Comparative RNA-Seq Analyses of *Drosophila* Plasmatocytes Reveal Gene Specific Signatures In Response To Clean Injury And Septic Injury

Elodie Ramond¹#*, Jan Paul Dudzic¹#* and Bruno Lemaitre¹*

Contributed equally to this work

1. Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

*Corresponding authors:
elodie.ramond@inserm.fr
jandudzic@uvic.ca
bruno.lemaitre@epfl.ch (lead contact)

Abstract

Drosophila melanogaster’s blood cells (hemocytes) play essential roles in wound healing and are involved in clearing microbial infections. Here, we report the transcriptional changes of larval plasmatocytes after clean injury or infection with the Gram-negative bacterium *Escherichia coli* or the Gram-positive bacterium *Staphylococcus aureus* compared to hemocytes recovered from unchallenged larvae via RNA-Seq. This study reveals 676 differentially expressed genes (DEGs) in hemocytes from clean injury samples compared to unchallenged samples, and 235 and 184 DEGs in *E. coli* and *S. aureus* samples respectively compared to clean injury samples. The clean injury samples showed enriched DEGs for immunity, clotting, cytoskeleton, cell migration, hemocyte differentiation, and indicated a metabolic reprogramming to aerobic glycolysis, a well-defined metabolic adaptation observed in mammalian macrophages. Microbial infections trigger significant transcription of immune genes, with significant differences between the *E. coli* and *S. aureus* samples suggesting that hemocytes have the ability to engage various programs upon infection. Collectively, our data bring new insights on *Drosophila* hemocyte function and open the route to post-genomic functional analysis of the cellular immune response.

Keywords: *Drosophila*, hemocytes, wounding, *Staphylococcus aureus*, *Escherichia coli*, RNA sequencing, transcriptome, immunity
Introduction

Drosophila blood cells, also called hemocytes, contribute to the cellular immune response by engulfing bacteria, combatting parasites and secreting antimicrobial and clotting factors. They also participate in regulating the immune response by secreting cytokines such as the JAK-STAT ligands Unpaired (Morin-Poulard et al. 2013) or the Toll ligand Spätzle (Irving et al. 2005; Agaisse et al. 2003; Wang et al. 2014). Hemocytes are also involved in wound healing notably through the engulfment of apoptotic cells and cellular debris, the stimulation of stem cell proliferation, and deposition of extracellular matrix (Evans and Wood 2014; Chakrabarti et al. 2016a; Arefin et al. 2014; Sánchez-Sánchez et al. 2017). Furthermore, hemocytes produce enzymes essential to the melanization reaction (Binggeli 2014, Dudzic 2015). Recent evidence shows that Drosophila blood cells contribute not only to immunity and wound healing, but are also central to host metabolism (Dolezal et al. 2019; Shin et al. 2020; Green et al. 2018; Mihajlovic et al. 2019). That an excessive number of hemocytes can be detrimental to flies raised on a poor diet shows that hemocyte number must be tightly regulated (Ramond et al. 2020). Thus, there is a current effort to better characterize the role of hemocytes during the life cycle of flies.

Hematopoiesis occurs in several waves throughout the *Drosophila* life cycle. The first phase of hematopoiesis establishes a pool of hemocytes from the embryonic head mesoderm. These cells contribute to embryonic development by phagocytosing apoptotic cells, and through the deposition of extracellular matrix (Sánchez-Sánchez et al. 2017). These embryonic derived hemocytes persist in larvae, where they are subjected to several rounds of division reaching about 6000 hemocytes at the end of the third instar larval stage (Holz et al. 2003). Peripheral larval hemocytes are found either (i) in circulation in hemolymph or (ii) in sessile patches (Lanot et al. 2001; Evans et al. 2003; Jung et al. 2005; Crozatier and Meister 2007; Honti et al. 2010; Makhijani et al. 2011; Makhijani and Brückner 2012). Sessile hemocytes are attached to the internal surface of the larval body wall, forming patches, some of which are closely associated with secretory cells called oenocytes, as well as the endings of peripheral neurons (Makhijani et al. 2011; Makki et al. 2014). Hemocytes are continuously exchanged between sessile patches and circulation (Babcock et al. 2008; Welman et al. 2010). The function of sessile hemocyte patches is not yet established but it has been proposed that they form a diffuse hematopoietic organ (Márkus et al. 2009; Makhijani et al. 2011; Leitão and Sucena 2015). Larvae also possess a special hematopoietic organ, the lymph gland, that functions as a reservoir releasing hemocytes at the pupal stage or after parasitic infection. Both lymph gland and embryonic derived hemocyte populations contribute to the pool of
adult hemocytes that will ultimately decline upon ageing. Whether active hematopoiesis occurs in adults is still debated (Ghosh et al. 2015; Sanchez Bosch et al. 2019).

Most studies on the cellular immune response focus on third instar larval hemocytes as both sessile and circulating hemocytes can easily be collected and FACS sorted. Drosophila larvae have two types of hemocytes in the unchallenged state: plasmatocytes, which are macrophage-like, and crystal cells, rounded hemocytes which contain crystals of prophenoloxidases, the zymogen form of phenoloxidases that catalyzes the melanization reaction against parasites or septic injury (Rizki et al. 1980; Lanot et al. 2001; Binggeli et al. 2014). A third type of hemocytes, the lamellocytes, is restricted to the larval stage and originates either from progenitors in the lymph gland or in periphery by transdifferentiation of plasmatocytes or circulating progenitors (Rizki and RIZKI 1992; Vlisidou and Wood 2015). These cells differentiate upon parasitoid wasp infestation and contribute to the encapsulation and melanization of larger parasites. At the larval stage, plasmatocytes represent the most abundant fraction of Drosophila blood cells (i.e. 90-95%) (Tepass et al. 1994) and express several markers such as the clotting factor Hemolectin (Hml), or the phagocytic receptors Nimrod C1 (NimC1 or P1) or Eater (Evans et al. 2003). The other 5-10% larval hemocytes are Lozenge (Lz) positive crystal cells (Lanot et al. 2001). Only rarely can lamellocytes be observed in the unchallenged larvae as these cells are induced upon wasp infestation or injury (Rizki & Rizki 1992).

Until recently, there have been surprisingly few studies analyzing the hemocyte transcriptome, possibly due to difficulties in collect enough materials. The most comprehensive genome wide analysis was a characterization of whole larval hemocyte populations by Irving et al. in 2005, using an Affymetrix based oligonucleotide array (Irving et al. 2005). Of the 13 000 genes (total number of genes >17 500) represented in this microarray, they were able to identify 2500 with significantly enriched expression in hemocytes, notably genes encoding integrins, peptidoglycan recognition proteins (PGRPs), scavenger receptors, lectins, cell adhesion molecules and serine proteases. Interestingly, several single cell transcriptomic analyses have revealed the degree of heterogeneity of Drosophila hemocyte populations, but they did not characterize the full repertoire of genes expressed in hemocytes (Cattenoz et al. 2020; Tattikota et al. 2019; Fu et al.; Cho et al. 2020).

To better characterize the transcriptome of hemocytes, we have performed an RNAseq transcriptome analysis of FACS sorted Hml positive cells. The transcriptome of Hml positive (Hml+) plasmatocytes was determined in an unchallenged condition and 45 minutes following clean or septic injury with Staphylococcus aureus or Escherichia coli. Comparative transcriptomics allowed us to identify a set of genes specific to plasmatocytes in...
unchallenged or challenged condition, revealing the various contributions of these cells to host defense, wound healing and metabolism.
Results

Study design

We performed RNA sequencing of mRNA to analyze the global gene expression profile changes of *Drosophila* hemocytes from third instar larvae either unchallenged or collected 45 minutes after clean injury or septic injury with a needle dipped in concentrated bacterial pellets of *Staphylococcus aureus* or *Escherichia coli*. To isolate the plasmatocytes from other unwanted cells of the hemolymph preparation, we used the *Hml*\(^{\Delta}*Ds-Red.nls* fluorescent marker, which is specifically expressed in most plasmatocytes, and to a lesser extent in newly differentiated crystal cells (Goto et al. 2003; Evans et al. 2014; Leitão and Sucena 2015). We extracted hemolymph from wandering third instar L3 larvae by bleeding them onto a glass slide and subjected the collected hemolymph to fluorescence activated cell sorting (FACS) to isolate the *Hml*\(^{+}\) hemocyte population. Flow cytometer scatter-plot outputs were analyzed to delineate the hemocyte population based on the nucleic red-fluorescent signal, and total RNA extraction was performed on the isolated hemocytes (Figure 1). We collected approximately 20,000 to 30,000 larval *Hml*-positive plasmatocytes for each treatment. Three independent extractions were performed for each tested condition. As in Irving et al, 2005, we used unchallenged whole larvae as an external control to identify genes that were specifically enriched in plasmatocytes compared to the whole animal. RNA-Seq libraries were then constructed and sequenced using Illumina HiSeq, and we performed differential gene expression analysis between all sample groups. We obtained 62,320,223 reads from RNA samples extracted from whole larvae (L3), 42,284,187 reads from hemocytes of unchallenged larvae (UC), 42,519,937 reads from RNA extracted from hemocytes of clean-injured larvae (CI), 69,143,536 reads from RNA extracted from hemocytes of *E. coli* infected larvae (Ec) and 42,758,456 reads from RNA extracted from hemocytes of *S. aureus* infected larvae (Sa) (sum of triplicates). The total number of mapped reads per single library ranged from 5.30 to 23.17 million reads, with coverage ranging from 59.42% to 86.14% (Figure 2A). Genes with more than 5 reads per 1 million reads are listed in Sup File S1. One of our unchallenged hemocyte samples showed elevated immune gene expression. To account for a possible unrelated infection, we reduced unwanted variation from this sample as described in the methods.

We then identified differentially expressed genes (DEGs) between all five samples by four pairwise comparisons: “unchallenged hemocytes” samples versus “unchallenged whole larva” samples, “unchallenged hemocytes” samples vs hemocytes from clean injured larva (CIH), CIH vs hemocytes from “*Escherichia coli* infected larvae” (EcH) and CIH vs hemocytes from “*Staphylococcus aureus* infected larvae” (SaH).
Identification of genes enriched in Drosophila larval plasmatocytes

Using our threshold that includes genes with at least 5 reads per 1 million reads, we found that 6723 genes are expressed in L3 larvae, while unchallenged hemocytes express 5186 genes. The number of genes expressed in hemocytes is roughly the same as observed by Irving et al. using Affymetrix arrays that identified around 5000 expressed genes in hemocytes (Irving et al. 2005). To identify transcripts expressed in the unchallenged hemocyte population, we classified genes according to the total number of reads (Sup File S1) and their degree of enrichment in Hml+ plasmatocytes compared to whole larvae (Sup File S2, for a selection see Table 1). We found that whole larvae and hemocytes shared expression of 4,477 genes, 2,246 genes were uniquely expressed in L3 larvae and 709 genes were uniquely expressed in hemocytes (Figure 2B). We confirmed the identity of the plasmatocyte population by the presence of reads for genes known to be specific for plasmatocytes (see below). We found 239 genes encoding transmembrane proteins in unchallenged hemocytes. Of those, 44 were enriched and 195 poorly expressed in hemocytes when compared to whole larvae (Sup File S3). This large set of transmembrane proteins likely contributes to the versatile functions of plasmatocytes. By secreting immune factors, the fat body plays a major role in the humoral response. Plasmatocytes are thought to play a similar role upon infection (Samakovlis et al. 1992; Braun et al. 1997). We therefore looked for genes encoding proteins with a secretion signal in plasmatocytes. We identified 329 such genes expressed in plasmatocytes. Among those, 70 were enriched and 259 were poorly expressed in plasmatocytes when compared to whole larvae (Sup File S4 and selection in Table 1).

