Generalized T–Q relations and the open spin-s XXZ chain with nondiagonal boundary terms

Rashad Baiyasi and Rajan Murgan

Department of Physics, Saginaw Valley State University, 7400 Bay Road
University Center, MI 48710, USA
E-mail: ribaiyas@svsu.edu and rmurgan@svsu.edu

Received 13 June 2012
Accepted 6 September 2012
Published 4 October 2012

Online at stacks.iop.org/JSTAT/2012/P10003
doi:10.1088/1742-5468/2012/10/P10003

Abstract. We consider the open spin-s XXZ quantum spin chain with nondiagonal boundary terms. By exploiting certain functional relations at roots of unity, we derive a generalized form of T–Q relation involving more than one independent $Q(u)$, which we use to propose the Bethe-ansatz-type expressions for the eigenvalues of the transfer matrix. At most two of the boundary parameters are set to be arbitrary and the bulk anisotropy parameter has values $\eta = i\pi/2, i\pi/4, \ldots$. We also provide numerical evidence for the completeness of the Bethe-ansatz-type solutions derived, using the $s = 1$ case as an example.

Keywords: integrable spin chains (vertex models), quantum integrability (Bethe ansatz)

ArXiv ePrint: 1206.0814
1. Introduction

Considerable effort has been put into solving integrable quantum spin chains for many years. In particular, integrable open quantum spin chains have attracted much interest over the years. In this regard, open XXX and XXZ quantum spin chains have been extensively investigated due to their growing applications in fields of physics such as statistical mechanics, string theory and condensed matter physics. Much progress has been made on the topic up to this point. Numerous successes in the past [1]–[8] (also refer to [9]–[31] and references therein, for other related work on the subject) have motivated further investigations of these models. In addition, in a series of publications, Bethe ansatz solutions have been derived for open spin-1/2 XXZ quantum spin chain where the boundary parameters obey a certain constraint. Readers are urged to refer to [32]–[39] for related work on the subject. Two sets of Bethe ansatz equations are needed there to obtain all 2^N eigenvalues, where N is the number of sites. A special case of the above solution was generalized to open XXZ quantum spin chain with alternating spins by Doikou [40], using the functional relation approach proposed by Nepomechie in [34] to solve the spin-1/2 case. In [41], related work was carried out using the method in [32]. In [42], the spin-1/2 XXZ Bethe ansatz solution (for boundary parameters obeying certain constraint) is generalized to the spin-s case by utilizing an approach based on the Q-operator and the T-Q equation [43] (see below), which was developed earlier for the spin-1/2 XXZ chain in [38] and subsequently applied to the spin-1/2 XYZ chain in [44]. Two sets of Bethe ansatz equations are also needed there to produce all $(2s+1)^N$ eigenvalues, where again N represents the number of sites. This was later followed by another work for spin-s with such a constraint removed, but limiting the Bethe ansatz solutions for cases with at
most two arbitrary boundary parameters for some special values of the bulk anisotropy parameter \(\eta = i\pi/(p + 1) \), with \(p \) being even integers [45].

In a number of works cited above, the well known Baxter \(T-Q \) relation [43], with the following schematic form

\[
t(u)Q(u) = Q(v) + Q(w)
\]

has provided a way to obtain the Bethe ansatz equations for the eigenvalues of the transfer matrix \(t(u) \). In [46, 47], a generalization of this relation involving two \(Q(u) \) of the following form for the open spin-1/2 XXZ quantum spin chain was given:

\[
t(u)Q_1(u) = Q_2(v) + Q_2(w) \quad t(u)Q_2(u) = Q_1(v') + Q_1(w')
\]

Motivated by this solution, in this paper, we obtain the corresponding solution for the open spin-\(s \) XXZ quantum spin chain. In addition, our work is motivated by the fact that such \(T-Q \) relations for an open spin-\(s \) XXZ quantum spin chain are novel structures and therefore merit further studies and investigation. We remark that a more general form of \(T-Q \) relations were found in [48] involving multiple \(Q(u) \) functions. Moreover, the relationship of the \(s = 1 \) case to the supersymmetric sine–Gordon (SSG) model [49]–[54], especially the boundary SSG model [55]–[59], has inspired us to consider the problem. We stress that these results hold for cases with at most two arbitrary boundary parameters at roots of unity, namely when the bulk anisotropy parameter has values \(\eta = i\pi/2, i\pi/4, \ldots \).

We follow a similar approach as given in [34]–[37], [46] that was used to solve the \(s = 1/2 \) case, which is based on functional relations obeyed by the transfer matrix at roots of unity. This yields Bethe-ansatz-type solutions which give the eigenvalues. Our numerical analysis for the \(s = 1 \) case for \(N = 2 \) and \(p = 3, 5 \) yields all the eigenvalues as given in tables 1 and 2. As in [42], we rely on fusion [5], [60]–[66], the truncation of the fusion hierarchy at roots of unity [67]–[69] and the Bazhanov–Reshetikhin [70] solution of the RSOS models.

The outline of the paper is as follows: in section 2, we review the construction of the fused \(R \) [60]–[64], [71]–[75] and \(K^\pm \) [5, 65, 66] matrices from the corresponding spin-1/2 matrices. One can refer to [76, 77] for some original work on spin-1/2 \(K^\pm \) matrices. We then review the construction of commuting transfer matrices from these fused matrices (using Sklyanin’s work [4], which relies on Cherednik’s previous results [80]), together with some of their properties. Fusion hierarchy and functional relations obeyed by transfer matrices are also reviewed. In section 3, the generalized \(T-Q \) relations are given, along with some arguments behind their structure. This is done by exploiting the reviewed functional relations obeyed by the transfer matrices. From this, we derive the Bethe-ansatz-type equations for cases with at most two arbitrary boundary parameters at roots of unity, e.g. \(\eta = i\pi/2, i\pi/4, \ldots \). We then present numerical results in section 4 to illustrate the completeness of our solution, using \(s = 1 \) as an example. Here, the Bethe roots and energy eigenvalues derived from the Bethe-ansatz-type equations (for some values of \(p \) and \(N \)) are given. We remark that these eigenvalues coincide with the ones obtained from direct diagonalization of the open spin-1 XXZ chain Hamiltonian. Finally, we conclude the paper with a discussion of the results and potential future work in section 5.
2. Commuting spin-s transfer matrices and functional relations at roots of unity

In this section, in order to make the paper relatively self-contained, we review some crucial concepts on the construction of commuting transfer matrices for the N-site open spin-s XXZ quantum spin chain. Materials reviewed here on fused, K^\pm and higher spin transfer matrices are mainly reproduced from [42]. Like the commuting transfer matrix for $s = 1/2$, constructed in [4], which we denote (following notations adopted in [42]) by $t^{(1/2,1/2)}(u)$, whose auxiliary space as well as each of its N quantum spaces are two-dimensional, one can construct a transfer matrix $t^{(j,s)}(u)$ whose auxiliary space is spin-j ($2j+1$-dimensional) and each of its N quantum spaces are spin-s ($2s+1$-dimensional), for any $j, s \in \{1/2, 1, 3/2, \ldots \}$ using the fused R [60]–[64], [71]–[75] and K^\pm [5, 65, 66] matrices. These matrices serve as building blocks in the construction of the commuting transfer matrices for higher spins. We list them below with some of their properties. The fused-R matrices can be constructed as given below,

$$R_{\{a\}\{b\}}^{(j,s)}(u) = P_{\{a\}}^+ P_{\{b\}}^+ \prod_{k=1}^{2j} \prod_{l=1}^{2s} P_{a_k b_l}^{(1/2,1/2)}(u + (k + l - j - s - 1)\eta) P_{\{a\}}^+ P_{\{b\}}^+, \quad (2.1)$$

where $\{a\} = \{a_1, \ldots, a_{2j}\}$, $\{b\} = \{b_1, \ldots, b_{2s}\}$, and $P_{\{a\}}^+$ is the symmetric projector given by

$$P_{\{a\}}^+ = \frac{1}{(2j)!} \prod_{k=1}^{2j} \left(\sum_{l=1}^{k} P_{a_l a_k} \right), \quad (2.2)$$

