Random matching under priorities: stability and no envy concepts

Haris Aziz · Bettina Klaus

Received: 9 May 2018 / Accepted: 5 March 2019 / Published online: 3 April 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
We consider stability concepts for random matchings where agents have preferences over objects and objects have priorities for the agents. When matchings are deterministic, the standard stability concept also captures the fairness property of no (justified) envy. When matchings can be random, there are a number of natural stability and fairness concepts that coincide with stability and no envy whenever matchings are deterministic. We formalize known stability concepts for random matchings for a general setting that allows weak preferences and weak priorities, unacceptability, and an unequal number of agents and objects. We then present a clear taxonomy of the stability concepts and identify logical relations between them. Finally, we present a transformation from the most general setting to the most restricted setting, and show how almost all our stability concepts are preserved by that transformation.

This work has been partly supported by COST Action IC1205 on Computational Social Choice. The authors thank Panos Protopapas, Madhav Raghavan, Jan Christoph Schlegel, Zhaohong Sun, and the anonymous referees for their feedback and comments. We particularly thank Battal Doğan for detailed comments and for providing an example that helped establish one of our results (Example 2). Haris Aziz is supported by a Julius Career Award and a UNSW Scientia Fellowship. Bettina Klaus gratefully acknowledges financial support from the Swiss National Science Foundation (SNFS) under project 100018_162606. Furthermore, Bettina Klaus gratefully acknowledge the hospitality of Data61 and UNSW Sydney and Stanford University where part of this paper was written.

Bettina Klaus
Bettina.Klaus@unil.ch

Haris Aziz
haris.aziz@unsw.edu.au

1 Computer Science and Engineering, UNSW Sydney and Data61, CSIRO, Building K17, Sydney, NSW 2052, Australia

2 Faculty of Business and Economics (HEC), University of Lausanne, Internef, 1015 Lausanne, Switzerland
1 Introduction

We consider a model of matching agents to objects in which agents have preferences over objects and objects have priorities for the agents. This general model has many applications, e.g., for school choice where centralized matching schemes are employed to assign students to schools on the basis of students’ preferences over schools and students’ priorities to be admitted to any given school (Abdulkadiroğlu 2013; Pathak 2011, are two surveys on school choice).

For the most basic model we discuss in Sect. 2, the fundamental stability concern is the following: no agent i should prefer an object o matched to another agent j who has lower priority for the object than i. In school choice, this notion of stability can be interpreted as the elimination of justified envy (Balinski and Sönmez 1999): we say a student “envies” another student if he prefers the match of the other, and we say this envy is “justified” if he has higher priority than the other at the preferred match. For the most general model we discuss in Sect. 3, (weak) stability is equivalent to individual rationality, non-wastefulness, and no justified envy. To simplify language, we will from now on refer to no justified envy simply as no envy. While the important role of stability in matching problems has long been recognized, no envy, which is a relaxation of stability, has only recently gained independent interest. In particular, no envy has been studied in constrained matching models (Ehlers et al. 2003; Kamada and Kojima 2017) and in senior level labor markets (Blum et al. 1997) and shown to have similar structural properties as stability (Wu and Roth 2018).

Most articles on school choice and similar models have considered deterministic matchings. We consider random matchings that specify the probability of each agent being matched to the various objects. Random matchings are useful to consider for several reasons. Firstly, randomization allows for a much richer space of possible outcomes and may be essential to achieve fairness properties such as anonymity and (ex-ante) equal-treatment-of-equals. Secondly, the framework of random matchings also helps to reason about fractional matchings that capture time sharing arrangements (Aziz 2019; Roth et al. 1993; Teo and Sethuraman 1998; Doğan and Yildiz 2016). For example, an agent may allocate his time among several of his matches rather than exclusively being matched to a single object.

Various stability concepts for random and fractional matchings have been introduced and studied in various papers, but the picture of how exactly they relate to each other and how their formulations change for various models (allowing for indifferences, unacceptability, and a different number of agents and objects) has, to the best of our knowledge, not been studied until now. This gap in the literature is especially important to address with the renewed interest in recent years in random matching mechanisms.

We study some existing stability concepts (ex-post and fractional stability, Roth et al. 1993, and Teo and Sethuraman 1998; ex-ante/strong stability, Roth et al. 1993, and Kesten and Ünver 2015; and claimwise stability, Afacan 2018) and also propose a new one, robust ex-post stability, that is nested between ex-ante stability and ex-post stability. Many of the concepts have been defined and then subsequently studied only for settings that use some of the following restrictions: (1) preferences are strict, (2) priorities are strict, (3) there is an equal number of agents and objects, (4) all objects and
agents are acceptable to each other. We generalize all the stability concepts mentioned above to the general random matching setting that allows for indifferences in preferences and priorities, and allows for unacceptability as well as for an unequal number of agents and objects. The general setting includes as a special case the hospital-resident setting in which hospitals have multiple positions but residents are indifferent among all such positions at the same hospital; another example is the previously mentioned school choice setting. The general model and our insights into the corresponding stability notions will provide a crucial stepping stone for further work on axiomatic, algorithmic, and market design aspects of random stable matching.

In particular, we present a taxonomy of the stability concepts for random matching and hope that this taxonomy will help market designers to consider a scale of criteria of different “stability-strengths” while additionally accommodating other properties (e.g., efficiency or strategic robustness).

The article proceeds as follows. In Sect. 2 we introduce the base model in which: (1) preferences are strict, (2) priorities are strict, (3) there is an equal number of agents and objects, (4) all objects and agents are acceptable to each other. For this model, stability and no envy coincide. We introduce the random stability concepts ex-ante stability, robust ex-post stability, ex-post stability, fractional stability, and claimwise stability and present a complete taxonomy of the stability concepts for our base model (see Theorem 1).

Then, we extend the base model in two ways. First, in Sect. 2.3, we drop model assumptions (1) and (2) and allow preferences and priorities to be weak. The switch from strict preferences and priorities to weak ones requires various adjustments in definitions and their interpretations, but once these adjustments are made, results change very little (see Theorem 2). Second, in Sect. 3, we drop model assumptions (3) and (4) and allow for [an unequal number of agents and objects] and [that agents/objects find some objects/agents unacceptable]. With this change, we add the well-known criteria of non-wastefulness and individual rationality and find that (weak) stability is equivalent with no envy, non-wastefulness, and individual rationality. We then formalize all stability concepts with the appropriate additional requirements of non-wastefulness and/or individual rationality, when necessary, to preserve the hierarchy we established in the base model. We use a transformation from the most general setting to the most restricted setting for random matchings to show how almost all our stability concepts are preserved by that transformation1 and to establish a complete taxonomy of stability concepts for the general model (see Theorem 3).

Many proofs and examples, as well as auxiliary results, are relegated to an appendix.

2 The base model

Let \(N \) be a set of \(n \) agents and \(O \) be a set of \(n \) objects. Each agent \(i \in N \) has preferences \(\succ_i \) over \(O \) and each object \(o \in O \) has priorities \(\succ_o \) over \(N \) (we use the term priorities instead of the term preferences because objects are not considered as economic agents

1 With one exception for claimwise (weak) stability (see Proposition 13 and Example 8, Appendix B).
in our model). Agents’ preferences are strict orders over \(O \) and objects’ priorities are strict orders over \(N \).

A random matching \(p \) is a bistochastic \(n \times n \) matrix \([p(i, o)]_{i \in N, o \in O} \), i.e.,

\[
\text{for each pair } (i, o) \in N \times O, \quad p(i, o) \geq 0, \quad (1)
\]

\[
\text{for each } i \in N, \quad \sum_{o \in O} p(i, o) = 1, \quad \text{and} \quad (2)
\]

\[
\text{for each } o \in O, \quad \sum_{i \in N} p(i, o) = 1. \quad (3)
\]

Random matchings are often also referred to as fractional matchings (Roth et al. 1993; Teo and Sethuraman 1998). For each pair \((i, o) \in N \times O\), the value \(p(i, o) \) represents the probability of object \(o \) being matched to agent \(i \) and agent \(i \)’s match is the probability vector \(p(i) = (p(i, o))_{o \in O} \). A random matching \(p \) is deterministic if for each pair \((i, o) \in N \times O\), \(p(i, o) \in \{0, 1\} \). Alternatively, a deterministic matching is an integer solution to linear inequalities (1), (2), and (3).

By Birkhoff (1946) and Von Neumann (1953), each random matching can be represented as a convex combination of deterministic matchings: a decomposition of a random matching \(p \) into deterministic matchings \(P_j \) \((j \in \{1, \ldots, k\})\) is a sum \(p = \sum_{j=1}^{k} \lambda_j P_j \) such that for each \(j \in \{1, \ldots, k\} \), \(\lambda_j \in (0, 1] \) and \(\sum_{j=1}^{k} \lambda_j = 1 \).

2.1 Stability concepts

Definition 1 (No envy/stability for deterministic matchings) A deterministic matching \(p \) has no envy or is stable if there exists no agent \(i \) who is matched to object \(o' \) but prefers object \(o \) while object \(o \) is matched to some agent \(j \) with lower priority than \(i \), i.e., there exist no \(i, j \in N \) and no \(o, o' \in O \) such that \(p(i, o') = 1 \), \(p(j, o) = 1 \), \(o \succ_i o' \), and \(i \succ_o j \).

Stability was first introduced for two-sided matching markets by Gale and Shapley (1962). The terminology of no justified envy is usually used in the context of school choice (Balinski and Sönmez 1999; Abdulkadiroğlu and Sönmez 2003). Note that we use the shorter expression no envy for the somewhat more precise no justified envy (see also Wu and Roth 2018).

A deterministic matching \(p \) is stable if and only if it satisfies the following inequalities (Roth et al. 1993):² for each pair \((i, o) \in N \times O\),

\[
p(i, o) + \sum_{o': o' \succ_i o} p(i, o') + \sum_{j: j \succ_o i} p(j, o) \geq 1. \quad (4)
\]

The well-known deferred-acceptance algorithm (Gale and Shapley 1962) computes a deterministic matching that is stable.

² Roth et al. (1993) consider a more general model that lies between the models we discuss in Sects. 2.3 and 3. We here use the restriction of their original inequalities to our base model.
We now define five stability concepts for random matchings that all coincide with deterministic stability when the matching is deterministic.

The first stability concept for random matchings we consider was discussed by Roth et al. (1993) under the name of *strong stability* for the marriage market matching model, but we will call it *ex-ante stability*. Recently, for a school choice model, Kesten and Ünver (2015) obtained the same stability concept by extending no envy from matched whole objects to matched probability shares of objects; the intuition here is that a higher priority agent i envies a lower priority agent j for any probability share of object o that agent j has if he would like to get a higher probability of it himself.

Definition 2 (No ex-ante envy/ex-ante stability) A random matching p has *no ex-ante envy* or is *ex-ante stable* if there exists no agent i who is matched with positive probability to object o' but prefers object o while object o is matched with positive probability to some agent j with lower priority than i, i.e., there exist no $i, j \in N$ and no $o, o' \in O$ such that $p(i, o') > 0$, $p(j, o) > 0$, $o >_i o'$, and $i >_o j$.

Although the notion of ex-ante stability is normatively appealing, it is demanding. It follows from Roth et al. (1993, Corollary 21) that each agent can receive probability shares of, at most, two objects, and vice versa, each object is assigned with positive probability to at most two agents. In other words, an ex-ante stable random matching is almost deterministic. Schlegel (2018) generalizes this result to a more general set-up with quotas and priority ties.

The second stability concept for random matchings we consider is *ex-post stability*.

Definition 3 (Ex-post stability) A random matching p is *ex-post stable* if it can be decomposed into deterministic stable matchings.

For a one-to-one marriage market setup, Doğan and Yildiz (2016) show that for each ex-post stable random matching, there is a utility profile consistent with the ordinal preferences such that no group of agents consisting of equal numbers of men and women can deviate to a random matching among themselves and make each member better off in an expected utility sense. For real world applications, ex-post stability has the desirable feature that a deterministic stable matching can be drawn from the existing probability distribution and be implemented. Various authors (Vande Vate 1989; Rothblum 1992; Roth et al. 1993) proved that ex-post stability is in fact characterized by inequalities (1), (2), (3), and (4): the extreme points of the polytope defined by these linear inequalities correspond to the deterministically stable matchings. A random matching is hence ex-post stable if it is a (not necessarily integer) solution to the linear inequalities. However, the fact that an ex-post stable matching is also a solution to a system of inequalities and vice versa is not a trivial result, and does not hold for the more general model we consider later. Thus one can use the inequalities (1), (2), (3), and (4) to define a separate stability concept. This leads to our third stability concept for random matchings, *fractional stability*.

Definition 4 (Fractional stability and violations of fractional stability) A random matching p is *fractionally stable* if for each pair $(i, o) \in N \times O$,

\[
p(i, o) + \sum_{o'): o' >_i o \ p(i, o') + \sum_{j: j >_o i} p(j, o) \geq 1,
\]

\[\text{(4)}\]
or more compactly,
\[
\sum_{o' : o' \succ_i o} p(i, o') \geq \sum_{j : j \prec_i o} p(j, o).
\] (5)

A violation of fractional stability occurs if there exists a pair \((i, o) \in N \times O\) such that
\[
\sum_{j : j \prec_i o} p(j, o) > \sum_{o' : o' \succ_i o} p(i, o').
\] (6)

Inequality (6) implies \(\sum_{o' : o' \succ_i o} p(i, o') < 1\), i.e., agent \(i\) receives some fraction of an object in his strict lower contour set at \(o\).\(^3\) Thus, agent \(i\) would want to consume more of object \(o\). Inequality (6) also implies \(\sum_{j : j \prec_i o} p(j, o) < 1\), i.e., object \(o\) receives some fraction of an agent in its strict lower contour set at \(i\). Thus, object \(o\) would want to consume more of agent \(i\). Moreover, the inequality encodes that agent \(i\) envies the set of lower priority agents for jointly having consumed more of object \(o\) than the probability with which he consumes objects in the strict upper contour set of \(o\), which equals the probability \(\sum_{o' : o' \succ_i o} p(i, o')\) of object \(o\) that agent \(i\) would justifiably concede to them because he consumes that probability in better objects.

Aharoni and Fleiner (2003) introduced a stability concept that they also called fractional stability for a more general model of so-called hypergraphic preference systems. Biró and Fleiner (2016) extended the Aharoni–Fleiner notion of fractional stability to an even more general model of NTU coalition formation games. We note here that fractional stability as defined by Aharoni and Fleiner (2003) and Biró and Fleiner (2016) is not equivalent to fractional stability considered in this paper. In fact, it is equivalent to ex-ante stability (see Appendix A).

Our fourth stability concept for random matchings is based on a new stability concept suggested by Afacan (2018) for a model with probabilistic priorities that can be framed in our setting. Here, we focus exclusively on the strict priority part of his stability concept even though we use the same name (Afacan has some additional conditions addressing equal priority agents that capture aspects of “equal treatment of equals” that are not related to stability). According to Afacan (2018), an agent \(i \in N\) has a claim against an agent \(j \in N\), if there exists an object \(o \in O\) such that \(i \succ_o j\) and
\[
p(j, o) > \sum_{o' : o' \succ_o o} p(i, o').
\] (7)

A random matching is claimwise stable if it does not admit any claim.

