The Relation Between Capillary Transit Times and Hemoglobin Saturation Heterogeneity. Part 1: Theoretical Models

Adrien Lücker*1, Timothy W. Secomb2, Bruno Weber3 and Patrick Jenny1

1 Department of Mechanical and Process Engineering, Institute of Fluid Dynamics, ETH Zurich, Zurich, Switzerland,
2 Department of Physiology, University of Arizona, Tucson, AZ, United States,
3 Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland

Capillary dysfunction impairs oxygen supply to parenchymal cells and often occurs in Alzheimer’s disease, diabetes and aging. Disturbed capillary flow patterns have been shown to limit the efficacy of oxygen extraction and can be quantified using capillary transit time heterogeneity (CTH). However, the transit time of red blood cells (RBCs) through the microvasculature is not a direct measure of their capacity for oxygen delivery. Here we examine the relation between CTH and capillary outflow saturation heterogeneity (COSH), which is the heterogeneity of blood oxygen content at the venous end of capillaries. Models for the evolution of hemoglobin saturation heterogeneity (HSH) in capillary networks were developed and validated using a computational model with moving RBCs. Two representative situations were selected: a Krogh cylinder geometry with heterogeneous hemoglobin saturation (HS) at the inflow, and a parallel array of four capillaries. The heterogeneity of HS after converging capillary bifurcations was found to exponentially decrease with a time scale of 0.15–0.21 s due to diffusive interaction between RBCs. Similarly, the HS difference between parallel capillaries also drops exponentially with a time scale of 0.12–0.19 s. These decay times are substantially smaller than measured RBC transit times and only weakly depend on the distance between microvessels. This work shows that diffusive interaction strongly reduces COSH on a small spatial scale. Therefore, we conclude that CTH influences COSH yet does not determine it. The second part of this study will focus on simulations in microvascular networks from the rodent cerebral cortex. Actual estimates of COSH and CTH will then be given.

Keywords: blood flow, capillary transit time heterogeneity, computational modeling, hematocrit, hemoglobin saturation, microcirculation, oxygen transport, red blood cells

INTRODUCTION

Microvessels are the primary site of gas exchange in the vertebrate microvascular system due to their large surface area. Energy metabolism is largely dependent on a continuous oxygen supply from the microcirculation which is actively regulated by the microvasculature. For instance, in the cerebral cortex, dilations of pial arteries (Chen et al., 2011) and penetrating arterioles (Tian et al., 2010) are essential components of neurovascular coupling. The smallest blood vessels are
also involved in these processes. Capillary hyperemia was shown
to occur prior to dilation of pial arteries (Hillman, 2014) and
pericyte-mediated capillary dilations were observed to actively
regulate cerebral blood flow (Hall et al., 2014). Therefore,
an efficient and robust regulation of oxygen supply is highly
dependent on the healthy function of microvessels.

Malfunctions in the microvasculature occur in many diseases
and conditions. Cerebral small vessel disease plays a crucial role
in stroke, dementia and aging (Pantoni, 2010). Cerebral pericytes,
which were reported to regulate capillary diameter during
functional activation (Hall et al., 2014), are susceptible to damage
in ischemia (Yemisci et al., 2009) and to loss or degeneration in
conditions such as aging, hypertension and diabetes (Østergaard
et al., 2015). Exposure to β-amyloid is toxic to pericytes and
amyloid accumulation often occurs in relation to Alzheimer’s
disease (Hamilton et al., 2010). These deposits characterize
cerebral amyloid angiopathy which is associated with cerebral
blood flow disturbance (Thal et al., 2009). Therefore, the study
of these conditions requires a proper understanding of the
consequences of capillary dysfunction on oxygen transport.

Capillary dysfunction can be quantified by capillary transit
time heterogeneity (CTH) which is the standard deviation of
the transit time distribution. In their seminal study, Jepsen
and Østergaard (2012) showed using a theoretical model that the
efficacy of oxygen extraction decreases with CTH. In particular,
disturbed capillary flow patterns can decrease oxygen extraction
even in the absence of changes in mean flow. CTH was linked to
a number of diseases and conditions such as Alzheimer’s disease
(Østergaard et al., 2013a), stroke-like symptoms (Østergaard
et al., 2013b), traumatic brain injury (Østergaard et al., 2014a)
and ischemic heart disease (Østergaard et al., 2014b).

In the study by Jepsen and Østergaard (2012), CTH was
related to the oxygen extraction fraction by extending the Bohr-
Kety-Crone-Renkin model which assumes homogeneous oxygen
partial pressure (PO2) in the extravascular compartment. This
flow diffusion equation relates the decrease in blood oxygen
centration to the capillary transit time and the oxygen partial
pressure drop across the capillary wall by means of a single
rate constant. This constant was fitted to yield a resting oxygen
extraction fraction value of 0.3 and the tissue PO2 was required
as a model input. Angleys et al. (2015) refined this model
to determine tissue PO2 values that match metabolic oxygen
consumption and the oxygen extraction fraction values predicted
by the Bohr-Kety-Crone-Renkin model.

The distribution of PO2 levels at the distal ends of capillaries
is a key determinant of tissue oxygenation. Even if blood flow to
a given region is adequate to meet the oxygen needs of the tissue,
a maldistribution of flow can lead to wide variations of end-
capillary PO2. If the PO2 distribution is highly heterogeneous,
low values in some capillaries can cause tissue hypoxia,
whereas a uniform distribution of end-capillary PO2 tends to
minimize tissue hypoxia, for a given overall oxygen supply. The
heterogeneity of end-capillary PO2 can equivalently be expressed
in terms of the heterogeneity of hemoglobin saturation (HS),
which is functionally dependent on PO2 according to the oxy-
hemoglobin saturation curve. This study therefore focuses on
capillary outflow saturation heterogeneity (COSH), a measure
of the variability of blood oxygen content at the distal end of
capillaries where blood flows into venules. Elevated COSH
may imply that a fraction of microvessels cannot supply oxygen
to their surrounding tissue even if the average saturation is
sufficiently high.

In previous modeling works (Jepsen and Østergaard, 2012;
Angleys et al., 2015), the effects of CTH on brain oxygenation
were quantified using blood oxygen levels. Both tissue PO2 and
capillary HS were shown to depend on transit times through the
eythrocyte velocity. Like other microvascular beds, the brain
microvasculature has a heterogeneous geometric structure and
hemodynamics, with substantial variability in path lengths, vessel
diameters, flow rates, hematocrit, and tissue volumes supplied by
individual capillaries. In parallel capillary arrays, the interaction
among vessels reduces the heterogeneity of PO2 when RBC
velocity and inlet oxygen concentration take different values in
each capillary (Popel et al., 1986; Salathe, 2003). Besides, in
the absence of CTH, irregular capillary spacings lead to a more
heterogeneous oxygenation compared to regularly spaced arrays
(Hoofd and Turek, 1996), which also affects the distribution of
HS. Therefore, multiple factors beside CTH contribute to
COSH, and CTH by itself does not provide a sufficient basis for
understanding and predicting tissue oxygenation. The present
study addresses the factors determining COSH and its relation
to CTH, using theoretical models.

To compute COSH, models that describe the evolution
of HSH in single and multiple capillaries are developed.
Diffusive oxygen transfer among RBCs is shown to be the main
physical mechanism for the reduction of HSH. The diffusive
interaction between RBCs in single capillaries and between
parallel capillaries is modeled based on ordinary differential
equations. These interaction models are validated for a large
range of physiological parameters using a computational model
with individual moving RBCs (Lücke et al., 2014). Explicit
formulas for the associated length and time scales are given
and the resulting values are compared to RBC transit times
and path lengths in capillaries. The modeling of COSH is an
essential step toward an actual understanding of CTH and its
relation to oxygen transport in MVNs. The resulting insights
have potentially broad implications in the study of capillary
dysfunction and related conditions.

MATERIALS AND METHODS

Models for the diffusive interaction between RBCs in single
capillaries and between multiple capillaries were developed based
on ordinary differential equations that extend those used in
Lücke et al. (2017). The interaction models were compared to
our previously developed oxygen transport model with individual
moving RBCs (Lücke et al., 2014).

