Differential colorectal carcinogenesis: Molecular basis and clinical relevance

Alberto Morán, Paloma Ortega, Carmen de Juan, Tamara Fernández-Marcelo, Cristina Frías, Andrés Sánchez-Pernaute, Antonio José Torres, Eduardo Díaz-Rubio, Pilar Iniesta, Manuel Benito

Abstract

Colorectal cancer (CCR) is one of the most frequent cancers in developed countries. It poses a major public health problem and there is renewed interest in understanding the basic principles of the molecular biology of colorectal cancer. It has been established that sporadic CCRs can arise from at least two different carcinogenic pathways. The traditional pathway, also called the suppressor or chromosomal instability pathway, follows the Fearon and Vogelstein model and shows mutation in classical oncogenes and tumour suppressor genes, such as \(K\)-ras, adenomatous polyposis coli, deleted in colorectal cancer, or p53. Alterations in the Wnt pathway are also very common in this type of tumour. The second main colorectal carcinogenesis pathway is the mutator pathway. This pathway is present in nearly 15% of all cases of sporadic colorectal cancer. It is characterized by the presence of mutations in the microsatellite sequences caused by a defect in the DNA mismatch repair genes, mostly in hMLH1 or hMSH2. These two pathways have clear molecular differences, which will be reviewed in this article, but they also present distinct histopathological features. More strikingly, their clinical behaviours are completely different, having the "mutator" tumours a better outcome than the "suppressor" tumours.

© 2010 Baishideng. All rights reserved.

Key words: Colorectal cancer; Microsatellite instability; Clinical outcome

Peer reviewer: Tzu-Chen Yen, PhD, Professor, Department of Nuclear Medicine, Chang Gung Memorial Hospital, No.5, Fu-Hsin St., Taoyuan 333, Taiwan, China

Morán A, Ortega P, de Juan C, Fernández-Marcelo T, Frías C, Sánchez-Pernaute A, Torres AJ, Díaz-Rubio E, Iniesta P, Benito M. Differential colorectal carcinogenesis: Molecular basis and clinical relevance. World J Gastrointest Oncol 2010; 2(3): 151-158 Available from: URL: http://www.wjgnet.com/1948-5204/full/v2/i3/151.htm DOI: http://dx.doi.org/10.4251/wjgo.v2.i3.151

INTRODUCTION

Colorectal cancer (CRC) is one of the most common cancers in developed countries. The American Cancer Society estimated that up to 153,760 new colorectal cancer cases were diagnosed in USA during 2007 (the fourth most common cancer for that period of time), with 52,180 associated deaths[1].
March 15, 2010 | Volume 2 | Issue 3 | 152

Morán A et al. Differential colorectal carcinogenesis

Ferlay et al\[3\] estimated that colorectal cancer was the second most common form of cancer in Europe during 2006 with 412,900 cancer diagnoses (12.9% of total cancers) and 207,400 deaths (ranking second position). These figures illustrate the clinical impact of colorectal cancer. Due to the worldwide scale of the problem, colorectal carcinogenesis is one of the most extensively studied types of cancers.

CRC is traditionally divided into sporadic and familial (hereditary) cases. Approximately, 75%-80% of colorectal tumours have a sporadic origin. Of all patients, a high proportion have one first to third-degree relative with CRC. It is quite clear that even in sporadic CRC cases, the descendants have a higher risk of suffering colorectal cancer. In this review, we will focus on sporadic CRC.

SPORADIC COLORECTAL CANCER: DIFFERENTIAL CARCINOGENESIS, DIFFERENT CLINICAL BEHAVIOUR

Currently, it is considered that there are two major pathways in colorectal carcinogenesis. One of them is called the “canonial” (adenoma-carcinoma sequence) or “suppressor” pathway and involves chromosomal instability (CIN)\[3\]. It is characterized by allelic losses on chromosome 5q (APC), 17p (p53), and 18q (DCC/SMAD4).

The second pathway of colorectal carcinogenesis involves microsatellite instability (MSI), and is called the “mutator” pathway. The MSI pathway is present in approximately 15%-20% of sporadic CRCs\[4\].

Apart from their molecular differences, these two pathways present different clinical behaviours and distinct histopathological features, as will be discussed below.

