Malignant Brain Tumors—A Synopsis

Michael D. Walker, M.D.

Brain cancers differ from other neoplasms due to the confines of the closed cranial vault, the comparatively small lethal tumor burden, and the failure of most common brain tumors to metastasize. In addition, different forms of brain cancer have different biologic, kinetic, metabolic and growth characteristics, making it difficult to discuss this field as a single entity.

An estimated 8,500 patients will die of brain cancer this year. The male/female ratio is 57:43 and the crude incidence rate, 4.5/100,000.¹ Tumors of the brain and central nervous system are the second most common cancer in children of both sexes under the age of 15 years, only surpassed in incidence by leukemia. The etiology of intracranial tumors is unknown and only a few cases of relatively rare forms, such as acoustic neurinoma and neurofibroma, appear to be hereditary. The incidence of cerebral metastases from a primary neoplasm elsewhere in the body is probably artifactually low, but will become a more significant problem as greater control of the primary disease begins to prolong life.

The most common brain cancer is the highly malignant glioblastoma multiforme, which accounts for one-quarter of reported cases.² (Table 1.) Malignant astrocytomas probably represent a less malignant form of this tumor. Ependymomas, oligodendrogliomas and medulloblastomas, found in less than two percent of patients, may well be a dif-

Table 1. Incidence of Brain Tumors
Classifications

Glioblastoma Multiforme
Astrocytoma
Ependymoma
Malignant
Oligodendroglioma Glioma
Mixed & Other Gliomas
Medulloblastoma
Meningioma
Pituitary Adenoma
Neurilemoma
Craniopharyngioma
Sarcoma
Hemangioblastoma
Pineal Tumor
Metastatic
Other

¹Dr. Walker is Associate Director, Division of Cancer Treatment, and Head, Section of Neurological Surgery of the Baltimore Cancer Research Center, National Cancer Institute, Department of Health, Education and Welfare, Baltimore, Maryland.
ferent biologic entity entirely. Because of their comparatively long survival rates, pleomorphic characteristics and rarity, these latter forms of brain cancer are difficult to study.

Meningiomas comprise approximately one-sixth of intracranial masses and are among those cancers which best respond to surgical extirpation. Tumors that cannot be completely resected surgically eventually recur and require reoperation. Recurrent meningiomas frequently undergo sarcomatous degeneration and take on more malignant and invasive appearances, thus demanding further aggressive therapy. Pituitary tumors (chromophobe and eosinophilic adenomas) and craniopharyngiomas present a combination of diagnostic, therapeutic and endocrinologic problems outside the scope of this review. Unless specifically noted, the term malignant glioma will be used to describe the group of neuroectodermal tumors that are the most lethal and, unfortunately, most common.

Patients with malignant gliomas have a median survival of less than six months; at the end of one year about 20 percent of patients are alive, and at the end of two years, less than 10 percent have survived. The survival curve is biphasic, with the second portion accounting for less than 10 percent of cases. Malignant glioma is a completely lethal disease.

The age distribution of brain tumors is similarly biphasic. Medulloblastoma, cerebellar astrocytoma and ependymoma, found mainly below the tentorium, have a childhood peak from ages five to nine. An adult peak between the ages of 40 to 60 years is seen predominantly in malignant gliomas and meningiomas, usually above the tentorium.

Depending on the location of the tumor, symptomatology may either be highly localized, i.e. the ophthalmologic and endocrinologic manifestations of pituitary adenomas and craniopharyngiomas, or generalized, such as those indicative of increased intracranial pressure. Headache is the most common finding in malignant glioma, and is the presenting symptom in one-third of patients. (Table 2.) Approximately one-

Symptoms	Percent Presenting Symptoms	Percent Symptoms At Any Time
Headache	33.0	67.0
Seizures	19.0	36.0
Personality Change	12.0	43.0
Motor Deficit	8.5	44.0
Speech Deficit	5.8	27.0
Visual (II, III, IV, VI)	4.5	17.0
Sensory Deficit	4.0	17.0
fifth of patients present with seizures, while personality change is initially noted in 12 percent. Motor dysfunctions, such as ataxia or hemiplegia, are generally not the presenting symptoms; however, they often become apparent during the course of disease. No single symptom may be considered diagnostic of an intracranial tumor, but seizures are always highly suspicious.

The discovery of these symptoms clearly indicates the need for a detailed neurologic examination, starting with noninvasive techniques and proceeding to those that are more hazardous, but more definitive. (Table 3.) A combination of brain scan and electroencephalogram can pinpoint a lesion with more than 90 percent accuracy. (Figs. 1 and 2.) Arteriography is then required to determine more precisely the location and vascular pattern of the tumor. (Figs. 3 and 4.) Pneumoencephalography should be reserved only for unusual cases. Computerized axial tomography in the form of the EMI® scanner is just becoming available, and must still be compared to other diagnostic techniques.

