SUPPLEMENTARY MATERIAL

Chemical composition, antioxidant, antibacterial and cytotoxic effects of Artemisia marschalliana Sprengel extract

Soheil Salehi, Amir Mirzaie, Seyed Ataollah Sadat Shandiz, Hassan Noorbazargan, Arian Rahimi, Sima Yarmohammadi, Fatemeh Ashrafi

*Corresponding author E mail: Amir_mirzaie92@yahoo.com

Abstract

The present study was to investigate the gas chromatography/mass spectrometry (GC/MS), in vitro antioxidant, antibacterial and anticancer activity of the ethanolic extract from aerial parts of Artemisia marschalliana Sprengel against human gastric carcinoma (AGS) and L929 cell lines. Phytochemical analysis of A. marschalliana Sprengel extract showed 22 major components and the most dominant compounds were trans-phytol (29.22%), α-Linolenic acid (13.47%) and n-Hexadecanoic acid (9.28%). In addition, the antioxidant and anti-cancer activity of A. marschalliana Sprengel extract was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) methods, respectively. Antibacterial activity against selected pathogenic bacteria was also determined. According to the present obtained results, it seems that this plant has potential uses for pharmaceutical industries and further studies were suggested to be performed for A. marschalliana Sprengel pharmaceutical importance.

Key words: GC-MS •Phytocomponent •Artemisia marschalliana Sprengel, Cytotoxicity
Experimental

Plant material and extract preparation

The aerial parts of *A. marschalliana* Sprengel were collected from Arasbaran, East Azarbaijan province, Iran, in October 2014. The identity of the plants was confirmed by Y. Ajaniat the Herbarium of Iranian Biological Resources Center, Tehran, Iran (Voucher specimens No. IBRCP1000141). The ethanolic extract of *A. marschalliana* Sprengel was prepared by mixing 10 g of dry aerial parts plant sample with 100 ml of 50% ethanol at 60°C for 10 min. The solution was filtered with the help of filter paper using Whatman No. 1 filter paper (Whatman Plc., Kent, UK) and then the extracts were transferred to a closed container for further use and storage.

GC/MS analysis

The extract of *A. marschalliana* Sprengel was analyzed using an Agilent 6890 gas chromatography-mass spectrometer (GC-MS) fused with a capillary column of silica DB-5 (30 m × 0.25 mm i.d., 0.25 μm film thickness) with ionization potential of 70 ev. The injector temperature and split ratio were adjusted at 250 °C and 1/31, respectively. The flow rate of helium as a carrier gas was 15 ml/min and the oven temperature programming was as follows: temperature was kept at 60 °C for 2 min, then it raised to 250 °C at a rate of 2 °C/min. Afterwards, it was maintained at 250 °C for 2 min.

Identification of phyto-components

The results of GC/MS were compared with the database of National Institute Standard and Technology (NIST) and the mass spectra were analyzed. In addition, the name, molecular weight, and structure of the components of the test materials were determined.

In vitro cytotoxicity assay

Cell line and culture medium

AGS and L929 cells were obtained from the Pasteur Institute cell bank in Tehran (Iran). The cells were grown in Dulbecco’s modified eagle (DMEM) medium with 10% fetal bovine serum
(FBS), 100 μg/ml of streptomycin, and 100 U/ml of penicillin (All from Gibco, Scotland) at 37°C in a 5% carbon dioxide.

MTT assay

In vitro cytotoxicity assay of *A. marschalliana* Sprengel extract on AGS and normal L929 cell lines were evaluated using MTT technique. Approximately, 1×10⁴ (cells/well) cells in 96 well plates followed by overnight incubation. The cells were then treated with different concentrations of extract (0.2, 2, 20, 40 and 60 mg/ml) for 24 h. Consequently, 25μl of the MTT solution (5 mg/ml) was added to each well, followed by incubation for 2 h. Finally, for solubilization of formazan crystals, the medium of each well was removed and 100 μl of dimethyl sulfoxide (DMSO) was added. The intensity of the solution was measured using a micro plate spectrophotometer at 570 nm. The 50% inhibition (IC₅₀) of cells was measured by using the following formula:

\[
\text{(% inhibition)} = \frac{\text{Abs of Control} - \text{Abs of Test}}{\text{Abs of Control}} \times 100
\]

