TÜRKİYE’DEKİ HAVALİMANLARININ PERFORMANSLARININ KÜMELEME VE TOPSIS YÖNTEMLERİYLE DEĞERLENDİRİLMESİ

Tülin MERCAN * Muhammet ATALAY **

Öz

Dünyada olduğu gibi Türkiye’de de havalimanları birçok bakımdan stratejik öneme sahiptir. Stratejik öneme sahip olan bu havalimanlarının performanslarının değerlendirilmesi de önemlidir. Bu çalışmanın amacı Türkiye’de faaliyet gösteren havalimanlarının performanslarının temel havalimanı göstergeleri kullanılarak kümeleme ve TOPSIS yöntemleriyle değerlendirilmesidir. Temel göstergeler olarak iç ve dış hat uçak sayısı, iç ve dış hat yolcu sayısı, iç ve dış hat ticari uçak sayısı ve iç ve dış hat yük miktarı (ton) kriterleri kullanılmıştır. Çalışmada ilk olarak bu kriterler kullanılarak havalimani hiyerarşik kümeleme yöntemi ile dokuz kümeyle ayrılmıştır. Daha sonra uzman görüşü alınarak kriterler ağırlıkları belirlenmiş ve elde edilen kümelerin performansları TOPSIS yöntemi ile değerlendirilmiştir.

Anahtar Kelimeler: Kümeleme, TOPSIS, Havalımı, Performans Değerlendirme.

*Doktora Öğrencisi. Kırklareli Üniversitesi Sosyal Bilimler Enstitüsü İşletme ABD, tlnmercan.88@gmail.com

**Dr. Öğr. Üyesi. Kırklareli Üniversitesi İİBF İşletme Bölümü Sayısal Yöntemler ABD, atalay@klu.edu.tr
PERFORMANCE EVALUATION OF AIRPORTS IN TURKEY USING CLUSTERING AND TOPSIS METHODS

Abstract

Airports in Turkey as well as in the world has a strategic importance in many respects. It is also important to evaluate the performance of these airports, which have strategic importance. The aim of this study was to evaluate the operating performance of the airports in Turkey with clustering and TOPSIS method using basic airport indicators. As basic indicators, the criteria of the number of domestic and international aircraft, the number of domestic and international passengers, the number of domestic and international commercial aircraft and the amount of domestic and international cargo (tons) were used. In the study, using these criteria, airports are divided into nine clusters by hierarchical clustering method. Then, by taking expert opinion, criteria weights were determined and the performances of the obtained clusters were evaluated by TOPSIS method.

Keywords: Clustering, TOPSIS, Airport, Performance Evaluation.

1. Giriş

Havayolu ulaşımı, özellikle gelişmiş ve gelişmekte olan ülkelerde hayatın vazgeçilmez unsuru haline gelmiştir. Hızlı olması ve kısa sürmesi nedeniyle iş hayatında, turistik amaçlarla, hava kargo taşımacılığı vb. ihtiyaçların karşılanmasında önemli bir yere sahip olmaktadır. Bundan dolayı havayolu ulaşımı ekonomik kalkınma için kilit bir unsur olarak görülmektedir.

Havalimanları bulduğu bölge ekonomisine katkıda bulunmakla beraber, çevresinde bulunan işletmelerin gelir düzeyini olumlu olarak etkilemekte ve ekonomiyi canlandırma görevi üstlenmektedir. Bunun yanı sıra gelen ve giden
turistler vasıtası ile bulunduğu ülke imajını da etkilemektedir. Havalimanlarının ülke ve bölge ekonomileri için önemini artmasından dolayı dünya ekonomisindeki önemi de daha çok artmaya başlamıştır.

İşletmelerin amaçlarını gerçekleştirebilmek, gelecekle ilgili planlar ve stratejiler belirlemesi noktasında performans değerlendirmesi önemli hale gelmiştir. Gün geçtikçe önemi artan havalanlarının da performanslarının ölçülmemesi ve değerlendirilmesi gerekmektedir. Etkin bir performans değerlendirme için işletmelerin davranışları değerlendirilmesi, kriterler ve kriter ağırlıkları belirlenmelidir. Performans değerlendirmesinde çok kriterli karar verme (ÇKKV) yöntemleri de sıkılıkla kullanılan yöntemlerdir. Bu yöntemler, birden fazla kriter ve alternatifleri birlikte değerlendirerek, alternatifler arasındaki en iyi olanı seçmektedir. Bu çalışmada da ÇKKV yöntemlerinden biri olan TOPSIS (Technique For Order Performance By Similarity To Ideal Solution) yöntemi kullanılmaktadır.

Öte yandan havalimanları farklı kapasitelerde oldukları için tümünü birlikte performans değerlendirmesine tabi tutmak anlamlı olmayacaktır. Bunun için öncelikle benzer özellikler gösterenlerin tespit edilip bir araya getirilerek oluşan grupların kendi aralarında değerlendirilmesinin uygun olacağı düşünülmüştür. Bu amaçla bu çalışmada, Türkiye’de faaliyet gösteren 56 havalimanı kümeleme yöntemi kullanılarak gruplandırılmış ve elde edilen kümelerin performansları TOPSIS yöntemi ile değerlendirilmiştir.

2. LİTERATÜR TARAMASI

Havalimanları için performans ölçümüne yönelik araştırmalar, aralarında çok kriterli karar verme teknikleri ve kümeleme analizi de bulunan farklı yöntemler kullanılarak çokça yapılagelmiştir. Avcı ve Aktaş (2015) yaptıkları çalışmada, iç ve dış hatlarda faaliyet gösteren Türkiye’deki havalimanlarının 2013-2014 yıllarına

Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl: 14, Sayı: 37, Nisan 2021
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

ait havacılık verilerini kullanarak yaz ve kış dönemlerindeki performanslarını Veri Zarflama Analiz (VZA) yöntemi ile araştırmışlardır. Yapılan analizin sonuçları, Atatürk Havalimanının yaz ve kış dönemlerinde en yüksek etkinliğe, Kars ve Sivas Havalimanlarının yaz dönemlerinde en düşük etkinliğe, Muğla Dalaman ve Muğla Milas Havalimanlarının ise kış dönemlerinde en düşük etkinliğe sahip olduğunu göstermektedir. Yani sıra, en yüksek verimliliğe, yaz döneminde Nevşehir Havalimanının, kış döneminde ise Denizli Havalimanının sahip olduğunu ortaya koymaktadır. Çınaroğlu ve Avcı (2017) çalışmalarında, Türkiye’de faaliyet gösteren havalimanlarının etkinlik ve verimliliklerini VZA yöntemi ile 2015-2016 yıllarına ait verileri kullanarak değerlendirme çalışmışlardır. Analizin sonuçlarına göre, iç hatlarda İstanbul Atatürk ve Adana Havalimaneleri, dış hatlarda ise İstanbul Atatürk ve Antalya Havalimaneleri tam etkin havalimandır. İç hatlarda en yüksek verimliliğe Trabzon Havalimanı, en düşük verimliliğe Diyarbakır Havalimanının sahip olduğu; Mardin Havalimanının dış hatlarda ise en yüksek verimliliğe, Diyarbakır Havalimanının en düşük verimliliğe sahip olduğu belirlenmiştir. Asker, Kiracı ve Yaşar (2018) çalışmalarında, Türkiye’nin yolcu sayısına göre en büyük 15 havalimanın 2012-2016 yılları arasındaki operasyonel etkinlik ölçümünü VZA ve TOPSIS yöntemlerini kullanarak değerlendirmişlerdir. Etkin ve etkin olmayan havalimanları yapılan çalışma sonucunda tespit edilmiştir. Ömürbek, Demirgubuz ve Tunca (2013) yaptıkları çalışmada, Türkiye’deki 40 havalimanının performansını ölçümünü VZA kullanarak değerlendirmişlerdir. Uygulama sonucunda etkin ve etkin olmayan havalimaneleri ve etkin olmayan havalimanelerin örnek alabileceği referans havalimaneleri belirlenmiştir. Yalçın (2018) çalışmasında, 2013-2014-2015 yıllarına ait veriler kullanarak Türkiye’de faaliyet gösteren havalimanlarının stokastik sınır analizi ile etkinliklerinin ölçülmesini amaçlamaktadır. Çalışma sonucunda elde edilen bulgularda, bütün yıllarda Süleyman Demirel Havalimanı birinci sıradı yer almıştır. Altın, Karaatlı ve Budak
(2017) tarafından gerçekleştirilen çalışmada, Avrupa’nın en büyük 20 havalimanının performansları Entropi, COPRAS (Complex Proportional Assessment), VIKOR (Vise Kriterijumska Optimizacija I Kompromisno Resenje) ve VZA yöntemleri ile değerlendirilmiştir. Araştırma sonucunda, 10 havalimanının etkin olduğu sonucuna ulaşılmıştır. Köleoğlu ve Demirel (2019) çalışmalarında, Türkiye’nin önemli turizm kentlerindeki 16 havalimanının etkinliklerini VZA yöntemiyle değerlendirilmişdir. Analiz sonucunda, İstanbul Atatürk, Muğla Dalaman, Muğla Milas Bodrum, Isparta, Nevşehir Kapadokya ve Denizli Havalanları etkin bulunmuştur. Yalcin ve Ayyıldız (2018) yaptıkları çalışmada, k-ortalamalar kümeleme yöntemi ile Türkiye’de faaliyet gösteren 55 havalimanına ait verileri analiz etmişlerdir. Kümelemede havalimanını kullanan yolcular, havalanlarında taşınan kargo, uçuş sayısı gibi değişkenler kullanılmıştır. Araştırma sonucunda, benzer özelliklere sahip havalimanların altı gruba ayrıldığı belirlenmiştir.

