Association Between Time to Stent Dysfunction and the Anti-Tumour Effect of Systemic Chemotherapy Following Stent Placement in Patients With Pancreaticobiliary Cancers and Malignant Gastric Outlet Obstruction: A Retrospective Cohort Study

Satoshi Kobayashi (kobayashis@kcch.jp)
Kanagawa Cancer Center

Makoto Ueno
Kanagawa Cancer Center

Shuhei Nagashima
Kanagawa Cancer Center

Yusuke Sano
Kanagawa Cancer Center

Kuniyuki Kawano
Kanagawa Cancer Center

Taito Fukushima
Kanagawa Cancer Center

Hiroyuki Asama
Kanagawa Cancer Center

Shun Tezuka
Kanagawa Cancer Center

Manabu Morimoto
Kanagawa Cancer Center

Research Article

Keywords: duodenal stenting, systemic chemotherapy, cancer, stent dysfunction, response

Posted Date: February 17th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-199477/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Association between time to stent dysfunction and the anti-tumour effect of systemic chemotherapy following stent placement in patients with pancreaticobiliary cancers and malignant gastric outlet obstruction: A retrospective cohort study

Satoshi Kobayashi¹, Makoto Ueno¹, Shuhei Nagashima¹, Yusuke Sano¹, Kuniyuki Kawano¹, Taito Fukushima¹, Hiroyuki Asama¹, Shun Tezuka¹, Manabu Morimoto¹

1. Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center
2-3-2, Nakao, Asahi-ku, Yokohama, 241-0815, Japan

Corresponding author
Satoshi Kobayashi

Complete postal address for correspondence/reprints
Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center
2-3-2, Nakao, Asahi-ku, Yokohama City, 241-0815, Japan
Tel: +81-45-520-2222
Fax: +81-45-520-2202
Email: kobayashis@kcch.jp
Abstract

Background: Malignant gastric outlet obstruction (MGOO) occasionally occurs due to pancreaticobiliary cancer. Endoscopic duodenal stenting (DS) is a common treatment for MGOO. However, it has been reported that DS does not have sufficient patency time for it to be used in patients who have a potentially increased lifespan. Nowadays, systemic chemotherapy for pancreaticobiliary cancer has developed, and its anti-tumour effect would make time to stent dysfunction longer.

Therefore, we retrospectively evaluated the association between objective response to systemic chemotherapy followed by DS and time to stent dysfunction in patients with advanced pancreaticobiliary cancer.

Methods: This retrospective study included 109 patients with advanced pancreaticobiliary cancer who received systemic chemotherapy after DS. Patients who showed complete or partial response were defined as responders. The rest were defined as non-responders. Time to stent dysfunction was compared between responders and non-responders using the landmark analysis, at 2 months after DS. Death without recurrence of MGOO was considered as a censored case for time to stent dysfunction.

Results: Combination and monotherapy regimens were adopted for 41 and 68 patients, respectively. Median progression-free survival and overall survival were 3.2 months (95% confidence interval [CI], 2.4-4.0) and 6.0 months (95% CI, 4.6-7.3). Objective response was
observed in 21 patients (19.3%). Patients who received combination regimens had longer progression-free survival and higher response rates than those who received monotherapy regimens; progression-free survival was 5.1 months (95% CI, 3.1-7.0) and 2.6 months (95% CI, 1.6-3.5) with a p-value of <0.001, and response rates were 39.0% and 7.4% with a p-value <0.001, respectively. Median time to stent dysfunction was 12.5 months (95% CI, 8.4-16.5) in the entire cohort. In 89 patients, responders had longer time to stent dysfunction than non-responders: 17.4 months (95% CI, 17.3-17.5) and 7.1 months (95% CI, 1.6-12.5), respectively, with a p-value of 0.031.

**Conclusions:** Longer time to stent dysfunction is expected when systemic chemotherapy following DS suppresses tumour progression; DS is slated to be a standard treatment for MGOO even in patients with pancreaticobiliary cancer and a long lifespan.

**Keywords:** duodenal stenting, systemic chemotherapy, cancer, stent dysfunction, response

**BACKGROUND**

Pancreatic cancer is the third leading cause of cancer-related death in the United States; death due to this disease accounted for approximately 43,000 cases in 2017.[1] It was the fourth leading cause of cancer death in Japan in 2018.[2] Biliary tract cancer includes the malignant cancer originating from the extrahepatic and hilar bile ducts, gallbladder, and ampulla of Vater. It is a relatively rare cancer in the United States or Europe; however, it is more common in East
Asian countries, accounting for 18,000 cases in Japan. As the disease progresses, the primary
tumour grow up; malignant gastric outlet obstruction (MGOO) due to tumour invasion through
the layers of the gastroduodenal wall occurs in approximately 10-20% of patients with
pancreaticobiliary cancer.[3-5] Gastric outlet obstruction is a crucial issue for patients with
these cancers, because it induces nausea, vomiting, and anorexia, which can result in life-
threatening comorbidities.

