Introduction

Since the World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020,[1,2] several preliminary studies explored the association between increased visceral fat and outcomes in COVID-19 patients.[3,4] In a prospective cohort study of 233 patients of COVID-19 in Italy, Giacomelli reported that patients with obesity had a three-fold higher risk of death as compared to those with a BMI < 30 kg/m².[5] Among 200 patients in New York City with COVID-19, severe obesity (BMI ≥ 35 kg/m²) was associated with higher in-hospital mortality independent of other potentially confounding factors.[6] Simonnet et al.[7] demonstrated a higher frequency of obesity among intensive care unit patients.

Body-mass index COVID-19 severity: A systematic review of systematic reviews

Manoj Nagar1, Nikku Mathew Geevarughese2, Rakesh Mishra3, Ankur Joshi4, Sagar Galwankar5, Md Yunus1, Sanjeev Bhoi6, Tej P. Sinha6, Amit Agrawal7

1Department of Trauma and Emergency Medicine, All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India, 2Department of Orthopaedics, All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India, 3Department of Neurosurgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India, 4Department of Community and Family Medicine, All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India, 5Florida State University Emergency Medicine Residency Program, Sarasota Memorial Hospital, Sarasota, Florida, USA, 6Department of Trauma and Emergency Medicine, All India Institute of Medical Sciences, New Delhi, India, 7Department of Neurosurgery, All India Institute of Medical Sciences, Saket Nagar, Bhopal, Madhya Pradesh, India

Abstract

Objectives: Conflicting studies have resulted in several systematic reviews and meta-analyses on the relationship between COVID-19 and body mass index (BMI). **Methods:** This systematic review of systematic reviews followed an umbrella review design, and preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines; Medical literature analysis and retrieval system online (MEDLINE) and SCOPUS databases were searched for systematic reviews on the topic. A predefined screening and selection procedure was done for the retrieved results based on the population, intervention/interest, comparator, outcome, study (PICOS) framework. **Results:** The search strategy yielded 6334 citations. With the predefined selection and screening process, 23 systematic reviews were retrieved for inclusion in the present study. Twenty-three (n = 23) systematic reviews met the inclusion criteria. As expected, there was overlap across the reviews in the included primary studies. Available evidence suggests that Class III obesity (morbid obesity) is strongly associated with increased mortality risk in patients with Covid-19. It is difficult to draw a firm conclusion about Class I and Class II obesity due to conflicting outcomes of metanalyses. Increased obesity was consistently associated with increased risk of invasive mechanical ventilation (IMV) in all the reviews with low to moderate heterogeneity. **Conclusions:** Available evidence suggests that Class III obesity (morbid obesity) is strongly associated with increased mortality risk in patients with Covid-19. Increased BMI is positively associated with the risk of IMV and the severity of COVID-care.

Keywords: Body mass index, COVID-19, obesity, SARS-CoV-2, systematic reviews

Introduction

Since the World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020,[1,2] several preliminary studies explored the association between increased visceral fat and outcomes in COVID-19 patients.[3,4] In a prospective cohort study of 233 patients of COVID-19 in Italy, Giacomelli reported that patients with obesity had a three-fold higher risk of death as compared to those with a BMI < 30 kg/m².[5] Among 200 patients in New York City with COVID-19, severe obesity (BMI ≥ 35 kg/m²) was associated with higher in-hospital mortality independent of other potentially confounding factors.[6] Simonnet et al.[7] demonstrated a higher frequency of obesity among intensive care unit patients.

How to cite this article: Nagar M, Geevarughese NM, Mishra R, Joshi A, Galwankar S, Yunus M, et al. Body-mass index COVID-19 severity: A systematic review of systematic reviews. J Family Med Prim Care 2022;11:5351-60.
with SARS-CoV-2-related pneumonia in France. The primary objective of the present systematic review is to identify the relationship between body-mass index and COVID-19 severity and outcomes. The secondary objective of the review is to present a conceptual note on the advantages and limitations of early systematic reviews during the pandemic, which has rapidly evolving epidemiology. To the best of our knowledge, we present the first systematic review of the reviews on the association of BMI and the disease severity in Covid-19 infection.

Methods

We used an umbrella review study design to create an overview of the available evidence on the topic. Umbrella review is a tool in evidence synthesis encompassing a systematic review of systematic reviews where the unit of analysis is a systematic review. The review was undertaken systematically using the method described by Smith et al. and preferred reporting items in systematic review and meta-analysis (PRISMA) guidelines.

Eligibility criteria

Population
Adults or children with COVID-19 infection were eligible for inclusion. Studies were included irrespective of the criteria used for confirmation of COVID-19 infection.

Exposure
Obese patients categorized based on BMI or visceral fat quantification on CT scan were eligible for inclusion.

Comparator
Non-obese patients, as evidenced by BMI within normal limits or low visceral adiposity, were included.

