Background and Aim: Tendon is the extracellular matrix of the muscle that mechanically and structurally adapts to the mechanical load. However, the cellular and molecular mechanisms of this adaptation are not known yet. The purpose of this study was to investigate the effect of 6 weeks of resistance training on expression of two Transforming Growth Factor Beta 1 (TGF-β1) and myostatin genes in the tendon of fast- and slow-twitch muscles including Extensor Digitorum Longus (EDL) and Soleus (SOL).

Methods & Materials: Twelve male Wistar rats with 8 weeks of age were randomly divided into two groups of exercise (n=6) and control (n=6). The exercise group performed resistance training (Carrying weights with 40-160% body weight on the ladder) for 6 weeks, 5 sessions per week. Forty-eight hours after the last training session, all rats were sacrificed and the tendons of SOL and EDL muscles were extracted. The mRNA expression level of TGF-β1 and myostatin genes was assayed using real time polymerase chain reaction. Independent t-test was used for statistical analysis.

Ethical Considerations: All experiments on animals were according to the ethical guidelines of Research Ethics Committee of Islamic Azad University, Central Tehran Branch (Ethical Code: IR.IAU.PS.REC.1398.296).

Results: The expression of TGF-β1 gene in EDL (P≤0.001) and SOL (P≤0.01) muscle tendons significantly increased, while the expression of myostatin gene in EDL (P≤0.001) and SOL (P≤0.05) tendons were significantly reduced.

Conclusion: Resistance training appears to up-regulate the basal levels of TGF-β1 gene and down-regulate the basal levels of myostatin gene in tendons of fast- and slow-twitch muscles, where these effects are significantly more pronounced in the tendon of fast-twitch muscle.

Key words: Resistance training, Tendon, TGF-β1, Myostatin.
TGF-β family, the expression of which negatively regulates skeletal muscle growth [5]. Both TGF-β1 and myostatin stimulate tendon fibroblast proliferation and type I collagen synthesis [4-6]. Based on laboratory studies on adult tendon fibroblasts and collagen synthesis studies in adult subjects in response to resistance training, it is thought that TGF-β1 and myostatin play an important role in the growth and adaptation of adult tendons to resistance training [11]. The aim of this study was to investigate the effect of 6 weeks of resistance training on the expression of TGF-β1 and myostatin genes in Tendons Of Soleus (SOL) and Extensor Digitorum Longus (EDL) muscles of Wistar male rats.

Materials and Methods

In this study, 12 adult male Wistar rats with 8 weeks of age were randomly divided into two groups: exercise (n=6) and control (n=6). The exercise group performed resistance training for 6 weeks (Table 1). Forty-eight hours after the last training session, all ranks were sacrificed. Then, the tendons of SOL and EDL muscles of their right foot were immediately and carefully extracted and stored at -80° C for subsequent measurements. Expression levels of TGF-β1 and myostatin mRNAs were assayed using RealTime-PCR. Independent t-test was used for statistical analysis.

Results

The results showed a significant difference between the mRNA values of TGF-β1 and myostatin genes in EDL and SOL tendons of exercise group compared to the control group. MRNA expression of TGF-β1 gene in EDL (0.48±0.14 in exercise group vs. 0.14±0.04 in control group, P<0.001) and SOL (0.32±0.08 in exercise group vs. 0.17±0.14 in control group, P<0.01) muscles increased significantly, while the myostatin gene expression level in EDL (0.27±0.1 in exercise group vs. 0.56±0.07 in control group, P<0.001) and SOL (0.21±0.07 in exercise group vs. 0.29±0.05 in control group, P<0.05) muscles decreased significantly (Figures 1 and 2).

Discussion

The results of the present study showed that after 6 weeks of resistance training program, the mRNA expression of TGF-β1 gene in both EDL and SOL muscles increased significantly. On the other hand, it significantly reduced mRNA expression of myostatin gene in both muscles. Heinemeier et al. (2007) reported an increase in mRNA levels of the TGF-β1 gene and type I and III collagens in tendon and skeletal muscle following isometric, concentric and eccentric contractions by stimulating the sciatic nerve for 4 days [14]. Evidence suggests that TGF-β1 has been a major mediator in the induction of collagen synthesis in fibroblasts by mechanical load [14], and a similar role has been suggested for this gene in tendons [15]. A 245% increase in TGF-β1 mRNA expression in the EDL muscle tendon compared to an 81% increase in the SOL muscle tendon reported in the present study is likely to indicate a higher involvement of fast-twitch muscles in resistance training which leads to greater adaptations in collagen tissue and higher tolerance of the force exerted by the fast-twitch muscle to the tendon.

