Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks

Alexander J. Anderson, Thomas D. Jackson, David A. Stroud and Diana Stojanovski

Department of Biochemistry and Molecular Biology and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia

Mitochondria are iconic structures in biochemistry and cell biology, traditionally referred to as the powerhouse of the cell due to a central role in energy production. However, modern-day mitochondria are recognized as key players in eukaryotic cell biology and are known to regulate crucial cellular processes, including calcium signalling, cell metabolism and cell death, to name a few. In this review, we will discuss foundational knowledge in mitochondrial biology and provide snapshots of recent advances that showcase how mitochondrial function regulates other cellular responses.

1. Introduction

All modern-day eukaryotes are believed to have arisen from a primordial ancestor that engulfed an α-protobacterium with the capacity for respiration [1]. This event gave rise to modern-day mitochondria, an event that is now deeply integrated in eukaryotic cell homeostasis and survival. Mitochondria are dynamic networks capable of remodelling their morphology and activity. They provide energy and biomolecules for the cell, in addition to contributing to pathways of cell stress, immune responses, intra- and intercellular signalling, cell-cycle control and cell death. The unique biology of mitochondria underpins their influence on the cell and the ability to calibrate their structure and proteome is an efficacious means of adapting their function. As such, we will begin with a brief outline of three fundamental concepts in mitochondrial biology: (i) mitochondrial ultrastructure; (ii) mitochondrial protein import; and (iii) mitochondrial dynamics. This will inform subsequent discussion of mitochondria as key players in broad and diverse roles, including metabolism, signal transduction, immunity, cell cycle, cell differentiation, cell death and stress.

2. Mitochondrial ultrastructure, dynamics and protein import

2.1. Mitochondrial ultrastructure

Mitochondria have a double membrane that defines four compartments: the outer membrane, the intermembrane space, the inner membrane and the matrix. The architecture of the inner membrane is malleable and typically convoluted into folded invaginations, called cristae, that dictate the spatial arrangement of proteins [2]. Remodelling cristae structure of cristae can also alter enzymatic flux between the compartments, consistent with the diverse cristae structures observed across cell types with different metabolic demands [2]. The recently described MICOS complex (mitochondrial contact site and cristae organizing system) is required to maintain cristae morphology [3] (figure 1). Loss of MICOS assembly

© 2019 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original author and source are credited.
2.2. Mitochondrial protein import

From their endosymbiotic origins, human mitochondria have retained only 37 genes in a small circular genome known as the mitochondrial DNA (mtDNA), which encodes 13 polypeptides, 22 tRNAs and 2 rRNAs. The remaining 1000–1500 mitochondrial proteins are nuclear encoded and must be imported and sorted to the relevant mitochondrial compartment following synthesis in the cytosol. Fundamentally, mitochondrial protein import is mediated by multimeric protein complexes known as translocases, which are located at mitochondria (figure 1). Briefly, two major translocases reside in the outer membrane of mitochondria: the Translocase of the Outer Membrane (TOM) complex and the Sorting and Assembly Machinery (SAM). The TOM complex is the initial point of contact for almost all mitochondrial precursors and provides a means of entry into the organelle. Following translocation through TOM, precursor import pathways diverge based on their targeting information and ultimate location within the organelle. β-barrel proteins of the outer membrane are sorted to the SAM complex for integration into the membrane. There are two translocases embedded in the inner membrane of mitochondria: the Translocase of the Inner Membrane (TIM) 22 and 23 (TIM22 and TIM23) complexes. TIM22 mediates the insertion of non-cleavable polytopic membrane proteins into the inner membrane, while the TIM23 complex is responsible for importing precursors across the inner membrane into the matrix or in some instances can laterally release ablates cristae junctions and manifests severe defects in energy metabolism, calcium handling and lipid trafficking [4]. However, it remains unclear how MICOS is regulated by cellular conditions to produce diverse cristae morphologies. Interestingly, disruption of MICOS alters the activity and/or abundance of mitochondrial morphology proteins [5,6]. Perturbations to organelle function have long been associated with gross morphological changes in the mitochondrial network, therefore cristae reorganization by MICOS assembly/disassembly may be an intermediary between function and dynamics. Recently identified associations between MICOS and protein import complexes point to the broad influence of MICOS on mitochondrial function [7,8].

(Recommended further reading on cristae, MICOS and ultrastructure: [2,9,10].)
transmembrane precursors into the inner membrane. Finally, the Mitochondrial Intermembrane space Assembly (MIA) machinery mediates the import of small cysteine-rich intermembrane space proteins and couples their import to their oxidation [11]. These import pathways and machines have been predominately characterized in fungal organisms; however, in more recent years, analysis in higher eukaryotes has uncovered important physiological consequences due to perturbations in protein import. Specifically, mutations in genes encoding protein import subunits cause distinct mitochondrial diseases with phenotypes ranging from severe muscular defects to neurodegeneration and congenital growth defects [12].

(Recommended further reading on mitochondrial protein import: [13–15].)

2.3. Mitochondrial dynamics: fission, fusion and organelle contact sites

As an organellar network, mitochondria undergo fission and fusion to replicate, be recycled, and alter their bioenergetics. Fusion of the outer membrane is mediated by homotypic interactions between the GTPases Mfn1 and Mfn2 on adjacent mitochondria (figure 2) [16], but the domains involved and stepwise mechanism of fusion are still debated. Fusion of the inner membrane is controlled by Opa1, which exists as long and short forms generated through proteolysis. Contact sites between the mitochondria and the endoplasmic reticulum (ER) are established and maintained through protein–protein interactions. Interactions occur between Mfn2 molecules on the ER membrane and the outer mitochondrial membrane, and between VAPB on the ER membrane and RMDN3 on the mitochondrial outer membrane. Interactions also occur between IP3R3, a calcium channel on the ER membrane, and VDAC1 and hTom70 on the mitochondrial outer membrane.

Mitochondria also engage in extensive dynamic interorganelle contacts that coordinate functional exchanges between mitochondria and other cellular components [27]. In particular, ER–mitochondria contact sites (ERMCs) facilitate a multitude of functions including mitochondrial fusion, coenzyme Q biosynthesis, lipid transfer, Ca²⁺ transfer, mtDNA...
3. Mitochondria and metabolism

Mitochondria are well known for providing energy to the cell, predominantly by coupling the tricarboxylic acid (TCA) cycle with oxidative phosphorylation. The TCA cycle is a series of eight enzymatic reactions that occur in the matrix to harvest electrons from citrate and its catabolic intermediates (figure 3a). The typical input to the cycle is acetyl-CoA, which can be produced from glucose (via glycolysis), fatty acids (via β-oxidation) and amino acids (via deamination) (figure 3a). The electrons scavenged throughout the cycle are transferred by NADH and FADH2 to the complexes of the electron transport chain. Complexes I–IV of the electron transport chain shuttle electrons, using their energy to pump protons into the intermembrane space and establish an electrochemical gradient across the inner membrane. Complex V (ATP synthase) releases the protons back into the matrix, using the energy of the electrochemical gradient to produce ATP, the cell’s energy currency (figure 3a) [52]. Although normally efficient, oxidative phosphorylation is negatively regulated by the accumulation of its toxic by-product, reactive oxygen species (ROS). If unchecked, ROS can cause damage to mitochondria, induce protein aggregation and introduce mutations in DNA [53–55]. Recent advances in cryoelectron microscopy have revealed Complexes I, III and IV can assemble to form supercomplexes thought to reduce the amount of ROS produced during electron transport, as well as enhance respiration rates [56].

