Carbon Monoxide Inhibits Receptor Activator of NF-κB (RANKL)-Induced Osteoclastogenesis

Feng-Jen Tseng a,b Wei-Tso Chia a Chih-Hung Wang f,g Jia-Fwu Shyu d Guo-Hau Gou c,f Hao-Ai Shui e Huey-Kang Sytwu f Ru-Yu Pan c,f Ching-Feng Weng a

a Department of Life Science and the institute of Biotechnology, National Dong Hwa University, Hualien, b Department of Orthopedics, Hualien Armed Force Hospital, Hualien, c Department of Orthopaedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, d Department of Biology and Anatomy, National Defense Medical Center, Taipei, e Department of Health, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, f Graduate Institute of Medical Science, National Defense Medical Center, Taipei, g Department of Otorhinolaryngology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C.

Key Words
Carbon monoxide • c-Fos; MAPK • Osteoclast differentiation • PPAR-γ • RANKL

Abstract
Background: Low concentrations of carbon monoxide (CO) have anti-inflammatory effects and can reduce bone erosion in a murine collagen-induced arthritis model. The objective of this study was to assess the effects of CO on receptor activator of NF-κB ligand (RANKL), one of the key stimulators of osteoclastogenesis. Methods: The in vivo effects of CO on RANKL expression were assessed in a collagen antibody-induced arthritis model in mice. Cell proliferation and apoptosis were assessed in the RAW246.7 cell line stimulated with RANKL and exposed to either air or CO. The number of tartrate resistant acid phosphatase (TRAP)-positive RAW246.7 cells was also examined after treatment with RANKL and the peroxisome proliferator-activated receptor gamma (PPARγ) agonist, Troglitazone. Results: CO reduced RANKL expression in the synovium of arthritic mice. Although CO slightly increased RAW246.7 cell proliferation, no differences in activated caspase 3 levels were detected. In addition, Troglitazone ameliorated the inhibitory effects of CO on RANKL-induced TRAP expression by RAW246.7 cells. Conclusions: CO suppresses osteoclast differentiation by inhibiting the RANKL-induced activation of PPAR-γ. Given the role of the PPAR-γ/cFos (AP-1) pathway in regulating the transcription factor, NFATc1, the master regulator of osteoclastogenesis, further studies are warranted to explore CO in treating inflammatory bone disorders.

Ching-Feng Weng, No. 1, Sec. 2, University Road, Shoufeng Township, Hualien (Taiwan)
Tel. +886-2-87927185, Fax +886-2-87927186, E-Mail cfweng@mail.ndhu.edu.tw
Introduction

The process of bone remodeling by osteoblasts and osteoclasts is a sequential cycle that is strictly regulated [1]. An imbalance in normal bone homeostasis, including dysregulated osteoclast differentiation and function, underlies many inflammatory and metabolic bone diseases, such as rheumatic arthritis (RA), septic arthritis and periprosthetic osteolysis; therefore, elucidating the mechanisms that regulate this process may identify novel therapeutic targets for diseases in which osteoclastogenesis is altered.

Osteoclast differentiation can be regulated by immune cells, including T cells and natural killer cells that induce production of receptor activator of nuclear factor-κB (NF-κB) ligand (RANKL) [2], a tumor necrosis factor (TNF)-family cytokine [3] that regulates dendritic-cell and T-cell function and survival [4] and is a key driver of osteoclastogenesis and osteoclastic bone resorption [5, 6]. Moreover, RANKL is not only expressed by osteoblasts but also by activated T cells [7], and many inflammatory bone diseases causing bone loss or bone destruction are RANKL-dependent [8]. Given the importance of RANKL in inflammatory bone disease [9], factors that modulate its expression may have therapeutic value. For example, denosumab, a human anti-RANKL monoclonal antibody, is currently being used in osteoporosis and cancer-related bone disease treatment [9, 10].

