Assessing the Reidentification Risks Posed by Deep Learning Algorithms Applied to ECG Data

ARIN GHAZARIAN*, (Member, IEEE), JIANWEI ZHENG*, DANIELE STRUPPA, AND CYRIL RAKOVSKI
Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
Corresponding author: Jianwei Zheng (zheng120@mail.chapman.edu)

ABSTRACT ECG (Electrocardiogram) data analysis is one of the most widely used and important tools in cardiology diagnostics. In recent years the development of advanced deep learning techniques and GPU hardware have made it possible to train neural network models that attain exceptionally high levels of accuracy in complex tasks such as heart disease diagnoses and treatments. We investigate the use of ECGs as biometrics in human identification systems by implementing state-of-the-art deep learning models. We train convolutional neural network models on approximately 81k patients from the US, Germany and China. Currently, this is the largest research project on ECG identification. Our models achieved an overall accuracy of 95.69%. Furthermore, we assessed the accuracy of our ECG identification model for distinct groups of patients with particular heart conditions and combinations of such conditions. For example, we observed that the identification accuracy was the highest (99.7%) for patients with both ST changes and supraventricular tachycardia. We also found that the identification rate was the lowest for patients diagnosed with both atrial fibrillation and complete right bundle branch block (49%). We discuss the implications of these findings regarding the reidentification risks of patients based on ECG data and how seemingly anonymized ECG datasets can cause privacy concerns for the patients.

INDEX TERMS Biometrics, convolutional neural networks (CNN), deep learning, electrocardiogram (ECG), ECG identification, privacy, reidentification.

I. INTRODUCTION
An Electrocardiogram (ECG) is a recording of the bioelectrical activity of the heart collected from the human body surface. Figure 1 shows an ECG during one normal heartbeat, consisting of several features including the P-wave, QRS complex, T-wave, PR interval, QT interval, PR segment and ST segment. The amplitudes, time intervals and other morphological features in different sections of the ECG signal are used for diagnoses of cardiac conditions, making ECG an important noninvasive tool for detection of heart abnormalities. Arrhythmia is a group of conditions in which the heartbeat has an irregular rate or rhythm. For example, Figure 2 depicts the changes in ECG caused by atrial fibrillation (AFIB), the most common type of arrhythmia that is associated with stroke and heart failure and affects approximately 3% of the US population.

The shape of the ECG signal is unique for each person. ECG is a universal biometric marker since it is present in alive humans and is continuous meaning that we can always capture the ECG from an individual. In the absence of major cardiac events or conditions, an individual’s ECG stays relatively unchanged over time, making it possible to create high-accuracy ECG identification systems on multisession ECG data. These qualities make ECG a good candidate as a biometric identifier (electrophysiologic) that can be used for human authentication and identification purposes, similar to fingerprint and iris [1], [2]. Recently, off-the-person ECG acquisition methods have gained more attention in ECG biometric systems since these devices do not need to be attached to the body and are noninvasive. For example, Apple Watch series 6 is capable of capturing a single lead ECG. In addition to being a unique and stable identifier, ECG eliminates the
aliveness test required in some other forms of biometric systems since the heart signal is an inherently alive biometric. ECG signals are difficult to counterfeit, which makes them even more desirable as a biometric identifier.

The application of ECG as a biometric can be a useful technology, but it also raises serious concerns regarding the potential privacy leakages. For example, an ECG-based biometric system can diagnose and store the heart conditions of users without the patient’s consent. Privacy protection becomes even more critical as we collect and store a constantly increasing volume of data from citizens. For example, the emerging medical wearable device technologies capture and store a continuous stream of sensitive health data.

Applications of machine learning techniques for automated analysis of ECG data have been the focus of many recent cardiac research efforts such as arrhythmia classification [3] and accurate prediction of ventricular arrhythmia origins [4]. ECG data have also been used for emotion recognition applications [5], [6]. Automated ECG analysis systems using machine learning techniques typically have multiple steps such as denoising and baseline correction, heartbeat segmentation and QRS detection, feature extraction and model training. Both temporal/morphological features such as QRS duration or amplitude of the P-wave, and frequency domain features such as Fourier or wavelet transformation coefficients have been used by researchers. A variety of machine learning techniques including support vector machines (SVMs), naive Bayes, random forest and neural networks have been used in ECG research. In the recent years, neural networks have been the preferred method for high-accuracy ECG analysis due to the advancements in deep learning algorithms and the availability of fast processors such as GPUs.

In this study, we report our approach in creating a high-accuracy ECG identification system and the implications of such systems for the patients’ privacy. The main contributions of this paper are summarized as follows:

- We report the results from our deep learning-based ECG identification system on the largest number of subjects reported in the literature so far (around 81k).
- For the first time, we also assess the accuracy of an ECG identification model for distinct groups of patients with particular heart conditions and combinations of such conditions.
- In a novel analysis, we discuss different reidentification scenarios regarding ECG datasets and provide probability estimations for the reidentification risks in some scenarios.

The results from our research show that ECG is more sensitive health care information than previously thought and needs to be protected by the privacy laws and regulations. For instance, we recommend that ECG data be included in the list of HIPAA identifiers.

