INTRODUCTION

Megestrol acetate (MA) is a synthetic hormone (progestogen) used for the therapy of hormone-dependent cancer, mainly endometrial cancer and less commonly breast cancer. This drug is also used for symptom relief in anorexia-cachexia syndrome (ACS) patients.

OBJECTIVES

To review the effect of megestrol acetate (MA) in patients with ACS.

PATIENTS AND METHODS

To identify eligible studies, systematic review by Lopez et al. (2004) was used, electronic databases (MEDLINE, EMBASE and CENTRAL) were searched and reference lists of included studies were reviewed. The studies were included in the review if they were randomized, enrolled patients with non-hormone-sensitive cancer and ACS and assessed the effects of MA compared with placebo, other drugs or different doses of MA.

RESULTS

The study population is characterized by high mortality and progressive weight loss irrespective of the treatment. Compared to placebo, the effect of MA on survival is similar, but MA increases appetite (number needed to treat [NNT]: 3) and leads to weight gain (NNT: 8) in more patients. The data on other aspects of the quality of life are limited. The comparison of MA and glucocorticosteroids showed no statistical difference in their effect on appetite and weight.

CONCLUSIONS

Compared to placebo, MA reduces the symptoms of ACS, with no effect on survival. The beneficial effect of MA on the overall quality of life has not been confirmed. In identified studies the effect of MA and glucocorticosteroids on anorexia and cachexia is similar. The estimation of the treatment utility in ACS depends on the weight attributed to discomfort caused by symptoms, adverse effects of the drugs and the treatment cost. Because of the low quality of the included studies a new randomized controlled trial is needed for valid assessment of the effects of MA.

KEY WORDS

anorexia-cachexia syndrome, cachexia, cancer, megestrol acetate, neoplasm

INTRODUCTION

Megestrol acetate (MA) is a synthetic hormone (progestogen) used for the therapy of hormone-dependent cancer, mainly endometrial cancer and less commonly breast cancer. This drug is also used for symptom relief in anorexia-cachexia syndrome (ACS) patients. This syndrome that occurs among other things in the advanced stage of cancer or in association with HIV infection, is characterized by weight and appetite loss, decline in muscle and adipose tissue mass, worsening of the performance status and decrease in the quality of life level (well-being).