The expression of RANKL can be modulated by many factors, such as inflammatory cytokines (e.g., tumor necrosis factor-α [TNF-α] and interleukin-1β [IL-1β]), dexamethasone, 1,25 dihydroxyvitamin D3 and parathyroid hormone. In contrast, estrogen and transforming growth factor β (TGF-β) reduce RANKL expression [7, 11]. Impaired osteoclast differentiation was observed in TRPV6−/− knockout mice, possibly resulted from deficiencies in signaling pathways evoked by RANKL and M-CSF, such as NF-κB pathway [12]. Furthermore, carbon monoxide (CO) inhibits RANKL signaling and therefore osteoclastogenesis, resulting in decreased bone loss associated with ovariectomy in mice [13], and treatment with CO releasing molecule-2 (CORM-2) inhibited RANKL-induced osteoclastogenesis in primary cultures of osteoclast precursors in a dose-dependent manner [14]. In a murine collagen-induced arthritis model, CO reduced inflammation and decreased the number of osteoclasts [15], and CORM reduced RANKL expression and joint destruction [16]. However, the mechanisms by which CO elicit these effects remain unknown.

CO, a well known ubiquitous air pollutant, is invisible and lacks odor. The binding affinity of CO for heme is 240 times as compared with oxygen; thus, it can cause hypoxia and death [17]. In addition to environmental sources, mammalians produce endogenous CO as a result of heme degradation. Low concentrations of CO (250 ppm) elicit anti-apoptotic and anti-inflammatory effects in different models [18-21] by inhibiting macrophages, which are osteoclast precursors [13]. Furthermore, inhibition of heme oxygenase-1, which converts heme to CO, suppressed osteoclast differentiation [22]. In RANKL-stimulated RAW 246.7 cells, we previously showed that CO suppressed the number of tartrate resistant acid phosphatase (TRAP)-positive and actin-positive cells [23]. We also showed that CO reduced the expression markers of osteoclast differentiation [23], including cathepsin K, calcitonin receptor, acid phosphatase 5 (ACP5 ;TRAP), matrix metalloproteinase-9 (MMP9) [24], and the master regulator of osteoclastogenesis, nuclear factor of activated T-cells, cytoplasmic 1 (NFATC1) [25]. Moreover, CO suppressed c-Fos expression and c-Jun and JNK phosphorylation [23]. Therefore, the present study was undertaken to analyze the effects of CO in a murine collagen-induced arthritis model. In addition, the effects of CO on cell proliferation and apoptosis were assessed using the RAW 246.7 murine macrophage cell line that can be induced to differentiate into osteoclasts with stimulation by RANKL [26]. Finally, given the role of the nuclear receptor, PPAR-γ, in modulating osteoclastogenesis by directly regulating c-Fos expression [27], we examined the effects of CO and a PPAR-γ agonist on in vitro osteoclastogenesis.
Materials and Methods

Reagents and antibodies
RANKL was obtained from PeproTech (London, UK). The Leukocyte Acid Phosphatase Assay Kit was purchased from Sigma (St. Louis, MO, USA). D-minimal essential medium was obtained from Gibco (Carlsbad, CA, USA). Antibodies specific for caspase-3 and RANKL are from Abcam (Cambridge, UK); anti-actin antibodies are from Sigma.

Induction of an in vivo model of arthritis
Male BALB/cByJNarl (BALB/c) mice 6 weeks of age were purchased from the National Laboratory Animal Center (Taiwan) and kept under specific pathogen-free conditions in the Laboratory Animal Center of the National Defense Medical Center (Taipei, Taiwan).

Anti-type II collagen antibody-induced arthritis (CAIA) in 8-week-old mice was induced as previously described by Terato et al. [28] and is shown in Figure 1. Briefly, on day 0, 2 mg of an Arthrogen-CIA® monoclonal antibody cocktail (Chondrex, Redmond, WA, USA) in 200 µL was injected intravenously. At day 3, the mice received an intraperitoneal injection of 50 µg lipopolysaccharide (LPS) from *Escherichia coli* 111b4 in 100 µL. Animals were then sacrificed on the tenth day. The synovium of the knee was collected for further analysis by resection of the quadriceps followed by scraping of the synovial membrane adjacent to the tibia using a scalpel. All animal experiments were carried out with the approval of Institutional Animal Care and Use Committee at the National Defense Medical Center.

