Autoimmune Diseases and COVID-19 as Risk Factors for Poor Outcomes: Data on 13,940 Hospitalized Patients from the Spanish Nationwide SEMI-COVID-19 Registry

Maria del Mar Ayala Gutiérrez 1,*#1, Manuel Rubio-Rivas 2##1, Carlos Romero Gómez 1, Abelardo Montero Sáez 1##1, Iván Pérez de Pedro 1, Narcís Homs 2, Blanca Ayuso García 3, Carmen Cuenca Carvajal 4, Francisco Arnalich Fernández 5##1, José Luis Beato Pérez 6, Juan Antonio Vargas Núñez 7, Laura Letona Giménez 8##1, Carmen Suárez Fernández 9, Manuel Méndez Bailón 10, Carlota Tuñón de Almeida 11, Julio González Moraleja 12##1, Mayte de Guzmán García-Monge 13, Cristina Helguera Amezua 14, María del Pilar Fidalgo Montero 15, Vicente Giner Galván 16, Ricardo Gil Sánchez 17, Jorge Collado Sáenz 18, Ramon Boixeda 19##1, José Manuel Ramos Rincón 20##1, Ricardo Gómez Huergas 1##1 and on behalf of the SEMI-COVID-19 Network †

Internal Medicine Department, Regional University Hospital of Málaga, Biomedical Research Institute of Málaga (IBIMA), University of Málaga (UMA), 29010 Málaga, Spain; carlosrg1968@gmail.com (C.R.G.); ivanpdpt@hotmail.com (J.P.d.F); ricardogomezhuergas@hotmail.com (R.G.H.)

Internal Medicine Department, Bellvitge University Hospital-IDIBELL, L’Hospitalet de Llobregat, 08907 Barcelona, Spain; mrubio@bellvitgehospital.cat (M.R.-R.); amontero@gen.cat (A.M.S.); nhoms@bellvitgehospital.cat (N.H.)

Internal Medicine Department, 12 de Octubre University Hospital, 28041 Madrid, Spain; blanca.ayuso90@gmail.com

Internal Medicine Department, Gregorio Marañón University Hospital, 28007 Madrid, Spain; maria.cuenca@salud.madrid.org

Internal Medicine Department, La Paz University Hospital, 28046 Madrid, Spain; farnalich@salud.madrid.org

Internal Medicine Department, Albacete University Hospital Complex, 02006 Albacete, Spain; jlbeto@sesam.org

Internal Medicine Department, Puerta de Hierro University Hospital, 28222 Majadahonda, Spain; juantonio.vargas@uam.es

Internal Medicine Department, Miguel Servet Hospital, 50009 Zaragoza, Spain; laura.letona@gmail.com

Internal Medicine Department, La Princesa University Hospital, 28006 Madrid, Spain; csuarezfe@gmail.com

Internal Medicine Department, San Carlos Clinical Hospital, 28040 Madrid, Spain; manuelmenba@hotmail.com

Internal Medicine Department, Zamora Hospital Complex, 49022 Zamora, Spain; carlotta.dealmeida@gmail.com

Internal Medicine Department, Virgen de la Salud Hospital, 45004 Toledo, Spain; juilagmoraleja@gmail.com

Internal Medicine Department, Infanta Cristina University Hospital, 28981 Parla, Spain; mayte.deguzman@gmail.com

Internal Medicine Department, Cabuernas Hospital, 33394 Cijón, Spain; cristina.h.amezua@gmail.com

Internal Medicine Department, Harena Hospital, 28822 Coslada, Spain; garrotefidalgo@telefonica.net

Internal Medicine Department, San Juan de Alicante University Hospital, 03550 San Juan de Alicante, Spain; giner.vidal@gmail.com

Internal Medicine Department, La Fe University Hospital, 46026 Valencia, Spain; rigilasan@gmail.com

Internal Medicine Department, San Pedro Hospital, 26006 Logroño, Spain; jorgecolladosaenz@hotmail.com

Internal Medicine Department, Matarrá Hospital, 08304e Mataró, Spain; rboixeda@ub.edu

Department of Clinical Medicine, Miguel Hernandez University of Elche, 03202 Alicante, Spain; jramosrinc@hotmail.com; Tel.: +34-951-290-000

* Correspondence: m_mar@hotmail.com; Tel.: +34-951-290-000
† A Complete List of the SEMI-COVID-19 Network Members is Provided in the Acknowledgments.

Abstract: (1) Objectives: To describe the clinical characteristics and clinical course of hospitalized patients with COVID-19 and autoimmune diseases (ADs) compared to the general population.

(2) Methods: We used information available in the nationwide Spanish SEMI-COVID-19 Registry, which retrospectively compiles data from the first admission of adult patients with COVID-19. We selected all patients with ADs included in the registry and compared them to the remaining patients. The primary outcome was all-cause mortality during admission, readmission, and subsequent admissions, and secondary outcomes were a composite outcome including the need for intensive

J. Clin. Med. 2021, 10, 1844. https://doi.org/10.3390/jcm10091844
care unit (ICU) admission, invasive and non-invasive mechanical ventilation (MV), or death, as well as in-hospital complications. (3) Results: A total of 13,940 patients diagnosed with COVID-19 were included, of which 362 (2.6%) had an AD. Patients with ADs were older, more likely to be female, and had greater comorbidity. On the multivariate logistic regression analysis, which involved the inverse propensity score weighting method, AD as a whole was not associated with an increased risk of any of the outcome variables. Habitual treatment with corticosteroids (CSs), age, Barthel Index score, and comorbidity were associated with poor outcomes. Biological disease-modifying anti-rheumatic drugs (bDMARDs) were associated with a decrease in mortality in patients with AD. (4) Conclusions: The analysis of the SEMI-COVID-19 Registry shows that ADs do not lead to a different prognosis, measured by mortality, complications, or the composite outcome. Considered individually, it seems that some diseases entail a different prognosis than that of the general population. Immunosuppressive/immunoregulatory treatments (IST) prior to admission had variable effects.

Keywords: autoimmune diseases; antirheumatic agents; biological therapy; glucocorticoids; immune system diseases; COVID-19; SARS-CoV-2

1. Introduction

The novel coronavirus 2019 disease (COVID-19) pandemic has spread throughout the world. Spain is one of the most affected countries in Europe, with more than 3,153,000 cumulative cases [1].

The infection has a more severe course in elderly men or those with comorbidities [2,3]. In the case of patients with autoimmune diseases (ADs), questions have been raised about the true susceptibility to SARS-CoV-2 infection and the course of the AD after infection. In general, the underlying dysfunction of their immune system and the immunosuppressive/immunoregulatory treatments (ISTs) they receive mean that some patients with ADs are at greater risk of infection [4,5]. Different studies have observed a frequency of COVID-19 in these patients that is higher than that of the general population [6–8], as well as a worse prognosis in terms of the need for mechanical ventilation (MV) or admission to intensive care units (ICUs) [9]. In others, however, the frequency of COVID-19 [10–14] and its prognosis were similar to patients without ADs [13,15–19]. It has been suggested that patients with ADs could have adopted stricter and earlier self-protection and social distancing measures than the general population [12,20].

On the other hand, antimalarials, which are common in the treatment of ADs, have in vitro antiviral effects [21], although no protective effect has been demonstrated [9,12,22,23]. In the inflammatory phase of COVID-19, ISTs could protect patients with ADs who usually receive them from the onset of a cytokine storm, which is associated with a poor prognosis [14,15,24]. Finally, some ADs have basal characteristics that could influence the course of COVID-19, both positively (overexpression of interferon alpha [25]) and negatively (lymphopenia [26] or epigenetic dysregulation [27]).

The Spanish Society of Internal Medicine (SEMI) has created a registry of patients hospitalized due to COVID-19 in Spain. This registry makes it possible to compare the sociodemographic and clinical characteristics and the clinical course of patients with and without ADs in order to establish whether differences exist between them.

