Global cognitive trajectory patterns in Alzheimer’s disease

Carl I. Cohen,1 Barry Reisberg,2 and Robert Yaffee3

1Division of Geriatric Psychiatry & Center of Excellence for Alzheimer’s Disease, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
2Emeritus, New York University Langone Health, New York, NY, USA
3Retired, Silver School of Social Work, New York University, New York, NY, USA

ABSTRACT

Objectives: The literature on Alzheimer’s disease (AD) provides little data about long-term cognitive course trajectories. We identify global cognitive outcome trajectories and associated predictor variables that may inform clinical research and care.

Design: Data derived from the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set were used to examine the cognitive course of persons with possible or probable AD, a Mini-Mental State Examination (MMSE) of ≥10, and complete annual assessments for 5 years.

Setting: Thirty-six Alzheimer’s Disease Research Centers.

Participants: Four hundred and fourteen persons.

Measurements: We used a hybrid approach comprising qualitative analysis of MMSE trajectory graphs that were operationalized empirically and binary logistic regression analyses to assess 19 variables’ associations with each trajectory. MMSE scores of ±3 points or greater were considered clinically meaningful.

Results: Five distinct cognitive trajectories were identified: fast decliners (32.6%), slow decliners (30.7%), zigzag stable (15.9%), stable (15.9%), and improvers (4.8%). The decliner groups had three subtypes: curvilinear, zigzag, and late decline. The fast decliners were associated with female gender, lower baseline MMSE scores, a shorter illness duration, or receiving a cognitive enhancer. An early MMSE decline of ≥3 points predicted a worse outcome. A higher rate of traumatic brain injury, the absence of an ApoE ε4 allele, and male gender were the strongest predictors of favorable outcomes.

Conclusions: Our hybrid approach revealed five distinct cognitive trajectories and a variegated pattern within the decliners and stable/improvers that was more consistent with real-world clinical experience than prior statistically modeled studies. Future investigations need to determine the consistency of the distribution of these categories across settings.

Key words: Alzheimer’s disease, dementia, course, outcome, cognitive trajectories

Introduction

Despite the extensive literature on Alzheimer’s disease (AD), there is surprisingly little data about the cognitive course trajectories experienced by patients. This is important since appreciating course trajectories may inform clinical research and care. Historically, cognition in AD was thought to follow an inexorable linear downhill course (Hochstetler et al., 2011). However, later studies demonstrated a more heterogeneous course that comprised slow and fast cognitive decliners (Schmidt, 2011). and even a subgroup that showed minimal or no decline (Clark et al., 1999; Haaksma et al., 2018). More recently, investigators identified between three and six cognitive trajectories that patients traverse over time (Haaksma et al., 2018; Melis, et al., 2019; Schmidt, 2011). The trajectory studies demonstrated that Inferences based on a single mean trajectory score can lead to serious overestimations of the speed of cognitive decline (Haaksma et al., 2018).

Earlier AD cognitive trajectory studies had several limitations. Some studies were based on longitudinal data of 3 years or less, whereas longer studies had small final samples (N<150) with very few minority elders (Haaksma et al., 2018; Hochstetler et al., 2015; Leoutsakos et al., 2015;
Wang et al., 2019). Most of the recent trajectory studies used growth mixed models (GMMs), which is a type of clustering analysis that identifies latent groups in a sample. Design issues, including sample size and the number of measurement occasions, may affect the number of latent classes found (Hoeksma and Kelderman, 2006). Consequently, there have been difficulties in replicating the same trajectories across studies (Haaksma et al., 2018; Meulis et al., 2019; Wang et al., 2019). Moreover, statistical models may identify configurations that do not reflect the granular patterns within the AD population. Closer inspection of the scatterplots of the cognitive trajectories in the literature suggested that there are stable and irregular trajectories, and even some with patterns of improvement (Haaksma et al., 2018; Hochstetler et al., 2015; Leoutsakos et al., 2015; Wang et al., 2019). However, these were not identified as distinct trajectories, although they may be clinically relevant. By contrast, some studies found multiple classes of decline that did not seem to differ clinically (Haaksma et al., 2018; Wilkosz et al., 2010). This study addresses the clinical limitations of GMM and the paucity of long-term large-scale representative studies of course trajectories in AD. In so doing, we utilize a hybrid of qualitative and quantitative methods to examine individuals’ cognition longitudinally based on Mini-Mental State Examination (MMSE) scores. Following the methods of Tufte (2001), we undertake an exploratory approach that examines the graphic patterns of cognitive functioning over time and then appraise empirically these patterns for their distinctness and associated variables. This approach is used to answer the following questions:

1. What are the 5-year global cognitive trajectories for persons diagnosed with AD?
2. What factors at intake are predictors of a specific trajectory?

