Supplementary Information

for

Evolutionary history of mitochondrial genomes in Discoba, including the extreme halophile *Pleurostomum flabellatum* (Heterolobosea)

Khaoula Ettahi\(^a\), Duck Hyun Lhee\(^a\), Ji Yeon Sung\(^b\), Alastair G. B. Simpson\(^{c,d}\), Jong Soo Park\(^{b,e,*}\),

Hwan Su Yoon\(^{a,*}\)

\(^a\)Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea
\(^b\)Department of Oceanography, Kyungpook Institute of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu 41566, South Korea
\(^c\)Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
\(^d\)Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Nova Scotia, Canada
\(^e\)Research Institute for Dok-do and Ulleung-do Island, Kyungpook National University, Daegu 41566, South Korea

\(^*\)Author for Correspondence: Hwan Su Yoon, Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea, Telephone number: +82-31-290-5915; FAX: +82-31-290-7015; e-mail: hsyoon2011@skku.edu,

Jong Soo Park, Department of Oceanography, School of Earth System Sciences, Kyungpook National University, Daegu 41566, South Korea, Telephone number: +82-53-950-5391; FAX: +82-53-950-5397; e-mail: jongsoopark@knu.ac.kr
Supplementary Information Legends

Supplementary Table S1. General Features and Comparison of the Heteroloboseans, Jakobids and *Tsukubamonas* Mitogenomes.

Supplementary Table S2. Comparison of Protein-Coding Gene Sets in Heterolobosea and *Tsukubamonas*.

Supplementary Table S3. Comparison of Structural RNAs Gene Sets in Heterolobosea and *Tsukubamonas*.

Supplementary Table S4. Relative synonymous codon usage (RSCU) of each amino acid in the mitogenome of *Pleurostomum flabellatum, Naegleria gruberi/Naegleria fowleri, Pharyngomonas kirbyi, Acrasis kona, Stachyamoeba lipophora, Heteroloboseid sp. BB2 and Tsukubamonas globosa*. More frequently used codons (RSCU>1) are in bold.

Supplementary Fig. S1. Comparison of the three available sequences of orf145. (A) The position of the conserved orf145 in the three heterolobosean species: *Pleurostomum flabellatum, Naegleria gruberi* and *Naegleria fowleri*. The step size is 200 bp in *P. flabellatum* and 100 bp in *Naegleria*. (B) Sequence logo plots of aligned orf145 amino acids generated using the Geneious 8.1.2 multiple sequence alignment tool.

Supplementary Fig. S2. Relative synonymous codon usage (RSCU) in heterolobosean mitogenomes. The 22 codon families consisting of a total of 61 two- and four-fold degenerate synonymous codons are plotted on the x-axis. The RSCU values are shown on the y-axis. The most used synonymous codon in each family is at the bottom. Red-colored codons are not present in the mitogenome.
Supplementary Fig. S3. Distribution of the synonymous codons on the first and second axes of the correspondence analysis. Representation of the first two axes of the correspondence analysis performed on the codon frequency of heterolobosean mitochondrial-encoded proteins.

Supplementary Fig. S4. Bayesian phylogenetic tree of the Discoba based on mitogenome data under the CAT + GTR model. Contrary to ML tree, Heteroloboseid sp. BB2 and Pharyngomonas are paraphyletic in the Bayesian tree inference.

Supplementary Fig. S5. Mitochondrial genome synteny of Pleurostomum flabellatum and Pharyngomonas kirbyi. Images were generated using the Mauve genome alignment tool with default settings (Darling et al. 2010). Color-coded syntenic blocks indicate conserved segments. Sequence similarity is shown within each syntenic block. Regions with no color indicate no detectable homology between the two mitogenomes.

Supplementary Fig. S6. Maximum likelihood phylogenetic tree of ccmF protein sequences. The ccmF gene was found in Pleurostomum, Naegleria and Stachyamoeba, previously misannotated by orf457 (YP_009118159.1). The ccmF gene is encoded in a wide array of other eukaryotic lineages, namely, Viridiplantae, Rhodophyta, Alveolata, Malawimonadidae, Metazoa, Cryptophyta and Jakobida. Our ccmF phylogenetic analysis places the P. flabellatum sequence as more closely related to Rhodophyta and Malawimonadidae mitochondrial ccmFs than to either Tetramitia (St. lipophora and Naegleria) or Jakobida ccmFs, probably owing to the rapid divergence of Heterolobosean species.

Supplementary Fig. S7. Maximum likelihood phylogenetic tree of rps4 protein sequences. The gene rps4 gene was found uniquely in Pleurostomum and Naegleria among Heterolobosea. The gene rps4 is encoded in a wide array of other eukaryotic lineages, namely, Viridiplantae, Rhodophyta, Alveolata, Malawimonadidae, Metazoa, Cryptophyta and Jakobida. Reconstruction from rps4
clustered *P. flabellatum* and *Naegleria rps4s* firmly in one clade (BS=96%). This clade was more closely connected to mitochondrial *rps4s* of Viridiplantae than to either Jakobida or *Tsukubamonas rps4s*.

Supplementary Fig. S8. Maximum likelihood phylogenetic tree of ccmC protein sequences.

Reconstruction from *ccmC* of *Naegleria* genus, are well resolved as a monophyletic cluster with mitochondrial *ccmC* of Rhodophyta (BS=95%) and distantly clustering with mitochondrial *ccmC* of Jakobida and Viridiplantae (BS=83%).

Supplementary Fig. S9. Maximum likelihood phylogenetic tree of tatC protein sequences. The phylogenetic analysis of the TAT machinery inducer in most of TAT-containing eukaryotes *tatC* (Petrů et al. 2018) strongly clustered *Naegleria* into one clade with Rhodophyta mitochondrial *tatC* (BS=90%) but somewhat distantly clustered with Jakobida *tatC*.

