Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling

Katherine J. Burton*, Xiaohan Li*, Jia-Da Li*, Wang-Ping Hu* and Qun-Yong Zhou*

Introduction

The suprachiasmatic nucleus (SCN) of the hypothalamus houses the master circadian pacemaker in mammals [1]. At the molecular level, the circadian clock is controlled by positive and negative feedback loops involving transcription and translation of a handful of core clock genes [2]. The SCN is composed of many single-cell oscillators that, when synchronized, produce a coordinated circadian output [3, 4, 5]. One prominent feature of SCN neurons is the circadian oscillation of their firing rate, which peaks during the light phase [5]. Genetic studies in flies have revealed the critical role of firing rate oscillation in the generation of circadian rhythm [6]. Neurochemical and electrical signaling among SCN neurons is necessary for these individual cellular clocks to coordinate their activities and maintain robust oscillations [3, 4, 7, 8, 9].

Prokineticin 2 (PK2), encoding a cysteine-rich secreted protein, has been shown to be a critical signaling molecule for the regulation of circadian rhythms. PK2 expression in the SCN is highly rhythmic, peaking during the day and being essentially absent during the night. Mice with disrupted PK2 gene or its receptor PKR2 display greatly reduced rhythmicity of broad circadian parameters such as locomotor activity, body temperature and sleep/wake patterns. PK2 has been shown to increase the firing rate of SCN neurons, with unknown molecular mechanisms. Here we report that TRPV2, an ion channel belonging to the family of TRP, is co-expressed with PKR2 in the SCN neurons. Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent manner. Functional studies revealed that TRPV2 enhanced signaling of PKR2 in calcium mobilization or ion current conductance, likely via the increased trafficking of TRPV2 to the cell surface. Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of the circadian rhythms.

Keywords: Prokineticin 2; TRPV2; Circadian Rhythm; Suprachiasmatic Neurons; Signaling

Methods

In situ hybridization and colocalization

Mice were anesthetized with xylazine and ketamine and transeardially perfused with PBS, followed by 4% paraformaldehyde in PBS. The brains were removed, post-fixed in 4% paraformaldehyde overnight, and cryoprotected with 20% sucrose in 0.1 M phosphate buffer (PH 7.4) for 48 hr. The brains were subsequently frozen in isopentane and 16–20 micrometer coronal sections were cut using a cryostat. Antisense riboprobes containing the 3’ UTR of mouse PKR2 (GenBank accession number AF487279; residues 1147–2211) were generated by T7 RNA polymerase (sense probes were generated with SP6 RNA polymerase). Riboprobes were labeled with digoxigenin-UTP (DIG-UTP) (Roche) and diluted 1 to 50 in hybridization solution (50%...
formaldehyde, 10% dextran sulfate, 0.02% Ficoll, 0.02% polyvinylpyrrolidone, 0.02% BSA, 500 µg/ml tRNA, 0.3M NaCl, 10mM Tris, pH 8.0, 1mM EDTA). For the hybridization, sections were sequentially hydrated in 1x PBS (phosphate buffered saline), 0.6% H₂O₂ in 1x PBS for 30 minutes, 1.2% H₂O₂ in 1x PBS for 1 hr, and 0.6% H₂O₂ in 1x PBS for 30 minutes. Tissue sections were fixed with 4% paraformaldehyde for 15 minutes, followed by three 1x PBS washes. Sections were pretreated with proteinase K (10 µg/ml) and pre-hybridized with the hybridization solution without probe for 1 hr at room temperature. Hybridized with the riboprobe, the sections were incubated at 60°C for 18 hours, followed by RNAase (20 µg/ml) digestion, decreasing salinity washes and a 60 minute high stringency (68°C) wash. Sections were then washed with 1x PBS and 0.2% Triton-X100 (PBST) twice, followed by a blocking solution (PBST, 3% BSA, and 5% horse serum) at room temperature for 1 hr. Sections were incubated with an anti-DIG antibody conjugated with horseradish peroxidase (Perkin Elmer) in blocking solution overnight at 4°C and washed with PBST. DIG labeled cells were revealed with the TSA Plus Fluorescence Kit from Perkin Elmer as described in the instruction manual. Sections were viewed with fluorescence microscopy prior to the immunohistochemistry. Sections were incubated with rabbit anti-TRPV2 antibody (1:1000, Santa Cruz Biotechnology) for 24 hr at 4°C. After washes with PBST, the sections were incubated with the secondary antibody conjugated with anti-Rabbit-Cy3 (1:500, Jackson ImmunoResearch) for 2 hrs at room temperature. After washes with PBST, DAPI was added and sections were dried and cover-slipped. Confocal images were captured with Bio-Rad MRC 1024 confocal laser microscope. The use of Z-stack imaging was used to demonstrate co-localization. High resolution images were grayscaled and density was quantified using ImageJ 1.35s (NIH, USA). All procedures have been approved by IACUC committee of UC Irvine.

