Pri posudzovaní drsnosti obrobeného povrchu sa doteraz používa zjednodušený vzťah, ktorý vyjadruje závislosť najväčšej výšky nerovnosti a posuva v tvare \(R_z = \frac{f^2}{8r_e} \), kde \(R_z \) je drsnosť obrobeného povrchu, \(f \) je posuv a \(r_e \) je polomer zaoblenia rezného klina.

Novšie prístupy ukazujú na nepresnosť tejto závislosti. Na základe experimentálnych meraní autori analyzujú nové vzťahy medzi reznými podmienkami a drsnosťou obrobeného povrchu. Tieto umožňujú predikovať morfologiu obrobeného povrchu pred vstupom polovýrobku do výrobného zariadenia a voliť optimálne rezné podmienky z hľadiska požadovanej kvality povrchu.

1. Úvod

Zvyšovanie prevádzkovej spoľahlivosti strojových zariadení žiada zvyšovať kvalitu obrobeného povrchu súčiastok. Nároky na zlepšovanie kvality obrobeného povrchu vyvolávajú hľadanie technologických možností, ako tento problém riešiť. Rezervy sú vo využití zákonitostí procesu vytvárania obrobeného povrchu rezným klinom.

Je všeobecne známe, že obrobený povrch sa teoreticky vytvára pohybom rezného klinu voči obrobku, podľa kinematiky konkrétneho stroja. Dochádza ku kopírovaniu hrotu nástroja na povrch obrobku, pričom participuje plastická deformácia povrchu a triboologické korelácie trubic na plôchách obrobku. Výsledkom je zložitý tvar obrobeného povrchu. Ak berieme do úvahy len geométrie zákonitosti interakcie nástroj – obrobok, možno odvodit pomerne jednoduchý vzťah medzi posuvom a drsnosťou obrobeného povrchu, t. j. \(R_z = R_z(f) \).

Závislosť drsnosti povrchu od režnej rýchlosti \(v_c \) a hlbe rezu \(a_p \), ktorá je \(R_z = R_z(v_c, a_p) \) sa geometricky nedá vyjadriť, pretože súvisí so zákonitostami plastickej deformácie povrchu obrobku pri styku s rezným klinom. Takéto vzťahy sú viac veľmi potrebné na optimizáciu rezných podmienok. Jednou z cien ich získania je experimentálne štúdium povrchu pri meniacich sa rezných pod-

* Prof. Ing. Karol Vasilko, DrSc., PaodDr. Anna Macurová,
Fakulta výrobných technológií TU v Košiciach, so sídlom v Prešove, Plzenská10, 080 01 Prešov, Tel.: ++421-91-7723012,
E-mail: vasilko.karol@fvt.sk, macurova.anna@fvt.sk
2. Charakter geometrie tvorby obrobeneho povrchu

Ak analyzujeme exaktný geometrický vzťah medzi rezným klinom nástroja a obrobeným povrchem, možno drsnosť povrchu určiť z obr. 1.

\[Rz = CE - DC = CE - \sqrt{DO_1^2 - CO_1^2} \]

dalej platí

\[CE = DO_2 = DO_1 = r_e, \ CO_1 = \frac{f}{2} \]

Odtiaľ

\[Rz = r_e - r^2 - \frac{f^2}{4}. \]

Po umocnení \[Rz^2 - 2Rrz + \frac{f^2}{4} = 0 \]. Ďalšie úpravy vedú ku kvadratickej rovnici \[Rz^2 - 2Rrz + \frac{f^2}{4} = 0 \].

Mnohí autori v strete zjednodušili tento vzťah zanedbali člen \[Rz^2 \], čim vznikol frekvencovaný vzťah:

\[Rz = \frac{f^2}{8r_e}. \] (1)

Jeho grafická interpretácia vyjadruje parabolickú závislosť medzi posuvom a drsnosťou obrobeneho povrchu. Z poslednej kvadratickej rovnice vyjadríme \[Rz \] vzťahom:

\[Rz = r_e \pm \frac{4r_e^2 - f^2}{2} \],

kde \[4r_e^2 - f^2 \geq 0 \], teda \[r_e \geq \frac{f}{2} \]. Po úprave je

\[Rz = r_e \pm \sqrt{r_e^2 - \frac{f^2}{4}}. \] (2)

Hodnota \[Rz = r_e + \sqrt{r_e^2 - \frac{f^2}{4}} \] nie je technicky možná. Preto plati vzťah medzi posuvom a drsnosťou povrchu \[Rz = r_e - \sqrt{r_e^2 - \frac{f^2}{4}} \], alebo po dálej úprave:

\[Rz = r_e - \frac{1}{2} \sqrt{4r_e^2 - f^2}. \] (2a)

Nech nezávisle premenná je posuv \(f \), môžeme zobrazit graf funkcie \(Rz = Rz(f) \) pre rozličné \(r_e \), čo je znázornené na obr. 2.

