Alpha clustering in 18F

S Bailey1, M Freer1, Tz Kokalova1, S Cruz1,2, H Floyd1 and D J Parker1

1 University of Birmingham, Birmingham, B15 2TT, UK
E-mail: s.c.bailey@pgr.bham.ac.uk

Abstract. We review some of the key experimental and theoretical studies of α-clustering in 18F. Particular attention is given to the $4p-2h$ nature of such α-clustered states, and the interaction between the holes and clusters is examined in terms of both weak and strong-coupling regimes. The experimental work focuses on α-transfer spectroscopy and α resonant scattering as tools for investigating α-clustering.

1. Introduction
Alpha clustering is a well established concept in the structure of light α-conjugate nuclei [1]. Further to this, it has been shown that neutron-rich nuclei exhibit similar cluster structures with the additional neutrons playing the role of valence particles, contributing to the binding of the clusters in a way that resembles electrons in atomic molecules [2]. This has been investigated in detail recently both from theoretical and experimental perspectives, finding a lot of success in the $\alpha + xn + \alpha$ structures in Be isotopes [3, 4] and the $\alpha + xn + ^{16}$O structures in Ne isotopes [5, 6, 7]. There has been comparatively little work done, however, to investigate the persistence of cluster structure in isotopes which deviate from α-conjugate nuclei in ways other than the addition of valence neutrons.

18F is of interest from a clustering perspective because of the predicted $\alpha + ^{14}$N structure, and how this compares with the $\alpha + ^{16}$O structure observed in 20Ne [7]. It is thought that the cluster structure is amplified in 20Ne by the large shell gap above the p shell, which provides a clear separation between the 16O core and the α-cluster. The $\alpha + ^{14}$N structure is therefore expected to manifest itself in $4p-2h$ excitations of 18F [8], displayed in Fig. 1. This produces a shell structure very similar to that of 20Ne, again with a clear shell gap separating the α-cluster from the core, and deviating from 20Ne only by the addition of one proton hole and one neutron hole in the p shell. It is the interplay between these proton and neutron holes and the cluster-core structure that motivates the present work on 18F.

2. Hole-particle coupling
The regime which governs the coupling between the p shell holes and the s-d shell particles in $4p-2h$ states is extremely important for understanding the structure of 18F. This coupling can either be described as weak-coupling or strong-coupling. In the weak-coupling picture, the particle wavefunctions are assumed to be similar to the eigenfunctions of 20Ne, and the...
hole wavefunctions like that of the 14N ground state [8, 9, 10]. This is interpreted as weak coupling since the interaction is expected to be well described as a small perturbation on these wavefunctions, leading to a structure very similar in nature to 20Ne with some additional core excitations.

The strong-coupling model takes the opposite approach, asserting that the interaction between the holes and particles is too strong for the wavefunctions to be approximated in such a way. Instead more robust techniques are required, leading to more varied and exotic deformations and structures.

One of the earliest experimental investigations of hole-particle states in 18F was performed in 1968 by Middleton et al. [8] using the 14N(7Li,t)18F α-transfer reaction. It is expected that α-transfer reactions preferentially excite states formed by transferring all four nucleons into the same shell, leading to an amplified cross-section for $4p-2h$ states. In this work it was argued that this allowed the $4p-2h$ excitations to be identified by selecting states which were strongly populated by this reaction but weakly populated by one or two nucleon transfer reactions. However this may be an overly simplistic interpretation since it ignores the effects that the matching conditions have on the cross-section [11]. Additionally the nonzero spins of the nuclei involved in this reaction often lead to ambiguous angular distributions, making experimental J^π assignments very difficult [12].