Based on the observation that the RBC transit time is only one
of multiple parameters that determine HS (Lücke et al., 2017),

Abbreviations:
- COSH, capillary outflow saturation heterogeneity
- CTH, capillary transit time heterogeneity
- HS, hemoglobin saturation
- HSH, hemoglobin saturation heterogeneity
- RBC, red blood cell.
we asked the question: “Which phenomena cause a difference between CTH and COSH?” Two representative situations that contribute to a reduction of HSH were identified. The first one pertains to branchings where two capillaries with different HS levels are converging. This heterogeneity, which may result from different transit times, causes the rates of oxygen unloading from individual RBCs to differ. The second situation concerns parallel capillaries with different HS. In this case, the tissue volume supplied by each capillary can differ.

Diffusive interaction models are derived for these two representative situations. These simplified models directly highlight the variables that influence most the reduction of HSH. Then, the employed computational model (Lücker et al., 2014) is briefly outlined.

Models for Hemoglobin Saturation Based on Ordinary Differential Equations

The interaction models developed in this study are all formulated in an axisymmetric geometry with four distinct regions: RBCs, plasma, capillary endothelium and tissue, denoted by the indices c, p, w, and t, respectively. Cylindrical RBCs with radius r_c and volume V_{rbc} are employed. The domain geometry is described by its length L, the plasma radius r_p, the outer capillary wall radius r_w and the tissue radius $r_t(x)$ which may be a function of the axial position x (Figure 1A). The arterial and venous capillary ends (also referred to proximal and distal ends) are denoted by the indices a and v.

In capillaries, RBCs flow in a single file with velocity v_{rbc} and the RBC linear density is defined to be the ratio of the length occupied by the RBCs to the total vessel length. It is related to the tube hematocrit H_T by

$$\mu_{LD} = H_T \left(\frac{r_p}{r_c} \right)^2.$$

The equilibrium curve for hemoglobin and oxygen is modeled using the Hill equation

$$S_{eq}(P) = \frac{P^n}{P^n + P^n_{50}},$$

where n is the Hill exponent and P_{50} the oxygen partial pressure at half-saturation. The inverse form of this equation

$$P_{eq}(S) = P_{50} \left(\frac{S}{1 - S} \right)^{1/n}$$

will often be required. Since the Hill equation is known to be inaccurate at low P_{O2} values, the more complex Adair equation (Popel, 1989) will also be used to estimate diffusive interaction between parallel capillaries.

The models developed here are based on the neglect of axial diffusion and the use of steady-state equations. These common assumptions (Hellums, 1977; Roy and Secomb, 2014; Lücker et al., 2017) reduce the evolution of HS to an ordinary differential equation. Based on the absence of axial diffusion, the oxygen outflux from the capillary at the axial position x is balanced by the metabolic oxygen consumption integrated over the tissue slice normal to the capillary at x, which is denoted by $j_l(x)$. The mass balance between the capillary and the tissue is given by

$$\frac{d}{dx} S = -j_l(x),$$

where $f(S)$ is the convective oxygen flux through the capillary.

Oxygen consumption is assumed to occur at a rate per unit volume M_0 which is independent from tissue P_{O2}. This simplification allows the existence of an analytical expression for P_{O2} in the tissue. Based on this assumption, the oxygen consumption in the tissue slice normal to x becomes

$$j_l(x) = M_0 \pi (r_t^2(x) - r_w^2),$$

as illustrated in Figure 1A.

Oxygen in the blood is present bound to hemoglobin in RBCs and dissolved in both plasma and RBCs. The total convective flux is given by

$$f(S) = v_{rbc} \left(\pi r_p^2 H_D C_0 + \pi r_p^2 \alpha_{eff} P_{IV} \right),$$

where $C_0 = N_{Hb} V_{mol,O2}$ is the product of the heme concentration and the molar volume of oxygen, and P_{IV} is the intravascular P_{O2} which needs to be modeled. Here, the Fähraeus effect is neglected, hence the discharge hematocrit H_D is set to 1. The effective oxygen solubility is defined by $\alpha_{eff} = H_T \alpha_c + (1 - H_T) \alpha_p$. The first term in the right-hand side of Equation (6) thus accounts for oxygen bound to hemoglobin and the second one represents dissolved oxygen in the capillary. The average RBC oxygen partial pressure P_r is assumed to be in equilibrium with HS, that is, $P_r = P_{eq}(S)$; in the plasma, the oxygen partial pressure is set to be constant and equal to P_w, the oxygen partial pressure at the capillary outer wall. As in Lücker et al. (2017), we use the intravascular resistance coefficient K_{IV} defined by

$$K_{IV} j_l = P_r - P_w.$$

Values of K_{IV} can be fitted from numerical simulations or obtained using an analytical formula (Lücker et al., 2017). This yields

$$P_{IV} = H_T P_{eq}(S) + (1 - H_T) P_w = P_{eq}(S) - (1 - H_T) K_{IV} j_l.$$

We can now summarize the above equations to obtain the evolution equation for HS. For brevity, we define total oxygen convective capacity as

$$Q_{O2}(S) = v_{rbc} \left(\mu_{LD} \pi r_p^2 c_0 + \pi r_p^2 \alpha_{eff} \frac{dP_{ed}}{dS} \right).$$

Equations (4), (6) and (8) result in

$$Q_{O2}(S) \frac{dS}{dx} = -j_l(x) + v_{rbc} \pi r_p^2 \alpha_{eff} (1 - H_T) K_{IV} \frac{dj_l(x)}{dx}.$$

When the tissue domain is a straight cylinder, the last term vanishes. If the tissue radius is not constant, this term is nonzero.
but was found to be negligible. Therefore, it will be omitted in further derivations. However, this term was included in all numerical computations for completeness. Equation (10) can be recast in terms of the capillary transit time \(\tau \) and integrated as

\[
S(\tau) = S_0 - \int_0^\tau \frac{j_1(t)q(t)}{\mu L^2 \pi r_c^2 C_0 + \pi r_c^2 \alpha_\text{ef} \frac{dP_{eq}}{dx}} \, dt. \tag{11}
\]

Thus, HS on the distal side is influenced by the RBC transit time, the oxygen consumption per unit length, hematocrit and vessel diameter. This description of distal blood oxygen concentration is more complete than the previously used Bohr-Kety-Crone-Renkin equation (Jespersen and Østergaard, 2012; Angleys et al., 2015). The BKCR model uses the normalized coordinate \(\hat{x} = x/L \) and reads

\[
\frac{dC}{dx} = -k \tau \left(\frac{C_{\text{eq}} C_0}{B - C} \right)^{1/n} - C_t, \tag{12}
\]

where \(C \) is the bound oxygen concentration in RBCs, \(B \) is the maximal amount of oxygen bound to hemoglobin and \(C_t \) the oxygen concentration in the tissue. The model constant \(k \) was adjusted to obtain an oxygen extraction fraction of 0.3 in Jespersen and Østergaard (2012) and Angleys et al. (2015). In Equation (10), the counterpart of \(k \) is the inverse of \(Q_{O_2}(S) \) (Equation 9) which is an explicit function of hematocrit and the vessel geometry.

Given the sink term \(j_1(x) \), Equation (10) can be integrated numerically using a standard differential equation solver. The implementation in SciPy (Jones et al., 2001) of an explicit Runge-Kutta method of order 4(5) was used (Hairer et al., 1993).

In the modeling of diffusive integration between parallel capillaries, knowledge of the \(P_{O_2} \) in the tissue will be required. This is achieved using the intravascular resistance coefficient and the Krogh model. From the HS \(S \) at an axial position \(x \), the average RBC oxygen partial pressure \(P_r \) is obtained using Equation (3). The oxygen partial pressure \(P_{w} \) at the capillary outer wall is then given by Equation (7). Finally, the Krogh model for the oxygen partial pressure at a distance \(r \) from the capillary centerline reads

\[
P(x, r) = P_w(x) - \frac{M_0}{4D_1 \alpha_1} \left[2r_r^2 \ln \left(\frac{r_r}{r_w} \right) - r_r^2 + r_w^2 \right], \quad r \geq r_w. \tag{13}
\]

Diffusive Interaction Between RBCs in a Single Capillary

Capillary networks in the cerebral microvasculature form a mesh-like structure (Lorthois and Cassot, 2010; Blinder et al., 2013) with both diverging and converging bifurcations. At converging bifurcations, RBCs from either inflow branch may have different HS, for instance due to different transit times or hematocrit values. Here, we derive an interaction model for the evolution of HS saturation in a single capillary.

