Simulation in microsurgery is an important pillar of training and maintenance of surgical skills. Between learning microsurgical skills and mastering them in clinical practice, the usefulness of low-fidelity simulators for improving microsurgery skills has been well documented. Nowadays the in vivo models represent the gold standard of microsurgical training; however, their use implies difficulties and limitations. We developed a portable, low-cost, and modern device to help trainees to practice at their convenience to maintain their microsurgical suturing skills. By using CAD and 3D printer designs, we developed a “microsurgery trainer” that contains a middle section with eight projections with holes, arranged as a circle. The idea is to pass the microsuture—preferably 7/0 or 8/0 sutures—in a clockwise manner—with the needle passing from “out to in” and “in to out” through each hole. This allows the trainee to use his/her wrist to be flexible and achieve better control over the micro needle. Studies evaluating the potential of such a device in shortening the learning curve are needed and will be crucial to define whether the “microsurgery arena” will help trainees to obtain better outcomes in microsurgical practice.

(Plast Reconstr Surg Glob Open 2021;9:e3782; doi: 10.1097/GOX.0000000000003782; Published online 19 August 2021.)

Disclosure: Drs. Francesco Costa and Jeyaram Srinivasan are the inventors of the device, (IT patent 102019000003573; international patent number PCT/IB2020/052242). No funding was received for this study or for the development of the device.

Related Digital Media are available in the full-text version of the article on www.PRSGlobalOpen.com.
through-hole (Fig. 1A). The central section is surrounded by an interchangeable multilayer elastic mesh (Fig. 1B). We have designed two exercises made to train different kinds of movements: the “slalom” and the “tie-the-knot” exercises. (See Video [online], which demonstrates the exercise that can be performed with the Microsurgery Arena. Slalom exercise: the needle is passed out-to-in and in-to-out through the eight holes and the trainees must work against the timer with precise movements to prove their dexterity and speed in relation to the angle of movement. Tie-the-knot exercise: designed to improve suturing passages and knot tying under tension.)

In the slalom exercise, a microsuture is passed in a clockwise manner with the needle passing “out-in” and “in-out” through each hole, as fast as possible (Fig. 1C). The inner middle circular section is designed to develop needle coordination in space along different directions, demanding different wrist orientations.

The elastic 3D-printed silicone mesh surrounding the central area allows trainees to exercise tying a knot with a microsuture under tension, while making a “secure” knot. (Fig. 1D). The entire device is anchorable to any dry and flat surface through a reusable and patented adhesive disk, to allow the execution of exercises in a stable manner. In addition, the modular structure also allows replacing the mesh with other exercise meshes, transforming the device into an exercise playground capable of meeting the needs of different microsurgical disciplines.

Although this device is not meant to outplay the actual gold standard for microsurgery, we believe that it could help improve microcoordination, finger/wrist flexibility, and better control over the microsurgery needle and the microsurgical knots, training movements in a lo-fi standardized scenario. It can be a valuable ally to microsurgical skill maintenance to be put beside in vivo and ex vivo training.

Studies evaluating the potential of such a device in shortening the learning curve are needed and will be crucial to define whether the multiple appealing features of the Microsurgery Arena will translate into better initial microsurgical training, faster trainee progression and, ultimately, better outcomes in microsurgical practice.

Francesco Costa, MD
Department of Plastic Reconstructive, Aesthetic and Hand Surgery
University Hospital of Lausanne (CHUV)
University of Lausanne
Lausanne, Switzerland
E-mail: francesco.costa@gmail.com

Fig. 1. Representation of the device. A, The central arena containing the conical projections used in the slalom exercise. B, The interchangeable multilayer elastic mesh used to perform the tie-the-knot exercise. C, The closeup of the slalom exercise. D, A microscopic view of the mesh sutured with an 8-0 microsuture in the tie-the-knot exercise.
REFERENCES

1. Evgeniou E, Walker H, Gujral S. The role of simulation in microsurgical training. *J Surg Educ.* 2018;75:171–181.
2. Cigna E, Bistoni G, Trignano E, et al. Microsurgical teaching: Our experience. *J Plast Reconstr Aesthet Surg.* 2010;63:e529–e531.
3. Abi-Rafeh J, Zammit D, Mojtahed Jaberi M, et al. Nonbiological microsurgery simulators in plastic surgery training: A systematic review. *Plast Reconstr Surg.* 2019;144:496e–507e.
4. Javid P, Aydin A, Mohanna PN, et al. Current status of simulation and training models in microsurgery: A systematic review. *Microsurgery.* 2019;39:655–668.
5. Chan WY, Mishra A, Srinivasan J, et al. 360 degrees Microsurgical skills practice: A ‘round-the-clock’ training device. *J Plast Reconstr Aesthet Surg.* 2008;61:1110–1111.
6. Chan WY, Figus A, Ekwobi C, et al. The “round-the-clock” training model for assessment and warm up of microsurgical skills: A validation study. *J Plast Reconstr Aesthet Surg.* 2010;63:1323–1328.