Safety and arch complications after hemiarch versus total arch replacement with stented elephant trunk in acute type 1 dissection: Is a stent graft always beneficial?

Jun Hayashi, MD, PhD,a Hiroyuki Nakajima, MD, PhD,a Toshihisa Asakura, MD, PhD,a Ri Sho, PhD,b Chiho Tokunaga, MD, PhD,a Akitoshi Takazawa, MD,a and Akihiro Yoshitake, MD, PhDb

ABSTRACT

Objective: We aimed to determine the efficacy of total arch replacement with stented elephant trunk by comparing it with hemiarch replacement with and without open stent graft for acute aortic dissection type 1.

Methods: We reviewed records of 177 patients who underwent hemiarch replacement (HAR group) (concomitant open stent, 125) and 98 patients who underwent total arch replacement (TAR group) (concomitant stented elephant trunk, 91) for acute type 1 dissection. Compared with the TAR group, the HAR group was older (68.1 vs 60.9 years; P < .01) and had more thrombosed false lumen (28.8% vs 4.1%, P < .01).

Results: In-hospital death occurred for 7 patients in the HAR group and 1 patient in the TAR group (P = .17). More patients in the TAR group had a postoperative thrombosed false lumen, compared with the HAR group (68% vs 54%, P = .03). In patients with preoperative nonthrombosed false lumen in the HAR group, the rate of postoperative thrombosis was significantly lower than with versus without an open stent (31% vs 65%, P = .01). The rate of freedom from an aortic arch event in the TAR group at 5 years was significantly greater than that in the HAR group (100% vs 83.7%, P = .01).

Conclusions: Stented elephant trunk with TAR provided a high rate of false lumen thrombosis and a low incidence of arch events, whereas an open stent during HAR was not beneficial in terms of false lumen thrombosis and arch event prevention. (JTCVS Open 2022;11:14-22)

CENTRAL MESSAGE

For type 1 aortic dissection, total arch replacement with stented elephant trunk should be considered first because of the lower incidence of arch complications, compared with hemiarch replacement.

PERSPECTIVE

For patients who can tolerate longer cardiopulmonary bypass and circulatory arrest time, and have extensive branch dissection and narrowed true lumen, total arch replacement should be considered first to avoid a late aortic event and to ensure early survival. Open stent graft insertion concomitant with hemiarch arch replacement was not a reliable alternative for these patients.
In total arch replacement (TAR) for acute aortic dissection (AAD) DeBakey type 1, implantation of stented elephant trunk (ET) in the descending aorta may depressurize the false lumen by the closure of the intimal tear.1 To obtain such outcomes with minimal surgical risk, previous reports have described the benefit of antegrade open stent grafting (OS) combined with hemiarch replacement (HAR).2,3 Since 2007, we have used the approach of OS concomitant with HAR and stented ET with TAR. In this study, we examined the detailed characteristics of AAD DeBakey type 1, including the false lumen status and the extent of dissection to the cervical and the abdominal branches. The purpose of this study was to examine the clinical outcomes of TAR with stented ET and those of HAR with and without OS to establish the indication for each procedure.

METHODS

Patients

We reviewed the clinical records of 275 consecutive patients who underwent surgical treatment for AAD DeBakey type 1 within 14 days after the onset between June 2007 and December 2017. Patients who had DeBakey type 2 and 3b retrograde dissection were excluded. For all these patients, the intimal tear was located in the ascending aorta or the aortic arch proximal to the origin of the subclavian artery. This retrospective study was approved by the institutional review board of the Saitama Medical University International Medical Center, which waived the requirement for written informed consent because this was a retrospective observational study (approval date: January 8, 2018; approval number: number 18-102).

The HAR group consisted of a total of 177 patients who had undergone HAR, defined as an oblique resection of minor curvature of the aortic arch for an entry in the aortic arch; patients who underwent ascending aorta replacement; and patients with the reconstruction of 1 or 2 cervical vessels (Table 1). Of these 177 patients, 125 (71%) underwent antegrade implantation of OS (HAR-OS subgroup), whereas 52 (29%) did not undergo OS implantation (HAR-only subgroup). The TAR group consisted of 98 patients who had undergone replacement of the ascending aorta and aortic arch with reconstruction of 3 cervical vessels. Stented ET was concomitantly implanted in 91 (93%) patients. For the remaining 7 patients, stented ET was not considered beneficial because of the completely thrombosed false lumen.

