Research Article

Study on the $\Upsilon(1S) \rightarrow B_c M$ Weak Decays

Junfeng Sun,¹ Lili Chen,¹ Na Wang,¹,² Qin Chang,¹,² Jinshu Huang,¹,³ and Yueling Yang¹

¹Institute of Particle and Nuclear Physics, Henan Normal University, Xinxiang 453007, China
²Institute of Particle and Key Laboratory of Quark and Lepton Physics, Central China Normal University, Wuhan 430079, China
³College of Physics and Electronic Engineering, Nanyang Normal University, Nanyang 473061, China

Correspondence should be addressed to Qin Chang; changqin@htu.cn

Received 7 June 2015; Revised 8 July 2015; Accepted 27 July 2015

Academic Editor: Enrico Lunghi

Motivated by the prospects of the potential $\Upsilon(1S)$ particle at high-luminosity heavy-flavor experiments, we studied the $\Upsilon(1S) \rightarrow B_c M$ weak decays, where $M = \pi, \rho, K^{(*)}$. The nonfactorizable contributions to hadronic matrix elements are taken into consideration with the QCDF approach. It is found that the CKM-favored $\Upsilon(1S) \rightarrow B \rho$ decay has branching ratio of $\mathcal{O}(10^{-10})$, which might be measured promisingly by the future experiments.

1. Introduction

The first evidence for upsilonons, the bound states of $b\bar{b}$, was observed in collisions of protons with a stationary nuclear target at Fermilab in 1977 [1, 2]. From that moment on, bottomonia have been a subject of intensive experimental and theoretical research. Some of the salient features of upsilonons are as follows [3]. (1) In the upsilonons rest frame, the relative motion of the b quark is sufficiently slow. Nonrelativistic Schrödinger equation can be used to describe the spectrum of bottomonia states and thus one can learn about the interquark binding forces. (2) The $\Upsilon(nS)$ particles, with the radial quantum number $n = 1, 2, \text{and } 3$, decay primarily via the annihilation of the $b\bar{b}$ quark pairs into three gluons. Thus the properties of the invisible gluons and of the gluon-quark coupling can be gleaned through the study of the upsilonons decay. (3) Compared with the $u, d, \text{and } s$ light quarks, the relatively large mass of the heavy b quark implies a nonnegligible coupling to the Higgs bosons, making upsilonons one of the best hunting grounds for light Higgs particles. By now, our knowledge of the properties of bottomonia comes primarily from e^+e^- annihilation.

The $\Upsilon(1S)$ particle is the ground state of the vector bottomonia with quantum number of $I^GJ^{PC} = 0^+1^−$ [4]. The mass of the $\Upsilon(1S)$ particle, $m_{\Upsilon(1S)} = 9460.30 \pm 0.26$ [4], is about three times heavier than the mass of the J/ψ particle (the ground state of charmonia with the same quantum number of I^GJ^{PC}). On one hand, compared with the J/ψ decay, much richer decay channels could be accessed by the $\Upsilon(1S)$ particle. On the other hand, the coupling constant α_s for the $\Upsilon(1S)$ decay is smaller than that for the J/ψ decay due to the QCD nature of asymptotic freedom, which results in hadronic partial width $\Gamma(\Upsilon(1S) \rightarrow ggg) < \Gamma(J/\psi \rightarrow ggg)$, although the possible phase space in the $\Upsilon(1S)$ decay is larger than that in the J/ψ decay. In addition, the squared value of the b quark charge, $Q_b^2 = 4/9$, is less than that of the c quark charge, $Q_c^2 = 1/9$, which results in electromagnetic partial width $\Gamma(\Upsilon(1S) \rightarrow \gamma*) < \Gamma(J/\psi \rightarrow \gamma*)$. So the full decay width of the $\Upsilon(1S)$ particle, $\Gamma_{\Upsilon(1S)} = 54.02 \pm 1.25$ keV, is less than that of the J/ψ particle, $\Gamma_{J/\psi} = 92.9 \pm 2.8$ keV [4]. Furthermore, one of the outstanding properties of all upsilonons below $B\bar{B}$ threshold is their narrow decay width of tens of keV [4].