Outcomes
All outcomes were eligible (e.g., mortality, ICU admission, invasive mechanical ventilation, increased hospital stay, or severe disease). The primary outcome of interest was mortality and the need for invasive mechanical ventilation.

Study design
A systematic review of systematic reviews.

Inclusion
Systematic reviews were included if they specified a search strategy in at least one literature database and included primary research. No restrictions were placed on the study design of the primary studies.

Exclusion
Literature reviews without a defined research question, search strategy, or the process of selecting articles were excluded.

Search methods
The search strategy, developed for MEDLINE and SCOPUS (till 01.05.2021) to identify relevant further reviews reference lists of included studies were assessed for eligibility. PubMed search was performed with (“body mass index”[MeSH Terms] OR (“body”[All Fields] AND “mass”[All Fields] AND “index”[All Fields]) OR “body mass index”[All Fields]) AND (“COVID-19”[All Fields] OR “COVID-19”[MeSH Terms]) OR “COVID-19 Vaccines”[All Fields] OR “COVID-19 Vaccines”[MeSH Terms]) OR “COVID-19 serotherapy”[All Fields] OR “COVID-19 Nucleic Acid Testing”[All Fields] OR “covid-19 nucleic acid testing”[MeSH Terms] OR “COVID-19 Serological Testing”[All Fields] OR “covid-19 serological testing”[MeSH Terms] OR “COVID-19 Testing”[All Fields] OR “covid-19 testing”[MeSH Terms] OR “SARS-CoV-2”[All Fields] OR “sars-cov-2”[MeSH Terms] OR “Severe Acute Respiratory Syndrome Coronavirus 2”[All Fields] OR “NCOV”[All Fields] OR “2019 NCOV”[All Fields] OR (“coronavirus”[MeSH Terms] OR “coronavirus”[All Fields] OR “COV”[All Fields]) AND 2019/11/01[Publication Date]: 3000/12/31[Publication Date]) AND severity[All Fields] AND SCOPUS database was searched with (TITLE-ABS-KEY (covid 19) AND TITITLE-ABS-KEY (body AND mass AND index)) syntax.

Data collection and analysis

Two review authors (AA and NM) independently screened search results.

Selection of reviews
Searches were downloaded into Endnote X7 (Clarivate Analytics, V.7.1 release date April 2, 2014) and de-duplicated. Two reviewers (AA and NM) independently screened titles and abstracts. Any paper classified as potentially eligible by either reviewer was ordered as a full text and independently screened by both reviewers. A third researcher reviewed disagreements (MN) where a consensus could not be reached between the researchers.

Data extraction and management

Extracted data included study characteristics, patient characteristics, exposure, comparator, outcome measures, effect estimates, standard error (SE), and confidence interval (CIs) as available. One researcher completed data extraction (MN); a second researcher cross-checked 50% (NM). Both researchers, at a second review, cross-checked discrepancies, and a consensus was reached.

Assessment of methodological quality of included reviews

Quality assessment with the risk of bias in systematic reviews (ROBIS tool) was undertaken by one researcher (NM) and checked by a second (MN). Discrepancies were resolved by discussion.

Data synthesis

A body mass index (BMI) equal to or greater than 25 kg/m² is considered overweight, and equal to or greater than 30 kg/m² is considered obese. The WHO has different definitions according to the geographical distribution, with overweight in the Asian population as 23 kg/m² ≤ BMI <27.5 kg/m² and general obesity as a BMI ≥27.5 kg/m². The outcomes were
categorized into two groups: mortality and severe disease. The severe disease was further categorized into two groups: use of invasive mechanical ventilation and other outcomes defined as severe disease. This differentiation was done as IMV has been consistently considered a severe disease across all studies. At the same time, the definition of severe disease used in studies has been variable. Each group was further subcategorized according to different obesity classes, and data was extracted separately for each outcome. Each outcome was narratively synthesized, including a number of reviews using the outcome and effect estimates with a 95% confidence interval (CIs) from the source review. Important numerical data was presented in tables for all outcomes measured. All outcomes that were reported in the reviews were included in the report to avoid reporting bias.\(^{[13]}\)

Results

Electronic searches identified 6334 records. The full-text screening identified 23 systematic reviews eligible for inclusion. The study screening and selection process for inclusion as per the criteria laid out are as shown in the PRISMA flow diagram [Figure 1].

