Non-linear electromagnetic response of graphene

S. A. Mikhailov

Institute for Physics, University of Augsburg - D-86135 Augsburg, Germany

received 27 April 2007; accepted in final form 4 June 2007
published online 28 June 2007

PACS 73.50.Fq – High-field and nonlinear effects
PACS 81.05.Uw – Carbon, diamond, graphite
PACS 78.67.-n – Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures

Abstract – It is shown that the massless energy spectrum of electrons and holes in graphene leads to the strongly non-linear electromagnetic response of this system. We predict that the graphene layer, irradiated by electromagnetic waves, emits radiation at higher frequency harmonics and can work as a frequency multiplier. The operating frequency of the graphene frequency multiplier can lie in a broad range from microwaves to the infrared.

Copyright © EPLA, 2007

In the past two years a great deal of attention has been attracted by a recently discovered, new two-dimensional (2D) electronic system — graphene, built out of a single monolayer of carbon atoms with a honeycomb 2D crystal structure [1,2]. The band structure of the charge carriers in this system consists of six Dirac cones at the corners of the hexagon-shaped Brillouin zone [3,4], with the massless, linear electron/hole dispersion (only one third of each cone belongs to the first Brillouin zone [3,4], with the massless, linear electron/hole dispersion (only one third of each cone belongs to the first Brillouin zone, therefore one can also talk about two (independent) Dirac cones in graphene). The massless electron spectrum leads to unusual transport and electromagnetic properties, which have been intensively studied in the literature, see, e.g., [5–35] and for review [36,37].

Electrodynamic properties of graphene have been theoretically studied in refs. [16–33]. The frequency-dependent conductivity [16–18,21–24], as well as plasmon [25,27,29,31,32], plasmon-polariton [26], and transverse electromagnetic wave spectra [33] have been investigated. In all these papers the electromagnetic response of the system has been studied within the linear response theory (for instance, using the Kubo formalism, or the random phase approximation, or the self-consistent-field approach). In this letter we show that, apart from all the fascinating and non-trivial properties of graphene predicted and observed so far, this material should also demonstrate strongly non-linear electrodynamic behavior. In particular, irradiation of the graphene sheet by a harmonic electromagnetic wave with frequency Ω should lead to the emission of the higher harmonics with frequencies $m\Omega$, $m=3,5,\ldots$, from the system. The operating frequency of such a frequency multiplier can vary from microwaves up to infrared, and the required ac electric field is rather low, especially at low carrier densities and low temperatures. The predicted non-linear electrodynamic properties of graphene may open up new exciting opportunities for building electronic and optoelectronic devices based on this material.

To qualitatively demonstrate the non-linear behavior of graphene electrons, consider a classical 2D particle with charge $-e$ and energy spectrum $\epsilon_{\mathbf{p}}=Vp=V\sqrt{p_x^2+p_y^2}$ in the external electric field $E_x(t)=E_0\cos\Omega t$. Here V is the velocity of 2D electrons in the energy band (in graphene $V\approx10^6\text{cm/s}$ [1,2]). According to the classical equations of motion $dp_x/dt=-eE_x(t)$, the momentum p_x will then be equal to $p_x(t)=-(eE_0/\Omega)\sin\Omega t$, and the velocity $v_x=\partial\epsilon_{\mathbf{p}}/\partial p_x$ is then $v_x(t)=-V\epsilon\sin\Omega t$. If there are n_s particles per unit area, the corresponding ac electric current,

$$j_x(t)=en_sV\epsilon\sin\Omega t=$$

$$en_sV\frac{4}{\pi}\left\{\sin\Omega t + \frac{1}{3}\sin 3\Omega t + \frac{1}{5}\sin 5\Omega t + \ldots\right\},$$

contains all odd Fourier harmonics, with amplitudes j_m, $m=1,3,5,\ldots$, falling down very slowly with the harmonics number, $j_m \sim 1/m$. Notice that at the density $n_s=6\cdot10^{12}\text{cm}^{-2}$ and at $V\approx10^6\text{cm/s}$ (parameters of refs. [1,2]) the current amplitude $j_0=en_sV$ in our simple estimate gives a giant value of $j_0\approx 100\text{A/cm}$.

