Regioselective semi-synthesis of 6-isomers of 5,8-O-dimethyl ether of shikonin derivatives via an ‘intramolecular ring-closing/ring-opening’ strategy as potent anticancer agents

Li Zhou¹, Xu Zhang² and Wen Zhou³*

Abstract
Synthesis of 6-isomer of 5,8-O-dimethyl ether of shikonin (13), a promising anticancer scaffold, always remains a huge challenge. Herein a key intermediate for 13, 2-(1-hydroxyl-4-methyl-3-pentenyl)-1,4,5,8-tetramethoxynaphthalene (10), was obtained on the large-scale synthesis. A ring-closing/ring-opening strategy was applied to avoid the undesired reactivity posed by the side chain and racemization of the chiral centre. Incorporation of bulky substituent 4-((tert-butoxycarbonyl)amino)phenyl to hydroxyl group in the side chain redistributed electron density of naphthalene core (10), overwhelmingly favoring the generation of 13 when oxidized by cerium(IV) ammonium nitrate followed by hydrolysis. As a result, three 6-isomers (14a–14c) with very potent antitumor activity were easily synthesized. This study opened an novel avenue to selectively prepare 6-isomers of 5,8-dimethoxy1,1,4-naphthaquinones, bearing the synthetically challenging side chain such as 2-hydroxyl-5-methylpentenyl group.

Keywords: 6-isomer of 5,8-O-dimethyl ether of shikonin, Ring-closing/ring-opening strategy, Bulky substituent, Semi-synthesis, Shikonin, Anticancer scaffold

Background
The medical application of Lithospermum erythrorhizon extract as an effective therapy for inflammation [1], infectious diseases [2], cancer [2] and atherosclerosis [2, 3] has been known very well for centuries. Its active ingredients, shikonin and its derivatives, have been extensively explored using various semi-synthetic or total-synthetic methodologies. Compounds with different substituents, such as hydroxalkyl [4], acyl [5], or hydroxyliminoalkyl [6], on C-6 (6-isomer, 1) or C-2 (2-isomer, 2) of 5,8-dimethoxy1,4-naphthaquinone (DMNQ) scaffold (Fig. 1), showed promising potency in the inhibition of DNA topoisomerase-I. They displayed high reactivity in conjugation with glutathione, which was responsible for their cytotoxicity. Their inhibitory effects against L1210 cells were also demonstrated [2]. Interestingly, when a double bond contained in the side chain was incorporated to naphthaquinone core, its cytotoxicity to normal cells was reduced while its bioactivity kept unchanged [2]. Moreover, in combination with our previous report [8], 6-isomers were found to exhibit better anticancer activity than the corresponding 2-isomers. Unfortunately, researches on DMNQ with double bond contained in the side chain had been largely impeded, mainly lacking an efficient synthetic methodology to prepare such derivatives. Later on, we found that synthesis of 2-isomer of 5,8-O-dimethyl ether of shikonin was accessible through the direct methylation of shikonin [9], while its corresponding 6-isomer was formidable to be prepared. To

¹Correspondence: zhouwen60@126.com
³ School of Chinese Meteria Medica, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong Province, China
Full list of author information is available at the end of the article

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
acquire natural product shikonin with high optical purity, asymmetric synthesis and chiral resolution were proposed to prepare crucial intermediates, 5,8-0-dimethyl ether of shikonin derivatives, in our group [10, 11]. However, the reaction conditions of asymmetric synthesis were harsh and difficult to be controlled and its catalytic agents were so expensive. In the process of chiral resolution two enantiomers were too close to be separated and this operation was time-consuming. Based on the issues mentioned above, we took our efforts to develop an efficient synthetic approach to semi-synthesize an more excellent antitumor scaffold, 6-isomer of 5,8-dimethoxy-1,4-naphthaquinones, bearing the synthetically challenging side chain such as 2-hydroxy-5-methylpentenyl group (13).

