_Y)$.

8.1 Proof for Theorem 3

Before the derivation, we define some notations for better presentation. Following the notation in Section 4, define the labels of X^T as Y^T and the labels of X^F as Y^F. Under the label noise, it is easy to verify $P(Y^T = 1) = \frac{P(Y = 1)(1 - e_\epsilon)}{P(Y = 1)(1 - e_\epsilon) + P(Y = 0)(1 - e_\epsilon)}$ and $P(Y^F = 1) = \frac{P(Y = 0)e_\epsilon + P(Y = 1)e_\epsilon}{P(Y = 0)e_\epsilon + P(Y = 1)e_\epsilon}$.

Let $p_1 = P(Y^T = 1), p_2 = P(Y^F = 1)$, $g(f(X))$ and $h(f(X))$ to be simplified as $gf(X)$ and $hf(X)$.

In the case of binary classification, $gf(x)$ is one dimensional value which denotes the network prediction on x belonging to $Y = 1$. L_c can be written as:

$$
\mathbb{E}_{X^T,X^F} \left(\frac{|gf(X^T) - gf(X^F)|}{m_1} \right)^2 - \frac{|hf(X^T) - hf(X^F)|^2}{m_2}
$$

\[\text{denoted as } \Psi(X^T,X^F)\]

\[\begin{align*}
&= (a) \mathbb{E}_{(X^T,Y^T),(X^F,Y^F)} \Psi(X^T,X^F) \\
&= p_1 \cdot p_2 \cdot \mathbb{E}_{X^T,+,X^F} \Psi(X^T,+,X^F) + (1 - p_1) \cdot p_2 \cdot \mathbb{E}_{X^T,+,X^F} \Psi(X^T,+,X^F) \\
&\quad + p_1 \cdot (1 - p_2) \cdot \mathbb{E}_{X^T,X^F} \Psi(X^T,+,X^F) + (1 - p_1) \cdot (1 - p_2) \cdot \mathbb{E}_{X^T,X^F} \Psi(X^T,+,X^F)
\end{align*}\]

where m_1 and m_2 are normalization terms from Equation (3). (a) is satisfied because $\Psi(X^T,X^F)$ is irrelevant to the labels. We derive $\Psi(X^T,+,X^F)$ as follows:

\[\begin{align*}
\mathbb{E}_{X^T,+,X^F} \Psi(X^T,+,X^F) \\
&= (b) \mathbb{E}_{X^T,+,X^F} \left(\frac{|1 - gf(X^F)|}{m_1} \right)^2 - \frac{|hf(X^T) - hf(X^F)|^2}{m_2} \\
&= (c) \mathbb{E}_{X^T,+,X^F} \left(\frac{1 - gf(X^F)}{m_1} \right)^2 - \frac{|hf(X^T) - hf(X^F)|^2}{m_2} \\
&= (d) \mathbb{E}_{X^T,+,X^F} \frac{gf(X^F)}{m_1} - \left(\frac{1}{m_1} - \frac{|hf(X^T) - hf(X^F)|^2}{m_2} \right)^2
\end{align*}\]

(b) is satisfied because from Assumption 1, DNN has confident prediction on clean samples. (c) is satisfied because $gf(X)$ is one dimensional value which ranges from 0 to 1. From Assumption 3 $hf(X_+)$ and $hf(X_-)$ follows gaussian distribution with parameter (μ_1, Σ) and (μ_2, Σ). Thus according to Lemma 4, we have $\mathbb{E}_{X^T,+,X^F} |hf(X^T) - hf(X^F)|^2 = ||\mu_1 - \mu_2||^2 + 2 \cdot tr(\Sigma)$. Similarly, one can calculate $\mathbb{E}_{X^T,+,X^F} |hf(X^T) - hf(X^F)|^2 = 2 \cdot tr(\Sigma)$. It can be seen that (d) is function with respect to $gf(X_+)$. Similarly, $\Psi(X^T,+,X^F)$ is also a function with respect to $gf(X^F)$ while $\Psi(X^T,+,X^F)$ and $\Psi(X^T,+,X^F)$ are functions with respect to $gf(X^F)$. Denote $d(+, +) = \mathbb{E}_{X^T,+,X^F} |hf(X^T) -$
Under the condition of $\varphi(X_T^T, X_F^T)$ and $\varphi(X_T^T, X_F^T)$, we have:

$$
\begin{align*}
\min_{g(x)} p_1 \cdot p_2 \cdot E_{X_T^T, X_F^T} \varphi(X_T^T, X_F^T) + (1 - p_1) \cdot p_2 \cdot E_{X_T^T, X_F^T} \varphi(X_T^T, X_F^T) \\
\Rightarrow \min_{g(x)} \left(E_{X_T^T} \varphi(X_F^T) \right)^2 \\
- \left(2 \cdot p_1 \left(1 - \frac{m_1 \cdot d(+,+)}{m_2} \right) + 2 \cdot (1 - p_1) \left(\frac{m_1 \cdot d(-,+)}{m_2} \right) \right) \cdot E_{X_T^T} \varphi(X_F^T) \\
+ \text{constant with respect to } g(x)
\end{align*}
$$

Note in Equation (6), we use $E_{X_T^T} \varphi(X_F^T)$ to approximate $E_{X_T^T} \varphi(X_F^T)^2$ since from Assumption 2 $\text{var}(g(x)) \to 0$. Now we calculate m_1 and m_2 from Equation (5):

$$
\begin{align*}
m_1 &= p_1 \cdot p_2 \cdot (1 - E_{X_T^T} \varphi(X_F^T)) + (1 - p_1) \cdot p_2 \cdot E_{X_T^T} \varphi(X_F^T) \\
&\quad + p_1 \cdot (1 - p_2) \cdot (1 - E_{X_T^T} \varphi(X_F^T)) + (1 - p_1) \cdot (1 - p_2) \cdot E_{X_T^T} \varphi(X_F^T) \\
m_2 &= p_1 \cdot p_2 \cdot d(+,+)(1 - p_1) \cdot p_2 \cdot d(-,+)(1 - p_1) \cdot (1 - p_2) \cdot d(+,-)(1 - p_1)(1 - p_2) \cdot d(-,-)
\end{align*}
$$

Under the condition of $\mathbb{P}(Y = 1) = \mathbb{P}(Y = 0), e = e_+$, we have $p_1 = p_2 = \frac{1}{2}, m_2 = \frac{4 \cdot \text{tr}(\Sigma) + \|\mu_1 - \mu_2\|^2}{\|\mu_1 - \mu_2\|^2}$, $m_1 = \frac{1}{2}$, which is constant with respect to $E_{X_T^T} \varphi(X_F^T)$ and $E_{X_T^T} \varphi(X_F^T)$ in Equation (7). Thus Equation (6) is a quadratic equation with respect to $E_{X_T^T} \varphi(X_F^T)$. Then when Equation (6) achieves global minimum, we have:

$$
E_{X_T^T} \varphi(X_F^T) = p_1 - \frac{m_1}{m_2} (p_1 \cdot d(+,+)(1 - p_1) \cdot d(-,+))
= \frac{1}{2} - \frac{1}{2 + \frac{8 \cdot \text{tr}(\Sigma)}{\|\mu_1 - \mu_2\|^2}}
$$

Similarly, organizing $\varphi(X_T^T, X_F^T)$ and $\varphi(X_T^T, X_F^T)$ gives the solution of $E_{X_T^T} \varphi(X_F^T)$:

$$
E_{X_T^T} \varphi(X_F^T) = p_1 + \frac{m_1}{m_2} (p_1 \cdot d(-,-)(1 - p_1) \cdot d(+,-))
= \frac{1}{2} + \frac{1}{2 + \frac{8 \cdot \text{tr}(\Sigma)}{||\mu_1 - \mu_2||^2}}
$$