Methods

We utilized data from the National Alzheimer’s Coordinating Center (NACC) Uniform Data Set (UDS; version 1-2) which collects information from approximately 36 Alzheimer’s Disease Research Centers in the United States. The UDS methods are described elsewhere (Morris et al., 2006). After enrollment, participants undergo regular evaluations spaced about 1 year apart until either dropout or death. During this study’s data collection period (2005–2017), baseline AD was diagnosed using the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association criteria (1984) (McKhann et al., 1984). We utilized the MMSE (Folstein et al., 1975), a long-established measure of global cognition, as the basis for developing the cognitive trajectories. We included persons with an AD diagnosis and, to avoid floor effects, we excluded persons with severe dementia, that is, MMSE scores <10 (note: MMSE is scaled from 0 to 30). To ensure that complex course patterns were not overlooked, we included only persons with complete MMSE scores at baseline and for each of the subsequent 5 years. A total of 414 persons fulfilled these criteria.

Utilizing criteria established in prior longitudinal studies, we designated a cutoff score of ±3 or greater to indicate a meaningful change in the MMSE (Hensel et al., 2007; Tombaugh, 2005). We created a taxonomy of trajectories using quantitative and qualitative methods. Following the suggestions of Tufte (2001) regarding the importance of using graphic displays to fully appreciate the essence of the data, we initially examined the graphs of the cognitive trajectories of each subject and the revealed patterns were then operationalized empirically according to the following coded decision rules: (1) decliners: subjects with a decrease of ≥ 3 points from baseline on the MMSE at 5 years. The decliners were divided into slow and fast groups, with subjects in the latter group required to have a 5-year MMSE change score of at least 2 standard deviations below the mean baseline MMSE score for the entire sample (7.8 points); this cutoff approximated the median frequency of the change scores of persons in the decliner group (slow decliners’ MMSE 5-year change scores ranged from −3 to −7; fast decliners’ MMSE 5-year change scores ranged from −8 to −27); (2) improvers: an increase of ≥ 3 points from baseline on the MMSE at 5 years; (3) stable: no change of ≥ 3 points up or down on the MMSE from the prior year on each of the annual examinations over 5 years and the final year MMSE change scores was between ±2 points from baseline [Note: 20% of this group fluctuated slightly (±2) outside this range, but the final net change was between ±2.] (4) zigzag stable: a change of ≥ 3 points up or down on the MMSE followed by a return of the change scores to ±2 points from baseline at 5 years. We also identified three subtypes within the slow and fast decliners: (1) zigzag decline: a change of ≥ 3 points up or down followed by a return of at least ±3 points, respectively, and the overall decline in the MMSE was ≥3 from baseline at 5 years; (2) late decliners: No change of ≥ 3 points up or down on the MMSE for at least the initial three annual exams, but overall MMSE decline was ≥ 3 points from baseline at 5 years; (3) curvilinear (nonlinear) decline trajectories of ≥ 3 point decline from baseline MMSE at 5 years.
Numerous variables have been found to predict the subsequent course of AD (Haakema et al., 2018; Schmidt, 2011; Melis, et al., 2019; Baker et al., 2017; Eldholm et al., 2018; Haakema et al., 2019; Wattmo, et al., 2016). These risk factors were conceptualized into four categories (sociodemographics; family, personal history, and biological and genetic factors; clinical treatment; and clinical disorders, symptoms, and functioning) and operationalized into 21 predictor variables listed in Table 1.

Statistical analysis

To test the distinctness of each cognitive trajectory category, we compared their MMSE scores over time using repeated analysis of variance with a Huynh–Feldt correction. Assumptions of normality were met. To examine differences in the predictor variables among the five principal trajectories, we conducted bivariate analyses of the 21 variables in Table 1 using chi-square analysis and the Kruskal–Wallis (K–W) test for categorical and ordinal/continuous variables, respectively. Next, these predictor variables were entered into binary logistic regression analyses to determine the independent effects of these variables in distinguishing each trajectory from the other trajectories. There was no evidence of high collinearity among the predictor variables entered into the final analyses. As this is an exploratory study, we used a significance level of \(p < .05 \); however, p-values are listed for all tests.