\(^3\) If not, this would imply that \(\sum_{o' : o' \succ_i o} p(i, o') + p(i, o) = 1\) and thus \(\sum_{j : j \prec_i o} p(j, o) + p(i, o) > 1\); contradicting feasibility.
Definition 5 (Claimwise stability) A random matching \(p \) is \textit{claimwise stable} if for each pair \((i, o)\) \(\in N \times O \) and each \(j \in N \) such that \(i \succ_o j \),

\[
\sum_{o': o' \succ_i o} p(i, o') \geq p(j, o).
\]

(8)

Inequality (7) implies \(\sum_{o': o' \succ_i o} p(i, o') < 1 \), i.e., agent \(i \) receives some fraction of an object in his strict lower contour set at \(o \).\(^4\) Thus, agent \(i \) would want to consume more of object \(o \). Moreover, the inequality encodes that agent \(i \) envies a lower priority agent \(j \) for having consumed more of object \(o \) than the probability with which he consumes objects in the strict upper contour set of \(o \), which equals the probability \(\sum_{o': o' \succ_i o} p(i, o') \) of object \(o \) that agent \(i \) would justifiably concede to agent \(j \) because he consumes that probability in better objects.

Our fifth stability concept for random matchings, \textit{robust ex-post stability}, is a natural strengthening of ex-post stability.\(^5\)

Definition 6 (Robust ex-post stability) A random matching \(p \) is \textit{robust ex-post stable} if all its decompositions are into deterministic and stable matchings.

It follows easily that if we restrict attention to deterministic matchings, then all the stability concepts for random matchings coincide with stability and no envy (Definition 1).

Proposition 1 For deterministic matchings, all the stability concepts for random matchings coincide with stability and no envy.

Remark 1 (Stability and the core based on stochastic dominance or vNM preferences/priorities) A deterministic matching is in the \textit{core} if no coalition of agents and objects can improve by rematching among themselves, i.e., a deterministic matching \(p \) is in the core if there exists no set \(N' \cup O' \subseteq N \cup O \) and no deterministic matching \(p' \neq p \) such that (i) for each \(i' \in N' \), \(\sum_{o' \in O'} p'(i', o') = 1 \), (ii) for each \(o' \in O' \), \(\sum_{i \in N} p'(i, o') = 1 \), and (iii) for all \(i' \in N', i \in N, o' \in O', \) and \(o \in O \), [if \(p(i', o) = 1 \) and \(p'(i', o') = 1 \), then \(o' \succ_i o \)] and [if \(p(i, o') = 1 \) and \(p'(i', o') = 1 \), then \(i' \succ_o i \)]. It is well known that for the base model (and its extension with strict preferences/priorities), the core equals the set of stable deterministic matchings.

One can extend preferences/priorities over objects/agents to random matches via von Neumann–Morgenstern (vNM) utilities or the (incomplete) first order stochastic dominance extension. Manjunath (2013) studies various extensions of stability and

\(^4\) If not, this would imply that \(\sum_{o': o' \succ_i o} p(i, o') + p(i, o) = 1 \) and thus \(p(j, o) + p(i, o) > 1 \); contradicting feasibility.

\(^5\) Kesten and Ünver (2015) pointed out that “Although ex post stability is a meaningful interpretation of fairness for deterministic outcomes, for lottery mechanisms such as those used for school choice, its suitability as the right fairness notion is less clear.” They then proceed to analyze the stronger stability concept of ex-ante stability, which is a very strong stability requirement. We show that robust ex-post stability is weaker than ex-ante stability and stronger than ex-post stability and hence it is a good compromise between these competing stability concepts.
the core from deterministic to random matchings using these approaches. Manjunath (2013) points out that for strict preferences/priorities, an ex-post stable random matching is a “weak stochastic dominance core matching” (Manjunath 2013, Proposition 3). The same observation also follows from Theorem 2 of Doğan and Yildiz (2016).

We prove in Appendix D two new results that clarify the relation of strong and weak dominance stability as defined in Manjunath (2013) with some of our stability properties: (1) a random matching is “strongly stochastic dominance stable” if and only if it is ex-ante stable and (2) a random matching that is claimwise stable is a “weak stochastic dominance stable matching”.

Our approach is complementary to that of Manjunath (2013) in that we focus on existing stability concepts, with attention paid to their underlying linear programming origins and possible fairness interpretations while he introduces new stability and core concepts based on how preferences/priorities are extended from deterministic to random matchings.

2.2 Relations between stability concepts

We now provide a complete taxonomy of the stability concepts for random matchings we have introduced.

Theorem 1 (Relations between stability concepts for random matchings)

For random matchings we have

\begin{align*}
\text{ex-ante stability (Def. 2)} \\
\text{robust ex-post stability (Def. 6)} \\
\text{ex-post stability (Def. 3)} \\
\text{fractional stability (Def. 4)} \\
\text{claimwise stability (Def. 5)}
\end{align*}

Proof Appendix A. □

Springer
The following example shows that even if a random matching is ex-ante stable (and hence robust ex-post stable), the decomposition into stable deterministic matchings need not be unique.

Example 1 Let $N = \{1, 2, 3, 4\}$ and $O = \{w, x, y, z\}$. Consider the following preferences and priorities:

- $\succ_1: w \succ x \succ y \succ z$
- $\succ_2: x \succ w \succ z \succ y$
- $\succ_3: y \succ z \succ w \succ x$
- $\succ_4: z \succ y \succ x \succ w$

- $\succ_w: 2 \succ 1 \succ 4 \succ 3$
- $\succ_x: 1 \succ 2 \succ 3 \succ 4$
- $\succ_y: 4 \succ 3 \succ 2 \succ 1$
- $\succ_z: 3 \succ 4 \succ 1 \succ 2$

There are four deterministic stable matchings:

- $p_1 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- $p_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- $p_3 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
- $p_4 = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$

It is easy to check that the following random matching is ex-ante and hence also robust ex-post stable:

- $q = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ 0 & 0 & 1/2 & 1/2 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix}$

There exist exactly two decompositions of q into (stable) deterministic matchings:

- $q = \frac{1}{2} p_1 + \frac{1}{2} p_4 = \frac{1}{2} p_2 + \frac{1}{2} p_3$.

Hence, the decomposition of q into stable deterministic matchings is not unique.

Note that fractional stability is equivalent to ex-post stability (see Roth et al. 1993; Teo and Sethuraman 1998). This equivalence is based on the insight by Vande Vate (1989) that both stability concepts are convex with deterministic stable matchings as extreme points. We show in Example 2 that once preferences and priorities can be weak, this statement isn’t correct anymore for the convex set of fractionally weakly stable random matchings.

2.3 Weak preferences and weak priorities

If preferences or priorities can be weak, i.e., agents’ preferences are weak orders over O and objects’ priorities are weak orders over N, then various deterministic stability...
notions with varying degrees of strength are possible (see Irving 1994). A pair \((i, o)\) strictly blocks a deterministic matching if, by matching themselves together, they are both happier. We say the pair weakly blocks a deterministic matching if by matching together only one of them is happier, while the other remains at least as content as before. A deterministic matching is thus weakly stable if it has no strict blocking pairs, and is strongly stable if it has no weak blocking pairs. While for weak preferences and weak priorities, weakly stable deterministic matchings always exist, it is well known that the set of strongly stable deterministic matchings may be empty. Furthermore, we consider the absence of strict blocking pairs as the most natural no envy/stability notion and therefore focus on weak stability.

Definition 7 (No envy/weak stability for deterministic matchings) A deterministic matching \(p\) has no envy or is weakly stable if there exists no agent \(i\) who is matched to object \(o'\) but prefers object \(o\) while object \(o\) is matched to some agent \(j\) with lower priority than \(i\), i.e., there exist no \(i, j \in N\) and no \(o, o' \in O\) such that \(p(i, o') = 1, p(j, o) = 1, o \succ_i o', \) and \(i \succ_o j\).

A deterministic matching \(p\) is weakly stable if and only if it satisfies the following inequalities: for each pair \((i, o) \in N \times O\),

\[
p(i, o) + \sum_{o': o' \succeq_j o, o' \neq o} p(i, o') + \sum_{j: j \succeq_i o: j \neq i} p(j, o) \geq 1.
\]

If one breaks all preference and priority ties, then the well-known deferred-acceptance algorithm (Gale and Shapley 1962) computes a deterministic matching that is weakly stable.

The definitions of ex-ante, ex-post, and robust ex-post stability essentially remain the same as before.

Definition 8 (No ex-ante envy/ex-ante weak stability) A random matching \(p\) has no ex-ante envy or is ex-ante weakly stable if there exists no agent \(i\) who is matched with positive probability to object \(o'\) but prefers object \(o\) while object \(o\) is matched with positive probability to some agent \(j\) with lower priority than \(i\), i.e., there exist no \(i, j \in N\) and no \(o, o' \in O\) such that \(p(i, o') > 0, p(j, o) > 0, o \succ_i o', \) and \(i \succ_o j\).

Definition 9 (Ex-post weak stability) A random matching \(p\) is ex-post weakly stable if it can be decomposed into deterministic weakly stable matchings.

Definition 10 (Robust ex-post weak stability) A random matching \(p\) is robust ex-post weakly stable if all its decompositions are into deterministic weakly stable matchings.

Next, the definition of deterministic weak stability leads to the following associated stability concept (by relaxing the “integer solution requirement” for inequalities (9)).

Definition 11 (Fractional weak stability and violations of fractional weak stability) A random matching \(p\) is fractionally weakly stable if for each pair \((i, o) \in N \times O\),

\[
p(i, o) + \sum_{o': o' \succeq_j o, o' \neq o} p(i, o') + \sum_{j: j \succeq_i o: j \neq i} p(j, o) \geq 1.
\]
or more compactly,

\[\sum_{o':o' \geq_i o; o' \neq o} p(i, o') \geq \sum_{j: j \prec_o i} p(j, o). \]

(10)

A violation of fractional weak stability occurs if there exists a pair \((i, o) \in N \times O\) such that

\[\sum_{j: j \prec_o i} p(j, o) > \sum_{o': o' \geq_i o; o' \neq o} p(i, o'). \]

(11)

Similar to the base model, inequality (11) implies that agent \(i\) would want to consume more of object \(o\), object \(o\) would want to consume more of agent \(i\), and agent \(i\) envies the set of lower priority agents for jointly having consumed more of object \(o\) than the probability with which he consumes objects in the weak upper contour set of \(o\) (without \(o\)), which equals the probability \(\sum_{o': o' \geq_i o; o' \neq o} p(i, o')\) of object \(o\) that agent \(i\) would justifiably concede to them because he consumes that probability in better or equally good other objects.

When preferences can be weak, then an agent \(i \in N\) has a claim against an agent \(j \in N\) if there exists an object \(o \in O\) such that \(i \succ_o j\) and

\[p(j, o) > \sum_{o': o' \geq_j o; o' \neq o} p(i, o'). \]

(12)

Again, inequality (12) implies that agent \(i\) would want to consume more of object \(o\) and agent \(i\) envies a lower priority agent \(j\) for having consumed more of object \(o\) than the probability with which he consumes objects in the weak upper contour set of \(o\) (without \(o\)), which equals the probability \(\sum_{o': o' \geq_j o; o' \neq o} p(i, o')\) of object \(o\) that agent \(i\) would justifiably concede to agent \(j\) because he consumes that probability in better or equally good other objects.

A random matching is claimwise weakly stable if it does not admit any claim.

Definition 12 (Claimwise weak stability) A random matching \(p\) is claimwise weakly stable if for each pair \((i, o) \in N \times O\) and each \(j \in N\) such that \(i \succ_j o\),

\[\sum_{o': o' \geq_j o; o' \neq o} p(i, o') \geq p(j, o). \]

(13)

It follows easily that if we restrict attention to deterministic matchings, then all the weak stability concepts for random matchings coincide with standard weak stability/no envy (Definition 7). The proof of Proposition 2 follows the same arguments as the proof of our previous Proposition 1 and we therefore omit it.
Proposition 2 For deterministic matchings, all the weak stability concepts for random matchings with weak preferences and weak priorities coincide with weak stability/no envy for deterministic matchings.

Our taxonomy of the stability concepts for random matchings with weak preferences and weak priorities now looks as follows.

Theorem 2 (Relations between stability concepts for random matchings with weak preferences and weak priorities) For random matchings we have

\[\text{ex-ante weak stability (Def. 8)} \rightarrow \text{robust ex-post weak stability (Def. 10)} \rightarrow \text{ex-post weak stability (Def. 9)} \rightarrow \text{fractional weak stability (Def. 11)} \rightarrow \text{claimwise weak stability (Def. 12)} \]

\[\text{Ex. 2}\]

Proof The arguments in the proofs for the base model (Appendix A) that ex-ante stability implies robust ex-post stability, but not vice versa; that robust ex-post stability implies ex-post stability, but not vice versa; that ex-post stability implies fractional stability; and that fractional stability implies claimwise stability, but not vice versa, remain valid for the corresponding weak stability concepts.

However, the result that fractional stability implies ex-post stability does not extend to weak preferences and weak priorities. The example to prove this new result is due to Battal Doğan.

Example 2 Let \(N = \{1, 2, 3\}\) and \(O = \{x, y, z\}\). Consider the following preferences and priorities (the brackets indicate indifferences):
\[\succ_1: \quad [x \ y \ z] \quad \succ_2: \quad y \ x \ z \quad \succ_3: \quad [x \ y \ z] \quad \succ_x: \quad [2 \ 3] \quad 1 \quad \succ_y: \quad [1 \ 2 \ 3] \quad \succ_z: \quad [1 \ 2 \ 3]\]

Consider random matching

\[q = \begin{pmatrix} 1/2 & 0 & 1/2 \\ 0 & 1/2 & 1/2 \\ 1/2 & 1/2 & 0 \end{pmatrix},\]

which is fractionally weakly stable because agents 1 and 3 only get favorite objects, and from agent 2’s perspective, no agent with a lower priority consumes his best object \(y\), which he receives with probability \(1/2\), and agent 1, who does have a lower priority for object \(x\) does not consume more than \(1/2\) of \(x\).

Note that random matching \(q\) has a unique decomposition into the deterministic matchings

\[p^1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \quad \text{and} \quad p^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}\]

such that \(q = \frac{1}{2}p^1 + \frac{1}{2}p^2\). However, deterministic matching \(p^1\) is weakly unstable because agent 2 justifiably envies agent 1. Hence, random matching \(q\) is not ex-post weakly stable.

3 Generalized random matchings: weak preferences, weak priorities, unacceptability, and different numbers of agents and objects

We now further generalize the model and consider the setting where there is a set of \(n\) agents \(N = \{1, \ldots, n\}\) and a set of \(m\) objects \(O = \{o_1, \ldots, o_m\}\) where \(m\) can be less than, equal to, or more than \(n\). We also now allow the agents and objects to partition the other side into acceptable and unacceptable entities. An agent/object would rather be unmatched than to be matched to an unacceptable object/agent. As in Sect. 2.3, preferences and priorities can be weak.

We still assume that agents would like to consume (up to) one object, but with different numbers of agents and objects and taking acceptability into account we relax the notion of a random matching as follows. A \textit{generalized random matching} \(p\) is a \(n \times m\) matrix \([p(i, o)]_{i \in N, o \in O}\) such that

\[\text{for each pair } (i, o) \in N \times O, \quad p(i, o) \geq 0. \quad (14)\]

\[\text{for each } i \in N, \quad \sum_{o \in O} p(i, o) \leq 1, \quad \text{and} \quad (15)\]

\[\text{for each } o \in O, \quad \sum_{i \in N} p(i, o) \leq 1. \quad (16)\]

Hence, a random matching is a special case of a generalized random matching. A generalized random matching \(p\) is \textit{deterministic} if for each pair \((i, o) \in N \times O, \quad p(i, o) \in \{0, 1\}.\)
Each generalized random matching can be represented as a convex combination of
generalized deterministic matchings. The statement follows from the fact that every
doubly substochastic matrix is a finite convex combination of partial permutation
matrices (Horn 1986, Section 3.2, pp. 164–165). Kojima and Manea (2010) also give
an explicit argument for the same statement in Proposition 1 of their paper. A decomposition
of a generalized random matching \(p \) into generalized deterministic matchings
\(P_j \) (\(j \in \{1, \ldots, k\} \)) is a sum \(p = \sum_{j=1}^{k} \lambda_j P_j \) such that for each \(j \in \{1, \ldots, k\} \),
\(\lambda_j \in (0, 1] \) and \(\sum_{j=1}^{k} \lambda_j = 1 \).

