HERIC Inverter- A SEPIC based transformer-less converter design and simulation for isolated standalone PV system

M.D.Udayakumar¹, K.S.Gowthaman² Prabhu.A³ and Dr.A.Nazar Ali⁴

¹,²,³,⁴ Department of Electrical and Electronics Engineering,
¹Assistant Professor, K.Ramakrishnan College of Technology, Trichy, Tamilnadu.
²Assistant Professor, Government College of Engineering, Thanjavur, Tamilnadu
³Assistant Professor, Sardar raja College of Engineering, Alangulam, Tamilnadu.
⁴Associate Professor Rajalakshmi Engineering College, Chennai, Tamilnadu.

E.mail: uday.krc@gmail.com

Abstract. Photovoltaic transformer-less inverter due to its high efficiency, low power loss and cost plays an important role in energy market. In this paper solar PV based 1φ transformer-less HERIC converter for standalone isolated PV system has been designed and analysed. To control the solar PV output, a dc-dc SEPIC converter is modelled and designed with the feature of Maximum Power Point Tracking. Contrary to other inverter topologies H5, H6, NPC (neutral point clamping), HERIC inverter comprises low leakage current. The entire proposed system is designed and simulation is carried out in MATLAB environment.

1. Introduction

Due to increasing demand in electricity, energy has been obtained from various sources such as sun, wind, fossil fuels etc., On account of global warming considerations pollution free energy source usage has increased [1]. The availability of solar energy has utilized to draw electricity. In the energy conversion process power electronic components play a vital role [2].

Photovoltaic inverter contributes a major role in the solar Photovoltaic system overall performance. As the number and size of electronic component expand, the system overall cost increases. So, efforts have taken to overcome the above problem. In order to reduce the size of photovoltaic inverter, transformer-less prototype has emerged recently. Various inverter topology such as full bridge, half bridge, H-bridge, H5, H6, H7 topology, HERIC has designed [3-4]. Transformer based inverter topology produce common mode leakage current when integrated with grid[5]. The leakage current must be within the limits otherwise it led to electromagnetic interference and safety problems. Hence transformer-less inverter topology is developing nowadays to eliminate the leakage current problems. A high performance low leakage current HERIC inverter is used [6-7]. To control the solar PV system output, SEPIC converter is chosen among various dc-dc converter topologies such as cuk converter, buck converter, boost and buck-boost converters. Contrary to boost converter, the non-inverting mode of operation is offered by SEPIC converter. In addition, it is common that both input and output current waveforms are fluctuating in the boost converter but the proposed converter has the advantage of drawing continuous input current with lower pulsation [8-10]. As above mentioned, merits make SEPIC converter more suitable for Solar PV system. The well-known R&O Maximum Power Point Tracking method is used to withdraw the possible
maximum power from solar PV panel.

The PV module is designed and simulated in MATLAB/Simulink environment. Figure 1 gives the block diagram of the proposed standalone Photovoltaic system [11-12]. A double frequency SPWM technique is made use for modulation of the inverter with different power converter switching combinations.

![Block diagram of the proposed system](image)

Figure 1: Schematic block of proposed system

2. **Proposed system design**

The test system is modeled in such a way that the solar PV array with at most power \(P_{mpp} = 1.5 \text{ kW} \) for feeding a load under STC condition (25 °C) of irradiation 900 W/m². The module specifications are shown in Table 1. It is necessary to determine [13] the number of PV modules is needed for connecting either in parallel combination or series combination is calculated as indicated by equations (1), (2) and (3).

\[
I_{MPP} = \frac{P_{MPP}}{V_{MPP}} = \frac{1500}{120} = 12.5 \text{ A}
\]

Equation (1) represents the input current at MPP.

\[
N_p = \frac{I_{MPP}}{I_M} = \frac{12.5}{8.21} = 1.2 \approx 2
\]

Equation (2) shows the required number of parallel modules

\[
N_s = \frac{V_{MPP}}{V_M} = \frac{120}{26.4} = 4.54 \approx 5
\]

Equation (3) shows the required number of series modules

Thus, a five module series connected and two module parallel connected solar PV array is designed successfully and energy conserved and utilized efficiently [14]

Table 1: Specifications of 200W PV panel

Key Parameters	Numerical Value
Peak power	200 W
\(V_{MPP} \)	26.4 V
\(I_{SC} \)	8.21 A
\(I_{MPP} \)	8.215 A
3. SEPIC Converter Design

The SEPIC converter is modeled using MATLAB Simulink software as shown in Figure 2 [15]. For designing of SEPIC converter, the parameters value has been calculated using equations (4), (5), (6) and (7).

