A dynamic model of gene expression in monocytes reveals differences in immediate/early response genes between adult and neonatal cells

Shelley Lawrence†1, Yuhong Tang†2, M Barton Frank2, Igor Dozmorov2, Kaiyu Jiang1, Yanmin Chen1, Craig Cadwell2, Sean Turner2, Michael Centola2 and James N Jarvis*1

Address: 1Dept. of Pediatrics, Neonatal Section, University of Oklahoma College of Medicine, Oklahoma City, OK, USA and 2Arthritis & Immunology Program Oklahoma Medical Research Foundation, Oklahoma City, 73104, USA

Email: Shelley Lawrence - lawrence@pediatrix.com; Yuhong Tang - yuhong-tang@omrf.ouhsc.edu; M Barton Frank - Bart-Frank@omrf.ouhsc.edu; Igor Dozmorov - igor-dozmorov@omrf.ouhsc.edu; Kaiyu Jiang - kaiyu-jiang@ouhsc.edu; Yanmin Chen - yanmin-Chen@ouhsc.edu; Craig Cadwell - craig-cadwell@omrf.ouhsc.edu; Sean Turner - sean-turner@omrf.ouhsc.edu; Michael Centola - michael-centola@omrf.ouhsc.edu; James N Jarvis* - james-jarvis@ouhsc.edu

* Corresponding author †Equal contributors

Abstract

Neonatal monocytes display immaturity of numerous functions compared with adult cells. Gene expression arrays provide a promising tool for elucidating mechanisms underlying neonatal immune function. We used a well-established microarray to analyze differences between LPS-stimulated human cord blood and adult monocytes to create dynamic models for interactions to elucidate observed deficiencies in neonatal immune responses.

We identified 168 genes that were differentially expressed between adult and cord monocytes after 45 min incubation with LPS. Of these genes, 95% (159 of 167) were over-expressed in adult relative to cord monocytes. Differentially expressed genes could be sorted into nine groups according to their kinetics of activation. Functional modelling suggested differences between adult and cord blood in the regulation of apoptosis, a finding confirmed using annexin binding assays. We conclude that kinetic studies of gene expression reveal potentially important differences in gene expression dynamics that may provide insight into neonatal innate immunity.

Background

The defects in neonatal adaptive immunity are relatively easy to understand a priori. Although there are complexities to be considered [1,2], experimental evidence demonstrates that newborns, lacking prior antigen exposure, must develop immunologic memory based on postnatal experience with phogens and environmental immunogens [3-5].

It is less clear why there should be defects in newborns' innate immunity, although these defects are well documented. For example, newborns have long been known to exhibit defects in phagocytosis [6], chemotaxis [7,8], and adherence [9], the latter possibly due to aberrant regulation of critical cell-surface proteins that mediate leukocyte-endothelial interactions [10]. Newborn monocytes
also exhibit diminished secretion of numerous cytokines under both stimulated and basal conditions [11-13].

Elucidating the causes of these defects is a crucial question in neonatal medicine, since infection remains a major cause of morbidity and mortality in the newborn period. However, unravelling the complex events in monocyte and/or neutrophil activation, from ligand binding to activation of effector responses, is clearly a daunting challenge. Any one of numerous pathways from the earliest cell signalling events to protein synthesis or secretion could be relevant, and focusing on any one may overlook critical aspects of cellular regulation. In this context, genomic and/or proteomic approaches may offer some important advantages, at least in the initial phases of investigation, by allowing investigators to survey the panoply of biological processes that may be relevant to identifying critical biological distinctions.

Recently published work has documented differences in gene expression between adult and cord blood monocytes [14], although these studies did not elucidate the fundamental, functional differences between cord blood and adult cells. The studies we report here demonstrate how computational analyses, applied to microarray data, can elucidate critical biological functions when analysis extends beyond the identification of differentially expressed genes.

Methods
Cells and cellular stimulation
Monocytes were purified from cord blood of healthy, term infants and from the peripheral blood of healthy adults by positive selection using anti-CD-14 mAb-coated magnetic beads (Miltenyi Biotec, Auburn, CA, USA) according to the manufacturer’s instructions. Informed consent was obtained from adult volunteers; collection of cord blood was ruled exempt from consent after review by the Oklahoma Health Sciences Center IRB. In brief, blood was collected into sterile tubes containing sodium citrate as an anticoagulant (Becton Dickinson, Franklin Lakes, NJ). Peripheral blood mononuclear cells (PBMC) were purified from the anti-coagulated blood using gradient separation on Histopaque-1077 performed directly in the blood collection tubes. Cells were washed three times in Ca²⁺ and Mg²⁺-free Hank’s balanced salt solution. PBMC were incubated for 20 min at 4°C with CD14 microbeads (Miltenyi Biotec) and then were incubated for 20 min at 4°C with CD14 microbeads. The cells were washed three times, resuspended in 500 μl Ca²⁺ and Mg²⁺-free PBS containing 5% FBS/1 × 10⁸ cells. The suspension was then applied to a MACs column. After unlabeled cells passed through, the column was washed with 3 × 500 μl Ca²⁺ and Mg²⁺-free PBS. The column was removed from the separator and was put on a new collection tube. One ml of Ca²⁺ and Mg²⁺-free PBS was then added onto the column, which was immediately flushed by firmly applying the plunger supplied with the column.

Purified monocytes were incubated with LPS from Escherichia coli 0111:4B (Sigma, St. Louis, MO) at 10 ng/ml for 45 min and 2-hours in RPMI 1640 with 10% fetal bovine serum or studied in the absence of stimulation (“zero time”). It should be noted that this product is not "pure," and stimulates both TLR-4 and TRL-2 signaling pathways [15]. A smaller number of replicates (n = 5) was analyzed after 24 hr incubation. After the relevant time points, monocytes were lysed with TriZol (Invitrogen, Carlsbad, CA, USA) and RNA was isolated as recommended by the manufacturer. Cells from eight different term neonates and eight different healthy adults were used for these studies.

Gene microarrays
The microarrays used in these experiments were developed at the Oklahoma Medical Research Foundation Microarray Research Facility and contained probes for 21,329 human genes. Slides were produced using commercially available libraries of 70 nucleotide long DNA molecules whose length and sequence specificity were optimized to reduce the cross-hybridization problems encountered with cDNA-based microarrays (Qiagen-Operon). The oligonucleotides were derived from the UniGene and RefSeq databases. The RefSeq database is an effort by the NCBI to create a true reference database of genomic information for all genes of known function. All 11,000 human genes of known or suspected function were represented on these arrays. In addition, most undefined open reading frames were represented (approximately 10,000 additional genes).

Oligonucleotides were spotted onto Corning® UltraGAPS™ amino-silane coated slides, rehydrated with water vapor, snap dried at 90°C, and then covalently fixed to the surface of the glass using 300 ml, 254 nm wavelength ultraviolet radiation. Unbound free amines on the glass surface were blocked for 15 min with moderate agitation in a 143 mM solution of succinic anhydride dissolved in 1-methyl-2-pyrrolidinone, 20 mM sodium borate, pH 8.0. Slides were rinsed for 2 min in distilled water, immersed for 1 min in 95% ethanol, and dried with a stream of nitrogen gas.

Labeling, hybridization, and scanning
Fluorescently labeled cDNA was separately synthesized from 2.0 μg of total RNA using an oligo dT12-18 primer, PowerScript reverse transcriptase (Clontech, Palo Alto, CA), and Cy3-dUTP (Amersham Biosciences, Piscataway, NJ) for 1 hour at 42°C in a volume of 40 μl. Reactions were quenched with 0.5 M EDTA and the RNA was hydrolyzed by addition of 1 M NaOH for 1 hr at 65°C. The reac-
tion was neutralized with 1 M Tris, pH 8.0, and cDNA was then purified with the Montage PCR96 Cleanup Kit (Millipore, Billerica, MA). cDNA was added to ChipHybe™ hybridization buffer (Ventana Medical Systems, Tucson, AZ) containing Cot-1 DNA (0.5 mg/ml final concentration), yeast tRNA (0.2 mg/ml), and poly(dA)40–60 (0.4 mg/ml). Hybridization was performed on a Ventana Discovery system for 6 hr at 42°C. Microarrays were washed to a final stringency of 0.1× SSC, and then scanned using a dual-color laser (Agilent Biotechnologies, Palo Alto, CA). Fluorescent intensity was measured by Imagene™ software (BioDiscovery, El Segundo, CA).

