Waring–Goldbach Problem: One Square,
Four Cubes and Higher Powers

Jinjiang Li* & Min Zhang†
Department of Mathematics, China University of Mining and Technology*
Beijing 100083, P. R. China

Abstract: Let P_r denote an almost–prime with at most r prime factors, counted according to multiplicity. In this paper, it is proved that, for $12 \leq b \leq 35$ and for every sufficiently large odd integer N, the equation

$$N = x^2 + p_1^3 + p_2^3 + p_3^3 + p_4^4 + p_5^5 + p_6^6$$

is solvable with x being an almost–prime $P_{r(b)}$ and the other variables primes, where $r(b)$ is defined in the Theorem. This result constitutes an improvement upon that of Lü and Mu.

Keywords: Waring–Goldbach problem; Hardy–Littlewood Method; almost–prime; sieve method

MR(2010) Subject Classification: 11P05, 11P32, 11P55, 11N36.

1 Introduction and main result

Let a, b and N be positive integers and define $H_{a,b}(N)$ to be the number of solutions of the following Diophantine equation

$$N = x_1^2 + x_2^3 + x_3^3 + x_4^3 + x_5^3 + x_6^6 + x_7^7,$$

with all the variables x_j being positive integers. In 1981, Hooley [7] obtained an asymptotic formula for $H_{3,5}(N)$. In 1991, from Brüdern’s work, Lu [12] get the asymptotic formula for $H_{3,b}(N)$. In addition, by using a sort of pruning technique, Lu [12] established the asymptotic formula for $H_{4,b}(N)$ ($4 \leq b \leq 6$) and gave the lower bound estimates of the expected order of magnitude for $H_{4,b}(7 \leq b \leq 17)$, $H_{5,b}(5 \leq b \leq 9)$.

*Corresponding author.

E-mail addresses: jinjiang.li.math@gmail.com (J. Li), min.zhang.math@gmail.com (M. Zhang).
and $H_{6,b}(N) (6 \leq b \leq 7)$. Motivated by the work of Lu [12], Dashkevich [5] obtained the asymptotic formula for $H_{6,8}(N)$. In view of the results of Hooley, Lu and A. M. Dashkevich, it is reasonable to conjecture that, for every sufficiently large odd integer N the following equation

$$N = p_1^3 + p_2^3 + p_3^3 + p_4^3 + p_5^3 + p_6^3 + p_7^3 \quad (3 \leq a \leq b)$$ \hspace{1cm} (1.1)$$

is solvable, where and below the letter p, with or without subscript, always denotes a prime number. But this conjecture is perhaps out of reach at present. However, it is possible to replace a variable by an almost–prime. In 2016, Lű and Mu [13] employed the sieve theory and the Hardy–Littlewood method to obtain the following approximation to the conjecture (1.1).

Theorem 1.1 (Lű and Mu, 2016) Let a and b be positive integers such that

$$\frac{5}{18} < \frac{1}{a} + \frac{1}{b} \leq \frac{1}{3}.$$ \hspace{1cm} (1.2)$$

For every sufficiently large odd integer N, let $R_{a,b}(N)$ denote the number of solutions of the following equation

$$N = x^2 + p_2^3 + p_3^3 + p_4^3 + p_5^3 + p_6^3 + p_7^3$$ \hspace{1cm} (1.3)$$

with x being an almost–prime $\mathcal{P}_{r(a,b)}$ and the other variables primes, where $r(a,b)$ is equal to $\left(\frac{4}{3}\left(\frac{1}{a} + \frac{1}{b} - \frac{5}{18}\right)^{-1}\right)$. Then we have

$$R_{a,b}(N) \gg N^{\frac{2}{3} + \frac{1}{a} + \frac{1}{b}} \log^{-7} N.$$$$

Especially, if $a = 4$, then there holds $12 \leq b \leq 35$ from the condition (1.2), and the values of $r(4,b)$ are as follows:

$r(4,12) = 24$, $r(4,13) = 27$, $r(4,14) = 30$, $r(4,15) = 34$, $r(4,16) = 38,$

$r(4,17) = 42$, $r(4,18) = 48$, $r(4,19) = 53$, $r(4,20) = 60$, $r(4,21) = 67,$

$r(4,22) = 75$, $r(4,23) = 84$, $r(4,24) = 96$, $r(4,25) = 109$, $r(4,26) = 124,$

$r(4,27) = 144$, $r(4,28) = 168$, $r(4,29) = 198$, $r(4,30) = 240$, $r(4,31) = 297,$

$r(4,32) = 384$, $r(4,33) = 528$, $r(4,34) = 816$, $r(4,35) = 1680.$

In this paper, we shall improve the result of Lű and Mu [13] in the cases $a = 4$, $12 \leq b \leq 35$ and establish the following theorem.
Theorem 1.2 For $12 \leq b \leq 35$, let $R_b(N)$ denote the number of solutions of the following equation

$$N = x^2 + p_1^3 + p_2^3 + p_3^3 + p_4^3 + p_5^3 + p_6^3$$ \hspace{1cm} (1.4)

with x being an almost–prime $\mathcal{P}_{r(b)}$ and the other variables primes. Then, for sufficiently large odd integer N, we have

$$R_b(N) \gg N^{\frac{35}{36} + \frac{1}{b} \log^{-7} N},$$

where

- $r(12) = 6$,\; $r(13) = 7$,\; $r(14) = 7$,\; $r(15) = 7$,\; $r(16) = 8$,\; $r(17) = 8$,
- $r(18) = 8$,\; $r(19) = 8$,\; $r(20) = 9$,\; $r(21) = 9$,\; $r(22) = 9$,\; $r(23) = 10$,
- $r(24) = 10$,\; $r(25) = 10$,\; $r(26) = 11$,\; $r(27) = 11$,\; $r(28) = 11$,\; $r(29) = 12$,
- $r(30) = 12$,\; $r(31) = 13$,\; $r(32) = 13$,\; $r(33) = 14$,\; $r(34) = 15$,\; $r(35) = 17$.

The proof of our result employs the Hardy–Littlewood circle method and Iwaniec’s linear sieve method, from which we can give a lower bound estimate of $R_b(N)$, which is stronger than that of the result of Lü and Mu [13] and leads to the refinement.