Study characteristics

Twenty-three (\(n = 23\)) systematic reviews\(^{[14–30]}\) met the inclusion criteria. All the systematic reviews had performed quantitative analysis except one.\(^{[31]}\) Reasons for excluding nine studies are as shown in Table 1.\(^{[37–45]}\) Twenty (\(n = 20\)) reviews\(^{[14–20,22–24,26–34,36,46]}\) reported the association between Obesity and disease severity of covid-19. Out of these, five\(^{[14,16,23,26,30]}\) reported severe disease with poor composite outcomes (including mortality). Nineteen (\(n = 19\)) reviews\(^{[14,16,17,19–22,25,33–36,3,15,18,23,24,26,27,29,30,32]}\) evaluated the effect of obesity on mortality in Covid-19. Out of these, five reviews\(^{[14,16,23,26,30]}\) reported mortality along with other poor outcomes. Eight reviews\(^{[15,17,19,22,33–35]}\) analysed the association between obesity and the need for invasive mechanical ventilation in Covid-19. Three reviews\(^{[16,23,26]}\) analysed the association of obesity with the risk of Covid-19 infection. As expected, there was overlap across the reviews in the included primary studies.

Risk of bias

Fifteen reviews were rated as low-risk bias\(^{[14–19,23–27,29,33,34,36]}\) two as unclear,\(^{[20,33]}\) and six as high risk of bias.\(^{[20,22,30,31,33]}\) The high risk of bias rating was due to the lack of detail in the search strategy, no attempts to minimize data extraction errors, and no quality assessment of included studies. The risk of bias is shown in Table 2.

Outcome evaluation

Substantial heterogeneity (clinical, methodological, and statistical) was found among the reviews and the primary studies included. Regarding study populations, Asian and non-Asian populations have different cut-offs of anthropometric indices. Physiologically pulmonary reserves are supposed to deplete over time, and age may negatively influence the immunogenic response to infections. Some systematic reviews\(^{[26,27,29]}\) attempted to perform a subgroup analysis to deal with age as a confounder variable, but fewer mentioned a priori in the protocol.\(^{[26,29]}\) Another approach to address this source of this heterogeneity is to adopt a meta-regression approach used by another set of systematic reviews\(^{[14,17,25,30]}\) However, out of four systematic reviews which conducted meta-regression, only two\(^{[14,25]}\) fulfilled the pragmatic criteria of incorporating the ten studies addressing age as a covariate. As a result, there may be more type-II errors in the reviews. The majority of the reviews adopted a combined mix effect approach, which seems sensible as the intuitive probability of covid-19 infection varies chiefly in an unknown manner, and age per se may not influence it directly. Nevertheless, contact network studies have shown that extremes of ages caught infection through the family's middle-aged members (in the age pyramid). Thus, a mixed effect model using age as a random effect and other covariates as fixed effect seem logical and contextual. Although certain expert groups believe that the decision to employ fixed or random effect should be governed by \(P\) value of \(F\) test of heterogeneity, covid-19 being a relatively low and less explored phenomenon, the guidance may be driven more by empirical context.

Disease severity in several systematic reviews was defined on a spectrum from adhering to a guideline\(^{[26,28]}\) disease progression\(^{[17,29]}\) hospital admission requirement,\(^{[15,21,30,31,33–35]}\) invasive ventilation\(^{[15,17,19,22,23–33]}\) to death\(^{[14,16,17,19,27,29,30,32,36]}\) thus varying widely on clinical plane. These seeming inconsistencies in outcome (from the soft outcome as hospitalisation to the
Table 1: List of excluded studies with reasons

Study	Journal	Primary objectives	Number of participants	Reason for exclusion
Bhattacharyya, 2021	Research Square	COVID-19’s impact is based on symptoms, demographics, comorbidities and demonstrates the association of demographics in cases and mortality in the United States	3745	Included age, sex, race, and comorbidities as risk factors for severity and mortality following COVID-19 but has not included obesity as a risk factor, and BMI was not assessed separately
de Siqueira, 2020	Obesity Research and Clinical Practice	Clinical presentation, treatments and outcomes in liver transplant recipients with COVID-19.	223	Review articles were also included
Fraser, 2020	Transplantation proceedings	-		Not addressing BMI and COVID-19
Hussain, 2020	Journey of clinical medicine	Review on frailty and COVID-19	-	Study design not as per inclusion criteria
Nasiri, 2020	Frontiers in Medicine	Systematic reviews that combine clinical, laboratory, epidemiologic, gender, and mortality findings	5057	Included age, gender, lab parameters, and comorbidities as risk factors for severity and mortality following COVID-19 but has not included obesity as a risk factor, and BMI was not assessed separately
Pal, 2020	Diabetes and Metabolic Syndrome	Review of demographic/biochemical parameters and clinical outcomes of COVID-19 patients with diabetic ketoacidosis (DKA) and combined DKA/HHS (hyperglycaemic hyperosmolar syndrome)	110	BMI was not assessed
Robinson, 2021	Appetite	Weight-related behaviours and weight management barriers among UK adults during the COVID-19 social lockdown	2002	Not as per inclusion criteria
Wang, 2021	Rheumatology International	Risk and clinical outcomes of COVID-19 in patients with rheumatic diseases compared with the general population	2000	Participant information is not as per inclusion criteria.

