Cooperative coupling of static magnetism and bulk superconductivity in the stripe phase of La$_{2-x}$Ba$_x$CuO$_4$: Pressure- and doping-dependent studies

Z. Guguchia, R. Khasanov, A. Shengelaya, E. Pomjakushina,
S.J.L. Billinge, A. Amato, E. Morenzoni, and H. Keller

1Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
2Department of Physics, Columbia University, New York, NY 10027, USA
3Department of Physics, Tbilisi State University, Chavchavadze 3, GE-0128 Tbilisi, Georgia
4Andronikashvili Institute of Physics of I. Javakhishvili Tbilisi State University, Tamarashvili str. 6, 0177 Tbilisi, Georgia
5Department of Physics, Tbilisi State University, Chavchavadze 3, GE-0128 Tbilisi, Georgia
6Laboratory for Developments and Methods, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
7Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland

Static spin-stripe order and superconductivity were systematically studied in La$_{2-x}$Ba$_x$CuO$_4$ ($0.11 \leq x \leq 0.17$) at ambient pressure by means of magnetization and μSR experiments. We find that all the investigated La$_{2-x}$Ba$_x$CuO$_4$ samples exhibit static spin-stripe order and that the quasi-two-dimensional superconducting (SC) transition temperature T_c and the static spin-stripe order temperature T_{ss} have very similar values throughout the phase diagram. Moreover, the magnetic and the SC properties of the $x = 0.155$ (LBCO-0.155) and $x = 0.17$ (LBCO-0.17) samples were studied under hydrostatic pressure. As a remarkable result, in these bulk cuprate superconductors the three-dimensional SC transition temperature T_c and T_{ss} nearly coincide [$T_c(p) \approx T_{ss}(p)$] at all pressure investigated ($0 \leq p \leq 2.3$ GPa). We also observed a pressure induced transition from long-range spin stripe order to a disordered magnetic state at $p' \approx 1.6$ GPa in LBCO-0.155, coexisting with a SC state with substantial superfluid density. In LBCO-0.17 a disordered magnetic state is present at all p. The present results indicate that static magnetic order and SC pairing correlations develop in a cooperative fashion in La$_{2-x}$Ba$_x$CuO$_4$, and provide a new route of understanding the complex interplay between static magnetism and superconductivity in the stripe phase of cuprates.

PACS numbers: 74.72.-h, 74.62.Fj, 75.30.Fv, 76.75.+i

I. INTRODUCTION

Cuprate high-temperature superconductors (HTSs) have complex phase diagrams with multiple competing ordered phases. One of the most astonishing manifestations of this competition occurs in the system La$_{2-x}$Ba$_x$CuO$_4$ (LBCO), where the bulk superconducting (SC) transition temperature T_c exhibits a deep minimum at $x = 1/8$.[2,3] At this doping level neutron and x-ray diffraction experiments revealed two-dimensional static charge and spin-stripe order.[2,3] While the relevance of stripe correlations for high-temperature superconductivity remains a subject of controversy, the collected experimental data indicate that the tendency toward uni-directional stripe-like ordering is common to cuprates.[4-12] Exploring the role of stripe formation for the occurrence of high-temperature superconductivity in cuprates is paramount to elucidate the microscopic pairing mechanism.

On the experimental front, quasi-two-dimensional superconducting correlations were observed in La$_{1.875}$Ba$_{0.125}$CuO$_4$ (LBCO-1/8) and La$_{1.48}$Nd$_{0.4}$Sr$_{0.12}$CuO$_4$, coexisting with the ordering of static spin-stripes, but with frustrated phase order between the layer.[13,14] On the theoretical front, the concept of a sinusoidally modulated [pair-density wave (PDW)] SC order (with the same period as the spin correlations so that its amplitude varies from positive to negative) was introduced, which is intimately intertwined with spatially modulated antiferromagnetism.[15-20] It has been proposed that both the PDW and the uniform d-wave states are close competitors for the SC ground state.[15-20]

Motivated by the question whether the PDW state is relevant at hole concentrations $x \neq 1/8$ in La$_{2-x}$Ba$_x$CuO$_4$, Xu et al. investigated the system La$_{2-x}$Ba$_x$CuO$_4$ with $x = 0.095$ using inelastic neutron scattering.[21] In this bulk superconductor with $T_c = 32$ K low energy, incommensurate quasi-static antiferromagnetic spin correlations were observed. The existence of bulk superconductivity and antiferromagnetic (AFM) spin correlations was explained in terms of a spatially modulated and intertwined pair wave function.[15-21]

There are only a few reports proposing the relevance of a PDW state in sufficiently underdoped La$_{2-x}$Sr$_x$CuO$_4$ and YBa$_2$Cu$_3$O$_{6-x}$.[22,23] At present it is still unclear to what extent PDW order is a common feature of cuprate systems where stripe order occurs.

Recently, magnetism and superconductivity in LBCO-1/8, where the stripe order is most stable and magnetism occupies nearly the full volume of the sample, were studied by means of the muon-spin rotation (μSR) technique as a function of pressure up to $p \approx 2.2$ GPa.[24] It was found that application of hydrostatic pressure leads to a remarkable decrease/increase of the magnetic/SC volume fraction. But even at the highest applied pressure
the spin order is long-range and occupies a substantial fraction of the sample. Because of the pressure limit, we were not able to investigate whether it is possible to completely suppress magnetic order and fully restore superconductivity in the stripe phase under pressure. Such an investigation will give important hints for the relevance of the concept of intertwined coexistence of magnetism and superconductivity in striped cuprates.

In this work, static spin-stripe order and superconductivity were systematically studied in polycrystalline samples of La$_{2-x}$Ba$_x$CuO$_4$ (0.11 ≤ x ≤ 0.17) at ambient pressure by means of magnetization and μSR experiments. We find that for all the investigated La$_{2-x}$Ba$_x$CuO$_4$ specimens a substantial fraction of the sample is magnetic and that the 2D SC transition temperature T_{c1} and the static spin-stripe order temperature T_{so} have very similar values throughout the phase diagram. An antagonistic doping dependence of the magnetic volume fraction V_m and the diamagnetic susceptibility χ has also been observed. Furthermore, we report on high pressure μSR ($p_{max} = 2.2$ GPa) and magnetization ($p_{max} = 3.1$ GPa) studies of the magnetic and superconducting properties of $x = 0.155$ (LBCO-0.155) and $x = 0.17$ (LBCO-0.17) samples. We choose these particular compositions ($x > 1/8$) for the high pressure experiments, since they are good superconductors with a well defined single SC transitions and at the same time exhibit magnetic order. LBCO-0.155 also exhibits charge order as previously shown by x-ray and neutron diffraction experiments.8 Remarkably, both T_c and T_{so} exhibit a similar pressure dependence in both systems, i.e. $T_c(p) \approx T_{so}(p)$, which is an interesting finding. Antagonistic pressure dependence of the magnetic volume fraction V_m and the superfluid density ρ_s as well as the diamagnetic moment is also observed, similar to the case of x-doping. This suggests phase separation between the SC and the magnetic ground state in La$_{2-x}$Ba$_x$CuO$_4$. The observed phase separation and the simultaneous appearance of static magnetism and superconductivity in La$_{2-x}$Ba$_x$CuO$_4$ (0.11 ≤ x ≤ 0.17) at ambient pressure and in x = 0.155, 0.17 under hydrostatic pressures indicate that static order and SC pairing correlations develop in a cooperative fashion in La$_{2-x}$Ba$_x$CuO$_4$, forming a spatially self-organised pattern.

