REMARKS ON AFFINE SPRINGER FIBRES

G. Lusztig

Let G be a simply connected almost simple algebraic group over \mathbb{C} and let \mathfrak{g} be the Lie algebra of G. Let B be a Borel subgroup of G, let T be a maximal torus of B and let t, b be the Lie algebras of T, B. Let \mathcal{B} be the variety of Borel subalgebras of \mathfrak{g}. For any nilpotent element $N \in \mathfrak{g}$ we set $\mathcal{B}_N = \{ b \in \mathcal{B}; N \in b \}$ (a Springer fibre). In [KL] an affine analogue of \mathcal{B}_N ("affine Springer fibre") was introduced. Let $F = \mathbb{C}((\epsilon)), A = \mathbb{C}[[\epsilon]]$, where ϵ is an indeterminate and let $\mathfrak{g}(F) = F \otimes \mathfrak{g}$ (a Lie algebra over F), $L = A \otimes \mathfrak{g}$ (a Lie algebra over A). An element $\xi \in \mathfrak{g}(F)$ is said to be topologically nilpotent if $\lim_{n \to \infty} \text{ad}(\xi)^n = 0$ in $\text{End}_F(\mathfrak{g}(F))$. Let \tilde{X} be the set of all Iwahori subalgebras of $\mathfrak{g}(F)$; this is an increasing union of projective varieties over \mathbb{C}. According to [KL], for any regular semisimple, topologically nilpotent element $\xi \in \mathfrak{g}(F)$, the set $\tilde{X}_\xi = \{ I \in \tilde{X}; \xi \in I \}$ is a nonempty, locally finite union of projective varieties all of the same dimension, say b_ξ. Let $[\tilde{X}_\xi]$ be the set of irreducible components of \tilde{X}_ξ, a finite or countable set.

In the remainder of this paper, h denotes a fixed regular element in t. Then $\epsilon h \in \mathfrak{g}(F)$ is regular semisimple, topologically nilpotent so that the affine Springer fibre $\tilde{X}_{\epsilon h} = \{ I \in \tilde{X}; \epsilon h \in I \}$ is defined. From [KL, §5] we see that $b_{\epsilon h} = \nu$ where $\nu = \dim \mathcal{B}$. As in [KL, §3], there is a free abelian group Λ (see Sec.2) of rank equal to the rank of \mathfrak{g} which acts freely on $\tilde{X}_{\epsilon h}$ in such a way that the induced Λ-action on $[\tilde{X}_{\epsilon h}]$ is also free and has only finitely many orbits. In this paper we will describe a fundamental domain for the Λ-action on $\tilde{X}_{\epsilon h}$. Namely, let \mathcal{S}' be the Steinberg variety of triples (E, b_1, b_2) where $b_1 \in \mathcal{B}, b_2 \in \mathcal{B}$ and $E \in b_1 \cap b_2$ is nilpotent. Let \mathcal{S} be the fibre at b of the projection $\mathcal{S}' \to \mathcal{B}, (E, b_1, b_2) \mapsto b_2$. We can identify \mathcal{S} with $\{(E, b_1); b_1 \in \mathcal{B}, E \in n \cap b_1\}$. We state the following result.

Theorem. There is a locally closed subvariety of $\tilde{X}_{\epsilon h}$ which is a fundamental domain for the Λ-action on $\tilde{X}_{\epsilon h}$ such that $\tilde{X}_{\epsilon h}$ is isomorphic to \mathcal{S}.

From the theorem one can deduce some information on the representation of the affine Weyl group on the vector space $\mathbb{C}[\tilde{X}_{\epsilon h}]$ with basis $[\tilde{X}_{\epsilon h}]$ defined in [L2], see Section 6.

I thank Peng Shan and Zhiwei Yun for discussions.

