Fluctuations of eigenvalues of matrix models and their applications

T. Kriecherbauer†, M. Shcherbina‡

†Ruhr University of Bochum
‡Institute for Low Temperature Physics Ukr.Ac.Sci

Abstract

We study the expectation of linear eigenvalue statistics of matrix models with any $\beta > 0$, assuming that the potential V is a real analytic function and that the corresponding equilibrium measure has a one-interval support. We obtain the first order (with respect to n^{-1}) correction terms for the expectation and apply this result to prove bulk universality for real symmetric and symplectic matrix models with the same V.

1 Introduction and main results

We consider ensembles of $n \times n$ real symmetric, hermitian or symplectic matrices M with the probability distribution

$$P_n(M)dM = Z_{n,\beta}^{-1} \exp\left\{-\frac{n\beta}{2} \text{Tr} V(M)\right\}dM,$$

where $\beta = 1, 2, 4$ corresponds to real symmetric, Hermitian, and symplectic case respectively, $Z_{n,\beta}$ is a normalization constant, $V: \mathbb{R} \to \mathbb{R}_+$ is a Hölder function satisfying the condition

$$V(\lambda) \geq 2(1 + \epsilon) \log(1 + |\lambda|).$$

The joint eigenvalue distribution which corresponds to (1.1) has the form (see [12])

$$p_{n,\beta}(\lambda_1, \ldots, \lambda_n) = Q_{n,\beta}^{-1} \prod_{i=1}^{n} e^{-n\beta V(\lambda_i)/2} \prod_{1 \leq i<j \leq n} |\lambda_i - \lambda_j|^\beta,$$

where

$$Q_{n,\beta} = \int \prod_{i=1}^{n} e^{-n\beta V(\lambda_i)/2} \prod_{1 \leq i<j \leq n} |\lambda_i - \lambda_j|^\beta d\lambda_1 \ldots d\lambda_n.$$

This distribution can be considered for any $\beta > 0$. We denote

$$\mathbb{E}_\beta\{\ldots\} = \int (\ldots)p_{n,\beta}(\lambda_1, \ldots, \lambda_n)d\lambda_1 \ldots d\lambda_n,$$

and

$$p_{l,\beta}^{(n)}(\lambda_1, \ldots, \lambda_l) = \int_{\mathbb{R}^{n-l}} p_{n,\beta}(\lambda_1, \ldots, \lambda_l, \lambda_{l+1}, \ldots, \lambda_n)d\lambda_{l+1} \ldots d\lambda_n.$$
It is known (see [2] [10]) that if \(V \) is a Hölder function, then the first marginal density \(p_{1,N}^{(n)}(\lambda) \) converges weakly to the density \(\rho(\lambda) \) (equilibrium density) with a compact support \(\sigma \). The support \(\sigma \) and the density \(\rho \) are uniquely defined by the conditions:

\[
v(\lambda) := 2 \int \log |\mu - \lambda| \rho(\mu) d\mu - V(\lambda) = \sup_{\lambda \in \sigma} v(\lambda), \quad \lambda \in \sigma
\]

\[
v(\lambda) \leq \sup_{\lambda \notin \sigma} v(\lambda), \quad \sigma = \text{supp}\{\rho\}.
\]

If we consider the linear eigenvalue statistics of a smooth test function \(f \)

\[
N_n[f] = \sum_{i=1}^{n} f(\lambda_i),
\]

then the above results of [2] [10] mean that

\[
\lim_{n \to \infty} E_{\beta} \left\{ n^{-1} N_n[f] \right\} = \lim_{n \to \infty} \int f(\lambda) p_{1,N}^{(n)}(\lambda) d\lambda = \int f(\lambda) \rho(\lambda) d\lambda,
\]

\[
\lim_{n \to \infty} E_{\beta} \left\{ |n^{-1} N_n[f] - E_{\beta} \{n^{-1} N_n[f]\}|^2 \right\} = 0.
\]

Moreover, in [2] some rather rough bounds on the rate of convergence were found

\[
\left| \int f(\lambda) (p_{1,N}^{(n)}(\lambda) - \rho(\lambda)) d\lambda \right| \leq C||f||_2^{1/2} ||f'||_2^{1/2} n^{-1/2} \log^{1/2} n,
\]

\[
E_{\beta} \left\{ |n^{-1} N_n[f] - E_{\beta} \{n^{-1} N_n[f]\}|^2 \right\} \leq ||f||_2 ||f'||_2 n^{-1} \log n.
\]

Here and below we denote by \(||| \cdot |||_2 \) a standard \(L^2(\sigma_\varepsilon) \)-norm, with \(\sigma_\varepsilon \) being the \(\varepsilon \)-neighborhood of the support \(\sigma \) with sufficiently small \(\varepsilon \).

In the case of \(\beta = 2 \) these bounds can be improved considerably. It is a simple exercise (see e.g. [13]) to show that for any \(V \) satisfying (1.2) (not necessary Lipshitz) the l.h.s. of the second inequality is \(O(n^{-2}) \), but for other \(\beta \) this fact is not proven yet. With the first inequality of (1.9) the situation is similar. It follows from the results of [4] that for real analytic \(V \) the l.h.s. of the first inequality of (1.9) is \(O(n^{-1}) \) (see also [1] where the asymptotic expansion with respect to \(n^{-1} \) was constructed in the case of even real analytic \(V \) and one or two interval support \(\sigma \)). Unfortunately, similar results are not found for \(\beta \neq 2 \) in the general case of \(\sigma \) till now.

Bounds of the type (1.9) are interesting not only themselves. They have a lot of very important applications, which includes Central Limit Theorem (CLT) for linear eigenvalue statistics, the asymptotic for \(\log Q_{n,\beta} \), etc. One of the most important and interesting applications is that to the universality problem for \(\beta = 1, 4 \). Universality conjecture states that marginal densities (1.6) in the scaling limit, when \(\lambda_i = \lambda_0 + x_i/n^\kappa \) \((i = 1, \ldots , l)\) are universal (i.e. they do not depend on \(V \)). The scaling exponent \(\kappa \) depends on the behavior of the equilibrium density \(\rho(\lambda) \) in a small neighborhood of \(\lambda_0 \). If \(\rho(\lambda_0) \neq 0 \), then \(\kappa = 1 \), if \(\rho(\lambda_0) = 0 \) and \(\rho(\lambda) \sim |\lambda - \lambda_0|^\alpha \), then \(\kappa = 1/(1 + \alpha) \).

For \(\beta = 2 \) universality of local eigenvalue statistics was proved in many cases. For example, in the bulk case \((\rho(\lambda_0) \neq 0)\) it was shown in [13] (see also [14]) that for a general class of \(V \) (the second derivative of \(V \) is Lipshitz in some neighborhood of \(\lambda_0 \)) the scaled reproducing kernel converges uniformly to the sin-kernel. This result for the case of real analytic \(V \) was obtained also in [4]. Universality in the bulk for very general conditions on the potential \(V \) was proved also recently in [11]. Universality near the edge, i.e., the case when \(\lambda_0 \) is the edge point of the spectrum and \(\rho(\lambda) \sim |\lambda - \lambda_0|^{1/2} \), as \(\lambda \sim \lambda_0 \), was studied in [4]. There are also
results on universality near the extreme point, where \(\rho(\lambda) \sim (\lambda - \lambda_0)^2 \), as \(\lambda \sim \lambda_0 \) (see [3] for real analytic \(V \) and [15] for general \(V \)).

The crucial difference between the case \(\beta = 2 \) and other \(\beta \) is that for \(\beta = 2 \) all correlation functions \([1.6]\) can be expressed in terms of the reproducing kernel of the system of normalized polynomials \(p_j^{(n)} = \gamma_j^{(n)} x^j + \ldots, (j = 0, \ldots, n - 1) \) orthogonal on the real line with varying weight

\[
 w^{(n)}(\lambda) := e^{-nV(\lambda)}
\]

\[
 \int_{\mathbb{R}} p_j^{(n)}(\lambda)p_k^{(n)}(\lambda)w^{(n)}(\lambda) d\lambda = \delta_{j,k} \quad \text{for } j, k \geq 0.
\]

The orthogonal polynomial machinery, in particular, Christoffel-Darboux formula and Christoffel function simplify considerably the studies of marginal densities \([1.6]\). Moreover, asymptotics of orthogonal polynomials \(p_n^{(n)} \), \(p_n^{(n)} \) are known (see [4] for real analytic \(V \) and the recent paper [9] for non analytic \(V \)) and they can be used to prove bulk and edge universality.

For \(\beta = 1, 4 \) the situation is more complicated. It was shown in [19] that the problem can be reduced to universality of some matrix kernels (see \([1.21], [1.22]\) below), which also can be expressed in terms of orthogonal polynomials \([1.11]\), but to control their behavior one need to control the invertibility of some matrix (see Section 3 for more details). According to Widom [20], if the potential \(V \) is a rational function, then we need to control the inverse of some matrix of fixed size depending of \(V \) (e.g., if \(V \) is polynomial of degree \(2m \), then we should control some \((2m - 1) \times (2m - 1)\) matrix). Till now this technical problem was solved only in a few cases. In the papers [5, 6] the case \(V(\lambda) = \lambda^{2m}(1 + o(1)) \) (in our notations) was studied. Similar method was used in [7] to prove bulk and edge universality (including the case of hard edge) for the Laguerre type ensembles with monomial \(V \). In [18] universality in the bulk and near the edges were studied for \(V \) being an even quartic polynomial. In [16, 17] bulk and edge universality were studied for \(\beta = 1 \) and real analytic even \(V \) with one interval support \(\sigma \).

But there is also a possibility to prove universality of local eigenvalue statistics by using another technique. In [18] Sojanovich made an important observation (see Remark 5 of [18] or Section 3 of the present paper) which allows one to replace the problem to control the Widom matrix by the problem to control \(E_\beta \{ n^{-1}\mathcal{N}_n[f] \} \) for \(\beta = 1, 2, 4 \). Thus the problem to study the correction terms of the order \(n^{-1} \) for \(E_\beta \{ n^{-1}\mathcal{N}_n[f] \} \) becomes especially important.

In a remarkable paper [10] Johansson studied the expectation and the variance of \(n^{-1}\mathcal{N}_n[f] \) up to the terms \(O(n^{-2}) \). This allows him, in particular, to prove CLT for fluctuations of \(\mathcal{N}_n[f] \). Unfortunately, his method works only in the case of one interval support \(\sigma \) of the equilibrium density \(\rho \) and polynomial \(V \) with some additional assumption.

In the present paper we generalize the idea of [10] to the case of real analytical \(V \) with one interval support of \(\rho \), without any other assumptions. Moreover, we give a more simple proof of this result and apply it to the proof of bulk universality for \(\beta = 1, 4 \).

Let us formulate our main conditions.

Condition C1. The support \(\sigma \) of the equilibrium measure density \(\rho \) consists of a single interval: \(\sigma = [a, b], -\infty < a < b < \infty \).

