Pharmacoepidemiology and prescription

Differences in medical treatment and clinical characteristics between men and women with heart failure – a single-centre multivariable analysis

Helena Norberg1,2 · Veronica Pranic1 · Ellinor Bergdahl1 · Krister Lindmark1

Received: 23 June 2019 / Accepted: 10 October 2019 / Published online: 3 January 2020
© The Author(s) 2020

Abstract
Purpose The aims of this study were to examine sex differences in a heart failure population with regards to treatment and patient characteristics and to investigate the impact of sex on achieved doses of heart failure medications.

Methods and results A total of 1924 patients with heart failure in a regional hospital were analysed, 622 patients had ejection fraction ≤ 40% of which 30% were women. In patients with reduced ejection fraction, women were older (79 ± 11 vs. 74 ± 12 years, P < 0.001), had lower body weight (70 ± 17 vs. 86 ± 18 kg, P < 0.001), lower estimated glomerular filtration rate (eGFR) (49 ± 24 vs. 71 ± 30 ml/min, P < 0.001) and received lower doses of heart failure medications than men. Multivariable linear regression on patients with reduced ejection fraction showed that sex was not associated with achieved dose of any heart failure medication. For angiotensin-converting enzyme inhibitors and angiotensin receptor blockers associated factors were eGFR, systolic blood pressure, age, ejection fraction, and heart rate. For beta-blockers associated factors were body weight, atrial fibrillation and age. For mineralocorticoid receptor antagonists associated factors were eGFR, serum potassium, age, systolic blood pressure, ejection fraction and heart rate.

Conclusion Women with heart failure and reduced ejection fraction were prescribed lower doses of heart failure medications, were older, had worse renal function, and lower body weight than men. Sex was not independently associated with achieved doses of heart failure medications, instead age, renal function and body weight explained the differences in treatment.

Keywords Heart failure · HFrEF · Target dose · Sex differences

Introduction

In heart failure (HF) with reduced ejection fraction (HFrEF) guidelines recommend uptitration of angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin receptor blockers (ARB), as well as beta-blockers and mineralocorticoid receptor antagonists (MRA) to specified target doses [1, 2]. Target doses are based on landmark trials in which the representation of women has been between 20 and 25% [3–11]. There is a large discrepancy in the proportion of women represented in randomized landmark studies compared to real-world HF populations. The proportion of women in real-world populations with HF is between 47–53% and 36–42% for HFrEF [12–16] and in surveys or registries with a more selected patient population the proportion of women with HF is 28% [17] and for HFrEF between 21 and 23% [17, 18]. This discrepancy is a contributing factor to the present knowledge gap of how to treat women with HF. The knowledge gap was recently highlighted in two studies where the proportion of women enrolled in HF trials from 2001 to 2016 were investigated [19, 20]. These studies confirmed that HFrEF trials included only 24% women.

Studies have also shown that women are prescribed standard HF therapies to lesser extent and in lower doses compared to men [15, 21–23], and the reasons for this are still unknown. Previous studies were conducted in a wide range of settings, in different countries. Study design varies from

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s00228-019-02782-2) contains supplementary material, which is available to authorized users.

Krister Lindmark
krister.lindmark@umu.se

1 Department of Public Health and Clinical Medicine, Umeå University, S-901 87 Umeå, Sweden

2 Department of Pharmacology and Clinical Neuroscience, Umeå University, Umeå, Sweden
large prospective multicentre surveys to observational single-centre studies, based on registries or clinical data, both on reduced and preserved HF. The majority of the studies were performed about two decades ago, but they all show that women receive less evidence-based treatment than men. However, these studies do not include a multivariable analysis that includes biological differences between men and women with HF. The aims of this study were to examine sex differences in a HF population with regards to treatment and patient characteristics, as well as to investigate if sex is an independent predictor for achieved doses of ACE-I/ARB, beta-blockers and MRA.

Methods

Study population and data collection

All patients alive at March 2016 living within the catchment area of Umeå University Hospital, Sweden with a HF diagnosis and at least one visit to the cardiology or internal medicine department between January 2010 and March 2016 were included. The HF diagnosis was derived from medical records as primary or secondary diagnosis according to the International Classification of Diseases, 10th revision codes I50.X, I42.X, I11.0. All diagnoses had been signed or countersigned by a specialist in cardiology or internal medicine. For the diagnosis of HFrEF, the patients also needed to have an ejection fraction of ≤ 40%. The diagnosis of HF with preserved or mid-range ejection fraction was not validated by any other means. Only patients with HFrEF were included in the multivariable analysis.