II. LITERATURE REVIEW

The idea of leveraging ECG as a biometric identifier was introduced by Forsen et al. in 1977 [7]. Biel et al. [1] were the first to implement an ECG biometric system in 1999. Although, subsequent studies have reported high accuracies in ECG identification, all of them were based on a small number of subjects ranging from ten to a couple of hundreds. This undermines the results since ECG identification systems in real-world scenarios are supposed to run on a large population. In this section, we will review the ECG identification literature, focusing on the number of subjects used in each study and the accuracy achieved. Labati et al. [8] extracted features from ECG using a CNN-based deep learning model and achieved 100% accuracy on approximately 50 human subjects. Belo et al. [9] leveraged a temporal convolutional neural network (TCNN) and recurrent neural network (RNN) for both ECG identification and
authentication. Overall, the TCNN model outperformed the RNN achieving 100%, 96% and 90% accuracy on the Fantasia (40 subjects), MIT-BIH (47 subject), and CYBHi (63 subjects) databases, respectively. Salloum and Kuo [10] used recurrent neural networks (RNNs) with long short-term memory (LSTM) and gated recurrent units (GRUs), reaching a 100% identification rate on 90 subjects from the public ECG-ID database. Deshmane and Madhe [11] proposed a CNN-based approach that achieved 81.33%, 96.95%, 94.73% and 92.85% accuracies on the MITBIH (47 subjects), FANTASIA (40 subjects), NSRDB (18 subjects) and QT databases (105 subjects), respectively. Eduardo et al. [12] used autoencoders for denoising and feature extraction in an ECG biometric system. Zhang et al. [13] achieved an average identification rate of 93.5% using a multiresolution CNN on datasets of 18 to 47 subjects. Li et al. [14] implemented two cascaded CNNs: one for feature extraction from ECG heartbeats and another for identification. They achieved 99.52% accuracy on 184 subjects.

In general, deep learning models and CNNs have been used for different tasks in automated ECG analysis. Li et al. [15] proposed a new technique that combines convolutional neural networks and distance distribution matrices (DDM) to classify congestive heart failure patients from normal subjects in the MIT-BIH dataset. DDMs were used in entropy calculations, and CNN models such as S_Inception_v4 were used to learn the pattern of the data distributions hidden in the generated distribution matrices. They achieved an accuracy of 81.85. Oh et al. [16] proposed a method leveraging a combination of a convolutional neural network (CNN) and long short-term memory (LSTM) for the diagnosis of normal sinus rhythm, left bundle branch block (LBBB), right bundle branch block (RBBB), atrial premature beats (APB) and premature ventricular contraction (PVC) on ECG signals. They used variable length segments from the MIT-BIH arrhythmia dataset, achieving an accuracy of 98.10%, sensitivity of 97.50% and specificity of 98.70%.

Limited research has been conducted on predicting demographics such as age, sex and race from ECG signals. Attia et al. [17] trained a CNN to predict age and sex on 10-second samples of 12-lead ECGs from 499,727 patients. They achieved an accuracy of 90.4% for sex classification and an average error of 6.9±5.6 years for age estimation on a separate validation set of 275,056 patients. Khan et al. [18] trained a sex classification model with an accuracy of 95.2%. Cabra et al. [19] reported 94% accuracy in automated classification of sex using ECG samples. Wiggins et al. [20] presented a genetically evolved Bayesian classifier for age detection capable of assigning patients into young and elderly groups with an AUC of 86.25%. Noseworthy et al. [21] built neural network models to discern racial subgroups including African American, White, Hispanic/Latino, Asian and Indigenous People or Alaskan Native with an accuracy of 56.2%.

III. DATA
The 12-lead ECG data used in this work consisted of four open-access research resources and a new open dataset from the Ningbo First Hospital. The first open access dataset [22] was used in the China Physiological Signal Challenge in 2018. This source contains 10,330 ECGs. Each recording is between 6 and 144 seconds long with a sampling frequency of 500 Hz. The second source is the Physikalisch-Technische Bundesanstalt (PTB) ECG dataset [23], which consists of 21,837 clinical 12-lead ECGs from 18,885 patients of 10 seconds in length. The raw waveform data were annotated by up to two cardiologists, who potentially assigned multiple ECG statements to each record. The third source is a Georgia database [24] that encompassed 10,334 ECGs and represented a unique demographic of the southeastern United States. Each recording is between 5 and 10 seconds long with a sampling frequency of 500 Hz. The fourth database [25] contains 12-lead ECGs from 10,646 patients with a 500-Hz sampling rate that features 11 common rhythms and 67 additional cardiovascular conditions all labeled by professional experts. This dataset consists of 10-second, 12-dimensional ECGs and labels for rhythms and other conditions for each subject. In addition, a new dataset from the Ningbo First Hospital, including 34,320 ECG recordings, was collected for study. The institutional review board of Ningbo First Hospital approved this study and waived the requirement to obtain informed consent. Cardiologist-supervised physicians interpreted each recording and gave cardiac condition labels and ECG findings. Finally, there were 88 cardiac conditions present in the combined data that contained 87,467 ECG recordings.

IV. PREPROCESSING
To improve the data input quality supplied to the neural network, we carried out a three-stage noise reduction process including a Butterworth low-pass filter to remove high-frequency noise (above 50 Hz), Robust LOESS to eliminate baseline wandering, and Nonlocal Means (NLM) to remove residual noise [3]. These filters help to reduce the noise in ECG signals caused by known sources such as power line interference, electrode contact noise, motion artifacts, skeletal muscle contraction and random noise. The low-frequency (<0.5 Hz) baseline wandering noise component could be caused by respiration. Power line interference is the major cause of the high-frequency (50-60 Hz) noise component. R-peak to R-peaks are extracted from each ECG recording and downsampled to 300 points.