2. Materials and Methods

2.1. Study Design and Patients

We have used the information available in the Spanish nationwide SEMI-COVID-19 Registry, which retrospectively compiles data from the first admission of patients ≥ 18 years of age with COVID-19, confirmed microbiologically by a reverse transcription polymerase chain reaction (RT-PCR) test of a nasopharyngeal swab sample, sputum specimen, or bronchoalveolar lavage. This registry collects sociodemographic data, previous
medical history, routine treatment (including CS, antimalarials, conventional or targeted disease-modifying anti-rheumatic drugs (cs/tsDMARDs), and bDMARDs), clinical presentation, clinical condition (including the degree of functional dependence, as evaluated by the Barthel Index [28], and the presence of comorbidities, as evaluated by the Charlson Comorbidity Index [29]), laboratory test results, radiological findings, clinical management, in-hospital complications, length of hospital stay, early readmissions, referral to long-term care or skilled nursing facilities, and deaths. Patients were treated at their attending physician’s discretion according to local protocols and their clinical judgment.

The SEMI-COVID-19 Registry was approved by the Provincial Research Ethics Committee of Málaga (Spain). Given that it is observational in nature, the registry poses no additional inconvenience to the patients included. Informed consent was obtained from all patients. When it was not possible to obtain it in writing for biosecurity reasons or because the patient had already been discharged, it was collected verbally and noted on the medical record. More in-depth information and preliminary results of the SEMI-COVID-19 Registry have recently been published [30].

We selected all of the patients with ADs included in the registry until 30 June 2020 (prior to the beginning of the vaccination campaign in Spain) and compared them with the remaining patients. The ADs were defined based on the information included in the medical record and the judgment of the physician in charge of entering the data into the registry, which was done using a standardized online data capture system. The primary outcome of the study was all-cause mortality during admission, readmission, and subsequent admissions. Secondary outcomes were a composite outcome, including the need for ICU admission, invasive and non-invasive MV, or death, as well as in-hospital complications. The latter included secondary bacterial pneumonia, acute respiratory distress syndrome (ARDS), acute heart failure, arrhythmia, acute coronary syndrome, myocarditis, seizures, stroke, shock, sepsis, acute kidney failure, disseminated intravascular coagulation (DIC), venous thromboembolism, multiple organ dysfunction syndrome, and acute limb ischemia.

2.2. Statistical Analysis

Categorical variables were presented as a number (percentage), and continuous variables were reported as the mean ± standard deviation (SD). Categorical variables were compared using the chi-squared or Fisher’s exact tests. Continuous variables were compared using an ANOVA test. The level of significance was established as a two-tailed p < 0.05. No corrections were made for multiple comparisons.

The different models of logistic regression were developed with the group of patients in the registry without ADs who had valid information in all of the predictor and result variables included in the corresponding analysis. For patients with ADs, the missing data were completed by multiple imputations [31]. Multivariable logistic regression was used to estimate the odds ratio (OR) and 95% confidence interval (95% CI) when comparing outcomes, mortality, composite outcomes, and complications during hospitalization. The regression model included sociodemographic variables, comorbidities, and prior ISTs. For the predictor variable selection process, the Wald statistic, forward method, was used, with inclusion p < 0.05 and exclusion p < 0.10.

As it is an observational, non-randomized study, to reduce the number of model predictor variables, avoid selection biases, and better control the influence of their possible confounding effect, the different propensity scores (PSs) were independently calculated [32,33] for the binary variables of ADs, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), primary Sjögren syndrome (PSS), systemic sclerosis (SSc), mixed connective tissue disease (MCTD)/overlap syndrome, inflammatory myopathies (IM), primary antiphospholipid syndrome (APS), spondyloarthropathies, vasculitis (systemic vasculitis, including giant cell arteritis), polymyalgia rheumatica (PMR), and combined PMR/giant cell arteritis.

In the first step, in the logistic regression model that included the previously cited variables as dependents and variables on sociodemographic data, comorbidity, preadmission
ISTs, and drugs received during the hospital stay as predictors, the estimated probability for each dependent variable was calculated as a PS using the enter method. In the next step, this PS was weighted by calculating its inverse (inverse propensity score weighting (IPSW) method) in patients with AD as 1/PS and in patients without AD as 1/(1-PS); the histogram of the weighted scores showed that the groups were comparable. Subsequently, an analysis of generalized estimation equations was carried out in the generalized linear models module of the SPSS statistical package in order to retrieve the original sample sizes and calculate the OR with their 95% CI. To assess the robustness of the results, sensitivity analyses were performed, comparing the results of the logistic regression analysis with those obtained through the IPSW method. All analyses were conducted using IBM SPSS Statistics for Windows, Version 22.0. (Armonk, NY: IBM Corp., US).

3. Results

3.1. Patients

As of 30 June 2020, a total of 13,940 patients diagnosed with COVID-19 were included in the SEMI-COVID-19 Registry, of which 362 (2.6%) had ADs, which were sub-classified into classic ADs, other ADs, and miscellaneous ADs (Table 1).

Table 1. Classification of the autoimmune diseases (ADs).

Disease	n (%)	Total (%)
Without AD		
RA	113 (0.81)	
SLE	23 (0.16)	
PSS	19 (0.14)	
SSc	13 (0.09)	
Vasculitis: ANCA-vasculitis (8), isolated CNS vasculitis, Schönlein-Henoch purpura, urticarial hypocomplementemic vasculitis, erythema elevatum with vasculitis, antiMPO/antiGBM glomerulonephritis	13 (0.09)	207 (1.48)
Giant cell arteritis	9 (0.06)	
MTCD/overlap	9 (0.06)	
IM	4 (0.03)	
APS	4 (0.03)	
Classical AD		
PMR	48 (0.34)	
Spondyloarthropathy	33 (0.24)	
Sarcoidosis	10 (0.07)	
Inflammatory bowel disease	10 (0.07)	
Idiopathic pulmonary fibrosis	9 (0.06)	
Primary biliary cirrhosis	6 (0.04)	
Other AD		
Autoimmune cytopenia: immune thrombocytopenic purpura (3), autoimmune hemolytic anemia, autoimmune neutropenia	5 (0.04)	134 (0.96)
Autoimmune hepatitis	4 (0.03)	
Myasthenia Gravis	4 (0.03)	
Behçet’s disease	3 (0.02)	
Multiple sclerosis	2 (0.01)	
The average age of patients with ADs was somewhat higher, and female sex was more frequent than in the general population. They had greater comorbidity, with a Charlson Index > 2, especially in the group of patients with classic ADs (2.66 vs. 1.27 in the general population). The clinical manifestations, physical examination on admission, and radiological alterations of patients with ADs were similar to the general population (Table 2 and Table S1). Patients with ADs were being treated with ISTs more frequently (Table 2).

Table 1. Cont.

Disease	n (%)	Total (%)
Psoriasis	6 (0.04)	
Cutaneous lupus	4 (0.03)	
Seronegative polyarthritis	3 (0.02)	
Seronegative arthritis	1 (0.01)	
Arthralgia with antinuclear/citrullinatedpeptide antibody	1 (0.01)	
Anterior ischemic optic neuropathy/orbital pseudotumor	1 (0.01)	
Polyglandular autoimmune syndrome	1 (0.01)	
Collagenous colitis	1 (0.01)	
Erythema nodosum	1 (0.01)	
HLAB27 uveitis	1 (0.01)	
Palindromic rheumatism	1 (0.01)	

Total 13,940 (100)

AD: autoimmune diseases; AntiGBM: anti-glomerular basement membrane antibodies; AntiMPO: myeloperoxidase antibodies; APS: primary antiphospholipid antibodies; CNS: central nervous system; IM: inflammatory myopathies; MTCD: mixed connective tissue disease; PMR: polymyalgia rheumatica; PSS: primary Sjögren syndrome; RA: rheumatoid arthritis; SLE: systemic lupus erythematosus; SSc: systemic sclerosis.

