Abstract

In a recent paper, Dixit et al. [Acta Arith. 177 (2017) 1–37] posed two open questions whether the integral

\[\hat{J}_k(\alpha) = \int_0^\infty \frac{xe^{-\alpha x^2}}{e^{2\pi x} - 1} \, _1F_1(-k, \frac{3}{2}; 2\alpha x^2) \, dx \]

for \(\alpha > 0 \) could be evaluated in closed form when \(k \) is a positive even and odd integer. We establish that \(\hat{J}_k(\alpha) \) can be expressed in terms of a Gauss hypergeometric function and a ratio of two gamma functions, together with a remainder expressed as an integral. An upper bound on the remainder term is obtained, which is shown to be exponentially small as \(k \) becomes large when \(\alpha = O(1) \).

Mathematics Subject Classification: 30E20, 33C05, 33C15, 34E05, 41A60

Keywords: Ramanujan’s integral, hypergeometric functions

1. Introduction

In the first of his letters to Hardy [5], Ramanujan gave the formula

\[I(\alpha) := \alpha^{-1/4} \left(1 + 4\alpha \int_0^\infty \frac{xe^{-\alpha x^2}}{e^{2\pi x} - 1} \, dx \right) = \beta^{-1/4} \left(1 + 4\beta \int_0^\infty \frac{xe^{-\beta x^2}}{e^{2\pi x} - 1} \, dx \right), \]

where \(\alpha\beta = \pi^2 \), and in [6] obtained the approximate evaluation

\[I(\alpha) \simeq \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{2}{3} \right)^{1/4}. \quad (1.1) \]

This approximation is found to be good for small and large values of \(\alpha \). A proof of this result was given in [1], where the asymptotic expansion

\[I(\alpha) \sim \frac{1}{\alpha^{1/4}} + \frac{\alpha^{3/4}}{6} - \frac{\alpha^{7/4}}{60} + \cdots \quad (\alpha \to 0) \]

was obtained.

In a recent paper, Dixit, Roy and Zaharescu [2] established an analogous formula for the integral

\[\hat{J}_k(\alpha) := \int_0^\infty \frac{xe^{-\alpha x^2}}{e^{2\pi x} - 1} \, _1F_1(-k, \frac{3}{2}; 2\alpha x^2) \, dx, \]
where F_1 denotes the confluent hypergeometric function and k is a positive integer. They showed that [2, (1.25), (1.27)]

$$\alpha^{-1/4} \text{F}_1(-2k, 1; \frac{3}{2}; 2) + 4\alpha^{3/4} \hat{J}_{2k}(\alpha) = \beta^{-1/4} \text{F}_1(-2k, 1; \frac{3}{2}; 2) + 4\beta^{3/4} \hat{J}_{2k}(\beta)$$

and

$$\alpha^{-1/4} \text{F}_1(-2k-1, 1; \frac{3}{2}; 2) + 4\alpha^{3/4} \hat{J}_{2k+1}(\alpha) = -\beta^{-1/4} \text{F}_1(-2k-1, 1; \frac{3}{2}; 2) - 4\beta^{3/4} \hat{J}_{2k+1}(\beta)$$

when $\alpha\beta = \pi^2$, where F_1 denotes the Gauss hypergeometric function. In the particular case $\alpha = \beta = \pi$, (1.2) yields the beautiful exact evaluation [2, Cor. 1.8]

$$\hat{J}_{2k+1}(\pi) := \int_0^{\infty} \frac{xe^{-\pi x^2}}{e^{2\pi x} - 1} \text{F}_1(-2k-1; \frac{3}{2}; 2\pi x^2) dx = -\frac{1}{4\pi} \text{F}_1(-2k-1, 1; \frac{3}{2}; 2)$$

(1.3)

for $k = 0, 1, 2, \ldots$. In addition, they gave the approximation [2, (1.26)]

$$4\alpha^{3/4} \int_0^{\infty} \frac{xe^{-\alpha x^2}}{e^{2\pi x} - 1} \text{F}_1(-2k; \frac{3}{2}; 2\alpha x^2) dx \simeq \text{F}_1(-2k, 1; \frac{3}{2}; 2) \left\{ -\alpha^{-1/4} + \left(\frac{1}{\alpha} + \frac{1}{\beta} + \frac{2}{3 \cdot \text{F}_1(-2k, 1; \frac{3}{2}; 2)} \right)^{1/4} \right\}.$$

(1.4)

which reduces to (1.1) when $k = 0$.