For a generalized deterministic matching, it can now happen that an agent gets no
object at all or that an object is not assigned to any agent. We adjust the definition of
no envy to take the first of these issues into account.

Definition 13 *(No envy for generalized deterministic matchings)* A generalized deter-
mministic matching \(p \) has no envy if there exists no agent \(i \) who is matched to object \(o' \)
or does not receive an object while object \(o \) is matched to some agent \(j \) with lower priority than \(i \), i.e., there exist no \(i, j \in N \) and no \(o \in O \) such that
\[\sum_{o' : o' \succneq_j o} p(i, o') = 0 \] (agent \(i \) does not receive \(o \) or any better object), \(p(j, o) = 1 \),
and \(i \succ_o j \).

Two additional properties for generalized random matchings will play an important
role. The first is a minimal efficiency requirement that ensures that no agent would
rather obtain a higher probability for any object that isn’t (fully) allocated.

Definition 14 *(Non-wastefulness)* A generalized random matching \(p \) is non-wasteful
if there is no acceptable pair \((i, o) \in N \times O \) such that \(\sum_{o' : o' \succneq_o o} p(i, o') < 1 \) (\(i \) would
like to have more of \(o \) and \(\sum_{j \in N} p(j, o) < 1 \) (\(o \) is not fully allocated).

Note that in our previous model, non-wastefulness was built into the definition of
a random matching. Furthermore, the role of agents and objects in the definitions of
no envy and non-wastefulness is not symmetric.

The second property is a voluntary participation property that ensures that no
agent/object is ever matched to an unacceptable object/agent (not even partially).

Definition 15 *(Individual rationality)* A generalized random matching \(p \) is individu-
ally rational if for each pair \((i, o) \in N \times O \) such that at least one of \(i \) and \(o \) considers
the other unacceptable it follows that \(p(i, o) = 0 \).

Since in our previous models all agents/objects were acceptable, individual ratio-
nality was automatically satisfied.

Next we show that any “general instance” with an unequal number of agents and
objects and with unacceptability can be transformed into an “associated instance” in
which the number of agents and objects is equal and all entities are acceptable. The
purpose of this approach is to obtain a better understanding of our general model in
connection with the base model and to show how almost all our stability concepts
are preserved by that transformation (in fact, all but one of the stability concepts are
equivalent under our transformation). This approach will also be crucial in establish-
ing a taxonomy of stability concepts for the general model (see Theorem 3).
To formalize a general instance, let the empty set \emptyset symbolize the so-called **null option** which stands for being unmatched (or possibly an outside option). All acceptable agents/objects are ranked (strictly) above the null option, whereas all unacceptable agents/objects are ranked (strictly) below the null option. We now assume that agents’ preferences and objects’ priorities are weak orders over $O \cup \{\emptyset\}$ and $N \cup \{\emptyset\}$ respectively. Furthermore, no object is indifferent with the null option for any agent and no agent has the same priority as the null option for any object, i.e., for each pair $(i, o) \in N \times O$, [either $o \succ_i \emptyset$ or $\emptyset \succ_i o$] and [either $i \succ_o \emptyset$ or $\emptyset \succ_o i$]. A general instance is denoted by the set of agents, the set of objects, and the corresponding preferences and priorities: $I = (N, O, \succ)$. If at a general instance all agents and objects are acceptable, then the null option is the least preferred entity in all preferences and priorities.

Next, we introduce a transformation from any general instance to an instance in which the number of agents and objects is equal and all entities are acceptable and such that almost all our stability concepts are preserved/equivalent under the transformation.

Transforming an instance with unequal number of agents and objects and with unacceptability to one in which the number of agents and objects is equal and all entities are acceptable Consider a general instance $I = (N, O, \succ)$. Then, we can transform I into an associated instance $I' = (N', O', \succ')$ of the standard setting with weak preferences and weak priorities (Sect. 2.3) where $|N'| = |O'|$ and all objects and agents are acceptable as follows.

$$ N' = N \cup D, \tag{17} $$

where $D = \{d_1, \ldots, d_m\}$ is a set of dummy agents.

$$ O' = O \cup \Phi, \tag{18} $$

where $\Phi = \{\phi_1, \ldots, \phi_n\}$ is a set of null options.

Note that $|N'| = |O'| = n + m$.

Next, we extend preferences/priorities from the general instance I to the associated instance I' as follows. For any subset B of N or O, we denote the restriction of preference/priority of agent/object α, \succ_α, to set B by $\succ_\alpha(B)$. Furthermore, for any subset B of set N, D, O, Φ, we denote the lexicographic order of B by $\text{lex}(B)$. The main idea of extending preferences and priorities from general instance I to associated instance I' is that each agent $i \in N$ has a default personal null option ϕ_i that is less preferred than all acceptable objects, more preferred than all the unacceptable objects, and that ranks agent i as its highest priority agent. Furthermore, each object $o_j \in O$ has a default personal dummy agent d_j who has lower priority than all the acceptable agents, higher priority than all unacceptable agents, and who most prefers object o_j.

Each agent $i \in N$ extends his preferences \succ_i by replacing the null option \emptyset by the set of null options Φ such that agent i’s null option ϕ_i is more preferred than all other null options (in strict lexicographic order). Each comma below indicates strict preferences at \succ'_i:

$$ \succ'_i = \succ_i ((o \in O : o \succ_i \emptyset)) \cup \phi_i, \text{ lex } (\Phi \setminus \{\phi_i\}), \succ_i ((o \in O : \emptyset \succ_o i)). \tag{19} $$

[Springer]
Each object \(o_j \in O \) extends its priorities by replacing the null option \(\emptyset \) by the set of dummy agents \(D \) such that object \(o_j \)'s dummy agent \(d_j \) is more preferred than all other dummy agents (in strict lexicographic order). Each comma below indicates strict priorities at \(\succ_i' \):

\[
\succ_i' = \succ_i \left(\{ i \in N : i \succ_o \emptyset \} \right), \ d_j, \ \text{lex} \left(D \setminus \{ d_j \} \right), \ \succ_i \left(\{ i \in N : \emptyset \succ_o i \} \right). \tag{20}
\]

Each dummy agent \(d_j \) first prefers object \(o_j \), then all other objects in \(O \setminus \{ o_j \} \) (in strict lexicographic order), and finally dummy agent \(d_j \) ranks the null options in \(\Phi \) exactly as object \(o_j \) ranks the agents in \(N \), i.e., for all \(i, k \in N \), \(\phi_i \succ_{d_j} \phi_k \) if and only if \(i \succ_{o_j} k \). Each comma below indicates strict preferences at \(\succ_i' \):

\[
\succ_{d_j} = o_j, \ \text{lex} \left(O \setminus \{ o_j \} \right), \ \succ_{d_j}(\Phi). \tag{21}
\]

Each null option \(\phi_i \) first ranks agent \(i \) as the highest priority agent, then all the other agents in \(N \setminus \{ i \} \) (in strict lexicographic order), and finally null option \(\phi_i \) ranks the dummy agents in \(D \) exactly as agent \(i \) ranks the objects in \(O \), i.e., for all \(o_j, o_k \in O \), \(d_j \succ_{\phi_i} d_k \) if and only if \(o_j \succ_{i} o_k \). Each comma below indicates strict priorities at \(\succ_{\phi_i} \):

\[
\succ_{\phi_i} = i, \ \text{lex}(N \setminus \{ i \}), \ \succ_{\phi_i}(D). \tag{22}
\]

Consider a generalized random matching \(p \) for a general instance \(I = (N, O, \succeq) \). Then, we define the associated random matching \(p' \) for instance \(I' = (N', O', \succeq') \) as follows:

- for each pair \((i, o_j) \in N \times O\), \(p'(i, o_j) = p(i, o_j)\),
- for each pair \((d_j, \phi_i) \in D \times \Phi\), \(p'(d_j, \phi_i) = p(i, o_j)\),
- for each pair \((i, \phi_i) \in N \times \Phi\), \(p'(i, \phi_i) = 1 - \sum_{o \in O} p(i, o)\),
- for each pair \((d_j, o_j) \in D \times O\), \(p'(d_j, o_j) = 1 - \sum_{i \in N} p(i, o_j)\), and
- for all remaining pairs \((a, b) \in (N \cup D) \times (O \cup \Phi)\), \(p'(a, b) = 0\).

The matrix for the associated random matching \(p' \) looks as follows:

\[
\begin{pmatrix}
\begin{array}{cccc|ccc}
1 & o_1 & \cdots & o_m & \phi_1 & \cdots & \phi_n \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
n & p(n, o_1) & \cdots & p(n, o_m) & 0 & & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
d_1 & 0 & & & & & p(n, o_1) \\
\vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
d_m & 0 & & p(0, o_m) & 0 & \cdots & p(n, o_m)
\end{array}
\end{pmatrix}
\]
Random matching under priorities...

where

- for each \(i \in \{1, \ldots, n\} \), \(p(i, \emptyset) := 1 - \sum_{o \in O} p(i, o) \) and
- for each \(j \in \{1, \ldots, m\} \), \(p(\emptyset, o_j) := 1 - \sum_{i \in N} p(i, o_j) \).

Definition 16 (Associated random matching \(p' \) respecting non-wastefulness) Let \(p \) be a generalized random matching and \(p' \) its associated random matching. Then, \(p' \) respects non-wastefulness (of \(p \)) if for each acceptable pair \((i, o_j) \in N \times O \) such that \(\sum_{o' : o' \succ_i o_j} p'(i, o') < 1 \) and \(\sum_{j \in N} p'(j, o_j) < 1 \).

Definition 17 (Associated random matching \(p' \) respecting individual rationality) Let \(p \) be a generalized random matching and \(p' \) its associated random matching. Then, \(p' \) respects individual rationality (of \(p \)) if \(p \) is individually rational; i.e., for any unacceptable pair \((i, o_j) \in N \times O \), \(p'(i, o_j) = p(i, o_j) = 0 \) and \(p'(d_j, \phi_i) = p(i, o_j) = 0 \).

Example 3 (Transforming a general instance and a generalized random matching) Consider the following general instance \(I = (N, O, \succ) \) with strict preferences and strict priorities: \(N = \{1, 2, 3\} \), \(O = \{x, y\} \),

\[
\succ_1: \quad x \succ y \quad \emptyset
\succ_2: \quad y \succ x
\succ_3: \quad x \succ \emptyset \succ y
\]

and the generalized random matching

\[
p = \begin{pmatrix}
\frac{1}{3} & \frac{1}{2} \\
0 & \frac{1}{2} \\
\frac{2}{3} & 0
\end{pmatrix}.
\]

The associated instance is \(I' = (N', O', \succ') \) with strict preferences and strict priorities such that \(N' = \{1, 2, 3, d_x, d_y\} \), \(O' = \{x, y, \phi_1, \phi_2, \phi_3\} \), and

\[
\succ_1': \quad x \succ y \succ \phi_1 \succ \phi_2 \succ \phi_3 \succ \emptyset
\succ_2': \quad y \succ x \succ \phi_1 \succ \phi_2 \succ \phi_3 \succ \emptyset
\succ_3': \quad x \succ \phi_3 \succ \phi_2 \succ \phi_1 \succ y
\succ_{d_x'}: \quad x \succ \phi_1 \succ \phi_2 \succ \phi_3 \succ d_x \succ d_y
\succ_{d_y'}: \quad y \succ \phi_1 \succ \phi_2 \succ \phi_3 \succ d_x \succ d_y.
\]

The associated random matching is

\[
p' = \begin{pmatrix}
1 & \frac{1}{3} & \frac{1}{2} & \frac{1}{6} & 0 & 0 \\
2 & 0 & \frac{1}{2} & 0 & \frac{1}{2} & 0 \\
3 & \frac{2}{3} & 0 & 0 & 0 & \frac{1}{3} \\
d_x & 0 & 0 & \frac{1}{3} & 0 & \frac{2}{3} \\
d_y & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0
\end{pmatrix}.
\]
Next, for each generalized deterministic matching p, no envy, individual rationality, and non-wastefulness, together, are equivalent to weak stability of the associated deterministic matching p'.

Proposition 3 The generalized deterministic matching p has no envy and is non-wasteful and individually rational if and only if the associated deterministic matching p' is weakly stable.

Example 4 (No-envy, non-wastefulness, and individual rationality are logically independent) Consider the following general instance $I = (N, O, \succ)$ with strict preferences and strict priorities: $N = \{1, 2\}$, $O = \{x, y\}$,

\[
\begin{align*}
\succ_1: & \quad x \emptyset y \quad \succ_x: \quad 2 \quad 1 \quad \emptyset \\
\succ_2: & \quad x \quad y \emptyset \quad \succ_y: \quad 1 \quad 2 \quad \emptyset
\end{align*}
\]

and the generalized deterministic matchings

\[
p^1 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad p^2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad p^3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad p^4 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}.
\]

Then, p^1 has no envy and is individually rational, but it is wasteful; p^2 has no envy and is non-wasteful, but it is not individually rational; p^3 is non-wasteful and individually rational, but it has envy; p^4 is the only generalized deterministic matching for this instance that has no envy, is non-wasteful, and is individually rational.

The classic definition of weak stability for generalized deterministic matchings in our model is the following.

Definition 18 (Weak stability for generalized deterministic matchings) A generalized deterministic matching p is weakly stable if it is individually rational and there exist no agent and no object that would prefer each other to their current match, i.e., there exists no pair $(i, o) \in N \times O$ such that $\sum_{o' : o' \succ_i o} p(i, o') = 0$ (agent i would like to have o) and $\sum_{j : j \succ_o o} p(j, o) = 0$ (object o would like to be matched to i).

The well-known deferred-acceptance algorithm (Gale and Shapley 1962) computes a generalized deterministic matching that is weakly stable.

Proposition 4 A generalized deterministic matching is weakly stable if and only if it is non-wasteful, individually rational, and has no envy.

Propositions 3 and 4 now imply the following (see Fig. 1).

Proposition 5 A generalized deterministic matching p is weakly stable if and only if the associated deterministic matching p' is weakly stable.

By Proposition 4, a generalized deterministic matching p is weakly stable if it is non-wasteful, individually rational, and has no envy. Recall that no envy implies that there exist no $i, j \in N$ and no $o \in O$ such that $\sum_{o' : o' \succ_i o} p(i, o') = 0$, $p(j, o) = 1$.

\[\diamond\] Springer
Random matching under priorities...

Fig. 1 Relations between weak stability, no envy, non-wastefulness, and individual rationality for generalized deterministic matchings

Prop. 3	Prop. 4
p weakly stable (Def. 18)	p' no envy \iff weakly stable (Def. 7)

and $i \succ_o j$. The latter is equivalent to the following inequalities being satisfied:\(^6\) for each acceptable pair $(i, o) \in N \times O$,

$$p(i, o) + \sum_{o': o' \succ_o j, o' \neq o} p(i, o') + \sum_{j: j \succ_o i, j \neq i} p(j, o) \geq 1. \quad (23)$$

We now adapt all previous stability concepts introduced in Sect. 2.3 to generalized random matchings. First, we adjust the property of no ex-ante envy to generalized random matchings.

