Follicular Dendritic Cells Inhibit Apoptosis in Human B Lymphocytes by a Rapid and Irreversible Blockade of Preexisting Endonuclease

By Ernst Lindhout, Arjan Lakeman, and Cornelis de Groot

From the Cellular Immunology Group, Academic Medical Center, University of Amsterdam, Department of Cell Biology and Histology, 1100 DE Amsterdam, The Netherlands

Summary

During germinal center reactions, a minority of B lymphocytes are selected after successful binding to follicular dendritic cells (FDCs). The majority of the B cells, however, die by apoptosis. One of the characteristics of apoptosis is rapid fragmentation of DNA by an endogenous endonuclease. The regulation of apoptosis and endonuclease activity in germinal center (GC) B cells is largely unknown. In this study we have investigated the induction and inhibition of endonuclease activity in GC B cells. We also investigated the role of FDCs, surface Ig (slg), slgM, CD21, CD22, CD40, and intracellular Zn2+ in the regulation of endonuclease activity. We have found that DNA fragmentation in GC B cells is caused by a preexisting endonuclease very similar to NUC-18 (an 18-kD endonuclease identified in rat thymocytes). Endonuclease activity in GC B cells appears to be rapidly and irreversibly blocked after interaction with FDCs, but not after cross-linkage of slg, slgM, CD21, CD22, or CD40. Addition of soluble CD40–human IgM fusion protein (sCD40) to FDC–B cell cultures also did not interfere with FDC-mediated B cell rescue. Chelation of intracellular Zn2+ during FDC–B cell cultures resulted in abrogated B cell rescue. These data suggest that FDCs inhibit apoptosis in GC B cells by a rapid inactivation of preexisting endonuclease using a mechanism distinct from CD40 ligation.
tivity in GC B cell nuclei were determined. We will present evidence that protein synthesis is not necessary for the activation of apoptosis in GC B cells. It will be shown that even the blocking of de novo protein synthesis results in increased apoptosis, suggesting that protein synthesis is part of an apoptosis-inhibiting process in GC B lymphocytes. Moreover, we will demonstrate that FDCs may give their major rescuing signal through a mechanism distinct from the interaction between CD40 and CD40 ligand (CD40L) and that intracellular Zn$^{2+}$ has an important role in FDC-mediated rescue of GC B cells.

Materials and Methods

Isolation of FDCs. FDCs were isolated from tonsils as described by Parmenier et al. (32). In brief, freshly obtained tonsils were cut into small pieces and incubated twice for 30 min at 37°C under continuous shaking in 30 ml of IMDM plus 90 µg/ml gentamicin (IMDM/g) containing 200 U/ml collagenase type IV (Worthington Biochem Corp., Freehold, NJ) and 10 U/ml DNase I (Boehringer Mannheim GmbH, Mannheim, FRG). Next, the cell suspensions were cooled on ice, washed, and subjected to $1 g$ sedimentation (30 min, 0°C) in discontinuous BSA gradients consisting of layers of 1.5, 2.5, and 5% BSA in HBSS. Cells at the interfaces between 2.5 and 5% BSA were collected, washed, and layered on Percoll gradients (Pharmacia Diagnostics AB, Uppsala, Sweden). Isolated nuclei were incubated in Eppendorf vials for 4 h at 0 or 37°C in the presence or absence of Ca$^{2+}$ (5 mM) and Mg$^{2+}$ (10 mM). Optimum conditions for endonuclease activity were determined by performing fragmentation assays in TSN buffer at pH 6-9.5, with varying concentrations of Ca$^{2+}$ and Mg$^{2+}$ and in the presence or absence of Zn$^{2+}$ (100 µM), Na$^{+}$ (80 or 800 mM), aurintricarboxylic acid (ATA; 300 µM; Sigma), EGTA (5 mM; Sigma), or EDTA (5 mM; Merck). DNA fragmentation was determined using DNA electrophoresis. Nuclei were lysed with 500 µl of TTE buffer (10 mM Tris-HCl, 1 mM EDTA, 0.2% Triton X-100, pH 7.6), and fragmented DNA was separated from intact chromatin by centrifugation for 10 min at 4°C and 14,000 g. The supernatant, containing the fragmented DNA, was collected carefully and placed in an Eppendorf vial. The intact chromatin in the pellet was resuspended in 500 µl of TTE buffer. 100 µl of 5 M NaCl (0°C) was added followed by vigorous vortexing. Subsequently, 700 µl of isopropanol (-20°C) was added, and after vortexing, the vials were placed overnight at -20°C to precipitate DNA. Next, the vials were centrifuged for 10 min at 4°C and 14,000 g, the supernatants were discarded, and the pellets were washed carefully with 70% ethanol at -20°C. After centrifugation, the supernatants were discarded and the pellets were dried. DNA was dissolved in 25-50 µl of TBE buffer (9 mM Tris, 9 mM borate acid, 2 mM EDTA, pH 8). The DNA concentra-
Table 1. Antibodies Used

