Quark Mass Matrices in the A_4 Model

Ernest Ma

Physics Department, University of California, Riverside, California 92521

Abstract

If the standard model of quark interactions is supplemented by a discrete A_4 symmetry (which may be relevant for the lepton sector), the spontaneous breaking of the electroweak gauge symmetry allows arbitrary quark masses, but all mixing angles are predicted to be zero. A pattern of the explicit breaking of A_4 is proposed, which results in a realistic charged-current mixing matrix.
In the standard model of quark interactions, the mass matrices of the *up* and *down* sectors are diagonalized separately, with unitary matrices V_u and V_d for $(u, c, t)_L$ and $(d, s, b)_L$ respectively. The observed charged-current mixing matrix is then given by

$$V_{CKM} = V_u^\dagger V_d.$$

(1)

There are two important issues to be understood here. (I) Why are quark masses hierarchical in each sector? and (II) why is V_{CKM} almost the identity matrix? In this short note, there is no proposed answer to (I), but given (I), there is a possible explanation of (II) in the context of a recently proposed model [1] of nearly degenerate Majorana neutrino masses, using the discrete symmetry A_4.

There are 4 irreducible representations of A_4, i.e. $\mathbf{1}$, $\mathbf{1}'$, $\mathbf{1}''$, and $\mathbf{3}$, with the decomposition

$$
\mathbf{3} \times \mathbf{3} = \mathbf{1} + \mathbf{1}' + \mathbf{1}'' + \mathbf{3} + \overline{\mathbf{3}}.
$$

(2)

In particular,

$$
\mathbf{1} = a_1 a_2 + b_1 b_2 + c_1 c_2, \\
\mathbf{1}' = a_1 a_2 + \omega^2 b_1 b_2 + \omega c_1 c_2, \\
\mathbf{1}'' = a_1 a_2 + \omega b_1 b_2 + \omega^2 c_1 c_2,
$$

(3) \hspace{1cm} (4) \hspace{1cm} (5)

where the components of $\mathbf{3}$ are denoted by (a, b, c) and the complex number ω is the cube root of unity, i.e. $e^{2\pi i/3}$. Hence $1 + \omega + \omega^2 = 0$.

Under A_4, the quarks are assumed to transform as follows.

$$
(u_i, d_i)_L \sim \mathbf{3}, \\
\begin{align*}
u_{1R}, \ d_{1R} & \sim \mathbf{1}, \\
u_{2R}, \ d_{2R} & \sim \mathbf{1}', \\
u_{3R}, \ d_{3R} & \sim \mathbf{1}'',
\end{align*}
$$

(6) \hspace{1cm} (7) \hspace{1cm} (8) \hspace{1cm} (9)
in exact analogy with the left-handed lepton doublets and the right-handed charged-lepton
singlets as proposed previously [1]. The same three Higgs scalar doublets

$$\Phi_i = (\phi_i^+, \phi_i^0) \sim \mathbf{3}$$

are also used. Consequently, the Lagrangian of this model contains the following invariant
Yukawa terms:

$$\mathcal{L}_Y = h^u_{ijk} (u_i, d_i)_L \tilde{\Phi}_k + h^d_{ijk} (u_i, d_i)_L d_R \Phi_k + H.c.,$$

where \(\tilde{\Phi}_k = (\phi_k^0, -\phi_k^-)\), and

$$h^u_{11k} = h^u_1 \delta_{ik},$$
$$h^u_{22k} = h^u_2 \delta_{ik} \omega^{-1},$$
$$h^u_{33k} = h^u_3 \delta_{ik} \omega^{1-i}.$$

As \(\phi_i^0\) acquire nonzero vacuum expectation values \(v_i\), the quark mass matrices are of the
form

$$\mathcal{M}_{u,d} = \begin{bmatrix}
h^u_1 v_1 & h^u_2 v_1 & h^u_3 v_1 \\
h^u_1 v_2 & h^u_2 v_2 \omega & h^u_3 v_2 \omega^2 \\
h^u_1 v_3 & h^u_2 v_3 \omega^2 & h^u_3 v_3 \omega
\end{bmatrix}.$$\hspace{1cm}(15)

If the Higgs potential is invariant under \(A_4\), it has been shown [1] that \(v_1 = v_2 = v_3 = v\)
is a possible solution. In that case, \(\mathcal{M}_{u,d}\) is easily diagonalized, i.e.

$$\frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{bmatrix} \mathcal{M}_{u,d} = \begin{bmatrix} \sqrt{3} h^u_1 v & 0 & 0 \\ 0 & \sqrt{3} h^u_2 v & 0 \\ 0 & 0 & \sqrt{3} h^u_3 v \end{bmatrix}.\hspace{1cm}(16)$$

