Studies on floral morphology and biology in *Jasminum* spp.

A KALAIYARASI1, M V DHANANJAYA2, SUIJATHA A NAIR3, RAJIV KUMAR4, H S YOGESHA5, P M MUNIKRISHNAPPA6, V DEVAPPA7 and S PAVITHRA8

ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka 560 089 India

Received: 26 September 2018; Accepted: 8 January 2019

ABSTRACT

The present investigation was carried out to study the floral morphology and biology of 5 genotypes during 2016-17. Many flowered cymes both terminal and axillary were observed in *J. auriculatum* and *J. grandiflorum*; whereas, cluster bearing flowers in terminal position were observed in *J. multiflorum* (IIHR JM–1 and IIHR JM–2), *J. calophyllum*, *J. flexile* and *J. malabarium*. Flower bud was pointed and long in all genotypes; its colour was either green white (157 B) or white (155 C) or white (155 D). Tinge on flower bud was observed in *J. grandiflorum* (CO.1 Pitchi and Arka Surabhi), *J. rigidum*, *J. nitidum* and *J. malabarium*. Flower petal tip was either sharp or blunt and flower colour on opening was either white (155 C) or white (155 D) or white with pinkish underneath (155 D) in all the genotypes. Among the 15 genotypes, *J. grandiflorum* var. CO.1 Pitchi recorded longest flower bud length (4.81 cm) and corolla tube length (2.92 cm); however, maximum corolla length was recorded in *J. nitidum* (2.15 cm). Maximum number of forks per cymes was recorded in *J. auriculatum* var. CO.1 Mullai (40.13). Maximum number (6.51) and length of calyx lobe (1.28 cm) was recorded in *J. multiflorum* –IIHRJM-2 and *J. nitidum*, respectively. Flower diameter ranged from 1.74 (*J. auriculatum*-IIHRJA-2) to 4.93 cm (*J. nitidum*), whereas number of petals varied from 4.97 (*J. grandiflorum* var. CO.1 Pitchi) to 10.67 (*J. nitidum*). All genotypes recorded one style per pistil and its length varied from 0.42 cm (*J. auriculatum* var. CO.2 Mullai) to 2.32 cm (*J. grandiflorum* var. CO.1 Pitchi). Anthesis and anther dehiscence was recorded earlier in summer months, while, it was delayed during cooler months. However, the peak anthesis was observed from 6:00 to 7:00 p.m. and anther dehiscence from 4:00 to 7:00 p.m. The earliest anthesis was observed in *J. auriculatum* genotypes and anther dehiscence was observed in *J. auriculatum* and *J. multiflorum* genotypes. The stigma was receptive 12 h before anthesis and up to 24 h of anthesis. The maximum receptivity was observed from the time of anthesis to 12 h after anthesis.

Key words: Anther dehiscence, Anthesis, Floral morphology, Jasmine, Stigma receptivity

Jasmines are one of the most important ornamental flowering plants widely cultivated in the Southern and Eastern parts of India for their attractive and fragrant flowers. They are grown for garden decoration, landscaping, for making garland, hair decoration and for extraction of essential oil. The genus *Jasminum* belongs to the family Oleaceae and basic chromosome number is x=13 (Taylor 1945, Krishnaswamy and Raman 1948).

Jasmine produces flowers profusely, but set seed very rarely and is propagated chiefly by vegetative means. Occurrence of various problems relating to unfavourable climatic conditions for normal sexual reproduction, excessive production of staminate flowers, lack of sufficient and fertile pollen among the cultivated varieties, variation in flowering season among the species, cross incompatibility, presence of variable ploidy types have resulted in a poor fruit set in jasmine. To overcome these problems, the study of exact floral morphology and biology of different species of jasmine will give an insight. Information on these aspects have been documented only in some of the commercially cultivated species. The wild species also have a better flower quality, different notes of fragrance and tolerance to biotic stresses.

