INTRODUCTION

Intellectual disability (ID) is a common neurodevelopmental disorder, which has an estimated prevalence of approximately 1%–3% in the general population with a female to male ratio of approximately 1.0 to 1.3–1.4 (Leonard & Wen, 2002). ID is characterized by significant limitations in both intellectual functioning and in adaptive behavior with an IQ below 70, and an onset of cognitive impairment in the development period of an individual (DSM-5, 2013).

X-linked intellectual disability (XLID) has been estimated to account for approximately 10% of ID in males, with...
a much lower approximation in females (Lubs, Stevenson, & Schwartz, 2012). The higher prevalence in males is due to the hemizygous state of the X chromosome. Females who carry an X-linked variant are generally not, or only mildly affected because of X-chromosome-inactivation (XCI). XCI is a random transcriptional silencing process, where one of the two X chromosomes is inactivated starting around gastrulation (Morey & Avner, 2011). Positive or negative selection of one of the two cell populations with fixed inactivation of one or the other of the two X chromosomes may subsequently lead to skewing of XCI. Since the nonmutated X chromosome usually has the advantage, females mostly present with no or a milder phenotype due to preferred expression of the normal allele in most if not all tissues. So far, about 100 genes have been reported to be involved with XLID (Hu et al., 2016).

**CNKSR2** is located on chromosome X and comprises 22 exons. At least four alternatively spliced isoforms have been described (Hsu et al., 2006). **CNKSR2** is highly expressed in the brain (Nagase et al., 1998) and is known to play a role in synaptogenesis (Iida, Nishimura, Yao, & Hata, 2002; Lanigan et al., 2003). Depletion of **CNKSR2** in mouse primary hippocampal neurons results in a reduction of the number of dendritic branches, as well as on total length of neurites per neuron (Hu et al., 2016). **CNKSR2** encodes a connector enhancer of KSR-2 (CNK2), a multidomain protein that functions as a spatial modulator of Rac cycling during spine morphogenesis (Lim, Ritt, Zhou, & Morrison, 2014). The N terminus of CNK2 contains a sterile alpha motif (SAM) domain, which is a putative protein interaction module (Schultz, Ponting, Hofmann, & Bork, 1997), a connector enhancer of kinase suppressor of ras (CRIC) domain, and a Pleckstrin homology (PH) domain, which possesses multiple functions including the ability to bind inositol phosphates and various proteins (Haslam, Koide, & Hemmings, 1993; Mayer, Ren, Clark, & Baltimore, 1993). The C terminus contains a PDZ-binding motif (ETHV) that physically interacts with the PDZ domains of the major PSD proteins densin-180 (Ohtakara et al., 2002), postsynaptic density 95 (PSD-95), and synaptic scaffold molecule (S-SCAM) (Yao et al., 1999). The ETHV motif regulates Ras signaling, which controls neuronal proliferation, migration, differentiation, and death (Bumeister, Rosse, Anselmo, Camonis, & White, 2004; Liu et al., 2009; Yao et al., 1999), and synaptogenesis (Iida et al., 2002; Lanigan et al., 2003).

Deletions of **CNKSR2**, either partially or complete, have been reported in a total of seven male patients with ID and epilepsy from five families (Aypar, Wirrell, & Hoppman, 2015; Houge, Rasmussen, & Hovland, 2012; Vaags et al., 2014). In addition, a frameshift variant, p.(Asp152Argfs*8), and two nonsense variants, p.(Arg712*) and a de novo p.(Arg.729*) have been described in three families with affected males (Damiano et al., 2017; Sun, Liu, Xu, Kong, & Wang, 2018; Vaags et al., 2014). In the family with the p.(Arg712*) nonsense variant, two carrier females were also affected, albeit mildly. The mother had isolated febrile seizures and her daughter presented with unspecified mild learning difficulties and seizures, the latter of which disappeared during puberty. Here, we present a female patient with mild ID and seizures, and a de novo variant leading to a stop codon in exon 20 of the 22 exons in **CNKSR2**.

## 2 CLINICAL REPORT

We ascertained a Dutch family with one female child who represented with ID and seizures (Figure 1a). Written informed consent was obtained and this study was approved by the institutional review board Commissie Mengegebonden Onderzoek Regio Arnhem-Nijmegen. Pregnancy and delivery after 38 weeks of gestation of the female patient were unremarkable. She had a normal birth weight of 3200 g. Her motor development was delayed, she started walking at 16 months (Table 1). She spoke at the age of 2 years, only a few simple sentences. At the age of 6 years, she has a length of 119 cm (25th centile) and a head circumference of 52.5 cm (80th centile). Her IQ level was tested and she had a total IQ of 71. In addition, the patient suffered from seizures occurring at an onset of 5 years old. At this time of investigation, at the age of 7 years, she presented with mild facial dysmorphism including a broad nasal tip and a full lower lip and some distal brachydactyly of the fingers, pes planus, and clinodactyly of the 4th and 5th toes (Figure 1b). The patient had also nasal speech. MRI of the brain revealed no structural abnormalities. Further genetic testing, including **FMR1** and chromosome analysis using 250K SNP array, showed no abnormalities.

Exome sequencing was performed on DNA isolated from peripheral blood to identify all potential variants in this patient as described previously (Riazuddin et al., 2017). Selection of the nucleotide variants was performed by using a nine-tier filtering strategy, specifically designed for de novo analysis or recessive/X-linked inheritance. The latter was performed as described previously (Riazuddin et al., 2017). For the de novo analysis, we selected variants that are shown when 20%–80% of the aligned reads showed the variant nucleotide. For insertions or deletions (“indels”), we selected those variants with a frequency of 5%–80%. The variant should also be present in less than one percent of the alleles in the ExAC database (Lek et al., 2016) and our in-house database (Department of Human Genetics, Nijmegen; 12,000 exomes). Furthermore, the variant should be present nonsynonymously in the exon
region, or be present in a canonical splice acceptor or donor site. Lastly, we only considered variants that were present in two or more reads and were potentially de novo as they were not present in either parent. This resulted in 16 potentially causative variants, all of which were potentially de novo (Table S1).

Next, we prioritized all of our 16 variants using a five-tier strategy for potential pathogenic de novo variants only: (a)
**TABLE 1** Clinical descriptions of the patients with CNKSR2 variants

| Reference | Present patient, W11-3010 II-2 | Damiano et al., 2017 | Damiano et al., 2017 | Sun et al., 2018 | Damiano et al., 2017 | Vaags et al., 2014 | Houge et al., 2012 | Aypar et al., 2015 | Vaags et al., 2014 | Vaags et al., 2014 | Vaags et al., 2014 |
|-----------|---------------------------------|----------------------|----------------------|------------------|----------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| Ethnicity | Dutch                           | Ashkenazi            | Ashkenazi            | Chinese          | Ashkenazi            | French           | NR               | NR               | Norwegian        | French           | Canadian         |
| Age(s)    | 15                              | 16                   | NR (“mother”)        | 8                | 12/18/NR            | 56/58/62         | 5                | 7                | 8                | 12/13            | 6/8              |
| Gender    | Female                          | Female               | Male                 | Three males      | Three males         | Male             | Male             | Male             | Male             | Two males        | Two males        |
| mRNA change | c.2304G>A                       | c.2314C>T            | c.2314C>T            | c.2185C>T        | c.2314C>T          | c.453dup         |                  |                  |                  |                  |                  |
| Protein change | p.(Trp768*); p.(Arg712*) | p.(Arg712*)          | p.(Arg729*)          | p.(Arg712*)      | p.(Asp152Argfs*8)  | Deletion at Xp22.12 |

**Clinical features**

|                | Mild    | Mild    | –       | +       | 1/1     | 3/3     | Mild/ moderate | “Apparent” | +       | 2/2 | 1/1 |
|----------------|---------|---------|---------|---------|---------|---------|---------------|------------|---------|------|-----|
| Intellectual disability |        |         |         |         |         |         |               |            |         |      |     |
| Developmental delay | +       | NR      | –       | +       | 2/2     | 2/2     | +             | +         | NR      | NR  | 1/1 |
| Epilepsy/ Seizures | +       | +       | +       | +       | 3/3     | 3/3     | +             | +         | +       | 1/2 | 2/2 |
| ADHD            | –       | –       | –       | –       | +       | 2/3     | 3/3           | +         | NR      | +   | 2/2 | 2/2 |
| Language loss   | –       | Mild    | –       | +       | 3/3     | 3/3     | –             | –         | –       | +   | 2/2 | 2/2 |
| Sleep disorder  | –       | NR      | NR      | NR      | NR      | NR      | –             | NR        | +       | 1/1 | 1/1 |
| Psychomotor delay | +       | Mild    | NR      | 1/1     | 3/3     | +       | +             | +         | 2/2     | 2/2 |     |
| Additional features | –       | –       | –       | –       | –       | Minor cortical atrophy (1/3) | Borderline microcephaly | Balance problems | –    | –  | –  |

*Note:* Our patient and the previously reported female with a CNKSR2 variant are printed in bold.

*Abbreviation:* NR, not reported.
brain expression of the candidate gene must be greater than or equal to five TPM (transcripts per million) (according to the EST profile: www.ncbi.nlm.nih.gov/unigene), (b) candidate genes should not be deleted more than three times in the Database of Genomic Variants, (c) candidate genes should not be listed as causing non-ID syndromes in OMIM, (d) candidate genes should have a LoFs pLI≥0.9 or a missense Z-value ≥3.09 (standard deviation from the mean) according to ExAC browser (Lek et al., 2016), and (e) missense variants should have a CADD ≥15 as recommended by the CADD website (http://cadd.gs.washington.edu) (Kircher et al., 2014). The CADD score was not considered for indels, splice site, and nonsense variants. After these steps, four potential causative variants were left.

Sanger sequencing of the four potential causative variants confirmed the presence of only one variant: the potentially pathogenic nonsense variant, c.2304G>A (p.(Trp768*)) in exon 20 of the X-chromosomal gene CNKSR2 (NM_014927.3; Figure 1c). This variant was found back neither in the mother nor the father. Analysis of the X-chromosome-inactivation status via methylation-sensitive PCR and fragment-length analysis of the androgen-receptor CAG repeat polymorphism, showed a mild skewing of X inactivation (20:80) in the blood of our patient. Primer sequences and PCR conditions for Sanger sequencing and XCI testing are available upon request.

3 | DISCUSSION

In this case report, we describe a female with mild ID and seizures and a de novo nonsense variant in CNKSR2. Deletions of and loss-of-function variants in CNKSR2 (Figure 1d and Figure S1) have previously been described in 14 male patients with ID of varying severity, seizures, language loss, and psychomotor delay (Aypar et al., 2015; Damiano et al., 2017; Hougé et al., 2012; Sun et al., 2018; Vaags et al., 2014). Moreover, one of the other four CNKSR2 loss-of-function variants described (Vaags et al., 2014) does not lead to a phenotype in the one obligate female carrier either. This frameshift variant is predicted to result in NMD as well, but at the same time leads to a truncated protein without the PDZ, DUF1170, PH, and C-terminal ETHV domains. Except for the latter motif, these domains are all still present in the truncated protein resulting from other two CNKSR2 point variants (Figure 1d). Since NMD usually still results in 15%–58% expression as compared to controls (Coene et al., 2009; Gomez-Herreros et al., 2014; Wortmann et al., 2012), we speculate that the absence of multiple CNKSR2 domains leads to a more detrimental effect on residual protein function resulting in complete skewing of XCI, and thus to the expression of only the normal allele in specifically brain tissue of female patients. Accordingly, variants that only remove the C-terminal ETHV motif result in expression of the mutant allele in some brain cells and hence can cause neurological features such as ID, language and motor delay, and epilepsy, in females. This potential skewing of XCI would likely not be visible in blood as CNKSR2 is specifically expressed in nervous tissue with extremely low expression levels in other cell types such as whole blood (Consortium, 2013; Figure S2), which indicates that CNKSR2 does not have an essential function in these tissues. This is corroborated by the balanced XCI pattern in one of the females with a CNKSR2 deletion (ratio 56:43) (Hougé et al., 2012) and the mild skewing of XCI in our patient (ratio 20:80).

Taken together, we present a female patient with a de novo nonsense variant in CNKSR2, causing mild ID and seizures. We speculate that variants removing only the C terminal of CNKSR2 may result in brain expression of a truncated protein with most domains present, which can cause the novel CNKSR2-related features as well as in neurological features such as ID, language and motor delay, and epilepsy, in females.

ACKNOWLEDGMENTS

We are very grateful to the patients and their families for their participation. This work was supported by the European Union’s Seventh Framework Program (Gencodys; grant 241995 to HvB). DLP is recipient of a CAPES Fellowship (99999.013311/2013-01).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article.

ORCID

Daniel L. Polla https://orcid.org/0000-0002-5552-3488
REFERENCES

Ayap, U., Wirrell, E. C., & Hoppmann, N. L. (2015). CNKSR2 deletions: A novel cause of X-linked intellectual disability and seizures. American Journal of Medical Genetics. Part A, 167(7), 1668–1670. https://doi.org/10.1002/ajmg.a.36902

Bumeister, R., Rosse, C., Anselmo, A., Camonis, J., & White, M. A. (2004). CNK2 couples NGF signal propagation to multiple regulatory cascades driving cell differentiation. Current Biology, 14(5), 439–445. https://doi.org/10.1016/j.cub.2004.02.037

Carrel, L., & Willard, H. F. (2005). X-inactivation profile reveals extensive variability in X-linked gene expression in females. Nature, 434(7031), 400–404. https://doi.org/10.1038/nature03479

Coene, K. L. M., Roepman, R., Doherty, D., Afroz, B., Kears, H. Y., Letteboer, S. J. F., ... de Brouwer, A. P. M. (2009). OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. American Journal of Human Genetics, 85(4), 465–481. https://doi.org/10.1016/j.ajhg.2009.09.002

Consortium, G. T (2013). The Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45(6), 580–585. https://doi.org/10.1038/ng.2653

Damiano, J. A., Burgess, R., Kivity, S., Lerman-Sagie, T., Afawi, Z., Scheffer, I. E., ... Hildebrand, M. S. (2017). Frequency of CNKSR2 mutation in the X-linked epilepsy-aphasia spectrum. Epilepsia, 58(3), e40–e43. https://doi.org/10.1111/epi.13666

DSM-5 (2013). Diagnostic and statistical manual of mental disorders, 5th ed. Washington, DC: American Psychiatric Association.

Feng, W., & Zhang, M. (2009). Organization and dynamics of PDZ-domain-related supramodules in the postsynaptic density. Nature Reviews Neuroscience, 10(2), 87–99. https://doi.org/10.1038/nrn2540

Gómez-Herreros, F., Schuurs-Hoeijmakers, J. H. M., McCormack, M., Greally, M. T., Rulten, S., Romero-Granados, R., ... Caldecott, K. W. (2014). TD2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nature Genetics, 46(5), 516–521. https://doi.org/10.1038/ng.2929

Haslam, R. J., Koide, H. B., & Hemmings, B. A. (1993). Pleckstrin Damiano, J. A., Burgess, R., Kivity, S., Lerman-Sagie, T., Afawi, Z., ... de Brouwer, A. P. M. (2009). OFD1 is mutated in X-linked Joubert syndrome and interacts with LCA5-encoded lebercilin. American Journal of Human Genetics, 85(4), 465–481. https://doi.org/10.1016/j.ajhg.2009.09.002

Houge, G., Rasmussen, I. H., & Hövrand, L. (2012). Loss-of-function CNKSR2 mutation is a likely cause of non-syndromic X-linked intellectual disability. Molecular Syndromology, 2(2), 60–63. https://doi.org/10.1159/000335159

Hsu, F., Kent, W. J., Clawson, H., Kuhn, R. M., Diekhans, M., & Haussler, D. (2006). The UCSC known genes. Bioinformatics, 22(9), 1036–1046. https://doi.org/10.1093/bioinformatics/btl048

Hu, H., Haas, S. A., Chelly, J., Van Esch, H., Raynaud, M., de Brouwer, A. P. M., ... Kalscheuer, V. M. (2016). X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes. Molecular Psychiatry, 21(1), 133–148. https://doi.org/10.1038/mp.2014.193

Iida, J., Nishimura, W., Yao, I., & Hata, Y. (2002). Synaptic localization of membrane-associated guanylate kinase-interacting protein mediated by the pleckstrin homology domain. European Journal of Neuroscience, 15(9), 1493–1498. https://doi.org/10.1046/j.1460-9568.2002.01987.x

Kircher, M., Witten, D. M., Jain, P., O’Roak, B. J., Cooper, G. M., & Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nature Genetics, 46(3), 310–315. https://doi.org/10.1038/ng.2892

Lanigan, T. M., Liu, A., Huang, Y. Z., Mei, L., Margolis, B., & Guan, K. L. (2003). Human homologue of Drosophila CNK interacts with Ras effector proteins Raf and Rlf. The FASEB Journal, 17(14), 2048–2060. https://doi.org/10.1096/fj.02-1096com

Lek, M., Karczewski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., ... MacArthur, D. G. (2016). Analysis of protein-coding genetic variation in 60,706 humans. Nature, 536(7616), 285–291. https://doi.org/10.1038/nature19057

Leonard, H., & Wen, X. (2002). The epidemiology of mental retardation: Challenges and opportunities in the new millennium. Mental Retardation and Developmental Disabilities Research Reviews, 8(3), 117–134. https://doi.org/10.1002/mrdd.10031

Lim, J., Ritt, D. A., Zhou, M., & Morrison, D. K. (2014). The CNK2 scaffold interacts with vilse and modulates Rac cycling during spine morphogenesis in hippocampal neurons. Current Biology, 24(7), 786–792. https://doi.org/10.1016/j.cub.2014.02.036

Liu, L., Channavajhala, P. L., Rao, V. R., Moutsatsos, I., Wu, L., Zhang, Y., ... Qiu, Y. (2009). Proteomic characterization of the dynamic KSR-2 interactome, a signaling scaffold complex in MAPK pathway. Biochimica Et Biophysica Acta, 1794(10), 1485–1495. https://doi.org/10.1016/j.bbapap.2009.06.016

Lubs, H. A., Stevenson, R. E., & Schwartz, C. E. (2012). Fragile X and X-linked intellectual disability: Four decades of discovery. American Journal of Human Genetics, 90(4), 579–590. https://doi.org/10.1010/ajhg.2012.02.018

Lundstrom, A., Gallio, M., Englund, C., Steeneberg, P., Hemphala, J., Aspenstrom, P., ... Samakovlis, C. (2004). Vilse, a conserved Rac/Cdc42 GAP mediating Robo repulsion in tracheal cells and axons. Genes & Development, 18(17), 2161–2171. https://doi.org/10.1101/gad.310204

Mayer, B. J., Ren, R., Clark, K. L., & Baltimore, D. (1993). A putative modular domain present in diverse signaling proteins. Cell, 73(4), 629–630. https://doi.org/10.1016/0092-8674(93)90244-K

Morey, C., & Avner, P. (2011). The demise of X-inactivation: 50 years old and as trendy and mesmerising as ever. PLoS Genetics, 7(7), e1002212. https://doi.org/10.1371/journal.pgen.1002212

Nagase, T., Ishikawa, K., Suyama, M., Kikuno, R., Hirosa, M., Miyajima, N., ... Ohara, O. (1998). Prediction of the coding sequences of unidentified human genes. XII. The complete sequences of 100 new cDNA clones from brain which code for large proteins in vitro. DNA Research, 5(6), 355–364. https://doi.org/10.1093/dnares/5.6.355

Ohtakara, K., Nishizawa, M., Izawa, I., Hata, Y., Matsushima, S., Taki, W., ... Inagaki, M. (2002). Densin-180, a synaptic protein, links to PSD-95 through its direct interaction with MAGUIN-1. Genes to Cells, 7(11), 1149–1160. https://doi.org/10.1046/j.1365-2443.2002.00589.x

Riazuddin, S., Hussain, M., Razzag, A., Iqbal, Z., Shahzad, M., Polia, D. L., ... Riazuddin, S. (2017). Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Molecular Psychiatry, 22(11), 1604–1614. https://doi.org/10.1038/mp.2016.109

Schultz, J., Ponting, C. P., Hofmann, K., & Bork, P. (1997). SAM as a protein interaction domain involved in developmental regulation. Protein Science, 6(1), 249–253. https://doi.org/10.1002/pro.55600 60128

Sun, Y., Liu, Y. D., Xu, Z. F., Kong, Q. X., & Wang, Y. L. (2018). CNKSR2 mutation causes the X-linked epilepsy-aphasia syndrome: A case report and review of literature. World Journal of Clinical Cases, 6(12), 570–576. https://doi.org/10.12998/wjcc.v6.i12.570
Vaags, A. K., Bowdin, S., Smith, M.-L., Gilbert-Dussardier, B., Brocke-Holmefjord, K. S., Sinopoli, K., … Minassian, B. A. (2014). Absent CNKSR2 causes seizures and intellectual, attention, and language deficits. Annals of Neurology, 76(5), 758–764. https://doi.org/10.1002/ana.24274

Wortmann, S. B., Vaz, F. M., Gardeitchik, T., Vissers, L. E. L. M., Renkema, G. H., Schuurs-Hoeijmakers, J. H. M., … de Brouwer, A. P. M. (2012). Mutations in the phospholipid remodeling gene SERAC1 impair mitochondrial function and intracellular cholesterol trafficking and cause dystonia and deafness. Nature Genetics, 44(7), 797–802. https://doi.org/10.1038/ng.2325

Yao, I., Hata, Y., Ide, N., Hirao, K., Deguchi, M., Nishioka, H., … Takai, Y. (1999). MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. Journal of Biological Chemistry, 274(17), 11889–11896. https://doi.org/10.1074/jbc.274.17.11889

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Polla DL, Saunders HR, de Vries BBA, van Bokhoven H, de Brouwer APM. A de novo variant in the X-linked gene CNKSR2 is associated with seizures and mild intellectual disability in a female patient. Mol Genet Genomic Med. 2019;7:e861. https://doi.org/10.1002/mgg3.861