Environmental diagnosing of the new algal pollution of Tigris River in Iraq

Warqaa Y. Salih¹, Fikrat M. Hassan²
¹Institute of Genetic Engineering and Biotechnology for Postgraduate Studies, University of Baghdad, Baghdad, Iraq
²Department of Biology, College of Science for Women University of Baghdad, Baghdad, Iraq

E-mail: fikrat@csw.uobaghdad.edu.iq

Abstract. The purpose of this study is to use eDNA in the biodiversity of the Tigris river’s sediment. Algal samples were collected and examined under light microscopy. The collected algae were cultured, and after their growth, the DNA extractions were made from culture and amplified 16S ribosomal RNA gene partial sequences data by Polymerase Chain Reaction (PCR). Phylogenetic identification of species was conducted by the evaluation of obtained sequence analysis data by using computer software. Leptolyngbya benthonica (MN 714226.1) and Nostoc paludosum (MN 714225.1) were identified by molecular analysis and registered at NCBI and considered as a new record to the algal flora of Iraq. Implementing molecular data in the taxonomy of species will be essential to solve the taxonomic problems associated with microscopic methods.

Keywords: Environmental DNA, PCR technique, Cyanophyceae, Algae, Tigris River

1. Introduction

Blue greens algae are found in different habitat such as soil, aquatic ecosystem and another external habitat. Soil ecosystem is more complex than freshwater and marine ecosystems [1, 2]. The majority of algal classes in terrestrial environments, including the blue green ones, are revolutionary micro-organisms and have a high capacity to adapt to different environmental conditions in terms of their morphology and physiology [3, 4].

DNA of blue greens algae is dispersed through the cytoplasm and not organized in chromosomes. They also possess thylakoids which are specialized inner membrane folds where the process of photosynthesis is carried out [5]. As a basis for classifying cyanobacteria, morphological features are considered. However, due to changes in environmental and developmental factors, the morphological features may be changed, whereas some Cyanobacteria are problematic because of the unclear features such Nostoc modified by Cyanobacteria [6]. The difficulties to identify these groups of algae by morphological concept led to use the molecular approach to resolve the resemble between the genera and species of blue-greens algae [7]. The Nostoc and Leptolyngbya are one of the most genera found within the community of the bank of river sediment and in both freshwater and saline water [8-10].

Nostoc is a filamentous, heterocysts blue-green alga. It found worldwide in environment and in the terrestrial ecosystems [11,12]. This genus considered an important source of for protein, vitamin and unsaturated fatty acids for another organism [13-15]. Leptolyngbya is one of the most widespread and widely found genus of cyanobacteria. Morphologically, species of Leptolyngbya are recognized by their thin trichomes (less than 3.5 μm wide) surrounded by individual sheaths and presence of parietal thylakoids [16,17]. Debnath et al. [18] explained that the morphological traits of this genera are
overlapping with other species (Geitlerinema and Coleofasciculus) and preferred to classified molecularly [19,20]. The filaments are never solitary, floating or attached, generally they are not attenuated at the ends, are not capitate, are potentially elastic and are occasionally pseudo-branched [21]. In addition, the absence of a conspicuous morphological characteristic in Leptolyngbya makes it difficult to differentiate it from other related morphotypes, suggesting that morphological work alone is not informative and accurate for this cyanobacterial genus [22].

Many authors emphasize using the DNA, which taken from the habits of the natural communities, and recently this approach was used in biodiversity studies [23,24]. Metabarcoding techniques provide good results of identification from isolated DNA [25,26]. Altermatt et al. [27] explain essential to use the eDNA in the monitoring tool for large scales and additional challenges of spatial patterns of biodiversity. Previous studies showed inconsistent between the traditional studies of biodiversity and the results of eDNA and they interpreted it due to abiotic and biotic factors [28,29]. Garcia-Martinez et al. [30] mentioned that the molecular approach is best solution for the taxonomic deconfliction of cyanobacterial taxa. This approach used the 16S and 23S rRNA gene which is differ from species to another and get a good result these algal group diversity. Thus, the gene sequence between the 16S and the 23S rRNA regions in the ribosomal operon is a tool for studying molecular systematics and population genetics at different taxonomic levels in cyanobacteria. The most common genes are 16S rRNA in this technique with PCR and used to identify different microorganisms in terms of evolutionary conserved sequences [31,32]. The molecular approach particularly environmental DNA in biodiversity studies has applied for different types of organisms because their accuracy and avoid the misidentification of most of algal taxa and other organisms by traditional classification [33,34].