Mitochondria also produce fatty acids, amino acids, nucleotides and haem groups for the cell through biosynthetic pathways [57–59]. One such process, one-carbon (1C) metabolism, produces glycine, methionine, nucleotides, phosphatidylcholine and 1C units (methyl-like groups) from serine catabolism through the redox chemistry of folate and its derivatives (figure 3b) [60]. These 1C units charge the universal methyl donor S-adenosylmethionine required for the methylation of proteins and chromatin [61]. There is now significant evidence of metabolic enzymes and metabolites altering gene expression as reporters of environmental conditions (nutrient availability, hypoxia, oxidative stress) or mitochondrial dysfunction. This has been shown for acetyl-CoA, TCA intermediates, ketones, lactate, fatty acids and amino acids [62–68]. Emerging studies also indicate cellular nutrient and energy sensing by mTOR kinase regulates mitochondrial biogenesis and protein synthesis [69]. Through downstream effectors of transcription and translation, mTORC1 stimulates mitochondrial biogenesis and oxidative metabolism to meet the energy demand of anabolism [70–72]. Interestingly, the tumour suppressor p53 inhibits mTOR-mediated growth and proliferation to prevent oncogenesis [73,74]. p53 activity increases electron transport chain efficacy [75], mtDNA stability [76,77] and reduced glutathione (GSH) levels [78] to limit ROS production as well as inhibiting glycolysis [79,80], which contributes to the replicative potential of tumour cells [79,81,82]. Thus, metabolism is intimately integrated with other cellular pathways, but is not the sole contribution of mitochondria to signalling mechanisms.

(Recommended further reading on metabolism: [60,83]; on metabolite signalling: [68,84]; on mTOR/p53: [85,86].)

4. Signalling

4.1. Mitochondria control calcium homeostasis

Calcium ions are common to diverse signalling pathways. The outer mitochondrial membrane is permeable to Ca2+ in part due to channel-forming VDAC proteins [87] and export via SLC8A3 [88]. The mitochondrial inner membrane calcium uniporter (MCU) complex regulates transport into the matrix (figure 3c). Permeability of the MCU complex is calibrated by two regulatory subunits, MICU1 and MICU2, that are linked by an intermolecular disulfide bond introduced by hMia40 [89,90]. The ability of mitochondria to accumulate Ca2+ up to 20-fold higher concentrations than the cytosol allows them to function as buffering systems and re-establish homeostasis following Ca2+ bursts [91,92]. Bursts of Ca2+ into the cytosol, from across the plasma membrane or intra-cellular stores, can initiate neurotransmitter release, muscle fibre contraction and transcriptional regulation. In neurons, mitochondrial Ca2+ buffering modulates both the propensity and duration of neurotransmitter release [93,94]. In cardiac muscle, contraction is coupled to enhanced mitochondrial ATP production via Ca2+-increased activities of TCA cycle enzymes, Complex V and the ADP/ATP transporter [95–98]; an effect maximized by local Ca2+ concentrations at ERMCs [29,99] (figure 3c). Additionally, mitochondrial Ca2+ regulation influences hormone secretion [100], tissue regeneration [101] and interferon-β signalling via the mitochondrial antiviral signalling protein, MAVS [102].

(Recommended further reading on mitochondrial Ca2+ signalling: [92,103,104].)

4.2. Roles of mitochondria in immune responses

The contribution of mitochondria to immune responses is a growing area of research. Cell-autonomous immune signalling is driven by MAVS at the outer membrane, which acts as a relay point for immune signal transduction. Rig-like receptors in the cytosol undergo conformational changes upon detecting viral RNA or DNA and are recruited to MAVS, particularly at ERMCs [105]. MAVS then dimerizes to enable the binding of multiple downstream signalling adaptors including TRADD, TRAF3 and STING to activate NF-κB and IRF-3/7
Table 1. Full names and identifiers of proteins discussed in this review.

section	protein name	abbreviation	full name(s)	gene	accession (NCBI; UniProt)	function(s)
mitochondrial dynamics	Mfn1	Mfn1	Mitofusin 1	MFN1	55669; Q81WA4	outer membrane fusion
	Mfn2	Mfn2	Mitofusin 2	MFN2	9927; 095140	outer membrane fusion; ER–mitochondria contact
	Opa1	OPA1	OPA1 mitochondrial dynamin-like GTPase	OPA1	4976; 06313	inner membrane fusion
	Drp1	DNM1L	dynamin-1-like protein; Drp1		10059; 000429	mitochondrial fission
	Fis1	FIS1	mitochondrial fission protein 1	FIS1	51024; Q9Y306	mitochondrial fission
	Mff	MFF	mitochondrial fission factor	MFF	56947; Q09788	mitochondrial fission
	Mid51	MIEF1	mitochondrial dynamics protein 51	MIEF1	54471; 092868	mitochondrial fission
	Mid49	MIEF2	mitochondrial dynamics protein 49	MIEF2	125170; Q96C03	mitochondrial fission
organelle contact site	hTom70	hTom70	translocase of the outer membrane 70	TOMM70	9868; 094826	protein import; ER–mitochondria contact
	VDAC1	VDAC1	voltage-dependent anion channel 1		7416; P21796	ER–mitochondria contact; ion permeability
	IPT3	IPT3	inositol 1,4,5-trisphosphate receptor type 3	IPT3	3710; Q14573	ER contact sites; calcium transport
	RMDN3	RMDN3	regulator of microtubule dynamics protein 3	RMDN3	55177; Q96C7	ER contact sites; calcium transport
	VAPB	VAPB	VAMP associated protein B and C	VAPB	9217; 095292	ER contact sites
	Vps13a	VPS13A	vacuolar protein sorting 13 homolog A	VPS13A	23230; Q96L7	ER contact sites; lipid transfer
	Pdzd8	PDZD8	PDZ containing 8	PDZD8	118987; Q8N4O9	ER contact sites; calcium transport
metabolism	mTOR	mTOR	mechanistic target of rapamycin kinase; sequestrome/hormon protein kinase mammalian	mTOR	2475; P42345	metabolic regulation; cell growth
calcium homeostasis	p53	TP53	tumour protein 53	TP53	7157; P04637	metabolic regulation; cell survival
	SLC8A3	SLC8A3	solute carrier family 8 member A3	SLC8A3	6547; P57103	calcium transport
	MCU	MCU	mitochondrial calcium uniporter	MCU	90550; Q0NE86	calcium transport
	MCU1	MCU1	mitochondrial calcium uptake 1	MCU1	10367; Q089P6	calcium transport, regulation
	MCU2	MCU2	mitochondrial calcium uptake 2	MCU2	221154; Q8YU8	calcium transport, regulation
	hMia40	CHCHD4	coiled-coil–helix–coiled-coil–helix domain containing 4; mitochondrial intermembrane space import and assembly 40 homolog	hMia40	131474; Q8N4Q1	protein import; calcium transport regulation

