Introduction. – Charmonium suppression in nuclear collisions is one of the oldest signatures to indicate the formation of quark-gluon plasma (QGP) [1]. However, to identify the genuine plasma effects, a precise estimation of the suppression induced by the cold nuclear medium (CNM) is a necessary prerequisite [2–4]. Over the years, charmonium production has thus been studied at different fixed target and collider facilities, in proton-nucleus \((p+A)\) collisions, where formation of a deconfined medium is usually not expected. A precise understanding of this so-called “normal” suppression is crucial to establish a robust baseline, with respect to which one can isolate the “anomalous” suppression pattern, specific to the dense QCD medium produced in heavy-ion collisions.

Among different charmonium states \(J/\psi\) is most extensively studied in nuclear collisions. However, not only \(J/\psi\), but other charmonium states (e.g., \(\psi(2S), \chi_c\)) are also suppressed in a QGP or in a nuclear matter. In our earlier work [5], we have predicted the \(J/\psi\) suppression in \(p+A\) collisions at the Facility for Anti-proton and Ion Research (FAIR) energy domain, within the ambit of the modified QVZ model [6]. Different parameters of the model were fixed using the available data on \(J/\psi\) production in \(p+p\) and \(p+A\) collisions from different fixed target experiments. Such calibrated model was then extrapolated to the FAIR energy domain. In the present article, we plan to check the viability of our model by examining the available data on \(\psi(2S)\) production in \(p+A\) collisions at SPS [7,8]. After successful description of the SPS data, calculations are extrapolated to FAIR SIS100 energy regime, to estimate the CNM suppression in \(\psi(2S)\) production.

A brief description of the model. – For the calculation of \(\psi(2S)\) production cross-sections, we have used the adapted version of the originally proposed QVZ model [6]. Details of the original model and its modifications as used in the present calculations can be found in refs. [5,6,9–11]. Here we present a brief description for the sake of completeness. In hadronic collisions, \(\psi(2S)\) production is assumed to be factorised into two steps. The initial stage is the production of the \(c\bar{c}\) pair described by leading-order (LO) perturbative QCD. At leading order the dominant contribution to \(c\bar{c}\) production comes from \(qq\) annihilation and \(gg\) fusion. This is followed by the non-perturbative formation of the physical resonance in the second stage. Resonance formation probabilities are incorporated in the QVZ model using different functional forms which account for a wide variety of color neutralisation mechanisms. The single differential \(\psi(2S)\) production cross-section in collisions of hadrons \(h_1\) and \(h_2\) at the centre-of-mass energy \(\sqrt{s}\) reads as

\[
\frac{d^2 \sigma_{h_1h_2}^{\psi(2S)}}{dy_{\text{cm}}} = K_{\psi(2S)} \int dQ^2 \left(\frac{d\sigma_{h_1h_2}}{dQ^2 dy_{\text{cm}}} \right) \times F_{c\bar{c}\rightarrow \psi(2S)}(q^2),
\]

(1)
where $Q^2 = q^2 + 4m_C^2$ with $m_C = 1.5\text{ GeV}$ being the mass of the charm quark and $y_{c\text{ms}}$ is the centre-of-mass rapidity of the $c\bar{c}$ pair. The term $K_{c(2S)}$ accounts for effective higher-order contributions and $F_{c\bar{c}\rightarrow\psi(2S)}(q^2)$ is the transition probability of a $c\bar{c}$ pair with relative momentum square q^2 to evolve into a physical $\psi(2S)$ meson. Two different functional forms, namely the Gaussian form ($F^{(G)}(q^2)$) and the power law form ($F^{(P)}(q^2)$) mimicking two different mechanisms of color neutralisation, were found earlier to describe the absolute J/ψ production cross-section data in $p + A$ collisions reasonably well [5]. Here we take the same two forms of $F(q^2)$ for calculating the $\psi(2S)$ production cross-section. They read as

\begin{equation}
F^{(G)}_{c\bar{c}\rightarrow\psi(2S)}(q^2) = N_{\psi(2S)}\theta(q^2)\exp[-q^2/(2\alpha^2)],
\end{equation}

\begin{equation}
F^{(P)}_{c\bar{c}\rightarrow\psi(2S)}(q^2) = N_{\psi(2S)}\theta(q^2)\left(4m_D^2 - 4m_C^2 - q^2 \right)
\times\left(1 - q^2/(4m_D^2 - 4m_C^2)\right)^{\alpha r},
\end{equation}

where $m_D = 1.85\text{ GeV}$ is the mass scale for the open charm production threshold and $N_{\psi(2S)}$ and α are two parameters of $F_{c\bar{c}\rightarrow\psi(2S)}(q^2)$, which should of course be different compared to those of J/ψ. They are fixed by comparing the model results with the available data. The introduction of $F_{\psi(2S)}$ defined as $F_{\psi(2S)} = K_{\psi(2S)} \times N_{\psi(2S)}$ helps in reducing the number of free parameters. We should mention here that in formulating the transition probability we have not considered the node in the $\psi(2S)$ wave function and used the same forms for both J/ψ and $\Psi(2S)$ [12].

In $p + A$ collisions, $\psi(2S)$ production cross-sections are modified because of cold nuclear matter effects. At the initial stage, nuclear modifications of the parton densities inside the target modify the $c\bar{c}$ pair production cross-section. In our analysis, we opted for leading-order (LO) MSTW2008 [13] central set with minimum uncertainties, for free proton parton distribution function (PDF) and LO EPS09 [14] interface to account for the nuclear effects. A detailed account of these initial state modifications of the parton distributions as they are implemented in our model calculations can be found in ref. [5].

The nascent $c\bar{c}$ pairs produced via partonic hard scattering experience multiple soft collisions with nuclear medium during their passage through the target. As a result, the pairs gain in energy and hence in invariant mass. In this process, some of the $c\bar{c}$ pairs can gain enough mass to cross the threshold to transmute to two open charm mesons. This results into the reduction in $\psi(2S)$ yield compared to the nucleon-nucleon collisions. The overall effect of the multiple scattering of the $c\bar{c}$ pairs inside the target is represented by a shift of q^2 in the transition probability [6,15],

\begin{equation}
q^2 \rightarrow q^2 = q^2 + \epsilon^2(L(A)),
\end{equation}

where ϵ^2 is the increase in the square of the relative four momentum of an evolving $c\bar{c}$ pair per unit path length, inside the nucleus and $\langle L(A) \rangle$ is the mean geometrical path length traversed by the $c\bar{c}$ pair inside the nuclear medium, from its point of production until it exits the medium.

Incorporation of final state dissociation in the QVZ framework is largely different from the conventional approach. In the usual practice, the nuclear dissociation of the different charmonium states is treated within the Glauber model with an absorption cross-section σ_{abs} quantifying the amount of dissociation. Note that, in the present approach, the nuclear effects are operative on the pre-resonant $c\bar{c}$ pairs which are yet to be hadronized. Hence for a given kinematic domain, the value of ϵ^2 should be the same for both J/ψ and $\psi(2S)$ formation. We have seen in ref. [5] that for both parameterisations of $F(q^2)$, the corresponding values of ϵ^2 exhibited non-trivial dependence on the beam energy (E_b). The lower the beam energy, the smaller the velocity of the colliding nuclei leading to larger collision time. Hence the CNM effects would be operative over a longer time and the charmonia during its evolution are more likely to encounter the nuclear medium. So as the beam energy is lowered, the value of ϵ^2 increases, implying larger nuclear dissociations. This feature is also in line with existing theoretical and experimental observations which (within a conventional Glauber model framework) report a larger J/ψ absorption cross-section at lower beam energies [16,17]. For a more quantitative information on values of ϵ^2 at different beam energies and for different parameterisations, see table III and fig. 13 of ref. [5].

Analysis of SPS data. – With this brief description of the model, we now move forward to examine the validity of the model calculations in describing the available data on $\psi(2S)$ production in low-energy $p + A$ collisions. Because of the much smaller production cross-sections, measured $\psi(2S)$ yields are not as abundant as the J/ψ production, particularly in low-energy fixed-target experiments. At SPS a systematic measurement is available only from NA50 Collaboration, which measured $\psi(2S)$ production via their di-muon decay channel in 450 GeV [8] and 400 GeV [7] $p + A$ collisions. With 450 GeV proton beam, NA50 collected two sets of $p + A$ data in two independent runs with different beam intensities. The first set was collected with a high-intensity (HI) 450 GeV proton beam using five different targets (Be, Al, Cu, Ag, W). Subsequently at the same beam energy new $p + A$ data samples were collected with the same set of targets with low beam intensity (LI) and having 20–30% of the statistics of the HI set. Though they were initially collected in a slightly different kinematic domain, for a coherent comparison all the data sets at 450 GeV are corrected for a common phase space window: $-0.5 < y_{c\text{ms}} < 0.5$ and $-0.5 < \cos(\theta_{c\bar{c}}) < 0.5$, where $y_{c\text{ms}}$ denotes the di-muon centre-of-mass rapidity and $\theta_{c\bar{c}}$ is the Collins-Soper angle. At 400 GeV, data were collected for six different targets (Be, Al, Cu, Ag, W, Pb) in the kinematic domain: $-0.425 < y_{c\text{ms}} < 0.575$ and $-0.5 < \cos(\theta_{c\bar{c}}) < 0.5$. Even though the beam intensities were slightly higher than that of 450 GeV HI data samples, the short beam...
production cross-sections in collisions. One advantage of fitting this ratio is that we is in contrast with our earlier model has effectively three parameters, namely \(f \) and \(\alpha \). Figure 1: (Color online) Model description of \(\psi(2S) \) production in \(p + A \) collisions at 400 and 450 GeV incident energy of the proton beams. Data are represented as the ratio of \(\psi(2S) \) production cross-sections in \(p + A \) collisions to that in \(p + \text{Be} \) collisions. As is usual practice, for 450 GeV beam energy, data for high-intensity (HI) and low-intensity (LI) runs are shown separately. At 450 GeV data were collected for five different target nuclei (Be, Al, Cu, Ag, W), while six different target nuclei (Be, Al, Cu, Ag, W, Pb) were used for a 400 GeV proton beam. The two theoretical curves represent two different parametric forms of \(\psi(2S) \) formation probability \((F(q^2)) \).

Here a few words on the limitations of the analysis of the \(\psi(2S) \) production in low-energy collisions may be required. For describing the production in \(p + A \) collisions, the QVZ model has effectively three parameters, namely \(f_{\psi(2S)} \) and \(\alpha_F \) to account for hadronization and \(e^2 \) to account for final state dissociation. Amongst these, \(e^2 \) is already fixed from our previous analysis of \(J/\psi \) production cross-sections, as argued above. The other two parameters, namely \(\alpha_F \) and \(f_{\psi(2S)} \), have to be fixed from the present data. This is in contrast with our earlier \(J/\psi \) analysis where both \(f_{J/\psi} \) and \(\alpha_F \) were fixed from the analysis of inclusive \(J/\psi \) production cross-sections as a function of the beam energy in the \(p + p \) collision. Unfortunately no such data are available for \(\psi(2S) \) production, leaving us to determine all the free parameters from \(p + A \) data only.

Figure 1 shows the variation of the \(\psi(2S) \) production cross-section for different target nuclei, as a function of \(\langle L \rangle \), in \(p + A \) collisions measured by the NA50 Collaboration. The data are expressed as the ratio of the \(\psi(2S) \) production cross-sections in \(p + A \) collisions to that in \(p + \text{Be} \) collisions. One advantage of fitting this ratio is that we get rid of the multiplicative fitting parameter \(f_{\psi(2S)} \). The two theory curves result from fitting the above data sets following two parameterisations of \(F(q^2) \). The \(\langle L \rangle \) values as calculated in the Glauber model framework for different target nuclei [8] and published with the data are used to generate the theoretical curves. The \(\alpha_F \) values extracted from different data sets are given in table 1. They are comparable within errors, i.e., they show a very weak beam energy dependence. As we are fitting the data to two not very different beam energies (the corresponding \(\sqrt{s_{NN}} \) are only 2 GeV apart), it is unlikely to expect a strong variation in the value of \(\alpha_F \). However, one might expect that it should not have a strong energy dependence given that it is related to the factorization scale \(Q_F^2 \) and not to the momentum fraction \(x \). In fact, while analyzing \(J/\psi \) data in \(p + N \) collisions, the corresponding \(\alpha_F \) has been found to be constant over a very broad energy range. Unfortunately the paucity of data prevents us from making such tests for \(\psi(2S) \) production.

We have also fitted the \(\psi(2S) \)-to-Drell-Yan ratio as shown in fig. 2. In the Drell-Yan (DY) process, a quark and an anti-quark from the nucleons of the two colliding nuclei annihilate to form a virtual photon which subsequently decays into a \(\mu^+ \mu^- \) pair. We have calculated the leading-order DY cross-section using the standard prescription [2]. The only CNM effect incorporated is the nuclear modification of the quark distributions inside the target. The inclusive cross-sections are obtained by integrating the double differential cross-section within the suitable mass and rapidity range as appropriate for a particular data set. Like our previous analysis, the only free parameter in this case is \(K_{eff} \), defined as \(K_{eff} = f_{\psi(2S)}/K_{DY} \), where \(f_{\psi(2S)} = K_{\psi(2S)} \times N_{\psi(2S)} \). \(K_{DY} \) takes care of higher-order effects in the DY production. The \(\alpha_F \) values are the same as those obtained from the fitting of the ratio \(\sigma_{p + A} / \sigma_{p + \text{Be}} \).

Finally we describe the double ratio for \(\psi(2S) \)-to-\(J/\psi \) production cross-sections in fig. 3. No parameter is tuned for this observable. The experimental data points are deduced from the measured values accounting for the appropriate propagation of errors. The theoretical curves result from the model analysis of the single ratios \((p + A) \) to \((p + \text{Be})\) for \(J/\psi \) and \(\psi(2S) \). The production cross-section of \(J/\psi \) and \(\psi(2S) \).
or ψ(2S) depends on the parameter α_F of the transition probability, F_{ψ→J/ψ/ψ(2S)}. As α_F is different the production cross-sections are also different, leading to a decrease in the double ratio as a function of (L). As expected both the curves give a satisfactory description of the data.

Predictions at FAIR energies. — The goal of the Compressed Baryonic Matter (CBM) experiment at Facility for Antiproton and Ion Research (FAIR) is to explore the QCD phase diagram in the region of high net-baryon densities and moderate temperatures [18]. This experiment is designed to run at unprecedented high interaction rates which would enable precision measurements of rare diagnostic probes which are sensitive to the dense phase of the nuclear fireball. The foreseen program includes the measurement of charmonia (J/ψ, ψ(2S)) via their decay into di-leptons.

The FAIR Modularised Start Version (MSV) comprises the SIS100 accelerator which would provide energies for gold beams up to 12 A GeV, which is below the kinematic threshold for charmonium production (E_{th}^b ≃ 12.2 A GeV for J/ψ and E_{th}^b ≃ 15.6 AGeV for ψ(2S)) and for protons up to 30 GeV. The research program of CBM at SIS100 includes the detailed measurements of charmonium production in p + A collisions with varying target mass number. Such measurements are expected to shed light on the systematics of charmonium production at close-to-threshold energies and their interaction with cold nuclear matter. In addition, they constitute the necessary reference for future measurements at the SIS300 accelerator, which will provide heavy-ion beams up to 35 A GeV.

The basic motivation of this work is to understand the mechanisms of the ψ(2S) production in proton-induced collisions at SPS energies and then to extrapolate them to much lower energies at FAIR. The dynamics of charmonium production has been studied in 25 AGeV Au+Au collisions using the HSD transport model [19]. Two different mechanisms of anomalous suppression in nuclear collisions, namely the hadronic co-mover scenario and QGP threshold scenario have been investigated in detail. The centrality dependence of ψ(2S)-to-J/ψ ratio is found to be distinguishably different for the two cases with larger suppression for co-mover absorption. However a clear identification of anomalous ψ(2S) suppression indeed demands for a correct estimate of the CNM dissociation effects. These can be correctly modelled in p + A collisions, where production of any secondary medium at such low energies is usually not possible.

We thus extrapolate our model calculations to estimate the ψ(2S) production expected in 30 GeV p + A collisions at FAIR SIS100 synchrotron. To do this we need to fix the values of α_F at relevant beam energies. As we saw in the previous section the α_F values obtained from fitting the SPS data are comparable within error bars. We have fitted those values to deduce beam-energy-independent constant values α_F(G) = 1.08 ± 0.04 and α_F(P) = 1.4 ± 0.2. These α_F’s are then used to estimate the cross-sections at FAIR. The beam kinematic threshold for ψ(2S) production in elementary collisions is E_{th}^b ≃ 15.6 GeV. Thus, ψ(2S) production may only be significant at top SIS100 energy. Figure 4 represents the ψ(2S) production cross-section in 30 GeV p + A collisions for seven different nuclear targets (A = Be, Al, Cu, In, W, Pb, U). Results are expressed in terms of the ratio of inclusive production cross-sections, evaluated over a rapidity slice −0.5 ≤ y_{cms} ≤ 0.5. In ref. [5] the c^2 values were obtained from fitting the data of different fixed target experiments with
different energy of the incident proton beam, in the range 158–920 GeV. The extracted best-fit values of c^2 were found to be sensitive to the employed form of transition probability and the underlying PDF set (different values of c^2 for free proton PDF and EPS09 nPDF). Both c^2_G and c^2_P show a non-negligible energy dependence with c^2_G increasing with the decrease in the collision energy. To derive the level of suppression at lower energies relevant for FAIR, the observed dependences of c^2, extracted for the EPS09 nPDF set, on the energy of the incident proton beam have been parameterised, for both $F^{(G)}(q^2)$ and $F^{(P)}(q^2)$ using exponential functions. This gives corresponding values at 30 GeV as $c^2_G = 0.31 \pm 0.05$ and $c^2_G = 0.44 \pm 0.08$. The amount of suppression is larger than that measured at SPS. As investigated in ref. [20], this is caused by the convolution of two CNM effects, the shadowing of the parton densities inside the target nuclei and the amplification of the final state dissociation in the kinematic region probed at FAIR. Note that in our model both CNM effects are the same for both J/ψ and $\psi(2S)$.

However, unlike SPS, at FAIR the model results indicate that in our model the shadowing of the parton densities inside the target nuclei is caused by the convolution of two CNM effects, the (q^{2G}) and (q^{2P}) parameterisation of the transition probability are included in our calculations. The bands represent the uncertainties in α_F ($\alpha_F^{(G)} = 1.08 \pm 0.04$ and $\alpha_F^{(P)} = 1.4 \pm 0.2$). For the Gaussian case, the lower edge of the band corresponds to a smaller value of α_F and vice versa for the power law.

For Gaussian parameterisation, in the spirit of the so-called “pL parameterisation” of the Glauber model [7], we can also find an absorption cross-section [5] for $\psi(2S)$ as $\sigma_{ab}^{(2S)} = 12.4 \pm 2.2$ mb. The corresponding value for the J/ψ meson was found to be $\sigma_{ab}^{J/\psi} = 10.1 \pm 1.77$ mb. In fact, being close to the kinematic threshold, the $\psi(2S)$ production cross-section will also be extremely low at FAIR. In ref. [19], the authors have provided an empirical formula (parameterisation) to obtain an inclusive $\psi(2S)$ production cross-section as a function of \sqrt{s}, in elementary $p + N$ collisions. At a beam energy of 30 GeV, this corresponds to an inclusive production cross-section of $\sigma_{NN}^{(2S)} \approx 0.1$ mb. Following the so-called α-parameterisation [3], the corresponding production cross-section for a nuclear target of mass number A is given by, $\sigma_{ab}^{A(2S)} = \sigma_{NN}^{(2S)} \times A^\alpha$. For a typical value of $\alpha = 0.95$ the corresponding inclusive $\psi(2S)$ production cross-section in 30 GeV $p + Au$ collisions comes to be 15 nb. The related $\psi(2S)$ yield in the di-muon channel will be very low, making their detection extremely challenging. To enable the measurement of such rare probes, the FAIR accelerators are being designed with maximum foreseen beam intensity as high as 3×10^{13} for protons and 10^9/s for heavy ions [21], and detectors with extremely high rate capabilities [22]. It may be noted here that, in addition to perturbative production, new mechanisms of charm production are proposed in the literature [23,24] at
near-threshold beam energies. Sub-threshold production of charmonia via decay of massive baryonic resonances produced by multi-step collision of nucleons [23] might increase the ψ (2S) yield in low-energy collisions and thereby facilitate their detection. It has also been shown [25] that Fermi momenta of the nuclei play only a minor role in particle production. In this context, the reader should also take note of the fact that the p + A data at 30 GeV cannot be directly used to estimate the CNM effects in ψ(2S) production in nuclear collisions at sub-threshold regime.

Even though we explicitly talk about FAIR, our estimations will be useful for any other existing or future facility like NICA [26] or J-PARC [27] which would aim for investigation of CNM effects in charmonium production at near-threshold energies. Of course the essential requirement to make such measurements feasible is to have proton beams with very high intensity and very fast detectors and electronics to cope with resulting high interaction rates.

Limitations on the applicability of our model calculations in the FAIR energy domain may be noted. The QVZ model is based on QCD factorization and perturbative production of the cc pairs, which in general is operative at high energies. Here we assume that factorization still holds for charmonium production close to threshold, which is not free from doubt. An alternative approach based on scaling arguments for near-threshold quarkonium production can be found in ref. [28]. Moreover, the model assumes propagation of the perturbatively produced cc pairs through the nucleus and the non-perturbative transition from cc → ψ(2S) occurs outside the nucleus. The validity of this assumption is also questionable at low energies like those at SPS and FAIR owing to smaller Lorentz dilation of the intrinsic resonance formation times in the target rest (laboratory) frame. However, the determination of the quarkonium formation times are far from being unique and strongly model dependent [29–33]. At beam energy of 158 GeV, with an intrinsic formation time of τ0 ∼ 0.3 fm [31], the J/ψ formation length in the laboratory frame (l_{J/ψ}) at mid-rapidity (corresponding to x_F = 0) is around 3 fm. Even then the QVZ model can describe all the available data for J/ψ production in both 400 GeV and 158 GeV p + A collisions collected by the NA50 and NA60 Collaborations at SPS [5]. The model also gives a satisfactory description of the latest data on J/ψ suppression measured in nuclear collisions for both 158 A GeV In+In and Pb+Pb collisions as measured by NA60 and NA50 Collaborations, respectively [9]. For ψ(2S) production let us take the intrinsic formation time as τ_0 ∼ 0.91 fm [32]. At SPS for E_b = 400 GeV this would correspond to a x_F range −0.12 < x_F < 0.16 and formation length (l_{ψ(2S)}) range 8.6 < l_{ψ(2S)} < 22.8 fm, for the measured di-muon rapidity interval −0.425 < y_{cm} < 0.575. Hence the assumption of resonance formation taking place outside the nucleus in p + A collisions is satisfied. As described in the present manuscript, the QVZ model gives a reasonable description of the data. Unfortunately there are no data on the ψ(2S) production in 158 GeV p + A collisions to test the model calculations. At FAIR for E_b = 30 GeV, a rapidity interval of −0.5 < y_{cm} < 0.5 corresponds to almost the same x_F range (−0.498 < x_F < 0.498). The corresponding l_{ψ(2S)} (with τ_0 = l_{ψ(2S)} = 0.91 fm) ranges from 2.5 fm to 5.2 fm (note that for τ_0 = l_{ψ(2S)} = 1.5 fm [29], l_{ψ(2S)} will be accordingly larger). Charmonium data to be collected at FAIR SIS100 are thus highly valuable to validate or nullify some of the above arguments. In this work the model includes the two most important CNM effects, namely initial state shadowing/anti-shadowing and final state dissociation of the cc pairs, and has been found to describe all the available data set on J/ψ and ψ' production in p + A collisions in the SPS energy domain. This certainly makes it viable for making predictions at FAIR energies, which can be tested as soon as we collect data from SIS100.

Summary. – In summary, we have analysed the available SPS data on ψ(2S) production in p + A collisions measured by the NA50 Collaboration. The adapted version of the QVZ model is employed for this purpose. The model has been found earlier to give a reasonable description of J/ψ production at SPS. Non-availability of suitable data at low-energy collisions, makes the analysis rather complex by adding large uncertainties in the determination of the model parameters. For both ψ(2S) and DY initial state the modification of the parton distributions inside the target is taken into account. Within the QVZ approach, the final state dissociation of the ψ(2S) mesons inside the cold nuclear medium is accounted through the multiple scattering of the pre-resonant cc pairs with the spectator nucleons. The model is found to describe the observed suppression for both forms of the transition probability. Model calculations are extrapolated to the FAIR energy domain. A much larger suppression is expected for SIS100 p + A collisions. Data from SIS100 should be able to remove large uncertainties in the parameters and thus could lead to a much precise estimate. With such precise estimates in the p + A scenario one can plan to extrapolate to the A + A scenario once the SIS300 synchrotron ring becomes operative.
references

[1] Matsui T. and Satz H., Phys. Lett. B, 178 (1986) 416.
[2] Vogt R., Phys. Rep., 310 (1999) 197.
[3] Kluberg L. and Satz H., arXiv:0901.3831 [hep-ph].
[4] Andronic A., Nucl. Phys. A, 931 (2014) 135.
[5] Bhaduri P. P., Chaudhuri A. K. and Chattopadhyay S., Phys. Rev. C, 84 (2011) 054914.
[6] Qiu J., Vary J. P. and Zhang X., Nucl. Phys. A, 698 (2002) 571; Phys. Rev. Lett., 88 (2002) 232301.
[7] NA50 Collaboration (Alessandro B. et al.), Eur. J. Phys., 48 (2006) 329.
[8] NA50 Collaboration (Alessandro B. et al.), Eur. J. Phys., 33 (2004) 31.
[9] Bhaduri P. P., Chaudhuri A. K. and Chattopadhyay S., Phys. Rev. C, 85 (2012) 064911.
[10] Chaudhuri A. K., Phys. Rev. Lett., 88 (2002) 232302.
[11] Chaudhuri A. K., Phys. Rev. C, 66 (2002) 021902.
[12] Huefner J., Ivanov Yu. P., Kopeliovich B. Z. and Tarasov A. V., Phys. Rev. D, 62 (2000) 094022.
[13] Martin A. D., Stirling W. J., Thorne R. S. and Watt G., Eur. Phys. J. C, 63 (2009) 189; 64 (2009) 653; 70 (2010) 51.
[14] Eskola K. J., Paukkunen H. and Salgado C. A., JHEP, 04 (2009) 065.
[15] Benesh C. J., Qiu J. and Vary J. P., Phys. Rev. C, 50 (1994) 1015.
[16] Lourenco C., Vogt R. and Wohri H. K., JHEP, 02 (2009) 014.
[17] Arnaldi Roberta for the NA60 Collaboration, Nucl. Phys. A, 830 (2009) 345c; NA60 Collaboration (Arnaldi R. et al.), Phys. Lett. B, 706 (2012) 263.
[18] CBM Collaboration (Abramov T. et al.), Eur. Phys. J. A, 53 (2017) 60.
[19] Linnyk O., Bratkovskaya E. L., Cassing W. and Stocker H., Nucl. Phys. A, 786 (2001) 183.
[20] Bhaduri P. P., Chaudhuri A. K. and Chattopadhyay S., Phys. Rev. C, 89 (2014) 044912.
[21] Senger P., Cosmic Matter in the Laboratory: The Compressed Baryonic Matter experiment at FAIR, talk given at CBM School: Lectures on Dense Baryonic Matter, September 22–23 2017, CCNU, Wuhan, China.
[22] CBM Collaboration, MUn CHamber (MUCH) Technical Design Report (TDR), edited by Chattopadhyay S. et al., GSI-2015-02580.
[23] Steinheimer J., Botvina A. and Bleicher M., Phys. Rev. C, 95 (2017) 014911.
[24] Kiselev Y. T., Paryev E. Y. and Zaitsev Y. M., Int. J. Mod. Phys. E, 23 (2014) 1450085; Paryev E. Y., Kiselev Y. T. and Zaitsev Y. M., Nucl. Phys. A, 968 (2017) 1.
[25] Steinheimer J., Lorenz M., Becattini F., Stock R. and Bleicher M., Phys. Rev. C, 93 (2016) 064908.
[26] Toney V., PoS CPOD07 (2007) 057.
[27] http://j-parc.jp/researcher/Hadron/en/index.html.
[28] Bhaduri P. P. and Gupta S., Phys. Rev. C, 88 (2013) 045205.
[29] Karsch F. and Satz H., Z. Phys. C, 51 (1991) 209.
[30] Kopeliovich B. Z. and Zakharov B. G., Phys. Rev. D, 44 (1991) 3466.
[31] He Y. B., Huefner J. and Kopeliovich B. Z., Phys. Lett. B, 477 (2000) 93.
[32] Kharzeev D. and Thews R. L., Phys. Rev. C, 60 (1999) 041901.
[33] Blaziot J. P. and Ollitrault J. Y., Phys. Lett. B, 199 (1987) 499.

Ψ(2S) production in p + A collisions