RISCO DE COMPLICAÇÕES DE SANGRAMENTO NA DRENAGEM BILIAR PERCUTÂNEA: O PARADOXO DA HEMOSTASE NORMAL

Risk of bleeding complications in percutaneous biliary drainage: the paradox of the normal hemostasis

Eduardo Javier HOUGHTON¹,², Emilio INVERNIZZI¹, Pablo ACQUAFRESCA¹, Mariano PALERMO¹,³, Mariano E. GIMÉNEZ¹,³

Como citar este artigo: Houghton EJ, Invernizzi E, Acquafresca P, Palermo M, Giménez MF. Risco de complicações de sangramento na drenagem biliar percutânea: o paradoxo da hemostase normal. ABCD Arq Bras Cir Dig. 2019;32(3):e1454. DOI: /10.1590/0102-672020190001e1454

RESUMO - Racional: A drenagem biliar percutânea é procedimento seguro. O risco de complicações hemorrágicas é aceitável. Frequentemente, os pacientes com obstrução biliar apresentam distúrbios de coagulação, aumentando o risco de sangramento. Por esse motivo, eles devem sempre ser adequados para os parâmetros da hemostasia. Objetivo: Determinar se a porcentagem de complicações hemorrágicas na drenagem biliar percutânea é maior em adultos com hemostasia corrigida antes do procedimento em relação àqueles que necessitaram nenhuma. Métodos: Estudo prospectivo, observacional, transversal, comparativo por amostras independentes (comparação não pareada). Obteve e dois pacientes foram submetidos à drenagem biliar percutânea. A idade média foi de 64±16 anos (20-92), 38 eram homens e 44 mulheres. Os pacientes que apresentaram hemostasia alterada foram corrigidos, e a presença de complicações hemorrágicas foi avaliada com exames laboratoriais e ultrassonográficos. Resultados: Dos 82 pacientes, 23 necessitaram de correção da hemostasia. O acesso à direita foi em 41 casos, 30 à esquerda e 11 bilaterais. A quantidade de punções em média foi de 3±2. Houve 13 (15,8%) complicações hemorrágicas, 12 (20%) no grupo não corrigido e apenas uma (4,34%) no corrigido sem diferença estatística. Não houve diferença no lado, no número de perfurações e no tipo de drenagem, mas o número de passagens e o tamanho da drenagem no lado direito foram diferentes. Não houve mortalidade. Conclusão: As complicações hemorrágicas em pacientes que necessitam de correção da hemostasia antes da drenagem biliar percutânea não são maiores do que naqueles que não a requerem.

INTRODUÇÃO

A drenagem biliar percutânea (PBD) é procedimento seguro para o tratamento de obstruções biliares. Pode ser realizado com ultrassonografia, equipamentos fluoroscópicos e guia de realidade virtual ou aumentada. O acesso pode ser direito, esquerdo ou bilateral. As causas podem ser benignas ou malignas. Dentre as primeiras, estão colestíase, estenose congênita, dilatações císticas, lesões cirúrgicas das vias biliares, colangiite aguda, entre outros. A obstrução biliar maligna é causada por tumores primários ou secundários. Existem várias complicações descritas na literatura e o sangramento é um deles. Tem uma ampla faixa de gravidade, desde assintomático até sangramento importante, que pode colocar em risco a vida do paciente. A taxa de complicações hemorrágicas pode variar de 3-26%, dependendo da série, sendo hematomas, hemobilia, hemoperitônio, fistulas arteriovenosas e biliopérito e hemotórax.
Frequentemente pacientes com obstruções biliares apresentam distúrbios de coagulação, aumentando o risco de sangramento. De acordo com as diretrizes para o manejo perioperatorário do estado de coagulação e risco de sangramento, a PBD é considerada de alto risco e os pacientes devem sempre se ajustar aos parâmetros de hemostasia antes do procedimento. Portanto, surge a questão de se a correção da coagulação é suficiente para evitar complicações hemorrágicas.

Assim, o objetivo deste estudo foi determinar se a porcentagem de complicações hemorrágicas no PBD é maior em pacientes com hemostasia prejudicada que corrigem sua coagulação em comparação àqueles sem distúrbios.

MÉTODOS

Todos os procedimentos realizados neste estudo estavam de acordo com os padrões éticos do comitê de pesquisa institucional e/ou nacional e com a declaração de Helsinque de 1964 e suas posteriores alterações ou padrões éticos comparáveis. Necessário e, por conseguinte, foi realizada colecistectomia laparoscópica.

