Information capacity of specific interactions

Miriam H. Huntley a,b,1, Arvind Murugan a,b,c,1, and Michael P. Brenner a,b,d,2

aHarvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; bKavli Institute for Bionano Science and Technology, Harvard University, Cambridge, MA 02138; cPhysics and the James Franck Institute, University of Chicago, Chicago, IL 60637; and dDepartment of Physics, Harvard University, Cambridge, MA 02138

Edited by David A. Weitz, Harvard University, Cambridge, MA, and approved March 1, 2016 (received for review November 5, 2015)

Specific interactions are a hallmark feature of self-assembly and signal-processing systems in both synthetic and biological settings. Specificity between components may arise from a wide variety of physical and chemical mechanisms in diverse contexts, from DNA hybridization to shape-sensitive depletion interactions. Despite this diversity, all systems that rely on interaction specificity operate under the constraint that increasing the number of distinct components inevitably increases off-target binding. Here we introduce “capacity,” the maximal information encodable using specific interactions, to compare specificity across diverse experimental systems and to compute how specificity changes with physical parameters. Using this framework, we find that “shape” coding of interactions has higher capacity than chemical (“color”) coding because the strength of off-target binding is strongly sublinear in binding-site size for shapes while being linear for colors. We also find that different specificity mechanisms, such as shape and color, can be combined in a synergistic manner, giving a capacity greater than the sum of the parts.

A further class of programmable specific interactions combines both chemical specificity and shape complementarity. The canonical example is protein-binding interactions (22); the binding interactions between two cognate proteins are specified by their amino acid sequence, which programs binding pockets with complex shape and chemical specificity. Recent efforts (23, 24) aim to rationally design these protein interactions for self-assembly. Because both the shape of the binding pocket and its chemical specificity are determined by the same amino acid sequence, these two features cannot be controlled independently. Other synthetic systems offer the promise of independent control of chemical and shape binding specificity, giving a larger set of possible interactions.

These diverse systems achieve specific interactions through disparate physical mechanisms, with different control parameters for tuning binding specificity. However, they must all solve a common problem (25, 26): create a family of N “lock” and “key” pairs that bind well within pairs but avoid off-target binding across pairs (“crosstalk”). Any crosstalk limits the efficacy of the locks and keys. For example, in the context of DNA-based affinities, although there are 4t unique sequences of length L, the strong off-target binding severely restricts the number that can be productively used. Analogously, for colloidal systems driven by depletion interactions, there can be significant off-target binding due to partial contact. The performance of a system of specific interactions depends acutely on how the system constraints (e.g., number of available bases, fabrication length scale, etc.) limit its ability to avoid crosstalk.

In this paper, we develop a general information theory-based framework for quantitatively analyzing specificity in both natural and synthetic systems. We use a metric based on mutual information to derive a bound on the number of different interacting particles that a system can support before crosstalk overwhelms interaction specificity. Increasing the number of nominally distinct pairs beyond this limit cannot increase the effective number of distinguishable species.

Significance

The past 15 years have seen a proliferation of experimental techniques aimed at engineering self-assembled structures. These bottom-up techniques rely on specific interactions between components that arise from diverse physical mechanisms such as chemical affinities and shape complementarity attraction. Comparisons of specificity across such diverse systems, each with unique physics and constraints, can be difficult. Here we describe an information theoretic measure, capacity, to quantify specificity in a range of recent experimental systems. Capacity quantifies the maximal amount of information that can be encoded and then resolved by a system of specific interactions, as a function of experimentally tunable parameters. Our framework can be applied to specific interactions of diverse origins, from colloidal experiments to protein interactions.

Author contributions: M.H.H., A.M., and M.P.B. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

1M.H.H. and A.M. contributed equally to this work.

2To whom correspondence should be addressed. Email: brenner@seas.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1520969113/-/DCSupplemental.
We compute this information-theoretic “capacity” for different experimental systems of recent interest, including DNA-based affinities and colloidal experiments in shape complementarity. We show that shape-based coding fundamentally results in lower crosstalk and higher capacity than color-based coding. We also find that shape- and color-based coding can be combined synergistically, giving a superadditive capacity that is greater than the sum of the color and shape parts.

