A braided monoidal category for symplectic fermions

A. Davydov1, I. Runkel2 \\
1 Dept. Math., Ohio Univ., Athens, Ohio 45701, USA
2 Dept. Math., Hamburg Univ., Bundesstr. 55, 20146 Hamburg, Germany

Abstract

We describe a class of examples of braided monoidal categories which are built from Hopf algebras in symmetric categories. The construction is motivated by a calculation in two-dimensional conformal field theory and is tailored to contain the braided monoidal categories occurring in the study of the Ising model, their generalisation to Tambara-Yamagami categories, and categories occurring for symplectic fermions.

1 Introduction

In this short note we summarise some of the results in [1, 2], where also more extensive references can be found.

We are interested in a particular type of $\mathbb{Z}/2\mathbb{Z}$-graded braided monoidal categories. The grade 0 component is the monoidal category $\text{Rep}_S(H)$ of modules over a Hopf algebra H in a symmetric monoidal category S, and the grade 1 component is the category S itself. We will write $\mathcal{C} = \mathcal{C}_0 + \mathcal{C}_1$ with $\mathcal{C}_0 = \text{Rep}_S(H)$ and $\mathcal{C}_1 = S$. The tensor product functor $*$ on the various components is defined as:

*IR thanks the organisers of the XXIX Internat. Colloq. on Group-Theoretical Methods in Physics (August 20–26, 2012, Chern Inst., Tianjin) for the opportunity to speak.
A B A * B comments
\begin{array}{llll}
\mathcal{C}_0 & \mathcal{C}_0 & A \otimes B & \in \mathcal{C}_0 \quad \text{the } H\text{-action is via the coproduct of } H \\
\mathcal{C}_0 & \mathcal{C}_1 & F(A) \otimes B & \in \mathcal{C}_1 \quad F : \text{Rep}_S(H) \to S \text{ is the forgetful functor} \\
\mathcal{C}_1 & \mathcal{C}_0 & A \otimes F(B) & \in \mathcal{C}_1 \\
\mathcal{C}_1 & \mathcal{C}_1 & H \otimes A \otimes B & \in \mathcal{C}_0 \quad \text{the } H\text{-action is by multiplication}
\end{array}

This somewhat ad-hoc looking definition of the tensor product is actually quite natural. The mixed tensor products are the natural left and right action of the monoidal category \text{Rep}_S(H) on \mathcal{S}. To obtain the last line in the table, assume that \mathcal{C} can be made rigid. Writing \mathcal{T} for the tensor unit of \mathcal{S} considered as an object in \mathcal{C}_1, we have for all \text{H-modules } M

\begin{equation}
\text{Hom}_{\mathcal{C}_0}(\mathcal{T}^* \otimes \mathcal{T}, M) \cong \text{Hom}_{\mathcal{C}_1}(\mathcal{T}, \mathcal{T}^* \otimes M) \cong \text{Hom}_S(1, F(M)). \quad (1)
\end{equation}

This means that \mathcal{T}^* \otimes \mathcal{T} is a representing object for the functor \(M \mapsto \text{Hom}_S(1, F(M)) \), and so \(\mathcal{T}^* \otimes \mathcal{T} \cong H \) as an \text{H-module}. If we in addition demand that \(\mathcal{T}^* \cong \mathcal{T} \), the last line in the above table follows.

Given the above form of the tensor product functor \(\ast \) on \mathcal{C}, one can ask if it is possible to describe associativity and braiding isomorphisms for \(\ast \) in terms of Hopf algebraic data on \(H \). Our results for this question are given in Section 4. But before getting there, in Sections 2 and 3 we would like to give the two examples of such \(\mathbb{Z}/2\mathbb{Z} \)-graded braided monoidal categories which were our main motivation when setting up the formalism.

2 Tambara-Yamagami categories

For simplicity, we will work over the field \(\mathbb{C} \). Consider a fusion category \(\mathcal{C} \) over \(\mathbb{C} \) whose simple objects are labelled by \(G \cup \{m\} \) where \(G \) is a finite group and \(m \) is an extra label. Suppose that the tensor product \(\ast \) is of the form, for \(a, b \in G \),

\begin{equation}
a \ast b \cong ab \ , \quad m \ast a \cong m \cong a \ast m \ , \quad m \ast m \cong \bigoplus_{g \in G} g . \quad (2)
\end{equation}

This tensor product is a special case of the one in the above table: the underlying symmetric category \(\mathcal{S} \) is \(\text{vect}(\mathbb{C}) \), the category of finite dimensional \(\mathbb{C} \) vector spaces. The component \(\mathcal{C}_0 \) is spanned by the simple objects \(g \in G \); the component \(\mathcal{C}_1 \) is spanned by \(m \) alone, so that \(\mathcal{C}_1 \cong \text{vect}(k) \). The Hopf algebra \(H \in \mathcal{S} \) is the function algebra \(\text{Fun}(G, \mathbb{C}) \).
For any such fusion category C, the group G is necessarily abelian and C is monoidally equivalent to $C(\chi, \tau)$, which is defined as follows [3, Thm. 3.2]. $C(\chi, \tau)$ has simple objects and fusion rules as in (2), and its associator is determined by a symmetric non-degenerate bicharacter $\chi : G \times G \to \mathbb{C}^\times$ and a choice of $\tau \in \mathbb{C}^\times$ such that $\tau^2 = |G|^{-1}$. The associator is a bit lengthy and we refer to [3].