To better characterize gene repertoire of plasmatocytes, we will restrict our analysis to the 5393 genes that were differentially expressed in the whole larvae compared to plasmatocytes (Sup File S2). GO terms analysis (Sup Figure S1) identified many biological processes without clearly highlighting important classes of genes. Thus, we decided to analyze in depth the DEGs identified in our initial analysis.

We first focused our attention on genes known to play a role in Drosophila hematopoiesis. We found that genes encoding the transcription factors Serpent (Lebestky et al. 2000), U-shaped (Sorrentino et al. 2007) and Yantar (Sinenko et al. 2004), which play a role in pro-hemocyte differentiation, were enriched in plasmatocytes with respective fold changes (FCs) of 7.0, 6.6 and 2.7 compared to whole larvae. We did not identify glial cells missing (gcm) in our screen, which is consistent with the fact that this gene encodes a transcription factor promoting plasmatocytes maturation only at the embryonic stage (Alfonso and Jones 2002; Cattenoz et al. 2020). The three genes dome, hedgehog and Antennapedia, which positively
regulate hematopoiesis in the lymph gland (Banerjee et al. 2019), were reduced in circulating plasmatocytes compared to whole larvae, with FCs of \(-5.3, -173.9\) and \(-2903.3\), respectively. Similarly, genes that promote pro-hemocyte maturation in the lymph gland, such as \textit{jumu}, \textit{pyramus}, \textit{thisbe} and \textit{heartless} were also down-regulated in hemocyte samples (with FCs of \(-2.2, -31.9, -1151.8\) and \(-1655.5\), respectively) (Hao and Jin 2017; Dragojlovic-Munther and Martinez-Agusto 2013). The gene encoding the transcription factor \textit{collier} (\textit{knot}) that contributes to the lymph gland posterior signaling center (Pennetier et al. 2012) was not enriched in plasmatocytes. In contrast, the two genes encoding the transcription factors Pointed and Pannier, which promote hemocyte terminal differentiation (Dragojlovic-Munther and Martinez-Agusto 2013; Minakhina et al. 2011) were enriched in circulating hemocytes with FCs of 3.5 and 15.6 respectively. Finally, genes implicated in crystal cell differentiation such as \textit{Delta}, \textit{serrate} and \textit{notch} (Banerjee et al. 2019) were downregulated in plasmatocytes samples compared to the whole larvae samples, with respective FCs of \(-919.3, -9.9\) and \(-4.5\).

In contrast, the expression of \textit{lozenge} gene, which encodes the master regulator of crystal cell differentiation, was not affected. The expression of \textit{lozenge} in Hml\(^+\) plasmatocytes possibly reflects the trans-differentiation of a subset of them into crystal cells (Leitão and Sucena 2015). These results confirmed that collected circulating peripheral plasmatocytes were mostly in the differentiated state. Consistent with this, the \textit{Drosophila} hemocyte marker genes \textit{hemese}, \textit{peroxidasin} and \textit{hemolectin} had respectively 49.0, 15.5 and 6.7 fold higher expression in hemocytes compared to whole larvae samples.

As expected, plasmatocytes were strongly enriched in genes involved in phagocytosis. We found the \textit{scavenger receptor class C, type I} (\textit{ScrCl}), and the Nimrod receptors \textit{Nimrod C1} (Kurucz et al. 2007) and \textit{eater} (Bretscher et al. 2015) had respective FCs of 48.9, 26.5 and 15.3. We did not identify the \textit{Integrin βν subunit} to be differentially expressed in our screen. Two other Nimrod receptors, \textit{draper} and \textit{simu} (Six-Microns-Under, also named Nimrod C4) can bind phosphatidylserine on dying cells and promote apoptotic cell internalization, a process called efferocytosis (Manaka et al. 2004; Kurant et al. 2008). In our screen, we found \textit{draper} transcripts enriched in plasmatocytes samples with a FC of 3.1 whereas \textit{simu} expression was unchanged. Hml\(^+\) plasmatocytes were also enriched in genes encoding opsonins such as \textit{Tep1} (FC: 19.2) which has been shown to promote bacterial internalization (Blandin and Levashina 2004; Dostálová et al. 2017). In contrast, \textit{Tep2} and \textit{Tep3} were down-regulated in hemocytes compared to the whole larvae samples (FCs: \(-8.4\) and \(-63.1\)). Furthermore, several genes encoding secreted components of the Nimrod family were enriched in plasmatocytes, most notably \textit{Nimrod B1} and \textit{Nimrod B4} and to a lesser extent \textit{Nimrod B5} (FCs: 23.2, 17.6 and 3.7) as well as \textit{hemese}. Genes encoding secreted Nimrod genes and \textit{hemese} are clustered in the genome together with genes coding for phagocytic
receptors such as Nimrod C1. Recently, NimB5 has been shown to regulate plasmatocyte adhesion and proliferation (Ramond et al. 2020). The two plasmatocyte-enriched secreted Nimrod proteins, NimB1 and NimB4, are promising candidate genes regulating important plasmatocyte functions, possibly phagocytosis (Somogyi et al. 2008). Drosophila plasmatocytes were also enriched in several cytoskeleton proteins (see in Sup Table S1) such as SCAR, which has been shown to contribute to phagocytosis and cell migration (Evans et al. 2013). The two GTPases, Rac1 and Rac2, which have been implicated in phagocytosis and cellular response were also enriched in plasmatocytes (FCs: 2.8 and 4.1) (Williams et al. 2006; 2005; Avet-Rochex et al. 2007). A recent study revealed an important role of peroxisomes in phagocytosis and immunity (Di Cara et al. 2017). Consistent with this, several peroxins that encode components of peroxisomes (peroxins 19, 12, 2, 11, 10, 16, and 14) were strongly enriched in plasmatocytes. In addition, several genes encoding Tetraspanins were enriched in plasmatocytes. Tetraspanins are implicated in a wide range of functions in Drosophila such as protein stabilization at the plasma membrane and cell signaling regulation, and could contribute to phagocytosis or adhesion (Charrin et al. 2014). Specifically, we identified late bloomer and the Tetraspanins 86D, 42Ee, 3A and 96F with respective FCs ranging from 2.8 to 3.9. Collectively, the enrichment of genes encoding phagocytic receptors, opsonins, and cytoskeletal proteins in plasmatocytes confirm their phagocytic ability.

The systemic antimicrobial response, which encompasses the production and release of many immune effectors into the hemolymph, is regulated by two NF-κB pathways, namely Imd and Toll (Lemaitre and Hoffmann 2007). There is strong evidence that these two pathways are functional in hemocytes (Charroux and Royet 2009). We found that plasmatocytes are enriched in several components of the Imd pathway, notably Imd and Relish. The genes encoding three transmembrane receptors of the Peptidoglycan recognition proteins (PGRP) family, PGRP-LF, PGRP-LC, and PGRP-LA, which are organized in a cluster in the Drosophila genome and contribute to Imd pathway activity, were also higher in plasmatocytes (FCs: 3.4, 3.2 and 2.2 respectively) (Gendrin et al. 2013; Myllymäki et al. 2014). The gene encoding the intracellular pattern recognition PGRP-LE that is involved in the sensing of monomeric peptidoglycan of Gram-negative bacteria and autophagy was also increased in plasmatocytes (FC: 2.7) (Kurata 2010; Neyen et al. 2012; Bosco-Drayon et al. 2012). We also confirmed that plasmatocytes have an increased expression of the gene spatzle (FC: 10.5), which encodes the ligand of the Toll pathway (Lemaitre and Hoffmann 2007; Shia et al. 2009) as well as the genes encoding the adaptor Tube and the kinase Pelle (respective FCs: 3.1 and 5.3). Crystal cells are the main hemocyte type involved in the melanization reaction, expressing
both Prophenoloxidases 1 (PPO1) and 2 (PPO2) (Binggeli et al. 2014). In contrast, Prophenoloxidase 3 (PPO3) is expressed in lamellocytes (Dudzic et al. 2015). Surprisingly, we found that both PPO2 and PPO3 were enriched in circulating cells with fold changes of 9.1 and 25.5 compared to whole larvae. Their expression in plasmatocytes could reflect the transdifferentiation of Hml positive cells into crystal cells and lamellocytes or an unexpected contribution of plasmatocytes in the production of prophenoloxidase. Plasmatocytes had increased expression of genes encoding for several of the enzymes that have been linked to prophenoloxidase activity (e.g. yellow f, FC: 13.55; see Table 1). Complex serine protease cascades regulate important immune functions (i.e. melanization, Toll) in the hemolymph. We found that plasmatocytes have higher expression of the gene encoding the serine protease MP1 (FC: 11.2), which regulates melanization, and serpins such as Serpin27A (FC: 7.9) and Serpin28Dc (FC: 3.2), which negatively regulate melanization and Toll (De Gregorio et al. 2002; Scherfer et al. 2008; Ligoxygakis et al. 2002; Dudzic et al. 2019). The function of lectins is poorly characterized in Drosophila but some of them have been implicated in immunity in other insects (Irving et al. 2005; Wilson et al. 1999; Xia et al. 2018). We found that two secreted lectins, lectin-28Db and lectin-28C were strongly enriched in plasmatocytes (FCs: 33.9 and 24.4).

Plasmatocytes also showed increased expression of many genes involved in the oxidative stress response, notably many glutathione S transferase genes and other detoxifying enzymes such as peroxidasin (FC 15.51), superoxide dismutases 1 and 2 (FCs: 2.8 and 3.5) or thioredoxin peroxidase 1 and 2 (FC: 2 and 2.4). These genes may play a role in immune response activation (Myers et al. 2018). In parallel, we observed an increase in gene transcripts involved in other cellular stress pathways, e.g. many heat shock proteins and Ninjurin B (FC: 5.9). We cannot exclude the possibility that this expression profile related to cellular stress also reflects a quick response of plasmatocytes to stresses imposed by procedures (i.e. temperature switch from 25°C to 29°C and FACS processing), despite maintaining samples on ice following extraction.

Plasmatocytes contribute to the production of the basal membrane in the embryo (Isabella and Horne-Badovinac 2015). In agreement with this, larval plasmatocytes had increased expression of genes encoding components of the basal membrane, notably Laminins A, B1 and B2 (FCs: 5.7, 7.2 and 8.7) (Sánchez-Sánchez et al. 2017), Viking (collagen IV), and secreted enzymes that contribute to basal membrane formation (fat-spondin, Glutactin, Peroxidasin, Matrix metalloproteinase 2 with FCs of 19.1, 18.6, 15.5 and 4.9). Consistent with previous studies that have suggested an important role of plasmatocytes in adenosine metabolism at the larval stage (Dolezal et al. 2005) we found that the two genes Adenosine deaminase-related growth factor A (ADGF-A) and Adenosine deaminase were upregulated
(FCs: 6.59 and 5.59) while Adenosine deaminase-related growth factor A2 and D were downregulated. Recent studies have also highlighted a significant contribution of plasmatocytes in lipid uptake and storage, complementary to the fat body. Consistent with this, the gene *croquemort*, which encodes a lipid binding receptor of the CD36 family, is also enriched in plasmatocytes (FC: 4.7) (Franc et al. 1996). The *fatty acid binding protein (fabp)* gene was enriched 9-fold in plasmatocytes. Finally, our transcriptome analysis shows that plasmatocytes express many transporters, the aquaporin Pip being one of the most enriched compared to other tissues (FC: 12.4).

