Research on Road Performance of Asphalt Mixture With Iron Waste Ore

Aiping Fei (feiaipingxfr@126.com)
University of Science and Technology Liaoning
https://orcid.org/0000-0002-6940-7218

TIEZHI ZHANG
University of Science and Technology Liaoning

Zhongwei Ruan
University of Science and Technology Liaoning

Case study

Keywords: stripping waste rock, asphalt mixture, road performance, efficacy coefficient.

DOI: https://doi.org/10.21203/rs.3.rs-764296/v1

License: ☑️ ☞ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Research on Road Performance of Asphalt Mixture with Iron Waste Ore

AIPING FEI 1*, TIEZHI ZHANG 1, ZHONGWEI RUAN 1

1 University of Science and Technology Liaoning, School of Civil Engineering, Qian Shan Road No.185, Anshan 114051, China

Abstract: In order to study the road performance of asphalt mixture with different kinds of iron waste ore, stripping waste rock rich in iron trioxide and stripping waste rock rich in iron oxide are used as aggregate to make the mixture. Through the test comparison, it is confirmed that the dynamic stability performance of asphalt concrete mixture mixed with iron trioxide mining and stripping waste rock is the best, namely its high temperature stability is best; followed by the one mixed with waste rock rich in iron trioxide. The residue stability of asphalt concrete mixed with mining and stripping waste rock increases obviously. It can found from the experiments that the residual stability can be up to 94.96% which kinds of asphalt mixture with waste rock rich in iron trioxide. Asphalt mixture mixed with stripping waste rock has a better anti-sliding performance than the common one, among which the one mixed with aggregates rich in iron trioxide is the best. Through tectonic depth, it is reflected that it also has a better performance on drainage noise reduction. In conclusion, using mining and stripping waste rock instead of mining gravel has a good economic efficiency, but also solved the problem of mining and stripping waste rock accumulation.

Keywords: stripping waste rock; asphalt mixture; road performance; efficacy coefficient.

Introduction

With the continuous expansion of mining, mining waste rock has become an important solid pollutant affecting the air, soil and water. Some sulfide ores in the mine waste rock will produce certain oxidation reaction after contacting with the air, so as to release pollution gas, causing certain pollution to the air. Moreover, some very small waste rocks are very easy to form dust after drying in the air, thus bringing pollution to the air. After the wind and sun, surface runoff and other effects, the harmful components of mine waste rock will invade into the soil. The harmful substances and radioactive substances will cause serious damage to the soil. The excessive acid and salinization of the soil will change the composition of the soil and directly affect the growth of crops. Generally speaking, after a long period of weathering, the water-soluble compounds and heavy metal ions in the waste rock of open-pit mine will bring serious pollution to the water body after surface runoff or groundwater seepage[1].

In order to protect the environment, extensive research and comprehensive application have been carried out in the field of mining waste recycling at home and abroad. The research on the preparation of high strength concrete after the treatment of the mine stripping waste stone has been carried out, and its comprehensive performance is also very good[2-9]. Waste rock contains trace elements needed for
crop growth and development, so it is made into soil conditioner [10-13]. It also can be applied in sleeper and Bridge related fields, and also can effectively improve the waste consumption ratio, showing a high comprehensive application value [14-23]. The research field of recycling of mine solid waste is expanding. In this paper, asphalt mixture with two kinds of iron waste ore are researched for road performance. In addition, stripping waste rock rich in Iron trioxide and stripping waste rock rich in Iron oxide are used as aggregate to make the mixture.

Materials

Asphalt
Asphalt is a mixture of different types of hydrocarbons and their non-metallic derivatives under certain combination conditions. Its components are very complex and show the characteristics of high viscosity. Using the characteristics of asphalt, various coarse and fine aggregates can be combined to form a mixture. In this test, the 90# bitumen produced by Panjin North Asphalt Co., Ltd was used. According to the Standard Test Methods of Bitumen and asphalt Mixtures for Highway Engineering [24], the main technical specifications of 90# asphalt are shown in Table 1.