Os critérios de inclusão foram: pacientes que foram submetidos à drenagem biliar por via percutânea ou endoscópica até uma semana antes referida pelo paciente ou registrados na história clínica e aqueles que não desejavam participar do estudo. Os critérios de exclusão foram: pacientes que foram submetidos à drenagem biliar com dreno multiuso de 8,5 ou 10 Fr e fixado à pele.

No pós-operatório, monitorava-se os sinais vitais, o local de punção do controle e o controle das complicações imediatas, realizando ultrassonografia 24 h pós-drenagem.

No caso de ocorrência de hemotoma ou hemoperitônio sem descompensação hemodinâmica (definida como incapacidade de manter a pressão arterial sem drogas vasoativas), era realizado tratamento conservador. No caso de descompensação hemodinâmica e após sua compensação, como tática eventual era realizada troca para cateter de maior calibre e realização de embolização arterial. Na falha dessas medidas, laparoscopia ou laparotomia era considerada.

Quando a hemobilia era evidente através do cateter, procedíamos à quantificação e utilizava-se o mesmo algoritmo descrito acima.

Variáveis estudadas

Geral
Foram anotados a causa de drenagem, idade em anos, gênero, complicações hemorrágicas (aparecimento de hematomas, hemobilia e/ou hemoperitônio diagnosticados por ultrassonografia, TC, arteriografia ou fistulografia por cateter em 24, 48 e/ou 72 h pós-drenagem), coagulopatias corretamente diagnosticadas (concentração de protrombina menor que 70%, maior que 1,3 RIN e 40 s ativado, tempo de tromboplastina parcial (aPTT abaixo de 100.000 plaquetas por mm).

Variáveis técnicas
Foram observados o número de punções (definido como a entrada da agulha através da cápsula de Glisson) e de passos (definido como o número de vezes que a agulha foi removida e progrediu sem deixar o fígado e, portanto, sem perfurar novamente a cápsula de Glisson); se os locais da punção estavam corretos, esquerdos ou ambos os lobos do fígado seguindo a linha de Cantlie. Além disso, o número de drenos e tipos de drenos (externos ou internos e externos).

Achados laboratoriais
Foram medidos bilirrubina sérica, albumina sérica, hematocrito e hemoglobina, concentração de protrombina, aPTT, RIN, contagem de plaquetas.

Análise estatística
Os dados foram inseridos em um banco de dados (Microsoft Excel 97) e analisados por meio do pacote estatístico (SPSS MedCalc 19 e 14). A distribuição de frequência e/ou porcentagens relativas ao total de casos foram estabelecidas para todas as variáveis. Para medidas em escala ordinal ou superior, descobrimos: número de casos, valor mínimo, valor máximo, média aritmética, desvio típico e erro-padrão. Quando necessário, foram estimados intervalos de confiança de 95% (IC95) e foram utilizados como testes de significância, teste de Student, teste de Mann-Whitney, teste do qui quadrado, teste de Fisher, definindo o nível de significância em alfa 0,05.

RESULTADOS

Os dados do caso número 3 foram eliminados devido à causa da obstrução: litiase da vesícula biliar com coledocolitiase e, por conseguinte, foi realizada colecistectomia laparoscópica imediata.

Os restantes 82 pacientes com diferentes doenças com obstruções biliares receberam PBD. A idade média foi de 64± 16 anos (variação=20, mediana=65, máxima=92).

As causas da obstrução biliar foram encontradas da seguinte forma: tumores peripancreáticos, 37%; tumores altos, 28%; tumores médios, 9%; estenose de hepaticojejunostomia, 11%; litiase, 10%; estenose benigna, 6%.
O gênero feminino representou 53,7% (44/82) dos casos e o masculino o restante. A idade média entre as mulheres foi de 60±19 vs. 68±13 nos homens. As diferenças entre a média de idade por gênero foram estatisticamente significantes (t=2,35, p=0,0213).

Os locais de punção foram 50% à direita, 36,6% à esquerda e o restante, bilateral (13,4%). A quantidade de punções e passes em média foi de 3±2 (mínimo=1, máximo=10) e 8±9 (mínimo=1, máximo=57) respectivamente.

