Long-haul few mode fiber optic link with differential mode delay compensation

V A Burdin\(^1\), E Y Eremchuk\(^1\)

\(^1\)Povolzhskiy State University of Telecommunications and Informatics, Lev Tolstoy street 23, Samara, Russia, 443010

e-mail: burdin@psati.ru, eremchuk1989@yandex.ru

Abstract. This paper presents results of simulation of the few mode fiber optic link with the differential mode delay compensation. There were considered some variants of compensation of differential mode delay including differential mode delay compensation together chromatic dispersion compensation on line optical amplifiers and differential mode dispersion compensation on more density maps.

1. Introduction

On the one hand, the telecommunication networks are development in the conditions of continuous growth in demand for increasing the network capacity [1]. On the other hand, the “nonlinear Shannon limit” limits the capacity of the today telecommunication networks based on usual single-mode optical fibers [2-4]. This stimulate researches of space division multiplexing with few-mode optical fibers that along with multi-core optical fibers are considered as an alternative to usual single-mode fibers. The few-mode optical fibers have already been developed [5-7]. The mode division multiplexers and few-mode amplifiers are developed too [4, 8-11]. There are examples of experimental demonstration of the capabilities of mode division multiplexing technologies using few-mode fibers for long-haul communication links [12-16]. The technologies of mode division multiplexing is of significant interest for future communication networks, but its practical application requires solving a number of problems. In particular, solutions to the problem of the influence on the quality of information transmission by individual modes of joint action of factors of differential mode delay and mode coupling. This factors along with chromatic dispersion, polarization mode dispersion and nonlinearity, limit the carrying capacity and length of the regeneration sections of fiber-optic links.

Some aspects of the functioning of long-haul few-mode fiber optic links were investigated by the simulation methods [17-25]. In particular, in [25], for two-mode fiber-optic transmission links, the possibility was shown a significant improvement for compared to traditional compensation of chromatic dispersion on the far end of the link by the chromatic dispersion compensating on linear optical amplifiers.

In the present paper, we were evaluated for such fiber optic links an advisability the differential modal delay (DMD) compensation. There were simulated the two-mode fiber-optic transmission links with DMD compensation for the two cases. The one case is differential mode delay compensation together chromatic dispersion compensation on linear optical amplifiers (LOAs). And
the other case is DMD compensation on more density maps. The two schemes of DMD compensation were considered. The results of the simulation are presented in this paper.

2. Model of the long-haul two-mode fiber optic communication line.

Since the purpose of the work was to determine the feasibility of DMD compensating on LOAs, it was suggested that for this, as in [19, 21-25], it suffices to analyse in the two-mode fiber optic link the propagation of the LP01 and LP11 modes. In the general case, six modes propagate in such a line. There are the two orthogonally polarized modes for LP01 mode, the two orthogonally polarized modes for LP11a mode and the two orthogonally polarized modes for LP11b mode. As is known, the delay between orthogonally polarized modes is negligible compared to the delay between modes LP01 and LP11. The delay between modes LP11a and LP11b is also negligible compared to the delay between modes LP01 and LP11. This allowed us to consider as degenerate as orthogonally polarized modes, as well as modes LP11a and LP11b, and restrict ourselves to the analysis of the propagation of two modes LP01 and LP11.

To simulate the fiber optic links under investigation, the algorithm described in detail in [25] has been used. The process of signal propagation in a few-mode optical fiber taking into account the linear and nonlinear coupling of modes, can be represented as a system of nonlinear Schrödinger equations [26, 27]

\[
\frac{\partial A_p}{\partial z} = i \left( \beta_{0,p} - \beta_{1,p} \right) A_p - \left( \beta_{1,p} - \frac{1}{\nu_{sr}} \right) \frac{\partial A_p}{\partial t} - i \frac{\beta_{2,p}}{2} \frac{\partial^2 A_p}{\partial t^2} +
\]

\[
+ i \sum_{l,m} f_{lmp} \frac{\gamma}{3} \left[ \left( A_l^* A_m \right) A_p^* + 2 \left( A_l^m A_m \right) A_p^* \right] + i \sum_{n} q_{np} A_n,
\]

where \( A_p \) - envelope of optical signal in \( p \)-th mode in time domain; \( \beta_{0,p} , \beta_{1,p} , \beta_{2,p} \) - propagation constant, first derivation of propagation constant and group velocity dispersion for \( p \)-th mode, respectively; \( \beta_{0r} , \nu_{sr} \) - mean values of propagation constant and group velocity for \( p \)-th mode; \( \gamma \) - nonlinear coefficient; \( q_{np} \) - linear mode coupling coefficient; \( f_{lmp} \) - nonlinear coupling coefficient.

