Review Article

Anti-inflammatory and analgesic potential of Tamarindus indica Linn. (Fabaceae): a narrative review

Richard Komakech a,b,c, Yong-goo Kim d, Gilbert Motleleapula Matsabisa d, Youngmin Kang d

a University of Science & Technology (UST), Korean Institute of Oriental Medicine, Korean Convergence Medicine Major, Daejeon, Republic of Korea
b Herbal Medicine Research Center, Korean Institute of Oriental Medicine, 111 Geomjeong-ro, Naju-si, Republic of Korea
c Natural Chemotherapeutics Research Institute (NCRI), Ministry of Health, P.O. Box 4864, Kampala, Uganda
d University of the Free State, PO Box 339, Bloemfontein, South Africa

Article history:
Received 2 April 2019
Received in revised form 5 July 2019
Accepted 6 July 2019
Available online 23 July 2019

Keywords:
Analgesic
Anti-inflammatory
Phytochemical
Tamarindus indica
Traditional medicine

ABSTRACT

Chronic inflammation is one of the causes of a number of non-infectious diseases in the world. Over the years, Tamarindus indica has played fundamental roles in traditional medicine as an anti-inflammatory and analgesic drug. It is a commercialized biocompatible medicinal plant species with a wide range of therapeutic window and with suggested LD50 greater than 5000 mg kg–1 body weight when administered to the Wistar rats. This review examined the anti-inflammatory and analgesic potential and mechanism of various extracts from T. indica pulp, leaves, seeds, stem bark, and roots. The preclinical studies provided strong pharmacological evidence for the anti-inflammatory and analgesic activities of the different parts of T. indica and this may be attributed to the various bioactive compounds in it including alkaloids, flavonoids, tannins, phenols, saponins, and steroids. The anti-inflammatory and analgesic effects of the extracts from the different parts of T. indica may be due to its ability to inhibit a number of biological processes including cyclooxygenase-2 (COX-2) expression, inducible nitric oxide synthase (iNOS), 5-lipoxygenase biosynthesis, and tumor necrosis factor-α. The analgesic activity of T. indica may also be through the activation of the opioidergic mechanism at both the peripheral and central levels. Although further pre-clinical studies still need to be conducted, these results demonstrated that T. indica has potent anti-inflammatory and analgesic activities and hence provides justification for its use in traditional medicine to treat body pain and other inflammatory related diseases including arthritis and offers a basis for future clinical studies and possible drug development.

© 2019 Korea Institute of Oriental Medicine. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

☆ Introduction

Inflammatory processes play a fundamental role in the initial defence of the body after infection or damage of a tissue, hence limiting further damage to the affected site. However, although inflammation reaction in the early stages of infection play an important role in biological defence mechanisms, chronic inflammation has long been linked to be the cause of a broad range of non-infectious diseases including arthritis. Despite the fact that inflammation can be treated by use of synthetic drugs, some of the anti-inflammatory drugs instead have the ability to block the activity of various kinase enzymes resulting in a significant decrease in host defence toward infections. As a result, the use of medicinal plants to treat and manage diseases including inflammatory and body pain which has been in existence since time immemorial is becoming more popular globally. Indeed, the importance of medicinal plants in treatment and prevention of the human inflammatory diseases cannot be underestimated. Tamarindus indica, which is one of the highly commercialized medicinal plants is known for its potent anti-inflammatory activities. This tropical tree has been used to treat inflammation, stomach pain, throat pain, and rheumatism in traditional medicine. Additionally, the plant has also been used to manage myriad of other disease conditions including, wound healing, diarrhea, dysentery, parasitic, infestation, fever, malaria, respiratory conditions, helminthes infections, constipation, cell cytotoxicity, gonorrhea, eye diseases, and as an aphrodisiac and also highly valued as a food supplement. Owing to the numerous economic and health benefits, T. indica has been traded widely throughout the world. In fact, the medicinal activities and use of T. indica in traditional folk medicine are attributed to the presence of phytochemicals in the different parts of the plant including flavonoids, alkaloids, tannins, phenols, triterpenoids, fatty acids, saponins, and steroids. Over the years, its medicinal use to treat and manage inflammation and body pain has been evaluated and published in a number of peer reviewed journal articles. This review therefore sought to examine the anti-inflammatory and analgesic potential and mechanism of T. indica phytochemicals and extracts as a basis for future drug development.

