Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Characterization of nuclear factors modulating the apolipoprotein D promoter during growth arrest: Implication of PARP-1, APEX-1 and ERK1/2 catalytic activities

Louis-Charles Levros Jr., Sonia Do Carmo, Elsy Edouard, Philippe Legault, Cyndia Charfi, Eric Rassart

Laboratoire de biologie moléculaire, Département des Sciences Biologiques, and Centre BioMed, Université du Québec à Montréal, Montréal, Québec, Canada

A R T I C L E I N F O

Article history:
Received 4 March 2010
Received in revised form 22 April 2010
Accepted 29 April 2010
Available online 21 May 2010

Keywords:
Apolipoprotein D (apoD)
Cellular stress
Growth arrest
DNA binding proteins
PARP-1
APEX-1
HnRNP-U
IF2F04
Kif4
BUB-3
ERK1/2

A B S T R A C T

Human Apolipoprotein D (apoD) is upregulated under several stress conditions and pathological situations such as neurodegenerative diseases and cancers. We previously showed that apoD mRNA expression is induced in growth-arrested cells and demonstrated the specific binding of nuclear proteins to the region −514 to −475 of the promoter. Such region contains a pair of Serum Responsive Elements (SRE), an Ets-Binding Site (EBS) and a Glucocorticoid Responsive Element (GRE). In this study, we show that Parp-1, HnRNP-U, CBF-A, BUB-3, Kif4, APEX-1 and If2F04 bind these regulatory elements of the apoD promoter. Specific binding of HnRNP-U and Parp-1 was confirmed by Electrophoretic Mobility Shift Assay (EMSA). In a biotin pull-down assay, Kif4 and BUB-3 bind preferentially the SRE1 and the EBS-GRE sites, respectively, while APEX-1 seems recruited indirectly to these elements. We found that the mRNA expression of some of these binding factors is upregulated in growth-arrested cells and that these proteins also transactivate the apoD promoter. In agreement with these results, mutants of APEX-1 and of Parp-1 defective for their DNA-binding and catalytic activities could not transactivate the promoter. The knockdown of Parp-1 and HnRNP-U and the use of specific inhibitors of MEK1/2 and of Parp-1 also inhibited the induction of apoD gene expression. Moreover, ERK1/2 was found activated in a biphasic manner post serum-starvation and the inhibition of Parp-1 causes a sustained activation of ERK2 but not ERK1 for up to 2 h. Altogether, these findings demonstrate the importance of Parp-1, APEX-1 and ERK1/2 catalytic activities in the growth arrest-induced apoD gene expression.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Human apolipoprotein D (apoD) is a 29-kDa secreted glycoprotein and a member of the lipocalin superfamily [1,2]. Since its discovery, which dates for more than 35 years ago [3] and despite the identification of a variety of candidate ligands such as arachidonic acid [4], progesterone and pregnenolone [5,6], bilirubin [7], E-3-methyl-2-hexenoic acid [8] and cholesterol [9], the physiological function of apoD remains unknown. Therefore, apoD is considered as a protein with pleiotropic functions depending on its ligands and its tissues or organs of expression [10].

In human, the apoD gene is expressed at high levels in the adrenal glands, spleen, testes, lungs, pancreas, kidneys and the nervous system [10]. ApoD expression is also found increased in several neurological disorders such as Alzheimer’s disease, meningoencephalitis, dementia, motor neuron disease [11], Parkinson’s disease [12], schizophrenia [13,14], multiple sclerosis [15] and several animal models of neurodegenerative injuries [10]. Besides neuropathological situations, apoD expression is elevated in several cancers. This overexpression of apoD gene is observed particularly in differentiated tumours with low proliferation rate and several studies suggested the importance of cellular growth arrest as a triggering factor of apoD expression [16–18].

Effectively, in cultured cells, apoD expression is associated with cellular growth arrest, senescence and inflammation. In agreement with these facts, apoD is also upregulated in aging rats [19] and humans [20,21] and this senescence characteristic, which is an irreversible growth-arrested state in contrary to quiescence, is also considered as a physiological mechanism capable of counteracting tumour proliferation [22–26].

Furthermore, apoD expression and proliferation are also inversely correlated in response to cellular stress. Indeed, cellular stresses provoking an extended growth arrest such as high doses of UV light and H2O2 increased apoD expression [27].

We have already identified the promoter region comprised between −558 and −179 to be responsible for the induction of apoD following growth arrest [28]. More precisely, we found that the Alternating Purine-Pyrimidine stretch (APP) and two Serum Responsive Elements (SRE-1 and -2) were the major determinants of growth arrest-induced apoD...
gene expression. The SRE is a 23-bp element with an inverted repeat of dyad symmetry [29]. Only the SRE1 of the apoD promoter contains a CArG-box core described as a 10-bp element with the consensus sequence CC(A/T)GG. In many growth-related or immediate early genes, the CArG-box element is often in the vicinity of an Ets-Binding-Site (EBS) [29–33]. Detailed analysis of the apoD promoter also revealed the presence of an EBS and a Glucocorticoid Responsive Element (GRE) between the two SREs in the region –514 to –475 [28]. The EBS, with its central core sequence 5'-GGA(A/T)-3', is known to cooperate tightly with the SRE through the binding of several nuclear proteins, particularly the Serum Response Factor (SRF) and members of the E26 transforming specific (ETS) family which regulate several genes implicated in cell proliferation and differentiation [33,34]. Also, the GRE is known to interact with the Glucocorticoid Receptor (GR), a nuclear receptor ligand-dependant transcription factor which recognizes the consensus sequence 5'-GGTACAnnTGTTCT-3' [35].