SUPPRESSOR OR CANONICAL PATHWAY

The “canonical” pathway is present in 80%-85% of colorectal carcinomas and it is assumed to follow the Fearon and Vogelstein approach. It is accepted that in the majority of cases, carcinomas arise from pre-existing adenomas. Fearon and Vogelstein\[10\] proposed a model of colorectal carcinogenesis that correlates specific genetic events with evolving tissue morphology. As is shown in Figure 1, every step from the normal mucosa towards colorectal carcinoma involves specific and well-defined genetic alterations. This linear model has evolved to a more complex, comprehensive, and mechanistic approach\[10\]. However, in spite of the impact of new knowledge on the Fearon and Vogelstein scheme, the model as such still stands\[10\]. Alterations in tumour suppressor genes, such as APC, p53, and DCC, and in oncogenes, such as K-ras, are characteristic of this model and of the suppressor pathway. CIN tumours are also characterized by a high frequency of allelic imbalance (most commonly involving chromosomal arms 5q, 8p, 17p, and 18q), chromosomal amplifications, and translocations\[10\].

APC

The adenomatous polyposis coli (APC, 5q21) gene contains 15 exons and it is mutated in 60% and 82% of colon and rectal cancers, respectively\[9\]. Its best-known role is in the Wnt pathway, where it is part of a multiprotein complex that joins β-catenin and causes its phosphorylation, subsequent ubiquitination, and destruction in the proteosome. This complex is mainly constituted by APC, axin, and GSK3β. If this complex is disrupted, by multiple causes, β-catenin is not directed towards degradation and is available to translocate to the nucleus and co-activate several genes\[14\]. The list of Wnt target genes is quite long, but it is important to note some cell cycle regulating genes (γ-catenin, c-Myc), and some genes related to tumour progression (MMP-7, MMP-26). One of the main causes of disruption of the multiprotein complex is mutations in APC. These mutations interfere with binding to β-catenin and result in the Wnt pathways becoming constitutively active.

However, APC also plays Wnt-independent roles, whose alteration can also be related to carcinogenesis\[8\]. It participates in cytoskeletal regulation, as it has been shown to associate with microtubules and actin cytoskeleton, suggesting that one role for APC may be in regulating directed cell migration\[12\]. APC also has a role in mitosis. APC has been reported at kinetochores, where it might promote correct chromosomal alignment\[3\] and at centrosomes, where it could influence centrosome duplication\[11\]. It has been described that APC deficient cells cannot properly detect chromosomal abnormalities during anaphase\[8\]. Therefore, loss of APC might interfere with the correct regulation of mitosis and contribute to CIN\[3\]. Inactivation of APC has also been related to the promotion of tumorigenesis, through loss of cell adhesion\[18\]. It has been shown that a mutation in APC in mice can decrease the level of E-cadherin at the cell membrane\[18\].

Thus, we can consider that mutations in APC are a frequent early event in the carcinogenesis of CCR and APC is related to carcinogenesis at different levels: its activity in the Wnt pathway, its relation with the cytoskeleton, its role in chromosome segregation and, finally, its role in adhesion.

K-ras

K-ras is a proto-oncogene located at 12p12.1 that encodes a 21-kDa GTP-binding protein. K-ras is frequently mutated during the very early stages of colorectal cancer development (35%-42% of colorectal cancers and advanced adenomas present mutations on this proto-oncogene)\[17\]. When it is bound to GTP, the ras protein is active. This protein is involved in many different processes. It activates a large number of transduction signal pathways, among them the mitogen-activated protein kinases (MAPK) pathway. Recently, it has been demonstrated that mutant K-ras promotes hyperplastic growth in the colonic epithelium (signalling through MEK) and suppresses differentiation in APC-mutant colon cancers\[18\]. It also regulates epithelial cell polarity. During the development of CRC, epithelial cells can lose their polarity and it has been described that...
an acquired mutation in \textit{K-ras} reduces adherens junction-mediated cell–cell contacts\cite{20}.

\textbf{DCC}

\textit{DCC} (deleted in colorectal cancer) is located at 18q21.1 and has been proposed as a tumour suppressor gene. About 70\% of colorectal cancers show allelic losses in \textit{DCC}\cite{19}; some cancers had somatic mutations of this gene, and its expression is often reduced in colorectal cancer tissues and cell lines\cite{21}. The DCC protein is a transmembrane receptor of the Ig superfamily for netrins, factors involved in axon guidance in the developing nervous system. However, DCC has a role not only in axon guidance, but in intracellular signalling. Chen \textit{et al.}\cite{22} demonstrated that the wild-type DCC, but not the mutant, induced apoptosis and activated caspase-3, and that DCC expression induces a rapid G2/M cell cycle arrest in some cell lines. DCC was also shown to activate Rac-1 when netrin-1 is present\cite{23}; thus it is implicated in actin organization and cell motility. As reviewed by Mehlen and Fearon\cite{24}, transgenic mice expressing a constitutive form of Rac-1 in the intestine showed differentiation of the epithelium with accompanying alterations in their apical actin. Hence, DCC-mediated Rac-1 activation might be important for epithelium differentiation.

