Comparative Evaluation of MPT83 (Rv2873) for T Helper-1 Cell Reactivity and Identification of HLA-Promiscuous Peptides in Mycobacterium bovis BCG-Vaccinated Healthy Subjects

Abu S. Mustafa*

Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait

Received 28 June 2011/Returned for modification 13 July 2011/Accepted 11 August 2011

MPT83 (Rv2873), a surface lipoprotein excreted in the culture of Mycobacterium tuberculosis, is immunoreactive in antibody assays in humans and animals and provides protection as a combined DNA vaccine in mice and cattle. This study was undertaken to determine the reactivity of MPT83 in T helper 1 (Th1)-cell assays, i.e., antigen-induced proliferation and gamma interferon (IFN-γ) secretion, using peripheral blood mononuclear cells (PBMCs) obtained from Mycobacterium bovis bacillus Calmette-Guérin (BCG)-vaccinated and/or Mycobacterium tuberculosis-infected healthy subjects. PBMCs were tested with complex mycobacterial antigens and pools of synthetic peptides corresponding to MPT63, MPT83, MPB70, LppX, PPE68, CFP10, and ESAT-6. The results showed that MPT83 is among the strongest Th1 cell antigens of M. tuberculosis, and it was recognized equally strongly by BCG-vaccinated and by BCG-vaccinated and M. tuberculosis-infected healthy subjects. Furthermore, HLA heterogeneity of the responding donors suggested that MPT83 was presented to Th1 cells by several HLA-DR molecules. The analysis of the mature MPT83 sequence (amino acids [aa] 1 to 220) and its 14 overlapping synthetic peptides for binding prediction to HLA class II molecules and actual recognition of the peptides by PBMCs from HLA-DR-typed subjects in antigen-induced proliferation and IFN-γ assays suggested that Th1 cell epitopes were scattered throughout the sequence of MPT83. In addition, the HLA-promiscuous nature of at least three peptides, i.e., P11 (aa 151 to 175), P12 (aa 166 to 190), and P14 (aa 196 to 220), was suggested by HLA-DR binding predictions and recognition by HLA-DR heterogeneous donors in Th1 cell assays. These results support the inclusion of MPT83 in an antigen cocktail to develop a new antituberculosis vaccine.

Tuberculosis (TB) is a major global health problem, and in spite of international efforts to control the disease, TB remains a major challenge to global public health in the 21st century (69). The most recent estimates by the World Health Organization suggest that the worldwide incidence of TB is increasing, with 9.4 million new cases of TB and 1.7 million deaths in 2009 (69). A combination of better diagnostics, drugs, and vaccines is expected to dramatically alter the TB epidemic (28, 35), but it is suggested that vaccines will have the greatest impact in reducing the incidence of disease (35). Mycobacterium bovis bacillus Calmette-Guérin (BCG), the currently used vaccine in humans to protect against TB, has been in use since 1921. However, it has several disadvantages, including the lack of consistent protection in different parts of the world (31), and may cause TB in immunocompromised subjects, including AIDS patients, who are usually at a very high risk of developing TB (15). Thus, there is an urgent need to identify new and safe vaccine candidates to achieve the global control of TB.

The culture filtrate of Mycobacterium tuberculosis (MT-CF) contains secreted and excreted proteins of M. tuberculosis (37), and immunization with MT-CF protects mice and guinea pigs against challenge with virulent M. tuberculosis (14, 17). Furthermore, the protective potentials of several MT-CF proteins, e.g., Ag85 complex, ESAT-6, CFP10, MPT63, MPT64, MPT83, and MPB70, etc., have been demonstrated in animal models of TB (20, 33, 39, 58, 64, 70, 71). All of these antigens, except MPT83, have also been shown to be immunodominant in humans for recognition by Th1 helper 1 (Th1) cells in an HLA-promiscuous manner and induce the release of Th1 cytokines that correlate with protective immunity (40, 41, 42, 59, 65).

