Building Soft-Employability Skills (SES-KIT): Reliability, Face Validity and Content Validity Testing

Sarah Nadiah Rashidi, Faizah binti Abd Majid, Hamimah Hashim

To Link this Article: http://dx.doi.org/10.6007/IJARPED/v11-i3/14546
DOI:10.6007/IJARPED/v11-i3/14546

Received: 18 June 2022, Revised: 20 July 2022, Accepted: 30 July 2022

Published Online: 15 August 2022

In-Text Citation: (Rashidi et al., 2022)
To Cite this Article: Rashidi, S. N., Majid, F. A., & Hashim, H. (2022). Building Soft-Employability Skills (SES-KIT): Reliability, Face Validity and Content Validity Testing. International Journal of Academic Research in Progressive Education and Development, 11(3), 638–649.

Copyright: © 2022 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licenses/by/4.0/legalcode
Building Soft-Employability Skills (SES-KIT): Reliability, Face Validity and Content Validity Testing

Sarah Nadiah Rashidi¹, Faizah binti Abd Majid², Hamimah Hashim³

¹Universiti Kuala Lumpur Malaysian Institute of Marine Engineering Technology, UniKL MIMET, 32200 Lumut, Perak, Malaysia, ²,³Faculty of Education, Universiti Teknologi MARA, UiTM Puncak Alam Campus, 42300 Puncak Alam, Selangor, Malaysia
Email: faiza404@uitm.edu.my hamimahh@uitm.edu.my
Corresponding Author’ Email: sarahnadiah@unikl.edu.my

Abstract
The aim of this paper is to design and validate a survey instrument known as Soft-Employability Skills Kit (SES-KIT) and to assess its reliability among Technical and Vocation Education Training (TVET) students. Through literature review, soft skills are found to be essential factors in employability among TVET graduates. The development of a contemporary instrument to measure students’ soft skills is necessary to promote awareness of the latest employability skills frameworks. SES-KIT was derived based on a mapping of eight employability skills frameworks and the top ten skills in the 21st century skills (World Economic Forum, 2020). Thirty-nine respondents from a TVET institution were included in this pilot study to measure reliability value and five experts were appointed to validate face and content validity. SES-KIT obtained a high reliability score of Cronbach alpha 0.961 and a good scale content validity index (S-CVI/Ave) value of 0.91. The next step of the research is to test this instrument to a larger scale of respondents.

Keywords: Content Validity Index, Reliability Test, Employability Skills

Introduction
The issue of unemployment is a continuous topic as it revolves around dynamic changes from time to time. Intended to reduce unemployment rate, TVET was introduced in the Malaysian Eleventh Plan. However, the TVET industry faces some challenges. Industry Revolution 4.0 and Covid-19 endemic have driven some changes in the structure of employability skills. Even for highly technical-based programs like TVET, soft skills have become essential credentials in landing jobs (Abdul Karim & Maat, 2019; Sheh et al., 2020). Students must be aware and informed of the revolution of soft-employability skills to be competitive in the job market.

The term employability skills are used differently in different countries. Some known terms are core skills, essential skills, generic skills, transferable skills, key qualifications (NCVER, 2003). Despite the variations, this paper will adapt the term employability skills as it...
is the preferred term by the industry (Allen Consulting Group Report, 2006) and most of the studies in Malaysian context. The researcher coined the term ‘soft-employability skills’ to distinctly highlight the focus of the instrument, which is soft skills.

The building of SES-KIT as an instrument is timely as it aims at providing students with the recent soft skills requirement based on relevant employability skills frameworks. According to Henry et al (2005), fast growth of economy and technology leads to dynamic and flexible career opportunities. The goal in creating SES-KIT is not only to cater TVET students for the discipline-specific industry, but to help them be aware of the skills needed should they venture into other career prospects. Hence, this paper aims to:

- design and validate a survey instrument known as Soft-Employability Skills Kit (SES-KIT) and to assess its reliability among Technical and Vocation Education Training (TVET) students
- In addition, the instrument will provide an opportunity for students to assess and make visible their soft skills. Longley and Kensington (2019) stressed that students should be able to ‘see’ their soft skills. An instrument like SES-KIT will enable them to assess and articulate their employability skills. As Rust (2016) mentioned, assessing oneself is crucial to employability as it allows students to describe their strengths and weaknesses. In a recent study, Scott and Willison (2021) echoes the sentiment by reporting that graduates who are more reflective are likely to be more sought after.