The knowledge of floral morphology and biology are essential pre-requisites for initiating any breeding programme. Information regarding season of flowering, anthesis, anther dehiscence, stigma receptivity and pollen morphology are essential for successful hybridization programme. Therefore, a study was carried out on floral morphology and biology of 15 genotypes/species.

MATERIALS AND METHODS

The present investigation was carried out in the Division of Floriculture and Medicinal Crops, of the institute during 2016-17. The experimental material used for the study were
15 genotypes/species, i.e. *J. auriculatum* var. CO.1 Mullai, CO.2 Mullai, Parimullai, IIHR JA-1, IIHR JA-2, IIHR JA-3, *J. grandiflorum* var. CO.1 Pitchi, Arka Surabhi, *J. multiflorum* - IIHR JM-1, IIHR JM-2, *J. rigidum, J. nitidum, J. calophyllum, J. flexile, J. malabaricum*. All the species of jasmine were planted during June 2012. All the plants were grown in open field with the recommended cultural practices.

Observations were recorded on quantitative characters of floral morphology like flower bud length, corolla length, corolla tube length, number of forks per cymes, number of calyx lobe, length of calyx lobe, flower diameter, number of petals and qualitative characters like flower bearing habit and bearing position, flower bud shape, flower bud colour and colour on opening, shape of open corolla, flower petal tip, reflexing of flower. Floral biology traits like number of stamen and style, length of stamen and style, season of flowering, time of anthesis, anther dehiscence, duration of stigma receptivity and natural seed set were also studied. The duration of stigma receptivity was recorded by calculating the hours taken from initiation to completion of receptivity.

The stigma receptivity was recorded by treating the hydrogen peroxide (H$_2$O$_2$) on the stigma. To determine the stigma receptivity, 10 flowers in each replication for individual species were examined. A drop of hydrogen peroxide was added on the stigmatic surface of flower. Receptive stigmas were characterized by high enzymatic activity. The occurrence of bubbling action on the stigmatic surface as an indicator of peroxidase activity was determined by H$_2$O$_2$. Observations were recorded when stigma showed pure foam producing bubbles as a receptive stigma. The time period of effervescence was calculated at different time intervals to study the duration of stigma receptivity. The stigma receptivity was evaluated based on the density of bubbles produced and recorded as - , none; +, less; ++, moderate; and ++++, high.

The data were analyzed statistically by using randomized complete block design for field observation and complete randomized block design for lab observation with three replications (Gomez and Gomez 1984).

RESULTS AND DISCUSSION

Floral morphology traits: Variation was observed among the genotypes/species with respect to flower bearing habit and bearing position (Table 1). All the genotypes of *J. auriculatum* and *J. grandiflorum* produced multi-flowered cymes both in terminal and axillary positions, whereas, multi-forked cymes in terminal or axillary position was observed in *J. multiflorum* (IIHR-JM-1 and IIHR-JM-2), *J. calophyllum, J. flexile and J. malabaricum*). Arumugam *et al.* (2002) also reported many flowered cluster flowers in terminal position in *J. multiflorum*, terminal or axillary cyme in *J. grandiflorum* and pubescent compound many flowered flax cymes in *J. auriculatum*. All 15 genotypes/species recorded pointed and long shaped flower buds. Raman (1955) classified and grouped conical buds under ‘sujimallige’ (*Jasminum grandiflorum*). However, Champa (2012) reported that conical buds are preferred for making flower strings for hair decoration.

Among 15 genotypes/species, flower bud colour was either green white (157B) or white (155D) or pink (186B). The Green White (157B) flower buds were recorded in all genotypes of *J. auriculatum, J. calophyllum* and *J. flexile*. White (155D) was recorded in *J. multiflorum* (IIHR JM-1 and IIHR JM-2) and Pink (186B) recorded in *J. grandiflorum* (CO.1 Pitchi, Arka Surabhi) and *J. malabaricum*. Tinge on flower bud was observed in *J. grandiflorum* (CO.1 Pitchi and Arka Surabhi), *J. rigidum, J. nitidum and J. malabaricum*. Singh (2016) found that *J. multiflorum* produce pure white scentless flower. Arumugam *et al.* (2002) reported that large flowers, white, reddish beneath in *J. grandiflorum*, buds are tinted pink on the outside but flowers are white when open in *J. nitidum*, while, white colour flowers in *J. auriculatum*. All 15 genotypes/species recorded star shaped open corolla. Veluswamy *et al.* (1973) also reported star shaped flowers in *J. multiflorum*.