It is not easy to define cancer malnutrition. Biochemical, anthropometric and immunologic parameters are used for the diagnosis. The most important biochemical test to diagnose malnutrition is serum albumin levels, and to monitor nutritional status changes levels of proteins with shorter half-lives (prealbumin and transferrin). Among anthropometric tests, the unintended weight loss of >10% of the predicted value during the preceding 3 months is a very good index. Other parameters are: arm circumference (normal range: men >23 cm, women >22 cm) indicating the muscle tissue mass and skin fold thickness over the triceps muscle (normal range: men >10 mm, women >13 mm), an indicator of fat reserves, and the determination of total intracellular potassium using the K42
Study (author, year)	Population	Intervention	Dose (mg/dl)	Number of participants in groups	Study duration (weeks)
Beller 1997 [8]	Advanced hormone-insensitive cancer, weight loss	MA	480	81	12
		MA	160	80	
		Placebo	0	79	
Bruera 1990 [6], cross-over trial	Advanced hormone-insensitive cancer, weight loss	MA	480	31 + 9	1
		Placebo	0	31 + 9	
Bruera 1998 [27], cross-over trial	Advanced hormone-insensitive cancer, (local recurrence or metastases), anorexia	MA	480	84	1.5
		Placebo	0	84	
Chen 1997 [9]	Head or neck cancer, full course of radiotherapy, no ACS (prevention only)	MA	160	48	8
		Cisapride	15	41	
		Placebo	0	40	
De Conno 1998 [33]	Advanced hormone-insensitive cancer, diminished appetite or anorexia	MA	320	17 + 4	2
		Placebo	0	16 + 5	
Erkurt 2000 [32]	Confirmed cancer, weight loss, progressive anorexia	MA	480	50	12
		Placebo	0	50	
Farmer 2005 [18]	Lung, head or neck cancer, treated with radiotherapy	MA	800	20	17–19
		Placebo	0	18	
Feliu 1992 [30]	Advanced hormone-insensitive cancer, only palliative care, weight loss >10% or anorexia	MA	240	76	≥8
		Placebo	0	74	
Fietkau 1997 [10]	Histologically verified head or neck cancer, radiotherapy, weight loss >5% in 6 weeks or >10% in 6 months	MA	160	31	12
		Placebo	0	30	
Gambardella 1998 [34] (abstract)	Hormone-insensitive cancer, elderly patients, weight loss >7 kg in last 3 months	MA	320	No data	12
		Placebo	0		
Gebbia 1996 [21]	Advanced hormone-insensitive cancer, irresponsive to chemotherapy	MA	320	60	4
		MA	160	62	
Giacosa 1997 [28]	Advanced cancer, weight loss >10% or daily calorie intake of <20 kcal/kg/d	MA + dietary counseling; only dietary counseling	320	10	4
		Placebo	0	8	
Heckmayr 1992 [23]	Advanced lung cancer	MA	480	33	12
		MA	160	33	
Jatoi 2002 [15]	Advanced hormone-insensitive, incurable cancer, weight loss >2.3 kg (5 lbs) in 2 months or daily calorie intake of <20 kcal/kg, weight loss perceived by the patient as a problem, weight gain potentially beneficial for the patient in the physician’s opinion, ECOG performance status 0–2	MA + placebo	800 + 0	159	>4
		Dronabinol + placebo	5 + 0	152 + 2	
		Dronabinol + MA	5 + 800	158	
Jatoi 2004 [14]	Advanced hormone-insensitive, incurable cancer, weight loss >2.3 kg (5 lbs) in 2 months or daily calorie intake of <20 kcal/kg, weight loss perceived by the patient as a problem, weight gain potentially beneficial for the patient in the physician’s opinion, ECOG performance status 0–2	MA + placebo	600	140	12
		Eicosapentaenoic acid + placebo	600	141	
		MA + eicosapentaenoic acid	2180 + 2180	140	
Lai 1994 [11]	Pelvis radiotherapy, anorexia during radiotherapy, no prior treatment for anorexia	MA	160	20	3
		Prednisolone	30	19	
		Placebo	0	19	
Loprinzi 1990 [16]	Advanced, incurable cancer (other than breast or endometrial cancer), weight loss >2.3 kg (5 lbs) in 2 months or daily calorie intake of <20 kcal/kg, weight loss perceived by the patient as a problem, weight gain potentially beneficial for the patient in the physician’s opinion	MA	800	67 + 1	10
		Placebo	0	66 + 1	
isotope, which enables body cell mass assessment. Considering immunological parameters the lymphocyte count (decreased in malnutrition) is most commonly used in practice. In the diagnostic process these above mentioned criteria for ACS are often neglected, which is one of the factors responsible for MA abuse in Poland.

The MA is commonly used in Poland, which is also reflected through its high rank on the list of reimbursed expenses. For ACS in the course of cancer treatment, the form of a suspension and for hormone-dependent cancer the tablets are being reimbursed.

PATIENTS AND METHODS The aim of this systematic review with a meta-analysis was the assessment of clinical effects of MA use in advanced stage cancer patients with ACS.

The study source For the identification of appropriate studies by systematic review the Lopez et al. was used and the MEDLINE (2002–2007), EMBASE (2002–2007) and CENTRAL (Cochrane Library; Issue 3, 2007) bibliographic databases were searched. Reference lists of the studies included in the analysis have also been reviewed.

The following key words were employed for the search strategy: neoplasm, cancer, cachexia, anorexia, megestrol acetate. There were no language restrictions on publications. Conference abstracts were also analyzed.