V. ECG IDENTIFICATION MODEL
As shown in Figure 3, we implemented a convolutional neural network with six one-dimensional convolutional sequences, of which the first five layers (i.e. layers 1-1, 1-2, 2-1, 2-2 and 3) are horizontal (temporal) convolutions of kernel size 1 × 5 and the sixth layer (layer 4) is a vertical (spatial) convolution of kernel size 12 × 1
batch normalization, and there is a max-pooling layer after convolutional layers 1-2, 2-2, 3 and 4 with a pool size of 1×2. The convolutional layers are followed by a flattening layer, and two sequences of dense and dropout layers. The final layer consists of softmax units equal to the number of patients in the dataset. We used relu activation function for all of the convolutional and dense layers. Overall, the architecture resembles a temporal-spatial model where the first five convolutional sequences try to discover patterns across each of the 12 ECG leads and the last sequence looks for patterns across all leads at one point in time. The input vector is a 12×300 vector representing the 12-lead data consisting of R-to-R interval measurements. The labels are the encoded IDs for the patient in the database. The Adam optimizer is used with a sparse categorical cross entropy loss function. We tuned the model parameters by trying different values for a set of different parameters and choosing the best parameter. For example, we tried different ranges of values for parameters such as dropout rate, size of convolution windows, number of neurons, activation function, optimizer, learning rate and batch size.

A. OVERALL IDENTIFICATION RATE
An intrapatient validation method was adopted, as it is a fair evaluation method for identification systems. We randomly selected 20% of heartbeats from each patient to be used in the validation set, and the rest of the heartbeats were used in the training set. Thus, all patients were present in both the training and validation sets but with distinct, nonoverlapping heartbeat data. There were a total of 1,142,859 R-to-R interval data from 80,746 patients split into two sets of sizes (914,287 and 228,572) for the training and validation samples, respectively. Figure 4 shows the good fit in the convergence curve from the model training. Our optimal CNN model attained an overall accuracy of 95.69% over all R-to-R interval validation data for the entire sample of 80,746 patients.

The deep learning model employed to reidentify subjects based on their ECG recordings needs to possess exceptional inherent quality, especially as the number of patients in the data increases. A large sample of subjects simultaneously provides two challenges, increases the probability of observing subgroups of similar ECG profiles and dramatically increases the number of possible incorrect identities for any accuracy level. For example, given a sample size of n, the proportion of identification selections that entail an accuracy of $p100\%$ is:

$$\left(\frac{n}{np} \right)^n \prod_{i=1}^{n-1} \left(\frac{-1}{i} \right)^{i+1} \frac{1}{i!} \frac{(n - np)!}{n!}.$$

Equation (1) can be approximated and simplified:

$$\frac{1}{(np)!e}.$$

Last, using Stirling’s approximation Equation (2) yields:

$$e^{np-1} \sqrt{2\pi np(np)^{np}}.$$

In our study, with a sample size n of 80,746, we attained an accuracy of 95.69%. Formula (3) shows that the proportion of such favorable reidentification selection is practically zero.

B. IDENTIFICATION RATE PER CONDITION
To assess the privacy risks for cardiology patients posed by ECG identification systems, we calculated the identification rates for patients suffering from several heart conditions. Obviously, for a specific group of patients, the higher the misidentification rate, the lower the privacy risk. In the discussion section, we explain how ECG identification can be used to reidentify patients from anonymized datasets.

In our per-condition analysis, we considered single- and multiple-condition scenarios. In the single-condition analysis, a misidentified patient with one or several conditions was counted as misidentified for all conditions. The total misidentification rates per condition were calculated as the proportion of misidentified patients with each condition among all patients with the same condition. In the multiple-condition analysis, we considered all diagnoses of a patient as a single
complex category. This allowed us to assess the identification rates for patients suffering from a particular combination of conditions. The identification accuracies per all single conditions are shown in Table 5. The identification rates for all joint conditions with more than one hundred samples are listed in Table 6. Note that in the joint condition analysis results table, we have rows representing a single condition since some patients had only a single diagnosis in the original data. Table 7 shows the full diagnosis names for the condition codes in Tables 5 and 6.

Based on Table 5, some single conditions, such as ventricular fibrillation, sinus arrest, left bundle branch block, myocardial infarction and premature ventricular contractions had low identification rates (54.96%, 66.67%, 83.43%, 85.14% and 86.04%, respectively), while healthy sinus rhythm and conditions such as shortened PR interval, supraventricular tachycardia or counterclockwise vector cardiographic loop had high identification rates (98.15%, 100%, 99.55% and 98.76%, respectively). Physiologically speaking, one potential hypothesis could be since the ECG morphologies of ventricular fibrillation, sinus arrest, left bundle branch block, myocardial infarction and premature ventricular contractions among patients are similar and do not have many individualized features, the identification rate will be lower than normal rhythm. Based on the joint condition analysis (Table 6), patients with both atrial fibrillation and complete right bundle branch block had a very low identification rate (48.95%), making it almost impossible to identify these groups of patients based on their ECG. On the other hand, patients with both ST changes and supraventricular tachycardia had a very high identification rate (99.7%), putting these patients in a very high-risk group regarding privacy. One observation is that in contrast to common expectations, some conditions such as patients with both ST changes and supraventricular tachycardia or patients diagnosed with sinus tachycardia had an even better identification rate than normal sinus rhythm. Finally, for patients with pacemakers, the identification rate was 91.11% in the joint list (i.e. patients with pacemakers and no other condition) and 89.29% in the single disease analysis (i.e. patients with pacemakers and other potential conditions).

For example, consider the scenario where a patient diagnosed with both ST changes and supraventricular tachycardia contributes to two different research datasets. Both datasets are fully anonymized. One of them contains an ECG sample, age and sex, and the other contains an ECG sample and zip code. If we join these two datasets using an ECG identification system, then we can find the subjects who appear in both, giving us age, sex and zip code for the patients who appear in both. The uniqueness for this combination in the United States is 0.04%. We also know that the average identification rate for patients diagnosed with both ST changes and supraventricular tachycardia is 0.997. Multiplying these two numbers (under independence) gives us the probability of identifying this patient uniquely and correctly: 0.997 × 0.0004 ≈ 0.0004. Now, if we have birth date instead of age, then this probability increases to 0.997 × 0.871 ≈ 0.8684.

