THE TRIANGLE OF SMALLEST AREA WHICH CIRCUMSCRIBES A SEMICIRCLE

JUN LI

ABSTRACT. An interesting problem that determine a triangle of smallest area which circumscribes a semicircle is solved. Then a generalized golden right triangles sequence T_n is obtained, and an interesting construction of the maximum generalized golden right triangle T_2 is also shown.

1. THE TRIANGLE OF SMALLEST AREA WHICH CIRCUMSCRIBES A SEMICIRCLE

In [1], DeTemple showed that the isosceles triangle of smallest perimeter which circumscribes a semicircle is made up of two congruent right triangles which have sides proportional to $(1, \sqrt{\phi}, \phi)$, and the right triangle is known as the Kepler triangle [2, p. 149][3]. Here, we’ll consider another interesting problem that determine a triangle of smallest area which circumscribes a semicircle.

![Figure 1. The triangle of smallest area which circumscribes a semicircle](image)

In Figure [1] Let a triangle $\triangle ABC$ circumscribe a semicircle of radius $R = 1$, with the diameter of the semicircle contained in the base BC, let O denote the center of the semicircle, OD and OE are both the radii, then let $AB = x$ and $\angle A = \theta$, now, our problem is:

Problem 1.1. If the radius R and the two sides AB and AC of $\triangle ABC$ can not be three edges of a triangle, determine $\triangle ABC$ of smallest area.

Proposition 1.2. If R, AB and AC can not be three edges of a triangle, then the of smallest area $\triangle ABC$ is a right triangle similar to the $(1, \phi, \sqrt{1 + \phi^2})$ triangle which forms half of a golden rectangle [5][4, p. 274][6 p. 115].

Proof. If R, AB and AC can not be three edges of a triangle, then first, we suppose the radius $R = 1$ is the longest segment, thus, we have $AC = R - AB = 1 - x$, where $0 < x < 1$, then in $\triangle ABC$, we have the area equation (1.1)

$$S_{ABC} = S_{AOB} + S_{AOC}$$ (1.1)
and
\[S_{ABC} = \frac{1}{2} AB \cdot AC \sin \theta = \frac{1}{2} x(1-x) \sin \theta \]
\[S_{AOB} + S_{AOC} = \frac{1}{2} x + \frac{1}{2}(1-x) \]
then we get
\[\sin \theta = \frac{1}{x(1-x)} > 1 \] \hspace{1cm} (1.2)
hence, we conclude that the radius \(R \) can not be the longest segment among the three segments.

Next, we suppose \(AC \) is the longest segment, then we have \(AC = R + AB = 1 + x \), using the similar method, we can get
\[\sin \theta = \frac{2x + 1}{x^2 + x} \] \hspace{1cm} (1.3)
since \(0 < \sin \theta \leq 1 \), we have
\[0 < \frac{2x + 1}{x^2 + x} \leq 1 \] \hspace{1cm} (1.4)
and with \(x > 0 \), we conclude that \(x \geq \phi \), where \(\phi = \frac{1 + \sqrt{5}}{2} \), hence
\[S_{ABC} = \frac{2x + 1}{2} \geq \frac{\phi^3}{2} \] \hspace{1cm} (1.5)
The equality in (1.5) holds if and only if \(x = \phi \). Then we get \(AB = x = \phi \), \(AC = 1 + x = \phi^2 \), and in (1.3), we have \(\sin \theta = 1 \), which means \(\triangle ABC \) is a right triangle having sides proportional to \((1, \phi, \sqrt{1 + \phi^2}) \).