Study (author, year)	Population	Intervention	Dose (mg/dl)	Number of participants in groups	Study duration (weeks)
Loprinzi 1994 [26]	Advanced hormone-insensitive, incurable cancer, weight loss > 2.3 kg (5 lbs) in 2 months or daily calorie intake of < 20 kcal/kg	MA	160	88	10
		MA	480	86	
		MA	800	85	
		MA	1280	83	
Loprinzi 1999 [29]	Advanced hormone-insensitive, incurable cancer, weight loss > 2.3 kg (5 lbs) in 2 months or daily calorie intake of < 20 kcal/kg, weight loss perceived by the patient as a problem, weight gain potentially beneficial for the patient in the physician’s opinion, ECOG performance status 0–2	MA	800	158 + 7	4
		Dexamethasone	3	159 + 7	
		Flumoxymesterone	20	158 + 7	
Mc Millan 1994 [31]	Histologically verified cancer of the gastrointestinal tract, only palliative therapy, weight loss of > 5%	MA	480	12	12
		Placebo	0	14	
McQuellon 2002 [17]	Nasopharyngeal, oral, pharyngeal or lung cancer, radiotherapy, without weight loss, ECOG performance status 0–2	MA	800	28	12
		Placebo	0	28	
Pardo 2003 [24]	Nonmetastatic lung cancer, radiotherapy, anorexia	MA	600	66	4
		MA	320	64	
Rowland 1996 [7]	Small-cell extensive stage lung cancer, ECOG performance status 0–2, weight loss of > 5% in 6 weeks or > 10% in 6 months	MA	800	122	104
		Placebo	0	121	
Sancho Cuesta 1993	Advanced cancer, palliative treatment, anorexia, weight loss	MA	160	50	12
(abstract) [20]		MA	320	50	
Schmoll 1992 [25]	Advanced stage cancer, palliative treatment, weight loss of > 5%	MA	480	34	8
		MA	960	29	
		Placebo	0	28	
Tchekmedyian 1992	Advanced hormone-insensitive cancer, weight loss of > 5%, anorexia	MA	1600	49	24
(abstract) [19]		Placebo	0	40	
Ulutin 2002 [22]	Advanced non-small cell lung cancer, loss of > 10% weight in 6 months	MA	160	59	12
		MA	320	60	
Vadell 1998 [12]	Incurable cancer, weight loss of > 5%	MA	480	49	12
		MA	160	50	
		Placebo	0	51	
Westman 1999 [35]	Hormone-insensitive cancer, palliative therapy	MA	320	128	12
		Placebo	0	127	
Zecca 1995 [13]	Advanced hormone-insensitive cancer, anorexia	MA	320	16	2
(abstract)		Placebo	0	17	
Study selection for analysis The following criteria for study inclusion in the analysis were applied:
1 randomization
2 diagnosis of advanced stage cancer (with the exclusion of hormone-dependent cancer) and ACS
3 intervention: MA in comparison with placebo or other drugs used in practice or in clinical studies in ACS (glucocorticosteroids, cisaprid, dronabinol, eicosapentaenoic acid, fluoxymesterone) or MA in various doses
4 outcomes: survival rate, weight change, performance status (Karnofsky scale, ECOG scale), selected quality of life parameters (appetite, nausea, pain, fatigue, depression, well-being, mood).

Methods of review – study quality assessment Identified studies have been initially assessed and selected on the basis of their eligibility for the reviewed topic. Then the validity of selected studies was assessed considering randomization, the intention to treat analysis and the completeness of follow-up.5

The following persons were responsible for defining the clinical question, outcome selection, and assessment of clinical aspects of results: Roman Jaeschke, Maciej Krzakowski and Wiktoria Leśniak.

Available evidence review, methodology assessment, data identification, and their entering into the Review Manager was done independently by 2 persons (Wiktoria Leśniak and Małgorzata Bała or Roman Jaeschke).

Statistical analysis The results of primary studies were pooled by meta-analysis using the Der-Simonian and Laird method, employing the Review Manager 4.2.10 program. The statistical significance of overall effects was calculated with the use of the Z test, and the homogeneity of results between studies was assessed with the χ^2 and I2 tests.

The results were summarized using the method developed by the GRADE group, which works on the grading of recommendations in clinical practice guidelines.

RESULTS Description of included studies Thirty studies have been included in the review, 5 of which were conference abstracts. The studies’ description (population description, drugs compared and their doses, the number of participants, study duration) are shown in TABLE 1 (available in the electronic version of the article). All studies included advanced stage cancer patients with the exclusion of hormone-dependent cancer; most of the studies included patients suffering from various cancers, in several studies lung cancer was the inclusion criterion, in several others head and neck cancer. The shortest duration of follow-up was 1 week6, the longest 2 years7; in the remaining studies the median or mean follow-up period ranged from 2 to 24 weeks.

In the studies in which MA was compared with other drugs or a placebo, the doses of MA ranged from 160 mg/d$^{8-12}$ through 320 mg/d13 up to over 480 mg/d (600 mg/d14); 800 mg/d$^{7,15-18}$; 1600 mg/d19). In the other studies the daily dose ranged 240–480 mg.