Gastrojejunostomy (GJ) has been widely used as a palliative treatment option for MGOO; in
the early 1990s, duodenal stenting (DS) was first developed and reported as an alternative
procedure to GJ.[6] According to the reviews of some clinical trials, DS is especially
recommended for patients with MGOO who had a life expectancy of less than 3 months, since
the patency of DS is approximately 3 months and additional interventions are often
required.[7-9]

Advanced pancreaticobiliary cancer has a poor prognosis, even in patients who received
systemic chemotherapies after resolving MGOO, since systemic chemotherapies (such as
gemcitabine (GEM) monotherapy) had little efficacy in prolonging patient survival and a low
response rate.[10, 11] Patients with advanced pancreaticobiliary cancer were candidates for
DS, even if they could receive subsequent chemotherapy after resolving MGOO. We
evaluated the clinical effectiveness and safety of DS for patients with pancreatic cancer[12]
and concluded that DS was an effective treatment for patients with advanced pancreatic cancer
and MGOO, in terms of its safety and smooth performance of subsequent chemotherapies. In recent years, systemic chemotherapies have been developed for advanced pancreaticobiliary cancer, such as FOLFIRINOX (fluorouracil, leucovorin, irinotecan and oxaliplatin)[13] and GEM plus nab-paclitaxel[14] for pancreatic cancer, and GEM plus cisplatin[15] and GEM plus S-1 for biliary tract cancer.[16] Response rate for these regimens has been reported as 30-60%; overall survival was 10-11 months.[17] Based on these data, patients who were candidates for these regimens will be suitable for GJ rather than for DS, as the treatment option for MGOO; however, DS can be another option if chemotherapy can prolong the patency of DS. Therefore, in this study, we aimed to assess the association between time to stent dysfunction (TTSD) for DS and efficacy of systemic chemotherapy.

METHODS

Patients

This was a retrospective cohort study. We reviewed the medical records of 317 consecutive patients with advanced pancreaticobiliary cancer who underwent DS for MGOO at our institution between July 2010 and December 2019. Patients enrolled in this study were also provided the opportunity to opt out of having any information published.

Duodenal stenting
We considered patients as candidates for endoscopic DS if they met the following criteria as described in our previous report[12]: 1) unresectable or recurrent disease that could not be cured with surgical resection; 2) histologically or cytologically proven pancreaticobiliary cancer; and 3) MGOO due to a stricture in the stomach or duodenum that was confirmed through radiological or endoscopic findings. Duodenal stent placement was contraindicated for patients who met the following conditions: 1) small bowel strictures or functional disorder induced by peritoneal dissemination; 2) stent placement risk factors due to haemorrhagic status or cardiopulmonary problems; 3) life expectancy of less than two weeks. We used several types of stents, such as the WallFlex or WallFlex Duodenal Soft (Boston Scientific Corporation, Marlborough, MA, USA) (22 mm with a proximal flare of 24 mm in diameter); Niti-S D pyloric/duodenal, and Niti-S COMVI™ Pyloric duodenal (Taewoong Medical Co., Ltd., Seoul, Korea) (22 mm in diameter without proximal flares); HANAROSTENT® Naturfit™ Duo (22 mm in diameter without proximal flares) (Boston Scientific Corporation, Marlborough, MA, USA). Stent lengths vary from 60 to 120 mm; we selected the stent according to the stricture length. The Niti-S COMVI™ was only used for patients at risk of tumour haemorrhage because it is a covered stent. Uncovered stents were used at the physician’s discretion. Stent placement was performed under sedation; the stricture was mainly identified endoscopically. In cases where the stricture was located at the distal end of the horizontal portion of the duodenum, we performed fluoroscopic duodenography using a contrast medium (Gastrografin Oral Enema,
Bayer HealthCare Pharmaceuticals, Leverkusen, Germany) to identify the stricture. A 0.035-inch guidewire (Hydra Jagwire, Boston Scientific Corporation) was inserted through the stricture, and the duodenal stent was positioned across it, under fluoroscopic guidance. Stent length was chosen according to the stricture length and the position of the pylorus/ampulla of Vater. Finally, the stent was deployed, and its patency was confirmed by injection of the contrast medium. Types of DSs used with each patient depended on the physician’s discretion and their availability. After stent placement, patients could resume consuming liquids on day 1, soft foods on day 2, and solid foods on day 3, as long as no symptoms of MGOO exacerbation were observed. In cases of MGOO recurrence, a second/third duodenal stent was placed using the stent-in-stent technique.