Remark 1 It is easy to see that changing the variables \(M' = 2(M - \frac{a + b}{2})/(b - a), \) in the case (i) we can always take the support \(\sigma = [-2, 2] \).
Condition C2. The equilibrium density ρ can be represented in the form

$$\rho(\lambda) = \frac{1}{2\pi} P(\lambda) \Im X^{1/2}(\lambda + i0), \quad \inf_{\lambda \in [-2, 2]} P(\lambda) > 0, \quad (1.12)$$

where

$$X(z) = z^2 - 4, \quad (1.13)$$

and we choose a branch of $X^{1/2}(z)$ such that $X^{1/2}(z) \sim z$, as $z \to +\infty$. Moreover, the function v defined by (1.7) attains its maximum if and only if λ belongs to σ.

Condition C3. V is real analytic on σ, i.e., there exists an open domain $D \subset \mathbb{C}$ such that $\sigma \subset D$ and V is an analytic function in D.

Remark 2 It is known (see, e.g., [1]) that under conditions C1 and C3 for any β the equilibrium density ρ of the ensemble (1.3) has the form (1.12) – (1.13) with $P(\geq 0)$. The analytic function P in (1.12) can be represented in the form

$$P(z) = \int_{\sigma} \frac{V'(z) - V'(\lambda)}{(z - \lambda) \Im X^{1/2}(\lambda + i0)} d\lambda \quad (1.14)$$

Hence, condition C2 states that P has no zeros in $[-2, 2]$. Note also, that in the paper [10] it was assumed additionally that V is a polynomial and P has no zeros on the real line.

The first result of the paper is the theorem which allows us to control the expectation and the variance of linear eigenvalue statistics.

Theorem 1 Under conditions C1 – C3 for any analytic in D function f we have

$$\mathbb{E}_\beta \{ N_n[f] \} = \int f(\lambda) \rho(\lambda) d\lambda + \frac{1}{n} \left(\frac{2}{\beta} - 1 \right) \frac{1}{(2\pi i)^2} \int_{\mathcal{L}_d} \frac{f(z) dz}{X^{1/2}(z)} \int_{\mathcal{L}_d} \frac{g'(\zeta) d\zeta}{P(\zeta)(z - \zeta)} + n^{-2} r_{n,\beta}(f), \quad (1.15)$$

where the contour \mathcal{L}_d is defined as

$$\mathcal{L}_d = \{ z : \text{dist}\{z, \sigma\} = d \}, \quad (1.16)$$

d is chosen sufficiently small to have all zeros of $P(\zeta)$ outside of \mathcal{L}_d,

$$g(z) = \int \frac{\rho(\lambda) d\lambda}{z - \lambda}, \quad (1.17)$$

and $r_{n,\beta}(f)$ satisfies the bound

$$|r_{n,\beta}(f)| \leq C_d \sup_{z: \text{dist}\{z, \sigma\} \leq 2d} |f(z)|,$$

with C_d depending only on d.

Moreover,

$$\mathbb{E}_\beta \{ |N_n[f] - \mathbb{E}_\beta \{ N_n[f] \}|^2 \} \leq C_d \sup_{z: \text{dist}\{z, \sigma\} \leq 2d} |f(z)|^2. \quad (1.18)$$
One of the important applications of Theorem 1 (see discussion above) is the asymptotic of \(\log Q_{n,\beta} \). Since the paper [2] it is known that
\[
n^{-2} \log Q_{n,\beta} = \frac{\beta}{2} \mathcal{E}_V + O(\log n/n),
\]
where
\[
\mathcal{E}_V = -\int \log \frac{1}{|\lambda - \mu|} \rho(\lambda) \rho(\mu) d\lambda d\mu - \int V(\lambda) \rho(\lambda) d\lambda.
\]
(1.19)

But for many problems it is important to control the next terms of asymptotic expansion of \(\log Q_{n,\beta} \) (for applications see discussion in [8], where the complete asymptotic expansion with respect to \(n^{-1} \) was constructed for the case \(\beta = 2 \) under assumption that \(V \) is a polynomial close in a certain sense to \(V_0(\lambda) = \lambda^2/2 \).

Theorem 2 Under conditions C1 – C3 for any \(\beta \)
\[
n^{-2} \log Q_{n,\beta} = n^{-2} \log Q_{n,\beta}^{(0)} + \frac{1}{2} \beta \mathcal{E}_V + \frac{3}{8} \beta
\]
\[
+ \frac{1}{n} \left(1 - \frac{\beta}{2} \right) \frac{1}{(2\pi i)^2} \int_{\mathcal{L}_2} \frac{(V(z) - z^2/2) dz}{X^{1/2}(z)} \int_{\mathcal{L}_d} \frac{g_1(\zeta) d\zeta}{P_1(\zeta)(z - \zeta)} + O(n^{-2}),
\]
(1.20)

where \(\log Q_{n,\beta}^{(0)} \) corresponds to the Gaussian case \(V_0 = \lambda^2/2 \), \(\mathcal{E}_V \) is defined by (1.19), \(\frac{3}{8} \beta = -\frac{1}{2} \beta \mathcal{E}_{V_0} \), and
\[
P_1(\lambda) = tP(\lambda) + 1 - t, \quad g_1(z) = tg(z) + \frac{1-t}{2} (z - \sqrt{z^2 - 4}).
\]

Remark 3 By the Selberg formula (see e.g. [12]) for the Gaussian case we have
\[
Q_{n,\beta}^{(0)} = n! \left(\frac{n \beta}{2} \right)^{-n(n-1)/4-n/2} (2\pi)^{n/2} \prod_{j=1}^n \frac{\Gamma(\beta j/2)}{\Gamma(\beta/2)}.
\]

As it was mentioned above, Theorem 1 together with some asymptotic results of [4] for orthogonal polynomials can be used to prove universality of the local eigenvalue statistics of the matrix models (1.1). We restrict our attention to the case when \(V \) is a polynomial of even degree \(2m \) such that conditions C1–C3 are satisfied. Moreover we consider only even \(n \). It is known (see [19]) that the question of universality is closely related to the large \(n \) behavior of certain matrix kernels
\[
K_{n,1}(\lambda, \mu) := \begin{pmatrix}
S_{n,1}(\lambda, \mu) & -\frac{\partial}{\partial \mu} S_{n,1}(\lambda, \mu) \\
(\epsilon S_{n,1})(\lambda, \mu) - \epsilon(\lambda - \mu) & S_{n,1}(\mu, \lambda)
\end{pmatrix}
\]
for \(\beta = 1, n \) even,
(1.21)

\[
K_{n,4}(\lambda, \mu) := \begin{pmatrix}
S_{n,4}(\lambda, \mu) & -\frac{\partial}{\partial \mu} S_{n,4}(\lambda, \mu) \\
(\epsilon S_{n,4})(\lambda, \mu) & S_{n,4}(\mu, \lambda)
\end{pmatrix}
\]
for \(\beta = 4 \).

(1.22)

Here \(\epsilon(\lambda) = \frac{1}{2} \text{sgn}(\lambda) \), where sgn denotes the standard signum function, and \((\epsilon S_{n,\beta})(\lambda, \mu) = \int_{\mathbb{R}} \epsilon(x - x') S_{n,\beta}(x', y) d\lambda' \). Some formulæ for the functions \(S_{n,\beta} \) that appear in the definition of \(K_{n,\beta} \) will be introduced in (3.3), (3.4) below. In order to state our theorem we need some more notation. Define
\[
K_\infty(t) := \frac{\sin \pi t}{\pi t},
\]
\[
K^{(1)}(\xi, \eta) := \begin{pmatrix}
K_\infty(\xi - \eta) & K_\infty'(\xi - \eta) \\
\int_0^{\xi-\eta} K_\infty(t) dt - \epsilon(\xi - \eta) & K_\infty(\eta - \xi)
\end{pmatrix},
\]
\[
K^{(4)}(\xi, \eta) := \begin{pmatrix}
K_\infty(\xi - \eta) & K_\infty'(\xi - \eta) \\
\int_0^{\xi-\eta} K_\infty(t) dt & K_\infty(\eta - \xi)
\end{pmatrix}.
\]
Furthermore we denote for a 2×2 matrix A and $\lambda > 0$
\[
A^{(\lambda)} := \begin{pmatrix} \sqrt{\lambda}^{-1} & 0 \\ 0 & \sqrt{\lambda} \end{pmatrix} A \begin{pmatrix} \sqrt{\lambda} & 0 \\ 0 & \sqrt{\lambda}^{-1} \end{pmatrix}.
\]

Theorem 3 Let V be a polynomial of degree $2m$ with positive leading coefficient and such that conditions C1–C2 are satisfied. Then we have for (even) $n \to \infty$, $\lambda_0 \in \mathbb{R}$ with $\rho(\lambda_0) > 0$, and for $\beta \in \{1, 4\}$ that
\[
\frac{1}{q_n} K_{n,1}^{(q_n)} \left(\lambda_0 + \frac{\xi}{q_n}, \lambda_0 + \frac{\eta}{q_n} \right) = K_{\infty}^{(1)}(\xi, \eta) + O(n^{-1/2}),
\]
\[
\frac{1}{q_n} K_{n,2,4}^{(q_n)} \left(\lambda_0 + \frac{\xi}{q_n}, \lambda_0 + \frac{\eta}{q_n} \right) = K_{\infty}^{(4)}(\xi, \eta) + O(n^{-1/2}),
\]
where $q_n = n \rho(\lambda_0)$. The error bound is uniform for bounded ξ, η and for λ_0 contained in some compact subset of $(-2, 2)$ (recall that supp $\rho = [-2, 2]$ by Condition C1).

It is an immediate consequence of Theorem 3 that the corresponding rescaled l-point correlation functions
\[
p_{l,1}^{(n)} \left(\lambda_0 + \frac{\xi_1}{q_n}, \ldots, \lambda_0 + \frac{\xi_l}{q_n} \right), \quad p_{l,4}^{(n/2)} \left(\lambda_0 + \frac{\xi_1}{q_n}, \ldots, \lambda_0 + \frac{\xi_l}{q_n} \right)
\]
converge for n (even) $\to \infty$ to some limit that depends on β but not on the choice of V.

The paper is organized as follows. In Section 2 we prove Theorems 1 and 2. In Section 3 we prove Theorem 3 modulo some bounds, which we obtain in Section 4. And in Section 5 for the reader’s convenience we give a version of the proof of a priori bound (1.9).

2 Proof of Theorems 1, 2

Proof of Theorem 1 Take an n-independent ε, small enough to provide that $\sigma_\varepsilon \subset D$, where $\sigma_\varepsilon \subset \mathbb{R}$ means the ε-neighborhood of σ. It is known (see e.g. [14]) that if we replace in (1.3), (1.5) and (1.6) the integration over \mathbb{R} by the integration σ_ε, then the new marginal densities will differ from the initial ones by the terms $O(e^{-nc})$ with some c depending on ε, but independent of n. Since for our purposes it is more convenient to consider the integration with respect to σ_ε, we assume from this moment that this replacement is made, so everywhere below the integration without limits means the integration over σ_ε.

