A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage

Citation for published version:
Doitsidou, M, Minevich, G, Kroll, JR, Soete, G, Gowtham, S, Korswagen, HC, Sebastiaan van Zon, J & Hobert, O 2018, 'A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage', G3, vol. 8, no. 1, pp. 17-26.
https://doi.org/10.1534/g3.117.300132

Digital Object Identifier (DOI):
10.1534/g3.117.300132

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
G3

Publisher Rights Statement:
Copyright © 2018 Doitsidou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage

Maria Doitsidou,*†,1,2 Gregory Minevich,*† Jason R. Kroll,*† Gwen Soete,§ Sriharsh Gowtham,∗ Hendrik C. Korswagen,1 Jeroen Sebastiaan van Zon,‡ and Oliver Hobert∗,**

*Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center New York, NY 10032, **Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, NY 10027, †Centre for Discovery Brain Sciences, University of Edinburgh, EH8 9XD, UK, ‡AMOLF, Amsterdam, 1098 XG, The Netherlands, and §Hubrecht Institute, 3584 CT Utrecht, The Netherlands

ORCID IDs: 0000-0002-2358-9810 (M.D.); 0000-0002-7634-2854 (O.H.)

ABSTRACT Invertebrate and vertebrate nervous systems generate different types of dopaminergic neurons in distinct parts of the brain. We have taken a genetic approach to understand how the four functionally related, but lineally unrelated, classes of dopaminergic neurons of the nematode Caenorhabditis elegans, located in distinct parts of its nervous system, are specified. We have identified several genes involved in the generation of a specific dopaminergic neuron type that is generated from the so-called postdeirid lineage, called PDE. Apart from classic proneural genes and components of the mediator complex, we identified a novel, previously uncharacterized zinc finger transcription factor, ztf-6. Loss of ztf-6 has distinct effects in different dopamine neuron-producing neuronal lineages. In the postdeirid lineage, ztf-6 is required for proper cell division patterns and the proper distribution of a critical cell fate determinant, the POP-1/TCF-like transcription factor.

KEYWORDS ztf-6 Zinc finger transcription factor dopaminergic neurons PDE postdeirid lineage C. elegans mediator complex lineage analysis mutant screen report

The relevance of dopamine neurons for human neurological disease has spurred intensive efforts to identify regulators of dopamine neuron differentiation across the animal kingdom (Abeliovich and Hammond 2007; Smidt and Burbach 2007). One intriguing issue of dopaminergic fate specification is that dopaminergic neurons are generated in distinct parts of the vertebrate nervous system, suggesting that distinct patterning mechanisms may be employed to specify dopaminergic neurons. As in vertebrates, the nervous system of the hermaphroditic Caenorhabditis elegans also contains a linearly diverse set of dopaminergic neurons. Specifically, there are eight dopaminergic neurons that fall into four classes of bilaterally symmetric pairs of neurons [the dorsal cephalic sensillum (CEP) (CEPD), ventral CEP (CEPV), anterior deirid sensillum (ADE), and posterior deirid ("postdeirid") sensillum PDE] (Figure 1) (Sulston et al. 1975). All four neuron classes are ciliated mechanosensory neurons that form part of specific sensilla, the PDE, ADE, and CEPs (White et al. 1986). The four classes of dopaminergic neurons in C. elegans regulate a variety of behaviors, including mechanosensation, locomotion, habituation to mechanical stimuli, evaluation of food availability, swim to crawl transition, and spatial pattern selectivity (Chase et al. 2004; Han et al. 2017; Hills et al. 2004; Kindt et al. 2007; Sanyal et al. 2004; Sawin et al. 2000; Vidal-Gadea et al. 2011). Genetic screens for mutants that fail to produce terminally differentiated dopaminergic neurons have revealed that all four pairs of neurons are instructed by the
same set of terminal selector-type transcription factors to adopt terminal dopaminergic neuron identity; the ETS domain transcription factor ast-1, the Distalless ortholog ceh-43, and one of several C. elegans Pbx genes (Doitsidou et al. 2008, 2013; Flames and Hobert 2009; Siehr et al. 2011). In the absence of these factors, dopaminergic neurons fail to initiate and maintain the terminal, dopaminergic differentiation program.

In spite of the striking similarities among dopaminergic neurons, the four different classes are born at different times during development, are situated in different parts of the nervous system, and derive from distinct neuronal lineages, as illustrated in Figure 1 (White et al. 1986). It is therefore to be expected that distinct factors operate in these distinct lineages to eventually specify terminal dopaminergic neuron identity. Indeed, classic screens for lineage mutants have uncovered the C. elegans homolog of Atonal, lin-32, as an essential regulator of the postdeirid lineage (Zhao and Emmons 1995). Intriguingly, lin-32 has different effects on distinct dopaminergic neuron lineages. While the CEPDs also fail to be generated, the lin-32 loss-of-function mutants (Doitsidou et al. 2008).

Rather than screening for lineage patterns per se, we have initiated genetic screens for mutants in which dopaminergic neuron-specific identity markers fail to be properly expressed (Doitsidou et al. 2008; Nagarajan et al. 2014). Undertaking such screens, we have identified, as expected, lin-32 mutant alleles (Doitsidou et al. 2008), terminal selectors for dopaminergic neuron identity (Doitsidou et al. 2013; Flames and Hobert 2009), and have shown that the vab-3/Pax6 gene restricts the number of dopaminergic neurons produced (Doitsidou et al. 2008). In this paper, we describe a set of additional regulators of dopamine neuron lineage specification. We identify and characterize ztf-6, a C2H2 zinc finger transcription factor-encoding gene that acts in a subset of the dopaminergic neuron lineages to control the production of dopaminergic neurons.

