SLAMF7 and IL-6R define distinct cytotoxic versus helper memory CD8⁺ T cells

Lucie Loyal¹,², Sarah Warth²,³, Karsten Jürchott²,⁴,⁵, Felix Mölder⁶, Christos Nikolaou²,⁷, Nina Babel⁸, Mikalai Nienen⁵, Sibel Durlanik², Regina Stark⁹, Beate Kruse¹,², Marco Frentsch², Robert Sabat⁷, Kerstin Wolk⁷ & Andreas Thiel¹,²✉

The prevailing ‘division of labor’ concept in cellular immunity is that CD8⁺ T cells primarily utilize cytotoxic functions to kill target cells, while CD4⁺ T cells exert helper/inducer functions. Multiple subsets of CD4⁺ memory T cells have been characterized by distinct chemokine receptor expression. Here, we demonstrate that analogous CD8⁺ memory T-cell subsets exist, characterized by identical chemokine receptor expression signatures and controlled by similar generic programs. Among them, Tc2, Tc17 and Tc22 cells, in contrast to Tc1 and Tc17 + 1 cells, express IL-6R but not SLAMF7, completely lack cytotoxicity and instead display helper functions including CD40L expression. CD8⁺ helper T cells exhibit a unique TCR repertoire, express genes related to skin resident memory T cells (TRM) and are altered in the inflammatory skin disease psoriasis. Our findings reveal that the conventional view of CD4⁺ and CD8⁺ T cell capabilities and functions in human health and disease needs to be revised.

¹Si-M/“Der Simulierte Mensch” a science framework of Technische Universität Berlin and Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. ²Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. ³BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. ⁴Applied Bioinformatics, Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. ⁵Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany. ⁶Genome Informatics, Institute of Human Genetics, Universität Duisburg-Essen, 45147 Essen, Germany. ⁷Psoriasis Research and Treatment Center, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany. ⁸Medical Clinic I, Marien Hospital Herne, Ruhr Universität Bochum, 44625 Herne, Germany. ⁹Adaptive Immunity Lab, Department of Hematopoiesis, Sanquin Blood Supply Foundation, 1066 Amsterdam, The Netherlands. ✉email: andreas.thiel@charite.de
cells circulate through the body or reside in tissues pending pathogen challenge. The classical “division of labor” concept of adaptive cellular immunity separates cytotoxic CD8⁺ T cells with the capacity to kill infected cells from CD4⁺ T cells that express CD40L, and provide help to APCs and B cells. In recent years, it has become evident that T cells are additionally equipped with a vast functional diversity to provide pathogen-tailored responses. During the activation of naive (N) T cells, cytokine milieu-induced transcriptional programs result in the formation of distinct memory T-cell subsets with unique functions and cytokine profiles. Among CD4⁺ memory T cells, these cells can be identified and distinguished ex vivo based on the expression patterns of chemokine receptors related to their homing potential. Combinations of the four chemokine receptors CCR4, CCR6, CCR10, and CXCR3 were utilized for the identification of Th1, Th17 + 1, Th2, Th17, and Th22-type CD4⁺ memory T-cell subsets. Despite the thoroughly assessed CD4⁺ memory T-cell heterogeneity, much less is known about the diversity of memory CD8⁺ T cells. The strategy to delineate functional subsets among CD4⁺ T cells using distinct chemokine receptor expression patterns has been only partly adapted to CD8⁺ T cells. CXCR3 and CCR4 were used for the identification of Tc1 and Tc2 CD8⁺ T cells that produce IFN-γ and IL-4/IL-13 analogous to the corresponding CD4⁺ T-cell subsets. Also IL-17-producing CCR6⁺ CD8⁺ T cells were reported. However, available data so far reported heterogeneous functional profiles for such cells producing either IL-17 alone or in combination with IL-22, IL-10, or IFN-γ. Reports were also inconsistent with respect to the cytotoxic capacity of different memory CD8⁺ T cells, especially those associated with a Tc2 or Tc17 phenotype. We have previously described a prominent fraction of CD8⁺ memory T cells lacking cytotoxic features and instead expressing the helper molecule CD40L, and being capable of exerting helper-type functions in vitro and in vivo. While the differentiation of CD4⁺ T cells into cytotoxic cells has been characterized, it has remained unclear whether and how the formation of distinct cytotoxic versus non-cytotoxic functions in memory CD8⁺ T cells is regulated. In order to gain a greater understanding of memory CD8⁺ T-cell compartment diversification, we therefore conduct a systematical and detailed analysis of human circulating CD8⁺ memory T-cell subsets, and compare them to well-characterized CD4⁺ memory T-cell subsets. Analogous to CD4⁺ memory subsets, chemokine receptor expression signatures enable the delineation of different CD8⁺ memory T-cell subsets Tc1, Tc2, and Tc17, but also Tc17 + 1 and Tc22 with complementary cytokine expression profiles. Intriguingly, Tc2, Tc17, and Tc22 cell subsets, in contrast to Tc1 and Tc17 + 1 cells, completely lack the features of cytotoxic cells and instead display helper features, including the ability to express CD40L. CD8⁺ helper T cells express IL-6R, but not SLAMF7, a molecule expressed by all cytotoxic lymphocytes and exhibit a unique TCR repertoire. Our findings support the notion that memory CD8⁺ T cells are as multifunctional as memory CD4⁺ T cells. The here classified distinct subsets of CD8⁺ helper T cells may be pivotal in protecting barrier sites, such as the skin, but their deregulation can also contribute to the pathogenesis of autoimmune and allergic inflammatory disorders. Moreover, our data demonstrates that cytotoxic and helper phenotypes among memory T cells represent generic immunological codes independent of their MHC-I or MHC-II restriction, as well as associated CD4 versus CD8 expression.

