Testing the sexual and social benefits of cooperation in animals
Rita Covas, Claire Doutrelant

▶ To cite this version:
Rita Covas, Claire Doutrelant. Testing the sexual and social benefits of cooperation in animals. Trends in Ecology and Evolution, Elsevier, 2019, 34 (2), pp.112-120. 10.1016/j.tree.2018.11.006.
hal-02384398

HAL Id: hal-02384398
https://hal.archives-ouvertes.fr/hal-02384398
Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Testing the sexual and social benefits of cooperation in animals

Rita Covas¹,²* and Claire Doutrelant²,³*†

* Both authors contributed equally to the paper

Authors’ addresses:

¹CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBio, Laboratório Associado, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal

²FitzPatrick Institute of African Ornithology, DST-NRF Centre of Excellence, University of Cape Town, Rondebosch 7701, South Africa

³CEFE, UMR5175 CNRS-Université de Montpellier, campus CNRS1919 route de Mende, 34293 Montpellier Cedex 5, France

† Corresponding author: Doutrelant, C. (claire.doutrelant@cefe.cnrs.fr)

Keywords

Audience, Cooperation, Helping, Sexual selection, Signalling, Social selection

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/
Abstract

Theoretical models show that sexual and social selection can stabilize cooperation. However, field tests of these mechanisms have been difficult to conduct and the results are mixed. We discuss the conceptual and practical difficulties associated with testing the role of social and sexual selection on cooperation and argue that there are alternative ways of examining these hypotheses. Specifically, approaches based on the classic theories of sexual selection and signalling and recent developments in the field of behavioural syndromes provide mechanisms to insure the reliability of cooperation. Additionally, methodological developments (social networks and micro-tracking) and long-term datasets allow measuring partner choice in a cooperation context and the resulting fitness benefits for both the co-operators and the individuals that associate with them.

On the importance of testing the sexual and social benefits of cooperation

Partner choice is a key aspect of evolutionary theory, and has provided convincing explanations for the evolution of puzzling traits, such as peacock tails, that bring no benefits to the survival of the bearers and even compromise it [1,2]. Cooperation (see Glossary) is usually presented as a puzzling trait, as it is costly to the bearer and hence individuals are expected to attempt to reap the benefits of cooperation while avoiding the costs [3]. Two main solutions to the evolutionary conundrum posed by cooperation are indirect fitness benefits, which are obtained by helping relatives [4], and direct benefits, when by cooperating individuals increase their chances of survival or reproducing [5]. For example, sentinel watching [6] or contributing to group augmentation [7] may simultaneously provide direct benefits to the actor and help the other group members. In addition, theoretical models have shown that sexual and social selection can make cooperation stable since co-operators are preferred over cheaters [8–10].
Hence, under some circumstances, individuals may rely on the action of others to obtain returns from their investment in cooperation [11]. The role of individual propensity to cooperate has been shown to play a role in social and sexual mate choice in humans [12] and there is recent evidence that cooperative investments influence partner choice also in non-human animals [5]. However, to which extent these mechanisms may influence the evolution and maintenance of cooperation in animals remains contentious.

Under social and sexual selection [13–16], co-operators gain fitness benefits as their actions increase their future chances of either receiving help or being preferentially chosen as a mate [5]. Consider for instance a cooperatively breeding group where helpers vary in their capacity to bring food to the nest, or to detect predators and warn their group mates. If helping provides honest information about these individuals’ qualities as sexual or social partners, those who help more should be more likely to be chosen [9]. Choice, in this case, is beneficial for the more cooperative individuals, who increase their chances of finding partners or being helped in the future [5,17] but, crucially, also for those who chose to associate with them, as they obtain better quality partners.

Here, we first briefly review the main factors that we feel have hindered the study of sexual and social selection in the field of cooperation. We argue that cooperative behaviour has been seen as an unreliable signal of future cooperative investment or individual quality and that the sexual and social benefits of cooperation have been considered as extremely hard to quantify or to disentangle from other factors. We then propose specific frameworks to address the problem of the reliability of helping, which are based on classical sexual selection and signalling theories, and more recent developments in the field of behavioural syndromes. Additionally, we argue that both long-term studies and recent methodological and technological developments provide robust data and new tools to test the predictions of social
and sexual selection hypotheses in a cooperation context under field conditions (these predictions are summarised in Fig. 1).

Why have sexual and social selection been overlooked in studies of cooperation in animals?