Systemic chemotherapy after duodenal stenting

We considered applying systemic chemotherapy after duodenal stenting for patients who met the following criteria: 1) Eastern Cooperative Oncology Group performance status (ECOG PS) of 0-2; 2) achievement of full oral intake; 3) adequate liver and kidney functions; 4) preserved bone marrow function: neutrophil count >1500/μL; platelet count >100,000/μL; and 5) a life expectancy of at least 3 months. We chose the chemotherapy regimens according to each patient’s consent and conditions, as follows: e.g., patients who had ECOG PS of 0-1 and were aged <75 years were introduced to combination chemotherapeutic regimens, such as modified
FOLFIRINOX[18] or GEM plus nab-paclitaxel for pancreatic cancer, or GEM plus cisplatin or GEM plus S-1 for biliary tract cancer. Patients who were ineligible for these combination regimens (but eligible for less toxic therapies) were introduced to monotherapy regimens, such as GEM alone or S-1 alone. We adopted these regimens not only as first-, but also as second- or third-line treatments. The initial dose of each agent was reduced at the physician’s discretion. Chemotherapy continued until disease progression, intolerable adverse events, or patient refusal.

Clinical outcomes

Diagnosis of stent occlusion or migration was confirmed based on radiological and/or endoscopic findings and not on symptoms such as nausea or vomiting. TTSD was determined starting from the date of DS through the date of diagnosis of stent dysfunction. Tumour ingrowth and overgrowth, stent migration, and food impaction were considered as stent dysfunction-related events. Patients who died without stent dysfunction were treated as censored cases for the evaluation of TTSD. Additionally, we complimentarily evaluated TTSD by considering the impossibility of oral intake due to disease progression. Overall survival and progression-free survival were determined starting on the date of initiation of systemic chemotherapy through the date of documented disease progression or any cause of death and the date of death due to any cause or the last follow-up, respectively. The best response during
chemotherapy was radiologically evaluated according to the Response Evaluation Criteria in Solid Tumors version 1.1.[19]

Statistical analysis

Results are expressed as median and were analysed using the SPSS Statistics 23 software (IBM SPSS, Inc., Chicago, IL, USA). Changes in the MGOO score[4] before and after duodenal stent placement were evaluated using the Wilcoxon signed-rank test. We calculated overall survival, progression-free survival, and TTSD using the Kaplan-Meier method; we used the log-rank test to compare these time-to-event parameters in two groups. Objective response to systemic chemotherapy was evaluated according to the new response evaluation criteria in solid tumours, version 1.1.[19] Patients were divided into the two groups according to the objective response to chemotherapy. Patients who showed complete or partial responses were defined as responders, and those who showed stable or progressive disease were defined as non-responders. We compared the TTSD of responders with that of non-responders by conducting a landmark analysis (landmark at 2 months after DS) to avoid guarantee-time bias and evaluate the association between TTSD and efficacy of systemic chemotherapy after DS.

RESULTS

Patient characteristics
Of 319 consecutive patients who had undergone DS, the study included 109 patients who received systemic chemotherapy after DS (Figure 1). Patient characteristics are shown in Table 1. Primary diseases were pancreatic adenocarcinoma, biliary tract cancer, and pancreatic neuroendocrine neoplasm in 92, 12, and 3 patients, respectively. Median age of the enrolled patients was 68 years (range: 31-81); 85 patients (77%) had metastatic cancer and 52 of them had peritoneal dissemination.

**Duodenal stent placement**

The duodenal stents used were WallFlex, Niti-S D type, HANAROSTENT® Naturfit™ Duo, Niti-S COMVI™, and WallFlex Soft in 46, 46, 10, 4, and 3 patients, respectively. Strictures were located on the oral side, above, and anal side of the papilla of Vater in 33, 26 and 50 patients, respectively. Among those, 6 patients with a MGOO score of 3 required DS: MGOO on the horizontal part of the duodenum was complicated with cholangitis in 3 patients; 2 patients had strictures in both the duodenal bulb and common bile duct; hence, DS was required before endoscopic retrograde biliary stenting. The MGOO score was better after DS compared to that before it, with a p-value <0.001. The median time required to tolerate food intake was just 1 day (range: 1-18 days).

**Systemic chemotherapy**
Median time from the date of stent placement through the date of initiation of chemotherapy was 12 (range: 1-60) days. Combination and monotherapy regimens were adopted for 41 and 68 patients, respectively. Median progression-free survival and overall survival were 3.2 months (95% CI, 2.4-4.0) and 6.0 months (95% CI, 4.6-7.3) (Figures 2a and 2b). Regarding the objective response, partial response (PR), stable disease (SD), and progressive disease (PD) were observed in 21, 45, and 43 patients, respectively. Response and disease control rates were 19.2% and 60.6%, respectively. Patients who received combination regimens had longer progression-free survival and higher response rates than those who received monotherapy regimens; progression-free survival was 5.1 months (95% CI, 3.1-7.0) and 2.6 months (95% CI, 1.6-3.5) with a p-value of <0.001 (Figure 2c), and response rates were 39.0% and 7.4% with a p-value <0.001, respectively. In addition, 17 patients who received combination regimens as first-line treatments had a median progression-free survival of 8.6 months (95% CI, 1.5-15.6) (Supplement Figure 1) and a response rate of 58.8%.