P is the permutation operator, with $P_{a_k a_k} \equiv 1$; a similar definition also holds for $P_{\{b\}}^+$. $R^{(j,j)}(u)$ is given by

$$R^{(j,j)}(u) = \begin{pmatrix} \text{sh}(u + \eta) & 0 & 0 & 0 \\ 0 & \text{sh} u & \text{sh} \eta & 0 \\ 0 & \text{sh} \eta & \text{sh} u & 0 \\ 0 & 0 & 0 & \text{sh}(u + \eta) \end{pmatrix}, \quad (2.3)$$

where η is the bulk anisotropy parameter. The fused R matrices satisfy the Yang–Baxter equations [78, 79]

$$R_{\{a\}\{b\}}^{(j,k)}(u - v) R_{\{a\}\{c\}}^{(j,s)}(u) R_{\{b\}\{c\}}^{(k,s)}(v) = R_{\{b\}\{c\}}^{(k,s)}(v) R_{\{a\}\{c\}}^{(j,s)}(u) R_{\{a\}\{b\}}^{(j,k)}(u - v). \quad (2.4)$$

The construction of the fused K^- matrices now readily follows [5, 65, 66],

$$K_{\{a\}}^{-(j)}(u) = P_{\{a\}}^+ \prod_{k=1}^{2j} \left\{ \prod_{l=1}^{k-1} P_{a_l a_k}^{(1/2,1/2)}(2u + (k + l - 2j - 1)\eta) \right\} P_{\{a\}}^+, \quad (2.5)$$

doi:10.1088/1742-5468/2012/10/P10003
where $K^{-1(1/2)}(u)$ is the 2×2 matrix whose components are given by \cite{76, 77}

$$
K_{11}(u) = 2 \left(\text{sh} \alpha_{-} \text{ch} \beta_{-} u + \text{ch} \alpha_{-} \text{sh} \beta_{-} u \right)
$$

$$
K_{22}(u) = 2 \left(\text{sh} \alpha_{-} \text{ch} \beta_{-} u - \text{ch} \alpha_{-} \text{sh} \beta_{-} u \right)
$$

$$
K_{12}(u) = e^{\theta} \text{sh} 2u, \quad K_{21}(u) = e^{-\theta} \text{sh} 2u,
$$

where $\alpha_{-}, \beta_{-}, \theta_{-}$ are the boundary parameters. The fused K^{-} matrices satisfy the boundary Yang–Baxter equations \cite{80}

$$
K^{-}_{(b)}(v) R^{(j,s)}_{(a)\{b\}}(u + v) K^{-}_{(a)}(u) R^{(j,s)}_{(a)\{b\}}(u - v).
$$

In addition, the fused K^{+} matrices are given by

$$
K^{+}_{(a)}(u) = \frac{1}{f^{(j)}(u)} K^{-}_{(a)}(-u - \eta) \left|_{(\alpha_{-}, \beta_{-}, \theta_{-}) \rightarrow (-\alpha_{+}, -\beta_{+}, \theta_{+})} \right.,
$$

with the following normalization factor,

$$
f^{(j)}(u) = \prod_{l=1}^{2j-1} \prod_{k=1}^{l} \left[-\xi (2u + (l + k + 1 - 2j)\eta) \right].
$$

From the fused matrices, one constructs the higher spin transfer matrix $t^{(j,s)}(u)$,

$$
t^{(j,s)}(u) = \text{tr}_{(a)} K^{+}_{(a)}(u) T^{(j,s)}_{(a)}(u) K^{-}_{(a)}(u) T^{(j,s)}_{(a)}(u).
$$

The monodromy matrices are given by products of N fused R matrices,

$$
T^{(j,s)}_{(a)}(u) = R^{(j,s)}_{(a)\{b_{(1)}\}}(u) \ldots R^{(j,s)}_{(a)\{b_{(N)}\}}(u),
$$

$$
T^{(j,s)}_{(a)}(u) = R^{(j,s)}_{(a)\{b_{(1)}\}}(u) \ldots R^{(j,s)}_{(a)\{b_{(N)}\}}(u).
$$

These transfer matrices commute for different values of spectral parameter for any $j, j' \in \{\frac{1}{2}, 1, \frac{3}{2}, \ldots\}$ and any $s \in \{\frac{1}{2}, 1, \frac{3}{2}, \ldots\}$,

$$
[t^{(j,s)}(u), \ t^{(j',s)}(u')] = 0.
$$

Furthermore, they also obey the fusion hierarchy \cite{5, 42, 65, 66}\footnote{See the appendix in \cite{42} for more details on the fusion hierarchy.}

$$
t^{(j - 1/2, s)}(u - j\eta) t^{(1/2, s)}(u) = t^{(j, s)}(u - (j - \frac{1}{2})\eta) + \delta^{(s)}(u - \eta) t^{(j - 1, s)}(u - (j + \frac{1}{2})\eta),
$$

where $t^{(0, s)} = 1$, and $\delta^{(s)}(u)$ is given by

$$
\delta^{(s)}(u) = \delta^{(s)}_{0}(u) \delta^{(s)}_{1}(u),
$$

\footnote{See the appendix in \cite{42} for more details on the fusion hierarchy.}
where

\[
\delta_0^{(s)}(u) = \left[\prod_{k=0}^{2s-1} \xi \left(u + (s - k + \frac{1}{2}) \eta \right) \right]^{2N} \frac{\sh(2u)\sh(2u + 4\eta)}{\sh(2u + \eta)\sh(2u + 3\eta)}
\]

\[
\delta_1^{(s)}(u) = 2^4\sh(u + \alpha_- + \eta)\sh(u - \alpha_- + \eta)\ch(u + \beta_- + \eta)\ch(u - \beta_- + \eta)
\times \sh(u + \alpha_+ + \eta)\sh(u - \alpha_+ + \eta)\ch(u + \beta_+ + \eta)\ch(u - \beta_+ + \eta).
\] (2.15)

To avoid confusion, we emphasize that the \(\delta^{(s)}(u)\) in [42] differs from the one given here by a shift in \(\eta\).

Next, we list a few important properties of the rescaled ‘fundamental’ transfer matrix \(\tilde{t}^{(1/2, s)}(u)\) (defined below), which are useful in determining its eigenvalues. Following the definition of \(\tilde{t}^{(1/2, s)}(u)\) as in [42], we have

\[
\tilde{t}^{(1/2, s)}(u) = \frac{1}{g^{(1/2, s)}(u)^{2N}} t^{(1/2, s)}(u),
\]

where

\[
g^{(1/2, s)}(u) = \prod_{k=1}^{2s-1} \sh(u + (s - k + \frac{1}{2})\eta).
\] (2.17)

This transfer matrix has the following useful properties:

\[
\tilde{t}^{(1/2, s)}(u + i\pi) = \tilde{t}^{(1/2, s)}(u) \quad (i\pi - \text{periodicity})
\]

\[
\tilde{t}^{(1/2, s)}(u - \eta) = \tilde{t}^{(1/2, s)}(u) \quad \text{(crossing)}
\]

\[
\tilde{t}^{(1/2, s)}(0) = -2^3\sh^{2N}((s + \frac{1}{2})\eta)\ch\eta\sh\alpha_-\ch\beta_-\sh\alpha_+\ch\beta_+ \mathbb{I} \quad \text{(initial condition)}
\]

\[
\tilde{t}^{(1/2, s)}(u)|_{\eta=0} = 2^3\sh^{2N}u [\sh\alpha_-\ch\beta_-\sh\alpha_+\ch\beta_+ \ch^2u + \ch\alpha_-\ch\beta_-\sh\alpha_+\ch\beta_+ \sh^2u
- \ch(\theta_- - \theta_+)\sh^2u \ch^2u]\mathbb{I} \quad \text{(semi-classical limit)}
\] (2.21)

where \(\mathbb{I}\) is the identity matrix.

