Abstract
Opioid growth factor (OGF), chemically termed [Met⁵]-enkephalin, and its receptor, OGF receptor (OGFr), form a biological axis that tonically regulates cell proliferation by delaying the G₁/S interface of the cell cycle under homeostatic conditions or in neoplasia. Modulation of the OGF-OGFr pathway mediates the course of pancreatic cancer, with exogenous OGF or upregulation of OGFr repressing growth of human pancreatic cancer cells in culture and in nude mice. OGF therapy alone or in combination with standard chemotherapies enhances the efficacy of treatment. Studies in nude mice confirm that the OGF-OGFr axis regulates pancreatic cancer progression. Clinical trials using OGF for treatment of patients with unresectable pancreatic tumors reveal that OGF is a novel endogenous opioid that is safe, non-toxic, elicits negligible side effects and reduces pancreatic tumor size in persons who have failed other therapies.

INTRODUCTION
Novel therapies for human pancreatic cancer are needed to treat the more than 45000 people in the United States who will be diagnosed with this cancer in 2013[1]. Death due to this cancer approaches the same number, with estimates of more than 38000 persons dying of pancre-
atic cancer in 2013. Males have increased incidence and death rates relative to females; black ethnic groups have the highest incidence\(^\text{[1,2]}\). Five-year survival rates range between 5% and 6%, and have not changed in more than a decade of research\(^\text{[3]}\). Therapeutics based on underlying mechanisms of disease are needed.

The standard of care for pancreatic cancer is gemcitabine. This anti-metabolite is a nucleoside analog that blocks DNA replication, or inhibits ribonucleotide reductase, an enzyme needed to produce the deoxyribonucleotides necessary for DNA replication; both pathways induce apoptosis and slow tumor growth\(^\text{[4,5]}\). However, gemcitabine cannot be used if the patient has allergies (e.g., dye, additives, food), other diseases (e.g., kidney, liver, hepatitis, heart, lung, diabetes, gout), or infections. Radiation therapy cannot be combined with gemcitabine, and women of child-bearing age are encouraged not to take gemcitabine as it may cause birth defects\(^\text{[3]}\).

New endogenous peptide pathways have been identified that provide novel targets for non-toxic therapeutic alternatives for pancreatic cancer. Our knowledge about the biology of pancreatic cancer supports the need for treatments that target the biology of this cancer.

ENDOGENOUS OPIOIDS

An endogenous opioid peptide and its receptor were first identified more than 3 decades ago as being an important inhibitor of human cancer cell proliferation\(^\text{[6-9]}\). Ongoing studies on the opioid growth factor (OGF)-OGF receptor (OGFr) axis have characterized this pathway and defined mechanistic approaches for the treatment of neoplasia\(^\text{[6]}\). The peptide is chemically termed [Met\(^5\)-enkephalin, and is a 5-amino acid neuropeptide secreted by the brain and originally identified as an endogenous opioid by scientists in the mid-1970s\(^\text{[7-9]}\). This peptide was renamed OGF after discoveries of its growth modulating characteristics in mouse neuroblastoma cells and developing rat brain\(^\text{[4,5,10]}\), and to distinguish its pharmacological function from neurotransmission. OGF is derived from both preproenkephalin and pro-opiomelanocortin genes\(^\text{[11]}\), and is rapidly translated and degraded in human blood. Studies have shown that OGF is autocrine and paracrine produced in tissues originating from dermal derivatives, with brain and gut tissues having the greatest levels of the peptide\(^\text{[12,13]}\).

The inhibitory effects of OGF on cell replication were first recorded in developing rat brain\(^\text{[14,15]}\) and in tissue culture studies on mouse and human neuroblastoma\(^\text{[16-19]}\). OGF inhibits DNA synthesis and cell replication of normal cells and tissues\(^\text{[20,21]}\), human neoplasia\(^\text{[22]}\), and bacteria\(^\text{[23]}\). The main action of OGF is to upregulate inhibitory kinases in the cell cycle process. OGF’s activity is receptor-mediated, dose-related, time-dependent, and reversible. The peptide is present in developing and renewing tissues, and has been localized in embryonic tissues and many human cancers\(^\text{[24-27]}\).