The Capacity of Random Ensembles

We consider systems where every component is designed to interact specifically with a single cognate partner, whereas interactions between “off-target” components are undesirable crosstalk. We assume that N distinct “locks” $x_1, x_2, \ldots, x_N \in X$ and N identical “keys” $y_1, y_2, \ldots, y_N \in Y$ (Fig. 1A). The physics of a particular system determines the binding energy $E_{ij} \equiv E(x_i,y_j)$ between every lock and key. Assuming equal concentrations of locks and keys in a well-mixed solution, binding between lock x_i and key y_j will occur with probability $p(x_i,y_j) = e^{-\beta E_{ij}} / Z$, where Z is a normalization factor such that $\sum_j p(x_i,y_j) = 1$ (Supporting Information) and $\beta^{-1} = k_BT$ is the temperature scale. The mutual information $I(X;Y)$ transmitted through binding is defined as

$$I(X;Y) = \sum_{x_i \in X, y_j \in Y} p(x_i,y_j) \log_2 \frac{p(x_i,y_j)}{p(x_i)p(y_j)},$$

where $p(x_i)$ is the marginal distribution of x_i, representing the total probability of seeing x_i in a bound pair [and similarly $p(y_j)$]. Mutual information $I(X;Y)$ is a global measure of interaction specificity in systems with many distinct species; it quantifies how predictable the identity of a lock x_i is of the identity of a key y_j found bound to it.

Consider a set of interacting lock–key pairs for which $E_{ij} = s$ for all cognate pairs (strong binding), whereas for crosstalk interactions (weak binding) $E_{ij} = w + s - \Delta_{ij}$. We assume Δ_{ij} are independent and identically distributed random numbers drawn from a distribution of gap energies $\rho(\Delta)$, with $\Delta > 0$, where the exact form of $\rho(\Delta)$ depends on the physics of the system. Denoting ρ as an average with respect to $\rho(\Delta)$, one can approximate Eq. 1 as

$$I = \log_2 N_{\text{eff}}(N),$$

where

$$N_{\text{eff}}(N) = \frac{N}{1 + (N-1)(e^{-\beta s} / (1 + (N-1)(e^{-\beta s})))}$$

(Supporting Information). In a system with crosstalk that contains N nominally distinct lock–key pairs, $N_{\text{eff}}(N)$ is the effective number of fully distinguishable lock–key pairs. N_{eff} can be much smaller than N if crosstalk is significant [e.g., if $(e^{-\beta s} \sim O(1))$].

Intuitively, information theory predicts that a system with $N_{\text{eff}}(N)$ noncrosstalking lock–key pairs can perform a task with the same effectiveness as a system with N crosstalking species. For example, in the self-assembly of a multicomponent structure, distinct but crosstalk species can take each other’s place, decreasing the effective number of species. This effect has been shown to reduce self-assembly yield (27–29). Similarly, the efficacy of N parallel signaling pathways is known to be reduced by crosstalk (30). In Fig. 1B we show a typical plot of $I = \log_2 N_{\text{eff}}(N)$. N_{eff} grows initially with N, but stops growing at $N \sim N_C$, the point of diminishing returns; adding any further species beyond N_C increases only the superficial diversity of species but cannot increase N_{eff}.

Paralleling Shannon’s theory of communication, we define “capacity” C as

$$C \equiv \max N \log_2 N_{\text{eff}}(N_C)$$

(Fig. 1B). [Capacity in information theory is often measured in bits per second, whereas here we intentionally use the same units as I. Furthermore, capacity is traditionally defined as a maximum over all possible distributions $p(X)$; here we restrict to maximizing only over one parameter, N, where all N pairs are randomly chosen from the ensemble (Supporting Information).] The capacity is the largest number of bits of information that can be encoded using a system of specific interactions and still be uniquely resolved by the physics of interactions. Determining C, or equivalently the largest value of N_{eff}, is of crucial importance to both synthetic and biological systems because it limits, for example, the number of independent signaling pathways or the complexity of self-assembled structures.