Following the idea of [10], we will study a little bit modified form of the joint eigenvalue distribution, than in (1.3). Namely, consider any real on σ and analytic in D function $h(\zeta)$ and denote
\[
V_h(\zeta) = V(\zeta) + \frac{1}{n} h(\zeta).
\]
Let $p_{n,\beta,h}, \mathcal{E}_{\beta,h}\{\ldots\}, \mathcal{P}_{l,\beta,h}^{(n)}$ be the distribution density, the expectation, and the marginal densities defined by (1.3), (1.5) and (1.6) with V replaced by V_h.

By (1.3) the first marginal density can be represented in the form
\[
p_{1,\beta,h}(\lambda) = Q_{1,\beta,h}^{-1} \int e^{-n\beta V_h(\lambda)/2} \prod_{i=2}^n (|\lambda - \lambda_i|^{\beta} e^{-n\beta V_h(\lambda_i)/2} \prod_{2 \leq i < j \leq n} |\lambda_i - \lambda_j|^{\beta} d\lambda_2 \ldots d\lambda_n. \quad (2.1)
\]
Using the representation and integrating by parts, we obtain

$$
\int \frac{V''_h(\lambda)p^{(n)}_{1,\beta,h}(\lambda)}{z-\lambda}d\lambda = \frac{2}{\beta n} \int \frac{p^{(n)}_{1,\beta,h}(\lambda)}{(z-\lambda)^2}d\lambda + \frac{2(n-1)}{n} \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)} + O(e^{-nc}). \quad (2.2)
$$

Here $O(e^{-nc})$ is the contribution of the integrated term. In fact all equations below should contain $O(e^{-mc})$, but in order to simplify formula below we omit it.

Since the function $p^{(n)}_{2,\beta,h}(\lambda,\mu)$ is symmetric with respect to λ,μ, we have

$$
2 \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)} = \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)} + \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)} = \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)}.
$$

Hence, equation (2.2) can be written in the form

$$
\int \frac{V''_h(\lambda)p^{(n)}_{1,\beta,h}(\lambda)}{z-\lambda}d\lambda = \frac{2}{\beta n} \int \frac{p^{(n)}_{1,\beta,h}(\lambda)}{(z-\lambda)^2}d\lambda + \frac{2(n-1)}{n} \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)}. \quad (2.3)
$$

Let us introduce notations:

$$
\delta_{n,\beta,h}(z) = n(n-1) \int \frac{p^{(n)}_{2,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)} - n^2 \left(\int \frac{p^{(n)}_{1,\beta,h}(\lambda)d\lambda}{z-\lambda} \right)^2 + n \int \frac{p^{(n)}_{1,\beta,h}(\lambda)d\lambda}{(z-\lambda)^2}d\lambda = \int \frac{k_{n,\beta,h}(\lambda,\mu)d\lambda d\mu}{(z-\lambda)(\lambda-\mu)}, \quad (2.4)
$$

where

$$
k_{n,\beta,h}(\lambda,\mu) = n(n-1)p^{(n)}_{2,\beta,h}(\lambda,\mu) - n^2 p^{(n)}_{1,\beta,h}(\lambda)p^{(n)}_{1,\beta,h}(\mu) + n(\lambda-\mu)p^{(n)}_{1,\beta,h}(\lambda). \quad (2.5)
$$

Moreover, we denote

$$
g_{n,\beta,h}(z) = \int \frac{p^{(n)}_{1,\beta,h}(\lambda)d\lambda}{z-\lambda}, \quad V(z,\lambda) = \frac{V'(z)-V'(\lambda)}{z-\lambda}. \quad (2.6)
$$

Then equation (2.2) takes the form

$$
g_{n,\beta,h}(z) - V'(z)g_{n,\beta,h}(z) + \int V(z,\lambda)p^{(n)}_{1,\beta,h}(\lambda)d\lambda

= \frac{1}{n} \int \frac{h'(\lambda)p^{(n)}_{1,\beta,h}(\lambda)}{z-\lambda}d\lambda - \frac{1}{n} \left(\frac{2}{\beta} - 1 \right) \int \frac{p^{(n)}_{1,\beta,h}(\lambda)}{(z-\lambda)^2}d\lambda - \frac{1}{n^2} \delta_{n,\beta,h}(z). \quad (2.7)
$$

Using that $V(z,\zeta)$ is an analytic function of ζ in \mathcal{D}, we obtain by the Cauchy theorem that for any z outside of \mathcal{L}_d

$$
\int V(z,\lambda)p^{(n)}_{1,\beta,h}(\lambda)d\lambda = \frac{1}{2\pi i} \oint_{\mathcal{L}_d} V(z,\zeta)g_{n,\beta,h}(\zeta)d\zeta.
$$

Thus, (2.7) takes the form

$$
g_{n,\beta,h}(z) - V'(z)g_{n,\beta,h}(z) + \frac{1}{2\pi i} \oint_{\mathcal{L}_d} V(z,\zeta)g_{n,\beta,h}(\zeta)d\zeta

= \frac{1}{n} \int \frac{h'(\lambda)p^{(n)}_{1,\beta,h}(\lambda)}{z-\lambda}d\lambda - \frac{1}{n} \left(\frac{2}{\beta} - 1 \right) \int \frac{p^{(n)}_{1,\beta,h}(\lambda)}{(z-\lambda)^2}d\lambda - \frac{1}{n^2} \delta_{n,\beta,h}(z). \quad (2.8)
$$
Passing to the limit $n \to \infty$, we obtain for any fixed z the quadratic equation

$$g^2(z) - V'(z)g(z) + Q(z) = 0, \quad Q(z) = \frac{1}{2\pi i} \oint_{\mathcal{L}_d} V(z, \zeta)g(\zeta)d\zeta,$$ \hspace{1cm} (2.9)

where g is defined by (1.17). Hence,

$$g(z) = \frac{1}{2}V'(z) - \frac{1}{2}\sqrt{V'(z)^2 - 4Q(z)}.$$

Using the inverse Stieltjes transform and comparing with (1.12), we get that

$$2g(z) - V'(z) = P(z)X^{1/2}(z),$$ \hspace{1cm} (2.10)

where $X(z)$ is defined by (1.13).

Denote

$$u_{n,\beta,h}(z) = n(g_{n,\beta,h}(z) - g(z)) \iff g_{n,\beta,h}(z) = g(z) + \frac{1}{n}u_{n,\beta,h}(z).$$ \hspace{1cm} (2.11)

Then, subtracting (2.9) from (2.8) and multiplying the result by n, we get

$$(2g(z) - V'(z))u_{n,\beta,h}(z) + \frac{1}{2\pi i} \oint_{\mathcal{L}_d} V(z, \zeta)u_{n,\beta,h}(\zeta)d\zeta = F(z),$$ \hspace{1cm} (2.12)

where

$$F(z) = \int \frac{h'(\lambda)p_{1,\beta,h}^{(n)}(\lambda)}{z - \lambda}d\lambda + \left(\frac{2}{\beta} - 1\right)\left(g'(z) + \frac{1}{n}u'_{n,\beta,h}(z)\right) - \frac{1}{n}u_{n,\beta,h}^2(z) - \frac{1}{n}\delta_{n,\beta,h}(z).$$ \hspace{1cm} (2.13)

Using (2.10), we obtain from (2.12)

$$P(z)X^{1/2}(z)u_{n,\beta,h}(z) + Q_n(z) = F(z), \quad Q_n(z) = \frac{1}{2\pi i} \oint_{\mathcal{L}_d} V(z, \zeta)u_{n,\beta,h}(\zeta)d\zeta.$$ \hspace{1cm} (2.14)

Then, choosing d such that the contour \mathcal{L}_d defined by (1.16) does not contain zeros of $P(\zeta)$, we get for any z outside of \mathcal{L}_d

$$\frac{1}{2\pi i} \oint_{\mathcal{L}_d} \left(P(\zeta)X^{1/2}(\zeta)u_{n,\beta,h}(\zeta) + Q_n(\zeta) - F(\zeta)\right) \frac{d\zeta}{P(\zeta)(z - \zeta)} = 0.$$ \hspace{1cm} (2.15)

Since, by definition (2.14), $Q_n(\zeta)$ is an analytic function in \mathcal{D}, and z and all zeros of P are outside of \mathcal{L}_d, the Cauchy theorem yields

$$\frac{1}{2\pi i} \oint_{\mathcal{L}_d} \frac{Q_n(\zeta)d\zeta}{P(\zeta)(z - \zeta)} = 0.$$

Moreover, since

$$u_{n,\beta,h}(z) = \frac{n}{z} \left(\int d\lambda p_{1,\beta,h}^{(n)}(\lambda) - \int d\lambda \rho(\lambda)\right) + n\mathcal{O}(z^{-2}) = n\mathcal{O}(z^{-2}), \quad z \to \infty$$

we have

$$X^{1/2}(z)u_{n,\beta,h}(z) = n\mathcal{O}(z^{-1}).$$ \hspace{1cm} (2.16)
Then the Cauchy theorem yields
\[
\frac{1}{2\pi i} \oint_{\mathcal{L}} X^{1/2}(\zeta) u_{n,\beta,h}(\zeta) d\zeta = X^{1/2}(z) u_{n,\beta,h}(z).
\]

Finally, we obtain from (2.15)
\[
\begin{align*}
u_{n,\beta,h}(z) & = \frac{1}{2\pi i X^{1/2}(z)} \oint_{\mathcal{L}_d} F(\zeta) d\zeta \quad \text{for all } z \in \mathbb{C},
\end{align*}
\] (2.17)

Now take \(d\) small enough to have all zeros of \(P\) outside of \(\mathcal{L}_d\). Then for any \(z: \text{dist}\{z,\sigma\} = 2d\) equation (2.17) implies
\[
u_{n,\beta,h}(z) = \frac{F(z)}{X^{1/2}(z)P(z)} + \frac{1}{2\pi i X^{1/2}(z)} \oint_{\mathcal{L}_d} F(\zeta) d\zeta.
\] (2.18)

According to the result of [2] for any \(\beta\) we have a priory bound
\[
|\delta_{n,\beta,h}| \leq \frac{Cn \log n}{\text{dist}\{z,\sigma\}}, \quad |u_{n,\beta,h}(z)| \leq \frac{Cn^{1/2} \log n}{\text{dist}^2\{z,\sigma\}}, \quad |u'_{n,\beta,h}(z)| \leq \frac{Cn^{1/2} \log n}{\text{dist}^4\{z,\sigma\}},
\] (2.19)

where \(C\) is an absolute constant.