Due to the commutativity property (2.12), the corresponding simultaneous eigenvectors are independent of the spectral parameter. Hence, (2.18)–(2.21) hold for the corresponding eigenvalues as well. In addition to the above-mentioned properties, for bulk anisotropy parameter values \(\eta = i\pi/(p + 1)\), with \(p = 1, 2, \ldots\), the ‘fundamental’ transfer matrix, \(t^{(1/2, s)}(u)\) (and hence each of the corresponding eigenvalues, \(\Lambda^{(1/2, s)}(u)\)) obeys functional relations of order \(p + 1\) [34]–[36],

\[
t^{(1/2, s)}(u)t^{(1/2, s)}(u + \eta) \cdots t^{(1/2, s)}(u + p\eta)
- \delta^{(s)}(u - \eta)t^{(1/2, s)}(u + \eta) \cdots t^{(1/2, s)}(u + (p - 1)\eta)
- \delta^{(s)}(u)t^{(1/2, s)}(u + 2\eta) \cdots t^{(1/2, s)}(u + p\eta)
- \delta^{(s)}(u + \eta)t^{(1/2, s)}(u + 3\eta) \cdots t^{(1/2, s)}(u + p\eta)
- \delta^{(s)}(u + 2\eta)t^{(1/2, s)}(u + 4\eta) \cdots t^{(1/2, s)}(u + p\eta)
- \delta^{(s)}(u + 3\eta)t^{(1/2, s)}(u + 5\eta) \cdots t^{(1/2, s)}(u + p\eta) - \cdots
- \delta^{(s)}(u + (p - 1)\eta)t^{(1/2, s)}(u) \cdots t^{(1/2, s)}(u + (p - 2)\eta)
+ \cdots = f(u).
\] (2.22)
In this section, we give the main results of this paper. We derive the generalized T–Q relations for the transfer matrix eigenvalues and obtain the Bethe-ansatz-type equations, for cases where at most two of the boundary parameters $\alpha_\pm, \beta_\pm, \theta_\pm$ (for odd p) by

$$
f_0(u) = \begin{cases}
(-1)^{N+1} 2^{-4spN} \sin^{4sN} ((p + 1)u) \tanh^2 ((p + 1)u), & s = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots \\
(-1)^{N+1} 2^{-4spN} \cosh^{4sN} ((p + 1)u) \tanh^2 ((p + 1)u), & s = 1, 2, 3, \ldots
\end{cases}
$$

(2.23)

and

$$
f_1(u) = -2^{3-2p} (ch ((p + 1)\alpha_-) ch ((p + 1)\beta_-) ch ((p + 1)\alpha_+) ch ((p + 1)\beta_+) \sinh^2 ((p + 1)u) \\
- \sinh ((p + 1)\alpha_-) \sinh ((p + 1)\beta_-) \sinh ((p + 1)\alpha_+) \sinh ((p + 1)\beta_+) \sinh^2 ((p + 1)u) \\
+ (-1)^N \sinh ((p + 1)(\theta_- - \theta_+)) \sinh^2 ((p + 1)u) \sinh^2 ((p + 1)u)),
$$

(2.24)

for $s = \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots$ and

$$
f_1(u) = (-1)^{N+1} 2^{3-2p} (ch ((p + 1)\alpha_-) \\
\times \cosh ((p + 1)\beta_-) \cosh ((p + 1)\alpha_+) \cosh ((p + 1)\beta_+) \sinh^2 ((p + 1)u) \\
- \sinh ((p + 1)\alpha_-) \sinh ((p + 1)\beta_-) \sinh ((p + 1)\alpha_+) \sinh ((p + 1)\beta_+) \sinh^2 ((p + 1)u) \\
+ \cosh ((p + 1)(\theta_- - \theta_+)) \sinh^2 ((p + 1)u) \sinh^2 ((p + 1)u)),
$$

(2.25)

for $s = 1, 2, 3, \ldots$. Note that $f(u)$ satisfies

$$
f(u + \eta) = f(u), \quad f(-u) = f(u),
$$

(2.26)

and

$$
f_0(u)^2 = \prod_{j=0}^{p} \delta_0^{(s)}(u + j\eta),
$$

(2.27)

where $\delta_0^{(s)}(u)$ is given by (2.15).

3. Generalized T–Q relations and Bethe ansatz

In this section, we give the main results of this paper. We derive the generalized T–Q relations for the transfer matrix eigenvalues and obtain the Bethe-ansatz-type equations, for cases where at most two of the boundary parameters α_\pm or β_\pm are arbitrary, by adopting the steps given in [46] while setting $\theta_- = \theta_+ = \theta$, where θ is also arbitrary. More on this is given below.

3.1. T–Q relations

The transfer matrix $t^{(1/2,s)}(u)$ and its eigenvalues $(\Lambda^{(1/2,s)}(u))$ obey the functional relations (2.22). We exploit this fact to obtain the T–Q relations. Following [70], one could recast the functional relations as the condition that the determinant of a certain matrix vanishes, namely

$$
det M(u) = 0,
$$

(3.1)

doi:10.1088/1742-5468/2012/10/P10003

J. Stat. Mech. (2012) P10003
where \(\mathcal{M}(u) \) is given by the \((p + 1) \times (p + 1)\) matrix

\[
\mathcal{M}(u) = \begin{pmatrix}
\Lambda^{(1/2,s)}(u) & -\frac{\delta(s)(u)}{h^{(1)}(u)} & 0 & \ldots & 0 & -\frac{\delta(s)(u - \eta)}{h^{(2)}(u - \eta)} \\
-h^{(1)}(u) & \Lambda^{(1/2,s)}(u + \eta) & -h^{(2)}(u + \eta) & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-h^{(2)}(u - \eta) & 0 & 0 & \ldots & -h^{(1)}(u + (p - 1)\eta) & \Lambda^{(1/2,s)}(u + p\eta)
\end{pmatrix},
\]

(3.2)

where \(h^{(1)}(u) \) and \(h^{(2)}(u) \) are functions which are \(i\pi\)-periodic, but otherwise not yet specified. We note that the above matrix has the following symmetry,

\[
T \mathcal{M}(u) T^{-1} = \mathcal{M}(u + 2\eta), \quad T \equiv S^2,
\]

(3.3)

where \(S \) is given by,

\[
S = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \ldots & 0 & 1 \\
1 & 0 & 0 & \ldots & 0 & 0
\end{pmatrix}.
\]

(3.4)

Assuming that

\[
\det \mathcal{M}(u) = 0,
\]

(3.5)

then \(\mathcal{M}(u) \) has a null eigenvector \(v(u) \),

\[
\mathcal{M}(u) \ v(u) = 0.
\]

(3.6)

The symmetry (3.3) is consistent with

\[
T \ v(u) = v(u + 2\eta),
\]

(3.7)

which implies that \(v(u) \) has the form

\[
v(u) = (Q_1(u), Q_2(u + \eta), \ldots, Q_1(u - 2\eta), Q_2(u - \eta)),
\]

(3.8)

with

\[
Q_1(u) = Q_1(u + i\pi), \quad Q_2(u) = Q_2(u + i\pi).
\]

(3.9)

That is, the components of \(v(u) \) are determined by \textit{two} independent functions, \(Q_1(u) \) and \(Q_2(u) \).\footnote{In [45], all of the matrices \(\mathcal{M}(u) \) possess a stronger symmetry, \(S \mathcal{M}(u) S^{-1} = \mathcal{M}(u + \eta) \), implying the null eigenvector with single \(Q(u) \). We refer the reader to section 3 of [46] for more detail discussion on this.}

\[\text{doi:10.1088/1742-5468/2012/10/P10003}\]
The null eigenvector condition (3.6) together with the explicit forms of $\mathcal{M}(u)$ and $v(u)$, given by (3.2) and (3.8) respectively, now lead to the following $T-Q$ relations,

$$
\Lambda^{(s)}(u) = \delta^{(s)}(u) \frac{Q_2(u + \eta)}{Q_1(u)} + \delta^{(s)}(u - \eta) \frac{Q_2(u - \eta)}{Q_1(u)},
$$

