Molecular Mechanisms of Transforming Growth Factor-β/Smad7 Signaling Pathway in Ulcerative Colitis

Bingqing Bai
First Affiliated Hospital of Anhui Medical University

Huihui Li
First Affiliated Hospital of Anhui Medical University

Liang Han
Hangzhou First People's Hospital

Yongyu Mei
Wuhu City Second People's Hospital

Cui Hu
First Affiliated Hospital of Anhui Medical University

Qiao Mei
First Affiliated Hospital of Anhui Medical University

Jianming Xu
First Affiliated Hospital of Anhui Medical University

Xiaochang Liu
First Affiliated Hospital of Anhui Medical University
liuchenxiaochang@163.com

Research Article

Keywords: Ulcerative colitis, Transforming Growth Factor beta, Permeability, Smad7 protein, Signaling pathway

Posted Date: May 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-471885/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background and Aims

Abnormal transforming growth factor-β (TGF-β)/Smad7 signaling pathway may be an important mechanism of IBD. Therefore, this study was to investigate whether anti-colitis drugs modulate intestinal epithelial permeability in experimental colitis and to determine its TGF-β/Smad7 signaling pathway.

Methods

A murine colitis model was induced, and then anti-TNF-α and 5-ASA were administered intraperitoneally and orally respectively. Myeloperoxidase (MPO) activity, histological index (HI) of colon and the disease activity index (DAI) scores of mice were detected. Transmission electron microscopy (TEM), immunohistochemical and functional tests which included two methods: one was Evans blue (EB) and the other was FITC-dextran (FD-4), were used to evaluate intestinal mucosal permeability. The expression of epithelial E-cad, Occludin, ZO-1, TGF –β and Smad7 were analyzed. Epithelial MLCK expression and activity were determined.

Results

Anti-TNF-α and 5-ASA both effectively reduced the DAI score and HI, and decreased colonic MPO activity, plasma levels of FD-4 and EB permeation of the intestine. Moreover, anti-TNF-α and 5-ASA downregulated the MLCK expression and activity and the expression of Smad7 in the small intestinal epithelium, and increased the expression of TGF-β (P < 0.050). In colitis mice, TEM revealed partial ileal epithelial injury, intercellular TJ and the expression of E-cadherin, ZO-1 and occludin were decreased, which were alleviated by anti-TNF-α and 5-ASA.

Conclusions

Anti-TNF-α and 5-ASA both showed a significant effect on intestinal epithelial permeability in experimental colitis. The mechanism can be clarified as the increase of TGF-β expression or the decrease of Smad7 expression which could inhibit epithelial MLCK and then reduce the mucosal permeability of ulcerative colitis.

Introduction

The intestinal mucosal barrier dysfunction, characterized by increased intestinal mucosal permeability, has an important effect on the initiation of inflammation in infection and immunity-induced ulcerative colitis (UC)\(^1\-^3\). Intestinal epithelial cells (IECs) form the barrier, which mainly consists of two parts, one is the epithelial tight junction (TJ) and the other is the apical enterocyte membrane. While TJs are located at the top of IECs, and their constituent proteins include occludin, claudin, ZO, JAM-1, etc. Adhesion junction (AJ) is a cell structure adjacent to TJ, and its constituent proteins include E-cadherin, catenin, etc. In transgenic animal model, the absence of E-cadherin can cause the dysfunction of AJs, which is similar to
the pathophysiological process of inflammatory bowel disease (IBD)[4]. Moreover, the enhancement of pro-inflammatory cytokines and the degradation of TJ protein lead to increased permeability of intestinal mucosa in IBD[5]. And the contraction of cytoskeleton involved in actin in IECs could destroy TJs between cells, open the cell space and increase the permeability of intestinal mucosa, while this process requires myosin light chain kinase (MLCK) to phosphorylate myosin light chain (MLC)[6-8]. The abnormality of transforming growth factor-β (TGF-β)/Smad7 signaling pathway may be an important pathogenesis for IBD. Especially the high expression of Smad7 and the imbalance between Smad7 and Smad2, Smad3 can lead to the loss of anti-inflammatory effect of TGF-β, resulting in the sustainability of chronic inflammation in the intestinal tract of UC[9-12]. It has been shown that TGF-β/Smad7 signaling pathway affects the expression of MLCK in vascular smooth muscle cells[13,14]. Furthermore, TGF-β has been shown to affect the expression of MMP-9 in squamous cell carcinoma cell line of human head and neck via Smad/MLCK pathway[15]. And during inflammation of UC patients, MMP-9 could regulate MLCK expression[16,17]. Meanwhile, Su LP et al have found that the increase of intestinal permeability caused by TNF-α is due to activation of MLCK via ERK1/2 signalin enhancment of MMPs and apoptosis[18,19]. Inhibitors targeting MMP has verified desirable anti-inflammatory effect in mice colitis models, but less powerful on humans[20]. Recent studies suggest that mucosal healing is a new goal of UC[21]. Anti-TNF-α has a definite property on promoting mucosal healing, but the specific mechanism is unclear[22]. The effect of 5-ASA on intestinal mucosal healing is still controversial, and there are great differences among individuals. While Salazosulfapyridine and Balsalazide can improve intestinal mucosal permeability[23]. here is no report on whether the efficacious treatment of anti-TNF-α in refractory UC and the effect of promoting mucosal healing are related to the significant improvement in intestinal mucosal permeability and TGF-β/Smad7 signaling pathway. Therefore, anti-TNF-α and 5-ASA were chosen to experiment with dextran sulfate sodium (DSS)-induced colitis to observe their influence on intestinal permeability and further explore possible mechanisms.

