Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Use of failure-to-rescue after emergency surgery as a dynamic indicator of hospital resilience during the COVID-19 pandemic. A multicenter retrospective propensity score-matched cohort study

Javier Osorio a,*, Zoilo Madrazo a,1, Sebastian Videla b,1, Beatriz Sainz c, Araceli Rodríguez-Gonzalez d, Andrea Campos e, Maite Santamaria f, Amalia Pelegrina g, Carmen Gonzalez-Serrano b, Aurora Aldeano i, Aingeru Sarriugarte j, Carlos Javier Gómez-Díaz k, David Ruiz-Luna l, Amador García-Ruiz-de-Ordejuela m, Concepción Gomez-Gavara n, Marta Gil-Barrionuevo o, Marina Vila p, Arantxa Clavell q, Beatriz Campillo r, Laura Millan s, Carles Olona t, Sergi Sanchez-Cordero u, Rodrigo Medrano v, Camilo Andrés Lopez-Arevalo w, Noelia Pérez-Romero x, Eva Artigau y, Miguel Calle z, Víctor Echenagusia aa, Aurema Otero bb, Cristian Tebe cc, Natàlia Pallares cc, Sebastiano Biondo a,2, Jose Maria Valderas dd,2, and the COVID-CIR Collaborative Group

a Department of Surgery, Hospital Universitari de Bellvitge, L’Hospitalet del Llobregat, Barcelona, Spain
b Department of Clinical Pharmacology, Clinical Research Support Unit (HUB-IDIBELL), Bellvitge University Hospital, L’Hospitalet de llobregat, Barcelona, Spain
c Department of Surgery, Complejo Hospitalario de Navarra, Pamplona, Spain
d Department of Surgery, Donostia University Hospital, San Sebastian, Spain
e Department of Surgery, Parc Taulí Health Corporation, Sabadell Hospital, Sabadell, Spain
f Department of Surgery, Arnau de Vilanova University Hospital, Lleida, Spain
 g Department of Surgery, Hospital Del Mar University Hospital, Barcelona, Spain
h Department of Surgery, Basurto University Hospital, Bilbao, Spain
i Department of Surgery, Granollers General Hospital, Granollers, Spain
j Department of Surgery, Cruces University Hospital, Bilbao, Spain
k Department of Surgery, Akhia Foundation, University Healthcare Network, Maresme, Spain
l Department of Surgery, Terrassa Health Consortium, Terrassa Hospital, Terrassa, Spain
m General Surgery Department, Vall D’Hebron University Hospital, Barcelona, Spain
n Hepatobiliarypancreatic Surgery and Transplantation Department, Vall D’Hebron University Hospital, Barcelona, Spain
o Department of Surgery, Vallcarca Hospital, Viladecans, Spain
p Department of Surgery, Matari Hospital, Mareme Health Consortium, Mataró, Spain
q Department of Surgery, Germans Trias I Pujol University Hospital, Badalona, Spain
r Department of Surgery, Sant Joan de Deu Hospital Foundation, Martorell, Spain
s Department of Surgery, Dr. Josep Molina Orus Hospital, Llançac, Spain
 t Department of Surgery, Joan XXIII University Hospital, Tarragona, Spain
u Department of Surgery, Igualada University Hospital, Anoia Health Consortium, Igualada, Spain
v Department of Surgery, Sant Pau University Hospital, Barcelona, Spain
w Department of Surgery, Moisés Broggi Hospital, Sant Joan Despí, Spain
x Department of Surgery, Mútua de Terrassa University Hospital, Terrassa, Spain
y Department of Surgery, Dr. Josep Trueta University Hospital, Girona, Spain
z Department of Surgery, Alco Deba Hospital, Mondragón, San Sebastian, Spain
aa Department of Surgery, Araba University Hospital, Txagorritxu Hospital, Vitoria, Spain
ab Clinical Research Support Unit, Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet Del Llobregat, Barcelona, Spain
ac Biostatistics Unit of the Bellvitge Biomedical Research Institute (IDIBELL), University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
ad Department of Family Medicine, Yong Loo Lin School of Medicine, National University Health System, Singapore

* Corresponding author. Department of Surgery, Hospital Universitari de Bellvitge, Avinguda de la Feixa Llonga S/N, 08907 L’Hospitalet de Llobregat, Barcelona, Spain.
E-mail address: josorio@bellvitgehospital.cat (J. Osorio).

