Noncommutative Tate curves

Igor Nikolaev

Abstract

It is proved, that the homology group of the Tate curve is the Pontryagin dual to the K-theory of the UHF-algebras.

Key words and phrases: Tate curves, UHF-algebras

AMS (MOS) Subj. Class.: 11G07 (elliptic curves over local fields);
46L85 (noncommutative topology)

1 Introduction

A. The Pontryagin duality establishes a canonical isomorphism between the locally compact abelian group G and the group $\text{Char} (\text{Char} (G))$, where Char is the group of characters of G, i.e. the homomorphisms $G \to S^1$ [4]; such a duality generalizes the correspondence between the periodic function and its Fourier series. The aim of the underlying note is the Pontryagin duality between a geometric object known as the Tate curve and a class of the operator algebras known as the Uniformly Hyper-Finite algebras (the UHF-algebras) [3]; such a duality provides a (little studied) link between algebraic geometry of elliptic curves and their noncommutative topology. Roughly speaking, our result says that the K-theory of a UHF-algebra is a “Fourier series” of the abelian variety over the field of p-adic numbers; the details of the construction are given below.

*Partially supported by NSERC.
B. The Tate curve. We shall work with a plane cubic \(E_q : y^2 + xy = x^3 + a_4(q)x + a_6(q) \), such that

\[
a_4(q) = -5 \sum_{n=1}^{\infty} \frac{n^3 q^n}{1 - q^n}, \quad a_6(q) = -\frac{1}{12} \sum_{n=1}^{\infty} \frac{(5n^3 + 7n^5)q^n}{1 - q^n},
\]

where \(q \) is a \(p \)-adic number satisfying condition \(0 < |q| < 1 \). The series \(\{1 \} \) are convergent and, therefore, \(E_q \) is an elliptic curve defined over the field of \(p \)-adic numbers \(\mathbb{Q}_p \); it is called a Tate curve \([3]\), p.190. There exists a remarkable uniformization of \(E_q \) by the lattice \(q^\mathbb{Z} = \{ q^n : n \in \mathbb{Z} \} \); an exact result is this. Let \(\mathbb{Q}_p^* \) be the group of units of \(\mathbb{Q}_p \) and consider an action \(x \mapsto qx \) for \(x \in \mathbb{Q}_p^* \); the action is discrete and, therefore, the quotient \(\mathbb{Q}_p^*/q^\mathbb{Z} \) is a Hausdorff topological space. It was proved by Tate, that there exists an (analytic) isomorphism \(\phi : \mathbb{Q}_p^*/q^\mathbb{Z} \to E_q \); it follows from the last formula, that \(H_1(E_q; \mathbb{Z}_p) \cong \mathbb{Z}_p \) (see p.5).

C. The UHF-algebras. A UHF-algebra ("Uniformly Hyper-Finite \(C^* \)-algebra") is a \(C^* \)-algebra which is isomorphic to the inductive limit of the sequence

\[
M_{k_1}(\mathbb{C}) \to M_{k_1}(\mathbb{C}) \otimes M_{k_2}(\mathbb{C}) \to M_{k_1}(\mathbb{C}) \otimes M_{k_2}(\mathbb{C}) \otimes M_{k_3}(\mathbb{C}) \to \ldots,
\]

