Phylogenomic and morphological relationships among the botryllid ascidians (Subphylum Tunicata, Class Asciadia, Family Styelidae)

Marie L. Nydam1, Alan R. Lemmon2, Jesse R. Cherry3, Michelle L. Kortyna3, Darragh L. Clancy4, Cecilia Hernandez4 & C. Sarah Cohen4

Ascidians (Phylum Chordata, Class Asciadia) are a large group of invertebrates which occupy a central role in the ecology of marine benthic communities. Many ascidian species have become successfully introduced around the world via anthropogenic vectors. The botryllid ascidians (Order Stolidobranchia, Family Styelidae) are a group of 53 colonial species, several of which are widespread throughout temperate or tropical and subtropical waters. However, the systematics and biology of this group of ascidians is not well-understood. To provide a systematic framework for this group, we have constructed a well-resolved phylogenomic tree using 200 novel loci and 55 specimens. A Principal Components Analysis of all species described in the literature using 31 taxonomic characteristics revealed that some species occupy a unique morphological space and can be easily identified using characteristics of adult colonies. For other species, additional information such as larval or life history characteristics may be required for taxonomic discrimination. Molecular barcodes are critical for guiding the delineation of morphologically similar species in this group.

Ascidians (Phylum Chordata, Class Asciadia) are a large group of invertebrates which occupy a central role in the ecology of marine benthic communities1. Many ascidian species have become successfully introduced around the world via anthropogenic vectors, with a few species causing extensive ecological and economic damage2. Invasive ascidians, including botryllids, have affected declines in native species richness3, altered benthic community structure3–6, and disrupted the link between pelagic and benthic communities7,8. Economically, ascidians are a major problem for the aquaculture industry: the species *Styela clava* was estimated to cost the New Zealand green-lipped mussel industry NZ$23.9 million over a 24-year period9.

The botryllid ascidians (Class Asciadia, Order Stolidobranchia, Family Styelidae) are a group of colonial species, of which 53 are currently described. *Botryllus schlosseri*, a model organism for allorecognition, regeneration, development, and genomics, has been spreading anthropogenically throughout temperate waters for at least 100 years10,11. This species thrives in artificial habitats such as aquaculture facilities and harbors12–15, but has also colonized natural habitats and therefore has the potential to affect rocky bottom and seagrass ecosystems16,17. Several other botryllid species have been spreading more recently. *Botrylloides violaceus* has been spreading from East Asia in temperate oceans in the last 50 years18–21. *Botrylloides niger* has low nucleotide diversity at a mitochondrial and a nuclear gene, indicating that its spread across the tropics may be similarly recent22. *Botrylloides diegensis* has been in southern California for at least 100 years23, but is thought to be native to the western or southern Pacific18 and is a recent invader to northwest Europe24. Finally, *Botrylloides giganteus* is widespread in the tropics but was only correctly identified in 201925. All of these recent non-native species are spreading rapidly, and are able to tolerate a wide range of temperature and salinity regimes26,27,28–29. These species are highly likely to continue spreading, and will continue to shape the ecologies of the communities they invade.

Despite the global mobility of several botryllid species and the existence of *Botryllus schlosseri* as a model system, the overall systematics and biology of this group of ascidians are not well resolved. Botryllids are difficult to identify taxonomically because many of the species have very similar characteristics30,31, and...
morphologically-based species identification remains a challenge despite considerable effort11,25,32-36. More recently, combined molecular and morphological analyses have revealed the existence of new species and confirmed the taxonomic validity of already described species28,25,37,38. Moreover, DNA barcoding has allowed the identification of a new clade currently described as the “radiata morph” of Botrylloides leachi, while the clade previously reported in the nucleotide databases as Botrylloides leachi has been recognized as Botrylloides diogenis24.

The phylogenetic relationships among these species have not been studied since 20019,40. Several of the relationships in the Cohen et al.9 eight taxon phylogeny were not well-supported because a single relatively low variation locus was used (18S rDNA), although the morphological distinction between the two genera, Botryllus and Botrylloides was supported. In the phylogeny presented in Ref.40 based on 18S rDNA and four morphological characters, Botrylloides and Botryllus were also considered distinct, although this phylogeny includes mainly Japanese species and lacks support values (e.g. Bremer, jackknife or bootstrap support). Relationships involving the Botryllus schlosseri species complex have been investigated40-42. For instance, using mitochondrial cytochrome oxidase I (mtCOI), Botrylloides niger was determined to be an outgroup to Botryllus schlosseri Clades A–E, and Botrylloides leachi was an outgroup to the Botrylloides niger/Botryllus schlosseri clade41.

To provide a framework for future studies of both native and non-native botryllid ascidians and to examine the relationships among geographically restricted and widespread species, we have developed 200 nuclear markers and constructed a well-resolved phylogenomic tree using these loci. Probes corresponding to the 200 nuclear markers were hybridized to genomic libraries from 55 specimens, including previously undescribed species from the Caribbean Sea and the Philippines.

Results

The results are presented in two parts: (1) phylogenetic relationships among botryllid species, and (2) morphological analyses in the botryllid group. These two sets of results were generated using distinct datasets. The phylogenomic tree was constructed using sequencing reads for 200 loci from 55 specimens of botryllids. Collection information and a unique identifier for each of the 55 specimens can be found in Table 1. The morphological dataset includes all 53 described botryllid species, plus four additional taxa that are not currently described in the literature (see Supplementary Fig. S1 for morphological descriptions of these four taxa). We compiled data on 31 morphological characters for each of these 57 species (see Supplementary Fig. S2), and used these characters in a Principal Components Analysis.

Phylogenetic relationships among botryllid species.

200 Anchored Hybrid Enrichment (AHE) loci were sequenced in 55 specimens. The mean length of the loci is 705 bp and the median length is 296 bp, indicating that the distribution of locus length is skewed to the right. The range of locus length is between 121 and 5172 bp. The total length of the alignment is 141,107 bp.

Figure 1 is the tree generated by ASTRAL, and Supplementary Fig. S3 is the tree generated by RAxML. The topologies of the two trees are identical. The Botryllus genus is paraphyletic with respect to the Botrylloides genus. Focusing on the Botryllus genus first, there are three Botryllus-only clades (a, c, and d in Fig. 1). Clade a comprising Botryllus sp. (Bp1), and two specimens from the Western Pacific (the Philippines and Australia: Bsp1 and Bsp2). Clade c includes a Botryllus specimen from Florida (Bsp3) and a specimen of Botryllus horridus from Japan (Bh1). Clade d is formed by Botryllus gaiae(Bg1, Bg2), and Botryllus schlosseri from Italy (Bsp4), and is a sister group to Clade c. A specimen we collected in Bocas del Drago (Bsp5), Panama (in the Bocas del Toro archipelago), is the only Botryllus in a clade (e) that includes all the Botrylloides species. We will refer to this specimen as Bocas del Drago.

Moving on to the Botrylloides portion of the phylogeny, Clade g contains Botrylloides fuscus (Bf1–Bf3 in Clade h) as a sister taxon to a Botrylloides gigantis/Botrylloides violaceus group (Clade j). Clade r contains three specimens (Bsp7–9) of a species we are calling Rabbit Key in this manuscript, based on its collection location offshore of Rabbit Key in the Florida Keys. This species has also been found offshore of Key West in the Florida Keys (the location of the sample in the phylogenomic trees). Clade r is a sister clade to Clade q, containing a Botrylloides sp. from the Bahamas (Bsp6). Clade r + q is a sister group to Clade p, containing specimens (Bsp10–13) from a species found in Bocas del Toro, Panama, which we will refer to as Bocas del Toro. Clades p, q, and r form Clade o, which is a sister clade to Clade n, a species from the Verde Island Passage in the Philippines which is represented by Bsp16–Bsp23. Clade s includes a specimen from the Pacific (Sydney, Australia: Bsp14) as a sister group to a clade labeled Botrylloides diogenis (v) + a clade labeled Botryllus niger (u). The clade labeled Botrylloides diogenis (v) contains specimens with three different names: Botrylloides diogenis from California (Bd4 and Bd5), Botrylloides leachi from New Zealand (Bd6–8), and Botrylloides praenongus from Japan (Bd1–3). For brevity’s sake, we labeled Botrylloides diogenis/leachi/praenongus samples as Botrylloides diogenis in Fig. 1, Supplementary Figs. S3 and S4.