Four main reasons have made it difficult to conceptualise and test the role of sexual and social partner choice on cooperation in non-human animals. First, the initial formulation of the sexual selection hypothesis suggested that investing in cooperation was linked to individual quality and would thereby lead to increased ‘social prestige’ [14]. This has arguably led to some discredit among researchers working on animals, as ‘prestige’ can be seen as anthropocentric. However, while the notion of ‘prestige’ can be equivocal, the idea of cooperation as a signal is well supported in humans and some fish [18–20] and requires additional examination in non-human animals (see Box 1). Second, several authors have argued that it is unclear how information about an individual’s propensity to cooperate is obtained by others, since obtaining and using the information required was considered too cognitively demanding for most species (e.g. [21,22]). However, individuals can easily obtain information about other individuals’ investment in cooperatively tasks either through their direct interactions (e.g. [23,24]) or by eavesdropping [25] and cognitive abilities do not appear limiting [5,17,26]. For example, in a cleaner-client fish mutualism, clients avoided cleaners that they observed cheating [27] and cleaners behaved more cooperatively in the presence of an audience [20]. Third, if individuals are going to choose to associate with others based on the information they obtain from their behaviour, it is essential that the information obtained is reliable, i.e. that cheating is prevented, and that current and future cooperative behaviours are consistent or linked to the quality of those individuals as partners. If information about cooperative behaviour is detectable but not reliable it cannot be used in partner choice. Demonstrating the reliability of cooperative behaviour has been deemed a major obstacle for
testing hypotheses about the role of sexual or social selection on cooperation [22,28]. However, we disagree reliability represents an insurmountable problem and propose below three frameworks to test whether cooperative behaviours are reliable. Fourth, quantifying social choice and disentangling the different types of benefits and confounding factors associated with sociality and cooperation has been considered exceedingly difficult, particularly in kin groups which are formed primarily by delayed dispersal of young. However, below we suggest specific approaches exist to tackle these difficulties.

Moving forward: solutions to the problem of the reliability of cooperation

Cooperation as a signal: condition-dependence and audience effects

A crucial prediction of signalling theory [29], which has been overlooked in previous studies investigating the reliability of cooperation, is the link between condition and cooperation. Condition-dependence is one of the pillars of signalling and sexual selection theories, which considers that signals are reliable because they are costly, and costs reveal the concealed quality of an individual (e.g. quality as parents or their “good genes” [30,31]) because only good-quality individuals can invest in costly signals and remain viable afterwards [30,31]. The costs of helping are widely accepted because in order to cooperate individuals need to forgo other activities such as foraging or reproducing [32]. However the physiological or energetic costs of cooperating have only been demonstrated in a few species [33–35]. The recent developments of oxidative stress markers [36] and the understanding of telomere dynamics [37] allow to quantify physiological costs and offer meaningful ways of measuring the cost of helping in the context of animal sociality [34,35,38]. Recent technological developments that allow tracking individual body mass of small species [39] provide an additional way of quantifying short-term costs. Finally, formal tests of the condition-dependence hypothesis require experimental work to assess whether the cost of helping is less important for good quality individuals than bad quality ones (as done in the field of sexual selection[40–42]). While
studies conducted on cooperative species have shown that individual satiation or physiological
condition [35] affect investment in cooperative behaviours (e.g.[24]), experimentally
manipulating helping effort or condition are needed to compare how individuals in different
body condition or physiological state are able to maintain their cooperative activity when
challenged.

Another approach to further examine whether cooperation is a signal is to investigate
audience effects, since displaying a signal is predicted to be positively affected by the presence
and identity of receivers [20,27,43]. In humans, recent studies showed that men are more
cooperative in the presence of women [44,45]. In animals, many studies investigated this
prediction but the evidence is mixed. We review the several studies conducted on
cooperatively breeding birds in Box 1. Most studies on birds found no audience effects on
cooperative behaviour. However, most of these studies assumed that synchronicity at the nest
was a good surrogate for an audience effect, but the complex dynamics of group movements
may lead to synchronisation (or lack thereof) for other reasons besides signalling (e.g. predator
avoidance or foraging). In fish, where most studies were either conducted in captivity or well-
declared areas (where both observer and subjects had access to the same information), there is
convincing evidence of audience effects (e.g. cleaner-client interactions [20] and cooperation
as a honest signal of individual contribution in ‘pay-to-stay’ cichlids [46,47]). Thus additional
tests of audience should be experimental rather than correlative or conducted under
controlled, spatially confined conditions as in these fish examples.

Cooperation as a reliable feature because it is a repeatable behaviour

If cooperation is a repeatable behaviour and presents consistent differences among individuals
and across contexts it can be seen as a “personality trait” [48,49], and thus can be used as a
reliable cue by other individuals in partner choice. Research over the past ten years has shown
that consistent inter-individual differences are widespread in animals and are stable because
they relate to physiological and life-history traits, forming a pace-of-life syndrome [48]. Animal “personalities” are predicted to have consequences for social evolution [9,50] and mate choice [51]. If individuals typically behave in similar ways in related situations (for example, by consistently being more aggressive and less cooperative), this is predicted to promote a consistent behavioural response from the other individuals in the group [52,53] (see also review in [5]). Thus, if cooperative investment is consistent among individuals, in spite of variation in context or conditions, cooperative individuals can be trusted and chosen as partners that will continue to cooperate in the future [8–10,52].