Modification of shikonin (3) was limited by its tendency to polymerize in the presence of acid, base, heat or temperature [2, 12–14]. Synthesis of compound 13 via direct methylation of shikonin failed as previously reported [2]. Selective preparation of compound 13 was ever pushed ahead when methoxymethyl was used as a protecting group, however, its application and scale were confined to deprotection and in situ oxidation. It was widely accepted that compound 13 could be synthesized in the form of mixture by oxidative demethylation of compound 10 [15]. Although 1,4,5,8-tetramethoxynaphthaquinones could be obtained from 5,8-dihydroxyl-1,4-naphthaquinones using proper reducing agents and methylating ones [16], the presence of hydroxyl-containing side-chain on tetrahydroxynaphthalene posed synthetically preparation of compound 10 a huge challenge [2, 17, 18] (Scheme 1). Therefore, to minimize its interference on the chemical behavior of the rest of the molecule, the side chain to be hidden was an appropriate approach to synthesise compound 10. Previous researches on shikonin and its derivatives had demonstrated that cycloshikonin (4) was more stable than shikonin itself toward Lewis acid, strong base or high temperatures [19, 20].

![Scheme 1](image1.png)

The structure of cycloshikonin had been confirmed by Sankawa et al. [7] as 5,8-dihydroxy-2-(5,6-dimethyl-2-tetrahydrofuranyl)-1,4-naphthaquinone. Although exposure to light, air or even high temperatures had little effect on racemization of shikonin as it existed in the solid form [21], little reports provided evidence for stability of chiral centre in the preparation for shikonin. Cyclization of the side chain of shikonin stood for a practical strategy for the preparation of compound 10. We speculated that cycloshikonin would survive the reaction conditions where compound 4 could be converted into 5 while leaving R-configuration intact. In this paper, we described a targeting semi-synthesis of 6-isomers of 5, 8-O-dimethoxyl ether of shikonin via an ‘intra-molecular ring-closing/ring-opening’ strategy, coupled with introduction of a bulky substituent for regulating distribution of electron density on naphthaquinone scaffold. This methodology is being applied to explore and obtain a variety of more potential shikonin derivatives in search of promising candidate drugs for anticancer therapy.

Results and discussion

A facile synthesis of 2-(1-hydroxyl-4-methyl-3-pentenyl)-1,4,5,8-tetramethoxynaphthalene (10) is illustrated in Scheme 2. Cyclization of the side chain of shikonin (3) to form cycloshikonin (4) had been well demonstrated by previous investigators [2, 22]. Cyclization of shikonin could proceed in the presence of p-toluenesulfonic acid (PTSA) within 24 h, but the yield was low [22]. An alternative method that stannic chloride anhydrous was in place of PTSA gave compound 4 with the yield of 95% in 30 min. Noticeably, in the process of cyclization, shikonin with R-configuration didn’t change and e.e. value kept consistent, this was supported by the evidence that S-enantiomer of cycloshikonin analyzed with chiral HPLC didn’t appear (Additional file 1: Fig. S24).

Treatment of 4 with Na2S2O4 in a mixture of water and THF under N2 atmosphere provided the reduced cycloshikonin. Tetrabutylammonium bromide, NaOH and (CH3)2SO4 were subsequently added to a solution of the reduced cycloshikonin [17]. The ratio of NaOH to (CH3)2SO4 was found to be critical to the yield, and 4:1 was optimal. The above reaction mixture was stirred for 24 h under reflux to afford compound 5 with good repeatability in a more than 90% yield. Addition of tetrabutylammonium bromide, a phase transfer catalyst, was used to improve the solubility of the anion of the reduced shikonin, and then significantly increased the yield of compound 5. However, a few alternative reductive methylation conditions failed to provide compound...
For instance, the most commonly used methylating agent CH₃I in the presence of Ag₂O failed to convert compound 4 to compound 5. Reduced cycloshikonin was likely to be oxidized by Ag₂O back to compound 4, thus leading to the above observation. Treatment of reduced cycloshikonin with (CH₃)₂SO₄ in the presence of K₂CO₃ and (CH₃)₂CO under various temperatures proved to be problematic as well. This could be due to reaction of cycloshikonin with (CH₃)₂CO to form 1,8-bridged or 4,5-bridged cycloshikonin, and then hampering further conversion [23]. Other reaction conditions including CH₂N₂, trimethylsilyldiazomethane (TMSCHN₂) did not succeed in producing compound 5, either.