Denote $\Delta(\Sigma, \mu_1, \mu_2) = 8 \cdot \text{tr}(\Sigma)/||\mu_1 - \mu_2||^2$. Now we can write the expected risk as:

$$
\begin{align*}
\mathbb{E}_D [\mathbb{I}(g(f(X), Y))] &= (1 - e) \cdot \mathbb{E}_{X_T^T, Y} [\mathbb{I}(g(f(X_T^T), Y)) + e \cdot \mathbb{E}_{X_T^T, Y} [\mathbb{I}(g(f(X_F^T), Y))]
\overset{(a)}{=} e \cdot \mathbb{E}_{X_T^T, Y} [\mathbb{I}(g(f(X_F^T), Y))]
\overset{(b)}{=} e \cdot \left(\frac{1}{2} \cdot \mathbb{E}_{X_T^T, Y=0} [\mathbb{I}(g(f(X_T^T, 0)) + \frac{1}{2} \cdot \mathbb{E}_{X_T^T, Y=1} [\mathbb{I}(g(f(X_F^T, 1))] \right)
\overset{(c)}{=} e \cdot \left(\frac{1}{2} - \frac{1}{2 + \Delta(\Sigma, \mu_1, \mu_2)} \right)
\end{align*}
$$
(a) is satisfied because of Assumption 1 that model can perfectly memorize clean samples. (b) is satisfied because of balanced label and error rate assumption. (c) is satisfied by taking the results from Equation 8 and Equation 9.

Proof Done.

8.2 High level understanding on the regularizer

Even though we have built Theorem 3 to show SL features can benefit from the structure of SSL features by performing regularization, there still lacks high-level understanding of what the regularization is exactly doing. Here we provide an insight in Theorem 4 which shows the regularization is implicitly maximizing mutual information between SL features and SSL features.

Theorem 4. Suppose there exists a function \(\xi \) such that \(C(X) = \xi(h(f(X))) \). The mutual information \(I(h(f(X)), C(X)) \) achieves its maximum when \(L_c = 0 \) in Eqn. 5.

The above results facilitate a better understanding on what the regularizer is exactly doing. Note that Mutual Information itself has several popular estimators [Belghazi et al., 2018, Hjelm et al., 2018]. It is a very interesting future direction to develop regularizes based on MI to perform regularization by utilizing SSL features.

Proof for Theorem 4: We first refer to a property of Mutual Information:

\[
I(X;Y) = I(\psi(X); \phi(Y))
\]

where \(\psi \) and \(\phi \) are any invertible functions. This property shows that mutual information is invariant to invertible transformations [Cover 1999]. Thus to prove the theorem, we only need to prove that \(\xi \) in Theorem 4 must be an invertible function when Equation 5 is minimized to 0. Since when \(\xi \) is invertible, \(I(h(f(X)), C(X)) = I(h(f(X)), \xi(h(f(X)))) = I(h(f(X)), h(f(X))) \).

We prove this by contradiction.

Let \(t_i = h(f(x_i)) \) and \(s_i = g(f(x_i)) \). Suppose \(\xi \) is not invertible, then there must exists \(s_i \) and \(s_j \) where \(s_i \neq s_j \) which satisfy \(t_j = \xi(s_i) = t_i \). However, under this condition, \(t_i - t_j = 0 \) and \(s_i - s_j \neq 0 \), Equation 5 can not be minimized to 0. Thus when Equation 5 is minimized to 0, \(\xi \) must be an invertible function.

Proof done.

8.3 Proof for Lemma 4

By the independence condition, \(Z = X - Y \) also follows gaussian distribution with parameter \((\mu_X - \mu_Y, \Sigma_X + \Sigma_Y) \).

Write \(Z \) as \(Z = \mu + LU \) where \(U \) is a standard gaussian and \(\mu = \mu_X - \mu_Y, LL^T = \Sigma_X + \Sigma_Y \).