**Time to duodenal stent dysfunction**

During the median observation time of 4.8 (range: 0.5–35.6) months, stent dysfunction was observed in 38 patients (35%) and impossibility of oral intake due to disease progression was observed in 53 (49%); the remaining 19 patients were censored at the time of analysis. The median TTSD was 12.5 months (95% CI, 8.4-16.5) (Figure 3a). When using a supplementary
definition of stent dysfunction, median TTSD was 5.0 months (95% CI, 4.3-5.7) in the entire cohort and 12.5 months (95% CI, 2.7-22.3) in patients who received combination regimens as the first-line treatment (Supplement Figure 2).

Landmark analysis at the 2-month landmark point revealed that TTSD was longer in responders (n = 21) than in non-responders (n = 68), [17.4 months (95% CI, 17.3-17.5) and 7.1 months (95% CI, 1.6-12.5) with a p-value of 0.031, respectively] (Figure 3b). There were differences in TTSD between responders and non-responders in patients who received combination regimen (Figure 3c) or a first-line treatment after DS (Figure 3d), with p-values of 0.043 and 0.024, respectively. Multivariable analysis showed that non-responders was a marginal poor prognostic factor for TTSD; hazard ratio was 2.5 (95% CI, 0.93-6.7), with a p-value of 0.070 (Table 2).

DISCUSSION

According to previous studies, DS is inferior to GJ in terms of TTSD, although DS is superior to GJ in terms of safety, rapid symptom relief, and shorter time required to resume food intake. Based on the results, treatment recommendations for pancreatic cancer by the National Comprehensive Cancer Network and Japanese Pancreas Society state that proper use of the two treatment options may depend on the patients’ prognostic estimates. [20][21] These
recommendations do not state which is better for patients who will receive chemotherapy; their references date from 2000 to 2010, when the response rate of systemic chemotherapy was dismal. In recent decades, systemic chemotherapy for advanced pancreaticobiliary cancer has developed. Therefore, we evaluated the influence of chemotherapy on TTSD in patients who underwent DS and subsequent chemotherapy in 2010-2018. Our results showed that TTSD after DS was prolonged after chemotherapy through tumour shrinkage, especially when using a combination regimen. Therefore, DS could be a good treatment option, not only for patients with short life expectancy, but also for those who are eligible for a combination regimen and can expect an increased life expectancy. In other words, DS can be applied to all patients with unresectable pancreaticobiliary cancer as a standard treatment option for MGOO, along with advances in chemotherapy.

There are several reports on the effect of chemotherapy on TTSD of biliary stent; some studies have concluded that chemotherapy decreased TTSD by inducing bacterial colonisation in the bile ducts through its side effect of immunosuppression,[22] others have stated opposite conclusions, speculating that positive effect via tumour control would compensate for its negative effect in patients who received chemotherapy.[23] Regarding DS, the main causes of stent dysfunction are tumour growth and food impaction. Bacterial colonisation does not influence its patency. Therefore, we believe this might be a reason why chemotherapy has positive effects on TTSD of DS. Kim et al. have also reported that time to progression was an
independent protective factor against restenosis of DS in patients with gastric cancer.[24] When that report was published, the response rate and time to progression of chemotherapy for unresectable gastric cancer was around 30-40% and 5-7 months, respectively.[25, 26] These values were close to those of recent standard chemotherapy for advanced pancreaticobiliary cancer.[13-16] Patients who received combination regimens in our study had a median progression-free survival of 5.1 months and response rate of 39.0%. Therefore, we think this was another reason why our study could show the association between TTSD for DS and the effects of chemotherapy.

Overall survival was 4.6 months or longer in 95% of the patients included in our cohort. According to this review article,[7] surgical bypass is recommended for patients with a life expectancy of 3 months or longer; most patients had been eligible for surgical bypass rather than for DS. However, in this study, TTSD for DS was long enough that the patients survived without recurrent MGOO; median TTSD was 12.5 months in the primary definition of stent dysfunction and median time to impossibility of oral intake was 5.0 months. Furthermore, patients who received combination regimens as the first-line treatment could have 12.5 months of oral food intake. Based on the results, we believe that DS could be also recommended as a treatment option for MGOO for patients who are scheduled to receive intensive first-line chemotherapy for unresectable pancreaticobiliary cancer. Development of systemic chemotherapy for these diseases is awaited; DS will have longer TTSD in the future than
nowadays along with the improvement in response rate and progression-free survival in the future. Regarding safety, DS is considered a better option than surgical bypass, unless complications included stent dysfunction.[7, 9] Although we did not compare DS with surgical bypass in this study, we believe that DS is neither inferior to surgical bypass in terms of efficacy, nor superior in terms of safety.