Although MPT83 has been studied previously for antibody responses in animals and humans (16, 30, 32) and found to be protective as a combined DNA vaccine in mice and cattle (20, 64), the information on Th1 cell reactivity of this protein in humans, which is considered the hallmark of protective immunity in TB (3, 7, 8, 18, 19, 61), is nonexistent, particularly in M. tuberculosis-infected healthy subjects. In this study, the Th1 cell reactivity of MPT83 was studied in such a group of subjects living in Kuwait by using peripheral blood mononuclear cells (PBMCs) and a pool of overlapping synthetic peptides covering the sequence of the full-length MPT83 protein. In addition, for comparative evaluation, PBMCs were also tested with complex mycobacterial antigens and several major antigens of M. tuberculosis, i.e., ESAT-6 (Rv3875, ESXA), CFP10 (Rv3874, ESXB), PPE68 (Rv3873), MPB70 (Rv2875), LppX (Rv2945c), and MPT63 (Rv1926c). Furthermore, the permissive and promiscuous nature of MPT83 and its peptides was determined by predicting their binding to several alleles of frequently expressed HLA-DR molecules using computational programs (24, 56, 62, 64).
In addition, the non-HLA-restricted presentation of MPT83 to T cells was determined by studying the actual recognition of the peptides by PBMCs obtained from HLA-DR heterogeneous subjects in Th1 cell assays.

MATERIALS AND METHODS

Complex mycobacterial antigens and synthetic peptides. The complex mycobacterial antigens used in this study were irradiated whole-cell *M. tuberculosis* H37Ra and *M. bovis* BCG (29, 50), *M. tuberculosis* culture filtrate (MT-CF) enriched for secreted antigens, and purified *M. tuberculosis* cell walls (MT-CW) (48). MT-CF and MT-CW were kindly provided by J. T. Belisle (Colorado State University, Fort Collins, CO). Fourteen synthetic peptides (25-mer overlapping neighboring peptides by 10 residues) spanning the sequence of full-length MPT83 (Fig. 1) were purchased from Thermo Hybaid GmbH, Ulm, Germany. These peptides, as well as the synthetic peptides covering the sequences of MPT63 (43), MBP70 (10), LppX (5), PPE68 (48), ESAT-6 (48), and CFP10 (53), were synthesized using fluorenlymethoxy carbonyl (Fmoc) chemistry, as described previously (11, 49). The stock concentrations (5 mg/ml) of the peptides were prepared in normal saline (0.9%) by vigorous pipetting, and the working concentrations were prepared by further dilution in tissue culture medium RPMI-1640, as previously described (54).

Study subjects and isolation of PBMCs. The study subjects were *M. bovis* BCG-vaccinated healthy adults randomly selected from the group of blood donors at the Central Blood Bank, Kuwait. The primary immunization with BCG was performed at 4 1/2 years of age, followed by a booster immunization with BCG in PPD skin test-negative subjects. At the time of blood collection, all the donors were PPD skin test positive (>15 mm in diameter) from triplicate wells of negative-control cultures lacking antigen. The responses were considered strong with a percentage of positive responses from 40 to 60% and weak with a percentage of positive responses <40% (43, 48). The statistical analysis was performed using a Z test to identify significant differences (P < 0.05) with respect to the percentage of positive results in response to various antigens in antigen-induced proliferation and IFN-γ secretion assays.

HLA typing of PBMCs. PBMCs were HLA typed genomically by using sequence-specific primers in PCR, as described previously (47). In brief, an HLA-DR "low resolution" kit containing the primers to type for DRB1, DRB3, DRB4, and DRB5 alleles was purchased from Dynal AS (Oslo, Norway) and used in a PCR as specified by the manufacturer. DNA amplifications were carried out in a Gene Amp PCR system 2400 (Perkin-Elmer, Cetus), and the amplified products were analyzed by agarose gel electrophoresis, using standard procedures. Serologically defined HLA-DR specificities were determined from the genotypes by following the guidelines provided by Dynal AS.
TABLE 1. Antigen-induced proliferation and IFN-γ results with PBMCs from CFP10/ESAT6 responder and nonresponder healthy subjects in response to complex and single mycobacterial antigens

Antigen	CFP10/ESAT6 responders	CFP10/ESAT6 non-responders		
	Proliferation δ	IFN-γ γ	Proliferation	IFN-γ
M. tuberculosis	36/38 (95)	21/23 (91)	46/49 (94)	30/31 (97)
MT-CF	36/39 (92)	23/23 (100)	49/49 (100)	30/31 (97)
MT-CW	21/21 (100)	16/16 (100)	47/49 (96)	27/29 (93)
BCG	8/8 (100)	10/11 (91)	35/40 (88)	21/25 (84)
MPT63	16/39 (41)	8/23 (35)	17/49 (35)	6/28 (21)
MPT83	27/39 (69)	17/23 (74)	28/49 (57)	12/28 (43)
MPB70	25/39 (64)	16/23 (70)	28/49 (57)	12/28 (43)
LppX	23/36 (64)	16/23 (70)	11/45 (24)	9/28 (32)
MPT83	35/39 (90)	20/23 (87)	0/48 (0.0)	0/28 (0.0)
CFP10	31/39 (80)	20/23 (87)	0/48 (0.0)	0/28 (0.0)

Table 1. Antigen-induced proliferation and IFN-γ results with PBMCs from CFP10/ESAT6 responder and nonresponder healthy subjects in response to complex and single mycobacterial antigens.

