Thermal Conductivity due to Spins in the Two-Dimensional Spin System Ba$_2$Cu$_3$O$_4$Cl$_2$

Masumi Ohno1, Takayuki Kawamata1, Megumi Akoshima2, and Yoji Koike1

1Department of Applied Physics, Tohoku University, Sendai 980-8579, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8501, Japan

(Received)

We have measured the temperature dependences of the thermal conductivity of Ba$_2$Cu$_{3-x}M_x$O$_4$Cl$_2$ ($M = $ Pd, Ni, Co; $x = 0, 0.03$) single crystals including two-dimensional (2D) Cu$_3$O$_4$ planes consisting of a strong 2D spin network of Cu$^{2+}$ spins and a weak 2D spin network of Cu$^{2+}$ spins. It has been found that the thermal conductivity due to spins, κ_{spin}, exists in the thermal conductivity parallel to the Cu$_3$O$_4$ plane owing to the strong 2D spin network of Cu$^{2+}$ spins and exhibits a broad peak around room temperature. The maximum value of κ_{spin} is ~7 W/Km and comparable with that in Nd$_2$CuO$_4$ with almost the same 2D spin network of Cu$^{2+}$ spins. The κ_{spin} has been found to be suppressed by 1% impurities on account the decrease in the mean free path of magnetic excitations, suggesting that κ_{spin} is expected to be enhanced in 2D quantum spin systems such as Ba$_2$Cu$_3$O$_4$Cl$_2$ by reducing the amount of impurities in a single crystal. Moreover, it has concluded that the frustration between Cu$^{2+}$ and Cu$^{2+}$ spins little affects the existence of κ_{spin}.
1. Introduction

In several low-dimensional quantum spin systems, the thermal conductivity due to magnetic excitations, namely, due to spins, κ_{spin}, has been observed conspicuously. As for one-dimensional (1D) quantum spin systems, κ_{spin} has been observed in antiferromagnetic (AF) spin systems of Sr$_2$CuO$_4$,\(^{1-4}\) SrCuO$_2$,\(^{5-7}\) Sr$_{14}$Cu$_{24}$O$_{41}$,\(^{8-13}\) Sr$_2$V$_3$O$_9$,\(^{14}\) and ACoX$_3$ (A = Cs, Rb; X = Cl, Br)\(^{15}\) with the spin quantum number $S = 1/2$ and of Y$_2$BaNiO$_5$\(^{16,17}\) and AgVP$_2$S$_6$\(^{18}\) with $S = 1$. κ_{spin} is especially large in Sr$_2$CuO$_3$, SrCuO$_2$, and Sr$_{14}$Cu$_{24}$O$_{41}$, which is understood to be owing to the large velocity of magnetic excitations, v_{spin}, due to the large AF superexchange interaction between the nearest neighbor Cu$^{2+}$ spins.\(^{19}\) In two-dimensional (2D) quantum spin systems, κ_{spin} has also been observed in AF spin systems of La$_2$CuO$_4$,\(^{20-23}\) Nd$_2$CuO$_4$,\(^{24}\) and Sr$_2$CuO$_2$Cl$_2$\(^{25}\) with $S = 1/2$ and of La$_2$NiO$_4$ with $S = 1$.\(^{22}\) κ_{spin} is especially large in La$_2$CuO$_4$, Nd$_2$CuO$_4$, and Sr$_2$CuO$_2$Cl$_2$, which is understood to be due to the AF superexchange interaction as large as \sim1500 K between the nearest neighbor Cu$^{2+}$ spins in the 2D spin network of Cu$^{2+}$ spins in the 2D CuO$_2$ plane. It is characteristic of these 2D quantum spin systems that κ_{spin} exhibits the maximum around room temperature, which is suitable for the application of the large κ_{spin}.