2 Notation

Throughout this paper, N always denotes a sufficiently large odd integer; \mathcal{P}_r denote an almost–prime with at most r prime factors, counted according to multiplicity; ε always denotes an arbitrary small positive constant, which may not be the same at different occurrences; γ denotes Euler’s constant; $f(x) \ll g(x)$ means that $f(x) = \mathcal{O}(g(x))$; $f(x) \asymp g(x)$ means that $f(x) \ll g(x) \ll f(x)$; the letter p, with or without subscript, always stands for a prime number; the constants in the \mathcal{O}–term and \ll–symbol depend at most on ε. As usual, $\varphi(n)$, $\mu(n)$ and $\tau_k(n)$ denote Euler’s function, Möbius’ function and the k–dimensional divisor function, respectively. Especially, we write $\tau(n) = \tau_2(n)$. $p^f \| m$ means that $p^f | m$ but $p^{f+1} \nmid m$. We denote by $a(m)$ and $b(n)$ arithmetical functions satisfying $|a(m)| \ll 1$ and $|b(n)| \ll 1$; (m, n) denotes the greatest common divisor of m and n; $e(\alpha) = e^{2\pi i \alpha}$. We always denote by χ a Dirichlet character (modq), and by χ^0 the principal Dirichlet character (modq). Let

$$A = 10^{100}, \quad Q_0 = \log^{20A} N, \quad Q_1 = N^{\frac{12}{36} - \frac{1}{b} + 50\varepsilon}, \quad Q_2 = N^{\frac{17}{36} + \frac{1}{b} - 50\varepsilon}, \quad D = N^{\frac{3}{16} - \frac{1}{b} - 51\varepsilon},$$

$$z = D^\frac{1}{3}, \quad U_k = \frac{1}{k} N^\frac{k}{3}, \quad U^* = \frac{1}{3} N^\frac{3}{16}, \quad F_3(\alpha) = \sum_{U^* \leq n \leq 2U^*} e(n^3 \alpha),$$
In order to prove Theorem we need the following lemmas.

3 Preliminary Lemmas

Let $F(x)$ be a real differentiable function such that $F'(x)$ is monotonic, and $F'(x) \geq m > 0$, or $F'(x) \leq -m < 0$, throughout the interval $[a, b]$. Then we have

$$\left| \int_a^b e^{iF(x)} \, dx \right| \leq \frac{4}{m}.$$

Proof. See Lemma 4.2 of Titchmarsh [15].

Let $f(x)$ be a real differentiable function in the interval $[a, b]$. If $f'(x)$ is monotonic and satisfies $|f'(x)| \leq \theta < 1$. Then we have

$$\sum_{a < n < b} e^{2\pi if(n)} = \int_a^b e^{2\pi if(x)} \, dx + O(1).$$
Proof. See Lemma 4.8 of Titchmarsh [15].

Lemma 3.3 Let \(2 \leq k_1 \leq k_2 \leq \cdots \leq k_s \) be natural numbers such that
\[
\sum_{i=j+1}^{s} \frac{1}{k_i} \leq \frac{1}{k_j}, \quad 1 \leq j \leq s-1.
\]
Then we have
\[
\int_0^1 \left| \prod_{i=1}^{s} f_{k_i}(\alpha) \right|^2 d\alpha \ll N^{\frac{1}{k_1} + \cdots + \frac{1}{k_s} + \varepsilon}.
\]
Proof. See Lemma 1 of Brüdern [1].

Lemma 3.4 For \((a, q) = 1\), we have
\begin{enumerate}
\item[(i)] \(S_j(q, a) \ll q^{1 - \frac{1}{j}} \);
\item[(ii)] \(G_j(\chi, a) \ll q^{\frac{1}{2} + \varepsilon} \).
\end{enumerate}
In particular, for \((a, p) = 1\), we have
\begin{enumerate}
\item[(iii)] \(|S_j(p, a)| \leq ((j, p - 1) - 1) \sqrt{p} \);
\item[(iv)] \(|S_j^*(p, a)| \leq ((j, p - 1) - 1) \sqrt{p} + 1 \);
\item[(v)] \(S_j^*(p^\ell, a) = 0 \) for \(\ell \geq \gamma(p) \), where
\[
\gamma(p) = \begin{cases}
\theta + 2, & \text{if } p^\theta \parallel j, \ p \neq 2 \text{ or } p = 2, \ \theta = 0, \\
\theta + 3, & \text{if } p^\theta \parallel j, \ p = 2, \ \theta > 0.
\end{cases}
\]
\end{enumerate}
Proof. For (i) and (iii)–(iv), see Theorem 4.2 and Lemma 4.3 of Vaughan [17], respectively. For (ii), see Lemma 8.5 of Hua [8] or the Problem 14 of Chapter VI of Vinogradov [18]. For (v), see Lemma 8.3 of Hua [8].

Lemma 3.5 We have
\begin{enumerate}
\item[(i)] \(\int_0^1 |F_3(\alpha)F_3^*(\alpha)|^2 d\alpha \ll N^\frac{8}{7} + \varepsilon \),
\item[(ii)] \(\int_0^1 |F_3(\alpha)F_3^*(\alpha)|^4 d\alpha \ll N^\frac{11}{7} \),
\item[(iii)] \(\int_0^1 |f_3(\alpha)f_3^*(\alpha)|^2 d\alpha \ll N^\frac{8}{7} + \varepsilon \),
\item[(iv)] \(\int_0^1 |f_3(\alpha)f_3^*(\alpha)|^4 d\alpha \ll N^\frac{11}{7} \log^8 N \).
\end{enumerate}
Proof. For (i), one can see the Theorem of Vaughan [16], and for (ii), one can see Lemma 2.4 of Cai [4]. Moreover, (iii) and (iv) follow from (i) and (ii) by considering the number of solutions of the underlying Diophantine equations, respectively.
Lemma 3.6 For $\alpha = \frac{a}{q} + \beta$, define

$$\mathfrak{N}(q, a) = \left(\frac{a}{q} - \frac{1}{qQ_0}, \frac{a}{q} + \frac{1}{qQ_0}\right),$$ \hspace{1cm} (3.1)$$

$$\Delta_4(\alpha) = f_4(\alpha) - \frac{S_4^*(q, a)}{\varphi(q)} \sum_{U_4 < n \leq 2U_4} e(\beta n^4),$$ \hspace{1cm} (3.2)$$

$$W(\alpha) = \sum_{d \leq D} \frac{c(d)}{dq} S_2(q, ad^2)v_2(\beta),$$ \hspace{1cm} (3.3)$$

where

$$c(d) = \sum_{\substack{d = mn \cr m \leq D^{2/3} \cr n \leq D^{1/3}}} a(m)b(n) \ll \tau(d).$$