Table 2. Baseline characteristics among groups.

	Without AD	Classical AD	Other AD	Miscellaneous AD	p-Value
Sociodemographic data					
Age, years (mean ± SD)	67.2 ± 16.3	69.6 ± 13.6	71.3 ± 14.3	66.4 ± 10.8	0.006
Sex (female) n (%)	5784 (42.6)	124 (59.9)	64 (47.8)	10 (47.6)	<0.001
Race n (%)					0.040
- Caucasian	11,997 (89.7)	193 (93.2)	129 (96.3)	21 (100)	
- Black	51 (0.4)	3 (1.4)	0 (0.0)	0 (0.0)	
- Hispanic	1145 (8.6)	10 (4.8)	3 (2.2)	0 (0.0)	
- Asian	60 (0.4)	0 (0.0)	0 (0.0)	0 (0.0)	
- Other	118 (0.9)	1 (0.5)	2 (1.5)	0 (0.0)	
Degree of dependence (Barthel Index score) n (%)					0.081
- Absent/mild	11,170 (83.5)	166 (80.2)	105 (78.4)	20 (95.2)	
- Moderate	1249 (9.3)	28 (13.5)	13 (9.7)	1 (4.8)	
- Severe	962 (7.2)	13 (6.3)	16 (11.9)	0 (0.0)	
Comorbidities					
Charlson Comorbidity Index (mean ± SD)	1.27 ± 1.80	2.66 ± 2.09	2.36 ± 2.11	2.05 ± 1.66	<0.001
Table 2. Cont.

	Without AD	Classical AD	Other AD	Miscellaneous AD	p-Value
Smoking n (%)					0.068
- Non smoker	12,228 (94.6)	203 (98.1)	129 (96.3)	21 (100)	
- Smoker	696 (5.4)	4 (1.9)	5 (3.7)	0 (0.0)	
Alcohol use disorder n (%)	621 (4.7)	10 (4.8)	5 (3.7)	1 (4.8)	0.960
Hypertension n (%)	6849 (50.5)	118 (57.0)	76 (56.7)	12 (57.1)	0.122
Dyslipidemia n (%)	5352 (39.5)	88 (42.5)	63 (47.0)	9 (42.9)	0.263
Diabetes mellitus n (%)	2585 (19.0)	48 (23.2)	28 (20.9)	3 (14.3)	0.413
Obesity (BMI > 30) n (%)	2617 (21.2)	58 (28.0)	32 (23.9)	4 (19.0)	0.102
Anxiety n (%)	1045 (7.7)	19 (9.2)	11 (8.2)	3 (14.3)	0.594
Depression n (%)	1375 (10.2)	30 (14.5)	19 (14.2)	3 (14.3)	0.079
Neurodegenerative disorder n (%)	1237 (9.1)	21 (10.1)	16 (11.9)	1 (4.8)	0.573
Dementia n (%)	1358 (10.0)	25 (12.1)	14 (10.4)	1 (4.8)	0.653
Hemiplegia/paraplegia n (%)	221 (1.6)	6 (2.9)	4 (3.0)	0 (0.0)	0.281
Dialysis n (%)	154 (1.1)	5 (2.4)	4 (3.0)	0 (0.0)	0.145
Organ transplantation n (%)					<0.001
- No transplant					
- Kidney					
- Liver	116 (0.8)	5 (2.4)	2 (1.5)	0 (0.0)	
- Heart	23 (0.2)	0 (0.0)	1 (0.7)	0 (0.0)	
- Lung	11 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	
Arteriosclerotic vascular disease n (%)	2359 (17.4)	48 (23.2)	29 (21.6)	1 (4.8)	0.033
Non-arteriosclerotic vascular disease n (%)	1995 (14.7)	46 (22.2)	28 (21.0)	4 (19.0)	0.004
Respiratory pathology n (%)	2682 (19.7)	70 (33.8)	38 (28.3)	7 (33.3)	<0.001
HIV n (%)	96 (0.7)	0 (0.0)	0 (0.0)	0 (0.0)	0.460
Chronic liver disease, moderate to severe n (%)	133 (1.0)	3 (1.4)	2 (1.5)	0 (0.0)	0.799
Chronic kidney failure moderate-severe n (%)	804 (5.9)	21 (10.1)	11 (8.2)	1 (4.8)	0.055
Cancer n (%)	1425 (10.5)	24 (11.6)	12 (8.9)	2 (9.5)	0.891
Gastroduodenal ulcer n (%)	340 (2.5)	9 (4.3)	6 (4.5)	0 (0.0)	0.148
Treatment before admission					
Antimalarials n (%)	38 (0.3)	29 (14.0)	3 (2.2)	0 (0)	<0.001
Corticosteroids n (%)	428 (3.1)	105 (50.7)	59 (44.0)	7 (33.3)	<0.001
cs/tsDMARDs n (%)	360 (2.7)	97 (46.8)	28 (20.9)	8 (38.1)	<0.001
bDMARDs n (%)	149 (1.1)	21 (10.1)	10 (7.5)	1 (4.8)	<0.001

Data for patients with ADs were imputed for sociodemographic variables, comorbidity, and treatment before admission. Arteriosclerotic vascular disease (ischemic heart disease, cerebral vascular disease, and peripheral arterial disease). Non-arteriosclerotic vascular disease (heart failure and atrial fibrillation). Respiratory pathology (asthma, COPD, chronic bronchitis, sleep apnea syndrome). AD: autoimmune disease; bDMARDs: disease-modifying anti-rheumatic drugs, original biological or similar; BMI: body mass index; COPD: chronic obstructive pulmonary disease; cs/tsDMARDs: disease-modifying anti-rheumatic drugs, synthetic, conventional, or targeted; HIV: human immunodeficiency virus.
During admission, patients with AD received ISTs more frequently than the general population, especially CS and immunoglobulins (IGIV), while the use of antimalarial drugs, which were part of the standard of care during a certain period of time in Spain, was similar in all groups (Table 3).

Table 3. Immunosuppressors/immunomodulators during the admission.

	Without AD	Classical AD	Other AD	Miscellaneous AD	p-Value
Hydroxychloroquine n (%)	11,581 (85.6)	172 (83.1)	106 (79.1)	19 (90.5)	0.113
Chloroquine n (%)	622 (4.6)	13 (6.3)	9 (6.7)	0 (0.0)	0.310
Tocilizumab n (%)	1136 (8.4)	19 (9.2)	9 (6.7)	3 (14.3)	0.661
Immunoglobulin n (%)	58 (0.4)	5 (2.4)	1 (0.7)	0 (0.0)	0.001
Anakinra n (%)	75 (0.6)	2 (1.0)	0 (0.0)	0 (0.0)	0.685
Baricitinib n (%)	77 (0.6)	3 (1.4)	0 (0.0)	1 (4.8)	0.020
Corticosteroids n (%)	4656 (34.5)	102 (49.3)	49 (36.6)	11 (52.4)	<0.001

AD: autoimmune diseases.

3.2. Prognosis in Patients with ADs

Although the duration of admission was similar in all groups, in the univariate analysis, patients with ADs had more complications ($p = 0.008$) and higher mortality ($p < 0.001$), and met the criteria of the composite outcome more often than the general population ($p < 0.001$), especially the group of classic ADs and other ADs (Table 4).

Table 4. Outcomes.