Discussion

Obesity is frequently associated with high levels of hospitalisation and admissions in intensive care units, with morbidity and mortality rates higher than population averages, indicating that obesity is a significant risk factor. Moreover, obesity is related to the downregulation of the inflammatory pathway, which leads to increased expression of inflammatory molecules, including interleukin-6 (IL-6). Obese patients and a weakened immune system provide the virus with a larger region for replication. Reports indicate that over half of hospitalised patients infected with Hemagglutinin type I and Neuraminidase type I (H1N1) were obese, and most deaths occurred in patients who were morbidly obese. These features suggest that, similar to influenza, obesity may be a significant risk factor in COVID-19.

Fourteen articles presented a meta-analysis of the risk of in-hospital mortality in obese patients with Covid-19. Some reported no association, or association only in the subgroup of patients, i.e., age ≥60. While others reported some degree of association, those studies analysing association with different obesity classes reported a more significant association and a higher risk of mortality in higher obesity classes. A single systematic review found an increased risk of mortality only in patients with fewer comorbidities, suggesting the coexistence of other medical conditions in this subgroup of patients, contributing to poorer outcomes. Across many meta-analyses, there were moderate to high levels of heterogeneity and variation in the effect estimates. Available evidence suggests that Class III obesity (morbid obesity) is strongly associated with increased mortality risk in patients with Covid-19. It is difficult to draw a firm conclusion for Class I and Class II obesity due to conflicting outcomes of metaanalyses which is likely due to differences in the methodology (criteria for diagnosis of infection, classification of obesity). Moreover,
Table 2: Risk of Bias Assessment of the included studies (Relevance Assessment)

Authors	Target question	Review being assessed	Patient (s): Obese/ BMI 30 or more (28 or more in Asians)	Exposure (s): Non obese/BMI less than 30 (or less than 28 in Asians)	Comparator:	Outcome: Severe disease (ICU admission, invasive/non-invasive ventilation or death)	Relevance assessment	Does the question addressed by the review match the question you are trying to answer (e.g., in your overview or guideline)?	
Booth 2021	Target question	Review being assessed	Age more than 16 with laboratory-confirmed SARS-CoV-2	Age 15 or more with RTPCR proven COVID-19 cases	overweight and obesity with standard definition were included.	Healthy patients with optimum BMI	Severe disease (fatality, utilization of health care resources such as increase of hospital stay, ventilation, other services, and comorbidities)	Reasoning	Unclear - The question matches for the population and outcome but the exposure and the comparison group is not explicitly defined.
Choudhary 2021	Target question	Review being assessed	Patients with obesity	Patients with obesity with standard definition were included.	overweight and obesity with standard definition were included.	Patients with optimal BMI	Mortality, severe COVID-19, ICU care, the usage of invasive mechanical ventilation, and disease progression of COVID-19	Reasoning	Yes - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.
Chu 2020	Target question	Review being assessed	RTPCR or CT proven COVID-19 cases	Adults with COVID obesity	Nil	hospitalization, ICU admission, need for IMV, and death	Reasoning	Unclear - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.	
Foldi 2020	Target question	Review being assessed	Patients with obesity	Patients with obesity with standard definition were included.	overweight and obesity with standard definition were included.	Healthy patients with optimum BMI	Severe disease (fatality, utilization of health care resources such as increase of hospital stay, ventilation, other services, and comorbidities)	Reasoning	Unclear - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.
Huang 2020	Target question	Review being assessed	Patients with obesity	Patients with obesity with standard definition were included.	overweight and obesity with standard definition were included.	Healthy patients with optimum BMI	Severe disease (fatality, utilization of health care resources such as increase of hospital stay, ventilation, other services, and comorbidities)	Reasoning	Unclear - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.
Huang 2021	Target question	Review being assessed	Patients with obesity	Patients with obesity with standard definition were included.	overweight and obesity with standard definition were included.	Healthy patients with optimum BMI	Severe disease (fatality, utilization of health care resources such as increase of hospital stay, ventilation, other services, and comorbidities)	Reasoning	Unclear - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.
Mesas 2020	Target question	Review being assessed	Patients with obesity	Patients with obesity with standard definition were included.	overweight and obesity with standard definition were included.	Healthy patients with optimum BMI	Severe disease (fatality, utilization of health care resources such as increase of hospital stay, ventilation, other services, and comorbidities)	Reasoning	Unclear - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.
Pranata 2021	Target question	Review being assessed	Patients with obesity	Patients with obesity with standard definition were included.	overweight and obesity with standard definition were included.	Healthy patients with optimum BMI	Severe disease (fatality, utilization of health care resources such as increase of hospital stay, ventilation, other services, and comorbidities)	Reasoning	Unclear - The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.
Authors	Category: Patients with covid 19 infection (diagnosed by positive RT PCR or chest CT)	Patient(s): Obese/BMI 30 or more (28 or more in Asians)	Exposure(s): Non obese/BMI less than 30 (or less than 28 in Asians)	Comparator: BMI	Outcome: Severe disease (ICU admission, invasive/non-invasive ventilation or death)	Relevance assessment	Does the question addressed by the review match the question you are trying to answer (e.g., in your overview or guideline)?		
------------------	---	--	---	-----------------	---	---------------------	--		
Zhang 2021	Target question			BMI	ARDS, hospitalization, ICU admission, need for IMV, and death	Reasoning	Unclear		
Zhao 2020	Target question			BMI	effect of obesity	Reasoning	Unclear		
Chang 2020	Target question			BMI	patients with obesity	Reasoning	Unclear		
Ho 2020	Target question	COVID-19 patients	prevalence of obesity	BMI	adverse outcomes such as ICU admission, critical illness, severe disease and	Reasoning	Unclear		
Malik 2020	Target question	not mentioned	not mentioned	BMI	outcomes in the COVID-19 hospitalizations.	Reasoning	Unclear		
Malik 2021	Target question	individuals with COVID-19	obesity	BMI	outcomes in the COVID-19 hospitalizations.	Low	Well described and defined terms		
Peres 2020	Target question	COVID-19 patients	obesity	BMI	clinical, laboratory and image outcomes on COVID-19.	Yes	Well described PECO		
Poly 2021	Target question	COVID-19 patients	obesity	BMI	an increased rate of mortality	Unclear	The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.		
Seidu 2020	Target question	SARS-CoV-2	overweight or obesity normal body weight;	BMI	have different outcomes	Yes	terms described		
Soeroto 2020	Target question	patients with obesity	risk of severe COVID-19	BMI		Unclear	The question matches the population and outcome, but the exposure and the comparison group are not explicitly defined.		
Tamara 2020	Target question			BMI		Unclear			
Heterogeneity and meta-analysis errors