At the end of their paper, Dixit et al. posed the following two open questions, namely:

Question 1. Find the exact evaluation of the integral

$$\hat{J}_{2k}(\pi) := \int_0^{\infty} \frac{xe^{-\pi x^2}}{e^{2\pi x} - 1} \text{F}_1(-2k; \frac{3}{2}; 2\pi x^2) dx$$

(1.5)

for positive integer k.

Question 2. Find the exact evaluation of or at least an approximation to, the integral

$$\hat{J}_{2k+1}(\alpha) = \int_0^{\infty} \frac{xe^{-\alpha x^2}}{e^{2\pi x} - 1} \text{F}_1(-2k-1; \frac{3}{2}; 2\alpha x^2) dx$$

(1.6)

when $\alpha \neq \pi$ is a positive real number and k is a non-negative integer. In this note we partially answer the above two questions by obtaining simple closed-form expressions for these integrals which, although not exact, approximate the given integrals to within exponentially small accuracy when k is large and $a = O(1)$. In addition, we extend the scope of Question 1 by considering the integral $\hat{J}_{2k}(\alpha)$ with $\alpha > 0$ and, as a by-product of the analysis pertaining to Question 2, we supply an alternative proof of the result (1.3).

2. The analysis of $J_{2k}(a)$

Throughout we shall find it convenient to replace the parameter α by πa and define the integral $J_{2k}(a)$ by

$$J_{2k}(a) = \int_0^{\infty} \frac{xe^{-\pi ax^2}}{e^{2\pi x} - 1} \text{F}_1(-2k; \frac{3}{2}; 2\pi ax^2) dx$$

(2.1)
for \(a > 0 \) and positive integer \(k \). Then \(J_{2k}(1) = \hat{J}_{2k}(\pi) \) in (1.5). The confluent hypergeometric function terminates and we have [4, p. 322]

\[
1F_1(-2k; \frac{3}{2}; 2\pi x^2) = \sum_{r=0}^{2k} \frac{(-2k)_r}{(\frac{3}{2})_r} (2\pi ax^2)^r.
\]

Substitution of this series into the left-hand side of the above yields

\[
J_{2k}(a) = \sum_{r=0}^{2k} \frac{(-2k)_r}{(\frac{3}{2})_r} (2\pi a)^r
\int_0^\infty \frac{x^{2r+1} e^{-\pi ax^2}}{e^{2\pi x} - 1} \, dx
\]

upon reversal of the order of summation and integration.

Now

\[
\int_0^\infty \frac{x^{2r+1} e^{-\pi ax^2}}{e^{2\pi x} - 1} \, dx = \sum_{n\geq 1} \int_0^\infty x^{2r+1} e^{-\pi ax^2} (2\pi n x) dx = \frac{a^{1/2} r! \Gamma(r + \frac{3}{2})}{2(\pi a)^{r+3/2}} U_r,
\]

where

\[
U_r := \sum_{n\geq 1} U(r + 1, \frac{1}{2}, \pi n^2/a)
\]

with \(U(a, b, z) \) being the confluent hypergeometric function of the second kind [4, p. 322]. Then we obtain

\[
J_{2k}(a) = \frac{1}{4\pi a} \sum_{r=0}^{2k} (-2k)_r 2^r U_r.
\]