To describe this fluctuation, the HS is treated as a random variable \(S \). The RBC interaction model is based on Fick’s law as follows: the oxygen flux out of the capillary is assumed to be proportional to the oxygen partial pressure difference between the RBC and the tissue. In other words, we assume that

\[
Q_{O_2}(S) \frac{dS}{dx} = -C(P_{eq}(S) - P(r_s)), \tag{14}
\]

where \(r_s \) is a radial position which is independent from the fluctuations of \(S \) and where the \(P_{O_2} \) fluctuations in the tissue are small (Figure 1B), and \(C \) is a proportionality factor that will be derived. From now on, averaged quantities will be denoted by an overline. In the next steps, the nonlinearity in \(S \) of the total convective oxygen capacity \(Q_{O_2}(S) \) (Equation 9) will be ignored, which allows the simplification \(\overline{Q_{O_2}(S)} = Q_{O_2}(S) \). Based on this, the averaged mass balance is given by

\[
Q_{O_2}(S) \frac{d\overline{S}}{dx} = -\overline{j_1(x)}. \tag{15}
\]

The averaging of Equation (14) combined with Equation (15) yields an expression for \(C \) which can be inserted into
Equation (14). The terms can be rearranged as
\[
Q_{O_2}(S) \frac{dS}{dx} = -j_i(x) \left(1 + \frac{P_{eq}(S) - P_{eq}(S_0)}{P_{eq}(S) - P(r_c)} \right).
\] (16)

The oxygen partial pressure \(P(r_c)\) still needs to be modeled. This is achieved by introducing the resistance coefficient for RBC diffusive interaction \(K_{RI} = (P_{eq}(S) - P(r_c))/j_i(x)\), which is the only parameter of this model. Thus, the model equation for randomly distributed HS in a single capillary is given by
\[
Q_{O_2}(S) \frac{dS}{dx} = -j_i(x) - \frac{1}{K_{RI}}(P_{eq}(S) - P_{eq}(S)).
\] (17)

By a suitable linearization, the nonlinear Equation (17) can be further simplified to an evolution equation for the standard deviation of \(S\). Here, we again assume that the function \(P_{eq}\) (Equation 3) is linear around \(\bar{S}\) and that the derivative \(\frac{dP_{eq}}{dx}(S)\) can be neglected. It follows that
\[
Q_{O_2}(S) \frac{dS}{dx}(S - \bar{S}) = -\frac{1}{K_{RI}} \frac{dP_{eq}}{dS} \bigg|_{\bar{S}} (S - \bar{S}).
\] (18)

Using the above assumptions, the standard deviation of HS \(\sigma_S\) satisfies the differential equation
\[
Q_{O_2}(S) \frac{d\sigma_S}{dx} = -\frac{\sigma_S}{K_{RI}} \frac{dP_{eq}}{dS} \bigg|_{\bar{S}}.
\] (19)

This equation can be solved numerically given the average HS \(\bar{S}\) which is itself obtained by integrating Equation (10).

The resistance coefficient \(K_{RI}\) describes the resistance to the \(P_{O_2}\) drop between the RBC and a location in the tissue where \(P_{O_2}\) oscillations are small. Since oscillations resulting from fluctuating capillary \(P_{O_2}\) decay exponentially with distance into the tissue, there is no precise definition of this location and no exact formula for \(K_{RI}\) can be derived. However, this coefficient can be fitted based on numerical simulations and compared to a measure for the spreading distance of \(P_{O_2}\) oscillations into the tissue. First, \(K_{RI}\) is decomposed as \(K_{RI} = K_{IV} + K_{OS}\), where \(K_{IV}\) is the intravascular resistance coefficient (Lücker et al., 2017) and \(K_{OS}\) represents the extravascular contribution to \(K_{RI}\). Second, we define a characteristic penetration radius \(r_{osc}\) for \(P_{O_2}\) oscillations by
\[
\pi (r_{osc}^2 - r_w^2) \Delta P_{\text{max}} = \int_{r_w}^{r_{osc}} r \Delta P(r) \, dr,
\] (20)
where \(\Delta P\) is the radially varying fluctuation in tissue \(P_{O_2}\) (Figure 1B). Finally, the integral oscillation spreading distance \(\Delta r_{osc}\) is defined as
\[
\Delta r_{osc} = r_{osc} - r_w.
\] (21)

This quantity can be obtained from the results of the computational model. We will show that \(\Delta r_{osc}\) is an accurate predictor for the model coefficient \(K_{OS}\).

Diffusive Interaction Between Parallel Capillaries

Having examined the diffusive interaction between heterogeneously saturated RBCs in the same capillary, we now consider the diffusive interaction between capillaries with different saturation levels. For our analysis, four parallel capillaries with concurrent blood flow are considered where both pairs of diagonally opposed capillaries will be denoted by the indices \(\phi\) and \(\psi\), respectively (Figure 2).

Given different HS values \(S_{\phi,a}, S_{\psi,a}\) at the proximal inlets, we aim to derive the evolution of \(P_{O_2}\) in both capillaries. To do this, the tissue region supplied by each capillary is approximated by a cylinder with varying radius which will be determined using the continuity of tissue \(P_{O_2}\). As above, the neglect of axial diffusion allows tissue slices that are orthogonal to the capillary to be decoupled. Let \(A\) be the area of the normal domain slice supplied by the two model capillaries \(\phi\) and \(\psi\). Mass conservation implies that the oxygen flux at \(x\) out of both model capillaries balances the metabolic oxygen consumption in the tissue slice normal to \(x\):
\[
\psi_{i,\phi}(x) + \psi_{i,\psi}(x) = M_0(A - 2\pi r_w^2).
\] (22)

Using the intravascular resistance coefficient and the Krogh model (Equation 13), the continuity of tissue \(P_{O_2}\) at the interface between the Krogh cylinders is given by
\[
P_{c,\phi}(x) - K_{IV,\phi} j_{i,\phi}(x) - \Delta P_{EV}(j_{i,\phi}(x)) = P_{c,\psi}(x) - K_{IV,\psi} j_{i,\psi}(x) - \Delta P_{EV}(j_{i,\psi}(x)),
\] (23)
where \(\Delta P_{EV}(j_i)\) is the extravascular \(P_{O_2}\) drop associated to the local oxygen outflux \(j_i\). Based on the right-hand side of Equation (13), it is given by
\[
\Delta P_{EV}(j_i) = \begin{cases}
M_0 & \frac{2\pi r_i^2 \ln \left(\frac{r_i}{r_w} \right)}{M_0} - r_i^2 + r_w^2, & j_i \geq 0, \\
0 & \text{otherwise}.
\end{cases}
\] (24)

Given \(P_{c,\phi}\) and \(P_{c,\psi}\), the nonlinear equation system formed by Equation (22) and (23) can be solved numerically for \(j_{i,\phi}\) and \(j_{i,\psi}\). Then, Equation (10) is solved in both model capillaries one step forward using an explicit differential equation integrator. This model will be referred to as nonlinear Krogh-based model and can be applied to capillaries with different flows and radii. Cases where one capillary is supplied with oxygen by the other (for instance, \(j_{i,\psi} < 0\)) are captured by this formulation.

A slight simplification in Equation (23) provides an explicit expression for the oxygen flux out of both model capillaries. Under the assumption that both capillaries have the same geometry and linear density, the intravascular resistance coefficient \(K_{IV}\) takes the same value in both capillaries, so
Equation (23) can be rearranged as

\[
\frac{P_{c,\phi}(x) - P_{c,\psi}(x)}{M_0} = \left(K_{IV,\phi} - \frac{1}{4D_1\alpha_t} \left(r_{\phi}^2 - r_{\psi}^2 \right) \right) + \frac{1}{2D_1\alpha_t} \left(r_{\phi}^2 \ln \left(\frac{r_{\phi}}{r_w} \right) - r_{\psi}^2 \ln \left(\frac{r_{\psi}}{r_w} \right) \right).
\]

(25)

The assumption that

\[
\ln \left(\frac{r_{\phi}}{r_w} \right) \simeq \ln \left(\frac{r_{\psi}}{r_w} \right) \simeq \ln \left(\frac{r_{\text{mean}}}{r_w} \right),
\]

(27)

where \(r_{\text{mean}} = \sqrt{\frac{1}{2}(r_{\phi}^2 + r_{\psi}^2)} \), yields an explicit expression for the oxygen outflux

\[
j_{l,\phi}(x) = M_0 \pi (r_{\text{mean}}^2 - r_w^2) + \frac{P_{c,\phi}(x) - P_{c,\psi}(x)}{2K_{IV} + \frac{1}{2\pi D_1\alpha_t} \left(\ln \left(\frac{r_{\text{mean}}}{r_w} \right) - \frac{1}{2} \right)}
\]

