On domination perfect graphs

JERZY TOPP AND PAWEL ŻYLIŃSKI
University of Gdańsk, 80-308 Gdańsk, Poland
{j.topp,zylinski}@inf.ug.edu.pl

Abstract

Let \(\gamma(G) \) and \(\beta(G) \) denote the domination number and the covering number of a graph \(G \), respectively. A connected non-trivial graph \(G \) is said to be \(\gamma\beta \)-perfect if \(\gamma(H) = \beta(H) \) for every non-trivial induced connected subgraph \(H \) of \(G \). In this note we present an elementary proof of a characterization of the \(\gamma\beta \)-perfect graphs.

Keywords: domination number; covering number; perfect graph.
AMS subject classification: 05C69.

In this note, we follow the notation of [2]. In particular, a subset \(D \subseteq V_G \) is a dominating set of a graph \(G = (V_G, E_G) \) if each vertex belonging to the set \(V_G - D \) has a neighbor in \(D \). The cardinality of a minimum dominating set of \(G \) is called the domination number of \(G \) and is denoted by \(\gamma(G) \). A subset \(C \subseteq V_G \) is a vertex cover of \(G \) if each edge of \(G \) has an end-vertex in \(C \). (Note that in [1] a vertex cover is called a transversal of \(G \).) The cardinality of a minimum vertex cover of \(G \) is called the covering number of \(G \) and is denoted by \(\beta(G) \). A connected non-trivial graph \(G \) is said to be \(\gamma\beta \)-perfect if \(\gamma(H) = \beta(H) \) for every non-trivial induced connected subgraph \(H \) of \(G \). Such graphs have been studied in [1] and [3]. In this note we compose Theorem 3.9 in [1] with Theorem 9 in [3] and present an elementary proof of the unified result.

We start with two assertions, then give a characterization of the \(\gamma\beta \)-perfect graphs.

Proposition 1. Every non-trivial tree of diameter at most four and every non-trivial connected subgraph of \(K_{2,n} \) is a \(\gamma\beta \)-perfect graph, while no one of the graphs \(C_3, C_5 \) and \(P_6 \) is a \(\gamma\beta \)-perfect graph.

Proposition 2. If \(F \) is a connected spanning subgraph of a graph \(H \) of order at least three and \(\gamma(F) < \beta(F) \), then \(\gamma(H) < \beta(H) \) and, therefore, \(H \) is not a \(\gamma\beta \)-perfect graph.

Proof. Since a dominating set of \(F \) is a dominating set of \(H \), we have \(\gamma(H) \leq \gamma(F) \). Similarly, \(\beta(F) \leq \beta(H) \), since a vertex cover of \(H \) is a vertex cover of \(F \). Consequently, \(\gamma(H) \leq \gamma(F) < \beta(F) \leq \beta(H) \) and \(H \) is not a \(\gamma\beta \)-perfect graph. \(\square \)
Theorem. The following statements are equivalent for a non-trivial connected graph G:

1. G is a tree of diameter at most four or G is a connected subgraph of $K_{2,n}$.
2. G is a $\gamma\beta$-perfect graph.
3. $G \neq C_5$ and neither C_3 nor P_6 is a subgraph of G.

Proof. The implication (1) \Rightarrow (2) is obvious from Proposition 1. Assume that G is a $\gamma\beta$-perfect graph. Then, by Proposition 1 no one of the graphs C_3, C_5 and P_6 is an induced subgraph of G. Consequently, $G \neq C_5$ and C_3 is not a subgraph of G. We claim that also P_6 is not a subgraph of G. Otherwise P_6 is a spanning subgraph of some 6-vertex induced subgraph H of in G. Then, since $\gamma(P_6) < \beta(P_6)$, we have $\gamma(H) < \beta(H)$ (by Proposition 2), which contradicts the premise that G is $\gamma\beta$-perfect. This proves the implication (2) \Rightarrow (3). To prove (3) \Rightarrow (1), assume that $G \neq C_5$ and neither C_3 nor P_6 is a subgraph of G. If G is a tree, then, since P_6 is not a subgraph of G, G is of diameter at most 4. Thus assume that G has a cycle, say C. Since $G \neq C_5$, the absence of C_3 and P_6 in G guarantees that C is a chordless 4-cycle. If $G = C$, then $G = K_{2,2}$. Thus assume that the cycle C is a proper subgraph of G. Let v_1, v_2, v_3, v_4 be the consecutive vertices of C. We may assume without loss of generality that $d_G(v_1) > 2$. This time from the absence of C_3 and P_6 in G it follows that $d_G(v_2) = d_G(v_4) = 2$. Now, since G is connected and P_6 is not a subgraph of G, $N_G(v) \subseteq \{v_1, v_3\}$ for every vertex v belonging to $V_G - \{v_1, v_2, v_3, v_4\}$. Consequently, $V_G - \{v_1, v_3\}$ is independent and G is a subgraph of the complete bipartite graph $K_{2,n}$, where $n = |V_G - \{v_1, v_3\}|$.

References

[1] S. Arumugam, B.K. Jose, C. Bujtás, and Z. Tuza, Equality of domination and transversal numbers in hypergraphs, *Discrete Appl. Math.* 161 (2013), 1859-1867.

[2] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs. CRC Press, Taylor and Francis Group, Boca Raton, 2016.

[3] M. Dettlaff, M. Lemańśka, G. Semanišin, and R. Zuazua, Some variations of perfect graphs, *Discuss. Math. Graph Theory* 36 (3) (2016), 661-668.