2. Character of geometric creation of cutting surface

When we analyse an exact geometric relation between the knife of the tool and the cut surface it is possible to determine the roughness of the surface from the

Fig. 1. Interaction of the curving knife and of the workpiece

\[Rz = CE - DC = CE - \sqrt{DO_1^2 - CO_1^2} \]

further holds

\[CE = DO_2 = DO_1 = r_e, \ CO_1 = \frac{f}{2} \].

Hence

\[Rz = r_e - r^2 - \frac{f^2}{4}. \]

After squaring \[Rz^2 - 2Rrz + \frac{f^2}{4} = 0 \]. Next modifications lead to a quadric equation \[Rz^2 - 2Rrz + \frac{f^2}{4} = 0 \].

Many authors, trying to simplify this relation ignored the term \[Rz^2 \], which resulted in a frequent relation

\[Rz = \frac{f^2}{8r_e}. \] (1)

Its graphic interpretation expresses parabolic dependence between the feed and the roughness of the cut surface. We describe \(Rz \) from the last quadratic equation

\[Rz = r_e \pm \frac{4r_e^2 - f^2}{2} \],

where \(4r_e^2 - f^2 \geq 0 \) then \(r_e \geq \frac{f}{2} \). After modification it is

\[Rz = r_e \pm \sqrt{r_e^2 - \frac{f^2}{4}}. \] (2)

Value \(Rz = r_e + \sqrt{r_e^2 - \frac{f^2}{4}} \) is not possible technically. Therefore the relation is valid for the roughness of the cut surface

\[Rz = r_e - \sqrt{r_e^2 - \frac{f^2}{4}} \] or after further modification

\[Rz = r_e - \frac{1}{2} \sqrt{4r_e^2 - f^2}. \] (2a)

Let independent variable be the feed \(f \), we can describe the graph of the function \(Rz = Rz(f) \) for various \(r_e \) what can be seen
Závislosť nie je parabolická, je vyjadrená časťami elips, dosahuje konečné hodnoty pre zvolené hodnoty parametra r_e. Technicky to znamená, že v okamihu, keď sa končí priebeh závislosti pre príslušné r_e, prichádza do záberu vedľajšia reálna hranica. Vzťah (2a) presnejšie vyjadzuje závislosť $R_z = R_z(f)$, ako zjednodušený vzhľad (1).

Na obr. 3 je graf funkcie $R_z = R_z(r_e)$. Systém závislostí je získaný na základe vzťahu (2a), kde predpokladame, že f je paramter. Závislosti sú ohraničené zhromaždenie. Pre r_e bližšie sa k 0, R_z veľmi rýchle rastie.

Z pôvodnej aj zo závislosti (1) pre drsnosť obrabovaného povrchu vyplýva, R_z že veľmi rýchle rastie so zvyšovaním posuvu. Pre takýto zvýšenie posuvu má nepriaznivý vplyv na morfologiu obrabovaného povrchu. Preto akékoľvek zvýšenie posuvu dajú rovnakú hodnotu technicky do záberu vedľajšia reálna hranica. Vzťah (2a) presnejšie vyjadzuje závislosť $R_z = R_z(r_e)$, ako zjednodušený vzhľad (1).

Po zmenaní r_e sa posuv f plati rôznym parametrom. Závislosti sú ohraničené zhromaždenie. Pre r_e bližšie sa k 0, R_z veľmi rýchle rastie.

K modificácii teoretických vzťahov pre drsnosť povrchu pristupuje aj ďalšia skutočnosť. Reálny tvor hrotu nemá presný kruhový vzhľad. Technicky to znamená, že v okamihu, keď sa končí priebeh závislosti pre príslušné r_e, prichádza do záberu vedľajšia reálna hranica. Vzťah (2a) presnejšie vyjadzuje závislosť $R_z = R_z(f)$, ako zjednodušený vzhľad (1).

