Implicit and electrostatic Particle-in-cell/Monte Carlo model in two-dimensional and axisymmetric geometry I: analysis of numerical techniques

Hong-yu Wang1,2, Wei Jiang1 and You-nian Wang1
1School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024, P.R.China
2Depart of Physics, Anshan Normal University, Anshan, 114007, P.R.China
E-mail: ynwang@dlut.edu.cn

Abstract. We developed an implicit Particle-in-cell/Monte Carlo model in two-dimensional and axisymmetric geometry for the simulations of the radio-frequency discharges, by introducing several numerical schemes which include variable weights, multigrid field solver, etc. Compared to the standard explicit models, we found that the computational efficiency is significantly increased and the accuracy is still kept. Numerical schemes are discussed and benchmark results are shown. The code can be used to simulate practical reactors.

Submitted to: Plasma Sources Sci. Technol.

PACS numbers: 52.80.Pi, 52.27.Aj, 52.65.Rr
1. Introduction

Dc and rf discharges at low pressures, such as capacitively coupled plasmas (CCP), inductively coupled plasmas (ICP) and magnetrons, have played critical roles as etching and depositing devices in semiconductor industry [1, 2], as well as in some other applications, such as plasma lighting, displays, healthcare and Hall thrusters [3]. Computer simulations have been demonstrated as a powerful tool in this field. They can give unique insights into the fundamental plasma physics and reduce the workload for the industrial reactor designers significantly.

There are three commonly used simulation techniques, namely, the fluid, Particle-in-cell (PIC), and Boltzmann model in plasma physics research [4, 5, 6]. PIC model [7, 8] solves the Newton and Maxwell equations directly. Kinetic, non-local and non-equilibrium effects can be included. In addition, Direct Simulation Monte Carlo (DSMC) method [9] is used for modeling rarefied neutral gas flows, in which the mean free path of a molecule is on the order of (or greater than) the characteristic physical scale. Both PIC and DSMC models need to be coupled together to depict these discharges. This method, often referred as PIC/MC model, was firstly introduced at early 1990s [10, 11, 12]. PIC/MC simulations for these discharges adopted simplified model from pure PIC model and DSMC method. In many discharging systems, electrostatic or Darwin modeling are sufficient. At the same time, because the plasma density and gas pressure is low, the neutral molecules are in their own thermal equilibrium, and the Coulomb collision rate is relatively low. Therefore one needs only to consider the collisions between the charged particles and the neutral molecules. Null collision method had been proved to be an effective method to treat these MC processes, in which one need not to scan all the particles, as it often does in DSMC simulations.

The main difficulties of PIC/MC simulations are the costs of computational resources. In conventional electrostatic PIC simulations, the spatial and temporal steps must be chosen to resolve the fastest temporal and finest spatial behavior of the electrons, namely, $\Delta x \leq \lambda_D$, $\omega_p \Delta t \leq 2$ and $\Delta x/\Delta t < v_t$, where v_t is the electron thermal velocity. This would require hundreds to thousands cells per cm and the time step of $10^{-12} \sim 10^{-11}s$ in these discharge modeling. On the other hand, typically more than 100 particles per cell are needed to get rid of the stochastic errors in MC process [13]. Since the computational costs are very high, most PIC/MC simulations were only done in 1D geometry up to now. Conventional 2D or 3D simulations are only possible for some cases where the densities are relatively low[14, 16, 17]. For most higher density cases in CCP, PIC/MC simulations of practical interesting systems often run on supercomputers [15, 16, 18]. To overcome this problem, some fast but non-standard algorithms were proposed, such as the global PIC/MC method [19] and fluid PIC [20, 21]. However, they made additional approximations and may not be sufficient for investigating of some kinetics effects, for example, when the distribution functions of electrons are anisotropic [22].

Fortunately, the fastest phenomena are usually not very important in these discharges. As the fastest oscillation modes of electrons are not very important here, we only need solve rf frequency ω_{rf} plus some harmonics. By damping some high frequency modes, implicit PIC/MC method can eliminate the major constrains of grid spacing and time step on explicit PIC codes, while most of the kinetics effects are still kept, and thus it could be a better approach to these problems. However, for implicit model, more complicated algorithms must be introduced, and the numerical schemes should be carefully treated, especially when coupling with MC model and in axisymmetric geometry. Here are the main difficulties origin from the cylindrical geometry listed below: (1) weighted particles resizing; (2) implicit particle pushing in cylindrical geometry; and (3) Poisson solver and its parallelization in...
2D axi-symmetric Implicit electrostatic PIC/MC model I

cylindrical geometry, especially when $R \gg L$, where R is the device radius and the L is the electrode spacing. There are many solutions to them for the explicit simulations. For example, Nanbu [14, 15, 23, 24, 25, 26, 27, 28] has solved nearly all essential problems associated with the MC method and the axisymmetric geometry for explicit algorithms by developing some new methods and introducing some methods from DSMC model. But for the implicit simulations with MC model, subtle difficulties exist still.

This is the first of our two serial papers. In this paper, we report a direct implicit and electrostatic PIC/MC simulation model for CCP in two-dimensional axisymmetric geometry. Although our model is designed for CCP, it can be used to study some other problems, such as dc and atmosphere discharges. This work would not have been possible without those who have developed the PIC and DSMC method to their present advanced state. We should emphasize that most of the numerical techniques here have been developed by many previous researchers, many of which have histories of more than ten years. We just try to incorporate these algorithms together, then analyze and compare all possible numerical treatments to meet the specific requirements. The PIC algorithms mainly follow up the works by Birdsall [8, 12], Langdon and Cohen [29, 30, 31], Verboncoeur [32, 33, 34], Vahedi [35, 36, 37], Hewett [38, 39] and Friedman [40]. The MC algorithms mainly follow up the works by Bird [9], Nanbu [25] and Vahedi [41]. We will discuss these numerical schemes in Sec.2. Simulation results and benchmarks are given in Sec.3. Discussions and a brief summary are presented in Sec.4.