2. A SEQUENCE OF GENERALIZED GOLDEN RIGHT TRIANGLES

Figure 2. A sequence of generalized golden right triangles \(T_n \)

There is an identity (2.1) of the golden ratio (2) and Fibonacci numbers (see, e.g., [4, p. 78]).
\[\phi^{n+1} = F_{n+1} \phi + F_n, \quad (n = 0, 1, 2, \ldots) \] \hspace{1cm} (2.1)
If we rewrite (2.1) in the form of (2.2),
\[1 + \left(\frac{\phi F_{n+1}}{F_n} \right)^2 = \left(\frac{\phi^{n+1}}{F_n} \right)^2, \quad (n = 1, 2, 3, \ldots) \] \hspace{1cm} (2.2)
we will obtain a right triangles sequence T_n with sides $(1, \sqrt{\frac{\phi^{n+1}}{F_n}}, \sqrt{\frac{\phi^n+1}{F_n}})$, see Figure 2. It’s easy to see that, the first right triangle T_1 with sides $(1, \sqrt{\phi}, \phi)$ is the Kepler triangle whose side lengths are in geometric progression, the second right triangle T_2 is a $(1, \sqrt{2\phi}, \phi\sqrt{\phi})$ triangle, and furthermore, let $n \to +\infty$, we find that the limiting right triangle of T_n is just a $(1, \phi, \sqrt{1+\phi^2})$ triangle which forms half of a golden rectangle.

Since there are only two golden (see [5, p. 73]) right triangles (one is the Kepler triangle with sides $(1, \sqrt{\phi}, \phi)$, the other is the $(1, \phi, \sqrt{1+\phi^2})$ triangle), and they are both special cases of T_n, then, we can call T_n a generalized golden right triangles sequence. In addition, we have the following simple area inequality (2.3) for T_n,

$$\Delta T_1 \leq \Delta T_n \leq \Delta T_2$$

(2.3)

where ΔT_n denoted as the area of T_n, and

$$\Delta T_n = \frac{\phi}{2} \sqrt{\frac{F_{n+1}}{F_n}}, \quad (n = 1, 2, 3, \ldots)$$

(2.4)

in the inequality (2.3), we also notice that the second triangle T_2 with sides $(1, \sqrt{2\phi}, \phi\sqrt{\phi})$ is just the maximum area triangle in T_n, therefore, we can call T_2 the maximum generalized golden right triangle.

Interestingly enough, similar to the construction of the Kepler triangle T_1 by first creating a golden rectangle shown in [3], we can also construct the maximum generalized golden right triangle T_2 by first constructing a golden rectangle, see Figure 3.

Construction 2.1. A simple and interesting 3-step construction of T_2:

1. construct a golden rectangle $ABCD$ with $BC = 1, AB = \phi$ (see, e.g., [6, p. 118])
2. construct O dividing BC in the golden ratio and $\frac{BO}{OC} = \phi$
3. draw an arc with the center at O and the radius of length AC, cutting the extension of BA at E, and join E to C

Then $\triangle EBC$ is just T_2 having sides $(1, \sqrt{2\phi}, \phi\sqrt{\phi})$.

Proof. $BO = \frac{BC}{\phi} = \frac{1}{\phi}, EO = AC = \sqrt{1+\phi^2}$, thus, $BE = \sqrt{EO^2 - BO^2} = \sqrt{2\phi}$. □

Last, back to Figure 1 again, we give a problem to readers:
Problem 2.2. If the radius R and the two sides AB and AC of $\triangle ABC$ can not be three edges of a triangle, determine $\triangle ABC$ of smallest perimeter. And if $\triangle ABC$ can not be an acute-angled triangle, determine $\triangle ABC$ of smallest perimeter.

REFERENCES

[1] D. W. DeTemple, The triangle of smallest perimeter which circumscribes a semicircle, The Fibonacci Quarterly, 30.3 (1992) 274.
[2] L. Mario, The Golden Ratio: The Story of Phi, The World’s Most Astonishing Number, Broadway Books, New York, 2002.
[3] Kepler triangle, Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Kepler_triangle
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, A Wiley-Interscience Publication, 2001.
[5] M. Bicknell and V. E. Hoggatt, Golden triangles, rectangles, and cuboids, The Fibonacci Quarterly, 7.1 (1969) 73–91.
[6] A. S. Posamentier and I. Lehmann, The Fabulous Fibonacci Numbers, Prometheus Books, 2007.

Mathematics Subject Classification (2010). 51M04, 51M15, 11B39
Keywords. Smallest Area, Triangle, Semicircle, Golden rectangle, Golden ratio, Fibonacci numbers, Kepler triangle, Golden right triangle, Maximum generalized golden right triangle

School of Science, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
E-mail address: junli323@163.com