1 Javier Osorio and Zoilo Madrazo have contributed equally to this manuscript and share first authorship.
2 Sebastiano Biondo and Jose Maria Valderas have also contributed equally and share senior authorship.

https://doi.org/10.1016/j.ijsu.2022.106890
Received 14 May 2022; Received in revised form 17 August 2022; Accepted 28 August 2022
Available online 9 September 2022
1743-9191/© 2022 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
ARTICLE INFO

Keywords:
- Resilience
- Failure-to-rescue
- Emergency surgery
- COVID-19

ABSTRACT

Background: Surgical failure-to-rescue (FTR, death rate following complications) is a reliable cross-sectional quality of care marker, but has not been evaluated dynamically. We aimed to study changes in FTR following emergency surgery during the COVID-19 pandemic.

Material and methods: Matched cohort study including all COVID-19 non-infected adult patients undergoing emergency general surgery in 25 Spanish hospitals during COVID-19 pandemic peak (March–April 2020), non-peak (May–June 2020), and 2019 control periods. A propensity score-matched comparative analysis was conducted using a logistic regression model, in which period was regressed on observed baseline characteristics. Subsequently, a mixed effects logistic regression model was constructed for each variable of interest. Main variable was FTR. Secondary variables were post-operative complications, readmissions, reinterventions, and length of stay.

Results: 5003 patients were included (948, 1108, and 2947 in the pandemic peak, non-peak, and control periods), with comparable clinical characteristics, prognostic scores, complications, reintervention, rehospitalization rates, and length of stay across periods. FTR was greater during the pandemic peak than during non-peak and pre-pandemic periods (22.5% vs. 17.2% and 12.7%), being this difference confirmed in adjusted analysis (odds ratio [OR] 2.13, 95% confidence interval [95% CI] 1.27–3.66). There was sensible inter-hospital variability in FTR changes during the pandemic peak (median FTR change +8.77%, IQR 0–29.17%) not observed during the pandemic non-peak period (median FTR change 0%, IQR -6.01–6.72%). Greater FTR increase was associated with higher COVID-19 incidence (OR 2.31, 95% CI 1.31–4.16) and some hospital characteristics, including tertiary level (OR 3.07, 95% CI 1.27–8.00), medium-volume (OR 2.79, 95% CI 1.14–7.34), and high basal-adjusted complication risk (OR 2.21, 95% CI 1.07–4.72).

Conclusion: FTR following emergency surgery experienced a heterogeneous increase during different periods of the COVID-19 pandemic, suggesting it to behave as an indicator of hospital resilience. FTR monitoring could facilitate identification of centres in special needs during ongoing health care challenges.

1. Introduction

The coronavirus disease 2019 (COVID-19) pandemic has strained the resources of health care systems worldwide, limiting their ability to respond to the health care needs of patients [1,2]. There is a need for scientific evidence to support the evaluation of resilience in health care in order to improve preparedness to pandemics and other challenges, and avoid preventable deaths in the future [3,4]. Given the critical role of hospitals in any health system, the model of “safe and resilient hospitals” has been promoted as a key component of disaster risk relief planning [5,6].

Hospital resilience is defined as the capacity of a hospital to adjust their functioning in order to maintain quality of care under changing conditions [7]. The evaluation of resilience has been largely based on data obtained from surveys, questionnaires and checklists measuring hospitals’ structures, resources, and services, with little attention to the real impact on clinical outcomes [8,9].

Surgical failure-to-rescue (FTR), the death rate following a post-operative complication, captures hospitals’ inability to stop the transition from an initial complication to the progressive cascade of adverse events that lead to death, and therefore has been widely used as an indicator of the quality of care in hospitals [10,11]. Whereas complications have been found to be primarily associated with underlying disease and patient characteristics, FTR has been primarily linked to hospital characteristics, such as centre volume, nurse-to-bed ratio, or the availability of specialty services (like gastroenterology or interventional radiology) [10,12]. This metric has been used in a static manner, eg, to assess differences in the quality of perioperative care across hospitals [13,14] and countries [11,15], but not dynamically to monitor changes over time in the same facilities or group of facilities. Longitudinal assessment of FTR could be useful in monitoring the ability of a given provider to respond to changing epidemiological and care delivery circumstances [16].

The present study aims to assess the resilience of Spanish hospitals over the COVID-19 pre-pandemic and pandemic periods focussing on the variation in FTR following emergency general surgery.

2. Material and methods

2.1. Study design and participants

A multicentre retrospective matched study of consecutive patients undergoing emergency general surgery during the first wave of the COVID-19 pandemic in Spanish hospitals was performed. Participant hospitals, which are responsible for >80% of emergency surgical volume of three Spanish autonomous communities (Catalonia, Basque Country, and Navarra), were selected based on their ability to contribute high quality data [17,18]. All patients aged 18 or more undergoing emergency gastrointestinal or general surgery (including emergency reinterventions for complications of elective surgery) during the pandemic and pre-pandemic periods in 25 participating hospitals (Table S1 in the Supplemental material) were included. The first procedure was considered as the index procedure when patients underwent multiple emergency operations. All COVID-19-positive patients (due to positive reverse transcription-polymerase chain reaction test of nasopharyngeal samples within 15 days before or 30 days after surgery, or COVID-19 infection confirmed by chest CT-scan in cases with a clinically compatible presentation) were excluded.

