ISI's 2005 Statistical Machine Translation Entries

Steve DeNeefe and Kevin Knight

Information Sciences Institute
University of Southern California
Outline

- Overview of two MT systems
- Syntax-based Translation Model
- Language Model
- Model Weight Training
- Syntax-based Decoder
- Decoding Example
- Results
- Discussion
Overview

• ISI's two statistical MT systems this year:
 • a phrase-based system
 • intended to be representative of current state-of-the-art techniques in MT
 • poor performance due to user error (OOPS!)
 • a syntax-based system
 • a current research effort at ISI
 • performance is steadily improving
Phrase-based MT system

- nothing new here, really
 - statistical model trained by learning phrase pairs from bilingual data
 - log-linear model allows combination with other knowledge sources (e.g. trigram LM)
 - parameter tuning required for best results
 - rule-based preprocessing for translating dates, numbers, etc.
 - translation model is string-to-string
Phrase-based MT system

- “small” problem during evaluation
 - phrase tables not collected correctly with respect to the evaluation source text
 - thus, our system did not have all the relevant phrase-pairs while decoding
Syntax-based MT system

- similarities to phrase-based system
 - statistical model trained by learning “translation rules” from bilingual data
 - log-linear model allows combination with other knowledge sources (e.g. trigram LM)
- parameter tuning required for best results
- rule-based preprocessing for translating dates, numbers, etc.
Syntax-based MT system

- differences from phrase-based system
 - translation model incorporates syntactic structure on the target language side
 - the decoder uses a parser-like method to create syntactic trees as output hypotheses
 - tree-to-string translation model
Syntax-based Translation Model

- rules translate source language phrase into target language syntactic chunks:
 - NPB(PRP/I) ↔ 我
 - NN/hotel ↔ 酒店
 - NP-C(NPB(DT/this NN/address)) ↔ 这个 地址
Syntax-based Translation Model

- rules can have "holes" in the phrases:
 - NP-C(NPB(PRP$/my x_0:NN)) ↔ 我的 x_0
 - NP-C(NPB(PRP$/my x_0:NN)) ↔ 我 x_0
 - PP(TO/to NP-C(NPB(x_0:NNS NNP/park)))
 ↫ 去 x_0 公园
Syntax-based Translation Model

• rules can combine previously translated results together:

 • $\text{VP}(x_0: \text{VBZ} \ x_1: \text{NP-C}) \leftrightarrow x_0 \ x_1$

 • combines a verb and a noun-phrase to build a new verb phrase

 • $\text{VP}(x_0: \text{VBZ} \ x_1: \text{NP-C}) \leftrightarrow x_1 \ x_0$

 • takes a noun phrase followed by a verb, switches their order, then combines them into a new verb phrase
Learning the rules

- four steps:
 1. word-align a bilingual parallel corpus
 - union of GIZA++ alignments in each direction
 2. parse the target side
 - using our own implementation of Collins Model 2
 3. extract a list of translation rules
 - using GHKM algorithm (Galley et al, 2004)
 4. estimate probabilities according to relative frequency
 - rule probabilities are conditioned only on root of target syntax fragment – basically a joint $p(e,f)$ model
Language Model

- all language models created with SRI toolkit on English portion of supplied data
- evaluation run
 - bigram model integrated into decoder search
 - 25,000 n-best list re-ranked with trigram model
- post-eval run
 - trigram model integrated into decoder search
Model Weight Training

- split provided development data into dev and test sets:
 - Chinese, Arabic, and Japanese:
 - devset 1 (CSTAR 03) for testing
 - devset 2 (IWLST 04) for development
 - Korean
 - first half of devset 1 (CSTAR 03) for testing, second half for development
Model Weight Training

- parameters trained for syntax system
 - translation model – \(p(e, f) \)
 - IBM model 1 inverse approximation
 - language model
 - length bonus and rule bonus
- used exhaustive method to train weights
 - run the decoder on the development set using hundreds of parameter settings, measure BLEU score for each, then use the best one
 - this is time intensive – we only did this for Chinese, and used the results for other languages
Syntax-based Decoder

- probabilistic CYK-style parsing algorithm with beams
- results in an English syntax tree corresponding to the Chinese sentence
- guarantees the output to have some kind of globally coherent syntactic structure
Decoding Example

Literally: “I not understand English.”
Decoding Example

Literally: “I not understand English.”
Decoding Example

Rule 138452
PRP/I ↔ 我

Rule 42386
NP-C(NPB(NNP/English)) ↔ 英语

Literally: “I not understand English .”
Decoding Example

Rule 138452
VP(VBP/do RB/not VP-C(VB/understand x₀:NP-C))
← 不 懂 x₀

Rule 138452
PRP/I ← 我

Rule 42386
NP-C(NPB(NNP/English)) ← 英语

我 不 懂 英语

Literally: “I not understand English.”
Decoding Example

Literally: “I not understand English.”
Decoding Example

"I do not understand English ."

```
Rule 89263
S(NP-C(NPB(x₀:PRP)) x₁:VP ./.) ↔ x₀ x₁ .
```

```
Rule 138452
PRP/I ↔ 我
```

```
Rule 42386
NP-C(NPB(NNP/English)) ↔ 英语
```

```
我
```

```
不
```

```
懂
```

```
英语
```

```
. 
```

Literally: “I not understand English .”
Results: Phrase-based MT

Language	Pre-eval blind test	Evaluation	Post-eval
Arabic	53.79	37.39	50.16
Chinese	32.1	33.23	41.16
Japanese	44.07	28.31	33.82
Korean	35.48	23.74	30.02

- **OOPS! Eval scores are very low!**
- **After correcting the phrase tables, scores are more competitive.**

(note: reported numbers are BLEU scores)
Results: Syntax-based MT

Language	Pre-eval blind test	Evaluation	Post-eval
Arabic	43.84	39.62	44.47
Chinese	25.73	37.64	40.08
Japanese	36.66	27.41	29.98
Korean	26.2	25.22	27.65

- Evaluation scores are as expected.
- After evaluation, we were able to improve the scores using a trigram LM in search.

(note: reported numbers are BLEU scores)
Discussion

- Pleasant surprise for Chinese
 - Chinese post-eval syntax-based results were very close to phrase-based results
 - main change: integrating trigram language model into the decoder search
 - this is surprising because the syntax system is currently not learning as many phrase pairs as the phrase-based system
Discussion

• Question Sentences
 • Large percentage of data in this evaluation
 • Syntax for questions is different than the typical “expository text” that our system usually translates.
• Current parser doesn’t handle questions well.
 • If it did, questions could become a strength rather than a weakness.
Thank You!