Chondroid choristoma of the tongue: A rare case report

ABSTRACT
Choristomas are tumor-like masses consisting of normal cells in an abnormal location. Choristomas of the oral cavity are rare lesions. We report a case of Cartilaginous choristoma on the ventral aspect of the tongue in a 25-year-old female. Clinical features, differential diagnosis, and tumoral origin theories are also discussed along with a meta-analysis of the reported cases in the PubMed database.

Keywords: Benign, cartilage, chondroid choristoma, tongue

INTRODUCTION
The term “Choristoma” can be used to describe tumor-like masses consisting of normal cells in an abnormal location, i.e., a “heterotopic” rest of the cells.[1,2] The occurrence of these entities has been attributed to abnormalities in the embryonic development of the neural tube.[2] It is crucial to distinguish choristomas from hamartomas and teratomas, wherein hamartomas are nonneoplastic, unifocal/multifocal, and developmental malformations, comprising a mixture of cytologically normal mature cells and tissues which are indigenous to the anatomic location, showing disorganized architectural pattern with predominance of one of its components.[3] On the other hand, teratomas are true neoplasms composed of a variety of parenchymal cell types representative of more than one germ layer.[4] Choristomas found in the oral cavity are classified according to the type of tissue, including salivary gland, Cartilaginous, osseous, thyroid, sebaceous, glial, and gastric/respiratory mucosal.[2]

Cartilaginous choristomas in the oral cavity are unusual entities. We present one such rare case of Cartilaginous choristoma on the ventral aspect of the tongue.

CASE REPORT
A 28-year-old female presented with an asymptomatic mass on the ventral aspect of the tongue of 2-year duration. The patient did not give any history of trauma or any other lesion in the oral cavity. The lesion had gradually increased in size in the past 2 years. On intraoral examination, a firm, nontender, well-demarcated, multilobulated submucosal mass measuring approximately 2.3 cm × 1.6 cm was seen on the left ventral aspect of the tongue crossing the midline [Figure 1]. The overlying mucosa was not associated with any inflammation or ulceration but showed areas of whitish discoloration. Tongue movements were normal. A provisional diagnosis of a benign mesenchymal neoplasm was given. Differential diagnosis included salivary gland neoplasm and granular cell tumor. Excisional biopsy of the lesion was done under local anesthesia, and the excised
specimen was sent for histopathological evaluation. The gross specimen measured around 2.6 cm × 1.9 cm, was roughly oval in shape, firm in consistency, and reddish-white in color, and had a lobulated surface. Histopathological examination revealed a nonkeratinized stratified squamous epithelium and an underlying fibrovascular stroma. Deeper part of the stroma showed lobular proliferation of basophilic mature hyaline cartilage surrounded by a fibrotic capsule, with typical chondroblasts arranged in cell nests or in isolation [Figures 2 and 3]. No atypia was evident. A final diagnosis of chondroid choristoma was given. No evidence of recurrence was found in a 6-month follow-up [Figure 4].

DISCUSSION

Choristomas are lesions characterized by the presence of cells not native to the site. Oral choristomas can be composed of various types of tissues, including cartilage, bone, salivary gland, thyroid, sebaceous, glial, respiratory, and gastrointestinal tissue. Oral Cartilaginous choristomas are rare entities with only 32 cases being reported till date, ours being the 33rd case [Table 1 provides a meta-analysis of all the reported cases in the PubMed literature].

These have been reported in patients ranging between 3 and 80 years of age, with tongue being the most common site of occurrence followed by gingiva, buccal mucosa, soft palate, and palatine tonsil. Sixty percent of the tongue lesions are seen on the dorsum of tongue, 32% on the lateral border, and only 8% on the ventral surface. The term choristoma in the oral cavity was introduced in 1971 by Knoll et al. Zegrelli et al. stated that the term “Cartilaginous choristoma of the tongue” should be used to describe only those lesions that show exclusive chondromatous growth. Several theories have been put forward to explain the origin of cartilage in the oral soft tissue; however, the exact etiology of the lesion still remains unclear. According to the embryonal theory, cartilage develops from the heterotropic fetal Cartilaginous remnants. Remnants of Meckel’s cartilage or displacement of Cartilaginous elements from the first four branchial arches to the area of tongue may act as possible sources for the entity to develop. Metaplastic theory states that trauma, irritation, or chronic inflammation could stimulate the pluripotent mesenchymal cells to differentiate into chondrocytes and proliferate to form the lesion, or this transformation could occur de novo. Chou et al. postulated that proper stimulation and active interstitial and appositional growth of multipotent mesenchymal cells could result in cartilage formation. It was also hypothesized that the vestigial rests of cartilage could act as a source of origin of chondroid choristomas. Chromosomal abnormalities involving the 12q13–q15 region...
Table 1: Cases of chondroid choristomas of tongue reported in the English literature since 1890