Results

Chemokine receptors delineate CD4⁺ and CD8⁺ T-cell subsets.

We first assessed the expression of human CD4⁺ memory T-cell subsets defining chemokine receptors CXCR3, CCR4, CCR6, and CCR10 in circulating human CD8⁺ memory T cells (Supplementary Fig. 1a). In the peripheral blood of healthy donors, CXCR3 was expressed among CD45RA⁺CCR7⁻ N, CD45RA⁺CCR7⁺ central memory (CM), CD45RA⁻CCR7⁺ effector memory (EM), and CD45RA⁺CCR7⁻ EM with reacquired CD45RA expression (EMRA) CD8⁺ T cells. In contrast, the expression of CCR4 and CCR6 was almost exclusively restricted to EM and CM CD8⁺ T cells, and only CCR10 was additionally found in the fraction of EMRA CD8⁺ T cells. As previously described, combinations of the chemokine receptors delineates the CD45RA⁻ CD4⁺ memory T-cell compartment into Th1 (CXCR3⁺CCR4⁻CCR6⁻), Th2 (CXCR3⁻CCR4⁺CCR6⁺), Th17 + 1 (CXCR3⁺CCR4⁻CCR6⁺), Th17 (CXCR3⁻CCR4⁺CCR6⁻CCR10⁻), and Th22 (CXCR3⁺CCR4⁺CCR6⁺CCR10⁺) cells according to their functional capacities (Fig. 1a). We could demonstrate the presence of CD8⁺ T cells with Tc1- and Tc2-type signatures, but also signatures correlating with Th17 + 1, Th17, and Th22 cells (here referred to as Tc17 + 1, Tc17, and Tc22; Fig. 1a). While the frequencies of the functionally distinct CD4⁺ Th-cell subsets spanned between 5% and 56% of T cells, among memory CD8⁺ T cells, Tc1 cells dominated with an average frequency of 38% followed by Tc17 + 1 cells (10%), Tc2 cells (8%), and Tc17 and Tc22 cells (~1% each) in healthy donors (Fig. 1b). Tc2, Tc17, and Tc22 cells were rather found among CCR7⁻ CM CD8⁺ T cells, whereas Tc1 and Tc17 + 1 CD8⁺ T cells more often display a CCR7⁻ EM phenotype (Supplementary Fig. 1b). The flow cytometric cytokine secretion profiles of ex vivo stimulated, sorted Tc-cell subsets (Fig. 1c), as well as analysis of cell supernatants from 24 h and 72 h after stimulation confirmed the classification into the different functional subsets (Fig. 1d and Supplementary Fig. 1c, d). In accordance with their CD4⁺ Th-cell counterparts, Tc-cell subsets produced similar distinct sets of key effector cytokines.

T-cell subsets utilize equal sets of differentiation programs.

To further characterize the relation of distinct CD4⁺ and corresponding CD8⁺ memory T-cell subsets, we compared transcriptomes of sorted CD4⁺ and analogous CD8⁺ T-cell subsets by whole RNA sequencing. The heat map of the top 1000 most differentially expressed genes among all Tc- and Th-cell subsets, as well as the principal component analysis (PCA) covering all protein-coding genes demonstrated a strong correlation in the gene expression signatures between each CD8⁺, and its respective CD4⁺ T-cell subset upon batch analysis (Fig. 2a, b). We confirmed these associations in an unbiased way by the identification of differentially expressed genes among the Th-cell subsets of published human and mouse GEO datasets, and analyzed their overlap with the gene expression pattern of our Tc-cell subsets (Supplementary Fig. 2a). The similarity between the CD8⁺ and their respective CD4⁺ T-cell subsets was further emphasized by the expression of corresponding key transcription factors that are essential for the differentiation and maintenance of individual Th-cell subsets (Fig. 2c). While the expression of TBX21 was restricted to Th1/Tc1 and Th17 + 1/Tc17 + 1, and RORC to Th17 + 1/Tc17 + 1 and Th17/Tc17 cell subsets, GATA3 gene expression and protein was detectable in Th2, Tc2, but also in Tc17 and Tc22 cell subsets (Fig. 2c, d). In contrast, all CD4⁺ T-cell subsets as well as Tc2, Tc17, and Tc22 cell subsets expressed AHR (Fig. 2c, d). Thus, analogous differentiation patterns in corresponding CD4⁺, as well as CD8⁺ memory T-cell subsets are determined by similar generic molecular codes.
Tc2, Tc17, and Tc22 cell subsets, and clustered the latter ones with the CD4+ T-cell subsets, we assumed that they might represent a CD8+ T-cell fraction with CD4+ helper T-cell characteristics (Supplementary Fig. 2b). Gene ontology overrepresentation analysis (ORA) displayed a high enrichment of immunoregulatory genes and genes that are indicative of tissue migration in helper-type Tc2, Tc17, and Tc22 cells, while only Tc1 and Tc17 + 1 cells expressed genes associated with cytotoxicity, such as Granzymes, Perforin, CRTAM, and NKG7 (Fig. 3a and Supplementary Fig. 2c).

Despite their striking similarity, Tc1 and Tc17 + 1 cells clearly differ from each other in the expression of several genes, such as IL23R, IFNGR1, VCAM1, CD38, TIGIT, and CCR1, while Tc2, Tc17, and Tc22 cells share different combinations of genes, including PTGDR2 (CRTH2), ICOS, TNFSF11 (RANK), and ITGAE (CD103; Fig. 3a).