Results

We confirmed five distinct cognitive trajectories: fast decliners, slow decliners, zigzag stable, stable, and improvers; these represented 32.7%, 30.7%, 15.9%, 15.9%, and 4.8% of the sample, respectively (Table 2). These categories corresponded well with the MMSE score, CDR® Dementia Staging Instrument global score, and AD diagnostic certainty) had significant differences across the categories (Table 1). We used binary logistic regression analysis with 19 of these baseline variables to predict their independent effects on subsequent category membership (Table 3). Family history was eliminated because of missing data and the baseline CDR global scale was eliminated because of its high correlations with baseline MMSE scores (\(r = -.59; p < .001 \)) that attenuated the effects of both variables when they were entered concurrently. The fast decliner trajectory was associated with female gender, a shorter length of illness, taking a cognitive enhancer, and a lower baseline MMSE score. The stable trajectory was associated with longer illness duration, higher baseline MMSE scores, a greater likelihood of TBI, and a lower prevalence of ApoE \(ε4 \) allele genotype. The slow decliners category was associated with a lower rate of prior TBI. The zigzag stable trajectory was associated with lower usage of cognitive enhancers. Improvers were associated with being male and lower baseline MMSE scores. When we excluded persons with possible AD and examined probable AD separately, the findings were similar, with most...
Table 1. Bivariate analyses of the distribution of percentages and means of the baseline predictor variables by trajectory type

BASELINE VARIABLES	N	FAST DECLINERS	SLOW DECLINERS	ZIGZAG STABLE	STABLE	IMPROVERS	STATISTICAL ANALYSIS
Sociodemographics							
Male (%)	226	27	29	18	20	6	\(\chi^2 = 14.37, p = .006 \)
Female (%)	188	39	33	14	11	3	
White (%)	338	33	29	15	18	4	\(\chi^2 = 7.49, p = .11 \)
Non-white (%)	76	29	37	18	8	8	
Age, M (SD)	414	74.3 (9.4)	75.7 (8.9)	75.0 (10.8)	73.3	74.3 (6.5) K-W \(\chi^2 = 4.97, p = .29 \)	
Education, M (SD)	414	14.5 (3.4)	14.7 (3.5)	14.4 (3.7)	15.5	13.4 (4.5) K-W \(\chi^2 = 9.65, p = .047 \)	
Lives: alone (%)	82	24	39	16	15	6	\(\chi^2 = 9.294, p = .054 \)
With others (%)	332	35	29	16	16	5	
Family, personal, biological, and genetic factors							
Family history of dementia (%)							
Absent	120	33	30	13	20	4	\(\chi^2 = 3.23, p = .52 \)
Present	260	29	32	18	16	5	
ApoE \(\epsilon \)4 allele (%)							
Absent	368	31	31	17	17	5	\(\chi^2 = 4.49, p = .34 \)
Present	46	46	28	11	11	4	
History of traumatic brain Injury (%)							
Absent	362	32	33	16	14	5	\(\chi^2 = 13.37, p = .01 \)
Present	50	36	14	18	30	2	
Illness duration (yrs), M (SD)	393	4.4 (2.6)	4.9 (4.3)	4.5 (3.6)	5.1 (4.1)	4.6 (3.6) K-W \(\chi^2 = 1.06, p = .90 \)	
Clinical treatment							
Cognitive enhancer (%)							
No	183	21	30	21	22	6	\(\chi^2 = 27.70, p < .001 \)
Yes	229	42	31	12	11	4	
Clinical disorders, symptoms, and functioning							
Needs assistance(%)	223	39	31	14	12	4	\(\chi^2 = 11.13, p = .025 \)
Can live Independently (%)	191	26	30	18	20	6	
Physical exam (%)							
Normal	319	33	31	15	16	5	\(\chi^2 = 2.28, p = .68 \)
Abnormal	92	33	28	21	15	3	
Parkinsonian symptoms							
Absent	214	35	31	13	17	5	\(\chi^2 = 3.94, p = .41 \)
Present	199	31	30	20	15	5	
Hachinski score (Hachinski et al., 1975), M (SD) (range: 0–12)	413	0.8 (1.0)	1.1 (1.4)	1.2 (1.8)	0.8 (1.2)	0.6 (0.6) K-W \(\chi^2 = 3.20, p = .53 \)	
Number of metabolic disorders M (SD) (range: 0–4)	414	1.4 (0.3)	1.4 (1.1)	1.5 (1.1)	1.4 (1.2)	1.5 (1.3) K-W \(\chi^2 = 3.34, p = .50 \)	
Neuropsychiatric Inventory (Cummings, 1997), M (SD) (range: 0–36)	404	4.2 (4.6)	3.1 (3.8)	3.2 (3.4)	3.1 (5.3)	3.0 (3.9) K-W \(\chi^2 = 9.91, p = .04 \)	
Geriatric Depression Scale (Yesavage and Sheikh, 1986), M (SD) (range: 0–15)	405	2.3 (2.5)	2.2 (2.2)	2.0 (2.7)	2.4 (2.7)	1.5 (1.7) K-W \(\chi^2 = 4.79, p = .31 \)	
Alcohol misuse past year (%)							
Absent	394	32	32	16	16	5	\(\chi^2 = 6.72, p = .15 \)
Present	20	50	10	20	10	10	
MMSE baseline, M (SD) (range: 10–30)	414	23.8 (3.9)	25.2 (3.6)	25.2 (3.5)	27.0 (3.4)	24.9 (3.9) K-W \(\chi^2 = 51.51, p < .001 \)	
M CDR global score (Morris, 1993), M (SD) (range: 0–3)	414	0.8 (0.4)	0.6 (0.3)	0.6 (0.4)	0.6 (0.2)	0.7 (0.4) K-W \(\chi^2 = 20.47, p < .001 \)	
Probable AD (%)	294	35	33	15	12	6	\(\chi^2 = 15.47, p = .004 \)
Possible AD (%)	120	28	25	20	25	3	

