Meta-imputation of transcriptome from genotypes across multiple datasets using summary-level data

Andrew Liu*, Hyun Min Kang*

1Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America

* Contact: aeyliu@umich.edu (AL), hmkang@umich.edu (HK)
Abstract

Transcriptome wide association studies (TWAS) can be used as a powerful method to identify and interpret the underlying biological mechanisms behind GWAS by mapping gene expression levels with phenotypes. In TWAS, gene expression is often imputed from individual-level genotypes of regulatory variants identified from external resources, such as Genotype-Tissue Expression (GTEx) Project. In this setting, a straightforward approach to impute expression levels of a specific tissue is to use the model trained from the same tissue type. When multiple tissues are available for the same subjects, it has been demonstrated that training imputation models from multiple tissue types improves the accuracy because of shared eQTLs between the tissues and increase in effective sample size. However, existing joint-tissue methods require access of genotype and expression data across all tissues. Moreover, they cannot leverage the abundance of various expression datasets across various tissues for non-overlapping individuals.

Here, we explore the optimal way to combine imputed levels across training models from multiple tissues and datasets in a flexible manner using summary-level data. Our proposed method (SWAM) combines arbitrary number of transcriptome imputation models to linearly optimize the imputation accuracy given a target tissue. By integrating models across tissues and/or individuals, SWAM can improve the accuracy of transcriptome imputation or to improve power to TWAS without having to access each individual-level dataset. To evaluate the accuracy of SWAM, we combined 49 tissue-specific gene expression imputation models from the GTEx Project as well as from a large eQTL study of Depression Susceptibility Genes and Networks (DGN) Project and tested imputation accuracy in GEUVADIS lymphoblast cell lines samples. We
also extend our meta-imputation method to meta-TWAS to leverage multiple tissues in TWAS analysis with summary-level statistics. Our results capitalize on the importance of integrating multiple tissues to unravel regulatory impacts of genetic variants on complex traits.

Author Summary

The gene expression levels within a cell are affected by various factors, including DNA variation, cell type, cellular microenvironment, disease status, and other environmental factors surrounding the individual. The genetic component of gene expression is known to explain a substantial fraction of transcriptional variation among individuals and can be imputed from genotypes in a tissue-specific manner, by training from population-scale transcriptomic profiles designed to identify expression quantitative loci (eQTLs). Imputing gene expression levels is shown to help understand the genetic basis of human disease through Transcriptome-wide association analysis (TWAS) and Mendelian Randomization (MR).

However, it has been unclear how to integrate multiple imputation models trained from individual datasets to maximize their accuracy without having to access individual genotypes and expression levels that are often protected for privacy concerns. We developed SWAM (Smartly Weighted Averaging across Multiple datasets), a meta-imputation framework which can accurately impute gene expression levels from genotypes by integrating multiple imputation models without requiring individual-level data. Our method examines the similarity or differences between resources and borrowing information most relevant to the tissue of interest. We demonstrate that SWAM outperforms existing single-tissue and multi-tissue
imputation models and continue to increase accuracy when integrating additional imputation models.

Introduction

Genome wide association studies (GWAS) have been able to identify numerous associations between genetic variants and complex traits. However, interpreting the biological mechanisms underlying the association signals remains a challenge [1]. Recently, studies involving gene expression have become increasingly popular as a means to provide biologically meaningful insight into statistical associations [2,3]. Transcriptome-wide association studies (TWAS) is a widely used method to translate GWAS association signals into more interpretable units by examining the association between phenotypes and gene expression levels imputed from genotypes. Associations identified from TWAS can be interpreted as potentially causal relationships between the traits and the genes through gene regulation [4–6]. While TWAS may not detect associations driven by functional mechanisms irrelevant to gene regulation, it increases the specificity and interpretability in identifying GWAS signals driven by gene regulation. Imputed gene expression can be utilized in various contexts of association analysis beyond TWAS, such as Mendelian randomization [7,8] or estimation of trait heritability attributable to cis-eQTLs [9]. Since genotype data from DNA is far easier and cheaper to obtain than expression data from tissues, TWAS based on imputed expression offers excellent augmentation to study the genetic component of gene regulation in addition to RNA-seq-based studies.
The first-generation methods to impute gene expression levels from genotypes train the model from a single-tissue dataset comprising of many individuals with both genotypes and expression profiles [2,3]. For example, a widely-used method PrediXcan [2] uses Elastic net regularization to identify cis-eQTLs (expression quantitative loci) to train the model to impute gene expressions from genotypes. Other methods, such as TWAS [3], employ different regularization but typically produces a linear model to impute gene expressions as a weighted sum of cis-eQTL genotypes. Imputation models are trained using these methods from various population-scale transcriptomic datasets, such as the Genotype-Tissue Expression (GTEx) project [9,10], Depression Genes and Network (DGN) study [11], and The Cancer Genome Atlas (TCGA) [12], and these models are made available in public repository such as predictDB (http://predictdb.org/) or FUSION (http://gusevlab.org/projects/fusion/) so that expression imputation or TWAS can be performed from any genotyped individuals.

Although these first-generation methods for transcriptome imputation have been quite useful, they have limited accuracy mostly due to limited sample size in the training datasets where both genome-wide genotypes and transcriptome-wide expression levels are available. While millions of individuals have been genotyped or sequenced to date [13–16], the sample-size of current population-scale transcriptome data are typically limited only to hundreds or thousands [17] (with the largest study cohort having around 30k participants [18]), primarily due to the difficulty in collecting high quality tissues (other than whole blood) from living donors. Moreover, transcriptomic datasets are prone to potential batch effects between studies [19–22], making it difficult to integrate across multiple datasets to build a large and harmonized resource to be trained from. Furthermore, there are hundreds or thousands of
different types of tissues or cells, requiring orders of magnitude larger effort to comprehensively profiles transcriptomes in population-scale across tissues, as in GTEx Project.

Recently, methods to address the shortcomings of the first-generation methods have been developed. When transcriptomic profiles are available across many tissues, such as in GTEx Project, transcriptome imputation can improve by leveraging the shared genetic components across tissues. Even though each tissue represents a unique transcriptomic profile, a large fraction of eQTLs are shared across tissues [23], and the availability of multiple expression measurements across tissues can help more precisely identify the shared eQTLs, which in turn can improve the imputation accuracy. For example, UTMOST trains a transcriptome imputation model simultaneously across all tissues using a combination of L1 and L2 penalization across markers and tissues, respectively [24]. Another multi-tissue approach, MultiXcan, does not impute transcriptomes, but performs a multi-tissue TWAS across all tissues by including each tissue-specific imputed expression as a predictor variable to improve power to identify association between a trait and a gene, in which the underlying mechanism potentially involves multiple tissues or cell types [25].

Even though UTMOST substantially improves the accuracy of transcriptome imputation, it assumes that expression measurements across multiple tissues are available for overlapping set of genotypes individuals for training imputation models. While this assumption can be met when training from the GTEx dataset (assuming granted access to the individual-level data), it may not be realistic in other circumstances where expression measurements are available for non-overlapping individuals (such as in TCGA), or it is infeasible to obtain individual-level genotypes and expression data due to limited access privilege. As population-scale
transcriptomic resources are rapidly increasing, it should be possible in principle to integrate these resources to better impute transcriptomes. While there have been additional methods which have been developed to increase the accuracy of gene expression or TWAS [25–28], none of them – to the best of our knowledge – are able to perform “meta-imputation”, which systematically integrates multiple imputation models without the need to access to individual-level data.

Here we propose Smartly Weighted Averaging across Multiple datasets (SWAM), a multi-tissue transcriptome imputation method based on a flexible meta-analysis across multiple imputation models. Unlike UTMOST, SWAM does not require access to all genotypes and expression datasets for training its imputation model. Instead, it takes individual transcriptome imputation models trained from individual tissues while optimizing the expected imputation accuracy for a target tissue. Moreover, it can seamlessly integrate imputation models trained from multiple datasets comprising of different individuals and tissues. As a result, SWAM can integrate across hundreds of imputation models across GTEx, DGN, and TCGA projects without requiring all individual-level data to substantially improve the imputation accuracy over existing methods, as we demonstrate with GEUVADIS data. Moreover, we demonstrate that SWAM improves the power of TWAS over single-tissue methods and many alternative multi-tissue methods.
Results

Smartly Weighted Averaging across Multiple Datasets (SWAM)

We propose Smartly Weighted Averaging across Multiple datasets (SWAM), a method that provides a flexible framework to impute tissue-specific expression by integrating single-tissue imputation models across many tissues and datasets (Figure 5). The key principle behind SWAM is to improve the accuracy of transcriptomic imputation by determining the optimal linear combination of multiple imputation models in terms of expected imputation accuracy. To do this, SWAM requires a reference tissue (tissue of interest) to be defined as a basis to determine the relative contributions from multiple imputation models. Using the individual-level genotypes and expression of only the reference tissue, SWAM integrates imputation models trained from different tissues and datasets (e.g. GTEx, DGN, and TCGA) without requiring individual-level data except for the reference tissue.

The first step of SWAM is to apply each transcriptomic imputation model to the reference genotypes, which results in individual-level, tissue-specific imputed expression. The second step of SWAM compares each imputed expression with the measured expression of the reference tissue to calculate optimal weights by linearly combining multiple imputation models to maximize expected mean squared error (MSE) (see Methods for the details). The output of second step is an integrated transcriptomic imputation model compatible with the PrediXcan and MetaXcan software tools. Using this SWAM model, we can impute the transcriptome of any samples of interest with genotype information available (via PrediXcan), or to use the model and covariance matrix directly to perform TWAS (via MetaXcan) when GWAS summary statistics are available (S1 Fig).
Simulation study demonstrates the robustness of SWAM across various scenarios

We performed simulation studies to evaluate SWAM’s ability to robustly impute expression by leveraging tissue-specific and cross-tissue components across a wide spectrum of parameter settings. To do this, we independently simulated multi-tissue expression levels along with genotype data for both our training and validation sets (see Materials and Methods). We compared SWAM with two heuristic approaches – naïve average, which equally weights individual tissue and best tissue, which only uses the tissue with the highest expected imputation accuracy – as well as with single-tissue imputation.

As expected, we observed naïve average to be particularly powerful when the causal variants are shared across all relevant tissues (Figure 6A), identifying 94% of genes as significantly imputable at FDR < 0.05. When all causal variants were tissue-specific, the naïve average only identified 25% of genes to be imputable. On the other hand, best-tissue was more powerful (38%) than naïve-average when the all causal variants were tissue-specific, but worse when all causal variants are shared. When only single-tissue was used for imputation, the performance stayed similar regardless of the tissue-specificity. Encouragingly, SWAM outperformed all three methods across all ranges of tissue-specific and cross-tissue heritability settings. We believe this is because SWAM learns tissue-specific weights without pre-conceptions of tissue relatedness, and thus determines the weights for relevant tissues while ignoring unrelated ones.