Morphological analyses in the botryllid group.

The results of the PCA analysis are presented in Fig. 2. All species have been given a numerical code (1–57), and the correspondence between the species name and the numerical code is presented in the legend. For easier viewing, Fig. 2a excludes three species that are widely divergent from the other botryllids: Botryllus flavus, Botryllus magnus, and Botryllus renierii (Species 33, 38, 47). These three outlier species, which are close together in the PCA, are included in Fig. 2b.

In general, Botrylloides species are morphologically similar to other Botryllus, but there are several exceptions. There are 5 Botrylloides species that cluster with the Botryllus group: Botrylloides anceps (1), Botrylloides chevalense (3), Botrylloides israeliense (9), Botrylloides saccus (17), and Botrylloides tyreus (20). Four of these: Botrylloides anceps (1), Botrylloides chevalense (3), Botrylloides israeliense (9), and Botrylloides tyreus (20), were classified as Botrylloides based on a single character (the shape of the systems) when the majority
Specimen ID	Species	Collection location	Collection coordinates	Collection habitat	mtCOI Barcode Accession Number	Unique barcode	% identity of the next closest species	Date collected	Collector
Sv1	Symplegma asperellum	Bocas del Toro, Panama	9° 24' 52.8" N 81° 49' 12.3" W	Mangrove roots	NA	88%, B. schlosseri	22-03-2008	Beth Moore	
Sv2	Symplegma asperellum	Bocas del Toro, Panama	9° 24' 52.8" N 81° 49' 12.3" W	Mangrove roots	MT232734	Yes	97%, Symplegma sp.	01-07-2017	Marie Nydam
Bp1	Botryllus sp.	Shizugawa, Japan	38° 38' 41.2" N 141° 28' 34.6" E	Intertidal	MW817931	Yes	93%, B. primigerus OTU 18	07-07-2009	Erin Grey
Bsp1	Botryllus sp.	Maricaban Island (Bethlehem), Philippines	13° 40' 18.6" N 120° 50' 43.6" E	Coral Reef, on worm tube	MW817932	Yes	88%, Bsp2 from this study	22-03-2008	Beth Moore
Bsp2	Botryllus sp.	Heron Island, Australia	23° 26' 31.5" S 151° 54.3" E	Intertidal	MT232726	Yes	88%, Bsp1 from this study	01-12-2011	Tony De Tomaso
Bsp3	Botryllus sp.	Fort Pierce (Littleton Bridge), Florida, USA	27° 20' 00.2" N 80° 19' 17.3" W	Oyster Aquaculture Rack	NA			09-06-2011	Linda Walters
Bh1	Botryllus horridus	Miura, Japan	35° 09' 38.0" N 139° 36' 46.2" E	Docks	MT232732	Yes	84%, B. cowlesi	16-07-2009	Erin Grey
Bga1	Botryllus gastrae	Falmouth, UK	50° 09' 48.0" N 5° 04' 57.8" W	Docks	KX500896	No	90%, B. schlosseri Clade D	30-05-2015	Marie Nydam
Bga2	Botryllus gastrae	Poole, UK	50° 42' 47.8" N 1° 57' 22.8" W	Docks	KX500856	No	90%, B. schlosseri Clade D	30-05-2015	Marie Nydam
Bsc1	Botryllus schlosseri	Ravena, Italy	44° 29' 21.2" N 12° 17' 13.4" E	Docks	MW817933	Yes	86%, B. gastrae	27-05-2004	Joelie Tirindelli
Bsp5	Botryllus sp.	Bocas del Dragón, Panama	9° 24' 51.8" N 82° 19' 51.1" W	Coral Reef	MW817934	Yes	88%, B. cf. anceps	01-07-2017	Rosana Rocha
Bv1	Botryllioides violaceus	Usuiri, Japan	41° 56' 56.9" N 140° 56' 08.1" E	Intertidal	NA			21-07-2009	Erin Grey
Bv2	Botryllioides violaceus	Asamushi, Japan	40° 53' 25.9" N 140° 51' 29.9" E	Docks	NA			07-07-2009	Erin Grey
Bv3	Botryllioides violaceus	Shizugawa, Japan	38° 38' 41.2" N 141° 28' 34.6" E	Intertidal	NA			25-07-2009	Erin Grey
Bv4	Botryllioides violaceus	Drakes Estero, CA, USA	38° 03' 20.6" N 122° 56' 28.1" W	Oyster Aquaculture Rack	NA			Unknown	SERC
Bv5	Botryllioides violaceus	Alameda, CA, USA	37° 45' 59.1" N 122° 16' 28.0" W	Seagrass beds (Zostera marina)	NA			08-15-2003	Sarah Cohen, Essa Crumb
Bv6	Botryllioides violaceus	Tiburon, CA, USA	37° 53' 21.6" N 122° 26' 50.2" W	Dock-Paradise Cay	MW817930	Yes	81%, B. schlosseri	06-02-2004	Richard Coleman, Gail Ashton, and Verena Wang
Bg11	Botryllioides giganteus	Peru	Exact location unknown	Pilings	NA			2010 and 2011	Vanessa Guerra
Bg2	Botryllioides giganteus	Chula Vista, CA, USA	32° 37' 34.4" N 117° 06' 08.7" W	Docks	MT232725	No	83%, Botryllioides diegensis	18-06-2008	Gail Ashton, Sarah Cohen, Verena Wang
Bg3	Botryllioides giganteus	San Diego Bay, CA, USA	32° 42' 34.8" N 117° 13' 59.3" W	Docks	NA			16-06-2008	Verena Wang, Sarah Cohen, Gail Ashton
Bf1	Botryllioides jucundus	Miura, Japan	35° 09' 38.0" N 139° 36' 46.2" E	Docks	MT232731	Yes	85%, B. peripus	16-07-2009	Erin Grey
Bf2	Botryllioides jucundus	Ebisu-jima, Japan	34° 39' 09.2" N 138° 57' 53.9" E	Intertidal	MW817936	Yes	85%, B. jacksonianum	25-06-2009	Erin Grey
Bf3	Botryllioides jucundus	Ebisu-jima, Japan	34° 39' 09.2" N 138° 57' 53.9" E	Intertidal	MW817935	Yes	85%, B. jacksonianum	19-08-2009	Erin Grey
Bsp6	Botryllioides sp.	Bahammas	Exact location unknown	Unknown	NA			01-09-1993	Sarah Cohen
Bsp7	Botryllioides sp.	Barnes Key, FL, USA	24° 56' 57.5" N 80° 47' 5" W	Seagrass beds (Thalassia testudinum)	NA			10-1999	Tom Frankovich
Bsp8	Botryllioides sp.	Barnes Key, FL, USA	24° 56' 5" N 80° 47' 5" W	Seagrass beds (Thalassia testudinum)	MT232730	Yes	92%, B. peripus	10-1999	Tom Frankovich
Bsp9	Botryllioides sp.	Barnes Key, FL, USA	24° 56' 57.5" N 80° 47' 5" W	Seagrass beds (Thalassia testudinum)	MW817939	Yes	91%, B. peripus	10-1999	Tom Frankovich
Bsp10	Botryllioides sp.	Colon, Panama	9° 21' 57.6" N 79° 54' 05.8" W	Unknown	MT232729	No	89%, B. simondenensis	22-03-2007	Greg Ruiz
Bsp11	Botryllioides sp.	Bocas del Toro, Panama	9° 20' 07.1" N 82° 14' 46.1" W	Docks	MH122634	No	89%, B. simondenensis	01-07-2017	Marie Nydam
Specimen ID	Species	Collection location	Collection coordinates	Collection habitat	mtCOI Barcode	Unique barcode	% identity of the next closest species	Date collected	Collector
-------------	------------------	------------------------------	------------------------	-----------------------------	---------------	----------------	--------------------------------------	----------------	-----------
Bsp12	Botryloides sp.	Bocas del Toro, Panama	9° 20' 07.3" N 82° 14' 46.1" W	Docks	MH122634	No	89%, B. similodensus	03-07-2017	Marie Nydam
Bsp13	Botryloides sp.	Bocas del Toro, Panama	9° 20' 07.1" N 82° 14' 46.1" W	Docks	MH122634	No	89%, B. similodensus	03-07-2017	Marie Nydam
Bsp14	Botryloides sp.	Burraware Bay, Sydney, Australia	34°03' 37.7"S 151°08' 07.1" E	Unknown	MT232724	Yes	86%, Botryllus sp.	22-01-2008	Derrick Cruz
Bn1	Botryloides nigri	Honolulu, HI	21°22' 14.6" N 157°56' 11.8" W	Docks	MW817940	No	86%, B. diegensis	18-01-2012	Carrie Craig
Bn2	Botryloides nigri	Twin Cayes, Belize	16°49’ 47.0"N 88°06’ 12.2"W	Dock, collected on PVC rack	KU711787.1	Yes	90%, B. aster	06-07-2007	Kristen Larson
Bn3	Botryloides nigri	Bocas del Toro, Panama	9°20’ 14.8" N 82°10’ 38.2" W	Mangrove roots	MT232728	No	90%, B. arenaeis	22-06-2017	Marie Nydam
Bn4	Botryloides nigri	Bocas del Toro, Panama	9°20’ 14.8" N 82°10’ 38.2" W	Mangrove roots	MT232723	No	90%, B. arenaeis	22-06-2017	Marie Nydam
Bd1	Botryloides diegensis	Nomii-Wun, Kochi Prefecture, Japan	33°21’ 28" N, 133°18’ 36" E	Intertidal	NA			16-02-2005	Shinsuke Saito
Bd2	Botryloides diegensis	Shizugawa, Japan	38°38’ 41.2" N 141°28’ 34.6" E	Docks	MT232722	No	86%, Botryllus sp.	30-06-2009	Erin Grey
Bd3	Botryloides diegensis	Shimoda, Japan	34°39’ 57.7" N 138°56’ 15.1" E	Rocky Intertidal	MW817941	Yes	87%, B. nigri	01-04-2007	Yas Saito
Bd4	Botryloides diegensis	Sausalito, CA, USA	37°51’ 45.4" N 122°29’ 18.7" W	Docks	MN175981.1	No	86%, B. nigri	28-09-2016	Marie Nydam
Bd5	Botryloides diegensis	Long Beach, CA, USA	33°02’ 03.1" N 118°16’ 44.1" W	Docks	MN175984.1	No	86%, B. nigri	20-02-2003	Sarah Cohen
Bd6	Botryloides diegensis	Pelorus Sound, NZ	41°08’ 50.3" S 173°51’ 50.7" E	Mussel aquaculture	MW817942	Yes	87%, B. nigri	01-04-2012	Gretchen Lambert
Bd7	Botryloides diegensis	Port Nelson, New Zealand	41°15’ 41.4" N 173°16’ 58.0" E	Docks	MW817943	Yes	87%, B. nigri	01-04-2012	Gretchen Lambert
Bd8	Botryloides diegensis	Port Nelson, New Zealand	41°15’ 41.4" N 173°16’ 58.0" E	Docks	MN175987.1	No	84%, B. nigri	01-04-2012	Gretchen Lambert
Bsp15	Botryloides sp.	Medio Island, Philippines	13°31’ 30.7" N 120°56’ 50.5" E	Coral Reef	NA			16-04-2015	Sarah Cohen
Bsp16	Botryloides sp.	Manila Channel, Puerto Galera, Philippines	13°31’ 13.44" N 120°57’ 5.04" E	Coral Reef	NA			19-04-2015	Sarah Cohen
Bsp17	Botryloides sp.	Batangas Channel, Puerto Galera, Philippines	13°31’ 16.788" N 120°57’ 34.74" E	Coral Reef	NA			01-05-2015	Sarah Cohen
Bsp18	Botryloides sp.	Batangas Channel, Puerto Galera, Philippines	13°31’ 16.788" N 120°57’ 34.74" E	Coral Reef	NA			29-04-2015	Sarah Cohen
Bsp19	Botryloides sp.	Maricaban Island, Philippines	13°45’ 34.272" N 120°55’ 34.104" E	Coral Reef	NA			01-05-2014	Sarah Cohen
Bsp20	Botryloides sp.	Maricaban Island, Philippines	13°41’ 3.408" N 120°49’ 48.864" E	Coral Reef	MW817938	Yes	84%, B. schllosseri	26-04-2014	Sarah Cohen
Bsp21	Botryloides sp.	Maricaban Island, Philippines	13°40’ 23.8" N 120°50’ 32.1" E	Coral Reef	MW817937	Yes	84%, B. schllosseri	30-04-2014	Sarah Cohen
Bsp22	Botryloides sp.	Maricaban Island, Philippines	13°40’ 16.86" N 120°50’ 43.368" E	Coral Reef	NA			01-05-2014	Sarah Cohen
Bsp23	Botryloides sp.	Maricaban Island, Philippines	13°41’ 15.144" N 120°50’ 28.068" E	Coral Reef	NA			30-04-2014	Sarah Cohen

