Selective Microporous Carbons Derived from Poplar Wood by Three Preparation Routes for CO2 Capture

Lishu Shao,*, Yafei Sang, Na Liu, Jun Liu, Peng Zhan, Jianhan Huang, and Jienan Chen*

ABSTRACT: Biomass-derived porous carbons are one kind of sustainable, extensive, and flexible carbon material for CO2 capture. Here, we prepared several microporous carbons from poplar wood by three preparation routes. Especially, the residues of the poplar wood after the bioethanol process were explored as precursors to prepare activated carbon by KOH and ZnCl2 activation. By the adjustment of the preparation routes and the optimization of the activation conditions, these porous carbons exhibited diversified morphology (sponge, nanosheets, and honeycomb structure), tunable porosity (specific surface areas: 511–2153 m2/g), and narrow micropore distribution (0.55–1.2 nm). These carbons had a high CO2 uptake of up to 217 mg/g at 273 K and 1 bar, which was comparable with those of many N-doped porous carbons, and possessed moderate isosteric heat of CO2 adsorption (21.1–43.2 kJ/mol), good cyclic ability, and high CO2/N2 selectivity (Henry’s law: 44.0). The results indicated that CO2 uptake of these carbons was mainly decided by their micropore volume (d < 1.0 nm) at 273 K and 1 bar. This work provides an important reference for preparing promising CO2 adsorbents with tunable structures from similar biomass resources.

1. INTRODUCTION

With the burning of vast amounts of fossil fuel, excessive emissions of carbon dioxide (CO2) cause various environmental issues such as global warming, rising sea level, and land desertification.1−3 Simultaneously, CO2 as a feed gas can also be converted into energy and chemicals in C1 chemistry.4 Therefore, it is essential to develop carbon capture and storage (CCS) technologies to reduce CO2 concentration in the atmosphere. The traditional commercial CO2 capture using aqueous ethanolic amines by chemical absorption is highly effective and mature, but it has intrinsic drawbacks such as high regeneration costs and severe corrosion. Notably, the solid adsorbent bed composed of porous materials in a pressure, temperature, and vacuum swing adsorption (P/T/VSA) gas separation system could selectively adsorb CO2 from a humid flue gas; in this way, it has been attracting increasing attention owing to its low cost and environmentally friendly merits in recent years.4−8

Carbon-based materials, such as graphene,9 nanotubes, and nanoporous carbons,10−13 are one of the most advanced adsorbents including porous organic polymers (POPs),14−18 zeolites,19 and metal–organic frameworks (MOFs),20 because of their high specific areas, strong hydrophobicity, low density, and excellent stability. As known, porous carbons can be prepared from various precursors, such as organic small molecules, MOFs, mineral coal, synthetic polymers, and biomass.21 Among them, biomass-derived porous carbons as renewable, eco-friendly, and cost-effective functional materials have been extensively developed and applied to many fields such as inks, fuel cells, supercapacitors, catalysts, and adsorbents,22,23. This biomass included catkin, peanut shell, corn stalk, chitosan, and so on.24−26 Recently, considering that they pose threats to human health (respiratory ailments and skin anaphylaxis), porous carbons derived from poplar catkins (PCs) with rich lignin and amino acids, special morphology of microtubes, and high nitrogen content (>4%) have gained considerable attention27−29 and have been effectively applied in supercapacitors, adsorbents, electrocatalysts, and oil/water separation.30−32 However, there have been few studies on porous carbons derived from poplar wood sawdust (PWS), a waste product from the wood processing industry, especially on their preparation and applications, such as in gas adsorption and separation fields. Therefore, we selected PWS as the raw material to achieve porous carbons with excellent microporosity and various morphologies via different preparation routes for outstanding CO2 capture.

At present, there are several preparation routes for biomass-derived porous carbons, such as directed activation carbon-
ization, hydrothermal treatment and activation, precarbonization and activation, and biotreatment and activation carbonization. For example, Chang et al. reported PC-derived hierarchical carbon microtubes by precarbonization, followed by ZnCl₂ chemical activation, which showed high CO₂ uptake values of 6.22 and 4.05 mmol/g at 273 and 298 K, at 1 bar, respectively. Gao et al. prepared versatile biomass-derived carbon materials (surface area: 1351.4−1525.3 m²/g) by direct carbonization of catkin under ZnCl₂ activation for the oxygen reduction reaction, supercapacitors, and oil/water separation. Xu et al. used lignin-derived byproducts (LDBs) after bioethanol production to prepare an interconnected hierarchical porous N-doped carbon (HPNC) (surface area: 2218 m²/g) by KOH activation, and it exhibited favorable properties for supercapacitors. In ref 37, a mass of LDB was produced as the residue after the biotreatment (enzymatic hydrolysis and fermentation) of lignocellulose. On the other hand, activation methods are also critical for the formation and development of carbon materials with a well-developed porous structure. Compared with physical activation, chemical activation has several advantages including simplicity, lower activation temperature, shorter activation time, and higher yield, and it has been popular for remarkably improving the porosity of the generated carbon materials. For example, Manyà et al. prepared several activated carbons (ACs) from vine shoot-derived biochar using CO₂ and KOH activation, and the ACs obtained by KOH impregnation exhibited the highest CO₂ adsorption capacity (6.04 mmol/g at 273 K and 1.0 bar). Rao et al. prepared N-rich porous sorbents by co-hydrothermal treatment of D-glucose and urea, followed by KOH activation. GN-650-1 with a surface area of 1734 m²/g showed high CO₂ uptake values of 4.26 and 6.70 mmol/g at 298 and 273 K, respectively. In the above process, the control of the activator type and dosage, temperature, and residence time was vital for CO₂ capture performance of the activated carbons.

Broadly speaking, different preparation routes and activation conditions would largely affect the physicochemical structure, yields, etc. of the produced porous carbons and thus decide their performance in practical applications. For CO₂ capture and storage, excellent microporosity and rich heteroatom (N, O, S) doping are very important for improving their CO₂ adsorption capacity and CO₂/N₂ selectivity. Especially, N-containing groups such as pyridine nitrogen and pyrrole nitrogen were usually introduced in carbon frameworks to provide enough interaction sites for CO₂ capture. Meanwhile, O doping also inevitably occurred on the carbon surface during activation, and the generated O-containing groups included −C=O, C=OH, and C=O−C; they could form hydrogen bonds between −OH groups and CO₂ molecules.

Here, we tried to prepare selectable porous carbons from PWS by different preparation routes and careful adjustment of
the activation conditions. Three preparation routes including direct activation carbonization, hydrothermal treatment and activation carbonization, and biotreatment and activation carbonization were selected based on the research of our groups and the universal use of these routes. Our aim was to investigate the effects of these preparation routes and the corresponding activation conditions on the structural features and CO₂ adsorption of PWS-derived porous carbons by a comparative study. Especially, the porosity and microstructure of these porous carbons were well tuned by changing the activation conditions, and they exhibited diversified morphology, tunable porosity, narrow micropore distribution, and high CO₂ uptake. This work will provide fundamental guidance for the preparation of porous carbons from renewable lignocellulose resources.