2. Numerical Methods

2.1. Direct Implicit PIC Simulation

In the Implicit Particle-In-Cell (IPIC) schemes, the field in the next step E^{n+1} which depends on the future charge density ρ^{n+1} must be known at n step. There are two kinds of algorithms, namely, direct implicit simulation (DIPIC) [29, 30, 38, 40] and implicit movement method simulation (IMMPIC) [42, 43, 44, 45]. In DIPIC, the field equations are derived from direct summation and extrapolation of the particles moving equations. In the implicit movement method, the field equations are derived from the Vlasov movement equations.

Here we applied the direct implicit simulation method which was proposed by Langdon [29] and Friedman [40]. In brief, in "D1" electrostatic DIPIC algorithm, the particle pushing procedure is divided into "firstpush":

$$\tilde{v}^{n+1/2} = v^{n-1/2} + \frac{1}{2} \tilde{a}^{n-1} \delta t$$
$$\tilde{x}^{n+1} = x^n + \tilde{v}^{n+1/2} \delta t$$

and "finalpush":

$$x^{n+1} = \tilde{x}^{n+1} + \frac{1}{2} \tilde{a}^{n+1} \delta t^2$$
$$v^{n+1/2} = \tilde{v}^{n+1/2} + \frac{1}{2} \tilde{a}^{n+1} \delta t$$

where

$$\tilde{a}^n = \frac{1}{2} (\tilde{a}^{n-1} + \tilde{a}^{n+1})$$ (1)

Between the two pushing procedures, electric field in time F^{n+1} is solved by

$$\nabla \cdot [1 + \chi(x)] \nabla \phi^{n+1} = -\rho^{n+1}$$ (2)
where $\tilde{\rho}^{n+1}$ denotes the charge density contributed by \tilde{x}^{n+1}, and

$$\chi(\tilde{x}) = \sum_{\nu} \frac{1}{2} \tilde{\rho}^{n+1}_\nu \frac{q_\nu M^2}{m_\nu}$$

The \sum_{ν} denotes summation over all species particles.

After the pushing and field solving procedures are executed, the MC procedure is executed.

In summary, the simulation cycle consists of the following steps: (1) first pushing; (2) weighting; (3) solve the field equation; (4) final pushing; and (5) MC process. The first pushing in $(n+1)$th cycle and final pushing in n_{th} cycle can be merged into one procedure, so only one passing through the particles is needed, which will improve the code efficiency. The only difference is the MC procedure parameters (δx^i or $\tilde{\delta x}^i$). Our 1D and 2D benchmarks show that both methods produce identical results.

2.2. Unweighted and weighted particles

Unlike the Descartes coordinates, even the grid spacings and the densities are uniform, the volumes of the grid cells are proportional to the radius in cylindrical coordinates. In this case, even if super particles were assigned to identical number of physical particles and the grids were uniform with identical macro particle numbers per cell, they would not give constant density.

In general, we can apply two methods, i.e., unweighted particles and weighted particles. One can adopt non-uniform grids along R for unweighted particles [24], but this algorithm should lead to very large grid spacing near the axis which will produce large errors in implicit schemes and Poisson solver. One can also use uniform grid spacing and set the particles number in one cell proportional to the radial position. However, MC process requires that the super particles number in one cell should not be too small. This method will either produce small number of the particles near the axis to disturb the MC process or lead to excessive large particle numbers in the outer grid cells. So unweighted particles are not recommended here.

To overcome this problem, one can adopt weighted particles [9, 27, 46, 47, 48]. A certain weight w_p is assigned to each particle according to its radial position or the volumes of the cell:

$$w_p \propto 2\pi r \Delta r \Delta z$$

Here w_p is the number of the physical particles which is contained by one super particle. This method will make identical numbers of the super particles in each cell when the initial densities and the grids are uniform. The major problem associated with this scheme is that the super particle needs to be properly resized when it moves radially.

In DSMC simulations, Bird [9] presented zero-order resizing method, where the super particle numbers were changed according to their positions but momentums and energies were kept. The new weighting factors may be based on either the radius of the cell or the the radius of the particle itself. In the particle based weighting scheme, when a super particle moves from radial position r to r' in one step, it has the possibility to be discarded or duplicated according to a certain probability to ensure average charge conservation. Cell based weighting scheme is similar, except that the particle is discarded or duplicated when it crosses the cell boundaries. Cell based weighting scheme is introduced by Nanbu [27] from DSMC model, and is successfully used for inductive coupled plasma simulations [28]. However, cell based weighting is not recommended [9], because it will lead to errors when particles moves parallel to the axis, and it can not maintain the smooth flow gradients normal to the axis.
In these resizing processes the charges only conserve on average, which would produce the random walks problem. This problem has been well known for long in DSMC simulations [9]. Random walks is not a major problem in DSMC simulations, because the molecular interactions are short range force and there are no interactions in the free flight phase. In PIC/MC simulations, the dominating electric force is a long range force and the collective electron oscillation in radial direction exists. Then the fluctuation of electron density would bring electrostatic waves and nonphysical effects.

