Ontology-Based Extraction and Summarization of Protein Mutation Impact Information

Nona Naderi and René Witte
Department of Computer Science and Software Engineering
Concordia University, Montréal, Canada

1 Introduction

NLP methods for extracting mutation information from the bibliome have become an important new research area within bio-NLP, as manually curated databases, like the Protein Mutant Database (PMD) (Kawabata et al., 1999), cannot keep up with the rapid pace of mutation research. However, while significant progress has been made with respect to mutation detection, the automated extraction of the impacts of these mutations has so far not been targeted. In this paper, we describe the first work to automatically summarize impact information from protein mutations. Our approach is based on populating an OWL-DL ontology with impact information, which can then be queried to provide structured information, including a summary.

2 Background

Mutations are alterations, rearrangements, or duplications of genetic material, impacting protein properties like stability or activity. For example:

\[
\text{H86A/E/F/K/Q/W decreased the enzyme stability at 60°C by up to 95% and the transition temperature by 2.5°C to 5.8°C.}
\]

Impacts are described through other concepts, since mutational events may cause changes to physical quantities such as \(pH\) and \(temperature\). As presented in the above example, the named mutations (H86A/E/F/K/Q/W) made changes to the thermostability by 2.5–2.8 degrees Celsius. Hence, we extract (i) units of measurement, e.g., \%, degree Celsius, min\; ; (ii) protein properties: stability, activity and others; and (iii) impact words, including increase, stabilize, and reduce.

Measurable impacts can thus be classified based on the type of effect (increase, decrease or destabilize) on the protein property.

3 Related work

Little previous work exists on automatically detecting and extracting mutation impacts. An exception is EnzyMiner (Yeniterzi and Sezerman, 2009), which performs document classification for disease-related mutations. This work differs significantly from ours, as we are concerned with sentence-level impact detection and summarization.

4 Mutation Impact Detection

Our main contribution for impact detection and summarization consists of two major parts: an ontology describing impacts on a semantic level, and an NLP pipeline for detecting impacts in documents in order to populate the ontology. Further analysis, including summarization, can then be performed on this NLP-populated ontology through ontology queries and reasoning.

Ontology Design. Our Mutation Impact Ontology conceptualizes impacts and the mutations associated with them. The main concepts are: Mutation: An alteration or a change to a gene and developing a different offspring. UnitOfMeasurement: A class for measurement units. MutImpact: Mutation effect on protein properties. ProteinProperty: A class for properties of “Protein” and subclassed by different properties like “Activity” and “Stability.” To design the Mutation Impact Ontology, information about several other elements is needed: Text elements, biological entities and entity relations. The relations between these entities are expressed as OWL object properties.

Mutation Impact Extraction. Impacts are detected through a combination of an OntoGazetteer annotating impact words, measurement units, etc., and JAPE grammar transducers, e.g.:

```java
Rule: MutationImpact
{} (Lookup.majorType == “onto_impact”); impact --> {
    try
        // get impact annotations
        gate.AnnotationSet impactSet = (gate.AnnotationSet)bindings.get("impact");
    ...
}
```

Here, the impact word that is marked as “Lookup” with a feature of “majorType,” “onto_impact” is
annotated as “MutImpact.” Accordingly, “Protein-Property” and “UnitOfMeasurement” are annotated through similar JAPE grammars. Finally, each sentence is annotated as containing impact information or not. All the units of measurement and protein properties (ProteinProperty) existing in that sentence (impact) are recorded for subsequent ontology export.

Mutation-Impact Relation Extraction. When the entities such as mutations and impacts are identified and annotated, the sentence containing the impact word expressions (MutImpact) is associated with the nearest “Mutation,” making the simple assumption that the nearest mutation invokes the impacts mentioned. The complete sentence is then considered as an impact sentence.

For each mutation-impact relation, we record the connection together with a number of properties, including units of measurement and effects.

Ontology Population. After preprocessing the documents and extracting the entities, the ontology is populated with the extracted entities such as mutations, mutation impact and their relations mutation impact relations.

5 Impact Summarization

The exported, populated OWL impact ontology can be queried using the SPARQL query language. To summarize impacts for a certain mutation, we can simply query the ontology for all detected impacts and extract the corresponding impact sentences:

```
PREFIX onto: <http://www.owl-ontologies.com/unnamed.owl#>
SELECT %sentence FROM <http://www.owl-ontologies.com/unnamed.owl#> WHERE { ?document onto:containsSentence ?sentence.
  ?sentence onto:contains MutImpact.
  ?Mutation onto:mutationMutImpactRel ?MutImpact.
  ?document onto:mutationMutImpactRel ?MutImpact.
} ORDER BY DESC (?document) DESC (?Mutation)
```

These are then collected into a textual summary providing the mutations with their impacts for the user, as shown in Fig. 1.

6 Evaluation

The performance of the system was evaluated on the abstracts of four different mutation corpora, each on a specific protein family: Xylanase (19 documents), Haloalkane Dehalogenase (23 documents), Subtilisin (5 documents), and Dioxygenase (11 documents). Altogether, 58 documents were manually annotated with their impacts. For each annotation “Sentence,” a binary feature “impact” is considered. As long as an impact exists in the sentence, the feature “impact” is set to “Yes;” otherwise to “No.” The results are shown in Table below: here, #C, #P, #M, and #S correspond to the correct, partially correct, missing, and spurious impact sentences, respectively; and P, R, F are the precision, recall, and F-measure:

Corpus	#C	#P	#M	#S	P	R	F
Haloalkane D	171	24	22	22	0.882	0.757	0.838
Xylanase	140	21	17	17	0.886	0.875	0.891
Dioxygenase	77	13	14	14	0.846	0.853	0.850
Subtilisin	24	9	10	10	0.750	0.767	0.758

The evaluation of associating the mutations with their impacts has so far been performed on the “Xylanase” corpus:

	Precision	Recall	F-Measure
Lenient (Partial matches included)	88%	80%	91%
Average (of Lenient and Strict)	86%	76%	80%
Strict (Partial matches not counted)	51.8%	46.6%	49.06%

7 Discussion

Our Mutation Impact Ontology models mutation impacts in the biomedical domain, linking them to the texts where they are found. Although the detection of mutation impacts has shown to be successful by this simple proximity heuristic to some extent, in some cases the impacts are missing or detected partially. Also, in cases where the impacts caused by a set of mutations, just one mutation (the nearest one) is considered, and the remaining mutations are ignored. Impacts are not always the result of the nearest mutation; however, automatically analysing the text and specifying the correct mutation associated with the impacts needs more complex analysis.

References

T. Kawabata, M. Ota, and K. Nishikawa. 1999. The Protein Mutant Database. *Nucleic Acids Res.*, 27(1):355–357.

S. Yeniterzi and U. Sezerman. 2009. Enzyminer: automatic identification of protein level mutations and their impact on target enzymes from pubmed abstracts. *BMC Bioinformatics*, 10(Suppl 8):82.