Flow cytometric analysis identified perforin and granzyme B in resting Tc1 and Tc17 + 1 cells, while Tc2, Tc17, and Tc22 cells expressed the skin-homing marker CLA instead (Fig. 3b, c). Upon activation, Tc2, Tc17, and Tc22 cells...
the secretion of IL-17A and IL-13 was comparable to CD4+ helper T cells (Fig. 3d and Supplementary Fig. 2d). In line with these results, the secretion of IL-17A and IL-13 was homogeneously expressed at intensities comparable to CD4+ T cells (Fig. 3d and Supplementary Fig. 2d). In line with these results, the secretion of IL-17A and IL-13 was homogeneously expressed at intensities comparable to CD4+ T cells (Fig. 3d and Supplementary Fig. 2d).

In line with these results, the secretion of IL-17A and IL-13 was comparably expressed. In control atopic dermatitis patients (Fig. 4c and Supplementary Fig. 4a, b). We also revealed that activated CD8+ helper T-cell subsets induced CCL20 in keratinocytes, which was strongly enriched in psoriatic, but not atopic dermatitis lesions (Fig. 4d, e).

Helper CD8+ memory T cells contribute to skin immunity. Since one of the most prominent differences distinguishing cytotoxic CD8+ Tc1 and Tc17 + 1 cells from helper Tc2, Tc17, and Tc22 cells was the expression of skin-homing markers, we analyzed how CD8+ helper T-cell subsets differ in their TCR repertoire. Previously, Becattini et al. demonstrated that single pathogen-specific CD4+ T cells can differentiate into functionally distinctive memory T-cell clones. To assess whether such plasticity is also the basis
for the heterogeneous CD8+ memory T-cell subsets described here, we performed TCRβ-chain deep sequencing of highly purified CD8+ memory T-cell subsets. An oligoclonal repertoire in Tc1 and Tc22 cells with a few dominating clones suggested a highly specialized response, in contrast to the more polyclonal Tc1, Tc17 + 1, and Tc2 cells (Fig. 5a, b and Supplementary Fig. 5a–c). The distinct Vβ-families of clones between the Tc-cell subsets of the same donor and between the donors imply that those cells are not semi-invariant CD1b-specific cells that rely on the usage of Vβ4-1. However, we observed an enrichment of Vβ13 (TRBV6) and Vβ2 (TRBV20) families among Tc17 + 1 cells, of which up to 10% could be characterized as MAIT cells based on their co-expression of Vα7.2 and CD161 (Supplementary Fig. 6)23,24. A strong overlap of TCRβ-CDR3 clonotypes was demonstrated for the two cytotoxic Tc1 and Tc17 + 1 cell subsets and the three helper Tc2, Tc17, and Tc22 cell subsets covering ~50% of total reads (Fig. 5c, d). Therefore, given the small overlap in their shared clonotypes and shared reads (Fig. 5e), cytotoxic CD8+ T cells and CD8+ helper T cells are most probably involved in diverse antigenic responses. Within such responses, heterogeneous differentiation or plasticity may then allow the differentiation either of Tc1 and Tc17 + 1 cells, or of Tc2, Tc17, and Tc22 cells from single precursor clones.

**SLAMF7 and IL-6R distinguish cytotoxic and helper memory T cells.** To identify markers that can distinguish cytotoxic from helper memory T-cell subsets, we screened for genes that were differentially expressed in T-cell populations with a cytotoxic phenotype (Tc1 and Tc17 + 1) compared to all other Th- and Tc-cell subsets, leading to the identification of 28 genes that were more weakly, and 22 genes that were more strongly expressed in cytotoxic T cells (Fig. 6a). Among them, the two cell surface molecules SLAMF7 and IL-6R displayed a striking converse expression pattern (Fig. 6b). The majority of CD4+ T cells, as well as CD8+ Tc2, Tc17, and Tc22 helper T-cell subsets, but not the cytotoxic Tc1 and Tc17 + 1 cell subsets, expressed high levels of IL-6R (Fig. 6c and Supplementary Fig. 7a). Opposing expression patterns were observed for SLAMF7 that was only expressed by the cytotoxic Tc1 and Tc17 + 1 CD8+ memory T-cell subsets, TEMRA, and all granzyme B and/or perforin-expressing CD8+ T cells (Fig. 6d, e and Supplementary Fig. 7a). Analogously, granzyme B and perforin-expressing cytotoxic CD4+ T cells constituted the small SLAMF7+ T-cell fraction among CD4+ T cells (Fig. 6e). In addition, further subsets with cytotoxic characteristics, such as CD56+ NK, NKT, and ILC1 cells expressed SLAMF7, but not IL-6R (Supplementary Fig. 7b). We observed cell-directed killing only mediated by SLAMF7+, but not IL-6R+ memory CD8+ and CD4+ T cells (Fig. 6f and Supplementary Fig. 7c). SLAMF7+ cytotoxic but not SLAMF7+-helper memory CD8+ T cells dominated antiviral cellular immunity against CMV, whereas ~20% of EBV or influenza M-specific CD8+ T cells are SLAMF7+-consisting of both N and CM T cells (Fig. 6g). In line with these findings, Tc1 cells dominated in organs, such as tonsils and lung, whereas Tc2 cells were overrepresented in the bone marrow (Fig. 6h). The helper versus cytotoxic phenotype was stable under homeostatic conditions, as well as upon stimulation and cultivation in the presence of the cytotoxicity-inducing cytokines IL-2 and IL-12 (Supplementary Fig. 7d). When assessing the usability of SLAMF7 as cytotoxic
marker in mouse, we observed an impaired development of cytotoxic memory CD8+ T cells in SPF mice in analogy to their reduced CD8+ helper T-cell compartment. In contrast, immune experienced pet shop mice exhibit higher frequencies of perforin+ cells, and allowed a separation of cytotoxic and non-cytotoxic cells by IL-6R and SLAMF7 among murine memory CD8+ T cells (Supplementary Fig. 7e, f). A cytotoxic phenotype, including perforin expression, was associated with RUNX3 expression independent of the T-cell lineage affiliation, and mutually exclusive SLAMF7 versus IL-6R expression pattern delineates resting cytotoxic and noncytotoxic lymphocytes in humans and mice.