There is ample evidence that the regulation of myostatin is a characteristic of the type of muscle fibers, and is strongly associated with the myosin heavy chain IIb isoform [18] and the high concentration of myostatin protein in the contractile muscle. Has been [19], and high concentrations of myostatin protein have been observed in the fast-twitch muscle compared to the slow-twitch muscles [19]. These reports could justify the results of the present study regarding a 53% reduction in myostatin mRNA expression in the EDL muscle compared to a slight 28% reduction in its expression in the SOL muscle.

In overall, resistance training appears to positively regulate the baseline mRNA levels of TGF-β1 gene and negatively regulate the baseline mRNA levels of myostatin gene in fast- and slow-twitch muscles; where its effect was significantly higher on the fast-twitch muscle than the slow-twitch muscle.

Table 1. The resistance training protocol

Week	1	2	3	4	5	6
Load (body weight percentage)	40-50	60-70	80-90	100-110	130-140	150-160
Sets	5	5	5	6	6	6
Repetitions	8	8	8	8	8	8
Ethical Considerations

Compliance with ethical guidelines

All experiments on animals were according to the ethical guidelines of Research Ethics Committee of Islamic Azad University, Central Tehran Branch (Ethical code: IR.IAU. PS.REC.1398.296)

Funding

The present paper was extracted from the PhD thesis of the first author, Ghasem Mohammadnejhad, Department of Physiology, Faculty of Physical Education and Sports Science, Central Tehran Branch, Islamic Azad University.

Authors’ contributions

Conceptualization: All authors; Methodology and Data Analysis: Ghasem Mohammadnejhad; Editing and Review: all authors.

Conflicts of interest

The authors declare no conflict of interest.
مقدمه
عضله اسکلتی نقشی مهم در حفظ وضعیت بدن، حرکت، صحبت کردن، تنفس، تأمین حرکت و نیازهای سوخت وسازی دارد. از منظر فیزیولوژیکی، عضله اسکلتی بافتی پویاست که قادر است با تحریکات فیزیولوژیکی گوناگونی یک سازوکار نوآوری در تاندون امتداد ماتریکس خارج سلولی عضله را پدیدآورد که به صورت مکانیکی و ساختاری با بر کار مکانیکی سازگاری می‌یابد. تاندون عضله توسط مولکول‌های مرتبط با اسکلتی سازگاری به طور کلی شناخته می‌شود ولی از روزهای خود از سطح مکانیکی هر گونه تحریک عرضه می‌شود.

تغییرات مکانیکی و مورفولوژیکی که در پاسخ به تمرینات مکانیکی با دوکلاژن و استرتر کلاژن، خود را افزایش می‌دهد. این امر به خوبی مستند شده است که تغییرات مکانیکی و مورفولوژیکی که در پاسخ به تمرینات مکانیکی با دوکلاژن و استرتر کلاژن به پیش، به بر کار مکانیکی کلاژن را سازگار می‌کند.

1. Cross-sectional area

مکمله
مطالعه اسکلتی نقش مهم در حفظ وضعیت بدن، حرکت، صحبت کردن، تنفس، تأمین حرکت و سوخت وسازی دارد. از منظر فیزیولوژیکی، عضله اسکلتی بافتی پویاست که قادر است با تحریکات فیزیولوژیکی گوناگونی یک سازوکار نوآوری در تاندون امتداد ماتریکس خارج سلولی عضله را پدیدآورد که به صورت مکانیکی و ساختاری با بر کار مکانیکی سازگاری می‌یابد.

1. Cross-sectional area
که این پاسخها را تظیم می‌کند، اطلاعات زیادی در ساختار سندرم، در افزایش وزن مربوط به ژن TGF-β1 در نمونه‌های پلاستیکی افزایش می‌یابد. در این بحث، می‌توانیم از تغییرات فیبروبلاست‌های تاندون بالغ در پاسخ به تمرین مقاومتی، تحقیقات آزمایشگاهی روی فیبروبلاست‌های بالغ و مطالعات سنتز و تکثیر میوستاتین نقش مهمی در رشد و کلاژن در آزمودنی‌های بالغ در پاسخ به تمرین مقاومتی، تصور کنیم. این پاسخ‌ها تنظیم می‌کنند، اطلاعات زیادی در دسترس است. در این بحث، می‌توانیم از تغییرات فیبروبلاست‌های تاندون بالغ در پاسخ به تمرین مقاومتی، تحقیقات آزمایشگاهی روی فیبروبلاست‌های بالغ و مطالعات سنتز و تکثیر میوستاتین نقش مهمی در رشد و کلاژن در آزمودنی‌های بالغ در پاسخ به تمرین مقاومتی، تصور کنیم. این پاسخ‌ها تنظیم می‌کنند، اطلاعات زیادی در دسترس است.