Development of the Instrument

There are three stages involved in building the SES-KIT instrument. The first stage was to analyse four employability skills frameworks from four countries that were formed as their national policies. The second stage was to examine four engineering employability skills frameworks established by accreditation bodies in four countries. These eight employability skills frameworks were selected from the United States, United Kingdom, Australia and Malaysia because these countries were registered under the Sydney Accord, an international agreement body for accrediting TVET programmes. Table 1 lists the eight employability skills frameworks used in developing SES-KIT instrument.

National Standards	States	United Kingdom	Australia	Malaysia
Employability Skills Framework	Secretary Commission on Achieving Necessary Skills (SCANS)	Qualification and Curriculum Authority (QCA) Key skills	The National Quality Council Employability Skills Framework	Ministry of Higher Education Soft Skills
Accreditation bodies for engineering technology	Accreditation Board for Engineering and Technology (ABET)	Engineering Council United Kingdom (ECUK)	Engineers Australia (EA)	Board of Engineers Malaysia (BEM)

Table 1

List of accreditation bodies and national standards employability frameworks
The summary of comparison between the eight frameworks is presented in Table 2. The table reveals six common skills across all the employability frameworks in the selected countries. The most mentioned skill is ‘teamwork’, followed by ‘communication’, ‘lifelong learning’ and ‘professional ethics’ with equal frequency. Although not cited in the engineering employability frameworks, the researcher decided to include ‘critical thinking and problem-solving’ into the SES-KIT instrument as this skill was mentioned in all national employability skills frameworks. Since the focus of this instrument is to create awareness and thus encourage the students to reflect on their employability skills for future flexible career opportunities, ‘entrepreneurship’ was included in the list of soft-employability skills as it applies to Australian and Malaysian contexts. ‘Leadership’ on the other hand was included under the construct of ‘teamwork’ as the characteristics of leadership were parallel to ‘teamwork’.

The third stage was to map the common employability skills frameworks found in the first two stages to 21st century skills as reported in (The Future of Jobs, World Economic Forum, 2020). Table 3 presents the mapping of the six employability skills to the top ten 21st century skills. It is found that most of the skills listed in the World Economic Forum (2020) completed the six employability skills reviewed in Stage 1 and Stage 2.
Table 3
Mapping of employability skills to 21st century skills

Top Ten 21st century skills	Employability Skills
	Communication (n)
Analytical thinking and innovation	x
Active learning and learning strategy	x
Complex problem-solving	x
Critical thinking and analysis	x
Creativity, originality and initiative	x x x x x
Leadership and social influence	x x x x x
Technology use, monitoring and control	
Technology design and programming	
Resilience, stress tolerance and flexibility	x
Reasoning, problem-solving and ideation	x x x x x

Methodology
To design and validate SES-KIT as a survey instrument, this research measured its reliability and validity. After extensive, systematic literature review, 88 items were generated into a questionnaire to represent six employability skills. Initially composed in English language, these items were then translated into Malay language to ensure absolute understanding among the respondents. Harkness (2006) stressed the importance of translation to accommodate a population that practice multiple languages.

Face Validity and Content Validity
Validation of survey instrument is a crucial step in research (Elangovan & Sundaravel, 2021). This paper adapted a systematic approach to measure content validity as introduced by Yusoff (2019). The approach includes 6 steps: a) preparing content validation form, b) selecting a review of panel of experts, c) conducting content validation, d) reviewing domain and items, e) providing score on each item and f) calculating Content Validity Index (CVI).

The researcher prepared the content validation form by explaining in detail what is expected from the experts. Figure 1 shows example of instructions and the rating scale used to allow experts to judge the relevance of the items while Figure 2 shows an example of layout for content validation form consisting of definition of domain and items that represent the domain. A special column on the far right was created to enable the experts to give their personal feedback for face validity.
For content validation, Yusoff (2019) reviewed that the minimum acceptable expert number is two and the maximum is ten. To validate the face validity and content validity of this survey instrument, five experts were selected by the researcher based on their experience. Three experts consist of former Deans and Deputy Dean of Student Development and Campus Lifestyle from two TVET campuses were appointed to assess the content validity of the instrument. Their expertise in the TVET industry and students’ development programmes are essential in validating the items in the instrument. Another two experts (senior lecturers) were selected from the Faculty of Education, UiTM Puncak Alam for their in-depth knowledge in educational management and human development. Their decades of experience and knowledge teaching and developing modules for human development and classroom management will be beneficial to validate both face validity and content validity of the instrument.