We can compute capacity for any crosstalk energy distribution $\rho(\Delta)$ by finding the maximum of Eq. 3. A useful approximation is

$$C \approx -\log_2 (\beta s e^{-\beta s + 1}),$$

giving a simple rule for the dependence of capacity on the binding energy distribution (Supporting Information). The importance of maximizing $\beta s \equiv -\log(\beta s e^{-\beta s + 1})$ in Eq. 5 is intuitive: To increase the capacity of the system, the (exponential average of the) gap between on-target binding $\beta s \equiv -\log(e^{-\beta s})$ and off-target binding $\beta w \equiv -\log(e^{-\beta w})$ should be made as large as possible (see Supporting Information for the precise relationship between Δ, s, and w). Fig. 1C shows three distinct probability distributions, two of which have identical Δ. As predicted, N_{eff} reaches a higher maximum for distributions with larger Δ.

We note that our definition of capacity uses equilibrium binding probabilities and hence applies only at long times compared with unbinding times. In practice, this typically limits $|s| \leq 10 k_BT$, and so we use this bound on s herein. The formalism can be easily extended to include kinetic effects by computing $p(x_i,y_j)$ at a finite time t, although this is not our focus here.

In what follows, we show how capacity depends on binding interactions and fabrication constraints for several systems of recent interest. In most systems, the on-target binding energy typically strengthens with the binding surface area S of cognate pairs as $E = -eS$, where e is the binding energy per unit area. However, we find that the off-target energies w can grow with S at very different rates across several systems we study. We parameterize this variation as
where α, γ depend on the details of binding interactions. We show below that if the specificity is determined purely by "colors" (i.e., chemical identities), then $\gamma = 1$. In contrast, if specificity arises from shape complementarity, $\gamma \approx 0$, as long as the range of the surface attraction is small compared with the length scale of shape variation. Thus, crosstalk grows very slowly with the number of independent binding units in shape-based systems, allowing for a dramatic decrease in crosstalk and improvement of capacity relative to systems that use chemical specificity.

The Capacity of Color

We first consider the capacity of interactions mediated through binding sites that are subdivided into multiple regions, each of which can be assigned any one of A chemical identities or colors. We take inspiration from DNA coding that acts via complementary hybridization between single-stranded DNA. Previous work (31) developed engineering principles for determining the optimal length and nucleotide composition of these DNA strands based on detailed models of the binding energy. Information theoretic measures have also been used to understand binding of transcription factors to DNA and other sequence-based molecular recognition problems (32–36). Although the theory of DNA coding has a long history (37), our contribution here formulates the problem in a mutual information framework that relates the capacity to a physical quantity and allows for direct comparison of varied chemical (color) and shape systems.

In our simplified color model, a lock is composed of L units, each of which is painted with one of A chemical colors (Fig. 2A). Each color binds to itself with energy $-e$ and binds to other colors with energy 0, such that locks and their cognate keys have the same sequence. The binding energy of any two strands x and y is given by $E_{ij} = \sum_{l=1}^{L} -e \delta_{x_{i} y_{j}}$ (where x_{i} is the color of the ith site of x, and δ is the Kronecker delta). We analyze this system with translations, where E_{ij} is given by the strongest binding across all possible translations of the two strands relative to each other, as well as without translations.

We calculate $I(N)$ by sampling N randomly selected pairs of locks and keys, constructing the interaction matrix E, and computing $I(N)$ using Eq. 1. We average $I(N)$ over many repetitions. An approximate but faster method to compute $I(N)$ (necessary for large L, N) uses Eq. 3, sampling random pairs of off-target locks and keys to estimate $\langle e^{\beta s} \rangle$ and $\langle e^{\beta w} \rangle$. The two methods give nearly identical results (Supporting Information and Fig. S2), and the calculations in this paper henceforth are carried out with the second method.

Fig. 2B examines $I(N)$ when $L = 10, A = 4$, and $e = 1$ kT so that a lock and its key bind together with on-target energy $\Delta \geq 1$ kT. The mutual information has a maximum of 5.5 bits near $N_{c} = 146$, far less than the total number of unique sequences ($4^{10} = 1,048,576$). Due to crosstalk, even though there are nominally 146 pairs at capacity, the system behaves as if there are only $N_{c} = 44$ independent pairs.