Then we have

$$\sum_{1 \leq q \leq Q_0} \sum_{\substack{a = -q \cr (a, q) = 1}} 2q \int_{\mathfrak{N}(q, a)} |W(\alpha)\Delta_4(\alpha)|^2 d\alpha \ll N^2 \log^{-100A} N$$ \hspace{1cm} (3.4)$$

and

$$\sum_{1 \leq q \leq Q_0} \sum_{\substack{a = -q \cr (a, q) = 1}} 2q \int_{\mathfrak{N}(q, a)} |W(\alpha)|^2 d\alpha \ll \log^{21A} N.$$ \hspace{1cm} (3.5)$$

Proof. For (3.4) and (3.5), one can refer to Lemma 2.4 and Lemma 2.5 of Li and Cai [11], respectively. □

Lemma 3.7 For $\alpha = \frac{a}{q} + \beta$, define

$$V_k(\alpha) = \frac{S_k^*(q, a)}{\varphi(q)} v_k(\beta),$$ \hspace{1cm} (3.6)$$

Then we have

$$\sum_{1 \leq q \leq Q_0} \sum_{\substack{a = -q \cr (a, q) = 1}} 2q \int_{\mathfrak{N}(q, a)} |V_4(\alpha)|^2 d\alpha \ll N^{-\frac{1}{2}} \log^{21A} N,$$ \hspace{1cm} (3.7)$$

where $\mathfrak{N}(q, a)$ is defined by (3.1).

Proof. See (2.12) of Li and Cai [11]. □
Lemma 3.8 For \(r = \frac{a}{q} + \beta \), define

\[
V^*_r(\alpha) = \frac{S^*_r(q,a)}{\varphi(q)} v^*_r(\beta).
\]

Then \(\alpha = \frac{a}{q} + \beta \in \mathcal{M}_0 \), we have

\[
f_k(\alpha) = V_k(\alpha) + O\left(U_k \exp(- \log^{1/3} N)\right),
\]

\[
f^*_k(\alpha) = V^*_k(\alpha) + O\left(U^*_k \exp(- \log^{1/3} N)\right),
\]

\[
g_r(\alpha) = \frac{c_r(b)V_2(\alpha)}{\log U_2} + O\left(U_2 \exp(- \log^{1/3} N)\right),
\]

where \(V_k(\alpha) \) is defined (3.6), and

\[
c_r(b) = (1 + O(\varepsilon))
\]

\[
\times \int_{r-1}^{3h-36} \int_{r-2}^{t_1-1} \frac{dt_1}{t_1} \int_{r-2}^{t_2-1} \frac{dt_2}{t_2} \cdots \int_{r-4}^{t_r-1} \frac{dt_{r-3}}{t_{r-3}} \int_{r-3}^{t_r-1} \frac{\log(t_{r-2} - 1)}{t_{r-2}} dt_{r-2}.
\]

Proof. By Siegel–Walfisz theorem and partial summation, we obtain

\[
g_r(\alpha) = \sum_{\ell \in \mathcal{A}_r \atop \ell p \equiv \ell \mod q} e\left((\frac{a}{q} + \beta)(\ell p)^2\right) \frac{\log p}{\log U_2}
\]

\[
= \sum_{h=1}^{q} e\left(\frac{ah^2}{q}\right) \sum_{\ell \in \mathcal{A}_r} \frac{1}{\log U_2} \sum_{\ell p \equiv \ell \mod q} (\log p) e(\beta(\ell p)^2)
\]

\[
= \sum_{h=1}^{q} e\left(\frac{ah^2}{q}\right) \sum_{\ell \in \mathcal{A}_r} \frac{1}{\log U_2} \int_{2U_2}^{2U_2} e(\beta(\ell \nu)^2) d\left(\sum_{p \equiv \nu \mod q} \log p\right)
\]

\[
= \frac{S^*_r(q,a)}{\varphi(q)} v_2(\beta) \sum_{\ell \in \mathcal{A}_r} \frac{1}{\ell \log U_2} + O\left(U_2 \exp(- \log^{1/3} N)\right)
\]

\[
= \frac{c_r(b)V_2(\alpha)}{\log U_2} + O\left(U_2 \exp(- \log^{1/3} N)\right).
\]
This completes the proof of (3.11). Also, (3.9) and (3.10) can be proved in similar but simpler processes.

Lemma 3.9 For \(\alpha \in \mathfrak{m}_2 \), we have
\[
h(\alpha) \ll N^{17/72} + \frac{1}{8} - 24 \varepsilon.
\]

Proof. By the estimate (4.5) of Lemma 4.2 in Brüdern and Kawada [3], we deduce that
\[
h(\alpha) \ll \frac{N^{17/72} (q \log N)}{(q + N|a| - N)^{1/2}} + N^{1/4} D_4^2 \ll N^{17/72} + \frac{1}{8} - 24 \varepsilon.
\]
This completes the proof of Lemma 3.9.

4 Mean Value Theorems

In this section, we shall prove the mean value theorems for the proof of Theorem 1.2.