(28)

and a similar expression for \(j_{l,\psi} \). We now define the resistance coefficient \(K_{CI} \) for diffusive interaction between capillaries as

\[
K_{CI} = K_{IV} + \frac{1}{2\pi D_1\alpha_t} \left(\ln \left(\frac{r_{\text{mean}}}{r_w} \right) - \frac{1}{2} \right).
\]

(29)

By using the average oxygen outflux \(j_l = M_0 \pi (r_{\text{mean}}^2 - r_w^2) \), the evolution equations for HS in both model capillaries become

\[
Q_{O_2,\phi}(S_\phi) \frac{dS_\phi}{dx} = -j_l - \frac{1}{2K_{CI}} (P_{c,\phi}(x) - P_{c,\psi}(x))
\]

(30)

\[
Q_{O_2,\psi}(S_\psi) \frac{dS_\psi}{dx} = -j_l - \frac{1}{2K_{CI}} (P_{c,\psi}(x) - P_{c,\phi}(x)).
\]

(31)

This model will be referred to as explicit Krogh-based model. To derive this equation, the respective linear densities in both capillaries were assumed to be equal. However, the respective RBC velocities were still allowed to be different. Under the assumption that \(v_{\text{RBC}} \) is equal in both capillaries, the linearization of \(P_{eq} \) around the average HS \(\bar{S} = \frac{1}{2}(S_\phi + S_\psi) \) yields the following evolution equation for the saturation difference \(\Delta S = S_\phi - S_\psi \) between both model capillaries:

\[
Q_{O_2}(\bar{S}) \frac{d\Delta S}{dx} = -\frac{\Delta S}{K_{CI}} \frac{dP_{eq}}{d\bar{S}} \bigg|_{\bar{S}}.
\]

(32)

This third model will be referred to as linearized capillary interaction model. This equation leads to the definition of the characteristic length scale \(L_{CI} \) for diffusive interaction between parallel capillaries

\[
L_{CI} = K_{CI} Q_{O_2}(\bar{S}) \left(\frac{dP_{eq}}{d\bar{S}} \bigg|_{\bar{S}} \right)^{-1}.
\]

(33)

Similarly, the characteristic time scale \(\tau_{CI} \) is defined as

\[
\tau_{CI} = \frac{L_{CI}}{v_{\text{RBC}}} = K_{CI} \left(\mu_{\text{LD}} \pi r_w^2 C_0 \left(\frac{dP_{eq}}{d\bar{S}} \bigg|_{\bar{S}} \right)^{-1} + \pi r_{\text{eff}}^2 \right).
\]

(34)

Thus it is independent from the RBC velocity and depends on linear density, the average HS \(\bar{S} \) and the geometry. These characteristic quantities will be compared to fits obtained using the computational model presented below.

Computational Model

The results of the models for RBC and capillary diffusive interactions were compared with numerical solutions to the advection-diffusion-reaction equations for oxygen and hemoglobin. The reaction rates between both quantities are coupled based on Clark et al. (1985) with

\[
f(P, S) = \begin{cases}
 k_\infty \left(S - (1 - S) \left(\frac{P}{P_{50}} \right)^n \right) & \text{inside RBCs,} \\
 0 & \text{outside RBCs,}
\end{cases}
\]

(35)
where k_- is the reaction rate. Metabolic oxygen consumption was modeled using zero-th order kinetics as

$$M(P) = \begin{cases} M_0 & \text{inside tissue}, \\ 0 & \text{outside tissue}. \end{cases} \tag{36}$$

This was chosen instead of the commonly used Michaelis-Menten kinetics to facilitate the comparison between the interaction models and the computational model. The oxygen transport equation is given by

$$\frac{\partial \alpha P}{\partial t} + v \cdot \nabla (\alpha P) = \nabla \cdot (D \alpha \nabla P) + C_{df}(P,S) - M(P), \tag{37}$$

where v is the plasma velocity. In RBCs, the evolution of HS follows

$$\frac{\partial S}{\partial t} + v \cdot \nabla S = \nabla \cdot (D_{Hb} \nabla S) - f(P,S), \tag{38}$$

where D_{Hb} is the diffusion coefficient of hemoglobin in RBCs.

For simulations in a single capillary or parallel capillaries, these equations were solved using the finite-volume method with moving RBCs (Lücker et al., 2014).

Model Parameters

The heterogeneity of HS was investigated in different computational domains. The physiological parameters were chosen to match the mouse cerebral cortex. The diffusive interaction between RBCs was studied in a two-dimensional cylindrical domain with radius $r_c = 23 \mu m$, which corresponds to the distances between nuclei of neurons and capillaries (Tsai et al., 2009). Unless stated otherwise, a domain length $L = 100 \mu m$ was chosen. This length is smaller than the average capillary path length of 343 μm measured by Sâkadžić et al. (2014). The domain length influence will be addressed below. Cylindrical RBCs with volume $V_{rbc} = 59 \mu m^3$ and radius $r_{rbc} = 1.5 \mu m$ were employed. The capillary lumen diameter was set to $r_c = 2.0 \mu m$, which is typical in the rodent cerebral cortex (Tsai et al., 2009), and the endothelium thickness to 0.6 μm (Bertossi et al., 1997), so that the endothelium radius was $r_w = 2.6 \mu m$. At the tissue boundary, the gradient of the PO_2 field was set to zero. In this domain, the grid cell size was set to $\Delta x = \Delta y = 0.3 \mu m$ in the capillary. The radial grid spacing in the tissue was smoothly increased to save computational effort, so that Δy was four times higher at the tissue boundary than in the capillary. The grid spacing in the RBC meshes was set to $\Delta x_{rbc} = \Delta y_{rbc} = 0.1 \mu m$. The time step size was set to $\Delta t = \Delta x/r_{rbc}$. All simulations were run until a statistical steady state was reached.

The diffusive interaction between capillaries was investigated in an array with four parallel capillaries with radius $r_p = 2.0 \mu m$. The symmetry of the domain allowed that only one quarter of each capillary had to be simulated (Figure 2B). The normal PO_2 gradient was set to zero at each boundary plane. A spacing of 40 μm between the capillaries was chosen, which yields an averaged supplied tissue volume per capillary very close to that of a cylinder with radius $r_c = 23 \mu m$. In these simulations, the RBC radius was set to $r_c = 1.6 \mu m$ and the endothelium radius to $r_w = 2.5 \mu m$. For this three-dimensional domain, a coarser grid spacing than in the two-dimensional cylinder was chosen. The grid cell size in the tissue away from the capillaries was set to 1 μm. At $\leq 8 \mu m$ from the capillaries, the grid was refined by a factor two to better resolve the high oxygen gradients in and close to the capillaries. The grid cell size in the RBCs was set to $\Delta x_{rbc} = 0.25 \mu m$ and the time step to $\Delta t = \Delta x/r_{rbc}$. Since the HS difference ΔS between the venous ends of the capillaries is our main quantity of interest here, the grid spacing needs to be sufficiently high to accurately resolve this quantity. A grid convergence study showed that doubling the spatial resolution in each dimension and reducing the time step correspondingly increases ΔS_c by $< 2.2\%$. Therefore, all simulations were run with the grid resolution described above, since it provides a good compromise between accuracy and run time (~20 h per simulation on a single core). The coarser grid resolution in the tissue was found not to affect the values of ΔS. The metabolic rate of oxygen consumption was set to $10^{-3} \mu m^3 O_2 \mu m^{-3} \text{s}^{-1}$, which is within the range of values measured in the anesthetized rodent cerebral cortex (Zhu et al., 2013), using a brain density of 1.05 $g \text{cm}^{-3}$ and the ideal gas law at body temperature for the molar volume of oxygen $(2.544 \times 10^4 \text{ml O}_2/(\text{mol O}_2))$. The intravascular resistance coefficient, which is used for the model coefficients K_{RI} and K_{CI} (Equation 29), was determined using the formula $K_{IV} = 0.5K_{IV,0.5}/\mu LD$ (Lücker et al., 2017), with the difference that convective transport of dissolved oxygen content was included in Equation (10). For $r_c = 1.5 \mu m$, the value of $K_{IV,0.5}$ was $5.15 \text{mmHg} \mu m/s/(\mu m^2 O_2)$. In parameter studies, the RBC velocity will be varied between 0.4 and 2.0 mm/s and the linear density between 0.2 and 0.6. When these parameters are fixed, v_{rbc} will be set to 1.0 mm/s and μLD to 0.3. For $r_c = 1.5 \mu m$, this yields a RBC flow equal to $v_{rbc}\mu LD/L_{rbc} = 40.7$ cells/s. These values are typical for the rodent brain (Parpaleix et al., 2013; Lyons et al., 2016). The other physiological parameters are given in Table 1.