It would be more accurate that the super particle number is conserved, i.e., particle weight will not be changed when it moves. Some PIC codes [46, 47, 48] adopted this scheme. DSMC method also adopted similar treatment, and one often referred to this scheme as stochastic weighted method [49]. However, the small weight particle may be replaced by the larger weight particle. After the simulation runs some rf periods, we find that the super particle numbers near the axis tend to proportional to the radius. There would be only 10’s particles with large weights near the axis after running some periods. This effect is more obvious for electrons, which will bring nonphysical heating in the axis. After the simulation runs some periods, the average weights of the particles become larger. So we adopted a special particle split scheme. After the code runs some periods, the weights of the particles w_p are checked and compared with the weights w_r calculated from their present radial position. If $w_p > w_r$, the particles are split to several new particles ($N = \lfloor w_p/w_r \rfloor$). The positions, velocities and accelerations of the new particles are duplicated from the old ones. The weights of the new and old particles are set to w_r and $w_p - Nw_r$, respectively. Here all phase space information is kept and the charge is conserved. After the system reaches equilibrium, this splitting method will only change the numbers of the super particles, but not change the plasma density and the field. This method will increase the super particle numbers, so sometimes one need to combine the small particles [46].

We have bench all three weighting assigning schemes. When a small number of particles is used, especially at small radius, we find that particle based resizing method tend to produce larger density than weighting-conserving scheme. With enough large number of particle per cell, both methods produced similar results. But for cell based method, the radial density is not very smooth and many small peaks appear in the density profile, which implies that additional electrostatic modes are excited and thus larger density can be generated. Therefore we recommend the weighting-conserving scheme with enough particles per cell. When using zero-order resizing scheme, we do not use the global buffer like the DSMC method [9, 50], but just duplicate the particles.

2.3. Particle Pushing

In the first and final pushing steps, the accelerations, velocities and positions of the particles are updated. In Descartes coordinate, it is straightforward: every position component should be added with the velocity component multiply Δt while every velocity components should be updated accordingly. But in curvilinear coordinate systems, the position components could couple together. It is not recommended to push the particles by using the moving equations in cylindrical coordinate: using $\Delta \theta = v_\theta \Delta t/r$ will produce larger $\Delta \theta$ at small r, then one needs adopt smaller Δr and $\Delta \theta$ at small r. A feasible way is local coordinate transformation. Both DSMC method and PIC code [8, 9, 51] have adopted this treatment, but here we need some modifications. The particle are described by the parameters $\{r, z, v_r, v_\theta, v_z, a_r, a_\theta, a_z\}$. Then the first pushing can be applied as follows:

$$v'_r = v_r + \frac{1}{2} a_r \Delta t$$
\[v'_y = v_y + \frac{1}{2} a \theta \Delta t \]
\[x' = x + v'_x \Delta t \]
\[y' = v'_y \Delta t \]
\[v'_z = v_z + \frac{1}{2} a_z \Delta t \]
\[z' = z + v'_z \Delta t \]

Then the coordinates are rotated, the new velocities and accelerations are given by
\[
\begin{align*}
[v'_r, v'_\theta] &= [v'_x \cos \theta + v'_y \sin \theta, -v'_x \sin \theta + v'_y \cos \theta] \\
[a'_r, a'_\theta] &= [a_r \cos \theta, -a_r \sin \theta] \\
a'_z &= a_z
\end{align*}
\]

The final pushing is executed in full X-Y coordinates \((i = r, z)\):
\[
\begin{align*}
x''_r &= x'_r + \frac{1}{2} q E_r \Delta t^2 \\
v''_r &= v'_r + \frac{1}{2} q E_r \Delta t \\
a''_r &= \frac{1}{2} \left(q E_r + a'_r \right)
\end{align*}
\]

When particles hit on the electrodes, we remove them from the moving particle lists and add the charges to the depositing charges of the electrodes. If particles pass the axis, the position, velocity and acceleration of the particles in \(R\) direction are changed to their absolute values. In this scheme we have ignored the \(a_\theta\) damping accumulating (equ [1]). If time steps are large, there could be some errors on \(v_\theta\) at small radius. However, the differences in our cases are neglectable.

The other natural way is to adopt global Descartes (X-Y-Z) coordinate, in which every particle has its Descartes coordinates, velocities and accelerations in full three dimensions despite that the field is still in two dimensions. The first pushing can be done in Descartes coordinate. In the final pushing, we weight the \(E_r\) with the particle position radius \(r = \sqrt{x^2 + y^2}\) and calculate the Descartes components of electric field,
\[
\tan \theta = \frac{x}{y} \quad E_x = E_r \cos \theta \quad E_y = E_r \sin \theta
\]

Then the final pushing is executed in full X-Y-Z coordinates. If \(r\) is very close to zero, we set \(\cos \theta = 1\) and \(\sin \theta = 0\) in Equation. [6]

In the particle initialization, we get the particles radius \(r_p\) uniformly \((r_p = p/N \ast R, N\) is the total particles number\) then \(x_p\) and \(y_p\) are given by
\[
\begin{align*}
x_p &= r_p \cos \theta, \\
y_p &= r_p \sin \theta
\end{align*}
\]
where \(\theta\) is randomly sampled between 0 and \(2\pi\).

We benchmarked above two algorithms and find no obvious differences in the results. The local X-Y scheme run slightly faster than the global X-Y-Z scheme.