جدول 1. پریدکلی تمرین مقاومتی

شاخص	تمرین مقاومتی	تمرین نظیر	تمرین‌های قهرمان	T/S	SEM	P
دوره	8 6 4	8 8 4	8 8 4	8 6 4	8 6 4	8 6 4

فهرست نسخه‌های

1. Soleus (SOL)
2. Extensor digitorum longus (EDL)
3. Soleus (SOL)
4. Extensor digitorum longus (EDL)
5. Soleus (SOL)
6. Extensor digitorum longus (EDL)
7. Soleus (SOL)
8. Extensor digitorum longus (EDL)
بی‌بی انتداووکیوی سطوح بین از روش کنی

۱۸۷. شماره ۲۳

Real time-PCR

در سال ۱۹۹۸ میلادی و به روش Real time-PCR

شرکت پیشگام (ایران) توالی پرایمرهای

درجه سانتی گراد نگهداری

درجه سانتی گراد ذخیره شد. تمام

بله و میلی لیتر اتانول سرد به رسوب

از روش کمّی

بی‌بی انتداووکیوی سطوح بین از روش کنی

۱۸۷. شماره ۲۳

Real time-PCR

در سال ۱۹۹۸ میلادی و به روش Real time-PCR

شرکت پیشگام (ایران) توالی پرایمرهای

درجه سانتی گراد نگهداری

درجه سانتی گрад ذخیره شد. تمام

بله و میلی لیتر اتانول سرد به رسوب

از روش کمّی

بی‌بی انتداووکیوی سطوح بین از روش کنی

۱۸۷. شماره ۲۳

Real time-PCR

در سال ۱۹۹۸ میلادی و به روش Real time-PCR

شرکت پیشگام (ایران) توالی پرایمرهای

درجه سانتی گراد نگهداری

درجه سانتی گراد ذخیره شد. تمام

بله و میلی لیتر اتانول سرد به رسوب
سارکوزیمیا که در طول تمرین‌های ورزشی با مکانیکی را به افزایش می‌انجامد، در صورتی که به طور کامل شناخته شدگان، پنهان‌شدن آن‌ها موجب می‌شود افزایش TGF-β1 باعث افزایش بیان ژن‌های TGF-β1 در تاندون عضلات EDL و SOL می‌شود که در نتیجه مؤثر بر رشد میوستاتین در میانه‌ها می‌باشد.

تحقیق نشان دهنده

مطالعه حاضر بر هدف بررسی اثر هفت هفته تمرین مقاومتی بر پیوسته TGF-β1 و میوستاتین در ماهیت عضلات EDL و SOL و تاثیر آن بر بهبود بافت تاندون عضلات EDL و SOL انجام شد.

مطالعه

مقدمه

در این مطالعه با هدف بررسی تاثیر تمرین مقاومتی بر پیوسته TGF-β1 و میوستاتین در ماهیت عضلات EDL و SOL و تاثیر آن بر بهبود بافت تاندون عضلات EDL و SOL، این مطالعه انجام شد.

مطالعه

در این مطالعه با هدف بررسی تاثیر تمرین مقاومتی بر پیوسته TGF-β1 و میوستاتین در ماهیت عضلات EDL و SOL و تاثیر آن بر بهبود بافت تاندون عضلات EDL و SOL، این مطالعه انجام شد.

نتایج

نتایج نشان داد که هفت هفته تمرین مقاومتی باعث افزایش تاندون عضلات EDL و SOL می‌شود که در نتیجه مؤثر بر رشد میوستاتین در میانه‌ها می‌باشد.

بحث

تغییرات نسبی بیان ژن TGF-β1 در عضله EDL و SOL مشاهده شدند که باعث افزایش میزان بیان ژن TGF-β1 در ماهیت عضلات EDL و SOL می‌شود.