Antibody	Marker/isotype	Source
OKT3	CD3/IgG2a	Ortho, Raritan, NJ
BU32	CD21/IgG1	Binding Site, Birmingham, UK
To-15	CD22/IgG2b	Dakopatts, Glostrup, Denmark
S2C6	CD40/IgG1	Gift from Dr. S. Paulie (Dept. of Immunology, The Arrenius Laboratories, Stockholm University, Stockholm, Sweden) (35)
G28-5	CD40/IgG1	Gift from Dr. J. Ledbetter (Oncogen Corp., Seattle, WA) (36)
EA-5	CD40/IgG1	Gift from Dr. T. LeBien (University of Minnesota, Dept. of Laboratory Medicine and Pathology, Medical School, Minneapolis, MN) (37)
14G7	CD40/IgM	Gift from Dr. R. van Lier (Dept. of Autoimmune Diseases, CLB, Amsterdam, The Netherlands)
5D12	CD40/IgG2b	Our laboratory (38)
3C6	CD40/IgG2b	Our laboratory (38)
4103	Goat anti-human Ig	Tago, Inc., Burlingame, CA
Immuno beads	Rabbit anti-human IgM	Bio Rad Laboratories, Richmond, CA

Detection was measured by spectrophotometry at 260 nm. Electrophoresis of the fractions containing fragmented DNA (supernatant fractions after lysis and centrifugation) was done for 2 h at 3 V/cm in 1.5% agarose gels supplemented with ethidium bromide. DNA was visualized using UV light.

Determination of Apoptosis Using Cytospin Centrifugation. Cytospin preparations were made immediately after culture using a Shandon cytospin centrifuge (Shandon Inc., Pittsburgh, PA), stained with May–Grünewald Giemsa (Merck) and enumerated for the percentage of apoptotic cells. At least 300 cells were counted in each preparation.

Results

Apoptosis Is a Feature of GC B Cells but Not of Resting B Cells. Upon culture at 37°C, LD B cell fractions from human tonsils showed rapid apoptosis. Apoptotic cells could be detected even within 3 h of culture, and their numbers increased further to reach 50–60% after 16 h (Fig. 1 a). Furthermore, in purified GC B cells, ~60% of the cells were apoptotic after 16 h (data not shown). High density B cell fractions from human tonsils also showed some apoptosis upon culture in vitro, but the number of apoptotic cells was profoundly lower as compared with that of the LD B cells (Fig. 1 b). Also, after an initial rise in apoptotic cell numbers, no further increase was seen after 6 h of culture. By contrast, PB B lymphocytes did not show any apoptosis when cultured in vitro for as long as 96 h (<1%).

Apoptosis in Isolated LD B Cells Cannot Be Blocked by Protein Synthesis Inhibitors. To determine whether de novo protein synthesis is required in LD B cells for entering apoptosis, LD B cells were cultured in the presence of the protein synthesis inhibitors CHX or ACTD. Addition of these inhibitors did not result in decreased apoptosis in LD B cells, but rather in increased apoptosis (Fig. 1 a), indicating that endonuclease must have already been present in the cells and is under control of one or more regulatory proteins with a high turnover rate. Apoptosis in tonsillar B lymphocytes could be completely blocked by the addition of the endonuclease inhibitors Zn²⁺ (5 mM) (Fig. 1 a) and ATA (200 μM) (data not shown). PB B cells did not enter apoptosis even after culture in the presence of CHX for 96 h (<1%), suggesting that endonuclease is totally absent in these B cells.

Endonuclease Activity Is Present in Nuclei of LD B Cells and Purified GC B Cells but Not in Nuclei of HD B Cells, PB B Cells, or the EBV-transformed B Cell Line JY. Because addition of CHX or ACTD did not inhibit but rather enhanced apoptosis, it can be hypothesized that endonuclease is already present in tonsillar B cells. To address this suggestion, nuclei from LD B cells, purified GC B cells, HD B cells, PB B cells, and an EBV-transformed B cell line (JY) were isolated and DNA fragmentation was studied. Isolated nuclei from GC B cells and LD B cells showed high endonuclease activity, as demonstrated by the characteristic ladder pattern in the gels. In contrast, no endonuclease activity could be observed in nuclei from PB B cells and the JY cell line (Fig. 2). In HD B cell nuclei no or very slight DNA fragmentation was seen.

Optimum Conditions for Endonuclease Activity in Tonsil B Cells. To determine optimum conditions for endonuclease activity, isolated nuclei from B cells were incubated in TSN buffers at pH 6–9.5 in the presence or absence of Ca²⁺ and Mg²⁺. DNA gel electrophoresis showed that endonuclease in B cells has its maximum activity at pH 7.5–8 and in the presence of 5 mM Ca²⁺ and 10 mM Mg²⁺ (Fig. 3). En-
donuclease activity could be blocked completely by the addition of Zn$^{2+}$ (100 μM), ATA, NaCl, EGTA, or EDTA to the incubation medium (Fig. 4). Addition of 5 mM Mn$^{2+}$ did not result in activation, but rather in inhibition of endonuclease activity. These data indicate the similarity of the B cell endonuclease with NUC-18 (41).

FDCs and FDC-like Cell Lines Totally Inhibit Endonuclease Activity in GC B Cells by a Mechanism Dependent on Cell-Cell Contact. From previous experiments (15), it is known that FDCs can prevent GC B cells from entering apoptosis by a mechanism dependent on cell-cell contact. To investigate whether endonuclease activity in isolated GC B cell nuclei is altered after interaction with FDCs, GC B and FDCs cells were cultured for 4–120 h. Subsequently, single and clustered cells were separated, the nuclei were isolated, and endonuclease activity was determined. DNA gel electrophoresis showed that already after 4 h of interaction, endonuclease activity in the nuclei of GC B cells isolated from clusters was totally absent and remained absent even after 5 d of culture. In contrast, nuclei from cells that had remained single retained fully active endonuclease (Fig. 5).