Data collection were performed between 1 June 2015 and 31 March 2016 from the medical records according to a standardized form consisting of clinical characteristics, laboratory data, medications, electrocardiography and echocardiography parameters. The latest available data were used in the analyses. We used the Cockcroft-Gault formula to calculate estimated glomerular filtration rate (eGFR).

Setting

Umeå University Hospital is serving approximately 150,000 residents with a mixed rural and urban population in Northern Sweden. The hospital represents the only cardiology clinic in the region. According to local guidelines, all patients with suspected heart failure should be referred to the cardiology clinic for diagnosis and titration of heart failure medications. The hospital uses an electronically medical records system (NCS Cross) from which patients with heart failure have been identified and data manually collected. This study complied with the Declaration of Helsinki and has received ethical approval by the Regional Ethical Review Board in Umeå, Sweden.

Statistical analysis

Patient characteristics were analysed with t-, chi-square, and Mann Whitney U test as appropriate. Continuous variables were reported as mean and standard deviation, or, as median and interquartile range if non-normally distributed. Categorical variables were reported as numbers and percentages.

To determine factors predicting the percentage of achieved target dose of ACE-I/ARB, beta-blocker and MRA in the HFrEF population (ejection fraction ≤40%), we used a manual stepwise backward multivariable linear regression model. Percentage of achieved target doses was calculated as the latest prescribed dose divided by the target dose of the individual substance, according to European Society of Cardiology guidelines [1], for each patient separately as a continuous variable. Target doses were defined in Appendix. The selected target doses were in strict accordance to the guidelines and did not consider individual decisions for lower target doses due to kidney function, body weight or other reasons.

The linear regression models were constructed with initial bivariate analyses of the most relevant patient characteristics: age, sex, body weight, eGFR, systolic blood pressure, heart rate, ejection fraction, N-terminal pro–B-type natriuretic peptide (NTproBNP), serum potassium, atrial fibrillation, coronary artery disease, diabetes and hypertension. Variables were reviewed to explore distribution, outliers and dependency. Distribution and outliers were reviewed with histograms for each variable and with histograms and Normal P-P plots of the residuals for each analysis. To review dependence, we used Pearson’s correlation between dependent and independent variables one by one. We also applied Pearson’s correlation analysis with eGFR, body weight, age and creatinine. Furthermore, as part of the linear regression analysis, we assessed multicollinearity with tolerance and Variance Inflation Factor (VIF). If dependency was apparent, one of the variables was selected and the others omitted (e.g. body weight and height versus body mass index). Five percent of eGFR values were outliers (> 130 ml/min) due to extreme body weight or muscle mass. We consequently truncated all eGFR values over 130 ml/min to this maximum limit to reduce the statistical impact of those values in the multivariable analyses. Variables with a significance level less than 0.25 in the bivariate analyses were included in the multivariable linear regression models, where manual stepwise backward analysis was performed to determine the final prediction models. Interaction terms for sex*age, sex*body weight and sex*eGFR were also included in the multivariable analyses. Sex was kept in the backward analysis, even if nonsignificant, since it was central to our aims. P values less than 0.05 were
considered statistically significant in the final models. IBM SPSS Statistics, Version 25.0 (Armonk, NY: IBM Corp.) was used for all analyses.

Results

In total, the HF population of Umeå University Hospital consisted of 1924 patients (43% women). Of these, 622 patients (30% women) had an ejection fraction of ≤ 40%. A total of 29 patients with HFrEF had received their diagnosis within 3 months of data collection and possibly did not have ample time for complete uptitration. Seven of these had received maximum target dose ACE-I/ARB, and nine had received maximum target dose beta blockers. Patient characteristics of the two populations are shown in Table 1. Women were significantly older, had lower body weight, lower eGFR, higher systolic blood pressure, less coronary artery disease, lower doses of HF medications and less devices than men in both the HFrEF and total HF population. Women in the total HF population also had significantly higher heart rate and ejection fraction compared to men, which was not shown among patients with HFrEF.

In the HFrEF population, ACE-I/ARB and beta-blockers were prescribed to approximately 90% and MRA to 47% of patients. Men were prescribed significantly higher doses of ACE-I/ARB and MRA compared to women, while no differences in beta-blocker dose were shown (Fig. 1A). Patients were prescribed target doses of ACE-I/ARB, beta-blockers and MRA in full extent in 37%, 29% and 4%, respectively (Fig. 1B). The proportion of patients achieving different dosing levels of ACE-I/ARB, beta-blockers and MRA are presented in Fig. 2.