(3.10)

$$
= h^{(1)}(u - \eta) \frac{Q_1(u - \eta)}{Q_2(u)} + h^{(2)}(u) \frac{Q_1(u + \eta)}{Q_2(u)}.
$$

(3.11)

Due to the crossing symmetry (2.19) and

$$
\delta^{(s)}(u) = \delta^{(s)}(-u - 2\eta),
$$

(3.12)

which is the crossing property for $\delta^{(s)}(u)$, it is then natural to have the two terms in (3.10) transform into each other under crossing. Hence, we set

$$
h^{(2)}(u) = h^{(1)}(-u - 2\eta),
$$

(3.13)

and we make the following ansatz

$$
Q_j(u) = \prod_{k=1}^{M_j} \sinh(u - u^{(j)}_k) \sinh(u + u^{(j)}_k + \eta),
$$

(3.14)

which is consistent with the required periodicity (3.9) and crossing properties

$$
Q_j(u) = Q_j(-u - \eta),
$$

(3.15)

where $j = 1, 2$. In (3.14), $\{u^{(j)}_k\}$ represents the Bethe roots (or zeros of $Q_j(u)$) and there are M_j of these roots. Further, one can verify that the condition $\det \mathcal{M}(u) = 0$ indeed implies the functional relations (2.22), if $w(u)$ satisfies

$$
f(u) = w(u) \prod_{j=0,2,\ldots}^{p-1} \delta^{(s)}(u + j\eta) + \frac{1}{w(u)} \prod_{j=1,3,\ldots}^{p} \delta^{(s)}(u + j\eta),
$$

(3.16)

where

$$
w(u) = \frac{\prod_{j=1,3,\ldots}^{p} h^{(2)}(u + j\eta)}{\prod_{j=0,2,\ldots}^{p-1} h^{(1)}(u + j\eta)}.
$$

(3.17)

It follows from (3.16) that the process of finding $w(u)$ reduces to solving a quadratic equation, which, when used together with (3.13) and (3.17), yields the explicit form for the function $h^{(1)}(u)$. Here, we consider an even number of sites, N. Below, we give the solutions of (3.17) for $h^{(1)}(u)$ for two cases:

(1) β_- and β_+ arbitrary while setting $\alpha_+ = 0, \theta_- = \theta_+ = \theta = \text{arbitrary}$.

$$
h^{(1)}(u) = 4 \left[\prod_{k=0}^{2s-1} \sinh \left(u + \left(s - k + \frac{3}{2} \right) \eta \right) \right]^{2N} \frac{\sinh^2(u + \eta) \sinh(2u + 4\eta)}{\sinh(2u + 3\eta)},
$$

(3.18)

$$
M_1 = sN + \frac{1}{2}(p + 1), \quad M_2 = M_1 - 1.
$$
In this section, we review the integrable Hamiltonian for the open spin-1 XXZ quantum spin chain (adopting notations used in \[42\]). The Hamiltonian is given by

\[
\mathcal{H} = \sum_{n=1}^{N-1} H_{n,n+1} + H_b,
\]

(4.1)

We remark here that for each case, there is more than one solution for \(h^{(1)}(u)\) that corresponds to the above expression for \(w(u)\). The solutions found are largely by trial and error, verifying numerically for small values of \(N\) that the eigenvalues can indeed be expressed as (3.10), (3.11) with \(Q(u)\)s of the form (3.14).

To summarize, we have proposed that for the case where the bulk anisotropy parameter \(\eta = \pi/(p + 1)\), with \(p\) being odd integers and at most two of the boundary parameters being arbitrary, the eigenvalues \(\Lambda^{(\frac{1}{2}, s)}(u)\) of the transfer matrix \(t^{(\frac{1}{2}, s)}(u)\) for two cases (I and II) are given by a generalized form of \(T-Q\) relations (3.10), (3.11), with \(Q_1(u)\) and \(Q_2(u)\) given by (3.14) and \(h^{(2)}(u)\) given by (3.13). The \(h^{(1)}(u)\) is given by (3.18) and (3.19) respectively, for the two cases considered. The zeros \(\{u_j^{(1)}, u_j^{(2)}\}\) of \(Q_1(u)\) and \(Q_2(u)\) are indeed the solutions of the Bethe-ansatz-type equations, (3.20) and (3.21). These equations reproduce results in \[46, 47\] for \(s = \frac{1}{2}\). In section 4, we shall use these results (specifically \(\tilde{\Lambda}^{(\frac{1}{2}, s)}(u)\), which represents the eigenvalues of the rescaled ‘fundamental’ transfer matrix given by (2.16)) to derive expressions for energy eigenvalues for the case \(s = 1\).

4. Energy eigenvalues and Bethe roots

In this section, we provide numerical evidence for the completeness of the Bethe-ansatz-type solutions derived in section 3 using the case \(s = 1\) as an example. We derive an expression for the energy eigenvalues for the open spin-1 XXZ quantum spin chain and compute the complete energy levels for this case from the Bethe roots given by (3.20) and (3.21). We do this for both cases, I and II.

4.1. Open spin-1 XXZ quantum spin chain: the Hamiltonian

In this section, we review the integrable Hamiltonian for the open spin-1 XXZ quantum spin chain (adopting notations used in \[42\]). The Hamiltonian is given by

\[
\mathcal{H} = \sum_{n=1}^{N-1} H_{n,n+1} + H_b,
\]

doi:10.1088/1742-5468/2012/10/P10003 10
where $H_{n,n+1}$ represents the bulk terms. Explicitly, these terms are given by [83],

$$H_{n,n+1} = \sigma_n - (\sigma_n)^2 + 2\text{sh}^2 \eta \left[(S_n^z)^2 + (S_{n+1}^z)^2 - (\sigma_n)^2 \right] - 4\text{sh}^2 \left(\frac{\eta}{2} \right) (\sigma_n^+ \sigma_n^- + \sigma_n^- \sigma_n^+) , \quad (4.2)$$

where

$$\sigma_n = \vec{S}_n \cdot \vec{S}_{n+1} , \quad \sigma_n^\pm = S_n^x S_{n+1}^x + S_n^y S_{n+1}^y , \quad \sigma_n^z = S_n^z S_{n+1}^z , \quad (4.3)$$

and \vec{S} are the $su(2)$ spin-1 generators. H_b represents the boundary terms with the following form (see e.g., [42, 84])

$$H_b = a_1 (S_1^z)^2 + a_2 S_1^z + a_3 (S_1^+) + a_4 (S_1^-)^2 + a_5 S_1^+ S_1^- + a_6 S_1^- S_1^- + (a_j \leftrightarrow b_j \text{ and } 1 \leftrightarrow N) , \quad (4.4)$$

where $S^\pm = S^x \pm i S^y$. The coefficients $\{a_i\}$ of the boundary terms at site 1 are functions of the boundary parameters $(\alpha_-, \beta_-, \theta_-)$ and the bulk anisotropy parameter η. They are given by

$$a_1 = \frac{1}{2} a_0 (\text{ch} 2 \alpha_- - \text{ch} 2 \beta_- + \text{ch} \eta) \text{sh} 2\eta \text{sh} \eta , \quad a_2 = \frac{1}{2} a_0 \text{sh} 2 \alpha_- \text{sh} 2 \beta_- \text{sh} 2\eta , \quad a_3 = -\frac{1}{8} a_0 e^{2\theta} \text{sh} 2\eta \text{sh} \eta ,$$

$$a_4 = -\frac{1}{8} a_0 e^{-2\theta} \text{sh} 2\eta \text{sh} \eta , \quad a_5 = a_0 e^{\theta} \left(\text{ch} \beta_- \text{sh} \alpha_- \text{ch} \frac{\eta}{2} + \text{ch} \alpha_- \text{sh} \beta_- \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{3}{2} \eta ,$$

$$a_6 = a_0 e^{-\theta} \left(\text{ch} \beta_- \text{sh} \alpha_- \text{ch} \frac{\eta}{2} + \text{ch} \alpha_- \text{sh} \beta_- \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{3}{2} \eta , \quad a_7 = -a_0 e^{\theta} \left(\text{ch} \beta_- \text{sh} \alpha_- \text{ch} \frac{\eta}{2} - \text{ch} \alpha_- \text{sh} \beta_- \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{3}{2} \eta ,$$

$$a_8 = -a_0 e^{-\theta} \left(\text{ch} \beta_- \text{sh} \alpha_- \text{ch} \frac{\eta}{2} - \text{ch} \alpha_- \text{sh} \beta_- \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{3}{2} \eta ,$$

where

$$a_0 = \left[\text{sh} \left(\alpha_- - \frac{\eta}{2} \right) \text{sh} \left(\alpha_- + \frac{\eta}{2} \right) \text{ch} \left(\beta_- - \frac{\eta}{2} \right) \text{ch} \left(\beta_- + \frac{\eta}{2} \right) \right]^{-1} . \quad (4.6)$$

