On the application of “$Z^0 + \text{jet}$” events for setting the absolute jet energy scale and determining the gluon distribution in a proton at the LHC.

D.V. Bandurin, N.B. Skachkov

Joint Institute for Nuclear Research, Dubna, Russia

Abstract

A possibility of jet energy scale setting by help of “$pp \rightarrow Z^0 + \text{jet} + X$” process at LHC is studied. The effect of new set of cuts, proposed in our previous works, on the improvement of $P_{tZ} - P_{t\text{jet}}$ balance is demonstrated. The distributions of the selected events over P_{tZ} and n_{jet} are presented. A possibility of background events suppression by use of the “$Z^0 + \text{jet}$” events selection criteria is shown.

It is also found that the samples of “$Z^0 + \text{jet}$” events, gained with the cuts for the jet energy calibration, may have enough statistics for determining the gluon distribution inside a proton in the region of $2 \cdot 10^{-4} \leq x \leq 1.0$ with $0.9 \cdot 10^4 \leq Q^2 \leq 4 \cdot 10^4$ (GeV/c)2.

Monte Carlo events produced by the PYTHIA 5.7 generator are used here.
1 Introduction.

A precise reconstruction of the jet energy is the extremely important task in many high energy physics experiments. The previous studies of possibilities to apply for this aim different physical processes (like \(Z^0/\gamma + \text{jet} \) and others), done in D0, CDF, CMS and ATLAS collaborations may be found in [1]–[16].

\(Z^0 + \text{jet} \) events with one high-\(P_t \) jet can provide a useful sample to perform \textit{in situ} determination of a jet transverse momentum via a transverse momentum of \(Z^0 \) boson reconstructed from the precisely measured leptonic \(Z^0 \) decay \((Z^0 \rightarrow \mu^+ \mu^-, e^+ e^-)\).

In this paper we limit our consideration to \(Z^0 \rightarrow \mu^+ \mu^- \) decay only. The amount of material in front and inside the muon detector system guarantees absorbing most hadronic background. Besides, by using the track segments matching between the muon system and the tracker one can reach a high enough reconstruction efficiency of a muon detector system guarantees absorbing most hadronic background. Besides, by using the track segments matching between the muon system and the tracker one can reach a high enough reconstruction efficiency of a muon jet reconstruction. The consequent decay \(Z^0 \rightarrow e^+ e^- \) would require a supplementary introduction of isolation criteria for \(e^\pm \) tracks to perform a confident reconstruction of \(e^\pm \) signal in the cells of electromagnetic calorimeter (ECAL).

Our study has shown that a background to the \(Z^0 + \text{jet} \) events with \(e^+ e^- \) decay channel of \(Z^0 \) boson is about the same as one to the \(Z^0 + \text{jet} \) events with \(\mu^+ \mu^- \) decay channel.

\(Z^0 + \text{jet} \) events is a useful tool to cross-check a setting an absolute jet energy scale with help of other processes like \(\gamma + \text{jet} \) [12]–[16] and \(W \rightarrow 2 \text{jets} \) events [8], for example.

Here we present results of the analysis of \(Z^0 + \text{jet} \) events generated by using PYTHIA 5.7 Monte-Carlo event simulation package [19].

Section 2 is an introduction into the problem. General features of \(Z^0 + \text{jet} \) processes at LHC energies as well as the sources of the disbalance between transverse momenta of \(Z^0 \) and jet are presented here. We list here a set of the selection cuts used to identify signal \(Z^0 + \text{jet} \) events (implying subsequent \(Z^0 \) decay to the muon pair). New criteria (introduced for the first time in [12]) of \(Z^0 + \text{jet} \) events with \(\mu^+ \mu^- \) decay channel of \(Z^0 \) boson is about the same as one to the \(Z^0 + \text{jet} \) events with \(\mu^+ \mu^- \) decay channel.

Section 4 is devoted to the study of the influence of \(P_t^\text{clust} \) and \(P_t^\text{out} \) on the initial state radiation (ISR) suppression. The rates of \(Z^0 + \text{jet} \) events with jet covering Barrel, Endcap and Forward parts of the calorimeter are also given in this section.

In Sections 5 and 6 we confine ourselves by consideration of \(Z^0 + \text{jet} \) events with the jet entirely contained in the Barrel region. The dependences of various physical variables on \(P_t^\text{clust} \) and \(P_t^\text{out} \) are analyzed there and shown in the tables of Appendixes 2–5. The values of the disbalance between \(P_t^Z \) and \(P_t^\text{jet} \) with for three \(P_t^Z \) intervals and various \(P_t^\text{clust} \) and \(P_t^\text{out} \) values are presented in Appendix 6.

In Section 7 we study a possibility of background events suppression for different \(P_t^Z \) intervals. The number of events for determination of the gluon density in a proton by using \(Z^0 + \text{jet} \) events is estimated in Section 8. The event rates and contributions of various processes are calculated there for different \(x \) and \(Q^2 \) intervals. It is shown that the kinematic region for the gluon density determination in the intervals: \(2 \cdot 10^{-4} \leq x \leq 1.0 \) with \(0.9 \cdot 10^3 \leq Q^2 \leq 4 \cdot 10^4 \text{(GeV/c)}^2 \) can be covered by studying the \(Z^0 + \text{jet} \) events.

1) see [17]

2) For instance, by requiring (1) a total transverse momentum \(E_t^{\text{tot}} \) around an electron with \(E_t^e \) in the cone with \(R = 0.3 \) to be \(E_t^{\text{tot}} < 5 \text{ GeV} \) and (2) \(E_t^{\text{tot}}/E_t^e < 0.1 \) (e.g. see [18]) we additionally reduce a number of signal events by \(2 – 4\% \).
2 Generalities of the “$Z^0 + jet$” process.

2.1 Leading order picture and sources of P_{tZ} and P_{tJet} disbalance.

In this section we observe briefly the main effects that lead to the disbalance between P_{tZ} and P_{tJet}.

The process of $Z^0 + jet$ production

$$pp \rightarrow Z^0 + 1 jet + X$$

(1)

is caused at the parton level by two subprocesses: Compton-like scattering

$$qg \rightarrow q + Z^0$$

(2a)

and the annihilation process

$$q\bar{q} \rightarrow g + Z^0.$$ (2b)

Some leading order Feynman diagrams of these processes are shown in Fig. 1.

Figure 1: Some leading order Feynman diagrams for Z^0 production.

If the initial state radiation (ISR) is absent, the total transverse momentum of the final state in the subprocesses (2a) or (2b) is equal to zero, i.e. the P_t balance equation for Z^0 and final parton would look as

$$\vec{P}_{tZ}^{part} + \vec{P}_{tZ}^{part} = 0.$$ (2)

Thus, having neglected hadronization effect we could expect that a jet transverse momentum P_{tJet} is close enough to Z^0 boson transverse momentum, i.e. $P_{tJet} \approx -\vec{P}_{tZ}^{part}$.

A radiation of a gluon in the initial state with a non-zero transverse momentum $P_{tISR} \neq 0$ can produce a disbalance between P_{tZ} and P_{tpart} and, thus, between transverse momenta of Z^0 boson and the jet originated from this proton. The corresponding next-to-leading order diagrams are shown in Fig. 2.

Following [12], we choose the sum of the modulus of the transverse momentum vectors P_t^5 and P_t^6 of the incoming (into $2 \rightarrow 2$ fundamental QCD subprocesses $5 + 6 \rightarrow 7 + 8$) partons (lines 5 and 6 in Fig. 2):

$$P_{t56} = |P_t^5| + |P_t^6|.$$ (3)

as a quantitative measure to estimate the P_t disbalance caused by ISR.

The numerical notations in the Feynman diagrams shown in Figs. 1 and 2 and in formula (2) are chosen to be in correspondence with those used in the PYTHIA event listing for description of the parton–parton subprocess displayed schematically in Fig. 3. The “ISR” block describes the initial state radiation process that can take place before the fundamental hard $2 \rightarrow 2$ process.

Figure 2: Some Feynman diagrams of Z^0 production including gluon radiation in the initial state.

3) The more detailed consideration is given in our papers [12, 22] devoted to the jet energy calibration by using “$\gamma + jet$” events.
Figure 3: PYTHIA “diagram” of a fundamental $2 \to 2$ process ($5+6 \to 7+8$) following the block ($3+4 \to 5+6$) of initial state radiation (ISR).

Let us consider fundamental subprocesses in which there is no initial state radiation but instead final state radiation (FSR) takes place. Some Feynman diagrams of the signal subprocesses with the FSR are shown in Fig. 4. An appearance of a gluon in the final state may also cause a disbalance between transverse momenta of Z^0 and jet. But because it manifests itself as some extra jets or clusters, like in the case of ISR, the same selection criteria (see below) as for suppression of ISR can be used.

A possible non-zero value of the intrinsic transverse momentum of a parton inside a colliding proton (k_T) may be another source of the P_t^{Z} and P_t^{Jet} disbalance in the final state. Its reasonable value is supposed to lead to the value of $k_T \leq 1.0 \text{ GeV/c}$. In what follows we shall keep the value of k_T to be fixed by the PYTHIA default value $\langle k_T \rangle = 0.44 \text{ GeV/c}$. The dependence of the disbalance between P_t^{Z} and P_t^{Jet} on a possible variation of k_T is discussed in detail in [16, 22]. The general conclusion is that the variation of k_T within reasonable boundaries does not produce a large effect when the initial state radiation is taken into account. The latter makes a dominant contribution.

Another non-perturbative effect that results in the P_t^{Z} and P_t^{Jet} disbalance is an hadronization of the parton, produced in the fundamental $2 \to 2$ subprocess, into a jet. The contribution of the hadronization to this disbalance is calculated within the Lund string fragmentation scheme used by default in PYTHIA. The mean values of the relative $P_t^{Jet} - P_t^{part}$ disbalance are presented in the tables of Appendices 2 – 5 for three different jetfinders (UA1, UA2 and LUCELL 4) as a function of the variable which limit a cluster activity beyond the “$Z^0 + jet$” system (see Section 2.2 and [14]).

2.2 Definition of selection cuts.

1. We shall select the events with Z^0 boson 5) and one jet with

$$P_t^{Z} \geq 40 \text{ GeV/c} \quad \text{and} \quad P_t^{Jet} \geq 30 \text{ GeV/c}. \quad (4)$$

For most of our applications the jet is defined according to the PYTHIA jetfinding algorithm LUCELL. The jet cone radius R in the $\eta - \phi$ space counted from the jet initiator cell (ic) is taken to be $R_{ic} = (\Delta \eta)^2 + (\Delta \phi)^2)^{1/2} = 0.7$.

Comparison with the UA1 and UA2 jetfinding algorithms is presented in Sections 5 and 6.

2. To guarantee a clear identification of a muon track from Z^0 decay in the muon and tracker systems and determination of its parameters we put the following restrictions on muons 6):

(a) on the P_t value of any considered muon:

$$P_t^\mu \geq 10 \text{ GeV/c}; \quad (5)$$

(b) on the P_t value of the most energetic muon in a pair:

$$P_{t_{max}}^\mu \geq P_{t_{CUT}}^\mu \quad (6)$$

($P_{t_{CUT}}^\mu \geq 20 \text{ GeV/c}$ and depends on the energy scale; see Fig. 6 of Section 4.3);

4) UA1 and UA2 algorithms are taken from the CMSJET program of fast simulation [18], while LUCELL is the PYTHIA’s default jetfinding algorithm [19].

5) Here and below in the paper speaking about Z^0 boson we imply a signal reconstructed from the muon pair with muons selected by the criteria $2 - 4$ of this section.

6) Most of the muon selection cuts are taken from [17, 18].

3
(c) on the value of the ratio of P_t^{isol}, i.e., the scalar sum of P_t of all particles surrounding a muon, to P_t^{μ} (P_t^{isol}/P_t^{μ}) in the cone of radius $R = 0.3$ and on the value of maximal P_t of a charged particle surrounding a muon in this cone:

$$P_t^{isol}/P_t^{\mu} \leq 0.10, \quad P_t^{ch} \leq 2\,\text{GeV}/c. \quad (7)$$

The isolated high-P_t tracks can be reconstructed with a good efficiency (at least 98% over all pseudorapidity region $|\eta| < 2.4$; see [17]) and with generation of a low number of fake and ghost tracks.

3. A muon is selected in the region of the muon system acceptance:

$$|\eta^\mu| < 2.4. \quad (8)$$

4. To select muon pairs only from the Z^0 decay we limit the value of invariant mass of a muon pair M_{inv}^{ll} by:

$$|M^Z - M_{inv}^{ll}| \leq 5\,\text{GeV}/c^2. \quad (9)$$

5. We select the events with the vector $\vec{P}_t^{Z,jet}$ being “back-to-back” to the vector \vec{P}_t^Z (in the plane transverse to the beam line) within $\Delta\phi$ defined by the equation:

$$\phi(Z,jet) = 180^\circ \pm \Delta\phi \quad (10)$$

where $\phi(Z,jet)$ is the angle between the \vec{P}_t^Z and $\vec{P}_t^{Z,jet}$ vectors: $\vec{P}_t^Z \cdot \vec{P}_t^{Z,jet} = P_t^Z P_t^{Z,jet} \cos(\phi(Z,jet))$, where $P_t^Z = |\vec{P}_t^Z|$, $P_t^{Z,jet} = |\vec{P}_t^{Z,jet}|$. $\Delta\phi$ defined in the interval $5 – 15^\circ$ is the most effective choice.

6. The initial and final state radiations (ISR and FSR) manifest themselves most clearly as some final state mini-jets shown in [12] – [16] and in [22]. In Sections 5 and 6 it will be demonstrated once again for the case of “$Z^0 + \text{jet}$” events. The set of selection cuts 1 – 7 we call as “Selection 1”.

7. We limit the value of the modulus of the vector sum of \vec{P}_t of all particles that do not belong to the “$Z^0 + \text{jet}$” system but fit into the region $|\eta| < 5$ covered by the calorimeter system, i.e., we limit the signal in the cells “beyond the jet and Z^0” regions by the following cut:

$$\left| \sum_{i \notin \text{Jet, Z}^{out}} |\vec{P}_t^i| \right| = P_{t^{out}} \leq P_{t^{cut}}^{out}, \quad |\eta| < 5. \quad (12)$$

The importance of $P_{t^{cut}}$ and $P_{t^{cut}}^{out}$ for selection of events with a good balance of P_t^Z and P_t^{Jet} was already shown in [12] – [16] and in [22]. In Sections 5 and 6 it will be demonstrated once again for the case of “$Z^0 + \text{jet}$” events. The set of selection cuts 1 – 7 we call as “Selection 1”.

8. By analogy with [12] – [16] and [22] we use a “jet isolation” requirement (introduced for the first time in [12]), i.e. the presence of a “clean enough” (in the sense of limited P_t activity) region inside the ring of $\Delta R = 0.3$ around the jet. Following this picture, we restrict the ratio of the scalar sum of transverse momenta of particles belonging to this ring, i.e.,

$$P_t^{ring}/P_t^{jet} \equiv \varepsilon^{jet}, \quad \text{where} \quad P_t^{ring} = \sum_{i \in 0.7 < R < 1} |\vec{P}_t^i| \quad (13)$$

with $\varepsilon^{jet} \leq 3 – 8\%$ (see Sections 6 and 7). The set of events that pass cuts 1 – 7 will be called “Selection 2”.

9. As in [12] [22] in the following “Selection 3” we shall keep only those events in which one and the same jet (i.e. up to good accuracy having the same values of P_t^{jet}, R^{jet} and $\Delta\phi$) is found simultaneously by every of three jetfinders used here: UA1, UA2 and LUCCELL. For these jets (and also clusters) we require the following conditions:

$$P_t^{jet} > 30\,\text{GeV}/c, \quad P_t^{clust} < P_{t^{cut}}^{clust}, \quad \Delta\phi < 15^\circ, \quad \varepsilon^{jet} \leq 5\%. \quad (14)$$
10. As we shown in [12, 22] One can expect reasonable results of modeling the jet energy calibration procedure and subsequent practical realization only if one uses a set of selected events with small missing transverse momentum P^miss_t. We define it here as a P_t vector sum of all the particles flying mostly in the direction of the non-instrumented region $|\eta| > 5.0$ and neutrinos with $|\eta| < 5.0$:

$$P^\text{miss}_t = \vec{P}_t^{|\eta|>5.0} + \sum_{i\in|\eta|<5.0} \vec{P}_t^i. \tag{15}$$

Here $\vec{P}_t^{|\eta|>5}$ is the total transverse momentum of non-observable particles i flying in the direction of the non-instrumented forward part of the CMS detector ($|\eta| > 5$):

$$\sum_{i\in|\eta|<5} \vec{P}_t^i = \vec{P}_t^{|\eta|>5}. \tag{16}$$

We shall use the following cut on P^miss_t:

$$P^\text{miss}_t \leq P^\text{miss}_{t,CUT}. \tag{17}$$

The aim of the event selection with small P^miss_t is quite obvious: we need a set of events with a reduced P_t^jet uncertainty due to a possible presence of a non-detectable neutrino contribution to a jet, for example.

The exact values of the cut parameters $P^\mu_{t,CUT}$, ϵ^jet, $P^\text{clust}_{t,CUT}$, $P^\text{out}_{t,CUT}$ will be specified below, since they may be different, for instance, for various P_t^Z intervals.

2.3 The P_t-balance equation of “$Z^0 + jet$” event.

The conservation law for “$Z^0 + jet$” events as a whole can be written in the following vector form [12, 22]:

$$\vec{P}_t^Z + \vec{P}_t^\text{Jet} + \vec{P}_t^O + \vec{P}_t^{|\eta|>5} = 0. \tag{18}$$

$\vec{P}_t^{|\eta|>5}$ is defined in [16] and \vec{P}_t^O is a total transverse momentum of all other (O) particles besides “jet particles and muons from Z^0 decay” (“$Z^0 + jet$” system) in the $|\eta| < 5$ region and defined as:

$$\vec{P}_t^O = \vec{P}_t^\text{out} + \vec{P}_t^{(\nu)} + \vec{P}_t^{(\mu,|\eta|>2.4)}. \tag{19}$$

In its turn, \vec{P}_t^out is a sum of clusters P_t (with P_t^{clust} smaller than P_t^Jet) and P_t of single hadrons (h), photons (γ) and electrons (e) with $|\eta| < 5$ and muons (μ) with $|\eta^\mu| < 2.4$ that are out of the “$Z^0 + jet$” system:

$$\vec{P}_t^\text{out} = \vec{P}_t^{\text{clust}} + \vec{P}_t^{(h)} + \vec{P}_t^{(\gamma)} + \vec{P}_t^{(e)} + \vec{P}_t^{(\mu,|\eta|>2.4)}, \quad |\eta| < 5. \tag{20}$$

The last two terms in equation (19) are the transverse momentum carried out by the neutrinos that do not belong to the jet but that are contained in the $|\eta| < 5$ region ($\vec{P}_t^{(\nu)}$) and non-detectable muons flying with $|\eta^\mu| > 2.4$ ($\vec{P}_t^{(\mu,|\eta|>2.4)}$).

To conclude this section, let us rewrite the basic vector P_t-balance equation in the following scalar form, more suitable to present the final results:

$$\frac{P_t^Z - P_t^\text{Jet}}{P_t^Z} = (1 - \cos \Delta \phi) + P_t(\Omega + \eta > 5)/P_t^Z, \tag{21}$$

where $P_t(\Omega + \eta > 5) \equiv (\vec{P}_t^O + \vec{P}_t^{(\text{out},|\eta|>5)}) \cdot \vec{\eta}^\text{Jet}$ with $\vec{\eta}^\text{Jet} = P_t^\text{Jet}/P_t^\text{Jet}$ and $\Delta \phi$ is the angle that enters equation [11].

As will be shown in Section 6, the first term on the right-hand side of equation (21) is negligibly small and tends to decrease fast with growing P_t^Jet. So, the main contribution to the P_t disbalance in the “$Z^0 + jet$” system is caused by the term $P_t(\Omega + \eta > 5)/P_t^Z$ [12–16, 22].
3 Estimation of a non-detectable part of P_t^{jet}.

This subject is considered in detail in [12]. Here we outline the main results for the case of “$Z^0 + jet$” events. One of the main sources of this part, that can be estimated on the particle level, is non-detectable particles (like neutrinos and muons with $|\eta| > 2.4$) \(^7\)

The missing transverse momentum P_t^{miss} (see [15]) and a P_t contribution to a jet from non-detectable particles are estimated here in the framework of simulation with PYTHIA \(^8\). The detailed information about the transverse momenta of non-detectable neutrinos $P_{t(\nu)}^{jet}$ averaged over all events (no cut on P_t^{miss} was used) as well as about mean P_t values of muons belonging to jets ($P_{t(\mu)}^{jet}$) is presented in Tables 1–12 of Appendix 1 for the sample of events with jets which are entirely contained in the barrel region of the calorimeter ($|\eta| < 1.4$, “HB-events”, see Section 4 and 5). In these tables the ratio of number of the events with non-zero $P_{t(\nu)}^{jet}$ to the total number of events is denoted by P_{event}^{ν} and the ratio of the number of events with non-zero $P_{t(\mu)}^{jet}$ to the total number of events is denoted by P_{event}^{μ}.

A wide variation of P_t^{miss} as well as the case of allowed K^\pm decays in the calorimeter volume were presented in detail in [12]. We choose here for the following analysis $P_{t,CUT}^{miss} = 10 \text{ GeV/c}$ found to be optimal in [12].

4 Event rates for different P_t^Z and η^Z intervals.

4.1 Dependence of the distribution of the number of events on the ”back-to-back” angle $\phi(Z,\text{jet})$ and on P_t^{ISR}.

Here we study the spectrum of the variable $P_{t,56}$ for the sample of signal events \(^9\). For this aim four samples of “$Z^0 + jet$” events (each by $5 \cdot 10^9$) were generated by using PYTHIA with 2 subprocesses (2a) and (2b) and with minimal P_t of hard $2 \rightarrow 2$ scattering \(^{10}\) $P_{t,min} = 20, 35, 50, 75 \text{ GeV/c}$ to cover four P_t^Z intervals: 40–50, 70–85, 100–120, 150–200 GeV/c, respectively. The obtained cross sections for these subprocesses are given in Table 1.

Table 1: The cross sections (in microbarns) of the $qg \rightarrow q + Z^0$ and $q\bar{q} \rightarrow g + Z^0$ subprocesses for four $P_{t,min}$ values.

Subprocess type	$\hat{p}_{t,min}$ values (GeV/c)
$qg \rightarrow q + Z^0$	3.83-10^-4, 1.71-10^-4, 9.14-10^-5, 3.80-10^-5
$q\bar{q} \rightarrow g + Z^0$	1.20-10^-4, 0.42-10^-4, 1.93-10^-5, 0.69-10^-5
Total	5.03-10^-4, 2.13-10^-4, 1.11-10^-5, 4.59-10^-5

For our analysis we used cuts \([3] \rightarrow [12] \) and the following cut parameters:

$$P_{t,max}^h > 20 \text{ GeV/c}, \quad \Delta \phi < 15^\circ, \quad P_{t,CUT}^{clus} = 30 \text{ GeV/c}.$$ \hspace{1cm} (22)

In Tables 2 and 5 we study (as in [12]) $P_{t,56}$ spectra for two most illustrative cases of P_t^Z intervals $40 < P_t^Z < 50 \text{ GeV/c}$ (Tables 2 and 5) and $100 < P_t^Z < 120 \text{ GeV/c}$ (Tables 3 and 6). The distributions of the number of events for the integrated luminosity $L_{int} = 10 \text{ fb}^{-1}$ in different $P_{t,56}$ intervals and for different “back-to-back” angle intervals $\phi(Z,\text{jet}) = 180^\circ \pm \Delta \phi$ (with $\Delta \phi = 15^\circ, 10^\circ$ and 5° as well as without any restriction on $\Delta \phi$, i.e. for the whole ϕ interval $\Delta \phi = 180^\circ$) are given there. The LUCELL jetfinder was used to find jets and clusters. Tables 4 and 6 correspond to the events selected with cuts $P_{t,clus}^h < 30 \text{ GeV/c}$ and without any limit on $P_{t,clus}$ value, while Tables 5 and 6 correspond to more restrictive selection cuts $P_{t,clus}^h < 10 \text{ GeV/c}$ and $P_{t,clus}^h < 10 \text{ GeV/c}$.

First, from the last summary lines of Tables 2, 4 and 5 we can make a general conclusion about the $\Delta \phi$ dependence of the event spectrum. In the case when no restriction is used we can see that for the $40 < P_t^Z < 50 \text{ GeV/c}$

\(^7\) In a real experiment, of course, it can be also conditioned by many other reasons as, for instance, the energy leakage due to constructive features of the detector, magnetic filed effects and so on.

\(^8\) We have considered the case of switched-off decays of π^\pm and K^\pm mesons (according to the PYTHIA default agreement, π^\pm and K^\pm mesons are stable).

\(^9\) $P_{t,56}$ is approximately proportional to $P_{t,ISR}^h$ up to the value of intrinsic parton transverse momentum k_T inside a proton ($\langle k_T \rangle$ was taken to be fixed at the PYTHIA default value, i.e. $\langle k_T \rangle = 0.44 \text{ GeV/c}$).

\(^{10}\) CKIN(3) parameter in PYTHIA
Table 2: Number of events dependence on P_t^{56} and $\Delta \phi$ for $40 \leq P_t^{Z} \leq 50$ GeV/c and P_t^{clust} = 30 GeV/c for $L_{int}=10$ fb$^{-1}$.