The compound Ba$_2$Cu$_3$O$_4$Cl$_2$ is regarded as a 2D quantum spin system. The crystal structure is layered and composed of an alternate stack of the 2D Cu$_3$O$_4$ plane and the Ba$_2$Cl$_2$ blocking layer along the c-axis, as shown in Fig. 1(a). There are two Cu sites, namely, Cu$_A$ and Cu$_B$ sites in the Cu$_3$O$_4$ plane, where Cu$_A^{2+}$ ions with $S = 1/2$ form the abovementioned 2D CuO$_2$ plane and Cu$_B^{2+}$ ions with $S = 1/2$ are alternately located at the center of the square composed of four Cu$_A^{2+}$ ions, as shown in Fig. 1(b). The Raman scattering experiment has revealed that the exchange interaction between the nearest neighbor Cu$_A^{2+}$ spins, J_A, in the 2D spin network of Cu$_A^{2+}$ spins is AF and \sim1500 K, while that between the nearest neighbor Cu$_B^{2+}$ spins, J_B, in the 2D spin network of Cu$_B^{2+}$ spins is AF and \sim120 K.\(^{26}\) The inelastic neutron scattering experiment has revealed that the exchange interaction between the adjacent Cu$_A^{2+}$ and Cu$_B^{2+}$ spins, J_{AB}, is ferromagnetic and about -140 K.\(^{27}\) Therefore, frustration exists between Cu$_A^{2+}$ and Cu$_B^{2+}$ spins. From the temperature dependence of the magnetization, it has been found that two magnetic phase transitions occur at $T_{N1} \sim 30$ K and at $T_{N2} \sim 330$ K.\(^{28-31}\) The elastic neutron scattering experiment has revealed that T_{N1} and T_{N2} are AF transition temperatures of Cu$_B^{2+}$ and Cu$_A^{2+}$ spins, respectively.\(^{31}\)

Since Ba$_2$Cu$_3$O$_4$Cl$_2$ includes the 2D CuO$_2$ plane as well as La$_2$CuO$_4$, Nd$_2$CuO$_4$, and Sr$_2$CuO$_2$Cl$_2$, large κ_{spin} is expected to be observed. However, the frustration between Cu$_A^{2+}$
and CuB2+ spins in the Cu\textsubscript{3}O\textsubscript{4} plane may interrupt the appearance of large κ\textsubscript{spin}. In this paper, we have grown large-sized single crystals of $\text{Ba}_2\text{Cu}_{3-x}\text{M}_x\text{O}_4\text{Cl}_2$ ($M = \text{Pd, Ni, Co}; x = 0, 0.03$) including no and 1% impurities of nonmagnetic Pd2+ ($S = 0$) and magnetic Ni2+ ($S = 1$) and Co2+ ($S = 3/2$) and measured the thermal conductivity, to investigate whether κ\textsubscript{spin} exists in $\text{Ba}_2\text{Cu}_3\text{O}_4\text{Cl}_2$. Moreover, the origin of the maximum of κ\textsubscript{spin} around room temperature in the 2D quantum spin systems consisting of the 2D CuO\textsubscript{2} plane has been discussed.

2. Experimental

Single crystals of $\text{Ba}_2\text{Cu}_{3-x}\text{M}_x\text{O}_4\text{Cl}_2$ ($M = \text{Pd, Ni, Co}; x = 0, 0.03$) were grown by the floating-zone method without the use of solvent, referring to the literature by Yamada et al.32) The growth was performed under flowing O\textsubscript{2} of 4 atm at the rate of 10 mm/h. The grown crystals were confirmed by the powder x-ray diffraction to be of the single phase of $\text{Ba}_2\text{Cu}_3\text{O}_4\text{Cl}_2$ without any impurity phases. The diffraction spots of the x-ray back-Laue photography were very sharp, indicating the good quality of the obtained single crystals. The chemical composition was confirmed by the inductively coupled plasma mass spectrometry (ICP-MS) to coincide with the nominal composition, as listed in Table I. For the characterization of the obtained single crystals, the magnetic susceptibility was also measured using a SQUID magnetometer (Quantum Design, MPMS).

Thermal conductivity measurements were carried out by the conventional four-terminal steady-state method. On the thermal conductivity data obtained by this method, the effect of the thermal radiation is marked at high temperatures above ~150 K. Therefore, the thermal conductivity due to the thermal radiation, κ\textsubscript{radiation}, has to be subtracted from the observed thermal conductivity. The temperature dependence of κ\textsubscript{radiation} was estimated as follows. First, the thermal conductivity was measured at room temperature by the laser-flash method giving a rather correct value with little influence of the thermal radiation.33) Next, the value of κ\textsubscript{radiation} at room temperature was estimated as the difference between the values obtained by these two methods. Finally, the temperature dependence of κ\textsubscript{radiation} was estimated using the equation, κ\textsubscript{radiation} = 4σA$sT^3$34), where σ is the Stefan-Boltzmann constant, ε the reflectivity, As the surface area, and the T temperature of a sample. The value of εA_s was calculated from the value of κ\textsubscript{radiation} at room temperature. All the thermal conductivity data shown in this paper were obtained after the subtraction of κ\textsubscript{radiation}. The value of κ\textsubscript{radiation} at room temperature was 30 – 50 % of that of the thermal conductivity measured by the four-terminal steady-state method.
For the estimate of the Debye temperature, the specific heat was measured by the thermal relaxation method using a physical property measurement system (Quantum Design, PPMS).