Thus, it appeared important to further study the regulation of the apoD gene, especially in relation with cellular proliferation. As the SREs in the region –558 to –179 were identified as major determinants of growth arrest-induced gene expression, we focused our study on this region of the promoter that contains the SRE1, EBS and GRE sites (Table 1). Here, we present the identification and the characterization of several nuclear proteins that bind the apoD promoter under normal and growth arrest conditions in NIH/3T3 fibroblast cells. Our results show that Parp-1, HnRNP-U, CBF-A, BUB-3, Kif4, APEX-1 and Hif2α4 bind elements of the promoter. We also investigated the implication of MEK/ERK pathway in the regulation of the apoD gene expression. We demonstrate the implication of these nuclear factors in the modulation of the apoD promoter and that Parp-1, APEX-1 and ERK1/2 catalytic activities regulate positively the apoD gene expression in growth arrested-cells.

2. Materials and methods

2.1. Cell culture and reagents

Mouse fibroblasts (NIH/3T3) were obtained from American Type Culture Collection (ATCC, Rockville, MD) and maintained in Dulbecco’s modified Eagle medium (DMEM; Invitrogen, Carlsbad, CA) supplemented with 10% calf serum, penicillin G (100 units/ml) and streptomycin (100 μg/ml). NIH/3T3 cells were maintained at 37 °C in a 5% CO2 humidified atmosphere and were fed every 2 days with fresh medium. For the analysis of gene expression in sparsely growing cultures (normal conditions), cells were maintained in medium supplemented with 10% calf serum when they reached 80% of confluence. For the analysis in growth arrest conditions, cells were maintained in 500 μl of annealing buffer 10× (10 mM of Tris–HCl, pH 7.5, 1 M of NaCl and 1 mM of EDTA) as recommended by the manufacturer. The washing steps were done in the same buffer and the beads linked with the biotinylated oligonucleotides were incubated for 15 min at room temperature with 500 μg of nuclear extracts containing 20 μl of annealing buffer 10× (50 mM of Tris–HCl, pH 7.5, 1 M of NaCl, 100 μg of MgCl2, 0.2 mM of EDTA and 1 mM of DTT), 1 mg of BSA and 20 μg of Poly(dI:dc) in a final volume of 200 μl. The beads were washed with a low salt washing buffer (20 mM Tris–HCl, pH 8.0, 0.05% NP-40, 1 mM EDTA and 75 mM KCl) and eluted with 30 μl of SDS 0.1%. The proteins were loaded on a SDS-PAGE (12%) and migrated at 100 V for 1 h followed by silver nitrate staining or western blot analysis. For the silver nitrate

Oligonucleotide	Biotinylated Sequence (ss)
SRE1-ETS-GRE	5' - AATCTGCATACTCATGAGGATCTACATGTCAATCT-3'
Consensus SRE	
Consensus CArG-box	
Consensus EBS	
Consensus GRE	
SRE1-mETS-nGRE	5' - AATCTGCATACTCATGAGGATCTACATGTCAATCT-3'
mSRE1-ETS-GRE	5' - AATCTGCATACTCATGAGGATCTACATGTCAATCT-3'
EBS-GRE	5' - AATCTGCATACTCATGAGGATCTACATGTCAATCT-3'
UNR (unrelated sequence)	5' - CCACAGACGGATCTCTGATATAGGCAG-3'
IRU5Cas	5' - CCACAGACGGATCTCTGATATAGGCAG-3'

*Lower case letters, mutated nucleotides.
gel, bands of interest were excised and analyzed by mass spectrometry (LC-MS/MS) at the Genome Québec Innovation Centre Proteomics Platform (Montreal, Qc, Canada) for protein identification.

2.5. Western blot

Protein extracts were eluted from the streptavidin–oligo complex, heated for 10 min at 70 °C and loaded onto a 12% SDS-polyacrylamide gel. The gel was subjected to electrophoresis for 1 h at 100 V and then transferred by electroblotting to a polyvinylidene difluoride (PVDF, Millipore, Bedford, MA) membrane for 45 min at 300 mA. Membranes were blocked for 1 h at room temperature with blocking buffer (PBS containing 0.2% Tween 20 and 5% skim milk powder) and incubated overnight at 4 °C with anti-mouse Parp-1 (1:1000), anti-mouse BUB-3 (1:1000; BD Transduction Laboratories, Mississauga, Ontario), anti-mouse APEX-1 (1:1000; Santa Cruz Biotechnology), anti-rabbit Kif4 (1:500; Imegenex CEDERLANE Laboratories, Hornby, Ontario), anti-rabbit ERK1/2 (1:1000; Cell Signaling Technology, Danver, MA) or anti-rabbit phospho-ERK1/2 (1:1000; Cell Signaling Technology) polyclonal antibodies in the blocking buffer. Subsequently, the blots were incubated at room temperature with a secondary horseradish peroxidase conjugated anti-mouse or anti-rabbit antibody (1:5000; GE Healthcare Bio-Sciences, Little Chalfont, UK) in the blocking buffer. The blots were developed using the enhanced chemiluminescence method with Kodak X-Omat films (Perkin Elmer) with X-ray film.