Table 1. Identification rate per sex.

Sex	Number of Samples	Identification Rate
male	120,413	95.13%
female	104,818	96.59%

Table 2. Identification rate per sex for sinus rhythms only.

Sex	Number of Samples	Identification Rate
male	15,773	98.66%
female	20,699	99.18%

Table 3. Uniqueness of US population [27].

Identifiers	Uniqueness
sex, age, 5-digit ZIP	0.04%
sex, date of birth, ZIP	87.1%
sex, date of birth, county	18.1%
sex, 2 year age range, place	0.01%
sex, Year of birth, county	0.00004%

Figure 4. Training loss convergence curve.

C. IDENTIFICATION RATE PER SEX AND AGE

We also assessed the identification rates across sexes and age groups. There were 2,996 patients with unknown sex and 649 with unknown age in the data, which were removed from this analysis. Table 1 and Figure 5 summarize our results, which indicate that males had a slightly lower identification rate than females and that older patients had a lower identification rate than younger patients. This implies higher privacy risks for female or younger subjects.

We performed a similar analysis on the subset of patients with healthy normal sinus rhythms to investigate the presence of differences in identification accuracies across sexes or age groups among healthy individuals. The results are shown in Table 2 and Figure 6. Again, male patients had a lower identification rate than females, and older patients had lower identification rates than the younger subjects.

VI. DISCUSSION

We designed and implemented a deep learning model capable of identifying subjects based on 12-lead ECG data. Previous
TABLE 4. HIPAA 18 identifiers.

Number	Identifier	Notes
1	Name	
2	Address	all geographic subdivisions smaller than state, including street address,
		city county, and zip code
3	Dates	All elements (except years) of dates related to an individual including
		birthdate, admission date, appointments date, payments date, discharge
		date, date of death, and exact age if over 89)
4	Telephone number	
5	Fax number	
6	Email address	
7	Social Security number	
8	Medical record number	
9	Health plan/insurance beneficiary number	
10	Account number	
11	Certificate / license number	
12	Any vehicle identifiers (e.g. license	
	plate number	
13	Device identifiers and serial numbers	
14	Web URLs (Links)	
15	Internet Protocol (IP) address	
16	Biometric identifiers (finger / retina / voice)	
17	Photographic images	Photographic images are not limited to images of the face
18	Any other characteristic that may be	
	used to uniquely identify an individual	

results had severe limitations due to limited sample sizes ranging from a couple of dozen to approximately one thousand subjects. In this study, we trained a model with the largest number of subjects: 80,746. We attained an exceptionally high overall accuracy of 95.69%. In the following subsections, we discuss the implications of our findings for the privacy of patients.

A. RE-IDENTIFICATION RISKS DUE TO DEEP LEARNING-BASED ECG ANALYSIS

ECG identification algorithms create the potential for reidentification of individuals in ECG databases. Reidentification is the practice of discovering the identity of individuals in an anonymized database by matching the records with publicly available information (auxiliary data). There is an
Condition Name	Number of Heartbeats in Validation	Identification Rate
AAR	39.0	100.0
SPRI	66.0	100.0
PMI	52.0	100.0
AJR	74.0	100.0
IIAVBI	7.0	100.0
PTW	11.0	100.0
LAHV	4.0	100.0
Brugada	13.0	100.0
SVT	3552.0	99.55
AMI	216.0	99.54
RAHV	120.0	99.17
JTach	98.0	98.98
TPW	857.0	98.95
CCVCL	1371.0	98.76
TTW	892.0	98.65
Atrial Rhythm	417.0	98.56
PPW	319.0	98.43
SB	29959.0	98.42
RRWP	121.0	98.35
ERe	1048.0	98.19
SNR	62107.0	98.15
STach	29104.0	97.96
AVB	477.0	97.9
RAD	2673.0	97.68
LVHV	11611.0	97.66
LQRSV	4038.0	97.62
TAb	25232.0	97.21
LPFB	521.0	97.12
Tinv	10709.0	97.09
LPR	847.0	97.05
LMI	572.0	97.03
Intraventricular Block	1159.0	96.98
CVCL	944.0	96.93
SA	7780.0	96.83
AFL	7451.0	96.82
Atrial Escape Beat	31.0	96.77
LAD	5857.0	96.76
LQT	4342.0	96.75
LVH	11037.0	96.62
PRWP	1996.0	96.59
QAb	3566.0	96.55
WPW	402.0	96.52
LAnFB	5149.0	96.5
LAH	3246.0	96.4
RBBB	1883.0	96.18
PWC	562.0	96.09
VFL	24.0	95.83
STC	46469.0	95.63
RVH	1068.0	95.32
CLBBB	2018.0	95.24
UAb	271.0	95.2
TABLE 5. Identification rate per single condition.

