Two generalizations of Markov blankets

Victor Cohen, Axel Parmentier
Ecole des Ponts Paristech, CERMICS, Université Paris-Est, Marne-la-Vallée, France
March 11, 2019

Abstract

In a probabilistic graphical model on a set of variables \(V \), the Markov blanket of a random vector \(B \) is the minimal set of variables conditioned to which \(B \) is independent from the remaining of the variables \(V \setminus B \). We generalize Markov blankets to study how a set \(C \) of variables of interest depends on \(B \). Doing that, we must choose if we authorize vertices of \(C \) or vertices of \(V \setminus C \) in the blanket. We therefore introduce two generalizations. The Markov blanket of \(B \) in \(C \) is the minimal subset of \(C \) conditionally to which \(B \) and \(C \) are independent. It is naturally interpreted as the inner boundary through which \(C \) depends on \(B \), and finds applications in feature selection. The Markov blanket of \(B \) in the direction of \(C \) is the nearest set to \(B \) among the minimal sets conditionally to which ones \(B \) and \(C \) are independent, and finds applications in causality. It is the outer boundary of \(B \) in the direction of \(C \). We provide algorithms to compute them that are not slower than the usual algorithms for finding a d-separator in a directed graphical model. All our definitions and algorithms are provided for directed and undirected graphical models.

Keywords Markov blanket, probabilistic graphical models, feature selection, causality

1 Introduction

Markov blanket, probabilistic graphical models, feature selection, causality

A distribution on a set of variables \(V \) factorizes as a probabilistic graphical model on a graph \(G = (V, A) \) if variables in \(V \) satisfy some independences that are encoded by \(G \). Given a set \(B \) of variables in \(V \), the Markov blanket of \(B \) is the boundary in \(V \setminus B \) through which \(B \) and \(V \setminus B \) are dependent. More formally, it is the smallest subset \(M \) of \(V \setminus B \) such that

\[
B \perp \perp V \setminus (B \cup M) \mid M
\]

for any distribution that factorizes as a probabilistic graphical model on \(G \), where, given three random vectors \(X, Y, \) and \(Z \), we denote by

\[
X \perp \perp Y \mid Z
\]

the fact that \(X \) is independent from \(Y \) given \(Z \). As illustrated on Figure 1, \(\text{mb}(B) \) corresponds to the “outer boundary” of \(B \), and \(\text{mb}(V \setminus B) \) to its “inner boundary”. The Markov Blanket of \(B \) is the smallest set of variables of \(V \setminus B \) containing all the information about \(B \) that is in \(V \setminus B \) [Pellet and Elisseeff, 2008].

In this paper, we introduce two generalizations of Markov blankets to model how a subset of variables depends on another. The first is the Markov blanket of \(B \) in \(C \), which we denote by \(\text{mb}_C(B) \). It is the smallest subset \(M \) of \(C \) such that \(B \perp \perp C \setminus M \mid M \). The second is the Markov blanket of \(B \) in the direction of \(D \), which we denote by \(\text{mb}(B \to D) \). Among the sets \(M \) in \(V \setminus B \) such that \(B \perp \perp D \mid M \) and that are minimal for inclusion, it is the “nearest” to \(B \). Figure 2 illustrated how these notions can be interpreted as inner and outer boundaries.

We introduce \(\text{mb}_C(B) \) and \(\text{mb}(B \to D) \) in directed and undirected graphical models. We characterize \(\text{mb}_C(B) \) and \(\text{mb}(B \to D) \) in terms of separation and d-separation, which provides
Indeed, if a patient suffering from disease D might cause B, it might also be that B and D are both caused by another factor. Fixing B will cure the patient from D only if B is a cause of D. Counting the number of patients suffering from D among those having B indicates the correlation of B and D, i.e., the conditional probability $\mathbb{P}(D|B)$ of D given B, but not the causal effect of B and D. To measure this causal effect, we need to compute the conditional probability of D given B in an experiment where, all other things being equal, parameter B is controlled. We denote it by $\mathbb{P}(D|\text{do}(B))$. If B and D are random variables of a probabilistic graphical model, causality theory enables to identify if the causal effect $\mathbb{P}(D|\text{do}(B))$ can be computed from historical data without setting up a new experiment, and to compute it when it is possible. Shpitser and Pearl [2012] introduce an algorithm which returns all the causal effects $\mathbb{P}(D|\text{do}(B))$ that can be computed in a directed graphical model. This algorithm, which uses the back-door criterion [Pearl, 1993], requires to compute a d-separator between $(\text{dsc}(B) \cap \text{asc}(D)) \cup D$ and B in the graph where we remove arcs outgoing from B, where asc(M) and dsc(M) respectively denote the ascendants and descendants of a set of vertices M. Let S be such d-separator. Computing the causal effect of B on D becomes equivalent to computing conditional probabilities and marginals in a directed graphical model [Lauritzen 1999, e.g. Theorem 1.14]):

$$\mathbb{P}(D|\text{do}(B = b)) = \sum_s \mathbb{P}(D = s, B = b)\mathbb{P}(S = s)$$

Hence, we need to perform an inference task to compute the probabilities in the sum above. This latter inference problem is easier if the d-separator is small and near to B. The Markov Blanket of $(\text{dsc}(B) \cap \text{asc}(D)) \cup D$ in the direction of B is therefore an excellent candidate as d-separator S: it is the nearest from $(\text{dsc}(B) \cap \text{asc}(D)) \cup D$ among all the minimal d-separator between $(\text{dsc}(B) \cap \text{asc}(D)) \cup D$ and B.

Figure 1: Markov blanket of B and $V\setminus B$

Section 2 introduces the notions and notations we need on directed and undirected graphical models, as well as a literature review on Markov blankets. Section 3 the introduces the Markov blanket of B in C, and Section 4 the Markov blanket of B in the direction of D.

...
2 Preliminaries on probabilistic graphical models

2.1 Graphs

A graph is a pair \(G = (V, A) \) where \(V \) is a finite set and \(A \) is a family of unordered pairs from \(V \). A vertex \(v \) is an element of \(V \). In an undirected graph, the pairs \(e = (u, v) \) in \(A \) are unordered and called edges. In a directed graph, the pairs \(a = (u, v) \) in \(A \) are ordered and called arcs.