The existing definition of stent dysfunction has affected the results, as the majority of patients could not eat orally due to disease progression; their stents were found to be patent, even in the final phase of the life. Regarding biliary stenting, the TOKYO criteria (2014) for transpapillary biliary stenting recommend patient death and complications other than recurrent biliary obstruction requiring stent removal be treated as censored cases at the time of death or stent removal, respectively.[27] According to the above-mentioned criteria, our primary definition of stent dysfunction was set as recurrent MGOO with stent thrombosis or migration. Primary data analysis showed that stent dysfunction was only observed in one third of patients. The small number of events will lower the statistical power to detect differences; hence, we conducted a supplementary analysis using disease progression as an event, to support the robustness of the primary analysis.

This study has some limitations. Its small number of patients and retrospective design are likely to cause several biases. Our study did not have a surgical bypass cohort; therefore, direct comparison between DS and surgical bypass was impossible. Indications for each
In addition, patients and regimens in this study formed a complex combination of several diseases and regimens.

**CONCLUSIONS**

Despite these limitations, we concluded that the anti-tumour effects of systemic chemotherapy improve TTSD of DS in pancreaticobiliary cancers; DS could be preferable not only for patients who have a life expectancy of less than 3 months, but also for those who are scheduled to receive systemic chemotherapy and are slated to have a longer life expectancy. Therefore, DS can be the standard treatment option for MGOO in unresectable pancreaticobiliary cancers.

**List of Abbreviations**

MGOO, malignant gastric outlet obstruction
DS, duodenal stenting
TTSD, time to stent dysfunction
ECOG PS, Eastern Cooperative Oncology Group performance status
DECLARATIONS

Ethics approval and consent to participate

All patients provided written informed consent for duodenal stent placement; all eligible patients for subsequent chemotherapy also provided written informed consent. In addition, this study was performed in accordance with the Declaration of Helsinki, and approved by the Institutional Review Board of the Kanagawa Cancer Center in April 2020.

Consent for publication

Not applicable

Availability of data and materials

The datasets analysed during the current study are available from the corresponding author on reasonable request.

Competing Interests

S.K received honoraria from Boston Scientific and Taiho Pharmaceutical. M.U. received honoraria from MSD, Ono Pharmaceutical, Taiho Pharmaceutical, and Yakult Honsha Co., Ltd. All other authors have no conflict of interest to declare.
Funding

This was a self-funded study.

Authors’ contributions

SK, SN, YS, KK, TF, HA, and ST analysed the patient data regarding the efficacy of duodenal stenting and systemic chemotherapy. SK, MU, and MM interpreted the data. SK was a major contributor in writing the manuscript. All authors read and approved the final manuscript.

Acknowledgements

None

References

1. Siegel RL, Miller KD, Jemal A: Cancer statistics, 2018. CA: a cancer journal for clinicians 2018, 68(1):7-30.
2. https://www.e-stat.go.jp/en/stat-search?page=1&toukei=00450011&bunya_l=02 Accessed Feb 07, 2020
3. Espinel J, Vivas S, Munoz F, Jorquera F, Olcoz JL: Palliative treatment of malignant obstruction of gastric outlet using an endoscopically placed enteral Wallstent. Digestive diseases and sciences 2001;46:2322-2324.
4. Adler DG, Baron TH: Endoscopic palliation of malignant gastric outlet obstruction using self-expanding metal stents: experience in 36 patients. The American journal of gastroenterology 2002;97:72-78.
5. Kulke MH: Metastatic pancreatic cancer. Curr Treat Options Oncol 2002;3:449-457.
6. Topazian M, Ring E, Grendell J: Palliation of obstructing gastric cancer with steel mesh, self-expanding endoprostheses. Gastrointestinal endoscopy 1992;38:58-60.
7. Jeurnink SM, van Eijck CH, Steyerberg EW, Kuipers EJ, Siersema PD: Stent versus gastrojejunostomy for the palliation of gastric outlet obstruction: a systematic review. *BMC gastroenterology* 2007;7:18.

8. Jeurnink SM, Steyerberg EW, van Hooft JE, van Eijck CH, Schwartz MP, Vleggar FP, Kuipers EJ, Siersema PD, Dutch SSG: Surgical gastrojejunostomy or endoscopic stent placement for the palliation of malignant gastric outlet obstruction (SUSTENT study): a multicenter randomized trial. *Gastrointestinal endoscopy* 2010;71:490-499.

9. Nagaraja V, Eslick GD, Cox MR: Endoscopic stenting versus operative gastrojejunostomy for malignant gastric outlet obstruction-a systematic review and meta-analysis of randomized and non-randomized trials. *Journal of gastrointestinal oncology* 2014;5:92-98.

