LTD064402+245919: A Subgiant with a 1–3 M_\odot Undetected Companion Identified from LAMOST-TD Data

Fan Yang1,2,3, Bo Zhang1, Richard J. Long4,5, You-Jun Lu2,3, Su-Su Shan2,3, Xing Wei1, Jian-Ning Fu1, Xian-Fei Zhang1, Zhi-Chao Zhao1, Yu Bai2, Tuan Yi6, Ling-Lin Zheng6, Ze-Ming Zhou1, and Ji-Feng Liu2,3,7

1 Department of Astronomy, Beijing Normal University, Beijing 100875, People’s Republic of China; bozhang@bnu.edu.cn
2 National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100101, People’s Republic of China
3 School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
4 Department of Astronomy, Tsinghua University, Beijing 100084, People’s Republic of China
5 Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
6 Department of Astronomy, Xiamen University, Xiamen 361005, People’s Republic of China
7 WHU-NAOC Joint Center for Astronomy, Wuhan University, Wuhan, People’s Republic of China

Received 2021 March 2; revised 2021 October 15; accepted 2021 October 19; published 2021 December 24

Abstract

Single-line spectroscopic binaries have recently contributed to stellar-mass black hole discovery, independently of the X-ray transient method. We report the identification of a single-line binary system, LTD064402+245919, with an orbital period of 14.50 days. The observed component is a subgiant with a mass of $2.77 \pm 0.68 M_\odot$, radius $15.5 \pm 2.5 R_\odot$, effective temperature $T_{\text{eff}} = 4500 \pm 200$ K, and surface gravity $g = 2.5 \pm 0.25$ dex. The discovery makes use of the Large Sky Area Multi-Object Fiber Spectroscopic Telescope time-domain and Zwicky Transient Facility survey. Our general-purpose software pipeline applies a Lomb–Scargle periodogram to determine the orbital period and uses machine learning to classify the variable type from the folded light curves. We apply a combined model to estimate the orbital parameters from both the light and radial velocity curves, taking constraints on the primary star mass, mass function, and detection limit of secondary luminosity into consideration. We obtain a radial velocity semiamplitude of $20.1 \pm 0.49 M_\odot$ km s$^{-1}$, mass ratio of 0.73 ± 0.07, and an undetected component mass of $2.02 \pm 0.49 M_\odot$ when the type of the undetected component is not set. We conclude that the inclination is not well constrained, and that the secondary mass is larger than $1 M_\odot$ when the undetected component is modeled as a compact object. According to our investigations using a Monte Carlo Markov Chain simulation, increasing the spectra signal-to-noise ratio by a factor of 3 would enable the secondary light to be distinguished (if present). The algorithm and software in this work are able to serve as general-purpose tools for the identification of compact objects quiescent in X-rays.

Unified Astronomy Thesaurus concepts: Spectroscopic binary stars (1557); Ellipsoidal variable stars (455); Stellar mass black holes (1611); Semi-detached binary stars (1443); Neutron stars (1108)

1. Introduction

Optical spectroscopic binaries quiescent in X-ray have recently attracted growing attention due to the potential for stellar-mass black hole (BH) and neutron star (NS) discoveries. The traditional and commonly used identification of stellar-mass BHs and NSs is via transient X-ray emission, due to significant gas accretion (Kreidberg et al. 2012; Liu et al. 2013). The number of confirmed X-ray identified BHs is ~ 20, with more recent searches utilizing radial velocity (RV) modeling (Liu et al. 2019, 2020; Thompson et al. 2019). RV identified systems are in a quiescent phase with very faint (even undetectable) X-ray emissions. The likely targets are expected to have computable binary parameters and have a large undetected mass. Stellar evolution models predict the existence of $\sim 10^5$ BHs in the Milky Way (Brown & Beeth 1994; Timmes et al. 1996), though only about 100 of them (including candidates) have been found (Corral-Santana et al. 2016). X-ray quiescent BHs are expected to significantly enlarge the BH sample (Wiktorowicz et al. 2020; Masuda & Hotokezaka 2019; Clavel et al. 2020).

A binary system with an undetected massive object is potentially effective for searching for BHs and NSs. Gu et al. (2019) proposed a method for detecting compact objects with giant stars with the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST; Zhao et al. 2012). Attempts are ongoing to search for stellar-mass BHs and NSs through spectroscopic surveys (Wiktorowicz et al. 2020; Yi et al. 2019; Zheng et al. 2019).

In 2016, a time-domain spectroscopic survey was initiated with LAMOST for the specific purpose of finding compact objects (LAMOST-TD; Liu et al. 2020). This survey has now monitored more than 10,000 targets with a cadence of 1 week.

In this paper, we report a single-line binary LTD064402+245919, consisting of a subgiant star and an undetected object of $2.02 \pm 0.49 M_\odot$, using the data from LAMOST-TD survey (Liu et al. 2020; Wang et al. 2021, in preparation) and the Zwicky Transient Facility (ZTF) survey (Bellm et al. 2018). The paper is organized as follows. In Section 2, we briefly describe the surveys and our identification procedure. In Section 3, we present our analysis of the data and the binary properties obtained. We discuss and summarize our work in Sections 4 and 5.