Supported in part by NSF grant DMS-1566618
2. Let U be the unipotent radical of B. Let n be the Lie algebra of U. Let $G(F), U(F), T(F)$ be the group of F-points of G, U, F respectively. Let $G(F)$ be the group of F-points of G. Note that $G(F)$ acts naturally on $g(F)$ by the adjoint representation $g : x \mapsto \text{Ad}(g)(x)$. Let Λ be the subgroup of $T(F)$ consisting of the elements $\chi(\varepsilon)$ where χ runs over the one parameter subgroups $C^* \rightarrow T$ (viewed as homomorphisms $F^* \rightarrow T(F)$). Let X be the set of A-Lie subalgebras of $g(F)$ of the form $\text{Ad}(g)(L)$ for some $g \in G(F)$. We shall regard X as an increasing union of projective algebraic varieties over C as in [L1, §11]. For each $L' \in X$, $L'/\varepsilon L'$ inherits from L' a bracket operation and becomes a simple Lie algebra over C. Let $\pi_{L'} : L' \rightarrow L'/\varepsilon L'$ be the obvious map. Let $B_{L'}$ be the set of Borel subalgebras of $L'/\varepsilon L'$. Now \tilde{X} consists of all C-Lie subalgebra of $g(F)$ of the form $\pi_{L'}^{-1}(b')$ for some $L' \in X$ and some $b' \in B_{L'}$. We define $\pi : \tilde{X} \rightarrow X$ by $I \mapsto L'$ where $I \subset L'$. Note that $g : I \mapsto \text{Ad}(g)I$ is a well defined action of $G(F)$ on \tilde{X} which is transitive. According to [KL], $t : I \mapsto \text{Ad}(t)I$ defines a free action of Λ on $\tilde{X}_{\varepsilon h} = \{I \in \tilde{X} ; \varepsilon h \in I\}$ inducing a free action of Λ with finitely many orbits on $[\tilde{X}_{\varepsilon h}]$. Let $X_{\varepsilon h} = \{L' \in X ; \varepsilon h \in L'\}$.

If $\xi \in n(F) := F \otimes n$ then $\exp(\xi) \in U(F)$ is well defined. Let $n(F)' = \bigoplus_{i \in \mathbb{Z}; i < 0} \varepsilon^i n \subset n(F)$. Let $U(F)' = \{\exp(\xi) ; \xi \in n(F)\} \subset U(F)$. It is well known that any $L' \in X$ can be written in the form $\text{Ad}(t)\text{Ad}(u)L$ where $t \in \Lambda, u \in U(F)'$ are uniquely determined. Hence we have a partition $X_{\varepsilon h} = \sqcup_{t \in A} X_{\varepsilon h, t}$ where $X_{\varepsilon h, t} = \{\text{Ad}(t)\text{Ad}(u)L ; u \in U(F)', \varepsilon h \in \text{Ad}(u)L\}$ is a locally closed subset of $X_{\varepsilon h}$. Let $\tilde{X}_{\varepsilon h, t} = \pi^{-1}(X_{\varepsilon h, t})$. This is a locally closed subset of $\tilde{X}_{\varepsilon h}$. Let $\Omega = X_{\varepsilon h, 1}, \tilde{\Omega} = \tilde{X}_{\varepsilon h, 1} = \pi^{-1}(\Omega)$. Note that

(a) $\tilde{X}_{\varepsilon h} = \sqcup_{t \in A} \tilde{X}_{\varepsilon h, t}$

as a set. Thus, $\tilde{\Omega}$ is a fundamental domain for the Λ-action on $\tilde{X}_{\varepsilon h}$. Let $\omega = \{E \in n(F)'; \text{Ad}(\exp(E))(\varepsilon h) \in L\}$. In preparation for the proof of the theorem we will prove the following result.

Lemma 3. The map $E = \varepsilon^{-1}E_1 + \varepsilon^{-2}E_2 + \varepsilon^{-3}E_3 + \ldots \mapsto E_1$ is a bijection $\phi : \omega \rightarrow n$. (Here E_1, E_2, E_3, \ldots is a sequence of elements of n with $E_i = 0$ for large i.)

