1H, 13C, and 15N resonance assignments of the *Clostridioides difficile* receptor binding domain 2 (CDTb, residues 757–876)

Mary E. Cook1 · Kristen M. Varney1 · Raquel Godoy-Ruiz1 · David J. Weber1

Received: 30 July 2020 / Accepted: 18 September 2020 / Published online: 9 October 2020
© The Author(s) 2020

Abstract

Clostridioides difficile is a bacterial pathogen responsible for the majority of nosocomial infections in the developed world. *C. difficile* infection (CDI) is difficult to treat in many cases because hypervirulent strains have evolved that contain a third toxin, termed the *C. difficile* toxin (CDT), in addition to the two enterotoxins TcdA and TcdB. CDT is a binary toxin comprised of an enzymatic, ADP-ribosyltransferase (ART) toxin component, CDTa, and a pore-forming or delivery subunit, CDTb. In the absence of CDTa, CDTb assembles into two distinct di-heptameric states, a symmetric and an asymmetric form with both states having two surface-accessible host cell receptor-binding domains, termed RBD1 and RBD2. RBD1 has a unique amino acid sequence, when aligned to other well-studied binary toxins (i.e., anthrax), and it contains a novel Ca$^{2+}$-binding site important for CDTb stability. The other receptor binding domain, RBD2, is critically important for CDT toxicity, and a domain such as this is missing altogether in other binary toxins and shows further that CDT is unique when compared to other binary toxins. In this study, the 1H, 13C, and 15N backbone and sidechain resonances of the 120 amino acid RBD2 domain of CDTb (residues 757–876) were assigned sequence-specifically and provide a framework for future NMR-based drug discovery studies directed towards targeting the most virulent strains of CDI.

Keywords *Clostridioides difficile* · CDI · CDTb · Binary toxin

Biological context

Clostridioides difficile infection (CDI) is caused by a spore-forming, Gram-positive bacterium, and it is the most commonly reported nosocomial infection in the world, accounting for 12% of all hospital-borne infections (Gerding 2015). Prior to the emergence of hypervirulent strains early in the twenty-first century, *C. difficile* strains produced only two large enterotoxins, TcdA and TcdB, which inhibit signaling pathways by glucosylating small GTPases. Whereas, hypervirulent strains emerging more recently, such as the NAP1 epidemic strain, encode TcdA/TcdB plus additional virulence factors, most notably a third toxin termed the *C. difficile* toxin (CDT) (Perelle et al. 1997). CDT is a binary toxin that kills host cells by covalent modification of essential intracellular regulators of host cell function, including G-actin. While drug options are becoming available to target the large clostridial toxins in CDI, TcdA/TcdB (Yang et al. 2015), there is nothing approved by the FDA to target CDT (Secore et al. 2017). To address this unmet medical need, potent and selective CDT inhibitors are needed to provide treatment option(s) for patients infected with the most serious hypervirulent CDT-containing strains of CDI.