\textbf{p53}

\textit{p53} is encoded by the \textit{TP53} gene located on 17p13.1. Its expression is abnormal in more than 50\% of human tumours\cite{25}. Mutation or loss of \textit{p53} usually occurs at the time of the transition from adenoma to cancer in the Fearon and Vogelstein sequence. As reviewed by Worthley\cite{26}, the frequency of \textit{p53} abnormalities increases with the progression of the lesion. Thus, the alterations are found in 4\%–26\% of adenomas, 50\% of adenomas with invasive foci, and in 50\%–75\% of CRCs\cite{27,28}. \textit{P53} protein induces G1 cell-cycle arrest to facilitate DNA repair during replication of cells exposed to environmental or oncogenic stress\cite{29}. When DNA damage is too great to be repaired, it can induce apoptosis and this is considered a major pathway whereby \textit{p53} exerts its tumour suppressor function\cite{30}.

\textbf{MSI PATHWAY}

\textit{Molecular alterations}

The MSI, or mutator pathway, is present in approximately 15\%–20\% of sporadic CRCs. MSI tumours (also called Replication ERor, RER+) are characterized by a huge accumulation of mutations (mutation rates in these tumour cells are 100–1000-fold more common compared to normal cells\cite{31}) in microsatellite sequences (High Microsatellite Instability, MSI-H). Microsatellites are short sequences repeated in tandem throughout the genome\cite{32,33}. This accumulation of frameshift mutations is caused by a primary defect in the mismatch repair (MMR) genes (Figure 2). There are at least seven genes in the MMR system: \textit{hMLH1}, \textit{hMLH3}, \textit{hMSH2}, \textit{hMSH3}, \textit{hMSH6}, \textit{hPMS1} and \textit{hPMS2}\cite{34}. When MMR proteins are functional, errors made by DNA polymerase in microsatellite sequences during replication, are repaired. The acquisition of thousands of mutations characteristic of the MSI-H phenotype, requires the inactivation of the MMR genes\cite{35}. Germline mutations, or epigenetic changes, in \textit{hMLH1} (mainly silencing caused by methylation) and \textit{hMSH2} are the most common cause of MSI-H in sporadic CRC (and in HNPCC, Hereditary Non Polyposis Colorectal Cancer). \textit{hMSH6} mutations are less frequent and alterations of the other MMR genes are very rare\cite{36}. These data enforce the idea that loss of \textit{hMLH1} and \textit{hMSH2} is associated with complete inactivation of MMR, whereas defects in other proteins cause only a partial MMR deficiency\cite{37}.

MSI-H sporadic colorectal cancers do not show big cytogenetic abnormalities and are usually not aneuploid\cite{38}. This type of tumour presents reduced frequency, or absence, of mutation or allelic losses at the genes usually altered in the “suppressor” pathway, \textit{APC, K-ras} and \textit{p53}, and loss of heterozygosity at 5q, 17p, and 18q\cite{39}. Instead, mutations are described in microsatellite sequences present in genes implicated in colorectal carcinogenesis, such as \textit{TGFβRI}\cite{40}, \textit{IGF2R}\cite{41}, \textit{BAX}\cite{42}, \textit{MSH3}\cite{43}, \textit{MSH6}\cite{44}, \textit{caspase 5}\cite{45}, \textit{APC}\cite{46}, \textit{B-catenin}\cite{47}, \textit{Tcf-4}\cite{48}, \textit{axin}\cite{49}, \textit{MMP-3}\cite{50}, \textit{E2F1}\cite{51}, \textit{BCL-10}\cite{52}, \textit{obs-2}\cite{53}, and \textit{b-ARMS}\cite{54} (See Table 1 for further information). Additionally, a number of normally

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Pathways.png}
\caption{Molecular alterations in the suppressor pathway.}
\end{figure}
functioning genes are silenced by methylation. Most sporadic MSI-H cancers show the CpG island methylator phenotype, characterised by widespread DNA hypermethylation\(^{33}\).

Defining MSI-H tumours

International consensus criteria for classifying a tumour as MSI-H were established in 1998\(^{45}\). A panel of five microsatellite sequences was proposed for defining the MSI-H tumour groups. The recommended panel is composed of two mononucleotide repeats (BAT26 and A4725) and three dinucleotide repeats (D5S346, D2S123, and D17S250). MSI-H tumours are defined as having instability in two or more markers, whereas MSI-L tumours are defined as having instability in one marker. Microsatellite stability (MSS) is defined by no instability at those five loci. It is also important to stress that instability is defined as a change of any length due to either insertion or deletion of repeating units, in a microsatellite within a tumour, when compared to normal tissue.