Performance indicators	Unit	Test results	Specified value	
Penetration number (25°C, 100g, 5s)	mm	87	80~100	
Softening point (R&B Method)	°C	46.5	≤45.0	
Ductility (5cm/min, 10°C)	cm	98.2	≤45	
Ductility (5cm/min, 15°C)	cm	144.6	≤100	
Density	g/cm³	1.018	实测	
After the RTFOT	Quality change	%	0.72	≥±0.8

Mining Waste Rock
In this paper, coarse aggregate in the raw material is collected from Dagushan iron mining area in Anshan. There are two main types of mining waste rock in this mining area, one is the iron-poor mining waste rock containing iron oxide, the other is the iron-poor mining waste rock containing iron trioxide. The samples are shown in Figure 1 and Figure 2.
The stripping waste rock is crushed twice on the jaw crusher. The first time is the coarse aggregate, and the coarse aggregate is further crushed to make fine aggregate within 4.75mm. After crushing, select sand washing machine to clean, and finally get machine-made sand. In this experiment, two kinds of aggregates were obtained according to the steps of first coarse breaking and then fine breaking. That is, stripping waste rock coarse aggregate: 5mm-20mm, stripping gravel fine aggregate less than 5mm, and then carry out various physical and mechanical tests. For example, the test indicators of waste rock aggregate containing iron trioxide with particle size of 16-20mm are shown in the Table2.

Table 2 Physical properties index of waste rock aggregate containing iron trioxide

Physical property	Crus hed value (%)	Losangeles weared value(%)	Apparent relative density (g/cm³)	Water absorptio n(%)	Robustness (%)	Content of needle flake particles (%)	Soft stone content (%)	Proportion of particles less than 0.075 mm(%)
Specified value[25]	≥26 ≤28 ≤2.6 ≥2.0 ≥12 ≥15 ≥3 ≥1	16.2 21.3 3.283	0.81 3 12.3 0.2					
Test results 16 mm	19.2 14.312 3.254	0.83 ___	10.1 0.2 0.87					
Test results 13.2 mm	19.8 13.312 3.240	0.66 ___	12.1 2.1 0.8					
Test results 4.75 mm	22.4 18.01 2.921	0.93 ___	14.9 1.9 0.98					
Test results 9.5 mm								
Asphalt Mixture Proportioning Design

Gradation Composition Design

In this paper, according to the requirements of 《Technical specification for highway asphalt pavement construction》 [26], the mix proportion design of AC-20 asphalt mixture containing iron oxide stripping waste rock, iron oxide stripping waste rock and common limestone mineral aggregate is carried out respectively. The results of trial synthetic gradation of three different mineral aggregates are shown in Figure 3.

![Figure 3: Trial synthetic gradation of three different mineral aggregates](image)

Optimal Asphalt Content

This paper design the optimum oil-stone ratio by Marshall method. The optimum oil-stone ratio of three different asphalt mixtures is shown in Table 3.

Oil-stone ratio index	Three kinds of asphalt mixtures		
	Fe$_3$O$_4$ waste stone asphalt mixture	Fe$_2$O$_3$ waste stone asphalt mixture	common limestone asphalt mixture
Optimum oil-stone rate (%)	4.45	4.26	4.65

Experimental Study on Pavement Performance of asphalt Mixture

High Temperature Stability Performance

The high temperature stability of asphalt mixture is the most important performance of road performance, and the high temperature stability of asphalt concrete pavement...
is also its weak link. In this study, wheel tracking test is used to detecting the high temperature stability performance of the three kinds of asphalt mixtures. The specimen used in the test is 300×300×50mm specimen formed by rolling method, and the applied load is 0.7±0.05MPa. Specimen is shown in Figure 4.

Figure 4. Test specimen for wheel tracking test

Wheel tracking test results of asphalt mixture are shown in Table 4.

