P1161 ASPEN: LONG-TERM FOLLOW-UP RESULTS OF A PHASE 3 RANDOMIZED TRIAL OF ZANUBRUTINIB (ZANU) VS IBRUTINIB (IBR) IN PATIENTS (PTS) WITH WALDENSTRÖM MACROGLOBULINEMIA (WM)

Topic: 18. Indolent and mantle-cell non-Hodgkin lymphoma - Clinical

Meletios Dimopoulos¹, Stephen Opat², Shirley D’Sa³, Wojciech Jurczak⁴, Hui-Peng Lee⁵, Gavin Cull⁶, Roger G. Owen⁷, Paula Martron⁸, Bjorn E. Wahlin⁹, Ramon Garcia-San10,11, Helen McCarthy¹¹, Stephen Mulligan¹², Alessandra Tedeschi¹³, Jorge J. Castillo¹⁴, Jaroslav Czyz¹⁵, Carlos Fernandez De Larena Rodríguez¹⁶, David Belada¹⁷, Edward Libby¹⁸, Jeffrey Matous¹⁹, Marina Motta²⁰, Tanya Siddiqui²¹, Monica Tan²², Marek Tmny²³, Monique Minnema²⁴, Christian Busse²⁵, Veronique Leblond²⁶, Steven P. Teon²⁷, Judith Trotman²²⁷, Wai Y. Chan²⁸, Jingjing Schneider²⁸, Heather Allwelt²⁸, Alileen Cohen²⁸, Jane Huang²⁸, Constantine S. Tam²⁹

¹ National and Kapodistrian University of Athens, Athens, Greece; ² Monash Health and Monash University, Clayton, Victoria, Australia; ³ Centre for Waldenström’s Macroglobulinemia and Associated Disorders, University College London Hospital Foundation Trust, London, United Kingdom; ⁴ Maria Skłodowska-Curie National Institute of Oncology, Krakow, Poland; ⁵ Flinders Medical Centre, Adelaide, SA, Australia; ⁶ Sir Charles Gairdner Hospital, University of Western Australia, Perth, WA, Australia; ⁷ St. James University Hospital, Leeds, United Kingdom; ⁸ Princess Alexandra Hospital, University of Queensland, Brisbane, Queensland, Australia; ⁹ Karolinska Universitetssjukhuset and Karolinska Institutet, Stockholm, Sweden; ¹⁰ Hospital Universitario de Salamanca, Salamanca, Spain; ¹¹ Royal Bournemouth and Christchurch Hospital, Bouremouth, United Kingdom; ¹² Royal North Shore Hospital, Sydney, New South Wales, Australia; ¹³ ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy; ¹⁴ Dana-Farber Cancer Institute, Boston, MA, United States; ¹⁵ Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland; ¹⁶ Hospital Clinic de Barcelona, Barcelona, Spain; ¹⁷ FN Hradec Králové, Hradec Králové, Czech Republic; ¹⁸ University of Washington/Seattle Cancer Care Alliance - Clinical Research, Seattle, WA, United States; ¹⁹ Colorado Blood Cancer Institute, Denver, CA, United States; ²⁰ AO Spedali Civili di Brescia, Lombardia, Italy; ²¹ City of Hope National Medical Center, Duarte, CA, United States; ²² Ospedale Civile S.Maria delle Croci, AUSSL Ravenna, Italy; ²³ Vseobecná fakultní nemocnice v Praze, Prague, Czech Republic; ²⁴ University Medical Center Utrecht, Utrecht, Netherlands; ²⁵ CCC Ulm - Universitätsklinikum Ulm, Ulm, Baden-Württemberg, Germany; ²⁶ Södertörns University, Pitié Salpêtrière Hospital, Paris, France; ²⁷ Concord Repatriation General Hospital, Sydney, New South Wales, Australia; ²⁸ BeiGene USA, Inc., San Mateo, CA, United States; ²⁹ Royal Melbourne Hospital, Parkville, Victoria, Australia

Background: ZANU is a potent and selective next-generation Bruton tyrosine kinase inhibitor (BTKi) designed to have greater affinity to BTK while minimizing off-target inhibition of TEC- and EGFR-family kinases. ASPEN (NCT03053440) is a randomized, open-label, phase 3 study comparing ZANU with the first-generation BTKi IBR in pts with WM. We present data with a median follow-up of 43 months.

Aims: To compare the efficacy and safety of ZANU vs IBR in pts with MYD88 mutant (MYD88mut) WM and ZANU in pts with wild-type MYD88 (MYD88wt) WM.