Some totals may not equal 100% due to rounding, df = 4 for all chi-square and Kruskal–Wallis (K-W) analyses.

MMSE = Mini-Mental State Examination; CDR = CDR® Dementia Staging Instrument; TBI = traumatic brain injury; M (SD) = mean (standard deviation).
Table 2. Distribution of trajectory patterns for entire sample and by gender

ENTIRE SAMPLE	FAST DECLINERS	SLOW DECLINERS	ZIGZAG STABLE	STABLE	IMPROVERS
N	135	127	66	66	20
Percent distribution by trajectory	32.6	30.7	15.9	15.9	4.8
Baseline MMSE (SD)	23.8 (3.9)	25.2 (3.6)	25.2 (3.5)	27.0 (3.4)	22.0 (3.8)
MMSE at 5 years (SD)	10.4 (5.6)	20.6 (3.8)	25.0 (3.6)	26.9 (3.8)	26.3 (2.8)
Mean change in MMSE (SD) after 5 years	−13.4 (4.5)	−4.7 (1.4)	−0.2 (1.4)	−0.1 (1.2)	+4.3 (2.2)
Mean change in CDR global score (SD) after 5 years	1.39 (.71)	.51 (.56)	.13 (.41)	.05 (.37)	.05 (.65)

MMSE = Mini-Mental State Examination; CDR = CDR® Dementia Staging Instrument.

Figure 1. (a) Fast decliners; (b) slow decliners; (c) zigzag stable; (d) stable; (e) improvers. Time = intake (#1) and annual visit number (#2–#6).

Figure 2. Probability of remaining in a trajectory group at 5 years based on status in a given year.
Discussion and conclusions

Our hybrid approach using quantitative and qualitative methods generated five distinct global cognitive trajectory categories and three subtypes within the decliner groups. This taxonomy provides a more nuanced and clinically meaningful picture than a single mean trajectory or the GMM-generated trajectories. Among persons who were in the decliner trajectories, roughly half were in the slow decliner category, and among the slow decliners about one-third were stable for the first 3 years. Moreover, among persons in the stable groups, 30% (39/132) differences reflecting reduced statistical power (Table 3).

There were a few potentially relevant significant differences between the 5-year sample used here and the UDS sample that had met initial eligibility criteria but had not completed five consecutive years of evaluations (n = 10,937), nearly two-thirds of whom had come for only one or two visits. Completers were more likely to be male (55% vs 46%; \(\chi^2 = 12.69, \text{df} = 1, p < .001 \)) and have higher scores on baseline MMSE (24.9 vs 22.5; Mann–Whitney (M–W) U = 1575211, \(p < .001 \), but there were no significant differences between groups in age (74.7 vs 75.5 years; M–W U = 2162279, \(p = .12 \)), education (14.6 vs 14.4 years; M–W U = 2165921, \(p = .24 \)), non-White race (18% vs 19%; \(\chi^2 = .22, \text{df} = 1, p = .64 \)), or duration of illness (4.7 vs 4.8 years; M–W U = 1956885, \(p = .13 \)).

