BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among U.S. adults (NHANES 2003–2018)

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058517
Article Type:	Original research
Date Submitted by the Author:	21-Oct-2021
Complete List of Authors:	Li, Qianwen; Zhengzhou University, Public Health Wang, Ling; Zhengzhou University, College of Public Health; Macau University of Science and Technology, Faculty of Medicine Wu, Jian; Zhengzhou University, College of Public Health Wang, Jing; Zhengzhou University, College of Public Health Wang, Yanjie; Xinxiang Medical University Zeng, Xin; Zhengzhou University, College of Public Health
Keywords:	PUBLIC HEALTH, EPIDEMIOLOGY, Hepatology < INTERNAL MEDICINE
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among U.S. adults (NHANES 2003–2018)

Qianwen Li1ORCID, Ling Wang1,2, Jian Wu1ORCID, Jing Wang1, Yanjie Wang3, and Xin Zeng1*

1College of Public Health, Zhengzhou University, Science Avenue 100, Gaoxin District, Zhengzhou, Henan Province, China.

2Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China.

3Xinxiang Medical University, Xinxiang, People’s Republic of China.

*Corresponding author:

Xin Zeng, PhD

College of Public Health, Zhengzhou University, Science Avenue 100, Gaoxin District, Zhengzhou, Henan Province, China.

Email: temple214@163.com

Word count: 3197
Abstract

Objectives: The ability of visceral adiposity index (VAI) to predict the prevalence of nonalcoholic fatty liver disease (NAFLD) has not been fully determined. Here, we aimed to explore the association between VAI and NAFLD in the general U.S. population, and further investigate potential population who could use VAI to predict the prevalence of NAFLD.

Design: Cross-sectional population-based study.

Setting: The National Health and Nutrition Examination Survey (2003–2018).

Participants: A total of 7,545 participants aged 20 years or older who have complete information for NAFLD assessment test were included in this study.

Primary and secondary outcome measures: NAFLD was assessed by the modified fatty liver index for the U.S. population (USFLI) using a cut-off point of 30. Correlation between VAI and NAFLD prediction score was calculated using Spearman correlation analysis. Logistic regression models were further used to estimate ORs and 95% CIs.

Results: Spearman correlation analysis indicated that VAI scores were positively correlated USFLI ($r=0.54$, $P=0.000$ for both genders). In a comparison of highest versus the lowest quartiles of VAI, multivariate logistic regression analysis demonstrated a positive association between VAI and NAFLD (OR=2.57, 95%CI=1.72–3.83 for men and OR=3.42, 95%CI=2.08–5.62 for women). The
stratified analyses indicated that the positive association was observed in man
with age < 55 years and women with age ≥ 40 years, and existed in Hispanic and
non-Hispanic White population but not in non-Hispanic Black population. In
addition, the positive associations were consistently seen in subgroups stratified
by insulin resistance and several metabolic diseases. However, no significant
association was found between VAI and hepatic fibrosis.

Conclusion: VAI might be a useful predictive model for NAFLD, but not for
hepatic fibrosis among U.S. adults, and there exist age-gender specific and ethnic
difference.

Keywords: Public health, epidemiology, hepatology

Strengths and limitations of this study:

✓ This is a large population-based analysis using well-examined nationwide
data, and the findings could be generalized for most U.S. populations.

✓ We provided solid evidence of an independent association between VAI and
NAFLD by performing multiple logistic regression.

✓ We conducted the stratified analyses to identify the appropriate population
who could use VAI to predict the prevalence of NAFLD.

✓ Although we used well-validated NAFLD and fibrosis models, the
information about liver imaging were not available, which meant that NAFLD
and NAFLD related fibrosis may be misclassified.
The cross-sectional nature of our study design meant that we could not investigate the longitudinal dynamic association between progression of NAFLD and changes in VAI levels across several therapeutic interventions.

1. Introduction

With an accelerated pace of nutrition transition, non-alcoholic fatty liver disease (NAFLD) has become an emerging public health issue with high prevalence worldwide, affecting up to one third of the population,[1] and its incidence is expected to rise rapidly in the future alongside increasing rates of obesity.[2] According to epidemiological data, nearly a quarter of NAFLD patients would progress to steatohepatitis with fibrosis, which could lead to serious liver-related complications and death.[3, 4] On the other hand, NAFLD is closely related to higher rates of several cardiometabolic disorders, including diabetes mellitus, metabolic syndrome, and cardiovascular diseases (CVD).[2, 5] Thus, the increasing prevalence of NAFLD is particularly life threatening. It is important to identify modifiable risk factors for NAFLD for reducing the disease burden.

Currently, the pathogenesis of NAFLD has not been completely understood, and increasing evidences suggest that visceral fat accumulation plays a crucial role in the pathogenesis of NAFLD.[6, 7] In recent years, the visceral adiposity index (VAI) based on waist circumference (WC), body mass index (BMI), plasma triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) has been
proposed as a reliable marker to assess the content and function of visceral fat.[8] Although VAI has been proved to be a powerful indicator of type 2 diabetes mellitus (T2DM),[9] metabolic syndrome (MetS)[10] and cardiovascular events.[11] There are controversial data regarding the association between VAI and NAFLD. A prior study reported that VAI is related with significant fibrosis in NAFLD patients,[12] while other researchers revealed that the association didn’t exist in obese or non-diabetes subjects with NAFLD.[13, 14] In addition to the small sample size, variations in the participants with or without additional metabolic disorders are largely contributed to these conflicting results. According to current evidence, insulin resistance (IR) is related to NAFLD,[15] while VAI is a valuable indicator of IR.[8] As yet it is unknown whether the status of insulin sensitivity is the result of the controversy among NAFLD patients underlying different clinical status. Furthermore, variations in genetic background may be another explanation for these controversial results in NAFLD.[16] Two recent cohort studies with large scale population conducted in China and Japan implied that higher VAI levels are correlated with an increased incidence of NAFLD in Asian population,[17, 18] while similar study has not been done or published in the U.S.. In this study, we intend to investigate whether VAI and NAFLD is significantly associated in the U.S. general population, independent of IR and its related metabolic disorders, using the data from National Health and Nutrition Examination Surveys (NHANES).
2. Methods

The design, implementation, analysis, and reporting of this study were conducted in accordance with the STROBE statement.[19] Page of each checklist item was listed in Supplemental Material.

2.1. Study Population

The NHANES is a multistage, ongoing, complex cross-sectional health examination and survey designed to collect the health data of the U.S. non-institutionalized civilian population. The survey was approved by the National Center for Health Statistics ethics review board, and was conducted by the Centers for Disease Control and Prevention (CDC). All participants provided written informed consent. The data can be freely available from the NHANES website public archive. Information regarding interview processes, examination protocols and sample collection can also be found in the website.[20] Given that the information about fasting plasma glucose (FPG) and insulin were available since 2003, data from 2003-2018 were obtained for analysis.

Of all participants, we initially selected nonpregnant subjects aged 20 years or older. Of these, we excluded individuals missing the information about anthropometric parameters (BMI and WC) and blood pressure. Subsequently, we excluded individuals with the following reasons: excessive alcohol consumption (defined by > 1 drink/day for women or > 2 drinks/day for men), viral hepatitis...
(defined by positive serum hepatitis B or C antibody and/or positive serum hepatitis B surface antigen), and missing laboratory data to rule in or rule out the presence of NAFLD. Finally, 7,545 subjects were included (Fig 1).

2.2. Assessment of VAI

We calculated VAI using the following formulas:[8]

\[
VAI = \frac{WC \text{ [cm]}}{39.68 + (1.88 \times BMI \text{ [kg/m}^2\text{]}))} \times \frac{TG \text{ [mmol/L]}}{1.03} \times \frac{1.31}{HDL \text{ [mmol/L]}} \text{ for males} \tag{1}
\]

\[
VAI = \frac{WC \text{ [cm]}}{36.58 + (1.89 \times BMI \text{ [kg/m}^2\text{]}))} \times \frac{TG \text{ [mmol/L]}}{0.81} \times \frac{1.52}{HDL \text{ [mmol/L]}} \text{ for females} \tag{2}
\]

2.3. Definitions of covariates

Ethnicity was categorized as non-Hispanic white, non-Hispanic black, or Hispanic. High education was defined as completing high school degree or above. Current smokers were defined as the participants smoked at least 100 cigarettes lifetime and now smoke cigarettes every day or some days. Similarly, current drinkers were defined as the participants who had at least 12 alcohol drinks entire life and now drink alcohol every day or some days. Physical activity was defined as engaging in moderate or vigorous exercise on a regular basis (≥20 minutes at a time and at least three times per week).[21]

Regarding the influence of IR and related metabolic complications on the relationship between VAI and NAFLD, the homeostasis model assessment of IR (HOMA-IR) and several diseases were calculated and defined. HOMA-IR was
defined as fasting glucose [mg/dL] \times \text{fasting insulin [μU/ml]}/405. Obese participants were defined as those with BMI ≥30 kg/m² for non-Asians.[22] T2DM was defined based on fasting glucose (≥126 mg/dL) and/or receiving insulin or oral hypoglycemic therapy. Hypertension was defined as systolic pressure ≥140 mm Hg and/or diastolic pressure ≥90 mm Hg, or antihypertensive therapy.[23] MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III report, as an individual who having three or more of all criteria.[24] CVD were defined as the composite of self-report history of stroke, myocardial infarction, coronary revascularization procedure, angina, and congestive heart failure.[25]

2.4. Definitions of NAFLD and liver fibrosis

The definition of NAFLD was based on the US fatty liver index (USFLI).[26] The cut-off of 30 was used to define NAFLD. Furthermore, the presence of fibrosis among individuals with NAFLD was assessed using NAFLD fibrosis score (NFS).[27] Forns index[28] and AST to platelet ratio index (APRI).[29] Significant fibrosis was determined as NFS > 0.676, APRI > 0.7 or highest quartile values of Forns index. All calculation formulas were described as follow:

\[
\text{USFLI} = \frac{1 + \left(1 + e^{-0.8073 \times \text{non-Hispanic black (yes=1, no=0)} + 0.3458 \times \text{Mexican-American (yes=1, no=0)} +
0.003 \times \text{age} + 0.6151 \times \text{loge (GGT)} + 0.0249 \times \text{WC} + 1.1792 \times \text{loge (insulin)} + 0.8242 \times \text{loge (glucose) - 14.7812} \right)^{-1}}{1 + \left(1 + e^{-0.8073 \times \text{non-Hispanic black (yes=1, no=0)} + 0.3458 \times \text{Mexican-American (yes=1, no=0)} +
0.003 \times \text{age} + 0.6151 \times \text{loge (GGT)} + 0.0249 \times \text{WC} + 1.1792 \times \text{loge (insulin)} + 0.8242 \times \text{loge (glucose) - 14.7812} \right)^{-1}} \times 100
\]
NFS = -1.675 + (0.037×age) + (0.094×BMI) + (1.13×IFG/Diabetes) + (0.99×AST/ALT) - (0.013×platelet [10⁹/L]) - (0.66×albumin (g/dL))