Clinical and histopathological characteristics

One of the most important and intriguing characteristics of individuals with MSI-H tumours is that they have distinct clinical and histopathological features. This is why it is so important to determine a patient’s carcinogenic pathway. Samowitz et al\(^{46}\) reported that MSI-H was more frequent in individuals with colorectal cancer diagnosed before the age of 55 or over the age of 70, than in those between 55 years and 70 years of age. However, these data have not been confirmed by other authors\(^{47,49}\). MSI-H tumours are located predominantly in the right-sided colon\(^{46,52}\) and have generally been reported more frequently in women\(^{46,53}\). It has been proposed that the analysis of MSI in CRCs might be helpful in predicting the development of metastatous multiple colorectal carcinomas\(^{54}\).

MSI-H colorectal tumours typically present with a greater depth of invasion but with a lower overall stage\(^{46,52}\). MSI has also been associated with the presence of local lymphocyte infiltration and low frequency of distant metastases\(^{48,50,55}\). In spite of its longer survival after surgical resection (see below, in MSI-H and prognosis), MSI-H carcinomas tend to be poorly differentiated\(^{55}\). Some studies have demonstrated that MSI-H occurs more frequently in mucinous-cell type tumours\(^{33,36,37}\), but others have not found any difference in histological cell type\(^{49}\). The absence of dirty necrosis is also associated with MSI-H\(^{38}\). However, as reviewed in Raut\(^{47}\), it is not yet possible to use a single pathological feature to diagnosis MSI-H. Greenson et al\(^{52}\) have recently developed a model that permits pathologists to predict the likelihood of MSI using a combination of simple histological and clinical data (mucinous differentiation, lymphocyte infiltration, and dirty necrosis).

MSI-H and prognosis

Many authors have reported a better outcome for MSI-H tumours (whether sporadic or inherited) than those with MSI-L or MSS tumours\(^{46,47,59-62}\), though others have not\(^{33,43}\). The prognostic advantage conferred by the presence of high instability has been shown to be most evident in stage II and III disease\(^{35}\). Individuals with distant metastases present (stage IV) showing MSI-H in the TGF-βR II gene (transforming growth factor-β receptor II) had improved prognosis as compared with those with native TGF-βR II\(^{46}\). Moreover, MSI status is considered to be predictive of a favourable outcome, independent of tumour stage and of patient treatment\(^{39}\). Therefore, the MSI-H phenotype is associated with a good prognosis, independently of the molecular biology (germ line mutations or transcriptional silencing via hypermethylation) provoking it\(^{32}\). In the short term, therapeutic decisions might be taken in MSI-H patients considering this differential prognosis. For example, Benatti et al\(^{50}\) demonstrated that 5-FU-based chemotherapy does not seem to provide survival benefits among patients with MSI-H tumours, so the use of 5-FU in patients with MSI-H tumours should be limited to avoid harmful side effects of unnecessary chemotherapeutic regimens.

Classification of colorectal cancer by MSI status might also have prognostic value in patients undergoing curative surgery, as suggested by Banerjea\(^{43}\). MSI-H cancers display enhanced immunogenic properties and this might contribute to their better prognosis.
Table 1 Genes with microsatellite instability in their coding sequences. Adapted from reference [75].

Gene	Function	Coding repeat
ACTRII	Growth/differentiation factor receptor	(A) 8
AIM2	IFN inducible	(A) 10
AXIN-2	Wnt signaling	(A) 6*2, (G) 7, (C) 6
BAX	Proapoptotic factor	(G) 8
BCL-10	Proapoptotic factor	(A) 8
BLM	Response to DNA damage	(A) 9
Caspase-5	Proapoptotic factor	(A) 10
CDX2	Homeobox transcription factor	(G) 7
CHEK1	Response to DNA damage	(A) 9
FAS	Proapoptotic factor	(T) 7
GRB-14	Growth factor bound protein	(A) 9
hG4-1	Cell cycle	(A) 9
IGFIR	Growth factor receptor	(G) 8
KIAA0977	Homologue to mouse cordon bleu	(T) 9
MBD-4	DNA glycosylase and methyl CpG binding protein	(A) 10
MLH3	MMR	(A) 9
MSH3	MMR	(A) 8
MSH6	MMR	(C) 8
NADH-IUB8	NADH ubiquinone oxidoreductase	(T) 9
OGT	O-linked GlcNAc transferase	(T) 10
PTEN	Cell cycle	(A) 6*2
RAD-50	Response to DNA damage	(A) 9
RHAMM	Cell motility	
RIZ	Cell cycle and apoptotic protein	(A) 8, (A) 9
SEC63	ER membrane protein	(A) 10, (A) 9
SLC23A1	Nucleobase transporter	(C) 9
TCF-4	Transcription factor (Wnt pathway)	(A) 9
TGFBR II	Growth factor receptor	(A) 10
WISP-3	Growth factor (Wnt pathway)	(A) 9