Several recent empirical studies have found intra-individual consistency (repeatability) in cooperative effort [54,55]. Cooperation can be expressed in many forms, including tending for the young, finding food, watching for predators or defending territories, and studies of mongooses and cichlid fishes have shown that some individuals invest more in specific tasks [56,57]. Hence, propensity to cooperate in certain way appears to be an individual characteristic and could be used in partner choice. More studies are needed to have a broader understanding of whether these results represent a general pattern for other cooperative vertebrates, but also to investigate longer term intra- and inter-individual variation in cooperative behaviours, as well correlations with other behavioural traits.

Cooperation as a trait indicated through other reliable traits

A more classical but poorly studied hypothesis to explain how cooperation can be used in partner choice is that cooperation itself is not a signal or a cue but is linked to other reliable traits, in the same way as future parental care can be signalled by ornaments or displays [58]. In humans, cooperativeness has been linked to morphological facial traits [59] and in microorganisms and ants there is good evidence for ‘green beards’ (i.e. phenotypic traits which can only be produced by particular genes, causing the bearers of these genes to recognise each other and cooperate [60]). Recently, one study found that levels of cooperation in barn
Owl nestlings were related to pheomelanin-based plumage [61]. Some of the key regulators of melanogenesis are thought to have pleiotropic effects that link melanin-based colouration to phenotypic traits such as aggression, stress and immunity [62]. Hence, melanin-based traits are among those that could be explored as possible ‘badges of cooperation’.

Moving forward: new and overlooked tools to measure sexual and social benefits of cooperation

Social and sexual selection are predicted to favour the evolution and maintenance of cooperation (i) if cooperative individuals are preferentially chosen as social or sexual partners and (ii) if the individuals that choose to associate with co-operators have fitness benefits arising from that choice. In humans, more cooperative individuals are perceived as more attractive [18,19] and are also preferred as non-sexual partners [12,63]. In non-human animals, some studies suggested increased mating probability of helpers [64,65] or individuals that invest more in a communal good [66] and there is evidence for social mate choice based on cooperation in fish, rats, dogs [5] and primates [67] (but see [68]). However, the majority of these social preference tests were conducted in laboratory settings using artificial tasks under artificial social conditions, making the biological significance of the results sometimes difficult to interpret [28]. Below we discuss field tests that can represent promising avenues to study social benefits arising from cooperative investments.

The importance of long-term studies on free-ranging animals

Assessing the predictions of social and sexual selection for the evolution of cooperation (Fig. 1) requires robust measures of cooperative investments as well as mating success, reproductive output and survival of the same individuals, while accounting for relatedness. Additionally, these fitness indicators should be measured for both the co-operator and the individuals that chose to associate with them, which requires long-term data from wild populations. Long-term
studies provide the knowledge about the species’ social and kin structure, which behaviours are important and key fitness indicators such as lifetime reproductive success [69]. Additionally, long-term data are needed because the links between traits and fitness are often dependent on environmental variation and hence variable in time. For example, female preferences can vary from strong in some years to absent in others, and hence shorter-term studies could miss these patterns entirely (e.g. [70]). The long-term perspective is therefore important in order to measure the strength of these effects in relation to the long-term variation [71].

Technological innovations and social network analyses: new ways of measuring social associations in relation to cooperation in the wild

Recent developments in technologies – such as Radio Frequency Identification (RFID), GPS, or image recognition – are allowing unprecedented levels of animal tracking at both a micro- and macro-scale. These technologies combined with methodological advances like social network analyses [72] are starting to provide major insights into the social dynamics, collective movement and cultural transmission in wild animals [73,74]. Similar approaches can be applied to the study of cooperation to allow robust measures of cooperative investments in animals [75] and to study possible social benefits. For example, detailed tracking, either through combined GPS technology [74] or image analyses [76], can facilitate studying individual investment in cooperative behaviours which are complex and hard to follow in the wild, such as joint mobbing or territorial defence. Individuals marked with Passive Integrated Transponders (PIT-tags) also can be used in cooperation experiments, for instance by triggering devices that give other individuals access to food (or preferred food types, or other relevant resource), thereby simulating a cooperative action. A recent study on great tits Parus major used this technology to experimentally show that individuals are willing to reduce their own access to food in order to maintain their social relationships [77].
Simultaneously, social network analyses [72] provide a way of measuring whether cooperative investments influence how animals associate. Summarizing the social connections among both related and unrelated individuals in a succinct way provides a quantitative framework for analysing patterns of interactions and social assortment [78] in relation to cooperation. In systems where groups are formed mostly through delayed dispersal it may be difficult to determine whether or not there is social partner choice, but even in such systems, behaviours like coalition dispersal, communal roosting or food sharing can take place, which involve social partner choice. Under social selection, individuals that invest more in a cooperative task are predicted to benefit through more or better social connections and received reciprocation in a similar or different task (while controlling for relatedness and dominance; see Fig 1). A good example is the recent work in the dwarf mongoose *Helogale parvula*, a cooperative breeder that lives in extended family groups where individuals that contributed more to sentinel behaviour had a better position in the grooming network [17]. Other examples are provided by vampire bats *Desmodus rotundus*, where individuals have a network of related and unrelated individuals with whom they share food based on reciprocal exchanges (Carter & Wilkinson 2013, 2015; Carter et al 2017) or guppies *Poecilia reticulata* where cooperative predator inspection is more frequently conducted with social partners [79]. Social networks, however, are correlative and while it is possible that being more cooperative in some contexts leads to being more or better connected to other individuals in other contexts, it is also possible that more or better connections lead to increased cooperation. For example in humans, cooperation was favoured by the possibility of forming social networks with more cooperative individuals [80] and other studies have shown that the social environment influences the expression of cooperative tasks [81,82]. It is therefore essential to use experiments to manipulate the apparent level of cooperation and quantify subsequent network associations.
Quantifying the benefits of mating with more cooperative individuals

