THE REDDENING OF RED SUPERGIANTS: WHEN SMOKE GETS IN YOUR EYES

PHILIP MASSEY, 1,2 BERTRAND PLEZ, 3 EMILY M. LEVESQUE, 4 K. A. G. OLSEN, 5
GEOFFREY C. CLAYTON, 6 AND ERIC JOSSELIN 3

Received 2005 June 14; accepted 2005 August 10

ABSTRACT

Deriving the physical properties of red supergiants (RSGs) depends on accurate corrections for reddening by dust. We use our recent modeling of the optical spectra of RSGs to address this topic. First, we find that previous broadband studies have underestimated the correction for extinction in the visible, and hence the luminosities (if derived from \(V \)); the shift in the effective wavelengths of the standard \(B \) and \(V \) bandpasses necessitates using an effective value of the ratio \(R'_{V} = 4.2 \) to correct broadband photometry of RSGs if \(R_{V} = 3.1 \) for early-type stars viewed through the same dust, where we have assumed the standard reddening law of Cardelli and coauthors. Use of the Fitzpatrick reddening law would lead to \(R'_{V} = 3.8 \), as well as slightly lower values of extinction derived from spectrophotometry, but results in slightly poorer fits. Second, we find that a significant fraction of RSGs in Galactic OB associations and clusters show up to several magnitudes of excess visual extinction compared to OB stars in the same regions; we argue that this is likely due to circumstellar dust around the RSGs. We also show that the RSG dust production rate (as indicated by the 12 \(\mu \text{m} \) excess) is well correlated with bolometric luminosity, contrary to what has been found by earlier studies. The stars with the highest amount of extra visual extinction also show significant near-UV (NUV) excesses compared to the stellar models reddened by the standard reddening law. This NUV excess is likely due to scattering of the star's light by the dust and/or a larger average grain size than that typical of grains found in the diffuse interstellar medium. Similar excesses have been attributed to circumstellar dust around R Coronae Borealis stars. Finally, we estimate that the RSGs contribute dust grains at the rate of \(3 \times 10^{-8} M_{\odot} \text{yr}^{-1} \text{kpc}^{-2} \) in the solar neighborhood, comparable to what we estimate for late-type WC stars, \(1 \times 10^{-7} M_{\odot} \text{yr}^{-1} \text{kpc}^{-2} \). In the solar neighborhood this represents only a few percent of the dust production (which is dominated by low-mass AGBs), but we note that in low-metallicity starbursts, dust production by RSGs would likely dominate over other sources.

Subject headings: dust, extinction — stars: atmospheres — stars: fundamental parameters — stars: late-type — supergiants

1. INTRODUCTION

Red supergiants (RSGs) are the evolved, He-burning descendents of moderately massive (\(\leq 40 \, M_{\odot} \)) O and B stars. We have recently used the new generation of MARCS stellar atmosphere models (Gustafsson et al. 1975, 2003; Plez et al. 1992) to fit optical spectrophotometry of 74 Milky Way RSGs, from which we derived a new effective temperature scale for RSGs of Galactic metallicity (Levesque et al. 2005, hereafter Paper I). A subsample of 62 of these stars belong to OB associations with known distances, which allowed us to determine other physical properties, such as bolometric luminosity and stellar radii, for comparison with those predicted by stellar evolutionary models. We found excellent agreement, thus removing a major discrepancy between "observation" and theory for massive star evolution (see Massey 2003).

However, that study underscored the difficulty in correcting for reddening due to dust for these objects; our work hinted at several previously neglected problems, which we consider more fully here. First (\S 2), we find that previous efforts involving broadband filter photometry have led to systematically underestimating the visual extinctions, and thus to underestimating the stellar luminosities. Although we successfully avoided that problem in Paper I by using spectrophotometry to derive redenings, our work revealed that many of these stars suffer extinction beyond that of their neighboring O and B stars. We show here (\S 3) that this is likely caused by circumstellar dust from these "smoky" stars. Although future studies will attempt to derive the reddening law for this dust, it is already clear that the circumstellar dust results in a NUV excess compared to the stellar models reddened with the "standard" reddening law (\S 4). Finally, we use the results of Paper I and the current study to estimate the fraction of dust deposited in the diffuse interstellar medium compared to that of other sources in the Galaxy (\S 5).