To test whether the EBV-transformed and cloned FDC-like cells (FLCLs) that we have previously described (42) were also capable of turning the endonuclease off, the same experiment was performed using FLCLs. Like FDCs, FLCLs were able to rescue B cells from apoptosis in vitro. In addition, it appeared that interaction of LD B cells with FLCLs for 16 h also led to a total loss of endonuclease activity in the clustered B cells (Fig. 6). It is likely that inhibition of endonuclease activity by FLCLs would take <16 h, but although binding of B cells to FLCLs was already in progress after 4 h of culture, culture periods <16 h did not yield sufficient clustered B cells to perform endonuclease assays.

Figure 1. Apoptosis of LD (a) and HD (b) B cells after 3, 6, or 16 h of culture in the presence or absence of 50 μM CHX or 5 mM Zn$^{2+}$, enumerated in cyto spin preparations stained with May-Grünwald Giemsa. Data are represented as mean percentage of apoptotic cells ± SD from four experiments using different donors. (a) Apoptosis in LD B cell-enriched cell populations. No addition (○), CHX (▲), or Zn$^{2+}$ (■). (b) Apoptosis in HD tonsillar B cells (>1,065 mg/ml). No addition (○), CHX (▲), or Zn$^{2+}$ (■).

Figure 2. Endonuclease activity in isolated nuclei from GC B cells (GC), LD B cells (LD) HD B cells (HD), PB B cells (PB), JY cells (JY). Endonuclease activity is visualized by DNA gel electrophoresis of low molecular weight DNA isolated from the various cell types.

Figure 3. pH optimum for endonuclease activity in tonsillar B cell nuclei in the absence (A) or presence (B) of Ca$^{2+}$ (5 mM) and Mg$^{2+}$ (10 mM). pH values are indicated above the gel. M, 100-bp marker.

Figure 4. Apoptosis of LD B (a) and HD B (b) cells after 3, 6, or 16 h of culture in the presence or absence of 50 μM CHX or 5 mM Zn$^{2+}$, enumerated in cyto spin preparations stained with May-Grünwald Giemsa. Data are represented as mean percentage of apoptotic cells ± SD from four experiments using different donors. (a) Apoptosis in LD B cell-enriched cell populations. No addition (○), CHX (▲), or Zn$^{2+}$ (■).
Figure 4. Inhibition of endonuclease activity in tonsillar B cell nuclei by different agents, as indicated above the gels. Endonuclease activity assays were done without (left lane of each pair) or with the addition of Ca$^{2+}$ and Mg$^{2+}$ (right lane of each pair).

FDCs and B cells interact via several membrane markers, among which are interactions through the adhesion molecules CD54 (ICAM-1) and CD109 (VCAM-1) and their counterparts CD11a/CD18 (LFA-1) and CD49d/CD29 (VLA-4), respectively; interactions between immune complexes (icosomes) on FDCs, BCR, and CD21 on B lymphocytes; and probable interaction between CD22 on B cells and CD75 on FDCs (unpublished observations). Through several of these interactions, it is known that they can postpone apoptosis in B cells to some extent (28, 34, 43). To investigate whether one of these pairs of ligand–receptor interactions between FDCs and B cells may contribute to the described inhibition, GC B cells were preincubated and cultured with antibodies against CD21, CD22, or slg. After 16 h, cells were harvested, and cytospin preparations of whole cells as well as endonuclease activity assays with isolated nuclei were performed. Cross-linkage of CD21 or CD22 with specific mAbs did not lead to inhibition of apoptosis in whole cells even after additional cross-linkage with goat anti-mouse antibodies. Additionally, endonuclease activity was not affected (Fig. 7). Cross-linkage of antigen receptors resulted in 30–50% inhibition of apoptosis (Table 2) but not in inhibition of endonuclease activity in isolated nuclei (Fig. 7).

Cross-Linkage of CD40 by Antibodies Does Inhibit Apoptosis of LD and Purified GC B Cells, but Does Not Inhibit Endonuclease Activity in Nuclei of LD and GC B Cells. As other groups have reported that cross-linkage of CD40 on B cells in vitro prevents those B cells from entering apoptosis (28, 29), we decided to investigate whether signaling via CD40 would also influence endonuclease activity in nuclei of GC B cells. Therefore, LD B cells and GC B cells were preincubated and cultured with anti-CD40 or -CD3 antibodies. After 16 h, both cytospin centrifugation and endonuclease activity assays were performed. From the cytospin preparations it appeared that cross-linkage of CD40 on B cells resulted in inhibition of apoptosis of B cells ranging from 40 to 90% (Table 3). Incubation with anti-CD3 antibodies did not result in inhibition of apoptosis. By contrast, gel electrophoresis of DNA after endonuclease activity assays showed that cross-linkage of CD40 on B cells for 4 or 16 h did not inhibit endonuclease activity in the nuclei of these cells (Fig. 8). To investigate whether CD40–CD40L bridging contributes to the en-
Table 3. Inhibition of Apoptosis in LD B Cells by Anti-CD40 Antibodies

mAb	Exp. 1	Exp. 2
S2C6	81	81
G28-5	42	54
EA-5	65	92
14G7	62	85
3C6	85	65
5D12	69	62

