ON THE CHUDNOVSKY-SEYMOUR-SULLIVAN CONJECTURE ON CYCLES IN TRIANGLE-FREE DIGRAPHS

KEVIN CHEN†, SEAN KARSON ‡, DAN LIU §, AND JIAN SHEN¶

Abstract. For a simple digraph G without directed triangles or digons, let $\beta(G)$ be the size of the smallest subset $X \subseteq E(G)$ such that $G \setminus X$ has no directed cycles, and let $\gamma(G)$ be the number of unordered pairs of nonadjacent vertices in G. In 2008, Chudnovsky, Seymour, and Sullivan showed that $\beta(G) \leq \gamma(G)$, and conjectured that $\beta(G) \leq \gamma(G)/2$. Recently, Dunkum, Hamburger, and Pór proved that $\beta(G) \leq 0.88\gamma(G)$. In this note, we prove that $\beta(G) \leq 0.8616\gamma(G)$.

Key words. Digraph, triangle free digraph, cycle, in-degree, out-degree.

AMS subject classifications. 05C20, 05C35, 05C38.

In memory of David A. Gregory

†Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
‡Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
§Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
¶Corresponding author. Department of Mathematics, Texas State University, San Marcos, TX 78666 (js48@txstate.edu). Partially supported by NSF (CNS 0835834, DMS 1005206) and Texas Higher Education Coordinating Board (ARP 003615-0039-2007).