2. THE EFFECTIVE \(R'_{V} \) FOR BROADBAND PHOTOMETRY OF RSGS

A knowledge of the ratio of total to selective extinction \(R'_{V} \equiv A_{V}/E(B-V) \) is needed in order to derive physical parameters of reddened stars. Using early-type stars with moderate redenings in the Milky Way, Sneden et al. (1978) and others found \(R_{V} \) to be typically 3.1, although it is now well understood that this value is not universal in nature, but represents the average sight line through the diffuse interstellar medium (Valencic et al. 2004). Values of \(R'_{V} \approx 5 \) and even higher have been found for stars in dense molecular clouds; see, for example, Cardelli & Wallerstein (1989) and Cardelli et al. (1989, hereafter CCM89). These
physical variations of \(R_V \) are due to differences in the line-of-sight environment, such as the grain size distribution.

However, aside from such real differences in the dust properties, one must employ a larger effective value of \(R_V \) (which we denote as \(R'_V \)) when correcting broadband photometry of objects whose spectral energy distributions differ from that of lightly to moderately reddened O stars. This is simply due to the shift of the effective wavelength of the filters compared to that obtained with early-type stars. A very red star shifts the effective wavelengths of the \(B \) and \(V \) filters to longer wavelengths, where extinction is less, making both \(A_B \) and \(A_V \) smaller for a given amount of dust. The net effect of lowering \(A_B \) and \(A_V \) is to increase \(R'_V \), as the decrease in the denominator of the ratio outweighs the decrease of the numerator. McCall (2004) has recently emphasized the importance of considering the spectral energy distribution (SED) of the source when correcting for extinction in galaxy photometry, as their SEDs do not, after all, resemble that of the OB stars for which the extinction laws were derived.

We avoided this problem in Paper I by using spectrophotometry of the stars to measure the color excess with regard to the MARCS models, employing the CCM89 reddening law. Since neither the \(B \) nor the \(V \) filters were actually used in our color excesses, conversion to \(A_V \) was straightforward, although it did assume that the reddenings had a “typical” \(R_V = 3.1 \) value. For broadband photometry of RSGs, a value of \(R'_V = 3.6 \) has usually been adopted (Lee 1970; Humphreys 1978), and is consistent with the scaling of \(R'_V \) with color proposed by Schmidt-Kaler (1982). However, our work in Paper I has forced us to conclude that this value is not very accurate, as it produced \(A_V \) values that were systematically smaller than extinction values derived from our spectrophotometry. We have derived an improved value for the effective \(R'_V \) of RSGs by convolving the MARCS models with the standard \(B \) and \(V \) bandpasses (Bessell 1990). We used the CCM89 reddening law with \(R_V = 3.1 \) to add various amounts of reddening to the model spectra; we then computed the resulting change in the flux in the \(V \) filter to find \(A_V \), and the differences in the relative fluxes in the \(B \) and \(V \) filters (compared to the no-reddening case) in order to determine \(E(B-V) \). The effective value of \(R'_V = A_V/E(B-V) \) then follows directly. We find that there is a significant dependence upon the assumed surface gravity \(\log g \) in the sense that stars with higher \(\log g \) (0.5) produce lower \(R_V \) values; the value \(R'_V = 3.6 \) usually used for RSGs is actually more appropriate to the surface gravities of red dwarfs or giants. There is very little dependence of \(R'_V \) on effective temperature in this regime. This is not surprising, as it is well known that \(B-V \) is primarily sensitive to surface gravity rather than temperature for RSGs; see discussion in Massey (1998).