Denote
\[
M_n(d) = \sup_{z: \text{dist}(z,\sigma) \geq 2d} |u_{n,\beta,h}(z)|
\]

By (2.16) and the maximum principle, there exists a point \(z: \text{dist}\{z,\sigma\} = 2d\) such that
\[
M_n(d) = |u_{n,\beta,h}(z)|.
\]

Then, using (2.18), the definition of \(F\) (see (2.13)), and (2.19), we obtain the inequality
\[
M_n(d) \leq \frac{1}{n} C_1 M_n^2(d) + C_2 \log n,
\]

where \(C_1\) and \(C_2\) depend only on \(d\), \(\sup_{\text{dist}\{z,\sigma\} \leq 3d} |P^{-1}(z)|\), \(\sup_{\text{dist}\{z,\sigma\} \leq d/2} |n^{-1}h(z)|\), and from \(C\) of (2.19). Solving the above quadratic inequality, we get
\[
\begin{cases}
M_n(d) \geq (2C_1)^{-1} (n + \sqrt{n^2 - 4C_1 C_2 n \log n}) \\
M_n(d) \leq (2C_1)^{-1} (n - \sqrt{n^2 - 4C_1 C_2 n \log n})
\end{cases}
\]

Since the first inequality contradicts to (2.19), we conclude that the second inequality holds. Hence, we get
\[
\sup_{z: \text{dist}(z,\sigma) \geq 2d} |u_{n,\beta,h}(z)| \leq 2C_2 \log n + C(\sup_{\lambda \in \sigma_{\epsilon}} |h'(\lambda)| + \text{dist}^{-2}\{z,\sigma\}).
\]

Note that the bound gives us that for any real analytic \(\varphi(\zeta)\)
\[
\left| \int \varphi(\lambda)(p_{1,\beta,h}(\lambda) - \rho(\lambda)) d\lambda \right| = \left| \frac{1}{2\pi i} \oint_{\mathcal{L}_d} \varphi(\zeta) u_{n,\beta,h}(\zeta) d\zeta \right| \leq w_n \left(\sup_{z \in \mathcal{L}_d} |\varphi(z)| + \sup_{\lambda \in \sigma_{\epsilon}} |h'(\lambda)| \right),
\] (2.20)

where
\[
w_n = 2C_2 \log n
\]

Now we are going to use the following lemma, which is an analog of Lemma 3.11 of [10].
Lemma 1 If \((2.20)\) holds for any real \(h\), and some \(\varphi\) which is analytic in \(D_1 \subset D\) \((\sigma_\varepsilon \subset D_1)\), then there exists an \(n\)-independent constant \(C_*\) such that

\[
\int k_{n,\beta,h}(\lambda, \mu)\varphi(\lambda)\varphi(\mu)d\lambda d\mu \leq C_*w_n^2 \sup |\varphi^2|
\]

(2.21)

The lemma was proved in [10], but for convenience of readers we give its proof at the end of the proof of Theorem 1.

Applying the lemma to \(\varphi^{(1)}_\varepsilon(z) = \Re(z - \lambda)\) and \(\varphi^{(2)}_\varepsilon(z) = \Im(z - \lambda)\) with dist\{\(z, \sigma\}\} \(\geq d\), and using \((2.20)\), we obtain that \(|\delta_{n,\beta,h}| \leq C_d'\log^2 n, |u_{n,\beta,h}(z)|, |u'_{n,\beta,h}(z)| \leq C_d'\log n.\) (2.22)

Then, using this bound in \((2.18)\) instead of \((2.19)\), by the same way as above we get \((2.20)\) with \(w_n = C_1(\sup_{\lambda \in \sigma_\varepsilon} |h'(\lambda)| + C_d).\) Then, applying Lemma 1 once more, we obtain that

\[
|\delta_{n,\beta,h}| \leq C''_d, |u_{n,\beta,h}(z)|, |u'_{n,\beta,h}(z)| \leq C''_d.
\]

(2.23)

Using these final bounds in \((2.17)\), we obtain that

\[
u_{n,\beta,h}(z) = \frac{1}{2\pi} \int_{\delta_d} \frac{g'(\zeta) d\zeta}{P(z - \zeta)} + r_n(z),
\]

(2.24)

where

\[
|r_n(z)| \leq n^{-1} C_d.
\]

\(\Box\)

Proof of Lemma 1 Take any real analytic \(\varphi\) such that \(\sup_{z \in \mathbb{C}} |\varphi(z)| \leq 1.\) Using the method of [10], consider the function

\[
F_n(t) = E_{\beta,h} \left\{ \exp \left[-\frac{t}{2w_n} \sum_{i=1}^{n} (\varphi(\lambda_i) - \int \varphi(\lambda)\rho(\lambda)d\lambda) \right] \right\}.
\]

It is easy to see that

\[
\frac{d^2}{dt^2} \log F_n(t) = (2w_n)^{-2} E_{\beta,h+t\varphi/2w_n} \left(\left\{ \sum_{i=1}^{n} (\varphi(\lambda_i) - E_{\beta,h+t\varphi/2w_n} \{\varphi(\lambda_i)\}) \right\}^2 \right) \geq 0.
\]

(2.25)

Hence, by \((2.20)\), for \(t \in [-1, 1]\)

\[
\log F_n(t) = \log F_n(t) - \log F_n(0) = \int_{0}^{t} \frac{d}{d\tau} \log F_n(\tau) d\tau \leq |t| \frac{d}{dt} \log F_n(t)
\]

\[
= |t|(2w_n)^{-1} E_{\beta,h+t\varphi/2w_n} \left\{ \sum_{i=1}^{n} \left(\varphi(\lambda_i) - \int \varphi(\lambda)\rho(\lambda)d\lambda \right) \right\}
\]

\[
= |t|n \int \varphi(\lambda) \left(p_{1,\beta,h+t\varphi/2w_n}^{(n)}(\lambda) - \rho(\lambda) \right) d\lambda \leq |t|
\]

Thus, for \(t \in [-1, 1]\)

\[
F_n(t) \leq e^{|t|} \leq 3,
\]

and for any \(t \in \mathbb{C}, |t| < 1\)

\[
|F_n(t)| \leq F_n(|t|) < 3.
\]

(2.26)
Then, we have by the Cauchy theorem, for $|t| \leq \frac{1}{2}$

$$|F_n'(t)| = \left| \frac{1}{2\pi} \oint_{|t'|=1} \frac{F_n(t')dt'}{(t'-t)^2} \right| \leq 6,$$

and therefore for $|t| \leq \frac{1}{12}$

$$|F_n(t)| = |F(0) - \int_0^t F_n'(t)dt| \geq \frac{1}{2}.$$

Hence, $\log F_n(t)$ is an analytic function for $|t| \leq \frac{1}{12}$ and so, using the above bounds, we have

$$\frac{d^2}{dt^2} \log F_n(0) = \frac{1}{2\pi i} \oint_{|t|=1/12} \frac{\log F_n(t)}{t^3}dt \leq C.$$

Finally, using (2.25), we get

$$\int k_{n,\beta,h}(\lambda, \mu)\varphi(\lambda)\varphi(\mu)d\lambda d\mu = E_{\beta,h} \left\{ \left(\sum_{i=1}^n (\varphi(\lambda_i) - E_{\beta,h}\{\varphi(\lambda_i)\}) \right)^2 \right\} \leq 4Cw_n^2.$$

□

Proof of Theorem 2 Consider the functions V_t of the form

$$V_t(\lambda) = tV(\lambda) + (1-t)V_0(\lambda),$$

(2.27)

where $V_0(\lambda) = \lambda^2/2$. Let $Q_{n,\beta}(t)$ be defined by (1.4) with V replaced by V_t. Then evidently $Q_{n,\beta}(1) = Q_{n,\beta}$ and $Q_{n,\beta}(0)$ corresponds to the Gaussian case $V_0(\lambda) = \lambda^2/2$. Hence,

$$\frac{1}{n^2} \log Q_{n,\beta}(1) - \frac{1}{n^2} \log Q_{n,\beta}(0) = \frac{1}{n^2} \int_0^1 dt \frac{d}{dt} \log Q_{n,\beta}(t)$$

$$= \frac{\beta}{2} \int_0^1 dt \int d\lambda (V(\lambda) - V_0(\lambda))p_{1,\beta}(\lambda; t),$$

(2.28)

where $p_{1,\beta}(\lambda; t)$ is the first marginal density corresponding to V_t. Using (1.7) one can check that if we consider the distribution (1.3) with V replaced by V_t, then the limiting DOS ρ_t has the form

$$\rho_t(\lambda) = t\rho(\lambda) + (1-t)\rho_0(\lambda) = \frac{1}{2\pi} \sqrt{4 - \lambda^2} \left[tP(\lambda) + (1-t)P_0(\lambda) \right],$$

(2.29)

with X defined by (1.13) and $P_0(\lambda) = 1$. Hence, using (1.15) for the last integral in (2.28), we get

$$\frac{1}{n^2} \log Q_{n,\beta} = \frac{1}{n^2} \log Q_{n,\beta}(0) - \frac{\beta}{2}E_0 + \frac{\beta}{2}E_V$$

$$+ \frac{1}{n} \left(1 - \frac{\beta}{2} \right) \frac{1}{(2\pi i)^2} \oint_{\mathcal{L}_{2\lambda}} \frac{(V(z) - \sqrt{z}/2)dz}{X^{1/2}(z)} \oint_{\mathcal{L}_{2\lambda}} g_t(\zeta)d\zeta + O(n^{-2}),$$

where E_V is defined by (1.19), P_t and g_t are defined in (1.20) and $E_0 = -\frac{3}{4}$ (see, e.g., [12]). □
3 Bulk universality for orthogonal and symplectic ensembles

In a remarkable paper [14], Tracy and Widom showed how to express the functions $S_{n,\beta}$ that appear in the definitions (1.21), (1.22) in terms of orthogonal polynomials defined by (1.10) – (1.11). Set $\psi^{(n)}_j := p_j^{(n)} \sqrt{w^{(n)}}$, $j \geq 0$. Then the system $\{\psi^{(n)}_j\}_{j \geq 0}$ defines an orthogonal basis in $L^2(\mathbb{R})$ with respect to the standard inner product $(f, g) := \int_{\mathbb{R}} f(\lambda)g(\lambda)\,d\lambda$. Moreover, they satisfy the recursion relations

$$\lambda \psi^{(n)}_k(\lambda) = a_k^{(n)} \psi^{(n)}_{k+1}(\lambda) + b_k^{(n)} \psi^{(n)}_k(\lambda) + a_k^{(n)} \psi^{(n)}_{k-1}(\lambda),$$

which define a semi-infinite Jacobi matrix $J^{(n)}$. It is known (see, e.g. [13]) that

$$|a_k^{(n)}| \leq C, \quad |b_k^{(n)}| \leq C, \quad |n - k| \leq \varepsilon n.$$ \hfill (3.1)

In order to state the formulae for $S_{n,\beta}$ we need to introduce more notation. Let $D^{(n)}_\infty$ and $M^{(n)}_\infty$ be semi-infinite matrices that correspond to the differentiation operator and to some integration operator respectively.

$$D^{(n)}_\infty := \left(\begin{pmatrix} \psi^{(n)}_j \\ \psi^{(n)}_k \end{pmatrix} \right)_{j,k \geq 0},$$

$$M^{(n)}_\infty := \left(\epsilon \psi^{(n)}_j, \psi^{(n)}_k \right)_{j,k \geq 0},$$

with $(\epsilon f)(\lambda) := \int_{\mathbb{R}} \epsilon(\lambda - \mu)f(\mu)\,d\mu$.

