Climate change mitigation through carbon dioxide (CO$_2$) sequestration in community reserved forests of northwest Tanzania

Gisandu K. Malunguja1,*, Ashalata Devi2, Mhuji Kilonzo3 and Chrispinus D.K. Rubanza3

1Department of Technical Education, College of Sciences, Mbeya University of Science and Technology, BOX 131—Mbeya, TANZANIA
2Department of Environmental Science, School of Sciences, Tezpur University, PIN - 784028, Assam, INDIA
3Department of Biology, College of Natural and Mathematical Sciences, BOX 259, the University of Dodoma, TANZANIA

*Corresponding author’s E-mail: gmalunguja77@gmail.com

ABSTRACT

Forests play a key role in climate change mitigation through sequestering and storing carbon dioxide from the atmosphere. However, there is inadequate information about carbon accumulation and sequestered by community reserved forests in Tanzania. A study was carried to quantify the amount of carbon sequestered in two forests namely; Nyasamba and Bubinza of Kishapu district, northwestern Tanzania. A ground-based field survey design under a systematic sampling technique was adopted. A total of 45 circular plots (15 m radius) along transects were established. The distances between transect and plots were maintained at 550 and 300 m, respectively. Data on herbaceous C stocking potential was determined using destructive harvest method while tree carbon stocking was estimated by allometric equations. The collected data were organized on excel datasheet followed by descriptive analysis for quantitative information using Computer Microsoft Excel and SPSS software version 20, while soil samples were analyzed based on the standard laboratory procedures. Results revealed higher carbon sequestration of 102.49±39.87 and 117.52±10.27 for soil pools than plants both herbaceous (3.01±1.12 and 6.27±3.79 t CO$_2$/e/yr) and trees (5.70±3.15 and 6.60±2.88 t CO$_2$/e/yr) for Nyasamba and Bubinza respectively. The study recorded a potential variation of soil carbon sequestration, which varied across depths category ($P < 0.05$). However, there was no difference across sites ($P > 0.05$) and species ($P > 0.05$) for herbaceous and trees. The findings of this study portrayed a significantly low value for carbon stocking and sequestration potential for enhanced climate change mitigation. Therefore, proper management of community reserved forest is required to accumulate more C for enhancing stocking potential hence climate change mitigation through CO$_2$ sequestration offsets mechanism.

©2020 Agriculture and Environmental Science Academy

INTRODUCTION

The effect of climate change has been a major concern globally (Fang et al., 2018; Yao et al., 2018). Greenhouse gases such as carbon dioxide (CO$_2$), are widely acknowledged by the scientific community as the cause of current climate change and global warming (Bustamante et al., 2012; Huntingford et al., 2012). Therefore, developing effective climate change mitigation strategies and promoting sustainable forest management is of important decision making (Manyanda et al., 2020). Forests and soils act as potential sinks for elevated CO$_2$ emissions, being considered as the best option for preventing the release of atmospheric CO$_2$ and enhances carbon storage and offsets (Canadell and Raupach, 2008; Nyong et al., 2007). Many afforestation and reforestation projects have been accomplished as a means to sequester CO$_2$ into biomass (Durkaya et al., 2013). This results in reducing the effect of climate change that has been a concerned agenda worldwide.

In terrestrial ecosystems, forests and soils are considered among the easiest means for enhancing carbon capture and sequestration (Girma et al., 2014). Forests and soils can be used to reduce the costs for slowing the rate of climate change, global warming and atmospheric carbon dioxide (CO$_2$) enrichment (IPCC, 2018; Paudela et al., 2017). Data associated with carbon
storage capacities of forests and soil pools have become increasingly vital in the context of climate change mitigation and sustainable management. Forests act as potential sinks for elevated CO$_2$ emissions and are being considered in the list of acceptable offsets (Fletcher, 2005). Forest has the potential to remove CO$_2$ from the atmosphere and store in wood, leaves and soil, hence reducing the effect of climate change (Yao et al., 2018; Favero et al., 2017; Bushesha, 2017). This trait facilitates the changing of the structure and function of any habitat including the terrestrial ecosystem and in turn, threatening the lives of species and human existence. Climate change is damaging the environment around us (Yang and Lin, 2016) and greenhouse gases (GHG) or carbon dioxide equivalent (CO$_2$e) will be increasing emitted into the atmosphere, resulting in an acceleration of global warming (Allen et al., 2010; Wang et al., 2016). The concentration of atmospheric CO$_2$ has risen from 280 ppm at the beginning of the industrial revolution to the current 394 ppm (Peñuelas et al., 2013).

With no mitigation, a level of GHG concentration in the atmosphere is projected to increase to at least 486 ppm or as high as 1000 ppm, in 2100 with an increase of 4°C global temperature (Carraro et al., 2012; Favero et al., 2017). This rapid increase in the atmospheric CO$_2$ concentration and other greenhouse gases has the potential to drive current climatic changes more quickly than all previous climatic changes (Bindoff et al., 2007; IPCC, 2011; Peters et al., 2013; Peñuelas et al., 2013). This poses a major threat to global sustainable development (Jia et al., 2018).

Currently, the emissions from fossil-fuel combustion and industrial processes reached 9.7 Pg C/yr in 2015, equivalent to 35.7 Pg CO$_2$/yr (Le Quéré et al., 2016). These drastic climate variations like rising temperature, diminishing ice and increased sea level, will inevitably give rise to destruction on an ecosystem, biodiversity and human economic activities (Peters et al., 2013). The irreversible damages require global joint forces to deal with these urgent situations and maintain sustainable development. Both developed and developing countries have witnessed a great falling in agriculture yields, and increased desertification (Fang et al., 2018). Thus, this is the war; we should fight against in whatever weapon we have, following the Paris Agreement reached nearly 200 contracting parties of the United Nations Framework Convention on Climate Change (UNFCCC), (IPCC, 2018; Warren et al., 2018).

As climate change is projected to hit the poorest countries the hardest, thus, developing countries need to pay particular attention to the management of natural resources (Kaya and Seleti, 2014; Ruiz-Peinado et al., 2017; UNDP, 2007). The adverse effects of climate impacts to which these countries are exposed are already being felt and exerting considerable stress on important sectors (agriculture and exploitation of natural resources) for national development (Adesina et al., 1999; Bele et al., 2011; Lee, 2007; Thornton et al., 2009). The African continent indeed has limited ability/options to adapt to climate change impacts and functional mitigation measures due to number of factors including limited infrastructures (Cooper et al., 2013; Sanga et al., 2013; Shemsanga et al., 2005). In most developing countries of Africa including Tanzania in particular, the forests can play an important role in achieving broader climate change mitigation goals. One of the options being considered to mitigate the rise of CO$_2$ in the atmosphere is the use of forests reserves and establishment of forest conservation strategies (Lasco et al., 2002; Njana et al., 2018; Paudel et al., 2019; Pearson et al., 2005). The recognition of the role of forest and its components such as trees, herbs and soils in reducing the emission of carbon is more valuable (Montagnini and Nair, 2004).

While climate change is a global phenomenon, its negative impacts are more severely felt by poor developing countries including Tanzania, as is not shielded from global environmental change (Kangalawe, 2017). Extreme climatic events such as droughts and floods have often observed resulted into crop damages and failure (Kangalawe and Liwenga, 2005), similarly, a decrease in the average discharge in most rivers have also been observed (Matondo, 2008). Therefore, several initiatives schemes, such as avoidance of deforestation introduction of reforestation program and agroforestry practices that sequester carbon in vegetation and soil (Crooks et al., 2011). This makes a substantial contribution to global climate change mitigation and reduces the negative consequences of climate change. The main forestry strategies aimed at mitigating climate change through reforestation; avoid deforestation and degradation; maintain or increase the carbon density of existing forests; encourage the use of forest products, thereby improving carbon storage, and increasing the use of bioenergy to substitute fossil fuels (Kurz et al., 2016).

Deforestation and forest degradation result in emissions of CO$_2$, which contribute to climate change, loss of carbon sequestration capacity, loss of invaluable ecosystem services and possibly loss of tree species (Njana et al., 2018). Forest productivity is important in mitigation of climate change due to its capacity to sequester CO$_2$. Forest conservation initiatives in Tanzania such as participatory forest management (PFM) through the community-based forest management (PFM), and joint forest management (JFM), (Treu et al., 2014; URT, 2006; Zahabu et al., 2009), which are well-articulated in the National Environmental Policy of 1997, the Village Land Act of 1999 (FAO, 2008) Forest Act 2002 and the Environmental Management Act of 2004 (URT, 2006). These initiatives encouraged and promoted community members to conserve their forests ranging from individual/private owned forest, community-owned forest and institution-owned forests (Duguma et al., 2013; Mlenge, 2004; Monela et al., 2005; Selemani et al., 2013). Apart from its role in characterizing the terrestrial ecosystem function and structure concerning biodiversity, still these forests services as primary net biomass productivity, carbon stocking and hence climate mitigation (Lee, 2007; Paudela et al., 2017).

As an important source, sink and pool in the global carbon cycle, the forest plays an important role in mitigating global climate change (Lee, 2007). This implies that the functions of forest and its components act as a carbon pool and sink hence decrease the amount of CO$_2$ in the atmosphere and improves the structure and function of the forest ecosystem. Consequently,
data on C storage and sequestration potential by community conserved forests in many developing countries including Tanzania is scanty. The available report focuses on other forest types like *Miombo* woodland of central and southern parts of Tanzania (Osei et al., 2018; TaTEDO, 2009; Zahabu, 2008) and Mangroves forestry (Njana et al., 2018) as well as conservation and management (Chirwa, 2014; Duguma et al., 2019; Malunguja and Devi, 2020; Monela et al., 2005; Otsyina et al., 2008; Pye-Smith, 2010; Rubanza et al., 2006; Selemani et al., 2013). However, the community reserved forests receive little emphases on the study of C storage and sequestration concerning climate change mitigation.

Therefore, this was carried to quantify the amount of carbon stored by plants and soil pools for estimating of CO₂ sequestered and hence climate change mitigation. The study intends to test whether: there are significance stocking and sequestration potential within and across community conserved forests of Nyasamba and Bubinza in Kishapu district, Tanzania.

MATERIALS AND METHODS

Study Site

The study was conducted in 2017 to 2018 among two community conserved forests, namely, Nyasamba and Bubinza of Kishapu district, Shinyanga region, located in northwest Tanzania (Figure 1). The district lies between 3º 15” and 4º 05” South of the equator and longitudes 31º 30”E and 34º15”E east of the Greenwich meridian (URT, 2009). The district has a total area of 4,333 km², of which 101 km² is covered by forests. The district is characterized by a dry tropical (semi-arid) climate with temperatures ranging from 22°C to 30°C and 15°C to 18.3°C for maximum and minimum, respectively. It is a semi-arid area that receives 450 to 700 mm of rainfall per annum (NBS, 2012). Rainfall starts in late October/early November and ends in April/May while the dry season begins in June and lasts in November. The district is characterized by flat and gently undulating plains covered with low and sparse vegetation. The soil varies along with relief features such that on hilltop soils are moderately well drained greyish brown and sandy (KDP, 2013) whereas low-lying valley bottom soils are moderately deep well-drained and greyish brown sand.

Study Design and Forest Inventory

A ground-based field survey design (Brand et al., 1991) under the systematic sampling technique (Philip, 1994) was adopted to assess the forest carbon stocking potential and soil organic carbon status. In this study, temporal circular plots of size 15 m radius (with inner sub-plot of 5 m) along transects were used for vegetation sampling (Figure 2). Before the transects were laid, a reconnaissance survey was made across the forest to obtain an impression in site conditions and physiognomy of the vegetation, collect accessibility information and to identify sampling sites. Following a reconnaissance survey, the coordinates range of the forest was determined from GPS reading and transects were laid. A total of 45 (Nyasamba 15, Bubinza 30) sample plots were established within transects. The distance was maintained at 550 m and 300 m, between transects and plots, respectively. In each plot, parameters such as herbaceous biomass productivity, trees stocking parameters (standing density, diameter at breast height and tree height), and soil samples were enumerated and recorded as per (Behera et al., 2017; Pieper, 1988; Rubanza et al., 2006) as shown below:

Within 5 m radius: four quadrats were thrown randomly in each of the four quarters of the plot to collect both herbs and soil samples for determination of herbaceous stocking and soil organic carbon (SOC) respectively.

Within 15 m radius: all trees with Dbh ≥ 5 cm were identified; the number of trees or stem numbers in case of forked trees was recorded. The diameter at breast height (cm) was measured using tree calliper while the tree height (m) was measured by using Suunto hypsometer. The plant species were identified with the help of local floras and recorded based on both local (with the help of local botanist) and botanical names. Plant species that provided difficulty to identify in the field, the herbarium was prepared for identification at the Department of Biology, the University of Dodoma, Tanzania.

Figure 1. The Map of the Kishapu to show the studied community conserved forests.

Figure 2. Plot layouts showing the shape of 15 m radius plot and its sub-plots.
Field Data Collection

Herbaceous Carbon Stocking and CO₂ equivalent

Data on herbaceous stocking and sequestration were determined by a destructive harvest method (Chambers and Brown, 1983). A technique which involves clipping off, the herbaceous individual’s species contained in the quadrat at 1.5 cm above the ground using hand sickles. The clipped herbaceous species were immediately transferred to pre-weighed labelled paper bags and instantly weighted for fresh weight using a weighing balance (Model: CG 2002L ±0.001g accuracy). The samples were taken into the laboratory for a forced-air oven at 60°C for 48 h to constant weight to obtain dry matter (DM). The dry matter content was used to compute biomass productivity as described by Chambers et al. (Chambers and Brown, 1983; Rubanza et al., 2006) followed by C storage and sequestration estimation in t DM ha⁻¹ as shown in equation (1).

\[
\text{Herb productivity} = \frac{\text{Total Dry weight (DM)}}{\text{Total number of quadrat}} \times \text{Quadrat Area Per ha} \quad (1)
\]

Tree Carbon stocking and CO₂ equivalent potential

Tree carbon stocks were estimated by a non-destructive field measurement method (Chave et al., 2005; Chave et al., 2014; Vesa et al., 2010), which employs the use of allometric equations, taking into account measurable parameters like diameter (girth) at breast height, tree height, basal area and tree volume (Nath et al., 2019; Paudela et al., 2017). The aboveground and belowground biomass was used for total tree carbon estimation. The use of site or region species-specific allometric equations was adopted to minimize sources of error during estimations (Nath et al., 2019). The choice of the equation follows its region specificity, characterized by semi-arid, sub-tropical ecosystem (Malimbwi et al., 1994; Philip, 1994) as shown in equations (2-7) below.