Table 1. Baseline patient characteristics

	HAR 177	TAR 98	P value	HAR-OS 125	P value
Age, y, mean ± SD	68.1 ± 11.7	60.9 ± 12.3	.01	70.1 ± 11.5	.15
Male sex, n (%)	89 (50.3)	60 (63.3)	.04	26 (50.0)	.96
Renal failure (creatinine >1.5 mg/dL)	19 (10.7)	15 (15.3)	.27	5 (9.6)	.76
Hemodialysis	5 (2.8)	4 (4.1)	.57	1 (1.9)	.64
Ejection fraction, %	73.8 ± 10.5	69.1 ± 12.6	.01	71.4 ± 12.1	.05
Aortic valve insufficiency (moderate or greater)	40 (22.6)	29 (32.2)	.26	11 (21.2)	.7
Preoperative complications					
Cardiac tamponade	23 (13.0)	6 (6.1)	.08	9 (17.3)	.27
Stroke/coma	17 (9.6)	12 (12.2)	.49	7 (13.5)	.26
Mechanical ventilation	15 (8.5)	5 (5.1)	.30	4 (7.7)	.81
Malperfusion or stenosis of branched artery					
Coronary artery	8 (4.6)	4 (4.1)	.86	4 (7.8)	.18
Celiac or mesenteric artery	13 (7.3)	18 (18.6)	<.01	3 (5.8)	.66
Renal artery	15 (8.5)	17 (17.5)	.04	3 (5.8)	.46
Thromosed false lumen	51 (28.8)	4 (4.1)	<.01	15 (29.4)	.95
Diameter of ascending aorta	49.6 ± 6.2	48.1 ± 6.2	.07	51.1 ± 7.0	.06
Cervical branch dissection	95 (53.7)	68 (69.4)	.02	27 (51.9)	.78
Location of primary entry					.58
Ascending aorta	149 (84.2)	55 (56.1)	<.01	45 (86.5)	.58
Aortic arch, proximal to subclavian artery	28 (15.8)	43 (43.9)	<.01	7 (13.5)	.58

Abbreviations and Acronyms

AAD = acute aortic dissection
CT = computed tomography
ET = elephant trunk
HAR = hemiarch replacement
OS = open stent grafting
SINE = stent graft–induced new entry
TAR = total arch replacement
false lumen of the descending aorta in 5 patients, preoperative cardiogenic shock in 1 patient, and aberrant right subclavian artery in 1 patient.

Computed tomography (CT) was evaluated by at least 2 surgeons before the emergent operation. The location of the intimal tear, the status of the false lumen, and the extent of the dissection were confirmed. Preoperative CT was retrospectively re-evaluated for data collection in this study. The status of the false lumen was classified as thrombosed or nonthrombosed. In preoperative evaluation, “thrombosed” was defined as a false lumen in the ascending aorta, with the arch and descending not opacified using the CT contrast medium in the early and late phases. In postoperative evaluation, “thrombosed” was defined as the thrombosed false lumen in the descending aorta at the level of the aortic valve.

Surgical Management

Our standard approach for AAD type 1 was emergent surgical repair, which was usually performed immediately after arrival. Our strategy for AAD has been the following: HAR was chosen when the primary entry was sufficiently resected, for patients older than 75 years, for those with thrombosed false lumen or cardiac risk, and for cases in which additional procedures such as aortic root replacement or coronary artery bypass grafting were necessary, whereas TAR tended to be chosen for patients with stenosis of the true lumen in the descending and abdominal aorta or cervical vessels and when the surgeon had sufficient experience with TAR and AAD. In the latter period, TAR with stented ET was first considered for patients who had no considerable perioperative risk.

Standard cannulation sites were both femoral and right subclavian arteries. Cannulation techniques were the Seldinger technique for the femoral artery and anastomosis of an 8-mm artificial graft for the right subclavian artery. The left subclavian artery was occasionally chosen when the bypass to the left subclavian artery was necessary for TAR with stented ET. Cardiopulmonary bypass was instituted with bicaval drainage. Circulatory arrest was initiated under hypothermia of 22 to 27 °C. Cardioplegia was delivered retrogradely. Antegrade selective cerebral perfusion was performed with cannulation into the 3 branches. The primary entry was identified and resected in all the HAR group patients. For the TAR group patients, the primary entry was resected or excluded by the stented ET. After the distal anastomosis, systemic perfusion was restarted. During rewarming, proximal anastomosis and neck branch reconstruction were performed. The details of procedures were listed in Table 2.