Thus

\[
||Z||^2 = Z^TZ = \mu^T\mu + \mu^TLU + U^TL^T\mu + U^TL^TLU
\]

(12)
Since U is standard gaussian, $\mathbb{E}(U) = 0$. We have

$$\mathbb{E}(|Z|^2) = \mu^T \mu + \mathbb{E}(U^T L^T L U)$$
$$= \mu^T \mu + \mathbb{E}(\sum_{k,l} (L^T L)_{k,l} U_k U_l)$$
$$= \mu^T \mu + \sum_k (L^T L)_{k,k}$$
$$= \mu^T \mu + tr(L^T L)$$
$$= ||\mu_X - \mu_Y||^2 + tr(\Sigma_X + \Sigma_Y)$$ \hspace{1cm} (13)

(a) is satisfied because U is standard gaussian, thus $\mathbb{E}(U_k^2) = 1$ and $\mathbb{E}(U_k U_l) = 0$ ($k \neq l$).

Proof Done.

9 Illustrating down-sampling strategy

We illustrate in the case of binary classification with $e_+ + e_- < 1$. Suppose the dataset is balanced, at the initial state, $e_+ > e_-$. After down-sampling, the noise rate becomes $e^*_+ = e_+$ and e^*_- = e_-. We aim to prove two propositions:

Proposition 1. If e_+ and e_- are known, the optimal down-sampling rate can be calculated by e_+ and e_- to make $e^*_+ = e^*_-$

Proposition 2. If e_+ and e_- are not known. When down-sampling strategy is to make $\mathbb{P}(\tilde{Y} = 1) = \mathbb{P}(\tilde{Y} = 0)$, then $0 < e^*_+ - e^*_- < e_+ - e_-$.

Proof for Proposition 1. Since dataset is balanced with initial $e_+ > e_-$, we have $\mathbb{P}(\tilde{Y} = 1) < \mathbb{P}(\tilde{Y} = 0)$. Thus down-sampling is conducted at samples whose observed label are 0. Suppose the random down-sampling rate is r, then $e^*_+ = \frac{r \cdot e_+}{1 - e_+ + r \cdot e_+}$ and $e^*_- = \frac{e_-}{r(1 - e_-) + e_-}$. If $e^*_+ = e^*_-$, we have:

$$\frac{r \cdot e_+}{1 - e_+ + r \cdot e_+} = \frac{e_-}{r(1 - e_-) + e_-}$$ \hspace{1cm} (14)

Thus the optimal down-sampling rate $r = \sqrt{\frac{e_-(1-e_-)}{e_+(1-e_+)}}$, which can be calculated if e_- and e_+ are known.

Proof for Proposition 2. If down sampling strategy is to make $\mathbb{P}(\tilde{Y} = 1) = \mathbb{P}(\tilde{Y} = 0)$, then $r \cdot (e_+ + 1 - e_-) = 1 - e_+ + e_-$. We have $r = \frac{1 - e_+ + e_-}{1 - e_+ + e_+}$. Thus e^*_+ can be calculated as:

$$e^*_+ = \frac{r \cdot e_+}{1 - e_+ + r \cdot e_+} = \frac{(1 - e_+ + e_-) \cdot e_+}{(1 - e_+) \cdot (1 - e_+ + e_-) + e_+ \cdot (1 - e_+ + e_-)}$$

Denote $\alpha = \frac{1 - e_+ + e_-}{(1 - e_+) \cdot (1 - e_+ + e_-) + e_+ \cdot (1 - e_+ + e_-)}$. Since $e_+ > e_-$, $1 - e_+ + e_+ > 1 - e_+ + e_-$, $\alpha = \frac{1 - e_+ + e_-}{(1 - e_+) \cdot (1 - e_+ + e_-) + e_+ \cdot (1 - e_+ + e_-)} < \frac{1 - e_+ + e_-}{(1 - e_+) \cdot (1 - e_+ + e_-) + e_+ \cdot (1 - e_+ + e_-)} = 1$.

