Random Packings of Frictionless Particles

Corey S. O’Hern1,3, Stephen A. Langer2, Andrea J. Liu1, and Sidney. R. Nagel3

1 Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569
2 Information Technology Laboratory, NIST, Gaithersburg, MD 20899-8910
3 James Franck Institute, The University of Chicago, Chicago, IL 60637

(March 22, 2022)

We study random packings of frictionless particles at $T = 0$. The packing fraction where the pressure becomes nonzero is the same as the jamming threshold, where the static shear modulus becomes nonzero. The distribution of threshold packing fractions narrows and its peak approaches random close-packing as the system size increases. For packing fractions within the peak, there is no self-averaging, leading to exponential decay of the interparticle force distribution.

A system jams when it develops a yield stress or extremely long stress relaxation time in a disordered state. Different control parameters can be varied to induce jamming, such as the temperature T, the applied shear stress σ, or the packing fraction ϕ, as shown in the phase diagram inset to Fig. 1(a). Such a phase diagram might apply e.g. to supercooled liquids, granular materials, foams and suspensions. For the diagram to be useful, there should be a common physical origin for jamming independent of the control parameter varied. Previously, it was shown that a peak in the distribution of interparticle normal forces, $P(F)$, signifies the development of a yield stress in a variety of systems, implying that the jamming phase diagram is a useful concept.

There is a special point on the jamming phase diagram, marked J in Fig. 1(a), for repulsive, finite-range potentials. This point, at zero temperature and zero shear stress, represents the onset of jamming with increasing packing fraction. Static granular packings must necessarily lie near this point because they are effectively at $T = 0$ (the thermal energy is much smaller than the energy needed to lift a grain by its own diameter) and the particles are hard, so it is difficult to compress packings further into the jammed region. Experimentally, $P(F)$ for granular packings has a remarkably robust form; not only does it have a peak, but it also has an exponentially decreasing tail at large F. Numerous simulations find the same form for $P(F)$; the persistence of the exponential tail, independent of the potential used, is surprising.

In this letter, we examine configurations created by quenching systems from high temperature to $T = 0$ (and also $\sigma = 0$) near the onset of jamming (point J in the jamming diagram). We find that different configurations have different properties, even for arbitrarily large system sizes, so that self-averaging is not observed. However, the range of packing fractions over which self-averaging is not observed narrows with increasing system size. We will show that one consequence of non-self-averaging is an exponential decay of $P(F)$ at large F.

To create configurations near point J we start with random configurations (i.e. $T = \infty$) and, as with inherent structures, quench infinitely rapidly to $T = 0$ at fixed ϕ using conjugate gradient (CG) energy minimization.

81.05.Rm, 82.70.-y, 83.80.Fg

FIG. 1. (a) Pressure p vs. $\phi - \phi_c$, where ϕ_c is the threshold packing fraction for a given state. Circles (squares) correspond to $\alpha = 2(5/2)$ in 2D and diamonds (triangles) correspond to $\alpha = 2(5/2)$ in 3D and $N = 1024(512)$ in 2D(3D).

Inset: Jamming phase diagram showing onset of jamming at point J. (b) Shear stress G vs. $\phi - \phi_c$. The shear strain is applied in the x-direction, the strain gradient is in the y-direction, and the xy component of the stress tensor is measured. (c) Number of overlaps per particle $Z - Z_c$ vs. $\phi - \phi_c$.
We study 50 : 50 binary mixtures of N frictionless particles with a diameter ratio 1.4 that interact pairwise via repulsive potentials: \(v_{ab}(r) = (\epsilon/\alpha)(1 - r/\sigma_{ab})^\alpha \) for \(r < \sigma_{ab} \) and \(v_{ab}(r) = 0 \) for \(r > \sigma_{ab} \), where \(a, b \) label particles and \(\sigma_{ab} = (\sigma_a + \sigma_b)/2 \). We study harmonic \((\alpha = 2)\) and Hertzian \((\alpha = 5/2)\) potentials in 2D and 3D. The total potential energy is \(V = 0 \) if no particles overlap. Energy is measured in units of \(\epsilon \) and length in units of the small particle diameter \(\sigma_1 \).

