A novel strain of *Bacillus* isolated from rhizosphere has shown to be an excellent biocontrol agent against various plant pathogens. In this study, a first report of a *Bacillus* strain NKMV-3 which effectively controls *Alternaria solani*, which cause the early blight disease in tomato. Based on the cultural and molecular sequencing of 16S rRNA gene sequence, the identity of the strain was confirmed as *Bacillus velezensis* NKMV-3. The presence of the lipopeptide which are antibiotic synthesis genes, namely iturin C, surfactin A and fengycin B and D, was confirmed through gene amplification. In addition, lipopeptides were also confirmed through liquid chromatography. The extract showed inhibitory effect against *A. solani* in vitro and detached tomato leaf assays. *Bacillus velezensis* strain NKMV-3-based formulations may provide an effective solution in controlling early blight disease in tomato and other crops.

Keywords Biocontrol · *Bacillus velezensis* · Early blight · *Alternaria solani* · Lipopeptide
Introduction

Tomato (*Solanum lycopersicum* Linn.) is one of the most important crops cultivated throughout the world in a wide range of climates among solanaceous crops [1, 2]. Tomato is ranked as the second most consumed vegetable after potato due to its rich source of vitamin A, C and K, minerals, amino acids, antioxidants and lycopene [2, 3]. There is a high demand because of its wide use and nutritional values, both in fresh and processed tomato markets. Therefore, higher production is required to fulfill the increasing demand and for value addition. The tomato cultivation is mainly hindered by bacterial, fungal and viral diseases [4]. The early blight caused by *Alternaria solani*, in particular, severely affects the tomato production [4, 5]. *A. solani* is an air-borne pathogen inhabiting the soil. It is distributed worldwide but is highly infective in the tropics and temperate regions [5]. Synthetic fungicides such as mancozeb, pyraclostrobin, azoxystrobin and hexaconazole are utilized for the control of this disease in various crops [6, 7]. However, *A. solani* is gaining resistance to these pesticides and causing serious problems in the yield of tomatoes [8, 9].

Over the past few decades, chemical pesticides have been extensively used by farmers for crop protection, but it poses severe adverse environmental and detrimental health effects [10, 11]. Unscrupulous usage of fungicides encourage in the development of resistant pest/pathogen strains, destruction of non-target organisms, leads to residual toxicity and other health and ecological hazards [12–14]. Thus, alternative eco-friendly sustainable agricultural practices like adopting microbial control of pests and diseases are the need of the hour. Bacterial biocontrol agents have recently gained worldwide attention for the control of various plant pathogens due to their low cost and ease of production, environment friendliness and non-residual effect [15, 16]. Many species of the genus *Bacillus* are potential candidates for development as biocontrol agents against various plant pathogens [17, 18]. Among Bacillus spp., *B. velezensis* is one of the potential biocontrol agent [19, 20]. Literature reports numerous strains of *B. velezensis* strains capable of controlling the major plant pathogens (bacteria and fungi) and nematodes [19–23].

In the present study, bacterial strains were isolated from soil samples collected from the roots of tomato plants and screened in vitro for antagonistic activity against *A. solani*. *B. velezensis* was identified by 16 s rRNA sequencing. Through FTIR and RP-HPLC analyses, the antifungal lipopeptides secreted by *B. velezensis* were characterized, and its efficacy against *A. solani* was studied by poison food technique and detached leaf assays.

Materials and Methods

Isolation of Bacteria from Tomato Rhizospheric Soil

The sampling was conducted during the months of September to November 2019 in 20 locations of Tamil Nadu known for growing tomato crop in large acreages. Tomato growing fields were selected for sampling soil for the isolation antagonistic bacteria against early blight pathogen, *Alternaria solani*. Healthy tomato plants were uprooted carefully without disturbing the roots. Soil adhering to the roots was shaken and removed into poly Ziploc bags and immediately kept on ice until further processing.
Isolation of Putative Antagonistic Bacillus Isolates

Soil samples collected from various tomato fields were removed from the cold storage and thawed to room temperature. A soil suspension was prepared using 10 g of each sample and 90 ml of sterile water. The solution was agitated using a rotary shaker at 180 rev min$^{-1}$ for 30 min. The suspensions thus prepared using all the soil samples were heated to 60 °C for 1 h and cooled immediately by placing in an ice box giving a heat shock reaction for the formation of endospores. The suspensions were serially diluted up to 10^4 and spread plated on nutrient agar medium, followed by incubation at 30 °C for 2 days in an incubator. Single colonies isolated were maintained as purified cultures on nutrient agar slants [24]. Purified putative antagonistic Bacillus isolates were stored at – 80 °C in 60% glycerol stocks.

Screening of Putative Antagonistic Bacillus Isolates Against Various Plant Pathogens

Putative antagonistic Bacillus isolates were subjected to screening through dual culture technique [25] against major pathogens of crops, namely Fusarium oxysporum f. sp. lycopersici, Alternaria solani, Rhizoctonia solani, Macrophomina phaseolina and Pyricularia oryzae. All the phytopathogens were supplied by the Microbial Type Culture Collection culture (MTCC) bank, Chandigarh, India. Briefly, 5-mm mycelial plug was removed from an actively growing plate of each phytopathogen and placed at one edge of the plate. Putative Bacillus isolates were streaked on other side of the mycelial plug near the edges of the plate followed by incubation at 28 °C in an incubator for 7–10 days. Bacillus isolates which showed antagonistic activity through zone of inhibitions were selected. The percentage growth inhibition was calculated as per the below formula adapted from [26].

\[
\text{Inhibition(\%)} = \left(\frac{\text{Control} - \text{Treatment}}{\text{Control}}\right) \times 100
\]

where Control is the colony diameter (cm) in Control plates and Treatment is the colony diameter (cm) in treatment plates. The experiment was performed in triplicates.