Materials And Methods

Animals and Reagents

SLAC Laboratory Animal Co.Ltd, Shanghai, China Offers 8-week-old, weighting between 18g and 22g, Specific pathogen-free (SPF) grade C57BL/6J mice. Under 20±2°C temperature, 50% humidity and light/dark cycles of 12 h, mice were fed with tap water and standard pellet diet. Sigma-Aldrich Co Provided FITC-dextran 4000 (FD-4) and DSS, while the molecular weight of the latter is 8000. And the Nanjing Jiancheng Biotechnology Institute (Nanjing, China) supplied kits for the detection of Evans blue (EB) and Myeloperoxidase (MPO). MLCK ELISA kit was purchased from RB (USA). All the antibodies below, including anti-ZO-1, anti-E-Cadherin, anti-Occludin, anti-MLCK and anti-Smad7 were bought from Abcam (Cambridge, UK). Anti-TGF-β antibody was obtained from Gene Tex (USA). The following instruments were applied in this experiment, including light microscope (Olympus; Japan), Ultraviolet spectrophotometer (752 N; Shanghai, China), transmission electron microscope (TEM; Hitachi; Japan), enzyme-labeling instrument (ELx800; USA), and RT-PCR instrument (LightCycler480; Roche; Switzerland).
Induction of DSS-Colitis model

A murine colitis model induced by 5%(w/v) DSS for 7 days of free drinking\[^{24}\].

Experimental protocols

Mice were equally-randomly classified into the normal group, the DSS-treated group, the 5-ASA-treated group and anti-TNF-\(\alpha\)-treated group. The latter two groups were set as treated groups. All groups were treated accordingly for 7 days.

Assessment of Disease Activity Index (DAI)

Two observers recorded the following daily: body weight, fecal blood and consistency. The average daily DAI score per mouse was calculated according to the standard method\[^{24}\].

Assessment of Inflammation

After laparotomy, the first step was to examine the gross mucosal morphology of mouse colon and then two continuous pieces of distal colon were collected. For histological analysis, this study used 10% neutral buffered formalin to immobilize one of the colon to maintain the original morphological structure of the cell, followed by paraffin embedding for sections (4 \(\mu\)m), and finally HE staining. The severity of inflammation was assessed by histological index (HI) \[^{24}\]. The other was homogenized for assessing MPO activity\[^{25}\].

Assessment of TEM

A 0.5-cm distal ileal segment within 1cm of the ileocecal junction was fixed in 2.5% glutaraldehyde at 4°C for 6h, and in osmic acid, and then embedded in Epon as the specimen for TEM.

Assessment of E-cadherin, ZO-1 and occludin Protein Expression

1cm ileum was fixed in formalin at the above concentrations, and preserved in liquid nitrogen after electron microscopic examination. The expression of E-cadherin, occludin and ZO-1 in ileum epithelial cells was detected by immuno-histochemistry.

Intestinal Permeability Assay

According to the previous method, a 6-cm segment of small intestine was used as sac by ligating both ends, and then 1.5 % (w/v) EB in PBS of 0.2 ml was injected into the sac. What’s more, the sac was incubated in 20mL Krebs buffer and removed after 30 min. Then the intestinal lumen was rinsed with physiological saline until the rinse solution was clarified, dried at 37°C for 24h, weighed on the dry weight of the intestinal tissue, and incubated with formamide. The estimated wavelength of dye eluting amount is 655nm. And the permeability of intestine was assessed by EB and the amount of EB was calculated according to the standard curve. FITC was detected in vivo. Ligated the ileum of 6cm after anaesthesia.
and injected into the cavity with 0.2ml FITC solution. The portal vein blood was extracted after 30min to
determine the concentration of FITC in plasma.

Assessment of MLCK Enzymatic Activity

The intestinal mucosa homogenate was prepared at 4 °C by taking out liquid nitrogen frozen intestinal
mucosa and adding a proper amount of extract buffer. MLCK enzymatic activity of small intestine was
detected according to the ELISA kit.

Detection of MLCK via immunohistochemistry

Intestinal mucosa specimens were collected, fixed with 10% formaldehyde solution and embedded in
paraffin. The expression of MLCK protein in ileum epithelial cells was detected by SP method of
immunohistochemistry. The experimental steps were carried out according to the kit instructions. The
control group was treated with phosphate buffered saline (PBS) instead of the primary antibody. Three
visual fields were randomly selected from each slice under light microscope (40 ×), and the distribution of
positive particles in the cells was observed under high power microscope (200 ×). According to the blind
score of two pathologists, brown granules were found to be positive in the cells. The evaluation standard
of cell staining were as follows: ≥75% was +++; 50%<75% was ++, 10%<50% was +, and <10% was
negative. All the experiments were repeated 3 times.

Detection of MLCK, TGF-β and Smad7 via Western blot

The intestinal mucosae specimens were cut into pieces in ice bath and added protein extraction buffer to
prepare homogenate, frozen at-80 °C and thawed for three times to fully release MLCK,TGF-β, Smad7.
Then the homogenate was transferred into Ep tube, and 14000 r/min centrifugation for 15 min to extract
the supernatant. Protein concentration was determined. Specimens were prepared by the following
process: the extract quantified and adjusted for protein concentration was mixed with the sample buffer
for 2 × protein electrophoresis and boiled for 5 min. Polyacrylamide gel electrophoresis (SDS-PAGE)
included 10% separated gel and 5% concentrated gel. And the sample size of each lane was equal.
Protein transfer: electrophoretic bands was transferred to PVDF membranes by electric transfer. Blocking
and antibody binding: blocking non-specific antigen of PVDF membrane, in turn adding primary antibody,
incubating, washing, adding secondary antibody, incubating, exposure after washing.