A \(u \)-\(v \) path \(P \) in a graph is a sequence of vertices \(v_0, \ldots, v_k \) such that \(v_0 = u, v_k = v \), and \((v_i, v_{i+1}) \) belongs to \(A \) for each \(i \) in \([k]\). Remark that if \(v_1, \ldots, v_k \) is a path in an undirected graph, then \(v_k, \ldots, v_1 \) is also a path. But if \(v_1, \ldots, v_k \) is a path in a directed graph, then \(v_k, \ldots, v_1 \) is generally not a path. A cycle in a graph is a path \(v_0, \ldots, v_k \) such that \(k > 0 \) and \(v_0 = v_k \). An directed graph is acyclic if it has no cycle. A \(u \)-\(v \) trail in an acyclic directed graph is a sequence of vertices \(v_1, \ldots, v_k \) such that \(v_0 = u, v_k = v \), and either \((v_{i-1}, v_i) \) or \((v_i, v_{i+1}) \) belongs to \(A \) for each \(i \) in \([i]\). A vertex \(v \) in a trail \(v_0, \ldots, v_k \) is a v-structure if \(0 < i < k \) and \((v_{i-1}, v_i) \) and \((v_{i+1}, v_i) \) belong to \(A \). A clique in an undirected graph is a subset \(C \) of vertices of \(V \) such that, if \(u \) and \(v \) are two distinct elements of \(V \), then \((u, v) \) belongs to \(A \).

Let \(G \) be an acyclic directed graph. A parent of a vertex \(v \) is a vertex \(u \) such that \((u, v) \) belongs to \(A \); we denote by \(\text{prt}(v) \) the set of parents of \(v \). A vertex \(u \) is an ascendant (resp. a descendant) of \(v \) if there exists a \(u \)-\(v \) path (resp. a \(v \)-\(u \) path). We denote respectively \(\text{asc}(v) \) and \(\text{dsc}(v) \) the set of ascendants and descendants of \(v \). Finally, let \(\overline{\text{asc}}(v) = \{v\} \cup \text{asc}(v) \), and \(\overline{\text{dsc}}(v) = \{v\} \cup \text{dsc}(v) \). For a set of vertices \(C \), the parent set of \(C \), again denoted by \(\text{prt}(C) \), is the set of vertices \(u \) that are parents of a vertex \(v \in C \). We define similarly \(\text{asc}(C) \), and \(\text{dsc}(C) \).

We associate with each vertex \(v \) in \(V \) a random variable \(X_v \) taking its value in a finite set \(\mathcal{X}_v \). For any subset \(A \) of \(V \), we define \(X_A \) as the subvector \((X_v)_{v \in A}\), and \(\mathcal{X}_A \) as the Cartesian product \(\bigotimes_{v \in A} \mathcal{X}_v \).

2.2 Undirected graphical model

Given an undirected graph \(G = (V, A) \), a probability distribution \(P \) on \(\mathcal{X}_V \) factorizes as an undirected graphical model on \(G \) if there exists a collection \(C \) of cliques of \(G \), and mappings \(\psi_C : \mathcal{X}_C \rightarrow \mathbb{R}^+ \) for each \(C \) in \(C \) such that

\[
P(X_V = x_V) = \frac{1}{Z} \prod_{C \in C} \psi_C(x_C),
\]

where \(Z \) is a constant ensuring that \(P \) is a probability distribution. Vertices of a graphical model corresponds to random variables, and sets of vertices to random vectors.

A \(u \)-\(v \) path \(P \) is active given a subset of vertices \(M \) if no vertex of \(P \) is in \(M \). A set of vertices \(M \) separates two sets of vertices \(X \) and \(Y \) if there is no active path between a vertex of \(X \) and a vertex of \(Y \), which we denote by

\[X \perp Y|M.\]
Given three random vectors X, Y, and M, graphical model theory tells us that X is independent from Y given M for any distribution that factorizes as a graphical model on G if and only if M separates X and Y (see e.g. Theorem 4.3 of [Koller and Friedman 2009]).

We are interested in independences of probabilistic graphical models G, that is, independences that are true for any distribution that factorizes as a graphical models. Such independences must therefore be characterized only in terms of the structure of G, that is, in terms of separation and d-separating.

2.3 Directed graphical models

Let $G = (V, A)$ be an acyclic directed graph. A conditional distribution of v given its parent is a mapping $p_{v|\text{pt}(v)} : \mathcal{X}_v \times \mathcal{X}_{\text{pt}(v)} \rightarrow \mathbb{R}_+$ such that, for each $x_{\text{pt}(v)}$ in $\mathcal{X}_{\text{pt}(v)}$, the mapping $x_v \mapsto p_{v|\text{pt}(v)}(x_v, x_{\text{pt}(v)})$ is a probability distribution. A distribution \mathbb{P} on \mathcal{X}_v factorizes as a directed graphical model on G if there exists conditional distributions $p_{v|\text{pt}(v)}$ such that

$$\mathbb{P}(x_v) = \prod_{v \in V} p_{v|\text{pt}(v)}(x_v, x_{\text{pt}(v)}).$$

Given a subset M in V, a u-v trail P is active if and only if any vertex v in P that is not a v-structure does not belong to P, and any vertex v in P that is a v-structure is such that $\text{dsc}(v) \cap M \neq \emptyset$. Given three random vectors X, Y, and M, then M d-separates X and Y if there is no active trail between X and Y that is active given M, which we again denote by

$$X \perp Y|M.$$

Three random vectors X, Y, and M are such that X is independent from Y given M for any distribution that factorizes as a graphical model on G is and only if X is d-separated from Y given M (see e.g. Theorems 3.4 and 3.5 of [Koller and Friedman 2009]).

2.4 Markov blankets and separators

A separator (resp. a d-separator) between two set of vertices B and D given an evidence set E in an undirected (resp. directed) graphical model G is a set of vertices M that separates (resp. d-separates) B and D. A (d-)separator M between two sets of vertices B and D given an evidence set E is minimal if for any strict subset M' of M, $M' \cup E$ does not (d-)separate C and D.

