Stochastic differential equations with non-negativity constraints driven by fractional Brownian motion

MARCO FERRANTE AND CARLES ROVIRA

Abstract. In this paper, we consider stochastic differential equations with non-negativity constraints, driven by a fractional Brownian motion with Hurst parameter $H > 1/2$. We first study an ordinary integral equation, where the integral is defined in the Young sense, and we prove an existence result and the boundedness of the solutions. Then, we apply this result pathwise to solve the stochastic problem.

1. Introduction

The study of differential equations driven by a fractional Brownian motion has been developed in recent years using either the formalism of the rough path analysis [4, 11, 15] or the fractional calculus [17, 20]. As usual, afterward some of the possible generalizations of the diffusion processes have been considered. For instance, in the literature, we can find now papers about PDEs [3, 5, 12, 18], Volterra equations [2, 6, 7] or systems with delay [9, 10, 16, 14].

Since in some applications, the quantities of interest are naturally positive, then it is also natural to consider equations with positivity constraints. As far as the authors know up to now only, the case of delay equations with positivity constraints has been studied in [1]. The present paper follows these steps and we will deal with stochastic equations with positivity constraints driven by a fractional Brownian motion with Hurst parameter $H > 1/2$. More precisely, we will consider a stochastic differential equation with normal reflection on \mathbb{R}_+^d of the form:

$$X(t) = x(0) + \int_0^t b(s, X(s))ds + \int_0^t \sigma(s, X(s))dW^H_s + Y(t), \quad t \in (0, T],$$

(1.1)

where $x^i(0) > 0$, for $i = 1, \ldots, d$, $W^H = \{W^H, j = 1, \ldots, m\}$ are independent fractional Brownian motions with Hurst parameter $H > \frac{1}{2}$ defined in a complete probability space $(\Omega, \mathcal{F}, \mathbb{P})$, while Y, the so-called regulator term, is a vector-valued non-decreasing process which ensures that the non-negativity constraints on X are enforced.

Mathematics Subject Classification (2000): 60H05, 60H20

Keywords: Stochastic differential equations, Normal reflection, Fractional Brownian motion, Young integral.
We define (1.1) as a stochastic differential equation with reflection driven by a fractional Brownian motion, and, to the best of our knowledge, this problem has not been considered before in the wide literature on stochastic differential equations.

In order to introduce non-negative constraints, we use the Skorohod’s mapping. Set

\[C_+(\mathbb{R}^+, \mathbb{R}^d) := \left\{ x \in C(\mathbb{R}^+, \mathbb{R}^d) : x(0) \in \mathbb{R}^d_+ \right\}. \]

Let us recall now the Skorokhod problem.

DEFINITION 1.1. Given a path \(z \in C_+(\mathbb{R}^+, \mathbb{R}^d) \), a pair \((x, y)\) of functions in \(C_+(\mathbb{R}^+, \mathbb{R}^d) \) can be solutions to the Skorokhod problem for \(z \) with reflection if

1. \(x(t) = z(t) + y(t) \) for all \(t \geq 0 \) and \(x(t) \in \mathbb{R}^d_+ \) for each \(t \geq 0 \),
2. for each \(i = 1, \ldots, d \), \(y^i(0) = 0 \) and \(y^i \) is nondecreasing,
3. for each \(i = 1, \ldots, d \), \(\int_0^t x^i(s)dy^i(s) = 0 \) for all \(t \geq 0 \), so \(y^i \) can increase only when \(x^i \) is at zero.

Then (see e.g. [8,13]), an explicit formula for \(y \) in terms of \(z \) can be written: for each \(i = 1, \ldots, d \)

\[y^i(t) = \max_{s \in [0,t]} \left(z^i(s)\right)^-. \]

The path \(x \) is called the reflector of \(z \), and the path \(y \) is called the regulator of \(z \).

We will use the Skorokhod mapping to force a continuous real-valued function to be non-negative by means of reflection at the origin. In the case of Eq. (1.1), we will apply it to each path of \(Z \) defined by

\[Z(t) = x(0) + \int_0^t b(s, X(s))ds + \int_0^t \sigma(s, X(s))dW^H_s, \quad t \in [0, T], \]

obtaining an explicit formula for the regulator term \(Y \) in terms of \(Z \), the so-called reflector term: for each \(i = 1, \ldots, d \)

\[Y^i(t) = \max_{s \in [0,t]} \left(Z^i(s)\right)^-, \quad t \in [0, T]. \]

Note that since we are dealing with a multidimensional case, the mapping will be applied to each component.

At this point, it is necessary to explain how the stochastic integral appearing in our equation has to be understood. Since the Hurst parameter \(H > 1/2 \), then the stochastic integral can be defined using a pathwise approach. We will first consider the approach to the Young integration theory [19], called algebraic integration, that was introduced in [11]. These algebraic integration tools are used here to derive the fundamental estimates necessary to tackle our problem. More precisely, first we will define a deterministic integral with respect to Hölder continuous function, then we will prove our results for deterministic equations, and at the end, we will easily apply them pathwise to the fractional Brownian motion.
Let us say a few words about the strategy we have followed in order to prove our results. Existence and uniqueness results are usually proved together using a fixed point argument. In order to apply this type of argument, we have to be able to control the difference between two solutions of our system, \(\| x_1 - x_2 \| \), where \(\| \cdot \| \) denotes a generic norm. In this setting, the natural norm to work with is the \(\lambda \)-Hölder one.

However, as we will prove in Remark 3.6, it is not possible to control the difference between two regulator terms \(y^1 \) and \(y^2 \) using a \(\lambda \)-Hölder norm, and then, we can not use a fixed point argument. As an alternative to this, we will prove the existence using an equicontinuous argument, whereas uniqueness is still an open problem and we are only able to prove it just up to the first time the (up to then) unique solution has the first component being zero.

Here is a brief summary of our paper structure: In Sect. 2, we will state our main results. In Sect. 3, we will recall the basic notions of the algebraic integration theory, the Young integration and the Skorohod mapping. Section 4 will contain the study of the deterministic integral equations: the existence and boundedness of the solutions. Finally, Sect. 5 will be devoted to recall how to apply the deterministic results to the stochastic case.