2.4. Weighting

In curvilinear coordinate systems, assigning the particle charge to the grid must be specially treated, which has been well studied by Verboncoeur [33, 34] in the most generalized form. There are two frequently-used weighting methods in cylindrical coordinates: bilinear
weighting in \(z - r \) and bilinear weighting in \(z - r^2 \). In \(z - r \) weighting, the real particle number \(N_{i,j} \) assigned to the grid point at \((r_i, z_j)\) can be written as

\[
N_{i,j} = w_p \frac{(z_{i+1} - z)_p (r_{j+1} - r_p)}{(z_{i+1} - z_j)(r_{j+1} - r_j)}.
\]

(8)

The particle number \(N_{i,j} \) assignment in \(z - r^2 \) weighting is

\[
N_{i,j} = w_p \frac{(z_{i+1} - z)_p (r_{j+1}^2 - r_p^2)}{(z_{i+1} - z_j)(r_{j+1}^2 - r_j^2)}.
\]

(9)

Here \(r_p = \sqrt{x_p^2 + y_p^2} \) for X-Y-Z coordinates. The density \(n_{i,j} \) is calculated by

\[
n_{i,j} = \frac{N_{i,j}}{V_j} \tag{10}
\]

where \(V_j = \frac{1}{2}\pi [r_{j+1} (r_j + r_{j+1}) - r_{j-1} (r_j + r_{j-1})] (z_{i+1} - z_i) \) for \(z - r \) weighting; \(V_j = \frac{1}{2}\pi r_j^2 (z_{i+1} - z_i) \) and \(V_0 = \frac{1}{2}\pi r_i^2 (z_{i+1} - z_i) \) for \(z - r^2 \) weighting. The weighting of field \(E_r \) and \(E_z \) acted on the particle are done similarly. Our benchmarks show that those different weighting schemes give very similar results.

2.5. The field solver on the cylindrical coordinate systems

In electrostatic DIPIC, one of the key issues is to construct a fast and stable Poisson solver. The solver should have good scalability when being parallelized. In this problem, it must be suitable for the case of \(R \gg Z \) to deal with the real-size CCP reactors.

There were many Poisson solvers that can deal with the variant coefficient Poisson equation. Because of the variable dielectric constant \(\epsilon = 1 + \chi \), the fast Poisson solver (based on the Fourier Transform or Cyclic Reduction [52]) can not be applied directly. Historically, some researchers have used global iterations to construct the solver [31]. These solvers can be constructed only by the Fast Poisson Solver, but they have variable convergence rates. When the dielectric coefficient \(\chi \) varies, the iterating times of the solver can increase to unacceptable level. Goloub et al. [53] transformed the Poisson equation to a Helmholtz equation and solved it by a similar iteration solver. However, the solver has similar shortcoming. The Dynamic Alternating Direction Implicit (DADI) algorithms [39] can be applied here but showed low efficiency. Typical Krylov iteration methods (Conjugate Gradient or GMRES, etc.) have similar shortcomings. Recently, some authors use Krylov procedures to deal with the Helmholtz equation from Goloub’s method [54]. The major shortcomings of these algorithms are the complexities.

In our case, because of the positivity of the \(\chi \), the equation is a negative elliptical equation. The equation can be discretized by the finite volume scheme [8]. The only difference is the susceptibility at half integer point be selected to \(\chi_{i+1/2,j} = \frac{1}{2}(\chi_{ij} + \chi_{i+1,j}) \) and \(\chi_{j+1/2,i} = \frac{1}{4}(\chi_{ij} + \chi_{i,j+1}) \). Our 1D benchmarks didn’t show any differences between the two methods.

Consider the simple finite volume discrete scheme [8] or similar five-point discrete scheme, the discrete Poisson equation has the form

\[
- a_{i,j} \phi_{i-1,j} + b_{i,j} \phi_{i,j} - c_{i+1,j} \phi_{i+1,j} - d_{i,j} \phi_{i,j-1} - e_{i,j} \phi_{i,j+1} = h^2 f_{i,j}
\]

(11)

In uniform grids, this scheme has two order accuracy. All of the coefficients \((a,b,c,d,e) \) are positive and we have \(b_{i,j} = a_{i,j} + c_{i,j} + d_{i,j} + e_{i,j} \) for the uniform grids. In addition, because the
\(\chi \) depends on the charge densities, the \(\chi(x, y) \) distribution is smooth spatially. So the multigrid method [55, 56] is a good choice to construct the solver. However, typical etching devices have cylindrical shapes and the radius are much larger than the height. In cylindrical systems, the standard multigrid solver can cause slow convergence rates: The convergence rates of typical Descartes multigrid 2D Poisson solvers are constants and less than 0.1, which means about 8–10 V cycles reduce the error norm to \(10^{-10} \). For 64 × 64 r–z cylindrical Poisson systems, the iterations increase to about 30 [57]. When the grid numbers on r direction increase, the converging speed becomes much lower. Additionally, because the typical discharge device is large, we need parallelize the code. The parallelization of standard multigrid solvers is complex and case dependent. So we developed a semi-coarsening multigrid solver [56].

Semi-coarsening multigrid procedure has been applied to the anisotropic problem [58, 59]. If the grid spacing on one direction is much less than the other directions, one can coarsen this direction grid only. On the other hand, the grid in our problems is uniform but we run the z-coarsening only. The concepts of z-coarsening are showed in Figure 1. After one turn coarsening, the grid spacing in z direction is doubled.