Güner, Ergüzel ve Cebeci (2019) tarafından gerçekleştirilen çalışmada, Avrupa, Asya ve Kuzey Amerika havalimanlarının operasyonel etkinliği değerlendirilmiştir. Çalışmada, her bölgeden beş adet havalimanı incelenmiştir. Radyal olmayan VZA ile etkin ve etkin olmayan havalimanları tespit edilmiştir. Asya bölgesinde faaliyet gösteren havalimanlarının ortalama etkinliğinin rakiplerine göre daha yüksek olduğu belirlenmiştir. Cui, Wei, Li ve Li (2016)’ın çalışmalarında, havalimanı grupları için oluşum mekanizması farklı incelenmiştir. 2010-2014 yılları arasında faaliyet gösteren 45 Çin havalimanı K-ortalamalar kümeleme yöntemi ile analiz edilmiştir. Analiz sonucunda bölgesinde kalkınma, altyapı koşulları, operasyonel güç, talep koşulları, destek endüstrisi, hizmet gücü ve teknoloji değişkenleri kullanılarak havalimanlarının üç gruba ayrıldığı görülmüştür. Rocha, Barom, Silva ve Costa (2015), Brezilya’daaki 15 havaalanı terminalerinin operasyonel performansını De Borda ve AHP (Analitik Hiyerarş Prosesi) yöntemlerini kullanarak analiz etmişlerdir. 8 değerlendirme kriteri
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

dikkate alınarak 18.062 katılımcı tarafından yapılan değerlendirme sonucunda, kriter ağırlıkları AHP yöntemi ile belirlenmiş ve 15 havaalanı terminalleri De Borda yöntemi kullanılarak sıralanmıştır.

Fuerst ve Gross (2018), küresel havalimanlarının ticari performansını etkileyen faktörleri test etmektedir. 30 ülkede 75 havalimanının panel veri kümesini kullanılmıştır. Çalışmada, uluslararası yolcuların payı, ticari alanın büyüklüğü, havalimanı büyüklüğü ve perakende alanının karma ve terminal içi konumu önemli belirleyiciler olarak bulunmaktadır. İkinci bulgu ise, daha yüksek ticari gelir elde etme ve bir havaalanının havacılık dışı operasyonları için kârlılık sağlamada ölçük ekonomilerin varlığını önemli olduğu göstermektedir.

Bezerra ve Gomes (2018), havaalanı yöneticilerinin performans ölçüm uygulamalarının temel yönleriyle ilgili mevcut durumunu küme analizi, çoklu regresyon analizi ve boşluk analizi ile değerlendirmektir. Brezilya’da havaalanı yöneticilerinin bir kısmının farklı performans boyutları ile değerlendirdikleri çalışma sonucunda, performansın ölçülmesinde güvenilir, ekonomik-mali hizmet kalitesi gibi operasyonal konuların önemli olduğunu, rekabet, uzun vadeli ekonomik sonuçlar ve havaalanı faaliyetlerinin çevresel ve sosyal sonuçlarının performansın ölçülmesinde önemli olmadığını ortaya koymuşlardır.

Ömürbek, Dağ ve Eren (2020), EM (Expectation Maximization/Beklenti Maksimizasyon) algoritmasına göre kümeledikleri Türkiye’deki 49 havaalanının performansını Borda Sayım yöntemi ile değerlendirmişlerdir. Havaalanlarının kümelenmesinde; uçak sayısı, ticari uçak sayısı, yük miktarı, yolcu sayısı, satış gelirleri, hizmet giderleri, yolcuya hizmet verilen alan, yolcu terminalleri toplam alan, bilgi işlem cihaz sayısı, personel sayısı, kurtarma cihaz sayısı, hava ve radar seyrüsefer sistemleri, haberleşme telsiz cihazları, en yakın merkeze uzaklık, denizden yükseklik, hava sıcaklık ortalaması, yangınla mücadele kategorisi ve
arac envanteri kriterlerini kullanmışlardır. Analiz sonucunda havalimanları beş kümeye ayrılmıştır ve bu kümelerin performans değerlendirme Borda Sayım yöntemi ile yapılmıştır. Fuellhart ve O’Connor (2018), Küresel ölçekte 53 bölgeden 131 havalimanının arz yönlü sınıflandırılmasını hiyerarşik kümeleme analizi ile rekabet, güzergahlar ve uçak kapasitelerini kullanarak değerlendirmişlerdir. Araştırma sonucunda 131 havalimanı altı gruba ayrılmıştır. Magalhaes, Reis ve Macario (2015), esnek olarak tanımlanan 140 Kuzey Amerika, Avrupa ve Asya havaalanını finansal ve verimlilik göstergelerini dikkate alarak hiyerarşik kümeleme analizi ile incelemişlerdir. Araştırma sonucunda seçilen 140 Kuzey Amerika, Avrupa ve Asya havaalanı sekiz kümeye ayrılmıştır. Marta (2017), dünya havaalanlarını ele alınan yolcu sayısındaki eğilim açısından kümeleme analizi ile sınıflandırmaktadır. Araştırma sonucunda dünya havalimanları saydaki mevsimsel değişim açısından sınıflandırılmış ve benzer eğilim gösteren birkaç havalimanı grubu bulunmuştur. Mayer (2016), 2013 Dünya Havaalanı Trafik Raporu’ndaki verilerden yararlanarak hiyerarşik kümeleme analizi ile 35 Avrupa, 35 Kuzey Amerika, 22 Asya-Pasifik, 11 Latin Amerika ve Karayipler, 7 Orta Doğu ve 4 Afrika havaalanları olmak üzere 114 havaalanını kargo iş özelliklerine göre sınıflandırılmıştır. Kargo faaliyetleriyle ilgili olarak belirgin farklılıklar gösteren sekiz farklı küme tanımlanmıştır. Wang, Taylor ve Wanke (2011), havalimanlarını uçak trafiğine göre kümeleme analizini kullanarak değerlendirilmişlerdir ve yeni bir havaalanı algoritması sunmuşlardır. Araştırma sonucunda ortaya çıkan kümerleri Haziran 2010’dan itibaren kalkış ve varış trafiğine göre kümeleri sınıflandırmışlardır. Malighetti, Paleari ve Redondi (2009), Avrupa ağında havalimanlarını değerlendirilmişdir. Avrupa ağındaki 467 havaalanını yolcu sayısı, etkilenen toplam hareketler, rota veya havayolu sayısı, GSYİH değişkenlerini kullanarak kümeleme yöntemi ile sınıflandırmıştır. Analiz sonucundasekiz küme belirlenmiştir. Çalışmada, Avrupa havalimanlarının sınıflandırılması ile her havalimanının faaliyet gösterdiği
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

rekabetçi bağlamın daha iyi anlaşılmasını sağlamaktadır. Adikariwattage, Barros, Wirasinghe ve Ruwanpura (2012), yolcu özelliklerine ve terminal büyüklüğüne göre havaalanı sınıflandırma kriterlerini belirlemişlerdir. Havaalanlarını, kapı sayısı, yıllık uluslararası yolcu hacmi, yurtiçi transfer yolcularının yıllık hacmi ve yurt içi varış noktasi yolcularının yıllık hacmi gibi temel değişkenler kullanarak korimalamalar kümeleme tekniği ile kümelemişlerdir. Analiz sonucunda ABD’deki havaalanları on altı kümeye ayrılmıştır.

Sarkis ve Talluri (2004), VZA ve kümeleme yöntemlerini kullanarak 5 yıl boyunca 44 büyük ABD havaalanının operasyonel performansını değerlendirmekteydi. Verimlilik önlemleri, havaalanı işletme maliyetleri, havaalanı çalışanlarının sayısı, kapılar ve pistler dahil dört kaynağı girdi ölçüsü ve işletme geliri, yolcu akışı, ticari ve genel havacılık hareketi ve toplam kargo taşımacı olmak üzere beş çıktı ölçüsü kullanılmıştır. Analiz sonucunda 44 büyük ABD havaalanları on üç kümeye ayrılmıştır.

3. YÖNTEM

Bu çalışmada Türkiye’de faaliyette bulunan 56 havalimanının performansları kümeleme ve TOPSIS yöntemleri ile değerlendirilmektedir. Bu bölümde sırasıyla kümeleme ve TOPSIS yöntemleri açıklanmaktadır.

3.1. Kümeleme Yöntemi

Kümeleme analizi, gruplanmamış gözlemleri benzer özelliklere göre gruplandırılmak için geliştirilmiş bir yöntemdir (Alpar, 2013: 317). Küme analizi, bireylerin veya nesnelerin anlamlı alt gruplarını geliştirmek için analitik bir tekniktir. Özellikle, amaç bir varlık örneğini (bireyler veya nesneler), varlıklar arasındaki benzerliklere dayanarak az sayıda birbirini dışlayan gruplara ayırılmaktır (Hair vd., 2014: 418). Başka bir ifade ile kümeleme analizi,
araştırmacıya gruplanmamış verileri gruplandıarak kısa bilgiler sunmaktadır. Ayrıca araştırmacılar kümeleme analizini hipotez testi, gruplar için tahmin, kümelerin değerlendirilmesi, aykırı değerlerin bulunması ve gerçek tiplerin belirlenmesi amacıyla da kullanmaktadır (Kalaycı, 2010:349).