2. Main results

For any \(0 < \lambda \leq 1 \), denote by \(C^\lambda(s, t; \mathbb{R}^d) \) the space of \(\lambda \)-Hölder continuous functions, namely the functions \(f : [s, t] \to \mathbb{R}^d \) such that

\[
\| f \|_{\lambda, [s, t]} := \sup_{s \leq u < v \leq t} \frac{|f(v) - f(u)|}{(v - u)^\lambda} < \infty,
\]

and

\[
\| f \|_{\infty, [s, t]} := \sup_{u \in [s, t]} |f(u)|.
\]

Let us consider the following assumptions on the coefficients.

(H1) \(\sigma : [0, T] \times \mathbb{R}^d \to \mathbb{R}^{d \times m} \) is bounded and there exists a constant \(K_0 \) such that the following properties hold:

\[
\begin{align*}
i) & \quad \text{Lipschitz continuity} \\
|\sigma(t, x) - \sigma(t, y)| & \leq K_0|x - y|, \quad \forall x, y \in \mathbb{R}^d, \forall t \in [0, T] \\
ii) & \quad \nu\text{-Hölder continuity in time} \\
|\sigma(t, x) - \sigma(s, x)| & \leq K_0|t - s|^{\nu}, \quad \forall x \in \mathbb{R}^d, \forall t, s \in [0, T].
\end{align*}
\]

(H2) \(b : [0, T] \times \mathbb{R}^d \to \mathbb{R}^d \) is bounded and Lipschitz continuous in \(x \), that is, there exists a constant \(K_0 \) such that

\[
|b(t, x) - b(t, y)| \leq K_0|x - y|, \quad \forall x, y \in \mathbb{R}^d, \forall t \in [0, T].
\]
REMARK 2.1. Note that the smoothness assumptions considered here are rather weak in comparison with the existing literature on Young type equations. This is due to the fact that only existence results are considered.

Under these assumptions, we are able to prove that our problem admits a solution. Our main result reads as follows:

THEOREM 2.2. Assume that σ and b satisfy hypothesis (H1) and (H2), respectively, with $\nu \geq H$. Set $\lambda_0 \in \left(\frac{1}{2}, H\right)$. Then, Eq. (1.1) admits a solution X such that, almost surely, $X(\omega) \in C^{\lambda_0}(0, T; \mathbb{R}^d)$.

REMARK 2.3. Since we interpret the noisy integral as a Young integral, we define the existence of our solution pathwise. More precisely, we check that for any ω, almost surely, there exists a solution that is obtained as a limit of deterministic equations. The study of the existence of moments deals with this solution.

It can also be seen that the solution has moments of any order.

THEOREM 2.4. Assume that σ and b satisfy hypothesis (H1) and (H2), respectively, with $\nu \geq H$. Set $\lambda_0 \in \left(\frac{1}{2}, H\right)$. If X is the solution of (1.1) considered in Theorem 2.2, then

$$E(\|X\|_{\lambda_0, [0, T]}^p) < \infty, \quad \forall p \geq 1.$$

3. Preliminaries

As mentioned in the introduction, we are concerned with stochastic integral with respect to a fractional Brownian motion with Hurst parameter $H > 1/2$. In order to define the stochastic integral, we will use the Young integration. We will follow the algebraic approach introduced in [11] (see also [6,7,12]). For the sake of completeness, we will recall some basic facts and notations from those papers. We refer the reader to the same references for a detailed presentation.

In addition, we will recall some known results on the Skorohod mapping and prove an inequality that we will need throughout the paper.

3.1. Increments

Let us begin with the basic algebraic structures which will allow us to define a pathwise integral with respect to irregular functions: First of all, for a real number $T > 0$, a vector space V and an integer $k \geq 1$ we denote by $C_k(V)$ (or by $C_k([0, T]; V)$) the set of continuous functions $g : [0, T]^k \to V$ such that $g_{t_{1} \ldots t_{k}} = 0$ whenever $t_i = t_{i+1}$ for some $i \leq k - 1$. Such a function will be called a $(k-1)$-increment, and we will set $C_s(V) = \cup_{k \geq 1} C_k(V)$. An elementary operator on $C_k(V)$ is δ, defined as follows:

$$\delta : C_k(V) \to C_{k+1}(V), \quad (\delta g)_{t_1 \ldots t_{k+1}} = \sum_{i=1}^{k+1} (-1)^{k-i} g_{t_1 \ldots \hat{t}_i \ldots t_{k}+1},$$ (3.1)
where δ means that this argument is omitted. A fundamental property of δ is that $\delta \delta = 0$. Set $\mathcal{ZC}_k(V) = \mathcal{C}_k(V) \cap \text{Ker} \delta$ and $\mathcal{BC}_k(V) = \mathcal{C}_k(V) \cap \text{Im} \delta$.

Note that given $g \in \mathcal{C}_1(V)$ and $h \in \mathcal{C}_2(V)$, for any $s, u, t \in [0, T]$, we have

$$(\delta g)_{st} = g_t - g_s, \quad \text{and} \quad (\delta h)_{stu} = h_{st} - h_{su} - h_{ut}. \quad (3.2)$$

Furthermore, it can be checked that $\mathcal{ZC}_k(V) = \mathcal{BC}_k(V)$ for any $k \geq 1$. Moreover, the following property holds as follows:

Lemma 3.1. Let $k \geq 1$ and $h \in \mathcal{ZC}_{k+1}(V)$. Then, there exists a (non unique) $f \in \mathcal{C}_k(V)$ such that $h = \delta f$.

Observe that Lemma 3.1 yields that all the elements $h \in \mathcal{C}_2(V)$ such that $\delta h = 0$ can be written as $h = \delta f$ for some (non unique) $f \in \mathcal{C}_1(V)$.

Basically, we will use k-increments with $k \leq 2$. We measure the size of these increments by Hölder norms defined in the following way: for $0 \leq a_1 < a_2 \leq T$ and $f \in \mathcal{C}_2([a_1, a_2]; V)$, let

$$\|f\|_{\mu, [a_1, a_2]} = \sup_{r, t \in [a_1, a_2]} \frac{|f_{rt}|}{|t - r|^{\mu}},$$

and

$$\mathcal{C}^\mu_2 ([a_1, a_2]; V) = \left\{ f \in \mathcal{C}_2(V); \|f\|_{\mu, [a_1, a_2]} < \infty \right\}.$$ Notice that the usual Hölder spaces $\mathcal{C}^\mu_1 ([a_1, a_2]; V)$ will be determined in the following way: For a continuous function $g \in \mathcal{C}_1([a_1, a_2]; V)$, we set

$$\|g\|_{\mu, [a_1, a_2]} = \|\delta g\|_{\mu, [a_1, a_2]}.$$ We will say that $g \in \mathcal{C}^\mu_1 ([a_1, a_2]; V)$ if $\|g\|_{\mu, [a_1, a_2]}$ is finite.