The early plasmatocyte response to clean injury

We then explored the transcriptomic response of plasmatocytes to clean injury in further detail by comparing the transcriptome of hemocytes extracted from unchallenged larvae to hemocytes from larvae 45 minutes after clean injury. We choose this time point as it corresponds to the time necessary to fully internalize or phagocytose a particle (Melcarne et al. 2019). We identified 664 DEGs after clean injury compared to hemocytes from unchallenged larvae. Among these genes, 358 were up-regulated and 306 were down-regulated in the clean injury samples using a two-fold change criteria and p<0.05 cut-off (Sup File S5, See selection in Table 2). We then proceeded to GO terms analysis by focusing on genes that are upregulated in hemocytes after clean injury compared to unchallenged hemocytes, and that have a P-value < 0.05. We identified several GO-term groups significantly enriched upon clean injury. Genes with GO terms for molecular function assigned to cell metabolism, actin mobilization and cytoskeleton organization, anti-oxidant and stress responses were particularly affected (Sup Figure S2).

We found a significant increase in transcripts corresponding to *Glutathione-S-transferase* (GST) genes (D2, E1, D3, E3, E8, D7, D5, E6) which encode antioxidants enzymes that detoxify hydrogen peroxide and lipid peroxides (Singh et al. 2001; Saisawang et al. 2012). Genes encoding three Cytochrome P450 enzymes (Cyp6a20, Cyp6a17 and Cyp6a23) and the ABC transporter Multidrug resistance protein 4 (Mrp4), which are involved in detoxification, were also enriched upon clean injury (FC: 10.5, 3.1, 2.8 and 2.8).

Other stress responsive genes such as *Frost, Hsp70, Hsp68, Ninjurin A*, the Hsp co-factor *starvin* and *DnaJ-like-1* were also more highly expressed in clean injury conditions. Consistent with this stress response, the JNK stress responsive pathway was activated as evidenced by an increase expression of *puckered* (puc, FC: 2.3).

Many other upregulated genes such as *Gadd45, kayak, Larval cuticle proteins 1, 3 and 4*, and *Matrix metalloproteinase 1* which play a key role in wound healing, extracellular matrix
generation and cuticle repairing, were also more highly expressed in plasmatocytes (Stramer et al. 2008; Stevens and Page-McCaw 2012).

Our study confirms that the JAK-SAT ligand upd3 which orchestrates the systemic wound response (Agaïsse et al. 2003; Chakrabarti et al. 2016b) was upregulated in plasmatocytes upon clean injury (FC: 4.2). The gene encoding Wallenda, a MAP3K that regulates stress response by regulating the expression of the Materazzi lipid binding protein gene in Malpighian tubules (Li et al. 2020), was also upregulated (FC: 2.6).

It is well established that clean injury, in the non-sterile condition used in this study, triggers a transient and weak antimicrobial response (Kenmoku et al. 2017). We found that genes encoding components of the immune responsive pathways Imd (Relish, PGRP-LB, PGRP-LF) and the Toll pathways (cactus) were upregulated (respective FCs: 4.5, 3.2, 2.4 and 2.1).

A subset of antimicrobial peptide genes, notably Cecropin B, A2 and C (respective FCs: 13, 8.3 and 6.8) and Attacin-B (FC: 6.8), were upregulated by clean injury.

Interestingly, two genes whose mutations have been associated with refractoriness to virus C and Sigma, pastrel and ref(2)P respectively, were upregulated upon clean injury (FCs: 3.1 and 2.0) (Palmer et al. 2018). While the function of ref(2)P in autophagy is well established (DeVorkin and Gorski 2014), the role of pastrel is poorly characterized. The induction of pastrel in plasmatocytes suggests that it could play an important function in activated plasmatocytes, as the result of a potential viral infection.

Genes such as fondue (FC: 4.2), Larval-serum protein 1 γ (FC: 8.3) and Hemolectin (FC: 2.2) that are implicated in hemolymph clotting (Theopold et al. 2014) were up-regulated in clean-injured samples. Of note, dopa decarboxylase and the GTP cyclohydrolase punch, genes which encode enzymes that regulate melanin formation, were enriched in clean injury samples confirming the contribution of plasmatocytes to the melanization process (De Gregorio et al. 2001). Collectively, our study shows that plasmatocytes contribute to wound healing by inducing genes involved in stress response, ROS detoxification and cytoskeletal remodeling. The induction of genes encoding components of the Toll and Imd immune signaling pathways may reinforce the reactivity of these immune cells.

Another major class of genes upregulated upon clean injury are those involved in the cytoskeleton (Table S1). This includes genes involved in actin remodeling, microtubule formation and adhesion that likely reflect the change of shape observed in ‘activated plasmatocytes’ that are known to be more adhesive and display filopodia (Wood et al. 2006b).

Among them, were the Integrin alphaPS5 subunit gene (FC: 7.1) (Kwon et al. 2008) and the integrins charlatan and myospheroid (FCs: 7.4 and 2.1) (Stofanko et al. 2010; Márkus et al. 2005) which are induced upon lamellocyte differentiation. Interestingly, Integrin βν subunit, a gene that encodes a transmembrane protein implicated in apoptotic corpses clearance in
embryonic hemocytes (Nagaosa et al. 2011), and *Scavenger receptor class C, type III (Sr-CIII)* were also induced (FCs: 3.9 and 2.7). Interestingly, the gene encoding the FGF ligand Pyramus that has been shown to promote blood cell progenitors differentiation in the lymph gland (Dragojlovic-Munther and Martinez-Agosto 2013) was the most up-regulated gene 45 minutes after clean injury. This suggests that FGF-R pathway activation in plasmatocytes by Pyramus could play a prominent role in promoting the differentiation of peripheral plasmatocytes upon injury, akin to the process observed in the lymph gland. Two genes from the PVR (PDGF/VEGF-related factor) pathway that are implicated in hemocyte survival and migration (Munier et al. 2002; Brückner et al. 2004; Wood et al. 2006a), one encoding the PVR adaptor PVRAP and the other the PVR ligand Pvf2, were up-regulated upon clean injury (FCs: 2.5 and 3.8). Consistent with this, we also observed that clean injury triggers the down-regulation of apoptosis-associated genes such as *head involution defective* (*hid*, FC: 15.7) (Steller 2008) and *Deneddylase 1* (*Den1*, FC: 2.2) (Broemer et al. 2010). This suggests that wounding stimulates blood cell survival as well as blood cell pool expansion.

In mammals, macrophages undergo massive metabolic change upon activation (Owen et al. 2007; Vergadi et al. 2017). Notably, lipid catabolism and glucose consumption are essential components of mammalian macrophage activation in order to fuel the cell as well as to produce inflammatory mediators (Batista-Gonzalez et al. 2019). We next investigated whether clean injury also induces a metabolic reprogramming in plasmatocytes. Interestingly, when analyzing the GO terms enrichment, we found an over-representation of “lipase activity” related genes (*Sup Figure S2*). Indeed, we observed the up-regulation of the *magro, alpha/beta hydrolase 2* (*Hydr2*), the *phospholipase c at 21c* and *no receptor potential A* (*norpA*) genes with respective FCs of 26.4, 2.9, 2.6 and 2.2. Upregulation of *apolipophorin* (*apoLpp*) and *ATP binding cassette subfamily A* (*ABCA*) genes (FCs: 2 and 4.2) indicate that both lipid catabolism and lipid uptake are induced upon clean injury in plasmatocytes, which may fuel the increased energy demand of the activated cells. In agreement with the concept of metabolic reprogramming, we noted the up-regulation of the *Glucose transporter 4 enhancer factor* gene (*Glut4EF*, FC: 8.9) (Crivat et al. 2013), a transcription factor regulating the *Glucose transporter 4* gene ((Oshel et al. 2000), also known as *solute carrier family 2 member 4*), and of the *Glycogen phosphorylase* (*GlyP*) gene coding for the enzyme catalyzing the rate-limiting step of glycogenolysis. The induction of these two genes suggests that upon injury plasmatocytes may increase their metabolic activity by increasing glucose provisioning. Genes of the mTOR signaling pathway, that is known to stimulate a glycolytic metabolism, were also upregulated: *thor, rictor* and *phosphoinositide-dependent kinase 1* (*pdk1*) and (FCs: 2.7, 2.5 and 2.0). Additionally, the *men* gene encoding malate deshydrogenase, which is known to sustain active glycolysis by replenishing the cytosolic
NAD pool and by limiting tricarboxylic acid cycle (TCA) refueling (Hanse et al. 2017), was also upregulated.

Plasmocytes gene expression signature in response to bacterial infection

Finally, we explored the transcriptional response of blood cells upon septic injury with *Escherichia coli* (EcH samples, Sup File S6) and *Staphylococcus aureus* (SaH samples, Sup File S7) and compared it with the transcriptional profile of hemocytes from clean-injured larvae. We were interested to know if the presence of bacteria affects plasmocyte response and whether hemocytes react in a different way to infection by Gram-negative versus Gram-positive bacteria. Studies have shown that *E. coli* is an efficient inducer of the Imd pathway and is sensitive to the action of antibacterial peptides (Hanson et al. 2019). In contrast, *S. aureus*, as a lysine-type bacterium, is a potent inducer of the Toll pathway (Shiratsuchi et al. 2012) and is combated by Toll mediated production of Bomanin (Hanson et al. 2019), melanization (Dudzic et al. 2019), and phagocytosis (Garg and Wu 2014). Interestingly, we identified 104 and 92 uniquely expressed genes in hemocytes from larvae infected with *E. coli* (EcH) and *S. aureus* (SaH) respectively compared to hemocytes from clean injured larvae. In EcH samples, we identified 84 up-regulated genes and 151 down-regulated genes whereas in SaH samples, we identified 103 up-regulated genes and 81 down-regulated genes (see Sup Files S6 and S7). The two significantly enriched GO component categories upon infection with *E. coli* or *S. aureus* correspond to secreted components (GO term GO:0005615 and GO:0044421) and an “antibacterial humoral response” (GO:0019731) which is consistent with an increased expression of antimicrobial peptides (AMP) upon infection compared to clean injury (Sup Files S6 and S7, see selections in Tables 3 and 4).

Our RNAseq study reveals a small subset of genes that were induced upon both *E. coli* and *S. aureus*, notably the antimicrobial peptide coding gene *Metchnikowin* (*Mtk*, against Gram-positive and fungi, FC 7.3) and surprisingly, many genes annotated as 18S or 28S ribosomal RNA pseudogenes. Challenge with *E. coli* leads to specific induction of several Imd target genes, notably the antibacterial peptides *Diptericin B*, *Cecropins A1, A2 and C*, *Attacins A* and *D*, as well as *PGRP-LB*, a gene encoding a negative regulator of the Imd pathway that scavenges peptidoglycan (Zaidman-Rémy et al. 2006). Another immunity gene, *edin*, was also upregulated in EcH samples compared to clean injury samples (FC: 3.1). *Edin* has previously been described as upregulated in S2 cells upon *E. coli* infection and is needed for the increase in plasmocyte numbers and for the release of sessile hemocytes into the hemolymph upon wasp infection (Vanha-Aho et al. 2012). Thus, the increase in *edin* could reflect the mobilization of sessile hemocytes into circulation. It is important to note the down-regulation of several heat-shock protein genes such as *Hsp27, hsp-70ab*, and *hsp70Bc* in the
EcH samples (FCs: -2.0, -3.0 and -3.0). Thus, septic injury with *E. coli* tends to orient the hemocyte towards an antibacterial response while clean injury directs a stress and repair response.

