Livestock-Associated Methicillin-Resistant
Staphylococcus aureus ST9 in Pigs and Related Personnel in Taiwan

Hsin-Wei Fang¹, Po-Hsing Chiang¹*, Yhu-Chering Huang¹,²*

¹ School of Medicine, Chang Gung University, Gueishan, Taoyuan, Taiwan, ²Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan, Taiwan

Abstract

Background: A livestock-associated (LA) methicillin-resistant *Staphylococcus aureus* (MRSA) strain sequence type 398 (ST398) is found related to animals and humans in Europe and North America. To evaluate the nasal carriage of MRSA among pigs and related workers in Taiwan, we conducted this study.

Methods: From June 25 to October 1 2012, a total of 641 and 100 nasal swabs were obtained from pigs and related workers, respectively, from 22 pig farms nationwide and 2 pig auction markets in Taiwan. All MRSA isolates were molecularly characterized.

Results: Overall, the nasal carriage rate of MRSA was 14.4% for pigs and 13% for humans. The carriage rate for pigs younger than 3 months was significantly higher than those older than 3 months (25.4% vs. 5.8%, p<0.001). Percentage of MRSA-positive pig farms was 59.1% (13/22). The carriage rate for pigs in large-scale herds (≥10000 pigs) was significantly higher than that in small-scale (34.3% vs. 7.0%, p<0.001) and that in auction markets (3.8%). The carriage rate was 19.2% (10/52) for pig farm workers, and the rate in large-scale farms was significantly higher than that in small-scale (36.8% vs. 9.1%, p=0.014). Except for 3 isolates from humans, the other 99 isolates belonged to sequence type (ST) 9. 83 of 89 isolates from pigs shared a common pulsotype, which was also shared by 6 isolates from humans.

Conclusion: More than 10% of pigs and related workers in Taiwan carried LA-MRSA ST9 in nares and cross-species transmission of LA-MRSA was documented by molecular methods.

Introduction

Staphylococcus aureus is a major cause of infections in both hospitals and communities, causing diseases ranging from mild skin infections to fulminant septicemia, and becomes increasingly resistant to methicillin. Methicillin-resistant *S. aureus* (RSA) is usually considered a hospital pathogen, but increasingly, it is acquired in the community [1–3]. According to the patients with or without health care-associated risk factors such as residence in long term care facility, recent hospitalization or surgery, indwelling catheter or hemodialysis, MRSA can be categorized into healthcare-associated (HA-MRSA) and community-associated (CA-MRSA) [2–4]. CA-MRSA strains are genetically different from HA-MRSA, such as limited antibiotic resistance, possessing Panton-Valentine leukocidin genes, carrying type IV or V staphylococcal cassette chromosome etc. [2–4]. However, various MRSA clones have spread between community and hospitals, particularly CA-MRSA transmitted in hospital settings, making the distinctions between CA-MRSA and HA-MRSA blurred [4].

In addition to being a human pathogen, *S. aureus* causes an array of infections in economically important livestock animals, particularly in pigs [5–7]. A specific MRSA sequence type 398 (ST398) is found related to various animals and humans across European countries and North America [8–12]. ST398 appears to be largely pig- or veal-calf-associated, but the clone is characterized by the capacity to colonize multiple host species, including cows, sheep and poultry, may facilitates the colonization in animal workers and those whom contact with and can cause severe infections in humans. Several cases of ST398 infection in humans have been reported in European countries, Hong Kong and China [10,13–17]. Although MRSA prevailed in Taiwan, including healthcare settings and community, for decades, the reports regarding LA-MRSA have been scanty [18–20]. Hence, we conducted a study to evaluate MRSA colonization among pigs and related workers...
Sample collection

Ethic statement

Materials and Methods

Ethic statement

The study was approved by the institutional review board of Chang Gung Memorial Hospital and a written informed consent was obtained from each participant. The owners of the pigs gave permission for their animals to be used in this study.

Sample collection

According to the locations and pig cultivation scales of pig farms and the age of pigs surveyed. Molecular characteristics of the MRSA isolates were also analyzed.

Table 1. Methicillin-resistant Staphylococcus aureus prevalence among different groups of pigs and humans in Taiwan.