Because of the enormous amounts of data which are stored and reduced to meaningful levels by computer, the CAT scan may become an immensely valuable diagnostic tool.

Definitive surgical resection offers patients the greatest chance for improved survival. It decompresses the already troubled brain, and in a brief period can reduce the tumor burden by one to two log fold, probably a greater reduction than any other single modality of treatment. In addition, definitive resection provides the time necessary to institute adjunctive therapy. Although surgery is associated with morbidity and mortality, current techniques have reduced this risk to a minimum.5

Radiotherapy combined with surgery is a common treatment for malignant gliomas. The most frequently used dose schedule is between 5,000 and 6,000 rads delivered at 1,000 rads a week during a five-day week.6 However, many radiotherapists have individualized approaches which they prefer. There have been too few controlled studies to indicate whether the same effect could

Table 3. Neurodiagnostic Tests and Their Relative Accuracy

Noninvasive	Percent Accuracy
Skull Film	39
Echoencephalogram	57
Electroencephalogram	77
Brain Scan	85
Computerized Axial Tomography	-
Invasive	
Arteriography	83
Pneumoencephalogram	88

116 CA - A CANCER JOURNAL FOR CLINICIANS
be achieved with a lower dose, or whether higher doses might be even more effective. Irradiation of brain stem gliomas and medulloblastomas appears to have considerable clinical value; however, the cumulative effects of irradiation preclude repeated utilization and, hence, additional forms of therapy must be sought.

Chemotherapy in patients with brain cancer is a decade behind the sophisticated multimodality therapy currently employed for leukemia and Hodgkin's disease. However, this gap is rapidly closing. Virtually every agent available has been tried, but usually in debilitated patients or those with recurrent disease. Table 4 shows the collective response.
Fig. 3. Arteriogram, anterior-posterior projection, of the skull. Note displacement of the anterior cerebral arteries and abnormal vasculature indicative of the tumor.

Fig. 4. Left lateral arteriogram showing abnormal blood vessels associated with this tumor. The anterior cerebral artery appears to be stretched.

rate of patients with malignant glioma to single agent chemotherapy in Phase II studies. Significant responses appear to have occurred with many agents, but these "responses" and their duration must be clearly defined. Another parameter of response is length of survival, but it is a meaningless indicator when patients begin treatment at various stages of disease.

In a randomized study of 34 patients who received surgical resection and radiotherapy, the use of given 5-FU did not live significantly longer than those who did not receive the drug. Mithramycin was also evaluated in 96 patients with histopathologically proven malignant glioma, who had received standard therapy. Patients were randomized between mithramycin (25 mcg./kg./day IV, over eight hours for 21 days) and no mithramycin. The median survival was 23 weeks, without any differences between groups.

Combined modalities therapy has
been used for many neoplasms and is based on the assumption that synergistic and additive therapeutic potential can be achieved without increased toxicity through the administration of various agents which have different modes of action. BCNU (80 mg. /m²/day IV x three days every six to eight weeks) with and without radiotherapy (5,000-6,000 rads) was compared to the best conventional care in patients who had definitive surgical resection of neuropathologically diagnosed malignant glioma.³ Patients who received at least two doses of BCNU and 5,000 rads of radiotherapy had a median survival of 40.5 weeks, while those who received radiotherapy alone had a median survival of 37.5 weeks. Patients who had at least two courses of BCNU showed a median survival of 25 weeks, and those who received neither radiotherapy nor BCNU (but survived long enough to have received both if they had been prescribed) had a median survival of 17 weeks. It is significant to note that by 18 months, the great majority of patients who received only one mode of therapy had succumbed to their disease, while 25 percent of those who had received BCNU and radiotherapy were still alive.

A preliminary report of a randomized study of BCNU, vincristine and radiotherapy, compared to BCNU and vincristine alone, indicated no significant difference between the two treatment groups.¹⁰ Another preliminary Phase III study evaluating CCNU, with and without radiotherapy, has shown an increase in median survival time to progression of those who received both modes of therapy, but in the interim report there was no statistical difference in survival.¹¹ Phase II drug combination studies have evaluated BCNU and vincristine and found no superiority over BCNU alone.¹² Nor was the combination of CCNU, procarbazine and vincristine superior to either the nitrosourea or procarbazine alone. Current Phase III