An obvious way of increasing capacity is to boost Δ by increasing L. This strengthens both on-target binding and off-target binding, because both s and w scale with L. (We find $I(N) = -L \log(I - 1 + e^{\beta s})/\beta s$.) However, the gap between them widens (Fig. 2C, solid lines), and the capacity scales linearly with L (Fig. 2C, Inset) (Supporting Information).

As a comparison, we also show the capacity when translation is allowed between any two strands. Off-target strands can now translate until they find the strongest binding, increasing crosstalk and thus lowering capacity.

In practice, on-target binding $|s|$ must be limited to below $\sim 10 kT$ for the binding to be reversible; hence L cannot be increased arbitrarily without also decreasing e. An alternate way to increase capacity at fixed s is to increase the number of colors A. As $A \to \infty$, accidental mismatches in off-target binding are rare; $|w| \to 0$, and the capacity is limited only by s. In Fig. 2D, capacity in the large A limit can be approximated by setting $\Delta A = s = 10$ in Eq. 5, giving $C = 6.0$ bits. However, in practice, alphabet size A cannot be easily increased in experiments, and other techniques must be used to decrease the off-target binding strength, such as the use of shape complementarity.

The Capacity of Shape

Systems of interacting, complementary shapes are characterized by the nonspecific binding of surfaces mediated by a short-range force of characteristic length δ_{shape}. The components’ shapes sterically allow or inhibit two surfaces from coming into contact, dictating specificity. We find that crosstalk is qualitatively weaker in such shape-based systems, resulting in higher capacity than in color-based models.

We examine the capacity of a model inspired by a recent experimental system consisting of lithographically sculpted micron-sized particles with complementary shapes (14) whose attractive interactions are mediated by the depletion force. The constraints on the shapes of these components (size $< 10 \mu m$, line width $> 400 nm$, radius of curvature $> 200 nm$) still leave a large variety of shapes that can interact in a lock and key fashion, yet crosstalk between similarly shaped components reduces the number of effectively unique pairs.

We model this system by defining each solo component as a series of L adjoining bars of various heights, whose profile is similar to a Tetris piece. For each lock x, the shape of the cognate key y is exactly complementary, as in Fig. 3A. We account for fabrication constraints by setting the width of each bar to 1 μm and restricting the change of one bar height relative to its neighboring bars to be less than $\delta = 1 \mu$m. Depletant particles of diameter d (typically $100 – 200 \ nm$) create an attractive energy of $-\varepsilon (d - h)$ for two surfaces separated by $h < d$. Thus, $\delta_{\text{shape}} < d$. In experiments, ε is set by the depletant particle volume fraction and the temperature. In principle, the fabrication fidelity must also be accounted for, as local defects in the shape will disrupt cognate binding. The effect of such defects is shown in Fig. S3; we find that defects of size much less than d, the depletant particle size, have minimal impact on capacity. We assume such a limit in the remainder of the text.

We find that crosstalk with shapes differs fundamentally from the color models discussed earlier. Whereas on-target binding strength still increases linearly with L, off-target binding is almost
Complementary shapes demonstrate the capacity of programmable interactions. (A) Each shape \(s \), made of \(L \) vertical bars of different heights and having a corresponding binding partner \(y \), shaped exactly as its complement; interactions are mediated via depleted particles of diameter \(d \), and each adjoining bar can change by a maximum amount of \(\delta \). (B) Mutual information as a function of \(N \), the number of lock–key pairs, showing a capacity of 7.8 bits (\(L = 10, d = 0.2 \mu m, \delta = 1 \mu m, \tau = -10 k_BT \)). (C) Increasing \(L \) increases the on-target binding strength \(\tau \) (blue), but has little effect on off-target binding \(\tau \) (black), unlike with colors (Fig. 2C, C). (Inset) Capacity scales linearly with \(L \). Allowing translations has no effect on \(\tau \), but increases \(\tau \) (black, dashed line) and therefore decreases \(C \) (red, dashed line). (\(d = 0.07 \mu m, \delta = 1 \mu m, e = 1 k_BT \)). (D) Fixing \(\tau = -10 k_BT \), the capacity can be increased by increasing \(\delta \). When \(d/\delta \) is small, on-target keys are indistinguishable from off-target keys, and so capacity is small. Increasing \(\delta \) decreases the crosstalk, and capacity increases accordingly.