The duty cycle can be determined using the equation (4)

\[D = \frac{V_{OUT}}{V_{OUT} + V_{IN}} = \frac{250}{250 + 120} = 0.676 \]

\[I_{OUT} = \frac{P_{MPP}}{V_{OUT}} = \frac{1500}{250} = 6A \]

\[L_{1(MIN)} = L_{2(MIN)} = \frac{1 * V_{IN(MIN)} * D}{2 * N_l * f_{sw}} = \frac{1 * 120 * 0.676}{2 * 2 * 8000} \]

\[L_{1(MIN)} = L_{2(MIN)} = 2.028mH \]

If equivalent series resistance is low, then \(C_1 \) & \(C_2 \) can be determined by equation (7).

\[C_1 = C_2 = \frac{I_{OUT} * D}{\Delta V_{RPL} * f_{sw}} = \frac{6 * 0.676}{0.01 * 250 * 8000} \]

\[C_1 = C_2 = 202.8\mu F \]
4. Design of MPPT Algorithm
In this article, the well-known MPPT technique Perturb and observe method is employed. Fig. 3 shows the flow chart of operation of Perturb and Observe method. Power variance and voltage variation shall decide the action needed to increase or decrease the reference voltage. It can be observed by varying the duty ratio of PWM signal given for the purpose of switching the dc-dc converter. The proposed method is simulated and hardware is implemented [16].

Figure 3: Flowchart for Perturb and Observe MPPT technique

5. HERIC Inverter Topology
The simulation diagram of HERIC topology is shown in figure 4. HERIC inverter with additional switches provides isolation between Solar PV array and grid. The reactive power exchange is prevented which increases the efficiency of inverter and performance and reduces complexity problem in inverter [17].

Table 2: Parameters for designing SPWM

Key Parameters	Numerical Value
Carrier wave amplitude	1V
Carrier frequency	8kHz
Reference wave amplitude	0.8V
Reference wave frequency	50Hz

Table 2 gives the parameters value for designing the sinusoidal pulse width modulation technique which generates pulses required for triggering the inverter.
6. Simulation Results

The PV system with battery storage based single-phase transformer-less HERIC inverter with \(R \) Load is designed and simulated by MATLAB Simulink [18]. Fig.5 gives the output values of solar PV voltage as well as current of 120 V and 12.5 A respectively as designed for 1.5KW.

As shown in fig.3, the simulation is done at 67% duty cycle for SEPIC converter and the shape of output waveforms reveal that for the input values from the designed solar panel with MPPT. The output voltage is constant at 250V expected voltage level and does not differ with input variations. In addition, there has been a substantial decrease of overshoot has been noted [19-20].
Fig. 7 shows the output waveforms for the proposed inverter with R load. It shows due to the effects of output voltage drop of SEPIC converter, there is a change in inverter output. The SEPIC converter mainly focuses on extracting maximum power from PV system.

7. Conclusion

The proposed model of solar PV system with HERIC inverter has been designed and simulation result has been obtained. The solar PV array output is regulated using MPPT based SEPI converter for variation in temperature and irradiation. It is observed that the variation in solar radiation and temperature has influence on output of HERIC inverter.

8. References

[1] S. Lee and H. Do, "Zero-Ripple Input-Current High-Step-Up Boost–SEPIC DC–DC Converter With Reduced Switch-Voltage Stress," in IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6170-6177, Aug. 2017, doi: 10.1109/TPEL.2016.2615303.

[2] S. Padmanabhan and K. Kaliyappan, “High Performance MPPT Based on Variable Speed Generator Driven by Wind Power Generation in Battery Applications,” Journal of Electrical Engineering and Technology, vol. 9, no. 1, pp. 205–213, Jan. 2014.

[3] S. V. Araujo, P. Zacharias and R. Mallwitz, "Highly Efficient Single-Phase Transformerless Inverters for Grid-Connected Photovoltaic Systems," in IEEE Transactions on Industrial Electronics, vol. 57, no. 9, pp. 3118-3128, Sept. 2010.

[4] K. Gupta, M. S. Joshi and V. Agarwal, "On the control and design issues of single phase transformerless inverters for photovoltaic applications," 2014 IEEE 6th India International Conference on Power Electronics (IICPE), Kurukshetra, 2014, pp. 1-6, doi: 10.1109/IICPE.2014.7115805.

