A review of the newly identified impurity profiles in methamphetamine seizures

Isaac Onoka a,*, Andrew Toyi Banyika a, Protibha Nath Banerjee a, John J. Makangara a, Laurence Dujourdy b

a Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O Box 259, Dodoma, Tanzania
b Agrosup Dijon, Department of Engineering and Process Science, Research Support Service Agrosup Dijon - DSIP - Bat. Longelles 26 bd Dr Petitjean, BP 87999 21079, Dijon Cedex, France

A R T I C L E I N F O

Article history:
Received 1 May 2020
Received in revised form 21 June 2020
Accepted 22 June 2020
Available online 24 June 2020

Keywords:
Methamphetamine
Impurity profiles
Stable isotopes
Synthetic route

A B S T R A C T

Forensic intelligence of synthetic illicit drugs suffers a problem of continuous introduction of new synthetic methods, modification of the existing routes of manufacture, and adulterations practiced by criminal networks. Impurity profiling has been indispensable in methamphetamine intelligence based on precursors, synthetic routes, and chemical modifications during trafficking. Law enforcement authorities maintain the credibility and integrity of intelligence information through constant monitoring of the chemical signatures in the illicit drug market.

Changes in the synthetic pattern result in new impurity profiles that are important in keeping valuable intelligence information on clandestine laboratories, new synthetic routes, trafficking patterns, and geographical sources of illicit Methamphetamine.

This review presents a critical analysis of the methamphetamine impurity profiles and more specifically, profiling based on impurity profiles from Leuckart, Reductive amination, Moscow, Emde, Nagai, Birch, Moscow route; a recent nitrostyrene route and stable isotope signatures. It also highlights the discrimination of ephedrine from pseudoephedrine sources and the emerging methamphetamine profiling based on stable isotopes.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Methamphetamine is a schedule II controlled substance according to the Single Convention on Narcotic drugs [1] and the United Nations Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances, 1988 [2]. It is highly addictive drug with a potent central nervous system (CNS) stimulant properties [3,4]. The United Nations Office on Drugs and Crime (UNODC) report MA as the most abused drugs worldwide [3,5,6]. For the last two decades, the use of MA has been increasing in many countries worldwide [3,6–10]. In Japan, about 15,000 drug arrests were from cases related to MA [11] accounting for 90% of all reported violations [12]. Previous studies have documented the prevalence of methamphetamine over other synthetic drugs elsewhere [13,14].

The impurity profiling of MA provides the linkage of illicit drug seizures based on the chemical signatures contained in the seized illicit drugs [15–17]. The method uses organic and inorganic impurities which are by-products of reactions in the final formulation of MA. It has successfully been used to establish intelligence information in France [18,19], Australia [20,21], Thailand [22,23], China [24], Philippines [25], Japan [22,26,27], USA [28], Spain [29], Korea [30,31] and in many other places worldwide [32–35]. Recently, the emerging complementary profiling method based on stable isotopes has drawn the interest of many researchers [36–38]; its details will be included in this review.

The chemical analysis of illegal drugs provides valuable information about the conspiracy links and trafficking routes, categorizing the seizures based on the signatures, thereby identifying their origins [39,40]. As a complementary law enforcement investigative work, it provides a background intelligence information concerning the number of sources of drugs, whether those sources are within a country or are internationally based and also unveiling the points of distribution and distribution networks. Similarly, the impurity profiles identifies the emergence of new clandestine laboratories and their associated synthetic methods, which, in turn,
provides background intelligence information [41]. Chemical profiling marks the principal purpose of the intelligence of illicit drugs by establishing a link between the clandestine laboratories, suppliers, and users. The chemical information obtained from a drug can indicate its synthetic method, adulterations during trafficking, and the operations of the criminal networks [42].

Generally, the fundamental role of a forensic chemist in drug profiling is to extract the chemical signatures that can be used to establish the degree of commonality of seizures with their origins or a specific group of other samples [6,43] as well as linking the signatures with the possible synthetic methods, conditions, and post-production modifications. A comprehensive examination and comparison of the chemical signatures has found a growing application strategically at the macro level [6] and tactically at the micro-level [35]. These advances have helped the police and criminal investigators at both national and global scales to establish the dynamics of illicit drug markets, locate the drug traffickers, establish conspiracies links between dealers and users [11,43,44].

In this decade, extensive number of research studies on the chemical profiling of MA and its derivatives are focusing on the determination of organic and inorganic impurities [19,45], determination of synthetic routes [46], synthesis of the impurities [17,46] identification of the impurities [17,38,46] concentration in body fluids [47] characterization [48] and the extraction and separations of the impurities [49,50].

In this paper, we critically analyze the impurity profiles of MA synthesized from ephedrine, pseudoephedrine, and 1-phenyl-2-propanone (P2P) precursors and subsequently analyze their potential use for intelligence perspective.

1.1. The synthetic schemes of methamphetamine and the specific-route impurities

The Forensic intelligence of illicit drugs is an exciting subject and very challenging. In totality, it embraces the determination, identification, and characterization of the individual components in the final formulation of illicit drugs regarded in this review as the impurities, intermediates, and the contaminants. Depending on the level of operation of a clandestine laboratory, an illegal drug is an assemblage of constituents carrying the information about the synthetic route [16,32], condition-specifics [19], reagents [30], adulterations during trafficking, synthetic batches and sometimes the chemical process level of the cooks (purity) [40,51].