23
Similarly, e_r^* can be calculated as:

$$e_r^* = \frac{e_- \cdot r \cdot (1 - e_-)}{e_- + r \cdot (1 - e_-)} = \frac{(1 - e_-) \cdot e_-}{e_- \cdot (1 - e_-) + (1 - e_-) \cdot (1 - e_- + e_-)}$$

Denote $\beta = \frac{1 - e_- + e_+}{e_- \cdot (1 - e_- + e_+ + (1 - e_-) \cdot (1 - e_- + e_-))}$. Since $e_+ > e_-$, $1 - e_- + e_+ > 1 - e_- + e_-$, $\beta = \frac{1 - e_- + e_+}{e_- \cdot (1 - e_- + e_+ + (1 - e_-) \cdot (1 - e_- + e_-))} = 1$. Since $\alpha \cdot e_+ < e_+$ and $\beta \cdot e_- > e_-$, we have $e_r^+ - e_r^+ = \alpha \cdot e_+ - \beta \cdot e_- < e_+ - e_-$. Thus, when $e_r^+ = e_r^*$, following the derivation below:

$$e_r^+ > e_r^* \implies \frac{r \cdot e_+}{1 - e_+ + r \cdot e_+} > \frac{e_-}{e_- + r \cdot (1 - e_-)} \implies r > \frac{e_- \cdot (1 - e_-)}{e_+ \cdot (1 - e_-)}$$

$$\implies \frac{e_+ \cdot e_-}{1 - e_- + e_+} > \frac{e_- \cdot (1 - e_-)}{e_+ \cdot (1 - e_-)}$$

$$\implies e_+ \cdot (1 - e_+) + e_+ \cdot e_- < e_- \cdot (1 - e_-) + e_- \cdot e_+$$

Let $f(e_+) = e_+ \cdot (1 - e_+) + \frac{e_+ - e_-}{1 - e_+} - e_+ \cdot (1 - e_-) - \frac{e_+ - e_-}{1 - e_+}$. Since we have assumed $e_- < e_+$ and $e_- + e_+ < 1$. Thus proving $e_r^+ > e_r^*$ is identical to prove $f(e_+) > 0$ when $e_- < e_+ < 1 - e_-$. Firstly, it is easy to verify when $e_+ = e_-$ or $e_+ = 1 - e_-$, $f(e_+) = 0$. From Mean Value Theory, there must exists a point e_0 which satisfy $f'(e_0) = 0$ where $e_+ < e_0 < 1 - e_-$. Next, we differentiate $f(e_+)$ as follows:

$$f'(e_+) = \frac{(1 - e_+)^2 \cdot (1 - e_-) + e_+^2 \cdot (1 - e_-) - 2 \cdot e_+ (1 - e_-)^2}{(1 - e_-)^2 \cdot (1 - e_-)}$$

It can be verified that $f'(e_-) = \frac{1 - e_-}{(1 - e_-)^2 (1 - e_-)} > 0$ and $f'(1 - e_-) = \frac{0}{e_- (1 - e_-)} = 0$.

Further differentiate $f'(e_+)$, we get when $e_+ < 1 - ((1 - e_-) \cdot e_-)^{\frac{1}{3}}$, $f''(e_+) < 0$ and when $e_+ > 1 - ((1 - e_-) \cdot e_-)^{\frac{1}{3}}$, $f''(e_+) > 0$. Since $e_- < e_+$ and $e_- + e_+ < 1$, we have $e_- < \frac{1}{2}$ and $e_- < 1 - ((1 - e_-) \cdot e_-)^{\frac{1}{3}}$ locates in the point between e_- and $1 - e_-$. Thus, when $e_- < e_+ < 1 - ((1 - e_-) \cdot e_-)^{\frac{1}{3}}$, $f'(e_+)$ is a strictly concave function and when $1 - ((1 - e_-) \cdot e_-)^{\frac{1}{3}} < e_+ < 1 - e_-$, $f'(e_+)$ is a strictly convex function.

