FAST TRACK COMMUNICATION

A non-standard Lax formulation of the Harry Dym hierarchy and its supersymmetric extension

Kai Tian1, Ziemowit Popowicz2 and Q P Liu1

1 Department of Mathematics, China University of Mining and Technology, Beijing 100083, People’s Republic of China
2 Institute of Theoretical Physics, University of Wroclaw, pl. M Borna 9, 50-205 Wroclaw, Poland

E-mail: tiankai@lsec.cc.ac.cn, ziemek@ift.uni.wroc.pl and qpl@cumtb.edu.cn

Received 14 October 2011, in final form 21 February 2012
Published 6 March 2012
Online at stacks.iop.org/JPhysA/45/122001

Abstract

For the Harry Dym hierarchy, a non-standard Lax formulation is deduced from that of the Korteweg–de Vries (KdV) equation through a reciprocal transformation. By supersymmetrizing this Lax operator, a new $N = 2$ supersymmetric extension of the Harry Dym hierarchy is constructed, and is further shown to be linked to one of the $N = 2$ supersymmetric KdV equations through the superconformal transformation. The bosonic limit of this new $N = 2$ supersymmetric Harry Dym equation is related to a coupled system of KdV–MKdV equations.

PACS numbers: 11.30.Pb, 02.30.Ik, 02.30.Tb

1. Introduction

The classical integrable systems, alias soliton equations, admit various extensions, among which supersymmetric extensions have been studied extensively in the past three decades. Dealing with the supersymmetrization of classical integrable systems, we should distinguish the extended case from the non-extended case. In the non-extended case, one just generalizes the classical theory by pairing classical bosonic fields with some fermionic fields. When all fermionic sectors vanish, the supersymmetric theory degenerates to the known classical one. However in the extended case, in addition to fermionic fields, new bosonic fields are also introduced into the supersymmetric theory. As a bonus, if we throw fermionic sectors away, certain new classical systems may appear.

As two famous prototypes in the theory of integrable systems, both the Korteweg–de Vries (KdV) and the Harry Dym (HD) equations were successfully supersymmetrized in both non-extended and extended cases. Here we mention only some results on $N = 2$ supersymmetric KdV and HD equations, which belong to the extended case.
There are three inequivalent $N = 2$ supersymmetric KdV equations, which are encoded in the following model (denoted by SKdV$_a$):

$$
\Phi_t = \frac{1}{4} \left(\Phi_{yy} - 3[\Phi(\mathbb{D}^1_1 \mathbb{D}^2_2 \Phi)]_y - \frac{a}{2} [\mathbb{D}^1_1 \mathbb{D}^2_2 \Phi^2]_y - 3\alpha \Phi^2 \Phi_y \right),
$$

(1)

where $\Phi = \Phi(y, \theta_1, \theta_2, \tau)$ is a bosonic super field and $\mathbb{D}_i = \partial_\theta_i + \theta_i \partial_y$ ($i = 1, 2$) denote two super derivatives. Through different approaches, SKdV$_a$ was shown to be integrable when the parameter a takes $-2, 1$ or 4. For these three cases, various integrable features have been revealed, including Lax representations, bi-Hamiltonian structures and so on.

By considering the most general $N = 2$ Lax operator of differential type, two inequivalent $N = 2$ supersymmetric HD equations were constructed [2], which are respectively given by

$$
W_t = \frac{1}{8} (2W_3W^3 - 6(D_1D_2W_y)(D_1D_2W)W^2 - 3(D_2W_2)(D_2W)W^2 - 3(D_1W_2)(D_1W)W^2),
$$

(2)

$$
W_t = \frac{1}{8} (2W_3W^3 - 3(D_2W_2)(D_2W)W^2 - 3(D_1W_2)(D_1W)W^2 + 3(D_2W)(D_1W)(D_1D_2W)W),
$$

(3)

where $W = W(x, \theta_1, \theta_2, t)$ is a bosonic super field and $D_i = \partial_\theta_i + \theta_i \partial_x$ ($i = 1, 2$) denote the super derivatives. Apart from Lax formulations, few properties have been established for these two equations until now. It is noted that their bosonic limits were shown to be transformed into previously known integrable systems by reciprocal transformations [12].