Kümeleme analizi, değişkenlerin benzerliklerine veya benzememe durumlarına göre kendi içinde homojenliği ve kümeler arasında heterojenliği yüksek kümeler oluşturmaktadır. Böylelikle, incelenen değişkenlerin aralarındaki benzerliklerine göre belirli kümeler içinde toplanarak sınıflandırılarak, değişkenlerin ortak özelliklerinin ortaya konması ve bu kümeler ile ilgili açıklamalar yapılması sağlanmaktadır (Hand vd., 2001: 85). İşlem başarılı olursa, kümeler içindeki nesneler geometrik olarak çizildiğinde birbirine yakın olacak ve farklı kümeler birbirinden uzak olacaktır (Hair vd., 2014: 472). Değişkenlerin birbirinden ayırt edilmesi ve gruplara ayrılması amacıyla benzerlik ve farklılık ölçümleri kullanılmaktadır. Benzerlik ölçümlerinin hesaplanması, değişkenlerin nicel / nitel, kesikli / sürekli, aralıklı / oran ölçeği gibi durumlarına göre farklılık göstermektedir (Çokluk vd., 2016: 148-149). Değişkenler aralıklı veya oran ölçeği ile belirli bir kümeye giren ise öklid uzaklık ölçümleri kullanılmaktadır. Kümeleme analizinde uzaklık değerlerinin normalliği yeterli görülmekte, normal dağılım varsayımı az önem sahib olmakta ve kovaryansa ilişkin bir varsayım kullanılmaktadır (Hand vd., 2001: 26).

Değişkenlerin benzerliklerine göre kümelere ayrılmışında kullanılan farklı kümeleme analizi yöntemleri bulunmaktadır. Kümeleme analizinde en çok kullanılan yöntemler hiyerarşik kümeleme ve hiyerarşik olmayan kümeleme yöntemleridir (Blashfield ve Aldenferder, 1978: 271). Hiyerarşik kümeleme yöntemini temel olarak iki gruba ayırılır. Bunlar birleştirici hiyerarşik kümeleme yöntemi ve ayırıcı hiyerarşik kümeleme yöntemidir. Birleştirici ve ayırıcı hiyerarşik yöntemler, aşama sırasını birbirlerine göre ters yönde inşa
Türkiye’deki Havalimanlarının Performanslarının Kümелеme ve TOPSIS Yöntemleriyle Değerlendirilmesi

etmektedirler (Alpar, 2013: 322). Hiyerarşik kümeye teknikleri, bir serinin art arda birleşmesi ya da bir serinin art arda bölünmesi ile gerçekleşmektedir. Birleştirici hiyerarşik yöntemlerde başlangıçta nesne sayısı kadar kümeler vardır. En çok benzenen nesneler ilk olarak gruplandırılır ve bu gruplar benzerliklerine göre birleştirilir. İşlem sonunda tüm alt gruplar tek bir kümeye altında toplanmış olur. Ayırıcı hiyerarşik yöntemlerde ise süreç tam tersi şekilde ilerlemektedir. Başlangıçta tüm nesnelerden oluşan tek bir grup vardır. Bir alt gruptaki nesneler diğer gruptaki nesnelerden uzak olacaktır şekilde iki alt gruba ayrılar. İşlemler nesne sayısı kadar alt grup olana kadar devam eder. İşlem sonunda her nesne bir grup oluşturur (Johnson ve Wichern, 2007: 680). Hiyerarşik kümeme yöntemi uygulanırken küme sayısı önceden bilinmemektedir. Hiyerarşik kümeme verilerin nasıl gruplandığı aşamalar halinde belirtilmek ve bu aşamalar dendogram adı verilen ağaç grafiği ile gösterilmektedir. Birleştirici ve ayırıcı hiyerarşik yöntemlerdeki işlemlerin sonuçları dendogram adı verilen iki boyutlu diyagramla gösterilmektedir (Alpar, 2013: 322). Tek Bağlantı Yöntemi, tam bağıntı yöntemi, ortalama bağıntı yöntemi ve Ward yöntemi, sıklıkla kullanılan birleştirici hiyerarşik kümeme yöntemleridir (Johnson ve Wichern, 2007: 682-693):

Tek Bağlantı Yöntemi: Tek bağıntı yönteminde en yakın komşuya ait en yakın mesafede ve en çok benzerliği olan nesnelerin birleştirilmesiyle kümler oluşturulur. Bu yöntem en yakın komşuluğ olarak da bilinmektedir. Bu yöntemde birleştirme işlemi uzaklıklar matrisi kullanılarak yapılmakta ve art arda tekrar edilerek sürdürülmektedir.

Tam Bağlantı Yöntemi: Tam bağıntı yönteminde kümelenme tek bağıntı yöntemindeki gibi gerçekleşmektedir. Tek farkı, her aşamada her kümeden bir nesne olmak üzere en uzak mesafede olan iki nesne birleştirilerek grup oluşturulmasıdır.
Ortalama Bağlantı Yöntemi: Ortalama bağlantılı yöntemi iki küme arasındaki mesafeyi, bir çiftin üyelerinin her bir kümeye ait olan çiftlerin arasındaki ortalama mesafe olarak ele almaktadır.

Ward Yöntemi: Ward yöntemi küme içindeki varyansı minimum, homojenliği maksimum yapacak kümeler oluşturmakta ve hata kareleri toplamından yararlanmaktadır.

Hiyerarşik olmayan kümeleme yöntemleri, araştırmacının deneyimlerine dayanarak öngörüdüğü bir küme sayısı var ise kullanılmaktadır. K–ortalama yöntemi ile en çok olabilirlik yöntemi hiyerarşik olmayan kümeleme yöntemlerinden çok kullanılan yöntemlerdir (Turanlı vd., 2006: 99). K–ortalama yönteminin amacı gözlemleri, sayısı araştırıcı tarafından öngörülen kümelere ayırmaktır. Bu yöntemde ilk olarak küme sayısı en az iki ve en çok gözlem sayısı kadar veya gözlem sayısından daha az olacak şekilde belirlenmektedir. Bu yöntem ile gözlemler, kümeler içi farklılık en küçük olacaktır, kümeler arasındaki farklılık en büyük olarak şekilde farklı kümelere atanmaktadır (Alpar, 2013: 341). En çok olabilirlik yönteminde ise, daha önceden öngörülen kümelere bütün gözlemler en yüksek olabilirlik değeri verecek biçimde yerleştirilmiştir. Bu yöntem teorik olarak kuvvetli olmasına rağmen çok kullanılmamasının nedeni yöntemin uygulamasının çok zaman almasıdır (Turanlı vd., 2006: 100).

3.2. TOPSIS Yöntemi

1981 yılında Hwang ve Yoon tarafından geliştirilen ve en sık kullanılan ÇKKV yöntemlerinden biri olan TOPSIS yöntemi, en iyi alternatifin, negatif ideal çözümden en uzak, pozitif ideal çözümden ise en kısa uzaklığına sahip olması temel ilkesine dayanmaktadır (Hwang ve Yoon, 1981: 58).

Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl: 14, Sayı: 37, Nisan 2021
TOPSIS, tasarım ve uygulamada basit bir sıralama yöntemidir. Pozitif ideal çözüm, fayda kriterlerini en üst düzeyeye çıkarır ve maliyet kriterlerini en aza indirir; negatif ideal çözüm ise maliyet kriterlerini en üst düzeyeye çıkarır ve fayda kriterlerini en aza indirir (Bedzadian vd., 2012: 13052). TOPSIS, uzlaşmacı çözüm ideal çözümden en kısa ve negatif ideal çözümden en uzak öklid mesafesine sahip çözümü belirlemektedir (Tzeng ve Huang, 2011: 69). Bu yöntemde, ölçütlerle atanmış değerler aynı birimde, düzenli olarak artan veya düzenli olarak azalan sıradada ve sayısal olarak ifade edilmiş olmalıdır (Sarı ve Timor, 2015: 287).