The $\Upsilon(1S)$ and J/ψ particles share the similar decay mechanism. As is the case for the J/ψ particle, strong decays of the $\Upsilon(1S)$ particle are suppressed by the phenomenological OZI (Okubo-Zweig-Iizuka) rules [5–7], so electromagnetic
interactions and radiative transitions become competitive. It is expected that, at the lowest order approximation, the decay modes of the \(Y(1S)\) particle could be subdivided into four types. (1) The lion’s share of the decay width is the hadronic decay via the annihilation of the \(b \bar{b}\) quark pairs into three gluons, that is, some \((81.7 \pm 0.7)\%\) via \(Y(1S) \rightarrow g g g\) [4]. (2) The partial width of the electromagnetic decay via the annihilation of the \(b \bar{b}\) quark pairs into a virtual photon could be written approximately as \((3 + R)\Gamma_{\gamma\gamma}\), where the value of \(R\) is the ratio of inclusive production of hadrons to the \(\mu^+\mu^-\) pair production rate at the energy scale of \(m_{Y(1S)}\) and \(\Gamma_{\gamma\gamma}\) is the partial width of decay into dileptons. (3) Branching ratio of the radiative decay is about \(Br(Y(1S) \rightarrow \gamma g g) = (2.2 \pm 0.6)\%\) [4]. The up-to-date research for light Higgs bosons in the \(Y(1S)\) radiative decay has been performed by CLEO [8], Belle [9], and BaBar [10] collaborations. (4) The magnetic dipole transition decay, \(Y(1S) \rightarrow \gamma \eta_b(1S)\), is very challenging to experimental physicist due to the very soft photon and pollution from other processes, such as \(Y(1S) \rightarrow \pi^0 X \rightarrow \gamma X\) [11]. The experimental signal for \(Y(1S) \rightarrow \gamma \eta_b(1S)\) has not been discovered until now. Besides, the \(Y(1S)\) particle could also decay via the weak interactions, although the branching ratio for a single \(b\) or \(\bar{b}\) quark decay is tiny, about \(2/\pi \Gamma_{Y(1S)} \sim 10^{-8}\) [4]. In this paper, we will estimate the branching ratios for the flavor-changing nonleptonic \(Y(1S) \rightarrow B_c M\) weak decays with the QCD factorization (QCDF) approach [12, 13], where \(M = \pi, \rho, K,\) and \(K^*\). The motivation is listed as follows.

From the experimental point of view, (1) there is plenty of upsilon at the high-luminosity dedicated bottomonia factories, for example, over \(10^8 Y(1S)\) at Belle (see Table 1). Upsilon are also observed by the on-duty ALICE [17], ATLAS [18], CMS [19], and LHCb [20] experiments at LHC. It is hopefully expected that more upsilon could be accumulated with great precision at the running upgraded LHC and forthcoming SuperKEKB. The huge \(Y(1S)\) data samples will provide good opportunities to search for the \(Y(1S)\) weak decays which in some cases might be detectable. Theoretical studies on the \(Y(1S)\) weak decays are just necessary to offer a ready reference. (2) For the two-body \(Y(1S) \rightarrow B_c M\) decay, final states with opposite charges have definite energies and momenta in the center-of-mass frame of the \(Y(1S)\) particle. Particularly, identification of a single charged \(B_c\) meson in the final state, which is free from inefficiently double tagging of the bottomed hadron pairs occurring above the \(B\bar{B}\) threshold, would provide an unambiguous signature of the \(Y(1S)\) weak decay. Of course, small branching ratios make the observation of the \(Y(1S)\) weak decays extremely difficult, and evidences of an abnormally large production rate of single \(B_c\) mesons in the \(Y(1S)\) decay might be a hint of new physics beyond the standard model.

From the theoretical point of view, the bottom-changing uppsilon weak decay could permit overconstraining parameters obtained from \(B\) meson decay, but few studies are devoted to the nonleptonic uppsilon weak decay in the past. For the \(Y(1S) \rightarrow B_c M\) decay, the amplitude is usually treated as the factorizible product of two independent factors: one describing the transition between heavy quarkonium \(Y(1S)\) and \(B_c\) and the other depicting the production of the \(M\) state from the vacuum. Previous works, such as [21] based on the spin symmetry and nonrecoil approximation, [22] based on the heavy quark effective theory, and [23] based on the Bauer-Stech-Wirbel (BSW) model [24], concentrated mainly upon the \(Y(1S) \rightarrow B_c\) transition form factors which are related to the space integrals of the meson wave functions. As is well known, there exist hierarchical scales with nonrelativistic quantum chromodynamics (NRQCD) [25–27] which is an approach to deal with the heavy quarkonium; that is, \(M^2 \gg (m_V)^2 \gg (m_M)^2\), where \(M\) is the mass of heavy quark with typical velocities \(v \sim \alpha_s \ll 1\). The physical contributions at scales of \(M_V^2 \sim \Lambda_{QCD}\) are absorbed into wave functions of the \(Y(1S)\) and \(B_c\) particles; thus the \(Y(1S) \rightarrow B_c\) transition should be dominated by the nonperturbative dynamics. The nonfactorizible contributions above scales of \(M_V^2\) have not been taken seriously in previous works. About 2000, Beneke et al. proposed the QCDF approach [12, 13], where nonfactorizible contributions could be estimated systematically with the perturbation theory based on collinear factorization approximation and power counting rules in the heavy quark limit [13], and the QCDF approach has been widely applied to nonleptonic \(B\) meson decays. So it should be very interesting to study the \(Y(1S) \rightarrow B_c M\) weak decays by considering nonfactorizible contributions with the attractive QCDF approach.