Stars with higher reddenings require a slightly higher \(R'_V \) value. In summary, for stars with \(\log g \) between \(-0.5 \) and \(0.5 \), \(T_{\text{eff}} \) between 3400 and 4200 K, and \(E(B-V) \leq 3 \), we find

\[
R'_V = 4.1 + 0.1 E(B-V) - 0.2 \log g.
\]

For a “modestly” reddened RSG, a value of \(R'_V = 4.2 \) is thus appropriate. As shown in Figure 1, this value for \(R'_V \) now brings the extinction derived from broadband photometry into accord with that derived from spectrophotometry.

We were initially concerned about such a large value for \(R'_V \), but found that we derive a very similar number using the Kurucz (1992) ATLAS9 models in place of the MARCS models. We also find a large \(R'_V \) value when we instead employ the Fitzpatrick (1999) reddening law with the MARCS models: \(R'_V = 3.8 - 0.2 \log g \), with a negligible correction for color excess \(E(B-V) \leq 3 \). The Fitzpatrick (1999) law has slightly lower extinction than CCM89 on the short-wavelength side of the \(B \) filter and on the long-wavelength side of the \(V \) filter; the latter is primarily responsible for the difference in the derived \(R_V \). Fitzpatrick (1999) has emphasized the difficulties encountered in deriving a monochromatic law from broadband photometry, and derived a reddening curve that was very similar to that of CCM89; but for stars of extreme color, such as RSGs, small differences matter. To obtain satisfactory fits to our spectrophotometry using the Fitzpatrick (1999) reddening law, we found that we needed to decrease the visual extinction by about 0.3 mag compared to that needed with the CCM89 law. Even so, the CCM89 law (used in Paper I) resulted in slightly better fits, as shown by the two examples in Figure 2. To answer which reddening law is really “right” requires careful comparison with spectrophotometry of stars over a wide range of properties. Here we simply note that the 0.3 mag systematic differences obtained between these two laws are comparable to the estimated uncertainties in Paper I.

3. EVIDENCE FOR CIRCUMSTELLAR DUST EXTINCTION

Although our spectrophotometry was immune to issues of bandpass shifts, it still supposed that the extinction was due to \(R_V = 3.1 \) reddening that characterizes dust in the diffuse interstellar medium. That assumption was probably not completely valid, as circumstellar dust may be present in some cases. We began to consider this possibility when we were struck by the fact that many of the RSGs in OB associations have significantly higher extinction than the average early-type star in the same regions. In Figure 3 we show the comparison between the two. The average \(A_V \) for each cluster comes from Paper I, and is based on a critical inspection of the values listed in Humphreys (1978), eliminating stars whose spectroscopic parallaxes are significantly (1 mag) deviant from the cluster averages. Indeed, this conclusion could have been made by others based purely on those data. Of course, many of the OB associations cover a large area of the sky and include a significant range of reddenings, and we indicate the standard deviation by the error bars (\(\pm 1 \sigma \)) in Figure 3. We find that about 40% of our sample (22 out of 56 stars) show evidence of extra extinction at the \(>1 \sigma \) level; 14% (8 out of 56) show \(>3 \sigma \) excess extinction.

In retrospect, this result should have been long anticipated. Red supergiants are known to be “smoky,” in the sense that dust condenses in the stellar winds. The presence of the resulting
circumstellar dust shells was first revealed by ground-based IR photometry (see, for example, Hyland et al. 1969), while Infrared Astronomical Satellite (IRAS) two-color diagrams established that such dust shells are a common phenomenon for RSGs (Stencel et al. 1988, 1989). This dust is thought to be partially responsible for driving the stellar wind via radiation pressure (but see the questions raised by MacGregor & Stencel 1992).

Interferometry in the IR has demonstrated that for some RSGs (such as VY CMa) the dust is found very close to the star itself (3–5 stellar radii), while in other cases it is found at greater distances, suggesting that the production of substantial amounts of dust is episodic in nature, with timescales of a few decades (Danchi et al. 1994).