Only 11 of these have had their protocol registered (Ten on international prospective register of systematic reviews (PROSPERO) and one on international platform of registered systematic reviews and meta-analysis protocols (INPLASY)). It is possible that the authors were unaware of each other’s research. Registering reviews allows transparency of methods and avoids unnecessary duplication. All except one[48] systematic review formally appraised the quality of the included studies. The I2 value describes the percentage of total variation across studies due to heterogeneity rather than chance.[48] Examining the meta-analyses highlights low to high levels of statistical heterogeneity. Differences in criteria for diagnosis of Covid-19 and classification of obesity and how outcomes were measured may also have contributed to between-study heterogeneity. For example, some reviews also included radiologically suspected cases of Covid 19 without reverse transcription-polymerase chain reaction (RTPCR) confirmation,[20,23,24,26,28,36] whereas it was unclear in some.[19,29-31] Similarly, some reviews used different criteria to define obesity in Asian and western populations,[19,23,26,31,33,38] others used common criteria that too different (either \(\geq 30\)) or \(\geq 25\).
fact that there is no uniformity in the treatment algorithm across the countries, and the decision for step-up or step-down care varies widely from centre to centre. A systematic review, while combining the studies, might address this issue only when treatment protocols are explicitly presented in the studies. Multiple databases were searched for studies, and study selection was undertaken by two researchers, reducing the risk of error and bias. A mapping of the studies included in the reviews was undertaken to consider individual studies being included in multiple reviews and hence double-counting studies.

Limitations
With the present review, we also present a concept that umbrella reviews are a valuable tool to summarise the evidence of the highest standard in a broad topic and rapidly changing evidence landscape. Twenty-three reviews included in this review were published within 11 months (between May 2020 to April 2021). As similar search strategies and search dates were used in a majority of the systematic reviews, inevitably, many of the included studies were the same across reviews. We observed that 23 reported systematic reviews were based on 302 and had heterogeneous criteria of selections. Additionally, these studies were based on heterogeneous inclusion and exclusion criteria. It can be inferred that with this amount of heterogeneity, it is difficult to draw concrete conclusions. This gives us a message that there is a need for more homogenous data collection in primary studies; otherwise, the systematic reviews based on these studies will further enhance the heterogeneity. All systematic reviews were included irrespective of their risk of bias scoring. It could be argued that several reviews were stretching the traditional definition of a systematic review; however, they did hold to the protocol definition with an electronic database search strategy and included primary evidence.

Systematic reviews and meta-analyses: Future and challenges
Systematic reviews and meta-analyses are considered the most potent tools for evidence synthesis and are crucial for evidence generation. Multiple systematic reviews have been published concisely, leaving the readers unsure of the varied conclusions. We have witnessed a couple of Cochrane systematic reviews and several non-Cochrane systematic reviews on different questions related to COVID-19. However, the significant challenges are the rapidly evolving disease landscape, epidemiology, treatment options, and emerging risk factors and outcomes. One of the critical limitations of systematic review during the recent pandemic is ever-changing evidence. Living systematic reviews are apt for such situations, which necessitate a change in the methodology of the systematic reviews. Cochrane published guidelines on conducting a systematic living review in 2019; still, there is no well-established guideline as to when such a pandemic is rapidly evolving disease should be updated and when not. Rapid dissemination of evidence base for body-mass-index and severity of COVID-19 and outcomes were essential for policymaking, identifying vulnerable population, and appropriate allocation of resources at the peaks of the pandemic. However, most of the case series on the matter were prone to biases. In addition, obesity is a proinflammatory state, and COVID-19 also has inappropriate inflammation responses. Therefore, there are biases even in the systematic reviews conducted early, which cannot be removed entirely.