δ A positive response was defined as antigen-induced proliferation with an SI (defined in Materials and Methods) of ≥2. γ A response was considered positive if the IFN-γ concentration in a culture stimulated with antigen minus the IFN-γ concentration in a culture without antigen was ≥1.5 IU/ml.

TABLE 2. ProPred analysis for prediction of HLA-DR binding regions in MPT83 sequence

HLA-DR allele	Allele binding in predicted regions (aa range)											
	1-220	1-12	19-27	59-68	81-89	95-104	107-119	122-130	132-140	143-166	189-204	208-217
DRB1.1	2/2	2/2	1/2	0/2	0/2	0/2	1/2	1/2	1/2	2/2	2/2	
DRB1.3	7/7	2/7	0/7	0/7	7/7	0/7	5/7	0/7	0/7	7/7	6/7	7/7
DRB1.4	2/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	4/9	3/9
DRB1.7	2/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	0/2	2/2
DRB1.8	6/6	5/6	1/6	4/6	0/6	0/6	4/6	1/6	0/6	6/6	1/6	6/6
DRB1.9	9/9	7/9	0/9	0/9	1/9	0/9	4/9	0/9	0/9	8/9	8/9	9/9
DRB1.13	11/11	7/11	1/11	0/11	0/11	0/11	4/11	0/11	0/11	9/11	6/11	11/11
DRB1.15	3/5	0/3	0/3	0/3	0/3	0/3	0/3	0/3	2/3	3/3	1/3	
DRB5.1	2/2	2/2	0/2	0/2	0/2	0/2	0/2	0/2	2/2	0/2	2/2	
P/T α	51/51	25/51	3/51	5/51	8/51	9/51	26/51	3/51	1/51	39/51	29/51	47/51

Table 2. ProPred analysis for prediction of HLA-DR binding regions in MPT83 sequence.

α P/T, no. of HLA-DR alleles predicted to bind/no. of alleles tested.

β No. of alleles predicted to bind/no. of alleles included in ProPred, in predicted HLA-DR binding regions (aa range) in the sequence of MPT83.
secretion assays (Table 5). HLA-DR typing of the subjects MPT83 in antigen-induced proliferation (Table 4) and IFN-γ secretion assays (Table 5). PBMC donor Antigen-induced proliferation (SI) of PBMCs in response to the peptide pool and individual synthetic peptides of MPT83.

HLA-DR allele	Binding of MPT83 peptideb													
	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14
DRB1.1	2/2	1/2	0/2	1/2	0/2	0/2	1/2	0/2	1/2	0/2	2/2	2/2		
DRB1.3	2/7	0/7	0/7	0/7	0/7	0/7	5/7	0/7	7/7	5/7	0/7	6/7	7/7	
DRB1.4	0/9	0/9	0/9	0/9	0/9	0/9	7/9	0/9	7/9	0/9	3/9	2/9	1/9	9/9
DRB1.7	0/2	0/2	0/2	0/2	0/2	2/2	0/2	0/2	0/2	0/2	0/2	2/2		
DRB1.8	5/6	1/6	0/6	0/6	0/6	0/6	5/6	1/6	1/6	0/6	1/6	6/6		
DRB1.11	7/9	0/9	0/9	0/9	0/9	0/9	0/9	0/9	7/9	5/9	0/9	8/9	9/9	
DRB1.15	8/11	0/11	0/11	0/11	0/11	0/11	4/11	0/11	3/11	7/11	0/11	6/11	11/11	
DRB5.1	2/2	0/2	0/2	0/2	0/2	0/2	2/2	0/2	2/2	0/2	2/2			
P/Ta	26/51	3/51	0/51	0/51	0/51	0/51	28/51	3/51	29/51	47/51				

a P/T, no. of HLA-DR alleles predicted to bind/no. of alleles tested.

b No. of alleles predicted to bind/no. of alleles included in ProPred, in synthetic MPT83 peptides.