P_t^{56} (GeV/c)	$\Delta \phi_{max}$	180°	15°	10°	5°
0 – 5		18525	16965	15880	12708
5 – 10		29094	26671	23419	15579
10 – 15		24192	19935	14042	7033
15 – 20		18168	10910	7088	3481
20 – 25		13424	5833	3924	1968
25 – 30		10169	3604	2380	1172
30 – 40		14070	4114	2677	1311
40 – 50		7544	1833	1184	618
50 – 100		5904	1727	1097	550
100 – 300		8	3	2	0
300 – 500		0	0	0	0
30 – 500		141095	91594	71694	42423

Table 3: Number of events dependence on P_t^{56} and $\Delta \phi$ for $100 \leq P_t^{Z} \leq 120$ GeV/c and P_t^{clust} = 30 GeV/c for $L_{int}=10$ fb$^{-1}$.

P_t^{56} (GeV/c)	$\Delta \phi_{max}$	180°	15°	10°	5°
0 – 5		1849	1837	1790	1616
5 – 10		3798	3770	3667	3247
10 – 15		3635	3600	3477	2542
15 – 20		3065	3025	2847	1592
20 – 25		2491	2424	1976	986
25 – 30		2115	2000	1418	709
30 – 40		2507	2039	1398	721
40 – 50		1061	744	527	289
50 – 100		1105	768	582	325
100 – 300		194	147	107	63
300 – 500		2	2	1	0
0 – 500		21826	20356	17797	12094

Table 4: Number of events dependence on $\Delta \phi$ and on P_t^{Z} for $L_{int} = 10$ fb$^{-1}$.

P_t^{Z} (GeV/c)	$\Delta \phi_{max}$	180°	15°	10°	5°
40 – 50		141095	91591	71694	42423
70 – 80		40032	32551	26710	16794
100 – 120		2182	20356	17797	12094
150 – 200		8649	8558	8134	6182
Table 5: Number of events dependence on P_{t56} and $\Delta\phi$ for $40 \leq P_{tZ} \leq 50\,\text{GeV}/c$ and $P_{tclust}^{\text{cut}} = 10\,\text{GeV}/c$ and $P_{t\text{out}}^{\text{cut}} = 10\,\text{GeV}/c$ for $L_{\text{int}}=10\,\text{fb}^{-1}$.

P_{t56} (GeV/c)	$\Delta\phi_{\text{max}}$	180°	15°	10°	5°
0 – 5		11619	11603	11409	9603
5 – 10		15329	15258	14288	8767
10 – 15		6787	6479	5156	2768
15 – 20		1810	1533	1204	645
20 – 25		677	527	432	253
25 – 30		305	238	195	119
30 – 40		277	222	193	111
40 – 50		127	111	91	44
50 – 100		36	32	24	12
100 – 300		0	0	0	0
300 – 500		0	0	0	0
0 – 500		36967	35996	32987	22315

Table 6: Number of events dependence on P_{t56} and $\Delta\phi$ for $100 \leq P_{tZ} \leq 120\,\text{GeV}/c$ and $P_{tclust}^{\text{cut}} = 10\,\text{GeV}/c$ and $P_{t\text{out}}^{\text{cut}} = 10\,\text{GeV}/c$ for $L_{\text{int}}=10\,\text{fb}^{-1}$.

P_{t56} (GeV/c)	$\Delta\phi_{\text{max}}$	180°	15°	10°	5°
0 – 5		1133	1133	1133	1121
5 – 10		1932	1932	1932	1877
10 – 15		1002	1002	1002	867
15 – 20		309	309	309	234
20 – 25		95	95	91	63
25 – 30		49	49	45	33
30 – 40		48	44	40	32
40 – 50		27	25	25	25
50 – 100		44	44	44	40
100 – 300		5	5	5	5
300 – 500		0	0	0	0
0 – 500		4641	4637	4621	4293

Table 7: Number of events dependence on $\Delta\phi$ and on P_{tZ} for $L_{\text{int}} = 10\,\text{fb}^{-1}$.

P_{tZ} (GeV/c)	$\Delta\phi_{\text{max}}$	180°	15°	10°	5°
40 – 50		36967	35996	32987	22315
70 – 80		8688	8657	8542	7033
100 – 120		4641	4637	4621	4293
150 – 200		1746	1746	1742	1719
An increase in the interval about 65% of events are concentrated in the $\Delta \phi < 15^\circ$ range, while 30% of events are in the $\Delta \phi < 5^\circ$ range. At the same time the analogous summary line of Table 2 shows us that for $100 < P_t^Z < 120$ GeV/c the event spectrum moves noticeably to the small $\Delta \phi$ region: more than 94% of events have $\Delta \phi < 15^\circ$ and 56% of them have $\Delta \phi < 5^\circ$.

We observe a tendency of the distributions of the number of signal “$Z^0 + jet$” events to be concentrated in a rather narrow back-to-back angle interval $\Delta \phi < 15^\circ$ with P_t^Z growing. It becomes more distinct with a more restrictive cuts $P_{t\text{out}} = 10$ GeV/c and $P_{t\text{cut}} = 10$ GeV/c (Tables 3 and 5). From the last summary line of Table 5 we see that in the case of $40 < P_t^Z < 50$ GeV/c more than 96% of the events have $\Delta \phi < 15^\circ$, while 60% of them are in the $\Delta \phi < 5^\circ$ range. For $100 < P_t^Z < 120$ GeV/c (see Table 6) more than 92% of the events, subject to these cuts, have $\Delta \phi < 5^\circ$. It means that while suppressing P_t activity beyond the “$Z^0 + jet$” system by imposing $P_{t\text{cut}} = 10$ GeV/c and $P_{t\text{cut}} = 10$ GeV/c we can select the sample of events with a clean back-to-back ($\Delta \phi < 15^\circ$) topology of P_t^Z and P_t^jet orientation.

The other lines of Tables 2, 3 and 5, 6 contain the information about the P_t^{Z6} spectrum (or, up to k_T effect, P_t^{ISR} spectrum).

From the comparison of Table 2 with Table 5 (as well as from Tables 3 and 6) one can conclude that the width of the most populated part of the P_t^{Z6} (or P_t^{ISR}) spectrum is noticeably reduced with restricting $P_{t\text{cut}}$ and $P_{t\text{cut}}$

We supply Tables 2, 4 and 5 with summarizing Tables 4 and 7 containing an illustrative information on $\Delta \phi$ dependence of the total number of events. They include more P_t^Z intervals and contain analogous numbers of events that can be collected in different $\Delta \phi$ intervals for $P_{t\text{cut}}$, $P_{t\text{cut}}$ and other cuts, defined by |Z|, at $L_{int} = 10$ fb$^{-1}$.

We can conclude from Tables 2, 4 that restriction on the $P_{t\text{cut}}$ and $P_{t\text{cut}}$ variables are good tools to reduce ISR while by limiting $\Delta \phi$ angle the ISR remains, in fact, without a change. Meanwhile, in spite of about twofold spectra reduction of the ISR (or P_t^{Z6}), see Tables 4 and 7, it continues to be noticeable at the LHC energies.

4.2 P_t^Z, η^Z and P_t^μ dependence of rates.

In Table 2 we present the number of events calculated after passing selection cuts 4–12 for different P_t^Z and η^Z intervals (lines and columns of the table, respectively). The last column of this table contains the total number of events (at $L_{int} = 10$ fb$^{-1}$) at $|\eta^Z| < 5.0$ for a given P_t^Z interval. We see that the number of events decreases fast with growing P_t^Z (but it decreases much slower as compared with decrease in P_t^γ spectrum in the case of “$\gamma + jet$” events, see Fig. 12). It also drops with growing $|\eta^Z|$ starting from $|\eta^Z| \approx 2.0$ and has weak dependence on η^Z in the interval $|\eta^Z| < 2.0$. The analogous information is illustrated by Fig. 5 for three P_t^Z intervals.

In Fig. 5 we have plotted a normalized distributions of the number of events over P_t of muons from Z^0 decay for two P_t^Z intervals: $40 < P_t^Z < 50$ and $100 < P_t^Z < 120$ GeV/c. The muon spectra are limited by the condition (4) $P_t^Z > 10$ GeV/c. We also see that the spectra with muons having maximal P_t in the pair starts at 20 GeV/c for $40 < P_t^Z < 50$ GeV/c and at 50 GeV/c for $100 < P_t^Z < 120$ GeV/c. It explains our choice in (5) for $P_t^\mu_{max}$ restriction.

11) An increase in P_t^Z produces the same effect, as is seen from Tables 3 and 4 and will be demonstrated in more detail in Section 6 and Appendices 2–5.

12) The analogous conclusion was done by studying “$\gamma + jet$” events in [12].

13) We have limited Z^0 pseudorapidity spectrum from above in Fig. 5 and Table 5 only to give understanding about the its behavior inside this η^Z interval and, certainly, have not used those limits as cuts anywhere in this paper.
Table 8: Rates for $L_{int} = 10 \text{ fb}^{-1}$ for different intervals of P_t^Z and η^Z ($P_{t\text{cut}} = 10 \text{ GeV/c}$, $P_{t\text{cut}} = 10 \text{ GeV/c}$ and $\Delta \phi \leq 15^\circ$).

| P_t^Z (GeV/c) | $|\Delta \eta^Z|$ intervals | all $|\eta^Z|$ |
|----------------|-----------------------------|---------------|
| | 0.0-0.5 | 0.0-5.0 |
| 40 – 50 | 4594 | 5425 |
| 50 – 60 | 5128 | 4397 |
| 60 – 70 | 4218 | 2934 |
| 70 – 80 | 2598 | 1948 |
| 80 – 90 | 1580 | 1236 |
| 90 – 100 | 741 | 808 |
| 100 – 110 | 582 | 546 |
| 110 – 120 | 384 | 412 |
| 120 – 140 | 523 | 531 |
| 140 – 170 | 392 | 341 |
| 170 – 200 | 170 | 170 |
| 200 – 240 | 111 | 99 |
| 240 – 300 | 71 | 44 |

Figure 6: A normalized distributions of the number of events over P_t of muons from Z^0 decay: for a muon with maximal P_t (full line) and for a muon with minimal P_t (dashed line) in the pair.

4.3 Estimation of “$Z^0 + \text{jet}$” event rates for the HB, HE and HF regions.

Since a jet is a wide-spread object, we present the η^{jet} dependence of rates (for different P_t^Z intervals) in a different way. Namely, Tables 9–12 include the rates of events (at $L_{int} = 10 \text{ fb}^{-1}$) for different η^{jet} intervals, covered by the Barrel, Endcap and Forward (HB, HE and HF) parts of the calorimeter. The events are selected after the cuts (4) – (12) (Selection 1) with the following values of the cut parameters:

$$\Delta \phi < 15^\circ, \quad P_{t\text{cut}} = 10 \text{ GeV/c}, \quad P_{t\text{cut}} = 10 \text{ GeV/c}. \quad (23)$$

The first columns of these tables give the number of events with jets (found by the LUCELL jetfinding algorithm of PYTHIA), all particles of which are comprised entirely (100%) in the Barrel part (HB) and there is a 0% sharing ($\Delta P_t^{jet} = 0$) of P_t^{jet} between the HB and the neighboring HE part of the calorimeter. The second columns of the tables contain the number of events in which P_t of the jet is shared between the HB and HE regions. The same sequence of restriction conditions takes place in the next columns. Thus, the HE and HF columns include the number of events with jets entirely contained in these regions, while the HE+HF column gives the number of events where the jet covers both the HE and HF regions. From these tables we can see what number of events can, in principle, be suitable for the most precise jet energy calibration procedure, carried out separately for the HB, HE and HF parts of the calorimeter in different P_t^Z ($\approx P_t^{jet}$) intervals. Less restrictive conditions, when up to 10\%
of the jet P_t are allowed to be shared between the HB, HE and HF parts of the calorimeter, are given in Tables 10 and 12. Tables 9 and 10 correspond to the case of Selection 1. Tables 11 and 12 contain the number of events collected with the added Selection 2 restriction (with $\epsilon_{\text{jet}} < 5\%$), i.e. they include only the events with “isolated jets” (defined in Section 2.2). The reduction factor of about 2 for the number of events can be found by comparing Tables 9 and 10 with Tables 11 and 12.

From the last summarizing line of Table 9 we see that for the whole interval $40 < P_t^Z < 300 \text{ GeV/c}$ PYTHIA predicts about 45 000 events for HB, 16 000 events for HE and about 2 000 events for HF at $L_{\text{int}}=10 \text{ fb}^{-1}$.

P_t^Z	HB	HB+HE	HE	HE+HF	HF
40 - 50	15072	11179	5417	3045	729
50 - 60	9076	7037	3231	1734	376
60 - 70	5813	4447	2055	1030	218
70 - 80	3726	2903	1275	669	123
80 - 90	2542	1901	847	432	67
90 - 100	1711	1243	558	246	44
100 - 110	1263	879	352	150	12
110 - 120	836	681	289	107	20
120 - 140	1085	836	400	154	8
140 - 170	752	626	218	71	8
170 - 200	348	261	103	44	0
200 - 240	206	139	75	20	0
240 - 300	111	95	28	4	0
40 - 300	44554	34076	15789	8510	2020

P_t^Z	HB	HB+HE	HE	HE+HF	HF
40 - 50	19610	3251	10328	887	1366
50 - 60	12161	1667	6439	420	768
60 - 70	7797	950	4166	202	444
70 - 80	5077	570	2633	162	253
80 - 90	3453	372	1734	83	147
90 - 100	2261	242	1152	48	95
100 - 110	1683	170	729	32	40
110 - 120	1176	87	582	16	45
120 - 140	1465	139	816	36	43
140 - 170	1026	115	511	12	12
170 - 200	475	48	222	5	8
200 - 240	273	17	147	3	4
240 - 300	158	15	59	0	0
40 - 300	59392	8169	31395	2127	3861
An additional information on the numbers of “$Z^0 + jet$” events with jets produced by c and b quarks (see also [12] and [42, 43]), given for the integrated luminosity $L_{int} = 10 \, fb^{-1}$ for different $P_t^Z(\approx P_t^{jet})$ intervals 45–55, 70–85, 100–120 and 150–200 GeV/c is contained in Tables 1–12 of Appendix 1 (they denoted as $N_{event c}$ and $N_{event b}$ there). They also show the ratio of the number of events caused by gluonic Compton-like subprocess (2a) to the number of events due to the sum of subprocesses (2a) and (2b) ($30_{sub/all}$) and averaged jet radii $<R_{ge}>$.

Table 11: Selection 2. $\Delta P_t^{jet}/P_t^{jet} = 0.00$ ($L_{int}=10 \, fb^{-1}$).

P_t^Z	HB	HB+HE	HE	HE+HF	HF
40 – 50	6039	4221	2364	1152	352
50 – 60	4578	3398	1810	847	182
60 – 70	3461	2637	1319	645	154
70 – 80	2542	2020	915	447	91
80 – 90	1936	1382	681	329	55
90 – 100	1390	962	475	190	36
100 – 110	1093	717	305	123	13
110 – 120	744	614	273	79	15
120 – 140	990	760	376	158	9
140 – 170	713	602	210	71	7
170 – 200	341	257	103	45	1
200 – 240	206	131	75	19	0
240 – 300	111	95	28	4	0
40 – 300	24912	18489	9393	4499	1169

Table 12: Selection 2. $\Delta P_t^{jet}/P_t^{jet} \leq 0.10$ ($L_{int}=10 \, fb^{-1}$).

P_t^Z	HB	HB+HE	HE	HE+HF	HF
40 – 50	7770	1148	4297	309	602
50 – 60	6083	729	3425	190	384
60 – 70	4629	554	2602	119	305
70 – 80	3465	388	1885	99	178
80 – 90	2610	249	1350	59	115
90 – 100	1806	190	950	37	79
100 – 110	1434	139	610	23	36
110 – 120	1057	85	635	31	40
120 – 140	1338	117	656	21	37
140 – 170	974	111	491	12	11
170 – 200	467	48	218	4	9
200 – 240	273	18	143	4	3
240 – 300	158	14	59	0	0
40 – 300	33117	3952	18224	990	2174
5 Features of “$Z^0 + \text{jet}$” events in the Barrel region.

5.1 Influence of the P_t^{clust} parameter on the balance between Z^0 and jet transverse momenta and on the initial state radiation suppression.

Here we shall study a correlation of P_t^{clust} with P_t^{ISR}. The samples of 1-jet “$Z^0 + \text{jet}$” events, gained from the PYTHIA simulation of 5×10^6 signal “$Z^0 + \text{jet}$” events in two P_t^Z intervals 45 – 55 and 100 – 120 GeV/c, will be used here. The observables defined in Section 2 will be restricted here by Selection 1 cuts (4) – (12) of Section 2.2 with $P_t^{\text{CUT}} = 30$ GeV/c. P_t^{CUT} is not limited here.

The influence of the P_t^{clust} variation on the distribution of some important physical variables is shown in Fig. 4 for $45 < P_t^Z < 55$ GeV/c and in Fig. 5 for $100 < P_t^Z < 120$ GeV/c. Besides of distributions for three auxiliary variables P_{t56}, $P_t^{\phi 5}$, P_t^{out} (defined by (2), (16), (18)) we present distributions for $P_t(O+\eta > 5)$ and $\langle 1 - \cos \Delta \phi \rangle$ which define the right-hand side of equation (21). The distribution of the back-to-back $\Delta \phi$ angle (10), defining the second variable $\langle 1 - \cos \Delta \phi \rangle$, is also presented in Figs. 4, 5.

The P_{t56} variable and both components defining P_t^Z and P_t^{Jet} disbalance, $(1 - \cos \Delta \phi)$ and $P_t(O+\eta > 5)$, as well as two others variables, P_t^{out} and $\Delta \phi$, show a tendency to become smaller (as the mean values of the widths of distributions) by restricting an upper limit on the P_t^{clust} value (see also tables of Appendices 2–5). It means that the precision of jet energy setting may increase with decreasing P_t^{clust}. The origin of this improvement becomes clear from the P_t^{56} density plot which demonstrates ISR suppression (or P_t^{ISR}) as a more restrictive cut is imposed on P_t^{clust}.

Comparison of Fig. 7 (for $45 < P_t^Z < 55$ GeV/c) and Fig. 8 (for $100 < P_t^Z < 120$ GeV/c) shows that $\Delta \phi$ as a degree of back-to-backness of Z^0 boson and jet P_t vectors in the ϕ-plane decreases with increasing P_t^Z. At the same time P_t^{ISR} distribution becomes wider, while the $P_t^{\phi 5}$ and P_t^{out} distributions practically do not depend on P_t^Z (see for details Appendices 2–5).

It should be mentioned that the results presented in Figs. 7 and 8 were obtained with the LUCELL jetfinder of PYTHIA 14).

5.2 P_t distribution inside and outside of a jet.

Now let us see how the space outside the jet may be populated by P_t in the “$Z^0 + \text{jet}$” HB events. For this purpose we calculate a vector sum \vec{P}_t^{sum} of individual transverse momenta of the calorimeter cells included by a jetfinder into a jet and of cells in a larger volume that surrounds a jet. In the latter case this procedure can be viewed as straightforward enlarging of the jet radius in the $\eta - \phi$ space.

The plots that present the ratio P_t^{sum}/P_t^Z as a function of the distance $R(\eta, \phi)$ counted from a jet gravity center towards its boundary and further into the space outside a jet are shown in the left-hand columns of Figs. 2 and 10 for two P_t^Z intervals ($45 < P_t^Z < 55$ GeV/c and $100 < P_t^Z < 120$ GeV/c) and three jetfinding algorithms (UA1, UA2 and LUCELL).

From these figures we see that the space surrounding the jet is in general far from being empty. We also see that the average value of P_t^{sum} increases with increasing volume around a jet and it exceeds P_t^Z at $R = 0.7 - 0.8$ (see Figs. 9 and 10).

From the right-hand columns of Figs. 11 and 12 we see that the vector disbalance measure

$$P_t^{Z,+\text{sum}} = |\vec{P}_t^Z + \vec{P}_t^{\text{sum}}|$$

achieves its minimum again at $R \approx 0.7 - 0.8$ for all jetfinding algorithms. (The minimum of the vector sum $P_t^{Z,+\text{sum}}$ can serve as an illustration of the $P_t^Z - P_t^{\text{Jet}}$ disbalance minimum.)

The value of $P_t^{Z,+\text{sum}}$ (as well as P_t^{sum}/P_t^Z) continues to grow rapidly for $40 < P_t^Z < 50$ GeV/c and more slowly for $100 < P_t^Z < 120$ GeV/c with increasing R after the point $R = 0.7 - 0.8$ (see Figs. 8 and 10). This means that at higher P_t^Z (or P_t^{Jet}) the topology of “$Z^0 + \text{jet}$” events becomes more distinct and we get a clearer picture of an “isolated” jet. This feature clarifies the motivation of introducing the “Selection 2” criteria in Section 2.2 for selection of events with isolated jets.

14) The results obtained with all jetfinders and P_t^Z and P_t^{Jet} balance will be discussed in Sections 7 in more detail.
Figure 7: LUCELL algorithm, $\Delta \phi < 15^\circ$, $45 < P_t^Z < 55 \text{ GeV/c}$. Selection 1.
Figure 8: LUCHELL algorithm, $\Delta \phi < 15^\circ$, $100 < P_t^Z < 120 \text{ GeV/c}$. Selection 1.
Figure 9: LUCELL, UA1 and UA2 algorithms, $\Delta \phi < 15^\circ$, $45 < P_t^Z < 55 \text{GeV/c}$.
Figure 10: LUCELL, UA1 and UA2 algorithms, $\Delta \phi < 15^\circ$, $100 < P_t^Z < 120 \text{ GeV/c}$.
6 Dependence of the disbalance between P_t^Z and P_t^{Jet} on the P_t^{CUT} and P_t^{out} parameters.

Here we shall study in detail a dependence of the $P_t^Z - P_t^{Jet}$ disbalance on the values of P_t^{CUT} and P_t^{out}. For this aim the four samples of “$Z^0 + jet$” events described in the beginning of Section 4 were used.

The mean values of the most important variables used in our analyses that reflect the main features of “$Z^0 + jet$” events with the jet completely contained in the Barrel region, i.e. “HB events” (see Section 5) are given in the tables of Appendices 2–5.

Appendix 2 contains the tables for events inside $45 < P_t^Z < 55$ GeV/c interval. In these tables we present the values of interest found with UA1, UA2 and LUCCELL jetfinders for three different Selections mentioned in Section 2.2. Each page corresponds to a definite value of $\Delta \phi$ as a measure of deviation from the absolute back-to-back orientation of P_t^Z and P_t^{Jet} vectors. The first four pages of each Appendix contain the information about variables that characterize the $P_t^Z - P_t^{Jet}$ balance for events passed the cuts (15) (Selection 1).

On the fifth page of each of Appendices 2–5 we present Tables 13–15 (for the cut $\Delta \phi < 15^\circ$) that correspond to Selection 2 (see Section 2.2). We have limited $\varepsilon^{Jet} \leq 9\%$ for $45 < P_t^Z < 55$ with a gradual change to $\varepsilon^{Jet} \leq 3\%$ for $P_t^Z \geq 100$ GeV/c. The best result for UA2 in the case of $45 < P_t^Z < 55$ is obtained with $\varepsilon^{Jet} \leq 6\%$ instead of the cut $\varepsilon^{Jet} \leq 9\%$ chosen for UA1 and LUCCELL algorithms. The results obtained with Selection 3 are given on the sixth page of Appendices 2–5 (10), while on the seventh page Selection 3 is used to find jets found simultaneously by UA1 and LUCCELL jetfinders only.

The columns in tables of Appendices 2–5 correspond to five values of $P_t^{CUT} = 30, 20, 15, 10$ and 5 GeV/c. The upper lines of these tables contain the expected numbers N_{event} of “HB events” for the integrated luminosity $L_{int} = 10$ fb$^{-1}$.

In the next four lines of the tables we put the values of P_t^{56}, $\Delta \phi$, P_t^{out}, P_t^{q5} defined by formulas (2), (9), (18) and (16), respectively, and averaged over the events selected with a chosen P_t^{CUT} value. From the tables we see, firstly, that the averaged values of P_t^{q5} show very weak dependence on it (practically constant) (17), what is in complete agreement with behavior of these variables in the case of “$\gamma + jet$” events. At the same time, the values of P_t^{56}, $\Delta \phi$, P_t^{out} decrease fast with decreasing P_t^{CUT}. The P_t^{56} variable (non-observable one) that serves, according to (2), as measure of the initial state radiation transverse momentum P_t^{ISR}, i.e. one of the main sources of the P_t disbalance in the subprocesses (2a) and (2b). So, variation of P_t^{CUT} from 30 to 10 GeV/c for $\Delta \phi < 15^\circ$ leads to suppression of the P_t^{56} value (or P_t^{ISR}) approximately by $\approx 40 - 45\%$ for all P_t^Z.

The following three lines (from 6-th to 8-th) show the average values of the variables $(P_t^Z - P_t^{part})/P_t^Z$, $(P_t^{Jet} - P_t^{part})/P_t^Z$, $(P_t^Z - P_t^{Jet})/P_t^Z$ (here J=Jet). These lines correspond to the relative P_t balance at the Z^0-parton level (final state of the fundamental subprocess $2 \rightarrow 2$), the relative difference of the parton P_t and the jet P_t (parton hadronization effect) and the relative P_t balance of the jet and Z^0 boson. The lines 9 and 10 include the averaged values of $P_t(O+\eta > 5)/P_t^Z$ and $(1 - \cos(\Delta \phi))$ that appear on the right-hand side of the P_t-balance equation (21).

As a rule, the value of $(1 - \cos(\Delta \phi))$ is smaller than the value of $\langle P_t(O+\eta > 5)/P_t^Z \rangle$ for the cut $\Delta \phi < 15^\circ$ and tends to decrease more with growing energy. So, we can conclude that the main source of the P_t disbalance in the “$Z^0 + jet$” system is defined by the term $P_t(O+\eta > 5)/P_t^Z$.