3. Results and discussion

Figure 2 shows the temperature dependences of the magnetization in a magnetic field of 0.5 T applied in the \textit{ab}-plane, namely, in the Cu$_3$O$_4$ plane of Ba$_2$Cu$_{3-x}$M$_x$O$_4$Cl$_2$ ($M = \text{Pd, Ni, Co}; x = 0, 0.03$) on zero-field cooling and field cooling. For $x = 0$, it is found that, with decreasing temperature, the magnetization increases a little at high temperatures below 400 K, drastically jumps up at $T_{N2} = 330$ K, gradually increases, exhibits a broad peak around 80 K, and decreases. Then, the magnetization shows a hysteresis at low temperatures below $T_{N1} = 32$ K. This temperature dependence of the magnetization for $x = 0$ is almost the same as that in the former report by Noro \textit{et al.}29 For $x = 0.03$ of $M = \text{Pd and Ni}$, T_{N2} is clearly found to decrease compared with those of $x = 0$, while T_{N1} increases for $x = 0.03$ of $M = \text{Co}$. These changes in T_{N2} by Pd, Ni, and Co impurities indicate that these impurities are substituted for Cu, though the microscopic origin of the increase or decrease in T_{N2} is not clear in detail.

Figure 3(a) shows the temperature dependences of the thermal conductivity along the [110] direction, namely, along the Cu$_A$-O-Cu$_A$ direction in the Cu$_3$O$_4$ plane, $\kappa_{[110]}$, and along the [001] direction perpendicular to the Cu$_3$O$_4$ plane, $\kappa_{[001]}$, of Ba$_2$Cu$_3$O$_4$Cl$_2$. It is found that there is a large anisotropy between $\kappa_{[110]}$ and $\kappa_{[001]}$. That is, $\kappa_{[001]}$ exhibits a peak at ~ 30 K and monotonously decreases with increasing temperature. On the other hand, $\kappa_{[110]}$ exhibits a peak at ~ 25 K and decreases with increasing temperature, but the decrease becomes gentle at high temperatures above ~ 80 K and $\kappa_{[110]}$ shows a broad peak around room temperature. Since the [110] direction is parallel to the Cu$_3$O$_4$ plane including 2D CuO$_2$ plane and this kind of behavior of the thermal conductivity has been observed in La$_2$CuO$_4$ also,20 the peaks at low temperatures of ~ 30 K and ~ 25 K in $\kappa_{[001]}$ and $\kappa_{[110]}$, respectively, are inferred to be caused by the contribution of the thermal conductivity due to phonons, κ_{phonon}, while the broad peak around room temperature only in $\kappa_{[110]}$ is inferred to be due to κ_{spin}.

To estimate κ_{spin}, at first the estimate of κ_{phonon} is necessary, for the observed thermal conductivity is regarded as the sum of κ_{phonon} and κ_{spin}. In Ba$_2$Cu$_3$O$_4$Cl$_2$, it is unsuitable to estimate κ_{spin} simply as the difference between $\kappa_{[110]}$ and a constant multiple of $\kappa_{[001]}$, assuming that $\kappa_{[001]}$ is due to only κ_{phonon}. This is because κ_{phonon} is very anisotropic,
considering the large differences between $\kappa_{[110]}$ and $\kappa_{[001]}$ of the magnitude and broadening of the low-temperature peak due to κ_{phonon}. Therefore, the contributions of κ_{phonon} to both $\kappa_{[110]}$ and $\kappa_{[001]}$ have to be estimated using a suitable theoretical model. The κ_{phonon} is simply given by the following equation based on the Debye model,35

$$\kappa_{\text{phonon}} = \frac{k_B}{2\pi v_{\text{phonon}}(\frac{k_B}{h})} \frac{k_B}{h} T^3 \int_0^{\Theta_D/T} \frac{x^4 e^x}{(e^x - 1)^2} \tau(x, T) dx,$$

(1)

where $x = \hbar \omega / k_B T$, ω is the phonon angular frequency, \hbar the Planck constant, k_B the Boltzmann constant, Θ_D the Debye temperature, v_{phonon} the phonon velocity, and $\tau(x, T)$ the relaxation time of the phonon scattering. The v_{phonon} is described as

$$v_{\text{phonon}} = \Theta_D \left(\frac{k_B}{\hbar} \right) \left(\frac{6\pi^2 n}{6} \right)^{-1/3},$$

(2)

where n is the number density of atoms. The phonon scattering rate $\tau^{-1}(x, T)$ is given by the sum of scattering rates due to several scattering processes as follows,

$$\tau^{-1}(x, T) = \tau^{-1}(\omega, T) = \frac{v_{\text{phonon}}}{L_b} + A \omega^4 + D \omega + B \omega^2 T \exp \left(-\frac{\Theta_D}{bT} \right),$$