From the integral representation [4, p. 326]

\[
U(a, b, z) = \frac{1}{\Gamma(a)} \int_0^\infty e^{-zt} t^{a-1} (1 + t)^{b-a-1} \, dt \quad (a > 0, \Re(z) > 0),
\]

we find

\[
U_r = \sum_{n\geq 1} \frac{1}{r!} \int_0^\infty e^{-\pi n^2 t/a} t^r (1 + t)^{-r-3/2} \, dt = \frac{1}{r!} \int_0^\infty \frac{\psi(t) t^r}{(1 + t)^{r+3/2}} \, dt,
\]

where we have defined

\[
\psi(t) := \sum_{n\geq 1} e^{-\pi n^2 t/a}.
\]

Hence

\[
J_{2k}(a) = \frac{1}{4\pi a} \int_0^\infty \frac{1}{r!} \left(\frac{2t}{1 + t} \right)^r \frac{\psi(t)}{(1 + t)^{3/2}} \, dt
\]

\[
= \frac{1}{4\pi a} \int_0^\infty \frac{\psi(t)(1 - t)^{2k}}{(1 + t)^{2k+3/2}} \, dt,
\]

where the finite sum has been evaluated as [4, (15.4.6)]

\[
1F_0(-2k; \frac{2t}{1 + t}) = \left(\frac{1 - t}{1 + t} \right)^{2k}.
\]

We now divide the integration path into \([0, 1]\) and \([1, \infty)\) and make the change of variable \(t \to 1/t \) in the integral over \([0, 1]\). This yields

\[
J_{2k}(a) = \frac{1}{4\pi a} \int_1^\infty \left\{ t^{-1/2} \psi(1/t) + \psi(t) \right\} \frac{(t - 1)^{2k}}{(1 + t)^{2k+3/2}} \, dt.
\]
For the sum
\[\Psi(\tau) = \sum_{n \geq 1} e^{-\pi n^2 \tau}, \]
we have the well-known Poisson transformation given by [7, p. 124]
\[\Psi(\tau) + \frac{1}{2}(1 - \tau^{-1/2}) = \tau^{-1/2}\Psi(1/\tau). \]
With \(\tau = at \), this yields
\[t^{-1/2}\psi(1/t) = a^{1/2}(\phi(t) + \frac{1}{2}(1 - (at)^{-1/2})), \quad \phi(t) := \sum_{n \geq 1} e^{-\pi n^2 at}. \]
Hence
\[
J_{2k}(a) = \frac{1}{4\pi a} \int_{1}^{\infty} \left\{ \psi(t) + a^{1/2}\phi(t) + \frac{1}{2}a^{1/2}(1 - (at)^{-1/2}) \right\} \frac{(t - 1)^{2k}}{(1 + t)^{2k+3/2}} dt
= -\frac{1}{8\pi a} \int_{0}^{1} (1 - a^{1/2}t^{-1/2}) \frac{(1 - t)^{2k}}{(1 + t)^{2k+3/2}} dt
+ \frac{1}{4\pi a} \int_{\infty}^{1} \left\{ \psi(t) + a^{1/2}\phi(t) \right\} \frac{(t - 1)^{2k}}{(1 + t)^{2k+3/2}} dt.
\]
For positive integer \(k \), we have the integrals
\[
\int_{0}^{1} \frac{t^{-1/2}(1 - t)^{2k}}{(1 + t)^{2k+3/2}} dt = \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 1)}{\Gamma(2k + \frac{3}{2})}
\]
and
\[
\int_{0}^{1} \frac{(1 - t)^{2k}}{(1 + t)^{2k+3/2}} dt = \frac{1}{2k + 1} \ {}_{2}F_{1}(1, 2k + \frac{3}{2}; 2k + 2; -1)
= \ {}_{2}F_{1}(-2k, 1; \frac{3}{2}; 2) - \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 1)}{\Gamma(2k + \frac{3}{2})}
\]
by application of the transformation [4, p. 390]
\[
\ {}_{2}F_{1}(a, b; c; z) = \frac{\Gamma(a)\Gamma(c - a - b)}{\Gamma(c - a)\Gamma(c - b)} z^{-a} \ {}_{2}F_{1}(a, a - c + 1; a + b - c + 1; 1 - z^{-1})
+ \frac{\Gamma(c)\Gamma(a + b - c)}{\Gamma(a)\Gamma(b)} z^{a - c} (1 - z)^{c - a - b} \ {}_{2}F_{1}(c - a, 1 - a; c - a - b + 1; 1 - z^{-1}).
\]
Hence we obtain