The following line contains the averaged values of the standard deviations of $(P_t^Z - P_t^{Jet})/P_t^Z (\equiv D_b[Z,J])$. The values of this variable drop approximately by a factor of two (and even more for all intervals with $P_t^Z > 100$ GeV/c) while moving from $P_t^{CUT} = 30$ GeV/c to $P_t^{CUT} = 5$ GeV/c for all jetfinding algorithms.

The last lines of the tables present the number of generated events, i.e. entries left after cuts.

A decrease in P_t^{CUT} leads to a decrease in the $(P_t^Z - P_t^{Jet})/P_t^Z$ ratio (mean values as well as standard deviations), i.e. we select the events that can be used to improve the jet energy calibration accuracy. For instance, in the case

15) In [12] – [16] the Selection 2 criterion was considered with a more severe cut $\varepsilon^{Jet} \leq 2\%$.

16) Selection 3 (see Section 2.2) leaves only those events in which jets are found simultaneously by UA1, UA2 and LUCCELL jetfinders i.e. events with jets having up to a good accuracy equal coordinates of the center of gravity, P_t^{Jet} and $\phi(Z,Jet)$.

17) Compare with Figs. 7 and 8.
of \(70 < P_T^Z < 85 \text{ GeV/c}\) the mean value of \((P_T^Z - P_T^j)/P_T^Z\) drops from \(4.5 - 4.9\%\) to \(0.9 - 1.5\%\) (see Tables 4, 6 of Appendix 3) and in the case of \(100 < P_T^Z < 120 \text{ GeV/c}\) the mean value of this variable drops from \(3.4 - 3.7\%\) to less than \(0.6 - 1.0\%\) for UA1 and LUCELL jetfinders (Tables 4, 6 of Appendix 4). A worse situation is seen for the \(45 < P_T^Z < 55 \text{ GeV/c}\) interval, where the disbalance changes, e.g. for LUCELL algorithm, as \(2.1 \rightarrow 1.8\%\). Meantime, RMS values with the same variations of \(P_{CUT}^{\text{clust}}\) (from 30 to 10 GeV/c) decrease by 40 – 50\%.

After imposing the jet isolation requirement (see Tables 13 – 15 of Appendices 2–5) we observe that for \(P_T^Z \geq 100 \text{ GeV/c}\) the mean values of \((P_T^Z - P_T^j)/P_T^Z\) are contained inside the 1\% window for any \(P_{CUT}^{\text{clust}}\). For \(45 < P_T^Z < 55 \text{ GeV/c}\) we see that with Selection 1 \(P_{CUT}^{\text{clust}}\) works more effectively than in the case of Selection 1. Thus, \(P_{CUT}^{\text{clust}} = 15 \text{ GeV/c}\) allows to reduce \((P_T^Z - P_T^j)/P_T^Z\) to less than 1\% level for all algorithms. The Selection 2 criterion leaves quite a sufficient number of events with a jet contained completely in the barrel region: about 10 000 \(- 18 000\) for \(45 < P_T^Z < 55 \text{ GeV/c}\) with \(P_{CUT}^{\text{clust}} = 15 \text{ GeV/c}\) and about 4 500 for \(100 < P_T^Z < 120 \text{ GeV/c}\) with \(P_{CUT}^{\text{clust}} = 20 \text{ GeV/c}\) at \(L_{int} = 10 fb^{-1}\) (see Tables 13 – 15 of Appendices 2, 3).

The analogous results for Selection 3 are presented in Tables 16–18 of Appendices 2–5. Let us consider first the most difficult interval \(45 < P_T^Z < 55 \text{ GeV/c}\). From the tables of Appendix 2 one can see that this selection leads to approximately 20\% reduction of the number of selected events as compared with the case of Selection 2. A combined usage of all three jetfinders (Tables 16–18) worsens the balance values. A requirement of simultaneous jet finding by only UA1 and LUCELL algorithms practically does not change values of the \(P_T^Z - P_T^j\) balance as compared with the case of combined usage of all three jetfinders for this aim. This fact stresses a good compatibility of UA1 and LUCELL jetfinders. For other considered \(P_T^Z\) intervals UA1, UA2 and LUCELL algorithms give more or less close results and a passage to Selection 3 does not worsen a situation.

We also can note that Selections 2 and 3, besides improving the \(P_T^Z\) and \(P_T^j\) balance value, are important for selecting events with a clean jet topology and rising the confidence level of a jet determination.

The influence of a wide variation of cuts \(P_{CUT}^{\text{clust}}\) and \(P_{CUT}^{out}\) on
(a) the number of selected events (for \(L_{int} = 10 fb^{-1}\)),
(b) the mean value of \(F \equiv (P_T^Z - P_T^j)/P_T^Z\) and
(c) the standard deviation value \(\sigma(F)\)
is presented in rows and columns of Tables 1–9 for Selection 1 of Appendix 6. The set of selection cuts (4)–(10) (Section 2.2) was applied to preselect \(\{Z^0 + \text{jet}\}\) events for the tables of Appendix 6. The jets (as well as clusters) in these events, unlike the jets in the events analyzed in Appendices 2–5, were found by LUCELL jetfinder for the whole \(\eta\) region \(|\eta^{\text{jet}}| < 5.0\).

Tables 1–3 of Appendix 6 correspond to the \(\{Z^0 + \text{jet}\}\) events selection in the interval \(40 \leq P_T^Z \leq 70 \text{ GeV/c}\) Tables 4–6 to that for \(70 \leq P_T^Z \leq 100 \text{ GeV/c}\) and Tables 7–9 to that for \(100 \leq P_T^Z \leq 140 \text{ GeV/c}\).

We see that the restriction of \(P_{CUT}^{\text{clust}}\) and \(P_{CUT}^{out}\) are necessary to improve the jet energy setting accuracy. So, Tables 2 (for \(40 \leq P_T^Z \leq 70 \text{ GeV/c}\)) and 8 (for \(100 \leq P_T^Z \leq 140 \text{ GeV/c}\)) of Appendix 6 show that the mean values of the fraction \(F \equiv (P_T^Z - P_T^j)/P_T^Z\) decreases with variation of the two cuts from \(P_{CUT}^{\text{clust}} = 30 \text{ GeV/c}\) and \(P_{CUT}^{out} = 1000 \text{ GeV/c}\) (i.e. without limits) to \(P_{CUT}^{\text{clust}} = 10 \text{ GeV/c}\) and \(P_{CUT}^{out} = 10 \text{ GeV/c}\) at 0.049 to 0.018 and as 0.036 to 0.012, respectively. At the same time this restriction noticeably decreases the width of the Gaussian \(\sigma(F)\) (see Tables 3, 6 and 9 of Appendix 6). So, it drops from 0.200 to 0.103 for \(40 \leq P_T^Z \leq 70 \text{ GeV/c}\) and from 0.138 to 0.066 for \(100 \leq P_T^Z \leq 140 \text{ GeV/c}\) (i.e. about in a factor of two) for the same variation of \(P_{CUT}^{\text{clust}}\) and \(P_{CUT}^{out}\).

Again, the reason is caused by the term \(P_1(\cos \Delta \phi > 5)/P_T^Z\) of the \(P_T\)-balance equation (19) (as we noted above, the contribution of \((1 - \cos \Delta \phi)\) to the \(P_T^Z - P_T^j\) disbalance is negligibly small). This term can be decreased by decreasing \(P_T\) activity in the space \(out\) of the \(\{Z^0 + \text{jet}\}\) system, i.e. by limiting \(P_{CUT}^{\text{clust}}\) and \(P_{CUT}^{out}\).

The numbers of events at the integrated luminosity \(L_{int} = 10 fb^{-1}\) for different \(P_{CUT}^{\text{clust}}\) and \(P_{CUT}^{out}\) are given in Tables 1, 5 and 9 of Appendix 6. One can see that even with such strict \(P_{CUT}^{\text{clust}}\) and \(P_{CUT}^{out}\) values as 10 GeV/c for both, for example, we would have 69 600, 18 100 and 6 860 for \(40 \leq P_T^Z \leq 70 \text{ GeV/c}\), 70 \(\leq P_T^Z \leq 100 \text{ GeV/c}\) and 100 \(\leq P_T^Z \leq 140 \text{ GeV/c}\) respectively.

In addition, we present in Tables 10–18 of Appendix 6 the results obtained with Selection 2. They contain the

\(^{18}\) the lower value corresponds to UA2 algorithm for which the stricter isolation cut was used.
information analogous to that in Tables 1–12 but for the case of imposing jet isolation requirement: \(\epsilon^{jet} = 8\% \) at \(40 \leq P_t^Z \leq 70 \) GeV/c and \(\epsilon^{jet} = 5\% \) at \(70 \leq P_t^Z \leq 100 \) GeV/c and \(100 \leq P_t^Z \leq 140 \) GeV/c. From these tables we see that with the same (and with even weaker) cuts \(P_{t,\text{CUT}} = P_{t,\text{out}} = 10 \) GeV/c one can obtain a much better fractional balance \(F \), less than 1\% for all \(P_t^Z \) intervals (with almost the same values of \(\sigma(F) \)), at the statistics of about 50 800, 13 200 and 6 150 events for intervals \(40 \leq P_t^Z \leq 70 \) GeV/c, \(70 \leq P_t^Z \leq 100 \) GeV/c and \(100 \leq P_t^Z \leq 140 \) GeV/c, respectively.

The behavior of number of the selected events for \(L_{\text{int}} = 10 \) fb\(^{-1}\), the mean values of \((P_t^Z - P_t^{\text{jet}})/P_t^Z \) and its standard deviation \(\sigma(F) \) as a function of \(P_{t,\text{CUT}} \) for \(P_{t,\text{CUT}} = 20 \) GeV/c is displayed in Fig. 11 for non-isolated (left-hand column) and isolated jets with \(\epsilon^{jet} = 8\% \) at \(40 \leq P_t^Z \leq 70 \) GeV/c and \(\epsilon^{jet} = 5\% \) at \(70 \leq P_t^Z \leq 100 \) GeV/c and \(100 \leq P_t^Z \leq 140 \) GeV/c (right-hand column).

Figure 11: Number of events at \(L_{\text{int}} = 10 \) fb\(^{-1}\), mean value \((P_t^Z - P_t^{\text{jet}})/P_t^Z \) (\(\equiv F \)), its standard deviation \(\sigma(F) \) as a function of \(P_{t,\text{CUT}} \) value. \(P_{t,\text{CUT}} \) value is limited by 20 GeV/c. Full line corresponds to the event selection with \(40 \leq P_t^Z \leq 70 \) GeV/c, dashed line to that with \(70 \leq P_t^Z \leq 100 \) GeV/c and dotted line to that with 100 \(\leq P_t^Z \leq 140 \) GeV/c (\(\epsilon^{jet} = 8\%, 5\%, 5\% \) in these \(P_t^Z \) intervals, respectively).
7 The study of background suppression.

In principle, there is a probability, that some combination of muons in the events, based on the QCD subprocesses with much larger cross sections (by about 5 orders of magnitude) than ones of the signal sub-processes, can be registered as the \(Z^0 \) signal. This type of background we call as "combinatorial background". To study a rejection possibility of such type of events by about 40 million events with a mixture of all QCD and SM subprocesses with large cross sections existing in PYTHIA 19) including also the signal subprocesses (2a) and (2b) were generated. Three generations were performed with different minimal \(P_t \) of the hard \(2 \to 2 \) subprocess 20) \(\hat{p}_\perp \) values: \(\hat{p}_\perp \) \(= 40, 70 \) and \(100 \) \(\text{GeV/c} \). The cross sections of different subprocesses serve in simulation as weight factors and, thus, determine the final statistics of the corresponding physical events. The generated events were analyzed by use of the cuts given in Table 13 (see also Section 2.2).

To trace the effect of their application let us consider first the case of one (intermediate) energy, i.e. the generation with \(\hat{p}_\perp = 70 \) \(\text{GeV/c} \). Each line of Table 14 corresponds to the respective cut of Table 13. The numbers in columns “Signal” and “Bkgd” show the number of signal and (combinatorial) background events remained after a cut. Column “Eff” demonstrates the efficiency of a cut. The efficiencies \(E f f \) with their errors are defined as a ratio of the number of signal (background) events that passed under a cut (1–6) to the number of the preselected events after the first cut of Table 13. The number of events after the first cuts is taken as 100%.

Table 14: A demonstration of cut-by-cut efficiencies and \(S/B \) ratios for generation with \(\hat{p}_\perp = 70 \) \(\text{GeV/c} \).

Selection	Signal	Bkgd	\(E f f_S(\%) \)	\(E f f_B(\%) \)	\(S/B \)
0	401	850821	100.00±0.00	100.00±0.00	5 \cdot 10^{-4}
1	245	15842	92.24±8.51	2.948±0.138	0.5
2	226	467	0.076±0.022	8.3	
3	99	12	0.063±0.020	8.1	
4	81	10	0.025±0.013	18.0	
5	72	4	0.000±0.000	–	
6	62	0	0.000±0.000	–	

Table 15: Values of efficiencies and \(S/B \) ratios for generations with \(\hat{p}_\perp = 40, 70 \) and \(100 \) \(\text{GeV/c} \).

\(\hat{p}_\perp \) (\(\text{GeV/c} \))	Cuts	Signal	Bkgd	\(E f f_S(\%) \)	\(E f f_B(\%) \)	\(S/B \)
40 (\(\text{GeV/c} \))	Preselection (1)	89	1090	100.00±0.00	0.08	
	Main (1–5)	30	0	33.71±7.12	0.00±0.00	–
70 (\(\text{GeV/c} \))	Preselection (1)	245	15842	100.00±0.00	0.02	
	Main (1–5)	72	4	29.39±3.94	0.025±0.013	18.0
100 (\(\text{GeV/c} \))	Preselection (1)	497	37118	100.00±0.00	0.01	
	Main (1–5)	127	4	25.55±2.54	0.011±0.005	31.8

We see from Table 14 that initial ratio of \(\mu^+ \mu^- \) pairs in signal and background events is very small (5 \cdot 10^{-4}) 21). A weak restriction of the muon transverse momentum and pseudorapidity in the 1st selection increase \(S/B \) by

19) (namely, ISUB=11–20, 28–31, 53, 68)
20) i.e. \(C K I N(3) \) parameter in PYTHIA
about 2 order (as $5 \cdot 10^{-4} \rightarrow 2 \cdot 10^{-2}$). The invariant mass criterion and one-jet events selection make $S/B = 18.0$ and the last criterion on the azimuthal angle between Z^0 and jet ($\Delta \phi < 15^\circ$) suppresses the background events completely.

The information on other intervals (i.e. on the event generations with $P_{t, \min}^\mu = 40$ and $P_{t, \min}^\mu = 100$ GeV/c) is presented in Table 15. Line “Preselection (1)” corresponds to the first cuts in Table 15 ($P_t^\mu > 10$ GeV/c, $|\eta| < 2.4$) while line “Main (1—5)” corresponds to the result of application of criteria from 1 to 5 of Table 15. After application of all six criteria of Table 15, we have observed no background events in all of the P_t^Z intervals with the signal events selection efficiency of 25 — 33%.

The practical absence of a background to the “Z^0 + jet” events allow to use them for an extraction of the gluon distribution in a proton $f_\gamma^p(x, Q^2)$.

8 Estimation of rates for gluon distribution determination at the LHC using “Z^0 + jet” events.

Many theoretical predictions for production of new particles (Higgs, SUSY) at the LHC are based on model estimations of the gluon density behavior at low x and high Q^2. Thus, determining the proton gluon density $f_\gamma^p(x, Q^2)$ for this kinematic region directly in LHC experiments would be obviously very useful.

One of the channels for this determination is a high P_t direct photon production $pp \rightarrow \gamma^{\text{dir}} + X$ (see [24]). The region of high P_t, reached by UA1 [25], UA2 [26], CDF [27] and D0 [28] extends up to $P_t \approx 60$ GeV/c and recently up to $P_t = 105$ GeV/c [29]. These data together with the later ones (see references in [30]—[39]) and recent E706 [40] and UA6 [41] results give an opportunity for tuning the form of gluon distribution (see [33], [36]).

The rates and estimated cross sections of inclusive direct photon production at the LHC are given in [24].

A more promising process that can be used for measuring $f_\gamma^p(x, Q^2)$ is $pp \rightarrow \gamma^{\text{dir}} + 1 \text{ jet} + X$ defined at the leading order by two QCD subprocesses $qg \rightarrow q + \gamma$ and $q\bar{q} \rightarrow g + \gamma$ was considered in [20], [21] (see also [42] and for experimental results see [43], [44]).

Here to estimate a possibility of extraction of information on the gluon density in a proton we shall consider the “Z^0 + jet” production process [1] (analogous to the “$\gamma + jet$” process above), where Z^0 boson decays to the muon pair, a signal from which can be perfectly measured in the detector.

In the case of $pp \rightarrow Z^0/\gamma^{\text{dir}} + 1 \text{ jet} + X$ for $P_t^{\text{jet}} \geq 30$ GeV/c (i.e. in the region where k_T smearing effects are not important), see [37] the cross section is expressed directly in terms of parton distribution functions $f^a(x_a, Q^2)$ (see, for example, [34]):

$$
\frac{d\sigma}{d\eta_1 d\eta_2 dp_t^\mu} = \sum_{a,b} x_a f^a(x_a, Q^2) x_b f^b(x_b, Q^2) \frac{d\sigma}{dt}(a b \rightarrow 1 2)
$$

(25)

where $x_{a,b}$ are defined by

$$
x_{a,b} = P_t/\sqrt{s} \cdot (\exp(\eta_1) + \exp(\eta_2)).
$$

(26)

We also used the following designations above: $\eta_1 = \eta^Z$, $\eta_2 = \eta^{\text{jet}}$, $P_t = P_t^Z$; $a, b = q, \bar{q}, g$; $1, 2 = q, \bar{q}, g, Z^0$.

Formula (25) and the knowledge of the results of independent measurements of q, \bar{q} distributions [42] allow the gluon distribution $f_\gamma^p(x, Q^2)$ to be determined with an account of the selection efficiencies of “$Z^0 + jet$” events.

In Table 16 we present the $Q^2 (= (P_t^Z)^2)$ and x distribution (with x defined by [46]) of the number of all events, i.e. the events, based on the subprocesses $qg \rightarrow Z^0 + q$ and $q\bar{q} \rightarrow g + Z^0$ (with the decay $Z^0 \rightarrow \mu^+ \mu^-$) for integrated luminosity $L_{\text{int}} = 20$ fb^{-1}. These events satisfy the cuts (4)—(12) of Section 2.2 with the parameter values:

$$
|\eta^{\text{jet}}| < 5.0, \quad P_{t, \max}^\mu \geq 20 \text{ GeV/c}, \quad \Delta \phi < 15^\circ, \quad P_{t, \text{CUT}}^\mu = 10 \text{ GeV/c}, \quad P_{t, \text{CUT}}^{\text{clus}} = 10 \text{ GeV/c}.
$$

(27)

The contributions (in %) of the events originated from the subprocesses (2a) and (2b) (and passed the cuts (4)—(12) of Section 2.2) as functions of P_t^Z are presented in Fig. 12. From this figure one can see that the contribution of the events from the Compton scattering (2a) varies from 67% at $P_t^Z \approx 40$ GeV/c to 85% at $P_t^Z \approx 120$ GeV/c.\footnote{That is mainly due to the huge difference in the cross sections of “$Z^0 + jet$” events (from subprocesses (2a), (2b)) and the QCD events.}
The area that can be covered by studying the process \(\mu^+\mu^- \) with the subsequent decay \(Z^0 \rightarrow \mu^+\mu^- \) is shown in Fig. 13. The number of events in different \(x \) and \(Q^2 \) intervals of this area is given in Table 16. From this figure (and Tables 16) it is seen that during first two years of LHC running at low luminosity \((L = 10^{33} \text{cm}^{-2}\text{s}^{-1}) \) it would be possible to extract an information for the gluon distribution determination \(f^g(x, Q^2) \) in a proton in the region of \(0.9 \cdot 10^3 \leq Q^2 \leq 4 \cdot 10^4 \text{(GeV/c)}^2 \) with as small \(x \) values as accessible at HERA but at higher \(Q^2 \) values (by 1–2 orders of magnitude). It is also worth emphasizing that the sample of the “\(Z^0 + \text{jet} \)” events selected for this aim can be used to perform a cross-check of \(f^g(x, Q^2) \) determination with help of “\(\gamma + \text{jet} \)” events [20, 21].

The area covered with “\(\gamma + \text{jet} \)” events is also shown in Fig. 13 by dashed lines.

Table 16: Numbers of “\(Z^0 + \text{jet} \)” events (with \(Z^0 \rightarrow \mu^+\mu^- \)) in \(Q^2 \) and \(x \) intervals for \(L_{\text{int}} = 20 \text{fb}^{-1} \).

\(Q^2 \) \((\text{GeV/c})^2 \)	\(x \) values of a parton	\(t \)				
\(900-1600 \)	18409	45844	47453	2479	114185	30–40
\(1600-2500 \)	7417	28361	28702	1854	66333	40–50
\(2500-3600 \)	2479	16574	19015	1533	39599	50–60
\(3600-5000 \)	1097	10406	12941	1533	25977	60–71
\(5000-6400 \)	227	5846	6944	1022	14039	71–80
\(6400-8100 \)	170	4238	5430	624	10463	80–90
\(8100-10000 \)	19	2989	4049	719	7776	90–100
\(10000-14400 \)	19	2819	4579	908	8325	100–120
\(14400-20000 \)	0	1400	2781	454	4635	120–141
\(20000-40000 \)	0	908	2195	719	3822	141–200

\(P_t^Z \) \((\text{GeV/c}) \)	\(\text{Events fraction (\%)} \)	\(\text{Events type:} \)
---	---	---
20	100	\(q \bar{q} \rightarrow g + Z^0 \)
40	60	\(g g \rightarrow q + Z^0 \)
60	20	\(q g \rightarrow q + Z^0 \)
80	0	\(g q \rightarrow q + Z^0 \)

Figure 12: The contributions of the events originated from the subprocesses (2a) and (2b) as a function of \(P_t^Z \). Full line corresponds to the “\(qg \rightarrow q + Z^0 \)” events, dashed line – to the “\(q\bar{q} \rightarrow g + Z^0 \)” events.

9 Summary.

A possibility of the absolute jet energy scale setting with help of “\(Z^0 + \text{jet} \)” events based on the \(qg \rightarrow q + Z^0 \) and \(q\bar{q} \rightarrow g + Z^0 \) subprocesses with subsequent \(Z^0 \) decay to the muon pair is studied. The PYTHIA event generator is applied here to find the selection criteria of the “\(Z^0 + \text{jet} \)” events that would provide a good \(P_t^Z - P_t^{\text{jet}} \) balance.

It is shown here (by analogy with [12–16]) that the limitation of the clusters \(P_t \) that may be found in an event in addition to the main jet as well as the limitation of \(P_t \) activity of all particles beyond the “\(Z^0 + \text{jet} \)” system (see Section 2) leads to an improvement of the \(P_t^Z - P_t^{\text{jet}} \) balance value. A further improvement of the \(P_t^Z - P_t^{\text{jet}} \) balance can be reached by selection of events having the isolated jets only. Besides, this criterion (as well as the simultaneous jet finding by two or three algorithms; see Selection 3 in Section 2.2) is also important for selecting events with a clean jet topology and rising the confidence level of a jet determination. The summarizing results of our study of the jet energy scale setting are presented in Appendices 2–6 (see also Fig. 11).

It is demonstrated (Section 7) that the used selection criteria guarantee practically complete suppression of the combinatorial background from the QCD events.
Figure 13: LHC \((x, Q^2)\) kinematic region for the process \(pp \rightarrow Z^0 + \text{jet} + X\) \((\text{with } Z^0 \rightarrow \mu^+\mu^-)\).

It is worth emphasizing that the number of events presented here were not our main goal as they may depend on the used event generator and on the particular choice of a long set of its parameters. The most important result of our work is demonstration that the set of new selection criteria (limitation of \(P_t^{\text{clus}}, P_t^{\text{out}}\) and jet isolation found earlier in [12]–[16]) are also very useful for the jet energy scale determination by help of "\(Z^0 + \text{jet}\)" events.

It is also shown that the selected sample of the "\(Z^0 + \text{jet}\)" events, most suitable for the absolute jet energy scale setting at the LHC energy, can provide useful information for the gluon density determination inside a proton in the kinematic region with \(x\) values as small as accessible at HERA but at much higher \(Q^2\) values (by about 1–2 orders of magnitude): \(2 \cdot 10^{-4} \leq x \leq 1.0\) with \(0.9 \cdot 10^3 \leq Q^2 \leq 4 \cdot 10^4 \text{ (GeV/c)}^2\). This sample of "\(Z^0 + \text{jet}\)" events can be used to perform a cross-check of the \(f^p_\gamma(x, Q^2)\) determination by help of "\(\gamma + \text{jet}\)" events [20, 21]. The \(x - Q^2\) kinematic area that can be covered by the "\(Z^0 + \text{jet}\)" events (with \(Z^0 \rightarrow \mu^+\mu^-\)) as well as by the "\(\gamma + \text{jet}\)" events is shown in Fig. 13.

Acknowledgments.

We are greatly thankful to D. Denegri for having offered this theme to study, fruitful discussions and permanent support and encouragement. It is a pleasure for us to express our recognition for helpful discussions to P. Aurenche, M. Dittmar, M. Fontannaz, J.P. Guillet, M.L. Mangano, E. Pilon, H. Rohringer, S. Tapprogge and especially to J. Womersley for supplying us with the preliminary version of paper [1].