When z-coarsening is applied, the coarsened differential stencil will become very anisotropic, so standard Gauss-Seidel smoothing is not effective. To overcome the difficulty, we apply a line-smoothing procedure: write the coarsened equations as

\[
-a_{i,j} \phi_{i-1,j} + b_{i,j} \phi_{i,j} - c_{i,j} \phi_{i+1,j} - d_{i,j} \phi_{i,j-1} - e_{i,j} \phi_{i,j+1} = h^2 f_{i,j}
\]

where \(i = 1, M \) along the z-direction and \(j = 1, N \) along the r-direction. The line smoothing is executed by \(i = 1, M \). For every i, the equation sets are written to

\[
\begin{align*}
\text{.....} \\
-a_{i,j-1} \phi_{i,j-2}^{\text{new}} + b_{i,j-1} \phi_{i,j-1}^{\text{new}} - c_{i,j-1} \phi_{i,j-1}^{\text{old}} = h^2 f_{i,j-1} + a_{i,j-1} \phi_{i,j-1}^{\text{old}} + c_{i,j-1} \phi_{i+1,j-1}^{\text{old}} \\
-a_{i,j} \phi_{i,j-1}^{\text{new}} + b_{i,j} \phi_{i,j}^{\text{new}} - c_{i,j} \phi_{i,j+1}^{\text{new}} = h^2 f_{i,j} + a_{i,j} \phi_{i,j}^{\text{old}} + c_{i,j} \phi_{i+1,j}^{\text{old}} \\
-a_{i,j+1} \phi_{i,j}^{\text{new}} + b_{i,j+1} \phi_{i,j+1}^{\text{new}} - c_{i,j+1} \phi_{i+1,j+1}^{\text{new}} = h^2 f_{i,j+1} + a_{i,j+1} \phi_{i,j+1}^{\text{old}} + c_{i,j+1} \phi_{i+1,j+1}^{\text{old}}
\end{align*}
\] (12)
When the equation set is solved, the i_{th} line smoothing has been executed. In every smoothing procedure, the line smoothing is executed from $i = 1$ to M with Red-Black order and the grid values of ϕ are updated.

Numerical tests show that $V(0,1)$ cycles provide good convergence rates. The algorithm can be described like follow:

Algorithm 1. Multigrid V-cycle $MG(u,f)$

$$u^L = w_0$$

do until converge

$$f^L = f$$

do $l = L - 1, 2$

$$u^l = 0$$

$$f^{l-1} = f^{l-1}(f^l - A^l u^l)$$

$$A^{l-1} = f^{l-1} A^l$$

enddo

solve $A^1 u^1 = f^1$

do $l = 2, L$

$$u^l = u^l + I^{l-1}_l (u^l)$$

linesmooth(u^l, f^l)

endo

loop

The restrict and prolong operators are simple line forms:

$$I^{l-1}_l = \begin{bmatrix} 1/4 & 1/2 & 1/4 \end{bmatrix}^T \quad (13)$$

We benchmark the solver and find that when $\chi = 0$ the solver converges constantly for varied size grids with Dirichlet boundary condition. When $\chi \sim 1$ with smoothing spatial distribution, the solver converges to 10^{-10} by L^∞ norm after about 12 times V-cycles.

Typically, the modeling should consider the external circuit of the reactors. For example, dc self-biasing voltage can be built up on the electrically powered electrodes due to the blocking capacitor. The general way to include these effects is given by Verboncoeur [32]. The surface charges are included in the Poisson equation, coupled with the external circuit. In our cases, since the coupling between the electrodes is not strong, we have adopted the Vahedi’s model [37], which is the simplified version of Verboncoeur’ method and can be numerically realized easily. In this model, the electric fields with external circuit can be obtained by linear superposition of the solutions to two problems: At first, the Poisson equation with exact charge density and a zero boundary condition is solved:

$$\nabla \cdot (\chi \nabla \phi_P) = -\rho$$

$$\phi_P |_{\text{electrode}} = 0$$

Secondly, a Laplace equation with same coefficient and normalized boundary condition is solved. For example, if the upper electrode is grounded and RF power is applied on the lower electrode, the Laplace problem will be

$$\nabla \cdot (\chi \nabla \phi_L) = 0$$

$$\phi_L |_{\text{upper}} = 0, \phi_L |_{\text{lower}} = 1$$
Finally, the voltage \(V_t \) of the powered electrodes are calculated by solving the circuit equation and get the field solution. For example, when a capacitor is applied between the RF source and the powered electrode, the circuit equation becomes:

\[
Q'_t = Q'^{-1} + C[V'_{rf} - V_t] - Q'^{-1} + Q'_{conv},
\]

where \(Q'_{conv} \) is the charge deposited on the RF electrode from \(t-1 \) to \(t \), \(Q' \) and \(Q_c \) are the charges deposited on the electrode and the capacitor, while \(V'_{rf} \) is the instantaneous rf source voltage. However, because the solver is run with \(\tilde{x}, \tilde{v} \), the \(Q_{conv} \) in the real solvers is calculated from this step’s first pushing and the previous step’s final pushing. Because the self-biasing is a slow varying process, this causes no observable errors. Then we get the \(\phi \) by \(\phi = \phi_P + V_t \phi_L \). We need to solve more Laplace equations for the extra RF-applied electrodes.

One can also include the external circuit effects by physics insights [14, 15]. This method is to force the net current flowing into the electrode to zero in one rf period. One can adjust \(V_{dc} \) within the voltage waveform of \(V = V_{rf} \sin \omega t + V_{dc} \) to satisfying this condition. This method is very easy to be incorporated, but it is not recommended here because of its narrow applicability.