Antibacterial activity of *A. marschalliana* Sprengel extract

The antibacterial activity of the extract was evaluated against three types of pathogenic bacteria, including *Pseudomonas aeruginosa* (ATCC 15442), *Escherichia coli* (ATCC 6633), *Klebsiella pneumonia* (ATCC 10031), *Salmonella typhimurium* (ATCC 14028) *Bacillus subtilis* (ATCC 6633), *Staphylococcus epidermidis* (ATCC 12228), *Staphylococcus aureus* (ATCC 6538). The antimicrobial activity was done by determining of minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) using micro dilution method as recommended by the clinical and Laboratory Standards Institute (CLSI) (Bazzaz et al., 2005).

DPPH radicals scavenging assay

DPPH radicals scavenging of *A. marschalliana* Sprengel extract was estimated according to the method of Miliauskas (Brand-Williams et al., 1995; Boonchum et al., 2011). DPPH radicals absorbed maximum at 515 nm, which disappears with reduction by an antioxidant compound (s). Three milliliters (3 ml) DPPH solution in methanol (0.1 mM) was mixed with 100 μl of
extracts (0.13, 0.33, and 0.46 mg/ml). In control (blank), 100 μl methanol (without extracts) was mixed with DPPH solution. The samples were incubated in a water bath for 20 min at 37°C and the decrease in absorbance at 515 nm was measured. Ascorbic acid was used as the standards and all tests were performed in triplicate. Radical scavenging activity was calculated using the following formula:

\[
\text{Scavenging (100\%)} = \left(\frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \right) \times 100
\]

Where A is the absorbance.

Statistical analysis

All measurements were performed in triplicate and the one-way analysis of variance (ANOVA) was done for expressing the significance of the present work. In cell cytotoxicity assay, P values less than 0.05 were considered as significant.
Figure S1. GC-MS chromatogram of *A. marschalliana* extracts.
Figure S2. Cytotoxicity of A. marschilliana against AGS and L929 cell lines at 24 h. The data is expressed as mean ± SD of 3 experiments. Cell viability is expressed relative to untreated controls. (*P<0.05; **P<0.01; ***P<0.001).
Table S1. Phytocomponents identified in the extract of *A. marschilliana* by GC-MS.

No.	Compound identified	Molecular formula	MW	RT(min)	Peak area (%)	Structure
1	n-Tetradecane	C_{14}H_{30}	198	10.969	1.219	
2	Cycloheptasiloxane, tetradecamethyl	C_{14}H_{42}O_{7}Si_{7}	518	12.113	1.196	
3	Phenol, 2,4-bis(1,1-dimethylethyl)	C_{14}H_{22}O	206	12.410	0.794	
4	2,6,10-Trimethyldodecane	C_{17}H_{36}	240	12.760	0.742	
5	Spathulenol	C_{13}H_{25}O	220	13.370	1.761	
6	n-Hexadecane	C_{16}H_{34}	226	13.440	1.243	
7	Cyclooctasiloxane, hexadecamethyl	C_{16}H_{48}O_{8}Si_{8}	592	14.212	2.110	
8	Tricyclo[5.2.2.0(1,6)]undecan-3-ol, 2-	C_{15}H_{25}O	220	14.611	0.953	
	methylene-6,8,8-trimethyl					
9	Geranyl isovalerate	C_{13}H_{26}O_{2}	238	15.183	0.865	
10	1-Heptatriacotanol	C_{17}H_{38}O	536	16.084	0.804	
11	n-Hexadecanoic acid	C_{16}H_{32}O_{2}	256	17.320	9.285	
12	Ethyl hexadecanoate	C_{18}H_{36}O_{2}	284	17.627	3.300	
13	Falcarinol	C_{17}H_{32}O	244	17.983	7.045	
14	trans-Phytol	C_{20}H_{40}O	296	18.690	29.223	
	Name	Formula	MW	LogP	Molecular	
---	-----------------------------------	-----------	----	-------	------------	
15	9,12-Linoleic acid	C₁₈H₃₂O₂	280	18.836	6.892	
16	α-Linolenic acid	C₁₈H₃₀O₂	278	18.884	13.476	
17	9,12-Octadecadienoic acid	C₂₀H₃₆O₂	308	19.008	3.217	
18	Ethyl 9,12,15-octadecatrienoate	C₂₁H₄₄O₂	306	19.052	4.237	
19	Oleic acid amide	C₁₈H₃₅NO	281	19.133	0.760	
20	5,8,11-Heptadecatriynoic acid	C₁₈H₃₄O₂	272	19.181	1.569	
21	Oleic acid amide	C₁₈H₃₅NO	281	20.298	1.211	
22	1,2-Benzenedicarboxylic acid	C₂₃H₃₅O₄	390	21.760	8.071	
Table S2. Bioactivity of phytocomponents identified in the ethanolic extracts of *A. marschilliana* by GC-MS.