Characterization and Identification of Putative Antagonistic Bacillus Isolates

The putative antagonistic Bacillus isolate (NKMV-3) that was shortlisted through dual plate screening was characterized according to Bergey’s Manual of Systematic Bacteriology [27] and using Himedia’s HiBacillus™ identification Kit. In order to identify the putative antagonistic Bacillus isolate, a loop full culture of NKMV-3 growing on nutrient agar was used for DNA extraction. Quick-DNA Fungal/Bacterial Miniprep Kit of Zymo Research was used for extracting DNA from the putative antagonistic Bacillus isolate (NKMV-3). 16S rRNA sequence of the extracted DNA was amplified through polymerase chain reaction (PCR) with two bacterial universal primers, namely 27F (5′-AGAGTTTGTCATCTGTAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′) [28]. A 14 µLPCR reaction mixture consisting of 8 µL Taq Master mix, 2 µL of each forward and reverse primers, 2 µL of DNA template and 2 µL of molecular grade water was used for amplifying the DNA. PCR was performed in an Eppendorf Mastercycler X50s. The PCR conditions were adapted from Zhu et al. (2020) with slight modifications as described: 1 min of initial denaturation at 95 °C, followed by 35 cycles of denaturation at 95 °C for 30 s, 1 min
of annealing at 52 °C followed by extension at 72 °C for 2 min and 30 s. A final extension of 72 °C for 10 min completed the PCR reaction. The PCR products were purified and sequenced by external sequencing facility. The sequencing results were compared with known bacterial NCBI Genbank sequences using BLAST, and the identity was confirmed. The identified bacterial sequence was submitted with NCBI, and an accession number was obtained. Mega 11 software was used for constructing a phylogenetic tree using the neighbour-joining method with 100 bootstrap replicates [29].

Effect of Crude Lipopeptides Against Alternaria solani

The effect of the crude lipopeptides obtained from NKMV-3 was tested through a modified poison food technique [30]. The dried crude lipopeptide powder was used for preparing various concentrations starting from 1 to 5% in potato dextrose agar medium on W/V basis. Media containing various concentrations of the crude lipopeptides was autoclaved and dispensed in petri plates. After solidification, a 5-mm disc from an actively growing *A. solani* plate was extracted using a sterile cork borer and placed at the centre of the plate. The PDA plates containing no crude lipopeptides served as control for the trial. The plates were incubated at 28 °C for 7 days in an incubator. After 7 days, the plates were observed for the growth of *A. solani*. The inhibition rate of mycelial growth was calculated as follows.

\[
\text{Inhibition rate(%) = } \left(\frac{\text{Diameter of colony in Control (cm)} - \text{Diameter of colony in treatment (cm)}}{\text{Diameter of colony in Control (cm)}} \right) \times 100
\]

The experiment was conducted in triplicates.

Molecular Detection of Surfactin, Fengycin and Iturin genes

A loop full of culture from an actively growing slant of NKMV-3 was used for DNA extraction. DNA was extracted as mentioned in the previous section of this article. Each PCR reaction was performed in an Eppendorf Mastercycler X50s thermal cycler using a 14-µL reaction mixture containing Taq Master mix (8 µL), forward and reverse primers (2 µL each) and molecular grade water (2 µL). The primers were chosen from already available literature. The details of primers and expected amplicon sizes are provided in Table 1. The PCR conditions were adapted from [31, 32] with slight modifications. Briefly, *SfrA* gene was amplified using a 35-cycle reaction consisting of 4 min of initial denaturation

S.No	Gene	Primer	Primer sequence	Expected base pairs (bp)
1	SfrA	SRFA-F1/SRFA-R1	5'-AGAGCACACATGAGCCGTTACAAA-3'	670
			5'-CAGCATCTCGTTCAAATTCAC-3'	
2	fenB	FEN B-F1/ FEN B-R1	5'-CCTGGAGAAAAGATATCCGGTACC-3'	670
			5'-GCTGGTTCAGTGGACATCAT-3'	
3	fenD	FEN D-F1/ FEN D-R1	5'-GGCCCGTTCTCTCAATATCC-3'	670
			5'-GTCATGCTGACGAGAGA-3'	
4	ItuC	ITU C-F1/ ITU C-R1	5'-CCCCCCCTGGTCAAGTGAAAT-3'	594
			5'-TTGGCTAACCCTGATGTC-3'	
at 95 °C, followed by denaturation for 1 min at 94 °C. Annealing was performed at 52 °C for 30 s, followed by an extension at 70 °C for 1 min. A final extension was performed at 70 °C for 5 min. *fen* B, *fen* D and *Itu* C genes were amplified using a 40-cycle reaction consisting of 3 min of initial denaturation at 94 °C, followed by denaturation for 1 min at 94 °C. Annealing was performed at 59 °C (*fen* B) and 50 °C (*fen* D and *Itu* C) for 1 min, followed by an extension at 70 °C for 1 min. A final extension was performed at 72 °C for 10 min. The PCR amplicons were analysed through gel electrophoresis on a 1% agarose run at constant voltage of 100 V for 40 min followed visualization using a gel documentation system (make: Vilber Quantum).