Group	% (positive/total)	p value
Pigs	14.4 (89/641)	
Younger than 3 months	25.4 (67/264)	<0.001
Younger than 1 month	18.5 (29/157)	
1 to 3 months	35.5 (38/107)	
Older than 3 months*	5.8 (22/377)	
3 to 5 months	7.7 (7/91)	
Older than 5 months	3.4 (4/118)	
Sows	6.3 (10/158)	
Human	13 (13/100)	
Pig farm worker	19.2 (10/52)	0.03
Auction market employer	0.0 (0/32)	
Regular visitor	18.8 (3/16)	

* Samples coming from 10 grower pigs in the subdivision were excluded due to insufficient information of definite age.

doi:10.1371/journal.pone.0088826.t001

Isolation of MRSA

Each specimen was incubated at 37°C overnight with 5% sheep blood agar plate (BD Diagnostics, Sparks, MD). Initially, each specimen was inoculated on both sheep blood agar plate and chromogen plate. Since the yielding rate of MRSA was similar for both methods, we used sheep blood agar plate only subsequently. Based on the patterns of beta-hemolysis and the macroscopic appearance, the suspected colonies of S. aureus were further incubated with 5% sheep blood agar plate at 37°C overnight. Repeated subcultivation of specimen was performed as needed if the incubations were mixed with multiple unrecognized colonies. After incubation and subcultivation, coagulase test were conducted by using rabbit plasma to ensure the identification of S. aureus. Cefoxitin test was then used to distinguish the MRSA from methicillin-susceptible S. aureus (MSSA) based on the recommendation of Clinical and Laboratory Standards Institute (CLSI) document M100-S17 [21]. All MRSA isolates were finally stored at −80°C.

Susceptibility test

The susceptibility test was performed on Mueller–Hinton agar with disk-diffusion method following the protocol of CLSI. After incubating at 37°C for 24 hours, the minimal inhibition concentration (MIC) of antibiotics, including vancomycin, teicoplanin, linezolid, doxycycline, penicillin, ciprofloxacin, erythromycin, fusidic acid, clindamycin, and sulfamethoxazole-trimethoprim were then interpreted by CLSI document M100-S17 [21]. Quality control was achieved by S. aureus ATCC 29213 simultaneously.

Molecular analysis

All the MRSA isolates were molecularly characterized. Pulsed-field gel electrophoresis (PFGE) with Smal digestion was used to fingerprint MRSA isolates according to the procedure described previously [22,23]. The genotypes were designated in alphabetical order, as in the previous studies [22,23]; any new genotype, if identified, was designated consecutively. PFGE patterns with fewer than 4-band differences from an existing genotype were defined as subtypes of that genotype [22,23]. The Staphylococcal cassette chromosome mec (SCCmec) typing was determined by two multiplex PCR strategy described previously [24,25] and our previous studies [22,23]. Control strains for SCCmec types I, II, III and IVa, kindly provided by Dr Keiichi Hiramatsu, were as follows: type I, NCTC10442; type II, N315; type III, 85/2082; and type IVa, JCSG4744. SCCmec typing for type Vf was determined by a particular primer described elsewhere [22,23] and the strain TSGH-17 was used as control. The presence of Panton-Valentine leucocidin (PVL) genes were determined by a PCR strategy described previously [26]. Multilocus sequence typing (MLST) [27] and spa gene typing [28] was examined for some strains of representative PFGE patterns.

Questionnaire

Each participant was asked to fill a questionnaire for risk factors identification, including demographic and clinical information. The demographic data contained age, gender, occupation, seniority, smoking habit, contact of second-hand smoke, animal-related occupation of family members, medical-related occupation selection. With labels indicating the geographic origin (county) and the category of specimen, the sample were then sent to laboratory of Chang Gung Memorial Hospital at Linkou under room temperature within 48 hours.
of households and visit times of slaughterhouse during one year. The clinical data included diabetes mellitus, hypertension, current usage of tubes (nasogastric tube, tracheostomy tube, drainage tube, Foley catheter, port-A and dialysis tube) of family members or himself, recent hospitalization or surgery history within one year of usage of tubes (nasogastric tube, tracheostomy tube, drainage tube, Foley catheter, port-A and dialysis tube) of family members or himself and antibiotics use within one month. Each pig farm manager was also demanded to fill a questionnaire to assay local circumstances factors, including cultivation scales, cultivation density, operate year, frequency of sterilization and concurrent animal cultivation.

