Interferon: Role in health, current trends and therapeutic potentials

Uchendu Ikenna Kingsley*, Ojiako Nkiruka Peace

Department of Medical Laboratory Science, College of Medicine, University of Nigeria, Enugu, Nigeria

ABSTRACT

This mini-review presents the current trends and topical issues on interferon. This article illustrates the theoretical background and details about interferon, its mechanism of action or roles in the prevention of microbial- or pathogenic-disease progression, types and classes, and their therapeutic potentials. All the reported applications have shown that interferon has found its application in gene manipulation and expression of gene products; immunological techniques, viral disease treatment and in the treatment of cancers.

Keywords: Interferon, cancers, cancer therapy, viral infection, viral disease treatment.

INTRODUCTION

When host cells are invaded by several pathogens, which are majorly viruses, bacteria, parasites, and tumour cells inclusive; host cells respond by releasing a group of signaling proteins, known as interferons (IFNs) 1-4. IFNs are considered to be cytokines which are protein molecules that induce cell-to-cell communication to trigger immunity against invading pathogens. Because of their ability to “interfere” with the process of viral replication and ultimately protecting cells from virus infections, they are named interferon. IFNs also act by: activating cells involved in immunity, such as macrophages and NK cells (natural killer cells); increasing host defenses via inducing foreign antigen uptake and increasing the expression of major histocompatibility complex (MHC) antigens 5. The production of IFNs and other cytokines cause certain symptoms associated with infections, such as muscle pain, fatigue, fever and flu-like “symptoms” 6. In humans and animals, over 20 distinct interferon genes and proteins have been identified 7.

Currently, interferons are categorized as cytokines under the group of interleukins and there are three known types of IFNs namely: alpha (α), beta (β), gamma (γ) and Lambda (λ) interferon. The IFN-α and IFN-β are classified under type I sub-class, whereas IFN-γ is classified under type II sub-class 8. The IFN-λ subtype is poorly understood at this time. After cells have been exposed to foreign antigens or agents, the cells are stimulated to release these IFNs, which then act as functionally modulating proteins, leading to events that protect against the invading agents. In order to obtain a complete antiviral effect, however, other proteins known as ‘effector’ proteins must be synthesized and released. Therefore, interferons are generally known as “inducer” molecules because they act on other proteins which trigger an antiviral and/or antiproliferative mechanism 9,10. To date interferons are characterized by three key features: antiviral action, immunomodulatory action and an antiproliferative action which have been recently reported 11, 12. Under certain conditions, because of the ability of some IFNs to block cells at a given phase of the cell cycle, investigation of their antitumour activity has become crucial 12.

TYPES OF INTERFERON

Alpha interferon

Alpha interferon, because it is produced by leukocytes, it is also named ‘leukocyte interferon’. It is coded for by 15 genes and 9 pseudogenes found on human chromosome 9 and murine chromosome 413. Each of these genes does not contain any intron (non-coding region) but only exons (DNA-coding region) 13. The production of IFN-α is influenced by the action of external agents such as tumour or eukaryotic cells, or by virus-infected cells; and one crucial point to note is that all these inducers trigger the production of IFN-α by lymphocytes and macrophages.

Beta Interferon

The β type (IFN-β) was the first interferon to be discovered in 1957 by Isaacs and Lindenmann 14. Isaacs and Lindenmann observed that the cells exposed to the dead viruses secreted a previously unknown substance which blocked future viral attack. IFN-β is also named ‘fibroblast
interferon’ because it is produced by fibroblasts and epithelial cells under the action of foreign nucleic acids like viruses or other types. Also, IFN-ß is coded by a gene docked on human chromosome 9. In this case, only one gene exists and again there are no introns, therefore the whole gene codes for the protein.