The linear regression models for ACE-I/ARB, beta-blockers and MRA in patients with HFrEF are shown in Table 2. Sex was not an independent predictor for achieved proportion of target dose ACE-I/ARB, beta-blockers or MRA. Systolic blood pressure (p = 0.012) and eGFR (p < 0.001) were independently associated with higher proportion of target dose ACE-I/ARB, while age (p < 0.001), ejection fraction (p = 0.028) and heart rate (p = 0.006) were negatively associated. For beta-blockers, body weight (p = 0.002) and atrial fibrillation (p = 0.018) were independently associated with higher proportion of target dose, while age (p < 0.001) was negatively associated. Heart rate was not associated with achieved beta-blocker dose. For MRA, eGFR (p < 0.001) and serum potassium level (p = 0.001) were independently associated with higher proportion of target dose, while age (p = 0.012), systolic blood pressure (p = 0.038), ejection fraction (p = 0.001) and heart rate (p = 0.001) were negatively associated. None of the interaction terms were significant in the multivariable analyses and were omitted from the final models.

Discussion

Women with HF were older, had lower body weight and worse renal function than men. Women were also less likely to present with HFrEF and women with HFrEF received ACE-I/ARB and MRA to a lesser extent and in lower doses compared to men. Sex did not predict achieved dose for ACE-I/ARB, beta-blockers or MRA in patients with HFrEF. Factors associated with achieved doses were age, renal function and body weight.

Age was a significant associated factor for achieved doses of all three groups of HF medications in HFrEF. This is expected since older patients often are frailer and with more comorbidities, which reduces the tolerance of HF medications. Also, the increased percentage body fat in elderly patients can reduce the tolerance of HF drugs [24, 25].

Body weight was associated with achieved target dose for beta-blockers, but not for ACE-I/ARB or MRA in HFrEF. This may be explained as a probable dependency matter as body weight is a factor in the Cockcroft-Gault formula which was used to estimate GFR. Renal function was in turn a predictor for achieved doses of ACE-I/ARB and MRA. Since beta-blockers are, in general, not as dependent on renal function for excretion as ACE-I/ARB and MRA, body weight is probably a more important factor for tolerance of beta-blocker dose.

Systolic blood pressure, heart rate and ejection fraction were associated factors for both ACE-I/ARB and MRA but not for beta-blockers in HFrEF. Why heart rate did not predict achieved beta-blocker dose may be because heart rate was based on the latest available measurement; hence after uptitration and since the heart rate is often the limiting factor in the uptitration, patients with both high and low doses of beta blockers may end up with similar heart rate.

Previous studies support that MRAs are often underused in clinical practice [18, 26–28], especially in patients with moderately impaired renal function [26, 28]. Guidelines are unclear about how to best manage patients who do not tolerate evidence-based target doses of ACE-I/ARB and beta-blockers but who are still symptomatic and have reduced ejection fraction. Should an MRA be added at the expense of lower doses of ACE-I/ARB and beta-blockers? This is also important with novel HF medications such as sacubitril-valsartan where the old and frail would not receive treatment if adherence to the PARADIGM-HF trial [11] (Prospective Comparison of Angiotensin Receptor–Neprilysin Inhibitor with ACE-I to Determine Impact on Global Mortality and Morbidity in Heart Failure) inclusion criteria is strict [23, 29, 30].

There are some established sex differences associated with HF which our study also confirm; women are older and are less likely to develop HFrEF than men [15, 22, 31, 32]. In HF aetiology, women more often have a history of hypertension, while ischemic heart disease is less
Women also have a different body fat composition compared to men, which together with other biological aspects, such as longer gut transit time, higher CYP3A4 enzyme activity, lower renal blood flow, GFR and body weight, can affect both the pharmacodynamics and pharmacokinetics of HF drugs [24, 25]. Compared to previous studies on sex differences in HF treatment [15, 21, 22], this study includes a multivariable analysis to investigate possible other reasons than gender bias to explain treatment differences and offers updated knowledge of treatment differences. We hope this study can contribute to increased attention of a lower tolerance