Middleton et al. [8] reported six states to be likely $4p-2h$ candidates at 1.70, 2.52, 3.36, 4.23, 5.30 and 6.55 MeV using this technique. They go on to argue that these states can be well described by the weak-coupling model, coupling the 20Ne ground state band to the $\left(\frac{1p_1}{2}\right)^2_{1+}$ hole configuration. The application of this model led to the following spin-parity assignments for the observed $4p-2h$ states, respectively: $J^\pi = 1^+, 2^+, 3^+, 1^+, 3^+$ and $(4^+, 5^+)$. This weak-coupling description of the $4p-2h$ states was challenged following an extensive study of the structure of 18F in 1973 by Rolfs et al. [13]. In this work the hole-particle states were investigated in detail using the 14N(α,γ)18F, 17O(p,γ)18F and 16O(3He,pγ)18F reactions [13, Part III]. Following these measurements 5 states were identified as being members of a $K^\pi = 1^+$ rotational band of predominantly $4p-2h$ nature, at 1.701, 2.523, 3.358, 5.298 and 6.567 MeV. Spin-parity assignments were made based on measured branching ratios and angular distributions to be respectively $J^\pi = 1^+, 2^+, 3^+, 4^+$ and 5^+. The reduced α-widths were extracted for the 4^+ and 5^+ members, and in both cases were found to be exceptionally large.

It is clear that these states are the same states as those measured by Middleton et al. [8], with the exception that the 4.23 MeV state was found by Rolfs et al. to be unlikely to be $4p-2h$ in nature, and was instead assigned to be a $J^\pi = 2^{(-)}$ state of 3p-1h structure [13, Part IV]. Additionally the spin-parity assignment for the 5.298 MeV state disagrees with the assignment.
made based on the weak-coupling model by Middleton et al. [8]. These considerations led Rolfs et al. to reject the weak-coupling model in favour of the strong-coupling model.

A comparison was made between this band and a strong-coupling calculation performed in 1965 by Bassichis et al. [14], which predicted a $K^\pi = 1^+$, $4p-2h$ rotational band in 18F. The gradient of the predicted band was found to be in excellent agreement with the measurements and it reproduced the observed zig-zagging in excitation energy, however the predicted band was shifted ≈ 2.5 MeV higher in energy. Rolfs et al. [13, Part III] speculated that based on the exceptionally large reduced α-widths observed for the 4^+ and 5^+ members, α-particle clustering may in fact play a prominent role in the structure of this band, and perhaps the explicit inclusion of α-clustering in the microscopic description of the band may reconcile this energy shift.

Based on these results it seems likely that the strong-coupling regime better describes the hole-particle coupling in 18F, since the work by Rolfs et al. [13, Part III] is more extensive, allowing the spin-parity assignments to be made based on experimental measurements. Further to this, more α-transfer measurements have been made by Cobern et al. [12] and Etchegoyen et al. [15], extending the $K^\pi = 1^+$ rotational band observed by Rolfs et al. [13, Part III] from $J^\pi = 5^+$ up to 8^+. This rotational band is displayed in Fig. 2, with the band calculated using the strong-coupling model by Bassichis et al. [14] for comparison.

3. Alpha clustering

Based on the work by Rolfs et al. [13, Part III] it seems likely that there is a large α-cluster component to the structure of the $K^\pi = 1^+$ rotational band. A semi-microscopic calculation of α-cluster states in 18F was performed in 1979 by Buck et al. [17]. In this work all four nucleons from which the α-particle is built up are placed in the s-d shell, enforcing the experimentally determined $4p-2h$ structure discussed previously. This leads to the 14N core wavefunction being given by two p shell holes in the 16O closed shell. Further details regarding this model can be found in Ref. [17].

This model produced two distinct rotational bands, one with $K^\pi = 1^+$ and one with $K^\pi = 0^+$. The states in the $K^\pi = 1^+$ band agreed exceptionally well with the experimentally determined states up to $J^\pi = 5^+$, however above this they began to diverge, with the calculated levels shifted higher in energy compared with the experimentally observed levels. This can be seen in Fig. 2. It was however explained by Buck et al. that this may be due to the way the nuclear...
potential was modelled, since similar discrepancies have arisen in other calculations involving the same potential [17].

The extremely good agreement between observed and calculated levels in the $K^\pi = 1^+$ band leads us to believe that this is indeed an α-clustered $4p-2h$ rotational band. However if this model is correct, it should also be possible to identify the $K^\pi = 0^+$ rotational band. Buck et al. [17] assigned the 1^+ state in this band to two experimentally observed 1^+ states at 3.724 and 4.361 MeV. It is argued that this is due to mixing between this state and a $2p$ shell model state predicted to exist at a similar energy, causing the $4p-2h$ strength to be shared between both states. This hypothesis is confirmed to an extent experimentally by the slightly reduced cross-section for these states in α-transfer measurements [8]. However Buck et al. were unable to confidently assign any of the other members of this band.