Very recently, via the superconformal transformation, both $N = 2$ supersymmetric HD equations were related to supersymmetric KdV equations [13]; more precisely, equation (2) is changed into SKdV$_1$ by the superconformal transformation, while equation (3) to SKdV$_{-2}$. Hence, the superconformal transformation could be seen as a generalization of the reciprocal transformation for $N = 2$ supersymmetric systems.

Motivated by these interesting connections and the fact that there are three rather than only two $N = 2$ supersymmetric KdV equations, we conjecture that at least one more $N = 2$ supersymmetric HD equation would exist, which is expected to serve as a counterpart of SKdV$_1$. Guided by the fact that SKdV$_1$ has a non-standard Lax formulation [11]

$$
\frac{\partial}{\partial \tau} L_1 = [([L_1^3]_{\geq 1}, L_1^1)],
$$

with

$$
L_1 = -\partial^{-1} \partial_1 \mathbb{D}^1_1 \mathbb{D}^2_2 (\mathbb{D}^1_1 \mathbb{D}^2_2 + \Phi),
$$

(4)

which supplies a non-standard Lax operator for the classical KdV equation, this communication aims at figuring out the missing $N = 2$ supersymmetric HD equation by supersymmetrizing a suitable non-standard Lax operator of the classical HD hierarchy.

The communication is organized as follows. In section 2, based on the well-known non-standard Lax KdV hierarchy, a non-standard Lax formulation is constructed for the classical HD hierarchy via the reciprocal transformation and gauge transformation. In section 3, we generalize the non-standard Lax operator to the $N = 2$ super space, and construct a new $N = 2$ supersymmetric HD hierarchy from it. Furthermore, as we anticipated, the Lax operator of our new $N = 2$ supersymmetric HD equation is shown to be linked to that of SKdV$_1$ through the superconformal transformation. In section 4, the bosonic limit of our new equation is transformed into the bosonic limit of SKdV$_1$ by the reciprocal transformation. The last section is devoted to some conclusions.
2. A non-standard Lax formulation of the HD hierarchy

In the theory of classical integrable systems, the reciprocal transformation plays an important role to connect some evolution equations and is a powerful tool to investigate integrable properties. For instance, the HD equation is connected to the KdV equation by this transformation [3]. On the Lax operator level, we have two possibilities of connecting the HD hierarchy with the KdV hierarchy because there are two different Lax operators for the KdV equation: the so-called standard and non-standard Lax operators.

Let us briefly demonstrate this connection for the standard Lax operator of the KdV equation [6]. The KdV hierarchy can be formulated as

$$\frac{\partial}{\partial \tau} L_n = \left[(L_n^{2n+1}) \right]_{\geq 0}, \quad n = 0, 1, 2, \ldots, \tag{5}$$

where L is the standard Lax operator, which is given by

$$L_n = \partial_x^2 + u,$$

and the subscript ≥ 0 denotes the projection to the differential part. In the case $n = 1$, the Lax equation (5) produces the KdV equation ($\tau \equiv \tau_3$)

$$u_\tau = u_3 y + 6 u u_y.$$ \tag{6}

Applying the gauge transformation on the operator L_n, we obtain

$$\tilde{L}_n = e^{\int y - \infty v(z) dz} L_n e^{-\int y - \infty v(z) dz} = \partial_x^2 - 2 v \partial_y + u - v_x + v^2.$$ \tag{7}

Now let $u = v_x - v^2$; then we conclude that the operator \tilde{L}_n is the Lax operator of the modified KdV equation. Taking the Liouville transformation $\partial_y = w(y) \partial_x$, the Lax operator \tilde{L}_n is brought into

$$\hat{L}_n = w^2 \partial_x^2 + (w y - 2 v w) \partial_y,$$ \tag{8}

assuming that $v = \frac{w_y}{2 w}$ the Lax operator \hat{L}_n is nothing but the standard Lax operator for the HD hierarchy.