This paper is organized as follows. In Section 2, we will present the theoretical framework and the amplitudes for the nonleptonic two-body \(Y(1S) \rightarrow B_c M\) weak decays with the QCDF approach. Section 3 is devoted to numerical results and discussion. The last section is our summary.

Table 1: Summary of data samples (in the unit of \(10^8\)) of the \(Y(nS)\) particles below \(B\bar{B}\) threshold collected by Belle, BaBar, and CLEO collaborations. The data in the 5th column correspond to total number of the \(Y(1S)\) particles, including events from hadronic dipion transitions between upsilons \(Y(2S, 3S) \rightarrow \pi\pi Y(1S)\), where branching ratios for the dipion decays \(Y(2S) \rightarrow \pi^+\pi^- Y(1S)\), \(\pi^+\pi^- Y(1S)\) and \(Y(3S) \rightarrow \pi^+\pi^- Y(1S)\), \(\pi^+\pi^- Y(1S)\) are \((17.85 \pm 0.26)\%, (8.6 \pm 0.4)\%, (4.37 \pm 0.08)\%, \) and \((2.20 \pm 0.13)\%)\), respectively [4].

Y(1S)	Y(2S)	Y(3S)	Total Y(1S)	
Belle [14]	102	158	11	145
BaBar [15]	121.8	98.6	39	
CLEO [16]	22.78	9.45	8.89	26

2. Theoretical Framework

2.1. The Effective Hamiltonian

The low energy effective Hamiltonian responsible for the \(Y(1S) \rightarrow B_c M\) decays is [28]

\[
H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \sum_{q=d,s} \sum_{d',d''} V_{dq} V_{d'q}^* \left[C_1 (\mu) Q_1 (\mu) + C_2 (\mu) Q_2 (\mu) \right] + \text{h.c.},
\]
where the Fermi coupling constant $G_F = 1.166 \times 10^{-5} \text{GeV}^{-2}$ [4]. Using the Wolfenstein parameterization, the Cabibbo-Kobayashi-Maskawa (CKM) factors can be expanded as a power series in the small parameter $\lambda = 0.22537(61)$ [4],
\[
V_{cb}V_{ub}^* = A\lambda^2 + \frac{1}{2} A\lambda^4 + \frac{1}{8} A\lambda^6 + \mathcal{O}(\lambda^8),
\]
\[
V_{cb}V_{ub}^* = A\lambda^3 + \mathcal{O}(\lambda^8).
\]
(2)

The Wilson coefficients $C_{1,2}(\mu)$ summarize the physical contributions above scales of μ. The Wilson coefficients C_i are calculable with the perturbation theory and have properly been evaluated to the next-to-leading order (NLO) with the renormalization group (RG) equation. The numerical values of the Wilson coefficients $C_{1,2}$ at scales of $\mu \sim \mathcal{O}(m_b)$ in naive dimensional regularization scheme are listed in Table 2. The local tree four-quark operators are defined as follows:
\[
Q_1 = \left[\overline{c}_\alpha \gamma_\mu (1-\gamma_5) b_\alpha \right] \left[\overline{d}_\beta \gamma_\mu (1-\gamma_5) u_\beta \right],
\]
\[
Q_2 = \left[\overline{c}_\alpha \gamma_\mu (1-\gamma_5) b_\alpha \right] \left[\overline{d}_\beta \gamma_\mu (1-\gamma_5) u_\beta \right],
\]
(3)

where α and β are color indices and the sum over repeated indices is understood. To obtain the decay amplitudes, the remaining and the most intricate works are to calculate accurately hadronic matrix elements of local operators.

2.2. Hadronic Matrix Elements

Phenomenologically, the simplest treatment with hadronic matrix elements of four-quark operators is approximated by the product of two current matrix elements with color transparency ansatz [29] and naive factorization (NF) scheme [30, 31], and current matrix elements are further parameterized by decay constants and transition form factors. For example, previous studies on the $\Upsilon(1S) \rightarrow B_c \pi$ decay [22, 23] were based on NF approach.

As is well known, NF’s defect is the disappearance of the renormalization scale dependence, the strong phases, and the nonfactorizable contributions from hadronic matrix elements, resulting in nonphysical amplitudes and no CP violating asymmetries. To remedy NF’s deficiencies, Beneke et al. proposed that hadronic matrix elements could be written as the convolution integrals of hard scattering kernels and light cone distribution amplitudes with the QCDF approach [12, 13].

For the $\Upsilon(1S) \rightarrow B_c \pi$ decay, the spectator quark is the heavy bottom (anti)quark. According to the QCDF’s power counting rules [13], contributions from the spectator scattering are power suppressed. With the QCDF master formula, hadronic matrix elements could be written as
\[
\langle B_c M | Q_i | \Upsilon(1S) \rangle = \sum_i F_i^{\Upsilon \rightarrow B_c} \int dx H_i(x) \phi_M(x),
\]
(4)

where transition form factor $F_i^{\Upsilon \rightarrow B_c}$ and light cone distribution amplitudes $\phi_M(x)$ of the emitted meson M are nonperturbative input parameters and hard scattering kernels $H_i(x)$ are computable order by order with the perturbation theory in principle.