The equation defining ω is $\exp(\text{ad}(E))(\varepsilon h) \in L$ that is
\[
\varepsilon h + \sum_{i \geq 1} \varepsilon^{-i+1}[E_i, h] + \left(1/2\right) \sum_{i,j \geq 1} \varepsilon^{-i-j+1}[E_i, [E_j, h]] \\
+ \left(1/6\right) \sum_{i,j,k \geq 1} \varepsilon^{-i-j-k+1}[E_i, [E_j, [E_k, h]]] + \cdots \in L,
\]
that is
\[
\sum_{i \geq 2} \varepsilon^{-i+1}[E_i, h] + \left(1/2\right) \sum_{i,j \geq 1} \varepsilon^{-i-j+1}[E_i, [E_j, h]] \\
+ \left(1/6\right) \sum_{i,j,k \geq 1} \varepsilon^{-i-j-k+1}[E_i, [E_j, [E_k, h]]] + \cdots \in L,
\]
that is

\[[E_r, h] = -(1/2) \sum_{i,j \geq 1,i+j=r} [E_i, [E_j, h]] \]

\[- (1/6) \sum_{i,j,k \geq 1,i+j+k=r} [E_i, [E_j, [E_k, h]]] + \ldots \]

for \(r = 2, 3, \ldots \). In the right hand side we have \(i < r, j < r, k < r, \) etc. Hence if \(E_r' \) is known for \(r' < r \) then \([E_r, h]\) is a well defined element of \(\mathfrak{n} \). Hence \(E_r \) is a well defined element of \(\mathfrak{n} \). (Note that \(E \mapsto [E, h] \) is a vector space isomorphism \(\mathfrak{n} \xrightarrow{\sim} \mathfrak{n} \).

It remains to show that \(E_r = 0 \) for large \(r \). For \(r \geq 1 \) let \(\mathfrak{n}^r \) be the subspace of \(\mathfrak{n} \) spanned by all iterated brackets of \(r \) elements of \(\mathfrak{n} \). (Thus, \(\mathfrak{n}^1 = \mathfrak{n}, \mathfrak{n}^2 \) is spanned by \([a, b]\) with \(a, b \) in \(\mathfrak{n} \), \(\mathfrak{n}^3 \) is spanned by \([a, b], c\) with \(a, b, c \) in \(\mathfrak{n} \), etc.) Note that

(b) \(E \mapsto [E, h] \) is an isomorphism \(\mathfrak{n}^r \xrightarrow{\sim} \mathfrak{n}^r \) for any \(r \geq 1 \).

We show by induction on \(r \) that

(c) \(E_r \in \mathfrak{n}^r \) for \(r = 1, 2, \ldots \)

For \(r = 1 \) this is clear. Assume now that \(r \geq 2 \). From (a) and the induction hypothesis we deduce that \([E_r, h] \in \mathfrak{n}^r \). Using (b) we see that for some \(E' \in \mathfrak{n}^r \) we have \([E_r, h] = [E', h] \), hence \([E_r - E', h] = 0 \), hence \(E_r = E' \). Thus \(E_r \in \mathfrak{n}^r \), proving (c). Since \(\mathfrak{n}^r = 0 \) for large \(r \) we see that \(E_r = 0 \) for large \(r \). This completes the proof of the lemma.