Equations (37) and (38) were solved using a custom written extension of the open-source computational fluid dynamics library OpenFOAM 2.3.0 (Weller et al., 1998). The equations were discretized as explained in Lücker et al. (2014).

RESULTS

The evolution of HSH was simulated in the geometries shown in Figure 1A, 2A, and compared to the RBC and capillary interaction models.

Diffusive Interaction Between RBCs

The diffusive interaction between RBCs with different HS was investigated in a cylindrical tissue domain (Figure 1A). This single-capillary setup with differently saturated RBCs aims to represent a capillary after a converging bifurcation where RBCs with different transit times are flowing in. The simplest model for the inlet HS of RBCs is when erythrocytes alternatingly take two fixed saturation values (one value per upstream branch). Figure 3 shows the evolution of HS in a capillary with length $L = 300 \mu m$ with inlet values $S = 0.8$ and
The similar values of Goldstick et al., 1976, Liu et al., 1994, Clark et al., 1985, Watanabe et al. (2008), Tsai et al., 2009. The resulting evolution of HSH is Clark et al., 1985, Mahler et al., 1985, Clark et al., 1985, Bentley et al., 1993, Watanabe et al. (2008), Clark et al., 1985.

K\textsubscript{α}

\minimize

the model error linearized RBC diffusive interaction model with the same value of K\textsubscript{α}

V\textsubscript{p}

RBC volume at 36.9°C

V_{\text{mol, O2}}

m\text{O}_2 \text{mol}^{-1}

μm

Parameter values.

TABLE 1 |

Parameter	Description	Value	Units	References
α\textsubscript{RBC}	O\textsubscript{2} solubility in RBCs	3.38 \times 10^{-5}	m\text{O}_2 \text{mmHg}^{-1} \text{cm}^{-3}	Altman and Dittmer, 1971
α\textsubscript{P}	O\textsubscript{2} solubility in the plasma	2.82 \times 10^{-5}	m\text{O}_2 \text{mmHg}^{-1} \text{cm}^{-3}	Christoforides et al., 1969
α\textsubscript{W}	O\textsubscript{2} solubility in the capillary wall	3.89 \times 10^{-5}	m\text{O}_2 \text{mmHg}^{-1} \text{cm}^{-3}	Mahler et al., 1985
α\textsubscript{T}	O\textsubscript{2} solubility in the tissue	3.89 \times 10^{-5}	m\text{O}_2 \text{mmHg}^{-1} \text{cm}^{-3}	Clark et al., 1985
D\textsubscript{RBC}	O\textsubscript{2} diffusivity in RBCs	9.5 \times 10^{-6}	cm\text{²} \text{s}^{-1}	Clark et al., 1985
D\textsubscript{P}	O\textsubscript{2} diffusivity in the plasma	2.18 \times 10^{-5}	cm\text{²} \text{s}^{-1}	Goldstick et al., 1976
D\textsubscript{W}	O\textsubscript{2} diffusivity in the capillary wall	8.73 \times 10^{-6}	cm\text{²} \text{s}^{-1}	Liu et al., 1994
D\textsubscript{T}	O\textsubscript{2} diffusivity in the tissue	2.41 \times 10^{-5}	cm\text{²} \text{s}^{-1}	Bentley et al., 1993
D\textsubscript{Hb}	Hemoglobin diffusivity in RBCs	1.44 \times 10^{-7}	cm\text{²} \text{s}^{-1}	Clark et al., 1985
k\textsubscript{c}	Dissociation rate constant	4.4	s-1	Fitted from Watanabe et al. (2008)
n	Hill exponent	2.64	–	Clark et al., 1985
N\textsubscript{Hb}	Total heme density	2.03 \times 10^{-5}	mol cm-3	Fitted from Watanabe et al. (2008)
P\textsubscript{50}	PO\textsubscript{2} at hemoglobin half-saturation	47.9	mmHg	Tsai et al., 2009
R\textsubscript{p}	Radius of capillary lumen	2.0	μm	Ideal gas law
V_{\text{mol, O2}}	O\textsubscript{2} molar volume at 36.9°C	2.54 \times 10^4	m\text{mol}	Shirasawa, 2003

The standard deviation σ\textsubscript{S,T} of the HS from the numerical model at the venous end is approximately seven times lower than at the inlet. The values of σ\textsubscript{S} from the RBC interaction model is almost indistinguishable from the numerical results (Figure 3B) when the model coefficient K\textsubscript{RI} is fitted to match the standard deviation from the computational model (here, K\textsubscript{RI} = 11.1 mmHg μm s/(μm2 O\textsubscript{2})). The coefficient was fitted to minimize the model error ∫₀^L L ∥σ\textsubscript{S, model}(x) − σ\textsubscript{S, simul}(x)∥2dx. The linearized RBC diffusive interaction model with the same value of K\textsubscript{RI} also agrees very well with the numerical results, although it very slightly underestimates σ\textsubscript{S}. The simulated values of σ\textsubscript{S} were also fitted with a single exponential function of the form f(x) = a exp(x/L\textsubscript{RI}). Since this fit is also very good, our results can be expressed in terms of the characteristic decay length L\textsubscript{RI} and the related decay time τ\textsubscript{RI} = L\textsubscript{RI}/V\textsubscript{p}. These first results suggest that HSH can be considerably reduced by diffusive interaction between RBCs within a single capillary.

To reduce the computational effort in further parameter studies, we compared the results obtained with domain lengths of 100 μm (S\textsubscript{S} = 0.6 and 0.4) and 300 μm (S\textsubscript{S} = 0.8 and 0.6, respectively). The fitted value of K\textsubscript{RI} in the short domain was only 4.6% lower than in the long domain. Therefore, the domain length does not have a major influence on the results and from now on we will use L = 100 μm. In the mouse cerebral cortex, an average capillary path length of 343 μm was measured by Sakadžić et al. (2014). The similar values of K\textsubscript{RI} with L = 100 μm and 300 μm show that it is not necessary to simulate whole capillary paths to estimate the model coefficient K\textsubscript{RI}, which in turn determines L\textsubscript{RI} and τ\textsubscript{RI}. Additionally, a uniform random distribution of HS at the inflow of a 2 × 2 parallel capillary array yields very similar results (Figure S1). To investigate the dependence on the considered organ, a simulation was run with parameters for the working hamster retractor muscle as in Eggleton et al. (2000). The resulting evolution of HSH is qualitatively the same as with physiological parameters for the mouse cerebral cortex (Figure S2). This shows model robustness with respect to the inflow value of S, the boundary condition for tissue PO\textsubscript{2} and the considered organ.
We now examine the influence of model parameters such as linear density, RBC velocity, oxygen consumption rate and HS difference at the inlet on the results. Figure S3 shows that the RBC interaction models with fitted K_{RI} perform very well across a wide range of parameters. The relative model error in σ_{sv} normalized by the standard deviation drop from the numerical model $\sigma_{\text{sa}} - \sigma_{\text{sv}}$ is $\leq 2\%$ for the initial model and $\leq 4\%$ for the linearized model across the whole parameter range. Additionally, the exponential fit to the numerical results also matches very well the numerical results ($< 2\%$ error), which confirms that the decay length λ_{RI} and decay time τ_{RI} introduced above can be used to compare results. The decay time τ_{RI} decreases from 206 to 157 ms when v_{ec} increases from 0.4 to 2.0 mm/s, but is rather insensitive to the linear density (10.2% decrease when μ_{LD} increases from 0.2 to 0.6, Figure 4). The oxygen consumption rate has an even smaller influence on τ_{RI} (6.3% variation), while the inlet standard deviation of HS almost does not affect it (1.2% variation).