Flower petal tip was observed sharp in *J. auriculatum* var. Parimullai, *J. multiflorum* - IIHR JM-1, IIHR JM-2, *J. rigidum, J. nitidum and J. malabaricum* while, blunt flower petal tip was recorded in *J. auriculatum* (CO.1 Mullai, CO.2 Mullai, IIHR-JA-1, IIHR-JA-2, IIHR-JA-3), *J. grandiflorum* var. CO.1 Pitchi, Arka Surabhi, *J. calophyllum* and *J. flexile* (Table 1). Flower reflexing was observed in *J. grandiflorum* (CO.1 Pitchi and Arka Surabhi), *J. rigidum, J. calophyllum and J. flexile*. Flower colour on opening was either white (155 C) or white with pinkish tinge (155 D) underneath the petals; White (155 C) in all genotypes of *J. auriculatum, J. flexile and J. calophyllum, White (155 D) in *J. multiflorum* (IIHR JM-1 and IIHR JM-2) and pure white with pinkish tinge underneath (155 D) in *J. grandiflorum* (CO.1 Pitchi and Arka Surabhi), *J. rigidum, J. nitidum and J. malabaricum*. All 15 genotypes/species bears single type of flowers.

Significant variation was recorded in flower bud length (Table 2). Maximum flower bud length was recorded in *J. grandiflorum* var. CO.1 Pitchi (4.81 cm) and minimum in *J. auriculatum-IIHR JA-2 (2.28 cm). However, corolla length among genotypes recorded maximum in *J. nitidum* (2.15 cm), whereas, minimum recorded in *J. auriculatum - IIHR JA-2 (0.66 cm). The longest corolla tube length was recorded in *J. grandiflorum* var. CO.1 Pitchi (2.92 cm) which was at par with *J. grandiflorum* var. Arka Surabhi (2.78 cm), while, *J. auriculatum* var. Parimullai recorded shortest corolla tube length (1.41 cm). Champa (2012) reported long conical flower buds with high fragrance with long flower stalk in different genotypes of *Jasminum grandiflorum*. Moreover, higher stalk length is a desirable trait for easy picking and generally used for essential oil extraction. Significant variation was recorded among the genotypes for number of forks per cymes. The maximum forks per cyme was recorded in *J. auriculatum* var. CO.1 Mullai (40.13), whereas, minimum in *J. rigidum* (3.62). The genotypes of *J. auriculatum* recorded higher number of forks per cyme compared to other genotypes.
Table 1 Floral morphology traits in different Jasminum genotypes/species