2.6. Semi-quantitative RT-PCR and siRNA transfections

Total RNA was isolated from cells using RNeasy Minikit (Qiagen, Mississauga, Ontario). RNA was reverse-transcribed using Omniscript Reverse Transcription Kit (Qiagen) according to manufacturer’s instructions. The reverse transcriptase products (20 ng) were used for amplification of apoD, HnRNP-U, Parp-1, BUB-3, Kif4, Ifi204, APEX-1 or GAPDH genes using specific primers shown in Table 2. The ratio obtained from sparse cultures at day 0 (D0) was given an arbitrary value of one. All reactions were done in triplicate. For the siRNA experiments, only 5 ng of the reverse transcriptase products were used. Two pre-designed siRNA were used per gene: (HRNPU: Mm_Hnrpu_1 HP siRNA or Mm_Hnrpu_5 HP siRNA; Parp-1: Mm_Parp1_3 HP siRNA or Mm_Parp1_4 HP siRNA; Qiagen) and negative controls siRNAs (Allstar negative control, Qiagen) were included in each experiment. All transfections were done twice in triplicate.

2.7. Luciferase assays

The cDNA of Parp-1, HnRNP-U, Ifi204, BUB-3 and APEX-1 were cloned in pcDNA3.1A expression vector (Invitrogen, Burlington, Ontario). Mutants of APEX-1 and Parp-1 were created by PCR directed mutagenesis using specific primers listed in Table 2. The mutants of APEX-1 were named C64A/C92A, K5R/K7R, D218A and Parp-1 lacking its catalytic domain: del-Parp-1. The mutated cDNA were cloned in pcDNA 3.1A in fusion with myc tag. Each plasmid was transiently co-transfected in NIH/3T3 cells in the presence of Polyfect (Qiagen) as recommended by the manufacturer, with a vector containing the apoD promoter upstream of the luciferase reporter gene (−558/−4-apoD-Luc). Twenty-four hours later, cells were rinsed twice with phosphate-buffered saline and maintained in a medium supplemented with 10 or 0.5% serum. Transfected cells were lysed 48 h later and luciferase activity was measured with the Dynex MLX microplate luminometer (MLX Dynex Technologies, Chantilly, VA) as already described [28]. Each sample was co-transfected with the β-gal-expressing vector for normalization (pRSVβ-GAL). The β-galactosidase activity was measured using the Galacto-Light™ kit (Applied Biosystems, Bedford, MS) according to manufacturer’s suggestions. Luciferase activity is presented in Relative Light Units (RLU) and represents the calculated mean ± SD of nine transfected samples normalized by the measured β-galactosidase activity.

2.8. Statistical analysis

Statistical significance of the experiments was evaluated using an unpaired Student’s t-test. Results were considered statistically significant at P<0.05.

3. Results

3.1. Purification and identification of nuclear factors binding the apoD promoter

To isolate the nuclear factors that bind to the apoD promoter, nuclear extracts from NIH/3T3 cells cultured under normal (10% serum; NE+) and serum-starved (0.5% serum; NE−) conditions were incubated with a biotinylated oligonucleotide linked to streptavidin beads. This oligonucleotide contained the SRE1 with a CArG-Box core, as well as the EBS and the GRE sites of the apoD promoter, shown in Table 2 and named SRE1-EBS-GRE herein. The proteins were eluted from the streptavidin–oligo complex and visualized by SDS-PAGE and identified by mass spectrometry.

Table 2

Primers used for gene expression analysis by RT-PCR and mutagenesis.

Gene	Primers sequence forward	Primers sequence reverse
ApoD	5'-CCACGGGACCCCTACTGAC-3'	5'-CGGCCGATTCGTTGCTAGTCT-3'
HnRNP-U	5'-GAAGAGAAGACCAACATTCGA-3'	5'-AAATTCGTTCTTACGCGCACGAC-3'
Parp-1	5'-ATGCCGGAGGTCCGACAGG-3'	5'-TCTGATGACACATCTTTCTTGCAGAGC-3'
BUB-3	5'-ATGACCGGGTGAAAGATT-3'	5'-ATTACGTCAGTGGCTTTGTTTTC-3'
Kif4	5'-ATGAAGAAGGTTGTAAGG-3'	5'-TGATCTGTTCTACAGAGAT-3'
Ifi204	5'-ATGGTGAATGAATACAAGAG-3'	5'-CTACAGTGAATTCTTCTCCT-3'
APEX-1	5'-ATGCCAAGGGGCGAAGAAAG-3'	5'-CAGGCTGCTGATTTCCG-3'
GAPDH	5'-GGTGAAGGCTCGTGTGACGG-3'	5'-ATGCGGCGATCAGGGACAG-3'

Gene	Primers sequence forward	Primers sequence reverse
Del-Parp-1	5'-GTAAATCCCTGACACGAGAG-3' (forward)	
Del-Parp-1	5'-CATGAGGCTCGCTCAGAGTATGC-3' (reverse)	
APEX-1	5'-GATCCGCCGAGGAGGGAAT-3' (forward)	
APEX-1	5'-GGAGCTGCTGATTCTCCTGAT-3' (reverse)	
*C64A	5'-CCACACTCGAAGTCTCGGGAGATG-3'	
*C92A	5'-ACCAGATACAGCTCAGATACGGCCAC-3'	
*K5R/K7R	5'-GTAAATCCCTGACACGAGAG-3' (forward)	
*D218A	5'-ATGCGGCGATCAGGGACAG-3'	

* amino acid mutated in APEX-1 gene; lower case letters bold, mutated nucleotide; upper case bold, restriction endonuclease site (forward, HindIII; reverse, Xhol).
silver staining (Fig. 1A). Bands were selected for mass spectrometry analysis based on their stronger intensity in NE (NE+, NE−) compared to those obtained from streptavidin beads without biotinylated oligonucleotide used as negative controls (CTRL+, CTRL−). The corresponding bands in the negative controls were also analyzed in order to eliminate false-negatives. Several nuclear proteins were identified by correlating the mass of their tryptic peptides with the theoretical values found in NCBlr database through the Mascot server (www.matrixscience.com) and listed in Fig. 1B.