Under classical sexual selection theory, mating with more cooperative individuals is expected to provide direct fitness benefits if more cooperative individuals are better quality or more cooperative mates (e.g. that provide better parental care), or indirect fitness benefits if mating with more cooperative individuals yields better quality offspring or offspring that will inherit a higher propensity to cooperate.

Surprisingly, whether or not more cooperative individuals are better quality mates and produce offspring with higher fitness remains poorly known. One of the predictions of the sexual selection hypothesis is that more cooperative individuals should provide better parental care when they become breeders (Fig.1), and this translates into higher reproductive output and lifetime fitness for both the co-operator and their mates. Most existing long-term studies on cooperative breeders collect data that allow researchers to examine this hypothesis.

Whether more cooperative individuals produce offspring with higher propensity to cooperate can be estimated using quantitative genetic methods [83] that examine if the propensity to cooperate and preference for mating with more cooperative individuals are heritable, as well as whether there is a genetic correlation between the two. Heritability of cooperation has been shown in humans [84] and cooperatively breeding birds [85,86], but social and developmental factors seem equally important [87,88]. Again, many long-term studies have data allowing to investigate this. Another potentially interesting avenue will be making use of genomic tools to search for genetic regions associated with cooperation – using a candidate gene approach (e.g. [89]) or genome-wide association studies [90]. These approaches will allow to better estimate the potential indirect benefits obtained through mate choice.
Concluding remarks

Partner choice is a central aspect of evolutionary theory and can play an important role in stabilising cooperation, but the empirical tests conducted to date produced mixed results. We delineated here the predictions that arise if cooperation is under sexual or social selection and brought together theory and techniques from different fields in an attempt to address past difficulties that have hindered the testing of these predictions in the field. Specifically, we encourage different tests of the reliability of cooperative behaviours and urge researchers to conduct more studies on wild populations and to use new techniques as well as existing long-term data to obtain meaningful fitness indicators of cooperative investments (see Box 2). We also emphasise that understanding and quantifying the possible benefits obtained not only by co-operators, but also by the individuals that choose to associate with co-operators is crucial to examine these hypotheses. Finally, we argue that studies aiming to determine the benefits and costs of cooperation should ideally consider individual contributions to – and returns from – different cooperative behaviours in order to obtain a meaningful understanding of the importance of cooperation for lifetime fitness (see also outstanding questions).

Acknowledgments

We are very grateful to Damien Farine, Sjouke Kingma, Denis Réale, Arnaud Tognetti, Gonçalo Cardoso, André Ferreira, Martim Melo, Nuno Monteiro, and two anonymous reviewers for comments on the manuscript. We also thank Tom Flower, Ben Hatchwell, Fanny Rybak, Bruno Faivre, Mylène Mariette and Anne Charmantier for helpful discussions. RC and CD are part of the LIA ‘Biodiversity-and-Evolution’ (CNRS-CIBIO) and were funded, respectively, by FCT IF/01411/2014/CP1256/CT0007 and PTDC/BIA-EVF/5249/2014 (Portugal), and ANR-15-CE32-0012-02 (France).
References lists

1 Anderson, M. (1994) *Sexual Selection*, Princeton University Press.

2 Lyon, B.E. and Montgomerie, R. (2012) Sexual selection is a form of social
selection. *Philos. Trans. R. Soc. B Biol. Sci.* 367, 2266–2273

3 West, S.A. *et al.* (2007) Evolutionary explanations for cooperation. *Curr. Biol.*
17, R661–R672

4 Hamilton, W.D. (1964) The genetical evolution of social behaviour II. *J. Theor.
Biol.* 7, 17–52

5 Taborsky, M. *et al.* (2016) Correlated pay-offs are key to cooperation. *Philos.
Trans. R. Soc. B Biol. Sci.* 371, 20150084

6 Clutton-Brock, T.H. *et al.* (2000) Selfish sentinel in cooperative mammals.

7 Science 284, 1640–1644

8 Kingma, S.A. *et al.* (2014) Group augmentation and the evolution of cooperation.

9 *Trends Ecol. Evol.* 29, 476–484

10 McNamara, J.M. and Doodson, P. (2015) Reputation can enhance or suppress
cooperation through positive feedback. *Nat. Commun.* 6, 1–7

11 McNamara, J.M. *et al.* (2008) The coevolution of choosiness and cooperation.

12 Milinski, M. (2016) Reputation, a universal currency for human social
interactions. *Philos. Trans. R. Soc. B Biol. Sci.* 371, 20150100