We classify each final configuration as either overlapped \((V \neq 0)\) or non-overlapped \((V = 0)\). Overlapping configurations must have a nonzero pressure, \(p \), while non-overlapping ones have \(p = 0 \). Is a configuration that has \(p > 0 \) necessarily jammed with a zero-frequency shear modulus \(G > 0 \)? To answer this question, we study states close to overlap threshold as a function of packing fraction. We find the overlap threshold, \(\phi_c \), for each configuration by compressing a non-overlapped state while measuring \(p \). Throughout the compression, after each small increment in \(\phi (\delta\phi \leq 10^{-4}) \), we use CG to bring the state to the lowest energy attainable without crossing any barriers. (To check that no barriers were crossed, we reproduced our results using ten times smaller increments in \(\phi \).) This procedure allows us to measure zero-frequency properties of the system.

Different states have different values of the overlap threshold, \(\phi_c \). Nevertheless, when we plot pressure \(p \) versus \(\phi - \phi_c \) (Fig. 1(a)), the results for different configurations collapse on a single curve. This holds for both harmonic \((\alpha = 2)\) and Hertzian \((\alpha = 5/2)\) potentials in 2D and 3D. We find \(p = p_0(\phi - \phi_c)^\beta \), where \(p_0 \) is only weakly dependent on dimension and \(\beta = 1.0 \) for harmonic and \(\beta = 1.5 \) for Hertzian potentials, independent of dimension. This is consistent with previous results at larger \(\phi - \phi_c \).

To see if states with \(p > 0 \) are jammed, we calculate the shear modulus, \(G \), by applying a small step strain and measuring the infinite-time response by minimizing the energy using CG. The response is linear for sufficiently small strains. Fig. 1(b) shows that \(G = G_0(\phi - \phi_c)^\gamma \), where \(\gamma = 0.5 \) for \(\alpha = 2 \) and \(\gamma = 1.0 \) for \(\alpha = 5/2 \), in 2D and 3D. To our resolution, which is better than \(10^{-4} \), we find that \(G \) and \(p \) vanish at the same packing fraction \(\phi_c \). This implies that the onset of jamming, as defined in the first paragraph, coincides with the onset of overlap.

When a configuration jams at \(\phi_c \), the number of overlaps per particle, \(Z \), jumps from zero to a threshold value \(Z_c \). Above \(\phi_c \), \(Z \) increases as \(Z - Z_c = Z_0(\phi - \phi_c)^\zeta \), as shown in Fig. 1(c). For both harmonic and Hertzian potentials, we find \(\zeta = 0.5 \) in both 2D and 3D. (If there are no zero-energy modes, \(Z_c = 2d \) for frictionless spheres in \(d \) dimensions). Usually \(\approx 5\% \) of particles are “rattlers” that do not overlap with any neighbors. If we remove these, we find \(Z_c = 2d \).

By studying the onset of jamming in repulsive systems at \(T = 0 \), we have a criterion for whether a state is jammed or not (i.e. \(V > 0 \) or \(V = 0 \)). If there is a packing with \(V = 0 \), then it is an equilibrium configuration. The state that maintains \(V = 0 \) up to the highest \(\phi \) is therefore the one that, when compressed infinitesimally above this point, becomes the zero-temperature equivalent to the ideal glass. We have found that the properties shown in Fig. 1 depend only on \(\phi - \phi_c \). This suggests that this behavior is the same as for the ideal glass.

FIG. 2. (a) The probability \(f_j \) of finding a jammed state vs. \(\phi \) for \(\alpha = 2 \) in 3D and several system sizes, \(N \). (b) The probability distribution \(P_j(\phi_c) \) of finding a jamming threshold \(\phi_c \) for systems considered in (a). (c) Full-width at half-maximum \(w \) of \(P_j(\phi_c) \) vs. \(N \). (d) The deviation in peak position \(\phi_0 \) of \(P_j(\phi_c) \) from its asymptotic value \(\phi^* \) vs. \(N \). Data for (c) and (d) are for systems considered in Fig. 1 except \(\alpha = 5/2 \) in 2D.