Condition Name	Number of Heartbeats in Validation	Misidentification Rate
AVD	102.0	95.1
AVC	4453.0	94.32
AnMI	7423.0	94.3
InMI	7458.0	94.25
RAH	500.0	94.2
IRBBB	4682.0	94.02
IAVB	9410.0	94.0
STD	12546.0	93.51
PVT	532.0	93.23
ATach	1199.0	92.99
RAVC	47.0	91.49
Brady	1182.0	91.2
JE	153.0	90.85
AF	34954.0	90.72
ILBBB	677.0	90.25
PAC	9091.0	90.11
BPAC	171.0	90.06
IIAVB	236.0	89.83
CAVB	230.0	89.57
STE	4189.0	89.5
PR	3128.0	89.29
IIAVBI	65.0	89.23
FB	261.0	88.89
CRBBB	14719.0	87.6
SPVB	487.0	87.47
AIQR	23.0	86.96
OldMI	5809.0	86.64
PVC	13206.0	86.04
MI	1555.0	85.14
JPC	47.0	85.11
VE5R	69.0	84.06
LBBB	2142.0	83.43
AVJR	288.0	82.64
VE5B	78.0	76.92
SAB	72.0	72.22
SARR	30.0	66.67
VF	131.0	54.96

The incorrect historical belief that anonymizing data obtained by removing identifiers from a dataset protects the privacy of subjects. There have been many instances of reidentification of individuals in anonymized research datasets. For example, in 1997, a researcher from MIT reidentified the governor of Massachusetts in an anonymized research health care dataset [26] by matching these data with the publicly available voter registration data.

A potential reidentification scenario in ECG datasets could occur when an individual contributes data to two or more different research datasets. For example, database A has an ECG sample, sex and date of birth, while database B has an ECG sample and zip code. By simply matching the ECG columns in both databases using an identification system, one can discover the individuals who appear in both datasets and obtain a complete profile of the individual by joining their records. In this case, we have sex and date of birth from database A and zip code from database B. These three demographic attributes might be enough to uniquely identify someone, as 87% of US citizens can be uniquely identified only by having their date of birth, sex and zip code [27], [28]. While each of these demographics alone (quasi-identifiers) is insufficient to identify someone, their combination can be unique for a considerable percentage of the population.
Table 6. Identification rate considering joint conditions.

Condition Name	Number of Heartbeats in Validation	Identification rate
STC SVT	1003.0	99.7
STach	9548.0	99.53
LVHV SB	1979.0	99.34
STach TAb	1477.0	99.26
SB	15009.0	99.05
SB TAb	1124.0	99.02
SNR	37277.0	98.88
SNR TAb	2565.0	98.83
SNR STC	1282.0	98.52
STC STach	2870.0	98.5
SA	3524.0	98.07
STC	7394.0	97.57
AFL	1230.0	97.48
OldMI	2092.0	97.32
InMI SNR	1843.0	96.69
STD	4720.0	96.69
AF TAb	1908.0	96.65
CRBBB	7478.0	96.47
IAVB	3160.0	95.28
AF	10557.0	93.57
AF STC	2294.0	93.5
PVC	4904.0	92.48
PR	1136.0	91.11
PAC	2785.0	90.59
STE	1196.0	83.03
AF CRBBB	1283.0	48.95

Table 3 shows how different combinations of quasi-identifiers such as sex, birth date, age and race can uniquely identify citizens of the United States [27]. The table reports average numbers across the United States. However, some specific geographic regions have much higher uniqueness rates for these identifiers. Additionally, rare scenarios such as patients over 90 years old or a very small population of an ethnic/race group living in a zip code can make them more vulnerable to reidentification attacks.

B. RE-IDENTIFICATION RISKS DUE TO ECG-BASED DEMOGRAPHICS PREDICTION

There have been reports regarding high accuracies of ECG-based age and sex detection models [17]. Therefore, we can extract the age and sex of the patient from the sample. Typically, patients live in the proximity of the hospital or clinic where their ECG was captured. Consequently, if we know the hospital where the ECG sample was recorded, then we can assume that the patient lives in that zip code, city or county with some probability. Thus, by just having a sample ECG and knowing the hospital where it was captured, we can know the age, sex and zip code of the patient with some probabilities. The combination of these three elements (age, sex and zip code) might be enough to fully identify the patient and locate their residence via online people search databases and auxiliary public database searches. In this scenario, we might be able to identify and locate a patient merely using an ECG sample and no other information.

Although we cannot estimate the exact value for the birth date (year, month and day) based on ECG deep learning analysis, we can precisely estimate the age. If our database has the date for capturing the ECG from the patient, then we can reference the value of age to that date and calculate the value for the year of birth. Year of birth is 365 times less identifiable than an exact date of birth but is more informative in terms of uniqueness than age. Additionally, race might be detectable from an ECG sample, which can significantly narrow down the search for the patient.

C. IMPLICATIONS FOR PRIVACY LAWS

There are different opinions on the criminalization of wrongful reidentification. Some advocates of reidentification criminalization believe that doing so will eventually have a great impact on health and medical discoveries through big data analysis since clear laws and regulations will ease the data collection and analysis [29]–[31]. There are also opponents who believe that fewer restrictions in data sharing will revolutionize medical research [32].
TABLE 7. Diagnosis codes mapping table.