Raihani, N.J. and Bshary, R. Resolving the iterated prisoner’s dilemma: theory and reality. *J. Evol. Biol.* 24, 1628–1639

Zahavi, A. (1995) Altruism as an handicap - the limitations of kin selection and reciprocity. *J. Avian Biol.* 26, 1–3

Nesse, R.M. (2016) Social selection is a powerful explanation for prosociality. *Behav. Brain Sci.* 39, e47

Roberts, G. (2015) Human cooperation: the race to give. *Curr. Biol.* 25, R425–R427

Kern, J.M. and Radford, A.N. (2018) Experimental evidence for delayed contingent cooperation among wild dwarf mongooses. *Proc. Natl. Acad. Sci. U. S. A.* 115, 201801000

Farrelly, D. *et al.* (2016) Are women’s mate preferences for altruism also influenced by physical attractiveness? *Evol. Psychol.* 14, 1–6

Arnocky, S. *et al.* (2017) Altruism predicts mating success in humans. *Br. J. Psychol.* 108, 416–435

Pinto, A. *et al.* (2011) Cleaner wrasses *Labroides dimidiatus* are more cooperative in the presence of an audience. *Curr. Biol.* 21, 1140–4

Stevens, J.R. and Hauser, M.D. (2004) Why be nice? Psychological constraints on the evolution of cooperation. *Trends Cogn. Sci.* 8, 60–65

Wright, J. (2007) Cooperation theory meets cooperative breeding: exposing some ugly truths about social prestige, reciprocity and group augmentation. *Behav. Processes* 76, 142–148
23 Maccoll, A.D.C. and Hatchwell, B.J. (2003) Sharing of caring: nestling provisioning behaviour of long-tailed tit, Aegithalos caudatus, parents and helpers. *Anim. Behav.* 66, 955–964

24 Bell, M.B. V *et al.* (2010) Bargaining babblers: vocal negotiation of cooperative behaviour in a social bird. *Proc. R. Soc. B* 277, 3223–3228

25 McGregor, P.K. (2005) *Animal Communication Networks*, Cambridge University Press.

26 Taborsky, B. and Oliveira, R.F. (2012) Social competence: an evolutionary approach. *Trends Ecol. Evol.* 27, 679–688

27 Bshary, R. and Grutter, A.S. (2006) Image scoring and cooperation in a cleaner fish mutualism. *Nature* 441, 975–978

28 Raihani, N.J. and Bshary, R. (2011) Resolving the iterated prisoner’s dilemma: theory and reality. *J. Evol. Biol.* 24, 1628–39

29 Maynard-Smith, J. and Harper, D. (2003) *Animal Signals*, Oxford University Press.

30 Zahavi, A. (1975) Mate selection - a selection for a handicap. *J. Theor. Biol.* 53, 205–214

31 Grafen, A. (1990) Biological signals as handicaps. *J. Theor. Biol.* 144, 517–546

32 Heinsohn, R. and Legge, S. (1999) The cost of helping. *Trends Ecol. Evol.* 14, 53–57

33 Russell, A.F. *et al.* (2003) Cost minimization by helpers in cooperative breeders. *Proc. Natl. Acad. Sci. U. S. A.* 100, 3333–3338
Cram, D.L. et al. (2015) The oxidative costs of reproduction are group-size dependent in a wild cooperative breeder. *Proc. Biol. Sci.* 282, 20152031

van de Crommenacker, J. et al. (2011) Assessing the cost of helping: the roles of body condition and oxidative balance in the Seychelles warbler (*Acrocephalus sechellensis*). *PLoS One* 6, e26423

Monaghan, P. et al. (2009) Oxidative stress as a mediator of life history trade-offs: mechanisms, measurements and interpretation. *Ecol. Lett.* 12, 75–92

Monaghan, P. et al. (2018) Understanding diversity in telomere dynamics. *Phil. Trans. R. Soc. B Biol. Sci.* 373, 20160435

Bebbington, K. et al. (2017) Kinship and familiarity mitigate costs of social conflict between Seychelles warbler neighbors. *Proc. Natl. Acad. Sci. U. S. A.* 114, E9036-E9045

Hou, L. et al. (2015) Automated tracking of wild hummingbird mass and energetics over multiple time scales using radio frequency identification (RFID) technology. *J. Avian Biol.* 46, 1–8

Faivre, B. et al. (2003) Immune activation rapidly mirrored in a secondary sexual trait. *Science* 300, 103

Doutrelant, C. et al. (2008) Female coloration indicates female reproductive capacity in blue tits. *J. Evol. Biol.* 21, 226–233

Cotton, S. et al. (2004) Do sexual ornaments demonstrate heightened condition-dependent expression as predicted by the handicap hypothesis? *Proc. Biol. Sci.* 271, 771–783

Doutrelant, C. (2001) The effect of an audience on intrasexual communication in
male Siamese fighting fish, *Betta splendens*. *Behav. Ecol.* 12, 283–286