2. Methods

In this narrative review, we obtained information from original peer reviewed articles published in scientific journals, with a focus...
on the botany, traditional medicinal uses, toxicity, anti-inflammatory and analgesic potential with respect to T. indica. To obtain the relevant data, Google Scholar, PubMed, Scopus, AMED, Cochrane Library electronic literature databases were searched using the terms (“Tamarindus indica” AND “Botany” OR “Medicinal uses” OR “Toxicity” OR “Anti-inflammatory” OR “Analgesic” OR “Phytochemicals”) OR (“Phytochemicals in Tamarindus indica” AND “Anti-inflammatory” OR “Analgesic”) from 1980 to March, 2019. Only peer reviewed articles published in English language were considered in the study. Secondary data were collected, discussed, summarized, analyzed, results compared, and conclusions made accordingly.

3. Results and discussion

3.1. Botany and distribution of T. indica L.

T. indica belongs to the plant family Fabaceae[11] (older classification Leguminosae) and sub-family Caesalpinioideae. It is one of the few pulp extract administered at a dose of 4500 mg/kg body weight using Wistar rats animal model was generally safe with no apparent congestion and hemorrhage in gastro intestinal track and no lesions observed on the liver and kidneys and 100% survival although the animals exhibited some behavioral changes such as aggressive scratching of the body, mouth pant anorexia, and mild restlessness. In fact, the oral LD₅₀ of the ethanolic pulp extract on the Wistar rats was observed to be greater than 5000 mg/kg body weight with 100% survival of the experimental animals. Furthermore, the acute toxicity evaluation in Wistar rats of the leaves’ 72% (v/v) ethanolic extracts at 5000 mg/kg body weight showed no observable changes on the skin, hair, behavior, and in vital organs including liver, kidneys, heart, spleen and lung. Additionally, it was observed that the average water and food intake in the experimental group and that in the control group were not statistically different at p value=0.089 and p-value=0.0678 for water and food intake respectively. In an oral mucous irritability tests, the tamarind leaves’ fluid extract exhibited mild irritant attributed to the numerous organic acids in it including citric acids, tartaric acids and malic acid. As observed, although T. indica pulp and leaves have been observed to be generally safe, the ethanolic stem bark crude extract and fractions at 25% and 50% concentrations of pre-determined LD₅₀ on chicken embryos resulted in increased level of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the blood although not near the values that signify a disease state. Similarly, ethanolic stem bark crude extract was observed to be toxic at a high dose of 200 μg/mL resulting in over 87% death of the test brine shrimp animal models. In the sub-chronic toxicity test using rabbits model, it was observed that the pulp water extract is generally safe with 100% survival and enhanced high production of the white blood cells when the experimental animals were dosed daily with 100 mg/kg body weight T. indica pulp water extract for 35 days except for the mild pathologies on liver and kidneys. However, although this sub-chronic toxicological study showed overall safety of T. indica pulp, the use of only 100 mg/kg body weight of T. indica pulp water extract is way below the previously suggested therapeutic index of 4500 mg/kg body weight for T. indica pulp water extract in an acute toxicity study using Wistar rat model. In the chronic toxicity study to evaluate the long term use of T. indica, the pulp water extract was observed to be generally safe with 100% survival, no significant changes in body weight, hematologic, and clinical biochemistry profiles at doses up to 1 g/kg administered daily for six months. However, there was a reduction (p < 0.05) in the spleen weight of female rats when administered at 200 mg/kg body weight per day for 6 months and also increased (p < 0.05) the relative kidney and liver weight when administered at 1000 mg/kg body weight per day for 6 months. However, despite these promising general safety of the different parts of T. indica especially the pulp and leaves with a wide therapeutic index, further sub-acute, sub-chronic, and chronic toxicological studies still ought to be conducted to further ascertain its safety in regards to the long term use and this will also set a firmer foundation for future clinical trials.