Theorem 1. Let \(a > 0 \) and \(k \) be a positive integer. Then the integral \(J_{2k}(a) \) defined in (2.1) satisfies
\[
J_{2k}(a) = T_{2k}(a) + \epsilon_{2k}(a),
\]
where
\[
T_{2k}(a) = \frac{1}{4\pi a} \left\{ \left(\frac{1 + a^{1/2}}{2} \right) \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 1)}{\Gamma(2k + \frac{3}{2})} - \ {}_{2}F_{1}(-2k, 1; \frac{3}{2}; 2) \right\}
\]
and
\[
\epsilon_{2k}(a) = \frac{1}{4\pi a} \int_{1}^{\infty} \left\{ \psi(t) + a^{1/2}\phi(t) \right\} \frac{(t - 1)^{2k}}{(1 + t)^{2k+3/2}} dt
\]
with the sums \(\psi(t) \) and \(\phi(t) \) defined in (2.3) and (2.7).
It will be found subsequently that \(\epsilon_{2k}(a) \) is small for \(k \geq 1 \) when \(a = O(1) \) and so we shall refer to it as the remainder term. We observe that when \(a = 1 \), we have \(\phi(t) = \psi(t) \) and hence that
\[
\epsilon_{2k}(1) = \frac{1}{2\pi} \int_1^\infty \psi(t) \frac{(t - 1)^{2k}}{(1 + t)^{2k+3/2}} dt.
\]

3. The analysis of \(J_{2k+1}(a) \)

A similar treatment for the integral
\[
J_{2k+1}(a) = \int_0^\infty \frac{xe^{-\pi ax^2}}{e^{2\pi x} - 1} \, \, _1F_1(-2k-1; \frac{3}{2}; 2\pi ax^2) \, dx \quad (k = 0, 1, 2, \ldots)
\]
shows that
\[
J_{2k+1}(a) = \frac{1}{4\pi a} \sum_{r=0}^{2k+1} \{(-2k-1), 2U_r \} = \frac{1}{4\pi a} \int_0^\infty \psi(t) \frac{(1 - t)^{2k+1}}{(1 + t)^{2k+5/2}} dt.
\]

Dividing the integration path as in Section 2, we find
\[
J_{2k+1}(a) = \frac{1}{4\pi a} \int_1^\infty \{ t^{-1/2} \psi(1/t) - \psi(t) \} \frac{(t - 1)^{2k+1}}{(1 + t)^{2k+5/2}} dt.
\]

Application of (2.7) and some straightforward algebra then produces
\[
J_{2k+1}(a) = -\frac{1}{8\pi a} \int_0^1 (1 - a^{1/2}t^{-1/2}) \frac{(1 - t)^{2k+1}}{(1 + t)^{2k+5/2}} dt
\]
\[
+ \frac{1}{4\pi a} \int_1^\infty \{ a^{1/2} \phi(t) - \psi(t) \} \frac{(t - 1)^{2k+1}}{(1 + t)^{2k+5/2}} dt.
\]

Now
\[
\int_0^1 (1 - a^{1/2}t^{-1/2}) \frac{(1 - t)^{2k+1}}{(1 + t)^{2k+5/2}} dt = \frac{1}{2k+2} \, _2F_1(1, 2k + \frac{5}{2}; 2k + 3; -1) - \sqrt{\frac{\pi a}{2}} \frac{\Gamma(2k + 2)}{\Gamma(2k + \frac{5}{2})}
\]
\[
= 2 \, _2F_1(-2k-1, 1; \frac{3}{2}; 2) + (1 - a^{1/2}) \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 2)}{\Gamma(2k + \frac{5}{2})}
\]
by (2.8). Hence we obtain