2.6. Monte Carlo model

Since the Monte Carlo model is a well-developed method, we only briefly discuss the numerical treatments. At present, our codes only include gas models for Ar, O\(_2\) and CF\(_4\). For electrons, we adopted the null collision method and the molecular velocity is assumed to be zero since \(v_e \gg v_n \). For the non-reactive collisions between ion and neutral gas, null collision method is still adopted, and the molecular velocity is sampled from Maxwellian distribution. The velocities of the electrons and the ions after non-reactive collisions are given by Vahedi’s method [41]. The velocity of the ion after a reactive collision is given by Nanbu and Denpoh’s method [23, 25]. The Ar cross sections come from [60] while the O\(_2\) cross sections come from [41], and the CF\(_4\) cross sections come from the BOLSIG package [61]. All of them are linearly interpolated. For the energy being higher than the available data, we extrapolated the cross sections by the \(1/E \) law [62].

The standard sampling procedure of the null collision method is still adopted here, regardless the different weights of the particles. We have also proposed weighting-based sampling procedure for the null collision method. Our 1D benchmarks of both methods have showed that, weighting-based sampling procedure is more accurate, especially when larger density gradient exists. However, there is only up to 10% difference between the two sampling procedures, and the weighting-based sampling procedure runs slower and has some problems in 2D problems. So we still use the standard sampling procedure in our present research, and we will discuss the new method elsewhere.

In the Monte Carlo processes in which the new particles are generated, the weights of the new particle is just duplicated from the incident particles. The accelerations \(\tilde{a}_i \) of the new particles must be set to a reasonable value. We set the accelerations according to the charge mass ratio:

\[
\tilde{a}_i = \tilde{a}_j \frac{q_i m_j}{q_j m_i},
\]

2.7. Speeding up and parallelization

There are many ways to speed up the code [18, 63, 64]. We have adopted subcycling in our code with Vahedi’s method [35], and speed boost nearly 2 is achieved for 1D cases.
Particle sorting, which is very successful in our explicit code [18], shows no speeding up and sometimes it is even more slow than the unsorted cases. The reason is partially because the particle sorting is a time consuming operation, and partially because the grid sizes are much smaller than the explicit simulation and thus the cache missing is not very serious.

On the other hand, although implicit algorithm can be executed by much smaller grid numbers than explicit methods, the simulation particles number is still very large. So we need parallelize the code [18]. Here we adopt the MPI ALLReduce framework [63, 18]: χ, ρ and Q_{conv} are summed up to each processor, the serial Poisson solver are executed on every processor to calculate the fields. Since the simulation size is not very large here, the communication time and Poisson equation solving time are very little. So the parallel efficiencies are satisfying.

3. Benchmarks and results

All simulations are carried out on our 12 nodes PC clusters: each node has an Intel Core2 E4500 CPU and 2G memory. The nodes are connected by 1000M ethernet networks. The clusters have about 210G FLOPS R_{peak} and about 110G FLOPS linpack R_{max}. We normally run two processes in one CPU for 2D parallel simulations.

The physical parameters of the benchmark problems are listed as follows: The frequency of rf source $\omega_{\text{rf}} = 2\pi\times 13.56$MHz. Voltage source is applied to the electrode at $z = 0$cm with the waveform of $V_{\text{rf}} = 200 \sin(\omega_{\text{rf}}t)$. Argon gas is used with the pressure of 100mTorr and the temperature of 300K. The electrodes spacing is 2cm while the radius is 8cm and the gap between the lower power electrode to the grounded outer cylinder is 2cm. Here we do not consider the self-biasing effect. The initial density is uniform of 5×10^{15}m$^{-3}$ for all cells and 200 particles are placed randomly within one cell. All simulations are run for 1000 rf periods, and all results below are given by averaging one rf period.

3.1. 1D results

The 1D simulations are performed to benchmark the implicit results with the explicit simulations and to determine the space and time steps. The 1D simulations are run serially in one node and will only take about several ten minutes for implicit code (with 64 cells and $\Delta t = 0.5 \times 10^{-10}$s) and about several ten hours for explicit code (512 cells and $\Delta t = 1.25 \times 10^{-11}$s).

Firstly we compare the results of implicit and explicit algorithms. Fig. 2a shows the average electron density profiles with different spacing and time steps. For the implicit numerical schemes, we have adopted $\chi_{i,j}^{1/2} = 1/2 (\chi_{i,j} + \chi_{i+1,j})$ and $\chi_{j,i}^{1/2} = 1/2 (\chi_{i,j} + \chi_{i,j+1})$. From Fig. 2a, we can clearly see that implicit schemes can give reasonable densities. However, the densities from the implicit schemes are lower than those from the explicit code. Larger space and time steps tend to give smaller center density and smaller bulk plasma length due to the excessive damping of the high frequency modes. We also find that the damping error is more sensitive to the time steps than the space steps. This is beneficial to the simulations because the computational cost is inversely proportional to the square of the grid size and is only proportional to time steps. This would allow us to use larger space step and smaller time steps while keeping the accuracy. It seems that $N_z = 64$ and $\Delta t = 0.5 \times 10^{-10}$s is sufficient to the simulations, because the bulk plasma length is nearly identical to that of the explicit one and the plasma density is only about 20% lower. We considered this difference is acceptable, because most physics involved here is still kept. One can also adopt finer space and time spacing to reach better accuracy but cost more running time.
2D axi-symmetric Implicit electrostatic PIC/MC model I

Figure 2. Simulation results with different space and time steps (the former number is the number of the grid and the later one is the time steps $\times 10^{-11}$ s): (a) average electron density profiles; (b) time averaging potential.