Extraction of Extracellular Metabolites Produced by NKMV-3

NKMV-3 was grown in Nutrient broth for 72 h at 37 °C in a rotatory shaker with constant shaking of 130 rotations min$^{-1}$. The cells were harvested after 3 days by centrifugation at 6,000 × g for 15 min followed by the reduction of pH of the cell free extract to 2.0 by the addition of 3 N HCl and left for overnight precipitation at 4 °C. The so precipitated crude lipopeptides was separated by centrifugation at 8,000 × g for 30 min at 4 °C. The pellet was dissolved in methanol and extracted thrice and evaporated under vacuum using a rotatory evaporator at 50 °C and 65 rpm [33, 34]. The resulting viscous liquid was left for drying at 50 °C for 48 h in a hot air oven. The dried crude lipopeptide extract was scrapped and dissolved in Tris HCl pH 7.5 and stored until further use.

Identification and Quantification of Iturin, Surfactin and Fengycin in Crude Lipopeptides using Liquid Chromatography

All solvents used were of HPLC grade (Merck) and standards of iturin, surfactin and fengycin were purchased from Sigma, USA. Crude lipopeptides were quantified by reversed-phase high performance liquid chromatography using a chromatograph (Waters, USA) equipped with a quaternary pump and diode array detector. Analytical scale Purospher® RP-C18 (250×4.6 mm, 5 μm particle size) column was used. One mg/ml of crude lipopeptide was prepared and filtered and filled into HPLC vials for injection. A volume of 2 μl of sample was injected into the column. The mobile phase and chromatographic conditions were adapted from [35]. This method provided a single protocol for the detection and quantification of lipopeptides in a combined method rather than the conventional method of separate chromatographic runs for the identification and quantification of individual lipopeptides. The mobile phase consisted of Milli-Q Water (solvent A) and 0.1% HPLC grade trifluoroacetic acid dissolved in acetonitrile (solvent B). The elution of lipopeptide homologues was monitored at 210 nm. The conditions of the chromatography are provided in Table 2.

Analysis of Crude Lipopeptides Through Fourier Transformation Infrared (FTIR) Spectroscopy

The crude methanolic lipopeptide extract was subjected to a FTIR analysis (make:Perkin Elmer) to elucidate the structural groups of the crude lipopeptides. One hundred mg of KBr and a mg of crude lipopeptide extract of NKMV-3 were ground using a pestle and pressed with load for 30 s to obtain translucent pellets. These pellets were subjected to FTIR between a frequency range from 4000 to 400 cm$^{-1}$ [36].
Detached Leaf Bioassays of Crude Lipopeptides Against A. solani in Tomato

Detached leaf bioassays were conducted with slight modifications as described by [37]. Briefly, tomato (variety: PKM -1) leaves from 45-day-old potted plants were obtained. The leaves were surface sterilized using 1% sodium hypochlorite solution, followed by two washes with sterile water. The leaves were left for air drying inside the laminar air flow chamber. Various concentrations of crude lipopeptides were prepared from 1 to 5% on W/V basis in sterile water and methanol in the ratio of 9:1. Using a handheld atomizer, the leaves were sprayed on both sides with the test solution. Untreated controls were maintained which were sprayed with only sterile water and methanol in the ratios as mentioned above. Control leaves with sterile water spray alone were also maintained. All the leaves were left to air dry inside the laminar air flow chamber. Upon drying, a 5-mm disc from an actively growing 7-day-old A. solani plate was cut and place in the centre of each leaf, except for the untreated control leaves. All the leaves were placed on wet cotton inside petri dishes followed by incubation for 7 days at 28 °C in an incubator. After 7 days, the leaves were examined for lesions, and the extent of lesion formation was measured in centimetres. The inhibition rate was calculated as follows:

\[
\text{Inhibition rate} (\%) = \left(\frac{\text{Diameter of lesion in Control (cm)} - \text{Diameter of lesion in treatment (cm)}}{\text{Diameter of lesion in Control (cm)}} \right) \times 100
\]

The experiment was conducted in triplicates and statistically analysed.

Statistical Analysis

All data was analysed statistically using WASP—Web Agri Stat Package 2.0 and Microsoft Excel (2016) to assess statistically significant differences among the various treatments.

Results

Isolation of Antagonistic Bacteria Against A. solani Causing Early Blight in Tomato

In this study, a total of 146 morphologically distinct isolates of bacteria were isolated from 20 different locations covering three major districts in Tamil Nadu (Salem, Krishnagiri and Dharmapuri) known for the production of Tomato (Table 3). Of the 146 strains screened by dual culture technique (data not shown), NKMV-3 showed maximum inhibition against A. solani. Based on this result, we further explored the biocontrol potential of NKMV-3.
Morphological and Biochemical Characterization of NKMV-3

The cells of the NKMV-3 strain were Gram-positive, motile, short rod-shaped, aerobic bacterium with cell sizes ranging from 1 to 3 µm. The colony of the strain on nutrient agar and Luria Bertani agar was irregular in form with flat elevation and undulate margins. The colour of the colony was dull white with matte texture. NKMV-3 was positive for gelatin liquefaction, catalase and citrate activity. The isolate was able to utilize different sources

Table 3 Locations of soil sample collection across major tomato growing districts of Tamil Nadu