Genotype/Species	Flower bearing habit	Flower bud shape	Flower bud colour (RHS Colour Chart)	Tinge on flower bud	Shape of open corolla	Flower petal tip	Flower bearing position	Reflexion of flower	Flower colour on opening (RHS colour chart)	Flower type	
J. auriculatum var. CO.1 Mullai	Many cymes	flowered	Pointed and long	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal and Axillary	Absent	White (155 C)	Single
J. auriculatum var. CO.2 Mullai	Many cymes	flowered	Pointed and long	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal and Axillary	Absent	White (155 C)	Single
J. auriculatum var. Parinmullai	Many cymes	flowered	Pointed and long	Green white (157 B)	Absent	Star shpaped	Sharp	Terminal and Axillary	Absent	White (155 C)	Single
J. auriculatum - IIHR JA-1	Many cymes	flowered	Pointed and long	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal and Axillary	Absent	White (155 C)	Single
J. auriculatum - IIHR JA-2	Many cymes	flowered	Pointed and short	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal and Axillary	Absent	White (155 C)	Single
J. auriculatum - IIHR JA-3	Many cymes	flowered	Pointed and long	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal and Axillary	Absent	White (155 C)	Single
J. multiflorum - IIHR JM-1	Cluster	Pointed and long	White (155 D)	Absent	Star shpaped	Sharp	Terminal	Absent	White (155 D)	Single	
J. multiflorum - IIHR JM-2	Cluster	Pointed and long	White (155 D)	Absent	Star shpaped	Sharp	Terminal	Absent	White (155 D)	Single	
J. grandiflorum var. CO.1 Pitchi	Many cymes	flowered	Pointed and long	Pink (186 B)	Present	Star shpaped	Blunt	Terminal and Axillary	Present	White with pinkish Single underneath (155 D)	
J. grandiflorum var. Arka Surabhi	Many cymes	flowered	Pointed and long	Pink (186 B)	Present	Star shpaped	Blunt	Terminal and Axillary	Present	White with pinkish Single underneath (155 D)	
J. rigidum	Many cymes	flowered	Pointed and long	Pink (186 B)	Present	Star shpaped	Sharp	Terminal	Present	White with pinkish Single underneath (155 D)	
J. nitidum	Many cymes	flowered	Pointed and long	Pink (186 B)	Present	Star shpaped	Sharp	Terminal	Absent	White with pinkish Single underneath (155 D)	
J. caelephillum	Cluster	Pointed and long	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal	Absent	White (155 C)	Single	
J. flexile	Cluster	Pointed and long	Green white (157 B)	Absent	Star shpaped	Blunt	Terminal	Absent	White (155 C)	Single	
J. malabaricum	Cluster	Pointed and long	Pink (186 B)	Present	Star shpaped	Sharp	Terminal	Absent	White with pinkish Single underneath (155 D)		
Calyx lobe was absent or rudimentary in all genotypes of *J. auriculatum*, *J. calophyllum* and *J. flexile*; however, it was ranged 4.92 (*J. grandiflorum* var. CO.1 Pitchi) to 6.51 (*J. multiflorum*-IIHR-JM-2) in remaining genotypes/species. The maximum length of calyx lobe was recorded in *J. nitidum* (1.28 cm) and minimum in *J. rigidum* (0.35 cm). The bigger flower was recorded in *J. nitidum* (4.93 cm), while, smallest in *J. auriculatum*-IIHR-JA-2 (1.74 cm). Similar findings were also reported by Khan and Muthuswamy (1969). The size of open flowers in *J. nitidum* was larger than *J. auriculatum* genotypes. Among 15 genotypes/species, number of petals recorded maximum in *J. nitidum* (10.67), whereas, minimum in *J. grandiflorum* var. CO.1 Pitchi (4.97). Nirmala *et al.* (2017) also assessed 48 genotypes for thirty-nine qualitative and twenty quantitative morphological traits including vegetative and floral characters.

Floral biology traits: In jasmine, the improvement and evolution of new genotypes is usually done through hybridization and for that, the knowledge of floral biology is mandatory in order to find out parents with desirable characters, viz. stamen and style length, position of stigma in relation to stamen, anthesis, anther dehiscence and stigma receptivity.

All 15 genotypes had one style per pistil (Table 3). The number of stamens which varied from 2.00 to 2.28 among the different genotypes, however, maximum number of stamen was recorded in *J. auriculatum* var. Parimullai (2.28), whereas, minimum number of stamen (2.00) was recorded in *J. auriculatum* var. CO.1 Mullai, *J. grandiflorum* var. CO.1 Pitchi, Arka Surabhi, *J. rigidum, J. nitidum* and *J. malabaricum*. Significant differences were recorded with respect to stamen and style length. The highest stamen and style length was recorded in *J. grandiflorum* var. CO.1 Pitchi (2.13 cm and 2.32 cm, respectively), while, shortest in *J. multiflorum*-IIHR-JM-1 (0.42 cm), respectively. Laksmi and Ganga (2017) also reported two stamens and single pistil in *J. auriculatum, J. grandiflorum* and *J. sambac*. The stamens *J. auriculatum* (three cultivars) and *J. grandiflorum* (two cultivars) contained higher pollen content, while, pollen load was less in *J. sambac*.