منابع

6. Heinemeier et al.
احکایی از درگیری بالاتر عضلات تند انقباض در تمرینات مقاومتی است که موجب ایجاد سازگاری‌های بیشتر در بافت کلاژنی و تحمل نیروی بالاتر وارد شده از سوی عضله به تاندون می‌شود.

در مطالعه حاضر، تمرینات مقاومتی باعث کاهش سطوح پایه و سولئوس EDL mRNA میوستاتین در تاندون عضلات TGF-β1 هفته تمرین مقاومتی بر بیان mRNA میوستاتین و سولئوس EDL و SOL می‌شود. در طبقه‌بندی مطالعه، در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA mRNAMSTN و EDL و SOL می‌شود. در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA میوستاتین در EDL و SOL می‌شود. در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA میوستاتین در EDL و SOL می‌شود. در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA میوستاتین در EDL و SOL می‌شود. در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA میوستاتین در EDL و SOL می‌شود. در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA میوستاتین در EDL و SOL می‌شود. در گروه تمرین مقاومتی باعث کاهش سطح پایه mRNA میوستاتین در EDL و SOL می‌شود.

در حقیقت، شواهد زیادی از این ایده حمایت می‌کنند که تنظیم میوستاتین با توجه به نوع تارهای عضلانی وریزی همبستگی پیش‌بینی دارد. از این رو، می‌توان به توجه کردن کاهش سطح پایه mRNA میوستاتین در EDL و SOL وافذ شد. درحالی که پژوهش‌های مربوط به اثرات مقاومتی است.
پروتئین میوستاتین در عضله تنگباض و دیواره عضلات تنگباض مشاهده شده است. این پروتئین میتواند به ویژه در هوشکاری و تنگباض عمل کند. EDL به عنوان یکی از عضله کم‌ترین سطح میوستاتین را در مقایسه با کلیه انگشت ازک و ازکب‌طلبی دارد.

توضیحات منابع:
1. Mendias et al.
2. حاکمی مالی این مقاله را تأیید می‌کند. همگام با این حال، منابع در مطالعه حاضر مبنای توجه به سوپرvisor یکی از عضله و تاندون به 8% بیشتر می‌باشد. البته باید توجه داشت که جمع‌آوری نمونه در مطالعه حاضر بعد از آخرین جلسه تمرینی صورت گرفته و این احتمال وجود بد این می‌شود که توجه به نقش تغییرات در سطح میوستاتین در سه‌ماهه لوله بعد از تمرین افزایش داشته است که این موضوع سبب قطعه‌ای تغییر در تغییرات می‌شود. عدم انتها گری میپین میوستاتین به سبب سریال زمانی که کمی از محدودیت‌های عضله حاضر به شمار می‌رود.

نتایج‌گیری
پروتئین میوستاتین به تنظیم منفی سطح پایه mRNA TGF-β1 و تنظیم منفی سطح پایه mRNA mI۱ منابع در نمونه‌های تنگباض و ازک اثرات در مطالعه تنگباضی در مقایسه با باعث کننده فعال تنش تنش خوری بوده‌است.

ملاحظات اخلاقی
همه مراحل مربوط به حیوانات با پایه به دستورعلم اخلاقی و مجوز صورت‌پذیر و فاقدگاه آزاد اسلامی واحده تمرین مرکزی با شماره 296 IR.IAU.PS.REC.1398.296 نام‌گذاری شد.

حاجت مالی
مقاله حاضر بروزگرده از رساله دکتری لویسته اول آقای محمد نژاد گروه تربیت بدنی و همکارانش در دانشگاه آزاد اسلامی واحده تمرین مرکزی است.

9. Mendias et al.
References

[1] Schiaffino S, Reggiani C. Molecular diversity of myofibrillar proteins: Gene regulation and functional significance. Physiol Rev. 1996; 76(2):371-423. [DOI:10.1152/physrev.1996.76.2.371] [PMID] [PMCID]

[2] Davis ME, Gumucio JP, Sugg KB, Bedi A, Mendias CL. MMP inhibition as a potential method to augment the healing of skeletal muscle and tendon extracellular matrix. J Appl Physiol. 2013; 115(6):884-91. [DOI:10.1152/japplphysiol.00137.2013] [PMID] [PMCID]