CDT has an enzymatic subunit, CDTa (47.4 kDa), with ribosyltransferase activity, and a pore-forming delivery subunit, termed CDTb (74 kDa). Fully active CDT associates in a 1:7 ratio of CDTa to CDTb subunits (Goorhuis et al. 2008; Loo et al. 2005; McDonald et al. 2005; Rupnik 2008; Stewart et al. 2013; Geric et al. 2004). Prior to cellular entry via endosomes (Hale et al. 2004; Nagahama et al. 2000, 2004; Gibert et al. 2011), the binary toxin complex associates with membrane-bound host cell receptor(s), such as the lipolysis-stimulated lipoprotein receptor (LSR) and/or CD44 (Wigelsworth et al. 2012; Papatheodorou et al. 2011; Fagan-Solis et al. 2014; Hiramatsu et al. 2017). CDT enters the host cell via endosomes with the low pH in endosomes triggering CDTa translocation into...
the cytoplasm via the pore-forming entity, CDTb (Bach-meyer et al. 2001; Blocker et al. 2003; Haug et al. 2003; Knapp et al. 2002; Krantz et al. 2004, 2005, 2006; Lang et al. 2008; Schmid et al. 1994; Knapp et al. 2016). Upon delivery of the catalytically active CDTa enzyme into the host cell cytoplasm, ADP-ribosylation of G-actin occurs rapidly at Arg177 (Sundriyal et al. 2009). Modified G-actin leads to F-actin filament dissociation (Gulke et al. 2001), destruction of the cytoskeleton, increased microtubule protrusions, accelerated bacterial adhesion, and a “death spiral” for mammalian host cells (Gerding et al. 2014; Benz 2017; Barth 2017). Of interest here is the host-cell binding component of CDT, CDTb. Recent structural studies of CDTb showed that it exists in two states, either as an asymmetric or a symmetric di-heptamer, in the absence of CDTa (Gerding et al. 2014; Xu et al. 2020). The asymmetric form, AsymCDTb, has one of its two heptameric components folding into a seven-stranded beta-barrel with an internal cavity that is reminiscent of the anthrax protective antigen (PA) (Akkaladevi et al. 2013). Although, when compared to other binary toxins, CDTb was found to have two distinct host cell receptor-binding domains, RBD1 and RBD2, rather than just a single domain. In addition, RBD1 lacks sequence homology to any other known toxin and contains a novel calcium-binding site needed for protein stability (Xu et al. 2020). Whereas, the RBD2 domain is absent altogether in other well-studied binary toxins, including anthrax. Importantly, RBD2 was shown to provide a potent dominant negative effect for host cell toxicity when isolated (residues 757–876) indicating its important functional role within hypervirulent CDI (Xu et al. 2020). Therefore, with these data in hand, the sequence-specific backbone and sidechain resonance assignments of RBD2 were completed as a first step towards designing RBD2 inhibitors using NMR-based methods, which will be important for the longer-term goal of targeting toxicities associated with hypervirulent Clostridioides difficile that produces CDT.

Methods and experiments

Protein expression and purification

As previously described (Xu et al. 2020), DNA encoding the RBD2 binding domain of CDTb (residues 757–876) was codon optimized and engineered into pET21 expression plasmid along with a His-tag at its N-terminus, as was needed for solubility and purification purposes (TOPGene Technologies). The RBD2-containing expression plasmid was transformed into the E. coli BLR(DE3) cells, and large-scale protein over-production was performed using 2 L of defined [15N, 13C]-labeled MOPS media, containing 1 g/L of 15N-labeled NH4Cl and 2.5 g/L of 13C-labeled D-Glucose per liter of media. IPTG (0.5 mM) was added to the media when the A600 cell density reading was between 0.7 and 0.8 O.D., at which time the cells were grown for an additional 18 h at 25 °C. At the end of the growth period, the cells were centrifuged for 15 min at 4000 r.p.m, and the pellets were weighed and resuspended in a lysis buffer containing 50 mM Tris–HCl, pH 8.0, 500 mM NaCl, 10 mM BME such that 3 mL of lysis buffer were added per gram of wet pellet. Prior to sonication, the cell lysate was incubated at 4 °C for 1 h with DNase, 10 mM CaCl2 and 10 mM MgCl2. Three cycles of sonication at 50% power amplitude were performed next and followed by centrifugation at 15,000 r.p.m for 45 min at 4 °C to remove cell debris. The clear supernatant was filtered and loaded onto a previously equilibrated HiPrep 16/60 IMAC column with buffer A (20 mM Tris–HCl, pH 8.0, 300 mM NaCl, 10 mM BME). Upon addition of buffer B (buffer A plus 1 M imidazole) to the column, the RBD2 construct was eluted at ~ 150 mM imidazole into 5 mL fractions and analyzed by SDS-PAGE. The RBD2-containing fractions were pooled, concentrated, and injected onto a Superdex S200-PG size exclusion column previously equilibrated with 15 mM HEPES buffer, pH 7.0, 150 mM NaCl, and 0.5 mM DTT. Fractions containing the RBD2 construct were eluted from the S200 column and shown to be pure via SDS- and native-PAGE (> 99%). The yield of the RBD2 domain was typically > 50 mg of purified protein per liter of bacterial cell culture, and its concentration was adjusted to ~ 1 mM, aliquoted, and stored at −80 °C, prior to preparing NMR samples.

