Simple Economies are Almost Optimal

AMIR BAN, Weizmann Institute of Science, Israel
AVI COHEN, Tel Aviv University, Israel
SHAHAR DOBZINSKI, Weizmann Institute of Science, Israel
ITAI ASHLAGI, Stanford University, USA

Additional Key Words and Phrases: Mechanism Design; Simple Auctions; Revenue Maximization; PTAS

ACM Reference Format:
Amir Ban, Avi Cohen, Shahar Dobzinski, and Itai Ashlagi. 2021. Simple Economies are Almost Optimal. In Proceedings of the 22nd ACM Conference on Economics and Computation (EC ’21), July 18–23, 2021, Budapest, Hungary. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3465456.3467563

Optimal mechanisms are often unnatural or hard to implement. Thus, an influential line of work in Algorithmic Mechanism Design attempts to develop suboptimal but simple mechanisms that are almost as good as optimal ones. Some of the numerous examples include [2, 6–8].

Other papers suggest to tackle the inapplicability of optimal auctions by approaching the problem from a different perspective: instead of changing the mechanism, change the market. The seminal paper of Bulow and Klemperer [1] initiated this line of research: it shows that the optimal revenue that can be extracted from an economy with \(n \) bidders whose values are drawn i.i.d. from some regular distribution \(D \) is at most the revenue of a second price auction with \(n + 1 \) bidders, all drawn i.i.d. from \(D \). That is, recruiting a single additional bidder allows the auctioneer to use the simple second-price auction without losing much revenue. Follow-up papers presented approximate versions of similar statements in other settings, e.g., for certain non-regular distributions [9], when the distributions are not identical [5, 6], and when there are multiple heterogeneous items [3, 4].

In this paper we suggest to explore a new market-changing approach. Consider a hypothetical scenario of a seller who intends to auction some item. The seller can invest money and effort in advertising in different market segments in order to recruit bidders to the auction. Alternatively, the seller can have a much cheaper and focused marketing operation and recruit the same number of bidders from a single market segment. Which marketing operation should the seller choose? Our goal is to compare the effectiveness of the different strategies.

More formally, let \(D = \{D_1, \ldots, D_n\} \) be a set of distributions. An economy \(E \) consists of \(n \) bidders, where the value of each bidder \(i \) is independently drawn from some \(D \in D \). For each economy \(E \), let \(R_E \) be the revenue of the optimal auction for the economy \(E \). The ideal revenue is defined to be \(\max_E R_E \).

Our goal is to determine whether there exists some distribution \(D \in D \) such that the revenue of the optimal auction for an economy where the values of the bidders are drawn i.i.d. from \(D \) (a homogeneous economy) provides a good approximation to the ideal revenue of the economy. In other words, we would like to determine whether the revenue that can be extracted by recruiting all bidders from the same population is comparable to the revenue that can be generated by...
handpicking the bidders in a way that maximizes the revenue. Our main result shows that it is always possible to extract a constant fraction of the ideal revenue with a homogeneous economy:

Theorem: Let \(D = \{ D_1, \ldots, D_n \} \) be a set of distributions. There is a homogeneous economy \(E \) where the value of each bidder \(i \) is independently drawn from the same distribution \(D \in D \), such that the revenue of an optimal auction for \(E \) is at least a \(\frac{1}{2} \cdot (1 - \frac{1}{e}) \)-fraction of the ideal revenue.

The mechanism designer is often unable to freely choose an auction format. Thus, we now consider situations in which the mechanism designer is constrained to use a second price auction in all economies, either because, e.g., it is not allowed to tailor a mechanism based on the specifics of the distributions or because of the simplicity of a second price auction. For each economy \(E \). We prove that homogeneous markets approximate well the ideal second-price revenue.

Theorem: Let \(D = \{ D_1, \ldots, D_n \} \) be a set of distributions. There exists a homogeneous economy \(E \) where the value of each bidder is independently drawn from the same distribution \(D \in D \), such that the revenue that can be generated by a second price auction in \(E \) is at least a \(c \)-fraction of the ideal second-price revenue, for some constant \(c > 0 \).

Next, we consider whether being able to recruit bidders from a small number of market segments (in contrast to just one, as in homogeneous markets) allows to significantly extract more revenue. We answer this question in the affirmative, at least when restricted to the second-price auction:

Theorem: Let \(D = \{ D_1, \ldots, D_n \} \) be a set of distributions. There exists some function \(f \) that depends only on \(\varepsilon \), such that for every constant \(\varepsilon > 0 \) the following holds: there exists a set \(D' \subseteq D \), \(|D'| = f(\varepsilon) \), and an economy \(E \) where the value of each bidder is drawn independently from some distribution \(D \in D' \), such that the revenue that can be generated by a second-price auction for \(E \) is at least a \((1 - \varepsilon) \)-fraction of the ideal second-price revenue.

The full paper can be found at: http://arxiv.org/abs/2106.01019

The first and third authors were supported by BSF grant 2016192 and ISF grant 2185/19. The second author was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 866132), and by the Israel Science Foundation (grant number 317/17).

REFERENCES

[1] Jeremy Bulow and Paul Klemperer. Auctions versus negotiations. *The American Economic Review*, 86(1):180–194, 1996.

[2] Shuchi Chawla, Jason D Hartline, David L Malec, and Balasubramanian Sivan. Multi-parameter mechanism design and sequential posted pricing. In *Proceedings of the 42nd ACM symposium on Theory of computing*, pages 311–320, 2010.

[3] Alon Eden, Michal Feldman, Ophir Friedler, Inbal Talgam-Cohen, and S Matthew Weinberg. The competition complexity of auctions: A Bulow-Klemperer result for multi-dimensional bidders. In *Proceedings of the 2017 ACM Conference on Economics and Computation*, page 343, 2017.

[4] Michal Feldman, Ophir Friedler, and Aviad Rubinstein. 99% revenue via enhanced competition. In *Proceedings of the 2018 ACM Conference on Economics and Computation*, pages 443–460, 2018.

[5] Hu Fu, Christopher Liaw, and Sikander Randhawa. The Vickrey auction with a single duplicate bidder approximates the optimal revenue. In *Proceedings of the 2019 ACM Conference on Economics and Computation*, pages 419–420, 2019.

[6] Jason D Hartline and Tim Roughgarden. Simple versus optimal mechanisms. In *Proceedings of the 10th ACM conference on Electronic commerce*, pages 225–234, 2009.

[7] Robert Kleinberg and Seth Matthew Weinberg. Matroid prophet inequalities. In *Proceedings of the 44th annual ACM symposium on Theory of computing*, pages 123–136, 2012.

[8] Amir Ronen. On approximating optimal auctions. In *Proceedings of the 3rd ACM conference on Electronic Commerce*, pages 11–17, 2001.

[9] Balasubramanian Sivan and Vasilis Syrgkanis. Vickrey auctions for irregular distributions. In *International Conference on Web and Internet Economics*, pages 422–435. Springer, 2013.