3.3. Anti-inflammatory and analgesic activities of T. indica

The processes of inflammation and body pain are interlinked and hence there are several drugs with both analgesic and anti-inflammatory activities. T. indica is widely regarded in traditional medicine as one of the most important plants for treatment of body pain related to the musculoskeletal system and other anti-inflammatory related illnesses. In fact, T. indica is known to exert anti-inflammatory and analgesic effects probably by down regulating the nuclear factor-kappa B (NF-kb) and the p38 mitogen-activated protein kinase pathway. As summarized (Table 2), all main parts including stem bark, roots, leaves, and seeds of this tree species have been observed to have significant anti-inflammatory and analgesic effects. Petroleum ether stem bark extract at 50 mg/kg intraperitoneal injection was observed to show significant (p < 0.05) potent antinociceptive activity in animal models through the inhibition of the of the writhing response induced by acetic acid when compared to the control group. Additionally, the hexane, ethyl acetate, methanol, and water fractions of T. indica stem bark dose 400 mg/kg was observed to significantly (p < 0.001) inhibit the writhing response in albino rats; an analgesic activity mediated via peripheral and central mechanisms of pain generation. Similarly, an in vivo study in albino mice model showed that the antinociceptive activity of the aqueous extracts of T. indica fruits may be through the activation of the opioidergic mechanism at both the peripheral and central levels at a dose range of 50–500 mg/kg per day after 15 days of treatment. In another in vivo study, the petroleum ether seed extracts and the ethyl acetate fraction of T. indica seeds significantly (p < 0.01) increased latency to tail flick in the tail immersion method in Wistar rats, and elevated the mean basal reaction time in the hot plate method at a dose of 50 mg/kg and 100 mg/kg body weight. Similarly, the methanolic seed extract of T. indica significantly (p < 0.01) reduced carrageenan induced paw edema in Wistar albino rats at doses of 100 mg/kg, 200 mg/kg and 400 mg/kg body weight and also showed a significant anti-inflammatory and central analgesic activity (p < 0.05) in a dose-dependent manner in rat models. In an in vivo study using albino wistar rats based on the hot plate method and acetic acid induced writhing test, the aqueous root extract of T. indica exhibited 74.83% pain inhibition and 54.33% percent protection from pain caused by acetic acid respectively at 200 mg/kg body weight compared to the analogous standard drugs (pentazocine and Aspirin) with percentage of 89.82% and 68.50% respectively at same concentration; an indication of T. indica potent analgesic principles acting within the prostaglandin pathways. Furthermore, the anti-inflammatory effect of the methanolic root extract on the carrageenan induced rat paw oedema in Wistar rats was observed to be significant at percentage inhibition of 37.83% at a dose of 200 mg/kg compared to that of the standard drug Aspirin at percentage inhibition of 59.45% at same dose.
The oral administration of hydroethanolic extracts of T. indica leaves to Wistar rats at doses of 500, 750, and 1000 mg/kg body weight produced significant (p < 0.01) anti-inflammatory and anti-nociceptive actions in a dose-dependent manner. Similar study in albino rats showed that an aqueous extracts of T. indica leaves exhibited significant (p < 0.05) dose-dependent anti-inflammatory and anti-nociceptive activities at a concentration of 400 mg/kg body weight. In fact, a greater analgesic activity was observed in a tail immersion study using adult Swiss albino mice, when a concentration of 400 mg/kg ethanolic extracts of T. indica leaves was administered compared to a 25 mg dose of Diclofenac sodium. As observed, various doses have been used to evaluate the pre-clinical anti-inflammatory and analgesic potential of the pulp, leaves, stem bark, and roots of T. indica.

The presence of myriad of the principle bioactive compounds in different parts of T. indica including flavonoids, alkaloids, tannins, phenols, triterpenoids, fatty acids, saponins, and steroids may explain the unique anti-inflammatory and analgesic nature of all the parts of this plant species. However, despite the fact that these classes of secondary metabolites have been confirmed in T. indica, only specific flavonoids have been isolated and identified (Table 3) including procyandins, catechin, taxifolin, apigenin, luteolin, and naringenin. Flavonoids’ ability to inhibit 5-lipoxygenase enzyme plays a key role in the suppression of leukotriene biosynthesis and hence reducing the body inflammatory reactions. Procyandins; an oligomeric flavonoids found in large quantity and makes over 60% of the phytochemicals in the T. indica seeds and fruit pulp, are known to possess potent anti-inflammatory activity.
and analgesic activities. Procyanidins exerts its anti-inflammatory and analgesic actions by inhibiting the inflammatory cytokine production, suppressing the nucleotide-binding oligomerization domain-like receptors, inhibiting inflammasome activation, and via the inhibition of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). In fact, both COX-2 and iNOS have been implicated in osteoarthritis conditions and hence their inhibition is of significance in the therapeutic intervention of osteoarthritis.