Fig. 2. Graph of function $R_z = R_z(r_e)$, where we expect f to be parameter. Dependencies are limited by the upper limit of the parameter. For r_e approaching 0, R_z increases very quickly.

From the original and from the dependence (1) for the surface roughness of the cut it can be seen that R_z increases very quickly with increasing feed. Therefore any increase in feed has unfavorable effect on morphology of the cut surface. From the three dimensional graph of the function it would be possible to get the equivalent value R_z.

In Fig. 3 there is a graph of the function $R_z = R_z(r_e)$. The system of dependencies is obtained by the following relation (2a) where we expect f to be parameter. Dependencies are limited by the upper limit of the parameter. For r_e approaching 0, R_z increases very quickly.

The producers of cutting tools produce cutting plates with a defined radius of the tip. As an example we can introduce a piec of ISO standard 1832 according to which, e. g. SANDVIK Coromant produce their goods, where for convertible lathe plates radiuses are defined $r_e = 0.4; 0.8; 1.2; 1.6$ and 2.4 mm. Apart from it, round plates are produced with radiuses of 8 and 12 mm. Further increase of the radius of the tip of knife is not applicable due to the expansion of active contact of cutting edge with workpiece and of inclination to the vibration of the technological system. Therefore, the improvement of the roughness of the surface need to be solved in a different way.

Another fact joins the modification of theoretical relations for the surface roughness. The real shape of the tip is not of accurate round profile, but with the wear it changes considerably. It is mainly the creation of a hole in side edge according to Fig. 4. This
profil a opotrebením sa značne mení. Ide najmä o vytváranie žliabku na vedľajšom chrhte podľa obr. 4. Pri malých opotrebeniach môže toto "preloženie" vedľajšej reznej hrany viesť k ochladiči len tlak na vhodnú povrchovú vrstvu. Ide pri tom, že

alebo viac ďalších hrotov. Pri vyššich opotrebeniach sa však tento efekt ruší a drsnosť povrchu s opotrebením rastie.

Ešte názornejšie vyjadruje sledovaná závislosť priestorový graf $Rz = Rz(v_r, f)$ na obr. 5.

3. Závislosť drsnosti obrobeného povrchu Rz od reznej rýchlosti v_r, a posuvu f

Na určenie drsnosti obrobeného povrchu máme vzťah (1) a (2a). Pre závislosť drsnosti od reznej rýchlosti v_r teoretický vzťah neexistuje, preto ju možno zistiť experimentálne. Z experimentálnych hodnôt pri obrabovaní materiáli oceľ 12050.1, rezom materiáli SK P20 rezným podmienkach: $r_s = 1$ mm, $f_0 = 10^\circ$, $\kappa = 60^\circ$, $\kappa' = 30^\circ$ a z grafickej závislosti $Rz = Rz(v_r)$ je možné vyjadriť vzťah

$$Rz = av_r^{-b}, \quad (3)$$

kde a a b sú konštanty, ktorých velkosť sa mení so zmenou posuva f.

Uvažujme rovnosť (1) a (3), teda

$$\frac{f^2}{8av_r} = av_r^{-b},$$

z čoho

$$r_s = \frac{f^2}{8av_r^{-b}},$$

potom je:

$$Rz = \frac{f^2}{8av_r^{-b}} - \frac{1}{2} \sqrt{4 \left(\frac{f^2}{8av_r^{-b}} \right)^2 - f^2},$$

alebo

$$Rz = f \left(\frac{f}{8av_r^{-b}} - \frac{1}{2} \sqrt{\frac{f^2 - 16av_r^{-2b}}{16av_r^{-2b}}} \right),$$

teda

$$\frac{f^2}{8av_r} = av_r^{-b},$$

z čoho

$$r_s = \frac{f^2}{8av_r^{-b}}.$$

3. Závislosť drsnosti obrobeného povrchu Rz od reznej rýchlosti v_r. a posuvu f

To determine the roughness of the cut surface we have the relations (1) and (2a). For the dependence of the roughness on the cutting speed v_r, the theoretical relation does not exist, therefore it is possible to find it experimentally. From the experimental values at the cutting material SK P20, cutting conditions: $r_s = 1$ mm, $f_0 = 10^\circ$, $\kappa = 60^\circ$, $\kappa' = 30^\circ$ and from the graphic dependence $Rz = Rz(v_r)$ it is possible to define the relation

$$Rz = av_r^{-b}, \quad (3)$$

where a and b are constants, the value of which change with the feed f.