MSI-H VS MSI-L

As mentioned above, MSI-L tumours (also called mild mutator phenotype) are defined as having instability in one marker out of the five consensus microsatellite sequences (as defined by Boland in 1998[40]). However, not everybody defines MSI-L with the same criteria. The distinction between MSI-H and MSI-L depends on both the type and the number of microsatellites analyzed. For example, mononucleotide markers, such as B:AT26 and B:AT40, are relatively specific for MSI-H cancers[40]. This is the reason why some groups use specific markers, such as MYCL, for defining MSI-L tumours.

MSI-L tumours have been considered by some authors to be halfway between MSI-H and MSS. However, MSI-L colorectal tumours do not show clear differences in their clinicopathological features when compared with the classical “suppressor” tumours[40]. Yersley et al[37] found no difference between MSI-L vs MSS using clinical and histological parameters such as percentage of mucin, histological type, grade, and lymphoid host response. Moreover, its molecular characteristics are more similar to those from MSS than MSI-H tumours (reviewed in[40]). For example, it has been described that LOH at 1p32, 2p16, 7q31, 8p12-22, and 17q11 is more frequent in MSI-L than in MSI-H[46-48] and that K-ras mutations occur more frequently in MSI-L carcinomas than in MSI-H colorectal tumours, with no difference in frequency between MSS and MSS-L cancers, by some authors[46,48]. The rate of K-ras mutation is higher in the MSI-L group than in the stable cancers[49]. Analysis of mutations in MSI-H target genes revealed that they are absent in MSI-L tumours[47].

Some authors have even wondered about the real existence of the MSI-L group of tumours[49]. However, Jass and others defended the notion that MSI-L is a separate group of tumours, arguing that when a panel of sensitive markers is used, approximately 8% of sporadic colorectal cancers can be classified as MSI-L[40,73]. Others authors have demonstrated the existence of specific markers for MSI-L, such as MYCL and D21213, which are mutated at a higher rate outside the MSI-H subset[44].

In conclusion, we can consider that MSI-L CRCs are indistinguishable from MSS using most clinicopathological parameters. However, these tumours can be validated as a distinct molecular phenotypic category, as they present molecular alterations different from MSI-H and MSS (reviewed in reference [4]).

SPORADIC MSI-H TUMOURS VS HNPCC

HNPCC (Lynch syndrome) constitutes approximately 2%-4% of all CRC cases[74]. The presence of MSI is also a hallmark of this type of hereditary cancer. However, the molecular mechanism causing MSI-H is different in sporadic CRC than in HNPCC. In sporadic CRCs, MSI-H is provoked mainly by epigenetic silencing (hypermethylation) on hMLH1, whereas in HNPCC is more frequent a germ line mutation in an MMR gene, followed by a “second hit”.

Most of the molecular characteristics of sporadic MSI-H tumours and HNPCCs are similar. However, some small differences have been described recently. Oliveira et al[75] demonstrated the presence of distinct patterns of K-ras mutations in cancers according to hMLH1 methylation status and germ line DNA MMR defects. BRAF mutations (a serine/threonine kinase involved in the RAS/RAF/MAPK pathway) in a specific hotspot site have been more frequently detected in sporadic MSI-H tumours than in HNPCCs[79].

There is no difference in overall survival amongst MSI-H patients with HNPCC and those with sporadic CRC[57].

CONCLUSION

Sporadic colorectal cancers can be classified in two clearly different subtypes, according to the molecular events that give rise to the tumour. The first one is the so-called canonical, CIN or suppressor pathway. It is the most frequent pathway and it is characterized by mutation or deletion of K-ras, APC, DCC, and p53, among others genes. The specific genetic events that occur during this pathway have clear correlations with evolving tissue morphology. The second pathway is the mutator or MSI-H pathway,

Morán A et al. Differential colorectal carcinogenesis
REFERENCES

1 Data obtained from: The American Cancer Society. Available from: URL: http://www.cancer.org/downloads/stt/CFF2O1EstColCancer.pdf

2 Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol 2007; 18: 581-592

3 Worthley DL, Whitehall VL, Spring KJ, Leggett BA. Colorectal carcinogenesis: road maps to cancer. World J Gastroenterol 2007; 13: 3784-3791