Catechin’s potent anti-inflammatory and analgesic actions is attributed to its ability to modulate inflammatory and oxidative stress related to cell signaling pathways including NF-κB and mitogen activated protein kinases. Furthermore, catechin is one of the bioactive compounds with potent ability to suppress the pro-inflammatory signaling pathways, and also reduces visceral pain induced by acetic acid through gamma-aminobutyric acid receptors.

Taxifolin has great therapeutic potential for many major inflammatory diseases and showed significant (p < 0.05) reduction in pain when applied topically to painful knee joint, shoulder, calf, hip, lower and upper back. It inhibits Lipopolysaccharide (LPS)-induced tumor necrosis factor-α and interleukin-6 production; an indication that taxifolin has a significant anti-inflammatory effect. Similarly, taxifolin is also known to enhance its anti-inflammatory effects by inhibiting LPS-induced production of nitrite oxide. In type II diabetes, taxifolin inhibits pro-inflammatory neutrophils and hence protects the vascular systems from damage and as well as preventing the inflammatory white blood cells from attacking and adhering to the brain thereby giving protection to the brain.

Apigenin is a monomeric dietary flavonoid with potent analgesic and anti-inflammatory activities due to inhibition of Prostaglandin E2 and pro-inflammatory cytokines including interleukin-1β, and tumor necrosis factor-α. In an in vivo study, apigenin inhibited the collagenase activity associated with rheumatoid arthritis, and suppressed LPS-induced nitric oxide production in a dose dependent manner in RAW 264.7 macrophage cells and also exhibited significant anti-inflammatory activity by blocking nitric oxide-mediated COX-2 expression and monocyte adherence. In the tail immersion test, administration of 10 mg/kg of apigenin produced dose dependent analgesia, with maximum activity recorded after 30 minutes. In addition to having an effective anti-inflammatory and pharmacological actions on both diabetes and Alzheimer’s diseases, apigenin has also been used to treat acute lung injury through inhibition of COX-2 and NF-κB gene expression in lung.

Luteolin is a monomeric flavone, is a strong neuroprotective agent capable of suppressing inflammation within brain tissues. Luteolin’s anti-inflammatory activity is due to the inhibition of nitric oxide production, down-regulation of inflammatory mediators and cytokines, reactive oxygen species production, and tumor necrosis factor-α. In addition to its anti-inflammatory effects, luteolin is known to possess potent analgesic activity as evidenced in acetic acid-induced writhing, formalin, and hot plate tests.

Naringenin is a bitter and colorless monomeric flavanone belonging to a class of flavonoids contained in T. indica with potent anti-inflammatory activity due to its ability to reduce cytokine production. It reduces pain induced by inflammatory stimuli by modulating transient receptor potential channels, and activating the nitric oxide signaling pathway to induce nociceptor neuron hyperpolarization. It potently inhibits the pro-inflammatory cytokine response induced by LPS in both macrophages and in whole blood; an anti-inflammatory mechanism exhibited by naringenin which can be exploited for treating inflammatory diseases such as periodontitis. Naringenin is also known to possess analgesic potential due to its ability to modulate transient receptor potential channels and inhibit superoxide anion-induced inflammation related pain. Its repeated administration was observed to be effective in relieving the neuropathic pain.

Alkaloids are major bioactive secondary metabolites contained in T. indica with significant anti-inflammatory potential. In fact, over 80% of alkaloids evaluated are known to possess anti-inflammatory activity with some of the alkaloids having greater anti-inflammatory potency than aspirin. Alkaloids have also been shown to inhibit writhing response in model animals and increase tail flick latency in the radiant heat tail-flick method; an indication that this class of compound has significant analgesic potential.

Tannins are bitter-tasting, polyphenolic biomolecules and represents one of the major bioactive secondary metabolites contained in T. indica with strong anti-inflammatory activity. Its anti-inflammatory activity has been shown by its ability to prevent rat paw edema induced by carrageenan and dextran. Phenolic compounds are potent anti-inflammatory agents due to its ability to inhibit either the production or action of pro-inflammatory mediators and inhibit the leukocyte chemotaxis. In fact, phenol has been used for local analgesic therapy since time immemorial. The anti-inflammatory and analgesic activities of a number of plants have been attributed to the presence of saponins. It exhibits the anti-inflammatory activity through suppres-
sion of NF-κB, phosphoinositide 3-kinase, and mitogen-activated protein kinase signaling pathways. Furthermore, an in vivo study showed that saponins can significantly inhibit paw edema, algnesia, and nitrite production without affecting cell viability, an indication of its potent analgesic activity.

