Abstract—A realistic communication system model is critical in power system studies emphasizing the cyber and physical intercoupling. In this paper, we provide characteristics that could be used in modeling the underlying cyber network for power grid models. A real utility communication network and a simplified inter-substation connectivity model are studied, and their statistics could be used to fulfill the requirements for different modeling resolutions.

Keywords— cyber-physical system, communication network, shortest path routing

I. INTRODUCTION

Modern power grids have become increasingly interdependent on their communication networks. Distributed energy resource (DER), virtual power plant (VPP), remedial action scheme (RAS), etc., all these emerging technologies require the existence of a robust underliner cyber system where the communication network plays an important role. Research in these fields and many other power systems (e.g., cybersecurity, distributed control) normally either study the pattern of the interaction between the power (physical) system and the communication (cyber) system, or give an assumption of this interaction, both require an appropriate model of the underlying communication network. Unfortunately, most real utility communication network models belong to CEII (Critical Electric Infrastructure Information), thus they are usually confidential and hard to access. In [1] the authors propose a cyber network model with snowflake or radial topology for the synthetic Texas power grid, where the utility control center is directly connected to each managed substation, and there are no inter-substation communication links. In [2] the authors use the same topology as the studied power grid model to represent the communication network topology, which is largely due to the fact that the studied real power system uses the optical ground wire (OPGW) as its major communication media between substations. These models are useful in their applications; however, their modeling method might not work as a general-purpose approach due to some limitations caused by their assumption. For example, routing optimization could not be done in a communication network with radial topology. Also, for most cases, the communication network is unlikely to be - the same as the power network, because OPGW is normally used in the extra-high voltage (EHV) system, and the prevalence of other communication media in the power system and do not go along with the transmission lines.

To the best of the author’s knowledge, few pieces of literature extract characteristics from a real utility communication system and creating a realistic synthetic cyber network using these statistics. This should be changed since the dependence on the communication system is growing as the grid is becoming “smarter”. Recently [3] provides us a valuable topology model from a realistic utility communication system, as well as analyzing some structural metrics, such as degree and centrality, which are quite useful in generating synthetic networks. The model they studied has different types for node (station) and degree (communication link), thus it might be overkill for studies where a simplified but realistic communication connectivity model is preferred. For instance, this communication connectivity model could be used in studies where the availability of the generation resources is a major concern, or studying the impact of some threat models [4], or where the cyber mitigation is involved, like the routing optimization for specific scenarios. As a comparison, the detailed model could be used in situations where the communication links are not negligible due to their unique characteristics and abilities to handle special events. In this paper, we want to extract enough useful statistics from this original topology model and a simplified model, which later will be used to design synthetic communication networks for different resolution levels. The contribution of this paper mainly consists of 1) providing an efficient way to extract the communication connectivity from the original detailed model 2) analyzing both detailed and simplified models to provide statistics to support generating synthetic cyber networks for power grid models. The paper will be organized as follows: section II will introduce both models and discuss the simplifying process; section III will define the studied metrics and present the results; the remaining sections will conclude the paper and discuss the followed future work.

II. NETWORK MODELS

A. Detailed Network Model

The detailed inter-substation network model was manually parsed from [3] and then re-construct using the network analysis tool NetworkX [5] to build the standard graph model. The communication network consists of 333 nodes represented by microwave stations, transmission stations, generation stations, offices, very-high frequency repeaters (VHF), ultra-high frequency repeaters (UHF), control centers, and other grid components. The network has 369 links represented by microwave, fiber, power-line communication (PLC), and leased links with 15 parallel cases.
In the original communication network, 11 island nodes, nodes disconnected from the main structure, were present. Assuming these nodes were either defuncted stations or stations in development, none of the island nodes were included in the reconstruction of the detailed network. As a result, the studied network was fully-connected. When estimating the detailed network’s link lengths, the corresponding transmission system [6] did not mirror the communication network. As a result, the provided link lengths were negligible in the detailed network and the links seen in Figure 1 solely represent the connectivity between stations.