Author and year of publication	Age/sex	Duration of lesion (years)	Site of the lesion	Size of the lesion (cm)	Treatment done/any special investigations done
Berry, 1890[5]	49/male	5	Right border of tongue, middle third	-	Excision of the lesion. No recurrence
Johns, 1942[6]	-/male	20	Right border	-	Excision of the lesion. No recurrence
Bruce and McDonald, 1953[7]	52/male	2	Dorsum, anterior third	0.5	Excision of the lesion. No recurrence
Bruce and McDonald, 1953[7]	43/female	1	Dorsum, middle third	0.3	Excision of the lesion. No recurrence
Rosen, 1961[8]	36/male	>20	Left of midline, anterior third	2×1.5	Excision of the lesion. No recurrence
Yoel and Pundyk, 1965[9]	36/male	8	Dorsum, middle, and posterior third	4.5×1	Excision of the lesion. No recurrence
Ramachandran and Viswanathan, 1968[10]	10/female	2	Dorsum, middle third, lateral border	1	Excision of the lesion. No recurrence
Samant and Gupta, 1971[11]	16/male	6	Dorsum, right posterior third	2.5×1	Excision of the lesion. No recurrence
Zegarelli, 1977[12]	50/female	-	Left lateral ventral region	0.5×0.5	Excision of the lesion. No recurrence
Del Rio, 1978[13]	21/male	-	Right posterior ventral surface	0.5×0.5	Excision of the lesion. No recurrence
Segal et al., 1984[14]	5/male	5	Left lateral border, anterior third	2	Tumor was excised, no recurrence noticed after 2 years of surgery
Segal et al., 1984[14]	30/male	30	Left lateral border, anterior third	1.5	Tumor excised using carbon dioxide laser. No recurrence recorded 1.5 years after surgery
Yasuoka et al., 1984[15]	40/male	7	Dorsum, middle posterior third	-	Excision of the lesion. No recurrence
Tohil et al., 1987[16]	26/female	-	Right anterior and lateral surface	-	Excision of tumor. No recurrence
van der Wal and van der Wal, 1987[17]	61/female	15	Dorsum, left side	2	Excision of lesion. No recurrence
Weitzner et al., 1987[18]	61/male	6 months	Dorsum, middle third, right midline	-	Lesion was excised. No recurrence
West and Atkins, 1988[19]	5/female	Several months	Vicinity of foramen cecum	1.5	Excision of the lesion. No recurrence
Tani et al., 1989[20]	75/female	2	Dorsum, midline in anterior third	0.7	Mass was excised along with a margin of normal tissue and the overlying mucosa No recurrence
Trovbridge et al., 1989[21]	24/female	>5	Left lateral border, middle third	1×2	Excision of lesion, no recurrence after 6 months
Moore et al., 1990[22]	35/male	8-0	Left dorsum of the tongue	1×0.8	Excisional biopsy under general anesthesia, no recurrence for 5 years
Mosqueda-Taylor et al., 1998[23]	71/female	2	Dorsum, middle third, adjacent to midline	-	Surgically excised with a small margin of normal tissue and the covering mucosa, IHC markers - S100, vimentin, EMA, CK Positive cyttoplasmic staining for S-100 in chondroid areas, weak positivity for vimentin in the same area. Negative for EMA, CK No recurrence for 6 months
Mosqueda-Taylor et al., 1998[23]	28/female	18 months	Dorsum, middle third, adjacent to midline	-	Surgically excised with a small margin of normal tissue and the covering mucosa, IHC markers - S100, vimentin, EMA, CK Positive cyttoplasmic staining for S-100 in chondroid areas, weak positivity for vimentin in the same area. Negative for EMA, CK No recurrence for 6 months

Contd...
Table 1: Contd....