Therefore, the presence of all these bioactive compounds in *T. indica* somewhat justifies the use of this plant in traditional medicine for the treatment and management of inflammation and related disease conditions including body pain.

4. Conclusion

Throughout the world, diseases caused by inflammation are a significant health burden and hence all possible measures have to be explored to tackle it. *T. indica* has a rich history of use as anti-inflammatory and analgesic medicinal plant in traditional medicine. In fact, the anti-inflammatory effects of *T. indica* may be due to its ability to inhibit a number of biological pathways including NF-κB activation pathways, and leukotriene biosynthesis while its analgesic activity may be via the activation of the opioidergic mechanism at both the peripheral and central mechanisms of pain generation and inhibition of the prostaglandin pathways. And as observed in this study, although the anti-inflammatory and analgesic activities of the classes of bioactive compounds: flavonoids, alkaloids, tannins, phenols, and saponins discussed in this study were from different sources and not directly isolated from *T. indica* and experimented, their presence in *T. indica* gives an insight into the anti-inflammatory and analgesic potential of *T. indica*. We therefore recommend that future study may focus on the evaluation of the anti-inflammatory and analgesic activities of the bioactive compounds isolated from *T. indica* pulps, leaves, and stem bark. Furthermore, although several animal-based in vivo studies have shown promising evidence for *T. indica* efficacy as an anti-inflammatory and analgesic plant species, there is need for clinical trials which is still lacking to enhance future drug development for the treatment and management of inflammatory diseases and body pain. And prior to the clinical studies that may focus on the use of *T. indica* pulp, leaves or stem bark for treatment and management of arthritis including osteoarthritis and body pain, further pre-clinical sub-chronic and chronic toxicity studies still ought to be done to evaluate the safety associated with its long term use.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported under the framework of international cooperation program (Korea-South Africa Cooperative Research Project for Excavation of Candidate Resources of Complementary & Alternative Medicine) managed by National Research Foundation of Korea (Grant: 2017R00555, KIOM: D17470). Additionally, this work was equally supported by Grants from Development of Foundational Techniques for the Domestic Production of Herbal Medicines (K18405) and Development of Application Techniques for the Standardization of Resources of Herbal Medicines (KSN1911420) from the Korea Institute of Oriental Medicine (KIOM), through the Ministry of Science & ICT, Republic of Korea.

Data availability

The authors declare that the data supporting the findings of this study are available within the article.

Authors’ contribution

KR carried out the data search and was the major contributor in writing the manuscript. YK carried out part of the secondary data search and contributed in manuscript writing. MGM and YK technically designed and helped in writing the manuscript. All the authors read and approved the final manuscript.

Acknowledgement

In a special way, we would like to thank Mr. Gang Roggers; a research officer at the National Agricultural Research Organisation (NARO)-Ministry of Agriculture and Fisheries in Uganda for the T. indica botanical pictures that he provided that greatly improved this manuscript.