10. Burris HA, 3rd, Moore MJ, Andersen J, Green MR, Rothenberg ML, Modiano MR, Cripps MC, Portenoy RK, Storniolo AM, Tarassoff P et al: Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. *Journal of clinical oncology: official journal of the American Society of Clinical Oncology* 1997;15:2403-2413.

11. Suzuki E, Furuse J, Ikeda M, Okusaka T, Nakachi K, Mitsunaga S, Ueno H, Morizane C, Kondo S, Shimizu S et al: Treatment efficacy/safety and prognostic factors in patients with biliary tract cancer receiving gemcitabine monotherapy: an analysis of 100 cases. *Oncology* 2010;79:39-45.

12. Kobayashi S, Ueno M, Kameda R, Moriya S, Irie K, Goda Y, Tezuka S, Yanagida N, Ohkawa S, Aoyama T et al: Duodenal stenting followed by systemic chemotherapy for patients with pancreatic cancer and gastric outlet obstruction. *Pancreatology: official journal of the International Association of Pancreatology* 2016;16:1085-1091.

13. Conroy T, Desseigne F, Ychou M, Bouche O, Guimbaud R, Becouarn Y, Adenis A, Raoul JL, Gourgou-Bourgade S, de la Fouchardiere C et al: FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. *The New England journal of medicine* 2011;364:1817-1825.

14. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN et al: Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *The New England journal of medicine* 2013;369:1691-1703.

15. Valle J, Wasan H, Palmer DH, Cunningham D, Anhoney A, Maraveyas A, Madhusudan S, Iveson T, Hughes S, Pereira SP et al: Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. *The New England journal of medicine* 2010;362:1273-1281.

16. Morizane C, Okusaka T, Mizusawa J, Katayama H, Ueno M, Ikeda M, Ozaka M, Okano N, Sugimori K, Fukutomi A et al: Combination gemcitabine plus S-1 versus gemcitabine plus cisplatin for advanced/recurrent biliary tract cancer: the FUGA-BT (JCOG1113) randomized phase III clinical trial. *Annals of Oncology* 2019;30:1950-1958.

17. Ueno H, Ikeda M, Ueno M, Mizuno N, Ioka T, Omuro Y, Nakajima TE, Furuse J: Phase I/II study of nab-paclitaxel plus gemcitabine for chemotherapy-naive Japanese patients with
metastatic pancreatic cancer. *Cancer chemotherapy and pharmacology* 2016;77:595-603.

18. Ozaka M, Ishii H, Sato T, Ueno M, Ikeda M, Uesugi K, Sata N, Miyashita K, Mizuno N, Tsuji K et al: A phase II study of modified FOLFIRINOX for chemotherapy-naive patients with metastatic pancreatic cancer. *Cancer chemotherapy and pharmacology* 2018; 81:1017-1023.

19. Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, Dancey J, Arbuck S, Gwyther S, Mooney M et al: New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). *European journal of cancer* 2009;45:228-247.

20. Japanese Society of Pancreas, Treatment Guideline of Pancreatic Cancer. Kanehara Shuppan, 2019

21. National Comprehensive Cancer Network Guideline for Pancreatic Adenocarcinoma Version 1. 2020. https://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. accessed on 2 Mar 2020.

22. Lofts FJ, Evans TR, Mansi JL, Glees JP, Knight MJ: Bile duct stents: is there an increased rate of complications in patients receiving chemotherapy? *European journal of cancer* 1997; 33:209-213.

23. Haal S, van Hooft JE, Rauws EAJ, Fockens P, Voermans RP: Stent patency in patients with distal malignant biliary obstruction receiving chemo(radio)therapy. *Endoscopy international open* 2017;5:E1035-e1043.

24. Kim CG, Park SR, Choi IJ, Lee JY, Cho SJ, Park YI, Nam BH, Kim YW: Effect of chemotherapy on the outcome of self-expandable metallic stents in gastric cancer patients with malignant outlet obstruction. *Endoscopy* 2012;44:807-812.

25. Ajani JA, Rodriguez W, Bodoky G, Moiseyenko V, Lichinitser M, Gorbunova V, Vynnychenko I, Garin A, Lang I, Falcon S: Multicenter phase III comparison of cisplatin/S-1 with cisplatin/infusional fluorouracil in advanced gastric or gastroesophageal adenocarcinoma study: the FLASS trial. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 2010;28:1547-1553.

26. Bang YJ, Van Cutsem E, Feyereislova A, Chung HC, Shen L, Sawaki A, Lordick F, Ohtsu A, Omuro Y, Satoh T et al: Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. *Lancet* 2010;376:687-697.