II. EXPERIMENTAL DETAILS

A. Sample preparation

Polycrystalline samples of La$_{2-x}$Ba$_x$CuO$_4$ with $x = 0.11$, 0.115, 0.125, 0.135, 0.145, 0.15, 0.155, and 0.17 were prepared by the conventional solid-state reaction method using La$_2$O$_3$, BaCO$_3$, and CuO. The single-phase character of the samples was checked by powder x-ray diffraction. All the measurements were performed on samples from the same batch.

B. Instruments

μSR experiments under pressure were performed at the Paul Scherrer Institute (Villigen, Switzerland).20 The low-background GPS ($\pi M 3$ beamline) and Dolly ($\pi E 1$ beamline) instruments were used to study the systems La$_{2-x}$Ba$_x$CuO$_4$ at ambient pressure.

C. Pressure cells for μSR and magnetization experiments

The magnetic susceptibility for LBCO-0.155 was measured under pressures up to 3.1 GPa by a SQUID magnetometer ($\text{Quantum Design MPMS-XL}$). Pressures were generated using a diamond anvil cell (DAC)22 filled with Daphne oil which served as a pressure-transmitting medium. The pressure at low temperatures was determined by detecting the pressure dependence of the SC transition temperature of Pb. The magnetic susceptibilities for the rest of the samples La$_{2-x}$Ba$_x$CuO$_4$ were measured only at ambient pressure.

Pressures up to 2.3 GPa were generated in a double wall piston-cylinder type of cell made of MP35N material, especially designed to perform μSR experiments under pressure.22 Cells with 6 mm ($p_{max} \approx 2.3$ GPa) and 7 mm ($p_{max} \approx 1.9$ GPa) of inner diameters were used for the LBCO-0.155 and LBCO-0.17 samples, respectively. As a pressure transmitting medium Daphne oil was used. The pressure was measured by tracking the SC transition of a very small indium plate by AC susceptibility. The filling factor of the pressure cell was maximized. The fraction of the muons stopping in the sample was approximately 40 % and 50 % for LBCO-0.155 and LBCO-0.17, respectively.

D. Analysis of zero-field (ZF) μSR data

In the pressure experiment a substantial fraction of the μSR asymmetry originates from muons stopping in the MP35N pressure cell surrounding the sample. Therefore, the μSR data in the whole temperature range were analyzed by decomposing the signal into a contribution of the sample and a contribution of the pressure cell:

$$A(t) = A_S(0)P_S(t) + A_{PC}(0)P_{PC}(t),$$

(1)

where $A_S(0)$ and $A_{PC}(0)$ are the initial asymmetries and $P_S(t)$ and $P_{PC}(t)$ are the muon-spin polarizations belonging to the sample and the pressure cell, respectively. The pressure cell signal was analyzed by a damped Kubo-Toyabe function.28 The response of the sample consists
FIG. 1: (Color online) Temperature dependence of the diamagnetic susceptibility χ_{ZFC} of La$_{2-x}$Ba$_x$CuO$_4$ for various x, measured at ambient pressures in a magnetic field of $\mu_0 H = 0.5$ mT. The arrows denote the superconducting transition temperatures T_{c1} and T_{c2}. The insets show the SC transition near T_{c1}.

of a magnetic and a nonmagnetic contribution:

$$ P_S(t) = V_m \left[\frac{2}{3} e^{-\lambda_T t} J_0(\gamma \mu_B H_p t) + \frac{1}{3} e^{-\lambda_L t} \right] + (1 - V_m) e^{-\lambda_{nm} t} . $$

Here, V_m denotes the relative volume of the magnetic fraction and B_{av} is the average internal magnetic field at the muon site. λ_T and λ_L are the depolarization rates representing the transversal and the longitudinal relaxing components of the magnetic parts of the sample. J_0 is the zeroth-order Bessel function of the first kind. This is characteristic for an incommensurate spin density wave and has been observed in cuprates with static stripe order. λ_{nm} is the relaxation rate of the nonmagnetic part of the sample. The total initial asymmetry $A_{tot} = A_S(0) + A_{PC}(0) \approx 0.285$ is a temperature independent constant. A typical fraction of muons stopped in the sample was $A_S(0)/A_{tot} \approx 0.40(3)$ and $A_S(0)/A_{tot} \approx 0.50(3)$, for $x = 0.155$ and $x = 0.17$, respectively, which was assumed to be temperature independent in the analysis. The μSR time spectra were analyzed using the free software package MUSRFIT.

E. Analysis of weak transverse field (WTF) μSR data

The TF-μSR spectra were fitted in the time domain with a combination of a slowly relaxing signal with a precession frequency corresponding to the applied field of $\mu_0 H = 3$ mT (due to muons in a paramagnetic environment) and a fast relaxing signal due to muons precessing in much larger static local fields:

$$ A_0 P(t) = (A_{PC} e^{-\lambda_{PC} t} + A'_S e^{-\lambda'_t} \cos(\gamma \mu_B B' t)) + A''_S \left[\frac{2}{3} e^{-\lambda''_t t} J_0(\gamma \mu_B B'' t) + \frac{1}{3} e^{-\lambda''_t t} \right], $$

where A_0 is the initial asymmetry, $P(t)$ is the muon spin-polarization function, and $\gamma_{\mu}/(2\pi) \approx 135.5$ MHz/T is the muon gyromagnetic ratio. A_{PC} and λ_{PC} are the asymmetry and the relaxation rate of the pressure cell signal. A_S and A''_S are the asymmetries of the slowly and fast relaxing sample signals, respectively. λ' is the relaxation rate of the paramagnetic part of the sample. λ''_T and λ''_L are the transverse and the longitudinal relaxation rates, respectively, of the magnetic part of the sample. B' and B'' are the magnetic fields, probed by the muons stopped in the paramagnetic and magnetic parts of the sample, respectively.