The above results show that the RBC interaction models agree closely with numerical simulations when using fitted values of K_{RI}. To show the models’ predictive power, it is necessary to characterize this model coefficient which was decomposed as $K_{RI} = K_{IV} + K_{OS}$, where K_{OS} was related to the spreading distance of PO$_2$ oscillations in the tissue due to individual passing erythrocytes. Figure 5A shows the dependence of K_{OS} on linear density and RBC velocity. The plot of Δr_{osc} against K_{OS} for all the simulated values of linear density and RBC velocity (Figure 5B) shows a strong correlation between these two quantities (Pearson’s correlation coefficient $r = 0.989$). Therefore, consistently with our initial assumption (Equation (14)), the model coefficient for RBC diffusive interaction is closely related to the PO$_2$ oscillations in the tissue.

Diffusive Interaction Between Parallel Capillaries

The capillary diffusive interaction models are now compared to our computational model for oxygen transport. Numerical simulations were run in an array of four straight, parallel capillaries (Figure 2A). In the two pairs of diagonally opposed capillaries, two different inlet values of HS $S_{a,\psi}$, $S_{a,\phi}$ were chosen. The evolution of S_{ϕ}, S_{ψ} and the HS difference $\Delta S = |S_{\phi} - S_{\psi}|$ were computed with the numerical model and compared to predictions from the three interaction models for the oxygen flux out of the capillaries (nonlinear Krogh-based model, explicit model and linearized model for ΔS). Additionally, theoretical results based on the assumption of equal oxygen outflux will be shown to highlight the effects of capillary diffusive interaction. Unless otherwise stated, the average value of S_t over all capillaries was 0.7 and the capillaries were 40 μm apart. The linear density and the erythrocyte velocity were set to 0.3 and 1.0 mm/s, respectively.

Figure 6 shows HS profiles along both capillary pairs from the numerical model and the interaction models. The mean HS from the models matches very well the simulated results, which shows that mass conservation is fulfilled (the nonlinear and explicit Krogh-based models yield the same mean S, hence only the former is shown). In this setup, the HS difference between both capillary pairs drops by $\sim 50\%$ over 100 μm. This decrease is captured well by each interaction model, albeit slightly underestimated by the explicit Krogh-based model and the linearized model. Figure 6 also illustrates that the assumption of equal oxygen outfluxes cannot be used in the present context. As above, the underestimation of S by the interaction models away from the domain ends is caused by the absence of axial diffusion (Lücker et al., 2017). These first results suggest a strong reduction of HSH between parallel capillaries.

To show model robustness, several input parameters were varied and the predicted drop in HS difference $\Delta S_a - \Delta S_v$ was compared to numerical simulation results. The spacing between capillaries, the oxygen consumption rate, the RBC velocity and linear density were investigated (Figure S4). In almost all cases, the nonlinear Krogh-based model shows the best agreement with numerical results (relative error $\leq 4\%$ except at very low oxygen consumption rates). The explicit Krogh-based model and the linearized model perform almost equally well, with relative errors $\leq 8\%$. Similarly, simulations with physiological parameters for the working hamster retractor muscle yield results that are very similar to those with parameters for the mouse cerebral cortex (Figure S5). These parameter studies show that capillary diffusive interaction models perform well over a large range of physiological parameters.

The capillary interaction models rely on a single model parameter K_{CI} defined in Equation (29). Unlike the coefficient K_{RI} for RBC diffusive interaction, the expression for K_{CI} only depends on the intravascular resistance coefficient K_{IV} which can be determined based on numerical simulations (Lücker et al., 2017). Therefore, given a suitable value of K_{IV} and mean HS \bar{S}, the decay length and time scales L_{CI} and τ_{CI} (Equations (33) and (34), respectively) can be computed analytically. Figure 7A shows values of τ_{CI} for a range of linear densities and mean HS values. The decay time scale increases with linear density and attains its highest values at $S \approx 0.3$, where dP_{eq}/dS attains its minimum with the employed parameters for the Hill equation (Equation 2). Similarly to RBC diffusive interaction, the simulated values of ΔS are very well fitted by exponential decays. Figure 7B,C show a comparison of the analytical and the fitted decay time scale τ_{CI} for different values of capillary spacing, oxygen consumption rate, RBC velocity and linear density. For the analytical time scale, the simulated value of \bar{S} at $x = L/2$ was employed. Over the investigated range of parameters, the analytical estimates of τ_{CI} overestimate the fitted values by at most 12 ms (relative error of $\leq 7.2\%$). This shows that the variations in τ_{CI} that occur in the investigated parameter range can be entirely explained by the dependency of the analytical τ_{CI} on μ_{LD} and \bar{S}. The decay length scale L_{CI} is equally well predicted by the analytical formulation. Besides, the interaction models have so far employed the Hill equation (Equation 2) to model the equilibrium curve between oxygen and hemoglobin. To examine model robustness, we computed the decay time scale τ_{CI} using the Adair equation (Popel, 1989) which is more accurate for $S \leq 0.3$. The resulting values of τ_{CI} are at most 10% smaller at low HS, so the inaccuracy introduced by the Hill equation stays moderate (Figure S6). The structure of the microcirculation in the brain is heterogeneous, and estimates of several relevant
parameters such as blood flow rate, capillary spacing and oxygen consumption rate are subject to uncertainties of considerably more than 10%. Therefore, the quantitative errors introduced by the use of the Hill equation are not significant with regard to the analysis of oxygen transport in vivo. The main conclusion of this study, namely that diffusive interaction between capillaries can significantly reduce COSH, is not affected by the assumption of the Hill equation.

The previous results all assumed the same RBC velocity, flow direction and hematocrit in each capillary. These assumptions are now dropped to further examine model robustness. First, simulations with countercurrent flow instead of concurrent flow were run. Namely, the flows in both pairs of diagonally opposite capillary were set to opposite directions with the same RBC velocity. The HS difference between the venous capillary ends turned out to be practically the same as with concurrent flow.
Lücker et al.

DISCUSSION

We identified two diffusive interaction mechanisms that cause a large reduction of HSH in capillary networks, developed associated interaction models and validated them using a computational model with individual moving RBCs. The interaction models provide explicit formulas for the reduction of HSH and the associated decay exponents, which gives more insight than a purely computational approach. This work shows that CTH only partially reflects the actual heterogeneity of blood oxygen content and that estimating HSH solely based on CTH may lead to considerable overestimation.

Diffusive interaction between RBCs in a single capillary occurs when two branches with different HS levels converge. This phenomenon is therefore more prevalent in the presence of multiple converging bifurcations. In the mouse cerebral cortex, Sakadžić et al. (2014) estimated the number of capillary branches between arterioles and venules to be 5.9 ± 2.1, with mean segment lengths between 65.6 and 81.4 µm. Since cortical capillary beds have a mesh-like structure (Lort hỏis and Cassot, 2010; Blinder et al., 2013), each RBC will on average travel through several converging bifurcations. According to the interaction models developed here and the numerical simulations, the standard deviation of HS decays exponentially (Equation (19)) with a time scale between 0.15 and 0.21 s (Figure 4). This is slightly below the diffusion time scale given by $\tau_D = 0.22$ s. The time scale τ_{RI} was also shown not to depend on the length of the computational domain. Therefore, the RBC interaction time scale is not directly affected by the RBC transit time through the computational domain (although it depends on the RBC velocity). However, τ_{RI} can be compared to experimentally measured transit times to examine whether RBC diffusive interaction has enough time to occur while RBCs flow through capillaries. The obtained values of τ_{RI} are considerably lower than mean capillary transit times measured using bolus tracking (Gutiérrez-Jiménez et al., 2016) (0.81 ± 0.27 s at baseline, 0.69 ± 0.18 s during activation). These obtained time scales are also smaller than the transit times computed by Schmid et al. (2017) in five analysis layers at different depths in the mouse parietal cortex (0.19 to 0.79 s). Therefore, in the presence of converging bifurcations, this analysis indicates that RBCs spend sufficient time in capillary branches for the HSH to significantly drop.

While the standard deviation of HS in a single capillary generally decreases, our results show that the average value of S in a single capillary is not affected by fluctuations of S. Since the PO$_2$ oscillations caused by the individual erythrocytes do not spread far into the tissue (see values of Δ_{osc} in Figure 5B), tissue oxygenation is likely not adversely affected by the fluctuations in HS observed here. This provides a justification for the oxygen transport models based on a continuum approach for S (Goldman and Popel, 1999; Secomb et al., 2000), if the HS downstream of a converging bifurcation is set to the RBC-flow-weighted average of S in the upstream branches. Nevertheless, we postulate that the homogenization of S in individual vessels is beneficial for oxygen transport, since it reduces the probability of RBCs with very low saturation. Indeed, hypoxia as well as large tissue PO$_2$ fluctuations are most likely to occur near vessels with low RBC flow. The homogenization of HS makes it less probable that RBCs with low oxygen content enter such vessels.