For $h \in \mathcal{C}_3([a_1, a_2]; V)$ set now

$$\|h\|_{\nu, \rho, [a_1, a_2]} = \sup_{s, u, t \in [a_1, a_2]} \frac{|h_{sut}|}{|u - s|^\nu |t - u|^{\rho}}, \quad (3.4)$$

$$\|h\|_{\mu, [a_1, a_2]} = \inf \left\{ \sum_i \|h_i\|_{\rho_i, \mu - \rho_i, [a_1, a_2]}; h = \sum_i h_i, 0 < \rho_i < \mu \right\},$$

where the last infimum is taken over all sequences $\{h_i \in \mathcal{C}_3(V)\}$ such that $h = \sum_i h_i$ and for all choices of the numbers $\rho_i \in (0, \mu)$. Then, $\|\cdot\|_{\mu}$ is a norm on $\mathcal{C}_3([a_1, a_2]; V)$, and we set

$$\mathcal{C}^\mu_3 ([a_1, a_2]; V) := \left\{ h \in \mathcal{C}_3([a_1, a_2]; V); \|h\|_{\mu} < \infty \right\}.$$ Consider $\mathcal{C}^{1+} ([a_1, a_2]; V) = \bigcup_{\mu \geq 1} \mathcal{C}^\mu_3 ([a_1, a_2]; V)$. Notice that the same kind of norms can be considered on the spaces $\mathcal{ZC}_3([a_1, a_2]; V)$, leading to the definition of the spaces $\mathcal{ZC}^\mu_3 ([a_1, a_2]; V)$ and $\mathcal{ZC}^{1+}_3 ([a_1, a_2]; V)$.
The basic point in this approach to pathwise integration of irregular processes is that, under smoothness conditions, the operator δ can be inverted. This inverse, called Λ, is defined in the following proposition, taken from [14] and whose proof can be found in [11].

PROPOSITION 3.2. Let $0 \leq a_1 < a_2 \leq T$. Then, there exists a unique linear map $\Lambda : \mathcal{ZC}_3^1([a_1, a_2]; V) \to \mathcal{C}_2^1([a_1, a_2]; V)$ such that

$$\delta \Lambda = \text{Id}\mathcal{ZC}_3^1([a_1, a_2]; V).$$

In other words, for any $h \in \mathcal{C}_3^1([a_1, a_2]; V)$, such that $\delta h = 0$ there exists a unique $g = \Lambda(h) \in \mathcal{C}_2^1([a_1, a_2]; V)$ such that $\delta g = h$. Furthermore, for any $\mu > 1$, the map Λ is continuous from $\mathcal{ZC}_3^\mu([a_1, a_2]; V)$ to $\mathcal{C}_2^\mu([a_1, a_2]; V)$ and we have

$$\|\Lambda h\|_{\mu, [a_1, a_2]} \leq \frac{1}{2\mu - 2}\|h\|_{\mu, [a_1, a_2]}, \quad h \in \mathcal{ZC}_3^\mu([a_1, a_2]; V).$$

(3.5)

3.2. Young integration

We will consider now the particular case where $V = \mathbb{R}^n$, for an arbitrary $n \geq 1$.

Using the tools introduced in the previous subsection, here we will present a generalized integral $\int_s^t f_u \, dg_u$ for $f \in C^\kappa_1([0, T]; \mathbb{R}^{n \times d})$ and $g \in C^\gamma_1([0, T]; \mathbb{R}^d)$. Following the notations introduced in [7,14], we will sometimes write $\mathcal{J}_{st}(f \, dg)$ instead of $\int_s^t f_u \, dg_u$.

Let us consider first two smooth functions f and g defined on $[0, T]$. One can write,

$$\mathcal{J}_{st}(f \, dg) \equiv \int_s^t f_u \, dg_u = f_s(\delta g)_{st} + \int_s^t (\delta f)_{su} \, dg_u = f_s(\delta g)_{st} + \mathcal{J}_{st}(\delta f \, dg).$$

(3.6)

Let us study the term $\mathcal{J}(\delta f \, dg)$. It is easily seen that, for $s, u, t \in [0, T],$

$$h_{sut} = [\delta(\mathcal{J}(\delta f \, dg))]_{sut} = (\delta f)_{su}(\delta g)_{ut}.$$

The increment h is an element of $C_3([\mathbb{R}^n])$ satisfying $\delta h = 0$. Let us estimate now the regularity of h: If $f \in C^\kappa_1([0, T]; \mathbb{R}^{n \times d})$ and $g \in C^\gamma_1([0, T]; \mathbb{R}^d)$, from (3.4), it is easily checked that $h \in C^{\kappa + \gamma}_3(\mathbb{R}^n)$. Hence $h \in \mathcal{ZC}_3^\gamma(\mathbb{R}^n)$, and if $\kappa + \gamma > 1$ (which is the case if f and g are regular), Proposition 3.2 implies that $\mathcal{J}(\delta f \, dg)$ can be written as

$$\mathcal{J}(\delta f \, dg) = \Lambda(h) = \Lambda(\delta f \, dg),$$

and thus, plugging this identity into (3.6), we get as follows:

$$\mathcal{J}_{st}(f \, dg) = f_s(\delta g)_{st} + \Lambda_{st}(\delta f \, dg).$$

(3.7)

Let us state an extension of Theorem 2.5 of [14] where it is extended the notion of integral whenever $f \in C^\kappa_1([0, T]; \mathbb{R}^{n \times d})$ and $g \in C^\gamma_1([0, T]; \mathbb{R}^d)$.
THEOREM 3.3. Let $f \in C^k_1([0, T]; \mathbb{R}^{n \times d})$ and $g \in C^\gamma_1([0, T]; \mathbb{R}^d)$ with $k+\gamma > 1$. Set
\[
\int_s^t f \, dg = f_s(\delta g)_{st} + \Lambda_{st}(\delta f \delta g).
\]
Then the following:
1. Whenever f and g are smooth functions, $\int_s^t f \, dg$ coincides with the usual Riemann integral.
2. $\int_s^t f \, dg$ coincides with the Young integral as defined in [19].
3. For any $\beta \in [0, 1)$ such that $1 < \gamma + k(1 - \beta) = \mu_\beta$, the generalized integral satisfies
\[
\left| \int_s^t f \, dg \right| \leq \| f \|_{\infty, [s,t]} \| g \|_{\gamma} |t - s|^\gamma + c_{\gamma,k,\beta} \| f \|_{\infty, [s,t]} \| f \|_{k, [s,t]} \| g \|_{\gamma} |t - s|^{\mu_\beta},
\]
where $c_{\gamma,k,\beta} = 2^\beta (2^{\mu_\beta} - 1)^{-1}$.