Josselin et al. (2000) use the $K_0/C_0[12]$ color to determine dust-production rates \dot{M}_d, where [12] is the magnitude based on the IRAS 12 μm flux, adjusted so that a 10,000 K star would have zero color. (Thus stars with positive $K_0 - [12]$ values have some 12 μm excess, as the index has little sensitivity to effective temperature.) One of the surprising results from that study was that there was little or no correlation of \dot{M}_d with bolometric luminosity. From first principles one would expect mass-loss rates to depend on luminosity, among other factors. However, Josselin et al. adopted the individual spectroscopic parallaxes listed by

![Fig. 2.—Comparison of the fits obtained with the CCM89 and Fitzpatrick (1999, hereafter F99) reddening laws. In the top two panels, we compare the fits for HD 14528 (M4.5 I) using the MARCS 3500g-0.5 model reddened by CCM89 with $A_V = 4.2$ (top left) and F99 with $A_V = 3.9$ (top right). In the bottom two panels, we make a similar comparison for HD 17958 (K2 I) by reddening the MARCS 4200g0.5 model using CCM89 with $A_V = 2.2$ (bottom left), and F99 with $A_V = 1.9$ (bottom right). Similar fits are obtained using CCM89 and F99, although the agreement is slightly better in the far red with the CCM89 law. The strong, unfit feature at 7600 Å is the telluric A-band, and the turndown at 8900 Å is also due to telluric absorption.]

![Fig. 3.—Extinction A_V of RSGs compared to that of early-type stars in the same clusters. The error bars denote the (1 σ) spread of extinction in each cluster and uncertainty in the A_V from our fitting procedure in Paper I. The filled circles denote the stars for which we have new data in the NUV.]

Humphreys (1978) as the true distances, rather than using the average cluster values. This is equivalent to adopting a single absolute visual magnitude for all RSGs of a given spectral type and luminosity class, a poor approximation, since RSGs span a large range in masses and luminosities. We revisit this issue here by using the cluster distances adopted in Paper I (based on the early-type stars), and by revising the \dot{M}_d values using the larger and more homogeneous K data set of the Two Micron All Sky Survey (2MASS) point source catalog. Figure 4a shows a more convincing correlation. The scatter is still large, but in part this may be due to the inclusion of a few unreliable data points; for instance, the two outliers on the left are HD 160371 in M6, a cluster that contains no early-type members (Humphreys 1978), and BD +56 2793 (ST Cep) in Cep OB2, which Humphreys (1978) characterizes as a “doubtful member” of its association.

In Figures 4b and 4c, we show that the extra extinction ΔA_V is correlated with \dot{M}_d and with M_{bol}. In all three plots the filled circles indicate the stars for which we have new data in the NUV.

Humphreys (1978) as the true distances, rather than using the average cluster values. This is equivalent to adopting a single absolute visual magnitude for all RSGs of a given spectral type and luminosity class, a poor approximation, since RSGs span a large range in masses and luminosities. We revisit this issue here by using the cluster distances adopted in Paper I (based on the early-type stars), and by revising the \dot{M}_d values using the larger and more homogeneous K data set of the Two Micron All Sky Survey (2MASS) point source catalog. Figure 4a shows a more convincing correlation. The scatter is still large, but in part this may be due to the inclusion of a few unreliable data points; for instance, the two outliers on the left are HD 160371 in M6, a cluster that contains no early-type members (Humphreys 1978), and BD +56 2793 (ST Cep) in Cep OB2, which Humphreys (1978) characterizes as a “doubtful member” of its association.

In Figures 4b and 4c, we show that the extra extinction ΔA_V is correlated with \dot{M}_d and with M_{bol}. In all three plots the filled circles indicate the stars for which we have new data in the NUV.

Humphreys (1978) as the true distances, rather than using the average cluster values. This is equivalent to adopting a single absolute visual magnitude for all RSGs of a given spectral type and luminosity class, a poor approximation, since RSGs span a large range in masses and luminosities. We revisit this issue here by using the cluster distances adopted in Paper I (based on the early-type stars), and by revising the \dot{M}_d values using the larger and more homogeneous K data set of the Two Micron All Sky Survey (2MASS) point source catalog. Figure 4a shows a more convincing correlation. The scatter is still large, but in part this may be due to the inclusion of a few unreliable data points; for instance, the two outliers on the left are HD 160371 in M6, a cluster that contains no early-type members (Humphreys 1978), and BD +56 2793 (ST Cep) in Cep OB2, which Humphreys (1978) characterizes as a “doubtful member” of its association.

In Figures 4b and 4c, we show that the extra extinction ΔA_V is correlated with \dot{M}_d and with M_{bol}. In all three plots the filled circles indicate the stars for which we have new data in the NUV.

4. DUST IN THE NEAR-UV

Sufficient dust to cause several magnitudes of visual extinction might make its presence known in ways other than the IR excess discussed above. R Coronae Borealis stars, whose extreme
variability is known to be due to circumstellar dust, show a UV excess (Hecht et al. 1984, 1998). In part, such “fresh” dust may start with a distribution skewed to larger particle sizes (which would lead to less UV and NUV extinction) before being broken down and assimilated into the interstellar medium (see also Jura 1996 and Whittet 2003). Alternatively, preferential scattering of blue light into the beam by the parts of the unresolved circumstellar dust shell that are off-axis to the line of sight may be enough to explain the larger observed fluxes in the UV and NUV regions.

Indeed, as we reported in Paper I, the MARCS models reddened with an $R_V = 3.1$ CCM89 law showed this sort of NUV mismatch with the observed spectral energy distributions for the most heavily reddened stars (which were also the ones with the highest excess reddening). However, we could not completely rule out an observational explanation for the discrepancy, given that even a small amount of red light scattered within the instrument could contaminate the low fluxes in the NUV without such problems showing up in the spectrophotometric standards. For

![Fig. 5.—Effect of dust in the NUV. In (a) and (b) we show the match between the observations (black solid line) and the reddened MARCS model (dashed red line) for KY Cyg and HD 216946. The former shows considerable extra flux in the NUV compared to the reddened model; the latter does not. In (c), (d), and (e) we show the correlation of the NUV index to the extra extinction ΔA_V, the dust production rate \dot{M}_d, and the bolometric luminosity computed from the K-band, respectively.](image-url)
the most reddened M supergiants in our sample, \(F_{2700}/F_{3350} \) is 10,000, while this ratio is near unity for standards.

On UT 2005 April 21 we obtained new data in the blue (3500–5800 Å) on a subsample of 11 stars from Paper I using the Kitt Peak 2.1 m telescope with the GoldCam spectrometer. The observational parameters are the same as given in Table 3 of Paper I except that a CuSO\(_4\) filter was employed to eliminate any possibility of contamination of the NUV region by red light. The observational and reduction procedures were the same as given in Paper I. The new spectra agreed well with the old data in general, although turn-ups in the blue for the two reddest stars are now eliminated, suggesting that instrument effects could indeed have been a problem with some of those data. We therefore restrict our discussion only to the new data.

In Figures 5a and 5b, we show the match between the models reddened by the standard CCM89 \(R_V = 3.1 \) law and the observed spectra for two of the stars in our sample. KY Cyg has the highest excess reddening (\(\Delta A_V = 4.9 \) mag) and is among the most luminous stars in our sample (\(M_{bol} = 8.8 \)). The discrepancy in the NUV is striking. By contrast, the agreement in the NUV region is very good for the star HD 216946, a star with no excess reddening (\(\Delta A_V = 0 \)) and modest luminosity (\(M_{bol} = -5.5 \)). We can quantify this by computing an NUV index where we compare the integrated flux from 3500 to 3900 Å of the reddened model to that of the star, expressed as a difference in magnitudes. In the other panels of Figure 5 we show that the size of the NUV discrepancy is well correlated with the amount of extra extinction (Fig. 5c), the dust production rate \(\dot{M}_d \) as measured from the 12 \(\mu m \) excess (Fig. 5d), and the bolometric luminosity of the star computed from the K-band (Fig. 5e).