Gamma interferon

The gamma interferon (IFN-γ) belongs to a separate sub-class, called type II interferon that is named ‘immune interferon’. The IFN-γ is produced especially by lymphocytes (activated T cells); and it can promote macrophage activation, mediate antiviral and antibacterial immunity, enhance antigen presentation, orchestrate activation of the innate immune system, coordinate lymphocyte-endothelium interaction etc. IFN-γ, like IFN-ß, is also coded by a single gene which, however, is not docked on chromosome 9, but on chromosome 12. In addition, it contains 3 introns, which was not the case with The IFN-α and IFN-ß. These and other features resulted to allocating IFN-γ to a separate class which has different characteristics with respect to IFN-α and IFN-ß. Interestingly, another unique trait of IFN-γ is that it has unstable nature at an acidic pH and these are very important characteristics, especially as far as interferon-based therapy is concerned.

Lambda interferon

The lambda interferon (IFN-λ) is classified under the type III IFN. It is induced by viruses and other IFNs and displays potent antiviral activity against some virus infections in vivo. Acceptance of this classification is less universal than that of type I and type II, and unlike the other two, little is known of this class and lots of investigations are currently ongoing to properly understand it. The type III interferon group consists of four IFN-λ (lambda) molecules called IFN-λ1, IFN-λ2, IFN-λ3 (also known as IL29, IL28A and IL28B respectively), and IFN-λ4.

CLASSIFICATION

Type I interferon: Are produced in direct response to viral infection and comprise the products of the IFN-α multigene family, which are predominantly synthesized by leucocytes, and the product of the IFN-ß gene, which is synthesized by most cell types but particularly by fibroblasts.

Type II Interferon: Consists of the product of the IFN-γ gene and, rather than being induced directly by virus infection, is synthesized in response to the recognition of infected cells by activated T lymphocytes and natural killer (NK) cells.

Type III interferon: The type III interferons are structurally more closely related to the IL-10 family of proteins than either of the other IFN subtypes, but contribute to antiviral responses and induce activation of many of the same genes as the type I and II IFN molecules. This subtype is poorly understood at this time and has not been studied in graft-versus-host disease (GVHD) or graft-versus-leukemia (GVL) responses. Both type I interferons and IFN-γ play critical roles in GVHD and GVL.

MECHANISM OF ACTION OF INTERFERON

Figure 1: Mechanism of action of interferon: Role of interferon starts after an initial viral attack on target cells. Several cell types when infected with virus secrete interferon. The secreted interferon enters the interstitial fluid and blood and binds to interferon receptors. This induces synthesis of inhibitory proteins that inhibit progressive or subsequent viral attack and possible viral replication.
THERAPEUTIC APPLICATIONS AND FUNCTIONS OF INTERFERON

Antiviral activity

Significant successes have been achieved in the wide use of recombinant IFN-α forms in the treatment of chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and some forms of cancer. IFN-β treatment for multiple sclerosis is regularly used to limit exacerbations of the disease. IFN-γ has been approved for clinical use only in a rare congenital disorder and in chronic granulomatous disease.

Antiproliferative and antitumour activities

Currently, the antiproliferative action, together with its antitumour activity, is one major breakthrough concerning interferon function. It is known that IFN-α can act on T-cells causing the differentiation of the T-helper 1 cells, while at the same time inhibiting the growth of other lymphocytes. Similarly, IFN-α can act on NK cells and macrophages, thus enhancing their production of interferon and especially their production of interleukin 1 and their proliferation, thus increasing the number of circulating cells.

Because of their cell differentiation and growth regulatory properties, interferons have been used in attempts to treat neoplasms. Several forms of haematological cancers and solid tumours have been treated with interferons with some success.

Treatment of multiple sclerosis

Treatment of multiple sclerosis with IFN-β was initiated based on the immunomodulatory properties of the interferon. Well-controlled studies have demonstrated that intramuscular treatment with IFN-β results in a reduction in the annual rate of relapses of multiple sclerosis.

Signal transduction

To exert their first messenger activities, IFNs bind to specific membrane receptors. These receptors enable cells sense the external signal of IFN and then transfer it into the interior, so that the cell can produce what is known as interferon-inducible proteins. Just like the interferons, receptors are classified into two, namely the receptor for IFN-α and IFN-β on the one side and the receptor of IFN-γ on the other side.