Supplementary Fig. S10. Maximum likelihood phylogenetic tree of ccmA protein sequences. The *ccmA* gene of *Stachyamoeba lipophora*, is resolved as sister-taxa to *ccmA* of several Proteobacteria with low bootstrap value (below 50%) and distantly related to mitochondrial *ccmA* of Jakobida align with other eukaryotes (mostly Viridiplantae) (BS=89%).

Supplementary Figure S11. Multiple sequence alignment of Mic60 homologs. (A) Mic60 sequences of *Naegleria gruberi* (Naegru_XP_002683319.1), and two putative Mic60 homologs from the *Pleurostomum flabellatum* genome assembly (Pleulab_MW019460 and Pleulab_MW019459) were aligned. The alignment of translated transcript sequences of the coding regions (Pleulab_transcr_seq01 and Pleulab_transcr_seq02) was also added. The mitofilin domains are marked in black frames. (B) 5’ and 3’ UTR regions of transcript sequences are highlighted.
Table S1. General features and comparison of the Heteroloboseans, Jakobids and *Tsukubamonas* mitogenomes.

Species	Size (bp)	Coding (%)	A%	C%	G%	T%	A+T %	G+C %	AT Skew	GC Skew
Heterolobosea										
Pleurostomum flabellatum	57,829	86.1	32.2	11.4	17.6	38.9	71.1	29	-0.094	0.214
Naegleria gruberi	49,843	93.1	35.5	9.2	13	42.2	77.7	22.2	-0.086	0.171
N. fowleri	49,531	91.6	34.4	10.1	15.1	40.3	74.7	25.2	-0.079	0.198
Acrasis kona	51,458	93.2	45.9	5.4	11.3	37.4	83.3	16.7	0.102	0.353
Stachymoeba lipophora	49,742	91.2	31.7	11.3	15.9	41.1	72.8	27.2	-0.129	0.169
Pharyngomonas kirbyi	75,717	92.0	35.2	15.1	14.7	35.1	70.3	29.8	0.001	-0.013
Heteroloboseid sp. BB2	119,312	81.0	34.3	15.4	15.2	35	69.3	30.6	-0.010	-0.007
Tsukubamonadida										
Tsukubamonas globosa	48,463	90.2	28.6	15.2	18.6	37.6	66.2	33.8	-0.136	0.101
Jakobida										
Jakoba bahamiensis	65,327	93.0	30.4	13.9	18.3	37.4	67.8	32.2	-0.103	0.137
J. libera	100,252	78.5	35.4	16.3	15.7	32.6	68.0	32.0	0.041	-0.019
Reclimonas americana	69,586	90.7	36.8	11.4	14.8	37.1	73.2	26.1	-0.004	0.130
Histiona aroides	70,176	90.8	32.7	16.9	18.5	31.9	64.6	35.4	0.012	0.045
Seculamonas ecuadoriensis	69,158	88.4	34.7	16.1	15.8	33.5	68.1	31.9	0.018	-0.009
Andalucia godoyi	67,656	89.8	31.5	17.9	18.4	32.2	67.3	36.3	-0.011	0.014
Ophirina amphinema	59,094	94.1	27.6	16.4	22.7	33.3	60.9	39.1	-0.094	0.161

Lin*Linear mitogenome.
Table S2. Comparison of protein-coding gene sets in Heterolobosea and Tsukubamonas.

Biological Process	Gene	P. flabellatum	N. gruberi/fowleri	A. kona	S. lipophora	P. kirbyi	Heter. sp. BB2	T. globosa
NADH dehydrogenase (CI)	nad1	●	●	●	●	●	●	●
	nad2	●	●	●	●	●	●	●
	nad3	●	●	●	●	●	●	●
	nad4	●	●	●	●	●	●	●
	nad4L	●	●	●	●	●	●	●
	nad5	●	●	●	●	●	●	●
	nad6	●	●	●	●	●	●	●
	nad7	●	●	○	●	●	●	●
	nad8	●	●	●	●	●	●	●
	nad9	●	●	○	●	●	●	●
	nad10	○	○	○	○	○	○	○
	nad11	●	●	●	●	●	●	●
Succinate dehydrogenase (CII)	sdh2	●	●	○	●	●	○	●
	sdh3	○	○	○	○	○	○	●
	sdh4	○	○	○	○	○	○	●
Cytochrome bc complex (CIII)	cytB	●	●	●	●	●	●	●
Cytochrome c oxidase (CIV)	cox1	●	●	●	●	●	●	●
	cox2	●	●	●	●	●	●	●
	cox3	●	●	●	●	●	●	●
ATP synthase (CV)	atp1	●	●	●	●	●	●	●
	atp3	●	●	●	●	●	●	●
	atp4	○	○	○	○	○	○	●
	atp6	●	●	●	●	●	●	●
	atp8	●	●	●	●	●	●	●
	atp9	●	●	●	●	●	●	●
SSU ribosomal	rps1	○	○	○	○	○	○	○
	rps2	●	●	○	●	●	●	●
	rps3	●	●	○	●	●	●	●
	rps4	●	●	○	●	●	●	●
	rps7	●	●	●	○	●	●	●
	rps8	●	●	●	●	●	●	●
	rps10	●	●	●	●	●	●	●
	rps11	●	●	●	●	●	●	●
	rps12	●	●	○	●	●	●	●
	rps13	rps14	rps19					
-------------------	-------	-------	-------					
LSU ribosomal								
rpl1	●							
rpl2	●	●						
rpl5	●	●	●					
rpl6	●	●	●					
rpl10		○	●					
rpl11	●	●	●					
rpl14	●	●	●					
rpl16	●	●						
rpl18	○	○	○					
rpl19	○	○	○					
rpl20	○	○	○					
rpl27	○	○	○					
rpl31	○	○	○					
rpl32	○	○	●					
rpl34	○	○	○					
rpl35	○	○	○					
Elongation factor								
tufA	○	○	○					
Core RNA polymerase								
rpoA	○	○	○					
rpoB	○	○	○					
rpoC	○	○	○					
Sigma-like factor								
rpoD	○	○	○					
ABC transporter								
ccmA	○	○	●					
ccmB	○	○	○					
Heme delivery								
ccmC	○	●	○					
SecY-independent transporters								
tatA	○	○	○					
tatC	○	●	○					
SecY-type transporter								
secY	○	○	○					
Cytochrome c oxidase assembly								
cox11	●	●	○					
cox15	○	○	○					
Heme c maturation								
ccmF	●	●	○					
Table S3. Comparison of structural RNAs gene sets in Heterolobosea and *Tsukubamonas.*