Anthesis and anther dehiscence are important aspects for hybridization. These two traits are observed in different months in genotypes/species based on the flowering season. Anthesis and anther dehiscence was earlier in summer months, while, it was delayed during cooler months (Table 3). Among 15 genotypes/species, *J. auriculatum* (CO.1 Table 2 Floral morphology traits in different *Jasminum* genotypes/species

Genotype/Species	Flower bud length (cm)	Corolla length (cm)	Corolla tube length (cm)	No. of stamens	No. of calyx lobe	Length of calyx lobe (cm)	Flower diameter (cm)	Number of petals
J. auriculatum var. CO.1 Pitchi	4.81	1.89	2.92	11.03	4.92 (2.33)	0.73 (1.11)	4.89	4.97
J. grandiflorum var. Arka Surabhi	4.59	1.86	2.78	10.67	4.93 (2.33)	0.65 (1.07)	4.56	4.98
J. rigidum	3.35	2.07	1.47	3.62	5.72 (2.49)	0.35 (0.92)	4.10	8.03
J. nitidum	4.10	2.15	1.91	12.80	6.07 (2.56)	1.28 (1.34)	4.93	10.67
J. calophyllum	3.50	1.26	2.22	19.43	0.00 (0.71)	0.00 (0.71)	2.96	7.90
J. flexile	3.43	1.23	2.46	20.03	0.00 (0.71)	0.00 (0.71)	2.85	7.40
J. malabaricum	3.36	1.35	1.97	23.40	5.13 (2.37)	0.59 (1.04)	3.44	8.15
Range (cm)	2.37-4.81	0.66-2.15	1.41-2.92	3.62-40.13	4.92-6.51	0.35-1.28 cm	1.74-4.93 cm	4.97-10.67
SEM±	0.03	0.02	0.07	0.57	0.00	0.00	0.03	0.09
CD (P=0.05)	0.07	0.04	0.21	1.66	0.03	0.01	0.08	0.28
Mullai, Parimullai and IIHR-JA-3), J. multiflorum (IIHR-JM-1 and IIHR-JM-2), J. grandiflorum (CO1 Pitchi and Arka Surabhi), J. nitidum, J. calophyllum, J. flexile and J. malabaricum flowered during February, March, April, May and June; whereas, flowering in J. auriculatum var. CO.2 Mullaiwas not observed during February. In J. auriculatum (IIHR JA-1 and IIHR-JA-2) flowering was observed only in May and June. The species J. rigidum flowered during March, April and May. Anthesis started from 5:30 p.m. and continued till 10:10 p.m. However, the peak anthesis was observed from 6:00 to 7:00 p.m. The earliest anthesis was observed in J. auriculatum genotypes (5:30 p.m. to 7:00 p.m.) and it was delayed in J. multiflorum genotypes (9:15 p.m. to 10:00 p.m.). Among the 15 genotypes, earliest anther dehiscence was recorded in Parimullai (5:30 p.m. to 6:00 p.m.). However, in other genotypes it was ranged 6:30 p.m. to 8:00 p.m.

The variation was recorded in time of anther dehiscence and duration of stigma receptivity in different genotypes/species (Table 4). The anther dehiscence started from 4:05 p.m. and continued till 6:40 p.m. and peak anther dehiscence was observed from 4:00 to 7:00 p.m. The earliest anther dehiscence was observed in J. auriculatum and J. multiflorum genotypes (4:00 p.m. to 5:00 p.m.) and delayed in J. nitidum (6:00 p.m. to 7:00 p.m.). However, in other genotypes anther dehiscence varied from 4:30 p.m. to 6:00 p.m. Among the 15 genotypes, earliest anther dehiscence was recorded in Parimullai (4:00 p.m. to 4:30 p.m.).