On the other hand, the KdV hierarchy can also be formulated as [6]

$$\frac{\partial}{\partial \tau^{2n+1}} L = \left[(L^{2n+1})_{\geq 1}, L \right], \quad n = 0, 1, 2, \ldots, \tag{9}$$

where L is a non-standard Lax operator, which reads

$$L = \partial_y^{-1} (\partial_x^2 + u).$$

and the subscript ≥ 1 denotes the projection to the part with the powers greater than or equal to ∂_x. In the case $n = 1$, the Lax equation (9) implies the KdV equation (6).

Applying the gauge transformation on the operator L, we have

$$\tilde{L} \equiv \phi^{-1} L \phi = \phi^{-1} \partial_x^{-1} \phi \cdot \phi^{-1} (\partial_x^2 + u) \phi$$

$$= \phi^{-1} \partial_x^{-1} \phi \cdot (\partial_x^2 + 2 \phi \phi^{-1} \partial_x + \phi \phi^{-1} + u).$$

Let

$$\phi = w^{1/2}, \quad u = \frac{1}{2} w_2 w^{-1} - \frac{1}{4} w_y^2 w^{-2};$$

then we have

$$\tilde{L} = w^{1/2} \partial_x^{-1} w^{1/2} \cdot (\partial_x^2 - w_y w^{-1} \partial_x).$$
It is straightforward to check that the Lax equation
\[\frac{\partial}{\partial \tau} \tilde{L} = [\tilde{B}, \tilde{L}] \text{ with } \tilde{B} = \partial_y^3 - \frac{3}{2} w_y w^{-1} \partial_y^2 \]
implies
\[w_\tau = \partial_y \left(w_{2y} - \frac{3}{2} w_y^2 w^{-1} \right). \quad (10) \]

Since equation (10) is a conservation law itself, we introduce a reciprocal transformation as follows:
\[dx = w \, dy + \left(w_{2y} - \frac{3}{2} w_y^2 w^{-1} \right) d\tau, \]
or equivalently
\[\frac{\partial}{\partial y} = w \frac{\partial}{\partial x}, \quad \frac{\partial}{\partial \tau} = \frac{\partial}{\partial t} + \left(w_{2y} - \frac{3}{2} w_y^2 w^{-1} \right) \frac{\partial}{\partial x}, \quad (11) \]
under which equation (10) is converted into the classical HD equation
\[w_\tau = w^3 w_{3x}. \quad (12) \]

Via the same transformation, the operator \(\tilde{L} \) is brought to
\[\hat{L} = \tilde{L}|_{\partial_y = w \partial_x} = w^{\frac{3}{2}} \partial_y^{-1} w^\frac{1}{2} \partial_y^2, \quad (13) \]
which serves as a non-standard Lax operator for the HD equation (12). In fact, the HD equation (12) is equivalent to
\[\frac{\partial}{\partial t} \hat{L} = [(\hat{L}^3)_{\geq 2}, \hat{L}], \]
and the whole HD hierarchy can be formulated as
\[\frac{\partial}{\partial t_{2n+1}} \hat{L} = [(\hat{L}^{2n+1})_{\geq 2}, \hat{L}], \quad n = 0, 1, 2, \ldots. \]

The non-standard Lax operator (13) could be considered as the member of a larger class of the non-standard HD hierarchy studied in [6]. Indeed this non-standard HD hierarchy is generated by the following Lax operator:
\[L = w \partial_x + \sum_{k=0}^{\infty} u_k \partial_x^{-k}, \quad (14) \]
where \(w, u_k, k = 1, 2, \ldots \), are the arbitrary functions. Using the formula
\[\partial_x^{-1} \cdot f = \sum_{k=0}^{\infty} (-1)^k f_k \partial_x^{-k}, \quad (15) \]
we can compute all \(u_k \) as the functions of \(w, w_\tau, w_{\tau \tau} \ldots \).