Diagnosis Code	Full Diagnosis Name
SR	sinus rhythm
SRNORM	sinus normal rhythm
NORM	normal ECG
AAR	accelerated atrial rhythm
AF	atrial fibrillation
AFL	atrial flutter
AIVR	accelerated idioventricular rhythm
AJR	accelerated junctional rhythm
AMI	acute myocardial infarction
ATach	atrial tachycardia
AVB	av block
AVC	Aberrant Ventricular Conduction
AVD	auriculoventricular dissociation
AVJR	atrioventricular junctional rhythm
AnMI	anterior myocardial infarction
Atrial Escape Beat	Atrial Escape Beat
Atrial Rhythm	Atrial Rhythm
BPAC	blocked premature atrial contraction
Brady	bradycardia
Brugada	Brugada
CAVB	complete atrioventricular block
CCVCL	Counterclockwise vectorcardiographic loop
CLBBB	complete left bundle branch block
CRBBB	complete right bundle branch block
CVCL	Clockwise vectorcardiographic loop
ERe	early repolarization
FB	fusion beats
IAVB	1st degree av block
IIAVB	2nd degree av block
IIAVBI	Mobitz type I second degree atrioventricular block
IIAVBII	Mobitz type II atrioventricular block
ILBBB	incomplete left bundle branch block
IRBBB	incomplete right bundle branch block
InMI	inferior myocardial infarction
Intraventricular Block	Intraventricular Block
JE	junctional escape
JPC	junctional premature complex
JTach	junctional tachycardia
LAD	left axis deviation
LAH	left atrial hypertrophy
LAHV	Left atrial high voltage
LAnFB	left anterior fascicular block
LBBB	left bundle branch block
LMI	lateral myocardial infarction
LPPB	left posterior fascicular block
LPR	prolonged PR interval
LQRSV	low QRS voltages
LQT	prolonged QT interval
LVH	left ventricular hypertrophy
LVHV	left ventricular high voltage
MI	myocardial infarction
The Health Insurance Portability and Accountability Act (HIPAA or the Kennedy–Kassebaum Act) of 1996 is a United States federal statute that establishes regulatory thresholds regarding data from health records to protect all individually identifiable health information from patients. Similarly, in the European Union, the General Data Protection Regulation (GDPR) is a data protection and privacy regulation that sets guidelines for the collection and processing of all types of personal information (including medical and health care) for citizens. It gives individuals control over their personal data. For instance, GDPR-compliant pseudonymization is a set of guidelines to reduce privacy risks by ensuring that data cannot be attributed to a specific subject without the use of separately kept additional information.

The HIPAA Safe Harbor standard states that a dataset derived from health records should not contain any of the 18

Diagnosis Code	Full Diagnosis Name
PAC	premature atrial contraction
PMI	Posterior myocardial infarction
PPW	Prolonged P wave
PR	pacing rhythm
PRWP	Poor R wave Progression
PTW	Prolonged T wave
PVC	premature ventricular contractions
PVT	paroxysmal ventricular tachycardia
PWC	P wave change
QAb	qwave abnormal
RAD	right axis deviation
RAH	right atrial hypertrophy
RAHV	right atrial high voltage
RAVC	retrograde atrioventricular conduction
RBBB	right bundle branch block
RRWP	reversed R wave progression
RVH	right ventricular hypertrophy
SA	sinus arrhythmia
SAB	sinoatrial block
SARR	sinus arrest
SB	sinus bradycardia
SNR	sinus rhythm
SPRI	shortened pr interval
SPVB	supraventricular premature beats
SQT	decreased qt interval
STC	st changes
STD	st depression
STE	st elevation
STach	sinus tachycardia
SVT	supraventricular tachycardia
TAb	t wave abnormal
TInv	t wave inversion
TPW	Tall P wave
TTW	Tall tented T wave
UAb	u wave abnormal
VEsR	ventricular escape beat
VEeR	ventricular escape rhythm
VF	ventricular fibrillation
VFL	ventricular flutter
WPW	Wolff parkinson white pattern
OldMI	old myocardial infarction
HIPAA identifiers to be considered deidentified [33]. Table 4 lists the 18 identifiers stated by HIPAA. Some of these identifiers are explicit, such as address, phone number or email, which could be used to directly contact the patient [27]. Even though identifier number 16 is for biometric identifiers, ECG is not explicitly mentioned. In addition to being a biometric identifier, ECG can also potentially reveal other information about patients such as age, sex, race and health conditions. As shown in the previous subsections, this information can be used to identify the person and even find their explicit identifiers such as address, phone number and name, which are HIPAA identifiers 1, 2 and 4. Benitez and Malin [34] estimated that the percentage of a state’s population to be vulnerable to unique reidentification attacks even when HIPAA Safe Harbor is applied ranges from 0.01% to 0.25%. The findings from our research indicate that ECG is more sensitive health information than previously thought and requires more attention from a privacy perspective. The results from our research suggest that ECG should be added to the list of HIPAA identifiers as the HIPPA 19th identifier; otherwise, it should be clearly mentioned as part of identifier 16.

HIPAA also has regulations regarding the right to access your Protected Health care Information (PHI) including health condition, treatment plan, notes, images, lab results and billing information. Likewise, the European GDPR defines the right of access to personal data and information for subjects. To comply with the GDPR, the data collector must provide a copy of the actual data upon the subject request, i.e., what we have stored about you.

However, data access rights become tricky in regard to data such as ECG, based on which other information such as age, sex and diseases can be extracted on the fly. While a single ECG sample without any other data related to it seems to be harmless with respect to the owner’s privacy, it can reveal sensitive derivative information about its owner. In this case, we recommend that in addition to the right to access the actual copy of data, data collectors must provide the subject with enough information on the potential of data privacy infringement associated with that piece of data. For instance, organizations collecting ECG data could provide enough information to patients regarding potential derivative data such as age, sex, race, heart conditions and life habits (such as smoking and level of alcohol consumption).

VII. CONCLUSION
ECG has the potential to uniquely identify individuals in a large population. Although deep learning models such as convolutional neural networks are difficult to interpret and understand, they are able to learn complex tasks such as ECG identification with high accuracy. This has revolutionized application areas such as ECG as a biometric where interpretability of the model is not a concern. Additionally, we showed that identification accuracy per condition, age and sex differs significantly. These facts imply that patients with different conditions and demographics are exposed to different levels of reidentification risks when contributing data to ECG datasets. As discussed in this paper, the amount of this privacy risk can be quantified in terms of how uniquely and accurately an individual in an ECG dataset can be identified. Patients can use these risk estimations to decide whether they contribute their ECG recording to a research dataset. Our research suggests that ECG is more sensitive information than considered today. Thus, privacy regulations such as HIPAA in the United States or the European GDPR should add explicit guidelines related to the collection and sharing of ECG data to reduce privacy risks for patients.