Opening of furan ring of compound 5 was a crucial step, which was carried out with PTSA in Ac₂O at low temperature to produce diacetyl 6 in an 88% yield. Higher temperature (> −16 °C) or room temperature resulted in yielding compound 15, which is an isomer of compound 9 (Scheme 2). The amount of compound 15 increased with reaction temperature rising. Deprotection of acyl group from compound 6 by 1 N NaOH readily produced diol 7 with a yield of 99%. Subsequent acetylation of compound 7 with acetic anhydride in pyridine gave ester 8. However, addition of 4-dimethylaminopyridine (DMAP) in this reaction gave rise to the undesired compound 6. Compound 9 was produced from ester 8 in the presence of pyridine and thionyl chloride. Subsequently, treated with 1 N NaOH, compound 9 was hydrolyzed to compound 10 in a 94% yield. Since all the reaction conditions for synthesizing compound 10 were totally defined, several reactions were reasonably combined into one pot to spare reaction time and simplify purification operation. As demonstrated in Scheme 2, a concise synthetic route toward more efficient preparation of compound 10 was optimized from seven-step to three-step using “one-pot” strategy, the yield increased by 15%.

As we known, oxidative demethylation of compound 10 in a solution of cerium(IV) ammonium nitrate (CAN) afforded the mixture of 13 and its positional isomer [2, 14]. In terms of the mechanism of CAN-mediated oxidative demethylation [24], introduction of a bulky substituent to 1-hydroxyl of the side chain to increase electron density of B ring contributed to its selective oxidation. Accordingly, esterification of compound 10 with a bulky group, 4-((tertbutoxycarbonyl)amino)benzoic acid in the presence of dicyclohexylcarbodiimide (DCC) and DMAP, gave rise to yield ester 11 in a 91% yield, which was selectively oxidative demethylated with CAN to compound 12. The latter was hydrolyzed to target compound 13 in the presence of K₂CO₃ in a 92% yield. Finally, various 6-isomer ester derivatives (14a–14c) [8] with very potent antitumor activities were taken as representative examples to demonstrate the advantageous application of the method (Scheme 3 and “Experimental Section”).

Conclusions
In summary, we have developed selective semi-synthesis of 5,8-dimethoxyl-6-(1-hydroxyl-4-methylpentyl)-1,4-naphthaquinones (13) from natural product shikonin. The ring-closing/ring-opening strategy for
obtaining the key intermediate, 2-(1-hydroxyl-4-methyl-3-pentenyl)-1,4,5,8-tetramethoxynaphthalene (10), was demonstrated to be effective, and the synthetic route was reasonably combined and optimized from seven-step to three-step. Cyclization of the side chain was applied to avoid the influence of hydroxyl-containing side-chain on reaction of its naphthaquinone core, and to ensure stereochemical retention of the configuration. A bulky-substituent-mediated oxidative demethylation was used to control the regioselective direction of 1,4,5,8-tetramethoxynaphthalin derivatives. This work has provided a new targeting semi-synthetic route toward biologically important 6-isomer derivatives starting from shikonin.

Experimental section

General Melting points (m.p.) were determined on a SGWX-4 micro-melting point apparatus and are uncorrected. NMR spectra were recorded on Varian Mercury-300 spectrometer (300 MHz for 1H and 75 MHz for 13C) or Varian Mercury-400 spectrometer (400 MHz for 1H and 100 MHz for 13C), chemical shifts of 1H and 13C spectra were recorded with tetramethylsilane as internal standard (CDCl3 δ H 7.26, δ C 77.2), and coupling constants were reported in hertz. Mass spectra were obtained on a ZAB-2F or JEOLDX-300 spectrometer. Optical rotations were measured on WZZ-3 polarimeter calibrated at the sodium D line (598 nm). Reactions where exclusion of water was necessary were performed according to Ref. [25]. TLC was carried out on silica gel (GF254) under UV light. Column chromatography was run on silica gel (200–300 mesh) or alumina from Qingdao Ocean Chemical Factory.

Shikonin (3)

Shikonin was extracted from Lithospermum erythrorhizon according to the procedure described by Birch [26].

Red-brownish needles, m.p. 145–146 °C (from CH3OH) (lit. m.p. 146–147 °C [27]); [α]D25 + 126.5° (c 0.2, C6H6), (lit. +138° [2]).