Gene	P. flabellatum	N. gruberi	N. fowleri	Ac. kona	St. lipophora	Ph. kirbyi	Heter. sp. BB2	T. globosa
rnl	●	●	●	●	●	●	●	●
rns	●	●	●	●	●	●	●	●
rnr5	○	○	○	○	○	○	●	●
rnpB	○	○	○	○	○	○	○	○
ssrA	○	○	○	○	○	○	○	○
trnA(ugc)	○	○	○	○	○	●	●	●
trnC(gca)	○	○	○	○	●	●	●	●
trnD(guc)	●	●	●	●	●	●	●	●
trnE(uuc)	●	●	●	●	●	●	●	●
trnF(gaa)	●	●	●	○	●	●	●	●
trnG(gcc)	○	○	○	○	●	●	●	●
trnG(ucc)	○	○	○	○	●	●	●	●
trnH(gug)	●	●	●	●	●	●	●	●
trnI(cau)	○	●	●	●	●	●	●	●
trnI(gau)	●	●	●	●	●	●	●	●
trnK(uuu)	●	●	●	●	●	●	●	●
trnL(caa)	●	○	○	○	●	●	●	●
trnL(gag)	○	○	○	○	●	●	●	●
trnL(uaa)	●	●	●	●	●	●	●	●
trnL(uag)	●	●	●	●	●	●	●	●
trnM(cau)e	●	●	●	●	●	●	●	●
trnM(cau)f	●	●	●	●	●	●	●	●
trnN(gau)	●	●	●	●	●	●	●	●
trnP(ugg)	●	●	●	●	●	●	●	●
trnQ(uug)	●	●	●	●	●	●	●	●
trnR(acg)	○	○	○	○	●	●	●	●
trnR(ucc)	○	●	●	●	●	●	●	●
trnS(gca)	●	●	●	●	●	●	●	●
trnS(gga)	●	●	●	●	●	●	●	●
trnS(uga)	●	●	●	●	●	●	●	●
trnT(ugu)	○	○	○	○	●	●	●	●
trnV(gac)	○	○	○	○	●	●	●	●
trnV(uac)	○	○	○	○	●	●	●	●
trnW(cca)	●	●	●	●	●	●	●	●
trnY(gua)	●	●	●	●	●	●	●	●

²Two copies of the specific gene.
Table S4. Relative synonymous codon usage (RSCU) of each amino acid in the mitogenome of *Pleurostomum flabellatum*, *Naegleria gruberi/Naegleria fowleri*, *Pharyngomonas kirbyi*, *Acrasis kona*, *Stachyamoeba lipophore*, *Heteroloboseid* sp. BB2 and *Tsukubamonas globosa*. More frequently used codons (RSCU > 1) are in bold.

Amino Acid	Codon	Count	RSCU	%	Amino Acid	Codon	Count	RSCU	%
Ala	GCU(A)	184	2.07	1.29	Lys	AAG(K)	263	0.52	1.85
Ala	GCC(A)	39	0.44	0.27	Lys	AAA(K)	752	1.48	5.28
Ala	GCA(A)	108	1.21	0.76	Met	AUG(M)	365	1	2.57
Arg	CGU(R)	131	1.17	0.92	Phe	UUC(F)	1453	1.79	10.21
Arg	CGG(R)	33	0.3	0.23	Pro	CCU(P)	174	0.21	1.22
Arg	CGC(R)	28	0.25	0.20	Pro	CG(C(P)	57	0.6	0.40
Arg	CGA(R)	79	0.71	0.56	Pro	CCC(P)	22	0.23	0.15
Asn	AAU(N)	674	1.59	4.74	Ser1	AGA(S1)	298	2.67	2.09
Asn	AAC(N)	175	0.41	1.23	Ser1	ACG(S1)	68	0.36	0.48
Asp	GAU(D)	433	1.65	3.04	Ser1	AGU(S1)	254	1.35	1.79
Asp	GAC(D)	91	0.35	0.64	Ser1	AGG(S1)	100	0.9	0.70
Cys	UGU(C)	195	1.63	1.37	Ser1	AG(S1)	129	1.37	0.91
Cys	UGC(C)	44	0.37	0.31	Ser1	AGA(S1)	298	2.67	2.09
Cys	UAA(N)	283	1.53	1.99	Ser2	UCG(S2)	97	0.51	0.68
Gln	CAA(Q)	87	0.47	0.61	Ser2	UCC(S2)	73	0.39	0.51
Glu	GAG(E)	153	0.61	1.08	Ser2	UCA(S2)	254	1.35	1.79
Glu	GAA(E)	351	1.39	2.47	Ser2	ACU(T)	200	1.6	1.41
Gly	GGU(G)	201	1.18	1.41	Ter	UAG(*)	11	0.58	0.08
Gly	GGG(G)	155	0.91	1.09	Ter	UAA(*)	33	1.74	0.23
Gly	GGC(G)	42	0.25	0.30	Thr	ACC(T)	43	0.34	0.30
Gly	GGA(G)	281	1.66	1.97	Thr	ACG(T)	79	0.63	0.56
His	CAU(H)	232	1.6	1.63	Thr	ACC(T)	43	0.34	0.30
His	CAC(H)	58	0.4	0.41	Thr	ACA(T)	179	1.43	1.26
Ile	AUU(I)	664	1.6	4.67	Trp	UGG(W)	165	1	1.16
Ile	AUC(I)	102	0.25	0.72	Trp	UGA(W)	13	0.68	0.09
Leu1	CU(L)	186	0.71	1.31	Tyr	UAU(Y)	684	1.52	4.81
Leu1	CUG(L)	64	0.24	0.45	Tyr	UAC(Y)	217	0.48	1.53
Leu1	CUC(L)	25	0.1	0.18	Val	GUU(V)	343	1.72	2.41
Leu1	CUA(L)	110	0.42	0.77	Val	GUG(V)	128	0.64	0.90
Leu2	UUG(L)	476	1.82	3.35	Val	GUC(V)	43	0.22	0.30
Leu2	UUA(L)	709	2.71	4.98	Val	GUA(V)	282	1.42	1.98
Total		14229	64	100					
Naegleria gruberi/ Naegleria fowleri

AA	Codon	Count	RSCU	%	AA	Codon	Count	RSCU	%
Ala	GCU(A)	206/152	2.03/1.55	1.52/1.15	Lys	AAA(K)	987/791	1.86/1.64	7.29/6.00
Ala	GCA(A)	193/193	1.9/1.97	1.43/1.46	Lys	AAG(K)	72/791	0.14/0.36	0.53/1.32
Ala	GCG(A)	5/32	0.05/0.33	0.04/0.24	Met	AUG(M)	265/297	1/1	1.96/2.25
Ala	GCC(A)	2/14	0.02/0.14	0.01/0.11	Met	AUA(M)	381/595	0.86/1.33	2.81/4.51
Arg	CGU(R)	139/104	1.99/1.31	1.03/0.79	Phe	UUU(F)	1475/1265	1.87/1.78	10.90/9.59
Arg	CGA(R)	11/22	0.16/0.28	0.08/0.17	Phe	UUC(F)	99/154	0.13/0.22	0.73/1.17
Arg	CGC(R)	3/7	0.04/0.09	0.02/0.05	Pro	CCC(P)	178/143	2.12/1.79	1.32/1.08
Arg	CGG(R)	1/9	0.01/0.11	0.01/0.07	Pro	CCG(P)	145/137	1.73/1.71	1.07/1.04
Asn	AAU(N)	873/771	1.81/1.78	6.45/5.85	Pro	CCG(P)	10/29	0.12/0.36	0.07/0.22
Asn	AAC(N)	89/94	0.19/0.22	0.66/0.71	Pro	CCC(P)	3/11	0.04/0.14	0.02/0.08
Asp	GUA(D)	378/324	1.84/1.73	2.79/2.46	Ser1	AGA(S1)	258/261	3.69/3.29	1.91/1.98
Asp	GAC(D)	32/51	0.16/0.27	0.24/0.39	Ser1	AGU(S1)	309/317	1.82/1.91	2.28/2.40
Cys	UGU(C)	151/178	1.83/1.78	1.12/1.35	Ser1	AGC(S1)	30/51	0.18/0.31	0.22/0.39
Cys	UGC(C)	14/22	0.17/0.22	0.10/0.17	Ser1	AGG(S1)	7/73	0.1/0.92	0.05/0.55
Gln	CAA(Q)	245/183	1.83/1.63	1.81/1.39	Ser2	UCU(S2)	406/327	2.39/1.97	3.00/2.48
Gln	CAG(Q)	23/41	0.17/0.37	0.17/0.31	Ser2	UCA(S2)	233/178	1.37/1.07	1.72/1.35
Glu	GAA(E)	385/355	1.79/1.61	2.84/2.69	Ser2	UCG(S2)	28/84	0.16/0.51	0.21/0.64
Glu	GAG(E)	46/86	0.21/0.39	0.34/0.65	Ser2	UCC(S2)	13/38	0.08/0.23	0.10/0.29
Gly	GGU(G)	278/265	2.09/1.97	2.05/2.01	Thr	UAA(*)	37/26	2.41/1.7	0.27/0.20
Gly	GGA(G)	225/196	1.69/1.46	1.66/1.49	Ter	UAG(*)	9/17	0.59/1.11	0.07/0.13
Gly	GGG(G)	26/57	0.2/0.42	0.19/0.43	Thr	ACA(T)	261/239	2.25/1.89	1.93/1.81
Gly	GGC(G)	3/20	0.02/0.15	0.02/0.15	Thr	ACU(T)	197/190	1.7/1.5	1.46/1.44
His	CAU(H)	213/188	1.8/1.69	1.57/1.43	Thr	ACG(T)	3/53	0.03/0.42	0.02/0.40
His	CAC(H)	24/34	0.2/0.31	0.18/0.26	Thr	ACC(T)	2/24	0.02/0.19	0.01/0.18
Ile	AUA(I)	887/657	2/1.47	6.55/4.98	Trp	UGG(W)	140/137	1/1	1.03/0.04
Ile	AUC(I)	61/91	0.14/0.2	0.45/0.69	Trp	UGA(W)	0/3	0/0.2	0.00/0.02
Leu	CUU(L)	95/147	0.34/0.52	0.70/1.11	Tyr	UAU(Y)	946/878	1.84/1.74	6.99/6.66
Leu	CUA(L)	84/181	0.3/0.65	0.62/1.37	Tyr	UAC(Y)	85/132	0.16/0.26	0.63/1.00
Leu	CUG(L)	8/37	0.03/0.13	0.06/0.28	Val	GUA(V)	397/391	2.12/2.13	2.93/2.97
Leu	CUC(L)	0/15	0/0.05	0/0.11	Val	GGU(V)	328/254	1.75/1.38	2.42/1.93
Leu2	UUA(L)	1427/1081	5.05/3.86	10.54/8.20	Val	GUG(V)	18/57	0.1/0.31	0.13/0.43
Leu2	UUG(L)	80/220	0.28/0.79	0.59/1.67	Val	GUC(V)	7/32	0.04/0.17	0.05/0.24

Total 13536/13185 | 64/64 | 100/100
AA	Codon	Count	RSCU	%	AA	Codon	Count	RSCU	%
Ala	GCU(A)	306	2.04	1.55	Lys	AAA(K)	1463	1.58	7.40
Ala	GCA(A)	181	1.2	0.92	Lys	AAG(K)	388	0.42	1.96
Ala	GCG(A)	45	0.3	0.23	Met	AUA(M)	978	1.61	4.95
Ala	GCC(A)	69	0.46	0.35	Met	AUG(M)	482	1	2.44
Arg	CGU(R)	139	0.86	0.70	Phe	UU(F)	1194	1.52	6.04
Arg	CGA(R)	57	0.35	0.29	Phe	UUC(F)	377	0.48	1.91
Arg	CGG(R)	29	0.18	0.15	Pro	CCC(P)	340	2.24	1.72
Arg	CGC(R)	27	0.17	0.14	Pro	CCA(P)	159	1.05	0.80
Asn	AAC(N)	399	0.59	2.02	Ser1	AGA(S1)	552	3.43	2.79
Asn	AAU(N)	958	1.44	2.50	Ser1	AGU(S1)	384	1.49	1.94
Cys	UGU(C)	119	1.43	0.60	Ser1	AGG(S1)	161	1	0.81
Cys	UGC(C)	48	0.57	0.24	Ser1	AGC(S1)	162	0.63	0.82
Gln	CAA(Q)	327	1.42	1.65	Ser2	UCA(S2)	312	1.21	1.58
Gln	CAG(Q)	132	0.58	0.67	Ser2	UCC(S2)	112	0.43	0.57
Glu	GAG(E)	158	0.47	0.80	Ser2	UCG(S2)	60	0.23	0.30
Glu	GAA(E)	520	1.53	2.63	Ter	UAU(Y)	923	1.4	4.67
Gly	GGA(G)	360	1.83	1.82	Thr	ACA(T)	269	1.2	1.36
Gly	GGU(G)	233	1.19	1.18	Thr	ACC(T)	111	0.5	0.56
Gly	GGG(G)	117	0.6	0.59	Thr	ACU(T)	428	1.91	2.17
Gly	GGC(G)	75	0.38	0.38	Thr	ACC(T)	269	1.2	1.36
His	CAC(H)	135	0.57	0.68	Thr	ACG(T)	87	0.39	0.44
His	CAU(H)	341	1.43	1.73	Thr	AGC(T)	87	0.39	0.44
Ile	AAU(I)	663	1.09	3.35	Trp	UGG(W)	200	1	1.01
Ile	AUC(I)	187	0.31	0.95	Trp	UGA(W)	12	0.82	0.06
Leu1	CUU(L)	386	1.04	1.95	Tyr	UAU(Y)	923	1.4	4.67
Leu1	CUA(L)	268	0.72	1.36	Tyr	UAC(Y)	396	0.6	2.00
Leu1	CUC(L)	122	0.33	0.62	Val	GUA(V)	425	1.68	2.15
Leu1	CUG(L)	114	0.31	0.58	Val	GUC(V)	337	1.34	1.70
Leu2	UUA(L)	1006	2.7	5.09	Val	GUG(V)	153	0.61	0.77
Leu2	UUG(L)	341	0.91	1.73	Val	GUC(V)	94	0.37	0.48
Total		19768	64	100					
Acrasis kona									

AA	Codon	Count	RSCU	%	AA	Codon	Count	RSCU	%
Ala	GCA(A)	173	2.58	1.22	Lys	AAG(K)	174	0.19	1.23
Ala	GCU(A)	89	1.33	0.63	Lys	AAA(K)	1643	1.81	11.61
Ala	GCG(A)	3	0.04	0.02	Met	AUA(M)	1188	2.1	8.40
Ala	GCC(A)	3	0.04	0.02	Met	AUG(M)	351	1	2.48
Arg	CGU(R)	27	0.36	0.19	Phe	UUU(F)	1016	1.97	7.18
Arg	CGA(R)	3	0.04	0.02	Phe	UUC(F)	13	0.03	0.09
Arg	CGC(R)	1	0.01	0.01	Pro	CCA(P)	118	2.57	0.83
Arg	CGG(R)	0	0	0.00	Pro	CCC(P)	1	0.02	0.01
Asn	AAU(N)	1690	1.89	11.94	Pro	CCG(P)	5	0.11	0.04
Asn	AAC(N)	103	0.11	0.73	Pro	CCC(P)	1	0.02	0.01
Asp	GAU(D)	433	1.92	3.06	Ser1	AGA(S1)	386	5.1	2.73
Asp	GAC(D)	18	0.08	0.13	Ser1	AGU(S1)	379	2.95	2.68
Cys	UGU(C)	128	1.92	0.90	Ser1	AGG(S1)	37	0.49	0.26
Cys	UGC(C)	5	0.08	0.04	Ser1	AGC(S1)	16	0.12	0.11
Gln	CAA(Q)	145	1.88	1.02	Ser2	UCU(S2)	138	1.07	0.98
Gln	CAQ(Q)	9	0.12	0.06	Ser2	UCC(S2)	230	1.79	1.63
Glu	GAA(E)	521	1.83	3.68	Ser2	UCG(S2)	4	0.03	0.03
Glu	GAG(E)	48	0.17	0.34	Ser2	UCC(S2)	5	0.04	0.04
Gly	GGU(G)	197	2.06	1.39	Ter	UAG(*)	2	0.17	0.01
Gly	GGA(G)	170	1.78	1.20	Ter	UAA(*)	29	2.49	0.20
Gly	GGG(G)	14	0.15	0.10	Thr	ACU(T)	143	1.27	1.01
Gly	GCC(G)	1	0.01	0.01	Thr	ACA(T)	297	2.63	2.10
His	CAU(H)	175	1.92	1.24	Thr	ACG(T)	4	0.04	0.03
His	CAC(H)	7	0.08	0.05	Thr	ACC(T)	7	0.06	0.05
Ile	AUU(I)	502	0.89	3.55	Trp	UGG(W)	103	1	0.73
Ile	AUC(I)	5	0.01	0.04	Trp	UGA(W)	4	0.34	0.03
Leu1	CUU(L)	53	0.18	0.37	Tyr	UAU(Y)	962	1.91	6.80
Leu1	CUA(L)	16	0.06	0.11	Tyr	UAC(Y)	44	0.09	0.31
Leu1	CUC(L)	0	0	0.00	Val	GUA(V)	339	2.35	2.40
Leu1	CUG(L)	1	0	0.01	Val	GUU(V)	164	1.14	1.16
Leu2	UUA(L)	1569	5.4	11.09	Val	GUG(V)	73	0.51	0.52
Leu2	UUG(L)	105	0.36	0.74	Val	GUC(V)	0	0	0
Total			**14149**	**64**	**100**				
AA	Codon	Count	RSCU	%	AA	Codon	Count	RSCU	%
--------	--------	-------	------	-----	--------	--------	-------	------	-----
Ala	GCU(A)	188	1.7	1.43	Lys	AAA(K)	709	1.6	5.40
Ala	GCC(A)	28	0.25	0.21	Met	AUG(M)	313	1	2.38
Ala	GCA(A)	200	1.81	1.52	Lys	AAG(K)	180	0.4	1.37
Arg	CGG(R)	7	0.09	0.05	Pro	CCA(P)	170	2	1.29
Arg	CGU(R)	136	1.7	1.04	Phe	UUU(F)	1203	1.85	9.16
Arg	CGC(R)	14	0.17	0.11	Pro	CCC(P)	7	0.08	0.05
Asn	AAU(N)	668	1.68	5.09	Ser1	AGA(S1)	195	2.44	1.49
Asn	AAC(N)	129	0.32	0.98	Pro	CCG(P)	23	0.27	0.18
Asp	GAU(D)	354	1.71	2.70	Ser1	AGU(S1)	273	1.43	2.08
Asp	GAC(D)	61	0.29	0.46	Ser1	AGU(S1)	273	1.43	2.08
Cys	UGU(C)	164	1.6	1.25	Ser1	AGG(S1)	65	0.81	0.50
Cys	UGC(C)	41	0.4	0.31	Ser1	AGC(S1)	71	0.37	0.54
Gln	CAA(Q)	201	1.47	1.53	Ser2	UCA(S2)	256	1.34	1.95
Gln	CAG(Q)	73	0.53	0.56	Ser2	UCC(S2)	60	0.31	0.46
Gly	GAA(E)	292	1.46	2.22	Ser2	UCC(S2)	35	0.18	0.27
Gly	GAG(E)	107	0.54	0.81	Ser2	UCC(S2)	35	0.18	0.27
Gly	GGA(G)	207	1.41	1.58	Ter	UAA(*)	34	2.22	0.26
Gly	GGG(G)	49	0.33	0.37	Thr	ACU(T)	249	1.75	1.90
Gly	GCC(G)	35	0.24	0.27	Thr	ACA(T)	237	1.66	1.81
His	CAU(H)	249	1.77	1.90	Thr	ACG(T)	52	0.36	0.40
His	CAC(H)	32	0.23	0.24	Thr	ACC(T)	32	0.22	0.24
Ile	AUU(I)	760	1.78	5.79	Trp	UGG(W)	157	1	1.20
Ile	AUC(I)	85	0.2	0.65	Trp	UGA(W)	1	0.07	0.01
Leu1	CUG(L)	13	0.05	0.10	Val	GUU(V)	393	2.05	2.99
Leu1	CUU(L)	293	1.12	2.23	Tyr	UAU(Y)	731	1.68	5.57
Leu1	CUC(L)	16	0.06	0.12	Val	GUA(V)	257	1.34	1.96
Leu1	CUA(L)	103	0.39	0.78	Tyr	UAC(Y)	140	0.32	1.07
Leu2	UUA(L)	878	3.35	6.69	Val	GUG(V)	81	0.42	0.62
Leu2	UUG(L)	269	1.03	2.05	Val	GUC(V)	34	0.18	0.26
Total		13129	63.97	100					
AA	Codon	Count	RSCU	%	AA	Codon	Count	RSCU	%
------	-------	-------	------	-----	------	-------	-------	------	-----
Ala	GCU(A)	172	1.3	1.00	Lys	AAA(K)	932	1.48	5.40
Ala	GCC(A)	65	0.49	0.38	Met	AUG(M)	384	1	2.22
Ala	GCG(A)	79	0.6	0.46	Met	AUA(M)	511	0.98	2.96
Ala	GCA(A)	213	1.61	1.23	Lys	AAG(K)	328	0.52	1.90
Arg	CGC(R)	71	0.47	0.41	Pro	CCA(P)	171	1.61	0.99
Arg	CGU(R)	216	1.43	1.25	Phe	UUU(F)	1201	1.53	6.96
Arg	CGG(R)	58	0.38	0.34	Pro	CCC(P)	145	1.36	0.84
Arg	CGA(R)	140	0.93	0.81	Phe	UUC(F)	365	0.47	2.11
Asn	AAU(N)	646	1.46	3.74	Ser1	AGA(S1)	272	1.8	1.58
Asn	AAC(N)	240	0.54	1.39	Ser1	AGC(S1)	129	0.62	0.75
Asp	GAU(D)	279	1.38	1.62	Ser1	AGG(S1)	148	0.98	0.86
Asp	GAC(D)	126	0.62	0.73	Ser1	ACC(S1)	129	0.62	0.75
Cys	UGU(C)	275	1.19	1.59	Ser1	AGG(S1)	148	0.98	0.86
Cys	UGC(C)	186	0.81	1.08	Ser1	AGC(S1)	129	0.62	0.75
Gln	CAA(Q)	378	1.44	2.19	Ser2	UCU(S2)	323	1.56	1.87
Gln	CAG(Q)	146	0.56	0.85	Ser2	UCA(S2)	271	1.31	1.57
Glu	GAG(E)	124	0.51	0.72	Ser2	UCC(S2)	153	0.74	0.89
Glu	GAA(E)	367	1.49	2.13	Ser2	UCG(S2)	140	0.68	0.81
Gly	GGA(G)	146	1.22	0.85	Ter	UAA(*)	430	1.54	2.49
Gly	GGC(G)	82	0.69	0.48	Thr	ACA(T)	254	1.45	1.47
Gly	GGG(G)	62	0.52	0.36	Thr	ACU(T)	215	1.22	1.25
Gly	GGU(G)	188	1.57	1.09	Ter	UAG(*)	176	0.63	1.02
His	CAU(H)	357	1.51	2.07	Thr	ACG(T)	136	0.77	0.79
His	CAC(H)	116	0.49	0.67	Thr	ACC(T)	98	0.56	0.57
Ile	AUU(I)	822	1.57	4.76	Trp	UGG(W)	221	1	1.28
Ile	AUC(I)	235	0.45	1.36	Trp	UGA(W)	232	0.83	1.34
Leu1	CUG(L)	104	0.3	0.60	Val	GUU(W)	367	1.66	2.13
Leu1	CUU(L)	382	1.12	2.21	Tyr	UAU(Y)	711	1.48	4.12
Leu1	CUC(L)	124	0.36	0.72	Val	GUA(V)	263	1.19	1.52
Leu1	CUA(L)	234	0.68	1.36	Tyr	UAC(Y)	252	0.52	1.46
Leu2	UUG(L)	431	1.26	2.50	Val	GUC(V)	132	0.6	0.76
Leu2	UUA(L)	779	2.28	4.51	Val	GUG(V)	124	0.56	0.72
Total		17261	64	100					
AA	Codon	Count	RSCU	%	AA	Codon	Count	RSCU	%
-----	-------	-------	------	----	-----	-------	-------	------	----
Ala	GCU(A)	330	1.95	2.66	Lys	AAA(K)	662	1.76	5.34
Ala	GCC(A)	54	0.32	0.44	Met	AUG(M)	343	1	2.76
Ala	GCG(A)	73	0.43	0.59	Met	AUA(M)	191	0.6	1.54
Ala	GCA(A)	219	1.3	1.77	Lys	AAG(K)	92	0.24	0.74
Arg	CGC(R)	22	0.25	0.18	Pro	CCA(P)	215	1.95	1.73
Arg	CGU(R)	297	3.41	2.39	Phe	UUU(F)	790	1.73	6.37
Arg	CGG(R)	34	0.39	0.27	Pro	CCC(P)	215	1.36	1.21
Arg	CGA(R)	135	1.55	1.09	Phe	UUC(F)	124	0.27	1.00
Asn	AAU(N)	393	1.54	3.17	Pro	CCG(P)	57	0.52	0.46
Asn	AAC(N)	118	0.46	0.95	Pro	CCC(P)	20	0.18	0.16
Asp	GAC(D)	66	0.32	0.53	Ser1	AGU(S1)	214	1.35	1.72
Asp	GAU(D)	353	1.68	2.85	Ser1	AGA(S1)	32	0.37	0.26
Cys	UGC(C)	23	0.26	0.19	Ser1	AGC(S1)	30	0.19	0.24
Cys	UGU(C)	156	1.74	1.26	Ser1	AGG(S1)	3	0.03	0.02
Gln	CAA(Q)	293	1.48	2.36	Ser2	UCU(S2)	412	2.6	3.32
Gln	CAG(Q)	104	0.52	0.84	Ser2	UCA(S2)	106	0.67	0.85
Glu	GAG(E)	155	0.71	1.25	Ser2	UCC(S2)	127	0.8	1.02
Glu	GAA(E)	282	1.29	2.27	Ser2	UCG(S2)	63	0.4	0.51
Gly	GGA(G)	142	0.82	1.14	Ter	UAA(*)	35	2.02	0.28
Gly	GGG(G)	39	0.23	0.31	Thr	ACU(T)	311	1.69	2.51
Gly	GGC(G)	42	0.24	0.34	Thr	ACA(T)	261	1.42	2.10
Gly	GGU(G)	469	2.71	3.78	Ter	UAG(*)	14	0.81	0.11
His	CAC(H)	46	0.34	0.37	Thr	ACC(T)	85	0.46	0.69
His	CAU(H)	225	1.66	1.81	Thr	ACG(T)	78	0.42	0.63
Ile	AUU(I)	633	1.99	5.10	Trp	UGG(W)	159	1	1.28
Ile	AUC(I)	130	0.41	1.05	Trp	UGA(W)	3	0.17	0.02
Leu1	CUG(L)	29	0.11	0.23	Val	GUU(V)	473	2.05	3.81
Leu1	CUU(L)	191	0.76	1.54	Tyr	UAU(Y)	485	1.73	3.91
Leu1	CUC(L)	22	0.09	0.18	Val	GUA(V)	286	1.24	2.51
Leu1	CUA(L)	78	0.31	0.63	Tyr	UAC(Y)	76	0.27	0.61
Leu2	UUA(L)	862	3.42	6.95	Val	GUG(V)	141	0.61	1.14
Leu2	UUG(L)	332	1.32	2.68	Val	GUC(V)	22	0.1	0.18

| Total| | 12407 | 64 | 100 |
Figure S1. Comparison of the three available sequences of *orf145*. (A) The position of the conserved *orf145* in the three heterolobosean species: *Pleurostomum flabellatum*, *Naegleria gruberi* and *Naegleria fowleri*. The step size is 200 bp in *P. flabellatum* and 100 bp in *Naegleria*. (B) Sequence logo plots of aligned *orf145* amino acids generated using the Geneious 8.1.2 multiple sequence alignment tool.
Figure S2. Relative synonymous codon usage (RSCU) in heterolobosean mitogenomes. The 22 codon families consisting of a total of 61 two- and four-fold degenerate synonymous codons are plotted on the x-axis. The RSCU values are shown on the y-axis. The most used synonymous codon in each family is in the bottom. Red-colored codon, codon is not present in the mitogenome.
Figure S3. Distribution of the synonymous codons on the first two axes of the correspondence analysis. Representation of the first two axes of the correspondence analysis performed on the codon frequency of heterolobosean mitochondrial-encoded proteins.
Figure S4. Bayesian phylogenetic tree of the Discoba based on mitogenome data under the CAT + GTR model. Contrary to ML tree inference, Heteroloboseid sp. BB2 and Pharyngomonas are paraphyletic in Bayesian tree inference.
Figure S5. Mitochondrial genome synteny of *Pleurostomum flabellatum* and *Pharyngomonas kirbyi*. Images were generated using the Mauve genome alignment tool with default settings (Darling et al., 2010). Color-coded syntenic blocks indicate conserved segments. Sequence similarity is shown within each syntenic block. Regions with no color indicate no detectable homology between the two mitogenomes.
Figure S6. Maximum likelihood phylogenetic tree of ccmF protein sequences. The ccmF gene was found in Pleurostomum, Naegleria and Stachyamoeba, previously misannotated by orf457 (YP_009118159.1). The ccmF gene is encoded in a wide array of other eukaryotic lineages, namely, Viridiplantae, Rhodophyta, Alveolata, Malawimonadidae, Metazoa, Cryptophyta and Jakobida. Our ccmF phylogenetic analysis places the Pl. flabellatum sequence as more closely related to Rhodophyta and Malawimonadidae mitochondrial ccmFs than to either Tetramitia (St. lipophora and Naegleria) or Jakobida ccmFs, probably owing to the rapid divergence of Heterolobosean species.
Figure S7. Maximum likelihood phylogenetic tree of rps4 protein sequences. The gene rps4 was found uniquely in *Pleurostomum* and *Naegleria* among Heterolobosea. The gene rps4 is encoded in a wide array of other eukaryotic lineages, namely, Viridiplantae, Rhodophyta, Alveolata, Malawimonadidae, Metazoa, Cryptophyta and Jakobida.

Reconstruction from rps4 clustered *Pl. flabellatum* and *Naegleria rps4s* firmly in one clade (BS=96%). This clade was more closely connected to mitochondrial rps4s of Viridiplantae than to either Jakobida or *Tsukubamonas rps4s*.
Figure S8. Maximum likelihood phylogenetic tree of ccmC protein sequences. Reconstruction from ccmC of Naegleria genus, are well resolved as a monophyletic cluster with mitochondrial ccmCs of Rhodophyta (BS=95%) and distantly clustering with mitochondrial ccmCs of Jakobida and Viridiplantae (BS=83%).
Figure S9. Maximum likelihood phylogenetic tree of tatC protein sequences. The phylogenetic analysis of the TAT machinery inducer in most of TAT-containing eukaryotes tatC (Petru et al. 2018) strongly clustered Naegleria into one clade with Rhodophyta mitochondrial tatCs (BS=90%) but somewhat distantly clustered with Jakobida tatCs.
Figure S10. Maximum likelihood phylogenetic tree of ccmA protein sequences. The ccmA gene of St. lipophora, is resolved as sister-ta to ccmAs of several Proteobacteria with low bootstrap value (below 50%; supplementary fig. S9) and distantly related to mitochondrial ccmAs of Jakobida align with other eukaryotes (mostly Viridiplantae) (BS=89%).
Figure S11. Multiple sequence alignment of Mic60 homologs. (A) *Naegleria gruberi* Mic60 sequence (Naegru_XP_002683319.1), and two putative Mic60 homologs from the *Pleurostomum flabellatum* genome assembly (Pleuflab_MW019459 and Pleuflab_MW019460) were aligned. The alignment of translated transcript sequences of the coding regions (Pleuflab_transcr_seq01 and Pleuflab_transcr_seq02) was also added. The mitofilin domains are marked in black frames. (B) 5’ and 3’ UTR regions of transcript sequences are highlighted.
Figure S11. Multiple sequence alignment result of Mic60 homologs. (A) *Naegleria gruberi* Mic60 sequence (Naegru_XP_002683319.1), and two putative Mic60 homologs from the *Pleurostomum flabellatum* genome assembly (Pleuflab_MW019459 and Pleuflab_MW019459) were aligned. The alignment of translated transcript sequences of the coding regions (Pleuflab_transcr_seq01 and Pleuflab_transcr_seq02) was also added. The mitofilin domains are marked in black frames. (B) 5' and 3' UTR regions of transcript sequences are highlighted.