As in EcH samples, SaH samples also show an enrichment of GO processes associated with the immune response, such as the up-regulation of the *Metchnikowin* gene but also *Diptericin B* (FC: 3.57 and 2.19) and one Bomanin gene: *Bomanin Short 3* (*BomS3*, FC: 2.0). The specific induction of antibacterial peptide genes (*Dpt, Cec*), known to be regulated by the Imd pathway in response to *E. coli* but not *S. aureus* indicates that the hemocytes can mount a differentiated response to these two bacteria within 45 minutes. Several genes encoding proteins that could function in phagocytosis such as *Biogenesis of lysosome-related organelles complex 1, subunit 2*, and *Tetraspanin 42El* were specifically enriched by a two-fold in *S. aureus* versus clean injury. Several genes implicated in cell division were down-regulated in *S. aureus* samples compared to clean injury samples, such as *mitotic spindle and nuclear protein* (*mink, -2.4 fold change*) (Chen et al. 2015), *stathmin* (*stai, -3.8 fold change*) (Andersen 2000) and *cyclin B* (*cycB, -2.2 fold change*) (Ji et al. 2005) suggesting a cell cycle arrest in response to infection with this Gram-positive bacterium (Sup File S7) (Deplanche et al. 2015). Surprisingly, the gene encoding the lipase Magro was expressed 14 times less upon systemic infection with *S. aureus* compared to clean injury or EcH. Thus, at the 45 minutes time point, a challenge by *S. aureus* tends to orient plasmatocytes towards a lower production of secreted factors and decreased lipid catabolism. We hypothesize that plasmatocytes contribute to host defense in different ways against *S. aureus* and *E. coli*. Phagocytosis of *S. aureus* may not be compatible with cell division. Decreased lipase activity may reflect a reduced energy demand of these plasmatocytes compared to energetically expensive AMP production in those infected with *E. coli*.
Discussion

The *Drosophila* immune response has been the focus of extensive genome-wide gene expression studies that open the route to successful post-genomic functional characterization of novel immune genes (Teixeira 2012). In contrast, transcriptome studies of hemocytes have been rather limited, or have used S2 or mbn-2 hemocyte-derived cell lines that do not reflect an integrated model (Irving et al. 2005; Johansson et al. 2005; Troha et al. 2018). This was mostly due to the difficulties in collecting enough pure material, as hemocytes represent a tiny fraction of *Drosophila* larvae. Recently, FACS sorting of hemocytes, and the use of new hemocyte-specific markers has facilitated the extraction of plasmatocytes. Taking advantage of this, we performed a comprehensive RNAseq analysis of Hml+ plasmatocytes in absence of infection and 45 minutes following clean injury or septic injury with *E. coli* or *S. aureus*. We found that FACS purification did not affect the lineage characteristics of the sample allowing us to use these very pure populations to characterize transcriptomic variation in Hml+ positive plasmatocytes. As Hml+ cells are widely used to study hemocyte function such as adhesion, sessility, metabolism and phagocytosis, our dataset is an important contribution to the community. Our RNAseq study also complements a recent single cell analysis of *Drosophila* hemocytes that has revealed the various states of hemocyte differentiation (Tattikota et al. 2019; Cho et al. 2020; Fu et al.; Cattenoz et al. 2020). It is important to note that our chosen experimental design may have affected the transcriptome of unchallenged hemocytes slightly. We incubated all larvae, previously reared at 25°C, for 45 minutes at 29°C after treatment to accelerate the transcriptional response, which might result in a small heat shock induction. Despite this limitation, comparisons between conditions revealed interesting patterns of expression that could be useful to further functional studies of hemocytes.

Our study provides the full repertoire of genes expressed in plasmatocytes and their expression levels, notably those encoding transmembrane proteins and secreted factors (Sup File S3 and S4). Screening these genes in future studies will allow a better characterization of plasmatocyte functions in phagocytosis, migration, and sessility and a greater understanding of how these motile cells interact with other tissues. Consistent with a previous Affymetrix based study (Irving et al. 2005) and a recent single cell study (Cattenoz et al. 2020), we found that plasmatocytes express a large repertoire of phagocytic receptors, opsonins and cytoskeleton proteins, reflecting their important function as phagocytes. Consistent with older studies that demonstrated that hemocytes produce antimicrobial peptides upon challenge (Samakovlis et al. 1992; Reichhart et al. 1992; Sanchez Bosch et al. 2019), we confirmed that hemocytes express genes encoding several components of the Toll and Imd pathways, as well as some of their downstream target genes. They have the ability to induce a subset of
antimicrobial peptides upon challenge. Use of AMP-reporter genes (Samakovlis et al. 1992; Reichhart et al. 1992) and recent single cell analysis (Cattenoz et al. 2020) has shown that only a fraction of plasmatocytes express antibacterial peptides upon immune challenge, indicating that some sub-populations of plasmatocytes are specialized for this task. One of the most surprising observations is the high expression of Attacin-D in plasmatocytes, as this antibacterial peptide is devoid of a signal peptide. The precise role of this AMP is unknown, and further studies should decipher whether it is secreted by an atypical mechanism or if it functions intracellularly. Our study confirms that plasmatocytes contribute to clotting and melanization, two important hemolymph immune functions (Krautz et al. 2014). Surprisingly, our RNAseq analysis detected an unexpected expression of PPO2 and PPO3 in Hml+ plasmatocytes, which were previously shown to be specific to crystal cells and lamellocytes. As single cell analysis studies have confirmed that PPO2 and PPO3 are indeed restricted to crystal cells and lamellocytes (Cattenoz et al. 2020), the high expression of PPO2 and PPO3 in our sample can be explained by the presence of Hml+ plasmatocytes that are undergoing their transdifferentiation into crystal cells and lamellocytes (Stofanko et al. 2010; Márkus et al. 2009; Leitão and Sucena 2015). The fat body, particularly at the larval stage, is the main organ producing hemolymphatic proteins. Our study confirms that like the fat body, Hml+ plasmatocytes also express a large repertoire of secreted proteins, notably components of the extracellular matrix and opsonins. It is currently unclear how the synthesis of hemolymphatic protein is allocated between the fat body and plasmatocytes, or why plasmatocytes are involved in the secretion of molecules such as extracellular matrix components or AMPs. An interesting hypothesis is that plasmatocytes, by virtue of their migratory ability, function as local repairers that can locally supply and enrich specific factors. Indeed, a recent study indicated that a distinct pool of plasmatocytes, the "companion plasmatocytes" expressing collagen IV, are tightly associated with the developing ovaries from larval stages and onward (Van De Bor et al. 2015). Eliminating these companion plasmatocytes or specifically blocking their collagen IV expression during larval stages causes abnormal ovarian niches with excess stem cells in adults. This suggests that hemocytes could have short-range action consistent with the notion of local repairers. Deciphering specific roles for the hemocytes and fat body in the production of hemolymphatic proteins is an interesting prospect.

Despite extensive research on Drosophila melanogaster blood cell adaptation to wounding (Vlisidou and Wood 2015; Parsons and Foley 2016) only rare transcriptomic analyses has been performed, and have specifically analyzed their response to clean injury. One main study performed in 2008 tried to provide insight into specific hemocyte response to wounding. Stramer et al. compared transcriptional responses of wild-type embryos and serpent null embryos, which are devoid of hemocytes, 45 minutes following wounding. They identified a
limited number of significantly affected genes, probably because of a dilution effect due to
the limited number of hemocytes overall in embryos (Stramer et al. 2008). However, they
identified the up-regulation of secreted phospholipase A2 that plays a role in the production
eicosanoids, key signaling molecules that limit inflammation (Ninnemann 1988). In our
study, we observed that the gene encoding the calcium-independent phospholipase A2 VIA
was strongly induced upon wounding. This phospholipase has been shown in mammals to
promote adhesion, clearance of debris and ROS production to act as a chemoattractant
(Ramanadham et al. 2015). In contrast to the work done by Stramer et al., we did not find any
induction of Drosomycin in the wounding condition, likely due to the short time point we
used. Morphological studies have shown that hemocytes modify their shape, change their
adhesive properties and start to transdifferentiate into plasmatocytes and lamellocytes upon
clean injury. A recent single cell analysis has deciphered some of the changes that take place
in hemocyte populations 24 hours after clean injury, reflecting a change in their differentiated
states (Tattikota et al. 2019). Our study reveals that major transcriptome changes have already
begun 45 minutes post-challenge. These changes likely reflect the transformation of resting
plasmatocytes into an activated form, and their differentiation into more specialized hemocyte
sub-types. The observation that the FGF ligand Pyramus that mediates blood cell progenitors
differentiation in the lymph gland (Dragojlovic-Munther and Martinez-Agosto 2013) was the
most up-regulated gene 45 minutes after clean injury suggests that FGF-R pathway activation
could play a prominent role in promoting the differentiation of peripheral plasmatocytes upon
injury. In this work, we also show that wounding reduces apoptotic processes in blood cells
while promoting cell proliferation, consistent with a previous study showing that wounding
stimulates de-novo peripheral blood cell proliferation (Pastor-Pareja et al. 2008). In
accordance with these data, we observed the up-regulation of pvf2 (Munier et al. 2002) and
the PVR adaptor (Tran et al. 2013) upon clean injury. Interestingly, the PVF pathway also
plays a role in hemocyte migration, as Pvf2 acts as a chemoattractant (Wood et al. 2006a). It
is possible that hemocytes in close contact to the wounding site stimulate nearby hemocytes
to improve wound healing and accelerate repair processes. Our results also show that
plasmatocytes, like mammalian macrophages, undergo major metabolic reprogramming
following injury that likely fuels their transformation into an ‘activated’ plasmatocyte state
that is more effective at producing secreted factors or engulfing bacteria. Future studies
should better characterize how immune functions are coupled with metabolic reprogramming
in hemocytes.

Finally, our study reveals that hemocytes can mount specific responses to different pathogens
such as E. coli and S. aureus. The early time point we chose likely prevented us from fully
capturing this differentiation. The polarization of T helper cells into sub-categories in
response to different cytokine environments is well established. This concept has recently been extended to innate immune cells in mammals, notably to macrophages with their M1 pro-inflammatory and M2 pro repair subtypes (Kloc et al. 2019). It is tempting to speculate that *Drosophila* plasmatocytes can be polarized toward different functions such as enhanced production of antibacterial peptides or phagocytosis according to different inflammation and metabolic states. This would explain the existence of various plasmatocyte populations in different activity states (Cattenoz et al. 2020; Fu et al.; Cho et al. 2020; Tattikota et al. 2019). In this vein, it would be interesting to further characterize the transcriptome of plasmatocytes in response to other challenges such as phagocytosis of apoptotic cells and yeast. Another interesting prospect is to decipher whether sessile and circulating plasmatocytes differ in their transcriptional activities. Collectively, our study and a recent single cell analysis underline the complexities of the cellular response and open the route to functional analysis.
Material and methods

Drosophila stocks and rearing
In this work, we used \textit{w};\textit{Hml}^t\textit{DsRed.nls} line. Animals were reared on standard fly medium comprising 6% cornmeal, 6% yeast, 0.62% agar, and 0.1% fruit juice, supplemented with 10.6g/L moldex and 4.9ml/L propionic acid. Flies are maintained at 25°C on a 12 h light/ 12 h dark cycle. Both males and females were used for experiments.

Microorganism culture and infection experiments
The bacterial strains used and the respective optical density (O.D.) of the pellet at 600 nm were: \textit{Staphylococcus aureus} (O.D. 0.5) and \textit{Escherichia coli} (O.D. 0.5). L3 wandering larvae were pricked with a tungsten needle on the dorsal side, at the origin of the two trachea, corresponding to the A7 or A8 segments. Pricked larvae were placed into a small petri dish with fresh medium and incubated at 29°C for 45 minutes. We then dissected larvae on a glass slide in a 120 ul PBS droplet before cell sorting.