There are certainly other explanations for the NUV discrepancy. For instance, the spectra of some stars could be contaminated by the presence of a hot companion. However, we would expect such stars to show a composite spectrum. Indeed, in Paper I we eliminated several stars from our sample because Balmer lines were clearly present. Another intriguing possibility is that hot spots might be present on the surface of these stars, as suggested by interferometric observations and UV Hubble Space Telescope (HST) imaging; see Freytag (2003) and references therein. Stars with vigorous convection patterns could have spectra dominated by regions at different temperatures depending upon the wavelength. Alternatively, chromospheric emission may play a role (Carpenter et al. 1994; Harper et al. 2001). These possibilities could, and should, be investigated by higher spectral resolution studies. Nevertheless, the correlations shown in Figure 5 provide strong evidence that circumstellar dust is the culprit.

Although it is tempting to attribute the reddening law of this circumstellar material, it is difficult to accurately extract the circumstellar component from the total extinction, given the high (and uncertain) amount of foreground reddening. We are in the process of obtaining the necessary data for a large sample of RSGs in the Magellanic Clouds. There the problem is actually tractable, given the small and relatively uniform extinction of the Clouds (van den Bergh 2000).

5. CONTRIBUTION TO THE DUST CONTENT OF THE MILKY WAY

In reviews of the origin of cosmic dust, the role of RSGs is often ignored, with the primary sources given as supernovae (SNe) and low-mass asymptotic giant branch (AGB) stars. However, for dusty galaxies at large look-back times, AGBs cannot play a role, given the timescales for low-mass stellar evolution. When high-mass stars are discussed, it is usually only the WC-type Wolf-Rayet stars that are considered (see, e.g., Dwek 1998). However, only the late-type WCs are known to produce dust, and even those types may require a binary companion (see Crowther 2003). In the Milky Way, late-type WCs are concentrated toward the Galactic center, and are known to be absent in low-metallicity galaxies (see Massey 2003 and references therein). So, in extreme environments (such as metal-poor starbursts, or for most galaxies at early times), RSGs could play a dominant role.

Here we briefly consider how large that role is locally. We expect the production rate (in units of mass per unit time per unit area of the galactic disk) to be

\[
R_{RSG} = \int_{10}^{25} \rho_{RSG}(m) \dot{M}_d(m) \, dm,
\]

where \(\rho_{RSG}(m) \) is the surface density of RSGs as a function of mass, and \(\dot{M}_d(m) \) is the dust production rate. We can estimate these quantities as follows. First, from Figure 4a, we find that \(\log \dot{M}_d = -0.43 M_{bol} - 12.0 \) for \(M_{bol} < -5 \), which roughly corresponds to masses > 10 \(M_\odot \). In Paper I we used the evolutionary tracks of Meynet & Maeder (2003) to estimate that the masses of RSGs scale with luminosity as \(\log (M/M_\odot) = 0.50 - 0.099 M_{bol} \), so we expect

\[
\log \dot{M}_d = 4.3 \log (M/M_\odot) - 14.2
\]

for RSGs with masses 10 < \(M/M_\odot < 25 \). The surface density \(\rho_{RSG}(m) \) is harder to estimate. We expect \(\rho_{RSG}(m) \propto m^{-2.35} \Delta T_{RSG}(m) \), where we have assumed a Salpeter initial mass function, and \(\Delta T_{RSG} \) is the lifetime of the RSG phase as a function of mass. From the evolutionary models of Meynet & Maeder (2003), we find that the RSG phase lasts 2 Myr (10 \(M_\odot \)) to 0.4 Myr (25 \(M_\odot \)), and we use the models to approximate \(\Delta T_{RSG} = 8.1 - 1.8 \log (M/M_\odot) \). Jura & Kleinmann (1990) find 21 high-luminosity (\(M_{bol} < -7.8 \), corresponding roughly to 19 \(M_\odot \)) RSGs within 2.5 kpc of the Sun, or a surface density of 1 kpc\(^{-2}\). If that is complete (and we list a comparable number, 18, meeting these criteria in our admittedly incomplete sample from Paper I), then we can use that to determine the scaling factor \(C \):

\[
\int_{10}^{25} \rho_{RSG}(m) \, dm = 1.3 \times 10^3 C \int_{10}^{25} m^{-2.35} \, dm = 1, \quad C = 4.5 \times 10^{-4}.
\]