In Fig. 3C, independent of \(L \). In fact, we find that for large enough \(L \), off-target binding \(\tau \) increases with \(\delta/\delta \) (or smaller \(L \), \(\delta \) is still strongly sublinear in \(L \)). (Supporting Information and Fig. S4). The weak dependence of \(\tau \) on \(L \) can be understood intuitively, as a lock pressed to a random mismatched key will typically come into contact at a single location. In contrast, in color-based systems, off-target locks and keys are in full contact and hence \(\tau \) increases. Thus, \(\delta \) and hence capacity \(C \) for shape systems can be significantly higher than for color-based systems with the same strong binding energy \(\tau \). In Fig. 3B, \(C_{\text{shape}} = 7.8 \) bits whereas \(C_{\text{color}} = 5.5 \) bits with similar parameters (\(\tau = -10 k_BT, L = 10 \)). Finally, in Fig. 3D, for fixed \(L \), we find that capacity falls rapidly and all specificity is lost when the spatial range of depletion interactions \(\delta_{\text{shape}} \sim d \) exceeds the scale of spatial features \(\delta \). These results are consistent with earlier experiments (12) and computational models (13) that established a high dynamic range in the strength of depletion interactions between surfaces roughened by asperities and in particular found that the attraction between surfaces was diminished when the asperity height was below the depletion particle size.

Our results, although intuitive in retrospect, point to a qualitative advantage for coding through shapes; random mismatched shapes have a crosstalk that is, at worst, sublinear in binding-site size whereas crosstalk is linear in site size for color-based systems. Our work suggests that such increased specificity is very robust as it is derived from basic properties of shape itself. Knowing the precise benefits of shape-based coding is important in deciding to incorporate it in engineering efforts going forward.

We may further apply this framework to the recent experimental system of Pacman-like lock–key colloids. In this system (15), a key is a sphere of radius \(r \) (typically 1–3 \(\mu m \)), whereas its cognate lock is a larger sphere with a hemispherical cavity of radius \(r \), complementary to its key (Supporting Information and Fig. S5). The attraction is mediated by depleted particles of diameter \(d \) = 50–100 nm. Multiple pairs of locks and keys may be used concurrently, with the \(r \)th pair having a key radius of \(r_i \) with the risk of keys binding to incorrect locks.

How should one choose \(N \) lock–key radii \(r_i \) to minimize crosstalk and maximize capacity? We may gain some intuition by considering a system containing only two lock–key pairs of radii \(r_1 \) and \(r_2 \), respectively. The on-target binding energies of the two pairs are proportional to the area of contact: \(E_{11} \sim r_1^2, E_{22} \sim r_2^2 \) because each key makes perfect contact with its own lock. Assuming \(r_1 < r_2 \), crosstalk energy \(E_{21} \sim r_1 \), corresponding to the larger key of size \(r_2 \) contacting an annulus around the smaller lock of size \(r_1 \). The other crosstalk energy \(E_{21} \sim r_1 - (r_2 - r_1) \) is typically much larger, corresponding to the smaller key fitting into the larger lock of size \(r_2 \) (see Supporting Information for complete derivation). Thus, there are two competing pressures on the radii \(r_1, r_2 \): Increasing the overall size of both pairs \(r_1, r_2 \) improves specificity because the on-target energies \(r_1^2, r_2^2 \) grow faster than the crosstalk terms. However, \(E_{21} \) grows rapidly if the radii are too similar to each other. Hence the optimal solution for \(N = 2 \) requires setting \(r_2 = R_{\text{max}} \) (the largest allowed radius) and \(r_2 - r_1 \approx d \). The binding energy of six particles (in this case optimally chosen to maximize \(I \)) is shown in Fig. 4A, with on-target binding and the two types of off-target binding shown.