Martinez (2017) defined face validity as a measure of items ‘on its face’, whether they are visibly relevant to the concept involved. Face validity requires experts to provide personal feedback of the presentation, relevance and clarity of the intended instrument. Hence, the researcher had requested the experts to validate the face validity of SES-KIT by providing subjective assessments towards criteria as suggested by (Oluwatayo, 2012)

- the clarity and unambiguity of items
- appropriateness of difficulty level for the respondents
- correct spelling of difficult words
- adequacy of instructions in the instrument
- the structure of the instrument in terms of construction and well-thought-out format
Oluwatayo (2012) defined content validity as a concept that stresses on the extent to which the instrument of measurement shows evidence of fairly and comprehensive coverage of the domain of items that it intends to cover. The content validity is represented by the Content Validity Index (CVI). CVI can be calculated using the Item-level content validity index (I-CVI) and Scale-level content validity index based on the average (S-CVI/Ave) (Yusuff, 2019; Rodrigues et al., 2016). The acceptable value for I-CVI is >0.79 while S-CVI/Ave value is ≥ 0.9 (Zamanzadeh et al., 2015).

Reliability
For reliability, this paper conducted a pilot study towards 39 respondents consisting of final year students in a local TVET university. The researcher conducted the pilot study through several GoogleMeet sessions since the nation was in lockdown mode due to Covid-19. Respondents were guided throughout the session. Bowling (2009) suggested that the testing of reliability through internal consistency measure to which extent do the items relate to a specific dimension. The pilot study attempts to measure the Cronbach Alpha value to determine the internal consistency. As reported by Oluwatayo (2012), Cronbach Alpha is one of the most widely used statistical tools to measure reliability in educational research. The acceptable Cronbach Alpha value to reflect good reliability should be ≥ 0.70 (Hair et al., 2010)

Results
The summary of face validity is shown in Table 4. It is vital for the researcher to investigate the following comments made by experts by comparing the result to content validity values before finalising which items will be rephrased, rearranged, or removed. Hence, Table 5 shows the I-CVI and S-CVI value for content validity of the instrument. Since there were 88 items, Table 5 only presents items with I-CVI value below 1. There were 10 items with I-CVI value below >0.79 and 14 items with I-CVI value within the range of 1>x >0.79. The S-CVI value of the instrument is 0.92.

Table 4
Summary of comments for face validity

Criteria	Comments	Expert panels
Clarity and unambiguity of items	Split or retain double-barreled items (B1, B3)	3
	Rephrase or remove unclear items (B8, B14, B23, B38, B50, B53, B79)	1, 3, 5
Appropriateness of difficulty level for the respondents	Rephrase or remove difficult items (B11, B62, B63, B64, B67, B68)	1, 2, 4, 5
Correct spelling of difficult words	None	Nil
Adequacy of instructions in the instrument	None	Nil
The structure of the instrument in terms of construction and well-thought-out format	Change scale format from *Strongly agree-Strongly disagree* to *Very true of me-Not true of me at all*	1
Items will be modified after comparing the results of face validity and content validity to reliability. As seen in Figure 3, the Cronbach Alpha value for all 88 items is 0.972. In the discussion section, the researcher will compare this Cronbach Alpha value to a new Cronbach Alpha value after removing certain items.