Four cohorts of patients were defined according to the date the eligible patient underwent emergency surgery: pandemic peak period (from March 1 to April 30, 2020); pandemic non-peak period (from May 1 to June 30, 2020); and two corresponding consecutive control periods stretching from March 1 to June 30, 2019 [19]. Pandemic and control patients were matched one-to-one based on propensity scores (Figure S1 in the Supplement). Due to the descriptive design of the study, formal calculation of the sample was not performed, being defined by the number of patients fulfilling inclusion criteria and complete data operated on during the study periods.

The study was conducted in accordance with the principles of the Declaration of Helsinki and data were reported following the recommendations of the STROCSS 2021 guideline [20]. Informed patient consent was waived given the retrospective nature of the study. Confidentiality was ensured in compliance with the provisions of personal data protection as required by Spanish Law (LOPD 3/2018). The study protocol (COVID-CIR) was registered in a research register (ClinicalT
2.2. Data collection, variables, and outcomes

2.2.1. Data collection

This study was based in the multicenter COVID-CIR registry, including data from electronic medical records by the participating hospitals (COVID-CIR Collaborative Group, fully detailed in Table S1, Supplemental material) [21]. Anonymized data were gathered in an electronic case record form with REDCap™ (Research Electronic Captu re, Vanderbilt University, Nashville, Tennessee, USA) software.

The principal investigators (JO, ZM and SV) confirmed completeness and accuracy of data with principal investigators from each centre. Patients for which information was missing on key variables (age, sex, functional status, previous comorbidities, malignancy, COVID-19 infection status, date of surgery, clinical priority, type and complexity of surgery, and 30-day postoperative follow-up) were excluded.

2.2.2. Individual patient variables

Individual patient data included: age, sex, Body Mass Index (BMI), American Society of Anaesthesiologists (ASA) surgical risk score, and pre-existing comorbidities (hypertension, chronic obstructive pulmonary disease (COPD), diabetes, cardiovascular diseases, and others). Patients were classified according to their functional dependency (ability to perform daily life activities) in three categories: independent, partially dependent, and totally dependent, as defined by Scarborough et al. [22]. Pre-operative data collected on the same day of index surgery included: body temperature; blood pressure; heart rate; Glasgow coma score; electrocardiogram findings; and inflammatory analytical indexes (neutrophil/lymphocyte ratio [NLR], platelet/lymphocyte ratio [PLR], and Systemic Immune-Inflammation Index [SII, neutrophil x platelet/lymphocyte counts]). Surgical variables included: access; malignancy (yes/no); type and extension of peritoneal exudates; and estimated blood loss. Complexity of surgical procedures was classified as minor, moderate, major, or major + using the POSSUM (Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity) scale [23]. Portsmouth-POSSUM (P-POSSUM) prognostic surgical score was calculated [23,24]. Procedures were classified as: emergency, when needed within 2 h from admission; and urgent if needed within 24 h [23].

2.2.3. Hospital characteristics

The main hospital variable was the risk-adjusted complication rate across the control periods (2019). It was calculated using a multivariate logistic regression model in which the independent variables were patients’ age, gender, current smoker, ASA, severity of surgery, surgical procedure category, and the presence of ischemic heart disease, heart failure, diabetes mellitus, COPD, cirrhosis, stroke, and other comorbid diseases. Risk-adjusted rates of complications were calculated from the predicted probabilities generated by this model during the non-pandemic periods and then used to rank hospitals into terciles [11].

Additionally, information was collected on number of beds (ranked into three terciles) and hospital level (primary, secondary, and tertiary, corresponding to increasing patient and procedure complexity, as determined by Spanish health authorities) [11].

2.2.4. Outcomes

The main outcome variable was failure-to-rescue (FTR), defined as the rate of patients with postoperative complications who died in the 30 first days after surgery (day 0 = day of the index surgery) [12]. Secondary outcomes were: any postoperative complication; a severe complication (defined as any complication graded IIIA or more with the Clavien-Dindo score) [25]; length of stay (number of days from admission to hospital discharge or death): ≤30-day hospital readmission; and ≤30-day surgical reintervention.

2.3. Statistical analysis

Patients’ pre-operative and operative characteristics were summarized by period using standard descriptive statistics. 30-day cumulative incidence and 95% confident interval (95% CI) of each outcome were calculated in each surgery period.