TOPSIS yöntemi karışık algoritmalar ve matematiksel yöntemler içermeyen kolay bir tekniktir. Kullanım kolaylığı, sonuçların kolaylıkla yorumlanabilmesi ve kolay anlaşılabilmesi gibi nedenlerden dolayı bir çok alanda uygulama imkanı bulunmaktadır (Bedzadian vd., 2012: 13052). TOPSIS yönteminin adımları aşağıdaki gibidir (Özdemir, 2015: 135-139; Ayčin, 2019: 239-242):

Adım 1: Karar Matrisinin \((A)\) Oluşturulması

Karar matrisinin oluşturulması TOPSIS yönteminin ilk adımıdır ve karar verici tarafından oluşturulması gereken bir matristir (Eşitlik 1). Karar matrisinin satırlarında karar noktaları, sütunlarda ise değerlendirme kriterleri yer almaktadır. \(A_{ij}\) matrisinde \(m\) karar noktası sayısı, \(n\) değerlendirme kriteri sayısı olarak ifade edilmektedir.

\[
A_{ij} = \begin{bmatrix}
 a_{11} & a_{12} & \ldots & a_{1n} \\
 a_{21} & a_{22} & \ldots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix}
\]

\(1\)

Adım 2: Normalize Edilmiş Karar Matrisinin \((R)\) Oluşturulması

Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl: 14, Sayı: 37, Nisan 2021
Bu aşamada karar matrisi oluşturulduktan sonra her bir \(a_{ij} \) değerlerinin kareleri alınmakta, bu değerlerin toplamından oluşan sütun toplamları elde edilmekte ve her bir \(a_{ij} \) değeri bulunduğu sütun toplaminin kareköküne bölünerek matris normalize edilmektedir.

\[
r_{ij} = \frac{a_{ij}}{\sqrt{\sum_{k=1}^{m} a_{kj}^2}} ; \quad i = 1,2,...,m \quad ; \quad j = 1,2,...,n
\]

 Normalize edilmiş karar matrisi \((R)\) Eşitlik 3' deki gibi ifade edilmektedir.

\[
R_{ij} = \begin{bmatrix}
r_{11} & r_{12} & \ldots & r_{1n} \\
r_{21} & r_{22} & \ldots & r_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
r_{m1} & r_{m2} & \ldots & r_{mn}
\end{bmatrix}
\]

Adım 3: Ağırlıklı Normalize Karar Matrisinin \((V')\) Oluşturulması

Normalize edilmiş matrise ait her bir değer \(w_i \) gibi bir değerle ağırlıklandırılmaktadır. Burada önemli olan nokta \(w_i \) değer toplamlarının 1' e eşit olmasıdır.

\[
\sum_{i=1}^{n} w_i = 1
\]

Ağırlıklı Normalize Karar Matrisi \(V, R \) matrisinin her bir sütunundaki elemanlarının ilgili \(W_i \) değeri ile çarpılması ile elde edilmektedir. Bu matris Eşitlik 5' deki gibi oluşturulur.

\[
V_{ij} = \begin{bmatrix}
w_1 r_{11} & w_2 r_{12} & \ldots & w_n r_{1n} \\
w_1 r_{21} & w_2 r_{22} & \ldots & w_n r_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
w_1 r_{m1} & w_2 r_{m2} & \ldots & w_n r_{mn}
\end{bmatrix}
\]

Adım 4: İdeal \((A^+)\) ve Negatif İdeal \((A^-)\) Çözümlerin Elde Edilmesi
Ağırlıklandırılmış normalize matris \((V)\) elde edildikten sonra problem dikkate alınarak amaç maksimizasyon ise her bir sütuna ait maksimum değerler ve minimum değerler belirlenir. Bu değerler sırasıyla ideal çözüm değerleri ve negatif ideal çözüm değerleridir. Eğer amaç minimizasyon ise elde edilen değerler tam tersi olacaktır. \(\text{İdeal (}A^*\text{) ve negatif ideal (}A^-\text{) çözüm değerleri Eşitlik 6 ve Eşitlik 7' de gösterildiği gibi elde edilmektedir.}

\[
A^* = \left\{ \left(\max_i v_{ij} \mid j \in J \right), \left(\min_i v_{ij} \mid j \in J' \right) \right\}, \quad A^- = \left\{ v_{1^*}, v_{2^*}, ..., v_{n^*} \right\} \quad (6)
\]

\[
A^- = \left\{ \left(\min_i v_{ij} \mid j \in J \right), \left(\max_i v_{ij} \mid j \in J' \right) \right\}, \quad A^- = \left\{ v_{1^-}, v_{2^-}, ..., v_{n^-} \right\} \quad (7)
\]

Adım 5: Ayırım Ölçütlerinin Hesaplanması

İdeal ve ideal olmayan noktalara olan uzaklık değerleri belirlenmektedir. Bu değerler hesaplanırken öklidyen uzaklık kullanılmaktadır. Öklidyen uzaklık ile ideal çözüme en yakın, negatif ideal çözüme en uzak uzaklık değerleri belirlenmeye çalışılmaktadır. Buradan elde edilen değerler ise ideal ayırım \((S_i^*)\) ve negatif ideal ayırım \((S_i^-)\) ölçütü olarak ifade edilmektedir. İdeal ayırım \((S_i^*)\) ve negatif ideal ayırım \((S_i^-)\) ölçüleri Eşitlik 8 ve Eşitlik 9 ile hesaplanmaktadır.

\[
S_i^* = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_{j^*})^2} \quad (8)
\]

\[
S_i^- = \sqrt{\sum_{j=1}^{n} (v_{ij} - v_{j^-})^2} \quad (9)
\]

\((S_i^*)\) ve \((S_i^-)\) sayısı karar noktası sayısı kadar olacaktır.

Adım 6: İdeal Çözüme Göreli Yakınlık Değerinin \((C_i^*)\) Hesaplanması

İdeal çözüme göreli yakınlığının hesaplanmasında ideal ve negatif ideal ayırım ölçütlerinden yararlanılmaktadır. İdeal çözüme göreli yakınlık \((C_i^*)\) ile sembolize
edilir. Eşitlik 10 ile ideal çözüm göreli yakınlık değerinin hesaplanması gösterilmiştir.

\[C_i^* = \frac{s_i^-}{s_i^- + s_i^+} \] \hspace{1cm} (10)

Bu eşitlikte ideal çözüm göreli yakınlık değeri \((C_i^*)\), \(0 \leq C_i^* \leq 1\) aralığında değer almaktadır. \(C_i^* = 1\) ise ilgili karar noktasının ideal çözüm, \(C_i^* = 0\) ise ilgili karar noktasının negatif ideal çözüm mutlak yakınlığını göstermektedir.

4. BULGULAR

Havalimanları performans göstergeleri altı kategoride gruplandırılmaktadır. Bunlar; temel göstergeler, emniyet ve güvenlik, servis kalitesi, verimlilik-maliyet etkinliği, finansal-ticari ve çevre ile ilgili göstergelerdir. Temel göstergeler, yolcular (toplam yıllık), kalkış ve varış noktası yolcuları (toplam yıllık), uçak hareketleri (toplam yıllık), yüküklü/yüksüz yük veya posta (toplam yıllık ton), gidilecek/aktarmasız havaalanı sayısı olarak ifade edilmektedir (Wyman, 2012). Bu çalışmada, temel göstergeler dikkate alınarak 2019 yılında Türkiye’de faaliyet gösteren 56 havalimanının performansları değerlendirilmiştir. İlk olarak havalimanları hiyerarşik kümeleme yöntemi ile küмелendirmiş ve daha sonra elde edilen kümelerin performansı TOPSIS yöntem ile değerlendirilmiştir. Araştırma kullanılan veriler Devlet Hava Meydanları İşletmesi (DHMI) 2019 Faaliyet Raporundan elde edilmiştir. Araştırma kullanılan kriterler Tablo 1’de gösterilmektedir.
Tablo 1. Araştırmada Kullanılan Kriterler ve Kodları

Kodlar	Kriterler
K1	İç hat uçak trafiği
K2	Dış hat uçak trafiği
K3	İç hat sivil ticari uçak trafiği
K4	Dış hat sivil ticari uçak trafiği
K5	İç hat yolcu trafiği
K6	Dış hat yolcu trafiği
K7	İç hat yük (kargo+posta+bagaj) trafiği
K8	Dış hat yük (kargo+posta+bagaj) trafiği

4.1. Kümeleme Sonuçları ve Havalimanlarının Kümelenmesi

Performans değerlendirme yapılacak 56 havalimanı, lokasyon ve işlev olarak çok farklı özelliklere sahip olan ve farklı kapasitelerde havalimanlarıdır. Bunların her birinin ayrı ayrı değerlendirmeye tutulması, bu farklılıklarından dolayı, çok anlam ifade etmeyecektir. Bunun yerine, benzer özellikler taşıyanları bir araya getirilebilir ve elde edilen gruplar değerlendirme alınabilir. Seçilecek değişkenler yanında gruplandırma yapılabilecek araçlardan bazıları hiyerarşik ve hiyerarşik olmayan kümeleme yöntemleridir. Havalimanlarının belirlenen sekiz değişken göre kümeleme, hiyerarşik kümeleme yöntemlerinden birleştirici hiyerarşik kümeleme ile yapılmıştır. Bağlantı yöntemlerinden Ward yöntemi ve uzaklık ölçüsü olarak kareli Öklid uzaklığı kullanılmıştır. Ward'ın minimum varyans yönteminde, küme içi hata kareler toplamı minimize edilerek kümelerin homojenliğinin maksimum olması amaçlanmaktadır. Yöntem tek elemanlı n tane küme ile başlar ve tüm gözlemler bir kümeye dahil edilinceye kadar devam eder. Analiz sonuçları dendrogram (ağacı grafiği) ile grafiksel olarak gösterilmiştir.
Analiz sonucu elde edilen dendrogram grafiği ile küme sayıları ve kümelerde yer alan havalimanları belirlenmiştir ve Şekil 1’de gösterilmektedir. Şekil 1’de görüldüğü gibi havalimanları ilk aşamada 9, ardından diğer aşamalarda sırasıyla 7, 5, 3, 2 ve 1 kümede gruplanmıştır. Hiyerarşik kümelemede küme sayısı önceden bilinmediğinden seçimi araştırmacıya bırakılmaktadır. Burada ikinci aşamadan itibaren, ilk aşamada oluşan ilk iki kümenin birleşmesiyle tek başına çok büyük bir küme oluşmaktadır. Bu da kümeler arasında çok dengesiz bir eleman sayısı dağılımı meydana getirmektedir. Bu nedenle elde edilen kümeleme sonuçlarından, ilk aşamada meydana gelen 9 kümeli gruplandırma tercih edilerek analize devam edilmiştir. Buna göre; Küme 1’ de 22, Küme 2’ de 19, Küme 3’ te 5, Küme 4’ te 4, Küme 5’ te 1, Küme 6’ da 1, Küme 7’ de 2, Küme 8’de 1 ve Küme 9’ da 1 havalimanı yer almıştır. Hiyerarşik kümeleme analizi sonucunda belirlenen tüm kümeler Tablo 2’de gösterilmiştir.