2. RESULTS AND DISCUSSION

2.1. Macroscopic Shape, Surface Morphology, and Phase Structure Analysis. PWS as the raw material was converted into porous carbons by three routes, which produced different physicochemical structures. The digital photographs of all precursors and porous carbons are shown in Figure S1. The white PWS changed into brown BPWS powder and black HPWS sawdust. After activated carbonization, we found that all KOH-activated porous carbons became an irregular powder, while ZnCl₂-activated porous carbons changed into a complete monolith with definite strength; especially, BZC-600-2 exhibited stability in 2 mol/L HCl solution and had low density like aerogels. Figure 1 shows the typical morphology and microstructure of these carbons. DKC-600-2 was composed of irregular carbon blocks and particles with a rough surface (Figure 1a1,a2); BKC-600-2 had a sponglike network structure with interconnected pores, and its rough surface also accumulated some small carbon particles. Interestingly, a large proportion of the surface of HKC-600-2 possessed vast wormhole-like structures with macropores of 50−100 nm, which was very beneficial for the fast transmission and diffusion of CO₂ molecules.

When the activation temperature increased, many stacked nanosheets appeared in HKC-700-2, and some irregular particles and blocks could be seen in HKC-800-2. When the mass ratio of KOH to HPWS was 1:1, a honeycomb structure appeared in the carbon skeleton of HKC-800-1, and the open pores with thin pore walls were interconnected in hierarchical porous carbon. These results indicated that morphologies of PWS-derived porous carbons could be tuned to a specific shape by changing activation conditions in the preset routes.

As representatives, the transmission electron microscopy (TEM) images of HKC-800-1 and HKC-600-2 were investigated. HKC-800-1 shows an interlaced network with a spherical mesh (Figure 2a1), and an amorphous structure was formed in the porous carbon networks, which was consistent with the X-ray diffraction (XRD) results. Its high-resolution FE-TEM image (Figure 2a3) exhibits alternately dark and bright microstructures with extensive sizes, indicating plentiful micropores and a few mesopores. The TEM images of HKC-600-2 show thin sheets and particles (Figure 2b1), which may be a mixture of graphene-like layers and amorphous structure,
and the high-resolution FE-TEM image (Figure 2b3) revealed more serried wormhole-like microstructures and a few stripe structures.

The Raman spectra of carbon materials are shown in Figure 3a. Two dominant characteristic peaks are attributed to the symmetrical vibration of the sp\(^2\) phase at 1583 cm\(^{-1}\) and the defective structure at 1332 cm\(^{-1}\), respectively, corresponding to the G-band and D-bands.\(^{41}\) The intensity ratio of \(I_G/I_D\) reflected the degree of graphitization of porous carbons, and the value of \(I_G/I_D\) of HKC-600-2 (1.00) was higher than that of HKC-800-1 (0.97), indicating that HKC-600-2 had a more ordered structure and a higher graphitization degree. Figure 3b exhibits the XRD pattern of porous carbons. For HKC-600-2, two broad diffraction peaks appeared at \(2\theta = 24.1\) and \(43.4^\circ\), suggesting that the amorphous phase was dominant; correspondingly, the two peaks can be attributed to the reflection (002) and (100) of the stacking graphitized carbon structure.\(^{42}\) The diffraction peaks of HKC-800-1 showed a slight shift (\(2\theta = 20.8\) and \(43.4^\circ\)), and its XRD spectra showed a sharp diffraction peak (\(2\theta = 28.1^\circ\)) with low intensity, which can be ascribed to the slight impurities of siliceous compound crystals from the weak reaction between the activator KOH and the porcelain boat composed of SiO\(_2\). Additionally, there appeared a rapid increase in the intensity of the diffraction peaks at the low-angle region (\(2\theta < 10^\circ\)), which indicated the high porosity of the two carbon materials.\(^{43}\)

2.2. Thermostability and Carbon Yields. The thermogravimetric (TG) and derivative thermogravimetric (DTG) analysis curves of three precursors (PWS, BPWS, HPWS) were measured to study their thermostability and decide the activation temperature (Figure 4). Three precursors exhibited similar TG curves (Figure 4a), but the initial decomposition temperature was different, which was about 211 °C (PWS), 156 °C (BPWS), and 232 °C (HPWS). The lowest decomposition temperature of BPWS could be ascribed to the remaining microbial protein and polysaccharides adhering to it. HPWS showed the highest decomposition temperature due to its enhanced robust structure after the hydrothermal process.\(^{44}\) The weight of the three precursors mainly kept constant above 600 °C; the residues of PWS, BPWS, and HPWS were about 19.1, 30.6, and 43.6 wt %, respectively. Hence, the temperature of 600 °C was used as the initial activation temperature. The TGA curves (Figure 4b) more clearly revealed the weight loss process; the loss below 100 °C was mainly from the adsorbed moisture, and the strongest weight loss peaks were 341, 321, and 359 °C corresponding to PWS, BPWS, and HPWS. The peak shape of HPWS had an evident difference compared with the other two, which could be due to its more robust structure formed by the intense condensation polymerization and aromatization during the hydrothermal process.\(^{44}\)

The DTA curves of these samples suggested that the total process was mainly endothermic (Figure S2), and BPWS and HPWS had weak exothermic peaks at about 517, 556, and 678 °C; the reason could be that these generated small-molecule gases and condensational volatiles were formed under exothermic reactions. The yields of these samples are summarized in Table S1. As for the yields of the porous carbons before and after activation, ZnCl₂-activated carbons had much higher yields (34.5–58.2%) than KOH-activated carbons (4.81–32.9%). Additionally, with the activation temperature or activator dosage increased, the yields of porous carbons generally increased.

![Figure 4. TG curves (a) and DTG curves (b) of PWS, BPWS, and HPWS.](https://dx.doi.org/10.1021/acsomega.0c01918)

![Figure 5. N\(_2\) adsorption–desorption isotherms at 77 K (a) and the pore size distribution by the NLDFT model (b) of porous carbons.](https://dx.doi.org/10.1021/acsomega.0c01918)
carbon samples were expectedly decreased. The total yields for the three routes originating from PWS were 2.52–16.44% for KOH activation and 15.92–34.50% for ZnCl₂ activation. Among them, DZC-600-2 had the highest total yield of 34.50%, which could be ascribed to the carbonization of the most original components with the help of ZnCl₂ activators. In short, the yields of these carbons were acceptable for practical production.45