Similarly, the coefficients $\{b_i\}$ of the boundary terms at site N, which are functions of the boundary parameters $(\alpha_+, \beta_+, \theta_+)$ and η, are given by the following correspondence

$$b_i = a_i |_{\alpha_- \rightarrow \alpha_+, \beta_- \rightarrow \beta_+, \theta_- \rightarrow \theta_+} . \quad (4.7)$$

The Hamiltonian \mathcal{H} (4.1), according to [4], is related to the first derivative of the spin-1 transfer matrix, namely $t^{(1,1)}(u)$, which one constructs from $t^{(\frac{1}{2},1)}(u)$ by using the fusion hierarchy formula (2.13),

$$t^{(1,1)}(u) = t^{(1/2,1)} \left(u - \frac{\eta}{2} \right) t^{(1/2,1)} \left(u + \frac{\eta}{2} \right) - t^{(1)}(u - \frac{\eta}{2}) , \quad (4.8)$$

where $t^{(1)}(u)$ is given by (2.14)–(2.15) with $s = 1$. Following [42], we work with the rescaled transfer matrix given by

$$\tilde{t}^{(1,1)}(u) = \frac{\text{sh} (2u) \text{sh} (2u + 2\eta)}{[\text{sh} \text{sh} (u + \eta)]^{2\eta}} t^{(1,1)}(u) , \quad (4.9)$$

doi:10.1088/1742-5468/2012/10/P10003
where $t^{(1,1)}(u)$ is the transfer matrix constructed from ‘gauge’-transformed $R^{(1,1)}(u)$ and $K^{(1)}(u)$ matrices. We note here that the rescaled transfer matrix does not vanish at $u = 0$.

The Hamiltonian \mathcal{H} (4.1), can now be expressed in terms of the first derivative of $\tilde{t}^{(1,1)}(u)$,

$$
\mathcal{H} = c_1^{(1)} \frac{d}{du} \tilde{t}^{(1,1)}(u)|_{u=0} + c_2^{(1)} \mathbb{I},
$$

(4.10)

where

$$
c_1^{(1)} = \text{ch} \eta \left\{ 16[\text{sh} 2\eta \text{sh} \eta]^{2N} \text{sh} 3\eta \text{sh} \left(\alpha_+ - \frac{\eta}{2} \right) \text{sh} \left(\alpha_+ + \frac{\eta}{2} \right) \text{ch} \left(\beta_+ - \frac{\eta}{2} \right) \text{ch} \left(\beta_+ + \frac{\eta}{2} \right) \right\}^{-1}
$$

(4.11)

and

$$
c_2^{(1)} = -\frac{a_0}{4} b \text{ch} \eta - (N - 1)(4 + \text{ch} 2\eta) + 2N \text{ch}^2 \eta
$$

$$
- \frac{\text{sh} \eta}{2d} \left\{ -2\text{ch} 2\beta_+ (\text{ch} \eta(3 + 7\text{ch} 2\eta + \text{ch} 4\eta)) + \text{ch} 2\beta_+ (4 + 5\text{ch} 2\eta + 2\text{ch} 4\eta) \right\}
$$

(4.12)

In (4.12), b and d are given by

$$
b = 2(-\text{ch} 2\beta_+ - \text{ch}^3 \eta + \text{ch} 2\alpha_-(1 + \text{ch} 2\beta_\eta \text{ch} \eta))
$$

(4.13)

and

$$
d = -4\text{sh} 3\eta \text{sh} \left(\alpha_+ + \frac{\eta}{2} \right) \text{sh} \left(\alpha_+ - \frac{\eta}{2} \right) \text{ch} \left(\beta_+ + \frac{\eta}{2} \right) \text{ch} \left(\beta_+ - \frac{\eta}{2} \right).
$$

(4.14)

4.2. Open spin-1 XXZ quantum spin chain: energy eigenvalues

Next, we proceed to the eigenvalues of the Hamiltonian (4.10). Note that (4.10) implies the following result for the corresponding eigenvalues,

$$
E = c_1^{(1)} \frac{d}{du} \tilde{\Lambda}^{(1,1)}(u) \bigg|_{u=0} + c_2^{(1)},
$$

(4.15)

where $\tilde{\Lambda}^{(1,1)}(u)$ represents the transfer matrix eigenvalues, which assume the following form after using (2.16), (4.8) and (4.9),

$$
\tilde{\Lambda}^{(1,1)}(u) = \frac{\text{sh} (2u) \text{sh} (2u + 2\eta)}{[\text{sh} \text{sh}(u + \eta)]^{2N}} \left\{ \left[g^{(1/2,s)}(u - \frac{\eta}{2}) g^{(1/2,s)}(u + \frac{\eta}{2}) \right]^{2N} \right. \\
\left. \times \tilde{\Lambda}^{(1/2,1)}(u - \frac{\eta}{2}) \Lambda^{(1/2,1)}(u + \frac{\eta}{2}) - \delta^{(1)}(u - \frac{\eta}{2}) \right\}.
$$

(4.16)

Such a transformation results in a more symmetric form of these matrices. For a detailed discussion on this, refer to section 4 of [42].
where $\delta^{(1)}(u)$ is given by (2.14)–(2.15) with $s = 1$. Furthermore, we have also used the fact that $\Lambda^{(1,1)} s(u) = \Lambda^{(1,1)}(u)$. Finally, from (3.11), (4.8) and (4.9), we obtain the energy in terms of Bethe roots $\{u^{(j)}_k\}$ for cases I and II. Below, we present the analytic forms of the energy eigenvalues for these two cases:

Case I. β_- and β_+ arbitrary while setting $\alpha_\pm = 0$, $\theta_- = \theta_+ = \theta = \text{arbitrary}$:

$$E = \text{sh}^2(2\eta) \sum_{k=1}^{M_1} \frac{1}{\text{sh}(u^{(1)}_k + 3\eta/2)\text{sh}(u^{(1)}_k - \eta/2)} + 2\text{sh}2\eta \left[(N + 1)\text{cth}\eta - \text{cth}\frac{\eta}{2} \right] + c^{(1)}_1 C''(0) + c^{(1)}_2.$$

(4.17)

Case II. α_- and α_+ arbitrary while setting $\beta_\pm = 0$, $\theta_- = \theta_+ = \theta = \text{arbitrary}$:

$$E = \text{sh}^2(2\eta) \sum_{k=1}^{M_1} \frac{1}{\text{sh}(u^{(1)}_k + 3\eta/2)\text{sh}(u^{(1)}_k - \eta/2)} + 2\text{sh}2\eta \left[(N + 1)\text{cth}\eta - \text{th}\frac{\eta}{2} \right] + c^{(1)}_1 C''(0) + c^{(1)}_2.$$

(4.18)

where in (4.17) and (4.18),

$$C(u) = -\frac{\text{sh}2\text{ush}(2u + 2\eta)}{\text{sh ush}(u + \eta)^{2N}\delta^{(1)}(u - \eta/2)}.$$

(4.19)

We recall that $M_1 = N + \frac{1}{2}(p + 1)$ and $M_2 = M_1 - 1$. Note that in (4.17) and (4.18), the contribution to E comes only from $\{u^{(1)}_k\}$ and not from both $\{u^{(1)}_k\}$ and $\{u^{(2)}_k\}$ as one may initially expect. Perhaps, if one uses (3.10) instead of (3.11) in the derivation of E, an equivalent expression involving only $\{u^{(2)}_k\}$ or both $\{u^{(1)}_k\}$ and $\{u^{(2)}_k\}$ may result. This however will not affect the numerical value of the energy eigenvalues tabulated in section 4.3.