III. RESULTS

A. Superconductivity and static spin-stripe order in La$_{2-x}$Ba$_x$CuO$_4$ ($0.11 \leq x \leq 0.17$)

Figure 1 shows the temperature dependence of the zero-field-cooled (ZFC) magnetic susceptibility χ_{ZFC} for La$_{2-x}$Ba$_x$CuO$_4$ ($0.11 \leq x \leq 0.17$) samples recorded in a magnetic field of $\mu_0 H = 0.5$ mT. For the samples with
\(x = 0.11, 0.115, 0.125, 0.135, 0.145, \) and 0.15 the diamagnetic moment exhibits a two-step SC transition, as observed in our previous works for \(x = 0.125^{25,32}\). For \(x = 0.125\) the first transition appears at \(T_{c1} \approx 30\) K and the second transition at \(T_{c2} \simeq 5\) K with a larger diamagnetic response. Detailed investigations performed on single crystalline samples of LBCO-1/8 provided an explanation for this two-step SC transition\(^\text{14}\). The authors interpreted the transition at \(T_{c1}\) as due to the development of 2D superconductivity in the \(\text{CuO}_2\) planes, while the interlayer Josephson coupling is frustrated by static stripes. A transition to a 3D SC phase takes place at a much lower temperature \(T_{c2} \ll T_{c1}\). The values of \(T_{c1}\) and \(T_{c2}\) were defined as the temperatures where the linearly extrapolated magnetic moments intersect the zero

![Graph](image1.png)

FIG. 2: (Color online) (a) ZF \(\mu\)SR time spectra \(A(t)\) for \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4\) at various \(x\), recorded at 5 K. ZF \(\mu\)SR (b) and WTF \(\mu\)SR (c) spectra for the \(x = 0.15\) sample, recorded at various temperatures.

\(x = 0.11, 0.115, 0.125, 0.135, 0.145, \) and 0.15 the diamagnetic moment exhibits a two-step SC transition, as observed in our previous works for \(x = 0.125^{25,32}\). For \(x = 0.125\) the first transition appears at \(T_{c1} \approx 30\) K and the second transition at \(T_{c2} \simeq 5\) K with a larger diamagnetic response. Detailed investigations performed on single crystalline samples of LBCO-1/8 provided an explanation for this two-step SC transition\(^\text{14}\). The authors interpreted the transition at \(T_{c1}\) as due to the development of 2D superconductivity in the \(\text{CuO}_2\) planes, while the interlayer Josephson coupling is frustrated by static stripes. A transition to a 3D SC phase takes place at a much lower temperature \(T_{c2} \ll T_{c1}\). The values of \(T_{c1}\) and \(T_{c2}\) were defined as the temperatures where the linearly extrapolated magnetic moments intersect the zero

![Graph](image2.png)

FIG. 3: (Color online) (a) Temperature dependence of the magnetic volume fraction \(V_m\) in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4\) for various \(x\), determined from ZF \(\mu\)SR. (b) The WTF \(\mu\)SR asymmetry for \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4\) (0.11 \(\leq x \leq 0.17\)) is plotted as a function of temperature in an applied field of \(\mu_0H = 3\) mT. The onset temperature to the magnetically ordered state \(T_{so}\) is defined as the temperatures where the linearly extrapolated low and high temperature data points intersect (indicated by the straight lines).
line (see Fig. 1). Note that for the samples with \(x = 0.155 \) and 0.17, we observed a well defined single SC transition.

Figure 2a shows representative zero-field (ZF) \(\mu \)SR time spectra for polycrystalline \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) (0.11 \(\leq x \leq 0.17 \)) samples, recorded at 5 K. The \(\mu \)SR time spectra for all \(x \) are well described by a zeroth-order Bessel function which is characteristic for an incommensurate spin density wave, suggesting the presence of static spin-stripe order in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) (0.11 \(\leq x \leq 0.17 \)). In a long range ordered magnetic system a coherent muon precession of the whole ensemble is observed giving rise to oscillations in the ZF \(\mu \)SR time spectra as it is the case for all the investigated \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) samples, except the one with \(x = 0.17 \). A damping of the \(\mu \)SR oscillation indicates a distribution of internal magnetic fields sensed by the muon ensemble and is therefore a measure of the disorder in the magnetic system. It is evident that the \(\mu \)SR precession is strongly damped and no coherent precession signal is observed for LBCO-0.17, indicating the presence of a disordered magnetic state in this system. Figure 2b shows the ZF \(\mu \)SR time spectra for the \(x = 0.15 \) sample which demonstrates the appearance of the magnetic order below \(\sim 30 \) K. Figure 3a shows the temperature dependence of the magnetic volume fraction \(V_m \) extracted from the ZF-\(\mu \)SR data for polycrystalline \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) (0.11 \(\leq x \leq 0.17 \)). These data reveal that for all the investigated \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) specimens a substantial fraction of the sample is magnetic with a relatively high spin-order temperature.

Transverse-field (TF) \(\mu \)SR experiments in weak transverse field (WTF-\(\mu \)SR) were also carried out in order to extract \(T_{so} \) and compare the values to the ones extracted from the ZF-\(\mu \)SR. Figure 2c shows the ZF \(\mu \)SR time spectra for the \(x = 0.15 \) sample, which clearly shows the reduction of the amplitude of the \(\mu \)SR signal upon lowering the temperature below \(\sim 30 \) K, indicating the appearance of the magnetic order. Figure 3b shows the WTF-\(\mu \)SR asymmetry for \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \) (0.11 \(\leq x \leq 0.17 \)), extracted from the WTF \(\mu \)SR spectra, (following the procedure given in Section II.E) as a function of temperature in an applied field of \(\mu_0 H = 3 \) mT. The onset temperature \(T_{so} \) is defined as the temperatures where the linearly extrapolated low and high temperature data points intersect (see Fig. 3).

The values of the static spin-stripe order temperature

![Diagram](image)

FIG. 4: (Color online) (a) The static spin-stripe order temperature \(T_{so} \) and the SC transition temperatures \(T_1 \) and \(T_2 \) as a function of Ba-content \(x \) in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \), as determined from ZF-\(\mu \)SR, WTF-\(\mu \)SR, and magnetization experiments. (b) The magnetic volume fraction \(V_m \) and the diamagnetic susceptibility \(\chi_{ZFC} \) as a function of Ba-content \(x \) in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \).

FIG. 5: (Color online) Diamagnetic susceptibility \(\chi_{ZFC} \) of LBCO-0.155 as a function of temperature and pressure. The dependence was measured at ambient and at various applied hydrostatic pressures in a magnetic field of \(\mu_0 H = 0.5 \) mT. The arrows denote the superconducting transition temperature \(T_c \).
very similar values throughout the phase diagram, giving strong evidence for a cooperative development of static order and SC pairing correlations in the striped cuprate system La$_{2-x}$Ba$_x$CuO$_4$.

Figure 4b demonstrates an antagonistic doping dependence of the magnetic volume fraction V_m and the diamagnetic susceptibility χ_{ZFC}. As it will be shown below for the $x = 0.155$ sample, $\chi_{ZFC}(5 \text{ K})$ scales with the magnetic penetration depth $\lambda^{-2}(T = 0)$ (Shoenberg model). However, a doping induced change of $\chi_{ZFC}(5 \text{ K})$ may be related not only to a change of λ but also to a change of the SC volume fraction or combination of both. Since λ was not measured for whole series of samples La$_{2-x}$Ba$_x$CuO$_4$, we cannot conclude which one of these two effects plays the dominant role in the observed changes of $\chi_{ZFC}(5 \text{ K})$. According to the results presented above the samples $x = 0.155$ and 0.17 exhibit both well defined bulk superconductivity and static spin-stripe order. Furthermore, at ambient pressure static magnetism and superconductivity set in at approximately the same temperature $T_{so} \simeq T_c = 30.5(5) \text{ K}$ and $T_{so} \simeq T_c = 27.5(5)$ for LBCO-0.155 and LBCO-0.17, respectively. Therefore we performed investigations of the stripe order and superconductivity in these systems under pressure. The obtained results will be presented and discussed below.