Table 2: The numerical values of the Wilson coefficients $C_{1,2}$ and a_1

μ	NLO C_1	C2 C_1	C2 Re(a_1)	C2 Im(a_1)	QCDF	Re(a_1)	Im(a_1)
0.5m_b	1.128	-0.269	1.168	-0.337	1.076	-0.027	
m_b	1.076	-0.173	1.110	-0.235	1.054	-0.015	
1.5m_b	1.054	-0.128	1.085	-0.188	1.043	-0.011	
2.0m_b	1.041	-0.100	1.070	-0.159	1.036	-0.008	

The leading twist two-valence-particle distribution amplitudes of pseudoscalar and longitudinally polarized vector meson are defined in terms of Gegenbauer polynomials [32, 33]:
\[
\phi_M(x) = 6x\bar{x} \sum_{n=0}^{\infty} a_n^M C_n^{3/2} (x-\bar{x}),
\]
(5)

where $\bar{x} = 1 - x$, a_n^M is the Gegenbauer moment, and $a_0^M = 1$.

After calculation, the decay amplitudes could be written as
\[
\mathcal{A}(\Upsilon(1S) \rightarrow B_c M) = \langle B_c M | H_{\Upsilon} | \Upsilon(1S) \rangle = \frac{G_F}{\sqrt{2}} V_{cb} V_{ub}^* a_1 \langle M | \gamma^\mu | 0 \rangle \langle B_c | J_\mu^\prime | \Upsilon(1S) \rangle.
\]
(6)

The coefficient a_1 in (6), including nonfactorizable contributions from QCD radiative vertex corrections, is written as [34]
\[
a_1 = C_1^{\text{NLO}} + \frac{1}{N_c} C_2^{\text{NLO}} + \frac{\alpha_s C_F}{4\pi N_c} C_2^{\text{LO}} V.
\]
(7)

For the transversely polarized vector meson, the factor V is zero beyond leading twist (twist-2) contributions. For the pseudoscalar and longitudinally polarized vector meson, with the modified minimal subtraction (MS) scheme, the factor V is written as [34]
\[
V = 3 \log \left(\frac{m_\pi^2}{\mu^2} \right) + 3 \log \left(\frac{m_\eta^2}{\mu^2} \right) - 18 + \int_0^1 dx T(x) \phi_{\eta^\prime}(x).
\]
(8)
where

\[
T(x) = \frac{c_a}{1-c_a} \log(c_a) - \frac{4c_b}{1-c_b} \log(c_b) + \frac{c_d}{1-c_d} \log(c_d) - \frac{4c_e}{1-c_e} \log(c_e) - r_c \left\{ \frac{c_a}{(1-c_a)^2} \log(c_a) + \frac{1}{1-c_a} \right\}
\]

\[
- r_c^{-1} \left\{ \frac{c_d}{(1-c_d)^2} \log(c_d) + \frac{1}{1-c_d} \right\} + f(c_a) - f(c_b) - f(c_c) + f(c_d)
\]

\[
+ 2 \log(r_c^2) \left[\log(c_a) - \log(c_b) \right],
\]

\[
f(c) = 2 \text{Li}_2 \left(\frac{c-1}{c} \right) - \log^2(c) - \frac{2c}{1-c} \log(c),
\]

and the relations are as follows:

\[
r_c = \frac{m_c}{m_b},
\]

\[
e_a = x \left(1 - r_c^2 \right),
\]

\[
e_b = \frac{x}{x} \left(1 - r_c^2 \right),
\]

\[
\frac{c}{r_c^2},
\]

\[
e_d = - \frac{c}{r_c^2},
\]

The numerical values of coefficient \(a_1\) at scales of \(\mu \sim \mathcal{O}(m_b)\) are listed in Table 2.

2.3. Decay Constants and Form Factors. The matrix elements of current operators are defined as follows:

\[
\langle P(p) | A_\mu | 0 \rangle = -if_P p_\mu,
\]

\[
\langle V(p,\epsilon) | V_\mu | 0 \rangle = f_V m_V \epsilon_{\gamma\mu},
\]

where \(f_P\) and \(f_V\) are the decay constants of pseudoscalar and vector mesons, respectively, and \(m_V\) and \(\epsilon_V\) denote the mass and polarization of vector meson, respectively.