27. Isayama H, Hamada T, Yasuda I, Itoi T, Ryozawa S, Nakai Y, Kogure H, Koike K: TOKYO criteria 2014 for transpapillary biliary stenting. *Digestive endoscopy : official journal of the Japan Gastroenterological Endoscopy Society* 2015;27:259-264.

**Figure Legends**
Of 319 patients who received duodenal stent placement for malignant gastric outlet obstruction due to advanced pancreaticobiliary cancer, 109 received systemic chemotherapy followed by duodenal stent placement, and 89 had two months or longer to stent dysfunction.

In the entire cohort, which consisted of 109 patients, median progression-free survival and overall survival rates after duodenal stent placement were 3.2 months (95% confidence interval, 2.4-4.0) and 6.0 months (95% confidence interval, 4.6-7.3), respectively.

(c) Comparison of 41 patients who received combination regimen (solid line) and 68 patients who received a monotherapy regimen (dotted line), median progression-free survival rates were 5.1 months (95% confidence interval, 3.1-7.0) and 2.6 months (95% confidence interval, 1.6-3.5) respectively, with a p-value of <0.001.

Median time to stent dysfunction was 12.5 months (95% confidence interval, 8.4-16.5);
Median time from the 2-month landmark point to stent dysfunction was 17.4 months (95% confidence interval, 17.3-17.5) in patients who showed a response and 7.1 months (95% confidence interval, 1.6-12.5) in those who did not, with a p-value of 0.031;

(c) Comparison between responders and non-responders among patients who received combination regimen.

Median time from the 2-month landmark point to stent dysfunction was 17.4 months (95% confidence interval, 10.2-17.5) in responders and 5.0 months (95% confidence interval, 3.0-6.9) in non-responders, with a p-value of 0.043;

(d) Comparison between responders and non-responders among patients who received systemic chemotherapy after duodenal stent placement as the first-line chemotherapy.

Median time from the 2-month landmark point to stent dysfunction was 33.6 months (95% confidence interval, non-evaluable) in responders and 5.6 months (95% confidence interval, non-evaluable) in non-responders, with a p-value of 0.024.

Supplement Figure 1. Kaplan-Meier curves of progression-free survival in patients who received a combination regimen as the first- (solid line), second-, or third-line line treatments (broken line) and those who received monotherapy as the first- (chained line), second-, or third-
line treatments (dotted line).

Median progression-free survival with 95% confidence interval was 5.8 months (0.2-11.5), 3.6 months (2.4-4.9), 1.1 months (0.2-2.0) and 2.8 months (0.9-4.6), respectively.

Supplement Figure 2. Kaplan-Meier curve of time to stent dysfunction when impossible oral food intake was considered an event of stent dysfunction.

Median time to stent dysfunction was 5.0 months (95% CI, 4.3-5.7) in the entire cohort (solid line) and 12.5 months (95% CI, 2.7-22.3) in patients who received combination regimens as the first-line treatment (dotted line).
Table 1. Baseline characteristics of patients at initiation of systemic chemotherapy following duodenal stent placement

| Characteristics                          |       |
|------------------------------------------|-------|
| Age (years), median (median)             | 68.0 (31-81) |
| Sex, n (%)                               |       |
| Male                                     | 54 (50) |
| Female                                   | 55 (50) |
| Primary disease, n (%)                   |       |
| Pancreatic adenocarcinoma                | 90 (83) |
| Biliary tract adenocarcinoma             | 15 (14) |
| Pancreatic neuroendocrine tumour         | 4 (4)  |
| Disease status, n (%)                    |       |
| Locally advanced                         | 24 (22) |
| Metastatic                               | 85 (78) |
| ECOG performance status                  |       |
| 0                                        | 18 (17) |
| 1                                        | 62 (57) |
| 2                                        | 29 (27) |
| Position of bowel stricture, n (%)       |       |
| Oral side of the papilla of Vater        | 33 (30) |
| Above the papilla of Vater               | 26 (24) |
| Anal side of the papilla of Vater        | 50 (46) |
| Duodenal stent, n (%) |
|-----------------------|
| WallFlex Duodenal     | 46 (42) |
| WallFlex Duodenal Soft| 3 (3)   |
| Niti-S D type         | 46 (42) |
| Niti-S COMVI<sup>TM</sup> | 4 (4)  |
| HANAROSTENT® Naturfit<sup>TM</sup> Duo | 10 (9) |

| Number of chemotherapy regimens prior to duodenal stenting, n (%) |
|------------------------------------------------------------------|
| 0                                                                | 47 (43) |
| 1                                                                | 49 (45) |
| 2-3                                                              | 13 (12) |

| CRP (mg/dL), median (range)                                       | 0.79 (0.05-12.9) |
|------------------------------------------------------------------|
| Distribution, n (%)                                              |
| <1.0 mg/dL                                                       | 60 (55) |
| ≥1.0 mg/dL                                                       | 49 (45) |

| Albumin (g/dL), median (range)                                   | 3.3 (2.1-4.1) |
|------------------------------------------------------------------|
| Distribution, n (%)                                              |
| <3.5 mg/dL                                                       | 67 (62) |
| ≥3.5 mg/dL                                                       | 42 (39) |

| CA19-9 (U/mL), median (range)                                    | 928.9 (0-408800.0) |
|------------------------------------------------------------------|
| Distribution, n (%)                                              |
| <1,000 U/mL                                                      | 55 (50) |
| ≥1,000 U/mL                                                      | 54 (50) |