Like in any other reaction, each synthetic scheme has by-products emanating from the conversion of the precursors to MA. For instance, some constituents are by-products of the reaction conditions; others are formed from the conversion of precursors to intermediates and from intermediates to MA while others are intentionally added as cutting agents for potency or weight [52] and as artifacts described by Brosèus et al. [53]. Therefore, the final formulation of MA is characterized by a variation of the relative abundance of the major by-products, intermediates, and impurities that defines a chemical signature.

Although different MA seizures produced from the same precursor, using similar route and the same reagents have related impurity profiles; some intra and inter batch variations may still occur due to varying reaction conditions. This variation is essential to distinguish chemists (cooks) by attaching a specific profile to reaction conditions practiced by a particular clandestine laboratory. Based on a certain probability of a link corresponding to the calculation of a threshold, two or more exhibits will have the same chemical profiles supporting the fact that they originate from the same batch, with the strength of support increasing as profiles become more complex [54]. Otherwise, a range not meeting the threshold can only distinguish the samples rather than discriminating against their cooks.

For quite a long time, the clandestine synthesis of MA employs three major precursors, namely ephedrine, pseudoephedrine, and the 1-phenyl-2-propanone (P2P) [55–59]. With P2P (Fig. 1), the Leuckart route (VI) and reductive amination are the most commonly used routes for the synthesis of MA [48,60]. In contrast, ephedrine/pseudoephedrine precursors (Fig. 2) convert to MA through the Nagai (I) [52,61], Emde (II) [52,61], Hypo (III) [62], Moscow (IV) [63] Rosenmund (V) [64,65] and Birch/Nazi (VI) pathways [66,67].

As one of the main MA precursors, P2P reaction scheme involves the reductive amination reactions Fig. 1 (I–V) and the Leuckart (HCl/H2O). The reductive amination reaction of P2P to MA is achieved through Pb/H2/NH2CH3, NaBH4/NH2CH3, NaBH3CN/NH2CH3, HCl/H2O, Pt/H2/NH2CH3, and Hg/Al/NH2CH3, however, the aluminum/mercury (Al/Hg) amalgam in a slightly acidic media method is reported to be the most commonly used method in Europe and USA [48]. Although the method has long history, 1-phenyl-2-propanol formed from the direct reduction the precursor, P2P, remains the potential intelligence impurity profile [48,68].

Described by Verweij in 1985 [58], the Leuckart route (Fig. IV) is achieved by the addition of N-methylformamide, methylamine or formic acid followed by H2SO4 or HCl to form (MA). By means of N-methylformamide, the first reaction result in a Leuckart route determinant; the N-formylmethamphetamine disputed by Qi et al. [70] and Barron et al. [69]; and non-synthetic route determinants namely dibenzylekton, R-benzyl-N-methylphenethylamine, and N-methylidiphenethylamine [70]. The synthetic-route character of N-formylmethamphetamine argued by Barron et al. and Qi et al. was resolved by the identification of αα'-dimethylidiphenethylamine and N,αα'-trimethylidiphenethylamine by Barron et al. The two impurities were later confirmed by Vanitha et al. [48] having identified them in Leuckart based MAs only.

The Nagai route (Fig. 2(I)) is associated with the formation of (2E)-N-methyl-3-phenyl-N-(1-phenylpropan-2-yl)prop-2-enamide, iodoephedrine, N-methyl-N-(α-methylphenyl)aminio-1-phenyl-2-propanone and (Z)-N-methyl-N-(α-methylphenylethyl)-3-phenylpropanamide [65,71]. The impurities are formed from the nucleophilic substitution reaction of −OH group of ephedrine/pseudoephedrine to form iodoephedrine or iodos pseudoephedrine. The intermediary iodine is liable to internal nucleophilic attack from the adjacent nitrogen to form cis- and trans-1,2-dimethyl-3-phenylaziridines which is reduced to MA or hydrolysed to P2P [72]. In a prolonged acidic conditions, the latter undergo condensation to form 1,3-dimethyl-2-phenylphthalalene and 1-benzyl-3-methylphthalalene reported to be the specific synthetic route signatures [73,74].

The conversion of ephedrine/pseudoephedrine to MA via Emde route is the dominant synthetic route in the South East Asia [73]. In contrast to the Nagai route, the Emde reaction scheme is augmented by S01 substitution (intramolecular nucleophilic displacement) or S02 substitution (intermolecular displacement) of the −OH in ephedrine/pseudoephedrine with chloride to form a racemic mixture of (−)-chloropseudoephedrine and (−)-chloroephedrine of variable impurity concentrations [75,76]. The (−)-chloropseudoephedrine and (−)-chloroephedrine can then undergo a cyclic ring closure to form cis-1,2-dimethyl-3-phenylaziridines and trans-1,2-dimethyl-3-phenylaziridines, respectively. Accordingly, (−)-norpseudoephedrine and (−)-nor ephedrine alternative precursors undergo similar reaction to form (−)-chloromethylpseudoephedrine, and (−)-chloroephedrine. These intermediates may eliminate the HCl to form 1- propenylbenzene and 2-propenylbenzene or can undergo a rearrangement to form 1-dimethylamino-1-phenyl-2-chloropropane [77]. The route specific potential of the intermediary aziridines
was contradicted by Ko et al. [37] and Salouros et al. [59] having identified 1-methylamino-1-phenyl-2-chloropropane as a vapour-phase nucleophilic product of the aziridine and N-methyl-1-(4-[2-(methylamino)propyl]phenyl)-1-phenylpropan-2-amine. The latter was recognized in “Moscow” and Nagai related methods and could not qualify as a route specific impurity for Emde route [63, 78]. Ko et al. instead identified and proposed 1-methylamino-1-phenyl-2-chloropropane (chloroephedrine/chloropseudoephedrine as route specific impurity for the Emde method. Other non-route specific impurities include methyephedrine, N-formylephedrine, N-acetylenephedrine, N,O-diacectylephedrine and N-acetylamphetamine.