The interferon receptors consist of two sub-units. These are transmembrane proteins with an extra- and cytoplasmic domain and an intra-cyttoplasmic domain displaying particular motifs that bind to proteins which make it possible for this external signal to be sensed within the cell. These receptors are grouped under the JAK proteins, which mainly comprise the tyrosine kinase proteins that can phosphorylate tyrosine residues.

The STAT proteins are what is known as interferon-induced signal transduction proteins. They act as signal transducers and also as transcription activators. Finally, another group of proteins playing a pivotal role in the interferon signal transduction is composed by the Interferon Regulatory Factors (IRFs), known to act as transcription factors but are still being studied to fully understand their functional roles or mechanisms.

SIDE EFFECTS OF INTERFERONS

Common side effects of Interferons are:
- Fever
- Fatigue
- Muscle pains
- Cardiorespiratory, bone marrow and liver toxicities.

CONCLUSION

Interferon is gaining significance based on clinical and laboratory results and the availability of improved molecular technology. Therapeutic application of interferon applications can be envisaged in all areas of biomedical sciences, including molecular biology techniques. Hence the usefulness of interferon continues to expand into the field of medicine, molecular biology, pharmaceutical medicine and biotechnology.

COMPETING INTERESTS STATEMENT

The authors declare no conflicts of interest.

REFERENCES

1. Marco Túlio R, Gomes, Daiane M, Cerqueira, Erika S, Químaras, Priscila C, Campos and Sergio C, Oliveira, Guanylate-binding proteins at the crossroad of non-canonical inflammation activation during bacterial infections. *Journal of Leukocyte Biology*. 2019; 106(3):559.
2. Kang S, Brown IM, Hwang S. Direct Antitumour Mechanisms of Interferon-Gamma. *Immune Network*. 2018; 18(5):e33.
3. Raftery N, Stevenson NJ. Advances in anti-viral immune defence: revealing the importance of the IFN JAK/STAT pathway. *Cellular Molecular Life Science*. 2017, 74(14):2525-2535.
4. Galani IE, Triantafyllia V, Eleftheriadou D, Koltsida O, Stavropoulos A, Manioudaki M, Thanos D, Doyle SE, Kotenko SV, Thanopoulou K, Andreou E. Interferon-α Mediates Non-redundant Front-Line Antiviral Protection against Influenza Virus Infection without Compromising Host Protection. *Immunity*. 2017 46(5):875-890.e6
5. Beuckelaer AD, Grooten J, Korer SD. Type I Interferons Modulate CD8+ T Cell Immunity to mRNA Vaccines. *Trend in Molecular Medicine*. 2017; 23(3):216-226.
6. Yang Y, Teng Y, Wang D, Li C, Qu Y, Guo J, Shi T, Bo W, Sun Z, Asakawa T. The clinical value of cytokines in chronic fatigue syndrome. *Journal of Translational Medicine*. 2019; 17:213.
7. Hoffmann HH, Schneider WM, Rice CM. Interferons and viruses: an evolutionary arms race of molecular interactions. *Trends in Immunology*. 2015; 36(1):124-138.
8. De Andrea M, Gariglio M, Gioia D, Landolfo S, Ravera R. The interferon system: an overview. *European Journal of Paediatric Neurology*. 2002; 6A(6):A41-58.
9. Ivashkiv LB, Kaboliolas GD. Overview of the biology of type I interferons. *Arthritis Research & Therapy*. 2010; 12(1):S1.
10. De Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. *Journal of Biological Chemistry*. 2007; 282(28):20053-20057.
11. Kursunel MA, Esendagli G. The untold story of IFN-γ in cancer biology. *Cytokine & Growth Factor Reviews*. 2016; 31:73-81.
12. Parker, B., Rauela, J., Hertzog, P. Antitumour actions of interferons: implications for cancer therapy. *Nature Reviews Cancer*. 2016; 16:31-144.
13. Sang V, Bergkamp J, Blecha F. Molecular evolution of the porcine type I interferon family: subtype-specific expression and antiviral activity. *PLoS One*. 2014; 9(11):e112378.
14. Isaacs A, Lindenmann J. Virus interference. I. The interferon. *Proceedings of the Royal Society B: Biological Sciences*. 1957; 147(927):258-267.
15. Lopušná K, Režuchová I, Betakova T, Skovranova L, Tomašková J, Lukáčiková L, Kabat P. Interferons lambda, new cytokines with antiviral activity. *Acta Viroligica*. 2013; 57(2):171-179.
16. Zaidi MR, Merlino G. The two faces of interferon-γ in cancer. *Clinical cancer research*. 2011; 17(19):6118-6124.
17. Tau G, Rothman P. Biologic functions of the IFN-gamma receptors. *Allergy*. 1999; 54(12):1233-1251.
18. Niedelnaer W, Gold DA, Rosowski EE, Sprokholt JK, Lim D, Arenas AF, Melo MB, Spooner E, Yahoo MB, Saeij JP. The
rhopyt proteins ROP18 and ROP5 mediate Toxoplasma gondii evasion of the mouse, but not the human, interferon-gamma response. *PLoS pathogens* 2012; 8(6):e1002794.