The Markov blanket $\text{mb}(B)$ of B is the smallest (d-)separator $M \subseteq V \setminus B$ of B and $V \setminus B$. By smallest, we mean that any (d-)separator $M \subseteq V \setminus B$ of B and $V \setminus B$ contains $\text{mb}(B)$.

2.5 Literature review

Markov blankets are built on the fact that independences in a graphical model are characterized in terms of separation and d-separation. Lauritzen et al. [1990] introduces the notion separation in a undirected graphical model, which coincides with the separation in graph theory. The author also introduces the notion of d-separation in a directed graphical model. Geiger et al. [1990] presents the Bayes-ball algorithm that checks if two vertices in a directed graph $G = (V, A)$ are d-separated by a given set of vertices in $O(|V| + |A|)$. Pearl [1988] introduced the notion of Markov Blanket in the context of causal structure learning, under the name Markov boundary. Given samples of a set of random variables, causal structure learning aims at learning a directed graphical model that represents the causal structure of the random variables. Pearl [1988] and Spirtes et al. [2000] characterize graphically the Markov blanket: in undirected graphical model, it is the set of neighbors of B, while in directed graphical models, it is the set of parents, co-parents, and children of B.
Figure 3: The Markov blanket of t is $\{u, v\}$, and its Markov blanket in C is $\{u, w\}$.

Our generalizations of Markov blankets are minimal d-separators between two sets B and D. As we mentioned in Example 2, minimal d-separators play a role in causality theory. In that context, Tian and Paz [1998] prove that a minimal d-separator between two subsets of variables can be found with a polynomial algorithm in $O(|V| \cdot |A|)$.

3 Markov blanket in a set

We now introduce the notion of Markov blanket in a set.

Definition 1. Let B, C and E be three set of vertices in a graph $G = (V, A)$. The Markov blanket of B in C given E, denoted by $mb_C(B|E)$, is the smallest subset $M \subseteq C$ of vertices satisfying

$$X_B \perp X_{C \setminus (B \cup M)} | X_{M \setminus E}$$

for any distribution that factorizes on G, (2)

where smallest means that a set $M \subseteq C$ satisfies (2) if and only if $mb_C(B|E) \subseteq M$.

Note that this definition holds both in directed and undirected graphical models. When $E = \emptyset$, we use the simpler notation $mb_C(B)$. The Markov blanket $mb_C(B)$ coincides with $mb(B)$ if $C = V$. Figure 3 illustrates the difference between the usual Markov blanket and the Markov blanket in a set.

The next theorem shows the existence and uniqueness of the Markov Blanket in a set and provides a graphical characterization in directed and undirected graphical models.

Theorem 1. Let B, C and E be three sets of vertices in a graph $G = (V, A)$. The Markov blanket of B in C given E exists, is unique, and equal to

$$mb_C(B|E) = \left\{ v \in C : v \text{ is not (d-)separated from } B \text{ given } E \cup (C \setminus (B \cup \{v\})) \right\},$$

(3)

where “d-separated” and “separated” apply in directed and undirected graphical models respectively.

The Markov blanket in a set no longer admits a characterization in terms of parents, coparents, children and neighbor vertices. However, thanks to the characterization in [3], $mb_C(B|E)$ can be computed in $O(|C|(|A| + |V|))$ using a (d-)separation algorithm [Geiger et al. 1990].

Proof of Theorem 1. In undirected graphical models. Let B, C, and E be three sets of vertices, and M as in (3).

We start by proving that B is separated from $C \setminus (B \cup M)$ given $M \cup E$. Let v be a vertex in $C \setminus (B \cup M)$, and P be a $B-v$ path. As v does not belong to M, path P is not active given $E \cup (C \setminus (B \cup \{v\}))$, and there is a vertex in $E \cup (C \setminus (B \cup \{v\}))$ on $P \setminus \{v\}$. Let w be the first vertex of P in that set, starting from B. If w is in E, path P is not active given $E \cup M$. Otherwise, the $B-w$ restriction of P is active given $E \cup (C \setminus (B \cup \{w\}))$. Vertex w thus belongs to M and P is not active given $E \cup M$, which gives the result.

Let N be a subset of C such that B is separated from $C \setminus (N \cup B)$ given $N \cup E$. Let v be a vertex in M. By definition of v, there exists a $B-v$ path that is active given $E \cup C \setminus (B \cup \{v\})$
with a minimum number of arcs. Let \(P \) be such a path. The only intersection of \(P \) with \(E \cup C \) is \(\{v\} \). Path \(P \) is therefore not active given \(E \cup N \) if and only if \(v \) belongs to \(N \). Hence \(v \) belongs to \(N \), and we obtain \(M \subseteq N \).

The proof for directed graphical models is similar but more technical due to d-separation.

Proof of Theorem 1 directed graphical models. Let \(B, C, \) and \(E \) be three sets of vertices, and \(M \) as in (3).

We start by proving that \(B \) is d-separated from \(C \setminus (B \cup M) \) given \(M \cup E \). Let \(P \) be a trail between a vertex \(b \in B \) and a vertex \(v \in C \setminus (B \cup M) \). We prove that \(P \) is not active. Without loss of generality, we can suppose that \(P \cap B = \{b\} \). Indeed, if \(P \) is active, then any of its subtrails whose extremities are not in \(M \) must be active. As \(B \cap M = \emptyset \), it suffices to show that the subtrail \(Q \) between the last vertex of \(P \) in \(B \) (starting from \(b \)) is not active. If \(P \) has a v-structure that is not active given \(E \cup M \), or if \(P \) has a vertex that is not a v-structure in \(E \cup M \), then \(P \) is not active. Suppose now that we are not in one of those cases. Starting from \(b \), let \(w \) be the first vertex of \(P \) in \(C \) that is not the middle of a v-structure in \(P \), and let \(Q \) be the \(b-w \) subtrail of \(P \). By definition of \(w \), any vertex of \(Q \) that is not in the middle of a v-structure is not in \(C \), and by hypothesis it is not in \(E \), hence it is not in \(E \cup (C \setminus (B \cup \{v\})) \). Furthermore, by hypothesis, any v-structure of \(Q \) is active given \(E \cup M \). Suppose that \(w \) is not in \(M \): we obtain \(M \subseteq E \cup (C \setminus (B \cup \{w\})) \), and hence, any v-structure of \(Q \) is active given \(E \cup (C \setminus (B \cup \{w\})) \). Therefore \(Q \) is active given \(E \cup (C \setminus (B \cup \{w\})) \) and \(w \in M \), which is a contradiction. We deduce that \(w \in M \). Hence \(w \neq v \). As \(w \in M \) is not in the middle of a v-structure, \(P \) is not active given \(M \cup E \), which gives the result.