The transition form factors are defined as follows [22–24]:

\[
\langle B_c (p_2) | V_\mu - A_\mu | Y(p_1,\epsilon) \rangle
\]

\[
= \epsilon_{\mu\alpha\beta} \langle Y | q \cdot q' | B_\gamma \rangle Y^\gamma \rightarrow B_c (q^2)
\]

\[
= \frac{m_{Y} A_{\alpha} (q^2)}{m_{Y} + m_{B_c}}
\]

\[
- i \frac{2m_{Y} e_{\gamma} \cdot q}{q^2} \langle Y | q \cdot q' | B_\gamma \rangle Y^\gamma \rightarrow B_c (q^2)
\]

\[
- i \frac{e_{\gamma} \cdot q}{m_{Y} + m_{B_c}} A_{\alpha} (q^2)
\]

\[
+ \frac{2m_{Y} e_{\gamma} \cdot q}{q^2} \langle Y | q \cdot q' | B_\gamma \rangle Y^\gamma \rightarrow B_c (q^2),
\]

where \(q = p_1 - p_2\) and \(A_{\alpha}(0) = A_{\beta}(0)\) is required compulsorily to cancel singularities at the pole \(q^2 = 0\). There is a relation among these form factors:

\[
2m_{Y} A_{\alpha} (q^2) = \left(m_{Y} + m_{B_c} \right) A_{\gamma} (q^2)
\]

\[
+ \left(m_{Y} - m_{B_c} \right) A_{\beta} (q^2).
\]

It is clearly seen that there are only three independent form factors, \(A_{\alpha}(0)\) and \(V(0)\), at the pole \(q^2 = 0\) for the \(Y(1S) \rightarrow B_c M\) decays. The form factors at the pole \(q^2 = 0\) could be written as the overlap integrals of wave functions of mesons [24]; that is,

\[
A_{\alpha}(0) = \int d\vec{k}_{\perp} \int_0^1 dx
\]

\[
\cdot \left\{ \Phi_{Y} (k_{\perp}, x, 1, 0) \sigma_{\gamma} \Phi_{B_\gamma} (k_{\perp}, x, 0, 0) \right\},
\]

\[
A_{\beta}(0) = \frac{m_{Y} + m_{B_c}}{m_{Y}(1S) + m_{B_c}} i_{Y \rightarrow B_c},
\]

\[
V_{Y \rightarrow B_c} (0) = \frac{m_{Y} - m_{B_c}}{m_{Y}(1S) - m_{B_c}} i_{Y \rightarrow B_c},
\]

\[
I_{Y \rightarrow B_c} = \sqrt{2} \int d\vec{k}_{\perp} \int_0^1 dx
\]

\[
\cdot \left\{ \Phi_{Y} (k_{\perp}, x, 1, -1) i \sigma_{\gamma} \Phi_{B_\gamma} (k_{\perp}, x, 0, 0) \right\},
\]

where \(\sigma_{\gamma z}\) is a Pauli matrix acting on the spin indices of the decaying bottom quark and \(x\) and \(k_{\perp}\) denote the fraction of the longitudinal momentum and the transverse momentum carried by the nonspectator quark, respectively.

Using the separation of momentum and spin variables, the wave functions of mesons can be written as

\[
\Phi(k_{\perp}, x, j, z) = \phi(k_{\perp}, x) | s, s_{\perp}, s_{1}, s_{2} \rangle,
\]

with the normalization condition,

\[
\sum_{s_{1}, s_{2}} \int d\vec{k}_{\perp} \int_0^1 dx | \Phi(k_{\perp}, x, j, z) |^2 = 1,
\]
where $s_{1,2}$ denote the spin of valence quark in meson; $s = s_1 + s_2$; $s = 1$ and 0 for the $Y(1S)$ and B_c particles, respectively.

For the ground states of heavy quarkonia $Y(1S)$ and B_c particles, we will take the solution of the Schrödinger equation with nonrelativistic three-dimensional scalar harmonic oscillator potential,

$$\phi \left(\vec{k} \right) \sim \int d\vec{p} \phi \left(\vec{p} \right) e^{-i \vec{k} \cdot \vec{p}} \sim \int d\vec{p} e^{-\beta^2 \rho^2 / 2} e^{-i \vec{k} \cdot \vec{p}} \sim e^{-\beta^2 / 2},$$ (17)

where the parameter β determines the average transverse quark momentum; that is, $\langle \vec{k}^2 \rangle = \beta^2$. According to the power counting rules of NRQCD [25], the characteristic magnitude of the moment is order of M_V and $\nu \sim \alpha_s$. So we will take $\beta = M \alpha_s$ in our calculation. Employing the substitution ansatz [35],

$$\vec{k}^2 \rightarrow \frac{1}{4} \left\{ \frac{k^2_1 + m_1^2}{x_1} + \frac{k^2_2 + m_2^2}{x_2} \right\} \left(\frac{m_1^2 - m_2^2}{x_1} + \frac{k^2_1 + m_1^2}{x_2} \right),$$ (18)

$$\phi \left(\vec{k}_{\perp}, x \right) = N \exp \left\{ -\frac{1}{8\beta^2} \left[\frac{\vec{k}_{\perp}^2 + x m_2^2 + x m_1^2}{x^2} \right] \right\},$$ (19)

where N is a normalization factor.