1 ECOG, Eastern Cooperative Oncology Group; CRP, C-reactive protein; CA19-9,
carbohydrate antigen 19-9
Table 2. Multivariate analysis of prognostic factor for time to stent dysfunction†

| Factor                          | Hazard ratio | 95% CI     | p-value |
|---------------------------------|--------------|------------|---------|
| Primary disease                 |              |            |         |
| Pancreatic adenocarcinoma       | 1            | N.E.       |         |
| Biliary tract cancers           | 0.29         | 0.06-1.40  | 0.12    |
| Pancreatic neuroendocrine tumours | 0.99         | 0.21-4.78  | 0.99    |
| Disease status                  |              |            |         |
| Locally advanced                | 1            |            |         |
| Metastatic                      | 1.84         | 0.75-4.50  | 0.19    |
| ECOG PS                         |              |            |         |
| 0-1                             | 1            |            |         |
| 2-3                             | 1.47         | 0.46-4.74  | 0.52    |
| Chemotherapy regimen            |              |            |         |
| Combination                     | 1            |            |         |
| Mono-                           | 1.38         | 0.57-3.37  | 0.48    |
| Response to                     |              |            |         |
| chemotherapy§                   |              |            |         |
| Partial response | 1 |
|------------------|---|
| Stable or progressive | 2.49 | 0.93-6.67 | 0.070 |

† Cox proportional hazards regression model in patients who had a 2-month or longer time to stent dysfunction

§ According to the New response evaluation criteria in solid tumours, version 1.1

CI, confidence interval; ECOG PS, Eastern Cooperative Oncology Group performance status; Combo, combination regimens such as FOLFIRINOX, gemcitabine plus nab-paclitaxel, gemcitabine plus cisplatin and gemcitabine plus S-1; Mono, monotherapy such as gemcitabine alone or S-1 alone
Received duodenal stent placement
N = 319

Candidates for systemic chemotherapy
N = 123

Entire cohort

Received systemic chemotherapy
N = 109

Object of landmark analysis
Two months or longer stent patency
N = 89

Poor general condition or No available regimen

Patient refusal

Stent dysfunction within two months after duodenal stent placement

Figure 1
Figure 3
CONSORT flow diagram of the study Of 319 patients who received duodenal stent placement for malignant gastric outlet obstruction due to advanced pancreaticobiliary cancer, 109 received systemic chemotherapy followed by duodenal stent placement, and 89 had two months or longer to stent dysfunction.
Figure 2

Kaplan-Meier curve of (a) overall survival and (b) progression-free survival in the entire cohort, which consisted of 109 patients, median progression-free survival and overall survival rates after duodenal stent placement were 3.2 months (95% confidence interval, 2.4-4.0) and 6.0 months (95% confidence interval, 4.6-7.3), respectively. (c) Comparison of 41 patients who received combination regimen (solid line) and 68 patients who received a monotherapy regimen (dotted line), median progression-free survival rates
were 5.1 months (95% confidence interval, 3.1-7.0) and 2.6 months (95% confidence interval, 1.6-3.5) respectively, with a p-value of <0.001

**Figure 3**

Time to stent dysfunction (a) Entire cohort Median time to stent dysfunction was 12.5 months (95% confidence interval, 8.4-16.5); (b) Comparison between patients who showed a response (solid line) and those who did not (dotted line). Median time from the 2-month landmark point to stent dysfunction was
17.4 months (95% confidence interval, 17.3-17.5) in patients who showed a response and 7.1 months (95% confidence interval, 1.6-12.5) in those who did not, with a p-value of 0.031; (c) Comparison between responders and non-responders among patients who received combination regimen. Median time from the 2-month landmark point to stent dysfunction was 17.4 months (95% confidence interval, 10.2-17.5) in responders and 5.0 months (95% confidence interval, 3.0-6.9) in non-responders, with a p-value of 0.043; (d) Comparison between responders and non-responders among patients who received systemic chemotherapy after duodenal stent placement as the first-line chemotherapy. Median time from the 2-month landmark point to stent dysfunction was 33.6 months (95% confidence interval, non-evaluable) in responders and 5.6 months (95% confidence interval, non-evaluable) in non-responders, with a p-value of 0.024.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SuppleFigure1.tif
- SuppleFigure2.tif