FIGURE 7 | Decay time scale τ_{RI} for capillary diffusive interaction. (A) Theoretical decay time scale for capillary diffusive interaction. The contour values were obtained with Equation (34) for a capillary spacing of 40μm ($r_{\text{mean}} = 22.6 \mu$m, $r_C = 1.6 \mu$m, $r_D = 2.0 \mu$m, $r_W = 2.5 \mu$m). (B,C) Decay time scale τ_{RI} of the HS difference between parallel capillaries across a range of parameters: linear density, RBC velocity (B), capillary spacing and metabolic consumption rate of oxygen (C). Solid lines: exponential fit to the simulated ΔS; dashed lines: theoretical value obtained with Equation (34) and the same parameters as in (A).
Diffusive interaction between capillaries is the second reduction mechanism of HSH that was investigated here. While RBC diffusive interaction primarily occurs downstream of converging bifurcations, capillary diffusive interaction is a more general phenomenon since it does not require the presence of branchings. Our results qualitatively agree with the computations by Popel et al. (1986) in parallel capillary arrays with heterogeneous inlet PO₂ and erythrocyte velocities. Salathe (2003) performed similar computations in a 5 × 5 capillary array and reported that modeling interaction between functional units smooths out the oxygen concentration differences between capillaries and delays the onset of anoxia. Our results confirm the trends observed in these studies and shed further light on the physiological parameters involved in capillary diffusive interaction.

The range of distances between capillaries (20 to 60 µm) that was examined in our simulations in parallel capillary arrays corresponds to Krogh cylinder radii between 11.3 and 33.8 µm. This includes the mean Krogh radii of the reconstructed MVNs in Fraser et al. (2013) (21.3 ± 2.1 µm to 25.6 ± 3.9 µm) and in Sakadžić et al. (2014) (22.3 ± 1.2 µm to 24.2 ± 2.2 µm) which were obtained by approximating the tissue volume closest to each capillary segment by a cylinder. In our simulations, although the intercapillary distance was tripled, the decay time of the HS difference between parallel capillaries only increased from 0.115 to 0.188 s. This weak dependence on capillary spacing is explained by the formulas for the decay time scale \(\tau_{CI} \) (Equation 34) and the model coefficient \(K_{CI} \) (Equation 29) which only depend on the logarithm of the ratio between the mean Krogh radius and the capillary endothelium radius. These time scale values are lower than the decay time scale \(\tau_{RI} \) for RBC diffusive interaction and also significantly smaller than the capillary transit times reported above. Additionally, our theoretical analysis showed that the HS difference between parallel capillaries decays exponentially (Equation 32). This provides compelling evidence that diffusive interaction between capillaries is a strong mechanism for the reduction of HSH at the scale of neighboring capillaries. Its occurrence regardless of the presence of converging bifurcations suggests that this is a more general phenomenon than RBC diffusive interaction. Finally, unlike the latter mechanism, capillary diffusive interaction strongly influences the mean HS drop along microvessels and thus affects more significantly tissue oxygenation.
Having shown the importance of diffusive interaction mechanisms, it is natural to ask up to which length scale they can act. While RBC interaction is confined to single capillaries, hence very local, it is not evident how far reaching capillary interaction can be. The weak dependence of the decay time scale t_{CI} on capillary spacing (Equation (34) and Figure 7C) suggests that this oxygen transfer mechanism can be relevant for capillary distances above 50 µm, which is higher than typical inter-capillary spacings in the cerebral cortex (Tsai et al., 2009) or muscles (Ellsworth et al., 1988). To determine the maximal length scale of capillary diffusive interaction, it will be necessary to understand how capillaries with irregular spacings (see Hoold and Turek, 1996) influence each other's supplied tissue regions. We propose the concept of diffusive interaction length scale as a tool to compare CTH and COSH. Our results provide strong evidence that HSH on the scale of the inter-capillary distance is efficiently damped by diffusive interaction. Whether this still holds for medium or large-scale HSH is an open question. Its answer is essential to assess the consequences of disturbed capillary flow patterns on oxygen transport based on their spatial scale.

The models for RBC and capillary diffusive interactions enable the computation of mean HS and its heterogeneity in single and parallel vessels, respectively. Previously, the relation between CTH and oxygen extraction fraction was studied by Jespersen and Østergaard (2012) using the Bohr-Kety-Crone-Renkin equation and extended by Angleys et al. (2015). Their approach does not account for the heterogeneity of hematocrit, vessel size and spacing which occurs in capillary networks. Our approach takes into account each of these parameters and shows that distal HS is not only a function of the transit time (Equation 11). In particular, it includes the influence of hematocrit which was shown to have a paramount influence on tissue P_{O_2} (Lücker et al., 2017). Another major advance in this work is the modeling of interaction between capillaries through the presence of converging bifurcations and diffusive oxygen transfer. Instead of dealing with idealized distributions of capillaries with independent supplied tissue regions, the models developed here lay the ground for a refined analysis of HSH in realistic MVNs. This is an essential step to assess the actual consequences of CTH on oxygen transport and availability in the microcirculation.

The diffusive interaction models consist in ordinary differential equations that can be easily integrated. The simplifications done in their derivation give rise to slight inaccuracies with respect to the computational model. The errors of the RBC and capillary diffusive interaction models are $\leq 4\%$ (Figure S3) and $\leq 8\%$ (Figure S4), respectively. The main sources of inaccuracy are the linearization of the terms dP_{eq}/dS (Equation 15) and P_{eq} (Equation 18) as well as the neglect of axial diffusion. For capillary diffusive interaction, the approximation of the supplied tissue region by a cylinder (Figure 2B) and Equation (27) are additional sources of inaccuracy. Since these errors originate in the reduction of nonlinearly coupled partial differential equations to ordinary differential equations, these inaccuracies are a very moderate price to pay.

The limitations to our diffusive interaction models include the oxygen-independent metabolic consumption term M_0, which provides an analytical solution to the radial oxygen transport equation in the tissue. At low tissue P_{O_2}, metabolic oxygen consumption modeled with Michaelis-Menten kinetics may produce higher tissue P_{O_2} and thus influence the supplied tissue cylinder radii in capillary diffusive interaction. However, the choice of this consumption model over constant oxygen consumption only has a limited influence on the oxygen profiles in a cylindrical geometry (Grimes et al., 2014). Similarly, metabolic oxygen consumption is expected to vary spatially, as suggested by the depth-dependent neuron density in the mouse cerebral cortex (Tsai et al., 2009). Heterogeneous oxygen demand may result in an increase or a decrease in COSH, depending on its covariation with blood flow and vessel spacing. As a further limitation, the Bohr effect was not modeled. Since the derived equations for the evolution of HSH (Equations (19) and (32)) and the characteristic scales L_{CI} and t_{CI} (Equations (33) and (34)) explicitly depend on the derivative of the equilibrium curve $P_{eq}(S)$, its shift may influence the reduction mechanisms of HSH. Likewise, the inaccuracy of the Hill equation at low HS also has an influence, albeit in a limited way (Figure S6). Finally, since we focused on physiological parameters typical for the cerebral cortex, myoglobin-facilitated diffusion of oxygen in tissue was not considered. Its inclusion into our models would decrease the time scales for capillary diffusive interaction (Equations (29) and (34)).

This study extensively investigates HSH in a Krogh cylinder geometry and parallel capillary arrays. Thus, our conclusions are currently limited to tissues with approximately parallel and straight capillaries such as striated muscles. The next step is to verify whether our theoretical predictions hold when blood vessels are interconnected, tortuous and have variable spacings. In a follow-up article, we are going to present simulations of oxygen transport in microvascular networks from the mouse somatosensory cortex. The distribution of capillary transit times will be compared to that of outflow HS. Then, the interaction models will be used to quantify how much diffusive interaction reduces COSH. The spatial scale up to which diffusive interaction acts also requires further investigation. This could be performed using parallel capillary arrays with more vessels or large realistic microvascular networks. In addition to numerical simulations, experimental data are needed to confirm our theoretical predictions. To achieve this, measurements of CTH based on bolus tracking (Gutiérrez-Jiménez et al., 2016) could be combined with intravascular measurements of capillary P_{O_2} using two-photon phosphorescence laser microscopy (Finikova et al., 2008).