OGF-OGFR AXIS: PRECLINICAL IN VITRO STUDIES

OGF and OGF\(_r\) are present in human pancreatic cells (PANC-1, MIA PaCa-2, BxPC-3 and Capan-1) grown in culture, xenografted to nude mice, or surgical specimens obtained during tumor resection\(^\text{[28-30]}\). In vitro studies using PANC-1 cells reveal that the receptor has specific and saturable binding affinity to radiolabeled [Met\(^5\)-enkephalin, with enriched binding in the nuclear fraction of cells\(^\text{[30]}\). Competition experiments using ligands for classical opioid receptors [e.g., [D-Ala\(^2\), NMe-Phe\(^3\)], Gly-ol\(^1\)-enkephalin] (DAMGO), [D-Pen\(^2\), D-Pen\(^3\)]-enkephalin (DP-DPE), dynorphin A1-8, morphine] do not displace the affinity of [Met\(^5\)-enkephalin for OGF\(_r\)\(^\text{[30]}\), supporting the selectivity of peptide and receptor. The efficacy of OGF has been characterized in a series of tissue culture studies\(^\text{[37]}\). OGF inhibits DNA synthesis and the growth of PANC-1 cells in a dose-dependent (42% reductions) and temporal manner (up to 48% reductions at 120 h) relative to control cultures, with its action being receptor-mediated and reversible. Absorption of endogenous ligand using OGF antibodies negated growth inhibition associated with exogenous peptide administration. OGF has a ubiquitous effect on pancreatic cancer cells derived from tumors at different stages of differentiation. Administration of OGF for 72 h inhibits growth (up to 37%) of Capan-1 and MIA PaCa-2 cells, well-differentiated cancer cell lines\(^\text{[40,41]}\), BxPC-3, a moderately well to poorly differentiated cell line\(^\text{[42]}\), as well as PANC-1, an undifferentiated pancreatic cancer cell line\(^\text{[43]}\).

Combinatorial therapeutic regimens are often more...
Cells were transfected with March 7, 2014 that knockdown classical opioid receptors using siRNAs (Figure 1). Finally, transient transfection experiments endogenous inhibitory OGF. Addition of exogenous OGF results in cultures that grow faster than controls siRNA knockdown of RNA and protein expression of have been shown in several experiments. In tissue culture, morphine, ethylketocyclazocine and others results in no effect on cell proliferation and/or growth of cells or tumors when 100% of all saline-injected mice had visible tumors, suggesting that OGF inhibits proliferation of tumor cells in such a way as to prevent tumor appearance. For those mice receiving OGF that did develop tumors, growth was markedly slower relative to mice injected with saline.

Studies utilizing MIA PaCa-2 cells were conducted in nude mice receiving combination therapy of OGF and/or gemcitabine. Measurement of human pancreatic tumor growth (MIA PaCa-2) in nude mice revealed marked reductions in tumor progression under all treatment modalities, but combination therapy resulted in tumors with marked reductions in size relative to control mice, as well as mice receiving either OGF alone (10 mg/kg daily) or gemcitabine alone (120 mg/kg every 3rd day) (Figure 2). Tumor volumes after 45 d of treatment were reduced approximately 83% in the combination therapy group relative to controls (8900 mm^3), whereas reductions in tumor volume were 45% and 56% for mice receiving OGF alone or gemcitabine alone, respectively, relative to controls. The relationship between OGFr levels and the progression of human pancreatic tumors in nude mice was investigated by assaying OGFr binding activity and OGF gene expression in tumors of small, medium, or large volume. Binding capacity of OGFr, and transcriptional activity of OGFr, were not dependent on the size of tumor and were unaltered between small and large tumors. Interestingly, OGF plasma levels were decreased up to 7.9-fold in untreated mice with tumors relative to normal, non-tumorigenic mice suggesting that production of the inhibitory peptide, but not the receptor, may be deficient when 100% of all saline-injected mice had visible tumors, suggesting that OGF inhibits proliferation of tumor cells in such a way as to prevent tumor appearance. For those mice receiving OGF that did develop tumors, growth was markedly slower relative to mice injected with saline.