Theorem 2. Let \(a > 0 \) and \(k \) be a non-negative integer. Then the integral \(J_{2k+1}(a) \) defined in (3.1) satisfies
\[
J_{2k+1}(a) = -T_{2k+1}(a) + \epsilon_{2k+1}(a),
\]
where
\[
T_{2k+1}(a) = \frac{1}{4\pi a} \left\{ \left(1 - a^{1/2}\right) \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 2)}{\Gamma(2k + \frac{5}{2})} + 2 \, _2F_1(-2k-1, 1; \frac{3}{2}; 2) \right\}
\]
and
\[
\epsilon_{2k+1}(a) = \frac{1}{4\pi a} \int_1^\infty \{ a^{1/2} \phi(t) - \psi(t) \} \frac{(t - 1)^{2k+1}}{(1 + t)^{2k+5/2}} dt
\]
with the sums \(\psi(t) \) and \(\phi(t) \) defined in (2.3) and (2.7).
When \(a = 1 \), we have \(\psi(t) = \phi(t) \) and hence \(\epsilon_{2k+1}(1) = 0 \). It then follows from (3.2) that
\[
J_{2k+1}(1) = \frac{1}{4\pi} 2F_1(-2k-1,1;\frac{3}{2};2),
\]
which supplies another proof of the result stated in (1.3) obtained in [2].

4. Estimation of the remainder terms

We examine the remainder terms \(\epsilon_{2k}(a) \) and \(\epsilon_{2k+1}(a) \) appearing in (2.11) and (3.4) and determine bounds and an estimate of their large-\(k \) behaviour. We consider first the term \(\epsilon_{2k}(a) \) which can be written as
\[
\epsilon_{2k}(a) = \frac{a^{-3/4}}{4\pi} \int_1^\infty \left\{ a^{1/4} \phi(t) + a^{-1/4} \psi(t) \right\} \frac{(t-1)^{2k}}{(1+t)^{2k+3/2}} dt
\]
With the change of variable \(t \to 1 + u \), we have
\[
\epsilon_{2k}(a) = \frac{a^{-3/4}}{4\pi} \left\{ a^{1/4} \sum_{n \geq 1} e^{-\pi n^2 a} \int_0^\infty e^{-\pi n^2 u} h(u) du + a^{-1/4} \sum_{n \geq 1} e^{-\pi n^2 a} \int_0^\infty e^{-\pi n^2 u} h(u) du \right\}
< \frac{a^{-3/4}}{4\pi} \left\{ a^{1/4} \Psi(a) \int_0^\infty e^{-\pi a u} h(u) du + a^{-1/4} \Psi(1/a) \int_0^\infty e^{-\pi a u} h(u) du \right\},
\]
where \(\Psi(a) \) is defined in (2.5) and \(h(u) = u^{2k}/(2 + u)^{2k+3/2} \). Evaluation of the integrals appearing in (4.1) in terms of the confluent hypergeometric function \(U(a,b,z) \) by (2.2), we then obtain the upper bound in the form

Theorem 3. The remainder term \(\epsilon_{2k}(a) \) defined in (2.11) satisfies the upper bound
\[
\epsilon_{2k}(a) < B_{2k}(a), \quad B_{2k}(a) := \frac{a^{-3/4}(2k)!}{4\sqrt{2\pi}} \{ E_{2k}(a) + E_{2k}(1/a) \},
\]
where
\[
E_{2k}(a) := a^{1/4} \Psi(a) U(2k + 1, \frac{1}{2}, 2\pi a).
\]
and \(\Psi(a) \) is given by (2.5).

