Estimation of Muon Stopping Site in CoCr$_2$O$_4$ Using Density Functional Theory

Fiqhri Heda Murdaka1, Kohji Nakamura2, and Agustinus Agung Nugroho3

1,3Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha No 10, Bandung 40132, Jawa Barat, Indonesia
2Department of Physics Engineering, Mie University, Tsu, Mie 514-8507, Japan

*nugroho@fi.itb.ac.id

Abstract. Spinel material Cobalt Chromite (CoCr$_2$O$_4$) is a ferrimagnetic material with T_C of about 93 K. This compound has attracted much attention due to the presence of electrical polarization which related to spiral magnetic transition at $T_S = 26$ K. [Physical Review B, 70, 214434, 2004]. This spiral magnetic transition phenomena could be explored by experiment using Muon Spin Rotation, Relaxation, and Resonance (μSR). Positive muon in μSR plays a role as a local magnetic probe thus, we need to determine the muon stopping site information. In this study, we investigate the muon stopping site of CoCr$_2$O$_4$ with ferrimagnetic ground state using spin polarized Density Functional Theory implemented in Full-potential Linearized Augmented Plane Wave (FLAPW) method. The exchange-correlation effect was considered in the scheme of GGA+U_{eff} approximation. Based on the minimum energy of electrostatic potential, we obtain the muon stopping site around the three Oxygen ions in the tetrahedral site of Cobalt.

Keywords: Muon stopping site, electrostatic potential, CoCr$_2$O$_4$, DFT, FLAPW

1. Introduction

Cobalt Chromite, CoCr$_2$O$_4$, is a ferrimagnetic material with T_C of about 93 K. There has been a high interest in this compound due to the presence of electrical polarization which related to spiral magnetic transition T_S, at around 26 K [1]. The presence of the clamping between the magnetization and electrical polarization makes CoCr$_2$O$_4$ belong to the class of multiferroic material [2]. The coexistence of ferromagnetism and ferroelectricity in multiferroic material could be applied to some potential devices such as a magnetic field sensor [3], modulator [4], memory devices [5], gyrator [6], and energy harvesting device [7].

CoCr$_2$O$_4$ crystallizes in the cubic spinel structure with the lattice constant of 8.3346 Å [8] as shown in Fig.1. The A site of the spinel occupied by Co$^{2+}$ ion while the B site occupied by Cr$^{3+}$ ion [1]. Due to the magnetism of Co$^{2+}$ cation in A site, the geometric frustration inside CoCr$_2$O$_4$ cannot be released by lowering the crystal symmetry. The alternative way to get rid the geometrical frustration is through the temperature dependent magnetic structure mechanism [9]. The magnetic structure of CoCr$_2$O$_4$ is changing from collinear ferrimagnetic to be a complex noncolinear spiral magnetic configuration at 26 K [10]. Due to the complexity of noncolinear spiral configuration, this paper only considers the collinear ferrimagnetic structure (the temperature region from 93 K down to 26 K).

The magnetic transition phenomena in CoCr$_2$O$_4$ can be measured by experiment using Muon Spin Rotation, Relaxation, and Resonance (μSR) technique. Since the μSR is a local probe to measure the internal magnetic fields, therefore it is necessary to find the positions of the muon stop in the
material. This paper reports the muon stopping site in CoCr$_2$O$_4$ crystal based on the local minima of the electrostatic potential obtained from density functional theory (DFT) implemented in Full-potential Linearized Augmented Plane Wave (FLAPW) method.

2. Computational method
The positive muon which is commonly used in the experiment would prefer to stop in the minimum of the electrostatic potential near the negative ions [11]. In term to know the muon stopping site, firstly we need to calculate the electrostatic potential felt by the muon inside of CoCr$_2$O$_4$ using:

\[V_{\mu}(\vec{r}) = -\frac{e^2}{2} \int \frac{n(\vec{r}^\prime)}{\vec{r} - \vec{r}^\prime} d\vec{r}^\prime + \sum Z_i e^2 \frac{R_i}{\vec{r} - \vec{R}_i}, \]

where the first term in this expression is a Hartree term with \(n(\vec{r}^\prime) \) is the density of electron, and the second term is a nuclei term. \(V_{\mu}(\vec{r}) \) value inside of materials can be calculated using ab-initio strategy [11-13].