2. Identification of LTD064402+245919 from LAMOST-TD

2.1. Data Used

LTD064402+245919 was discovered using LAMOST-TD and ZTF survey data. The LAMOST-TD data obtains 107 usable RV measurements, with approximately six observations.
per observing night, as shown in Figure 1. ZTF data provides 101 r-band photometric measurements and 94 g-band measurements, with one to two observations per night, as shown in Figure 2.

LAMOST-TD monitors stars in the Kepler K2 field, with three to nine exposures per observing night (Wang et al. 2021, in preparation). The time-domain spectra are mainly used for finding stellar-mass BHs through RV measurements (Liu et al. 2019, 2020). Possible candidates are examined with further analysis and follow-up observations.

Possessing 4000 fibers, LAMOST takes thousands of spectra simultaneously, in both medium resolution and low resolution modes (Zhao et al. 2012; Xiang et al. 2015). The medium resolution observations have $R \approx 7500$ and a limiting magnitude of about $G = 15$ mag (Zong et al. 2020). The low resolution observation mode has a limiting magnitude of 17.8 (r band) with $R \approx 1800$ (Zhao et al. 2012). The wavelength range of the low resolution spectra is from 370–900 nm (blue arm as LB; red arm as LR). The blue arm of the medium resolution spectra (MB) is from 495–535 nm, and the red arm (MR) from 630–680 nm. The exposure time is 600 s for low resolution spectra and 1200 s for medium resolution spectra.

ZTF is a time-domain photometric survey performed on the 48 inch Samuel Oschin telescope at Palomar Mountain (Bellm et al. 2018). ZTF was commissioned in 2018 and covers the whole sky with a cadence of 3 days to a depth of 20.5 mag.

2.2. LTD064402+245919 Identification

Variable stars among the LAMOST-TD input sources are classified by analyzing their photometric light curves (LCs), the LCs are from ZTF (Bellm et al. 2018), the All-Sky Automated Survey for Supernovae (Jayasinghe et al. 2018), and the Catalina Sky Survey (Drake et al. 2009). Full details of the identification of variable types are present in the LAMOST-TD overview (Wang et al. 2021, in preparation). Here, we just summarize them briefly.

The identification of variable stars is built into our software pipeline and involves two steps. The first is to determine their periods by applying the Lomb–Scargle method (VanderPlas & Ivezic 2015). The second is to analyze their LCs, removing any artifacts and classifying variable stars into, for example, eclipsing binary (EB), RR Lyrae, and δ Scuti (DSCT).

The significant period is identified as the period at the peak intensity in the Lomb–Scargle periodogram (Yang et al. 2020b). This period is obtained from the two-step grid peak searching method (VanderPlas & Ivezic 2015). The orbital period is twice the period peak in the periodogram (Yang et al. 2020b). The period is regarded as significant only when the power density is greater than the false alarm threshold (as shown in Figure 2, top panel). The false alarm threshold is defined as greater than the median value of the period power at 3 times the period power standard deviation. We regard the derived period of 1 day and its harmonic periods as artifacts due to the inevitable alternation between night and day for the ground-based telescope.

LCs are folded at their significant periods, and are then compared with template LCs. The variable star templates are taken from previously created catalogs (e.g., Kim et al. 2014; Samus’ et al. 2017). The template characteristics are included as identification parameters. These parameters are used for classification both through a machine-learning method (random forest) and visual inspection (Long et al. 2012; Kim & Baier-Jones 2016; Jayasinghe et al. 2020; Yang et al. 2020b). The parameters include, e.g., LC period, skewness, median, standard deviation of the magnitude distribution, the magnitude amplitude, the Fourier transform components a_2 and a_4, and 10% and 90% percentile of slopes of the folded LC. The Fourier transform of the LC is sensitive to the classification, especially the coefficients a_2 and a_4 (Paczynski et al. 2006; Ngew et al. 2021).

LTD064402+245919 is identified by the pipeline as a source of interest, and is categorized as a contact binary from ZTF LCs. An ellipsoidal LC is revealed with an orbital period of 14.5 days, using the archive photometric LC from ZTF (Bellm et al. 2018). The Lomb–Scargle periodogram predicts a half orbital period of 7.26 days, as shown in Figure 2, where we also present the folded ZTF LCs in r band (102 measurements) and g band (98 measurements).

Figure 1. The vacuum-wavelength spectra of LTD064402+245919. The panels from top to bottom indicate MR, MB, LR, and LB. The top panel presents all the MR spectra we used, while the rest of the panels only present the first five observed spectra for clarity. The Hα lines (6562.8 Å) in the top panel reveal obvious shifts among different observing times. The spectra median S/N from top to bottom panels are 12, 6, 28, and 13.