S.No	Location	GPS coordinates	District name
1	Omalur	11.744409995997248, 78.04702812571645	Salem
2	Chinna Thirupathi	11.68502179676408, 78.16517791092896	Salem
3	Karuvalli	11.853092036241849, 78.02571765381492	Salem
4	Kakapalayam	11.562937807350007, 78.02687110824542	Salem
5	P.N. Patti	11.81249373420619, 77.8163899465155	Salem
6	Mechari	11.832889045711607, 77.94214015355809	Salem
7	Mallikundam	11.879409367196567, 77.90420896048289	Salem
8	Vazhapadi	11.656775354146326, 78.40187057341394	Salem
9	Ayothiapatinam	11.678625602423615, 78.23288918192901	Salem
10	Mallikarai	11.578287994955963, 78.49669332982101	Salem
11	Attur	11.601006780799647, 78.59691957206958	Salem
12	Singipuram	11.625408778112208, 78.41173586328848	Salem
13	Krishnagiri	12.527487369732494, 78.215003645342	Krishnagiri
14	Rayakottai	12.51582852100238, 78.031913120594	Krishnagiri
15	Hosur	12.74821260908164, 77.83581406836144	Krishnagiri
16	Gundalapatti	12.178115378796399, 78.1769031467471	Krishnagiri
17	Bommidi	11.985749117328707, 78.25792730721723	Dharamapuri
18	Thoppur	11.944101988529056, 78.05742683411441	Dharamapuri
19	Kadathur	12.095210056909767, 78.2915293530848	Dharamapuri
20	Papparapatti	11.52862749255263, 78.06841315845728	Dharamapuri

Table 4 Morphological and biochemical characters of strain NKMV-3

Description	Results	Description	Results
Shape	Short rod	Catalase activity	+
Cell size (µm)	1–3 µm	Nitrate reduction	+
Form of spores	Elliptical	Arginine	+
Mobility	+	Sucrose	+
Aerobic	+	Mannitol	-
Grams Staining	+	Glucose	+
Malonate	+	Arabinose	-
Voges–Proskauer reaction	-	Trehalose	-
Citrate	+		
Gelatin liquefaction	+		
of carbon, namely glucose and sucrose. The isolate was negative for acetoin production (Voges–Proskauer reaction), utilization of mannitol, arabinose and trehalose (Table 4).

Molecular Characterization of 16S rRNA Gene of NKMV-3 Strain

The 16S rRNA gene of strain NKMV-3 was amplified using bacterial universal primers 27F and 1492R. The PCR amplification yielded 1185 nucleotides and sequenced (GenBank accession number: MZ243468). The nucleotide sequence of NKMV-3 16S rRNA gene showed high similarity (99.58%) to the sequence of *B. velezensis* (Fig. 1). 16S rRNA gene sequence from similar *Bacillus* species was used for the construction of the phylogenetic tree. NKMV-3 clustered with *B. velezensis* strains CBMB205 and FZB42.

![Phylogenetic tree](image)

Fig. 1 Phylogenetic tree of the *B. velezensis* NKMV-3 strain based on 16S rRNA sequence analysis constructed using the neighbour-joining method. The tree was constructed by UPGMA method. Bootstrap values over 50% (based on 100 replications) are shown at each node. The isolate obtained in the present study is marked with blue symbol.

Fig. 2 In vitro antagonistic activity of *B. velezensis* strain NKMV-3 against various phytopathogens.
Antagonistic Effects of *B. velezensis* Strain NKMV-3 Against Major Phytopathogens

A dual culture technique was performed to evaluate the efficacy of NKMV-3 strain against major agricultural phytopathogens (Fig. 2). After 7 days of incubation, NKMV-3 strain was most effective in inhibiting the mycelial growth of *A. solani* with an inhibitory percentage of 58.0 ± 0.25%. NKMV-3 was ineffective against *Macrophomina phaseolina* (Table 5).

In Vitro Effects of Crude Lipopeptides of *B. velezensis* NKMV-3 Against *A. solani*

The inhibitory effect of NKMV-3 crude lipopeptide extract was assessed using poison food technique (Fig. 3). It was observed that a 5% crude lipopeptides of NKMV-3 strain significantly (70.8 ± 1.0) inhibited the mycelial growth compared to other tested concentrations (Table 6).

Amplification of Iturin, Fengycin and Surfactin Genes from *B. velezensis* NKMV-3

The crude lipopeptides showed inhibitory effect against *A. solani*, the presence of lipopeptide genes in NKMV-3, namely iturin (*ituC*), surfactin (*sfrA*) and fengycin (*fenB* and *fenD*), were checked by PCR amplification using primers reported in the literature and as described in the earlier section. Upon PCR amplification, 670 bp corresponding to *sfrA*, *fenB* and *fenD* and 594 bp corresponding to *ituC* were visualized. Thus, all these four lipopeptide genes were present in *B. velezensis* NKMV-3 (Fig. 4).

Identification of Lipopeptides from *B. velezensis* NKMV-3 Though Reversed-Phase HPLC

The lipopeptides, namely iturin, fengycin and surfactin, in crude methanolic extract were separated and identified using a RP-HPLC by comparing its retention time to the specific

Table 5 In vitro antifungal activity of NKMV-3 strain against various phytopathogens on potato dextrose agar medium

Phytopathogen details	% Inhibition
Alternaria solani	58.0 ± 0.25
Fusarium oxysporum f. sp. lycopersici	49.4 ± 0.06
Rhizoctonia solani	41.3 ± 0.25
Pyricularia oryzae	27.9 ± 0.06
Macrophomina phaseolina	0.4 ± 0.12

![Fig. 3](image-url) In vitro effect of various concentrations of the crude lipopeptides against *A. solani*
standards (Sigma, USA). Compounds similar to iturin, fengycin and surfactins were isolated with retention times ranging from 4 to 7 min, 12 to 15 min and 27 to 30 min, respectively (Fig. 5).