References

[1] D0 Collaboration, F. Abachi et al., NIM A424 (1999)352.
[2] CDF Collaboration. F. Abe et al., Phys.Rev. D50 (1994)2966; F. Abe et al., Phys.Rev.Lett. 73 (1994)225.
[3] D. Denegri, R. Kinnunen, A. Nikitenko, CMS Note 1997/039 “Study of calorimeter calibration with \(\tau\)’s in CMS”.
[4] R. Kinnunen, A. Nikitenko, CMS Note 1997/097 “Study of calorimeter calibration with pions from jets in CMS”.
[5] J. Womersley, A talk at CMS physics group meeting at CMS Week, Aachen, 1996. See also http://cmsdoc.cern.ch/doc/gen/agendas/960908-1.
[6] J. Freeman, W. Wu, draft “In situ calibration of CMS HCAL calorimeter”.
[7] R. Mehdiyev, I. Vichou, ATLAS Note ATL-COM-PHYS-99-054 (1999) “Hadronic jet energy scale calibration using Z+jet events”.
[8] P. Savard, ATLAS Note CAL-NO-092 (1997), “The $W \rightarrow jet - jet$ and top mass reconstructions with the ATLAS detector”.

[9] ATLAS Detector and Physics Performance, Technical Design Report, Volumes 1, 2, 1999. CERN/LHCC 99-14.

[10] N.B. Skachkov, V.F. Konoplyanikov, D.V. Bandourin, “Photon – jet events for calibration of HCAL”. Second Annual RDMS CMS Collaboration Meeting. CMS-Document, 1996–213. CERN, December 16-17, 1996, p.7-23.

[11] N.B. Skachkov, V.F. Konoplyanikov, D.V. Bandourin, “γ-direct + 1 jet events for HCAL calibration”. Third Annual RDMS CMS Collaboration Meeting. CMS-Document, 1997–168. CERN, December 16-17, 1997, p.139-153.

[12] D.V. Bandourin, V.F. Konoplyanikov, N.B. Skachkov. “Jet energy scale setting with “γ+jet” events at LHC energies. Generalities, selection rules.” JINR Preprint E2-2000-251, JINR, Dubna, [hep-ex/0011012](http://arxiv.org/abs/hep-ex/0011012).

[13] D.V. Bandourin, V.F. Konoplyanikov, N.B. Skachkov. “Jet energy scale setting with “γ+jet” events at LHC energies. Event rates, P_t structure of jet.” JINR Preprint E2-2000-252, JINR, Dubna, [hep-ex/0011013](http://arxiv.org/abs/hep-ex/0011013).

[14] D.V. Bandourin, V.F. Konoplyanikov, N.B. Skachkov. “Jet energy scale setting with “γ+jet” events at LHC energies. Minijets and cluster suppression and $P_t^{\gamma} - P_t^{jet}$ disbalance.” JINR Preprint E2-2000-253, JINR, Dubna, [hep-ex/0011084](http://arxiv.org/abs/hep-ex/0011084).

[15] D.V. Bandourin, V.F. Konoplyanikov, N.B. Skachkov. “Jet energy scale setting with “γ+jet” events at LHC energies. Selection of events with a clean “γ+jet” topology and $P_t^{\gamma} - P_t^{jet}$ disbalance.” JINR Preprint E2-2000-254, JINR, Dubna, [hep-ex/0011014](http://arxiv.org/abs/hep-ex/0011014).

[16] D.V. Bandourin, V.F. Konoplyanikov, N.B. Skachkov. “Jet energy scale setting with “γ+jet” events at LHC energies. Detailed study of the background suppression.” JINR Preprint E2-2000-255, JINR, Dubna, [hep-ex/0011017](http://arxiv.org/abs/hep-ex/0011017).

[17] CMS Muon Project, Technical Design Report, CERN/LHCC 97–32, CMS TDR 3, CERN, 1997.

[18] S. Abdullin, A. Khanov, N. Stepanov, CMS Note CMS TN/94–180 “CMSJET”.

[19] T. Sjostrand, Comp.Phys.Comm. 82 (1994)74.

[20] D.V. Bandourin, V.F. Konoplyanikov, N.B. Skachkov, ““γ+jet” events rate estimation for gluon distribution determination at LHC”, Part.Nucl.Lett.103:34-43,2000, [hep-ex/0011015](http://arxiv.org/abs/hep-ex/0011015).

[21] D.V. Bandourin, N.B. Skachkov, “Background estimation for determination of gluon density in a proton in the process of “direct photon + jet” production at LHC”, [hep-ex/0210004](http://arxiv.org/abs/hep-ex/0210004) (To appear as CMS Note).

[22] D.V. Bandourin, N.B. Skachkov. “ “γ + jet” process application for setting the absolute scale of jet energy and determining the gluon distribution at the Tevatron Run II.” D0 Note 3948, 2002.

[23] 19. D.V. Bandourin, N.B. Skachkov, “Photon+jet event rate estimation for gluon distribution determination at the Tevatron RUN II”, Contributed to Proc. of XVI ISHEP “Relativistic Nuclear Physics and Quantum Chromodynamics”, Dubna, Russia, 2002. JINR Preprint E2–2002–154, [hep-ex/0206040](http://arxiv.org/abs/hep-ex/0206040) Submitted to Yad.Fiz.

[24] P. Aurenche et al. Proc. of ’ECFA LHC Workshop’, Aachen, Germany, 4-9 Octob. 1990, edited by G. Jarlskog and D. Rein (CERN-Report No 90-10; Geneva, Switzerland 1990), Vol. II.

[25] UA1 Collaboration, C. Albajar et al., Phys.Lett, 209B (1998)385.

[26] UA2 Collaboration, R. Ansari et al., Phys.Lett. 176B (1986)239.

[27] CDF Collaboration, F. Abe et al., Phys.Rev.Lett. 68 (1992)2734; F. Abe et al.,Phys.Rev. D48 (1993)2998; F. Abe et al.,Phys.Rev.Lett., 73 (1994)2662.

[28] D0 Collaboration, F. Abachi et al., Phys.Rev.Lett, 77 (1996)5011.

[29] D0 Collaboration, B. Abbott et al., Phys.Rev.Lett. 84 2786-2791,2000.
[30] T. Ferbel and W.R. Molzon, Rev.Mod.Phys. 56 (1984)181.

[31] P. Aurenche, et al. Phys.Lett. 169B441 (1986).

[32] E.N. Argyres, A.P. Contogouris, N. Mebarki, add S. D.P. Vlassopulos, Phys.Rev.D 35, 1584-1589 (1987).

[33] P. Aurenche, et al. Phys.Rev. D39 (1989)3275.

[34] J.F. Owens, Rev.Mod.Phys. 59 (1987)465.

[35] J. Huston et al., Phys.Rev. D51 (1995)6139.

[36] W. Vogelsang and A. Vogt, Nucl.Phys. B453 (1995)334.

[37] J. Huston ATLAS Note ATL-Phys-99-008, CERN,1999.

[38] W. Vogelsang and M. Whally, J.Phys. G23 (1997)A1.

[39] S. Frixione and W. Vogelsang, CERN-TH/99-247 hep-ph/9908387.

[40] E706 Collaboration, L. Apanasevich et al., Phys.Rev.Lett., 81 (1997)2642.

[41] UA6 Collaboration, G. Ballocchi et al., Phys.Lett.,B436 (1998)222. 5Proc. of “CERN Workshop on Standard Model Physics

[42] M. Dittmar, F. Pauss, D. Zurcher, Phys.Rev.D56:7284-7290,1997.

[43] M. Dittmar, K.Mazumdar, “Measuring the parton distribution functions of charm, beauty and strange quark and antiquarks at the LHC”, CMS Note 2001/002.

[44] ISR–AFS Collaboration, T.Akesson et al., Zeit.Phys. C34 (1987)293.

[45] CDF Collaboration, F. Abe et al.,Phys.Rev. D57 (1998)1359 (see also p.67). hep-ph/9801444
Appendix 1

$45 < P_t^Z < 55 \text{ GeV/c}$

Table 1: Selection 1. $\Delta\phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. UA1 algorithm.

P_t^{cut}	30	20	15	10	5
P_t^{jet}	48.145	47.600	47.417	47.334	47.323
$P_t^{\text{jet}} - P_{t(j)}^{\text{min}}$	0.140	0.129	0.122	0.106	0.084
$R_{\text{jet}}^{\text{min}}$	0.027	0.026	0.025	0.023	0.022
$P_{t(j)}^{\text{min}}$	0.046	0.042	0.043	0.038	0.029
$R_{\text{jet}}^{\text{min}}$	0.011	0.011	0.010	0.009	0.010
P_t^{max}	5.009	4.897	4.777	4.577	4.239
$P_{t(\nu)}^{\text{max}}$	9.016	8.843	8.517	7.653	6.880
$N_{\text{event}}(c)$	2774	2300	1763	1027	201
$N_{\text{event}}(b)$	2129	1677	1257	626	80
R_{gc}^{30}	0.71	0.70	0.69	0.68	0.65
Entries	33240	29704	25482	17162	3842

Table 2: Selection 1. $\Delta\phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. UA2 algorithm.

P_t^{cut}	30	20	15	10	5
P_t^{jet}	47.520	46.883	46.520	46.296	46.254
$P_t^{\text{jet}} - P_{t(j)}^{\text{min}}$	0.129	0.116	0.106	0.096	0.085
$R_{\text{jet}}^{\text{min}}$	0.026	0.023	0.023	0.022	0.021
$P_{t(j)}^{\text{min}}$	0.048	0.045	0.044	0.042	0.038
$R_{\text{jet}}^{\text{min}}$	0.010	0.010	0.009	0.009	0.010
P_t^{max}	5.012	4.890	4.765	4.571	4.221
$P_{t(\nu)}^{\text{max}}$	8.635	8.336	8.008	7.290	6.366
$N_{\text{event}}(c)$	2774	2300	1763	1027	201
$N_{\text{event}}(b)$	2129	1677	1257	626	80
R_{gc}^{30}	0.56	0.56	0.55	0.55	0.56
Entries	33240	29704	25482	17162	3842

Table 3: Selection 1. $\Delta\phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. LUCELL algorithm.

P_t^{cut}	30	20	15	10	5
P_t^{jet}	47.326	46.854	46.677	46.732	47.016
$P_t^{\text{jet}} - P_{t(j)}^{\text{min}}$	0.144	0.133	0.128	0.118	0.095
$R_{\text{jet}}^{\text{min}}$	0.028	0.027	0.026	0.025	0.023
$P_{t(j)}^{\text{min}}$	0.049	0.048	0.043	0.040	0.034
$R_{\text{jet}}^{\text{min}}$	0.010	0.010	0.009	0.009	0.010
P_t^{max}	5.007	4.902	4.791	4.600	4.255
$P_{t(\nu)}^{\text{max}}$	9.104	8.871	8.666	8.140	7.124
$N_{\text{event}}(c)$	2793	2322	1792	1057	187
$N_{\text{event}}(b)$	2354	1856	1386	693	91
R_{gc}^{30}	0.69	0.68	0.66	0.64	0.61
Entries	33240	29057	25154	17041	3706

Note: The entries in the tables represent the selection criteria and observed values for different algorithms and cuts.
$70 < P_t^Z < 85$ GeV/c

Table 4: Selection 1. $\Delta \phi (Z, \text{jet}) = 180^\circ \pm 15^\circ$. UA1 algorithm.

P_{tclust}^{UA1}	30	20	15	10	5
P_t^{jet}	71.309	72.833	73.509	74.073	74.192
$P_t^{jet} - P_{tclust}^{UA1}$	0.339	0.326	0.319	0.270	0.271
$P_t^{(u)}$	0.341	0.328	0.321	0.271	0.272
$R_{\nu \rightarrow \text{jet}}^{\text{UA1}}$	0.039	0.037	0.036	0.031	0.027
$R_{\mu \rightarrow \text{jet}}^{\text{UA1}}$	0.147	0.144	0.141	0.124	0.126
P_t^{miss}	5.480	5.324	5.230	5.056	4.662
$P_t^{\text{miss}}^{\nu \rightarrow \text{jet}}$	14.357	14.273	14.484	14.504	15.842
$N_{\text{event}}(c)$	1478	1025	710	396	62
$N_{\text{event}}(b)$	1173	787	528	263	35
$R_{\gamma \rightarrow \text{jet}}^{\text{sub/all}}$	0.81	0.80	0.79	0.77	0.74
Entries	21649	17169	13309	8132	1628

Table 5: Selection 1. $\Delta \phi (Z, \text{jet}) = 180^\circ \pm 15^\circ$. UA2 algorithm.

P_{tclust}^{UA2}	30	20	15	10	5
P_t^{jet}	71.065	72.035	72.483	72.896	72.976
$P_t^{jet} - P_{tclust}^{UA2}$	0.329	0.319	0.316	0.274	0.319
$P_t^{(u)}$	0.331	0.322	0.318	0.276	0.320
$R_{\nu \rightarrow \text{jet}}^{\text{UA2}}$	0.039	0.037	0.036	0.031	0.030
$R_{\mu \rightarrow \text{jet}}^{\text{UA2}}$	0.147	0.144	0.141	0.124	0.138
P_t^{miss}	5.465	5.308	5.216	4.999	4.577
$P_t^{\text{miss}}^{\nu \rightarrow \text{jet}}$	13.783	13.586	13.684	13.688	15.203
$N_{\text{event}}(c)$	1557	1114	787	440	67
$N_{\text{event}}(b)$	1349	924	624	324	40
$R_{\gamma \rightarrow \text{jet}}^{\text{sub/all}}$	0.79	0.75	0.77	0.75	0.71
Entries	22238	17993	14199	8656	1719

Table 6: Selection 1. $\Delta \phi (Z, \text{jet}) = 180^\circ \pm 15^\circ$. LUCCELL algorithm.

P_{tclust}^{LUCELL}	30	20	15	10	5
P_t^{jet}	71.054	72.235	72.910	73.608	73.869
$P_t^{jet} - P_{tclust}^{LUCELL}$	0.334	0.328	0.318	0.264	0.258
$P_t^{(u)}$	0.336	0.330	0.319	0.265	0.258
$R_{\nu \rightarrow \text{jet}}^{\text{LUCCELL}}$	0.038	0.037	0.035	0.031	0.026
$R_{\mu \rightarrow \text{jet}}^{\text{LUCCELL}}$	0.151	0.150	0.148	0.126	0.129
P_t^{miss}	5.480	5.336	5.229	5.040	4.615
$P_t^{\text{miss}}^{\nu \rightarrow \text{jet}}$	14.412	14.301	14.423	14.095	15.959
$N_{\text{event}}(c)$	1488	1057	735	401	64
$N_{\text{event}}(b)$	1166	812	547	270	34
$R_{\gamma \rightarrow \text{jet}}^{\text{sub/all}}$	0.81	0.80	0.79	0.78	0.75
Entries	22439	18123	14046	8434	1600
100 < P_tZ < 120 GeV/c

Table 7: Selection 1. $\Delta \phi (Z,jet) = 180^\circ \pm 15^\circ$. UA1 algorithm.

$P_{t_{clust}}$	30	20	15	10	5
$P_{t_{clust}}$	105.311	106.781	107.596	108.186	108.211
$P_{t_{jet}}-P_{t_{clust}}$	0.579	0.536	0.503	0.464	0.306
$P_{t_{jet}}$	0.582	0.538	0.505	0.465	0.308
$R_{c_{cent}}$	0.043	0.040	0.038	0.035	0.027
$P_{t_{clust}}$	0.256	0.236	0.229	0.248	0.190
$R_{c_{cent}}$	0.021	0.021	0.020	0.019	0.017
$P_{t_{miss}}$	6.021	5.773	5.565	5.410	4.998
$P_{t_{miss}}$	21.291	20.555	19.968	19.964	20.603
Nevent(c)	1101	837	611	348	71
Nevent(b)	804	584	418	214	27
30sub/all	0.84	0.83	0.82	0.81	0.78
R_{gc}	0.65	0.65	0.65	0.65	0.65
Entries	26365	19658	14669	8491	1690

Table 8: Selection 1. $\Delta \phi (Z,jet) = 180^\circ \pm 15^\circ$. UA2 algorithm.

$P_{t_{clust}}$	30	20	15	10	5
$P_{t_{clust}}$	105.053	106.086	106.624	107.032	107.226
$P_{t_{jet}}-P_{t_{clust}}$	0.584	0.536	0.499	0.458	0.300
$P_{t_{jet}}$	0.587	0.539	0.502	0.461	0.302
$R_{c_{cent}}$	0.045	0.041	0.038	0.036	0.028
$P_{t_{clust}}$	0.258	0.236	0.229	0.218	0.209
$R_{c_{cent}}$	0.022	0.022	0.021	0.018	0.017
$P_{t_{miss}}$	5.998	5.781	5.578	5.430	5.000
$P_{t_{miss}}$	20.530	19.980	19.456	19.427	18.699
Nevent(c)	1136	881	652	372	76
Nevent(b)	881	658	478	250	31
30sub/all	0.84	0.82	0.81	0.80	0.76
R_{gc}	0.59	0.60	0.59	0.59	0.59
Entries	28311	21607	16358	9541	1845

Table 9: Selection 1. $\Delta \phi (Z,jet) = 180^\circ \pm 15^\circ$. LUCELL algorithm.

$P_{t_{clust}}$	30	20	15	10	5
$P_{t_{clust}}$	104.919	106.238	107.024	107.700	108.019
$P_{t_{jet}}-P_{t_{clust}}$	0.579	0.539	0.511	0.468	0.318
$P_{t_{jet}}$	0.581	0.541	0.514	0.470	0.319
$R_{c_{cent}}$	0.043	0.040	0.038	0.035	0.026
$P_{t_{clust}}$	0.264	0.247	0.244	0.222	0.188
$R_{c_{cent}}$	0.022	0.022	0.021	0.019	0.018
$P_{t_{miss}}$	6.014	5.787	5.602	5.424	4.991
$P_{t_{miss}}$	21.514	20.833	20.528	20.390	21.456
Nevent(c)	1131	878	641	354	71
Nevent(b)	818	612	438	219	25
30sub/all	0.84	0.83	0.82	0.82	0.80
R_{gc}	0.66	0.66	0.66	0.65	0.64
Entries	26920	20362	15184	8643	1636
\[150 < P_t^Z < 200 \text{ GeV/c}\]

Table 10: Selection 1. $\Delta \phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. UA1 algorithm.

$P_{t, \text{cut}}^{\mu, \nu}$	30	20	15	10	5
$P_{t, \text{cut}}^{\mu, \nu}$	166.611	167.904	168.504	168.711	169.574
$P_{t, \text{cut}}^{\mu, \nu} - P_{t, \text{cut}}^{\nu, \mu}$	0.808	0.763	0.732	0.652	0.548
$P_{t, \text{cut}}^{\mu, \nu}$	0.811	0.766	0.734	0.655	0.551
$P_{t, \text{cut}}^{\mu, \nu}$	0.043	0.041	0.041	0.038	0.034
$P_{t, \text{cut}}^{\mu, \nu}$	0.368	0.357	0.348	0.302	0.261
$R_{\text{cut}}^{\mu, \nu}$	0.021	0.021	0.021	0.020	0.019
$P_{t, \text{cut}}^{\mu, \nu}$	6.647	6.468	6.306	6.086	5.462
$P_{t, \text{cut}}^{\mu, \nu}$	29.802	29.934	29.081	28.699	22.469
Nevent$_{(c)}$	629	429	306	173	29
Nevent$_{(b)}$	459	305	201	97	14
30sub/all	0.85	0.84	0.83	0.81	0.77
R_{gc}	0.66	0.66	0.66	0.66	0.65
Entries	27148	19298	14089	8022	1517

Table 11: Selection 1. $\Delta \phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. UA2 algorithm.

$P_{t, \text{cut}}^{\mu, \nu}$	30	20	15	10	5
$P_{t, \text{cut}}^{\mu, \nu}$	166.410	167.275	167.612	167.794	168.177
$P_{t, \text{cut}}^{\mu, \nu} - P_{t, \text{cut}}^{\nu, \mu}$	0.797	0.736	0.722	0.648	0.486
$P_{t, \text{cut}}^{\mu, \nu}$	0.801	0.740	0.725	0.652	0.490
$P_{t, \text{cut}}^{\mu, \nu}$	0.044	0.041	0.041	0.037	0.035
$P_{t, \text{cut}}^{\mu, \nu}$	0.377	0.352	0.344	0.322	0.237
$P_{t, \text{cut}}^{\mu, \nu}$	0.023	0.022	0.022	0.021	0.020
$P_{t, \text{cut}}^{\mu, \nu}$	6.616	6.385	6.250	6.042	5.382
$P_{t, \text{cut}}^{\mu, \nu}$	28.727	28.831	28.168	28.360	20.770
Nevent$_{(c)}$	698	476	348	193	33
Nevent$_{(b)}$	545	364	247	119	15
30sub/all	0.84	0.83	0.82	0.80	0.76
R_{gc}	0.62	0.62	0.62	0.62	0.63
Entries	30379	22130	16501	9520	1731

Table 12: Selection 1. $\Delta \phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. LUCELL algorithm.

$P_{t, \text{cut}}^{\mu, \nu}$	30	20	15	10	5
$P_{t, \text{cut}}^{\mu, \nu}$	166.046	167.273	167.865	168.298	169.319
$P_{t, \text{cut}}^{\mu, \nu} - P_{t, \text{cut}}^{\nu, \mu}$	0.800	0.739	0.714	0.629	0.594
$P_{t, \text{cut}}^{\mu, \nu}$	0.803	0.742	0.716	0.631	0.596
$P_{t, \text{cut}}^{\mu, \nu}$	0.043	0.040	0.040	0.036	0.036
$P_{t, \text{cut}}^{\mu, \nu}$	0.396	0.361	0.352	0.326	0.297
$R_{\text{cut}}^{\mu, \nu}$	0.022	0.021	0.021	0.019	0.018
$P_{t, \text{cut}}^{\mu, \nu}$	6.644	6.466	6.292	6.072	5.555
$P_{t, \text{cut}}^{\mu, \nu}$	29.840	30.057	29.270	29.107	22.946
Nevent$_{(c)}$	626	434	313	169	28
Nevent$_{(b)}$	457	304	200	91	13
30sub/all	0.85	0.84	0.83	0.82	0.79
R_{gc}	0.66	0.66	0.65	0.65	0.64
Entries	27334	19833	14494	8069	1430
Appendix 2

$45 < P_t^Z < 55$ GeV/c

Table 1: Selection 1. $\Delta\phi(Z, jet) = 180^\circ \pm 180^\circ$. UA1 algorithm.

$P_{t,CUT}$	30	20	15	10	5
Nevent*	44812	33355	25413	15342	3246
$P_{5,6}$	19.6	15.0	12.4	9.9	7.4
$\Delta\phi$	13.8	9.8	7.9	6.0	4.2
$P_{t,\text{out}}$	15.3	11.9	10.0	7.9	5.6
$P_{t,\text{clust}}$	5.1	4.9	4.9	4.8	4.3
$(P_t^Z-P_{t,\text{part}}^Z)/P_t^Z$	0.0487	0.0315	0.0189	0.0113	0.0026
$(P_t^Z-P_{t,\text{clus}}^Z)/P_t^Z$	0.0140	-0.0016	-0.0069	-0.0032	-0.0057
$(P_t^Z-P_t^Z)/P_t^Z$	0.0243	0.0202	0.0200	0.0109	0.0064
$P_t(O+p>5)/P_t^Z$	-0.0300	-0.0005	0.0031	0.0011	0.0014
$1-\cos(\Delta\phi)$	0.0543	0.0267	0.0170	0.0098	0.0050
$\sigma(DB[Z, J])$	0.2140	0.1814	0.1591	0.1304	0.1010
Entries	18857	14036	10694	6456	1366

Table 2: Selection 1. $\Delta\phi(Z, jet) = 180^\circ \pm 180^\circ$. UA2 algorithm.

$P_{t,CUT}$	30	20	15	10	5
Nevent	43198	32713	25458	15489	3189
$P_{5,6}$	19.3	14.8	12.4	10.0	7.6
$\Delta\phi$	13.3	9.6	7.7	5.9	4.1
$P_{t,\text{out}}$	15.0	11.8	10.0	8.0	5.8
$P_{t,\text{clus}}$	5.0	4.9	4.9	4.8	4.4
$(P_t^Z-P_{t,\text{part}}^Z)/P_t^Z$	0.0399	0.0239	0.0153	0.0119	0.0080
$(P_t^Z-P_{t,\text{clus}}^Z)/P_t^Z$	-0.0048	-0.0257	-0.0333	-0.0295	-0.0259
$(P_t^Z-P_t^Z)/P_t^Z$	0.0330	0.0405	0.0405	0.0357	0.0302
$P_t(O+p>5)/P_t^Z$	-0.0175	0.0152	0.0241	0.0263	0.0254
$1-\cos(\Delta\phi)$	0.0505	0.0253	0.0165	0.0094	0.0048
$\sigma(DB[Z, J])$	0.2088	0.1773	0.1563	0.1305	0.1009
Entries	18178	13766	10713	6518	1342

Table 3: Selection 1. $\Delta\phi(Z, jet) = 180^\circ \pm 180^\circ$. LUCCELL algorithm.