(Continued.)
section	protein name	abbreviation	full name(s)	gene	accession (NCBI; UniProt)	function(s)
immune signalling	MAVS mitochondrial antiviral signalling protein	MAVS	MAVS	57506;	Q7Z434	immune signalling
	TRADD TNFRSF1A associated via death domain	TRADD	TRADD	8717;	Q15G28	immune signalling
	TRAF3 TNF receptor-associated factor 3	TRAF3	TRAF3	7187;	Q13114	immune signalling
	STING transmembrane protein 173; stimulator of interferon genes	STING	TMEM173	340061;	Q86WV6	immune signalling
	IRF3 interferon regulatory factor 3	IRF3	IRF3	3661;	Q14653	immune signalling
	IRF7 interferon regulatory factor 7	IRF7	IRF7	3665;	Q92985	immune signalling
	NLRX1 NLR family member X1	NLRX1	NLRX1	79671;	Q86UT6	immune signalling
	NLRP3 NLR family pyrin domain containing 3	NLRP3	NLRP3	114548;	Q96P20	immune signalling
	IL-1β interleukin 1 beta	IL1B	IL1B	3553;	P011584	immune signalling
cell differentiation	Ras K-Ras proto-oncogene, GTPase	KRAS	KRAS	3845;	P01116	cell proliferation
	Raf Raf-1 proto-oncogene, serine/threonine kinase	RAF1	RAF1	5894;	P04049	cell proliferation
	Pdk2 pyruvate dehydrogenase kinase 2	PDK2	PDK2	5164;	Q15119	metabolism regulation
	Oct4 POU class 5 homeobox	POU5F1	POU5F1	5460;	Q01860	stem cell differentiation
	Sox2 SRY-box transcription factor 2	SOX2	SOX2	6657;	P48431	stem cell differentiation
	Nanog Nanog homeobox	NANOG	NANOG	79923;	Q9H950	stem cell differentiation
	ZFP42 zinc finger protein	ZFP42	ZFP42	132625;	Q96MM3	stem cell pluripotency
cell death	Bax BCL2 associated X, apoptosis regulator	BAX	BAX	581;	Q07812	intrinsic apoptosis
	Bak BCL2 antagonist/killer1	BAK1	BAK1	578;	Q16611	intrinsic apoptosis
	Cyt c cytochrome c, somatic	CYCS	CYCS	54205;	P99999	intrinsic apoptosis
	Diablo Diablo IAP-binding mitochondrial protein	DIABLO	DIABLO	56616;	Q9NR28	intrinsic apoptosis
	Htra2 HtrA serine peptidase 2	HTRA2	HTRA2	27429;	043464	intrinsic apoptosis
	EndoG endonuclease G	ENDOG	ENDOG	2021;	Q14249	caspase-independent apoptosis
	AIF apoptosis-inducing factor mitochondria associated 1	AIFM1	AIFM1	9131;	095831	caspase-independent apoptosis
	VDAC2 voltage-dependent anion channel 2	VDAC2	VDAC2	7417;	P45880	intrinsic apoptosis; ion permeability

(Continued.)
transcription of interleukins and pro-inflammatory cytokines [106–108] (figure 4a). Interestingly, MAVS dimers and many of its adaptors co-immunoprecipitate with hTom70 of the TOM complex, the overexpression of which increases the signalling response [109]. MAVS signalling is also affected by ROS and negatively regulated by Nlrx1, a binding partner of Complex III and MAVS [110,111] (figure 4a). As mitochondrial protein import and oxidative metabolism can be hijacked by virulence factors [112], these interactions may make MAVS sensitive to consequences of infection. Finally, if mitochondria are compromised by infection, the increased ROS and release of mtDNA into the cytosol can activate the NLRP3 inflammasome to evoke an inflammatory response [113,114] (figure 4a).

Mitochondrial metabolism also directs rapid changes to specialized immune cells during infection. Changes in membrane potential can activate or suppress M2 macrophages [115,116] and M1 macrophages shunt intermediates from the TCA cycle to generate nitrous oxide, IL-1β and the antibacterial itaconic acid [117,118]. Furthermore, the phagocytic abilities of macrophages depend on mitochondrial ROS production to destroy internalized pathogens [119]. Naive T-cells display increases in mitochondrial mass, mtDNA copy number, glycolysis, and glutamine metabolism during differentiation for rapid proliferation and to escape quiescence [120,121]. Metabolic remodelling then also decides the T-cells’ mature fate [122,123], by altering cristae architecture [124] or by direct effect of metabolites on epigenetic transcription regulation [125].

(Recommended further reading on mitochondrial immune signalling: [106,118,126].)

5. Cell cycle, differentiation and death

Mitochondria are implicitly tied to cell-cycle control as providers of energy and nucleotides; however, they also coordinate checkpoints and respond to signals of proliferation. To meet the metabolic demand of mitosis, mitochondrial mass and membrane potential increase from G1/S until late mitotic stage [127]. Indeed, hyperpolarization and increased ATP production inhibit AMP kinase to allow cyclinE-mediated entry to S-phase [128]. In the late G2 stage of dividing S. cerevisiae, the cyclinB1/Cdk1 complex traffics to mitochondria to phosphorylate Complex I subunits and Tom6, stimulating oxidative metabolism both directly and indirectly via increased protein import [129,130]. During mitosis, a highly fused and reticular mitochondrial network progressively fragments to small tubular organelles that segregate in anticipation of cytokinesis [127,131]. Mitochondria can also delay cell-cycle progression to increase their biogenesis [132], because of insufficient nucleotide production [133], or because of ROS accumulation [134]. Moreover, the fusion mediator Mfn2 can sequester both Ras and Raf to inhibit proliferative signalling [135].