2.3. Porous Texture Studies. According to the results of CO₂ capture performance, we selected partial porous carbons as representatives and measured the N₂ adsorption–desorption isotherms (Figure S5). According to the International Union of Pure and Applied Chemistry (IUPAC) classification,46 all isotherms could be identified as the Type-I isotherms except for HKC-800-2, which belonged to a combination of Type-I and Type-IV. At P/P₀ < 0.005, the N₂ uptake of all carbons has a rapid increase, indicating abundant micropores, and then, there appeared a mild rise at 0.05 < P/P₀ < 0.3 for HKC-700-2, HKC-800-2, and HKC-800-1, implying the presence of some mesopores, while the isotherms of DKC-600-2, BKC-600-2, and HKC-600-2 all kept constant at P/P₀ > 0.01, suggesting almost no mesopores or macropores, and finally, all isotherms leveled off in the high P/P₀ region. Notably, the N₂ adsorption–desorption isotherms of HKC-800-2 revealed a prominent Type-H4 hysteresis loop due to the capillary condensation from some mesoporous structures.46 The structural parameters of these carbons are summarized in Table 1. DKC-600-2, BKC-600-2, and HKC-600-2 prepared under the same activation conditions had different porosities; for example, their S_BET was 511, 535, and 893 m²/g and their V_micro was 0.17, 0.22, and 0.33 cm³/g, respectively. The results demonstrated that the two-step routes, especially the hydrothermally combined activation routes, could endow the porous carbons with higher S_BET and V_micro. Thus, the following study mainly focused on the HKC materials from the third route. For HKC-600-2, HKC-700-2, and HKC-800-2, with the increase in activation temperature, S_BET, V_total, V_micro and D₅₀ increased, and S_BET and V_total of HKC-800-2 reached 1587 m²/g and 1.00 cm³/g, respectively. Interestingly, when the activator dosage was adjusted to 1:1, the obtained HKC-800-1 had the largest S_BET (2153 m²/g), V_total (1.13 cm³/g), and V_micro (0.85 cm³/g). These results suggested that a higher activation temperature could result in larger porosity, but the increase in activators had not necessarily enhanced the porosity, especially microporosity. The pore size distribution (PSD) in Figure S5 revealed the dominant pore size in these carbons. DKC-600-2, BKC-600-2, HKC-700-2, and HKC-800-2 had similar micropore distributions concentrated at 1.1 and 1.2 nm, while HKC-600-2 and HKC-800-1 had two characteristic peaks focused at 0.85 and 1.1 nm and 0.55 and 0.97 nm, respectively, and HKC-800-1 had a smaller pore size with a higher intensity of 5.4 cm³ (g·nm⁻¹). In addition, the PSD curves of individual samples obtained by the NLDFT model or the BJH model (Figures S3 and S4) showed the presence of mesoporosity in some samples, such as HKC-700-2, HKC-800-2, and HKC-800-1. They possessed mesopores with the pore size of 2–5 nm. The results were in accordance with the N₂ adsorption isotherms. The curves of the cumulative pore volume vs pore size are also shown in Figure S5. The pore volume of different pore size regions could be found; for example, the pore volumes of D < 1 nm were 0.0010, 0.026, 0.24, 0.0051, 0.071, and 0.52 cm³/g corresponding to DKC-600-2, BKC-600-2, HKC-600-2, HKC-700-2, HKC-800-2, and HKC-800-1. The above results implied that the porous structure of PWS-derived carbons could be regularly adjusted by the preparation routes, especially the activation conditions.

2.4. Chemical Structure and Composition. The chemical structure of these porous carbons was measured by elemental analysis (EA) and Fourier transform infrared (FT-IR) spectroscopy. The C, N, O, and H contents of the samples are provided in Table 1. The N content of all porous carbons was almost zero (<0.01 wt %). DZC-600-2 and HKC-600-2 had similar elemental compositions, and C content of both samples reached more than 70 wt %, while HKC-600-2 had a lower C content (57.18 wt %) and higher O content (41.46 wt %), which could be due to the adhered polysaccharides on BPWS.47 With increase of activation temperature, the O content of HKC-800-2 increased to about 50 wt %, while the O content (14.23 wt %) of HKC-800-1 was low. The above results suggested that the use of a larger amount of KOH at high temperatures could lead to more O atoms being doped into the carbon skeletons, which could be because of the enhanced surface reoxidation between reactive carbon sites and excess KOH.47

The FT-IR spectra of HPWS and HKCs show the change of functional groups in the third route (Figure 6). HPWS exhibited strong absorption peaks at 2929 cm⁻¹ for –CH₂, 1697 cm⁻¹ for –C=O, 1645 and 1540 cm⁻¹ for aromatic ketone, and 1460 cm⁻¹ from benzene rings. After activation carbonization, most of these characteristic peaks became weak, even disappeared, and these porous carbons retained some characteristic peaks from the aromatic ring. Notably, the bands of these carbons at 1087 cm⁻¹ from the stretching vibration of –C–O–C became broader and stronger, which could be because of enhancement during KOH etching of the carbon framework, and HKC-800-2 showed the strongest absorption for –C–O–C, which was consistent with EA results.

Table 1. Porous Properties and Elemental Content of Porous Carbons Derived from Poplar Wood Sawdust

samples	S_BET	V_total	V_micro	V(d < 1 nm)	V(d < 0.7 nm)	D₅₀	C (%)	N (%)	H (%)	O (%)
DZC-600-2	511	0.22	0.17(77.3)	0.0010	0.00	1.77	73.44	<0.01	2.06	24.50
HKC-600-2	535	0.23	0.22(95.7)	0.026	0.00	1.74	57.18	<0.01	1.35	41.46
HKC-600-1	893	0.38	0.33(86.8)	0.24	0.0064	1.70	70.87	0.00	1.37	27.75
HKC-700-2	1339	0.68	0.52(76.2)	0.0051	0.00	2.02	85.84	<0.01	1.14	13.02
HKC-800-2	1587	1.00	0.55(55.0)	0.071	0.017	2.53	48.27	0.00	1.24	50.49
HKC-800-1	2153	1.13	0.85(75.2)	0.52	0.088	2.09	85.11	0.00	0.66	14.23

*Calculated using the BET model with the unit of m²/g. *Calculated at P/P₀ = 0.99 with the unit of cm³/g. *Cumulative micropore volume with pore size <2.0 nm using the NLDFT model with the unit of cm³/g. *Cumulative narrow micropore volume with pore size <1.0 nm or <0.7 nm using the NLDFT model with the unit of cm³/g. *The average pore width was calculated from D₅₀ = 4V_total / S_BET. *The O content was calculated by the difference value method, O% = 100%-C%-H%-N%, and the uncertainty of all elemental contents was in the range 0.007–0.02 wt %.
2.5. CO₂ Capture Capacity. The CO₂ adsorption isotherms of all porous carbons at 273 and 298 K were measured in the pressure range of 0−1 bar (Figures 7 and S6).

First, Figure 7a,b shows CO₂ adsorption isotherms of these porous carbons prepared from three different routes. Their CO₂ uptake changed from 80.0 to 161.1 mg/g at 273 K and 1 bar and revealed that KOH-activated porous carbons had higher CO₂ uptake compared with the corresponding ZnCl₂-activated porous carbons except for DKC-600-2 and DZC-600-2, which can be attributed to the different activation mechanism and precursor features.⁰²³,³⁰ Among KOH-activated porous carbons, BKC-600-2 had a CO₂ uptake of 116.0 mg/g at 273 K and 1 bar, which showed an increase of 31.1% relative to DKC-600-2 (88.5 mg/g). Similarly, the CO₂ uptake of HKC-600-2 was 54.6 and 161.1 mg/g at 0.15 and 1 bar, at 273 K, respectively, with an increase of 114.1 and 82.0% compared to DKC-600-2. This clearly demonstrated that the bioethanol process and hydrothermal treatment were effective steps for improving CO₂ adsorption of porous carbons.

The following study focused on the performance optimization of HKCs. With an increase of the activation temperature, the CO₂ uptake at 273 K and 1.0 bar slightly decreased, and the values were 161.1, 124.5, and 151.6 mg/g corresponding to HKC-600-2, HKC-700-2, and HKC-800-2. HKC-800-2 had the highest S_BET of 1587 m²/g, but the CO₂ uptake was not the largest, implying that S_BET was not the dominating factor. To achieve higher CO₂ uptake, we selected HKC-600-2 and HKC-800-2 for further optimization, and the previous references indicated that excess activators could lead to severe etching and the collapse of the micropore structure.⁰³⁸,⁴⁷ Hence, HKC-600-1 and HKC-800-1 were prepared by reducing the amount of activators, and the CO₂ uptake of both reached 146.5 and 217 mg/g, respectively, suggesting that the appropriate activation dosage was very important at a high temperature. The CO₂ uptake of these porous carbons is summarized in Table 2. For ZnCl₂-activated porous carbons, with an increase of the activation temperature (Table S2 and Figure S6), the CO₂ uptake first increased and then slightly decreased, and the values were 90.3, 120.2, and 113.8 mg/g at 273 K and 1 bar. At 298 K and 1 bar, the CO₂ uptake values of all porous carbons were in the range of 48.6−126.1 mg/g.