This intuitive argument does not capture many-body effects that determine capacity for larger \(N \). We find the optimal \(\{r_i\} \) at fixed \(N \) by maximizing the mutual information \(I \) in Eq. 1 numerically through gradient descent; note that Eq. 3 cannot be used because the on-target binding energy \(r \) varies across pairs. Fig. 4B (solid line) shows the mutual information of optimally chosen radii as a function of \(N \), an improvement over randomly chosen radii (dashed line). Fig. 4C shows the optimal set of radii for various \(N \), with \(d = 100 \) nm and \(R_{\text{max}} = 3 \mu m \); the optimal spacing of the radii is \(d \).

Interestingly, when \(N > 6 \), the system has saturated. \(I \) does not increase any further (Fig. 4B) and the optimal set involves repeating locks and keys of the smallest radii. Intuitively, the smallest lock–key pairs have become so small that making an additional lock–key pair of an even smaller radius would yield very low self-binding energy relative to
the incurred crosstalk. Hence the only way to increase N without decreasing I is to create new nominal pairs at the smallest radius; such pairs are obviously indistinguishable through physical interactions and hence do not increase mutual information any further. We find that the capacity decreases with increasing size of depletant particles and that by hence do not increase mutual information any further. We find that the capacity can be computed using Eq. 3 in terms of the gap distributions of the individual systems.

When two channels are linked in this form without any interaction, we expect the total capacity of the system to be $C_{\text{Tot}} = C_1 + C_2$ (39). We explicitly compute this linked capacity for the physical system shown in Fig. 5A. Left, in which a color system of length L is linked to a shape system of length L (Shape \oplus Color). The distribution $\rho_{\text{Tot}}(\Delta)$, obtained by convolving $\rho_{\text{color}}(\Delta)$ and $\rho_{\text{shape}}(\Delta)$, is shown in Fig. 5B. The resulting capacity $C_{\text{Tot}} \approx C_1 + C_2$ is additive up to log L corrections that are small when L is large (Supporting Information).

Linking Two Systems

The simplest model for combining two channels is to physically link a lock of system 1 to a lock of system 2. We assume that there is no interaction between the two parts of the lock or between the key from one system and the lock of the other system. (We do not take into account entropic effects due to avidity.) Thus, for a linked system (which we denote as System \oplus System$_1$), the two independent systems with gaps of Δ_1 and Δ_2 are combined such that $\Delta_{\text{Tot}} = \Delta_1 + \Delta_2$. Hence the gap distribution of the linked system is the convolution of the independent systems: $\rho_{\text{Tot}}(\Delta) = \rho_1(\Delta) \ast \rho_2(\Delta)$, and the capacity can be computed using Eq. 3 in terms of the gap distributions of the individual systems.

When two channels are linked in this form without any interaction, we expect the total capacity of the system to be $C_{\text{Tot}} = C_1 + C_2$ (39). We explicitly compute this linked capacity for the physical system shown in Fig. 5A. Left, in which a color system of length L is linked to a shape system of length L (Shape \oplus Color). The distribution $\rho_{\text{Tot}}(\Delta)$, obtained by convolving $\rho_{\text{color}}(\Delta)$ and $\rho_{\text{shape}}(\Delta)$, is shown in Fig. 5B. The resulting capacity $C_{\text{Tot}} \approx C_1 + C_2$ is additive up to log L corrections that are small when L is large (Supporting Information).

Mixing Two Systems

In a mixed system, the physics of the individual systems are combined, and there is no general formula for the resulting gap distribution because $\Delta_{\text{Tot}} \neq \Delta_1 + \Delta_2$. We study a model in which the surfaces of shapes are coated with chemical agent. For example, in Fig. 5, the color force and so the color interactions no longer distinguish shapes, thereby becoming less specific. Indeed, Fig. 5A shows that when ρ_{color} is small compared with δ, the maximum height of local shape features, shape features can be easily distinguished by the color force and so the color and shape work in concert to increase capacity. Increasing ρ_{color} blurs the shape contours and the color interactions no longer distinguish shapes, thereby becoming less specific. Indeed, Fig. 5C shows that when $\rho_{\text{color}}/\delta$ becomes large, the color system and the shape system act independently, and the capacity relaxes to the capacity of the linked system Shape \oplus Color.