Cell sorting procedure
Cell sorting was performed on a BD FACS Aria II (Becton Dickinson, San Jose, CA, USA) fitted with a 100 µm nozzle and with pressure set at 20 PSI. Hemocytes were selected and sorted based on DsRed fluorescence.

RNA extraction, sequencing and analysis
For whole larva RNA extraction, 20 animals were homogenized in tubes with glass beads and lysed with the use of a PRECELLYS™ homogenizer, with 0.5 mL of TRIzol reagent and 0.3 mL of chloroform. For recovery of hemocytes during FACS procedure, cells were directly resuspended in the same mix of TRIzol-chloroform. RNA was extracted following the classical phenol-chloroform RNA extraction technique.

For all samples, RNA quality was assessed on a Fragment Analyzer (Agilent Technologies, Inc., Santa Clara, CA 95051, USA). RNA-seq libraries were prepared using 73-100 ng of total RNA and the Illumina TruSeq Stranded mRNA reagents (Illumina; San Diego, California, USA) according to the supplier’s instructions. Cluster generation was performed with the resulting libraries using the Illumina TruSeq SR Cluster Kit v4 reagents and sequenced on the Illumina HiSeq 2500 using TruSeq SBS Kit v4 reagents. Sequencing data were demultiplexed using the bcl2fastq Conversion Software (v. 2.20, Illumina; San Diego, California, USA).

The quality of the resulting reads was assessed with ShortRead (v. 1.28.0) (Morgan et al. 2009). Reads were then aligned to the reference genome \textit{(Drosophila melanogaster} BDGP6...
dna.toplevel.fa) with TopHat (v2.1.0) and Bowtie (2.2.6.0). Mapping over exon-exon
junctions was permitted by supplementing annotations (Drosophila_melanogaster BDGP6.87
GTF). The reads acquired in this way were used to create the lists of expressed genes (cutoff 5
counts per million [CPM] in the average of all triplicates) for each respective treatment.
Unwanted variation from this data was removed by using RUVSeq (3.10) by estimating the
factors of unwanted variation using residuals (Risso et al. 2014). Differential expression
analysis was performed with edgeR (3.26.4) (Robinson et al. 2010) and limma (3.40.2)
(Ritchie et al. 2015).
Gene Ontology (GO) analysis was performed with Gorilla (online version http://cbl-
gorilla.cs.technion.ac.il/ - July and August 2019). Two unranked lists of genes were
compared, where the background set of genes was all genes with expressed with minimum of
5 CPM reads from all three combined unchallenged hemocyte reads. The target set of genes
was determined by the results of the differential expression analysis of the respective
treatment with the following cutoffs: CPM > 5, P-value < 0.05, FC > +/-1.88. Fold changes
are expressed as real values and Log2 based values.

Acknowledgement
We thank Hannah Westlake and Samuel Rommelaere for useful comments on the manuscript.
We also thank the EPFL Flow Cytometry Core Facility (FCCF) for help in cell sorting and
especially Loïc Tauzin and André Mozes. We thank the Lausanne Genomic Technologies
Facility (UNIL, Lausanne, Switzerland) for RNA sequencing and especially Johann Weber.
This work was supported by the SNF synergia grant CRSII5 186397.
Legends

Figure 1. Experimental design of RNA sequencing experiment.
Total RNA was extracted from whole larvae or hemocytes recovered from Hml\(^{2}\).ds-red.nls fluorescent larvae. Larvae were left unchallenged or challenged by a systemic infection with *Escherichia coli* or *Staphylococcus aureus* and incubated at 29°C for 45 minutes. Hemocytes were collected in PBS, on ice, and were immediately sorted FACS and processed for RNA extraction.

Figure 2. Transcriptome summaries from unchallenged whole larvae and hemocytes from unchallenged and infected larvae.
(A) Transcriptome summary showing the number of reads for each triplicate in all experimental conditions with their corresponding number of mapped reads and the average percentage of alignment to the *D. melanogaster* genome.
(B) Venn diagram representing the quantity of shared genes between all experimental treatments: Unchallenged wandering L3 larvae, hemocytes from unchallenged larvae, hemocytes from clean-pricked larvae (CI), hemocytes from larvae pricked with *Escherichia coli* (Ec), hemocytes from larvae pricked with *Staphylococcus aureus* (Sa).

Table 1. Selected DEGs of interest with Fold-changes of unchallenged hemocytes vs. whole larvae from Sup File S2.

Table 2. Selected DEGs of interest with Fold-changes of Clean Injury hemocytes vs. unchallenged hemocytes from Sup File S5.

Table 3. Selected DEGs of interest with Fold-changes of *E. coli* hemocytes vs. Clean Injury hemocytes from Sup File S6.

Table 4. Selected DEGs of interest with Fold-changes of *S. aureus* hemocytes vs. Clean Injury hemocytes from Sup File S7.
Supplemental legends

Sup Figure S1. GO terms enriched in Unchallenged hemocytes compared to whole larva.

Sup Figure S2. GO terms enriched in Clean Injury hemocytes compared to unchallenged hemocytes.

Sup Table S1. Selected DEGs of interest linked to extracellular matrix reorganization, extracted from the comparison of Clean Injury hemocytes vs. unchallenged hemocytes.

Sup File S1. Raw reads numbers in all samples (L3, UC, CI, E coli and S aureus).
Average of the number of mapped reads per million reads in the respective triplicate samples. GO terms were extracted from Flybase.

Sup File S2. Differentially expressed genes in unchallenged hemocytes versus unchallenged whole larvae samples
Results of the differential gene expression analysis between and unchallenged plasmatocytes and L3 whole larvae. Cut-off values are fold change ≥ 2, logCPM > 2, P-value < 0.05.

Sup File S3. Transmembrane proteins coding genes identified in Sup File S2
Differentially expressed genes between unchallenged hemocytes and L3 whole larvae which have the GO term ‘integral component of plasma membrane’ or ‘cell surface’. Cut-off values are fold changes ≥ 2, logCPM > 2, P-value < 0.05. Positive FC values indicate higher expression in plasmatocytes versus L3.

Sup File S4. Secreted proteins coding genes identified in Sup File S2
Differentially expressed genes between L3 whole larvae and unchallenged hemocytes that have the GO term ‘extracellular space’ or ‘extracellular region’. Cut-off values are fold changes ≥ 2, logCPM > 2, P-value < 0.05. Positive FC values indicate higher expression in plasmatocytes versus L3.

Sup File S5. Differentially expressed genes in clean injury samples versus unchallegened samples.
Results of the differential gene expression analysis between unchallenged hemocytes and hemocytes from animals with clean injury. Cut-off values are fold changes ≥ 2, logCPM >
Positive FC values indicate higher expression in clean injury samples versus unchallenged samples.

Sup File S6. Differentially expressed genes in *E. coli* samples versus clean injury samples

Results of the differential gene expression analysis between hemocytes from animals infected with *E. coli* and hemocytes from animals with clean injury. Cut-off values are fold changes ≥ 2, logCPM > 2.3, P-value < 0.05. Positive FC values indicate higher expression in *E. coli* samples versus clean injury samples.

Sup File S7. Differentially expressed genes in *S. aureus* samples versus clean injury samples.

Results of the differential gene expression analysis between hemocytes from animals infected with *S. aureus* and hemocytes from animals with clean injury. Cutoff values are fold changes ≥ 2, logCPM > 2.3, P-value < 0.05. Positive FC values indicate higher expression in *S. aureus* samples versus clean injury samples.
References

Agaisse H, Petersen UM, Boutros M, Mathey-Prevot B, Perrimon N. 2003. Signaling role of hemocytes in Drosophila JAK/STAT-dependent response to septic injury. Dev Cell 5: 441–450.

Alfonso TB, Jones BW. 2002. gcm2 promotes glial cell differentiation and is required with glial cells missing for macrophage development in Drosophila. Dev Biol 248: 369–383.

Andersen SS. 2000. Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends Cell Biol 10: 261–267.

Arefin B, Kucerova L, Dobes P, Máursors K, Strnad H, Wang Z, Hyrsl P, Zurovec M, Theopold U. 2014. Genome-wide transcriptional analysis of Drosophila larvae infected by entomopathogenic nematodes shows involvement of complement, recognition and extracellular matrix proteins. J Innate Immun 6: 192–204.

Avet-Rochex A, Perrin J, Bergeret E, Fauvarque M-O. 2007. Rac2 is a major actor of Drosophila resistance to Pseudomonas aeruginosa acting in phagocytic cells. Genes Cells 12: 1193–1204.

Babcock DT, Brock AR, Fish GS, Wang Y, Perrin L, Krasnow MA, Galko MJ. 2008. Circulating blood cells function as a surveillance system for damaged tissue in Drosophila larvae. Proc Natl Acad Sci USA 105: 10017–10022.

Banerjee U, Girard JR, Goins LM, Spratford CM. 2019. Drosophila as a Genetic Model for Hematopoiesis. Genetics 211: 367–417.

Braun A, Lemaitre B, Lanot R, Zachary D, Meister M. 1997. Drosophila immunity: analysis of larval hemocytes by P-element-mediated enhancer trap. Genetics 147: 623–634.

Braemer M, Tenev T, Rigbolt KTG, Hempel S, Blagoev B, Silke J, Ditzel M, Meier P. 2010. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol Cell 40: 810–822.
Brückner K, Kockel L, Duchek P, Luque CM, Rørth P, Perrimon N. 2004. The PDGF/VEGF receptor controls blood cell survival in Drosophila. *Dev Cell* 7: 73–84.

Cattenoz PB, Sakr R, Pavlidaki A, Delaporte C, Riba A, Molina N, Hariharan N, Mukherjee T, Giangrande A. 2020. Temporal specificity and heterogeneity of Drosophila immune cells. *EMBO J* 147: e104486.

Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete J-P, Lemaitre B. 2016a. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. ed. U. Banerjee. *PLoS Genet* 12: e1006089.

Chakrabarti S, Dudzic JP, Li X, Collas EJ, Boquete J-P, Lemaitre B. 2016b. Remote Control of Intestinal Stem Cell Activity by Haemocytes in Drosophila. ed. U. Banerjee. *PLoS Genet* 12: e1006089.

Charrin S, Jouannet S, Boucheix C, Rubinstein E. 2014. Tetraspanins at a glance. *J Cell Sci* 127: 3641–3648.

Charroux B, Royet J. 2009. Elimination of plasmatocytes by targeted apoptosis reveals their role in multiple aspects of the Drosophila immune response. *Proc Natl Acad Sci USA* 106: 9797–9802.

Chen JWC, Barker AR, Wakefield JG. 2015. The Ran Pathway in Drosophila melanogaster Mitosis. *Front Cell Dev Biol* 3: 74.

Cho B, Yoon S-H, Lee D, Koranteng F, Tattikota SG, Cha N, Shin M, Do H, Hu Y, Oh SY, et al. 2020. Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. *bioRxiv* 127: 2020.01.15.908350.

https://www.biorxiv.org/content/10.1101/2020.01.15.908350v1.full.

Crivat G, Lizunov VA, Li CR, Stenkula KG, Zimmerberg J, Cushman SW, Pick L. 2013. Insulin stimulates translocation of human GLUT4 to the membrane in fat bodies of transgenic Drosophila melanogaster. ed. A. Bergmann. *PLoS ONE* 8: e77953.

Crozatier M, Meister M. 2007. Drosophila haematopoiesis. *Cell Microbiol* 9: 1117–1126.

De Gregorio E, Han S-J, Lee W-J, Baek M-J, Osaki T, Kawabata S-I, Lee B-L, Iwanaga S, Lemaitre B, Brey PT. 2002. An immune-responsive Serpin regulates the melanization cascade in Drosophila. *Dev Cell* 3: 581–592.