4. For \(E \in \mathfrak{n} \) we set \(u_E = \exp(E) \in U(F)' \) where \(E = \phi^{-1}(E) \) (see Lemma 3). Note that \(\text{Ad}(u_E)(ch) \in L \). Now \(\mathbb{E} \mapsto \text{Ad}(\exp(-E))L \) is a bijection \(\psi : \omega \xrightarrow{\sim} \forall \). Hence \(\psi' := \psi\phi^{-1} : \mathfrak{n} \rightarrow \Omega \) is a bijection. We have \(\psi'(E) = \text{Ad}(u_E^{-1})L \). We show:

(a) Let \(E \in \mathfrak{n} \) and let \(L_E = \text{Ad}(u_E^{-1})L \in X \). Note that \(ch \in L_E \). Then \(\pi_{L_E}(ch) \in L_E/\epsilon L_E \) and \(\pi_L([-E, h]) \in L/\epsilon L \) correspond to each other under the Lie algebra isomorphism \(\tau_E : L/\epsilon L \xrightarrow{\sim} L_E/\epsilon L_E \) induced by \(\text{Ad}(u_E^{-1}) : L \xrightarrow{\sim} L_E \).

We must show that \(\text{Ad}(u_E)(ch) = -[E, h] \mod \epsilon L \) or that \(\text{Ad}(\exp(E))(ch) = -[E, h] \mod \epsilon L \) where \(E = \epsilon^{-1}E_1 + \epsilon^{-2}E_2 + \epsilon^{-3}E_3 + \ldots \) corresponds to \(E = E_1 \) as in Lemma 3. Thus we must show that

\[
ch + \sum_{i \geq 1} \epsilon^{-i+1}[E_i, h] + (1/2) \sum_{i,j \geq 1} \epsilon^{-i-j+1}[E_i, [E_j, h]]
+ (1/6) \sum_{i,j,k \geq 1} \epsilon^{-i-j-k+1}[E_i, [E_j, [E_k, h]]] + \cdots = -[E_1, h] \mod \epsilon L,
\]

or that

\[
\sum_{i \geq 2} \epsilon^{-i+1}[E_i, h] + (1/2) \sum_{i,j \geq 1} \epsilon^{-i-j+1}[E_i, [E_j, h]]
+ (1/6) \sum_{i,j,k \geq 1} \epsilon^{-i-j-k+1}[E_i, [E_j, [E_k, h]]] + \cdots \in \epsilon L.
\]

But the left hand side is actually zero, by the proof of Lemma 3. This proves (a).
From (a) we deduce:
(b) the map \(\beta \mapsto \tau_E(\beta) \) is a bijection \(\{ \beta \in B_L; \pi_L([-E, h]) \in \beta \} \to \{ \beta' \in B_{LE}; \pi_{LE}(eh) \in \beta' \} \).
Taking union over all \(E \in \mathfrak{n} \) and using the bijection \(\psi': \mathfrak{n} \to \Omega \) we deduce
(c) the map \((E, \beta) \mapsto \pi_{LE}^{-1}(\tau_E(\beta)) \) is a bijection \(\{(E, \beta) \in \mathfrak{n} \times B_L; \pi_L([-E, h]) \in \beta \} \xrightarrow{\sim} \check{\Omega} \).

We consider the bijection
(d) \(\{(E, \beta) \in \mathfrak{n} \times B_L; \pi_L([-E, h]) \in \beta \} \to \mathcal{G} \)
given by \((E, \beta) \mapsto (-[E, h], b_1) \) where \(b_1 \in B \) is defined by \(\pi_L(b_1) = \beta \). The composition of the inverse of (d) with the bijection (c) is a bijection
(e) \(\mathcal{G} \xrightarrow{\sim} \check{\Omega} \).

From the proof we see that the bijection (e) is an isomorphism of algebraic varieties. This proves the theorem.