Experimental evaluation of MPT83 and its peptides for promiscuous presentation to Th1 cells and comparisons with computational prediction methods. To further analyze the promiscuous presentation of MPT83 and its peptides to Th1 cells, PBMCs of 17 subjects responding to the peptide pool of MPT83 were tested for reactivity to individual peptides of MPT83 and its peptides to Th1 cells. To identify the Th1 cell-reactive and promiscuous peptides of MPT83, PBMCs from all the 17 subjects were tested in both assays for reactivity to individual peptides of MPT83, i.e., P1 to P14. The results showed that positive responses were obtained with all the peptides in 2 to 10 donors in antigen-induced proliferation (Table 4) and 1 to 11 donors in IFN-γ secretion assays (Table 5). Furthermore, the heterogeneity of HLA-DR molecules expressed in the donors suggested that all peptides may have been presented to Th1 cells by more than one HLA-DR molecule (Table 4 and 5).

The results of HLA-DR binding prediction by ProPred, NetMHCII 2.2, Petrochemitric, and IEDB Consensus methods further showed that MPT83 protein was capable of binding to molecules expressed from all HLA-DR alleles included in the analysis (see Table S1 in the supplemental material). In addition, a direct comparison between HLA-DR binding predic-
tion methods and Th1 cell responses of PBMCs to various peptides of MPT83 showed that three peptides were strong stimulators of Th1 cell reactivity, i.e., P11, P12, and P14, of which P11 and P14 were predicted to be HLA promiscuous by three of the four methods, whereas only the Petrochimic method predicted the HLA-promiscuous nature of P12 (see Table S1 in the supplemental material).

DISCUSSION

In this study, MPT83 was evaluated, using overlapping synthetic peptides, for Th1 cell reactivity in *M. bovis* BCG-vaccinated and PPD-positive healthy subjects residing in Kuwait. Furthermore, HLA-DR binding prediction analysis of MPT83 and its peptides, as well as HLA-DR typing of MPT83 responders, was performed to determine the promiscuous nature of the full-length protein and its peptides. To my knowledge, this is the first study to determine Th1 cell reactivity of MPT83 and its peptides in HLA-DR-typed *M. bovis* BCG-vaccinated healthy humans and their binding prediction to HLA-DR alleles.

The test systems used to determine Th1 cell reactivity were antigen-induced proliferation and IFN-γ secretion assays. Both of these assays require culture of PBMCs separated from a venous blood sample by density gradient centrifugation (39). However, the measurement of IFN-γ concentration in culture supernatants is considered more sensitive and specific than proliferation assays (7). Since antigen-induced proliferation and IFN-γ secretion have been correlated with protective immunity in tuberculosis (22, 25, 26), in order to identify new candidates for safer subunit vaccines, it is important to identify major *M. tuberculosis* antigens and peptides recognized by human Th1 cells in these assays.

To determine the immunological reactivity of *M. tuberculosis* proteins, full-length proteins purified from cultures of *M. tuberculosis* or purified recombinant proteins, expressed in *Escherichia coli*, have been used (39, 40, 41). However, obtaining full-length proteins from cultures of pathogenic *M. tuberculosis* is extremely hazardous and technically demanding (39). On the other hand, the production of purified recombinant mycobacterial proteins has often been notoriously difficult in *E. coli* (1, 2, 12). To overcome the problems associated with the expression and purification of recombinant mycobacterial proteins, pools of overlapping synthetic peptides have been successfully used in the past to replace recombinant or natural *M. tuberculosis* proteins in Th1 cell assays (40, 41, 55). The inclusion of pools of peptides corresponding to other secreted protein antigens of *M. tuberculosis*, which have been previously characterized for Th1 cell reactivity in *M. bovis* BCG-vaccinated healthy subjects, i.e., MPT63 (43), MPB70 (10), and LppX (5), helped to compare the responses induced by MPT83.