Figure 2. The Lomb–Scargle periodogram (upper) and folded LCs (lower). The red vertical line indicates the half orbital period in the periodogram. The LCs (r band in red, g band in green) are folded based on the orbital period obtained from the periodogram.
The raw observed data are reduced using the standard LAMOST pipeline (Zhao et al. 2012). The RVs are derived by cross-correlating with synthetic spectral templates (Zhang et al. 2021). The effective temperature (T_{eff}), the surface gravity ($\log g$), and metallicity ([Fe/H]) are determined from the LAMOST pipeline and SLAM (a machine-learning method, Zhang et al. 2020a, 2020b). The uncertainties of the parameters are taken from the statistical errors of the LAMOST samples with the parameter distributions being analyzed in different signal-to-noise ratio (S/N) bins. Also, we calculate the standard deviations of LTD064402+245919 parameters among different observations. Taking $\log g$ as an example, the uncertainties obtained from the medium resolution sources are 0.08 dex, and the uncertainties obtained from the low resolution sources are 0.25 dex, while the standard deviation of LTD064402+245919 $\log g$ among different observations is 0.2 dex. We take the $\log g$ error as the largest uncertainty value from the three different statistics which is 0.25 dex.

All the spectra we use are from the survey data with clipping of abnormal spectra. We omit spectra and results when the RV difference obtained from the red camera and the blue camera is larger than 50 km s$^{-1}$. Also, if the modeling of the line profile fails, we reject the RV output. This clipping reduces the number of RV measurements to 107 from 120.

The LAMOST-TD RV curve is folded with the period obtained from the ZTF LC, as shown in Figure 4. The RV curve shows a cycle frequency a factor of 2 smaller than the LC frequency. This helps rule out possible false LC classifications, e.g., contaminated by stellar spots or symmetrically shaped pulsating stars.

3. Properties of LTD064402+245919

LTD064402+245919 has an R.A. and decl. of 101.0089$^\circ$ and 24.9887$^\circ$. Gaia reports a G-band magnitude of 14.50, with a parallax of 0.15 ± 0.02 mas (Gaia Collaboration et al. 2018). The LAMOST pipeline and SLAM consistently report that the detected companion has T_{eff}, $\log g$, and [Fe/H] of 4500 ± 200 K, 2.50 ± 0.25 dex, and $-0.54 ± 0.18$ dex, respectively. The stellar parameters derived from the spectra strongly imply a subgiant star. Hereafter we term the observed object as the primary (observed) component and the other as the secondary (undetected) component.

The mass of the subgiant (M_1) is $2.77 ± 0.68 M_{\odot}$, obtained from the observed luminosity, parallax, T_{eff}, $\log g$. The mass is constrained by $L \propto R^2 T_{\text{eff}}^4$ and $M \propto g R^2$, where L is luminosity of the star, M its mass, and R its radius. The extinction is obtained from the grid relation between direction, distance, and extinction (Green et al. 2015; Shan et al. 2018). Gaia Collaboration et al. (2018) report a G-band extinction of 0.34 and we use this value in our calculations. We take a fraction of 20% as the extinction uncertainty for error propagation purposes. The G-band absolute magnitude of the Sun is 4.78, while the bolometric magnitude of the Sun is 4.74 (Gaia Collaboration et al. 2018). LAMOST classifies the spectral type of the detected subgiant as G5. The bolometric correction coefficient is applied as -0.02 according to the empirical relation for Gaia data (Eker et al. 2020). We use the Vega system for optical magnitude calculations in this work. The mass error is obtained from error propagation. From the relationships and observations above, distance, luminosity, and radius are $6.7^{+1.0}_{-0.8}$ kpc, $88 ± 25 L_{\odot}$, and $15.5 ± 2.5 R_{\odot}$, respectively.

We compare M_1 and L with the result derived from stellar evolution models (Bressan et al. 2012) and obtain a consistent result. The age is $10^{+7.2}_{-7.5}$ yr given the stellar parameters obtained. We note that the mass helps us to exclude the possibility of regarding the detected component as a red clump giant, which is usually smaller than 2 M_{\odot} and rarely larger than 2.5 M_{\odot} (Girardi 2016; Wu et al. 2019).

The available observations reveal a brighter energy distribution in the redder band which is typical of a subgiant. We find no objects recorded in LTD064402+245919’s neighborhood in the SIMBAD database and in X-ray source catalogs, e.g., the Chandra source catalog (Evans et al. 2010), XMM-Newton Source Catalog (Watson et al. 2009), the ROSAT All-Sky Survey Point Source Catalog (Voges et al. 2000). LTD064402+245919 is not cataloged in the LAMOST UV emission catalogs (built from the Galaxy Evolution Explorer (GALEX) survey; Bianchi et al. 2017; Bai et al. 2018). Infrared observations reveal a brighter magnitude in redder bands, e.g., 12.739 at the Two Micron All Sky Survey (2MASS) J band, 12.009 at the 2MASS K band, 11.883 at the Wide-field Infrared Survey Explorer $W1$ band, and 8.86 at the $W4$ band (Skrutskie et al. 2006; Wright et al. 2010).

No significant second light is found in the LAMOST-TD spectra (in Figure 1). The second light (if present) would be identified from possible line features caused by different stellar types, distinguishable double lines caused by the Doppler shift, or significant asymmetric line profiles caused by double lines (details in Section 4.1). We therefore infer the system is a single-line spectroscopic binary under the distinguishability limitations of LAMOST spectra. We apply a detection limit with the luminosity ratio (undetected component to observed component) as one-third. There would be a very strong tendency to predict a compact object if we reduced the one-third detection limit (as described in Section 4.1).