(3)

where the first term represents the phonon scattering by boundaries; the second, the phonon scattering by point defects; the third, the phonon scattering by lattice distortions; the fourth, the phonon-phonon scattering in the umklapp process. L_b is the distance between two temperature terminals and A, D, B, and b are fitting parameters. Using Eqs. (1) – (3) and putting Θ_D at 470 K from the specific heat measurements, κ_{phonon} was estimated as drawn by dashed lines in Fig. 3(a). It is found that $\kappa_{[001]}$ is well fitted in the whole temperature region, indicating that $\kappa_{[001]}$ is due to only κ_{phonon}. This is reasonable, because κ_{spin} is not expected to be observed in $\kappa_{[001]}$ on account of the very weak magnetic correlation along the [001] direction. In the case of the estimate of κ_{phonon} in $\kappa_{[110]}$, only the data of $\kappa_{[110]}$ at low temperatures below the peak temperature of ~25 K were used for the fit with Eqs. (1) – (3), assuming that there was little κ_{spin} at the low temperatures. This assumption is reasonable, because κ_{spin} is expected to decrease in proportion to T^2 with decreasing temperature at low temperatures due to the T^2 dependence of the specific heat in a 2D AF spin system.36 In this case, κ_{phonon} is a little overestimated, while κ_{spin} is a little underestimated. However, the estimate of large κ_{spin} around room temperature is little influenced. Values of the parameters used for the best fit are listed in Table II. It is found that values of A and D in $\kappa_{[001]}$ are much larger than those in $\kappa_{[110]}$, indicating the large phonon scattering rate by point defects and lattice distortions probably in the [001] direction. This is reasonable, because the atomic bonding in the [001] direction is much weaker than in the [110] direction, as suggested by the
strong cleavability in the (001) plane. The value of B in $\kappa_{[001]}$ is larger than that in $\kappa_{[110]}$, indicating the large phonon-phonon scattering rate in the umklapp process in the [001] direction. This is also reasonable, taking into account the fact that the size of the first Brillouin zone in the [001] direction is smaller than that in the [110] direction owing to the c-axis length being larger than the a- and b-axis lengths. In addition, these values of the parameters listed in Table II are comparable with those obtained in several low-dimensional quantum spin systems,\(^2\),\(^4\),\(^5\),\(^14\),\(^15\) except for D values. The large D values in Ba\(_2\)Cu\(_3\)O\(_4\)Cl\(_2\) are inferred to be due to the strong cleavability. Accordingly, the estimate of κ_{phonon} in $\kappa_{[110]}$ seems to be appropriate.

Thereupon, looking at $\kappa_{[110]}$ shown in Fig. 3(a), it is clearly found that another large contribution to the thermal conductivity except for κ_{phonon} exists at high temperatures above ~80 K, so that the large contribution is regarded as being due to κ_{spin}.

To confirm the large contribution of κ_{spin} at high temperatures above ~80 K, the temperature dependences of the thermal conductivity along the [110] direction have been measured for Ba\(_2\)Cu\(_3\)-\(x\)M\(_x\)O\(_4\)Cl\(_2\) ($M = \text{Pd, Ni, Co}; x = 0.03$) including 1% impurities of Pd, Ni, and Co, as shown in Figs. 3(b), 3(c), and 3(d), respectively. It is found that both the peak at ~25 K and the broad peak around room temperature are suppressed by the 1% impurities, though the peak at ~25 K in the crystal with 1% Co is not suppressed so much.

To estimate κ_{spin} in Ba\(_2\)Cu\(_3\)-\(x\)M\(_x\)O\(_4\)Cl\(_2\) ($M = \text{Pd, Ni, Co}; x = 0.03$), κ_{phonon} was also estimated using Eqs. (1) – (3) as in the above case of $x = 0$. The best fit result of κ_{phonon} is shown by dashed lines in Figs. 3(b), 3(c), and 3(d), and values of the used parameters are listed in Table II. It is found that the value of B relating to the phonon-phonon scattering is not so dependent on the kind of impurity, which is reasonable. On the other hand, values of A and D are dependent on the kind of impurity. Since they are also dependent on the crystalline quality, the difference of the A and D values among 1% impurity-substituted crystals is not discussed clearly. However, it is clearly found that another contribution to the thermal conductivity except for κ_{phonon}, namely, κ_{spin} still exists at high temperatures above ~80 K in Ba\(_2\)Cu\(_3\)-\(x\)M\(_x\)O\(_4\)Cl\(_2\) ($M = \text{Pd, Ni, Co}; x = 0.03$).