![Figure 1. Crystal structure of CoCr$_2$O$_4$ conventional cell.](image)

The electrostatic potential of the muon inside CoCr$_2$O$_4$ was obtained from equation (1) utilizing the electron density provided by DFT calculation implemented in FLAPW method [14-16]. The Linearized Augmented Plane Wave (LAPW) function used a cutoff of \(|\vec{k} + \vec{G}| \leq 3.9 \text{ a.u.} \) and muffin-tin sphere radii of 2.0, 2.1, and 1.6 a.u. for Co, Cr, and O ions, respectively. These radii were considered to avoid overlap among the muffin-tin spheres and to ensure the loss of electron from the core is less than 0.05 with the respect of the total electron. We used generalized gradient approximation (GGA) [17] for exchange-correlation and \(U_{\text{eff}} \) value for strong correlation effect [10]. The \(U_{\text{eff}} \) term consist of a subtraction between \(U \) value denoting as the Coulomb interaction and \(J \) as Hund’s coupling [18]. The \(U \) value for Co and Cr ion was set to be 5 eV and 3 eV, for the \(J \) value both of Co and Cr was set to be 1 eV [10]. The minimum electrostatic potential of the muon was calculated based on Eq. 1 for the CoCr$_2$O$_4$ conventional cell as show in Fig. 1 with the mesh of 101×101×101.

3. Results and discussion
In order to determine the local minima of the electrostatic potential sites of the muon inside the CoCr$_2$O$_4$, we draw an isosurface potential of 0.15 eV greater than the global minimum potential in all positions of the grid. We obtain the isosurface forms a ring around three Oxygen ions of tetrahedral side of Cobalt as shown in Fig. 2. It is noted that the distance between Oxygen ions at the tetrahedra side of Cobalt (3.20604 Å) is bigger than at the octahedral side of Chromium (2.95243 Å). Figure 3 shows the tetrahedra symmetry of the Cobalt ions and the tetrahedra symmetry of the ring at the Cobalt sides.

The possibility to find another local minimum around the Cobalt site was carried out by varying the isosurface potential value from 0.1 to 1 eV. Figure 4 shows that the result of increasing the
isosurface potential value. It is interesting to note that there are no other minima outside the cluster. In order to find the local minimum, we will focus only the position inside the ring cluster and yields to minimum positions with a distance of 2.01 Å from the Cobalt site. All of these six positions are also located near three Oxygen positions around the Cobalt ion.

![Figure 2](image1.png) **Figure 2.** Electrostatic potential isosurfaces with 0.15 eV greater than the global minimum value.

![Figure 3](image2.png) **Figure 3.** A tetrahedra symmetry applies for both the ring of electrostatic potential isosurfaces and Cobalt ion.

![Figure 4](image3.png) **Figure 4.** Ring-shaped clusters of electrostatic potential isosurfaces around A site (Co ion) with isosurfaces value of (a) 0.1, (b) 0.5, and (c) 1 eV greater than the global minimum value of electrostatic potential energy.

All of those six positions described above cannot be considered as final muon stopping sites because there is a possibility that muon can still move away from the minimum positions due to the arrangement of the crystal structure in the presence of muon. This will be resolved by considering the relaxation of the local structure caused by muon and the muon zeropoint motion (ZPM) [11,13,19].

4. Conclusion
The position of the minimum electrostatic potential position in \(\text{CoCr}_2\text{O}_4 \) has been determined using density functional analysis based on FLAPW method with correlation effects. Electrostatic potential

3
isosurface plot from the resulted calculation shows that there are six minimum positions with 2.01 Å radius from the Cobalt tetrahedral site.

Acknowledgment
Authors want to acknowledge the World Class University sandwich programs from ITB and riset ITB program for financial support. FHM also acknowledge Magnetic Research Group in Mie University of Japan for the hospitality and computing resources during the research process.

References

[1] K. Tomiyasu, J. Fukunaga and H. Suzuki, "Magnetic short-range order and reentrant-spin-glass-like behavior in CoCr2O4 and MnCr2O4 by means of neutron scattering and magnetization measurements," Physical Review B, vol. 70, p. 214434, 2004.

[2] Y. Yamasaki, S. Miyasaka, Y. Kaneko, J. P. He, T. Arima and Y. Tokura, "Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide," Physical Review Letters, vol. 96, p. 207204, 2006.