$P_{t,CUT}$	30	20	15	10	5
Nevent	48402	36720	27923	16411	3296
$P_{5,6}$	19.4	15.2	12.6	10.0	7.3
$\Delta\phi$	13.6	10.0	8.0	6.1	4.3
$P_{t,\text{out}}$	15.2	12.2	10.2	8.0	5.7
$P_{t,\text{clus}}$	5.0	4.9	4.9	4.8	4.4
$(P_t^Z-P_{t,\text{part}}^Z)/P_t^Z$	0.0552	0.0378	0.0250	0.0142	0.0009
$(P_t^Z-P_{t,\text{clus}}^Z)/P_t^Z$	0.0043	-0.0120	-0.0170	-0.0123	-0.0119
$(P_t^Z-P_t^Z)/P_t^Z$	0.0413	0.0420	0.0355	0.0223	0.0105
$P_t(O+p>5)/P_t^Z$	-0.0108	0.0143	0.0182	0.0122	0.0047
$1-\cos(\Delta\phi)$	0.0521	0.0278	0.0173	0.0102	0.0058
$\sigma(DB[Z, J])$	0.2121	0.1842	0.1626	0.1337	0.1031
Entries	20368	15452	11750	6906	1387

*Number of events (Nevent) is given in this and in the following tables for integrated luminosity $L_{int} = 10 fb^{-1}$

** $DB[Z, J] \equiv (P_t^Z - P_t^J)/P_t^Z$
Table 4: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 15^\circ$. UA1 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	29624	26022	21782	14320	3189
P_{mix}	14.5	12.5	11.0	9.3	7.2
$\Delta \phi$	6.1	5.9	5.6	4.9	3.9
P_{mix}	10.5	9.6	8.7	7.4	5.5
$P_{\text{mix}}^{\text{pt}}$	4.9	4.8	4.7	4.6	4.2
$P_{\text{mix}}^{\text{pt}}$	0.0156	0.0156	0.0107	0.0078	0.0004
$P_{\text{mix}}^{\text{pt}}$	0.0015	-0.0047	-0.0062	-0.0033	-0.0054
$P_{\text{mix}}^{\text{pt}}$	0.0051	0.0140	0.0120	0.0077	0.0039
$P_{\text{mix}}^{\text{pt}}$	-0.0033	0.0060	0.0047	0.0019	0.0001
$1 - \cos(\Delta \phi)$	0.0084	0.0080	0.0073	0.0058	0.0039
$\sigma(Db[Z,J])$	0.2025	0.1745	0.1543	0.1282	0.0992
Entries	12466	10950	9166	6026	1342

Table 5: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 15^\circ$. UA2 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	29089	25734	21915	14491	3144
P_{mix}	14.3	12.4	11.0	9.4	7.4
$\Delta \phi$	6.0	5.9	5.5	4.9	3.9
P_{mix}	10.4	9.5	8.7	7.5	5.8
$P_{\text{mix}}^{\text{pt}}$	4.9	4.8	4.7	4.6	4.3
$P_{\text{mix}}^{\text{pt}}$	0.0087	0.0093	0.0081	0.0093	0.0064
$P_{\text{mix}}^{\text{pt}}$	-0.0203	-0.0292	-0.0324	-0.0293	-0.0262
$P_{\text{mix}}^{\text{pt}}$	0.0187	0.0302	0.0335	0.0332	0.0289
$P_{\text{mix}}^{\text{pt}}$	0.0105	0.0225	0.0264	0.0275	0.0252
$1 - \cos(\Delta \phi)$	0.0082	0.0078	0.0071	0.0057	0.0038
$\sigma(Db[Z,J])$	0.1972	0.1704	0.1513	0.1286	0.0998
Entries	12241	10829	9166	6098	1323

Table 6: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 15^\circ$. LUCHELL algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	32153	28405	23849	15294	3237
P_{mix}	14.5	12.6	11.2	9.3	7.0
$\Delta \phi$	6.2	6.0	5.7	5.0	4.0
P_{mix}	10.6	9.7	8.9	7.5	5.6
$P_{\text{mix}}^{\text{pt}}$	4.9	4.8	4.8	4.6	4.2
$P_{\text{mix}}^{\text{pt}}$	0.0213	0.0206	0.0164	0.0103	-0.0013
$P_{\text{mix}}^{\text{pt}}$	-0.0081	-0.0145	-0.0161	-0.0120	-0.0118
$P_{\text{mix}}^{\text{pt}}$	0.0207	0.0281	0.0268	0.0184	0.0082
$P_{\text{mix}}^{\text{pt}}$	0.0122	0.0200	0.0195	0.0124	0.0043
$1 - \cos(\Delta \phi)$	0.0085	0.0081	0.0074	0.0060	0.0039
$\sigma(Db[Z,J])$	0.2017	0.1768	0.1578	0.1312	0.1009
Entries	13530	11953	10036	6436	1362
Table 7: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. UA1 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	23075	20713	17892	12512	2985
P_{56}	13.0	11.3	10.1	8.6	6.8
$\Delta \phi$	4.3	4.3	4.2	3.9	3.4
P_{out}	9.4	8.6	7.9	6.9	5.3
$P_{\eta>5}$	4.8	4.8	4.7	4.5	4.1
$\frac{(P_{Z} - P_{\text{part}})}{P_{Z}}$	0.0079	0.0091	0.0069	0.0048	-0.0024
$\frac{(P_{J} - P_{\text{part}})}{P_{J}}$	-0.0009	-0.0053	-0.0061	-0.0027	-0.0061
$\frac{(P_{Z} - P_{J})}{P_{Z}}$	0.0011	0.0085	0.0070	0.0044	0.0018
$P_{(O+\eta>5)/P_{Z}}$	-0.0030	0.0045	0.0032	0.0009	-0.0009
$1 - \cos(\Delta \phi)$	0.0041	0.0040	0.0038	0.0034	0.0026
$\sigma(DB(Z, J))$	0.1944	0.1691	0.1496	0.1255	0.0980
Entries	9710	8716	7529	5265	1256

Table 8: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. UA2 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	22965	20713	18196	12780	2966
P_{56}	13.0	11.3	10.1	8.8	7.1
$\Delta \phi$	4.3	4.3	4.2	3.9	3.4
P_{out}	9.3	8.6	8.0	7.1	5.6
$P_{\eta>5}$	4.8	4.8	4.7	4.6	4.2
$\frac{(P_{Z} - P_{\text{part}})}{P_{Z}}$	0.0050	0.0069	0.0070	0.0063	0.0046
$\frac{(P_{J} - P_{\text{part}})}{P_{J}}$	-0.0226	-0.0294	-0.0308	-0.0296	-0.0260
$\frac{(P_{Z} - P_{J})}{P_{Z}}$	0.0183	0.0285	0.0309	0.0307	0.0271
$P_{(O+\eta>5)/P_{Z}}$	0.0142	0.0245	0.0271	0.0273	0.0245
$1 - \cos(\Delta \phi)$	0.0041	0.0040	0.0038	0.0035	0.0026
$\sigma(DB(Z, J))$	0.1895	0.1643	0.1468	0.1258	0.0983
Entries	9664	8716	7657	5378	1248

Table 9: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. LUCELL algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	25028	22564	19532	13332	3035
P_{56}	13.1	11.5	10.3	8.7	6.7
$\Delta \phi$	4.4	4.3	4.2	4.0	3.4
P_{out}	9.5	8.8	8.1	7.0	5.4
$P_{\eta>5}$	4.8	4.8	4.7	4.5	4.1
$\frac{(P_{Z} - P_{\text{part}})}{P_{Z}}$	0.0140	0.0147	0.0129	0.0070	-0.0035
$\frac{(P_{J} - P_{\text{part}})}{P_{J}}$	-0.0102	-0.0141	-0.0144	-0.0118	-0.0115
$\frac{(P_{Z} - P_{J})}{P_{Z}}$	0.0166	0.0225	0.0220	0.0151	0.0058
$P_{(O+\eta>5)/P_{Z}}$	0.0125	0.0185	0.0181	0.0116	0.0032
$1 - \cos(\Delta \phi)$	0.0042	0.0041	0.0039	0.0035	0.0027
$\sigma(DB(Z, J))$	0.1944	0.1721	0.1515	0.1282	0.0997
Entries	10532	9495	8219	5610	1277
Table 10: Selection 1. $\Delta \phi(Z,jet) = 180^\circ \pm 5^\circ$. UA1 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	14078	12852	11364	8477	2246
P_{56}	11.6	10.1	9.1	7.8	6.2
$\Delta \phi$	2.4	2.4	2.3	2.3	2.2
P_{cut}	8.4	7.7	7.1	6.2	4.9
$P_{\text{cut}}^{\text{clos}}$	4.8	4.7	4.6	4.4	4.0
$(P_{Z}^{2} - P_{\text{part}}^{2}) / P_{Z}^{2}$	0.0082	0.0090	0.0074	0.0038	-0.0029
$(P_{J}^{2} - P_{\text{part}}^{2}) / P_{J}^{2}$	0.0070	-0.0035	-0.0028	-0.0025	-0.0065
$(P_{Z}^{2} - P_{J}^{2}) / P_{Z}^{2}$	0.0013	0.0057	0.0055	0.0031	0.0013
$P_{t}(O + \eta > 5) / P_{Z}^{2}$	0.0001	0.0059	0.0044	0.0020	0.0003
$1 - \cos(\Delta \phi)$	0.0012	0.0012	0.0012	0.0011	0.0010
$\sigma(Db[Z,J])$	0.1847	0.1611	0.1432	0.1203	0.0938
Entries	5924	5408	4782	3567	945

Table 11: Selection 1. $\Delta \phi(Z,jet) = 180^\circ \pm 5^\circ$. UA2 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	13961	12775	11511	8607	2243
P_{56}	11.5	10.0	9.1	8.0	6.5
$\Delta \phi$	2.4	2.4	2.3	2.3	2.2
P_{cut}	8.4	7.6	7.1	6.3	5.2
$P_{\text{cut}}^{\text{clos}}$	4.8	4.7	4.6	4.5	4.0
$(P_{Z}^{2} - P_{\text{part}}^{2}) / P_{Z}^{2}$	0.0033	0.0048	0.0060	0.0046	0.0032
$(P_{J}^{2} - P_{\text{part}}^{2}) / P_{J}^{2}$	-0.0242	-0.0301	-0.0307	-0.0300	-0.0271
$(P_{Z}^{2} - P_{J}^{2}) / P_{Z}^{2}$	0.0186	0.0275	0.0300	0.0292	0.0264
$P_{t}(O + \eta > 5) / P_{Z}^{2}$	0.0174	0.0263	0.0289	0.0281	0.0254
$1 - \cos(\Delta \phi)$	0.0012	0.0012	0.0011	0.0011	0.0010
$\sigma(Db[Z,J])$	0.1832	0.1583	0.1414	0.1216	0.0936
Entries	5875	5376	4844	3622	944

Table 12: Selection 1. $\Delta \phi(Z,jet) = 180^\circ \pm 5^\circ$. LUEcell algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	15114	13840	12286	8930	2272
P_{56}	11.7	10.3	9.2	7.8	6.1
$\Delta \phi$	2.4	2.4	2.4	2.3	2.2
P_{cut}	8.5	7.8	7.2	6.3	5.0
$P_{\text{cut}}^{\text{clos}}$	4.7	4.7	4.6	4.5	4.0
$(P_{Z}^{2} - P_{\text{part}}^{2}) / P_{Z}^{2}$	0.0121	0.0124	0.0111	0.0053	-0.0032
$(P_{J}^{2} - P_{\text{part}}^{2}) / P_{J}^{2}$	-0.0097	-0.0129	-0.0138	-0.0119	-0.0127
$(P_{Z}^{2} - P_{J}^{2}) / P_{Z}^{2}$	0.0146	0.0194	0.0197	0.0135	0.0070
$P_{t}(O + \eta > 5) / P_{Z}^{2}$	0.0134	0.0183	0.0185	0.0123	0.0060
$1 - \cos(\Delta \phi)$	0.0012	0.0012	0.0012	0.0011	0.0011
$\sigma(Db[Z,J])$	0.1849	0.1639	0.1470	0.1225	0.0959
Entries	6360	5824	5170	3758	956
Table 13: Selection 2. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 9\%$. UA1 algorithm.

| $P_{T,Z,jet}^{\text{init}}$ | Nevent | $P_{T,56}$ | $\Delta \phi$ | $P_{T,\text{min}}$ | $P_{T,\text{part}}^\phi$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,\phi}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $P_{T}(O + \eta > 5)/P_{T,\phi}^Z$ | $1 - \cos(\Delta \phi)$ | $\sigma(Db(Z, J))$ | Entries |
|-----------------------------|--------|------------|----------------|-------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------|------------------|
| | | | | | | | | | | | | |
| 30 | 23186 | 13.8 | 5.9 | 10.2 | 4.9 | -0.0088 | -0.0057 | -0.0060 | -0.0023 | -0.0042 | 0.0408 | 0.1986 | 9757 |
| 20 | 20758 | 11.9 | 5.8 | 9.2 | 4.8 | -0.0136 | 0.0048 | -0.0002 | -0.0004 | -0.0042 | 0.0800 | 0.1632 | 8735 |
| 15 | 17966 | 10.6 | 5.5 | 8.5 | 4.6 | -0.0299 | -0.0153 | -0.0098 | -0.0048 | 0.0000 | 0.0467 | 0.1487 | 7556 |
| 10 | 12419 | 9.0 | 4.8 | 7.2 | 4.2 | -0.0379 | -0.0229 | -0.0168 | -0.0105 | -0.0037 | 0.0570 | 0.1246 | 5226 |
| 5 | 3011 | 7.1 | 3.9 | 5.5 | 4.2 | | | | | | 0.0038 | 0.0984 | 1267 |

Table 14: Selection 2. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 6\%$. UA2 algorithm.

| $P_{T,Z,jet}^{\text{init}}$ | Nevent | $P_{T,56}$ | $\Delta \phi$ | $P_{T,\text{min}}$ | $P_{T,\text{part}}^\phi$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,\phi}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $P_{T}(O + \eta > 5)/P_{T,\phi}^Z$ | $1 - \cos(\Delta \phi)$ | $\sigma(Db(Z, J))$ | Entries |
|-----------------------------|--------|------------|----------------|-------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------|------------------|
| | | | | | | | | | | | | |
| 30 | 12671 | 13.6 | 5.6 | 10.2 | 4.9 | -0.0467 | -0.0385 | -0.0314 | -0.0213 | -0.0175 | 0.0677 | 0.2024 | 5332 |
| 20 | 11321 | 11.5 | 5.5 | 8.3 | 4.6 | -0.0118 | -0.0229 | -0.0272 | -0.0290 | -0.0341 | 0.0072 | 0.1694 | 4764 |
| 15 | 9895 | 10.2 | 5.3 | 7.1 | 4.3 | -0.0421 | -0.0206 | -0.0083 | 0.0042 | 0.0103 | 0.0066 | 0.1494 | 4164 |
| 10 | 6946 | 8.7 | 4.7 | 7.1 | 3.7 | -0.0379 | -0.0229 | -0.0168 | -0.0105 | -0.0037 | 0.0053 | 0.1252 | 2923 |
| 5 | 1811 | 6.8 | 3.7 | 5.5 | 4.3 | | | | | | 0.0350 | 0.0992 | 762 |

Table 15: Selection 2. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 9\%$. LUCELL algorithm.

| $P_{T,Z,jet}^{\text{init}}$ | Nevent | $P_{T,56}$ | $\Delta \phi$ | $P_{T,\text{min}}$ | $P_{T,\text{part}}^\phi$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,\phi}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $(P_{T,\phi}^Z - P_{T,\text{part}}^\phi)/P_{T,J}^Z$ | $P_{T}(O + \eta > 5)/P_{T,\phi}^Z$ | $1 - \cos(\Delta \phi)$ | $\sigma(Db(Z, J))$ | Entries |
|-----------------------------|--------|------------|----------------|-------------------|------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|---------------------|------------------|
| | | | | | | | | | | | | |
| 30 | 24510 | 13.6 | 6.0 | 10.1 | 4.9 | -0.0089 | -0.0054 | -0.0055 | -0.0026 | -0.0039 | 0.0081 | 0.2079 | 10314 |
| 20 | 22048 | 11.9 | 5.8 | 9.3 | 4.8 | -0.0192 | -0.0058 | -0.0104 | -0.0089 | -0.0098 | 0.0071 | 0.1705 | 9278 |
| 15 | 19047 | 10.5 | 5.5 | 8.5 | 4.6 | -0.0179 | -0.0049 | 0.0003 | 0.0029 | 0.0038 | 0.0071 | 0.1510 | 8015 |
| 10 | 13027 | 9.0 | 4.9 | 7.3 | 4.2 | -0.0259 | -0.0125 | -0.0067 | -0.0029 | 0.0000 | 0.0057 | 0.1263 | 5482 |
| 5 | 3068 | 7.0 | 3.9 | 5.5 | 4.2 | | | | | | 0.0039 | 0.0993 | 1291 |
Table 16: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 9\%$. UA1 algorithm.

$P_{T,a}^{cut}$	30	20	15	10	5
Nevent	17640	15872	13835	9541	2224
$P_{T,56}$	13.4	11.6	10.3	8.8	7.0
$\Delta \phi$	5.8	5.6	5.4	4.7	3.8
$P_{T,20}$	10.0	9.0	8.3	7.1	5.4
$P_{T,180}$	4.9	4.8	4.7	4.6	4.3
$(P_{T,2} - P_{T,part1})/P_{T,2}$	-0.0221	-0.0171	-0.0153	-0.0083	-0.0059
$(P_{T,2} - P_{T,part2})/P_{T,2}$	0.0132	0.0046	-0.0006	-0.0007	-0.0061
$(P_{T,2} - P_{T,jet})/P_{T,2}$	-0.0422	-0.0261	-0.0182	-0.0102	-0.0016
$P_{T}(O+\eta>5)/P_{T,2}$	-0.0498	-0.0334	-0.0249	-0.0155	-0.0051
$1 - \cos(\Delta \phi)$	0.0076	0.0073	0.0067	0.0054	0.0037
$\sigma(Db(Z, J))$	0.1948	0.1646	0.1460	0.1225	0.0971
Entries	7423	6679	5822	4015	936

Table 17: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 6\%$. UA2 algorithm.

$P_{T,a}^{cut}$	30	20	15	10	5
Nevent	17640	15872	13835	9541	2224
$P_{T,56}$	13.4	11.6	10.3	8.8	7.0
$\Delta \phi$	5.8	5.6	5.4	4.7	3.8
$P_{T,20}$	10.0	9.0	8.3	7.1	5.4
$P_{T,180}$	4.9	4.8	4.7	4.6	4.3
$(P_{T,2} - P_{T,part1})/P_{T,2}$	-0.0221	-0.0171	-0.0153	-0.0083	-0.0059
$(P_{T,2} - P_{T,part2})/P_{T,2}$	0.0174	0.0266	-0.0319	-0.0320	-0.0339
$(P_{T,2} - P_{T,jet})/P_{T,2}$	-0.0124	0.0037	0.0115	0.0166	0.0217
$P_{T}(O+\eta>5)/P_{T,2}$	-0.0200	-0.0036	0.0048	0.0113	0.0181
$1 - \cos(\Delta \phi)$	0.0077	0.0073	0.0068	0.0054	0.0038
$\sigma(Db(Z, J))$	0.1958	0.1688	0.1475	0.1243	0.0992
Entries	7423	6679	5822	4015	936

Table 18: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 9\%$. LUCELL algorithm.

$P_{T,a}^{cut}$	30	20	15	10	5
Nevent	17640	15872	13835	9541	2224
$P_{T,56}$	13.4	11.6	10.3	8.8	7.0
$\Delta \phi$	5.8	5.6	5.4	4.7	3.8
$P_{T,20}$	10.0	9.0	8.3	7.1	5.4
$P_{T,180}$	4.9	4.8	4.7	4.6	4.3
$(P_{T,2} - P_{T,part1})/P_{T,2}$	-0.0221	-0.0171	-0.0153	-0.0083	-0.0059
$(P_{T,2} - P_{T,part2})/P_{T,2}$	0.0065	0.0024	0.0076	0.0070	0.0096
$(P_{T,2} - P_{T,jet})/P_{T,2}$	-0.0355	-0.0194	-0.0116	-0.0041	0.0019
$P_{T}(O+\eta>5)/P_{T,2}$	-0.0431	-0.0268	-0.0183	-0.0095	-0.0016
$1 - \cos(\Delta \phi)$	0.0077	0.0074	0.0068	0.0055	0.0037
$\sigma(Db(Z, J))$	0.1950	0.1653	0.1469	0.1237	0.0975
Entries	7423	6679	5822	4015	936
Table 19: Selection 3. $\Delta \phi_{(Z,\text{jet})} = 180^{\circ} \pm 15^{\circ}$, $\epsilon_{\text{jet}} < 9\%$. UA1 algorithm.

$P_{t_{\text{clust}}}$	30	20	15	10	5
Nevent	22010	19805	17153	11818	2795
P_t^{56}	13.5	11.8	10.4	8.9	7.0
$\Delta \phi$	5.9	5.7	5.4	4.8	3.9
$P_{t_{\text{out}}}$	10.1	9.2	8.4	7.2	5.5
$P_t^{\eta>5}$	4.9	4.8	4.8	4.6	4.2
($P_t^{Z} - P_t^{part}$) / P_t^{Z}	-0.0125	-0.0089	-0.0086	-0.0040	-0.0044
($P_t^{J} - P_t^{part}$) / P_t^{J}	0.0107	0.0028	-0.0018	-0.0017	-0.0055
($P_t^{Z} - P_t^{J}$) / P_t^{Z}	-0.0302	-0.0165	-0.0108	-0.0052	-0.0009
$P_t^{(O+\eta>5)} / P_t^{Z}$	-0.0383	-0.0243	-0.0179	-0.0111	-0.0045
$1 - \cos(\Delta \phi)$	0.0079	0.0075	0.0069	0.0056	0.0038
$\sigma(Db[Z,J])$	0.1971	0.1683	0.1488	0.1246	0.0986
Entries	9262	8334	7218	4973	1176

Table 20: Selection 3. $\Delta \phi_{(Z,\text{jet})} = 180^{\circ} \pm 15^{\circ}$, $\epsilon_{\text{jet}} < 9\%$. LUCELL algorithm.

$P_{t_{\text{clust}}}$	30	20	15	10	5
Nevent	22010	19805	17153	11818	2795
P_t^{56}	13.5	11.8	10.4	8.9	7.0
$\Delta \phi$	5.9	5.7	5.4	4.8	3.9
$P_{t_{\text{out}}}$	10.1	9.2	8.4	7.2	5.5
$P_t^{\eta>5}$	4.9	4.8	4.8	4.6	4.2
($P_t^{Z} - P_t^{part}$) / P_t^{Z}	-0.0125	-0.0089	-0.0086	-0.0040	-0.0044
($P_t^{J} - P_t^{part}$) / P_t^{J}	0.0041	-0.0040	-0.0087	-0.0078	-0.0089
($P_t^{Z} - P_t^{J}$) / P_t^{Z}	-0.0237	-0.0099	-0.0042	0.0005	0.0024
$P_t^{(O+\eta>5)} / P_t^{Z}$	-0.0318	-0.0178	-0.0114	-0.0054	-0.0012
$1 - \cos(\Delta \phi)$	0.0080	0.0076	0.0070	0.0057	0.0038
$\sigma(Db[Z,J])$	0.1971	0.1689	0.1495	0.1257	0.0993
Entries	9262	8334	7218	4973	1176
Appendix 3

70 < P_t^Z < 85 GeV/c

Table 1: Selection 1. \(\Delta \phi(Z,jet) = 180^\circ \pm 180^\circ \). UA1 algorithm.

\(P_{t \text{cut}} \)	30	20	15	10	5
Nevent\(^*\)	17258	12124	8956	5313	1058
\(P_t \)	21.0	16.0	13.3	10.7	8.0
\(\Delta \phi \)	9.0	6.4	5.1	3.9	2.8
\(P_t^{\text{out}} \)	17.3	12.8	10.3	8.0	5.7
\(P_t^{\text{part}} \)	5.4	5.3	5.2	5.1	4.7
\((P_t^Z - P_t^{\text{part}})/P_t^Z \)	0.0508	0.0227	0.0137	0.0090	0.0049
\((P_t' - P_t^{\text{part}})/P_t' \)	-0.0273	-0.0163	-0.0100	-0.0037	-0.0068
\(P_t(O+\eta>5)/P_t^Z \)	0.0365	0.0158	0.0072	0.0015	0.0022
\(1 - \cos(\Delta \phi) \)	0.0236	0.0113	0.0071	0.0040	0.0023
\(\sigma(Db[Z,J])** \)	0.1915	0.1478	0.1219	0.0968	0.0801
Entries	26667	18734	13839	8209	1635

Table 2: Selection 1. \(\Delta \phi(Z,jet) = 180^\circ \pm 180^\circ \). UA2 algorithm.

\(P_{t \text{cut}} \)	30	20	15	10	5
Nevent	17564	12705	9563	5664	1120
\(P_t \)	20.9	16.2	13.6	11.0	8.5
\(\Delta \phi \)	8.8	6.3	5.1	3.9	2.9
\(P_t^{\text{out}} \)	16.9	12.7	10.5	8.1	5.8
\(P_t^{\text{part}} \)	5.4	5.3	5.2	5.0	4.7
\((P_t^Z - P_t^{\text{part}})/P_t^Z \)	0.0489	0.0243	0.0161	0.0128	0.0103
\((P_t' - P_t^{\text{part}})/P_t' \)	-0.0309	-0.0298	-0.0226	-0.0165	-0.0182
\(P_t(O+\eta>5)/P_t^Z \)	0.0670	0.0421	0.0325	0.0252	0.0240
\(1 - \cos(\Delta \phi) \)	0.0224	0.0112	0.0071	0.0041	0.0024
\(\sigma(Db[Z,J])** \)	0.1856	0.1450	0.1207	0.0962	0.0792
Entries	27139	19631	14776	8752	1730

Table 3: Selection 1. \(\Delta \phi(Z,jet) = 180^\circ \pm 180^\circ \). LUCELL algorithm.