Conversely, let \(N \subseteq C \) be a set of vertices such that \(B \) is d-separated from \(C \setminus (N \cup B) \) given \(N \cup E \). We now prove that \(M \subseteq N \). This part of the proof is illustrated on Figure 4. Let \(v \) be a vertex in \(M \). As \(v \) is in \(M \), there is an active trail between \(B \) and \(v \) given \(E \cup (C \setminus \{v \cup B\}) \). Let \(P \) be such a trail. Without loss of generality, we can suppose \(B \cap P = \{b\} \). As \(P \) is active given \(E \cup (C \setminus \{v \cup B\}) \) and \(B \cap P = \{b\} \), any vertex of \(P \setminus \{b,v\} \) that is not in the middle of a v-structure is not in \(C \setminus \{v \cup B\} \), and hence not in \(C \), and not in \(N \). Starting from \(b \), let \(u_{1}, \ldots, u_{k} \) be an indexation of the vertices of \(P \) that are in the middle of v-structures in \(P \). We prove by iteration on \(i \) that \(\text{desc}(u_{i}) \cap (E \cup N) \neq \emptyset \). Suppose the result true up to \(i - 1 \), and \(P_{i} \) be the subtrail of \(P \) from \(b \) to \(u_{i} \). Suppose that \(u_{i} \) is not in \(\text{desc}(E) \). As \(P \) is an active trail given \(E \cup (C \setminus \{v \cup B\}) \) and \(u_{i} \) is in the middle of a v-structure, \(u_{i} \) has a descendant \(w \) in \(C \setminus \{v \cup B\} \), and there is a directed path \(Q \) from \(u_{i} \) to \(w \). Let \(w' \) be the first vertex of \(Q \) in \(C \setminus \{v \cup B\} \) and \(Q' \) the \(u_{i}-w' \) restriction of \(Q \). Note that we may have \(u_{i} = w \) or \(u_{i} = w' \). Suppose that \(w' \notin N \). It implies that \(w' \in C \setminus (N \cup E) \). By induction hypothesis, the trail \(P_{i} \) followed by \(Q' \) is active given \(N \cup E \) between \(B \) and \(C \setminus (N \cup E) \). It contradicts Equation (2) for \(N \). We deduce that
Proposition 1. Let B, C, C' and E be four sets of vertices. Then $mb_{C\cup C'}(B|E) = mb_{C}(B|E)$ if and only if $C' \perp B|C \cup E$.

Proof of Proposition 1 for undirected graphical models. Suppose that $C' \perp B|C \cup E$. Let $v \in mb_{C\cup C'}(B|E)$, there exists an active path Q between B and v such that $Q \cap (C \cup C' \cup E) = \emptyset$. Therefore $Q \cap (C \cup E) = \emptyset$. If $v \in C'$, then the assumption $C' \perp B|C \cup E$ implies that $Q \cap (C \cup E) \neq \emptyset$, which contradicts our assumption. We deduce that $v \in C$ and v is not separated from B by $C \cup E$. Therefore, $v \in mb_{C}(B|E)$. Let $u \in mb_{C}(B|E)$, there exists a path Q from B to u such that $Q \cap (C \cup E) = \emptyset$. If $Q \cap C' \neq \emptyset$, the assumption $C' \perp B|C \cup E$ implies that $C \cup E$ intersects Q which contradicts our assumption on Q. Therefore, $Q \cap (C \cup C' \cup E) = \emptyset$. We deduce that $v \in mb_{C\cup C'}(B|E)$. It achieves the proof.

Proof of Proposition 1 for directed graphical models. Let B, C, and C' be such that $C' \perp B|C \cup E$. We only have to show that, given a vertex v in C and a B-v trail P, then P is active given $(C \cup C')(\{B \cup \{v\}\}) \cup E$ if and only if P is active given $(C \setminus (B \cup \{v\})) \cup E$. Let v be a vertex in C and P be a B-v trail. W.l.o.g., we suppose that it intersects B at most once, and v at most once.

Suppose that P is active given $(C \setminus (B \cup \{v\})) \cup E$. Then P does not intersect C'. Indeed, suppose it intersects C' in a vertex w. Then, the B-w subtrail is active given $C \setminus (B \cup \{v\}) \cup E$, which contradicts $B \perp C'|C \cup E$. Furthermore, all the v-structures of P are active given $(C \cup C')(\{B \cup \{v\}\}) \cup E$, as they have a descendant in $(C \setminus (B \cup \{v\})) \cup E$. Hence P is active given $(C \cup C')(\{B \cup \{v\}\}) \cup E$.

Suppose now that P is active given $(C \cup C')(\{B \cup \{v\}\}) \cup E$. It intersects $C \setminus (B \cup \{v\}) \cup E$ only on v-structures, and all these v-structures are active given $(C \cup C')(\{B \cup \{v\}\}) \cup E$. Suppose that there is a v-structure that is not active given $(C \setminus (B \cup \{v\})) \cup E$, and let s be the first one starting from B. Then s has a descendant w in $C \setminus (C \cup E)$, and the B-s subtrail of P followed by the s-w path is active given $C \cup E$, which contradicts $B \perp C'|C \cup E$. Hence P is active given $(C \cup C')(\{B \cup \{v\}\}) \cup E$.