Stem cell differentiation also relies on mitochondria as a ‘metabolic switch’. Human embryonic stem cells are glycolytic; however, they develop mature cristae, rapidly replicate mtDNA and increase ATP production upon differentiation [136]. In haematopoietic stem cell differentiation, the down-regulation of Pdk2, an inhibitor of pyruvate dehydrogenase, releases suppression of acetyl-coA production and enables oxidative phosphorylation [137]. The subsequent increase in ROS production and oxidative phosphorylation during differentiation drives upregulation of mitochondrial antioxidant proteins by the transcription factors Oct4, Sox2 and Nanog.
Figure 3. Mitochondria coordinate essential metabolic processes. (a) Mitochondria are best known for housing the protein machinery required for generating ATP. When oxygen is available, most cells will generate ATP through oxidative phosphorylation, where electrons harvested through catabolic reactions are used to power ATP synthase. Electrons are obtained through the TCA cycle, which occurs in the matrix and consists of eight enzymatic reactions. Acetyl-CoA is the primary input for the TCA cycle, and can be obtained through metabolism of glucose, fatty acids and amino acids. Electrons extracted during the TCA cycle are loaded onto NAD+ and FAD2+. Electrons are subsequently transferred from NADH and FADH2 onto Complexes I and II of the electron transport chain. Electrons are passed through Complexes III and IV, which transport protons into the intermembrane space. Protons are allowed to flow back into the matrix through ATP synthase (Complex V), which uses the energy of the proton gradient to convert ADP to ATP. (b) Mitochondrial one-carbon (1C) metabolism comprises a series of parallel and reversible reactions which occur in the cytosol and mitochondrial matrix. In proliferating cells, the reaction normally proceeds in a specific direction such that formate produced within mitochondria can be used for biosynthetic processes in the cytosol. Within the mitochondria, THF and serine imported from the cytosol are acted upon sequentially by SHMT2, MTHFD2 and MTHFD1 L to produce formate, which is exported back into the cytosol. Cytosolic MTHFD1 loads formate onto THF to form charged folate intermediates that can be used to synthesize purine and pyrimidine nucleotides. Mitochondrial 1C metabolism is also an important source of glycine. (c) The mitochondrial matrix functions as an important storage site for calcium ions. Mitochondrial calcium uptake often occurs at ER contact sites, where large volumes of Ca2+ can be released through IP3R3. Calcium can pass freely through the outer membrane via VDAC channels and is transported across the intermembrane space and inner membrane through the coordinated function of a MICU1/MICU2 dimer docking to MCU in the inner membrane. Calcium can exit the mitochondrial matrix through LETM1 or SLC8B1 (in exchange for H+ or Na+, respectively) and can cross the outer membrane through VDACs or NCX3.
Mitochondrial fusion is believed to facilitate these metabolic changes, although the importance of specific proteins and fission/fusion balance may be cell-type specific [139–141]. This is supported by somatic cell reprogramming studies showing deletion of Mfn2 permits pluripotency as glycolysis becomes predominant over oxidative phosphorylation [142]; the same effect being achieved by the pluripotency factor

If cellular conditions or external insults are too harsh, mitochondria can trigger multiple forms of cell death. Apoptosis, or programmed cell death, can be elicited from extrinsic signalling via the Fas, TRAIL and TNFα receptors or intrinsic insults such as DNA damage, Ca²⁺ overload, ROS and ER stress [144]. Mitochondria contribute to the extrinsic pathway but are the nexus of the intrinsic apoptotic pathway. In the latter pathway, cytosolic pro-apoptotic Bax oligomerizes with Bak at the outer membrane to permeabilize mitochondria and release pro-apoptotic proteins, including cytochrome c, Diablo, Htra2, Endonuclease G and AIF (figure 4d) [145]. In the cytosol, cytochrome c nucleates

Figure 4. Mitochondria make crucial contributions to diverse cellular processes. (a) The mitochondrial outer membrane is the site of important signalling events during the innate immune response. Detection of viral nucleic acids by RLRs induces dimerization of MAVS, a protein of the mitochondrial outer membrane. Dimerized MAVS recruits signalling adaptors that initiate downstream activation of IRF3/7 and NF-κB, transcription factors that induce expression of type 1 interferons and pro-inflammatory cytokines. MAVS is regulated by NLRX1, a protein which downregulates MAVS when localized to the outer membrane, but activates MAVS when at the inner membrane by interacting with Complex III to induce ROS production. Release of mtDNA during infection can also activate the NLRP3 inflammasome. (b) Mitophagy is a process that allows damaged mitochondria to be identified and destroyed. Under normal conditions, PINK1 is imported into mitochondria and degraded by PARL. When mitochondria are damaged, import is impaired and PINK1 accumulates in the TOM complex at the outer membrane. Autophosphorylated and active PINK1 at the outer membrane phosphorylates monoubiquitin molecules on outer membrane proteins, recruiting and activating the E3 ubiquitin ligase Parkin. Activated Parkin synthesizes polyubiquitin chains that recruit autophagy receptors to initiate mitophagy. (c) Mitochondrial proteostatic stress is sensed through the partitioning of the transcription factor ATF5 between the mitochondria and the nucleus. Under normal conditions, ATF5 is imported into and sequestered within mitochondria. If mitochondrial protein import becomes compromised, ATF5 is trafficked into the nucleus, where it upregulates expression of genes that enhance proteostasis. (d) Mitochondria play crucial roles in the initiation of apoptosis. In response to pro-apoptotic stimuli, Bax and Bak oligomerize in the outer membrane to form pores that allow for efflux of apoptogenic proteins (Cytochrome c, Diablo, AIF and Endonuclease G) from the intermembrane space into the cytosol. Cytochrome c binds to Apaf-1 to induce formation of the apoptosome and activation of caspases. Diablo blocks inhibitors of apoptosis (IAPs) which would otherwise mitigate the effect of caspases. AIF and Endonuclease G translocate into the nucleus where they contribute to destruction of the genome.
the formation of the apoptosome and activation of the caspases that dismantle the cell in an immunologically silent manner. Cytoplasmic Diablo and Htra2 block inhibitors of caspase activation, which would otherwise protect the cell from basal cytochrome c leakage [146,147]. Endonuclease G and AIF translocate to the nucleus to fragment DNA (figure 4d), AIF first requiring proteolytic cleavage of its transmembrane domain [148–150]. AIF is normally part of the intermembrane space import machinery, or MIA complex, anchoring the oxidoreductase hMia40 to the inner membrane. The outer membrane protein VDAC2 protects against apoptosis by sequestering Bak [151,152], yet new evidence suggests it may be required for Bax-mediated apoptosis [153]. Emerging research also implicates mitochondria in alternate and less-studied cell-death pathways such as ROS-induced necrosis [154], immune-activated necroptosis [155], ferroptosis [156,157] and parthanatosis [158].

