SOD3 Reduces Inflammatory Cell Migration by Regulating Adhesion Molecule and Cytokine Expression

Juha P. Laurila¹, Lilja E. Laatikainen¹, Maria D. Castellone², Mikko O. Laukkanen¹*

¹ Medicity Research Laboratory, University of Turku, Turku, Finland, ² Institute of Experimental Endocrinology and Oncology (CNR), Department of Biology and Cellular and Molecular Pathology, University of Naples Federico II, Naples, Italy

Abstract

Inflammatory cell migration characteristic of ischemic damages has a dual role providing the tissue with factors needed for tissue injury recovery simultaneously causing deleterious development depending on the quality and the quantity of infiltrated cells. Extracellular superoxide dismutase (SOD3) has been shown to have an anti-inflammatory role in ischemic injuries where it increases the recovery process by activating mitogen signal transduction and increasing cell proliferation. However, SOD3 derived effects on inflammatory cytokine and adhesion molecule expression, which would explain reduced inflammation in vascular lesions, has not been properly characterized. In the present work the effect of SOD3 on the inflammatory cell extravasation was studied in vivo in rat hind limb ischemia and mouse peritonitis models by identifying the migrated cells and analyzing SOD3-derived response on inflammatory cytokine and adhesion molecule expression. SOD3 overexpression significantly reduced TNFα, IL1α, IL6, MIP2, and MCP-1 cytokine and VCAM, ICAM, P-selectin, and E-selectin adhesion molecule expressions in injured tissues. Consequently the mononuclear cell, especially CD68+ monocyte and CD3+ T cell infiltration were significantly decreased whereas granulocyte migration was less affected. According to our data SOD3 has a selective anti-inflammatory role in ischemic damages preventing the migration of reactive oxygen producing monocyte/macrophages, which in excessive amounts could potentially further intensify the tissue injuries therefore suggesting potential for SOD3 in treatment of inflammatory disorders.

Introduction

The inflammatory process is initiated by endothelial cell (EC) activation comprising upregulation of chemokines and cell adhesion molecules, leukocyte activation and transmigration, and secretion of proinflammatory factors by leukocytes [1]. The inflammatory reaction is necessary for tissue recovery as it provides the correct cytokine signals and cell machinery to clear up the site for regeneration of the tissue [2]. However, uncontrolled inflammation has unfavorable effects on the course of tissue healing since the inflammatory cells are also capable of inducing tissue damage [2] and therefore many conditions involving inflammation, e.g. autoimmune diseases and tissue transplantations, are treated with immunosuppressants to reduce harmful leukocyte infiltration. Among the most potent drugs are glucocorticoids that downregulate the expression of numerous inflammatory chemokines, cytokines and adhesion molecules [3–5], which, however, are not entirely without adverse effects such as delayed myocardial tissue healing, osteoporosis, and blood vessel calcification [6–9].

The most prominent outcome in the initial phase of inflammation is the enhanced production of cytokines, such as TNF-α and IL-1, and chemokines, such as monocyte chemotactic protein-1 (MCP-1) [10,11], which further induce expression of a number of inflammatory cytokines [4]. Many of the stimulus-specific pathways converge in the production of superoxide (O₂⁻) and hydrogen peroxide (H₂O₂) as signal mediators, which in turn result in e.g. NFkB activation responsible for numerous stress-related functions [12–14]. Leukocytes are thus recruited by expression of various cell adhesion molecules, e.g. selectins, and intercellular and vascular cell adhesion molecules (ICAM-1 and VCAM-1, respectively) [15,16]. They promote rolling and firm adhesion of leukocytes to endothelial wall, the necessary interactions preceding transmigration [17]. To aid leukocyte migration the vessel wall cells change their morphology by assuming cytoskeletal and cell-cell junction modifications in response to e.g. ligand binding to ICAM-1 and VCAM-1 [18–20], and when stimulated by O₂⁻ or TNF-α [21,22].