VIII. DATA AND CODE AVAILABILITY STATEMENT
The data that support the findings of this study are openly available at the following URLs:

- PTB-XL dataset from https://physionet.org/content/ptb-xl/1.0.1/
- 2018 China Physiological Signal Challenge dataset from http://2018.icbeb.org/Challenge.html
- The Georgia 12-lead ECG Challenge dataset from https://physionetchallenges.org/2020/
- The Ningbo First Hospital 12-lead ECG dataset from https://physionetchallenges.org/2021/

The source code for ECG denoising is available at https://github.com/arin-gzn/ECG-Identification, and the source code for training the models and the analysis used in this paper is also openly available at https://github.com/arin-gzn/ECG-Identification.

REFERENCES

[1] L. Biel, O. Pettersson, L. Philipson, and P. Wide, “ECG analysis: A new approach in human identification,” IEEE Trans. Instrum. Meas., vol. 50, no. 3, pp. 808–812, Jun. 2001.
[2] C. Carreiras, A. Lourenço, A. Fred, and R. Ferreira, “ECG signals for biometric applications—Are we there yet?” in Proc. 11th Int. Conf. Informat. Control, Autom. Robot., 2014, pp. 765–772.
[3] J. Zheng, H. Chu, D. Struppa, J. Zhang, S. M. Yacoub, H. El-Askary, A. Chang, L. Ehwerhemuepha, I. Abudayyeh, A. Barnett, G. Fu, H. Yao, D. Li, H. Guo, and C. Rakovski, “Optimal multi-stage arrhythmia classification approach,” Sci. Rep., vol. 10, no. 1, p. 2898, Dec. 2020. [Online]. Available: https://www.ncbi.nlm.nih.gov/pubmed/32076033
[4] J. Zheng, G. Fu, I. Abudayyeh, M. Yacoub, A. Chang, W. W. Feaster, L. Ehwerhemuepha, H. El-Askary, X. Du, B. He, M. Feng, Y. Yu, B. Wang, J. Liu, H. Yao, H. Chu, and C. Rakovski, “A high-precision machine learning algorithm to classify left and right outflow tract ventricular tachycardia,” emphFront. Physiol., vol. 12, Feb. 2021, doi: 10.3389/fphys.2021.641066.
[5] S. Koelstra, C. Muhl, S. Soyleymeni, J. Lee, A. Yazdani, T. Ebrahimi, T. Pun, A. Nijholt, and I. Patras, “DEAP: A database for emotion analysis using physiological signals,” IEEE Trans. Affect. Comput., vol. 3, no. 1, pp. 18–31, Jan./Mar. 2012.
[6] S. D. Labati, E. Muñoz, V. Prati, R. Sassi, and F. Scotti, “Deep-ECG: Convolutional neural networks for ECG biometric recognition,” Pattern Recognit. Lett., vol. 126, pp. 78–85, Sep. 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0167865518301077
[7] D. Belo, N. Bento, H. Silva, A. Fred, and H. Gamboa, “ECG biometrics using deep learning and relative score threshold classification,” Sensors, vol. 20, no. 15, p. 4078, Jul. 2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/15/4078
[10] R. Salloum and C.-C.-J. Kuo, “ECG-based biometrics using recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP), Mar. 2017, pp. 2062–2066.

[11] M. Deshmne and S. Madhe, “ECG based biometric human identification using convolutional neural network in smart health applications,” in Proc. 6th Int. Conf. Comput. Commun. Control Autom. (ICCCBA), Aug. 2018, pp. 1–6.

[12] A. Eduardo, H. Aidos, and A. Fred, “ECG-based biometrics using a deep autoencoder for feature learning—an empirical study on transferability,” in Proc. 6th Int. Conf. Pattern Recognit. Appl. Methods, 2017, pp. 463–470.

[13] Q. Zhang, D. Zhou, and X. Zeng, “HeartID: A multisolution convolutional neural network for ECG-based biometric human identification in smart health applications,” IEEE Access, vol. 5, pp. 11805–11816, 2017.

[14] Y. Li, Y. Pang, K. Wang, and X. Wang, “Toward improving ECG biometric identification using cascaded convolutional neural networks,” Neurocomputing, vol. 391, pp. 83–95, May 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0925231220300485

[15] Y. Li, Y. Zhang, L. Zhao, Y. Zhang, C. Liu, L. Zhang, L. Zhang, Z. Li, B. Wang, E. Ng, J. Li, and Z. He, “Combining convolutional neural network and network distribution matrix for identification of congestive heart failure,” IEEE Access, vol. 6, pp. 4950–4957, 2018.

[16] S. L. Oh, E. Y. K. Ng, R. S. Tan, and U. R. Acharya, “Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats,” Comput. Biol. Med., vol. 102, no. 1, pp. 278–287, Nov. 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0010482518301446

[17] Z. I. Attia, P. A. Friedman, P. A. Noseworthy, F. Lopez-Jimenez, D. J. Iadegwi, G. Satam, P. A. Pellikka, T. M. Munger, S. J. Asirvatham, C. G. Scott, R. E. Carter, and S. Kapa, “Age and sex estimation using artificial intelligence from standard 12-lead ECGs,” Circulat., Arrhythmia Electrophysiol., vol. 12, no. 9, Sep. 2019, Art. no. e007284.

[18] M. U. Khan, M. Saad, S. Aziz, J. M. Ch, S. Z. H. Naqvi, and M. A. Qasim, “Electrocardiogram based gender classification,” in Proc. Int. Conf. Electr., Commun., Comput. Eng. (ICECCE), Jun. 2020, pp. 1–6.