In summary, laying out color-based codes on undulating surfaces significantly reduces the total crosstalk because color-matched sites must also be matched in shape to contribute to crosstalk. Such color–shape synergy persists as long as the spatial range of color interactions is shorter than the length scale of shape variation.

Discussion

Here we have shown that mutual information provides a general metric for specificity, bounding the number of distinct lock–key pairs that can be supported by systems of programmable specific affinities. Mutual information is well suited as a measure of specificity for many reasons. First, mutual information is a global measure of specificity, accounting for all possible interactions between N species of locks and keys. Second, as a result, it provides a precise answer as to how many particle pairs can be productively used in a given system. As N is increased, crosstalk necessarily increases as we crowd
We thank Elizabeth Chen, Mikhail Tikhonov, Matthew Pinson, and Lucy Colwell for helpful discussions. This research was funded by the National Science Foundation through Grant DMR-1435864, the Harvard Materials Research Science and Engineering Center Grant DMR-1420570, and the Division of Mathematical Sciences Grant DMS-1411694. M.P.B. is an investigator of the Simons Foundation.

ACKNOWLEDGMENTS. We thank Elizabeth Chen, Mikhail Tikhonov, Matthew Pinson, and Lucy Colwell for helpful discussions. This research was funded by the National Science Foundation through Grant DMR-1435864, the Harvard Materials Research Science and Engineering Center Grant DMR-1420570, and the Division of Mathematical Sciences Grant DMS-1411694. M.P.B. is an investigator of the Simons Foundation.

