Technique of production of argon-37 at proton cyclotron and detector for measurements

A. D. Romazanov

Institute of nuclear physics
Academy of sciences of Uzbekistan
Toshkent, Ulugbek village, Uzbekistan

Abstract

The technology of production of the isotope Ar-37 at proton cyclotron is developed. It is based on irradiation of the Cl-37 target with the protons of energy of a few a MeV. The example of production of tiny amount of Ar-37 is described and discussed. The detectors to measure the intensity of the sample is discussed.

1 Introduction

The 37Ar isotope is very important in different fields of physics. It decays by 100% electron capture (EC) $3/2^+ \rightarrow 3/2^+$ transition to the ground state of the stable nuclide 37Cl. The decay scheme is complete as there no excited levels of 37Cl below the EC decay energy $Q^+=813.87$ keV [1]. Due to the monoenergetic neutrino lines (811 and 813 keV) and the absence of the nuclear γ-radiation it is suitable to test neutrino detectors. In 1988 Haxton proposed to employ the 37Ar source to calibrate radiochemical detectors of solar neutrinos [2], especially gallium based one ([3], [4]). Approximately 1 MCi source was produced [5] according to that proposal and the SAGE detector was successfully calibrated [6]. Another perspective possible usage of the isotope is a calibration of low energy electron detectors by means of the low energy Auger electron and X-ray emission. It can be used in the experiments aiming to search for a possible sterile neutrino admixture in the β-spectra of different isotopes. In particular, the experiments with tritium [7] are possible employers of the 37Ar source.
2 Technology of production by neutron irradiation

The 1 MCi 37Ar used for the gallium detector calibration neutrino source was manufactured by irradiating a piece of pressed calcium oxide in the fast breeder reactor BN-600 in Russia [5]. The technology was based on the 40Ca(n,α)37Ar reaction. The fast neutron flux was measured by an organic scintillator [8]. A special facility was built [9] in order to extract the gaseous 37Ar sample from the CaO target. An obvious disadvantage of the method is that after neutron irradiation there is a lot of 39Ar - in [5] they report the contamination to be of 0.34% of the gas volume fraction.

3 Technology of production by proton irradiation

The reaction 37Cl(p,n)37Ar looks to be able to produce much more pure samples of 37Ar. One of the first usage of the method was published in [10]. We have developed a technique of preparation of the target based on a KCl film. The target is a Nb foil $20\times10\times1$ mm with a spot of thin KCl film deposited at the foil in vacuum. The spot is roughly circular with the area of 1.5 cm2. The thickness of the film is $100\ \mu$m, the mass of the KCl is about 30 mg. The target was firstly irradiated at the Moscow State University proton cyclotron of the Institute of Nuclear Physics; the energy of protons was $E_p=7$ MeV and the current was $I_p=2\ \mu$A.

The calculation of an expected activity of 37Ar was done without taking into account of ionization energy loss. The maximal expected value of the intensity may be estimated as

$$N = N_p\sigma n = \frac{I_p\Delta t}{e}\sigma\rho d\frac{N_A}{A}$$

Here N is the number of 37Ar atoms produced in the reaction; e is the electron charge, $1.6\cdot10^{19}\ \text{Q}$; N_p is the number of protons bombarded the target during irradiation for the time period Δt and the current I_p; σ is the cross-section of the reaction; ρ, d is the density and thickness of the target; A is the atomic number of the target; N_A is the Avogadro constant, $6.02\cdot10^{23}\ \text{mol}^{-1}$.

An isotope 37Ar is produced in the reaction 37Cl(p,n)37Ar that has a cross-section of ≈ 0.5 barn at the proton energy $E_p=7$ MeV. The target KCl has the molar mass of $74.5\ \text{g/mol}$ and the density of $1.98\ \text{g/cm}^3$. Taking into account the 24.2% abundance of 37Cl in the natural target we may expect for 2 hours
irradiation $N = 3.5 \cdot 10^{11}$ atoms of ^{37}Ar. Because half-life of ^{37}Ar is 35 days it corresponds to $5.7 \cdot 10^4$ Bq of the intensity immediately after end of bombardment. The real sample was obtained after 2-hours irradiation and filling a proportional counter at special system [11]. The proportional counter was made according to the technology described in [12]. The result of the intensity measurement was about 5.3 ± 0.6 Bq that is in good agreement with the calculation.

4 Conclusion

The technology of production of pure ^{37}Ar based on irradiation the KCl target with protons with an energy of a few MeV is developed and tested for small amount of source. The proportional counter is most suitable detector to measure a tiny amount of ^{37}Ar.

References

[1] P. Endt, Nuclear Physics A 633, 1 (1998).
[2] W. C. Haxton, Phys. Rev. C 38, 2474 (1988).
[3] SAGE, J. N. Abdurashitov et al., Phys. Rev. C80, 015807 (2009), 0901.2200.
[4] J. N. Abdurashitov et al., Astropart. Phys. 25, 349 (2006), nucl-ex/0509031.
[5] V. I. Barsanov et al., Phys. Atom. Nucl. 70, 300 (2007), [Yad. Fiz.70,325(2007)].
[6] J. N. Abdurashitov et al., Phys. Rev. C73, 045805 (2006), nucl-ex/0512041.
[7] D. N. Abdurashitov et al., Phys. Atom. Nucl. 78, 268 (2015), 1403.2935.
[8] B. M. Fisher et al., Nucl. Instrum. Meth. A646, 126 (2011), 1106.4458.
[9] V. I. Barsanov et al., Instrum. Exp. Tech. 49, 454 (2006), [Prib. Tekh. Eksp.49,10(2006)].
[10] J. Colomer and D. Cavain, Int. J. Appl. Rad. Isot. 24, 391 (1973).
[11] J. N. Abdurashitov et al., Instrum. Exp. Tech. 54, 156 (2011), [Prib. Tekh. Eksp.2011,no.2,12(2011)].

[12] S. Danshin, A. Kopylov, and V. Yants, Nucl. Instr. and Meth. A 349, 466 (1994).