A similar trend is observed when we vary the number of relevant tissues that shares cross-tissue heritability (Figure 6B). In the case where there are no relevant tissues other than the target tissue, naïve average is least powerful while SWAM performs as well as the single
tissue approach. This suggests that in this scenario, SWAM is correctly giving non-zero weights to only the target tissue, making it similar to the single-tissue method. In the other scenario where every tissue is relevant, SWAM provides a similar power to the naïve average approach, suggesting that SWAM is robustly assigning weights to each relevant tissue. Similarly, when there are more tissues available in overall (assuming 50% are relevant tissue sharing cross-tissue heritability), the power of SWAM and naïve average keep increasing while single-tissue and best-tissue remain similar (Figure 6C).

Our simulation study also evaluated the impact of sample size of the reference tissue. We hypothesized that single-tissue would perform poorly when the sample size of the reference tissue was small, which was indeed observed in our results (Figure 6D). When the reference tissue has sample sizes of 50, 100, 200, we observed that single tissue method identified 36%, 66%, and 92% of imputable genes. Because additional tissues are helpful especially when the reference tissue has smaller sample size, the best tissue approach performed better at lower sample size (59% at n=50), but worse at higher sample size (88% at n=200). Similarly, naïve average also performed better at lower sample size (63% at n=50), but worse at higher sample size (78% at n=200). However, SWAM consistently outperformed single tissue across all cases (59%, 86%, 97% at n=50, 100, 200). This implies that borrowing information from a relevant tissue (to the reference) is useful in these situations and SWAM robustly estimates the weights from each tissue accounting for the uncertainty from different sample sizes.
SWAM outperforms other transcriptome imputation methods in evaluations with real data by considering the bias-variance tradeoff.

We applied SWAM to create multi-tissue imputation models from GTEx v6, using lymphoblastoid cell lines (LCL; the official tissue name in GTEx was “Cells – EBV-transformed lymphocytes”) as the reference tissue, to evaluate its imputation accuracy of LCL transcriptomes of 344 European samples from the GEUVADIS consortium [29]. We compared the accuracy of SWAM with various methods, including single tissue imputation models (generated by PrediXcan), naïve average, best tissue, and another multi-tissue method UTMOST.

Among the single-tissue imputation models, we observed that the imputation from LCL identified 1,552 genes as significantly imputable at FDR < 0.05. Interestingly, we observed that another tissue, fibroblast cell lines (FCL; the official tissue name in GTEx was “Cells – Cultured fibroblasts”), identified even more genes (1,690 genes) as significantly imputable for GEUVADIS LCL expression levels. One of the outstanding differences between LCL (n=114) and FCL (n=272) models were the sample size used for training. We suspect that this is due to (1) the difference in sample size (i.e., FCL imputation has less variance) and (2) the similarity of transcriptomic profiles between LCL and FCL (i.e., FCL model tends not to introduce large bias). However, tissues with larger sample size did not always result in more accurate imputation. When we examined the results from Skeletal muscle model (n=361), which had the largest sample size in GTEx v6, we identified only 1,197 genes as significantly imputable. This is likely because the large differences of transcriptomic profiles between LCL and Skeletal muscle (i.e., Skeletal muscle model tends to introduce large bias). These examples demonstrate that both sample
size and tissue relevancy are important for maximizing the imputation accuracy. In statistical terms, our primary interest was to reduce the mean-squared error (MSE), which is the sum of Bias\(^2\) and Variance. We suspect that FCL model performed better than LCL models due to much smaller variance (because of larger sample size), and better than Skeletal muscle models due to much smaller bias (S2 Fig). We hypothesized that by combining imputations from multiple models, we can minimize MSE by substantially reducing variance without introducing excessive bias, which was our main motivation for developing SWAM.

When evaluating the multi-tissue methods, our two heuristic approaches, best-tissue and naïve average identified 2,493 and 2,666 significantly imputable genes, respectively, which was >47% and >57% higher than any single tissue models. UTMOST (using LCL as the reference) also substantially increased the number of imputable genes (2,238 genes, >32% increase over any single tissue), but surprisingly, it had fewer than the imputable genes compared to the two heuristic approaches. Finally, when we applied SWAM specifying GTEx LCL as the reference tissue, the number of imputable genes further increased to 3,040, which is >79% larger than any other single tissue models (S1 Table, Figure 7A). Interestingly, SWAM improved the imputation accuracy over UTMOST even though it requires individual-level data only for one tissue (i.e., LCL) in GTEx while UTMOST requires simultaneous access to individual-level data across all tissues. These results demonstrate that SWAM offers an accurate and flexible meta-imputation framework by optimally combining multiple imputation models across tissues.

SWAM enables meta-imputation of expression levels across multiple heterogeneous datasets

One of the important advantages of SWAM compared to other multi-tissue imputation methods is the ability to integrate imputation models across heterogeneous datasets where
samples may not necessarily overlap. To evaluate the benefit of SWAM’s ability for multi-
dataset “meta-imputation”, we integrated imputation models trained from GTEx v7 and v8, as
well as 922 whole blood transcriptomes from Depression Gene Network (DGN). The rationale to
include GTEx v7 and v8 models is that the datasets are slightly different from v6 (for example,
v7 has more samples in all tissues except for LCL, FCL, and whole blood) and integrating
multiple training models from slightly different versions of datasets may improve the accuracy.
The reason to include DGN whole blood is that the sample size is much larger than any
individual tissue GTEx, so it may help further reduce the variance and MSE of the imputation
model.

When applying SWAM to GTEx v6, v7, or v8 datasets individually, the number of
significantly imputed genes at FDR < .05 were 3,040, 3,060, and 3,203, respectively (Figure 7B).
However, when all datasets were combined, the number of imputable genes increased to
3,342. These results suggest that imputation across multiple datasets can help even when the
datasets are highly overlapping. When we additionally integrated SWAM with the DGN whole
blood model, which detected 2,390 imputable genes by itself, the number of imputable genes
by the integrated SWAM model further increased to 3,413. Note that we needed individual-
level data only for the reference tissue/data (GTEx v6 LCL in our experiment), so an arbitrary
combination of imputation models, which consist of only summary-level data, can be
seamlessly added to the meta-imputation framework of SWAM.

Overall, using all 49 GTEx v8 tissues in combination with the DGN whole blood model
provided the highest number of imputable genes, with a 112.9% improvement over the
corresponding GTEx v8 PrediXcan-LCL model (single tissue), and a 13.5% improvement over the
GTex v6 version of SWAM-LCL (multi-tissue) (Figure 7B). Regardless of the version of GTEx used, including the DGN whole blood model gives a substantial improvement in number of imputable genes compared to not including it in the model. Another interesting observation is that while PrediXcan-LCL (v6) appears to perform better than PrediXcan-LCL (v7), SWAM-LCL derived from v7 performs better than v6 SWAM-LCL. This may suggest that while GTEx v7 PrediXcan-LCL may not have had a significant improvement in eQTL detection compared to its predecessor, other tissues may have improved in more substantial ways. This is because the sample size for LCL in v7 decreased by 18 samples, whereas other non-blood tissues had substantial sample size gains of up to 89 individuals. Here, SWAM leverages the increase in quality from other tissues, which allows for better overall imputation regardless of the quality of the target tissue itself.

SWAM robustly captures both tissue-specific and cross-tissue regulatory components

The key component behind the robust performance of SWAM is that it learns how to distribute weights across multiple imputation models for each gene individually. If a gene shares eQTLs across many tissues, the SWAM’s weights will be distributed evenly across tissues and the model will behave similarly to the naïve average heuristic. For example, ERAP2 is a well-known gene with shared eQTLs profiles across most tissues. In the GTEx (v6), ERAP2 can be reliably imputed with any of the 44 single-tissue imputation models from PrediXcan with \(r^2 > 0.77 \) or more eQTLs. As a result, the weights from SWAM is almost evenly distributed across the tissues, ranging from 0.018 to 0.027 (S2 Fig), and the accuracy of SWAM (\(r^2 = 0.795 \)) is very similar to the accuracy of naïve average (\(r^2 = 0.796 \)).

On the other hand, when the imputation model from the reference tissue is not particularly good due to smaller sample size or other technical issues, SWAM can substantially
improve accuracy by leveraging eQTL sharing from other tissues. For example, the single-tissue
imputation accuracy of \textit{GSTM1} is relatively low in LCL tissue ($r^2 = 0.368$) compared to the
accuracy of the 38 other tissues in which a PrediXcan imputation model is available (average $r^2
= 0.61$). Using SWAM, the predictive R-squared increases to $r^2 = 0.741$ by assigning positive
weights to 31 tissues (S2 Fig).

Finally, for genes that are highly tissue-specific, the SWAM’s weights will be distributed
similarly to the best tissue heuristic. For example, CTSK is expressed in most tissues, but has
eQTLs in only 16 tissues, (S2 Fig). SWAM assigns weights to 7 of these tissues, and substantially
improves the predictive accuracy from $r^2 = 0.111$ to $r^2 = 0.447$.

\textbf{Comparison of imputation models in the context of TWAS}

We conducted TWAS analysis using SWAM, UTMOST, and PrediXcan models via
MetaXcan [30]. In addition, we also used S-MultiXcan [25] to simultaneously test all of the
PrediXcan models using their PCA regression approach. We used a Bonferroni correction to
establish p-value threshold for each analysis separately, based on the number of genes
imputed. Overall, we found that among the methods that directly estimate expression levels
(SWAM, UTMOST, PrediXcan), SWAM outperformed the other methods in terms of number of
associations detected (see S4, S5, S6 Tables). For example, PrediXcan models on average
detected 23.7, 23.2 and 4.0 transcriptome-trait associations for HDL, LDL and T2D respectively.
For SWAM, we observed an average of 79.7, 77.8 and 8.4 associations per tissue, whereas
UTMOST yielded an average of 69.3, 61.6 and 8.8 associations per tissue, for the three traits
respectively.
We plotted transcriptome-wide signals for the LDL trait using the GTEx v6 liver model for PrediXcan, UTMOST and SWAM (Figure 8). One interesting signal gained from the SWAM analysis is the APOC1 gene, which is primarily expressed in the liver and has been implicated in playing a role in HDL and LDL/VLDL (very low-density lipid) metabolism [31].

One potential shortcoming for both multi-tissue approaches (SWAM and UTMOST) appear to be that the number of unique signals (across all tissues) is fewer than those generated by PrediXcan’s single tissue models. For example, SWAM produces 210 unique associations for the HDL trait, while we see 187 unique associations from UTMOST and 248 unique associations from PrediXcan. Similarly, MultiXcan detects 284 significant associations when scanning across all tissues (based off the PrediXcan models). It appears that while the multi-tissue methods can leverage information from other tissues to impute expression accurately, marginal association signals in TWAS are potentially lost using these approaches.

However, we found that a high number of these unique signals from the PrediXcan TWAS appeared only in one or two tissues (92.5% for HDL, 98.2% for LDL and 100% for T2D).