Five of these proteins were known to interact directly or indirectly with regulatory elements in the promoter of several genes and to modulate their expression, notably, Heterogeneous nuclear ribonucleoproteins (HnRNP)-U [37] and HnRNP-A/B also known as CArG-box Binding Factor A (CBF-A) [38,39], Poly(ADP-ribose) polymerase-1 (Parp-1) [40], Interferon-inducible protein 204 (IfI204) [41] and Apurinic/Apyrimidinic Endonuclease-1 (APEX-1) [42,43]. Kinesin family member 4 (Kif4) and Budding Uninhibited by Benzimidazole (BUB)-3 were also considered because of their role in cellular proliferation and their interaction with Parp-1 [44,45]. As shown in Fig. 1A, CBF-A, BUB-3 and APEX-1 were purified in both normal and growth arrest conditions. In growth conditions, the two known isomers of CBF-A (p37 & p42) [46] were co-purified (lane 1; bands 5 and 7) in contrast to growth arrest conditions where only the p42 isomer was purified (lane 3; band 6). HnRNP-U, Parp-1 (band 2), IfI204 (band 3), Septin 9 and Kinesin family member C1 (Kif4C1) (band 4) were exclusively present in growth arrest conditions while Kif4 (band 1) only in normal growth conditions. Several other band differences were observed but the protein concentration was under the mass spectrometry limit of detection.

3.2. PARP-1, HnRNP-U, Kif4, BUB-3 and APEX1 bind to the apoD promoter in vitro

In order to confirm the binding specificity of the selected proteins on the apoD promoter, we performed an electrophoretic mobility supershift assay (EMSA) using commercially available antibodies against these proteins. The same oligonucleotide as that used above for the biotin–streptavidin purification (Table 1) was radiolabeled and incubated with nuclear extracts from serum-starved NIH/3T3 cells. As shown in Fig. 2A, we observed several protein-DNA complexes (CTRL+) compared to the negative control (CTRL−). In the presence of an antibody directed against HnRNP-U, the complex corresponding to band II disappeared (indicated with an asterisk). Competition assay using cold (SRE1-EBS-GRE) and unrelated (UNR) oligonucleotides in 25 and 50 molar excess demonstrated the specificity of formed complexes. In contrast, for Parp-1, 50 μg of nuclear extract were required in order to detect the supershift. Four bands could be detected but the two major (bands II and III) disappeared in favor of a supershifted band (Fig. 2A, arrow). Although, the binding specificity of these complexes was not verified in this experiment with cold oligonucleotide excess, the intensity of band IV was increased in the presence of 0.25 μg of Parp-1 specific antibodies and reduced progressively with increasing amounts of antibodies (0.5 to 2 μg).

The antibodies directed against Kif4, BUB-3 and APEX1 failed to supershift the DNA-complexes observed (data not shown). However, in a pull-down assay using biotinylated oligonucleotides containing regulatory consensus sequences that were either intact or mutated or deleted (Table 1), we observed by western blot that Kif4 was preferentially bound to the SRE1 in growth conditions (Fig. 2B). In growth arrest conditions, BUB-3 did not bind the SRE1-mEBS-mGRE but was specifically bound to the mSRE1-EBS-GRE and the EBS-GRE where the SRE1 had been mutated or deleted, respectively. APEX-1 could bind both the SRE1-mEBS-mGRE and the mSRE1-EBS-GRE but not the EBS-GRE.

3.3. mRNA expression of nuclear factors in growth-arrested NIH/3T3 cells

We next analyzed the mRNA expression of these nuclear factors in NIH/3T3 fibroblasts to determine if they were also modulated by growth arrest as the apoD gene. Cells were collected in growth conditions and at different times after serum deprivation. Using specific primers for the different genes (Table 2), their expression level was analyzed by semi-quantitative RT-PCR and normalized to that of GAPDH gene expression. As expected, apoD mRNA expression was significantly induced in serum starvation conditions (Fig. 3). Expression levels of Parp-1 were also induced by 2.1-fold after 1 day of serum starvation and reached a peak at day 2 with a 3-fold induction to finally decrease until day 5. This induction was even stronger by Northern analysis (up to 9 fold at day 2). IfI204 and APEX-1 were also induced after 2 days of serum starvation by respectively 2.8 and 1.8 fold. In contrast, Kif4 mRNA expression was down-regulated after 2 days of serum starvation which is consistent with the
fact that Kif4 was only detected on the apoD promoter in growth conditions (Fig. 1A). In addition, HnRNP-U and BUB-3 were not modulated under serum starvation and seem ubiquitous.

3.4. Transactivation of the apoD promoter

To determine if these nuclear proteins are directly involved in the modulation of apoD gene expression, the corresponding cDNAs cloned in expression vectors were transiently co-transfected in NIH/3T3 cells with a construct containing the apoD promoter upstream of the luciferase reporter gene (−558/−4-apoD-Luc) and with pRSVβGAL vector. The luciferase activity was analyzed in normal and serum-starved conditions. In growth conditions (10% serum; Fig. 4A: white bars), none of the proteins tested had an effect on apoD promoter activity compared to the control (empty vector). However, after 2 days of serum starvation (0.5% serum; grey bars), Parp-1, HnRNP-U, APEX-1 and Ifi204 significantly activated the apoD promoter. In contrast, BUB-3 did not transactivate the apoD promoter.