De Gregorio E, Spellman PT, Rubin GM, Lemaitre B. 2001. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. *Proc Natl Acad Sci USA* 98: 12590–12595.

Deplanche M, Filho RAE-A, Alekseeva L, Ladier E, Jardin J, Henry G, Azevedo V, Miyoshi A, Beraud L, Laurent F, et al. 2015. Phenol-soluble modulin α induces G2/M phase transition delay in eukaryotic HeLa cells. *FASEB J* 29: 1950–1959.

DeVorkin L, Gorski SM. 2014. Monitoring autophagic flux using Ref(2)P, the Drosophila p62 ortholog. *Cold Spring Harb Protoc* 2014: 959–966.

Di Cara F, Sheshachalam A, Braverman NE, Rachubinski RA, Simmonds AJ. 2017. Peroxisome-Mediated Metabolism Is Required for Immune Response to Microbial Infection. *Immunity* 47: 93–106.e7.
Dolezal T, Dolezelova E, Zurovec M, Bryant PJ. 2005. A role for adenosine deaminase in Drosophila larval development. ed. M. Krasnow. *PLoS Biol* **3**: e201.

Dolezal T, Krejcová G, Bajgar A, Nedbalova P, Strasser P. 2019. Molecular regulations of metabolism during immune response in insects. *Insect Biochem Mol Biol* **109**: 31–42.

Dostálová A, Rommelaere S, Poidevin M, Lemaitre B. 2017. Thioester-containing proteins regulate the Toll pathway and play a role in Drosophila defence against microbial pathogens and parasitoid wasps. *BMC Biol* **15**: 79–16.

Dragojlovic-Munther M, Martinez-Agosto JA. 2013. Extracellular matrix-modulated Heartless signaling in Drosophila blood progenitors regulates their differentiation via a Ras/ETS/FOG pathway and target of rapamycin function. *Dev Biol* **384**: 313–330.

Dudzic JP, Hanson MA, Iatsenko I, Kondo S, Lemaitre B. 2019. More Than Black or White: Melanization and Toll Share Regulatory Serine Proteases in Drosophila. *Cell Rep* **27**: 1050–1061.e3.

Dudzic JP, Kondo S, Ueda R, Bergman CM, Lemaitre B. 2015. Drosophila innate immunity: regional and functional specialization of prophenoloxidases. *BMC Biol* **13**: 81.

Evans CJ, Hartenstein V, Banerjee U. 2003. Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. *Dev Cell* **5**: 673–690.

Evans CJ, Liu T, Banerjee U. 2014. Drosophila hematopoiesis: Markers and methods for molecular genetic analysis. *Methods* **68**: 242–251.

Evans IR, Ghai PA, Urbančič V, Tan K-L, Wood W. 2013. SCAR/WAVE-mediated processing of engulfed apoptotic corpses is essential for effective macrophage migration in Drosophila. *Cell Death Differ* **20**: 709–720.

Evans IR, Wood W. 2014. Drosophila blood cell chemotaxis. *Curr Opin Cell Biol* **30**: 1–8.

Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA. 1996. Croquemo, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. *Immunity* **4**: 431–443.

Fu Y, Huang X, Zhang P, van de Leemput J, Han Z. Single-cell RNA sequencing identifies novel cell types in *Drosophila* blood. *Journal of Genetics and Genomics.*

Garg A, Wu LP. 2014. Drosophila Rab14 mediates phagocytosis in the immune response to *Staphylococcus aureus*. *Cell Microbiol* **16**: 296–310.

Gendrin M, Zaidman-Rémy A, Broderick NA, Paredes J, Poidevin M, Roussel A, Lemaitre B. 2013. Functional analysis of PGRP-LA in Drosophila immunity. ed. F. Leulier. *PLoS ONE* **8**: e69742.

Ghosh S, Singh A, Mandal S, Mandal L. 2015. Active hematopoietic hubs in Drosophila adults generate hemocytes and contribute to immune response. *Dev Cell* **33**: 478–488.

Goto A, Kadowaki T, Kitagawa Y. 2003. Drosophila hemolectin gene is expressed in embryonic and larval hemocytes and its knock down causes bleeding defects. *Dev Biol* **264**: 582–591.
Green N, Walker J, Bontrager A, Zych M, Geisbrecht ER. 2018. A tissue communication network coordinating innate immune response during muscle stress. *J Cell Sci* **131**: jcs217943.

Hanse EA, Ruan C, Kachman M, Wang D, Lowman XH, Kelekar A. 2017. Cytosolic malate dehydrogenase activity helps support glycolysis in actively proliferating cells and cancer. *Oncogene* **36**: 3915–3924.

Hanson MA, Dostálková A, Ceroni C, Poidevin M, Kondo S, Lemaitre B. 2019. Synergy and remarkable specificity of antimicrobial peptides in vivo using a systematic knockout approach. *Elife* **8**: 511.

Hao Y, Jin LH. 2017. Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. *Elife* **6**: 97.

Holz A, Bossinger B, Strasser T, Janning W, Klapper R. 2003. The two origins of hemocytes in Drosophila. *Development* **130**: 4955–4962.

Honti V, Csordás G, Márkus R, Kurucz É, Jankovics F, Andó I. 2010. Cell lineage tracing reveals the plasticity of the hemocyte lineages and of the hematopoietic compartments in Drosophila melanogaster. *Mol Immunol* **47**: 1997–2004.

Irving P, Ubeda J-M, Doucet D, Troxler L, Lagueux M, Zachary D, Hoffmann JA, Hetru C, Meister M. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. *Cell Microbiol* **7**: 335–350.

Isabella AJ, Horne-Badovinac S. 2015. Building from the Ground up: Basement Membranes in Drosophila Development. *Curr Top Membr* **76**: 305–336.

Ji J-Y, Crest J, Schubiger G. 2005. Genetic interactions between Cdk1-CyclinB and the Separase complex in Drosophila. *Development* **132**: 1875–1884.

Johansson KC, Metzendorf C, Söderhäll K. 2005. Microarray analysis of immune challenged Drosophila hemocytes. *Exp Cell Res* **305**: 145–155.

Jung S-H, Evans CJ, Uemura C, Banerjee U. 2005. The Drosophila lymph gland as a developmental model of hematopoiesis. *Development* **132**: 2521–2533.

Kenmoku H, Hori A, Kuraishi T, Kurata S. 2017. A novel mode of induction of the humoral innate immune response in Drosophila larvae. *Dis Model Mech* **10**: 271–281.

Kloc M, Ghobrial RM, Wosik J, Lewicka A, Lewicki S, Kubiak JZ. 2019. Macrophage functions in wound healing. *J Tissue Eng Regen Med* **13**: 99–109.

Krautz R, Arefin B, Theopold U. 2014. Damage signals in the insect immune response. *Front Plant Sci* **5**: 342.

Kurant E, Axelrod S, Leaman D, Gaul U. 2008. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. *Cell* **133**: 498–509.

Kurata S. 2010. Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC. *Int Immunol* **22**: 143–148.

Kurucz É, Márkus R, Zsámboki J, Folkl-Medzhiradszky K, Darula Z, Vilmos P, Udvardy A, Krausz I, Lukacsovich T, Gateff E, et al. 2007. Nimrod, a putative phagocytosis receptor...
with EGF repeats in Drosophila plasmatocytes. *Curr Biol* **17**: 649–654.

Kwon SY, Xiao H, Glover BP, Tjian R, Wu C, Badenhorst P. 2008. The nucleosome remodeling factor (NURF) regulates genes involved in Drosophila innate immunity. *Dev Biol* **316**: 538–547.

Lanot R, Zachary D, Holder F, Meister M. 2001. Postembryonic hematopoiesis in Drosophila. *Dev Biol* **230**: 243–257.

Lebestky T, Chang T, Hartenstein V, Banerjee U. 2000. Specification of Drosophila hematopoietic lineage by conserved transcription factors. *Science* **288**: 146–149.

Leitão AB, Sucena E. 2015. Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. *Elife* **4**: 239.

Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster. *Annu Rev Immunol* **25**: 697–743.

Li X, Rommelaere S, Kondo S, Lemaitre B. 2020. Renal Purge of Hemolymphatic Lipids Prevents the Accumulation of ROS-Induced Inflammatory Oxidized Lipids and Protects Drosophila from Tissue Damage. *Immunity* **52**: 374–387.e6.

Ligoxygakis P, Pelte N, Hoffmann JA, Reichhart J-M. 2002. Activation of Drosophila Toll during fungal infection by a blood serine protease. *Science* **297**: 114–116.

Makhijani K, Alexander B, Tanaka T, Rulifson E, Brückner K. 2011. The peripheral nervous system supports blood cell homing and survival in the Drosophila larva. *Development* **138**: 5379–5391.

Makhijani K, Brückner K. 2012. Of blood cells and the nervous system: hematopoiesis in the Drosophila larva. *Fly (Austin)* **6**: 254–260.

Makki R, Cinnamon E, Gould AP. 2014. The development and functions of oenocytes. *Annu Rev Entomol* **59**: 405–425.

Manaka J, Kuraishi T, Shiratsuchi A, Nakai Y, Higashida H, Henson P, Nakanishi Y. 2004. Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. *J Biol Chem* **279**: 48466–48476.

Márkus R, Kurucz É, Rus F, Andó I. 2005. Sterile wounding is a minimal and sufficient trigger for a cellular immune response in Drosophila melanogaster. *Immunol Lett* **101**: 108–111.

Márkus R, Laurinyecz B, Kurucz É, Honti V, Bajusz I, Sipos B, Somogyi K, Kronhamn J, Hultmark D, Andó I. 2009. Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. *Proc Natl Acad Sci USA* **106**: 4805–4809.

Melcarne C, Ramond E, Dudzic J, Bretscher AJ, Kurucz É, Andó I, Lemaitre B. 2019. Two Nimrod receptors, NimC1 and Eater, synergistically contribute to bacterial phagocytosis in Drosophila melanogaster. *FEBS J* **1248**: 1116008.

Mihajlovic Z, Tanasic D, Baigar A, Perez-Gomez R, Steffal P, Krejci A. 2019. Lime is a new protein linking immunity and metabolism in Drosophila. *Dev Biol* **452**: 83–94.

Minakhina S, Tan W, Steward R. 2011. JAK/STAT and the GATA factor Pannier control
hemocyte maturation and differentiation in Drosophila. *Dev Biol* **352**: 308–316.

Morgan M, Anders S, Lawrence M, Aboyoun P, Pagès H, Gentleman R. 2009. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. *Bioinformatics* **25**: 2607–2608.

Morin-Poulard I, Vincent A, Crozatier M. 2013. The Drosophila JAK-STAT pathway in blood cell formation and immunity. *JAKSTAT* **2**: e25700.

Munier A-I, Doucet D, Perrodou E, Zachary D, Meister M, Hoffmann JA, Janeway CA, Lagueux M. 2002. PVF2, a PDGF/VEGF-like growth factor, induces hemocyte proliferation in Drosophila larvae. *EMBO Rep* **3**: 1195–1200.

Myers AL, Harris CM, Choe K-M, Brennan CA. 2018. Inflammatory production of reactive oxygen species by Drosophila hemocytes activates cellular immune defenses. *Biochem Biophys Res Commun* **505**: 726–732.

Myllymäki H, Valanne S, Rämet M. 2014. The Drosophila imd signaling pathway. *J Immunol* **192**: 3455–3462.

Nagaosa K, Okada R, Nonaka S, Takeuchi K, Fujita Y, Miyasaka T, Manaka J, Andó I, Nakanishi Y. 2011. Integrin βν-mediated phagocytosis of apoptotic cells in Drosophila embryos. *J Biol Chem* **286**: 25770–25777.