Previously, it has been shown that extracellular superoxide dismutase (SOD3) can attenuate tissue damage and inflammation but so far its mechanism of action has not been completely defined [23–27]. Since excess inflammation prevents the tissue injury recovery we investigated in the present study the effect of SOD3 overexpression on cell migration. We used two in vivo acute inflammation models to determine how SOD3 affects leukocyte extravasation, and compared the results to efficacy of the glucocorticoid immunosuppressant dexamethasone. The mouse peritonitis and rat hind limb ischemia models have been characterized previously; they induce rapid infiltration of leukocytes to the peritoneal cavity and large femoral muscles,
respectively [28–30]. We then analyzed the proportions of the infiltrated leukocyte subtypes, and determined the effects on several mediators of the inflammatory reaction.

Materials and Methods

Ischemia model

Fischer 344 rats (Harlan, Horst, Netherlands) and Balb/C mice (local colony) were maintained in specific pathogen-free conditions and had access to food and water ad libitum. All experimental procedures were approved by the Experimental Animal Committee of University of Turku.

Ischemic hind limb injury was induced to male Fischer 344 rats (5 to 6 weeks old, 86–115 g) by surgical closure of the distal femoral artery, lateral circumflex femoral artery, and the proximal femoral artery. The animals were anesthetized for the procedure by intra peritoneal administration of fentanyl thiamine (Janssen Pharmaceutica, Beerse, Belgium) and midazolame (Roche, Basel, Switzerland). Gene transfer was done immediately after the ligation by intra muscular injection of 0.5×10⁹ pfu adenovirus SOD3 (AdSOD3) or LacZ (AdLacZ) in 50 μl PBS as described [27,31,32]. Uninjured muscle tissue was used as control.

Peritonitis model

Gene transfer was done to 8–10 week old female balb/c mice with intra peritoneal injection of 0.5×10⁹ pfu AdSOD3 or AdLacZ. Acute peritoneal inflammation was induced 72 hours later by i.p. injection of 1 ml PBS containing 5% proteose peptone (BD Difco, Sparks, MD, USA) and 10 ng of IL-1β (RkD Systems, Minneapolis, MN, USA). As a control treatment, animals were given 50 mg/kg of Dexamethasone (Oradexon, Organon, Oss, Holland) half an hour before proteose peptone injection. Cells from the peritoneal cavity were collected 18 hours after the induction of inflammation by washing with 10 ml of RPMI containing 5 U/ml heparin (Loven’s Kemiske Fabrik, Ballerup, Denmark). Cells from peritoneal lavage were counted and cytacentrifuged at 1000 rpm for 5 minutes (Shandon cytospin 3, Shandon, Pittsburgh, PA, USA). Slides were stained with Reastain Diff-Quick (Reagena, Toivala, Finland) to analyze different leukocyte subtypes.

Immunohistochemistry

Rat muscle samples were frozen in liquid nitrogen and embedded in Tissue-Tek optimal cutting temperature compound (Sakura Finetek, Torrance, CA, USA). Ten micrometer sections were fixed in acetone and stained with rabbit anti-rat CD3 and mouse anti-rat CD68 (Serotec, Oxford, UK). The sections were embedded in Tissue-Tek optimal cutting temperature compound (Kemiske Fabrik, Ballerup, Denmark). Cells from peritoneal lavage were counted and cytacentrifuged at 1000 rpm for 5 minutes (Shandon cytospin 3, Shandon, Pittsburgh, PA, USA). Slides were stained with Reastain Diff-Quick (Reagena, Toivala, Finland) to analyze different leukocyte subtypes.

Reporter assay

HEK 293T cells were used for in vitro assay to provide a general cell model that we have previously used in our reporter, expression, and cell signalling studies allowing the comparison of the data with our previous results. HEK 293T cells were transfected with SOD3 expression vector together with pNFκB Luc reporter (Stratagene, Cedar Creek, TX, USA). Luciferase activity was quantified with Tecan Ultra XFluor4 Fluorescence Reader (Tekan, Mannedorf, Switzerland).