Conclusion
Available evidence suggests that Class III obesity (morbid obesity) is strongly associated with increased mortality risk in patients with Covid-19. It is difficult to draw a firm conclusion about Class I and Class II obesity due to conflicting outcomes of metanalyses. Most of the reviews suggested evidence of moderate strength for the relation with increased BMI and increased risk for IMV. Despite the variability in the criteria used across reviews, it may be concluded that obese patients with covid 19 infection are more likely to need intensive care. We further found that umbrella reviews provide a better evidence synthesis in rapidly changing disease epidemiology where early and quick systematic reviews are published.

Key messages
- As we have identified in our study, though most of the systematic reviews on body-mass-index and COVID-19 implicate a positive association between obesity and severe COVID-19, the accuracy of data analysis is still questionable.
- There are methodological changes advised for early systematic reviews and guidelines for conducting systematic living reviews that must be updated.
- With the present study, we attempted to find the current evidence on the relationship between BMI and severity and outcomes of COVID-19, and the study suggests that a systematic review of early systematic reviews in a rapidly changing disease epidemiology yields a more accurate evidence base and helps in understanding inherent biases which can be avoided in the future studies.
- Living systematic review is a recent concept to address the challenges of traditional systematic review during a pandemic. However, updating a systematic review is a major challenge, as we found in our study that none of the systematic reviews were further updated.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References
1. Mahase E. Covid-19: WHO declares pandemic because of “alarming levels” of spread, severity, and inaction. BMJ 2020;368:m1036.
2. Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency:
A review of the 2019 novel coronavirus (COVID-19). Int J Surg 2020;76:71-6.

3. Watanabe M, Caruso D, Tuccinardi D, Risi R, Zerunian M, Polici M, et al. Visceral fat shows the strongest association with the need of intensive care in patients with COVID-19. Metabolism 2020;111:154319.

4. Yang Y, Ding L, Zou X, Shen Y, Hu D, Hu X, et al. Visceral adiposity and high intramuscular fat deposition independently predict critical illness in patients with SARS-CoV-2. Obesity (Silver Spring) 2020;28:2040-8.

5. Giacomelli A, Ridolfo AL, Milazzo L, Oreni L, Bernacchia D, Siano M, et al. 30-day mortality in patients hospitalized with COVID-19 during the first wave of the Italian epidemic: A prospective cohort study. Pharmacol Res 2020;158:104931.

6. Paliaidimos L, Kokkinidis DG, Li W, Karamanis D, Ongibene J, Arora S, et al. Severe obesity, increasing age and male sex are independently associated with worse in hospital outcomes, and higher in-hospital mortality, in a cohort of patients with COVID-19 in the Bronx, New York. Metabolism 2020;108:154262.

7. Simonnet A, Chethoun M, Poissy J, Raverdy V, Noutelle J, Dubanel M, et al. High prevalence of obesity in severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity (Silver Spring) 2020;28:1195-9.

8. Grant MJ, Booth A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Info Libr J 2009;26:91-108.

9. Smith V, Devane D, Begley CM, Clarke M. Methodology in conducting a systematic review of systematic reviews of healthcare interventions. BMC Med Res Methodol 2011;11:15.

10. Whiting P, Savovic J, Raverdy V, Noutelle J, Dubanel M, et al. ROBIS: A new tool to assess risk of bias in systematic reviews was developed. J Clin Epidemiol 2016;69:225-34.

11. Li X, Xu S, Yu M, Wang K, Tao Y, Zhou Y, et al. Risk factors for severity and mortality in adult COVID-19 patients in Wuhan. J Allergy Clin Immunol 2020;146:110-8.

12. World Health Organization. Obesity and overweight [Internet]. 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. [Last accessed on 2022 Jan 28].

13. Pagé MJ, McKenzie JE, Kirkham J, Dwan K, Kramer S, Green S, et al. Bias due to selective inclusion and reporting of outcomes and analyses in systematic reviews of randomised trials of healthcare interventions. Cochrane Database Syst Rev 2014;2014:MR000035.

14. Booth A, Reed AB, Ponzo S, Yassaee A, Aral M, Plans D, et al. Population risk factors for severe disease and mortality in COVID-19: A global systematic review and meta-analysis. PLoS One 2021;16:e0247461.