Chemotherapeutic Agent	Number of Patients	Percent Response
Cyclophosphamide	21	–
Mechlorethamine	23	–
Thio-TEPA	21	62
Methotrexate	21	33
5-FU	32	–
Mithramycin	45	47
Bleomycin	17	88
Vincristine	22	32
Vinblastine	46	46
BCNU	69	46
CCNU	63	41
Methyl CCNU	27	22
Procarbazine	21	48
Epipodophyllotoxin	14	43
combined modalities studies are now evaluating the newest of the nitroso-
soureas, methyl CCNU (220 mg./m² orally every six to eight weeks) with and
without radiotherapy (6,000 rads), com-
pared to radiotherapy with and without
BCNU (80 mg./m² IV for three days
every six to eight weeks). Controlled
Phase II studies are also attempting to
specifically quantify the therapeutic ef-
ficacy of four single agents which might
be of value in future Phase III combined
modalities studies. These include pro-
carbazine, a lipid-soluble drug of tenta-
tive value; streptozotocin, a nitroso-
urea analogue, and dibromodulcitol, both
known to cross the blood-brain barrier;
and Adriamycin, which has already
shown a broad range of efficacy.

In summary, the treatment of malig-
nant gliomas has come more sharply into
focus. Controlled and uncontrolled clinical
trials are generating data which indicate
that brain cancer may be subjected to
the same vigorous analytic approach
which has advanced the treatment of
other cancers. The value of surgery
alone compared to surgery plus radio-
therapy and/or chemotherapy is becom-
ing more defined. 5-Fluorouracil and
mithramycin in conventional doses have
been shown to be ineffective in the treat-
ment of this disease, while BCNU and
radiotherapy are of modest, but signifi-
cant value. Further clinical trials are
necessary to evaluate procarbazine,
CCNU and methyl CCNU, as well as
combined modalities therapy for ma-
lignant gliomas and other brain
cancers.

References

1. "75 Cancer Facts and Figures. New York: Ameri-
can Cancer Society, 1975. 31 p.
2. Walker, M. D.: Brain Tumors. In: Holland, J. F.,
and Frei, E. III (eds.): Cancer Medicine. Philadel-
phia: Lea & Febiger, 1973. Pp. 1385-1407.
3. Jelsma, R., and Bucy, P. C.: The treatment of
glioblastoma multiforme of the brain. J. Neurosurg.
27: 388-400, 1967
4. Roth, J. G., and Elvidge, A. R.: Glioblastoma mult-
iforme: A clinical study. J. Neurosurg. 17: 736-
750, 1960
5. Mullan, S.: Current mortality of the surgical treat-
ment of brain tumors. A study of 100 consecutive
cases. J. A.M.A. 182: 601-608, 1962.
6. Boward, J.: Radiation Therapy of Tumors and
Diseases of the Nervous System. Philadelphia: Lea
& Febiger, 1966. P. 244
7. Edland, R. W.; Javid, M., and Ansfield, F. J.:
Glioblastoma multiforme. An analysis of the results of
postoperative radiotherapy alone versus radio-
therapy and concomitant 5-Fluorouracil. Amer. J.
Roentgen. 111: 337-342, 1971.
8. Leventhal, C. M., and Walker, M. D.: Chem-
otherapy of malignant glioma: A collaborative study.
Excerpta Medica Int. Congress Series No. 193,
1969. P. 33
9. Walker, M. D., and Gehan, E. A.: An evaluation of
1-3-Bis(2-Chloroethyl)-1-Nitrosourea (BCNU)
and irradiation alone and in combination for the treat-
ment of malignant glioma. Proc. Amer. Ass. Cancer
Res. 13: 67, 1972
10. Shapiro, W. R., and Young, D. F.: Chemo-
therapy of malignant glioma with BCNU and vincris-
tine. Neurology (Minneap.) 24: 380, 1974
11. Band, P. R., et al.: Radiotherapy and CCNU in
Grade III and IV astrocytoma. Proc. Amer. Ass.
Cancer Res. 15: 161, 1974
12. Fewer, D.; Wilson, C. B.; Boldrey, E. B.; Enot,
K. J., and Powell, M. R.: The chemotherapy of brain
tumors: clinical experience with carmustine (BCNU)
and vincristine. J. A.M.A. 222: 549-552, 1972.
13. Frankel, S. A., and German, W. J.: Glioblastoma
multiforme: Review of 219 cases with regard to na-
tural history, pathology, diagnostic methods, and treat-
ment. J. Neurosurg. 15: 489-503, 1956.
14. Stage, W. S., and Stein, J. J.: Treatment of malig-
nant astrocytomas. Amer. J. Roentgen. 120: 7-18,
1974.
15. Goldsmith, M. A.: Glioblastoma multiforme—
a review of therapy. Cancer (Treat. Res.) 11: 153-165,
1974.