\(P_{t \text{cut}} \)	30	20	15	10	5
Nevent	17643	12828	9459	5512	1041
\(P_t \)	20.5	16.1	13.3	10.5	7.6
\(\Delta \phi \)	8.7	6.4	5.1	3.9	2.8
\(P_t^{\text{out}} \)	16.9	12.9	10.5	8.1	5.7
\(P_t^{\text{part}} \)	5.4	5.3	5.2	5.1	4.7
\((P_t^Z - P_t^{\text{part}})/P_t^Z \)	0.0492	0.0249	0.0143	0.0079	0.0012
\((P_t' - P_t^{\text{part}})/P_t' \)	-0.0302	-0.0227	-0.0180	-0.0108	-0.0143
\(P_t(O+\eta>5)/P_t^Z \)	0.0673	0.0400	0.0267	0.0152	0.0121
\(1 - \cos(\Delta \phi) \)	0.0223	0.0116	0.0072	0.0041	0.0024
\(\sigma(Db[Z,J])** \)	0.1865	0.1489	0.1232	0.0974	0.0803
Entries	27262	19821	14615	8517	1608

\(^*\)Number of events (Nevent) is given in this and in the following tables for integrated luminosity \(L_{int} = 10 \text{ fb}^{-1} \)
\(^**\) \(Db[Z,J] \equiv (P_t^Z - P_t^J)/P_t^Z \)
Table 4: Selection 1. $\Delta \phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. UA1 algorithm.

$P_{t\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	14012	11112	8613	5263	1064
P_{t56}	17.5	14.6	12.7	10.5	7.9
$\Delta \phi$	5.6	5.1	4.5	3.8	2.7
$P_{t\text{min}}$	13.7	11.5	9.8	7.9	5.7
$P_{t\text{out}}$	5.2	5.1	5.1	5.0	4.6
$(P_{tZ} - P_{t\text{part}})/P_{tZ}$	0.0320	0.0171	0.0113	0.0083	0.0042
$(P_{tJ} - P_{t\text{part}})/P_{tJ}$	-0.0243	-0.0148	-0.0094	-0.0037	-0.0068
$(P_{tZ} - P_{tJ})/P_{tZ}$	0.0447	0.0252	0.0158	0.0085	0.0074
$P_{t}(O+\eta>5)/P_{tZ}$	0.0330	0.0147	0.0066	0.0014	0.0018
$1 - \cos(\Delta \phi)$	0.0072	0.0061	0.0050	0.0035	0.0020
$\sigma(\Delta \phi)$	0.1783	0.1420	0.1191	0.0958	0.0787
Entries	21651	17170	13309	8132	1628

Table 5: Selection 1. $\Delta \phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. UA2 algorithm.

$P_{t\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	14394	11646	9190	5603	1113
P_{t56}	17.5	14.9	13.0	10.8	8.4
$\Delta \phi$	5.5	5.0	4.5	3.7	2.8
$P_{t\text{min}}$	13.5	11.5	9.9	8.0	5.8
$P_{t\text{out}}$	5.2	5.1	5.1	4.9	4.5
$(P_{tZ} - P_{t\text{part}})/P_{tZ}$	0.0316	0.0189	0.0139	0.0120	0.0094
$(P_{tJ} - P_{t\text{part}})/P_{tJ}$	-0.0287	-0.0246	-0.0219	-0.0165	-0.0180
$(P_{tZ} - P_{tJ})/P_{tZ}$	0.0494	0.0361	0.0299	0.0244	0.0229
$P_{t}(O+\eta>5)/P_{tZ}$	0.0379	0.0257	0.0207	0.0173	0.0167
$1 - \cos(\Delta \phi)$	0.0071	0.0061	0.0050	0.0035	0.0020
$\sigma(\Delta \phi)$	0.1739	0.1491	0.1182	0.0950	0.0772
Entries	22241	17995	14200	8434	1720

Table 6: Selection 1. $\Delta \phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$. LUCELL algorithm.

$P_{t\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	14523	11730	9090	5458	1035
P_{t56}	17.4	14.7	12.7	10.3	7.5
$\Delta \phi$	5.6	5.1	4.6	3.8	2.7
$P_{t\text{min}}$	13.6	11.6	10.0	8.0	5.7
$P_{t\text{out}}$	5.2	5.2	5.1	5.0	4.6
$(P_{tZ} - P_{t\text{part}})/P_{tZ}$	0.0322	0.0185	0.0115	0.0072	0.0003
$(P_{tJ} - P_{t\text{part}})/P_{tJ}$	-0.0273	-0.0214	-0.0175	-0.0108	-0.0142
$(P_{tZ} - P_{tJ})/P_{tZ}$	0.0491	0.0330	0.0237	0.0145	0.0112
$P_{t}(O+\eta>5)/P_{tZ}$	0.0375	0.0224	0.0144	0.0074	0.0057
$1 - \cos(\Delta \phi)$	0.0072	0.0062	0.0051	0.0036	0.0020
$\sigma(\Delta \phi)$	0.1744	0.1426	0.1204	0.0965	0.0786
Entries	22441	18124	14046	8434	1600
Table 7: Selection 1. $\Delta \phi_{(Z,\text{jet})} = 180^\circ \pm 10^\circ$. UA1 algorithm.

P_{cut}	30	20	15	10	5
Nevent	11553	9597	7794	5014	1039
P_{56}	16.0	13.5	11.9	10.1	7.8
$\Delta \phi$	4.1	3.9	3.7	3.3	2.6
P_{out}	12.2	10.4	9.1	7.6	5.7
$P_{\eta>5}$	5.2	5.1	5.0	4.9	4.6
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0267	0.0141	0.0091	0.0076	0.0047
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0222	-0.0137	-0.0089	-0.0037	-0.0066
$(P_{Z} - P_{J})/P_{Z}$	0.0384	0.0214	0.0133	0.0079	0.0077
$P_{(O+\eta>5)/P_{Z}}$	0.0303	0.0137	0.0061	0.0017	0.0024
$1 - \cos(\Delta \phi)$	0.0037	0.0035	0.0032	0.0026	0.0017
$\sigma(Db(Z,J))$	0.1721	0.1382	0.1163	0.0944	0.0778
Entries	17852	14829	12043	7748	1606

Table 8: Selection 1. $\Delta \phi_{(Z,\text{jet})} = 180^\circ \pm 10^\circ$. UA2 algorithm.

P_{cut}	30	20	15	10	5
Nevent	11917	10088	8332	5350	1099
P_{56}	16.1	13.8	12.2	10.5	8.3
$\Delta \phi$	4.1	3.9	3.7	3.4	2.6
P_{out}	12.0	10.4	9.2	7.7	5.8
$P_{\eta>5}$	5.1	5.1	5.0	4.9	4.5
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0266	0.0162	0.0122	0.0111	0.0093
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0275	-0.0238	-0.0209	-0.0166	-0.0181
$(P_{Z} - P_{J})/P_{Z}$	0.0441	0.0328	0.0276	0.0237	0.0230
$P_{(O+\eta>5)/P_{Z}}$	0.0362	0.0252	0.0203	0.0175	0.0170
$1 - \cos(\Delta \phi)$	0.0037	0.0035	0.0032	0.0026	0.0018
$\sigma(Db(Z,J))$	0.1655	0.1347	0.1152	0.0938	0.0763
Entries	18413	15588	12874	8267	1698

Table 9: Selection 1. $\Delta \phi_{(Z,\text{jet})} = 180^\circ \pm 10^\circ$. LUCELL algorithm.

P_{cut}	30	20	15	10	5
Nevent	11986	10121	8209	5192	1021
P_{56}	15.9	13.6	11.9	9.9	7.4
$\Delta \phi$	4.1	4.0	3.8	3.4	2.6
P_{out}	12.2	10.5	9.2	7.7	5.7
$P_{\eta>5}$	5.2	5.1	5.0	4.9	4.5
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0270	0.0158	0.0093	0.0063	0.0006
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0250	-0.0198	-0.0161	-0.0104	-0.0142
$(P_{Z} - P_{J})/P_{Z}$	0.0427	0.0291	0.0206	0.0134	0.0114
$P_{(O+\eta>5)/P_{Z}}$	0.0347	0.0214	0.0134	0.0073	0.0062
$1 - \cos(\Delta \phi)$	0.0038	0.0035	0.0032	0.0027	0.0017
$\sigma(Db(Z,J))$	0.1684	0.1391	0.1174	0.0948	0.0771
Entries	18520	15639	12684	8023	1577
Table 10: Selection 1. $\Delta \phi(Z,jet) = 180^\circ \pm 5^\circ$. UA1 algorithm.

$P_{t \text{clust}}$	30	20	15	10	5
Nevent	7410	6408	5471	3787	899
$\Delta \phi$	2.3	2.3	2.3	2.2	2.0
$P_{t \text{min}}$	10.5	8.9	7.9	6.7	5.3
$P_{t \text{out}}$	5.0	5.0	4.9	4.8	4.3
$(P_t^Z - P_t^{\text{part}}) / P_t^Z$	0.0221	0.0115	0.0081	0.0061	0.0031
$(P_t^J - P_t^{\text{part}}) / P_t^J$	-0.0171	-0.0091	-0.0064	-0.0018	-0.0053
$(P_t^Z - P_t^J) / P_t^Z$	0.0302	0.0152	0.0093	0.0047	0.0051
$P_t(O + \eta > 5) / P_t^Z$	0.0252	0.0103	0.0044	0.0006	0.0010
$1 - \cos(\Delta \phi)$	0.0011	0.0011	0.0011	0.0010	0.0009
$\sigma(Db(Z, J))$	0.1597	0.1294	0.1112	0.0905	0.0728
Entries	11449	9901	8454	5851	1389

Table 11: Selection 1. $\Delta \phi(Z,jet) = 180^\circ \pm 5^\circ$. UA2 algorithm.

$P_{t \text{clust}}$	30	20	15	10	5
Nevent	7657	6737	5821	4029	942
$\Delta \phi$	2.3	2.3	2.3	2.2	2.0
$P_{t \text{min}}$	10.3	8.9	8.0	6.9	5.4
$P_{t \text{out}}$	5.0	4.9	4.9	4.7	4.2
$(P_t^Z - P_t^{\text{part}}) / P_t^Z$	0.0221	0.0127	0.0109	0.0096	0.0087
$(P_t^J - P_t^{\text{part}}) / P_t^J$	-0.0242	-0.0205	-0.0181	-0.0153	-0.0162
$(P_t^Z - P_t^J) / P_t^Z$	0.0372	0.0270	0.0240	0.0214	0.0209
$P_t(O + \eta > 5) / P_t^Z$	0.0320	0.0219	0.0188	0.0172	0.0163
$1 - \cos(\Delta \phi)$	0.0011	0.0011	0.0011	0.0010	0.0009
$\sigma(Db(Z, J))$	0.1388	0.1270	0.1105	0.0897	0.0733
Entries	11831	10409	8994	6225	1456

Table 12: Selection 1. $\Delta \phi(Z,jet) = 180^\circ \pm 5^\circ$. LUCELL algorithm.

$P_{t \text{clust}}$	30	20	15	10	5
Nevent	7648	6700	5713	3892	876
$\Delta \phi$	2.3	2.3	2.3	2.2	1.9
$P_{t \text{min}}$	10.4	9.0	8.1	6.8	5.3
$P_{t \text{out}}$	5.0	5.0	4.9	4.7	4.3
$(P_t^Z - P_t^{\text{part}}) / P_t^Z$	0.0231	0.0134	0.0083	0.0045	-0.0027
$(P_t^J - P_t^{\text{part}}) / P_t^J$	-0.0196	-0.0154	-0.0129	-0.0089	-0.0142
$(P_t^Z - P_t^J) / P_t^Z$	0.0349	0.0232	0.0167	0.0101	0.0084
$P_t(O + \eta > 5) / P_t^Z$	0.0300	0.0184	0.0118	0.0060	0.0045
$1 - \cos(\Delta \phi)$	0.0011	0.0011	0.0011	0.0010	0.0008
$\sigma(Db(Z, J))$	0.1566	0.1310	0.1127	0.0911	0.0723
Entries	11818	10353	8827	6014	1354
Table 13: Selection 2. $\Delta\phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$, $\epsilon^{\text{jet}} < 5\%$. UA1 algorithm.

$P_{t\text{CT}}^{\text{cut}}$	30	20	15	10	5
Nevent	7623	6466	5291	3473	818
P_{56}	15.8	13.6	11.9	9.9	7.5
$\Delta\phi$	5.3	4.9	4.4	3.7	2.7
$P_{\text{tot}}^{\text{jet}}$	12.4	10.7	9.4	7.7	5.7
P_{30}^{jet}	5.1	5.1	5.0	4.9	4.5
$[P_{tZ}^{\text{jet}}-P_{\text{part}}^{\text{jet}}]/P_{tZ}^{\text{jet}}$	-0.0125	-0.0126	-0.0107	-0.0069	-0.0052
$[P_{tJ}^{\text{jet}}-P_{\text{part}}^{\text{jet}}]/P_{tJ}^{\text{jet}}$	-0.0016	-0.0031	-0.0028	-0.0021	-0.0052
$[P_{tZ}^{\text{jet}}-P_{\text{jet}}^{\text{jet}}]/P_{tZ}^{\text{jet}}$	-0.0146	-0.0125	-0.0105	-0.0070	-0.0018
$P_{t}(O+\eta > 5)/P_{tZ}^{\text{jet}}$	-0.0246	-0.0214	-0.0181	-0.0129	-0.0058
$1 - \cos(\Delta\phi)$	0.0067	0.0058	0.0047	0.0034	0.0020
$\sigma(\Delta\phi(Z,J))$	0.1534	0.1263	0.1085	0.0891	0.0686
Entries	11778	9991	8175	5367	1264

Table 14: Selection 2. $\Delta\phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$, $\epsilon^{\text{jet}} < 4\%$. UA2 algorithm.

$P_{t\text{CT}}^{\text{cut}}$	30	20	15	10	5
Nevent	4198	3593	2975	1975	485
P_{56}	15.5	13.3	11.7	9.7	7.4
$\Delta\phi$	5.2	4.8	4.3	3.6	2.7
$P_{\text{tot}}^{\text{jet}}$	12.2	10.6	9.3	7.7	5.6
P_{30}^{jet}	5.1	5.0	5.0	4.9	4.4
$[P_{tZ}^{\text{jet}}-P_{\text{part}}^{\text{jet}}]/P_{tZ}^{\text{jet}}$	-0.0294	-0.0261	-0.0215	-0.0146	-0.0095
$[P_{tJ}^{\text{jet}}-P_{\text{part}}^{\text{jet}}]/P_{tJ}^{\text{jet}}$	-0.0205	-0.0220	-0.0213	-0.0192	-0.0214
$[P_{tZ}^{\text{jet}}-P_{\text{jet}}^{\text{jet}}]/P_{tZ}^{\text{jet}}$	-0.0127	-0.0075	-0.0030	0.0025	0.0097
$P_{t}(O+\eta > 5)/P_{tZ}^{\text{jet}}$	-0.0227	-0.0163	-0.0108	-0.0031	0.0059
$1 - \cos(\Delta\phi)$	0.0065	0.0056	0.0046	0.0032	0.0019
$\sigma(\Delta\phi(Z,J))$	0.1509	0.1260	0.1089	0.0896	0.0695
Entries	6487	5552	4597	3052	749

Table 15: Selection 2. $\Delta\phi(Z,\text{jet}) = 180^\circ \pm 15^\circ$, $\epsilon^{\text{jet}} < 5\%$. LUCELL algorithm.

$P_{t\text{CT}}^{\text{cut}}$	30	20	15	10	5
Nevent	7835	6688	5471	3569	814
P_{56}	15.6	13.5	11.8	9.8	7.3
$\Delta\phi$	5.3	4.9	4.4	3.7	2.7
$P_{\text{tot}}^{\text{jet}}$	12.3	10.8	9.4	7.7	5.6
P_{30}^{jet}	5.1	5.1	5.0	4.9	4.5
$[P_{tZ}^{\text{jet}}-P_{\text{part}}^{\text{jet}}]/P_{tZ}^{\text{jet}}$	-0.0130	-0.0131	-0.0115	-0.0084	-0.0066
$[P_{tJ}^{\text{jet}}-P_{\text{part}}^{\text{jet}}]/P_{tJ}^{\text{jet}}$	-0.0080	-0.0087	-0.0085	-0.0076	-0.0106
$[P_{tZ}^{\text{jet}}-P_{\text{jet}}^{\text{jet}}]/P_{tZ}^{\text{jet}}$	-0.0088	-0.0075	-0.0056	-0.0030	0.0022
$P_{t}(O+\eta > 5)/P_{tZ}^{\text{jet}}$	-0.0189	-0.0165	-0.0133	-0.0090	-0.0019
$1 - \cos(\Delta\phi)$	0.0067	0.0058	0.0048	0.0035	0.0020
$\sigma(\Delta\phi(Z,J))$	0.1523	0.1269	0.1092	0.0894	0.0692
Entries	12107	10334	8454	5515	1258
Table 16: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 5\%$. UA1 algorithm.

$P_{Z,jet}^{\text{clust}}$	30	20	15	10	5
Nevent	4945	4250	3496	2275	539
P_{56}	15.4	13.4	11.8	9.7	7.3
$\Delta \phi$	5.1	4.8	4.3	3.6	2.7
P_{clus}	12.2	10.7	9.4	7.7	5.6
$P_{\text{clus}}>5$	5.0	5.0	5.0	4.9	4.4
$(P_{Z}-P_{\text{clus}})/P_{Z}$	-0.0233	-0.0209	-0.0182	-0.0126	-0.0081
$(P_{J}-P_{\text{clus}})/P_{J}$	-0.0019	-0.0041	-0.0032	-0.0031	-0.0065
$(P_{Z}-P_{\text{clus}})/P_{Z}$	-0.0247	-0.0197	-0.0174	-0.0116	-0.0033
$P_{1}(O+\eta>5)/P_{Z}$	-0.0344	-0.0285	-0.0250	-0.0175	-0.0073
$1 - \cos(\Delta \phi)$	0.0064	0.0056	0.0046	0.0033	0.0020
$\sigma(DB(Z, J))$	0.1487	0.1287	0.1078	0.0889	0.0684
Entries	7641	6567	5402	3515	833

Table 17: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 5\%$. UA2 algorithm.

$P_{Z,jet}^{\text{clust}}$	30	20	15	10	5
Nevent	4945	4250	3496	2275	539
P_{56}	15.4	13.4	11.8	9.7	7.3
$\Delta \phi$	5.2	4.8	4.3	3.6	2.7
P_{clus}	12.1	10.6	9.3	7.7	5.7
$P_{\text{clus}}>5$	5.0	5.0	5.0	4.9	4.4
$(P_{Z}-P_{\text{clus}})/P_{Z}$	-0.0233	-0.0209	-0.0182	-0.0126	-0.0081
$(P_{J}-P_{\text{clus}})/P_{J}$	-0.0201	-0.0220	-0.0207	-0.0204	-0.0228
$(P_{Z}-P_{\text{clus}})/P_{Z}$	-0.0070	-0.0022	-0.0002	0.0053	0.0126
$P_{1}(O+\eta>5)/P_{Z}$	-0.0167	-0.0111	-0.0079	-0.0007	0.0085
$1 - \cos(\Delta \phi)$	0.0064	0.0056	0.0046	0.0033	0.0020
$\sigma(DB(Z, J))$	0.1492	0.1289	0.1081	0.0897	0.0688
Entries	7641	6567	5402	3515	833

Table 18: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 5\%$. LUCELL algorithm.

$P_{Z,jet}^{\text{clust}}$	30	20	15	10	5
Nevent	4945	4250	3496	2275	539
P_{56}	15.4	13.4	11.8	9.7	7.3
$\Delta \phi$	5.2	4.8	4.3	3.6	2.7
P_{clus}	12.2	10.7	9.4	7.7	5.6
$P_{\text{clus}}>5$	5.0	5.0	5.0	4.9	4.4
$(P_{Z}-P_{\text{clus}})/P_{Z}$	-0.0233	-0.0209	-0.0182	-0.0126	-0.0081
$(P_{J}-P_{\text{clus}})/P_{J}$	-0.0063	-0.0080	-0.0072	-0.0065	-0.0089
$(P_{Z}-P_{\text{clus}})/P_{Z}$	-0.0205	-0.0159	-0.0135	-0.0082	-0.0009
$P_{1}(O+\eta>5)/P_{Z}$	-0.0302	-0.0247	-0.0212	-0.0142	-0.0050
$1 - \cos(\Delta \phi)$	0.0064	0.0056	0.0046	0.0033	0.0020
$\sigma(DB(Z, J))$	0.1494	0.1263	0.1085	0.0894	0.0682
Entries	7641	6567	5402	3515	833
Appendix 4

100 < P_t^Z < 120 GeV/c

P_{tJ}^{cut}	30	20	15	10	5
Nevent*	9840	6949	5114	2944	586
P_5^6	21.9	17.0	14.4	11.7	8.6
$\Delta \phi$	6.0	4.4	3.6	2.8	2.1
$P_{t\eta}$	17.4	13.0	10.6	8.0	5.6
$P_{t\eta}^{>\eta}$	5.8	5.6	5.5	5.4	5.1
($P_t^Z - P_{t\eta}^{>\eta}$) / P_t^Z	0.0322	0.0183	0.0129	0.0104	0.0052
($P_{tJ}' - P_{t\eta}^{>\eta}'$) / P_{tJ}'	-0.0166	-0.0082	-0.0035	0.0007	-0.0014
($P_t^Z - P_{tJ}'$) / P_t^Z	0.0400	0.0208	0.0121	0.0061	0.0040
$P_{tJ}(O+H>5)/P_{tJ}'$	0.0244	0.0107	0.0040	-0.0002	-0.0001
$1 - \cos(\Delta \phi)$	0.0102	0.0052	0.0034	0.0020	0.0013
$\sigma(D\bar{b}[Z,J])^{**}$	0.1442	0.1093	0.0920	0.0751	0.0602
Entries	28431	20078	14777	8505	1694

Table 1: Selection 1. $\Delta \phi(Z,J_{\text{jet}}) = 180^\circ \pm 180^\circ$. UA1 algorithm.

P_{tJ}^{cut}	30	20	15	10	5
Nevent*	10518	7623	5697	3306	640
P_5^6	22.2	17.6	15.1	12.5	9.5
$\Delta \phi$	5.9	4.3	3.6	2.8	2.1
$P_{t\eta}$	17.0	12.9	10.6	8.2	5.8
$P_{t\eta}^{>\eta}$	5.8	5.6	5.5	5.4	5.0
($P_t^Z - P_{t\eta}^{>\eta}$) / P_t^Z	0.0341	0.0225	0.0184	0.0162	0.0121
($P_{tJ}' - P_{t\eta}^{>\eta}'$) / P_{tJ}'	-0.0164	-0.0110	-0.0081	-0.0049	-0.0043
($P_t^Z - P_{tJ}'$) / P_t^Z	0.0422	0.0275	0.0214	0.0169	0.0141
$P_{tJ}(O+H>5)/P_{tJ}'$	0.0269	0.0174	0.0135	0.0107	0.0100
$1 - \cos(\Delta \phi)$	0.0098	0.0051	0.0034	0.0020	0.0013
$\sigma(D\bar{b}[Z,J])^{**}$	0.1394	0.1076	0.0913	0.0759	0.0596
Entries	30391	22026	16462	9553	1848

Table 2: Selection 1. $\Delta \phi(Z,J_{\text{jet}}) = 180^\circ \pm 180^\circ$. UA2 algorithm.

P_{tJ}^{cut}	30	20	15	10	5
Nevent*	9967	7202	5295	2996	568
P_5^6	21.4	17.0	14.3	11.4	8.1
$\Delta \phi$	5.8	4.4	3.6	2.8	2.1
$P_{t\eta}$	17.0	13.1	10.7	8.1	5.6
$P_{t\eta}^{>\eta}$	5.8	5.7	5.5	5.4	5.1
($P_t^Z - P_{t\eta}^{>\eta}$) / P_t^Z	0.0311	0.0185	0.0120	0.0083	0.0008
($P_{tJ}' - P_{t\eta}^{>\eta}'$) / P_{tJ}'	-0.0195	-0.0132	-0.0099	-0.0059	-0.0072
($P_t^Z - P_{tJ}'$) / P_t^Z	0.0424	0.0259	0.0172	0.0101	0.0053
$P_{tJ}(O+H>5)/P_{tJ}'$	0.0275	0.0156	0.0090	0.0038	0.0012
$1 - \cos(\Delta \phi)$	0.0095	0.0053	0.0035	0.0021	0.0013
$\sigma(D\bar{b}[Z,J])^{**}$	0.1399	0.1101	0.0933	0.0767	0.0609
Entries	28798	20809	15300	8658	1640

Table 3: Selection 1. $\Delta \phi(Z,J_{\text{jet}}) = 180^\circ \pm 180^\circ$. LUCELL algorithm.

*Number of events (Nevent) is given in this and in the following tables for integrated luminosity $L_{int} = 10 fb^{-1}$

** $D\bar{b}[Z,J] \equiv (P_t^Z - P_{tJ})/P_t^Z$
Table 4: Selection 1. $\Delta \phi_{(Z, \text{jet})} = 180^\circ \pm 15^\circ$. UA1 algorithm.

$P_{t\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	9125	6803	5077	2939	585
P_{t56}	20.3	16.6	14.2	11.6	8.5
$\Delta \phi$	4.9	4.1	3.5	2.7	2.0
$P_{t\text{out}}$	15.7	12.5	10.5	8.0	5.6
$P_{t\eta>5}$					
$(P_t^Z - P_{t\text{part}})/P_t^Z$	0.0266	0.0170	0.0132	0.0103	0.0048
$(P_t^J - P_{t\text{part}})/P_t^J$	-0.0150	-0.0080	-0.0036	0.0007	-0.0014
$(P_t^Z - P_t^J)/P_t^Z$	0.0336	0.0195	0.0115	0.0060	0.0036
$P_t(O+\eta>5)/P_t^Z$	0.0225	0.0104	0.0038	-0.0002	-0.0003
$1 - \cos(\Delta \phi)$	0.0058	0.0042	0.0031	0.0019	0.0011
$\sigma(Db_{Z,J})$	0.1382	0.1080	0.0916	0.0750	0.0596
Entries	26365	19658	14669	8491	1690

Table 5: Selection 1. $\Delta \phi_{(Z, \text{jet})} = 180^\circ \pm 15^\circ$. UA2 algorithm.