Almost in all the genotypes/species, stigma receptivity started 12 h before anthesis and completed after 24 h of anthesis. The maximum stigma receptivity was observed 12 h after anthesis. Among the 15 genotypes, maximum duration of stigma receptivity was recorded in J. auriculatum (CO1 Mullai and IIHR-JA-3) followed by J. grandiflorum (CO1 Pitchi and Arka Surabhi), J. rigidum and J. nitidum. Ling et al. (2011) also reported highest stigma receptivity during flowering and decreased gradually in J. mesnyi. In present study also, all the Jasminum spp. recorded highest stigma receptivity at the time of flowering then decreased gradually.

The basic information generated on floral morphological and floral biology traits in 15 genotypes/species will facilitate the planned crop improvement programmes in Jasmine.

ACKNOWLEDGEMENT

The authors sincerely acknowledge the Director, ICAR-Indian Institute of Horticultural Research, Hesaraghatta Lake.

Table 3 Number of style per pistil, number of stamen, length of stamen, length of style and time of anthesis in different Jasminum genotypes/species

Genotype/Species	Number of style per pistil	Number of stamen	Length of stamen (cm)	Length of style (cm)	Time of anthesis				
					February	March	April	May	June
J. auriculatum var. CO.1 Mullai	1.00	2.00	1.25	1.37	6:30	6:15	6:10	6:00	6:10
J. auriculatum var. CO.2 Mullai	1.00	2.00	1.58	0.42	NF	6:30	6:15	6:00	6:10
J. auriculatum var. Parimullai	1.00	2.28	1.19	1.03	6:00	5:40	5:30	5:30	5:35
J. auriculatum - IIHR JA-1	1.00	2.23	1.51	1.62	NF	NF	NF	NF	6:15
J. auriculatum - IIHR JA-2	1.00	2.05	1.24	1.61	NF	NF	NF	5:45	6:05
J. auriculatum - IIHR JA-3	1.00	2.12	1.49	0.55	6:30	6:25	6:15	6:05	6:20
J. multiflorum - IIHR JM-1	1.00	2.05	1.20	2.00	10:10	9:55	9:40	9:30	9:35
J. multiflorum - IIHR JM-2	1.00	2.15	1.06	1.95	10:00	9:50	9:35	9:25	9:30
J. grandiflorum var. CO.1 Pitchi	1.00	2.00	2.13	2.32	7:05	6:50	6:40	6:30	6:45
J. grandiflorum var. ArkaSurabhi	1.00	2.00	2.06	2.30	7:00	6:45	6:40	6:35	6:45
J. rigidum	1.00	2.00	1.18	1.65	NF	7:00	6:45	6:30	NF
J. nitidum	1.00	2.00	1.52	2.26	8:15	7:50	7:45	7:35	7:40
J. calophyllum	1.00	2.10	1.83	2.10	7:05	6:50	6:35	6:30	6:45
J. flexile	1.00	2.10	1.78	2.06	7:00	6:55	6:40	6:30	6:45
J. malabaricum	1.00	2.00	1.44	1.29	7:00	6:45	6:35	6:30	6:40

Range: 1.00 - 1.00, 2.00 - 2.28, 1.06 - 2.13, 0.42 - 2.32

SEm±: 0.00, 0.04, 0.02, 0.02

CD (P=0.05): 0.00, 0.13, 0.04, 0.05

NF, Not flowered.
Table 4: Time of anther dehiscence and duration of stigma receptivity in different Jasminum genotypes/species