Figure 4 displays the temperature dependences of κ_{spin} obtained by subtracting κ_{phonon} from the observed $\kappa_{[110]}$ for Ba\(_2\)Cu\(_3\)-\(x\)M\(_x\)O\(_4\)Cl\(_2\) ($M = \text{Pd, Ni, Co}; x = 0, 0.03$). It is found that κ_{spin} of $x = 0$ clearly exhibits a peak at ~310 K and that this peak is suppressed by the 1% impurities and most suppressed by Pd. Since S values of Pd\(^{2+}\), Ni\(^{2+}\), and Co\(^{2+}\) are 0, 1, and 3/2, respectively, and different from $S = 1/2$ of Cu\(^{2+}\), this is interpreted as being due to the strong scattering of magnetic excitations by ions with different S values. It appears that
especially nonmagnetic Pd$^{2+}$ ions with $S = 0$ strongly scatter magnetic excitations, leading to the strongest suppression of κ_{spin}. Such impurity effects on κ_{spin} have been also observed in La$_2$CuO$_4$. Therefore, the present results strongly support the existence of κ_{spin} in Ba$_2$Cu$_3$O$_4$Cl$_2$ and the maximum value of κ_{spin} is ≈ 7 W/Km. This is comparable with that in Nd$_2$CuO$_4$. Since the value of J_A is comparable with the AF superexchange interaction between the nearest neighbor Cu$^{2+}$ spins in the CuO$_2$ plane of Nd$_2$CuO$_4$, it is understood that the 2D spin network consisting of Cu$_A^{2+}$ spins in the Cu$_3$O$_4$ plane contribute to κ_{spin}. Accordingly, it follows that the frustration between Cu$_A^{2+}$ and Cu$_B^{2+}$ spins little affects the existence of κ_{spin}.

Here, we estimate the mean free path of magnetic excitations, l_{spin}. In general, κ_{spin} is given by the following equation,

$$\kappa_{\text{spin}} = \sum_k C_k v_k l_k = \frac{1}{(2\pi)^d} \int C_k v_k l_k dk,$$ \hspace{1cm} (4)

where C_k, v_k, and l_k are the specific heat, velocity, and mean free path of the magnetic excitation with the wave number k, respectively. d is the dimension of a spin network. Assuming that both v_k and l_k are independent of k and $T << J/k_B$ (J: the exchange interaction between the nearest neighbor spins), eq. (4) is transformed as

$$\kappa_{\text{spin}} = \frac{k_B^2 l_{\text{spin}}^2}{2 \pi c h^2 v_{\text{spin}}} T^2 \int_0^{x_{\text{max}}} \frac{x^3 e^x}{(e^x - 1)^2} dx,$$ \hspace{1cm} (5)

where c is the c-axis length, $x = \hbar v_{\text{spin}} / k_B T$, $x_{\text{max}} = 2\sqrt{\pi} \hbar v_{\text{spin}} / a k_B T$, and a is the a-axis length. Both l_{spin} and v_{spin} are assumed to be independent of temperature and v_{spin} is given by the following equation,25

$$v_{\text{spin}} = \sqrt{8SZ_c} a / \hbar,$$ \hspace{1cm} (6)

where Z_c is 1.18 and called the Oguchi correction.38 κ_{spin} is roughly fitted using Eqs. (5) and (6), as shown by dashed lines in Fig. 4. Values of l_{spin} used for the best fit, which are regarded as the upper values due to the scattering of magnetic excitations by impurities at low temperatures of $T << J/k_B$, are listed in Table III. It is found that the value of l_{spin} of $x = 0$ decreases by the 1% impurities and markedly decreases by Pd. The marked decrease in l_{spin} by Pd is understood to be due to the division of the spin network by nonmagnetic Pd$^{2+}$ ions. On the other hand, the decrease in l_{spin} by Ni and Co is not so marked, because magnetic Ni$^{2+}$ and Co$^{2+}$ ions do not divide the spin network completely. The decrease in l_{spin} by the 1% impurities indicates that l_{spin} already reaches the upper limit at ≈ 310 K. That is, the scattering of magnetic excitations by impurities is dominant at low temperatures below ≈ 310 K. As in the case of 1D quantum spin systems such as Sr$_2$CuO$_3$ and SrCuO$_2$, especially ...
accordingly, it is possible to enhance κ_{spin} in 2D quantum spin systems such as Ba$_2$Cu$_3$O$_4$Cl$_2$ by reducing the amount of impurities in a single crystal.