4.2. TOPSIS Yöntemi İle Performans Değerlendirme

Araştırmanın bu bölümünde kümeleme analizi sonucunda elde edilen dokuz kümenin performans analizi TOPSIS yöntemi ile değerlendirilmektedir.
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

Araştırmada kullanılan kriter ağırlıkları uzman görüşü alınarak belirlenmiştir ve Tablo 3’te kriter ağırlık katsayıları gösterilmektedir.

Tablo 2. Analiz Sonucu Belirlenen Kümeleme Sonuçları

Küme 1	Küme 2	Küme 3
Çanakkale Gökçeada	Malatya	Gaziantep
Tokat	Şanlıurfa Gap	Kayseri
Balıkesir Merkez	Erzurum	Samsun
Aydın Çlıdir	Ordu-Giresun	Çarşamba
Siirt	Elazıği	Van Ferit Melen
Uşak	Konya	Diyarbakır
Zonguldak Çaycuma	Hatay	
Kastamonu	Ağrı Ahmed-i Hani	
Kocaeli Cengiz Topel	Balıkesir Kocaseyit	
Zafer	Muş Sultan Alparslan	
Tekirdağ Çorlu Atatürk	Şırnak Şerafettin Elçi	
Eskişehir Hasan Polatkan	Erzincan	
İsparta Süleyman Demirel	Kapadokya	
İğdır Şehit Bülent Aydın	Sivas Nuri Demirağ	
Kahramanmaraş	Batman	
Adıyaman	Kars Harakani	
Bursa-Yenişehir	Mardin	
Çanakkale	Denizli Çardak	
Sinop	Gazipaşa Alanya	
Amasya Merzifon		
Hakkari Yüsekova Selahaddin Eyyubi		
Bingöl		

Küme 4	Küme 5	Küme 6
Adana	İstanbul (Yeni)	Antalya
Trabzon	İstanbul Havalimani	
Muğla Dalaman		
Milas Bodrum		

Küme 7	Küme 8	Küme 9
Ankara Esenboğa	İstanbul Atatürk	İstanbul Sabiha
İzmir Adnan Menderes		Gökçen

Uzman görüşü alınarak elde edilen kriter ağırlıklarına bakildiğinde en önemli kriterin K4 yani dış hat sivil ticari uçak trafiği, en az öneme sahip kriterin ise K7 yani iç hat yük trafiği olduğu görülmektedir.
Tablo 3. Kriter Ağırlık Katsayıları (Yuvarlanmış)

	K1	K2	K3	K4	K5	K6	K7	K8
Ağırlıklar	0,14	0,14	0,14	0,15	0,12	0,13	0,05	0,12

TOPSIS yönteminin uygulama adımları aşağıda verilmektedir.

Adım 1: Karar Matrisinin Oluşturulması

Bu aşamada her bir kümede yer alan havalimanlarının her bir kriter açısından almış oldukları değerlerin ortalaması alınarak karar matrisi oluşturulmuştur. Bu değerlere göre TOPSIS yöntemi aşamaları uygulanarak kümelerin nihai sıraları belirlenecektir. İlk olarak Tablo 4’te elde edilen karar matrisi gösterilmektedir.

Tablo 4. Oluşturulan Karar Matrisi

Küme	K1	K2	K3	K4	K5	K6	K7	K8	(devamı)
Küme 1	512	148	718	68					K5
Küme 2	4778	501	3739	421					K6
Küme 3	13779	1428	10502	1290					K7
Küme 4	24817	11254	18148	9574					K8
Küme 5	82433	24747	80644	245763					(devamı)
Küme 6	51525	161003	42753	154626					K5
Küme 7	135203	100514	132098	97820					K6
Küme 8	101540	10279	875	245					K7
Küme 9	593319	63426	4997	1003					K8
Küme 3	1718558	188477	14445	3805					(devamı)
Küme 4	2931745	1586110	24051	22167					K5
Küme 5	12574641	39434579	140580	1352328					K6
Küme 6	6958930	28720491	60707	363788					K7
Küme 7	10247562	2805364	76876	49829					K8
Küme 8	4236203	11876601	43646	1068442					(devamı)
Adım 2: Normalize Edilmiş Karar Matrisinin Oluşturulması

Normalizasyon işlemi kümelere ait kriter değerlerinin sabit birime dönüştürülmesi amacıyla yapılmaktadır. Yapılan normalizasyon işlemi Eşitlik (2) de belirtilmiştir. Normalize edilmiş karar matrisi Tablo 5' te gösterilmektedir.

Tabla 5. Normalize Edilmiş Karar Matrisi

Küme	K1	K2	K3	K4
Küme 1	0,0274219	0,0006819	0,0040809	0,000212
Küme 2	0,0255842	0,0023043	0,0212431	0,0013134
Küme 3	0,0737866	0,0065744	0,059669	0,0040221
Küme 4	0,1328906	0,0518041	0,1031106	0,0298456
Küme 5	0,4414229	0,1139171	0,4581848	0,766151
Küme 6	0,2759128	0,7441404	0,2429043	0,482037
Küme 7	0,370936	0,1019325	0,3580755	0,0633308
Küme 8	0,2067217	0,458831	0,1577943	0,287646
Küme 9	0,7240026	0,4626932	0,7505245	0,304978

(devamı)

Küme	K5	K6	K7	K8
Küme 1	0,0035813	0,001968	0,0037477	0,000138
Küme 2	0,0209262	0,0012141	0,0213917	0,000564
Küme 3	0,0606132	0,0036079	0,0618346	0,0021393
Küme 4	0,103402	0,0303621	0,1029557	0,0124632
Küme 5	0,4435048	0,7548772	0,6017967	0,7603515
Küme 6	0,2454399	0,5497825	0,2598753	0,2045412
Küme 7	0,3614293	0,0537017	0,3290918	0,0280163
Küme 8	0,14941	0,2273481	0,1868404	0,6007356
Küme 9	0,7584798	0,2690581	0,6420278	0,1349077

Adım 3: Ağırlıklı Normalize Karar Matrisinin Oluşturulması

Normalize edilmiş karar matrisi ile uzman görüşü sonucu elde edilen kriter ağırlıklarını çarpılarak ağırlıklı normalize karar matrisi elde edilmiştir. Ağırlıklı normalize karar matrisi Tablo 6'da gösterilmektedir.

Tablo 6. Ağırlıklı Normalize Edilmiş Karar Matrisi

Küme 1	K1	K2	K3	K4
Küme 1	0,0039058	9,557E-05	0,0005843	3,193E-05
Küme 2	0,0036441	0,000323	0,0030414	0,0001978
Küme 3	0,0105098	0,0009214	0,0085429	0,0006058
Küme 4	0,0189283	0,0072606	0,0147625	0,004495
Küme 5	0,0628742	0,0159661	0,065599	0,1153878
Küme 6	0,0392997	0,103875	0,034777	0,0725982
Küme 7	0,0528344	0,0142864	0,0512662	0,0095381
Küme 8	0,0294445	0,0643078	0,0225916	0,0433215
Küme 9	0,1031236	0,0648491	0,1074537	0,0459273

(devamı)

Küme 1	K5	K6	K7	K8
Küme 1	0,0004312	2,577E-05	0,0001816	1,708E-05
Küme 2	0,0025194	0,000159	0,0010365	6,984E-05
Küme 3	0,0072974	0,0004724	0,0029962	0,0002649
Küme 4	0,0124488	0,0039757	0,0049887	0,0015434
Küme 5	0,0533946	0,0988467	0,0291599	0,0941614
Küme 6	0,0295491	0,0719908	0,0125922	0,0253302
Küme 7	0,0435133	0,0070319	0,0159461	0,0034695
Küme 8	0,0179878	0,0297699	0,0090533	0,0743946
Küme 9	0,0913152	0,0352316	0,0311093	0,0167069

Adım 4: Ideal ve Negatif Ideal Çözümlerin Elde Edilmesi

Bu adımda karar alternatiflerinin ideal ve negatif ideal karar noktasına olan uzaklıkları hesaplanacak olup Eşitlik (6) ve (7) kullanılmıştır. Kriterlerin tamamı fayda yönlü oldukları için; ideal çözüm değeri Tablo 6'daki sütün değerinin en
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

büyük değer, negatif ideal çözüm değer ise en küçük değeridir. İdeal ve negatif ideal çözüm değerleri Tablo 7’ de gösterilmiştir.