Neyen C, Poidevin M, Roussel A, Lemaitre B. 2012. Tissue- and ligand-specific sensing of gram-negative infection in drosophila by PGRP-LC isoforms and PGRP-LE. *J Immunol* **189**: 1886–1897.

Ninnemann JL. 1988. Prostaglandins, Leukotrienes, and the Immune Response.

Oshel KM, Knight JB, Cao KT, Thai MV, Olson AL. 2000. Identification of a 30-base pair regulatory element and novel DNA binding protein that regulates the human GLUT4 promoter in transgenic mice. *J Biol Chem* **275**: 23666–23673.

Owen KA, Pixley FJ, Thomas KS, Vicente-Manzanares M, Ray BJ, Horwitz AF, Parsons JT, Beggs HE, Stanley ER, Bouton AH. 2007. Regulation of lamellipodial persistence, adhesion turnover, and motility in macrophages by focal adhesion kinase. *J Cell Biol* **179**: 1275–1287.

Palmer WH, Varghese FS, van Rij RP. 2018. Natural Variation in Resistance to Virus Infection in Dipteran Insects. *Viruses* **10**: 118.

Parsons B, Foley E. 2016. Cellular immune defenses of Drosophila melanogaster. *Dev Comp Immunol* **58**: 95–101.

Pastor-Pareja JC, Wu M, Xu T. 2008. An innate immune response of blood cells to tumors and tissue damage in Drosophila. *Dis Model Mech* **1**: 144–54– discussion 153.

Pennetier D, Oyallon J, Morin-Poulard I, Dejean S, Vincent A, Crozatier M. 2012. Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. *Proc Natl Acad Sci USA* **109**: 3389–3394.

Ramanadham S, Ali T, Ashley JW, Bone RN, Hancock WD, Lei X. 2015. Calcium-independent phospholipases A2 and their roles in biological processes and diseases. *J Lipid Res* **56**: 1643–1668.
Ramond E, Petrignani B, Dudzic JP, Boquete J-P, Poidevin M, Kondo S, Lemaitre B. 2020. The adipokine NimrodB5 regulates peripheral hematopoiesis in Drosophila. FEBS J 78: 1207.

Reichhart JM, Meister M, Dimarcq JL, Zachary D, Hoffmann D, Ruiz C, Richards G, Hoffmann JA. 1992. Insect immunity: developmental and inducible activity of the Drosophila diptericin promoter. EMBO J 11: 1469–1477.

Risso D, Ngai J, Speed TP, Dudoit S. 2014. Normalization of RNA-seq data using factor analysis of control genes or samples. Nat Biotechnol 32: 896–902.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK. 2015. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43: e47–e47.

Rizki TM, RIZKI RM. 1992. Lamellocyte differentiation in Drosophila larvae parasitized by Leptopilina. Dev Comp Immunol 16: 103–110.

Rizki TM, Rizki RM, Grell EH. 1980. A mutant affecting the crystal cells in Drosophila melanogaster. Wilhelm Roux Arch Dev Biol 188: 91–99.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26: 139–140.

Saisawang C, Wongsantichon J, Ketterman AJ. 2012. A preliminary characterization of the cytosolic glutathione transferase proteome from Drosophila melanogaster. Biochem J 442: 181–190.

Samakovlis C, Asling B, Boman HG, Gateff E, Hultmark D. 1992. In vitro induction of cecropin genes--an immune response in a Drosophila blood cell line. Biochem Biophys Res Commun 188: 1169–1175.

Sanchez Bosch P, Makhijani K, Herboso L, Gold KS, Baginsky R, Woodcock KJ, Alexander B, Kukar K, Corcoran S, Jacobs T, et al. 2019. Adult Drosophila Lack Hematopoiesis but Rely on a Blood Cell Reservoir at the Respiratory Epithelia to Relay Infection Signals to Surrounding Tissues. Dev Cell.

Sánchez-Sánchez BJ, Urbano JM, Comber K, Dragu A, Wood W, Stramer B, Martin-Bermudo MD. 2017. Drosophila Embryonic Hemocytes Produce Laminins to Strengthen Migratory Response. Cell Rep 21: 1461–1470.

Scherfer C, Tang H, Kambris Z, Lhocine N, Hashimoto C, Lemaitre B. 2008. Drosophila Serpin-28D regulates hemolymph phenoloxidase activity and adult pigmentation. Dev Biol 323: 189–196.

Shia AKH, Glittenberg M, Thompson G, Weber AN, Reichhart J-M, Ligoxygakis P. 2009. Toll-dependent antimicrobial responses in Drosophila larval fat body require Spätzle secreted by haemocytes. J Cell Sci 122: 4505–4515.

Shin M, Cha N, Koranteng F, Cho B, Shim J. 2020. Subpopulation of Macrophage-Like Plasmatocytes Attenuates Systemic Growth via JAK/STAT in the Drosophila Fat Body. Front Immunol 11: 63.

Shiratsuchi A, Mori T, Sakurai K, Nagaosa K, Sekimizu K, Lee BL, Nakanishi Y. 2012.
Independent recognition of Staphylococcus aureus by two receptors for phagocytosis in Drosophila. *J Biol Chem* **287**: 21663–21672.

Sinenko SA, Kim EK, Wynn R, Manfruelli P, Andó I, Wharton KA, Perrimon N, Mathey-Prevot B. 2004. Yantar, a conserved arginine-rich protein is involved in Drosophila hemocyte development. *Dev Biol* **273**: 48–62.

Singh SP, Coronella JA, Benes H, Cochrane BJ, Zimniak P. 2001. Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1 (GST-2) in conjugation of lipid peroxidation end products. *Eur J Biochem* **268**: 2912–2923.

Somogyi K, Sipos B, Pénzes Z, Kurucz É, Zsámboki J, Hultmark D, Andó I. 2008. Evolution of genes and repeats in the Nimrod superfamily. *Mol Biol Evol* **25**: 2337–2347.

Sorrentino RP, Tokusumi T, Schulz RA. 2007. The Friend of GATA protein U-shaped functions as a hematopoietic tumor suppressor in Drosophila. *Dev Biol* **311**: 311–323.

Steller H. 2008. Regulation of apoptosis in Drosophila. *Cell Death Differ* **15**: 1132–1138.

Stevens LJ, Page-McCaw A. 2012. A secreted MMP is required for reepithelialization during wound healing. ed. M. Gonzalez-Gaitan. *Mol Biol Cell* **23**: 1068–1079.

Stofanko M, Kwon SY, Badenhorst P. 2010. Lineage tracing of lamellocytes demonstrates Drosophila macrophage plasticity. ed. F. Schweisguth. *PLoS ONE* **5**: e14051.

Stram B, Winfield M, Shaw T, Millard TH, Woolner S, Martin P. 2008. Gene induction following wounding of wild-type versus macrophage-deficient Drosophila embryos. *EMBO Rep* **9**: 465–471.

Tattikota SG, Hu Y, Liu Y, Cho B, Barrera V, Steinbaugh M, Yoon S-H, Comjean A, Li F, Dervis F, et al. 2019. A single-cell survey of Drosophila blood. *bioRxiv* **18**: 2019.12.20.884999. https://www.biorxiv.org/content/10.1101/2019.12.20.884999v2.

Teixeira L. 2012. Whole-genome expression profile analysis of Drosophila melanogaster immune responses. *Brief Funct Genomics* **11**: 375–386.

Tepass U, Fessler LI, Aziz A, Hartenstein V. 1994. Embryonic origin of hemocytes and their relationship to cell death in Drosophila. *Development* **120**: 1829–1837.

Theopold U, Krautz R, Dushay MS. 2014. The Drosophila clotting system and its messages for mammals. *Dev Comp Immunol* **42**: 42–46.

Tran TA, Kinch L, Peña-Llopis S, Kockel L, Grishin N, Jiang H, Brugarolas J. 2013. Platelet-derived growth factor/vascular endothelial growth factor receptor inactivation by sunitinib results in Tsc1/Tsc2-dependent inhibition of TORC1. *Mol Cell Biol* **33**: 3762–3779.

Troha K, Im JH, Revah J, Lazzaro BP, Buchon N. 2018. Comparative transcriptomics reveals CrebA as a novel regulator of infection tolerance in *D. melanogaster*. ed. D.S. Schneider. *PLoS Pathog* **14**: e1006847.

Van De Bor V, Zimniak G, Papone L, Cerezo D, Malbouyres M, Juan T, Ruggiero F, Noselli S. 2015. Companion Blood Cells Control Ovarian Stem Cell Niche Microenvironment and Homeostasis. *Cell Rep* **13**: 546–560.
Vanha-Aho L-M, Kleino A, Kaustio M, Ulvila J, Wilke B, Hultmark D, Valanne S, Rämet M. 2012. Functional characterization of the infection-inducible peptide Edin in Drosophila melanogaster. ed. F. Leulier. PLoS ONE 7: e37153.

Vergadi E, Ieronymaki E, Lyroni K, Vaporidi K, Tsatsanis C. 2017. Akt Signaling Pathway in Macrophage Activation and M1/M2 Polarization. J Immunol 198: 1006–1014.

Vlisidou I, Wood W. 2015. Drosophila blood cells and their role in immune responses. FEBS J 282: 1368–1382.

Wang L, Kounatidis I, Ligoxygakis P. 2014. Drosophila as a model to study the role of blood cells in inflammation, innate immunity and cancer. Front Cell Infect Microbiol 3: 113.

Welman A, Serrles A, Brunton VG, Ditzel M, Frame MC. 2010. Two-color photoactivatable probe for selective tracking of proteins and cells. J Biol Chem 285: 11607–11616.

Williams MJ, Andó I, Hultmark D. 2005. Drosophila melanogaster Rac2 is necessary for a proper cellular immune response. Genes Cells 10: 813–823.

Williams MJ, Wiklund M-L, Wikman S, Hultmark D. 2006. Rac1 signalling in the Drosophila larval cellular immune response. J Cell Sci 119: 2015–2024.

Wilson R, Chen C, Ratcliffe NA. 1999. Innate immunity in insects: the role of multiple, endogenous serum lectins in the recognition of foreign invaders in the cockroach, Blaberus discoidalis. J Immunol 162: 1590–1596.

Wood W, Faria C, Jacinto A. 2006a. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 173: 405–416.

Wood W, Faria C, Jacinto A. 2006b. Distinct mechanisms regulate hemocyte chemotaxis during development and wound healing in Drosophila melanogaster. J Cell Biol 173: 405–416.

Xia X, You M, Rao X-J, Yu X-Q. 2018. Insect C-type lectins in innate immunity. Dev Comp Immunol 83: 70–79.

