\[^{13}\text{C}/^{12}\text{C} \] composition, a novel parameter to study the downward migration of paper sludge in soils

Eric Lichtfouse,\(^a\) Karyne Rogers,\(^b\) Cécile Payet\(^c\) and Jean-Christophe Renat\(^d\)

\(^a\) GéoSol-CST, Earth Sciences, University of Burgundy, 6 Bd Gabriel, 21000 Dijon, France; E-mail: Eric.Lichtfouse@u-bourgogne.fr
\(^b\) Stable Isotope Laboratory, Institute of Geological and Nuclear Sciences, PO Box 31-312, Lower Hutt, New Zealand; E-mail: K.Rogers@gns.cri.nz
\(^c\) Traitement Valorisation Décontamination Ltd, 3, rue du Coteau, F-54180 Heillecourt, France.

Abstract. \(\delta^{13}\text{C} \) values of crop and forest soils were measured 8 years after disposal of paper sewage sludge. The carbon transfer from paper sludge downward to the first humic layer is evidenced by a \(^{13}\text{C} \)-enrichment of up to +5.6‰ due to the input of \(^{13}\text{C} \)-enriched sludge carbonates. \(^{13}\text{C}/^{12}\text{C} \) composition is thus a novel, sensitive parameter to follow to downward transfer of paper sludge carbon.

Introduction

Large amounts of agricultural, industrial and municipal wastes are produced daily by human activities\(^1-5\). In 1980, France’s annual waste production reached about 5.5 million dry tons (m.d.t.) of municipal waste, 1.8 m.d.t. of urban and industrial sewage sludge, 78 m.d.t. from the agriculture and agro-industry, and 6.75 m.d.t. from forestry\(^6\). Disposal of organic wastes onto agricultural and forestry lands has several potential benefits such as long-term fertilisation, improving soil water-holding capacity and improvement of aggregate stability. However, land-based waste disposal must be carefully controlled because of potential hazards associated with application of wastes, include pathogens, heavy metals and toxic organic by-products, as reviewed by Wilson et al.\(^2\). So far, the long-term changes of soil properties induced by organic waste disposal such as paper sludge are not well understood, notably due to the lack of analytical approaches to follow the fate of waste matter into the soil profile. Nonetheless, several recent reports show that stable carbon isotopes can be used to study environmental issues\(^7-9\). More specifically, since the main biochemical components of plants are isotopically distinguished, e.g. cellulose being \(^{13}\text{C} \)-enriched versus lignin and lipids\(^8,10-12\), we hypothesised that paper sludge might have a distinct \(\delta^{13}\text{C} \) ratio which could be used to study their long-term fate in soils. Moreover, since paper sludges contain carbonates, which are \(^{13}\text{C} \)-enriched, it could be feasible to isotopically distinguish soil carbon from sludge carbon. Here, we wish to report an isotopic investigation of crop and forest soils treated with paper sludge in 1992.

Figure 1 Sampling of soil layers from the wood plot in August 2000. A layer of paper sludge has been disposed of to this soil in 1992.
Horizon visibly composed of about half black soil and half 2 mm-blue chunks.

HORIZON, thickness	C (%)	δ¹³C (%)	C (%)	δ¹³C (%)
	Control site	Paper site	Control site	Paper site
Litter ~ 3 cm, grasses¹	40.24	44.94	-27.63	-27.24
Blue sludge², 10 cm	18.28	18.00	-20.97	-20.97
Black humic², 10 cm	4.80	4.34	-27.66	-25.72
Dark-brown², 20 cm	2.26	2.30	-27.79	-27.63
Light-brown², 20 cm	1.03	1.03	-27.35	-27.34

¹Woodland sites: litter, mostly fern debris. Crop site: living grasses. ²Horizon visibly composed of about half black soil and half 2 mm-blue chunks.

Results and discussion

Paper sludge disposal

In 1992, crop and woodland sites from the Lorraine region, France were treated with 186-306 tons of paper sewage sludge in order to study the effects of waste recycling. Precautions were taken to minimise potential environmental hazards, e.g. input of heavy metals. From 1992 to 1997, comparison of plants grown on both the treated and control sites showed the absence of visual toxic effects. Plants developed well with roots growing through the blue sludge layer. An investigation of the blue sludge layer from 1992 to 1997 showed a decrease of calcium content, from about 23 to 10%, and of organic matter content, from about 35 to 20%. In 2000, the blue sludge layer is still clearly apparent under a fern litter layer, as shown for the woodland site on Figure 1. Here, we analysed samples of litter, grasses, sludge layer, and soil layers of increasing depth cored in July 2000, in order to study the downward carbon transfer from the paper sludge.

Carbon content

Total carbon content and δ¹³C values of samples from woodland and crop sites treated with paper sludge are reported on Table 1. All sites show a decrease of total C content with depth from ~42% for litter and grasses, to 0.5-1% at the bottom of the core. Although the blue sludge layers yielded high carbon contents, 18.2% for the woodland site and 5.8% for the crop site respectively, carbon contents do not clearly show the transfer of paper sludge-derived carbon to other layers. Specifically, while

Table 1 δ¹³C values and %carbon of non-denitrified soil samples cored in August 2000 from experimental control sites and from sites treated with paper sludge in 1992. Light-blue chunks of solidified paper sludge found on the soil surface yielded a %C value of 17.36% and δ¹³C value of -16.84‰. Sample deviation: ± 0.05 % and ± 0.05‰ (3 repeats).
13C/12C isotopic composition