Tablo 7. İdeal ve Negatif İdeal Çözüm Değerleri

K1	K2	K3	K4	
A^-	0,0036441	9,557E-05	0,0005843	3,193E-05
A^+	0,1031236	0,103875	0,1074537	0,1153878

(devamı)

K5	K6	K7	K8	
A^-	0,0004312	2,577E-05	0,0001816	1,708E-05
A^+	0,0913152	0,0988467	0,0311093	0,0941614

Adım 5: Ayırım Ölçütlerinin Hesaplanması

Bu adımda kümelere ideal ve negatif ideal çözüm uzaklıkları kriterlere ait değerler kullanılarak hesaplanmaktadır. İdeal ve negatif ideal değerleri ağırlıklı normalize karar matrisindeki değerlerden çıkarılmaktadır ve elde edilen değerin kareleri alınmaktadır ve daha sonra satır değerleri toplanmakta ve karekökü alınarak (S_i^*) ve (S_i^-) değerleri elde edilmektedir (Eşitlik 8 ve 9). Tablo 8’ de ayırım ölçüt değerleri gösterilmektedir.

Adım 6: İdeal Çözüme Göreli Yakınlık Değerinin Hesaplanması

Bu adım TOPSIS yönteminin son adımıdır. Bu adımda negatif ideal çözüm değerleri, kendisi ve pozitif ideal çözüm değerleri toplamına bölünerek (Eşitlik 10) kümelere ideal çözüme yakınlıkları hesaplanmaktadır. Son olarak en iyi performansa sahip küme, kümelere ait değerlerin büyükten küçüğe doğru sıralanması ile belirlenmektedir. Hesaplama sonucunda elde edilen değerler ve bu değerler göre kümelere performans sıralaması Tablo 9’ da gösterilmektedir.
Tablo 8. Kümelere İlişkin Ayırım Ölçüleri

Küme	S_i^*	S_i^-
Küme 1	0,2705319	0,0002618
Küme 2	0,2686473	0,0033509
Küme 3	0,2616837	0,0129158
Küme 4	0,2485816	0,0262936
Küme 5	0,1119891	0,2087284
Küme 6	0,1442333	0,1590537
Küme 7	0,2099672	0,0862884
Küme 8	0,1743989	0,1181137
Küme 9	0,1280385	0,1958343

Tablo 9' da görüldüğü gibi; Küme 5 yani İstanbul (Yeni) Havalimanı en iyi performansa sahiptir. Küme 5'ten sonra en iyi performansa sahip Küme 9 yani İstanbul Sabiha Gökçen Havalimanıdır. Daha sonra sırasıyla Küme 6 (Antalya Havalimanı), Küme 8 (İstanbul Atatürk Havalimanı), Küme 7 (Ankara Esenboğa, İzmir Adnan Menderes), Küme 4 (Adana, Trabzon, Muğla Dalaman, Milas Bodrum), Küme 3 (Gaziantep, Kayseri, Samsun Çarşamba, Van Ferit Melen, Diyarbakır), Küme 2 (Malatya, Şanlıurfa GAP, Erzurum, Ordu-Giresun, Elazığ, Konya, Hatay, Ağrı Ahmed-i Hani, Balıkesir Kocaseyit, Muş Sultan Alparslan, Şırnak Şerafettin Elçi, Erzincan, Kapadokya, Sivas Nuri Demirağ, Batman, Kars Harakani, Mardin, Denizli Çardak, Gazipaşa Alanya) ve son olarak Küme 1 (Çanakkale Gökçeada, Tokat, Balıkesir Merkez, Aydın Çıldır, Siirt, Uşak, Zonguldak, Çaycuma, Kastamonu, Kocaeli Cengiz Topel, Zafer, Tekirdağ Çorlu Atatürk, Eskişehir Hasan Polatkan, Isparta Süleyman Demirel, Iğdır Şehit Bülent Aydın, Kahramanmaraş, Adıyaman, Bursa Yenişehir, Çanakkale, Sinop, Amasya Merzifon, Hakkari Yüksekova Selahaddin Eyyübi, Bingöl Havalimanı)'dır.
Tablo 9. Kümelerin Ideal Çözüme Yakınlık Değerleri ve Performans Sıralaması

Sıralama	\(C_i^* \)	Kümeler	Havalimanları
1	0,65081692	Küme5	İstanbul
2	0,60464186	Küme9	İstanbul Sabiha Gökçen
3	0,524433088	Küme6	Antalya
4	0,403790188	Küme8	İstanbul Atatürk
5	0,291263388	Küme7	Ankara Esenboğa, İzmir Adnan Menderes
6	0,095656336	Küme4	Adana, Trabzon, Muğla Dalaman, Milas Bodrum
7	0,047034935	Küme3	Gaziantep, Kayseri, Samsun Çarşamba, Van Ferit Melen, Diyarbakır
8	0,012319689	Küme2	Malatya, Şanlıurfa GAP, Erzurum, Ordu-Giresun, Elazığ, Konya, Hatay, Ağrı A. Hani, Balikesir Kocaseyit, Muş Sultan Alparslan, Şırnak Şerafettin Elçi, Erzincan, Kapadokya, Sivas Nuri Demirağ, Batman, Kars Harakani, Mardin, Denizli Çardak, G.paşa Alanya
9	0,000966617	Küme1	Çanakkale Gökçeada, Tokat, Balikesir, Aydın Çıldır, Siirt, Uşak, Zonguldak, Çaycuma, Kastamonu, Kocaeli Cengiz Topel, Zafer, Tekirdağ Çorlu Atatürk, Eskişehir Hasan Polatkan, Isparta Süleyman Demirel, iğdır Şehit Bülent Aydın, Kahramanmaraş, Adıyaman, Bursa Yenişehir, Çanakkale, Sinop, Amasya Merzifon, Hakkari Yüksekova Selahaddin Eyübi, Bingöl

Birden fazla havailimanını içeren kümeler için kümeyi içi performans değerlendirmesi ve havailimanlarının sıralaması da yine TOPSIS yönteminde Adım 1-6 izlenerek yapılmıştır. Benzer işlemler tekrar edileceği için Tablo 10-14’ de yalnızca elde edilen sonuçlar ve sıralamalar verilmiştir.

Tablo 10. Küme-7’ nin Küme İçi Performans Değerleri ve Sıralaması

Havalimanı	\(S_i^- \)	\(S_i^+ \)	\(C_i^* \)	Sıralama
Ankara Esenboğa	2,960	1,398	0,679	1
İzmir Adnan Menderes	1,398	2,960	0,321	2

Adiyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl: 14, Sayı: 37, Nisan 2021
Tablo 11. Küme-4’ün Küme İki Performans Değerleri ve Sıralaması

Havalimanı	S_i^-	S_i^*	C_i^*	Sıralama
Muğla Dalaman	7,539	6,454	0,539	1
Adana	6,518	6,626	0,496	2
Milas-Bodrum	4,341	5,744	0,430	3
Trabzon	4,243	7,857	0,351	4

Tablo 12. Küme-3’ün Küme İki Performans Değerleri ve Sıralaması

Havalimanı	S_i^-	S_i^*	C_i^*	Sıralama
Gaziantep	3,465	0,004	0,999	1
Kayseri	2,826	0,674	0,807	2
Diyarbakır	1,414	2,125	0,399	3
Samsun Çaşamba	0,564	3,255	0,148	4
Van Ferit Melen	0,225	3,265	0,065	5

Tablo 13. Küme-2’nin Küme İki Performans Değerleri ve Sıralaması

Havalimanı	S_i^-	S_i^*	C_i^*	Sıralama
Hatay	5,148	1,925	0,728	1
Konya	4,616	2,733	0,628	2
Ordu-Giresun	5,341	3,176	0,627	3
Erzurum	5,078	3,292	0,607	4
Gazipaşa Alanya	4,183	2,793	0,600	5
Elazığ	4,451	3,214	0,581	6
Malatya	3,783	3,615	0,511	7
Şanlıurfa GAP	3,695	3,634	0,504	8
Denizli Çardak	2,813	3,713	0,431	9
Mardin	2,920	4,097	0,416	10
Kars Harakani	2,706	4,236	0,390	11
Batman	2,697	4,237	0,389	12
Tablo 14. Küme-1’ in Küme İçi Performans Değerleri ve Sıralaması

Havalimanı	S_i^-	S_i^*	C_i^*	Sıralama
Eskişehir Hasan Polatkan	0,202	0,111	0,646	1
Isparta Süleyman Demirel	0,149	0,100	0,598	2
Tekirdağ Çorlu Atatürk	0,121	0,172	0,412	3
Bursa Yenişehir	0,090	0,177	0,338	4
Kahramanmaraş	0,081	0,218	0,271	5
Balıkesir Merkez	0,079	0,224	0,261	6
Iğdır Şehit Bülent Aydın	0,075	0,218	0,256	7
Zafer	0,062	0,181	0,255	8
Adıyaman	0,070	0,217	0,245	9
Aydın Çıldır	0,065	0,220	0,228	10
Bingöl	0,060	0,221	0,215	11
Hakkari Yüksekova Selahaddin Eyyubi	0,054	0,222	0,195	12
Amasya Merzifon	0,049	0,213	0,188	13
Çanakkale	0,044	0,211	0,174	14
Sinop	0,043	0,222	0,163	15
Zonguldak Çaycuma	0,025	0,214	0,103	16
Uşak	0,024	0,225	0,097	17
Kocaeli Cengiz Topel	0,023	0,218	0,094	18
Kastamonu	0,021	0,225	0,086	19
Siirt	0,011	0,233	0,047	20
Tokat	0,001	0,237	0,005	21
Çanakkale Gökçeada	0,000	0,237	0,000	22
5. TARTIŞMA ve SONUÇ

Küreselleşme sonucu dünyada sınırların ortadan kalkmasıyla birlikte hızlı ve konforlu ulaşım önemli bir hale gelmiştir. Bundan dolayı havayolu taşımacılığı her geçen gün daha fazla tercih edilmeye başlanmıştır ve havalimanlarının önemi artmıştır. Bu çalışmada Türkiye’de faaliyet gösteren havalimanlarının temel göstergeler dikkate alınarak performanslarının değerlendirilmesi amaçlanmıştır. Bu kapsamda Türkiye’deki 56 havalimanı kümeleme yöntemi ile gruplandırılmış ve elde edilen kümeleme performansları ÇKKV yöntemlerinden biri olan TOPSIS yöntemi ile değerlendirilmiştir.