(R)-5,8-dihydroxyl-2-(5,5-dimethyl-2-tetrahydrofuranyl)-1,4-naphthaquinone, (+) cycloshikonin (4)

Cycloshikonin was prepared from shikonin by the method proposed previously [2]. Yield: 98%. Solid, m.p. 78–80 °C (from CH3OH) (lit. m.p. 79–80 °C [2]); [α]D25 + 156.6° (c 0.33, CHCl3). 1H NMR (300 MHz, CDCl3) δ: 12.53 (s, 1H, ArOH), 12.52 (s, 1H, ArOH), 7.23–7.19 (m, 3H, ArH, Quinone H), 5.17 (dd, 1H, J = 6.3, 5.7 Hz, CH), 2.66–2.62 (m, 1H, CH2), 1.93–1.91 (m, 1H, CH2), 1.90–1.89 (m, 1H, CH2), 1.88–1.74 (m, 1H, CH2), 1.38 (s, 3H, CH3), 1.35 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 182.5, 181.5, 164.2, 163.7, 133.1, 132.0, 131.5, 131.4, 112.3, 111.9, 82.3, 74.7, 38.9, 33.7, 28.9, 28.0. MS (EI, m/z): 288 [M]+, 255, 232, 219.

(R)-2-(5,5-dimethyl-2-tetrahydrofuranyl)-1,4,5,8-tetramethoxynaphthalene (5)

To a solution of 4 (5 g, 17.3 mmol) and tetrabutylammonium bromide (1.0 g) in THF (160 mL) and water (80 mL) was added sodium dithionite (15.1 g, 86.3 mmol). After stirring for 15 min, NaOH (13.9 g, 0.35 mol) was added at room temperature. Dimethyl sulfate (21 mL) was added dropwise in 10 min, and the mixture was refluxing for 24 h. The product was separated by partitioning between water and DCM. The crude product was purified by column chromatography over silica gel with ethyl acetate/petroleum ether (1/4, v/v) to give 5.46 g of pale-yellow oil. Yield: 91%. [α]D25 +139.2° (c 0.2, CHCl3); 1H NMR (300 MHz, CDCl3) δ: 7.12 (s, 1H, ArH), 6.80 (s, 2H, ArH), 5.52 (m, 1H, CH), 3.99 (s, 3H, OCH3), 3.95 (s, 3H, OCH3), 3.93 (s, 3H, OCH3), 3.75 (s, 3H, OCH3), 2.54–2.48 (m, 5H, ArH).
(R)-2-(1,4-diacetoxy-4-methylpentyl)-1,4,5,8-tetramethoxynaphthalene (6) and 2-(4-acetoxyl-4-methyl-2-pentenyl)-1,4,5,8-tetramethoxynaphthalene (15)

A mixture of 5 (2 g, 5.8 mmol) and p-toluenesulfonic acid monohydrate (1.14 g, 6 mmol) in acetic anhydride was allowed to stir overnight at −16 °C, and then the reaction mixture was diluted with methanol to quench excess acetic anhydride and extracted with ethyl acetate. After the usual work-up, the residue was purified by column chromatography over silica gel with ethyl acetate/petroleum ether (1/3, v/v) as an eluent to give 1.23 g of pale-yellow oil. Yield: 88%. [α] D 25° +142.2° (c 0.2, CHCl3). 1H NMR (300 MHz, CDCl3) δ: 6.85 (s, 1H, ArH), 6.83 (s, 2H, ArH), 6.32 (t, 1H, J = 7.8 Hz, CH3), 3.94 (s, 3H, OCH3), 3.90 (s, 3H, OCH3), 3.88 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 2.12 (s, 3H, COOC), 1.93–1.71 (m, 5H, CH2, COCH3), 1.41 (s, 3H, CH3), 1.39 (s, 3H, CH3).

13C NMR (75 MHz, CDCl3) δ: 150.7, 147.1, 130.9, 122.9, 121.1, 109.2, 108.1, 105.1, 81.9, 71.1, 62.7, 58.2, 57.7, 57.1, 37.1, 30.8, 26.2, 26.0, 22.6, 21.5. MS (ESI, %): 471 (M+Na+, 100), 503 (M2+NaOCH3, 31) and no parent peak was observed. HRMS (ESI) calc'd for C22H31O7Na+: 449.2170 [M+H]+, found: 449.2166.