Tognetti, A. *et al.* (2016) Men increase contributions to a public good when under sexual competition. *Sci. Rep.* 6, 1–10

Raihani, N.J. *et al.* (2015) Competitive helping in online giving. *Curr. Biol.* 25, 1183–1186

Bruintjes, R. and Taborsky, M. (2008) Helpers in a cooperative breeder pay a high price to stay: effects of demand, helper size and sex. *Anim. Behav.* 75, 1843–1850

Zöttl, M. *et al.* (2013) Kinship reduces alloparental care in cooperative cichlids where helpers pay-to-stay. *Nat. Commun.* 4, 1341

Réale, D. *et al.* (2010) Evolutionary and ecological approaches to the study of personality. *Philos. Trans. R. Soc. Lond. B. Biol. Sci.* 365, 3937–46

Sih, A. *et al.* (2015) Animal personality and state – behaviour feedbacks: a review and guide for empiricists. *Trends Ecol. Evol.* 30, 50–60

Barta, Z. (2016) Individual variation behind the evolution of cooperation. *Philos. Trans. R. Soc. B Biol. Sci.* 371, 20150087

Schuett, W. *et al.* (2010) Sexual selection and animal personality. *Biol. Rev.* 85, 217–246

Wolf, M. and Krause, J. (2014) Why personality differences matter for social functioning and social structure. *Trends Ecol. Evol.* 29, 306–8

McNamara, J.M. and Leimar, O. (2010) Variation and the response to variation as a basis for successful cooperation. *Philos. Trans. R. Soc. B Biol. Sci.* 365, 2627–2633
Carter, G. (2014) The reciprocity controversy. Anim. Behav. Cogn. 1, 368–386

Sanderson, J.L. et al. (2015) The origins of consistent individual differences in cooperation in wild banded mongooses, Mungos mungo. Anim. Behav. 107, 193–200

Bruintjes, R. and Taborsky, M. (2011) Size-dependent task specialization in a cooperative cichlid in response to experimental variation of demand. Anim. Behav. 81, 387–394

English, S. et al. (2010) Consistent individual differences in cooperative behaviour in meerkats (Suricata suricatta). J. Evol. Biol. 23, 1597–1604

Kelly, N.B. and Alonzo, S.H. (2009) Will male advertisement be a reliable indicator of paternal care, if offspring survival depends on male care? Proc. Biol. Sci. 276, 3175–3183

Tognetti, A. et al. (2013) Is cooperativeness readable in static facial features? An inter-cultural approach. Evol. Hum. Behav. 34, 427–432

Gardner, A. and West, S.A. (2010) Greenbeards. Evolution 64, 25–38

Roulin, A. et al. (2016) Reciprocal preening and food sharing in colour-polymorphic nestling barn owls. J. Evol. Biol. 29, 380–394

Ducrest, A.L. et al. (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol. Evol. 23, 502–510

Sylwester, K. and Roberts, G. (2010) Cooperators benefit through reputation-based partner choice in economic games. Biol. Lett. 6, 659–662

Magrath, R.D. and Whittingham, L.A. (1997) Subordinate males are more likely to help if unrelated to the breeding female in cooperatively breeding white-
browed scrubwrens. *Behav. Ecol. Sociobiol.* 41, 185–192

Stiver, K.A. and Alonzo, S.H. (2011) Alloparental care increases mating success. *Behav. Ecol.* 22, 206–211

Tognetti, A. *et al.* (2018) Female mound-building mice prefer males that invest more in building behavior, even when this behavior is not observed. *Behav. Ecol. Sociobiol.* 72, 155–165

Schino, G. and Aureli, F. (2010) The relative roles of kinship and reciprocity in explaining primate altruism. *Ecol. Lett.* 13, 45–50

Krupenye, C. and Hare, B. (2018) Bonobos prefer individuals that hinder others over those that help. *Curr. Biol.* 28, 280–286

Clutton-Brock, T. and Sheldon, B.C. (2010) Individuals and populations: the role of long-term, individual-based studies of animals in ecology and evolutionary biology. *Trends Ecol. Evol.* 25, 562–573

Cockburn, A. *et al.* (2008) Swingin' in the rain: condition dependence and sexual selection in a capricious world. *Proc. Biol. Sci.* 275, 605–612

Cockburn, A. (2014) Behavioral ecology as big science: 25 years of asking the same questions. *Behav. Ecol.* 25, 1283–1286

Farine, D.R. and Whitehead, H. (2015) Constructing, conducting and interpreting animal social network analysis. *J. Anim. Ecol.* 84, 1144–1163

Aplin, L.M. *et al.* (2015) Experimentally induced innovations lead to persistent culture via conformity in wild birds. *Nature* 518, 538–541

Strandburg-Peshkin, A. *et al.* (2015) Shared decision-making drives collective movement in wild baboons. *Science* 348, 1358–1361
75 Nomano, F.Y. et al. (2014) Validation of an automated data collection method for quantifying social networks in collective behaviours. Behav. Ecol. Sociobiol. 68, 1379–1391