4 Directional Markov blanket

We write “a (d)-separator S” when we make statement that hold both in directed and undirected graphical models. Set S is a then a d-separator in directed graphical models, and a separator in undirected graphical models.

Definition 2. Let B,D, and E be three sets of vertices in a graph $G = (V,A)$. The Markov blanket of B in the direction of D given E, denoted $mb(B \rightarrow D|E)$, is the minimal (d)-separator M of B and D such that

$$D \perp M \mid M' \cup E \quad \text{for any (d)-separator } M' \text{ between } B \text{ and } D \text{ given } E.$$ (4)
Figure 5: Example of the directional Markov Blanket from B to D given an evidence set E. In this case $\text{mb}(B \rightarrow D|E) = \{u, v\}$

Figure 5 shows an example of the Markov Blanket of B in the direction D given an evidence E. Note that in this definition, the evidence set E can be such that $E \cap B \neq \emptyset$. The Markov blanket of B in the direction of D is the d-separator between B and D that is the nearest to B. Furthermore, the following proposition provides an alternative definition.

Proposition 2. Let $B, D,$ and E be three sets of vertices in a graph $G = (V, A)$. Let M be a minimal (d-)separator between B and D given E.

M satisfies \((4)\) if, and only if:

\[B \perp M' | M \cup E \quad \text{for any minimal (d-)separator } M' \text{ between } B \text{ and } D \text{ given } E. \quad (5) \]

Proof of Proposition 2 in undirected graphical models. Let M be a minimal d-separator. We start by proving \((4)\) implies \((5)\). Let M' be a minimal separator between B and D given E, and let P be a path between B and $x \in M'$, where M' is minimal, there exists a path Q from x to D such that $Q \cap (M' \cup E) \neq \emptyset$. The path R composed of P followed by Q is a B-D path. Since M is a d-separator, there exists $v \in R \cap M$. If $v \in Q$, then \((4)\) implies that $Q \cap (M' \setminus \{x\}) \neq \emptyset$, which contradicts the assumption on Q. Therefore, $v \in P$. We deduce that all path from B to M' is intersected by $M \cup E$, which implies that $B \perp M' | M \cup E$.

Suppose now that \((5)\) holds. Let Q be a path from $u \in M$ to D and M' be a separator between B and D given E. Since M is minimal, there exists a path P from B to u such that $P \cap (M \setminus \{u\}) = \emptyset$. The path R composed of P followed by Q is a B-D path, there exists $v \in R \cap (M' \cup E)$. Using the same arguments as above, $v \in Q$, which implies that $x \perp D | M' \cup E$.

The proof of Proposition 2 in directed graphical model is more involved and postponed to Section 4.3. Similarly to the Markov Blanket in a set, we need to prove that $\text{mb}(B \rightarrow D|E)$ in Definition 2 exists. The following theorem states the existence and uniqueness of the Directional Markov Blanket.

Theorem 2. Let $B, D,$ and E be three sets of vertices in a graph $G = (V, A)$. If there exists a (d-)separator between B and D given E, the Markov blanket of B in the direction of D given E exists, is unique, and is given by

\[
\text{mb}(B \rightarrow D|E) = \text{mb}_{\text{mb}(B|E)}(D|E) \quad \text{in undirected graphical models, and by}
\]

\[
\text{mb}(B \rightarrow D|E) = \text{mb}_{\text{mb}(B \cup D \cup E)(B|E)}(D|E) \quad \text{in directed graphical models.}
\]

The rest of the section is dedicated to the proofs of Proposition 2 in directed graphical models and of Theorem 2.
Remark 1. Using Definition 2, the Markov blanket of B in the direction of D given E exists if and only if there exists a d-separator between B and D given E. We can extend the definition of the Markov blanket of B in the direction of D given E as the set M of $V \setminus B$ satisfying

(i) $B \perp D|M \cup E$,
(ii) $B \perp D|M' \cup E$ implies $D \perp M'|M \cup E$,
(iii) $B \perp D|M' \cup E$ and $D \perp M'|M \cup E$ implies $M \subseteq M'$.

It is immediate that the two definitions coincide when there exists a d-separator between B and D. With this new definition, even without the existence of a d-separator, it follows from Theorem 4 in Section 4.2 that $mb(B \rightarrow D|E)$ exists and admits the following updated characterization

$$mb(B \rightarrow D|E) = \overline{D} \cup mb_{mb(B|E)}(D|E)$$

in undirected graphical models, and by

$$mb(B \rightarrow D|E) = \overline{D} \cup mb_{\overline{asc}(B \cup D \cup E)}(B|E)(\hat{D}|E)$$

in directed graphical models, where

$$\overline{D} = \begin{cases}
D \cap mb(B|E) & \text{in undirected graphical models,} \\
D \cap mb_{\overline{asc}(B \cup D \cup E)}(B|E) & \text{in directed graphical models,}
\end{cases}$$

and $\hat{D} = D \setminus \overline{D}$.

\section{4.1 Preliminary lemmas in directed graphical models}

In this section we present some technical results on d-Separators in directed graphical models. In the remaining of this section, B, D and E denote three sets of vertices in a graph $G = (V, A)$.

Lemma 1. Let M be a d-separator between B and D given E. Then any B-D trail in $\overline{asc}(B \cup D \cup M \cup E)$ intersects $M \cup E$ in a vertex x that is not a v-structure.

Proof. Let P be a B-D trail in $\overline{asc}(B \cup D \cup M \cup E)$. Starting from B, let v be the last v-structure of P that is not active given $M \cup E$ and that is in $asc(B)$, with v being equal to the first vertex of P if there is no such v-structure. Starting from v, let w be equal to the first v-structure of the v-d subpath of P that is not active given $M \cup E$, and to the last vertex of P if there is no such v-structure. By definition of v, vertex w has necessarily a descendant in D. Taking a B-w path followed by the v-w subtrail of P and then a w-D path, we obtain an active trail given $M \cup E$, which gives a contradiction.

Lemma 2. Let M be a d-separator between B and D given E, and $N \subseteq \overline{asc}(B \cup D \cup M \cup E)$. Then $M \cup N$ is a d-separator between B and D given E.