Proposition 4.1 For \(12 \leq b \leq 35 \), define
\[
J(N, d) = \sum_{m \in \mathcal{L}} \prod_{j=1}^{p_d} \log p_j.
\]
Then we have
\[
\sum_{m \in D^{2/3}} a(m) \sum_{n \in D^{1/3}} b(n) \left(J(N, mn) - \frac{S_{mn}(N)}{mn} J(N) \right) \ll N^{35/36} + \frac{1}{10} \log A N.
\]

Proof. Let
\[
K(\alpha) = h(\alpha) f_2^2(\alpha) f_3^2(\alpha) f_4(\alpha) f_6(\alpha) e(-N \alpha).
\]
By the Farey dissection (3.8), we have
\[
\sum_{m \in D^{2/3}} a(m) \sum_{n \in D^{1/3}} b(n) J(N, mn) = \int_0^1 K(\alpha) d\alpha = \left(\int_{m_0} + \int_{m_1} + \int_{m_2} + \int_{m_3} \right) K(\alpha) d\alpha.
\]
From Cauchy’s inequality, Lemma 3.3 and (iii) of Lemma 3.5, we obtain
\[
\int_0^1 |f_2^2(\alpha) f_3^2(\alpha) f_4(\alpha) f_6(\alpha)| d\alpha
\]
\[
\ll \left(\int_0^1 \left| f_3(\alpha)f_4(\alpha)f_b(\alpha) \right|^2 d\alpha \right)^\frac{1}{2} \left(\int_0^1 \left| f_3(\alpha)f_3^2(\alpha) \right|^2 d\alpha \right)^\frac{1}{2} \\
\ll (N^{\frac{1}{12} + \frac{1}{5} + \varepsilon})^{1/2} (N^{\frac{1}{12} + \frac{1}{5} + \varepsilon})^{1/2} \ll N^{\frac{1}{24} + \frac{1}{9} + \varepsilon}.
\]

(4.2)

By Lemma 3.9 and (4.2), we get

\[
\int_{m_2} K(\alpha) d\alpha \ll \sup_{\alpha \in m_2} |h(\alpha)| \int_0^1 \left| f_3^2(\alpha)f_3^2(\alpha)f_4(\alpha)f_b(\alpha) \right| d\alpha \\
\ll N^{\frac{1}{24} + \frac{1}{9} - 24\varepsilon} \cdot N^{\frac{1}{24} + \frac{1}{9} + \varepsilon} \ll N^{\frac{1}{24} + \frac{1}{9} - \varepsilon}.
\]

(4.3)

From Theorem 4.1 of Vaughan [17], for \(\alpha \in m_1 \), we have

\[
h(\alpha) = W(\alpha) + O(DQ^{\frac{1}{2} + \varepsilon}) = W(\alpha) + O(N^{\frac{35}{144} + \frac{1}{12} - 25\varepsilon}),
\]

(4.4)

where \(W(\alpha) \) is defined by (3.3). Define

\[
K_1(\alpha) = W(\alpha)f_3^2(\alpha)f_3^2(\alpha)f_4(\alpha)f_b(\alpha)e(-N\alpha).
\]

(4.5)

Then, by (4.2) and (4.4), we have

\[
\int_{m_1} K(\alpha) d\alpha = \int_{m_1} K_1(\alpha) d\alpha + O(N^{\frac{1}{24} + \frac{1}{9} - 20\varepsilon}).
\]

(4.6)

Let

\[
\mathcal{N}_0(q, a) = \left(\frac{a}{q} - \frac{1}{N^{709/945}}, \frac{a}{q} + \frac{1}{N^{709/945}} \right), \quad \mathcal{N}_0 = \bigcup_{1 \leq q \leq Q_0} \bigcup_{\substack{a=-q \lfloor a \rfloor=1}}^{2q} \mathcal{N}_0(q, a),
\]

\[
\mathcal{N}_1(q, a) = \mathcal{N}(q, a) \setminus \mathcal{N}_0(q, a), \quad \mathcal{N}_1 = \bigcup_{1 \leq q \leq Q_0} \bigcup_{\substack{a=-q \lfloor a \rfloor=1}}^{2q} \mathcal{N}_1(q, a),
\]

\[
\mathcal{N} = \bigcup_{1 \leq q \leq Q_0} \bigcup_{\substack{a=-q \lfloor a \rfloor=1}}^{2q} \mathcal{N}(q, a),
\]

where \(\mathcal{N}(q, a) \) is defined by (3.1). Then we have \(m_1 \subset \mathcal{I}_0 \subset \mathcal{N} \). By the rational approximation theorem of Dirichlet, we get

\[
\int_{m_1} K_1(\alpha) d\alpha \ll \int_{m_1 \cap \mathcal{I}_0} |K_1(\alpha)| d\alpha + \int_{m_1 \cap \mathcal{N}_1} |K_1(\alpha)| d\alpha \\
\ll \sum_{1 \leq q \leq Q_0} \sum_{\substack{a=-q \lfloor a \rfloor=1}}^{2q} \int_{m_1 \cap \mathcal{I}_0(q, a)} |K_1(\alpha)| d\alpha \\
+ \sum_{1 \leq q \leq Q_0} \sum_{\substack{a=-q \lfloor a \rfloor=1}}^{2q} \int_{m_1 \cap \mathcal{N}_1(q, a)} |K_1(\alpha)| d\alpha.
\]