Proof. The proof of the original Theorem has been presented in [11] (see also [12, 14]). The first two statements of our Theorem are exactly the same that those in Theorem 2.5 in [14], so we refer the reader to this reference for their proof.

The last statement is a generalization of the one presented in Theorem 2.5 of [14], where it is only considered the case $\beta = 0$. The proof for $\beta > 0$ can be obtained easily putting together the following inequality
\[
\| f \|_{k(1-\beta), [s,t]} \leq 2^\beta \| f \|_{\infty, [s,t]} \| f \|_{k, [s,t]}^{1-\beta}
\]
and the inequality given in Theorem 2.5 of [14]
\[
\left| \int_s^t f \, dg \right| \leq \| f \|_{\infty, [s,t]} \| g \|_{\gamma} |t - s|^\gamma + c_{\gamma,k(1-\beta)} \| f \|_{k(1-\beta), [s,t]} \| g \|_{\gamma} |t - s|^{\gamma + k(1-\beta)},
\]
where $c_{\gamma,k(1-\beta)} = (2^{\gamma + k(1-\beta)} - 1)^{-1}$. \qed

3.3. Skorohod mapping

We recall here from [8] a well-known result for the Skorohod mapping.

LEMMA 3.4. For each path $z \in \mathcal{C}(\mathbb{R}_+, \mathbb{R}^d)$, there exists a unique solution (x, y) to the Skorokhod problem for z. Thus, there exists a pair of functions $(\phi, \varphi) : \mathcal{C}_+(\mathbb{R}_+, \mathbb{R}^d) \to \mathcal{C}_+(\mathbb{R}_+, \mathbb{R}^{2d})$ defined by $(\phi(z), \varphi(z)) = (x, y)$. The pair (ϕ, φ) satisfies the following: There exists a constant $K_I > 0$ such that for any $z_1, z_2 \in \mathcal{C}_+(\mathbb{R}_+, \mathbb{R}^d)$, we have for each $t \geq 0$,
\[
\| \phi(z_1) - \phi(z_2) \|_{\infty, [0,t]} \leq K_I \| z_1 - z_2 \|_{\infty, [0,t]},
\]
\[
\| \varphi(z_1) - \varphi(z_2) \|_{\infty, [0,t]} \leq K_I \| z_1 - z_2 \|_{\infty, [0,t]}.
\]
In our paper, we will use that the \(\lambda \)-Hölder norm of the regulator term \(y \) is bounded by that of \(z \), as proven in the following easy lemma.

Lemma 3.5. Consider \(z \in C(\mathbb{R}_+, \mathbb{R}^d) \), such that \(\|z\|_{\lambda, [0,T]} < \infty \). Then, for any \(0 \leq s \leq t \leq T \)

\[
\|y\|_{\lambda, [s,t]} \leq C_d \|z\|_{\lambda, [s,t]}.
\]

Proof. Take \(u, v \) such that \(s \leq u < v \leq t \). Fixed a component \(i \), we wish to study

\[
\frac{|y_u^i - y_v^i|}{(v-u)^\lambda}.
\]

When \(y_u^i = y_v^i \), this is clearly zero. On the other hand, when \(y_u^i > y_v^i \), let us define

\[
u^* := \sup\{u' \geq u; y_u^i = y_{u'}^i\}, \quad v^* := \inf\{v' \leq v; y_v^i = y_{v'}^i\}.
\]

Then, \(u \leq u^* < v^* \leq v \) and \(y_u^i = y_{u^*}^i, y_v^i = y_{v^*}^i \). So

\[
\frac{|y_v^i - y_u^i|}{(v-u)^\lambda} \leq \frac{|y_{v^*}^i - y_{u^*}^i|}{(v^*-u^*)^\lambda} = \frac{|z_{v^*}^i - z_{u^*}^i|}{(v^*-u^*)^\lambda}
\]

where the last equality follows from the fact that \(y^i \) and \(z^i \) coincides whenever \(y^i \) is not constant.

Then, note that

\[
\sup_{s \leq u < v \leq t} \frac{|y_v^i - y_u^i|}{(v-u)^\lambda} \leq \sup_{s \leq u^* < v^* \leq t} \frac{|z_{v^*}^i - z_{u^*}^i|}{(v^*-u^*)^\lambda} \leq \|z\|_{\lambda, [s,t]}.
\]

Finally, we get that

\[
\|y\|_{\lambda, [s,t]} \leq \left(\sum_{i=1}^d \left(\sup_{s \leq u < v \leq t} \frac{|y_v^i - y_u^i|}{(v-u)^\lambda} \right)^2 \right)^{1/2} \leq d^{1/2} \|z\|_{\lambda, [s,t]}.
\]

Remark 3.6. It is possible to prove that a similar estimate does not hold for the difference of two regulator terms, result that we would need in order to prove a uniqueness theorem in the Hölder norm framework. Indeed, let \(0 < t_1 < t_2 < t, \lambda \in (0, 1) \), and take \(z^1, z^2 \in C^\lambda([0, t]) \) defined as

\[
z^1(s) = [(t_2 - s)/(t_2 - t_1) - 1]1_{(t_1, t_2]}(s) - 1_{(t_2, t)}(s)
\]

\[
z^2(s) = s/t_1 1_{[0, t_1]}(s) + (t_2 - s)/(t_2 - t_1) 1_{(t_1, t_2]}(s)
\]

(note that \(z^1(0) = z^2(0) \)). It is easy to see that \(y^1(s) = [1 - (t_2 - s)/(t_2 - t_1)]1_{(t_1, t_2]}(s) + 1_{(t_2, t]}(s) \), while \(y^2(s) \equiv 0 \). We get then

\[
\|y^2 - y^1\|_{\lambda, [0, t]} = \|y^1\|_{\lambda, [0, t]} = \frac{1}{(t_2 - t_1)^\lambda}
\]
\[
\|z^2 - z^1\|_{\lambda,[0,t]} = \frac{1}{(t_1)^{\lambda}}
\]

Taking \(t_1\) fixed and \(t_2 - t_1\) small, we prove that in general the \(\lambda\)-Hölder norm of the difference of two regulator terms cannot be bounded by the \(\lambda\)-Hölder norm of the difference of \(z^1\) and \(z^2\).