Em 28% (23/82) dos pacientes foi necessária correção da hemostasia. Nove foram corrigidos com plasma fresco congelado (FFP), seis com transfusão de plaquetas, cinco com concentrado liofilizado de fatores de coagulação, um com sulfato de protamina, 11 com vitamina K. Seis pacientes receberam mais de um tipo de correção, como segue: dois FFP mais vitamina K; um, FFP mais plaquetas mais fatores de coagulação concentrados liofilizados mais vitamina K; um, FFP mais protamina e vitamina K; uma, plaqueta mais vitamina K; um, fator de coagulação concentrados liofilizados mais vitamina K.

Apenas 15,85% (13/82) tiveram complicações hemorrágicas após o tratamento e nenhuma morte foi associada ao procedimento. Monitoramos o efeito de variáveis de confusão que poderiam estar relacionadas à presença de complicações hemorrágicas antes de analisar a variável em estudo “correção da hemostasia”, e não encontramos diferenças significativas no aparecimento de complicações hemorrágicas segundo a idade média (Fisher p=0,487), entre mulheres e homens (Fisher p=0,487), entre doenças malignas e benignas (Fisher p=0,45502).

Não houve associação significativa entre o tipo de drenagem e a presença de complicações hemorrágicas. No entanto, o tamanho da amostra deve ser aumentado antes de se tomar decisões clinicamente aplicáveis (Chi²=3,74; p=0,154, Tabela 2).

EM relação aos valores laboratoriais realizados nos dois grupos de pacientes, apenas os valores médios da concentração de protrombina foram significativamente maiores no grupo com complicações hemorrágicas do que naqueles sem esse evento; no entanto, ambas as médias estavam acima do valor limite, portanto, não têm significado clínico.

Finalmente, em relação ao objetivo do estudo, pudemos estabelecer que o número de complicações hemorrágicas em pacientes que necessitaram de correção da hemostasia antes da PBD não foi maior do que naqueles que não necessitaram de correção (Fisher p=0,067, Tabela 3).

O número médio de punções foi semelhante no grupo de pacientes com e sem complicações hemorrágicas: 4 (1-6) e 3 (1-10), respectivamente (teste de Mann-Whitney Z=1,73; p=0,0824). O número de passes foi significativamente maior nos pacientes com complicações hemorrágicas (teste de Mann-Whitney Z=2,33; p=0,0196, Figura 1).

O diâmetro médio do cateter no local da punção direita foi significativamente maior no grupo de pacientes que apresentaram complicações hemorrágicas do que naqueles que não apresentaram esse evento (Figura 2).

![Mann-Whitney test Z=2.75; p=0.0059](image)

FIGURA 2 - Dot plot: diâmetro do cateter direito em um grupo de 48 pacientes com e sem complicações hemorrágicas.

O diâmetro médio do cateter no local da punção esquerda foi de 8,7 Fr. no grupo complicado vs. 9,3 Fr no grupo não complicado, similar em ambos que tiveram complicações hemorrágicas e aqueles que não tiveram (teste de Mann-Whitney Z=1,42; p=0,1557).

Não houve associação significativa entre o tipo de drenagem e a presença de complicações hemorrágicas. No entanto, o tamanho da amostra deve ser aumentado antes de se tomar decisões clinicamente aplicáveis (Chi²=3,74; p=0,154, Tabela 2).

Por outro lado, observamos tendência a encontrar mais complicações no grupo não corrigido, mas precisamos aumentar...
Complicações de sangramento na PBD são relativamente frequentes. Elas incluem hematomas, hemobilia e até hemoperitônio. As taxas relatadas variam entre 2-16%, a maioria delas de baixa gravidade2,3,9,11,12,20,24,27. Segundo L’Hermine et al2, elas podem atingir até 20%, mas apenas 6% seriam graves. Entre estas, apenas 2-8% são devidos a lesões arteriais. Em nossa série, não detectamos nenhum delas.

As diferenças nos percentuais relatados provavelmente se devem à definição e utilização da variável “complicação hemorrágica”. Alguns autores descrevem apenas quando sintomáticos ou quando um paciente necessita de correção da hemostasia. Na nossa série, nenhum paciente necessitou de nenhum procedimento extra para controlar o sangramento. A maioria era hemobilia autolimitada. Detectamos um único paciente com hemotoma na ultrassonografia e estava completamente assintomático, sem necessidade de tratamento.