Finally, it may be worthwhile pointing out the possibility of the existence of κ_{spin} due to the spin network of Cu$^{2+}$ spins. Taking into account the fact that κ_{spin} due to the 2D spin network of Cu$_A^{2+}$ spins (with $J_A \sim 1500$ K and $T_{N2} \sim 330$ K) exhibits a peak at ~ 310 K, it is possible that κ_{spin} due to the 2D spin network of Cu$_B^{2+}$ spins (with $J_B \sim 120$ K and $T_{N1} \sim 30$ K) exists and exhibits a peak at a low temperature below T_{N1}. As shown in Fig. 4, in fact, κ_{spin} increases with decreasing temperature at low temperatures below ~ 25 K. This is caused by the misfit of $\kappa_{[110]}$ with κ_{phonon} based on the Debye model at low temperatures below ~ 25 K. Therefore, it is possible that κ_{spin} due to the 2D spin network of Cu$_B^{2+}$ spins exists at low temperatures, though it is very hard to separate κ_{spin} from κ_{phonon}.

4. Summary

We have grown large-sized single crystals of Ba$_2$Cu$_{3-x}$M$_x$O$_4$Cl$_2$ ($M =$ Pd, Ni, Co; $x = 0, 0.03$) and measured the thermal conductivity. For $x = 0$, $\kappa_{[001]}$ perpendicular to the Cu$_3$O$_4$ plane has been found to exhibit a peak at ~ 30 K and monotonously decreases with increasing temperature, while $\kappa_{[110]}$ parallel to the Cu$_3$O$_4$ plane has been found to exhibit a peak at ~ 25 K and a broad peak around room temperature. It has been concluded that the peaks at low temperatures of ~ 30 K and ~ 25 K in $\kappa_{[001]}$ and $\kappa_{[110]}$, respectively, are caused by the contribution of κ_{phonon}, because the peaks and the whole temperature dependence of $\kappa_{[001]}$ were well fitted with κ_{phonon} based on the Debye model. On the other hand, the broad peak around room temperature in $\kappa_{[110]}$ has been concluded to be due to κ_{spin}, because $\kappa_{[110]}$ is parallel to the Cu$_3$O$_4$ plane including the 2D spin network of Cu$_A^{2+}$ spins with J_A as large as ~ 1500 K and because the maximum value of κ_{spin} of ~ 7 W/Km estimated is comparable with that in Nd$_2$CuO$_4$ with almost the same 2D spin network of Cu$^{2+}$ spins. It has also supported the existence of κ_{spin} that the κ_{spin} was suppressed by 1% impurities of magnetic Ni$^{2+}$ and Co$^{2+}$ with S values different from that of Cu$^{2+}$ and most suppressed by 1% impurities of nonmagnetic Pd$^{2+}$. Accordingly, it has concluded that the frustration between Cu$_A^{2+}$ and Cu$_B^{2+}$ spins little affects the existence of κ_{spin}. Moreover, it has been found that the suppression of κ_{spin} by 1% impurities is due to the decrease in l_{spin}. Therefore, it is expected to enhance κ_{spin} in 2D quantum spin systems such as Ba$_2$Cu$_3$O$_4$Cl$_2$ by reducing the amount of impurities in a single crystal.
In addition, it has been found that κ_{spin} due to the 2D spin network of Cu$_B$$^{2+}$ spins with J_B as small as ≈ 120 K may exist and exhibit a peak at a low temperature below T_{N1}.

Acknowledgments

This work was supported by JSPS KAKENHI Grant Numbers 16K06716. We would like to thank Y. Nakano of Technical Division, School of Engineering, Tohoku University, for her aid in the ICP-MS analysis. Figure 1 was drawn using VESTA.39)
References