Firstly, a propensity score-matched analysis was done using a logistic regression model, in which surgery period was regressed on observed baseline characteristics. Variables were prospectively selected based on clinical relevance [21]: age, sex, functional status, smoking status, hypertension, COPD, diabetes, cardiovascular diseases, malignancy, clinical priority, surgical complexity, need of Intensive Care Unit (ICU) before surgery, and hospital. Participants were matched for propensity score using a calliper width of 0.2 [26]. Standardized mean difference on observed baseline characteristics was estimated and plotted for the matched cohorts to identify any imbalances.

Secondly, a logistic regression model was used to estimate odds ratios (OR) to quantify the effect on each outcome of the pandemic peak period vs. the corresponding calendar control period, and also between pandemic non-peak period vs. the corresponding control period as part of the main analysis. No further adjustment was necessary given that all the relevant confounding variables had been used in calculation of the propensity score. This was subsequently repeated as stratified by: hospital risk-adjusted complication rate; hospital level; volume of beds; and COVID-19 incidence. We hypothesized that FTR would be raised over both pandemic periods (more so during peak periods, as hospital capacity would be particularly strained) in comparison with calendar control periods (over which we hypothesized FTR would be stable). We also hypothesized that FTR would raise even more for specific hospital categories: lower hospital level and volume (suggesting lower capacity for mobilising resources); higher risk-adjusted complication rate (already evidencing a higher basal likelihood of poorer outcomes); and for COVID-19 incidence in the reference population (due to increased pressure on services).

Thirdly, a mixed effects logistic regression model was used to estimate intraclass correlation coefficients (ICC) in order to quantify the hospital effect on FTR variability [27]. The model was estimated for each surgical period before and after applying propensity-matching.

All analyses were performed using R version 3.6.3 computer software [28]. Significance was defined as p < 0.05.

3. Results

3.1. Participant characteristics

Out of 5468 potentially eligible patients, 5003 COVID-19-negative patients fulfilled all the inclusion and data quality criteria: 948 were operated on during the pandemic peak-months (from March to April 2020), 1108 during the non-peak pandemic period (from May to June 2020), and 2947 patients during the pre-pandemic period (from March to June 2019).

Patients across all periods had similar clinical characteristics, as ICU admission before surgery, surgical priority and complexity of their surgical procedures, malignancy, peritonitis, analytical variables, and surgical prognostic scores, as detailed in Table 1. The percentage of patients according to selected hospital related variables (hospital level, size, and basal-adjusted complication rate) did not substantially differ across periods. Terciles of hospital-adjusted complication rates included approximately the same number of patients.
Table 1
Baseline characteristics of participants.