Methods: Pts with MYD88mut WM were assigned to cohort 1 and randomized 1:1 to receive ZANU 160 mg twice daily or IBR 420 mg once daily. Pts with MYD88wt were assigned to cohort 2 and received ZANU 160 mg twice daily until disease progression. Randomization was stratified by CXCR4 mutational status by Sanger sequencing and lines of prior therapy (0, 1-3, or >3). All pts gave informed consent. The primary endpoint was proportion of pts achieving very good partial response or better (VGPR + complete response [CR]). Primary analysis occurred at 19 months median follow-up, and final analysis is planned to occur ~4 years after the first pt enrolled.

Results: A total of 201 pts (102 ZANU; 99 IBR) were enrolled in cohort 1 and 28 pts in cohort 2. Baseline characteristics in cohort 1 differed between pts treated with ZANU vs IBR in CXCR4 mutations by next-generation sequencing (32% vs 20%, or 33 of 98 vs 20 of 92 available samples, respectively) and pts aged >75 years (33% vs 22%, respectively). Median duration of treatment was 42 months (ZANU) and 41 months (IBR), with 67% and 58% remaining on treatment, respectively. The VGPR+CR rate by investigator was 36% with ZANU vs 22% with IBR.
(descriptive \(p = 0.02 \)) in cohort 1, and 31% in cohort 2. One pt in cohort 2 obtained a CR. In pts with wild-type (65 ZANU; 72 IBR) or mutant \(CXCR4 \) (33 ZANU; 20 IBR) from cohort 1, VGPR+CR rates with ZANU vs IBR were 45% vs 28% \((p = 0.04)\) and 21% vs 5% \((p = 0.15)\), respectively. Median progression-free survival and overall survival were not reached.

Consistent with less off-target inhibition, rates of atrial fibrillation, diarrhea, hypertension, localized infection, hemorrhage, muscle spasms, pneumonia, and adverse events (AEs) leading to discontinuation or death were lower with ZANU vs IBR (Table); neutropenia (including grade ≥3) was the only AE of interest that was higher with ZANU (33.7%) vs IBR (19.4%). Rate of grade ≥3 infection was lower with ZANU (20.8%) vs IBR (27.6%). AE incidence with ZANU was similar across cohorts 1 and 2.

Annual prevalence analysis of cohort 1 AEs showed reduced prevalence of hemorrhage over time and lower prevalence with ZANU vs IBR at all intervals. In pts treated with ZANU, neutropenia and infection prevalence decreased over time. Prevalence of infection was lower in pts treated with ZANU vs IBR, and neutropenia was similar between arms (8.8% vs 9.7%, respectively) at ≥24–36 months of treatment. Prevalence of atrial fibrillation remained ≤5% and hypertension remained stable with ZANU, each with a lower prevalence at all intervals vs an increasing trend seen with IBR.

Consistently, exposure-adjusted incidence rates of atrial fibrillation/flutter and hypertension were lower with ZANU vs IBR (0.2 vs 0.8 and 0.5 vs 1.0 persons per 100 person-months, respectively; \(p < 0.05 \)).

Table

AE (All Grade), % of Treated Patients	Cohort 1 ZANU (n=101)	Cohort 1 IBR (n=98)	Cohort 2 ZANU (n=20)
AE, grade ≥3	74.3	72.4	71.4
AE leading to discontinuation	8.9	19.4	14.3
Atrial fibrillation/flutter*	7.9	23.5	7.1
Diarrhea	21.3	34.7	32.1
Hemorrhage*	55.4	62.2	39.9
Major bleeding*	7.9	12.2	7.1
Hypertension*	14.9	25.5	10.7
Muscle spasm	10.9	28.6	14.3
Localized infection	1.0	11.2	7.1
Neutropenia*	33.7	19.4	21.4
Pneumonia	5.0	18.4	14.3
Infection, all grade (grade ≥3)	78.2 [20.8]	79.6 [27.6]	82.1 [32.1]

*Grouped term.

*Includes grade ≥3 hemorrhage and central nervous system bleeding of any grade.

Summary/Conclusion:

ASPERN is the largest phase 3 trial with head-to-head BTKi comparison in WM. At a median follow-up of 43 months, ZANU was associated with a higher VGPR+CR rate and demonstrated clinically meaningful advantages in long-term safety and tolerability vs IBR.

© American Society of Clinical Oncology, Inc. Reused with permission. This abstract was accepted and previously

Copyright Information: (Online) ISSN: 2572-9241
© 2022 the Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the European Hematology Association. This is an open access Abstract Book distributed under the Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) which allows third parties to download the articles and share them with others as long as they credit the author and the Abstract Book, but they cannot change the content in any way or use them commercially.

Abstract Book Citations: Authors, Title, HemaSphere, 2022;6:(S3):pages. The individual abstract DOIs can be found at https://journals.lww.com/hemasphere/pages/default.aspx.

Disclaimer: Articles published in the journal HemaSphere exclusively reflect the opinions of the authors. The authors are responsible for all content in their abstracts including accuracy of the facts, statements, citing resources, etc.