Generation of stable CHO cells line expressing PKR2-aprotein and TRPV2

Chinese hamster ovary (CHO) cells stably expressing PKR2 photoprotein aequorin (PKR2-aq) were grown in alpha MEM Ear's Salts (Invitrogen, Carlsbad, CA), containing 10% fetal bovine serum, 100 µg/ml streptomycin, 100 U/ml penicillin, G418 (100 µg/ml), and Zeocin (100 µg/ml). Human transient receptor cation channel, subtype V, member 2 (TRPV2) cDNA (ATCC) in pIRESpuro was transfected into PKR2-aq using lipofectAMINE manufactures protocol (Invitrogen, Carlsbad, CA). Clones of cells stably expressing PKR2 and TRPV2 were selected under 5µg/ml puromycin in a 5% CO₂ incubator at 37°C. Colonies were tested using the LB12 Sirius Luminometer (Berthold) as described [19].

Ca²⁺ mobilization assay

Activation of TRPV2 has been shown to be induced by serum and thus all cellular experiments were pre-treated with 6 hours serum-starvation [20]. Cells were serum starved at 37°C in B27 supplemented alpha MEM (Invitrogen, Carlsbad, CA) for 4 hours and in reduced serum OptiMEM I (Invitrogen, Carlsbad, CA) with coelenterazine cp (8µM) for an additional 2 hours. Stable cell lines were then trypsinized, counted, centrifuged, and resuspended in calcium-free HBSS (Hanks'Balanced Salt Solution) plus 10mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid). The luminescence of both PKR2 and PKR2-aq:TRPV2 stable cell lines was measured with a Berthold Luminometer as follows.

After serum starvation, CHO cells were resuspended in Ca²⁺-free HBSS. Cell analysis occurred in a bioluminescence assay measuring changes in intracellular Ca²⁺ ([Ca²⁺]) concentrations both with application of HBSS or PK2. CHO cells were subjected to PK2 for 10 mins, followed by serum-free defined media. Cells were fixed at 0, 10, 30, 60, 90, and 120 mins and immunostained using extracellular-recognizing TRPV2 antibody.

Voltage-clamp electrophysiology in Xenopus oocytes

Linearized cDNA-containing vectors for PKR2 and TRPV2 were used to transcribe cRNA using mMessage mMachine reagents (Ambion, Austin, TX). Concentrations of cRNA were determined by spectrophotometric absorbance and by gel electrophoresis.

For oocyte isolation, sexually mature female *Xenopus laevis* were anaesthetized and lobes of ovaries were removed and stored at 16°C and gentamycin (Sigma). After oocytes were plucked and denuded by gentle vortexing with 1mg/ml collagenase (Worthington, Lakewood, NJ), healthy oocytes were injected with PKR2 cRNA or PKR2 and TRPV2 cRNAs.

Xenopus laevis oocytes were placed in a 35mm chamber with a bath solution containing 96mM NaCl and 2.5mM BaCl₂. The cells were impaled with two glass electrodes filled with 3M KCl connected to a two-electrode voltage clamp TEV-200 amplifier and oscilloscope. Once impaled, oocytes were incubated in various concentrations of Ruthenium Red for 5 minutes (Alexis, San Diego, CA) and were followed by PK2. For each experiment, 50nM PK2 was added for 40 seconds. All recordings and images were generated using pClamp 9 Software Suite (Axon, Union City, CA).

Statistical analyses

Data were analyzed using GraphPad Prism Software Version 5.0 (San Diego, CA). Two-way or one-way ANOVAs with Bonferroni post-hocs and unpaired t-test were used.