LD B cells were cultured for 16 h in the presence of different anti-CD40 mAbs. Anti-CD40 antibodies were cross-linked with goat anti-mouse Ig. Percent inhibition of apoptosis was determined as (percent apoptosis in control – percent apoptosis in test)/(percent apoptosis in control). Percent apoptosis in control incubations (goat anti-mouse Ig only) was 50–60%.

dendonuclease inhibition induced by FDCs, FDC-enriched cell suspensions were cultured in the presence of sCD40. After 16 h, clusters and single cells were isolated, and endonuclease activity assays were performed. Gel electrophoresis showed that addition of sCD40 to FDC–B cell cultures could not prevent the inhibition of endonuclease activity in clustered B cell nuclei (Fig. 9).

Chelation of Intracellular Zn^{2+} Enhances Apoptosis in LD B Cells and Abrogates the FDC-dependent Rescue from Apoptosis of LD B Cells. Recently, McCabe et al. (39) and Treves et al. (44) reported that chelation of intracellular Zn^{2+} by a metal ion chelator (TPEN) with high affinity for Zn^{2+} triggered apoptosis in thymocytes and PB lymphocytes. Because it is known that Zn^{2+} is a potent direct endonuclease inhibitor, we decided to investigate whether Zn^{2+} might also have effects on apoptosis in B cells. Therefore, isolated B cells were cultured for 24 h in the presence of TPEN, and apoptosis was estimated in cytopsin preparations stained with May–Grünwald Giemsa. Addition of TPEN resulted in a dose-dependent increase in apoptosis of tonsillar B cells (Fig. 10). Because Zn^{2+} chelation increased apoptosis in B cells, we investigated whether intracellular Zn^{2+} is involved in FDC-mediated rescue of GC B cells from apoptosis. FDC-enriched cell suspensions were cultured in the presence of 10 μM TPEN, stained with Hoechst 33342, and examined by fluorescence microscopy. Addition of TPEN to FDC–B cell cultures resulted in a dramatic decrease in FDC-mediated rescue of GC B cells (Fig. 11; Table 4), suggesting that intracellular Zn^{2+} plays a key function in FDC-mediated rescue of LD B cells. To determine whether the observed rapid inhibition of endonuclease by FDCs could be caused by a direct action of Zn^{2+} on endonuclease in GC B cell nuclei, the endonuclease activity assay with B cells isolated from FDC clusters was done in the presence of 10 μM TPEN. If endonuclease activity in the nuclei of clustered B cells was inhibited by a direct action of Zn^{2+} on the endonuclease, chelation of Zn^{2+} with TPEN during endonuclease activity assays should negate the inhibition of endonuclease observed after FDC–B cell interaction. However, addition of TPEN did not restore endonuclease activity in nuclei of clustered B cells (Fig. 5).

Table 2. Inhibition of Apoptosis in Purified GC B Cells after Cross-linkage of Different Membrane Molecules

Molecule	Exp. 1	Exp. 2
CD21	0	0
CD22	0	0
slg	27	29
slgM	35	46
CD40 (14G7)	50	37

GC B cells were cultured for 16 h in the presence of different mAbs. Antibodies against CD21, CD22, and CD40 were cross-linked with goat anti-mouse Ig. Percent inhibition of apoptosis was determined as (percent apoptosis in control – percent apoptosis in test)/(percent apoptosis in control). Percent apoptosis in control incubations (goat anti-mouse Ig only) was 50–60%.

Discussion

Apoptosis is a common form of cell death characterized by extensive chromatin cleavage into oligosomal length fragments. The DNA is fragmented by the action of an endogenous endonuclease. In this study we have investigated characteristics and activation/inhibition mechanisms of endonuclease of GC B cells. GC B cells rapidly enter apoptosis upon culture in vitro (Fig. 1 a). Addition of protein synthesis inhibitors did not result in a decrease in the number of apoptotic
cells; an increase of the number of apoptotic cells was even detected (Fig. 1a). This suggests that endonuclease is already present in GC B cells and is under the control of one or more inhibitory proteins with a high turnover rate, since increased apoptosis by CHX or ACT-D was seen already after a few hours. These results evince that apoptosis in GC B cells is induced via the so-called "release mechanism" (13, 23, 45, 46). In this model, the death machinery is already present, but its action is held under control by inhibitory proteins with short half-lives. The presence of a preformed death machinery is found only in GC B cells and not in resting B lymphocytes, as PB and HD B cells did not enter apoptosis when cultured in the presence of CHX or ACT-D. In our experiments with enriched mantle zone B cells, we often found some endonuclease activity as well as effects of CHX and ACT-D. This was more evident in cytopsin preparations than in DNA fragmentation assays. However, as HD B cell fractions may be contaminated with GC B cells, it cannot be excluded that the observed endonuclease activity is caused by the presence of GC B lymphocytes. Furthermore, at the level of cell nuclei, we could easily demonstrate the presence of preformed endonuclease in isolated nuclei of GC B cells (Fig. 2). Additionally, the supposed absence of endonuclease in nuclei of HD B cells, PB B cells, and JY cells was demonstrated. The optimum conditions for endonuclease activity in GC B cells were found to be pH 7.5 with 5 mM Ca\(^{2+}\) and 10 mM Mg\(^{2+}\) (Fig. 3). The activity was completely blocked by the addition of Zn\(^{2+}\) (250 \(\mu\)M), ATA (300 \(\mu\)M), NaCl (80–800 mM), 5 mM EDTA, or 5 mM EGTA (Fig. 4). Addition of 5 mM Mn\(^{2+}\) did not activate endonuclease.