With all these various considerations, SWAM appears to improve TWAS power for a given tissue, although ultimately may yield fewer signals compared to comprehensive tissue scans using PrediXcan or MultiXcan. While SWAM outperforms other methods in terms of imputation accuracy, there may not be a clear-cut winner in terms of performance in TWAS. The best approach to use will likely depend on the needs of the researcher, and each approach may provide different yet complementary insights into understanding the biological mechanisms from these association studies.
Discussion

The transcriptome serves as an intermediate phenotype linking genetic variants to complex traits. Association studies between traits and gene expression, when used in conjunction with GWAS, provide additional insight into the biological mechanisms of complex traits. Imputation of gene expression in the context of transcriptome wide association studies is a promising approach to understanding the connection between our genes and many traits. Yet, there are still many challenges that arise when performing association studies with imputed expression. Current tissue-specific imputation models are trained using data obtained from their respective tissues, which can vary greatly in data quality and sample size. As such, there is a great deal of variability among tissues in the imputation accuracy of tissue-specific gene expression levels. For example, PrediXcan was able to significantly impute only 2086 vagina-specific genes, while it discovered 8171 genes specific to the tibial nerve tissue. Furthermore, the imputation accuracy of significant genes within a tissue are also highly variable, with some genes such as ERAP2 having very high (>80% of variation explained by eQTLs) imputability and other genes (~1% of variation explained by eQTLs) with low imputability.

In this paper we developed SWAM, a method that determines the level of eQTL sharing between tissues and uses the shared information from other tissues to improve the imputation accuracy for the target tissue. By simultaneously examining the relatedness of multiple tissues, SWAM in essence increases the effective sample size of imputation models. Using GEUVADIS
LCL data, we compared SWAM to single-tissue approaches. We found that our multi-tissue
approach, in addition to increasing the number of significantly imputable genes for each tissue,
also improved the overall imputation accuracy for genes that were already significantly
imputable using PrediXcan. We improved the power of TWAS by running a SWAM-adapted
version of MetaXcan for various traits, finding an increased number of significant
transcriptome-trait associations, even when correcting for the larger number of genes imputed.

Although SWAM provides a substantial improvement for the number of significantly
imputable genes for many tissues and generally increases power for TWAS, there are some
shortcomings and caveats to consider with the approach. It is important to note that unlike
PrediXcan, SWAM does not actually perform model training or eQTL discovery. Instead, it
evaluates the efficacy of various single-tissue imputation models (in this case, the GTEx tissues)
and assigns weights to the models based on their relatedness to the target tissue. Therefore,
for SWAM to work, there must already be a database of imputation models that it can use to
derive the multi-tissue weighting. Because we are utilizing existing imputation models, we
acknowledge that there will be cases where the SWAM imputation accuracy could be similar or
worse to the single-tissue imputation, especially if the gene has shared eQTLs across many
tissues or if the single-tissue imputation model was already performing well. The improvement
observed in our validations and TWAS are an overall trend, and as with any analysis,
interpretation of any specific results should be approached with caution. Furthermore, the
improvement for any given gene has an upper limit which is dependent on the pool of single
tissue models available. There may be tissues that have very few relevant other tissues to draw
information from. For any given gene within the target tissue, SWAM automatically assigns
weights of non-relevant tissues to zero based on a threshold. However, for the purposes of our study, the threshold was tuned to be more lenient, allowing for more tissues to be included in the imputation of each gene’s expression levels. A more lenient threshold will yield more genes, but a lower sensitivity to the target tissue. A stricter threshold will provide imputed expressions that are more specific to the target tissue but will provide imputation for fewer genes and may reduce imputation accuracy in some genes. Optimal tuning of this threshold may depend on the target tissue, and the goals of the analysis. Further work could help determine the ideal way to tune these thresholds, perhaps using a different threshold depending on the gene and tissue in question.

Next, our empirical validation of imputation accuracy was tested on European individuals (344 samples from GEUVADIS) and thus SWAM’s performance with other populations has not yet been determined. A future direction of research could be to examine whether a single model derived from mixed populations would represent each of the populations accurately, or if a different model should be trained on each population separately. Currently, evidence suggests that training from the correct ancestry group is the ideal approach for population-specific imputation [32], which emphasizes the importance of reference panel resources derived from a wide array of ancestries. Alternative approaches could be to leverage trans-ancestry correlation, which has been shown to increase predictive R^2 in the context of polygenic risk scores [33].

Finally, while SWAM improved the number of association signals for any given tissue in TWAS compared to UTMOST and single tissue PrediXcan, aggregation of signals (MultiXcan/combining PrediXcan signals) suggest that other approaches may yield more unique
signals. It is unclear which approach is preferable in this scenario, and the answer may depend on unraveling the causality of association signals. Recently, there have been a number of publications which have addressed this issue, such as PTWAS which uses instrumental variables (IVs) to investigate the causal relationship between expression levels and complex traits [26], or phenomeXcan, which integrates GWAS and gene expression and regulation data to identify likely causal pathways [34]. Future directions could include using IVs or functional annotation to interpret TWAS signals.

To conclude, we propose a novel method for gene expression imputation, which extends already established single-tissue imputation models into a multi-tissue setting. By combining information from multiple models, we were able to increase overall tissue-specific imputation accuracy for many genes and increase power for transcriptome-wide association studies.

Materials and Methods

SWAM Notation and Framework

Our framework for SWAM is designed to find the optimal linear combination of imputed expression levels from multiple tissues and datasets. For simplicity, we will denote each (tissue, dataset) combination as a source. We assume there are K imputation models from individual sources, with each model indexed as $j \in (1, \ldots, K)$. We also denote $r \in \{1, \ldots, K\}$ to represent the index of the reference source. The inputs for SWAM are: (1) $f_j(\cdot)$ – the single-source imputation models and (2) Y_r and X_r – the individual-level gene expression measurements and
genotypes for the reference source. For each gene g, let $\hat{s}_j^g = f_j(X|g)$ be imputed expression from a single source. Then we can represent any linearly combined multi-tissue imputed expression \hat{m}_r^g as

$$\hat{m}_r^g = \sum_{j=1}^{K} w_j^g \hat{s}_j^g$$

where w_j^g is the weight contributed by j-th source. SWAM learns w_j^g by leveraging individual-level data from the reference source as we describe later.

Multi-tissue methods using naïve average or best-tissue

There are two heuristic approaches to impute expressions from multiple sources - *naïve average* and best tissue. *Naïve average* defines weights uniformly as $w_1^g = \ldots = w_K^g = \frac{1}{K}$. For best tissue, the weights are defined as a dichotomous variable:

$$w_j^g = \begin{cases} 1 & \text{if } j = \arg\max_i (\text{cor}(\hat{s}_i^g, y_r^g)) \\ 0 & \text{otherwise} \end{cases}$$

where y_r^g represents the individual-level expression measurements of the reference source.

Smartly Weighted Average across Multiple Datasets (SWAM)

Here we describe how SWAM calculates optimal w_j^g, whose derivation is shown in the Supplementary Text. It is important to note that SWAM works ideally when the tissue type intended to be imputed matches to the tissue types of the reference source. We define y_r^g as the $n \times 1$ vector of individual-level expression measurements for the reference source, and as before, X_r to be the corresponding $n \times m$ matrix of individual-level genotypes. The first step is
to impute expression using each of the K models using the reference genotypes. Thus, we obtain K sets of imputed expressions, $\hat{s}^g_j = f_j(X_r | g)$, with each being a single-source imputation for the samples in the reference data. The weights for SWAM are given by

$$w^g = \left(w^g_1, w^g_2, ..., w^g_K \right)^T = \left[\begin{array}{ccc}
\text{cor}(\hat{s}^g_1, \hat{s}^g_1) & \cdots & \text{cor}(\hat{s}^g_1, \hat{s}^g_K) \\
\vdots & \ddots & \vdots \\
\text{cor}(\hat{s}^g_K, \hat{s}^g_1) & \cdots & \text{cor}(\hat{s}^g_K, \hat{s}^g_K)
\end{array} \right]^{-1} \left[\begin{array}{c}
\text{cor}(\hat{s}^g_1, y^g_r) \\
\vdots \\
\text{cor}(\hat{s}^g_K, y^g_r)
\end{array} \right]$$

Here, the correlation matrix account for the similarity between the imputation models, and the vector containing the entries $\text{cor}(\hat{s}^g_j, y^g_r)$ account for the empirical similarity of imputed expressions from each model to the measured expressions in the reference source. When $j = t$, because $\text{cor}(\hat{s}^g_t, y^g_r)$ will be prone to overfitting, we replace this value to a 5-fold cross-validated correlation instead, which is available from PrediXcan output. Finally, λI acts to regularize the weights, providing numerical stability for the inversion of the covariance matrix. The calibration of λ is further discussed in the Supplementary Text.

Simulations

Our simulation study sought to examine SWAM’s ability to detect the correct shared components between related tissues across a wide spectrum of parameter settings. We compared SWAM with naïve average, best tissue and single tissue approaches. For each simulation, we independently generate individual-level genotypes and expression multiple tissues. For the reference set, we simulated X_r, an $n_r \times m$ genotype where n_r is the number of
individuals and \(m \) the number of SNPs. In our simple simulation, we assume that each SNP is independent, with non-reference allele frequency (AF) distributed with \(\text{Beta}(1,3) \). The genotypes were simulated using a binomial distribution based off the AF. To simulate multi-tissue expressions, for each tissue \(j \in (1, \ldots, K) \) we specific effect sizes \(\beta_j \), to simulate expressions \(y_j = X_r \beta_j + \epsilon_j \). For reference tissue (i.e. \(j = r \)), we assume two causal SNPs with nonzero elements in \(\beta_j \), where one SNP is expected to explain tissue-specific heritability \((h_r^2) \) for the reference tissue and the other SNP explains the cross-tissue heritability \((h_c^2) \), summing up to total heritability \((h^2 = h_r^2 + h_c^2) \). Other tissues (i.e. \(j \neq r \)) were divided into “related tissues” and “independent tissues”. For related issues, \(\beta_j \) had only one non-zero values corresponding to cross-tissue heritability \((h_c^2) \). For independent tissues, all \(\beta_j \) had zero values. Finally, we generated another set of validation genotypes matrix \(X_v \) with size \(n_v \times m \), and the validation expressions \(y_v = X_v \beta_r + \epsilon_v \) of reference tissue using the same settings to use for evaluation.