Results

Robust Expression of TRPV2 in the SCN and colocalization of TRPV2 with PKR2 in the SCN neurons

We screened the expression of all 33 known Trp channels in the mouse SCN [21, 22] by in situ hybridization. The majority of the 33 known Trp channels were not expressed in the SCN, with several of them, including TRPC1, C4 and C5, being lightly expressed in the SCN (Supp. Fig. S1). The only robust expressed TRP channel was TRPV2 (Supp. Fig. S1). In addition to its robust expression in the SCN, TRPV2 was also expressed in the several known SCN
target areas, such as paraventricular and dorsal medial nuclei of the hypothalamus. As the expression pattern of TRPV2 and PKR2 in the SCN and several known SCN targets is quite similar, we thus investigated whether PKR2 and TRPV2 are co-expressed in the same SCN neuron.

PKR2-dependent oscillation of TRPV2 protein in SCN neurons

The circadian profile of TRPV2 expression in the SCN was then examined. Levels of TRPV2 mRNAs were observed to be non-oscillating in the SCN over a 24 hour period (Supp. Fig. S2). However, immunochemistry studies revealed a marked oscillation of TRPV2 protein expression in the SCN: TRPV2 protein level at CT4 was almost two fold higher than at CT16 (Fig. 2B, E). As PKR2 is coexpressed with TRPV2 in the SCN neurons, we next examined whether the circadian oscillation of TRPV2 is linked to PK2 signaling with PK2-deficient (PK2-/-) mice. As shown in Fig. 2, the oscillation of TRPV2 was absent in the SCN of PK2-/- mice: with the SCN at CT4 of PK2-/- mice displaying similarly low level as that of CT16 (Fig. 2C-E).

Enhanced Ca²⁺ mobilization in PKR2-TRPV2 co-expressing cells

To determine the functional interaction of PKR2 and TRPV2, we next examined Ca²⁺ mobilization in stable cell lines that co-express PKR2 and TRPV2 (PKR2:TRPV2). As shown in Figure 3A-C, the calcium mobilization signal was significantly increased in PKR2:TRPV2 cells, compared to parental PKR2 cells [19]. The modest mobilization of Ca²⁺ in the parental PKR2 CHO cell line can be attributed to calcium release from intracellular storage (Fig. 3A and 19). Furthermore, ruthenium red, a TRPV blocker, was shown to dose-dependently inhibit the calcium signaling in PKR2:TRPV2 cells (Fig. 3E-F). This decrease was due to blockade in TRPV2 channel.

Supplemental Figure S1: Screening of 33 Trp channels revealed expression of candidate TRP in the SCN of adult mouse brain. Autoradiograms show mRNA expression in the SCN of A, PKR2, B, TrpV2, C, TrpC1, D, TrpC2, E, TrpC4, F, TrpC5, G, PKDII-1-1, H, TrpM7, I, PKD1, J, PKD2, K, TrpV3.
activation, since [Ca2+] concentrations in the parental PKR2 cells were unaffected (Fig. 3D,F).

TRPV2 increased membrane current through PKR2 activation in Xenopus oocytes

We further used two-electrode voltage clamp electrophysiology to examine the functional interaction of TRPV2 and PKR2 in Xenopus oocytes. In oocytes co-injected with PKR2 and TRPV2 cRNAs or injected with PKR2 alone, exposure to PK2 evoked inward currents (Fig. 4A). Peak currents were about 5-fold higher in PKR2:TRPV2 injected oocytes compared with PKR2 alone (Fig. 4A, graph inset). Onset of currents occurred rapidly within ~5 secs in PKR2:TRPV2 oocytes with an aciculate profile. In contrast, with mean peak current amplitude of 400nA, PKR2-expressing oocytes had a slower PK2-induced onset of ~15 secs and displayed undulatory properties, typical of GPCR electrophysiological profiling [23]. Peaks returned to baseline more slowly in the PKR2-expressing oocytes and often displayed a prolonged oscillatory-IP3 patterning, also indicative of GPCR-driven signaling (Fig. 4A).

To verify that the functionality of the TRPV2 channel is under the regulation of PKR2, we further used ruthenium red to block TRPV2 channel activity. In oocytes expressing PKR2:TRPV2, ruthenium red dose-dependently attenuated PK2-evoked currents (Fig. 4B, graph inset). In contrast, ruthenium red did not alter current amplitude in oocytes expressing PKR2 alone. These studies indicated that TRPV2 increases oocyte membrane current through PKR2 activation.