MATERIALS AND METHODS

Mutant isolation, mapping, and cloning

Transgenic worms carrying a chromosomally integrated dat-1::gfp reporter (vtIs1) were mutagenized using Ethyl Methanesulphonate (EMS) using standard protocols (Brenner 1974). Ensuing generations were screened for abnormal dat-1::gfp expression using a fluorescent dissecting microscope or the COPAS Biosort system (Doitsidou et al. 2008). of alleles were isolated in the Hobert laboratory and hu alleles were isolated in the Korswagen laboratory (Soete 2007). All hu alleles were mapped and cloned by combined Hawaiian SNP mapping and whole-genome sequencing (WGS) or Variant Discovery Mapping (VDM), as previously described (Doitsidou et al. 2010; Minevich et al. 2012). The ot280 allele was mapped prior to the appearance of the combined SNP/WGS modern methods (Doitsidou et al. 2010), using conventional high-throughput SNP mapping (Davis et al. 2005). After SNP mapping to the right arm of chromosome I (+5.06 +9.23 CM), ot280 was whole-genome sequenced using an Illumina platform, followed by data analysis initially using MAQGene (Bigelow et al. 2009) and then reanalysis with CloudMap (Minevich et al. 2012). Data were filtered as previously described (Sarin et al. 2010). As a general rule, all mutant alleles were backcrossed a minimum of three times.

Transgenic reporter strains

The ztf-6::gfp reporter strain otEx6298 [ztf-6::gfp; ttx-3::rfp] was generated by in vivo recombination (Boulin et al. 2006). First, a genomic region from the first intron to the last exon of the ztf-6 locus was amplified and fused to gfp using standard PCR fusion technology (Hobert 2002). The resulting fusion protein was co-injected with an ampincon that spanned a 4.7 kb sequence upstream of the first exon, the first exon, and the first intron. This ampincon overlapped by 50 bp with the PCR-fused ampincon to allow for in vivo recombination in the injected animals (Boulin et al. 2006). The following cellular identity markers were used to characterize the ztf-6 mutant phenotype: vtIs1 [dat-1::gfp; rol-6] (Nass et al. 2005), vtIs33 [dop-3::rfp] (Chase et al. 2004), otIs199 [cat-2::gfp; rgef-1::dsRed2] (Flames and Hobert 2009), otIs355 [rab-3::NLS::TagRFP] (Doitsidou et al. 2013), otIs14 [zig-3::gfp; rol-6] (Aurelio et al. 2002), oysIs14 [sr-6:: gfp, lin-15] (Treemel et al. 1995), rfsEx5181[kc3::gfp, lin-15(+)] (Tanis et al. 2009), jkIs1 [ajm-1::gfp] (Mehler et al. 1998), sls10166 [dpy-7:: HIS-24; mCherry + unc-119(+)] (Murray et al. 2012), qIs74 [POP-1::eGFP] (Siegfried and Kimble 2002), and sls10226 [his-72::HIS-24; mCherry::let-858 3U TR + unc-119(+)] (Murray et al. 2012).

Lineage analysis

To create strains for suitable for time-lapse microscopy, mutant ztf-6 animals carrying vtIs1 were crossed with sls10166 [dpy-7::HIS-24; mCherry + unc-119(+)] (Murray et al. 2012), a nuclear histone marker driven by the dpy-7 promoter. The transgene expresses brightly in the hypodermal cells, but also moderately in the seam cells and postdeirid lineage in the L2 stage. The complete wild-type genotype was sls10166; sls11337[rCaY37A1B5::GFP + pChe361]; ncds13 [ajm-1::GFP] (Liu et al. 2005; McKay et al. 2003). We performed time-lapse imaging and microchamber fabrication as previously described (Gritti et al. 2016). Briefly, we used a Nikon Ti-E inverted microscope with a 60x magnification objective (Nikon Plan Apo 60X NA = 1.4, oil immersion), with microchambers 195 × 195 μm in size. Transmission imaging was performed using a red LED (CoolLED PE-100 615 nm), while GFP fluorescence images were acquired using a 488 nm laser (Coherent OBIS LS 488-100) and mCherry fluorescence images were acquired using a 561 nm laser (Coherent OBIS LS 561). Images were acquired in a temperature-controlled room at 19°C with sample temperature of 23°C, and imaged every 20 min. Exposure time for experiments was 10 ms and ~30 images were taken with a z-distance of 1 μm. Early divisions in the lineage (up to and including V5.pa and V5.pp) could be determined on both sides of the worm, but later divisions could only be visualized on the side closest to the objective. The Fiji distribution of ImageJ (Schindelin et al. 2012, 2015) was used for analysis and animals were straightened with the default ImageJ straighten macro for creation of the figures. The developmental stage of the animals was determined by observation of ecdysis in the transmitted light images. In ztf-6 mutants showing incomplete postdeirid lineages, we ensured that dat-1::gfp expression was absent rather than delayed by verifying images in the late L2/start of L3.