Thus \(\rho_{RSG}(m) = 5.8 \times 10^4 m^{-4.15} \). Substituting in the above, we expect

\[
R_{RSG} = 3.7 \times 10^{-10} \int_{10}^{25} m^{0.15} \, dm,
\]

or 8.5 \times 10^{-9} \(M_\odot \) yr\(^{-1}\) kpc\(^{-2}\).

We emphasize that this value is uncertain due primarily to our poor understanding of the exact completeness limits. We can instead derive the surface density of RSGs using what we do know about the surface densities of other types of massive stars in the solar neighborhood, appealing to the evolutionary models to then connect the two. Although the number of O-type stars within a few kpc of the Sun is poorly known (see Massey 2003), the number of WC-type Wolf-Rayet stars is thought to be complete, given their strong emission-line signature (Massey & Johnson 1998). According to the evolutionary models of Meynet & Maeder (2003), WCs come from stars with masses greater than 40 \(M_\odot \); the lifetime of the WC stage is independent of mass, with \(\Delta T_{WC} = 0.2 \) Myr (see their Fig. 10). The surface density of WCs in the solar neighborhood is 2.1 kpc\(^{-2}\), a number that we believe is based on a complete sample (Massey 2003 and references therein). So, \(\int_{10}^{25} \rho_{WC}(m) \, dm = 2 \times 10^3 C \int_{10}^{25} m^{-2.35} \, dm = 2.1 \), and we derive \(C = 2.7 \times 10^{-3} \), about a factor of 6 times greater.
Thus, \(R_{\text{RSG}} = 5.1 \times 10^{-8} M_\odot \text{ yr}^{-1} \text{ kpc}^{-2} \). Given the uncertainties (both in our knowledge of the local RSG content and in the models) we consider this agreement very good, and adopt a value \(R_{\text{RSG}} = 3 \times 10^{-8} M_\odot \text{ yr}^{-1} \text{ kpc}^{-2} \). For comparison, Whittet (2003) estimates a return rate for RSGs that is about 3 times greater, well within the uncertainties of our approximation. This is about 1% of the rate of return of AGBs.

How does this compare to the production rate for WC-type WRs? As stated above, only the late-type WCs (WCLs) are known to produce dust, and even those may require a binary companion. From Conti & Vacca (1990), we find a surface density of WCLs of 0.5 kpc\(^{-2}\). The (total) mass-loss rates of WCs are roughly independent of mass, and are about \(10^{-4.5} M_\odot \text{ yr}^{-1} \) (Nugis & Lamers 2000). Of this, perhaps 2% is dust (Dwek 1998). So we expect \(R_{\text{WCL}} = 1.5 \times 10^{-7} M_\odot \text{ yr}^{-1} \text{ kpc}^{-2} \). If close binarity is a requirement for dust ejection, then this value should be decreased by roughly a factor of 2. We adopt a compromise of \(R_{\text{WCL}} = 1 \times 10^{-7} M_\odot \text{ yr}^{-1} \text{ kpc}^{-2} \), or about a factor of 3 higher than \(R_{\text{RSG}} \). In low-metallicity systems (or the outward of the solar circle in the Milky Way), there are no late-type WCs, and RSGs will dominate the dust production by massive stars. In starbursts, where stars are recently formed, most dust production should be by RSGs, as low-mass stars will not have had sufficient time to evolve into AGBs.

We are grateful to R. Green, the Director of Kitt Peak National Observatory, for providing discretionary time on the 2.1 m telescope to resolve the NUV problem, and to D. Harmer for support of these efforts. Conversations and suggestions by our colleagues, particularly G. Meynet and A. Maeder, are acknowledged. An anonymous referee was responsible for valuable suggestions, including calling our attention to the fact that circumstellar dust should behave differently in its scattering properties than dust far from the star.