PKR2 activation increases TRPV2 expression at the cell surface

The molecular mechanism for the functional activation of TRPV2 is still unclear, with one likely possibility being that the TRPV2 channels are constitutively active and their activity is regulated by trafficking to cell surface expression [20, 24, 25, 27, 28, 29]. We thus set out to examine the trafficking properties of TRPV2 in response to the PKR2 activation. In absence of the PKR2 activation, TRPV2 protein is low at the cell surface (Fig. 5A). 30 mins after addition of PK2, TRPV2 was increased at the cellular membrane (Fig. 5B). TRPV2 expression increases more by 60 min, and peaks at about 90 min (Fig. 5C, D). Interestingly, robust expression levels of TRPV2 were observed in the formation of large clusters on the membrane, particularly around peak level (Fig. 5C, D, F). Confocal images of Z-stack (Supp. Fig. S3) clearly demonstrated the robust trafficking of TRPV2 to the cell surface membrane via the activation of PKR2. To further ascertain this trafficking to cell surface expression of TRPV2 was truly due to the activation of PKR2, we pretreated the cells with a selective PKR2 antagonist, PKRA7 [30, 31]. Fig. 5E, H shows that PKRA7 blocked the cell surface expression of TRPV2 induced by PKR2 activation. Taken together, these results indicate that PKR2 activation increases the trafficking of TRPV2 to cell surface.
Discussion
The coexpression of PKR2 and TRPV2 in the SCN neurons was demonstrated by combined in situ hybridization and immunostaining (Fig. 1). Further, TRPV2 protein, but not TRPV2 mRNA, was shown to oscillate in the SCN in a PK2-dependent fashion (Fig. 2). Functional studies indicated that the co-expression of TRPV2 enhanced signaling of PKR2 in calcium mobilization or
ion current conductance, compared to cells or oocytes that express PKR2 alone (Figs. 3, 4). Morphological studies indicated that the enhancement of PKR2 signaling by TRPV2 is likely via the increased trafficking of TRPV2 to the cell surface (Fig. 5). Taken together, these results indicate that TRPV2 is likely part of the downstream signaling of PK2 in the regulation of circadian rhythms [13, 14, 15].

There exist several models that describe how TRPV2 channel activation occurs [32], with one possibility being that TRPV2 channels are constitutively active and their activity is regulated by trafficking to cell surface expression. It has been previously shown that TRPV2 trafficking to the plasma membrane surface is increased in response to the signaling of growth factor receptors, such as insulin-like growth factor-I (IGF-I) or other receptor [20, 23,
Supplemental Figure S3: Z-stacking confocal imaging of TrpV2 translocation to surface membrane. A, no PK2 treatment. CHO Cells were treated with PK2 for 10 min B, 10 min, C, 30 min, D, 60 min, E, 90 min, F, 120 min. Note the apparent cell surface expression of TrpV2 in response to PK2 treatment. Cell surface expression of TrpV2 was detected by immunostaining with anti-TrpV2 antibody. Scale bar=40 µm.

It has been further shown that PI3 kinase is likely involved in the cell surface expression of TRPV2 induced by IGF1 [20]. In this report, we showed that PKR2 activation by PK2 in CHO cell induced the cell surface trafficking of TRPV2 (Fig. 5). It should be pointed out that PKR2 receptor activation has previously been shown to couple to the activation of PI3 kinase [34], and thus a similar signaling pathway may play the role of controlling TRPV2 trafficking to cell surface.

The oscillation of the electric firing rate of the SCN is known to be under the control of the circadian clock, but the exact molecular and cellular mechanism is still largely unknown [3, 4, 7, 8, 9, 35, 36]. Clock-controlled genes may directly encode ion channel [37] or regulate ionic conductance activity in the SCN neurons [35, 36, 38, 39, 40]. PK2, as the product of a clock-controlled gene, has been shown to be one of the signaling mediators for the normal expression of circadian rhythms [10, 13, 14, 41]. With regard to the circadian rythmicity of the firing rate of the SCN neurons, PK2 has been shown to increase the firing rate of rat SCN neurons [15]. Our current results indicate that PK2 signaling increases the trafficking of TRPV2 to the cell surface. In the absence of PK2 signal- ing in PK2-deficient mice, the TRPV2 protein levels in SCN neurons are diminished during the subjective day and no longer oscillate between circadian day and night phases (Fig. 2). Thus, oscillating PK2 in the SCN may contribute to the circadian oscillation of SCN neuron firing rate by regulating the trafficking of TRPV2 to the cell surface of SCN neurons.