The same operation as compound 6 was done at room temperature, major by-product 15 could be obtained as pale-yellow oil. 1H NMR (300 MHz, CDCl3) δ: 6.99 (s, 1H, ArH), 6.90 (d, 1H, J = 15.6 Hz, CH=CH2), 6.83 (s, 2H, ArH), 6.28 (m, 1H, CH=CH2), 4.00 (s, 3H, OCH3), 3.95 (s, 3H, OCH3), 3.84 (s, 3H, OCH3), 3.73 (s, 3H, OCH3), 2.78 (d, 2H, J = 6.6 Hz, CH2), 2.02 (s, 3H, COCH3), 1.52 (s, 6H, CH3). 13C NMR (75 MHz, CDCl3) δ: 171.2, 153.6, 151.3, 150.5, 147.2, 131.0, 122.2, 119.1, 109.5, 105.8, 105.3, 81.8, 71.0, 62.4, 58.0, 57.5, 57.3, 37.0, 30.6, 26.3, 21.6, 22.7. MS (ESI, %): 411 (M+Na+, 100), 443 (M2+NaOCH3, 38) and no parent peak was observed. HRMS (ESI) calc'd for C22H31O7Na+: 449.2170 [M+H]+, found: 449.2166.
OCH$_3$), 2.59–2.54 (m, 2H, CH$_2$), 2.10 (s, 3H, OCOCH$_3$), 1.65 (s, 3H, CH$_3$). 13C NMR (75 MHz, CDCl$_3$) δ: 170.4, 153.5, 151.6, 150.8, 147.1, 134.8, 130.9, 122.9, 120.9, 119.4, 109.0, 108.2, 105.6, 71.1, 62.7, 58.1, 57.7, 57.3, 34.8, 25.9, 21.5, 18.1. MS (ESI, %): 411 (M$^+$+Na$^+$, 100), 443 (M$^+$+NaOCH$_3$, 18) and no parent peak was observed. HRMS (ESI) calcld. for C$_{22}$H$_{28}$O$_6$Na$^+$: 411.1778 [M+Na$^+$], found: 411.1776.

(R)-2-(1-hydroxy-4-methyl-3-pentenyl)-1,4,5,8-tetramethoxyoxynaphthalene (10)
Hydrolysis of 9 (1 g, 2.6 mmol) in 1 N sodium hydroxide (100 mL) and methanol (50 mL) was stirred at 0–5 °C for 12 h under a nitrogen atmosphere. Ethyl acetate was added to dilute the reactive mixture. Organic layer was washed with water and saturated brine, and dried over anhydrous MgSO$_4$, and then evaporated under reduced pressure. The crude product was purified by column chromatography over silica gel with ethyl acetate/petroleum ether (1/4, v/v) to obtain 839.2 mg of desirable compound. Yield: 91%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.94 (d, J = 0.8 Hz, 2H, ArH), 7.42 (d, J = 0.8 Hz, 2H, ArH), 7.23 (s, 1H, ArH). 1H NMR (400 MHz, CDCl$_3$) δ: 7.42 (d, J = 0.8 Hz, 2H, ArH), 7.23 (s, 1H, ArH), 6.70 (s, 2H, QuinoneH), 6.62 (t, J = 4.0 Hz, 1H, CH$_2$), 5.14 (t, J = 6.8 Hz, 1H, CH$_2$), 3.91 (s, 3H, OCH$_3$), 3.80 (s, 3H, OCH$_3$), 2.59–2.64 (m, 1H, CH$_2$), 2.49–2.56 (m, 1H, CH$_2$), 1.61 (s, 3H, CH$_3$), 1.50 (s, 3H, CH$_3$), 1.44 (s, 9H, CH$_3$). 13C NMR (100 MHz, CDCl$_3$) δ: 184.8, 184.3, 165.3, 156.1, 152.2, 150.6, 144.9, 143.2, 138.9, 137.8, 135.8, 130.8, 125.2, 123.9, 120.1, 118.2, 117.5, 116.6, 81.3, 71.2, 62.0, 56.6, 34.1, 28.2, 25.8, 17.9. HRMS (ESI) calcld. for C$_{39}$H$_{54}$NO$_8$+: 536.2279 [M+H$^+$]+, found: 536.2284.