Both matrices $D^{(n)}_\infty$ and $M^{(n)}_\infty$ are skew-symmetric. Using in addition that for $j < k$

$$(D^{(n)}_\infty)_{jk} = \int_{\mathbb{R}} \left((p_j^{(n)}(\lambda))' - \frac{n}{2} V'(|\lambda|) p_j^{(n)}(\lambda) \right) p_k^{(n)}(\lambda) w^{(n)}(\lambda) d\lambda$$

$$= \int_{\mathbb{R}} V'(\lambda) p_j^{(n)}(\lambda) p_k^{(n)}(\lambda) w^{(n)}(\lambda) d\lambda = \frac{n}{2} V'(J^{(n)})_{jk}$$

by orthogonality and the spectral theorem, we see $(D^{(n)}_\infty)_{j,k} = 0$ for $|j - k| \geq 2m$ and

$$|(D^{(n)}_\infty)_{j,k}| \leq nC, \quad |j - n|, |k - n| \leq \varepsilon n.$$

In particular, we may write

$$(\psi^{(n)}_j)' = \sum_{|k-j| < 2m} (D^{(n)}_\infty)_{jk} \psi^{(n)}_k$$

as a finite sum. Since $\epsilon(\psi^{(n)}_j)' = \psi^{(n)}_j$ we have for any $j, l \geq 0$ that

$$\delta_{jl} = \epsilon(\psi^{(n)}_j)', \psi_l) = \sum_{|k-j|<2m} (D^{(n)}_\infty)_{jk} (M^{(n)}_\infty)_{kl}.$$ \hfill (3.2)

This relation together with the skew-symmetry of $M^{(n)}_\infty$ and $D^{(n)}_\infty$ proves

$$D^{(n)}_\infty M^{(n)}_\infty = 1 = M^{(n)}_\infty D^{(n)}_\infty.$$ \hfill (3.3)

Next we denote by $M^{(n)}_n$, $D^{(n)}_n$ the principal $n \times n$ submatrices of $M^{(n)}_\infty$ and $D^{(n)}_\infty$, i.e.

$$M^{(n)}_n := ((M^{(n)}_\infty)_{jk})_{0 \leq j,k \leq n-1} \quad D^{(n)}_n := ((D^{(n)}_\infty)_{jk})_{0 \leq j,k \leq n-1}.$$
The formula of Tracy-Widom for $S_{n,\beta}$ now reads

\[S_{n,1}(\lambda, \mu) = -\sum_{j,k=0}^{n-1} \psi_j^{(n)}(\lambda)(M_n^{(n)})^{-1}_{jk}(\epsilon \psi_k^{(n)})(\mu) \] (3.3)

\[S_{n/2,4}(\lambda, \mu) = -\sum_{j,k=0}^{n-1} (\psi_j^{(n)})'(\lambda)(D_n^{(n)})^{-1}_{jk}\psi_k^{(n)}(\mu) \] (3.4)

As a by product of the calculation in [19] one also obtains relations between the partition functions $Q_{n,\beta}$ and the determinants of $M_n^{(n)}$ and $D_n^{(n)}$.

\[\det M_n^{(n)} = \left(\frac{Q_{n,1}\Gamma_n}{n!2^{n/2}} \right)^2, \quad \det D_n^{(n)} = \left(\frac{Q_{n/2,4}\Gamma_n}{(n/2)!2^{n/2}} \right)^2, \]

where $\Gamma_n := \prod_{j=0}^{n-1} \gamma_j^{(n)}$ and $\gamma_j^{(n)}$ is the leading coefficient of $p_j^{(n)}$. It is also known (see [12]) that $Q_{n,2} = \Gamma_n^2/n!$ and we arrive at

\[\det(D_n^{(n)} M_n^{(n)}) = \left(\frac{Q_{n,1}Q_{n/2,4}}{Q_{n,2}(n/2)!2^{n}} \right)^2. \]

Since $D_\infty^{(n)} M_\infty^{(n)} = 1$ and $(D_\infty^{(n)})_{jk} = 0$ for $|j - k| > 2m - 1$ we have $D_n^{(n)} M_n^{(n)} = 1 + \Delta_n$ with Δ_n being zero except for the bottom $2m - 1$ rows. Define T_n to be the $(2m - 1) \times (2m - 1)$ block in the bottom right corner of $D_n^{(n)} M_n^{(n)}$, i.e.

\[(T_n)_{jk} := (D_n^{(n)} M_n^{(n)})_{n-2m+j,n-2m+k}, \quad 1 \leq j, k \leq 2m - 1. \]

Then we have that $\det(T_n)$ equals $\det(M_n^{(n)} D_n^{(n)})$ and we arrive at a formula, first observed by Stojanovic in [18]:

\[\det(T_n) = \left(\frac{Q_{n,1}Q_{n/2,4}}{Q_{n,2}(n/2)!2^{n}} \right)^2. \] (3.5)

Since $D_\infty^{(n)} M_\infty^{(n)}$ equals 1 up to the matrix Δ_n of rank $2m - 1$ (independent of n) it is conceivable that one may express $(M_n^{(n)})^{-1}$ and $(D_n^{(n)})^{-1}$ that appear in (3.3), (3.4) by $D_n^{(n)}$ and $B_n^{(n)}$ respectively up to some correction terms that involves the inverse of T_n^{-1}. Using this idea Widom provided in [20] a useful formula for $S_{n,\beta}$ that was later refined in [7]. In order to present this formula introduce some more notation:

\[\Phi_1^{(n)} := (\psi_{n-2m+1}^{(n)}, \psi_{n-2m+2}^{(n)}, \ldots, \psi_{n-1}^{(n)})^T, \]

\[\Phi_2^{(n)} := (\psi_n^{(n)}, \psi_{n+1}^{(n)}, \ldots, \psi_{n+2m-2}^{(n)})^T \]

and

\[M_{rs} := (\epsilon \Phi_r^{(n)}, \Phi_s^{(n)})^T, \quad D_{rs} := ((\Phi_r^{(n)})', (\Phi_s^{(n)})^T), \quad 1 \leq r, s \leq 2 \]

define some $(2m - 1) \times (2m - 1)$ submatrices of $M_n^{(n)}$ and $D_n^{(n)}$. Observe that $M_\infty^{(n)} D_\infty^{(n)} = 1$ together with $(D_\infty^{(n)})_{jk} = 0$ for $|j - k| \geq 2m$ implies

\[T_n = 1 - D_{12}M_{21}. \]
Finally we denote by $K_n(\lambda, \mu) := \sum_{j=0}^{n-1} \psi_j^{(n)}(\lambda)\psi_j^{(n)}(\mu)$ the reproducing kernel. We then have
\[S_{n,1}(\lambda, \mu) = K_n(\lambda, \mu) + \Phi_1(\lambda)^T D_{12} \epsilon \Phi_2(\mu) - \Phi_1(\lambda)^T G \epsilon \Phi_1(\mu), \]
\[G := D_{12} M_{22}(1 - D_{21} M_{12})^{-1} D_{21} \]
\[S_{n/2,4}(\lambda, \mu) = K_n(\lambda, \mu) + \Phi_2(\lambda)^T D_{12} \epsilon \Phi_1(\mu) - \Phi_2(\lambda)^T G \epsilon \Phi_2(\mu), \]
\[G := -D_{21}(1 - M_{12} D_{21})^{-1} M_{11} D_{12} \]
Since $S_{n,\beta}(\lambda, \mu) = -S_{n,\beta}(\mu, \lambda)$ one has for even n
\[(\epsilon S_{n,1})(\lambda, \mu) = -\int_{\lambda}^{\mu} S_{n,1}(t, \mu) \, dt, \quad (\epsilon S_{n/2,4})(\lambda, \mu) = -\int_{\lambda}^{\mu} S_{n/2,4}(t, \mu) \, dt. \]
Using this representation in the 21-entry of K_n,β together with $\det T_n = \det(1 - D_{12} M_{12}) = \det(1 - D_{21} M_{21})$ its straightforward to see that Theorem 3 follows from the following Lemma.

Lemma 2 Given any compact set $K \subset (a, b)$ there exists a $C > 0$ such that for all $n \geq 2m$ and all $j, k \in \{n - 2m + 1, \ldots, n + 2m - 2\}$ one has
\[(a) \sup_{x \in K} |\psi_j^{(n)}(\lambda)| \leq \frac{C}{\sqrt{n}}; \quad (b) \quad |(M_{\infty}^{(n)})_{jk}| \leq \frac{C}{n}; \quad (c) \quad |\log \det(T_n)| \leq C. \]

Statements (a) and (b) will be derived from the asymptotics of the orthogonal polynomials in Appendix 4. We now prove statement (c) using Theorem 1.

Consider the functions V_t defined in (2.27) Then, as it was mentioned above (see the proof of Theorem 2) the limiting equilibrium density ρ_t has the form (2.29). Hence, for any $t \in [0, 1]$ V_t satisfies conditions C1-C3 and if we introduce the matrix $T_n(t)$ by the same way as above for the potential V_t, then $T_n(0)$ corresponds to the GOE and GSE. Consider the function
\[L(t) = \log \det T_n(t). \]
To prove that $|L(1)| \leq C$ it is enough to prove that
\[|L(0)| \leq C, \quad |L(t)| \leq C, \quad t \in [0, 1] \]
(3.7)
The first inequality here follows from the results of [19]. To prove the second inequality we use (3.5) for V replaced by V_t. Then we get
\[L'(t) = n^2 \int \Delta V(\lambda) p_{1,4,t}^{(n/2)}(\lambda) d\lambda + n^2 \int \Delta V(\lambda) p_{1,1,t}^{(n)}(\lambda) d\lambda - 2n^2 \int \Delta V(\lambda) p_{1,2,t}^{(n)}(\lambda) d\lambda. \]
It is easy to see that
\[\lim_{n \to \infty} p_{1,4,t}^{(n/2)} = \lim_{n \to \infty} p_{1,1,t}^{(n)} = \lim_{n \to \infty} p_{1,2,t}^{(n)} = \rho_t(\lambda) \]
with ρ_t defined by (2.29). Hence, using (1.15), we obtain that the first and the second terms of (1.15) give zero contributions in $L'(t)$, and therefore
\[L'(t) = 2(r_{n/2,4,t}(\Delta V) + r_{n,1,t}(\Delta V) - r_{n,2,t}(\Delta V)). \]
But, according to Theorem 1, all terms here are bounded uniformly in n. Thus, we have proved the second inequality in (3.7) and so statement (c) of Lemma 2.