Author and year of publication	Age/sex	Duration of lesion (years)	Site of the lesion	Size of the lesion (cm)	Treatment done/any special investigations done
Mosqueda-Taylor et al., 1998	27/male	24	Left lateral border, between middle and posterior third	-	Surgically excised with a small margin of normal tissue and the covering mucosa, IHC markers used - S-100, vimentin, EMA, CK. Positive cytoplasmic staining for S-100 in chondroid areas, weak positivity for vimentin in the same area. Negative for EMA, CK. No recurrence for 6 months
Bansal et al., 2005	52/male	-	Right lateral border	0.5	Lesion co-existed with squamous cell carcinoma; right hemiglossectomy done with radical neck dissection
Bansal et al., 2005	45/male	-	Dorsum, anterior third, left side	1.0	Excision biopsy of nodule was done, no recurrence in 2 years
Weynand and Reychler, 2007	66/female	-	Right ventral site of tip of tongue	-	Lesion with surrounding normal tissue excised under general anesthesia, no recurrence until 25 months of follow-up
Yamamoto et al., 2009	56/female	1	Right lateral border of tongue	1.5	Tumor extirpated under local anesthesia, no recurrence in 22 months of follow-up
Naik et al., 2009	25/female	5	Posterior third of tongue, ventral aspect	2×3	Excision under general anesthesia. No recurrence
Pereira et al., 2012	64/female	Several years	Midline region of tongue, on sulcus terminalis	0.5	Excision of lesion (partial glossectomy), IHC markers used - S-100, p63, CK; Strong Immunoreaction for S-100 in chondrocytes, immunoreaction weak for p63 and CK.
Kimura et al., 2015	34/female	3	Lateral border of tongue	2	Incisional biopsy for diagnosis confirmation followed by excisional biopsy, no recurrence in a follow-up period of 7 months
Semwal et al., 2019	55/female	1	Left lateral border of tongue	-	FNAC done, yielded scant myxoid material blocking needle, smears stained with Wright-Giemsa and PAP; smear showed only myxoid stroma with few scattered oval-to-spindle cells, following which excision of specimen was done
Present case	28/female	2	Right ventral aspect of tongue crossing midline	1.3×1	Excision of lesion. No evidence of recurrence in 1 year

FNAC: Fine-needle aspiration cytology, CK: Cytokeratin, IHC: Immunohistochemistry, PAP: Papanicolaou, EMA: Epithelial Membrane Antigen

have been associated with chondroid choristomas of the soft tissues.\(^{[38]}\)

Differential diagnosis of chondroid choristoma includes a variety of benign lesions such as chondroma, pleomorphic adenoma, traumatic chondromatous metaplasia, ectomesenchymal chondromyxoid tumor, and granular cell tumor. It is also important to distinguish it from malignant Cartilaginous neoplasms such as primary chondrosarcoma or metastasis from a primary intraosseous chondrosarcoma.\(^{[28,30,31]}\)

In the present case, the absence of epithelial and mesenchymal components, such as plasmacytoid cells, fusiform cells, cuboidal cells, chondromyxoid stroma along with the absence of morphological patterns of the epithelial cells (trabecular, ductal, cystic, and solid) helped in differentiating it from pleomorphic adenoma.\(^{[39]}\) Absence of lobulated growth pattern, clusters of chondrocytic cells, and surrounding collagenous stroma excluded the diagnosis of chondroma.\(^{[30,40]}\) Traumatic chondromatous metaplasia is seen in edentulous ridges as a result of chronic mechanical irritation from ill-fitting dentures.\(^{[1]}\) In our case, the patient was dentulous, and hence, this differential diagnosis was ruled out. Ectomesenchymal chondromyxoid tumor is histopathologically characterized by the lobular proliferation of ovoid and fusiform cells with occasional foci of atypia in a chondromyxoid background and absence of these features...
Nezam, et al.: Chondroid choristoma of tongue: A rare case report

In conclusion, chondroid choristomas are benign developmental lesions which need to be diagnosed correctly for apt management. Free marginal surgical excision is the best treatment of choice. No recurrences have been reported in the literature.