Em um registro da Sociedade Britânica de Radiologia Intervencionista, publicado por Uberoi et al.4, observaram 4,5% de complicações hemorrágicas e, dentro delas, encontraram associação moderada com baixa contagem de plaquetas. No entanto, o tamanho da amostra foi muito pequeno e não estatisticamente significativo. Isso pode ser uma fraqueza do nosso estudo. No entanto, o tamanho da amostra ainda não é suficiente para analisar cada tipo de complicações hemorrágicas individualmente. Talvez esta seja a fraqueza do nosso estudo. No entanto, como aqueles que foram corrigidos com vitamina K antes do procedimento poderiam ter um risco aumentado de complicações, decidimos conduzir uma análise separada excluindo os pacientes corrigidos apenas com vitamina K, e os resultados não mudaram. Mesmo sem esses casos, o percentual de complicações hemorrágicas em pacientes que necessitaram de correção da coagulação no PBD não foi maior do que aqueles que não precisaram.

Por fim, não encontramos relatos semelhantes na literatura analisando a complicações hemorrágicas antes de uma PBD. Nossos ensaios demonstraram que os valores de complicações de hemostasia são seguros e não estão associados ao aumento das complicações hemorrágicas. Uma tendência é observada e parece haver mais complicações no grupo não corrigido. O tamanho da amostra deve ser aumentado para confirmar essa tendência.

Corremos que nossos achados sejam importantes e aplicáveis à prática clínica quando realizamos um procedimento desse tipo e decidimos, quando necessário, fazer a correção da hemostasia antes de uma PBD. Concluímos que nossos achados sejam importantes e aplicáveis à prática clínica quando realizamos um procedimento desse tipo e decidimos, quando necessário, fazer a correção da hemostasia antes de uma PBD.

CONCLUSÃO
A porcentagem de complicações hemorrágicas em pacientes que necessitam de correção da hemostasia antes de uma PBD não é maior do que aqueles que não o fazem.

AGRADECIMENTOS
Os autores querem agradecer a Dra. Inês Castiglia (www.consumacionia.com.ar) para a análise metodológica e estatística.

REFERÊNCIAS
1. Castraing D, Viberge B, Chau P, et al. “Results of percutaneous manoeuvres in biliary disease: The Paul Brousse experience”. Surg Endosc 2011; 25:1858–1865.
2. Cho SH, Gwon DL, Ko GY, et al. “Hepatic Arterial Injuries in 3110 Patients Following Percutaneous Transhepatic Biliary Drainage”. Radiology. 2011 Dec;261(3):969-75.
3. Dawson, B, Trapp R. (2002). Bioestadística médica. México: Editorial el Moderno.
4. Donkol RH, Latif NA, Moghazy K. “Percutaneous imaging-guided interventions for acute biliary disorders in high surgical risk patients”. World J Radiol 2010 September 28; 2(9): 358-367.
5. Fang Y, Gurusamy KS, Wang G, et al. “Meta-analysis of randomized clinical trials on safety and efficacy of biliary drainage before surgery for obstructive jaundice”. British Journal of Surgery 2013; 100: 1589–1596.
6. Garcarek J, Kurcz J, Guzinski M, et al. "Ten Years Single Center Experience in Percutaneous Transhepatic Decompression of Biliary Tree in Patients with Malignant Obstructive Jaundice". Adv Clin Exp Med. 2012 Sep-Oct;21(5):621-32.

7. Günther RW, Schild H, Thelen M. "Review Article: Percutaneous Transhepatic Biliary Drainage: Experience with 311 Procedures". Cardiovasc Intervent Radiol 1988; 11:65-71.

8. Kasuga A, Ishii H, Ozaka M, et al. "Clinical Outcome of Biliary Drainage for Obstructive Jaundice Caused by Colorectal and Gastric Cancers". Jpn J Clin Oncol. 2012;42(12):1161–1167.

9. Kühn JP, Bussemann A, Lerch MM, et al. "Percutaneous Biliary Drainage in Patients With Nondilated Intrahepatic Bile Ducts Compared With Patients With Dilated Intrahepatic Bile Ducts". AJR Am J Roentgenol. 2010 Oct;195(4):851-7. doi: 10.2214/AJR.09.3461.

10. Lee W, Kim GC, Kim JY, et al. "Ultrasound and fluoroscopy guided percutaneous transhepatic biliary drainage in patients with nondilated bile ducts". Abdom Imaging 2008; 33:555–559.

11. L’Hermine C, Ernst O, Delemazure O et al. "Arterial Complications of Percutaneous Transhepatic Biliary Drainage". Cardiovasc Intervent Radiol 1996;19:160–164.