Definition 19 (No ex-ante envy for generalized random matchings) A generalized random matching p has no ex-ante envy if there exists no agent i who prefers a higher probability for object o while object o is matched with positive probability to some agent j with lower priority than i, i.e., there exist no $i, j \in N$ and no $o \in O$ such that $\sum_{o': o' \succ_o j, o' \neq o} p(i, o') < 1$ (agent i would like to have more of o), $p(j, o) > 0$ (agent j has some of o), $o \succ_i o'$, and $i \succ_o j$.

Next, for each generalized random matching p, no ex-ante envy, non-wastefulness, and individual rationality are equivalent to ex-ante weak stability of the associated random matching p'.

Proposition 6 The generalized random matching p has no ex-ante envy and is non-wasteful and individually rational if and only if the associated random matching p' is ex-ante weakly stable.

Ex-ante weak stability for generalized random matchings is naturally defined as follows.

Definition 20 (Ex-ante weak stability for generalized random matchings) A generalized random matching p is ex-ante weakly stable if it is individually rational and there exist no agent and no object that would prefer a higher probability for each other, i.e., there exist no pair $(i, o) \in N \times O$ such that $\sum_{o': o' \succ_o j, o' \neq o} p(i, o') < 1$ (agent i would like to have more of o) and $\sum_{j: j \succ_o i} p(j, o) < 1$ (object o would like to be matched more to i).

\(^6\) For instances with strict preferences and strict priorities, this characterization of stable matchings is due to Rothblum (1992) (see also Roth et al. 1993).
It is easy to check that the following now holds.

Proposition 7 A generalized random matching is ex-ante weakly stable if and only if it has no ex-ante envy and it is non-wasteful and individually rational.

Propositions 6 and 7 now imply the following (see the top part of Theorem 3).

Proposition 8 The generalized random matching \(p \) is ex-ante weakly stable if and only if the associated random matching \(p' \) is ex-ante weakly stable.

Next, we adjust the properties of ex-post weak stability and robust ex-post weak stability to generalized random matchings.

Recall that each generalized random matching can be represented as a convex combination of generalized deterministic matchings. We now establish three results concerning the decomposition of an individually rational, or non-wasteful, generalized random matching.

Lemma 1 A generalized random matching is individually rational if and only if in each of its decompositions all generalized deterministic matchings are individually rational.

Lemma 2 If a generalized random matching is non-wasteful, then in each of its decompositions all generalized deterministic matchings are non-wasteful.

The following example shows that the converse statement in Lemma 2 does not hold.

Example 5 (A wasteful generalized random matching that can be decomposed into non-wasteful generalized deterministic weakly stable matchings) Consider the following general instance \(I = (N, O, \succeq) \) with strict preferences and weak priorities (the brackets indicate indifferences): \(N = \{1, 2, 3\}, \ O = \{x, y, z\} \),

\[
\begin{align*}
\succeq_{1}: & \quad x \succ y \succ z \succ \emptyset & \succeq_{x}: & \quad [1 \ 3] \ 2 \ 0 \\
\succeq_{2}: & \quad z \succ y \succ x \succ \emptyset & \succeq_{y}: & \quad 2 \ 1 \ 0 \ 3 \\
\succeq_{3}: & \quad x \succ y \succ \emptyset \succ z & \succeq_{z}: & \quad 1 \ 2 \ 3 \ 0
\end{align*}
\]

Consider the generalized random matching

\[
p = \begin{pmatrix}
\frac{1}{2} & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 0 & 0
\end{pmatrix}
\]

and note that it is wasteful: agent 1 would like to have more of object \(y \) that is not fully allocated. However, matching \(p \) can be decomposed into two generalized deterministic non-wasteful and weakly stable matchings as follows:

\[
p = \frac{1}{2} q^1 + \frac{1}{2} q^2
\]
with

\[q^1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \]

and

\[q^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}. \]

Note that \(q^1 \) and \(q^2 \) are non-wasteful and weakly stable: at \(q^1 \) both agents 1 and 2 are matched to their most preferred objects and the unassigned object \(y \) finds agent 3 unacceptable; agent 3 cannot block with \(x \) since \(x \) has maximal priority for agent 1 and agent 3 cannot block with \(z \) since \(z \) has higher priority for agent 2. At \(q^2 \) objects \(y \) and \(z \) will not block because they are matched respectively to their highest priority agents; agent 1 would like to block with \(x \) but \(x \) has maximal priority for agent 3. \(\diamond \)

The previous example illustrated why in the next two definitions it is important to add non-wastefulness.

Definition 21 (Ex-post weak stability for generalized random matchings) A generalized random matching \(p \) is **ex-post weakly stable** if it is non-wasteful and can be decomposed into generalized deterministic weakly stable matchings.

Definition 22 (Robust ex-post weak stability for generalized random matchings) A generalized random matching \(p \) is **robust ex-post weakly stable** if it is non-wasteful and all of its decompositions are into generalized deterministic weakly stable matchings.

We have the following equivalences for ex-post weak stability and robust ex-post weak stability for generalized random matchings and their associated random matchings.

Proposition 9 The generalized random matching \(p \) is ex-post weakly stable if and only if the associated random matching \(p' \) is ex-post weakly stable and respects non-wastefulness.

Proposition 10 The generalized random matching \(p \) is robust ex-post weakly stable if and only if the associated random matching \(p' \) is robust ex-post weakly stable and respects non-wastefulness.

Next, we adjust the properties of fractional weak stability and claimwise weak stability to generalized random matchings.

Fractional weak stability is again obtained by relaxing the “integer solution requirement” for the inequalities that define weak stability for generalized deterministic matchings (23). Given a generalized random matching \(p \) and an object \(o \), recall that by \(p(\emptyset, o) \) we denote the amount of object \(o \) that is unassigned, i.e., \(p(\emptyset, o) = 1 - \sum_{i \in N} p(i, o) \).
Definition 23 (Fractional weak stability and violations of fractional weak stability for generalized random matchings) A generalized random matching p is fractionally weakly stable if p is non-wasteful, individually rational, and for each acceptable pair $(i, o) \in N \times O$,

$$p(i, o) + \sum_{o': o' \succsim o; o' \neq o} p(i, o') + \sum_{j: j \succsim o; j \neq i} p(j, o) \geq 1,$$

or more compactly,

$$\sum_{o': o' \succsim o; o' \neq o} p(i, o') \geq \sum_{j: j \prec o} p(j, o) + p(\emptyset, o).$$

A violation of fractional weak stability occurs if there exists a pair $(i, o) \in N \times O$ such that

$$\sum_{j: j \prec o} p(j, o) + p(\emptyset, o) > \sum_{o': o' \succsim o; o' \neq o} p(i, o').$$

Similar to before, inequality (25) implies that agent i would want to consume more of object o, object o would want to consume more of agent i, and agent i envies the set of lower priority agents and the null option for jointly having consumed more of object o than the probability with which he consumes objects in the weak upper contour set of o (without o), which equal to the probability $\sum_{o': o' \succsim o; o' \neq o} p(i, o')$ of object o that agent i would justifiably concede to them because he consumes that probability in better or equally good other objects.

Remark 2 (A symmetric reformulation of fractional weak stability for generalized random matchings and its violations) In the definition of fractional weak stability for generalized random matchings by inequalities (24) and of a violation of fractional weak stability for generalized random matchings by inequality (25) we have taken the viewpoint of an agent who considers the consumption of lower priority agents and the null option of a fixed object. The symmetric formulations when taking the viewpoint of an object that “considers” the matches of less preferred objects or the null option to a fixed agent are as follows. Given a generalized random matching p and an agent i, recall that by $p(i, \emptyset)$ we denote the amount of agent i that is not matched, i.e., $p(i, \emptyset) = 1 - \sum_{o \in O} p(i, o) = 1 - p(i, o)$. Then, a generalized random matching p is fractionally weakly stable if for each acceptable pair $(i, o) \in N \times O$,

$$\sum_{j: j \succsim o; j \neq i} p(j, o) \geq \sum_{o': o' \prec i; o' \neq o} p(i, o') + p(i, \emptyset).$$
We can write a violation of fractional weak stability as, there exists an acceptable pair \((i, o) \in N \times O\) such that

\[
\sum_{o' : o' \prec_i o} p(i, o') + p(i, \emptyset) > \sum_{j : j \succ_i o : j \neq i} p(j, o).
\] (25')

Proposition 11 Let \(p\) be an individually rational generalized random matching such that for each acceptable pair \((i, o) \in N \times O\),

\[
p(i, o) + \sum_{o' : o' \succ_i o, o' \neq o} p(i, o') + \sum_{j : j \succ_i o : j \neq i} p(j, o) \geq 1.
\]

If preferences and priorities are strict, then \(p\) satisfies non-wastefulness.

The following example shows that a statement along the lines of Proposition 11 is not true anymore when preferences and priorities can be weak.

Example 6 (A wasteful and individually rational generalized random matching that satisfies inequalities (23)) Consider the following general instance \(I = (N, O, \succsim)\) with weak preferences and weak priorities (the brackets indicate indifferences): \(N = \{1, 2, 3\}, O = \{x, y, z\},\)

\[
\succsim_1: [x y] \emptyset z \quad \succsim_2: [y z] \emptyset x \quad \succsim_3: [x z] \emptyset y \quad \succsim_1: [1 3] \emptyset 2 \quad \succsim_2: [1 2] \emptyset 3 \quad \succsim_3: [2 3] \emptyset 1.
\]

Then, the generalized random matching

\[
p = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3}
\end{pmatrix}
\]

is wasteful, individually rational, and satisfies inequalities (23).\(\diamond\)

We have the following equivalence for fractional weak stability for generalized random matchings and their associated random matchings.

Proposition 12 The generalized random matching \(p\) is fractionally weakly stable if and only if the associated random matching \(p'\) is fractionally weakly stable and respects non-wastefulness.

The following example shows why we had to impose that \(p'\) respects non-wastefulness in Proposition 12.

Example 7 (A wasteful and fractionally weakly stable associated random matching \(p'\)) We consider the general instance \(I = (N, O, \succsim)\) with weak preferences and weak priorities (the brackets indicate indifferences) that we already have discussed in Example 6: \(N = \{1, 2, 3\}, O = \{x, y, z\},\)

\[
\succsim_1: [x y] \emptyset z \quad \succsim_2: [y z] \emptyset x \quad \succsim_3: [x z] \emptyset y \quad \succsim_1: [1 3] \emptyset 2 \quad \succsim_2: [1 2] \emptyset 3 \quad \succsim_3: [2 3] \emptyset 1.
\]
Then, the generalized random matching
\[
p = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & 0 \\
0 & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & 0 & \frac{1}{3}
\end{pmatrix}
\]
is wasteful, individually rational, and satisfies inequalities (23) in the definition of fractional weak stability.

The associated instance \((N', O', \succsim')\) is such that \(N' = \{1, 2, 3, d_x, d_y, d_z\}\), \(O' = \{x, y, z, \phi_1, \phi_2, \phi_3\}\) with preferences and priorities (the brackets indicate indifferences):

\[
\succsim'_{1}: [x y] \succsim_{1} [z] \succsim_{2}: [y z] \succsim_{2} [x] \succsim_{3}: [x z] \succsim_{3} [\phi_1 \phi_2 \phi_3]
\]

The associated random matching is
\[
p' = \begin{pmatrix}
x & y & z & \phi_1 & \phi_2 & \phi_3 \\
1 & \frac{1}{3} & \frac{1}{3} & 0 & 1/3 & 0 \\
2 & 0 & \frac{1}{3} & \frac{1}{3} & 0 & \frac{1}{3} \\
3 & \frac{1}{3} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\
d_x & \frac{1}{3} & 0 & 0 & \frac{1}{3} & 0 \\
d_y & 0 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
d_z & 0 & 0 & \frac{1}{3} & 0 & \frac{1}{3}
\end{pmatrix}
\]

and does not respect non-wastefulness.

One can now check for each \((a, b) \in N' \times O'\) that the fractional stability inequalities (9) are satisfied and hence \(p'\) is fractionally weakly stable. However, since \(p\) is wasteful, it is not fractionally weakly stable.

For generalized random matchings, an agent \(i \in N\) has a claim against an agent \(j \in N\), if there exists an object \(o \in O\) such that \((i, o)\) is an acceptable pair, \(i \succ o j\), and

\[
p(j, o) + p(\emptyset, o) > \sum_{o' : o' \succsim o ; o' \neq o} p(i, o').
\]

Similarly as before, inequality (26) implies that agent \(i\) would want to consume more of object \(o\) and agent \(i\) envies a lower priority agent \(j\) and the null option for jointly having consumed more of object \(o\) than the probability with which he
consumes objects in the weak upper contour set of \(o \) (without \(o \)), which equals the probability \(\sum_{o' : o' \succsim_i o; o' \neq o} p(i, o') \) of object \(o \) that agent \(i \) would justifiably concede to them because he consumes that probability in better or equally good other objects.

A generalized random matching is **claimwise weakly stable** if it is non-wasteful, individually rational, and does not admit any claim.

Definition 24 *(Claimwise weak stability for generalized random matching)* A generalized random matching \(p \) is **claimwise weakly stable** if \(p \) is non-wasteful, individually rational, and for each acceptable pair \((i, o) \in N \times O \) and each \(j \in N \) such that \(i \succ_o j \),

\[
\sum_{o' : o' \succsim_i o; o' \neq o} p(i, o') \geq p(j, o) + p(\emptyset, o).
\] (27)

With the next proposition and example we show that only one direction of the transformation between the base model and the most general model preserves claimwise weak stability, while the other does not. The intuitive reason that an equivalence result as in the case of fractional weak stability (Proposition 12) does not hold for claimwise weak stability (Proposition 13) is as follows: fractional weak stability is a symmetric notion in that a violation that involves agent \(i \) who would like more of object \(o \) when facing lower priority agents is equivalent to a violation that involves object \(o \) wanting more of agent \(i \) when facing lower preferred objects while, in contrast, a claim is one-sidedly defined by an agent \(i \) wanting more of object \(o \) when facing one lower priority agent without any implications for object \(o \) wanting more of agent \(i \) when facing one lower preferred object.

Proposition 13 The generalized random matching \(p \) is claimwise weakly stable if the associated random matching \(p' \) is claimwise weakly stable and respects non-wastefulness and individual rationality.

Our previous Example 7 can also be used to demonstrate why we had to impose that \(p' \) respects non-wastefulness in Proposition 13: the associated random matching \(p' \) in the example is also claimwise weakly stable and does not respect non-wastefulness. Hence, the underlying generalized random matching \(p \) is wasteful and hence not weakly claimwise stable.

In the appendix we construct an example, Example 8, with a non-wasteful, individually rational, and claimwise weakly stable generalized random matching \(p \) for which \(p' \) is not claimwise weakly stable.

Another example in the appendix, Example 9, demonstrates why we had to impose that \(p' \) respects individual rationality in Proposition 13.

It follows easily that if we restrict attention to generalized deterministic matchings, then all the stability concepts for generalized random matchings coincide with standard weak stability (Definition 18). The proof of Proposition 14 follows the same arguments as the proof of our previous Propositions 1 and 2 and we therefore omit it.