Among the antigens tested in this study, Th1 cell responses to ESAT-6 and CFP10 have been correlated with *M. tuberculosis* infection/latent TB in healthy subjects (23, 46, 63, 66). Therefore, to determine if latent infection with *M. tuberculosis* could have an effect on the Th1 cell responses to various antigens used in this study, the donors were divided into ESAT-6/CFP10 responders and nonresponders to indicate *M. tuberculosis* infection and noninfection, respectively (10, 34). PBMCs from both donor groups had strong responses to all complex mycobacterial antigens without significant differences between the two groups (Table 1), which suggested the suitability of the donors to test for reactivity to single antigens. The responses to MPT83, MPB70, and PPE68 were strong in CFP10/ESAT-6 responders and moderate in nonresponders, without significant differences between the two groups (*P > 0.05*). The only antigen that showed significantly weaker positivity (*P < 0.05*) in ESAT-6/CFP10 nonresponders, compared to responders, was LppX. The overall results suggest that infection with *M. tuberculosis* did not affect the level of Th1 cell reactivity to BCG and most antigens of *M. tuberculosis* used in this study. Furthermore, the study confirms strong to moderate
reactivity of MPB70 and PPE68 in *M. tuberculosis*-infected and noninfected BCG-vaccinated healthy subjects, as reported previously (5, 10, 45, 48), and identifies MPT83 as an immunodominant cross-reactive antigen in humans, like Ag85B and MPB70 (10, 50).

Although the gene for PPE68 is present in the *M. tuberculosis*-specific RD1 segment (13, 36), statistically similar responses in the ESAT-6/CFP10 responders and nonresponders could be due to the presence of an immunodominant epitope (aa 124 to 137), which is conserved in several PPE proteins of *M. tuberculosis*, BCG, and environmental mycobacteria (48, 57). Similarly, one of the immunodominant peptides of MPT83, i.e., P14 (aa 196 to 220), shares 84% to 100% sequence identity with BCG, several species of environmental mycobacteria, and the immunodominant epitope of MPT70 (see Table S2 in the supplemental material). Therefore, in addition to BCG vaccination and infection with *M. tuberculosis*, exposure to environmental mycobacteria may also have contributed to strong and moderate responses to MPT83, PPE68, and MPT70 in CFP10/ESAT-6 responders and nonresponders, respectively. In contrast to the present report, Whelan et al. from the United Kingdom have reported weak responses to MPT83 and MPB70 in *M. bovis*-infected cattle (68). This could be due to species differences and/or a low load of exposure to environmental mycobacteria, as demonstrated for nonrecognition of the cross-reactive epitope of PPE68 (aa 124 to 137) in mice (21) and weak recognition of PPE68 in BCG-vaccinated healthy subjects from Denmark (57).

The strong reactivity of MPT83 in Th1 cell assays suggests that it could be useful in vaccine formulations against TB. However, Th1 cells recognize protein antigens in association with highly polymorphic HLA class II molecules and particularly HLA-DR molecules (38, 51, 52). Therefore, among the requirements for any antigen to qualify as a vaccine candidate is its recognition by an HLA-heterogeneous group of donors. To determine if MPT83 would qualify by this requirement, the PBMCs from MPT83-responding donors were typed for HLA-DR molecules using the server http://www.imtech.res.in/raghava/nhlapred/, which predicts binding to 67 MHC class I alleles. The analysis showed that the MPT83 sequence was predicted to bind 47/67 (70%) alleles, suggesting its HLA-promiscuous nature for recognition by CD8+ T cells as well (data not shown). This suggests that CD8+ T cells may also have contributed to the responses observed.

In conclusion, the results presented in this work demonstrate that MPT83 is a major Th1 cell-stimulating protein of *M. tuberculosis*, with the ability to induce positive responses in HLA-heterogeneous donors and ability to bind HLA molecules promiscuously. Furthermore, the Th1 cell epitopes are scattered throughout the protein sequence. These properties of MPT83 make it an interesting candidate, like Ag85B, HSP65, and MPB70 (39), for inclusion in a vaccine cocktail against TB.

ACKNOWLEDGMENTS

This study received financial support from Kuwait University Research Administration grant MI03/05. MT-CF and MT-CW were produced under NIH contract HHSN266200400091C/ADB contract NO-AI40092, “Tuberculosis Vaccine Testing and Research Materials Contract.”

The buffy coats from healthy donors were obtained from the Central Blood Bank, Kuwait, and Fatema Shaban provided technical help.