The CO₂ uptake and textural properties of these porous carbons were compared with various carbon materials (Tables 3 and S3). Among free N-doped porous carbons, HKC-800-1 shows superior CO₂ adsorption of 217 mg/g relative to
The N content was measured by XPS analysis. aGas adsorption in mg/g at 273 K/1.0 and 0.15 bar, and the standard uncertainties, u, of P, T, CO₂ uptake, and N₂ uptake are u(P) = 0.002 bar, u(T) = 0.1 K, u(CO₂ uptake) = 0.001 mmol/g, and u(N₂ uptake) = 0.0012 mmol/g; NA means unknown. bGas adsorption in mg/g at 298 K/1.0 bar, and the standard uncertainties, u, of P, T, and CO₂ uptake are u(P) = 0.002 bar, u(T) = 0.1 K, u(CO₂ uptake) = 0.0012 mmol/g. cHenry’s law S_{CO₂/N₂} at 273 K. dIAST S_{CO₂/N₂} at 273 K for the mixture including 85% of N₂ and 15% of CO₂ at 1.0 bar. eQₐ of CO₂ in kJ/mol calculated by the Clausius–Clapeyron equation at a low CO₂ loading.

Table 2. CO₂ Capture Performance of Porous Carbons

samples	CO₂ uptake a	CO₂ uptake b	N₂ uptake a	Henry’s law S_{CO₂/N₂} c	IAST S_{CO₂/N₂} d	Qₐ e
	1.0 bar	0.15 bar	1.0 bar			
DZC-600-2	104.7	28.6	55.7	2.8	26.16	319.0
BZC-600-2	80.0	21.8	47.7	8.0	8.66	NA
HZC-600-2	90.3	24.8	56.9	NA	NA	NA
DKC-600-2	88.5	25.5	48.6	15.7	3.84	27.8
BKC-600-2	116.0	39.7	67.9	2.0	44.00	442.0
HKC-600-2	161.1	54.6	100.4	5.3	23.30	274.5
HKC-700-2	124.5	37.8	77.8	10.0	7.91	68.2
HKC-800-2	151.6	37.2	90.5	7.9	12.60	99.5
HKC-600-1	146.5	63.9	96.6	9.0	16.75	NA
HKC-800-1	217.0	59.1	126.1	9.6	27.93	NA

Table 3. Textural Properties and the CO₂ Uptake of Various N-Doped Carbon-Based Adsorbents

samples	S_BET (m²/g)	V_{micro} (cm³/g)	N content (%)	CO₂ uptake (mg/g) at 273 K	CO₂ uptake (mg/g) at 298 K	selectivity	Henry’s law	IAST	ref
template carbon	857	NA	2.94	147.8	NA	NA	NA	NA	56
FC4	941	0.31	NA	178.2	126.3	NA	NA	NA	57
OTSS-1-550	777.7	0.27	7.3	191.4	136.4	NA	NA	NA	58
N-PHCS-900	775	0.32	8.39	194.5	130.2	35	NA	NA	59
fern carbons	1593	0.54	NA	198.9	181.3	NA	NA	NA	60
EAzn2-2-C	829	NA	1.23	202.4	NA	NA	NA	NA	61
PAₐ₀.₅/MA₉ₐ.₇-2	866	0.382	20.9 a	202.4	160.2	NA	NA	NA	62
ANCs-3-800	3138	1.33	2.73 a	202.4	140.8	NA	NA	NA	63
NPC-4-600	1518	0.54	9.71	207.0	128.0	16.6	34.5	64	
MPC-750	1881	0.78	0.36	216.5	125.8	NA	NA	NA	65
HKC-800-1	2153	0.85	0.00	217.0	126.1	27.93	NA	this work	66
c-CBAP-1N	1063	NA	2.93	223.5	154.0	25.7	34.5	66	
H150-800	1322	0.23	2.4	228.1	149.6	NA	NA	NA	67
NPC500	1082	0.441	9.44 a	235.8	166.3	NA	NA	NA	52
Bamboo-1-973	930	NA	NA	232.2	176	11	64	68	
AC-K-W-2-700	1671	0.587	NA	237.6	162.8	NA	NA	NA	53
NHPCT-4-7	1361	0.46	1.89	243.3	156.2	22	54	23	
HCP2a-K700	1964	0.92	0.04	251.0	134.0	8.7	10.8	69	
ACDS-800-2	1634	0.560	0.82	264.0	182.2	NA	NA	NA	70
CMS-K3	1354	0.539	0.81 a	286.4	179.1	16	15	71	
CSC-650	1182	0.522	0.06	295.7	208.6	26.7	21.35	72	

aThe N content was measured by XPS analysis. bThe results were calculated at 298 K. NA means unknown.

commercial activated carbon (123.2 mg/g), OM-CNS (132 mg/g), OM-CNS-1 (175.1 mg/g), CA-HC200 (198.4 mg/g), and PCS00 (190.5 mg/g), and it was also comparable with PMMC-800 (237.6 mg/g), NET2-700-2 (228.8 mg/g), and L2600 (233.2 mg/g). Compared with these N-doped porous carbons, such as salt-templated carbons with arginine (147.8 mg/g), FC4 (178.2 mg/g), OTSS-1-550 (191.4 mg/g), N-PHCS-900 (194.5 mg/g), microporous carbon from fern leaves (198.9 mg/g), and PDAₐ₀.₅/MA₉ₐ.₇-2 (202.4 mg/g), the CO₂ uptake of our porous carbons was also inferior to those of some advanced carbon materials including ACDS-800-2 (264 mg/g), CMS-K3 (286.4 mg/g), and CSC-650 (295.7 mg/g). To deeply understand the CO₂ adsorption behavior, two adsorption models (Langmuir and Freundlich) were used to simulate the CO₂ adsorption isotherms (Figure S7), and Table S4 summarizes these parameters with a higher R² > 0.99, and the Freundlich model exhibited better fitting with a higher R². Qₐ max of HKC-800-2 and HKC-800-1 reached 425.3 and 450.7 mg/g at 273 K, respectively, and this was because their higher S_BET would provide more adsorption sites under high pressure. In addition, HKC-600-1 had higher Kₐ and Kₐ at 273 K, suggesting stronger affinity for CO₂ molecules, and this parameter with n > 2 implied preferential adsorption. To
further investigate the relationship between CO2 uptake and structural properties, \(S_{\text{BET}} \), \(V_{(d<1.0 \text{ nm})} \), \(V_{\text{total}} \), and O content were plotted with the CO2 uptake, respectively (Figures 8 and S8).