Statistical analysis

SPSS 18.0 (SPSS Inc., Chicago, IL, USA) statistical software was utilized for statistical analysis. A p value <0.05 is considered statistically significant. The MRSA prevalence from demographic data, clinical data, information of each pig farm, antimicrobial susceptibility test for each antibiotic, pig age, pig categories (piglet, sow, grower pig) and human categories (pig farm worker, auction market employer, regular visitor) were examined by chi-square test. If there existed risk factors with a p value <0.05, multivariate logistic regression model would be further performed.

Results

Prevalence of MRSA

A total of 641 and 100 nasal swabs were collected from live pigs and related animal workers, respectively. Totally, 89 (14.4%) MRSA isolates were identified from 641 pigs, which included 536 pigs in pig farms (157 piglets, 158 sows, and 221 grower pigs) and 105 grower pigs in auction markets. No MSSA was identified from pigs. For pigs in auction market, only two (1.9%) MRSA isolates were identified from one of the two markets sampled. The carriage rate of MRSA for piglets (29/157, 18.5%), and grower pigs (50/326, 15.3%) was significantly higher than that for sow (10/158, 6.3%) (p<0.01, odds ratio (OR): 3.35 [95% confidence interval (CI) 1.57–7.15]) and 2.68 [95% CI 1.32–5.44], respectively). By age, 10 grower pigs were excluded owing to insufficient information of definite age. For pigs younger than 3 months of age, the carriage rate of MRSA for piglets (9/157, 5.7%), and grower pigs (6/326, 1.8%) was significantly higher than that for those older than 3 months (22/377, 5.8%) (p<0.001, OR 5.49 [95% CI 3.29–9.16]) (Table 1).

Percentage of MRSA-positive pig farms was 59.1% (13/22). The carriage rate for pigs in large-scale herds (raising ≥10000 pigs) was significantly higher than that in small-scale ones (34.3% vs. 7.0%, p<0.001, OR: 6.88 [95% CI 4.13–11.45]).

Antimicrobial resistance

All 102 MRSA isolates from 89 pigs and 13 humans were sensitive to vancomycin, teicoplanin, linezolid and fusidic acid, and resistance to penicillin. The resistant rates of other antimicrobial agents to MRSA isolates from humans were different from those from pigs and the rates were as followings: doxycycline (30.8%, 85.4%), ciprofloxacin (76.9%, 100%), sulfamethoxazole-trimethoprim (23.1%, 15.7%), erythromycin (84.6%, 87.6%), clindamycin (92.3%, 100%). Statistical significance was noted for doxycycline (p<0.001), ciprofloxacin (p<0.001) and clindamycin (p=0.009) between both groups.

Molecular characteristics

Of the 102 isolates, a total of six pulsotypes with 41 subtypes were identified by PFGE. Only two types were identified for 89 isolates from pigs, with one major type for 83 isolates. All 6 pulsotypes were identified for the isolates from humans.

For SCC_mec types, only 6 isolates from humans were determined as type IV. The other 96 isolates carried class C mec gene complex but no coC gene complex was detected and thus could not be determined as either SCC_mec types, which was similar to those reported from Taiwan (18,19). Only one isolate from

Table 2. Comparison of nasal methicillin-resistant Staphylococcus aureus carriage among 536 pigs and 52 related workers in 22 pig farms in Taiwan by different cultivation scales.

Cultivation scale (pig)	Pig farms (positive/collected/nationwide)	Pig* (positive/total)	Worker# (positive/total)					
	Total	Piglet	Sow	Grower pig	Total	Piglet	Sow	Grower pig
Above 20,000	2/2/14	21/66	6/10	0/10	15/46	3/6		
10,000–19,999	4/5/39	41/115	14/41	4/34	23/40	4/13		
5,000–9,999	2/4/70	12/126	5/29	1/30	6/67	3/8		
3,000–4,999	1/4/158	1/90	1/31	0/39	0/20	0/22		
2,000–2,999	3/4/255	11/57	3/26	4/22	4/9	0/2		
1,000–1,999	1/3/1208	1/82	0/20	1/23	0/39	0/1		
Total	13/22/1744	87/536	29/157	10/158	48/221	10/52		

*The carriage rate for pigs in large-scale herds (raising ≥10000 pigs) was significantly higher than that in small-scale ones (34.3% vs. 7.0%, p<0.001, OR: 6.88 [95% CI 4.13–11.45]).

