Intra-patient heterogeneity of BRAF mutation status: fact or fiction?

A M Menzies¹, J S Wilmott¹, G V Long¹ and R A Scolyer*¹,²

¹Melanoma Institute Australia and The University of Sydney, Sydney, NSW, Australia and ²Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Missenden Road, Sydney, NSW 2050, Australia

Sir,

We read with great interest the recent publication by Heinzerling et al (2013), demonstrating intra-patient heterogeneity of BRAF mutation status between tumours in 10 of 53 (18.9%) patients. However, we have great concern that the results of the study may reflect the (less than 100%) sensitivity of the results available in the near future (Von Hoff et al, 2013). As these authors propose, the effects of BRAF status on clinical outcome may be a consequence of the direct elimination of cancer cells and interruption of the cancer cell-stroma interactions. Certainly, additional preclinical and translational clinical studies are needed to determine the precise mechanism of action of this, otherwise, clinically effective regimen.

*Correspondence: Dr M Hidalgo; E-mail: mhidalgo@cnio.es
Published online 18 March 2014
© 2014 Cancer Research UK. All rights reserved 0007 – 0920/14

REFERENCES

This is a letter to the editor.
Clinical responses observed in patients treated with BRAF inhibitors do not support the suggestion of intra-patient BRAF heterogeneity as all metastases have a uniform initial metabolic response to BRAF inhibition assessed using FDG-PET imaging (McArthur et al, 2012), and all resistant lesions resected from patients still contain mutant BRAF (McArthur et al, 2011; Poulikakos et al, 2011; Van Allen et al, 2013).

Further clinical studies are required to examine the issue of intra-patient discordance of BRAF. Carefully assigning primary melanomas as culprit lesions, and using accurate BRAF testing methods with adequate tumour cell content would be the requirements to underpin the data.

ACKNOWLEDGEMENTS

This work is supported by Program Grant 633004 of the National Health and Medical Research Council of Australia (NHMRC), Translational Research Program Grant 10/TPG/1-02 of the Cancer Institute NSW. GVL and RAS are funded by the Cancer Institute New South Wales and NHMRC Fellowship programmes. The funding bodies had no role in the opinions expressed in the letter.

CONFLICT OF INTEREST

AMM has received honoraria from Roche and travel support from Roche and GlaxoSmithKline (GSK). JSW declares no conflict of interest. GVL has been a consultant for Roche, Bristol-Myers Squibb, GSK and Novartis, and has received honoraria and travel support from Roche. RAS has been a consultant for Roche and GSK, and has received honoraria from Abbott Molecular.

REFERENCES

Boursault L, Haddad V, Vergier B, Cappellen D, Verdon S, Bellocq JP, Jouary T, Merlio JP (2013) Tumor homogeneity between primary and metastatic sites for BRAF status in metastatic melanoma determined by immunohistochemical and molecular testing. *Plas One* 8(8): e70826.

Colombino M, Capone M, Lissia A, Cossu A, Rubino C, De Giorgi V, Massi D, Fonsatti et al (2013) Intrapatient and interpatient heterogeneity of BRAFV600 mutation status in melanoma. *J Clin Oncol* 30(4): 1628–1634.

McArthur GA, Puzanov I, Amaravadi R, Ribas A, Chapman P, Kim KB, Sosman JA, Lee RJ, Nolop K, Flaherty KT, Callahan J, Hicks RJ (2012) Marked, homogeneous, and early [18F]fluorodeoxyglucose-positron emission tomography responses to vemurafenib in BRAF-mutant advanced melanoma. *J Clin Oncol* 30(14): 1628–1634.

McArthur GA, Ribas A, Chapman PB, Flaherty KT, Kim KB, Puzanov I, Nathanson KI, Lee RJ, Koehler A, Spielss O, Bollag G, Wu W, Trunzer K, Sosman JA (2011) Molecular analyses from a phase I trial of vemurafenib to study mechanism of action (MOA) and resistance in repeated biopsies from BRAF mutation-positive metastatic melanoma patients (pts). *J Clin Oncol* 29(Suppl 15): abstract 8502.

Menzies AM, Lun T, Wilmott JS, Hyman J, Kefford RF, Thompson JP, O’Toole S, Long GV, Scolyer RA (2013) Intrapatient heterogeneity of BRAF(V600E) expression in melanoma. *Am J Surg Pathol* e-pub ahead of print 12 December 2013; doi:10.1097/PAS.0000000000000156.

Murali R, Brown PT, Kefford RF, Scolyer RA, Thompson JP, Atkins MB, Long GV (2012) Number of primary melanomas is an independent predictor of survival in patients with metastatic melanoma. *Cancer* 118(18): 4519–4529.