“Moscow” method Fig. 2(IV) is achieved by a reaction between ephedrine/pseudoephedrine with red phosphorus and iodine in water [59]. Its mechanism is treasured in the regenerative role of red phosphorus [79]. Skinner [73] as supported by NicDaéid et al. [45] proposed a scheme based on the oxidation of P by I2 to diporphorus tetraiodide (P2I4) followed by the decomposition of P2I4 in water to form phosphoric acid and phosphonium iodide. The mixture then converts to hydroiodic acid (HI) and phosphine (PH3).
upon heating. The former protonates the $-\text{OH}$ of ephedrine/pseudoephedrine to form aziridine intermediates which potentially reduce to MA as in the case of the Nagai route [73].

Birch/Nazi route (Fig. 2 (VI)) is a reduction reaction of ephedrine/pseudoephedrine using excess alkali metal e.g., lithium/sodium in liquid ammonia to form 1-(1,4-cyclohexadienyl)-2-methylaminopropane (CMP) [54], noted as (S)-N-Methyl-1-(1,4-cyclohexadienyl)-2-propanamine [66]. The impurity is the most commonly encountered MA impurity prepared by the Birch route. Its reaction scheme is based on the role of alkali metals preferably lithium as a proton source for the $-\text{OH}$ of ephedrine/pseudoephedrine. As lithium protonates the precursor, NH$_3$ facilitates the reduction of the aromatic rings to form 1-(1,4-cyclohexadienyl)-2-methylaminopropane [80]. This primary impurity associated with the lithium - ammonia method normally results in high CMP:MA ratio limiting the isolation of the impurity. Martinez et al. [81] proposed potassium permanganate and aqueous base for effective CMP isolation.

1.2. A paradigm shift in methamphetamine precursor production

As a result of the crackdown measures taken against the production, trafficking and the availability of the P2P and ephedrine/pseudoephedrine, access to the precursors has shifted to the illicit manufacture of the precursors through readily available starting materials with new routes leading to the emergence of new impurity profiles [82–84].

For quite a long time, the synthesis of phenyl-2-propanone is through a vast number of starting materials such as α-phenylacetoacetoneitrile [83,84], α-phenyl-β-methyleneglycol [85], phenylisopropyl alcohol [86] phenylacetylmalonic ester [87] phenylacetoacetonitrile [83,84], 1,3-cyclohexadiene [65]. A recent twist in the production of P2P has recently involved the nitrostyrene method (NTS) [82]. This emerging synthetic scheme results in nitrostyrene recently identified in MA samples seized in Mexico [55] and the USA [82]. The NTS method uses benzaldehyde and hydrochloric acid [82]. The reaction involves the reduction of the C-X (X-halo, phosphate, and sulfate) with the reduction of the C-X (X-halo, phosphate, and sulfate) to form methamphetamine. This method has recently been used as an additional route to MA synthesis [101].

The evolution of the P2P clandestine chemistry is further confirmed by the re-emergence of a new impurity profile in place of α-benzyl-N-methylphenethylamine and trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine from the usual foul-smeling of a crystalline PAA [82]. The synthesis of P2P from PAA (Fig. 3 (a)) utilizes the then easily available ethyl phenylacetate (EtPA). However, a recent decline of EtPA and its associated esters and amides resulted in a shift in the P2P precursors (Fig. 3(b)) resulting in the emergence of new characteristic impurities recently reported in the in Australia [91] and observed in the USA [82].

The P2P produced from the PAA method and nitrostyrene (NTS) convert to MA with route-specific markers intelligently used to trace the sources of P2P.

1.3. The emerging methamphetamine impurity profiles

In response to the crackdown measures imposed on the production and trafficking of MA and its precursor chemicals, clandestine laboratories circumvent the law enforcement authorities by deriving the precursors from uncontaminated substances such as phenyl acetic Acid (PAA) [40], nitrostyrene [82], and legal medicine [93] resulting into the emergence of new impurity profiles.

The emergence of impurity profiles such as dimethylamphetamine and p-methoxyamphetamine was recently documented by Stojanovska et al. [54] and supported by a literature collection of impurity profiles and synthetic route of manufacture of methamphetamine, 3,4-methylenedioxyamphetamine, amphetamine, dimethylamphetamine, and p-methoxyamphetamine as well as the recently identified less potent i-methamphetamine in place of d-methamphetamine in the United States [57].

Since their identification in seized MA, several MA impurity profiling [79,53,76,91] reveal profiles that are potentially important for strategic, tactical and operational intelligence of MA in the USA [57], France [18] Australia [20,44,94–96] Korea [30], Iran [97], China [24], Philippines [25], Japan [98] and Thailand [22].

1.3.1. Impurities from metal catalytic hydrogenation

Metal catalytic hydrogenation of ephedrine/pseudoephedrine and P2P is one of the oldest MA synthetic methods [35,40,99–101]. Using ephedrine/pseudoephedrine, the clandestine laboratories often use palladium via the Rosenmund route [101], lithium/NH$_3$ via Birch route, and nickel via Emde route [100]. The reaction involves the reduction of the C-X (X-halo, phosphate, and sulfate) (Fig. 4) rather than the benzylic OH group to form methamphetamine [100].