[3] Kjaer M, Langberg H, Heineke K, Bayer M, Hansen M, Holm L, et al. From mechanical loading to collagen synthesis, structural changes and function in human tendon. Scandinavian J Med Sci Sports. 2009; 19(4):500-10. [DOI:10.1111/j.1600-0838.2009.00986.x] [PMID]

[4] Mendias CL, Gumucio JP, Bakhurin KI, Lynch EB, Brooks SV. Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts. J Orthop Res. 2012; 30(4):606-12. [DOI:10.1002/jor.21550] [PMID] [PMCID]

[5] McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-p superfamily member. Nature. 1997; 387(6628):83. [DOI:10.1038/387083a0] [PMID]

[6] Mendias CL, Bakhurin KI, Faulkner JA. Tendons of myostatin-deficient mice are small, brittle, and hypocellular. Proc Natl Acad Sci. 2008; 105(1):388-93. [DOI:10.1073/pnas.0707069105] [PMID] [PMCID]

[7] Pryce BA, Watson SS, Murchison ND, Staverosky JA, Dünker N, Schweitzer R. Recruitment and maintenance of tendon progenitors by TGFβ signaling are essential for tendon formation. Development. 2009; 136(8):1351-61. [DOI:10.1242/dev.027342] [PMID] [PMCID]

[8] Czarkowska-Paczek B, Zendzian-Piotrowska M, Bartolomiejczyk I, Przybylski J, Gorski J. The effect of acute and prolonged endurance exercise on transforming growth factor-beta1 generation in rat skeletal and heart muscle. J Physiol Pharmacol. 2009; 60(4):157-62. [PMID] [PMCID]

[9] Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc. 2010; 42(11):2023-9. [DOI:10.1249/MSS.0b013e3181e0b9a8] [PMID] [PMCID]

[10] Matsakas A, Friedel A, Hertrampf T, Diehl P. Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta physiologica Scandinavica. 2005; 183(3):299-307. [DOI:10.1111/j.1365-201X.2005.01406.x] [PMID] [PMCID]

[11] Gumucio JP, Sugg KB, Mendias CL. TGF-β superfamily signaling in muscle and tendon adaptation to resistance exercise. Exerc Sport Sci Rev. 2015; 43(2):93-9. [DOI:10.1249/JES.0000000000000041] [PMID] [PMCID]

[12] Jaafar Sardoui S, Nikoei R, Sheibani V. The effect of time series of resistance training on TGF-β1 expression and muscle hypertrophy in male wistar rats. J Appl Exerc Physiol. 2015; 11(22):23-32. [DOI:10.22080/JAEP.2016.1205]

[13] Pfaff MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001; 29(9):e45. [DOI:10.1093/nar/29.9.e45] [PMID] [PMCID]

[14] Heinemeier K, Olesen J, Haddad F, Langberg H, Kjaer M, Baldwin K, et al. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types. J Physiol. 2007; 582(3):1303-16. [DOI:10.1113/jphysiol.2007.127639] [PMID] [PMCID]

[15] Yang G, Crawford RC, Wang JH. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 2004; 37(10):1543-50. [DOI:10.1016/j.jbiomech.2004.01.005] [PMID]

[16] Attarzadeh Hosseini SR, Moeninia N, Motahari Rad M. The effect of two intensities resistance training on muscle growth regulatory myokines in sedentary young women. Obes Medi. 2017; 5:25-8. [DOI:10.1016/j.obmed.2017.01.004]

[17] Matsakas A, Bozzo C, Cacciani N, Caliaro F, Reggiani C, Mascarello F, et al. Effect of swimming on myostatin expression in white and red gastrocnemius muscle and in cardiac muscle of rats. Exp Physiol. 2006; 91(6):983-94. [DOI:10.1113/expphysiol.2006.033571] [PMID]

[18] Carlson CJ, Booth FW, Gordon SE. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol. 1999; 277(2):R601-6. [DOI:10.1152/ajpregu.1999.277.2.R601] [PMID]

[19] Wehling M, Cai B, Tidball JG. Modulation of myostatin expression during modified muscle use. FASEB J. 2000; 14(1):103-10. [DOI:10.1096/fasebj.14.1.103] [PMID] [PMCID]

[20] Mendias CL, Lynch EB, Gumucio JP, Flood MD, Rittman DS, Van Pelt DW, et al. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats. J Physiol. 2015; 593(6):2037-52. [DOI:10.1113/jphysiol.2014.287144] [PMID] [PMCID]