4. 14N + α resonant reaction

More recently a study of 18F was performed in 2014 by Bailey et al. [16] using the $\alpha + ^{14}$N resonant reaction to populate α-clustered states in the compound nucleus 18F. The reduced widths of these states were then extracted by performing an R-Matrix fit simultaneously of these data and data from other sources covering the $d + ^{16}$O and $p + ^{17}$O channels [18, 19]. Bailey et al. [16] proceeded to assign the 3^+ state in the $K^\pi = 0^+$ band to a state at $E_{\text{ex}} = 8.858$ MeV, and also provided tentative evidence for the existence of the broad 5^+ state in the region between 11 and 13 MeV. The 3^+ assignment was made due its unusually large α-reduced width, however the state was predicted at 6.92 MeV, almost 2 MeV lower than observed. These assignments are compared with the calculated $K^\pi = 0^+$ band in Fig. 2.

5. Conclusion

It is clear that α-clustering plays a significant role in the structure of 18F, with perhaps the strongest evidence coming from the excellent agreement between the $K^\pi = 1^+$ rotational band calculated using a semi-microscopic α-cluster model [17] and experimental observations made using α-transfer reactions [13, 12, 15]. However the $K^\pi = 0^+$ rotational band is still not fully understood, and there has yet to be any work done to investigate negative-parity α-clustered rotational bands.

References

[1] Freer M and Merchant A C 1997 J. Phys. G: Nucl. Part. Phys. 23 261–322
[2] von Oertzen W, Freer M and Kanada-En’yo Y 2006 Physics Reports 432 43 – 113
[3] Hiura J and Tamagaki K 1972 Progress of Theoretical Physics Supplement 52 25–88
[4] Itagaki N and Okabe S 2000 Phys. Rev. C 61(4) 044306
[5] von Oertzen W 2001 Eur. Phys. J. A 11 403–411 ISSN 1434-6001
[6] Rogachev G V, Goldberg V Z, Lönroth T, Trzaska W H, Fayans S A, Källman K M, Kolata J J, Mutterer M, Rozhkov M V and Skorodumov B B 2001 Phys. Rev. C 64(5) 051302
[7] Richards H T 1984 Phys. Rev. C 29(1) 276–283
[8] Middleton R, Polsky L M, Holbrow C H and Bethge K 1968 Phys. Rev. Lett. 21(19) 1398–1401
[9] Arima A, Horichi H and Sebe T 1967 Physics Letters B 24 129 – 131 ISSN 0370-2693
[10] Benson H and Flowers B 1969 Nuclear Physics A 126 332 – 354 ISSN 0375-9474
[11] Brink D 1972 Physics Letters B 40 37 – 40 ISSN 0370-2693
[12] Cobern M E and Parker P D 1977 Phys. Rev. C 15(5) 1929–1932
[13] Rolfs C, Berka I, Trautvetter H, Azuma R, Kieser W, Litherland A and Charlesworth A 1973 Nuclear Physics A 241 25–88
[14] Bassichis W H, Giraud B and Ripka G 1965 Phys. Rev. Lett. 15(25) 980–982
[15] Etchegoyen M, Sinclair D, Etchegoyen A and Moreno E 1983 Nuclear Physics A 402 87 – 113 ISSN 0375-9474
[16] Bailey S, Freer M, Kokalova T, Cruz S, Floyd H and Parker D J 2014 Phys. Rev. C 90(2) 024302
[17] Buck B, Merchant A and Rowley N 1970 Nuclear Physics A 237 29 – 52 ISSN 0375-9474
[18] Terwagne G, Genard G, Yedjii M and Ross G G 2008 J Appl. Phys. 104 084909
[19] Seiler R F, Jones C H, Anzick W J, Herring D F and Jones K W 1963 Nucl. Phys. 45 647–656