To confirm these results, we created specific mutations on APEX-1 gene on cysteines 64 and 92 which were replaced by alanine (C64A/C92A). These cysteines are known to be implicated in the redox activity of APEX-1 which modifies and modulates the activity of several transcription factors [47]. Lysines 6 and 7, located in the nuclear localization signal motif (NLS) and known to be acetylated by p300 were replaced by arginine (K6R/K7R). This double mutation abrogates the redox activity of APEX-1 without affecting its nuclear localization [48]. Finally, aspartic acid 218 which is known to be important for the endonuclease and DNA-binding activities [49] was replaced by alanine (D218A). As shown in Fig. 4A, all these mutants were unable to transactivate the apoD promoter in growth arrest conditions in contrast with the wild type APEX-1. Interestingly, mutants C64A/C92A and K6R/K7R induced the proliferation of NIH/3T3 cells cultured in condition of serum starvation compare to the wild-type APEX-1 or the control (CTRL−; empty vector) where the cells were maintained in a growth arrest state (Supplemental Fig. 1).

In addition, the Parp-1 deletion mutant lacking its catalytic domain (del-Parp-1) could no longer transactivate the apoD promoter indicating the importance of the catalytic function in the apoD promoter regulation. Furthermore, we tested the role of Parp-1 and HnRNP-U on the apoD expression using a siRNA approach. The pre-designed siRNAs used to block either HnRNP-U or Parp-1 inhibited their target gene expression by more than 80% up to 4 days under growth arrest (grey bars; Fig. 4B) and efficiently and specifically blocked apoD expression (grey bars; Fig. 4C).
Subsequently, ERK2 phosphorylation was completely inhibited after but not ERK1, is maintained after 15 min for up to 2 h (Fig. 5D). Surprisingly, at 24 h post serum starvation, ERK1/2 were again phosphorylated. Moreover, in the presence of Parp-1 inhibitor, activation of ERK2, reached a peak at 15 min and decreased after 30 min (Fig. 5C). Consistent with this result, upregulation of phosphorylated ERK1/2 was detected as early as 5 min after serum starvation without inhibitor, **P<0.05, ***P<0.001). An example of one Northern analysis is presented for Parp-1.

3.5. Effect of Parp-1 and MEK1/2 inhibitors on the apoD gene expression

To further investigate the role played by the catalytic activity of Parp-1 in the regulation of the apoD promoter during growth arrest, we used 3-Amino-Benzamide (3-ABA), a specific inhibitor of Parp-1. This inhibitor blocks the binding of NAD+ to the catalytic domain of Parp-1. This binding is crucial for the transfer of ADP-ribose unit on nuclear proteins mediated by Parp-1 [50]. As expected, the inhibition of Parp-1 catalytic activity with 3-ABA at 10 mM completely abolished the stimulating effect of Parp-1 on the apoD gene expression in growth-arrested cells (Fig. 5A). This result was consistent with those obtained with the deletional mutant del-Parp-1 transfection experiment and the siRNA assay (Fig. 4A and C).

Furthermore, considering the important role played by the MEK/ERK pathway in cellular proliferation and differentiation as well as the interplay between ERK and Parp-1, which modulates their respective catalytic activity [51,52], we also analyzed the effect of a MEK1/2 inhibitor (U0126 at 10 μM) on the apoD gene regulation. Interestingly, the inhibition of MEK1/2, which phosphorylate ERK1/2, significantly reduced the apoD gene expression under growth arrest conditions (Fig. 5B). Complete inhibition of ERK1/2 phosphorylation in presence of U0126 was verified by western blot analysis (results not shown). Consistent with this result, upregulation of phosphorylated ERK1/2 was detected as early as 5 min after serum starvation without inhibitor, reached a peak at 15 min and decreased after 30 min (Fig. 5C). Surprisingly, at 24 h post serum starvation, ERK1/2 were again phosphorylated. Moreover, in the presence of Parp-1 inhibitor, activation of ERK2, but not ERK1, is maintained after 15 min for up to 2 h (Fig. 5D). Subsequently, ERK2 phosphorylation was completely inhibited after 2 h in the presence of Parp-1 inhibitor which is consistent with the apoD gene downregulation observed in Fig. 5A and B.

4. Discussion

The apoD promoter was previously characterized and its complexity is reflected by the numerous cis elements located within its promoter [28,53]. Using a biotinylated oligonucleotide containing the SRE1, EBS and GRE elements of the apoD promoter, we were able to purify and identify several nuclear proteins by mass spectrometry analysis. Among these proteins, HnRNP-U and CBF-A (Fig. 1A), which belong to the Heterogeneous nuclear ribonucleo-protein family, are also known to interact with elements in the promoter of several genes and to regulate their expression. Indeed, HnRNP-U is known as a transcriptional activator of Kruppel-like factor 2 gene [54] and of Osteopontine gene expression, which is also modulated by CBF-A [37]. CBF-A is also involved in the regulation of the Ha-ras gene expression [39]. The mRNA binding ability of these two proteins led us to speculate that they could be recruited at the promoter level and play a role in both the apoD mRNA expression and processing, in this context of growth arrest. All these different crucial roles of HnRNP-U may explain its ubiquitous gene expression profile in growth-arrested NIH/3T3 cells (Fig. 3). Binding of HnRNP-U to the promoter was further demonstrated by EMSA (Fig. 2A). The addition of HnRNP-U antibodies specifically reduced the complex intensity. This interaction with the SRE1-EBS-GRE, whether direct or indirect, is in agreement with previous reports showing that HnRNP-U can play a role in gene regulation via its interaction with the GRE site located in the promoter of the tryptophan oxygenase gene [55] and therefore suggests that HnRNP-U might interact with the apoD promoter through the GRE binding site.