Linear mode coupling coefficient is defined by mode field overlap integral and refractive index perturbation internal and external factors. Nonlinear coupling coefficient is defined by mode fields overlap integral.

This equation can be simplified for particular cases of weak and strong mode coupling. In particular, for the weak mode coupling averaging random variations of the birefringence, the Manakov equation was obtained, differing by the coefficients 8/9 and 4/3 for the terms taking into account the self phase modulation (SPM) and the cross phase modulation (XPM) of the spatial modes, respectively [20]. For the strong mode coupling, when the strength of linear mode coupling is comparable with the coupling of linearly polarized modes, the coefficient of the nonlinear summand in the Manakov equation is determined in summary form over all modes, taking into account the overlap factor of the mode fields [20].

In general form, (1) can describe all regimes of propagation in few-mode fibers. To solve (1), the split-step Fourier method (SSFM) method and its various modifications has been widely used [20, 26].

In this paper, we propose to use the following approach: dispersion effects and linear coupling of modes are taken into account independently from nonlinear effects and nonlinear mode coupling.

\[
\frac{\partial \mathbf{A}}{\partial z} = \left( \mathbf{\mathcal{C}} + \mathbf{\mathcal{N}} \right) \mathbf{A},
\]

where \( \mathbf{\mathcal{C}} \) - is the operator takes into account attenuation, dispersion effects and linear mode coupling; \( \mathbf{\mathcal{N}} \) - is the operator takes into account nonlinear effects and nonlinear mode coupling.

Neglecting nonlinear operator the system of coupled equations for optical signal Fourier transform can be represented as

\[
\frac{\partial \mathbf{\mathcal{A}}}{\partial z} = \mathbf{\mathcal{C}} \mathbf{\mathcal{A}},
\]
where $\hat{A}$ is the column matrix $N \times 1$, formed from Fourier transform of optical signal in spatial modes; $\hat{C}$ is the square matrix $N \times N$ taking into account dispersion effects and linear mode coupling.

Matrix coefficients $\hat{C}$ are defined by:

$$C_{pp} = \frac{\alpha}{2} + i \Delta \beta_{pp} - i \omega \Delta \beta_{1p} + i \omega \frac{\beta_{pp}}{2},$$  \hspace{1cm} (4) $$C_{nm} = \epsilon_{nm},$$  \hspace{1cm} (5) $$\text{where } \alpha \text{ - the attenuation coefficient; }$$

$$\Delta \beta_{pp} = \beta_{pp} - \beta_{0}^2, \quad \Delta \beta_{1p} = \beta_{1p} - 1/v_g.$$  \hspace{1cm} (6)$$

It should be noted that in this case it is assumed that the polarization modes are degenerate. To analyze the influence of mode coupling on the system performance the two mode regime was analyzed. The solution of system (3) for two modes can be found in the form

$$\tilde{A}_1(z) = \exp(Bz) \left[ \cos(i \theta z) + i \frac{\sin(i \theta z)}{2\theta} (C_{12} - C_{11}) \right] \tilde{A}_1(0) - i \frac{C_{12}}{\theta} \sin(i \theta z) \tilde{A}_1(0)$$  \hspace{1cm} (7) $$\tilde{A}_2(z) = \exp(Bz) \left[ \cos(i \theta z) + i \frac{\sin(i \theta z)}{2\theta} (C_{22} - C_{11}) \right] \tilde{A}_2(0) - i \frac{C_{22}}{\theta} \sin(i \theta z) \tilde{A}_2(0).$$  \hspace{1cm} (8)$$

where

$$B = \frac{C_{11} + C_{22}}{2} = - \frac{\alpha}{2} + i \omega \frac{\beta_{2}}{2}$$

and

$$\theta = \sqrt{\left( \frac{C_{12} - C_{11}}{2} \right)^2 + C_{11} C_{22}}$$

or

$$\theta = \sqrt{\left( \frac{\alpha \Delta \beta_{1}}{2} \right)^2 + \left| \hat{N} \right|^2}$$

Here parameter $\theta$ take into account power exchange between modes under propagation. The equal group velocity dispersion was assumed for propagated modes. This obtained equation is similar to solution in [28].