4 Imai K, Yamamoto H. Carcinogenesis and microsatellite instability: the interrelationship between genetics and epigenetics. Carcinogenesis 2008; 29: 673-680

5 Fearon ER, Vogelstein B. A genetic model for colorectal tumorigenesis. Cell 1990; 61: 759-767

6 Gatenby RA, Vincent TL. An evolutionary model of carcinogenesis. Cancer Res 2003; 63: 6212-6220

7 Arends J, Molecular interactions in the Vogelstein model of colorectal carcinoma. J Pathol 2000; 190: 412-416

8 Pawlik TM, Raut CP, Rodriguez-Bigas MA. Colorectal carcinogenesis: MSI-H versus MSI-L. Dis Markers 2004; 20: 199-206

9 Jass JR. Pathogenesis of colorectal cancer. Surg Clin North Am 2002; 82: 891-904

10 Barker N. The canonical Wnt/beta-catenin signalling pathway. Methods Mol Biol 2008; 468: 5-15

11 Rusan NM, Peifer M. Original ClN: reviewing roles for APC in chromosome instability. J Cell Biol 2008; 181: 719-726

12 Nathke IS, Adams CL, Pulakis P, Sellin JH, Nelson WJ. The adenomatous polyposis coli tumor suppressor protein localizes to plasma membrane sites involved in active cell migration. J Cell Biol 1996; 134: 165-179

13 Green RA, Wollman R, Kaplan KB. APC and EBI function together in mitosis to regulate spindle dynamics and chromosome alignment. Mol Cell Biol 2005; 15: 4609-4622

14 Draviam VM, Shapiro I, Aldridge B, Sorger PK. Misorientation and reduced stretching of aligned sister kinetochores promote chromosome missegregation in EB1- or APC-depleted cells. EMBO J 2006; 25: 2814-2827

15 Senda T, Iizuka-Kogo A, Onouchi T, Shimomura A. Adenomatous polyposis coli (APC) plays multiple roles in the intestinal and colorectal epithelia. Mol Mol Pathol 2007; 40: 68-81

16 Carothers AM, Melstrom KA Jr, Mueller JD, Weyant MJ, Bertagnolli MM. Progressive changes in adherens junction structure during intestinal adenoma formation in APC mutant mice. J Biol Chem 2001; 276: 39094-39102

17 Leslie A, Carey FA, Pratt NR, Steele RJ. The colorectal adenoma-carcinoma sequence. Br J Surg 2002; 89: 845-860

18 Haigis KM, Kendall KR, Wang Y, Cheung A, Haigis MC, Glickman JN, Niwa-Kawakita M, Sweet-Cordero A, Sebolt-Leopold J, Shannon KM, Settleman J, Giovannini M, Jacks T. Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon. Nat Genet 2008; 40: 600-608

19 Smakman N, Borel Rinkes IH, Voest EE, Kranenburg O, Control of colorectal metastasis formation by K-Ras. Biochem Biophys Acta 2005; 1756: 103-114

20 Takayama T, Miyanishi K, Hayashi T, Sato Y, Niitsu Y. Colorectal cancer: genetics of development and metastasis. J Gastroenterol 2006; 41: 185-192

21 Meulen P, Fearon ER. Role of the dependence receptor DCC in colorectal cancer pathogenesis. J Clin Oncol 2004; 22: 3420-3428

22 Chen YQ, Hsieh JT, Yao F, Fang B, Pong RC, Cipriano SC, Keepfat F. Induction of apoptosis and G2/M cell cycle arrest by DCC. Oncogene 1999;18: 2747-2754

23 Shekarabi M, Kennedy TE. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol Cell Neurosci 2002; 19: 1-17

24 Munro AJ, Lain S, Lane DP. p53 abnormalities and outcomes in colorectal cancer: a systematic review. Br J Cancer 2005; 92: 434-444

25 Pietzsch EC, Sykes SM, McMahon SB, Murphy ME. The p53 family and programmed cell death. Oncogene 2008; 27: 6507-6521

26 Thibodeau SN, Bren G, Schaid D. Microsatellite instability in cancer of the proximal colon. Science 1993; 260: 816-819

27 Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perouch M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colon carcinogenesis. Nature 1993; 363: 558-561

28 Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature 2001; 411: 366-734

29 Eshleman JR, Casey G, Kochera ME, Sedwick WD, Swinler SE, Veigl ML, Willson JK, Schwartz S, Markowitz SD. Chromosome number and structure both are markedly stable in RER colorectal cancers and are not destabilized by mutation of p53. Oncogene 1998; 17: 719-725