A recent review by Peitsch et al. (47) and comparison of our data with results from other studies (41, 48–54) indicate that only the NUC-18 endonuclease meets the conditions found for the endonuclease of GC B lymphocytes. NUC-18 is a 18-kD nuclease, identified, purified, and characterized from apoptotic rat thymocytes (41). Whether DNA fragmentation in GC B cells is due to the action of NUC-18 or a NUC-18-like protein is currently unclear.

It is believed that GC B lymphocytes are rescued from apoptosis in vivo by interaction with FDCs. In experiments in vitro it was shown that FDCs (15) and EBV-transformed FLCLs (42) can prevent GC B cells from death by apoptosis. In addition, it was also shown that cross-linkage of CD40, slg, CD21, CD38, LFA-1, or VLA-4 and the addition of certain growth factors could inhibit or postpone apoptosis in GC B cells (28, 29, 34, 43, 55). In our experiments, interaction with FDCs for as little as 4 h resulted in a complete inhibition of endonuclease activity in GC B cells (Fig. 5). This was also found with EBV-infected and cloned FLCLs (Fig. 6).

It is currently unknown whether the rescue from apoptosis by FDCs or FLCLs in vitro is an antigen-dependent process. We have shown previously that apoptosis in LD B cells is postponed for a few days by adherence to plastic-immobilized ICAM-1 and VCAM-1 and that cross-linkage of the antigen receptor in this system has a synergistic effect on the delay of apoptosis (34).
antigens in the form of immune complexes may still be present, as IgM is readily detected. Therefore, it is possible that B cell adherence to freshly isolated FDCs and their subsequent rescue from apoptosis is antigen dependent. For the binding of B cells to FLCLs and the FLCL-mediated rescue from apoptosis, it is difficult to believe that this is an antigen-dependent process, because after 6–8 mo in vitro, these FLCLs presumably no longer carry antigens. However, as several authors have shown that upon cross-linkage of antigen receptors on B cells the high avidity state of LFA-1 is induced very quickly (56, 57). It may be possible that the B lymphocytes used were already in a preactivated state as the result of antigens encountered in vivo and thus already express the high avidity state of LFA-1. This might bypass an antigen-dependent step in vitro.

In line with data reported by others, we found that cross-linkage of CD40 on GC B cells for 4 or 16 h inhibits apoptosis in GC B cells (Table 3). Cross-linkage of CD40, however, did not lead to significant inhibition of endonuclease activity in GC B cell nuclei (Fig. 8). These results, together with the observation that addition of sCD40 to FDC-B cell cultures did not induce apoptosis in FDC-B cell clusters and failed to result in a reappearance of endonuclease activity in

Table 4. Chelation of Zn2+ by TPEN Negates FDC-mediated Rescue of GC B Cells

Exp.	Cells per cluster	% Apoptotic
1	Control 17 ± 5	0
	TPEN 7 ± 2	85 ± 15
2	Control 6 ± 2	0
	TPEN 7 ± 1	72 ± 8

FDC-enriched cell suspensions were cultured for 16 h in the absence or presence of the Zn2+ chelator TPEN at 10 \textmu M. Data are represented as mean ± SD for five micrographs taken after 16 h of culture and staining for 15 min with Hoechst 33324; each micrograph depicts at least three FDC–B cell clusters. Only B cells in clusters were considered.
the nuclei of clustered cells (Fig. 9), suggest that FDCs may give the rescue signal to GC B cells by a mechanism distinct from CD40 ligation. As mentioned in Results, FDCs and B cells interact via several membrane markers, some of which can postpone or inhibit apoptosis in B cells to some extent (28, 34, 43). In our experiments only cross-linkage of the antigen receptor resulted in 30–50% inhibition of apoptosis in whole cells. In contrast, the activity of endonuclease in the nuclei of these cells remained, as with CD40 cross-linkage, uninhibited. It may therefore be possible that a combination of interactions between FDCs and B cells is responsible for the transmission and receipt of the rescue signal that leads to an irreversible blockade of endonuclease in GC B cells. However, it cannot be ruled out that FDCs down-regulate the endonuclease by an unknown mechanism. A study to investigate whether other B cell markers are involved in the interaction between B cells and FDCs or FLCLs is now in progress.

The finding that cross-linkage of CD40 and slg on GC B cells results in a decrease of apoptotic cell death but does not inhibit endonuclease activity in isolated nuclei seems contradictory. An explanation may be that by cross-linking CD40 or slg on GC B cells, the activation state of the cell is maintained on a "survival level" in such a way that the production of the supposed endonuclease inhibitor or other regulatory proteins is continued. The endonuclease itself may remain unaffected in the nucleus.