The CO2 uptake of these porous carbons at 273 K and 1.0 bar, 273 K and 0.15 bar, and 298 K and 1.0 bar exhibited the same trend with the increase of \(S_{\text{BET}} \), respectively, which indicated that \(S_{\text{BET}} \) had a similar effect on the CO2 uptake under the above adsorption conditions. It has been reported that \(V_{\text{micro}} \) is an important factor that determines CO2 uptake; especially, the micropores with 2−3 times the pore size of the diameter of CO2 molecules (0.33 nm) would maximally enhance the adsorption potential.34,47,54,60 Then, \(V_{\text{micro}} (d<1.0 \text{ nm}) \) was linearly fitted with the CO2 uptake, and the correlation coefficient (\(R^2 \)) was 0.8352 (at 273 K and 1 bar), 0.7239 (at 273 K and 0.15 bar), and 0.7580 (at 298 K and 1 bar), implying that \(V_{\text{micro}} (d<1.0 \text{ nm}) \) had an evident positive effect on CO2 uptake, and the results were also in accordance with some previous reports.47,54,60 Meanwhile, the importance of the ultramicropores with \(d<0.7 \text{ nm} \) has been pointed out in some recent references. The ultramicropore volumes (\(V_{\text{ultra}} \)) of these carbons are summarized in Table 1. DKC-600-2, BKC-600-2, and HKC-700-2 did not have ultramicropores, but \(V_{\text{ultra}} \) of HKC-600-2, HKC-800-2, and HKC-800-1 was 0.0064, 0.017, and 0.088 cm³/g, respectively. The relationship between \(V_{\text{ultra}} \) and CO2 uptake (at 273 or 298 K and 1 bar) is plotted in Figure S9, and we found that HKC-800-2 with the largest \(V_{\text{ultra}} \) had the highest CO2 uptake, and the CO2 uptake of these carbons without ultramicropores was lower than those of other carbons with ultramicropores. Hence, the importance of ultramicropores was verified again. In addition, \(V_{\text{total}} \) was also used to plot the CO2 uptake; the curves of \(V_{\text{total}} \) vs CO2 uptake were similar to \(S_{\text{BET}} \) vs CO2 uptake. Generally, the O content of these porous carbons would inherently affect the acidity/basicity of carbon materials, and basic groups containing pyrone, chromene, and diketone/quinone type of structures could be beneficial for CO2 adsorption.73 Here, the O content of these porous carbons seemingly did not have a regular relationship with the CO2 uptake (Figure S8), and HKC-800-2 with the highest O content did not appear to have a large enhancement of the CO2 uptake relative to HKC-700-2 with the lowest O content. The results suggested that the O doping may not be effective enough at improving CO2 capture under the dominant effect of microporosity, and previous references also showed similar results.

2.6. Sensibility of Adsorption Temperature, Isosteric Heat of CO2 Adsorption (\(Q_{\text{st}} \)), and Recycling.

Considering the higher operating temperature in the adsorption of CO2 from industrial flue gases, the CO2 adsorption isotherms of HKC-800-1 at five adsorption temperatures (273−343 K) were measured (Figure 9a). The change of CO2 uptake represented its sensibility of adsorption temperature. It can be seen that the adsorption isotherms moved down with increasing adsorption temperature and basically kept unchanged at 323 and 343 K, and the values of CO2 uptake at 1.0 and 0.15 bar under different adsorption temperatures clearly showed the change (Figure 9b). The results indicated that HKC-800-1 had good stability of CO2 adsorption at a high adsorption temperature. We think that the larger number of ultramicropores of HKC-800-1 can capture a constant number

Figure 8. Relationships between \(S_{\text{BET}} \) and CO2 uptake (a) and \(V_{\text{micro}} (d<1.0 \text{ nm}) \) and CO2 uptake (b).**

Figure 9. CO2 adsorption isotherms of porous carbons at different temperatures (a) and the change of CO2 uptake with adsorption temperature at 1.00 and 0.15 bar (b).
of CO₂ molecules due to its strong adsorption even at high temperatures, and thus its adsorption capacity almost has no loss in a certain temperature range.

To investigate the interaction strength between these carbons and CO₂, the CO₂ adsorption isotherms at 273 and 298 K were used to calculate Q_s by the Clausius–Clapeyron equation (Figures 10 and S10). For ZnCl₂-activated carbons, the CO₂ uptake had a larger Q_s of 37.0 kJ/mol, respectively, which was less than 40 kJ/mol, of all HKCs (Figure 10b) decreased with the increase of CO₂ loading due to the heterogeneous adsorption sites, and thus the remaining weak sites made Q_s decrease. The initial Q_s of HKC-800-1 reached 43.2 kJ/mol, suggesting a physical adsorption process. In addition, the initial Q_s of these microporous carbons was in the range of 3.84–44.0. DZC-600-2 (26.16) had higher selectivity relative to ZC-600-2 (3.84), while BKC-600-2 had (44.0) higher selectivity compared to ZC-600-2 (8.66), implying low selectivity. Other microporous carbons have a lower ratio of N₂ uptake to CO₂ uptake, implying higher selectivity. To evaluate the CO₂/N₂ selectivity in practical applications, the selectivity at 273 K was calculated by the initial slope method (Henry’s law) and ideal adsorption solution theory (IAST). These results are summarized in Table 2 and Figures S2, S5, S12, and S13. For Henry’s law selectivity, the values of these microporous carbons were in the range of 3.84–44.0. DZC-600-2 (26.16) had higher selectivity relative to ZC-600-2 (3.84), while BKC-600-2 had (44.0) higher selectivity compared to ZC-600-2 (8.66), implying low selectivity. Other microporous carbons have a lower ratio of N₂ uptake to CO₂ uptake, implying higher selectivity. To evaluate the CO₂/N₂ selectivity in practical applications, the selectivity at 273 K was calculated by the initial slope method (Henry’s law) and ideal adsorption solution theory (IAST). These results are summarized in Table 2 and Figures S2, S5, S12, and S13.

2.7. CO₂/N₂ Selectivity. The CO₂/N₂ selectivity is also an important index for CO₂ capture. The N₂ adsorption isotherms of all samples were measured at 273 K (Figure S11). The N₂ uptake of these carbons was in the range of 2.8–15.7 mg/g at 273 K and 1 bar. DZC-600-2 has a higher N₂ uptake of 15.7 mg/g, which was about one-sixth of CO₂ uptake (88.5 mg/g), implying low selectivity. Other microporous carbons have a lower ratio of N₂ uptake to CO₂ uptake, implying higher selectivity. To evaluate the CO₂/N₂ selectivity in practical applications, the selectivity at 273 K was calculated by the initial slope method (Henry’s law) and ideal adsorption solution theory (IAST). These results are summarized in Table 2 and Figures S2, S5, S12, and S13. For Henry’s law selectivity, the values of these microporous carbons were in the range of 3.84–44.0. DZC-600-2 (26.16) had higher selectivity relative to ZC-600-2 (3.84), while BKC-600-2 had (44.0) higher selectivity compared to ZC-600-2 (8.66), implying low selectivity. Other microporous carbons have a lower ratio of N₂ uptake to CO₂ uptake, implying higher selectivity. To evaluate the CO₂/N₂ selectivity in practical applications, the selectivity at 273 K was calculated by the initial slope method (Henry’s law) and ideal adsorption solution theory (IAST). These results are summarized in Table 2 and Figures S2, S5, S12, and S13. For Henry’s law selectivity, the values of these microporous carbons were in the range of 3.84–44.0. DZC-600-2 (26.16) had higher selectivity relative to ZC-600-2 (3.84), while BKC-600-2 had (44.0) higher selectivity compared to ZC-600-2 (8.66), implying low selectivity. Other microporous carbons have a lower ratio of N₂ uptake to CO₂ uptake, implying higher selectivity. To evaluate the CO₂/N₂ selectivity in practical applications, the selectivity at 273 K was calculated by the initial slope method (Henry’s law) and ideal adsorption solution theory (IAST). These results are summarized in Table 2 and Figures S2, S5, S12, and S13.