5. Let \(NT \) be the normalizer of \(T \) in \(G \) and let \(W = NT/T \) be the Weyl group. For any \(w \in W \) let \(B_w \) be the variety consisting of all \(b_1 \in B \) such that \((b, b_1) \) are in relative position \(w \). Note that \(B_w \) is isomorphic to \(C^{|w|} \) where \(|w| \in \mathbb{N} \) is the length of \(w \). Let \(\mathcal{G}_w = \{(E, b_1) \in \mathcal{G}; b_1 \in B_w\} \). The second projection \(\mathcal{G}_w \to B_w \) makes \(\mathcal{G}_w \) into a vector bundle with fibres of dimension \(\nu - |w| \). Hence \(\mathcal{G}_w \) is isomorphic to \(C^\nu \) as an algebraic variety. We have a partition \(\mathcal{G} = \bigsqcup_{w \in W} \mathcal{G}_w \) (as a set) with \(\mathcal{G}_w \) locally closed in \(\mathcal{G} \) (the closure of \(\mathcal{G}_w \) in \(\mathcal{G} \) is denoted by \(\overline{\mathcal{G}_w} \)). Hence we have a partition \(\check{\Omega} = \bigsqcup_{w \in W} \check{\Omega}_w \) (as a set) where \(\check{\Omega}_w \) corresponds to \(\mathcal{G}_w \) under 4(e). Note that \(\check{\Omega}_w \) is isomorphic to \(C^\nu \) as an algebraic variety and that \(\check{\Omega}_w \) is locally closed in \(\check{\Omega} \). For \(w \in W, t \in \Lambda \) we set \(\check{\Omega}_{w,t} = \text{Ad}(t)\check{\Omega}_w \). Using 2(a) we see that
(a) \(\check{X}_{ch} = \bigsqcup_{(w,t) \in W \times \Lambda} \check{\Omega}_{w,t} \)
as a set, where \(\check{\Omega}_{w,t} \) is locally closed in \(\check{X}_{ch} \) and is isomorphic to \(C^\nu \). Let \(\check{\Omega}_{w,t} \) be the closure of \(\check{\Omega}_{w,t} \) in \(\check{X}_{ch} \). Note that \(\check{\Omega}_{w,t} \) is open dense in \(\check{\Omega}_{w,t} \). Since \(\check{X}_{ch} \) is of pure dimension \(\nu \), we see that
(b) \((w, t) \mapsto \check{\Omega}_{w,t} \) is a bijection \(W \times \Lambda \xrightarrow{\sim} [\check{X}_{ch}] \).
In particular,
(c) the number of \(\Lambda \)-orbits on \([\check{X}_{ch}] \) is equal to the order of \(W \).
A result closely related to (c) (but not (c) itself) appears in [TS].

6. Let \([\mathcal{G}] \) be the set of irreducible components of \(\mathcal{G} \) (a finite set naturally indexed by \(W \) by \(w \mapsto [\mathcal{G}_w] \)). The bijection 5(b) gives rise to an imbedding \([\mathcal{G}] \to [\check{X}_{ch}] \), \([\mathcal{G}_w] \mapsto \check{\Omega}_{w,1} \) hence to an imbedding of vector spaces
(a) \(C[\mathcal{G}] \to C[\check{X}_{ch}] \)
with bases \([\mathcal{G}], [\check{X}_{ch}] \). Springer has shown that \(W \) acts naturally on \(C[\mathcal{G}] \) (this is known to be the regular representation of \(W \) in a nonstandard basis). In [L2] it is shown that the affine Weyl group of \(G \) acts naturally on \(C[\check{X}_{ch}] \). Hence, by restriction, \(W \) acts on \(C[\check{X}_{ch}] \). From the definitions we see that the imbedding (a) is compatible with the \(W \)-actions.
References

[KL] D.Kazhdan and G.Lusztig, *Fixed point varieties on affine flag manifolds*, Isr. J. Math. **62** (1988), 129-168.

[L1] G.Lusztig, *Singularities, character formulas and a q-analog of weight multiplicities*, Astérisque **101-102** (1983), 208-229.

[L2] G.Lusztig, *Affine Weyl groups and conjugacy classes in Weyl groups*, Transform. Groups (1996), 83-97.

[TS] C.C.Tsai, *Components of affine Springer fibres*, arxiv:1609.05176.

Department of Mathematics, MIT, Cambridge MA 02139