3.1. A Combined Model Using MCMC

Binary system parameters can be obtained by fitting the LC and the RV curve using parameterized models (Prša & Zwitter 2005; Conroy et al. 2020; Orosz & Hauschildt 2000). In this work, we use the PHOEBE routine (Conroy et al. 2020), developed from the classic Wilson–Devinney model (WD; Wilson & Devinney 1971). By considering both the LC and RV curves, the binary system companions are spatially close with well circularized orbits. We, therefore, use a zero eccentricity value in our modeling.

The parameter probability distributions are obtained using the Monte Carlo Markov Chain (MCMC) method when fitting the model (Mackay 2003; Foreman-Mackey et al. 2013). Parameter interactions make probability distributions not straightforward to quantify. The complexity of parameter dependencies leads to the need for a multidimension sampling method, e.g., MCMC (emcee) and Multinest (PyMultiNest) routines (Foreman-Mackey et al. 2013; Buchner et al. 2014). We obtain our results in this work mainly using the emcee routine and find similar results when applying the PyMultiNest routine.

We fit a combined model to both the RV and the LCs (r band). Additional constraints for the primary star mass and the mass function are also implemented. A unified likelihood function is generated, taking χ^2 as the log-likelihood. The likelihood weights between different constraints are all set equal. The combined model

8. http://www.lamost.org/dr8/v1.0/doc/release-note

9. Isochrones tools: http://stev.oapd.inaf.it/cgi-bin/cmd.
avoids the issue of possibly underutilizing information or over-emphasizing some of the parameters, compared to using separate, independent models.

Our combined model also includes a detection limit on the undetected component’s brightness. We utilize a likelihood cutoff when the brightness ratio of the undetected component to the detected star is greater than one-third.

The free parameters of our combined model are inclination (i), central transit time (T0), semimajor axis (a), mass ratio (q), constant offset in RV (γ), and the RV semiamplitude (K). The priors for these free parameters are all uniform, distributed across the whole possible parameter space. Other parameters are constrained by the PHOEBE model, the RV model, the mass function, the luminosity ratio, and the spectra parallax prediction.

The undetected component is treated as an object of unknown type, e.g., a compact object, a main-sequence star, or a subgiant star. Luminous and dark companions require different setups for PHOEBE modeling. We perform separate combined-model fitting runs for both the luminous and dark companion cases. In both cases, the best-fit results from MCMC fitting give the same posterior. However, there may be other possible parameter distributions that are less well favored by the data but would be acceptable, e.g., fixing the inclination to different values. In this scenario, luminous and dark companions give different results, mainly due to the non-detection of transits in the LC (more details are available in Section 3.3).

Any secondary light is less than one-third of the total flux, and any influence on the LC shape, e.g., the gravity darkening, limb darkening, or albedo is a significantly smaller-quantity by comparison with the total secondary light. Such modifications from the undetected component do not significantly influence the LC shape.

Limb darkening is interpolated from PHOEBE’s built-in tables. The limb darkening model is commonly following one of the linear, square-root, quadratic, or nonlinear limb darkening laws (Claret & Bloemen 2011; Yang et al. 2020a, 2021). We choose a square-root limb darkening law with parameters supplied by PHOEBE (Conroy et al. 2020). The gravity darkening exponent and bolometric albedo use convective values of 0.32 and 0.5, respectively, for the observed component. The values are not fixed for the undetected component. Both radiative and convective values are allowed in the fitting.

3.2. Modeling Results: Best Fit with Free Inclination

We run our MCMC modeling process for 80,000 steps, ignoring the first 30,000 steps as burn-in. The results for the monitored free parameters are shown in Figure 3, which gives the probability distributions and pairwise dependencies of the parameters.

The model LC, RV curve, and their residuals are shown in Figure 4. The χ² value from the fitting process is 79 when we apply a free inclination during fitting. The residuals of single exposure radial velocities give a standard deviation (SingleStd) of 12 km s⁻¹. LTID064402+245919 has an orbital period of 14.50 days so it is reasonable to co-add the RVs on the same night (17 nights in total). The co-added uncertainty is taken as the SingleStd divided by the square root of the number of RVs for the night. The combination of the LC shape.

Figure 3. Parameter posterior distributions. The major panel gives results from the combined model. The median values and 1σ significance levels are shown in the labels. The upper-right panel shows the γ and K posteriors from modeling the RV curve by itself. The γ and K distributions are consistent with the results of combined-model fit.

Figure 4. The LC (top panel), the LC residuals (second top), the RV curve (third top), and the RV curve residuals (bottom). Black points indicate the observed data. The red lines are the fitted models to the observations (black points). The green circles and error bars indicate binned RV values on the same night. The green circle values are not used in the fitting process. The χ² value obtained is 79.

Given the uncertainty of the detected component mass and q, the mass of the secondary component is estimated as 2.02 ± 0.49 M☉. The combined fitting does not distinguish the type of the secondary component. The modeling rules out the possibility of a subgiant as the secondary component. The
secondary component would be distinguished with a q of $0.73^{+0.07}_{-0.06}$ in LAMOST-TD spectra if the secondary component is a subgiant (as discussed in Section 4.1).