3. CONCLUSIONS

In this work, poplar wood sawdust-derived microporous carbons were prepared by direct chemical activation, bio-

![Figure 10](https://dx.doi.org/10.1021/acsomega.0c01918)

Figure 10. Q_s of porous carbons with CO₂ loading (a, b) and the cycle performance of HKC-800-1 at 273 K (c).
pretreatment and activation, and hydrothermal pretreatment and activation. By the adjustment of the preparation routes and the optimization of the activation conditions, the produced porous carbons exhibited diverse morphologies, tunable porosity (specific surface area: 511–2153 m²/g), and a narrow micropore distribution (0.55–1.2 nm). These microporous carbons exhibited high CO₂ uptake (80–217 mg/g) at 273 K and 1 bar, which was comparable with those of many N-doped porous carbons, and high CO₂/N₂ selectivity and good cyclic ability. These properties make them promising adsorbents for industrial CO₂ capture.

4. EXPERIMENTAL SECTION

4.1. Materials. PWS (diameter: 1–2 mm, length: 2–15 mm) was obtained from a wood processing factory. Sources of other materials are shown in Table 4.

4.2. Preparation of Microporous Carbons by Three Synthetic Routes. All preparation processes of microporous carbons are shown in Scheme 1.

For the first route, the one-step activation carbonization, typically, approximately 1.0 g of dried PWS and 2.0 g of KOH or ZnCl₂ were thoroughly mixed in an agate mortar and heated to 600 °C at a rate of 5 °C/min under N₂ flow and kept at this temperature for 2 h in a tubular furnace. After cooling, the black solids were thoroughly rinsed with 2 mol/L HCl solution, followed by deionized water until pH 7 was reached, and then dried at 80 °C in vacuum for 24 h. Finally, the samples were denoted as DKC-600-2 for KOH activation and DZC-600-2 for ZnCl₂ activation.

For the second route, bio-pretreatment and activation, the bioethanol process of PWS and the main components of the residues can be seen in ref40, and the bioethanol residues were obtained from the Ministry of Forestry Bioethanol Research Center, Changsha, China. The residues containing waste lignin/polysaccharides and adhering protein were washed with deionized water and then dried at 60 °C overnight to obtain the precursor named BPWS. The BPWS went through activated carbonization by a similar process as above, and the achieved porous carbons were denoted as BKC-600-2 for KOH activation and BZC-600-2 for ZnCl₂ activation.

For the third route, hydrothermal pretreatment and activation, typically, 5 g of dried PWS was immersed in 60 mL of deionized water with 0.3 mL of H₂SO₄. The mixture was transferred into a 100 mL sealed stainless-steel autoclave with Teflon lining and then heated to 160 °C for 24 h. After cooling, the produced hydrochar (HPWS) was isolated by filtration, washed with deionized water and ethanol several times, and dried at 80 °C in vacuum for 24 h. Next, the HPWS was activated through a similar process as above with different carbonization conditions. The final obtained carbons were denoted as HKC-x-y for KOH activation and HZC-x-y for ZnCl₂ activation (x = 600, 700, and 800, representing the carbonization temperature; y = 1 and 2, denoting the mass ratios of activators to HPWS).

4.3. Characterization. The thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) analysis were carried out on a Q600 thermal analysis instrument (American, TA instruments, Inc.). Fourier transform infrared (FT-IR) spectra were collected on a Nicolet 510P FT-IR spectrometer. The porosity of samples was obtained by the N₂ adsorption−desorption isotherms at −196 °C using a Micromeritics ASAP2020M+C sorption analyzer. Before adsorption, the sample (about 0.10 g) was degassed at 120 °C for at least 8 h. The surface areas (S_BET) were calculated according to the Brunauer−Emmett−Teller (BET) equation in the range of P/

Table 4. Molecular Weights, Purities, Sources, and CAS-Numbers of the Chemicals

chemical name	mol. wt.	purities (%)	CAS-no.	sources
ethanol	46.07	≥99.5	64-17-5	Tianjin YongDa Chem. Technol. Co., Ltd.
KOH	56.11	≥85.0	1310-58-3	Sinopharm Chemical Reagent Co., Ltd.
ZnCl₂	136.30	≥98	7646-85-7	Sinopharm Chemical Reagent Co., Ltd.
HCl	36.46	38.0	7647-01-0	Sinopharm Chemical Reagent Co., Ltd.
H₂SO₄	98.04	≥98.0	7664-93-9	Nanjing Chemical Reagent Co. Ltd.
CO₂	44.0	≥99.99	124-38-9	Changsha XinXiang Gas Chem. Co., Ltd.
N₂	28.0	99.999	7727-37-9	Changsha XinXiang Gas Chem. Co., Ltd.

Scheme 1. Fabrication of Poplar Wood Sawdust-Derived Porous Carbons with Multiple Requirements from Three Synthetic Routes
$P_i = 0.001−0.15$, the total pore volume (V_{total}) was determined by adsorption at $P/P_0 = 0.990$, and the pore size distribution (PSD) was estimated by the nonlocal density functional theory (NLDFT) method. The morphology of samples was observed by a field-emission scanning electron microscope (FE-SEM, S4800, Hitachi Ltd., Japan). High-resolution transmission electron microscopy (HRTEM) was conducted on a Tecnai G2 F20 microscope at 200 kV. Elemental analysis (EA) data (CHNS) of the samples were detected using Elementar (Vario EL cube, Germany). X-ray diffraction (XRD) was performed on a Bruker D8 Advance diffractometer with Cu Kα radiation ($\lambda = 1.5418 \text{Å}$ ($2θ = 5–80^\circ$)). The Raman spectra (LabRAB HR Evolution, France) were obtained in the 200–2100 nm spectral region to evaluate the bonding state.

4.4. Gas Adsorption Measurements. The adsorption isotherms of CO$_2$ and N$_2$ were measured using a Kube-X1000 sorption analyzer, China, at 273 and 298–343 K using an ice–water bath and a thermostatic water bath, respectively. Before analysis, the samples were outgassed under vacuum at 120 °C for 12 h to remove guest molecules and then cooled to room temperature, followed by introduction of CO$_2$ or N$_2$ in the pressure range of 0–1 bar.

ASSOCIATED CONTENT

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.0c01918.

Yields of porous carbons; textural properties and CO$_2$ capture performance of various adsorbents; CO$_2$ adsorption isotherms by the Langmuir and Freundlich fitting; digital photographs of all precursors and porous carbons; DTA curves; cumulative pore volume curves; relationship between CO$_2$ adsorption and V_{total} or O content; N$_2$ adsorption isotherms; CO$_2$/N$_2$ selectivity by Henry’s law and the calculation by the IAST method (PDF).

AUTHOR INFORMATION

Corresponding Authors

Lishu Shao — Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; orcid.org/0000-0002-3838-0622; Email: lishushao@csust.edu.cn

Jienan Chen — Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Email: chenjnx@163.com

Authors

Yafei Sang — College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China

Na Liu — Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

Jun Liu — College of Resources and Environment, Hunan Agricultural University, Changsha 410128, China

Peng Zhan — Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China

ACKNOWLEDGMENTS

The National Key Research and Development Program of China (Nos. 2018YFD0600302 and 2019YFB1503804), Huxiang High-Level Talent Gathering Project of HUNAN Province (2019RS1063), and the Major Science and Technology Program of Hunan Province (No. 2017NK1010) are gratefully acknowledged for the financial support. Hunan Engineering Research Center for Woody Biomass Conversion and Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha, 410004, China, is gratefully acknowledged.

REFERENCES

(1) Huaman, R. N. E.; Jun, T. X. Energy Related CO$_2$ Emissions and the Progress on CCS Projects: A Review. Renewable Sustainable Energy Rev. 2014, 31, 368–385.