Acknowledgements
We would like to thank Prof. David Corey for providing the precious probes of 33 TRP channel cDNAs and Dr. Ned R. Whittemore for help with Xenopus oocytes experiment. The research is supported in part by grants from NIH (MH67753 and DK91916).

References
1. Peppers, SM and Weaver, DR. Coordination of circadian timing in mammals. Nature. 2002; 418(6901):935–41. DOI: http://dx.doi.org/10.1038/nature00965
2. Shearman, LP, Siriram, S, Weaver, DR, Maywood, ES, Chaves, I, Zheng, B, Kume, K, Lee, CC, van der Horst, GT, Hastings, MH and Peppers, SM. Interacting molecular loops in the mammalian circadian clock. Science. 2000; 288(5468):1013–9. DOI: http://dx.doi.org/10.1126/science.288.5468.1013
3. Irwin, RP and Allen, CN. Neuropeptide-mediated calcium signaling in the suprachiasmatic nucleus network. Eur J Neurosci. 2010; 32(9):1497–506. DOI: http://dx.doi.org/10.1111/j.1460-9568.2010.07411
4. Mohawk, JA and Takahashi, JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011; 34(7):349–58. DOI: http://dx.doi.org/10.1016/j.tins.2011.05.003
5. Welsh, DK, Logothetis, DE, Meister, M and Peppers, SM. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron. 1995; 14(4):697–706. DOI: http://dx.doi.org/10.1016/0896-6274(95)90214-7
6. Nitabach, MN, Blau, J and Holmes, TC. Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell. 2002; 109(4):485–95. DOI: http://dx.doi.org/10.1016/S0092-8674(02)00737-7
7. Green, DJ and Gillette, R. Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 1982; 245(1):198–200. DOI: http://dx.doi.org/10.1016/0006-8993(82)90361-4
8. Peppers, SM and Weaver, DR. Molecular analysis of mammalian circadian rhythms. Annu Rev Physiol. 2001; 63:647–76. DOI: http://dx.doi.org/10.1146/annurev.physiol.63.1.647
9. Schwartz, WJ, Gross, RA and Morton, MT. The suprachiasmatic nuclei contain a tetrodotoxin-resistant circadian pacemaker. Proc Natl Acad Sci U S A. 1987; 84(6):1694–8. DOI: http://dx.doi.org/10.1073/pnas.84.6.1694
10. Cheng, MY, Bullock, CM, Li, C, Lee, AG, Bermak, JC, Belluzzi, J, Weaver, DR, Leslie, FM and Zhou, QY. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature.
Burton et al: Rhythmic Trafficking of TRPV2 in the Suprachiasmatic Nucleus is Regulated by Prokineticin 2 Signaling

Prokineticin 2 and circadian clock output. Feb's J. 2005; 272(22):5703–9. DOI: http://dx.doi.org/10.1111/j.1742-4658.2005.04984.x

11. Zhou, QY and Cheng, MY. Prokineticin 2 and circadian clock output. Feb's J. 2005; 272(22):5703–9. DOI: http://dx.doi.org/10.1111/j.1742-4658.2005.04984.x

12. Hu, WP, Li, JD, Zhang, C, Boehmer, L, Siegel, JM and Zhou, QY. Altered circadian and homeostatic sleep regulation in prokineticin 2-deficient mice. Sleep. 2007; 30(3):247–56.

13. Li, JD, Hu, WP, Boehmer, L, Cheng, MY, Lee, AG, Jilek, A, Siegel, JM and Zhou, QY. Attenuated circadian rhythms in mice lacking the prokineticin 2 gene. J Neurosci. 2006; 26(45):11615–23. DOI: http://dx.doi.org/10.1523/JNEUROSCI.3679-06.2006

14. Prosser, HM, Bradley, A, Chesham, JE, Ebling, FJ, Hastings, MH and Maywood, ES. Prokineticin receptor 2 (Prokr2) is essential for the regulation of circadian behavior by the suprachiasmatic nucleus. Proc Natl Acad Sci U S A. 2007; 104(2):648–53. DOI: http://dx.doi.org/10.1073/pnas.0606884104

15. Ren, P, Zhang, H, Qiu, F, Liu, YQ, Gu, H, O’Dowd, DK, Zhou, QY and Hu, WP. Prokineticin 2 regulates the electrical activity of rat suprachiasmatic nuclei neurons. PLoS One. 2011; 6(6):e20263. DOI: http://dx.doi.org/10.1371/journal.pone.0020263.