Characteristics	Total HF population	HFrEF (EF ≤ 40%) population		
	Women (n = 830)	Men (n = 1094)	Women (n = 188)	Men (n = 434)
Age – years	79.0 ± 12.1	74.0 ± 12.4	79.1 ± 11.1	74.3 ± 11.7
Body weight – kg	71.7 ± 17.8	86.7 ± 18.0	69.6 ± 16.5	85.5 ± 17.6
Height – cm	160.8 ± 6.8	175.9 ± 7.1	161.0 ± 6.5	175.4 ± 7.4
Body mass index - kg/m²	27.7 ± 6.3	28.0 ± 5.3	26.8 ± 5.8	27.7 ± 5.1
Serum creatinine - μmol/L*	97.1 ± 57.7	113.6 ± 77.3	104.1 ± 50.5	111.9 ± 68.1
eGFR - ml/min	54.3 ± 26.3	71.9 ± 30.4	49.2 ± 24.4	70.8 ± 30.4
Systolic blood pressure – mmHg	132 ± 21	127 ± 19	129 ± 20	124 ± 18
Diastolic blood pressure – mmHg	73 ± 12	75 ± 11	73 ± 11	74 ± 11
Heart rate – beats/min	76 ± 17	73 ± 16	77 ± 15	75 ± 16
Ejection fraction – %	50.1 ± 10.7	44.8 ± 11.5	34.4 ± 5.9	33.3 ± 6.3
NTproBNP, median (IQR) – pg/ml	1084 (392-25-10)	927 (331-21-77)	1884 (578-40-19)	1401
Serum potassium – mmol/L	4.22 ± 0.4	4.30 ± 0.4	4.26 ± 0.4	4.35 ± 0.4
Hemoglobin – g/L	127.5 ± 14.0	136.8 ± 17.3	126.7 ± 13.1	137.0 ± 16.8
Medical history, n (%)	422 (51)	563 (52)	88 (47)	213 (49)
Coronary artery disease	294 (35)	525 (48)	72 (38)	243 (56)
Hypertension	174 (21)	251 (23)	43 (23)	107 (25)
Previous HF hospitalization	619 (75)	793 (73)	126 (67)	297 (68)
Medications and devices, n (%)	692 (83)	965 (88)	164 (87)	403 (93)
ACE-I or ARB	686 (83)	943 (86)	169 (90)	395 (91)
Loop diuretics	254 (31)	392 (36)	76 (40)	219 (51)
Digitalis	541 (65)	621 (57)	138 (73)	259 (60)
Implantable cardioverter–defibrillator	109 (13)	119 (11)	27 (14)	50 (12)
Cardiac resynchronization therapy†	28 (3)	108 (10)	14 (7)	78 (18)

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; EF, ejection fraction; eGFR, estimated glomerular filtration rate; HF, heart failure; HFrEF, heart failure with reduced ejection fraction; IQR, interquartile range; NTproBNP, N-terminal pro-B-type natriuretic peptide
* To convert the values for creatinine to mg/dl, divide by 88.4
† Including patients with cardiac resynchronization therapy defibrillator (CRT-D)
of HF medications among female and frail patients and better guidance for clinicians. We did not find a significant association between sex and achieved doses in the HFrEF population which indicates that there is not a clear gender bias in HF treatment. However, the biological differences between men and women may explain differences in pharmacological tolerance and highlights the need for clinical trials that include patients with characteristics that better resemble the real-world HF population.

Most HF trials have aimed for the highest tolerable dose of HF medications, but some newer trials, such as the PARADIGM-HF study [11], only included patients who tolerated a fixed target dose during a run-in phase before randomization. When strict target doses are used as inclusion criteria, together with the shown differences between male and female patients in tolerance of HF medications, it is pharmacologically reasonable that elderly, frail and female patients are underrepresented in clinical trials. Previous studies have shown that approximately 50–75% of patients tolerate target doses of HF medications in clinical trials [3, 4, 8, 10, 11], compared with 7–50% of HFrEF patients in clinical practice [18, 29, 33, 34]. To gain more knowledge of how to offer the most appropriate HF treatment to the elderly and women, we need to increase the representation of these patients in clinical trials [35].