Assessment of the mRNA contents of TGF-β and Smad7

The contents of TGF-β and Smad7 mRNA in IECs were detected by RT-PCR. RNA was extracted from
samples by Trizol method to establish RT-PCR reaction system and conditions. The samples were well
mixed with Trizol, placed in static condition, and then centrifuged at 12000 r/min for 15 min at 4 °C to
take supernatant. The supernatant was mixed with equal isopropanol well, centrifuged as above to take
the precipitate. And then the precipitate was washed with 75% alcohol, dried, dissolved and frozen at-80
°C. The concentration, purity, quantity and quality of RNA were determined. Reverse transcription cDNA
was prepared by PCR cycle. And PCR reaction system consisted of cDNA 4.00ul, 10 × PCR buffer 1.96ul,
MgCl$_2$ (25Mm) 2.40ul, upstream primer (20pM) 1.00ul, downstream primer (20pM) 1.00ul, dNTP (10mM) 0.36ul, Taq DNA polymerase (5IU/ul) 0.10ul and the deionized water 10.08ul.

Ethical Considerations

The local ethics committee approved these experiments and conducted in accordance with laboratory animal management and use guidelines.

Statistical Analysis

Using SPSS 20.0 for data statistics, one-way analysis of variance (ANOVA) was used to test overall statistical differences. All results were presented in the form of mean ± standard deviation (SD). P<0.050 was considered statistically significant.

Results

General situation of mice

In DSS group, the mice showed reduced activity, mental deterioration and weight loss. At the end of the experiment, there were different degrees of blood in feces, and the appearance of feces was soft or thin-shaped. The DAI scores increased gradually with time (Fig. 1). Compared with DSS group, the activity and mental state of mice in treated groups were better while the weight loss was lower and a few mice had slight bloody fecal or OB(+). DAI scores of the treated groups were between DSS group and normal group (Fig. 2).

Gross observation and pathological examination of colonic tissue

Colon mucosa was characterized by extensive hyperemia and edema in DSS group. Meanwhile, multiple erosion, bleeding spots and superficial ulcer were observed. But no obvious abnormality was found in normal group. Comfortingly, there were only scattered hyperemia and erosion without obvious bleeding and ulcer in treated groups.

HE pathological examination showed that the colonic mucosa had multiple superficial ulcers, a large number of crypt glands were destroyed and a slew of inflammatory cells infiltrated in DSS group (Fig. 3). While in the normal group, the colonic IECs were intact, the crypt glands were neatly arranged and no inflammatory cell infiltrated (Fig. 4). In treated groups, a few colon mucosa of mice were scattered with superficial ulcer, and the structure of crypt gland decreased and destroyed compared with normal group, but it was significantly less than that in DSS group. At the same time, the degree of infiltration of inflammatory cells in mucosa and submucosa was mild (Fig. 5). Moreover, compared with DSS group, the HI scores of the treated groups were significantly lower (P < 0.050, Fig. 6).

MPO in colon
The activity of MPO in colonic homogenate of DSS group was higher, while MPO activity of the treated group decreased than that in DSS group, which suggests that the colon inflammation in DSS group was serious \((P < 0.050, \text{Fig. 7})\) and anti-TNF-\(\alpha\) and 5-ASA could reduce inflammatory injury of colon \((P<0.050, \text{Fig. 8})\).

Ultrastructure of intestinal mucosal barrier

TEM was used to observe the ultrastructure of the IECs in the ileum of mice. From the result it can be observed that in the normal group the IECs were intact, the surface microvilli were long and dense, the arrangement was regular, and the cells were closely connected. While the DSS group showed edema or even shedding of IECs, atrophy and sparseness of surface microvilli, enlargement of intercellular space and opening of some TJs. Then the treated groups were mainly characterized by edema of some IECs, reduction of microvilli and opening of TJs, which is much better than DSS group (Fig. 9).

Intestinal mucosal barrier function

Compared with these in the normal group, the intestinal EB content and blood FITC level in DSS group increased \((P < 0.050)\), suggesting that the intestinal mucosal barrier in DSS group was damaged and the high molecular weight EB entered the intestinal mucosa through expanded TJs, while FITC was absorbed into the portal vein system. Anti-TNF-\(\alpha\) and 5-ASA could decrease the level of intestinal EB and blood FITC in different degrees \((P < 0.050, \text{Fig. 10, 11})\).

The protein expression of TJ and AJ

The expression of Occludin, ZO-1 and E-cadherin in small intestinal mucosal epithelial cells of mice in treated groups was decreased to some extent, but was higher than that of DSS group (Fig. 12 - 14), suggesting that anti-TNF-\(\alpha\) and 5-ASA could improve the destroyed structures of TJ, AJ and other epithelial cell barriers.

Expression, distribution and activity of MLCK protein

The expression and activity of MLCK protein in small intestinal epithelial cells were higher in DSS group than those in normal group, but lower in treated group than in DSS group \((P < 0.050, \text{Fig. 15})\). The results of IHC were consistent with those of the Western blot \((P < 0.050)\), suggesting that anti-TNF-\(\alpha\) and 5-ASA intervention can downregulate the MLCK expression and activity in IECs, and thus facilitate the improvement of intestinal mucosal permeability in colitis mice. However, no significant difference was detected between anti-TNF-\(\alpha\) and 5-ASA \((P > 0.050, \text{Fig. 15})\).

mRNA and protein levels of TGF-\(\beta\) and Smad7

Compared with the normal group, the mRNA and protein levels of TGF-\(\beta\) and Smad7 were decreased and increased respectively in DSS group. The intervention of anti-TNF-\(\alpha\) and 5-ASA improved the situation above (Fig. 16, 17). These results suggest that anti-TNF-\(\alpha\) and 5-ASA can enhance the expression of TGF-
β and attenuate the expression of Smad7 in IECs of colitis mice, and may regulate the expression of TJ-associated protein through TGF-β/Smad7 signaling pathway, which ultimately regulate the intestinal mucosal permeability in colitis mice.