$P_{t\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	9798	7478	5661	3302	639
P_{t56}	20.6	17.3	14.9	12.5	9.5
$\Delta \phi$	4.8	4.1	3.5	2.7	2.0
$P_{t\text{out}}$	15.4	12.5	10.5	8.2	5.8
$P_{t\eta>5}$					
$(P_t^Z - P_{t\text{part}})/P_t^Z$	0.0286	0.0215	0.0177	0.0162	0.0119
$(P_t^J - P_{t\text{part}})/P_t^J$	-0.0152	-0.0106	-0.0080	-0.0049	-0.0042
$(P_t^Z - P_t^J)/P_t^Z$	0.0362	0.0262	0.0209	0.0168	0.0139
$P_t(O+\eta>5)/P_t^Z$	0.0251	0.0171	0.0133	0.0107	0.0100
$1 - \cos(\Delta \phi)$	0.0057	0.0042	0.0031	0.0020	0.0011
$\sigma(Db_{Z,J})$	0.1337	0.1064	0.0907	0.0750	0.0593
Entries	28311	21607	16358	9541	1845

Table 6: Selection 1. $\Delta \phi_{(Z, \text{jet})} = 180^\circ \pm 15^\circ$. LUCELL algorithm.

$P_{t\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	9317	7047	5255	2991	566
P_{t56}	20.0	16.6	14.1	11.4	8.0
$\Delta \phi$	4.8	4.1	3.5	2.7	2.0
$P_{t\text{out}}$	15.5	12.7	10.6	8.1	5.6
$P_{t\eta>5}$					
$(P_t^Z - P_{t\text{part}})/P_t^Z$	0.0265	0.0172	0.0115	0.0082	0.0005
$(P_t^J - P_{t\text{part}})/P_t^J$	-0.0181	-0.0128	-0.0097	-0.0058	-0.0072
$(P_t^Z - P_t^J)/P_t^Z$	0.0370	0.0244	0.0166	0.0100	0.0500
$P_t(O+\eta>5)/P_t^Z$	0.0260	0.0152	0.0087	0.0038	0.0010
$1 - \cos(\Delta \phi)$	0.0057	0.0043	0.0032	0.0020	0.0011
$\sigma(Db_{Z,J})$	0.1349	0.1087	0.0927	0.0766	0.0604
Entries	26920	20362	15184	8643	1636
Table 7: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. UA1 algorithm.

$P_{T_{\text{clust}}}$	30	20	15	10	5
Nevent	7979	6323	4882	2897	581
$P_{T_{56}}$	18.7	15.7	13.7	11.4	8.4
$\Delta \phi$	3.8	3.5	3.1	2.6	2.0
$P_{T_{\text{out}}}$	14.0	11.7	10.0	7.9	5.6
$P_{T_{\eta>5}}$	5.6	5.5	5.4	5.3	4.9
$(P_{T_{Z}} - P_{T_{\text{part}}}) / P_{T_{Z}}$	0.0233	0.0155	0.0114	0.0098	0.0049
$(P_{T_{J}} - P_{T_{\text{part}}}) / P_{T_{J}}$	-0.0126	-0.0072	-0.0032	0.0007	-0.0014
$(P_{T_{Z}} - P_{T_{J}}) / P_{T_{Z}}$	0.0288	0.0175	0.0103	0.0055	0.0037
$P_{T}(O+\eta>5) / P_{T_{Z}}$	0.0204	0.0099	0.0034	-0.0004	-0.0001
$1 - \cos(\Delta \phi)$	0.0033	0.0029	0.0024	0.0017	0.0010
$\sigma(Db[Z, J])$	0.1332	0.1061	0.0901	0.0742	0.0591
Entries	23056	18271	14105	8371	1679

Table 8: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. UA2 algorithm.

$P_{T_{\text{clust}}}$	30	20	15	10	5
Nevent	8590	6952	5449	3256	634
$P_{T_{56}}$	19.1	16.4	14.5	12.3	9.3
$\Delta \phi$	3.8	3.5	3.1	2.6	2.0
$P_{T_{\text{out}}}$	13.8	11.7	10.1	8.1	5.8
$P_{T_{\eta>5}}$	5.6	5.5	5.4	5.3	4.8
$(P_{T_{Z}} - P_{T_{\text{part}}}) / P_{T_{Z}}$	0.0250	0.0199	0.0165	0.0157	0.0116
$(P_{T_{J}} - P_{T_{\text{part}}}) / P_{T_{J}}$	-0.0140	-0.0101	-0.0080	-0.0050	-0.0042
$(P_{T_{Z}} - P_{T_{J}}) / P_{T_{Z}}$	0.0319	0.0243	0.0198	0.0164	0.0135
$P_{T}(O+\eta>5) / P_{T_{Z}}$	0.0235	0.0168	0.0129	0.0106	0.0097
$1 - \cos(\Delta \phi)$	0.0033	0.0028	0.0024	0.0017	0.0010
$\sigma(Db[Z, J])$	0.1290	0.1044	0.0894	0.0742	0.0574
Entries	24819	20086	15744	9407	1832

Table 9: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. LUCCELL algorithm.

$P_{T_{\text{clust}}}$	30	20	15	10	5
Nevent	8188	6546	5051	2951	563
$P_{T_{56}}$	18.5	15.7	13.6	11.2	7.9
$\Delta \phi$	3.8	3.5	3.2	2.6	2.0
$P_{T_{\text{out}}}$	14.0	11.8	10.1	8.0	5.6
$P_{T_{\eta>5}}$	5.6	5.5	5.4	5.3	4.9
$(P_{T_{Z}} - P_{T_{\text{part}}}) / P_{T_{Z}}$	0.0229	0.0155	0.0103	0.0079	0.0007
$(P_{T_{J}} - P_{T_{\text{part}}}) / P_{T_{J}}$	-0.0163	-0.0123	-0.0096	-0.0058	-0.0072
$(P_{T_{Z}} - P_{T_{J}}) / P_{T_{Z}}$	0.0324	0.0224	0.0152	0.0096	0.0052
$P_{T}(O+\eta>5) / P_{T_{Z}}$	0.0240	0.0148	0.0082	0.0037	0.0012
$1 - \cos(\Delta \phi)$	0.0033	0.0029	0.0024	0.0017	0.0010
$\sigma(Db[Z, J])$	0.1308	0.1069	0.0915	0.0760	0.0601
Entries	23659	18915	14593	8528	1628
$P_{T\text{clust}}^{\text{CUT}}$	30	20	15	10	5
--------------------------	-----	-----	-----	-----	-----
Nevent	5491	4657	3850	2514	546
P_{t56}	16.4	14.0	12.4	10.6	8.0
$\Delta \phi$	2.2	2.2	2.1	2.0	1.7
$P_{t\text{tot}}$	11.7	9.9	8.7	7.3	5.4
$P_{t\eta>5}$	5.5	5.3	5.2	5.1	4.7
$(P_{tZ} - P_{t\text{part}})/P_{tZ}$	0.0203	0.0141	0.0108	0.0090	0.0055
$(P_{tJ} - P_{t\text{part}})/P_{tJ}$	-0.0090	-0.0049	-0.0017	-0.0007	-0.0005
$(P_{tZ} - P_{tJ})/P_{tZ}$	0.0229	0.0141	0.0086	0.0047	0.0038
$P_{t}(O+\eta>5)/P_{tZ}$	0.0172	0.0087	0.0035	-0.0001	-0.0005
$1 - \cos(\Delta \phi)$	0.0011	0.0010	0.0010	0.0009	0.0007
$\sigma(DB[Z,J])$	0.1248	0.1018	0.0869	0.0724	0.0561
Entries	15866	13457	11125	7263	1579

$P_{T\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	5935	5124	4285	2822	597
P_{t56}	16.7	14.7	13.2	11.5	9.0
$\Delta \phi$	2.2	2.2	2.1	2.0	1.7
$P_{t\text{tot}}$	11.5	9.9	8.8	7.4	5.6
$P_{t\eta>5}$	5.4	5.3	5.2	5.1	4.6
$(P_{tZ} - P_{t\text{part}})/P_{tZ}$	0.0224	0.0185	0.0162	0.0150	0.0127
$(P_{tJ} - P_{t\text{part}})/P_{tJ}$	-0.0108	-0.0080	-0.0060	-0.0044	-0.0029
$(P_{tZ} - P_{tJ})/P_{tZ}$	0.0271	0.0215	0.0180	0.0155	0.0137
$P_{t}(O+\eta>5)/P_{tZ}$	0.0213	0.0162	0.0131	0.0110	0.0104
$1 - \cos(\Delta \phi)$	0.0011	0.0010	0.0010	0.0009	0.0007
$\sigma(DB[Z,J])$	0.1205	0.0999	0.0856	0.0723	0.0545
Entries	17150	14806	12380	8153	1726

$P_{T\text{clust}}^{\text{CUT}}$	30	20	15	10	5
Nevent	5621	4788	3958	2556	531
P_{t56}	16.2	13.9	12.2	10.3	7.5
$\Delta \phi$	2.2	2.2	2.1	2.0	1.7
$P_{t\text{tot}}$	11.6	10.0	8.8	7.3	5.4
$P_{t\eta>5}$	5.5	5.4	5.2	5.1	4.7
$(P_{tZ} - P_{t\text{part}})/P_{tZ}$	0.0195	0.0137	0.0094	0.0067	0.0013
$(P_{tJ} - P_{t\text{part}})/P_{tJ}$	-0.0136	-0.0101	-0.0082	-0.0059	-0.0061
$(P_{tZ} - P_{tJ})/P_{tZ}$	0.0268	0.0187	0.0132	0.0086	0.0051
$P_{t}(O+\eta>5)/P_{tZ}$	0.0211	0.0134	0.0081	0.0037	0.0018
$1 - \cos(\Delta \phi)$	0.0011	0.0010	0.0010	0.0009	0.0007
$\sigma(DB[Z,J])$	0.1228	0.1023	0.0880	0.0738	0.0565
Entries	16241	13834	11437	7385	1534
Table 13: Selection 2. $\Delta \phi_{(Z, jet)} = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 4\%$. UA1 algorithm.

$P_{T \text{Clu}}$	30	20	15	10	5
Nevent	5599	4453	3499	2187	493
P_{T56}	18.3	15.2	13.1	10.8	8.0
$\Delta \phi$	4.6	3.9	3.3	2.7	2.0
$P_{T \text{jet}}$	14.2	11.7	9.9	7.8	5.5
$P_{T \text{jet}}^{\eta>5}$	5.5	5.4	5.3	5.2	5.0
$(P_{TZ}^{\phi} - P_{T \text{jet}}^{\phi})/P_{TZ}$	-0.0041	-0.0034	-0.0037	-0.0009	-0.0021
$(P_{TJ}^{\phi} - P_{T \text{jet}}^{\phi})/P_{TJ}$	-0.0037	-0.0026	-0.0017	0.0001	-0.0044
$(P_{TZ} - P_{T \text{jet}}^{\phi})/P_{TZ}$	-0.0038	-0.0035	-0.0045	-0.0029	0.0000
$P_{T}(O+\eta>5)/P_{TZ}$	-0.0130	-0.0109	-0.0105	-0.0076	-0.0037
$1 - \cos(\Delta \phi)$	0.0053	0.0039	0.0029	0.0019	0.0011
$\sigma(Db(Z,J))$	0.1206	0.0963	0.0822	0.0668	0.0575
Entries	16173	12867	10110	6319	1424

Table 14: Selection 2. $\Delta \phi_{(Z, jet)} = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 4\%$. UA2 algorithm.

$P_{T \text{Clu}}$	30	20	15	10	5
Nevent	5859	4677	3664	2290	502
P_{T56}	18.3	15.3	13.2	11.0	8.3
$\Delta \phi$	4.6	3.9	3.3	2.7	2.0
$P_{T \text{jet}}$	14.2	11.7	10.0	7.9	5.6
$P_{T \text{jet}}^{\eta>5}$	5.5	5.4	5.3	5.2	4.9
$(P_{TZ}^{\phi} - P_{T \text{jet}}^{\phi})/P_{TZ}$	-0.0053	-0.0035	-0.0032	0.0000	0.0001
$(P_{TJ}^{\phi} - P_{T \text{jet}}^{\phi})/P_{TJ}$	-0.0155	-0.0143	-0.0131	-0.0110	-0.0126
$(P_{TZ} - P_{T \text{jet}}^{\phi})/P_{TZ}$	0.0067	0.0079	0.0074	0.0090	0.0108
$P_{T}(O+\eta>5)/P_{TZ}$	-0.0024	0.0006	0.0016	0.0044	0.0073
$1 - \cos(\Delta \phi)$	0.0053	0.0039	0.0029	0.0019	0.0012
$\sigma(Db(Z,J))$	0.1181	0.0959	0.0817	0.0672	0.0567
Entries	16928	13513	10586	6617	1450

Table 15: Selection 2. $\Delta \phi_{(Z, jet)} = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 4\%$. LUCELL algorithm.

$P_{T \text{Clu}}$	30	20	15	10	5
Nevent	5639	4525	3554	2205	493
P_{T56}	17.9	15.0	12.9	10.5	7.8
$\Delta \phi$	4.6	3.9	3.3	2.7	2.0
$P_{T \text{jet}}$	14.1	11.7	10.0	7.8	5.5
$P_{T \text{jet}}^{\eta>5}$	5.5	5.4	5.3	5.2	4.9
$(P_{TZ}^{\phi} - P_{T \text{jet}}^{\phi})/P_{TZ}$	-0.0046	-0.0045	-0.0051	-0.0029	-0.0040
$(P_{TJ}^{\phi} - P_{T \text{jet}}^{\phi})/P_{TJ}$	-0.0083	-0.0072	-0.0065	-0.0043	-0.0073
$(P_{TZ} - P_{T \text{jet}}^{\phi})/P_{TZ}$	0.0004	-0.0001	-0.0011	-0.0005	0.0010
$P_{T}(O+\eta>5)/P_{TZ}$	-0.0088	-0.0075	-0.0072	-0.0053	-0.0026
$1 - \cos(\Delta \phi)$	0.0052	0.0039	0.0029	0.0019	0.0011
$\sigma(Db(Z,J))$	0.1189	0.0966	0.0830	0.0672	0.0572
Entries	16292	13074	10268	6371	1425
Table 16: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 4\%$. UA1 algorithm.

$P_{z, CUT}$	30	20	15	10	5
Nevent	4686	3785	2962	1846	400
$P_{z, 56}$	17.8	15.0	12.8	10.5	7.7
$\Delta \phi$	4.5	3.9	3.3	2.7	2.0
P_{rem}	13.9	11.7	9.9	7.8	5.5
$P_{z, \text{min}}^\phi$	5.5	5.4	5.3	5.2	4.9
$(P_{z} - P_{\text{part}})/P_{z}$	-0.0074	-0.0067	-0.0066	-0.0034	-0.0058
$(P_{T} - P_{\text{part}})/P_{T}$	-0.0048	-0.0042	-0.0034	-0.0023	-0.0061
$(P_{z} - P_{\text{part}})/P_{z}$	-0.0058	-0.0052	-0.0055	-0.0031	-0.0015
$P_{i}(O+\eta>5)/P_{z}$	-0.0149	-0.0125	-0.0115	-0.0079	-0.0049
$1 - \cos(\Delta \phi)$	0.0051	0.0038	0.0028	0.0019	0.0012
$\sigma(Db(Z, J))$	0.1169	0.0960	0.0815	0.0669	0.0553
Entries	13541	10935	8559	5333	1157

Table 17: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 4\%$. UA2 algorithm.

$P_{z, CUT}$	30	20	15	10	5
Nevent	4686	3785	2962	1846	400
$P_{z, 56}$	17.8	15.0	12.8	10.5	7.7
$\Delta \phi$	4.5	3.9	3.3	2.7	2.0
P_{rem}	13.9	11.7	9.9	7.8	5.5
$P_{z, \text{min}}^\phi$	5.5	5.4	5.3	5.2	4.9
$(P_{z} - P_{\text{part}})/P_{z}$	-0.0074	-0.0067	-0.0066	-0.0034	-0.0058
$(P_{T} - P_{\text{part}})/P_{T}$	-0.0048	-0.0042	-0.0034	-0.0023	-0.0061
$(P_{z} - P_{\text{part}})/P_{z}$	-0.0058	-0.0052	-0.0055	-0.0031	-0.0015
$P_{i}(O+\eta>5)/P_{z}$	-0.0149	-0.0125	-0.0115	-0.0079	-0.0049
$1 - \cos(\Delta \phi)$	0.0051	0.0038	0.0028	0.0019	0.0012
$\sigma(Db(Z, J))$	0.1171	0.0963	0.0820	0.0673	0.0555
Entries	13541	10935	8559	5333	1157

Table 18: Selection 3. $\Delta \phi(Z, jet) = 180^\circ \pm 15^\circ$, $\epsilon^{jet} < 4\%$. LUCELL algorithm.

$P_{z, CUT}$	30	20	15	10	5
Nevent	4686	3785	2962	1846	400
$P_{z, 56}$	17.8	15.0	12.8	10.5	7.7
$\Delta \phi$	4.5	3.9	3.3	2.7	2.0
P_{rem}	13.9	11.7	9.9	7.8	5.5
$P_{z, \text{min}}^\phi$	5.5	5.4	5.3	5.2	4.9
$(P_{z} - P_{\text{part}})/P_{z}$	-0.0074	-0.0067	-0.0066	-0.0034	-0.0058
$(P_{T} - P_{\text{part}})/P_{T}$	-0.0048	-0.0042	-0.0034	-0.0023	-0.0061
$(P_{z} - P_{\text{part}})/P_{z}$	-0.0058	-0.0052	-0.0055	-0.0031	-0.0015
$P_{i}(O+\eta>5)/P_{z}$	-0.0149	-0.0125	-0.0115	-0.0079	-0.0049
$1 - \cos(\Delta \phi)$	0.0051	0.0038	0.0028	0.0019	0.0012
$\sigma(Db(Z, J))$	0.1174	0.0964	0.0819	0.0672	0.0556
Entries	13541	10935	8559	5333	1157
Appendix 5

150 < P_T^Z < 200 GeV/c

Table 1: Selection 1. $\Delta \phi (Z, jet) = 180^\circ \pm 180^\circ$. UA1 algorithm.

P_T^{cut}	30	20	15	10	5
Nevent*	4103	2886	2104	1198	227
P_t	23.4	18.6	15.8	13.0	10.0
$\Delta \phi$	3.9	2.9	2.4	1.9	1.4
P_T^{out}	17.6	13.2	10.8	8.4	6.0
P_T^{out}	6.4	6.3	6.2	6.0	5.5
$\frac{(P_T^Z - P_T^{jet})}{P_T^Z}$	0.0186	0.0133	0.0112	0.0104	0.0067
$\frac{(P_T^Z - P_T^{jet})}{P_T^Z}$	-0.0081	-0.0036	-0.0009	0.0012	0.0018
$\sigma (D\phi	0.0214	0.0126	0.0085	0.0061	0.0028
$P_t(O+p>5)/P_T^Z$	0.0123	0.0058	0.0027	0.0014	-0.0011
$1 - \cos(\Delta \phi)$	0.0042	0.0024	0.0015	0.0009	0.0006
Entries	27490	19335	14096	8024	1518

Table 2: Selection 1. $\Delta \phi (Z, jet) = 180^\circ \pm 180^\circ$. UA2 algorithm.

P_T^{cut}	30	20	15	10	5
Nevent	4585	3309	2464	1421	259
P_t	24.2	19.7	17.1	14.3	11.3
$\Delta \phi$	3.8	2.9	2.4	1.9	1.4
P_T^{out}	17.1	13.1	10.8	8.5	6.0
P_T^{out}	6.4	6.2	6.2	6.0	5.4
$\frac{(P_T^Z - P_T^{jet})}{P_T^Z}$	0.0234	0.0186	0.0173	0.0156	0.0110
$\frac{(P_T^Z - P_T^{jet})}{P_T^Z}$	-0.0048	-0.0023	-0.0004	0.0004	0.0013
$\sigma (D\phi	0.0231	0.0168	0.0142	0.0121	0.0082
$P_t(O+p>5)/P_T^Z$	0.0142	0.0101	0.0085	0.0074	0.0048
$1 - \cos(\Delta \phi)$	0.0040	0.0023	0.0015	0.0009	0.0006
Entries	30179	22169	16509	9522	1732

Table 3: Selection 1. $\Delta \phi (Z, jet) = 180^\circ \pm 180^\circ$. LUCCELL algorithm.

P_T^{cut}	30	20	15	10	5
Nevent	4123	2966	2165	1205	214
P_t	22.8	18.4	15.6	12.5	9.4
$\Delta \phi$	3.8	2.9	2.4	1.9	1.4
P_T^{out}	17.3	13.4	11.0	8.5	6.0
P_T^{out}	6.4	6.3	6.2	6.0	5.6
$\frac{(P_T^Z - P_T^{jet})}{P_T^Z}$	0.0180	0.0125	0.0103	0.0081	0.0039
$\frac{(P_T^Z - P_T^{jet})}{P_T^Z}$	-0.0115	-0.0078	-0.0055	-0.0036	-0.0029
$\sigma (D\phi	0.0205	0.0161	0.0121	0.0087	0.0042
$P_t(O+p>5)/P_T^Z$	0.0153	0.0093	0.0064	0.0040	0.0001
$1 - \cos(\Delta \phi)$	0.0040	0.0024	0.0015	0.0009	0.0006
Entries	27621	19870	14502	8071	1431

* Number of events (Nevent) is given in this and in the following tables for integrated luminosity $L_{int} = 10 fb^{-1}$

** $D\phi[Z, J] \equiv (P_T^Z - P_T^J)/P_T^Z$
Table 4: Selection 1. $\Delta \phi_{(Z,\text{jet})} = 180^\circ \pm 15^\circ$. UA1 algorithm.

$P_{T_{\text{clust}}}^{\text{CUT}}$	30	20	15	10	5
Nevent	4052	2880	2103	1197	226
$P_{T,56}$	22.9	18.5	15.8	13.0	10.0
$\Delta \phi$	3.7	2.9	2.4	1.9	1.4
$P_{T_{\text{min}}}$	17.1	13.2	10.8	8.4	6.0
$P_{T_{\text{out}}}$	6.3	6.3	6.2	6.0	5.4
$(P_{T_{Z}} - P_{T_{\text{part}}})/P_{T_{Z}}$	0.0178	0.0131	0.0111	0.0104	0.0067
$(P_{T_{J}} - P_{T_{\text{part}}})/P_{T_{J}}$	-0.0078	-0.0036	-0.0009	0.0012	0.0018
$(P_{T_{Z}} - P_{T_{J}})/P_{T_{Z}}$	0.0204	0.0124	0.0085	0.0061	0.0028
$P_{T}(O+\eta>5)/P_{T_{Z}}$	0.0120	0.0057	0.0027	0.0014	-0.0010
$1 - \cos(\Delta \phi)$	0.0036	0.0022	0.0015	0.0009	0.0005
$\sigma(\Delta \phi)$	0.0976	0.0787	0.0683	0.0586	0.0465
Entries	27148	19298	14089	8022	1517

Table 5: Selection 1. $\Delta \phi_{(Z,\text{jet})} = 180^\circ \pm 10^\circ$. UA2 algorithm.

$P_{T_{\text{clust}}}^{\text{CUT}}$	30	20	15	10	5
Nevent	4534	3303	2463	1421	258
$P_{T,56}$	23.8	19.6	17.1	14.3	11.2
$\Delta \phi$	3.6	2.9	2.4	1.9	1.4
$P_{T_{\text{min}}}$	16.7	13.1	10.8	8.5	6.0
$P_{T_{\text{out}}}$	6.3	6.2	6.1	6.0	5.4
$(P_{T_{Z}} - P_{T_{\text{part}}})/P_{T_{Z}}$	0.0227	0.0185	0.0173	0.0156	0.0110
$(P_{T_{J}} - P_{T_{\text{part}}})/P_{T_{J}}$	-0.0044	-0.0023	-0.0005	0.0004	0.0013
$(P_{T_{Z}} - P_{T_{J}})/P_{T_{Z}}$	0.0222	0.0166	0.0142	0.0121	0.0083
$P_{T}(O+\eta>5)/P_{T_{Z}}$	0.0140	0.0101	0.0085	0.0074	0.0048
$1 - \cos(\Delta \phi)$	0.0035	0.0022	0.0015	0.0009	0.0005
$\sigma(\Delta \phi)$	0.0906	0.0787	0.0663	0.0580	0.0439
Entries	30379	22130	16501	9520	1731

Table 6: Selection 1. $\Delta \phi_{(Z,\text{jet})} = 180^\circ \pm 15^\circ$. LUCCELL algorithm.