(R)-5,8-dimethoxy-6-(1-hydroxy-4-methylpentyl)-1,4-naphthoquinones (13)
A solution of K$_2$CO$_3$ (6.6 g, 48.0 mmol) was added dropwise to a stirred solution of 12 (12.9 g, 24.0 mmol) dissolved in THF (250 mL) at ice-bath. The reaction mixture was stirred for 2 h at the same temperature. The progress was monitored by TLC. After completion, the mixture was neutralized with saturated NH$_4$Cl solution, and then diluted with water and ethyl acetate. Organic layer was separated and aqueous layer was extracted with ethyl acetate (2 × 100 mL). The combined organic extracts were washed with saturated brine (150 mL), and dried over anhydrous Na$_2$SO$_4$, and then concentrated under reduced pressure. The residue was purified by column chromatography with ethyl acetate/petroleum ether (1/1, v/v) to give 3.1 g of compound 12 as yellow oil. Yield: 91%. 1H NMR (400 MHz, CDCl$_3$) δ: 7.94 (d, J = 0.8 Hz, 2H, ArH), 7.42 (d, J = 0.8 Hz, 2H, ArH), 7.23 (s, 1H, ArH).

1H NMR (400 MHz, CDCl$_3$) δ: 7.14 (s, 1H, ArH), 6.70 (s, 2H, QuinoneH), 6.62 (t, J = 4.0 Hz, 1H, CH$_2$), 5.14 (t, J = 6.8 Hz, 1H, CH$_2$), 3.91 (s, 3H, OCH$_3$), 3.80 (s, 3H, OCH$_3$), 2.59–2.64 (m, 1H, CH$_2$), 2.49–2.56 (m, 1H, CH$_2$), 1.61 (s, 3H, CH$_3$), 1.50 (s, 3H, CH$_3$), 1.44 (s, 9H, CH$_3$). 13C NMR (100 MHz, CDCl$_3$) δ: 184.8, 184.3, 165.3, 156.1, 152.2, 150.6, 144.9, 143.2, 138.9, 137.8, 135.8, 130.8, 125.2, 123.9, 120.1, 118.2, 117.5, 116.6, 81.3, 71.2, 62.0, 56.6, 34.1, 28.2, 25.8, 17.9. HRMS (ESI) calcld. for C$_{39}$H$_{54}$NO$_8$+: 536.2279 [M+H$^+$]+, found: 536.2284.
139.2, 137.9, 136.9, 125.1, 68.8, 62.4, 56.9, 37.2, 26.1,
18.2. MS (ESI, %): 317 (M+H, 12.5), 339 (M+Na, 30), 371 (M+NaOCH3, 100). HRMS (ESI) calcd. for C18H20O5Na+: 339.1203 [M+Na]+, found: 339.1207.

(R)-1-(1,4-dimethoxy-5,8-dioxo-5,8-dihyronaphthalen-2-yl)-4-methylpent-3-en-1-yl 3-hydroxy-3-methylbutanoate (14a)
To a stirred solution of 13 (3.16 g, 10.0 mmol) and 3-hydroxy-3-methylbutanoic acid (1.30 g, 11.0 mmol) in anhydrous DCM were added DCC (2.27 g, 11.0 mmol) and DMAP (350 mg, 2.9 mmol). TLC was applied to monitor the progression. After completion, petroleum ether was added into the reaction mixture to facilitate precipitation at 4 °C, and filtered to remove the insoluble precipitates at 4 °C, and filtered to remove the insoluble precipitates. The residue was purified by flash chromatography to afford 2.54 g of 14a as yellow oil. Yield: 61%. $[α]_{D}^{25} +59.3^\circ$ (c 0.4, CHCl3). 1H NMR (300 MHz, CDCl3) δ: 7.24 (d 1H, J = 3.0 Hz, ArH), 6.78 (d, 2H, J = 8.1 Hz, CH), 3.95 (s, 3H, OCH3), 3.94 (s, 3H, OCH3), 2.58–2.38 (m, 4H, 2 × CH2), 1.68 (s, 3H, CH3), 1.55 (s, 3H, CH3), 1.29 (s, 3H, CH3), 1.26 (s, 3H, CH3). 13C NMR (75 MHz, CDCl3) δ: 187.6, 186.5, 173.2, 152.1, 138.7, 134.2, 132.0, 124.1, 119.7, 115.2, 114.3, 70.9, 70.0, 62.3, 55.4, 42.1, 32.4, 29.2, 24.4, 18.1. HRMS (ESI) calcd. for C23H29O7+: 417.1908 [M+H]+; found: 417.1902. These data were in accordance with the literature [8].