Using P2P, an amine intermediate MA base is formed from a reaction of between P2P with methylamine. The MA freebase is then distilled and directly converted to hydrochloride salt [99,100]. Fig. 5 represents a reductive amination for the conversion of P2P to MA hydrochloride. Reaction (c) occurs through heterogeneous reactions with internal or external sources of hydrogen in the presence of Pd, Pd/C, Pd/BaSO$_4$, Pt, Pt/C, CuO, CaSO$_4$, BaSO$_4$, Raney Nickel (Ni-Al) [100]. Tracking the traces of metals in the final formulation of MA has been used to determine the synthetic routes. MA manufactured from ephedrine/pseudoephedrine through the Emde and Nagai methods was found to contain N-methyl-1-[4-(2-[2-(methylamino)propyl]phenyl)]-1-phenylpropan-2-amine and (15S,2S)-1-methylamino-1-phenyl-2-chloropropane as route-specific impurities [61]. Since their identification, they have been used as Emde route-specific signatures [61,76,77].

Furthermore, (15S,2S)-1-methylamino-1-phenyl-2-chloropropane has recently been used as an additional route-specific marker impurity synthesized from ephedrine via chloroephedrine by the Emde route (Fig. 6) [64]. The metal catalysis reaction of (1R,2S)-(+)-ephedrine or (1S,2S)-(+)-pseudoephedrine results in the formation of chloroephedrine/chloropseudoephedrine which is hydrogenated to (S)-(-)-Methamphetamine.

Recent profiling of reductive amination of P2P made from PAA/lead (II) based MA [102] elucidated trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine and α-benzyl-N-methylphenethylamine. Trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine used as a route-specific marker was presumed acetone and P2P
condensation product, however, this assumption could not explain why the little amount of the impurity and its associated intermediates produced even if the P2P was refluxed in acetone for a long time.

Furthermore, an attempt to produce P2P using a Dakin-West and lead (II) acetate conditions [102] were futile and could not yield the expected trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine as an impurity.

Fig. 3. A paradigm shift in MA precursor production: (a) PAA method, (b) nitrostyrene (NTS) method (c) 1–5 synthetic routes of P2P to MA.

Fig. 4. C-X reduction to form MA: X = Cl−, SO4−2, H2PO4, and ClO4−.

Fig. 5. Imine reduction to Methamphetamine: (I) P2P, (II) Methylamine, (III) Phenyl acetone methylimine (IV), Methamphetamine freebase, (V) Methamphetamine hydrochloride salt. (a) Removal of water, (b) reduction of imine to amine, (c) addition of hydrogen chloride.

Fig. 6. Metal catalytic reduction of (1R,2S)-(−)-ephedrine or (1S,2S)-(−)-pseudoephedrine.
The best reasoning so far centers the argument on the role of a low-level 4-carbon acetate unit as an intermediate. Since acetic acid undergoes decarboxylation in aqueous solution over a range of temperatures, a route-specific marker impurity, trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine results from an intra-molecular reaction of lead acetate with P2P via chelation controlled transition states followed by decarboxylation [102,103]. Fig. 7 shows the proposed mechanism for the formation of this route-specific marker.

The reductive amination of P2P is also associated with the formation of α-benzyl-N-methylphenethylamine as a synthetic route characteristic impurity. The MPP identified the contaminant at the DEA’s Special Testing and Research Laboratory [102].

The emergence of new impurity profiles in MA analysis suggests, possibly, a change in the synthetic route parameters or the synthesis of precursor chemicals. The foul-smelting of a crystalline PAA results in new impurity profiles monitored in seized MA samples. The impurities associated with the modified P2P synthetic pathway are α-benzyl-N-methylphenethylamine and trans-N-methyl-4-methyl-5-phenyl-4-penten-2-amine) [82]. They have been used to track MA synthesized from PAA.

The emergence of N-butyramphetamine and N-cyclohexylamphetamine in seized MA has recently triggered the nitrostyrene chemistry. The two impurities result from a Knoevenagel reaction of benzaldehyde and nitroethane to form a nitrostyrene [90].

Toske et al. [82] referred to this method as a nitrostyrene method (NTS) or a nitropropene method. The catalytic activities of butyramine/cyclohexylamine influence the conversion of the P2P precursors. The catalysts react with benzaldehyde to form imine, which then reacts with the nitroalkane to form a nitrostyrene as an intermediate [82]. The reaction mixture at this step contains nitrostyrene and extractable cyclohexylamine/butylamine with a significant reaction potential. Based on a reaction proposed by Hass et al. [90], nitrostyrene converts to P2P in the presence of iron powder and hydrochloric acid. The extractable cyclohexylamine/butylamine can then react with P2P to form the stable N-butyramphetamine, and N-cyclohexylamphetamine elucidated in MA seizures. Fig. 8(a) and (b) represents the formation of N-butyramphetamine and N-cyclohexylamphetamine.

Since 2015, the two impurities were detected in MA seizures collected in the USA [82]. The identification of the two impurities has been fundamental in tracking the P2P based MA synthesized by the nitrostyrene chemistry.

1.3.2. Emerging impurity profiles from pharmaceutical compounds

In response to the crackdown measures taken against controlled substances, ephedrine, and pseudoephedrine, other adaptation strategies used by clandestine laboratories are co-ingredients of legal medicines, direct extraction from ephedra plants [77,93,103,104] as well as direct synthesis from easily available starting materials [83,84]. Although Lee et al. [31] reports less common MA crystals containing pharmaceutical impurities, Barker and Antia [77] had a different opinion on the most common sources of ephedrine and pseudoephedrine used to synthesize crystal MA. The latter as supported by Liu et al. [93] who also considered medicinal drugs as the most common sources of pseudoephedrine and ephedrine.