Discussion
Distinctive cytokine milieu regulates the differentiation of CD4+ memory T cells, including the induction of specific cytokine secretion profiles and distinctive chemokine receptor expression patterns needed for the homing to various tissues4. We demonstrate here that similar mechanism apply for CD8+ memory T cells and the same chemokine receptor expression patterns analogously delineate functionally distinct CD8+ memory T-cell subsets. Tc1 and Tc17+1 cells possess typical CD8+ T cell-related cytotoxic
Fig. 5 Cytotoxic and helper CD8\(^+\) T-cell subsets differ in their TCR repertoire. a Contribution of clonotypes present at frequencies >1% of reads to the total clonotype repertoire (n = 5), mean ± SEM. b Cumulative contributions of clonotypes present at frequencies >1% of total reads in all five donors. Mean ± SEM. c Venn diagram showing a representative overlap of clonotypes of different Tc-cell subsets. d, e Bar diagram showing the percentage of shared clonotypes (d) and shared reads (e) of indicated subsets in all five donors. Mean ± SEM.
psoriasis. Furthermore, their capability to exert strong CD40L expression upon activation could be a critical additional functional driver of autoimmune inflammatory processes. Targeting circulatory helper CD8+ T cells might offer a perspective to reduce systemic effects of autoimmunity and allergic disorders, such as autoantibody formation or the migration of cells to induce inflammation at barrier sites (skin and lung), which needs to be further examined.

It remains to be assessed how helper CD8+ T cells are induced. The expression of the CD8+ helper T-cell markers CCR4 and CLA can be imprinted in T cells upon activation in skin-draining lymph nodes50–52. We hypothesize that a specific repertoire of antigens, presumably originating from the skin, is involved in this primary induction of non-cytotoxic CD8+ T cells. Their skin-homing signature suggests that they are able to migrate back to
the origin of the initial challenge. We could demonstrate here that the CD8+ T cell compartment of conventional laboratory mice held under SPF conditions, in contrast to immune competent pet shop mice, almost lacked helper, as well as cytotoxic CD8+ T-cell subsets comparable to the human situation. These observations may support the findings of Belkaid and colleagues that identified Tc17 cells as responders against commensal-derived peptides33,34. Therefore, further studies have to be performed in adapted murine systems or in human model systems, in order to provide physiological environments that are apparently critical for the generation of CD8+ helper T cells.

Our data supports the notion that T-cell memory embodies universal immunological codes independent of MHC-restriction, and associated CD4 versus CD8 expression. CD4+ and CD8+ T cells share the flexibility in their differentiation into different memory T cell subsets with unique analogous cytokine profiles and effector functions. Moreover, our and others’ findings demonstrate that not only does the CD4+ T cell compartment include cytotoxic effector cells, but also that a substantial fraction of memory CD8+ T cells display functional helper characteristics. Circulating CD8+ helper T cells may represent a distinct force in cellular immunity, being able to migrate to and exert specific functions at barrier sites, such as the skin, and hence sustain a versatile immunity. Based on our results, the capabilities and functions of CD8+ T cells in human health and disease have to be reevaluated.

Methods

Mice. C57BL/6j mice were purchased from Charles River Laboratories, bred and housed under SPF conditions at the institution’s animal facility (Charité). Wild Mus musculus domesticus were purchased from pet shops in Berlin, Germany. Sex and age-matched mice were used for each experiment. All animal experiments were performed in accordance with German law and approved by the LaGeSo, Berlin.

Human blood and tissue. Human blood was obtained from buffy coats (DRK Blutspendedienst Ost) or from healthy volunteers. Blood and skin biopsies from psoriasis and atopic dermatitis patients, as well as skin biopsies from healthy volunteers were obtained by K. Walk, R. Sabat, G. Kokolakis, and G. Heine, Charité, after informed consent (Supplementary Table 1). Disease activity status was classified by characteristic skin lesions and medical records. Atopic dermatitis was diagnosed according to published criteria22. All atopic dermatitis patients expressed increased serum IgE (median 756 kU/L, IQR [3987:174], norm <100 kU/L) and were sensitized against >3 common aeroallergens. Tonsils were kindly provided by C. Romagnani, lung tissue from A. Hocke, and bone marrow from the Cell and Tissue Harvesting Core Unit (all Charité). All sampling and processing were performed in accordance with the animal facility (Charité). Wild Mus musculus domesticus were purchased from pet shops in Berlin, Germany. Sex and age-matched mice were used for each experiment. All animal experiments were performed in accordance with German law and approved by the LaGeSo, Berlin.