CO exposure
Animals were exposed to air, or air plus CO (250 ppm) continuously 7 days before arthritis induction to 10 days after antibody injection. Cells were exposed to the ordinary incubation conditions (37°C, 5% CO₂) with or without CO. CO was supplied at a concentration of 1% (10,000 ppm) in compressed air and then mixed with fresh air by an air mixer to adjust the concentration to 250 ppm before delivery into the incubator. A CO analyzer with a sensitivity of 10–600 ppm was used to measure CO levels.

H₂O₂ exposure
To test the toxicity of low concentration of CO, cell proliferation assay was performed. H₂O₂ (100μM) treated cells were used as positive control in apoptosis.

In vitro osteoclast differentiation
The murine macrophage cell line, RAW 246.7, obtained from the Bioresource Collection and Research Center (Taiwan) was cultured in 10-cm dishes to confluence then subcultured to 24-well dishes (1×10⁴ cells per well) with additional sterile glass coverslips in each well. Cells were cultured in DMEM with 10% FBS and 1% penicillin/streptomycin solution and maintained in 37°C humidified incubator with 5% CO₂ or plus CO. RANKL (20 ng/mL) was added with and without 0.5μM Troglitazone. The medium was replaced every 2-3 days. After 5 days, the cells were fixed for TRAP staining following the manufacturer’s instructions (Sigma). Osteoclasts are identified under a light microscope as TRAP-positive cells with more than three nuclei. The proportion of TRAP-positive cells was determined from 50 fields (50 images were taken for each field) under 200x magnification. This experiment was repeated three times, and the cells were counted independently by three researchers.

Real-time PCR analysis
Total RNA from the synovial membrane extracts was isolated with Trizol. For cDNA synthesis, 5 µg of total RNA was reverse transcribed at 42°C for 60 min using a RevertAid First Strand cDNA Synthesis kit set (Fermentas, Pittsburgh, PA, USA), and the reaction was terminated by heating at 75°C for 5 min. In addition to the Maxima SYBR Green/ROX qPCR...
master mix kit (Fermentas) the following primer sequences were used for the real-time PCR reactions: RANKL sense, 5′-CCTGA GGCCC AGCCA TTT-3′ and antisense, 5′-CTTGG CCCAG CCTCG AT-3′; cathepsin K sense, 5′-ATGTGGGGGCTCAAGGTTCTG-3′ and antisense, 5′-CATATGGGAAGCATCTCTCGAGT-3′; TRAP sense, 5′-AGCACCCAGGAAGACTAGTT-3′ and antisense, 5′-TGTTGATGTCGCACAGAGG-3′; calcitonin receptor sense, 5′-AGGGATGGAAGAGAGGAG-3′ and antisense, 5′-GGAGTGTCGTCCCAGCACAT-3′; MMP-9 sense, 5′-GGAACTCACACGACATCTCCA-3′ and antisense 5′-GAAACTCACACGCCAGAAGAATTT-3′; and GAPDH, 5′-TGAAGCAGGCATCTGAGGG-3′ and 5′-CGAAGGTGGAAGAGTGGGAG-3′. PCR reactions for each sample were done in triplicate.

Western blot analysis
Cytosolic and nuclear protein extracts were prepared from the synovial membrane extracts with a ProteoJet Cytoplasmic and Nuclear Protein Extraction kit (Fermentas). Cell lysates were resolved via 10% SDS-PAGE and transferred to polyvinylidene fluoride (PVDF) membrane (Millipore, Billerica, MA, USA). Membranes were blocked for 1 h with 5% skim milk in TBST buffer at room temperature after which they were incubated for 1 h at room temperature or overnight at 4°C with primary antibodies. After the membranes were incubated for 1 h at room temperature with the appropriate secondary antibodies, the bands were detected using Immobilon Western chemiluminescent HRP substrate (Millipore).