16. Cottrell, GT, Zhou, QY and Ferguson, AV. Prokineticin 2 modulates the excitability of subformical organ neurons. J Neurosci. 2004; 24(10):2375–9. DOI: http://dx.doi.org/10.1523/JNEUROSCI.5187-03.2004

17. Yuill, EA, Hoyda, TD, Ferri, CC, Zhou, QY and Ferguson, AV. Prokineticin 2 depolarizes paraventricular nucleus magnocellular and parvocellular neurons. Eur J Neurosci. 2007; 25(2):425–34. DOI: http://dx.doi.org/10.1111/j.1460-9568.2006.05293.x

18. Vellani, V, Colucci, M, Lattanzi, R, Giannini, E, Negri, I, Melchiorri, P and McNaughton, PA. Sensitization of transient receptor potential vanilloid 1 by the prokineticin receptor agonist Bv8. J Neurosci. 2006; 26(19):5109–16. DOI: http://dx.doi.org/10.1523/JNEUROSCI.15187-03.2004

19. Lin, DC, Bullock, CM, Ehler, FJ, Chen, JL, Tian, H and Zhou, QY. Identification and molecular characterization of two closely related G protein-coupled receptors activated by prokineticins/endocrine gland vascular endothelial growth factor. J Biol Chem. 2002; 277(22):19276–80. DOI: http://dx.doi.org/10.1074/jbc.M202139200

20. Kanzaki, M, Zhang, YQ, Mashima, H, Li, L, Shibata, H and Kojima, I. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-1. Nat Cell Biol. 1999; 1(3):165–70. DOI: http://dx.doi.org/10.1038/11086

21. Clapham, DE. TRP channels as cellular sensors. Nature. 2003; 426(6966):517–24. DOI: http://dx.doi.org/10.1038/nature02196

22. Corey, DP, García-Áñoveros, J, Holt, JR, Kwan, KY, Lin, SY, Vollrath, MA, Amalfitano, A, Cheung, EL, Derfner, BH, Duggan, A, Gélice, GS, Gray, PA, Hoffman, MP, Rehm, HL, Tamasauskas, D and Zhang, DS. TRPA1 is a candidate for the mechanosensitive transduction channel of vertebrate hair cells. Nature. 2004; 432(7018):723–30. DOI: http://dx.doi.org/10.1038/nature03066

23. Rezgaoui, M, Susens, U, Ignatov, A, Gelderblom, M, Glassmeier, G, Franke, I, Urny, J, Imai, Y, Takanashi, R and Schaller, HC. The neuropeptide head activator is a high-affinity ligand for the orphan G-protein-coupled receptor GPR37. J Cell Sci. 2006; 119(Pt 3):542–9. DOI: http://dx.doi.org/10.1242/jcs.02766

24. Arniges, M, Fernandez-Fernandez, JM, Albrecht, N, Schaefer, M and Valverde, MA. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem. 2006; 281(3):1580–6. DOI: http://dx.doi.org/10.1074/jbc.M511456200

25. Becker, D, Muller, M, Leuner, K and Jendrach, M. The C-terminal domain of TRPV4 is essential for plasma membrane localization. Mol Membr Biol. 2008; 25(2):139–51. DOI: http://dx.doi.org/10.1080/09687680701635237.

26. Bezzerides, VJ, Ramsey, IS, Kotecha, S, Greka, A and Clapham, DE. Rapid vesicular translocation and insertion of TRP channels. Nat Cell Biol. 2004; 6(8):709–20. DOI: http://dx.doi.org/10.1038/ncb1150

27. Boels, K, Glassmeier, G, Herrmann, D, Riedel, IB, Hampe, W, Kojima, I, Schwarz, JR and Schaller, HC. The neuropeptide head activator induces activation and translocation of the growth-factor-regulated Ca(2+)-permeable channel GRC. J Cell Sci. 2001; 114(20):3599–606.