We then trained tissue-specific imputation models \(f_j(\cdot) \), \(j \in (1, \ldots, K) \) by applying an elastic-net model (using \textit{glmnet} R package [35]) for each pair of \(X_r \) and \(y_j \). The tuning parameters for elastic net were determined via a five-fold cross-validation technique. Using \(y_r, X_r \) and \(f_i(\cdot) \), we obtained naïve average, best tissue and SWAM models as detailed in the framework and weights section. To calculate the proportion of imputable genes, we performed linear regression between \(y_v \) and the imputed expression from genotypes \(X_v \) using the different methods to obtain a p-value.
Each simulation was repeated for 1,000 times in each setting. We varied parameters to evaluate their impact on the performance of each method. We varied $h^2 \in \{0, 0.1, \cdots, 1\}$ (default 0.1), $h_c^2 / h^2 \in \{0, 0.1, \cdots, 1\}$ (default 0.5), $K \in \{2, 4, 6, 8, 10, 20, 30, 40, 50\}$ (default 10), fraction of independent tissues ranging $\{0, 0.1, \cdots, 0.8\}$ (default 0.5), $n_r \in \{50, 100, \cdots, 500\}$ (default 200), and the p-value threshold ranging $\{10^{-6}, 10^{-5}, \cdots, 0.01, 0.05, 0.1\}$ (default 0.05).

Throughout all simulations, $m = 35, n_v = 200$ were used.

Input Datasets: Genotypes, Expressions, and Imputation Models

In our experiments with real datasets, we leveraged multiple published datasets where genotypes, expressions, and imputation models are available to evaluate the performance of SWAM and other methods in various settings. Specifically, we used the GEUVADIS LCL [29] genotypes and expressions as a validation dataset. We used GTEx data [14] [24] and PredictDB [2] to build multi-tissue imputation models. To demonstrate the ability to SWAM to incorporate multiple datasets, we used DGN [11] dataset as well as multiple versions of GTEx datasets.

Multi-tissue transcriptomic profiles and imputation models from the GTEx project

To build multi-tissue imputation models using *SWAM, UTMOST, naïve average, and best tissue methods*, we used single-tissue imputation models, individual-level genotypes, and expressions obtained from the GTEx consortium. Single-tissue imputation models were downloaded from the PredictDB (http://predictdb.org/) repository for GTEx versions 6, 7 and 8 (44, 48 and 49 tissues respectively) [3] [14] [24], which were trained using PrediXcan’s elastic net methods. Individual-level genotypes and expression levels were only used for the reference tissue (e.g. EBV-transformed lymphocytes) which is deemed to be the closest to the validation data (e.g. GEUVADIS LCL), using GTEx version 6.
When evaluating multi-tissue imputation models within a single dataset, we used GTEx version 6. When evaluating imputation models across multiple tissues and multiple datasets, we used various combinations of GTEx versions to evaluate the benefit of multiple imputation models trained from overlapping datasets. When training across different datasets, genes were matched by ensemble ID, ignoring version numbers. In addition to training SWAM, we also used the single tissue PredictDB imputation models as a basis for comparison with our method.

Validation dataset from the GEUVADIS study

We used individual-level genotypes and expression levels from lymphoblastoid cell lines (LCL) from the GEUVADIS consortium only to evaluate various methods after imputing expression levels with models built from other datasets. Each imputation model was evaluated by applying the model to GEUVADIS genotypes to impute individual expression levels, and by calculating the correlation between the imputed and measured expressions. We focused on 344 European individuals where genotypes and normalized expressions (from RNA-seq) are available, with comparable linkage disequilibrium (LD) structure to GTEx and DGN datasets.

Imputation models from Depression Genes Network

We also downloaded the imputation model trained using the 922 whole blood transcriptomes from the Depression Genes Network (DGN) via PredictDB. DGN was evaluated as a single-tissue imputation model. It was also used in the evaluation of multi-dataset imputation models when DGN is combined with various versions of GTEx imputation models.
Imputation models from UTMOST

We compared our methods to UTMOST, another multi-tissue approach for expression imputation [24]. The UTMOST imputation models were jointly trained across 44 tissues from GTEx version 6 and were downloaded from their published online repository (https://github.com/Joker-Jerome/UTMOST). We applied the imputation model targeted for EBV-transformed lymphocytes when evaluating the imputation accuracy with the GEUVADIS LCL expression.

Evaluating imputation accuracy with GEUVADIS measured expression

We evaluated the accuracy of various imputation models by comparing imputed expressions from individual-level genotypes with the measured expression from GEUVADIS LCLs. Individual-level expression were imputed across 344 European GEUVADIS samples using various single-tissue, multi-tissue/multi-dataset methods to calculate the correlation with the normalized measured expression from GEUVADIS LCL. The correlation between imputed and measured expressions were calculated using spearman correlation and a one-sided p-value was evaluated by converting the correlation coefficients into t-statistics. Genes were considered “significantly imputable” if the Benjamini-Hochberg false discovery rate (FDR) was less than 0.05. This procedure was applied across all genes within each method, with the counts being tabulated.

Comparing single-tissue and multi-tissue imputation models within a single dataset.

With these results, we first focused on comparing the imputation accuracy of SWAM with other methods using GTEx v6. We compared SWAM-LCL (SWAM using GTEx EBV-transformed lymphocytes as reference), every single tissue imputation model from PredictDB,
UTMOST-LCL (UTMOST using GTEx EBV-transformed lymphocytes as reference), naïve average, and best tissue methods. We focused on evaluation using GTEx v6 models where UTMOST models were available. We also focused on genes included in the Consensus Coding Sequence Project (CCDS) [36] to minimize the discrepancy between imputation models. To keep a fair comparison with UTMOST and the single tissue methods, we restricted the set of genes to those that have at least one eQTL in any single tissue models from PredictDB and also in any UTMOST models across all reference tissues.

Evaluating multi-tissue imputation models across multiple datasets.

Our second comparison was conducted to examine the effect of integrating multiple imputation models trained from heterogeneous datasets into SWAM. Here, we used various combinations of GTEx and DGN resources to derive multi-tissue/multi-dataset models, such as combining GTEx v6 with DGN data, or combining GTEx v6, v7 and v8 altogether. For this analysis, the gene list was restricted to genes that were included in all three of the v6, v7 and v8 datasets in terms of Ensemble IDs.

Evaluation of SWAM in transcriptome-wide association studies (TWAS)

To evaluate our method in the context of TWAS, we used MetaXcan [30], which infers TWAS results from GWAS summary statistics. We focused on the HDL and LDL traits from Global Lipids Genetics Consortium (GLGC) [37] and Type-2 Diabetes (T2D) from the DIAGRAM consortium [38]. For this analysis, we generated SWAM imputation models targeting each of the 44 tissues from GTEx version 6. We used MetaXcan to infer the TWAS results for each of these tissues and applied a Bonferroni correction with false-positive rate of 0.05 based on the
number of genes tested. We repeated this with all 44 UTMOST models as well as all 44 PrediXcan single tissue models.

We also compared our method with S-MultiXcan [25], a recently published extension of MetaXcan which uses a principal components regression to conduct trait-expression association with multiple tissues.

Software Availability

The software package for SWAM is available at https://github.com/aeyliu/swam, including the datasets used in this manuscript.

References

1. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019 Aug;20(8):467–84.

2. GTEx Consortium, Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015 Sep;47(9):1091–8.

3. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJH, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016 Mar;48(3):245–52.
4. Mancuso N, Shi H, Goddard P, Kichaev G, Gusev A, Pasaniuc B. Integrating Gene Expression with Summary Association Statistics to Identify Genes Associated with 30 Complex Traits. The American Journal of Human Genetics. 2017 Mar;100(3):473–87.

5. Pingault J-B, O’Reilly PF, Schoeler T, Ploubidis GB, Rijsdijk F, Dudbridge F. Using genetic data to strengthen causal inference in observational research. Nat Rev Genet. 2018 Sep;19(9):566–80.

6. Zhang W, Voloudakis G, Rajagopal VM, Readhead B, Dudley JT, Schadt EE, et al. Integrative transcriptome imputation reveals tissue-specific and shared biological mechanisms mediating susceptibility to complex traits. Nat Commun. 2019 Dec;10(1):3834.

7. Barfield R, Feng H, Gusev A, Wu L, Zheng W, Pasaniuc B, et al. Transcriptome-wide association studies accounting for colocalization using Egger regression. Genet Epidemiol. 2018 Jul;42(5):418–33.

8. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. International Journal of Epidemiology. 2015 Apr 1;44(2):512–25.

9. GTEx Consortium, Gamazon ER, Segrè AV, van de Bunt M, Wen X, Xi HS, et al. Using an atlas of gene regulation across 44 human tissues to inform complex disease- and trait-associated variation. Nat Genet. 2018 Jul;50(7):956–67.

10. The GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020 Sep 11;369(6509):1318–30.
11. Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM, McCormick C, et al. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 2014 Jan;24(1):14–24.

12. Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome. Science. 2017 Aug 18;357(6352):eaan2507.

13. Buniello A, MacArthur JAL, Cerezo M, Harris LW, Hayhurst J, Malangone C, et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 2019 08;47(D1):D1005–12.

14. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018 Oct;562(7726):203–9.

15. The 100 000 Genomes Project: bringing whole genome sequencing to the NHS. BMJ. 2018 May 2;k1952.

16. Collins FS, Varmus H. A New Initiative on Precision Medicine. N Engl J Med. 2015 Feb 26;372(9):793–5.

17. Sieberts SK, Perumal TM, Carrasquillo MM, Allen M, Reddy JS, Hoffman GE, et al. Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. Sci Data. 2020 Oct 12;7(1):340.
18. Zeng B, Lloyd-Jones LR, Montgomery GW, Metspalu A, Esko T, Franke L, et al. Comprehensive Multiple eQTL Detection and Its Application to GWAS Interpretation. Genetics. 2019 Jul;212(3):905–18.

19. Tran HTN, Ang KS, Chevrier M, Zhang X, Lee NYS, Goh M, et al. A benchmark of batch-effect correction methods for single-cell RNA sequencing data. Genome Biol. 2020 Dec;21(1):12.

20. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, Johnson WE, et al. Tackling the widespread and critical impact of batch effects in high-throughput data. Nat Rev Genet. 2010 Oct;11(10):733–9.

21. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genomics and Bioinformatics. 2020 Sep 1;2(3):lqaa078.

22. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007 Jan;8(1):118–27.

23. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 2017 Oct 12;550(7675):204–13.

24. Alzheimer’s Disease Genetics Consortium, Hu Y, Li M, Lu Q, Weng H, Wang J, et al. A statistical framework for cross-tissue transcriptome-wide association analysis. Nat Genet. 2019 Mar;51(3):568–76.
25. Barbeira AN, Pividori M, Zheng J, Wheeler HE, Nicolae DL, Im HK. Integrating predicted transcriptome from multiple tissues improves association detection. Plagnol V, editor. PLoS Genet. 2019 Jan 22;15(1):e1007889.

26. The GTEx Consortium, Zhang Y, Quick C, Yu K, Barbeira A, Luca F, et al. PTWAS: investigating tissue-relevant causal molecular mechanisms of complex traits using probabilistic TWAS analysis. Genome Biol. 2020 Dec;21(1):232.

27. Bhattacharya A, García-Closas M, Olshan AF, Perou CM, Troester MA, Love MI. A framework for transcriptome-wide association studies in breast cancer in diverse study populations. Genome Biol. 2020 Dec;21(1):42.