B. High pressure magnetic susceptibility data

Figure 5 shows the temperature dependence of the zero-field-cooled (ZFC) magnetic susceptibility χ_{ZFC} for LBCO-0.155 recorded in a magnetic field of $\mu_0 H = 0.5$ mT for selected hydrostatic pressures after subtraction of the background signal from the empty pressure cell. At ambient pressure superconductivity sets in at $T_c = 30.5 \pm 5 \text{ K}$ (Fig. 4g). With increasing pressure T_c increases with 3 K/GPa up to $p \simeq 1.5$ GPa where it reaches $T_c = 35(1) \text{ K}$, then it stays constant up to $p = 2.2$ GPa. For $p > 2.2$ GPa, T_c tends to decrease up to the highest pressure of $p = 3.1$ GPa. The pressure dependence of T_c is displayed in Fig. 14 and will be discussed later. The magnitude of χ_{ZFC} at the base temperature ($T = 5 \text{ K}$) is also enhanced with applied pressure (see Fig. 5) from $|\chi_{ZFC}| = 0.45(5)$ at $p = 0$ GPa to the saturated value $|\chi_{ZFC}| = 0.65(5)$ at $p \simeq 1$ GPa. It was found that $\chi_{ZFC}(5 \text{ K})$ scales with $\lambda^{-2}(T = 0)$ (λ is the magnetic penetration depth) as determined from TF-μSR experiments (see Fig. 15a). According to the Shoenberg model χ_{ZFC} in a granular sample is expected to scale with λ^{-2} due to the penetration of the magnetic field on a distance λ from the surface of each individual grain. Since we did not measure the grain size for this particular sample it is difficult to judge whether the Shoenberg model applies here and whether the increase of $|\chi_{ZFC}|$ is caused by an increase of λ^{-2}. A pressure induced increase of $|\chi_{ZFC}|$ can be related either to an increase of the SC volume fraction or to a change of λ or a combination of both. For all these reasons, it is not possible to extract an absolute value for the SC

FIG. 6: (Color online) (a) ZF μSR time spectra $A(t)$ for LBCO-0.155 recorded at 5 K in the pressure range of 0 $\leq p \leq 0.67$ GPa. The μSR time spectrum at 40 K for 0 GPa is also shown. (b) μSR time spectra for LBCO-0.155 after subtracting the pressure cell contribution from the total signal, $A_S(t) = A(t) - A_{FC}(t)$, recorded at 5 K in the pressure range 0.83 $\leq p \leq 2.2$ GPa. The solid lines represent fits to the data by means of Eq. (1).
FIG. 7: (Color online) (a) LF-μSR time spectra $A_{\text{tot}}(t)$ of LBCO-0.155 recorded at $T = 5$ K and $p = 0.83$ GPa with different magnetic fields applied along the initial direction of the muon-spin polarization. (b) LF-μSR spectra $A_{\text{tot}}(t)$ of LBCO-0.155 taken in an applied longitudinal field of $\mu_0 H_L = 10$ mT for various temperatures ($5 \leq T \leq 40$ K).

C. Static magnetism as a function of pressure in LBCO-0.155 and LBCO-0.17

Figures 6a and b show representative ZF μSR time spectra for a polycrystalline LBCO-0.155 sample, recorded at 5 K at ambient and at selected hydrostatic pressures up to $p = 2.2$ GPa. For ambient pressure the ZF μSR time spectrum taken at 40 K is also shown in Fig. 6a. At $T = 40$ K, no muon spin precession, but only a very weak depolarization of the μSR signal is observed (see Fig. 6a). This weak depolarization and its Gaussian functional form are typical for a paramagnetic material and reflect the occurrence of a small Gaussian Kubo-Toyabe depolarization, originating from the interaction of the muon spin with randomly oriented nuclear magnetic moments. At $T \approx 5$ K damped oscillations due

FIG. 8: (Color online) Temperature dependence of the magnetic volume fraction V_m in LBCO-0.155 at various hydrostatic pressures: (a) $0 \leq p \leq 0.67$ GPa: pressure range where a well defined muon spin precession is observed, and (b) $0.83 \leq p \leq 2.2$ GPa: pressure range where only a fast depolarization of the μSR time signal is observed. (c) Temperature dependence of V_m in LBCO-0.17 at various hydrostatic pressures. The solid lines are guides to the eye.
to muon-spin precession in internal magnetic fields are observed at pressures up to $p = 0.67$ GPa. The μSR time spectra are well described by a zeroth-order Bessel function which is characteristic for an incommensurate spin density wave [Eq. (2)], suggesting the presence of long-range static spin-stripe order in LBCO-0.155 up to $p = 0.67$ GPa. The oscillation frequency is nearly pressure independent. On the other hand, for $p \leq 0.67$ GPa the amplitude of this oscillation gradually decreases with increasing pressure, indicating a reduction of the magnetic volume fraction under pressure in agreement with our previous paper\cite{ref22}. In the pressure range 0.83 GPa $\leq p \leq 2.2$ GPa, instead of the oscillatory behavior seen in the spin-ordered state for $p \leq 0.67$ GPa, a rapidly depolarizing ZF-μSR time spectrum is observed (see Fig. 6b). For clarity, Fig. 6b shows ZF-μSR time spectra after subtraction of the pressure cell signal from the total one (Appendix B and Fig. 10). One can clearly see a rapidly depolarizing component visible at early times ($\leq 0.25 \mu s$) of the spectra, while the non-magnetic part of the sample gives rise to a slow relaxation component, apparent at longer times ($> 0.25 \mu s$). The fast depolarization of the μSR signal (with no trace of an oscillation) could be either due to a broad distribution of static fields, and/or to strongly fluctuating magnetic moments. To discriminate between these two possibilities, we have performed decoupling experiments in longitudinal fields. Figure 7a shows $A_{\text{tot}}(t)$ measured at 5 K and $p = 0.83$ GPa with different magnetic fields applied along the initial direction of the muon spin polarization. These experiments show that at modest external fields between 25 and 50 mT (of the order of the internal quasistatic fields) the muon-spin relaxation is substantially suppressed. This means that the muon spins are fully decoupled from the internal magnetic fields, demonstrating that the weak internal fields are static rather than dynamic, supporting the quasi-static origin of the fast muon-spin depolarization for $p > 0.83$ GPa. The rapid exponential relaxation of the ZF-μSR signal implies that the spread of the local magnetic field must be fairly large. A possible explanation may be that the spatially inhomogeneous magnetic state seen by μSR is strongly disordered. This indicates that in LBCO-0.155 the pressure causes a transition from the long-range static spin-ordered to a strongly disordered state at $p \sim 1$ GPa. Figure 7b shows $A_{\text{tot}}(t)$ recorded in a longitudinal field (LF) of 10 mT at various temperatures. It clearly shows that the muon-spin relaxation decreases below about 35 K, providing further evidence for quasi-static magnetic order in LBCO-0.155 at $p = 0.83$ GPa. For LBCO-0.17 the μSR precession is strongly damped and no coherent precession signal is observed at any pressure, indicating the presence of a disordered magnetic state in this system even at ambient pressure (Fig. 2).