where \(M_{k_1}(\mathbb{C}) \) is a matrix \(C^* \)-algebra and \(k_i \in \{1, 2, 3, \ldots \} \); we shall denote the UHF-algebra by \(M_{\mathbf{k}} \), where \(\mathbf{k} = (k_1, k_2, k_3, \ldots) \). The UHF-algebras \(M_{\mathbf{k}} \) and \(M_{\mathbf{k}'} \) are said to be stably isomorphic (Morita equivalent), whenever \(M_{\mathbf{k}} \otimes \mathcal{K} \cong M_{\mathbf{k}'} \otimes \mathcal{K} \), where \(\mathcal{K} \) is the \(C^* \)-algebra of compact operators; such an isomorphism means, that from the standpoint of noncommutative topology \(M_{\mathbf{k}} \) and \(M_{\mathbf{k}'} \) are homeomorphic topological spaces. To classify the UHF-algebras up to the stable isomorphism, one needs the following construction. Let \(p \) be a prime number and \(n = \sup \{ 0 \leq j \leq \infty : p^j \mid \prod_{i=1}^{\infty} k_i \} \); denote by \(\mathbf{n} = (n_1, n_2, \ldots) \) an infinite sequence of \(n_i \) as \(p_i \) runs the ordered set of all primes. By \(\mathbb{Q}(\mathbf{n}) \) we understand an additive subgroup of \(\mathbb{Q} \) consisting of rational numbers, whose denominators divide the “supernatural number” \(p_1^{n_1} p_2^{n_2} \ldots \); the \(\mathbb{Q}(\mathbf{n}) \) is a dense subgroup of \(\mathbb{Q} \) and every dense subgroup of \(\mathbb{Q} \) containing \(\mathbb{Z} \) is given by \(\mathbb{Q}(\mathbf{n}) \) for some \(\mathbf{n} \). The UHF-algebra \(M_{\mathbf{k}} \) and the group \(\mathbb{Q}(\mathbf{n}) \) are connected by the formula \(K_0(M_{\mathbf{k}}) \cong \mathbb{Q}(\mathbf{n}) \), where \(K_0(M_{\mathbf{k}}) \) is the \(K_0 \)-group of the \(C^* \)-algebra \(M_{\mathbf{k}} \). The UHF-algebras \(M_{\mathbf{k}} \) and \(M_{\mathbf{k}'} \) are stably isomorphic if and only if \(r\mathbb{Q}(\mathbf{n}) = s\mathbb{Q}(\mathbf{n}') \) for some positive integers \(r \) and \(s \) \([1]\), p.28.
D. The result. Denote by \(\{a_n\}_{n=1}^{\infty} \) a canonical sequence of the \(p \)-adic number \(q \), i.e. the sequence of integers \(0 \leq a_n \leq p^n - 1 \), such that \(|q - a_n| \leq p^n \); the sequence is unique and satisfies the equation \(a_{n+1} \equiv a_n \mod p^n \). Consider the rational numbers \(0 \leq \gamma_n = \frac{a_n}{p^n} < 1 \) and let

\[
\Gamma_q := \sum_{n=1}^{\infty} \gamma_n \mathbb{Z}
\]

be an additive subgroup of \(\mathbb{Q} \) generated by \(\gamma_n \); it is a dense subgroup of \(\mathbb{Q} \) containing \(\mathbb{Z} \) (lemma 1). Finally, let \(M_q := M_{k(q)} \) be a UHF-algebra, such that \(K_0(M_q) \cong \Gamma_q \); our main result can be stated as follows.

Theorem 1 The discrete group \(K_0(M_q) \) is the Pontryagin dual of the continuous group \(H_1(E_q; \mathbb{Z}_p) \).

The note is organized as follows. Theorem 1 is proved in Section 2 and a numerical example of the duality is constructed in Section 3.

2 Proof

We split the proof in a series of lemmas; for the notation and preliminary facts, we refer the reader to [1]–[5].

Lemma 1 Let \(q \neq 0 \). Then:

(i) \(\mathbb{Z} \subset \Gamma_q \);

(ii) \(\Gamma_q = \mathbb{Q} \).

Proof. Recall that every \(p \)-adic integer can be uniquely written as \(q = \sum_{i=1}^{\infty} b_i p^i \), where \(0 \leq b_i \leq p - 1 \); the integers \(b_i \) are related to the canonical sequence by the formulas:

\[
\begin{align*}
a_1 &= b_1 \\
a_2 &= b_1 + b_2 p \\
a_3 &= b_1 + b_2 p + b_3 p^2 \\
&\vdots
\end{align*}
\]

(4)

Note that \(q = 0 \) if and only if all \(b_i = 0 \). If \(q \neq 0 \), some \(b_i \neq 0 \); thus, there are infinitely many \(a_i \neq 0 \). Therefore, group \(\Gamma_q \) has an infinite number of the non-trivial generators.
(i) Let \(\gamma \) and \(\gamma' \) be a pair of non-trivial generators of \(\Gamma_q \); clearly, their nominators \(a \) and \(a' \) are integers and belong to \(\Gamma_q \). By the Euclidean algorithm, the equation \(ra - sa' = 1 \) has a solution in integers \(r \) and \(s \); thus, \(1 \in \Gamma_q \) and \(\mathbb{Z} \subset \Gamma_q \). The first part of lemma \(\square \) follows.