In Iraq, a total of 508 Cyanophyceae taxa were recorded in different Iraqi ecosystems according to Maulood et al. [35], while only 13 taxa of Nostoc based on morphological features only identified. There is no record for Leptolyngbya while there are 43 Lyngbya taxa were identified in Iraq according to last checklist [35]. There are limited numbers of study on the identification of cyanobacteria and green algae [33,36] with the help of molecular techniques in Iraq. This study aimed to identify algae (non-diatomic algae) for samples taken from Tigris River by morphological and molecular characterizations.

2. Materials and methods
2.1. Study area: Five sites were selected over Tigris river within Baghdad city during March to May 2019 (Figure 1, Table 1).

![Figure 1. Map of the study areas. S1, S2, S3, S4, S5 represent the sites of study.](image-url)
Sites	Longitudes (East)	Latitudes (North)
Al-Muthanna Bridge	44°34’55.50” E	33°42’83.22” N
Al-Sarafiya Bridge	43°99’43.6” E	36°91’33.4” N
Al-Shuhada Bridge	44°16’44.5”E	36°90’74.5” N
Al-Jadriah Bridge	44°22’30.42” E	33°21’12.62” N

2.2. Sampling
The sediment sample was collected by spatula at a depth of 2-3 cm with a surface area of 50 m² below the sediment surface and placed in a nylon bag with several river water [37]. The collected samples were placed in petri dishes and algae were trapped by lens tissues as described in [38]. The examination of algal sample (non-diatoms) done by Genex compound microscope model GX-140105 at Algal and Environmental lab in Department of Biology, College of Science for Women- University of Baghdad. In the final step, the supernatant was discarded and the resulted pellets were stored at -20 °C, this step is to freeze the pellet in order to block the action of the enzymes like RNAase and protease. The pellets were kept for further use as recommended by Visco et al. [39].

2.3. Culturing of cyanobacteria and microscopic examination
The mixed cultures taken from natural habitats (sediment) were placed into test tubes and diluted with sterile water prepared by mixing 1 part of sediment with 2 parts of distilled water. Serial dilution method was used and followed the method described by Stein [40]. In this study, 1 ml of sample inoculated in BG11 (9ml) and this process were repeated to obtain unialgal species. The activity of colonial filaments was reactivated by maintaining them in BG11 medium in 250 ml flasks [41]. The cultures were incubated in a controlled-environment cabinet at 25 ± 1°C with cool white fluorescent lights for 20 days (175 μE/m²/s and 26± 2, 12 h light/12 h dark). Microscopic examination was done by Genex compound microscope model GX-140105 in the Advance Algal Laboratory of the Department of Biology, College of Science for Women at the University of Baghdad.

2.4. Identification of samples using molecular method:
2.4.1. Genomic DNA extraction and Primer selection:

The genomic DNA of algae was extracted by using a fast DNA Intron kit (Maxime PCR Premix kit (i-Taq) 20ulrxn (Cat. No. 25025)) According to manufacturer's instructions. Two important factor taken in consideration (temperature and DNA concentration) for supplemental annealing. The stock solution concentration was 100 pmol/μl. The primer were lyophilized and dissolved into free ddH2O and stock was held at -20 to get 10 pmol/μl and followed the instruction of Integrated DNA Technology company, Canada. The isolated microalgae was identified by the amplification of specific primer 16s RNA of gene (Table 2).
Table 2. The identified algal by amplification of specific primer 16s RNA of gene