Human blood. Peripheral blood mononuclear cells (PBMCs) were separated from heparinized whole blood by density centrifugation (Biocol, Biocrhum). Cells were cultured in RPMI 1640 medium (Gibco) supplemented with 100 U/mL penicillin, 0.1 mg/mL streptomycin, and 10% inactivated human AB serum (Pan Biotech). Human lung, tonsils, and bone marrow. Lung and tonsils were cut into small pieces prior to mashing through a 70 µm filter with the end of a syringe plunger. Bone marrow was mashed directly. After washing, cells were passed through a 30 µm filter and target cells enriched by density centrifugation.

Flow cytometry. Following fluorochrome-conjugated antibodies titrated for their optimal dilution were used for surface cell staining: Human: CD3 (clone UCHT1), CD4 (RPA-T4), CD8 (RPA-T8), CD45RA (HI100, CC5, 2G4, 0G1, 1G6), CD57 (E29H4), CD101 (658B-5), CCR3 (D25H7), SLAMF7 (162.1), IL-6R (UV4), CD57 (HCD57), CD28 (CD28.2), CD103 (Ber-Act7), CD69 (FN50), CD101 (BB27), CD9 (H9a). Mouse: CD3 (17A2), CD4 (RM4-5), CD8 α (25-3-67), CD62L (MEL-14), CD44 (IM7), CD19 (6D3), NK1.1 (PK136), IL-6R (D771517), SLAMF7 (4G2). Surface staining was conducted for 15 min at room temperature (RT). To avoid unspecific Fc-receptor binding, human cells were stained in the presence of 1 mg/mL Beriglobin (CSL Behring) and murine cells with 2 µg/mL anti-FcγRII (2.4G2). For intracellular stainings, dead cells were excluded by incubation with LIVE/DEAD dye (ThermoFisher Scientific) for 10 min prior to surface staining. Intracellular staining (30 min at RT) was carried out after fixation and permeabilization of cells with FACS-Lysing and FACS-Perm2 Solution (BD Biosciences) with the following antibodies: Human: granzyme B (GB11), perforin (B-D48), IL-4 (MP4-25D2), IL-17A (BL168), IL-22 (22URTI), IFN-γ (B27), CD40L (5C8). Mouse: IL-17 (TC11-18H10.1), IL-13 (eBio13A), CD40L (MR1). For intranuclear transcription factor staining Nuclear Factor Fix Perm (Biolegend), and the following antibodies: GATA3 (REAA174), AHR (B10.6), and IFN-γ (B27). Human cells were stained with FoxP3 fixation and permeabilization (Biolegend). Flow cytometric analysis was conducted on a LSR II flow cytometer (BD) and the FACS data were analyzed with FlowJo (Tree Star). All samples were pre gated on alive, doublet-free lymphocytes. In mouse samples, CD19 and NK1.1 were additional stained in the dump channel and excluded from analyses.

Mass cytometry. A total of 3 × 10^6 human PBMCs were stained with metal-conjugated antibodies in 100 µL final volume in a 96-well deep well plate for 30 min at RT. A total of 0.5 µM cisplatin (Fluidigm) was added during the last 10 min to enable the exclusion of dead cells. Cells were washed twice with flow cytometry buffer (0.1% BSA, 2 mM EDTA in PBS) and pellet was resuspended in 300 µL of 2% parafomaldehyde in PBS, and incubated at 4 °C overnight. The following day, fixed cells were washed once with flow cytometry buffer and permeabilized using 1× sonapon 1% permeabilization buffer (Ebiosciences) in PBS on ice for 1 h. After washing with flow cytometry buffer, the pellet was resuspended in 1 mL of 12.5 nM nucleic acid Inter calator-Ir solution (Fluidigm), and incubated 30 min at RT. Cells were washed twice with flow cytometry buffer, twice with ultrapure water, and adjusted to 5 × 10^6 cells/mL for acquisition. Measurement was conducted on a CyTOF2 mass cytometer upgraded to Helios specifications (Fluidigm). EQ Four Element Calibration Beads (0.1x; Fluidigm) were added to the samples for data normalization of the FCS file using the CyTOF software. Tuning was performed.
each day before measurement according to manufacturer's guidelines. Following antibodies were conjugated with metals (MaxPar, Fluidigm) in house, titrated for their optimal dilution, and used for CyTOF staining. CD3 (HECD1 (Leu16)), TCRy/8 (B1), CD69 (FN50), CD11b (RCF44), CCR4 (L291H4), CD24 (2H7), CD127 (A19D55), CD123 (6H6), CD103 (Becton–Dickinson), CD4 (M5E2), CXCXR3 (G029H7), CD11c (Bul5), CD28 (CD28.2), CDF (GNN/134D7), IgD (Ia6-2), CD56 (NCAM16.2), CD45RO (UCHL1), CCR6 (G043E3), CD1 (UCHT1), CCR7 (G043H7), CD4 (T4), CD25 (2A3), SLAMF7 (162.1), CD38 (HIT2), CD39 (A1), CD49a (WM59), IL-6R (UV4), HLA-DR (L243), CD16 (3G8).

Cell sorting. For cell sorting, human CD8+ and CD4+ T cells were enriched from PBMCs with corresponding microbeads (Miltenyi Biotec), stained for the indicated surface markers, and subsets were sorted on a FACs Aria (BD). For the sorting and analysis of live cells, 100 nM DAPI (Sigma–Aldrich) or 1 mg/mL propidium iodide (ThermoFisher Scientific) was added.