Limitations

The study only included a single-centre cohort, which limits the external validity of the results. On the other hand, it is based on a HF population without exclusion of old, frail patients with dementia or other comorbidities, which is especially important when analysing sex differences. The data collection period was relatively long (June 2015 to March 2016), as
Table 2 Bivariate and final regression models of percentage of achieved target doses of ACE-I/ARB, Beta-blockers and MRA in patients with heart failure and ejection fraction ≤40%

Bivariate models

Variables	ACE-I/ARB	B	95% CI	p value	Beta-blockers	B	95% CI	p value	MRA	B	95% CI	p value
Sex†	0.107		0.043 to 0.170	0.001	−0.008 to 0.113	0.089	0.059	0.013 to 0.106	0.013			
Age	−0.011		−0.014 to −0.009	<0.001	−0.01 to −0.005	<0.001	−0.008	−0.009 to −0.006	<0.001			
Body weight	0.005		0.003 to 0.007	<0.001	0.003 to 0.006	<0.001	0.003	0.002 to 0.005	<0.001			
eGFR	0.005		0.004 to 0.006	<0.001	0.001 to 0.003	<0.001	0.003	0.002 to 0.004	<0.001			
Systolic blood pressure	0.001		0.000 to 0.003	0.170	0.000	−0.002 to 0.001	0.736	−0.002	−0.003 to 0.000	0.006		
Heart rate	−0.003		−0.005 to −0.001	0.001	0.000	−0.002 to 0.001	0.723	−0.002	−0.003 to −0.001	0.005		
Ejection fraction	−0.003		−0.008 to 0.002	0.208	−0.001	−0.006 to 0.003	0.548	−0.005	−0.009 to −0.002	0.002		
NTproBNP	−0.000		0.000 to 0.000	<0.001	0.000 to 0.000	0.106	−0.000	0.000 to 0.000	0.003			
Serum potassium	0.066		0.004 to 0.135	0.064	0.031	−0.035 to 0.097	0.359	0.073	0.022 to 0.124	0.005		
Atrial fibrillation	−0.079		−0.137 to −0.021	0.008	0.035	−0.021 to 0.090	0.222	−0.031	−0.074 to 0.012	0.158		
Coronary artery disease	−0.017		−0.076 to 0.042	0.575	−0.015	−0.071 to 0.041	0.592	0.005	−0.038 to 0.048	0.820		
Diabetes	−0.024		−0.092 to 0.045	0.499	0.06	−0.005 to 0.125	0.073	−0.009	−0.059 to 0.041	0.725		
Hypertension	−0.029		−0.092 to 0.034	0.361	0.013	−0.046 to 0.073	0.662	−0.020	−0.066 to 0.027	0.406		

Final regression models

ACE-I/ARB	B	95% CI	p value	
Sex†	−0.002		−0.067 to 0.064	0.959
Age	−0.006		−0.009 to −0.003	<0.001
eGFR	0.003		0.002 to 0.004	<0.001
Systolic blood pressure	0.002		0.000 to 0.003	0.012
Heart rate	−0.002		−0.004 to −0.001	0.006
Ejection fraction	−0.005		−0.009 to −0.001	0.028
Adjusted \(R^2 \) = 0.177				

Beta-blockers	B	95% CI	p value	
Sex†	−0.021		−0.085 to 0.043	0.527
Age	−0.007		−0.010 to −0.005	<0.001
Body weight	0.002		0.001 to 0.004	0.002
Atrial fibrillation	0.067		0.012 to 0.123	0.018
Adjusted \(R^2 \) = 0.089				

MRA	B	95% CI	p value	
Sex†	−0.040		−0.088 to 0.009	0.108
Age	−0.003		−0.005 to −0.001	0.012
eGFR	0.002		0.001 to 0.003	<0.001
Systolic blood pressure	−0.001		−0.002 to 0.000	0.038
Heart rate	−0.001		−0.003 to 0.000	0.026
Ejection fraction	−0.005		−0.008 to −0.002	0.001
Serum potassium	0.078		0.030 to 0.125	0.001
Adjusted \(R^2 \) = 0.168				

ACE-I, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; B, unstandardised B-coefficients; eGFR, estimated glomerular filtration rate; NTproBNP, N-terminal pro-B-type natriuretic peptide; MRA, mineralocorticoid receptor blockers

* N = 622, NTproBNP N = 611
† Reference female
‡ Adjusted for body weight, NTproBNP, serum potassium, atrial fibrillation, coronary artery disease, diabetes, hypertension

© Springer
well as the inclusion time period of patients visiting the hospital (January 2010 to March 2016). This also affects the statistical analyses and the generalisability of the results. Furthermore, the analyses including systolic blood pressure were based on the latest available blood pressure, often measured during ongoing HF treatment, which may have influenced the results. Additionally, the HF diagnoses extracted from the medical records were not all formally validated. It is therefore possible that a minor portion of the included patients with HF and preserved ejection fraction were misdiagnosed. However, the multivariable analysis only included HFpEF patients where the echocardiography showed a reduced ejection fraction. Unfortunately, the data in the medical records did not include enough information to assess the New York Heart Association (NYHA) functional class and is why we omitted this parameter in the statistical analyses.