In several studies various MA daily doses were compared (160 mg vs 320 mg$^{20-22}$, 160 mg vs 480 mg4,12,23, 320 mg vs 600 mg24, 480 mg vs 960 mg25, 160 mg vs 480 mg vs 800 mg vs 1280 mg26).

Two studies with a short duration of drug administration (up to 10 days) were performed as cross-over trials6,27, the remaining trials were parallel trials.

The majority of studies were performed with the use of placebo, or with blinding of the alternative intervention in the control group; with the exception of the Giacos et al. study28 (lack of placebo, lack of blinding) and the Loprinzi et al. study29 (MA vs dexamethasone vs fluoxymesterone).

The methodological quality of studies included in the analysis:
1 the majority of the studies were placebo controlled and blinded
2 the randomization process has not been described in most cases
3 patients who died within the follow-up period were excluded from the analysis in several studies; in the majority of studies the analysis did not include a large number of patients (30–40%), mainly because of their withdrawal
4 in the present analysis, the proportion of patients in whom a certain outcome occurred was calculated, as far as possible, in relation to the number of patients randomized (intention-to-treat analysis); in some original studies the per-protocol analysis was used in which only patients who completed the study were included
5 in several studies the authors did not show the numerical data regarding some predefined outcomes, or presented data were incomplete, which made it impossible to use them in the present meta-analysis; publication bias may be suspected, which lowers the validity of this meta-analysis
6 despite the methodological limitations, studies included in the analysis represent the best available evidence on the effects of MA use in ACS associated with advanced cancer.

Meta-analysis The estimated effect size for various outcomes is shown in TABLE 2.
1 In comparison with placebo, MA administration:
A resulted in any weight gain in (a meta-analysis of studies with different weight gain definitions) a statistically significant higher percentage of patients (TABLE 2)$^{7,16-12,18,19,23,30,31}$ (FIGURE 1)
B resulted in a weight gain of $\pm 5%$12,16,31 and weight gain of $\pm 10%$7,16,30,31 in a non significantly higher percentage of patients (TABLE 2); heterogeneity for the above mentioned results has not been demonstrated
survival was assessed. The mean difference between groups was 14 mm (95% CI 7–21); a difference of this range for a certain patient is regarded as a clinically significant one, when measuring symptoms and the quality of life. In the meta-analysis of all available studies with an assessment of appetite change from baseline values, standardized mean difference (SMD) expressed in standard deviation (SD) units was 0.44 (95% CI 0.20–0.68), which corresponds to medium effect size in the whole group of patients. It may also correspond to e.g., a large effect size of treatment in every other patient. The presented systematic review according to the GRADE system expressed the effect of MA treatment.

RESULTS

1. Appetite Improvement

- **A**: A comparable rate of patients with an appetite improvement
- **B**: A comparable rate of patients with weight gain.
- **C**: Fluvastatin was associated with a beneficial trend toward MA regarding the rate of patients with appetite improvement and weight gain.

2. Weight Gain

- **A**: An improvement in the overall well-being (an increase of 8 millimetre [95% CI 0.55–1.09] and lack of the effect on appetite (outcome assessed only in 1 study [25]).
- **B**: An assessment of the quality of data on the effects of MA administration in ACS and a summary of the results are shown in **TABLE 2** according to the GRADE system [26].
- **C**: Dronabinol was associated with a beneficial trend toward MA regarding the rate of patients with appetite improvement and weight gain.

3. Quality of Life

- **A**: A decrease of 10–15 mm in pain perception (an increase of 9 millimetre [95% CI: from a decrease of 4 up to an increase of 22])
- **B**: Lack of a statistically significant difference in depression symptoms (a decrease of 5 millimetre [95% CI: from a decrease of 15 up to an increase of 6])
- **C**: Lack of a statistically significant difference in depression symptoms (a decrease of 5 millimetre [95% CI: from a decrease of 15 up to an increase of 6])
- **D**: An improvement in the overall well-being (an improvement of 8 millimetre [95% CI 1–15]).

4. Side Effects

- **A**: A decrease of nausea of 6 millimetre (95% CI 1–11)
- **B**: Lack of a statistically significant difference in pain perception (an increase of 9 millimetre [95% CI: from a decrease of 4 up to an increase of 22])
- **C**: Lack of a statistically significant difference in depression symptoms (a decrease of 5 millimetre [95% CI: from a decrease of 15 up to an increase of 6])

5. Appetite Improvement

- **A**: A comparable rate of patients with an appetite improvement
- **B**: A comparable rate of patients with weight gain.

