Activities inhibition methanol extract Laban Leaf (*Vitex pinnata*) on growth of bacteria *S. mutans* Atcc 31987

C A Nuraskin1,2,*, Marlina3, R Idroes3,4, C Soraya5, Djufri6

1 Graduate School of Mathematics and Applied Sciences, Syiah Kuala University, Kopelma Darussalam, Banda Aceh 23111, Indonesia
2 Poltekkes Kemenkes Aceh Jl. Soekarno Hatta, Tingkeum, Darul Imarah, Lheu Blang, Banda Aceh, Kabupaten Aceh Besar, Aceh, 23231, Indonesia
3 Chemistry Department, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Kopelma Darussalam, Banda Aceh 23111, Indonesia
4 Pharmacy Department, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Kopelma Darussalam, Banda Aceh 23111, Indonesia
5 Conservative Dentistry Department, Faculty of Dentistry, Syiah Kuala University, Kopelma Darussalam, Banda Aceh 23111, Indonesia
6 Biology Education Department, Faculty of Teacher Training and Education, Syiah Kuala University, Kopelma Darussalam, Banda Aceh 23111, Indonesia

E-mail: cutaja82@yahoo.co.id

Abstract. People in Aceh, especially in the area of *Ie Seu’um* using the surrounding plants to treat diseases. One of the medical plants is laban (*Vitex pinnata*). Laban leaves are used to treat fever, hypertension, and toothache. Various bacteria found in the oral cavity, but only a few bacteria cause dental caries, including *S. mutans*. Based on the laban plant ethnobotany information, an evaluation of antibacterial activity on bacterial bioindicator of *S. mutans* and phytochemical screening had been performed. Laban plants contain flavonoids, saponins, and tannins. This study aims to determine the inhibition activity of laban leaf methanol extract (*Vitex pinnata*) on the growth of *S. mutans* bacteria in vitro. The antimicrobial activity was tested by using the Kirby-Bauer method with the extract concentration of 30%, 40%, 50%, and 60%. The results showed that there was an inhibition activity with the significance of 0.000 < 0.05, therefore the hypothesis in this research can be accepted that Laban leaf methanol extract (*Vitex pinnata*) has inhibition activity, the higher the concentration the higher inhibition power.

1. Introduction
The use of traditional medicines to treat diseases is quite attractive to most of Indonesian people, because of its mild side effects [1]. People in Aceh, especially in the area of *Ie Seu’um* use the surrounding plants to treat diseases. One of the plants used as alternative medicine is laban plants (*Vitex pinnata*), known under various names, Aceh (*bak mane*) [2], Indonesia (*laban*), *Milletia pinnata* (L.) Panigrahi, *Pongamia glabra* Vent, *Derris indica*, *keranja* (Hindi, Bengali, Sanskrit), *kipahang laut*, *sea-nut*, and *pongam* oil tree (Malay) [3].

Corresponding author : cutaja82@yahoo.co.id
Laban plants contain the components of flavonoids, saponins, and tannins. Laban leaves (*Vitex pinnata*) can be used for the treatment of diseases such as fever and hypertension [4]. The Punjabi (Pakistan) community uses laban (*Vitex pinnata*) plants to treat oral diseases [3]. Phytochemical test results of laban leaves shows the content of alkaloids, flavonoids, saponins, sterpenoids, tannins, [2]. Therefore, laban plant (*Vitex pinnata*) is potential as an antibacterials [5].

Various bacteria are found in the oral cavity, but only a few bacteria cause dental caries, one of which is *S. mutans*. These bacteria can be easily mount the tooth surfaces [6]. *S. mutans* is a bacteria that can grow well in an acidic atmosphere and can produce acid as a result of carbohydrate fermentation. The acid produced by this bacterium can cause tooth demineralization [7]. Therefore, the activity of inhibition of methanol leaf extract of Laban leaf (*Vitex pinnata*) in *Ie Seu’um* to *S. mutans* bacteria is needed, and Laban leaf methanol extract (*Vitex pinnata*) can be used as a raw material of anti-bacterial drugs that can prevent dental caries. The area of *Ie Seu’um* is one of the Manifestations of the existing geothermal system in Aceh Besar. This area is located in the geothermal outflow zone of Mount Agam, Aceh Besar, located 20 km from the top of the mountain and 35 km from the city of Banda Aceh [8]. Associated with the inhibitory activity of methanolic extract of laban leaves (*Vitex pinnata*) against *S. mutans* bacteria in vitro until now has never been published. In particular laban plant (*Vitex pinnata*) from the area of *Ie Seu’um* Aceh Besar.