Sample concentration (%)	% Inhibition
1	9.9 ± 1.0
2	13.6 ± 1.0
3	29.0 ± 3.06
4	58.6 ± 1.0
5	70.8 ± 1.0

Table 6 In vitro antifungal activity of NKMV-3 *A. solani*

Fig. 4 PCR amplification of crude lipopeptide genes from *B. velezensis* strain NKMV-3. Agarose gel electrophoresis of PCR products for the genes of (1) surfactin, Sfr A; (2, 3): fengycin, *fen b, fen D*; and (4) iturin, *ItuC* of NKMV-3 strain. M: 1000 bp DNA ladder
Structural Analysis of Crude Lipopeptides from B. velezensis NKMV-3 Through FTIR

The FTIR analysis for crude lipopeptides is exhibited in Fig. 6. A broad peak at 3308 cm\(^{-1}\) specifies the existence of –OH or –NH groups. FTIR peaks at 2957.79, 2871.63 and 1466.26 cm\(^{-1}\) indicate the existence of the –C-H stretching (–CH\(_3\) or CH\(_2\)) of the aliphatic chain of lipids present in the NKMV-3. The presence of the peptide fraction in sample was revealed by the wavenumbers responsible for amide bond at 603.14, N–H bending of the secondary amides at 1542 and 1649.21 of carbonyl group (C=O). A peak at 1208 cm\(^{-1}\) confirms the presence of C-O bending of esters in the NKMV-3.

Effects of Crude Lipopeptides Against A. solani in Detached Tomato Leaves

The inhibitory effect of various concentrations of NKMV-3 crude lipopeptide against A. solani was assessed using detached tomato leaf bioassay (Fig. 7). There was an evident reduction of lesion diameter with increase in concentration of the crude lipopeptides. Five
percent crude lipopeptides showed maximum reduction in lesion diameter (0.4 ± 0.32%) in comparison to control (Fig. 8). Lesion diameter observed after 7 days after incubation.

Values are averages of three replicates. Bars represent means from replicates, and error bars represent standard errors. Different letters indicate significant differences between different treatments according to Tukey’s test (α = 0.05).

Discussion

Early blight of tomato has become an economically important disease both under field conditions and also under storage of tomato fruits [38, 39], thus garnering interest from both field pathologists and also from post-harvest disease control specialists. Several synthetic fungicides have been used by farmers for the control of early blight of tomato [40]. But, due
to their continuous usage and also non-adherence to prescribed dosages, resistance build-up of resistance has been observed [41] among the pathogens. Hence, a safe and sustainable method of disease control is the need of the hour. In the past, both bacterial and fungal biocontrol agents effective against various plant pathogens have been successfully developed and commercialized [42]. Bacterial biocontrol agents had several advantages such as easy to mass multiply, better efficacy, longer shelf life, increased safety to humans and environment in comparison to fungal biocontrol agents. Hence, this study was begun with the objective of isolating native bacteria from tomato growing regions showing antagonistic activity against early blight disease of tomato. Soil samples from 20 different tomato growing regions of the state of Tamil Nadu, India, was used for the isolation of 146 bacterial antagonistic bacteria in this study. Among them, NKMV-3 was found inhibit *A. solani* with highest percent of inhibition. Many species of the genus *Bacillus* are known to exhibit antifungal activity against various plant pathogens especially against *A. solani* [1, 43].

Strain NKMV-3 was identified as *B. velezensis*, based on morphological, biochemical and 16S rRNA gene sequencing. *B. velezensis* is a farmer friendly bacterium reported to promote plant growth [44], control plant diseases [45, 46] and detoxify pollutants [47]. Several *B. velezensis* isolates were found to effectively control various phytopathogens such as *Botrytis cinerea*, *Alternaria solani*, *Fusarium oxysporum* and *Colletotrichum gloeosporioides* among others [48]. *B. velezensis* has already been reported to control *R. solanacearum*, *F. oxysporum* and *Verticillium dahlia* infecting tomato plant [21, 49]. This research articles is the first report of a *B. velezensis* strain isolated from major tomato growing regions of Tamil Nadu, India, which is effective against *A. solani*.

Dual-culture results showed *B. velezensis* NKMV-3 not only inhibit the growth of *A. solani*, but also inhibited other two tomato pathogens, *F. oxysporum* f. sp. *lycopersici* and *R. solani*. These results suggest that *B. velezensis* NKMV-3 could control not only early blight but also vascular wilt and foot rot diseases in tomato. These were tested at the
laboratory scale; the efficacy of B. velezensis on the field against other tomato diseases will be studied in future.

To further understand the biocontrol mechanism of B. velezensis NKMV-3, A. solani was used as an indicator. We confirmed the presence of essential genes for lipopeptides secretion namely, iturins, fengycin and surfactins in B. velezensis NKMV-3 by PCR amplification. The presence of all the three secreted lipopeptides was identified through RP-HPLC and FTIR analyses. To date, lipopeptides secreted by B. velezensis have been documented to inhibit the growth of phytopathogens, such as R. solani, F. oxysporum, A. flavus and Ralstonia solanacearum [19]. In our findings, 5% crude lipopeptide extract effectively inhibited A. solani as evidenced by both poison plate technique and detached leaf assay. Chen et al. (2018) showed the lipopeptides secreted by B. velezensis LM2303 inhibited F. graminearum by damaging the cell membrane permeability [50]. The same mechanism could also work in A. solani; this will be tested in future.

