Experimental determination of dynamic characteristics and analysis of acceleration of vibrations of pedestrian bridges

Aivaz Gimazetdinov1[0000-0002-2177-1942], Rashit Kayumov1[0000-0003-0711-9429], Gennady Shmelev1[0000-0001-6472-9413], Lenar Khaidarov1[0000-0003-2662-6020], Anatoly Antonov1[0000-0001-6750-4172]

1Kazan State University of Architecture and Engineering, Kazan, 420043, Russia
E-mail: aivaz_aivaz1313@gmail.com

Abstract. This article discusses the design of pedestrian bridges. When designing pedestrian bridges, engineers are guided mainly by the static characteristics of the types of spans under consideration. If you want to build a load-bearing beam structure of a large span, you cannot lose sight of their relatively large mass and low stiffness due to the length of the bridge. These factors lead to a low natural frequency close to the frequency of pedestrian load, in the form of people passing through this structure, which, in turn, act as recipients of vibrations. The structure is a metal span restructure with two I-beam main beams with a solid sloping wall, an orthotropic plate of the passer-by part below, a calculated width of 44.0 m, a total length of 44.6 m and a pedestrian dimension of 3.25 m. In the course of dynamic tests of the pedestrian bridge span, experimental values of the natural vertical vibration frequencies were determined, followed by the determination of the attenuation decrement. The natural oscillation frequency was 2.0 Hz, which corresponds to a period of 0.5 s oscillation.

Keywords: pedestrian bridges, dynamic characteristics, static characteristics, oscillations, metal span structure, building constructions.

1 Introduction

The object of study is a pedestrian bridge across the railways located in the city of Kazan.

The article is relevant to the present, because, according to Russian standards for objects of this type, mandatory dynamic tests are required with the application of real dynamic loads.

Such dynamic loads in accordance with the norms are created by a group of people moving at different speeds.

The main purpose of this work is to develop a method for experimental dynamic testing of a pedestrian bridge with the determination of its dynamic characteristics.

In this case, an important part is the experimental registration of possible resonant phenomena. Based on the results of dynamic tests, the actual dynamic characteristics of the pedestrian bridge are determined (natural frequency of vibrations, degree of attenuation, dynamic coefficient).

All these characteristics must be compared with the calculated parameters and regulatory documents. It is also important to get real information about the compliance of actual parameters with the calculated and normative ones.

The scientific significance consists in the development of an experimental technique and its implementation using group movements of people in order to obtain a different dynamic response of the bridge according to the required forms and frequencies of vibration.

The practical value lies in the use of data for the calculation and testing of transition bridges with high dynamic malleability.

When designing pedestrian bridges, engineers are guided mainly by the static characteristics of the types of spans under consideration. If you want to build a load-bearing beam structure of a large span, you cannot lose sight of their relatively large mass and low stiffness due to the length of the bridge[1-5]. These factors lead to a low natural frequency close to the frequency of pedestrian load, in the form of people passing through this structure, which, in turn, act as recipients of vibrations. For example, the frequency of a person's excitatory force when walking varies between 1.2 and 2.4 Hz [6-8].
Certain oscillations that the structure experiences can lead to a sense of anxiety for the inhabitants. To determine whether the impact of vibrations on a pedestrian is acceptable such criterion as the mean square acceleration averaged over a certain period of time is used [9-12].

2 Materials and methods
The structure consists of a metal span structure with two I-beam main beams with a solid inclined wall, an orthotropic plate of the passer - by part below, a calculated width of 44.0 m, a total length of 44.6 m and a pedestrian size of 3.25 m [13].

The general view of the span structure is shown in the figure (see Figure 1).

Materials of metal structures of the span structure – low-alloy steel 15HSND-2 according to GOST R 55374-2012, the calculated yield strength according to table 8.5 Ry = 295 MPa. Hardware is according to GOST R 52643-2006, made OF 40x "select" steel, strength class 10.9[14-15].

Figure 1. General view of the span structure.

Figure 2. General view of the pedestrian bridge.

Before conducting the tests, the equipment was installed according to the test program (see Figure 3).
In the course of dynamic tests of the pedestrian bridge spans, experimental values of the frequencies of proper vertical vibrations were determined, followed by the determination of the attenuation decrement [16-20].

In dynamic tests, the excitation of natural vibrations of structures was performed by swinging a group of 5 people, which was located in the middle of the span.

The group, at the direction of the head of experiment, worked for some time on the structures with vertical movements and after several vertical shocks, it stopped until the vibrations of the superstructure fell to zero, while recording was performed using vertical and horizontal vibration sensor "VEG " and the Ni SCXI-1000 docking station with the Ni 1317 module, installed in the middle of the span of the pedestrian bridge. The frequency of results removal is 50 Hz.

Figure 3. Scheme of installation of equipment for the experiment.

Figure 4. General view of vertical and horizontal vibration sensors.
3 Results
In the course of dynamic tests of the pedestrian bridge spans, experimental values of the frequencies of proper vertical vibrations were determined, followed by the determination of the attenuation decrement [16-20].

The span structure oscillation diagram for a vertical vibration sensor is shown in figure 6.

![Oscillation diagram in the span of a pedestrian bridge.](image)

The oscillation frequency is calculated from 10 vibrations using the formula:

\[\vartheta = \frac{N}{t} = \frac{10}{5} = 2.36 \text{ Hz}, \]

where \(N \) is the number of vibrations equal to 10;

\(t \) is the time during which the superstructure makes \(N \) vibrations. From Figure 7 it is determined that 10 vibrations are performed in 4.24 s. Accordingly, the oscillation period is 0.424 s, which is not included in the range specified in clause 5.48 of SP 35.13330.2011 «Bridges and pipes. Updated version of SNiP 2.05.03-84* (with Change N 1)».
Figure 7. Oscillation diagram for calculating the oscillation frequency.