δ^{13}C values of samples from sites treated with paper sludge and from control sites are drawn on Figure 2. We observe a notable 13C-enrichment in the blue sludge layer for both sites, yielding δ^{13}C values of -20.97% for the woodland site and -22.81% for the crop site, and in the underlying black humic layer (-25.72, -21.84% respectively), relative to the average δ^{13}C values from control plots amounting to -27.6 ± 0.2% for the woodland site and to -27.9 ± 0.3% from the crop site. Moreover, the soil δ^{13}C values of sludge-treated sites increase toward the original isotopic value of the paper sludge (-16.84‰) with decreasing depth. These findings have several implications. First, the blue

$$\delta_{\text{layer}} = x \cdot \delta_{\text{sludge}} + (1-x) \cdot \delta_{\text{control}}$$

sludge layer is composed of a mixture of carbon derived from the δ^{13}C-enriched paper sludge and from the soil, in agreement with visual observation of both blue and dark particles in the blue sludge layer. Second, the notable 13C-enrichment of the underlying black humic horizons shows clearly the downward migration of sludge-derived carbon where other data such as %C contents and visual observation do not yield clear trends. Third, the fraction x of paper sludge-derived carbon can be calculated by isotope balance according to the following equation:

where δ_{sludge} refer to the soil layer, δ_{sludge} to solid chunks of pure paper sludge (-16.84%), and δ_{control} to average δ^{13}C values of control plots. In the woodland sites, the percentage x of sludge-derived carbon amounts to 76% in the blue sludge layer and to 21% in the underlying black humic layer, thus showing a notable downward carbon transfer. In crop plots, values amount respectively to 56 and 67% as the result of a downward carbon transfer, which could be explained by the lesser initial stratification of crop soils.

Sludge carbonates

δ^{13}C_{org} analysis of demineralised samples show that the 13C-enrichment of the non-demineralised samples is due to the presence of carbonates. Specifically, demineralised blue paper chunks yield δ^{13}C_{org} values of -25.41‰ versus -16.84‰ for the non-demineralised sample. The blue sludge layers give δ^{13}C_{org} values of -27.22‰ for the woodland site and -26.28‰ for the crop site, versus respectively -20.97% and -22.81% for the non-demineralised samples. Similarly, the black humic layers give δ^{13}C_{org} of -26.97‰ for the woodland site and -26.27‰ for the crop site, versus -25.72‰ and -21.84% respectively for the non-demineralised samples. Since the demineralised values are similar to control values (Table 1), the observed 13C-increases of non-demineralised layers can be explained by the total carbonate contribution from the sludge.

Conclusion

The downward transfer of paper sludge 8 years after disposal of to crop and woodland soils has been assessed using 13C isotope analyses. The observed isotopic shifts are due to the presence of enriched carbon, derived from carbonates in the paper sludge.

References

1. S. C. Wilson, V. Burnett, K. S. Waterhouse and K. C. Jones. Volatile organic compounds in digested United Kingdom sewage sludges. Environmental Science and Technology, 1994, 28, 259.
2. S. C. Wilson, R. Duarte-Davidson and K. C. Jones. Screening the environmental fate of organic contaminants in sewage sludges applied to agricultural soils : 1. The potential for downward movement to groundwaters. The Science of the Total Environment, 1996, 185, 45.
3. G. A. O’Connor. Organic compounds in sludge-amended soils and their potential for uptake by crop plants. The Science of the Total Environment, 1996, 185, 71.
4. R. L. Chaney, J. A. Ryan and G. A. O’Connor. Organic contaminants in municipal biosolids: risk assessment, quantitative pathways analysis, and current research priorities. The Science of the Total Environment, 1996, 185, 187.
5. C. Payet, C. B ryselbou t, J. L. Morel and E. Lichtfousse. Fossil fuel biomas s markers in sewage sludges: environmental significance. Naturwissenschaften, 1999, 86, 484.
6. M. Mustin. Le Compost. 1987, F. Dubusc Publisher. Paris. 954 pages (in French).
7. B. Sherwood Lollar and T. A. Abrajano (Eds.). Compound-specific isotope analysis: tracing organic contaminant sources and processes in geochemical systems. Organic Geochemistry, 1999, 30, 721.
8. W. Amelung, R. Bol and C. Friedrich. Natural 13C abundance: a tool to trace the incorporation of dung-derived carbon into soil particle-size fractions. Rapid Communications in Mass Spectrometry, 1999, 13, 1291.
9. E. Lichtfousse. Compound-specific isotope analysis (CSIA). Application to archaeology, biomedical sciences, biosynthesis, environment, extraterrestrial chemistry, food science, forensic science, humic substances, microbiology, organic geochemistry, soil science and sport. Rapid Communications in Mass Spectrometry, 2000, 14, 1337.
10. R. Park and S. Epstein. Metabolic fractionation of 13C and 12C in plants. Plant Physiology, 1961, 36, 133.
11. R. Benner, M. L. Fogel, E. K. Sprague and R. E. Hodson. Depletion of 13C in lignin and its implications for stable isotope studies. Nature, 1987, 329, 708.
12. M. O’Leary. Carbon isotope fractionation in plants. Phytochemistry.
13 E. Lichtfouse, S. Dou, C. Girardin, M. Grably, J. Balesdent, F. Behar, M. Vandenbroucke. Unexpected 13C-enrichment of organic components from wheat crop soils: evidence for the in situ origin of soil organic matter. *Organic Geochemistry*, 1995, **23**, 865.

14 K. M. Rogers. Effects of sewage contamination on macro-algae and shellfish at Moa Point, New Zealand using stable carbon and nitrogen isotopes. *New Zealand Journal of Marine and Freshwater Research*, 1999, **33**, 181.

15 K. M. Rogers, H. E. G. Morgans, G. S. Wilson. Identification of a Waipawa Formation equivalent in the Te Uri Member of the Whangai Formation – implications for depositional history and age. *New Zealand Journal of Geology and Geophysics*, 2001, **44**, 345.