Although Fig. 1 shows scaling behavior above \(\phi_c \), the value of \(\phi_c \) varies from state to state. How much can \(\phi_c \) vary? Our protocol, of starting with random configurations and quenching infinitely rapidly to \(T = 0 \), in principle, allow us to sample all of phase space. For each \(\phi \), we measure the fraction of initial states that lead to jammed states at \(T = 0 \). Fig. 2(a) shows the probability, \(f_j(\phi) \), of finding a jammed state for different system sizes in 3D for the harmonic potential. For each \(N \), we have differentiated \(f_j \) with respect to \(\phi \) to obtain the probability distribution \(P_j(\phi_c) \) of finding a jamming threshold of \(\phi_c \) (see Fig. 2(b)). System size has a large effect. For each \(N \), we characterize \(P_j(\phi_c) \) by its full width at half maximum, \(w \), and its peak position, \(\phi_0 \). Fig. 2(c) shows
that for $N > 10$, $w \propto N^{-\omega}$, where $\omega \approx 0.55$. Similarly, Fig. 2(d) shows that ϕ_0 approaches its asymptotic value ϕ^\ast as $\phi^\ast - \phi_0 \propto N^{-\theta}$, where $\theta \approx 0.7$ for 2D and $\theta \approx 0.5$ for 3D. We find $\phi^\ast = 0.842$ in 2D and $\phi^\ast = 0.648$ in 3D, close to well-known values of random close-packing [15].

For finite N, the peak ϕ_0 of the distribution $P_j(\phi_c)$ corresponds to the largest number of initial states that lead to final jammed configurations (not the largest number of distinct final jammed states). As such, ϕ_0 is a measure of the largest fraction of phase space that leads to the onset of jamming for a given N. ϕ^\ast thus represents where the jamming threshold is maximally random in the $N \to \infty$ limit. We find the same limiting value of ϕ^\ast for Hertzian and harmonic potentials, suggesting that ϕ^\ast is not sensitive to the potential. We can approach jammed hard-sphere packings by noting that states up to the jamming threshold are accessible to hard spheres. If we repeat the measurement of ϕ^\ast for potentials with progressively harder repulsions, we can approach (but not attain) the hard-sphere limit. This suggests a way to measure the maximally random jammed packing fraction for hard spheres [14].

It is well known that spherical granular materials can exist over a 15% spread of packing fractions ranging from 0.55 to 0.64 [17,18]. The width of our distribution $P_j(\phi_c)$ for isotropic packings of frictionless soft spheres is a maximum near $N = 10$ and becomes arbitrarily small in the $N \to \infty$ limit. Only for $N \approx 10$ can we find states that are jammed at packing fractions as low as 0.55. Thus, the experimental difference between loose- and close-packing cannot be explained simply by considering allowed configurations of frictionless spheres; the value of loose-packing is not a purely geometrical quantity.

We note that there are other protocols for finding the jamming threshold at $T = 0$. We have also generated configurations by cooling slowly from equilibrium thermal states to $T = 0$. In that case, we find that $P_j(\phi_c)$ is shifted to higher values of ϕ_c, with values of ϕ_0 that are less than 1% higher than for the first protocol, but it is difficult to determine whether the difference persists when $N \to \infty$.

We have shown that as $N \to \infty$, the range of packing fractions over which systems can jam becomes arbitrarily narrow. Therefore, one might suppose that the fact that different configurations jam at different packing fractions might become irrelevant in the large N limit. This is not the case because within the range over which both jammed and unjammed configurations exist, there is no self-averaging. For example, if a configuration is unjammed, with $V = 0$, every subset of that configuration has $V = 0$, as well. Less obvious is that for jammed configurations, all subsets of more than a few particles will likely also contain overlaps. This is found numerically, and stems from the fact that on average, each jammed particle must have at least $2d$ overlapping contacts, each of which also has $2d$ contacts. This constraint makes it unlikely that a jammed system can exist with pockets containing more than a few rattlers.