Cell proliferation assay
The cell proliferation assay was performed as described by Finlay et al. [29] with minor modification. Briefly, RAW 264.7 cells were cultured on 24-well dishes at a density of 1×10⁴ cells per well. After 4 days, culture supernatants were aspirated, and cells were stained with 0.3 mL of methylene blue per well. After 30 min at room temperature, plates were inverted briefly to allow most of the stain to drain away. Unbound stain was washed off by immersion in water (3–4 sequential rinses). Plates were air-dried and stored until further processing. Stained cells were dissolved overnight using 1% Sarkosyl (Sigma) in phosphate-buffered saline (0.3 mL/well), and the solution was transferred to a 96-well plate (0.1 mL/well). Absorbance was detected by a plate spectrophotometer at a sample wavelength of 540 nm.

Statistical analyses
Data were presented as means ± standard deviation. Comparisons between two treatment groups were performed by the two independent samples t-test, and comparisons between three treatment groups were performed by one-way analysis of variance (ANOVA), as well as the least significant difference LSD post-hoc tests for pair-wise groups. Bonferroni corrections for the post-hoc tests were used. All statistical assessments were two-sided and evaluated at the 0.05 level of significance. Statistical analyses were performed using the SPSS 15.0 statistics software (SPSS Inc, Chicago, Illinois, USA).

Results

CO diminished RANKL expression in the synovium of arthritic mice
Given the role of RANKL in inducing osteoclast differentiation [5] and subsequent bone loss [8], we first established an in vivo model of arthritis induced by collagen antibody and assessed RANKL expression in the synovium. As shown in Figure 2A, RANKL mRNA was significantly induced in arthritic mice (p<0.001), but was suppressed with CO (p<0.001). Similar effects were observed with RANKL protein (Fig. 2B).

CO treatment increased RAW 264.7 cell proliferation
To determine the mechanism by which CO reduced RANKL expression, we next assessed its effects on RAW 264.7 cells by determining cell number and activated caspase-3 levels. CO slightly increased the total cell number of RAW cells as compared to the control group, which was already considerably high (0.126 vs. 0.112, respectively; Fig. 3A). Analysis of caspase 3 activation as a measure of apoptosis revealed nearly no apoptosis in both the air and CO treatment groups; H₂O₂ significantly induced greater activated caspase 3 levels (p<0.001; Fig. 3B).
Addition of the PPAR-γ agonist, Troglitazone, reversed the inhibitory effect of CO

The nuclear receptor, PPAR-γ, can regulate osteoclastogenesis by directly regulating c-Fos expression [25]. To determine if the effects of CO on osteoclastogenesis were mediated in part through altered PPAR-γ activation, we next evaluated the effects of the PPAR-γ agonist, Troglitazone, by assessing the number of RAW 264.7 cells expressing TRAP, a mature osteoclast-specific marker [24]. As shown in Figure 4, the number of TRAP-positive cells increased with exposure to air plus RANKL and Troglitazone as compared to the air plus RANKL group (p=0.021). In addition, the number of TRAP-positive cells decreased with CO plus RANKL (p=0.007), but was increased with the addition of Troglitazone to control levels (p=0.006; Fig. 4). Representative images from each treatment group are shown in the right panels.
Discussion

The possible therapeutic applications of CO have been reported in different disease models. For example, Sato et al. [30] reported that CO increased the survival of mouse-to-rat cardiac grafts. Inhalation of CO could also protect mice from death after ischemic lung injury [31]. The protective effects of CO for autoimmune diseases have also been reported [32]. In a murine collagen-induced arthritis model, CORM reduced inflammation, RANKL expression and joint destruction[16]. Furthermore, in RANKL-stimulated RAW 246.7 cells, we previously showed that CO suppressed osteoclastogenesis [23]. Therefore, we postulated that exogenous CO could reduce in vivo RANKL production via inhibition of inflammatory response. In the present study, the suppression of RANKL expression by CO was confirmed in a murine model of arthritis. In RANKL-stimulated RAW 246.7 cells, CO slightly increased cell number to a significant level; however, no changes in activated caspase-3 levels were noted. In addition, the effects of CO on RANKL-induced TRAP expression were abrogated by the PPAR-γ agonist, Troglitazone.