30 Jass JR, Walsh MD, Bakerer M, Simms LA, Young J, Leggett BA. Distinction between familial and sporadic forms of colorectal cancer showing DNA microsatellite instability. Eur J Cancer 2002; 38: 858-866

31 Markowitz S, Wang J, Myeroff L, Parsons R, Lunn L, Lutter-Baugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B. Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336-1338

32 Souza RF, Appel R, Yin J, Wang S, Smolinski KN, Abraham JM, Zou TT, Shi QY, Lei J, Cottrell J, Cymes K, Biden K, Simms L, Leggett B, Lynch PM, Frazier M, Powell SW, Harpaz N, Sugimura H, Young J, Meltzer SJ. Microsatellite instability in the insulin-like growth factor II receptor gene in gastrointestinal tumours. Nat Genet 1996; 14: 255-257

33 Rampino N, Yamamoto H, Ionov Y, Li Y, Sawai H, Reed JC, Perucchini M. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 1997; 275: 967-969

34 Yamamoto H, Sawai H, Perucchini M. Frameshift somatic mutations in gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 1997; 57: 4420-4426

35 Schwartz S Jr, Yamamoto H, Navarro M, Maestro M, Revoretos J, Perucchini M. Frameshift mutations at mononucleotide repeats in caspa5 and other target genes in endometrial and gastrointestinal cancer of the microsatellite mutator phenotype. Cancer Res 1999; 59: 2905-3002

36 Fang DC, Luo YH, Yang SM, Li XA, Ling XL, Fang L. Mutation analysis of APC gene in gastric cancer with microsatellite instability. World J Gastroenterol 2002; 8: 787-791

37 Kitaeava MN, Grogan L, Williams JP, Dimond E, Nakahara K, Hausper P, DeNobile JW, Soballe PW, Kirsch IR. Mutations in beta-catenin are uncommon in colorectal cancer occurring in occasional replication-error-positive tumors. Cancer Res 1997; 57: 4478-4481
features in colorectal cancer patients with microsatellite instability. *Mutat Res* 2004; 568: 275-282

53 Ward R, Meagher A, Tomlinson I, O’Connor T, Norrie M, Wu R, Hawkins N. Microsatellite instability and the clinicopathological features of sporadic colorectal cancer. *Gut* 2001; 48: 821-829

54 Masubuchi S, Konishi F, Togashi K, Okamoto T, Senba S, Shitoh K, Kashiwagi H, Kanazawa K, Tsukamoto T. The significance of microsatellite instability in predicting the development of metachronous multiple colorectal carcinomas in patients with nonfamilial colorectal carcinoma. *Cancer* 1999; 85: 1917-1924

55 Buckowitz A, Knobel HP, Benner A, Bläker H, Gebert J, Kienel P, von Knobel Dobermitz, H, Kloor M. Microsatellite instability in colorectal cancer is associated with local lymph node infiltration and low frequency of distant metastases. *Br J Cancer* 2005; 92: 1746-1753

56 Leopoldo S, Lorena B, Cinzia A, Gabriella DC, Angela Luciana B, Renato C, Antonio M, Carlo S, Cristina P, Stefano C, Maurizio T, Luigi R, Cesare B. Two subtypes of mucinous adenocarcinoma of the colorectum: clinicopathological and genetic features. *Am Surg Oncol* 2008; 15: 1429-1439

57 Yearsley M, Hampel H, Lehman A, Nakagawa H, de la Chapelle A, Frankel WL. Histologic features distinguish microsatellite-high from microsatellite-low and microsatellite-stable colorectal carcinomas, but do not differentiate germline mutations from methylation of the MLH1 promoter. *Hum Pathol* 2006; 37: 831-838

58 Greenwood JK, Huang SC, Herron C, Moreno V, Bonner JD, Tomsho LP, Ben-Izhak O, Cohen HI, Trougouboff B, Bejar J, Sova Y, Pinchev M, Rennert G, Gruber SB. Pathologic predictors of microsatellite instability in colorectal cancer. *Am J Surg Pathol* 2009; 33: 126-133

59 Watanabe T, Wu TT, Catalano PJ, Ueki T, Satriano R, Haller DG, Benson AB 3rd, Hamilton SR. Molecular predictors of survival after adjuvant chemotherapy for colon cancer. *N Engl J Med* 2001; 344: 1196-1206

60 Elsaleh H, Iacopetta B. Microsatellite instability is a predictive marker for survival benefit from adjuvant chemotherapy in a population-based series of stage III colorectal cancer. *Clin Colorectal Cancer* 2001; 1: 104-109