B. Simplified Connectivity Model

As shown in Figure 3, to create the simplified version of the detailed communication network, each microwave station’s neighbor nodes were circular linked and the microwave station was removed. If the microwave station possessed one degree, the microwave station was removed without performing circular linking. This process was repeated until all of the microwave stations were removed from the network. Since the simplification process required us to remove and create degrees between nodes, the degree types demonstrated in Figure 1 were not included in this model. As a result of the simplification process, the simplified communication network had 279 nodes and 333 degrees. Alike to the detailed network, the simplified network was fully-connected because the network was extracted from the fully-connected detailed network and the simplification process did not produce island nodes.

III. STATISTICS FROM CYBER MODELS

As mentioned in the introduction, the objective of the paper is to extract useful statistics from a detailed and simplified communication network devised from a real utility communication network. In this section, we will define and analyze the usability of degree type distributions, average degree load, primary shortest pathlength distributions, and edge betweenness centrality.

A. Degree Type Distributions

By providing information a medium to transmit between nodes, degrees are the foundation for all communication networks. Statistics collecting quantifiable data from a network’s degrees, including degree type distribution, have the potential to accurately assess the characteristics of a communication network. Thus, they are also important...
validation metrics for designing synthetic communication networks. There is a variety of communication links used to deliver the packet flow. Each variation has unique characteristics influenced by their respective equipment, materials, and communication mediums. To understand the significance of degree type in communication networks, a degree type distribution, representing the relationship between the degree and node types, was created for the detailed network.

TABLE I. Detailed Inter-Substation Network’s Degree Type Distribution

Node Type	Degree Type	Microwave	PLC	Fiber	Leased	Radio
Microwave		22.8%	0.1%	1.4%	0.5%	1.1%
Transmission		6.8%	11.9%	13.7%	15.9%	2.0%
Generating		1.4%	2.0%	1.4%	1.8%	0.1%
Office		0.4%	0.1%	0.4%	4.9%	0.0%
Control Center		0.1%	0.0%	0.4%	0.0%	0.0%
Repeater		0.0%	0.1%	0.3%	0.5%	0.3%
Connector		0.3%	0.0%	0.5%	0.0%	0.0%
Other		1.4%	1.1%	4.7%	1.6%	0.0%
Total Percentage		33.1%	15.4%	22.8%	25.2%	3.5%

Briefly mentioned in the introduction, some communication degrees such as microwave, low-capacity radio, and leased degrees, tend to not accompany transmission lines. Conversely, PLC and fiber degrees use transmission lines existing infrastructure to deliver information. Considering the tendencies of the degree types, the ratio of PLC and fiber degrees to the total number of degrees, known as the PLC-Fiber ratio, was calculated to quantify the influence of transmission lines in the communication network’s design. The measured PLC-Fiber ratio of the detailed network was 38.21%, suggesting the detailed network’s design made use of several sections of the transmission system’s infrastructure. This suggestion was supported by the high percentage of transmission stations connected to PLC and fiber degrees shown in Table 1. Moreover, the radial topology branching from the detail network’s main stem possessed a significant share of transmission stations, PLC degrees, and fiber degrees, which are indicators of transmission lines. With the PLC-Fiber ratio, a synthetic communication network’s transmission system dependence could be accurately measured and assessed.

B. Average Degree Load

Derived from a network’s degree count distribution, a node type’s average degree load (ADL) statistic averages the degree count for a specified node type. Since microwave, transmission, and generating stations constitute a majority of the networks’ nodes, their respective ADLs were analyzed to gain insight into the network’s design.