Proposition 14 For generalized deterministic matchings, all the stability concepts for generalized random matchings with weak preferences and weak priorities coincide with weak stability for deterministic matchings.
Our previous results (Theorem 2 together with Propositions 9–13) now imply the following taxonomy of the stability concepts for generalized random matchings and their associated random matchings.

Theorem 3 (Relations between stability concepts for generalized random matchings with weak preferences and weak priorities and equivalences of stability concepts for associated random matchings)

For any generalized random matching \(p \) and its associated random matching \(p' \), we have

\[
\begin{align*}
\text{no ex-ante envy,} & \quad \text{non-wasteful,} \\
\text{and individually rational} & \quad (\text{Defs. 19, 14, and 15})
\end{align*}
\]

\[
\begin{aligned}
p & \quad \text{p ex-ante weakly stable (Def. 20)} & p' & \quad \text{p' ex-ante weakly stable (Def. 8)} \\
p & \quad \text{p robust ex-post weakly stable (Def. 22)} & p' & \quad \text{p' robust ex-post weakly stable (Def. 10) and non-wasteful} \\
p & \quad \text{p ex-post weakly stable (Def. 21)} & p' & \quad \text{p' ex-post weakly stable (Def. 9) and non-wasteful} \\
p & \quad \text{p fractionally weakly stable (Def. 23)} & p' & \quad \text{p' fractionally weakly stable (Def. 11) and non-wasteful} \\
p & \quad \text{p claimwise stable (Def. 24)} & p' & \quad \text{p' claimwise weakly stable (Def. 12), non-wasteful, and individually rational}
\end{aligned}
\]

Proof Appendix C.

4 Conclusion

We presented a taxonomy of stability concepts (ex-ante; robust ex-post, ex-post, fractional, and claimwise) for the most well-studied but restricted setting in which (1)
preferences are strict, (2) priorities are strict, (3) there is an equal number of agents and objects, (4) all objects and agents are acceptable to each other. The formalization lead to a clear picture of the hierarchy of stability concepts. We then extended these concepts to the most general model that has none of the restrictions (1)–(4). We formalized the stability concepts with the appropriate additional requirements of non-wastefulness and/or individual rationality when necessary to preserve the hierarchy we established in the base model. We found that it was a subtle task to identify when additionally requiring non-wastefulness or individual rationality is redundant or when it is critical to preserve the logical relations and characterizations that were identified in the base model. We also took these factors into account when obtaining our characterization results for preserving stability concepts when transforming the most general model to the base model. Throughout the paper, we complement our results with minimal examples where converse statements do not hold or when a certain characterization cannot be extended. We are hopeful that the groundwork in this paper will provide the base for further market design and axiomatic work on probabilistic matching under priorities.

Appendix: Omitted proofs, auxiliary results, and examples

A Section 2.1

Definition 25 (Aharoni–Fleiner fractional stability) A random matching p is **Aharoni–Fleiner fractionally stable** if for each pair $(i, o) \in N \times O$,

$$
\sum_{o' : o' \succ i o} p(i, o') = 1 \quad \text{or} \quad \sum_{j : j \succ i o} p(j, o) = 1.
$$

Proposition 15 A random matching is Aharoni–Fleiner fractionally stable if and only if it has no ex-ante envy.

Proof of Proposition 15 Suppose random matching p has ex-ante envy. Then, there exist $i, j \in N$ and $o, o' \in O$ such that $p(i, o') > 0$, $p(j, o) > 0$, $o \succ_i o'$, and $i \succ_o j$. Thus, there exists a pair $(i, o) \in N \times O$ such that $\sum_{o'' : o'' \succ_i o} p(i, o'') < 1$ and $\sum_{k : k \succ_o i} p(k, o) < 1$. Hence, p is not Aharoni–Fleiner fractionally stable.

Suppose random matching p is not Aharoni–Fleiner fractionally stable. Then, there exists a pair $(i, o) \in N \times O$ such that $\sum_{o'' : o'' \succ_i o} p(i, o'') < 1$ and $\sum_{k : k \succ_o i} p(k, o) < 1$. Thus, there exist $i, j \in N$ and $o, o' \in O$ such that $p(i, o') > 0$, $p(j, o) > 0$, $o \succ_i o'$, and $i \succ_o j$. Hence, p has ex-ante envy. \(\square\)

Note that under weak preferences and weak priorities, the definition of Aharoni–Fleiner fractional stability (Definition 25) remains the same and its equivalence to no ex-ante envy follows as before.

We say that a stability concept \ast is **convex** if the convex combination of \ast-stable matchings is \ast-stable as well (\ast-stability stands for any of our stability concepts for
random matchings). Since the stability constraints for fractional and claimwise stability are linear, there are simple (linear) arguments why both stability concepts are convex. We will later show that ex-ante stability and robust ex-post stability are not convex.

Lemma 3 Fractional stability is convex.

Proof of Lemma 3 Let \(p \) and \(q \) be fractionally stable random matchings. Then, they both satisfy inequalities (5). For each \(\lambda \in [0, 1] \), by taking the convex combinations of the corresponding inequalities, we can see that \(\lambda p + (1-\lambda)q \) also satisfies inequalities (5).

Lemma 4 Claimwise stability is convex.

The proof for the convexity of claimwise stability is similar to the Proof of Lemma 3 and we omit it.

Proof that ex-ante stability implies robust ex-post stability Consider a random matching \(p \) that is not robust ex-post stable. This means that \(p \) can be decomposed into deterministic matchings such that one of them is not stable. Let \(q \) be such an unstable deterministic matching. Since \(q \) is unstable, there exist agents \(i, j \in N \) and objects \(o, o' \in O \) such that \(q(i,o') = 1, q(j,o) = 1, o \succ_i o', \text{ and } i \succ_o j \). Since \(q \) is part of a decomposition of \(p \) (with positive weight), it follows that then \(p(i,o') > 0, p(j,o) > 0, o \succ_i o', \text{ and } i \succ_o j \). Hence, \(p \) is not ex-ante stable.

Proof that robust ex-post stability does not necessarily imply ex-ante stability Let \(N = \{1, 2, 3\} \) and \(O = \{x, y, z\} \). Consider the following preferences and priorities; they are the same as in Roth et al. (1993, Example 2) but we use them to prove a different statement:

\[
\succ_1: \ x \ y \ z \succ_1: \ x \ y \ z \\
\succ_2: \ y \ z \ x \succ_2: \ y \ z \ x \\
\succ_3: \ z \ x \ y \succ_3: \ z \ x \ y
\]

Then, consider \(p^A \), which is the deterministic agent optimal stable matching,\(^7\)

\[
p^A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}
\]

\(\succ_1: \ x \ y \ z \succ_1: \ x \ y \ z \)
\(\succ_2: \ y \ z \ x \succ_2: \ y \ z \ x \)
\(\succ_3: \ z \ x \ y \succ_3: \ z \ x \ y\)

and consider \(p^O \), which is the deterministic object optimal stable matching,\(^8\)

\[
p^O = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}
\]

\(\succ_1: \ x \ y \ z \succ_1: \ x \ y \ z \)
\(\succ_2: \ y \ z \ x \succ_2: \ y \ z \ x \)
\(\succ_3: \ z \ x \ y \succ_3: \ z \ x \ y\)

Let \(q = \frac{1}{2} p^A + \frac{1}{2} p^O \). Thus,

\(^7\) The deterministic agent optimal stable matching can be computed by using the agent proposing deferred-acceptance algorithm (Gale and Shapley 1962).

\(^8\) The deterministic object optimal stable matching can be computed by using the object proposing deferred-acceptance algorithm (Gale and Shapley 1962).
We first show that q’s only decomposition into deterministic matchings is the one with respect to p^A and p^O: if the decomposition involves a deterministic matching in which agent 1 gets object x, then the only deterministic matching consistent with q is p^A (because $q(2, z) = 0$); if the decomposition involves a deterministic matching in which agent 1 gets object z, then the only deterministic matching consistent with q is p^O (because $q(3, x) = 0$); since $q(1, y) = 0$, no deterministic matching consistent with q allows for agent 1 to get object y. Hence, we have proven that a convex decomposition of q can only involve deterministic matchings p^A and p^O. Since both p^A and p^O are stable, it follows that q is robust ex-post stable.

Second, we show that q is not ex-ante stable. Note that for agents $1, 2 \in N$ and objects $z, y \in O$ we have that $q(1, z) > 0$, $q(2, y) > 0$, $1 \succ y 2$, and $y \succ z 1$, i.e., agent 1 ex-ante envies agent 2 for his probability share of object y. Hence, q is not ex-ante stable.

Thus, q is robust ex-post stable but not ex-ante stable. □

Proof that robust ex-post stability implies ex-post stability By definition, if all decompositions of the random matching involve deterministic stable matchings, then there exists at least one decomposition that involves only deterministic stable matchings. □

Proof that ex-post stability does not necessarily imply robust ex-post stability Our example and proof is the same as in Roth et al. (1993, Example 2). Let $N = \{1, 2, 3\}$ and $O = \{x, y, z\}$. Consider the following preferences and priorities:

$$>_1: \quad x \succ y \succ z \quad >_x: \quad 2 > 3 > 1$$
$$>_2: \quad y \succ z \succ x \quad >_y: \quad 3 > 1 > 2$$
$$>_3: \quad z \succ x \succ y \quad >_z: \quad 1 > 2 > 3$$

Then, consider p^A, which is the deterministic agent optimal stable matching,

$$p^A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \succ_1: \quad x \succ y \succ z$$
$$\succ_2: \quad y \succ z \succ x$$
$$\succ_3: \quad z \succ x \succ y$$

and consider p^O, which is the deterministic object optimal stable matching,

$$p^O = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \succ_1: \quad x \succ y \succ z$$
$$\succ_2: \quad y \succ z \succ x$$
$$\succ_3: \quad z \succ x \succ y.$$

The only other deterministic stable matching is

$$p = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \succ_1: \quad x \succ y \succ z$$
$$\succ_2: \quad y \succ z \succ x$$
$$\succ_3: \quad z \succ x \succ y.$$

Let q be the uniform random matching. Thus,
\[
q = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}.
\]

Note that
\[
q = \frac{1}{3} \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix} + \frac{1}{3} \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix} + \frac{1}{3} \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} = \frac{1}{3} p^A + \frac{1}{3} p^O + \frac{1}{3} p.
\]

Since \(q \) can be decomposed into deterministic stable matchings, it is ex-post stable.

We now show that the uniform random matching \(q \) is not robust ex-post stable.

Note that
\[
q = \frac{1}{3} \begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix} + \frac{1}{3} \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} + \frac{1}{3} \begin{pmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{pmatrix}
\]

where all the deterministic matchings in the decomposition are unstable. Hence, \(q \) is not robust ex-post stable.

Thus, \(q \) is ex-post stable but not robust ex-post stable.

Proof that ex-post stability implies fractional stability If a random matching is ex-post stable then by definition it can be written as a convex combination of deterministic stable matchings. All of these deterministic stable matchings are fractionally stable. Since the set of fractionally stable matchings is convex (Lemma 3), a convex combination of deterministic stable matchings is fractionally stable.

Proof that fractional stability implies ex-post stability As already mentioned when introducing fractional stability, for strict priorities, the extreme points of the polytope defined by the linear inequalities (1), (2), (3), and (4) are exactly the (incidence vectors of the) deterministically stable matchings (Vande Vate 1989; Rothblum 1992; Roth et al. 1993). Since, by definition, fractionally stable random matchings are solutions to the linear inequalities, a fractionally stable random matching can be decomposed into deterministic stable matchings, which implies that a fractionally stable random matching is ex-post stable.

Proof that fractional stability implies claimwise stability Consider a random matching \(p \) that is not claimwise stable. Then, for some pair \((i, o) \in N \times O\) and some \(j \in N \) such that \(i \succ_o j \), strict inequality (7) applies:
\[
p(j, o) > \sum_{o' : o' \succ_i o} p(i, o'),
\]

i.e., agent \(i \) has a claim against agent \(j \) with respect to object \(o \). But this implies that
\[
\sum_{k : k \prec_o i} p(k, o) > \sum_{o' : o' \succ_i o} p(i, o').
\]
Hence, \(p \) is not fractionally stable. Thus, fractional stability implies claimwise stability. \(\square \)

Proof that claimwise stability does not necessarily imply ex-post/fractional stability Let \(N = \{1, 2, 3\} \) and \(O = \{x, y, z\} \). Consider the following preferences and priorities:

\[
\succ_1: \quad x \succ z \succ y \quad \succ_x: \quad 2 \quad 3 \quad 1 \\
\succ_2: \quad y \succ x \succ z \quad \succ_y: \quad 1 \quad 3 \quad 2 \\
\succ_3: \quad z \succ x \succ y \quad \succ_z: \quad 2 \quad 1 \quad 3
\]

Then, consider \(p^A \), which is the deterministic agent optimal stable matching,

\[
p^A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\]

and consider \(p^O \), which is the deterministic object optimal stable matching,

\[
p^O = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]

Let \(q \) be the uniform random matching. Thus,

\[
q = \begin{pmatrix}
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3}
\end{pmatrix}
\]

First, since \(p^O \) is the deterministic object optimal stable matching, agent 1 does not get \(y \) in any deterministic stable matching. Hence, random matching \(q \) is not ex-post stable. Alternatively, we can check that fractional stability is violated and inequality (6) holds for agent 2 and object \(x \):

\[
\frac{2}{3} = \sum_{j:j \not< 2} q(j, x) > \sum_{o':o' \not> 2x} q(2, o') = \frac{1}{3}.
\]

Second, we show that random matching \(q \) is claimwise stable by checking if there are claims of an agent \(i \) against an agent \(j \), i.e., are there \((i, o) \in N \times O \) and \(j \in N \) such that \(i \succ_o j \) and \(q(j, o) > \sum_{o':o' \succ_i o} q(i, o') \)? We show that there are no claims.

- For an agent \(i \in N \), a claim for a higher probability for his most preferred object against any of the other agents is not justified because all other agents have higher priority for that object.
- For an agent \(i \in N \), a claim for a higher probability for his second preferred object against any of the other agents is not justified because he gets an object in the strict upper contour set of his second preferred object with probability \(1/3 \) whereas any other agent also gets that object with probability \(1/3 \) (a probability that is not higher).
No agent \(i \in N\) would claim a higher probability for his least preferred object (because he gets an object in the strict upper contour set of his least preferred object with probability \(\frac{2}{3}\) whereas any other agent only gets that object with probability \(\frac{1}{3}\)).

Proof of Proposition 1 Let deterministic matching \(p\) be stable and note that for deterministic matchings no envy implies ex-ante stability (as also noted by Kesten and Ünver 2015). We have shown that ex-ante stability implies robust ex-post stability; that robust ex-post stability implies ex-post stability; that ex-post stability implies fractional stability; and that fractional stability implies claimwise stability. We are done if we can show that any deterministic claimwise stable matching is stable. Assume that there exists a deterministic matching \(q\) that is not stable. Then, there exist \(i, j \in N\) and \(o, o' \in O\) such that \(q(i, o') = 1, q(j, o) = 1, o \succ_i o',\) and \(i \succ_o j\). But then, \(1 = q(j, o) > \sum_{o'' : o'' \succ_i o} p(i, o'') = 0\) and agent \(i\) has a claim against agent \(j\). Afacan (2018) also proved that any deterministic claimwise stable matching is stable.

\(\square\)

B Section 2.3

For generalized random matchings the definition of Aharoni–Fleiner fractional stability (Definition 25) remains the same and its equivalence to no ex-ante envy follows as before.

The following two lemmas follow from the definition of fractional weak stability and claimwise weak stability via linear inequalities.