(4.7)
By Lemma 3.1, we have
\[v_k(\beta) \ll \frac{U_k}{1 + |\beta|N} \]
From the trivial inequality \((q, d^2) \leq (q, d)^2\) and above estimate, we have
\[
|W(\alpha)| \ll \sum_{d \in D} \frac{\tau(d)}{d} (q, d^2)^{1/2} (\beta)^{1/2} \ll \tau_3(q) (q, d^2)^{1/2} (\beta)^{1/2} N \ll \frac{\tau_3(q) U_2 \log^2 N}{q^{1/2}(1 + |\beta|N)}.
\]
(4.8)
Thus, for \(\alpha \in \mathcal{N}_1(q, a)\), we get
\[
W(\alpha) \ll N^{\frac{473}{1890}} \log^2 N,
\]
(4.9)
from which and (4.2) we have
\[
\sum_{1 \leq q \leq Q_0} \sum_{a=-q}^{2q} \sum_{(a,q)=1} \int_{m_1 \cap \mathcal{N}_1(q, a)} |K_1(\alpha)|d\alpha \\
\ll N^{\frac{473}{1890}} \log^2 N \cdot \int_0^1 |f_3^2(\alpha) f_3^*2(\alpha) f_6(\alpha) f_7(\alpha)|d\alpha \ll N^{\frac{35}{36} + \frac{1}{6} - \varepsilon}.
\]
(4.10)
By Lemma 3.2, we derive
\[
f_4(\alpha) = \Delta_4(\alpha) + V_4(\alpha) + O(1).
\]
Therefore, we have
\[
\sum_{1 \leq q \leq Q_0} \sum_{a=-q}^{2q} \sum_{(a,q)=1} \int_{m_1 \cap \mathcal{N}_0(q, a)} |K_1(\alpha)|d\alpha \\
\ll \sum_{1 \leq q \leq Q_0} \sum_{a=-q}^{2q} \sum_{(a,q)=1} \int_{m_1 \cap \mathcal{N}_0(q, a)} |W(\alpha) \Delta_4(\alpha) f_3^2(\alpha) f_3^*2(\alpha) f_b(\alpha)|d\alpha \\
+ \sum_{1 \leq q \leq Q_0} \sum_{a=-q}^{2q} \sum_{(a,q)=1} \int_{m_1 \cap \mathcal{N}_0(q, a)} |W(\alpha) V_4(\alpha) f_3^2(\alpha) f_3^*2(\alpha) f_b(\alpha)|d\alpha \\
+ \sum_{1 \leq q \leq Q_0} \sum_{a=-q}^{2q} \sum_{(a,q)=1} \int_{m_1 \cap \mathcal{N}_0(q, a)} |W(\alpha) f_3^2(\alpha) f_3^*2(\alpha) f_b(\alpha)|d\alpha \\
=: \mathcal{I}_1 + \mathcal{I}_2 + \mathcal{I}_3,
\]
(4.11)
where \(\Delta_4(\alpha)\) and \(V_4(\alpha)\) are defined by (3.2) and (3.6), respectively.
It follows from Cauchy’s inequality, (iv) of Lemma 3.5 and (3.4) that
\[I_1 \ll \sup_{\alpha \in \mathbb{G}_0} |f_b(\alpha)| \left(\sum_{1 \leq q \leq Q_0} \sum_{a = -q}^{2q} \int_{\mathbb{R}(q,a)} |W(\alpha)\Delta_4(\alpha)|^2 d\alpha \right)^{1/2} \left(\int_0^1 |f_3(\alpha)f_3^*(\alpha)|^4 d\alpha \right)^{1/2} \]
\[\ll N^{1/2}(N^{1/2}\log^{-10A} N)^{1/2}(N^{13/2}\log^8 N)^{1/2} \ll N^{\frac{45}{35} + \frac{1}{2}}\log^{-10A}N. \quad (4.12) \]

From (4.8), we know that, for \(\alpha \in m_1 \), there holds
\[\sup_{\alpha \in m_1} |W(\alpha)| \ll N^{1/2} \log^{-10A}N. \quad (4.13) \]

Therefore, by Cauchy’s inequality, (3.7), (4.13) and (iv) of Lemma 3.5, we obtain
\[I_2 \ll \left(\sup_{\alpha \in \mathbb{G}_0} |f_b(\alpha)| \right) \left(\sup_{\alpha \in m_1} |W(\alpha)| \right) \cdot \left(\sum_{1 \leq q \leq Q_0} \sum_{a = -q}^{2q} \int_{\mathbb{R}(q,a)} |V_4(\alpha)|^2 d\alpha \right)^{1/2} \]
\[\times \left(\int_0^1 |f_3(\alpha)f_3^*(\alpha)|^4 d\alpha \right)^{1/2} \]
\[\ll N^{1/2} \cdot N^{1/2} \log^{-30A}N \cdot (N^{-\frac{1}{2}} \log^{21A}N)^{1/2} \cdot (N^{\frac{13}{2}} \log^8 N)^{1/2} \]
\[\ll N^{\frac{45}{35} + \frac{1}{2}}\log^{-10A}N. \quad (4.14) \]

From Cauchy’s inequality, (3.5), and (iv) of Lemma 3.5, we derive that
\[I_3 \ll \sup_{\alpha \in \mathbb{G}_0} |f_b(\alpha)| \left(\sum_{1 \leq q \leq Q_0} \sum_{a = -q}^{2q} \int_{\mathbb{R}(q,a)} |W(\alpha)|^2 d\alpha \right)^{1/2} \left(\int_0^1 |f_3(\alpha)f_3^*(\alpha)|^4 d\alpha \right)^{1/2} \]
\[\ll N^{1/2}(\log^{21A} N)^{1/2}(N^{13/2}\log^8 N)^{1/2} \ll N^{\frac{13}{20} + \frac{1}{2}}\log^{20A}N \ll N^{\frac{45}{35} + \frac{1}{2}}\log^{-10A}N. \quad (4.15) \]

Combining (4.11), (4.12), (4.14) and (4.15), we can deduce that
\[\sum_{1 \leq q \leq Q_0} \sum_{a = -q}^{2q} \int_{m_1 \cap \mathbb{G}_0(q,a)} |K_1(\alpha)| d\alpha \ll N^{\frac{45}{35} + \frac{1}{2}}\log^{-10A}N. \quad (4.16) \]

From (4.6), (4.7), (4.10) and (4.16) we conclude that
\[\int_{m_1} K(\alpha) d\alpha \ll N^{\frac{45}{35} + \frac{1}{2}}\log^{-10A}N. \quad (4.17) \]

Similarly, we obtain
\[\int_{m_0} K(\alpha) d\alpha \ll N^{\frac{45}{35} + \frac{1}{2}}\log^{-10A}N. \quad (4.18) \]

For \(\alpha \in m_0 \), define
\[K_0(\alpha) = W(\alpha)V_3^2(\alpha)V_3^2(\alpha)V_4(\alpha)V_5(\alpha)e(-N\alpha). \]
Noticing that (4.4) still holds for \(\alpha \in \mathfrak{M}_0 \), it follows from (3.9), (3.10) and (4.4) that
\[
K(\alpha) - K_0(\alpha) \ll N^{\frac{71}{56} + \frac{1}{b}} \exp \left(- \log^{1/4} N \right).
\]