[1] A. V. Sologubenko, E. Felder, K. Ginnó, H. Ott, A. Voekine, and A. Revcolevschi, Phys Rev B 62, R6108 (2000).
[2] A. V. Sologubenko, K. Ginnó, and H. R. Ott, Phys. Rev. B 64, 054412 (2001).
[3] N. Takahashi, T. Kawamata, T. Adachi, T. Noji, and Y. Koike, AIP Conf. Proc. 850, 1265 (2006).
[4] T. Kawamta, N. Takahashi, T. Adachi, T. Noji, K. Kudo, N. Kobayashi, and Y. Koike, J. Phys. Soc. Jpn. 77, 034607 (2008).
[5] T. Kawamata, N. Kaneko, M. Uesaka, M. Sato, and Y. Koike, J. Phys.: Conf. Ser. 200, 022023 (2010).
[6] N. Hlubek, P. Pibeiro, R. Saint-Martin, A. Revcolevschi, G. Roth, G. Behr, B. Büchner, and C. Hess, Phys. Rev. B 81, 020405(R) (2010).
[7] N. Hlubek, X. Zotjos, S. Singh, R. Saint-Martin, A. Revcolevschi, B. Büchner, and C. Hess, J. Stat. Mech. 2012, P03006 (2012).
[8] K. Kudo, S. Ishikawa, T. Noji, T. Adachi, Y. Koike, K. Maki, S. Tsuji, and K. Kumagai, J. Low Temp. Phys. 117, 1689 (1999).
[9] A. V. Sologubenko, K. Giannó, H. R. Ott, U. Ammerahl, and A. Revcolevschi, Phys. Rev. Lett. 84, 2714 (2000).
[10] C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-Meisner, W. Brenig, and A. Revcolevschi, Phys. Rev. B 64, 184305 (2001).
[11] K. Kudo, S. Ishikawa, T. Noji, T. Adachi, Y. Koike, K. Maki, S. Tsuji, and K. Kumagai, J. Phys. Soc. Jpn. 70, 437 (2001).
[12] K. Kudo, Y. Koike, K. Maki, S. Tsuji, and K. Kumagai, J. Phys. Chem. Solids 62, 361 (2001).
[13] K. Naruse, T. Kawamata, M. Ohno, Y. Matsuoka, K. Kumagai, and Y. Koike, Solid State Commun. 154, 60 (2013).
[14] T. Kawamata M. Uesaka, M. Sato, K. Naruse, K. Kudo, N. Kobayashi, and Y. Koike, J. Phys. Soc. Jpn. 83, 054601 (2014).
[15] Y. Matsuoka, T. Kawamata, K. Naruse, M. Ohno, Y. Nishiwaki, T. Kato, T. Sasaki, and Y. Koike, J. Phys. Soc. Jpn. 83, 064603 (2014).
[16] K. Kordonis, A. V. Sologubenko, T. Lorenz, S.-W. Cheong, and A. Freimuth, Phys. Rev. Lett. 97, 115901 (2006).
[17] T. Kawamata, Y. Miyajima, N. Takahashi, T. Noji, and, Y. Koike, J. Magn. Magn. Mater. 310, 1212 (2007).
[18] A. V. Sologubenko, S. M. Kazakov, H. R. Ott, T. Asano, and Y. Ajiro, Phys. Rev. B 68, 94432 (2003).
[19] K. Kudo, Y. Koike, S. Kurogi, T. Noji, T. Nishizaki, and N. Kobayashi, J. Magn. Magn. Mater. 272–276, 94 (2004).
[20] Y. Nakamura, S. Uchida, T. Kimura, N. Motohira, K. Kishio, K. Kitazawa, T. Arima, and Y. Tokura, Phyica C 185–189, 1409 (1991).
[21] X. F. Sun, J. Takeya, S. Komiya, and Y. Ando, Phys. Rev. B 67, 140503 (2003).
[22] J.-Q. Yan, J.-S. Zhou, and J. B. Goodenough, Phys. Rev. B 68, 104520 (2003).
[23] C. Hess, B. Büchner, U. Ammerahl, L. Colonescu, F. Heidrich-Meisner, W. Brenig, and A. Revolevschi, Phys. Rev. Lett. 90, 197002 (2003).
[24] K. Berggold, T. Lorenz, J. Baier, M. Kriener, D. Senff, H. Roth, A. Severing, H. Hartmann, A. Freimuth, S. Barilo, and F. Nakamura, Phys. Rev. B 73, 104430 (2006).
[25] M. Hofmann, T. Lorenz, K. Berggold, M. Grüninger, A. Freimuth, G. S. Uhrig, and E. Brück, Phys. Rev. B 67, 184502 (2003).
[26] J. Holmlund, C. S. Knee, J. Andreasson, M. Granath, A. P. Litvinchuk, and L. Börjesson, Phys. Rev. B 79, 085109 (2009).
[27] F. C. Chou, Amnon Aharony, R. J. Birgeau, O. Entin-Wohlman, M. Greven, A. B. Harris, M. A. Kastner, Y. J. Kim, D. S. Kleinberg, Y. S. Lee, and Q. Zhu, Phys. Rev. Lett. 78, 535 (1997).
[28] S. Noro, H. Suzuki, and T. Yamadaya, Solid State Commun. 76, 711 (1990).
[29] S. Noro, T. Kouchi, and T. Yamadaya, Mater. Sci. Eng. B 25, 167 (1994).
[30] T. Ito, H. Yamaguchi, and K. Oka, Phys. Rev. B 55, R684 (1997).
[31] K. Yamada, N. Suzuki, and J. Akimitsu, Physica B 213&214, 191 (1995).
[32] S. Yamada, Y. Iwagaki, and S. Noro, Physica B 388, 374 (2007).
[33] W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32, 1679 (1961).
[34] S. Sawada, Ondo-to-Netsu, Kyoritsu Shuppan, 1970, pp. 261-326. (in Japanese).
[35] R. Berman, Thermal Conduction in Solids (Clarendon Press, Oxford, U.K., 1976).
[36] T. Oguchi, Statistical Theory of Magnetism (Syōkabō, Tokyo, 1971). (in Japanese).
[37] J. D. Perkins, J. M. Graybeal, M. A. Kastner, R. J. Birgeneau, J. P. Falck, and M. Greven, Phys. Rev. Lett. 71, 1621 (1993).
[38] T. Oguchi, Phys. Rev. 117, 117 (1960).
[39] K. Momma and F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011).
Table I. Chemical compositions obtained by the inductively coupled plasma mass spectrometry (ICP-MS) for Ba$_2$Cu$_{3-x}$M$_x$O$_4$Cl$_2$ ($M =$ Pd, Ni, Co; $x =$ 0, 0.03).