	Without AD	Classical AD	Other AD	Miscellaneous AD	p-Value	
Length of stay (days) mean ± SD	11.2 ± 10.0	12.2 ± 10.7	11.4 ± 13.2	12.3 ± 8.0	0.502	
NIMV n (%)	666 (4.9)	15 (7.4)	2 (1.5)	1 (4.8)	0.118	
IMV n (%)	882 (6.5)	13 (6.4)	6 (4.5)	2 (9.5)	0.753	
ICU admission n (%)	1108 (8.2)	23 (11.1)	7 (5.2)	2 (9.5)	0.264	
Complications during admission n (%)	6246 (46.0)	118 (57.0)	70 (52.2)	10 (47.6)	0.008	
Bacterial pneumonia n (%)	1460 (10.8)	34 (16.4)	20 (14.9)	1 (4.8)	0.022	
ARDS n (%)	4414 (32.8)	84 (40.6)	48 (35.8)	7 (33.3)	0.019	
Heart failure n (%)	765 (5.7)	23 (11.1)	10 (7.5)	0 (0.0)	0.004	
Arrhythmia n (%)	523 (3.9)	18 (8.7)	7 (5.2)	1 (4.8)	0.005	
Myocardial infarction n (%)	108 (0.8)	3 (1.4)	2 (1.5)	0 (0.0)	0.572	
Myocarditis n (%)	118 (0.9)	4 (1.9)	2 (1.5)	0 (0.0)	0.346	
Seizures n (%)	80 (0.6)	3 (1.5)	0 (0.0)	0 (0.0)	0.326	
Stroke n (%)	- Ischemic	81 (0.6)	0 (0.0)	3 (2.2)	0 (0.0)	0.267
- Hemorrhagic	11 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	0.636	
Shock n (%)	602 (4.5)	13 (6.3)	9 (6.7)	0 (0.0)	0.253	
Acute kidney failure n (%)	1872 (13.9)	42 (20.3)	20 (14.9)	5 (23.8)	0.032	
Sepsis n (%)	822 (6.1)	18 (8.7)	14 (10.4)	1 (4.8)	0.081	
DIC n (%)	148 (1.1)	4 (1.9)	2 (1.5)	0 (0.0)	0.032	
Table 4. Cont.

Thromboembolic disease n (%)	Without AD	Classical AD	Other AD	Miscellaneous AD	p-Value
DVT	66 (0.5)	2 (1.0)	1 (0.7)	0 (0.0)	<0.001
PE	195 (1.4)	6 (2.9)	2 (1.5)	1 (4.8)	
DVT + PE	15 (0.1)	0 (0.0)	0 (0.0)	0 (0.0)	
Multiorgan failure n (%)	831 (6.2)	22 (10.6)	10 (7.5)	0 (0.0)	0.033
Peripheral arteriopathy n (%)	72 (0.5)	0 (0.0)	1 (0.7)	0 (0.0)	0.718
Readmission n (%)	496 (3.8)	11 (5.5)	5 (3.8)	0 (0.0)	0.495
Related to COVID-19 n (%)	205 (41.5)	7 (63.6)	0 (0.0)	0 (0.0)	0.056
Death n (%)	2968 (22.2)	64 (30.9)	49 (36.6)	2 (9.5)	<0.001
Composite outcome n (%)	3790 (27.9)	80 (38.6)	52 (38.8)	4 (19.0)	<0.001

AD: autoimmune disease; ARDS: acute respiratory distress syndrome; DIC: disseminated intravascular coagulopathy; DVT: deep venous thrombosis; ICU: intensive care unit; IMV: invasive mechanical ventilation; NIMV: non-invasive mechanical ventilation; PE: pulmonary embolism.

In multivariate logistic regression analysis, the ADs as a whole showed neutral effects on the outcome variables (mortality, composite outcome, and complications). Habitual treatment with CS was associated with a greater risk of these outcome variables, unlike the rest of the habitual ISTs, which had a neutral effect. Age, male sex, Hispanic ethnicity/race, Barthel Index score, and comorbidity (Charlson Comorbidity Index, hypertension, dyslipidemia, obesity, respiratory pathology, non-arteriosclerotic cardiovascular disease, and transplantation) were also poor prognostic factors (Table 5).

When we analyzed the effect of ADs as a whole and individually, as well as the habitual ISTs on the outcome variables by calculating the IPSW method, ADs as a whole were not associated with higher mortality, increased risk of the composite outcome, or more complications during admission (Table 6). Some ADs, such as RA, PMR, and vasculitis, were associated with higher mortality; spondyloarthopathies, vasculitis, and PMR were associated with a higher risk of the composite outcome, as well as RA, with higher risk of complications during hospitalization. SSc was associated with a lower risk of mortality, composite outcome, and complications during hospitalization. Similarly, PSS was associated with fewer complications during hospitalization (Supplementary Table S2). The effect of the habitual ISTs was very variable. BDMARDs were associated with a decrease in mortality in the set of ADs, and were especially beneficial in spondyloarthropathies, although contradictory results were observed in SLE, RA, and vasculitis. CS did not affect the overall ADs, but was detrimental in some diseases, such as PSS, SSc, MCTD/overlap, APS, IM, and vasculitis. Cs/tsDMARDs also did not affect the overall group, but were beneficial in some diseases, such as PMR/giant cell arteritis, SLE, and RA. Finally, antimalarials did not change the prognosis.
Table 5. Measures of the effect, OR (95% CI), of the ADs, sociodemographic characteristics, comorbidity, and immunomodulatory treatments prior to admission and during hospital stay in relation to the outcome variables α.

Outcome	Mortality	Composite Outcome	Complications
n (%)	2449 (21.7)	3176 (27.7)	5309 (46.4)

AUC	AUC = 0.83 (95% CI 0.82–0.84)	AUC = 0.74 (95% CI 0.73–0.75)	AUC = 0.71 (95% CI 0.70–0.72)
Age, years	1.08 (1.08–1.09)	1.05 (1.04–1.05)	1.04 (1.03–1.04)
Sex (female)	0.58 (0.52–0.66)	0.60 (0.55–0.66)	0.60 (0.55–0.65)

Race

- Caucasian
- Black: 1.06 (0.49–2.27)
- Hispanic: 1.43 (1.18–1.74)
- Asian: 1.19 (0.55–2.57)
- Others: 1.15 (0.68–1.96)

Degree of dependence (Barthel Index score)

- Absent/mild: 1.69 (1.45–1.98)
- Moderate: 1.55 (1.34–1.79)
- Severe: 1.96 (1.66–2.31)

Hypertension

1.13 (1.01–1.27)

Dyslipidemia

NS

Obesity (BMI > 30)

1.33 (1.17–1.51)

Respiratory pathology

NS

Non-arteriosclerotic cardiovascular disease

NS

Organ transplantation

- No transplant: 1.81 (1.44–2.27)
- Kidney: 1.54 (1.26–1.88)
- Liver: 6.42 (1.37–30.16)

Charlson Comorbidity Index

1.16 (1.13–1.19)

Autoimmune disease

- NS α,β
- NS α,β
- NS α,β

α Obtained in the logistic regression analysis (selection of variables: Wald statistician forward, with inclusion p < 0.05 and exclusion p < 0.10) in relation to the result variables: mortality, composite outcome (mortality, mechanical ventilation, and ICU admission), and complications during hospitalization. Predictive variables included in the model: absent/present AD, age, sex, race, alcoholism, smoking, Barthel Index score, hypertension, dyslipidemia, diabetes mellitus, obesity, depression, neurodegenerative pathology, dementia, severe renal pathology, dialysis (absent/hemodialysis/peritoneal), organ transplantation, respiratory pathology (asthma, COPD, chronic bronchitis, sleep apnea syndrome), non-arteriosclerotic cardiovascular disease (heart failure or AF); arteriosclerotic cardiovascular disease (TIA, stroke, hemiplegia, angina, AMI, peripheral arterial disease), severe liver disease, any neoplasm, gastro-duodenal ulcer disease, AIDS; HIV infection, Charlson Comorbidity Index, in-hospital complications, pre-admission immunosuppressive therapy with CS, antimalarials, bDMARDs, and cs/tsDMARDs. In total, there were 31 exposure variables. β Statistical significance was not reached in the final model for the AD variable categorized into four groups (absent, classic AD, other AD, and miscellaneous), nor when the immunoregulatory treatments used during hospitalization were included in the model (HCQ, CQ, tocilizumab, IVIG, anakinra, baricitinib, CS). AD: autoimmune diseases; AF: atrial fibrillation; AIDS: acquired immune deficiency syndrome; AMI: acute myocardial infarction; AUC: area under the ROC curve; bDMARDs: disease-modifying anti-rheumatic drugs, original, biological, or similar; BMI: body mass index; COPD: chronic obstructive pulmonary disease; CS: corticosteroids; cs/tsDMARDs: disease-modifying anti-rheumatic drugs, synthetic, conventional, or targeted; CVA: cerebrovascular accident; HCQ: hydroxychloroquine; HIV: human immunodeficiency virus; ICU: intensive care unit; IVIG: intravenous immunoglobulins; NS: not significant; OSAS: obstructive sleep apnea syndrome; TIA: transient ischemic attack.
Table 6. Measures of the effect, OR (95% CI) *, of ADs as a whole and of immunomodulatory treatments prior to hospital admission with their propensity scores on the outcome variables.