(Recommended further reading on mitochondria in the cell cycle: [159,160]; on differentiation [161–163]; on cell death: [164,165].)

6. Mitochondrial quality control

The loss of mitochondrial function has profound negative effects on cellular health; therefore, multiple quality control and stress response mechanisms have evolved. The mitochondrial unfolded protein response (mtUPR) detects proteostatic stress within mitochondria [166]. Central to the mtUPR is the transcription factor ATF5. When stress causes protein import and/or electron transport chain dysfunction ATF5 accumulates in the nucleus to transcribe mitochondrial chaperones and protease genes (figure 4c) [167,168]. The Caenorhabditis elegans homologue ATFS-1 has also been shown to repress translation of the electron transport chain subunit and assembly proteins from both mitochondrial and nuclear genomes [169]. Translation of ATF5 is partly controlled by its homologue ATF4, both of which are upregulated in the integrated stress response (ISR) [170,171]. The ISR can be triggered by ER stress, amino acid starvation or degradation of hTom17A, a TIM23 complex subunit [172,173]. The ISR is characterized by phosphorylation of eIF2α, leading to global reduction of translation and selective induction of cytoprotective genes including pro-survival MCL1 and autophagy proteins. This illustrates the preference for clearance of defective organelles over controlled cell death although the response may alter with cell type or insult [174].

The selective autophagic clearance of mitochondria is termed mitophagy and is controlled by the mitochondrial serine/threonine protein kinase PINK1 and the E3 ubiquitin ligase Parkin. PINK1 is constitutively imported into healthy mitochondria through the TOM complex and laterally released into the inner membrane by TIM23 [175] before cleavage by the PARL protease (figure 4b) [176]. Depolarization of the inner membrane in defective mitochondria prevents import of PINK1, causing it to oligomerize at the outer membrane TOM complex [177], where it becomes auto-phosphorylated [178]. This triggers phospho-PINK1 phosphorylation of basal outer membrane monoubiquitin and recruits Parkin to rapidly poly-ubiquitinate outer membrane proteins for the recruitment of autophagosome factors (figure 4b) [179,180]. Recent data suggest that mitochondria can identify and initiate mitophagy of specific tubules [181], while mitophagy induced by CSNK2/ CK2 phosphorylation of kTom22, FUNDC1 and BCL2L13 suggests a potential cytoplasmic influence or pathway [182–185]. Additionally, observations of transcellular mitophagy in astrocytes illustrate much is still unknown in these processes [186].

New stress responses are emerging that demonstrate the reciprocal communication between mitochondria and cytoplasm. Ablation of MIA import pathways in S. cerevisiae activates the proteasome to mitigate mitochondrial precursor accumulation in the cytosol [187]. This correlates with the mammalian, intermembrane space-specific mtUPR (mtUPR_{IM}) where ERRx transcriptional activity upregulates intermembrane space proteases and activates the proteasome [188,189]; the proteasome being previously shown to degrade unfolded intermembrane space proteins that retrotranslocate to the cytosol [190]. In S. cerevisiae, the proteasome is also engaged by Ubx2 to clear mitochondrial protein precursors arrested during translocation, blocking the TOM complex [191]. Reciprocally, mitochondria can degrade defective proteins to aid cytosolic proteostasis. In S. cerevisiae, cytosolic Vms1 can remove mistranslated mitochondrial precursors from stalled ribosomes and direct their import for intra-mitochondrial degradation [192] and aggregation-prone cytosolic proteins may be imported for intra-mitochondrial degradation if cytosolic Hsp70s fail [193]. Intriguing for further research are reports of lysosomal fusion of mitochondria-derived vesicles enriched for non-natively oxidized proteins [194,195] and the extracellular jettison of aggregates by neurons of C. elegans [196].

(Recommended further reading on mitochondrial quality control: [197–199]; on mitophagy: [200,201].)

7. Concluding remarks

This review illustrates the importance of mitochondria to eukaryotic cellular functions. As mitochondrial biologists we are frequently surprised by novel pathways or protein networks that involve mitochondria and/or mitochondrial proteins. Mitochondrial protein import and structural dynamics provide the means for rapid alterations in activity to facilitate biological responses to signalling molecules, nutrient availability and pathogenic insult. The temporal coordination of mitochondrial energetics and their biosynthetic capacity drives cell proliferation and differentiation. However, the highly reactive biochemistry compartmentalized in the organelle makes it capable of inducing cell death and necessitates quality control mechanisms. An understanding of this interplay between mitochondrial functions and their diverse cellular implications is therefore critical to a comprehensive holistic model of cellular homeostasis and biochemistry. The importance of this is evident in the escalating occurrence of mitochondria in post-genomic medical research [202]. Although mitochondria are undeniably hubs of cellular biochemistry, further fundamental research is required. In particular, elucidating how the mitochondrion regulates and integrates the various pathways it is associated with, in specialized cells/tissue types and in the context of health and in disease, will help uncover the true depth of influence this amazing organelle has on eukaryotic cells.

Data accessibility. This article does not contain any additional data.

Competing interests. We declare we have no competing interests.

Funding. We received no funding for this study.
References

1. Gray MW, Burger G, Lang BF. 1999 Mitochondrial evolution. Science 283, 1476–1481. (doi:10.1126/science.283.5390.1476)

2. Cogliati S, Ortiz-Perez JA, Scornavacca C. 2016 Mitochondrial crista: where beauty meets functionality. Trends Biochem. Sci. 41, 261–273. (doi:10.1016/j.tibs.2016.01.001)

3. Hoppins S et al. 2011 A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195, 323. (doi:10.1083/jcb.201007031)

4. Godder J et al. 2018 QTL-dependent assembly of MICOS complex–lethal mutation in C19ORF70 resulting in liver disease and severe neurological retardation. J. Hum. Genet. 63, 707–716. (doi:10.1038/s41038-018-0442-y)

5. Ding C et al. 2015 Mitofillin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci. Rep. 5, 16064. (doi:10.1038/srep16064)

6. Darshi M, Mendiola VL, Mackey MR, Murphy AN, Santel A, Fuller MT. 2001 Control of mitochondrial morphology by a human mitofusin. J. Cell Sci. 114, 867–874.