Parp-1 is an abundant nuclear protein with a poly(ADP-ribose)-ation catalytic activity which uses NAD+ as substrate to modify several nuclear proteins, such as transcription factors thus affecting their functions [40,56]. Although, several studies have shown its implications in DNA repair pathways, its DNA-binding and catalytic activities are also implicated in transcription regulation [40,56]. Despite the fact that Parp-1 is reported as a ubiquitous protein, we found that its gene expression is up-regulated in growth-arrested NIH/3T3 cells and we clearly demonstrated its binding to the apoD promoter, highlighting its importance in this stress condition. We were able to obtain a supershift by EMSA upon addition of a specific antibody coupled with the disappearance with the major bands II and III. Bands I and IV were very faint and detectable only when 50 μg of extracts were used. Both bands appeared more abundant in growth arrest conditions and seem specific since they disappeared in the presence of Parp-1 antibodies (Fig. 2A).

In agreement with our results, Parp-1 can be activated by its binding to conformational or non-B DNA structures such as cruciforms or hairpins [57,58]. More importantly, cruciforms can be formed within a sequence that contains inverted repeats with the appearance of duplex arms. The SRE was already reported to be able to form cruciforms which resemble the Holliday junction [59]. Moreover, several studies demonstrated the interaction of Parp-1 with DNA in a sequence-specific manner. Tatapi-Paez and collaborators [60] reported the binding of Parp-1 to a SRE-CARG-like element. Parp-1 was also shown to bind a recently named Parp-1-binding element (PBE) [61] whose consensus sequence resembles that of the GRE.

We were not able to confirm binding by EMSA for the other selected proteins for which specific antibodies were commercially available most likely because the recognized epitope is hidden in the protein native form. However, using the biotin pull-down approach followed by western blot analysis, we confirmed that these proteins effectively bind the region of the promoter containing the SRE1, EBS and GRE sites (Fig. 2B). Obviously, BUB-3 does not recognize the SRE1 since the protein still binds an oligo lacking the SRE1 or an oligo in

![Fig. 3. Analysis of mRNA expression of nuclear factors in NIH/3T3 growth arrested cells.](image-url)
which the SRE1 was mutated. It is worth mentioning that, by mutating the EBS, we also mutated the GRE as well as the SRE1 because these sites are superimposed (see Table 1). Moreover, BUB-3 did not modulate the apoD promoter (Fig. 4A) and the gene was not activated under growth arrest (Fig. 3).

Based on our results, Kif4 binds the SRE1 most probably through its CArG-box core since it only binds the intact SRE1 (Fig. 2B) and as already mentioned above, most of the mutated EBS consensus sequence is included within the inverted repeat of the SRE1. Kif4 is a member of the kinesin superfamily of proteins known to transport cargos of macromolecules along the microtubules of cells, such as membrane organelles, protein complexes and mRNAs [44,62]. The Kif4 nuclear localization was shown to be regulated by its interaction with Parp-1 in juvenile neurons. In addition, Kif4 can repress Parp-1 enzymatic activity in the nucleus of NIH/3T3 cells in normal culture conditions [44]. Thus, the apoD gene expression could be modulated by the interaction of these two proteins. In our study, Parp-1 could not be purified in normal growth conditions suggesting that the possible interaction of Parp-1 and Kif4 in NIH/3T3 cells, reported by Midorikawa and collaborators [44], may inhibit Parp-1 binding on the apoD promoter. Therefore, the presence of Parp-1 on the apoD promoter in growth arrest conditions may be favored by both the down- and upregulation in gene expression of Kif4 and Parp-1, respectively (Fig. 3).

In contrast, APEX-1 binds the promoter but binding persists despite the mutations of each consensus sequence (Fig. 2B). However, the deletion of the SRE1 abolished the binding. This implies that APEX-1 probably binds the apoD promoter through a greater affinity for the mutated sequences or through the interaction with other proteins, such as Parp-1, that bind either the SRE1 or the EBS-GRE sites. APEX-1 is a multifunctional protein implicated in DNA repair through the base-excision repair (BER) pathway, where Parp-1 was also shown to be involved but more importantly, APEX-1 is well known for its role in transcription regulation through a redox activity. Indeed, the redox activity of APE1 was shown to modify and activate several stress-inducible transcription factors such as AP-1, NF-κB, p53, Egr-1, CREB, ATF and HIF-1α [47,63]. The fact that APEX-1 gene expression was found induced in growth arrest conditions may also indicate its importance in such stress conditions (Fig. 1B). Also, APEX-1 was shown to be induced in several stresses such as oxidative conditions, cancers [47] and several neurodegenerative disorders [63]. It is interesting to note that such stresses including H2O2 and UV induce apoD gene expression as well as the catalytic activity of Parp-1 [27,64,65]. Therefore, it would be of interest to investigate if Parp-1 and APEX-1 also modulate the apoD gene expression under these conditions and will definitely clarify the mechanism of regulation of the gene. Indeed, apoD is considered as a stress protein, and we demonstrated that it plays a protective effect for neurons of mice treated with paraquat [65]. A similar protection against oxidative stress was observed in Drosophila and plants [65,66]. Protection was also observed in mice infected with OC43, a coronavirus that induces brain inflammation and neurodegeneration [64].
Ifi204 is a 72-kDa phosphoprotein and a member of the interferon-inducible p200 (Ifi-200) family of proteins induced by interferons (IFNs) [67]. Due to the lack of specific antibodies against Ifi204, it was not possible to confirm its binding to the apoD promoter by EMSA. However, the protein was clearly identified with a high score in the streptavidine beads technique in extracts from growth arrest conditions (Fig. 1B). More importantly, Ifi204 expression was induced under serum starvation (Fig. 3). These results are consistent with the known interaction of Ifi204 and the Retinoblastoma protein (pRb) which both inhibit proliferation. Also, mutations in Ifi204 confer malignant transformation properties in NIH/3T3 cells [67,68].