Next, we present the pressure dependences of the magnetic volume fraction V_m and the static spin-stripe order temperature T_{so} in LBCO-0.155 and LBCO-0.17, extracted from the ZF-μSR data. Figures 8a and b show the temperature dependence of V_m for LBCO-0.155 in the pressure range of $0 \leq p \leq 0.67$ GPa (long-range spin-stripe ordered state) and 0.83 GPa $\leq p \leq 2.2$ GPa (disordered spin-stripe state), respectively. Below $T_{\text{so}} \simeq 30$ K, V_m increases progressively with decreasing temperature, and acquires nearly 50% at ambient pressure at the base temperature $T = 2$ K. At low temperature V_m signifi-

![Figure 9](image_url)

FIG. 9: (Color online) TF asymmetry A_0 for LBCO-0.155 (a) and LBCO-0.17 (b) as a function of temperature for ambient and selected applied pressures in an applied field of $\mu_0H = 3$ mT. The onset temperature to the magnetically ordered state T_{so} is defined as the temperatures where the linearly extrapolated low and high temperature data points intersect (indicated by the straight lines). The solid curves are guides to the eye.
cantly decreases with increasing pressure, reaching about 15 % at 0.67 GPa (see Fig. 8a). On the other hand, \(V_m\) of the disordered spin-stripe state observed in the pressure range 0.83 GPa \(\leq p \leq 2.2\) GPa exhibits a much weaker pressure dependence and reaches about 15 % at \(T = 5\) K (see Fig. 8b). Figure 8c shows the temperature dependence of \(V_m\) for LBCO-0.17 in the pressure range of 0 \(\leq p \leq 1.9\) GPa (disordered spin-stripe state). Below \(T_{\text{so}} \approx 25\) K, \(V_m\) increases progressively with decreasing temperature, and reaches nearly 30 % at ambient pressure at \(T = 5\) K.

In order to accurately determine \(T_{\text{so}}\) from \(\mu\)SR, TF-\(\mu\)SR experiments in a weak transverse field were carried out. Figures 9a and b show the TF-\(\mu\)SR asymmetry \(A_c^\prime\) of LBCO-0.155 and LBCO-0.17 extracted from the \(\mu\)SR spectra (following the procedure given in II.E) as a function of temperature for ambient and selected applied pressures in an applied field of \(\mu_0 H = 3\) mT. For \(p = 0\) GPa and \(T > 30\) K for LBCO-0.155 (\(T > 27\) K for LBCO-0.17), \(A^\prime\) reaches the maximum value, indicating that the whole sample is in the paramagnetic state, with all the muon spins precessing in the applied magnetic field. Below 30 K (27 K), \(A\) continuously decreases with decreasing temperature. The reduction of \(A\) signals the appearance of magnetic order in the spin-stripe phase, where the muon spins experience a local magnetic field larger than the applied magnetic field. As a result, the fraction of muons in the paramagnetic state decreases. The onset temperature \(T_{\text{so}}\) is defined as the temperatures where the linearly extrapolated low and high temperature data points intersect (see Fig. 9a and b), yielding \(T_{\text{so}} = 30(1)\) K and \(T_{\text{so}} = 27(1)\) K at \(p = 0\) GPa, for LBCO-0.155 and LBCO-0.17, respectively. Note that this agrees with ZF-\(\mu\)SR results. By applying pressure \(T_{\text{so}}\) in LBCO-0.155 first increases with increasing pressure, reaching \(T_{\text{so}} = 35(1)\) K at 1.65 GPa, and then tends to saturate as shown in Fig. 14a. In LBCO-0.17, \(T_{\text{so}}\) also increases monotonously with increasing pressure, reaching \(T_{\text{so}} \approx 34\) K at \(p = 1.9\) GPa (see Fig. 14b). Note that in LBCO-0.15 and LBCO-0.17 \(T_c(p) \approx T_{\text{so}}(p)\) at all applied pressures up to the maximum applied pressure of 2.2 GPa and 1.9 GPa, respectively. This is a remarkable finding.

D. Probing the vortex state in LBCO-0.155 and LBCO-0.17 as a function of pressure

In the following, we present the pressure dependence of the \(\mu\)SR relaxation rate \(\sigma_{\text{sc}}\) for LBCO-0.15 and LBCO-0.17, which is a measure of the superfluid density \(\rho_s\) according to the relation: \(\sigma_{\text{sc}} \propto \rho_s \equiv n_s/m^*\), where \(n_s\) is the SC carrier density, and \(m^*\) is the effective mass of the SC carriers.

Figure 10a exhibits TF-\(\mu\)SR time spectra for LBCO-0.155, measured at the maximum applied pressure \(p = 2.2\) GPa in 10 mT. Spectra above (45 K) and below (5 K) the SC transition temperature \(T_c\) are shown. Above \(T_c\) the oscillations show a small relaxation due to the random local fields from the nuclear magnetic moments. Below \(T_c\) the relaxation rate strongly increases with decreasing temperature due to the presence of a nonuniform local magnetic field distribution as a result of the formation of a flux-line lattice (FLL) in the SC state. Figure 10a shows the Fourier transforms (FTs) of the \(\mu\)SR time spectra shown in Fig. 10a. At \(T = 5\) K the narrow signal around \(\mu_0 H_{\text{ext}} = 10\) mT originates from the pressure cell, while the broad signal with a first moment \(\mu_0 H_{\text{int}} < \mu_0 H_{\text{ext}}\), marked by the orange solid arrow in Fig. 10b, arises from the SC sample.

The TF \(\mu\)SR data were analyzed by using the following
\[P(t) = A_1 \exp \left[-\frac{(\sigma_{sc}^2 + \sigma_{nm}^2)t^2}{2} \right] \cos(\gamma_B B_{int,t} + \phi)
+ A_2 \left[\frac{2}{3} e^{-\lambda_B t} + \frac{1}{3} e^{-\lambda_{int} t} \right] \]

\[+ A_{pc} \exp \left[-\frac{\sigma_{pc}^2 t^2}{2} \right] \cos(\gamma_B B_{int,pc} t + \phi), \]

(4)

Here \(A_1, A_2 \) and \(A_{pc} \) denote the initial asymmetries of the sample and the pressure cell, respectively. \(A_1 \) and \(A_2 \) are proportional to the SC and magnetic fractions of the sample, respectively. \(\gamma/(2\pi) \approx 135.5 \text{ MHz/T} \) is the muon gyromagnetic ratio, \(\phi \) is the initial phase of the muon-spin ensemble. \(B_{int,t} \) and \(B_{int,pc} \) represent the local magnetic fields, probed by the muons, stopped in the sample and the pressure cell, respectively. The relaxation rates \(\sigma_{sc} \) and \(\sigma_{nm} \) characterize the damping due to the formation of the vortex lattice in the SC state and of the nuclear magnetic dipolar contribution, respectively. In the analysis \(\sigma_{nm} \) was assumed to be constant over the entire temperature range and was fixed to the value obtained above \(T_c \), where only nuclear magnetic moments contribute to the \(\mu \)SR relaxation rate \(\sigma \). The Gaussian relaxation rate \(\sigma_{pc} \) reflects the depolarization due to the nuclear magnetism of the pressure cell. It can be seen from the FTs shown in Fig. 10b that the width of the pressure cell signal slightly increases below \(T_c \). As shown previously\[13\], this is due to the stray fields in the pressure cell arising from the diamagnetism of the SC sample, leading to a temperature dependent \(\sigma_{pc} \) below \(T_c \).