Forns index = 7.811-3.131 × loge(platelet) + 0.781 × loge(GGT) + 3.467 × loge(age) -0.014× (cholesterol)

APRI =((AST/ULN)/platelet [10⁹/L]) × 100

2.5. Statistical analysis

We summarized weighted median (interquartile range) for continuous variables, and weighted proportions for categorical variables in Table 1. For the full dataset analysis, we created 16-year weights as one-eighth of the value of the fasting subsample weights (WTSAF2YR * 1/8) since this represented the smallest subsample of the study.[30] In view of the calculation of VAI differed between gender, we divided the participants into men and women. The P-value was analyzed according to VAI quartiles using Kruskal–Wallis analysis and Chi-squared tests respectively. Correlation between VAI and NAFLD prediction score was calculated using Spearman correlation analysis in men and women. Compared with participants in the lowest category of VAI, we ran three logistic models to calculate variable-adjusted odds ratios (with 95% confidence intervals) for diagnosed NAFLD. The three models were as follows: Model 1 was unadjusted. Model 2 was adjusted for age, ethnicity, and the survey cycle year. Model 3 was adjusted for all the variables in model 2 plus education level, poverty-to-income ratio, alcohol drinking, smoking, physical activity status,
HOMA-IR, and blood pressure. After testing for multicollinearity, we observed that all models presented were free from collinearity (the variance inflation factor for all variables was < 1.62). Moreover, to further investigate the appropriate population who could use VAI to predict the prevalence of NAFLD, we performed stratified analyses by age, ethnicity, smoking status, IR and presence of several metabolic disorders, using the fully adjusted model (excluding the stratification variable). All data were analyzed with SPSS complex sample module version 21.0 (SPSS Inc., Chicago, IL, USA), and significance was accepted at a two-tailed $P < 0.05$.

2.6. Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

3. Results

3.1. Characteristics of participants classified according to the VAI quartiles

The study analyzed a total of 7,545 participants including 3789 men and 3756 women from the NHANES 2003-2018. Among these participants, 2,793 individuals (1,551 men and 1,242 women) with NAFLD were defined by USFLI (37.0%). The baseline characteristics stratified by VAI quartiles were summarized in Table 1. VAI were categorized by quartiles using the values 0.87,
1.46 and 2.50 in men, and using the values 0.99, 1.63 and 2.65 in women. In both genders, subjects with higher VAI levels were more likely to be older and non-Hispanic White. Likewise, those in the higher quartile of VAI tended to have higher levels of BMI, WC, DBP, FPG, fasting insulin, HOMA-IR, TC and TG, and lower level of HDL-C. Regarding the clinical condition, the proportions of obese, T2DM, hypertension, CVD and MetS were increased with the increase of VAI level. Similarly, subjects with the higher quartile of VAI had more NAFLD burden. The liver fibrosis burden had no significant difference among VAI quartiles.
Table 1. Characteristics of NHANES participants, 2003–2018, by VAI quartiles

	Men	Women	p
	Quartile 1 (≤0.87)	Quartile 2 (0.87-1.45)	
Age (year)	51(36, 64)	53(41, 65)	
Ethnicity (%)			
Hispanic	10.4 (12.8, 14.1)	12.1 (14.4, 16.8)	
Whites	66.6 (72.4, 81.4)	74.6 (82.1, 90.7)	
Blacks	17.2 (20.7, 24.2)	16.6 (20.1, 24.6)	
High education	83.8 (88.2, 91.6)	83.8 (88.2, 91.6)	
Current smokers	12.8 (16.5, 20.2)	17.0 (21.7, 26.4)	
Current drinkers	17.7 (23.4, 34.7)	21.3 (28.4, 36.7)	
Physical activity	80.2 (74.3, 96.5)	71.8 (88.2, 96.8)	
Obese(%)	8.7 (11.0, 17.0)	9.4 (13.0, 21.7)	
CVD(%)	9.7 (11.0, 17.0)	10.7 (15.0, 22.7)	
T2DM (%)	9.1 (11.0, 20.6)	9.8 (15.0, 27.3)	
MetS(%)	14.1 (23.8, 51.9)	17.9 (27.3, 56.5)	
NAFLD(%)	14.9 (28.8, 50.3)	5.3 (18.6, 34.9)	
PIR (%)	3.5 (12.7, 0.5)	3.2 (1.8, 5.0)	
BMI (kg/m²)	24.9 (32.3, 29.3)	27.0 (32.4, 30.3)	
WC (cm)	94.8 (86.5, 104.6)	100.9 (112.5, 120.6)	
SBP (mm Hg)	120.7 (111.1, 131)	121.3 (115.0, 121.3)	
DBP (mm Hg)	70.6 (73.6, 78.4)	74.9 (82.2, 97.8)	
ALT(U/L)	21 (17.6, 24.0)	26 (20.2, 26.5)	
AST(U/L)	23 (20.2, 27.0)	24 (20.2, 27.0)	
FPG (mg/dL)	100 (94.0, 124)	106 (96.0, 122)	
Insulin(µU/ml)	6.3 (4.2, 9.7)	11.4 (7.2, 17.2)	
HOMA-IR	1.6 (1.0, 2.5)	3.0 (1.8, 4.8)	
HDL-C (mg/dL)	1.5 (1.3, 1.8)	1.2 (1.1, 1.3)	
TC (mg/dL)	4.6 (4.0, 5.3)	5.0 (4.5, 5.7)	
TG (mg/dL)	0.7 (0.6, 0.8)	0.7 (0.6, 0.8)	
NGS	-1.29 (-2.30, -0.23)	-1.12 (-2.31, -0.02)	
Forns index	4.21 (2.98, 5.43)	4.38 (3.02, 5.58)	
APRI	0.28 (0.23, 0.36)	0.27 (0.22, 0.35)	

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
3.2. Correlations Between VAI and NAFLD related prediction scores

As shown in Table 2, Spearman correlation analysis indicated that VAI scores were positively correlated with USFLI scores (r=0.537, \(P=0.000 \) for men, and r=0.540, \(P=0.000 \) for women). To explore whether the association between VAI scores and NAFLD index was mediated by IR, we also estimate the relationship between HOMA-IR values and NAFLD indices, as well as the relationship between VAI scores and HOMA-IR values. As predicted, HOMA-IR was positively correlated with NAFLD (r=0.895, \(P=0.000 \) for men, and r=0.896, \(P=0.000 \) for women). Moreover, VAI score was positively correlated with HOMA-IR (r=0.479, \(P=0.000 \) for men, and r=0.463, \(P=0.000 \) for women), which indicated that IR might be an important factor connecting VAI scores and NAFLD. However, the coefficients between VAI scores and fibrosis indices had no statistical significance (\(P>0.05 \)), or presented weak correlations (r<0.2).

Table 2. Spearman correlation between NAFLD index and VAI or insulin sensitivity

Models	Men			Women				
	VAI	P	HOMA-IR	P	VAI	P	HOMA-IR	P
NAFLD defined by								
USFLI score	0.537***	0.000	0.895***	0.000	0.540***	0.000	0.896***	0.000
VAI	-	0.479***	0.000	-	-	-	-	-
Fibrosis defined by								
NFS score	0.093***	0.000	0.326**	0.000	0.160**	0.000	0.355**	0.000
Forns index	0.013	0.442	0.148***	0.000	0.048**	0.003	0.120***	0.000
APRI score	0.036*	0.027	0.082***	0.000	-0.041*	0.012	-0.026*	0.111

VAI, visceral adiposity index; HOMA-IR, homeostasis model assessment of insulin resistance; USFLI, the US fatty liver index; NLFS, the NAFLD liver fat score; HSI, hepatic steatosis index; NFS, NAFLD fibrosis score; APRI, AST to platelet ratio index; *\(P<0.05 \), **\(P<0.01 \), ***\(P<0.001 \).

3.3. The odds ratio of NAFLD across quartiles of VAI
We further conducted logistic regression analyses to calculate the relative risk of NAFLD as predicted by VAI categories, using the lowest VAI level as the reference. As the results shown in Table 3, higher levels of VAI were associated with progressively higher odds ratio of NAFLD in all logistic regression models. For both genders, the positive association persisted in all VAI categories in unadjusted model and model adjusted for age, ethnicity and the survey cycle year. In the most multivariable-adjusted model, although the positive association exist in the third and top quartile of VAI, there was no statistically significance in the second quartile of VAI [OR (95%CI) = 1.35 (0.92-1.99) for men, OR (95%CI) = 1.44 (0.87-2.38) for women]. The results indicated that VAI was positively associated with NAFLD when VAI > 1.46 in men and VAI > 1.63 in women.

Regarding to NAFLD related fibrosis, we found no association between VAI and liver fibrosis in both genders.

3.4. The stratified analyses of VAI and risk of NAFLD

As shown in Table 4, when stratified by age, we found a null association in men with aged ≥ 55y and women aged < 40y. With respect to ethnicity, we found the positive correlation between VAI and NAFLD only in Hispanic and non-Hispanic White population, but not in the non-Hispanic Black population. When stratified by the status of CVD, the positive associations were only seen in participants without CVD. When stratified by somking status, IR and other metabolic disorders, the positive associations exist in almost all evaluated
subgroups. Of note, the positive associations in men with these conditions were more attenuate compared with men without these conditions.

Table 3. Multivariate odds ratio for NAFLD and fibrosis according to VAI levels.

	VAI levels				
		Men	Women		
		Quartile 1	Quartile 2	Quartile 3	Quartile 4
VAI levels		(≤0.87)	(0.87-1.45)	(1.46-2.49)	(>2.49)
Defined by USFLI					
Model 1	1.00	2.58(2.06-3.25)	5.70(4.56-7.12)	13.69(10.88-17.22)	
Model 2	1.00	2.55(2.01-3.23)	5.83(4.61-7.36)	14.97(11.73-19.11)	
Model 3	1.00	1.35(0.92-1.99)	1.67(1.13-2.45)	2.57(1.72-3.83)	
NAFLD related fibrosis					
Defined by NFS					
Model 1	1.00	0.60(0.38-0.95)	0.67(0.44-1.02)	0.56(0.37-0.84)	
Model 2	1.00	0.84(0.50-1.43)	1.13(0.69-1.86)	1.22(0.75-1.98)	
Model 3	1.00	0.82(0.47-1.43)	1.06(0.63-1.79)	1.06(0.63-1.79)	
By Forns index					
Model 1	1.00	0.67(0.44-1.02)	0.53(0.35-0.79)	0.43(0.29-0.64)	
Model 2	1.00	0.98(0.58-1.65)	0.76(0.47-1.25)	0.78(0.48-1.26)	
Model 3	1.00	1.02(0.59-1.77)	0.84(0.50-1.42)	0.82(0.49-1.37)	
Defined by APRI					
Model 1	1.00	0.36(0.14-0.93)	0.42(0.18-0.95)	0.51(0.24-1.09)	
Model 2	1.00	0.37(0.14-0.98)	0.42(0.18-0.98)	0.52(0.24-1.15)	
Model 3	1.00	0.43(0.16-1.18)	0.43(0.17-1.07)	0.49(0.21-1.15)	
Defined by NFS					
Model 1	1.00	3.47(2.60-4.62)	7.95(6.04-10.47)	20.14(15.28-26.55)	
Model 2	1.00	3.16(2.36-4.23)	7.36(5.55-9.77)	20.17(15.14-26.87)	
Model 3	1.00	1.44(0.87-2.38)	2.54(1.56-4.15)	3.42(2.08-5.62)	
Defined by APRI					
Model 1	1.00	0.76(0.23-2.55)	0.52(0.16-1.66)	0.39(0.12-1.22)	
Model 2	1.00	0.83(0.24-2.85)	0.59(0.18-1.95)	0.44(0.14-1.46)	
Model 3	1.00	0.53(0.14-1.99)	0.35(0.10-1.29)	0.30(0.09-1.05)	