Table 1. Collection information for the 55 samples included in phylogenomic tree.

of the characters are *Botryllus*-like32,41–45. The fifth species, *Botryloides saccus* (17), was assigned to *Botryloides* based on an assumption about brooding characters. However, the colony in question was not reproductively mature46. There are three *Botryloides* that are positioned closely to the *Botryllus* cluster: *Botryloides conchylia*us (4), *Botryloides perspicuus* (15), and *Botryloides superbus* (19). There is one *Botryllus* that clusters with the
Botryllus group: Botryllus ovalis (41). The colonies have characteristics of both Botryllioides and Botryllus. It should also be noted that the two clusters are close to each other in the PCA graph.

The majority of the nodes on the Bayesian phylogenetic tree were unresolved (i.e. polytomies), and the posterior probability support values for several resolved nodes were <60 (Supplementary Fig. S5). The following clades were represented by nodes with clade credibility values >60: Botryllioides giganteus (8) and Botryllioides lentus (12); clade credibility value = 86, Botryllus magnus (38) and Botryllus renieri (47); clade credibility value = 83, Botryllioides magnicoecus (13) and Botryllus tabori (55): clade credibility value = 79, and Botryllus eilatensis (30) and Botryllus firmus (32): clade credibility value = 82). These well-supported clades in the phylogenetic tree are consistent with the groupings in the PCA, although the clades do not include all species that are adjacent in the PCA. The undescribed species from the Philippines (24) is morphologically intermediate between Botryllioides giganteus (8) and Botryllioides lentus (12), but is not present in the phylogenetic clade comprising these two species.

The distances between the species in Fig. 2 point to low morphological variation among many botryllid species. Despite this, there are clear morphological outliers. For example, Botryllus primigenus (43) and Botryllus tuberatus (56) both have small zooids (1.5 and 0.8 mm zooid length, respectively), where the average is 2.8 mm (Supplementary Table S1). Botryllioides lentis (11) has smaller zooids (1.3 mm, when the average is 2.2 mm: Supplementary Table S1) and a thinner tunic than other Botryllioides (1.7–2.0 mm, when the average is 3.25 mm: Supplementary Table S1), although external colony morphology such as tunic thickness may be environmentally influenced (Brunetti 2009, CS Cohen personal observation). Botryllioides giganteus (8) has the largest zooids in the botryllid group (18–20 stigmatal rows), where the average is 10–12. The tunic thickness in this species can reach 15 mm, when the average in the Botryllioides is 3.25 mm.