3. A new \(N = 2 \) supersymmetric HD hierarchy

In this section, we intend to construct a new \(N = 2 \) HD hierarchy. The idea employed here is to manage to find a proper \(N = 2 \) supersymmetric analogue of the Lax operator \(\hat{L} \) of the above section. By trial and error, we find the Lax operator
\[L = W^{\frac{1}{2}} \partial_x^{-1} D_1 D_2 W^{\frac{1}{2}} D_1 D_2, \]
where \(W = W(x, \theta_1, \theta_2, t) \) is a bosonic super field. The associated Lax equation
\[\frac{\partial}{\partial t} L = [(L^3)_{\geq 2}, L] \]
The associated super derivatives for each super space are respectively denoted by

\[W'_1 = -W_3 W^3 + \frac{1}{2} (D_1 D_2 W_1) (D_1 D_2 W_2) W^2 + \frac{1}{2} (D_2 W_2) (D_2 W) W^2 \]

which is a new \(N = 2 \) supersymmetric HD equation. In the remaining part of this section, we will show that the Lax operator \(L \) is linked to the Lax operator \(L_1 \) via a superconformal transformation.

We recall that by a superconformal transformation it means a super diffeomorphism transforming the super derivatives covariantly (see [9] and references there). Let us consider the super diffeomorphism between the super space variables \((y, \varrho_1, \varrho_2)\) and \((x, \theta_1, \theta_2)\).

\[y \rightarrow x = x(y, \varrho_1, \varrho_2), \]

\[\varrho_1 \rightarrow \theta_1 = \theta_1(y, \varrho_1, \varrho_2), \]

\[\varrho_2 \rightarrow \theta_2 = \theta_2(y, \varrho_1, \varrho_2). \]

The associated super derivatives for each super space are respectively denoted by

\[\mathbb{D}_k = \partial_{\varrho_k} + \varrho_k \partial_{\varrho}, \quad \mathcal{D}_k = \partial_{\theta_k} + \theta_k \partial_{\theta} \quad (k = 1, 2). \]

To ensure the super derivatives transforming covariantly, the super diffeomorphism must be constrained by

\[(\mathbb{D}_1 x) = \theta_1 (\mathbb{D}_1 \theta_1) + \theta_2 (\mathbb{D}_1 \theta_2), \quad (\mathbb{D}_2 x) = \theta_1 (\mathbb{D}_2 \theta_1) + \theta_2 (\mathbb{D}_2 \theta_2), \]

and

\[(\mathbb{D}_1 \theta_2) = -(\mathbb{D}_2 \theta_1), \quad (\mathbb{D}_2 \theta_2) = (\mathbb{D}_1 \theta_1). \]

Under constraints (20) and (21), the super diffeomorphism is a superconformal transformation, which may be formulated by

\[\mathcal{D}_1 = K^{-1}((\mathbb{D}_1 \theta_1) \mathbb{D}_1 + (\mathbb{D}_2 \theta_1) \mathbb{D}_2), \]

\[\mathcal{D}_2 = K^{-1}(-(\mathbb{D}_2 \theta_1) \mathbb{D}_1 + (\mathbb{D}_1 \theta_1) \mathbb{D}_2), \]

where \(K = (\mathbb{D}_1 \theta_1)^2 + (\mathbb{D}_2 \theta_1)^2 \).