Western blot analysis

HEK293 cells were homogenized in lysis buffer (50 mmol/l HEPES pH 7.5, 150 mmol/l NaCl, 10% glycerol, 1% Triton X-100, 1 mmol/l MgCl₂, 10 mmol/l NaF, 10 mmol/l sodium pyrophosphate, 1 mmol/l Na₃VO₄, 10 μg/ml aprotinin, 10 μg/ml leupeptin) (Sigma, Saint Louis, MI, USA). Mouse anti-human α-actin (Santa Cruz, Santa Cruz, CA, USA) was used to detect IκB levels from tissues.

Quantitative PCR

Total RNA was extracted from a pool of four animals using Tri-reagent (Sigma, Saint Louis, MI, USA). The first strand synthesis was done with Revert-Aid M-MuLV (Fermentas, Burlington, Canada), and the following quantitative PCR with SYBR Green PCR master mix (Applied Biosystems, Foster City, CA). Primers and cycling conditions are shown in the Table 1.

Statistical Analysis

All results are expressed as mean±SEM. A paired t-test was used to determine differences between groups.

Results

SOD3 inhibits leukocyte migration in acute ischemia

Neutrophils, macrophages, and other inflammatory cells mediate a number of important cellular functions in injured tissue [33,34]. Phagocytic macrophages clear cellular debris and secrete inflammatory cytokines such as MIP-2, a strong neutrophil attracting agent leading to further increase in inflammatory signaling [35]. However, excessive inflammatory reaction may also contribute to tissue damage by enhancing macrophage infiltration, which increases tissue free radical load leading to further tissue injury [36]. In addition, decreased neutrophil accumulation leads to reduced infarct size, reduced vascular permeability, and resistance in ischemia/reperfusion (I/R) injury [37,38]. Thus, it is suggested that the tissue recovery is dependent on the factors

Gene	Primer Tm
TNFα for	AGA TGT GGA ACT GGC AGA GG 60
TNFα rev	CCC ATT TGG GAA CAT CCT CT
IL-1β for	TCG GGA GAC GAC TCT AA 58
IL-1β rev	GAA AGC TGC GGA TGT GAA GT
IL-6 for	CCG GAG AGG AGA CCT CAG AG 55
IL-6 rev	ACA GTG CAT CAT CCG TGC TG
MCP-1 for	CTC ACC TGC TGC TAC TCA TTC ACT 55
MCP-1 rev	TGC TGC TGC TAC TCA TTC ATG
MIP2 for	ATC CAG AGT TGC AGG GTG AC 55
MIP2 rev	GGA CTT GCC GCT CTT CAG TA
ICAM for	AGG TAT CCA TCC ATC CCA CA 55
ICAM rev	GCC ACA GTT CTC AAA GCA CA
VCAM for	TGA CAT CTC CCC TGG ATC TC 55
VCAM rev	CTC CAG TTT TGC TGT AC
PSEL for	TTC CCA CAC TCT CCT CTT CT 57
PSEL rev	CAC GCT GTA TGC GGG GTA TT
ESEL for	TTT TTG GCA CGG TAT GTG AA 57
ESEL rev	AGG TGG CTG CCA CAG AGA CT
β-actin for	TCG TGC GTG ACA TTA AGG AG 55
β-actin rev	GTC CAG CAC CTC GTG GT

Table 1. Primers and cycling conditions.
regulating the inflammatory cell migration into the injuries. In the present work we studied leukocyte migration in acute ischemia and peritonitis models and analyzed the contribution of SOD3 on inflammatory cytokine and adhesion molecule expression.

We determined the effect of SOD3 overexpression on the degree of inflammation by analyzing the size of inflamed tissue and the number of infiltrated macrophages and T cells in acute ischemic injury model. In a mouse model of femoral artery ligation, macrophage infiltration into ischemic muscle reaches peak values 3 days after the injury [39]. Histological analysis of the rat hind limb ischemia showed 3-fold reduction in the inflamed tissue area as determined by the presence of CD68\(^+\) macrophages (p<0.001) in SOD3 vs. LacZ control animals 3 days after vessel ligation (Figure 1). The reduction became even more prominent in later time points reaching 12-fold difference 10 days after vessel ligation. Additionally, the number of infiltrated CD68\(^+\) macrophages was 3–5 fold higher in LacZ control animals as compared to SOD3 animals (p<0.05). Maximal macrophage accumulation to the injured tissue was seen at 7-day time point in LacZ animals indicating that the inflammatory reaction was still developing in control animals at the initial phase of the follow-up period while the inflammation was decreasing in SOD3 animals. Throughout the experiment the number of macrophages remained higher in control animals than initially observed in SOD3 animals, which by the 10-day time point showed values close to the background levels further underlining the beneficial effect of SOD3.