POP-1 localization

Mutant or control worms carrying the transgenes qIs74[POP-1::eGFP] (Siegfried and Kimble 2002) and sls10226 [his-72::HIS-24; mCherry::let-858 3U TR + unc-119(+)] (Murray et al. 2012) were bleached, and their eggs were collected and allowed to develop on OP50 plates at 20°C for ~22–26 hr. Worms were anesthetized with 10 mM levamisole and images were captured on a confocal microscope with a 100x magnification objective. ImageJ was used to quantify the average level of POP-1::GFP signal outlined by the localization of the nuclear marker HIS-24: H2B::mCherry at the most central z-stack containing the nucleus of the V5.pa and V5.pp daughter cells. The fluorescence in the anterior cell was divided by the fluorescence of the posterior cell of the pair to calculate the ratio of POP-1::GFP localization. Sister-cell pairs with fluorescence levels of 10% or less were considered equal/symmetric.

Data availability

All data are represented in the paper’s tables, figures and supplementary information. The timelapse imaging used for the lineage analysis
presented here and the whole genome sequencing data that led to the identification of the phenotype causing variants can become available upon request.

RESULTS AND DISCUSSION

Mutants with loss of the PDE postdeirid dopaminergic neurons

All dopaminergic neurons can be labeled in transgenic worms with a reporter construct that monitors expression of the dopamine reuptake transporter *dat-1* (Nass et al. 2002). Using this reporter transgene, we screened for EMS-induced mutants in which *dat-1::gfp* expression is lost. Our screens identified 20 mutant strains that displayed a loss of *dat-1::gfp* expression in the postdeirid lineage. We identified the molecular lesions in nine of these strains through a combination of SNP mapping and WGS (Table 1).

One set of mutants affect three subunits of the Mediator complex: *cdk-8* (cyclin-dependent kinase), *dpy-22* (also called MDT12), and *cic-1* (Cyclin C) (Table 1). Other available alleles of these Mediator complex components show the same phenotype (Table 1). *cdk-8*, *dpy-22*, and *cic-1* are all components of the kinase module of the Mediator complex (Grants et al. 2015). Generally, the Mediator complex is known to link a large number of distinct transcriptional regulatory complexes to RNA Polymerase II and has been implicated in a number of biological processes in multiple organisms, including in *C. elegans* (Grants et al. 2015). The mediator complex, including its kinase module, is broadly if not ubiquitously expressed (Steimel et al. 2013; Yoda et al. 2005) and, as expected, affects other lineages besides the PDE (including the Q lineage and the rays) (Soete 2007). We chose to not pursue its function further in the context of the postdeirid lineage.

Another set of mutants with loss of *dat-1::gfp* expression in the postdeirid affect two known proneural genes: *lin-32/Atonal* and *hlh-2/Daughterless*. As mentioned above, *lin-32* mutants were previously found to affect the generation of the postdeirid and we identified three new alleles of *lin-32*: *hu72* and *hu75* (missense mutations in the bHLH domain), and *ot263* (a presumptive cis-regulatory mutation).

![Figure 1] Dopaminergic neurons of the *C. elegans* hermaphrodite and their lineages. Lineage data comes from (Sulston and Horvitz 1977; Sulston et al. 1983). Dopaminergic neurons were first identified by Sulston et al. (1975). ADE, anterior deirid sensillum; CEP, cephalic sensillum; CEPD, dorsal CEP; CEPV, ventral CEP; PDE, postdeirid sensillum.

Table 1 Proneural bHLH and mediator components affect neuron generation in the postdeirid

Gene	Allele	Animals Expressing *dat-1::gfp* in PDE (%)	Molecular Nature
Wild-type		100	
Proneural bHLH		31	Noncoding point mutation, 60 bp upstream of the 5′ UTR. (LGX: 2,230,154 C > T)
	ot263	48	Missense: A91V in bHLH domain
	hu72	23	Missense: A91V in bHLH domain
	hu75	0	989 bp deletion (LGI: 7,201,151–7,202,139), 6,953 upstream of the 5′ UTR. cagaaaacat*
Mediator		0	Premature stop exon 2: W44Stop (LGIII: 2,401,021 C > T), acaatcggccagaaaaatatt
	hu80	25	Premature stop exon 6: W240Stop (LGIII: 2,395,807 C > T), ctcgcagaagccagcttcca
	hu135	59	Deletion allele
	tm3740c	16	Premature stop exon 9: Q1203Stop (LGX: 9,817,929 G > A), tggatgtgctgctggaat
	dpy-22	21	Deletion allele
	hu97	25	Premature stop exon 6: W227Stop (LGX: 8,703,554 G > A), atggccgtatgctgccgaa
	os38c	52	Deletion allele
	cdk-8	25	ghgctatgctgccgaa
	tm1238c	52	

Coordinates from reference genome WS220. Genetic context is provided—the mutation is depicted in capital letter. PDE, postdeirid sensillum; bHLH, basic helix-loop-helix; LG, linkage group.

a Scored with vtIs1 (*n* > 40).

b Previously called dopy-6 (Doitsidou et al. 2008); phenotypic data were previously reported, numbers shown for comparison only.

c Another known allele of respective locus, scored for comparison to our alleles.

d (Yoda et al. 2005)
The *hu82* allele defined an unusual allele of the *hlh-2/Daughterless* locus. *hu82* fails to complement the hypomorphic *hlh-2*(bx108) allele (bx108 homozygous animals display a wild-type postdeirid lineage, but only 11 out of 29 bx108/hu82 heterozygote animals displayed a wild-type phenotype) and *hu82* is rescued by a fosmid that contains the *hlh-2* locus (five transgenic lines scored, all showing rescue). The involvement of *hlh-2* in postdeirid specification is expected, given that *hlh-2* is a well-established dimerization partner of *lin-32* (Portman and Emmons 2000). However, the recovery of an *hlh-2* allele from our screen was not anticipated because complete removal of *hlh-2* results in early lethality (Krause et al. 1990; Nakano et al. 2010), while *hu82* animals are fully viable even though they display a fully penetrant loss of *dat-1:gfp* expression. The likely reason for the lack of pleiotropies of *hu82* is that *hu82* does not affect the *hlh-2* coding region, but rather contains a 989 bp deletion 7 kb upstream of the *hlh-2* locus (Table 1), suggesting that *hu82* is a regulatory allele of *hlh-2* that affects its expression only in subsets of the cells that normally express *hlh-2*.