	Pandemic period (2020)	Control period (2019)		
	March-April (peak n = 948)	May-June (non-peak n = 1108)	March-April n = 1485	May-June n = 1462
Age, years	mean (SD)	median (IQR)	mean (SD)	median (IQR)
	54.7 (20.2)	55.4 (19.4)	56.0 (19.9)	56.0 (20.0)
	median (IQR)	55.0 (39.0-71.0)	56.5 (41.0-72.0)	57.0 (40.0-72.0)
Sex, No., (%)	Male	Female	Male	Female
	551 (58.1)	397 (41.9)	684 (61.7)	424 (38.3)
	852 (57.4)	633 (42.6)	872 (59.6)	590 (40.4)
Weight, mean (SD), kg	74.6 (16.7)	76.7 (16.6)	75.2 (17.7)	75.3 (16.8)
BMI, mean (SD), kg/m²	26.9 (5.7)	27.5 (5.6)	27.2 (5.9)	27.4 (5.9)
Current smoking, No., (%)	171 (18.0)	195 (17.6)	264 (17.8)	244 (16.7)
ASA score, No., (%)	I	II	III	IV
	269 (28.5)	393 (41.6)	228 (24.2)	53 (5.6)
	320 (29.1)	452 (41.2)	276 (25.1)	48 (4.4)
	454 (30.8)	571 (38.6)	365 (24.8)	79 (5.4)
	398 (27.4)	565 (38.8)	411 (28.2)	76 (5.2)
SII, (ng/mL)	I	II	III	IV
	1 (0.1)	2 (0.2)	4 (0.3)	5 (0.3)
Functional status, No., (%)	856 (90.3)	1008 (91.0)	1346 (90.6)	1345 (92.0)
	Partially dependent	Totally dependent	8 (0.8)	7 (0.6)
	835 (88.1)	1005 (90.8)	1360 (91.7)	1338 (91.5)
Respiratory system, No., (%)	No dyspnea	Dyspnea	No heart failure	Diuretics, antihypertensives
	835 (88.1)	113 (11.9)	769 (81.1)	153 (16.2)
	1005 (90.8)	102 (9.2)	852 (77.0)	224 (20.2)
	1346 (91.7)	123 (8.3)	1134 (76.4)	302 (20.3)
Comorbid diseases, No., (%)	Hypertension	Diabetes mellitus	COPD	Arteriopathy
	308 (32.5)	117 (12.3)	81 (8.5)	108 (11.4)
	375 (33.8)	140 (12.6)	91 (8.2)	128 (11.6)
	504 (33.9)	208 (14.0)	92 (6.2)	207 (13.9)
Malignancy, No., (%)	No	Localized tumour	Metastatic	Heart failure, cardiomegaly
	885 (95.1)	36 (3.8)	29 (3.1)	25 (2.6)
	1026 (92.6)	48 (4.3)	34 (3.1)	31 (2.8)
	1396 (94.0)	49 (3.3)	40 (2.7)	49 (3.3)
ICU before surgery, No., (%)	No	Due to surgical	ICU before surgery, No., (%)	No
	919 (96.9)	pathology	919 (96.9)	1067 (96.5)
	1067 (96.5)	Due to other causes	1430 (96.4)	1380 (94.7)
Surgical priority, No., (%)	905 (95.5)	22 (2.3)	40 (2.7)	24 (1.7)
	1055 (95.2)	31 (2.8)	54 (3.7)	24 (1.7)
Surgical complexity, No., (%)	Minor	Intermediate	Major	Major +
	219 (23.1)	447 (47.2)	259 (27.3)	23 (2.4)
	247 (22.3)	573 (51.7)	260 (23.5)	28 (2.5)
	398 (26.8)	681 (45.9)	372 (25.1)	34 (2.3)
Emergency laparotomy (NELA definition criteria), No., (%)	No	No	No	No
	462 (48.7)	489 (44.2)	780 (52.5)	725 (49.6)
	215 (22.7)	252 (22.8)	303 (20.4)	297 (20.3)
Peritoneal exudate, No., (%)	Diffuse	Diffuse	252 (17.0)	285 (19.5)
	172 (18.1)	99 (10.4)	116 (10.5)	150 (10.1)
Surgical blood loss, No., (%)	≤100 mL	829 (87.4)	1276 (86.0)	1236 (84.6)
	966 (87.3)	101-500 mL	103 (10.9)	112 (10.1)
	1276 (86.0)	501-1000 mL	7 (0.7)	20 (1.8)
	101-500 mL	>1000 mL	9 (0.9)	26 (1.8)
	39 (2.7)	9 (0.9)	4.1 (9.9)	4.1 (9.6)
	4.1 (9.6)	median (IQR)	1.1 (0.6-2.9)	4.6 (10.1)

SD: standard deviation; IQR: interquartile range; BMI: body mass index; ASA: American Society of Anesthesiologists; COPD: chronic obstructive pulmonary disease; ICU: intensive care unit; NLR: Neutrophil/Lymphocyte Ratio; PLR: Platelet/Lymphocyte Ratio; SII: Systemic Immune-Inflammation Index (neutrophil x platelet/lymphocyte counts); NELA: National Emergency Laparotomy Audit of England and Wales; P-POSSUM: Portsmouth-POSSUM scoring.

4 As categorized by Scarborough JE et al. [22].

Arterial hypertension and diabetes, defined as patient needing specific pharmacological treatment.
3.2. Overall FTR across study periods

A total of 1257 (24.7%) patients developed complications, and 194 (3.8%) of them died during the 30 days after surgery (global FTR 15.4%). Patients operated on during the pandemic peak-months had higher FTR than those operated on during non-peak months and than pre-pandemic controls (22.5% vs. 17.2% vs. 12.7%), with similar complication, reintervention, and rehospitalization rates and comparable length of stay (Table 3). No significant differences in complication risk were observed (Table 3). No significant differences in higher than in the corresponding control period (adjusted OR 2.13, 95% CI 1.27–3.66), while no differences in complications nor severe complication risk were observed (Table 3). No significant differences in FTR, complications or severe complications were observed between the non-peak pandemic period and the corresponding calendar control period. During the pandemic peak, FTR was significantly higher than in the corresponding control period (adjusted OR 2.13, 95% CI 1.27–3.66), while no differences in complications nor severe complication risk were observed (Table 3). No significant differences in FTR, complications or severe complications were observed between the non-peak pandemic period and the corresponding calendar control period.

The hospital ICC after propensity score-matching was, in general terms, low. It was consistently low and stable in the pandemic peak period (0.06), and was lower and suffered a further reduction after matching for the non-peak period (Table 4). The existence of an ICC close to 0 suggest that the context defined by the hospital is not that relevant in understanding subject health outcomes [27].

3.3. Inter-hospital variability

There was sensible inter-hospital variability in FTR changes from 2019 to 2020 calendar period during the pandemic peak (median FTR change ±6.72%) that was not observed during the pandemic non-peak period (median FTR change 0%, IQR -6.01 to 6.72%) (Figure S2 in the Supplement).