61 Guidoboni M, Gafà R, Viel A, Doglioni C, Russo A, Santini A, Del T, Maici E, Lanza G, Boiocchi M, Dolcetti R. Microsatellite instability and high content of activated cytotoxic lymphocytes identify colon cancer patients with a favorable prognosis. *Am J Pathol* 2001; 159: 297-304

62 Benatti P, Gafà R, Barana D, Marino M, Scarselli A, Pedroni M, Maestri I, Guerzoni L, Roncucci L, Menegatti M, Roncari B, Maffei S, Ross G, Ponti G, Santini A, Losi L, Di Gregorio C, Oliani C, Ponzo de Leon M, Lanza G. Microsatellite instability and colorectal cancer prognosis. *Clin Colorectal Cancer* 2005; 11: 833-8340

63 Ko JM, Cheung MH, Kwan MW, Wong CM, Lau KW, Tang CM, Lung ML. Genomic instability and alterations in Apc, Mcc and Dcc in Hong Kong patients with colorectal carcinoma. *Int J Cancer* 1999; 84: 404-409

64 Salahshor S, Kressner U, Fischer H, Lindmark G, Glimelius B, Lindblom A. Microsatellite instability in sporadic colorectal cancer is not an independent prognostic factor. *Br J Cancer* 1999; 8: 193-193

65 Banerjee A, Hands RE, Powar MP, Bustin SA, Dorudi S. Microsatellite and chromosomal stable colorectal cancers demonstrate poor immunogenicity and early disease recurrence. *Colorectal Dis* 2009; 11: 601-608

66 Laiho P, Launonen V, Laero M Posti, Esteller M, Guo M, Herman JG, Mecklin JP, Järvinen H, Sistonen P, Kim KM, Shibata D, Houlston RS, Aaltonen LA. Low-level microsatellite instability in most colorectal carcinomas. *Cancer Res* 2002; 62: 1166-1170

67 Kambara T, Matsubara N, Nakagawa H, Notohara K, Nagasaka T, Yoshino T, Isozaki H, Sharp GB, Shimizu K, Jass J, Tanaka N.
Morán A et al. Differential colorectal carcinogenesis

High frequency of low-level microsatellite instability in early colorectal cancer. Cancer Res 2001; 61: 7743-7746

68 Gebert J, Sun M, Ridder R, Hinz U, Lehnert T, Möller P, Schackert HK, HerfARTH C, von Knebel Doeberitz M. Molecular profiling of sporadic colorectal tumors by microsatellite analysis. Int J Oncol 2000; 16: 169-179

69 Jass JR, Biden KG, Cummings MC, Simms LA, Walsh M, Schoch E, Meltzer SJ, Wright C, Searle J, Young J, Leggett BA. Characterisation of a subtype of colorectal cancer combining features of the suppressor and mild mutator pathways. J Clin Pathol 1999; 52: 455-460

70 Tomlinson I, Haldorff S, Aaltonen L, Hawkins N, Ward R. Does MSI-low exist? J Pathol 2002; 197: 6-13

71 Jass JR, Whitehall VL, Young J, Leggett B, Meltzer SJ, Matsubara N, Fishel R. Correspondence re: P. Laiho et al., Low-level microsatellite instability in most colorectal carcinomas. Cancer Res, 62: 1166-1170, 2002. Cancer Res 2002; 62: 5988-5989; author reply 5989-5990

72 Umar A. Lynch syndrome (HNPCC) and microsatellite instability. Dis Markers 2004; 20: 179-180

Oliveira C, Wostra JL, Arango D, Ollikainen M, Domingo E, Ferreira A, Velho S, Niessen R, Lagerstedt K, Alhopuro P, Laiho P, Veiga I, Teixeira MR, Litenberg M, Kleibeuker JH, Sijmons RHJ, Pluukker JT, Imai K, Lage P, Hamelin R, Albuquerqu C, Schwartz S Jr, Lindblom A, Peltomaki P, Yamamoto H, Aaltonen LA, Sruca R, Hofstra RM. Distinct patterns of KRAS mutations in colorectal carcinomas according to germline mismatch repair defects and hMLH1 methylation status. Hum Mol Genet 2004; 13: 2303-2311

74 Deng G, Bell I, Crawley S, Gum J, Terdiman JP, Allen BA, Truta B, Silsenger MH, Kim YS. BRAF mutation is frequently present in sporadic colorectal cancer with methylated hMLH1, but not in hereditary nonpolyposis colorectal cancer. Clin Cancer Res 2004; 10: 191-195

75 Duval A, Hamelin R. Mutations at coding repeat sequences in mismatch repair-deficient human cancers: toward a new concept of target genes for instability. Cancer Res 2002; 62: 2447-2454