28. Garcia-Sanz, N, Valente, P, Gomis, A, Fernandez-Carvajal, A, Fernandez-Ballesta, G, Viana, F, Belmonte, C and Ferrer-Montiel, A. A role of the transient receptor potential domain of vanilloid receptor I in channel gating. J Neurosci. 2007; 27(43):11641–50. DOI: http://dx.doi.org/10.1523/JNEUROSCI.2457-07.2007

29. Kojima, I and Nagasawa, M. TRPV2. Handb Exp Pharmacol. 2014; 222:247–72. DOI: http://dx.doi.org/10.1007/978-3-642-54215-2_10

30. Cheng, MY, Lee, AG, Culbertson, C, Sun, G, Talati, RK, Manley, NC, Li, X, Zhao, H, Lyons, DM, Zhou, QY, Steinberg, GK and Sapolsky, RM. Prokineticin 2 is an endangering mediator of cerebral ischemic injury. Proc Natl Acad Sci U S A. 2012; 109(14):5475–80. DOI: http://dx.doi.org/10.1073/pnas.1113363109.

31. Curtis, VF, Wang, H, Yang, P, McLendon, RE, Li, X, Zhou, QY and Wang, XF. A PK2/Bv8/PROK2 antagonist suppresses tumorigenic processes by inhibiting angiogenesis in glioma and blocking myeloid cell infiltration in pancreatic cancer. PLoS One. 2013; 8(1):e54916. DOI: http://dx.doi.org/10.1371/journal.pone.0054916.

32. Liedtke, W and Kim, C. Functionality of the TRPV subfamily of TRP ion channels: add mechano-TRP and osmo-TRP to the lexicon! Cell Mol Life Sci. 2005;
33. Caterina, MJ, Rosen, TA, Tominaga, M, Brake, AJ and Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature. 1999; 398(6726):436–41. DOI: http://dx.doi.org/10.1038/18906

34. Melchiorri, D, Bruno, V, Besong, G, Ngomba, RT, Cuomo, L, De Blasi, A, Copani, A, Moschella, C, Storto, M, Nicoletti, F, Lepperdinger, G and Pas-sarelli, F. The mammalian homologue of the novel peptide Bv8 is expressed in the central nervous system and supports neuronal survival by activating the MAP kinase/PI-3-kinase pathways. Eur J Neurosci. 2001; 13(9):1694–702. DOI: http://dx.doi.org/10.1046/j.1460-9568.2001.01549.x

35. Colwell, CS. Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci. 2000; 12(2):571–6. DOI: http://dx.doi.org/10.1046/j.1460-9568.2000.00393.x

36. Pennartz, CM, de Jeu, MT, Bos, NP, Schaap, J and Geurtsen, AM. Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature. 2002; 416(6878):286–90. DOI: http://dx.doi.org/10.1038/nature728

37. Meredith, AL, Wiler, SW, Miller, BH, Takahashi, JS, Fodor, AA, Ruby, NF and Aldrich, RW. BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 2006; 9(8):1041–9. Erratum in: Nat Neurosci. 2006; 9(9):1193. DOI: http://dx.doi.org/10.1038/nn1740

38. Biello, SM, Golombek, DA, Schak, KM and Harrington, ME. Circadian phase shifts to neuropeptide Y In vitro: cellular communication and signal transduction. J Neurosci. 1997; 17 (21):8468–75.

39. Itri, JN, Michel, S, Vansteensel, MJ, Meijer, JH and Colwell, CS. Fast delayed rectifier potassium current is required for circadian neural activity. Nat Neurosci. 2005; 8(5):650–6. DOI: http://dx.doi.org/10.1038/nn1448

40. Pennartz, CM, Bos, NP, Jeu, MT, Geurtsen, AM, Mirmiran, M, Sluiter, AA and Buijs, RM. Membrane properties and morphology of vasopressin neurons in slices of rat suprachiasmatic nucleus. J Neurophysiol. 1998; 80(5):2710–7.

41. Cheng, MY, Leslie, FM and Zhou, QY. Expression of prokinetics and their receptors in the adult mouse brain. J Comp Neurol. 2006; 498(6):796–809. DOI: http://dx.doi.org/10.1002/cne.21087