	Antimalarials	Corticosteroids	cs/tsDMARDs	bDMARDs	
Mortality	2.11 (0.56–7.58)	1.02 (0.29–3.58)	0.80 (0.26–2.49)	1.31 (0.60–2.90)	0.14 (0.03–0.78) *
Composite outcome	1.58 (0.44–5.63)	1.18 (0.38–3.68)	0.80 (0.28–2.33)	1.35 (0.65–2.80)	0.22 (0.04–1.14)
Complications	0.94 (0.25–3.44)	1.76 (0.56–5.55)	1.57 (0.47–5.30)	0.98 (0.47–2.02)	0.71 (0.09–5.91)

* Propensity scores were obtained with the inverse weighting method. Outcome variables were mortality, composite outcome (mortality, mechanical ventilation, and ICU admission), and complications during the hospitalization. Predictor variables included in the logistic regression model to estimate the propensity score: age, sex, race, form of acquisition (common/nosocomial/residency), alcohol use disorder, smoking, Barthel Index score, comorbidity, Charlson Comorbidity Index, immunosuppressive/immunomodulatory treatments prior to admission (anti-malarial, glucocorticoids, cs/tsDMARDs, bDMARDs) and during hospitalization (antimalarials, tocilizumab, immunoglobulins, anakinra, baricitinib, corticosteroids), and the presence of a complication during hospitalization (38 exposure variables to calculate the propensity scores). A total of 11,174 patients hospitalized by COVID-19 were included. AD: autoimmune disease; bDMARDs: disease modifying anti-rheumatic drugs, original, biologic, or similar; cs/tsDMARDs: disease-modifying anti-rheumatic drugs, synthetic, conventional, or targeted; ICU: intensive care unit.

4. Discussion

In this study, we analyzed data from one of the largest cohorts of hospitalized patients with ADs and COVID-19 published to date. In this registry, patients with ADs accounted for 2.6% of the total number of patients admitted to 150 hospitals in Spain for COVID-19. Other authors have described figures that range from ≤1% to 10% [34–36]. This variability could be influenced by the different prevalence of ADs according to the geographical area [37], as well as the selection and classification criteria of the ADs used. In the nationwide Spanish SEMI-COVID-19 Registry, several ADs were included based on the dysfunction of the underlying immune system, the possibility of receiving ISTs, and the judgment of the clinician in charge of data entry, which were gathered from the information contained in the medical record. The actual incidence of COVID-19 in patients with ADs is still unknown. Worldwide, in different epidemiological contexts and for different ADs, its incidence has been described as being both similar [10,12–14,38,39] and higher [6,7,40] than among the general population. In our case, the design of the registry does not allow for an approximation in this regard beyond what has been observed in hospitalized patients in our country.

In this registry, patients with ADs were more frequently female, older, more dependent, and with greater comorbidity than patients without ADs. In the univariate analysis, patients with ADs had higher mortality, met the criteria of the composite outcome more often, and had more complications during hospitalization. However, after controlling for the effect of possible known confounding factors using multivariate logistic regression and the IPSW method, the presence of an ADs did not entail a greater risk of these variables.

Two international registries of patients with ADs and a recent meta-analysis have shown the deleterious effect of age and comorbidity on the prognosis of COVID-19 [8,41–43]. These same factors may have acted as confounders of the higher mortality, composite outcome, and complications that we observed in the univariate analysis in patients with ADs. In the multivariate analysis, in which the effect of ADs on the prognosis of COVID-19 was estimated, taking into account these and other confounding factors (age, sex, ethnicity/race, comorbidities, alcohol and tobacco use, degree of dependency, and ISTs before and during admission), no relationship with the prognosis was observed. Age, male sex, and comorbidity behaved as poor prognostic factors in patients with ADs, as well as in the general population. Different studies published around the world support the idea that patients with ADs and COVID-19 have a similar clinical course to that of the general population [6,12,13,17,34,35,44,45]. Only two cohorts, both of which included only a small number of patients with ADs, found a higher frequency of respiratory failure [46] and need...
for MV or ICU admission [9] in patients with ADs compared to the general population, although there were no differences in the mortality rates in both cases.

Few studies have assessed the effect of different ADs on the prognosis of COVID-19. In our study, analyzed individually, worse progress was observed in patients with certain ADs, including RA, PMR, vasculitis, and spondyloarthopathies, and better progress in others, such as PSS and SSc (Table S2). Other authors have found a greater risk of severe COVID-19 in patients with systemic vasculitis, SLE, PSS, and APS, but they did not find differences between the control group and the group of patients with chronic inflammatory arthritis [47]. Although, in general, having an AD does not necessarily imply a worse prognosis, it cannot be ruled out that specific diseases with different pathogenic mechanisms and phenotypic characteristics would entail a different clinical course than the rest. Until now, the small number of patients with specific diseases that have been included in the publications, the absence of a control group, and the lack of control of biases and confounding factors have not allowed for the effects of these diseases to be fully characterized. Further analysis would be needed to evaluate the severity of specific conditions within the heterogeneous AD group.

Another concern during the pandemic has been the impact of basal ISTs (CS, antimalarials, and DMARDs) on the prognosis of COVID-19. The onset of hyper-inflammatory syndromes and even immune reconstitution inflammatory syndrome associated with poor prognosis have been described in the course of SARS-CoV-2 infection [48]. Immunosuppressive therapies have been used for the treatment of this inflammatory phase of the disease [24,49], similar to other ADs associated with viral infections (such as cryoglobulinemia and hepatitis C virus or polyarteritis nodosa and hepatitis B virus [50]). In addition, ensuring that ADs remain in remission helps prevent infections in general [51] or the least poor progression of them [52]. In this context, various authors have suggested that basal ISTs would not result in a more severe clinical course [45], and could even have some protective effect [14,15,21,49]. In this study’s multivariate logistic regression analysis, the habitual treatment with CS was associated with higher mortality among patients with ADs. In the analysis, by calculating the PS, habitual CS did not influence the prognosis of ADs as a whole, although we did find a significant influence in a few diseases. Two large registries of patients with ADs and a recent meta-analysis have also shown the deleterious effect of CS on the prognosis of COVID-19 [8,41–43]. No information was collected in this registry on the dose or duration of pre-admission CS treatment or the activity of the underlying disease, which may have influenced these results.

Regular treatment with antimalarials did not have any protective effect, which is consistent with the results of other observational studies in patients with ADs [9,12,23,41]. However, in patients with PMR, antimalarials were associated with more complications, although the 95% CI was quite wide, and thus was too imprecise to be taken into consideration.

In our study, the regular use of DMARDs (bDMARDs or cs/tsDMARDs) tended to have a neutral or protective effect against the outcome variables in the whole of the ADs and in specific diseases. Other authors have also found a neutral [6,16,38,42,47,53] or protective [41] effect of bDMARDs and cs/tsDMARDs [41,47,53]. Better control of disease activity, as well as the attenuation or prevention of an excessive inflammatory response to COVID-19, could explain the protective or neutral effect of these drugs. In the case of SLE and RA, however, bDMARDs were shown to be harmful. A lack of information about other possible confounding factors, such as AD activity, may have influenced this result.