□
4 Appendix: uniform bounds for \((M_{\infty}^{(n)})_{ij}\)

Set

\[
\delta_n = n^{-2/3 + \kappa}, \quad 0 < \kappa < 1/3. \tag{4.1}
\]

Then, according to [3], we have

\[
\psi_n^{(\pm)}(\lambda) = \frac{\cos nF_n(\lambda)}{(4 - \lambda^2)^{1/4}} (1 + O(n^{-1})), \quad |\lambda| \leq 2 - \delta_n;
\]

\[
\psi_{n-1}^{(\pm)}(\lambda) = \frac{\cos nF_{n-1}(\lambda)}{(4 - \lambda^2)^{1/4}} (1 + O(n^{-1})), \quad |\lambda| \leq 2 - \delta_n;
\]

\[
\psi_n^{(\pm)}(\lambda) = n^{1/6}B_{11}^{(\pm)}Ai\left(\pm n^{2/3}\Phi_{\pm}(\lambda + 2)\right) (1 + O(\|\lambda + 2\|)) + \int \frac{P(\lambda)\sqrt{4 - \lambda^2}d\lambda + \frac{1}{n} \arccos(\lambda/2)}{n} \quad F_{n-1}(\lambda) = F_n(\lambda) - \frac{2}{n} \arccos(\lambda/2) \tag{4.3}
\]

with \(P\) defined in \((1.14)\). Functions \(\Phi_{\pm}(\lambda)\) in \((4.2)\) are analytic in some neighborhood of 0 and such that \(\Phi_{\pm}(\lambda) = a_{\pm} x + O(x^2)\) with some positive \(a_{\pm}\).

Denote

\[
A(\lambda) = \sin nF_n(\lambda) \frac{1}{n}|_{|\lambda| \leq 2 - \delta_n} + \frac{\sin nF_n(2 - \delta_n)}{n} \frac{1}{n}|_{|\lambda - 2| \leq \delta_n} + \frac{\sin nF_n(-2 + \delta_n)}{n} \frac{1}{n}|_{|\lambda + 2| \leq \delta_n} - n^{-1/2} \Psi \left(n^{2/3}\Phi_+(\lambda - 2)\right) - \Psi \left(n^{2/3}\Phi_+(-\delta_n)\right) \frac{1}{n}|_{|\lambda - 2| \leq \delta_n}.
\]

\[
B(\lambda) = \frac{1}{F_n(\lambda)X^{1/4}(\lambda)} \frac{1}{n}|_{|\lambda| \leq 2 - \delta_n} + \frac{B^{(+)\pm}_{11}}{\Phi_+(\lambda - 2)} \frac{1}{n}|_{|\lambda - 2| \leq \delta_n} + \frac{B^{(-)\pm}_{11}}{\Phi_-(\lambda + 2)} \frac{1}{n}|_{|\lambda + 2| \leq \delta_n}
\]

with

\[
\Psi(x) := \int_{-\infty}^{x} Ai(t)dt. \tag{4.5}
\]

Proposition 1 Under conditions of C1-C3 for any smooth function \(f\) we have uniformly in \([-\delta_n - 2, \delta_n + 2]\]

\[
\epsilon(f\psi_n^{(\pm)})(\lambda) = A(\lambda)B(\lambda)f(\lambda) + \epsilon r_n(\lambda) + O(n^{-1}) + 1|_{|\lambda + 2| \leq \delta_n}O(n^{-5/6}), \tag{4.6}
\]

where

\[
\frac{1}{4} + \frac{2\delta_n + 1}{2-\delta_n} |r_n(\lambda)|d\lambda \leq Cn^{-1/2-3\kappa/4}.
\]

Similar representation is valid for \(\epsilon(f\psi_n^{(\pm)}\psi_{n-1})\) if we replace in \((4.3)\) \(F_n\) by \(F_{n-1}\) and \(B^{(+)\pm}_{11}\) by \(B^{(+)\pm}_{21}\). Moreover, it follows from \((4.6)\) that

\[
|\epsilon(f\psi_n^{(\pm)})(\lambda)| \leq Cn^{-1/2}, \quad |\epsilon(f\psi_{n-1})(\lambda)| \leq Cn^{-1/2}. \tag{4.7}
\]

Proof. We use the following simple relation, valid for any continuous piecewise differentiable functions A, f, and any piecewise differentiable B, if $A(\lambda)B(\lambda)f(\lambda) \to 0$, as $\lambda \to \pm \infty$:

$$
\epsilon(A^\prime B f)(\lambda) = A(\lambda)B(\lambda)f(\lambda) - \epsilon(A B f')(\lambda),
$$

where $(B f)'$ may contain δ-functions at the points of jumps of B. By the choice of A, B (cf. (4.1) and (4.2)) $\epsilon(A^\prime B f)$ corresponds to the principal part of $\epsilon(f \psi_n(\lambda))$. The terms $O(n^{-1})$ and $1_{\lambda \pm 2} \leq \delta_n O(n^{-5/6})$ in (4.6) appear because of the integrals of $O(n^{-1})$ in the second line of (4.2) and the terms in the forth line of (4.2) respectively. Hence we need only to prove the bound for $r_n = A(\lambda)(B f)'$. Observe that

$$
\int |r_n(\lambda)| d\lambda \leq \frac{C}{n^{1/2}} \left(\int_{2-\delta_n}^{2+\delta_n} + \int_{-2-\delta_n}^{-2+\delta_n} \right) |(B f)'(\lambda)| d\lambda
$$

where $\psi^{(n)}(\lambda) = f_{0j}(\lambda)\psi^{(n)}(\lambda) + f_{1j}(\lambda)\psi^{(n)}(\lambda)$, where f_{0j} and f_{1j} are polynomials of degree at most $|j|$. Note that since it is known that $a_k^{(n)}$ and $b_k^{(n)}$ for $k - n = o(n)$ are bounded uniformly in n, f_{0j} and f_{1j} have coefficients, bounded uniformly in n. Hence for our purposes it is enough to estimate

$$
I_1 := (f_{1j}\psi^{(n)}_{n-1} , \epsilon(f_{0k}\psi^{(n)}_{n})) , I_2 := (f_{1j}\psi^{(n)}_{n-1} , \epsilon(f_{1k}\psi^{(n)}_{n-1})) , I_3 := (f_{0j}\psi^{(n)}_{n} , \epsilon(f_{0k}\psi^{(n)}_{n})).
$$

(4.8)

It follows from Proposition \square that

$$
I_1 = I_{11} + I_{12} + I_{13} + (f_{1j}\psi^{(n)}_{n-1} , e_r n) + O(n^{-1}),
$$

where

$$
I_{11} = n^{-1} \int_{2-\delta_n}^{2+\delta_n} f_{0j}(\lambda)f_{1k}(\lambda) \sin nF_n(\lambda) \cos nF_{n-1}(\lambda) d\lambda,
$$

$$
I_{12} = n^{-1/3} B_{11}^{(+)} B_{21}^{(-)} \int_{2-\delta_n}^{2+\delta_n} \left(\Psi n^{2/3} F_+ (\lambda - 2) - \Psi n^{2/3} F_+ (-\delta_n) \right) \frac{Ai n^{2/3} F_+ (\lambda - 2)}{n^{2/3} F_+ (\lambda - 2)} f_{0j}(\lambda)f_{1k}(\lambda) d\lambda,
$$

and I_{13} is the integral similar to I_{12} for the region $|\lambda + 2| \leq \delta_n$. It is easy to see that

$$
I_{12} = B_{11}^{(+)} B_{21}^{(+)} \frac{f_{0j}(\lambda)f_{1k}(\lambda)}{2n(F_+(0))^2} (1 + o(1)),
$$

$$
I_{13} = B_{11}^{(-)} B_{21}^{(-)} \frac{f_{0j}(\lambda)f_{1k}(\lambda)}{2n(F_+(0))^2} (1 + o(1)).
$$

Moreover, using the bound for r_n from (4.6) and (4.7), we get

$$
(f_{1j}\psi^{(n)}_{n-1} , e_r n) = -(\epsilon(f_{1j}\psi^{(n)}_{n-1} , r_n)) \leq \int |\epsilon(f_{1j}\psi^{(n)}_{n-1})| |r_n| d\lambda = O(n^{-1-3\epsilon/4}).
$$
Hence we are left to find the bound for I_{11}.

$$I_{11} = (2n)^{-1} \int_{-2+\delta_n}^{2-\delta_n} f_0j(\lambda)f_{1k}(\lambda) \sin n(F_n(\lambda) - F_{n-1}(\lambda)) \frac{d\lambda}{F_n'(\lambda)(4 - \lambda^2)^{1/2}}$$

$+(2n)^{-1} \int_{-2+\delta_n}^{2-\delta_n} f_0j(\lambda)f_{1k}(\lambda) \sin n(F_n(\lambda) + F_{n-1}(\lambda)) \frac{d\lambda}{F_n'(\lambda)(4 - \lambda^2)^{1/2}} = I_1' + I_1''$

By the definition of F_n and F_{n-1} (4.3), we obtain

$$I_1' = \frac{1 + o(1)}{2n} \int_{-2}^{2} \frac{f_0j(\lambda)f_{1k}(\lambda)}{P(\lambda)(4 - \lambda^2)^{1/2}} d\lambda.$$

Moreover, integrating by parts one can get easily that $I_{11}'' = O(n^{-2}\delta^{-3/2}) = O(n^{-1-3\kappa/2})$.

The other two integrals from (4.8) can be estimated similarly.

\[\square\]

5 Appendix: proof of the bounds (2.19)

Let us introduce a function H which we call Hamiltonian to stress the analogy with statistical mechanics.

$$H(\Lambda) = -\sum_{i=1}^{n} (V(\lambda_i) + n^{-1}h(\lambda_i)) + 2 \sum_{1 \leq i < j \leq n} \log |\lambda_i - \lambda_j|, \quad \Lambda = (\lambda_1, \ldots, \lambda_n).$$

It is evident that for any continuous $f(\lambda_1, \ldots, \lambda_k)$

$$\int f(\lambda_1, \ldots, \lambda_k)p^{(n)}_{k,\beta,h}(\lambda_1, \ldots, \lambda_k)d\lambda_1 \ldots d\lambda_k = \frac{\int f(\lambda_1, \ldots, \lambda_k)e^{n\beta H(\Lambda)}d\Lambda}{\int e^{n\beta H(\Lambda)}d\Lambda} = \langle f \rangle_{\beta H}$$

Moreover we introduce the ”approximating” Hamiltonian, depending on a functional parameter $m : \text{supp } m \subset [-2, 2]$

$$H_a(\Lambda; m) = \sum_{i=1}^{n} v_n(\lambda_i; m) + (n - 1)\mathcal{L}[m, m].$$

Here

$$v_n(\lambda; m) = -V(\lambda) - \frac{1}{n}h(\lambda) + 2\frac{n-1}{n}\mathcal{L}(\lambda; m), \quad (5.1)$$

$$\mathcal{L}(\lambda; m) = \int \log |\lambda - \mu|m(\mu)d\mu,$$

$$\mathcal{L}[m, m] = \int \log |\lambda - \mu|^{-1}m(\lambda)m(\mu)d\lambda d\mu.$$