The category $C(\chi, \tau)$ allows for a braiding if and only if G is an elementary 2-group (i.e. $gg = e$ for all $g \in G$) [4]. The braiding isomorphisms are determined by a quadratic form σ associated to the bicharacter χ and a number β such that $\beta \neq 0$ and $\beta^2 = \tau \sum_{a \in G} \sigma(a)$. Explicitly, under the identifications (1) the braiding is

$$c_{a,b} = \chi(a,b) id_{ab}, c_{a,m} = \sigma(a) id_m = c_{m,a}, c_{m,m} = \bigoplus_{g \in G} \beta \sigma(g)^{-1} id_g,$$

(3)

An important example of a braided monoidal category of the above type is provided by the two-dimensional critical Ising model. There, one considers the three irreducible representations $\hat{1}$, $\hat{\varepsilon}$, $\hat{\sigma}$ of the Virasoro algebra which have central charge $c = \frac{1}{2}$ and lowest L_0-weights $h_1 = 0$, $h_\varepsilon = \frac{1}{2}$ and $h_\sigma = \frac{1}{16}$. The fusion rules are of the form (1) where $\hat{1}, \hat{\varepsilon}$ generate the group $G = \mathbb{Z}/2\mathbb{Z}$ and $\hat{m} = \hat{\sigma}$ has fusion rule $\hat{\sigma} \ast \hat{\sigma} \cong \hat{1} \oplus \hat{\varepsilon}$. The braiding isomorphism $c_{r,s}$ projected to the simple object $t \in r \ast s$ is multiplication by $\exp(\pi i (h_r + h_s - h_t))$. Comparing to (3) shows that the braided monoidal structure is determined by $\sigma(\hat{\varepsilon}) = \exp(\pi i/2)$, $\beta = \exp(\pi i/8)$ and thus $\chi(\hat{\varepsilon}, \hat{\varepsilon}) = -1, \tau = 1/\sqrt{2}$.

3 Symplectic fermions

Continuing with examples from two-dimensional conformal field theory, we now consider symplectic fermions [5]. The mode algebra of n pairs of symplectic fermions is determined by a $2n$-dimensional symplectic vector space \mathfrak{h}. It is convenient to think of \mathfrak{h} as a purely odd abelian Lie super-algebra with non-degenerate super-symmetric pairing $(-,-)$; we will use this language in the following. The symplectic fermion mode algebra is the affinisation $\hat{\mathfrak{h}}$ of \mathfrak{h} with central element K and graded bracket $[a_m, b_n] = m(a, b) \delta_{m+n,0} K$, where $m, n \in \mathbb{Z}$ for untwisted (Neveu-Schwarz) representations and $m, n \in \mathbb{Z} + \frac{1}{2}$ for twisted (Ramond) representations.

\dagger This means that $\sigma : G \to \mathbb{C}^\times$ satisfies $\sigma(a) = \sigma(a^{-1})$, $\sigma(e) = 1$, and that $\chi(a, b) \sigma(a) \sigma(b) = \sigma(ab)$ for all $a, b \in G$.

3
Denote by $S(h)$ the symmetric algebra of h in $svect(C)$, the category of finite-dimensional complex super-vector spaces. Note that as a vector space, $S(h)$ is simply the exterior algebra of the vector space underlying h; in particular, $S(h)$ is finite-dimensional. The categories of untwisted and twisted representations of \hat{h} (of a certain type) are equivalent to [2, Thms. 2.4 & 2.8]:

\[
\begin{align*}
(\text{untwisted}) \quad C_0 & := \text{Rep}_{svect} S(h) \\
(\text{twisted}) \quad C_1 & := svect(C).
\end{align*}
\]

We would like to stress that for $\dim h = 2n > 0$, C_0 is not semi-simple.

A conformal field theory calculation endows the category $C = C_0 + C_1$ with a $\mathbb{Z}/2\mathbb{Z}$-graded tensor product [2, Thm. 3.13]. This tensor product is of the form stated in Section 1 with symmetric category $S = svect(C)$ and Hopf algebra $H = S(h)$.