We conducted a second post hoc analysis on 117 persons for whom there was postmortem neuropathological information. The positive predictive values (PPVs) for possible and probable AD were 79% and 90%, respectively (86% for the sample as a whole) for the presence of intermediate or high scores on the National Institute on Aging–Alzheimer’s Association AD Neuropathologic Change criteria (“ABC score”); (Montine et al., 2012); this difference between AD groups did not attain statistical significance (\(\chi^2 = 2.60, \text{df} = 1, p = .11 \)).

Table 3. Binary logistic regression analyses of each cognitive trajectory versus other trajectories

SIGNIFICANT PREDICTOR VARIABLES FOUND FOR EACH TRAJECTORY	ENTIRE SAMPLE (PROBABLE AND POSSIBLE ALZHEIMER’S DISEASE)	PROBABLE ALZHEIMER’S DISEASE ONLY**
	ODDS RATIO 95% CONFIDENCE INTERVAL	ODDS RATIO 95% CONFIDENCE INTERVAL
Fast decliners vs others		
Gender (female)	2.22	1.34–3.69
Duration of illness	.92	.85–.99
Taking cognitive enhancer	2.18	1.26–3.78
Baseline MMSE	.92	.85–.98
Slow decliners vs others		
History of traumatic brain injury	.36	.15–.84
Zigzag stable vs others	.49	.25–.92
Stable vs others		
Duration of illness	1.10	1.02–1.20
ApoE ε4 allele	.46	.24–.89
History of traumatic brain injury	2.52	1.13–5.69
Baseline MMSE	1.21	1.07–1.36
Gender (female)	.28	.10–.77
Improvers vs others		
Gender (female)	.17	.04–.72
Baseline MMSE	.77	.66–.90

All predictor variables listed in Table 1 were entered together except for family history of dementia and CDR global score. For each regression analysis, the trajectory is examined versus the other trajectories.

*\(N = 387 \), **\(N = 275 \).
exhibited a zigzag pattern that resembled decliners but then recovered. Among the decliners, rather than the sloping curvilinear curves portrayed in earlier studies, one-fifth showed a zigzag pattern.

It is now recognized that AD has a heterogeneous course; however, earlier studies focused on the diversity among decline curves and conflated slow decline, steady, and improving courses. An examination of the trajectories and scatterplots of several studies revealed early stability in cognition for AD and dementia (Haaksma et al., 2018; Hochstetler et al., 2015; Leoutsakos et al., 2015; Wang et al., 2019; Wilkosz et al., 2010). Several clinic-based studies found stable cognitive functioning in 16% to 30% of patients for periods of 2–4 years (Clark et al., 1999; Cortes et al., 2008; Hallikainen et al., 2013). More notably, a population-based study in Cache County found 30% of the sample declined less than 1 point per year on the MMSE after 5 years (Tschanz et al., 2011). A trajectory not recognized previously is the zigzag pattern that was seen in half the persons who remained stable and in some decliners. When we examined scatterplots from earlier studies, it was evident that statistical models overlooked the irregular trajectories of many real-world patients.

Like other studies, we found only a few variables that could distinguish trajectory groups, and most of the odds ratios had small effect sizes. Using a 19-variable predictor model, we found fast decliners and the stable trajectory yielded the highest number of significant predictors. Female gender, lower baseline MMSE scores, shorter illness duration, and use of a cognitive enhancer increased the risk of being in a rapid decline group. In contrast, a longer duration of illness, a higher baseline MMSE, the absence of an ApoE ε4 allele, and higher rates of TBI increased the likelihood of following a stable course. These findings are consistent with a literature review by Sona et al. (2013) who found that women typically had a more rapid cognitive decline than men, and that fast decline was associated with more severe cognitive decline at disease onset, especially if diagnosed at an intermediate stage of illness. There have been inconsistencies in the literature regarding the impact of ApoE ε4 on clinical course, and it has been associated with rapid, slow, or no declines in AD (Eldholm et al., 2018; Schmidt, 2011; Sona, et al., 2013). Our observations that TBI was proportionately more common in the stable trajectory and proportionately less common in the slow decliner trajectory may reflect findings that TBI is associated with numerous types of dementia such as Lewy body accumulation and Parkinsonism (Ramos-Cejudo et al., 2018). Perhaps, the underlying comorbid neuropathology of people with a stable course differs from other trajectories. Increasingly, it has been recognized that various neuropathologies often coexist with AD pathology, perhaps exceeding 50%, and it is plausible that they may affect the course of the disorder (Barnes et al., 2015; Kapasi et al., 2017).