The behaviour of this bound as \(k \to \infty \) with \(a \) fixed can be obtained by making use of the result [4, (13.8.8)]
\[
U(2k + 1, \frac{1}{2}, 2\pi a) \sim \frac{e^{\pi a}}{(2k)!} \sqrt{\frac{\pi}{2k}} e^{-4\sqrt{\pi}ak} \quad (k \to \infty, \ a \ll 2k/\pi).
\]
For values of \(a \approx 1 \), we can bound the sum \(\Psi(a) \) by
\[
\Psi(a) := \sum_{n \geq 1} e^{-\pi n^2 a} = e^{-\pi a} \left(1 + e^{-3\pi a} + e^{\pi a} \sum_{n \geq 3} e^{-\pi n^2 a} \right) < \lambda(a)e^{-\pi a},
\]
where
\[
\lambda(a) := 1 + e^{-3\pi a} + e^{\pi a} \sum_{n \geq 3} e^{-\pi n a} = 1 + e^{-3\pi a} + \frac{e^{-2\pi a}}{1 - e^{-\pi a}}.
\]
This then yields the estimate as $k \to \infty$

$$B_{2k}(a) \sim \frac{a^{-3/4}k^{-1/2}}{8\sqrt{\pi}} \left\{ a^{1/4} \lambda(a)e^{-4\sqrt{\pi}ak} + a^{-1/4} \lambda(1/a)e^{-4\sqrt{\pi}k/a} \right\}$$ \hspace{1cm} (4.4)

provided $a \gg \pi/(2k)$ and $a \ll 2k/\pi$ (that is, when a is neither too small nor too large). In the case $a = 1$ we have

$$B_{2k}(1) \sim \frac{\lambda(1)}{4\sqrt{\pi}} k^{-1/2} e^{-4\sqrt{\pi}k} \quad (k \to \infty).$$

The remainder term $\epsilon_{2k+1}(a)$ may be written as

$$\epsilon_{2k+1}(a) = \frac{a^{-3/4}}{4\pi} \int_1^\infty \left\{ a^{1/4} \phi(t) - a^{-1/4} \psi(t) \right\} \frac{(t-1)^{2k+1}}{(1+t)^{2k+5/2}} dt.$$

It is straightforward to show (we omit these details) that $a^{1/2} \phi(t) - \psi(t)$ has opposite signs in the intervals $a \in (0, 1)$ and $a \in (1, \infty)$ when $t \in [1, \infty)$, being negative in $a \in (1, \infty)$. Hence it follows that $\epsilon_{2k+1}(a) < 0$ when $a \in (1, \infty)$ and $\epsilon_{2k+1}(a) > 0$ when $a \in (0, 1)$. The same procedure employed for $\epsilon_{2k}(a)$ shows that

$$|\epsilon_{2k+1}(a)| < \frac{a^{-3/4}}{4\pi} \int_1^\infty \left\{ a^{1/4} \phi(t) + a^{-1/4} \psi(t) \right\} \frac{(t-1)^{2k+1}}{(1+t)^{2k+5/2}} dt$$

and therefore we obtain

Theorem 4. The remainder term $\epsilon_{2k+1}(a)$ defined in (3.4) satisfies the upper bound

$$|\epsilon_{2k+1}(a)| < B_{2k+1}(a), \quad B_{2k+1}(a) := \frac{a^{-3/4}(2k+1)!}{4\sqrt{2\pi}} \left\{ E_{2k+1}(a) + E_{2k+1}(1/a) \right\},$$ \hspace{1cm} (4.5)

where

$$E_{2k+1}(a) := a^{1/4}\Psi(a)U(2k + 2, \frac{1}{2}, 2\pi a).$$

and $\Psi(a)$ is given by (2.5). The leading behaviour of $B_{2k+1}(a)$ for large k and finite a is given by the right-hand side of (4.4).