The distribution of interparticle normal forces, $P(F)$, illustrates the absence of self-averaging. Simulations of static packings [3] have shown that at large F, $P(F)$ falls off exponentially even for harmonic and Hertzian potentials. An argument based on equilibrium liquids [3], however, suggests that the distribution should fall off differently for different potentials: the large force tail depends on the pair-distribution function at small r, which in equilibrium varies approximately as $\exp(-V(r)/kT)$. By this reasoning, one would predict a Gaussian fit to the high-force tail. (b) Same as (a) except F is scaled by $\langle \langle F \rangle \rangle$ averaged over all configurations.

FIG. 3. (a) Force distribution $P(F)/\langle F \rangle$ obtained by scaling F by the average force $\langle F \rangle$ of each configuration using the harmonic potential in 3D with $N = 1024$. The solid line is a Gaussian fit to the high-force tail. (b) Same as (a) except F is scaled by $\langle \langle F \rangle \rangle$ averaged over all configurations.
\(\phi_0\) to observe the exponential tail.

The shape of the tail of \(P(F/\langle F\rangle)\) can be computed analytically, given a few simple assumptions. We have found that the average force in a configuration, \(\langle F\rangle\), is proportional to the pressure \(p\) at \(T = 0\) near the onset of jamming. So from Fig. 3(a), we know that \(\langle F\rangle = F_0(\phi - \phi_c)\) for the harmonic potential. We assume that the jamming threshold, \(\phi_c\), is distributed as a Gaussian centered at \(\phi_0\) with width \(\sigma\) as found in Fig. 3(b). Finally, we assume (as shown in Fig. 3(a)) that the tail of \(P(F/\langle F\rangle)\) for individual configurations is given by the equilibrium argument, which implies a Gaussian tail centered at \(F/\langle F\rangle = 0\) with width \(\sigma_F\). (Here, \(F_0\), \(\sigma_F\), \(\phi_0\), and \(\omega\) are parameters that can be obtained from the simulation data.) In the large \(F\) limit, we find

\[
P(F) \propto \int_0^\phi d\phi_c \frac{1}{(F_0)^{2}} e^{-F^2/(2\sigma_F^2)} e^{-(\phi_c - \phi_0)^2/(2\omega^2)}
\]

\[
\approx \exp(-F^2/\langle F\rangle^2 \sqrt{F/\langle F\rangle})
\] (1)

We have also studied Hertzian potentials and find results similar to those for the harmonic potential shown in Fig. 3 and Eq. 3. In experimental granular systems, where the interparticle potential is expected to be Hertzian at contact, \(P(F)\) has an exponential tail even for a single configuration. We speculate that this is due to friction in the laboratory system, which allows heterogeneities from region to region within a single sample.

We have shown that for a finite-size system the jamming phase diagram looks somewhat different from the one sketched in the inset to Fig. 1(a). Instead of a well-defined point \(J\), we find that there is a region of \(\phi\), centered around \(\phi_0\) with width \(\omega\), in which both jammed and unjammed states can exist. As the size of the system increases, this region shrinks to the point \(J\). Effects not included in our simulations, such as the presence of friction, non-spherically symmetric potentials, or anisotropic packing (such as sequential packing under gravity) may prevent this region from disappearing.

In some ways, point \(J\) in the phase diagram resembles a critical point: there is power-law scaling (Fig. 3), \(P(F/\langle F\rangle)\) has a robust exponential tail independent of potential, and configurations are not self-averaging. In the context of foam, it has also been speculated that point \(J\) corresponds to rigidity percolation. However, near \(J\) the behavior differs from ordinary critical behavior, where configurations are not self-averaging once the correlation length exceeds the system size. There are no fluctuations near \(J\); that is, an unjammed (jammed) configuration will be unjammed (jammed) everywhere. This, as well as the fact that no bonds exist at packing fractions below \(J\), makes this transition also different from rigidity percolation. Moreover, even though we find power-laws near \(J\), there is a jump from \(Z = 0\) to \(Z = Z_c\) and the exponents depend on the potential but not on dimension. Thus, point \(J\) has rather special properties.