A strength of this study is that we used a hybrid methodological approach that provided a more granular clinical picture of AD cognitive course trajectories than those created by earlier statistical analyses. We identified patterns that were apparent in the scatterplots of earlier studies but were not considered relevant. Our trajectories were statistically distinct except for the improvers, which only differed from the fast decliners, and may ultimately warrant its inclusion with the stable group. We examined disease course over 5 years so that long-term outcome was not truncated, the sample size was sufficiently large to identify five clinically meaningful trajectories, the data were derived from racially and geographically diverse sources across the country, and the independent effects of risk factors were assessed using a multivariable approach.

While this study aimed to identify distinct long-term cognitive trajectory patterns in AD patients utilizing complete 5-year data, it is plausible that other samples might yield different proportions of persons within each trajectory. Nevertheless, our closer inspection of scatterplots from earlier studies provides compelling evidence that these patterns exist across samples, albeit the distributions may differ. Similarly, in our analysis, since only a small percentage of the UDS sample had complete 5-year MMSE data, it is uncertain whether the proportion of persons in the trajectories identified in this study would have reflected trajectories in the general community or the subsequent patterns of the broader group coming for evaluation to the Alzheimer’s Disease Research Centers. Indeed, there may be a survivor bias in that the completers in the study remained alive and available for follow-up for 5 years. However, when we adjusted our study sample to resemble the MMSE and gender distributions of the non-completers (i.e., 54% female in the adjusted sample), there were no significant differences in trajectory category distribution between the adjusted and the original study samples. Other limitations include the absence of data on the use of anticholinergic agents, the potential effects of changes over time in the baseline clinical variables, and the impact of family or formal support systems, albeit we did include a variable on living arrangements. Although the sample size of 414 is modest in size, it is larger than other long-term trajectory studies at 5 years. Because of high dropout rates, it is difficult to obtain complete 5-year data, and all investigators must compromise between larger
sample sizes with shorter durations that have truncated trajectory patterns versus smaller samples with longer durations of follow-up with more evolved trajectory patterns.

The MMSE poses a potential limitation concerning its reliability as the outcome measure. Although the MMSE has high test–retest reliability (0.79–0.99) (Clark et al., 1999), there are still potential measurement errors. Clark et al. (1999) argued that most errors could be obviated with a meaningful indicator of change (roughly 3 points) and a longer duration of analysis (e.g., 3 or more years). We have done both. Nevertheless, results may be affected by environmental factors, medications, problematic behaviors, medical conditions, or unmeasured confounders.

Finally, we must consider whether non-decliners may have been misdiagnosed by the Alzheimer’s Disease Research Centers. Indeed, when more stringent criteria (“probable” AD) were used, there were fewer people in the stable/improved trajectories, that is, 33% versus 37% in the combined probable/possible sample. However, the stringent criteria are somewhat tautological, since a history of steady decline is incorporated into the diagnostic criteria of probable AD, whereas possible AD allows for more atypical presentations (McKhann et al., 1984). On the other hand, postmortem neuropathology studies have found minimal differences in the PPVs for AD based on probable versus possible AD diagnoses (Beach et al., 2012). Our post hoc analysis of postmortem findings demonstrated no significant differences in the PPV between the possible and probable AD groups. For our entire sample, the PPV of the clinical diagnosis of AD was 86%. Similarly, Beach et al. (2012) found the UDS diagnosis of probable AD had about 5% greater neuropathological accuracy than the combined probable/possible diagnostic group. Another issue concerns the relevance of various biomarkers to course trajectories. Unfortunately, our sample had biomarker data for only 72 subjects, so comparisons between trajectories were not possible.

Our analysis may have important implications for clinicians. Global cognition manifests various trajectory patterns that evolve over time and identifying a patient’s trajectory type may inform care. For example, a clinically meaningful MMSE decline (≥ 3 points) from baseline in the first or second year appears to be an ominous sign, and the likelihood of remaining in a decliner group after 5 years was about 90%. While being in a decliner group after 1 or 2 years suggests a poorer prognosis, there is a subgroup among zigzagers (9% of the overall sample) that showed a significant decline in the first few years, but then recovered to the stable range. On the other hand, it may take longer to determine who will remain cognitively stable. Among those who were stable after 2 years, only half remained in that category. This lack of certainty was accounted for by zigzagers, the indolent pace of slow decliners, and by late decliners who did not decline until the 4th and 5th years. Finally, the probability of more rapid cognitive decline was higher for women and having lower baseline MMSE scores, shorter illness duration, or receiving a cognitive enhancer. A higher rate of TBI, the absence of an ApoE ε4 allele, and male gender were the strongest predictors of favorable outcomes.