Lemma 5 Fractional weak stability is convex.

Lemma 6 Claimwise weak stability is convex.

C Section 3

Proof of Proposition 3 We show that the generalized deterministic matching \(p\) has no envy and is non-wasteful and individually rational if and only if the associated deterministic matching \(p'\) is weakly stable.

Part 1 Let \(p\) be a generalized deterministic matching and \(p'\) its associated deterministic matching. We first show that \(p\) being wasteful, or individually irrational, or having envy implies that \(p'\) is not weakly stable. We do so via the following table that for any of the possible violations for \(p\) lists an associated no-envy violation for \(p'\). In Table 1, \((i, o_j) \in N \times O\):
Table 1 Violation for p and associated no-envy violation for p'. IIR individually irrational, W wasteful, E envy

Violation for p	Associated no-envy violation for p'
IIR agent i’s match is an unacceptable object: $p(i, o_j) = 1$ and $\emptyset \succ_i o_j$	E agent i envies d_j for ϕ_i: $p'(i, o_j) = 1, p'(d_j, \phi_i) = 1, \phi_i \succ_i o_j, i \succ_{\phi_i} d_j$
IIR object o_j’s match is an unacceptable agent: $p(i, o_j) = 1$ and $\emptyset \succ_{o_j} i$	E agent d_j envies i for o_j: $p'(i, o_j) = 1, p'(d_j, \phi_i) = 1, o_j \succ_{d_j} \phi_i, d_j \succ_{o_j} i$
W agent i gets \emptyset and wants unassigned object o_j: $i \succ_{o_j} \emptyset, o_j \succ_i \emptyset, \sum_{l\in N} p(l, o_j) = 0, \sum_{o'\in O} p(i, o') = 0$	E agent i envies d_j for o_j: $p'(i, \phi_i) = 1, p'(d_j, o_j) = 1, o_j \succ_{i} \phi_l, i \succ_{o_j} d_j$
W agent i gets o' and wants unassigned object o_j: $i \succ_{o_j} \emptyset, o_j \succ_i o'$, $\sum_{l\in N} p(l, o_j) = 0, p(i, o') = 1$	E agent i envies d_j for o_j: $p'(i, o') = 1, p'(d_j, o_j) = 1, o_j \succ_{i} o', i \succ_{o_j} d_j$
E agent i gets o' and envies agent k for o_j: $p(i, o') = 1, p(k, o_j) = 1, o_j \succ_i o', i \succ_{o_j} k$	E agent i envies k for o_j: $p'(i, o') = 1, p'(k, o_j) = 1, o_j \succ_{i} o', i \succ_{o_j} k$
E agent i gets \emptyset and envies agent k for o_j: $\sum_{o'\in O} p(i, o') = 0, p(k, o_j) = 1, o_j \succ_i \emptyset, i \succ_{o_j} k$	E agent i envies k for o_j: $p'(i, \phi_i) = 1, p'(k, o_j) = 1, o_j \succ_{i} \phi_l, i \succ_{o_j} k$

Part 2 We show that p' not being weakly stable implies that p is wasteful, or individually irrational, or has envy, or that the weak stability violation at p' was not possible. Assume that at p' some agent a envies an agent b for object c. Then, $p'(a, d) = 1, p'(b, c) = 1, c \succ_a d$, and $a \succ'_c b$. Depending on the specifications of $a, b, c,$ and d, different violations can be identified for p. The following table list all no-envy violations for p' and p associates wastefulness, individual irrationality, or envy, or explains why the no-envy violations of p' cannot occur given its definition. Note that since $(a, d), (b, c) \in \{N \times O, N \times \Phi, D \times O, D \times \Phi\}$ we have in total 16 different cases to discuss (Table 2).
No-envy violation for p'	Associated violation for p or impossibility
E agent a envies agent b for c:	**E agent i envies agent j for o:**
$(a, d), (b, c) ∈ N × O,$	$(a, d) = (i, o'), (b, c) = (j, o),$
$p'(i, o') = 1, p'(j, o) = 1,$	$p(i, o') = 1, p(j, o) = 1,$
$o ≿_{i} o', i ≿_{o} j.$	$o ≿_{i} o', i ≿_{o} j.$
E agent a envies agent b for c:	**E agent i is individually irrational: E agent i is individually irrational: E agent i is individually irrational:**
$(a, d) = (i, o'), (b, c) = (d_j, o_j),$	$(a, d) ∈ N × O, (b, c) ∈ D × D,$
$p'(i, o') = 1, p'(d_j, o_j) = 1,$	$p(i, o') = 1, \sum_{k∈N} p(k, o_j) = 0,$
$o_j ≿_{i} o', i ≿_{o_j} d_j.$	$o_j ≿_{i} o', i ≿_{o_j} \emptyset.$
IIR agent i is individually irrational:	**IIR object o is individually irrational:**
W object o_j is wasted:	**W object o_j is wasted:**
$(a, d) ∈ N × Φ, (b, c) ∈ D × Φ,$	$(a, d) = (d_i, o_i), (b, c) = (d_j, d_j),$
$p'(i, o_i) = 1, p'(d_j, o_j) = 1,$	$p(i, o_i) = 1, \sum_{o'∈O} p(i, o') = 0, \sum_{k∈N} p(k, o_j) = 0,$
$o_j ≿_{i} o_i, i ≿_{o_j} d_j.$	$o_j ≿_{i} o_i, i ≿_{o_j} \emptyset.$
E agent a envies agent b for c:	**E agent l envies agent k for o_i:**
$(a, d), (b, c) ∈ D × Φ,$	$(a, d) = (i, o_i), (b, c) = (j, o),$
$p'(i, o_i) = 1, p'(j, o) = 1,$	$p(k, o_i) = 1, p(l, o) = 1,$
$o_i ≿_{d_i} o_i, o_i ≿_{d_j} d_j.$	$l ≿_{o_i} k, o_j ≿_{o} o_j.$
E agent a envies agent b for c:	**E agent i envies agent j for o:**
$(a, d) ∈ N × Φ, (b, c) ∈ N × O,$	$(a, d) = (d_i, o_i), (b, c) = (j, o),$
$p'(i, o_i) = 1, p'(j, o) = 1,$	$p(k, o_i) = 1, p(l, o) = 1,$
$o_i ≿_{d_i} o_i, o_i ≿_{d_j} d_j.$	$l ≿_{o_i} k, o_j ≿_{o} o_j.$
IIR object o is individually irrational:	**IIR object o is individually irrational:**
$(a, d) ∈ D × O, (b, c) ∈ N × O,$	$(a, d) = (d_i, o_i), (b, c) = (j, o),$
$p'(j, o) = 1, d_i ≿_{o_i} j.$	$p(i, o') = 1, \emptyset ≿_{o} j.$
Table 2 continued

E agent a envies agent b for c:
$(a, d) \in \mathcal{D} \times \Phi$, $(b, c) \in \mathcal{N} \times \Phi$,
$(a, d) = (d_i, \phi_k)$, $(b, c) = (j, \phi_j)$,
in particular, $p'(j, o) = 1, d_i >_a j$.

Associated violation for p or impossibility
IIR object o is individually irrational:
$p(j, o) = 1, \emptyset >_o j$.

E agent a envies agent b for c:
$(a, d) \in \mathcal{N} \times \mathcal{O}$, $(b, c) \in \mathcal{N} \times \Phi$,
$(a, d) = (i, o')$, $(b, c) = (j, \phi_j)$,
in particular, $i >_b j$.

IP $i >_{\phi_j} j$ is not possible
because by the definition of p',
$j >_{\phi_j} i$.

E agent a envies agent b for c:
$(a, d) \in \mathcal{N} \times \Phi$, $(b, c) \in \mathcal{N} \times \Phi$,
$(a, d) = (i, \phi_i)$, $(b, c) = (j, \phi_j)$,
in particular, $\phi_j >_i \phi_i$.

IP $\phi_j >_i \phi_i$ is not possible
because by the definition of p',
$\phi_i >_i \phi_j$.

E agent a envies agent b for c:
$(a, d) \in \mathcal{D} \times \mathcal{O}$, $(b, c) \in \mathcal{D} \times \Phi$,
$(a, d) = (d_i, o_j)$, $(b, c) = (d_j, o_j)$,
in particular, $o_j >_{d_i} o_j$.

IP $o_j >_{d_i} o_j$ is not possible
because by the definition of p',
$o_i >_{d_j} o_j$.

E agent a envies agent b for c:
$(a, d) \in \mathcal{D} \times \mathcal{O}$, $(b, c) \in \mathcal{D} \times \Phi$,
$(a, d) = (d_i, o_j)$, $(b, c) = (d_j, \phi_k)$,
in particular, $\phi_k >_{d_j} o_j$.

IP $\phi_k >_{d_j} o_j$ is not possible
because by the definition of p',
$o_i >_{d_j} o_j$.

E agent a envies agent b for c:
$(a, d) \in \mathcal{D} \times \mathcal{O}$, $(b, c) \in \mathcal{N} \times \Phi$,
$(a, d) = (d_i, o_j)$, $(b, c) = (j, \phi_j)$,
in particular, $\phi_j >_{d_i} o_j$.

IP $\phi_j >_{d_i} o_j$ is not possible
because by the definition of p',
$o_j >_{d_i} \phi_j$.

E agent a envies agent b for c:
$(a, d) \in \mathcal{D} \times \mathcal{O}$, $(b, c) \in \mathcal{N} \times \Phi$,
$(a, d) = (d_i, \phi_k)$, $(b, c) = (j, \phi_j)$,
in particular, $d_i >_{\phi_j} j$.

IP $d_i >_{\phi_j} j$ is not possible
because by the definition of p',
$j >_{\phi_j} d_i$.
Table 2 continued

No-envy violation for \(p' \)	Associated violation for \(p \) or impossibility
E agent \(a \) envies agent \(b \) for \(c \):	\(\text{IP} \) \(d_i \succ c' \) \(d_j \) is not possible
\((a, d) \in D \times \Phi, (b, c) \in D \times O \),	because by the definition of \(p' \),
\((a, d) = (d_i, \phi_k), (b, c) = (d_j, \alpha_j) \),	\(d_j \succ d_i \).

\[\text{IP} \] \(d_i \succ d_j \).

Proof of Proposition 4 We show that a generalized deterministic matching is weakly stable if and only if it is non-wasteful, individually rational, and has no envy.

Let \(p \) be a generalized deterministic matching that is individually rational. Assume \(p \) is weakly stable, i.e., there exists no pair \((i, o) \in N \times O \) such that \(\sum_{a':a'} c_{i, o} p(i, o') = 0 \) and \(\sum_{j:j} a_{j, o} p(j, o) = 0 \). Since \(p \) is deterministic, this is equivalent to there being no pair \((i, o) \in N \times O \) such that \(\sum_{a':a'} c_{i, o} p(i, o') = 0 \) and \(\sum_{j\in N} p(j, o) = 0 \) or (b) for some agent \(j \in N \), \(i \succ o \) \(j \) and \(p(j, o) = 1 \). This in turn is equivalent to \(p \) being (a) non-wasteful and (b) having no envy.

\[\square \]

Proof of Proposition 6 We show that the generalized random matching \(p \) has no ex-ante envy and is non-wasteful and individually rational if and only if the associated random matching \(p' \) is ex-ante weakly stable.

The proof follows exactly along the lines of the proof of Proposition 3. The only difference is that in that proof no envy, non-wastefulness, individual rationality, and weak stability all are defined for probabilities 1 and 0 to receive an object and when we now consider no ex-ante envy, non-wastefulness, individual rationality, and ex-ante weak stability, these definitions pertain to any probability of receiving an object: all arguments that were using an agent receiving an object with probability 1 now apply for an agent receiving a positive probability of that object.

\[\square \]

Proof of Proposition 7 We show that a generalized random matching is ex-ante weakly stable if and only if it has no ex-ante envy and it is non-wasteful and individually rational.

Let \(p \) be a generalized random matching that is individually rational. Assume \(p \) is ex-ante weakly stable, i.e., there exists no pair \((i, o) \in N \times O \) such that \(\sum_{a':a'} c_{i, o} p(i, o') < 1 \) and \(\sum_{j:j} a_{j, o} p(j, o) < 1 \). This is equivalent to there being no pair \((i, o) \in N \times O \) such that \(\sum_{a':a'} c_{i, o} p(i, o') < 1 \) and (a) \(\sum_{j\in N} p(j, o) < 1 \) or (b) for some agent \(j \in N \), \(i \succ o \) \(j \) and \(p(j, o) > 0 \). This in turn is equivalent to \(p \) being (a) non-wasteful and (b) having no ex-ante envy.

\[\square \]

Proof of Lemma 1 We show that a generalized random matching is individually rational if and only if in each of its decompositions all generalized deterministic matchings are individually rational.

\[\text{Part 1} \] Suppose that generalized random matching \(p \) is individually irrational. Then, for some \((i, o) \in N \times O \), \(p(i, o) > 0 \) and agent \(i \) or object \(o \) considers the other unacceptable. Then, in any decomposition of \(p \) into generalized deterministic match-
ings, there exists a generalized deterministic matching q such that $q(i, o) = 1$ and q is individually irrational.

Part 2 Suppose that at some decomposition of p there exists an individually irrational generalized deterministic matching q, i.e., for some $(i, o) \in N \times O$, $q(i, o) = 1$ and agent i or object o considers the other unacceptable. Then, $p(i, o) > 0$ and p is individually irrational.

Proof of Lemma 2 We show that if a generalized random matching is non-wasteful, then in each of its decompositions all generalized deterministic matchings are non-wasteful.

Suppose that at some decomposition of p there exists a wasteful generalized deterministic matching q, i.e., there exists an acceptable pair $(i, o) \in N \times O$ such that $\sum_{o' : o' \succsim_i o} q(i, o') = 0$ (i would like to have object o) and $\sum_{j \in N} q(j, o) = 0$ (object o is not allocated). Then it follows that $\sum_{o' : o' \succsim_i o} p(i, o') < 1$ and $\sum_{j \in N} p(j, o) < 1$. Hence, p is wasteful.

Proof of Proposition 9 We show that the generalized random matching p is ex-post weakly stable if and only if the associated random matching p' is ex-post weakly stable and respects non-wastefulness.

Let p be a generalized random matching and p' its associated random matching.

Part 1 Let p be an ex-post weakly stable generalized matching. Recall that the non-wastefulness of p is equivalent to p' respecting non-wastefulness. Furthermore, p can be decomposed into generalized deterministic weakly stable matchings. By Proposition 5, each generalized deterministic weakly stable matching in the decomposition corresponds to an associated deterministic weakly stable matching. The induced decomposition consisting of the associated deterministic weakly stable matchings is a decomposition of the associated random matching p'. Hence, p' is ex-post weakly stable.

Part 2 Recall that from any associated random matching p' we can obtain the original generalized random matching p by taking its first n rows and its first m columns ($|N| = n$ and $|O| = m$). Let the associated random matching p' of p be ex-post weakly stable and respect non-wastefulness. Then, p' can be decomposed into deterministic weakly stable matchings. Note that by taking the first n rows and the first m columns of each of the deterministic weakly stable matchings in the decomposition, we can derive a decomposition of p into generalized deterministic weakly stable matchings (Proposition 5). Furthermore, since p' respects non-wastefulness, p is non-wasteful. Hence, p is ex-post weakly stable.

Proof of Proposition 10 We show that the generalized random matching p is robust ex-post weakly stable if and only if the associated random matching p' is robust ex-post weakly stable and respects non-wastefulness.