In the transactivation assay, we showed that Parp-1, HnRNP-U, APEX-1 and Ifi204 had a positive effect on the apoD promoter in growth arrest conditions only (Fig. 4A). The positive effect of Parp-1 and HnRNPU was also confirmed by the knock down of their expression with specific siRNA. Their inhibition totally abolished the apoD gene induction under serum starvation conditions (Fig. 4C). These results are consistent with the known interaction of Ifi204 and the Retinoblastoma protein (pRb) which both inhibit proliferation. Also, mutations in Ifi204 confer malignant transformation properties in NIH/3T3 cells [67,68].

In the transactivation assay, we showed that Parp-1, HnRNP-U, APEX-1 and Ifi204 had a positive effect on the apoD promoter in growth arrest conditions only (Fig. 4A). The positive effect of Parp-1 and HnRNP-U was also confirmed by the knock down of their expression with specific siRNA. Their inhibition totally abolished the apoD gene induction under serum starvation conditions (Fig. 4C). Moreover, we further demonstrated the importance of Parp-1 and APEX-1 catalytic activities in the induction of apoD gene expression in growth-arrested cells. These results were observed either by deleting the C-terminal portion containing the catalytic domain of Parp-1 (Fig. 4A) or by inhibiting its catalytic activity with a specific inhibitor 3-ABA (Fig. 5A). For APEX-1, both its redox and DNA-binding activities were necessary to transactivate the apoD promoter and we demonstrate a link between APEX-1 redox activity and the cell cycle regulation since inhibition of APEX-1 activity promotes cell proliferation under serum starvation (Supplemental Fig. 1). This is consistent with the strong relation between the redox cycle and cell cycle regulation [69,70].

We also found that the inhibition of MEK1/2 blocks apoD gene induction by growth-arrest after 2 days showing the importance of this pathway in the regulation of apoD gene expression. This is surprising since ERK1/2 activation is essential for cell cycle progression from G1- to S-phase by downregulating several antiproliferative genes [71,72]. However, ERK1, but not ERK2, expression in fibroblasts inhibits oncogenic Ras-mediated proliferation, colony formation as well as tumor production in nude mice [73]. More importantly, the B-Raf isoforms can induce cell-cycle arrest in NIH/3T3 cells [74]. In this study, we showed biphasic ERK1/2 activation in time in growth-arrested NIH/3T3 cells, reaching a peak at 15 min, decreasing after 30 min and activated again 24 h later (Fig 5C). In addition, ERK2 remains phosphorylated for up to 2 h in the presence of Parp-1 inhibitor which blocks apoD expression (Fig. 5D). This result implies that ERK1/2 activation is necessary for apoD gene induction. This regulation of ERK1/2 phosphorylation in growth arrest conditions could be mediated by Parp-1 activity. Further investigations are necessary to verify if ERK1/2 are effectively ADP-(ribosyl)ated in...
stress conditions and also to determine if ERK2/2 kinase activity is directly involved in the regulation of the nuclear factors identified herein.

In conclusion, we identified several proteins that bind the apoD promoter through the SRE1, EBS and GRE elements, and regulate its expression in growth arrest conditions. Our results also highlight the role of Parp-1 catalytic activity. They demonstrate a central role played by Parp-1 and AP1, both through their binding to the apoD promoter and their catalytic activity during this process.

Acknowledgments

We gratefully acknowledge support from the Canadian Institutes for Health Research to ER (Grant MOP-15677). SDC was supported by FRQS and NSERC studentships.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jbiamcr.2010.04.011.

References

[1] D.T. Drayna, J.W. McLean, K.L. Wion, J.M. Trent, H.A. Drabkin, R.M. Lawn, Human apolipoprotein D gene: gene sequence, chromosome localization, and homology to the alpha 2 globulin superfamily, DNA 18 (1997) 199–204.

[2] D.R. Flower, The lipocanin protein family: structure and function, Biochem. J. 318 (Pt 1) (1996) 1–14.

[3] W.J. McConathy, P. Alasovice, Partial and partial characterization of apolipoprotein D1, a new protein moiety of the human plasma lipoprotein system, FEBS Lett. 37 (1973) 178–182.

[4] J.H. Morais Cabral, G.L. Atkins, L.M. Sanchez, Y.S. Lopez-Boado, C. Lopez-Otin, L. Sawyer, Arachidonic acid binds to apolipoprotein D: implications for the protein's function in acute phase responses, Biochemistry 34 (1995) 53–56.