In Vivo Studies on OGF Inhibition of Pancreatic Tumor Growth

Transplantation of BxPC-3 human pancreatic cancer cell lines into nude mice has established a model to study how OGF inhibits tumor incidence and growth. Athymic mice were inoculated subcutaneously with BxPC-3 cells and injected intraperitoneally 3 times daily with 5 mg/kg OGF or sterile saline. OGF-treated mice exhibited a delay of 43% in the time of initial tumor appearance relative to controls (10.6 d). Importantly, 62% of the OGF-treated mice did not have tumors on the day when 100% of all saline-injected mice had visible tumors, suggesting that OGF inhibits proliferation of tumor cells in such a way as to prevent tumor appearance. For those mice receiving OGF that did develop tumors, growth was markedly slower relative to mice injected with saline.

Studies utilizing MIA PaCa-2 cells were conducted in nude mice receiving combination therapy of OGF and/or gemcitabine. Measurement of human pancreatic tumor growth (MIA PaCa-2) in nude mice revealed marked reductions in tumor progression under all treatment modalities, but combination therapy resulted in tumors with marked reductions in size relative to control mice, as well as mice receiving either OGF alone (10 mg/kg daily) or gemcitabine alone (120 mg/kg every 3rd day) (Figure 2). Tumor volumes after 45 d of treatment were reduced approximately 83% in the combination therapy group relative to controls (8900 mm^3), whereas reductions in tumor volume were 45% and 56% for mice receiving OGF alone or gemcitabine alone, respectively, relative to controls. The relationship between OGFr levels and the progression of human pancreatic tumors in nude mice was investigated by assaying OGFr binding activity and OGF gene expression in tumors of small, medium, or large volume. Binding capacity of OGFr, and transcriptional activity of OGFr, were not dependent on the size of tumor and were unaltered between small and large tumors. Interestingly, OGF plasma levels were decreased up to 7.9-fold in untreated mice with tumors relative to normal, non-tumorigenic mice suggesting that production of the inhibitory peptide, but not the receptor, may be deficient when 100% of all saline-injected mice had visible tumors, suggesting that OGF inhibits proliferation of tumor cells in such a way as to prevent tumor appearance. For those mice receiving OGF that did develop tumors, growth was markedly slower relative to mice injected with saline.
increased in the G\textsubscript{0}/G\textsubscript{1} phase49. Further studies utilizing synchronized cultures of BxPC-3 pancreatic cells were directed at deciphering the specific pathway in the cell cycle that is targeted by OGF and focused on the retinoblastoma pathway49. It was found that OGF decreased phosphorylation of retinoblastoma protein, but did not change the overall level of retinoblastoma protein. The change was correlated with a reduction in cyclin-dependent kinase activity (cdk-2), and increased p21 expression49. In general, human pancreatic cancer cells express p21 cyclin-dependent inhibitory kinase pathways, whereas many other cancers (e.g., squamous cell carcinoma of the head and neck) utilize p16 cyclin-dependent inhibitory kinase pathways because of deletions or mutations in the p21 pathway. The presence of one intact pathway is important to maintain a homeostatic balance of cellular replication, allowing for one pathway to be mutated as is often the case in neoplasia. The requirement of an intact OGF-OGFr axis for regulation of pancreatic neoplasia was corroborated in a study49 whereby more than 30 human cancer cell lines were transfected to repress OGFr cDNA and OGFr expression. The lack of OGFr rendered OGF ineffective in inhibiting proliferation.