ztf-6 mutants display altered patterns of dat-1 expression in a lineage-specific manner

We focused our attention on four mutant strains that define a previously nondescribed complementation group. Initially, we called the locus
defined by this complementation group dopy-1 but, because of the molecular identity of the mutants (described below), we renamed the locus ztf-6. Expression of dat-1::gfp in the PDE neurons, which form part of the postdeirid structure, is lost in most of the ztf-6 mutant animals (Figure 2, A and B). In a subset of the infrequent cases where dat-1::gfp expression in the PDE neurons is not turned off, we also observe ectopic dat-1::gfp expression in the postdeirid lineage (Figure 2B).

Loss of dat-1::gfp expression in the PDE neurons of the postdeirid lineage of all ztf-6 mutant alleles is paralleled by a loss of another dopaminergic marker (tyrosine hydroxylase cat-2::gfp; data not shown). Loss of PDE identity is likely a reflection of gross misspecification or entire loss of the postdeirid lineage, since the expression marker for all other cells in the postdeirid lineage are lost in ztf-6 mutants (Figure 2C). These affected markers include a reporter for the glutamatergic PVD neurons (dop-3) (Chase et al. 2004), a panneuronal marker (rab-3), and a marker for the glial cells generated by the lineage (kcc-3) (Bellemere et al. 2011) (Figure 2C).

ztf-6 is not only required to generate the postdeirid lineage from the V5 ectoblast, but is also required for the specification of the PDE neurons in the ectopic postdeirid lineage observed in lin-22/hairy mutants (Wrischnik and Kenyon 1997), as assessed by the analysis of lin-22; ztf-6 double mutants (Table 2).

Using ajm-1::gfp to mark the outline of dividing V5 blast cells, we examined the fate of the V5 cells that generate the postdeirid (Figure 1) in more detail. The shape and mutual attachment of dividing V5 cells appear abnormal in most ztf-6 animals scored (Figure 2D). Moreover, the characteristic cluster of cells that generate neurons and glia cells, observed in a specific time window in wild-type animals (Figure 2E), is difficult to observe in ztf-6 mutants, suggesting that the postdeirid lineage is not formed.

Postdeirid lineage analysis of ztf-6 mutants

The loss of the postdeirid lineage prompted us to investigate the ztf-6 mutant phenotype in more detail. Due to the length of time that the postdeirid lineage takes to develop, and the number of lineages we wished to follow, we turned to a novel time-lapse microscopy technique that allowed us to carefully track development in freely moving and normally developing animals (Gritti et al. 2016). We performed lineage analysis focusing on the V5.p cell lineage, starting in the late L1/early L2 stage when the cell divides to form V5.pa and V5.pp. We used a dpy-7 promoter-driven nuclear histone marker that is moderately expressed in seam cells and the postdeirid lineage, and highly expressed in hypodermal nuclei, thus providing information on both lineage and the assignment of hypodermal cell fate. With our marker, it was possible to observe all cell divisions that constitute the postdeirid lineage in wild-type worms (Figure 3A). In the ztf-6(ot271) mutant, we found that the postdeirid lineage divisions occurred normally in 5/26 of the V5.p lineages (Figure 3B). However, in the majority of the V5.p lineages, (16/26), cell divisions were delayed and eventually became arrested after the division of the V5.p cell (Figure 3C). Additionally, the mutation acted independently in the left and right lineages in the animal, since comparing the formation of the postdeirid lineages on both sides of a single animal showed that cell divisions in the mutant lineage were delayed up to 2 hr compared to the normally forming postdeirid lineage that developed on the other side (Supplemental Material, Figure S1). Due to anatomical abnormalities or defects that occurred earlier in development, 2/26 lineages could not be scored.

Along with the loss of the postdeirid lineage due to arrested cell divisions, we also observed a minority of cases (3/26) in which the ztf-6 (ot271) mutation exhibited a gain-of-function phenotype in which extra dat-1::gfp expressing neurons were generated. In particular, in one animal, we observed that an entire postdeirid lineage had already been generated during the L1 stage of development, before we had started our time-lapse data collection, resulting in an animal with two postdeirid lineages and two dat-1::gfp-expressing cells by the end of the L2 stage (Figure 3D). In addition to this temporal defect, we also detected expansions of the postdeirid lineage pattern occurring during the L2 stage that resulted in multiple dat-1::gfp-expressing neurons and an excess of other cells generated during the cell divisions, which likely originated from the V4 lineage (Figure 3E). Due to the number of cells in a small area and their divisions occurring rapidly within a short period of time, the exact lineage details in these animals could not be followed in detail, but the excess of generated cells in V4 and V5 lineages demonstrates the tendency for spurious cell divisions to occur in the ztf-6 mutant.