Table 4. Wheel tracking test results of three kinds of asphalt mixture

Index	Fe₂O₃ waste stone asphalt mixture	Fe₃O₄ waste stone asphalt mixture	common limestone asphalt mixture
45min displacement(mm)	1.511	1.520	1.508
60min displacement(mm)	1.832	1.861	1.822
Dynamic stability(time/mm)	1963	1937	1954
Relative deformation rate(%)	3.664	3.644	3.602

Every kind of asphalt mixture has three specimen in the experimental study on high temperature stability. The higher the dynamic stability value, the stronger the deformation resistance of the asphalt mixture at high temperature. From the Table 4, it is found that compared with the other two asphalt mixtures the dynamic stability of Fe₃O₄ waste stone asphalt mixture is higher and the relative deformation rate is lower under the same test conditions. It can be seen from the Figure 5 that the high temperature stability of Fe₃O₄ waste stone asphalt mixture is the best, which is about 44.2% higher than that of common limestone asphalt mixture, and the high temperature stability of Fe₂O₃ waste stone asphalt mixture is also 41.1% higher than that of common limestone asphalt mixture. Therefore, the high temperature stability of common asphalt mixture is obviously lower than the former two. Relative deformation rate reflects the deformation of asphalt mixture under repeated loads at high temperature.
It can be seen from the wheel tracking test results that the relative deformation rate of asphalt mixture containing iron ore waste stone is lower than that of common limestone asphalt mixture under the same conditions. Through the two indications of dynamic stability and relative deformation rate, it is reflected that under high temperature conditions, the high temperature stability of asphalt mixture containing iron ore is higher than that of common limestone asphalt mixture. And in this paper, the Fe$_3$O$_4$ waste stone asphalt mixture has better high temperature stability.

Water Stability Performance

Water stability is an important indicator of road performance of asphalt mixture, which directly affects whether asphalt mixture is vulnerable to water damage. According to “Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering”, this paper evaluates the water stability of different rock asphalt mixture by immersion Marshall test. The specimen is a cylinder with a diameter of 101.6mm and a height of 63.5±1.3mm, as shown in Figure 6. The specimen is in a constant temperature water bath furnace at 60°C for 48 hours, and the stability was measured.

![Figure 6. Constant temperature water bath immersion specimen](image)

The average values of immersion Marshall test results for three asphalt mixture are shown in Table 5. From Table 5, it shown that the residual stability of iron ore waste stone asphalt mixture meets the standard requirements, and it is significantly higher than the common limestone asphalt mixture’s.
stone asphalt mixture and Fe₂O₃ waste stone asphalt mixture has little difference, which is 8.6% and 5.7% higher than that of common limestone asphalt mixture respectively. Compared with the three kinds of asphalt mixture, the water stability of Fe₂O₃ waste stone asphalt mixture is the best, and its residual stability is 94.96%. In general, water stability performance of iron waste ore asphalt mixture is excellent.

Table 5 The average values of Marshall test

Index	Fe₂O₃ waste stone asphalt mixture	Fe₃O₄ waste stone asphalt mixture	common limestone asphalt mixture
40 min Stability(KN)	14.2	16.82	11.26
40 hours Stability(KN)	13.56	15.56	9.85
Residual stability(%)	94.96	92.5	87.48

Skid Resistance

The skid resistance of asphalt pavement is an important characterization of traffic safety. For road building materials, the structural depth, size and shape, grinding value and other characteristics of mineral materials and processing methods determine the skid resistance performance to a certain extent. In this paper, the friction coefficient and structural depth of different types of asphalt mixture were measured by pendulum instrument and electric sand paver. Figure 7 and Figure 8 show the friction coefficient test and structural depth test respectively.
Comprehensive friction coefficient and structural depth index of asphalt concrete can analyze its skid resistance performance. It can be seen from the test data in Table 6 that the skid resistance performance of asphalt mixture containing Fe$_2$O$_3$ waste stone is the best, but it is not very different from that of asphalt mixture containing Fe$_3$O$_4$ waste stone. The structural depth of the asphalt mixture containing Fe$_2$O$_3$ waste stone and the asphalt mixture containing Fe$_3$O$_4$ waste stone is 19% and 14.3% higher than that of the common limestone asphalt mixture respectively. In spite of this, there is little difference in the friction coefficient.