For the superconformal transformation, the following formulas hold [13]:

\[\mathcal{D}_1 \mathcal{D}_2 = K^{-1} \left[\mathcal{D}_1 \mathbb{D}_2 + \frac{1}{2} (\mathbb{D}_2 \ln K) \mathcal{D}_1 - \frac{1}{2} \left(\mathbb{D}_1 \ln K \right) \mathbb{D}_2 \right], \]

\[\partial_x K^{-1} \left[\partial_x - \frac{1}{2} (\mathbb{D}_2 \ln K) \mathbb{D}_2 - \frac{1}{2} \left(\mathbb{D}_1 \ln K \right) \mathbb{D}_1 \right]. \]

Based on them, we can prove

\[\partial_x^{-1} \mathcal{D}_1 \mathcal{D}_2 = \partial_x^{-1} \mathbb{D}_1 \mathbb{D}_2. \]

In fact, (23) and (24) may be rewritten as

\[\mathcal{D}_1 \mathcal{D}_2 = K^{-1} \left[\mathcal{D}_1 \mathcal{D}_2 + \mathcal{D}_2 U \mathcal{D}_1 - U \mathcal{D}_1 \mathcal{D}_2 - \mathcal{D}_1 U \mathcal{D}_2 + U \mathcal{D}_2 \mathcal{D}_1 \right] \]

\[= K^{-1} \left[\mathcal{D}_1 \mathcal{D}_2 + 2U \mathcal{D}_1 \mathcal{D}_2 + \mathcal{D}_2 U \mathcal{D}_1 \partial_x^{-1} \mathcal{D}_2 - \mathcal{D}_1 U \mathcal{D}_2 \partial_x^{-1} \mathcal{D}_2 \right] \]

\[= K^{-1} \left[1 + 2U - \mathcal{D}_2 U \partial_x^{-1} \mathcal{D}_2 - \mathcal{D}_1 U \partial_x^{-1} \mathcal{D}_1 \right] \mathcal{D}_1 \mathcal{D}_2, \]

\[\partial_x K^{-1} \left[\partial_x - \partial_x U \partial_x^{-1} \mathcal{D}_2 + U \partial_x^{-1} \mathcal{D}_1 \right] \mathcal{D}_1 \mathcal{D}_2, \]

\[= K^{-1} \left[1 + 2U - \mathcal{D}_2 U \partial_x^{-1} \mathcal{D}_2 - \mathcal{D}_1 U \partial_x^{-1} \mathcal{D}_1 \right] \partial_x. \]
where $U = (\ln K)/2$. Now, equation (25) follows from the above two equations easily. We remark that the same equation (equation (25)) was proved by Mathieu in a different way [9].

According to (23) and (25), the Lax operator L is transformed to

$$
\tilde{L} = W^{1/2} \partial_{\tau}^{-1} D_1 \partial_{\tau} W^{-1/2} \left[D_1 D_2 + \frac{1}{2} (D_2 \ln K) D_1 - \frac{1}{4} (D_1 \ln K) D_2 \right].
$$

Applying the gauge transformation on it and letting $K = W$, we have

$$
W^{-1/2} \tilde{L} W^{1/2} = \partial_{\tau}^{-1} D_1 \partial_{\tau} W^{-1/2} \left[D_1 D_2 + \frac{1}{2} (D_2 \ln W) D_1 - \frac{1}{2} (D_1 \ln W) D_2 \right] W^{1/2} = \partial_{\tau}^{-1} D_1 \partial_{\tau} \left[D_1 D_2 + \frac{1}{2} (D_1 D_2 W) + \frac{3}{4} \frac{(D_2 W)(D_1 W)}{W^2} \right].
$$

Assuming

$$
\Phi = \frac{1}{2} \frac{(D_1 D_2 W)}{W} + \frac{3}{4} \frac{(D_2 W)(D_1 W)}{W^2} = D_1 D_2 \left(\frac{1}{2} \ln W \right) + D_2 \left(\frac{1}{2} \ln W \right) D_1 \left(\frac{1}{2} \log W \right),
$$

we arrive at the Lax operator \mathbb{L}_4 of the SKdV$_1$ equation.