By the above estimate, we derive that
\[
\int_{\mathfrak{M}_0} K(\alpha) d\alpha = \int_{\mathfrak{M}_0} K_0(\alpha) d\alpha + O \left(N^{\frac{11}{56} + \frac{1}{b}} \log^{-A} N \right). \tag{4.19}
\]

By the well–known standard technique in the Hardy–Littlewood method, we deduce that
\[
\int_{\mathfrak{M}_0} K_0(\alpha) d\alpha = \sum_{m \leq D^{2/3}} a(m) \sum_{n \leq D^{1/3}} b(n) \frac{\mathcal{H}_{mn}(N)}{mn} J(N) + O \left(N^{\frac{11}{56} + \frac{1}{b}} \log^{-A} N \right), \tag{4.20}
\]
and
\[
J(N) \asymp N^{\frac{11}{56} + \frac{1}{b}}. \tag{4.21}
\]
From (4.1), (4.3), (4.17)–(4.21), the result of Proposition 4.1 follows.

In a similar way, we have

Proposition 4.2 For \(12 \leq b \leq 35 \), define
\[
J_r(N, d) = \sum_{(p^2 + p^2 + p^2 + p^4 + p^4 + p_6^6 \equiv N \pmod{q}, \ell_2 \in L, \ell_2 \in \mathcal{A}, \ell \equiv 0 \pmod{d})} \left(\frac{\log p}{\log \ell_2} \prod_{j=2}^{6} \log p_j \right).
\]
Then we have
\[
\sum_{m \leq D^{2/3}} a(m) \sum_{n \leq D^{1/3}} b(n) \left(J_r(N, mn) - \frac{c_r(b) \mathcal{H}_{mn}(N)}{mn \log U_2 J(N)} \right) \ll N^{\frac{11}{56} + \frac{1}{b}} \log^{-A} N,
\]
where \(c_r(b) \) is defined by (3.12).

5 On the function \(\omega(d) \)

In this section, we shall investigate the function \(\omega(d) \) which is defined in (5.12) and required in the proof of the Theorem 1.2.

Lemma 5.1 Let \(\mathcal{R}(q, N) \) and \(\mathcal{L}(q, N) \) denote the number of solutions of the following congruences
\[
u_j^3 + u_j^3 + u_j^3 + u_j^4 + u_j^6 + p_6^6 \equiv N \pmod{q}, \ 1 \leq u_j \leq q, \ (u_j, q) = 1, \ 1 \leq j \leq 6,
\]
and

\[x^2 + u_1^3 + u_2^3 + u_3^3 + u_4^3 + u_5^3 + p_6^5 \equiv N(\mod q), \quad 1 \leq x, u_j \leq q, \quad (u_j, q) = 1, \quad 1 \leq j \leq 6, \]

respectively. Then we have \(\mathcal{L}(p, N) > \mathcal{R}(p, N) \). Moreover, there holds

\[\mathcal{L}(p, N) = p^6 + O(p^5), \quad (5.1) \]

\[\mathcal{R}(p, N) = p^5 + O(p^4). \quad (5.2) \]

Proof. Let \(\mathcal{L}^*(q, N) \) denote the number of solutions to the following congruence

\[x^2 + u_1^3 + u_2^3 + u_3^3 + u_4^3 + u_5^3 + p_6^5 \equiv N(\mod q), \quad 1 \leq x, u_j \leq q, \quad (xu_j, q) = 1, \quad 1 \leq j \leq 6. \]

Then we have

\[
\begin{align*}
p \cdot \mathcal{L}^*(p, N) &= \sum_{a=1}^{p} S_2^*(p, a) S_3^4(p, a) S_4^*(p, a) S_5^*(p, a) e\left(-\frac{aN}{p} \right) \\
&= (p - 1)^7 + E_p, \quad (5.3)
\end{align*}
\]

where

\[
E_p = \sum_{a=1}^{p-1} S_2^*(p, a) S_3^4(p, a) S_4^*(p, a) S_5^*(p, a) e\left(-\frac{aN}{p} \right).
\]

By (iv) of Lemma 3.4, we obtain

\[
|E_p| \leq (p - 1)^2(\sqrt{p} + 1)(2\sqrt{p} + 1)^4(3\sqrt{p} + 1). \quad (5.4)
\]

It is easy to verify that \(|E_p| < (p - 1)^7 \) for \(p \geq 13 \), hence we have \(\mathcal{L}^*(p, N) > 0 \) for \(p \geq 13 \). In addition, for \(p = 2, 3, 5, 7, 11 \), we can check one by one directly by hand that \(\mathcal{L}^*(p, N) > 0 \). Therefore, we have \(\mathcal{L}^*(p, N) > 0 \) for every prime \(p \), and

\[\mathcal{L}(p, N) = \mathcal{L}^*(p, N) + \mathcal{R}(p, N) > \mathcal{R}(p, N). \quad (5.5) \]

From (5.3) and (5.4), we deduce that

\[\mathcal{L}^*(p, N) = p^6 + O(p^5). \quad (5.6) \]

By similar arguments that lead to (5.3) and (5.4), we have

\[\mathcal{R}(p, N) = p^5 + O(p^4). \quad (5.7) \]

Combining (5.5)–(5.7), we get (5.1). This completes the proof of Lemma 5.1. **■**

Lemma 5.2 The series \(\mathcal{S}(N) \) is convergent and satisfying \(\mathcal{S}(N) > 0 \).
Proof. From (i) and (ii) of Lemma 3.4, we get

\[|A(q, N)| \ll \frac{|B(q, N)|}{q^{5/2+6\epsilon}} \ll \frac{q^{5/2+6\epsilon}(\log \log q)^5}{q^2} \ll \frac{1}{q^2}. \]

Thus, the series

\[\mathcal{S}(N) = \sum_{q=1}^{\infty} A(q, N) \]

converges absolutely. Noting that \(A(q, N) \) is multiplicative in \(q \) and by (v) of Lemma 3.4, we have

\[\mathcal{S}(N) = \prod_p (1 + A(p, N)). \] (5.8)

From (iii) and (iv), we know that, for \(p \geq 19 \), there holds

\[|A(p, N)| \leq \frac{(p-1)^2 \sqrt{p}(2\sqrt{p} + 1)^4 (3\sqrt{p} + 1)}{p(p-1)^6} \leq \frac{100}{p^2}. \]