7. Etoh S et al. 2009 Regulation of OPA1 processing and mitochondrial fusion by m-AAP protease isoenzymes and OMA1. J. Cell Biol. 187, 1023–1036. (doi:10.1083/jcb.200906084)

8. Ban T, Ishihara T, Kohno H, Saita S, Ichimura A, Maenaka K, Oka T, Mihara K, Ishiihara N. 2017 Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin. Nat. Cell Biol. 19, 856–863. (doi:10.1038/nccb3560)

9. Mishra P, Chan DC. 2016 Metabolic regulation of mitochondrial dynamics. J. Cell Biol. 212, 379–387. (doi:10.1083/jcb.201511036)

10. Gandre-Babbe S, van der Bliek AM. 2008 The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol. Biol. Cell 19, 2402–2412. (doi:10.1091/mbc.e07-12-1287)

11. Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Palmer CS, Osellame LD, Laine D, Koutsopoulos OS, Yu R, Jin S-B, Lendahl U, Nistér M, Zhao J. 2019 Mic19 axis determines mitochondrial cristae: where beauty meets evolution. Science 362, 538–541. (doi:10.1126/science.aaf5549)

12. Kumar N et al. 2018 VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 365–3639. (doi:10.1083/jcb.201807019)

13. Verhey KJ, Voeltz GK. 2010 ER sliding dynamics and bioenergetics by promoting IFPR3-mediated ER to mitochondria Ca2+ transfer. Curr. Biol. 20, 369–382. (doi:10.1016/j.cub.2012.10.047)

14. Szabadkai G et al. 2006 Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901–911. (doi:10.1083/jcb.200608073)

15. Stoica R et al. 2014 ER–mitochondria associations are regulated by the WWP–PTIPS1 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun. 5, 1083. (doi:10.1038/ncomms1083)

16. Kumar N et al. 2018 VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 365–3639. (doi:10.1083/jcb.201807019)

17. Hnabiabahi Y et al. 2017 ER-mitochondria tethering by PFD2D regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630. (doi:10.1126/science.aan6609)

18. de Brito OM, Scornavacca L. 2008 Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456, 605–610. (doi:10.1038/nature07534)

19. Friedman JR, Webster BM, Mastroberdine DN, Verhey KJ, Voeltz GK. 2010 ER sliding dynamics and ER–mitochondrial contacts occur on acylated microtubules. J. Cell Biol. 190, 363–375. (doi:10.1083/jcb.200911024)

20. Dohla SJ, Gerasimenko JV, Gerasimenko OV, Voronina SG, Petersen OH, Tepikin AV. 2005 Stable Golgi-mitochondria complexes and formation of Golgi Ca2+ gradients in pancreatic acinar cells. J. Biol. Chem. 280, 15794–15799. (doi:10.1074/jbc.M411694200)

21. Fan J, Li X, Issop L, Cully M, Papadopoulos V. 2016 ABC2/EC2-mediated peroxisome-mitochondria interactions in Leydig cell steroid biosynthesis. Mol. Cell. Biol. 36, 610–615. (doi:10.1083/jcb.201701015)
Dizdaroglu M, Jaruga P. 2012 Mechanisms of free radical DNA damage.

Nature 554, 382–386. (doi:10.1038/nature25486)

Benador IY et al. 2018 Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion.

Cell Metab. 27, 869–885. (doi:10.1016/j.cmet.2018.03.003)

Wu M-J et al. 2019 Epithelial-mesenchymal transition directs stem cell polarity via regulation of mitofusin.

Cell Metab. 29, 993–1002. (doi:10.1016/j.cmet.2018.11.004)

Palmer CS, Osellame LD, Stojanovski D, Ryan MT. 2019 The expanding and unexpected – mitochondrial dynamic.

Trends Cell Biol. (doi:10.1016/j.tcb.2019.02.009)

Tilokani L, Nagashima S, Paupe V, Prudent J. 2018 Mitochondrial dynamics: overview of molecular mechanisms.

Essays Biochem. 62, 341–360. (doi:10.1042/ESB20171004)

Letts JA, Sazanov LA. 2017 Mitochondrial Ca2+ handling through the AKAP121-AKAP250-SURI complex.

Biochim. Biophys. Acta Mol. Cell Biol. 1862, 39–48. (doi:10.1016/j.bbabio.2016.08.011)

Ducker GS, Rabinowitz JD. 2017 One-carbon metabolism in health and disease.

Cell Metab. 25, 27–42. (doi:10.1016/j.cmet.2016.08.009)

Grillo MA, Golombatto S. 2005 S-Adenosylmethionine and protein methylation.

Amino Acids 28, 357–362. (doi:10.1007/s00726-005-0197-6)

Shimazu T et al. 2013 Suppression of oxidative stress by beta-hydroxybutyrate, an endogenous histone deacetylase inhibitor.

Science 339, 211–214. (doi:10.1126/science.1227166)

Cai L, Sutter BM, Li B, Tu BP. 2013 Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes.

Mol. Cell 42, 426–437. (doi:10.1016/j.molcel.2011.05.004)

Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Hebert ML, Thompson CB. 2009 ATP-citrate lyase links mitochondrial oxidative function through a YY1 transcription factor.

Proc. Natl Acad. Sci. USA 106, 16407–16420. (doi:10.1073/pnas.0809088106)

Lee DC et al. 2015 A lactate-induced response to hypoxia.

Cell 161, 595–609. (doi:10.1016/j.cell.2015.03.011)

Valdecker M, Kautenburger T, Daumann H, Busch C, Schrenk D. 2008 Inhibition of histone-deacetylase activity by short-chain fatty acids and some polyphenol metabolites formed in the colon.

J. Nutr. Biochem. 19, 587–593. (doi:10.1016/j.jnutbio.2007.08.002)

Wang S et al. 2015 Lysosomal amino acid transporter SLC38A9 signals arginine sufficiency to mTORC1.

Science 347, 188–194. (doi:10.1126/science.1257132)

Frezza C. 2017 Mitochondrial metabolites: uncovering signalling molecules.

Interface Focus 7, 20161000. (doi:10.1098/rsfs.2016.0100)

Thoreen CC, Chanastrupong P, Keys HR, Wang T, Gray NS, Sabatini DM. 2012 A unifying model for mTORC1-mediated regulation of mRNA translation.

Nature 485, 109–113. (doi:10.1038/nature11083)

Cunningham JT, Rodgers JT, Arola DH, Vazquez F, Mootha VK, Puisieux P. 2007 mTOR controls mitochondrial oxidative function through a Y1Y–PGC-1α transcriptional complex.

Nature 450, 736–740. (doi:10.1038/nature06322)

Goo CK, Lim HY, Ho QS, Too H-P, Clement M-V, Rebeiz S, El-Awadi M, Lee DC et al. 2015 A lactate-induced response to hypoxia.

Cell 161, 595–609. (doi:10.1016/j.cell.2015.03.011)

Lackner LL. 2019 The expanding and unexpected functions of mitochondrial contact sites.

Trends Cell Biol. (doi:10.1016/j.tcb.2019.02.009)

Elstrom RL et al. 2004 Akt stimulates aerobic glycolysis in cancer cells.

Cell 137, 3892–3899. (doi:10.1016/j.cell.2004.03.004)

Kondoh H et al. 2005 Glycogen enzymes can modulate cellular life span.

Cancer Res. 65, 175–185.