(2) Abas, N.; Khan, N. Carbon Conundrum, Climate Change, CO$_2$ Capture and Consumptions. J. CO2 Util. 2014, 8, 39–48.

(3) Rahman, F. A.; Aziz, M. M. A.; Saidur, R.; Bakar, W. A. W. A.; Hainin, M. R.; Putrajaya, R.; Hassan, N. A. Pollution to Solution: Capture and Sequestration of Carbon Dioxide (CO$_2$) and Its Utilization as A Renewable Energy Source for A Sustainable Future. Renewable Sustainable Energy Rev. 2017, 71, 112–126.

(4) Gao, W. Y.; Wu, H. F.; Leng, K. Y.; Sun, Y. Y.; Ma, S. Q. Inserting CO$_2$ into Aryl C-H Bonds of Metal-Organic Frameworks: CO$_2$ Utilization for Direct Heterogeneous C-H Activation. Angew. Chem., Int. Ed. 2016, 55, 5472–5476.

(5) Rochelle, G. T. Amine Scrubbing for CO$_2$ Capture. Science 2009, 325, 1652–1654.

(6) Lee, J. H.; Lee, H. J.; Lim, S. Y.; Kim, B. G.; Choi, J. W. Combined CO$_2$-Philicity and Ordered Mesoporosity for Highly Selective CO$_2$ Capture at High Temperatures. J. Am. Chem. Soc. 2015, 137, 7210–7216.

(7) Verouguistraete, B.; Martin-Calvo, A.; Van der Perre, S.; Baron, G.; Fincs, V.; Denayer, J. F. M. A New Honeycomb Carbon Monolith for CO$_2$ Capture by Rapid Temperature Swing Adsorption Using Steam Regeneration. Chem. Eng. J. 2020, 383, No. 123075.

(8) Ben-Mansour, R.; Habib, M. A.; Bamidele, O. E.; Basha, M.; Qasem, N. A. A.; Peedikakkal, A.; Laoui, T.; Ali, M. Carbon Capture by Physical Adsorption: Materials, Experimental Investigations and Numerical Modeling and Simulations-A Review. Appl. Energy 2016, 161, 225–255.

(9) An, L. Y.; Liu, S. F.; Wang, L. L.; Wu, J. Y.; Wu, Z. Z.; Ma, C. D.; Yu, Q. K.; Hu, X. Novel Nitrogen-Doped Porous Carbons Derived from Graphene for Effective CO$_2$ Capture. Ind. Eng. Chem. Res. 2019, 58, 3349–3358.

(10) Rehman, A.; Park, S. J. Comparative Study of Activation Methods to Design Nitrogen-Doped Ultramicroporous Carbons as Efficient Condensers for CO$_2$ Capture. Chem. Eng. J. 2018, 352, 539–548.

(11) Yue, L. M.; Rao, L.; Wang, L. L.; An, L. Y.; Hou, C. Y.; Ma, C. D.; DaCosta, H.; Hu, X. Efficient CO$_2$ Adsorption on Nitrogen-Doped Porous Carbons Derived from D-Glucose. Energy Fuels 2018, 32, 6955–6963.

(12) Yang, P.; Rao, L.; Zhu, W.; Wang, L.; Ma, R.; Chen, F.; Lin, G.; Hu, X. Porous Carbons Derived from Sustainable Biomass via a Facile
One-Step Synthesis Strategy as Efficient CO2 Adsorbents. Ind. Eng. Chem. Res. 2020, 59, 6194—6201.

(13) Liu, S.; Rao, L.; Yang, P.; Wang, X.; Wang, L.; Ma, R.; Yue, L.; Hu, X. Superior CO2 Uptake on Nitrogen Doped Carboxenous Adsorbents from Commercial Phenolic Resin. J. Environ. Sci. 2020, 93, 109—116.

(14) Xu, Y. H.; Cui, D.; Zhang, S. R.; Xu, G. J.; Su, Z. M. Facile Synthesis of Conjugated Microporous Polymer-Based Porphyrin Units for Adsorption of CO2 and Organic Vapors. Polym. Chem. 2019, 10, 819—822.

(15) Geng, T. M.; Chen, G. F.; Ma, L. Z.; Zhang, C.; Zhang, W. Y.; Xu, H. The Spirofluorenone-Based Fluorescent Conjugated Microporous Polymers for Reversible Adsorbing Iodine, Fluorescent Sensing Iodine and Nitroaromatic Compounds. Eur. Polym. J. 2019, 115, 37—44.

(16) Gemeda, A. E.; De Angelis, M. G.; Du, N. Y.; Li, N. W.; Güver, M. D.; Sarti, G. C. Mixed Gas Sorption in Glassy Polymeric Membranes. III. CO2/CH4 Mixtures in A Polymer of Intrinsic Microporosity (PIM-1): Effect of Temperature. J. Membr. Sci. 2017, 524, 746—757.

(17) Ding, L. G.; Yao, B. J.; Li, F.; Shi, S. C.; Huang, N.; Yin, H. B.; Guan, Q. Q.; Deng, Y. B. Ionic Liquid-Decorated COF and Its Covalent Composite Aerogel for Selective CO2 Adsorption and Catalytic Conversion. J. Mater. Chem. A 2019, 7, 4689—4698.

(18) Liang, R. R.; Xu, S. Q.; Qi, Q. Y.; Zhao, X. Fabricating Organic Nanotubes through Selective Disassembly of Two-Dimensional Covalent Organic Frameworks. J. Am. Chem. Soc. 2020, 142, 70—74.

(19) Wahono, S. K.; Stalin, J.; Addai-Mensah, J.; Skinner, W.; Vinu, A.; Vasiliev, K. Physico-Chemical Modification of Natural Mordenite-Clinochlore Zeolites and Their Enhanced CO2 Adsorption Capacity. Microporous Mesoporous Mater. 2020, 294, No. 109871.

(20) Ding, M.; Fläig, R. W.; Jiang, H. L.; Yaghi, O. M. Carbon Capture and Conversion Using Metal-OrganoFramework and MOF-Based Materials. Chem. Soc. Rev. 2019, 48, 2783—2828.

(21) Ashourirad, B.; Arab, P.; Verlander, A.; El-Kaderi, H. M. From Azo-Linked Polymers to Microporous Heteroatom-Doped Carbons: Tailored Chemical and Textural Properties for Gas Separation. ACS Appl. Mater. Interfaces 2016, 8, 8491—8501.

(22) Singh, G.; Lakhi, K. S.; Sil, S.; Bhosal, S. V.; Kim, I.; Albalhy, K.; Vinu, A. Biomass Derived Porous Carbon for CO2 Capture. Carbon 2019, 148, 164—186.

(23) Chang, B. B.; Shi, W. W.; Yin, H.; Zhang, S. R.; Yang, B. C. Poplar Catkin-Derived Self-Templated Synthesis of N-Doped Hierarchical Porous Carbon Microtubes for Effective CO2 Capture. Chem. Eng. J. 2019, 358, 1507—1518.

(24) Liu, S. F.; Ma, R.; Hu, X.; Wang, L. L.; Wang, X. Y.; Radosz, M.; Fan, M. H. CO2 Adsorption on Hazelnut-Shell-Derived Nitrogen-Doped Porous Carbons Synthesized by Single-Step Sodium Amide Activation. Ind. Eng. Chem. Res. 2020, 59, 7046—7053.