Figure 1. Reduced macrophage infiltration in to ischemic muscle. Open bars represent LacZ animals and black bars represent SOD3 animals. CD68 staining showed significantly reduced inflammatory area and macrophage infiltration in SOD3 animals at all time points studied. Histological stainings show CD68\(^+\) macrophages around the femoral artery in ischemic muscles (20\(\times\) magnification).

doi:10.1371/journal.pone.0005786.g001
Figure 2. Inhibition of T-cell migration. Open bars represent LacZ animals and black bars represent SOD3 animals. Infiltration of CD3+ lymphocytes was inhibited in SOD3 animals 10 days after injury remaining at the level seen at earlier 3-day time point (20× magnification). doi:10.1371/journal.pone.0005786.g002

Figure 3. Anti-inflammatory effect of SOD3 affects predominantly macrophages in peritonitis model. Open bars represent LacZ animals and black bars represent SOD3 animals. (a) SOD3-mediated reduction in total leukocyte number in peritoneal lavage 18 hours after induction of inflammation. SOD3 treated animals had 55.6×10^4 (±4.1) cells/milliliters of lavage as compared to 91.6×10^4 (±6.7) found from LacZ control animals. (b) Analysis of different leukocyte subtypes showed strongest effect in macrophages although lymphocyte migration was also reduced. Monocyte accumulation in LacZ vs. SOD3 treatment was reduced from 33.5×10^4 (±1.8) to 10.9×10^4 (±2.5) cells/ml whereas lymphocytes were reduced from 11.4×10^4 (±2.2) to 7.6×10^4 (±1.2) cells/ml, and neutrophils from 47.0×10^4 (±4.7) to 37.5×10^4 (±2.9) cells/ml.

doi:10.1371/journal.pone.0005786.g003
As compared to neutrophils and macrophages, the role of CD3+ T-cells in recovery of ischemic tissue has remained uncertain. Despite relatively low level of infiltration, studies suggest an early role for T-cells in attracting neutrophils and macrophages to site of myocardial or peripheral ischemia/reperfusion injury [40,41]. The histological analysis at 3-day time point showed 114±23 and 153±46 (p = ns) CD3+ T cells per ischemic tissue section in SOD3 and LacZ animals, respectively (Figure 2). At 10-day time point number of T cells had increased in LacZ animals by 60% to 247±31 whereas in SOD3 animals T cell accumulation remained at similar level as compared to 3 day time point (125±30, p<0.05). The analysis of leukocyte accumulation in the rat hind limb ischemia model shows selective inhibition of inflammatory cell migration and suggests SOD3 to have more prominent effect on macrophage infiltration as compared to lymphocytes.

SOD3-mediated inhibition of leukocyte accumulation in peritonitis model

To confirm the findings and to further analyze the SOD3-derived selective inhibition of cell migration we examined leukocyte migration in a mouse peritonitis model, which provides an efficient way to analyze leukocyte traffic in an acute inflammatory response. To induce peritoneal inflammation we used 5% solution of proteose peptone supplemented with IL-1β and counted the numbers of different leukocyte subtypes from the peritoneal lavage 18 hours after induction of inflammation. The analysis of SOD3 overexpression derived inhibition of cell migration showed 20% (p = ns), 67% (p<0.001), and 33% (p<0.05) reduction in migrating neutrophils, monocytes/macrophages, and lymphocytes, respectively (Figure 3B). Moreover, the total number of infiltrated leukocytes was decreased by 30% in SOD3 animals as compared to LacZ controls (Figure 3A) (p<0.01), which is mostly caused by the effect of attenuated macrophage migration. The data effectively confirmed our findings in rat hind limb ischemia showing vastly stronger inhibition of macrophage infiltration as compared to other leukocyte subtypes.