Additionally, we often observed improper expression of the dpy-7 hypodermal cell fate marker in the mutant, suggesting that the cells had improperly differentiated, although the pattern and extent of this phenotype was highly stochastic between animals. This was true of the V5, ppa and V5.bpp cells as well, which are not directly involved in the development of the postdeirid lineage (Figure 3F). Lineages other than V5.p also exhibited variable abnormalities in their expression patterns of dpy-7 after the divisions of Vn.p and Vn.pp (Figure 3G), suggesting that ztf-6 is important for seam cell identity and proper cell fate patterns in seam cell lineages outside of V5.

Loss of canonical asymmetric cell division in ztf-6 mutants

The variability of the phenotypes observed in the ztf-6 mutant along with the abnormalities in cells expressing the hypodermal fate marker were reminiscent of Wnt mutations on seam cell polarity and fate (Yamamoto et al. 2011), which prompted us to characterize the Wnt/β-catenin asymmetry pathway in ztf-6 mutants. The Wnt/β-catenin asymmetry pathway is responsible for proper seam cell fate and other asymmetric divisions by regulating the distribution of SYS-1/β-catenin and POP-1/TCF in a reciprocal manner (Nakamura et al. 2005; Takeshita and Sawa 2005). After an initial seam cell division at the beginning of the L2 stage, Vn.p and Vn.pp undergo an asymmetric cell division, in which POP-1 is preferentially localized to the anterior sister cell, which we confirmed in wild-type animals (Figure 4A) (Lin et al. 1998). However, POP-1

Table 2 Genetic interaction of lin-22 and ztf-6

Genotype	% Lineages with vtls1(dat-1::gfp) Expression (% Lineages Producing Multiple PDEs)						
	V1	V2	V3	V4	V5	V6	n (Worms)
Wild-type	0	0	0	0	100	0	120
lin-22(n372)	17 (0)	78 (1)	84 (1)	87 (1)	100 (0)	0	40
ztf-6(ot271)	0	0	0	0	15 (8)*	0	39
lin-22(n372); ztf-6(ot271)	27 (8)	45 (29)	56 (35)	42 (24)	22 (8)	0	40

PDE, postdeirid sensillum.

*Some of the ectopically generated PDEs may arise from the V4 lineage (see Figure 3E).
asymmetric localization in the \(ztf-6 \) (ot271) mutant background was less robust than in wild-type animals, with > 20% of sister cells showing an inverted pattern of POP-1 asymmetry, with the posterior sister cell having higher POP-1 levels than the anterior sister cell, something never observed in wild-type animals (Figure 4, B and C). Similar findings were observed in the V4 and V6 lineages (data not shown). Together, these results suggest that \(ZTF-6 \) helps to maintain the robustness of the Wnt/β-catenin asymmetry pathway.
ztf-6 encodes a C2H2 zinc finger transcription factor

We mapped the ot280 mutation to a small interval on linkage group I using conventional SNP mapping approaches and then sequenced the genome of ot280 mutant animals using Illumina technology (see Materials and Methods). Among the sequence variants present in this genetic interval, four affect amino acids in protein coding genes and only one affects a transcription factor (Figure 5A), the previously uncharacterized ztf-6 gene. We Sanger-sequenced the ztf-6 locus in all four available allelic mutants and found mutations in the ztf-6 locus in each allele (Figure 5B). The PDE phenotype of ot280 mutants can be rescued by a piece of genomic DNA that only contains the ztf-6 locus (Figure 2C).

The ZTF-6 protein contains three zinc finger domains at its C-terminus, two C2H2 fingers and one C2HC finger, and a conserved acidic domain possibly involved in transcriptional activation. The ot271 and ot273 alleles contain identical short insertions at the beginning of the locus that result in a frameshift and premature stop before the third zinc finger domains of ztf-6, suggesting that these alleles are null alleles (Figure 5B). The ot274 mutant contains a nonsense substitution before the third zinc finger. The last, somewhat more unusual zinc finger (a C2HC finger), is essential for protein function since one allele, ot280, disrupts the last cysteine of this finger (Figure 5B).

While there are ~200 predicted C2H2 proteins encoded in the C. elegans genome (Knight and Shimeld 2001), there are no clear ZTF-6 paralogs in the C. elegans genome. There are clear orthologs of ztf-6 in other Caenorhabditis species that display sequence similarity throughout the entire proteins (and close to 100% sequence identity among the three zinc fingers). As in C. elegans, several other nematode species that contain ztf-6 contain no ztf-6 paralogs, with the exception of C. brenneri, which contains two ztf-6 paralogs, each containing the same characteristic last C2HC zinc finger. No ZTF-6 relatives are present in the currently available genome sequences of other non-Rhabditis nematodes, such as Brugia malayi or Pristionchus pacificus, nor in arthropods or chordates.

Expression pattern of ztf-6

We generated a reporter construct that contains the ztf-6 locus with all exons and introns and 4.7 kb of sequences upstream of the start codon (Figure 5A). This construct (Figure 5B) is able to rescue the ztf-6(ot280) mutant phenotype (see data in Figure 2C). Expression is first observed in late embryogenesis (threefold stage) (data not shown). In early larval stages, the ztf-6:gfp-expressing cells include head hypodermal cells, head muscle cells, neurons, and ectodermal blast cells along the body (all P and all V cells) and in the tail (Figure 5C). Starting in the L2 stage, additional neurons in P cell-derived ventral cord motor neurons express ztf-6:gfp (Figure 5C).