Devices and Management of the Stent Graft

In the HAR group, a stent graft was routinely implanted until 2012, even when the false lumen was entirely thrombosed. The stent graft was implanted through an open distal technique and positioned such that the proximal end was located just distal to the left subclavian artery, and the distal end never exceeded the level of the aortic valve. The stent graft in the HAR group was not fixed or sutured with anywhere but was just placed separately from the artificial graft for the ascending aorta (Video 1). In the TAR group, additional stented ET was our standard procedure (Table 2). Stented ET was anastomosed with the artificial graft from the ascending aorta to the proximal descending aorta. The expected benefits of OS or stented ET were coverage of an unidentified small entry, an enlargement of the true lumen for abundant blood flow to the visceral arteries, and the landing zone for the deployment of a stent graft in the future.

Stent graft devices have been changed periodically as they evolve and receive approval for use. In the HAR group, the homemade stent graft for intraoperative use consisted of Ube woven noncoated thin graft (Junken Medical Co, Ltd) and Gianturco Z stent (William Cook Europe) until 2010, when the false lumen was entirely thrombosed. The stent graft was implanted through an open distal technique and positioned such that the proximal end was located just distal to the left subclavian artery, and the distal end never exceeded the level of the aortic valve. The stent graft in the HAR group was not fixed or sutured with anywhere but was just placed separately from the artificial graft for the ascending aorta (Video 1). In the TAR group, additional stented ET was our standard procedure (Table 2). Stented ET was anastomosed with the artificial graft from the ascending aorta to the proximal descending aorta. The expected benefits of OS or stented ET were coverage of an unidentified small entry, an enlargement of the true lumen for abundant blood flow to the visceral arteries, and the landing zone for the deployment of a stent graft in the future.

Stent graft devices have been changed periodically as they evolve and receive approval for use. In the HAR group, the homemade stent graft for intraoperative use consisted of Ube woven noncoated thin graft (Junken Medical Co, Ltd) and Gianturco Z stent (William Cook Europe) until 2010.
whereas the commercialized stent graft, Talent (Medtronic, Inc.), was used after 2011 with approval from the institutional review board (approval number: 09-019). To deploy in an antegrade manner during circulatory arrest, Talent was once released and inversely restored by knitting with 3-0 PROLENE. In the TAR group, stented ET was performed using the homemade stent graft before 2012 or a graft Frozenix (Japan Lifeline Co, Ltd) since 2012.

Follow-up Study
An aortic arch event was defined as an open surgery or an endovascular reintervention for pseudoaneurysm of distal anastomosis and for aneurysm formation, rupture, or stent graft–induced new entry (SINE) of the aortic arch or the proximal descending aorta, including aortic-related death. Approximately 55 mm or an increase in the diameter by 5 mm in 6 months was an indication for additional stent grafting or surgical intervention. This indication was strictly adhered to and did not change depending on initial surgical procedures. To examine the effect of OS and stented ET, surgical indication was strictly adhered to and did not change depending on initial surgical procedures. To examine the effect of OS and stented ET, surgical and endovascular interventions to dilatation or pseudoaneurysm of the proximal anastomosis at the ascending aorta and the aortic root and the dilatation of the descending aorta below the level of the aortic valve were excluded.

Statistical Analysis
Patient data were presented according to treatment assignment. Categorical variables, such as demographic characteristics and medical history, were summarized using the numbers and proportions and were compared using the Fisher exact test. Continuous variables were summarized using means and standard deviations and were compared using Student’s t test.

Longitudinal data were estimated by the Kaplan–Meier method and the difference of 2 groups was compared with the log-rank method. All statistical analyses were performed using JMP 14 (SAS Institute, Inc).