Dexamethasone, a corticosteroid that reduces swelling and inflammation is a potent anti-inflammatory drug used to treat many bacteria-free inflammatory conditions, including rheumatoid arthritis and anaphylactic shock. Glucocorticoids exert their anti-inflammatory effect e.g. through repression of NF-κB mediated cytokine expression, which takes place after cytoplasmic glucocorticoid receptor translocates into the nucleus [5,42]. To compare SOD3 to clinically approved medication we gave an intra-peritoneal injection of dexamethasone (Oradexon) to animals 30 minutes before induction of peritoneal inflammation. Leukocyte traffic to the inflamed peritoneum was reduced by 20% (p<0.05) after treatment with 50 mg/kg dexamethasone (Figure 4A). Monocyte/macrophage migration was reduced by 60% (p<0.01), and that of lymphocytes by marked 50% indicating tendency, while no significant difference was seen in neutrophil accumulation in this setting (Figure 4B). PBS mock treated animals exhibited lower neutrophil and monocyte accumulation as compared to animals subjected to LacZ gene transfer, which may be result of the adenovirus vector used in the study. Intriguingly, SOD3 treatment reduced peritoneal monocyte and lymphocyte numbers to similar level as dexamethasone treatment although neutrophil numbers remained higher than what was observed in either PBS or dexamethasone treated animals.

SOD3 inhibits NF-κB activation and suppresses the inflammatory cytokine and adhesion molecule expression

Proinflammatory stimuli activate vascular endothelium leading to up-regulation of cell adhesion molecules and chemokines, NF-κB has been shown to be both necessary and sufficient for endothelial up-regulation of ICAM, VCAM, and MCP-1 [43]. Furthermore, ectopic expression of IkBα effectively abrogates expression of VCAM, IL-1, and IL-6 [44]. In vitro luciferase assay revealed 50% (p<0.01) decrease in NF-κB activity due to SOD3 transfection, which could at least partially be explained by increased IkBα expression (Figure 5A) suggesting that SOD3 promotes cytoplasmic localization of NF-κB rendering it incapable of binding DNA. NF-κB plays a central part in responses to inflammatory signaling by regulating the expression of cytokines suggesting that reduced NF-κB activity could lead to reduction in expression of inflammatory cytokines and chemokines. Therefore, we quantified cytokine and chemokine expression level in vivo from rat muscle three days after vessel ligation and SOD3 gene transfer. Quantitative RT-PCR showed significantly reduced expression of TNFα, IL1α, IL6, MIP2, and MCP1 (Figure 5B) in SOD3 animals suggesting reduced expression of several important inflammatory mediators. Specifically, MCP1 is an important macrophage

Figure 4. Anti-inflammatory effect of dexamethasone. Open bars represent PBS treated animals and black bars represent dexamethasone animals (dosage 50 mg/kg). (a) Leukocyte infiltration was reduced by dexamethasone treatment from 51.5±10^4 (±4.7) to 36.5±10^4 (±7.1) cells/ml of lavage. (b) Dexamethasone treatment had no effect on neutrophil migration, 16.6±10^4 (±2.9) and 21.5±10^4 (±5.2) cells/ml were found in PBS control group and dexamethasone treated animals, respectively. In contrast, accumulation of monocytes and lymphocytes were reduced from 21.4±10^4 (±2.7) to 8.8±10^4 (±2.2), and from 13.7±10^4 (±3.2) to 6.5±10^4 (±2.4), respectively.
doi:10.1371/journal.pone.0005786.g004
SOD3 Derived Cell Migration

Discussion

Tissue damage launches rapid recruitment of inflammatory leukocytes into injured tissue due to activation of endothelial cells. Inflammatory reaction promotes tissue healing by eliminating pathogens, clearing cellular debris, and promoting cell proliferation. However, excessive inflammatory reaction promotes injury e.g. through neutrophil-derived superoxide production [47]. In fact, reactive oxygen species function as inflammatory mediators by activating expression of cytokines such as TNFα, IL-1, and IL-6 [48] and therefore ROS may contribute to tissue injury by not only directly damaging the tissue but also by enhancing further leukocyte accumulation.