Rich PR, Maréchal A. 2010 The mitochondrial respiratory chain.

Essays Biochem. 47, 1–23. (doi:10.1042/bs0470001)

Salmine A, Kaarniranta K, Hiltunen M, Kauppinen A. 2014 Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process.

Cell Sci. 126, 1598–1603. (doi:10.1016/j.cellsig.2014.03.030)

Saxton RA, Sabatini DM. 2017 mTOR signaling in growth, metabolism, and disease.

Cell 168, 960–976. (doi:10.1016/j.cell.2017.02.004)

Kim J, Guan K-L. 2019 mTOR as a central hub of nutrient signalling and cell growth.

Nat. Cell Biol. 21, 63–71. (doi:10.1038/s41556-018-0205-1)

Tan W, Colombini M. 2007 VDAC closure increases calcium ion flux.

Biochim. Biophys. Acta 1768, 2510–2515. (doi:10.1016/j.bbamem.2007.06.002)

Scorziello A et al. 2013 mTORC1 regulates mitochondrial Ca2+ handling through the AKAP121–anchored signalling complex and prevents hypoxia-induced neuronal death.

J. Cell Sci. 126, 5566–5577. (doi:10.1242/jcs.129668)
89. Patron M et al. 2014 MICU1 and MICU2 finely tune the mitochondrial Ca\(^{2+}\) uniporter by exerting opposite effects on MCU activity. Mol. Cell 53, 726–737. (doi:10.1016/j.molcel.2014.01.013)

90. Petruengo C, Zimmermann KM, Kuttner V, Fischer M, Dengel J, Bogeski L, Riemer J. 2015 The Ca\(^{2+}\) 2+–dependent release of the Mx-40-induced MICU1–MICU2 dimer from MCU regulates mitochondrial Ca\(^{2+}\) uptake. Cell Metab. 22, 721–733. (doi:10.1016/j.cmet.2015.08.019)

91. Giorgi C, Danese A, Missilori S, Paternagni S, Pinton P. 2018 Calcium dynamics as a machine for decoding signals. Trends Cell Biol. 28, 258–273. (doi:10.1016/j.tcb.2018.01.002)

92. Giorgi C, Marchi S, Pinton P. 2018 The machineries, regulation and cellular functions of mitochondrial calcium. Nat. Rev. Mol. Cell Biol. 19, 713–730. (doi:10.1038/s41580-018-0052-8)

93. Kang JS, Tian JH, Pan PY, Chen H, Yuan Z. 2016 Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop. Sci. Rep. 6, 20158. (doi:10.1038/srep20158)

94. Cheng J, Liao Y, Zhou L, Feng S, Chen H, Yuan Z. 2016 Amplified RLR signaling activation through an interferon-stimulated gene-endoplasmic reticulum stress-mitochondrial calcium uniporter protein loop. Sci. Rep. 6, 20158. (doi:10.1038/srep20158)

95. Rizzuto R, De Stefani D, Raffaello A, Mammucari C. 2012 Mitochondria as sensors and regulators of calcium signalling. Nat. Rev. Mol. Cell Biol. 13, 566–578. (doi:10.1038/nrm3412)

96. McCormack JG, Halestrap AP, Denton RM. 1990 Role of calcium ion regulation of mitochondrial matrix ATP synthase in heart cells: inactive to active stimulation of mouse motor nerve terminals. J. Physiol. 425, 425–438. (doi:10.1113/jphysiol.2002.035196)

97. Vaipola HM, Arthur PG, Hool LC. 2009 Evidence for regulation of mitochondrial function by the L-type Ca\(^{2+}\) channel in ventricular myocytes. J. Mol. Cell. Cardiol. 46, 1016–1026. (doi:10.1016/j.yjmcc.2008.12.015)

98. McCormack JG, Halestrap AP, Denton RM. 1990 Role of calcium ions in regulation of mammalian mitochondrial protein synthesis. Physiol. Rev. 70, 391–425. (doi:10.1152/physrev.1990.70.2.391)

99. Das AM, Harris DA. 1990 Control of mitochondrial ATP synthase in heart cells: inactive to active transitions caused by beating or positive inotropic agents. Cardiovasc. Res. 24, 411–417. (doi:10.1093/cvr/24.5.411)

100. Mildaziene V, Baniene R, Nauziene Z, Bakker BM, Brown GC, Westerhoff HV, Khodolenko BN. 1995 Calcium indirectly increases the control exerted by the adenine nucleotide translocator over 2-oxoglutarate oxidation in rat heart mitochondria. Arch. Biochem. Biophys. 324, 130–134. (doi:10.1006/abbi.1995.19918)

101. Paullusson S, Gomez-Suapa P, Stoica R, Little D, Gissen P, Devine MJ, Noble W, Hanger DP, Miller CCJ. 2017 α-Synuclein binds to the ER-mitochondria tethering protein WP2P to disrupt Ca\(^{2+}\) homeostasis and mitochondrial ATP production. Acta Neuropathol. 134, 129–149. (doi:10.1007/s00401-017-1704-z)

102. Wiedenheft B et al. 2011 Mitochondrial matrix calcium is an activating signal for hormone secretion. Cell Metab. 13, 601–611. (doi:10.1016/j.cmet.2011.03.015)

103. Antony AN et al. 2016 MICU1 regulation of mitochondrial Ca\(^{2+}\) uptake dictates survival and tissue regeneration. Nat. Commun. 7, 10955. (doi:10.1038/ncomms10955)

104. Bravo-Sagua R, Parra V, Lopez-Crisosto C, Diaz P, Quest AF, Lavandero S. 2017 Calcium transport and signaling in mitochondria. Compr. Physiol. 7, 623–634. (doi:10.1002/cphy.c160013)

105. Horner SM, Liu HM, Park HS, Birley J, Gale Jr M. 2011 Mitochondrial-associates endoplasmic reticulum membranes (MAM) form innate immune synapses and are targeted by hepatitis B virus. Proc. Natl Acad. Sci. USA 108, 1549–1554. (doi:10.1073/pnas.1110313108)

106. West AP, Shadel GS, Ghosh S. 2011 Mitochondria in innate immune responses. Nat. Rev. Immunol. 11, 389–402. (doi:10.1038/nri2975)

107. Seth RB, Sun L, Ea CK, Chen ZJ. 2005 Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kB and IRF 3. Cell 122, 669–682. (doi:10.1016/j.cell.2005.08.012)

108. Tang ED, Wang C-Y. 2009 MAVS self-association mediates antiviral innate immune signaling. J. Virol. 83, 3420–3428. (doi:10.1128/JVI.02623-08)

109. Liu XY, Wei B, ShiHX, Shan YF, Wang C. 2010 Tom70 mediates activation of interferon regulatory factor 3 on mitochondria. Cell Res. 20, 994–1011. (doi:10.1038/cr.2010.103)