References

1. Huang BP, Lin HC, Chen CV, Kao HS. Anti-inflammatory effects of Perilla frutescens leaf extract on lipopolysaccharide-stimulated RAW 264.7 cells. Mol Med Rep 2014;10:1077–83.
2. Matsuda H, Morikawa T, Ando S, Toguchida I, Yoshikawa M. Structural requirements of flavonoids for nitric oxide production inhibitory activity and mechanism of action. Bioorg Med Chem 2003;11:1995–2000.
3. Zhang MJ. Cytokines An J. Inflammation and pain. Int Anesthesiol Clin 2007;45:27–37.
4. Arulselvan PT, Fard M, Tan WS, Gothai S, Fakurazi S, Norhaizan MA, et al. Role of Antioxidants and natural products in inflammation. Oxid Med Cell Longev 2016, http://dx.doi.org/10.1155/2015/5276130.
5. Boudet AM. Evolution and current status of research in phenolic compounds. Phytochemistry 2007;68:2722–35.
6. Yuan G, Wahlyquist LM, He G, Yang M, Li D. Natural products and anti-inflammatory activity. Asia Pac J Clin Nutr 2006;15:143–52.
7. Street AR, Prinslool G. Commercially important medicinal plants of South Africa: a review. J Chem 2013, http://dx.doi.org/10.1155/2015/205048.
8. Menezes PPA, Trevisian CCS, Barbalho SM, Guiguer LE. Tamarindus indica l. a plant with multiple medicinal purposes. J Pharmacogn Phytochem 2016;5:50–4.
9. Khalid S, Massadeq SMW, Isra AD, Hashim P, Rejab S, Shaberi MA, et al. In vivo anti-inflammatory effect of aqueous extract of Tamarindus indica l. fruits. Med Princ Pract 2010;19:255–9.
10. De Caluwe E, Halomakav D, Damme VP. Tamarindus indica L. – a review of traditional uses, phytochemistry and pharmacology. Afrika Focus 2010;23:53–83.
11. Hovinga MR, Hartl A, Putscher J, Prehsler S, Buchmann C, Vogl RC. Tamarindus indica L. (Fabaceae): pathway of use in traditional African medicine. J Ethnopharmacol 2010;127:573–88.
12. Bekatsoglu KP. Tamarindus indica and its health related effects. Asian Pac J Trop Biomed 2014;4:567–81.
13. Bhadoriya SS, Ganeshpurkar A, Narwaria J, Rai G, Jain PA. Tamarindus indica: extent of explored potential. Pharmacogn Rev 2011;5:73–81.
14. Dighe NS, Pattan RS, Nirmaal SK, Kalkotwar RS, Gaware VM, Hole MB. Analytic activity of Tamarindus indica. J Pharmacogn Phytochem 2009;1:69–71.
15. Ranavanavona T, Brinkman K, Rakoutba R, Ruebort A, Distribution, biomass and local importance of tamarind trees in south-western Madagascar. Glob Ecol Conserv 2015;4:14–25.
16. Van Wyk BE. The potential of South African plants in the development of new medicinal products. S Afr J Bot 2011;77:812–29.
17. Lakor J, Epleu G, Buyinza MJ, Nyeko P. Analysis of tamarindus (Tamarindus indica L.) value chain in uganda: identification of opportunities and constraints to its commercialization and domestication. JAES 2016;15:101–12.
18. Julio AE, Renato PR, Irina JL, Rafael JAR, Humberto CA, Javier LC, et al. Chemical constituents of Tamarindus indica l. leaves. Rev Cuja Quim 2010;22:65–71.
19. Khanzaada KS, Shaikh W, Sofa S, Kazi GT, Usmanghani K, Kabir A, et al. Chemical constituents of Tamarindus indica l. medicinal plant in Singh. PJ 2008;40:2553–9.
20. Kapur AM, John AS. Antimicrobial activity of ethanolic bark Extract of Tamarindus indica against some pathogenic microorganisms. Int J Curr Microbiol Appl Sci 2014;3:589–93.
21. Comathinayagam S, Tewari BB, Rekha G. Heavy metal and phytochemical studies of crude leaf extract of tamarind (Tamarindus indica). Adv Life Sci 2017;7:1–4.
22. Abubakar MG, Ukewaani NA, Shehu R. An evaluation of the toxic effects of Tamarindus indica pulp extract in albino rats. JPT 2008;3:111–8.
23. Abubakar MG, Yerima MB, Zahriya AG, Ukewaani AN. Acute toxicity and anti-fungal studies of ethanolic leaves, stem and pulp extract of Tamarindus indica. RJPCS 2010;1:104–11.