The detected component stellar surface potential is modeled as 2.38 ± 0.21 dex when filling its Roche lobe. Given that the spectra obtained g is 2.50 ± 0.25 dex, we infer that the detected component has filled its Roche lobe. We note that the filling factor is not set as a fixed parameter. The combined model regards the binary as a detached system and calculates the filling factor.

We compare the posteriors of K and γ from our combined model and the model applied to the RV curve only. The posteriors would be significantly different if the observations have any evident inconsistency. The test yields a negligible difference in K and γ between the combined model and the RV curve only model, as shown in Figure 3.

3.3. Modeling with Fixed Inclinations

Although our best-fit model predicts the parameter distributions, other possible parameter values should be evaluated since the fitted result is highly sensitive to PHOEBE systematics and abnormal data in the LC. Also, observations, at certain phases, might significantly influence the derived parameter distributions. Particularly important to this work, they might indicate a non-"compact object" as the secondary component and a large inclination if transit effects are present. The transit effects occur when the secondary component radius is comparable to the primary component’s. A compact object as the secondary component would not cause any transit effects, due to its small radius. In our case, our data analysis does not indicate the presence of transit effects.

There is no significant difference between the two minimum brightness phases in both the r and g bands, indicating that no obvious transit happens (as shown in Figure 2). We fix the inclination to be, e.g., $\sim 75^\circ$ and refit the data with the combined model. We note that the model LC is different when the inclination is 75°, depending on whether the undetected companion is a main-sequence star or a compact object. A main-sequence star companion implies a transit should be detected by the LC. The transit is visible at phase 1, inferred from fitting the r-band LC (as shown in Figure 5, first panel). However, the g-band LC yields a deeper decrease at phase 0.5 than phase 1, according to Figure 2. This inconsistency means there is no clear evidence of any transit occurring in the observed LC. In addition, the χ^2 value is 85 when fixing the inclination to 75°. This indicates that such an inclination is not well supported by the observations available.

The inclination is a key parameter in the combined model, constrained by both LC and RV observations. The inclination helps determine many other system parameters, most importantly, mass ratio q. The best fit result gives an inclination of $47.45^{+2.99}_{-2.72}$ deg with a χ^2 value of 79. Other parameter sets obtained by fixing some parameters are acceptable given the data though they might not be as favored. This is common in transit fitting and leads to the best-fit parameter sets (as discussed in Yang et al. 2020a, 2021). The transit parameters from fixing the inclination can be many sigma away from the best-fit result. This scenario relates to the model-dependent Bayesian statistics (Yang et al. 2020a, 2021). In this work, fixing the inclination to, e.g., 75°, supports a model hypothesis that the secondary component is a compact object (due to transit non-detection).

By fixing the inclination to certain values, we explore other possible parameter sets. We model with an inclination of 75° and a compact object as the secondary companion. The χ^2 value is 85, indicating an acceptable but not a best fit, the same outcome as using a main-sequence companion (as shown in Figure 6). The Roche lobe filling factor is 0.88 at this inclination. By comparison, the filling factor is 0.99 when the inclination is $47^\circ45$ from the best fit. We also fix the inclination to 60° with the both main-sequence and compact objects as the secondary companion. The modeling obtains a χ^2 value of 85 and a filling factor of 0.94. The model does not detect any transit with such inclination.

![Figure 5](image5.png)

Figure 5. The same plot as Figure 4, but with a fixed inclination of 75° and a main-sequence secondary component. The χ^2 value is 85.

![Figure 6](image6.png)

Figure 6. The same plot as Figure 4, but with a fixed inclination of 75° and a zero emission secondary component. The χ^2 value is 85. The model difference appears at transit duration (in the top panel) when compared to the case in Figure 5.
Fixing inclination to 30° is not well supported by the observations, particularly the LC. A smaller inclination and Roche lobe filling factor lead to a smaller LC ellipsoidal amplitude. However, the amplitude enhancement is not significant when the filling factor is close to 1. LTD064402+245919’s primary component nearly fills the Roche lobe, according to the results above. An inclination of 30° requires a larger ellipsoidal amplitude when modeling the LC, which is not possible.

Fixing the inclination to different values has a strong effect on other parameters. The q would be 0.50±0.03 when the inclination is fixed to 75°. This would result in a secondary mass of 1.44 ± 0.35 M_\odot. Similarly, the secondary mass would be 1.37 ± 0.34 M_\odot when the inclination is 90°. This mass is ∼1σ away from the mass obtained from the best fit. We note that these values are based on a compact object as the secondary component, due to no transit being detected.

We conclude that the fixed inclination results are of interest even though the χ^2 values are larger than best fit, when the sensitivity of the results to the systematics in the LC is taken into account. However, with the transit non-detection constraint, the inclination can not be as large as 75° if the secondary component is not set as a compact object. We regard the parameter distribution from the best-fit model as reasonable (giving the companion mass as 2.02 ± 0.49 M_\odot) when the secondary component type is not set in advance.