[3] C. W. Nan, M. I. Bichurin, S. Dong, D. Viehland and G. Shrinivasan, "Multiferroic magnetoelectric composites: Historical perspective, status, and future directions," Journal of Applied Physics, vol. 103, p. 031101, 2008.

[4] H. L. Mette, "Solid-state magnetoelectric modulator and switch". U.S Patent 3,435,379, 25 March 1969.

[5] W. Eerenstein, N. D. Mathur and J. F. Scott, "Multiferroic and magnetoelectric materials," nature, vol. 442, no. 7104, p. 759, 2006.

[6] J. Zhai, G. C. Jassduke, J. De Vreugd, J. Li, D. Viehland, A. V. Filippov, M. I. Bichurin, D. V. Drozdov, G. A. Semenov and S. X. Dong, "Magnetoelectric gyraotor," the European Physical Journal B, vol. 71, no. 3, p. 383, 2009.

[7] R. Gupta, M. Tomar, A. Kumar and V. Gupta, "Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application," Smart Mater. Struct., vol. 26, p. 035002, 2017.

[8] P. G. Casado and I. Rasines, "Preparation and crystal data of the spinel series Co1⁺ 2sCr2− 3sSbsO4 (O⩽ s ⩽ 23)," Polyhedron, vol. 5, no. 3, pp. 787-789, 1986.

[9] N. Menyuk, K. Dwight and A. Wold, "Ferrimagnetic spiral configurations in cobalt chromite," Journal de physique, vol. 25, no. 5, pp. 528-536, 1964.

[10] D. Das and S. Ghosh, "Density functional theory based comparative study of electronic structures and magnetic properties of spinel ACr2O4 (A=Mn, Fe, Co, Ni) compounds," Journal of Physics D, vol. 48, p. 425001, 2015.

[11] F. Bernardini, P. Bonfa, S. Massidda and R. De Renzi, "Ab initio strategy for muon site assignment in wide band gap fluorides," Physical Review B, vol. 87, p. 115148, 2013.

[12] E. Suprayoga, A. A. Nugroho, A. O. Polyakov, T. T. M. Palstra and I. Watanabe, "Search for potential minimum positions in metal-organic hybrids,(C2H5NH3) 2CuCl4 and (C6H5CH2CH2NH3) 2CuCl4, by using density functional theory," Journal of Physics: Conference Series, vol. 551, p. 012054, 2014.

[13] I. Watanabe, E. Suprayoga, N. Adam, S. S. Mohm-Tajudin, A. F. Rozlan, D. Puspita, R. Asih, F. Astuti, M. D. Umar, J. Angel, S. Sulaiman and M. I. Mohamed-Ibrahim, "Muon Site Estimations by DFT Calculations in Metal and Insulating Systems," Materials Science Forum, vol. 827, pp. 347-354, 2015.
[14] E. Wimmer, H. Krakauer, M. Weinert and A. J. Freeman, "Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O 2 molecule," Physical Review B, vol. 24, no. 2, p. 864, 1981.

[15] K. Nakamura, T. Ito, A. J. Freeman, L. Zhong and J. Fernandez-de-Castro, "Intra-atomic noncollinear magnetism and the magnetic structures of antiferromagnetic FeMn," Physical Review B, vol. 67, no. 1, p. 014405, 2003.

[16] K. Nakamura, T. Ito, A. J. Freeman, L. Zhong and J. Fernandez-de-Castro, "Enhancement of magnetocrystalline anisotropy in ferromagnetic Fe films by intra-atomic noncollinear magnetism," Physical Review B, vol. 67, p. 014420, 2003.

[17] J. P. Perdew and W. Yue, "Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation," Physical review B, vol. 33, no. 12, p. 8800, 1986.

[18] S. L. Dudarev, G. A. Botton, Y. Savrasov, C. J. Humphreys and A. P. Sutton, "Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study," Physical Review B, vol. 57, p. 1505, 1998.

[19] E. Suprayoga, A. A. Nugroho, D. Onggo, A. O. Polyakov, T. T. M. Palstra and I. Watanabe, "3D long-range magnetic ordering in (C2H5NH3) 2CuCl4 compound revealed by internal magnetic field from muon spin rotation and first principal calculation," Physica B: Condensed Matter, vol. 545, pp. 76-79, 2018.