The associativity isomorphism is determined by the copairing $C \in h \otimes h$ dual to the super-symmetric pairing $(-, -)$ on h, and by a top-form λ on $S(h)$ such that $(\lambda \otimes \lambda)(e^{-C}) = 1$ [2, Thm. 6.2]. To be more specific, pick a basis $\{e_i\}_{i=1, \ldots, 2n}$ of h such that the pairing takes the standard form $(e_{2k-1}, e_{2k}) = 1 = -(e_{2k}, e_{2k-1})$ for $k = 1, \ldots, n$. Then $C = \sum_{k=1}^{n}(e_{2k} \otimes e_{2k-1} - e_{2k-1} \otimes e_{2k})$ and, if we set $\hat{C} = -2 \sum_{k=1}^{n} e_{2k} \otimes e_{2k-1}$, the top-form λ is determined by $\lambda(\hat{C}^n) = n!(-2i)^n$. The explicit form of the associativity isomorphisms will be given as a special case of Theorem 1 below.

To describe the braiding, denote by ω_V the parity involution on a super-vector space V, and by $s_{V,W} : V \otimes W \rightarrow W \otimes V$ the symmetric structure on $svect(C)$. Then [2, Thm. 6.4]:

\[
\begin{align*}
& A \quad B \quad c_{A,B} \quad : \quad A \ast B \rightarrow B \ast A \\
& C_0 \quad C_0 \quad s_{A,B} \circ \exp(-C) \\
& C_0 \quad C_1 \quad s_{A,B} \circ (\exp(\frac{1}{2}\hat{C}) \otimes id_B) \\
& C_0 \quad C_0 \quad s_{A,B} \circ (id_A \otimes \exp(\frac{1}{2}\hat{C})) \circ (id_A \otimes \omega_B) \\
& C_1 \quad C_1 \quad e^{-i\pi \frac{n}{4}} \cdot (id_{S(h)} \otimes s_{A,B}) \circ (\exp(-\frac{1}{2}\hat{C}) \otimes id_A \otimes \omega_B)
\end{align*}
\]

In the last line, note that for $A, B \in C_1$ we have $A \ast B = S(h) \otimes A \ast B$.

4 A unified framework

The braiding isomorphisms \(\text{(3)} \) and \(\text{(5)} \) in the two examples just discussed may look quite different at first glance, but—just as was the case for the tensor product \ast itself—they are actually two instances of the same structure.
Figure 1: Associativity isomorphism $\alpha_{A,B,C} : A*(B*C) \to (A*B)*C$. The label abc means that $A \in C_a$, $B \in C_b$, $C \in C_c$. In the three non-listed cases 000, 001, 100, $\alpha_{A,B,C}$ is the identity (or rather the associator of the underlying category S). The diagrams are read from bottom to top, the empty and solid dot denote S and S^{-1}, respectively, and the three-valent vertices are the product and coproduct. The arrowhead depicts the action of H on a module.

Namely, let S be a pivotal symmetric monoidal category (i.e. a ribbon category with symmetric braiding $s_{A,B} : A \otimes B \to B \otimes A$) and let H be a Hopf algebra in S with invertible antipode. Denote by $\text{Rep}_S(H)$ the monoidal category of left H-modules in S and set

$$C = C_0 + C_1 \quad \text{with} \quad C_0 = \text{Rep}_S(H), \quad C_1 = S.$$ \hfill (6)

On C we fix the $\mathbb{Z}/2\mathbb{Z}$-graded tensor product functor $*$ from Section[1]. Denote by μ the multiplication of H, by Δ the coproduct, and by S the antipode. For a morphisms $x : 1 \to H$ in S, write xM and M_x for the endomorphism of H given by left- and right-multiplication with x, respectively, and Ad_x for the endomorphism given by $x(-)x^{-1}$. Associativity isomorphisms for $*$ can be obtained from Hopf-algebraic data as follows [1, Cor. 3.17]:

Theorem 1. Let $\gamma : 1 \to H \otimes H$ and $\lambda : H \to 1$ be two morphisms in S such that

1. γ is a non-degenerate Hopf-copairing,
2. λ is a right cointegral for H, such that there exits $g : 1 \to H$ with $(id \otimes \lambda) \circ \Delta = g \circ \lambda$, and such that $(\lambda \otimes \lambda) \circ (id \otimes S) \circ \gamma = id_1$,
3. γ satisfies the symmetry condition $s_{H,H} \circ \gamma = (id \otimes (S^2 \circ \text{Ad}_g^{-1})) \circ \gamma$.

Then the natural isomorphisms in Figure[1] define associativity isomorphisms for $*$.

\hfill 5
Figure 2: Braiding isomorphisms $c_{A,B} : A * B \rightarrow B * A$. The notation is as in Figure [1]

Note that it is not claimed that the above description gives all associativity isomorphisms for $*$; outside of $\mathcal{S} = \text{vect}(k)$ this would require extra assumptions. In [1], the above theorem is actually proved in the more general setting of \mathcal{S} being ribbon but not necessarily symmetric. The relevant Hopf algebra notions are reviewed in [1, Sec. 2].