Genotype/Species	Time of anther dehiscence	Duration of stigma receptivity										
	February (p.m.)	March (p.m.)	April (p.m.)	May (p.m.)	June (p.m.)	At anthesis (30 h)	At anthesis (12 h)	At anthesis (24 h)	After anthesis (30 h)			
J. auriculatum var. CO.1 Mullai	5:00	4:50	4:35	4:20	4:30	+	++	+++	+++	++	+	-
J. auriculatum var. CO.2 Mullai	NF	5:00	4:50	4:40	4:45	-	-	+	+++	++	+	-
J. auriculatum var. Parisnulla	4:25	4:15	4:05	4:00	4:10	+	++	+++	+++	++	+	-
J. auriculatum - IIHR JA-1	NF	NF	NF	4:40	5:05	+	++	+++	+++	++	+	-
J. auriculatum - IIHR JA-2	NF	NF	NF	4:20	4:35	+	++	+++	+++	++	+	-
J. auriculatum - IIHR JA-3	5:05	5:45	4:40	4:30	4:35	+	++	+++	+++	++	+	-
J. multiflorum - IIHR JM-1	4:45	4:30	4:25	4:10	4:15	-	-	+	+++	++	+	-
J. multiflorum - IIHR JM-2	4:40	4:30	4:15	4:10	4:05	-	-	++	+++	++	+	-
J. grandiflorum var. CO.1 Pitchi	5:10	4:50	4:40	4:30	4:45	+	++	+++	++	+	+	-
J. grandiflorum var. ArkaSurabhi	5:05	5:45	4:45	4:35	4:50	+	+	+++	++	+	+	-
J. rigidum	NF	6:00	5:40	5:35	NF	+	++	+++	++	++	+	
J. nitidum	6:40	6:30	6:25	6:10	6:20	+	++	+++	+++	++	+	
J. calophyllum	5:30	5:20	5:05	5:00	5:15	-	+	++	+++	++	+	-
J. flexile	5:35	5:25	5:15	5:05	5:10	-	+	++	+++	++	+	-
J. malabaricum	5:30	5:15	5:05	5:00	5:10	-	+	++	+++	++	+	-

NF, Not flowered; stigma receptivity: -, none; +, less; ++, moderate; ++++, high.

Post, Bengaluru for providing field and laboratory facility for conducting this study.

REFERENCES

Arumugam T, Jawaharlal M, Vijayakumar M and Bhattacharjee S K. 2002. *Jasmine*. All India Coordinated Research Project on Floriculture, IARI, New Delhi.

Champa B V. 2012. ‘Genetic diversity studies using morphological and molecular (RAPD) markers in *Jasminum* species’. Ph.D. Thesis, University of Agricultural Sciences, Bengaluru.

Gomez K A and Gomez A A. 1984. *Statistical procedure for agricultural research*, pp 196–211. Wiley Inter-Science Publication, New York (USA).

Khan W and Muthuswamy S. 1969. Some morphological variants of *Jasminum auriculatum* Vahl. *South Indian Horticulture* 17: 95–7.

Krishnaswamy N and Raman V S. 1948. Cytoanatological studies of the Indian Jasmynes, taxonomy and chromosome numbers of four varieties of *Jasminum sambac* Ait. and other species. *Journal of Indian Botanical Society* 27(1): 77–83.

Laksmi J and Ganga M. 2017. Floral biology studies in certain commercial species of Jasmine (*Jasminum* spp.). *International Journal of Agricultural Science Research* 7: 443–6.

Ling C A, Hong G X and Mei H X. 2011. Studies on flowering habit and ecological pollination characteristics of *Jasminum mesnyi* Hance. *Guizhou Agricultural Sciences* 48: 50–4.

Nirmala K S, Champa B V and Hegde M. 2017. Morphological diversity of jasmine cultivars and wild species in Karnataka. *Mysore Journal of Agricultural Sciences* 51(4): 822–31.

Raman V S. 1955. cytogenetics of Indian Jasmynes II. The somatic chromosomes. *Cytologia* 20: 19–31.

Singh D. 2016. *Jasminum multiflorum* (Burm. f.) Andr: Botany, chemistry and pharmacology. *Asian Journal of Chemistry* 28(12): 2575–78.

Taylor H. 1945. Cytotaxonomy and phylogeny of the Oleaceae. *Britannia* 5: 337–67.

Veluswamy P, Muthuswamy S and Thangaraj T. 1973. Origin and distribution of jasmine. *Indian Ornamental Horticulture* 4: 45–65.