The observation that Zn\(^{2+}\) inhibits endonuclease activity in isolated nuclei and that chelation of intracellular Zn\(^{2+}\) leads to enhanced apoptosis of tonsillar B cells (Fig. 10) raises the possibility that the rapid abolishment of endonuclease activity after contact with FDCs might be regulated by a direct effect of intracellular Zn\(^{2+}\) on endonuclease. If in this system endonuclease is directly blocked by Zn\(^{2+}\), addition of the Zn\(^{2+}\) chelator TPEN (39, 44) to the endonuclease assays should remove Zn\(^{2+}\) from the endonuclease, resulting in fragmentation of the DNA. Our results, however, showed that addition of TPEN does not lead to a reappearance of endonuclease activity (Fig. 5). It can be argued, therefore, that either Zn\(^{2+}\) does not directly inhibit endonuclease in the nuclei, the affinity of TPEN for Zn\(^{2+}\) (4 \times 10\(^{15}\) M\(^{-1}\) [39]) is lower than the affinity of Zn\(^{2+}\) for endonuclease, or the endonuclease is removed from the GC B cell nuclei during interaction with FDCs. Nevertheless intracellular Zn\(^{2+}\) does play an important role during FDC-B cell contact because addition of TPEN to cultures of FDCs and B cells led to the appearance of apoptotic cells in established FDC-B cell clusters (Fig. 11; Table 4). If Zn\(^{2+}\) is not involved in a direct inhibition of the endonuclease, it may be necessary for transducing rescue signals, which is in line with reports from others (39, 44, 58–60).

In the current study we have shown that in contrast to interaction with FDCs or FLCLs, cross-linkage of CD40 on B lymphocytes does not inhibit endonuclease activity and that the presence of sCD40 during FDC-B cell interactions does not interfere with the FDC-mediated rescue. It can be argued, therefore, that the function of the CD40–CD40L interaction in vivo is not to rescue GC B cells from apoptosis, but rather to give signals to B cells for the induction of isotype switch and immunoglobulin production.

We wish to thank our colleagues in the department of Otorhinolaryngology of the Academic Medical Center, in the Onze Lieve Vrouwe Gasthuis Hospital, and in the Boven-IJ Hospital for providing us with tonsils; Drs. Paulie, Van Lier, Ledbetter, and LeBien for their generous gift of anti-CD40 antibodies; Dr. Lane (Institute for Immunology, Basel, Switzerland) for his generous gift of the soluble CD40 fusion protein; F. Stiekema for technical assistance; and J. Meenan for his critical reading of the manuscript.

This study was financially supported by Eurocetus B.V., The Netherlands, and The Netherlands Ministry of Economic affairs.

Address correspondence to Dr. C. de Groot, Laboratory for Cell Biology and Histology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands. E. Lindhout's current address is the Laboratory for Cell Biology and Histology, Academic Medical Center, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands.

Received for publication 10 August 1994 and in revised form 10 January 1995.