28. Zhou D, Jiang Y, Zhong X, Cox NJ, Liu C, Gamazon ER. A unified framework for joint-tissue transcriptome-wide association and Mendelian randomization analysis. Nat Genet. 2020 Nov;52(11):1239–46.

29. The Geuvadis Consortium, Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, Monlong J, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013 Sep;501(7468):506–11.

30. GTEx Consortium, Barbeira AN, Dickinson SP, Bonazzola R, Zheng J, Wheeler HE, et al. Exploring the phenotypic consequences of tissue specific gene expression variation inferred from GWAS summary statistics. Nat Commun. 2018 Dec;9(1):1825.

31. Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. IJMS. 2019 Nov 26;20(23):5939.
Okoro PC, Schubert R, Guo X, Johnson WC, Rotter JI, Hoeschele I, et al. Transcriptome prediction performance across machine learning models and diverse ancestries. Human Genetics and Genomics Advances. 2021 Apr;2(2):100019.

Cai M, Xiao J, Zhang S, Wan X, Zhao H, Chen G, et al. A unified framework for cross-population trait prediction by leveraging the genetic correlation of polygenic traits. The American Journal of Human Genetics. 2021 Apr;108(4):632–55.

Pividori M, Rajagopal PS, Barbeira A, Liang Y, Melia O, Bastarache L, et al. PhenomeXcan: Mapping the genome to the phenome through the transcriptome. Sci Adv. 2020 Sep;6(37):eaba2083.

Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–22.

Pruitt KD, Harrow J, Harte RA, Wallin C, Diekhans M, Maglott DR, et al. The consensus coding sequence (CCDS) project: Identifying a common protein-coding gene set for the human and mouse genomes. Genome Research. 2009 Jul 1;19(7):1316–23.

Global Lipids Genetics Consortium. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013 Nov;45(11):1274–83.

the DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium. Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet. 2012 Sep;44(9):981–90.
List of Figures

Figure 1 – overview of SWAM method.

This figure demonstrates the training of the imputation model using the reference data. The inputs required for SWAM are a set of reference genotypes with sample matched measured expression, and the multiple imputation models to be included. The list of multiple imputation models must also include a model derived from the reference data, which can be done via prediXcan. SWAM uses these models to impute tissue-specific expression levels from the reference genotypes. These imputed expression sets are then compared with the measured expression of the reference set. The weights are calculated based on the similarity between the measured and imputed expression and the covariance structure of tissues. For full details, see the methods section.

Figure 2 – simulation study comparing SWAM with naïve average, best tissue and single tissue methods.

We ran each simulation 10,000 times, with the following default settings: 10 total tissues (1 target, 4 relevant, 5 irrelevant), 100 SNPs (2 per tissue), 10% genetic heritability, 50% shared heritability between relevant tissues. In addition, the sample size of the target tissue was 100 individuals, and the remaining tissues had 200 individuals. This was done to emphasize the importance of integrating information from other tissues when the quality of the target tissue model is limited. In panel (A), we varied the number of relevant tissues, from 0 to 10. Panel (B) shows the improvement when the total number of tissues is increased, with the number of irrelevant tissues fixed at 50% of the total. Panel (C) shows the effects of changing the shared
heritability for the relevant tissues. We note here, that each tissue has 2 causal SNPS – for the relevant tissues, 1 of these causal SNPS is shared with the target tissue while the other is independent of all simulated tissues. Panel (D) shows the performance of the approaches for different levels of genetic heritability. This simulation demonstrates the range of heritability that we would expect to see the most improvement. Empirically, we do notice the same trend seen here, as SWAM performs similarly the single tissue model when the cross-validated R-squared is high. Panel (E) shows the effects of target tissue sample size. The x-axis pertains to the sample size of the target tissue only, and all other tissues were fixed at 200 individuals. Finally, panel (F) shows the performance of the methods at different p-value thresholds, using the default simulation settings.

Figure 3 – Empirical validation of SWAM using lymphoblastoid-cell line data from GEUVADIS consortium.

We used our LCL-targeted SWAM model to impute expression levels based on the genotypes of 344 European samples. We then calculated the concordance between imputed expression and measured LCL expression. We repeated this for all of the other methods mentioned here. (A) shows the performance of SWAM against the single-tissue models from 44 tissue-specific predictDB models derived from GTEx version 6. In (B), we derived various SWAM models using every combination of the following: 1) all GTEx v6 tissues, 2) all GTEx v7 tissues, 3) all GTEx v8 tissues, and 4) Depression Gene Network (DGN) single tissue whole blood model from predictDB. Here, we also included the UTMOST LCL model, naïve average and best tissue models, all derived from GTEx v6.
Figure 4 – TWAS on LDL trait targeting liver using SWAM, UTMOST and PrediXcan models

TWAS was performed using metaXcan on the LDL trait from the Global Lipids Genetics Consortium (GLGC) GWA analysis. For a consistent comparison, the SWAM and UTMOST models were derived from GTEx version 6 tissues, and the prediXcan model used was GTEx v6 liver. The number of associations were: 74, 69 and 19 for SWAM, UTMOST and prediXcan respectively. P-values were truncated at 10^{-20} in these plots.
Figure 5 – overview of SWAM method.

This figure demonstrates the training of the imputation model using the reference data. The inputs required for SWAM are a set of reference genotypes with sample matched measured expression, and the multiple imputation models to be included. The list of multiple imputation models must also include a model derived from the reference data, which can be done via prediXcan. SWAM uses these models to impute tissue-specific expression levels from the reference genotypes. These imputed expression sets are then compared with the measured expression of the reference set. The weights are calculated based on the similarity between the measured and imputed expression and the covariance structure of tissues. For full details, see the methods section.
Figure 6 – simulation study comparing SWAM with naïve average, best tissue and single tissue methods.

We ran each simulation 10,000 times, with the following default settings: 10 total tissues (1 target, 4 relevant, 5 irrelevant), 100 SNPs (2 per tissue), 10% genetic heritability, 50% shared heritability between relevant tissues. In addition, the sample size of the target tissue was 100 individuals, and the remaining tissues had 200 individuals. This was done to emphasize the importance of integrating information from other tissues when the quality of the target tissue model is limited. In panel (A), we varied the number of relevant tissues, from 0 to 10. Panel (B) shows the improvement when the total number of tissues is increased, with the number of irrelevant tissues fixed at 50% of the total. Panel (C) shows the effects of changing the shared heritability for the relevant tissues. We note here, that each tissue has 2 causal SNPs – for the relevant tissues, 1 of these causal SNPS is shared with the target tissue while the other is independent of all simulated tissues. Panel (D) shows the performance of the approaches for different levels of genetic heritability. This simulation demonstrates the range of heritability that we would expect to see the most improvement. Empirically, we do notice the same trend seen here, as SWAM performs similarly the single tissue model when the cross-validated R-squared is high. Panel (E) shows the effects of target tissue sample size. The x-axis pertains to the sample size of the target tissue only, and all other tissues were fixed at 200 individuals. Finally, panel (F) shows the performance of the methods at different p-value thresholds, using the default simulation settings.
Figure 7 – Empirical validation of SWAM using lymphoblastoid-cell line data from GEUVADIS consortium.

We used our LCL-targeted SWAM model to impute expression levels based on the genotypes of 344 European samples. We then calculated the concordance between imputed expression and measured LCL expression. We repeated this for all of the other methods mentioned here. (A) shows the performance of SWAM against the single-tissue models from 44 tissue-specific predictDB models derived from GTEx version 6. In (B), we derived various SWAM models using every combination of the following: 1) all GTEx v6 tissues, 2) all GTEx v7 tissues, 3) all GTEx v8 tissues, and 4) Depression Gene Network (DGN) single tissue whole blood model from predictDB. Here, we also included the UTMOST LCL model, naïve average and best tissue models, all derived from GTEx v6.
TWAS was performed using metaXcan on the LDL trait from the Global Lipids Genetics Consortium (GLGC) GWA analysis. For a consistent comparison, the SWAM and UTMOST models were derived from GTEx version 6 tissues, and the prediXcan model used was GTEx v6 liver. The number of associations were: 74, 69 and 19 for SWAM, UTMOST and prediXcan respectively. P-values were capped at 10^{-20} in these plots.
Supplementary Materials

Derivation of weights for SWAM

In this section we derive the equation for the weights in SWAM. We wish to impute expression for a reference sample of \(N \) individuals with genotypes \(X_r \) and measured tissue-specific expression \(y_r \). Suppose we have single tissue imputation models for \(K \) tissues, with \(r \in \{1, ..., K\} \). For each gene \(g \), we obtain a set of \(K \) imputed expression levels \(\hat{s}_j^g = X_T \hat{\beta}_j^g \), with \(j \in (1, ..., K) \). Dropping the superscript \(g \) for convenience, we define \(w = (w_1, w_2, ..., w_K)' \) be the set of weights corresponding to each of the tissues. The SWAM estimator is thus:

\[
\hat{m}_{SWAM} = \sum_{j=1}^{k} w_j \hat{s}_j
\]

For further convenience, we denote \(\hat{m}_{SWAM} \) as \(\hat{m} \). Then, for each gene separately, the values for \(w \) are determined by minimizing the expression:

\[
E \left[|| \hat{m} - y_r ||_2^2 \right] = E \left[\left\| \sum_{i=1}^{k} (w_i \hat{s}_i) - y_r \right\|_2^2 \right] = E \left[\sum_{i=1}^{k} w_i^2 (\hat{s}_i - y_r)^2 \right]
\]

Without loss of generality, we set the constraint \(\sum_{i=1}^{k} w_i = 1 \). The objective function to be minimized is
\[\mathcal{L}(\mathbf{w}, \lambda) = \mathbb{E}[\|\mathbf{m} - \mathbf{y}_r\|^2_2] + \gamma \left(\sum_{i=1}^{k} w_i - 1 \right) \]

\[= \sum_{i=1}^{k} w_i^2 \mathbb{E}[(\bar{s}_i - y_r)^2] + 2 \sum_{i=1}^{k} \sum_{j=1}^{i-1} w_i w_j \mathbb{E}[(\bar{s}_i - y_r)(\bar{s}_j - y_r)] \]

\[+ \gamma \left(\sum_{i=1}^{k} w_i - 1 \right) \]

The gradient of \(\mathcal{L}(\mathbf{w}, \lambda) \) is

\[\triangledown \mathcal{L}(\mathbf{w}, \lambda) = \begin{bmatrix} w_i \mathbb{E}[(\bar{s}_i - y_r)^2] + 2 \sum_{j \neq i} w_j \mathbb{E}[(\bar{s}_i - y_r)(\bar{s}_j - y_r)] + \gamma \\ \sum_{j=1}^{k} w_j - 1 \end{bmatrix}, i \in \{1, \ldots, K\} \]

Solving this system of equations, we obtain the optimal weighting minimizing the expected MSE across single tissue imputed expressions as

\[w_i = \frac{[S^{-1} \mathbf{1}]_i}{\sum_{j=1}^{K} [S^{-1} \mathbf{1}]_j} \]

Where \(S = \begin{bmatrix} \mathbb{E}[(\bar{s}_1 - y_r)^2] & \cdots & \mathbb{E}[(\bar{s}_1 - y_r)(\bar{s}_K - y_r)] \\ \vdots & \ddots & \vdots \\ \mathbb{E}[(\bar{s}_K - y_r)(\bar{s}_1 - y_r)] & \cdots & \mathbb{E}[(\bar{s}_K - y_r)^2] \end{bmatrix} \) and \(\mathbf{1} = (1, \ldots, 1)' \)

806 \textbf{Regularization of weights}

The weights derived in the previous section provide an optimal solution to the expression

\[\arg \min_{\mathbf{w}} \mathbb{E}[\|\mathbf{\hat{y}}_{\mathbf{m}t} - \mathbf{y}_r^g\|^2_2]. \] In the scenario in which the tissues are highly correlated with each
other, the matrix \(\text{cov}\left(\mathbf{\hat{y}}_{mt}^g\right)^{-1} \) is numerically unstable as the columns of \(\text{cov}\left(\mathbf{\hat{y}}_{mt}^g\right) \) are no longer linearly independent. This can lead to high weights assigned to irrelevant tissues and lower weights for relevant tissues. Furthermore, this may result in weights that are over-fitted to the noise of the data.