Because of the postdeirid loss phenotype of ztf-6 mutants, we examined the postdeirid lineage in more detail. We observe ztf-6 expression in the V5 cell of freshly hatched L1 animals. Upon division of the V5 cell into a posterior and anterior daughter, we observe expression in both the anterior and posterior daughters of the V5 cell (Figure 5D). The descendent of the posterior V5:p daughter, V5:pa (the founder of the postdeirid lineage), and V5:pp also continue to express ztf-6:gfp. Within the V5:pa lineage, expression of ztf-6:gfp is retained in the blast
cells that generate the glial cells and the PDE and PVD neurons (Figure 5D). No expression is detected at later stages in this lineage.

Conclusions

Through genetic screens for mutants in which a dopaminergic cell fate marker is aberrantly expressed, we identified a novel, previously uncharacterized zinc finger transcription factor, zif-6, as being required to produce the proper set of dopaminergic neurons in the C. elegans nervous system. zif-6 has different effects on the distinct lineages that produce dopaminergic neurons in the PDE, ADE, and CEPs. In one lineage, it is required for the generation of the entire lineage (PDE), likely by controlling the differential activity of a binary lineage.
patterning system (Wnt/POP-1). In another lineage, ztf-6 appears to have no role (CEPD), and in two other lineages ztf-6 restricts the number of dopaminergic neurons generated. There are some similarities in this phenotypic spectrum of ztf-6 mutants with the phenotypic spectrum of animals that lack the bHLH factor lin-32/Atonal, particularly in the deirid lineages. Both lin-32 and ztf-6 are proneural genes in the postdeirid lineage. In the anterior deirid lineage we previously noted that, like in ztf-6 mutants, ectopic dat-1::gfp neurons are produced in lin-32 mutants (Doitsidou et al. 2008). However, lin-32 null mutants do not phenocopy the ectopic dat-1::gfp phenotype of the CEPV lineage of ztf-6 null mutants. And, while ztf-6 null mutants show no defects in dat-1::gfp expression in CEPD, the CEPD neuron are not generated in lin-32 mutants (Doitsidou et al. 2008). Taken together, ztf-6 and lin-32 function appears to be related on some, but clearly not all, dopaminergic neuron-producing lineages.

The loss of ztf-6 showed conflicting phenotypes in the PDE: most lineages displayed a loss-of-function phenotype, but some lineages showed a gain-of-function phenotype resulting in multiple dat-1::gfp-expressing neurons. Additionally, these were often accompanied by reversed or asymmetric hypodermal cell fate choices in other cells outside of the postdeirid lineage. Occasional loss of normal Wnt/β-catenin asymmetry in the postdeirid precursors could cause cell fate transformations depending on the levels of POP-1 in the cells and whether the localization is symmetrical or reversed, such as in V5.pp/pa daughter cells. ztf-6 likely has other roles that affect the generation of the postdeirid lineage outside of the Wnt/β-catenin pathway, since errors in the lineage were more frequent than an absence or reversal of POP-1 asymmetry. For example, delayed cell division times in the lineage, the formation of the postdeirid lineage at the inappropriate background, these observations suggest that ztf-6 may regulate all or most seam cell lineages, and the ability for a ztf-6 mutant allele to rescue ectopic postdeirid lineages in the lin-2X(n372) mutant background, these observations suggest that ztf-6 may regulate all or most seam cell lineages, but with a more complicated role in the proper patterning of V5. Overall, ZTH-6 acts to stabilize and ensure that the postdeirid lineage is generated at the proper time and position.

ZTF-6 is one of ~200 C2H2 zinc finger transcription factors encoded in the C. elegans genome, but appears to exist only in the Rhabditidae family of nematodes. This observation is in line with the general notion that, unlike other transcription factor families (e.g., the homeobox family), C2H2 zinc finger transcription factors have undergone extensive species-specific expansion across the animal kingdom (Knight and Shimeld 2001). Our identification of a neuronal role for an orphan, nonconserved C2H2 zinc finger transcription factor contributes to the functional deorganization of the many nonconserved C2H2 zinc finger transcription factors in the C. elegans genome. Invertebrate-specific or even nematode-specific C2H2 zinc finger transcription factors have also been uncovered by other screens for neuronal cell fate decisions (Baum et al. 1999; Chang et al. 2003; Johnston et al. 2006; Johnston and Hobert 2005; Zhang et al. 2011), suggesting that species-specific C2H2 zinc finger expansion may relate to species-specific nervous system features.

ACKNOWLEDGMENTS

We thank Qi Chen for expert technical assistance, Albert Chen for help with the genetic screens, Shohei Mitani (Tokyo Women’s Medical University) for providing knockout alleles, Michael Koelle for the dop-3 and kkc-3 reporter transgenes, and Alex Bernstein and Kevin Mei for help with genetic screens in the Hobert laboratory. Some strains were provided by the Caenorhabditis Genetics Center, which is funded by the National Institutes of Health Office of Research Infrastructure Programs (P40 OD-010440). This work was funded by grants from the National Institutes of Health (NIH) (R01NS039996-05 and R01NS050266-03) and the Howard Hughes Medical Institute to O.H., a European Research Council Starting Grant (338200-STOCHCELLFATE) to J.S.v.Z., and G.M. was supported by a NIH F31 predoctoral fellowship (F31NS074841-01).