In vitro stimulation. For the detection of the cytokine secretion potential, 1 × 10^6 cells/mL were stimulated polyclonally with 10 ng/mL phorbol-12-myristat-13-acetate (PMA) and 1 mg/mL PMA/ionomycin (Sigma–Aldrich) in the presence of 2 mg/mL BrefeldinA (Sigma–Aldrich). After stimulation for 6 h at 37 °C, 5% CO2, the cytokines were stained intracellularly as indicated above and measured by flow cytometry.

In vitro cultivation. For long-term cultivation, 96-well plates were coated with 1 µg/mL a-CD3 (clone UCHT1, BD Bioscience) and 3 µg/mL a-CD28 (clone CD28.2, BD Bioscience) overnight at 4 °C. A total of 5 × 10^4 cells/well were loaded in AB medium supplemented with recombinant cytokines IL-7/IL-15 or IL-2/IL-12 (all Miltenyi, 10 ng/mL final concentration). After 48 h, cells were transferred onto uncoated plates and cultivated for five further days. Upon stimulation with PMA/A20 Lipo in the presence of BrefA, the cells were stained intracellularly and measured by flow cytometry.

Redirected lysis assay. P815 cells were rested for 24 h in FCS-free medium prior to the experiment. The cells were labeled with 10 µM cell proliferation/viability dye dye (eBioscience) and cultivated 30 min at RT in the presence or absence of 5 µg/mL a-CD3 (clone UCHT1, BD Bioscience). A total of 1 × 10^6 coated or uncoated P815 were co-cultured with sorted CD45RA SLAMF7-IL-6R- or CD45RA SLAMF7-IL-6R- CD8+ or CD4+ T cells isolated from PBMC at E:T ratio 10:1 in 200 µL whole p815 medium in a 96-well plate. P815 incubated alone or with 0.05% Tween-20 (Sigma Aldrich) served as controls. After 6 h incubation at 37 °C, 5% CO2, the cells were washed with PBS, stained for CD3 (clone SK7) and CD69, and fixated 20 min with 4% PFA (Sigma Aldrich) at 4 °C. The viability was assessed by the reduction of the viability dye intensity among viability dye-CD3+ cells. The percent of specific lysis was calculated as 100 × (% alive p815(E:T, a-CD3)/% alive p815(E:T, no a-CD3)).

Multiplex ELISA. Sorted CD8+ and CD4+ T-cell subsets were cultivated at 1 × 10^4 cells/100 µL AB medium in aCD3/aCD28 (1 µg/mL clone UCHT1/13 µg/mL clone CD28.2, both BD) coated 96-well plates for 24 or 72 h. Multiplex ELISA (Q-Plex™ Array, Quansys) was performed with 50 µL supernatant according to the manufacturer's protocol. Infrared emission was analyzed with Odyssey (LiCor) at various intensities. Data analysis was performed with Q-view software (version 3.09, Quansys).

Keratinocyte activation assay. Supernatants from stimulated T cells, or medium as control, were transferred at 2% final concentration to primary human keratinocytes (CellSystems) cultured in KGM medium (Lonza), and incubated for a further 24 h. Cells were harvested and induction of CCL20 and CCL26 was assessed by RT-qPCR.

RT-qPCR. TRizol® Reagent (ThermoFisher Scientific) was utilized for RNA isolation according to the manufacturer's protocol and reverse transcription of mRNA was conducted, as described previously. Triplicates of each sample were analyzed by real-time PCR (StepOne plus, ThermoFisher Scientific) using Maxima Probe/ROX qPCR Master Mix, ready-to-use detection assays for CCL20, CCL26, CCR4, and CCR7 (ThermoFisher), and of the downregulated genes of the Tc subpopulations were calculated (package DESeq2, version 1.14.1). In order to remove technical differences between the two studies, a batch compensation using the donor ids as batch definition was done (package smo). Top 1000 most variable expressed genes across all samples from this set were used in a PCA. PC1 and PC2 are displayed in the plot. Comparison of our dataset with published GEO sets that have analyzed Th-cell subsets GSE43005 (human, ex vivo), GSE49703 (human, after 36 h in vitro stimulation), and GSE41308 (mouse, in vitro generated) were conducted by an extraction of differentially expressed genes of the Th subpopulations of the GEO datasets (false discovery rate (FDR) corrected, P adj > 0.05, minimal absolute log2 fold change ≥ 1). After calculation of log2 fold changes of all Tc subpopulations of our dataset, the enrichment of the Th-signatures in the distribution of the log2 fold changes of the upregulated and of the downregulated genes of the Tc subpopulations were calculated (Kolmogorov–Smirnov test). ORA: differential expressed genes between Tc1/Tc17 + 1 cells as one group and Tc2/Tc17/Tc22 cells as the other group were determined by fitting models of negative binomial distributions to the normalized and log2-transformed data using the DESeq2 package in R. Raw P values were adjusted for multiple testing using fdr. Significant differential expressed genes were determined by adjusted P values < 0.05 and a minimal absolute log2 fold change of 2. Overrepresentation of genes belonging to the biological process branch of the gene ontology system within the sets of either upregulated or downregulated genes were analyzed with the topGO package in R (topGO: Enrichment Analysis for Gene Ontology, R package version 2.26.0.). The background set were all genes in the analysis and the overrepresentation was calculated using the classical Fisher test. Due to the high redundancy of the gene ontology system, raw P values were not compensated for multiple testing.