Conclusion

This study clearly revealed the biocontrol potential of B. velezensis strain NKMV-3 isolated from the tomato growing regions of Tamil Nadu. In vitro investigations through lipopeptide biosynthesis gene detection, RP-HPLC, FTIR analysis and antifungal activities clearly demonstrated its ability to be used as a biocontrol agent for controlling fungal pathogens. The commercialization of the product could be possible with formulations and field trials in future.

Author Contribution VM: data acquisition, manuscript writing. BNV: data analysis. DM: proofreading; characterization. SRM: project guidance and correspondence.

Data availability Not applicable.

Declarations

Ethics Approval Not applicable.

Consent to Participate Not applicable.

Consent to Publish Not applicable.

Conflict of Interest The authors declare no competing interests.

References

1. Awan, Z. A., & Shoaib, A. (2019). Combating early blight infection by employing Bacillus subtilis in combination with plant fertilizers. Current Plant Biology., 20, 100125. https://doi.org/10.1016/j.cpb.2019.100125

2. Rubén, D., Gullon, P., Pateiro, M., Munekata, P. E. S., Zhang, W., & Lorenzo, J. M. (2020). Tomato as Potential Source of Natural Additives. Antioxidants, 9(1), 73.

3. Viuda-Martos, M., Sanchez-Zapata, E., Sayas-Barbera, E., Sendra, E., Pérez-Álvarez, J. A., & Fernández-López, J. (2014). Tomato and Tomato Byproducts. Human Health Benefits of Lycopene and Its
Application to Meat Products: A Review. Critical Reviews in Food Science and Nutrition, 54(8), 1032–1049. https://doi.org/10.1080/10408398.2011.623799

4. Garg, S., Ram Kumar, D., Yadav, S., Kumar, M., Yadav, J. (2020). Alternaria Blight of Tomato: A Review of Disease and Pathogen Management Approaches. Acta Scientific Agriculture, 4(11), 08–15. https://doi.org/10.31080/asag.2020.04.0908

5. Adhikari, P., Oh, Y., Panthee, D. R. (2017). Current status of early blight resistance in tomato: An update. International Journal of Molecular Sciences https://doi.org/10.3390/ijms18102019

6. Muthu-Pandian Chanthiki, K., Senthil-Nathan, S., Soranam, R., Thanigaivel, A., Karthi, S., Sreenath Kumar, C., Kanagaraj Murali-Baskaran, R. (2019). Bacterial compounds, as biocontrol agent against early blight (Alternaria solani) and tobacco cut worm (Spodoptera litura Fab.) of tomato (Lycopersicon esculentum Mill.). Archives of Phytopathology and Plant Protection, https://doi.org/10.1080/0323408.2018.1496525

7. Biswas, S. (2016). Integrated Disease Management of Early Blight in Tomato Caused by Alternaria Solani Sorauer.” https://krishikosh.egranth.ac.in/handle/1/58100352

8. Chavan, V. A., Borkar, S. G. (2020). Strategies for Management of Fungicide Resistance in Tomato Leaf Blight Pathogen Alternaria Solani in 10 Districts of Western Maharashtra in India. Strate GSC Biological Pharmaceutical Sciences, 12(3), 180–188. https://doi.org/10.30574/gscbps.2020.12.3.0280

9. Bauske, M. J., & Gudnestad, N. C. (2018). Parasitic Fitness of Fungicide-Resistant and -Sensitive Isolates of Alternaria Solani .Plant Disease, 102(3), 666–673. https://doi.org/10.1094/PDIS-08-17-1268-RE

10. Hassaan, M. A., El Nemr, A. (2020). Pesticides Pollution: Classifications, Human Health Impact, Extraction and Treatment Techniques. Egyptian Journal Aquatic Researchhttps://doi.org/10.1016/j.ejar.2020.08.007

11. Tudi, M., Ruan, H. D., Wang, L., Lyu, J., Sadler, R., Connell, D., & Phung, D. T. (2021). Agriculture Development, Pesticide Application and Its Impact on the Environment International Journal of Environmental Research Public Health. https://doi.org/10.3390/ijerph18031112

12. Hobbel, P. H. F., Paveley, N. D., Van Den Bosch, F. (2014). The Emergence of Resistance to Fungicides. PLoS ONE, 9(3), 91010https://doi.org/10.1371/journal.pone.0091910

13. Babakovka, E. V., Nefedjeva, E. E., Suska-Malawska, M., Wilk, M., Svrjukova, G. A., & Zheltobriukhov, V. F. (2019). Modern Fungicides: Mechanisms of Action, Fungal Resistance and Phytotoxic Effects. Annual Research & Review in Biology, 32(3), 1–16. https://doi.org/10.9734/arrb/2019/v32i3

14. Hollomon, D. W. (2015). Fungicide Resistance: Facing the Challenge – a Review. Plant Prot. Sci. 51(4), 170–176. https://doi.org/10.17221/42/2015-PSS

15. Kohl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of Action of Microbial Biological Control Agents Against Plant Diseases: Relevance Beyond Efficacy. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2019.00845

16. Heydari, A., & Pessarakli, M. (2010). A Review on Biological Control of Fungal Plant Pathogens Using Microbial Antagonists Journal of Biological Sciences. https://doi.org/10.3923/jbs.2010.273.290