Hospital characteristics associated with higher FTR increase in relation to the pandemic peak period were: tertiary level (adjusted OR 3.07, 95% CI 1.27–8.00), medium-volume (OR 2.79, 95% CI 1.14–7.34), and high basal-adjusted complication risk (OR 2.21, 95% CI 1.07–4.72) (Fig. 2a). Confidence intervals for all categories of all hospital-level variables, however, overlapped across all categories for all variables.

Table 2
Surgical outcomes by study period (unadjusted).

March–April	May–June	
2020 (peak) n = 1485	2020 (non-peak) n = 1108	
2019 (non-peak months) n	2019 (non-peak months) n	
Failure-to-resue, %	Failure-to-resue, %	
22.5	20.0	
12.7	12.7	
p value	0.002	0.000
Postoperative complications (overall), No. (%)	Postoperative complications (overall), No. (%)	
231 (24.4)	231 (24.4)	
363 (24.4)	363 (24.4)	
p value	1.000	0.000
Complication type	Complication type	
Pulmonary, No. (%)	Pulmonary, No. (%)	
65 (6.9)	65 (6.9)	
71 (4.8)	71 (4.8)	
p value	0.114	0.000
Thromboembolic, No. (%)	Thromboembolic, No. (%)	
16 (1.7)	16 (1.7)	
15 (1.0)	15 (1.0)	
p value	0.114	0.000
Other medical, No. (%)	Other medical, No. (%)	
Surgical, No. (%)	Surgical, No. (%)	
142 (15.0)	142 (15.0)	
260 (17.5)	260 (17.5)	
p value	0.114	0.000
Severe complications, No. (%)	Severe complications, No. (%)	
124 (13.1)	124 (13.1)	
181 (12.2)	181 (12.2)	
p value	0.114	0.000
30-day mortality, No. (%)	30-day mortality, No. (%)	
52 (5.5)	52 (5.5)	
46 (3.1)	46 (3.1)	
p value	0.005	0.005
Surgical reintervention (≤30 days from index surgery date), No. (%)	Surgical reintervention (≤30 days from index surgery date), No. (%)	
52 (5.8)	52 (5.8)	
78 (5.5)	78 (5.5)	
p value	0.010	0.010
Hospitalization length, median (IQR), days	Hospitalization length, median (IQR), days	
4 (2–8)	4 (2–8)	
4 (2–9)	4 (2–9)	
p value	0.130	0.130
Rehospitalization (≤30 days from index discharge date), No. (%)	Rehospitalization (≤30 days from index discharge date), No. (%)	
62 (6.9)	62 (6.9)	
82 (5.8)	82 (5.8)	
p value	0.330	0.330

IQR: interquartile range.

Postoperative complications with Clavien-Dindo grade ≥ IIIA [25].

Hospital characteristics were not associated with changes to FTR in the pandemic non-peak period (Fig. 2b), neither to any complication risk change (Figure S3 in the Supplement).

While variation in the distribution of changes in FTR across different hospitals during the pandemic peak-months (vs. the corresponding calendar control period) was observed, no hospital exceeded the expected level of variation (Figure S2 in the Supplement).

4. Discussion

In this multicentre study of COVID-19-non infected patients undergoing emergency general surgery we found an adjusted two-fold increase of FTR during the pandemic peak compared with a control period in the previous year. To our knowledge, this is the first study using FTR as a dynamic marker, comparing different periods for the same set of hospitals under varying epidemiological contexts.

There is an extensive literature on the suitability of FTR as a hospital care quality indicator [10–12,29–31]. Factors such as outdated communication technology, lack of available specialty services (like enterventional gastroenterology or radiology), nurse understaffing, and communication errors have all been identified as root causes of delay in detection of morbidity and therapeutic escalation [10–12,31]. During the COVID-19 pandemic, and particularly at its first peak, the health system in Spain may have found it very difficult to mobilise human and material resources. In addition, the ability of the system to recognize postoperative patients in distress and respond quickly and effectively may have been impaired due to work overload. Finally, the attitudes, subjective norms, and perceived control over environment of caregivers from the ICU, inpatient wards, and rapid response teams may be critically affected. It may be worth noting that the Spanish Health System may have been particularly vulnerable to the stress test of the COVID-19 pandemic due to austerity measures implemented since the 2008 financial crisis [3,32].