The above consideration does not take into account the Fermi distribution of charge carriers over the quantum states in the conduction and valence bands of graphene. To get a more accurate description of the non-linear phenomena in the considered system, we use the kinetic
Boltzmann theory, which allows one to get an exact response of the system not imposing any restrictions on the amplitude of the external ac electric field $E(t)$. Using this quasi-classical approach, we take into account the intra-band contribution to the electric current, due to the transitions between the hole and the electron bands, is ignored. This imposes certain restrictions on the frequency of radiation Ω, which will be discussed below.

Consider a 2D electron/hole gas with the energy spectrum $E_{p\pm} = \pm V \sqrt{p_x^2 + p_y^2}$ under the action of the field $E = (E_x, 0)$, where the sign $+$ (or the minus $-$) corresponds to the electron (hole) band, $E_x(t) = E_0 e^{i\omega t}$, and $\alpha \to +0$ describes an adiabatic switching-on of the electric field. Assume that the Fermi energy E_F lies in the electron (or the hole) band and that the temperature is small as compared to E_F, $T \ll E_F$. The momentum distribution function of electrons $f_{p\pm}(t) \equiv f_{p}(t)$ (we omit the sign $+$ for brevity) in the collisionless approximation is described by the Boltzmann equation

$$\frac{\partial f_{p}(t)}{\partial t} - \frac{\partial f_{p}(t)}{\partial p_x} eE_0 e^{\alpha t} \cos(\Omega t) = 0,$$

which has the exact solution

$$f_{p}(t) = F_0 (p_x - p_0(t), p_y),$$

where

$$F_0(p_x, p_y) = \left[1 + \exp \left(\frac{V \sqrt{p_x^2 + p_y^2} - eF}{T} \right) \right]^{-1}$$

is the electronic Fermi function, and $p_0(t) = - (eE_0/\Omega) e^{\alpha t} \sin \Omega t$ is the solution of the single-particle equation of motion. The electric current $j(t) = -e g_s g_v S^{-1} \sum_p v f_{p}(t)$ then assumes the form

$$j_x(t) = - \frac{g_s g_v eV}{(2\pi \hbar)^2} \int dp_x dp_y \frac{p_x}{\sqrt{p_x^2 + p_y^2}} \times F_0 (p_x - p_0(t), p_y),$$

where $g_s = g_v = 2$ are the spin and valley degeneracies in graphene, and S is the sample area. After some lengthy but simple transformation, eq. (5) can be rewritten as

$$j_x(t) = e n_e V \frac{4}{\pi} \frac{Q_F(t)}{\sqrt{1 + Q_F(t)^2}} \int_{-\pi/2}^{\pi/2} \cos^2 x dx$$

$$\times \frac{1}{\sqrt{1 + \left(\frac{Q_F(t)}{\sqrt{1 + Q_F(t)^2}} \cos x \right)^2}} \frac{1}{\sqrt{1 - \left(\frac{Q_F(t)}{\sqrt{1 + Q_F(t)^2}} \cos x \right)^2}},$$

where

$$n_e \equiv n_c = \frac{g_s g_v p_0^2}{4\pi \hbar^2} = \frac{g_s g_v e^2}{4\pi \hbar^2 V^2}$$

is the density of electrons, $p_F = E_F / V$ is the Fermi momentum, and

$$Q_F(t) = - \frac{p_0(t)}{p_F} = \frac{eE_0 V}{\Omega e_F} \sin(\Omega t) \equiv Q_{F0} \sin(\Omega t)$$

is the field parameter, proportional to the ac electric field E_0.

Figure 1(a) shows the current (6) as a function of time Ωt. One sees that in the low-field limit the response is
linear. Expanding the current (6), we get at $Q_{F0} \ll 1$

$$j_x(t) \approx en_xV Q_{F0}\left\{1 - \frac{3}{32}Q_{F0}^2\right\} \sin\Omega t - \frac{1}{32}Q_{F0}^2 \sin 3\Omega t$$

(9)

so that the linear response conductivity (in the collisionless approximation) is

$$\sigma_{\epsilon_F,T=0}(\Omega) \approx \frac{en_xe^2V}{\Omega Q_{F0}} \approx \frac{e^2}{4\pi}\frac{g_sg_v}{\hbar}\epsilon_F.$$ (10)

Expression (10) coincides with the intra-band Drude conductivity, which can be obtained from the linear-response theory [17,18,21–23,33]. As the inter-band conductivity is of order of e^2/\hbar [17,18,21–23,33], our quasi-classical approach is valid at $\hbar\Omega \lesssim \epsilon_F$. At the electron density $\sim 10^{11} - 10^{12}$ cm$^{-2}$ this restricts the frequency by the value of 10–30 THz.