It should be noted that the first two principal components only represent 13% of the variation in the morphological characters when the outliers are excluded and 14% when they are included, so the attempt to reduce the dimensionality of the data set excluded a large proportion of the useful variation between the species. Therefore, the values in these characters cannot be easily correlated with one other.
Figure 2. Graphical representation of Principal Components Analysis for morphological characters in botryllid species. The blue circles represent species in the genus Botrylloides, and the red circles species in the genus Botryllus. (a) Graph excluding three outlier species: Botryllus flavus (33), Botryllus magnus (38), and Botryllus renieri (47). (b) Graph including three outlier species: Botryllus flavus (33), Botryllus magnus (38), and Botryllus renieri (47). Species names corresponding to the numbers on the graphs in both (a) and (b) are as follows: (1) Botrylloides anceps (2) Botrylloides aureus (3) Botrylloides chevalense (4) Botrylloides conchyliatus (5) Botrylloides crystallinus (6) Botrylloides diegensis (7) Botrylloides fuscus (8) Botrylloides giganteus (9) Botrylloides israeliense (10) Botrylloides leachii (11) Botrylloides lenis (12) Botrylloides lentus (13) Botrylloides magnicoecus (14) Botrylloides niger (15) Botrylloides perspicuus (16) Botrylloides praelongus (17) Botrylloides saccus (18) Botrylloides simdensis (19) Botrylloides superbus (20) Botrylloides tyreus (21) Botrylloides violaceus (22) Botrylloides Bocas del Toro (23) Botrylloides Rabbit Key (24) Botrylloides Philippines (25) Botryllia arenaceus (26) Botryllus aster (27) Botryllus clesiensis (28) Botryllus compositus (29) Botryllus delicatus (30) Botryllus elatensis (31) Botrylloides elegans (32) Botryllus firmus (33) Botryllus flavus (34) Botryllus gaiae (35) Botryllus gregalis (36) Botryllus horridus (37) Botryllus japonicus (38) Botryllus magnus (39) Botryllus meandricus (40) Botryllus mortensi (41) Botryllus ovalis (42) Botryllus planus (43) Botryllus primigenus (44) Botryllus promiscuus (45) Botryllus pumilus (46) Botryllus punicus (47) Botryllus renieri (48) Botryllus rosaceus (49) Botryllus scalaris (50) Botryllus schlosseri (51) Botryllus separatus (52) Botryllus sexiens (53) Botryllus stewartensis (54) Botryllus stuhlmanni (55) Botryllus tabori (56) Botryllus tuberatus (57) Botryllus Bocas del Drago.
Discussion

The topology of the nuclear tree shown in Fig. 1 can be compared to the topologies of three previously published trees. The first two trees were constructed using 13 mitochondrial proteins48,49, and the third using 18 s rRNA48. The species represented in the mitochondrial trees are *Botryllus schlosseri*, *Botryllodes giganteus* (identified as *Botryloides pizoni* in Ref.48), *Botryllodes leachii* (which may be *Botryloides diegensis*40, *Botryllodes nigrofuscata*40, and *Botryllodes violaceus*). The more recent mitochondrial tree41 also includes *Botryllus gaiæ*, which was formerly Clade E in the *Botryllus schlosseri* complex. In both of these mitochondrial trees, the *Botryllodes* clade is sister to the *Botryllus* clade. This is in contrast to Fig. 1, where *Botryllus* is paraphyletic with respect to *Botryllodes* although based on a single taxon (Bsp5). Within the *Botryllodes* clade, *Botryllodes leachii* and *Botryllodes nigrofuscata* are sister species in both mitochondrial trees and in Fig. 1. *Botryllodes giganteus* and *Botryllodes violaceus* are sister species in Ref.38 and Fig. 1, whereas *Botryllodes violaceus* is sister to a *leachii/niger* clade in Ref.48.

Comparing nodes in Fig. 1 to well-supported nodes in Ref.38’s 18 s rDNA Maximum Likelihood Tree (those nodes that have ≥80% bootstrap support), both trees show *Botryllus* species as the outgroup to the *Botryllodes* clade. The 18 s rDNA tree includes *Botryllodes fuscus*, *Botryllodes violaceus*, *Botryllodes simodensis*, and a sample from Venice Lagoon that was provided and named as *Botryllodes leachii* by A. Sabbadin. *Botryllodes fuscus* is an outgroup to a *violaceus*, *leachii*, *simodensis* clade, but the relationship is not well-supported. In the current phylgeny, *Botryllodes fuscus* is in a clade with *Botryllodes violaceus*, and this *Botryllodes fuscus/Botryllodes violaceus* clade is sister to a clade that includes *Botryllodes diegensis*.

Previous studies in the *Botryllus schlosseri* species complex have revealed that sister species can have very different dispersal patterns50,52,53. There are five clades in the species complex, with *Botryllus schlosseri* and *Botryllus gaiæ* having widespread ranges, and Clades B, C, and D geographically restricted. Beyond the *Botryllus schlosseri* species complex, the four widespread species in the *Botryllus* group are *Botryllodes diegensis*, *Botryllodes giganteus*, *Botryllodes nigrofuscata*, and *Botryllodes violaceus*. *Botryllodes* species may have a higher likelihood of global spread than *Botryllus* species, despite *Botryllodes* being less diverse than *Botryllus* (21 vs. 32 described species). *Botryllodes* larvae are larger than *Botryllus* larvae and have longer developmental times50, which could impact dispersal or settlement abilities. In the current phylgeny, *Botryllodes giganteus* and *Botryllodes violaceus* are sister groups, as are *Botryllodes diegensis* and *Botryllodes nigrofuscata* (Fig. 1 and Supplementary Fig. S3). However, these sister groups may not remain as such when additional species are added, and testing whether range size has a phylogenetic signal across the entire group will require a more taxonomically comprehensive phylogeny.

The morphological distinctions between the genera *Botryllus* and *Botryllodes* have been much debated, and taxonomists have disagreed about whether there should be one genus or two genera (reviewed in Ref.32). Based on the morphological analyses in this study, species in each genus cluster together, although there is some overlap where the clusters meet. The five *Botryllodes* species that cluster with *Botryllus* in the PCA were named because many of its morphological characters are *Botryllus*-like. This supports the argument that the two genera should be maintained52. But with a robust and broadly representative phylogeny, the generic assignments in this group can now be evaluated in a phylogenetic context.

According to phylogenetic systematics, all taxa should be monophyletic52. While some evolutionary systematists have argued for the maintenance of paraphyletic groups52,53, the precise location in the phylogeny where a nested group should be given a different name cannot easily be determined because evolution is most often a gradual process54,55. For this reason and others detailed in Ref.55, a broad agreement in the systematic community has formed in favor of monophyly56–58.

We classified the Bocas del Drago specimen (Bsp5) as *Botryllus* because many of its morphological characters were *Botryllus*-like. This species falls at the base of the *Botryllodes* clade. In a two genera classification scheme, the *Botryllus* clade would comprise two monophyletic groups plus one species in the *Botryllodes* clade. This paraphyly of *Botryllus* is also reflected in the 18S rDNA phylogeny39. Because the genus *Botryllus* is not a monophyletic group, we suggest that the generic distinctions within the *Botryllus* clade should be re-evaluated. Based on the molecular phylogeny presented here, we agree with taxonomists who propose that the genus *Botryllodes* should be deleted, as it is a junior synonym of the genus *Botryllus*. Their argument is based on morphology: no clear morphological distinction exists between the two genera and all morphological characters represent “various states of continuous evolution”37,47.

The botryllid ascidians are taxonomically understudied, despite their research significance as model systems, and the extensive ranges of *Botryllodes diegensis*, *Botryllodes giganteus*, *Botryllodes nigrofuscata*, and *Botryllodes violaceus*. Several widely distributed botryllid ascidians have been misidentified, and correct identification of these species is critical for understanding their biology and spread as well as detecting the spread of additional species. The identification of botryllid species within each genus can be accomplished through morphological examination for those species that are clear morphological outliers. But the majority of the botryllid species are morphologically very similar to several other species, so discrimination based on morphological characters alone is very difficult. Species delimitation analyses are therefore necessary to identify and describe species in this group. While the current phylogenetic tree does not have enough samples per taxon to conduct such analyses, we can obtain preliminary results from mtCOI barcode sequences. Table 1 includes a column describing whether each barcode is unique (i.e. does not have 100% identity to any other sequences on GenBank). Table 1 also lists the best BLAST result where the subject and query are labeled as different species, to illustrate the amount of divergence between species. Not all barcodes are unique, but when a barcode query exhibit 100% identity, the subject is always the same species. When subject and query are labeled as different species, the % identity between them is 92% or lower, suggesting a barcode gap between species.

The mtCOI barcodes provide preliminary evidence that the barcoded taxa in the tree are distinct species. Robust species delimitation analyses will be possible using the 200 AHE loci developed here. These loci could...
also be used to expand the current phylogenomic tree, in order to fully represent the evolutionary relationships within the botryllid group.

Methods

Sample collection. Samples were collected from 1995 to 2017 from both artificial and natural substrates (Table 1). The collection location, geographic coordinates, habitat, and GenBank accession number of mitochondrial cytochrome oxidase I (mtCOI) gene for each sample are presented in Table 1. Photographs of samples can be viewed in Supplementary Fig. S4. A small piece of tissue was removed from each colony in the field, cleaned to remove algae and other contaminants, and preserved in 95% ethanol, RNAlater (Thermo-Fisher), or a DMSO solution saturated with NaCl. For the species that are described in a morphological context in this study, colonies were relaxed using menthol crystals and subsequently preserved in 10% formalin in salt water buffered with sodium borate. Some samples collected in the Philippines were relaxed with tricaine methanesulfonate (MS222). However, we do not recommend this for ethanol samples that are intended for genetic analysis; these samples required multiple rounds of isopropanol precipitation at the end of the DNA extraction process in order to purify them, and even with purification did not always produce usable libraries.