Let p be a generalized random matching and p' its associated random matching. By Proposition 9, p is ex-post weakly stable if and only if p' is ex-post weakly stable and respects non-wastefulness.

Part 1 Let p be an ex-post weakly stable generalized matching that is not robust ex-post weakly stable. Hence, p has a decomposition into generalized deterministic matchings that is not weakly stable, i.e., at least one of the generalized deterministic
matchings in the decomposition is not weakly stable. By Proposition 5, each generalized deterministic matching in the decomposition corresponds to an associated deterministic matching and the weakly unstable generalized deterministic matching leads to a weakly unstable associated deterministic matching. The induced decomposition consisting of the associated deterministic matchings is a decomposition of the associated random matching \(p' \). Hence, \(p' \) has a decomposition into deterministic matchings that are not all weakly stable and \(p' \) is not robust ex-post weakly stable.

Part 2 Recall that from any associated random matching \(p' \) we can obtain the original generalized random matching \(p \) by taking its first \(n \) rows and its first \(m \) columns (\(|N| = n \) and \(|O| = m\)). Let the associated random matching \(p' \) of \(p \) respect non-wastefulness and be ex-post weakly stable but not robust ex-post weakly stable. Hence, \(p' \) has a decomposition into deterministic matchings that is not weakly stable, i.e., at least one of the deterministic matchings in the decomposition is not weakly stable. Note that by taking the first \(n \) rows and the first \(m \) columns of each of the deterministic matchings in the decomposition, we can derive a decomposition of \(p \) into generalized deterministic matchings and the weakly unstable associated deterministic matching leads to a weakly unstable generalized deterministic matching (Proposition 5). The induced decomposition consisting of the generalized deterministic matchings is a decomposition of the generalized random matching \(p \). Hence, \(p \) has a decomposition into generalized deterministic matchings that are not all weakly stable and \(p \) is not robust ex-post weakly stable.

Proof of Proposition 11 Roth et al. (1993) show that in the general model with strict preferences and priorities, any individually rational generalized random matching satisfying inequalities (23) can be decomposed into non-wasteful and stable generalized deterministic matchings. On top of that, the rural hospital theorem (Roth 1986) implies that the set of matched agents and objects is always the same in all stable generalized deterministic matchings. Now suppose that a convex combination of non-wasteful and stable generalized deterministic matchings \(q_1, \ldots, q_m \) leads to a wasteful generalized random matching \(p \). By definition of wastefulness, there is an acceptable pair \((i, o) \in N \times O\) such that \(\sum_{o': o' \gtrsim_j o} p(i, o') < 1 \) (\(i \) would like to have more of \(o \)) and \(\sum_{j \in N} p(j, o) < 1 \) (\(o \) is not fully allocated). Then, the object \(o \) that is wasted at generalized random matching \(p \) is not assigned to any agent in at least one of the generalized deterministic stable matchings \(q_j \) in the convex combination. Thus, by the rural hospital theorem, \(o \) is not assigned to any agent in any stable generalized deterministic matching in \(\{q_1, \ldots, q_m\} \). Since \(\sum_{o': o' \gtrsim_j o} p(i, o') < 1 \), it follows that in at least one of the stable generalized deterministic matchings \(q^k \), \(\sum_{o': o' \gtrsim_j o} q^k(i, o') = 0 \) and \(\sum_{j \in N} q^k(j, o) = 0 \). Hence, \(q^k \) is wasteful; a contradiction.

Proof of Proposition 12 We show that the generalized random matching \(p \) is fractionally weakly stable if and only if the associated random matching \(p' \) is fractionally stable and respects non-wastefulness.

Let \(p \) be a generalized random matching and \(p' \) its associated random matching.
Part 1 Let \(p \) be a fractionally weakly stable generalized random matching. Thus, \(p \) is non-wasteful, individually rational, and satisfies inequalities (23). Then, \(p' \) respects non-wastefulness and individual rationality. Suppose, by contradiction, that \(p' \) is not fractionally weakly stable. Then, for some pair \((a, b)\) \(\in N' \times O' \),

\[
\sum_{a':a' \preceq_p a} p'(a', b) > \sum_{b':b' \succeq_p b; b' \neq b} p'(a, b').
\]

In particular,

\[
\sum_{a':a' \preceq_p a} p'(a', b) > 0.
\]

Furthermore, recall that \(\sum_{b':b' \succeq_p b} p'(a, b') < 1 \) and hence,

\[
\sum_{b':b' \succeq_p b} p'(a, b') > 0.
\]

Case 1. Suppose that \(b = o_j \in O \). Recall that

\[
\succsim_{o_j}' \succeq_{o_j} \{(k \in N : k \succsim_{o_j} \emptyset)\}, \quad d_j, \quad \text{lex} (D \setminus \{d_j\}), \quad \succsim_{o_j}((k \in N : k \succsim_{o_j} \emptyset)).
\]

By the definition of \(\succsim_{o_j}' \) and \(p' \) and individual rationality (of \(p \)), for all \(d_k \in D \setminus \{d_j\} \), \(p'(d_k, o_j) = 0 \) (by definition of \(p' \)) and for all \(l \in N \) such that \(l \succsim_{o_j} \emptyset \), \(p'(l, o_j) = 0 \). Thus, if \(a \succsim_{o_j}' d_j \), then \(\sum_{a':a' \preceq_p a} p'(a', o_j) = 0 \); a contradiction. Hence, \(a \succsim_{o_j}' d_j \) and \(a = i \in N \) is an acceptable agent. By a symmetric argument, starting with \(a = i \in N \) and

\[
\succsim_{i}' = \succsim_{i}((o \in O : o \succsim_{i} \emptyset)), \quad \phi_i, \quad \text{lex} (\Phi \setminus \{\phi_i\}), \quad \succsim_{i}((o \in O : o \succsim_{i} \emptyset)),
\]

we obtain \(b \succsim_{i} \phi_i \) and that \(b = o_j \in O \) is an acceptable object.

Then, by the definition of \(\succsim_{o_j}' \) and \(p' \) (recall that \(p'(d_j, o_j) = p(\emptyset, o_j) \)),

\[
i = a \succsim_{o_j}' d_j \text{ implies } \sum_{a':a' \preceq_{o_j} a} p'(a', o_j) = \sum_{k:k \preceq_{o_j} i} p(k, o_j) + p(\emptyset, o_j)
\]

and

\[
o_j = b \succsim_{i} \phi_i \text{ implies } \sum_{b':b' \preceq_{o_j} o_j; b' \neq o_j} p'(i, b') = \sum_{o':o' \preceq_{o_j} o_j; o' \neq o_j} p(i, o').
\]
Hence, inequality \(\sum_{a':a'<_ja} p'(a', b) > \sum_{b':b'>a;b'\neq b} p'(a, b') \) for \(a = i \in N \) and \(b = o_j \in O \) can be rewritten as

\[
\sum_{k:k<_jo_j} p(k, o_j) + p(\emptyset, o_j) > \sum_{o':o'>_ao_j; o'\neq o_j} p(i, o'),
\]

which contradicts that \(p \) was fractionally weakly stable.

Since in Case 1 we have shown that \(b \in O \) implies \(a \in N \) and vice versa, the only remaining case to discuss is \((a, b) \in D \times \Phi \).

Case 2. Suppose that \(a = d_j \in D \) and \(b = \phi_i \in \Phi \). Recall that

\[
\succsim_{d_j} = o_j, \text{ lex } (O \setminus \{o_j\}) , \succsim_{d_j} (\Phi).
\]

By the definition of \(\succsim_{d_j} \) and \(p' \), for all \(l, m \in N, \phi_l \succsim_{d_j} \phi_m \) if and only if \(l \succsim_{o_j} m \) and \(p'(d_j, o_j) = p(\emptyset, o_j) \). Then, we have

\[
\sum_{b':b'\succsim_{d_j} \phi_i; b'\neq \phi_i} p'(d_j, b') = \sum_{k: \phi_k \succsim_{d_j} \phi_i; k \neq i} p'(d_j, \phi_k) + p'(d_j, o_j)
\]

\[
= \sum_{k: k \succsim_{o_j} i; k \neq i} p(k, o_j) + p(\emptyset, o_j).
\]

Next, recall that

\[
\succsim_{\phi_i} = i, \text{ lex } (N \setminus \{i\}) , \succsim_{\phi_i} (D).
\]

By the definition of \(\succsim_{\phi_i} \), for all \(x, y \in O, d_x \succsim_{\phi_i} d_y \) if and only if \(x \succsim_i y \). Then, by the definition of \(\succsim_{\phi_i} \) and \(p' \), we have

\[
\sum_{a':a'<_{\phi_i} d_j} p'(a', \phi_i) = \sum_{d_l:d_l \succsim_{\phi_i} d_j} p'(d_l, \phi_i) = \sum_{o_j:o_j \succsim_{o_j} i} p(i, o_l).
\]

Hence, inequality \(\sum_{a':a'<_{\phi_i} d_j} p'(a', b) > \sum_{b':b'\succsim_{a} b;b'\neq b} p'(a, b') \) for \(a = d_j \in D \) and \(b = \phi_i \in \Phi \) can be rewritten as

\[
\sum_{o_j:o_j \succsim_{o_j} i} p(i, o_l) > \sum_{k: k \succsim_{o_j} i; k \neq i} p(k, o_j) + p(\emptyset, o_j).
\]

This implies \(\sum_{o_j:o_j \succsim_{o_j} i} p(i, o_l) > 0 \) and individual rationality implies that agent \(i \) finds object \(o_j \) acceptable. Similarly it follows that \(\sum_{k: k \succsim_{o_j} i; k \neq i} p(k, o_j) + p(\emptyset, o_j) < 1 \), therefore \(\sum_{k: k \succsim_{o_j} i} p(k, o_j) > 0 \), and by individual rationality, object \(o_j \) finds agent \(i \) acceptable. Hence, \((i, o_j) \in N \times O\) is an acceptable pair. Furthermore, recall
that $\sum_{b':b' \succ d_j} p'(a, b') < 1$ and hence, $\sum_{o_i:o_i \prec o_j} p(i, o_i) < 1$. Thus, by non-wastefulness, $p(\emptyset, o_j) = 0$. Therefore, for the acceptable pair $(i, o_j) \in N \times O$,

$$\sum_{o_i:o_i \prec o_j} p(i, o_i) > \sum_{k:k \succ o_j,i;k \neq i} p(k, o_j)$$

and therefore also

$$\sum_{o_i:o_i \prec o_j} p(i, o_i) + p(i, \emptyset) > \sum_{k:k \succ o_j,i;k \neq i} p(k, o_j);$$

contradicting that p was fractionally weakly stable.

Part 2 Let p' be a fractionally stable random matching that respects non-wastefulness. Thus, p is non-wasteful. We first show that p is individually rational. Consider an unacceptable pair $(i, o_j) \in N \times O$. Assume that object o_j finds agent i unacceptable, i.e., $\emptyset \succ o_j i$. Now consider the pair $(d_j, o_j) \in N' \times O'$. Fractional stability of p' requires

$$\sum_{b':b' \succ d_j,o_j:b' \neq o_j} p'(d_j, b') \geq \sum_{a':a' \succ o_j,d_j} p'(a', o_j).$$

Since object o_j is the best object for d_j at $\succ_d j$, it follows that $\sum_{b':b' \succ d_j,o_j:b' \neq o_j} p'(d_j, b') = 0$. Hence, $\sum_{a':a' \succ o_j,d_j} p'(a', o_j) = 0$ and for each $a' \prec o_j d_j$, $p'(a', o_j) = 0$. Next, $a' \prec o_j d_j$ if and only if $a' \in D \setminus \{d_j\}$ or $[a' \in N$ and $\emptyset \succ o_j a']$. Thus, by the definition of p', for each $a' \in N$ such that $\emptyset \succ o_j a'$, $p(a', o_j) = p'(a', o_j) = 0$. Symmetrically, starting from agent i finding agent o_j unacceptable, i.e., $\emptyset \succ o_j i$, we obtain that for each $b' \in O$ such that $\emptyset \succ i b'$, $p(i, b') = p'(i, b') = 0$. Hence, the generalized random matching p is individually rational.

Next suppose, by contradiction, that p violates one of the inequalities (23). Then, for some acceptable pair $(i, o_j) \in N \times O$,

$$\sum_{k:k \prec o_j i} p(k, o_j) + p(\emptyset, o_j) > \sum_{o':o' \prec o_j, o':o' \neq o_j} p(i, o').$$

Recall that

$$\succ_{o_j} = \succ_{o_j}(\{k \in N : k \succ o_j \emptyset\}), d_j, \text{ lex } (D \setminus \{d_j\}), \succ_{o_j}(\{k \in N : \emptyset \succ o_j k\})$$

and

$$\succ_i = \succ_i(\{o \in O : o \succ_i \emptyset\}), \phi_i, \text{ lex } (\Phi \setminus \{\phi_i\}), \succ_i(\{o \in O : \emptyset \succ_i o\}).$$
Then, by the definition of \succsim' and p' (recall that $p(\emptyset, o_j) = p'(d_j, o_j)$),
\[
i \succ_{o_j} \emptyset \text{ implies } \sum_{k: k \prec_{o_j} i} p(k, o_j) + p(\emptyset, o_j) = \sum_{a': a' \prec'_{o_j} i} p'(a', o_j)
\]
and
\[
o_j \succ_i \emptyset \text{ implies } \sum_{o': o' \succ_{o_j} o; o' \neq o_j} p(i, o') = \sum_{b': b' \succ'_{o_j} o; b' \neq o_j} p'(b', i).
\]
Hence, inequality $\sum_{k: k \prec_{o_j} i} p(k, o_j) + p(\emptyset, o_j) > \sum_{o': o' \succ_{o_j} o; o' \neq o_j} p(i, o')$ can be rewritten as
\[
\sum_{a': a' \prec'_{o_j} i} p'(a', o_j) > \sum_{b': b' \succ'_{o_j} o; b' \neq o_j} p'(b', i),
\]
which contradicts that p' was fractionally stable. \square

Proof of Proposition 13 We show that the generalized random matching p is claimwise weakly stable if the associated random matching p' is claimwise stable and respects non-wastefulness and individual rationality.

Let p be a generalized random matching and p' its associated random matching. Let p' be claimwise stable and respect non-wastefulness and individual rationality. Thus, p is non-wasteful and individual rational. Suppose, by contradiction, that p violates one of the inequalities (27). Then, for some acceptable pair $(i, o_j) \in N \times O$ and some agent $k \in N$ such that $k \prec_{o_j} i$,
\[
p(k, o_j) + p(\emptyset, o_j) > \sum_{o': o' \succ_{o_j} o; o' \neq o_j} p(i, o').
\]
Furthermore, $\sum_{o': o' \succ_{o_j} o} p(i, o') < 1$ and hence, by non-wastefulness, $p(\emptyset, o_j) = 0$. Recall that
\[
\succsim'_{o_j} = \succsim_{o_j}([k \in N : k \succ_{o_j} \emptyset]) \cup d_j, \text{ lex } (D \setminus [d_j]), \succ_{o_j}([k \in N : \emptyset \succ_{o_j} k])
\]
and
\[
\succsim'_{i} = \succsim_{i}([o \in O : o \succ_{i} \emptyset]) \cup \phi_i, \text{ lex } (\Phi \setminus \{\phi_i\}), \succ_{i}([o \in O : \emptyset \succ_{i} o])
\]
Then, by the definition of \succsim' and p' (recall that $p(\emptyset, o_j) = p'(d_j, o_j) = 0$),
\[
k \prec'_{o_j} i \text{ and } p(k, o_j) + p(\emptyset, o_j) = p'(k, o_j)
\]
and

\[a_j \succ_i \emptyset \text{ implies } \sum_{o':a' \succ_i o; o' \neq a_j} p(i, o') = \sum_{b':b' \succ_i a_j; b' \neq a_j} p'(b', i). \]

Hence, inequality \(p(k, a_j) + p(\emptyset, a_j) > \sum_{o':a' \succ_i o; o' \neq a_j} p(i, o') \) can be rewritten as

\[p'(k, a_j) > \sum_{b':b' \succ_i a_j; b' \neq a_j} p'(b', i), \]

which contradicts that \(p' \) was claimwise stable. \(\square \)

Example 8 (A non-wasteful, individually rational, and claimwise weakly stable generalized random matching \(p \) but \(p' \) is not claimwise stable) We reconsider the example used in the proof for the base model that claimwise stability does not necessarily imply ex-post stability. Let \(N = \{1, 2, 3\} \) and \(O = \{x, y, z\} \). Consider the following preferences and priorities:

- \(\succeq_1: x \succ z \succ y \succ \emptyset \)
- \(\succeq_2: y \succ x \succ z \succ \emptyset \)
- \(\succeq_3: z \succ x \succ y \succ \emptyset \)

Let \(p \) be the uniform random matching. Thus,

\[p = \begin{pmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}. \]

Random matching \(p \) is claimwise stable, non-wasteful, and individually rational.