This allows quark (and charged-lepton) masses to be hierarchical, even though neutrino
masses are degenerate [1]. Since both \(\mathcal{M}_u\) and \(\mathcal{M}_d\) are diagonalized by the same unitary
matrix, this model predicts \(V_{CKM} = 1\) at this level, which is a good answer to (II).
To obtain a realistic V_{CKM}, the A_4 symmetry must be broken. Here the simple assumption is to add terms in \mathcal{L}_Y of Eq. (11) which are not just 1 under A_4, but also $1'$ and $1''$, such that

$$|h''_i| << |h'_i| << |h_i|$$

for each i. In that case, the right-hand side of Eq. (16) becomes proportional to

$$\begin{bmatrix}
 h_1 & h'_2 & h''_3 \\
 h''_1 & h_2 & h'_3 \\
 h'_1 & h''_2 & h_3
\end{bmatrix},$$

where the superscript (u, d) has been dropped for simplicity. Note also that $|h_1| << |h_2| << |h_3|$ in each sector because they are proportional to (m_u, m_c, m_t) or (m_d, m_s, m_b). By rotating $q_i R$, the above matrix may be written as

$$\begin{bmatrix}
 h_1 & h'_2 & h''_3 \\
 0 & h_2 & h'_3 \\
 0 & 0 & h_3
\end{bmatrix},$$

(19)

to a very good approximation, because $|h''_1| << |h_2|$, or $|h'_3|$, and $|h'_1|, |h''_3| << |h_3|$. As a result, V_{CKM} differs from the identity matrix by small amounts, i.e. [2]

$$V_{us} \simeq \frac{h'_2}{h_2}, \; V_{ub} \simeq \frac{h''_3}{h_3}, \; V_{cb} \simeq \frac{h'_1}{h_3}.$$ \hspace{1cm} (20)

This explains why each is small, as well as why $|V_{ub}| << |V_{cb}|$.

Consider now the 3 Higgs doublets of this model. Let

$$\begin{bmatrix}
 \Phi \\
 \Phi' \\
 \Phi''
\end{bmatrix} = \frac{1}{\sqrt{3}} \begin{bmatrix}
 1 & 1 & 1 \\
 1 & \omega & \omega^2 \\
 1 & \omega^2 & \omega
\end{bmatrix} \begin{bmatrix}
 \Phi_1 \\
 \Phi_2 \\
 \Phi_3
\end{bmatrix},$$

(21)

then Φ has the properties of its standard-model counterpart, whereas Φ' and Φ'' are degenerate in mass [1]. Since only Φ has a nonzero vacuum expectation value, flavor-changing neutral currents are absent at tree level as far as Φ is concerned. However, Φ' and Φ'' have
the following predicted Yukawa interactions:

\[
L = \left(\frac{m_t}{v}(u, d)_{L}t_{R} + \frac{m_c}{v}(t, b)_{L}c_{R} + \frac{m_u}{v}(c, s)_{L}u_{R} \right) \Phi' + \left(\frac{m_t}{v}(c, s)_{L}t_{R} + \frac{m_c}{v}(u, d)_{L}c_{R} + \frac{m_u}{v}(t, b)_{L}u_{R} \right) \Phi'' + \left(\frac{m_b}{v}(u, d)_{L}b_{R} + \frac{m_s}{v}(t, b)_{L}s_{R} + \frac{m_d}{v}(c, s)_{L}d_{R} \right) \Phi' + \left(\frac{m_b}{v}(c, s)_{L}b_{R} + \frac{m_s}{v}(u, d)_{L}s_{R} + \frac{m_d}{v}(t, b)_{L}d_{R} \right) \Phi'' + H.c.
\]

This shows that flavor-changing neutral currents involving only the first 2 families are suppressed. In fact, the most severe constraint comes from $B^0 - \overline{B^0}$ mixing which occurs through $(\phi')^0$ exchange:

\[
\frac{\Delta m_{B^0}}{m_{B^0}} \approx \frac{G_F m_b^2}{4\sqrt{2}} B_B f_B^2 \left(\frac{1}{m_R^2} - \frac{1}{m_I^2} \right),
\]

where $G_F/\sqrt{2} = 1/12v^2$ and $m_{R,I}$ are the masses of the real and imaginary parts of $(\phi')^0$. Using $f_B = 170$ MeV, $B_B = 1.0$, $m_b = 4.2$ GeV, and the experimental value [3] of 5.9×10^{-14} for the above fraction, the condition

\[
(m_R^{-2} - m_I^{-2})^{-1/2} >> 4.22 \text{ TeV}
\]

is obtained. This means that m_R and m_I should be almost equal, if each is of order a few hundred GeV.

In conclusion, it has been shown how a realistic $V_{CKM} \simeq 1$ may be obtained in the context of the A_4 model of nearly degenerate Majorana neutrino masses. It has specific verifiable predictions as given by Eq. (22). In particular, the model requires $(\phi')^\pm$, $(\phi'')^\pm$ to have the same mass, $\text{Re}(\phi')^0$, $\text{Re}(\phi'')^0$ to have the same mass, and $\text{Im}(\phi')^0$, $\text{Im}(\phi'')^0$ to have the same mass. Phenomenologically, the latter two pairs should also have almost the same mass, assuming that each is of order a few hundred GeV.

This work was supported in part by the U. S. Department of Energy under Grant No. DE-FG03-94ER40837.
References

[1] E. Ma and G. Rajasekaran, Phys. Rev. D64, 113012 (2001); E. Ma, hep-ph/0201225
 (Mod. Phys. Lett. A, in press).

[2] E. Ma, Phys. Lett. B516, 165 (2001).

[3] Particle Data Group, D. E. Groom et al., Eur. Phys. J. C15, 1 (2000).