Road Performance Analysis of Three Asphalt Mixtures

In this part, the efficacy coefficient method is used to compare the test indexes of waste stone asphalt mixture and common limestone asphalt mixture for comprehensive evaluation of road performance. It can be seen from the data in Table 6 that the efficiency coefficient of common asphalt mixture is the lowest. It indicates that in the comprehensive road performance including high temperature stability, water stability and skid resistance, the comprehensive road performance of common limestone asphalt mixture is lower than that of waste stone asphalt mixture containing iron ore.

Types	High temperature stability	Water stability	Skid-resistance	Efficiency coefficient
Fe$_2$O$_3$ waste stone asphalt mixture	0.939	0.999	0.800	0.913
Fe$_3$O$_4$ waste stone asphalt mixture	0.964	0.933	0.840	0.912
Common limestone asphalt mixture	0.626	0.799	0.880	0.768

Conclusion

In this paper, the road performance and influencing factors of AC-20 iron ore waste stone asphalt mixture are studied. The high temperature stability, water stability and skid resistance performance of common limestone asphalt mixture, waste stone asphalt mixture containing Fe$_2$O$_3$ and waste stone asphalt mixture containing Fe$_3$O$_4$ were compared and analyzed by test methods, and the following conclusions were obtained:

1. It is concluded from the test for the three asphalt mixtures, the asphalt mixture with Fe$_3$O$_4$ waste stone has the best high temperature stability, and the asphalt mixture with Fe$_2$O$_3$ waste stone has the best water stability and skid resistance performance.
2. Through the comprehensive evaluation of the road performance of two kind of iron-containing waste stone asphalt mixture by the efficacy coefficient method, it is known that the difference between the two is small. But asphalt mixture containing
iron ore wasted stone is better than common limestone asphalt mixture, especially on skid resistance performance.

(3) In terms of road comprehensive performance in this paper, it is a good recycling way to taking asphalt mixture containing iron ore wasted stone for road construction.

References

[1] Gong Shufeng, Shi Xuewei. Comprehensive Utilization of Waste Rocks and Tailings of Iron Ore[J]. METAL MATERIALS AND METALLURGY ENGINEERING, Vol.42, No.5, 2014, 49-53

[2] HE Zhaofang, CUI Xunbin, WANG Tao, WANG Xueyou. Iron Gangue’s Application Research in C60 Concrete[J]. Concrete, Vol.12, No.12, 2011, 142-144

[3] CHEN Xufeng, XU Jinghui, ZHAO Ying. Mine Tailing Technology Development in Ready-mixed Concrete Industrialization Application[J]. Concrete, Vol.4, No.4, 2014, 112-118

[4] Wu Ruidong. Performance and Mechanism Analysis of Quartz-type Iron Tailings Powder and Waste rock in Cement-based Materials[D]. University of Science and Technology Beijing. 2020

[5] Study on the Heavy metal of Mn, As and Pb in Waste Manganese Rock: Chemical Speciation, Leaching Characteristics and Mechanism[D]. Hunan University of Science and Technology. 2019

[6] Liu Jia. Fundamental Research on the High Performance Concrete Made by Iron Tailings and Iron Barren Rocks[D]. University of Science and Technology Beijing, 2014

[7] Wang Hailong. Routing in Stope Filling Stage Waste and Experimental Study on Reinforcement Treatment of Plug[D]. Qingdao University of Technology, 2015

[8] Shu Taijing. Study on Settlement Law of Unclassified Tailings and Waste Rock Compound Filing Body in HuiBaoLing Iron Ore[D]. Jiangxi University of Technology, 2014.

[9] Jing Shuaishuai. Characteristics and Properties of Foam Concrete with Iron Ore Tailings[D]. Chang’an University, 2014.