The associated instance is \(I' = (N', O', \succeq') \) where \(N' = \{1, 2, 3, d_x, d_y, d_z\} \), \(O' = \{x, y, z, \phi_1, \phi_2, \phi_3\} \), with preferences and priorities:

- \(\succeq_{\phi_1}': 1 \ 2 \ 3 \ d_x \ d_z \ d_y \)
- \(\succeq_{\phi_2}': 2 \ 1 \ 3 \ d_y \ d_x \ d_z \)
- \(\succeq_{\phi_3}': 3 \ 1 \ 2 \ d_z \ d_x \ d_y \)

The associated random matching is

\[p' = \begin{pmatrix} x & y & z & \phi_1 & \phi_2 & \phi_3 \\ 1 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & | & 0 & 0 & 0 \\ 2 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & | & 0 & 0 & 0 \\ 3 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & | & 0 & 0 & 0 \\ d_x & 0 & 0 & 0 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ d_y & 0 & 0 & 0 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ d_z & 0 & 0 & 0 & | & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix}. \]
By definition, p' respects non-wastefulness and individually rationality with respect to p. However, p' is not claimwise stable: agent d_x has a justified claim against d_z for ϕ_2 because $d_x \succ_\phi_2 d_z$, $p'(d_z, \phi_2) = 1/3$ and $\sum_{o' \succ_d x} p'(i, o') = 0$.

Example 9 (An individually irrational and claimwise weakly stable associated random matching p') We show why we had to impose that p' respects individual rationality in Proposition 13.

Let $N = \{1, 2\}$ and $O = \{x, y\}$. Consider the following preferences and priorities:

\[
\succ_1: \ x \emptyset \ y \quad \succ_x: \ [1, 2] \emptyset \\
\succ_2: \ [x, y] \emptyset \quad \succ_y: \ [1, 2] \emptyset
\]

Let p be the uniform random matching. Thus,

\[
p = \begin{pmatrix}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2}
\end{pmatrix}.
\]

Random matching p is non-wasteful, individually irrational, and satisfies inequalities (27) in the definition of claimwise weak stability.

The associated instance is $I' = (N', O', \succ')$ where $N' = \{1, 2, d_x, d_y\}$, $O' = \{x, y, \phi_1, \phi_2\}$, with preferences and priorities:

\[
\succ_1': \ x \phi_1 \phi_2 \ y \\
\succ_2': \ [x, y] \phi_1 \phi_2 \\
\succ_{x':} \succ_y': [1, 2] \ d_x \ d_y \\
\succ_{d_x':} \succ_{d_y':} [1, 2] \ d_y \ d_x
\]

The associated random matching is

\[
p' = \begin{pmatrix}
1 & x & y & \phi_1 & \phi_2 \\
2 & \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
& \frac{1}{2} & \frac{1}{2} & 0 & 0 \\
& 0 & 0 & \frac{1}{2} & \frac{1}{2} \\
& 0 & 0 & \frac{1}{2} & \frac{1}{2}
\end{pmatrix}
\]

and does not respect individual rationality. We argue that p' is claimwise stable. Agent 1 gets 1/2 of x and thus does not have a justified claim for ϕ_1 or ϕ_2 against d_x or d_y. Agent 2 gets a best possible outcome and thus has no justified claim. Agents d_x or d_y cannot have a justified claim against agent 1 or 2 because the latter have higher priority. Finally, agents d_x and d_y have no justified claim against each other.

D Weak and strong stochastic dominance stability (Manjunath 2013) re-examined

In this section, we point out connections with weak and strong stochastic dominance (sd) stable matchings as studied by Manjunath (2013) for the base model as introduced in Sect. 2 (with an equal number of agents and objects and strict preferences/priorities).
Note that our model involves ordinal preferences of agents over objects and ordinal priorities of objects over agents. These preferences/priorities can be extended to preferences/priorities over random allocations via the first order stochastic dominance relation.

Definition 26 (First order stochastic dominance) Given two random matchings \(p \) and \(q \) and an agent \(i \in N \) with preference \(o_1 \succ_i o_2 \succ_i \ldots \succ_i o_n \) over \(O = \{o_1, \ldots, o_n\} \), we say that agent \(i \) sd-prefers match \(p(i) \) to match \(q(i) \), denoted by \(p(i) \succeq^sd_i q(i) \), if and only if,

\[
\begin{align*}
p(i, o_1) & \geq q(i, o_1) \\
p(i, o_1) + p(i, o_2) & \geq q(i, o_1) + q(i, o_2) \\
p(i, o_1) + p(i, o_2) + p(i, o_3) & \geq q(i, o_1) + q(i, o_2) + q(i, o_3) \\
& \quad \vdots
\end{align*}
\]

If \(p(i) \succeq^sd_i q(i) \) and \(p(i) \neq q(i) \), then \(p(i) >^sd_i q(i) \).

Given two random matchings \(p \) and \(q \) and an object \(o \in O \) with priorities \(i_1 \succ_o i_2 \succ_o \ldots \succ_o i_n \) over \(N = \{i_1, \ldots, i_n\} \), we say that object \(o \) sd-prioritizes match \(p(o) \) to match \(q(o) \), denoted by \(p(o) \succeq^sd_o q(o) \), if and only if,

\[
\begin{align*}
p(i_1, o) & \geq q(i_1, o) \\
p(i_1, o) + p(i_2, o) & \geq q(i_1, o) + q(i_2, o) \\
p(i_1, o) + p(i_2, o) + p(i_3, o) & \geq q(i_1, o) + q(i_2, o) + q(i_3, o) \\
& \quad \vdots
\end{align*}
\]

If \(p(o) \succeq^sd_o q(o) \) and \(p(o) \neq q(o) \), then \(p(o) >^sd_o q(o) \).

The definitions of Manjunath’s weak and strong stochastic dominance stability are based on the following two pairwise blocking notions.

Definition 27 (Weak and strong (pairwise) sd-blocking Manjunath 2013) A random matching \(p \) is weakly sd-blocked by pair \((i, o) \in N \times O \) if there exists a corresponding deterministic matching \(q \) such that \(q(i, o) = 1 \neq p(i, o) \) and

\[
\text{neither } p(i) >^sd_i q(i) \text{ nor } p(o) >^sd_o q(o).
\]

A random matching \(p \) is strongly sd-blocked by pair \((i, o) \in N \times O \) if there exists a corresponding deterministic matching \(q \neq p \) such that \(q(i, o) = 1 \) and

\[
q(i) >^sd_i p(i) \text{ and } q(o) >^sd_o p(o).
\]

Definition 28 (Weak and strong sd-stability Manjunath 2013)

A random matching \(p \) is weakly sd-stable if there exists no pair \((i, o) \in N \times O\) that strongly sd-blocks \(p \).

A random matching \(p \) is strongly sd-stable if there exists no pair \((i, o) \in N \times O\) that weakly sd-blocks \(p \).
Proposition 16 A random matching is strongly sd-stable if and only if it is ex-ante stable.

Proof Suppose random matching p has ex-ante envy. Then, there exist $i, j \in N$ and $o, o' \in O$ such that $p(i, o') > 0$, $p(j, o) > 0$, $o \succ_i o'$, and $i \succ_o j$. Consider a corresponding deterministic matching q such that $q(i, o) = 1 \neq p(i, o)$. Thus, neither $p(i) \succ_i^d q(i)$ nor $p(o) \succ_o^d q(o)$. Hence, p is weakly sd-blocked by pair (i, o) and not strongly sd-stable.

Suppose random matching p is not strongly sd-stable. Then, there exists a pair $(i, o) \in N \times O$ that weakly sd-blocks p, i.e., there exists a corresponding deterministic matching q such that $q(i, o) = 1 \neq p(i, o)$ and neither $p(i) \succ_i^d q(i)$ nor $p(o) \succ_o^d q(o)$. Note $\sum_{o', o' \succeq_i o} p(i, o') = 1$ would imply $p(i) \succ_i^d q(i)$ and $\sum_{o, o' \succeq_i o} p(j, o) = 1$ would imply $p(o) \succ_o^d q(o)$. Thus, $\sum_{o' \succeq_i o} p(i, o') < 1$ and $\sum_{o, o' \succeq_i o} p(j, o) < 1$. Then, there exist $j \in N$ and $o' \in O$ such that $p(i, o') > 0$, $p(j, o) > 0$, $o \succ_i o'$, and $i \succ_o j$. Hence, p is not ex-ante stable.

Proposition 17 If a random matching p is claimwise weakly stable, then it is weakly sd-stable.

Proof Suppose random matching p is not weakly sd-stable. Then, there exists a pair $(i, o) \in N \times O$ that strongly sd-blocks p, i.e., there exists a corresponding deterministic matching q such that $q(i, o) = 1 \neq p(i, o)$ and neither $p(i) \succ_i^d q(i)$ nor $p(o) \succ_o^d q(o)$. Note that $q(o) \succ_o^d p(o)$ implies $\sum_{k: k \succeq i} p(k, o) = 0$ and $p(i, o) < 1$. Hence, there exists an agent $j \in N$ such that $i \succ_o j$ and $p(j, o) > 0$. Furthermore, $q(i) \succ_i^d p(i)$ implies $\sum_{o' \succeq i} p(i, o') = 0$. Thus, $p(j, o) > \sum_{o' \succeq i} p(i, o')$ and agent i has a claim against agent j and p is not claimwise stable.

Proposition 18 Weak sd-stability does not imply claimwise stability.

Proof Let $N = \{1, 2, 3\}$ and $O = \{x, y, z\}$. Consider the following preferences and priorities:

$\succ_1: x \succ z \succ y, \succ_x: 2, 3, 1$
$\succ_2: y \succ x \succ z, \succ_y: 1, 3, 2$
$\succ_3: z \succ x \succ y, \succ_z: 2, 1, 3$

Consider the random matching

$$p = \begin{pmatrix}
\frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{4} & \frac{1}{4} & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{4}
\end{pmatrix}.$$

First, note that agent 2 wants more of object x, $2 \succ_x 3$, and $p(3, x) = \frac{1}{2} > \frac{1}{4} = \sum_{o \succeq x} p(2, o)$. Hence, agent 2 has a claim against agent 3 and p is not claimwise stable.

Second, we show that random matching p is weakly sd-stable by checking that for no pair $(i, o) \in N \times O$ with corresponding deterministic matching $q \neq p$ such that $q(i, o) = 1$, $q(i) \succ_i^d p(i)$ and $q(o) \succ_o^d p(o)$.
• For an agent $i \in N$ and his most preferred object $o \in O$, $q(o) \not\succ^sd_o p(o)$ because all other agents have higher priority for that object.
• For an agent $i \in N$ and his second or third preferred object, $q(i) \not\succ^sd_i p(i)$ because agent i receives his best object with positive probability.

References

Abdulkadiroğlu A (2013) School choice, chapter 5. In: Vulkan N, Roth AE, Neeman Z (eds) Handbook of market design. Oxford University Press, Oxford, pp 138–169
Abdulkadiroğlu A, Sönmez T (2003) School choice: a mechanism design approach. Am Econ Rev 93(3):729–747
Afacan MO (2018) The object allocation problem with random priorities. Games Econ Behav 110:71–89
Aharoni R, Fleiner T (2003) On a lemma of Scarf. J Combin Theory Ser B 87:72–80
Aziz H (2019) A probabilistic approach to voting, allocation, matching, and coalition formation. In: Laslier J-F, Moulin H, Sanver R, Zwicker WS (eds) The future of economic design. Springer, Berlin (forthcoming)
Balinski M, Sönmez T (1999) A tale of two mechanisms: student placement. J Econ Theory 84(1):73–94
Birkhoff G (1946) Three observations on linear algebra. Rev Univ Nac Tucumán Rev Ser A 5:147–151
Biró P, Fleiner T (2016) Fractional solutions for capacitated NTU-games, with applications to stable matchings. Discrete Optim (Part A) 22:241–254
Blum Y, Roth AE, Rothblum UG (1997) Vacancy chains and equilibration in senior-level labor markets. J Econ Theory 76(2):362–411
Doğan B, Yildiz K (2016) Efficiency and stability of probabilistic assignments in marriage problems. Games Econ Behav 95:47–58
Ehlers L, Halafrir IE, Yenmez MB, Yildirim MA (2003) School choice with controlled constraints: hard bounds versus soft bounds. J Econ Theory 153:648–683
Gale D, Shapley LS (1962) College admissions and the stability of marriage. Am Math Mon 69:9–15
Horn RA (1986) Topics in matrix analysis. Cambridge University Press, New York
Irving RW (1994) Stable marriage and indifference. Discrete Appl Math 48:261–272
Kamada Y, Kojima F (2017) Stability concepts in matching under distributional constraints. J Econ Theory 168:107–142
Kesten O, Ünver U (2015) A theory of school choice lotteries. Theor Econ 10:543–595
Kojima F, Manea M (2010) Incentives in the probabilistic serial mechanism. J Econ Theory 145(1):106–123
Manjunath V (2013) Stability and the core of probabilistic marriage problems. Technical Report 1809941, SSRN
Pathak PA (2011) The mechanism design approach to student assignment. Annu Rev Econ 3:513–536
Roth AE (1986) On the allocation of residents to rural hospitals: a general property of two-sided matching markets. Econometrica 54(2):425–427
Roth AE, Rothblum UG, Vande Vate JH (1993) Stable matchings, optimal assignments, and linear programming. Math Oper Res 18(4):803–828
Rothblum UG (1992) Characterization of stable matchings as extreme points of a polytope. Math Program 54(1–3):57–67
Schlegel IC (2018) A note on ex-ante stable lotteries. Econ Lett 164:90–93
Teo C-P, Sethuraman J (1998) The geometry of fractional stable matchings and its applications. Math Oper Res 23(4):874–891
Vande Vate JH (1989) Linear programming brings marital bliss. Oper Res Lett 8(3):147–153
Von Neumann J (1953) A certain zero-sum two-person game equivalent to the optimal assignment problem.
In: Kuhn H, Tucker A (eds) Contributions to the theory of games. Princeton University Press, Princeton
Wu Q, Roth AE (2018) The lattice of envy-free matchings. Games Econ Behav 109(3):201–211

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.