Conclusion

Our hybrid methodological approach revealed a heterogeneous cognitive 5-year course for AD consisting of five distinct trajectories and a variegated pattern within the two broad groups of decliners and stable/improvers that was more consistent with real-world clinical experience than had been reported in earlier statistically modeled studies. Although we believe that these cognitive trajectories categories will be found in all sites, future investigations need to determine the consistency of the distribution of these categories across settings.

Acknowledgments

This study was funded by a grant from the Alzheimer’s Association GEENA-Q-19-596058.

• Dr. Reisberg’s work on this paper was supported in part by Zachary and Elizabeth M. Fisher Educational Research Program at NYU Langone Medical Center and the Louis J. Kay and June E. Kay Foundation

• The NACC database is funded by NIA/NIH Grant U01 AG016976. NACC data are contributed by the NIA-funded ADRCs: P30 AG019610 (PI Eric Reiman, MD), P30 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG013846 (PI Neil Kowall, MD), P50 AG008702 (PI Scott Small, MD), P50 AG025688 (PI Allan Levey, MD, PhD), P50 AG047266 (PI Todd Golde, MD, PhD), P30 AG010133 (PI Andrew Saykin, PsyD), P50 AG005146 (PI Marilyn Albert, PhD), P50 AG005134 (PI Bradley Hyman, MD, PhD), P50 AG016574 (PI Ronald Petersen, MD, PhD), P50 AG005138 (PI Mary Sano, PhD), P30 AG008051 (PI Thomas Wisniewski, MD), P30 AG013854 (PI Robert Vassar, PhD), P30 AG008017 (PI Jeffrey Kaye, MD), P30 AG010161 (PI David Bennett, MD), P50 AG047366 (PI Victor Henderson, MD, MS), P30 AG010129 (PI Charles DeCarli, MD),
References

Baker, E. et al. (2017). Trajectories of dementia-related cognitive decline in a large mental health records derived patient cohort. *PloS one*, 12, e0178562. DOI 10.1371/journal.pone.0178562.

Barnes, L. L., et al. (2015). Mixed pathology is more likely in black than white decedents with Alzheimer dementia.

Beach, T. G. et al. (2012). Accuracy of the clinical diagnosis of Alzheimer disease at National Institute on Aging Alzheimer Disease Centers, 2005–2010. *Journal of Neuropathology and Experimental Neurology*, 71, 266–273. DOI 10.1097/NEN.0b013e31824b211b.

Clark, C. M. et al. (1999). Variability in annual Mini-Mental State Examination score in patients with probable Alzheimer disease: A clinical perspective of data from the Consortium to Establish a Registry for Alzheimer’s Disease. *Archives of Neurology*, 56, 857–862. DOI 10.1001/archneur.56.7.857.

Cortes, F. et al. (2008). Prognosis of Alzheimer’s disease today: A two-year prospective study in 686 patients from The REAL-FR Study. *Alzheimer’s and Dementia*, 4, 22–29.

Cummings, J. L. (1997). The neuropsychiatric inventory: Assessing psychopathology in dementia patients. *Neurology*, 48, 10S–16S. DOI 10.1212/WNL.48.5_Suppl.6.10S.

Eldholm, R. S. et al. (2018). Progression of Alzheimer’s disease: A longitudinal study in Norwegian memory clinics. *Journal of Alzheimer’s Disease*, 61, 1221–1232. DOI 10.3233/JAD-170436.

Folstein, M. F., Folstein, S. E. and McHugh, P. R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. *Journal of Psychiatric Research*, 12, 189–198. DOI 10.1016/0022-3956(75)90026-6.

Haakasma, M. L. et al. (2018). Cognitive and functional progression in Alzheimer disease: A prediction model of latent classes. *International Journal of Geriatric Psychiatry*, 33, 1057–1064. DOI 10.1002/gps.4893.

Haakasma, M. L. et al. (2019). Predicting cognitive and functional trajectories in people with late-onset dementia: A population-based study. *Journal of the American Medical Directors Association*, 20, 1444–1450. DOI 10.1016/j.jamda.2019.03.025.

Hachinski, V. G. et al. (1975). Cerebral blood flow in dementia. *Archives of Neurology*, 32, 632–637. DOI 10.1001/archneur.1975.00405100880009.