76 Alarcón-Nieto, G. et al. (2018) An automated barcode tracking system for behavioural studies in birds. Methods Ecol. Evol. 9, 1536–1547

77 Firth, J.A. et al. (2015) Experimental evidence that social relationships determine individual foraging behavior. Curr. Biol. 25, 3138–3143

78 Farine, D.R. (2014) Measuring phenotypic assortment in animal social networks: weighted associations are more robust than binary edges. Anim. Behav. 89, 141–153

79 Croft, D.P. et al. (2006) Social structure and co-operative interactions in a wild population of guppies (Poecilia reticulata). Behav. Ecol. Sociobiol. 59, 644–650

80 Fehl, K. et al. (2011) Co-evolution of behaviour and social network structure promotes human cooperation. Ecol. Lett. 14, 546–551

81 Farine, D.R. et al. (2015) From individuals to groups and back: the evolutionary implications of group phenotypic composition. Trends Ecol. Evol. 30, 609–621

82 Cantor, M. and Farine, D.R. (2018) Simple foraging rules in competitive environments can generate socially structured populations. Ecol. Evol. 8, 4978–4991

82 Wilson, A.J. et al. (2009) An ecologist’s guide to the animal model. J. Anim. Ecol. 79, 13–26

84 Cesarini, D. et al. (2008) Heritability of cooperative behavior in the trust game. Proc. Natl. Acad. Sci. U. S. A. 105, 3721–3726
85 Charmantier, A. et al. (2007) First evidence for heritable variation in cooperative breeding behaviour. *Proc. Biol. Sci.* 274, 1757–1761

86 Maccoll, A.D.C. and Hatchwell, B.J. (2003) Heritability of parental effort in a passerine bird. *Evolution* 57, 2191–2195

87 Adams, M.J. et al. (2015) Social genetic and social environment effects on parental and helper care in a cooperatively breeding bird. *Proc. Biol. Sci.* 282, 20150689

88 Kasper, C. et al. (2017) Consistent cooperation in a cichlid fish is caused by maternal and developmental effects rather than heritable genetic variation. *Proc. Biol. Sci.* 284, 20170369

89 Ebstein, R.P. et al. (2010) Genetics of human social behavior. *Neuron* 65, 831–844

90 Bush, W.S. and Moore, J.H. (2012) Chapter 11: Genome-Wide Association Studies. *PLoS Comput. Biol.* 8, e1002822

91 Canestrari, D. et al. (2004) False feedings at the nests of carrion crows *Corvus corone corone*. *Behav. Ecol. Sociobiol.* 55, 477–483

92 McDonald, P.G. et al. (2007) A critical analysis of “false-feeding” behavior in a cooperatively breeding bird: disturbance effects, satiated nestlings or deception? *Behav. Ecol. Sociobiol.* 61, 1623–1635

93 Doutrelant, C. and Covas, R. (2007) Helping has signalling characteristics in a cooperatively breeding bird. *Anim. Behav.* 74, 739–747

94 Nomano, F.Y. et al. (2013) Feeding nestlings does not function as a signal of social prestige in cooperatively breeding chestnut-crowned babblers. *Anim. Behav.* 86, 277–289
McDonald, P.G. et al. (2008) Helping as a signal: does removal of potential audiences alter helper behavior in the bell miner? *Behav. Ecol.* 19, 1047–1055

Raihani, N.J. et al. (2008) Synchronous provisioning increases brood survival in cooperatively breeding pied babblers. *J. Anim. Ecol.* 79, 44–52

McDonald, P.G. et al. (2008) Helping as a signal and the effect of a potential audience during provisioning visits in a cooperative bird. *Anim. Behav.* 75, 1319–1330

Humphries, D.J. et al. (2015) Calling where it counts: subordinate pied babblers target the audience of their vocal advertisements. *PLoS One* 10, e130795

Parker, G.A. (1974) Assessment strategy and the evolution of fighting behaviour. *J. Theor. Biol.* 47, 223–243
Fig 1. Key predictions that must be tested in order to determine whether cooperation can be under sexual or social selection. In black are the predictions that should be verified for both hypotheses, in green those referring to sexual selection, and in blue to social selection.
Glossary

Altruism: extreme form of cooperation, when a behaviour is costly to the actor and beneficial to the recipient; cost and benefit here are defined as direct costs and benefits (hence excluding possible benefits arising from kin selection)

Audience: the individual(s) that intentionally or unintentionally witness an interaction between two or more individuals

Cooperation: a behaviour that provides a benefit to another individual. It may or not be beneficial to the actor, but has some sort of immediate or longer-term cost to the actor.

Cooperative breeding: When parental care is provided by a group of adults, which include the genetic parents and one or more adults.

Cue: a trait that provides information to a receiver but, unlike a signal, has not evolved to provide information (e.g. a mice walking over leaves makes a rustling sound that can be used by an owl to locate it, but has not evolved for that reason).

Direct Benefits: the component of fitness gained through behaviours that will lead to increased production of offspring. For example, choosing sexual or social mates that will provide enhanced access to resources (e.g. better parental care or predator vigilance).