Poulikakos PI, Persaud Y, Janakiraman M, Kong X, Ng C, Moriceau G, Shi H, Atefi M, Titz B, Gabay MT, Salton M, Dahlman KB, Tadi M, Wargo JA, Flaherty KT, Kelley MC, Misteli T, Chapman PB, Sosman JA, Graeber TG, Ribas A, Lo RS, Rosen N, Solt DB (2011) RAF inhibitor resistance in melanoma is mediated by dimerization of aberrantly spliced BRAF(V600E). *Nature* 480(7377): 387–390.

Saint-Jean M, Quereguix G, Nguyen J-M, Peuvrel L, Brocard A, Vallee A, Knol A-C, Khramnati A, Denis MG, Dreno B (2014) Is a single BRAF wild-type test sufficient to exclude melanoma patients from vemurafenib therapy? *Invest Dermatol* 135(1): 1468–1470.

Van Allen EM, Wagle N, Sucker A, Treacy DJ, Johannessen CM, Goetz EM, Place CS, Taylor-Weiner A, Whittaker S, Kryuovik GV, Hodis E, Rosenberg M, McKenna A, Cubulskis K, Farlow D, Zimmer L, Hallen U, Gutzmer R, Goldinger SM, Ugurel S, Gogas H, Egberts F, Berking C, Trefzer U, Loquai C, Weide B, Hassel JC, Gabriel SB, Carter SL, Getz G, Garraway LA, Schadendorf D (2013) The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. *Cancer Discov* e-pub ahead of print 22 November 2013.

*Correspondence: Professor RA Scolyer, E-mail: richard.scolyer@sswahs.nsw.gov.au
Published online 24 December 2013
© 2014 Cancer Research UK. All rights reserved 0007–0920/14

LETTERS TO THE EDITOR

Reply: Intra-patient heterogeneity of BRAF mutation status: fact or fiction?

L Heinzler
G Schuler1, A Hartmann2 and R Schneider-Stock23

1Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany; 2Department of Pathology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany; 3Experimental Tumor Pathology, Department of Pathology, University of Erlangen-Nürnberg, 91054 Erlangen, Germany

We thank Menzies et al (2014b) for their interest in our work and their detailed and informative remarks that extend what we discussed in our paper. They are concerned that our findings of an unexpected high percentage of heterogeneity reflect methodological problems of mutation detection rather than tumour biology. In contrast, our main worry is that acknowledged and widely used diagnostic techniques could exclude a significant percentage of patients from BRAF inhibitor therapy despite the presence of mutated metastases. Indeed, our study was initiated because we could not believe in the intrapatient heterogeneity even though we like other groups (Houben et al, 2004) were occasionally getting divergent results when retesting new metastases from patients. We will try to explain in our reply why we do not believe that there are ‘easy’ explanations such as lack of sensitivity, low tumour content in samples studied and higher sensitivity of immunohistochemical analyses compared with direct mutation detection.

We are aware that our findings could be due to sensitivity of our testing methods. The suggested approach of immunohistochemistry (IHC), however, will not suffice to detect BRAF mutations. Indeed a substantial patient population will be missed as we and others have shown that rare BRAF mutations are not (V600K, V600D, L597S, V600DKE601del, V600R) or not always detected by IHC (Skorokhod et al, 2012; Heinzlerling et al, 2013). Similarly, the COBAS test does not reliably detect rare mutations (Heinzlerling et al, 2013). Rare mutations have been described in up to 20% of BRAF-mutated patients by your group and others (Beadling et al, 2011; Long et al, 2011; Dahlman et al, 2012) and it is crucial to detect them as these patients respond to therapy with BRAF inhibitor (Chapman et al, 2011; Klein et al, 2013). Thus, even though possibly the intrapatient heterogeneity might be lower in the published IHC study by Menzies et al (2014a) using IHC as only detection technique would exclude patients with actionable mutations from effective treatment with a BRAF inhibitor. Furthermore, discordance rates of course also depend on the number of samples tested. And even the study with lowest rates of heterogeneity only using paired samples of primary tumour and one metastatic lesion found heterogeneity in some patients with concordant results in 90.9% (Boursault et al, 2013). It is likely that the rate of heterogeneity is higher when testing more samples per patient (up to 13 in our studies) and as shown by Colombino depends on the number of samples studied.

In summary, we do not believe that our findings are an artefact of our testing method. As we have shown, the intrapatient heterogeneity, is a common finding in melanoma patients with BRAF mutation, even though not all have a clinical response to BRAF inhibition.