(ii) In view of formulas (4), we have

\[
\gamma_n = \frac{a_n}{p^n} = \frac{b_1 + b_2p + \ldots + b_np^{n-1}}{p^n} \approx \frac{b_n}{p},
\]

where \(\approx \) means the first approximation (the main part) of a rational number; thus, \(\gamma_n \approx \frac{b_n}{p} \). Consider a pair of generators \(\gamma_n \) and \(\gamma_{n'} \); then \(p\gamma_n \approx b_n \) and \(p\gamma_{n'} \approx b_{n'} \). Since \(p\gamma_n \in \Gamma_q \) and \(p\gamma_{n'} \in \Gamma_q \), the element \(b_n(p\gamma_n) - b_{n'}(p\gamma_{n'}) \) also belongs to \(\Gamma_q \). But \(pb_{n'}\gamma_n - pb_n\gamma_{n'} \approx 0 \) and, therefore, there are elements of the group \(\Gamma_q \), which are arbitrary close to zero. To prove part (ii), assume to the contrary that \(\Gamma_q \neq \mathbb{Q} \); then there exists \(r/s \in \mathbb{Q} \) and the closest \(\gamma \in \Gamma_q \), such that \(|\gamma - r/s| = \varepsilon > 0 \). Take \(\gamma' \in \Gamma_q \) such that \(|\gamma'| = \varepsilon_0 < \varepsilon \); then \(\gamma - \gamma' \) lies between \(\gamma \) and \(r/s \). Thus, \(\gamma \) is not the closest to \(r/s \); this contradiction proves, that \(\Gamma_q = \mathbb{Q} \). Lemma \(\square \) follows.

Recall that the abelian group

\[\mathbb{Z}(p^\infty) := \langle \gamma_1, \gamma_2, \ldots \mid p\gamma_1 = 0, \ p\gamma_2 = \gamma_1, \ p\gamma_3 = \gamma_2, \ldots \rangle\]

is called quasicyclic (or Prüfer) group [2], p.15; the following lemma clarifies the algebraic structure of \(\Gamma_q \).

Lemma 2 \(\Gamma_q / \mathbb{Z} \cong \mathbb{Z}(p^\infty) \) whenever \(|q| < 1 \).

Proof. Let us verify the condition \(p\gamma_1 = 0 \). Since \(|q| < 1 \), the \(p \)-adic number \(q \) is not a unit of the ring of \(p \)-adic integers \(\mathbb{Z}_p \); therefore, in the canonical sequence for \(q \) the integer \(a_1 = 0 \). On the other hand, \(p\gamma_1 = a_1 \) and, thus, \(p\gamma_1 = 0 \).

Let us verify the condition \(p\gamma_{n+1} = \gamma_n \) for \(n \geq 1 \); it follows from formulas (4), that:

\[
\begin{align*}
\gamma_n &= \frac{b_1 + \ldots + b_n p^{n-1}}{p^n}, \\
\gamma_{n+1} &= \frac{b_1 + \ldots + b_n p^{n-1} + b_{n+1} p^n}{p^{n+1}}.
\end{align*}
\]

Since

\[
p\gamma_{n+1} = \frac{b_1 + \ldots + b_n p^{n-1} + b_{n+1} p^n}{p^n} = \frac{b_1 + \ldots + b_n p^{n-1}}{p^n} + \frac{b_{n+1} p^n}{p^{n+1}} \approx \gamma_n,
\]

Lemma \(\square \) follows.
we have \(p \gamma_{n+1} = \gamma_n + b_{n+1}, \) where \(b_{n+1} \) is an integer; thus, \(p \gamma_{n+1} = \gamma_n \mod 1. \) Lemma 2 follows. □

Lemma 3 Every \(q \in \mathbb{Z}_p \) is a character of the abelian group \(\mathbb{Z}(p^\infty). \)

Proof. Since \(\Gamma_q \subset \mathbb{R} \), by lemmas 1-2 there exists a map \(i_q : \mathbb{Z}(p^\infty) \to \mathbb{R}/\mathbb{Z}; \) note, that \(i_q \) is correctly defined for \(0 < |q| < 1 \) and extends to \(q = 0 \) and \(q = 1. \) Let us show, that \(i_q \) is a homomorphism. Indeed, if \(\gamma, \gamma' \in \mathbb{Z}(p^\infty), \) then \(i_q(\gamma + \gamma') = (\gamma + \gamma') \mod 1 = \gamma \mod 1 + \gamma' \mod 1 = i_q(\gamma) + i_q(\gamma'). \) Thus, the map \(i_q : \mathbb{Z}(p^\infty) \to \mathbb{R}/\mathbb{Z} \cong S^1 \) is a homomorphism, i.e. \(i_q \) is a character of the group \(\mathbb{Z}(p^\infty). \) □