Primer	Sequence	Tm (°C)	GC (%)	Product size
Forward	5'- AGAGTTTGATCCTGGCTCAG- 3'	54.3	50.0	1250 base pair
Reverse	5'- GGTTACCTTGTACGACTT- 3'	49.4	42.1	

2.4.2. DNA extraction and Polymerase chain reaction (PCR)

2.4.2.1. PCR:
The PCR amplification reaction was performed in a total volume of 25µl containing 2ng/µl DNA, (5µl) Taq PCR PreMix (Intron, Korea), and (1 µl) of each primer, DNA (1.5µl) and then distilled water (16.5 µl) was added into tubes. The thermal cycling conditions were performed as follows: Denaturation at 94 °C for 3 min, followed by 35 cycles of 94°C for 45s, 52°C for 1 min and 72°C for 1min with final incubation at 72°C for 7 min using a thermal Cycler (Gene Amp, PCR system 9700; Applied Biosystem).

2.4.2.2. Agarose gel electrophoresis of DNA
DNA segments were obtained via electrophoresis with standard DNA presence according Sambrook et al [42].

2.4.3. Preparation of sample
A 3 µl of the processor loading buffer (Intron/Korea) was mixed with 5 µl of the DNA to be electrophoresis (loading dye) and, after the mixing process, the loading process is now to holes of the gel. The electrical current of 5 vol/cm2 was exposed for 1:30 hours until the tincture reached the other side of the gel. The PCR products were separated by 2% agarose gel electrophoresis and tested by ultraviolet light source (UV) with 336 nm after putting the gel in the pool containing 3µl of red safe nucleic acid staining solution and 500 ml of distilled water.

3. Results and discussion

3.1. The light microscope(LM) examination
The LM examination showed different groups of algae (non-diatomic). Two distinguish groups exists with diatoms, mainly Cyanophyceae and Chlorophyceae. The identification algae lists are listed in table 3. While the identified algae by molecular methods are not identified by LM.

Table 3. List of some identified algae (from natural community) by LM

Algal group	Font
Cyanophyceae	Nostoc
	Anabaena
	Oscillatoria
	Phormidium
	Spirulina
	Nodularia
	Anabaenopsis
Chlorophyceae	Scenedesmus
	Pedistrum
	Tetradesmus
3.2. Sequencing and data analysis

Sequencing of 16S rRNA gene was performed by Macrogen (Korea), the national instrumentation center for environmental management (nicem) online at: http://nicem.snu.ac.kr/main/?en_skin=index.html, by Applied Biosystem and BioEdit program. Homology search was conducted using Basic Local Alignment Search Tool (BLAST) program which is available at the National Center Biotechnology Information (NCBI) online at (http://www.ncbi.nlm.nih.gov). The estimation of the number of times that predicted to be as similar as coincidental and lower the value of Expected (E), is called an expected value. This revealed that the degree of similarity between sequences was high; where the value close to zero, indicates that these sequences are identical. Bit Score is a statistical measurement for the similarity between sequences, and the high degree of similarity is represented by a higher value. The phylogenetic tree of aligned sequences was conducted using MEGA 6 program.

3.3. Identification cyanobacterial by Sequencing

Identification of cyanobacterial isolates was confirmed by sequence-based phylogenetic tree (aligned sequences was conducted using MEGA 6 program) structuring analysis using 16S ribosomal RNA (16S rRNA) gene sequencing (table 4); the resulted PCR products were subsequently sequenced to obtain DNA sequences, and a 1250 base pair (bp) product were obtained. For Leptolyngbya benthonica, Nostoc paludosum, respectively in agarose gel electrophoresied for PCR product (Figure 2).