In order to consider this influence, we assume a linear coupling between \(\sigma_{pc} \) and the field shift of the internal magnetic field in the SC state: \(\sigma_{pc}(T) = \sigma_{pc}(T > T_c) + C(T)(\mu_0 H_{int,NS} - \mu_0 H_{int,SC}) \), where \(\sigma_{pc}(T > T_c) = 0.35 \mu s^{-1} \) is the temperature independent Gaussian relaxation rate. \(\mu_0 H_{int,NS} \) and \(\mu_0 H_{int,SC} \) are the internal magnetic fields measured in the normal and in the SC state, respectively. As indicated by the solid lines in Figs. 10a and b, the \(\mu \)SR time spectra are well described by Eq. (4). The solid lines in panel (b) are the FTs of the fitted curves shown in Fig. 10a. The model used describes the data rather well.

Below \(T_c \) a large diamagnetic shift of \(\mu_0 H_{int} \) experienced by the muons is observed at all applied pressures. This is evident in Fig. 11a where we plot the temperature dependence of the diamagnetic shift \(\Delta B_{dia} = \mu_0[H_{int,SC} - H_{int,NS}] \) for LBCO-0.155 at various pressures, where \(\mu_0 H_{int,SC} \) denotes the internal field measured in the SC state and \(\mu_0 H_{int,NS} \) the internal field measured in the normal state at 45 K. Note that \(\mu_0 H_{int,NS} \) is temperature independent. The SC transition temperature \(T_c \) is determined from the intercept of the linearly extrapolated \(\Delta B_{dia} \) curve and its zero line (we used the same criterium for the determination of \(T_c \) from \(\Delta B_{dia}(T) \) as from the susceptibility data \(\chi_{ZFC}(T) \) presented above), yielding \(T_c = 28.3 \) (5) K for \(p = 0 \) GPa. This value of \(T_c \) is in fair agreement with \(T_c = 30.5(9) \) K obtained from the susceptibility data presented above. With increasing pressure \(T_c \) increases and reaches \(T_c \approx 35 \) K at \(p = 1.07 \) GPa. Above \(p = 1.07 \) GPa, \(T_c \) seems to saturate, which is in perfect agreement with the high-pressure magnetization data (see Fig. 5). Application of pressure causes an enhancement of the diamagnetic shift, which reaches its saturation value above \(p = 1.07 \) GPa.

The temperature dependence of the \(\mu \)SR relaxation rate \(\sigma_{sc} \) of LBCO-0.155 in the SC state at selected pressures is shown in Fig. 11b. The \(\mu \)SR relaxation rate \(\sigma_{sc} \) is proportional to the second moment of local magnetic field distribution present in the sample. Below \(T_c \) the relaxation rate \(\sigma_{sc} \) starts to increase from zero with decreasing temperature due to the formation of the FLL. The solid curves in Fig. 11b are fits of the data to the power law described in the text.
exponents. The low-temperature value $\sigma_{sc}(0)$ increases under pressure by about 40% from $p = 0$ GPa to $p = 1.07$ GPa and saturates above (see Fig. 15a). Note that the saturation of the diamagnetic shift ΔB_{dia} (Fig. 11a), diamagnetic susceptibility χ_{ZFC} (Fig. 15a) as well as of $\sigma_{sc}(0)$ (Fig. 15a) takes place at the same applied pressure $p^* \approx 1$ GPa.

Figure 12 shows the temperature dependence of the diamagnetic shift ΔB_{dia} (a) and the μSR relaxation rate σ_{sc} (b) of LBCO-0.177 as a function of temperature at various pressures. σ_{sc} is measured in a magnetic field of $\mu_0 H = 10$ mT. The solid lines represent fits of the data to the power law described in the text.

FIG. 12: (Color online) Diamagnetic shift ΔB_{dia} (a) and μSR relaxation rate σ_{sc} (b) of LBCO-0.17 as a function of temperature at various pressures. σ_{sc} is measured in a magnetic field of $\mu_0 H = 10$ mT. The solid lines represent fits of the data to the power law described in the text.

In order to compare the influence of pressure on the SC and magnetic properties of LBCO-0.155 and LBCO-0.17, the pressure dependences of the magnetic transition temperature T_{so}, the SC transition temperature T_c, and the magnetic volume fraction V_m as well as the μSR relaxation rate σ_{sc} are plotted as a function of pressure for LBCO-0.155 and LBCO-0.177. An increase of $A_{s,sc}$ and a simultaneous decrease of $A_{s,m}$ are observed upon increasing the pressure to $p^* = 1.07$ GPa and 0.7 GPa, for LBCO-0.155 and LBCO-0.17, respectively. However, above p^* both saturates. This is in excellent agreement with observed pressure dependence of the diamagnetic moment, obtained from the magnetization experiments (see Fig. 15a) and the magnetic volume fraction, extracted from the ZF-μSR experiments (see Figs. 15a and b).

IV. DISCUSSION

In Figs. 13a and b the asymmetries $A_{s,sc}$ and $A_{s,m}$, which are proportional to the SC and the magnetic fractions of the sample, respectively, are plotted as a function of pressure for LBCO-0.155 and LBCO-0.17. An increase of $A_{s,sc}$ and a simultaneous decrease of $A_{s,m}$ are observed upon increasing the pressure to $p^* = 1.07$ GPa and 0.7 GPa, for LBCO-0.155 and LBCO-0.17, respectively.
laxation rate σ_{sc} are plotted in Figs. 14a, 15a and Figs. 14b, 15b for LBCO-0.155 and LBCO-0.17, respectively. In addition, the quantity $A_{s,m}/(A_{s,m}+A_{s,sc})$ is plotted for both samples (Figs. 15a and b).

The most essential findings of the present work are the following: 1) T_c and T_{so} have very similar values at all applied pressures as shown in Figs. 14a and b. For LBCO-0.155 both increase up to $\simeq 35(1)$ K at $p \simeq 1.5$ GPa and are nearly constant at higher pressures up to $p \simeq 2.2$ GPa. For LBCO-0.17, T_c and T_{so} increase up to $\simeq 34(1)$ K at the maximum pressure $p \simeq 1.9$ GPa. 2) In LBCO-0.155 pressure causes a transition from the long-range static spin-stripe ordered ($0 \leq p \leq 0.67$ GPa) to a strongly disordered ($p \geq 0.83$ GPa) spin-stripe state (see Fig. 15a). LBCO-0.17 exhibits a disordered magnetic state at ambient as well as at all applied pressures (see Fig. 15b). To our knowledge this is the first experimental evidence of a similar pressure evolution of the SC and the magnetic transition temperatures and a pressure induced change of the magnetic state in the stripe phase of cuprates. In view of recent theoretical

FIG. 14: (Color online) The superconducting transition temperature T_c and the magnetic ordering temperature T_{so} of LBCO-0.155 (a) and LBCO-0.17 (b), obtained from DC susceptibility and μSR experiments, are plotted as a function of pressure.