4.3. Numerical results

In this section, we tabulate the energies computed using (4.17) and (4.18) for some values of N, p (therefore η) and the boundary parameters $\{\alpha_\pm, \beta_\pm, \theta_\pm\}$ with the Bethe roots, $\{u^{(1)}_k\}$, in tables 1 and 2 for cases I and II respectively. These Bethe roots are obtained using McCoy’s method [81, 82]. These numerical results demonstrate the completeness of the Bethe-ansatz-type equations, (3.20) and (3.21) for the case $s = 1$. We checked these solutions for chains of length up to $N = 4$ for $p = 3, 5$ and 7 with boundary parameters $\beta_+ = 0.695, \beta_- = 0.774$. We remark that these solutions reproduce the $s = \frac{1}{2}$ case given in [46, 47]. The T–Q relations (3.10) and (3.11) are also numerically verified for the $s = \frac{3}{2}$ case for some selected values of N, p and boundary parameters. We acknowledge that these analysis provide some numerical support for the completeness of the Bethe-ansatz-type equations derived, (3.20) and (3.21), and not a complete rigorous proof. We have also verified that the energies given in tables 1 and 2 coincide with those obtained from direct diagonalization of (4.1).

doi:10.1088/1742-5468/2012/10/P10003
Generalized T–Q relations and the open spin-s XXZ chain with nondiagonal boundary terms

Table 1. The 9 energies and corresponding Bethe roots for $N = 2, s = 1, p = 3, \eta = i\pi/4, \alpha_- = 0, \beta_- = 0.767, \theta_- = 0.573, \alpha_+ = 0, \beta_+ = 0.598, \theta_+ = 0.573$.

E	Bethe roots, $\{u_k^{(1)}\}$
-5.6483	0.426847 + 2.19193i, 0.719676 + 1.1781i, 0.109151 i, 0.426847 + 0.164266i
-4.67715	0.106242 + 2.28424i, 0.379199 + 1.1781i, 1.05101 + 1.1781i, 0.106242 + 0.071957 i
-2.75841	0.387014 + 2.748893i, 1.277532 i, 0.932369 + 1.1781i, 0.0609966 i
-1.98286	0.185547 + 2.748893i, 1.701637 i, 0.915819 + 1.1781i, 0.138044 i
-1.54571	0.171807 + 3.046499i, 0.171807 + 2.451287i, 1.566925 i, 0.916569 + 1.1781i
-0.489791	0.781754 + 1.921787i, 1.599981 i, 0.0312436 i, 0.781754 + 0.434407i
-0.392189	3.109568 i, 0.779636 + 1.920999i, 1.554992 i, 0.779636 + 0.435203i
0.572634	0.810472 i, 0.624212 + 1.1781i, 0.010646 i, 1.227343 + 1.1781i
0.808501	3.130312 i, 0.791507 i, 0.618753 + 1.1781i, 1.221033 + 1.1781i

Table 2. The 9 energies and corresponding Bethe roots for $N = 2, s = 1, p = 5, \eta = i\pi/6, \alpha_- = 0.854i, \beta_- = 0, \theta_- = 0.482, \alpha_+ = 0.487i, \beta_+ = 0, \theta_+ = 0.482$.

E	Bethe roots, $\{u_k^{(1)}\}$
-6.07709	0.0471453 + 3.1415i, 0.0471453 + 2.61809i, 1.74867i, 0.74532 + 1.309i, 0.8742 i
-4.65604	2.65564i, 0.107433 + 2.35618i, 0.321204 + 1.309i, 0.557414i, 0.107433 + 0.261819i
-4.3506	0.00657235 + 3.07819i, 0.00657235 + 2.6814i, 2.07693i, 0.12098 + 1.93837i, 0.12098 + 0.679624i
-2.55991	0.272597 + 3.13706i, 0.272597 + 2.62253i, 2.13098i, 0.672718 + 1.309i, 0.862768 i
-1.63092	0.326829 + 2.87979i, 0.308315 + 2.35663i, 2.13093i, 0.890835i, 0.308315 + 0.261367i
0.0925845	0.248529 + 2.87979i, 1.76311i, 0.373083 + 1.309i, 1.20497 + 1.309i, 0.487 i
0.0971716	0.548694 + 2.59187i, 2.13099i, 0.518481 + 1.309i, 0.856853i, 0.548694 + 0.026235i
1.6757	0.70468 + 2.87979i, 0.338436 + 1.309i, 0.854426i, 1.08306 + 1.309i, 0.487 i
2.99332	1.7639i, 0.273003 + 1.309i, 0.720682 + 1.309i, 0.487i, 1.54847 + 1.309i

doi:10.1088/1742-5468/2012/10/P10003
5. Discussion

By using a method that relies on certain functional relations that the ‘fundamental’ transfer matrices, $t^{(1/2,s)}(u)$, obey at roots of unity and the truncation of fusion hierarchy, we set up a generalized form of the $T–Q$ relation, (3.10) and (3.11), for the open spin-s XXZ quantum spin chain with nondiagonal boundary terms. From these relations, we have determined Bethe-ansatz-type solutions of the model, (3.20) and (3.21). These solutions hold only for $\eta = i\pi/2, i\pi/4, \ldots$. The solutions found here hold for arbitrary values of boundary parameters (at most two). These solutions have been checked for chains of length up to $N = 4$ for $p = 3, 5$ and 7 with boundary parameters $\beta_+ = 0.695, \beta_- = 0.774$. We verified that they indeed produce all the $(2s + 1)^N$ transfer matrix eigenvalues for $s = \frac{1}{2}, 1$ and $\frac{3}{2}$. Moreover, we also presented numerical evidence for the completeness of the Bethe-ansatz-type solutions found (using $s = 1$ as examples) in tables 1 and 2. The numerical support for the completeness of the solutions presented here (using the $s = 1$ case as examples), together with the results presented for the spin-$1/2$ case in [46, 47] and the fusion hierarchy (2.13) which is used in the construction of higher spin-s transfer matrices, could perhaps possibly enable one to develop a more formal rigorous proof for the completeness of the solutions found here. It would be interesting to pursue this in the future.

In addition, a number of problems remain that are worth investigating. Perhaps one could carry out a more thorough treatment and analysis of the functional equation to yield the exact form of the $Q_i(u)$ functions, thus avoiding the need for an ansatz such as (3.14). Another interesting problem is to see the relation of the $s = 1$ case to the supersymmetric sine–Gordon (SSG) model, along the lines of [58, 59], but now for the spin-1 chain with nondiagonal boundary terms described by the generalized $T–Q$ relations instead of the conventional $T–Q$ relation. One could also try to generalize the solutions presented in [48] for the spin-$1/2$ case, where all six boundary parameters are completely arbitrary, to any spin s, and analyze the $s = 1$ case for this general solution in relation to the SSG model. In this regard, one can study the continuum limit of their nonlinear integral equations (NLIEs), thus investigating the infrared (IR) and ultraviolet (UV) limits of the NLIEs. One could also investigate the boundary bound states of SSG models corresponding to all these cases, such as reported recently in [85]. We hope to be able to address some of these issues in future publications.

Acknowledgments

We thank the referees for their constructive and crucial comments and suggestions which greatly helped us in revising and improving the paper.