Therefore, there holds

\[\prod_{p \geq 19} (1 + A(p, N)) \geq \prod_{p \geq 19} \left(1 - \frac{100}{p^2}\right) \geq c_1 > 0. \] (5.9)

On the other hand, it is easy to see that

\[1 + A(p, N) = \frac{\mathcal{G}(p, N)}{(p-1)^6}, \] (5.10)

from which and (5.5), we have \(1 + A(p, N) > 0 \). Therefore, there holds

\[\prod_{p < 19} (1 + A(p, N)) \geq c_2 > 0. \] (5.11)

Finally, from (5.8)–(5.11), we conclude that \(\mathcal{G}(N) > 0 \). This completes the proof of Lemma 5.2. ■

In view of Lemma 5.2, we define

\[\omega(d) = \frac{\mathcal{G}_d(N)}{\mathcal{G}(N)}. \] (5.12)

Similar to (5.8), we have

\[\mathcal{G}_d(N) = \prod_p (1 + A_d(p, N)) = \prod_{p|d} (1 + A_d(p, N)) \prod_{p|d} \left(1 + A_d(p, N)\right). \] (5.13)

If \((d, q) = 1 \), then we have \(S_k(q, ad^k) = S_k(q, a) \). Moreover, if \(p|d \), then we get \(A_d(p, N) = A_p(p, N) \). Therefore, it follows from (5.8), (5.12) and (5.13) that

\[\omega(p) = \frac{1 + A_p(p, N)}{1 + A(p, N)}, \quad \omega(d) = \prod_{p|d} \omega(p). \] (5.14)
Also, it is easy to show that
\[
1 + A_p(p, N) = \frac{p}{(p - 1)^6}R(p, N). \tag{5.15}
\]
From (5.10), (5.14) and (5.15), we deduce that
\[
\omega(p) = \frac{p \cdot R(p, N)}{\Omega(p, N)}. \tag{5.16}
\]
According to (5.1), (5.2), (5.14) and (5.16), we obtain the following lemma.

Lemma 5.3 The function \(\omega(d)\) is multiplicative and satisfies
\[
0 \leq \omega(p) < p, \quad \omega(p) = 1 + O(p^{-1}). \tag{5.17}
\]

6 Proof of Theorem 1.2

In this section, let \(f(s)\) and \(F(s)\) denote the classical functions in the linear sieve theory. Then by (2.8) and (2.9) of Chapter 8 in [6], we have
\[
F(s) = \frac{2e^\gamma}{s}, \quad 1 \leq s \leq 3; \quad f(s) = \frac{2e^\gamma \log(s - 1)}{s}, \quad 2 \leq s \leq 4.
\]
In the proof of Theorem 1.2, let \(\lambda^\pm(d)\) be the lower and upper bounds for Rosser’s weights of level \(D\), hence for any positive integer \(d\) we have
\[
|\lambda^\pm(d)| \leq 1, \quad \lambda^\pm(d) = 0 \text{ if } d > D \text{ or } \mu(d) = 0.
\]
For further properties of Rosser’s weights we refer to Iwaniec [9]. Let
\[
\mathcal{Y}(z) = \prod_{2 < p < z} \left(1 - \frac{\omega(p)}{p}\right).
\]
Then from Lemma 5.3 and Mertens’ prime number theorem (See [14]) we obtain
\[
\mathcal{Y}(z) \asymp \frac{1}{\log N}. \tag{6.1}
\]
In order to prove Theorem 1.2, we need the following lemma:

Lemma 6.1 Under the condition (5.17), then if \(z \leq D\), there holds
\[
\sum_{d \mid \emptyset} \frac{\lambda^-(d)\omega(d)}{d} \geq \mathcal{Y}(z) \left(f \left(\frac{\log D}{\log z}\right) + O\left(\log^{-1/3} D\right)\right), \tag{6.2}
\]
and if \(z \leq D^{1/2}\), there holds
\[
\sum_{d \mid \emptyset} \frac{\lambda^+(d)\omega(d)}{d} \leq \mathcal{Y}(z) \left(F \left(\frac{\log D}{\log z}\right) + O\left(\log^{-1/3} D\right)\right). \tag{6.3}
\]
Proof. See (12) and (13) of Lemma 3 in Iwaniec [10]. ■

Let $M(b) = \lfloor \frac{72b}{36-b} \rfloor$. From the definition of \mathcal{M}_r, we know that $r \leq M(b)$. Therefore, we have

$$\mathcal{R}_b(N) \geq \sum_{m \in \mathcal{L}, m(3,4) = 1} \mathcal{R}(m) \sum_{1 \leq j \leq 6} \log p_j \quad \text{for } m^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 = N,$$

where $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3$, $U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$, $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3, U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$, $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3, U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$.

Thus,

$$= \Gamma_0 - \sum_{r = r(b)+1}^{M(b)} \Gamma_r.$$

By the property of Rosser’s weight $\lambda^{-}(d)$ and Proposition 4.1, we get

$$\Gamma_0 \geq \frac{1}{\log U} \sum_{m \in \mathcal{L}, m(3,4) = 1} \mathcal{R}(m) \sum_{1 \leq j \leq 6} \log p_j \quad \text{for } m^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 = N,$$

where $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3$, $U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$, $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3, U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$.

Similarly,

$$\Gamma_0 \geq \frac{1}{\log U} \sum_{m \in \mathcal{L}, m(3,4) = 1} \mathcal{R}(m) \sum_{1 \leq j \leq 6} \lambda^{-}(d) \mu(d) \quad \text{for } m^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 = N,$$

where $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3$, $U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$, $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3, U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$.

Similarly,

$$\Gamma_0 \geq \frac{1}{\log U} \sum_{m \in \mathcal{L}, m(3,4) = 1} \mathcal{R}(m) \sum_{1 \leq j \leq 6} \lambda^{-}(d) \mu(d) \quad \text{for } m^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 = N,$$

where $U_3 < p_1, p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3, U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$.