24. Yerima M, Anuuka JA, Salawu OA, Abd-Agye E. Antihyperglycaemic activity of the stem-bark extract of Tamarindus indica l. on experimentally induced hyperglycaemic and normoglycaemic Wistar rats. PJBS 2014;17:414–8, http://dx.doi.org/10.3923/pjbs.2014.414.418.
25. Amado RR, Prada LA, Arranz EJC, Keita H, Zapata PE, Colarte IA, et al. Development and acute oral toxicity evaluation of a dry extract from Tamarindus indica L. Int J Complement Alt Med 2017;8:00267, http://dx.doi.org/10.15406/ijcam.2017.08.00267.
26. Esclanova-Arranz CJ, Perez-Rosés RR, Rodríguez-Amado J, Morris-Quevedo JH, Mwassa BL, Cabrera-Sotomayor O, et al. Antioxidant and toxicological evaluation of a Tamarindus indica L. leaf fluid extract. Nat Prod Res 2015, http://dx.doi.org/10.1080/14786419.2015.109350.
27. Nwodo UU, Ngene AA, Anaga AO, Chigor VN, Henrietta II, Okoh AI. Acute toxicity and hepatotoxicoxinetic studies of Tamarindus indica extract. Molecules 2011;16:7415–27, http://dx.doi.org/10.3390/molecules16097415.
28. Ashun E, Oladimeji-Salami J, Larrey-Young G, Appah JM. Ameliorative effects of tamarind on the toxicity of Erythromycin sulvene in rabbits. Toxicol Environ Health Sci 2017;19:199–208.
29. Iskandar I, Setiawan F, Sasongko LD, Adnyana IA. Six-month chronic toxicity study of tamarind pulp (*Tamarindus indica* L.) water extract. Sci Pharm 2017;85:10, http://dx.doi.org/10.3390/scipharm8501010.
30. Esclanova-Arranz JC, Garcia-Diaz J, Perez-Roses R, De la Vega J, Rodriguez-Amado J, Morris-Quevedo JH. Effect of Tamarindus indica L. leaves’ fluid extract on human blood cells. Nat Prod Res 2014;28:1485–8.
31. McGregor G, Fiebig B, Wartenberg A, Siren B, Lewith G, Wegener T. Devil’s claw (Harpagophytum procumbens): an anti-inflammatory herbal therapy with therapeutic potential. Phytother Res 2005;19:47–53.
32. Brendler T, Gruenwald J, Ulbricht C, Basch E. Devil’s claw (Harpagophytum procumbens DC). J Herb Pharmacother 2006;6:89–126.
33. Alomar A, Wampoa Bong MC. Anti-infective and anti-inflammatory activities of the aqueous leaf extract of Tamarindus indica L. in albino rats. JIPS 2015;4: http://dx.doi.org/10.5539/jips.v4n2p44.
34. Sundaram SM, Hemshekhar M, Santhosh SM, Paul M, Sunitha K, Thushara MR, et al. Tamarind seed catechins inhibit nitric oxide synthesis, adhesion of monocytes to human umbilical vein endothelial cells, and expression of cellular adhesion molecules. Arch Pharm Res 2007;30:1318–27.
35. Kumar S, Madaan R, Sharma A. Pharmacological evaluation of bioactive principle from the leaves of Turner a aphrodisiaca. J Sci Ind Res 2008;70:740–4.
36. Choi SJ, Islam N, Ali Y, Kim J, Kim MY, Jung YA. Effects of C-glycosylation on anti-diabetic, anti-Alzheimer’s disease and anti-inflammatory potential of apigenin. Food Chem Toxicol 2014;64:27–33.
37. Wang J, Liu X, Xiao L, Zhu L, Wang Q, Yan T. Anti-inflammatory effects of apigenin in lipopolysaccharide-induced inflammatory acute lung injury by suppressing COX-2 and NF-κB pathway. Inflammation 2014;37:2085–90.
38. Wang FS, Brady N, Gottz S, Artur-Sanchez E, Daglia M, Skalicka-Wozniak K, et al. Toluene as an anti-inflammatory and neuroprotective agent: a brief review. Brain Res Bull 2015;119:1–11.
39. Lee AY, Lee S, Kim YH, Lee S, Cho JE. Anti-inflammatory effects of luteolin and luteolin-7-glucoside from Terminalia catappa in RAW264.7 macrophage cells. J Appl Biochem 2016;59:747–54.
40. Ueda H, Yamazaki C, Yamazaki M. Luteolin as an anti-inflammatory and anti-allergic constituent of Perilla frutescens. Biol Pharm Bull 2002;25:1197–202.
41. Zakaria HK, Ahmad ZN, Hashim NS, Adnan MHL, Sharif MHM, Mohamad N, et al. Analytic effect of honey bioactive compounds and its role in reducing morphine tolerance. J Appl Biochem 2015;5:146–50.
42. Jin L, Zeng W, Zhang F, Zhang C, Liang W. Naringenin ameliorates acute inflammation by regulating intracellular cytokine degradation. J Immunol 2017;199:3466–77.