Model 1 is unadjusted; Model 2 is adjusted for age, ethnicity, and the survey cycle year; Model 3 is adjusted for all the variables in model 2 plus education level, poverty-to-income ratio, alcohol drinking, smoking, physical activity status, HOMA-IR, and blood pressure.
Data are expressed as odds ratio and 95% CI adjusted for age (not adjusted in subgroup analysis in age), ethnicity (not adjusted in subgroup analysis in ethnicity), the survey cycle year, education level, poverty-to-income ratio, alcohol drinking, smoking (not adjusted in subgroup analysis in smoking), and physical activity status, HOMA-IR (not adjusted in subgroup analysis in IR, diabetes, and MetS), blood pressure (not adjusted in subgroup analysis in hypertension and MetS).
4. Discussion

In this study, we demonstrated that a positive association between VAI and NAFLD after controlling for several potential confounders, whereas no significant association was found between VAI and NAFLD-related fibrosis. The stratified analyses revealed that the association was independent of smoking, IR and multiple metabolic diseases, but had interaction with age, gender, and ethnicity. The information from stratified analyses indicated that the prediction function of VAI applied to man with age < 55 years and women with age ≥ 40 years, and it was confined to Hispanic and non-Hispanic White population. To our best knowledge, this is the first large population-based study to report a strong association between VAI and the risk of NAFLD in the United States. Furthermore, this is also the first study to investigate the appropriate population who could use VAI to predict the prevalence of NAFLD.

As far as we know, there are only two large scale studies that investigated the VAI in subjects with NAFLD. Xu et al found that VAI was associated with NAFLD in 4,809 Chinese participants after multivariate adjustment.[17] However, these findings were limited to population that in normal-weight from under-developed areas in China. Although Okamura et al confirmed the association in 8,399 Japanese by a nationally representative, population-based cohort study,[18] this study still lacked the data of plasma insulin level and could not evaluate the impact of IR on the relationship between VAI and NAFLD.
However, our study had the unique feature in examining whether the relationship was independent of IR and various metabolic diseases. Moreover, we also explored the function of VAI in predicting the prevalence of NAFLD related fibrosis. Although Petta et al. concluded that VAI was independently associated with significant fibrosis,[12] whereas the previous study performed by Ercin et al concluded that VAI was not associated with hepatic fibrosis in nondiabetic patients with NAFLD.[14] We considered that the discrepant findings of these studies may due to differences in the composition of participants. Different with the study performed by Ercin et al, some participants in the study conducted by Petta et al were patients with hypertension, diabetes, or metabolic syndrome. The correlation between VAI and liver fibrosis in the study done by Petta et al might be affected by these metabolic disorders. Overall, our results are consistent with previous studies and indicate that VAI could be a predictor for NAFLD, but could not predict NAFLD related fibrosis.

Since VAI is a surrogate marker of both visceral fat distribution and dysfunction, the relationship between VAI and NAFLD could be explained by some potential mechanisms. Among several hypotheses that have been formulated, the ‘portal theory’ describes the directly toxic properties of visceral fat on the liver.[31] The theory proposes that visceral fat releases FFAs via its unique location and enhanced lipolysis, which travel through the portal vein to the liver, with consequent increased accumulation of TG in the liver, promoting the development of hepatic IR and liver steatosis. Thus, IR has been traditionally
considered as a physiological connection between the visceral fat and NAFLD. However, our findings demonstrated that VAI was still associated with higher prevalence of NAFLD in subjects without IR. The results suggest that there are some other mechanisms which directly link the visceral fat to NAFLD along with IR. Of note, in addition to lipotoxicity, there are mounting evidences propose that changes in adipokine expression and secretion also participate in the development of NAFLD, as well as the infiltration of macrophage and T cells in visceral fat.[32, 33] Similar with FFAs, these pro-inflammatory cytokines and adipokines are carried directly to the liver via the portal vein, causing ballooning degeneration of hepatocyte or promoting the transformation of hepatic cells to myo-fibroblastic phenotypes.[34-36] Furthermore, other proposed pathways including endoplasmic reticulum stress, toll-like receptor activation and impaired oxygenation may be also involved in the connection between visceral fat and NAFLD.[37, 38]

Although the present study showed that high VAI was an independent risk factor for the presence of NAFLD, some information in the subgroup analysis also should be worthy of note. First, in the subgroup analysis by ethnicity, we found the positive association between VAI and NAFLD in Hispanic and non-Hispanic White population, but not in non-Hispanic Black population. Although several studies have revealed that prevalence of obesity was higher among Hispanics and non-Hispanic Black than that of non-Hispanic White population,[39, 40] there are known differences in visceral fat distribution across
these ethnic groups. However, non-Hispanic Black had the lowest VAI scores compared with the other two ethnic groups.[41, 42] As the results shown in Table 3, VAI was positively associated with NAFLD when $\text{VAI} > 1.46$ in men and $\text{VAI} > 1.63$ in women. Thus, the ethnic difference might be attribute to lower VAI levels in non-Hispanic Black population. In addition to ethnic disparities, we also found the age-gender specific difference. We found a null association in women with age $< 40\text{y}$, which might be explained by sexual dimorphism and fat distribution. Estrogens could enhance the sympathetic tone differentially to the adipose tissue, favoring lipid accumulation in the subcutaneous depot in premenopausal women, whereas women would shift to accrue more visceral fat after menopause.[43] Different with women, men are susceptible to visceral fat deposition in any stage in life. However, we only found the positive association between VAI and the prevalence of NAFLD in man with age $< 55\text{y}$. According to epidemiological evidence, the prevalence of obese, hypertension, and MetS increased with age, especially in people aged $\geq 50\text{y}$. [44, 45] However, as shown in our subgroup analysis, the status of these metabolic diseases would weaken or abolish the association between VAI and risk of NAFLD in men, but not in women. Thus, the prediction of VAI in older men might be confounded by status of metabolic disease.

This study has several strengths. First, this is a large population-based analysis using well-examined nationwide data, and the findings could be
generalized for most U.S. populations. Second, it is valued because we provided solid evidence of an independent association between VAI and NAFLD by performing multiple logistic regression. Third, we conducted the stratified analyses to identify the appropriate population who could use VAI to predict the prevalence of NAFLD. However, we are also aware of several limitations in our study. First, the cross-sectional nature of the study design meant that we could not investigate the longitudinal dynamic association between progression of NAFLD and changes in VAI levels across several therapeutic interventions, such as lifestyle modification, exercise, and weight control. Second, although we used the validated NAFLD and fibrosis models, the liver radiological or histological information were not available, which meant that NAFLD and NAFLD related fibrosis may be misclassified. Third, estimates across some subgroups should be interpreted with caution due to limited sample size, such as subjects with diabetes or CVD.

5. Conclusions

In conclusion, our study documents that VAI might be a useful predictive model for NAFLD, but not for hepatic fibrosis among U.S. adults, and there exist age-gender specific and ethnic difference. The results reported here has important public health implications in NAFLD screening in the future.

Acknowledgements:

We would like to thank the data collection team and NHANES administration
and staff for the reports made available through the NHANES website.

Funding: This research was funded by 2021 Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2021KC07), National Key R&D Program of China (2018 YFC 0114501), and Soft Science Project of Science and Technology Department of Henan Province (202400410345).

Patient consent for publication: Not required.

Ethical approval: The survey was approved by the National Center for Health Statistics ethics review board.

Data Availability: The data supporting reported results can be freely available from the NHANES website public archive, accessible at NHANES Questionnaires, Data sets and Related Documentation repository (https://wwwn.cdc.gov/nchs/nhanes/Default.aspx).

Author Contributions: Conceptualization, Q.L.; methodology, Q.L. and J.W.; software, Q.L.; validation, L.W., J.W. and X.Z.; formal analysis, Q.L. and Y.W.; writing—original draft preparation, Q.L.; writing-review and editing, Q.L., L.W., and X.Z.; funding acquisition, J.W..

All authors have read and agreed to the published version of the manuscript.

Conflicts of interest: The authors declare no conflict of interest.
References

1. Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin Liver Dis. 2009;13(4):511-31. DOI: 10.1016/j.clld.2009.07.005

2. Younossi ZM, Stepanova M, Younossi Y, et al. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut. 2020;69(3):564-8. DOI: 10.1136/gutjnl-2019-318813

3. Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547-55. DOI: 10.1053/j.gastro.2014.11.039

4. Ekstedt M, Franzén LE, Mathiesen UL, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865-73. DOI: 10.1002/hep.21327

5. Loomba R, Sanyal AJ. The global NAFLD epidemic: Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):686-90. doi: 10.1038/nrgastro.2013.171. Epub 2013 Sep 17. DOI: 10.1038/nrgastro.2013.171.

6. Eguchi Y, Eguchi T, Mizuta T, et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol. 2006;41(5):462-9. DOI: 10.1007/s00535-006-1790-5.

7. Koda M, Kawakami M, Murawaki Y, et al. The impact of visceral fat in nonalcoholic fatty liver disease: cross-sectional and longitudinal studies. J Gastroenterol.2007;42(11):897-903.DOI: 10.1007/s00535-007-2107-z

8. Amato MC, Giordano C, Galia M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920-2. DOI: 10.2337/dc09-1825.

9. Zhang M, Zheng L, Li P, et al. 4-Year Trajectory of Visceral Adiposity Index in the Development of Type 2 Diabetes: A Prospective Study. Ann Nutr Metab. 2016;69(2):142-9. DOI: 10.1159/000450657.

10. Baveicy K, Mostafaei S, Darbandi M, et al. Predicting Metabolic Syndrome by Visceral Adiposity Index, Body Roundness Index and a Body Shape Index in Adults: A Cross-Sectional Study from the Iranian RaNCD Cohort Data. Diabetes Metab Syndr Obes. 2020;13:879-87. DOI: 10.2147/DMSO.S238153.

11. Kouli GM, Panagiotakos DB, Kyrou I, et al. Visceral adiposity index and 10-year cardiovascular disease incidence: The ATTICA study. Nutr Metab Cardiovasc Dis. 2017;27(10):881-9. DOI: 10.1016/j.numecd.2017.06.015

12. Petta S, Amato MC, Di Marco V, et al. Visceral adiposity index is associated with significant fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;35(2):238-47. DOI: 10.1111/j.1365-2036.2011.04929.x.