One of the main strengths of our study is the large number of patients included from the internal medicine departments of more than 150 hospitals. Furthermore, data were collected using a standardized, previously agreed upon protocol. Multiple imputations of the missing data, both randomized and biased, were performed on patients with ADs, which allowed all of them to be analyzed. To avoid selection biases and control for confounding factors in the estimation of the effect of ADs, a multivariate analysis was carried out, and the PS was estimated using the IPSW method. Finally, as a sensitivity analysis, the results obtained in the previous analyses were compared.
Our study has some limitations. In addition to being retrospective, the registry was not specifically designed to evaluate the effect of ADs, but rather was designed as a general registry of patients hospitalized due to COVID-19. This registry took advantage of the information available in electronic medical records, but the data were collected by a large number of researchers from different centers who were not necessarily specialized in ADs or in charge of patient care. This could have led to heterogeneity in the collection and validation of this information. Patients who were unable to provide informed consent at any time, either because of severe illness or mechanical ventilation, were excluded. However, they represent an extremely small proportion of patients, and thus have little impact on the results. The group of patients classified as having ADs included patients with various diseases. Their inclusion in this group was based on the baseline dysfunction of the immune system, the possibility of receiving immunosuppressive treatment, and the judgment of the physician in charge of entering the data, which reflects the habitual clinical practice and allowed us to increase the sample size. Since it was a very heterogeneous group, a subgroup analysis (classical, other, and miscellaneous) and analyses of specific entities were also performed. In the analysis, general population cases that were missing data for any of the variables of the different statistical analyses carried out were excluded from the control group, but, given the large sample size, the power of the statistical contrasts was not affected. On the other hand, the effect of the AD activity or the antiviral or antimicrobial drugs used during hospitalization were not evaluated, although some of the latter have not been proven effective in other studies [54]. In order to create the multivariate statistical contrast models, the admission date was not included. This may entail a selection bias, since, although little time has passed since the beginning of the pandemic, the management of patients may have changed in these months.

5. Conclusions

In conclusion, this analysis of the SEMI-COVID-19 Registry found that ADs do not entail a different prognosis, as measured by mortality, the composite outcome (mortality/ICU admission/need for MV), or complications, than that of the rest of patients hospitalized due to COVID-19 in Spain. Considered individually, it cannot be ruled out that some diseases entail a better or worse prognosis than the general patient population. The use of ISTs before admission had variable effects.

More studies are needed, including outpatient cohort studies, in order to determine the different aspects that affect COVID-19 prognosis in patients with ADs.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/jcm10091844/s1. Table S1. Baseline characteristics among groups; Table S2. Measures of the effect, OR (95% CI), of ADs individually and immunomodulatory treatments prior to hospital admission with their propensity scores as the outcome variables.

Author Contributions: Conceptualization, M.d.M.A.G. and M.R.-R.; methodology, M.d.M.A.G. and M.R.-R.; software, M.d.M.A.G. and M.R.-R.; validation, C.R.G., A.M.S., I.P.d.P., and N.H.; formal analysis, M.d.M.A.G. and M.R.-R.; investigation, M.d.M.A.G., M.R.-R., C.R.G., A.M.S., I.P.d.P., and N.H.; resources, M.d.M.A.G., M.R.-R., C.R.G., A.M.S., I.P.d.P., N.H., J.M.R.R., and R.G.H.; data curation, M.d.M.A.G., M.R.-R., C.R.G., A.M.S., I.P.d.P., N.H., J.M.R.R., and R.G.H.; writing—original draft preparation, M.d.M.A.G. and M.R.-R.; writing—review and editing, C.R.G., A.M.S., I.P.d.P., and N.H.; visualization, C.R.G., A.M.S., I.P.d.P., and N.H.; supervision, R.G.H.; project administration, J.M.R.R. and R.G.H.; funding acquisition, J.M.R.R. and R.G.H. All authors have contributed to the data collection. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the Declaration of Helsinki and approved by Provincial Research Ethics Committee of Málaga (Spain). Ethics Committee code: SEMI-COVID-19 27-03-20.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: The data this study is based on are available from the corresponding author upon reasonable request.

Acknowledgments: We gratefully acknowledge all of the investigators who participated in the SEMI-COVID-19 Registry. We also thank the SEMI-COVID-19 Registry Coordinating Center, S&H Medical Science Service, for their quality control data, logistic, and administrative support. We greatly appreciate the help of doctor de Ramón Garrido in the statistical analysis.

List of the SEMI-COVID-19 Network members:

Coordinator of the SEMI-COVID-19 Registry: José Manuel Casas Rojo.

SEMI-COVID-19 Scientific Committee Members: José Manuel Casas Rojo, José Manuel Ramos Rincón, Carlos Lumberas Bermejo, Jesús Millán Nuñez-Cortés, Juan Miguel Antón Santos, Ricardo Gómez Huelgas.

SEMI-COVID-19 Registry Coordinating Center: S & H Medical Science Service.

Members of the SEMI-COVID-19 Group:

Hospital Universitario 12 de Octubre. Madrid

Paloma Agudo de Blas, Coral Arévalo Cañas, Blanca Ayuso, José Bascañana Morejón, Samara Campos Escudero, María Carnevali Frias, Santiago Cossio Tejido, Borja de Miguel Campo, Carmen Díaz Pedroche, Raquel Díaz Simon, Ana García Reyne, Lucía Jorge Huerta, Antonio Laluzea Blanco, Jaime Laureiro Gonzalo, Jaime Lora-Tamayo, Carlos Lumberas Bermejo, Guillermo Maestro de la Calle, Barbara Otero Perpiña, Diana Paredes Ruiz, Marcos Sánchez Fernández, Javier Tejada Montes.

Hospital Universitari de Bellvitge. L’Hospitalat de Llobregat

Xavier Corbella, Narcís Homs, Abelardo Montero, Jose María Mora-Luján, Manuel Rubio Rivas.

H. U. Gregorio Marañón. Madrid

Laura Abarca Casas, Álvaro Alejandre de Oña, Rubén Alonso Beato, Leyre Alonso Gonzalo, Jaime Alonso Muñoz, Christian Mario Amodeo Oblitas, Cristina Austrín García, Marta Bacete Cebrián, Jesús Baltasar Corral, María Barrientos Guerrero, Alejandro Bendala Estrada, María Calderón Moreno, Paula Carrascosa Fernández, Raquel Carrillo, Sabela Castañeda Pérez, Eva Cervilla Muñoz, Agustín Diego Chacón Moreno, María Carmen Cuenca Carvajal, Sergio de Santos, Andrés Enriquez Gómez, Eduardo Fernández Carracedo, María Mercedes Ferreiro-Mazón Jenaro, Francisco Gáleano Valle, Alejandro García, Irene García Fernández-Bravo, María Eugenia García Leoni, María García Antunez, Candela González San Narciso, Anthony Alexander Gurjian, Lorena Jiménez Ibáñez, Cristina Lavilla Olleros, Cristina Llamazares Mendoza, Sara Luis García, Víctor Mato Jimeno, Clara Millán Nohales, Jesús Millán Nuñez-Cortés, Sergio Moragón Ledesma, Antonio Muñoz Miguez, Cecilia Muñoz Delgado, Lucía Ordieres Ortega, Susana Pardo Sánchez, Alejandro Parra Virto, María Teresa Pérez Sanz, Blanca Pinilla Llorente, Sandra Piqueras Ruiz, Guillermo Soria Fernández-Llamazares, Maria Toledano Macias, Neera Toledo Samaniego, Ana Torres del Rego, Maria Victoria Villalba García, Gracia Villarreal, María Zurita Etayo.