Bu çalışmada ağırlıklandırma uzman görüşü alınarak yapılmıştır. Ağırlıklandırma sonucunda en önemli kriter dış hat sivil ticari uçak trafiği ve 0.15 önem katsayısına sahiptir. Daha sonra sırasıyla, iç hat sivil ticari uçak trafiği (0.143), iç hat uçak trafiği (0.142), dış hat uçak trafiği (0.140), dış hat yolcu trafiği (0.130), dış hat yük (kargo+posta+bagaj) trafiği (0.123) ve iç hat yolcu trafiğinin (0.120) olduğu belirlenmiştir. En önemsz kriter ise 0.048 önem katsayısı ile iç hat yük (kargo+posta+bagaj) trafiğidir.

Çalışmada Türkiye’de yer alan 56 havalimanı kümeleme analizi sonucunda dokuz kümeye ayrılmıştır. Tablo 3’te gösterilen havalimanı kümeleme sonuçlarına göre kümeler_TOPSIS yöntemi ile sıralanmıştır. TOPSIS yöntemi ile belirlenen sıralama sonuçlarına göre performansı en iyi olan Küme 5’i sırasıyla Küme 9, Küme 6, Küme 8, Küme 7, Küme 4, Küme 3, Küme 2, Küme 1 izlemektedir.

Küme 5’teki yer alan İstanbul Havalimanı performans açısından ilk sırada yer almaktadır. İkinci en iyi performansa sahip olan Küme 9 yani İstanbul Sabiha
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

Gökçen Havalimanı, üçüncü en iyi performansa sahip Küme 6 yani Antalya Havalimanı, dördüncü en iyi performansa sahip Küme 8 yani İstanbul Atatürk Havalimanı, beşinci en iyi performansa sahip Küme 7 yani Ankara Esenboğa, İzmir Adnan Menderes Havalimanları kriterler açısından etkin olan havalimanlardır. Bu havalimanların Türkiye’ nin en büyük kentlerinde bulunmaları ve özellikle hem iç hem dış turizm açısından merkez durumunda olmaları dikkat çekicidir. Bunun yanı sıra Küme 4, Küme 3, Küme 2’de yer alan havalimanların kriterler açısından daha az etkin olduğu görülmektedir. Bu havalimanların orta derecede etkin olduğu söylenebilir. Yine özellikle yaz ve kış turizm merkezleri ile büyük şehirlerde bulunan havalimanları bu kümelerde üst sıralarda bulunmaktadır. Küme 1’de yer alan havalimanları ise kriterler açısından etkin olmayan havalimanlardır ve performans açısından son sıradadır. Bunların genelinin çok az uçuşlar düzenlenen ve henüz gelişmekte olan havalimanları olduğu söylenebilir.

Kümelerden; yirmi iki havalimanını içeren Küme 1, on dokuz havalimanını içeren Küme 2, beş havalimanını içeren Küme 3, dört havalimanını içeren Küme 4 ve iki havalimanını içeren Küme 7 için küme içi performans değerlendirmeleri de yapılmıştır. Elde edilen sıralamalar; dış hat sivil ticari uçak trafiği, iç hat sivil ticari uçak trafiği, iç hat uçak trafiği, dış hat uçak trafiği, dış hat yolcu trafiği, dış hat yük trafiği, iç hat yolcu trafiği ve iç hat yük trafiği kriterlerine göre havalimanlarının performanslarının karşılaştırılmasından önemlidir.

Çalışmanın sonuçları, literatürde yapılan çalışmalarla benzerlikler yanına farklılıklar da taşımaktadır. Yalnızca temel göstergeler dikkate alındığında, iç ve dış taşmacılıkta hem yolcu hem yük açısından yoğun olan havalimanları belirlenmiş olmaktadır. Performans sıralamaları, Avcı ve Aktaş (2015) ve Çınaroğlu ve Avcı (2017)’in bulmuş olduğu sonuçlarla büyük oranda ortüşmektedir. Ömürbek, Demirgubuz ve Tunca (2013)’ın ise küçük

Adıyaman Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, Yıl: 14, Sayı: 37, Nisan 2021
havalimanlarının etkinliği ile ilgili bulguları ile örtüşmemektedir. Büyük havalimanları ile ilgili bulgular ise örtüşmektedir. Yalçın (2018)'ın bulgularına göre en etkin havalimanı 2013, 2014 ve 2015 yıllarında Isparta Süleyman Demirel Havalimanı olmaktadır. Bunun nedeninin ise uçak başına düşen yolcu sayısı olduğu anlaşılmasıdır. Havalimanı performansları, seçilen kriterlere göre çalışmalarda farklılıklar göstermektedir. Bu çalışma, farklı kriterler ilave edilerek güncel verilere tatbik edilebilir.

İleride yapılacak çalışmalarda, bu çalışmanın sonuçlarına göre seçilecek havalimanları ile farklı ülkelerin seçilen havalimanlarının performansları, havalimanları performans göstergeleri (temel göstergeler, emniyet ve güvenlik, servis kalitesi, verimlilik-maliyet etkinliği, finansal-ticari ve çevre ile ilgili göstergeler) bakımından karşılaştırılabilir. Bu sonuçlar aynı zamanda politika yapıcılara havalimanı ihtiyaçlarının mevcut olanlarla kıyaslanarak yatırımların kararlaştırılmasına destek olabilecektir.
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

KAYNAKÇA

Adikariwattage, V., Barros, A. G., Wirasinghe S. C. and Ruwanpura J. (2012). “Airport Classification Criteria Based On Passenger Characteristics and Terminal Size.” Journal of Air Transport Management, 24, 36-41.

Alpar, R. (2013). Uygulamalı Çok Değişkenli İstatistiksel Yöntemler. 4. Baskı, Detay Yayıncılık, Ankara.

Altın, F. G., Karaatlı, M. ve Budak, İ. (2017). “Avrupa’nın En Büyük 20 Havalimlarının Çok Kriterli Karar Verme Yöntemleri ve Veri Zarflama Analizi İle Değerlendirilmesi.” Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 22(4), 1049-1064.

Asker, V., Kiracı, K. ve Yaşar, M. (2018). “Entropi Temelli TOPSIS ve Veri Zarflama Analizi Yöntemleriyle Etkinlik Ölçümü: Türkiye’deki Büyük Havalimlari Üzerine Bir Uygulama”, 7. Ulusal 3. Uluslararası Doğu Akdeniz Turizm Sempozyumu, 516-518.

Avcı, T. ve Aktaş, M. (2015). “Türkiye’de Faaliyet Gösteren Havalimanlarının Performanslarının Değerlendirilmesi.” Uluslararası Alanya İşletme Fakültesi Dergisi, 7(3), 67-77.

Ayçin, E. (2019). Çok Kriterli Karar Verme: Bilgisayar Uygulamalı Çözümler. Nobel Akademik Yayıncılık, Ankara.

Bedzadian, M., Otoghsara, S. K., Yazdani, M. and Ignatius J. (2012). “A State Of The Art Survey Of TOPSIS.” Expert Systems With Applications, 39(17), 13051-13069.

Bezerra, G. C. L and Gomes, C. F. (2018). “Performance Measurement Practices In Airports: Multidimensionality And Utilization Patterns.” Journal of Air Transport Management, 70, 113–125.

Blashfield, R. K. and Aldenferder, M. S. (1978). “The Literature On Cluster Analysis.” Multivariate Behavioral Research, 13, 271-295.
Cui, Q., Wei, Y. M., Li, Y. and Li, W. X. (2017). “Exploring The Differences In The Airport Competitiveness Formation Mechanism: Evidence From 45 Chinese Airports During 2010–2014.” Transportmetrica B, 5(3), 330-346.

Çınaroğlu E. ve Avcı T. (2017). “Türkiye’de Faaliyette Bulunan Büyük Havalimanlarının İç ve Dış Hat Performanslarının Karşılaştırılması.” Business & Management Studies: An International Journal, 5(4), 55-75.

Çokluk, Ö., Şekercioğlu, G. ve Büyüköztürk, Ş. (2016). Sosyal Bilimler İçin Çok Değişkenli İstatistik: SPSS ve LISREL Uygulamaları. Pegem A Yayıncılık, Ankara.

Franz Fuerst, F. and Gross, S. (2018). “The Commercial Performance Of Global Airports.” Transport Policy, 61, 123–131.

Fuellhart, K. and O’Connor, K. (2018). “A Supply-Side Categorization Of Airports Across Global Multiple-Airport Cities And Regions.” Geo Journal, 1-16.

Güner, S., Ergüzel, O. ve Cebeci, H. İ. (2019). “Evaluation of Operational Efficiency Of International Airports: A Regional Comparison.” The Journal Of Operations Research, Statistics, Econometrics and Management Information Systems, 7(3), 37-44.

Hand, D., Mannila, H. and Smyth, P. (2001). Principles Of Data Mining. Massachusetts Institute of Technology, USA.