[19] J.-L. Cabrera, D. Mendez, and L. Trujillo, “Wide machine learning algorithm evaluation applied to ECG authentication and gender recognition,” in Proc. 2nd Int. Conf. Biometric Eng. Appl. (ICBREA), 2018, pp. 58–64.

[20] M. Wiggins, A. Saad, B. Litt, and G. Vachtsevanos, “Evolving a Bayesian classifier for ECG-based age classification in medical applications,” Appl. Soft Comput., vol. 8, no. 1, pp. 599–608, Jan. 2008.

[21] P. A. Noseworthy, Z. I. Attia, L. C. Brewer, S. N. Hayes, X. Yao, S. Kapa, P. A. Friedman, and F. Lopez-Jimenez, “Assessing and mitigating bias in medical artificial intelligence: The effects of race and ethnicity on a deep learning model for ECG analysis,” Circulat., Arrhythmia Electrophysiol., vol. 13, no. 3, Mar. 2020, Art. no. e007988.

[22] F. Liu, C. Liu, L. Zhao, X. Zhang, X. Wu, X. Xu, Y. Liu, C. Ma, S. Wei, Z. He, and J. Li, “An open access database for evaluating the algorithms of electrocardiogram rhythm and morphology abnormality detection,” J. Med. Imag. Health Informat., vol. 8, no. 7, pp. 1368–1373, Jul. 2018.

[23] P. A. Faculty, N. Strodthoff, R.-D. Bousset, T. M. Kreiseler, F. Liu, A. B. Rad, A. Elola, S. Seyedi, Q. Li, A. Sharma, D. G. Clifford, and M. A. Reyna, “Classification of 12-lead ECGs: The PhysioNet/computing in cardiology challenge 2020,” Physioinfo, vol. 41, no. 12, Dec. 2020, Art. no. 124003, doi: 10.1088/1361-6579/ab9c6b.

[24] J. Zheng, J. Zhang, S. Danioho, H. Yao, H. Guo, and C. Rakovski, “12-lead electrocardiogram database for arrhythmia research covering more than 10,000 patients,” Sci. Data, vol. 7, Feb. 2020.

[25] L. Sweeney, “Only you, your doctor and many others may know,” Technol. Sci., vol. 2015, no. 29, Sep. 2015. [Online]. Available: https://techscience.com/a/2015092903/0

[26] L. Sweeney, Simple Demographics Often Identify People Uniquely, Pittsburg, PA, USA: Carnegie Mellon Univ. Data Privacy, 2000. [Online]. Available: http://dataprivacylab.org/projects/identifiability/

[27] B. Hayes, “Uniquely me,” Amer. Sci., vol. 102, pp. 106–109, Mar. 2014. [Online]. Available: https://www.americanscientist.org/article/uniquely-me/

[28] National Data Guardian for Health and Care. (2016). Review of Data Security, Consent and Opt-Outs. [Online]. Available: https://www.gov.uk/government/publications/review-of-data-security-consent-and-opt-outs

[29] T. Pilgrim, De-Identification: The De-Vil is in the De-Tail. Chennai, India: Mandarin, Nov. 2016.

[30] R. Gellman, “The deidentification dilemma: A legislative and contractual proposal,” Fordham Intellect. Prop. Media Entertain. Law J., vol. 21, p. 33, 2010.

[31] B. M. Knoppers, J. R. Harris, I. Budin-Ljose, and E. S. Dove, “A human rights approach to an international code for conduct for genomic and clinical data sharing,” Hum. Genet., vol. 133, no. 7, pp. 895–903, Jul. 2014.

[32] Office of Civil Rights. (2015). Guidance Regarding Methods for De-Identification of Protected Health Information. [Online]. Available: https://www.hhs.gov/hipaa-for-professionals/privacy/special-topics/de-identification/index.html

[33] K. Benitez and B. Malin, “Evaluating re-identification risks with respect to the HIPAA privacy rule,” J. Amer. Med. Inform. Assoc., vol. 17, pp. 87–99, Mar./Apr. 2010.

[34] ARIJ GHAZARIAN (Member, IEEE) received the Ph.D. degree in computational and data sciences from Chapman University, in 2021. He also has two decades of experience in industry working on large scale machine learning, software, and data analytics projects in domains, such as movie and music entertainment. He is a Lecturer of data science and computer science with California State University Long Beach, Chapman University, and continuing education division of University of California Irvine. His research interests include the application of machine learning to ECG analysis, privacy preserving data analysis, deep learning models, and human–computer interaction.

JIANWEI ZHENG received his Ph.D. degree in computational and data sciences from Chapman University, in 2021. His research interest includes the application of machine learning to ECG analysis for cardiovascular disease.

DANIELE STRUPPA received the laurea degree in mathematics from the University of Milan, Italy, in 1977, and the Ph.D. degree in mathematics from the University of Maryland, College Park, in 1981. He joined as a Provost at Chapman University, in 2006, he is serving currently as the Chapman University’s Thirteenth President. He was a recipient of the Bartolozzi Prize from the Italian Mathematical Union, in 1981, the Matsumae Medal from the Matsumae International Foundation of Tokyo, in 1987, the Prestigious Cozzarelli Prize from the National Academy of Sciences for a paper he coauthored, in 2017.

CYRIL RAKOVSKI received the Ph.D. degree in biostatistics from Harvard University, in 2006. He was a Postdoctoral Research Fellow at USC, from 2006 to 2008, and then joined Chapman University where he is currently an Associate Professor. His research interests include the genetics analysis, time series data analysis, machine learning, and statistical modeling.