We thank J.-P. Bouchaud, P. Chaikin, D. Durian, G. Grest, D. Levine, J. Socolar, and T. Witten for helpful discussions. We acknowledge support from NSF-DMR-0089081 (CSO,SRN) and DMR-0087349 (CSO,AJL) and computing resources from the High Performance Computing Research Facility at Argonne National Lab.

[1] See Jamming and Rheology ed. A. J. Liu and S. R. Nagel (Taylor & Francis, N. Y., 2001), and references therein.
[2] A. J. Liu and S. R. Nagel, Nature 396 (1983); A. S. Clarke and J. D. Wiley, Phys. Rev. B 35, 1053 (1983); A. S. Clarke and J. D. Wiley, Phys. Rev. B 35, 7350 (1987).
[3] C. S. O’Hern, S. A. Langer, A. J. Liu, S. R. Nagel, Phys. Rev. Lett. 86, 111 (2001).
[4] The peak in \(P(F)\) is more generally indicative of a yield stress, and appears also in crystals and 1D chains.
[5] D. M. Meuth, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 57, 3164 (1998); D. L. Blair, N. W. Meuggenborg, A. H. Marshall, H. M. Jaeger, and S. R. Nagel, Phys. Rev. E 63, 041304 (2001).
[6] H. A. Makse, D. L. Johnson and L. M. Schwartz, Phys. Rev. Lett. 84, 4160 (2000).
[7] F. Radjai, M. Jean, J.-J. Moreau, S. Roux, Phys. Rev. Lett. 77, 274 (1996); C. Thornton, KONA Powder and Particle 15, 103 (1997); M. L. Nguyen and S. N. Cooper-smith, Phys. Rev. E 62, 5248 (2000).
[8] F. H. Stillinger and T. A. Weber, Science 225, 983 (1984).
[9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Fortran 77 (Cambridge University Press, New York, 1986).
[10] R. J. Speedy, J. Chem. Phys. 110, 4559 (1999).
[11] D. N. Perera and P. Harrowell, Phys. Rev. E 59, 5721 (1999).
[12] D. J. Durian, Phys. Rev. Lett. 75, 4780 (1995); Phys. Rev. E 55, 1739 (1997).
[13] T. G. Mason, M.-D. Lacasse, G. S. Grest, D. Levine, J. Bibette, and D. A. Weitz, Phys. Rev. E 56, 3150 (1997).
[14] This result suggests that states at \(\phi_c\) are not “fragile”, as in M. E. Cates, J. P. Wittmer, J.-P. Bouchaud, and P. Claudin, Phys. Rev. Lett. 81, 1841 (1998). It is possible that states below \(\phi_c\) can jam when a shear stress is applied. Such states can support a pressure but are fragile because they will yield when the shear stress is reversed.
[15] J. G. Berryman, Phys. Rev. A 27, 1053 (1983); A. S. Clarke and J. D. Wiley, Phys. Rev. B 35, 7350 (1987).
[16] S. Torquato, T. M. Truskett, and P. G. Debenedetti, Phys. Rev. Lett. 84, 2064 (2000).
[17] J. D. Bernal, Nature 188, 910 (1961); J. D. Bernal, J. Mason, and K. R. Knight, Nature 194, 956 (1962).
[18] G. Y. Onoda and E. G. Liniger, Phys. Rev. Lett. 64, 2727 (1990).
[19] F. Bolton and D. Weaire, Phys. Rev. Lett. 65, 3449 (1990); D. J. Jacobs and M. F. Thorpe, Phys. Rev. E 53, 3682 (1996).