In terms of the new variable $U = (\ln W)/2$, the operator \tilde{L} reads

$$
\tilde{L} = e^{U} \partial_{\tau}^{-1} D_1 \partial_{\tau} e^{-U} \left[D_1 D_2 + (D_2 U) D_1 - (D_1 U) D_2 \right],
$$

which generates a modified equation of SKdV$_1$. Indeed, the Lax equation

$$
\frac{\partial}{\partial \tau} \tilde{L} = [(\tilde{L}^3)_{>1}, \tilde{L}]
$$

yields the equation

$$
U_{t} = -U_{3y} + 2U_{y}^3 + 3(D_1 [D_2 U]) (D_1 D_2 U) + 3(D_1 D_2 U)^2 U_y \\
+ 3(D_2 U_y) (D_2 U) U_y + 3(D_1 U_y) (D_1 U) U_y + 3(D_2 U_y) (D_1 U) (D_1 D_2 U) \\
+ 3(D_2 U) (D_1 U_y) (D_1 D_2 U) + 3(D_2 U) (D_1 U) (D_1 D_2 U_y).
$$

Thus, we have proved that the new supersymmetric HD equation (16) is transformed to SKdV$_1$ by means of the superconformal transformation.

4. Bosonic limit of the new $N = 2$ supersymmetric HD equation

In this section, we consider the bosonic limit of the new $N = 2$ supersymmetric HD equation, and relate it to the bosonic limit of the SKdV$_1$ equation through a series of transformations, among which a reciprocal transformation is the key ingredient.

For our new $N = 2$ supersymmetric HD equation

$$
W_t = -W_3 W^3 + \frac{1}{2} (D_1 D_2 W_y) (D_1 D_2 W) W^2 + \frac{1}{2} (D_2 W_x) (D_2 W) W^2 \\
+ \frac{1}{2} (D_1 W_x) (D_1 W) W^2 - \frac{1}{3} (D_2 W) (D_1 W) (D_1 D_2 W),
$$

by setting

$$
W(x, \theta_1, \theta_2, t) = w_0(x, t) + \theta_2 \theta_1 w_1(x, t),
$$

we obtain its bosonic limit

$$
w_{0,t} = -w_{0,3y} w_3^3 + \frac{3}{2} w_{1,x} w_1 w_0^2, \quad (26a)
$$

$$
w_{1,t} = -w_{1,3y} w_3^3 - 3 w_{1,x} w_3 w_0^2 - \frac{3}{2} w_{1,x} w_{0,x} w_0^2 - \frac{3}{4} w_{1,x} w_{0,x}^2 w_0 \\
+ \frac{3}{2} w_{1,x} w_0^2 w_0 - \frac{1}{2} w_1 w_{0,3y} w_0^2. \quad (26b)
$$
It is obvious that a further reduction $w_1 = 0$ results in the Harry Dym equation.

The coupled system (26a), (26b) admits a conservation law
\[
\frac{\partial}{\partial t}(w_0^{-1}) + \frac{\partial}{\partial x} \left(w_{0,2x}w_0 - \frac{1}{2} w_{0,x}^2 - \frac{3}{4} w_1^2 \right).
\]

Based on this conservation law, new independent variables could be introduced as
d$y = w_0^{-1} dx + (w_{0,2x}w_0 - \frac{1}{2} w_{0,x}^2 - \frac{3}{4} w_1^2) dr, \quad d\tau = dr$.