In the strong-field limit $Q_{F0} \gtrsim 1$ eq. (6) results in formula (1). From the condition $Q_{F0} \gtrsim 1$, rewritten as

$$E_0 \gtrsim \frac{2\hbar\Omega \sqrt{\pi n_x}}{e\sqrt{g_sg_v}},$$ (11)

one sees that the required ac electric field grows linearly with the electromagnetic wave frequency and is proportional to the square root of the electron density. At $f \approx 50$ GHz and $n_x \approx 10^{11}$ cm$^{-2}$, the inequality (11) is fulfilled at $E_0 \gtrsim 100$ V/cm. This value can be reduced in systems with lower electron/hole density. Therefore, we consider now an opposite limiting case with $\epsilon_F = 0$, but finite temperature T.

At finite T and the vanishing $\epsilon_F = 0$ both electrons and holes contribute to the charge carrier density

$$n_x = n_e + n_h = \frac{\pi g_sg_v}{12\sqrt{2}e^2} T^2$$ (12)

and to the current. Starting again from eq. (5) but accounting for the hole contribution and putting $\epsilon_F = 0$, we get

$$j_x(t) = en_xV \frac{12}{\pi^3} \int_0^{\infty} xdx$$

$$\times \int_0^\pi d\theta \frac{\cos\theta}{1 + \exp\left(\sqrt{x^2 + Q_T^2(t)} - 2xQ_T(t)\cos\theta\right)},$$ (13)

where

$$Q_T(t) = \frac{Vp_0(t)}{T} = \frac{eE_0V}{\Omega T} \sin\Omega t \equiv Q_{T0}\sin\Omega t.$$ (14)

Figure 1(b) shows the current (13) as a function of time Ωt. In the low-field limit $Q_{T0} \ll 1$ we get from (13) the current

$$j_x(t) \approx en_xVQ_T(t)\frac{6\ln2}{\pi^2},$$ (15)

and the correct expression for the linear-response intra-band dynamic conductivity [18],

$$\sigma_{\epsilon_F=0,T}(\Omega) \approx 6\ln2\frac{en_xe^2V^2}{\pi^2 T\Omega} = \frac{e^2}{2\pi}\frac{g_sg_v T}{\hbar\Omega}. $$ (16)

One sees that the quasi-classical approach is now valid at $\Omega \lesssim T$. This restricts the frequency by the value of ~ 200 GHz at $T \sim 10$ K and ~ 6 THz at room temperature. In the strong-field regime $Q_{T0} \gtrsim 1$ eq. (13) is reduced, again, to (1). Figure 2 shows the Fourier components of the current (13) as a function of $Q_{T0} = eE_0V/\Omega T$ at $\epsilon_F/T = 0$.

At $T \approx 10$ K and $f \approx 100$ GHz this gives a moderate value of the required electric field $E_0 \approx 5$ V/cm. The efficiency of the predicted frequency multiplication effect can be increased further by using the resonance response of the system at the plasmon, the cyclotron, or the magnetoplasmon frequency.

To summarize, we have investigated the non-linear electrodynamic response of 2D electrons and holes in graphene. We have shown that irradiation of graphene by an electromagnetic wave with frequency Ω should lead to generation of higher harmonics with frequencies 3Ω, 5Ω, etc. The efficiency of the frequency up-conversion is rather high: the amplitudes of the higher-harmonics of the ac electric current fall down slowly (as $1/m$) with harmonics index m. The presented quasi-classical theory is valid at $\hbar\Omega \lesssim \max\{\epsilon_F,T\}$. This estimate shows that the effect works at frequencies up to 5–10 THz, which opens up exciting opportunities for building new graphene devices for terahertz and sub-terahertz electronics.
REFERENCES

1. Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Katsnelson M. I., Grigorieva I. V., Dubonos S. V. and Firsov A. A., Nature, 438 (2005) 197.
2. Zhang Y., Tan Y.-W., Stormer H. L. and Kim P., Nature, 438 (2005) 201.
3. Wallace P. R., Phys. Rev., 71 (1947) 622.
4. Semenoff G. W., Phys. Rev. B, 53 (1984) 2449.
5. Novoselov K. S., Jiang Z., Zhang Y., Morozov S. V., Stormer H. L., Zeitler U., Maan J. C., Boebinger G. S., Kim P. and Geim A. K., Science online (February 15, 2007), cond-mat/0702408.
6. Gusynin V. P. and Sharapov S. G., Phys. Rev. Lett., 95 (2005) 146801.
7. Ziegler K., Phys. Rev. Lett., 97 (2006) 266802.
8. Katsnelson M. I., Eur. Phys. J. B, 51 (2006) 157.
9. Cheianov V. V. and Fal’ko V. I., Phys. Rev. Lett., 97 (2006) 226801.
10. Nilsson J., Castro Neto A. H., Guinea F. and Peres N. M. R., Phys. Rev. Lett., 97 (2006) 266801.
11. Tudorovskiy T. Y. and Chaplik A. V., JETP Lett., 84 (2006) 619.
12. Nomura K. and MacDonald A. H., Phys. Rev. Lett., 98 (2007) 076602.
13. Fuchs J.-N. and Lederer P., Phys. Rev. Lett., 98 (2007) 016803.
14. Bostwick A., Ohta T., Seyller T., Horn K. and Rotenberg E., Nat. Phys., 3 (2007) 36.
15. Deacon R. S., Chuang K.-C., Nicholas R. J., Novoselov K. S. and Geim A. K., arXiv:0704.0410 (2007).
16. Peres N. M. R., Guinea F. and Castro Neto A. H., Phys. Rev. B, 73 (2006) 125411.
17. Gusynin V. P. and Sharapov S. G., Phys. Rev. B, 73 (2006) 245411.
18. Falkovsky L. A. and Varlamov A. A., cond-mat/0606800 (2006).
19. Sadowski M. L., Martinez G., Potemski M., Berger C. and de Heer W. A., Phys. Rev. Lett., 97 (2006) 266405.
20. Sadowski M. L., Martinez G., Potemski M., Berger C. and de Heer W. A., arXiv:0704.0585 (2007).
21. Gusynin V. P., Sharapov S. G. and Carbotte J. P., Phys. Rev. Lett., 96 (2006) 256802.
22. Gusynin V. P., Sharapov S. G. and Carbotte J. P., J. Phys.: Condens. Matter, 19 (2007) 026222.
23. Gusynin V. P., Sharapov S. G. and Carbotte J. P., Phys. Rev. B, 75 (2007) 165407.
24. Gusynin V. P., Sharapov S. G. and Carbotte J. P., Phys. Rev. Lett., 98 (2007) 157402.
25. Huang E. H. and Das Sarma S., cond-mat/0610561 (2006).
26. Vafek O., Phys. Rev. Lett., 97 (2006) 266406.
27. Apalkov V., Wang X.-F. and Chakraborty T., cond-mat/0611465 (2006).
28. Abergel D. S. L. and Fal’ko V. I., Phys. Rev. B, 75 (2007) 155430.
29. Ryzhi V., Jpn. J. Appl. Phys., 45 (2006) L923.
30. Trauzettel B., Blanter Y. M. and Morpurgo A. F., Phys. Rev. B, 75 (2007) 035305.
31. Ryzhi V., Satou A. and Otsuji T., J. Appl. Phys., 101 (2007) 024509.
32. Rana F. and Ahmad F. R., arXiv:0704.0607v1 [cond-mat.mes-hall] (2007).
33. Mikhailov S. A. and Ziegler K., to be published in Phys. Rev. Lett., arXiv:cond-mat/0703406 (2007).
34. Chen H.-Y., Apalkov V. and Chakraborty T., Phys. Rev. Lett., 98 (2007) 186803.
35. Partoens B. and Peeters F. M., Phys. Rev. B, 75 (2007) 193402.
36. Katsnelson M. I., Mater. Today, 10 (2007) 20.
37. Geim A. K. and Novoselov K. S., Nat. Mater., 6 (2007) 183.