![Figure 2. Amplified PCR product the band size 1250 bp. The product was electrophoresis on 2% agarose at 5 volt/cm². 1x TBE buffer for 1:30 hour. S1= Leptolyngbya benthonica, S2= Nostoc paludosum.](image)

The amplicon was aligned using BLAST at NCBI, the 16S rRNA sequence of isolated alga of Leptolyngbya benthonica showed 99% homology with the existing NCBI database sequence of L. benthonica with accession number KM384743.1 in India (Diagram 1). Isolated alga of Nostoc paludosum showed 99% homology with the existing NCBI database sequence of N. paludosum with accession number KX423684.1 in Brazil (Diagram 2).
Table 4. Types of polymorphism of 16S rRNA gene from isolated algae

No. sample	Type of substitution	Location	Nucleotide	Sequence ID	Score	Expect	Identities	Source
1	Transversion	349	A>C	ID: KM384743.1	789	0.0	99%	Leptolyngbya benthonica
	Transition	449	C>T					
	Transversion	477	T>A					
	Transversion	478	C>G					
2	Transition	153	G>A	ID: KX423684.1	1360	0.0	99%	Nostoc paludosum
	Transition	157	G>A					
	Transversion	198	T>G					
	Transition	566	A>G					
	Transition	585	T>C					

Diagram 1. Phylogenetic tree of Leptolyngbya benthonica based on 16S rRNA gene sequences conferred by GeneBank data base, aligned together with algae available in the NCBI were analyzed and aligned through BLAST from NCBI using the Neighbor-Joining Analyses of 1250 bp of corresponding position of 16S rRNA gene sequence. MEGA 6 program was used for phylogenetic tree.
A few studies in Iraq use molecular data in the taxonomy of species (43,33, 34,44) and that will be essential to solving the taxonomic problems associated with microscopic methods due to the difficulties of identification by LM.

4. Conclusion
The light microscope (LM) examination did not identify the two new record of blue greens algae in this study. This study confirms the importance to use molecular analysis in algal classification to support the diversity studies in Iraqi aquatic ecosystems.

References
[1] Zenova GM, Shtina EA, Dedysh SN, Glagoleva OB and Likhacheva AA 1995 Ecological relations of algae in biocenoses Microbiology (New York, NY) 64 2 121–133
[2] Weinbauer MG and Rassoulzadegan F. 1995 Are viruses driving microbial diversification and diversity?. Environmental microbiology. 2004 Jan;6(1):1–1.
[3] Hoffmann L 1989 Algae Of Terrestrial Habitats Bot Rev 55:77–105 Hu CX, Zhang DL, Liu YD (2004) Research Progress On Algae Of The Microbial Crusts In Arid And Semi-arid Regions Prog Nat Sci 14 289–295
[4] Lewin RA. 2006 Black Algae. J. Of Applied Phycology 18 699–702
[5] Richmond A 2004 editor Hand book of microalgal culture: biotechnology and applied phycology. Oxford Blackwell Science
[6] Řeháková K, Johansen JR, Casamatta DA, Xuesong L and Vincent J. 2007 Sep Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp nov Phycologia 1 46 5 481–502
[7] Lyra C, Suomalainen S, Gugger M, Vezie C, Sundman P, Paulin Land rivonen K. 2001 Mar Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. International Journal of Systematic and Evolutionary Microbiology. 151 2 513–26
[8] Saha SK, Das R, Bora KN and Uma L2007 Sep Biodiversity of epilithic cyanobacteria from freshwater streams of Kakoijana reserve forest, Assam, India. Indian Journal of Microbiology 47 3 219-32
[9] Gaysina LA, Saraf A and Singh P 2019 Cyanobacteria in diverse habitats. In Cyanobacteria Jan 1 1-28 Academic Press.
[10] Komárek J, Johansen JR 2015 Filamentous cyanobacteria. In Freshwater Algae of North America Jan 1 (pp. 135-235). Academic Press.
[11] Dodds WK, Gudder DA and Mollenhauer D 1995 The ecology of Nostoc *Journal of Phycology* 31 1 2-18
[12] Potts M, Olie JJ, Nickels JS, Parsons J and White DC 1987 Variation in phospholipid ester-linked fatty acids and carotenoids of desiccated Nostoc commune (cyanobacteria) from different geographic locations. *Applied and Environmental Microbiology* 1 531 4-9
[13] Gao K 1998 Chinese studies on the edible blue-green alga, Nostoc flagelliforme: a review *Journal of Applied Phycology* 10 1 37-49
[14] Takenaka H, Yamaguchi Y, Sakaki S, Watarai K, Tanaka N, Hori M, Seki H, Tsuchida M, Yamada A, Nishimori T and Morinaga T. 1998 Dec Safety evaluation of Nostoc flagelliforme (Nostocales, Cyanophyceae) as a potential food *Food and chemical toxicology* 1 36 12 1073-7
[15] Liu XJ, Jiang Y and Chen F 2005 Jan Fatty acid profile of the edible filamentous cyanobacterium Nostoc flagelliforme at different temperatures and developmental stages in liquid suspension culture *Process biochemistry* 1 40 I 371-7
[16] Sciuto K and Moro I 2016 Dec Detection of the new cosmopolitan genus Thermoleptolyngbya (Cyanobacteria, Leptolyngbyaceae) using the 16S rRNA gene and 16S–23S ITS region. *Molecular phylogenetics and evolution* 1 105 15-35
[17] Kom_Arek J, Anagnostidis K 2005 Cyanoprokaryota 2.Teil: Oscillatoriales. In: Büdel B, Krienitz L, G€Artner G And Schagerl M (Editors). Süsswasserflora Von Mitteleuropa Munique Elsevier 1-759.
[18] Debnath M, Singh T and Bhadury P 2017 Aug New records of Cyanobacterial morphotypes with Leptolyngbya indica sp. nov. from terrestrial biofilms of the Lower Gangetic Plain, India. *Phytotaxa* 4 316 2 101-20
[19] Silva CS, Genuario DB, Vaz MG and Fiore MF 2014 Mar Phylogeny of culturable cyanobacteria from Brazilian mangroves. *Systematic and applied microbiology* 1 37 2100-12
[20] Andreote AP, Vaz MG, Genuário DB, Barbiero L, Rezende-Filho AT and Fiore MF 2014 Nonheterocytous cyanobacteria from Brazilian saline–alkaline lakes *Journal of phycology* Aug 50 4 675-84
[21] Johansen JR, Kovacik L, Casamatta DA, Iková KF and Kastovský J 2011 May Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). *Nova Hedwigia* 1 92 3 283
[22] Vaz MG, Genuário DB, Andreote AP, Malone CF, Sant’Anna CL, Barbiero L and Fiore MF 2015 Jan Pantanalinema gen. nov. and Alkalinema gen. nov.: novel pseudanabaenacean genera (Cyanobacteria) isolated from saline–alkaline lakes. *International Journal of systematic and evolutionary microbiology* 1 65 1 298-308
[23] Kelly RP, Port JA, Yamahara KM, Martone RG, Lowell N, Thomsen PF, Mach ME, Bennett M, Prahler E, Caldwell MR, Crowder LB. Harnessing DNA to improve environmental management *Science* 2014 Jun 27 344 6191 1455-6
[24] Bálint M, Pfenninger M, Grossart HP, Taberlet P, Vellend M, Leibold MA, Englund G and Bowler D. 2018 Dec Environmental DNA time series in ecology *J.Trends in Ecology & Evolution*. 1 33 12 945-57
[25] Deiner K, Bik HM, Mächler E, Seymour M, Lacoursière-Roussel A, Altermatt F, Creer S, Bista I, Lodge DM, De Vere N and Pfrender ME 2017 Environmental DNA metabarcoding: Transforming how we survey animal and plant communities *Molecular ecology* 26 21 5872-95
[26] Pawlowski J, Kelly-Quinn M, Altermatt F, Aposthéloz-Perret-Gentil L, Beja P, Boggero A, Borja A, Bouchez A, Cordier T, Domaizon I and Feio MJ 2018 Oct The future of biotic indices in the ecogenic era: Integrating (e) DNA metabarcoding in biological assessment of aquatic ecosystems. *Science of the Total Environment* 1 637 1295-310
[27] Altermatt F, Little CJ, Mächler E Wang S, Zhang X and BlackmanRC 2020 Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. *Oikos* 129 15 607-618
[28] Shogren AJ, Tank JL, Andruszkiewicz E, Olds B, Mahon AR, Jerde CL and Bolster D 2017 Jul Controls on eDNA movement in streams: Transport, retention, and resuspension Scientific Reports 11 7 11-1
[29] Sansom BJ and Sassoubre LM 2017 Dec Environmental DNA (eDNA) shedding and decay rates to model freshwater mussel eDNA transport in a river. Environmental Science & Technology 19 51 24 14244-53
[30] García-Martínez J, Acinas SG, Antón AI and Rodríguez-Valera F 1999 Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. Journal of microbiological methods 1 36 1-2 55-64
[31] Iteman I, Rippka R, de Marsac NT and Herdman M 2000 Comparison of conserved structural and regulatory domains within divergent 16S rRNA–23S rRNA spacer sequences of cyanobacteria The GenBank accession numbers for the sequences reported in this paper are AF180968 and AF180969 for ITS-L and ITS-S, respectively Microbiology 1 146 6 1275-86
[32] Boyer Sl, Flechtner VR and Johansen JR 2001 Is the 16S–23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Molecular biology and evolution 18 16 1057-1069.
[33] Al-Rawi A , Alwash BM, Al-Essa NE and Hassan FM 2018. A New Record Of coelastrella terrestris (reisigl) hegewald & n. Hanagata, 2002 (sphaeropleales, scenedesmaceae) in Iraq. J.Bulletin of the iraq natural history museum (p-issn: 1017-8678, e-issn: 2311-9799) 15 2 153-161
[34] Al-Meshhdany Wy, Hassan Fm 2020 J. Five diatom species identified by using potential application of next generation dna sequencing. J.Bulletin of the iraq natural history museum (p-issn: 1017-8678, e-issn: 2311-9799). 30 16 1 39-61
[35] Maulood BK, Hassan FM, Al-Lami AA, Toma JJ and Ismail AM 2013 Checklist of algal flora in Iraq Ministry of Environment, Baghdad
[36] Abed IJ, Abdulhasan GA, Moushib LI 2019 Molecular and Immunological Methods to Confirm Toxiginicity (Microcystin Production) of Westiellopsis Prolifica Isolated from Tigris River –Iraq. Baghdad Science Journal 16 4
[37] Salman JM, Hassan FM and Abdulameer SH 2018 Jan Qualitative and Quantitative study of Epipelion algal community in Euphrates River (Al-Hussainya), Karbala Province-Iraq Int J of Aquatic Science 1 9 1 30-7
[38] Eaton JW, Moss B. The estimation of numbers and pigment content in epipelic algal populations. LImnology and Oceanography. 1966 Apr;11(4):584-95.
[39] Visco JA, Apothéloz-Perret-Gentil L, Cordonier A, Esling P, Pillet L and Pawlowski J 2015 Jul Environmental monitoring: inferring the diatom index from next-generation sequencing data. Environmental science & technology 7 49 13 7597-605
[40] Stein J 1975 Hand Book Of Phycolological Methods. Cambridge Univ. Press. Cambridge p.445
[41] Stanier RY, Kunisawa R, Mandel M and Cohen-Bazire G 1971 Jun Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriological reviews 35 2 171
[42] Sambrook J, Fritsch EF and Maniatis T 1989 Molecular cloning: a laboratory manual Cold spring harbor laboratory press
[43] Abed II, Abdulhasan GA, Najem AM 2018 Genotype versus phenotype to determine the definitive identification of the genera Chlorella beijerinck, 1890 (chlorellaceae) and Coelastrella chodat, 1922 (scenedesmaceae). J.Bulletin of the Iraq Natural History Museum (P-ISSN: 1017-8678, E-ISSN: 2311-9799) Jul 1 15 1 101-11
[44] Hassan FM, Salih WY and Al-Haideri HH 2020 Next-Generation Sequencing Technologies for Environmental DNA as an Efficient Bio Indicator for Bacterial Biodiversity in Tigris River, Iraq. Systematic Reviews in Pharmacy 11 11 1107-14