6. Weight Gain

- **A**: An improvement in the overall well-being (an increase of 8 millimetre [95% CI 0.55–1.09] and lack of the effect on appetite (outcome assessed only in 1 study [25]).
- **B**: An assessment of the quality of data on the effects of MA administration in ACS and a summary of the results are shown in **TABLE 2** according to the GRADE system [26].
- **C**: Dronabinol was associated with a beneficial trend toward MA regarding the rate of patients with appetite improvement and weight gain.

7. Quality of Life

- **A**: A decrease of 10–15 mm in pain perception (an increase of 9 millimetre [95% CI: from a decrease of 4 up to an increase of 22])
- **B**: Lack of a statistically significant difference in depression symptoms (a decrease of 5 millimetre [95% CI: from a decrease of 15 up to an increase of 6])
- **C**: Lack of a statistically significant difference in depression symptoms (a decrease of 5 millimetre [95% CI: from a decrease of 15 up to an increase of 6])

8. Side Effects

- **A**: A decrease of nausea of 6 millimetre (95% CI 1–11)
- **B**: Lack of a statistically significant difference in pain perception (an increase of 9 millimetre [95% CI: from a decrease of 4 up to an increase of 22])
- **C**: Lack of a statistically significant difference in depression symptoms (a decrease of 5 millimetre [95% CI: from a decrease of 15 up to an increase of 6])

9. Appetite Improvement

- **A**: A comparable rate of patients with an appetite improvement
- **B**: A comparable rate of patients with weight gain.

10. Weight Gain

- **A**: An improvement in the overall well-being (an increase of 8 millimetre [95% CI 0.55–1.09] and lack of the effect on appetite (outcome assessed only in 1 study [25]).
- **B**: An assessment of the quality of data on the effects of MA administration in ACS and a summary of the results are shown in **TABLE 2** according to the GRADE system [26].

DISCUSSION

The presented systematic review and the attempt at summarizing quantitatively the results did not bring unexpected conclusions. Similarly to the previously published meta-analyses, an appetite improvement shown in absolute values (number needed to treat [NNT] c. 3–4) and weight gain (NNT c. 8) can be noticed. In the previously published meta-analyses comparable results regarding weight gain (RB 2.16, 95% CI 1.45–3.21 and relative benefit [RB] 2.14, 95% CI 1.41–3.24) and appetite improvement (RB 2.33, 95% CI 1.52–3.59 and RB 3.03; 95% CI 1.83–5.01) were obtained. For appetite improvement, a difference in favor of MA, shown in the present publication and in the Berenstein and Ortiz review, results from the inclusion of an additional study.
Table 2: Data quality assessment and results summary according to GRADE system