REFERENCES

1. Ahmad, S., H. A. Amoudy, J. E. Thole, D. B. Young, and A. S. Mustafa, 1999. Identification of a novel protein antigen encoded by a *Mycobacterium tuberculosis*-specific RD1 region gene. Scand. J. Immunol. 49:515–522.
2. Ahmad, S., S. El-Shazly, A. S. Mustafa, and R. Al-Atiyah, 2004. Mammalian cell-entry proteins encoded by the mce3 operon of *Mycobacterium tuberculosis* are expressed during natural infection in humans. Scand. J. Immunol. 60:382–391.
3. Al-Atiyah, R., A. El-Shazly, and A. S. Mustafa, 2006. Assessment of in vitro immunity to *Mycobacterium tuberculosis* in a human peripheral blood infection model using a luciferase reporter construct of *M. tuberculosis* H37Rv. Clin. Exp. Immunol. 145:520–527.
4. Al-Atiyah, R., et al. 2006. Cytokine profiles in tuberculosis patients and healthy subjects in response to complex and single antigens of *Mycobacterium tuberculosis*. FEMS Immunol. Med. Microbiol. 47:254–261.
5. Al-Atiyah, R., and A. S. Mustafa, 2004. Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1 cell peptides in a novel 244Da secreted lipoprotein (LpnX) of *Mycobacterium tuberculosis*. Scand. J. Immunol. 59:16–24.
6. Al-Atiyah, R., and A. S. Mustafa, 2008. Characterization of human cellular immune responses to novel *Mycobacterium tuberculosis* antigens encoded by genomic regions absent in *Mycobacterium bovis* BCG. Infect. Immun. 76:4190–4198.
7. Al-Atiyah, R. J., and A. S. Mustafa, 2009. Mycobacterial antigen-induced T helper type 1 (Th1) and Th2 reactivity of peripheral blood mononuclear cells from diabetic and non-diabetic tuberculosis patients and *Mycobacterium bovis* bacilli Calmette-Guérin (BCG)-vaccinated healthy subjects. Clin. Exp. Immunol. 158:64–73.
34. Lalvani, A., et al. 2003. In vitro cellular immune responses to complex and newly defined recombinant antigens of Mycobacterium tuberculosis. Clin. Exp. Immunol. 138:139–144.

33. Al-Tariq, A., F. E. Shaban, H. G. Wiker, F. Oftung, and A. S. Mustafa. 2003. Synthetic peptides identify promiscuous human Th1 cell epitopes of the secreted mycobacterial antigen MPB70. Infect. Immun. 71:1953–1960.

32. Al-Khodari, N. Y., R. Al-Tariq, A. S. Mustafa, and S. J. Hawker. 2011. Identification, diagnostic potential, and natural expression of immunodominant seroreactive peptides encoded by five Mycobacterium tuberculosis-specific genomic regions. Clin. Vaccine Immunol. 18:477–482.

31. Amoudy, H. A., S. Ahmad, J. E. Thole, and A. S. Mustafa. 2007. Demonstration of in vivo expression of a hypothetical open reading frame (ORF-14) encoded by the RD1 region of Mycobacterium tuberculosis. Scand. J. Immunol. 66:422–435.

30. Andersen, P. 1994. Effective vaccination of mice against Mycobacterium tuberculosis infection with a soluble mixture of secreted mycobacterial proteins. Infect. Immun. 62:2536–2544.

29. Azquedi, P., S. M. Fernández, S. M. Graham, and T. Duke. 2009. Bacille Calmette-Guérin vaccine-related disease in HIV-infected children: a systematic review. Int. J. Tuberc. Lung Dis. 13:1331–1344.

28. Azzurri, A., et al. 2006. Serological markers of pulmonary tuberculosis and of response to anti-tuberculosis treatment in a patient population in Guinea. Int. J. Immunopathol. Pharmacol. 19:199–208.

27. Baldwin, S. L., et al. 1998. Evaluation of new vaccines in the mouse and guinea pig model of tuberculosis. Infect. Immun. 66:2951–2959.

26. Bertholet, S., et al. 2008. Identification of human T cell antigens for the development of vaccines against Mycobacterium tuberculosis. J. Immunol. 181:7948–7957.

25. Bourgarit, A., et al. 2006. Explosion of tuberculinspecific Th1-responses induces immune reconstitution syndrome in tuberculosis and HIV co-infected patients. AIDS 20:F1–F7.

24. Cai, H., et al. 2004. Combined DNA vaccines formulated either in DDA or in saline protect cattle from Mycobacterium bovis infection. Vaccine 23:3887–3894.

23. Demangel, C., et al. 2004. Cell envelope protein PPE68 contributes to Mycobacterium tuberculosis RD1 immunogenicity independently of a 10-kilo dalton culture filtrate protein and ESAT-6. Infect. Immun. 72:2170–2176.

22. Demissie, A., et al. 2004. Healthy individuals that control a latent infection with Mycobacterium leprae express high levels of Th1 cytokines and the IL-4 antagonist IL-4R. J. Immunol. 172:6938–6943.