TABLE 3. Early and rate results

	HAR 177	TAR 98	P value*	HAR 177 (HAR-only) 52	TAR 98 (HAR-only) 125	P value† (TAR vs HAR-only)	
In-hospital mortality	7 (4.0)	1 (1.0)	.17	2 (3.9)	5 (4.0)	.96	
Within 30 d	5 (2.8)	1 (1.0)	.33	2 (3.9)	3 (2.4)	.6	
In-hospital morbidities							
New neurologic dysfunction	14 (7.9)	3 (3.1)	.12	3 (5.8)	11 (8.8)	.5	
Paraplegia or paralysis	1 (0.6)	1 (1.0)	.67	0 (0)	1 (0.8)	.52	
Cardiac complications	6 (3.4)	3 (3.1)	.88	3 (5.8)	3 (2.4)	.26	
Prolonged ventilation (>72 h)	86 (49)	47 (48)	.89	24 (46.2)	62 (50)	.64	
New dialysis	15 (8.5)	7 (7.1)	.7	2 (3.9)	13 (10.4)	.15	
ICU stay, d	12.7 ± 10.6	10.3 ± 12.4	.09	11.4 ± 10.0	13.3 ± 10.9	.28	.58
Late mortality	34 (19)	2 (2.0)	<.01	8 (15.4)	26 (20.8)	.4	<.01
Aortic-related death	4 (2.3)	0 (0)	.13	1 (1.9)	3 (2.4)	.85	.17
Late aortic arch event	22 (12)	1 (1.0)	<.01	1 (1.9)	21 (16.8)	<.01	.65
Dilatation/rupture of aortic arch	15 (8.5)	0 (0)	<.01	1 (1.9)	14 (11.2)	.04	.17
Pseudoaneurysm of distal anastomosis	3 (1.7)	0 (0)	.16	0 (0)	3 (2.4)	.26	–
Endoleak/stent graft induced new entry	4 (2.3)	1 (1.0)	.46	0 (0)	4 (3.2)	.19	.46

Cardiac complications included myocardial infarction, atrioventricular block, ventricular fibrillation, cardiac tamponade requiring drainage. HAR, Hemiarch replacement; TAR, total arch replacement; OS, open stent graft; ICU, intensive care unit. *HAR versus TAR. |HAR-only versus HAR-OS. | †TAR versus HAR-only. The P values were calculated with the Fisher exact test.

RESULTS

Baseline Characteristics

As shown in Table 1, the HAR group, patients included more women (P = .04), were significantly older (P < .01), and had more primary entry in the ascending aorta and more thrombosed false lumen (P < .01). The TAR group patients had more malperfusion or stenosis of the celiac or the mesenteric artery (P = .01) and the renal artery (P = .04), and had dissection of any of the cervical branches (P = .02). No significant differences were observed in other baseline characteristics and the operative data between the 2 groups (Table 1).

Early Results

Table 3 presents the clinical outcomes and the P values calculated with the Fisher exact test. Of 275 patients, 8 (2.9%) in-hospital deaths occurred. The early mortality rate was 4.0% (7/177) in the HAR group and 1.0% (1/98) in the TAR group (P = .17) (Table 3). In the HAR group, 7 (4.0%) patients died; the causes of death were low output syndrome in 3 patients, multiple organ dysfunction in 2, pneumonia in 1, and stroke in 1. In the TAR group, 1 patient died of multiple organ dysfunction due to malperfusion of the visceral arteries and lower extremity that was found preoperatively. No significant differences were observed in early complications between the groups (Table 3). New neurologic dysfunction was found in 14 (7.9%) patients in the HAR group and in 3 (3.1%) patients in the TAR group.
Late Results

Significant differences were noted in the follow-up periods between the HAR and TAR groups (3.7 ± 2.8, 2.6 ± 1.9; P < .01) and between the HAR-only and the HAR-OS subgroups (3.0 ± 3.0, 4.5 ± 2.8; P < .01) (Table 3). Late results showed 34 deaths in the HAR group and 2 deaths in the TAR group (P < .01) (Table 3 and Figure 1). In the HAR group, the causes of death were aorta related in 4 patients and nonaorta-related in 30 patients (respiratory failure in 9 patients, stroke in 7, heart failure in 4, malignancy in 2, and other causes in 8). In the TAR group, 2 deaths were nonaorta-related (heart failure in 1 patient and an unknown cause in 1 patient).

The rate of aortic arch event, defined as reintervention for pseudoaneurysm of distal anastomosis, for aneurysm formation, rupture, or SINE, and aortic-related death, was significantly greater in the HAR (12%, 22/177) versus the TAR group (1.0%, 1/98; P < .01) (Table 3 and Figure 2). Of the 19 patients who underwent additional surgery in the HAR group, 13 patients underwent TAR, 5 patients underwent thoracic endovascular aortic repair without debranching technique, and 1 patient underwent descending aorta replacement. In the TAR group, SINE occurred in 1 patient (1.0%) at the distal end of the stented ET, and additional thoracic endovascular aortic repair was performed 6 years after the primary surgery. Although the HAR group overall had a greater aortic event rate compared with the TAR group, no significant differences were found between the HAR-only subgroup (1.9%, 1/52) and TAR group (1.0%, 1/98; P = .65) (Table 3).