2. Materials and Methods

2.1. Sampling of Plants
Laban leaf (*Vitex pinnata*) collections were collected on February 3rd, 2018, from *Ie Seu’um* Mesjid Raya, Aceh Besar District, Aceh Province with purposive sampling method. Sampling was done at four locations with following coordinates: sample point 1 at coordinates (5°32’48.9” N 95°32’55.1” E), sample point 2 (5°32’51.4” N 95°32’54.3” E), sample point 3 (5°32’53.7” N 95°32’54.6” E), and the sample point 4 (5°32’45.7” N 95°32’57.8” E). Plant identification was done in Biology Department Faculty of Mathematics and Natural Sciences of Syiah Kuala University with number 558 / UN11.1.28.1 / DT / 2018. Coordinate *Ie Seu’um* and Laban (*Vitex pinnata*) can be seen in Figure 1 and Figure 2 respectively.

![Figure 1. Sampling coordinates in Ie Seu’um area, Aceh Besar.](image1)

![Figure 2. Laban (Vitex pinnata) in Ie Seu’um Area](image2)

2.2. Instruments and Materials
Instruments used included an analytical balance sheet, hot plate, media bottle, ose needle, shaker, tweezers, spiritus burner, autoclave, incubator (ecocell), colony counter, and sliding range. Materials used were Laban leaf (*Vitex pinnata*), *S. mutans* ATCC 31987 from Faculty of Veterinary Medicine Unsyiah, Nutrient agar (NA), Nutrient Broth (NB), Muller Hinton Agar (MHA), Disk Blank, Alcohol 70%, Aquades, Plastic wrap, and Aluminum foil, sulfoxide) [9].
2.3. Procedure

2.3.1. Maceration.

1 kg of dried leaves sample were mashed [10]. The obtained simplicia was then weighed [11], macerated with methanol solvent for 3 × 24 hours, evaporated with a rotary evaporator to obtain the methanol extract [12]. The extract was divided into several concentrations, 30%, 40%, 50% and 60%. Sterile aquadest was used as the negative control, while the positive control was Chlorhexidine 0.2%.

2.3.2. S. mutans bacterial culture.

Cultures of S. mutans was grown in NA agar medium, subsequently was incubated at 37° C for 2x24 hours in an incubator. One ose needle cultured S. mutans in NA medium was taken and incubated at 37° C for 24 hours in the incubator. The turbidity was compared with one of McFarland 0.5. If the turbidity of S. mutans in liquid medium NB equal to the turbidity of McFarland 0.5 then the number of S. mutans is estimated to be 1.5 x 10^8 CFU/ml. The next was performing gram staining procedure. Each disc was dipped into a petri dish containing Laban leaf methanol extract (Vitex pinnata) with concentrations of 30%, 40%, 50% and 60%. A sterile cotton bud was dipped into a S. mutans culture in suspension of NB medium, then was smeared evenly on the surface of MHA media, the disc was placed on the surface of MHA media. The disk paper was previously dipped into Chlorhexidine 0.2% before being placed on the MHA media surface. Then it was incubated at 37° C for 24 hours [13]. The procedure was conducted with three repetitions, then the inhibition zone was measured [14].

3. Result and Discussion

The results of the inhibitory activity of Laban leaf methanol extract (Vitex pinnata) can be seen in Table 1.

Experimental treatment	Average (mm)	Confidence Interval 95%	Standard Deviation*
30%	6.567	6.423 - 6.71	0.06
40%	6.867	6.487 - 7.246	0.15
50%	7.2	6.952 - 7.448	0.1
60%	10.433	9.916 - 10.95	0.21
Chlorhexidine 0.2 % Control (+)	19.6	15.696 - 23.504	1.57
Aquades Control (-)	6	6 - 6	0

* Three repetitions

Table 1. shows the number of treatment measures for each three times repetition, with different mean values with concentrations of 30%, 40%, 50% and 60%. This shows an increase in inhibition activity of laban leaf methanol extract (Vitex pinnata) against S. mutans bacteria. All the experimental treatment showed relative low standard deviations.

Table 2. ANOVA table to see the effect of laban concentration on inhibition power of S. mutans.

Source of Variation	Sum of Squares	Degree of Freedom	Mean Square	F	P-value
Treatment	407.824	5	81.565	191.917	0.000
Error	5.100	12	0.425		
Total	412.924	17			
Table 2 is the result of ANOVA test showing that there is an inhibition activity with significance of 0.000 < 0.05, therefore the hypothesis in this research is acceptable in which the extract of laban leaf methanol (*Vitex pinnata*) has inhibitory activity against *S. mutans* bacteria.