21. Dheda, K., V. van Zyl Smit, M. Badri, and M. Pai. 2009. T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: clinical utility in high-burden vs. low-burden settings. Curr. Opin. Pulm. Med. 15:137–144.

20. Dimitrov, L. P., G. G. Mahairas, D. R. Flower, and I. Doutchenova. 2010. EpiTOP—a proteochemometric tool for MHC class II binding prediction. Bioinformatics 26:202–209.

19. Fan, X., Q. Gao, and R. Fu. 2009. Differential immunogenicity and protective efficacy of DNA vaccines expressing proteins of Mycobacterium tuberculosis in a mouse model. Microbiol. Res. 164:374–382.

18. Flynn, J. L. 2004. Immunology of tuberculosis and implications in vaccine development. Tuberculosis (Edinb.) 84:93–101.

17. Gupta, S. K., et al. 2011. Identification of immunogenic consensus T-cell epitopes in globally distributed influenza-A H1N1 neuraminidase. Infect. Genet. Evol. 11:305–319.

16. Hanekom, W. A., S. D. Lawn, K. Dheeda, and A. Whitelaw. 2010. Tuberculosis research update. Trop. Med. Int. Health 15:981–989.

15. Hanif, S. N. M., A. M. El-Shamy, R. Al-Tariq, and A. S. Mustafa. 2008. Whole blood assays to identify Th1 cell antigens and peptides encoded by Mycobacterium tuberculosis-specific RD1 genes. Med. Princ. Pract. 17:244–249.

14. Harboe, M., et al. 2002. Generation of antibodies to the signal peptide of the Mycobacterium leprae 18-kD heat shock protein. Clin. Exp. Immunol. 120:85–92.

13. Mustafa, A. S., and F. A. Shaban. 2009. Th1-cell reactivity and HLA-DR binding prediction for promiscuous recognition of MPT63 (Rv1926c), a major secreted protein of Mycobacterium tuberculosis. Scand. J. Immunol. 69:213–222.

12. Mustafa, A. S. 2009. HLA-DR-m Table-Ia reactive epitopes and HLA-restriction in humans. J. Immunol. 182:385–392.

11. Mustafa, A. S., R. Al-Attiyah, S. N. M. Hanif, and F. A. Shaban. 2009. Identification of major secreted antigens of Mycobacterium tuberculosis. Med. Princ. Pract. 18:137–144.

10. Mustafa, A. S. 2010. Cell mediated immunity assays identify proteins of diagnostic and vaccine potential from genomic regions of different Mycobacterium tuberculosis. Kuwait Med. J. 42:98–105.

9. Mustafa, A. S., A. T. Abal, F. Shaban, A. M. El-Shamy, and H. A. Amoudy, 2005. HLA-DR binding prediction and experimental evaluation of mycolyl-transferase (Ag85B), a major secreted antigen of Mycobacterium tuberculosis. Med. Princ. Pract. 14:140–146.

8. Mustafa, A. S., R. Al-Tariq, S. N. M. Hanif, and F. A. Shaban. 2008. In silico binding predictions for identification of HLA-DR-promiscuous regions and epitopes of Mycobacterium tuberculosis protein MP164 (Rv1908c), and their recognition by human Th1 cells. Med. Princ. Pract. 17:96–101.

7. Mustafa, A. S. 2010. Cell mediated immunity assays identify proteins of diagnostic and vaccine potential from genomic regions of different Mycobacterium tuberculosis. Scand. J. Immunol. 71:916–924.

6. Mustafa, A. S., F. Al-Saified, A. S. El-Shamy, and R. Al-Tariq. 2011. Cytokines in response to proteins predicted in genomic region of Mycobacterium tuberculosis. Microbiol. Immunol. 55:267–278.

5. Mustafa, A. S., A. M. El-Shamy, N. M. Madi, H. A. Amoudy, and R. Al-Tariq. 2008. Cell-mediated immune responses to complex and single mycobacterial antigens in tuberculosis patients with diabetes. Med. Princ. Pract. 17:325–330.

4. Mustafa, A. S., K. E. A. Lundin, R. H. Melsen, T. M. Shinick, and F. Oftung. 1999. Identification of promiscuous epitopes from the mycobacterial 65-kilodalton heat shock protein (HSP65) recognized by human T cells in the Mycobacterium leprae memory repertoire. Infect. Immun. 67:5683–5689.