References
1. Wyllie, A.H., R.G. Morris, A.L. Smith, and D. Dunlop. 1984. Chromatin cleavage in apoptosis: association with condensed chromatin morphology and dependence on macromolecular synthesis. J. Pathol. 142:67–77.
2. Wyllie, A.H. 1980. Glucocorticoid-induced thymocyte apoptosis is associated with endogenous nuclease activation. Nature (Lond.). 284:555–556.
3. Kerr, J.F.R., A.H. Wyllie, and A.R. Currie. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer. 26:239–257.
4. Searle, J., J.F.R. Kerr, and C.J. Bishop. 1982. Necrosis and apoptosis: distinct modes of cell death with fundamentally
different significance. Pathol. Ann. 17:229–259.
5. Wylie, A.H. 1981. Cell death: a new classification separating apoptosis from necrosis. In Cell Death in Biology and Pathology. I.D. Bowen and R.A. Lockshin, editors. Chapman and Hall, London/New York. 9–34.
6. Smith, C.A., G.T. Williams, R. Kingston, E.J. Jenkinson, and J.T. Owen. 1989. Antibodies to CD3 T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature (Lond.) 337:181–184.
7. Shi, Y., B.M. Sahai, and D.R. Green. 1989. Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature (Lond.) 339:625–626.
8. Savill, J.S., A.H. Wylie, P.M. Henson, and C. Haslett. 1989. Macrophage phagocytosis of ageing neutrophils in inflammation: programmed cell death in the neutrophil leads to its recognition by macrophages. J. Clin. Invest. 83:865–875.
9. Duke, R.C., and J.J. Cohen. 1986. IL-2 addiction: withdrawal of growth factors activates a suicide program in dependent T cells. Lymphokine Res. 5:289–299.
10. Kerr, J.F.R., and J. Searle. 1973. Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchows Arch. B Cell Pathol. 13:87–102.
11. Rotello, R.J., M.B. Hocker, and L.E. Gerschenson. 1989. Biochemical evidence for programmed cell death in rabbit uterine epithelium. Am. J. Pathol. 134:491–495.
12. Sandow, B.A., N.B. West, R.L. Norman, and R.M. Brenner. 1979. Hormone control of apoptosis in hamster uterine luminal epithelium. Am. J. Anat. 156:15–36.
13. Cohen, J.J. 1991. Programmed cell death in the immune system. Adv. Immunol. 50:55–85.
14. Krammer, P.H., I. Behrmann, P. Daniel, J. Dhein, and K.M. Debatin. 1994. Regulation of apoptosis in the immune system. Curr. Opin. Immunol. 6:279–289.
15. Lindhout, E., M.L.C.M. Mevissen, J. Kwekkeboom, J.M. Tager, and C. de Groot. 1993. Direct evidence that human follicular dendritic cells rescue germinal center B cells from death by apoptosis. Clin. Exp. Immunol. 91:300–336.
16. Iseki, R., M. Mukai, and M. Iwata. 1991. Signals for the antagonism between activation- and glucocorticoid-induced death. J. Immunol. 147:4286–4292.
17. Knox, K., G.D. Johnson, and J. Gordon. 1993. A study of protein kinase C isozyme distribution in relation to BCL-2 expression during apoptosis of epithelial cells in vivo. Exp. Cell Res. 207:68–73.
18. Kizaki, H., T. Tadakuma, C. Odaka, J. Muramatsu, and Y. Ishimura. 1989. Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J. Immunol. 143:1790–1794.
19. Mazur Mosher, K., D.A. Young, and A. Munch. 1971. Evidence for irreversible, actinomycin D/5-sensitive, and temperature-sensitive steps following binding of cortisol to glucocorticoid receptors and preceding effects on glucose metabolism in rat thymus cells. J. Biol. Chem. 246:654–659.
20. Ucker, D.S., J.D. Ashwell, and G. Nickas. 1989. Activation-driven T cell death: I. Requirements for de novo transcription and translation and association with genome fragmentation. J. Immunol. 143:3461–3469.
21. Cotter, T.G., J.M. Glynn, F. Echeverri, and D.R. Green. 1992. The induction of apoptosis by chemotherapeutic agents occurs in all phases of the cell cycle. Anticancer Res. 12:773–779.
22. Nieto, M.A., A. Gonzalez, F. Gambon, F. Diaz Espada, and A. Lopez-Rivas. 1992. Apoptosis in human thymocytes after treatment with glucocorticoids. Clin. Exp. Immunol. 88:341–344.
23. Martin, S.J., S.V. Lennon, A.M. Bonham, and T.G. Cotter. 1990. Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J. Immunol. 145:1859–1867.
24. Cotter, T.G., S.V. Lennon, J.G. Glynn, and S.J. Martin. 1990. Cell death via apoptosis and its relationship to growth, development and differentiation of both tumour and normal cells. Anticancer Res. 10:1153–1159.
25. Waring, P. 1990. DNA fragmentation induced in macrophages by gliotoxin does not require protein synthesis and is preceded by raised inositol triphosphate levels. J. Biol. Chem. 265:14476–14480.
26. Takano, Y.S., B.V. Harmon, and J.F.R. Kerr. 1991. Apoptosis induced by mild hyperthermia in human and murine tumour cell lines: a study using electron microscopy and DNA gel electrophoresis. J. Pathol. 163:329–336.
27. Kucher, D.I., C.F. Ware, and L.R. Gooding. 1990. Induction of the heat shock shock response protects cells from lysis by tumor necrosis factor. J. Immunol. 145:2925–2931.
28. Liu, H.J., D.E. Joshua, G.T. Williams, C.A. Smith, J. Gordon, and I.C.M. MacLennan. 1989. Mechanism of antigen-driven selection in germinal centres. Nature (Lond.) 342:929–931.
29. Liu, H.J., J.A. Cairns, M.J. Holder, S.D. Abbot, J.Y. Bonnefoy, J. Gordon, and I.C.M. MacLennan. 1991. Recombinant 25-kD CD23 and interleukin 1α promote the survival of germinal center B cells: evidence for bifurcation in the development of centrocytes rescued from apoptosis. Eur. J. Immunol. 21:1107–1114.
30. Banchereau, J., P. de Paoli, A. Valler, E. Garcia, and F. Rousset. 1991. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science (Wash. DC). 251:70–72.
31. Schnizlein, C.T., M.H. Kosco, A.K. Szakal, and J.G. Tew. 1985. Follicular dendritic cells in suspension: identification, enrichment and initial characterization indicating immune complex trapping and lack of adherence and phagocytic activity. J. Immunol. 134:1360–1368.
32. Parmentier, H.K., J.A. van der Linden, J. Krijnen, D.F. van Wijchen, L.H.P.M. Rademakers, A.C. Bloem, and H.J. Schuurman. 1991. Human follicular dendritic cells: isolation and characteristics in situ and in suspension. Scand. J. Immunol. 33:441–452.
33. Palkoff, R.M., M. Peters, and A.S. Fauci. 1982. T cell enrichment and depletion of human peripheral blood mononuclear cell preparations. Unexpected findings in the study of the functional activities of the separated populations. J. Immunol. Methods. 50:39–49.
34. Koopman, G., R.M.J. Keekhnen, E. Lindhout, W. Newman, Y. Shimizu, G. van Seventer, C. de Groot, and S.T. Pals. 1994. Follicular Dendritic Cells Rapidly Block Endonuclease in B cells.
37. Law, C.L., B. Wörmann, and T.W. LeBien. 1990. Analysis of expression and function of CD40 on normal and leukemic human B cell precursors. *Leukemia*. 4:732–738.