13. Diego-Rodriguez R, Ballesteros-Pomar MD, Calleja-Fernández A, et al. Insulin resistance and metabolic syndrome are related to non-alcoholic fatty liver disease, but not visceral adiposity index, in severely obese patients. Rev Esp Enferm Dig. 2014;106(8):522-8. PMID: 25544409.

14. Ercin CN, Dogru T, Gene H, et al. Insulin Resistance but Not Visceral Adiposity Index Is Associated with Liver Fibrosis in Non-diabetic Subjects with Nonalcoholic Fatty Liver Disease. Metab Syndr Relat Disord. 2015;13(7):319-25. DOI: 10.1089/met.2015.0018

15. Kitade H, Chen G, Ni Y, et al. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments. Nutrients. 2017;9(6). DOI: 10.3390/nu90604387

16. Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol. 2015;21(39):11088-111. DOI: 10.3748/wjg.v21.i39.11088.

17. Xu C, Ma Z, Wang Y, et al. Visceral adiposity index as a predictor of NAFLD: A prospective study with 4-year follow-up. Liver Int. 2018;38(12):2294-300. DOI: 10.1111/liv.13941.

18. Okamura T, Hashimoto Y, Hamaguchi M, et al. The visceral adiposity index is a predictor of incident nonalcoholic fatty liver disease: A population-based longitudinal study. Clin Res Hepatol Gastroenterol. 2020;44(3):375-83. DOI: 10.1016/j.clinre.2019.04.002.

19. von Elm E, Altman DG, Egger M, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495-500. DOI: 10.1016/j.ijsu.2014.07.013

20. CDC. NHANES Survey Methods and Analytic Guidelines [Available from: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx.

21. Lee YH, Kim JE, Roh YH, et al. The combination of vitamin D deficiency and mild to moderate chronic kidney disease is associated with low bone mineral density and deteriorated femoral microarchitecture: results from the KNHANES 2008-2011. J Clin Endocrinol Metab. 2014;99(10):3879-88. DOI: 10.1210/jc.2013-3764

22. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157-63. DOI: 10.1016/S0140-6736(03)15268-3.

23. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 2003;289(19):2560-72. DOI: 10.1001/jama.289.19.2560

24. Grundy SM, Brewer HB, Jr., Cleeman JI, et al. Definition of metabolic syndrome: Report of the National...
Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433-8. DOI: 10.1161/01.CIR.0000112457.5752.C6

25. Parikh NS, VanWagner LB, Elkind MSV, et al. Association between nonalcoholic fatty liver disease with advanced fibrosis and stroke. J Neurol Sci. 2019;407(116524):13. DOI: 10.1016/j.jns.2019.116524.

26. Ruhl CE, Everhart JE. Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment Pharmacol Ther. 2015;41(1):65-76. DOI: 10.1111/apt.13012.

27. Angulo P, Hui JM, Marchesini G, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846-54. DOI: 10.1002/hep.21496.

28. Forns X, Ampurdanès S, Llovet JM, et al. Identification of chronic hepatitis C patients without hepatic fibrosis by a simple predictive model. Hepatology. 2002;36(4 Pt 1):986-92. DOI: 10.1053/jhep.2002.36128.

29. Lin ZH, Xin YN, Dong QJ, et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology. 2011;53(3):726-36. DOI: 10.1002/hep.24105.

30. CDC. NHANES - continuous nhanes web tutorial - specifying weighting parameters. https://wwwn.cdc.gov/nchs/nhanes/tutorials/Module3.aspx

31. Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev. 2012;2:30-9. DOI: 10.1111/j.1467-789X.2012.01035.x.

32. Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab. 2021;50(101143):17. DOI: 10.1016/j.molmet.2020.101143.

33. Doyle SL, Donohoe CL, Lysaghlt J, et al. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc. 2012;71(1):181-9. DOI: 10.1017/S002966511100320X.

34. Ahmed MH, Barakat S, Almobarak AO. Nonalcoholic fatty liver disease and cardiovascular disease: has the time come for cardiologists to be hepatologists? J Obes. 2012;483135(10):23. DOI: 10.1155/2012/483135.

35. Kuk JL, Katzmarzyk PT, Nichaman MZ, et al. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14(2):336-41. DOI: 10.1038/oby.2006.43.

36. Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42(2):92-108. DOI: 10.23736/S0391-1977.16.02563-3.

37. Fricker ZP, Pedley A, Massaro JM, et al. Liver Fat Is Associated With Markers of Inflammation and Oxidative Stress in Analysis of Data From the Framingham Heart Study. Clin Gastroenterol Hepatol. 2019;17(6):1157-64. DOI: 10.1016/j.cgh.2018.11.037.

38. Exley MA, Hand L, O'Shea D, et al. Interplay between the immune system and adipose tissue in obesity. J Endocrinol. 2014;223(2):13-0516. DOI: 10.1530/JOE-13-0516.

39. Liu J, Coady S, Carr JJ, et al. Differential associations of abdominal visceral, subcutaneous adipose tissue with cardiometabolic risk factors between African and European Americans. Obesity. 2014;22(3):811-8. DOI: 10.1002/oby.20307. PMID: 29155689.

40. Hales CM, Carroll MD, Fryar CD, et al. Prevalence of Obesity Among Adults and Youth: United States, 2015-2016. NCHS Data Brief. 2017;288:1-8.

41. Conway JM, Yanovski SZ, Avila NA, et al. Visceral adipose tissue differences in black and white women. Am J Clin Nutr. 1995;61(4):765-71. DOI: 10.1093/ajcn/61.4.765.

42. Katzmarzyk PT, Bray GA, Greenway FL, et al. Racial differences in abdominal depot-specific adiposity in white and African American adults. Am J Clin Nutr. 2010;91(1):7-15. DOI: 10.3945/ajcn.2009.28136.

43. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;407(116524):13. DOI: 10.1016/j.mce.2014.11.029.

44. Fryar CD, Ostchega Y, Hales CM, et al. Hypertension Prevalence and Control Among Adults: United States, 2015-2016. NCHS Data Brief. 2017;289:1-8. PMID: 29155682.

45. Moore JX, Chaudhary N, Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988-2012. Prev Chronic Dis. 2017;16(14):160287. DOI: 10.5888/pcd14.160287.
Figure legend:

Fig 1. Flow chart of the participants inclusion and exclusion in this study.
Flow chart of the participants inclusion and exclusion in this study

NHANES 2003-2018
Adults (≥20 years) (n=44790)

Pregnant (n=941)

Subjects with examination (n=38015)

Exclusion
1. Significant alcohol consumption (n=14125)
2. Viral hepatitis (n=6476)
3. Missing ALT/AST/PLA or ALT/AST > 500U/L (n=208)
4. Missing for fasting glucose, lipids, or insulin (n=9661)

Final eligible subjects (n=7545)
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among US adults (NHANES 2003–2018)

Qianwen Li¹, Ling Wang¹, Ling, Jing Wang¹, Yanjie Wang³, and Jian Wu¹*

Supplemental Material:

STROBE Statement—Checklist of items included in this report:

Item	Page	
No	**Recommendation**	**Page**
Title and abstract	1	*(a)* Indicate the study’s design with a commonly used term in the title or the abstract
 | | *(b)* Provide in the abstract an informative and balanced summary of what was done and what was found | 2-3 | | | |
| **Introduction** | | **Background/rationale** | 2 | Explain the scientific background and rationale for the investigation being reported | 4-5 |
| **Objectives** | 3 | State specific objectives, including any prespecified hypotheses | 5 |
| **Methods** | | **Study design** | 4 | Present key elements of study design early in the paper | 5 |
| **Setting** | 5 | Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow up, and data collection | 6 |
| **Participants** | 6 | *(a)* Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.
 | | *(b)* For matched studies, give matching criteria and number of exposed and unexposed | 6 |
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	7-8
Data sources/	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
measurement			
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	6
Quantitative	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
variables			
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding	9-10
		(b) Describe any methods used to examine subgroups and interactions	
		(c) Explain how missing data were addressed	
		(d) If applicable, describe analytical methods taking account of sampling strategy	
		(e) Describe any sensitivity analyses	
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram	7/10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest	10-11
Outcome data	15*	Report numbers of outcome events or summary measures	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included.	
(b) Report category boundaries when continuous variables were categorized.			
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period.			
Other analyses	17	Report other analyses done—eg, analyses of subgroups and interactions, and sensitivity analyses.	
Discussion	18	Summarise key results with reference to study objectives.	
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias.	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence.	
Generalisability	21	Discuss the generalisability (external validity) of the study results.	
Other information	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based.	

Give such information separately for cases and controls in case-control studies, and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies. An explanation and elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting.
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among U.S. adults (NHANES 2003–2018)

Journal: BMJ Open
Manuscript ID: bmjopen-2021-058517.R1
Article Type: Original research
Date Submitted by the Author: 16-Feb-2022
Complete List of Authors: Li, Qianwen; Zhengzhou University, Public Health
Wang, Ling; Zhengzhou University, College of Public Health; Macau University of Science and Technology, Faculty of Medicine
Wu, Jian; Zhengzhou University, College of Public Health
Wang, Jing; Zhengzhou University, College of Public Health
Wang, Yanjie; Xinxiang Medical University
Zeng, Xin; Zhengzhou University, College of Public Health

Primary Subject Heading: Epidemiology
Secondary Subject Heading: Epidemiology, Public health
Keywords: PUBLIC HEALTH, EPIDEMIOLOGY, Hepatology < INTERNAL MEDICINE
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among U.S. adults (NHANES 2003–2018)

Qianwen Li1ORCID, Ling Wang1,2, Jian Wu1ORCID, Jing Wang1, Yanjie Wang3, and Xin Zeng1*

1College of Public Health, Zhengzhou University, Science Avenue 100, Gaoxin District, Zhengzhou, Henan Province, China.

2Faculty of Medicine, Macau University of Science and Technology, Macau SAR, China.

3Xinxiang Medical University, Xinxiang, People’s Republic of China.

*Corresponding author:

Xin Zeng, PhD

College of Public Health, Zhengzhou University, Science Avenue 100, Gaoxin District, Zhengzhou, Henan Province, China.

Email: temple214@163.com

Word count: 3,324
Abstract

Objectives: The association between visceral adiposity index (VAI) and the prevalence of nonalcoholic fatty liver disease (NAFLD) has not been fully determined. Here, we aimed to explore the association between VAI and NAFLD in the general U.S. population, and further investigate whether the association exists population differences.

Design: Cross-sectional population-based study.

Setting: The National Health and Nutrition Examination Survey (2003–2018).

Participants: A total of 7,522 participants aged 20 years or older who have complete information for NAFLD assessment test were included in this study.

Primary and secondary outcome measures: NAFLD was assessed by the modified fatty liver index for the U.S. population (USFLI) using a cut-off point of 30. Correlation between VAI and NAFLD prediction scores was calculated using the partial correlation analysis. Logistic regression models were further used to estimate ORs and 95% CIs.