In terms of the new variables (y, τ), the evolution of (w_0, w_1) is governed by
\[
\begin{align*}
w_{0,\tau} &= -w_{0,3y} + 3 w_{0,2y}w_{0,y}w_0^{-1} - \frac{3}{2} w_{0,y}^2 w_0^{-2} + \frac{3}{2} w_0 w_{1,y} w_1 + \frac{3}{4} w_{0,y} w_1^2, \\
w_{1,\tau} &= -w_{1,3y} + \frac{9}{2} w_{1,2y} w_{0,y} w_0^{-2} - \frac{3}{2} w_{1,y} w_0 w_{0,y}^{-1} + \frac{3}{2} w_{1,y} w_1^2 \\
&\quad - \frac{3}{2} w_1 w_{0,3y} w_0^{-1} + 6 w_1 w_{0,2y} w_{0,y} w_0^{-2} - \frac{9}{2} w_1 w_{0,y} w_1^2.
\end{align*}
\]

Assuming
\[
w_0 = -(\ln w_0)_y, \quad u_1 = w_1,
\]
the system (27a), (27b) is converted into a coupled system of modified KdV equations,
\[
\begin{align*}
u_{0,\tau} &= (-u_{0,2y} + \frac{3}{2} u_{0,y} + \frac{3}{2} u_0 u_1^2)_y, \\
u_{1,\tau} &= (-u_{1,2y} + u_1^3 + \frac{3}{2} u_0 u_1 + \frac{3}{2} u_{0,y} u_1)_y.
\end{align*}
\]

Finally, with the help of the Miura-type transformation
\[
v_0 = \frac{1}{2} u_{0,y} + \frac{1}{4} u_0^2 + \frac{1}{4} u_1^2, \quad v_1 = \frac{1}{2} u_1,
\]
we arrive at the bosonic limit of SKdV_1,
\[
\begin{align*}
v_{0,\tau} &= (-v_{0,2y} + 3 v_0^3 + 3 v_0 v_1^2 - 3 v_{1,2y} v_1)_y, \\
v_{1,\tau} &= (-v_{1,2y} + v_1^3 + 3 v_0 v_1)_y.
\end{align*}
\]

which can be obtained by substituting $\Phi = v_0 + \partial_2 \partial_1 v_2$ into SKdV_1 [11]. The integrability of the system (29a), (29b) was also confirmed by the existence of recursion operator and infinitely many symmetries [4].

5. Conclusions

By studying the non-standard Lax representation for the HD hierarchy, we have successfully constructed a new $N = 2$ supersymmetric HD hierarchy; thus, there are three integrable HD-type hierarchies, which are comparable with the $N = 2$ supersymmetric KdV hierarchies. We further show that this new HD hierarchy, like the other two, is also connected with one of the supersymmetric KdV hierarchies through the superconformal transformation. The further properties of this new system deserve further investigation, which may be done in future work.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant numbers 10671206, 10731080, 10971222) and the Fundamental Research Funds for Central Universities.
References

[1] Bourque S and Mathieu P 2001 J. Math. Phys. 42 3517–39
[2] Brunelli J C, Das A and Popowicz Z 2003 J. Math. Phys. 44 4756–67
[3] Calogero F and Degasperis A 1982 Spectral Transformation and Solitons: I (Amsterdam: North-Holland)
[4] Kersten P and Krasil’shchik J 2000 Complete integrability of the coupled KdV–MKdV system, arXiv:nlin/0010041v1
[5] Kersten P H M and Sorin A S 2002 Phys. Lett. A 300 397–406
[6] Konopelchenko B and Oevel W 1993 Publ. RIMS Kyoto Univ. 29 581–666
[7] Labelle P and Mathieu P 1991 J. Math. Phys. 32 923–7
[8] Laberge C A and Mathieu P 1988 Phys. Lett. B 215 718–22
[9] Mathieu P 1990 Integrable and Superintegrable Systems ed B A Kupershmidt (Singapore: World Scientific) p 352
[10] Oevel W and Popowicz Z 1991 Commun. Math. Phys. 139 441–60
[11] Popowicz Z 1993 Phys. Lett. A 174 411–5
[12] Sakovich S Y 2004 J. Math. Phys. 45 2338–42
[13] Tian K and Liu Q P 2011 The transformations between $N = 2$ supersymmetric KdV and HD equations arXiv:1108.2110