Since $f'(e_-) > 0$ and $f'(1 - e_-) = 0$, e_0 must locates in the point between e_- and $1 - ((1 - e_-) \cdot e_-)^{\frac{1}{3}}$ which satisfy $f'(e_0) = 0$. Thus when $e_- < e_+ < e_0$, $f(e_+)$ monotonically increases and when $e_0 < e_+ < 1 - e_-$, $f(e_+)$ monotonically decreases. Since $f(e_-) = f(1 - e_-) = 0$. We have $f(e_+) > 0$ when $e_- < e_+ < 1 - e_-$. Proof done.
10 More Discussions and Experiments

10.1 The effect of distance measure in Eqn (3)

In this paper and experiment, we use l_2 norm to calculate the feature distance between SL features and square l_2 norm to calculate the distance between SSL features. This choice can lead to good performance from Theory 3 and Figure 6. Practically, since structure regularization mainly captures the relations, different choice does not make a big effect on the performance. We perform an experiment in Figure 8 which shows that the performance of both types are quite close.

10.2 Ablation study

In Figure 3, SSL training is to provide SSL features to regularize the output of linear classifier g. However, SSL training itself may have a positive effect on DNN. To show the robustness mainly comes from the regularizer rather than SSL training, we perform an ablation study in Figure 9. From the experiments, it is the regularizer that alleviates over-fitting problem of DNN.
10.3 The effect of different SSL-pretrained methods

Our experiments are not restricted to any specific SSL method. Experimentally, other SSL methods are also adoptable to pre-train SSL encoders. In Figure 5, SimCLR [Chen et al., 2020] is adopted to pre-train SSL encoder. For a comparison, we pre-train a encoder with Moco on CIFAR10 and fine-tune linear classifier on noisy labels in Table 4.

Method	Symm label noise ratio			
	0.2	0.4	0.6	0.8
CE (fixed encoder with SimCLR init)	91.06	90.73	90.2	88.24
CE (fixed encoder with MoCo init)	91.55	91.12	90.45	88.51

It can be observed that different SSL methods have very similar results.

11 Detailed setting of experiments

Datasets: We use DogCat, CIFAR10, CIFAR100, CIFAR10N and CIFAR100N and Clothing1M for experiments. DogCat has 25000 images. We randomly choose 24000 images for training and 1000 images for testing. For CIFAR10 and CIFAR100, we follow standard setting that use 50000 images for training and 10000 images for testing. CIFAR10N and CIFAR100N have the same images of CIFAR10 and CIFAR100 except the labels are annotated by real human via Amazon Mturk which contains real-world human noise. For Clothing1M, we use noisy data for training and clean data for testing.

Setting in Section 5.1: SimCLR is deployed for SSL pre-training with ResNet50 for DogCat and ResNet34 for CIFAR10 and CIFAR100. Each model is pre-trained by 1000 epochs with Adam optimizer (lr = 1e-3) and batch-size is set to be 512. During fine-tuning, we fine-tune the classifier on noisy dataset with Adam (lr = 1e-3) for 100 epochs and batch-size is set to be 256.
Setting in Section 5.2. For Table 1, all the methods are trained from scratch with learning rate set to be 0.1 at the initial state and decayed by 0.1 at 50 epochs. For Table 2 and Table 3, the encoder is pre-trained by SimCLR and we finetune the encoder on the noisy dataset with CE + Regularier. The optimizer is Adam with learning rate 1e-3 and batch-size 256. Note that in Eqn (5), we use MSE loss for measuring the relations between SL features and SSL features. However, since MSE loss may cause gradient exploration when prediction is far from ground-truth, we use smooth l_1 loss instead. Smooth l_1 loss is an enhanced version of MSE loss. When prediction is not very far from ground-truth, smooth l_1 loss is MSE, and MAE when prediction is far.

The code with running guideline has been attached in the supplementary material.