#The carriage rate for humans in large-scale herds was significantly higher than that in small-scale ones (36.8% vs. 9.1%, p=0.014, OR: 5.83 [95%CI 1.29–26.38]).
Characteristics	No. (%) of subjects*	MRSA (n = 13)	Non-MRSA (n = 87)	OR	95% CI	p value
Age						
Younger than 30 yrs	1 (7.7)	14 (16.1)	0.25	0.02–3.25	0.265	
30–45 yrs	4 (30.8)	28 (32.2)	0.50	0.08–3.31	0.466	
45–60 yrs	4 (30.8)	31 (35.6)	0.45	0.07–2.98	0.400	
Older than 60 yrs	2 (15.4)	7 (8.0)	Ref.	–	–	
Gender						
Female	5 (38.5)	11 (12.6)	4.26	1.18–15.39	0.027	
Male	8 (61.5)	75 (86.2)	Ref.	–	–	
Occupation						
Pig farm worker	10 (72.9)	42 (48.3)	1.03	0.25–4.32	0.002	
Auction market employer	0 (0)	32 (36.8)	Ref.	–	–	
Regular visitor	3 (23.1)	13 (14.9)	Ref.	–	–	
Seniority						
Less than 5 years	2 (15.4)	26 (29.9)	1.15	0.10–13.82	0.910	
5–9 year	4 (30.8)	10 (11.5)	6.00	0.58–61.84	0.132	
10–14 year	1 (7.7)	15 (17.2)	Ref.	–	–	
At least 15 years	6 (46.2)	35 (40.2)	2.57	0.28–23.25	0.401	
Diabetes						
Yes	0 (0)	4 (4.6)	Ref.	–	–	
No	13 (100)	82 (94.3)	1.05	1.00–1.10	0.427	
Hypertension						
Yes	1 (7.7)	12 (13.8)	Ref.	–	–	
No	12 (92.3)	74 (85.1)	1.95	0.23–16.36	0.533	
Smoking habit						
Yes	3 (23.1)	29 (33.3)	Ref.	–	–	
No	10 (76.9)	57 (65.5)	1.70	0.43–6.64	0.444	
Contact of second-hand smoke						
Yes	6 (46.2)	37 (42.5)	1.14	0.35–3.66	0.832	
No	7 (53.8)	49 (56.3)	Ref.	–	–	
Animal-related occupation of family members						
Yes	2 (15.4)	23 (26.4)	0.50	0.10–2.42	0.380	
No	11 (84.6)	63 (72.4)	Ref.	–	–	
Medical-related occupation of households						
Yes	2 (15.4)	2 (2.3)	7.64	0.98–59.81	0.026	
No	11 (84.6)	84 (96.6)	Ref.	–	–	
Visit times of slaughterhouse within one year						
Less than 10 times	9 (69.2)	30 (34.5)	1.50	0.41–5.54	0.541	
10–19 times	4 (30.8)	20 (23.0)	Ref.	–	–	
20–29 times	0 (0)	1 (1.1)	Ref.	–	–	
At least 30 times	0 (0)	35 (40.2)	Ref.	–	–	
Current usage of tubes of households or himself						
Yes	0 (0)	0 (0)	Ref.	–	–	
No	13 (100)	86 (100)	0.16	0.00–8.20	0.36	
Hospitalization or surgery history within one year of households or himself						
Yes	1 (7.7)	8 (9.2)	0.81	0.09–7.09	0.851	
No	12 (92.3)	78 (89.7)	Ref.	–	–	
Antibiotics use within one month						
Yes	0 (0)	11 (12.6)	0.24	0.01–4.38	0.338	
Results from the present study showed that the prevalence of MRSA among pigs in Taiwan was 14.4%, which was lower than that for Western countries but higher than that for Asian countries such as China (58/509, 11.4%) [29], Korea (21/657, 3.2%) [30], Malaysia (1.4%) [31], and Japan (0.9%) [32], except that for Hong Kong (16%–21.3%) [33,34]. The rate of MRSA carriage among pigs reported from Taiwan recently was 4% of 126 pigs from three different randomly chosen pig farms and one slaughterhouse in 2011 [18] and 42.5% of 299 pigs from 11 counties in western Taiwan at the second largest swine auction market with pigs ready for slaughter in 2009-2010 [19], respectively. As shown in the present study, nasal MRSA carriage rate among pigs was affected by the sampling location (from pig farms or auction market), the cultivate scales of pig farms and the age of pigs sampled. The time point and the methods of samplings may also affect the carriage rate.