In the case of a compact object as the secondary component, working with larger inclinations could be reasonable but the parameter probability space would be significantly enlarged. Solving such an issue is beyond the scope of this work. We narrow the type of the undetected component to be either a main-sequence star or a compact object.

4. Discussion

We estimate the mass of the undetected component from the combined model using the data available. However, the result does not shed light on the object type of this unseen component. A 2.02 ± 0.49 M_\odot component could be an A-type to F-type star, a stripped star evolving from a more massive star, a star enlarging due to mass acquired from the subgiant, or a compact object. Among the possibilities, a stripped star and an enlarging star are overly model dependent and are difficult to confirm as in other stellar-mass BH identification works (Shao & Li 2020). Analyzing the possibility of these rare situations is beyond the scope of this work. We narrow the type of the undetected component to be either a main-sequence star (A3V type), or a compact object.

We present the brightness in different bands in Section 3. For LTD064402+245919, the UV band brightness should be observable by GALEX if the secondary component is a main-sequence star that is hotter than the primary companion (subgiant). We calculate the theoretical GALEX AB magnitude under the assumption of an A3V-type star as the secondary component. The model flux is taken from the ATLAS library (Kurucz 1993). Far-ultraviolet (1350–1750 Å) and near-ultraviolet (1750–2750 Å) GALEX magnitudes should be 19.8 and 18.8, respectively. Following the instructions of Bianchi et al. (2017), LTD064402+245919 does not match any GALEX observations within 1σ in MAST.110 There are GALEX observations when setting the cross-match radius to 30°. Regarding the Galactic coordinates of 89°6766 and 9°5887, LTD064402+245919 falls into the GALEX observational gaps on the Galactic plane (Martin et al. 2005; Bianchi et al. 2017).

4.1. Distinguishing Binary Light

A straightforward method for secondary light identification is to shift the spectra to different phases, analyzing the presence of uniformity caused by any binarity (λ-space method; Ilijic 2004; Beck et al. 2014; El-Badry et al. 2018). A Fourier transformation based, spectra disentangling method (FDBinary; Ilijic 2004) has been put forward11 to identify any binarity. The method is applied to multiepoch, high S/N spectra, e.g., S/N ∼ 30 with R ∼ 20,000. Ilijic (2004) also discussed the λ-space method and concluded the two methods are complementary. Using the FDBinary code, Beck et al. (2014) reported disentangling binarity with a detection limit of 3% of the light ratio. They used 60 observations from the Hermes spectrograph mounted on the 1.2 m Mercator Telescope. The resolving power was $R = 86,000$, with S/N ∼ 20–30.

In this work, we apply the λ-space method to try and distinguish the secondary light. Line profiles will be different among the phases if there is a secondary light. Line profiles at phases 0.25 and 0.75 present the largest asymmetry if secondary light present, while line profiles at phases 0 and 0.5 reveal the smallest uniformity.

Only MR spectra are suitable for the secondary light identification. Low resolution spectra do not sample frequently. The blue camera spectra contain no strong lines and have low S/N. We have 37 red camera spectra with a median S/N of 12. The equivalent S/N after shift-adding the spectra is ∼45. With the spectra available, we do not find any significant binarity signal. This non-detection could be due to the detection limit or to the absence of secondary light. The detection limit is investigated via Monte Carlo simulation.

In the simulation, we first generate template spectra for the system. The basic template is for a subgiant (as shown in Figure 7). The stellar parameters we use are from the modeling results of the observed component. The undetected component is taken as an A3V-type star. A3V star is the maximum likelihood assessment (for 2.02 M_\odot) if the undetected object is a main-sequence star. The input stellar parameters to our simulation are $T_{\text{eff}} = 8750$ K, log g = 4.27 dex, [Fe/H] = −0.54 dex, $v \sin i = 2.34$ km s$^{-1}$, mass = 2.02 M_\odot, and radius = 1.7 R_\odot.

The stellar spectra template is from Allende Prieto et al. (2018), sampled at the LAMOST median resolution (R = 7500) with an S/N of 140. The S/N is achieved when co-adding 10 times more spectra in this work. With this S/N, the binarity, if present, would be distinguishable at 3σ level. The luminosity ratio of the sources is 1:9.45. The line features of the A3V-type star are severely obscured when combined with the subgiant spectra. The Hα line of the A3V-type star is much stronger than other lines, among LAMOST spectra. For the subgiant, the Hα line is not significantly stronger than other lines. The spectral difference due to binarity (if present) should thus be dominated by Hα. Co-adding weak lines does not significantly improve the distinguishing evidence but acts to smooth the Hα feature.

Using the strongly featured Hα line for the binarity detection, the two components have a line center difference of 107 km s$^{-1}$

10 https://mast.stsci.edu/portal/Mashup/ Clients/Mast/Portal.html

11 FDBinary code is available at: http://sail.zpf.fer.hr/cres/.
The detection limit reported by El-Badry et al. (2018) enabled a main-sequence secondary component with a period of ~10 days and a mass ratio of ~0.05 to be detected. According to classic mass–luminosity relations, a secondary component with a luminosity ratio of 3×10^{-5} would be detectable by El-Badry et al. (2018). Regarding the high S/N Apache Point Observatory Galactic Evolution Experiment data ($S/N = 200, R = 22.500$) used by El-Badry et al. (2018), the detection ability of El-Badry et al. (2018) exceeds more than 200 times the similar (equivalent) data conditions of Beck et al. (2014). It means that Beck et al. (2014) could detect signals at a significance level of $3 \times 10^{-5} \times N_{\text{lines}} \times S/N$, where N_{lines} is the number of spectral lines used in the code to distinguish components. A detection significance level of 1σ needs 1500 spectra lines to be achieved. Further detection limit discussions are beyond the scope of this work.