CLINICAL STUDIES ON THE SAFETY AND EFFICACY OF OGF FOR TREATMENT OF HUMAN PANCREATIC CANCER

Preclinical studies on OGF have shown no toxicity and significant efficacy toward repressing pancreatic cancer progression. Clinical trials to assess OGF treatment of advanced pancreatic cancer were conducted by Zagon et al52 and Smith et al53 at The Pennsylvania State University College of Medicine. The maximum tolerated dose (MTD) was established at 250 μg/kg infused over a period of 30 min52. Patients with unresectable advanced pancreatic adenocarcinoma were treated with the MTD to establish safety and toxicity. No adverse effects related to cardiac rhythm, blood values, neurological status or other laboratory tests were reported; hypotension was the dose-limiting toxicity. Of interest were the signs of efficacy shown by the small number of patients in this phase I trial. Mean survival time for the patients in the study, including those receiving only one dosage of OGF, was over 8.5 mo, and two patients had resolution of liver metastases. These observations support further clinical trials on OGF as a treatment of advanced pancreatic cancer.

A prospective phase II open-labeled clinical trial with 24 patients who failed standard chemotherapy for advanced pancreatic cancer was conducted whereby patients were treated weekly with 250 μg/kg OGF by intravenous infusion54. Outcomes were tumor size measured by computer tomography, survival time, and quality of life. Blood samples were evaluated for levels of OGF after 4 and 8 wk of infusion. Data on the OGF treatment were compared to results obtained from a control group (n=166) of patients of equivalent age who failed therapy...
and were discharged to hospice care. OGF-treated patients had a three-fold increase in median survival time in comparison to untreated patients. Tumor size was stabilized or reduced in 62% of the cancer patients receiving OGF and surviving more than 8 wk in order to conduct the tomography. Plasma enkephalin levels were significantly increased at 4 and 8 wk with blood levels reaching approximate 55 pg/mL in comparison to baseline values of 8 pg/mL. Finally, no adverse effects on blood chemistry were noted, confirming the safety and lack of toxicity of OGF. Feedback from patients receiving OGF and their caregivers on quality of life indicated that OGF infusion did not indicate any stress or pain.

OGF BIOThERAPY

Preclinical studies using a variety of human pancreatic adenocarcinoma cell lines that represent undifferentiated to well differentiated pancreatic neoplasms have demonstrated that OGF inhibits DNA synthesis and cell proliferation in vivo. The action of OGF is mediated by OGF-R, is reversible, and does not involve apoptotic pathways. OGF is an endogenous peptide that is readily degraded, without alteration of cell migration, differentiation, or survival and thus can be considered a biotherapy. The specificity and selectivity of the OGF-OGF-R axis substantiate that this axis is a determinant of cell proliferation in a variety of human cancers.

Investigations of the OGF-OGF-R axis in mouse models of cancer with human cell lines transplanted into nude mice confirmed and extended tissue culture studies. Exogenous OGF repressed tumor progression under all situations, and tumors grown from cells overexpressing OGF-R were inhibited in their growth. Combination OGF and chemotherapy provided enhanced efficacy at reducing tumor size.

Clinically, OGF is a safe, non-toxic biotherapy that extends survival and reduces tumor burden in patients with unresectable pancreatic cancer. In summary, the OGF-OGF-R axis should be explored both as a primary therapy for pancreatic cancer, and as an adjuvant pathway with other chemotherapies.

ACKNOWLEDGMENTS

The authors acknowledge the technicians and faculty collaborators who have assisted in this research.