Results: IR, inflammation and WC adjusted-partial correlation analysis indicated that VAI scores were positively correlated with USFLI ($r=0.404$ for men, and $r=0.395$ for women, $p<0.001$). In a comparison of the highest versus the lowest quartiles of VAI, multivariable logistic regression analysis demonstrated a positive association between VAI and NAFLD [OR (95%CI) = 1.97(1.12-3.47)
for men, OR (95%CI) = 4.03(1.98-8.20) for women]. The stratified analyses revealed that the positive association exists age-gender specific and ethnic differences. As for the impact of metabolic disorders, our results revealed that the association was independent of IR and diabetes, but it would be confounded by other metabolic disorders. However, no significant association was found between VAI and hepatic fibrosis.

Conclusion: VAI is positively associated with the prevalence of NAFLD, but not hepatic fibrosis among U.S. adults, and the association exists age-gender specific and ethnic differences. The results reported here have important public health implications in NAFLD screening in the future.

Keywords: Public health, epidemiology, hepatology

Strengths and limitations of this study:

- The quality and scale of the NHANES database and the rigor of its measures ensure the statistical power and reliability of our results.
- The strict exclusion criteria ensure the homogeneity of the study population.
- Multiple potential confounders were well controlled in the study.
- Although we used well-validated NAFLD and fibrosis models, there is chance for misclassifying in some cases due to lacking the information of image and histology of the liver.
- The cross-sectional nature of this study limits the assessment of causality.
1. Introduction

With an accelerated pace of nutrition transition, non-alcoholic fatty liver disease (NAFLD) has become an emerging public health issue with high prevalence worldwide, affecting up to one-third of the population,[1] and its incidence is expected to rise rapidly in the future alongside increasing rates of obesity.[2] According to epidemiological data, nearly a quarter of NAFLD patients would progress to steatohepatitis with fibrosis, which could lead to serious liver-related complications and death.[3, 4] On the other hand, NAFLD is closely related to higher rates of several cardiometabolic disorders, including diabetes mellitus, metabolic syndrome, and cardiovascular diseases (CVD).[2, 5] Thus, the increasing prevalence of NAFLD is particularly life-threatening. It is important to identify modifiable risk factors for NAFLD for reducing the disease burden.

Currently, the pathogenesis of NAFLD has not been completely understood, and increasing evidence suggest that visceral fat accumulation plays a crucial role in the pathogenesis of NAFLD.[6, 7] In recent years, the visceral adiposity index (VAI) based on waist circumference (WC), body mass index (BMI), plasma triglycerides (TG) and high-density lipoprotein cholesterol (HDL-C) has been proposed as a reliable marker to assess the content and function of visceral fat.[8] Although VAI has been proved to be a powerful indicator of type 2 diabetes mellitus (T2DM).[9] metabolic syndrome (MetS)[10] and cardiovascular
There are controversial data regarding the association between VAI and NAFLD. A prior study reported that VAI was related to significant fibrosis in NAFLD patients,[12] while other researchers revealed that the association didn’t exist in obese or non-diabetes subjects with NAFLD.[13, 14] In addition to the small sample size, variations in the participants with or without additional metabolic disorders are largely contributed to these conflicting results. According to current evidence, insulin resistance (IR) is related to NAFLD,[15] while VAI is a valuable indicator of IR.[8] As yet it is unknown whether the status of insulin sensitivity is the result of the controversy among NAFLD patients underlying different clinical statuses. Furthermore, variations in genetic background may be another explanation for these controversial results in NAFLD.[16] Two recent cohort studies with large scale population conducted in China and Japan implied that higher VAI levels are correlated with an increased incidence of NAFLD in Asian population,[17, 18] while a similar study has not been done or published in the U.S.. In this study, we intend to investigate whether VAI is significantly associated with the prevalence of NAFLD in the U.S. general population, independent of IR and its related metabolic disorders, using the data from National Health and Nutrition Examination Surveys (NHANES).

2. Methods

The design, implementation, analysis, and reporting of this study were conducted in accordance with the STROBE statement.[19]
2.1. Study Population

The NHANES is a multistage, ongoing, complex cross-sectional health examination and survey designed to collect the health data of the U.S. non-institutionalized civilian population. The survey was approved by the National Center for Health Statistics ethics review board, and was conducted by the Centers for Disease Control and Prevention (CDC). All participants provided written informed consent. The data can be freely available from the NHANES website public archive. Information regarding interview processes, examination protocols and sample collection can also be found on the website.[20] Given that the information about fasting plasma glucose (FPG) and insulin were available since 2003, data from 2003-2018 were obtained for analysis.

Of all participants, we initially selected nonpregnant subjects aged 20 years or older. Then, we excluded individuals missing the information about anthropometric parameters (BMI and WC) and blood pressure. Subsequently, we excluded individuals with the following reasons: excessive alcohol consumption (defined by > 1 drink/day for women or > 2 drinks/day for men), viral hepatitis (defined by positive serum hepatitis B or C antibody and/or positive serum hepatitis B surface antigen), and missing laboratory data to rule in or rule out the presence of NAFLD. Given the unique condition of puerperium women, we also excluded women who were at 0-12 weeks postpartum[21]. Finally, 7,522 subjects were included (Fig 1).
2.2. Assessment of VAI

We calculated VAI using the following formulas:[8]

\[
VAI = \frac{WC \text{ [cm]}}{(39.68 + (1.88 \times BMI \text{ [kg/m}^2\text{]}))} \times \frac{\text{TG [mmol/L]}}{1.03} \times \left(\frac{1.31}{\text{HDL [mmol/L]}}\right) \text{ for males (1)}
\]

\[
VAI = \frac{WC \text{ [cm]}}{(36.58 + (1.89 \times BMI \text{ [kg/m}^2\text{]}))} \times \frac{\text{TG [mmol/L]}}{0.81} \times \left(\frac{1.52}{\text{HDL [mmol/L]}}\right) \text{ for females (2)}
\]

2.3. Definitions of covariates

Ethnicity was categorized as non-Hispanic white, non-Hispanic black, or Hispanic. High education was defined as completing a high school degree or above. Current smokers were defined as the participants who smoked at least 100 cigarettes lifetime and now smoke cigarettes every day or some days. Similarly, current drinkers were defined as the participants who had at least 12 alcohol drinks their entire life and now drink alcohol every day or some days. Physical activity was defined as engaging in moderate or vigorous exercise regularly (≥20 minutes at a time and at least three times per week).[22] The poverty income ratio was calculated by dividing family income by the poverty guidelines specific to the survey year.[23]

Regarding the influence of IR, inflammation and related metabolic complications on the relationship between visceral fat and NAFLD, the homeostasis model assessment of IR (HOMA-IR), inflammation [C-reactive protein (CRP)] and several diseases were calculated and defined. HOMA-IR was defined as fasting glucose [mg/dL] * fasting insulin [μU/ml]/405.[24]
Overweight and obese participants were defined as those with BMI $\geq 25 \text{ kg/m}^2$ for non-Asians.[25] T2DM was defined based on fasting glucose ($\geq 126 \text{ mg/dL}$) and/or receiving insulin or oral hypoglycemic therapy. Hypertension was defined as systolic pressure $\geq 140 \text{ mm Hg}$ and/or diastolic pressure $\geq 90 \text{ mm Hg}$, or antihypertensive therapy.[26] Mets was defined according to the National Cholesterol Education Program Adult Treatment Panel III report, as an individual who has three or more of all criteria.[27] CVD was defined as the composite of self-report history of stroke, myocardial infarction, coronary revascularization procedure, angina, and congestive heart failure.[28]

2.4. Definitions of NAFLD and liver fibrosis

The definition of NAFLD was based on the US fatty liver index (USFLI) which was calculated by gamma-glutamyl transferase (GGT) [U/L], WC[cm], fasting glucose [mg/dL] and fasting insulin [pmol/L].[29] The cut-off of 30 was used to define NAFLD. Furthermore, the presence of fibrosis among individuals with NAFLD was assessed using NAFLD fibrosis score (NFS), FIB-4 and AST to platelet ratio index (APRI). [30-32] The cut-off of 0.676, 2.67 and 1.0 were used to define NAFLD significant fibrosis respectively was determined. All calculation formulas were described as follow:

$$\text{USFLI} = \frac{(e^{-0.8073 \times \text{non-Hispanic black (yes=1, no=0)} + 0.3458 \times \text{Mexican-American (yes=1, no=0)} + 0.0093 \times \text{age} + 0.6151 \times \text{loge (GGT)} + 0.0249 \times \text{WC} + 1.1792 \times \text{loge (insulin)} + 0.8242 \times \text{loge (glucose)} - 14.7812)}{(1 + e^{-0.8073 \times \text{non-Hispanic black (yes=1, no=0)} + 0.3458 \times \text{Mexican-American (yes=1, no=0)} + 0.0093 \times \text{age} + 0.6151 \times \text{loge (GGT)} + 0.0249 \times \text{WC} + 1.1792 \times \text{loge (insulin)} + 0.8242 \times \text{loge (glucose)} - 14.7812}) \times 100 \quad (3)$$
NFS = -1.675 + (0.037×age) + (0.094×BMI) + (1.13×IFG/Diabetes) + (0.99×AST/ALT) - (0.013×platelet[10^9/L]) - (0.66×albumin [g/dL])

FIB-4 = Age × AST/ (platelet ×ALT\(^{1/2}\))

APRI = ((AST[U/L]/ULN)/platelet [10^9/L]) × 100

2.5. Statistical analysis

We summarized the weighted median (interquartile range) for continuous variables, and weighted proportions for categorical variables in Table 1. For the full dataset analysis, we created 16-year weights as one-eighth of the value of the fasting subsample weights (WTSAF2YR * 1/8) since this represented the smallest subsample of the study.[33] Given the calculation of VAI differed between gender, we divided the participants into men and women. The \(P\)-value was analyzed according to VAI quartiles using Kruskal–Wallis analysis and Chi-squared tests respectively. Partial correlation analysis was performed to investigate the relationship between VAI and NAFLD prediction models. Nonnormally distributed data were transformed to Gaussian distribution before assessing the partial correlation analysis via Blom’s rank-based inverse normal transformations[34]. In addition, we ran three logistic models to calculate variable-adjusted odds ratios (with 95% confidence intervals) for NAFLD, taking the lowest category of VAI as the reference. The three models were as follows:

Model 1 was unadjusted. Model 2 was adjusted for age, ethnicity, and the survey cycle year. Model 3 was adjusted for all the variables in model 2 plus education.
level, poverty-to-income ratio (PIR), alcohol drinking, smoking, physical activity status, HOMA-IR, CRP, blood pressure and the same variable between VAI and NAFLD prediction scores. After testing for multicollinearity, we observed that all models presented were free from collinearity (the variance inflation factor<1.61). Moreover, to further investigate potential factors that influenced the association between VAI and the prevalence of NAFLD, we performed stratified analyses by age, ethnicity, smoking status, IR and presence of several metabolic disorders, using the fully adjusted model (excluding the stratification variable). All data were analyzed with SPSS complex sample module version 21.0 (SPSS Inc., Chicago, IL, USA), and significance was accepted at a two-tailed p < 0.05.

2.6. Patient and public involvement

Patients or the public were not involved in the design, or conduct, or reporting, or dissemination plans of our research.