Eavesdropping: the behaviour of intentionally observing an interaction between two individuals in order to obtain information about them.
Indirect fitness benefits: the component of fitness gained through genetic effects by either aiding the reproduction of related individuals or by transmitting ‘good’ genes to the offspring thereby increasing the fitness of the descendants.

Mutual benefit: a behaviour that is beneficial to both the actor and the recipient.

Personality: consistent, intra-individual behavioural difference across contexts and time.

Social selection: Selection arising from increased association success (in order to form groups, coalitions or long-term relationships). This may be due to the benefits obtained by associating with social partners that exhibit certain traits, or to competitive advantages of these individuals in access to resources.

Sexual selection: Selection arising from increased mating success due to preferential choice for sexual mates exhibiting certain traits or behaviours (intersexual selection), or competitive advantage of certain individuals that provides them access to more mates (intrasexual selection)

Signal: a trait that has evolved to transmit information and provides fitness benefits to the emitter

Social network: quantitative description of the patterns of associations or interactions (edges) among individuals (nodes)

BOX 1. SIGNALLING IN COOPERATIVELY BREEDING BIRDS

Although cooperative breeding in birds usually takes place in family groups, in ca. 45% of species unrelated individuals also help [64]. Among the hypotheses put forward to explain the possible benefits obtained by non-related helpers, two more contentious
ones propose that helpers use cooperation as a signal. Under the ‘Pay to Stay’

hypothesis individuals help to have access to the group’s communal resources [46],

whereas under the ‘social prestige’ hypothesis helping is used to signal individual

quality in a partner choice context [14].

Initial tests of helping as a signal looked for evidence of cheating, expecting false

feeding to be a way of maximising benefits while reducing the costs of helping. Instead,

false feeding appeared to be linked to nestling satiation (e.g. [91,92]). However, while

signalling theory predicts that cheating can occur, it also predicts that signals need to be

reliable in order to be used in partner choice. Therefore, it is the mechanisms ensuring

the reliability of the signal that need to be examined. (see main text).

Other studies investigated the showiness of helping behaviour by looking for

audience effects [93], mostly by investigating whether feeding events were

synchronised with the arrival of the putative receivers of the signal, usually the breeders

(e.g. [94,95]). However, these results are difficult to interpret because synchronisation

may occur for other reasons, such as predator-avoidance [96] or group foraging

strategies [97] and the identity of the putative receiver may differ depending on whether

coco-operators look for social or sexual benefits. Also synchronisation at the nest is

probably not necessary to transmit information on helping. While sometimes individuals

are spread out across large areas, any individuals wanting to obtain information about

the behaviour of others may do so, both visually and acoustically, from a nearby

location, but may not be seen by a human observer focusing on the nest. Additionally,

the target of any ‘cooperative displays’ could be outside of the breeding group [98].

Finally, since the hypothesis of helping as a signal predicts competition for helping

[14], studies have looked for aggressive interactions around helping, which were seldom

observed [94,95]. However, in stable social groups, competition and conflicts are
expected to be resolved through dominance hierarchies and not by continuous costly aggression [99]. Under this view, instead of competing aggressively for helping, more dominants individuals would be predicted to help more than subordinates.

Box 2 • On the importance of determining which mechanisms are involved

Here we propose three approaches to solve the problem of the reliability of cooperation; cooperation may be a i) condition-dependent signal, ii) a cue (i.e. a personality trait), or iii) a behaviour signalled by other traits (‘badge of cooperation’; see text). From an evolutionary perspective determining the mechanism involved is important because while all three mechanisms predict that cooperative individuals have more chances to be chosen as a partner, the target of selection, and thus the effects of this choice on the evolution of cooperation, drastically differs. Under the signalling hypothesis, individuals cooperate in part to transmit information about their quality and the evolution of cooperative behaviours is directly influenced by sexual or social selection. By contrast, if cooperation is signalled through other specific morphological traits such as colour, individuals do not cooperate to be chosen as a partner and the target of sexual or social selection will not be the cooperative investment but the signal associated with it. Finally, if cooperation is part of a behavioural syndrome, it is a personality trait (cue), and it is the whole behavioural syndrome that would be selected and not simply the tendency to cooperate.
WHAT IS PREDICTED IF COOPERATION IS A TRAIT UNDER SEXUAL AND/OR SOCIAL SELECTION?

Cooperation must be variable, seen and trusted, i.e. reliable. Three possible mechanisms:

* 1. Cooperation is a signal: condition dependence and audience effects
* 2. Cooperation is a cue: part of a behavioural syndrome or a ‘personality trait’
* 3. Cooperation is a trait indicated through other reliable traits (e.g. colouration or morphology)

Direct benefits of cooperating (arising through partner choice):

- Increased probability of being chosen
 * as a breeding partner
 * as a social partner

Benefits of choosing to mate or to associate with cooperative individuals

- Increased fitness for
 * the choosing individual (obtaining a more cooperative partner)
 * for the offspring (better parental care and/or inheriting greater propensity to cooperate)