TCR-sequencing. Analyses of TCR repertoire was performed by next-generation sequencing of CD3R b-chain. Genomic DNA was isolated from FACS sorted Tc-cell subsets using AllPrep DNA/RNA Micro Kit (Qiagen) followed by CD3R- Tc-cell amplification, using primers covering all functional Vγ genes and of the Illumina HiSeq 1500 system with High Output chemistry (50 cycles, single-read). Raw data were quality controlled by fastQC and reads were aligned using Bowtie2. Reads were summarized per gene using the featureCount algorithm implemented in the package Rsubread. Raw counts of protein-coding genes were normalized and transformed. The contrast algorithm (package svi) was used to remove variances in gene expression which were associated with the CD4–CD8 contrast only and donor-specific differences. Therefore, CD4 or CD8 samples were combined with the donor id and used as batch definition. Top 1000 most variable expressed genes across all samples of either non-compensated or compensated data were used to generate heatmaps of unsupervised hierarchical clustering (euclidean distances of scaled data and complete linkage). PCA: normalized and compensated data for all genes were scaled and subjected to a PCA using singular value decomposition. The first two principle components were shown in the plot. Signature genes distincting the cell subsets were identified by fitting generalized linear multinomial models to the normalized data via penalized maximum likelihood (package glmnet). RNA-Seq data for dermal and epidermal subsets were obtained from GEO database (GSE83637). Raw counts were combined with raw expression data from this study, normalized, and variance stabilized transformed (package DESeq2).

Statistical analysis. Data is presented as mean ± standard error of the mean (SEM) or mean ± standard deviation. All statistics were conducted with GraphPad Prism (GraphPad Software) or R statistical environment. The n indicates the number of samples/donors. P values were set as: *P < 0.05, **P < 0.01, ***P < 0.001.

Received: 14 February 2020; Accepted: 18 September 2020; Published: online 11 December 2020

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19002-6 | www.nature.com/naturecommunications
References