(25) Rehman, A.; Park, S. J. Tunable Nitrogen-Doped Microporous Carbons: Delineating the Role of Optimum Pore Size for Enhanced CO2 Adsorption. Chem. Eng. J. 2019, 362, 731—742.

(26) Rehman, A.; Park, S. J. From Chitosan to Urea-Modified Carbons: Tailoring the Ultra-Microporosity for Enhanced CO2 Adsorption. Carbon 2020, 159, 625—637.

(27) Guo, D. D.; Xin, R. R.; Wang, Y. F.; Jiang, W.; Gao, Q. P.; Hu, G. S.; Fan, M. H. N-Doped Carbons with Hierarchically Micro- and Mesoporous Structure Derived from Sawdust for High Performance Supercapacitors. Microporous Mesoporous Mater. 2019, 279, 323—333.

(28) Song, J.; Shen, W. Z.; Wang, J. G.; Fan, W. B. Superior Carbon-Based CO2 Adsorbents Prepared from Poplar Anthers. Carbon 2014, 69, 255—263.

(29) Xia, L. Y.; Li, X. J.; Wu, Y. Q.; Rong, M. Z. Wood-Derived Carbons with Hierarchical Porous Structures and Monolithic Shapes Prepared by Biological-Template and Self-Assembly Strategies. ACS Sustain. Chem. Eng. 2015, 3, 1724—1731.

(30) Gao, S. Y.; Li, X. G.; Li, L. Y.; Wei, X. J. A Versatile Biomass Derived Carbon Material for Oxygen Reduction Reaction, Super-
Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069.

(47) Shao, L. S.; Liu, M. Q.; Huang, J. H.; Liu, Y. N. CO₂ Capture by Nitrogen-Doped Porous Carbons Derived from Nitrogen-Containing Hyper-Cross-Linked Polymers. J. Colloid Interface Sci. 2018, 513, 304–313.

(48) Zhang, C. M.; Song, W.; Ma, Q. L.; Xie, L. J.; Zhang, X. C.; Guo, H. Enhancement of CO₂ Capture on Biomass-Based Carbon from Black Locust by KOH Activation and Ammonia Modification. Energy Fuels 2016, 30, 4181–4190.

(49) Yuan, B.; Wu, X. F.; Chen, Y. X.; Huang, J. H.; Luo, H. M.; Deng, S. G. Adsorption of CO₂, CH₄, and N₂ on Ordered Mesoporous Carbon: Approach for Greenhouse Gases Capture and Biogas Upgrading. Environ. Sci. Technol. 2013, 47, 5474–5480.

(50) Chen, C. W.; Yu, Y. K.; He, C.; Wang, L.; Huang, H.; Alibiali, R.; Cheng, J.; Hao, Z. P. Efficient Capture of CO₂ over Ordered Micro-Mesoporous Hybrid Carbon Nanosphere. Appl. Surf. Sci. 2018, 439, 113–121.

(51) Zhang, Z.; Luo, D.; Lui, G.; Li, G. R.; Jiang, G. P.; Cano, Z. P.; Deng, Y. P.; Du, X. J.; Yin, S.; Chen, Y. F.; Zhan, M. H.; Yan, Z. F.; Chen, Z. W. In-situ Ion-Activated Carbon Nanospheres with Tunable Ultramicroporosity for Superior CO₂ Capture. Carbon 2019, 143, 531–541.

(52) Ma, X. C.; Li, L. Q.; Zeng, Z.; Chen, R. F.; Fang, C. H.; Zhou, K.; Li, H. L. Experimental and Theoretical Demonstration of the Relative Effects of O-doping and N-doping in Porous Carbons for CO₂ Capture. Appl. Surf. Sci. 2019, 481, 1139–1147.

(53) Qi, S. C.; Liu, Y.; Peng, A. Z.; Xue, D. M.; Liu, X.; Liu, X. Q.; Sun, L. B. Fabrication of Porous Carbons from Mesitylene for Highly Efficient CO₂ Capture: A Rational Choice Improving the Enviro Loop. Chem. Eng. J. 2019, 361, 945–952.

(54) Liu, M. Q.; Shao, L. S.; Huang, J. H.; Liu, Y. N. O-Containing Hyper-Cross-Linked Polymers and Porous Carbons for CO₂ Capture. Microporous Mesoporous Mater. 2018, 264, 104–111.

(55) Liu, Z.; Zhang, Z.; Jia, Z. J.; Zhao, L.; Zhang, T. T.; Xing, W.; Komarneni, S.; Subhan, F.; Yan, Z. F. New Strategy to Prepare Ultramicroporous Carbon by Ionic Activation for Superior CO₂ Capture. Chem. Eng. J. 2018, 357, 290–299.

(56) Kumar, K. V.; Gadipelli, S.; Preuss, K.; Porwal, H.; Zhao, T. T.; Zhang, Y.; Liu, L.; Zhang, P. X.; Wang, J.; Xu, M.; Deng, Q.; Wang, Y.; Zou, H. B.; Zeng, S. J.; Pan, Y.; Wang, R. W.; Wang, L.; Yun, B.; Ku, S. J.; Antonietti, M.; Fechler, N. Self-Assembly of Metal Phenolic Mesocrystals and Morphosynthetic Transformation toward Hierarchically Porous Carbons. J. Am. Chem. Soc. 2015, 137, 8269–8273.

(57) Shao, L. S.; Chen, X. C.; Chen, C. W.; Yu, Y. K.; Shi, J. W.; He, C.; Alibiali, R.; Pan, H. Template-free Synthesis of Hierarchical Porous Carbon with Controlled Morphology for CO₂ Efficient Capture. Chem. Eng. J. 2018, 353, 584–594.

(58) Zhang, Y.; Liu, L.; Zhang, P. X.; Wang, J.; Xu, M.; Deng, Q.; Zeng, Z. L.; Deng, S. G. Ultra-high Surface Area and Nitrogen-Rich Porous Carbons Prepared by A Low-Temperature Activation Method with Superior Gas Selective Adsorption and Outstanding Super-capacitance Performance. Chem. Eng. J. 2019, 355, 309–319.

(59) Wang, Y.; Zou, H. B.; Zeng, S. J.; Pan, Y.; Wang, R. W.; Wang, X.; Li, J.; Zhang, Z. L.; Qiu, S. L. A One-Step Carbonization Route towards Nitrogen-Doped Porous Carbon Hollow Spheres with Ultrahigh Nitrogen Content for CO₂ Adsorption. Chem. Commun. 2015, 51, 12423–12426.

(60) Serafin, J.; Narkiewicz, U.; Morawski, A. W.; Wrobel, R. J.; Michalkiewicz, B. Highly Microporous Activated Carbons from Biomass for CO₂ Capture and Effective Micropores at Different Conditions. J. CO2 Util. 2017, 18, 73–79.

(61) Yang, S. J.; Antonietti, M.; Fechler, N. Self-Assembly of Metal Phenolic Mesocrystals and Morphosynthetic Transformation toward Hierarchically Porous Carbons. J. Am. Chem. Soc. 2015, 137, 8269–8273.

(62) Wu, Y.; Wang, J. X.; Muhammad, Y.; Subhan, S.; Zhang, Y. B.; Ling, Y.; Li, J.; Zhao, Z. X.; Zhao, Z. X. Pyrrolic N-Enriched Carbon Fabricated from Dopamine-Melamine via Fast Mechanochemical Copolymerization for Highly Selective Separation of CO₂ from CO₂/N₂. Chem. Eng. J. 2018, 349, 92–100.