REFERENCES

1 Howlader N, Noone AM, Krapcho M, Garshell J, Neyman N, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Cho H, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (eds). SEER Cancer Statistics Review, 1975-2010, National Cancer Institute. Available from: URL: http://seer.cancer.gov/csr/1975-2010
2 Pancreatic cancer treatment statistics and results. Available from: URL: http://www.cancercenter.com/pancreatic-cancer/statistics
3 Gemcitabine. Available from: URL: http://www.cancer.org/treatment/treatmentsandsideeffects/guidetocancer-drugs/gemcitabine
4 Zagon IS, McLaughlin PJ. Naltrexone modulates tumor response in mice with neuroblastoma. Science 1983; 221: 671-673 [PMID: 6867737 DOI: 10.1126/science.6867737]
5 Zagon IS, McLaughlin PJ. Opioid antagonists inhibit the growth of metastatic murine neuroblastoma. Cancer Lett 1983; 21: 89-94 [PMID: 6640516]
6 Zagon IS, Verderame MF, McLaughlin PJ. The biology of the opioid growth factor receptor (OGFR). Brain Res Brain Res Rev 2002; 38: 351-376 [PMID: 11890982 DOI: 10.1016/S0165-0173(01)00160-6]
7 Hughes J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res 1975; 88: 295-308 [PMID: 1148827]
8 Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975; 258: 577-580 [PMID: 1207728]
9 Pasternak GW, Simonav S, Snyder SH. Characterization of an endogenous morphine-like factor (enkephalin) in mammalian brain. Mol Pharmacol 1976; 12: 504-513 [PMID: 954061]
10 Zagon IS, McLaughlin PJ. Increased brain size and cellular content in infant rats treated with an opioid antagonist. Science 1983; 221: 1179-1180 [PMID: 6612331]
11 Watson SJ, Akil H. Recent studies on dynorphin and enkephalin precursor fragments in central nervous system. Adv Biochem Psychopharmacol 1982; 33: 35-42 [PMID: 6127003]
12 Zagon IS, Rhodes RE, McLaughlin PJ. Localization of enkephalin immunoreactivity in diverse tissues and cells of the developing and adult rat. Cell Tissue Res 1986; 246: 561-565 [PMID: 3359553]
13 Meilandt WJ, Yu GQ, Chin J, Roberson ED, Palop JJ, Wu T, Searce-Levie K, Mucke L. Enkephalin elevations contribute to neuronal and behavioral impairments in a transgenic mouse model of Alzheimer’s disease. J Neurosci 2008; 28: 5007-5017 [PMID: 18463254]
14 Zagon IS, Rhodes RE, McLaughlin PJ. Distribution of enkephalin immunoreactivity in germinative cells of developing rat cerebellum. Science 1985; 227: 1049-1051 [PMID: 2883485 DOI: 10.1126/science.2883485]
15 Zagon IS, McLaughlin PJ. Endogenous opioid systems regulate cell proliferation in the developing rat brain. Brain Res 1987; 412: 68-72 [PMID: 3607463]
16 Zagon IS, McLaughlin PJ. Endogenous opioid systems, stress, and cancer. In: Plotnikoff NP, Murog AJ, Faith RE, Good RA. Enkephalins-Endorphins: Stress and the Immune System. New York: Plenum Press, 1986: 81-100
17 Zagon IS, McLaughlin PJ, Goodman SR, Rhodes RE. Opioid receptors and endogenous opioids in diverse human and animal cancers. J Natl Cancer Inst 1987; 79: 1039-1065 [PMID: 2824913]
18 Zagon IS, McLaughlin P. Endogenous opioids and the growth regulation of a neural tumor. Life Sci 1988; 43: 1313-1318 [PMID: 2845218 DOI: 10.1016/0024-3205(89)90435-3]
19 Zagon IS, McLaughlin PJ. Endogenous opioid systems regulate growth of neural tumor cells in culture. Brain Res 1989; 490: 14-25 [PMID: 2758319]
20 Hauser KE, McLaughlin PJ, Zagon IS. Endogenous opioids regulate dendritic growth and spine formation in developing rat brain. Brain Res 1987; 416: 157-161 [PMID: 3041177]
21 McLaughlin PJ, Zagon IS. Modulation of human neuroblastoma transplanted into nude mice by endogenous opioid systems. Life Sci 1987; 41: 1465-1472 [PMID: 3041143]
22 Zagon IS, Wu Y, McLaughlin PJ. Opioid growth factor inhibits DNA synthesis in mouse tongue epithelium in a circadian rhythm-dependent manner. Am J Physiol 1994; 267: R45-R65 [PMID: 8092307]
23 Zagon IS, McLaughlin PJ. An opioid growth factor regulates the replication of microorganisms. Life Sci 1992; 50: 1179-1187 [PMID: 1313136]
Wu Y, McLaughlin PJ, Zagon IS. Ontogeny of the opioid growth factor, [Met]-enkephalin, preproenkephalin gene expression, and the zeta opioid receptor in the developing and adult aorta of rat. Dev Dyn 1996; 211: 327-337 [PMID: 9566952]