Discussion

UC is a recurrent non-specific inflammatory disease and intestinal mucosal barrier damage may be an important reason for the recurrence of UC\(^{26,27}\). In SAMP1/Yit and IL-10 (-/-) mouse models of colitis, intestinal mucosal permeability increased significantly before intestinal inflammatory changes\(^{28,29}\). Repair of intestinal mucosal barrier, which can block an important part of the pathogenesis of IBD, is beneficial to control or reduce intestinal mucosal inflammation and immune response, control the condition, improve curative effect, promote mucosal healing, and maintain remission, and even play the role of etiological treatment in some cases\(^{30-33}\). Anti-TNF-α could observably decrease neutrophils infiltration in inflammatory mucosa of IBD patients and downregulate the activity of T cells and inflammatory mediators, while inhibiting neutrophils from producing pro-inflammatory mediators including ROS,TNF-α,IL-8 and so on\(^{34,35}\). Above all, through binding to the antibody, TNF-α receptor activation is blocked, leading to reduction of intestinal permeability basically due to the decrease in paracellular permeability across the TJs and apoptosis of IECs. Furthermore, upon blocking lipid rafts, infliximab could repair the colonic barrier of adhesive invasive Escherichia coli in Crohn's disease\(^{36,37}\). In this study, we observed whether anti-TNF-α and 5-ASA could improve intestinal permeability and regulate TGF-β/Smad7 signaling pathway in mice with DSS colitis, which provides a basis for exploring the molecular mechanism of TGF-β/Smad7 signaling pathway in regulating intestinal permeability of UC. And it turned out that anti-TNF-α and 5-ASA could reduce MPO activity, alleviate IECs injury, upregulate TJs and improve intestinal mucosal structure and function, thus reducing clinical symptoms and DAI and HI scores. However, its specific mechanism is not clear.

By blocking the adjacent intestinal epithelial spaces, TJs prevent bacteria, antigens and other substances from entering the intestinal mucosal lamina propria to activate immune cells\(^{6,38,39}\). Clayburgh DR et al found that TJs were significantly damaged, and the permeability of intestinal mucosa was increased in IBD patients\(^{6}\). TJs and AJs are destroyed due to internalization or loss of forming proteins such as occludin (TJs) or E-cadherin (AJs)\(^{40}\). And TJ proteins' recruitment to the apical lateral membrane is critical for closing the paracellular space. However, TJ assembly relies heavily on AJ formation\(^{41}\). 5-ASA could increase intercellular adhesion via membranous restoration of AJ proteins such as β-catenin and E-cadherin, which plays a direct impact on mucosal healing\(^{42,43}\). 5-ASA can also modulate transcriptional regulation of proteins, including junctional adhesion molecules (JAMs), claudins and epithelial cytoskeletal proteins\(^{44}\). TNF-α treatment led to internalization and disruption of junctional proteins like occludin (TJs), E-cadherin (AJs) and desmoglein-2 (desmosomes). With 5-ASA pretreatment, membranous localization of proteins were maintained\(^{44}\).
It has been studied that treated Caco-2 monolayers with TNF-α markedly increased the permeability of cell membrane and decreased claudin-1, occludin, and ZO-1 expression, accompanied by rearrangement of cytoskeletal F-actin\(^{[45-48]}\). Recently, it was found that some IBD-associated loci could regulate the expression of E-cadherin and the stability of AJ, hence, it was confirmed genetically that both of them played a role in intestinal barrier function\(^{[49-52]}\). In our study, we found that anti-TNF-α and 5-ASA increased the expression of the intestinal mucosal TJ protein, including E-cadherin, occludin and ZO-1, which further confirmed that TNF-α can reduce TJ proteins and recombine the cytoskeleton, thus destroying the intestinal epithelial barrier.

Actin-involved cytoskeleton contraction is closely related to MLCK according to the researches. The phosphorylated MLC by MLCK regulates the contraction of smooth and non-smooth muscle to induce cytoskeleton rearrangement, TJ disruption and opening of intercellular space, which eventually promotes the intercellular permeability\(^{[7,8]}\). The degree of phosphorylation of MLC depends on the activity of MLCK\(^{[53]}\). And MLCK could induce occludin endocytosis during A/R injury\(^{[54]}\). TNF-α increases the TJ permeability by an apoptosis-independent way\(^{[55]}\), owing to MLCK-related redistribution of TJ\(^{[60]}\) and NF-κB–related down-regulation of ZO-1. Also TNF-α could upregulate distribution and expression of NF-κB p65\(^{[61-63]}\), and NF-κB could combine with the promoter region of MLCK gene, which increases transcription of MLCK\(^{[63]}\). 5-ASA regulates intestinal epithelial homeostasis by inhibiting ERK1/2, Wnt/β-catenin, NF-κB pathways and inducing cell cycle arrest\(^{[64]}\). Also 5-ASA Pretreatment could alleviate increase of nuclear p65 by TNF-α\(^{[44]}\). Blair SA et al have found that the expression of MLCK in IECs of 26 patients with IBD was increased by immunofluorescence assay\(^{[17]}\). However, intestinal mucosal permeability was not simultaneously measured so that the correlation between MLCK and intestinal mucosal barrier function was not proved. In our study, the expression, distribution and activity of MLCK protein in IECs were also measured. Compared with normal group, the expression of MLCK in DSS group was increased and the activity was enhanced. The intervention of anti-TNF-α and 5-ASA could decrease the expression of MLCK and the activity of MLCK (P < 0.050), which could improve the permeability of intestinal mucosa in colitis mice.