Proof. Suppose that there exists an active trail between B and D given $M \cup E \cup N$. Let P be such a trail. Since $N \in \overline{asc}(B \cup D \cup M \cup E)$, we deduce that P is a trail in $\overline{asc}(B \cup D \cup M \cup E)$ because all v-structures have a descendant in $M \cup E \cup N$ and $N \subseteq \overline{asc}(B \cup D \cup M \cup E)$. Lemma 1 ensures that P intersects $M \cup E$ in a vertex that is not a v-structure. It contradicts the assumption on P.

The following lemma is an extension of Theorem 6 of Tian and Paz [1998] where we allow an evidence E.

Lemma 3. If M is a d-separator between B and D given E, then $M \cap \overline{asc}(B \cup D \cup E)$ is also a d-separator between B and D given E.

\end{document}
Proof. Any trail that intersects $V \setminus \operatorname{asc}(B \cup D \cup E)$ is not active given $(M \cap \operatorname{asc}(B \cup D \cup E)) \cup E$. And by Lemma 1, any trail in $\operatorname{asc}(B \cup D \cup E)$ intersects $(M \cap \operatorname{asc}(B \cup D \cup E)) \cup E$ on a non v-structure, which gives the result.

Corollary 1. Let M be a set of vertices. Then there exists a subset of M that d-separates B and D given E if and only if

$$B \perp D | (M \cap \operatorname{asc}(B \cup D \cup E)) \cup E$$

Proof. An immediate corollary of the two previous lemmas.

Lemma 4. Let M be a d-separator between B and D given E, and $x \in \operatorname{asc}(B \cup D \cup M \cup E)$. Then at least one of the following statement is true: $x \perp B | M \cup E$ or $x \perp D | M \cup E$.

Proof. Suppose that none of the independences are satisfied. Then $x \notin M$, and there is a B-x trail Q that is active given $M \cup E$, and an x-D trail R that is active given $M \cup E$. As $x \in \operatorname{asc}(B \cup D \cup M \cup E)$, if trails Q and R intersect $V \setminus \operatorname{asc}(B \cup D \cup M \cup E)$, they are not active given $M \cup E$. As $x \notin M \cup E$, the trail composed of Q followed by R is a B-D trail that intersects $M \cup E$ only on v-structures. This contradicts Lemma 1 and gives the result.

4.2 Proof of Theorem 2

In this section we prove Theorem 2.

Lemma 5. Let M be a (d)-separator between B and D given E, then $\operatorname{mb}_M(B | E)$ is a (d)-separator between B and D given E.

Proof of Lemma 5 in undirected graphical models. Consider a path Q from B to D. Since $B \perp D | M \cup E$, we have $Q \cap (M \cup E) \neq \emptyset$. Starting from B, consider the first vertex x of $M \cup E$ on the path Q. By Theorem 1, $x \in \operatorname{mb}_M(B | E)$. It implies that $Q \cap \operatorname{mb}_M(B | E) \neq \emptyset$. We conclude that B and D are separated by $\operatorname{mb}_M(B | E) \cup E$.

Proof of Lemma 5 in directed graphical models. Suppose that $B \perp D | \operatorname{mb}_M(B | E) \cup E$. Let P be a trail between B and D that is active given $\operatorname{mb}_M(B | E) \cup E$. Since $\operatorname{mb}_M(B | E) \cup E \subseteq M \cup E$, all the v-structures of P are active given $M \cup E$. Since P is not active given $M \cup E$, there exists at least one element in $(M \cup E) \cap P$, which is not in a v-structure of P. Starting from B, consider the first element x on P such that $x \in (M \setminus \{x\}) \cup E$. The subtrail of P from B to x is active given $(M \setminus \{x\}) \cup E$. Therefore, $x \in \operatorname{mb}_M(B | E)$, which contradicts our assumption on P.

Corollary 2. Let M be a minimal (d)-separator between B and D, then $\operatorname{mb}_M(B | E) = M$.

Proof. Lemma 5 ensures that $\operatorname{mb}_M(B | E)$ is a d-separator (resp. separator) between B and D given E. Since $\operatorname{mb}_M(B | E) \subseteq M$ and M is minimal, we deduce that $\operatorname{mb}_M(B | E) = M$.

Lemma 6. Let B and D given E be three sets of vertices of an undirected graphical model (resp. directed graphical model) $G = (V, E)$. Let M be a separator between B and D given E (resp. a d-separator between B and D given E in $\operatorname{asc}(B \cup D \cup E)$). Then $\operatorname{mb}_M(B | E)$ is a (d)-separator between B and D given E, and $\operatorname{mb}_{\operatorname{mb}_M(B | E)}(D | E)$ is a minimal (d)-separator between B and D given E.

Proof of Lemma 6 in undirected graphical models. Let $M' = \operatorname{mb}_M(B | E)$ and M'' be equal to $\operatorname{mb}_{\operatorname{mb}_M(B | E)}(D | E)$. Lemma 5 ensures that M' and M'' are separators between B and D given E. We prove that M'' is minimal. Let $v \in M''$. There exists a path P from B to v such that $P \cap (M \cup E) \setminus \{x\} = \emptyset$ and there exists a path Q from v to D such that $Q \cap (M' \cup E) \setminus \{x\} = \emptyset$. Consider the path R composed of P followed by Q. Then R is a B-D path with $R \cap (M'' \cup E \setminus \{v\}) = \emptyset$. We deduce that R is not separated by $M'' \cup \{v\} \cup E$, which implies that $M'' \setminus \{v\}$ is not a separator given E. It achieves the proof.
Proof of Lemma 2 in directed graphical models. Let \(M' = \text{mb}_M(B|E) \) and \(M'' \) be defined as \(\text{mb}_{\text{mb}_M(B|E)}(D|E) \). We prove that \(M'' = \text{mb}_{\text{mb}_M(B|E)}(D|E) \) is a minimal d-separator. Lemma 3 ensures that \(M' \) and \(M'' \) are d-separators between \(B \) and \(D \) given \(E \). Let \(v \) be a vertex in \(M'' \). Let \(Q \) be a \(B-v \) trail active given \(M \cup E \setminus \{v\} \), and \(R \) be a \(v-D \) trail active given \(M' \cup E \setminus \{v\} \), and \(P \) the trail composed of \(R \) followed by \(Q \). Then \(P \) is a \(B-D \) trail in \(\sec(B \cup D \cup E) \) that intersects \(M'' \cup E \setminus \{v\} \) only on v-structures. Hence, Lemma 1 ensures that \(M'' \setminus \{v\} \) is not a d-separator, and Corollary 1 enables to conclude that \(M'' \) is a minimal d-separator.