Conclusions

Women with heart failure and reduced ejection fraction were prescribed lower doses of evidence-based heart failure medications. Women with heart failure were older, had worse renal function and lower body weight than men. Sex was not independently associated with achieved doses of heart failure medications; instead age, renal function and body weight explained the differences in treatment in patients with heart failure and reduced ejection fraction.

Acknowledgements

Open access funding provided by Umeå University.

Funding Information

This work was supported by the Heart Foundation of Northern Sweden.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Open Access

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nikooyanopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GMC, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, ESC Scientific Document Group (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37:2129–2200. https://doi.org/10.1093/eurheartj/ehw128
2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Colvin MM, Dzau VJ, Filippatos GS, Fonarow GC, Givertz MM, Hollenberg SM, Lindenfeld J, Masoudi FA, McBride P, Peterson PN, Stevenson LW, Westlake C (2017) 2017 ACC/AHA/HFSA Focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the heart failure society of America. Circulation 136:e137–e161. https://doi.org/10.1161/cir.0000000000000509
3. (1999) The cardiac insufficiency bisoprolol study II (CIBIS-II): a randomised trial. Lancet 353:9–13
4. (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. the SOLVD investigators. N Engl J Med 325:293–302. https://doi.org/10.1056/NEJM199108013250501.
5. (1999) Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet 353:2001–2007
6. Packer M, Fowler MB, Roeker EB, Coats AJ, Katus HA, Krum H, Mohacsi P, Rouleau JL, Tendera M, Staiger C, Holeslaw TL, Amann-Zalan I, DeMets D. Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group (2002) Effect of carvedilol on the morbidity of patients with severe chronic heart failure: results of the carvedilol prospective randomized cumulative survival (COPERNICUS) study. Circulation 106:2194–2199
7. Cohn JN, Tognoni G (2001) A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 345:1667–1675. https://doi.org/10.1056/NEJMoa010713
8. Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray J, Michelson EL, Olofsson B, Ostergren J, Yusuf S, Pocock S, CHARM Investigators and Committees (2003) Effects of candesartan on mortality and morbidity in patients with chronic heart failure: the CHARM-Overall programme. Lancet 362:759–766
9. Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341:709–717. https://doi.org/10.1056/NEJMoa99023411001
10. Zannad F, McMurray JJ, Krum H, van Veldhuisen D, Swedberg K, Shi H, Vincent J, Pocock SJ, Pitt B, EMPHASIS-HF Study Group (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364:11–21. https://doi.org/10.1056/NEJMoa1009492
11. McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Investigators and Committees (2014) Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371:993–1004. https://doi.org/10.1056/NEJMoa1409077
12. Zarrinkoub R, Wettermark B, Wandell P et al (2013) The epidemiology of heart failure, based on data for 2.1 million inhabitants in Sweden. Eur J Heart Fail 15:995–1002. https://doi.org/10.1093/eurjhf/hft064
13. Vasan RS, Yanthakis V, Lyass A, Andersson C, Tsao C, Cheng S, Aragam J, Benjamin EJ, Larson MG (2018) Epidemiology of left ventricular systolic dysfunction and heart failure in the Framingham study: an echocardiographic study over 3 decades. JACC...
14. Ho JE, Gona P, Pencina MJ, Tu JV, Austin PC, Vasan RS, Kannel WB, D’Agostino RB, Lee DS, Levy D (2012) Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community. Eur Heart J 33:1734–1741. https://doi.org/10.1093/eurheartj/ehs070

15. Opasich C, De Feo S, Ambrosio GA et al (2004) The ‘real’ woman with heart failure. Impact of sex on current in-hospital management of heart failure by cardiologists and internists. Eur J Heart Fail 6: 769–779. https://doi.org/10.1016/j.ejheart.2003.11.021

16. Fonarow GC, Albert WN, Abraham WT, Anker SD, Antman EM, At convers (2011) Under-representation of elderly and women in heart failure clinical trials: a comprehensive analysis of clinical trials in heart failure. J Am Coll Cardiol 71:1205–1211. https://doi.org/10.1016/j.jacc.2018.09.081

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.