17. Shafi, J., Tian, H., Ji, M. (2017). Bacillus Species as Versatile Weapons for Plant Pathogens: A Review. Biotechnol. Biotech. Equip., https://doi.org/10.1080/13102818.2017.1286950

18. Andric, S., Meyer, T., & Ongena, M. (2020). Bacillus Responses to Plant-Associated Fungal and Bacterial Communities. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2020.01350

19. Rabbee, M. F., Baek, K.-H. (2020). Antimicrobial Activities of Lipopeptides and Polypeptides of Bacillus Velezensis for Agricultural Applications. Molecules, 25(21). https://doi.org/10.3390/MOLECULES25214973

20. Fan, B., Wang, C., Song, X., Ding, X., Wu, L., Wu, H., & Borriss, R. (2018). Bacillus Velezensis FZB42 in 2018: The Gram-Positive Model Strain for Plant Growth Promotion and Biocontrol. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.02491

21. Chen, M., Wang, J., Liu, B., Zhu, Y., Xiao, R., Yang, W., & Chen, Z. (2020). Biocontrol of Tomato Bacterial Wilt by the New Strain Bacillus Velezensis FJAT-46737 and Its Lipopeptides. BMC Microbiology, 20(1), 1–12. https://doi.org/10.1186/s12866-020-01851-2

22. Choi, T. G., Maung, C. E. H., Lee, D. R., Henry, A. B., Lee, Y. S., & Kim, K. Y. (2020). Role of Bacterial Antagonists of Fungal Pathogens, Bacillus Thuringiensis KYC and Bacillus Velezensis CE 100 in Control of Root-Knot Nematode, Meloidogyne Incognita and Subsequent Growth Promotion of Tomato. Biocontrol Science and Technology., 30(7), 685–700. https://doi.org/10.1007/s12866-017-0659-5

23. Xiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., McInroy, J. A., & Lawrence, G. W. (2017). Biological Control of Meloidogyne Incognita by Spore-Forming Plant
Growth-Promoting Rhizobacteria on Cotton. Plant Disease, 101(5), 774–784. https://doi.org/10.1094/PDIS-09-16-1369-RE
24. Shannugam, V., Atri, K., Gupta, S., Kanoujia, N., & Naruka, D. S. (2011). Selection and Differentiation of Bacillus Spp. Antagonistic to Fusarium Oxysporum f.sp. Lycopersici and Alternaria Solani Infecting Tomato. Folia Microbiologica, 56(2), 170–177. https://doi.org/10.1007/s12223-011-0031-3
25. Pane, C., & Zaccardelli, M. (2015). Evaluation of Bacillus Strains Isolated from Solanaceous Phytoplane for Biocontrol of Alternaria Early Blight of Tomato. Biological Control, 84, 11–18. https://doi.org/10.1016/j.biocontrol.2015.01.005
26. Etebarian, H.-R., Sholberg, P. E., Eastwell, K. C., & Sayler, R. J. (2005). Biological Control of Apple Blue Mold with Pseudomonas Fluorescens. Canadian Journal of Microbiology, 51(7), 591–598. https://doi.org/10.1139/w05-039
27. Bergey, D., & John, G. H. (1994). Bergey’s manual of determinative bacteriology (9th ed.). Williams & Wilkins.
28. White, T. J., Bruns, T. D., Lee, S. B., & Taylor, J. W. (1990). Amplification and Direct Sequencing of Fungal Ribosomal Rna Genes for Phylogenetics. PCR protocols: a guide to methods and applications. (M. A. Innis, Ed.). San Diego: Academic Press.
29. Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054
30. Li, Z., Guo, B., Wan, K., Cong, M., Huang, H., & Ge, Y. (2015). Effects of Bacteria-Free Filtrate from Bacillus Megaterium Strain L2 on the Mycelium Growth and Spore Germination of Alternaria Alternata. Biotechnology & Biotechnological Equipment, 29(6), 1062–1068. https://doi.org/10.1080/1310818.2015.1068135
31. Chung, S., Kong, H., Buyer, J. S., Lakshman, D. K., Lydon, J., Kim, S.-D., & Roberts, D. P. (2008). Isolation and Partial Characterization of Bacillus Subtilis ME488 for Suppression of Soilborne Pathogens of Cucumber and Pepper. Applied Microbiology and Biotechnology, 80(1), 115–123. https://doi.org/10.1007/s00253-008-1520-4
32. Plaza, G., Chojniak, J., Rudnicka, K., Paraszkiewicz, K., & Bernat, P. (2015). Detection of Biosurfactants in Bacillus Species: Genes and Products Identification. Journal of Applied Microbiology, 102(4), 1023–1034. https://doi.org/10.1111/jam.12893
33. Lin, L.-Z., Zheng, Q.-W., Wei, T., Zhang, Z.-Q., Zhao, C.-F., Zhong, H., & Guo, L.-Q. (2020). Isolation and Characterization of Fengycins Produced by Bacillus Amyloliquefaciens JFL21 and Its Broad-Spectrum Antimicrobial Potential Against Multidrug-Resistant Foodborne Pathogens. Frontiers in Microbiology, 11, 579621. https://doi.org/10.3389/fmicb.2020.579621
34. Zouari, I., Jlaiel, L., Tounsi, S., & Trigui, M. (2016). Biocontrol Activity of the Endophytic Bacillus Amyloliquefaciens Strain CEIZ-11 against Pythium Aphanidermatum and Purification of Its Bioactive Compounds. Biological Control, 100, 54–62. https://doi.org/10.1016/j.biocontrol.2016.05.012
35. Dhanarajan, G., Rangarajan, V., Sridhar, P. R., & Sen, R. (2016). Development and Scale-up of an Efficient and Green Process for HPLC Purification of Antimicrobial Homologues of Commercially Important Microbial Lipopeptides. ACS Sustainable Chemistry & Engineering, 4(12), 6638–6646. https://doi.org/10.1021/acssuschemeng.6b01498
36. Sharma, D., Ansari, M. J., Gupta, S., Al Ghamedi, A., Pruthi, P., Pruthi, V. (2015). Structural Characterization and Antimicrobial Activity of a Biosurfactant Obtained From Bacillus Pumilus DSVP18 Grown on Potato Peels. Jundishapur Journal of Microbiology. 8(9). https://doi.org/10.5812/jjm.21257
37. Ali, G. S., El-Sayed, A. S. A., Patel, J. S., Green, K. B., Ali, M., Brennan, M., & Norman, D. (2016). Ex Vivo Application of Secreted Metabolites Produced by Soil-Inhabiting Bacillus Spp. Efficiently Controls Foliar Diseases Caused by Alternaria Spp. Applied and Environmental Microbiology, 82(2), 478–490. https://doi.org/10.1128/AEM.02662-15
38. Pansuriya, D., Poonam, P. S., & Mohammed, F. (2021). Early Blight (Alternaria Solani) Etiology, Morphology, Epidemiology and Management of Tomato: Review Article. Dipen, D., 10(5), 1423–1428.
39. Tomer, A., Uday Kiran Reddy, C., Diwvedi, S. K. (n.d.). A Review on Early Blight of Tomato menacing Disease Caused by Alternaria Solani. European Journal of Molecular & Clinical Medicine.
40. Deshmukh, Cd, D., Pb, K., Pr, B. (2020). Efficacy of Different Botanicals against the Alternaria Solani under in Vitro Conditions. Journal of Pharmacognosy and Phytochemistry. 9(6), 1986–1989.
41. Akram, S., Umar, U. ud D., Atiq, R., Tariq, A., Mahmood, M. A., Ateeq-ur-Rehman. (2018). Emerging Resistance in Alternaria Solani Against Different Fungicides in Southern Punjab, Pakistan. Pakistan Journal of Life and Social Sciences. 16(2), 117–123.
42. Bejarano, A., & Puopolo, G. (2020). Bioformulation of Microbial Biocontrol Agents for a Sustainable Agriculture.” In How Research Can Stimulate the Development of Commercial Biological Control.
Against Plant Diseases. Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-53238-3_16