Sample	Ba	Cu	M
$x =$ 0	1.990	3.000	
$x =$ 0.03	2.081	2.973	0.027
$x =$ 0.03	1.925	2.971	0.029
$x =$ 0.03	1.969	2.972	0.028
Table II. Parameters used for the best fit of the temperature dependence of the thermal conductivity $\kappa_{[001]}$ and $\kappa_{[110]}$ in Ba$_2$Cu$_{3-x}M_x$O$_4$Cl$_2$ ($M = \text{Pd, Ni, Co}; \; x = 0, 0.03$) with Eqs. (1) – (3).

Sample	Direction	L_0 (10^{-3} m)	A (10^{-42} s3)	D (10^{-3})	B (10^{-17} s/K)	b
$x = 0$	[001]	0.700	1.90	1.20	1.83	7.2
	[110]	1.06	0.140	0.127	0.620	6.9
$x(\text{Pd}) = 0.03$	[110]	0.750	0.770	0.190	0.450	7.3
$x(\text{Ni}) = 0.03$	[110]	0.588	0.570	0.120	0.620	6.9
$x(\text{Co}) = 0.03$	[110]	0.888	0.140	0.127	0.580	5.9

Table III. Mean free path l_{spin} used for the best fit of κ_{spin} in Ba$_2$Cu$_{3-x}M_x$O$_4$Cl$_2$ ($M = \text{Pd, Ni, Co}; \; x = 0, 0.03$) with Eqs. (5) and (6).

Sample	l_{spin} (Å)
$x = 0$	425 ± 25
$x(\text{Pd}) = 0.03$	70 ± 15
$x(\text{Ni}) = 0.03$	220 ± 20
$x(\text{Co}) = 0.03$	140 ± 20
Fig. 1. (color online) (a) Crystal structure of \(\text{Ba}_2\text{Cu}_3\text{O}_4\text{Cl}_2 \). The dashed lines indicate the unit cell. (b) Schematic picture of the \(\text{Cu}_3\text{O}_4 \) plane with two Cu sites, namely, \(\text{Cu}_A \) sites (red spheres) and \(\text{Cu}_B \) sites (yellow spheres).
Fig. 2. (color online) Temperature dependences of the magnetization in a magnetic field of 0.5 T applied in the ab-plane of $\text{Ba}_2\text{Cu}_{3-x}M_x\text{O}_4\text{Cl}_2$ ($M = \text{Pd}, \text{Ni}, \text{Co}; x = 0, 0.03$) on zero-field cooling (open circles) and on field cooling (closed circles).
Fig. 3. (color online) Temperature dependences of the thermal conductivity along the [110] direction, namely, along the Cuₐ-O-Cuₐ direction in the Cu₃O₄ plane, κ[110], of Ba₂Cu₃₋ₓMₓO₄Cl₂ with (a) x = 0, (b) M = Pd and x = 0.03, (c) M = Ni and x = 0.03, and (d) M = Co, x = 0.03. For x = 0 in (a), the temperature dependence of the thermal conductivity along the [001] direction perpendicular to the Cu₃O₄ plane, κ[001], is also displayed. Error bars are due to errors in the thermal conductivity measurements performed by the laser-flash method at room temperature for the estimate of κrad. Dashed lines are κphonon estimated using eqs. (1) – (3) based on the Debye model.
Fig. 4. (color online) Temperature dependences of κ_{spin} obtained by subtracting κ_{phonon} from the observed $\kappa_{[110]}$ for Ba$_2$Cu$_{3-x}$M$_x$O$_4$Cl$_2$ ($M = \text{Pd, Ni, Co}; x = 0, 0.03$). Error bars are due to errors in the thermal conductivity measurements performed by the laser-flash method at room temperature for the estimate of $\kappa_{\text{radiation}}$. Dashed lines are the best fit results using Eqs. (5) and (6).