No.	RT	Name of the compound	Nature of compound	Activity	Reference
1	12.410	Phenol, 2,4-di-tert-butyl	Phenolic compounds	Antibacterial	Bazzaz et al, 2005.
2	17.983	Falcariol	Alcoholic compounds	No Activity	Loy et al, 2001.
3	18.690	trans-Phytol (Phytol)	Diterpenoids	Anticancer-Antibacterial	Seca et al, 2008.
4	18.836	9,12-Linoleic acid (Linoleic acid)	unsaturated omega-6 fatty acid	Anticancer and Antioxidant	Albishri et al, 2013.
5	18.884	α-Linolenic acid	unsaturated omega-3 fatty acid	Anticancer and Antioxidant	Albishri et al, 2013.
Table S3. MIC and MBC of the *A. marschalliana* extract against pathogenic bacteria.

Pathogenic Bacteria	MIC (mg/ml)	MBC (mg/ml)
P. aeruginosa	0.6	1.6
E. coli	0.9	1.8
K. pneumonia	1.6	2.6
S. typhimurium	2.2	2.9
S. aureus	2.6	3.2
S. epidermidis	3.4	4
B. subtilis	4.2	5.2
Table S4. Free radicals scavenging activity of *A. marschalliana* extract in comparison to standard antioxidant – ascorbic acid.

Sample	SC50 (µg/ml)\(^a\)
A. marschalliana Sprengel extract	375 ± 0.08
Ascorbic acid	11.6 ± 0.06

\(^a\)Values are presented as means ± standard deviation (n=3)

SC\(_{50}\) = 50% scavenging concentration
References

Albishri HM, Almaghrabi OA, Moussa TA. 2013. Characterization and chemical composition of fatty acids content of watermelon and muskmelon cultivars in Saudi Arabia using gas chromatography/mass spectroscopy. Pharmacogn Mag. 9(33):58-66.

Bazzaz F, Khajehkaramadian M, Shokoheizadeh, H.R. 2005. In vitro antibacterial activity of Rheum ribes extract obtained from various plant parts against clinical isolates of gram negative pathogens. Iranian J Pharm Res. 4: 87-91.

Boonchum W, Peerapornpisal Y, Kanjanapothi D, Pekkoh J, Pumas C, Jamjai U, Amornlerdpison D, Noiraksar T. 2011. Antioxidant activity of some seaweed from the Gulf of Thailand, Int J Agr Biol. 13. 95–99.

Brand-Williams W, Cuveier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensmittel Wissenschaft und Technologie. 28:25–30.

Loy G, Cottiglia F, Garau D, Deidda D, Pompei R, Bonsignore L. 2001. Chemical composition and cytotoxic and antimicrobial activity of Calycotome villosa (Poiret) link leaves. Farmaco. 56(5-7):433-6.

Seca AM1, Silva AM. 2008. The chemical composition of hexane extract from bark of Juniperus brevifolia. Nat Prod Res. 22(11):975-83.