15. Chang TH, Chou CC, Chang LY. Effect of obesity and body mass index on coronavirus disease 2019 severity: A systematic review and meta-analysis. Obes Rev. 2020;21:e13080.

16. Chowdhury AI, Alam MR, Rabbi MF, Rahman T, Reza S. Does higher body mass index increase COVID-19 severity? A systematic review and meta-analysis. Obes Med 2021;23:100340.

17. Chu Y, Yang J, Shi J, Zhang P, Wang X. Obesity is associated with increased severity of disease in COVID-19 pneumonia: A systematic review and meta-analysis. Eur J Med Res 2020;25:64.

18. Foldi M, Farkas N, Kiss S, Zadori N, Vancsa S, Szako L, et al. Obesity is a risk factor for developing critical condition in COVID-19 patients: A systematic review and meta-analysis. Obes Rev 2020;21:e13095.

19. Helvaci N, Eyupoglu ND, Karabulut E, Yildiz BO. Prevalence of obesity and its impact on outcome in patients with COVID-19: A systematic review and meta-analysis. Front Endocrinol 2021;12:598249.

20. Ho JSY, Fernando DI, Chan MY, Sia CH. Obesity in COVID-19: A systematic review and meta-analysis. Ann Acad Med Singap 2020;49:996-1008.

21. Huang HK, Buihari K, Peng CC, Hung DP, Shih MC, Chang RH, et al. The J-shaped relationship between body mass index and mortality in patients with COVID-19: A dose-response meta-analysis. Diabetes Obes Metab 2021;23:1701-9.

22. Huang Y, Lu Y, Huang YM, Wang M, Ling W, Sui Y, et al. Obesity in patients with COVID-19: A systematic review and meta-analysis. Metabolism 2020;113:154378.

23. Malik P, Patel U, Patel K, Martin M, Shah C, Mehta D, et al. Obesity a predictor of outcomes of COVID-19 hospitalized patients-A systematic review and meta-analysis. J Med Virol 2021;93:1188-93.

24. Malik VS, Ravindra K, Attrri SV, Bhadada SK, Singh M. Higher body mass index is an important risk factor in COVID-19 patients: A systematic review and meta-analysis. Environ Sci Pollut Res Int 2020;27:42115-23.

25. Mesas AE, Cavero-Redondo I, Alvarez-Bueno C, Sarria Cabrera MA, Maffei de Andrade S, Sequi-Dominguez I, et al. Predictors of in-hospital COVID-19 mortality: A comprehensive systematic review and meta-analysis exploring differences by age, sex and health conditions. PLoS One 2020;15:e0241742.

26. Peres KC, Riera R, Martimbiambo ALC, Ward LS, Cunha LL. Body mass index and prognosis of COVID-19 infection. A systematic review. Front Endocrinol 2020;11:562.

27. Poly TN, Islam MM, Yang HC, Lin MC, Jian WS, Hsu MH, et al. Obesity and mortality among patients diagnosed with COVID-19: A systematic review and meta-analysis. Front Med 2021;8:620044.

28. Pranata R, Lim MA, Huang I, Yonas E, Henrina J, Vania R, et al. Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. Clin Nutr ESPEN 2021;43:163-8.

29. Seidu S, Gillies C, Zaccardi F, Kunutsor SK, Hartmann-Boyce J, Yates T, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: A systematic review and meta-analysis. Endocrinol Diabetes Metab 2020;4:e00176.

30. Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Singap 2020;49:996-1008.

31. Sarria Cabrera MA, Maffei de Andrade S, Sequi‑Dominguez I, et al. The J‑shaped relationship between body mass index and mortality in patients with COVID‑19: A dose‑response meta‑analysis. Diabetes Obes Metab 2021;23:1701‑9.

32. Malik P, Patel U, Patel K, Martin M, Shah C, Mehta D, et al. Obesity a predictor of outcomes of COVID-19 hospitalized patients-A systematic review and meta-analysis. J Med Virol 2021;93:1188-93.

33. Malik VS, Ravindra K, Attrri SV, Bhadada SK, Singh M. Higher body mass index is an important risk factor in COVID-19 patients: A systematic review and meta-analysis. Environ Sci Pollut Res Int 2020;27:42115-23.

34. Peres KC, Riera R, Martimbiambo ALC, Ward LS, Cunha LL. Body mass index and prognosis of COVID-19 infection. A systematic review. Front Endocrinol 2020;11:562.

35. Poly TN, Islam MM, Yang HC, Lin MC, Jian WS, Hsu MH, et al. Obesity and mortality among patients diagnosed with COVID-19: A systematic review and meta-analysis. Front Med 2021;8:620044.

36. Pranata R, Lim MA, Huang I, Yonas E, Henrina J, Vania R, et al. Visceral adiposity, subcutaneous adiposity, and severe coronavirus disease-2019 (COVID-19): Systematic review and meta-analysis. Clin Nutr ESPEN 2021;43:163-8.