In view of lemma 3 we have \(\mathbb{Z}_p \cong \text{Char} (\mathbb{Z}(p^\infty)), \) where \(\text{Char} \) is the group of characters of the abelian group. Note, that in the \(p \)-adic topology \(\mathbb{Z}_p \) is a compact totally disconnected abelian group whose group operation is the addition of the \(p \)-adic numbers; likewise, \(\mathbb{Z}(p^\infty) \) is a discrete abelian group endowed with the discrete topology. Since \(\mathbb{Z}_p \cong \text{Char} (\mathbb{Z}(p^\infty)) \), by the First Fundamental Theorem \(\text{[4]} \) there exists a canonical continuous isomorphism \(\mathbb{Z}(p^\infty) \to \text{Char} (\text{Char} (\mathbb{Z}(p^\infty))); \) the isomorphism sends \(\gamma \in \mathbb{Z}(p^\infty) \) into the character \(x_\gamma : \text{Char} (\mathbb{Z}(p^\infty)) \to S^1 \) defined by the formula:

\[
x_\gamma(y) = y(\gamma), \quad \forall y \in \text{Char} (\mathbb{Z}(p^\infty)).
\] (8)

Thus, \(\mathbb{Z}_p \) is the Pontryagin dual of the group \(\Gamma_q \cong K_0(M_q). \)

Let us show, that \(\mathbb{Z}_p \cong H_1(E_q; \mathbb{Z}_p). \) Indeed, each elliptic curve \(E \) is isomorphic to its own Jacobian, i.e. \(E \cong \text{Jac} (E) := \Omega^1(E)/H_1(E), \) where \(\Omega^1(E) \) is the vector space of analytic differentials on \(E. \) Since \(\Omega^1(E_q) \cong \mathbb{Q}_p^* \) and \(E_q \cong \mathbb{Q}_p^*/q^\infty, \) we conclude that \(H_1(E_q) \cong q^\infty \cong \mathbb{Z}; \) then by the Universal Coefficient Formula one gets \(H_1(E_q; \mathbb{Z}_p) \cong H_1(E_q) \otimes \mathbb{Z}_p \cong \mathbb{Z} \otimes \mathbb{Z}_p \cong \mathbb{Z}_p. \) Theorem 1 is proved. □

3 Example

We shall consider an example illustrating theorem 1. Let \(p \) be a prime and consider the \(p \)-adic integer \(q = p; \) to obtain the canonical sequence for \(q, \)
notice that:
\[
\begin{align*}
 a_1 &= b_1 = 0 \\
 a_2 &= b_1 + b_2p = 0 + 1 \times p \\
 a_3 &= b_1 + b_2p + b_3p^2 = 0 + 1 \times p + 0 \times p^2 \\
 &\vdots
\end{align*}
\]
(9)

Thus, \(b_2 = 1 \) and \(b_1 = b_3 = \ldots = 0 \); the canonical sequence \((a_1, a_2, a_3, \ldots)\) for \(q = p \) takes the form \((0, p, p, \ldots)\) and, therefore, the generators \(\gamma_1 = 0 \) and \(\gamma_n = \frac{a_n}{p^n} = \frac{p}{p^n} = \frac{1}{p^{n-1}} \) for \(n \geq 2 \). In this case one gets the following dense subgroup of \(\mathbb{Q} \):
\[
\Gamma_p = \sum_{n=1}^{\infty} \frac{1}{p^n} \mathbb{Z} = \mathbb{Z} \left[\frac{1}{p} \right].
\]
(10)

Thus \(\Gamma_p \cong Q(n) \), where \(n = (0, \ldots, 0, \infty, 0, \ldots) \); therefore, \(\Gamma_p \cong K_0(M_k) \), where \(k = (p, p, \ldots) \). In other words, the UHF-algebra corresponding to the Tate curve \(E_p = \mathbb{Q}_p^*/p^\mathbb{Z} \) has the form:
\[
M_p^\infty := M_p(\mathbb{C}) \otimes M_p(\mathbb{C}) \otimes \ldots
\]
(11)

We conclude that the UHF-algebra \(M_p^\infty \) is the “Fourier series” of the Tate curve \(E_p \); in the particular case \(p = 2 \) one gets a duality between the Tate curve \(E_2 \) and the UHF-algebra \(M_2^\infty \), which is known as the Canonical Anticommutation Relations \(C^* \)-algebra (the CAR or Fermion algebra) [1], p.13.

References

[1] E. G. Effros, Dimensions and \(C^* \)-Algebras, in: Conf. Board of the Math. Sciences No.46, AMS (1981).

[2] L. Fuchs, Infinite Abelian Groups, vol.1, Academic Press, 1970.

[3] J. G. Glimm, On a certain class of operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.

[4] L. S. Pontrjagin, The theory of topological commutative groups, Annals of Math. 35 (1934), 361-388.

[5] J. T. Tate, The arithmetic of elliptic curves, Inventiones Math. 23 (1974), 179-206.
THE Fields Institute for Mathematical Sciences, Toronto, ON, Canada, E-mail: igor.v.nikolaev@gmail.com

Current address: 101-315 Holmwood Ave., Ottawa, ON, Canada, K1S 2R2