3. Results

3.1. Characteristics of participants classified according to the VAI quartiles

The study analyzed a total of 7,522 participants including 3,789 men and 3,733 women from the NHANES 2003-2018. Among these participants, 2,793 individuals (1,551 men and 1,238 women) with NAFLD were defined by USFLI (37.0%). The baseline characteristics stratified by VAI quartiles were
summarized in Table 1. VAI were categorized by quartiles using the values 0.87, 1.46 and 2.49 in men, and using the values 0.99, 1.63 and 2.65 in women. In both genders, subjects with higher VAI levels were more likely to be older and non-Hispanic White. Likewise, those in the higher quartile of VAI tended to have higher levels of BMI, WC, DBP, FPG, fasting insulin, HOMA-IR, TC and TG, and lower level of HDL-C. Regarding the clinical condition, the proportions of obesity, T2DM, hypertension, CVD and MetS were increased with the increase of VAI level. Similarly, subjects with the higher quartile of VAI had more NAFLD burden. The liver fibrosis burden had no significant difference among VAI quartiles.
Age (year)	Men	Women
51(36, 64)	53(41, 65)	53(40, 65)

Ethnicity (%)	Men	Women
Hispanic	10.4	12.4
Whites	66.6	72.4
Blacks	17.2	10.7
High education (%)	83.8	83.7
Current smokers (%)	12.8	16.5
Current drinkers (%)	17.7	13.6
Physical activity (%)	80.2	74.3
Obesity (%)	21.6	26.8
CVD (%)	9.7	11.0
T2DM (%)	9.1	11.6
Hypertension (%)	33.4	43.4
MetS (%)	14.1	23.8
NAFLD (%)	14.9	28.8
PIR (%)	3.5(1.9, 5.0)	3.6(2.0, 5.0)

BMI (kg/m²)	Men	Women
24.9(23.2, 29.3)	27.3(24.8, 30.3)	29.4(26.2, 32.9)

WC (cm)	Men	Women
94.9(85.8, 104.6)	100(92.5, 108.3)	106(97.2, 110.7)

SBP (mm Hg)	Men	Women
120.7(111, 131)	122.7(112, 132)	121.3(110, 121)

DBP (mm Hg)	Men	Women
70(63, 76)	71(64, 80)	73(66, 80)

ALT/UL	Men	Women
21(17, 26)	24(19, 30)	26(20, 34)

AST/UL	Men	Women
23(20, 27)	24(20, 27)	25(21, 30)

FPG (mg/dL)	Men	Women
100(94, 108)	102(96, 110)	105(97, 116)

Insulin (μU/ml)	Men	Women
6.3(4.2, 9.7)	8.1(5.5, 12.8)	11.4(7.2, 17.2)

HOMA-IR	Men	Women
1.6(1.0, 2.5)	2.1(1.4, 3.4)	3.0(1.8, 4.8)

CRP	Men	Women
0.50(0.09, 1.58)	0.40(0.11, 1.42)	0.39(0.12, 1.31)

HDL-C (mmol/L)	Men	Women
1.5(1.3, 1.8)	1.3(1.2, 1.4)	1.1(1.0, 1.2)

TC (mmol/L)	Men	Women
4.6(4.0, 5.3)	4.8(4.2, 5.5)	4.9(4.2, 5.5)

TG (mmol/L)	Men	Women
0.7(0.5, 0.8)	1.1(0.9, 1.2)	1.5(1.3, 1.7)

USFLI	Men	Women
9.8(5.1, 2.7)	18.0(9.9, 33.6)	30.2(15.8, 50.0)

NFS	Men	Women
-1.29(-2.30, -0.23)	-1.18(-2.31, 0.02)	-1.00(-2.35, -0.08)

FIB-4	Men	Women
1.17(0.74, 1.69)	1.10(0.75, 1.59)	1.05(0.74, 1.49)

APRI	Men	Women
0.28(0.23, 0.36)	0.28(0.22, 0.35)	0.29(0.23, 0.38)

| VAI, visceral adiposity index; BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic blood pressure; ALT, alanine aminotransferase; AST, aspartate aminotransferase; FPG, fasting plasma glucose; CRP, C-reactive protein; HOMA-IR, homeostasis model assessment of insulin resistance; TC, total cholesterol; TG, triglycerides; CVD, cardiovascular disease; USFLI, the US fatty liver index; PIR, poverty-to-income ratio; MetS, Metabolic syndrome; NFS, NAFLD fibrosis score; FIB-4, the fibrosis-4 index ;APRI, AST to platelet ratio index. |
3.2. Correlations Between VAI and NAFLD related prediction scores

By performing the Pearson correlation analysis, we found that the index of IR (HOMA-IR) and inflammation (CRP) were positively correlated with VAI and NAFLD indices respectively, which indicated that IR and inflammation might be the important factors connecting visceral fat and NAFLD (Supplemental Table 1). In addition, the mediating effect of the same variable between VAI and NAFLD indices also should be taken into account (WC for USFLI; BMI for NFS). Therefore, we performed the partial correlation analysis which adjust the influence of these variables to calculate the correlation coefficients between VAI and NAFLD indices. As shown in Table 2, VAI was found to be significantly correlated with USFLI in both genders (r=0.404, p<0.001 for men, and r=0.463, p<0.001 for women), but not liver fibrosis indices.

Table 2. Partial correlation coefficients between VAI and NAFLD indices
Models
NAFLD defined by
USFLI score
Fibrosis defined by
NFS score
FIB-4
APRI score

VAI, visceral adiposity index; HOMA-IR, homeostasis model assessment of insulin resistance; USFLI, the US fatty liver index; NFS, NAFLD fibrosis score; FIB-4, the fibrosis-4 index; APRI, AST to platelet ratio index; ***p<0.001.

3.3. The odds ratio of NAFLD across quartiles of VAI

We further conducted logistic regression analyses to calculate the odds ratio...
and 95%CI to assess the association between VAI and NAFLD, using the lowest VAI level as the reference. As the results shown in Table 3, the positive association between VAI and NAFLD persisted in all VAI categories in unadjusted model and model adjusted for age, ethnicity and the survey cycle year. In the most multivariable-adjusted model, although the positive associations were weakened in both genders, the associations remained statistically significant in the top quartile of VAI [OR (95%CI) = 1.97(1.12-3.47) for men, OR (95%CI) = 4.03(1.98-8.20) for women]. Regarding NAFLD-related fibrosis, we found no association between VAI and liver fibrosis in both genders.

3.4. The stratified analyses of VAI and risk of NAFLD

To investigate the effect of confounding factors, the ORs comparing the highest versus the lowest quartile of VAI were calculated in all subgroups. As shown in Fig 2, when stratified by age, we found a positive association between VAI and NAFLD in men with age<55y, and women aged 40-64y. With respect to ethnicity, we found a positive correlation between VAI and NAFLD only in Hispanic and non-Hispanic White population, but not in the non-Hispanic Black population in both genders. In addition, the positive associations were consistently seen in all evaluated subgroups when stratified by the status of IR and diabetes. When stratified by the smoking status and other metabolic disorders (hypertension, CVD and MetS), the positive associations were only persisted in individuals without these conditions. Of note, the stronger positive
associations were found in individuals with normal BMI, while the associations were weakened in overweight and obese people. Considering the different prevalence of obesity during the period of more than 10 years, we also tested the consistency of our results by stratifying the data release year (before 2010 and after 2010). Similar to the subgroup of obesity, the positive association was weakened in recent years.

Table 3. The multivariable odds ratio for NAFLD and fibrosis according to VAI levels.

VAI levels	Men	NAFLD Defined by USFLI	NAFLD related fibrosis Defined by NFS	By FIB-4	Defined by APRI
		Model 1	Model 1	Model 1	Model 1
		1.00	1.00	1.00	1.00
		(0.87)	(0.87-1.45)	(0.97)	(0.97-1.77)
		NaFLD Defined by USFLI	Model 2	Model 2	Model 2
		2.58(2.06-3.25)	0.60(0.38-0.95)	0.96(0.67-1.40)	0.95(0.51-1.77)
		(0.57-4.67)	(0.38-0.95)	(1.00)	(0.97)
		(0.87-4.67)	(3.85-0.78)	(3.02-1.98)	(3.02-1.98)
		(1.46-4.29)	(1.37-1.83)	(1.37-1.83)	(1.37-1.83)
		(2.49)	(3.41-5.45)	(3.21-5.30)	(3.21-5.30)
		(2.49)	(3.41-5.45)	(3.21-5.30)	(3.21-5.30)
		(2.49)	(3.41-5.45)	(3.21-5.30)	(3.21-5.30)

Model 1 is unadjusted; Model 2 is adjusted for age, ethnicity, and the survey cycle year; Model 3 is adjusted for all the variables in model 2 plus education level, PIR, alcohol drinking, smoking, physical activity status, HOMA-IR, CRP, blood pressure and the same variable between VAI and NAFLD indices (WC for USFLI; BMI for NFS).
4. Discussion

In this study, we found a positive association between VAI and NAFLD after controlling for several potential confounders, whereas no significant association was found between VAI and NAFLD-related fibrosis. The stratified analyses revealed that the positive association between VAI and NAFLD exists age-gender specific and ethnic differences. In addition, as for the impact of metabolic disorders, our results revealed that the association was independent of IR and diabetes, but it would be confounded by other metabolic disorders, such as hypertension, CVD and MetS. To our best knowledge, this is the first large population-based study to report a strong association between VAI and the risk of NAFLD in the United States. Furthermore, this is also the first study that reveals the role of age, gender, ethnicity and multiple metabolic disorders in the association between VAI and NAFLD.

As far as we know, there are only two large-scale studies that investigated the VAI in subjects with NAFLD. Xu et al found that VAI was associated with NAFLD in 4,809 Chinese participants after multivariate adjustment.[17] However, these findings were limited to the population that is normal-weight from under-developed areas in China. Although Okamura et al confirmed the association in 8,399 Japanese by a nationally representative, population-based cohort study,[18] this study still lacked the data of plasma insulin level and could not evaluate the impact of IR on the relationship between VAI and NAFLD.
However, our study had the unique feature in examining whether the relationship was independent of IR and various metabolic diseases. Moreover, we also explored the association between VAI and the prevalence of NAFLD-related fibrosis. Although Petta et al. concluded that VAI was independently associated with significant fibrosis,[12] whereas the previous study performed by Ercin et al concluded that VAI was not associated with hepatic fibrosis in non-diabetic patients with NAFLD.[14] We considered that the discrepant findings of these studies may due to differences in the composition of participants. Different from the study performed by Ercin et al, some participants in the study conducted by Petta et al were patients with hypertension, diabetes, or metabolic syndrome. The correlation between VAI and liver fibrosis in the study done by Petta et al might be affected by these metabolic disorders. Overall, our results are consistent with previous studies and indicate that VAI is an independent risk factor for NAFLD, but not NAFLD-related fibrosis.