References

[1] Gaudin M, Boundary energy of a Bose gas in one dimension, 1971 Phys. Rev. A 4 386
[2] Gaudin M, 1983 La fonction d’onde de Bethe (Paris: Masson)
[3] Alcaraz F C, Barber M N, Batchelor M T, Baxter R J and Quispel G R W, Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models, 1987 J. Phys. A: Math. Gen. 20 6397
[4] Sklyanin E K, Boundary conditions for integrable quantum systems, 1988 J. Phys. A: Math. Gen. 21 2375

doi:10.1088/1742-5468/2012/10/P10003
Generalized T–Q relations and the open spin-s XXZ chain with nondiagonal boundary terms

[5] Mezincescu L, Nepomechie R I and Rittenberg V, Bethe Ansatz solution of the Fateev–Zamolodchikov quantum spin chain with boundary terms, 1990 Phys. Lett. A 147 70

[6] Fireman E C, Lima-Santos A and Uriel W, Bethe Ansatz solution for quantum spin-1 chains with boundary terms, 2002 Nucl. Phys. B 626 435 [arXiv:nucl-th/0110048]

[7] Galleas W and Martines M J, Solution of the SU(N) vertex model with non-diagonal open boundaries, 2005 Phys. Lett. A 335 167 [arXiv:nlin.SI/0407027]

[8] Melo C S, Ribeiro G A P and Martin M J, Bethe ansatz for the XXX-S chain with non-diagonal open boundaries, 2005 Nucl. Phys. B 711 565 [arXiv:nucl-th/0411038]

[9] Doikou A and Babichenko A, Principal chiral model scattering and the alternating quantum spin chain, 2001 Phys. Lett B 515 220 [arXiv:hep-th/0105033]

[10] Doikou A, The XXX spin s quantum chain and the alternating s1, s2 chain with boundaries, 2002 Nucl. Phys. B 634 591 [arXiv:hep-th/0201008]

[11] Doikou A and Martin P P, On quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary, 2006 J. Stat. Mech. P06004 [arXiv:hep-th/0503019]

[12] Doikou A, The Open XXZ and associated models at q root of unity, 2006 J. Stat. Mech. P09010 [arXiv:hep-th/0603112]

[13] de Gier J and Pyatov P, Bethe Ansatz for the Temperley–Lieb loop model with open boundaries, 2004 J. Stat. Mech. P03002 [arXiv:hep-th/0312235]

[14] Nichols A, Rittenberg V and de Gier J, One-boundary Temperley–Lieb algebras in the XXZ and loop models, 2005 J. Stat. Mech. P03003 [arXiv:cond-mat/0411152]

[15] de Gier J, Nichols A, Pyatov P and Rittenberg V, Magic in the spectra of the XXZ quantum chain with boundaries at $\Delta = 0$ and $\Delta = -1/2$, 2005 Nucl. Phys. B 729 387 [arXiv:hep-th/0505062]

[16] de Gier J and Essler F H L, Bethe Ansatz solution of the asymmetric exclusion process with open boundaries, 2005 Phys. Rev. Lett. 95 240601 [arXiv:cond-mat/0508707]

[17] de Gier J and Essler F H L, Exact spectral gaps of the asymmetric exclusion process with open boundaries, 2006 J. Stat. Mech. P12011 [arXiv:cond-mat/0609645]

[18] Arnal dreadn D, Avan J, Crampe N, Doikou A, Frappat L and Ragoucy E, General boundary conditions for the $sl(N)$ and $sl(M,N)$ open spin chains, 2004 J. Stat. Mech. P08005 [arXiv:math-ph/0606021]

[19] Yang W-L, Zhang Y-Z and Gould M, Exact solution of the XXZ Gaudin model with generic open boundaries, 2004 Nucl. Phys. B 698 501 [arXiv:hep-th/0411048]

[20] Yang W-L and Zhang Y-Z, Exact solution of the $A_{n-1}^{(1)}$ trigonometric vertex model with non-diagonal open boundaries, 2005 J. High Energy Phys. JHEP01(2005)021 [arXiv:hep-th/0411190]

[21] Yang W-L, Zhang Y-Z and Sasaki R, A_{n-1} Gaudin model with open boundaries, 2005 Nucl. Phys. B 729 594 [arXiv:hep-th/0507148]

[22] Basilea P and Koizumi K, A deformed analogue of Onsager’s symmetry in the XXZ open spin chain, 2005 J. Stat. Mech. P10005 [arXiv:hep-th/0507053]

[23] Basilea P, The q-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach, 2006 Nucl. Phys. B 754 309 [arXiv:math-ph/0604036]

[24] Basilea P and Koizumi K, Exact spectrum of the XXZ open spin chain from the q-Onsager algebra representation theory, 2007 J. Stat. Mech. P09006 [arXiv:hep-th/0703106]

[25] Basilea P, New results in the XXZ open spin chain, 2007 Recent Advances in Quantum Integrable Systems, Annecy, France [arXiv:hep-th/0712.0452]

[26] Nichols A, The Temperley–Lieb algebra and its generalizations in the Potts and XXZ models, 2006 J. Stat. Mech. P01003 [arXiv:hep-th/0509069]

[27] Nichols A, Structure of the two-boundary XXZ model with non-diagonal boundary terms, 2006 J. Stat. Mech. L02004 [arXiv:hep-th/0512273]

[28] Bajnok Z, Equivalences between spin models induced by defects, 2006 J. Stat. Mech. P06010 [arXiv:hep-th/0601107]

[29] Galleas W, Functional relations from the Yang–Baxter algebra: eigenvalues of the XXZ model with non-diagonal twisted and open boundary conditions, 2008 Nucl. Phys. B 790 524 [arXiv:nlin.SI/0708.0009]

[30] Crampe N, Ragoucy E and Simon D, Eigenvectors of open XXZ and ASEP models for a class of non-diagonal boundary conditions, 2010 J. Stat. Mech. P11038 [arXiv:cond-mat/1009.4119]

[31] Crampe N, Ragoucy E and Simon D, Matrix coordinate Bethe Ansatz: applications to XXZ and ASEP models, 2011 J. Phys. A: Math. Theor. 44 405003 [arXiv:cond-mat/1106.4712]

[32] Cao J, Lin H-Q, Shi K-J and Wang Y, Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields, [arXiv:cond-mat/0212163]

[33] Cao J, Lin H-Q, Shi K-J and Wang Y, Exact solution of XXZ spin chain with unparallel boundary fields, 2003 Nucl. Phys. B 663 487

doi:10.1088/1742-5468/2012/10/P10003
Generalized T–Q relations and the open spin-s XXZ chain with nondiagonal boundary terms