[10] David A. Felleson. Iron ore and taconite mine reclamation and revegetation practices on the mesabi range in northeastern Minnesota[C]. Iron ore and taconite mine reclamation and revegetation, 2000.

[11] Maiti S K, Nandhini S, Das Manab. Accumulation of metals by naturally growing herbaceous and tree species in iron ore tailings[J]. International Journal of Environmental Studies. 2005, 62(5): 595-603.

[12] Kangal O, Guney A. Pilot scale tests for evaluation of feldspar tailings for ceramic industry[J]. Key Engineering Materials. 2004, 264(2): 1415-1418.

[13] Das S K, Kumar Sanjay, Ramaehandrarao P. Exploitation of iron ore tailing for the development of ceramic tiles[J]. Waste Management. 2000, 20(8): 725-729.

[14] Chen Xingjie, Ni Wen, WuHui, Tang Chang, Qiu Xiajie. Experimental Study of High-strength Concrete with Waste Rocks and Iron Tailings as Aggregates[J]. Metal Mine, No.464, 2015, (2): 166-172.

[15] Lu Xingdong, Dong Yun, Wang Lei. Experiment of Dam Concrete Preparation Using Waste Rock from Pansteel as Aggregates[J]. Metal Mine, 2018, (8): 191-196.
[16] Cui Xiaowei. Research of High Performance Concrete Prepared with the Steel Industry Solid Waste as Raw Materials[D]. University of Science and Technology Beijing, 2017.

[17] Cui Xiaowei, Ni Wen. Hydration Behavior of Cementitious Materials with All Solid Waste Based of Steel Slag and Blast Furnace Slag[J]. Revista de la Facultad de Ingeniería, 2016, 31(7): 172-181.

[18] Cui Xiaowei, Wang Changlong, Ni Wen, et al. Study on the Reaction Mechanism of Autoclaved Aerated Concrete Based on Iron Ore Tailings[J]. Romanian Journal of Materials, 2017, 47(1): 46-53.

[19] Tan Qiu. Study on the Stripping of Powder used in Asphalt Concrete[D]. Chongqing Jiaotong University, 2016.

[20] Wąsilewska, Marta, Małaszkiewicz, Dorota, Ignatiuk, Natalia. Evaluation of Different Mineral Filler Aggregates for Asphalt Mixtures[C]. Materials Science and Engineering, World Multidisciplinary Civil Engineering-Architecture-Urban Planning Symposium 2017, Prague, Czech Republic, 2017.

[21] Dobiszewska, Magdalena, Wrzecion, Krzysztof. The study of the properties of concrete containing waste powder as a fine aggregate[C]. 10th International Conference on Environmental Engineering, Vilnius, Lithuania, 2017.

[22] Wattana, Piyarat Ann. Drill cutting waste utilization as alternative material for road application[C]. Abu Dhabi International Petroleum Exhibition and Conference 2020, Abu Dhabi, United Arab, 2020.

[23] Abu Dhabi, United Arab. The use of cement treated reclaimed asphalt pavement-quarry waste blends as highway material[J]. International Journal of Pavement Engineering, 2020, Vol 21(10): 1191-1198.

[24] JTG E20-2011. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering[S]. Beijing: Ministry of Transport, PRC, 2011.

[25] JTG E42-2005. Test Methods of Aggregate for Highway Engineering[S]. Beijing: Ministry of Transport, PRC, 2017.

[26] JTG F40-2004. Technical Specification for Highway Asphalt Pavement Construction[S]. Beijing: Ministry of Transport, PRC, 2004.

Declarations: No conflict of interest exits in the submission of this manuscript, and manuscript is approved by all authors for publication. I would like to declaration elsewhere, in whole or in part. All the authors listed have approved the manuscript that is enclosed. The experimental part of this paper was completed by Aiping Fei and Zongwei Ruan, and the writing part was completed by Aiping Fei. Tiezhi Zhang gave the overall guidance of the paper.

Acknowledgements: Thanks for each teacher who provided research guidance and experimental sites.