Data quality assessment	Results summary											
N° of studies	**Patient number**	**Effect**	**Abs. weight gain (95% CI)**	**Quality**	**Weight**							
Type of studies	**Megestrol**	**Relative**	**Abs. weight gain (absolute)**									
Quality of studies		**(95% CI)**	**Quality**									
Results consistency		**Weight**										
Other factors		**Gain**										
Results consistency		**Rate**										
Other factors		**Rate**										
Quality of studies		**Weight**										
Other factors		**Weight**										
Weight gain (any weight gain, follow up time mean c. 3 months). MA vs. placebo	**N° of studies**	**Type of studies**	**Quality of studies**	**Results consistency**	**Other factors**	**Patient number**	**Effect**	**Abs. weight gain (95% CI)**	**Quality**	**Weight**		
9 Randomized studies	No serious	Without serious	Doubts (−1)	Dose-effect relation (+1)	179/547 (32.7%)	83/447 (18.6%)	RR 1.71 (1.24–2.36)	140/1000 (90–190)	⊕⊕⊕⊕ High	6		
Weight gain of at least 5%. MA vs. placebo	Randomized studies	No serious	Without serious	Doubts (−1)	None	38/187 (20.3%)	16/136 (11.8%)	RR 1.65 (0.94–2.87)	80/1000 (0–160)	⊕⊕⊕ O Mediocre	6	
Weight gain of at least 10%. MA vs. placebo	Randomized studies	No serious	Serious	Discrepancy (−1)	No doubts		45/286 (15.7%)	10/280 (3.6%)	RR 3.83 (0.73–20.18)	100/1000 (20–180)	⊕⊕⊕ O Mediocre	6
One-year survival MA vs. placebo	Randomized studies	No serious	Without serious	Discrepancy (−1)	No doubts	High probability of publication selectivity (−1)	55/250 (22%)	53/248 (21.4%)	RR 1.02 (0.73–1.42)	10/1000 (–60–80)	⊕⊕⊕ O Mediocre	8
Appetite improvement. MA vs. placebo	Randomized studies	No serious	Serious	Discrepancy (−1)	No doubts	Strong intervention-effect relation (+1)	170/301 (56.5%)	47/262 (17.9%)	RR 3.00 (1.86–4.84)	380/1000 (160–610)	⊕⊕⊕⊕ High	8
Physical status worsening (ECOG, Karnofsky). MA vs. placebo	Randomized studies	No serious	Serious	Discrepancy (−1)	No doubts	High probability of publication selectivity (−1)	103/225 (45.8%)	107/175 (61.1%)	RR 0.65 (0.39–1.08)	190/1000 (0–380)	⊕⊕⊕ O Poor	8
Absolute weight gain in 1–4 weeks (Higher result indicates a more beneficial effect). MA vs. placebo	Randomized studies	No serious	Serious	Discrepancy (−1)	Doubts (−1)	Strong intervention-effect relation (+1)	–	WMD 1.98 kg (0.49–3.48)	⊕⊕⊕⊕ O Mediocre	6		
Absolute weight gain in 8–12 weeks (higher result indicates a more beneficial effect). MA vs. placebo	Randomized studies	No serious	Serious	Discrepancy (−1)	Doubts (−1)	Strong intervention-effect relation (+1)	–	WMD 2.91 kg (–0.06–5.89)	⊕⊕⊕⊕ O Mediocre	6		
Weight gain – 160 mg/d MA vs. placebo	Randomized studies	No serious	No serious	Discrepancy	Doubts (−1)	None	34/101 (33.7%)	22/100 (22%)	RR 1.51 (0.94–2.41)	120/1000 (–20–260)	⊕⊕⊕ O Mediocre	6
Data quality assessment

N° of studies	Type of studies	Quality of studies	Results consistency	Possibility of a clinical reference of the results	Other factors	Megestrol	Relative (95% CI)	Absolute (95% CI)	Quality	Weight
Weight gain – 160 or 240 mg/d MA vs. placebo										
4 Randomized studies	No serious limitations	No serious discrepancy	Doubts (−1)							

Results summary

Patient number	Effect
55/177 (31.1%)	27/174 (15.5%)
RR 1.99 (1.09–3.63)	160/1000 (60–260)
⊕⊕⊕⊕ Mediocre	6

Other factors

- None

Applicability score

- Too little evidence (1)

Sensitivity analysis

- Doubts (−1)

Results consistency

- No serious discrepancy

Other factors

- None

Quality of studies

- No serious limitations

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Doubts (−1)

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Too little evidence (1)

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Doubts (−1)

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Too little evidence (1)

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Doubts (−1)

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Too little evidence (1)

Results consistency

- No serious discrepancy

Other factors

- None

Applicability score

- None

Sensitivity analysis

- Doubts (−1)
Results summary

Patient number	Megestrol	Relative	Effect	Possibility of a clinical benefit
64/178	17/178	310	WMD	⊕⊕⊕⊕
50/1000	50/1000	30–70	1–1.4	⊕⊕⊕⊕

Data quality assessment

Type of studies	Quality of studies	Results consistency	Probability of a clinical benefit	Other factors
Randomized	None	No serious limitations	Doubts (−1)	
Randomized	None	No serious limitations	Serious discrepancy (−1)	
Randomized	No doubts	No serious limitations	No doubts	

Relative Benefit (95% CI)

| MA vs. glucocorticosteroids – appetite improvement | 1.09 (0.53–2.25) |
| MA vs. glucocorticosteroids – weight gain | 1.4 (0.7–2.79) |

Absolute Benefit (95% CI)

Cost of drug administration at the dose of 160 mg/d for 100 days	20/1000

Cost of drug administration

Type of studies	Cost of drug administration at the dose of 160 mg/d for 100 days
Randomized	12/178 (7.1%)
Randomized	70/178 (39.3%)
Randomized	64/178 (38%)

Implications for clinical practice

1. The influence of MA on the survival rate in the advanced cancer patients has not been demonstrated.
2. In the majority of patients weight loss progresses independently of treatment, and the drug administration is associated with at least short-term weight gain in additional 10–15% of patients.
3. Although a decrease in appetite or its loss persist in most individuals, the drug administration improves this aspect of the quality of life in c. 30% of patients.
4. Compared with placebo, MA induces weight gain and appetite improvement. In a single study an overall improvement of well-being has been demonstrated.
Because of a low value of available studies, for a more reliable assessment of MA efficacy in cancer-associated ACS it is necessary to perform a randomized controlled trial of high methodological quality.