Declaration of patient consent
The authors certify that they have obtained all appropriate patient consent forms. In the form the patient(s) has/have given his/her/their consent for his/her/their images and other clinical information to be reported in the journal. The patients understand that their names and initials will not be published and due efforts will be made to conceal their identity, but anonymity cannot be guaranteed.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES

1. Suganya R, Malathi N, Vijaya Nirmala S, Ravindran C, Thamizhivelvan H. Cartilaginous choristoma of the gingiva: A rare clinical entity. Case Rep Dent 2014;2014:246965.
2. Batra R. The pathogenesis of oral choristomas. J Oral Maxillofac Surg Med Pathol 2012;24:110–4.
3. Patil S, Rao RS, Majumdar B. Hamartomas of the oral cavity. J Int Soc Prev Community Dent 2015;5:347–53.
4. Kolekar SS, Chincholi T, Nangare N, Patankar R. Oral teratoma. Int J Appl Basic Med Res 2016;6:54–6.
5. Berry J. Fibro-chondroma of tongue. Trans Path Soc Lond 1890;41:81.
6. Johns J. Chondroma of the tongue. J Mich State Med Soc 1942;41:471.
7. Bruce KW, McDonald JR. Chondroma of the tongue. Oral Surg Oral Med Oral Pathol 1953;6:1281–3.
8. Rosen MD. Chondroma of the tongue. J Oral Surg 1961;19:157.
9. Yoel J, Pundyk C. Chondroma of the tongue. Oral Surg Oral Med Oral Pathol 1965;20:578–82.
10. Ramachandran K, Viswanathan R. Chondroma of the tongue. Report of a case. Oral Surg Oral Med Oral Pathol 1968;25:487–90.
11. Samant HC, Gupta OP. Chondroma of the tongue. Oral Surg Oral Med Oral Pathol 1971;32:450–2.
12. Zegarelli DJ. Chondroma of the tongue. Oral Surg Oral Med Oral Pathol 1977;43:738–45.
13. Del Río CE. Chondroma of the tongue: Review of the literature and a case report. J Oral Med 1978;33:54.
14. Segal K, Sidi J, Katzav Y, Rotem A. Chondroma of the tongue. Report of two cases. Ann Otol Rhinol Laryngol 1984;93:271–2.
15. Yasuoka T, Handa Y, Watanabe F, Oka N. Chondroma of the tongue. Report of a case. J Maxillofac Surg 1984;12:188–91.
16. Tohill MJ, Green JG, Cohen DM. Intraoral osseous and cartilaginous choristomas: Report of three cases and review of the literature. Oral Surg Oral Med Oral Pathol 1986;64:506.
17. van der Wal N, van der Waal I. Osteoma or chorroma of the tongue: a clinical and postmortem study. Int J Oral Maxillofac Surg 1987;16:713-7.
18. Weitnzer S, Stimson PG, McClendon JL. Cartilaginous choristoma of the tongue. J Oral Maxillofac Surg 1987;45:185.
19. West CB Jr., Atkins JS Jr. Choristomas of the intraoral soft tissues. Otolaryngol Head Neck Surg 1988;99:528-30.
20. Tani Y, Azuma T, Nagayama M. Chondroma of the tongue. J Oral Maxillofac Surg 1989;47:91.
21. Trowbridge M, McCabe B, Reznick M. Cartilaginous choristoma of the tongue. A case report and literature review. Arch Otolaryngol Head Neck Surg 1989;115:627-9.
22. Moore K, Worthington P, Capbell RL. Firm mass of the tongue. J Oral Maxillofac Surg 1990;48:1206.
23. Mosqueda-Taylor A, Gonzalez-Guevara M, de la Piedra-Garza JM, D-as-Franco MA, Toscano-Garc a I, Cruz-Le n A. Cartilaginous choristomas of the tongue: Review of the literature and report of three cases. J Oral Pathol Med 1998;27:283-6.
24. Bansal R, Trivedi P, Patel S. Cartilaginous choristoma of the tongue-report of two cases and review of literature. Oral Oncol Extra 2005;41:25-9.