Most resilience markers proposed to date are qualitative [9,33,34], subjective [9,33,35,36], and/or measuring structural features or pathways (such as waiting time in the Emergency Department or length of stay) instead of clinical outcomes [9,33,35–39]. There is a need for resilience indicators based on simple, objective, and quantitative measures of patient-level clinical outcomes [1,35]. A range of outcome measures appear to lack the expected sensitivity to change: overall postoperative complications, severe complications, length of hospital...
stay, and readmissions, for instance, were not significantly altered in our study. FTR is an interpretable and relevant clinical outcome that is easy to calculate and that may be reported in a continuous manner to help detecting critical periods of poorer adaptability of the hospital care system. Even though elective surgeries may be suspended or delayed in some stressful circumstances, most emergency surgeries are not avoidable without a considerable risk for the patient. Therefore, FTR changes following emergency surgery may be monitored even during health crisis such as the COVID-19 pandemic.

We identified sensitive differences in FTR changes among hospitals during the pandemic peak that cannot be explained by patient case-mix. The adjusted complication risk significantly correlated with FTR, suggesting that centres with higher risk of complications during the baseline period were also the least resilient during the COVID-19 pandemic. We also observed a trend towards bigger and more complex hospitals presenting a larger FTR increase, suggesting they had more difficulties delivering optimal care in this stressful context. Contrary to previous reservations about the performance of FTR as an indicator in hospitals

Table 3
Association between study period and surgical outcomes in propensity-score-matched cohorts.

	OR	95% CI	p value
Pandemic (peak) vs. corresponding control (reference category)			
Failure-to-rescue	2.13	1.27-3.66	0.005
Complications	1.11	0.90-1.38	0.325
Severe complications	1.22	0.93-1.62	0.157
Pandemic (non-peak) vs. corresponding control (reference category)			
Failure-to-rescue	1.47	0.87-2.49	0.149
Complications	0.98	0.81-1.20	0.879
Severe complications	1.04	0.79-1.37	0.777

OR: odds ratio; 95% CI: 95% confident interval.

* Matching variables: sex, age, functional status, smoking status, hypertension, COPD, diabetes, cardiovascular diseases, malignancy, clinical priority, surgical complexity, and complications during surgery.

** Clavien-Dindo grade ≥ IIIA [25].

Table 4
Mixed effects logistic models for failure-to-rescue: before and after propensity-matching in peak period, and before and after propensity-matching in non-peak period.

	Before propensity-matching	After propensity-matching	p value	
Pandemic peak period vs. control period	594	2.07	1.32-3.23	0.001
Failure-to-rescue	426	2.20	1.28-3.77	0.004
Complications	0.90	0.90-2.22	0.136	
Severe complications	1.04	0.85-2.46	0.168	

OR: odds ratio; 95% CI: 95% confident interval; ICC: intraclass correlation coefficient [27].

Fig. 1. Box plot* for failure-to-rescue in pandemic (peak and non-peak) and calendar control periods. FTR: failure-to-rescue.

* Each dot represents a hospital. Dot’s area is proportional to the number of cases included by each hospital.
with a low complication rate [40], the overall complication rate remained unchanged during the pandemic peak.

One of the main shortcomings of improvement programmes focused on prevention of complications is that operations are associated with an intrinsic rate of morbidity [10, 11]. For example, improved adherence to protocols designed to prevent surgical site infections or venous thromboembolisms were not translated into better outcomes [41–44]. By comparison, when considering prevention of FTR, there is a clear potential action point in the postoperative care pathway - the early identification of complications and the institution of appropriate rescue therapy [10].

This study has some limitations. Generalizability is compromised as it was conducted in a single country. Replication in other countries would be advisable. The NELA (National Emergency Laparotomy Audit) register from England and Wales [45], for example, could be useful to benchmark our findings, but it could not be used as it does not include postoperative complications data. In addition, temporal series longer than the ones included in our study would be needed to appraise the stability of FTR estimates over periods of time in which the system is not subjected to additional stress. The retrospective design is a further limitation, which was intended to be minimized by the thorough data quality control, the exclusion of patients with relevant missing variables, and the adjusted analysis. Finally, propensity score adjustment cannot balance for unknown or known unmeasured confounding variables.

5. Conclusions

This large multicentre propensity-score matched study provides evidence of differences in FTR following emergency general surgery in relation to key time periods defined by the COVID-19 pandemic. Failure-to-rescue is a promising metric for the assessment of resilience of health systems in the face of significant health challenges.

Provenance and peer review

Not commissioned, externally peer-reviewed.

Data statement

All raw data used in this study are available and will be provided by Javier Osorio, Zoilo Madrazo, Sebastián Videla, and Cristian Tebe, under sensible demand.
Declaration of competing interest

The authors have no competing interests to declare.

Acknowledgements

The authors sincerely thank the COVID-CIR Collaborative Group and the Biostatistics Unit of the UBiDi for their invaluable dedication, the IDIBELL Foundation for its infrastructural support, and the CERCA/Generalitat de Catalunya Program for its institutional support; further, we would like to thank Ana Aguilar PhD and John Hothersall PhD for their English language assistance.