Considering the 22 late aortic arch events in the HAR group, 21 occurred in the HAR-OS subgroup, whereas 1 occurred in the HAR-only group (P < .01) (Table 3). In the HAR-OS subgroup, a type Ia endoleak and SINE were found in 1 patient each.

The 5-year survival rates for the HAR and the TAR groups were 74.8% and 96.9%, respectively (P < .01) (Figure 1). The rates of freedom from aortic arch event at 5 years were 83.7% in the HAR group and 100% in the TAR group (P = .01) (Figure 2). Although no significant difference was noted in the rate of survival between the HAR-OS and HAR-only subgroups at 5 years (73.7% vs 79.3%; P = .86), the rate of freedom from aortic arch event tended to be greater in the HAR-only subgroup (80.8% vs 95.7%; P = .06) (Figure 3).

Evaluation of Preoperative and Postoperative False Lumen Status

Both preoperative and postoperative contrast-enhanced CT were performed for 149 HAR group patients (84.2%) and 95 TAR group patients (96.9%). Postoperative contrast-enhanced CT was not performed in patients with renal dysfunction, poor systemic condition, or age older than 80 years. Postoperative thrombosed false lumen was achieved in 81 of 149 (54.4%) patients in the HAR group and in 65 of 95 (68.4%) in the TAR group (P = .03) (Figure 4, A). For patients with preoperative nonthrombosed false lumen, postoperative thrombosed false lumen was achieved in 41 of 103 (40%) patients in the HAR group and in 61 of 91 (67%) patients in the TAR group (P < .01).

In the HAR group, 28 patients had primary entry extending into the proximal aortic arch (Table 1), and underwent

FIGURE 1. The rate of overall 5-year survival rate in the TAR group was 96.9%, significantly greater than 74.8% in the HAR group (P < .01). TAR, Total arch replacement; HAR, hemiarch replacement.

FIGURE 2. Total arch replacement with stented elephant trunk was effective for avoiding an aortic arch event. TAR, Total arch replacement; HAR, hemiarch replacement.
entry resection. Of these 28 patients, in-hospital mortality occurred in 1 patient (3.6%). During the follow-up period, aortic arch events occurred in 6 of 28 (21.4%) patients and late death occurred in 5 of 28 (17.9%) patients. Consequently, no significant difference was observed compared with patients who had entry in the ascending aorta.

In the subgroup comparison, postoperative thrombosed false lumen was achieved in 69.2% (27/39) in the HAR-only subgroup compared with 49.1% (54/110) in the HAR-OS subgroup ($P = .03$) (Figure 4, B). For patients with preoperative nonthrombosed false lumen, postoperative thrombosed false lumen was achieved in 17 of 26 (65%) patients in the HAR-only subgroup and in 24 of 77 (31%) patients in the HAR-OS subgroup ($P = .01$) (Figure 4, B).

DISCUSSION

A goal of surgical repair for AAD type 1 may be thrombosis of false lumen to avoid repeated surgical or endovascular intervention.4,5 After HAR, however, complete thrombosis of false lumen in the proximal descending aorta could be achieved in only 24.6% of the patients.4 To improve the late outcomes after HAR, addition of OS or stented ET may be an effective option.2-5 Roselli and colleagues reported that HAR with stented ET provided both operative safety and a favorable remodeling of the aorta. Pochettino and colleagues also reported that stented ET was recommended for patients with a narrowed true lumen or entry in the proximal descending aorta. Omura and colleagues suggested that TAR should be considered, irrespective of intimal tear location. The length or position of the OS or stented ET should be modified according to the angulation or curvature of the aortic arch to avoid stent graft-related complications.5,12-14

In this study, the relatively low mortality rates in both the TAR and HAR groups were attributed to the consistent blood supply to the visceral artery and the lower body by the stented ET or OS. Nonetheless, to avoid aortic rupture in the intensive care unit, blood pressure was strictly maintained at <130 mm Hg, and extubation was frequently postponed for 1 week. Furthermore, continuous hemodialysis was started when creatinine was elevated to approximately 2.0 mg/dL, even if the urinary output was maintained. These approaches were the reasons for the relatively high rates of new dialysis and prolonged ventilation.