The following theorem is a stronger version of Theorem 3.

Theorem 3. Let \(B \) and \(D \) given \(E \) be three sets of vertices of an undirected graphical model (resp. directed graphical model) \(G = (V,E) \). Let \(M \) be a separator between \(B \) and \(D \) given \(E \) (resp. a d-separator between \(B \) and \(D \) given \(E \) in \(\sec(B \cup D \cup E) \)). Then \(M_1 = \text{mb}_{\text{mb}_M(B|E)}(D|E) \) is the unique minimal (d-)separator between \(B \) and \(D \) given \(E \) such that \(M_1 \perp D|E \) for any (d-)separator \(M_2 \) in \(M \).

Proof of uniqueness in Theorem 3. Suppose that \(M_1 \) and \(M_1' \) are minimal (d-)separator between \(B \) and \(D \) given \(E \) such that \(M_1 \perp D|E \cup E \) for any (d-)separator \(M_2 \) in \(M \). Then \(M_1' \perp D|E \cup E \cup \{v\} \) for any (d-)separator \(M_2 \) in \(M \). Then \(M_1' \perp D|M_1 \cup \{v\} \) since \(M_1 \) is a minimal d-separator. We prove that \(M_1 \setminus \{v\} \) is a minimal d-separator between \(B \) and \(D \) given \(E \). Let \(M_2 \subseteq M \) be a separator between \(B \) and \(D \) given \(E \). We prove that \(M_1 \setminus \{v\} \subseteq M_2 \cup E \). There exists an active path between \(v \in M_1 \) and \(E \cup \{v\} \). Since \(v \in \text{mb}_M(B|E) \), there exists an active path between \(B \) and \(v \) given \(M \cup E \setminus \{v\} \). Let \(P \) be such a path. Therefore we have \(P \cap (M \cup E \setminus \{v\}) = \emptyset \). Let \(R \) be the path composed of \(P \) followed by \(Q \). \(R \) is a \(B-D \) path and \(R \cap (M_2 \cup E \setminus \{v\}) = \emptyset \), which contradicts the assumption on \(M_2 \).

Proof of Theorem 3 in directed graphical models. Lemma 1 ensures that \(M_1 \) is a minimal d-separator between \(B \) and \(D \) given \(E \). Let \(M_2 \subseteq M \) be a d-separator between \(B \) and \(D \) given \(E \). We prove that \(M_1 \cup M_2 \subseteq M \cup E \setminus \{v\} \). There exists an active path between \(v \in M_1 \) and \(D \cup \{v\} \). Let \(Q \) be such a path. Since \(v \in \text{mb}_M(B|E) \), there exists an active path between \(B \) and \(v \) given \(M \cup E \setminus \{v\} \). Let \(R \) be the trail composed of \(P \) followed by \(Q \). \(R \) is a \(D-B \) path and \(R \cap (M_2 \cup E \setminus \{v\}) = \emptyset \), which contradicts the assumption on \(M_2 \).

4.3. Proof of Proposition 2 in directed graphical models

The two following lemmas are intermediary technical results for the proof of the alternative definition of the directional Markov Blanket in directed graphical models in Proposition 2.

Lemma 7. Let \(M \) be a minimal d-separator between \(B \) and \(D \) given \(E \). Let \(N \subseteq \sec(B \cup D \cup E) \). Let \(L = \text{mb}_{\text{mb}_M}(B|E), \text{and } O = \text{mb}_L(D|E). \) Then \(L \cap M = O \cap M \).

Proof. Remark that \(M \subseteq \sec(B \cup D \cup E) \) because \(M \) is a minimal d-separator between \(B \) and \(D \) given \(E \). Inclusion \(O \subseteq L \) gives \(O \cap M \subseteq L \cap M \). Suppose that \(O \cap M \neq L \cap M \). Since \(L \cap M \) contains strictly \(O \cap M \), it ensures the existence of \(x \) in \((L \cap M) \setminus O \). By definition of \(L \) there exists a \(B-x \) trail \(Q \) in \(\sec(B \cup D \cup E) \) that is active given \((L \setminus \{x\}) \cup E \). Since \(O \subseteq L \), any vertex of \(Q \) in \(O \cup E \) is a v-structure. As \(M \) is minimal there is a \(x-D \) trail \(R \) that is active given \(M \cup E \). Since \(Q \) followed by \(R \) is a \(B-D \) trail in \(\sec(B \cup D \cup O \cup E) \), and \(Q \) does not intersect \(O \cup E \) on a vertex which is not a v-structure, by Lemma 1 there is a non v-structure of \(R \) in
O. Starting from x, let y be the last such vertex. Let T be the y-D subtrail of R. Note that R can intersect $M \cup E$ only on v-structures, and hence $y \notin M$ and T can intersect M only on v-structures. As $y \in L = \text{mb}_{M \cup N}(B|E)$, there is a B-y trail S in $\text{asc}(B \cup D \cup E)$ that intersects M only on v-structures. Hence, S followed by T is a B-D trail in $\text{asc}(B \cup D \cup E \cup M)$ that intersects $M \cup E$ only on v-structures, and Lemma \ref{lem:intersect} gives a contradiction.