110. Tattoli I, Carneiro LA, Jehanno M, Magalhaes JG, Sha Y, Philippot DJ, Arnaout D, Girardin SE. 2008 NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kB and JNK pathways by inducing reactive oxygen species production. EMBO Rep. 9, 293–300. (doi:10.1038/sj.embor.7400161)

111. Arsenijevic D et al. 2000 Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat. Genet. 26, 435–439. (doi:10.1038/76265)

112. van der Windt Gerritje JW et al. 2012 Mitochondrial respiratory capacity is a critical regulator of CD8\(^{+}\) T cell memory development. Immunity 36, 68–78. (doi:10.1016/j.immuni.2011.12.007)

113. Ten H et al. 2017 Integrative proteomics and phosphoproteomics profiling reveals dynamic signaling networks and bioenergetics pathways underlying T cell activation. Immunity 46, 488–503. (doi:10.1016/j.immuni.2017.02.010)

114. Pearce EL et al. 2009 Enhancing CD8\(^{+}\) T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107. (doi:10.1038/nature08097)

115. Chao T, Wang H, Ho P-C. 2017 Mitochondrial control and guidance of cellular activities of T cells. Front. Immunol. 8, 473. (doi:10.3389/fimmu.2017.00473)

116. Buck MD et al. 2016 Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76. (doi:10.1016/j.cell.2016.05.035)

117. Tyrakis PA et al. 2016 S-2-hydroxyglutarate regulates CD8\(^{+}\) T-lymphyocyte fate. Nature 540, 236–241. (doi:10.1038/nature16265)

118. Mills EL, Kelly B, O’Neill LAJ. 2017 Mitochondria are the powerhouses of immunity. Nat. Immunol. 18, 488. (doi:10.1038/nature17047)

119. Lee S, Kim S, Sun X, Lee J-H, Cho H. 2007 Cell cycle-dependent mitochondrial biogenesis and dynamics in mammalian cells. Biochem. Biophys. Res. Commun. 357, 111–117. (doi:10.1016/j.bbrc.2007.03.091)

120. Milta K, Wunder C, Roysam B, Lin G, Lippincott-Schwartz J. 2009 A hyperpolarized mitochondrial state achieved at G1–S regulates cyclin E buildup and entry into S phase. Proc. Natl Acad. Sci. USA 106, 11960–11965. (doi:10.1073/pnas.0904875106)

121. Gregg T, Saio SM, Dhillon RS, Rensolve JW, Lewandowski SL, Paglierini DJ, Denu JM, Merrins MJ. 2019 Obesity-dependent CDK1 signaling stimulates mitochondrial respiration at complex I in pancreatic beta-cells. J. Biol. Chem. 294, 4656–4666. (doi:10.1074/jbc.RA118.006085)
resistance to oxidative stress. Mol. Cell 11, 619–633. (doi:10.1016/S1097-2765(03)00105-9)

173. Rainbolt TK, Atanasova N, Genereux JC, Wiseman RL. 2013 Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 17, 908–919. (doi:10.1016/j.cmet.2013.11.006)

174. Pakos-Zebrucka K, Koryga I, Mnich K, Ljubicic M, Samali A, Gorman AM. 2016 The integrated stress response. Mol. Cells 360, 313–335. (doi:10.1016/j.molcel.2014.02.034)

175. Jin SM, Lazarou M, Wang C, Kane LA, Narendra DP, Otsu K, Murakawa T, Yamaguchi O. 2015 BCL2L13 is essential for Parkin recruitment to damaged mitochondria in vivo. autophagy. Mol. Cell 56, 36–376. (doi:10.1038/j.molcel.2018.11.009)

176. Okatsu K, Kimura M, Oka T, Tanaka K, Matsuda N. 2014 Quantitative proteomics reveals a feedforward mechanism for mitochondrial quality control. EMBO Rep. 17, 1374–1395. (doi:10.15252/embr.20142195)

177. Lazarou M, Jin SM, Kane LA, Youle RJ. 2012 Role of PINK1 binding to the TOM complex and alternate intercrassular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320–333. (doi:10.1016/j.devcel.2011.12.014)

178. Okatsu K et al. 2012 PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016. (doi:10.1038/ncomms1606)

179. Sarraf SA et al. 2013 Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376. (doi:10.1038/nature12043)

180. Oudreua A et al. 2014 Quantitative proteomics reveal a feedback mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375. (doi:10.1016/j.molcel.2014.09.007)

181. Cho HM et al. 2019 Dnp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol. Cell 73, 364–376. (doi:10.1016/j.molcel.2018.11.009)

182. Davis C-HO et al. 2013 Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 17, 908–919. (doi:10.1016/j.cmet.2013.11.006)

183. Papa L, Germain D. 2011 Estrogen receptor mediates a distinct mitochondrial unfolded protein response. EMBO Rep. 12, 788–794. (doi:10.1038/embor.2011.144)

184. Kravic B et al. 2019 Mitochondrial protein import stress and signaling. Nat. Cell Biol. 21, 1327–1340. (doi:10.1038/nccell.2019.78)

185. Otsu K, Murakawa T, Yamaguchi O. 2015 BCL2L13 is essential for Parkin recruitment to damaged mitochondria in vivo. autophagy. Mol. Cell 56, 36–376. (doi:10.1038/j.molcel.2018.11.009)

186. Okatsu K, Kimura M, Oka T, Tanaka K, Matsuda N. 2014 Quantitative proteomics reveals a feedforward mechanism for mitochondrial quality control. EMBO Rep. 17, 1374–1395. (doi:10.15252/embr.20142195)

187. Lazarou M, Jin SM, Kane LA, Youle RJ. 2012 Role of PINK1 binding to the TOM complex and alternate intercrassular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320–333. (doi:10.1016/j.devcel.2011.12.014)

188. Okatsu K et al. 2012 PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun. 3, 1016. (doi:10.1038/ncomms1606)

189. Sarraf SA et al. 2013 Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372–376. (doi:10.1038/nature12043)

190. Oudreua A et al. 2014 Quantitative proteomics reveal a feedback mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56, 360–375. (doi:10.1016/j.molcel.2014.09.007)

191. Cho HM et al. 2019 Dnp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol. Cell 73, 364–376. (doi:10.1016/j.molcel.2018.11.009)

192. Davis C-HO et al. 2013 Stress-regulated translational attenuation adapts mitochondrial protein import through Tim17A degradation. Cell Metab. 17, 908–919. (doi:10.1016/j.cmet.2013.11.006)

193. Lazarou M, Jin SM, Kane LA, Youle RJ. 2012 Role of PINK1 binding to the TOM complex and alternate intercrassular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22, 320–333. (doi:10.1016/j.devcel.2011.12.014)