19. Kim K, Cho SK, Sestak A, Nanjou B, Kang C, Bae SC. Interferon-gamma gene polymorphisms associated with susceptibility to systemic lupus erythematosus. *Annals of the rheumatic diseases*. 2010; 69(6):1247-1250.

20. Ank N, West H, Bartholdy C, Eriksson K, Thomsen AR, Paludan SR. Lambda interferon (IFN-λ), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. *Journal of virology*. 2006; 80(9):4501-4509.

21. Vikej J. Novel interferons. *Nature immunology*. 2003; 4(1):8-9.

22. Markey KA, MacDonald KPA, Hill GR. Cytokines in graft-versus-host disease and graft-versus-leukemia. *Immune Biology of Allogeneic Hematopoietic Stem Cell Transplantation*. 2013; (2013):357-391.

23. Pawlotsky JM, Fiehl J, Zeuzem S, Hofnagel JH. From non-A, non-B hepatitis to hepatitis C virus cure. *Journal of hepatology*. 2015; 62(1):S87-99.

24. Zoulim F, Durantel D. Antiviral therapies and prospects for a cure of chronic hepatitis B. *Cold Spring Harbor perspectives in medicine*. 2015; 7(4):a012501.

25. Ely A, Arbuthnot P. Focusing prospects for the future of using gene therapy to treat infections with hepatitis B virus and hepatitis C virus. *Discovery medicine*. 2015; 20(109):137-143.

26. Reder AT, Fung X. How type 1 interferons work in multiple sclerosis and other diseases: some unexpected mechanisms. *Journal of Interferon and Cytokine Research*. 2014; 34(8):589-599.

27. Axell RC, Raman C, Steinman L. Interferon-β exacerbates Th17-mediated inflammatory disease. *Trends in immunology*. 2011; 32(6):272-277.

28. Killestein J, Polman CH. Determinants of interferon β efficacy in patients with multiple sclerosis. *Nature reviews Neurology*. 2011; 7(4):221-228.

29. Köhler MY, Camoquivy Y, van Leeuwen K, Khlc SS, Barlan I, Yılmaz M, Metin A, de Boer M, Avcular H, Patıroğlu T, Yıldıran Köker 2011; 7(4):221-228.

30. Pawlotsky JM, Fiehl J, Zeuzem S, Hofnagel JH. From non-A, non-B hepatitis to hepatitis C virus cure. *Journal of hepatology*. 2015; 62(1):S87-99.

31. Zoulim F, Durantel D. Antiviral therapies and prospects for a cure of chronic hepatitis B. *Cold Spring Harbor perspectives in medicine*. 2015; 7(4):a012501.

32. Ely A, Arbuthnot P. Focusing prospects for the future of using gene therapy to treat infections with hepatitis B virus and hepatitis C virus. *Discovery medicine*. 2015; 20(109):137-143.

33. Reder AT, Fung X. How type 1 interferons work in multiple sclerosis and other diseases: some unexpected mechanisms. *Journal of Interferon and Cytokine Research*. 2014; 34(8):589-599.

34. Axell RC, Raman C, Steinman L. Interferon-β exacerbates Th17-mediated inflammatory disease. *Trends in immunology*. 2011; 32(6):272-277.