Hallikainen, I. et al. (2013). Progression of Alzheimer’s disease during a three-year follow-up using The CERAD-NB total score: Kuopio ALSOVA study. *International Psychogeriatrics*, 25, 1335–1344. DOI 10.1017/S1041610213000653.

Hensel, A., Angermeyer, M. C. and Riedel-Heller, S. G. (2007). Measuring cognitive change in older adults: Reliable change indices for the Mini-Mental State Examination. *Journal of Neurology, Neurosurgery and Psychiatry*, 78, 1298–1303. DOI 10.1136/jnnp.2006.109074.

Hochstetler, H. et al. (2015). Empirically defining trajectories of late-life cognitive and functional decline. *Journal of Alzheimer’s Disease*, 50, 271–282. DOI 10.3233/JAD-150563, Edited by M. M. Adamson.

Hoeksma, J. B. and Kelderma, H. (2006). On growth curves and mixture models. *Infant and Child Development*, 15, 627–634. DOI 10.1002/icd.483.

Kapasi, A., DeCarli, C. and Schneider, J. A. (2017). Impact of multiple pathologies on the threshold for clinically overt dementia. *Acta Neuropathol* 134, 171–186. DOI: 10.1007/s00401-017-1717-7.
Leoutsakos, J.-M. S. et al. (2015). Latent classes of course in Alzheimer’s disease and predictors: The Cache County Dementia Progression Study. *International Journal of Geriatric Psychiatry*, 30, 824–832. DOI 10.1002/gps.4221.

McKhann, G. et al. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. *Neurology*, 34, 939–939. DOI 10.1212/WNL.34.7.939.

Melis, R. J. F., Haaksma, M. L. and Muniz-Terrera, G. (2019). Understanding and predicting the longitudinal course of dementia. *Current Opinion in Psychiatry*, 32, 123–129. DOI 10.1097/YCO.0000000000000482.

Montine, T. J. et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: A practical approach. *Acta Neuropathologica*, 123, 1–11.

Morris, J. C. (1993). The Clinical Dementia Rating (CDR). *Neurology*, 43, 1212–1214. DOI 10.1212/WNL.43.11.2412-a.

Morris, J. C. et al. (2006). The Uniform Data Set (UDS): Clinical and cognitive variables and descriptive data from Alzheimer Disease Centers. *Alzheimer Disease & Associated Disorders*, 20, 210–216. DOI 10.1097/01.wad.0000213865.09806.92.

Ramos-Cejudo, J. et al. (2018). Traumatic brain injury and Alzheimer’s Disease: The cerebrovascular link. *EBioMedicine*, 28, 21–30. DOI 10.1016/j.ebiom.2018.01.021.

Schmidt, C. (2011). Rapidly progressive Alzheimer Disease. *Archives of Neurology*, 68, 1124–1130. DOI 10.1001/archneurol.2011.189.

Sona, A., Ellis, K. A. and Ames, D. (2013). Rapid cognitive decline in Alzheimer’s disease: A literature review. *International Review of Psychiatry*, 25, 650–658. DOI 10.3109/09540261.2013.859128.

Tombaugh, T. N. (2005). Test-retest reliable coefficients and 5-year change scores for the MMSE and 3MS. *Archives of Clinical Neuropsychology*, 20, 485–503. DOI 10.1016/j.acn.2004.11.004.

Tschanz, J. T. et al. (2011). Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with alzheimer dementia: The Cache County Dementia Progression Study. *American Journal of Geriatric Psychiatry*, 19, 532–542. DOI 10.1097/JGP.0b013e3181faec23.

Tufte, E. R. (2001). *The visual display of quantitative information* (2nd ed.). Cheshire, CT: Graphics Press.

Wang, Y. et al. (2019). Cognitive and functional progression of dementia in two longitudinal studies. *International Journal of Geriatric Psychiatry*, 34, 1623–1632. DOI 10.1002/gps.5175.

Wattmo, C., Minthon, L. and Wallin, Å.K. (2016). Mild versus moderate stages of Alzheimer’s disease: Three-year outcomes in a routine clinical setting of cholinesterase inhibitor therapy. *Alzheimer’s Research & Therapy*, 8, 23. DOI 10.1186/s13195-016-0174-1.

Wilkosz, P. A. et al. (2010). Trajectories of cognitive decline in Alzheimer’s disease. *International Psychogeriatrics*, 22, 281–290. DOI 10.1017/S1041610209991001.

Yesavage, J. A. and Sheikh, J. I. (1986). Geriatric Depression Scale (GDS). *Clinical Gerontologist*, 5, 165–173. DOI 10.1300/J018v05n01_09.