NMR spectroscopy

NMR data was collected at 25 °C onBruker 950 MHz, 800 MHz, and 600 MHz spectrometers. The NMR samples all contained 0.5 mM of the RBD2 domain, 15 mM HEPES buffer, pH 7.0, and 150 mM NaCl in 90% H2O and 10% D2O. The NMR sample was of high-quality as judged by a 2D 1H, 15N-edited HSQC spectrum shown together with sequence-specific resonance assignments (Fig. 1a), with excellent signal-to-noise. The observable backbone and sidechain 1H, 13C, and 15N resonances were assigned via pairwise comparison of inter- and intra-residue 13Cα, 13Cβ and 13Cγ chemical shift values from 3D HNCA, HN(CO)CA, HNCACB – CB optimized, CACB(CO)NH, HC(CO)NH, C(CO)NH, and HNCO experiments (Grzesiek 1992; Kay et al. 1994; Wittekind 1993; Montelione et al. 1992). The NMR data were processed with NMRPipe and analyzed using CcpNMR software (Delaglio et al. 1995; Vranken et al. 2005), and the secondary structure prediction was achieved using a Chemical Shift Index (CSI) algorithm on the CSI 2.0 web server (Berjanskii 2005). All proton chemical shifts were referenced to external trimethylsilyl propanoic acid (TSP) at 25 °C (0.00 ppm) with respect to residual H2O (4.698 ppm). The 15N and 13C chemical shift
Resonance assignments and secondary structure of the receptor binding domain 2 (RBD2) domain of CDTb. a The 2D 1H,15N-edited HSQC spectrum of RBD2 (residues 757–876) recorded on a Bruker 950 MHz spectrometer at pH 7.0 and 25 °C. Residue type and number indicate assignments from backbone amide 1H correlations. Horizontal lines are illustrated for 1H–15N correlations arising from sidechain asparagine (Asn) and glutamine (Gln) residues, and correlations labeled with an asterisk (*) arise from residues within the His-tag region of the RBD2 construct. b The secondary structure of RBD2 predicted from the chemical shift index method is illustrated and consists of 8 beta strands (β1, I767-N775; β2, T781-A789; β3, Q802-T809; β4, K816-N827; β5, T837-N841; β6, I852-Y855; β7, K857-I863; β8, R868-V875) shown with blue arrows and 2 alpha helices (\(\alpha\)1, D758-A764; \(\alpha\)2, K795-Y800) highlighted in red. The remaining regions of RBD2 are predicted to exist as random coil and are shown with a black line in the secondary structure representation.
CSI analyses predicts that the RBD domain has eight beta strands (I767-N775; T781-A789; Q802-T809; K816-N827; T837-N841; I852-Y855; K857-I863; R868-V875) and 2 alpha helices (D758-A764; K795-Y800), which is fully consistent with the X-ray and cryoEM structures reported previously (Xu et al. 2020). In summary, the chemical shift values for backbone and sidechain resonances of RBD2 obtained here were deposited in the Biological Magnetic Resonance Bank database (http://www.bmrb.wisc.edu) under accession number 28,131, and these data will be important for next-stage NMR studies that map RBD2 biomolecular interactions and for developing inhibitors targeting CD Tb.

Acknowledgements This work is supported in part by shared instrumentation grants to the UMB NMR center from the National Institutes of Health [S10 RR10441, S10 RR15741, S10 RR16812, and S10 RR23447 (D.J.W.)]. This work was also supported via the Center for Biomolecular Therapeutics (CBT) at the University of Maryland School of Medicine.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Akkaladevi N, Hinton-Chollet L, Katayama H, Mitchell J, Szerszen L, Mukherjee S, Gogol EP, Pentelute BL, Collier RJ, Fisher MT (2013) Assembly of anthrax toxin pore: lethal-factor complexes into lipid nanodiscs. Protein Sci 22:492–501

Bachmeyer C, Benz R, Barth H, Aktories K, Gilbert M, Popoff MR (2001) Interaction of Clotrinidium botulinum C2 toxin with lipid bilayer membranes and Vero cells: inhibition of channel function by chloroquine and related compounds in vitro and in intoxication in vivo. FASEB J 15:1658–1660

Barth H (2017) An introduction to the toxins special issue on “Novel pharmacological inhibitors for bacterial protein toxins.” Toxins (Basel) 9(5):160