All of MRSA isolates from pigs in the present study were ST9 based on MLST. MRSA ST9 was first detected and reported in Europe in 2010 [35]. However, rather than ST9, it is ST398, which was first reported from pigs [7], and prevailed among pigs in European countries, USA, Canada, as well as Korea [8–15,30]. In Asia, CC9 (ST9 and single-locus variants), but not ST398, has also been reported predominantly in swine-associated environments in some countries such as China, Hong Kong, Japan, Thailand and Malaysia [29,31–34,36]. In Taiwan, reported recently [18–20], most MRSA isolates from pigs were characterized as sequence type ST9, non-SCCmec types I to VII, PVL-negative, spa type t899, and resistant to erythromycin, clindamycin, ciprofloxacin and gentamicin. All these characteristics were shared by the isolates from pigs in the present study, which suggest that this LA-MRSA clone had spread among pigs in Taiwan for years. In Japan, the main strain was found to be ST221 [32], while ST398/t034 and ST541/t034 were predominant in Korea [30]. ST9 differs from ST398 not only in geographic distribution but also in its enterotoxin profile and resistance to a broader range of antimicrobials.

In the present study, the resistant rates of antimicrobial agents to MRSA isolates from pigs were significantly higher than those from humans. Current quinolones used in pig farming in Taiwan include nalidixic acid, oxolinic acid, danofoxacin, enrofloxacin and orbifloxacin. Though fluoroquinolones are not used directly in pig farming, MRSA isolated from pigs might require ciprofloxacin resistance through other quinolone regimens. Among the tetracycline antibiotics, chlorotetracycline, oxytetracycline, tetracycline and doxycycline are commonly used. Although chloramphenicol is not allowed to be used in pig farming, lincomycin is widely used. The usage of these antibiotics in pig farming may affect the antibiotic resistant patterns of MRSA isolates from these pigs.

Though the LA-MRSA isolates in most Asian countries shared a common sequence type, namely ST9, the molecular characterizations for these LA-MRSA isolates were not same at all. The LA-MRSA isolates dominant in China [29] were characterized as spa type t899-SCCmec III, t899 also for isolates in Hong Kong [33,34], and t899-untypable SCCmec for Taiwan [18–20]). While, the isolates dominant in Malaysia were spa type t4358-SCCmec V [31] and t337-SCCmec IX for isolates in Thailand [36].
The rate of nasal MRSA colonization among pig farmers and/ or slaughterhouse workers in the present study was 13%, a rate lower than that in European countries (20-45%), but higher than that in Asian countries, such as 5.5% (5/90) in Malaysia [31], and 1.7% (2/120) in China [29]. In the present study, workers in large-scale pig farms had a higher carriage than those in small-scale ones. Previous studies indicated that higher density increased the risk of MRSA colonization [35,37,38], which could not be demonstrated in the present study since this information was not obtained from the farmers. Female was the only risk factor of carrying MRSA in the current study, which was opposite to others [39,40]. Low participation rate (36.6%) of the pigs-related workers might affect the survey results. It is also intriguing that no MRSA strain was identified from 32 auction market employers.

Reported from northern Taiwan recently, the rate of nasal MRSA carriage was 3.8% for 296 patients receiving hemodialysis [41], 3.8% for 502 adult patients visiting emergency room [22] and 3.8% for 3098 adults for health examination [42]. More than 80% of these isolates were characterized as ST 59-SCCmec IV or V-1. In the present study, 3% of 100 pig-related workers carried MRSA of ST59 and ST30, which was in consistent with previous reports from Taiwan [43]. While, nasal MRSA colonization was identified for 10 additional participants and all MRSA isolates from them belonged to ST9. Moreover, PFGE pattern of these human MRSA isolates was same and was indistinguishable with that of MRSA isolates from pigs. Apparently, the LA-MRSA jumping from pigs to humans was documented, providing evidence that human contact with pigs would increase the risk of LA-MRSA colonization. In addition, one of the regular visitors was found to harbor MRSA of ST9, suggesting the probability of ST9 spread via human contact instead of animal contact, a scenario demonstrated for MRSA ST398 transmission in Europe [40,44].