1. Geginat, J. et al. Plasticity of human CD4 T cell subsets. Front. Immunol. 5, 626 (2014).
2. Jameson, S. C. & Masopust, D. Understanding subset diversity in T cell memory. Immunity 48, 214–226 (2018).
3. Mahnke, Y. D., Brodie, T. M., Sallusto, F., Roederer, M. & Lugli, E. The who’s who of T-cell differentiation: human memory T-cell subsets. Eur. J. Immunol. 45, 2791–2802 (2015).
4. Sallusto, F. Heterogeneity of human CD4+ T cells against microbes. Annu. Rev. Immunol. 34, 317–336 (2016).
5. Trifari, S., Kaplan, C. D., Tran, E. H., Crellin, N. K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 15, 57–67 (2014).
6. Gacosta-Rodriguez, E. V. et al. Surface phenotype and antigenic specificity of human interleukin 17–producing T helper memory cells. Nat. Immunol. 8, 639–646 (2007).
7. Bonecchi, R. et al. Differential expression of chemokine receptors and chemotactic responsiveness of type 1 T helper cells (Th1s) and Th2s. J. Exp. Med. 187, 129–134 (1998).
8. Sallusto, F., Lenig, D., Mackay, C. R. & Lanzavecchia, A. Flexible programs of chemokine receptor expression on human polarized T helper 1 and 2 lymphocytes. J. Exp. Med. 187, 875–883 (1998).
9. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potency of human CD4+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).
10. Kondo, T., Takata, H., Matsuki, F. & Takiguchi, M. Cutting edge: phenotypic characterization and differentiation of human CD8+ T cells producing IL-17. J. Immunol. 182, 1794–1798 (2009).
11. Srenathan, U., Steel, K. & Taams, L. S. IL-17+ γδ T cells are memory T cells poised for fast and efficient secondary immune responses. Blood 122, 3406 (2013).
12. Becattini, S. et al. Functional heterogeneity of human memory CD4+ T cells clonied by pathogens or vaccines. Science 347, 400–406 (2015).
13. Leptore, M. et al. Parallel T-cell cloning and deep sequencing of human MAIT cells reveal stable oligoclonal TCRβ repertoire. Nat. Commun. 5, 1–15 (2014).
14. Reinkin, P. et al. A TCR β-chain motif biases toward recognition of human CD1 proteins. J. Immunol. 203, 3395–3406 (2019).
15. Cinca, C., Vaccio, T., Vacchio, M. S. & Bosselut, R. A STAT3–dependent transcriptional circuitry inhibits cytotoxic gene expression in T cells. Proc. Natl. Acad. Sci. USA 114, 13236–13241 (2017).
16. Cruz-Guilloty, F. et al. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J. Exp. Med. 206, 51–59 (2009).
17. Serrouki, Y. et al. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes. eLife 7, e30496 (2018).
18. Vaccio, M. S. et al. A ThPOK-LRF transcriptional node maintains the integrity and effector potential of post-thymic CD4+ T cells. Nat. Immunol. 15, 947–956 (2014).
19. Agi, R. et al. The transcription factor GATA3 actively represses Runx3 protein–regulated production of interferon-gamma. Immunity 32, 507–510 (2010).
20. Xiong, Y. et al. Thpok–independent repression of Runx3 by Gata3 during CD4+ T-cell differentiation in the thymus. Eur. J. Immunol. 43, 918–928 (2013).
21. Comte, D. et al. Signaling lymphocytic activation molecule family member 7 engagement restores defective effector CD8+ T cell function in systemic lupus erythematosus. Arthritis Rheumatol. 69, 1035–1044 (2017).
22. Schaper, F. & Rose-John, S. Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth Factor Rev. 26, 475–487 (2015).
23. Linehan, J. L. et al. Non-classical immunity controls microbiota impact on skin immunity and tissue repair. Cell 172, 784–796.e18 (2018).
24. Gisler, O. et al. Commensal-specific T cell plasticity promotes rapid tissue adaptation to injury. Science 363, eaat6280 (2019).
25. Gisler, O. et al. Common clonal origin of central and resident memory T cells fuels non-homeostatic skin immunization. Nat. Med. 26, 475–487 (2015).
26. McCully, M. L. et al. Epidermis instructs skin homing receptor expression in human T cells. Blood 120, 4591–4598 (2012).
27. McCully, M. L. et al. CCR8 expression defines tissue-resident memory T cells in human skin. J. Immunol. 200, 1639–1650 (2018).
28. Park, S. L. et al. Local proliferation maintains a stable pool of tissue-resident memory T cells after antiviral recall responses. Nat. Immunol. 19, 183–191 (2018).
29. Jiang, X. et al. Skin infection generates non-migratory memory CD8+ T cells providing global skin immunity. Nature 483, 227–231 (2012).
30. Kilczuk, M. M. et al. Human CD4+CD103+ cutaneous resident memory T cells identified in the circulating blood of healthy individuals. Sci. Immunol. 4, eaav8995 (2019).
31. Huber, M. et al. A Th17-like developmental process leads to CD8+ Tc17 cells with reduced cytotoxic activity. Eur. J. Immunol. 39, 1716–1725 (2009).
32. Huber, M. et al. IL-17A secretion by CD8+ T cells supports Th17-mediated autoimmune encephalomyelitis. J. Clin. Invest. 123, 247–260 (2013).
33. Vazquez-Correa, A. et al. ThPOK production in central nervous system infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am. J. Pathol. 172, 146–155 (2008).
34. Dakhama, A. et al. IL-13–producing BLT1-positive CD8 cells are increased in asthma and are associated with airway obstruction. Allergy 68, 666–673 (2013).
35. Miyahara, N. & Gelfand, E. W. CD8+ T Cells Play a Key Role in the Development of Allergic Lung Inflammation. Allergy Front. Classif. Pathomechanisms 167–168 (2019) https://doi.org/10.1007/978-3-632-28315-9_11.
36. Sawicka, E., Noble, A., Walker, C. & Kemeny, D. M. Tc2 cells respond to soluble antigen in the respiratory tract and induce lung eosinophilia and bronchial hyperresponsiveness. Eur. J. Immunol. 34, 2399–2408 (2004).
37. Coulter, E. M. et al. Measurement of CD4+ and CD8+ T-lymphocyte cytokine secretion and gene expression changes in p-phenylenediamine allergic patients and tolerant individuals. J. Investig. Dermatol. 130, 161–170 (2010).
38. Hijnen, D. et al. CD8+ T cells in the lesional skin of atopic dermatitis and psoriasis patients are an important source of IFN-γ, IL-13, IL-17, and IL-22. J. Investig. Dermatol. 133, 973–979 (2013).
39. Res, P. C. M. et al. Overrepresentation of IL-17A and IL-22 producing CD8 T cells in lesional skin suggests their involvement in the pathogenesis of psoriasis. PLOS ONE 5, e141108 (2010).
40. Campbell, D. J. & Butcher, E. C. Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J. Exp. Med. 195, 135–141 (2002).
41. Campbell, J. J. et al. The chemokine receptor CCR4 is necessary for antigen-driven cutaneous accumulation of CD8 cells in psoriatic plaques. J. Eur. Acad. Dermatol. Venereol. 24, 317–328 (2010).
42. Volk, K. et al. Increased levels of lipocalin 2 in palmoplantar psoriatic plaques. J. Investig. Dermatol. 90, 68–74 (2018).
43. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357 (2012).
44. Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E. & Storey, J. D. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28, 882–883 (2012).
45. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
46. Bacher, P. et al. Regulatory T cell specificity directs tolerance versus allergy against aeroallergens in humans. Cell 167, 1067–1078.e16 (2016).
47. Drubac, M. et al. TCR repertoire analysis by next generation sequencing allows complex differential diagnosis of T cell–related pathology. Am. J. Transplant. 13, 2842–2854 (2013).
Acknowledgements
The authors thank the BCRT Core Units Flow Cytometry, Cell and Tissue Harvesting and Next-Generation Sequencing for their professional help. LL was supported by the International Max Planck Research School for Infectious Disease and Immunology (IMPRS-IDI), Berlin and is a member of the ZIBI Graduate School Berlin. This work was supported by SFB Tr36 project A11, BCRT Key Project D2, and the Einstein Center for Regenerative Therapies Project “TiSSueHeLP”. FM acknowledges funding from the EFRE.NRW program OsteoSys (EFRE-0800427; LS-1-1-019c). We thank C. Romagnani/D. Hernandez, A. Hocke/K. Hönzke, G. Kokolakis, and G. Heine for the blood and tissue samples, and C. Berek, B. Jack, U. Klein, and J. Braun for critical reading.

Author contributions
Conceptualization: LL and AT; methodology: LL, SW, SD, R. Stark, R. Sabat, and KW; Formal analysis: KJ and FM; investigation: LL, SW, KW, CN, and BK; writing—original draft: LL; funding acquisition: MF and AT; resources: NB, MN, R. Sabat, and KW; and supervision: MF and AT.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19002-6.

Correspondence and requests for materials should be addressed to AT.

Peer review information Nature Communications thanks Priyanka Subrahmanyam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020