Adult and Infant Mask Ventilation Quality Evaluation from Various Viewpoints by Non-medical Personnel: Randomized Simulation Trial

Yuki Nakamura¹, Nobuyasu Komasawa²*, Kengo Masuhara¹, Kensuke Hirosuna¹, Fumio Terasaki², Takashi Nakano² and Ryo Kawata²

¹School of Medicine, Osaka Medical College, Takatsuki, Osaka, Japan. ²Medical Education Center, Osaka Medical College, Takatsuki, Osaka, Japan.

Authors’ contributions
This work was carried out in collaboration among all authors. Authors KH, YN, KM and NK contributed to the study design and implementation, statistical analysis and manuscript preparation. Authors TN, FT and RK contributed to the study implementation and manuscript preparation. All authors discussed the methods and results and approved the final manuscript.

Article Information
DOI: 10.9734/AJPR/2020/v3i230125
Editor(s): (1) Dr. Mirta Noemi Mesquita Ramirez, General Hospital Pediatric "Children of Acosta Nu", Paraguay.
Reviewers: (1) Mra Aye, Melaka Manipal Medical College, Malaysia. (2) Med. Khaled EL-Radaideh, Jordan University of Science and Technology, Jordan.
Complete Peer review History: http://www.sdiarticle4.com/review-history/55275

Received 02 January 2020
Accepted 07 March 2020
Published 18 March 2020

Keywords: Adult; infant; mask ventilation; non-medical personnel.

To The Editor,

Manual mask ventilation is an important component of rescue airway management not only for medical professionals but also non-medical personnel in both adult and infant resuscitation [1]. An essential consideration for mask ventilation safety is whether sufficient ventilation has been achieved or not [2]. Non-medical personnel often find it difficult to evaluate and differentiate sufficient or difficult mask ventilation [3]. Here, we conducted a survey on the subjective difficulty of evaluating the quality of adult and infant mask ventilation by non-medical personnel from various viewpoints.

On November 2019, we conducted a simulation-based crossover trial with 16 school clerks at our university who were not involved in clinical work and had no experience with resuscitation. The CPARLENE® manikin (Wisconsin, U.S.A.) and Resusci Anne® manikin (Laerdal, U.S.A.) were used to perform adult and infant mask ventilation,

*Corresponding author: Email: ane078@osaka-med.ac.jp;
respectively. Participants visually evaluated the quality of manual mask ventilation conducted by a certified resuscitation instructor (N.K.) from four different viewpoints: headside-upward, headside-horizontal, lateral-upward, and lateral-horizontal (Fig. 1a and 1b). The difficulty of evaluating the quality of ventilation by the same instructor from the four viewpoints was evaluated on a visual analog scale (VAS), which ranged from 0 (extremely easy) to 100 (extremely difficult) [3,4]. The order of evaluation was randomized using random number table. Results obtained

![Figure 1](image-url)

Fig. 1. (a) Four viewpoints for evaluating the quality of manual mask ventilation in adult simulations. (b) Four viewpoints for evaluating the quality of manual mask ventilation in infant simulations. (c) Comparison of the subjective difficulty of evaluating the quality of mask ventilation from four viewpoints in adult simulations. (d) Comparison of the subjective difficulty of evaluating the quality of mask ventilation from four viewpoints in infant simulations. *P<0.05 compared to headside-upward

Source: Nakamura et al. (present study)
from each trial were compared using one-way repeated measures analysis of variance. Statistical analyses were performed with JMP® 11 (SAS Institute Inc., Cary, NC, USA) [5]. P<0.05 was considered statistically significant.

In the adult ventilation trial, the subjective difficulty was generally lower with horizontal viewpoints compared to upward viewpoints, although no significant difference was found among the four viewpoints (Fig. 1c). In the infant ventilation trial, the subjective difficulty for the lateral-horizontal viewpoint was significantly lower compared to the headside-upward viewpoint (P=0.012) (Fig. 1d).

Overall, the subjective difficulty of ventilation evaluation for upward viewpoints tended to be higher than that for horizontal viewpoints, suggesting that horizontal viewpoints, especially the lateral-horizontal viewpoint, may be effective for evaluating the quality of adult and infant manual mask ventilation by non-medical personnel. These findings suggest that it would be helpful for basic life support guidelines to emphasize that respiratory or mask ventilation should be performed from the lateral-horizontal viewpoint, especially for infant resuscitation.

CONSENT

It is not applicable.

ETHICAL APPROVAL

The Research Ethics Committee of our institute judged that ethical approval was unnecessary for this study.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Atkins DL, Berger S, Duff JP, Gonzales JC, Hunt EA, Joyner BL, Meaney PA, Niles DE, Samson RA, Schexnayder SM. Part 11: Pediatric Basic Life Support and Cardiopulmonary Resuscitation Quality: 2015 American Heart Association Guidelines Update for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation. 2015;132:S519-25.

2. Komasa wa N, Mihara R, Fujiwara S, Minami T. Significance of basic airway management simulation training for medical students. J Clin Anesth. 2016;32:29.

3. Komasa wa N, Kido H, Miyazaki Y, Tatsumi S, Minami T. Cricoid pressure impedes tracheal intubation with the Pentax-AWS Airwayscope®: a prospective randomized trial. Br J Anaesth. 2016;116:413-6.

4. Komasa wa N, Ueki R, Itani M, Nishi S, Kaminoh Y. Validation of the Pentax-AWS Airwayscope utility as an intubation device during cardiopulmonary resuscitation on the ground. J Anesth. 2010;24:582-6.

5. Komasa wa N, Kido H, Minami T. Cricoid pressure force retention analysis using a simulator. Br J Anaesth. 2017;117:405-6.

© 2020 Nakamura et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/55275

32