REFERENCES

Bessell, M. S. 1990, PASP, 102, 1181
Cardelli, J. A., Clayton, G. C., & Mathis, J. S. 1989, ApJ, 345, 245
Cardelli, J. A., & Wallerstein, G. 1989, AJ, 97, 1099
Carpenter, K. G., Robinson, R. D., Wahlgren, G. M., Linsky, J. L., & Brown, A. 1994, ApJ, 428, 329
Conti, P. S., & Vacca, W. D. 1990, AJ, 100, 431
Crowther, P. A. 2003, Ap&SS, 285, 677
Danchi, W. C., Bester, M., Degiacomi, C. G., Greenhill, L. J., & Townes, C. H. 1994, AJ, 107, 1469
Dwek, E. 1998, ApJ, 501, 643
Fitzpatrick, E. L. 1999, PASP, 111, 63
Freytag, B. 2003, in The Future of Cool-Star Astrophysics, ed. A. Brown, G. M. Harper, & T. R. Ayres (Boulder: Univ. Colorado), 1024
Gustafsson, B., Bell, R. A., Eriksson, K., & Nordlund, Å. 1975, A&A, 42, 407
Gustafsson, B., Edvardsson, B., Eriksson, K., Mizuno-Wiedner, M., Jorgensen, U. G., & Plez, B. 2003, in ASP Conf. Ser. 288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner (San Francisco: ASP), 331
Harper, G. M., Brown, A., & Lim, J. 2001, ApJ, 551, 1073
Hecht, J. H., Clayton, G. D., Crilling, J. S., & Jeffery, C. S. 1998, ApJ, 501, 813
Hecht, J. H., Holm, A. V., Donn, B., & Wu, C.-C. 1984, ApJ, 280, 228
Humphreys, R. M. 1978, ApJS, 38, 309
Hyland, A. R., Becklin, E. E., Neugebauer, G., & Wallerstein, G. 1969, ApJ, 158, 619
Josselin, E., Blommaert, J. A. D. L., Groenewegen, M. A. T., Omont, A., & Li, F. L. 2000, A&A, 357, 225
Jura, M. 1996, ApJ, 472, 806
Jura, M., & Kleinmann, S. G. 1990, ApJS, 73, 769
Kurucz, R. L. 1992, in IAU Symp. 149, The Stellar Populations of Galaxies, ed. B. Barbara & A. Renzini (Dordrecht: Kluwer), 225
Lee, T. A. 1970, ApJ, 162, 217
Levesque, E., Massey, P., Olsen, K. A. G., Plez, B., Josselin, E., Maeder, A., & Meynet, G. 2005, ApJ, 628, 973 (Paper I)
MacGregor, K. B., & Stencel, R. E. 1992, ApJ, 397, 644
Massey, P. 1998, ApJ, 501, 153
———. 2003, ARA&A, 41, 15
Massey, P., & Johnson, O. 1998, ApJ, 505, 793
McCall, M. L. 2004, AJ, 128, 2144
Meynet, G., & Maeder, A. 2003, A&A, 404, 975
Nugis, T., & Lamers, H. J. G. L. M. 2000, A&A, 360, 227
Plez, B., Brett, J. M., & Nordlund, Å. 1992, A&A, 256, 551
Schmidt-Kaler, T. 1982, in Landolt-Bornstein New Series, Group VI, Vol. 2b, ed. K. Schaifers & H.-H. Voigt (Berlin: Springer), 12
Sneden, C., Gehrz, R. D., Hackwell, J. A., York, D. G., & Snow, T. P. 1978, ApJ, 223, 168
Stencel, R. E., Pesce, J. E., & Bauer, W. H. 1988, AJ, 95, 141
———. 1989, AJ, 97, 1120
Valencic, L. A., Clayton, G. C., & Gordon, K. D. 2004, ApJ, 616, 912
van den Bergh, S. 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press)
Whittet, D. C. B. 2003, Dust in the Galactic Environment (Bristol: IOP)