In the current work we showed that SOD3 is an important mediator of reduced CD68+ macrophage migration into the inflammatory area. Macrophages accumulate in high numbers to ischemic muscle forming the primary leukocyte population three days after injury [39]. CD68 staining showed significantly reduced inflammatory area and macrophage migration in SOD3 treated ischemic tissue as compared to LacZ control animals (Figure 1). The SOD3-mediated reduction in macrophage accumulation was evident in all of the studied time points. T-cells accumulate to ischemic muscle in vastly lower numbers as compared to macrophages. However, their presence is required for efficient neutrophil traffic, and they attract macrophages by secreting IL-16 [40]. In our studies, SOD3 did not prevent initial low level T-cell migration, but efficiently inhibited further increase at 10-day time point (Figure 2). Late effect on T-cell migration suggests an indirect mechanism for SOD3 mediated inhibition in T-cell traffic, which might be result of general decrease in inflammation. Inflammatory cytokines secreted by infiltrating macrophages attract other leukocytes to injured tissue [49]. Thereafter, inhibition of macrophage infiltration could lead to overall reduction in inflammatory reaction.

Since the SOD3-derived reduction in inflammation showed selective inhibition of macrophage migration, we were prompted to confirm the finding and to better characterize the cell specific effect. The mouse peritonitis model supported the SOD3-derived reduction in the number of infiltrating leukocytes (Figure 3A), which was predominantly due to reduced macrophage numbers (Figure 3B). These results confirm the anti-inflammatory property of SOD3 and show a stronger inhibition of monocyte migration as compared to other analyzed leukocyte subtypes. The data suggest that reduced superoxide tissue concentrations caused by SOD3 overexpression may explain the anti-inflammatory effect of the enzyme. It has been previously shown that superoxide treatment of rat cerebral endothelial cells increases monocyte adhesion and migration, which, however, was not replicated by H2O2 treatment [48] and therefore ROS may contribute to tissue injury by not only directly damaging the tissue but also by enhancing further leukocyte accumulation.

Anti-inflammatory medications currently available for clinical use include glucocorticoid drugs such as dexamethasone. Dexamethasone binds the glucocorticoid receptor, which subsequently translocates to the nucleus and represses inflammatory gene expression by inhibiting e.g. NF-κB activity [4,5,42]. To confirm the efficacy of SOD3 mediated anti-inflammatory effect to existing medication we determined the effect of Dexamethasone in mouse peritonitis. As a dose of 50 mg/kg, dexamethasone reduced leukocyte traffic in comparable levels to SOD3 gene transfer (Figure 4A). Dexamethasone-mediated effect was equally effective in monocyte/macrophage and lymphocyte lineages whereas no significant effect was seen in neutrophils (Figure 4B).

Figure 5. SOD3-mediated reduction in activity of inflammatory mediators. Open bars represent LacZ tissue and black bars represent SOD3 animals. (a) Luciferase assay shows 50% reduction in NF-κB activity in vitro, and western blot analysis shows increased IκBα expression. (b) Quantitative RT-PCR analysis for cytokines and chemokines. SOD3 overexpression derived reduced expression of TNFα, IL-1α, IL-6, MCP-1, and MIP2 in injured tissue. (b) Analysis of ICAM, VCAM, P-selectin, and E-selectin expression. Expression of inflammatory adhesion molecules was significantly reduced in SOD3 muscle. doi:10.1371/journal.pone.0005786.g005

attractant [45,46], possibly explaining markedly reduced macrophage accumulation. Furthermore, since TNFα, IL-1α, and IL6 are important regulators of endothelial adhesion molecule expression we analyzed expression of ICAM, VCAM, E-selectin, and P-selectin from the tissue (Figure 5C). We found significant reduction in adhesion molecule expression, which further confirms the reduction in overall inflammation in the muscle of SOD3 recipient rats as compared to LacZ control animals.
accumulation has been shown to be at its highest as early as 4 hours after induction of inflammation in zymosan induced peritonitis [50]. Therefore, lack of effect on neutrophil migration could be due to late time point analyzed. The data suggests that SOD3 overexpression and dexamethasone administration have similar anti-inflammatory effect in acute inflammation and therefore suggests SOD3 as a potential candidate molecule for clinical treatments.