3.2. 2D results

The 2D simulations of the benchmark problem are run paralleled in 4 or 8 nodes. Square cells are used and z direction is uniformly divided into 64 cells. The space and time steps are fixed to $\Delta x = 0.02/64 \text{m}$ and $\Delta t = 0.5 \times 10^{-10} \text{s}$. The numerical schemes are chosen as follows: (1) particles are moving in X-Y-Z coordinates; (2) weighting charge density and interpolating the field in $z - r^2$ scheme; (3) $\chi_{i+1/2,j} = \max(\chi_{i,j}, \chi_{i+1,j})$ and $\chi_{i,j+1/2} = \max(\chi_{i,j}, \chi_{i,j+1})$; (4) the potential is logarithm interpolated at the gap between the lower electrode and the outer cylinder; (5) charge conservation scheme is used; and (6) voltage source is directly applied to the electrode and no external circuit is considered. During most time of the simulations, totally $3 - 8 \times 10^6$ super particles per species are traced. The simulation will take 30 to 90 hours for one simulation in 4 nodes depending on the specific numerical schemes.

The time averaging electron and ion density over one period are shown Fig. 3. The amplitude and profiles are consistent with the optical emission tomography results [65], the fluid simulations [66], and the explicit simulation results [15]. The density distribution along Z is very similar to the 1D results. There are two densities peaks existing along R. One is near the axis and the other is near the gap between the electrodes and the outer cylinder, formed a saddle-like profile. This profile has also been observed in experiments [65]. There are some noises in the axis of the ion density.

The time averaging potential Φ, E_z and E_r are illustrated in Fig. 4. It shows that Φ and E_z have the profiles along Z similar to the 1D results except for in the region near the gap. The E_r is smaller than E_z and only obvious at large radius, because there is no rf voltage applied and a radial sheath is formed.

4. Discussion and summary

In the present work, we have developed an implicit and electrostatic Particle-in-cell/Monte Carlo model in two-dimensional axisymmetric geometry. We discussed the available
algorithms in the cylindrical implicit simulations in detail. Benefits and shortcoming of several possible algorithms were analyzed and compared to select the most reliable technologies. 1D and 2D benchmarks were executed to validate the code and show the possible errors of the algorithms. Although our code can be used to study most practical CCP devices and the results seem satisfying, some issues still need to be addressed.

Although our MC code has included the model for O$_2$ and CF$_4$, simulation for these electronegative gas is only possible for 1D case, for the electrons and ions are equally weighted in our present model. One should adopt species-depending weight scheme.[25]

Figure 3. 2D average electron(a) and ion(b) density profiles.

Figure 4. 2D average (a)Φ, (b)E_z and (c)E_r profiles.
but we have not worked out all the details for the MC process and the sizing method in this complex case.

Another problem should be mentioned is the smoothing. Filtering or smoothing [8][34] for the summed-up charge density can be used before solving the Poisson equations. In Z direction, binomial filter can be applied, and volume corrected filters can be used in R direction. However, we find conventional filters have no significant effects, even up to 200 pass being used for both ρ and χ. We believed the implicit method has significantly damped the high frequency mode, so the smoothing should be different from the implicit model.

The density in the axis shows 10% ~ 30% difference from the adjacent line of grids. This phenomenon is also observed in DSMC simulations [9] and is attributed to the numerical diffusion effects. Furthermore, the density in the axis is very noisy. Although it seems that this phenomenon has little effects on the final results. We are now trying to solve this problem.

It seems the D1 implicit scheme is over damped, and thus produces smaller density than explicit scheme in some cases. Our 1D benchmarks have shown that adjustable damping schemes [40] could give better results with same space and time steps.

When incorporating external static magnetic field into this model, this model can be used for many other similar devices, such as magnetrons and Hall thrusters. The major differences are the particle moving and the field solver, which have been studied before [31][40]. We are now trying to improve the model by addressing above issues, and also adding more gas model into our code.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No.10635010) and the Research Fund for Doctoral Program of Higher Education of China (No. 20090041110026).

References

[1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
[2] Makabe T and Petrovic Z L 2006 Plasma Electronics: Applications in Microelectronic Device Fabrication (New York: Taylor and Francis Group)
[3] Kushner M J 2008 Predictability in Low Temperature Plasmas: From Laboratory to Technology, 50th APS Division of Plasma Physics Meeting, Dallas, TX
[4] Kim H C, Iza F, Yang S S, Radmilovic-Radjenovic M. and Lee J K 2005 J. Phys. D: Appl. Phys. 38 R283
[5] Iza F, Lee S H and Lee J K 2007 Gas Discharges Fundamentals and Applications
[6] Dijk J, Kroesen G M W and Bogaerts A 2009 A J. Phys. D: Appl. Phys. 42 190301
[7] Hockney R W and Eastwood J W 1988 Computer Simulation Using Particles (New York: Adam-Hilger)
[8] Birdsell C K and Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
[9] Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press)
[10] Vender D and Boswell R W 1990 IEEE Trans. Plasma Sci. 18 725
[11] Surendra M, Graves D B and Morey I J 1990 Appl. Phys. Lett. 56 1022
[12] Birdsell C K 1991 IEEE Trans. Plasma Sci. 19 65
[13] Turner M M 2006 Phys.Plasmas 13 033506
[14] Yonemura S, Nanbu K 2006 Thin Solid Films 506 517
[15] Wakayama G and Nanbu K 2003 IEEE Trans. Plasma Sci. 31 638
[16] Wu J S, Hsu K H, Li F L, Hung C T and Jou S Y 2007 Comput. Phys. Commun. 177, 98
[17] Lisovskiy V A, Kharchenko N D, Yegorenkov V D 2010 Vacuum. 84 782
[18] Wang H Y, Jiang W and Wang Y N 2009 Comput. Phys. Commun 180 1305-1314
[19] Yan M and Goedheer W J 1999 Plasma Sources Sci. Technol. 8 349
[20] Lapenta G, Iinoya F and Brackbill J U 1995 IEEE Trans. Plasma Sci. 23 769
[21] Soria-Hoyo C, Pontiga F and Castellanos A 2009 J. Comput. Phys. 228 1017
[22] Jiang W, Wang H Y, Zhao S X and Wang Y N 2009 J. Phys. D: Appl. Phys. 42 102005
2D axi-symmetric Implicit electrostatic PIC\MC model I

