phenytoin were given. In addition to saline bolus, noradrenaline infusion for hypotension was started and carefully titrated. Blood gas analysis showed respiratory and metabolic acidosis. The hemogram on admission showed hemoglobin 9.5 g/dL, platelet count 173×10^9/L; and total leucocyte counts 7.2×10^9/L (neutrophils, 76.7%). Liver function tests and renal function tests, coagulation profile and blood glucose were normal. C-reactive protein (CRP) was elevated 36.4 mg/L. Chest X-ray showed left upper lobe collapse and bilateral opacities. The National poison information centre was consulted and showed left upper lobe collapse and bilateral opacities. The patient ingested 30 mg/kg of ivermectin, which was almost 100 times the recommended dose. Usually, a single oral dose of 150 to 300 mcg/kg is recommended, and 200 mcg/kg in scabies [4,5]. We suspected ivermectin poisoning due to the history, since encephalopathy and coma are well-documented side effects of ivermectin treatment in animals, and after ruling out other usual causes of coma. Severe neurological toxicities have been reported in public health programs in Africa, possibly due to concomitant infestations with high densities of loa loa, genetic predisposition, and co-infections [1,6]. Additional intake of drugs that inhibit CYP3A4 and polymorphisms in the mdr-1 gene could also result in toxicity [1]. A recent case report of ivermectin taken in recommended dose, by a 13-year-old child, attributed the resulting neuro-toxicity, to human ABCB1 nonsense mutations, which had led to loss of the neurological protective ABCB1 activity [3].

In our patient, despite there being no specific antidote, vigorous monitoring, and supportive critical care treatment proved to be lifesaving.

REFERENCES

1. Chandler RE. Serious neurological adverse events after ivermectin: Do they occur beyond the indication of onchocerciasis? Am J Trop Med Hyg. 2018;98:382-88.
2. Caly L, Druce JD, Catton MG, et al. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.
3. Baudou E, Lespine A, Durrieu G, et al. Serious Ivermectin toxicity and human ABCB1 nonsense mutations. N Engl J Med. 2020;383:787-89.
4. Jans DA, Wagstaff KM. The broad spectrum host-directed agent ivermectin as an antiviral for SARS-CoV-2? Biochem Biophys Res Comm. 2021;538:163-72.
5. González Canga A, Sahagún Prieto AM, Diez Liébana MJ, et al. The pharmacokinetics and interactions of ivermectin in humans--A mini-review. AAPS J. 2008;10:42-6.
6. Boussinesq M, Gardon J, Gardon-Wendel N, Chippaux JP. Clinical picture, epidemiology and outcome of Loa-associated serious adverse events related to mass ivermectin treatment of onchocerciasis in Cameroon. Filaria J. 2003;2:54.

Multisystem Inflammatory Syndrome in Children Related to COVID-19 With Urticarial Vasculitis – A Double Whammy!

There is still a dearth of data of the involvement of skin in the coronavirus disease 2019 (COVID-19), especially in pediatric patients. Herein, we describe the report of a child with COVID-19 related multisystem inflammatory syndrome in children (MIS-C), who developed hypocomplementemic urticarial vasculitis syndrome (HUVS) after recovery.
Erythrocyte sedimentation rate (21 mm first hour reading) and C-reactive protein (19 mg/dL) were raised.

High resolution computed tomography (HRCT) showed ground glass opacities in <20% of both lungs. A diagnosis of MIS-C was made. Intravenous steroids and blood transfusion were given and ceftriaxone was administered, along with oxygen. Fever and other manifestations subsided in 14 days. However, the urticarial rash kept recurring even after 6 weeks on-and-off treatment with antihistaminics, raising the suspicion of chronic urticaria. Investigations to rule out possible causes of chronic urticaria revealed low complement levels, viz., C3 (30 mg/dL), C4 (6 mg/dL), CH50 (13 U/mL) and C1q (4.1 mg/dL), and persistent hypoalbuminemia. Histopathological analysis demonstrated superficial and deep perivascular and interstitial infiltrates, small blood vessel wall degeneration and a leukocytoclasis (Fig. 2).

Significant family history compatible with autoimmune diseases included a maternal grandmother with vitiligo and bullous pemphigoid, as well as hypothyroidism in mother. The child was diagnosed with hypocomplementemic urticarial vasculitis syndrome (HUUVS). The child has been prescribed oral hydroxyzine hydrochloride and 4 mg monteleukast daily. Although, the child still develops flares, they are relieved on a temporary basis by a short course of oral steroids.

It has been established that COVID-19 infection can cause delayed hypersensitivity reaction, which can trigger MIS-C and vasculitis in recovering patients [1-3]. We hypothesize that the viral infection can potentially trigger complement deficiency and urticarial vasculitis, as seen in our case. Although our patient is currently not exhibiting any signs of an extracutaneous involvement, his presentation requires close monitoring. Clinicians need to be aware of COVID-19 as a potential cause for such presentation in children.

ALPANA MOHTA,* RAJESH DUTT MEHTA, BHIKAM CHAND GHIYA
Department of Dermatology, Venereology and Leprosy, Sardar Patel Medical College, Bikaner, Rajasthan.
*dralpanamohta10@gmail.com

REFERENCES
1. Becker RC. COVID-19-associated vasculitis and vasculopathy. J Thromb Thrombolysis. 2020;50:499-511.
2. Camprodon Gómez M, González-Cruz C, Ferrer B, Barberá MJ. Leucocytoclastic vasculitis in a patient with COVID-19 with positive SARS-CoV-2 PCR in skin biopsy. BMJ Case Rep. 2020;13:e238059.
3. Jain S, Sen S, Lakshmivennakeshiah S, Bobhate P, et al. Multi-system inflammatory syndrome in children with COVID-19 in Mumbai, India. Indian Pediatr. 2020;57:1015-9.