Cross-talk between CO and PPAR via heme oxygenase has been observed [33]. Specifically, PPARγ induces heme oxygenase activity, and heme oxygenase upregulates PPARγ expression [33]. In addition, CO-mediated PPAR-γ activation in LPS-treated RAW 264.7 cells can be inhibited by CORM-2 [34]. Therefore, we also investigated the role of PPAR-γ in the suppression of RANKL-induced osteoclastogenesis by CO. CO inhibited the effects of RANKL on PPAR-γ expression. Moreover, the PPAR-γ agonist, Troglitazone, could reverse the inhibitory effects of CO on osteoclastogenesis. These results are consistent with a recent study that showed that CO can orchestrate a protective effect through the PPAR-γ, which is crucial for the anti-inflammatory response [35]. Although its effects on adipogenesis activation and osteoblastogenesis repression [27] have been well-characterized, few studies have analyzed the role of PPAR-γ in osteoclastogenesis. Administration of the PPAR-γ agonist, thiazolidinediones (TZDs), induces bone loss [36], and an inhibitory effect of the PPAR-γ ligand in osteoclastogenesis has been reported[37-40]. Furthermore, Wan et al. [27] demonstrated that PPAR-γ and its agonist can enhance osteoclastogenesis in vivo and in vivo.
vitro by maintaining the expression of c-Fos, suggesting that PPAR-γ functions as a direct regulator of c-Fos expression and deficiency of PPAR-γ selectively blocks the c-Fos arm of the RANKL signaling pathways [27]. Taken together, CO may regulate RANKL-induced osteoclastogenesis by deactivating the AP-1 complex, through down-regulating c-Fos by interfering with the PPAR-γ pathway in osteoclast progenitors.

Conclusion

To our knowledge, we have shown for the first time that CO suppresses osteoclastogenesis induced by RANKL through suppressing PPAR-γ in RAW 264.7 cells. These findings suggest CO not only can reduce in vivo RANKL expression but also interfere with RANKL-induced osteoclastogenesis. Further studies are necessary to evaluate the possibility of developing CO as a novel anti-resorptive agent to inhibit osteoclastogenesis.

Abbreviations

ANOVA (one-way analysis of variance); ACP5 (acid phosphatase 5); CAIA (collagen antibody-induced arthritis); Calcr (calcitonin receptor); CO (carbon monoxide); CORM-2 (CO releasing molecule-2); IL-1β (interleukin-1β); MMP9 (matrix metalloproteinase-9); NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1); PPAR-γ (peroxisome proliferator-activated receptor gamma); RA (rheumatic arthritis); RANKL (receptor activator of NF-κB ligand); TNF (tumor necrosis factor); TGF-β (transforming growth factor β); TRAP (tartrate resistant acid phosphatase).

Acknowledgements

This study elucidates the mechanism by which carbon monoxide inhibits osteoclastogenesis.

This study shows CO suppresses osteoclast differentiation by inhibiting the RANKL-induced activation of PPAR-γ.

CO not only reduces RANKL expression but also interferes with RANKL-induced osteoclastogenesis.

We thank Dr. Bor-Hwang Kang for providing the co-detect system and Dr. Yuan-Wu Chen for assistance with the cell proliferation analysis.

Disclosure Statement

None

References

1 Takayanagi H, Takayanagi H: Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat Rev Immunol 2007;7:292-304.
2 Wythe SE, Nicolaidou V, Horwood NJ: Cells of the immune system orchestrate changes in bone cell function. Calcif Tissue Int 2014;94:98-111.
3 Asagiri M, Takayanagi H: The molecular understanding of osteoclast differentiation. Bone 2007;40:251-264.
4 Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Gallibert L: A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature 1997;390:175-179.