$P_{T_{\text{clust}}}^{\text{CUT}}$	30	20	15	10	5
Nevent	4080	2960	2163	1204	213
$P_{T,56}$	22.5	18.3	15.6	12.5	9.4
$\Delta \phi$	3.6	2.9	2.4	1.9	1.4
$P_{T_{\text{min}}}$	16.9	13.3	11.0	8.5	6.0
$P_{T_{\text{out}}}$	6.3	6.3	6.2	6.0	5.5
$(P_{T_{Z}} - P_{T_{\text{part}}})/P_{T_{Z}}$	0.0175	0.0123	0.0102	0.0081	0.0039
$(P_{T_{J}} - P_{T_{\text{part}}})/P_{T_{J}}$	-0.0110	-0.0078	-0.0055	-0.0036	-0.0029
$(P_{T_{Z}} - P_{T_{J}})/P_{T_{Z}}$	0.0233	0.0159	0.0121	0.0087	0.0043
$P_{T}(O+\eta>5)/P_{T_{Z}}$	0.0152	0.0093	0.0064	0.0041	0.0002
$1 - \cos(\Delta \phi)$	0.0035	0.0022	0.0015	0.0009	0.0005
$\sigma(\Delta \phi)$	0.0963	0.0788	0.0689	0.0585	0.0478
Entries	27334	19833	14494	8069	1430
Table 7: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. UA1 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	3842	2831	2091	1195	226
P_{56}	21.9	18.2	15.7	12.9	10.0
$\Delta \phi$	3.2	2.7	2.3	1.9	1.4
$P_{\text{tot}}^{\text{cut}}$	16.0	12.8	10.7	8.4	6.0
$P_{\text{out}}^{\text{cut}}$	6.3	6.2	6.2	6.0	5.4
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0165	0.0127	0.0110	0.0103	0.0068
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0074	-0.0034	-0.0008	0.0014	0.0019
$(P_{Z} - P_{J})/P_{Z}$	0.0188	0.0119	0.0083	0.0060	0.0028
$P_{(O+\eta>5)}/P_{Z}$	0.0114	0.0056	0.0026	0.0013	-0.0010
$1 - \cos(\Delta \phi)$	0.0026	0.0019	0.0014	0.0009	0.0005
$\sigma(Db[Z, J])$	0.0959	0.0782	0.0680	0.0583	0.0465
Entries	25739	18965	14012	8009	1515

Table 8: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. UA2 algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	4308	3245	2449	1418	258
P_{56}	22.8	19.3	17.0	14.2	11.2
$\Delta \phi$	3.2	2.7	2.3	1.9	1.4
$P_{\text{tot}}^{\text{cut}}$	15.7	12.7	10.7	8.5	6.1
$P_{\text{out}}^{\text{cut}}$	6.3	6.2	6.1	5.9	5.3
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0214	0.0180	0.0171	0.0156	0.0111
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0042	-0.0021	-0.0004	0.0005	0.0013
$(P_{Z} - P_{J})/P_{Z}$	0.0207	0.0160	0.0139	0.0119	0.0083
$P_{(O+\eta>5)}/P_{Z}$	0.0136	0.0099	0.0084	0.0073	0.0049
$1 - \cos(\Delta \phi)$	0.0025	0.0019	0.0014	0.0009	0.0005
$\sigma(Db[Z, J])$	0.0930	0.0763	0.0670	0.0577	0.0439
Entries	28861	21739	16409	9500	1727

Table 9: Selection 1. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 10^\circ$. LUCELL algorithm.

$P_{\text{clust}}^{\text{cut}}$	30	20	15	10	5
Nevent	3884	2907	2152	1202	213
P_{56}	21.5	17.9	15.5	12.5	9.4
$\Delta \phi$	3.2	2.8	2.4	1.9	1.4
$P_{\text{tot}}^{\text{cut}}$	15.9	12.9	10.9	8.5	6.0
$P_{\text{out}}^{\text{cut}}$	6.3	6.2	6.1	6.0	5.5
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0161	0.0117	0.0100	0.0080	0.0039
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0109	-0.0077	-0.0055	-0.0036	-0.0029
$(P_{Z} - P_{J})/P_{Z}$	0.0220	0.0153	0.0119	0.0086	0.0043
$P_{(O+\eta>5)}/P_{Z}$	0.0148	0.0091	0.0063	0.0040	0.0002
$1 - \cos(\Delta \phi)$	0.0025	0.0019	0.0014	0.0009	0.0005
$\sigma(Db[Z, J])$	0.0948	0.0783	0.0687	0.0584	0.0478
Entries	26020	19473	14415	8056	1428
Table 10: Selection 1. $\Delta \phi(Z, jet) = 180^\circ \pm 5^\circ$. UA1 algorithm.

$P_t^{clust\, CUT}$	30	20	15	10	5
Nevent	2937	2388	1884	1143	223
P_t^{56}	19.3	16.6	14.7	12.5	9.8
$\Delta \phi$	2.1	2.0	1.9	1.7	1.3
P_t^{min}	13.2	11.2	9.8	8.1	6.0
$P_t^{q+\bar{q}}$	6.2	6.1	6.0	5.8	5.2
$(P_t^Z - P_t^{part})/P_t^Z$	0.0148	0.0118	0.0102	0.0098	0.0064
$(P_t^J - P_t^{part})/P_t^J$	-0.0052	-0.0021	-0.0004	0.0012	0.0020
$(P_t^Z - P_t^J)/P_t^Z$	0.0152	0.0101	0.0072	0.0056	0.0023
$P_t(O + \eta>5)/P_t^Z$	0.0096	0.0049	0.0022	0.0012	-0.0012
$1 - \cos(\Delta \phi)$	0.0010	0.0009	0.0008	0.0007	0.0004
$\sigma(Db[Z, J])$	0.0909	0.0754	0.0665	0.0577	0.0448
Entries	19676	15996	12622	7657	1495

Table 11: Selection 1. $\Delta \phi(Z, jet) = 180^\circ \pm 5^\circ$. UA2 algorithm.

$P_t^{clust\, CUT}$	30	20	15	10	5
Nevent	3317	2740	2204	1357	254
P_t^{56}	20.3	17.7	16.1	13.8	11.1
$\Delta \phi$	2.1	2.0	1.9	1.7	1.3
P_t^{min}	13.0	11.1	9.8	8.2	6.0
$P_t^{q+\bar{q}}$	6.1	6.0	6.0	5.8	5.1
$(P_t^Z - P_t^{part})/P_t^Z$	0.0196	0.0172	0.0165	0.0153	0.0113
$(P_t^J - P_t^{part})/P_t^J$	-0.0026	-0.0008	0.0006	0.0009	0.0022
$(P_t^Z - P_t^J)/P_t^Z$	0.0177	0.0141	0.0126	0.0115	0.0080
$P_t(O + \eta>5)/P_t^Z$	0.0123	0.0092	0.0078	0.0072	0.0049
$1 - \cos(\Delta \phi)$	0.0009	0.0009	0.0008	0.0007	0.0004
$\sigma(Db[Z, J])$	0.0883	0.0735	0.0665	0.0577	0.0416
Entries	22222	18359	14764	9089	1705

Table 12: Selection 1. $\Delta \phi(Z, jet) = 180^\circ \pm 5^\circ$. UA2 algorithm.

$P_t^{clust\, CUT}$	30	20	15	10	5
Nevent	2984	2443	1931	1149	210
P_t^{56}	19.0	16.3	14.5	12.1	9.2
$\Delta \phi$	2.1	2.0	1.9	1.7	1.3
P_t^{min}	13.2	11.3	9.9	8.2	6.0
$P_t^{q+\bar{q}}$	6.2	6.1	6.0	5.8	5.3
$(P_t^Z - P_t^{part})/P_t^Z$	0.0141	0.0106	0.0093	0.0076	0.0040
$(P_t^J - P_t^{part})/P_t^J$	-0.0091	-0.0065	-0.0049	-0.0036	-0.0025
$(P_t^Z - P_t^J)/P_t^Z$	0.0185	0.0133	0.0107	0.0082	0.0041
$P_t(O + \eta>5)/P_t^Z$	0.0130	0.0083	0.0057	0.0039	0.0002
$1 - \cos(\Delta \phi)$	0.0010	0.0009	0.0008	0.0007	0.0004
$\sigma(Db[Z, J])$	0.0902	0.0754	0.0672	0.0576	0.0467
Entries	19995	16364	12936	7700	1409
Table 13: Selection 2. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 15^\circ$, $\epsilon^{\text{jet}} < 3\%$. UA1 algorithm.

P_{T}^{clus}	30	20	15	10	5
Nevent	3193	2403	1835	1093	217
P_{T}^{56}	21.4	17.5	15.0	12.3	9.6
$\Delta \phi$	3.5	2.8	2.3	1.9	1.4
P_{T}^{clus}	16.0	12.6	10.5	8.3	5.9
$P_{T}^{n>\ell}$	6.1	6.1	6.0	5.9	5.3
$(P_{T}^{Z} - P_{T}^{\text{partj}})/P_{T}^{Z}$	0.0049	0.0051	0.0052	0.0058	0.0044
$(P_{T}^{J} - P_{T}^{\text{partj}})/P_{T}^{J}$	-0.0015	-0.0006	0.0000	0.0005	0.0028
$(P_{T}^{Z} - P_{T}^{J})/P_{T}^{Z}$	0.0035	0.0029	0.0028	0.0032	0.0009
$P_{T}(O+\eta>5)/P_{T}^{Z}$	-0.0035	-0.0028	-0.0021	-0.0009	-0.0020
$1 - \cos(\Delta \phi)$	0.0033	0.0021	0.0014	0.0009	0.0005
$\sigma(Db(Z, J))$	0.0870	0.0714	0.0625	0.0539	0.0390
Entries	21392	16101	12291	7321	1457

Table 14: Selection 2. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 15^\circ$, $\epsilon^{\text{jet}} < 3\%$. UA2 algorithm.

P_{T}^{clus}	30	20	15	10	5
Nevent	3458	2605	2000	1198	229
P_{T}^{56}	21.4	17.6	15.2	12.5	9.8
$\Delta \phi$	3.5	2.8	2.3	1.9	1.4
P_{T}^{clus}	15.9	12.6	10.5	8.4	6.0
$P_{T}^{n>\ell}$	6.1	6.1	6.0	5.9	5.4
$(P_{T}^{Z} - P_{T}^{\text{partj}})/P_{T}^{Z}$	0.0055	0.0053	0.0059	0.0064	0.0046
$(P_{T}^{J} - P_{T}^{\text{partj}})/P_{T}^{J}$	-0.0089	-0.0082	-0.0071	-0.0066	-0.0046
$(P_{T}^{Z} - P_{T}^{J})/P_{T}^{Z}$	0.0111	0.0103	0.0102	0.0105	0.0080
$P_{T}(O+\eta>5)/P_{T}^{Z}$	0.0040	0.0046	0.0052	0.0062	0.0046
$1 - \cos(\Delta \phi)$	0.0033	0.0021	0.0014	0.0009	0.0006
$\sigma(Db(Z, J))$	0.0869	0.0721	0.0633	0.0548	0.0428
Entries	23169	17455	13397	8023	1537

Table 15: Selection 2. $\Delta \phi(Z, \text{jet}) = 180^\circ \pm 15^\circ$, $\epsilon^{\text{jet}} < 3\%$. LUCCELL algorithm.

P_{T}^{clus}	30	20	15	10	5
Nevent	3184	2429	1851	1095	209
P_{T}^{56}	20.9	17.3	14.8	12.1	9.3
$\Delta \phi$	3.5	2.8	2.4	1.9	1.4
P_{T}^{clus}	15.8	12.7	10.6	8.4	6.0
$P_{T}^{n>\ell}$	6.1	6.1	6.0	5.9	5.4
$(P_{T}^{Z} - P_{T}^{\text{partj}})/P_{T}^{Z}$	0.0040	0.0039	0.0041	0.0049	0.0033
$(P_{T}^{J} - P_{T}^{\text{partj}})/P_{T}^{J}$	-0.0056	-0.0047	-0.0037	-0.0023	-0.0004
$(P_{T}^{Z} - P_{T}^{J})/P_{T}^{Z}$	0.0068	0.0059	0.0053	0.0052	0.0027
$P_{T}(O+\eta>5)/P_{T}^{Z}$	0.0000	0.0002	0.0004	0.0012	-0.0007
$1 - \cos(\Delta \phi)$	0.0032	0.0021	0.0014	0.0009	0.0005
$\sigma(Db(Z, J))$	0.0863	0.0720	0.0631	0.0536	0.0410
Entries	21330	16275	12399	7339	1400
Table 16: Selection 3, $\Delta\phi_{(Z,\text{jet})} = 180^\circ \pm 15^\circ$, $\epsilon_{\text{jet}} < 3\%$. UA1 algorithm.

$P_{\text{clus}}^{\text{clust}}$	30	20	15	10	5
Nevent	2770	2119	1616	957	179
P_{56}	20.6	17.1	14.6	11.9	9.3
$\Delta\phi$	3.4	2.8	2.3	1.9	1.4
$P_{1 \text{jet}}^{\text{clust}}$	15.6	12.5	10.5	8.3	6.0
$P_{1 \text{jet}}^{\text{pass}}$	6.1	6.1	6.0	5.9	5.4
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0024	0.0027	0.0031	0.0038	0.0029
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0032	-0.0028	-0.0018	-0.0011	0.0007
$(P_{Z} - P_{\text{jet}})/P_{Z}$	0.0027	0.0026	0.0024	0.0028	0.0013
$P_{1}(O+\eta>5)/P_{Z}$	-0.0042	-0.0031	-0.0025	-0.0012	-0.0021
$1 - \cos(\Delta\phi)$	0.0032	0.0021	0.0014	0.0009	0.0005
$\sigma(DB(Z,J))$	0.0848	0.0712	0.0626	0.0536	0.0406
Entries	18559	14199	10824	6409	1200

Table 17: Selection 3, $\Delta\phi_{(Z,\text{jet})} = 180^\circ \pm 15^\circ$, $\epsilon_{\text{jet}} < 3\%$. UA2 algorithm.

$P_{\text{clus}}^{\text{clust}}$	30	20	15	10	5
Nevent	2770	2119	1616	957	179
P_{56}	20.6	17.1	14.6	11.9	9.3
$\Delta\phi$	3.4	2.8	2.3	1.9	1.4
$P_{1 \text{jet}}^{\text{clust}}$	15.6	12.5	10.5	8.3	6.1
$P_{1 \text{jet}}^{\text{pass}}$	6.1	6.1	6.0	5.9	5.4
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0024	0.0027	0.0031	0.0038	0.0029
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0110	-0.0104	-0.0094	-0.0086	-0.0059
$(P_{Z} - P_{\text{jet}})/P_{Z}$	0.0101	0.0100	0.0098	0.0102	0.0078
$P_{1}(O+\eta>5)/P_{Z}$	0.0033	0.0043	0.0048	0.0061	0.0044
$1 - \cos(\Delta\phi)$	0.0032	0.0021	0.0014	0.0009	0.0005
$\sigma(DB(Z,J))$	0.0851	0.0714	0.0628	0.0538	0.0408
Entries	18559	14199	10824	6409	1200

Table 18: Selection 3, $\Delta\phi_{(Z,\text{jet})} = 180^\circ \pm 15^\circ$, $\epsilon_{\text{jet}} < 3\%$. LUCELL algorithm.

$P_{\text{clus}}^{\text{clust}}$	30	20	15	10	5
Nevent	2770	2119	1616	957	179
P_{56}	20.6	17.1	14.6	11.9	9.3
$\Delta\phi$	3.5	2.8	2.3	1.9	1.4
$P_{1 \text{jet}}^{\text{clust}}$	15.7	12.6	10.5	8.4	6.0
$P_{1 \text{jet}}^{\text{pass}}$	6.1	6.1	6.0	5.9	5.4
$(P_{Z} - P_{\text{part}})/P_{Z}$	0.0024	0.0027	0.0031	0.0038	0.0029
$(P_{J} - P_{\text{part}})/P_{J}$	-0.0061	-0.0052	-0.0040	-0.0031	-0.0006
$(P_{Z} - P_{\text{jet}})/P_{Z}$	0.0055	0.0050	0.0047	0.0048	0.0027
$P_{1}(O+\eta>5)/P_{Z}$	-0.0014	-0.0007	-0.0003	0.0007	-0.0007
$1 - \cos(\Delta\phi)$	0.0032	0.0021	0.0014	0.0009	0.0005
$\sigma(DB(Z,J))$	0.0853	0.0714	0.0628	0.0539	0.0408
Entries	18559	14199	10824	6409	1200
Appendix 6

\[40 \leq P_t^Z \leq 70 \text{ GeV/c} \]

Table 1: Number of events per \(L_{\text{int}} = 10 \text{ fb}^{-1} \).

\(P_t^{\text{clust}} \) (GeV/c)	5	10	15	20	30	1000
5	9700	17700	19200	19300	19300	19300
10	30700	69600	87300	91700	92400	92400
15	37700	92600	127400	141500	146600	146900
20	40000	100900	145400	167700	179200	180300
30	41400	106600	157600	187100	208900	213100

Table 2: \(\langle F \rangle, F = (P_t^Z - P_t^{\text{jet}})/P_t^Z \).

\(P_t^{\text{clust}} \) (GeV/c)	5	10	15	20	30	1000
5	0.014	0.015	0.016	0.016	0.016	0.016
10	0.013	0.018	0.023	0.024	0.024	0.024
15	0.014	0.021	0.029	0.033	0.034	0.034
20	0.014	0.022	0.033	0.038	0.041	0.041
30	0.014	0.023	0.034	0.042	0.047	0.049

Table 3: \(\sigma(F), F = (P_t^Z - P_t^{\text{jet}})/P_t^Z \).

\(P_t^{\text{clust}} \) (GeV/c)	5	10	15	20	30	1000
5	0.079	0.088	0.093	0.094	0.095	0.095
10	0.085	0.103	0.115	0.121	0.124	0.124
15	0.086	0.107	0.126	0.140	0.150	0.151
20	0.088	0.109	0.131	0.151	0.168	0.173
30	0.088	0.110	0.134	0.158	0.187	0.200
$70 \leq P_t^Z \leq 100 \text{ GeV/c}$

Table 4: Number of events per $L_{\text{int}} = 10 \text{ fb}^{-1}$.

$P_{t\text{max}}$ (GeV/c)	5	10	15	20	30	1000
5	2500	4500	4900	5000	5000	5000
10	7600	18100	23000	24800	25200	25200
15	9500	24700	35000	40700	43900	44000
20	10100	27000	40300	50000	57900	59200
30	10600	28700	44500	57900	73200	79200

Table 5: $\langle F \rangle$, $F = (P_t^Z - P_t^{jet})/P_t^Z$.

$P_{t\text{max}}$ (GeV/c)	5	10	15	20	30	1000
5	0.011	0.012	0.012	0.012	0.013	0.013
10	0.012	0.013	0.015	0.018	0.018	0.018
15	0.013	0.015	0.019	0.024	0.028	0.029
20	0.014	0.016	0.021	0.028	0.038	0.043
30	0.014	0.017	0.023	0.033	0.050	0.066

Table 6: $\sigma(F)$, $F = (P_t^Z - P_t^{jet})/P_t^Z$.

$P_{t\text{max}}$ (GeV/c)	5	10	15	20	30	1000
5	0.069	0.070	0.074	0.075	0.077	0.077
10	0.071	0.078	0.088	0.093	0.095	0.096
15	0.071	0.082	0.094	0.105	0.116	0.118
20	0.072	0.083	0.097	0.111	0.131	0.141
30	0.073	0.084	0.100	0.118	0.149	0.178
$100 \leq P_t^Z \leq 140 \text{ GeV/c}$

Table 7: Number of events per $L_{int} = 10\ f_{b^{-1}}$.

$P_{t_{\text{max}}}^{\text{clust}}$ (GeV/c)	5	10	15	20	30	1000
5	930	1710	1890	1920	1920	1920
10	3000	6860	9010	9660	9910	9930
15	3660	9320	13750	16110	17700	17910
20	3880	10320	15950	19880	23600	24330
30	4050	10970	17470	22910	30640	34110

Table 8: $\langle F \rangle$, $F = (P_t^Z - P_t^{jet})/P_t^Z$.

$P_{t_{\text{max}}}^{\text{clust}}$ (GeV/c)	5	10	15	20	30	1000
5	0.007	0.006	0.009	0.008	0.008	0.008
10	0.005	0.012	0.014	0.014	0.015	0.015
15	0.005	0.011	0.015	0.017	0.018	0.019
20	0.006	0.012	0.017	0.019	0.024	0.026
30	0.005	0.013	0.017	0.022	0.033	0.036

Table 9: $\sigma(F)$, $F = (P_t^Z - P_t^{jet})/P_t^Z$.

$P_{t_{\text{max}}}^{\text{clust}}$ (GeV/c)	5	10	15	20	30	1000
5	0.046	0.045	0.050	0.051	0.050	0.050
10	0.054	0.066	0.075	0.076	0.080	0.080
15	0.054	0.068	0.079	0.084	0.092	0.095
20	0.056	0.071	0.082	0.088	0.102	0.109
30	0.055	0.073	0.084	0.092	0.113	0.138
$40 \leq P_t^Z \leq 70$ GeV/c

$\epsilon^{jet} = 8\%$

Table 10: Number of events per $L_{int} = 10$ fb$^{-1}$.

$P_{t_{max}}^Z$ (GeV/c)	$P_{t_{max}}^{jet}$ (GeV/c)					
	5	10	15	20	30	1000
5	8200	14800	16000	16100	16100	16100
10	23200	50800	62200	64800	65100	65100
15	27400	64200	85300	93200	95700	95900
20	28700	68700	94800	106900	112600	113200
30	29300	71300	100700	116200	127200	129500

Table 11: $\langle F \rangle$, $F = (P_t^Z - P_t^{jet})/P_t^Z$.

$P_{t_{max}}^Z$ (GeV/c)	$P_{t_{max}}^{jet}$ (GeV/c)					
	5	10	15	20	30	1000
5	0.007	0.006	0.005	0.005	0.005	0.005
10	0.006	0.003	0.002	0.001	0.000	0.000
15	0.007	0.005	0.003	0.001	-0.002	-0.002
20	0.007	0.005	0.004	0.002	-0.003	-0.004
30	0.007	0.006	0.006	0.004	-0.003	-0.010

Table 12: $\sigma(F)$, $F = (P_t^Z - P_t^{jet})/P_t^Z$.

$P_{t_{max}}^Z$ (GeV/c)	$P_{t_{max}}^{jet}$ (GeV/c)					
	5	10	15	20	30	1000
5	0.077	0.086	0.091	0.091	0.092	0.092
10	0.080	0.096	0.108	0.114	0.116	0.116
15	0.082	0.101	0.119	0.132	0.141	0.142
20	0.083	0.103	0.124	0.141	0.158	0.162
30	0.084	0.104	0.127	0.148	0.178	0.192
\[70 \leq P_t^Z \leq 100 \text{ GeV/c} \]
\[\epsilon_{jet} = 5\%\]

Table 13: Number of events per \(L_{int} = 10 \text{ fb}^{-1}\).

\(P_{t_{clus \max}}\) (GeV/c)	\(5\)	\(10\)	\(15\)	\(20\)	\(30\)	\(1000\)
\(P_{t_{clus \max}}\) (GeV/c)						
5	2100	3700	4000	4100	4100	4100
10	5800	13200	16400	17400	17700	17700
15	7000	17000	23300	26600	28100	28200
20	7300	18200	26100	31400	35200	35600
30	7600	19100	28100	35300	42400	44300

Table 14: \(⟨F⟩\), \(F = (P_t^Z - P_t^{jet})/P_t^Z\).

\(P_{t_{clus \max}}\) (GeV/c)	\(5\)	\(10\)	\(15\)	\(20\)	\(30\)	\(1000\)
\(P_{t_{clus \max}}\) (GeV/c)						
5	0.010	0.009	0.008	0.008	0.007	0.007
10	0.010	0.005	0.004	0.004	0.003	0.003
15	0.009	0.006	0.005	0.005	0.003	0.003
20	0.009	0.006	0.006	0.006	0.006	0.006
30	0.009	0.007	0.007	0.009	0.011	0.009

Table 15: \(σ(F)\), \(F = (P_t^Z - P_t^{jet})/P_t^Z\).

\(P_{t_{clus \max}}\) (GeV/c)	\(5\)	\(10\)	\(15\)	\(20\)	\(30\)	\(1000\)
\(P_{t_{clus \max}}\) (GeV/c)						
5	0.074	0.070	0.073	0.073	0.074	0.074
10	0.069	0.075	0.083	0.087	0.090	0.090
15	0.069	0.077	0.088	0.097	0.106	0.107
20	0.068	0.077	0.090	0.102	0.119	0.124
30	0.069	0.077	0.092	0.108	0.136	0.155
\[100 \leq P_t^Z \leq 140 \text{ GeV/c} \]
\[\epsilon^{\text{jet}} = 5\% \]

Table 16: Number of events per \(L_{\text{int}} = 10 \text{ fb}^{-1} \).

\(P_t^{\text{clus max}} \) (GeV/c)	5	10	15	20	30	1000
5	910	1660	1810	1840	1850	1850
10	2730	6150	7870	8390	8590	8610
15	3220	8050	11460	13230	14380	14490
20	3370	8720	12900	15780	18300	18670
30	3490	9120	13910	17770	22860	24510

Table 17: \(\langle F \rangle, F = (P_t^Z - P_t^{\text{jet}})/P_t^Z \).

\(P_t^{\text{clus max}} \) (GeV/c)	5	10	15	20	30	1000
5	0.007	0.006	0.008	0.007	0.007	0.007
10	0.003	0.009	0.009	0.008	0.008	0.008
15	0.002	0.008	0.009	0.008	0.007	0.007
20	0.003	0.008	0.009	0.009	0.008	0.008
30	0.002	0.009	0.009	0.010	0.014	0.013

Table 18: \(\sigma(F), F = (P_t^Z - P_t^{\text{jet}})/P_t^Z \).

\(P_t^{\text{clus max}} \) (GeV/c)	5	10	15	20	30	1000
5	0.046	0.045	0.049	0.049	0.049	0.049
10	0.046	0.039	0.065	0.08	0.071	0.071
15	0.046	0.063	0.071	0.076	0.084	0.086
20	0.049	0.063	0.072	0.080	0.093	0.098
30	0.048	0.064	0.075	0.084	0.105	0.120