H. U. La Paz-Cantoblanco-Carlos III. Madrid

Jorge Álvarez Troncoso, Francisco Arnalich Fernández, Francisco Blanco Quintana, Carmen Busca Arenzana, Sergio Carrasco Molina, Aranzazu Castellano Candalija, Germán Daroca Bengoa, Alejandro de Gea Grela, Alicia de Lorenzo Hernández, Alejandro Diez Vidal, Carmen Fernández Capitán, María Francisca García Iglesias, Borja González Muñoz, Carmen Rosario Herrero Gil, Juan María Herrero Martínez, Víctor Hontañoñ, María Jesús Jara Hernández, Carlos Lahoz, Cristina Marcelo Calvo, Juan Carlos Martín Gutiérrez, Monica Martinez Prieto, Elena Martinez Robles, Araceli Menéndez Saldaña, Alberto Moreno Fernández, Jose Maria Mostaza Prieto, Ana Noblejas Mozó, Carlos Manuel Oñoró López, Esmeralda Palmer Peláez, Marina Palomar Pampyn, Maria Angustias Quezada Simón, Juan Carlos Ramos Ramos, Luis Ramos Ruperto, Aquilino Sánchez Purificación, Teresa Sancho Bueso, Raquel Sorrigüeta Torre, Clara Itziar Soto Abarredes, Yeray Untoria Tabares, Marta Varas Mayoral, Julia Vásquez Manau.

C. H. U. de Albacete. Albacete

Jose Luis Beato Pérez, Maria Lourdes Sáez Méndez.

H. U. Puerta de Hierro. Majadahonda

María Álvarez Bello, Ane Andrés Eisenhofer, Ana Arias Milla, Isolina Baños Pérez, Laura Benítez Gutiérrez, Javier Bilbao Garay, Silvia Blanco Alonso, Jorge Calderón Parra, Alejandro Callejas Díaz, José María Camino Salvador, Mª Cruz Carreño Hernández, Valentií Cuervás-Mons Martínez, Sara de la Fuente Moral, Miguel del Pino Jimenez, Alberto Diaz de Santiago, Itziar Diego Yagüe, Ignacio Donate Velasco, Ana María Duca, Pedro Durán del Campo, Gabriela Escudero López, Esther Úspósito Palomo, Ana Fernández Cruz, Esther Fiz Benito, Andrea Fraile López, Amy Galán Gómez, Sonia
Alba Camarena Molina, Simona Cioaia, Anna Ferrer Santolalia, José María Frutos Pérez, Eva Gil Tomás, Leyre Jorquer Vidal, Marina Llopis Sanchís, M Ángeles Martínez Pascual, Alvaro Navarro Batet, Mari Amparo Perea Ribis, Ricardo Peris Sanchez, José Manuel Querol Ribelles, Silvia Rodriguez Mercadal, Ana Ventura Esteve.

H. G. U. de Castellón. Castellón de la Plana

Jorge Andrés Soler, Marián Bennasar Remolar, Alejandro Cardenal Álvarez, Daniela Díaz Carlotti, María José Esteve Gimeno, Sergio Fabra Juana, Paula García López, Maria Teresa Guinot Soler, Daniela Palomo de la Sota, Guillem Pascual Castellanos, Ignacio Pérez Catalán, Celia Roig Martí, Paula Rubert Monzó, Javier Ruiz Padilla, Nuria Tornador Gaya, Jorge Usó Blasco.

C. A. U. de Salamanca. Salamanca

Gloria María Alonso Claudio, Víctor Barrales Rodríguez, Cristina Carbonell Muñoz, Adela Carpio Pérez, María Victoria Coral Orbes, Daniel Encinas Sánchez, Sandra Inés Revuelta, Miguel Marcos Martín, José Ignacio Martín González, José Ángel Martín Oterino, Leticia Moralejo Alonso, Sonia Peña Balbuena, María Luisa Pérez García, Ana Ramon Prados, Beatriz Rodríguez-Alonso, Ángela Romero Alegría, María Sanchez Ledesma, Rosa Juana Tejera Pérez.

H. General Defensa

Anyuli Gracia Gutiérrez, Leticia Esther Royo Trallero

H. U. Quironsalud Madrid. Pozuelo de Alarcón (Madrid)

Pablo Guisado Vasco, Ana Roda Santacruz, Ana Valverde Muñoz.

H. Parc Taulí. Sabadell

Francisco Epelde, Isabel Torrente

Hospital de Palamós. Palamós

Maricruz Almendros Rivas, Miquel Hortos ALSina, Anabel Martin-Urda Diez-Carasco.

H. Virgen de los Lirios. Alcoy (Alicante)

Mª José Esteban Giner.

Hospital Clínico Universitario de Valladolid. Valladolid

X joylin Teresita Eguíes Torres, Sara Gutiérrez González, Cristina Novoa Fernández, Pablo Tellería Gómez.

Hospital Doctor José Molina Orosa. Arrecife (Lanzarote)

Virgínia Herrero García, Berta Román Bernal.

Hospital do Salnes. Vilagarcía de Arousa

Vanesa Alende Castro, Ana María Baz Lomba, Ruth Brea Aparicio, Marta Fernández Morales, Jesus Manuel Fernandez Villar, Maria Teresa Lopez Monteagudo, Cristina Pérez García, Lorena Maria Rodriguez Ferreira, Diana Sande Llovo, Maria Begoña Valle Feijoo.

Hospital Público de Monforte de Lemos. Monforte de Lemos

José López Castro, Manuel Lorenzo López Reboiro.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Situation of COVID-19 in Spain. Available online: https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/situacionActual.html (accessed on 22 February 2021).

2. Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72,314 Cases from the Chinese Center for Disease Control and Prevention. JAMA 2020, 323, 1239–1242. [CrossRef] [PubMed]

3. Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; The Northwell COVID-19 Research Consortium; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5707 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [CrossRef] [PubMed]

4. Doran, M.F.; Crowson, C.S.; Pond, G.R.; O’Fallon, W.M.; Gabriel, S.E. Frequency of infection in patients with rheumatoid arthritis compared with controls: A population-based study. Arthr. Rheum. 2002, 46, 2287–2293. [CrossRef] [PubMed]

5. Li, T.H.; Lai, C.C.; Wang, W.H.; Chen, W.S.; Tsao, Y.P.; Tsai, C.Y.; Chang, Y.S. Risk of severe herpes simplex virus infection in systemic lupus erythematosus: Analysis of epidemiology and risk factors analysis in Taiwan. Ann. Rheum. Dis. 2019, 78, 941–946. [CrossRef]

6. Damiani, G.; Pacifico, A.; Bragazzi, N.L.; Malagoli, P. Biologics increase the risk of SARS-CoV-2 infection and hospitalization, but not ICU admission and death: Real-life data from a large cohort during red-zone declaration. Dermatol. Ther. 2020, 33, e13475. [CrossRef]

7. Pablos, J.L.; Absolo, L.; Alvaro-Gracia, J.M.; Blanco, F.J.; Blanco, R.; Castrejón, I.; Fernandez-Fernandez, D.; Fernandez-Gutiérrez, B.; Galindo-Izquierdo, M.; Gonzalez-Gay, M.A.; et al. RIER investigators group. Prevalence of hospital PCR-confirmed COVID-19 cases in patients with chronic inflammatory and autoimmune rheumatic diseases. Ann. Rheum. Dis. 2020, 79, 1170–1173. [CrossRef] [PubMed]
8. Akiyama, S.; Hamdeh, S.; Micic, D.; Sakuraba, A. Prevalence and clinical outcomes of COVID-19 in patients with autoimmune diseases: A systematic review and meta-analysis. *Ann. Rheum. Dis.* 2020. [CrossRef]

9. D’Silva, K.M.; Serling-Boyd, N.; Wallwork, R.; Hsu, T.; Fu, X.; Gravallese, E.M.; Choi, H.K.; Sparks, J.A.; Wallace, Z.S. Clinical characteristics and outcomes of patients with coronavirus disease 2019 (COVID-19) and rheumatic disease: A comparative cohort study from a US ‘hot spot’. *Ann. Rheum. Dis.* 2020, 79, 1156–1162. [CrossRef]

10. Emmi, G.; Bettiol, A.; Mattioli, I.; Silvestri, E.; Di Scala, G.; Urban, M.L.; Vaglio, A.; Prisco, D. SARS-CoV-2 infection among patients with systemic autoimmune diseases. *Autoimmun. Rev.* 2020, 19, 102575. [CrossRef]

11. Fan, M.; Qiu, W.; Bu, B.; Xu, Y.; Yang, H.; Huang, D.; Lau, A.Y.; Guo, J.; Zhang, M.N.; Zhang, X.; et al. Risk of COVID-19 infection in MS and neuromyelitis optica spectrum disorders. *Neuro. Neuroimmunol. Neuroinflamm.* 2020, 7, e787. [CrossRef] [PubMed]

12. Favalli, E.G.; Monti, S.; Ingegnoti, F.; Balduzzi, S.; Caporali, R.; Montecucco, C. Incidence of COVID-19 in patients with rheumatic diseases treated with targeted immunosuppressive drugs: What can we learn from observational data? *Arthritis Rheumatol.* 2020, 72, 1600–1606. [CrossRef]

13. Allocca, M.; Fiorino, G.; Zallot, C.; Furfaro, F.; Gilardi, D.; Radice, S.; Danese, S.; Peyrin-Biroulet, L. Incidence and patterns of COVID-19 among inflammatory bowel disease patients from the Nancy and Milan cohorts. *Clin. Gastroenterol. Hepatol.* 2020, 8, 2134–2135. [CrossRef]

14. Gubatan, J.; Levitte, S.; Balabanis, T.; Patel, A.; Sharma, A.; Habtezion, A. SARS-CoV-2 Testing, Prevalence, and Predictors of COVID-19 in Patients with Inflammatory Bowel Disease in Northern California. *Gastroenterology* 2020, 159, 1141–1144. [CrossRef]

15. Gazzaruso, C.; Carlo Stella, N.; Mariani, G.; Tamburini, A.; Garini, P.; Freddi, E.; Ravetto, C.; Coppola, A.; Gallotti, P. Impact of anti-rheumatic drugs and steroids on clinical course and prognosis of COVID-19. *Clin. Rheumatol.* 2020, 39, 2475–2477. [CrossRef] [PubMed]

16. Haberman, R.; Axelrad, J.; Chen, A.; Castillo, R.; Yan, D.; Izmirly, P.; Neimann, A.; Adhikari, S.; Hudesman, D.; Scher, J.U. COVID-19 in Immune-Mediated Inflammatory Diseases—Case Series from New York. *N. Engl. J. Med.* 2020, 383, 85–88. [CrossRef]

17. Moiseev, S.; Avdeev, S.; Brovko, M.; Yavorovskiy, A.; Novikov, P.I.; Umbetova, K.; Akulkina, L.; Tsareva, N.; Fomin, V. Rheumatic diseases in intensive care unit patients with COVID-19. *Ann. Rheum. Dis.* 2021, 80, e16. [CrossRef]

18. Sanchez-Piedra, A.; Diaz-Torre, C.; Manero, J.; Pego-Reigosa, J.M.; Rúa-Figueroa, I.; Gonzalez-Gay, M.A.; Gomez-Reino, J.; Alvaro-Gracia, J.M.; BIOBADASER Study Group. Clinical features and outcomes of COVID-19 in patients with rheumatic diseases treated with biological and synthetic targeted therapies. *Ann. Rheum. Dis.* 2020, 79, 988–990. [CrossRef] [PubMed]

19. Tomelleri, A.; Sartorelli, S.; Campochiaro, C.; Baldissera, E.M.; Dagna, L. Impact of COVID-19 pandemic on patients with large-vessel vasculitis in Italy: A monocentric survey. *Ann. Rheum. Dis.* 2020, 79, 1252–1253. [CrossRef] [PubMed]

20. Zen, M.; Fuzzi, E.; Astorri, D.; Saccon, F.; Padoan, R.; Ienna, L.; Cozzi, G.; Depascale, R.; Zanatta, E.; Gasparotto, M.; et al. SARS-CoV-2 infection in patients with autoimmune rheumatic diseases in northeast Italy: A cross-sectional study on 916 patients. *J. Autoimmun.* 2020, 112, 102502. [CrossRef]

21. Yao, X.; Ye, F.; Zhang, M.; Cui, H.; Huang, B.; Niou, P.; Liu, X.; Zhao, L.; Dong, E.; Song, C.; et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). *Clin. Infect. Dis.* 2020, 71, 732–739. [CrossRef] [PubMed]

22. Mathian, A.; Mahevas, M.; Rohmer, J.; Rounier, M.; Cohen-Aubart, F.; Amador-Borrego, B.; Barrelet, A.; Chauvet, C.; Chazal, T.; Delahousse, M.; et al. Clinical course of coronavirus disease 2019 (COVID-19) in a series of 17 patients with systemic lupus erythematosus under long-term treatment with hydroxychloroquine. *Ann. Rheum. Dis.* 2020, 79, 837–839. [CrossRef]

23. Singer, M.E.; Kaelber, D.C.; Antonelli, M.J. Hydroxychloroquine ineffective for COVID-19 prophylaxis in lupus and rheumatoid arthritis. *Ann. Rheum. Dis.* 2020. [CrossRef]

24. Del Papa, N.; Sambataro, G.; Minniti, A.; Pignataro, F.; Caporali, R. Novel CORonaVirus Disease 2019 (COVID-19) epidemic: What can we learn from observational data? *Arthritis Rheumatol.* 2020, 72, 102558. [CrossRef]

25. Niewold, T.B. Interferon alpha as a primary pathogenic factor in human lupus. *J. Interferon. Cytokine Res.* 2011, 31, 887–892. [CrossRef]

26. Lu, Z.; Li, J.; Ji, J.; Gu, Z.; Da, Z. Mortality prediction in systemic lupus erythematosus patients with pulmonary infection. *Int. J. Rheum. Dis.* 2019, 22, 1077–1083. [CrossRef] [PubMed]

27. Sawalha, A.H.; Zhao, M.; Coit, P.; Lu, Q. Epigenetic dysregulation of ACE2 and interferon-regulated genes might suggest increased COVID-19 susceptibility and severity in lupus patients. *Clin. Immunol.* 2020, 215, 108410. [CrossRef]

28. Mahoney, F.I.; Barthel, D.W. Functional evaluation: The Barthel Index. *Md. State Med. J.* 1965, 14, 61–65.

29. Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. *J. Chronic. Dis.* 1987, 40, 373–383. [CrossRef]

30. Casas-Rojo, J.M.; Antón-Santos, J.M.; Millán-Núñez-Cortés, J.; Lumbrales-Bermejo, C.; Ramos-Rincón, J.M.; Roy-Vallejo, E.; Artero-Mora, A.; Arnalich-Fernández, F.; García-Bruñón, J.M.; Vargas-Núñez, J.A.; et al. SEMI-COVID-19 Network. Clinical characteristics of patients hospitalized with COVID-19 in Spain: Results from the SEMI-COVID-19 Network. *Rev. Clin. Esp.* 2020, 220, 480–494. [CrossRef] [PubMed]

31. Sterne, J.A.; White, I.R.; Carlin, J.B.; Spratt, M.; Royston, P.; Kenward, M.G.; Wood, A.M.; Carpenter, J.R. Multiple imputation for missing data in epidemiological and clinical research: Potential and pitfalls. *BMJ* 2009, 338, b2393. [CrossRef] [PubMed]

32. Coscia Requena, C.; Muriel, A.; Peñuelas, O. Analysis of causality from observational studies and its application in clinical research in Intensive Care Medicine. *Med. Intensiva* 2018, 42, 292–300. [CrossRef]