Treatment	Subset for alpha = 0.05
30%	6.567
40%	6.867
50%	7.200
60%	10.433
Chlorhexidine 0.2% Control (+)	19.600
Aquades Control (-)	6.000

Table 3. exhibit the mean values of treatments at concentrations of 30%, 40%, 50% and 60% were not significantly different. However the mean values of treatments 30%, 40%, 50% and 60% in comparison to positive control and negative control treatments were significantly different. Meanwhile the mean value of positive control treatment was significantly different from the negative control treatment.

The test results showed an increase in inhibitory activity of laban leaf methanol extract (*Vitex pinnata*) against *S.mutans* bacteria. Each experimental treatment has a different standard deviation value. Positive methanol extract contained alkaloids, steroids, terpenoids, saponins, flavonoids and phenolics [2]. In line with S. Thenmozhi’s research, laban plants are potential antibacterial [5]. The result of ANOVA test confirmed that there was an inhibitory activity to *S.mutans* bacteria with significance of 0.000 <0.05. This is due to the greater concentration of laban extract, the more inhibitory zone to *S. mutans*. This difference was caused by several factors, including the amount of inoculum, incubation time, extract concentration, and antibacterial type. The larger the inoculum the smaller the inhibit zone is formed. The inhibitory zone formed in Chlorhexidine 0.2% (the positive control) was greater than the inhibitory zone of laban leaf methanol extract. Meanwhile, the sterile aquades (the negative control) did not form a zone of inhibition. The antibacterial activity of laban leaf methanol extract was in accordance with the results of the study that extracts with 60% concentration had a larger inhibitory zone compared with concentrations of 30%, 40% and 50%.

4. Conclusion

Based on the results of a test study of inhibitory activity laban leaves methanol extract (*Vitex pinnata*) against *S. mutans* bacteria in vitro, it can be concluded that laban leaves methanol extract (*Vitex pinnata*) has an activity in inhibiting the growth of bacteria *S. mutans* in vitro. Based on the results of in this study, it can be concluded that the higher the concentration, the higher the inhibition power.

5. References

[1] Lawal, Nwogwugwu, J. O., Faloye, B., Olatunji, B. P., Adesoga, A. C. 2010 African Journal of Pharmacy and Pharmacology, 4(1), 1–7.

[2] Idroes R, Khairan, Fakri F, Zulfendi, 2016 Monographs of screening for plant activity that have the potential as antimicrobial material in the area of Ie Seu’um Aceh Besar, (Syiah Kuala Univ Press.)

[3] Muqarrabun L M R, Ahmat N, Ruzainia S A S, Ismail N H, Sahidin I 2013 Ethnopharmacology 150(2) 395–420

[4] Goh, M. P. Y., Basri, A. M., Yasin, H., Taha, H., Ahmad, N. 2017 Asian Pacific Journal of Tropical Biomedicine, 7(2), 173–180.

[5] Thenmozhil and U. Subasini 2016 Journal of Biomedical AND Pharmaceutical Sciences, 3(1),
191–201.

[6] Forssten SD, Björklund, M, Ouwehand AC. 2010 Nutrien Dent J. :2 (1): 290 - 289.

[7] Kidd E 2005 Essential Of Dental Caries, (New York : Oxford University Press)

[8] Idroes R, Yusuf M, Alatas M, Subhan, Lala A, Saiful, Suhendra R, Idroes G M and Marwan 2018 IOP Conf. Ser.: Mater. Sci. Eng. 334

[9] Mahmudah F L, Atun S 2017 S. mutans 22 (1) 59–66

[10] Biswas SK, Cowdhury, karmakar UK, Shill MC, R. 2011 Applied Pharmaceutical Science., 01(06): 112–114.

[11] Florensius Rinaldi F, Arsyik Ibrahim, Jaka Fadraersada, L. R. 2016 Identification of Secondary Metabolit and Toxicity Test of Laban Bark Methanol Extract (Vitex pinnata) by the Brybene Shrimp Lethality Test (BSLT) method, 20–21.

[12] Hermansah A, Harlia, Zahara T A 2015 Jkk 4 (2) 67–71

[13] Wan AKL, Seow WK, Walsh LJ, and B. P. 2002 Australia Dental Journal, 47(1), 21–26.

[14] Khafagi IK, D. A. 2000 Journal of Ethnopharmacology, 71: 365–376.