Reliability Statistics
Cronbach's Alpha Based on Standardized Items N of Items
Cronbach's Alpha

Fig. 3 Cronbach Alpha value with 88 items
Table 5

I-CVI and S-CVI value

Item	Expert 1	Expert 2	Expert 3	Expert 4	Expert 5	Experts in Agreement	I-CVI	UA
Q9	1	1	1	0	1	4	0.8	0
Q10	1	1	1	0	1	4	0.8	0
Q14	1	1	1	1	0	4	0.8	0
Q15	1	1	1	0	1	4	0.8	0
Q18	1	1	1	0	1	3	0.6	0
Q19	1	1	1	0	1	4	0.8	0
Q23	0	1	1	1	1	4	0.8	0
Q25	1	1	1	0	0	3	0.6	0
Q32	1	1	1	1	0	3	0.6	0
Q50	1	1	1	1	1	4	0.8	0
Q53	1	1	1	0	0	4	0.8	0
Q57	1	1	1	0	1	4	0.8	0
Q58	1	0	1	1	0	3	0.6	0
Q60	1	0	1	1	0	3	0.6	0
Q61	1	0	1	1	1	4	0.8	0
Q62	1	0	1	1	1	4	0.8	0
Q63	1	0	1	1	0	3	0.6	0
Q64	1	0	1	1	0	3	0.6	0
Q65	1	0	1	1	0	3	0.6	0
Q67	1	1	1	0	1	4	0.8	0
Q79	1	1	1	0	1	3	0.6	0
Q82	1	1	0	1	0	3	0.6	0
Q88	1	1	1	1	0	4	0.8	0

S-CVI/Ave 0.92

Propotion relevance	0.98	0.92	0.98	0.90	0.84	S-CVI/ UA 0.73
Average proportion of items judged as relevance across the five experts	0.92					

Discussion

After analysing the I-CVI value and comments given by experts, 20 items were removed from the initial instrument. Since the acceptable value of I-CVI is >0.79 (Zamanzadeh et al., 2015), ten items with value lower than that were removed (B18, B32, B35, B58, B60, B61, B64, B65, B79, B82). Items with score between the range of 1>x>0.79 were reviewed. As a result, eight more items with I-CVI value 0.8 were removed (B10, B14, B23, B50, B53, B62, B63, B67). The research considered the comments by the experts and decided to remove Q8 and Q38 although it has a score of 1 because two of the experts criticized that there was a redundancy for its face validity.

However, no changes were made to B1 and B3 although one expert suggested for the item to be split into two items. The first reason is because 4 other experts did not see the need to do so, and second, the items consist of adjoining verbs like ‘listen and understand’ and ‘read and interpret’. Table 6 provides the example of B1 and B3.
Table 6
Review of Q1 and Q3

Items	Remark
B1 I am able to listen and understand work instructions	‘listen and understand’ is a complementary action.
B3 I am able to read and interpret work place related documentation	‘read and interpret’ is a complimentary action.

A total of 20 items were removed from the initial items generated for the SES-KIT instrument. A second reliability test was conducted to measure the Cronbach Alpha after the deletion to ensure that its internal consistency score is still good, if not acceptable. Figure 4 shows that the reliability value is still high, with a score of 0.961.

Reliability Statistics

Cronbach’s Alpha	Cronbach’s Alpha Based on Standardized Items	N of Items
0.961	0.963	68

Fig. 4 Cronbach Alpha value with 68 items

Table 7 describes the comparison of Cronbach Alpha values for six types of employability skills, before and after items deletion. As presented, the values of each construct are still good even after the deletion of 20 items. Hence, the researcher decided to retain the items from 88 to 68 items.

Table 7
Comparison of Cronbach Alpha value before and after deletion of items

Employability skills	Cronbach Alpha value before deletion	Cronbach Alpha value after deletion
Communication skills	0.905	0.883
Teamwork	0.865	0.815
Critical thinking and problem-solving	0.931	0.923
Lifelong learning	0.9	0.87
Professional ethics	0.891	0.765
Entrepreneurship	0.947	0.937

Conclusion

This aim of this paper is to design and validate a survey instrument known as Soft-Employability Skills Kit (SES-KIT). Six types of employability skills identified including communication skills, teamwork, critical thinking and problem-solving, lifelong learning, professional ethics, and entrepreneurship. Initially, 88 items were created as a result from extensive literature review on multiple employability frameworks. The items were then included into a content validation form before being distributed to five experts for face and content validity. Calculation of CVI and S-CVI/Ave were computed after recording the I-CVI scores. Once the items were deliberated based on its face validity and content validity, 20 items were removed. It can be summarised that the values of I-CVI and S-CVI/Ave were strong. Concurrently, the instrument was given to 39 students for a pilot study. The reliability test was
conducted by evaluating the Cronbach Alpha value. A highly reliable value of 0.961 was recorded for the internal consistency. This proved that SES-KIT was able to measure the employability skills of students. The researcher intends to examine the instrument to a larger sample to test its exploratory factor analysis.