12. Lysneky GE, Banovac F, Chang T. "Vascular Complications Associated with Percutaneous Biliary Drainage: A Report of Three Cases". Semin Intervent Radiol 2007;24:316–319

13. Miyazaki M, Shibuya K, Tokue H, et al. "Percutaneous transhepatic biliary drainage assisted by real-time virtual sonography: a retrospective study". BMC Gastroenterology 2013;13:127.

14. Mazzariello R. Review of 220 cases of residual biliary tract calculi treated without reoperation: an eight years study. Surgery 1973;73:299–306.

15. Moscone JC, Campi O, Mazzaro, EL, et al. "Drenaje percutaneo de la via biliar en pacientes con colangitis aguda grave" Revista Argentina de Cirugia. 1990;59: 237.

16. Khashab MA, Valeshabad AK, Afghani E, et al. "A Comparative Evaluation of EUS-Guided Biliary Drainage and Percutaneous Drainage in Patients with Distal Malignant Biliary Obstruction and Failed ERCP". Dig Dis Sci 2015;60:557–565.

17. Nennstiel S, Weber A, Frick G, et al. "Drainage-related Complications in Percutaneous Transhepatic Biliary Drainage An Analysis Over 10 Years". Journal of Clinical Gastroenterology. 2015; 49(9):764–770.

18. Pekolj J, de Santibañes, E, Sívori, JA, et al. "Procedimientos percutaneos terapéuticos en patologia biliar". Revista Argentina de Cirugia 1991;60:20.

19. Pekolj J, de Santibañes E, Giardullo M, et al. "Procedimientos percutaneos terapéuticos en patologia biliar". Revista Argentina de Cirugia 1991;60:20.

20. Rivera-Sanfeliz GM, Assar OS, LeBerge JM, et al. "Incidence of important hemobilia following transhepatic biliary drainage left sided versus right sided approaches". Cardiovascular Interventional Radiology 2004; 27: 137–139.

21. Robson PC, Heffernan N, Gonen M, et al. "Prospective Study of Outcomes after Percutaneous Biliary Drainage for Malignant Biliary Obstruction". Ann Surg Oncol 2010;17:2303–2311.

22. Tapping CR, Byass OR, Cast JE. "Percutaneous transhepatic biliary drainage (PTBD) with or without stenting—complications, re-stent rate and a new risk stratification score". Eur Radiol 2011;21:1948–1955.

23. Tsuyuguchi T, Takada T, Kawarada Y, et al. "Techniques of biliary drainage for acute cholangitis: Tokyo Guidelines". J Hepatobiliary Pancreat Surg 2007;14:35–45.

24. Uberoi R, Das N, Moss J, et al. "British Society of Interventional Radiology. Biliary Drainage and Stenting Registry (BDSR)". Cardiovasc Intervent Radiol 2012; 35:127–138.

25. Laufer U, Kirchner J, Kickuth R. "A Comparative Study of CT Fluoroscopy Combined with Fluoroscopy Versus Fluoroscopy Alone for Percutaneous Transhepatic Biliary Drainage". CardioVascular and Interventional Radiology 2001; 24:240–244.

26. van der Gaag NA, Kloek JJ, de Castro SM, et al. "Preoperative Biliary Drainage in Patients with Obstructive Jaundice: History and Current Status". J Gastrointest Surg 2009;13:814–820.

27. Saad WE, Davies MG, Darcy MD. "Management of Bleeding after Percutaneous Transhepatic Cholangiography or Transhepatic Biliary Drain Placement". Tech Vasc Interv Radiol. 2008 Mar;11(1):69–71.

28. Westwood DA, Fernandez C, Connor SJ. "Internal-external percutaneous transhepatic biliary drainage for malignant biliary obstruction: retrospective analysis". J Med Imaging Radiat Oncol. 2010 Apr;54(2):108-10.

29. Yamao K, Hara K, Mizuno N, et al. "EUS-Guided Biliary Drainage". Gut Liver. 2010 Sep;4 Suppl 1:S67-75.

30. Patel U, Davidson JC, Nikolic B, et al. for the Standards of Practice Committee, with Cardiovascular and Interventional Radiological Society of Europe (CIRSE) Endorsement. "Consensus Guidelines for Periprocedural Management of Coagulation Status and Hemostasis Risk in Percutaneous Image-guided Interventions". J Vasc Interv Radiol 2012; 23:727–736.

31. Rennie D. CONSORT revised—improving the reporting of randomized trials. JAMA 2001;285:2006–7

32. von Elm E, Altman DG, Egger M, et al. STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol. 2008; 61(4):344-9.