Human infections of LA-MRSA ST398 have been reported in Europe since first identified from pigs [7,14,15,45-47]. While, despite the prevalence of MRSA ST9 among pigs in Asia, infections caused by this clone in animals and humans were not addressed in the literature. However, Wan et al [22] found that of the isolates collected from the Taiwan Surveillance of Antimicrobial Resistance (TSAR), a biennial national surveillance program, five human clinical isolates of ST9-t899-PVL-negative were identified and were isolated in 1998, 2004, 2006 (2 isolates), and 2010; and 3 were from outpatients and 2 were from inpatients. A highly homogeneous virulence genotype and genomic profiles were identified among the ST9 MRSA isolates of human and swine origin, suggesting a recent common ancestor and implying cross-species adaptation. As LA-MRSA has the potential to colonize humans and its virulence may change over time, ongoing surveillance is needed to detect changes in epidemiology.

There are several limitations in the present study. First, the density of pigs in the farms was not obtained from the farm owners. Second, this survey was conducted at only one time point, so we could not understand whether the colonization of LA-MRSA among the workers was transient or persistent. Third, for those with LA-MRSA colonization, we did not further obtain nasal samplings from their household members to figure out whether the transmission of LA-MRSA occurred in the household. Fourth, the participation rate of pig-related workers was too low (around one-third) to better understand the perspective of LA-MRSA among the workers was transient or persistent. Third, for those with LA-MRSA colonization, we did not further obtain nasal samplings from their household members to figure out whether the transmission of LA-MRSA occurred in the household. Finally, in addition to the cultivation scale, the pig farms were chosen arbitrarily if the owners agreed to participate in the study after contact. The interpretation of the results from this study should be judged by this potential selection bias.

Conclusions

A substantial proportion (>10%) of pigs in Taiwan harbored LA-MRSA, namely ST9–spa type t899, and the carriage was related to cultivation scales and age of pigs. A substantial proportion of pig-related workers also harbored LA-MRSA, which documented cross-species transmission of LA-MRSA in Taiwan. To better understand the epidemiology and transmission of LA-MRSA, further studies are needed.

Acknowledgments

Special thanks to Chao-Chuan Li (Taiwan City Animal Health Inspection and Protection Office), Jung-Pin Hsu (Pingtung County Animal Disease Protection Office), Hsin-Tai Huang (National Health Research Institutes), and Chao-Chuan Li (National Health Research Institutes).
Control Center, Ming-Chiao Su (Tainan City Meat Market Co Ltd.) for assistance of collecting nasal samples.

Author Contributions
Conceived and designed the experiments: YCH. Performed the experiments: YCH. Analyzed the data: HWF PHC YCH. Contributed reagents/materials/analysis tools: YCH. Wrote the paper: HWF PHC YCH.

References
1. Boyce JM, Cookson B, Christiansen K, Hori S, Vuopio-Varkila J, et al. (2005) Methicillin-resistant Staphylococcus aureus. Lancet Infect Dis 5: 633–663.
2. David MZ, Daum RS (2010) Community-associated methicillin-resistant Staphylococcus aureus: epidemiology and clinical consequences of an emerging epidemic. Clin Microbiol Rev 23: 616–687.
3. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF (2010) Community-associated methicillin-resistant Staphylococcus aureus. Lancet 375: 1557–1560.
4. Otter JA, French GL (2012) Community-associated methicillin-resistant Staphylococcus aureus: the case for a genotypic definition. J Hosp Infect 81: 143–148.
5. Fitzgerald JR (2012) Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol 20: 192–198.
6. Graveland H, Duintjer E, Heederik D, Wagenaar J (2011) Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int J Med Microbiol 301: 630–634.
7. Armand-Lefèvre L, Rumyn A, Andremont A (2005) Clonal comparison of Staphylococcus aureus isolates from healthy pig farmers, human controls, and pigs. Emerg Infect Dis 11: 711–714.
8. Smith TC, Male MJ, Harper AL, Kroeger JS, Tinkler GP, et al. (2009) Methicillin-resistant Staphylococcus aureus (MRSA strain ST398) is present in midwestern U.S. swine and swine workers. PLoS ONE 4: e4258.
9. Wassenberg MW, Bootma MC, Troelstra A, Kluytmans JA, Bonten MJ (2011) Transmissibility of livestock-associated methicillin-resistant Staphylococcus aureus (ST398) in Dutch hospitals. Clin Microbiol Infect 17: 316–319.
10. Wulf MW, Schijffelen MJ, Boel CH, Fluit AC (2010) Whole genome analysis of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard materials/analysis tools: YCH. Wrote the paper: HWF PHC YCH.