To correct for this, we added a diagonal matrix, \(\lambda \mathbf{I} \) prior to inverting the matrix \(\text{cov}\left(\mathbf{\hat{y}}_{mt}^g\right) \), giving us the solution \(w^g = \left[\text{cov}\left(\mathbf{\hat{y}}_{mt}^g\right) + \lambda \mathbf{I}\right]^{-1} \text{cor}\left(\mathbf{\hat{y}}_{mt}^g, \mathbf{\hat{y}}_{I}^g\right) \). To choose the correct value of \(\lambda \), we tested the imputation accuracy of \(\mathbf{\hat{y}}_{mt}^g \) in our validation test set for a large range of \(\lambda \). We found that imputation accuracy was low when \(\lambda = 0 \), likely due to overfitted and the amplification of noise. Larger values of \(\lambda \) yielded better results but ignored the correlation structure between tissues. We found empirically that \(\lambda = 3 \) provided the best results (this value depends highly on the scale and normalization of the data).

Application of SWAM to other target tissues

Throughout our work we primarily used the LCL tissue from GTEx version 6 as our target tissue for application of SWAM. In addition to producing SWAM-LCL models, we also generated models targeting each of the 44 GTEx v6 tissues. Supplementary Figure 3 displays the heatmap of weight contribution towards each of the tissues. The rows correspond to the SWAM model for each tissue type, and the color intensity of the columns show the contribution of each tissue towards the targeted tissue (number of times the tissue contributed the highest weight).
Overall, we observe clustering that appears to separate the tissue types quite well. For example, brain tissues are primarily getting high weights from other brain tissues while receiving low weights from all other tissue types. This heatmap provides evidence of SWAM being able to capture tissue-specific signals.
List of Supplementary Figures

Supplementary Figure 1 – Using SWAM to impute expression and conduct TWAS

The first panel shows how SWAM can be used to impute expression levels via prediXcan, while the second panel shows the required inputs to conduct TWAS via metaXcan.

Supplementary Figure 2 – Bias-variance tradeoff for other tissues

The principal behind SWAM is it considers the bias-variance tradeoff for each tissue, and assigns higher weights to tissues that reduce MSE. In this example, tissues such as Skeletal Muscle have a high sample size (and therefore lower variance) but may be biased as they are not the relevant tissue to the tissue of interest (in this case LCL). Other tissues such as Fibroblasts may have a lower sample size but compensate by having low bias (high relevance to tissue of interest) and will contribute more weight.

Supplementary Figure 3– The distribution of weights for SWAM for three selected genes.

(A) shows the ERAP 2 gene, which had a single tissue $r^2 = 0.801$, while the SWAM model had $r^2 = 0.795$. (B) depicts a scenario where SWAM is able to leverage information from other tissues to make up for the relatively lower quality of the target tissue – here the single tissue model gave $r^2 = 0.368$ while SWAM increased the accuracy to $r^2 = 0.741$. (C) shows an example where the eQTLs are highly tissue specific. Here, SWAM improved the single tissue accuracy from $r^2 = 0.111$ to $r^2 = 0.447$.
Supplementary Figure 4 – distribution of SWAM weights in imputation models for all 44 GTEx v6 tissues.

Here, we used SWAM to derive multi-tissue imputation models for all 44 GTEx v6 tissues. Each cell in this heatmap depicts the number of times each tissue contributed the highest weight to the target tissue. Here, the rows correspond to the target tissue and the columns correspond to the weight contribution of each tissue. For the sake of clarity, the diagonal values were not included as they were consistently much higher than the remaining elements of the matrix.
Supplementary Figures

Imputation of Expression: Using prediXcan, SWAM can impute expression from test genotypes.

\[f_{SWAM}(\cdot) = \sum_{j=1}^{K} w_j f_j(\cdot) \]

Test tissue:
Observed genotypes - \(X_T \)

IDs	SNP1	SNP2	...	SNPn
ID1				
ID2				
...				
IDn				

prediXcan

IDs	g1	g2	...	gp
ID1				
ID2				
...				
IDn				

Imputed Expression:
\[g_{SWAM} = f_{SWAM}(X_T) \]

TWAS: We use metaXcan to infer TWAS results. The inputs are: SWAM model, GWAS summary results and pairwise covariance matrix for SNPs.

\[f_{SWAM}(\cdot) = \sum_{j=1}^{K} w_j f_j(\cdot) \]

gene	w1	w2	...	wK
g1				
g2				
...				
gp				

metaXcan

Gene	beta	s.e.	p-value
g1			
g2			
...			
gp			

GWAS summary results

SNP	beta	s.e.	p-value
rs1			
rs2			
...			

Pairwise covariance matrix between SNPs

SNP1	SNP2	covariance

Supplementary Figure 5 – Using SWAM to impute expression and conduct TWAS

The first panel shows how SWAM can be used to impute expression levels via prediXcan, while the second panel shows the required inputs to conduct TWAS via metaXcan.
Supplementary Figure 2 – Bias-variance tradeoff for other tissues

The principal behind SWAM is it considers the bias-variance tradeoff for each tissue, and assigns higher weights to tissues that reduce MSE. In this example, tissues such as Skeletal Muscle have a high sample size (and therefore lower variance) but may be biased as they are not the relevant tissue to the tissue of interest (in this case LCL). Other tissues such as Fibroblasts may have a lower sample size but compensate by having low bias (high relevance to tissue of interest) and will contribute more weight.
Supplementary Figure 3– The distribution of weights for SWAM for three selected genes.

(A) shows the ERAP 2 gene, which had a single tissue $r^2 = 0.801$, while the SWAM model had $r^2 = 0.795$. (B) depicts a scenario where SWAM is able to leverage information from other tissues to make up for the relatively lower quality of the target tissue – here the single tissue model gave $r^2 = 0.368$ while SWAM increased the accuracy to $r^2 = 0.741$. (C) shows an example where the eQTLs are highly tissue specific. Here, SWAM improved the single tissue accuracy from $r^2 = 0.111$ to $r^2 = 0.447$.
Supplementary Figure 4 – distribution of SWAM weights in imputation models for all 44 GTEx v6 tissues.

We used SWAM to derive multi-tissue imputation models for all 44 GTEx v6 tissues. Each cell in this heatmap depict the number of times each tissue contributed the highest weight to the target tissue. Here, the rows correspond to the target tissue and the columns correspond to the weight contribution of each tissue. For the sake of clarity, the diagonal values were not included as they were consistently much higher than the remaining elements of the matrix.
List of Supplementary Tables

Supplementary Table 1 – GTEx version 6 comparisons of single-tissue and multi-tissue imputation models using GEUVADIS LCL RNA-Seq expression as validation.

Counts (B-H counts) are based on Benjamini-Hochberg procedure false discovery rate of 0.05.

The last column displays the number of counts at p-value threshold 0.05 (without any corrections).

Supplementary Table 2 – Comparison of all multi-tissue methods

We applied SWAM to all combinations of GTEx and DGN resources. For the GTEx resources, we always used every tissue available. In version 6, this comprised of 44 tissues. For version 7, there were 48 tissues and version 8 contained 49 tissues. For the sake of consistency, our target tissue for each of these combinations was GTEx v6 LCL.

Supplementary Table 3 – comparison of GTEx v7/v8 single tissue models versus GEUVADIS

We also compared every prediXcan model derived from GTEx version 7 and version 8 tissues, and tested imputation accuracy against GEUVADIS LCL measured expression levels. Surprisingly, despite the increase in sample size, the LCL tissue from v8 performed worse than its version 7 counterpart. The number of tissues outperforming LCL in both v7 and v8 highlight the opportunity to leverage information from other tissues to improve imputation accuracy for under-powered tissues.
We used SWAM to derive a tissue-specific model for every GTEx version 6 tissue, and used these models as inputs to metaXcan to infer TWAS results. As mentioned in the methods section, the HDL and LDL traits were from Global Lipids Genetics Consortium (GLGC) and Type-2 Diabetes (T2D) from the DIAGRAM consortium.