The decrement of the oscillation attenuation \(\Delta \) is the ratio of two successive amplitudes:

\[
\Delta = \frac{A(t)}{A(t + T)} = \frac{0.717}{0.668} = 1.073,
\]

where \(A(t) \) is the amplitude of the n-th oscillation,
\(A(t + T) \) – is the amplitude of the n+1-th oscillation,
In this case the logarithmic decrement of oscillation attenuation is 0.071.

Figure 8. Oscillation diagram for the calculation of the decrement of oscillation attenuation.

When exposed to a group of people with a frequency close to the natural oscillation frequency of 2.0 GHz, a graph of changes in the amplitude of vibrations is obtained (see Figure 8), which shows an increase in the amplitude, which means that a resonance occurs. This phenomenon under certain conditions can lead to significant deformation of load bearing structures and glazing.
Discussions
In the course of dynamic tests of the pedestrian bridge span, experimental values of the frequencies of proper vertical oscillations were determined, followed by the determination of the attenuation decrement. The natural oscillation frequency was 2.0 GHz, which corresponds to the oscillation period of 0.5 s, which falls within the range specified in clause 5.48 of SP 35.13330.2011 " Bridges and pipes. Updated version of SNiP 2.05.03-84* (with Change N 1)" and 8 ISO 10137:2007(E) «International standard, Bases for design of structures — Serviceability of buildings and walkways against vibrations».

Also, during calculations and tests, a high dynamic malleability of the structure (the possibility of resonant phenomena) was revealed, which will be addressed in subsequent works.

Based on the results of these calculations and tests, it is possible to use this technique in the design of bridges of this type.

References
[1] Liu C, He L, Wu Z and Yuan J 2018 Experimental and numerical study on lateral stability of temporary structures Archives of civil and mechanical engineering 18 pp 1478-90 DOI: 10.1016/j.acme.2018.06.002
[2] Peng J-L, Ho C-M, Chan S-L and Chen W–F 2017 Stability study on structural systems assembled by system scaffolds Journal of Constructional Steel Research 137 pp 135–51 DOI: 10.1016/j.jcsr.2017.06.004
[3] Yuan X, Anumba C J and Parfitt M K 2016 Cyber-physical systems for temporary structure monitoring Automation in Construction 66 pp 1–14 DOI: 10.1016/j.autcon.2016.02.005
[4] Chandrangsu T and Rasmussen K J R J 2016 Structural modelling of support scaffold systems Journal of Constructional Steel Research 67 pp 866–75 DOI: 10.1016/j.jcsr.2010.12.007
[5] Prabhakaran U, Beale R G and Godley M H R 2011 Analysis of scaffolds with connections containing looseness Computers and Structures 89 pp 1944–55 DOI: 10.1016/j.compstruc.2011.03.016
[6] Crick D and Grondin G Y 2008 Monitoring and Analysis of a Temporary Grandstand Structural Engineering Report No. 275 (Edmonton: Department of Civil& Environmental Engineering of University of Alberta) pp 48-98
[7] ISO 10137:2007(E): International standard, Bases for design of structures — Serviceability of buildings and walkways against vibrations, 112-113 (2010).
[8] Bryan E R 1973 The stressed skin design of steel buildings pp 24-26
[9] Hertle Robert 2009 Gerustbau – Stabilitat und statischkonstruktive Aspekte. Stahlbau kalender pp 36-38
[10] General Building Authority Approval Z-8.22-64: 2012 Layher Allround Scaffolding Modular System Allround Steel (Berlin: German Civil Engineering Institute) pp 45-46
[11] Loss Cristiano and Frangi Andrea 2017 Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms Engineering Structures 25-27 DOI: 10.1016/j.engstruct.2017.02.032
[12] Li E, Ferreiro J B 2002 A note on the global stability of generalized difference equations Appl. Math. Lett. 15 pp 655-659
[13] Dougill J W, Blakeborough, A and Cooper P 2008 Dynamic performance requirements for permanent grandstands subject to crowd action The Institution of Structural Engineers 22
[14] Valkisfran Lira de Brito and Leal Roberto 2009 Pimentel Cases of Collapse of Demountable Grandstands Journal of performance of constructed facilities 151–159
[15] Udpin S and Niamsup P 2009 New discrete type inequalities and global stability of nonlinear difference equations Appl. Math. Lett. 22 pp 856-859 DOI: 10.1016/j.aml.2008.07.011
[16] Valkisfran Lira de Brito, Pena, Andrea Nataly, Pimentel, Roberto Leal and José Luis Vital de Brito 2014 Modal Tests and Model Updating for Vibration Analysis of Temporary Grandstand (Brazil: Department of Civil and Environmental Engineering) pp 721 – 734
[17] Ellis B R, Littler T Ji, J D 2001 The response of grandstands to dynamic crowd loads Institution of Civil Engineers pp 355–365
[18] Chen Jun Wang, Jinping Brownjohn, James M W 2017 Power Spectral-Density Model for Pedestrian Walking Load Journal of Structural Engineering 13 DOI: 10.1061/(ASCE)ST.1943-541X.0002248
[19] Pemica G 1990 Dynamic load factors for pedestrian movements and rhythmic exercises (Canada: Ottawa, Institute for Research in Construction National Research Council of Canada) pp 3-18
[20] Jian Yuan, Lin He and Feng Fan 2014 Dynamic modeling and vibration analysis of temporary grandstand due to crowd-jumping loads School of Civil Engineering pp 1051-57