A Causal Approach to Integrate Component Health Data into System Reliability Models

D. Mandelli*, C. Wang

*diego.mandelli@inl.gov

14th Annual Conference of the Prognostics and Health Management Society
Nashville, November 1st – 4th, 2022
Problem Setting

- **Context:** Nuclear industry is moving from periodic to predictive maintenance strategies
 - Monitoring and data analysis technologies are essential to support predictive strategies
 - On-line continuous monitoring
 - Anomaly detection, diagnostic, and prognostic methods
- **Role of reliability**
 - Assess system health by integrating health information of all components
 - Identify the most critical components that need attention
- **Reliability approaches:** Deterministic models that depict system architecture from a functional perspective
 - Examples: Fault trees, Reliability Block Diagrams (RBD)
 - Boolean algebra operations used to calculate top event probability (set theory based)
 - OR: $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
 - AND: $P(A \cap B) = P(A|B) \cdot P(B) = P(B|A) \cdot P(A)$
Current Reliability Approaches

• **Issues**
 − Data level: Employed data are averaged over industry operational experience
 • Condition-based data are not effectively integrated into plant reliability models
 − Decision level: Does “system failure probability” support ongoing decision-making?

• **Failure rate**: Rate of occurrence of an aleatory variable
 − Assume diagnostic/prognostic monitoring are performed: Are we still dealing with an aleatory variable?
 − “Every time we talk about system failure probability, we lose system engineers’ attention.”
 − “System engineers are more used to the concept of margins.”
Changing Reliability Language

- **Key:** “What if we think about reliability in terms of margins?”
- **Margin definition:** The “distance” between present/actual status and an (estimated) undesired status for a specific component
 - Margin=1: Component perfectly healthy
 - Margin=0: Component at limiting conditions
- Component margin is an analytical measure of its health
 - Can you say the same for failure rate?
Margin Examples

- Vibration data for induction motors\(^1\) (root mean square [RMS])
 - RMS observed when seals are degraded beyond their limit for different pump rotation speeds

- Prognostic data
 - Input: component remaining useful life (RUL)
 - Typically expressed in terms of a probabilistic distribution function \(Pdf^{RUL} \)

\(^1\) Luo, Y., Zhang W., Fan Y., Han, Y., Li, W., and Acheaw, E. 2021. “Analysis of Vibration Characteristics of Centrifugal Pump Mechanical Seal under Wear and Damage Degree.” Vibration and Control of Fluid Machinery and Systems 2021.
Margin-Based Reliability Modeling

- **Assessing system health**: Integrate component margin values into system reliability model
- System reliability models are typically based on fault trees
- Solving AND and OR operators in a margin context
Margin-Based Reliability Modeling

- **Assessing system health:** Integrate component margin values into system reliability model.
- System reliability models are typically based on fault trees.
- Solving AND and OR operators in a margin context.

Transition from set theory based to distance based operations

OR operator
\[\hat{M}(A \ OR \ B) = \min(\hat{M}_A, \hat{M}_B) \]

AND operator
\[\hat{M}(A \ AND \ B) = \text{dist}((\hat{M}_A, \hat{M}_B), (0,0)) \]
Example

- RBD description of a system
- **Goals**
 - Integrate prognostic data (RUL) into system reliability model
 - Assess plant health
 - Periodically identify critical components
- System fault tree used to generate
 - Minimal cut sets
 - Minimal path sets

Minimal conditions to reach system failure

#	Cut set
1	A B
2	A D G
3	A C G
4	A D E F
5	A C E F

Minimal conditions to guarantee system operation

#	Path set
1	A
2	B C D
3	B E G
4	B F G
Example

Input data: RUL for all components (A through G)

Output data: system margin

No path sets available

A fails

F, C fail

E fails

Input data: RUL for all components (A through G)
Example

@ about t=8:
- B and G are “doing well”
- Time is approaching RUL of E
- Importance of E is thus greater than B or G

@ t=0: Importance for B is the highest since it supports three path sets

#	Path set
1	A
2	BCD
3	BEG
4	BFG

- Reliability importance measure (RIM) for component i

$$RIM_i = \frac{d \ Margin_{sys}}{d \ Margin_i}$$

- Semantic value
 - What are the most critical components?
 - What is the added value of O&M funds spent for component i?
 - When should I assess component i health status?

![Graph showing RIM over time for different components]

![Graph showing RIM over time for different components]
Final Remarks (1)

- Margin-based reliability modeling implies a redefinition of risk

Regulatory definition	System engineer definition
What can go wrong	What can go wrong
What are its consequences	What are its consequences
How likely it is	How distant it is

Margin based

- **Component health**
 - Component monitoring data (e.g., vibration data)

Probability of failure based

- **Component failure**
 - Component reliability data (e.g., λ, recorded events)

Decisions

- Monitor plant health
- Prioritize and schedule maintenance activities
- Set health targets

- Monitor plant risk
- Set periodic surveillance and maintenance activities
- Set reliability targets
Final Remarks (2)

- Recall that reliability should assess system health by integrating health information of all its components
- Our work
 - Developed and tested a novel way to propagate margin values from the component to the system level
 - Compatible with employed system reliability models (fault trees), we solve them in a different way!
 - Analytical way to assess system health
- Based solely on current and historic monitoring data
- Support plant health and asset management decisions through explainable models
Margin-Based Reliability Modeling

- Margin values capture monitored component degradation
- **Margin values change with time**
 - New SSC condition data are observed
 - Maintenance operations are performed
- Temporal evolution of component degradation can be extrapolated from historic data
Component monitoring data (e.g., vibration data)

SSC reliability data (e.g., λ, recorded events)

Margin-based
Effect of CC variables is accounted on monitoring data, but margin calculation requires double counting

Probability-based
Effect of CC variables on SSC reliability data is not easily filtered to avoid double-counting