1. Randhawa JS, Kanu LN, Singh G, Gracias DH (2010) Importance of surface patterns for defect mitigation in three-dimensional self-assembly. Langmuir 26(15):12534–12539.
2. Gracias DH, Tien J, Breen TL, Hsu C, Whitesides GM (2000) Forming electrical networks in three dimensions by self-assembly. Science 285(5428):1170–1172.
3. Winfree E (1998) Algorithmic self-assembly of DNA. PhD dissertation (California Institute of Technology, Pasadena, CA).
4. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338(6111):1177–1183.
5. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382(6592):607–609.
6. Alivisatos AP, et al. (1996) Organization of nanocrystal particles using DNA. Nature 382(6592):609–611.
7. Valignat M-P, Theodoly O, Crocker JC, Russel WB, Chaikin PM (2005) Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids. Proc Natl Acad Sci USA 102(21):4225–4229.
8. Biancariello PL, Kim AJ, Crocker JC (2005) Colloidal interactions and self-assembly using DNA hybridization. Phys Rev Lett 94(5):058302–058307.
9. Nykypanchuk D, Maye MM, van der Lee D, Gang O (2008) DNA-graded crystalization of colloidal nanoparticles. Nature 451(7178):549–552.
10. Mason TG (2002) Osmotically driven shape-dependent colloidal separations. Phys Rev E Stat Nonin Soft Matter Phys 66(6 Pt 2):060402.
11. Mason TG (2015) Process for creating shape-designed particles in a fluid. US patent publication US 9090860 B2 (July 28, 2015).
12. Zhao K, Mason TG (2007) Directing colloidal self-assembly through roughness-controlled depletion attraction. Phys Rev Lett 99(26):268301.
13. Zhao K, Mason TG (2008) Suppressing and enhancing depletion interactions between surfaces roughened by asperities. Phys Rev Lett 101(14):148301.
14. Hernandez CJ, Mason TG (2007) Colloidal alphabet soup: Monodisperse dispersions of shape-designed nanoparticles. J Phys Chem C 111:4877–4880.
15. Sacanna S, Irvine WT, Chaikin PM, Pine DJ (2010) Lock and key. Nature 464(7288):575–578.
16. Ye X, et al. (2010) Morphologically controlled synthesis of colloidal upconversion nanoparticles and their shape-directed self-assembly. Proc Natl Acad Sci USA 107(52):20430–20435.
17. Denkov N, Tcholakova S, Lesov I, Cholakova D, Smoukov SK (2015) Self-shaping of oil droplets via the formation of intermediate rotator phases upon heating. Nature 528(7582):392–395.
18. Zhao K, Brzusma R, Mason TG (2011) Entropic crystal-crystal transitions of Brownian squares. Proc Natl Acad Sci USA 108(7):2684–2687.
19. Rossi L, et al. (2015) Shape-sensitive crystallization in colloidal superball fluids. Proc Natl Acad Sci USA 112(17):5286–5290.
20. Misuta K, et al. (2011) Hierarchical self-assembly of suspended branched colloidal nanoparticles into superlattice structures. Nat Mater 10(1):872–876.
21. Yang S-M, Kim S-H, Lim J-M, Yi G-R (2008) Synthesis and assembly of structured colloidal particles. J Mater Chem 18:2177–2190.
22. Johnson ME, Hummer G (2011) Nonspecific binding limits the number of proteins in a cell and shapes their interaction networks. Proc Natl Acad Sci USA 108(2):603–608.
23. King NP, et al. (2012) Computational design of self-assembling protein nanomaterials with atomic level accuracy. Science 336(6085):1171–1174.
24. Lai Y-T, King NP, Yeates TO (2012) Principles for designing ordered protein assemblies. Trends Cell Biol 22(12):653–661.
25. Pereon AS, Oster GF (1979) Theoretical studies of clonal selection: Minimal antibody repertoire size and reliability of self-non-self discrimination. J Theor Biol 84(4):645–670.
26. Segal LA, Perelson AS (1989) Shape space: An approach to the evaluation of cross-reactivity effects, stability and controllability in the immune system. Immunol Lett 22(2):91–99.
27. Murugan A, Zou J, Brenner MP (2015) Undesired usage and the robust self-assembly of heterogeneous structures. Nat Commun 6:2302.
28. Jacobs WM, Reinhardt A, Frenkel D (2015) Communication: Theoretical prediction of energy landscapes for complex self-assembly. J Chem Phys 142(2):021101.
29. Hedges LO, Mannige RV, Whiteham S (2014) Growth of equilibrium structures built from a large number of distinct component types. Soft Matter 10(34):6404–6416.
30. Podgornaia AI, Laub MT (2013) Determinants of specificity in two-component signal transduction. Curr Opin Microbiol 22:156–162.
31. Milenkovic O, Kashyap N (2006) Coding and Cryptography (Springer, Berlin), pp 100–119.
32. Myers CR (2008) Satisfaction, sequence niches and molecular codes in cellular signalling. IET Syst Biol 2(3):304–312.
33. Schneider TD (1997) Information content of individual genetic sequences. J Theor Biol 189(4):427–441.
34. Itzkovitz S, Tuszty, Alon U (2006) Coding limits on the number of transcription factors. BMC Genomics 7:239.
35. Savir Y, Tuszty I (2009) Molecular recognition as an information channel: The role of conformational changes, 43rd Annual Conference on Information Sciences and Systems, 2009 (IEEE, Baltimore), pp 835–840.
36. Wu K-T, et al. (2012) Polygamous particles. Proc Natl Acad Sci USA 109(46):18731–18736.
37. Adleman LM (1994) Molecular computation of solutions to combinatorial problems. Science 266(5187):1021–1024.
38. Alon N (1998) The Shannon capacity of a union. Combinatorica 18:301–310.
39. Cover TM, Thomas JA (2012) Elements of Information Theory (Wiley-Interscience, New York).
40. Kane RS (2010) Thermodynamics of multivalent interactions: Influence of the linker. Langmuir 26(11):8636–8640.
41. Zeravcic Z, Manoharan VN, Brenner MP (2014) Size limits of self-assembled colloidal structures made using specific interactions. Proc Natl Acad Sci USA 111(45):15918–15923.
42. Fischer E (1894) Einfluss der configuration auf die wirkung der enzyme [Influence of configuration on the action of enzymes]. Berichte der Deutschen Chemischen Gesellschaft 27:2985–2993. (in German.)
43. Carroll RA, et al. (2015) Control of synaptic connectivity by a network of Drosoophila cell surface proteins. Cell 162(7):1770–1782.
44. Podgornaia AI, Brenner MP (2015) Protein evolution. Pervasive degeneracy and epistasis in a protein-protein interface. Science 347(6222):673–677.