5 Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombo E, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ: Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998;93:165-176.

6 Weizmann MN: The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013;2013:125705.

7 Theill LE, Boyle WJ, Penninger JM: RANK-L and RANK: T cells, bone loss, and mammalian evolution. Annu Rev Immunol 2002;20:795-823.

8 Kong Y-Y, Feige U, Sarosi I, Bolon B, Tafuri A, Morony S, Capparelli C, Li J, Elliott R, McCabe S, Wong T, Campagnuolo G, Moran E, Bogoch ER, Van G, Nguyen LT, Ohashi PS, Elliot R, McCabe S, Boyd WJ, Penninger JM: Activated T cells regulate bone loss and joint destruction in adjuvant arthritis through osteoprotegerin ligand. Nature 1999;402:304-309.

9 Yasuda H: RANKL, a necessary chance for clinical application to osteoporosis and cancer-related bone diseases. World J Orthop 2013;4:207-217.

10 Cheng ML, Fong L: Effects of RANKL-Targeted Therapy in Immunity and Cancer. Front Oncol 2014;4:329.

11 Walsh MC, Choi Y: Biology of the TRANCE axis. Cytokine Growth Factor Rev 2003;14:251-263.

12 Chen F, Ni B, Yang YO, Ye T, Chen A: Knockout of TRPV6 causes osteopenia in mice by increasing osteoclastic differentiation and activity. Cell Physiol Biochem 2014;33:796-809.

13 Van Phan T, Sul OJ, Ke K, Lee MH, Kim WK, Cho YS, Kim HJ, Kim SY, Chung HT, Choi HS: Carbon monoxide protects against ovariectomy-induced bone loss by inhibiting osteoclastogenesis. Biochem Pharmacol 2013;85:1145-1152.

14 Lin TH, Tang CH, Hung SY, Liu SH, Lin YM, Fu WM, Yang RS: Upregulation of heme oxygenase-1 inhibits the maturation and mineralization of osteoblasts. J Cell Physiol 2010;222:757-768.

15 Bonelli M, Savitskaya A, Steiner CW, Rath E, Bilban M, Wagner O, Bach FH, Smolen JS, Scheinecker C: Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes. PLoS One 2011;6:e24591.

16 Ferrandiz ML, Maicas N, Garcia-Arnandis I, Chen MI, Motterlini R, Devesa I, Joosten LA, van den Berg WB, Alcaraz MJ: Treatment with a CO-releasing molecule (CORM-3) reduces joint inflammation and erosion in murine collagen-induced arthritis. Ann Rheum Dis 2008;67:1211-1217.

17 Von Burg R: Toxicology Update. J Applied Toxicol 1999;19:379-386.

18 Rouset F, Nguyen MV, Grange L, Morel F, Lardy B: Heme oxygenase-1 regulates matrix metalloproteinase MMP-1 secretion and chondrocyte cell death via Nox4 NADPH oxidase activity in chondrocytes. PLoS One 2013;8:e66478.

19 Brouard S, Otterbein LE, Anrather J, Tobiasch E, Bach FH, Choi AM, Soares MP: Carbon Monoxide Generated by Heme Oxygenase 1 Suppresses Endothelial Cell Apoptosis. J Exp Med 2000;192:1015-1026.

20 Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM: Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat Med 2000;6:422-428.

21 Garcia-Arnandis I, Guillem MI, Gomar F, Castanon MA, Alcaraz MJ: Control of cell migration and inflammatory mediators production by CORM-2 in osteoarthritic synoviocytes. PLoS One 2011;6:e24591.

22 Kozakowska M, Szade K, Dulak J, Jozkowitz A: Role of heme oxygenase-1 in postnatal differentiation of stem cells: a possible cross-talk with microRNAs. Antioxid Redox Signal 2014;20:1827-850.