5. Conclusion

We have identified a binary system LTD064402+245919, with a detected subgiant star as the primary component (2.77 ± 0.68 M_\odot), with a full Roche lobe. The secondary component is undetected in brightness but has an estimated mass of 2.02 ± 0.49 M_\odot assuming the companion is not a compact object. The mass of the secondary companion is larger than 1 M_\odot under a compact object assumption. The difference is attributed to transit non-detection in the LCs. X-ray surveys covering the sky area do not identify the system as an X-ray source. The observational data suggest a binary system with an unknown secondary companion. The secondary component could be an A-type star or a compact object quiescent in X-ray.

Identification of LTD064402+245919 makes use of LAMOST-TD and ZTF. We have built a machine-learning-based pipeline to identify the photometric variable stars in the LAMOST-TD sources. The pipeline identifies LTD064402+245919 as a contact binary with an orbital period of 14.50 days. One hundred and seven spectra from LAMOST-TD are used for the RV curve fitting and 102 photometric measurements in the r band are used for LC fitting.

The RV and LCs are fitted using a combined MCMC model that includes an RV curve model, an LC model, a primary stellar model, a binary mass function, and a detection limit on the secondary light. The key parameters from the modeling are orbital inclination, mass ratio, RV semi-amplitude with values $47.45_{-2.83}^{+3.99}$, $0.73_{-0.06}^{+0.07}$, and $44.63_{-1.93}^{+1.73}$ km s$^{-1}$, respectively, when the secondary component type is not set. We do not give global estimates of the parameter distributions when setting the secondary companion as a compact object. Fixing inclination to specific values can be regarded as adding model hypotheses. Combining models with different hypotheses into a global estimation is a common difficulty in Bayesian statistics (Yang et al. 2020a, 2021).

The detection limit for the secondary light is crucial for identifying the type of undetected source. We have examined the ability to distinguish secondary light by using Monte Carlo simulation. The simulation indicates a secondary component should be detectable if the luminosity ratio is higher than 1:3. The simulation also shows that a secondary component (if present) should be detectable if the number of spectra is increased tenfold (equivalent to the S/N increasing threefold).

Our work provides a possible candidate system for compact object searches. The identification algorithm and software could be used as general-purpose tools when looking for X-ray...
quiescent compact objects by analyzing single-line spectroscopic binaries. Utilizing photometric LCs, our method is especially effective when spectroscopic observations are not sufficient to monitor the complete binary system rotation process.

We highly appreciate the constructive suggestions from the referee which greatly improved the quality of the paper. The authors thank Wei-Ming Gu and Hao-Tong Zhang for their instructive feedback. Fan Yang would like to thank Chao Liu and Chang-Qing Luo for helpful discussions, and WeiKai Zong in Australia for informative feedback. Fan Yang would like to thank Chao Liu and colleagues for their referee which greatly improved the quality of the paper. The authors thank Wei-Ming Gu and Hao-Tong Zhang for their instructive feedback. Fan Yang would like to thank Chao Liu and Chang-Qing Luo for helpful discussions, and WeiKai Zong in Australia for informative feedback.

References

Allende Prieto, C., Koesterke, L., Hubeny, L., et al. 2018, A&A, 618, A25
Bai, Y., Liu, J., Wicker, J., et al. 2018, ApJS, 235, 16
Beck, P. G., Hambleton, K., Vos, J., et al. 2014, A&A, 564, A36
Bellm, E. C., Kulkarni, S. R., Graham, M. J., et al. 2018, PASP, 131, 018002
Bianchi, L., Shiao, B., & Thilker, D. 2017, ApJS, 230, 24
Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
Brown, G. E., & Bethe, H. A. 1994, ApJ, 423, 659
Buchner, J., Georgakakis, A., Nandra, K., et al. 2014, A&A, 564, A125
Claret, A., & Bloemen, S. 2011, A&A, 529, A75
Clavel, M., Dubus, G., Casares, J., & Babusiaux, C. 2020, arXiv:2011.01155
Courou, K. E., Kochoska, A., Hey, D., et al. 2020, ApJS, 250, 34
Corral-Santana, J. M., Casares, J., Muñoz-Darias, T., et al. 2016, A&A, 587, A61
Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2009, ApJ, 696, 870
Eker, Z., Soyudoğan, F., Bilir, S., et al. 2020, MNRAS, 496, 3887
El-Badry, K., Ting, Y.-S., Rix, H.-W., et al. 2018, MNRAS, 476, 528
Evans, I. N., Primini, F. A., Glotfelty, K. J., et al. 2010, ApJS, 189, 37
Foreman-Mackey, D., Hogg, D. W., Lang, D., & Goodman, J. 2013, PASP, 125, 306
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, A&A, 616, A1
Girardi, L. 2016, ARA&A, 54, 93
Green, M. G., Schlaufly, E. E., Finkbeiner, D. P., et al. 2015, ApJ, 810, 25
Gu, W.-M., Mu, H.-J., Fu, J.-B., et al. 2019, ApJL, 872, L20
Ilijic, S. 2004, in ASP Conf. Ser. 318, Spectroscopically and Spatially Resolving the Components of the Close Binary Stars, ed. R. W. Hilditch, H. Herbst, & K. Pavlovski (San Francisco, CA: ASP), 107
Jayasinghe, T., Kochanek, C. S., Stanek, K. Z., et al. 2018, MNRAS, 477, 3145
Jayasinghe, T., Stanek, K. Z., Kochanek, C. S., et al. 2020, MNRAS, 491, 13
Kim, D.-W., & Bailes, N. 2016, A&A, 587, A18
Kim, D.-W., Protopapas, P., Bailes, C. A. L., et al. 2014, A&A, 566, A43
Kreidberg, L., Bailyn, C. D., Farr, W. M., & Kalogera, V. 2012, ApJ, 757, 36
Kurucz, R. L. 1993, SYNTHE Spectrum Synthesis Programs and Line Data