In our current strategy, TAR with stented ET is considered first for patients who have no considerable perioperative risk (Figure 5). Most importantly, for patients who had malperfusion of visceral artery and dissection of the cervical vessel, for narrowed true lumen of the descending aorta with nonthrombosed false lumen, TAR with stented ET could be recommended for survival, irrespective of patient age and high perioperative risk. Alternatively, HAR can be preferred when the patients are older than 75 years and have a thrombosed false lumen. Finally, HAR with OS may be feasible only patients at high risk with visceral malperfusion or an intimal tear in the proximal descending aorta.

![FIGURE 3. The rate of freedom from aortic arch event at 5 years was 95.7% in the HAR-only group and was not significantly greater than 80.8% in the HAR-OS group ($P = .06$). HAR, Hemiarch replacement; OS, open stent graft implantation.](image-url)
FIGURE 4. Change of the false lumen status before and after surgery in each procedure. The ratio of patients with the postoperative thrombosed false lumen was compared using the Fisher exact test. A, Both preoperative and postoperative contrast-enhanced computed tomography were performed for 149 patients (84.2%) in the HAR group and in 95 patients (96.9%) in the TAR group. Postoperative thrombosed false lumen was achieved in 81 of 149 (54.4%) patients in the HAR group and in 65 of 95 (68.4%) patients in the TAR group ($P = .03$). For patients with preoperative nonthrombosed false lumen, postoperative thrombosed false lumen was achieved in 41 of 103 (39.8%) patients in the HAR group and in 61 of 91 (67.0%) patients in the TAR group ($P < .01$). B, In the subgroup comparison, postoperative thrombosed false lumen was achieved in 69.2% (27/39) in the HAR-only subgroup versus 49.1% (54/110) in the HAR-OS subgroup ($P = .03$). For patients with preoperative false lumen, postoperative thrombosed false lumen was achieved in 17 of 26 (65.3%) patients in the HAR-only subgroup and in 24 of 77 (31.2%) patients in the HAR-OS subgroup ($P = .01$). *HAR*, Hemiarch replacement; *TAR*, total arch replacement; *OS*, open stent graft implantation.
This study has several limitations. First, this study was not prospective and was not randomized. Second, significant differences were present in the demographic characteristics between the 2 groups. The surgeon chose the best strategy for every patient, considering the patient’s general condition, status of the false lumen, the extent of dissection, and the surgeon’s own operative skills. Selection biases were present, such as those of age, cardiac tamponade, stenosis of abdominal branches, and the location of the primary entry. Third, the experiences of the surgeons varied in these series. Five surgeons operated on these patients, and this factor influenced the selection of procedure and its outcomes. In practice, experienced surgeons tended to choose TAR over HAR. Fourth, the surgical decision-making was based on the preoperative CT and the intraoperative findings. During data collection, we re-evaluated CT retrospectively. Therefore, the diagnosis may be different from the diagnosis at the time of emergent surgery. Fifth, the distal tear would have an important role in the false lumen thrombosis and the efficacy of the additional stent. However, the entry in the descending or abdominal aorta could not be taken into account. Sixth, the diameter and the length of the stent graft may be important; however, the size and length could not be addressed in this study.

We do not have reliable data regarding the diameter of non-commercialized so-called handmade stent graft. Seventh, even after TAR with stented ET, in which distal anastomosis was commonly performed at the zone 0 or 1, dilatation or rupture of the remaining aortic arch may occur because of the endoleak or upward flow in the false lumen from the descending aorta. In the present study, surgery or endovascular intervention on the distal descending or abdominal aorta was not addressed because of the difference in the indication of the intervention for patients after HAR and TAR with stented ET. Recently, endovascular repair of the distal descending aorta has been used to close the remaining entry after TAR with stented ET, even without a significant dilatation or rupture. Because stented ET plays a role of the proximal landing zone, additional thoracic endovascular repair is technically easy and safely performed. Such intervention should not be considered as an adverse event but a possible advantage of stented ET. Finally, nonaorta-related deaths are a competing risk for which the analysis does not account.

In conclusion, early and late outcomes after surgery for AAD type I have been improved by an additional stent graft procedure. Increasing indications for TAR would be reasonable when combined with stented ET. Placement of OS

![Image](https://example.com/image.png)
concomitant with HAR may cause an aortic arch event and would not be a reliable alternative for TAR with stented ET.