Lemma 8. Let M and N be two d-separators between B and D given E. If N is minimal and $M \perp D|N \cup E$, then

$$B \perp N|M \cup E \quad (6)$$

Proof. Suppose that $B \perp N|M \cup E$. Let x be a vertex of $N \setminus M$ that is not d-separated from B given $M \cup E$, and Q be a B-x trail that is active given $M \cup E$. As N is minimal, $N \subseteq \text{asc}(B \cup D \cup E)$ and there is an x-D trail R that is active given $N \cup E$. This trail does not intersect M as this would contradict $M \perp D|N \cup E$. Hence Q followed by R is a B-D trail in $\text{asc}(B \cup D \cup E \cup M)$ that intersects $M \cup E$ only on v-structures, which gives a contradiction.

Proof of Proposition \ref{prop:intersect} in directed graphical models. Let M be a minimal d-separator between B and D given E.

We start by proving “not (3)” implies “not (1)”. Suppose that there exists a minimal d-separator M' such that $B \perp M'|M \cup E$. Since M' is minimal, Lemma \ref{lem:intersect} ensures that $D \perp M|M \cup E$. There exists a d-separator M' such that $D \perp M'|M \cup E$.

We now prove “not (1)” implies “not (3)”. Let M be a minimal d-separator, and M' be a d-separator such that $D \perp M'|M \cup E$. Let $M'' = M' \cap \text{asc}(B \cup D \cup E)$. Let $M_1 = \text{mb}_{\text{mb}_{M''}}(B|E)(D|E)$. Lemma \ref{lem:intersect} ensures that $B \perp D|M'' \cup E$. Since $M'' \subseteq \text{asc}(B \cup D \cup E)$, Lemma \ref{lem:intersect} ensures that $M \cap M''$ is a d-separator between B and D given E. Hence Lemma \ref{lem:intersect} ensures that M_1 is a minimal d-separator between B and D given E. To prove “not (3)”, we prove $B \perp M_1|M \cup E$.

Let x be a vertex of M such that $x \perp D|M'' \cup E$. We start by proving $x \perp B|M'' \cup E$. Let Q be a B-x trail. We prove that Q is not active given $M'' \cup E$. Since, $x \in \text{asc}(B \cup D \cup E)$ and $B \subseteq \text{asc}(B \cup D \cup E)$, if Q intersects $V \setminus \text{asc}(B \cup D \cup E)$, then it contains a v-structure in $V \setminus \text{asc}(B \cup D \cup E)$ which cannot be active given $M'' \cup E$ because $M'' \subseteq \text{asc}(B \cup D \cup E)$. Suppose now that Q is in $\text{asc}(B \cup D \cup E)$, and let R be an x-D trail that is active given $M'' \cup E$. As M'' d-separates B and D given E, Lemma \ref{lem:intersect} ensures that Q followed by R intersects M'' on a non-v-structure. This intersection is necessarily in Q and in M''. Hence Q is not active given $M'' \cup E$. And we have proved $x \perp B|M'' \cup E$.

We now prove that x does not belong to M_1. By Lemma \ref{lem:intersect}, it suffices to prove that x does not belong to $\text{mb}_{M \cup M''}(B|E)$. Suppose that there is a B-x trail active given $(M \cup M'' \setminus \{x\}) \cup E$. Let P be such a trail with a minimal number of v-structure. Remark that P is in $\text{asc}(B \cup D \cup E)$. Let b_0 be the first vertex of the trail starting from B. Let s_1, \ldots, s_k be the v-structure of P that have no descendants in $M'' \cup E$. We prove recursively that s_i has a descendant b_i in B. Indeed, s_i has either a descendant in B or in D. By iteration hypothesis, it cannot have a descendant in D as otherwise we would have a b_{i-1}-D trail that is active given $M'' \cup E$. Hence it has a descendant b_i in B, with gives the iteration hypothesis. Hence there is a b_k-x path that is active given $M'' \cup E$, which gives a contradiction.

The set $M \setminus M_1$ contains x and is therefore non-empty. Theorem \ref{thm:intersect} ensures that M_1 satisfies $M_1 \perp D|M \cup E$. Since M is a minimal d-separator between B and D given E, Lemma \ref{lem:intersect} ensures that $B \perp M|M_1 \cup E$. Proposition \ref{prop:intersect} ensures that $\text{mb}_{M \cup M_1}(B|E) = \text{mb}_{M_1}(B|E)$. As M_1 is a minimal d-separator between B and D given E, Corollary \ref{cor:intersect} ensures that $\text{mb}_{M_1}(B|E) = M_1$. We deduce that $\text{mb}_{M \cup M_1}(B|E) = M_1$. We therefore cannot have $M_1 \perp B|M \cup E$, as this would imply $M_1 = \text{mb}_{M \cup M_1}(B|E) = \text{mb}_{M}(B|E) = M$, which gives “not (3).”
References

Dan Geiger, Thomas Verma, and Judea Pearl. d-separation: From theorems to algorithms. In Proceedings of the Fifth Annual Conference on Uncertainty in Artificial Intelligence, UAI ’89, pages 139–148, Amsterdam, The Netherlands, The Netherlands, 1990. North-Holland Publishing Co.

Ron Kohavi and George H. John. Wrappers for feature subset selection. Artif. Intell., 97(1-2):273–324, December 1997.

Daphne Koller and Nir Friedman. Probabilistic graphical models: principles and techniques. MIT press, 2009.

S. L. Lauritzen, A. P. Dawid, B. N. Larsen, and H.-G. Leimer. Independence properties of directed markov fields. Networks, 20(5):491–505, 1990.

Steffen L. Lauritzen. Causal inference from graphical models. In In Complex Stochastic Systems, pages 63–107. Chapman and Hall/CRC Press, 1999.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1988.

Judea Pearl. Graphical models, causality, and intervention, 1993.

Jean-Philippe Pellet and André Elisseeff. Using markov blankets for causal structure learning. J. Mach. Learn. Res., 9:1295–1342, June 2008.

Ilya Shpitser and Judea Pearl. Identification of conditional interventional distributions. CoRR, abs/1206.6876, 2012.

P. Spirtes, C. Glymour, and R. Scheines. Causation, Prediction, and Search. MIT press, 2nd edition, 2000.

Jin Tian and Azaria Paz. Finding minimal d-separators, 1998.