Chiral HPLC analysis conditions for shikonin and its derivatives
The chiral HPLC column applied (150 × 4.6 mm) was Sino-Chiral OD [No. 0A02014-C (Packing cellulose-tris (3,5-dimethylphenyl carbamate)], which was purchased from FunSea Beijing Technology Co. Ltd (Beijing). All the separations were performed at ambient temperature. The mobile phase, hexane–isopropanol (80:20, v/v) was degassed before application. To obtain sufficient resolution of shikonin, alkannin and their derivatives, the flow rate of mobile phase was adjusted to 0.65 mL/min and injection volume was set at 5 μL.

Additional file

Additional file 1. Additional figures.

Authors’ contributions
LZ performed the experiments, analyzed the data and write part of the paper; XZ conducted some of the experiments and contributed reagents and materials; WZ conceived and designed the experiments, and wrote part of the paper. All authors read and approved the final manuscript.

Author details
1 College of Science, Hunan Agricultural University, Furong, Changsha 410128, Hunan Province, China. 2 College of Forestry and Landscape Architecture, South China Agricultural University, 483, Wushan Rd, Guangzhou 510642, Guangdong Province, China. 3 School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, E. 232, University Town, Waihuin Rd, Panyu, Guangzhou 510006, Guangdong Province, China.

Acknowledgements
We are grateful for financial support from Startup Foundation of Guangzhou University of Chinese Medicine for Young scholar (A1-AFD018172) and General program of Guangzhou University of Chinese Medicine (A1-AFD018171211012).