[23] Denpoh K and Nanbu K 1998 J. Vac. Sci. Technol. A 16 1201
[24] Nanbu K, Morimoto T and Suetani M 1999 IEEE Trans. Plasma Sci. 27 1379
[25] Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971
[26] Kondo S and Nanbu K 2001 J. Vac. Sci. Technol. A 19 830
[27] Takekida H and Nanbu K 2004 J. Phys. Soc. Japan 73 756
[28] Takekida H and Nanbu K 2005 J. Phys. D: Appl. Phys. 38 3461
[29] Cohen B I, Langdon A B and Friedman A 1982 J. Comput. Phys. 46 15
[30] Langdon A B, Cohen B I and Friedman A 1983 J. Comput. Phys. 51 107
[31] Brackbill J U and Cohen B I 1985 Multiple Time Scales (London: Academic Press Inc)
[32] Verboncoeur J P, Alves M V, Vahedi V and Birdsall C K 1993 J. Comput. Phys. 104 321
[33] Verboncoeur J P 2001 J. Comput. Phys. 174 421
[34] Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231
[35] Vahedi V, DiPeso G, Birdsall C K, Lieberman M A and Rognlien T D 1993 Plasma Sources Sci. Technol. 2 261
[36] Vahedi V, Birdsall C K, Lieberman M A, DiPeso G and Rognlien T D 1993 Phys. Fluids B 5 2719
[37] Vahedi V and DiPeso G 1997 J. Comput. Phys. 131 149
[38] Hewett D W and Langdon A B 1987 J. Comput. Phys. 72 121
[39] Hewett D W, Larson D. J. and Doss S 1992 J. Comput. Phys. 101 11
[40] Friedman A 1990 J. Comput. Phys. 90 292
[41] Vahedi V, Surendra M 1995 Comput. Phys. Commun. 87 179
[42] Mason R J 1981 J. Comput. Phys. 41 233
[43] Brackbill J U and Forslund D W 1982 J. Comput. Phys. 46 271
[44] Vu H X and Brackbill J U 1992 Comput. Phys. Commun. 69 253
[45] Lapenta G, Brackbill J U and Ricci P 2006 Phys. Plasma. 13 055904
[46] Lapenta G 2002 J. Comput. Phys. 181 317
[47] Channon O and Neubert T 2008 J. Comput. Phys. 227 7222
[48] Soria-Hoyo C, Pontiga F and Castellano A 2008 J. Phys. D: Appl. Phys. 41 205206
[49] Rjasanow S, Wagner W 1996 J. Comput. Phys. 124 243
[50] Liechty D S 2008 RARIFIED GAS DYNAMICS: Proceedings of the 26th International Symposium on Rarified Gas Dynamics. AIP Conference Proceedings, 1084 251
[51] Wallace J M, Brackbill J U and Forslund D W 1986 J. Comput. Phys. 63 434
[52] Buzbee B L, Golub G H and Nielson C W 1970 SIAM. J. Numer. Anal. 7, 627
[53] Concus P and Golub G H 1973 SIAM J. Numer. Anal. 10 1103
[54] Nelson I M B and Janssen C J 2001 Comput. Phys. Commun. 136 29
[55] Hackbush W 1985 Multigrid Methods and Applications (Berlin: Springer)
[56] Trottenberg U, Oosterlee C W and Shuller A et al 2001 Multigrid (New York: Academic Press)
[57] Iyenger S R K and Goyal A 1990 J. Comput. Appl. Math. 33 163
[58] Schaffer S 1998 SIAM J. Sci. Comput. 20 228
[59] Lai M C, Wu C T and Tseng Y H 2007 Appl. Numer. Math. 57 801
[60] Phelps A V and Petrovic Z L 1999 Plasma Sources Sci. Technol. 8 R21
[61] Boeuf J P, Pitchord L C and Morgan W L. Siglo cross sections database. [http://www.siglo-kinema.com/]
[62] Zecca A, Karwasz G P and Brusa R S 2001 La Rivista del Nuovo Cimento 24 1
[63] Kawamura E, Birdsall C K and Vahedi V 2000 Plasma Sources Sci. Technol. 9 413
[64] Tskhakaya D and Schneide R 2007 J. Comput. Phys. 225 829
[65] Kitaizum T, Izawa M, Nakano N and Makabe T 1997 J. Phys. D: Appl. Phys. 30 1783
[66] Boeuf J P and Pitchford L C 1995 Phys. Rev. E 51 1376