Zaidman-Rémy A, Hervé M, Poidevin M, Pili-Floury S, Kim M-S, Blanot D, Oh B-H, Ueda R, Mengin-Lecreulx D, Lemaître B. 2006. The Drosophila amidase PGRP-LB modulates the immune response to bacterial infection. Immunity 24: 463–473.
Hml.Ds.Red larvae

L3

Unchallenged

Clean injury

Septic injury with *Escherichia coli*

Septic injury with *Staphylococcus aureus*

45 min 29°C → whole lysis

RNA extraction

Larval bleeding

Hml.Ds.Red cells selection by FACS

Figure 1
A

Samples	# total reads	# mapped reads	% alignment
L3 1	22,436,848	15,159,571	67.7
L3 2	19,826,612	13,106,640	
L3 3	20,056,763	13,915,208	
UC 1	16,112,703	12,940,729	82.7
UC 2	9,828,233	8,107,341	
UC 3	16,343,251	13,923,463	
CI 1	12,256,307	10,537,513	86.1
CI 2	14,144,827	11,890,438	
CI 3	16,118,803	14,202,420	
Ec 1	6,215,784	5,305,561	59.4
Ec 2	46,628,659	23,175,497	
Ec 3	16,299,093	12,609,647	
Sa 1	10,379,871	7,892,909	71.5
Sa 2	16,301,608	13,721,164	
Sa 3	16,076,977	8,953,160	

% average alignment | 73.5

B

Size of each list

Number of elements: specific (1) or shared by 2, 3, ... lists

Hemocytes - Unchallenged

Hemocytes - Clean Injury

Hemocytes - E. coli

Hemocytes - S. aureus

Figure 2
CG	Full name	FC
CG15770	Hemese	49.05
CG3978	pannier	15.63
CG12002	Peroxidasin	15.51
CG16707	visgun	13.62
CG3992	serpent	7.06
CG7002	Hemolectin	6.76
CG2762	u-shaped	6.66
CG18426	yantar	2.73

Immune response

CG	Full name	FC
CG4437	PGRP-LF	3.49
CG4432	PGRP-LC	3.23
CG5576	Immune deficiency	3.29
CG8995	PGRP-LF	2.78
CG11992	Relish	2.59
CG30424	PGRP-LA	2.27
CG6134	spatzle	10.50
CG5974	pelle	5.31
CG18520	tube	3.13
CG7629	Attacin-D	7.80

Melanization

CG	Full name	FC
CG42640	Prophenoloxidase 3	25.59
CG18550	yellow-f	13.55
CG11102	Melanization protease 1	11.28
CG8193	Prophenoloxidase 2	9.10
CG11331	Serpin 27A	7.93
CG7219	Serpin 28Dc	3.27

Antiviral immunity

CG	Full name	FC
CG7138	r2d2	2.22

Phagocytic receptors and markers

CG	Full name	FC
CG4099	scavenger receptor	48.99
CG8942	Nimrod C1	26.55
CG6124	eater	15.35
CG2086	draper	3.19
CG10106	Tetraspanin 42Ee	3.48
CG4591	Tetraspanin 86D	4.0
CG6120	Tetraspanin 96F	2.9
CG10742	Tetraspanin 3A	3.2

Opsonins

CG	Full name	FC
CG33119	Nimrod B1	23.27
CG33115	Nimrod B4	17.69
CG16873	Nimrod B5	3.78
CG2958	lectin-24Db	33.93
CG7106	lectin-25C	24.47
CG18096	Thioester-containing protein 1	19.20
CG5210	Imaginal disc growth factor 6	6.60
CG4472	Imaginal disc growth factor 1	5.91

Cellular encapsulation

CG	Full name	FC
CG14225	eye transformer	17.16
CG3715	SHC-adaptor protein	7.03
CG7830	Oligosaccharide transferase gamma subunit	2.68

Stress response

CG	Full name	FC
CG17779	Heat-shock protein-70B	55.07
CG4183	Heat-shock protein-26	7.69
CG11637	Ninjurin B	5.96
CG4463	Heat-shock protein-23	4.43
CG12101	Heat-shock protein-60A	4.36
CG4466	Heat-shock protein-27	4.27
CG5436	Heat-shock protein-68	3.48
CG4147	Heat shock 70-kDa protein cognate 3	3.30
CG34246	Heat shock protein cognate 20	2.68
CG1242	Heat shock protein 83	2.59

Oxidative stress response

CG	Full name	FC
CG7567	Glutathione S transferase family	
CG10045	Glutathione S transferase D1	10.43
CG17523	Glutathione S transferase E2	8.51
CG12242	Glutathione S transferase D3	5.22
CG4371	Glutathione S transferase D7	4.89
CG4381	Glutathione S transferase D3	3.32
CG17530	Glutathione S transferase E6	3.12
CG11784	Glutathione S transferase E13	3.09
CG5224	Glutathione S transferase E11	2.79
CG10091	Glutathione S transferase D9	2.46
CG5164	Glutathione S transferase E1	2.35
CG9362	Glutathione S transferase Z1	2.10
CG30000	Glutathione S transferase T1	2.0

Others genes

CG	Full name	FC
CG32495	Glutathione synthetase 2	20.18
CG17753	Copper chaperone for superoxide dismutase	3.62
CG8905	Superoxide dismutase 2 (Mn)	3.57
CG11793	Superoxide dismutase 1	2.80
CG1274	thioredoxin peroxidase 2	2.47
CG1633	thioredoxin peroxidase 1	2.03

Metabolism

CG	Full name	FC
CG77291	Niemann-Pick type C-2a	7.59
CG3083	Peroxin 19	6.67
CG3639	Peroxin 12	6.06
CG7081	Peroxin 2	4.44
CG7564	Peroxin 10	2.94
CG3947	Peroxin 16	2.41
CG4289	Peroxin 14	2.20
CG3415	peroxisomal Multifunctional enzyme type 2	2.27
CG6783	fatty acid binding protein	9.73
CG4280	croquemort	4.74

Adenosine metabolism

CG	Full name	FC
CG5992	Adenosine deaminase-related growth factor A	6.59
CG11994	Adenosine deaminase	5.59

Glucose metabolism

CG	Full name	FC
CG14826	Phosphoglycerate mutase 5	4.87
CG6543	Glucosidase 2 beta subunit	2.11
CG7010	Pyruvate dehydrogenase E1 alpha subunit	2.06
CG30410	Ribose-5-phosphate isomerase	2.04
CG	Full name	FC
------	---	-----
CG11992	Relish	4.51
CG43729	sickie	4.12
CG14704	Peptidoglycan recognition protein LB	3.21
CG4437	Peptidoglycan recognition protein LF	2.44
CG1399	Leucine-rich repeat	2.62
CG16712	Immune induced molecule 33	2.54
CG5848	cactus	2.18
CG1878	Cecropin B	13.04
CG1367	Cecropin A2	8.38
CG1373	Cecropin C	6.85
CG18372	Attacin-B	6.86
CG15825	fondue	4.23
CG7002	Hemolectin	2.23
CG31962	scavenger receptor	2.74
CG10697	Dopa decarboxylase	15.09
CG9441	Punch	3.32
CG2043	Larval cuticle protein 3	19.21
CG4859	Matrix metalloproteinase 1	9.77
CG2044	Larval cuticle protein 4	3.84
CG11086	Growth arrest and DNA damage-inducible 45	2.57
CG33956	kayak	2.18
CG8588	pastrel	3.10
CG6821	Larval serum protein 1 gamma	8.35
CG5834	Heat-shock protein-70Bb	16.44
CG6489	Heat-shock protein-70Bc	15.67
CG18743	Heat-shock protein-70Ab	10.25
CG31359	Heat-shock protein-70Bb	8.78
CG1436	Heat-shock protein-68	6.28
CG10245	Cytochrome P450-6a20	10.59
CG10241	Cytochrome P450-6a17	3.18
CG10242	Cytochrome P450-23	2.83
CG9434	Frost	9.19
CG32130	starvin	8.80
CG12703	Peroxisomal Membrane Protein 70 kDa	4.61
CG14709	Multidrug resistance protein 4	2.85
CG10578	DnaJ-like-1	2.54
CG6449	Ninjurin A	2.46
CG31216	Nicotinamide amidase	2.44
CG4259	Glutamate-cysteine ligase catalytic subunit	3.56

Antimicrobial defense

Clotting

Phagocytosis

Immune response

Stress response

Heat shock proteins

Others

Metabolism

Glucose metabolism

Lipid catabolism

Amino acid storage

CG	Full name	FC
CG13164	pyramus	31.23
CG10045	Daughters against dpp	4.82
CG33542	unpaired 3	4.26
CG13780	PDGF- and VEGF-related factor 2	3.87
CG4371	wallenda (MAP Kinase Kinase)	2.60
CG32406	PVR adaptor protein	2.53
CG15154	Suppressor of cytokine signaling at 36E	2.52
CG7850	puckered	2.30
CG3259	Intraflagellar transport 54	14.41
CG11798	charlatan	7.49
CG4843	Tropomyosin 2	7.46
CG5372	Integrin alphaPS5 subunit	7.19
CG12008	karst	6.75
CG5695	jaguar	6.04
CG43976	Rho guanine nucleotide exchange factor 3	4.98
CG1212	p130CAS	4.85
CG8865	Ral guanine nucleotide dissociation stimulator-like	4.15
CG19076	spire	4.08
CG33103	Papulin	4.06
CG13563	Verprolin 1	3.60
CG3937	cheerio	3.28
CG11949	coracle	3.24
CG14396	Ret oncogene	3.18
CG33558	missing-in-metastasis	3.06
CG2184	Myosin light chain 2	3.02
CG10119	Lamin C	2.73
CG18214	trio	2.68
CG33694	CENP-ana	2.58
CG5164	cappuccino	2.41
CG9362	kugelei	2.40
CG10522	sticky	2.38
CG18076	short stop	2.34
CG1360	myospheroid	2.12
CG42274	Rho GTPase activating protein at 18B	2.11
CG1520	WASp	2.1
CG8024	Rab32	3.15
CG14001	blue cheese	2.34
CG14296	Endophilin A	2.15
CG1600	Death resistor Adh domain containing target	3.63
CG33134	Death executioner Bel-2	2.33

CG	Full name	FC
CG5932	magro	26.43
CG34360	Glucose transporter 4 enhancer factor	8.97
CG5889	Malic enzyme b	4.28
CG4625	Dihydroxyacetone phosphate acyltransferase	4.24
CG6990	Carboxic anhydrase	3.70
CG8256	Glycerophosphate oxidase 1	2.69
CG3620	no receptor potential A	2.25
CG1055	Hormone-sensitive lipase	2.22
CG1882	pummeleg	2.05
CG6821	Larval serum protein 1 gamma	8.35
CG4178	Larval serum protein 1 beta	3.54
CG2559	Larval serum protein 1 alpha	2.69
CG	Full name	FC
-------	--	-----
CG8175	Metchnikowin	7.31
CG10794	Diptericin B	4.97
CG9496	Tetrascandin 29Fb	4.53
CG1364	Cecropin A1	4.04
CG1367	Cecropin A2	3.33
CG32185	Elevated during infection	3.17
CG10146	Attacin-A	2.74
CG7629	Attacin-D	2.72
CG16844	Bomanin Short 3	2.67
CG1373	Cecropin C	2.52
CG14704	Peptidoglycan recognition protein LB	2.07
	Cell migration / cytoskeleton reorganization	
CG31004	mesh	3.47
CG6976	Myosin 28B1	2.03
	Stress response	
CG9434	Frost	2.99
CG3050	Cyp6d5	2.42
	Glucose metabolism	
CG8693	Maltase A4	4.59
CG11909	Target of brain insulin	3.89
CG	Full name	FC
--------	---	-----
CG32185	elevated during infection	3.96
CG8175	Metchnikowin	3.57
CG12143	Tetraspanin42Ej	2.37
CG15917	Growth-blocking peptide 1	2.29
CG10794	Diptercin B	2.19
CG16844	Bomanin Short 3	2.08
CG12840	Tetraspanin 42El	2.02
	Cell migration / cytoskeleton reorganization	
CG32082	Insulin receptor substrate 53 kDa	2.71
	Extracellular matrix components	
CG6281	Tissue inhibitor of metalloproteases	2.67
CG42768	Muscle-specific protein 300 kDa	2.55
	Stress response - cell death	
CG4319	reaper	2.59
CG10391	Cyp310a1	2.43
CG8453	Cyp6g1	2.40
	Oxidative stress response	
CG12242	Glutathione S transferase D5	2.02