Overall, the present study showed innovative in evaluating the effect of anti-TNF-α and 5-ASA via TGF-β/Smad7 signaling pathway in experimental colitis. And we found that anti-TNF-α and 5-ASA both showed a significant effect on intestinal epithelial permeability in experimental colitis. The mechanism is partly due to the increase of TGF-β expression or the decrease of Smad7 expression which could inhibit epithelial MLCK expression and activity, leading to a reduction of the intestinal mucosal permeability in UC. This study may provide new evidence for treating IBD by upregulating TGF-β expression or downregulating Smad7 expression.

Declarations

Funding: This work was supported by the National Natural Science Foundation of China [Grant No. 81500403] and The Education Department of Anhui [Grant No. Y2016].
Conlicts of interest/Competing interests: The authors declare no competing interests.

Code availability: Not applicable.

Authors’ contributions: Bingqing Bai wrote and carried out most of the study. Huihui Li carried out part of the study and data analysis. Liang Han, Yongyu Mei, and Cui Hu assisted in the completion of animal experiments and some molecular biology experiments. Qiao Mei, Xiaochang Liu designed and guided all experiments. Jianming Xu assisted in guiding experimental design and data analysis.

Ethics approval: The local ethics committee approved these experiments and conducted in accordance with laboratory animal management and use guidelines.

Consent to participate: Not applicable.

Consent for publication: Not applicable.

Acknowledgments:

This work was supported by the National Natural Science Foundation of China [Grant No. 81500403] and The Education Department of Anhui [Grant No. Y2016]. The authors declare no competing interests. Bingqing Bai wrote and carried out most of the study. Huihui Li carried out part of the study and data analysis. Liang Han, Yongyu Mei, and Cui Hu assisted in the completion of animal experiments and some molecular biology experiments. Qiao Mei, Xiaochang Liu designed and guided all experiments. Jianming Xu assisted in guiding experimental design and data analysis. If possible, we may suggest that Huihui Li be co-first author and Qiao Mei be co-corresponding author.

References

[1] Dorofeyev AE, Vasilenko IV, Rassokhina OA, Kondratiuk RB. Mucosal barrier in ulcerative colitis and Crohn's disease. Gastroenterol Res Pract 2013;431231.

[2] Fasano A, Nataro JP. Intestinal epithelial tight junctions as targets for enteric bacteria-derived toxins. Adv Drug Deliv Rev 2004;56:795-807.

[3] Ukena SN, Singh A, Dringenberg U, et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007;2:e1308.

[4] Moulton DE, Crandall W, Lakhani R, Lowe ME. Expression of a novel cadherin in the mouse and human intestine. Pediatr Res 2004;55:927-934.

[5] Vergnolle N. Protease inhibition as new therapeutic strategy for GI diseases. Gut 2016;65:1215-1224.

[6] Clayburgh DR, Shen L, Turner JR. A porous defense: the leaky epithelial barrier in intestinal disease. Lab Invest 2004;84:282-291.
[7] Yu D, Marchiando AM, Weber CR, et al. MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc Natl Acad Sci U S A 2010;107:8237-8241.

[8] Weber CR, Raleigh DR, Su L, et al. Epithelial myosin light chain kinase activation induces mucosal interleukin-13 expression to alter tight junction ion selectivity. J Biol Chem 2010;285:12037-12046.

[9] Schiffer M, von Gersdorff G, Bitzer M, Susztak K, Bottinger EP. Smad proteins and transforming growth factor-beta signaling. Kidney Int Suppl 2000;77:S45-S52.

[10] Fiocchi C. TGF-beta/Smad signaling defects in inflammatory bowel disease: mechanisms and possible novel therapies for chronic inflammation. J Clin Invest 2001;108:523-526.

[11] Monteleone G, Kumberova A, Croft NM, Mckenzie C, Steer HW, Macdonald TT. Blocking Smad7 restores TGF-beta1 signaling in chronic inflammatory bowel disease. J Clin Invest 2001;108:601-609.

[12] Biancheri P, Giuffrida P, Docena GH, Macdonald TT, Corazza GR, Di Sabatino A. The role of transforming growth factor (TGF)-beta in modulating the immune response and fibrogenesis in the gut. Cytokine Growth Factor Rev 2014;25:45-55.

[13] Yang H, Zhang L, Weakley SM, Lin PH, Yao Q, Chen C. Transforming growth factor-beta increases the expression of vascular smooth muscle cell markers in human multi-lineage progenitor cells. Med Sci Monit 2011;17:R55-R61.

[14] Zhu B, Zhai J, Zhu H, Kyprianou N. Prohibitin regulates TGF-beta induced apoptosis as a downstream effector of Smad-dependent and -independent signaling. Prostate 2010;70:17-26.

[15] Sinpitaksakul SN, Pimkhaokham A, Sanchavanakit N, Pavasant P. TGF-beta1 induced MMP-9 expression in HNSCC cell lines via Smad/MLCK pathway. Biochem Biophys Res Commun 2008;371:713-718.