FIG. 15: (Color online) (a) Pressure dependence of the μSR relaxation rate σ_{sc}, the diamagnetic susceptibility χ_{ZFC}, the magnetic volume fraction V_m and the quantity $A_{s,m}/(A_{s,m}+A_{s,sc})$ of LBCO-0.155 (a) and LBCO-0.17 (b) taken at 5 K. The solid lines are the guides to the eye. The long-range spin-stripe order and the disordered spin-stripe state are marked by different colors. (c) Uemura plot (T_c vs σ_{sc}) for LBCO-0.155 and LBCO-0.17 at zero and applied pressure up to 2.2 GPa and 1.9 GPa, respectively. The Uemura relation observed for underdoped cuprates is represented by the solid line for hole doping. The solid red and black lines represent linear fits of the data.
between these two quantities. It is interesting to note that a similar relation was found between the superfluid density and the magnetic volume fraction in the related compound La$_{1.85-y}$Eu$_y$Sr$_{0.15}$CuO$_{4}$, where the tuning of the magnetic and SC properties was realized by rare-earth doping. To further elucidate the interplay between V_m and ρ_s, it is important to understand the origin for the pressure enhancement of ρ_s. The Uemura relation in HTSs reflects a remarkable correlation between T_c and the zero-temperature μSR relaxation rate $\sigma_{sc}(0) \propto 1/\lambda^2(0)$ for cuprate HTSs. This relation T_c vs. $\sigma(0)$ which seems to be generic for various families of cuprate HTSs shows in the underdoped regime $T_c \propto \sigma(0)$ (Uemura line) (see Fig. 15c). At higher doping T_c saturates and becomes independent of $\sigma(0)$, and finally in the heavily overdoped regime T_c is suppressed. The initial linear form of the Uemura relation indicates that for these unconventional HTSs the ratio T_o/EF (EF is an effective Fermi energy) is up to two orders of magnitude larger than for conventional BCS superconductors. The Uemura relation for the present μSR pressure data of LBCO-0.155 and LBCO-0.17 are shown in Fig. 15c. As indicated by the red and the black solid lines the slope $S_p = (\delta T_c/\delta P)/(\delta \sigma_{sc}(0)/\delta P)$ is a factor of $\simeq 3$ and 2 smaller, for LBCO-0.155 and LBCO-0.17, respectively, than that expected from the Uemura line, as well as in oxygen-isotope effect studies of various cuprate superconductors.

Besides the above results, other interesting findings evident from Figs. 15a and b include the strong increase of the superfluid density $\rho_s \propto \sigma_{sc}$ under pressure and the reduction of the magnetic volume fraction V_m under pressure for both LBCO-0.155 and LBCO-0.17, despite the fact that T_{so} increases with pressure. As shown in Fig. 15a, the low-temperature ($T = 5$ K) value of $\sigma_{sc} \propto \rho_s$ in LBCO-0.155 increases with increasing pressure and reaches a constant value at $p \simeq 1$ GPa, which is $\simeq 35\%$ larger than the one at $p = 0$ GPa. On the other hand the magnetic volume fraction V_m at $T = 5$ K sharply decreases with pressure from $\simeq 40\%$ at ambient pressure to approximately 15% at $p = 0.83$ GPa. For $p > 0.83$ GPa V_m remains nearly constant. As demonstrated in Fig. 15b, LBCO-0.17 shows a similar pressure evolution of σ_{sc} and V_m, i.e., antagonistic pressure behavior

FIG. 16: (Color online) Pressure dependence of T_{so} and T_c for LBCO-1/8, taken from weak-transverse field μSR and magnetization data. The terms LTT and HTT stand for the low-temperature tetragonal and high-temperature tetragonal structural phases.
on an intermediate length scale would be a possible explanation for the antagonistic pressure behaviour between V_m and ρ_s. This also means that the two coexisting phases are in microscopic proximity to each other.

Furthermore, one should note the similarities and differences between the pressure effects observed in the present systems LBCO-0.155 and LBCO-0.17 in comparison with LBCO-1/8[23].

1) At ambient pressure a well defined bulk 3D SC transition with $T_c \approx 30$ K and $T_c \approx 25$ K takes place in LBCO-0.155 and LBCO-0.17, respectively, while in polycrystalline LBCO-1/8 two SC transitions were observed[24,12] as discussed above. The first transition appears at $T_{c1} \approx 30$ K to a quasi 2D SC phase and the second transition at $T_{c2} \approx 5$ K corresponds to the transition to a 3D SC phase.

2) T_c and T_{so} have very similar values for LBCO-0.155 and LBCO-0.17. Remarkably, the values of 2D T_{c1} and T_{so} are also very similar for LBCO-1/8.

3) In the case of LBCO-0.155 and LBCO-0.17 strong positive pressure effects on both T_c and T_{so} with $T_{so}(p) \approx T_{so}(p)$ are present. We also measured the pressure dependence of the T_{so} in a new LBCO-1/8 sample and we plot the values of T_{so} and T_c as a function of pressure in Fig. 16. It is interesting to note that dT_{so}/dp and dT_c/dp have different signs for $p \geq 1.5$ GPa. For $p \leq 1.5$ GPa where the so-called low-temperature tetragonal (LTT) phase is suppressed, both T_{so} and T_c increase with increasing pressure with similar slopes. The values of T_{so} and T_{c1} do not really match ($T_{so} < T_{c1}$), but exhibit the same linear pressure dependence. Note that the values of $T_{so}(p)$ for the new LBCO-1/8 sample are systematically higher that the ones reported previously[23].

This can be related to the slightly different preparation procedure of the two samples.

4) For the samples with $x = 1/8$ and $x = 0.155$ we observed an antagonistic pressure dependence of the magnetic volume fraction and the diamagnetic susceptibility. In addition, in the samples with $x = 0.155$ and 0.17 an antagonistic pressure dependence of V_m and the superfluid density is observed. For the sample with $x = 0.155$ we were able to measure both the diamagnetic moment and the superfluid density, and we could compare the changes of both quantities under pressure. In the case of $x = 1/8$ only the diamagnetic moment was measured. We cannot extract reliable information about the superfluid density, since the magnetic fraction is nearly 100 % at the ambient pressure. It is evident that the magnetic fraction decreases with increasing pressure, reaching 50 % at the highest pressure, but it is not possible to follow the pressure evolution of the superfluid density. Probably, one can get a reliable SC response only close to the highest pressure. This means that we cannot definitely conclude which one of the two effects (increase of the SC volume fraction or increase of the penetration depth) plays the dominant role in the enhancement of χ_{ZFC}. Combining all the above mentioned experimental facts we may conclude that magnetism and superconductivity in La$_{2-x}$Ba$_x$CuO$_4$ are competing phenomena in terms of either volume fraction or superfluid density. In order to discriminate between these two scenarios further experimental and theoretical work is required. The fact that the 2D T_c for $x = 1/8$ as well as the bulk T_c for $x = 0.155$ and 0.17 have very similar values as T_{so}, indicates that the order parameters of superconductivity and magnetism do not compete in terms of pairing strength. This suggests that the cooperative development of static order and SC pairing correlations in the striped cuprate system La$_{2-x}$Ba$_x$CuO$_4$ may be relevant near 1/8-doping as well as away from it.