Quantitative PCR

Gene-specific primers for 10 genes (Erbb3, Tmod, Dscr1l1, Sp1, Scya4, Gro2, Crt1, Scya3, Scya3l1, and Itil-a) were designed with a 60°C melting temperature and a length of 19–25 bp for PCR products with a length of 90–140 bp, using Applied Biosystems Inc (ABI, Foster City, CA) Primer Express 1.5 software. PCR was run with 2 μl cDNA template in 15 μl reactions in triplicate on an ABI SDS 7700 using the ABI SYBR Green I Master Mix and gene specific primers at a concentration of 1 μM each. The temperature profile consisted of an initial 95°C step for 10 minutes (for Taq activation), followed by 40 cycles of 95°C for 15 sec, 60°C for 1 min, and then a final melting curve analysis with a ramp from 60°C to 95°C over 20 min. Gene-specific amplification was confirmed by a single peak in the ABI Dissociation Curve software. No template controls were run for each primer pair. Since equal fluorescence between groups at one or more time points, and a minimum 1.5-fold difference in the mean expression values between groups at one or more time points, and a minimum of 80% reproducibility using the jack-knife method. A jack-knife is the most common type of Leave-one-out-cross-validation (LOOCV); it is used here to cross-validate genes selected by differential analysis [19]. Time series analysis was performed using the hypervariable (HV) gene method previously described by our group [20].

After selection, HV genes are clustered and interrogated for gene-gene interactions. K-means clustering, an unsupervised technique, was performed on the HV genes to create unbiased clusters. Discriminate function analysis (DFA), a supervised technique, was used to determine and spatially map gene interactions [21].

All statistical analysis was performed in Matlab R14 (Natick, MA) and Statistica v7 (Tulsa, OK, USA). An alpha level of 0.05 was considered statistically significant for all analyses.

Analysis of the apoptosis assays was undertaken using both parametric and non-parametric analysis methods. Parametric analysis was undertaken using the student's t-test; non-parametric analysis used the Mann-Whitney U-test. A p-value of > 0.05 was the threshold for rejecting the null hypothesis.

Discriminant function analysis

DFA is a method that identifies a subset of genes whose expression values can be linearly combined in an equation, denoted a root, whose overall value is distinct for a given characterized group. DFA therefore, allows the genes that maximally discriminate among the distinct groups analyzed to be identified. In the present work, a
variant of the classical DFA, named the Forward Stepwise Analysis, was used to select the set of genes whose expression maximally discriminated among experimentally distinct groups. The Forward Stepwise Analysis was built systematically in an iterative manner. Specifically, at each step all variables were reviewed to identify the one that most contributes to the discrimination between groups. This variable was included in the model, and the process proceeded to the next iteration. The statistical significance of discriminative power of each gene was also characterized by partial Wilk's Lambda coefficients, which are equivalent to the partial correlation coefficient generated by multiple regression analyses. The Wilk's Lambda coefficient used a ratio of within-group differences and the sum of within-plus between-group differences. Its value ranged from 1.0 (no discriminatory power) to 0.0 (perfect discriminatory power).

Computer analysis of functional associations between differentially expressed genes
In addition to the above analyses, genes showing the most significant differences between neonatal and adult cells were characterized functionally using pre-existing databases such as PubMed, BIND, KEGG, and Ontoexpress. Biological associations of the differentially expressed genes were modelled using Ingenuity Pathways Analysis (Redwood City, CA). Data analyzed through this technique can then be resolved into cogent models of the specific biological pathways activated under the experimental conditions used in the microarray analyses.

Results
Differential gene expression analysis
Table 1 lists genes determined to be differentially expressed between cord and adult peripheral blood monocytes, as described above. No genes were found to be statistically significantly differentially expressed between adult and cord monocytes in the absence of LPS exposure. 168 genes were differentially expressed between adult and cord monocytes after 45 min incubation with LPS. 95% of these genes (159 of 168) were over-expressed in adult relative to cord monocytes. After 120 minutes of LPS exposure, 24 genes were differentially expressed between adult and cord monocytes. Of the latter genes, 23 were more highly expressed in cord than adult monocytes. This pattern of differentially expressed genes suggested an initial delayed response to LPS followed by an enhanced transcription of genes in cord relative to adult monocytes. To test this hypothesis, k-means clustering was used to categorize differentially expressed genes based on their temporal profiles. Relative decreases in gene transcription by cord monocytes at 45 min were seen in 6 of the 9 clusters (Figure 1). Each of these clusters contained between 15 and 46 genes. Examination of the clusters showed that differences between groups after 45 minutes of LPS exposure were attributable to a) genes in certain clusters that were up-regulated in adult monocytes only, b) genes in other clusters that were down-regulated in cord monocytes only, or c) genes in yet other clusters that were up-regulated in adult and down-regulated in cord monocytes.

These results, summarized in a heat map in Figure 2, indicated a high complexity of gene expression differences between adult monocytes and cord blood monocytes in response to LPS.

In addition to the above genes which differed in expression between groups following LPS exposure, 516 genes were also identified that were differentially expressed over time within a group. A supplementary table containing these data is available upon request. For these genes, a similar pattern of dynamic expression was seen as was observed in the other group. Therefore, these genes reflect common responses to LPS in monocytes from both sources.

A subset of genes that were differentially expressed either between adult and cord blood monocytes were selected for validation using the quantitative real-time polymerase chain reaction method (QRT-PCR). These included four genes that differed between groups after 45 min of LPS exposure (Erbb3, Tmod, Dscr11, and Sp1), and six genes that differed in expression after 2 hours of LPS exposure (Scya4, Gro2, Cr11, Scya3, Scya3h, and Il-1a). Nine of the ten genes tested for QRT-PCR validation demonstrated similar levels of relative expression in QRT-PCR experiments as in the microarrays. Only CRI1 failed to corroborate the microarray data.

Hypervariable gene analysis
One hundred eighty-eight hypervariable (HV) genes were selected from expressed genes in adult and cord blood monocytes based on their changes across three time points. These genes exhibited significantly higher expression variation over time than the majority of genes. Differences in variation between two experimental sample sets, in this case adult and neonatal samples, can represent differences in homeostatic control mechanisms between these two sets [20]. The selected genes were hypervariable in both sample groups. HV genes with highly correlated expression levels in a given population are likely to share function [20]. A correlation based clustering procedure was carried out for these HV genes as described in the methods section. Genes belonging to the 5 largest clusters were used for creation of a graphical output, denoted a correlation mosaic. A correlation mosaic allows identification of the genes within clusters by visual inspection and subsequent functional analysis of genes within clusters (Figures 3A &3B). Figure 3A represents 110 genes of the same cluster allocation between adult and cord blood monocyte samples, demonstrating a very high similarity.
Table 1: Differentially expressed genes between adult and cord monocytes at specific time points. T = time (min) at which the sample was taken. Numbers indicate corrected expression values.

Genbank #	Symbol	Gene Description	Adult T = 0	Adult t = 45	Adult t = 120	Cord t = 0	Cord t = 45	Cord t = 120
NM_034233	CTLA1	Similar to granzyme B (granzyme 2, cytotoxic T-lymphocyte-associated serine esterase 1)	317	419	299	199	193	264
AB037796	PDCD6P	Programmed cell death 6 interacting protein	75	155	68	79	70	81
NM_024969	TIA1-2	TGFb-induced apoptosis protein 2	63	113	107	53	68	116
NM_031277	SPTAN1	Spectrin, alpha, non-erythrocytic 1 (alpha-fodrin)	713	842	1171	724	824	2093

Apoposis

AK001313 | RPLP0 | Ribosomal protein, large, P0 | 704 | 1465 | 947 | 703 | 756 | 669 |
NM_006799 | PRSS21 | Prostate, serine, 21 (testisin) | 204 | 789 | 457 | 169 | 360 | 400 |
NM_003774 | GALNT4 | UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminytransferase 4 (GalNAc-T4) | 576 | 651 | 648 | 528 | 378 | 578 |
AK057790 | cDNA FLJ25061 fis, clone CBL04730 | 245 | 373 | 302 | 244 | 215 | 200 |
NM_004223 | UBE2L6 | Ubiquitin-conjugating enzyme EZL 6 | 128 | 191 | 146 | 108 | 99 | 109 |
NM_014710 | GPRAS1 | KIAA0443 gene product | 122 | 182 | 106 | 113 | 119 | 95 |
NM_021090 | MTMR3 | Myotubularin related protein 3 | 109 | 171 | 137 | 108 | 87 | 138 |
AF339824 | HS6ST3 | Heparan sulfate 6-O-sulfotransferase 3 | 89 | 112 | 91 | 94 | 46 | 76 |
NM_012180 | FBXO8 | F-box only protein 8 | 40 | 67 | 42 | 45 | 33 | 43 |
U65659 | RPL5 | Ribosomal protein L5 | 34 | 48 | 37 | 30 | 26 | 36 |
NM_001870 | CPA3 | Carboxypeptidase A3 (mast cell) | 183 | 495 | 610 | 146 | 949 | 756 |
NM_006145 | DNAJ1 | DnaJ (Hsp40) homolog, subfamily B, member 1 | 179 | 277 | 408 | 168 | 299 | 745 |
AK025547 | MRPL30 | Mitochondrial ribosomal protein L30 | 83 | 118 | 126 | 81 | 101 | 211 |
NM_004439 | PCSK1 | Proprotein convertase subtilisin/kexin type 1 | 39 | 55 | 53 | 40 | 78 | 88 |

Cell/Organism Movement

NM_002067 | GNAI1 | Guanine nucleotide binding protein (G protein), alpha 11 (Gq class) | 555 | 870 | 607 | 540 | 468 | 664 |
NM_002465 | MYBPC1 | Myosin binding protein C, slow type | 81 | 140 | 154 | 88 | 80 | 161 |
NM_003275 | TMOD | Tropomodulin | 276 | 151 | 481 | 257 | 344 | 503 |
AK026164 | MYL6 | Myosin, light polypeptide 6, alkali, smooth muscle and non-muscle | 7 | 6 | 48 | 5 | 16 | 11 |

Small Molecule Interactions

NM_006030 | CAO2A2D2 | Calcium channel, voltage-dependent, alpha 2/delta subunit 2 | 670 | 1390 | 1021 | 641 | 639 | 946 |
AK025170 | SFXNS | FLJ25175 fis, clone COL05829 | 431 | 537 | 437 | 405 | 295 | 374 |
NM_021097 | SLC8A1 | Solute carrier family 8 (sodium/calcium exchanger), member 1 | 396 | 456 | 458 | 412 | 276 | 369 |

Signal Transduction

NM_031444 | RAB6C | RAB6C | 827 | 1658 | 1307 | 626 | 773 | 1251 |
NM_001982 | ERBB3 | Y-erb-b2 erythroblast leukemia viral oncogene homolog 3 | 603 | 1375 | 671 | 555 | 584 | 643 |
AK026479 | SNX14 | Sorting nexin 14 | 682 | 1207 | 879 | 624 | 567 | 883 |
NM_018979 | PRKWN1 | Protein kinase, lysine deficient 1 | 451 | 813 | 782 | 516 | 480 | 792 |
NM_006148 | LPSN | Leupaxin | 329 | 539 | 445 | 322 | 298 | 503 |
BC005265 | clone IMAGE39243B, mRNA, partial cds | 257 | 418 | 275 | 275 | 275 | 206 |
NM_002473 | ARHGEF2 | Rho/actin guanine nucleotide exchange factor (GEF) 2 | 215 | 300 | 228 | 197 | 176 | 186 |
AF130993 | MAP3K4 | Mitogen-activated protein kinase kinase kinase 4 | 237 | 285 | 275 | 221 | 171 | 223 |
AK000383 | MKPX | Mitogen-activated protein kinase phosphatase x | 218 | 221 | 244 | 233 | 126 | 197 |
NM_022304 | HRH2 | Histamine receptor H2 | 45 | 121 | 86 | 42 | 74 | 79 |
NM_030753 | WNT3 | Wingless-type MMTV integration site family member 3 | 105 | 117 | 92 | 109 | 63 | 81 |
AB024574 | GTPBP2 | GTP binding protein 2 | 89 | 90 | 99 | 74 | 57 | 92 |
NM_002836 | PTPrA | Protein tyrosine phosphatase, receptor type, A | 8 | 6 | 80 | 6 | 16 | 28 |
NM_003655 | CAMK1 | Calcium/calmodulin-dependent protein kinase | 4940 | 10131 | 4446 | 4785 | 4907 | 7190 |

Cellular Metabolism & Cell Division

NM_006170 | NOL1 | Nucleolar protein 1 (120 kD) | 575 | 1815 | 1021 | 499 | 896 | 1093 |
Table 1: Differentially expressed genes between adult and cord monocytes at specific time points. T = time (min) at which the sample was taken. Numbers indicate corrected expression values. (Continued)

Gene Expression	Immune Function
AL133115 COVA1 Cytosolic ovarian carcinoma antigen 1	**NK1R** NK1 receptor, tachykinin 1
D86962 GRB10 Growth factor receptor-bound protein 10	**MDM2** MDM2 proto-oncogene
NM_006628 SLC1A5 Solute carrier family 1 (neutral amino acid transporter), member 5	**CD40** Cluster of differentiation 40, TNF receptor
D17525 MASP1 Mannan-binding lectin serine protease 1 (C4/C2 activating component of Rα-reactive factor)	**CD4** Cluster of differentiation 4, T-cell surface antigen
NM_016518 PIPOX Pipoxenic acid oxidase	**CD28** Cluster of differentiation 28, T-cell surface antigen
NM_012157 FBXL2 F-box and leucine-rich repeat protein 2	**CD40L** Cluster of differentiation 40 ligand, TNF receptor
NM_018446 AD-017 Glycosyltransferase AD-017	**CD80** Cluster of differentiation 80, B7 antigen
NM_001609 ACADSB Acyl-Coenzyme A dehydrogenase 6 mitochondrial	**CD95** Cluster of differentiation 95, tumor necrosis factor receptor
NM_001647 APOD Apolipoprotein D	**CD95L** Cluster of differentiation 95 ligand, tumor necrosis factor receptor
NM_012113 CA14 Carbonic anhydrase XIV	**CD154** Cluster of differentiation 154, B7-1 antigen
AB067472 DKK2F24 34L1435	**CD155** Cluster of differentiation 155, B7-2 antigen
NM_002916 RFC4 Replication factor C (activator 1) 4 (37 kD)	**CD160** Cluster of differentiation 160, B7-3 antigen
NM_004889 ATP5J2 ATP synthase, H+ transporting, mitochondrial F0 complex subunit f, isoform 2	**CD2** Cluster of differentiation 2, T-cell surface antigen
AK057066 cDNA FLJ32504 fis, clone SMINT1000016, weakly similar to 3-hydroxyacylCoA dehydrogenase	**CD20** Cluster of differentiation 20, B-cell surface antigen
AK021722 AGPAT5 Lysophosphatic acid acyltransferase, epsilon	**CD30** Cluster of differentiation 30, anaplastic lymphoma kinase
NM_003664 AP3B1 Adaptor-related protein complex 3, beta 1 subunit	**CD3** Cluster of differentiation 3, T-cell surface antigen
APF4760 Sept10 Septin 10	**CD3E** Cluster of differentiation 3E, T-cell surface antigen
NM_004910 PITPNM Phosphatidylinositol transfer protein, membrane-associated	**CD3G** Cluster of differentiation 3G, T-cell surface antigen
NM_018216 FLJ10782 Pantothenic acid transferase 1, membrane-associated	**CD3Z** Cluster of differentiation 3Z, T-cell surface antigen
NM_001714 BICD1 Bicaudal D homolog 1 (Drosophila)	**CD40L** Cluster of differentiation 40 ligand, TNF receptor
NM_005494 LEN5 Leukocyte receptor cluster (LRC) member 5	**CD44** Cluster of differentiation 44, hyaluronan receptor
NM_005088 DXYS15 SE DNA segment on chromosome X and Y (unique) 155 expressed sequence	**CD45** Cluster of differentiation 45, leukocyte common antigen
NM_006298 ZNF192 Zinc finger protein 192	**CD45RA** Cluster of differentiation 45RA, leukocyte common antigen
NM_004991 NFE2L3 Nuclear factor (erythroid-derived 2)-like 3	**CD45RB** Cluster of differentiation 45RB, leukocyte common antigen
NM_004889 ZNF297B Zinc finger protein 297B	**CD45RC** Cluster of differentiation 45RC, leukocyte common antigen
NM_005628 HNF3B Hepatocyte nuclear factor 3, beta 3	**CD45R0** Cluster of differentiation 45R0, leukocyte common antigen
NM_001784 LOC58502 C2H2 (Kruppel-type) zinc finger protein	**CD45RO** Cluster of differentiation 45RO, leukocyte common antigen
NM_025212 IDAX Dvl-binding protein IDAX (inhibition of the Dvl and Axin complex)	**CD45R70** Cluster of differentiation 45R70, leukocyte common antigen
NM_002292 PBX1 Pre-B-cell leukemia transcription factor 1	**CD45R75** Cluster of differentiation 45R75, leukocyte common antigen
NM_017617 NOTCH1 Notch-1 homolog	**CD45R80** Cluster of differentiation 45R80, leukocyte common antigen
NM_004515 FOXF1 Forkhead box F1	**CD45R85** Cluster of differentiation 45R85, leukocyte common antigen
NM_007136 ZNF80 Zinc finger protein 80 (pT17)	**CD45R90** Cluster of differentiation 45R90, leukocyte common antigen
NM_001975 RELA V-rel reticuloendotheliosis viral oncogene homolog A, nuclear factor of kappa light polypeptide gene enhancer in B-cell clone	**CD45R95** Cluster of differentiation 45R95, leukocyte common antigen
NM_031314 TARDBP TAR DNA binding protein	**CD45T** Cluster of differentiation 45T, leukocyte common antigen
NM_014000 ZNF297B Zinc finger protein 297B	**CD45T2** Cluster of differentiation 45T2, leukocyte common antigen
NM_014938 MONDOA Mix interactors	**CD45T3** Cluster of differentiation 45T3, leukocyte common antigen
NM_005822 DSCR1L1 Down syndrome critical region gene 1-like 1	**CD45T4** Cluster of differentiation 45T4, leukocyte common antigen
NM_004289 NF2L3 Nuclear factor (erythroid-derived 2)-like 3 (Continued)	**CD45T5** Cluster of differentiation 45T5, leukocyte common antigen
NM_004023 SCGB3A2 Secretoglobin family 3a, member 2	**CD45T6** Cluster of differentiation 45T6, leukocyte common antigen
NM_021072 RPMT2 Bromodomain containing protein 75 kD human homolog	**CD45T8** Cluster of differentiation 45T8, leukocyte common antigen
NM_007212 BRF2 Ring finger protein 2	**CD45T9** Cluster of differentiation 45T9, leukocyte common antigen
DB8589 ZFP16I Zinc finger protein 161 homolog (mouse)	**CD45T10** Cluster of differentiation 45T10, leukocyte common antigen
NM_014135 CR1I CREBBP/EP300 inhibitory protein 1	**CD45T11** Cluster of differentiation 45T11, leukocyte common antigen
NM_014268 MPI Metalloproteinase 1 (pitrilysin family)	**CD45T12** Cluster of differentiation 45T12, leukocyte common antigen
NM_014212 CTXL Cortical thymocyte receptor (X. laevis CTX) like	**CD45T14** Cluster of differentiation 45T14, leukocyte common antigen
NM_002053 Gmise Guanyltransfer binding protein 1, interferon-inducible, 67 kD	**CD45T16** Cluster of differentiation 45T16, leukocyte common antigen
NM_005356 LCK Lymphotox-specific protein tyrosine kinase	**CD45T18** Cluster of differentiation 45T18, leukocyte common antigen
NM_006546 ILSRA Interleukin 5 receptor, alpha	**CD45T19** Cluster of differentiation 45T19, leukocyte common antigen
NM_001311 CRIP1 Cysteine-rich protein 1 (intestinal)	**CD45T20** Cluster of differentiation 45T20, leukocyte common antigen
Table 1: Differentially expressed genes between adult and cord monocytes at specific time points. T = time (min) at which the sample was taken. Numbers indicate corrected expression values. (Continued)

NM 001984	SCYA4	Small inducible cytokine A4 MIP1B	492	2001	2483	517	1523	3897
NM 002983	SCYA3	Small inducible cytokine A3 MIP1A	248	1798	2207	185	1364	3673
NM 014443	IL17B	Interleukin 17B	663	696	681	706	703	1155
NM 006018	HMT7	Putative chemokine receptor-GTP-binding protein	13	25	19	15	26	34

Miscellaneous Functions

AB033041	VANGL2	Vang, van gogh-like 2 (Drosophila)	983	1246	1351	981	796	1304
NM 017641	C20orf4	Chromosome 20 open reading frame 42	362	557	551	280	323	478
AK054683	DCLK1	DNA cross-link repair 1C	486	555	574	476	293	515
NM 033060	KAP4.10	Keratin associated protein 4.10	210	245	197	154	123	172
AF319045	CNTNAP2	Contactin associated protein-like 2	112	215	173	120	113	176
NM 001046	SLC12A2	Solute carrier family 12 (sodium/potassium/chloride transporters), member 2	158	148	184	146	86	161
NM 016279	CDH9	Cadherin 9, type 2 (T1-cadherin)	77	112	69	65	51	64
NM 014208	DSP	Dentin sialophosphoprotein	60	90	64	57	53	59
NM 015669	PCDHB5	Protocadherin beta 5	92	83	62	98	42	47
AK023198	OPRK1	Opiorceptor, kappa 1	58	76	41	48	46	38
NM 018240	KIRREL	Kid of RIR like (Drosophila)	60	75	47	66	43	46
AK056781	ROCK1	Rho-associated, coiled-coil containing protein kinase 1	54	62	42	47	41	42
NM 021223	NAP53	Basic-helix-loop-helix-PAS protein	17	22	9	16	12	13
NM 001246	ENTFD2	Ectonucleoside triphosphate diphosphohydrolase 2	3438	3272	3721	3767	3590	6309

Unknown Function

AK056884	FLJ32232	fs, clone PROST2003577	2007	2878	2008	1825	1548	1958
NM 017814	FLJ20420	Coiled-coil-helix-coiled-coil-helix domain containing 3	1105	1915	1370	1125	940	1358
AK140459	LOC51884	Protein x 0004	661	1579	881	603	771	768
BC011575	Similar to RIKEN cDNA 0610031J06 gene, clone IMAGE-4639306	974	1556	1412	1020	844	1261	
AK057357	FLJ32926	DKFZp434D2472	1188	1378	1159	1043	515	1136
NM 025019	TUBA4	Tubulin, alpha 4	1446	1173	1330	1477	782	1366
AK023150	FLJ30888	fs, clone NT2RP3002102	798	1087	905	845	564	785
NM 017833	C21orf55	Chromosome 21 open reading frame 55	741	1079	799	687	508	665
BC001407	Similar to cytchrome c-like antigen	524	1004	629	506	502	577	
AK023104	FLJ22648	fs, clone HSI07329	441	984	621	488	471	495
AK024617	FLJ20964	fs, clone ADSH00902	824	955	745	788	535	824
BC009536	IMAGE:3892368	553	924	775	597	498	671	
AK056287	FLJ31725	fs, clone NT2RI006716	435	862	907	405	459	893
AK021611	FLJ1549	fs, clone HEMBA1002968	535	812	675	545	392	630
BC015119	IMAGE:3951139	445	784	487	455	435	439	
AK056492	FLJ31903	fs, clone NT2RP7006162	252	651	525	266	367	457
AB058711	KIAA1808	Protein 8	208	637	357	199	339	366
BC011266	IMAGE:4156795	354	632	432	356	328	460	
AK022316	FLJ32545	fs, clone OVAR1000787	416	596	357	400	290	352
NM 024696	FLJ23058	Hypothetical protein FLJ23058	456	541	346	436	313	359
AF253314	Pheromone receptor (PHRET) pseudogene	136	520	425	128	301	347	
AK056007	BICD1	Bicaudal D homolog 1 (Drosophila)	704	505	439	624	243	305
AB020632	KIAA0825	Protein 5	249	498	353	246	272	339
NM 017609	DUFZp4.3	Similar to RIKEN cDNA 2310030G06	182	485	319	190	298	304
NM 018190	FLJ10715	Hypothetical protein FLJ10715	202	483	310	174	206	266
AK057046	FLJ32484	fs, clone SKMC2001555	229	473	294	261	302	228
NM 013395	AD013	Protein0008	448	461	496	403	304	378

Page 7 of 19

(page number not for citation purposes)
Table 1: Differentially expressed genes between adult and cord monocytes at specific time points. T = time (min) at which the sample was taken. Numbers indicate corrected expression values. (Continued)
between cells from these two groups, as measured by the correlation coefficients between genes from adult and cord monocytes with value > 0.90 (figure 3A, black and white graph to the right). Three genes on this list (#101–103) were the exception: transcriptional regulator interacting with the PHS-bromodomain 2 (Trip-Br2), interleukin 1 beta (Il1b), and the GRO2 oncogene (Gro2). These genes may play a critical role in differentiation between adult and cord monocyte behaviour [22,23]. The high similarity of these mosaics presents evidence for the presence of fundamental processes in monocyte development that appear to be quite similar in both groups of samples. The details of the genes used in Figure 3A are presented as Table 2. Another group of 78 genes were found that have different cluster designations between adult and cord blood monocytes (Figure 3B). Details of these genes are listed in Table 3.

We analyzed these genes using DFA in order to find those genes most likely to highlight the differences between cord and adult monocytes. DFA identified genes having high discriminatory capabilities. The DFA software selected genes from Table 3 with highest discriminatory capabilities for this case. A total of 12 genes (marked with asterisk in Table 3) were used by the DFA program to differentiate dynamical changes in both cord and adult monocytes after LPS stimulation. Values of the roots obtained by DFA analysis were used to graphically depict the differences of the gene expression values obtained in cord and adult samples in different stages after stimulation (Fig. 4). The spatial organization of the elements in this representation provides a measure of the overall similarity of the dynamic behaviour of these samples. The greatest temporal changes in gene expression for cord and adult monocytes noted above after 45 min of LPS expo-

Figure 1
LPS-stimulated genes in cord blood and adult monocytes can be differentiated on the basis of kinetics of expression. Expression level (in relative intensity units) is shown for the y-axis and time on the x-axis. At the 45 min time point, significant differences in expression level were seen between adult and neonatal monocytes for each of the gene groups A-H.
Figure 2
Heat map representation of differences in gene expression of adult and cord blood monocytes in response to LPS. Z-transformed scores of the mean expression values for adult monocytes prior to (A0), after 45 min (A45), and after 120 min (A120) of LPS exposure are graphically shown to the left. Similar scores from cord blood monocytes prior to (C0), after 45 min (C45), and after 120 min (C120) of LPS exposure, respectively. The heat map was produced using software from Spotfire Decision Site (Somerville, MA).
sure were also observed in the analysis using these 12 genes. However, almost no differences occurred at the 2 hr time point between cord and adult cells suggesting that the global behavior of the cells is similar, but the kinetics of change differ i.e. many of the changes are the same in both groups, but they occur at different rates.

Apoptosis assays

The products of a subset of genes that were differentially expressed between groups after 45 min exposure to LPS are involved in apoptosis. We therefore performed a series of functional experiments comparing apoptosis in adult (n = 10) and neonatal (n = 10) cord bloods. Results of these assays are shown in Table 4. Annexin assays demonstrated that adult monocytes display different kinetics for both apoptosis and necrosis as compared with neonatal monocytes. Flow cytometry revealed that 43 ± 5% (mean + SD) of adult and 53 ± 8% of neonatal monocytes are undergoing apoptosis after stimulation with LPS for 14 hours (p < 0.002), while 38 ± 8% of adult and 25 ± 9% of neonatal monocytes are necrotic after 14 hours of LPS stimulation (p < 0.003). The number of live monocytes after 14 hours of LPS stimulation was not statistically different between the two groups. There was also no statistically significant difference in the number of live, apoptotic, or necrotic monocytes between adult and neonatal samples prior to LPS stimulation (data not shown).

Discussion

Following a given physiologic stimulus, signalling kinase activation, transcription factor translocation, and gene transcription all occur in rapid order. However, like all

Figure 3

Correlative mosaic for genes selected as HV-genes in cord blood and adult monocytes, belonging to five clusters of highest content. A. Genes of the same cluster in cord and adult; B. Genes of different cluster in cord and adult. Correlation coefficients are color-coded according to the key in the upper right. The correlation between the adult and cord blood monocyte profiles for each gene are shown in black and white, lower right.
Table 2: Genes from which correlation mosaics in Figure 3A were derived. Genes in this table show the highest level of correlation by DFA analysis comparing adult and cord blood monocytes.

Order in mosaic	Accession No.	Gene symbol	Description
1	NM_017614	BHMT2	Betaine-homocysteine methyltransferase 2
2	NM_001651	AQP5	Aquaporin 5
3	NM_020163	LOCS5920	Semaphorin sem2
4	NM_012343	NNT	Nicotinamide nucleotide transhydrogenase
5	NM_000096	CP	Ceruloplasmin (ferroxidase)
6	NM_005819	STX6	Syntaxin 6
7	NM_052951	C20orf167	Chromosome 20 open reading frame 167
8	NM_001348	DAPK3	Death-associated protein kinase 3
9	X73502	KRT20	Cytokeratin 20
10	NM_052887	TIRAP	Toll-interleukin 1 receptor (TIR) domain-containing adapter protein
11	NM_019555	ARHGEF3	Rho guanine nucleotide exchange factor (GEF) 3
12	NM_014380	NGFRAP1	Nerve growth factor receptor (TNFRSF16) associated protein 1
13	NM_001272	CHD3	Chromodomain helicase DNA binding protein 3
14	NM_005842	SPRY2	Sprouty homolog 2 (Drosophila)
15	NM_012332	MT-ACT4B	Mitochondrial Acyl-CoA Thioesterase
16	BC015041	VAT1	Vesicle amine transport protein 1
17	NM_003872	NRP2	Neuropilin 2
18	NM_005849	IGSF6	Immunoglobulin superfamily, member 6
19	NM_014323	ZNF278	Zinc finger protein 278
20	NM_030674	SLC3B1A1	Solute carrier family 3B, member 1
21	NM_004153	ORC1L	Origin recognition complex, subunit I-like (yeast)
22	NM_005249	FOXG1B	Forkhead box G1B
23	NM_021048	MAGEA10	Melanoma antigen, family A, 10
24	M60502	FLG	Filagrin
25	NM_004997	MYBPH	Myosin binding protein H
26	05046	INSRR	Insulin receptor-related receptor
27	M133987	CA1	Carbonic anhydrase 1
28	D31886	RAB3GAP	RAB3 GTPase-ACTIVATING PROTEIN
29	L24498	GADD45A	Growth arrest and DNA-damage-inducible, alpha
30	L07390	PPP2R3	Protein phosphatase 2 (formerly 2A), regulatory subunit B' (PR 72), alpha isoform and (PR 130), beta
31	D87024	IGLV4-3	Immunoglobulin lambda variable 4-3
32	L35848	MSA43	Membrane-spanning 4-domains, subfamily A, member 3 (hematopoietic cell-specific)
33	M19216	CEACAM6	Carcinoembryonic antigen-related cell adhesion molecule 6 (non-specific cross reacting antigen)
34	M11953	TRBV7-8	T cell receptor beta variable 7-8
35	D89094	PDE5A	Phosphodiesterase 5A, cGMP-specific
36	M77140	GAL	Galanin
37	D13628	ANGPT1	Angiopoietin 1
38	MB1635	EPB72	Erythrocyte membrane protein band 7.2 (stomatin)
39	D89859	ZFP161	Zinc finger protein 161 homolog (mouse)
40	D26069	CENTB2	Centaurin, beta 2
41	L0717	ITK	IL2-inducible T-cell kinase
42	L04182	ZNF148	Zinc finger protein 148 (pH2-52)
43	L41944	IFNAR2	Interferon (alpha, beta and omega) receptor 2
44	MB3883	ELF1	E74-like factor 1 (ets domain transcription factor)
45	L26339	RCD-8	Autoantigen
46	D87238	HLC5	Holocarboxylase synthetase (biotin-[propionyl-Coenzyme A-carboxylase (ATP-hydrolysing)] ligase)
47	D00943	MYH6	Myosin, heavy polypeptide 6, cardiac muscle, alpha (cardiomyopathy, hypertrophic I)
48	D00099	ATP1A1	ATPase, Na+/K+ transporting, alpha 1 polypeptide
49	L36531	ITG48	Integrin, alpha 8
50	D42084	METAP1	Methionyl aminopeptidase 1
51	M76766	GTF2B	General transcription factor IIIB
52	D04621	SDC2	Syndecan 2 (heparan sulfate proteoglycan 1, cell surface-associated, fibroglycan)
53	D31888	RCOR	REST corepressor
54	L28832	ATRF1	AT-binding transcription factor 1
Table 2: Genes from which correlation mosaics in Figure 3A were derived. Genes in this table show the highest level of correlation by DFA analysis comparing adult and cord blood monocytes. (Continued)

Gene Accession	Gene Name	Description
D86981	APPBP2	Amyloid beta precursor protein (cytoplasmic tail) binding protein 2
M94362	LMNB2	Lamin B2
M54968	KRAS2	V-Ki-ras2 Kirsten rat sarcoma 2 viral oncogene homolog
D42046	DNA2L	DNA2 DNA replication helicase 2-like (yeast)
D86964	DOK2	Dedicator of cyto-kinetis 2
D50683	TGFB2	Transforming growth factor, beta receptor II (70–80 kD)
M96841	ID2B	Striated muscle contraction regulatory protein
M1906	PIK3R1	Phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 (p85 alpha)
M1279	HUMMMHCW1A	Cw1 antigen
M3623	OMG	Oligodendrocyte myelin glycoprotein
L04162	FCGR3B	Fc fragment of IgG, low affinity IIIb, receptor for (CD16)
L48516	PONJ	Paraoxonase 3
M54927	PLP1	Proteolipid protein 1 (Pelizaeus-Merzbacher disease, spastic paraplegia 2, uncomplicated)
D86973	GCN1LI	GCN1 general control of amino-acid synthesis 1-like 1 (yeast)
D42968	RUNX1	Runt-related transcription factor 1 (acute myeloid leukemia 1-am1 oncogene)
L69500	ADCY1	Adenylate cyclase 1 (brain)
D80910	LPIN1	Lipin 1
D30918	SEPT6	Septin 6
D86988	RENT1	Regulator of nonsense transcripts 1
M96391	IL16	Interleukin 16 (lymphocyte chemoactant factor)
M62324	MRF-1	Modulator recognition factor 1
L77665	DGS-H	DiGeorge syndrome gene H
D86970	TIAFI	TGFβ1-induced anti-apoptotic factor 1
D31869	ITPKC	Inositol 1,4,5-trisphosphate 3-kinase C
D87684	UBXD2	UBX domain-containing 2
D84454	SLCSA2	Solute carrier family 35 (UDP-galactose transporter), member 2
M97496	GUC2A2	Guanylate cyclase activator 2A (guanylin)
M95383	HLF	Hepatic leukemia factor
L38517	IHH	Indian hedgehog homolog (Drosophila)
L20860	GP1B	Glycoprotein Ib (platelet), beta polypeptide
M76880	UBC	Ubiquitin C
D86963	GRB10	Growth factor receptor-bound protein 10
D64481	SCRIB	Scribble
D17525	MASPI	Mannan-binding lectin serine protease 1 (C4/C2 activating component of Ra-reactive factor)
L26584	RASGRF1	Protein-specifc guanine nucleotide-releasing factor 1
M60506	PRKAR1B	Protein kinase, cAMP-dependent, regulatory, type I, beta
05158	CPN2	Carboxypeptidase N, polypeptide 2, 83 kD
L36861	GUCA1A	Guanylate cyclase activator 1A (retina)
L11239	GBX1	Gastrulation brain homeo box 1
D90145	SCYA3L1	Small inducible cytokine A3-like 1
M96739	NHTL1	Nescient helix loop helix 1
M12959	TRA@	T cell receptor alpha locus
D80005	C9orf10	C9orf10 protein
M13231	TRGC2	T cell receptor gamma constant 2
D28588	SP2	Sp2 transcription factor
M57732	TCF1	Transcription factor 1, hepatic-LF-B1, hepatic nuclear factor (HNFI), albumin proximal factor
NM_014755	TRIP-Br2	Transcriptional regulator interacting with the PHS-bromodomain 2
NM_000576	IL1B	Interleukin 1, beta
NM_002089	GRO2	GRO2 oncogene
NM_002089x	GPRC5D	G protein-coupled receptor, family C, group 5, member D
NM_002112	PPP1R8	Protein phosphatase 1, regulatory (inhibitor) subunit B
NM_014383	TZIP	Testis zinc finger protein
NM_017948	SP52	Selenophosphate synthetase 2
AL13743B	SECISL	SECIS (S. cerevisiae)-like
NM_005387	NUMB	Nucleoporin 98 kD
NM_003476	CSPR3	Cysteine and glycine-rich protein 3 (cardiac LIM protein)
Table 3: Genes from which the mosaic in Figure 3B were derived. Genes from which correlation mosaics in Figure 3B were derived. Genes in this table show the greatest differences by DFA analysis comparing adult and cord blood monocytes.

Order in Mosaic	Accession No.	Gene Symbol	Description
1	AK055855	CLDN10	Claudin 10
2	NM_000565	IL6R	Interleukin 6 receptor
3	NM_006150	LMO6	LIM domain only 6
4	NM_022787	NMPAT	NMN adenylyltransferase-nicotinamide mononucleotide adenylyl transferase
5	NM_002741	PRKCSh	Protein kinase C substrate B0K-H
6	NM_004847	AIF1	Allograft inflammatory factor 1
7	NM_021073	BMP5	Bone morphogenetic protein 5
8	AK025306	CLK1	CDC-like kinase 1
9	NM_004280	EEF1E1	Eukaryotic translation elongation factor 1 epsilon 1
10	NM_004432	ELAVL2	ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu antigen B)
11	NM_012181	FKBP8	FK506 binding protein 8 (38 kD)
12	NM_003091	GRP	Gastrin-releasing peptide
13	NM_016355	LOC51202	Hg0256 protein
14	NM_012104	MASA	E-1 enzyme
15	NM_004204	PIGQ	Phosphatidylinositol glycan, class Q
16	NM_002928	RGS16	Regulator of G-protein signalling 16
17	NM_005839	SRRM1	Serine/arginine repetitive matrix 1
18	NM_003166	SULT1A3	Sulfoxtransferase family, cystolic, 1A, phenol-prefering, member 3
19	NM_000356	TCOFI	Treacher Collins-Francischi syndrome 1
20	NM_016437	TUBG2	Tubulin, gamma 2
21	NM_022568	ALDHBA1	Aldehyde dehydrogenase 8 family, member A1
22	AF209910	CHRD	Chordin
23	NM_005274	GNG5	Guanine nucleotide binding protein (G protein), gamma 5
24	NM_018384	IAN4L1	Immune associated nucleotide 4 like 1 (mouse)
25	NM_000640	IL13RA2	Interleukin 13 receptor, alpha 2
26	AK021692	LOC51141	Insulin induced protein 2
27	NM_012443	SPAG6	Sperm associated antigen 6
28	NM_003155	STC1	Stanniocalcin 1
29	NM_022001	FXYD6	FXYD domain-containing ion transport regulator 6
30	NM_002763	PROX1	Prospero-related homeobox 1
31	NM_002836	PTPRA	Protein tyrosine phosphatase, receptor type, A
32	AL36835	TOLLIP	Toll-interacting protein
33	AB058691	ALX4	Aristaless-like homeobox 4
34	AF112345	ITGA10	Integrin, alpha 10
35	NM_023788	P2RY12	Purinergic receptor P2Y, G protein-coupled, 12
36	NM_001213	C1orf1	Chromosome 1 open reading frame 1
37	NM_005860	FSTL3	Follistatin-like 3 (secreted glycoprotein)
Table 3: Genes from which the mosaic in Figure 3B were derived. Genes from which correlation mosaics in Figure 3B were derived. Genes in this table show the greatest differences by DFA analysis comparing adult and cord blood monocytes. (Continued)

Gene ID	Description
NM_013320	HCF-2 Host cell factor 2
NM_058241	LOC136442 Similar to MRJ gene for a member of the DNAJ protein family
NM_020169	LKN Latexin protein
BC008989	MGC17337 Similar to RIKEN cDNA 5730528L13 gene
BC002712	MYCN V-myc myelocytomatosis viral related oncogene, neuroblastoma derived (avian)
AK026164	MYL6 Myosin, light polypeptide 6, alkali, smooth muscle and non-muscle
NM_006215	SERPINA4 Serine (or cysteine) proteinase inhibitor, clade A (alpha-1 antiproteinase, antitrypsin), member 4
NM_004790	SLC22A6 Solute carrier family 22 (organic anion transporter), member 6
NM_022911	SLC26A6 Solute carrier family 26, member 6
NM_003374	VDAC1 Voltage-dependent anion channel 1
NM_017818	WDR8 WD repeat domain 8
NM_003416	ZNF7 Zinc finger protein 7 (KOX 4, clone HF.16)
NM_002313	ABLIM Actin binding LIM protein
NM_013074	CERD4 Cer-d4 (mouse) homolog
NM_000787	DBH Dopamine beta-hydroxylase (dopamine beta-monooxygenase)
NM_000561	GSTM1 Glutathione S-transferase M1
BC014075	GTPBP1 GTP binding protein 1
NM_033260	HFH1 Winged helix/forkhead transcription factor
NM_033033	KRTHB2 Keratin, hair, basic, 2
NM_004789	LHX2 LIM homeobox protein 2
NM_014106	PRO1914 PRO1914 protein
NM_006799	PRSS21 Protease, serine, 21 (testisin)
NM_002900	RBP3 Retinol binding protein 3, interstitial
NM_033022	RPS24 Ribosomal protein S24
AB029021	TRIM35 Tripartite motif-containing 35
NM_020989	CRYGC Crystallin, gamma C
BI981234	HMG1L10 High-mobility group (nonhistone chromosomal) protein 1-like 10
NM_014163	HSPC073 HSPC073 protein
AF181985	JIK STE20-like kinase
NM_017607	PPP1R12C Protein phosphatase 1, regulatory (inhibitor) subunit 12C
NM_002873	RAD17 RAD17 homolog (S. pombe)
NM_023095	ZNF335 Zinc finger protein 335
M90355	BTF3L2 Basic transcription factor 3, like 2
NM_002079	GOT1 Glutamic-oxaloacetic transaminase 1, soluble (aspartate aminotransferase 1)
NM_004146	NDUF87 NADH dehydrogenase (ubiquinone) I beta subcomplex, 7 (18 kDa, B18)
L38486	MFAP4 Microfibrillar-associated protein 4
NM_001848	ACTB Actin, beta
NM_001916	CYC1 Cytochrome c-1
biological processes, mRNA accumulation (or decreases) does not occur uniformly, and we hypothesized that examining the kinetics of mRNA accumulation or disappearance might provide clues into relevant cellular dynamics. We used a well-developed and validated gene expression microarray to examine the dynamics of mRNA accumulation and differences between adult and neonatal monocytes in that process.

Genes were found to be differentially expressed between adult and cord monocytes after either 45 or 120 minutes of LPS exposure, with little difference at 24 hr (see Figure 4). Interestingly, no statistically significant differences in gene expression were observed between these groups in untreated cells. Previous reports by others indicated altered functions of cord blood monocytes in cytokine secretion and cellular adhesion. Results from this study cast new light on these findings and add complexity to understanding such differences. In some cases, our data support previous speculations about neonatal immune function. For example, the increased expression of IL-17B in neonatal monocytes is consistent with the observations of Vanden Eijnden and colleagues that newborns compensate for their relative immune deficiency by overexpression of the IL23-IL-17 signalling pathway in dendritic cells [24]. Similarly, we found significant elevations in cord monocyte transcripts of the chemokines MIP1B and MIP1A after 2 hrs of LPS exposure, consistent with Sullivan and colleagues’ report of higher amounts of MIPα in cord blood samples compared with adults [25].

Figure 4
DFA analysis of phases of monocyte activation comparing cord and adult cells. DFA identified a subset of genes (see Table 3) whose expression values can be linearly combined in an equation, denoted a root, whose overall value is distinct for a given characterized group. These roots used as coordinate for presentation of these groups of samples in scatterplot. Results from individual samples for adult monocyte (circles) and cord monocytes (triangles) are discussed in the text. Results from individual samples for adult monocyte (circles) and cord monocytes (triangles) are shown.
On the other hand, transcripts for cadherin 9, Rock1, periostrin, heparin sulfate 6-O-sulfotransferase 3, and C20orf42, whose products participate in various mechanisms that are associated with adhesion [26-28] were statistically significantly increased in adult monocytes after 45 min of LPS exposure, although no differences in expression for these genes between groups were detected at the later time point. These data suggest complex, dynamic relations for genes whose products are associated with cellular adhesion, and collectively highlight the importance of examining gene expression profiles (or related protein expression levels) over time.

The limits of gene expression profiling as a technique, albeit a very useful technique, must be acknowledged. The technique examines only RNA transcripts, not protein synthesis. Thus, alterations in other critical inflammatory mediators, such as eicosanoids, remain unobserved with this method. Furthermore, it is well known that there are many proteins, including critical inflammatory mediators, whose synthesis and secretion is not directly related in mRNA accumulation [29]. Thus, gene expression profiling should be complemented with other methods in order to maximize there potential.

In the final analysis, the utility of gene expression profiling will be demonstrated only if they provide insights into relevant physiologic or pathophysiologic function. For that reason, we elected to test the validity of the array data by examining a physiologic mechanism implicated by computer modelling of the array data. As noted in Table 1, adult monocytes over-expressed a small number of genes associated with the regulation of apoptosis. Since monocyte activation is a “balancing act” between signals inducing apoptosis and those inducing activation and differentiation [30,31], differences in the kinetics of expression or activation of enzymes or transcription factors that regulate apoptosis could have a crucial outcome on whether monocyte responses are pro- or anti-inflammatory. Annexin assays confirmed that there are significant differences in the appearance of apoptotic cells between adults and newborn monocytes (Table 4). Since apoptotic cells dampen the inflammatory response, it is interesting to speculate that the related blunted neonatal response to inflammatory stimuli (including infection) may result, at least in part, from the excessive production of apoptotic cells during monocyte activation.

There has been, to our knowledge, one previously published paper using gene expression arrays to study neonatal monocyte function [14]. Our findings differ somewhat from those described by these authors. The most obvious difference was our finding of no statistically significant differences between adult and cord blood samples in the resting state. We should note, however, that it is otherwise difficult to compare the two studies. Jiang and colleagues used a 1000-fold greater dose of LPS to stimulate the monocytes, and RNA was prepared after 18 hr of stimulation. Thus, it is difficult to determine which of the effects observed by these authors were the direct result of LPS activation or were mediated through autocrine activation by proteins secreted in response to LPS. Furthermore, the non-physiologic dose of LPS used by those authors makes the biological/pathological relevance of that study difficult to interpret. Finally, we should note that the study by Jiang and colleagues used different methodologies for purifying monocytes. While our method, positive selection using CD14-coated microbeads, carries the theoretical risk of activating the cells through TLR-4/CD14 signaling pathways, adherence procedures carry the greater risk of activating the cells, as β2 integrins are activated during the adherence process.

From the bioinformatics standpoint, our data demonstrate how gene microarray experiments can quickly move from the generation of gene lists to the development of plausible and testable models of relevant biology and physiology. Specifically, they demonstrate that computer-assisted, physiologic modelling is another means of corroborating array findings and provides the advantage of providing an approach for immediately testing the biological relevance of microarray data before embarking on the sometimes laborious task of confirming differential expression of dozens or even hundreds of genes identified in a microarray experiment. As described in the results section, the differences between groups in gene expression at 45 min were attributable to a unique up-regulation of specific genes in adult monocytes, a unique down-regulation of other genes in cord monocytes, or a combination of both processes for other genes. We have searched for mechanisms that account for these patterns. Specifically, we have analyzed the genes within derived k-means clusters to determine if a large number of genes within a cluster are related to overlapping functions using Ingenuity Pathway Assist software, or alternatively to shared transcriptional response elements upstream of these genes.
However, these strategies have failed to elucidate reasons to explain these findings.

Our studies also suggest that, while expensive and time-consuming to undertake, studying the kinetics of gene expression using microarrays can be highly informative. The previously reported study [14] examining gene expression differences between adult and cord blood monocytes was performed at only a single time point (18 hr after activation with a non-physiologic dose of LPS). Our studies suggest that the relevant biology may lie not in the specific genes that are differentially expressed at one particular time point, but, as one would predict with a dynamic system, which genes are expressed when. Timing of mRNA accumulation could determine, among other things, whether pro-apoptotic signals are processed in monocytes before cellular necrosis ensues.

The validity of the dynamic/kinetic approach is further supported by the correlation analyses (Figures 3 and 4). These analyses demonstrate clearly that the accumulation of a specific mRNA is not an independent event. Gene transcription and mRNA degradation are dynamic processes closely tied to the accumulation or degradation of other mRNAs and the transcription of their cognate proteins. We contend that, without this dynamic view of cellular activity, investigators attempting to use microarray data to elucidate relevant biological or pathological processes will encounter unnecessary obstacles in attempts to move from the generation of gene lists to testing specific hypotheses.

Abbreviations
LPS – Lipopolysaccharide
DFA – Discriminant function analysis
HV – Hypervariable

Acknowledgements
Supported in part by the National Institutes of Health (NIH), National Center for Research Resources, a component of the NIH, General Clinical Research Center Grant MO1 RR-14467, NIH grants P20 RR02143-01, P20 RR15577, P20 RR17703, and P20 R016478-04 and by the Oklahoma Center for Science and Technology (OCAST).

The authors also wish to extend their thanks to Julie McGhee, M.D., for her review and thoughtful comments on this manuscript.

References
1. Kobayashi S, Ohnma K, Uchiyama M, Iino K, Iwata S, Dang NH, Morimoto C: Association of CD26 with CD45RA outside lipid rafts attenuates cord blood T-cell activation. Blood 2004, 103:1002-1010.
2. Adkins B, LeClerc C, Marshall-Clark S: Neonatal adaptive immunity comes of age. Nature Rev Immunol 2004, 4:553-564.
3. Garcia AM, Fadl SA, Cao S, Sarzotti M: T cell immunity in neonates. Immunol Rev 2000, 22:177-190.
4. Zhao Y, Dai ZP, Ly P, Gao XM: Phenotypic and functional analysis of human T lymphocytes in early second- and third-trimester fetuses. Clin Exp Immunol 2002, 129:302-308.
5. Zola H, Fusco M, Weeden H, Macardle PJ, Ridings J, Robertson DM: Reduced expression of the interleukin-2-receptor gamma chain on cord blood lymphocytes: relationship to functional immaturity of the neonatal immune response. Immunol 1996, 87:86-91.
6. Schuit KE, Powell DA: Phagocytic dysfunction in monocytes of normal newborn infants. Pediatrics 1980, 65:501-504.
7. Tan ND, Davidson D: Comparative differences and combined effects of interleukin-8, leukotriene B4, and platelet-activating factor on neutrophil chemotaxis of the newborn. Pediatr Res 1995, 38:11-16.
8. Anderson DC, Hughes BJ, Smith CW: Abnormal mobility of neonatal polymorphonuclear leukocytes. J Clin Invest 1981, 68:863-874.
9. Anderson DC, Freeman KLB, Heerdt B, Hughes BJ, Jack RM, Smith CW: Abnormal stimulated adherence of neonatal granulocytes: impaired induction of surface Mac-1 by chemotactic factors or secretagogues. Blood 1987, 70:740-750.
10. Torok C, Lundahl J, Hed J, Lagercrantz H: Diversity of regulation of adhesion molecules (Mac-1 and L-selectin) in monocytes and neutrophils from neonates and adults. Arch Dis Child 1993, 68:561-565.
11. Harinharan D, Ho W, Cutillo J, Campbell DE, Douglas SD: C-C chemokine profile of cord blood mononuclear cells: selective defect in RANTES production. Blood 2000, 95:715-718.
12. Bessler H, Mendel C, Straussberg R, Gurary N, Aloni D, Sirota L: Effects of dexamethasone on IL-1beta, IL-6, and TNF-alpha production by mononuclear cells of newborns and adults. Biol Neonate 1999, 75:225-233.
13. Kotiranta-Ainamo A, Rautonen J, Rautonen N: Interleukin-10 production by cord blood mononuclear cells. Pediatric Res 1997, 41:110-113.
14. Jiang H, Van de Ven C, Satwani P, Baxi LV, Cairo MS: Differential gene expression patterns by oligonucleotide microarray of basal versus lipopolysaccharide-activated monocytes from cord blood versus adult peripheral blood. J Immunol 2004, 172:5870-5879.
15. Hirschfeld M, Ma Y, Weis JH, Vogel SN, Weis JJ: Cutting edge: repurification of lipopolysaccharide eliminates signaling through both human and murine toll-like receptor 2. J Immunol 2000, 165:618-622.
16. Bustin SA: Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): trends and problems. J Endocrinol 2002, 29:23-39.
17. Tricarico C, Pinzani P, Bianchi S, Paglierani M, Distante V, Pazzagli M, Busin SA, Orlando C: Quantitative real-time reverse transcription polymerase chain reaction: normalisation to rRNA or single housekeeping genes is inappropriate for human tissue biopsies. Analytical Biochem 2002, 309:293-300.
18. Knowlton N, Dozormov IM, Centola M: Microarray Data Analysis Toolbox (MDAT): for normalization, adjustment and analysis of gene expression data. Bioinformatics 2004, 20:3687-3690.
19. Efron B, Gong G: A leisurely look at the bootstrap, the jackknife, and cross-validation. American Statistician 1983, 37:36-48.
20. Dozormov I, Knowlton N, Tang Y, Shields A, Pathipvanich P, Jarvis JN, Centola M: Hypervariable genes – experimental error or hidden dynamics. Nucleic Acids Res 2004, 32:e147.
21. Johnson R, Wichern D: Applied Multivariate Statistics. Prentice Hall, 2002.
22. Peters AM, Bertram P, Gahr M, Speer CP: Reduced secretion of interleukin-1 and tumor necrosis factor-alpha by neonatal monocytes. Biol Neonate 1993, 63:157-62.
23. Morris PA, Tenbergen-Meekes AJ, Heijnen CJ, Rijkers GT, Zegers MD, Foltz RL, Kish SK: Neonatal polymorphonuclear leukocytes. J Immunol 1990, 143:451-459.
24. Vanden Eijnden S, Gorisly S, De Wit D, Goldman M, Willems F: Preferential production of the IL-12(p40)/IL-23(p19) heterodimer by dendritic cells from human newborns. Eur J Immunol 2006, 36:21-26.
25. Sullivan SE, Staba SL, Gersting JA, Hutson AD, Theriaque D, Chris tensen RD, Calhoun DA: Circulating concentrations of chemok-
ines in cord blood, neonates, and adults. Pediat Res 2002, 51:653-657.

26. Juliano RL: Signal transduction by cell adhesion receptors and the cytoskeleton: functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 2002, 42:283-323.

27. Sweetman CA, Leverrier Y, Garg R, Gan CH, Ridley AJ, Katz DR, Chain BM: Extension, retraction and contraction in the formation of a dendritic cell dendrite: distinct roles for Rho GTPases. Eur J Immunol 2002, 32:2074-2083.

28. Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD: Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 2002, 62:5358-5364.

29. Hamilton BJ, Burns CM, Nichols RC, Rigby WF: Modulation of AUUUA response element binding by heterogeneous nuclear ribonucleoprotein A1 in human T lymphocytes. The roles of cytoplasmic location, transcription, and phosphorylation. J Biol Chem 1997, 272:28732-28741.

30. Morand EF, Bucala R, Leech M: Macrophage inhibitory factor. Arthritis Rheum 2003, 48:291-299.

31. Roger T, Glauser MP, Calandra T: Macrophage migration inhibitory factor (MIF) modulates innate immune responses induced by endotoxin and gram-negative bacteria. J Endotoxin Res 2001, 7:456-460.