[16] Nighot P, Al-Sadi R, Rawat M, Guo S, Watterson DM, Ma T. Matrix metalloproteinase 9-induced increase in intestinal epithelial tight junction permeability contributes to the severity of experimental DSS colitis. Am J Physiol Gastrointest Liver Physiol 2015;309:G988-G997.

[17] Blair SA, Kane SV, Clayburgh DR, Turner JR. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest 2006;86:191-201.

[18] Al-Sadi R, Guo S, Ye D, Ma TY. TNF-alpha modulation of intestinal epithelial tight junction barrier is regulated by ERK1/2 activation of Elk-1. Am J Pathol 2013;183:1871-1884.

[19] Su L, Nalle SC, Shen L, et al. TNFR2 activates MLCK-dependent tight junction dysregulation to cause apoptosis-mediated barrier loss and experimental colitis. Gastroenterology 2013;145:407-415.
[20] Schoultz I, Keita AV. Cellular and Molecular Therapeutic Targets in Inflammatory Bowel Disease-Focusing on Intestinal Barrier Function. Cells 2019;8(2):193.

[21] Barreiro-De AM, Lorenzo A, Mera J, Dominguez-Munoz JE. Mucosal healing and steroid-sparing associated with infliximab for steroid-dependent ulcerative colitis. J Crohns Colitis 2009;3:271-276.

[22] Fratila OC, Craciun C. Ultrastructural evidence of mucosal healing after infliximab in patients with ulcerative colitis. J Gastrointestin Liver Dis 2010;19:147-153.

[23] Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR. Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 2005;166:409-419.

[24] Kihara N, de la Fuente SG, Fujino K, Takahashi T, Pappas TN, Mantyh CR. Vanilloid receptor-1 containing primary sensory neurones mediate dextran sulphate sodium induced colitis in rats. Gut 2003;52:713-719.

[25] Kannengiesser K, Maaser C, Heidemann J, et al. Melanocortin-derived tripeptide KPV has anti-inflammatory potential in murine models of inflammatory bowel disease. Inflamm Bowel Dis 2008;14:324-331.

[26] Gibson PR. Increased gut permeability in Crohn's disease: is TNF the link?. Gut 2004;53:1724-1725.

[27] Buhner S, Buning C, Genschel J, et al. Genetic basis for increased intestinal permeability in families with Crohn's disease: role of CARD15 3020insC mutation?. Gut 2006;55:342-347.

[28] Olson TS, Reuter BK, Scott KG, et al. The primary defect in experimental ileitis originates from a nonhematopoietic source. J Exp Med 2006;203:541-552.

[29] Arrieta MC, Madsen K, Doyle J, Meddings J. Reducing small intestinal permeability attenuates colitis in the IL10 gene-deficient mouse. Gut 2009;58:41-48.

[30] Strus M, Janczyk A, Gonet-Surowka A, et al. Effect of hydrogen peroxide of bacterial origin on apoptosis and necrosis of gut mucosa epithelial cells as a possible pathomechanism of inflammatory bowel disease and cancer. J Physiol Pharmacol 2009;60 Suppl 6:55-60.

[31] Llopis M, Antolin M, Guarner F, Salas A, Malagelada JR. Mucosal colonisation with Lactobacillus casei mitigates barrier injury induced by exposure to trinitrobenzene sulphonic acid. Gut 2005;54:955-959.

[32] Rees LE, Cogan TA, Dodson AL, Birchall MA, Bailey M, Humphrey TJ. Campylobacter and IFNgamma interact to cause a rapid loss of epithelial barrier integrity. Inflamm Bowel Dis 2008;14:303-309.
[33] Mankertz J, Schulzke JD. Altered permeability in inflammatory bowel disease: pathophysiology and clinical implications. Curr Opin Gastroenterol 2007;23:379-383.

[34] Zhang C, Shu W, Zhou G, et al. Anti-TNF-alpha Therapy Suppresses Proinflammatory Activities of Mucosal Neutrophils in Inflammatory Bowel Disease. Mediators Inflamm 2018;2018:3021863.

[35] Olesen CM, Coskun M, Peyrin-Biroulet L, Nielsen OH. Mechanisms behind efficacy of tumor necrosis factor inhibitors in inflammatory bowel diseases. Pharmacol Ther 2016;159:110-119.

[36] Koch S, Nusrat A. The life and death of epithelia during inflammation: lessons learned from the gut. Annu Rev Pathol 2012;7:35-60.

[37] Yakymenko O, Schoultz I, Gullberg E, et al. Infliximab restores colonic barrier to adherent-invasive E. coli in Crohn's disease via effects on epithelial lipid rafts. Scand J Gastroenterol 2018;53:677-684.

[38] Khounlotham M, Kim W, Peatman E, et al. Compromised intestinal epithelial barrier induces adaptive immune compensation that protects from colitis. Immunity 2012;37:563-573.

[39] Watson AJ, Chu S, Sieck L, et al. Epithelial barrier function in vivo is sustained despite gaps in epithelial layers. Gastroenterology 2005;129:902-912.

[40] Salim SY, Soderholm JD. Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 2011;17:362-381.

[41] Rajasekaran AK, Hojo M, Huima T, Rodriguez-Boulan E. Catenins and zonula occludens-1 form a complex during early stages in the assembly of tight junctions. J Cell Biol 1996;132:451-463.

[42] Khare V, Lyakhovich A, Dammann K, et al. Mesalamine modulates intercellular adhesion through inhibition of p-21 activated kinase-1. Biochem Pharmacol 2013;85:234-244.

[43] Munding J, Ziebarth W, Pox CP, et al. The influence of 5-aminosalicylic acid on the progression of colorectal adenomas via the beta-catenin signaling pathway. Carcinogenesis 2012;33:637-643.