Synthesis from legal medicines is the most common coping strategy practiced by clandestine laboratories to avoid strict measures from the law enforcement authorities [77]. The legal medicines approach result in MA whose final formulation contains pharmaceutical signatures that used to reflect the trends in precursor chemicals, manufacturing sources, and the trafficking patterns organized by the criminal networks. Unlike by-products, there is limited literature linking pharmaceutical impurities to the synthetic route of MA.

More recently, the MA profiling based on synthetic pharmaceutical signatures has been done in Korea [31], Iran [97], China [24], Japan [98] and Thailand [22], several studies have been done in this field, more research is required to unveil the potential of pharmaceutical impurities beyond their existence as sole impurities into the final MA formulations. Tracking the by-products down to their origin and their point of entry may provide the potential of establishing synthetic routes using pharmaceutical contaminants.

In a profiling program conducted in Korea between 2006 and 2011, Acetaminophen, Caffeine, Phenacetin, Ambroxol, Chlorpheniramine, Desloratadine, Barbital, Ketamine, Procaine, and Dime-thylsulfone were elucidated as characteristic pharmaceutical impurities [31]. The profiling program linked these impurities with cold medicines, cold relievers, ingredients of analgesic drugs [105], expectorant, and dietary supplements extracted together with ephedrine/pseudoephedrine. In contrast, others added as
adulterants during trafficking. While the pharmaceutical medicines demonstrate growing intelligence phenomena, tracking the specific legal drugs used in the MA production and the post-production modifications is an area of utmost interest.

Interestingly, in 2010, chlorpheniramine was identified in both Korea [31] and Iran [106], indicating a cross-border operation of the criminal networks. The emergence of these impurities was a direct indication of the use of legal medicines and their associated analogesic and co-ingredients containing ephedrine or pseudoephedrine.

Furthermore, Lee et al. [31] identified a pharmaceutical recipe based dimethyl sulfone from seized MA in Korea. The impurity was associated with the recipe used in medicinal drugs containing ephedrine/pseudoephedrine as well as an adulterant used in cutting MA. The impurity was previously identified in Korea (1996–2003) and USA (1996–2003) [30,107] emerged in Australia (1998–2002) [21], re-surfaced in (USA 2007) [108], Korea (2006–2011) [31] and Japan (2006–2007) [98]. The observed trend in the occurrence and re-emergence of dimethyl sulfone in the seized MA is potentially important in linking the operation of criminals in the countries. Although the determination of homogeneity might be very challenging, linking the dimethyl sulfone to its common source is essential for integrated intelligence.

Unlike other countries, a new profiling program based on pharmaceutical impurities conducted China recorded a new trend of impurity profiles of MA synthesized from ephedrine/pseudoephedrine [93]. Liu et al. reported tablets with Theophylline-Ephedrine, Ephedrine-Diphenhydramine, Pseudoephedrine, Dextromethorphan, and Chlorpheniramine as a new set of legal medicines commonly used as a source of ephedrine/pseudoephedrine. These drugs contain alkaline substances such as chlortrimeton, diphenhydramine, dextromethorphan, and tripilodrine with the potential to form characteristic impurities. Their profiles information is not only used for monitoring the routine trends in precursor chemicals but also for the identification of the seized materials, smuggling patterns, and the determination of the synthetic routes [31,109].

Liu et al. systematically determined N_1,N_1,N_2-trimethyl-N_2-(1-phenylpropan-2-yl)ethane-1,2-diamine, which was assigned a characteristic impurity derived from pharmaceutical products containing ephedrine/pseudoephedrine and diphenhydramine. Unlike other pharmaceutical contaminants, the impurity is a product of a reaction between MA and traces of diphenhydramine derivative, which is co-extracted with ephedrine/pseudoephedrine. As a pharmaceutical co-extract of ephedrine/ephedrine derived diphenhydramine, the traces of the P2P precursor undergo band dissociation with HI in an I/P route to form 2-iodo-N,N-dimethylthetamine as an intermediate and traces of diphenyl methanol. The 2-iodo-N,N-dimethylthetamine then reacts with MA to form N_3,N_1,N_2-trimethyl-N_2-(1-phenylpropan-2-yl)ethane-1,2-diamine as shown in Fig. 9.

In this reaction, the diphenhydramine is present as co-ingredients of legal medicine used for the synthesis of ephedrine/pseudoephedrine. The control of such drugs is essential for monitoring and identification of illicit production of ephedrine/pseudoephedrine from legal medicines.

1.3.3. Impurities discriminating ephedrine and pseudoephedrine synthetic routes

Ephedrine and pseudoephedrine are the basic precursors commonly used to synthesize MA beside the Phenyl-2-propanone [10,44,104,106]. A synthetic method using each of the precursor chemicals is associated with specific impurities that can intelligently discriminate against the MA synthetic method. From a forensic chemist’s viewpoint, tracking the impurities down to the level of discrimination ephedrine and pseudoephedrine is an ultimate goal. Many MA profiling methods based on ephedrine/pseudoephedrine end up with non-discriminatory results, deriving their conclusions from an unresolved analytical process.

Precursor discrimination based on identified impurities is another interesting intelligence work. In a recent study by Dujourdy et al. [19], 43 target impurities in MA were successfully characterized and discriminated using chemometric methods.