Hwang, C. L. and Yoon, K. (1981). Multiple Attribute Decision Making, Methods and Applications. Springer Verlag Berlin, Heidelberg Newyork.

Johnson, R.A. and Wichern, D.W. (2007). Applied Multivariate Statistical Analysis. Pearson Perentice Hall.

Joseph, F., William C. B., Barry, J. and Babin, R. E. (2014). Multivariate Data Analysis. Pearson Education Limited.
Türkiye’deki Havalimanlarının Performanslarının Kümeleme ve TOPSIS Yöntemleriyle Değerlendirilmesi

Joseph Sarkis, J and Talluri, S. (2004). “Performance Based Clustering For Benchmarking Of Us Airports.” Transportation Research, Part A, 38, 329–346.

Kalaycı, Ş. (2010). SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri. 4. Baskı, Asil Yayın Dağıtım, Ankara.

Kaufman L. and Rousseeuw P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. A John Wiley & Sons, Inc., Publication.

Köleoğlu, N. ve Demirel, E. (2019). “Türkiye’nin Önemli Turizm Kentlerindeki Havalimanlarının Etkinliklerinin Veri Zarflama Analizi Yöntemiyile Ölçülmesi.” Seyahat ve Otel İşletmeciliği Dergisi, 16(3), 352-365.

Magalhaes, L., Reis, V. and Macario, R. (2015). “Can Flexibility Make The Difference To An Airport’s Productivity? An Assessment Using Cluster Analysis.” Journal of Air Transport Management, 47, 90-101.

Malighetti, P., Paleari S. and Redondi R. (2009). “Airport Classification and Functionality Within The European Network.” Problems and Perspectives in Management, 7, 183-196.

Marta, Z. (2017). “Cluster Analysis Of World's Airports On The Basis Of Number Of Passengers Handled.” Statistika, 91(1), 74-88.

Mayer, R. (2016). “Airport Classification Based On Cargo Characteristics.” Journal Of Transport Geography, 54, 53-65.

Ömürbek, N., Dağ, O. ve Eren, H. (2020). “EM Algoritmasına Göre Küмелenen Havalimanlarının Borda Sayım Yöntemi ile Değerlendirilmesi.”, Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 34(2), 491-514.

Ömürbek, N., Öksüz Demirgubuz, M. ve Tunca, M. Z. (2013). “Hizmet Sektöründe Performans Ölçümünde Veri Zarflama Analızinin Kullanımı: Havalimanları Üzerine Bir Uygulama.” Süleyman Demirel Üniversitesi Vizyoner Dergisi, 4(9), 21-43.
Özdemir, M. (2015). “TOPSIS.” içinde (Ed.) Yıldırım, B. F. ve Önder, E. İşletmeciler, Mühendisler ve Yöneticiler İçin Operasyonel, Yönetsel ve Stratejik Problemlerinin Çözümünde Çok Kriterli Karar Verme Yöntemleri. Dora Yayıncılık, Bursa.

Pathomsırı, S., Haghanı, A., Dresner, M. and Windle, R. J. (2006). “Role Of Freight Transportation Services And Reduction Of Delayed Flights On Productivity Of US Airports.” National Urban Freight Conference, Long Beach, CA, 1-18.

Rocha, P. M., Barros, A. P., Silva, G. B. and Costa, H. G. (2015). “Analysis Of The Operational Performance Of Brazilian Airport Terminals: A Multicriteria Approach With De Borda-AHP Integration.” Journal Of Air Transport Management, 51, 19-26.

Sari, T. ve Timor, M. (2015). “Tedarikçi Seçiminde ANP, TAGUCHI ve TOPSIS Yöntemleri ile Otomotiv Sektöründe Bir Uygulama. Kafkas Üniversitesi İktisadi ve İdari Bilim Fakültesi Dergisi, 6(10), 281-300.

Turanlı, M., Özden, Ü. ve Türed, S. (2006). “Avrupa Birliği Aday ve Üye Ülkelerin Ekonomik Benzerliklerinin Kümeleme Analiziyle İncelenmesi.” İstanbul Ticaret Üniversitesi Sosyal Bilimler Dergisi, 9, 95-108.

Tzeng, G. H. and Huang, J. J. (2011). Multiple Attribute Decision Making Methods And Applications. CRC Publishers, USA.

Wang, L., Taylor, C. and Wanke, C. (2011). “An Airport Clustering Method For Ait Traffic Flow Contingency Management”, In 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, 6862.

Wyman, O., (2012). Guide To Airport Performance Measures. Airports Council International, Canada.

Yalcin, S. ve Ayyıldız, E. (2018). “Analysis Of Airports Using Clustering Methods: Case Study In Turkey.” Journal of Management, Marketing and Logistics (JMML), 5(3), 194-205.
Introduction

The importance of airports in the world economy has started to increase due to the increasing importance of the country and the regional economies. Performance evaluation is important for businesses to achieve their goals and to determine future plans and strategies. It is also necessary to measure and evaluate the performances of airports whose importance is increasing day by day.

Multi-criteria decision making methods are also frequently used methods in performance evaluation. These methods select the best one among the alternatives by evaluating multiple criteria and alternatives together. On the other hand, since the airports have different capacities, it would not be meaningful to subject them all together to performance evaluation. For this, it is thought that it would be appropriate to identify the groups with similar characteristics and evaluate them among themselves. Thus, in this study, 56 airports operating in Turkey grouped by using clustering method and performance of clusters obtained was evaluated by TOPSIS method.

Studies on performance measurement for airports have been widely conducted using different methods, including multi-criteria decision making techniques and cluster analysis. Data envelopment alaysis, TOPSIS, stochastic frontier analysis, Entropy, COPRAS, De Borda, multiple regression analysis, Borda count method are some of the methods used in the airport’s performance evaluation. In the clustering of airports, combining and discriminating hierarchical methods, expectation maximization (EM) algorithm, k-means algorithm among non-hierarchical methods are used.

Method

This study aims at evaluating the performance of the 56 airports operating in Turkey with clustering and TOPSIS methods.
The most commonly used methods in clustering analysis are hierarchical clustering and non-hierarchical clustering methods. Hierarchical clustering methods are basically two types. These are the agglomerative hierarchical clustering method and the divisive hierarchical clustering method. In hierarchical clustering, how the data is grouped is indicated in stages and these stages are shown with tree graphs called dendograms. Clustering of airports according to the determined variables was made by combining hierarchical clustering, one of the hierarchical clustering methods. Single linkage method, complete linkage method, average linkage method, and Ward method are the commonly used agglomerative hierarchical clustering methods.

TOPSIS which is a method of multi-criteria decision methods, determines the solution that the shortest euclidean distance from the ideal solution and the furthest euclidean distance from the negative ideal solution. Method is followed by a six-step form; decision matrix forming, normalized decision matrix forming, weighted normalized decision matrix forming, to obtain the ideal and negative ideal solutions, to calculate of differentiation criteria and to calculate of relative closeness value to ideal solution.

In the study, firstly, airports were clustered by hierarchical clustering method and then the performance of the clusters obtained was evaluated by TOPSIS method.

Findings (Results)

In this study, performances of 56 airports operations in Turkey in 2019 was evaluated using basic airport performance indicators. These indicators are; passengers (total annual), departure and destination passengers (total annual), aircraft movements (total annual), cargo or mail (total annual tons), destination/non-stop airports. The criteria used in the research ; domestic flight traffic, international line aircraft traffic, domestic civil commercial aircraft traffic, international civil commercial aircraft traffic, domestic line passenger traffic, international line passenger traffic, domestic line freight traffic and international freight traffic as obtained from the State Airports Authority 2019 Activity Report.

Firstly, airports were grouped into 9 clusters using the Ward method, one of the hierarchical clustering and connection methods, and the squared Euclidean distance as the distance measure. Analysis results are shown graphically with a dendrogram (tree chart). Then, the performance analysis of the nine clusters obtained is evaluated with the TOPSIS method. Criteria weights used in the study were determined by taking expert opinion. When the weights of the criteria are examined, it is seen that the most important criterion is the...
international civil commercial aircraft traffic and the least important criterion is the domestic cargo traffic. The decision matrix was formed by taking the average of the values taken by the airports in the clusters in terms of each criterion, and the final rows of the clusters were determined by applying the TOPSIS method steps over this matrix. Subsequently, in-cluster performance rankings were also obtained by TOPSIS method.

Conclusion and Discussion

According to the results obtained, Istanbul (New) Airport ranks first in terms of performance. Then respectively; Istanbul Sabiha Gökçen Airport, Antalya Airport, Istanbul Atatürk Airport, Ankara Esenboğa Airport, Izmir Adnan Menderes Airport are arriving and these are the airports that are effective in terms of criteria. It is noteworthy that these airports are located in Turkey's largest city and the center in a position particularly in terms of both internal and external tourism. The next 28 airports were found to be less efficient in terms of criteria. Especially summer and winter tourism centers and airports in big cities are at the top of these clusters. The 22 airports in the cluster ranking last in terms of performance are those that are inefficient in terms of criteria.

The results of the study have similarities and differences with the studies in the literature. Since only basic indicators are taken into account, airports that are busy in terms of both passengers and cargo in domestic and international transportation are determined. Airport performances differ in studies according to the selected criteria. This study can be applied to current data by adding different criteria. The results can assist policymakers in deciding investments by comparing airport needs with existing ones.