Analyzing presented above equations, one can conclude that there are periodical power exchange between propagated modes with spatial step and coupling strength determined by the parameter $\theta$ and $q_{pm}$. Because of the significant values of $\Delta \beta I$, spatial step is of the order of millimeters, depending on the optical fiber construction, which leads to the necessity to use the average coupling factor.

At simulation, it is proposed to use the modified symmetric SSFM method written in general form as

$$A(z + \Delta z, t) = \exp \left( \frac{\Delta z}{2} D \right) \hat{Q}(z) \exp \left( \Delta z \hat{N} \right) \exp \left( \frac{\Delta z}{2} D \right) A(z, t)$$  \hspace{1cm} (9)$$

where operator $\hat{D}$ take into account attenuation and dispersion effects; operator $\hat{Q}$ take into distributed and discrete mode coupling; operator $\hat{N}$ take into account nonlinear effects; $\Delta z$ is the step size.

The step size is determined by the strength of the dispersion and nonlinear effects or by the pulse walk-off in optical channels and should smaller than the correlation length determining the mode coupling strength $\Delta z < 0.37/h$, where $h$ is the linear coupling coefficient, $1/\text{km}$.

At simulation the distribution of coupling coefficients formed by a random Gaussian process with a specified correlation function corresponding to the propagating regime. The discrete mode coupling taking into account using a unitary coupling matrix in the form
\[ A(z + \Delta z, t) = \begin{pmatrix} q_1 & -q^*_2 \\ q_2 & q^*_1 \end{pmatrix} A(z, t) \]  

(10)

where \( q_1 \) and \( q_2 \) are matrix elements describes mode coupling and satisfies to equation \( |q_1|^2 + |q_2|^2 = 1 \).

In this paper, considered two known methods of DMD compensating [29]. One is the modes crossing (Figure 1a) and other is the inserting of delay line (Figure 1b). As noted earlier, DMD compensation were included on linear optical amplifiers. When modes crossing was used, the even number of amplification spans was chosen, and their length was assumed to be same.

![Figure 1. DMD compensating by modes crossing (a) and inserting of delay line (b), where MDM – mode division multiplexer; DL – delay line.](image)

To compare the merits of the few-mode fiber optic links as in [19, 30], the concept of the FEC threshold was used. By the simulation results, the dependences of the BER for the each optical mode channel on the far end from the peak power at the fiber optic link input were built. Based on this curves the dynamic range was estimating, assuming that for BER below the FEC threshold, the signal at the reception is completely restored. The threshold value was assumed to be BER = 4.7 \cdot 10^{-3} [30].

3. Results of simulation

In this paper, the simulation was performed for an optical signal with quadrature phase modulation (QPSK) with a symbol bit rate 28.5 Gbit/s with pulse shape 50%-RZ, providing an information bit rate of 114 Gbit/s. The regeneration section consists from 10x100 km amplifying sections with total length of 1000 km. The average value of the delivery length of the optical cable was assumed equal to 5 km.

An erbium optical amplifier was used for ideal compensation of optical path loss with 5 dB noise factor. The noise of the optical amplifier was modeled by additive white Gaussian noise and added to the signal at the end of each amplifier section. The two-mode fiber used for simulation supports the propagation of two modes \( LP_{01} \) and \( LP_{11} \) at the optical signal wavelength under the condition of equal mode excitation. The parameters of two-mode fiber are represented in Table 1.

| Mode type   | \( LP_{01} \) | \( LP_{11} \) |
|-------------|---------------|---------------|
| Attenuation coefficient, dB/km | 0.198 | 0.191 |
| Chromatic dispersion coefficient, ps/nm/km | 19.8 | 20.0 |
| Chromatic dispersion slope, ps/nm²/km | 0.067 | 0.065 |
| Differential mode delay, ps/m | - | 0.2 \pm 0.2 |
| Effective mode spot area, µm² | 95 | 95 |

Figures 2 a, b show the simulation results for case of differential mode delay compensation and chromatic dispersion compensation on LOAs. As shown by calculations, for the case of the chromatic dispersion compensation on the LOAs, of the DMD compensation on the LOAs causes an insignificant, but still an increase in the dynamic range. The increment was about 0.15 dBm. This suggests that DMD compensation and the chromatic dispersion compensation on denser maps can yield a significantly larger gain. Especially, if we take into account the effect of chromatic dispersion compensation on LOAs and the experience of group delay management in mode-division multiplexing systems [29].