- Cambridge, MA: Smithsonian Astrophysical Observatory
- Liu, J., Zhang, H., Howard, A. W., et al. 2019, Natur, 575, 618
- Liu, J., Zheng, Z., Soria, R., et al. 2020, ApJ, 900, 42
- Liu, J.-F., Bregman, J. N., Bai, Y., Justham, S., & Crowther, P. 2013, Natur, 503, 500
- Long, J. P., El Karoui, N., rice, J. A., Richards, J. W., & Bloom, J. S. 2012, PASP, 124, 280
- Mackay, D. J. C. 2003, Information Theory, Inference and Learning Algorithms (Cambridge: Cambridge Univ. Press)
- Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, ApJ, 619, L1
- Masuda, K., & Hotokezaka, K. 2019, ApJ, 883, 169
- Ngeow, C.-C., Liao, S.-H., Bellm, E. C., et al. 2021, AJ, 162, 63
- Orosz, J. A., & Hauschildt, P. H. 2000, A&A, 364, 265
- Paczynski, B., Szczygiel, D. M., Pilchek, B., & Pojmanski, G. 2006, MNRAS, 368, 1311
- Peña, A., & Twite, T. 2005, ApJ, 628, 426
- Samus', N., Kazarovets, E. V., Durlevich, O. V., Kireeva, N. N., & Pastukhova, E. N. 2017, ARep, 61, 80
- Shan, S. S., Zhu, H., Tian, W. W., et al. 2018, ApJS, 238, 35
- Shao, Y., & Li, X.-D. 2020, ApJ, 908, 67
- Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
- Thompson, T. A., Kochanek, C. S., Stanek, K. Z., et al. 2019, Sci, 366, 637
- Timmes, F. X., Woosley, S. E., & Weaver, T. A. 1996, ApJ, 457, 834
- VanderPlas, J. T., & Ivezic, Z. 2015, ApJ, 812, 18
- Voges, W., Aschenbach, B., Bolte, T., et al. 2000, yCat, IX/29
- Watson, M. G., Schröder, A. C., Fyfe, D., et al. 2009, A&A, 493, 339
- Wiktorowicz, G., Lu, Y., Wyzykowski, L., et al. 2020, ApJ, 905, 134
- Wilson, R. E., & Devinney, E. J. 1971, ApJ, 166, 605
- Wright, E. L., Eisenhardt, P. R. M., Mainzer, A. K., et al. 2010, AJ, 140, 1868
- Wu, Y., Xiang, M., Zhao, G., et al. 2019, MNRAS, 484, 5315
- Xiang, M. S., Liu, X. W., Yuan, H. B., et al. 2015, MNRAS, 448, 822
- Yang, F., Chary, R.-R., & Liu, J.-F. 2020a, arXiv:2012.08744
- Yang, F., Long, R. J., Liu, J.-F., et al. 2021, AJ, 161, 294
- Yang, F., Long, R. J., Shan, S.-S., et al. 2020b, ApJS, 249, 31
- Yang, F., Long, R. J., Shan, S.-S., et al. 2020c, MNRAS, 496, L59
- Yi, T., Sun, M., & Gu, W.-M. 2019, ApJ, 886, 97
- Zhang, B., Li, J., Yang, F., et al. 2021, ApJS, 256, 14
- Zhang, B., Liu, C., & Deng, L.-C. 2020a, ApJS, 246, 9
- Zhang, B., Liu, C., Li, C.-Q., et al. 2020b, RAA, 20, 051
- Zhao, G., Zhao, Y.-H., Chu, Y.-Q., Jing, Y.-P., & Deng, L.-C. 2012, RAA, 12, 72
- Zheng, L.-L., Gu, W.-M., Yi, T., et al. 2019, AJ, 158, 179
- Zong, W., Fu, J.-N., De Cat, P., et al. 2020, ApJ, 251, 15