25. Weynand B, Reyehler H. Cartilaginous choristoma of the oral cavity: A report of two cases. B‑ENT 2007;3:87-91.
26. Yamamoto K, Hiri e, Kohnoe T, Kondoh Y, Kurokawa H. A case of Cartilaginous chriostoma of the tongue with a review of literature. Jpn J Oral Maxillofac Surg 2009;55:296-9.
27. Naik VR, Wan F, Musa MY. Choristoma of the base of tongue. Ind J Pathol Microbiol 2009;52:86-7.
28. Pereira GW, Pereira VD, Pereira Junior JA, da Silva RM. Cartilaginous choristoma of the tongue with an immunohistochemical study. BMJ Case Rep 2012;2012 pii: bcr 2012‑006752. doi: 10.1136/bcr ‑2012‑006752.
29. Chou LS, Hansen LS, Daniels TE. Choristomas of the oral cavity: A review. Oral Surg Oral Med Oral Pathol 1991;72:584-93.
30. Shadan FF, Mascarello JT, Newbury RO, Dennis T, Spallone P, Stock AD. Supernumerary ring chromosomes derived from the long arm of chromosome 12 as the primary cytogenetic anomaly in a rare soft tissue chorndroma. Cancer Genet Cytogeten 2000;118:144-7.
31. Ito FA, Jorge J, Vargas PA, Lopes MA. Histopathological findings of pleomorphic adenomas of the salivary glands. Med Oral Patol Oral Cir Bucal 2009;14:E57-61.
32. Attakkel A, Thorawade V, Jagade M, Kar R, Parelkari K, Rohde D, et al. Chondroma of the tongue: A rare case report and review of literature. Int J Otolaryngol Head Neck Surg 2014;3:359-63.
33. Pak MG, Kim KB, Shin N, Kim WK, Shin DH, Choi KU, et al. Ectomesenchymal chondromyxoid tumor in the anterior tongue: Case report of a unique tumor. Korean J Pathol 2012;46:192-6.
34. Dive A, Dhole A, Fande PZ, Dixit S. Granular cell tumor of the tongue: Report of a case. J Oral Maxillofac Pathol 2013;17:148.
35. Thada N, Vaidya KA, Pai S, Shankarling M, Sukesh. Chondroid choristoma of palatine tonsil: Normal tissue in an abnormal location. Sch J Med Case Rep 2013;1:38-9.
36. Bharti JN, Ghosh N, Arora P, Goyal V. Chondroid choristoma of palatine tonsil – A rare entity. J Clin Diagn Res 2013;7:1700-1.
37. Bedir R, Erdi van O, Erdi van O, Sehitoglu I, Dursun E. Cartilaginous choristoma of the tonsil: Three case reports. Iran J Ototrinolaryngol 2015;27:325-8.
38. Malis DJ, Breisch EA, Billman GF. Cartilaginous choristoma of the nasopharynx. Clin Anat 2000;13:263-6.
39. Saha R, Tandon S, Kumar P. Chondroid choristoma: Report of a rare case. J Clin Pediatr Dent 2011;35:405-7.
40. Yamada T, Matsuzawa Y, Sogabe I, Donen M, Tei K, Mikoya T. A rare case of glial choristoma of tongue associated with cleft palate. Oral Sci Int 2018;15:22-6.
41. Jorquera JP, Rubio-Palau J, Cazalla AA, Rodríguez-Carunchio L. Choristoma: A rare congenital tumor of the tongue. Ann Maxillofac Surg 2016;6:311-3.
42. Bastian TS, Selvamani M, Ashwin S, Rahul VK, Cyriac MB. Osseous choristoma of the labial mucosa: A rare case report. J Pharm Bioallied Sci 2015;7:S725‑7.
43. Adhikari BR, Sato J, Morikawa T, Obara-Itoh J, Utsunomiya M, Harada F, et al. Osseous choristoma of the tonsil: Two case reports. J Med Case Rep 2016;10:59.
44. Karci B, Öncü E, Avunduk MC. Osseous choristoma rarely observed in periodontium: A case report. J Dent Oral Biol 2017;2:1111.
45. Chi AC, Mapes IL, Javed T, Neville BW. Epidermal choristoma of the oral cavity: Report of 2 cases of an extremely rare entity. J Oral Maxillofac Surg 2010;68:451-5.