i) Above-ground tree biomass (AGB) was computed as per (Vesa et al., 2010).

\[
\text{AGB} (\text{tha}^{-1}) = \text{Tree bio-volume (m}^3\text{ha}^{-1}) \times \text{Tree density (kgm}^{-3})/1000 \quad (2)
\]

A single tree bio-volume equation was used to calculate the volume of each tree.

\[
\text{Tree bio-volume (V, m}^3\text{ha}^{-1}) = g^*f^*h \quad (3)
\]

Whereby, “g” stands for tree basal area (m²) “h” for height (m) and “f” for form factor (0.5), while the single equation for tree basal area was

\[
\text{TBA} = \pi (\text{Dbh}/2)^2 = 0.0000785*\text{Dbhi}^{10} \quad (4)
\]

Where: \(\pi = 3.142857 \), \(\text{Dbhi} \) = diameter at breast height for the \(i^{th} \) tree (cm).

ii) Below-ground tree biomass (BGB) was calculated by multiplying the aboveground biomass (AGB) into 0.26 (shoot-to-root ratio).

\[
\text{BGB} (\text{tha}^{-1}) = \text{AGB} \times 0.26 \quad (5)
\]

iii) Total tree biomass (TB) was computed as the sum of the AGB and BGB

\[
\text{TB (tha}^{-1}) = \text{AGB} + \text{BGB} \quad (6)
\]

Conversion of Biomass to Carbon

Generally, for any plant species, 47% of its biomass is considered as carbon equivalent (Vesa et al., 2010), therefore, the obtained results from herbaceous and tree species were converted into carbon stocks using the ‘Default Carbon Conversion Factor’ of 0.47.

\[
\text{Carbon (tha}^{-1}) = \text{Biomass} \times 0.47 \quad (7)
\]

Soil Sampling, Carbon Stocking and CO₂ equivalent potential

Carbon stock inventory for the soil was done for the upper 30 cm depth in the nested plot, by collecting samples from 0-10; 10 -20 and 20-30 cm depth categories. The soil samples were composited for each depth class per plot. The soil sample was analyzed based on standard laboratory procedures. Bulk density was determined by core method using a 5 cm dia. 9 cm long steel core sampler for each depth class (Gandhi and Sundarapandian, 2017; Osei et al., 2018) while soil organic carbon (SOC) was determined using Walkley-Black oxidation method (Walkley and Black, 1934) equation (8).

\[
\text{C stocks} = \% \text{C} \times \text{BD} \times \text{Depth} \quad (8)
\]

Where, C stocks = C expressed in Mg ha⁻¹ for a given depth, % C = % Concentration of C in soil measured for each soil depth, BD = Bulk density, tones m⁻³ for each soil depth, Depth = Sampling depth.

Estimation of CO₂ equivalent (CO₂e) from different Carbon pools

The amount of CO₂ equivalent in different pools was estimated by multiplying the carbon stored by a factor of 3.67 (Iticha, 2017; Lasco et al., 2002). This has generated from the relationship between carbon dioxide and carbon (the ratio of CO₂ to C is (44/12) = 3.67 (Siraj, 2019) (i.e. CO₂ is composed of one molecule of Carbon and 2 molecules of Oxygen).

The atomic weight of Carbon is 12.001115 and the atomic weight of Oxygen is 15.9994, the weight of CO₂ is C + O² = 43.999915. Then the ratio of CO₂ to C is 43.999915/12.001115 = 3.6663. As 1 Mg of soil and vegetation carbon = 3.67 Mg of CO₂ sequestered (Allen et al., 2010; Siraj, 2019). Therefore, the equivalent CO₂ sink (Mg) in Nyasamba and Bubinza forest was estimated based on the total C stock as shown in equation (9).

\[
\text{CO₂ equivalent (CO₂e) = 3.67* total carbon} \quad (9)
\]

Data Analysis

The collected data were organized and recorded on the excel datasheet, followed by descriptive analysis for quantitative data using Microsoft excel of 2010 and SPSS software version 20.
Table 1. Carbon stocking and sequestration potential by herbaceous species in Nyasamba and Bubinza community reserved forests.

Forest name(s)	Vegetation type	Scientific name	Carbon stocks & sequestration \(\text{B(t/DM/ha)}\)	\(\text{C(t/DM/ha)}\)	\(\text{tCO}_2\text{e/yr)}\)
Nyasamba	Grass	Cynodon dactylon (L.) Pers.	12.73	5.983	21.958
	Grass	Ecincholea colonia (L.) Link	6.904	3.245	11.908
	Grass	Sporoborus spicus tus Kunth	2.972	1.397	5.126
	Grass	Dactylolcemenium aegyptium (L.) Willd.	2.596	1.22	4.477
	Grass	Brachiarhia mutica (Forssk.) Stapf	2.193	1.031	3.783
	Grass	Cyperus esculentus L.	1.504	0.707	2.595
	Forb	Cucumis anguria L.	1.441	0.677	2.485
	Grass	Aristida funiculata Trin. & Rupr	1.37	0.648	2.383
	Forb	Commelina benghalensis L.	1.249	0.587	2.155
	Grass	Rhyhchymtrum repens (Willd.) C.E.Hubb.	0.937	0.44	1.616
	Forb	Rottboellia exaltata L.	0.48	0.225	0.827
	Grass	Digitaria scalarum (Schwein.) Chio.	0.401	0.188	0.692
	Grass	Panicum trichocladum Hack. ex K. Schum	0.302	0.142	0.521
	Forb	Oxygonum sinatum (Hochst. & Steud.)	0.263	0.124	0.454
	Forb	Abelmoschus esculentus L.	0.226	0.106	0.391
	Forb	Sida sinosa L.	0.225	0.106	0.389
	Forb	Sonchus luxurians (R. E. Fr.) C. Jeffrey	0.223	0.105	0.385
	Forb	Ipomoea batatas (L.) Lam.	0.2	0.094	0.346
	Forb	Corchorus capsularis L.	0.175	0.082	0.302
	Forb	Monechma debile (Forssk.) Nees	0.173	0.081	0.298
	Grass	Echincholea colonia (L.) Link	0.16	0.075	0.276
	Sub-total carbon		36.724	17.259	63.347
	sub-total CO2e		134.77708	63.34053	
	Means±SE		3.01±1.12		
Bubinza	Grass	Aristida funiculata Trin. & Rupr	44.941	21.122	77.519
	Grass	Themadon quadrelavis (L.) Kuntze	6.423	3.019	11.079
	Grass	Cynodon dactylon (L.) Pers.	3.498	1.644	6.035
	Forb	Monechma debile (Forssk.) Nees	3.389	1.593	5.846
	Grass	Sphararhines suaveolens (Forssk.) DC	2.822	1.326	4.868
	Grass	Dactylolcum aegyptium (L.) Willd.	1.889	0.888	3.258
	Forb	Sonchus luxurians (R. E. Fr.) C. Jeffrey	1.415	0.665	2.44
	Grass	Chloris barbar Sw.	1.297	0.61	2.237
	Grass	Rhyhchymtrum repens (Willd.) C.E.Hubb.	1.162	0.546	2.004
	Forb	Lycopersicn lycopersicum (L.) H. Karst	1.113	0.523	1.919
	Forb	Ipomoea batatas (L.) Lam.	1.091	0.513	1.882
	Grass	Chloris gayana Kunth	0.786	0.369	1.356
	Forb	Oxygonum sinatum (Hochst. & Steud.)	0.696	0.327	1.201
	Forb	Commelina benghalensis L.	0.624	0.293	1.076
	Grass	Heteropogon contortus (L.) P.Beauv	0.392	0.184	0.677
	Grass	Panicum trichocladum Hack. ex K. Schum	0.309	0.145	0.533
	Forb	Leucas martinicensis (Jacq.) R.Br.	0.283	0.133	0.488
	Forb	Amaranthus spinosus L.	0.202	0.095	0.348
	Grass	Sporoborus spicus tus Kunth	0.184	0.086	0.317
	Forb	Cleome gynandra L.	0.16	0.075	0.276
	Sub-total carbon		72.676	34.156	125.359
	sub-total CO2e		266.72092	125.35252	
	Means±SE		6.27±3.79		
	Gland total tCO2e/yr		188.706		

RESULTS AND DISCUSSION

Herbaceous carbon stocking and CO\(_2\) equivalent

Results on herbaceous carbon stocking and CO\(_2\) e potential is presented in Table 1. Carbon storage capacity was variable \(p<0.05\) across both species and sites, with a total of 188.71 t CO\(_2\)e/yr. Bubinza community forest recorded relatively higher herbaceous carbon stocks (125.36 t CO\(_2\)e/yr) than Nyasamba community forest (63.35 t CO\(_2\)e/yr). *Aristida* spp., are the individual herbaceous species with relatively higher stocking and carbon sequestration (77.52 t CO\(_2\)e/yr) potential for climate change mitigation, others species with relatively high stocking are indicated in Figure 2 (A and B). The noted low herbaceous stocking potential of selected forests of Kishapu district suggest a great disturbance of the forests such as grazing pressure and poor of land use management practice by the village government.

With references to biomass productivity, the finding of this study concurs to the previous findings which were reported from other districts of the region (Otsyina et al., 2008; Rubanza et al., 2006). However, this study recorded a slightly lower average mean of biomass as compared to the work reported by Rubanza et al. (2006) and Otsyina et al. (2008). The noted slight variations on herbaceous biomass productivity observed in the
current study could be partly explained by differences in the management of the forests as well as sites specific characteristics. Anthropogenic disturbances including resource exploitation, deforestation, and overgrazing, have altered the understory forest structure and species composition making a serious impact on the sustainable herbaceous stocking and productivity potential in the study sites.