Since VAI is a surrogate marker of both visceral fat distribution and dysfunction, the relationship between VAI and NAFLD could be explained by some potential mechanisms. Among several hypotheses that have been formulated, the ‘portal theory’ describes the directly toxic properties of visceral fat on the liver.[35] The theory proposes that visceral fat releases FFAs via its unique location and enhanced lipolysis, which travel through the portal vein to the liver, with consequently increased accumulation of TG in the liver, promoting the development of hepatic IR and liver steatosis. Thus, IR has been traditionally
considered as a physiological connection between visceral fat and NAFLD. However, our findings demonstrated that VAI was still associated with a higher prevalence of NAFLD in subjects without IR. The results suggest that there are some other mechanisms that directly link the visceral fat to NAFLD along with IR. Of note, in addition to lipotoxicity, there are mounting evidence propose that changes in adipokine expression and secretion also participate in the development of NAFLD, as well as the infiltration of macrophage and T cells in visceral fat.[36, 37] Similar to FFAs, these pro-inflammatory cytokines and adipokines are carried directly to the liver via the portal vein, causing ballooning degeneration of hepatocytes or promoting the transformation of hepatic cells to myofibroblastic phenotypes.[38-40] Furthermore, other proposed pathways including endoplasmic reticulum stress, toll-like receptor activation and impaired oxygenation may be also involved in the connection between visceral fat and NAFLD.[41, 42]

Although the present study showed that high VAI was an independent risk factor for the presence of NAFLD, some information in the subgroup analysis also should be worthy of note. First, in the subgroup analysis by ethnicity, we found a positive association between VAI and NAFLD in the Hispanic and non-Hispanic White population, but not in the non-Hispanic Black population. On the one hand, the formula of VAI which was evaluated based on a Caucasian population might have limitations regarding the non-Hispanic Black population. On the other hand, the ethnic difference might be attributed to lower VAI levels
in non-Hispanic Black population. As the results are shown in Table 3, VAI was only positively associated with NAFLD in the top quartile in men and higher quartiles in women. In addition to ethnic disparities, we also found the age-gender specific difference. We found a null association in women with age<40y, which might be explained by sexual dimorphism and fat distribution. Estrogens could enhance the sympathetic tone differentially to the adipose tissue, favoring lipid accumulation in the subcutaneous depot in premenopausal women, whereas women would shift to accrue more visceral fat after menopause.[43] Different from women, men are susceptible to visceral fat deposition in any stage of life. However, we did not find a valid association between VAI and the prevalence of NAFLD in people with age≥65y. According to epidemiological evidence, the prevalence of obesity, hypertension, and MetS increased with age.[44, 45] However, as shown in our subgroup analysis, the status of these metabolic diseases would weaken or abolish the association between VAI and the risk of NAFLD in both genders. Thus, the association of VAI and NAFLD in older people might be confounded by the status of metabolic disease. Moreover, we also found that the effect of VAI was highlighted in normal-weight people compared to the overweight or obese ones. As reported, non-obese NAFLD affects about one-third of the persons with NAFLD in the U.S.[46], and these individuals probably could not get as much attention from doctors as obese ones. The association reported here has important clinical and public health implications in NAFLD screening in the future.
This study has several strengths. First, this is a large population-based analysis using well-examined nationwide data, and the findings could be generalized for most U.S. population. Second, it is valued because we provided solid evidence of an independent association between VAI and NAFLD by performing multiple logistic regression and the stratified analyses. However, we are also aware of several limitations in our study. First, the cross-sectional nature of the study design meant that we could not investigate the longitudinal dynamic association between the progression of NAFLD and changes in VAI levels across several therapeutic interventions, such as lifestyle modification, exercise, and weight control. Second, although we used well-validated NAFLD and fibrosis models, there is chance for misclassifying in some cases due to lacking the information of image and histology of the liver. Third, estimates across some subgroups should be interpreted with caution due to limited sample sizes, such as subjects with diabetes or CVD.

5. Conclusions

In conclusion, our study documents that VAI might be a useful indicator for NAFLD, but not for hepatic fibrosis among U.S. adults, and there exists age-gender specific and ethnic differences. The results reported here have important public health implications in NAFLD screening in the future.

Acknowledgments:

We would like to thank the data collection team and NHANES administration
and staff for the reports made available through the NHANES website.

Funding: This research was funded by the 2021 Postgraduate Education Reform and Quality Improvement Project of Henan Province (YJS2021KC07), the National Key R&D Program of China (2018 YFC 0114501), and Soft Science Project of Science and Technology Department of Henan Province (202400410345).

Patient consent for publication: Not required.

Ethical approval: The survey was approved by the National Center for Health Statistics ethics review board (NCHS). The NCHS IRB/ERC Protocol number in this survey covers 98-12, 2005-06, 2011-17 and 2018-01.

Data Availability: The data supporting reported results can be freely available from the NHANES website public archive, accessible at NHANES Questionnaires, Data sets and Related Documentation repository (https://wwwn.cdc.gov/nchs/nhanes/Default.aspx).

Author Contributions: Q.L. and X.Z. conceived and designed the study. Q.L. and J.W. performed the database search and checked the results against the inclusion and exclusion criteria. Q.L. and Y.W. analyzed the data. Q.L. wrote the initial draft of the paper. L.W., J.W. and X.Z. reviewed and edited the manuscript. All authors have read and approved the final version.

Conflicts of interest: The authors declare no conflict of interest.
References

1. Argo CK, Caldwell SH. Epidemiology and natural history of non-alcoholic steatohepatitis. Clin Liver Dis. 2009;13(4):511-31. DOI: 10.1016/j.cld.2009.07.005

2. Younossi ZM, Stepanova M, Younossi Y, Golabi P, Mishra A, Rafiq N, et al. Epidemiology of chronic liver diseases in the USA in the past three decades. Gut. 2020;69(3):564-8. DOI: 10.1136/gutjnl-2019-318813

3. Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 2015;148(3):547-55. DOI: 10.1053/j.gastro.2014.11.039

4. Ekstedt M, Franžén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G, et al. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 2006;44(4):865-73. DOI: 10.1002/hep.21327

5. Loomba R, Sanyal AJ. The global NAFLD epidemic: Nat Rev Gastroenterol Hepatol. 2013 Nov;10(11):686-90. Epub 2013 Sep 17. DOI: 10.1038/nrgastro.2013.171

6. Eguchi Y, Eguchi T, Miyata T, Ide Y, Yasutake T, Iwakiri R, et al. Visceral fat accumulation and insulin resistance are important factors in nonalcoholic fatty liver disease. J Gastroenterol. 2006;41(5):462-9. DOI: 10.1007/s00535-006-1790-5

7. Koda M, Kawakami M, Murawaki Y, Senda M. The impact of visceral fat in nonalcoholic fatty liver disease: cross-sectional and longitudinal studies. J Gastroenterol. 2007;42(11):897-903. DOI: 10.1007/s00535-007-2107-z

8. Amato MC, Giordano C, Galia M, Criscimanna A, Vitabile S, Midiri M, et al. Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care. 2010;33(4):920-2. DOI: 10.2337/dc09-1825

9. Zhang M, Zheng L, Li P, Zhu Y, Chang H, Wang X, et al. 4-Year Trajectory of Visceral Adiposity Index in the Development of Type 2 Diabetes: A Prospective Cohort Study. Ann Nutr Metab. 2016;69(2):142-9. DOI: 10.1159/000460567.

10. Baveyec K, Mostafaei S, Darbandi M, Manzhe B, Najafi F, Pasdar Y. Predicting Metabolic Syndrome by Visceral Adiposity Index, Body Roundness Index and a Body Shape Index in Adults: A Cross-Sectional Study from the Iranian RaNCD Cohort Data. Diabetes Metab Syndr Obes. 2020;13:879-87. DOI: 10.2147/DMSO.S238153.

11. Kouli GM, Panagiotakos DB, Kyrou I, Georgousopoulou EN, Chrysouhou C, Tsigs C, et al. Visceral adiposity index and 10-year cardiovascular disease incidence: The ATTICA study. Nutr Metab Cardiovasc Dis. 2017;27(10):881-9. DOI: 10.1016/j.numecd.2017.06.015

12. Petta S, Amato MC, Di Marco V, Cammá C, Pizzolanti G, Barcellona MR, et al. Visceral adiposity index is associated with significant fibrosis in patients with non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 2012;35(2):238-47. DOI: 10.1111/j.1365-2036.2011.04929.x

13. Díez-Rodríguez R, Ballesteros-Pomar MD, Calleja-Fernández A, González-De-Francisco T, González-Herráez L, Calleja-Antolín S, et al. Insulin resistance and metabolic syndrome are related to non-alcoholic fatty liver disease, but not visceral adiposity index, in severely obese patients. Rev Esp Enferm Dig. 2014;106(8):522-8. PMID: 25544409.

14. Ercin CN, Dogru T, Genc H, Celebi G, Aslan F, Gurel H, et al. Insulin Resistance but Not Visceral Adiposity Index Is Associated with Liver Fibrosis in Nondiabetic Subjects with Nonalcoholic Fatty Liver Disease. Metab Syndr Relat Disord. 2015;13(7):319-25.

15. Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments. Nutrients. 2017;9(4).

16. Macaluso FS, Maida M, Petta S. Genetic background in nonalcoholic fatty liver disease: A comprehensive review. World J Gastroenterol. 2015;21(39):11088-111. DOI: 10.3748/wjg.v21.i39.11088.

17. Xu C, Ma Z, Wang Y, Liu X, Tao L, Zheng D, et al. Visceral adiposity index as a predictor of NAFLD: A prospective study with 4-year follow-up. Liver Int. 2018;38(12):2294-300. DOI: 10.1111/liv.13941.

18. Okamura T, Hashimoto Y, Hamaguchi M, Obora A, Kojima T, Fukui M. The visceral adiposity index is a predictor of incident nonalcoholic fatty liver disease: A population-based longitudinal study. Clin Res Hepatol Gastroenterol. 2020;44(3):375-83. DOI: 10.1016/j.clinre.2019.04.002.

19. von Elm E, Altman DG, Egger M, Pocock SJ, Gotzsche PC, Vandenvoucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies. Int J Surg. 2014;12(12):1495-9. DOI: 10.1016/j.ijsu.2014.07.013

20. CDC. NHANES Survey Methods and Analytic Guidelines [Available from: https://www.cdc.gov/nchs/nhanes/analyticguidelines.aspx.