Conflict of Interest Statement
The authors reported no conflicts of interest.

The Journal policy requires editors and reviewers to disclose conflicts of interest and to decline handling or reviewing manuscripts for which they may have a conflict of interest. The editors and reviewers of this article have no conflicts of interest.

References
1. Uchida N, Shibamura H, Katayama A, Shimada N, Sutoh M, Ishihara H. Operative strategy for acute type A aortic dissection: ascending aortic or hemiarch versus total arch replacement with frozen elephant trunk. *Ann Thorac Surg*. 2009;87:773-7.
2. Vallabhajosyula P, Gottret JP, Robb JD, Szeto WY, Desai ND, Pochettino A, et al. Hemiarch replacement with concomitant antegrade stent grafting of the descending thoracic aorta versus total arch replacement for treatment of acute DeBakey I aortic dissection with arch tear. *Eur J Cardiothorac Surg*. 2016;49:1256-61.
3. Shi E, Gu T, Yu Y, Yu L, Wang C, Fang Q, et al. Early and midterm outcomes of hemiarch replacement combined with stented elephant trunk in the management of acute DeBakey type I aortic dissection: comparison with total arch replacement. *J Thorac Cardiovasc Surg*. 2014;147:2125-31.
4. Zhang H, Lang X, Lu F, Song Z, Wang J, Han L, et al. Acute type A dissection without intimal tear in arch: proximal or extensive repair? *J Thorac Cardiovasc Surg*. 2014;147:1251-5.
5. Omura A, Miyahara S, Yamanaka K, Sakamoto T, Matsumori M, Okada K, et al. Early and late outcomes of repaired acute DeBakey type I aortic dissection after graft replacement. *J Thorac Cardiovasc Surg*. 2016;151:341-8.
6. Roselli EE, Idrees JJ, Bakaeen FG, Tong MZ, Soltesz EG, Mick S, et al. Evolution of simplified frozen elephant trunk repair for acute DeBakey type I dissection: midterm outcomes. *Ann Thorac Surg*. 2018;105:49-56.
7. Pochettino A, Brinkman WT, Moeller P, Szeto WY, Moser W, Cornelius K, et al. Antegrade thoracic stent grafting during repair of acute DeBakey I dissection prevents development of thoracoabdominal aortic aneurysms. *Ann Thorac Surg*. 2009;88:482-90.
8. Rylski B, Beyersdorf F, Kari FA, Schlosser J, Blanke P, Siepe M. Acute type A aortic dissection extending beyond ascending aorta: limited or extensive distal repair. *J Thorac Cardiovasc Surg*. 2014;148:949-54.
9. Rice RD, Sandhu HK, Leake SS, Atifi RO, Azizzadeh A, Charlton-Osw K, et al. Is total arch replacement associated with worse outcomes during repair of acute type A aortic dissection? *Ann Thorac Surg*. 2015;100:2159-66.
10. Kim JB, Chung CH, Moons DIH, Ha GI, Lee TY, Jung SH, et al. Total arch repair versus hemiarch repair in the management of acute DeBakey type I aortic dissection. *Eur J Cardiothoracic Surg*. 2011;40:881-9.
11. Di Eusanio M, Berretta P, Cefarelli M, Jacopo A, Murana G, Castrovinci S, et al. Total arch replacement versus more conservative management in type A acute aortic dissection. *Ann Thorac Surg*. 2015;100:88-94.
12. Trimarchi S, Nienaber CA, Rampoldi V, Myrmel T, Suzuki T, Mehta RH, et al. Contemporary results of surgery in acute type A aortic dissection: the International Registry of Acute Aortic Dissection experience. *J Thorac Cardiovasc Surg*. 2005;129:112-22.
13. Canaud L, Alric P, Desgranges P, Marzelle J, Marty-Ané C, Beccuemini JP. Factors favoring stent-graft collapse after thoracic endovascular aortic repair. *J Thorac Cardiovasc Surg*. 2010;139:1153-7.
14. Canaud L, Alric P, Laurent M, Baum TP, Branchereau P, Marty-Ané CH, et al. Proximal fixation of thoracic stent-grafts as a function of oversizing and increasing aortic arch angulation in human cadaveric aortas. *J Endovasc Ther*. 2008;15:326-34.

Key Words: acute aortic dissection, total arch replacement, hemiarch replacement, elephant trunk, open stent.