Appendix A. Supplementary data

Supplementary data related to this article can be found at https://doi.org/10.1016/j.ijssu.2022.106890.

References

[1] C. Sohrabi, Z. Asafi, N. O’Neill, et al., World health organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19), Int. J. Surg. 76 (2020) 71–76, https://doi.org/10.1016/j.ijsu.2020.02.034.
[2] M. Nicola, Z. Asafi, C. Sohrabi, et al., The socio-economic implications of the coronavirus pandemic (COVID-19): a review, Int. J. Surg. 78 (2020) 185–193, https://doi.org/10.1016/j.ijsu.2020.04.018.
[3] A. García-Basteiro, C. Alvarez-Dardet, A. Arenas, et al., The need for an independent evaluation of the COVID-19 response in Spain, Lancet 396 (2020) 529–530, https://doi.org/10.1016/S0140-6736(20)31713-X.
[4] M. Nicola, N. O’Neill, C. Sohrabi, M. Khan, M. Agha, R. Agha, Evidence based management guideline for the COVID-19 pandemic - review article, Int. J. Surg. 77 (2020) 206–216, https://doi.org/10.1016/j.ijsu.2020.04.001.
[5] International Strategy for Disaster Reduction, Hyogo framework for action 2005–2015: building the resilience of nations and communities to disasters, in: World Conference on Disaster Reduction, 18–22 January 2005, Kobe, Hyogo, Japan, 2005, https://www.unisdr.org/2005/wcdr/intervention-official-doc/l/docs/Hyogo-framework-for-action-english.pdf. (Accessed 11 May 2022).
[6] World Health Organization, Department of Health Action in Crises, Annual Report, 2005, https://reliefweb.int/report/world/health-action-crisis-annual-report-2005, (Accessed 11 May 2022), 2005.
[35] G.A. Shirali, S.h. Azadian, A. Saki, A new framework for assessing hospital crisis management based on resilience engineering approach, Work 54 (2016) 435–444, https://doi.org/10.3233/WOR-162325.

[36] S.K. Sharma, N. Sharma, Hospital preparedness and resilience in public health emergencies at district hospitals and community health centres, J. Health Manag. 22 (2020) 146–156, https://doi.org/10.1177/0972063420955599.

[37] S. Zhong, M. Clark, Y.Y. Hou, Y. Zang, G. Fitzgerald, Development of key indicators of hospital resilience: a modified Delphi study, J. Health Serv. Res. Pol. 20 (2015) 74–82, https://doi.org/10.1177/1355819614561537.

[38] M. Moitinho de Almeida, J.A.F. van Loenhout, S.S. Thapa, et al., Clinical and demographic profile of admitted victims in a tertiary hospital after the 2015 earthquake in Nepal, PloS One 14 (2019), e0220016, https://doi.org/10.1371/journal.pone.0220016.

[39] G.P. Cimellaro, M. Malavisi, S. Mahin, Using discrete event simulation models to evaluate resilience of an emergency department, J. Earthq. Eng. 21 (2017) 203–226, https://doi.org/10.1080/13632469.2016.1172373.

[40] D. Altan, G.A. Leya, D.C. Chang, Tracking the “end result” and long-term patient outcomes—failure to rescue and the shrinking denominator, JAMA Surg 157 (2022) 268, https://doi.org/10.1001/jamasurg.2021.0905.

[41] J.J. Stulberg, C.P. Delaney, D.V. Nesbauer, D.C. Aron, P. Fu, S.M. Koroukian, Adherence to surgical care improvement project measures and the association with postoperative infections, JAMA 303 (2010) 2479–2485, https://doi.org/10.1001/jama.2010.841.

[42] M.T. Hawn, C.C. Vick, J. Richman, et al., Surgical site infection prevention: time to move beyond the surgical care improvement program, Ann. Surg. 254 (2011) 494–499, https://doi.org/10.1097/SLA.0b013e31822e6929.

[43] K.Y. Bilimoria, J. Chung, M.H. Ju, et al., Evaluation of surveillance bias and the validity of the venous thromboembolism quality measure, JAMA 310 (2013) 1482–1489, https://doi.org/10.1001/jama.2013.280048.

[44] B.D. Lau, M.B. Streiff, P.J. Pronovost, E.R. Haut, Venous thromboembolism quality measures fail to accurately measure quality, Circulation 137 (2018) 1278–1284, https://doi.org/10.1161/CIRCULATIONAHA.116.026897.

[45] NELA Project Team, The Impact of COVID-19 on Emergency Laparotomy-An Interim Report of the National Emergency Laparotomy Audit, 23 March 2020–30 September 2020, Royal College of Anaesthetists, London, 2021. https://www.nela.org.uk/downloads/COVID_analysis_08%20Mar%202021.pdf. (Accessed 11 May 2022), accessed.