38. De Boer, M., L. Conroy, H.Y. Min, and J. Kwekkeboom. 1992. Generation of monoclonal antibodies to human B lymphocyte cell surface antigens using insect cells expressing recombinant proteins. *J. Immunol. Methods*. 152:15–23.

39. McCabe, M.J., S.A. Jiang, and S. Orrenius. 1993. Chelation of intracellular zinc triggers apoptosis in mature thymocytes. *Lab. Invest.* 69:101–110.

40. Nieto, M.A., and A. I, rpez-Rivas. 1989. Ib2 protects T lymphocytes from glucocorticoid-induced DNA fragmentation and cell death. *J. Immunol.* 143:4166–4170.

41. Gaido, M.L., and J.A. Cidlowski. 1991. Identification, purification and characterization of a calcium-dependent endonuclease (NUC-18) from apoptotic rat thymocytes NUC-18 is not histone H2B. *J. Cell Biol.* 106:18580–18585.

42. Lindhout, E., A. Lakeman, M.L.C.M. Mevissen, and C. de Groot. 1994. Functionally active Epstein-Barr virus-transformed follicular dendritic cell like cell lines. *J. Exp. Med.* 179:1173–1184.

43. Bonnefoy, J.Y., S. Henchoz, D.L. Hardie, M.J. Holder, and J. Gordon. 1993. A subset of anti-CD21 antibodies promote the rescue of germinal center B cells from apoptosis. *Eur. J. Immunol.* 23:969–972.

44. Treves, S., P.L. Trentini, M. Aspanelli, G. Bucci, and F. Di Virgilo. 1994. Apoptosis is dependent on intracellular zinc and independent of intracellular calcium in lymphocytes. *Exp. Cell Res.* 211:339–343.

45. Cohen, J.J., R.C. Duke, V.A. Fadok, and K.S. Sellins. 1992. Apoptosis and programmed cell death in immunity. *Annu. Rev. Immunol.* 10:267–293.

46. McCall, C.A., and J.J. Cohen. 1991. Programmed cell death in terminally differentiating keratinocytes: role of endogenous endonuclease. *J. Invest. Dermatol.* 91:111–114.

47. Peitsch, M.C., H.G. Mannherz, and J. Tschopp. 1994. The apoptosis endonucleases: cleaning up after cell death? *Trends Cell Biol.* 4:37–41.

48. Strätling, W.H., C. Grade, and W. Hörz. 1984. Ca/Mg-dependent endonuclease from porcine liver. Purification, properties, and sequence specificity. *J. Biol. Chem.* 259:5893–5898.

49. Vanderbilt, J.N., K.S. Bloom, and J.N. Anderson. 1982. Endogenous nuclease properties and effects on transcribed genes in chromatin. *J. Biol. Chem.* 257:13009–13017.

50. Cohen, J.J., and R.C. Duke. 1984. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. *J. Immunol.* 132:38–42.

51. Schwartzman, R.A., and J.A. Cidlowski. 1993. Mechanism of tissue-specific induction of internucleosomal deoxyribonucleic acid cleavage activity and apoptosis by glucocorticosteroids. *Endocrinology.* 133:591–599.

52. Arends, M.J., R.G. Morris, and A.H. Wyllie. 1990. Apoptosis. The role of the endonuclease. *Am. J. Pathol.* 136:593–608.

53. Matsubara, K., M. Kubota, S. Adachi, K. Kuwakado, H. Hirota, Y. Wakazono, Y. Akiyama, and H. Mikawa. 1994. Different mode of cell death induced by calcium ionophore in human leukemia cell lines: possible role of constitutive endonuclease. *Exp. Cell Res.* 210:19–25.

54. Ribeiro, J.M., and D.A. Carson. 1993. Ca2+/Mg2+-dependent endonuclease from human spleen: purification, properties, and role in apoptosis. *Biochemistry.* 32:9129–9136.

55. Zupo, S., E. Rugari, M. Dono, G. Taborelli, F. Malavasi, and M. Ferrari. 1994. CD38 signalling by agonistic monoclonal antibody prevents apoptosis of human germinal center B cells. *Eur. J. Immunol.* 24:1218–1222.

56. Dang, L.H., and K.L. Rock. 1991. Stimulation of B lymphocytes through surface Ig receptors induces LFA-1 and ICAM-1-dependent adhesion. *J. Immunol.* 146:3273–3279.

57. Hedman, H., and E. Lundgren. 1992. Regulation of LFA-1 avidity in human B cells. Requirements for dephosphorylation events for high avidity ICAM-1 binding. *J. Immunol.* 149:2295–2299.

58. Zalewski, P.D., I.J. Forbes, and W.H. Bettis. 1993. Correlation of apoptosis with change in intracellular labile Zn(II) using zinquin ([2-methyl-8-p-toluenesulphonamido-6-quinoxilinoxy]acetic acid), a new specific fluorescent probe for Zn(II). *Biochem. J.* 296:403–408.

59. Martin, S.J., G. Mazdai, J.J. Strain, T.G. Cotter, and B.M. Hannigan. 1991. Programmed cell death (apoptosis) in lymphoid and myeloid cell lines during zinc deficiency. *Clin. Exp. Immunol.* 83:338–343.

60. Lennon, S.V., and T.G. Cotter. 1992. The regulatory role of zinc in apoptosis in human tumour cell lines. *Biochem. Soc. Trans.* 20:78S.