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References

1. Chen X, Yong L, Oppenheim JJ, Zack HOM (2002) Cellular pharmacology studies of shikonin derivatives. Phytother Res 16(3):199–209
2. Papageorgiou VP, Assimopoulou AN, Couladouros EA, Hepworth D, Nico-
laou KC (1999) Chemistry and biology of alkannins, shikonins and related naphthazarin natural products. Angew Chem Int Ed 38(3):270–301
3. Papageorgiou VP, Assimopoulou AN, Samanidu VF (2006) Recent advances in chemistry, biology and biotechnology of alkannins and shikonins. Curr Org Chem 10(16):2123–2142
4. Song GY, Zheng XG, Kim Y, You YJ, Sok DE, Ahn BZ (1999) Naphthazarin derivatives (II): formation of glutathione conjugate, inhibition of DNA topoisomerase-I and cytotoxicity. Bioorg Med Chem Lett 9(16):2407–2412
5. Song GY, Kim Y, Zheng XG, You YJ, Cho H, Chung JH, Sok DE, Ahn BZ (2000) Naphthazarin derivatives (IV): synthesis, inhibition of DNA topoisomerase-I and cytotoxicity of 2-or 6-acetyl-5,8-dimethoxy-1,4-naphthoquinones. Eur J Med Chem 35(31):291–298
6. Song GY, Kim Y, You YJ, Kim SH, Sok DE, Ahn BZ (2000) Naphthazarin derivatives (VII): synthesis, inhibitory effect on DNA topoisomerase-I and antiproliferative activity of 2- or 6-(1-oximinoalkyl)-5,8-dimethoxy-1,4-naphthoquinones. Arch Pharm Med Chem 333(4):87–92
7. Sankawa U, Ebizuka Y, Miyazaki T, Isomura Y, Otsuka H (1977) Antitumor activity of shikonin and its derivatives. Chem Pharm Bull 25(9):2392–2395
8. Zhou W, Zhang X, Xiao L, Liu QH, Li SS (2011) Semi-synthesis and antitumor activity of 6-isomers of 5,8-O-dimethylacylshikonin derivatives. Eur J Med Chem 46(7/5):3420–3427
9. Zhou W, Peng Y, Li SS (2010) Semi-synthesis and antitumor activity of 5,8-Di-methylacylshikonin derivatives. Eur J Med Chem 45(12):6005–6011
10. Wang R, Zhou S, Jiang H, Zheng X, Zhou W (2012) Li SS (2012) An efficient multigram synthesis of alkannin and shikonin. Eur J Org Chem 7:1373–1379
11. Wang R, Guo H, Cui J, Li SS (2012) A novel and efficient total synthesis of shikonin. Tetrahedron Lett 53(31):3977–3980
12. Kim SH, Kang IC, Yoon TJ, Park YM, Kang KS, Song GY, Ahn BZ (2001) Antitumor activities of a newly synthesized shikonin derivative, 2-hyim-DMNQ-S-33. Cancer Lett 172(2):171–175
13. Papageorgiou VP (1978) Wound healing properties of naphthaquinone pigments from alkanna tinctoria. Exp dermatol 34(11):1499–1501
14. Assimopoulou AN, Papageorgiou VP (2004) Study on polymerization of the pharmaceutical substances isohexenylnaphthazarins. Biomed Chromatogr 18(6):492–500
15. Sigeru T, Kouji A, Hidetoshi Y, Tsutomu I (1995) Synthesis of dl-shikonin by vanadium (II)-assisted cross-coupling and electrooxidation of aromatic nuclei. Bull Chem Soc Jpn 68(10):2917–2922
16. Kawasaki M, Matsuda F, Terashima S (1986) Total syntheses of (+)-nogarene and (+)-7,8-dihydronogarene. Tetrahedron Lett 27(19):2143–2148
17. Kraus GA, Man TO (1986) An improved reductive methylation procedure for quinines. Syn Comm 16(9):1037–1043
18. Zheng X, Wang R, Zhu M, Jing Z, Li SS (2011) A partial synthesis of 5,8-O-dimethylshikonin and 6-isomer of 5,8-O-dimethylshikonin. J Chem Res 35(11):669–671
19. Richard H, Paul B (2012) Friedel-Crafts condensations with maleic anhydrides III. The synthesis of polyhydroxylated naphthoquinones. Can J Chem 52(5):838–842
20. Clive DJL, Cantin M, Khodabocus A, Kong X, Tao Y (1993) Protecting group improvement by isotopic substitution: synthesis of the quinone system of fredericamycin C. Tetrahedron 49(36):7917–7930
21. Assimopoulou AN, Papageorgiou VP (2004) Study on the enantiomeric ratio of the pharmaceutical substances alkannin and shikonin. Biomed Chromatogr 18(10):791–799
22. Brockmann H (1936) Die Konstitution des Alkannins. Shikonins und Alkannans. JustusLiebigs Ann Chem 521(1):1–47
23. Matti BC, Musgrave OC, Skoyles D (2005) The regioselective synthesis of monomethoxynaphthylene diacetates. Tetrahedron 36(25):1765–1771
24. Huang G, Zhao HR, Meng QQ, Zhou W, Cui Q, Li SS (2016) Cerium (IV) ammonium nitrate (CAN)-mediated region-selective synthesis and anticancer activity of 6-substituted 5,8-dimethoxy-1,4-naphthoquinone. Chin Chem Lett. doi:10.1016/j.cclet.2016.10.034
25. Radt F (1954) Elsever's encyclopaedia of organic chemistry. Series III, 12B. Elsevier, New York
26. Birch AJ, Walker KA (1967) Hydrogenation of some quinones to enedi-
one. Tetrahedron Lett 8(36):3457–3458
27. Moore RE, Scheuer PJ (1966) Nuclear magnetic resonance spectra of substituted naphthoquinones. Influence of substituents on tautomism, anisotropy, and stereochemistry in the naphthazarin system. J Org Chem 31(10):3272–3283

Submit your manuscript to a SpringerOpen journal and benefit from:

► Convenient online submission
► Rigorous peer review
► Open access: articles freely available online
► High visibility within the field
► Retaining the copyright to your article

Submit your next manuscript at ► springeropen.com