Fig. 8. Impurity profiles for NTS synthetic method. (a) N-Butylamphetamine synthetic route, (b) N-Cyclohexylamphetamine route.

Fig. 9. A synthetic mechanism of N_1,N_1,N_2-trimethyl-N_2-(1-phenylpropan-2-yl)ethane-1,2-diamine from diphenhydramine: (a) formation of methamphetamine, (b) dissociation of diphenhydramine to imine and diphenyl methanol, (c) reaction between imine and methamphetamine to form N_3,N_1,N_2-trimethyl-N_2-(1-phenylpropan-2-yl)ethane-1,2-diamine. Source [93].
Through clustering, the impurities identified from ephedrine, pseudoephedrine, and benzylmethylketone. In their work, 1-benzyl-3-methyl-naphthalene, and 1,3-dimethyl-2-phenyl-naphthalene were used to signify a route associated with ephedrine precursor.

Previously, N-formylmethamphetamine was considered a route-specific impurity for Leuckart route based MA [89,101]; however, the impurity has recently been identified in reductive amination based route for MA [20,99].

A realization of this challenge was reported by Khajeamiri et al. [106] in their work involving the reduction of ephedrine/pseudoephedrine with H/Ip red P. In their viewpoint, both ephedrine and pseudoephedrine react with H/Ip red P to form iodoephedrine, which undergoes a ring-opening to form commonly used route-specific impurities; the cis and trans-1,2-dimethyl-3-phenylaziridine [73].

Khajeamiri et al. articulated that 1,2-dimethyl-3-phenylaziridine is derivatized into N-methylmethamphetamine, N-ethylmethamphetamine, N-acetyl methamphetamine, acetice acid, N-benzyl-2-methylaziridine, methoxyphenylloxime amphetamine, d-proline-1-phenylmethyl-methylester N-formylmethamphetamine, and dextromethorphone.

Reporting N-benzyl-2-methylaziridine as an emerging impurity, Khajeamiri et al. associated its formation with the conversion of 1,2-dimethyl-3-phenylaziridine into N-benzyl-2-methylaziridine during the formation of MA from ephedrine and pseudoephedrine.

Additionally, Khajeamiri et al. reported for the first time in 2012 the presence of Chlorpheniramine as a pharmaceutical-based impurity in MA. The impurity was later reported in Korea [2013] [31,49] and Iran [111]. The report associated the impurity with pharmaceutical tablets used to synthesize pseudoephedrine precursors. Because chlorpheniramine is co-ingredient of pseudoephedrine tablets only [49], it discriminates ephedrine and pseudoephedrine based MA.

1.3.4. Emerging signatures from stable isotopes

Stable isotopes composition in a MA sample has recently been used to profile MA seized in the USA [92] and Japan [112]. The technique employs natural abundance stable δ13C, δ15N, δ34S, δD, δ2H and, δ18O, δ17O, δ2H and δ18O, δ15N, δ34S, δ32S, δ34S, δ32S compositions in samples to establish chemical signatures for evaluating the links between MA seizures and their production batches [113–116]. The isotopes have specific natural rations; however, compartmental isotope ratios vary as per the geographical origin of the source [36] which is the basis for MA profiling based on stable isotopes.

The stable isotope ratio presented in delta values, δ in per mill (‰) where ("mil" = 1000), written %. The calculation of delta value as proposed by Barrie [117] is shown in the equation below.

\[
\delta = 1000\frac{R_{\text{sample}} - R_{\text{standard}}}{R_{\text{standard}}}
\]

Where \(R_{\text{sample}}\) represents the ratio of the heavy to the light isotope measured for the sample while \(R_{\text{standard}}\) is the equivalent ratio for the standard.

Although the conventional analytical techniques through the existing GC [98], HPLC [110], GC-MS [33], and LC-MS-MS, ICP-MS, NMR [33,120], the method has been very effective in determining the type of precursor chemicals [100,121] synthetic route [16], and adulteration of illicit MA [28,48,54,122]; it has not been able to discriminate the precursors produced by different methods in the sense of identifying their origins. Furthermore, reductive amination routes usually have few impurity profiles that may not grant a successful impurity profiling [114]. The conventional techniques are also ineffective in traceability beyond sources of the starting materials [123].

In such circumstances, stable isotope analysis is a complementary technique that can individualize illicit MA samples based on the sources of their starting materials. Elsewhere, the method has successfully used in tracing studies in food [124,125], identification of illegal immigrants [126], past human activities [122], and reconstruction of human diet [127].

In forensic intelligence of illicit drugs, stable isotopes technique unveil the hidden intrinsic precursor signatures that break the limits of the conventional impurity profiling by linking the seized MA and their batches to their synthetic origin [123]. Stable isotopes add value to the intelligence of illicit drugs based on impurity profiling.

MA produced by the same hidden laboratories, following the same method with the same kind of a precursor but different sources distinguished by examining their δ13C and δ15N values of their precursors [104]. In this respect, the variation of stable isotopes in seized MA can also trace the diversion of medicinal ephedrine for the illicit manufacture of MA.

Illicit ephedrine based MA was initially produced through a biosynthetic approach from the ephedra plant (Fig. 10(a)); however, a growing trend of total chemical synthesis (Fig. 10(b)) and semi-synthesis (Fig. 10(c)) have dominated the market.

The ephedrine produced through methods (a), (b) and (c) above will have different stable isotopic compositions used to track MA seizures. In principle, isotopic variation is due to different enrichment factors during the biochemical synthesis of raw materials for the precursor chemicals as well as the isotopic fractionation during the synthetic processes [60]. Although chemical synthesis a reliable source of ephedrine, the extraction from natural sources is another potential source for clandestine laboratories [104]. Therefore, an integrated approach with intelligence information collected beyond the starting materials is key to linking the operation of the criminal networks.