In conclusion, this study lays the theoretical basis for the analysis of HSH in MVNs. It is a substantial improvement over previous approaches in the brain that were limited to independent, identical capillaries without branchings. Models for RBC and capillary diffusive interactions were developed and successfully validated using a detailed computational model in simplified geometries. The following conclusions can be drawn: (1) diffusive interaction leads to a strong reduction of small-scale HSH caused by CTH or other factors; (2) HSH can arise in the absence of CTH, for instance due to differences in hematocrit or supplied tissue volume; (3) CTH influences COSH, but does not determine it. Thus, this modeling work is a major step to better understand
the actual effects of CTH on blood oxygen content. This has potential implications in the study of all conditions where capillary dysfunction and CTH are thought to be involved, such as Alzheimer’s disease (Østergaard et al., 2013a), stroke (Østergaard et al., 2015), traumatic brain injury (Østergaard et al., 2014a) and ischemic heart disease (Østergaard et al., 2014b).

AUTHOR CONTRIBUTIONS
AL conceived of the study, developed the theoretical models, implemented the algorithms, ran the simulations, interpreted the data and drafted the manuscript. TS contributed the initial idea for the study. BW and P] conceived of the study and participated in its design.

REFERENCES
Altman, P. L., and Dittmer, D. S. (eds.). (1971). Respiration and Circulation. Bethesda, MD: Federation of American Societies for Experimental Biology.

Angleys, H., Østergaard, L., and Jespersen, S. N. (2015). The effects of capillary transit time heterogeneity (CTH) on brain oxygenation. J. Cereb. Blood Flow Metab. 35, 806–817. doi: 10.1038/jcbfm.2014.254

Bentley, T. B., Meng, H., and Pittman, R. N. (1993). Temperature dependence of oxygen diffusion and consumption in mammalian striated muscle. Am. J. Physiol. Heart Circ. Physiol. 264, H1825–H1830. doi: 10.1152/ajpheart.1993.264.6.H1825

Bertossi, M., Virgintino, D., Maiorano, E., Occhiogrosso, M., and Roncali, L. (1997). Ultrastructural and morphometric investigation of human brain capillaries in normal and peritumoral tissues. Ultrastruct. Pathol. 21, 41–49. doi: 10.3109/01913129709023246

Blinder, P., Tsai, P. S., Kaufhold, J. P., Knutsen, P. M., Suhl, H., and Kleinfeld, D. (2013). The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat. Neurosci. 16, 889–897. doi: 10.1038/nn.3426

Chen, B. R., Bouchard, M. B., McCaslin, A. F., Burgess, S. A., and Hillman, E. M. (2011). High-speed vascular dynamics of the hemodynamic response. Neuroimage 54, 1021–1030. doi: 10.1016/j.neuroimage.2010.09.036

Christoforides, C., Lasberg, L. H., and Hedley-Whyte, J. (1969). Effect of temperature on solubility of O2 in human plasma. J. Appl. Physiol. 26, 56–60. doi: 10.1152/jappl.1969.26.1.56

Clark, A., Federspiel, W., Clark, P., and Cocket, G. (1985). Oxygen delivery from red cells. Biophys. J. 47, 171–181. doi: 10.1016/S0006-3495(85)83890-X

Eggleton, C., Vadapalli, A., Roy, T., and Popel, A. (2000). Calculations of intracapillary oxygen tension distributions in muscle. Math. Biosci. 167, 123–143. doi: 10.1016/S0025-5564(00)00038-9

Ellsworth, M. L., Popel, A. S., and Pittman, R. N. (1988). Assessment and impact of heterogenieties of convective oxygen transport parameters in capillaries of striated muscle: experimental and theoretical. Microvasc. Res. 35, 341–362. doi: 10.1016/0026-2862(88)90089-1

Finikova, O. S., Lebedev, A. Y., Aprelev, A., Troxler, T., Gao, F., Garnacho, C., et al. (2008). Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9, 1673–1679. doi: 10.1002/cphc.200800296

Fraser, G. M., Goldman, D., and Ellis, C. G. (2013). Comparison of generated parallel capillary arrays to three-dimensional reconstructed capillary networks in modeling oxygen transport in discrete microvascular volumes. Microcirculation 20, 748–763. doi: 10.1111/micc.12075

Goldstein, D., and Popel, A. (1999). “Computational modeling of oxygen transport from complex capillary networks,” in Oxygen Transport to Tissue XXI, Volume 471 of Advances in Experimental Medicine and Biology, eds A. Eke and D. T. Delpy (Boston, MA: Springer), 555–563.

Goldstick, T. K., Ciuryla, V. T., and Zuckerman, L. (1976). “Diffusion of oxygen in plasma and blood,” in Oxygen Transport to Tissue – II, eds J. Grote, D. R. R. N., and G. Thews (Boston, MA: Springer), 183–190.

FUNDING
This research was funded by the Swiss National Science Foundation under the grant No. 140660.

ACKNOWLEDGMENTS
The authors are grateful for the valuable discussions with Franca Schmid.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2018.00420/full#supplementary-material

Grimes, D. R., Fletcher, A. G., and Partridge, M. (2014). Oxygen consumption dynamics in steady-state tumour models. R. Soc. Open Sci. 1:14080. doi: 10.1098/rsos.14080

Gutiérrez-Jiménez, E., Cai, C., Mikkelsen, I. K., Rasmussen, P. M., Angleys, H., Merrild, R., et al. (2016). Effect of electrical forepaw stimulation on capillary transit-time heterogeneity (CTH). J. Cereb. Blood Flow Metab. 36, 2072–2086. doi: 10.1177/0271678X16631560

Hairer, E., Wanne, G., and Norsett, S. P. (1993). Solving Ordinary Differential Equations I. Berlin; Heidelberg: Springer.

Hall, C. N., Reynell, C., Gesslein, B., Hamilton, N. B., Mishra, A., Sutherland, B. A., et al. (2014). Capillary pericytes regulate cerebral blood flow in health and disease. Nature 508, 55–60. doi: 10.1038/nature13165

Hamilton, N. B., Attwell, D., and Hall, C. N. (2010). Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front. Neuroenerg. 2:5. doi: 10.3389/fneur.2010.00005

Hellums, J. (1977). The resistance to oxygen transport in the capillaries relative to that in the surrounding tissue. Microvasc. Res. 13, 131–136. doi: 10.1016/0026-2862(77)90122-4

Hillman, E. M. (2014). Coupling mechanism and significance of the BOLD signal: a status report. Annu. Rev. Neurosci. 37, 161–181. doi: 10.1146/annurev-neuro-070113-014111

Hoofd, L., and Turek, Z. (1996). Realistic Modelling of Capillary Spacing in Dog Gracilis Muscle Greatly Influences the Heterogeneity of Calculated Tissue Oxygen Pressures. Boston, MA: Springer.

Jespersen, S. N. and Østergaard, L. (2012). The roles of cerebral blood flow, capillary transit time heterogeneity, and oxygen tension in brain oxygenation and metabolism. J. Cereb. Blood Flow Metab. 32, 264–277. doi: 10.1038/jcbfm.2011.153

Jones, E., Oliphant, T., and Peterson, P. (2001). SciPy: Open Source Scientific Tools For Python. Available online at: https://www.scipy.org/citing.html (Accessed November 24, 2017).

Liu, C. Y., Eskin, S. G., and Hellums, J. D. (1994). “The oxygen permeability of cultured endothelial cell monolayers,” in Advances in Experimental Medicine and Biology, eds P. Vaupe1, R. Zander, and D. F. Bruley (Boston, MA: Springer Nature), 723–730.

Lorhois, S., and Cassot, F. (2010). Fractal analysis of vascular networks: insights from morphogenesis. J. Theor. Biol. 262, 614–633. doi: 10.1016/j.jtbi.2009.10.037

Lücker, A., Scomb, T. W., Weber, B., and Jenny, P. (2017). The relative influence of hematocrit and red blood cell velocity on oxygen transport from capillaries to tissue. Microcirculation 24:e12337. doi: 10.1111/micc.12337

Lücker, A., Weber, B., and Jenny, P. (2014). A dynamic model of oxygen transport from capillaries to tissue with moving red blood cells. Am. J. Physiol. Heart Circ. Physiol. 308, H206–H216. doi: 10.1152/ajpheart.00447.2014

Lyons, D. G., Parpaleix, A., Roche, M., and Charpak, S. (2016). Mapping oxygen concentration in the awake mouse brain. elife 5:e12024. doi: 10.7554/eLife.12024