We consider equation (1) and (3), therefore

$$\frac{f^2}{8av_r} = av_r^{-b},$$

from which

$$r_s = \frac{f^2}{8av_r^{-b}}.$$

then

$$Rz = \frac{f^2}{8av_r^{-b}} - \frac{1}{2} \sqrt{4 \left(\frac{f^2}{8av_r^{-b}} \right)^2 - f^2},$$

or

$$Rz = f \left(\frac{f}{8av_r^{-b}} - \frac{1}{2} \sqrt{\frac{f^2 - 16av_r^{-2b}}{16av_r^{-2b}}} \right),$$

thus

$$\frac{f^2}{8av_r} = av_r^{-b},$$

from which

$$r_s = \frac{f^2}{8av_r^{-b}}.$$
Potom je:
\[R_z = \frac{f^2}{8a v_c^b} - \frac{1}{2} \left(\frac{f^2}{8a v_c^b} \right)^2 - f^2, \]
alebo
\[R_z = f \left(\frac{f^2}{8a v_c^b} - \frac{1}{2} \left[\frac{f^2 - 16a^2 v_c^{-2b}}{16a^2 v_c^{-2b}} \right] \right), \]

teda
\[R_z = \frac{f}{8a v_c^b} \left(f - \sqrt{f^2 - 16a^2 v_c^{-2b}} \right). \]

 Existencia výrazu vo vzťahu (4) je zaručená pre hodnoty
\[f^2 - 16a^2 v_c^{-2b} \geq 0, \]

pričom uvažujeme len technicky realizovateľné hodnoty, teda \(f \geq 4av_c^{-b} \).

Pre \(a = 200.78 \) a \(b = 0.9995 \) máme grafickú závislosť na obr. 6. Graf je podľa vzťahu (4) upravený na
\(Ra = Ra(v_c, f) \).

Experimentalným štúdiom závislosti drsnosti povrchu od hĺbky rezu \(a_p \) je závislosť takmer linearna, s maľým poklesom \(R_z \) smerom k vyššiem hĺbkom rezu. Preto nie je potrebné tento parameter uvažovať.

4. Záver

Poznámka zákonnitosť zviku drsnosti obrobeneho povrchu dáva reálnu možnosť optimalizovať rezné podmienky vo vzťahu k požadovaná kvalítie povrchu súčiastok. Výrazná zmena \(R_z \) v závislosti \(v_c \) na žiada pri obrabiani oceli vyššie rezne rýchlosti. Zryšovanie povrchu je jednoznačne nepriaznivé a musí sa realizovať iba pri súčasnej úprave geometrie rezného klinu (zváčšovanie polomeru zaoblenia hrotu). Závislosť drsnosti obrobeneho povrchu od hĺbky rezu je nevýznamná, napriek tomu bude analyzovala v nadávnych prácach.

![Fig. 6. The graph is adjusted by the relation (4) to Ra = Ra(vc, f).](image)

4. Conclusion

Knowledge of the relations of the formation of the roughness of the cut surface gives a real possibility to optimize cutting conditions in relation to the required quality of the surface of components. A considerable change \(R_z \) in the dependence on the \(v_c \) requires higher cutting speeds in machining steels. The increase in the feed is thoroughly unfavourable and must be realised only when geometry of the cutting slice is adjusted (increase of the radius of tip curving). The dependence of the roughness of the cut surface on the depth of the cut is dull, in spite of this it will be analysed in further works.

Literatúra – References

[1] BUMBÁLEK, B., ODVODY, V., OŠŤÁDAL, B: Drsnost povrchu. Praha SNTL, 1989, 338 s.
[2] GRZESIK, W.: Podstawy skrawania materiałów metalowych. Warszawa: Wydawnictwa Naukowo-Techniczne1998, 380 s.
[3] KALPELJAN, S.: Manufacturing Engineering and Technology. Addison-Wesley Publishing Company. USA 1989, 1199 s.
[4] MIKO, E.: Monitoring of the microroughness of surfaces face-milled with round ceramic blades. In: Sience Report: Geometrical Surface Structure of Machine Parts. CEEPUS PL-1, Kielce, 2001, s.137-146.
[5] VASILKO, K., MACÚROVÁ, A., VASÍLKOVÁ, D.: Nová metóda na zlepšenie drsnosti obrobeneho povrchu pri pri sústružení. Acta Mechanica Slovaca 2/1999,s. 17-30