TABLE II. Detailed and Simplified Inter-Substation Networks’ Average Degree Loads

Node Type	Detailed	Simplified
Microwave Station	3.537	--
Transmission Stations	2.108	2.54
Generating Stations	1.75	2.286
Office	1.955	2.0455
Control Center	2	2
Repeater	1.289	1.428
Connector	2	2.333
Other	1.585	1.683

For the detailed network, the microwave station possessed an ADL value of 3.5. The value implies that many microwave stations were points of divergence for nodes/node clusters. Moreover, the detailed network’s transmission and generating stations’ relatively low ADLs, comparative to the microwave’s ADL, implies that many of these nodes were on the branching and ends of node clusters. Depicted in Figure 1, the microwave stations formed the detailed network’s main stem, while the transmission and generating stations resided heavily on the branching of the network, supporting the aforementioned implications. Validated by Figure 2, the simplified network’s transmission and generating station’s ADLs indicate that the majority of transmission and generating stations were points of divergence or resided in node clusters. Demonstrated from the analysis, measuring a network’s node types’ ADLs could prove useful in network modeling by revealing the neighboring tendencies of each node type.

C. Routing Path

Observable in Figures 1 and 2, the control centers accessed substations using the network’s various paths. Thus, when designing a communication network one critical procedure is to plan/optimize routing paths. The most widely used routing approach is shortest path routing (SPR), which determines the minimal path and pathlength between the nodes and control centers. Since a communication network’s efficiency is heavily reliant on pathlength, the statistics and distributions produced from SPR could accurately measure network efficiency, thus they are also important validation metrics for synthesizing cyber networks.

When performing SPR on the networks, Dijkstra’s algorithm was utilized and the degrees were assigned a uniform weight. [7] describes Dijkstra’s algorithm as a process used to record the known shortest pathlength between each node to the source node and updates the pathlengths when shorter paths are discovered. If the shortest path between a node and the source node is achieved, the node is added to the path and marked as “visited”. The process is repeated until all nodes are visited. For each node, two shortest paths from the node to control centers
1 & 2 were built using Dijkstra’s algorithm. To determine each node’s primary shortest path length (PSL), the node’s shortest paths’ pathlengths were compared to find the smallest pathlength value. Then, the smallest pathlength was assigned as the node’s PSL. If both paths’ pathlengths were equivalent the given node’s PSL was set to the value of equivalence. This process was replicated for each node in the respective networks.

Algorithm 1

Pseudocode for Primary Routing Path

1: function Primary_Path(Node_list, Control_list)
 ‣ Node list is a list of each nodes’ name
 ‣ Control list is a list of Control Centers’ names
2: primary_length = empty one-dimension list with Node_list’s length
3: for node nod in Node_list do
4: Create instance of current shortest pathlength short
5: for control cont in Control_list do
6: Calculate path_nodes and path_length between node and cont using Dijkstra’s algorithm
7: if cont is first index in Control_list then
8: set short to path_length
9: elif short is greater than path_length then
10: set short to path_length
11: Populate primary_length with short at nod’s index in Node_list
12: return primary_length
13: end

Fig 4. Pseudocode calculating each node’s primary routing path

A Pearson’s first coefficient describes three types of distributions: A positive coefficient represents a positively-skewed distribution, a negative coefficient represents a negatively-skewed distribution, and a zero coefficient represents a normal distribution. It was determined that the detailed and simplified networks’ primary shortest pathlength distributions’ Pearson’s first coefficient of skewness were 0.419 and 0.642. Indicated by the coefficients and Figure 5, the primary shortest pathlength distributions were skewed positively, revealing the networks’ prioritization of smaller pathlengths. The distributions’ significant share of small pathlengths heavily influenced the distributions’ mode and Average Path Length (APL), statistics known to measure network efficiency. The detailed and simplified networks’ skewness coefficient suggests that optimizing a network’s primary shortest pathlength distribution’s skewness in the positive direction could effectively increase overall network efficiency.