A complementary study on the use of stable isotopes techniques in evaluating the links between different MA seizures was reported by Iwata et al. [112] Benson et al. [36] and Billault et al. [123]. In a study by Billault et al., a variation of δ13C and δ15N was used to cluster seized MA and successfully established a link between different MA cases. The study successfully discriminated against semi-synthetic ephedrine from bio-synthetic or synthetic ephedrine by using δ13C. However; based on the fact the δ13C values of acetaldehyde from sugar are more optimistic compared to C2 photosynthetic plants or products derived from petroleum, it could not differentiate biosynthetic ephedrine from synthetic ephedrine.

Recently, a stable isotopes technique was used to investigate the unique profiles of stable nitrogen isotopic composition in seized MA samples [128]. In this work, the stable isotopes variation can be due to the isotopic variations in the starting materials, isotopic fractionation during the synthetic processes, and due to analytical errors. It is therefore essential to draw a conclusion based on the magnitude of the variation to eliminate the influence of isotopic fractionation and analytical errors. A variation of 0.9‰ δ15N evidenced a difference in batches of production and subsequently, different ephedrine sources used as starting materials for the production of MA. Iwata et al. [128] further used the stable isotope technique to classify the MA seizures based on their synthetic batches. Based on the criteria proposed by Iwata et al. [128], \(\Delta \omega < 0.04\) represents a significant variation in batches.

Interestingly, stable isotope technology is making an in-road towards the discrimination of illicit synthetic/semi-synthetic illegal drugs based on their synthetic routes and their associated reactions conditions beyond its conventional use in discriminating the sources for MA. As a growing profiling method, it complements the impurity profiling by linking the synthetic routes to isotopes ratios.

Billault et al. reported startling scientific research that seems to
confirm the use of stable isotopes in linking MA batches to their respective synthetic routes. These results were the first to be reported in linking the ^{13}C values of the precursors in distinguishing synthetic routes of seized MA and their derivatives. Having investigated the relationship between ^{13}C and ^{15}N of the precursors and those of 45 samples of MDMA, the authors demonstrated how the number of synthesis steps influenced the value of ^{13}C in the seized MA samples and consequently discriminated the synthetic routes possessing more than one step.

Similarly, the discrimination of synthetic routes using stable isotopes is established by comparing the ^{13}C values of the origin precursors and the seized MA. The values of ^{15}N in MA are dependent on the source of nitrogen used, the route by which the MDMA is synthesized [114,115], and the experimental conditions employed [116,123,129].

Previous work by Billault et al. discriminated MA based on their synthetic origins, synthetic routes as well a close variation of the stable isotopes based reaction conditions of MA tested.

2. Conclusion

In this review, we have discussed the impurities and stable isotopes signatures found in illicit MA. The signatures are critical in the intelligence of illegal drugs, linking the illegal drugs with their sources, synthetic methods, synthetic batches, and their geographical origin. Although stable isotopes have been influential in discriminating seizures based on their origin, it is evident from this review that its potential in profiling MA has not been fully explored.

The review highlights further how the integration of impurity profiling with stable isotopes signatures coupled with chemometric techniques complements the existing intelligence gaps. The review illustrates how an assortment of legally available chemicals and medicines used to mask the controlled substances. It has also been shown in this review how precursor chemicals come with their corresponding stable isotopes and tracking them down to their stable isotopes has been essential in discriminating the seizures based on their original starting materials resulting in comprehensive profiling.

Studies linking stable isotope technique in profiling MA are undoubtedly limited, perhaps because of the advanced instrumentations. In furtherance of monitoring the dynamics of the MA, drug markets, and the advances of the criminal networks, future research is indispensable. Future research should focus on the diversity of both licit and illicit starting materials, complementing impurity profiling with stable isotopes, building knowledge with regards to the newly identified MA profiles, and finally; coupling the methods with chemometric techniques.

CRediT authorship contribution statement

Isaac Onoka: Conceptualization, Writing - original draft. Andrew Toyi Banyika: Writing - review & editing. Protibha Nath Banerjee: Supervision. John J. Makangara: Supervision, Writing - review & editing. Laurence Dujourdy: Resources, Writing - review & editing.

Declaration of competing interest

The authors declare that there is no conflict of interest.

Acknowledgment

Thanks to the University of Dodoma, Tanzania for allowing the ongoing study on the profiling of methamphetamine. We would also like to thank Dr. Mellony Manning for proofreading and checking the language.

References

[1] UN, United Nations treaty collection: United Nations convention against illicit traffic in narcotic drugs and psychotropic substances 1–37 (1988).
[2] INCB, International Narcotics Control Board: List of Precursors and Chemicals Frequently Used in the Illicit Manufacture of Narcotic Drugs and Psychotropic Substances under International Control, sixth ed., Vienna International Centre, Vienna, 2018.
[3] UNODC, World Drug Report, vol. 156, United Nations Office on Drugs and Crime, 2016.
[4] DEA, “Drug Enforcement Administration, Methamphetamine,” Divers, Control Div, Drug Chem. Eval. Sect. (2020) 4250.
[5] UNODC, World Drug Report, United Nations Office on Drugs and Crime, Vienna, 2019.
[6] B.A. Perillo, R.F.X. Klein, E.S. Franzosa, Recent advances by the U.S. Drug Enforcement Administration in drug signature and comparative analysis, Forensic Sci. Int. 69 (1) (1994), 1–6.
[7] UNODC, in: United Nations Office on Drugs and Crime, “The Challenge of Synthetic Drugs in East and South-East Asia and Oceania Trends and Patterns of Amphetamine-type Stimulants and New Psychoactive Substances, vol. 35, 2015.
route. J. Forensic Sci. 55 (3) (2010) 605–615.