5. Numerical results

To demonstrate the smallness of the remainder terms $\epsilon_{2k}(a)$ and $\epsilon_{2k+1}(a)$ we define the quantities

$$J_{2k}(a) := J_{2k}(a) - \frac{1}{4\pi a} \left\{ \frac{1 + a^{1/2}}{2} \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 1)}{\Gamma(2k + \frac{3}{2})} - 2F_1(-2k, 1; \frac{3}{2}; 2) \right\}$$

and

$$J_{2k+1}(a) := J_{2k+1}(a) + \frac{1}{4\pi a} \left\{ \frac{1 - a^{1/2}}{2} \sqrt{\frac{\pi}{2}} \frac{\Gamma(2k + 2)}{\Gamma(2k + \frac{5}{2})} + 2F_1(-2k - 1; 1; \frac{3}{2}; 2) \right\}.$$

\hspace{1cm} ^{1}\text{It is clear that this bound will not be sharp in the neighbourhood of } a \approx 1.
In Tables 1–3 we present numerical values of these quantities compared with their bounds $B_{2k}(a)$ and $B_{2k+1}(a)$ for a range of k and three values of the parameter $a = O(1)$. It is seen that this bound agrees very well with the computed values of $J_{2k}(a)$ and $J_{2k+1}(a)$. The estimates in (4.4) and (4.5) show that the remainder terms are exponentially small for large k when $a = O(1)$. Consequently, the terms $T_{2k}(a)$ and $T_{2k+1}(a)$ in (2.10) and (3.3) approximate $J_{2k}(a)$ and $J_{2k+1}(a)$, respectively, to exponential accuracy in the large-k limit.

Now

$$J_{2k}(0) = J_{2k+1}(0) = \int_0^{\infty} \frac{x}{e^{2\pi x} - 1} \, dx = \frac{1}{24};$$

but it is easily seen that $T_{2k}(a)$ and $T_{2k+1}(a)$ in (2.10) and (3.3) are $O(a^{-1})$ as $a \to 0$ and $O(a^{-1/2})$ as $a \to \infty$. Routine calculations show that the bounds $B_{2k}(a)$ and $B_{2k+1}(a)$ also possess the same behaviour in these limits. Consequently, the approximations $T_{2k}(a)$ and $T_{2k+1}(a)$ will not be good for small or large values of the parameter a, although it is worth pointing out that the range of validity in a will increase as k increases.

Table 1: Values of $J_{2k}(a)$ and the bound $B_{2k}(a)$ for $\epsilon_{2k}(a)$ in (4.2) as a function of k when $a = 1$.

k	$J_{2k}(1)$	$B_{2k}(1)$	k	$J_{2k}(1)$	$B_{2k}(1)$
1	1.250×10^{-5}	1.253×10^{-5}	10	3.905×10^{-12}	3.913×10^{-12}
2	8.571×10^{-7}	8.588×10^{-7}	20	3.186×10^{-16}	3.193×10^{-16}
3	9.818×10^{-8}	9.838×10^{-8}	30	2.305×10^{-19}	2.309×10^{-19}
5	2.883×10^{-9}	2.888×10^{-9}	50	2.433×10^{-24}	2.438×10^{-24}

Table 2: Values of $J_{2k}(a)$ and the bound $B_{2k}(a)$ as a function of k when $a = 2$ and $a = 0.50$.

k	$J_{2k}(2)$	$B_{2k}(2)$	k	$J_{2k}(2)$	$B_{2k}(2)$
1	5.987×10^{-5}	6.364×10^{-5}	10	9.509×10^{-10}	1.011×10^{-9}
2	7.856×10^{-6}	8.355×10^{-6}	20	1.075×10^{-12}	1.143×10^{-12}
3	1.563×10^{-6}	1.662×10^{-6}	30	6.016×10^{-15}	6.398×10^{-15}
5	1.162×10^{-7}	1.236×10^{-7}	50	1.668×10^{-18}	1.774×10^{-18}