23 Tseng FJ, Chia WT, Shyu JF, Gou GH, Sytwu HK, Hsia CW, Tseng MJ, Pan CY: Interactomics profiling of the negative regulatory function of carbon monoxide on RANKL-treated RAW 264.7 cells during osteoclastogenesis. BMC Syst Biol 2014;8:57.

24 Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2002;2:389-406.

25 Takayanagi H, Kim S, Koga T, Nishina H, Ichihara M, Yoshida H, Saiira A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T: Induction and activation of the transcription factor NFATC1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell 2002;3:889-901.
Collin-Osdoby P, Osdoby P: RANKL-mediated osteoclast formation from murine RAW 264.7 cells. Methods Mol Biol 2012;816:187-202.

Wan Y, Chong LW, Evans RM: PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 2007;13:1496-1503.

Terato K, Harper DS, Griffiths MM, Hasty DL, Ye XJ, Cremer MA, Seyer JM: Collagen-induced arthritis in mice: synergistic effect of E. coli lipopolysaccharide bypasses epitope specificity in the induction of arthritis with monoclonal antibodies to type II collagen. Autoimmunity 1995;22:137-147.

Finlay GJ, Baguley BC, Wilson WR: A semiautomated microculture method for investigating growth inhibitory effects of cytokines on exponentially growing carcinoma cells. Anal Biochem 1984;139:272-277.

Sato K, Balla J, Otterbein L, Smith RN, Brouard S, Lin Y, Csizmadia E, Sevigny J, Robson SC, Vercellotti G, Choi AM, Bach FH, Soares MF: Carbon monoxide generated by heme oxygenase-1 suppresses the rejection of mouse-to-rat cardiac transplants. J Immunol 2001;166:4185-4194.

Fujita T, Toda K, Karimova A, Yan SF, Naka Y, Yet SF, Pinsky DJ: Paradoxical rescue from ischemic lung injury by inhaled carbon monoxide driven by derepression of fibrinolysis. Nat Med 2001;7:598-604.

Chora AA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP: Heme oxygenase-1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Investig 2007;117:438-447.

Ndisang JF: Cross-talk between heme oxygenase and peroxisome proliferator-activated receptors in the regulation of physiological functions. Front Biosci (Landmark Ed). 2014;19:916-935.

Tsotyi K, Ha YM, Kim YM, Lee YS, Kim HJ, Kim HJ, Seo HG, Lee JH, Chang KC: Activation of PPAR-gamma by carbon monoxide from CORM-2 leads to the inhibition of iNOS but not COX-2 expression in LPS-stimulated macrophages. Inflammation 2009;32:364-371.

Bilhan M, Bach FH, Otterbein SL, Ifedigbo E, d’Avila JC, Esterbauer H, Chin BY, Usheva A, Robson SC, Wagner O, Otterbein LE: Carbon monoxide orchestrates a protective response through PPARgamma. Immunity 2006;26:601-610.

Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL: Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005;146:1226-1235.

Mbalaviele G, Abu-Amer Y, Meng A, Jaiswal R, Beck S, Pittenger MF, Thiede MA, Marshak DR: Activation of peroxisome proliferator-activated receptor-gamma pathway inhibits osteoclast differentiation. J Biol Chem 2000;275:14388-14393.

Chan BY, Garland A, Wilson PJ, Buckley KA, Dillon JP, Fraser WD, Gallagher JA: PPAR agonists modulate human osteoclast formation and activity in vitro. Bone 2007;40:149-159.

Patel JJ, Butters OR, Arnett TR: PPAR agonists stimulate adipogenesis at the expense of osteoblast differentiation while inhibiting osteoclast formation and activity. Cell Biochem Funct 2014;32:368-377.

Koufany M, Chappard D, Netter P, Bastien C, Weryga G, Jouzeau JY, Moulin D: The peroxisome proliferator-activated receptor gamma agonist pioglitazone preserves bone microarchitecture in experimental arthritis by reducing the interleukin-17-dependent osteoclastogenic pathway. Arthritis Rheum 2013;65:3084-3095.