The X-ray and radio-emitting plasma lobes of 4C23.56: further evidence of recurrent jet activity and high acceleration energies

Katherine M. Blundell and A.C. Fabian

目的
classical double (FR Ⅱ型電波銀河)に見られる特徴的な電波/Xの構造から、電波銀河の広がった構造のX線がどこから出てくるかを確認。

おなじみ4C 23.56(z=2.48)の詳細な電波/X観測。Chandra/VLAによる高分解能イメージ（右図）。

c.f. XMM Newton (Johnson+07)
電波/Xの逆相関

Classical double では
散逸の進んだ(Sync電子のローレンツファクタ γ ≈ 1000)領域
でX線が見られる(c.f. Blundell+2006)。4C 23.56でもそのような見え方(下図)。
⇒単純なone-zone Sync/CMB描像ではない？
磁場推定in北東の構造：

X線/radioはコンシスチンテか？
シンクロトロン/ICCMBフラックスから(Govoni&Feretti2004)

\[(B[\mu G])^{1+\alpha} = h(\alpha) \frac{S_{\text{syn}(\nu_r)[Jy]}}{S_{\text{IC}(E_1-E_2)[ergs^{-1}cm^{-2}]}} (1+z)^{3+\alpha} (0.0545 \nu_r[MHz])^\alpha \times (E_2[keV]^{-1-\alpha} - E_1[keV]^{1-\alpha}),\]

\[S(5\text{GHz}) = 5 \text{ mJy}\]
\[S(0.5-7\text{keV}) = 2.17 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}\]
⇒ B = 16.2 uG & \gamma \geq 10^4

等分配仮定(Miley1980)から
\[\gamma_{\text{min}} = 7500 \text{ for } B_{\text{min}} = 16 \text{ uG}\]
⇒ relic radiation からの予想\(\gamma\sim1000\)とずれる。

Sync電子 = IC電子とした見積もりは不適当
実際イメージではX/radioの輝度分布が異なる
X線の構造ごとの光度、スペクトル

・Photon index $\Gamma = 2 - 2.8$
・synchrotron index $\alpha = 1.1 \Rightarrow \Gamma = 2.1$

Sync電子はIC電子よりフラット
⇒IC電子の加速はSync電子より前

確かに、X線はホットスポットより根元側にある（より古い）。

観測的な結論

電波は加速領域（ホットスポット）で明るく、
X線は、電波の弱い＝エネルギー散逸の進んだ領域で明るい。異なる領域で生成されている。

残る謎
なぜ、Syncで明るい部分がXで暗いのか？
議論（課題）

・ホットスポットの外側の電波構造（この天体特有）
 ホットスポットが周囲に広がるプラズマ（過去の活動の名残？）に追突し、磁場が増强され光っているか。

・活動の繰り返し？（証拠不足）
 中心核にガス=燃料が多い示唆（鉄輝線、双対コーン状Lyα分布、運動学的ガス質量）
 ⇔GPSやプラズマ再噴射phaseの電波銀河はHI吸収強い=燃料が多い（Salter+2010）
 ※4C23.56中心核でのHI吸収線は未確認。

・X線/電波ピークのオフセット
 ホットスポットより35kpc内側にX線ピーク
 ⇒IC領域から流れた電子が圧縮され電波で光るか？（Erlund+2010）

EVLARでのデータがこんな研究にもついでに使えたら生産的かと思いました。例えば
・低周波なので、内側の散逸の進んだプラズマ（X線放射領域）が見えるか。
・ホットスポットからさらに外側の構造が見えるか？

（※次回はサブミリ波のものを読みます。）
電波ピークのずれの例

4C74.26(Erlund+2010)

\[z = 0.104 \]

4C19.44(Sambruna+2002)

\[z = 0.720 \]
X/電波ピークのずれの例

6C 0905+39(Blundell+2006)
A mature cluster with X-ray emission at $z = 2.07$
Gobat et al. 2010

~ 20σ overdensity of red, compact spheroidal galaxies
which spatially coincides with an extended X-ray emission

CL J1449-0856
CL J1449-0856 is different from z>2 protoclusters in some key aspects because of the evidence
① presence of extended X-ray emission from an intra-cluster medium
② a centre occupied by old passively evolving early-type galaxies