35. Chiantore MV, Mangino G, Iuliano M, Zangrillo MS, De Lillis I, Vaccari G, Accardi R, Tommasino M, Fierucci G, Romeo G. IFN-β antiproliferative effect and miRNA regulation in Human Papilloma Virus E6- and E7-transformed keratinocytes. *Cytokine*. 2017; 89:235-238.

36. Müller L, Aigner P, Stolier D. Type I interferons and natural killer cell regulation in cancer. *Frontiers in immunology*. 2017; 8:304.

37. Padilla-Quirarte HO, Trejo-Moreno C, Fierros-Zarate G, Castañeda JC, Palma-Irizarry M, Hernández-Márquez E, Burguet-García AI, Peralta-Zaragoza O, Madrid-Vína M, Torres-Poveda K, Bermúdez-Morales VH. Interferon-Tau has antiproliferative effects, represses the expression of E6 and E7 oncogenes, induces apoptosis in cell Lines transformed with HPV16 and inhibits tumor growth in vivo. *Journal of Cancer*. 2016; 7(15):2231-2240.

38. Ningrum RA, Wismuwadhi PH, Santoso A, Herawati N. Antiproliferative activity of recombinant human interferon alpha2B on estrogen positive human breast cancer MCF-7 cell line. *Indonesian journal of Pharmacy*. 2015; 26(2):86.

39. Buttmann M, Rieckmann P. Interferon-β1b in multiple sclerosis. *Expert review of neurotherapeutics*. 2007; 7(3):227-239.

40. Maier K, Kuhnert AV, Taheri N, Sittler MB, Storch MK, Williams SK, Bähr M, Diem R. Effects of glatiramer acetate and interferon-β1a on neurodegeneration in a model of multiple sclerosis: a comparative study. *The American journal of pathology*. 2006; 169(4):1353-1364.

41. Linnroth V. The interferon beta therapies for treatment of relapsing-remitting multiple sclerosis: are they equally efficacious? A comparative review of open-label studies evaluating the efficacy, safety, or dosing of different interferon beta formulations alone or in combination. *Therapeutic Advances in Neurological Disorders*. 2011; 4(5):281-296.

42. Samuel CE. Interferons, interferon receptors, signal transducer and transcriptional activators, and interferon regulatory factors. *Journal of Biological Chemistry*. 2007; 282(28):20045-20051.

43. De Weerd NA, Nguyen T. The interferons and their receptors—distribution and regulation. *Immunology and cell biology*. 2012; 90(5):483-491.

44. Au-Yeung N, Mandhara R, Horvath CM. Transcriptional regulation by STAT1 and STAT2 in the interferon γ pathway. *Jk-stat. 2013; 2(3):e23931.

45. Silver-Morse L, Li WX. JAK-STAT in heterochromatin and genome stability. *Jk-stat. 2013; 2(3):e26090.

46. Zhao GN, Jiang DS, Li H. Interferon regulatory factors at the crossroads of immunology, metabolism, and disease. *Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease*. 2015; 1852(2):365-378.

47. Smith GL, Benfield CT, de Motes CM, Mazzon M, Ember SW, Ferguson BJ, Sumner RP. Vaccinia virus immune evasion: mechanisms, virulence and immunogenicity. *Journal of General Virology*. 2013; 94(11):2367-2392.

48. George PM, Badiger R, Alacawi W, Foster GR, Mitchell JA. Pharmacology and therapeutic potential of interferons. *Pharmacology & therapeutics*. 2012; 135(1):44-53.

49. Shlibinskaya MO, Lyakhov SA, Mazea AV, Andronati SA, Turov AV, Zholobak NM, Spivak NY. Synthesis, cytotoxicity, antiviral activity and interferon inducing ability of 6-(2-aminoethyl)-6H-indole [2, 3-b] quinoxalines. *European journal of medicinal chemistry*. 2010; 45(3):1237-1243.

50. Lin FC, Young HA. Interferons: success in anti-viral immunotherapy. *Cytokine & growth factor reviews*. 2014; 25(4):369-376.