Using the aforementioned convention, we get

$$A_0^{Y \rightarrow B_i} (0) = A_3^{Y \rightarrow B_i} (0) = 0.81 \pm 0.01,$$
$$A_1^{Y \rightarrow B_i} (0) = 0.83 \pm 0.01,$$
$$A_2^{Y \rightarrow B_i} (0) = 0.73 \pm 0.08,$$
$$V^{Y \rightarrow B_i} (0) = 1.98 \pm 0.06,$$ (20)

where the uncertainties come from variation of valence quark mass m_{q_i}. In addition, according to the NRQCD argument, the relativistic corrections and higher-twist effects might give uncertainties of $O(\nu^3)$, about 10%-30%. Values at $q^2 \neq 0$ could, in principle, be extrapolated by assuming the form factors dominated by a proper pole which is unknown or calculated with other methods, such as the approach using the Bethe-Salpeter wave functions with the help of the nonrelativistic instantaneous approximation and the potential model based on the Mandelstam formalism [36]. Here, we will follow the common practice for nonleptonic B decays with the QCD approach. Values of form factors at $q^2 = 0$ are taken to offer an order of magnitude estimation, because both Y and B_i are heavy quarkonium and the recoil effects might be not so significant.

2.4. Decay Amplitudes

With the aforementioned definition of hadronic matrix elements, the decay amplitudes of $Y(1S) \rightarrow B_i M$ decays can be written as

$$A^Y \rightarrow B_i m \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_{M} \cdot p_M \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i K \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_K \cdot p_K \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i \rho \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_\rho \cdot p_\rho \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i \pi \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_\pi \cdot p_\pi \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i \eta \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_\eta \cdot p_\eta \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i \eta' \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_\eta' \cdot p_\eta' \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i t \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_t \cdot p_t \right) A^{Y \rightarrow B_i},$$

$$A^Y \rightarrow B_i s \left(\epsilon_Y \cdot p_Y \right) \left(\epsilon_s \cdot p_s \right) A^{Y \rightarrow B_i},$$

where $m, K, \rho, \pi, \eta, \eta', t, s$ are the decays.

For the $Y(1S) \rightarrow B_i M$ decays, the hadronic matrix elements in (6) can also be expressed as [37]

$$\mathcal{H} \sim \langle V | J^\mu | 0 \rangle \left(B_i | J^\mu | Y (1S) \right) \sim \epsilon_Y^\mu \epsilon M^\mu \left(\alpha g_{\mu\nu}
+ \frac{b}{m_V m_V} \left(p_Y + p_B \right)^\mu \right) \epsilon_Y^\nu
+ \frac{ic}{m_V m_V} \epsilon_{\mu\eta\beta} \epsilon Y^\mu \left(p_Y + p_B \right)^\beta \right).$$ (22)

The definition of helicity amplitudes is

$$\mathcal{H}_0 = -a y - 2b \left(y^2 - 1 \right),$$
$$\mathcal{H}_\pm = a \pm 2c \sqrt{y^2 - 1},$$ (23)
3. Numerical Results and Discussion

In the rest frame of $\Upsilon(1S)$ particle, branching ratio for nonleptonic $\Upsilon(1S) \rightarrow B_c M$ weak decays can be written as

$$\mathcal{B}r(Y(1S) \rightarrow B_c M) = \frac{1}{12\pi m_Y^2 \Gamma_Y} |\partial (Y(1S) \rightarrow B_c M)|^2,$$

where the decay width $\Gamma_Y = 54.02 \pm 1.25$ keV [4]; the momentum of final states is

$$p_{cm} = \sqrt{\left[m_Y^2 - (m_{B_c} + m_M)^2\right]} \left[m_Y^2 - (m_{B_c} - m_M)^2\right] \over 2m_Y.$$

The input parameters, including the CKM Wolfenstein parameters, masses of b and c quarks, decay constants, and Gegenbauer moments of distribution amplitudes in (5), are collected in Table 3. If not specified explicitly, we will take their central values as the default inputs. Our numerical results on the CP-averaged branching ratios for the $Y(1S) \rightarrow B_c M$ decays are displayed in Table 4, where theoretical uncertainties of the QCD results come from the CKM parameters, the renormalization scale $\mu = (1 \pm 0.5)m_\eta$, masses of b and c quarks, and hadronic parameters (decay constants and Gegenbauer moments), respectively. For the sake of comparison, previous results of [22, 23] are reevaluated with coefficient $a_1 = 1.054$, where the scenario of the flavor dependent parameter ω in [23] is taken. The following are some comments:

(1) The QCDF's results fall in between those of [22, 23], because the form factors $A_{01}^{Y=B_c}$ in our calculation fall in between those of [22, 23].