$J_{2k}(\frac{1}{2})$ $B_{2k}(\frac{1}{2})$ $J_{2k}(\frac{1}{2})$ $B_{2k}(\frac{1}{2})$
|------|----------------------|----------------------|------|----------------------|----------------------|
| 1 | 1.693×10^{-4} | 1.800×10^{-4} | 10 | 2.689×10^{-9} | 2.860×10^{-9} |
| 2 | 2.222×10^{-5} | 2.363×10^{-5} | 20 | 3.040×10^{-12} | 3.234×10^{-12} |
| 3 | 4.420×10^{-6} | 4.700×10^{-6} | 30 | 1.702×10^{-14} | 1.810×10^{-14} |
| 5 | 3.287×10^{-7} | 3.496×10^{-7} | 50 | 4.719×10^{-18} | 5.019×10^{-18} |

The approximation in (1.4) when $\alpha = a\pi$ (with $\alpha/\beta = \pi^2$) yields

$$J_{2k}(a) \approx -\frac{F}{4\pi a} \left\{1 - \left(1 + a^2 + \frac{2\pi a}{3F}\right)^{1/4}\right\}, \quad F := 2F_1(-2k, 1; \frac{3}{2}; 2). \quad (5.1)$$
Table 3: Values of $J_{2k+1}(a)$ and the bound $B_{2k+1}(a)$ as a function of k when $a = 2$ and $a = 0.50$.

k	$J_{2k+1}(2)$	$B_{2k+1}(2)$	k	$J_{2k+1}(2)$	$B_{2k+1}(2)$
0	2.230×10^{-4}	2.376×10^{-4}	10	6.340×10^{-10}	6.743×10^{-10}
1	2.018×10^{-5}	2.147×10^{-5}	20	8.067×10^{-13}	8.579×10^{-13}
2	3.376×10^{-6}	3.591×10^{-6}	30	4.760×10^{-15}	5.063×10^{-15}
5	6.603×10^{-8}	7.022×10^{-8}	40	6.287×10^{-17}	6.686×10^{-17}

This yields the limiting behaviours

$$J_{2k}(a) \simeq \frac{1}{24} + a \left(\frac{F}{16\pi} - \frac{\pi}{96F} \right) + O(a^2) \quad (a \to 0)$$

and

$$J_{2k}(a) \simeq \frac{F}{4\pi \sqrt{a}} \left\{ 1 - \frac{1}{\sqrt{a}} + \frac{\pi}{6aF} + O(a^{-3/2}) \right\} \quad (a \to \infty).$$

The approximation (5.1) is found to be quite accurate in the limits of small and large a, with k finite. However, the accuracy is not good when $a = O(1)$. For example, when $a = 1$ and $k = 5$, the approximation (5.1) yields absolute relative errors of 8.8% and 19.2%, respectively; and this error increases as k increases, in marked contrast to the approximations in (2.10) and (3.3).

As a final remark, it is doubtful that the remainder terms $\epsilon_{2k}(a)$ and $\epsilon_{2k+1}(a)$ can be expressed in simple closed forms.

References

[1] B.C. Berndt and R.J. Evans, Some elegant approximations and asymptotic formulas of ramanujan, J. Comp. Appl. Math. 37 (1991), 35–41.

[2] A. Dixit, A. Roy and A. Zaharescu, Error functions, Mordell integrals and an integral analogue of a partial theta function, Acta Arith. 177 (2017) 1–37.

[3] F.W.J. Olver, Asymptotics and Special Functions, Academic Press, New York, 1974; Reprinted in A.K. Peters, Massachussets, 1997.

[4] F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.

[5] S. Ramanujan, Collected Papers, Cambridge University Press, Cambridge, 1927.

[6] S. Ramanujan, Notebooks, Tata Inst. Fund. Res., Bombay, 1957 (2 volumes).

[7] E.T. Whittaker and G.N. Watson, Modern Analysis, Cambridge University Press, Cambridge, 1952.