Tree carbon stocking and CO$_2$ equivalent potential

Results on tree sequestration in the surveyed community forests of Kishapu district are indicated in Table 2. There was no significant difference (P > 0.05) across tree species and sites. However, Bubinza had a relatively higher CO$_2$e (79.22 tCO$_2$e/yr) than Nyasamba (57.37 tCO$_2$e/yr). In both sites, *Tamarindus indica* recorded the highest sequestration of 37.7 and 33.4 tCO$_2$e/yr, in Bubinza and Nyasamba respectively. Other trees species with relatively high stocking and carbon sequestration are shown in Figure 3 (A and B).

The recorded tree stocking parameters were lower than that observed other districts of Shinyanga region (Monela et al., 2005; Otsyina et al., 2008) and other parts of Tanzania (Zahabu, 2008). The noted low forest stocking potential in the current study could be due to the high level of forest degradation and deforestation observed in most semi-arid areas of Tanzania. On the other hand, the high degree of disturbance particularly illegal tree cutting evidenced by a large number of stump cut trees might have influenced the recorded forests’ stocking. The dry and semi-arid condition of the Shinyanga ecosystems could have influenced the poor tree stocking and hence climate change mitigation through sequestration. This observation is contrary to high stocking (1859.45 t ha$^{-1}$), reported in Ethiopia (Siraj, 2019) as part of East Africa. Of which 1549.54 and 309.91 t ha$^{-1}$ was contributed by the above ground and below ground carbon, respectively. The forests are characterized by a small-sized tree with low dbh and short in height that acts as an important parameter for stocking. Therefore, proper forest management for good stocking potential and enhances climate change mitigation and CO$_2$ offset through carbon sequestration thereby reduce the effects of global warming is essential.
Table 2. Carbon stocking and sequestration potential by tree species in Nyasamba and Bubinza community conserved forests.

Forest name	Scientific name	AGB	BGC	TC	tCO₂e/yr
Bubinza	Tamarindus indica L.	0.752	0.13	0.65	36.731
	Combretum obovatum F.Hoffm.	0.15	0.038	0.188	9.73
	Grewia bicolor. Juss	0.117	0.029	0.146	7.589
	Balanites aegyptiaca (L.) Delille	0.108	0.027	0.135	6.989
	Acacia tortilis (Forssk.) Hayne	0.105	0.026	0.132	6.84
	Acacia polyacantha Willd.	0.047	0.012	0.059	3.045
	Acacia benthom Meisn.	0.039	0.01	0.049	2.526
	Acacia senegal (L.) Willd.	0.03	0.008	0.038	1.969
	Acacia nilotica (L.)	0.029	0.007	0.037	1.912
	Ormocarpum kirikki S. Moore	0.011	0.003	0.014	0.715
	Capparis tomentosa Lam.	0.01	0.003	0.013	0.651
	Acacia drepanolobium Harms ex Y.Sjostedt	0.008	0.002	0.01	0.524
Sub-total carbon	1.406	0.295	1.471	79.221	
Sub-total CO₂e	5.16	1.0827	5.3986	6.60±2.88	

Nyasamba	Tamarindus indica L.	0.52	0.13	0.65	33.41
	Acacia polyacantha Willd.	0.1	0.025	0.125	6.48
	Euphorbia tirucalii. L	0.079	0.02	0.099	5.125
	Balanites aegyptiaca (L.) Delille	0.065	0.016	0.081	4.186
	Acacia tortilis (Forssk.) Hayne	0.051	0.013	0.064	3.299
	Acacia senegal (L.) Willd.	0.028	0.007	0.036	1.842
	Acacia nilotica (L.)	0.019	0.005	0.023	1.201
	Senna siamea (Lam.)	0.009	0.002	0.012	0.606
	Dichrostachys cinerea Wight et Arn.	0.008	0.002	0.009	0.487
	Acacia drepanolobium Harms ex Y.Sjostedt	0.006	0.002	0.008	0.412
Sub-total carbon	0.885	0.222	1.107	57.369	
Sub-total CO₂e	3.248	0.8147	4.0627	5.70±3.15	

| Mean±SE | 136.59 |

Table 3. Carbon stocking and sequestration potential by soils in Nyasamba and Bubinza community conserved forests.

Forest name	Depth (cm)	BD (Mgm⁻³)	SOC (t C ha⁻¹)	t CO₂e/yr
Nyasamba	0-10	3.02	48.84	179.24
	10-20	2.82	22.57	82.83
	20-30	3.07	12.37	45.40
	Mean±SE		102.49±39.87	307.47
	Sub-total			
Bubinza	0-10	3.03	37.17	136.41
	10-20	3.08	31.36	115.09
	20-30	2.94	27.54	101.07
	Mean±SE		117.52±10.27	352.57
	Sub-total			
	Gland total CO₂e		660.04	

Soil carbon stocking and CO₂ equivalent potential

Results on stocking and sequestration by soil pool are presented in Table 3. Carbon sequestration potential within soil varied across depths category (P <0.05), but not across sites (P >0.05). The soil pool recorded higher sequestration potential of 660.04 t CO₂e/yr (Nyasamba being 307.47 while Bubinza was 352.57) with a maximum value at 0-10 cm depth categories than other carbon pools (Figure 4). The noted soil stocking potential in this work denotes the potential of the forest for the supply of plant required macro and micronutrients for maintaining the ecosystem and preventing soil erosion and thereby improve ecosystem services and conservation for enhanced climate change mitigation. The noted higher carbon stocking potential in the uppermost layers (0-10 cm) depth category (179.24 and 136.41 t CO₂e/yr) than the lower layers (20-30) cm depths (45.40 and 101.07 t CO₂e/yr) in Nyasamba and Bubinza respectively, suggests a high rate of build-up of organic matter from plant litter in the topsoil layers than to subsoils, which are less altered by the vegetation type. The same observation was reported by Osei et al. (2018) in other districts of the region. However, the observed variation on soil pool stocking could be attributed to the current trend of climate change due to great unpredictable precipitation. Other factors could be the previous history of the land-use system; For instance, Bubinza community forest was established on degraded sites for purposes of land restoration in 1980s HASHI programs (HASHI-ICRAF, 1997). As carbon sequestration rate of soil depends upon the input of dead organic matter provided by plants (Ussiri and Lal, 2017), similarly (Ruiz-Peinado et al., 2017) reported soil properties, their aggregations and climate tend to influence stocking.
Conclusions and Recommendations

The findings from this study portray a significant low contribution of community conserved forest in carbon stocking and hence climate change mitigation, as it has small value for carbon stocks as well as the potential for carbon sequestration for enhanced climate change mitigation. This may provide a poor generation of carbon credits as financial benefits to the indigenous population, which supports the dedicated management of forest resources for the REDD+ initiatives in developing countries, Tanzania in particular. There is a need of strong participation of the local community as forest user groups and minimizing the disturbances caused by human interferences, such as grazing pressure, encroachment and logging economically and ecologically important tree species to enable the natural forest to sustain important role in climate change mitigation. The conservation of forest ecosystems is important in ensuring the health and productivity of forests that provide sustainable livelihood benefits to the local community and mitigate the negative impacts of climate change. There is a need for promoting reforestation and regrowth of natural forest, using traditional available strategies. This is because indigenous knowledge has a value not only for the culture in which it evolves but also for scientists and planners striving to improve conditions in rural localities. Therefore, the study suggests proper management of traditional conservation system that could largely enhance stock potential and conservation, reduce the vulnerability to extreme climatic events and appropriate strategies are important not only as regards the conservation of these forests but also to improve the provision of ecosystem services and develop the strategies suitable for carbon trade for implementing the Reducing Emissions from Deforestation and Forest Degradation (REDD+) policy introduced in Kyoto Protocol.

ACKNOWLEDGEMENTS

The authors would like to offer their gratitude to Sandu Peter, Mhija Budeba and Mbwiga Emmanuel for their assistance in field data collection. We are very grateful to Ms Rose Njawala, a TAFORI/NAFRAC Laboratory Technician for assisting in sample preparation and laboratory experiments. The authors equally thank the staff at the Tanzania Forestry Research Institute (TAFORI) and NAFRAC for technical support. Lastly, we offer more thanks to Kishapu District Council for granting research permission.

Conflict of interest

The authors declare no conflicts of interest.

Open Access: This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) or sources are credited.

REFERENCES

Adesina, F.O., Siyambola, W.O., Oketola, F.O., Pelemo, D.A, Ojo, L.O. and Adegbugbe, A.O. (1999). Potentials of agroforestry for climate change mitigation in Nigeria: Some preliminary estimates. Global Ecology and Biogeography, 8: 163–173.
Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M. and Gonzalez, P. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecology and Management, 259(4): 660-684.
Behera, S.K., Sahu, N., Mishra, A.K., Bargall, S.S., Behera, M.D and Tuli, R. (2017). Aboveground biomass and carbon stock assessment in Indian tropical deciduous forest and relationship withstand structural attributes. Ecological Engineering, 99 (1): 513–524.
Bele, M.Y., Somorin, O., Sonwa, D.J., Nikem, J.N and Locatelli, B. (2011). Forests and climate adaptation policies in Cameroon. Mitigation and Adaptation Strategies for Global Change, 16 (3): 369–385.
Bindoff, N.L., Willebrand, J., Artale, V., Cazenave, A., Gregory, J.M., Gulev, S. and Shum, C.K. (2007). Observations: Oceanic Climate Change and Sea Level: In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon SD, Qin M, Manning Z, Chen M, Marquis KB, Averet M, Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
Brand, D.G., Leckie, D.G. and Cloney, E.E. (1991). Forest regeneration surveys: Design, data collection, and analysis. Forestry chronicle, 67 (6): 649–657.
Bush, M.S. (2017). An Assessment of Autonomous Adaptation Practices to Climate Change in Kishapu District Tanzania. Environment Department Paper no. 121, World Bank, Washington, DC.

REFERENCES

Brand, D.G., Leckie, D.G. and Cloney, E.E. (1991). Forest regeneration surveys: Design, data collection, and analysis. Forestry chronicle, 67 (6): 649–657.

This is an open access article distributed under the terms of the Creative Commons Attribution NonCommercial 4.0 International License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) or sources are credited.
Sanga, G.J., Moshi, A.B. and Hella, J.P. (2013). Small Scale Farmers’ Adaptation to Climate Change Effects in Pangani River Basin and Pemba: Challenges and Opportunities. *International Journal of Modern Social Sciences*, 2(3): 169–194.

Selemani, I.S., Elk, L.O., Holand, Ø., Ádnay, T., Mtengeti, E. and Mushi, D. (2013). The effects of a deferred grazing system on rangeland vegetation in a north-western, semi-arid region of Tanzania. *African Journal of Range and Forage Science*, 30(3): 141–148.

Shemsanga, C., Muzuka, A.N.N., Martz, H., Komakech, L. and Omambia, A.N. (2015). Statistics in Climate Variability, Dry Spells, and Implications for Local Livelihoods in Semi-arid Regions of Tanzania: The Way Forward. In: W.Y. Chen et al. (eds.), *Handbook of Climate Change Mitigation and Adaptation*. Available: https://doi.org/10.1007/978-1-4614-6431-0_66

Siraj, M. (2019). Forest carbon stocks in woody plants of Chilimo-Gaji Forest, Ethiopia: Implications of managing forests for climate change mitigation. *South African Journal of Botany*, 127: 213–219, http://doi.org/10.1016/j.sajb.2019.09.003

TaTEDO (2009). Community REDD mechanism for sustainable natural resources management in semi-arid areas (the case of Ngilili in Shinyanga Region Report); REDD+ Project proposal submitted to NORAD, Shinyanga, Tanzania.

Thornton, P.K., Jones, P.G., Alagarswamy, G. and Andresen, J. (2009). Spatial variation of crop yield response to climate change in East Africa. *Global Environmental Change: Human and Policy Dimensions*, 19: 54–65.

Treue, T., Ngaga, Y.M., Meilby, H., Lund, J.F., Kajembe, G., Iddi, S. and Njana, M.A. (2014). Does participatory forest management promote sustainable forest utilisation in Tanzania? *International Forestry Review*, 16(1): 23-38.

United Nations Development Programme (UNDP, 2007). Human development report 2007/2008: Fighting climate change, Human solidarity in a divided world. UNDP, New York.

United Republic of Tanzania (URT, 2006). Report on Participatory Forest Management in Tanzania: Facts and Figures. Ministry of Natural Resource and Tourism, Dar es Salaam, Tanzania.

United Republic of Tanzania (URT, 2009). Kishapu District Profile, District Development Directory, Shinyanga-Tanzania. Available: https://media.africaportal.org/documents/PHDR_2009_text.pdf

Usiri, D.A.N. and Lal, R. (2017). Carbon Sequestration for Climate Change Mitigation and Adaptation. Available: https://doi.org/10.1007/978-3-319-53845-7

Vesa, L., Malimbiw, R., Tomppo, E. and Zahabu, E.A. (2010), national forestry resources monitoring and assessment of Tanzania (NAFORMA). Available: http://41.73.194.142:8080/xmlui/handle/123456789/1287

Walkley, A. and Black, I.A. (1934). Determination of Organic Carbon in soil. *Soil Science*, (37): 29-31.

Wang, Z., Zhu, Y. and Shi, Y. (2016). Energy structure change and carbon emission trends in China. *Energy*, 115: 369–377, http://doi.org/10.1016/j.energy.2016.08.066

Warren, R., Price, J., VanDerWal, J., Cornelius, S. and Sohl, H. (2018). The implications of the United Nations Paris Agreement on climate change for globally significant biodiversity areas. *Climate Change*, 147 (3–4): 395–409.

Yang, L. and Lin, B. (2016). Carbon dioxide emission in China’s power industry: Evidence and policy implications. *Renewable and Sustainable Energy Reviews*, 60: 258–267, http://doi.org/10.1016/j.rser.2016.01.058

Yao, Y., Piao, S. and Wang, T. (2018). Future biomass carbon sequestration capacity of Chinese forests. *Science Bulletin*, 63 (17): 1108–1117, http://doi.org/10.1016/j.scib.2018.07.015

Zahabu, E. (2008). Sinks and Sources a Strategy to Involve Forest Communities in Tanzania in Global Climate Policy (PhD. thesis). The University of Twente, Netherlands. Available: http://doi.org/10.3990/1.9789036527736

Zahabu, E., Eid, T., Kajembe, G.C., Mbwanabo, L., Mango, C., Sangeda et al. (2009). Forestland Tenure System in Tanzania: An overview of Policy Change in Relation to Forest Management; INA-fagrapport. No. 14. *Journal of Tropic Forest Science*, 26 (4): 484-492.