3. Mustafa, A. S., K. E. A. Lundin, R. H. Melsen, and F. Oftung. 2000. Cross-reactive epitopes and HLA-restriction elements in human T cell recognition of the Mycobacterium leprae 18-kD heat shock protein. Clin. Exp. Immunol. 120:85–92.

2. Mustafa, A. S., and F. A. Shaban. 2006. Propred analysis and experimental evaluation of promiscuous Th1 cell epitopes of three major secreted antigens of Mycobacterium tuberculosis. Tuberculosis (Edinb.) 86:115–124.

1. Mustafa, A. S., and F. Shaban. 2010. Mapping of Th1-cell epitope regions of Mycobacterium tuberculosis protein MP164 (Rv1980c) using synthetic peptides and T-cell lines from M. tuberculosis-infected healthy humans. Med. Princ. Pract. 19:122–128.

0. Mustafa, A., et al. 2006. Immunogenicity of Mycobacterium tuberculosis antigens in Mycobacterium bovis BCG-vaccinated and M. bovis-infected cattle. Infect. Immun. 74:4556–4572.

Nielsen, M., and O. Lund. 2009. NNR-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction. BMC Bioinformatics 10:296.

Okkels, L. M., et al. 2003. PPE protein (Rv3873c) from DNA segment RD1 of Mycobacterium tuberculosis: strong recognition of both specific T cell epitopes and peptides conserved within the PPE family. Infect. Immun. 71:6166–6172.

Pan, Y., et al. 2003. Combined recombinant DNA vaccine results in significant protection against experimental tuberculosis in mice. J. Med. Princ. Pract. 11:551–552.

Pathan, A. A., et al. 2001. Direct ex vivo analysis of antigen-specific IFN-
gamma-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J. Immunol. 167:5217–5225.

60. Ravn, P., et al. 2005. Prospective evaluation of a whole-blood test using Mycobacterium tuberculosis-specific antigens ESAT-6 and CFP-10 for diagnosis of active tuberculosis. Clin. Diagn. Lab. Immunol. 12:491–496.

61. Sai Priya, V. H., G. S. Latha, S. E. Hasnain, K. J. Murthy, and V. L. Valluri. 2010. Enhanced T cell responsiveness to Mycobacterium bovis BCG r32-kDa Ag correlates with successful anti-tuberculosis treatment in humans. Cytokine 52:190–193.

62. Singh, H., and G. P. S. Raghava. 2001. ProPred: prediction of HLA-DR binding sites. Bioinformatics 17:1236–1237.

63. Storla, D. G., et al. 2009. Use of interferon gamma-based assay to diagnose tuberculosis infection in health care workers after short term exposure. BMC Infect. Dis. 9:60.

64. Tian, X., H. Cai, and Y. X. Zhu. 2005. Immunogenicity and protection of divergent DNA vaccine encoding antigens MPT83 and MPT64 of Mycobacterium tuberculosis. Zhonghua Yi Xue Za Zhi. 85:1410–1413. (In Chinese.)

65. Valle, M. T., et al. 2001. Epitope focus, clonal composition and Th1 phenotype of the human CD4 response to the secretory mycobacterial antigen Ag85. Clin. Exp. Immunol. 123:226–232.

66. Vassilopoulos, D., N. Stamoulis, E. Hadziyannis, and A. J. Archimandritis. 2008. Usefulness of enzyme-linked immunospot assay (Elispot) compared to tuberculin skin testing for latent tuberculosis screening in rheumatic patients scheduled for anti-tumor necrosis factor treatment. J. Rheumatol. 35:1271–1276.

67. Wang, P., et al. 2008. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4:e1000048.

68. Whelan, A. O., et al. 2010. Development of a skin test for bovine tuberculosis for differentiating infected from vaccinated animals. J. Clin. Microbiol. 48:3176–3181.

69. World Health Organization. 2010. Global tuberculosis control. WHO/HTM/TB/2010.7. World Health Organization, Geneva, Switzerland.

70. Xue, T., et al. 2004. RNA encoding the MPT83 antigen induces protective immune responses against Mycobacterium tuberculosis infection. Infect. Immun. 72:6324–6329.

71. Zhang, H., et al. 2010. Recombinant Mycobacterium smegmatis expressing an ESAT6-CFP10 fusion protein induces anti-mycobacterial immune responses and protects against Mycobacterium tuberculosis challenge in mice. Scand. J. Immunol. 72:349–357.