McLaughlin PJ, Levin R, Zagon IS. Regulation of human head and neck squamous cell carcinoma growth in tissue culture by opioid growth factor. Int J Oncol 1999; 14: 991-998 [PMID: 10200353]

Bisignani GJ, McLaughlin PJ, Ordillle SD, Beltz MS, Jarowenko MV, Zagon IS. Human renal cell carcinoma proliferation in tissue culture is tonically inhibited by opioid growth factor. J Urol 1999; 162: 2186-2191 [PMID: 10596617]

Zagon IS, Porterfield NK, McLaughlin PJ. Opioid growth factor - opioid growth factor receptor axis inhibits proliferation of triple negative breast cancer. Exp Biol Med (Maywood) 2013; 238: 589-599 [PMID: 23918871 DOI: 10.1177/1535370213489492]

Pert CB, Snyder SH. Opiate receptor: demonstration in nervous tissue. Science 1973; 179: 1011-1014 [PMID: 4687585]

Terenius L. Stereospecific interaction between narcotic analogues and a synaptic plasma membrane fraction of rat cerebral cortex. Acta Pharmocol Toxicol (Copenh) 1973; 32: 317-320 [PMID: 4801733]

Simon EJ, Hiller JM, Edelman I. Stereosepecific binding of the potent narcotic analgesic (3H) Etorphine to rat-brain homogenate. Proc Natl Acad Sci USA 1973; 70: 1947-1949 [PMID: 4516196 DOI: 10.1073/ pnas.70.7.1947]

Zagon IS, Goodman SR, McLaughlin PJ. Characterization of opioid binding sites in murine neuroblastoma. Brain Res 1988; 449: 80-88 [PMID: 2899449]

Zagon IS, Goodman SR, McLaughlin PJ. Demonstration and characterization of zeta (zeta), a growth-related opioid receptor, in a neuroblastoma cell line. Brain Res 1990; 511: 181-186 [PMID: 2199355]

Zagon IS, Gibo D, McLaughlin PJ. Expression of zeta (zeta), a growth-related opioid receptor, in metastatic adenocarcinoma of the human cerebellum. J Natl Cancer Inst 1990; 82: 325-327 [PMID: 2153842]

Martin WR. Opioid antagonists. Pharmacol Rev 1967; 19: 463-521 [PMID: 4867058]

Zagon IS, Ruth TB, McLaughlin PJ. Nucleocytoplasmic distribution of opioid growth factor and its receptor in tongue epithelium. Anat Rec A Discov Mol Cell Evol Biol 2005; 282: 24-37 [PMID: 15584033]

Zagon IS, Hylteek SD, Smith JP, McLaughlin PJ. Opioid growth factor (OGF) inhibits human pancreatic adenocarcinoma transplanted into nude mice. Cancer Lett 1997; 112: 167-175 [PMID: 9066724]

Zagon IS, Smith JP, McLaughlin PJ. Human pancreatic cancer cell proliferation in tissue culture is tonically inhibited by opioid growth factor. Int J Oncol 1999; 14: 527-534 [PMID: 10024694]

Zagon IS, Smith JP, Conter R, McLaughlin PJ. Identification and characterization of opioid growth factor receptor in human pancreatic adenocarcinoma. Int J Mol Med 2000; 5: 77-84 [PMID: 10601579]