LITERATURE CITED

Abelevich, A., and R. Hammond, 2007 Midbrain dopamine neuron differentiation: factors and fates. Dev. Biol. 304: 447–454.
Aurelio, O., D. H. Hall, and O. Hobert, 2002 Immunoglobulin-domain proteins required for maintenance of ventral nerve cord organization. Science 295: 686–690.
Baum, P. D., C. Guenther, C. A. Frank, B. V. Pham, and G. Garriga, 1999 The Caenorhabditis elegans gene hnm-2 links Hox patterning to migration of the HSN motor neuron. Genes Dev. 13: 472–483.
Bellemere, A., T. Hirata, M. F. Romero, and M. R. Koelle, 2011 Two types of chloride transporters are required for GABA(A) receptor-mediated inhibition in C. elegans. EMBO J. 30: 1852–1863.
Bigelow, H., M. Doitsidou, S. Sarin, and O. Hobert, 2009 MAQGene: software to facilitate C. elegans mutant genome sequence analysis. Nat. Methods 6: 549.
Boulin, T., J. F. Etchberger, and O. Hobert, 2006 Reporter gene fusions (April 5, 2006). WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook.1.106.1, http://www.wormbook.org.
Brenner, S., 1974 The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
Chang, S., R. J. Johnston, Jr. and O. Hobert, 2003 A transcriptional regulatory cascade that controls left/right asymmetry in chemo sensory neurons of C. elegans. Genes Dev. 17: 2123–2137.
Chase, D. L., J. S. Pepper, and M. R. Koelle, 2004 Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nat. Neurosci. 7: 1096–1103.
Davis, M. W., M. Hammarlund, T. Harrach, P. Hultlet, S. Olsen et al., 2005 Rapid single nucleotide polymorphism mapping in C. elegans. BMC Genomics 6: 118.
Doitsidou, M., N. Flames, A. C. Lee, A. Boyanov, and O. Hobert, 2008 Automated screening for mutants affecting dopaminergic neuron specification in C. elegans. Nat. Methods 5: 869–872.
Doitsidou, M., R. J. Poole, S. Sarin, H. Bigelow, and O. Hobert, 2010 C. elegans mutant identification with a one-step whole-genome-sequencing and SNP mapping strategy. PLoS One 5: e15435.
Doitsidou, M., N. Flames, I. Topalidou, N. Abe, T. Felton et al., 2013 A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans. Genes Dev. 27: 1391–1405.
Flames, N., and O. Hobert, 2009 Gene regulatory logic of dopamine neuron differentiation. Nature 458: 885–889.
Grants, J. M., G. Y. Goh, and S. Tauhert, 2015 The mediator complex of Caenorhabditis elegans: insights into the developmental and physiological roles of a conserved transcriptional co-regulator. Nucleic Acids Res. 43: 2442–2453.
Gritti, N., S. Kienle, O. Filina, and J. S. van Zon, 2016 Long-term time-lapse microscopy of C. elegans post-embryonic development. Nat. Commun. 7: 12500.
Han, B., Y. Dong, L. Zhang, Y. Liu, I. Rabinowitch et al., 2017 Dopamine signaling tunes spatial pattern selectivity in C. elegans. Elife 6: e22896.
Hills, T., P. J. Brockie, and A. V. Maricq, 2004 Dopamine and glutamate control area-restricted search behavior in Caenorhabditis elegans. J. Neurosci. 24: 1217–1225.
Hobert, O., 2002 PCR fusion-based approach to create reporter gene constructs for expression analysis in transgenic C. elegans. Biotechniques 32: 728–730.
Johnston, R. J., Jr, and O. Hobert, 2005 A novel C. elegans zinc finger transcription factor, lsy-2, required for the cell type-specific expression of the lsy-6 microRNA. Development 132: 5451–5460.

Johnston, R. J., Jr, J. W. Copeland, M. Fasnacht, J. F. Etchberger, J. Liu et al., 2006 An unusual Zn-finger/FH2 domain protein controls a left/right asymmetric neuronal fate decision in C. elegans. Development 133: 3317–3328.

Kindt, K. S., K. B. Quast, A. C. Giles, S. De, D. Hendrey et al., 2007 Dopamine mediates context-dependent modulation of sensory plasticity in C. elegans. Neuron 55: 662–676.

Knight, R.D., and S.M. Shimeld, 2001 Identification of conserved C2H2 zinc-finger gene families in the Bilateria. Genome Biol. 2: RESEARCH0016.

Krause, M., A. Fire, S. W. Harrison, J. Priess, and H. Weintraub, 1990 GαMyoD accumulation defines the body wall muscle cell fate during C. elegans embryogenesis. Cell 63: 907–919.

Lin, R., R. J. Hill, and J. R. Priess, 1998 POP-1 and anterior-posterior fate decisions in C. elegans embryos. Cell 92: 229–239.

Liu, Z., T. Fujis, A. Nukazuka, R. Kurokawa, M. Suzuki et al., 2005 C. elegans PlexA PLX-1 mediates a cell contact-dependent stop signal in vulval precursor cells. Dev. Biol. 282: 138–151.

McKay, S. J., R. Johnsen, J. Khattra, J. Asano, D. L. Baillie et al., 2003 Gene expression profiling of cells, tissues, and developmental stages of the nematode C. elegans. Cold Spring Harb. Symp. Quant. Biol. 68: 159–169.

Minevich, G., D. S. Park, D. Blankenberg, R. K. Poole, and O. Hobert, 2012 CloudMap: a cloud-based pipeline for analysis of mutant genome sequences. Genetics 192: 1249–1269.

Mohler, W. A., J. S. Simske, E. M. Williams-Masson, J. D. Hardin, and J. G. White, 1998 Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8: 1087–1090.

Murray, J. L., T. J. Boyle, E. Preston, D. Vafeados, B. Mericle et al., 2012 Multidimensional regulation of gene expression in the C. elegans embryo. Genome Res. 22: 1282–1294.