Benz R, Barth H (2017) Toxin transport by A-B type of toxins in eukaryotic target cells and its inhibition by positively charged heterocyclic molecules. Curr Top Microbiol Immunol 406:229–256

Berjanski MV, Wishart DS (2005) A simple method to predict protein flexibility using secondary chemical shifts. J Am Chem Soc 127:14970–14971

Blocker D, Bachmeyer C, Benz R, Aktories K, Barth H (2003) Channel formation by the binding component of Clotrinidium botulinum C2 toxin: glutamate 307 of C2II affects channel properties in vitro and pH-dependent C2I translocation in vivo. Biochemistry 42:5368–5377

Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

Fagan-Solis KD, Reaves DK, Rangel MC, Popoff MR, Stiles BG, Fleming JM (2014) Challenging the roles of CD44 and lipopolysaccharide stimulated lipoprotein receptor in conveying Clotrinidium perfringens iota toxin cytotoxicity in breast cancer. Mol Cancer 13:163

Gerdng DN, Johnson S, Rupnik M, Aktories K (2014) Clotrinidium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5:15–27

Gerdng DN, Lessa FC (2015) The epidemiology of Clotrinidium difficile infection inside and outside health care institutions. Infect Dis Clin N Am 29:37–50

Geric B, Rupnik M, Gerdng DN, Grabnar M, Johnson S (2004) Distribution of Clotrinidium difficile variant toxinotypes and strains with binary toxin genes among clinical isolates in an American hospital. J Med Microbiol 53:887–894

Gilbert M, Monier MN, Ruez R, Hale ML, Stiles BG, Benmerah A, Johannes L, Lamaze C, Popoff MR (2011) Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 13:154–170

Goorhuis A, Bakker D, Corver J, Debast SB, Harmans C, Note mans DW, Bergwerff AA, Dekker FW, Kuijper EJ (2008) Emergence of Clotrinidium difficile infection due to a new hypervirulent strain, polymerase chain reaction ribotype 078. Clin Infect Dis 47:1162–1170

Grzesiek S, Bax A (1992) An efficient experiment for sequential backbone assignment of medium-sized isotopically enriched proteins. J Magn Reson 99:201–207

Gulke I, Pfeifer G, Liese J, Fritz M, Hofmann F, Aktories K, Barth H (2001) Characterization of the enzymatic component of the ADP-ribosyltransferase toxin CDTa from Clotrinidium difficile. Infect Immun 69:6004–6011

Hale ML, Marvaud JC, Popoff MR, Stiles BG (2004) Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clotrinidium perfringens iota-toxin. Infect Immun 72:2186–2193

Haug G, Wilde C, Leemhuis J, Meyer DK, Aktories K, Barth H (2003) Cellular uptake of Clotrinidium botulinum C2 toxin: membrane translocation of a fusion toxin requires unfolding of its dihydrofolate reductase domain. Biochemistry 42:15284–15291

Hiramatsu K, Serada S, Enomoto T, Takahashi Y, Nakagawa S, Nojima S, Morimoto A, Matsuzaki S, Yokoyama T, Takahashi T, Fujimoto M, Takehara H, Ueda Y, Yoshino K, Morii E, Kimura T, Naka T (2017) LSR antibody therapy inhibits ovarian epithelial tumor growth by inhibiting lipid uptake. Cancer Res 78(2):516–527

Kay LE, Xu GY, Tamazaki T (1994) Enhanced-sensitivity triple-resonance spectroscopy with minimal H2O saturation. J Magn Reson 109:129–133

Knapp O, Benz R, Gilbert M, Marvaud JC, Popoff MR (2002) Interaction of Clotrinidium perfringens iota-toxin with lipid bilayer membranes. Demonstration of channel formation by the activated binding component Ib and channel block by the enzyme component Ia. J Biol Chem 277:6143–6152

Knapp O, Benz R, Popoff MR (2016) Pore-forming activity of clostridial binary toxins. Biochim Biophys Acta 1858:512–525

Krantz BA, Trivedi AD, Cunningham K, Christensen KA, Collier RJ (2004) Acid-induced unfolding of the amino-terminal domains of the lethal and edema factors of anthrax toxin. J Mol Biol 344:739–756
Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.