By the Jensen inequality for any two real functions $\mathcal{H}_1(\Lambda), \mathcal{H}_2(\Lambda)$ we have

$$\frac{\int e^{n\beta \mathcal{H}_1(\Lambda)/2}d\Lambda}{\int e^{n\beta \mathcal{H}_2(\Lambda)/2}d\Lambda} \geq e^{n\beta/2(\mathcal{H}_1 - \mathcal{H}_2)_{\beta \mathcal{H}_2}}, \quad \frac{\int e^{n\beta \mathcal{H}_2(\Lambda)/2}d\Lambda}{\int e^{n\beta \mathcal{H}_1(\Lambda)/2}d\Lambda} \geq e^{n\beta/2(\mathcal{H}_2 - \mathcal{H}_1)_{\beta \mathcal{H}_2}}$$

where we denote $\langle \ldots \rangle_{\beta \mathcal{H}_5} = \int (\ldots)e^{n\beta \mathcal{H}_5(\Lambda)/2}d\Lambda/\int e^{n\beta \mathcal{H}_5(\Lambda)/2}d\Lambda$ ($\delta = 1, 2$). Then we get

$$\langle \mathcal{H}_2 - \mathcal{H}_1 \rangle_{\beta \mathcal{H}_2} \leq \langle \mathcal{H}_2 - \mathcal{H}_1 \rangle_{\beta \mathcal{H}_2}.$$
Taking here \(H_1 = H, \ H_2 = H_a \), we obtain
\[
R[m] := \frac{\int (H_a - H)e^{-\beta nH/2}d\Lambda}{(n-1)\int e^{-\beta nH/2}d\Lambda} \leq \frac{\int (H_a - H)e^{-\beta nH_a(\Lambda;m)/2}d\Lambda}{(n-1)\int e^{-\beta nH_a(\Lambda;m)/2}d\Lambda} =: R_a[m], \tag{5.2}
\]

Since \(H \) and \(H_a \) are symmetric, we can rewrite the l.h.s. of (5.2) as
\[
R[m] = \int \log \left| \frac{1}{\lambda - \mu} \right| p_{2,\beta,h}^{(n)}(\lambda,\mu) - p_{1,\beta,h}^{(n)}(\lambda)p_{1,\beta,h}^{(n)}(\mu) \right) d\lambda d\mu + \mathcal{L}[p_{1,\beta,h}^{(n)} - m, p_{1,\beta,h}^{(n)} - m], \tag{5.3}
\]
where \(p_{1,\beta,h}^{(n)} \) and \(p_{2,\beta,h}^{(n)} \) are defined by (1.6) if we replace \(V \) by \(V_h \). To obtain the expression for the r.h.s. of (5.2) we need to replace \(p_{2,\beta}^{(n)}(\lambda) \) and \(p_{2,\beta}^{(n)}(\lambda,\mu) \) in (5.3) by \(p_{1,\beta,h}^{(n,a)}(\lambda;m) \) and \(p_{1,\beta,h}^{(n,a)}(\lambda;m)p_{1,\beta,h}^{(n,a)}(\mu;m) \), correlation functions of the approximating Hamiltonian (5), where
\[
p_{1,\beta,h}^{(n,a)}(\lambda;m) = e^{\beta n v_n(\lambda,m)/2} \left(\int d\lambda e^{\beta n v_n(\lambda,m)/2} \right)^{-1}. \tag{5.4}
\]
This yields:
\[
R_a[m] = \mathcal{L}[p_{1,\beta,h}^{(n,a)} - m, p_{1,\beta,h}^{(n,a)} - m], \tag{5.5}
\]
Now let us choose the function \(m \). Set
\[
m_n(\lambda) = \frac{n}{n-1} \left(\rho(\lambda) + \frac{1}{\beta_n} \nu_n(\lambda) \right) 1_{|\lambda| \leq 2}, \tag{5.6}
\]
where
\[
\nu_n(\lambda) = \frac{\sqrt{4 - \lambda^2}}{\pi} \int_{-2}^{2} d\mu \frac{((log \rho)^{\prime}_n(\mu) + \beta h^{\prime}(\mu)/2)}{(\mu - \lambda)\sqrt{4 - \mu^2}} + \frac{\alpha_n}{\pi \sqrt{4 - \lambda^2}} = \nu_n^{(1)}(\lambda) + \alpha_n v^{(0)}(\lambda), \tag{5.7}
\]
the function \((log \rho)_n(\lambda)\) coincides with \(log \rho(\lambda) \) on the interval \(\sigma_n = [-2 + n^{-1/2}, 2 - n^{-1/2}] \), and \((log \rho)_n(\lambda)\) is a linear function for \(\lambda \in \sigma \setminus \sigma_n \), chosen so that \((log \rho)_n(\lambda)\) has continuous derivative on \(\sigma \). The constant \(\alpha_n \) here is chosen to provide the condition
\[
\int m_n(\lambda)d\lambda = 1 \iff \alpha_n = -\beta - \int \nu_n^{(1)}(\lambda)d\lambda = -\beta - \int_{-2}^{2} \frac{((log \rho)^{\prime}_n(\mu) + \beta h^{\prime}(\mu)/2)\mu d\mu}{\sqrt{4 - \lambda^2}} = \mathcal{O}(n^{1/4}).
\]
Since \(\rho \) has the form (1.12), \(\nu_n^{(1)}(\lambda) \) is a sum of a bounded function which comes from \(P \) and of a negative function which comes from the integral of \((log \sqrt{4 - \lambda^2})^{\prime}\). Hence,
\[
\int |\nu_n^{(1)}(\lambda)|d\lambda \leq C - \int \nu_n^{(1)}(\lambda)d\lambda = \mathcal{O}(n^{1/4}). \tag{5.8}
\]
It is easy to see that \(\nu_n(\lambda) \) is chosen to satisfy the equation
\[
\int_{-2}^{2} \frac{\nu_n(\mu)d\mu}{\lambda - \mu} = (log \rho)^{\prime}_n(\lambda) + \beta h^{\prime}(\lambda)/2.
\]
Therefore
\[
\mathcal{L}(\lambda, \nu_n) = (log \rho)_n(\lambda) + \beta h(\lambda)/2 + r_n(\lambda), \tag{5.9}
\]
where for $|\lambda| \leq 2$ $r_n(\lambda) = C_n$ and C_n is a constant independent of λ, but depending on n. One can find C_n as

$$C_n = \mathcal{L}(0, \nu_n) - (\log \rho)_n(0) - \beta h(0)/2 = \int \log |\nu_n(\lambda)|d\lambda - (\log \rho)_n(0) - \beta h(0)/2 = O(n^{1/4})$$

(5.10)

(here we used that $\nu_n^{(1)}$ for $|\lambda| \leq 1$ is bounded uniformly in n). Hence,

$$\beta n\nu_n(\lambda, m_n)/2 = \beta n \left(\mathcal{L}(\lambda, \rho) - V(\lambda) \right)/2 + (\log \rho)_n(\lambda) + C_n, \quad |\lambda| \leq 2$$

(5.11)

Let us estimate \(d/d\lambda \mathcal{L}(\lambda, \nu_n^{(1)})\) for $\lambda > 2$. From (5.7) we get

$$\left| \frac{d}{d\lambda} \mathcal{L}(\lambda, \nu_n^{(1)}) \right| = \left| \int \frac{\nu_n^{(1)}(\lambda_1)d\lambda_1}{\lambda - \lambda_1} \right| = \frac{1}{\pi} \int_{-2}^{2} d\lambda_1 \int_{-2}^{2} d\mu \frac{\sqrt{4 - \lambda_1^2}}{(\lambda - \lambda_1)(\mu - \lambda_1)\sqrt{4 - \mu^2}} \left| (\log \rho)'_n(\mu) + \beta h'(\mu)/2 \right| \leq \sup \{(\log \rho)'_n(\mu) + \beta h'(\mu)/2\} \int_{-2}^{2} \frac{d\mu}{\lambda - \mu} \left(1 + \frac{\sqrt{\lambda^2 - 4}}{\lambda - \mu} \right) (4 - \mu^2)^{-1/2} \mu \leq n^{1/4} C_1.$$

Here we used the identities (valid for $\lambda \notin [-2, 2]$)

$$\frac{1}{\pi} \int_{-2}^{2} d\lambda_1 \frac{\sqrt{4 - \lambda_1^2}}{(\lambda - \lambda_1)(\mu - \lambda_1)} = 1 - \frac{\sqrt{\lambda^2 - 4}}{\lambda - \mu}, \quad \frac{1}{\pi} \int_{-2}^{2} \frac{(4 - \mu^2)^{-1/2}d\mu}{\lambda - \mu} = \frac{1}{\sqrt{\lambda^2 - 4}},$$

and the bound $\sup |(\log \rho)'_n(\mu)| \leq C n^{1/4}$. Therefore

$$\mathcal{L}(\lambda, \nu_n) - \mathcal{L}(2, \nu_n) \leq C_1 n^{1/4} |\lambda - 2| + C_2 n^{1/4} |\lambda - 2|^{1/2},$$

where the second term in the l.h.s. comes from $\alpha_n(\nu(0))$ in (5.6). Moreover, since under conditions C2, C3 there exists C^* such that

$$\mathcal{L}(\lambda, \rho) - V(\lambda) = C^*, \quad |\lambda| \leq 2, \quad \mathcal{L}(\lambda, \rho) - V(\lambda) - C^* \leq -C_0 |\lambda^2 - 4|^{3/2}, \quad |\lambda| \geq 2,$$

we obtain

$$n\beta \nu_n(\lambda, m_n)/2 - n\beta C^*/2 - C_n = (\log \rho)_n(1)_{|\lambda| \leq 2} + \tilde{r}_n(\lambda)(1)_{|\lambda| > 2}, \quad \tilde{r}_n(\lambda) \leq C n^{1/4} |\lambda - 2|^{1/2} - nC_0 |\lambda^2 - 4|^{3/2}.$$

Then we have

$$\int_{\mathbb{R}\setminus]\sigma} e^{n\beta \nu_n(\lambda, m_n)/2 - n\beta C^*/2 - C_n} d\lambda \leq 2 \int_{0}^{\infty} e^{C_n^{1/4} x^{1/2} - C_0 x^{3/2}} dx \leq C n^{-2/3}.$$

(5.12)

The last bound can be obtained by splitting the interval $[0, \infty)$ in two parts: $[0, n^{-2/3})$ and $[n^{-2/3}, \infty)$. Then in the first interval we used the fact that $\sup \{C n^{1/4} x^{1/2} - n x^{3/2}\} \leq c$ and in the second interval we used that this function is negative, its derivative is a negative decreasing function, bounded from above by $(-C n^{2/3})$.