4. Deterministic integral equations

In this section, we will prove all the deterministic results.

Consider the deterministic differential equation on \(\mathbb{R}^d\)
\[
x(t) = x(0) + \int_0^t b(s, x(s))ds + \int_0^t \sigma(s, x(s))dg_s + y(t), \quad t \in (0, T],
\]
where for each \(i = 1, \ldots, d\)
\[
y^i(t) = \max_{s \in [0, t]} \left(z^i(s)\right)^-, \quad t \in [0, T],
\]
and
\[
z(t) = x(0) + \int_0^t b(s, x(s))ds + \int_0^t \sigma(s, x(s))dg_s, \quad t \in [0, T].
\]

We will assume that the driving noise \(g\) belongs to \(C^\gamma([0, T]; \mathbb{R}^m)\) with \(\gamma > \frac{1}{2}\). Then, the integral with respect to \(g\) has to be interpreted in the Young sense, and we will find a solution \(x\) in the space \(C^\lambda([0, T]; \mathbb{R}^d)\) with \(\lambda \in \left(\frac{1}{2}, \gamma\right)\).

The result of existence reads as follows.

Theorem 4.1. Assume that \(g \in C^\gamma([0, T]; \mathbb{R}^m)\) with \(\gamma > \frac{1}{2}\) and that \(\sigma\) and \(b\) satisfy hypothesis (H1) and (H2), respectively, with \(\nu \geq \gamma\). Set \(\lambda \in \left(\frac{1}{2}, \gamma\right)\). Then, Eq. (4.1) has a solution \(x \in C^\lambda([0, T]; \mathbb{R}^d)\).

Proof. To prove that Eq. (4.1) admits a solution on \([0, T]\), we shall prove first that it has a solution on \([0, T_1]\) for \(T_1\) small enough (\(T_1\) will be defined later). Then, we will extend the solution to \([0, T]\) using an induction argument to extend the result from \([0, nT_1]\) to \([0, (n + 1)T_1]\).

Step 1: Study on \([0, T_1]\).

Let us consider
\[
x^{(1)}(t) = z^{(1)}(t) = x(0); \quad y^{(1)}(t) = 0 \quad t \in [0, T],
\]
and for all \(n > 1\)
\[
x^{(n+1)}(t) = x(0) + \int_0^t b(s, x^{(n)}(s))ds + \int_0^t \sigma(s, x^{(n)}(s))dg_s + y^{(n)}(t), \quad t \in [0, T],
\]
where for each $i = 1, \ldots, d$

$$y^{(n)}_i(t) = \max_{s \in [0, t]} \left(z^{(n)}_i(s) \right)^-, \quad t \in [0, T],$$

with

$$z^{(n)}(t) = x(0) + \int_0^t b(s, x^{(n)}(s)) ds + \int_0^t \sigma(s, x^{(n)}(s)) dg_s, \quad t \in [0, T].$$

Step 1.1: Properties of the functions $x^{(n)}$

It follows that $x^{(n)} \in C^\lambda([0, T_1], \mathbb{R}^d)$ for all $n \geq 1$. Indeed, from Lemma 3.5, we have that

$$\|x^{(n+1)}\|_{\lambda, [0, T_1]} \leq \|z^{(n)}\|_{\lambda, [0, T_1]} + \|y^{(n)}\|_{\lambda, [0, T_1]} \leq C_d \|z^{(n)}\|_{\lambda, [0, T_1]}.$$

Using Theorem 3.3 and the hypothesis on the coefficients

$$\left| \int_s^t b(u, x^{(n)}(u)) du + \int_s^t \sigma(u, x^{(n)}(u)) dg_u \right| \leq \|b\|_\infty |t - s| + \|\sigma\|_\infty \|g\|_\gamma |t - s|^\gamma + c_{\gamma, \lambda} \|g\|_\gamma \|\sigma(., x^{(n)}(.))\|_{\lambda, [s, t]} |t - s|^{\gamma + \lambda}.$$

Using that

$$\|\sigma(., x^{(n)}(.))\|_{\lambda, [s, t]} \leq K_0 \left(\|x^{(n)}\|_{\lambda, [s, t]} + |t - s|^{\nu - \lambda} \right),$$

we can write that

$$\|x^{(n+1)}\|_{\lambda, [s, t]} \leq h(t - s) + M_1 \|x^{(n)}\|_{\lambda, [s, t]} |t - s|^{\gamma}, \quad (4.4)$$

where $h(t) = C_d (\|b\|_\infty t^{1-\lambda} + \|\sigma\|_\infty \|g\|_\gamma t^{\gamma - \lambda} + c_{\gamma, \lambda} K_0 \|g\|_\gamma t^{\gamma - \lambda + \nu}), M_1 = C_d c_{\gamma, \lambda} K_0 \|g\|_\gamma$. Repeating iteratively inequality (4.4) with $s = 0$, we get that

$$\|x^{(n+1)}\|_{\lambda, [0, t]} \leq h(t) \left(\sum_{i=0}^{n-1} (M_1 t^{\gamma})^i + (M_1 t^{\gamma})^n \|x^{(1)}\|_{\lambda, [0, t]} \right) = h(t) \sum_{i=0}^{n-1} (M_1 t^{\gamma})^i. \quad (4.5)$$

So, choosing T_1 such that $T_1 < (1/M_1)^{1/\gamma}$,

$$\sup_{n \geq 1} \|x^{(n)}\|_{\lambda, [0, T_1]} := K_1 < \infty. \quad (4.6)$$

Since $x^{(n)}(0) = x(0)$ for all n, it follows easily that

$$\sup_{n \geq 1} \|x^{(n)}\|_{\lambda, [0, T_1]} := K_2 < \infty. \quad (4.7)$$
Step 1.2: Definition of the solution
The sequence of functions $x^{(n)}$ is equicontinuous and bounded in $C([0, T_1]; \mathbb{R}^d)$. Therefore, there exists a subsequence $\{x^{(n_j)}\}_{j \geq 1}$ that converges uniformly to a function $x \in C([0, T_1]; \mathbb{R}^d)$.