By the property of Rosser’s weight $\lambda^{+}(d)$ and Proposition 4.2, we have

$$\Gamma_r \leq \sum_{(\ell p)^2 + m^2 + p_j^2 + p_j^2 + p_j^2 + p_j^2 = N} 1 \quad \text{for } \ell \leq b, \quad \ell \in \mathcal{L}, \quad (m,4) = 1,$$

where $U_3 < p_2 < 2U_3, U_3 < p_3, p_4 < 2U_3$, $U_4 < p_1, p_2 < 2U_4, U_5 < p_6 < 2U_5$.

16
\[
\leq \frac{1}{\log W} \sum_{\ell \in \mathcal{K}, \ell' \in \mathcal{L}} \frac{\log p}{\log U_2} \prod_{j=2}^6 \log p_j \sum_{d|(m, \Psi)} \mu(d)
\]

\[
= \frac{1}{\log W} \sum_{\ell \in \mathcal{K}, \ell' \in \mathcal{L}} \left(\frac{\log p}{\log U_2} \prod_{j=2}^6 \log p_j \right) \sum_{d|(m, \Psi)} \lambda^+(d)
\]

\[
\leq \frac{1}{\log W} \sum_{d|\Psi} \sum_{\lambda^+(d) \leq 2} (\log p) \log W \sum_{d|\Psi} \lambda^+(d) \omega(d) \frac{1}{d} + O(N^{\frac{35}{36} + \frac{1}{2}} \log^{-1} A N)
\]

Define
\[
C(b) = \sum_{r=r(b)+1}^{M(b)} c_r(b).
\]

According to simple numerical calculation, we obtain

\[
C(12) < 0.681372, \ C(13) < 0.430703, \ C(14) < 0.408611, \ C(15) < 0.649606, \quad (6.7)
\]

\[
C(16) < 0.496677, \ C(17) < 0.386493, \ C(18) < 0.621141, \ C(19) < 0.651975, \quad (6.8)
\]

\[
C(20) < 0.382485, \ C(21) < 0.631281, \ C(22) < 0.599447, \ C(23) < 0.426621, \quad (6.9)
\]

\[
C(24) < 0.394069, \ C(25) < 0.644773, \ C(26) < 0.603438, \ C(27) < 0.510736, \quad (6.10)
\]

\[
C(28) < 0.615415, \ C(29) < 0.502098, \ C(30) < 0.660826, \ C(31) < 0.403155, \quad (6.11)
\]

\[
C(32) < 0.656868, \ C(33) < 0.635545, \ C(34) < 0.669316, \ C(35) < 0.547965. \quad (6.12)
\]

From (6.4)–(6.12), we deduce that

\[
\mathcal{R}_b(N) \geq (f(3) - F(3)C(b)) \left(1 + O\left(\log^{-\frac{1}{D}} \right) \right) \frac{\mathcal{S}(N)\mathcal{J}(N)Y(z)}{\log U} + O\left(N^{\frac{35}{36} + \frac{1}{2}} \log^{-1} A N \right)
\]
\[\geq \frac{2e}{3} (\log 2 - 0.681372) \left(1 + O\left(\frac{1}{\log^{1/3} D} \right) \right) \frac{\mathcal{S}(N)J(N)Y(z)}{\log U} + O\left(\frac{N^{35/36 + \frac{1}{b}}}{\log^{4} N} \right) \]

\[\gg N^{35/36 + \frac{1}{b}} \log^{-7} N, \]

which completes the proof of Theorem 1.2.

Acknowledgement

The authors would like to express the most sincere gratitude to Professor Wenguang Zhai for his valuable advice and constant encouragement.

References

[1] J. Brüdern, *Sums of squares and higher powers*, J. London Math. Soc. (2), 35(2) (1987), 233–243.

[2] J. Brüdern, *A problem in additive number theory*, Math. Proc. Cambridge Philos. Soc., 103(1) (1988), 27–33.

[3] J. Brüdern, K. Kawada, *Ternary problems in additive prime number theory*, in: Analytic Number Theory, C. Jia and K. Matsumoto (eds.), Dev. Math. 6, Kluwer, Dordrecht, 2002, 39–91.

[4] Y. C. Cai, *The Waring–Goldbach problem: one square and five cubes*, Ramanujan J., 34(1) (2014), 57–72.

[5] A. M. Dashkevich, *On representing natural numbers as a sum of mixed powers*, Math. Notes, 57(3), 254–260.

[6] H. Halberstam, H. E. Richert, *Sieve Methods*, Academic Press, London, 1974.

[7] C. Hooley, *On a new approach to various problems of Waring’s type*, in: Recent progress in analytic number theory, Vol. 1, Academic Press, London, 1981, 127–191.

[8] L. K. Hua, *Additive Theory of Prime Numbers*, Amer. Math. Soc., Providence, Rhode Island, 1965.

[9] H. Iwaniec, *Rossers sieve*, Acta Arith., 36(2) (1980), 171–202.

[10] H. Iwaniec, *A new form of the error term in the linear sieve*, Acta Arith., 37(1) (1980), 307–320.
[11] Y. J. Li, Y. C. Cai, Waring–Goldbach problem: two squares and some higher powers, J. Number Theory, 162 (2016), 116–136.

[12] M. G. Lu, On a problem of sums of mixed powers, Acta Arith., 58(1) (1991), 89–102.

[13] X. D. Lü, Q. W. Mu, On Waring–Goldbach problem of mixed powers, J. Théor. Nombres Bordeaux, 28(2) (2016), 523–538.

[14] F. Mertens, Ein Beitrag zur analytischen Zahlentheorie, J. Reine Angew. Math., 78 (1874), 46–62.

[15] E. C. Titchmarsh, The Theory of the Riemann Zeta–Function, 2nd edn., (Revised by D. R. Heath–Brown), Oxford University Press, Oxford, 1986.

[16] R. C. Vaughan, Sums of three cubes, Bull. London Math. Soc., 17(1) (1985), 17–20.

[17] R. C. Vaughan, The Hardy–Littlewood Method, 2nd edn., Cambridge Tracts Math., Vol. 125, Cambridge University Press, 1997.

[18] I. M. Vinogradov, Elements of Number Theory, Dover Publications, New York, 1954.