These models were also derived from GTEx version 6 tissues using the UTMOST method. Models were downloaded from https://github.com/Joker-Jerome/UTMOST

TWAS results via metaXcan using prediXcan single tissue models derived from GTEx version 6 tissues
Method	Total # genes	Genes with FDR < 0.05	P-value threshold for FDR=0.05	Genes with p-value < 0.05
DGN Whole Blood	13213	2390	0.009018	3450
Adipose Subcutaneous	13213	1500	0.005667	2203
Adipose Visceral Omentum	13213	963	0.003619	1432
Adrenal Gland	13213	735	0.002755	1151
Artery Aorta	13213	1177	0.004426	1783
Artery Coronary	13213	616	0.00231	926
Artery Tibial	13213	1439	0.005399	2124
Brain Anterior cingulate cortex BA24	13213	322	0.00117	580
Brain Caudate basal ganglia	13213	528	0.001979	895
Brain Cerebellar Hemisphere	13213	575	0.002172	1002
Brain Cerebellum	13213	661	0.002498	1144
Brain Cortex	13213	511	0.00193	878
Brain Frontal Cortex BA9	13213	456	0.001699	770
Brain Hippocampus	13213	336	0.001254	572
Brain Hypothalamus	13213	339	0.001264	554
Brain Nucleus accumbens basal ganglia	13213	454	0.001709	755
Brain Putamen basal ganglia	13213	391	0.001461	655
Breast Mammary Tissue	13213	933	0.003455	1430
Cells EBV-transformed lymphocytes	13213	1552	0.005845	1943
Cells Transformed fibroblasts	13213	1690	0.00635	2451
Colon Sigmoid	13213	680	0.002391	1052
Colon Transverse	13213	1013	0.003803	1536
Esophagus Gastroesophageal Junction	13213	716	0.002689	1101
Esophagus Mucosa	13213	1469	0.00553	2148
Esophagus Muscularis	13213	1272	0.004808	1959
Heart Atrial Appendage	13213	849	0.003167	1323
Heart Left Ventricle	13213	942	0.003537	1451
Liver	13213	427	0.001547	719
Lung	13213	1355	0.005122	1985
Muscle Skeletal	13213	1197	0.004454	1876
Nerve Tibial	13213	1450	0.005483	2186
Ovary	13213	417	0.001566	689
Pancreas	13213	911	0.003426	1406
Pituitary	13213	496	0.001875	808
Prostate	13213	398	0.001421	629
Skin Not Sun Exposed Suprapubic	13213	1063	0.003997	1619
Skin Sun Exposed Lower leg	13213	1463	0.005489	2145
Tissue	Count	GEUVADIS LCL RNA-Seq Expression		
------------------------------------	-------	---------------------------------		
Small Intestine Terminal Ileum	13213			
Spleen	13213	759 0.002821 1166		
Stomach	13213	878 0.003291 1350		
Testis	13213	956 0.003607 1563		
Thyroid	13213	1454 0.005469 2208		
Uterus	13213	297 0.001071 521		
Vagina	13213	307 0.001149 511		
Whole Blood	13213	1427 0.005343 2106		
SWAM-LCL v6	13213	3040 0.01145 4148		
NAIVE AVERAGE V6	13213	2666 0.010066 3830		
BEST TISSUE V6	13213	2493 0.009394 3663		
UTMOST-LCL v6	13213	2238 0.008466 3185		

Supplementary Table 7 — GTEx version 6 comparisons of single-tissue and multi-tissue imputation models using GEUVADIS LCL RNA-Seq expression as validation.

Counts (B-H counts) are based on Benjamini-Hochberg procedure false discovery rate of 0.05. The last column displays the number of counts at p-value threshold 0.05 (without any corrections).
Method	Total # genes	Genes with FDR < 0.05	P-value threshold for FDR=0.05	Genes with p-value < 0.05
SWAM-LCL (GTEx v6)	13213	3040	0.01145	4148
SWAM-LCL (GTEx v6 + DGN)	13213	3192	0.012077	4301
SWAM-LCL (GTEx v7)	13213	3060	0.011463	4215
SWAM-LCL (GTEx v7 + DGN)	13213	3411	0.012903	4469
SWAM-LCL (GTEx v8)	13213	3203	0.01212	4236
SWAM-LCL (GTEx v8 + DGN)	13213	3449	0.013046	4460
SWAM-LCL (GTEx v6 + v7)	13213	3283	0.012383	4385
SWAM-LCL (GTEx v6 + v7 + DGN)	13213	3361	0.012674	4480
SWAM-LCL (GTEx v6 + v8)	13213	3134	0.01185	4274
SWAM-LCL (GTEx v6 + v8 + DGN)	13213	3275	0.012389	4384
SWAM-LCL (GTEx v7 + v8)	13213	3259	0.01227	4326
SWAM-LCL (GTEx v7 + v8 + DGN)	13213	3368	0.012737	4478
SWAM-LCL (GTEx v6 + v7 + v8)	13213	3342	0.012641	4448
SWAM-LCL (GTEx v6 + v7 + v8 + DGN)	13213	3413	0.012878	4526
UTMOST-LCL	13213	2238	0.008466	3185
NAIVE AVERAGE	13213	2666	0.010066	3830
BEST TISSUE	13213	2493	0.009394	3663

Supplementary Table 8—Comparison of all multi-tissue methods

We applied SWAM to all combinations of GTEx and DGN resources. For the GTEx resources, we always used every tissue available. In version 6, this comprised of 44 tissues. For version 7, there were 48 tissues and version 8 contained 49 tissues. For the sake of consistency, our target tissue for each of these combinations was GTEx v6 LCL.
Tissue	GTEx v7			GTEx v8		
	sample	Total # genes	Genes with FDR < 0.05	sample	Total # genes	Genes with FDR < 0.05
Adipose Subcutaneous	328	6689	2259	581	6847	2114
Adipose Visceral Omentum	273	5286	1905	469	5769	1957
Adrenal Gland	146	3784	1322	233	3816	1279
Artery Aorta	236	5488	1850	387	6090	1844
Artery Coronary	128	2838	1040	213	3177	1119
Artery Tibial	329	6836	2131	584	6955	2023
Brain Amygdala	81	1876	581	129	2081	682
Brain Anterior cingulate cortex BA24	102	2628	838	147	2662	840
Brain Caudate basal ganglia	126	3272	1035	194	3795	1146
Brain Cerebellar Hemisphere	113	3810	1050	175	4482	1127
Brain Cerebellum	137	4899	1310	209	5254	1299
Brain Cortex	119	3422	1073	205	4169	1203
Brain Frontal Cortex BA9	104	2812	879	175	3424	1019
Brain Hippocampus	99	2217	708	165	2806	886
Brain Hypothalamus	98	2219	710	170	2742	911
Brain Nucleus accumbens basal ganglia	114	2820	921	202	3629	1076
Brain Putamen basal ganglia	98	2542	806	170	3365	1035
Brain Spinal cord cervical c-1	76	2003	600	126	2455	744
Brain Substantia nigra	70	1609	496	114	1892	570
Breast Mammary Tissue	211	4280	1622	396	5076	1756
Cells EBV-transformed lymphocytes	96	2777	1731	147	2537	1620
Cells Transformed fibroblasts	256	6297	2336	483	7421	2428
Colon Sigmoid	185	4257	1556	318	4847	1633
Colon Transverse	210	4457	1771	368	4923	1781
Esophagus Gastroesophageal Junction	185	4325	1603	330	4964	1675
Esophagus Mucosa	307	6744	2305	497	6872	2167
Esophagus Muscularis	287	6354	2119	465	6554	2030
Heart Atrial Appendage	231	4866	1675	372	5262	1696
Heart Left Ventricle	233	4449	1491	386	4902	1569
Kidney Cortex	NA	NA	NA	73	1205	344
Liver	134	2746	883	208	2983	976
Lung	333	6251	2190	515	6173	2071
Minor Salivary Gland	74	1785	652	144	2161	842
Muscle Skeletal	421	6323	1901	706	6261	1762
Supplementary Table 9 – comparison of GTEx v7/v8 single tissue models versus GEUVADIS LCL

We also compared every prediXcan model derived from GTEx version 7 and version 8 tissues, and tested imputation accuracy against GEUVADIS LCL measured expression levels. Surprisingly, despite the increase in sample size, the LCL tissue from v8 performed worse than its version 7 counterpart. The number of tissues outperforming LCL in both v7 and v8 highlight the opportunity to leverage information from other tissues to improve imputation accuracy for under-powered tissues.

Tissue	GTEx v7	GTEx v8								
Nerve Tibial	305	7512	2179	532	7764	2051				
Ovary	99	2406	818	167	2751	909				
Pancreas	180	4369	1504	305	4710	1532				
Pituitary	143	3691	1228	237	4262	1381				
Prostate	114	2487	926	221	3205	1125				
Skin Not Sun Exposed Suprapubic	285	6092	1997	517	6802	2011				
Skin Sun Exposed Lower leg	359	7221	2201	605	7203	2071				
Small Intestine Terminal Ileum	103	2482	991	174	2844	1145				
Spleen	119	3753	1514	227	4527	1720				
Stomach	200	3899	1518	324	4064	1542				
Testis	191	5919	1451	322	6470	1518				
Thyroid	344	7556	2249	574	7468	2130				
Uterus	82	1957	681	129	1944	699				
Vagina	91	1889	690	141	1919	725				
Whole Blood	315	5432	1915	670	6195	2082				
Tissue	HDL	LDL	T2D							
---	-----------	-----------	-----------							
	# sig genes	p-value threshold	total genes	# sig genes	p-value threshold	total genes	# sig genes	p-value threshold	total genes	
Adipose Subcutaneous	78	3.23E-06	15501	79	3.22E-06	15507	8	3.19E-06	15669	
Adipose Visceral Omentum	80	3.26E-06	15326	71	3.26E-06	15333	8	3.23E-06	15476	
Adrenal Gland	70	3.34E-06	14961	78	3.34E-06	14973	8	3.31E-06	15110	
Artery Aorta	74	3.34E-06	14990	78	3.33E-06	15000	10	3.31E-06	15125	
Artery Coronary	76	3.33E-06	15001	69	3.33E-06	15009	7	3.30E-06	15147	
Artery Tibial	84	3.33E-06	14994	81	3.33E-06	15001	11	3.30E-06	15145	
Brain Anterior cingulate cortex BA24	87	3.36E-06	14892	70	3.36E-06	14901	6	3.32E-06	15061	
Brain Caudate basal ganglia	88	3.29E-06	15216	75	3.28E-06	15221	11	3.25E-06	15372	
Brain Cerebellar Hemisphere	75	3.39E-06	14742	74	3.39E-06	14755	4	3.36E-06	14891	
Brain Cerebellum	71	3.34E-06	14991	81	3.33E-06	15006	5	3.30E-06	15150	
Brain Cortex	78	3.29E-06	15198	91	3.29E-06	15208	6	3.25E-06	15366	
Brain Frontal Cortex BA9	74	3.32E-06	15061	65	3.32E-06	15073	5	3.28E-06	15239	
Brain Hippocampus	79	3.31E-06	15098	71	3.31E-06	15106	9	3.27E-06	15269	
Brain Hypothalamus	67	3.28E-06	15265	72	3.27E-06	15274	7	3.24E-06	15419	
Brain Nucleus accumbens basal ganglia	73	3.30E-06	15152	83	3.30E-06	15166	7	3.27E-06	15313	
Brain Putamen basal ganglia	86	3.35E-06	14926	79	3.35E-06	14935	9	3.32E-06	15066	
Breast Mammary Tissue	77	3.19E-06	15682	79	3.19E-06	15687	11	3.16E-06	15838	
Cells EBV-transformed lymphocytes	75	3.75E-06	13344	76	3.75E-06	13347	9	3.70E-06	13504	
Cells Transformed fibroblasts	74	3.55E-06	14091	81	3.55E-06	14098	10	3.51E-06	14253	
Colon Sigmoid	73	3.31E-06	15124	79	3.30E-06	15138	11	3.27E-06	15291	
Colon Transverse	78	3.23E-06	15500	73	3.22E-06	15507	7	3.19E-06	15681	
Esophagus Gastroesophageal Junction	79	3.34E-06	14988	78	3.33E-06	14993	8	3.30E-06	15140	
Esophagus Mucosa	84	3.27E-06	15268	81	3.27E-06	15275	7	3.24E-06	15437	
Esophagus Muscularis	77	3.29E-06	15199	93	3.29E-06	15205	7	3.26E-06	15343	
Heart Atrial Appendage	88	3.36E-06	14879	90	3.36E-06	14890	12	3.33E-06	15030	
Heart Left Ventricle	73	3.43E-06	14558	82	3.43E-06	14569	8	3.40E-06	14696	
Tissue	N	P-value	Start	End	chr	P-value				
-------------------------------------	-----	------------	---------	----------	-----	------------				
Liver	84	3.49E-06	14325		15	3.49E-06				
Lung	74	3.16E-06	15813		15	3.16E-06				
Muscle Skeletal	84	3.43E-06	14560		15	3.43E-06				
Nerve Tibial	71	3.43E-06	15064		15	3.40E-06				
Ovary	73	3.39E-06	14754		15	3.39E-06				
Pancreas	73	3.36E-06	14891		15	3.36E-06				
Pituitary	71	3.43E-06	15560		15	3.40E-06				
Prostate	71	3.43E-06	15560		15	3.40E-06				
Skin Not Sun Exposed Suprapubic	79	3.24E-06	15024		15	3.24E-06				
Skin Sun Exposed Lower leg	79	3.18E-06	15279		15	3.18E-06				
Small Intestine Terminal Ileum	78	3.28E-06	15265		15	3.28E-06				
Spleen	69	3.36E-06	14873		15	3.36E-06				
Stomach	74	3.22E-06	15706		15	3.22E-06				
Testis	83	3.03E-06	16550		15	3.03E-06				
Thyroid	70	3.18E-06	15705		15	3.18E-06				
Uterus	90	3.41E-06	14654		15	3.41E-06				
Vagina	84	3.30E-06	15157		15	3.30E-06				
Whole Blood	71	3.49E-06	14331		15	3.49E-06				
Average	79.71	77.75	8.43							