Moreover, x belongs to $C^2([0, T_1], \mathbb{R}^d)$. Indeed, fixed $\epsilon > 0$ let us choose n_j such that $\|x - x^{n_j}\|_{\infty,[0,T_1]} \leq \epsilon$. Then, for all $s, t \in [0, T_1]$

$$|x(t) - x(s)| \leq |x(t) - x^{(n_j)}(t)| + |x^{(n_j)}(t) - x^{(n_j)}(s)| + |x^{(n_j)}(s) - x(s)| \leq 2\epsilon + K_1|t - s|^\lambda.$$

Since this inequality is true for all $\epsilon > 0$, we get that $x \in C^2([0, T_1]; \mathbb{R}^d)$ and, for any $t \in [0, T_1]$, the Young integral

$$\int_0^t \sigma(s, x(s))\,ds$$

is well defined.

Step 1.3: x satisfies (4.1) on $[0, T_1]$.

Since $\{x^{(n_j)}\}_{j \geq 1}$ converges uniformly to x and b is Lipschitz in space, we get that

$$\lim_{n_j \to \infty} \| \int_0^s b(s, x^{(n_j)}(s))\,ds - \int_0^s b(s, x(s))\,ds \|_{\infty,[0,T_1]} = 0. \quad (4.8)$$

On the other hand, using the hypothesis on the coefficients and Theorem 3.3, for any $t \in [0, T_1]$:

$$\left| \int_0^t \left(\sigma(s, x(s)) - \sigma(s, x^{(n_j)}(s)) \right) \,ds \right| \leq K_0\|x^{(n)} - x^{(n-1)}\|_{\infty,[0,T_1]}\|g\|_T^p \|x^{(n_j)}\|^{\lambda \beta}_{\infty,[0,T_1]}\|\sigma(., x(.)) - \sigma(., x^{(n_j)}(.))\|_{\lambda,[0,T_1]}^{1 - \beta}\|g\|_T^{\mu \beta}.$$

Since $\|\sigma(., x(.)) - \sigma(., x^{(n_j)}(.))\|_{\lambda,[0,T_1]} < \infty$,

$$\lim_{n_j \to \infty} \| \int_0^s \sigma(s, x(s))\,ds - \int_0^s \sigma(s, x^{(n_j)}(s))\,ds \|_{\infty,[0,T_1]} = 0. \quad (4.9)$$

Notice that in these computations, we need to use our Theorem 3.3 that allows us to bound the Young integral by the supremum norm of the integrand.

Finally, for each $i = 1, \ldots, d$, set

$$y^i(t) = \max_{s \in [0, t]} \left(z^i(s) \right)^-, \quad t \in [0, T_1],$$

where

$$z(t) = x_0 + \int_0^t b(s, x(s))\,ds + \int_0^t \sigma(s, x(s))\,ds, \quad t \in [0, T_1].$$
Using Lemma 3.4, we have

\[
\sup_{t \in [0, T_1]} |y(t) - y^{(n_j)}(t)| \leq K_l \sup_{t \in [0, T_1]} |z(t) - z^{(n_j)}(t)|.
\]

From (4.8) and (4.9), we obtain now that

\[
\lim_{n_j \to \infty} \|y - y^{(n_j)}\|_{\infty, [0, T_1]} = 0. \tag{4.10}
\]

Letting \(n_j\) to infinity in (4.3) and using (4.8), (4.9) and (4.10), we get that \(x\) satisfies (4.1).

STEP 2. We will assume that we have defined the solution on \([0, NT_1]\). We will show first the extension to \([NT_1, (N + 1)T_1]\) (assuming \((N + 1)T_1 \leq T\)).

Let \(x\) be a solution defined in \([0, NT_1]\). Then, let us define

\[
\begin{align*}
x^{(1)}(t) & := x(t)1_{[0,NT_1]}(t) + x(T_1)1_{(NT_1,T]}(t), \\
z^{(1)}(t) & := z(t)1_{[0,NT_1]}(t) + z(T_1)1_{(NT_1,T]}(t).
\end{align*}
\]

Moreover, for all \(n > 1\),

\[
x^{(n+1)}(t) = x(t), \quad t \in [0, NT_1],
\]

\[
x^{(n+1)}(t) = z(NT_1) + \int_{NT_1}^{t} b(s, x^{(n)}(s))ds + \int_{NT_1}^{t} \sigma(s, x^{(n)}(s))dg_s + y^{(n)}(t),
\]

\[t \in (NT_1, T],\]

where for each \(i = 1, \ldots, d\)

\[
y^{(n),i}(t) = \max_{s \in [0, t]} (z^{(n),i}(s))^{+}, \quad t \in [NT_1, T],
\]

with

\[
z^{(n)}(t) = z(t), \quad t \in [0, T_1],
\]

\[
z^{(n)}(t) = z(NT_1) + \int_{NT_1}^{t} b(s, x^{(n)}(s))ds + \int_{NT_1}^{t} \sigma(s, x^{(n)}(s))dg_s,
\]

\[t \in (NT_1, T].\]

Note that

\[
y^{(1)}(t) := y(t)1_{[0,NT_1]}(t) + y(T_1)1_{(NT_1,T]}(t).
\]

Repeating the same computations given in **Step 1.1**, we get that

\[
\|x^{(n+1)}\|_{\lambda, [NT_1,T]} \leq h(t - NT_1) \sum_{i=0}^{n-1} (M_1(t - NT_1)^{\gamma})^i, \tag{4.11}
\]

where \(h(t)\) and \(M_1\) are the same that appear in (4.5). Using the same ideas employed in **Step 1.1**, we obtain that
solution on \(t \) \textit{respectively}, with \(\nu \) \cite{young1945}. Young type equations can be obtained by standard methods (see, for instance, \cite{14}).

The norm of the solutions:

\[
\|x^{(n)}\|_{\lambda,[NT_1,(N+1)T_1]} := K_1 < \infty,
\]

and

\[
\|x^{(n)}\|_{\infty,[NT_1,(N+1)T_1]} := K_2 < \infty.
\]

Following now the method used in \textit{Step 1.2 and Step 1.3}, there exists a subsequence \(\{x^{(n)}\}_{j \geq 1} \) that converges uniformly to a function \(x^{[2]} \in C([NT_1, (N+1)T_1]; \mathbb{R}^d) \). Moreover, \(x^{[2]} \) belongs to \(C^\lambda([NT_1, (N+1)T_1], \mathbb{R}^d_+) \) and \(x^{[2]} \) satisfies (4.1) in \([NT_1, (N+1)T_1]\).