50. M. Morelato, A. Beavis, M. Tahtouh, O. Ribaux, P.K. Kirckbride, C. Roux, The use of mass spectrometry and chemometrics to identify and quantify controlled substances in MDMA tablets, Forensic Sci. Int. 150 (2015) 56–64.

51. B.J. Ko, S.I. Suh, Y.J. Suh, M.K. In, S.H. Kim, The impurity characteristics of methamphetamine synthesized by Emde and Nangai method, Forensic Sci. Int. 170 (2–3) (Aug. 2007) 142–147.

52. H. Inoue, Y.T. Iwata, K. Kuyawama, Characterization and profiling of methamphetamine seizures, J. Health Sci. 54 (6) (2008) 615–622.

53. J.H. Ko, Jae Sin Lee, Won Young Yang, Eun Hoong Park, Mi Ae Lee, him sun chung, “analysis of the impurities in the methamphetamine synthesized by three different methods from epinephrine and pseudoephedrine, Forensic Sci. Int. 161 (2–3) (Sep. 2006) 209–215.

54. H.J. Ko, S.I. Suh, Y.J. Suh, M.K. In, J.H. Kim, (1S,2S)-1-Methylamino-1-cyclohexadienyl)-2-methylaminopropane (CMP) using po-
methylenedioxymethylamphetamine (ecstasy), Analyst 127 (6) (2002) 830–833.
[116] F. Palhol, C. Lamoureux, N. Naulet, 15N isotopic analyses: a powerful tool to establish links between seized 3,4-methylenedioxymethamphetamine (MDMA) tablets, Anal. Bioanal. Chem. 376 (4) (2003) 486–490.
[117] A. Barrie, Automated analysis of light-element stable isotopes by isotope ratio mass spectrometry, Mass Spectrom. Soils (1996). ID (NAID) 10017410001.
[118] R. Nageswara Rao, M.V.N. Kumar Talluri, An overview of recent applications of inductively coupled plasma-mass spectrometry (ICP-MS) in determination of inorganic impurities in drugs and pharmaceuticals, J. Pharmaceut. Biomed. Anal. 431 (1) (2007) 1–13.
[119] M. Y. T, S. S, Analysis of inorganic impurities in seized methamphetamine samples, Forensic Sci. Int. 69 (1) (1994) 89–95.
[120] P.A. Hays, Proton nuclear magnetic resonance spectroscopy (NMR) methods for determining the purity of reference drug standards and illicit forensic drug seizures, J. Forensic Sci. 50 (6) (2005) 1–19.
[121] K.A. Moore, A.H. Lichtman, A. Poklis, J.F. Borzelleca, α-Benzyl-N-methylphenethylamine (BNMPA), an impurity of illicit methamphetamine synthesis: pharmacological evaluation and interaction with methamphetamine, Drug Alcohol Depend. 39 (2) (1995) 83–89.
[122] B. Chase, D. Meggs, P. Ajithprasad, P.A. Slater, What is left behind: advancing interpretation of pastoral land-use in Harappan Gujarat using herbivore dung to examine biosphere strontium isotope (87 Sr/86 Sr) variation, J. Archaeol. Sci. 92 (2018) 1–12.
[123] I. Billault, F. Courant, L. Pasquerneau, S. Derrien, R.J. Robins, N. Naulet, Correlation between the synthetic origin of methamphetamine samples and their 15N and 13C stable isotope ratios, Anal. Chim. Acta 593 (1) (2007) 20–29.
[124] A. Rossman, Determination of stable isotope ratios in food analysis, Food Rev. Int. 17 (3) (2001) 347–381.
[125] R. Pillouet, R. Badertscher, P. Froidevaux, G. Haberhauer, S. Holzl, P. Horn, A. Jakob, E. Pfammatter, U. Piantini, A. Rossmann, Tabacchi, Stable isotope ratios, major, trace and radioactive elements in enmental cheeses of different origins, LWT – Food Sci. Technol. (Lebensmittel-Wissenschaft -Technol.) 36 (6) (2003) 615–623.
[126] H. Shaw, J. Montgomery, R. Redfern, R. Gowland, J. Evans, Identifying migrants in Roman London using lead and strontium stable isotopes, J. Archaeol. Sci. 66 (2016) 57–68.
[127] C. Rissech, A. Pujol, N. Christie, L. Lloveras, M.P. Richards, B.T. Fuller, Isotopic reconstruction of human diet at the Roman site (1st-4th c. AD) of Carrer Ample 1, Barcelona, Spain, J. Archaeol. Sci. Reports 9 (2016) 366–374.
[128] Y.T. Iwata, K. Koyama, K. Tsujikawa, H. Miyaguchi, T. Kanamori, H. Inoue, Seized methamphetamine samples with unique profiles of stable nitrogen isotopic composition documented by stable isotope ratio mass spectrometry, Forensic Toxicol. 28 (2) (Jul. 2010) 119–123.
[129] F. Palhol, C. Lamoureux, M. Chabrillat, N. Naulet, 15N/14N isotopic ratio and statistical analysis: an efficient way of linking seized Ecstasy tablets, Anal. Chim. Acta 510 (1) (2004) 1–8.