Nagarajan, A., Y. Ning, K. Reisner, Z. Buraei, J. P. Larsen et al., 2014 Progressive degeneration of dopaminergic neurons through TRP channel-induced cell death. J. Neurosci. 34: 5738–5746.

Nakamura, K., S. Kim, T. Ishidate, Y. Bei, K. Pang et al., 2005 Wnt signaling drives WRM-1/beta-catenin asymmetries in early C. elegans embryos. Genes Dev. 19: 1749–1754.

Nakano, S., R. E. Ellis, and H. R. Horvitz, 2010 Otx-dependent expression of the neural bHLH gene asxl-1 establishes a neuronal bilateral asymmetry in C. elegans. Development 137: 4017–4027.

Nass, R., D. H. Hall, D. M. Miller, III, and R. D. Blakely, 2002 Neurotoxin-induced degeneration of dopaminergic neurons in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 99: 3264–3269.

Nass, R., M. K. Hahn, T. Jessen, P. W. McDonald, L. Carvelli et al., 2005 A genetic screen in Caenorhabditis elegans for dopamine neuron insensitivity to 6-hydroxydopamine identifies dopamine transporter mutants impacting transporter biosynthesis and trafficking. J. Neurochem. 94: 774–785.

Portman, D. S., and S. W. Emmons, 2000 The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127: 5415–5426.

Sanyal, S., R. F. Wintle, K. S. Kindt, W. M. Nuttley, R. Arvan et al., 2004 Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J. 23: 473–482.

Sarin, S., V. Bertrand, H. Bigelow, A. Boyanov, M. Doitsidou et al., 2010 Analysis of multiple ethyl methanesulfonate-mutagenized Caenorhabditis elegans strains by whole-genome sequencing. Genetics 185: 417–430.

Sawin, E. R., R. Ranganathan, and H. R. Horvitz, 2000 C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 26: 619–631.

Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair et al., 2012 Fiji: an open-source platform for biological-image analysis. Nat. Methods 9: 676–682.

Schindelin, J., C. T. Rueden, M. C. Hiner, and K. W. Eliceiri, 2015 The ImageJ ecosystem: an open platform for biomedical image analysis. Mol. Reprod. Dev. 82: 518–529.

Siegfried, K. R., and J. Kimble, 2002 POP-1 controls axis formation during early gonadogenesis in C. elegans. Development 129: 443–453.

Siehr, M. S., P. K. Koo, A. L. Sherlek, X. Bian, M. R. Bunkers et al., 2011 Multiple doublesex-related genes specify critical cell fates in a C. elegans male neuronal circuit. PLoS One 6: e26811.

Smidt, M. P., and J. P. Burbach, 2007 How to make a mesodiencephalic dopaminergic neuron. Nat. Rev. Neurosci. 8: 21–32.

Soe, D., 2007 Cell Fate Determination in the Caenorhabditis elegans Epidermal Lineages. Univeriteit Utrecht, The Netherlands.

Steinle, A., J. Suh, A. Hussainkhel, S. Deheshi, J. M. Grant et al., 2013 The C. elegans CDK8 mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation. Dev. Biol. 377: 385–398.

Sulston, J., M. Dew, and S. Brenner, 1975 Dopaminergic neurons in the nematode Caenorhabditis elegans. J. Comp. Neurol. 163: 215–226.

Sulston, J. E., and H. R. Horvitz, 1977 Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56: 110–156.

Sulston, J. E., E. Schierenberg, J. G. White, and J. N. Thomson, 1983 The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100: 64–119.

Takeshita, H., and H. Sawa, 2005 Asymmetric cortical and nuclear localizations of WRM-1/beta-catenin during asymmetric cell division in C. elegans. Genes Dev. 19: 1743–1748.

Tanis, J. E., A. Bellemere, J. J. Moreno, B. Forbush, and M. R. Koelle, 2009 The potassium chloride cotransporter KCC-2 coordinates development of inhibitory neurotransmission and synapse structure in Caenorhabditis elegans. J. Neurosci. 29: 9943–9954.

Troemel, E. R., J. H. Chou, N. D. Dwyer, H. A. Colbert, and C. I. Bargmann, 1995 Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 83: 207–218.

Vidal-Gadea, A., S. Topper, L. Young, A. Crisp, L. Kressin et al., 2011 Caenorhabditis elegans selects distinct crawling and swimming gaits via dopamine and serotonin. Proc. Natl. Acad. Sci. USA 108: 17504–17509.

White, J. G., E. Southgate, J. N. Thomson, and S. Brenner, 1986 The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 314: 1–340.

Wirsich, L. A., and C. J. Kenyon, 1997 The role of lin-22, a hair/ enhancer of split homolog, in patterning the peripheral nervous system of C. elegans. Development 124: 2873–2888.

Yamamoto, Y., H. Takeshita, and H. Sawa, 2011 Multiple Wnts redundantly control polarity orientation in Caenorhabditis elegans epithelial stem cells. PLoS Genet. 7: e1002308.

Yoda, A., H. Kouike, H. Okano, and H. Sawa, 2005 Components of the transcriptional mediator complex are required for asymmetric cell division in C. elegans. Development 132: 1885–1893.

Zhang, F., M. M. O’Meara, and O. Hobert, 2011 A left/right asymmetric neuronal differentiation program is controlled by the Caenorhabditis elegans lsy-27 zinc-finger transcription factor. Genetics 188: 753–759.

Zhao, C., and S. W. Emmons, 1995 A transcription factor controlling development of peripheral sense organs in C. elegans. Nature 373: 74–78.

Communicating editor: S. Lee