Set now:

\[
x(t) = x(t)1_{[0,NT_1]}(t) + x^{[2]}(t)1_{(NT_1,(N+1)T_1]}(t).
\]

Clearly, \(x \) belongs to \(C^\lambda([0, (N+1)T_1], \mathbb{R}^d) \) and \(x \) satisfies (4.1) in \([0, (N+1)T_1]\). \(\Box \)

\textbf{REMARK 4.2.} The study of the uniqueness of the solution is an open problem, due to the fact that we are not able to bound the Hölder norm of the difference of regulator terms with the same norm of the difference of the reflected terms. We can only get the uniqueness in a small time interval and when \(\sigma \) does not depend on time. Assuming that \(\sigma : \mathbb{R} \to \mathbb{R}^m \) is bounded and Lipschitz continuous, \(b \) satisfy hypothesis (H2), \(\nu \geq \gamma \) and \(\lambda_0 \in \left(\frac{1}{2}, \gamma \right) \), then there exists \(\varepsilon > 0 \) such that Eq. (4.1) has a unique solution on \([0, \varepsilon]\) and \(x \in C^\lambda([0, \varepsilon]; \mathbb{R}^d) \).

Indeed, fix \(x \) a solution of our equation in \([0, T]\). Since \(x^i(0) > 0 \) for any \(i \), there exists \(\varepsilon > 0 \) such that \(x^i(t) > 0 \) for any \(i \) and \(t \in [0, \varepsilon] \). Then, the uniqueness for Young type equations can be obtained by standard methods (see, for instance, \cite{14}).

We will finish the study of the deterministic case obtaining a bound for the Hölder norm of the solutions.

\textbf{THEOREM 4.3.} Assume that \(\sigma \) and \(b \) satisfy hypothesis (H1) and (H2), respectively, with \(\nu \geq \gamma \) and set \(\lambda \in \left(\frac{1}{2}, \gamma \right) \). Given \(x \) a solution of Eq. (4.1), it holds that

\[
\|x\|_{\lambda,[0,T]} \leq M_2 + M_3\|g\|_\gamma^\frac{1}{\gamma},
\]

where \(M_2 \) and \(M_3 \) are positive constants not depending on \(g \).

\textbf{Proof.} Using that \(b \) and \(\sigma \) are bounded, Lemma 3.5, Theorem 3.3 and that

\[
\|\sigma(.,x(\cdot))\|_{\lambda,[s,t]} \leq K_0|t-s|^{\nu-\lambda} + K_0\|x\|_{\lambda,[s,t]},
\]

we get that for any \(s \leq t \)

\[
\frac{dx}{ds} \leq \frac{\partial f}{\partial s} + \frac{\partial f}{\partial x}
\]

where

\[
\|x\|_{\lambda,[s,t]} \leq \|z\|_{\lambda,[s,t]} + \|y\|_{\lambda,[s,t]} \leq (C_d + 1)\|z\|_{\lambda,[s,t]}
\]

and

\[
\|x\|_{\lambda,[s,t]} \leq (C_d + 1) \left(\|b\|_\|t-s|^{\nu-\lambda} + \|\sigma\|_\|g\|_\gamma|t-s|^{\gamma-\lambda} + c_{\gamma,\lambda}\|\sigma(.,x(\cdot))\|_{\lambda,[s,t]}\|g\|_\gamma|t-s|^{\gamma} \right)
\]
\(\leq (C_d + 1) \left(\|b\|_{\infty} |t - s|^{1 - \lambda} + (\|\sigma\|_{\infty} + T^\nu K_0 c_{Y,\lambda}) \|g\|_{\infty} |t - s|^{\gamma - \lambda} + K_0 c_{Y,\lambda} |x\|_{\lambda,[s,t]} \|g\|_{\infty} |t - s|^\gamma \right) . \)

Set \(M_{d,\gamma,\lambda} \) := \((C_d + 1) K_0 c_{Y,\lambda} \). So, for any \(0 \leq s < t \leq T \) such that

\[
M_{d,\gamma,\lambda} \|g\|_{\infty} |t - s|^\gamma \leq \frac{1}{2},
\]

we get that

\[
\|x\|_{\lambda,[s,t]} \leq 2(C_d + 1) \left(\|b\|_{\infty} |t - s|^{1 - \lambda} + (\|\sigma\|_{\infty} + T^\nu K_0 c_{Y,\lambda}) \|g\|_{\infty} |t - s|^{\gamma - \lambda} \right) |t - s|^\gamma .
\]

Note that given any \(0 \leq s < t \leq T \) that do not satisfy (4.12), we can choose \(t_0 = s < t_1 < \ldots < t_n = t \) such that for all \(i \in 1, \ldots, n \)

\[
M_{d,\gamma,\lambda} \|g\|_{\infty} |t_i - t_{i-1}|^\gamma \leq \frac{1}{2}
\]

with

\[
n \leq 2|t - s| \left(2M_{d,\gamma,\lambda} \|g\|_{\infty} \right)^{\frac{1}{\gamma}} .
\]

Then, using (4.13), we have that

\[
\frac{|x(t) - x(s)|}{|t - s|^\lambda} \leq \sum_{i=1}^n \frac{|x(t_i) - x(t_{i-1})| |t_i - t_{i-1}|^\lambda}{|t - s|^\lambda}
\]

\[
\leq \sum_{i=1}^n \frac{2(C_d + 1) \left(\|b\|_{\infty} |t_i - t_{i-1}| + (\|\sigma\|_{\infty} + T^\nu K_0 c_{Y,\lambda}) \|g\|_{\infty} |t_i - t_{i-1}|^\gamma \right)}{|t - s|^\lambda}
\]

\[
\leq 2(C_d + 1) \|b\|_{\infty} T^{1 - \lambda} + \sum_{i=1}^n 2(C_d + 1) \left((\|\sigma\|_{\infty} + T^\nu K_0 c_{Y,\lambda}) \|g\|_{\infty} |t_i - t_{i-1}|^\gamma \right)
\]

\[
\leq 2(C_d + 1) \|b\|_{\infty} T^{1 - \lambda} + \left(2|t - s| \left(2M_{d,\gamma,\lambda} \|g\|_{\infty} \right)^{\frac{1}{\gamma}} \right) \frac{2(C_d + 1) \left((\|\sigma\|_{\infty} + T^\nu K_0 c_{Y,\lambda}) \|g\|_{\infty} \right)}{|t - s|^\lambda}
\]

\[
\leq 2(C_d + 1) \|b\|_{\infty} T^{1 - \lambda} + T^{1 - \lambda} 2^{1 + \frac{1}{\gamma} \frac{1}{M_{d,\gamma,\lambda}}} (C_d + 1) \left((\|\sigma\|_{\infty} + T^\nu K_0 c_{Y,\lambda}) \|g\|_{\infty} \right)^{\frac{1}{\gamma}} .
\]