21. Subhan FB, Shulman L, Yuan Y, McCargar LJ, Kong L, Bell RC. Association of pre-pregnancy BMI and gestational weight gain with fat mass distribution and accretion during pregnancy and early postpartum: a prospective study of Albertan women. BMJ Open. 2019;9(7):e026908. DOI: 10.1136/bmjopen-2018-026908
22. Lee YH, Kim JE, Roh YH, Choi HR, Rhee Y, Kang DR, et al. The combination of vitamin D deficiency and mild to moderate chronic kidney disease is associated with low bone mineral density and deteriorated femoral microarchitecture: results from the KNHANES 2008-2011. J Clin Endocrinol Metab. 2014;99(10):3879-88. DOI: 10.1210/jc.2013-3764
23. U.S. Department of Health & Human Services. Poverty Guidelines, Research, and Measurement. Washington, DC: U.S. Department of Health & Human Services. http://aspe.hhs.gov/POVERTY/index.shtml
24. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. DOI: 10.1007/BF00280883
25. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363(9403):157-63. DOI: 10.1016/S0140-6736(03)15268-3
26. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL, Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 2003;289(19):2560-72. DOI: 10.1001/jama.289.19.2560
27. Grundy SM, Brewer HB, Jr., Cleeman JI, Smith SC, Jr., Lenfant C. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation. 2004;109(3):433-8. DOI: 10.1161/01.CIR.0000011245.75752.C6
28. Parikh NS, VanWagner LB, Elkind MSV, Gutierrez J. Association between nonalcoholic fatty liver disease with advanced fibrosis and stroke. J Neurol Sci. 2019;407(116524):13. DOI: 10.1016/j.jns.2019.116524.
29. Ruhl CE, Everhart JE. Fatty liver indices in the multiethnic United States National Health and Nutrition Examination Survey. Aliment Pharmacol Ther. 2015;41(1):65-76. DOI: 10.1111/apt.13012.
30. Shah AG, Lydecker A, Murray K, Tetri BN, Contos MJ, Sanyal AJ. Comparison of noninvasive markers of fibrosis in patients with nonalcoholic fatty liver disease. Clinical gastroenterology and hepatology : the official clinical practice journal of the American Gastroenterological Association. 2009;7(10):1104-12. DOI: 10.1016/j.cgh.2009.05.033
31. Lin ZH, Xin YN, Dong QJ, Wang Q, Jiang XJ, Zhan SH, et al. Performance of the aspartate aminotransferase-to-platelet ratio index for the staging of hepatitis C-related fibrosis: an updated meta-analysis. Hepatology. 2011;53(3):726-36. DOI: 10.1002/hep.24105.
32. Angulo P, Hui JM, Marchesini G, Bugianesi E, George J, Farrell GC, et al. The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD. Hepatology. 2007;45(4):846-54. DOI: 10.1002/hep.21496
33. CDC. NHANES - continuous nhanes web tutorial - specifying weighting parameters. https://www.cdc.gov/nchs/nhanes/tutorials/Module3.aspx
34. Bishara AJ, Hittner JB. Testing the significance of a correlation with nonnormal data: comparison of Pearson, Spearman, transformation, and resampling approaches. Psychol Methods. 2012;17(3):399-417. DOI: 10.1037/a0028087
35. Item F, Konrad D. Visceral fat and metabolic inflammation: the portal theory revisited. Obes Rev. 2012;2:30-9. DOI: 10.1111/j.1467-789X.2012.01035.x
36. Bence KK, Birnbaum MJ. Metabolic drivers of non-alcoholic fatty liver disease. Mol Metab. 2021;50(11143):17. DOI: 10.1016/j.molmet.2020.111143.
37. Doyle SL, Donohoe CL, Lysaght J, Reynolds JV. Visceral obesity, metabolic syndrome, insulin resistance and cancer. Proc Nutr Soc. 2012;71(1):181-9. DOI: 10.1017/S002966511100320X.
38. Ahmed MH, Barakat S, Almobarak AO. Nonalcoholic fatty liver disease and cardiovascular disease: has the time come for cardiologists to be hepatologists? J Obes. 2012;2012:483135(10):23. DOI: 10.1155/2012/483135
39. Kuk JL, Katzmarzyk PT, Nickham MZ, Church TS, Blair SN, Ross R. Visceral fat is an independent predictor of all-cause mortality in men. Obesity. 2006;14(2):336-41. DOI: 10.1038/oby.2006.43
40. Polyzos SA, Kountouras J, Mantzoros CS. Adipose tissue, obesity and non-alcoholic fatty liver disease. Minerva Endocrinol. 2017;42(2):92-108. DOI: 10.23736/S0391-1977.16.02563-3.
41. Fricker ZP, Pedley A, Massaro JM, Vasan RS, Hoffmann U, Benjamin EJ, et al. Liver Fat Is Associated With Markers of Inflammation and Oxidative Stress in Analysis of Data From the Framingham Heart Study. Clin Gastroenterol Hepatol. 2019;17(6):1157-64. DOI: 10.1016/j.cgh.2018.11.037.
42. Exley MA, Hand L, O’Shea D, Lynch L. Interplay between the immune system and adipose tissue in obesity. J Endocrinol. 2014;223(2):13-0516. DOI: 10.1530/JOE-13-0516.
43. Palmer BF, Clegg DJ. The sexual dimorphism of obesity. Mol Cell Endocrinol. 2015;402:113-9. DOI: 10.1016/j.mce.2014.11.029.
44. Fryar CD, Ostchega Y, Hales CM, Zhang G, Kriszton-Moran D. Hypertension Prevalence and Control Among Adults: United States, 2015-2016. NCHS Data Brief, 2017;289:1-8. PMID: 29155682
45. Moore JX, Chaudhary N, Akinyemiju T. Metabolic Syndrome Prevalence by Race/Ethnicity and Sex in the United States, National Health and Nutrition Examination Survey, 1988-2012. Prev Chronic Dis. 2017;16(14):160287. DOI: 10.5888/pcd16.160287
509 46. Zou B, Yeo YH, Nguyen VH, Cheung R, Ingelsson E, Nguyen MH. Prevalence, characteristics and mortality
510 outcomes of obese, non-obese and lean NAFLD in the United States, 1999-2016. J Intern Med. 2020;288(1):139-
511 51. DOI: 10.1111/joim.13069
Figure legend:

Fig 1. Flow chart of the participants inclusion and exclusion in this study.

Fig 2. The association between VAI and the risk of NAFLD stratified by age, ethnicity, smoking, IR and other related metabolic diseases.
NHANES 2003-2018
Adults (≥20 years) (n=44,790)

Pregnant (n=941)

Subjects with examination (n=38,015)

Exclusion
1. Significant alcohol consumption (n=14,125)
2. Viral hepatitis (n=6,476)
3. Missing ALT/AST/PLA or ALT/AST > 500U/L (n=208)
4. Missing for fasting glucose, lipids, or insulin (n=9,661)
5. Women within 12 weeks after delivery (n=23)

Final eligible subjects (n=7,522)

Flow chart of the participants inclusion and exclusion in this study
The association between VAI and the risk of NAFLD stratified by age, ethnicity, smoking, IR and other related metabolic diseases

Subgroup	Men OR (95% CI)	Women OR (95% CI)
Age <40	4.76 (1.68, 13.50)	2.50 (0.78, 8.03)
Age (40-54)	4.87 (1.14, 20.83)	5.16 (1.75, 15.22)
Age (55-64)	3.88 (1.08, 13.91)	6.53 (1.26, 33.87)
Age (65+)	0.82 (0.40, 1.70)	1.58 (0.45, 5.55)
Hispanic	3.55 (1.19, 10.58)	4.06 (0.26, 13.07)
Whites	2.31 (1.20, 4.45)	2.91 (1.05, 8.08)
Blacks	0.80 (0.14, 4.57)	2.75 (0.52, 14.51)
Nonsmoker	1.90 (1.03, 3.52)	4.77 (2.25, 10.12)
Current smoker	3.02 (0.55, 16.60)	1.12 (0.06, 20.71)
HOMA-IR<3	2.77 (1.41, 5.43)	4.21 (1.47, 12.00)
HOMA-IR\geq3	3.67 (1.66, 8.13)	3.65 (1.84, 7.25)
BMI <25	3.94 (2.66, 6.33)	8.04 (1.33, 48.62)
BMI \geq25	1.55 (0.89, 2.70)	3.70 (1.39, 7.24)
Diabetes (no)	7.98 (5.06, 12.27)	9.09 (5.25, 15.43)
Diabetes (yes)	6.27 (2.99, 13.16)	5.89 (2.33, 14.91)
Hypertension (no)	2.44 (1.04, 5.72)	10.50 (2.97, 37.12)
Hypertension (yes)	1.69 (0.78, 3.68)	2.41 (0.93, 6.24)
MetS (no)	2.44 (1.24, 4.82)	4.54 (1.24, 16.66)
MetS (yes)	1.62 (1.22, 2.15)	2.05 (0.83, 5.04)
CVD (no)	2.28 (1.19, 4.38)	4.30 (1.98, 9.34)
CVD (yes)	1.20 (0.35, 4.12)	3.09 (0.33, 29.08)
Before 2010y	2.65 (1.37, 5.13)	6.34 (2.88, 13.93)
After 2010y	1.58 (1.00, 2.50)	4.62 (1.64, 13.02)
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among US adults (NHANES 2003–2018)

Qianwen Li¹, Ling Wang¹ ², Jing Wang¹, Yanjie Wang³, and Jian Wu¹*

Supplemental Material:

Supplemental Table 1. The mediating effect of HOMA-IR/ CRP on the associations between VAI and NAFLD indices

Models	Men			Women				
	HOMA-IR	p	CRP	p	HOMA-IR	P	CRP	P
VAI	0.475***	<0.001	0.058***	<0.001	0.459	<0.001	0.174	<0.001
USFLI defined by								
NAFLD								
NFS	0.903***	<0.001	0.301***	<0.001	0.904***	<0.001	0.388***	<0.001
FIB-4	0.002	0.925	0.089***	<0.001	-0.044**	0.007	0.027***	0.164
APRI	0.080***	<0.001	-0.019	0.319	-0.002	0.886	0.103	<0.001

CRP, C-reactive protein; HOMA-IR, homeostasis model assessment of insulin resistance; VAI, visceral adiposity index; USFLI, the US fatty liver index; NFS, NAFLD fibrosis score; FIB-4, the fibrosis-4 index; APRI, AST to platelet ratio index; **p<0.05, ***p<0.001.
Cross-sectional study of the role of age, gender and ethnicity in the association between visceral adiposity index and nonalcoholic fatty liver disease among US adults (NHANES 2003–2018)

Qianwen Li¹, Ling Wang¹², Jing Wang¹, Yanjie Wang³, and Jian Wu¹*

STROBE Statement—Checklist of items included in this report:

Item	Page		
Title and abstract			
No	Recommendation		
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract		
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found		
Introduction			
Background/rationale			
2	Explain the scientific background and rationale for the investigation being reported		
Objectives			
3	State specific objectives, including any prespecified hypotheses		
Methods			
Study design			
4	Present key elements of study design early in the paper		
Setting			
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow up, and data collection		
Participants			
6	(a) Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up.		
	(b) For matched studies, give matching criteria and number of exposed and unexposed		
Variables			
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect		
Data sources/measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	6
Bias	9	Describe any efforts to address potential sources of bias	7-8
Study size	10	Explain how the study size was arrived at	6
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	7-8
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses	9-10
Results			
Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed. (b) Give reasons for non-participation at each stage (c) Consider use of a flow diagram	10
Descriptive data	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders (b) Indicate number of participants with missing data for each variable of interest	10-11
Outcome data	15*	Report numbers of outcome events or summary measures	10
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders	12-15
Section	Recommendation		
-----------------------	----------------		
Other analyses	Report other analyses done—eg, analyses of subgroups and interactions, and sensitivity analyses	14-15	
Discussion			
Key results	Summarise key results with reference to study objectives	16	
Limitations	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	20	
Interpretation	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	16-20	
Generalisability	Discuss the generalisability (external validity) of the study results	18-19	
Other information			
Funding	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	21	