ACKNOWLEDGEMENTS
The review was supported by the Ministry of Health and Social Welfare in 2006.

REFERENCES

1. [Drugs Index by Medycyna Praktyczna]. Medycyna Praktyczna, Kraków 2007: 432. Polish.
2. Nelson KA, Walsh D, Sheehan FA. The cancer anorexia-cachexia syndrome. J Clin Oncol. 1994; 12: 212–225.
3. Szabłowski AW. [Disturbances of nutrition and rules on artificial nutrition for cancer patients]. In: Krzakowski M. (eds). [Clinical Oncology]. Wydawnictwo Medyczne Borgis, Warszawa 2006: 515–532. Polish.
4. Pascual López A, Roqué i Figuls M, Urrútia Cuchi G, et al. Systematic review of megestrol acetate in the treatment of anorexia-cachexia syndrome. J Pain Symptom Manage. 2004; 27: 360–369.

FIGURE 1 The effects of megestrol acetate use in advanced stage cancer anorexia-cachexia syndrome on weight gain demonstrated, the assessment of other quality of life aspects did not lead to practical implications. Beneficial effects on body weight increased with the dose. However, even the lowest daily dose (160 mg) showed a beneficial trend compared to placebo. A statistically significant influence of a dose increase on appetite improvement has not been demonstrated.

5. A comparison of the effects of MA and glucocorticosteroid administration did not show difference in appetite improvement and weight gain.

6. Lower extremity edema in short-term follow-up, and probably the thromboembolic complications risk increase in long-term follow-up are the adverse effects of MA demonstrated in previous publications.

FIGURE 2 The effects of megestrol acetate use in advanced stage cancer anorexia-cachexia syndrome on appetite improvement

Implications for further studies Further determination of the MA role in ACS syndrome treatment requires determining the relative value (utility) attributed by patients to individual health conditions associated with the drug administration, including appetite improvement and weight gain.

Because of a low value of available studies, for a more reliable assessment of MA efficacy in cancer-associated ACS it is necessary to perform a randomized controlled trial of high methodological quality.

Comparison: MA vs. placebo
Outcome: Appetite improvement

Study or sub-category	MA n/N	Placebo n/N	RR (random) [95% CI]	Weight %	RR (random) [95% CI]
Erkurt 2000	47/58	6/57		15.94	7.70 [3.58, 16.58]
Fietkau 1997	38/76	10/74		18.61	3.70 [1.99, 6.87]
Lai 1994	11/20	4/19		12.98	2.61 [1.00, 6.80]
Loprinzi 1990	24/68	16/67		20.20	1.48 [0.87, 2.52]
McMillan 1994	4/20	6/18		6.59	0.60 [0.20, 1.79]
Schmoll 1992	37/63	6/28		16.43	2.74 [1.31, 5.74]
Zecca 1995	13/16	5/17		15.84	2.76 [1.28, 5.99]
Total (95% CI)	301	262		100.00	3.00 [1.86, 4.84]

Total events: 170 (MA), 47 (placebo)
Test for heterogeneity: $\chi^2 = 13.46, df = 8 (p = 0.02), I^2 = 62.9%$
Test for overall effect: $Z = 4.51 (p < 0.00001)$
comparing the efficacy of two different doses in 130 patients. Proc Am Soc Col Biol Phys. 2005; 63 (Suppl 1): S77-S78.

ser‑associated wasting: a north central cancer treatment group and Na etate in patients with head and neck cancer during radio (chemo)therapy. J Clin Oncol. 1997; 15: 135–141.

1076–1580.

1067–1072.

1576–1580.

1996; 14: 135–141.

1367–1372.

1367–1372.

1005; 4: 289–300.

1512; 289–300.

1067–1072.

135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.

1996; 14: 135–141.