[5] W.H. Pearlman, J.L. Guerguiev, M.E. Sawyer, A specific progesterone-binding component of human breast cyst fluid, J. Biol. Chem. 248 (1973) 5736–5741.

[6] W.G. Dilley, D.E. Haagensen, C.E. Cox, S.A. Wells Jr., Immunologic and steroid binding properties of the G1DP-24 protein isolated from human breast cystic fluid, Breast Cancer Res. Treat. 16 (1990) 253–260.

[7] M.C. Peitsch, M.S. Boguski, Is apolipoprotein D a mammalian bilin-binding protein? New Biol. 2 (1990) 197–206.

[8] C. Zeng, A.I. Spielman, R.R. Vowels, J.J. Leyden, C. Gross, B. Wasylyk, Erbs' tetraspliced complex transcription factors, Gene 324 (2004) 1–14.

[9] A. Verger, M. Duterque-Coquillard, When Ets transcription factors meet their partners, BioEssays 24 (2002) 362–370.

[10] E. Rassart, A. Bedirian, S. Do Carmo, O. Guinard, J. Sirois, L. Terrisse, R. Milne, L.-C. Levros Jr. et al. / Biochimica et Biophysica Acta 1803 (2010) 1062–1070.

[11] L. Terrisse, J. Poirier, P. Bertrand, A. Merched, S. Visvikis, G. Siest, R. Milne, E. Sawyer, Arachidonic acid binds to apolipoprotein D: implications for the protein's function in acute phase responses, Biochemistry 34 (1995) 53–56.

[12] C. Ordoñez, A. Navarro, C. Perez, A. Astudillo, E. Martinez, J. Tolivia, Apolipoprotein D, Biochim. Biophys. Acta 1482 (2000) 185–191.

[13] E.A. Thomas, B. Dean, G. Pavey, J.G. Sutcliffe, Increased CNS levels of apolipoprotein D in breast cancer cells, J. Biol. Chem. 269 (1994) 26871–26878.

[14] S.P. Mahadik, M.M. Khan, D.R. Evans, V.V. Parikh, Elevated plasma level of apolipoprotein D in breast cancer patients. Breast Cancer Res. Treat. 16 (1990) 253–260.

[15] E. Rassart, S. Do Carmo, R. Milne, E. Sawyer, Apolipoprotein D: a potential target for the poly(ADP-ribose) polymerase 1 (PARP-1) in cancer, J. Biol. Chem. 277 (2002) 26921–26926.

[16] Y.S. Lopez-Boado, J. Tolivia, C. Lopez-Otin, Apolipoprotein D gene induction by estrogen, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 6626–6630.

[17] E.C. Patel, D. Lange, W.J. McConathy, Y.C. Patel, S.C. Patel, Probing the structure of the ligand binding cavity of lipocalins by fluorescence spectroscopy, Protein Eng. 10 (1997) 621–625.

[18] E. Rassart, A. Bedirian, S. Do Carmo, O. Guinard, J. Sirois, L. Terrisse, R. Milne, Apolipoprotein D, Biochim. Biophys. Acta 1482 (2000) 185–191.

[19] C. Perez, A. Navarro, C. Ordoñez, E. Martinez, J. Tolivia, Apolipoprotein D expression in substantia nigra of Parkinson disease, Histo. Histopathol. 21 (2006) 361–366.

[20] E.A. Thomas, B. Dean, G. Panev, J.G. Sutcliffe, Increased CNS levels of apolipoprotein D in schizophrenic and bipolar subjects: implications for the pathophysiology of psychiatric disorders, Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 4066–4071.

[21] S.P. Mahalakshmi, M.K. Khan, D.R. Evans, V.V. Parikh, Elevated plasma level of apolipoprotein D in schizophrenia and its treatment and outcome, Schizophr. Res. 52 (2000) 55–62.

[22] M. Reindl, G. Kruppa, C. Wieth, L. Dittrich, R. Egg, E. Deisenhammer, T. Berger, Increased intrathalamic production of apolipoprotein D in multiple sclerosis, J. Neuromunmol. 119 (2001) 327–332.

[23] Y.S. Lopez-Boado, J. Tolivia, C. Lopez-Otin, Apolipoprotein D gene induction by retinoic acid is concomitant with growth arrest and cell differentiation in human breast cancer cells, J. Biol. Chem. 269 (1994) 26871–26878.

[24] Y.S. Lopez-Boado, M. Kraal, M.I. Dawson, C. Lopez-Otin, Retinoic acid-induced expression of apolipoprotein D and concomitant growth arrest in human breast cancer cells are mediated through a retinoic acid receptor RARalpha-dependent signalling pathway, J. Biol. Chem. 271 (1996) 32105–32111.

[25] H. Soland, K. Soreide, E.A. Jansen, H. Korner, J.P. Baak, J.A. Soreide, Emerging concepts of apolipoprotein D with possible implications for breast cancer, Cell. Mol. Biol. 53 (2007) 195–209.

[26] C.L. Yang, T. Kurczab, G. Down, T. Kealey, K. Langlands, Gene expression profiling of the ageing rat vibrissa follicle, Br. J. Dermatol. 153 (2005) 22–28.

[27] A. Kalman, W. McConathy, C. Araoz, P. Kasa, A.C. Laco, Apolipoprotein D in the aging brain and in Alzheimer’s dementia, Neurobiol. Res. 22 (2000) 330–336.