The experimental facts listed above point to small differences between the pressure effects of LBCO-1/8 and LBCO-0.155/LBCO-0.17 with x far away from 1/8. To understand these differences between LBCO-1/8 and LBCO-0.155/LBCO-0.17, pressure effects on the structural properties of these systems are crucial. Note that already at ambient pressure the structural properties of these two systems are quite different. While in LBCO-1/8 a discontinuous transition from a low-temperature orthorhombic (LTO) to a LTT phase is observed[21,14], LBCO-0.155 and LBCO-0.17 exhibit no long-range LTT phase[2]. Different structural properties of these two systems may be a possible reason for the differences in the observed pressure effects.

\[\text{V. CONCLUSIONS} \]

In conclusion, static spin-stripe order and superconductivity were systematically studied in La$_{2-x}$Ba$_x$CuO$_4$ (0.11 $\leq x \leq 0.17$) at ambient pressure by means of magnetization and μSR experiments. We find that for all investigated doping concentrations x a substantial fraction of the sample is magnetic, and the 2D SC transition temperature T_{c1} and the static spin-stripe order temperature T_{so} have very similar values throughout the phase diagram. Moreover, magnetism and superconductivity were studied in LBCO-0.155 and LBCO-0.17 as a function of pressure up to $p \approx 3.1$ GPa. Remarkably, it was found that in these systems the 3D SC transition temperature T_c and T_{so} have very similar values at all pressures, indicating the simultaneous appearance of static magnetic order and superconductivity at all applied pressures in LBCO-0.155 and LBCO-0.17. Antagonistic pressure behaviour between the magnetic volume fraction V_m and the superfluid density ρ_s was observed in LBCO-0.155 and LBCO-0.17 under pressure up to $p \approx 0.83$ GPa and $p \approx 0.7$ GPa, respectively, which was interpreted in terms of a frustrated phase separation scenario. Interestingly, in LBCO-0.155 for $p \geq 0.83$ GPa, where ρ_s reaches a constant value, long-range static spin-stripe order is not suppressed, but is replaced by a disordered quasi-static magnetic state, which persists up to the highest applied pressure of $p = 2.2$ GPa. A disordered static magnetic
state, observed in LBCO-0.17 at ambient pressure, also persists up to the highest applied pressure of \(p = 1.9 \) GPa. The present findings provide clear experimental evidence of a pressure induced change of the magnetic state as well as the same pressure evolution of the SC and the magnetic transition temperatures in the stripe phase of cuprates. These experimental results strongly suggest that static spin-stripe order and SC pairing correlations develop in a cooperative fashion in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \).

VI. ACKNOWLEDGMENTS

The \(\mu \)SR experiments were performed at the Swiss Muon Source (SPS) Paul Scherrer Institute, Villigen, Switzerland. Z.G. thanks Y.J. Uemura, S.A. Kivelson and J. Tranquada for helpful discussions. Z.G. thanks P.K. Biswas for his technical support during the experiments on Dolly \(\mu \)SR Instrument. Z.G. gratefully acknowledges the financial support by the Swiss National Science Foundation (SNF fellowship P2ZHP2_161980 and SNF Grant 200021_149486). A.S. acknowledges support from the SCOPES grant no. 774Z0_160484. We further thank A. Schilling and F.v. Rohr for supporting the susceptibility measurements of LBCO-0.155 under pressure. Work in the Billingegroup was supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE-BES) under contract No. 01-sc0011170.

A. Supplementary Information: Extracting the ZF-\(\mu \)SR signal of LBCO-0.155 for \(p \geq 0.83 \) GPa

As already mentioned in the main text, in the pressure range \(0.83 \) GPa \(\leq p \leq 2.2 \) GPa, instead of the oscillatory behavior seen in the spin-ordered state for \(p < 0.67 \) GPa, a rapidly depolarizing and a weak relaxing ZF-\(\mu \)SR signal are observed (see Fig. 17a). The signal with weak exponential depolarization is affected by a substantial contribution arising from the pressure cell (see Fig. 17b), which is subtracted to extract the sample signal. The resulting \(\mu \)SR signal of the sample at \(p = 0.83 \) GPa is shown in the inset of Fig. 17.

Fig. 17: (Color online) Extracting the sample response from the total \(\mu \)SR signal for LBCO-0.155. (a) ZF \(\mu \)SR time spectra \(A(t) \) for LBCO-0.155 measured in the pressure range \(0.83 \) GPa \(\leq p \leq 2.2 \) GPa recorded at \(T = 5 \) K. The solid lines represent fits to the data by means of Eqs. (1) and (2) of the main text. (b) For comparison the total signal \(A_{tot}(t) \) (green triangles) together with the simulated pressure cell signal \(A_{PC}(t) \) (blue solid curve) is plotted for \(p = 0.83 \) GPa. The inset shows the difference between the total and the pressure cell signals \([A_S(t) = A(t) - A_{PC}(t)] \) for part of the data \((t \leq 1.5 \mu s) \) displayed in panel (b).

* Electronic address: zurab.guguchia@psi.ch

1 J.G. Bednorz, and K.A. Müller, Z. Phys. B 64, 189 (1986).
2 A.R. Moodenbaugh, Y. Xu, M. Suenaga, T.J. Folkerts, and R.N. Shelton, Superconducting properties of \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \), Phys. Rev. B 38, 4596 (1988).
3 S.A. Kivelson, I.P. Bindloss, E. Fradkin, V. Oganesyan, J.M. Tranquada, A. Kapitulnik, and C. Howald, How to detect fluctuating stripes in the high-temperature superconductors. Rev. Mod. Phys. 75, 1201 (2003).
4 M. Vojta, Lattice symmetry breaking in cuprate superconductors: Stripes, nematics, and superconductivity. Adv. Phys. 58, 699 (2009).
5 J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, and S. Uchida, Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature (London) 375, 561 (1995).
6 J.M. Tranquada, J.D. Axe, N. Ichikawa, Y. Nakamura, S. Uchida, and B. Nachumi, Neutron-scattering study of stripe-phase order of holes and spins in \(\text{La}_{2-x}\text{Nd}_x\text{Sr}_{12}\text{CuO}_{4} \), Phys. Rev. B 54, 7489 (1996).
7 P. Abbamonte, A. Rusydi, S. