Algebraic intersection for translation surfaces in the stratum $\mathcal{H}(2)$

Intersection algébrique dans la strate $\mathcal{H}(2)$

Smaïl Cheboui, Arezki Kessi, Daniel Massart

October 8, 2021

Abstract

Nous étudions la quantité KV ol définie par l’équation (1) sur la strate $\mathcal{H}(2)$ des surfaces de translation de genre 2, avec une singularité conique. Nous donnons une suite explicite de surfaces $L(n, n)$ telles que $\text{KV ol}(L(n, n)) \rightarrow 2$ quand n tend vers l’infini, 2 étant l’infimum-conjectural-de KV ol sur $\mathcal{H}(2)$.

We study the quantity KV ol defined in Equation (1) on the stratum $\mathcal{H}(2)$ of translation surfaces of genus 2, with one conical point. We provide an explicit sequence $L(n, n)$ of surfaces such that $\text{KV ol}(L(n, n)) \rightarrow 2$ when n goes to infinity, 2 being the conjectured infimum for KV ol over $\mathcal{H}(2)$.

1 Introduction

Let X be a closed surface, that is, a compact, connected manifold of dimension 2, without boundary. Let us assume that X is oriented. Then the algebraic intersection of closed curves in X endows the first homology $H_1(X, \mathbb{R})$ with an antisymmetric, non degenerate, bilinear form, which we denote $\text{Int}(\cdot, \cdot)$.

Now let us assume X is endowed with a Riemannian metric g. We denote $\text{Vol}(X, g)$ the Riemannian volume of X with respect to the metric g, and for any piecewise smooth closed curve α in X, we denote $l_g(\alpha)$ the length of α with respect to g. When there is no ambiguity we omit the reference to g.

We are interested in the quantity

$$\text{KVol}(X, g) = \text{Vol}(X, g) \sup_{\alpha, \beta} \frac{\text{Int}(\alpha, \beta)}{l_g(\alpha)l_g(\beta)}$$

where the supremum ranges over all piecewise smooth closed curves α and β in X. The $\text{Vol}(X, g)$ factor is there to make KVol invariant to re-scaling of the metric g. See [6] as to why KVol is finite. It is easy to make KVol go to infinity, you just need to pinch a non-separating closed curve α to make its length go to zero. The interesting surfaces are those (X, g) for which KVol is small.
When X is the torus, we have $\KV_{ol}(X, g) \geq 1$, with equality if and only if the metric g is flat (see [6]). Furthermore, when g is flat, the supremum in $\eqref{eq:KVol}$ is not attained, but for a negligible subset of the set of all flat metrics. In [6] \KV_{ol} is studied as a function of g, on the moduli space of hyperbolic (that is, the curvature of g is -1) surfaces of fixed genus. It is proved that \KV_{ol} goes to infinity when g degenerates by pinching a non-separating closed curve, while \KV_{ol} remains bounded when g degenerates by pinching a separating closed curve.

This leaves open the question whether \KV_{ol} has a minimum over the moduli space of hyperbolic surfaces of genus n, for $n \geq 2$. It is conjectured in [6] that for almost every (X, g) in the moduli space of hyperbolic surfaces of genus n, the supremum in $\eqref{eq:KVol}$ is attained (that is, it is actually a maximum).

In this paper we consider a different class of surfaces: translation surfaces of genus 2, with one conical point. The set (or stratum) of such surfaces is denoted $\mathcal{H}(2)$ (see [3]). By [7], any surface X in the stratum $\mathcal{H}(2)$ may be unfolded as shown in Figure 1, with complex parameters z_1, z_2, z_3, z_4. The surface is obtained from the plane template by identifying parallel sides of equal length.

It is proved in [4] (see also [2]) that the systolic volume has a minimum in $\mathcal{H}(2)$, and it is achieved by a translation surface tiled by six equilateral triangles. Since the systolic volume is a close relative of \KV_{ol}, it is interesting to keep the results of [4] and [2] in mind.

We have reasons to believe that \KV_{ol} behaves differently in $\mathcal{H}(2)$, both from the systolic volume in $\mathcal{H}(2)$, and from \KV_{ol} itself in the moduli space of hyperbolic surfaces of genus 2; that is, \KV_{ol} does not have a minimum over $\mathcal{H}(2)$.

We also believe that the infimum of \KV_{ol} over $\mathcal{H}(2)$ is 2. This paper is a first step towards the proof: we find an explicit sequence $L(n, n)$ of surfaces in $\mathcal{H}(2)$, whose \KV_{ol} tends to 2 (see Proposition 2.5). These surfaces are obtained from very thin, symmetrical, L-shaped templates (see Figure 2).
In the companion paper [1] we study KVol as a function on the Teichmüller disk (the $SL_2(\mathbb{R})$-orbit) of surfaces in $\mathcal{H}(2)$ which are tiled by three identical parallelograms (for instance $L(2,2)$), and prove that KVol does have a minimum there, but is not bounded from above. Therefore KVol is not bounded from above as a function on $\mathcal{H}(2)$. In [1] we also compute KVol for the translation surface tiled by six equilateral triangles, and find it equals 3, so it does not minimize KVol, neither in $\mathcal{H}(2)$, nor even in its own Teichmüller disk.

2 $L(n, n)$

2.1 Preliminaries

Following [8], for any $n \in \mathbb{N}$, $n \geq 2$, we call $L(n+1, n+1)$ the $(2n+1)$-square translation surface of genus two, with one conical point, depicted in Figure 2, where the upper and rightmost rectangles are made up with n unit squares. We call A (resp. B) the region in $L(n+1, n+1)$ obtained, after identifications, from the uppermost (resp. rightmost) rectangle, and C the region in $L(n+1, n+1)$ obtained, after identifications, from the bottom left square. Both A and B are annuli with a pair of points identified on the boundary, while C is a square with all four corners identified. We call e_1, e_2, (resp. f_1, f_2) the closed curves in $L(n+1, n+1)$ obtained by gluing the endpoints of the horizontal (resp. vertical) sides of A and B. The closed curve which sits on the opposite side of C from e_1 (resp. f_1) is called e'_1 (resp. f'_1), it is homotopic to e_1 (resp. f_1) in $L(n+1, n+1)$. The closed curves in $L(n+1, n+1)$ which correspond to the diagonals of the square C are called g and h.

Figure 3 shows a local picture of $L(n+1, n+1)$ around the singular (conical) point S, with angles rescaled so the 6π fit into 2π.

Since e_1, e_2, f_1, f_2 do not meet anywhere but at S, the local picture yields the algebraic intersections between any two of e_1, e_2, f_1, f_2, summed up in the following matrix:

\[
\begin{array}{cccc}
\text{Int} & e_2 & f_1 & e_1 & f_2 \\
e_2 & 0 & 1 & 0 & -1 \\
f_1 & -1 & 0 & 0 & 0 \\
e_1 & 0 & 0 & 0 & 1 \\
f_2 & 1 & 0 & -1 & 0 \\
\end{array}
\]

We call T_A (resp. T_B) the flat torus obtained by gluing the opposite sides of the rectangle made with the $n+1$ leftmost squares (resp. with the $n+1$ bottom squares), so the homology of T_A (resp. T_B) is generated by e_1 and the concatenation of f_1 and f_2 (resp. f_1 and the concatenation of e_1 and e_2).

Lemma 2.1. The only closed geodesics in $L(n+1, n+1)$ which do not intersect e_1 nor f_1 are, up to homotopy, e_1, f_1, g, and h.

Proof. Let γ be such a closed geodesic. It cannot enter, nor leave, A, B, nor C. If it is contained in A, and does not intersect e_1, then it must be homotopic to e_1, which is the
Figure 2: $L(n+1, n+1)$

Figure 3: Local picture around the conical point
soul of the annulus from which \(A \) is obtained by identifying two points on the boundary. Likewise, if it is contained in \(B \), and does not intersect \(f_1 \), then it must be homotopic to \(f_1 \). Finally, if \(\gamma \) is not contained in \(A \) nor in \(B \), it must be contained in \(C \). The only closed geodesics contained in \(C \) are the sides and diagonals of the square from which \(C \) is obtained, which are \(e_1, e'_1, f_1, f'_1, g, \) and \(h \).

Lemma 2.2. For any closed geodesic \(\gamma \) in \(L(n+1, n+1) \), we have \(l(\gamma) \geq n|\text{Int}(\gamma, e_1)| \).

Proof. For each intersection with \(e_1, \gamma \) must go through \(A \), from boundary to boundary. Obviously a similar lemma holds with \(f_1 \) instead of \(e_1 \). For \(g \) and \(h \) the proof is a bit different:

Lemma 2.3. For any closed geodesic \(\gamma \) in \(L(n+1, n+1) \), we have \(l(\gamma) \geq n|\text{Int}(\gamma, g)| \).

Proof. First, observe that between two consecutive intersections with \(g \), \(\gamma \) must go through either \(A \) or \(B \), unless \(\gamma \) is \(g \) itself, or \(h \) : indeed, the only geodesic segments contained in \(C \) with endpoints on \(g \) are segments of \(g \), or \(h \). Obviously \(\text{Int}(g, g) = 0 \), and from the intersection matrix (2), knowing that \([g] = [e_1] - [f_1], [h] = [e_1] + [f_1] \), we see that \(\text{Int}(g, h) = 0 \).

Thus, either \(\text{Int}(\gamma, g) = 0 \), or each intersection must be paid for with a trek through \(A \) or \(B \), of length at least \(n \).

Obviously a similar lemma holds with \(h \) instead of \(g \). Note that Lemmata 2.1, 2.2, 2.3 imply that the only geodesics in \(L(n+1, n+1) \) which are shorter than \(n \) are \(e_1, f_1, g, h \), and closed geodesics homotopic to \(e_1 \) or \(f_1 \).

Lemma 2.4. Let \(I, J \) be positive integers, take \(a_{ij}, i = 1, \ldots, I, j = 1, \ldots, J \) in \(\mathbb{R}_+ \), and \(b_1, \ldots, b_I, c_1, \ldots, c_J \) in \(\mathbb{R}_+^* \). Then we have

\[
\frac{\sum_{i,j} a_{ij}}{(\sum_{i=1}^I b_i)(\sum_{j=1}^J c_j)} \leq \max_{i,j} \frac{a_{ij}}{b_i c_j}.
\]

Proof. Re-ordering, if needed, the \(a_{ij}, b_i, c_j \), we may assume

\[
\frac{a_{ij}}{b_i c_j} \leq \frac{a_{11}}{b_1 c_1} \quad \forall i = 1, \ldots, I, j = 1, \ldots, J.
\]

Then \(a_{ij} b_1 c_1 \leq a_{11} b_i c_j \quad \forall i = 1, \ldots, I, j = 1, \ldots, J \), so

\[
b_1 c_1 \sum_{i,j} a_{ij} \leq a_{11} \sum_{i,j} b_i c_j = a_{11} \left(\sum_{i=1}^I b_i \right) \left(\sum_{j=1}^J c_j \right).
\]
2.2 Estimation of $K\text{Vol}(L(n, n))$

Proposition 2.5.

\[
\lim_{n \to +\infty} K\text{Vol}(L(n + 1, n + 1)) = 2.
\]

Proof. First observe that $\text{Vol}(L(n+1, n+1)) = 2n+1$, $l(e_1) = 1$, $l(f_2) = n$, $\text{Int}(e_1, f_2) = 1$, so

\[
K\text{Vol}(L(n + 1, n + 1)) \geq 2 + \frac{1}{n}.
\]

To bound $K\text{Vol}(L(n + 1, n + 1))$ from above, we take two closed geodesics α and β; by Lemmata 2.2, 2.3 if either α or β is homotopic to e_1, f_1, g, or h, then

\[
\frac{\text{Int}(\alpha, \beta)}{l(\alpha)l(\beta)} \leq \frac{1}{n},
\]

so from now on we assume that neither α or β is homotopic to e_1, f_1, g, h. We cut α and β into pieces using the following procedure: we consider the sequence of intersections β_1, \ldots, β_6, so 1, so $l(\alpha)$, $l(\beta) = \sum_{i=1}^{J} l(\alpha_i)$, and $l(\beta) = \sum_{j=1}^{I} l(\beta_j)$, and

\[
|\text{Int}(\alpha, \beta)| \leq \sum_{i,j} |\text{Int}(\alpha_i, \beta_j)|,
\]

so Lemma 2.4 says that

\[
\frac{|\text{Int}(\alpha, \beta)|}{l(\alpha)l(\beta)} \leq \max_{i,j} \frac{|\text{Int}(\alpha_i, \beta_j)|}{l(\alpha_i)l(\beta_j)}.
\]

We view each piece α_i (resp. β_j) as a geodesic arc in the torus T_A (resp. T_B), with endpoints on the image in T_A (or T_B) of f_1 or f'_1 (resp. e_1 or e'_1), which is a geodesic arc of length 1, so we can close each α_i (resp. β_j) with a piece of f_1 or f'_1 (resp. e_1 or e'_1), of length ≤ 1. We choose a closed geodesic $\hat{\alpha}_i$ (resp. $\hat{\beta}_j$) in T_A (resp. T_B) which is homotopic to the closed curve thus obtained. We have $l(\hat{\alpha}_i) \leq l(\alpha_i) + 1$, $l(\hat{\beta}_j) \leq l(\beta_j) + 1$, so

\[
\frac{1}{l(\hat{\alpha}_i)l(\hat{\beta}_j)} \geq \frac{1}{(l(\alpha_i) + 1)(l(\beta_j) + 1)}.
\]

Now recall that $l(\alpha_i), l(\beta_j) \geq n$, so $l(\alpha_i) + 1 \leq (1 + \frac{1}{n}) l(\alpha_i)$, whence

\[
\frac{1}{l(\hat{\alpha}_i)l(\hat{\beta}_j)} \geq \frac{1}{l(\alpha_i)l(\beta_j)} \left(\frac{n}{n+1} \right)^2.
\]

Next, observe that $|\text{Int}(\alpha_i, \beta_j)| \leq |\text{Int}(\hat{\alpha}_i, \hat{\beta}_j)| + 1$, because $\hat{\alpha}_i$ (resp. $\hat{\beta}_j$) is homologous to a closed curve which contains α_i (resp. β_j) as a subarc, and the extra arcs cause at
most one extra intersection, depending on whether or not the endpoints of \(\alpha_i \) and \(\beta_j \) are intertwined. So,

\[
\frac{|\text{Int}(\alpha_i, \beta_j)|}{l(\alpha_i)l(\beta_j)} \leq \frac{|\text{Int}(\hat{\alpha}_i, \hat{\beta}_j)| + 1}{l(\hat{\alpha}_i)l(\hat{\beta}_j)} \left(\frac{n + 1}{n} \right)^2 \leq \left(\frac{|\text{Int}(\hat{\alpha}_i, \hat{\beta}_j)|}{l(\hat{\alpha}_i)l(\hat{\beta}_j)} + \frac{1}{n^2} \right) \left(\frac{n + 1}{n} \right)^2,
\]

where the last inequality stands because \(l(\hat{\alpha}_i) \geq n \), \(l(\hat{\beta}_j) \geq n \), since \(\hat{\alpha}_i \) and \(\hat{\beta}_j \) both have to go through a cylinder \(A \) or \(B \) at least once. Finally, since \(\hat{\alpha}_i \) and \(\hat{\beta}_j \) are closed geodesics on a flat torus of volume \(n + 1 \), we have (see [6])

\[
\frac{|\text{Int}(\hat{\alpha}_i, \hat{\beta}_j)|}{l(\hat{\alpha}_i)l(\hat{\beta}_j)} \leq \frac{1}{n + 1},
\]

so

\[
\frac{|\text{Int}(\alpha_i, \beta_j)|}{l(\alpha_i)l(\beta_j)} \leq \left(\frac{1}{n + 1} + \frac{1}{n^2} \right) \left(\frac{n + 1}{n} \right)^2 = \frac{1}{n} + o\left(\frac{1}{n} \right),
\]

which yields the result, recalling that \(\text{Vol}(L(n + 1, n + 1)) = 2n + 1 \). \(\square \)

References

[1] S. Cheboui, A. Kessi, D. Massart Algebraic intersection for translation surfaces in the Teichmüller disk of \(L(2, 2) \), work in progress

[2] Herrlich, F., Muetzel B. and Schmithüsen G.: Systolic geometry of translation surfaces, (2018) arXiv:1809.10327.

[3] Hubert, Pascal; Lelièvre, Samuel Prime arithmetic Teichmüller discs in \(\mathcal{H}(2) \). Israel J. Math. 151 (2006), 281-321.

[4] Judge, Chris; Parlier, Hugo The maximum number of systoles for genus two Riemann surfaces with abelian differentials. Comment. Math. Helv. 94 (2019), no. 2, 399–437.

[5] Lelièvre, Samuel Arithmetic Veech surfaces in genus two: Teichmüller discs, Veech groups, Siegel–Veech constants. Ph. D. thesis, Université Rennes 1, 2004.

[6] Massart, Daniel; Muetzel, Bjoern On the intersection form of surfaces. Manuscripta Math. 143 (2014), no. 1-2, 19-49.

[7] McMullen, Curtis T. Teichmüller curves in genus two: discriminant and spin. Math. Ann. 333 (2005), no. 1, 87–130.

[8] Schmithüsen, Gabriela An algorithm for finding the Veech group of an origami. Experiment. Math. 13 (2004), no. 4, 459–472.
adresses :
Smaïl Cheboui : USTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar - Alger, Algérie, email : smailsdgmath@gmail.com
Arezki Kessi : USTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar - Alger, Algérie, email: arkessi@yahoo.fr
Daniel Massart : Institut Montpelliérain Alexander Grothendick, CNRS Université de Montpellier, France email : daniel.massart@umontpellier.fr (corresponding author)