From this last inequality, it follows easily that

\[
\|x\|_{\lambda,[0,T]} \leq M_2 + M_3 \|g\|_{\infty}^{\frac{1}{\gamma}} .
\]
5. Stochastic integral equations

In this section, we apply the deterministic results to prove the main theorems of this paper.

The following Lemma, taken from [17] (see Lemma 7.4), is basic in order to extend the deterministic results to the stochastic ones.

LEMMA 5.1. Let \(\{W^H_t; t \geq 0\} \) be a fractional Brownian motion of Hurst parameter \(H \in (0, 1) \). Then, for every \(0 < \varepsilon < H \) and \(T > 0 \), there exists a positive random variable \(\eta_{\varepsilon, T} \) such that \(E(|\eta_{\varepsilon, T}|^p) < \infty \) for all \(p \in [1, \infty) \) and for all \(s, t \in [0, T] \)

\[
|W^H_t - W^H_s| \leq \eta_{\varepsilon, T}|t - s|^{H-\varepsilon}, \quad \text{a.s.}
\]

The stochastic integral appearing throughout this paper \(\int_0^T u(s) dW^H_s \) is a Young integral. This integral exists if the process \(u(s) \) has Hölder continuous trajectories of order larger than \(\lambda \) such that \(H + \lambda > 1 \).

On the other hand, notice that from Lemma 5.1, for any \(\gamma < H \), it holds that

\[
E\left(\|W^H\|_\gamma^p\right) < \infty,
\]

for all \(p \in [1, \infty) \).

Choosing \(\gamma \) and \(\lambda \), such that \(\gamma = H - \varepsilon_1 \) with \(\varepsilon_1 > \frac{1}{2} \) and \(\lambda \in \left(\frac{1}{2}, \gamma\right) \), Theorems 4.1 and 4.3 follow almost surely. Our stochastic theorems of existence and boundedness of the moments hold then clearly.

Acknowledgments

We would like to thank A. Deya for his comments that have helped us to simplify the proof of Theorem 3.3. This work was partially supported by COFIN 2008-YYYBE4-002 of MIUR (Marco Ferrante) and DGES Grant MTM09-07203 (Carles Rovira).

REFERENCES

[1] M. Besalú, C. Rovira: Stochastic delay equations with non-negativity constraints driven by fractional Brownian motion. Bernoulli 18 (2012), no. 1, 24–45.
[2] M. Besalú, C. Rovira: Stochastic Volterra equations driven by fractional Brownian motion with Hurst parameter \(H > 1/2 \). Stoch. Dyn. 12 (2012), no. 4, 24 pp.
[3] T. Cass, Z. Qian and J. Tudor: Non-Linear Evolution Equations Driven by Rough Paths. Stochastic analysis and applications to finance, 118, Interdiscip. Math. Sci., 13, World Sci. Publ., Hackensack, NJ, 2012.
[4] L. Coutin and Z. Qian: Stochastic analysis, rough path analysis and fraction Brownian motions. Probab. Theory Related Fields 122 (2002), 108–140.
[5] A. Deya, M. Gubinelli and S. Tindel: Non-linear rough heat equations. Probab. Theory Related Fields 153 (2012), no. 1–2, 97–147.
[6] A. Deya, S. Tindel: Rough Volterra Equations 1: The algebraic integration setting. Stoch. Dyn. 9 (2009), no. 3, 437–477.
[7] A. Deya, S. Tindel: Rough Volterra Equations 2: convolutional generalized integrals. Stochastic Process. Appl. 121 (2011), no. 8, 1864–1899.
[8] P. Dupuis, H. Ishii: On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stochastics Stochastics Rep. 35 (1991), 31–62.

[9] M. Ferrante, C. Rovira: Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter $H > 1/2$. Bernoulli 12 (2006), 85–100.

[10] M. Ferrante, C. Rovira: Convergence of delay differential equations driven by fractional Brownian motion. Journal of Evolution Equations, 10 (2010), no. 4, 761–783.

[11] M. Gubinelli: Controlling rough paths. J. Funct. Anal. 216 (2004), 86–140.

[12] M. Gubinelli, S. Tindel: Rough evolution equation. Ann. Prob. 38 (2010), no. 1, 1–75.

[13] M.S. Kinnally, J. Williams: On Existence and Uniqueness of Stationary Distributions for Stochastic Delay Differential Equations with positivity Constraints. Electronic Journal of Probability 15 (2010), 409–451.

[14] J. León, S. Tindel: Malliavin calculus for fractional delay equations. J. Theoret. Probab. 25 (2012), no. 3, 854–889.

[15] T. Lyons, Z. Qian: System control and rough paths. Oxford University Press (2002).

[16] A. Neuenkirch, I. Nourdin, S. Tindel: Delay equations driven by rough paths. Electron. J. Probab. 13 (2008), 2031–2068.

[17] D. Nualart, A. Rascanu: Differential equations driven by fractional Brownian motion. Collect. Math. 53 (2002), 55–81.

[18] L. Quer–Sardanyons and S. Tindel: The 1-d wave equation driven by a fractional Brownian sheet. Stochastic Process. Appl. 117 (2009), 1448–1472.

[19] L.C. Young: An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67 (1936), 251–282.

[20] M. Zähle: Integration with respect to fractal functions and stochastic calculus. I. Prob. Theory Relat. Fields 111 (1998), 333–374.

M. Ferrante
Dipartimento di Matematica,
Università degli Studi di Padova,
Via Trieste 63, 35121 Padova, Italy
E-mail: ferrante@math.unipd.it

C. Rovira
Facultat de Matemàtiques,
Universitat de Barcelona,
Gran Via 585, 08007 Barcelona, Spain
E-mail: Carles.Rovira@ub.edu