To reveal the influence of the compensation card density, the dependences of the error probability on the input power of the signals for a number of distances between the DMD compensation points on
the line were simulated. In fig. 3a, b are examples of the curves obtained for the \(LP_{01}\) mode. For the \(LP_{11}\) mode, the curves have a similar character. As the calculations showed, the DMD compensation gives any noticeable effect when the distances between the compensators are less than the delivery length of a cable. This does not allow us to speak about the effectiveness of its use on long-haul fiber-optic links, but it does suggest that the use of fibers with reduced DMD is promising.

**Figure 2.** The dependence of the BER on the peak power at the input of a two-mode fiber-optic link with compensation of chromatic dispersion on the LOAs for the \(LP_{01}(a)\) and \(LP_{11}(b)\) modes (1 - without compensation DMD; 2 - DMD compensation on LOAs by modes crossing; 3 - DMD compensation on the LOAs with the delay line inserting).

**Figure 3.** The dependence of the BER on the peak power at the input of a two-mode fiber-optic link with a compensation of chromatic dispersion on the LOAs and with a DMD compensation for the \(LP_{01}\) mode for some distances between points of compensation (a - compensating by modes crossing; b - compensating by inserting of delay line).

4. **Conclusion**

The presented simulation results for a two-mode fiber optic link with DMD compensation showed that a fairly noticeable effect in terms of increasing the dynamic range of the system and increasing the power transmitted through the optical fiber takes place at distances between compensators less than the delivery length of an optical cable. But even with distances between compensation points equal to 1 km, the dynamic range increases by less than 1 dBm. This does not allow to speak about the effectiveness of this measure for long-haul fiber optic links, but it makes it possible to consider the use of fibers with reduced DMD as promising for them. Of course, these findings are preliminary and require verification based on modeling and experimentation.

5. **References**

[1] Weldon M K 2015 *The Future X Network A Bell Labs Perspective* (CRC Press) p 472