[44] Khare V, Kmijic A, Frick A, et al. Mesalamine and azathioprine modulate junctional complexes and restore epithelial barrier function in intestinal inflammation. Sci Rep 2019;9:2842.

[45] Ye X, Sun M. AGR2 ameliorates tumor necrosis factor-alpha-induced epithelial barrier dysfunction via suppression of NF-kappaB p65-mediated MLCK/p-MLC pathway activation. Int J Mol Med 2017;39:1206-1214.

[46] He F, Peng J, Deng XL, et al. Mechanisms of tumor necrosis factor-alpha-induced leaks in intestine epithelial barrier. Cytokine 2012;59:264-272.

[47] Cao M, Wang P, Sun C, He W, Wang F. Amelioration of IFN-gamma and TNF-alpha-induced intestinal epithelial barrier dysfunction by berberine via suppression of MLCK-MLC phosphorylation signaling.
pathway. PLoS One 2013;8:e61944.

[48] Zhang J, Lu Y, Wei J, Li L, Han L. Protective effect of carboxymethylpachymaran on TNF-alpha-induced damage in Caco-2 cell monolayers. Int J Biol Macromol 2016;93:506-511.

[49] Barrett JC, Lee JC, Lees CW, et al. Genome-wide association study of ulcerative colitis identifies three new susceptibility loci, including the HNF4A region. Nat Genet 2009;41:1330-1334.

[50] Houlston RS, Webb E, Broderick P, et al. Meta-analysis of genome-wide association data identifies four new susceptibility loci for colorectal cancer. Nat Genet 2008;40:1426-1435.

[51] Muise AM, Walters TD, Glowacka WK, et al. Polymorphisms in E-cadherin (CDH1) result in a mis-localised cytoplasmic protein that is associated with Crohn's disease. Gut 2009;58:1121-1127.

[52] Mohanan V, Nakata T, Desch AN, et al. C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science 2018;359:1161-1166.

[53] Pollard TD, Blanchoin L, Mullins RD. Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 2000;29:545-576.

[54] Jin Y, Blicksland AT. Myosin light chain kinase mediates intestinal barrier dysfunction via occludin endocytosis during anoxia/reoxygenation injury. Am J Physiol Cell Physiol 2016;311:C996-C1004.

[55] Clayburgh DR, Musch MW, Leitges M, Fu YX, Turner JR. Coordinated epithelial NHE3 inhibition and barrier dysfunction are required for TNF-mediated diarrhea in vivo. J Clin Invest 2006;116:2682-2694.

[56] Shen L, Black ED, Witkowski ED, et al. Myosin light chain phosphorylation regulates barrier function by remodeling tight junction structure. J Cell Sci 2006;119:2095-2106.

[57] Turner JR, Rill BK, Carlson SL, et al. Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Physiol 1997;273:C1378-C1385.

[58] Clayburgh DR, Barrett TA, Tang Y, et al. Epithelial myosin light chain kinase-dependent barrier dysfunction mediates T cell activation-induced diarrhea in vivo. J Clin Invest 2005;115:2702-2715.

[59] Ma TY, Iwamoto GK, Hoa NT, et al. TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 2004;286:G367-G376.

[60] Bruewer M, Samarin S, Nusrat A. Inflammatory bowel disease and the apical junctional complex. Ann N Y Acad Sci 2006;1072:242-252.

[61] Al-Sadi R, Guo S, Ye D, Rawat M, Ma TY. TNF-alpha Modulation of Intestinal Tight Junction Permeability Is Mediated by NIK/IKK-alpha Axis Activation of the Canonical NF-kappaB Pathway. Am J Pathol 2016;186:1151-1165.
[62] Chen S, Zhu J, Chen G, et al. 1,25-Dihydroxyvitamin D3 preserves intestinal epithelial barrier function from TNF-alpha induced injury via suppression of NF-kB p65 mediated MLCK-P-MLC signaling pathway. Biochem Biophys Res Commun 2015;460:873-878.

[63] Ye D, Ma TY. Cellular and molecular mechanisms that mediate basal and tumour necrosis factor-alpha-induced regulation of myosin light chain kinase gene activity. J Cell Mol Med 2008;12:1331-1346.

[64] Campregher C, Gasche C. Aminosalicylates. Best Pract Res Clin Gastroenterol 2011;25:535-546.

[65] Maul J, Loddenkemper C, Mundt P, et al. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005;128:1868-1878.

[66] Mayne CG, Williams CB. Induced and natural regulatory T cells in the development of inflammatory bowel disease. Inflamm Bowel Dis 2013;19:1772-1788.

[67] Saleh M, Elson CO. Experimental inflammatory bowel disease: insights into the host-microbiota dialog. Immunity 2011;34:293-302.

[68] Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 2012;30:531-564.

[69] Brunkow ME, Jeffery EW, Hjerrild K A, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001;27:68-73.

[70] Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 2005;22:329-341.

[71] van der Vliet HJ, Nieuwenhuis EE. IPEX as a result of mutations in FOXP3. Clin Dev Immunol 2007;2007:89017.

[72] Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000;12:171-181.

[73] Islam MS, Kusakabe M, Horiguchi K, et al. PDGF and TGF-beta promote tenascin-C expression in subepithelial myofibroblasts and contribute to intestinal mucosal protection in mice. Br J Pharmacol 2014;171:375-388.

[74] Olsen T, Rismo R, Cui G, Goll R, Christiansen I, Florholmen J. TH1 and TH17 interactions in untreated inflamed mucosa of inflammatory bowel disease, and their potential to mediate the inflammation. Cytokine 2011;56:633-640.