References
Abdul Karim, Z. I., & Maat, S. M. (2019). Employability Skills Model for Engineering Technology Students. Journal of Technical Education and Training, 11(2). https://doi.org/10.30880/jtet.2019.11.02.008

Bowling, A. (2009). Research methods in health: Investigative Health and Health Services (3rd ed.). New York: McGraw-Hill. 162—176.

Elangovan, N., & Sundaravel, E. (2021). Method of preparing a document for survey instrument validation by experts. MethodsX, 8, 101326. https://doi.org/10.1016/j.mex.2021.101326

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010) Multivariate Data Analysis. 7th Edition, Pearson, New York.

Harkness, J. A. (2006) Round 3 ESS translation guidelines. ESS document.

Henry, C., Hill, F., & Leitch, C. (2005). Entrepreneurship education and training: can entrepreneurship be taught? Part I. Education + Training, 47(2), 98–111. https://doi.org/10.1108/00400910510586524

Longley, A., & Kensington-Miller, B. (2019). Visibilising the invisible: three narrative accounts evoking unassessed graduate attributes in dance education. Research in Dance Education, 21(1), 18–33. https://doi.org/10.1080/14647893.2019.1644616

Malaysian Qualifications Agency (2017), Malaysian Qualifications Framework. 2nd Edition. Petaling Jaya, Malaysia. https://www.mqa.gov.my/pv4/document/mqf/2021/MQF%20Ed%202%202019%20updated%2017022021.pdf

Martinez, L. S. in M. Allen. Validity, Face and Content. (2017). The SAGE Encyclopedia of Communication Research Methods. https://doi.org/10.4135/9781483381411.n651

NCVER National Centre for Vocational Education Research (2003). Defining generic skills: At a glance. NCVER Adelaide. https://www.ncver.edu.au/__data/assets/file/0020/4457/ nr2102b.pdf

Oluwatayo, J. A. (2012). Validity and Reliability Issues in Educational Research. Journal of Educational and Social Research, 2(2), 391. Retrieved from https://www.richtmann.org/journal/index.php/jers/article/view/11851

Qualifications and Curriculum Authority (QCA). (2004). The key skills qualification standards and guidance. (London: QCA). https://dera.ioe.ac.uk/4981/1/8929_qca04_1294.pdf

Rodrigues, I. B., Armstrong, J. J., Adachi, J. D., & MacDermid, J. C. (2016). Facilitators and barriers to exercise adherence in patients with osteopenia and osteoporosis: a systematic review. Osteoporosis International, 28(3), 735–745. https://doi.org/10.1007/s00198-016-3793-2

Rust, C. (2016). Shifting the focus from skills to graduateness. Phoenix. 148, 8-10

Scott, F. J., & Willison, D. (2021). Students’ reflections on an employability skills provision. Journal of Further and Higher Education, 45(8), 1118–1133. https://doi.org/10.1080/0309877x.2021.1928025

Sheh, Y. S., Hanapi, Z., Mustapha, R., & Kiong, T. T. (2020). Soft Skills Among Hearing Impaired Graduates for Sustainability and Well-Being in Workplace. International Journal of
Academic Research in Business and Social Sciences, 10(5). https://doi.org/10.6007/ijarbss/v10-i5/7187

World Economic Forum. (2020). The future of jobs: Emerging and declining skills. World Economic Forum, Geneva. https://www3.weforum.org/docs/WEF_Future_of_Jobs_2020.pdf

Yusoff, M. S. B. (2019). ABC of Content Validation and Content Validity Index Calculation. Education in Medicine Journal, 11(2), 49–54. https://doi.org/10.21315/eimj2019.11.2.6

Zamanzadeh, V., Ghahramanian, A., Rassouli, M., Abbaszadeh, A., Alavi-Majd, H., & Nikanfar, A. R. (2015). Design and Implementation Content Validity Study: Development of an instrument for measuring Patient-Centered Communication. Journal of Caring Sciences, 4(2), 165–178. https://doi.org/10.15171/jcs.2015.017