43. Manchope FM, Casagrande R, Verri AW. Naringenin: an anti-inflammatory and anti-fungal agent. Int J Antimicrob Agents 2014;44:35–42.
44. Bodec T, La JD, Epifano F, Grenier D. Naringenin has anti-inflammatory properties in macrophage and ex vivo human whole-blood models. J Periodontal Res 2008;43:400–7.
45. Manchope MF, Calixto-Campos C, Coelho-Silva L, Zarpelon AC. Pinho-Ribeiro FA, Georgetti SR. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, NF-κB and the NO–cGMP–PKG–Kα channel signaling pathway. J Neuroimmune Pharmacol 2016;11:1603105.
46. Hu YC, Zhao Y. Anti-inflammatory effects of naringenin in rats with spinal nerve ligation-induced neuropathic pain. Biomed Rep 2014;2:569–73.
47. Barbosoa-Filho MJ, Fuzevaz RM, Moura DM, Silva SM, Batista Lima VK, Leitão da Cunha VE, et al. Anti-inflammatory activity of alkaloids: a twenty-century review. Rev Bras Farmacogn 2006;16:109–99.
48. Marya HK. Anti-inflammatory potential of alkaloids as a promising therapeutic modality. Lett Drug Discov 2017;14:240–9.
49. Reis-Palacios A, Tavares JF, da Silva MS, Diniz Mde F, de Athayde-Filho PF, Barbossa Filho JM. Anti-inflammatory activity of alkaloids: an update from 2000 to 2010. Molecules 2011;16:8515–34.
50. Michael WW, Fairlie PD, Thong HY. Anti-inflammatory activity of the isooquinoline alkaloid, tetradrine, against established adjuvant arthritis in rats. Agents Actions 1994;42:123–7.
51. Sutrathar RK, Rahaman AM, Ahmad M, Bachar SC, Saha A, Roy TG. Anti-inflammatory and analgesic alkaloid from Sida cordofolia Linn. Pak J Pharm Sci 2007;20:185–8.
52. Park M, Cho H, Jung H, Lee H, Hwang TK. Antioxidant and anti-inflammatory activities of tannin fraction of the extract from black raspberries seeds compared to that from blueberries. J Food Biochem 2008;32:199–207.
53. Komakech R, Matsubisa GM, Kang Y. The wound healing potential of Aspilia africana (Pers.) C.D. Adams (Asteraceae). eCAM 2019;12: http://dx.doi.org/10.1155/2019/7597860. Article ID 7597860.
54. Mota ML, Thomas G, Filho BJ. Anti-inflammatory actions of tannins isolated from the bark of Anacardium occidentale L. Ethnopharmacol 1985;13:289–300.
55. Viana BSG, Bandeira MAM, Moura CL, Souza-Filho PVM, Matos AJF. Analgesic and anti-inflammatory effects of the tannin fraction from Myrciadrum uruva. Revs Fr Phytother 1997;11:118–22.
56. Brezani V, Smejkal K, Hosek J, Tomasova V. Anti-inflammatory natural prenylated phenolic compounds - potential lead substances. Curr Med Chem 2018;25:1094–13.
57. Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva PE, Heredia BJ. Phenolic compounds: natural alternative in inflammation treatment. A review. Cogent Food Agric 2016;2:131412.
58. Arzumanova O, Ozawa N, Ueda Y, Takagi N. Pharmacological studies on the anti-inflammatory action of phenolic compounds. J Dent Res 1986;65:53–6.
59. Gupta S, Ashirvad G, Chandra D, Gupta AK, Finkel K, Guntopal JS. Acute phenol poisoning: a life-threatening hazard of chronic pain relief. Clin Toxicol (Phila) 2008;46:250–3.
60. Alkilok EK, Taltib II, Akdemik SZ. Anti-infective and anti-inflammatory effects of saponin and iridoid glycosides from Verbascomum pterocalyx var matunse Hub-M Air Zac Char Naturaflora 2007;2:813–20.
61. Hassan HS, Sule MI, Musa AM, Musa KY, Abubakar MS, Hassan AS. Anti-inflammatory activity of crude saponin extracts from five Nigerian medicinal plants. Afr J Tradit Complement Altern Med 2012;9:3760–7.
62. Jang J, Kim KH, Han HM, Oh NY, Yoon H, Chung YH, et al. Anti-inflammatory effects of saponins derived from the roots of Platycodon grandiflorus (oratis)-immunized BV2 microglial cells. J Inter Med Res 2008;36:7830–6.
63. Borgi W, Recio CM, Rios LJ, Chouchane N. Anti-inflammatory and analgesic activities of flavonoid and saponin fractions from Zizyphus lotus (L.) Lam. S Afr J Bot 2008;74:320–6.