(2) There is a clear hierarchical relationship, $\mathcal{B}r(Y(1S) \rightarrow B_c \rho) > \mathcal{B}r(Y(1S) \rightarrow B_c \pi) > \mathcal{B}r(Y(1S) \rightarrow B_c K^+) > \mathcal{B}r(Y(1S) \rightarrow B_c K)$. These are two dynamical reasons. One is that the CKM factor $V_{cb}V^*_{ub}$ responsible for the $Y(1S) \rightarrow B_c K^{(*)}$ decay is suppressed by a factor of λ relative to the CKM factor $V_{cd}V^*_{ud}$ responsible for the $Y(1S) \rightarrow B_c \pi$, $B_c \rho$ decays. The other is that the orbital angular momentum $L_{B, \rho} > L_{B, \pi}$.

(3) The CKM-favored a_1 dominated $Y(1S) \rightarrow B_c \rho$ decay has the largest branching ratio, $\sim 10^{-10}$, which should be sought for with high priority and firstly observed at the running LHC and forthcoming SuperKEKB. For example, the $Y(1S)$ production cross section in p-Pb collision can reach up to a few μb with the ALICE detector at LHC [38]. Therefore, per 100 fb$^{-1}$ data collected at ALICE, over 1011 particles are in principle available, corresponding to tens of $Y(1S) \rightarrow B_c \rho$ events if with around 10% reconstruction efficiency.

(4) There are many uncertainties on the QCD results. The first uncertainty, about 7–8%, from the CKM factors could be lessened with the improvement on the precision of the Wolfenstein parameter λ. The second uncertainty from the renormalization scale should, in principle, be reduced by inclusion of higher order α_s corrections to hadronic matrix elements. The third uncertainty is due to the fact that masses of b and c quark affect the shape lines of wave functions and hence the magnitude of form factors and branching ratios. The fourth uncertainty from hadronic parameters is expected to be reduced with the relative ratio of branching ratios.

(5) Other factors, such as the contributions of higher order corrections to hadronic matrix elements, relativistic effects, and q^2 dependence of form factors, which are not considered in this paper, deserve the dedicated study. Our results just provide an order of magnitude estimation.

4. Summary

With the sharp increase of the $Y(1S)$ data sample at high-luminosity dedicated heavy-flavor factories, the bottom-changing $Y(1S) \rightarrow B_c M$ weak decays are interesting in...
exploring the underlying mechanism responsible for transition between heavy quarkonia, investigating perturbative and nonperturbative effects and overconstraining parameters from \(B\) decays. The \(Y(1S)\) weak decays are allowable within the standard model, though their branching ratios are expected to be tiny in comparison to the conventional strong and electromagnetic decays. In this paper, we studied the nonleptonic \(Y(1S) \rightarrow B_s M\) weak decays, which are \(a_1\)-dominated based on the low energy effective theory and hence should have large branching ratios among weak decay modes. Considering the nonfactorizable contributions to hadronic matrix elements with the QCDF approach, we estimated the branching ratios of the \(Y(1S) \rightarrow B_s M\) weak decays, where transition form factors are obtained by the integrals of wave functions with the nonrelativistic isotropic harmonic oscillator potential. The prediction on branching ratios for the \(Y(1S) \rightarrow B_s M\) decays is the same order as previous works [22, 23]. The CKM-favored \(Y(1S) \rightarrow B_s \rho\) decay has relatively large branching ratio, \(\sim 10^{-10}\), and might be detectable in future experiments.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

The authors thank the referees for their helpful comments. The work is supported by the National Natural Science Foundation of China (Grant nos. 11475055, 11275057, 11232101, and U1332103). Dr. Wang is thankful for the support from CCNU-QLPL Innovation Fund (QLPL201411).

References

[1] S. Herb, D. C. Hom, L. M. Lederman et al., “Observation of a dimuon resonance at 9.5 GeV in 400-GeV proton-nucleus collisions,” *Physical Review Letters*, vol. 39, p. 252, 1977.

[2] W. Innes, J. A. Appel, B. C. Brown et al., “Observation of structure in the \(Y\) region,” *Physical Review Letters*, vol. 39, no. 20, pp. 1240–1242, 1977.

[3] P. Franzini and J. Lee-Franzini, “Upsilon resonances,” *Annual Review of Nuclear and Particle Science*, vol. 33, pp. 1–28, 1983.

[4] Particle Data Group, “Review of particle physics,” *Chinese Physics C*, vol. 38, no. 9, Article ID 090001, 2014.

[5] S. Okubo, ”\(\phi\)-meson and unitary symmetry model,” *Physics Letters*, vol. 5, no. 2, pp. 165–168, 1963.

[6] G. Zweig, CERN-TH-401, 402, 412, 1964.

[7] J. Iizuka, ”A systemsatics and phenomenology of meson family,” *Progress of Theoretical Physics Supplement*, vol. 37, pp. 21–34, 1966.

[8] W. Love, V. Savinov, H. Mendez et al., “Search for very light CP-odd Higgs boson in radiative decays of \(Y(1S)\),” *Physical Review Letters*, vol. 101, Article ID 151802, 2008.