D. Edge Betweenness Centrality

Synonymous with communication degrees, edges are the main factor in determining the overall structure of networks. Due to edges’ strong influence on the network, statistics that observe the behavior of edges, such as Edge Betweenness Centrality (EBC), could serve as network efficiency indicators and edge type assignment guidelines. EBC is a metric used to quantify a specified degree’s importance in a network. To measure a degree’s EBC, SPR is utilized to measure the shortest path(s) between two nodes. With a selected degree, the degree’s total appearance in the shortest paths(s) is divided by the total number of observed shortest paths. The aforementioned process is replicated for all possible combinations of two nodes. Then, a summation is taken, resulting in the selected degree’s EBC. The NetworkX analysis tool’s edge betweenness centrality built-in function proved very useful in finding edge’s EBC, reducing time and work needed for computation. To determine the usefulness of EBC in synthetic cyber networks, the detailed network’s degrees’ EBC were calculated and averaged with their respective degree types. The resulting values, known as Average Edge Betweenness Centrality (AEB), revealed each degree types’ structural importance in the communication network.

Table III. Detailed and Simplified Inter-Substation Networks’ Average Edge Betweenness Centrality

Degree Type	Average Edge Betweenness Centrality
Microwave	4155.23
PLC	468.9
Fiber	668.85
Leased	391.24
Low-Capacity Radio	1320.5025

Evident in Table 3, the microwave degrees possessed the largest AEBC by a sizable margin. The vast difference between the
microwave station’s AEBC to the other edge types’ AEBC. suggested that the network structural integrity was very
dependent on microwave edges. Unexpectedly, the low-
capacity radio possessed a relatively large AEBC, despite it
being the least used edge type in the network. Since microwave
and low-capacity radios are forms of wireless transmission, it
was inferred that the network primarily relied on wireless
communication to transmit data due to the two link types’ high
AEBC values. Using this inference as a foundation, the edge
types’ AEBCs could prove a valuable metric in determining
synthetic communication networks’ wireless dependence. The
high AEBCs possessed by the microwave and low-capacity
radio edges could also be interpreted as an indication of
potential high data transmission through the respective edge
types. [9] describes high data transmission through certain
edges and nodes as the leading cause of data congestion.
Observing a synthesized network’s edge types’ AEBCs has the
potential to accurately predict areas of congestion, allowing for
the implementation of preventive measures at the predicted
areas. The last application of AEBC would use an active
network’s edge types’ AEBCs to assign edge types to
undetermined edges in a synthesized communication network.
Given the wireless edge types’ high AEBC and the wired edge
type’s low AEBC, the edge type assignment for a selected edge
in a synthetic communication network could be selected
depending on the extrapolation of its AEBC magnitude.

IV. CONCLUSIONS

This paper has presented useful statistics that could be used
to generate realistic synthetic communication systems with
different levels of resolution. The process to simplify the
original network to get the connectivity model is also discussed.
The characteristics obtained will be used to improve the model
in [1], and the revised cyber network model could be emulated
and studied in the testbed [10]. The detailed and simplified
substation topology networks are open-sourced in [11] for
further analysis.

V. ACKNOWLEDGMENT

The work described in this paper was supported by funds
from the US Department of Energy’s DE OE0000895, the
National Science Foundation’s Grant 1916142, and the Sandia
National Laboratories’ laboratory directed research and
development project #222444, titled “Harmonized Automatic
Relay Mitigation of Nefarious Intentional Events (HARMONIE) Special Protection Scheme.”

VI. REFERENCES

[1] P. Wlazlo et al., “A Cyber Topology Model for the Texas 2000
Synthetic Electric Power Grid,” 2019 Principles, Systems and Applications of
IP Telecommunications (IPTComm), Chicago, IL, USA, 2019, pp. 1-8, doi:
10.1109/IPTCOMM.2019.8921260.

[2] Xu, Luo, Guo, Qinglai, Liu, Xinzhao, et al. Robust Optimization Method
of Communication Network to Improve Resilience of Cyber-Physical Power
System[J/OL]. Automation of Electric Power Systems,
http://dx.doi.org/10.7500/AEPS20200435022.

[3] Fan, Xiaoyuan, Aksoy, Sinan O., Huang, Qiuhua, Ogle, James P., Wang,
Dexin, Tbaileh, Ahmad, & Fu, Tao. Coordination of Transmission,