Example 2. 1. The Tambara-Yamagami categories are recovered for $\mathcal{S} = \text{vect}(\mathbb{C})$ and $H = \text{Fun}(G, \mathbb{C})$. The cointegral and copairing are $\lambda = \tau \sum_{a \in G} \delta_a$ and $\gamma = \sum_{a,b \in G} \chi(a, b) \delta_a \otimes \delta_b$.
2. For symplectic fermions take $\mathcal{S} = \text{svect}(\mathbb{C})$ and $H = S(\mathfrak{h})$. The copairing is $\gamma = e^C$ and the cointegral λ is as given in Section 3.
3. Another example for $\mathcal{S} = \text{vect}(\mathbb{C})$ is provided by Sweedler’s four-dimensional Hopf algebra, which is not semi-simple [1, Sec. 3.8.3]. This illustrates that Theorem 1 is more general than Tambara-Yamagami categories even in the vector space case.

For the braiding isomorphisms we need to fix an involutive monoidal automorphism ω of the identity functor on \mathcal{S}. For $\mathcal{S} = \text{vect}(\mathbb{C})$, ω is necessarily the identity, but for $\mathcal{S} = \text{svect}(\mathbb{C})$ there are already two choices: the identity and parity involution. We have [1, Thm. 1.2 & Rem. 4.11]:

Theorem 3. Let H, γ, λ and g be as in Theorem 1 and let $\sigma : 1 \rightarrow H$ and $\beta : 1 \rightarrow 1$ be invertible. Suppose that

1. γ is determined through σ by $\gamma = (\sigma^{-1} M \otimes M_{\sigma^{-1}}) \circ \Delta \circ \sigma$.
2. λ satisfies $\lambda \circ S = \lambda \circ \text{Ad}_\sigma$ and $\lambda \circ \sigma = \beta \circ \beta$.

6
3. \(\text{Ad}_\sigma \) is a Hopf-algebra isomorphism \(H \to H_{\text{cop}} \) (the opposite coalgebra).

4. \(S \circ \sigma = gM \circ \sigma = M_{g^{-1}} \circ \sigma \).

5. \(\omega \) evaluated on \(H \) satisfies \((\text{id} \otimes \omega_H) \circ \gamma = (\text{Ad}_\sigma \otimes (\text{Ad}^{-1}_\sigma \circ S)) \circ \gamma \).

Then the natural isomorphisms in Figure 2 define a braiding on \(\mathcal{C} \).

If \(\sigma^2 \) is central in \(H \), then \(\mathcal{C} \) can be made into a ribbon category with twist isomorphisms \(\theta_A = \sigma^{-2}(\cdot) \) for \(A \in \mathcal{C}_0 \) (i.e. the left action of \(\sigma^{-2} \) on the \(H \)-module \(A \)), and \(\theta_A = \beta^{-1}\omega_A \) for \(A \in \mathcal{C}_1 \), see [1, Prop. 4.18].

Example 4. 1. In the Tambara-Yamagami case, \(\sigma \) and \(\beta \) are as in Section 2. Comparing (3) and Figure 2 shows that the braiding isomorphisms match \((S = \text{id}_H \text{ for an elementary 2-group, and Ad}_\sigma = \text{id}_H \text{ since } H \text{ is commutative}). \)

2. For symplectic fermions choose \(\sigma = \exp(\frac{1}{2} \hat{C}) \) and \(\beta = e^{-\pi in/4} \). Then (5) agrees with Figure 2.

3. Sweedler’s Hopf algebra is quasi-triangular, but the resulting braiding on \(\mathcal{C}_0 \) does not extend to all of \(\mathcal{C} \) (at least via the above construction). However, one can find a 16-dimensional semi-simple Hopf algebra in \(\text{vect}(\mathbb{C}) \) which is neither commutative nor co-commutative for which Theorems 1 and 3 apply [1, Sec. 4.7.4]. This is another instance where our setting is more general than the Tambara-Yamagami case even for \(\mathcal{S} = \text{vect}(\mathbb{C}) \).

References

[1] A. Davydov and I. Runkel, \(\mathbb{Z}/2\mathbb{Z} \)-extensions of Hopf algebra module categories by their base categories, 2012.3611 [math.QA].

[2] I. Runkel, A braided monoidal category for free super-bosons, 2012.5554 [math.QA].

[3] D. Tambara and S. Yamagami, Tensor categories with fusion rules of self-duality for finite abelian groups, J. Alg. 209 (1998) 692–707.

[4] J. Siehler, Braided near-group categories, math.QA/0011037.

[5] H.G. Kausch, Curiosities at c = -2, hep-th/9510149.