[5] T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," in IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, June 2007.

[6] A. T. Sankara Subramanian, P. Sabarish, M. D. Udayakumar and T. Vishnu kumar, “Performance Analysis of Various Photovoltaic Configurations Under Uniform Shading and Rapid Partial Shading Formations”, Biosc.Biotech.Res. Comm. Special Issue Vol 13 No (3) 2020 Pp-185-192.

[7] B.Karthikeyan, R. Ramkumar, L. Nagarajan, A. Anton Amala Praveen and S. Vijayalakshmi,,” ANN Based MPPT Controller for PEMFC System with Interleaved Resonant PWM High Step up Converter” Biosc.Biotech.Res.Comm. Special Issue Vol 13 No (3) 2020 Pp-44-47.
[8] R.Jai Ganesh, S.Kodeeswaran, M.Kavitha, T.Ramkumar, Performance analysis of piezoelectric energy harvesting system employing bridgeless power factor correction boost rectifier”, https://doi.org/10.1016/j.matpr.2020.02.085.

[9] Dr. A. Rajkumar, R. Jai Ganesh, V. Suresh Kumar, T. Vishnu Kumar and T. Ram Kumar,” Implementation of High Efficient Single Input Triple output DC-DC Converter,” Biosc.Biotech.Res.Com. Special Issue Vol 13 No (3) 2020 Pp-48-55.

[10] S.R.Paveethra, S.Vijayalakshmi, C. Kalavalli, S.Murugesan and Dr.S.Jeyasudha,” MPPT based Harmonic Reduction in PV Module for Grid Connected System,” Biosc. Biotech.Res.Com. Special Issue Vol 13 No (4) 2020 Pp-43-48.

[11] A Nazar Ali, D Sivamani, R Jaiganesh M Pradeep (2019), Solar powered air conditioner using BLDC motor, IOP Conference Series: Materials Science and Engineering, vol. 23.

[12] V Venkatesh, A Nazar Ali, R Jaiganesh. V Indiragandhi (2019), Extraction and conversion of exhaust heat from automobile engine in to electrical energy, IOP Conference Series: Materials Science and Engineering, vol. 23.

[13] A Ali Nazar, R Jayabharath, MD Udayakumar (2014), An ANFIS Based Advanced MPPT Control of a Wind-Solar Hybrid Power Generation System, international review of modeling and Simulations. vol.7, no. 4, pp. 638–643.

[14] A.Nazar Ali and R. Jayabharath (2014), "Performance Enhancement of Hybrid Wind/Photo Voltaic System Using Z Source Inverter with Cuk-sepic Fused Converter," Research Journal of Applied Sciences, Engineering and Technology7.19 pp. 3964-3970.

[15] Subramanian, A.T sankar, P. sabarish and A. Nazar Ali , “A Power factor correction based Canonical switching cell converter for VSI fed BLDC motor by using voltage follower Technique.” Electrical, Instrumentation and communication Engineering (ICEICE),2017 IEEE International conference on IEEE, 2017

[16] C.Kalavalli, S.R.Paveethra, S.Murugesan, Dr.A.Nazar Ali, (2020), Design And Implementation Of High Efficiency H6 PV Inverter with Dual Axis Tracking, International Journal of Scientific & Technology Research, Vol 9,issue 02, pp. 4728-31.

[17] Shyam D, Premkumar K, Thamizh selvan T, Nazar Ali A, Vishnu Priya M(2019),Symmetrically Modified Ladder H-Bridge Multilevel Inverter with Reduced Configurationally Parameters, International journal of engineering and advanced technology, Vol 9, issue 1.

[18] S.R.Paveethra, C.Kalavalli, S.Vijayalakshmi, Dr.A.Nazar Ali, D.Shyam(2020), Evaluation Of Voltage Stability Of Transmission Line With Contingency Analysis, International Journal of Scientific & Technology Research, Vol 9,issue 02, pp. 4018-22

[19] Premkumar, Kamaraj et al. (2018), Antlion Algorithm Optimized Fuzzy PID Supervised On-line Recurrent Fuzzy Neural Network Based Controller for Brushless DC Motor, Electric Power Components and Systems, 45, 20, pp.2304-2317.

[20] K Premkumar et al. (2018), Novel bacterial foraging-based ANFIS for speed control of matrix Converter-fed industrial BLDC motors operated under low speed and high torque, Neural Computing and Applications, 29, 12, pp.1411–1434.