For $|\lambda| \leq 2$, since $|e^{(\log \rho)_n} - \rho| \leq C n^{-1/4} 1_{\sigma\setminus\sigma_n}$ we get

$$\int_{-2}^{2} e^{(\log \rho)_n} d\lambda = \int_{\sigma_n} \rho(\lambda) d\lambda + O(n^{-3/4}) = 1 + O(n^{-3/4}).$$
Hence, using the above inequality and (5.12), we obtain
\[p_{1,\beta,h}^{(n,a)}(\lambda; m_n) = \frac{\rho(\lambda) + O(n^{-1/4}) 1_{\sigma|\sigma_n}}{1 + O(n^{-2/3})} = \rho(\lambda) + O(n^{-1/4}) 1_{\sigma|\sigma_n} + O(n^{-2/3}). \]

Thus
\[p_{1,\beta,h}^{(n,a)}(\lambda; m_n) - m_n = -\frac{\beta}{n} \nu_n(\lambda) + O(n^{-1/4}) 1_{\sigma|\sigma_n} + O(n^{-2/3}) \]
and
\[\mathcal{L}[p_{1,\beta,h}^{(n,a)}(\lambda; m_n) - m_n, p_{1,\beta,h}^{(n,a)}(\lambda; m_n) - m_n] \leq C \left(n^{-2} \mathcal{L}[\nu_n, \nu_n] + n^{-4/3} + n^{-3/2} \log n \right). \]

Moreover, using (5.9) and (5.8), we write
\[\mathcal{L}[\nu_n, \nu_n] = -\int \left((\log \rho)_n(\lambda) + \beta h(\lambda)/2 + C_n \right) \nu_n(\lambda) d\lambda \leq C n^{1/2}. \quad (5.13) \]

Finally we get
\[\mathcal{L}[p_{1,\beta,h}^{(n,a)}(\lambda; m_n) - m_n, p_{1,\beta,h}^{(n,a)}(\lambda; m_n) - m_n] \leq C n^{-4/3}. \]

The inequality combined with (5.2) gives us
\[\int \log \frac{1}{|\lambda - \mu|} \left(p_{2,\beta,h}^{(n)}(\lambda, \mu) - p_{1,\beta,h}^{(n)}(\lambda) p_{1,\beta,h}^{(n)}(\mu) \right) d\lambda d\mu \]
\[+ \mathcal{L}[p_{1,\beta,h}^{(n,a)} - m_n, p_{1,\beta,h}^{(n,a)} - m_n] \leq C n^{-4/3}. \quad (5.14) \]

Let us prove that
\[\int \log \frac{1}{|\lambda - \mu|} \left(p_{2,\beta,h}^{(n)}(\lambda, \mu) - p_{1,\beta,h}^{(n)}(\lambda) p_{1,\beta,h}^{(n)}(\mu) \right) d\lambda d\mu \geq -C \log n/n. \quad (5.15) \]

Introduce the function
\[l_n(\lambda) = \log |\lambda|^{-1} 1_{|\lambda| > n^{-\gamma}} + (\log n^7 + n^7 (n^{-7} - |\lambda|)) 1_{|\lambda| < n^{-\gamma}}. \]

It is easy to check that for any \(k \neq 0 \) the Fourier transform \(\hat{f}(k) \geq 0 \) and hence, for any positive operator \(K : L_2(\mathbb{R}) \rightarrow L_2(\mathbb{R}) \) and such that \(\int K(\lambda, \mu) d\lambda d\mu = 0 \), we have
\[\int l_n(\lambda - \mu) K(\lambda, \mu) d\lambda d\mu \geq 0 \quad (5.16) \]

From (1.6) it is easy to obtain that for any \(|x| \leq n^{-3}\)
\[|p_{1,\beta,h}^{(n)}(\lambda + x) - p_{1,\beta,h}^{(n)}(\lambda)| \leq C n^{-1} (\sup |V'| + \sup |h'|), \]
therefore
\[1 \geq \int p_{1,\beta,h}^{(n)}(\lambda) d\lambda \geq (1 - C n^{-1} (\sup |V'| + n^{-1} \sup |h'|)) \max p_{1,\beta,h}^{(n)}(\lambda) n^{-3}. \]

Hence
\[\max p_{1,\beta,h}^{(n)}(\lambda) \leq n^3 (1 + C n^{-1} (\sup |V'| + n^{-1} \sup |h'|)). \]

Similarly
\[\max p_{2,\beta,h}^{(n)}(\lambda, \mu) \leq n^6 (1 + C n^{-1} (\sup |V'| + n^{-1} \sup |h'|)). \]
Then, the above bounds and the inequality

\[\int | \log \frac{1}{|\lambda - \mu|} - l_n(\lambda - \mu)| d\lambda \leq C n^{-7} \log n, \]

imply

\[\int \log \frac{1}{|\lambda - \mu|} \left(p_{2,\beta,h}^{(n)}(\lambda, \mu) - p_{1,\beta,h}^{(n)}(\lambda) p_{1,\beta,h}^{(n)}(\mu) \right) d\lambda d\mu \]

\[\geq \int l_n(\lambda - \mu) \left(p_{2,\beta,h}^{(n)}(\lambda, \mu) - p_{1,\beta,h}^{(n)}(\lambda) p_{1,\beta,h}^{(n)}(\mu) \right) d\lambda d\mu - O(n^{-1} \log n) \]

\[\geq \int l_n(\lambda - \mu) \left(p_{2,\beta,h}^{(n)}(\lambda, \mu) - \frac{1}{n-1} p_{1,\beta,h}^{(n)}(\lambda) p_{1,\beta,h}^{(n)}(\mu) \right) d\lambda d\mu - O(n^{-1} \log n) \]

\[= \frac{1}{n(n-1)} \int l_n(\lambda - \mu) k_n(\lambda, \mu) d\lambda d\mu - \frac{1}{n-1} \int l_n(0) p_{1,\beta,h}^{(n)}(\lambda) d\lambda - O(n^{-1} \log n), \]

where the kernel \(k_n \) is defined by (5.5). Since \(k_n \) is positively definite, and \(\int k(\lambda, \mu) d\lambda d\mu = 0 \), we can use (5.16), and taking into account that \(l_n(0) = O(\log n) \), obtain (5.15).

Then

\[\left(L^{1/2} [p_{1,\beta,h}^{(n)}(\lambda - \rho, p_{1,\beta,h}^{(n)} - \rho) - L^{1/2} [m_n - \rho, m_n - \rho] \right)^2 \leq L [p_{1,\beta,h}^{(n)} - m_n, p_{1,\beta,h}^{(n)} - m_n] \leq C \log n / n \]

And since it follows from (5.6) and (5.13) that

\[L [m_n - \rho, m_n - \rho] \leq C n^{-4/3}, \]

we have

\[L [p_{1,\beta,h}^{(n)} - \rho, p_{1,\beta,h}^{(n)} - \rho] \leq C n^{-1} \log n. \] (5.17)

For any \(\Im z \neq y \), taking the Fourier transforms \(\hat{p}_{1,\beta,h}^{(n)} \) and \(\hat{\rho} \) of the functions \(p_{1,\beta,h}^{(n)} \) and \(\rho \), we get

\[\left| \int \frac{p_{1,\beta,h}^{(n)}(\lambda) - \rho(\lambda)}{\lambda - z} d\lambda \right| \leq 2 \int_0^\infty | p_{1,\beta,h}^{(n)}(k) - \hat{\rho}(k) | e^{-|k||y|} dk \]

\[\leq 2 \left(\int |k| e^{-|k||y|} dk \right)^{1/2} \left(\int |p_{1,\beta,h}^{(n)}(k) - \hat{\rho}(k)|^2 dk \right)^{1/2} = 2 |y|^{-1} L^{1/2} [p_{1,\beta,h}^{(n)} - \rho, p_{1,\beta,h}^{(n)} - \rho]. \]

Then (5.17) yields the second and the third bounds of (5.19). The first bound follows from Lemma 1.

References

[1] Albeverio, S., Pastur, L., Shcherbina, M.: On the 1/n expansion for some unitary invariant ensembles of random matrices. Commun. Math. Phys. 224, 271-305 (2001)

[2] Boutet de Monvel, A., Pastur L., Shcherbina M.: On the statistical mechanics approach in the random matrix theory. Integrated density of states. J. Stat. Phys. 79, 585-611 (1995)

[3] Claeys, T., Kuijlaars, A.B.J.: Universality of the double scaling limit in random matrix models, Comm. Pure Appl. Math. 59, 1573-1603 (2006)
[4] Deift, P., Kriecherbauer, T., McLaughlin, K., Venakides, S., Zhou, X.: Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory. Commun. Pure Appl. Math. 52, 1335-1425 (1999)

[5] Deift, P., Gioev, D.: Universality in random matrix theory for orthogonal and symplectic ensembles. Int. Math. Res. Papers. 2007, 004-116

[6] Deift, P., Gioev, D.: Universality at the edge of the spectrum for unitary, orthogonal, and symplectic ensembles of random matrices Comm. Pure Appl. Math. 60, 867-910 (2007)

[7] Deift, P., Gioev, D., Kriecherbauer, T., Vanlessen, M.: Universality for orthogonal and symplectic Laguerre-type ensembles. J.Stat.Phys 129, 949-1053 (2007)

[8] Ercolani N.M., McLaughlin K.D.: Asymptotics of the partition function for random matrices via Riemann-Hilbert techniques, and applications to graphical enumerations. Int.Math.Res.Not.2003:14 755-820(2003)

[9] McLaughlin K. T.-R., Miller P. D.: The dbar steepest descent method for orthogonal polynomials on the real line with varying weights [arXiv:0805.1980]

[10] Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151-204 (1998)

[11] Levin L., Lubinskky D.S.: Universality limits in the bulk for varying measures. Adv. Math. 219, 743-779 (2008)

[12] M.L.Mehta, M.L.: Random Matrices. New York: Academic Press, 1991

[13] Pastur, L., Shcherbina, M.: Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles. J. Stat. Phys. 86, 109-147 (1997)

[14] Pastur, L., Shcherbina, M.: Bulk universality and related properties of Hermitian matrix models. J.Stat.Phys. 130, 205-250 (2007)

[15] Shcherbina, M.: Double scaling limit for matrix models with non analytic potentials. J. Math. Phys. 49, 033501-033535 (2008)

[16] Shcherbina, M.: On Universality for Orthogonal Ensembles of Random Matrices Commun.Math.Phys. 285, 957-974, (2009)

[17] Shcherbina, M.: Edge Universality for Orthogonal Ensembles of Random Matrices J.Stat.Phys (2009)

[18] Stojanovic, A.: Universality in orthogonal and symplectic invariant matrix models with quartic potentials. Math.Phys.Anal.Geom. 3, 339-373 (2002)

[19] Tracy, C.A., Widom, H.: Correlation functions, cluster functions, and spacing distributions for random matrices. J.Stat. Phys. 92, 809-835 (1998)

[20] Widom, H.: On the relations between orthogonal, symplectic and unitary matrix models. J.Stat.Phys. 94, 347-363 (1999)