Sample identification: molecular techniques. We assigned samples to species by sequencing the mitochondrial cytochrome oxidase I (mtCOI) gene (Table 1). DNA was extracted using the Nucleospin Tissue Kit (Macherey Nagel). DNA was initially extracted from pieces of whole colony for each sample. In cases where extracted DNA failed to amplify, DNA was then extracted from zooids that were dissected from the colony. PCR amplification was performed using either OneTaq DNA Polymerase (New England Biolabs) or Phusion High-Fidelity DNA Polymerase (New England Biolabs). OneTaq reactions were as follows: 20 µl total reaction volume with 2 mM MgCl₂, 0.2 mM dNTPs, 2 µl of 10× buffer, 0.2 mM of each primer, and 0.16 U of OneTaq. Phusion reactions were as follows: 20 µl total reaction volume with 4 µl HF buffer, 0.2 mM dNTPs, 0.6 µl of 100% DMSO, 0.2 U of Phusion. The amount of water and template DNA was individually determined for each PCR reaction, based on the concentration of template DNA in the sample: at least 30 ng of DNA was added to each PCR reaction.

Each DNA sample was amplified with one of two PCR primer pairs: Tun_forward/Tun_reverse25, or LCO1490/HCO2198. Tun primers were only used with OneTaq polymerase, using this protocol: 94 °C for 1 min, 60 cycles (94 °C for 10 s, 50 °C for 10 s, 72 °C for 10 min). Folmer primers were only used with Phusion polymerase, using this protocol: 98 °C for 30 s, 35 cycles (98 °C for 10 s, 48 °C for 30 s, 72 °C for 30 s), 72 °C for 5 min. PCR products were incubated with 1 µl each of Exonuclease I (New England Biolabs) and Antarctic Phosphatase (New England Biolabs) at 37 °C for 1 h, followed by 90 °C for 10 min. The PCR products were sequenced at the University of Kentucky’s HealthCare Genomics Core Laboratory using an ABI-3730 automated sequencer (Applied Biosystems). Forward and reverse sequences were edited and combined into a consensus sequence using Codon Codes Aligner (Codon Code Corporation).

We compared each sequence to botryllid sequences available on GenBank. If the sequence we obtained had 98–100% identity to a sequence identified on GenBank using blastn, we considered our sample to be the same species as the sample on GenBank. Because GenBank sequences can be mis-assigned, we only used GenBank identifications in which the submitting author had independently verified the taxonomic assignment of the sample using morphological characters. In many cases, the mtCOI sequence had no close match on GenBank.

Sample identification: morphological techniques. Taxa were also assigned to species by examination of morphological characters, when formalin preserved samples were available, using descriptions from the literature1,31–36,38,40,43–48,60–65. The 31 analyzed morphological characters are summarized as follows: arrangement of systems, position of ovaries and testes, testes morphology, number of stigmatal rows, completeness of the second stigmatal row, arrangement of stigmata, shape of intestine, location of anterior edge of intestinal loop, location of anus, number of stomach folds, appearance of the stomach folds, shape of the stomach, shape and size of the pyloric caecum, number and size orders of the oral tentacles, distribution of pigment cells in the zooid, zooid length, colony color when living and after fixation, and tunic thickness66–72. If the species could not be identified with complete certainty from the literature, we used a subset of the 31 characters: arrangement of the pyloric caecum, number and size of the oral tentacles, distribution of pigment cells in the zooid, and shape of the pyloric caecum. At least 30 zooids were examined from each colony.

When possible, we examined the morphology of the same colony from which the mtCOI sequencing was obtained. If a formalin preserved sample of the original colony was not available, we were often able to examine the morphology of another colony with an identical mtCOI sequence. We did not assign a specimen to a specific morphologically-described species if we could not obtain a formalin sample of the original colony or of a colony with an identical mtCOI sequence.

In the course of our species assignment using morphology, several specimens did not match the descriptions of any species previously found in the geographic region in which the specimen was collected. Either these samples represent new species, or they are known species that have only recently been identified from the location where they were collected. To determine where these species fit in relation to the morphologies of the other Botryllus/Botrylloides species, we searched the literature for morphological information on the 53 described botryllid species. We compiled data on the 31 morphological characters described above. The genus names (Botrylloides or Botryllus) and the morphological data come from the type description. In a few cases, the type description is lacking data on the majority of these characters. If a re-description was available, it was used to supplement the type description. Because our examinations were more thorough than type descriptions (often type descriptions do not provide data on individual zooids or individual colonies), we averaged our quantitative
data across the 30 + zooids we examined in each colony to obtain a single value for each colony. We then averaged quantitative data across multiple colonies to obtain a single value for each character for each species, to match the data available in the literature. A brief description of each considered morphological character is available in Supplementary Fig. S2, and the entire data matrix is available in Supplementary Table S1. Using the morphological data from the 53 described species and the 4 undescribed species, we then conducted a Principal Components Analysis using PCAmixdata\(^6\) as implemented in R version 3.6.1.

To accompany the PCA, we constructed a phylogenetic tree of the 57 species using the 31 morphological characters using MrBayes 3.2.6\(^{24}\). The GTR + G model of nucleotide substitution was applied to all data sets (Nset = 6). Each analysis was run for 10 million generations, with sampling every 1000 generations. The first 2000 trees were eliminated as burn-in.

Anchored hybrid enrichment (AHE) locus identification and probe design. Our aim was to develop a resource for collecting hundreds of orthologous loci across the botryllid ascidians using Anchored Hybrid Enrichment (AHE)\(^{69}\). The pre-existing genomic resources included an assembled genome of *Botryllus schlosseri*\(^{70}\), and two assembled transcriptomes: *Botryllus schlosseri*\(^{71}\), and *Botrylloides leachii*\(^{72}\), recently re-assigned to *Botrylloides diegensis* in Ref.\(^24\). In order to better represent the high diversity of the botryllid group, we collected low-coverage, whole genome data assemblies for seven additional species (details are given in Supplementary Table S2). DNA extracts for these seven species were sent to the Center for Anchored Phylogenomics (http://www.anchoredphylogeny.com) for processing. In brief, after the quality/quantity of DNA was assessed using Qubit, Illumina libraries with single 8 bp indexes were prepared following\(^73\), with modifications described in Ref.\(^74\). Libraries were pooled and sequenced on two Illumina HiSeq2500 lanes with a paired-end 150 bp protocol. A total of 125 Gb of data was collected yielding 25–65 × coverage per species. Reads were filtered for quality using the Cassava high chastity filter, demultiplexed with no mismatches tolerated, and merged to remove sequence adapters\(^75\) prior to downstream processing.

In order to identify suitable conserved targets for AHE, we performed reciprocal blast on local machines at the Center for Anchored Phylogenomics using the two assembly transcriptome (blasts). Using the results from the blast searches, we identified 482 preliminary targets with matching transcripts, which we aligned using MAFFT v7.0.23b\(^76\). Alignments were manually inspected in Geneious (vR9, Biomatters Ltd., Kearse et al. 2012), then trimmed to regions that were well-aligned. For the remainder of the locus development/identification, we followed the protocol outlined in Ref.\(^77\). More specifically, we isolated the *Botryllus schlosseri* (transcriptome) sequences from the aforementioned alignments, and using those as a reference scanned the *Botryllus schlosseri* genome for the AHE regions. Regions of 10,000 bp containing a 17 of 20 initial spaced k-mer match, followed by a 55 of 100 confirmation match to one of the references were kept. K-mers are all of a sequence's subsequences of length = k. For example, the sequence GCTA would have the following k-mers: G, C, T, A, GC, CT, TA, GCT, CTA, and GCTA. K-mers from the *Botryllus schlosseri* transcriptome were used to search the *Botryllus schlosseri* genome for AHE regions, and matches were based on spaced seeds as described in Ref.\(^78\). We then aligned (using MAFFT), the best matching genome sequence for each locus to the two transcriptome-derived sequences for that locus. Using Geneious (vR9, Biomatters Ltd.), we identified well-aligned regions of each three-sequence alignment and trimmed the alignments accordingly. The three-sequence alignment contained only two species: *Botryllus schlosseri* and *Botrylloides leachii* (recently re-assigned as *Botrylloides diegensis*)\(^79\).

In order to incorporate whole genome sequencing (WGS) data from the seven additional species, we utilized sequences from *Botrylloides leachii* and *Botryllus schlosseri* in the alignments as references. Each WGS read was checked against the reference database and reads with a preliminary 17 of 20 initial spaced k-mer match, followed by a final 55 of 100 bp consecutive match were retained, then aligned by locus to form seeds for the AHE regions to be developed (Ref.\(^77\) for details and scripts). In order to construct the final alignments, the (up to) 10 sequences for each locus were aligned in MAFFT, then trimmed to well-aligned regions after inspection in Geneious (vR9, Biomatters Ltd.). We identified well-aligned regions of each three-sequence alignment and trimmed the alignments accordingly. The three-sequence alignment contained only two species: *Botryllus schlosseri* and *Botrylloides leachii* (recently re-assigned as *Botrylloides diegensis*)\(^79\).

DNA extraction and library preparation methods. DNA for all samples in Table 1 was extracted using the E.Z.N.A DNA isolation kit (Omega BioTek), and an additional isopropanol precipitation was performed to further purify the DNA. The quantity and quality of the DNA extractions were determined using Qubit and 2% TAE agarose gels. The extracted DNA was fragmented into 300–500 bp pieces using a Covaris E220 focused-ultrasonicator with microTUBES (Covaris). Then, library preparation and indexing were performed on a Beckman-Coulter Biomek FxP liquid-handling robot, using a protocol based on Ref.\(^73\). Anchored hybrid enrichment was performed using a custom SureSelect kit (Agilent Technologies) targeting loci designed from
the whole genome alignment. Sequencing data were generated on an Illumina HiSeq2500 platform at the Center for Anchored Phylogenomics at Florida State University (www.anchoredphylogeny.com), as in Ref. 77. Sequencing was performed in the Translational Science Laboratory in the College of Medicine at Florida State University.

Raw read alignment. Sequence reads were demultiplexed with no mismatches tolerated and filtered for quality using the Illumina CASAVA pipeline with a high chastity setting. Overlapping reads were identified and merged using the approach described by Ref. 77. This process removes sequence adapters and corrects sequencing errors in overlapping regions. Reads were then assembled using the quasi-de novo approach described by Ref. 77. This assembly approach uses divergent references to identify sequences coming from conserved regions to which reads can be mapped. The mapped reads are in turn used as references when the assembly is extended into less conserved regions (see Ref. 77 for details). Probe region sequences from eight of the nine species used in the probe design were used as references for the initial mapping, while sequences from the Botryllus schlosseri genome (the 9th species) served as the primary reference. Consensus sequences were constructed from assembly clusters containing greater than an average of 250 reads. Ambiguity codes were employed for sites in which base frequencies could not be explained by a 1% sequencing error.

Phylogenomic tree building. Orthologous groups of consensus sequences were identified using a clustering approach that relied on an alignment-free distance matrix constructed by measuring the degree of 20-mer distribution overlap among taxa (see Ref. 77 for details). Sequences from orthologous sets of loci were then aligned using MAFFT (v7.023b)83. Alignments were trimmed and masked (i.e. excluded) using the automated procedure described by Ref. 77, with 50% threshold required for identifying reliable sites, a 14-base threshold for masking misaligned regions, and 25 sequences required to be present at a site to prevent removal of the site. Alignments were inspected visually in Geneious (vR9, Biomatters Ltd.) to ensure that the settings used in the automated procedure were appropriate and also to identify any undetected misaligned regions.

Phylogenomic trees were built using two methods: a concatenated species tree method using RAXML v8.2.841, and a coalescent species tree method using ASTRAL-II v4.10.1282. Maximum likelihood gene trees were first created for each locus separately. Then, maximum likelihood trees were created using a concatenated alignment partitioned by locus. A GTR + Γ model of nucleotide substitution and 1000 bootstrap replicates were employed for both gene trees and the species tree. The gene trees produced by RAXML were then used as inputs for ASTRAL-II. ASTRAL-II obtains quartet trees from the gene tree inputs, and creates a species tree that contains the maximum number of quartet trees present in all gene trees82.

A maximum likelihood tree-building framework using concatenated multiple gene alignments to obtain a species tree is a common approach83,84. We also employed a second, coalescent-based method (ASTRAL-II). Coalescent-based methods are often used because concatenation can lead to inaccurate species trees with high levels of bootstrap support84. ASTRAL-II is a summary method83, and is preferable to Bayesian co-estimation coalescent methods due to computational difficulties with datasets containing > 100 loci or > 30 samples83,85–87.

Data availability

All mtCOI barcode sequences associated with this study have been uploaded to GenBank: Accession numbers are available in Table 1. Genome raw reads, genome assemblies, and alignments for probes are available on Dryad (https://doi.org/10.5061/dryad.3r2280gf7). All other data generated or analyzed during this study are included in this published article (and its Supplementary Information files).

Received: 9 October 2020; Accepted: 16 February 2021
Published online: 16 April 2021

References

1. Lambert, G. Ecology and natural history of the protochordates. *Can. J. Zool.* **83**, 34–50 (2005).
2. Zhan, A., Briski, E., Bock, D. G., Ghabooli, S. & MacIsaac, H. J. Ascidians as models for studying invasion success. *Mar. Biol.* **162**, 2449–2470 (2015).
3. Aldred, N. & Clare, A. S. Impact and dynamics of surface fouling by solitary and compound ascidians. *Biofouling* **30**, 259–270 (2014).
4. Lambert, C. C. & Lambert, G. Persistence and differential distribution of nonindigenous ascidians in harbors of the Southern California Bight. *Mar. Ecol. Prog. Ser.* **259**, 145–161 (2003).
5. Bullard, S. G. et al. The colonial ascidian *Didemnum sp. A*: Current distribution, basic biology and potential threat to marine communities of the northeast and west coasts of North America. *J. Exp. Mar. Biol. Ecol.* **342**, 99–108 (2007).
6. Lambert, G. Adventures of a sea squirt sleuth: Unraveling the identity of *Didemnum vexillum*, a global ascidian invader. *Aquat. Invasions* **4**, 5–28 (2009).
7. Lengyel, N. L., Collie, J. S. & Valentine, P. C. The invasive colonial ascidian *Didemnum vexillum* on Georges Bank—Ecological effects and genetic identification. *Aquat. Invasions* **4**, 143–152 (2009).
8. Mercer, J. M., Whitlatch, R. B. & Osman, R. W. Potential effects of the invasive colonial ascidian (*Didemnum vexillum* Kott, 2002) on pebble-cobble bottom habitats in Long Island Sound, USA. *Aquat. Invasions* **4**, 133–142 (2009).
9. Soliman, T. & Inglis, G. J. Forecasting the economic impacts of two biofouling invaders on aquaculture production of green-lipped mussels *Perna canaliculus* in New Zealand. *Aquat. Environ. Interact.* **10**, 1–12 (2018).
10. Bancroft, F. W. Variation and fusions of colonies in compound ascidians. *Proc. Calif. Acad. Sci.* **3**, 137–186 (1903).
11. Van Name, W. G. *Variation and fusions of colonies in compound ascidians*. *B. Am. Mus. Nat. Hist.* **84**, 1–476 (1945).
12. Carman, M. R., Morris, J. A., Karney, R. C. & Grunden, D. W. An initial assessment of native and invasive tunicates in shellfish aquaculture of the North American east coast. *J. Appl. Ichthyol.* **26**, 8–11 (2010).
13. Carman, M. R., Bullard, S. G. & Donnelly, J. P. Water quality, nitrogen pollution, and ascidian diversity in coastal waters of southern Massachusetts, USA. *J. Exp. Mar. Biol. Ecol.* **342**, 175–178 (2007).
14. Dijkstra, J., Sherman, H. & Harris, L. G. The role of colonial ascidians in altering biodiversity in marine fouling communities. *J. Exp. Mar. Biol. Ecol.* **342**, 169–171 (2007).
15. Lord, J. P. Temperature, space availability, and species assemblages impact competition in global fouling communities. *Biol. Invasions* **19**, 43–55 (2017).
16. Carman, M. R. & Grunden, D. W. First occurrence of the invasive tunicate *Didemnum vexillum* in eldgass habitat. *Aquat. Invasions* **5**, 23–29 (2010).
17. Simkanin, C., Davidson, I. C., Dower, J. F., Jamieson, G. & Therriault, T. W. Anthropogenic structures and the infiltration of natural benthos by invasive ascidians. *Mar. Ecol. Prog. Ser.* **43**, 499–511 (2012).
18. Carlson, J. T. Man's role in changing the face of the ocean: Biological invasions and implications for conservation of near-shore environments. *Conserv. Biol. 3*, 265–266 (1989).
19. Carver, C. E., Mallet, A. L. & Vercaemter, B. Biological synopsis of the colonial tunicates, *Botryllus schlosseri* and *Botrylloides violaceus*. *Can. J. Fish. Aquat. Sci. 57*, 1–42 (2006).
20. Fay, R. C. & Vallee, J. A. A survey of the littoral and sublittoral ascidians of southern California, including the Channel Islands. *Bull. South. Calif. Acad. Sci. 70*, 114–124 (1979).
21. Gittenberger, A. Recent population expansions of nonnative ascidians in the Netherlands. *J. Exp. Mar. Biol. Ecol. 342*, 122–126 (2007).
22. Sheets, E. A., Cohen, C. S., Ruiz, G. M. & Da Rocha, R. M. Investigating the widespread introduction of a tropical marine fouling species. *Ecol. Evol. 6*, 2453–2471 (2016).
23. Ritter, W. E. & Forsyth, R. A. *Ascidians of the Littoral Zone of Southern California*. (University of California Press, 1917).
24. Viard, F., Roby, C., Turon, X., Bouchermoune, S. & Bishop, J. Cryptic diversity and database errors challenge non-indigenous species surveys: An illustration with *Botryllolides* spp. in the English Channel and Mediterranean Sea. *Front. Mar. Sci. 6*, 615 (2019).
25. Rocha, R. M. The power of combined molecular and morphological analyses for the genus *Botrylloides*: Identification of a potentially global invasive ascidian and description of a new species. *Syst. Biodivers. 17*, 599–526 (2019).
26. Bates, W. R. Environmental factors affecting reproduction and development in ascidians and other protochordates. *Can. J. Zool. 83*, 51–61 (2005).
27. Epelbaum, A., Herborg, L. M., Therriault, T. W. & Pearce, C. M. Temperature and salinity effects on growth, survival, reproduction, and potential distribution of two non-indigenous botryllid ascidians in British Columbia. *J. Exp. Mar. Biol. Ecol. 369*, 43–52 (2009).
28. Naranjo, S. A., Carballo, J. L. & García-Gómez, J. C. Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators?. *Mar. Ecol. Prog. Ser. 144*, 119–131 (1996).
29. Sorte, C. J., Jones, S. J. & Miller, L. P. Geographic variation in temperature tolerance as an indicator of potential population responses to climate change. *J. Exp. Mar. Biol. Ecol. 400*, 209–217 (2011).
30. Saito, Y. & Okuyama, M. Studies on Japanese botryllid ascidians. IV. A new species of the genus *Botryllus* with a unique colony shape, from the vicinity of Shimoda. *Zool. Sci. 20*, 1153–1161 (2003).
31. Saito, Y. & Watanabe, H. Studies on Japanese Compound Styelid Ascidians—IV. Three new species of the genus *Botryllodes* from the vicinity of Shimoda. *Publ. Seto Mar. Biol. Lab. 30*, 227–240 (1985).
32. Brunetti, R. Botryllid species (Tunicata, Ascidiae) from the Mediterranean coast of Israel, with some considerations on the systematics of *Botryllidae*. *Zootaxa* **2209**, 18–32 (2009).
33. Monniot, C. & Monniot, F. Les Ascidies de Polynésie française. *Mém. Mus. Natl. Hist. Nat. Ser. A. Zool. 136*, 1–145 (1987).
34. Mukai, H. Comparative studies on the structure of reproductive organs of four botryllid ascidians. *J. Morphol. 152*, 363–380 (1977).
35. Saito, Y., Mukai, H. & Watanabe, H. Studies on the Japanese styelid ascidians—I. Two new species of *Botrylis* from the vicinity of Shimoda. *Publ. Seto Mar. Biol. Lab. 26*, 357–368 (1981).
36. Saito, Y., Mukai, H. & Watanabe, H. Studies on the Japanese styelid ascidians—II. A new species of the genus *Botrylloides* and Redescription of *B. violaceus* Oka. *Publ. Seto Mar. Biol. Lab. 26*, 357–368 (1981).
37. Salonna, M. Ascidians as model for molecular studies: Species identification, phylogenetic reconstructions and gene family evolution. Ph.D. Thesis, University of Bari (2020).
38. Brunetti, R., Grigio, F., Mastrotorto, F., Gasparini, F. & Gissi, C. Toward a resolution of the cosmopolitan *Botryllus schlosseri* species complex (Ascidiae, Styelidae): Mitogenomics and morphology of clade E (*Botryllus gaias*). *Zool. J. Linn. Soc. Lond. zlaa023*, (2020).
39. Cohen, C. S., Saito, Y. & Weissman, I. L. Evolution of allrecognition in botryllid ascidians inferred from a molecular phylogeny. *Evolution* **52**, 746–756 (1998).
40. Saito, Y., Shirae, M., Okuyama, M. & Cohen, C. S. Phylogeny of botryllid ascidians. In *The Biology of Ascidians* (ed. Sawada, H., Yokosawa, H., & Lambert, C. C.) 315–320 (Springer, 2001).
41. Grigio, F. et al. Ascidian Mitogenomics: Comparison of evolutionary rates in closely related taxa provides evidence of ongoing speciation events. *Genome Biol. Evol. 6*, 591–605 (2014).
42. Lopez-Legendt, S., Turon, X. & Planes, S. Genetic structure of the sea squirt, *Botryllus schlosseri*, introduced in southern European harbours. *Mol. Ecol. 15*, 3957–3967 (2006).
43. Herdman, W. A. Report on the Tunicata collected by Prof. Herdman at Ceylon in 1902. *Rep. Ceylon Pearl Oyster Fish. 5*, 295–348 (1906).
44. Herdman, W. A. Revised classification of the tunicata, with definitions of the orders, suborders, families, subfamilies, and genera, and analytical keys to the species. *J. Linn. Soc. Lond. 23*, 558–652 (1891).
45. Herdman, W. A. Report on the Tunicata collected during the years 1873–1876. Part 2 Ascidiae compositae. *Zool. Chall. Exp. 14*, 1–425 (1886).
46. Kott, P. New syntheses and new species in Australian Ascidiae. *J. Nat. Hist. 37*, 1611–1653 (2003).
47. Monniot, C. Ascidies de Nouvelle-Caledonie. IV. Styelidae. *Bull. Mus. Natl. Hist. Nat. Paris 10*, 163–196 (1988).
48. Shenkar, N., Koplovitz, G., Dray, L., Gissi, C. & Huchon, D. Back to solitude: Solving the phylogenetic position of the Diodonidiae using molecular and developmental characters. *Mol. Phylogenet. Evol. 100*, 51–56 (2016).
49. Bock, D. G., Maciasaac, H. J. & Cristescu, M. E. Multilocus genetic analyses differentiate between widespread and spatially restricted cryptic species in a model ascidian. *Proc. R. Soc. B Biol. Sci. 279*, 2377–2385 (2012).
50. Nydam, M. L., Giesbrecht, K. B. & Stephenson, E. E. Origin and dispersal history of two colonial ascidian clades in the *Botryllus schlosseri* species complex. *PLoS ONE 12*, e0169944 (2017).
51. Hennig, W. *Phylogenetic Systematics*. (University of Illinois, 1966).
52. Horandl, E. & Stuessy, T. Paraphyletic groups as natural units of biological classification. *Taxon 59*, 1641–1653 (2010).
53. Stuessy, T. F. & Horandl, E. The importance of comprehensive phylogenetic (evolutionary) classification—a response to Schmidt–Lebuhn’s commentary on paraphyletic taxa. *Cladistics 30*, 291–293 (2014).
54. Schmidt-Lebuhn, A. N. Fallacies and false premises—A critical assessment of the arguments for the recognition of paraphyletic taxa in botany. *Cladistics 28*, 174–187 (2012).
55. Ward, P. S., Brady, S. G., Fisher, B. L. & Schultz, T. R. Phylogenetic classifications are informative, stable, and pragmatic: The case for monophyletic taxa. *Insectes Soc. 63*, 489–492 (2016).
56. Ebach, M. C., Williams, D. M. & Morrone, J. J. Paraphyly is bad taxonomy. *Taxon 55*, 831–832 (2006).
57. Vences, M., Guayasamin, J. M., Miralles, A. & de la Riva, I. To name or not to name: Criteria to promote economy of change in Linnaean classification schemes. *Zootaxa 3636*, 201–244 (2013).
58. Stefaniak, L. et al. Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002. *Aquat. Invasions* **4**, 29–44 (2009).

59. Folmer, O., Hoeh, W., Black, M., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. *Mol. Mar. Biol. Biotechnol.* **3**, 294–299 (1994).

60. Lotufo, T. M. C. Ascidia (Chordata: Tunicata) do litoral tropical brasileiro. PhD Thesis, Universidade de São Paulo, Brazil (2002).

61. Monniot, C. Ascidies littorelles de Guadeloupe. IV. Styelidae. *Bull. Mus. Nat. Hist. Nat. Paris* **5**, 423–456 (1983).

62. Monniot, C. Ascidies Stolidobranchies des Bermudes. *Bull. Mus. Nat. Hist. Paris 3rd series, No. 57, Zoologie* **43**, 617–643 (1972).

63. Van Name, W. G. Ascidians of the West Indian region and South Eastern United States. *Bull. Am. Mus. Nat. Hist.* **44**, 283–494 (1921).

64. Van Name, W. G. The Ascidians of the Bermuda Islands. *Trans. Conn. Acad. Sci.* **11**, 325–412 (1902).

65. Kaplan, E. H. *The Ascidians of the Bermuda Islands*. (Houghton Mifflin Harcourt, 1988).

66. Chavent, M., Kuentz, V., Labenne, A., Liquet, B., & Saracco, J. P. C.Amixdata: Multivariate analysis of mixed data. *R package version 3*, (2017).

67. Ronquist, F. & Huelsenbeck, J. P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. *Bioinformatics* **19**, 1572–1574 (2003).

68. Miller, M.A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In *Proceedings of the Gateway Computing Environments Workshop (GCE)*, 14 Nov. 2010, New Orleans, L.A. 1–8 (2010).

69. Lemmon, A., Emme, S. & Lemmon, E. Anchored hybrid enrichment for massively high-throughput phylogenomics. *Syst. Biol.* **61**, 727–744 (2012).

70. Voskoboinyk, A. et al. The genome sequence of the colonial chordate, *Botryllus schlosseri*. *Elife* **2**, e00569 (2013).

71. Di Maio, A., Setar, L., Tiozzo, S. & De Tomaso, A. W. Wnt affects symmetry and morphogenesis during post-embryonic development in colonial chordates. *Evolution* **6**, 17 (2015).

72. Zondag, L. E., Rutherford, K., Gemmell, N. J. & Wilson, M. J. Uncovering the pathways underlying whole body regeneration in a chordate model, *Botrylloides leachi* using de novo transcriptome analysis. *BMC Genom.* **17**, 1–11 (2016).

73. Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. *Cold Spring Harb. Protoc.* pdb.prot5448 (2010).

74. Prum, R. O. et al. A comprehensive phylogeny of birds (*Aves*) using targeted next-generation DNA sequencing. *Nature* **526**, 569–573 (2015).

75. Rokity, D. R., Lemmon, A. R., Marges, M. J. & Arnon, K. The venom-gland transcriptome of the eastern diamondback rattlesnake (*Crotalus adamanteus*). *BMC Genom.* **13**, 312 (2012).

76. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. *Mol. Biol. Evol.* **30**, 772–780 (2013).

77. Hamilton, C. A., Lemmon, A. R., Lemmon, E. M. & Bond, J. E. Expanding anchored hybrid enrichment to resolve both deep and shallow relationships within the spider tree of life. *BMC Evol. Biol.* **16**, 212 (2016).

78. Ma, B., Tromp, J. & Li, M. PatternHunter: Faster and more sensitive homology search. *Bioinformatics* **18**, 440–445 (2002).

79. Lemmon, A. R., Brown, J. M., Stanger-Hall, K. & Lemmon, E. M. The effect of ambiguous data on phylogenetic estimates obtained by maximum likelihood and Bayesian inference. *Syst. Biol.* **58**, 130–145 (2009).

80. Perez-Portela, R., Bishop, J. D. D., Davis, A. R. & Turon, X. Phylogeny of the families Pyuridae and Styelidae (Stolidobranchiata, Ascidiae) inferred from mitochondrial and nuclear DNA sequences. *Mol. Phylogenet. Evol.* **50**, 560–570 (2009).

81. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* **30**, 1312–1313 (2014).

82. Mirarab, S. & Warnow, T. ASTRAL-II: Coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. *Bioinformatics* **31**, 144–152 (2015).

83. Roch, S. & Warnow, T. On the robustness to gene tree estimation error (or lack thereof) of coalescent-based species tree methods. *Syst. Biol.* **64**, 663–676 (2015).

84. Kubatko, L. S. & Degnan, J. H. Inconsistency of phylogenetic estimates from concatenated data under coalescence. *Syst. Biol.* **56**, 17–24 (2007).

85. Bayzid, M. S. & Warnow, T. Naive binning improves phylogenomic analyses. *Bioinformatics* **29**, 2277–2284 (2013).

86. McCormack, J. E. et al. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. *PLoS ONE* **8**, e54884 (2013).

87. Zimmermann, T., Mirarab, S. & Warnow, T. BBCA: Improving the scalability of *BEAST* using random binning. *BMC Genom.* **15**, S11 (2014).

Acknowledgements

We would like to thank the following people who generously collected, shared, or facilitated sampling for this study: Carrie Craig, Derrick Cruz, Tony De Tomaso, Tom Frankovich, Erin Grey, Vanessa Guerra, Kristen Larsson, Gretchen Lambert, Beth Moore, Rosana Rocha, Marc Ruis, Greg Ruiz, Shinsuke Saito, Yasunori Saito, Joelle Tirindelli, Linda Walters, Terry Gosliner, Christina Piotrowski, Rich Mooi, and Gary Williams. We would also like to thank Stefano Tiozzo and Megan Wilson for sending us transcriptomes, Christina Piotrowski, California Academy of Sciences, for help with sample processing, characterization, and tracking; Verena Wang, Ritchelle Quiambao, Karen Alroy, Elizabeth Sheets, Ryan Ferguson, KeChaunte Johnson, Tim Fuller, and Kelly Donahoe. We acknowledge The Philippines’ Bureau of Fisheries and Aquatic Resources and the National Fisheries Research and Development Institute for their role in the 2014–2016 Verde Island Passage (VIP) Expedition. All specimens from the Philippines were collected under Gratuitous Permit # GP-0077-14 from the municipalities of Puerto Galera and Batangas. The following samples were collected during the NSF Biotic Survey VIP Expedition: CASIZ 215739, CASIZ 215761, CASIZ 209556, CASIZ 209557, CASIZ 201262, CASIZ 201265, CASIZ 201274, CASIZ 217839, CASIZ 204513. This work was funded by an NSF EPSCoR Research Enhancement Grant. Sample acquisition and some analysis also benefited from projects funded by the National Science Foundation including NSF FSML Grant 0435033 and NSF DBI 1257630, California Sea Grant, the Smithsonian, and the Indian River Lagoon National Estuary Program. This study is dedicated to Yasunori Saito.

Author contributions

M.L.N. and C.S.C. conceived and designed the study and collected samples. M.L.N. performed the morphological characterizations and analyses, generated mtCOI sequences, and wrote the paper. A.R.L. designed the probes and
conducted the whole genome sequencing analyses. J.R.C. aligned the raw reads and created the phylogenomic trees. M.L.K. conducted DNA extractions and created genomic DNA libraries for sequencing. C.H. and D.L.C. curated, dissected, barcoded, and analyzed barcode samples.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-87255-2.

Correspondence and requests for materials should be addressed to M.L.N.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2021