[75] Vieira EL, Leonel AJ, Sad AP, et al. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 2012;23:430-436.
[76] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003;113:685-700.

[77] Hayashi H, Abdollah S, Qiu Y, et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997;89:1165-1173.

[78] Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFbeta-inducible antagonist of TGF-beta signalling. Nature 1997;389:631-635.

[79] Shi W, Sun C, He B, et al. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol 2004;164:291-300.

[80] Kavsak P, Rasmussen RK, Causing CG, et al. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell 2000;6:1365-1375.

[81] Zhang S, Fei T, Zhang L, et al. Smad7 antagonizes transforming growth factor beta signaling in the nucleus by interfering with functional Smad-DNA complex formation. Mol Cell Biol 2007;27:4488-4499.

[82] Fantini MC, Rizzo A, Fina D, et al. Smad7 controls resistance of colitogenic T cells to regulatory T cell-mediated suppression. Gastroenterology 2009;136:1308-1316, e1-e3.

[83] de Ceuninck VCC, Spit M, Ten DP. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020;55:691-715.

[84] Wu F, Shao Q, Hu M, et al. Wu-Mei-Wan ameliorates chronic colitis-associated intestinal fibrosis through inhibiting fibroblast activation. J Ethnopharmacol 2020;252:112580.

[85] Zorzi F, Calabrese E, Di Fusco D, et al. High Smad7 in the early post-operative recurrence of Crohn's disease. J Transl Med 2020;18:395.

[86] Monteleone G, Fantini MC, Onali S, et al. Phase I clinical trial of Smad7 knockdown using antisense oligonucleotide in patients with active Crohn's disease. Mol Ther 2012;20:870-876.

[87] Zorzi F, Calabrese E, Monteleone I, et al. A phase 1 open-label trial shows that smad7 antisense oligonucleotide (GED0301) does not increase the risk of small bowel strictures in Crohn's disease. Aliment Pharmacol Ther 2012;36:850-857.

[88] Izzo R, Bevivino G, De Simone V, et al. Knockdown of Smad7 With a Specific Antisense Oligonucleotide Attenuates Colitis and Colitis-Driven Colonic Fibrosis in Mice. Inflamm Bowel Dis 2018;24:1213-1224.

[89] Monteleone G, Neurath MF, Ardizzone S, et al. Mongersen, an oral SMAD7 antisense oligonucleotide, and Crohn's disease. N Engl J Med 2015;372:1104-1113.
[90] Marafini I, Monteleone I, Dinallo V, et al. CCL20 Is Negatively Regulated by TGF-beta1 in Intestinal Epithelial Cells and Reduced in Crohn's Disease Patients With a Successful Response to Mongersen, a Smad7 Antisense Oligonucleotide. J Crohns Colitis 2017;11:603-609.

[91] Feagan BG, Sands BE, Rossiter G, et al. Effects of Mongersen (GED-0301) on Endoscopic and Clinical Outcomes in Patients With Active Crohn's Disease. Gastroenterology 2018;154:61-64.

[92] Monteleone G, Del VBG, Monteleone I, et al. Post-transcriptional regulation of Smad7 in the gut of patients with inflammatory bowel disease. Gastroenterology 2005;129:1420-1429.

Figures

![Figure 1](image-url)

Figure 1

Score of DAI of the mice in the DSS group
Figure 2

Effect of Anti-TNF-α and 5-ASA on the score of DAI in the DSS-induced colitis mice
Figure 3

Histology of mice colon in the DSS group (H&E×200)
Figure 4

Histology of mice colon in the normal group (H&E×200)
Figure 5

Histology of mice colon in the Anti-TNF-α and 5-ASA group (HE×200)
Figure 6

Effect of Anti-TNF-α and 5-ASA on HI score in the DSS-induced colitis mice $^{*}P<0.050$, vs DSS.
Figure 7

MPO activity of the mice in the DSS group and the normal group *P < 0.050
Figure 8

Effects of Anti-TNF-α and 5-ASA on MPO activity in colonic mucosa in the DSS-induced colitis mice *P < 0.050, vs. DSS
Figure 9

Effects of Anti-TNF-α and 5-ASA on intestinal epithelial structure in the DSS-induced colitis mice (20000×, A: Control group, B: DSS group, C:Anti-TNF-α group, D: 5-ASA group)
Figure 10

Effect of Anti-TNF-α and 5-ASA on the amount of EB permeating into the intestine in DSS-induced colitis mice*P<0.050, vs. DSS
Figure 11

Effect of Anti-TNF-α and 5-ASA on the plasma FITC level in DSS-induced colitis mice. *P<0.050, vs. DSS.
Figure 12

Effects of Anti-TNF-α and 5-ASA on the expression of occludin of intestinal epithelium in the DSS-induced colitis mice
Figure 13

Effects of Anti-TNF-α and 5-ASA on the expression of ZO-1 of intestinal epithelium in the DSS-induced colitis mice
Figure 14

Effects of Anti-TNF-α and 5-ASA on the expression of E-cadherin of intestinal epithelium in the DSS-induced colitis mice
Figure 15

Effect of Anti-TNF-α and 5-ASA on intestinal epithelial MLCK enzymatic activity in DSS-induced colitis mice
Figure 16

Effect of Anti-TNF-α and 5-ASA on intestinal epithelial TGF-β and Smad7 protein expression in DSS-induced colitis mice
Figure 17

Effect of Anti-TNF-α and 5-ASA on intestinal epithelial TGF-β and Smad7 mRNA in DSS-induced colitis mice