37. Seidu S, Gillies C, Zaccardi F, Kunutsor SK, Hartmann-Boyce J, Yates T, et al. The impact of obesity on severe disease and mortality in people with SARS-CoV-2: A systematic review and meta-analysis. Endocrinol Diabetes Metab 2020;4:e00176.

38. Soeroto AY, Soetedjo NN, Purwiga A, Santoso P, Kulsum ID, Suryadinata H, et al. The J-shaped relationship between body mass index and mortality in patients with COVID-19: A dose-response meta-analysis. Diabetes Obes Metab 2021;23:1701-9.

39. Tamara A, Tahapary DL. Obesity as a predictor for a poor prognosis of COVID-19: A systematic review. Diabetes Metab Syndr 2020;14:655-9.

40. Yang J, Hu J, Zhu C. Obesity aggravates COVID-19: A systematic review and meta-analysis. J Med Virol 2021;93:257-61.

41. Yang J, Ma Z, Lei Y. A meta-analysis of the association between obesity and COVID-19. Epidemiol Infect 2020;149:e11.
35. Zhang X, Lewis AM, Moley JR, Brestoff JR. A systematic review and meta-analysis of obesity and COVID-19 outcomes. Sci Rep 2021;11:7193.

36. Zhao X, Gang X, He G, Li Z, Lv Y, Han Q, et al. Obesity increases the severity and mortality of influenza and COVID-19: A systematic review and meta-analysis. Front Endocrinol 2020;11:595109.

37. Bhattacharyya A, Seth A, Srivast N, Imeokparia M, Rai S. Coronavirus (COVID-19): A systematic review and meta-analysis to evaluate the significance of demographics and comorbidities. Res Sq 2021;rs.3.rs-144684. doi: 10.21203/rs.3.rs-144684/v1. Preprint

38. de Siqueira JVV, Almeida LG, Zica BO, Brum IB, Barcelo A, de Siqueira Galil AG. Impact of obesity on hospitalizations and mortality, due to COVID-19: A systematic review. Obes Res Clin Pract 2020;14:398-403.

39. Fraser J, Mousley J, Testro A, Smibert OC, Koshyan J. Clinical presentation, treatment, and mortality rate in liver transplant recipients with Coronavirus disease 2019: A systematic review and quantitative analysis. Transplant Proc 2020;52:2670-83.

40. Hussain A, Mahawar K, Xia Z, Yang W, El-Hasani S. Obesity and mortality of COVID-19. Meta-analysis. Obes Res Clin Pract 2020;14:295-300.

41. Maltese G, Corsonello A, Di Rosa M, Soraci L, Vitale C, Corica F, et al. Frailty and COVID-19: A systematic scoping review. J Clin Med 2020;9:2106.

42. Nasiri MJ, Haddadi S, Tahvildari A, Farsi Y, Arbabi M, Hasanazadeh S, et al. COVID-19 clinical characteristics, and sex-specific risk of mortality: Systematic review and meta-analysis. Front Med 2020;7:459.

43. Pal R, Banerjee M, Yadav U, Bhattacharjee S. Clinical profile and outcomes in COVID-19 patients with diabetic ketoacidosis: A systematic review of literature. Diabetes Metab Syndr 2020;14:1563-9.

44. Robinson E, Boyland E, Chisholm A, Harrold J, Maloney NG, Marty L, et al. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021;156:104853.

45. Wang Q, Liu J, Shao R, Han X, Su C, Lu W. Risk and clinical outcomes of COVID-19 in patients with rheumatic diseases compared with the general population: A systematic review and meta-analysis. Rheumatol Int 2021;41:851-61.

46. Zhang F, Xiong Y, Wei Y, Hu Y, Wang F, Li G, et al. Obesity predisposes to the risk of higher mortality in young COVID-19 patients. J Med Virol 2020;92:2536-42.

47. Louie JK, Acosta M, Winter K, Jean C, Gavali S, Schechter R, et al. Factors associated with death or hospitalization due to pandemic 2009 influenza A (H1N1) infection in California. JAMA 2009;302:1896-902.

48. Dreier M. Quality assessment in meta-analysis. In: Doi SAR, Williams GM, editors. Methods of Clinical Epidemiology. Springer Series on Epidemiology and Public Health. Berlin, Heidelberg: Springer; 2013. p. 213-28.

49. Elliott JH, Synnot A, Turner T, Simmonds M, Akl EA, McDonald S, et al. Introduction-the why, what, when, and how. J Clin Epidemiol 2017;91:23-30.

50. Brooker J, Synnot A, McDonald S. Guidance for the production and publication of Cochrane living systematic reviews: Cochrane reviews in living mode. 2019. Available from: https://community.cochrane.org/sites/default/files/uploads/inline-files/Transform/201912_LSR_Revised_Guidance.pdf. [Last accessed on 2022 Jan 28].