[9] M.-C. Chang, “Search for light Higgs and dark photons at BaBar and Belle,” in *Proceedings of the European Physical Society Conference on High Energy Physics (EPS-HEP ’13)*, p. 270, Stockholm, Sweden, July 2013.

[10] J. Lees, V. Poirieux, V. Tisserand et al., “Search for a light Higgs resonance in radiative decays of the \(Y(1S)\) with a charm tag,” *Physical Review D*, vol. 91, no. 7, Article ID 071102, 9 pages, 2015.

[11] C. Patrignani, T. Pedlar, and J. Rosner, “Recent results in bottomonium,” *Annual Review of Nuclear and Particle Science*, vol. 63, no. 1, pp. 21–44, 2013.

[12] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, ”QCD factorization for \(B \rightarrow \pi \tau \nu\) decays: strong phases and \(CP\) violation in the heavy quark limit,” *Physical Review Letters*, vol. 83, no. 10, pp. 1914–1917, 1999.

[13] M. Beneke, G. Buchalla, M. Neubert, and C. T. Sachrajda, ”QCD factorization for exclusive non-leptonic \(B\)-meson decays: general arguments and the case of heavy-light final states,” *Nuclear Physics B*, vol. 591, no. 1-2, pp. 313–418, 2000.

[14] J. Brodzicka, T. Browder, P. Chang et al., ”Physics achievements from the Belle experiment,” *Progress of Theoretical and Experimental Physics*, Article ID 04D001, 2012.

[15] J. P. Lees, V. Poirieux, V. Tisserand et al., ”Study of \(Y(3S, 2S) \rightarrow \eta Y(1S)\) and \(Y(3S, 2S) \rightarrow \pi^+ \pi^- Y(1S)\) hadronic transitions,” *Physical Review D*, vol. 84, no. 9, Article ID 092003, 2011.

[16] R. Briere, T. Ferguson, G. Tatishvili et al., ”Comparison of particle production in quark and gluon fragmentation at \(\sqrt{s} = 10\) GeV,” *Physical Review D*, vol. 76, no. 1, Article ID 012005, 12 pages, 2007.

[17] B. Abelev, J. Adam, D. Adamová et al., ”Measurement of quarkonium production at forward rapidity in pp collisions at \(\sqrt{s} = 7\) TeV,” *The European Physical Journal C*, vol. 74, article 2974, 2014.

[18] G. Ada, T. Abajyan, B. Abbott et al., ”Measurement of upsilon production in 7 TeV pp collisions at ATLAS,” *Physical Review D*, vol. 87, no. 5, Article ID 052004, 31 pages, 2013.

[19] V. Khachatryan, A. M. Sirunyan, S. Chatrchyan et al., ”Measurements of the \(Y(1S), Y(2S)\), and \(Y(3S)\) differential cross sections in pp collisions at \(\sqrt{s} = 7\) TeV,” *Physics Letters B*, vol. 749, pp. 14–34, 2015.

[20] R. Aaij, C. Abellan Beteta, B. Adeva et al., ”Production of \(1\) and \(Y\) mesons in pp collisions at \(\sqrt{s} = 8\) TeV,” *Journal of High Energy Physics*, vol. 2013, no. 6, article 064, 2013.

[21] M. A. Sanchis-Lozano, ”On the search for weak decays of heavy quarkonium in dedicated heavy-quark factories,” *Zeitschrift für Physik C Particles and Fields*, vol. 62, no. 2, pp. 271–279, 1994.
[22] K. K. Sharma and R. C. Verma, “Rare decays of Ψ and γ,” *International Journal of Modern Physics A*, vol. 14, no. 6, p. 937, 1999.

[23] R. Dhir, R. C. Verma, and A. Sharma, “Effects of flavor dependence on weak decays of J/ψ and Y,” *Advances in High Energy Physics*, vol. 2013, Article ID 706543, 12 pages, 2013.

[24] M. Wirbel, B. Stech, and M. Bauer, “Exclusive semileptonic decays of heavy mesons,” *Zeitschrift für Physik C: Particles and Fields*, vol. 29, no. 4, pp. 637–642, 1985.

[25] G. Legage, L. Magnea, C. Nakhleh, U. Magnea, and K. Hornbostel, “Improved nonrelativistic QCD for heavy-quark physics,” *Physical Review D*, vol. 46, no. 9, pp. 4052–4067, 1992.

[26] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[27] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[28] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[29] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[30] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[31] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[32] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[33] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[34] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[35] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[36] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[37] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[38] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[39] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[40] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[41] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[42] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[43] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[44] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[45] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[46] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.

[47] G. T. Bodwin, E. Braaten, and G. P. Legage, “Rigorous QCD analysis of inclusive annihilation and production of heavy quarkonium,” *Physical Review D*, vol. 51, no. 3, pp. 1125–1171, 1995.