NF-κB plays a crucial role in mediating inflammation due to its role in activating expression of pro-inflammatory genes such as cytokines TNFα and IL1α, and adhesion molecules ICAM-1 and VCAM-1 [43,44]. Since NF-κB is a redox sensitive transcription factor being activated by oxidative stress, [12,13] we analyzed the effect of SOD3 on NF-κB activity in vitro and showed significantly decreased activity. (Figure 5A). The data is in line with previous work in cardiovascular and liver transplantation models showing that increased NAPDH oxidase-derived superoxide production correlates with increased NF-κB activity, which is attenuated by SOD3 overexpression [51–54].

Since cytokines TNFα, IL1α, IL6, MIP2, and MCP1 are known to contain NF-κB binding sites in their gene promoters and are thus up-regulated by NF-κB activation [55–61], we analyzed their expression levels in rat muscle by quantitative PCR. All of the analyzed cytokines and chemokines were significantly down-regulated in SOD3 animals as compared to LacZ control animals (Figure 5B). TNFα, IL1α, and IL6 promote inflammatory cell migration by up-regulating E-selectin, P-selectin, ICAM, and VCAM. Furthermore, macrophage recruitment has been shown to be strongly dependent on MCP-1 secretion [46], while MIP2 is a strong attractant for neutrophils [35]. MCP-1 deficiency does not reduce the number of resident macrophages in peritoneal cavity, but prevents macrophage migration in response to acute thioglycollate induced peritonitis [46]. Lu et al. showed 3-fold reduction in macrophage migration in 2,4-dinitro-1-fluorobenzene induced skin hypersensitivity model while neutrophil numbers remained unchanged. Thereafter, marked down-regulation of MCP-1 seen in ischemic muscle could explain the observed strong macrophage inhibition. Finally, due to reduced inflammatory cytokine expression, we conducted further expression analyses and found reduced expression VCAM, ICAM, E-selectin, and P-selectin (Figure 5C). Reduced expression of common adhesion molecules highlights the anti-migratory role of SOD3. It has been shown that macrophage transmigration is strongly dependent on α,β2 integrin - ICAM-1 interaction. Pre-treatment of recipient mice before intra venous macrophage injection with monoclonal antibodies for ICAM-1 reduced macrophage migration to atherosclerotic plaques by 63% [62]. In addition, rolling and attachment of F38D1 mouse monocyte cell line was inhibited by P-selectin and VCAM antibodies in an ex vivo isolated perfused carotid artery model [63] demonstrating the importance of these adhesion molecules on macrophage transmigration.

In conclusion, our novel observation shows that SOD3 gene transfer into hind limb ischemia or peritonitis results in significantly reduced leukocyte migration due to decreased cytokine and adhesion molecule expression. Further on, the data suggest more pronounced anti-inflammatory effect on macrophages as compared to other leukocyte subtypes in the models used in the current work. The observed anti-inflammatory effect in SOD3 treated mice was comparable or even higher than that of Dexamethasone, which recently has been shown to have cardiovascular side effects [64,65]. Our previous in vivo SOD3 overexpression models have suggested non-toxicity and beneficial effect on tissue protection and injury recovery [24–26,31] suggesting that SOD3 overexpression by exogenous administration or through increased endogenous production in injured tissues could provide a promising medication against excess inflammatory cell migration.

Author Contributions
Conceived and designed the experiments: JL MDC MOL. Performed the experiments: JL LEL MDC MOL. Analyzed the data: JL LEL MDC MOL. Contributed reagents/materials/analysis tools: MOL. Wrote the paper: JL LEL MDC MOL.