[2] Essiambre R J 2012 Capacity Trends and Limits of Optical Communication Networks *Proc. of the IEEE* **100**(5) 1035-1055 DOI: 10.1109/JLT.2009.2039464
[3] Ellis A D 2012 The nonlinear Shannon limit and the need for new fibres Proc. of SPIE 8434 84340H DOI: 10.1117/12.928093
[4] Richardson D J, Fini J M and Nelson L E 2013 Space-division multiplexing in optical fibres Nature Photonics 7 354-362
[5] Li A, Chen X, Amin A A, Ye J and Shieh W 2012 Space-Division Multiplexed High-Speed Superchannel Transmission Over Few-Mode Fiber Journal of Lightwave Technology 30(24) 3953-3964
[6] Grüner-Nielsen L, Sun Y, Nicholson J W, Jakobsen D, Jespersen K G, Lingle R and Pálsdóttir B 2012 Few Mode Transmission Fiber With Low DGD, Low Mode Coupling, and Low Loss Journal of Lightwave Technology 30(23) 3693-3698
[7] Kitayama K, Diamantop N P 2017 Few-Mode Optical Fibers: Original Motivation and Recent Progress IEEE Communications Magazine 55(8) 163-169
[8] Khonina S N, Skidanov R V, Kotlyar V V and Wang Y 1999 Experimental selection of spatial Gauss-Laguerre modes Computer Optics 19 115-117
[9] Li J, Ren F, Hu T, Li Z, He Y, Chen Z, Mo Q and Li G 2017 Recent progress in mode-division multiplexed passive optical networks with low modal crosstalk Optical Fiber Technology 35 28-36
[10] Fazeya Y, Mezhuyev V 2018 Selective mode excitation techniques for mode-division multiplexing: A critical review Optical Fiber Technology 45 280-288
[11] Bigot L, Le Cocq G and Quiquempois Y 2015 Few-Mode Erbium-Doped Fiber Amplifiers: A Review Journal of Lightwave Technology 33(3) 588-596
[12] Yaman F, Bai N, Zhu B, Wang T and Li G 2010 Long distance transmission in few-mode fibers Opt. Express 18(12) 13250-13257
[13] Yaman F, Bai N, Huang Y K, Huang M F, Zhu B, Wang T and Li G 2010 10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers Opt. Express 18(20) 21342-21349
[14] Chen X, Li A, Ye J, Al Amin A and Shieh W 2012 Reception of mode-division multiplexed superchannel via few-mode compatible optical add/drop multiplexer Opt. Express 20(13) 14302-14307 DOI: 10.1364/OE.20.014302
[15] Salsi M, Koebele C, Sperti D, Tran P, Brindel P, Mardoyan H, Bigo S, Boutin A, Verluise F, Sillard P, Astruc M, Provost L, Cerou F and Charlet G 2012 Transmission at 2xl00Gb/s, over Two Modes of 40km-long Prototype Few-Mode Fiber, using LCOS-based Mode Multiplexer and Demultiplexer Opt. Express 19(17) 16593-16600 DOI: 10.1364/OFC.2011.PDPB9
[16] Rademacher G, Luís R S, Putnam B J, Eriksson T A, Agere E, Maruyama R, Aikawa K, Furukawa H, Awaji Y and Wada N 2018 159 Tbit/s C+L Band Transmission over 1045 km 3-Mode Graded-Index Few-Mode Fiber Optical Fiber Communication Conference Postdeadline Papers (OSA Technical Digest)
[17] Sisakyan I N, Shvarcberg A V 1984 Nonlinear dynamics of picosecond impulses in fiber-optical lightguides Kvantovaya elektronika 11(9) 1703-1721
[18] Shirokov S M 1995 Approximate parametrical models of dynamics of self-influence of impulses in nonlinear optical environments with mode dispersion Computer Optics 14-15(2) 117-124
[19] Ferreira F, Jansen S, Monteiro P and Silva H 2012 Nonlinear Semi-Analytical Model for Simulation of Few-Mode Fiber Transmission IEEE Photonics Technology Letters 24(4) 240-242
[20] Mumtaz S, Essiambre R J and Agrawal G P 2013 Nonlinear propagation in multimode and Multicore fibers: generalization of the Manakov equations Journal of Lightwave Technology 31(3) 398-406
[21] Burdin V A, Bourdine A V 2015 Modeling and simulation of a few-mode long-haul fiber optic transmission link Proc. of SPIE 9533 953307-1-6
[22] Burdin V A, Bourdine A V 2017 Simulations of a few-mode fiber optic link Proceedings of Progress in Electromagnetics Research Symposium (PIERS) 1918-1923
[23] Burdin V A, Bourdine A V 2017 Simulation of a long-haul fiber optic link with a two-mode optical fiber Computer Optics 41(4) 489-493 DOI: 10.18287/2412-6179-2017-41-4-489-493
[24] Tomar A, Thakare V V 2017 Simulation of Few Mode Fiber Communication System Using Adaptive Recursive least Square Algorithm International Journal on Recent and Innovation Trends in Computing and Communication 5(7) 311-319

[25] Andreev V A, Burdin V A, Bourdine A V and Dashkov M V 2018 Simulation of two-mode fiber optic link with chromatic dispersion compensation at line amplifiers IEEE Conference Proceedings Systems of Signals Generating and Processing in the Field of on Board Communications 1-4

[26] Agrawal G P 2001 Nonlinear fiber optics (New York: Academic Press) p 467

[27] Agrawal G P 2011 Applications of nonlinear fiber optics (New York: Academic Press) p 459

[28] Fedoruk M P, Sidelnikov O S 2015 Algorithms for numerical simulation of optical communication links based on multimode fiber Computational Technologies 20(5) 105-118

[29] Arık S O, Ho K-Po and Kahn J M 2016 Group Delay Management and Multiinput Multioutput Signal Processing in Mode-Division Multiplexing Systems Journal of Lightwave Technology 34(11) 2867-2880

[30] Alvarado A, Agrell E, Lavery D, Maher R and Bayvel P 2015 Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems Journal of Lightwave Technology 33(20) 4338-4352