Supplementary Table 10—TWAS association signals for SWAM

We used SWAM to derive an tissue-specific model for every GTEx version 6 tissue, and used these models as inputs to metaXcan to infer TWAS results. As mentioned in the methods section, the HDL and LDL traits were from Global Lipids Genetics Consortium (GLGC) and Type-2 Diabetes (T2D) from the DIAGRAM consortium.
Tissue	HDL	LDL	T2D						
	# sig	p-value	total	# sig	p-value	total	# sig	p-value	total
Adipose Subcutaneous	82	4.18E-06	11964	61	4.18E-06	11969	11	3.94E-06	12688
Adipose Visceral Omentum	69	4.26E-06	11741	68	4.26E-06	11743	10	4.01E-06	12475
Adrenal Gland	72	4.55E-06	10998	66	4.54E-06	11004	7	4.26E-06	11737
Artery Aorta	75	4.47E-06	11180	55	4.47E-06	11184	7	4.19E-06	11926
Artery Coronary	61	4.39E-06	11391	58	4.39E-06	11397	7	4.13E-06	12114
Artery Tibial	74	4.43E-06	11292	60	4.43E-06	11295	9	4.15E-06	12044
Brain Anterior cingulate cortex BA24	53	5.00E-06	10002	62	5.00E-06	10003	8	4.64E-06	10779
Brain Caudate basal ganglia	61	4.61E-06	10850	55	4.61E-06	10850	11	4.30E-06	11627
Brain Cerebellar Hemisphere	65	4.94E-06	10113	64	4.94E-06	10115	11	4.60E-06	10864
Brain Cerebellum	62	4.78E-06	10457	67	4.78E-06	10457	7	4.46E-06	11205
Brain Cortex	61	4.69E-06	10650	57	4.70E-06	10647	8	4.37E-06	11445
Brain Frontal Cortex BA9	66	4.67E-06	10717	57	4.66E-06	10719	11	4.34E-06	11519
Brain Hippocampus	58	4.67E-06	10701	54	4.67E-06	10701	8	4.36E-06	11469
Brain Hypothalamus	75	4.55E-06	10986	65	4.55E-06	10987	11	4.25E-06	11764
Brain Nucleus accumbens basal ganglia	74	4.64E-06	10781	59	4.64E-06	10783	9	4.33E-06	11541
Brain Putamen basal ganglia	71	4.84E-06	10323	55	4.84E-06	10327	11	4.49E-06	11129
Breast Mammary Tissue	74	4.12E-06	12141	62	4.12E-06	12143	8	3.88E-06	12899
Cells EBV-transformed lymphocytes	65	5.20E-06	9610	50	5.20E-06	9615	5	4.87E-06	10267
Cells Transformed fibroblasts	61	4.80E-06	10406	60	4.80E-06	10409	10	4.51E-06	11089
Colon Sigmoid	72	4.44E-06	11257	68	4.44E-06	11261	7	4.16E-06	12010
Colon Transverse	74	4.25E-06	11759	61	4.25E-06	11765	10	3.99E-06	12545
Esophagus Gastroesophageal Junction	58	4.50E-06	11117	52	4.50E-06	11119	8	4.23E-06	11823
Esophagus Mucosa	77	4.31E-06	11595	71	4.31E-06	11603	7	4.06E-06	12316
Esophagus Muscularis	67	4.43E-06	11285	67	4.43E-06	11289	7	4.16E-06	12029
Heart Atrial Appendage	69	4.58E-06	10922	64	4.58E-06	10923	9	4.28E-06	11679
Heart Left Ventricle	77	4.75E-06	10519	55	4.75E-06	10522	10	4.45E-06	11242
Liver	63	4.97E-06	10062	69	4.97E-06	10068	7	4.63E-06	10808
Tissue	N	Value	N	Value	N	Value	N	Value	
--	-----	-------------	-----	-------------	-----	-------------	-----	-------------	
Lung	81	4.02E-06	62	4.02E-06	8	3.80E-06			
Muscle Skeletal	81	4.70E-06	65	4.70E-06	6	4.41E-06			
Nerve Tibial	78	4.24E-06	63	4.24E-06	7	4.00E-06			
Ovary	57	4.71E-06	60	4.71E-06	8	4.42E-06			
Pancreas	60	4.71E-06	63	4.71E-06	7	4.38E-06			
Pituitary	75	4.41E-06	69	4.41E-06	8	4.13E-06			
Prostate	73	4.28E-06	60	4.28E-06	8	4.02E-06			
Skin Not Sun Exposed Suprapubic	75	4.24E-06	69	4.24E-06	7	4.00E-06			
Skin Sun Exposed Lower leg	72	4.12E-06	62	4.12E-06	8	3.87E-06			
Small Intestine Terminal Ileum	68	4.48E-06	64	4.48E-06	10	4.19E-06			
Spleen	70	4.66E-06	55	4.66E-06	13	4.36E-06			
Stomach	78	4.23E-06	68	4.22E-06	14	3.97E-06			
Testis	73	4.03E-06	70	4.03E-06	7	3.78E-06			
Thyroid	82	4.13E-06	68	4.13E-06	17	3.88E-06			
Uterus	60	4.93E-06	61	4.93E-06	8	4.62E-06			
Vagina	70	4.43E-06	59	4.43E-06	7	4.16E-06			
Whole Blood	59	4.76E-06	52	4.75E-06	12	4.48E-06			
Average		69.27		61.64		8.84			

Supplementary Table 11 – TWAS association signals for UTMOST

These models were also derived from GTEx version 6 tissues using the UTMOST method. Models were downloaded from https://github.com/Joker-Jerome/UTMOST
Tissue	HDL	LDL	T2D						
TW Adipose Subcutaneous	46	28	10						
TW Adipose Visceral Omentum	32	21	6						
TW Adrenal Gland	23	20	3						
TW Artery Aorta	33	44	5						
TW Artery Coronary	13	21	3						
TW Artery Tibial	36	32	6						
TW Brain Anterior cingulate cortex BA24	6	14	2						
TW Brain Caudate basal ganglia	21	25	2						
TW Brain Cerebellar Hemisphere	12	18	3						
TW Brain Cerebellum	22	28	4						
TW Brain Cortex	19	33	3						
TW Brain Frontal Cortex BA9	12	16	1						
TW Brain Hippocampus	12	10	1						
TW Brain Hypothalamus	6	11	1						
TW Brain Nucleus accumbens basal ganglia	16	17	1						
TW Brain Putamen basal ganglia	14	17	5						
TW Breast Mammary Tissue	23	20	4						
TW Cells EBV-transformed lymphocytes	22	17	3						
TW Cells Transformed fibroblasts	52	35	7						
TW Colon Sigmoid	16	16	4						
TW Colon Transverse	24	24	4						
TW Esophagus Gastroesophageal Junction	14	17	3						
TW Esophagus Mucosa	38	32	3						
TW Esophagus Muscularis	31	33	4						
TW Heart Atrial Appendage	28	21	6						
TW Heart Left Ventricle	25	33	4						
TW Liver	16	19	4						
TW Tissue	N	p	FDR	N	p	FDR	N	p	FDR
--	----	--------	------	----	--------	------	----	--------	------
TW Lung	42	8.32E-06	6008	16	8.33E-06	6002	5	7.56E-06	6611
TW Muscle Skeletal	30	8.32E-06	6009	30	8.33E-06	6003	8	7.56E-06	6614
TW Nerve Tibial	41	6.60E-06	7577	39	6.61E-06	7570	6	6.13E-06	8157
TW Ovary	13	1.94E-05	2576	17	1.94E-05	2575	3	1.81E-05	2762
TW Pancreas	26	1.12E-05	4449	26	1.12E-05	4447	4	1.05E-05	4771
TW Pituitary	12	1.59E-05	3145	13	1.59E-05	3144	5	1.48E-05	3382
TW Prostate	10	2.09E-05	2389	20	2.09E-05	2389	3	1.92E-05	2609
TW Skin Not Sun Exposed Suprapubic	27	9.37E-06	5336	31	9.38E-06	5333	4	8.62E-06	5798
TW Skin Sun Exposed Lower leg	42	7.10E-06	7041	35	7.11E-06	7037	6	6.55E-06	7628
TW Small Intestine Terminal Ileum	15	1.97E-05	2538	16	1.97E-05	2536	3	1.83E-05	2729
TW Spleen	19	1.45E-05	3456	18	1.45E-05	3456	5	1.35E-05	3698
TW Stomach	16	1.27E-05	3945	23	1.27E-05	3943	4	1.17E-05	4271
TW Testis	30	7.37E-06	6780	28	7.38E-06	6778	7	6.91E-06	7234
TW Thyroid	39	6.69E-06	7478	40	6.69E-06	7469	7	6.14E-06	8140
TW Uterus	11	2.51E-05	1991	8	2.51E-05	1991	1	2.34E-05	2139
TW Vagina	15	2.57E-05	1946	10	2.57E-05	1944	1	2.40E-05	2082
TW Whole Blood	42	8.23E-06	6077	30	8.23E-06	6073	3	7.42E-06	6743
Average	23.68	23.23	4.02						

Supplementary Table 12 – TWAS association signals for prediXcan (single-tissue)

TWAS results via metaXcan using prediXcan single tissue models derived from GTEx version 6 tissues