References
1. Alom-Ruiz SP, Anilkumar N, Shah AM (2008) Reactive oxygen species and endothelial activation. Antioxid Redox Signal 10: 1089–1100.
2. Tidball JG (2005) Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 289: R345–353.
3. Rockson D, Lillicook B, Larsson K, Johansson T, Buch A (2000) Differential anti-inflammatory and anti-oxidative effects of dexamethasone and N-acetyl cysteine in endotoxin-induced lung inflammation. Clin Exp Immunol 122: 249–256.
4. Nehrue, A, Edelman J (2008) Dexamethasone inhibits high glucose-, TNFalpha-, and IL-beta-induced secretion of inflammatory and angiogenic mediators from retinal macrovascular pericytes. Invest Ophthalmol Vis Sci 49: 2030–2038.
5. Barnes PJ (2006) Corticosteroids effects on cell signalling. Eur Respir J 27: 413–426.
6. Bulkey BH, Roberts WC (1974) Steroid therapy during acute myocardial infarction. A cause of delayed healing and of ventricular aneurysm. Am J Med 56: 244–250.
7. Weintraub RS, Elia RL, Parfit AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by superoxide are required for the expression of cell adhesion molecules induced by tumor necrosis factor-alpha in endothelial cells. J Pharmacol Exp Ther 305: 573–580.
8. Ley K, Lauttama C, Uyovsky MI, Nourshargh S (2007) Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol 7: 670–689.
9. Matheny HE, Deem TL, Cook-Mills JM (2000) Lymphocyte migration through monolayers of endothelial cell lines involves VCAM-1 signaling via endothelial cell NADPH oxidase. J Biol Chem 275: 6550–6559.
10. El-Helou V, Proulx C, Gosselin H, Clement R, Mimee A, et al. (2008) Dexamethasone treatment of post-MI rats attenuates sympathetic innervation of the infracted region. J Appl Physiol 104: 150–156.
11. Ali MH, Schildt SA, Chandel NS, Hynes KL, Schumacker PT, et al. (1999) Endothelial permeability and IL-6 production during hypoxia: role of ROS in signal transduction. Am J Physiol 277: L1057–L1065.
12. Liu X, He L, Stensaas L, Dinger B, Fidone S (2009) Adaptation to chronic hypoxia involves immune cell invasion and increased expression of inflammatory cytokines in rat carotid body. Am J Physiol Lung Cell Mol Physiol 296: L158–166.
44. Wrighton CJ, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, et al. (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Faseb J 15: 1832-1834.

43. Denk A, Goebeler M, Schmid S, Berberich I, Ritz O, et al. (2001) Activation of NF-kappa B via the Ikappa B kinase complex is both essential and sufficient for tissue injury recovery and inhibits in-stent restenosis in stented arteriosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J Am Coll Cardiol 36: 2249-2253.

21. Van der Goes A, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, et al. (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Faseb J 15: 1832-1834.

42. Necela BM, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor action. J Steroid Biochem Mol Biol 89: 255-264.

28. Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, et al. (2005) Cell division, proliferation, and differentiation of mononuclear cells through extracellular superoxide dismutase SOD3 Derived Cell Migration

43. Denk A, Goebeler M, Schmid S, Berberich I, Ritz O, et al. (2001) Activation of NF-kappa B via the Ikappa B kinase complex is both essential and sufficient for tissue injury recovery and inhibits in-stent restenosis in stented arteriosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J Am Coll Cardiol 36: 2249-2253.

21. Van der Goes A, Wouters D, Van Der Pol SM, Huizinga R, Ronken E, et al. (2001) Reactive oxygen species enhance the migration of monocytes across the blood-brain barrier in vitro. Faseb J 15: 1832-1834.

42. Necela BM, Cidlowski JA (2004) Mechanisms of glucocorticoid receptor action. J Steroid Biochem Mol Biol 89: 255-264.

28. Merinen M, Irjala H, Salmi M, Jaakkola I, Hanninen A, et al. (2005) Cell division, proliferation, and differentiation of mononuclear cells through extracellular superoxide dismutase SOD3 Derived Cell Migration

43. Denk A, Goebeler M, Schmid S, Berberich I, Ritz O, et al. (2001) Activation of NF-kappa B via the Ikappa B kinase complex is both essential and sufficient for tissue injury recovery and inhibits in-stent restenosis in stented arteriosclerotic Watanabe heritable hyperlipidemic rabbit aorta. J Am Coll Cardiol 36: 2249-2253.