[34] Nepomechie R I, Solving the open XXZ spin chain with nondiagonal boundary terms at roots of unity, 2002 Nucl. Phys. B 622 615
Nepomechie R I, 2002 Nucl. Phys. B 631 519 Addendum arXiv:hep-th/0110116
[35] Nepomechie R I, Functional relations and Bethe Ansatz for the XXZ chain, 2003 J. Stat. Phys. 111 1363 [arXiv:hep-th/0211001]
[36] Nepomechie R I, Bethe Ansatz solution of the open XXZ chain with non-diagonal boundary terms, 2004 J. Phys. A 37 343 [arXiv:hep-th/0304092]
[37] Nepomechie R I and Ravanini F, Completeness of the Bethe Ansatz solution of the open XXZ chain with non-diagonal boundary terms, 2003 J. Phys. A: Math. Gen. 36 11391
Nepomechie R I and Ravanini F, 2004 J. Phys. A: Math. Gen. 37 1945 (Addendum) arXiv:hep-th/0307095
[38] Yang W-L, Nepomechie R I and Zhang Y-Z, Q-operator and T-Q relation from the fusion hierarchy, 2006 Phys. Lett. B 633 664 [arXiv:hep-th/0511134]
[39] Yang W-L and Zhang Y-Z, On the second reference state and complete eigenstates of the open XXZ chain, 2007 J. High Energy Phys. JHEP04(2007)044 arXiv:hep-th/0705222
[40] Doikou A, Fused integrable lattice models with quantum impurities and open boundaries, 2003 Nucl. Phys. B 668 447 [arXiv:hep-th/0303205]
[41] Doikou A, A note on the boundary spin s XXZ chain, 2007 Phys. Lett. A 366 556 [arXiv:hep-th/0612268]
[42] Frappat L, Nepomechie R I and Ragoucy E, A complete Bethe ansatz solution of the open spin-s XXZ chain with general integrable boundary terms, 2007 J. Stat. Mech. P09009 [arXiv:math-ph/0707.0653]
[43] Baxter R J, 1982 Exactly Solved Models in Statistical Mechanic (New York: Academic)
[44] Yang W-L and Zhang Y-Z, T–Q relation and exact solution for the XYZ chain with general nondiagonal boundary terms, 2006 Nucl. Phys. B 744 312 [arXiv:hep-th/0512154]
[45] Murgan R, Bethe ansatz of the open spin-s XXZ chain with nondiagonal boundary terms, 2009 J. High Energy Phys. JHEP04(2009)076 [arXiv:hep-th/0901.3558]
[46] Murgan R and Nepomechie R I, Generalized T–Q relations and the open XXZ chain, 2005 J. Stat. Mech. P08002 [arXiv:hep-th/0507139]
[47] Murgan R, Nepomechie R I and Shi C, Boundary energy of the open XXZ chain from new exact solutions, 2006 Ann. Henri Poincare 7 1429 [arXiv:hep-th/0512058]
[48] Murgan R, Nepomechie R I and Shi C, Exact solution of the open XXZ chain with general integrable boundary terms at roots of unity, 2006 J. Stat. Mech. P08006 [arXiv:hep-th/0605223]
[49] Di Vecchia P and Ferrara S, Classical solutions in two-dimensional supersymmetric field theories, 1977 Nucl. Phys. B 130 93
[50] Hruby J, On the supersymmetric sine–Gordon model and a two-dimensional ‘bag’, 1977 Nucl. Phys. B 131 275
[51] Ferrara S, Girardello L and Scuto S, An infinite set of conservation laws of the supersymmetric sine–Gordon theory, 1978 Phys. Lett. B 78 303
[52] Shankar R and Witten E, The S matrix of the supersymmetric nonlinear sigma model, 1978 Phys. Rev. D 17 2134
[53] Ahn C, Bernard D and LeClair A, Fractional supersymmetries in perturbed coset CFTs and integrable soliton theory, 1990 Nucl. Phys. B 346 409
[54] Ahn C, Complete S matrices of supersymmetric sine–Gordon theory and perturbed superconformal minimal model, 1991 Nucl. Phys. B 354 57
[55] Inami T, Odake S and Zhang Y-Z, Supersymmetric extension of the sine–Gordon theory with integrable boundary interactions, 1995 Phys. Lett. B 359 118 [arXiv:hep-th/9506157]
[56] Nepomechie R I, The boundary supersymmetric sine–Gordon model revisited, 2001 Phys. Lett. B 509 183 [arXiv:hep-th/0103027]
[57] Bajnok Z, Palla L and Takács G, Spectrum of boundary states in $N = 1$ SUSY sine–Gordon theory, 2002 Nucl. Phys. B 644 509 [arXiv:hep-th/0207099]
[58] Ahn C, Nepomechie R I and Suzuki J, Finite size effects in the spin-1 XXZ and supersymmetric sine–Gordon models with Dirichlet boundary conditions, 2007 Nucl. Phys. B 767 250 [arXiv:hep-th/0611136]
[59] Murgan R, A note on the IR limit of the NLIEs of boundary supersymmetric sine–Gordon model, 2011 J. High Energy Phys. JHEP09(2011)059 [arXiv:hep-th/1107.1928]
[60] Kulish P P and Sklyanin E K, Quantum spectral transform method, recent developments, 1982 Lecture Notes in Physics vol 151 (Berlin: Springer) p 61
[61] Kulish P P, Reshetikhin N Yu and Sklyanin E K, Yang–Baxter equation and representation theory. I, 1981 Lett. Math. Phys. 5 393
[62] Kulish P P and Reshetikhin N Yu, Quantum linear problem for the sine–Gordon equation and higher representation, 1983 J. Sov. Math. 23 2435
doi:10.1088/1742-5468/2012/10/P10003
Generalized T–Q relations and the open spin-s XXZ chain with nondiagonal boundary terms

[63] Kirillov A N and Reshetikhin N Yu, *Exact solution of the Heisenberg XXZ model of spin s*, 1986 J. Sov. Math. 35 2027

[64] Kirillov A N and Reshetikhin N Yu, *Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum*, 1987 J. Phys. A: Math. Gen. 20 1565

[65] Mezincescu L and Nepomechie R I, *Fusion procedure for open chains*, 1992 J. Phys. A: Math. Gen. 25 2533

[66] Zhou Y-K, *Row transfer matrix functional relations for Baxter’s eight-vertex and six-vertex models with open boundaries via more general reflection matrices*, 1996 Nucl. Phys. B 458 504 [arXiv:hep-th/9510095]

[67] Bazhanov V V, Lukyanov S L and Zamolodchikov A B, *Integrable structure of conformal field theory, quantum Kadomtsev–Petviashvili theory and thermodynamic Bethe ansatz*, 1996 Commun. Math. Phys. 177 381 [arXiv:hep-th/9412229]

[68] Bazhanov V V, Lukyanov S L and Zamolodchikov A B, *Integrable structure of conformal field theory III. The Yang–Baxter relation*, 1999 Commun. Math. Phys. 200 297 [arXiv:hep-th/9805008]

[69] Kuniba A, Sakai K and Suzuki J, *Continued fraction TBA and functional relations in XXZ model at root of unity*, 1998 Nucl. Phys. B 525 [FS] 597 [arXiv:math/9803056]

[70] Bazhanov V V and Reshetikhin N Yu, *Critical RSOS models and conformal field theory*, 1989 Int. J. Mod. Phys. A 4 115

[71] Karowski M, *On the bound state problem in (1 + 1)-dimensional field theories*, 1979 Nucl. Phys. B 153 244

[72] Babujian H M, *Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model*, 1983 Nucl. Phys. B 215 317

[73] Takhtajan L A, *The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins*, 1982 Phys. Lett. A 87 479

[74] Sogo K, *Ground state and low-lying excitations in the Heisenberg XXZ chain of arbitrary spin S*, 1984 Phys. Lett. A 104 51

[75] Babujian H M and Tsvelick A M, *Heisenberg magnet with an arbitrary spin and anisotropic chiral field*, 1986 Nucl. Phys. B 265 [FS15] 24

[76] de Vega H J and González-Ruiz A, *Boundary K-matrices for the six vertex and the n(2n − 1)An−1 vertex models*, 1993 J. Phys. A: Math. Gen. 26 L519 [arXiv:hep-th/9211114]

[77] Ghoshal S and Zamolodchikov A B, *Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory*, 1994 Int. J. Mod. Phys. A 9 3841 [arXiv:hep-th/9306002]

[78] Baxter R J, *Partition function of the eight-vertex lattice model*, 1972 Ann. Phys. (NY) 70 193

[79] Baxter R J, *Asymptotically degenerate maximum eigenvalues of the eight-vertex model transfer matrix and interfacial tension*, 1973 J. Stat. Phys. 8 25

[80] Cherubini I V, *Factorizing particles on a half line and root systems*, 1984 Theor. Math. Phys. 61 977

[81] DasMahapatra S, Kedem R and McCoy B M, *Spectrum and completeness of the three state superintegrable chiral Potts model*, 1993 Nucl. Phys. B 396 506 [arXiv:hep-th/9204003]

[82] Fabricius K and McCoy B M, *Bethe’s equation is incomplete for the XXZ model at roots of unity*, 2001 J. Stat. Phys. 103 647 [arXiv:cond-mat/0009279]

[83] Zamolodchikov A B and Fateev V A, *Model factorized S matrix and an integrable Heisenberg chain with spin 1*, 1980 Sov. J. Nucl. Phys. 32 298

[84] Inami T, Odake S and Zhang Y -Z, *Reflection K matrices of the 19 vertex model and XXZ spin 1 chain with general boundary terms*, 1996 Nucl. Phys. B 470 419 [arXiv:hep-th/9601049]

[85] Matsui C, *Boundary bound states in the SUSY sine-Gordon model with Dirichlet boundary conditions*, arXiv:hep-th/1205.0912