Zagon IS, Jaglowski JR, Verderame MF, Smith JP, Leure-Dupree AE, McLaughlin PJ. Combination chemotherapy with gemcitabine and biotherapy with opioid growth factor (OGF) enhances the growth inhibition of pancreatic adenocarcinoma. Cancer Chemother Pharmacol 2005; 56: 510-520 [PMID: 15947928 DOI: 10.1007/s00280-005-1028-x]

Yunis AA, Ariamura GK, Russo DJ. Human pancreatic carcinomia (MIA PaCa-2) in continuous culture: sensitivity to asparaginase. Int J Cancer 1977; 19: 128-135 [PMID: 832918]

Kryziavis AP, Kryziavis AA, Scarpelli DC, Fogh J, Rao MS, Lepera R. Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics. Am J Pathol 1982; 106: 250-260 [PMID: 6278935]

Tan MH, Nowak NJ, Loor R, Ochi H, Sandberg AA, Lopez C, Pickren JW, Berrian RJ, Douglass HO, Chu TM. Characterization of a new primary human pancreatic tumor line. Cancer Invest 1986; 4: 15-23 [PMID: 3754176]

Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Todaro G. Establishment of a continuous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. Int J Cancer 1975; 15: 741-747 [PMID: 1140870]

Zagon IS, Donahue RN, McLaughlin PJ. Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am J Physiol Regul Integr Comp Physiol 2009; 297: R1154-R1161 [PMID: 19675283]

Zagon IS, McLaughlin PJ. Opioid growth factor receptor is unaltered with the progression of human pancreatic and colo cancers. Int J Oncol 2006; 29: 489-494 [PMID: 16820893]

Zagon IS, Verderame MF, Hankins J, McLaughlin PJ. Overexpression of the opioid growth factor receptor potentiates growth inhibition in human pancreatic cancer cells. Int J Oncol 2007; 30: 775-783 [PMID: 17332915]

Zagon IS, Kreiner S, Heslop J, Conway AB, Morgan CR, McLaughlin PJ. Prevention and delay in progression of human pancreatic cancer by stable overexpression of the opioid growth factor receptor. Int J Oncol 2008; 33: 317-323 [PMID: 18636152 DOI: 10.3892/jio-00000011]

Zagon IS, Roesener CD, Verderame MF, Ohlsosn-Wilhelm BM, Levin R, McLaughlin PJ. Opioid growth factor regulates the cell cycle of human neoplasias. Int J Oncol 2000; 17: 1053-1061 [PMID: 11209512]

Cheng F, McLaughlin PJ, Verderame MF, Zagon IS. The OGF-OGFr axis utilizes the p21 pathway to restrict progression of human pancreatic cancer. Mol Cancer 2008; 7: 5 [PMID: 18190706 DOI: 10.1186/1476-4598-7-5]

Zagon IS, McLaughlin PJ. Opioids and the apoptotic pathway in human cancer cells. Neuropeptides 2003; 37: 79-88 [PMID: 12749399]

Zagon IS, McLaughlin PJ. Opioids and differentiation in human cancer cells. Neuropeptides 2005; 39: 495-505 [PMID: 16169076]

Zagon IS, Rahn KA, McLaughlin PJ. Opioids and migration, chemotaxis, invasion, and adhesion of human cancer cells. Neuropeptides 2007; 41: 441-452 [PMID: 17910895]

Smith JP, Conter RL, Bingaman SI, Harvey HA, Mauger DT, Ahmad M, Demers LM, Stanley WB, McLaughlin PJ, Zagon IS. Treatment of advanced pancreatic cancer with opioid growth factor: phase I. Anticancer Drugs 2004; 15: 203-209 [PMID: 15014352 DOI: 10.1097/01.cad.0000119736.70602.bb]

Smith JP, Bingaman SI, Mauger DT, Harvey HH, Demers LM, Zagon IS. Opioid growth factor improves clinical benefit and survival in patients with advanced pancreatic cancer. Open Access J Clin Trials 2010; 2010: 37-48 [PMID: 20890374]

P-Reviewers: Cheng JT, Shi CJ S-Editor: Ma YJ L-Editor: A E-Editor: Wu HL