43. Zhang, D., Yu, S., Yang, Y., Zhang, J., Zhao, D., Pan, Y., … Zhu, J. (2020). Antifungal Effects of Volatiles Produced by Bacillus Subtilis Against Alternaria Solani in Potato. *Frontiers in Microbiology*. 11. https://doi.org/10.3389/fmicb.2020.01196

44. Meng, Q., Jiang, H., & Hao, J. J. (2016). Effects of Bacillus velezensis strain BAC03 in promoting plant growth. *Biological Control*, 98, 18–26. https://doi.org/10.1016/j.biocontrol.2016.03.010

45. Cui, L., Yang, C., Wei, L., Li, T., & Chen, X. (2020). Isolation and Identification of an Endophytic Bacteria Bacillus Velezensis 8-4 Exhibiting Biocontrol Activity against Potato Scab. *Biological Control*, 141, 104156. https://doi.org/10.1016/j.biocontrol.2019.104156

46. Nam, M. H., Park, M. S., Kim, H. G., & Yoo, S. J. (2009). Journal of Microbiology. Biological Control of Strawberry Fusarium Wilt Caused by Fusarium Oxysporum f. Sp. Fragariae Using Bacillus Velezensis BS87 and RK1 Formulation. *Biotechnology*, 19(5), 520–524. https://doi.org/10.4014/jmb.0805.333

47. Bafana, A., Chakrabarti, T., & Devi, S. S. (2008). Azoreductase and Dye Detoxification Activities of Bacillus Velezensis Strain AB. *Applied Microbiology and Biotechnology*, 77(5), 1139–1144. https://doi.org/10.1007/s00253-007-1212-5

48. Wang, C., Zhao, D., Qi, G., Mao, Z., Hu, X., Du, B., … Ding, Y. (2020). Effects of Bacillus Velezensis FKM10 for Promoting the Growth of Malus Hupehensis Rehd. and Inhibiting Fusarium Verticillioides. *Frontiers in Microbiology*. 10, 2889. https://doi.org/10.3389/fmicb.2019.02889

49. Dhouib, H., Zouari, I., Ben Abdallah, D., Belbahri, L., Taktak, W., Triki, M. A., & Tounsi, S. (2019). Potential of a Novel Endophytic Bacillus Velezensis in Tomato Growth Promotion and Protection against Verticillium Wilt Disease. *Biological Control*, 139, 104092. https://doi.org/10.1016/j.biocntrol.2019.104092

50. Chen, L., Heng, J., Qin, S., & Bian, K. (2018). A Comprehensive Understanding of the Biocontrol Potential of Bacillus Velezensis LM2303 against Fusarium Head Blight. *PLoS ONE*, 13(6), e0198560. https://doi.org/10.1371/journal.pone.0198560

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.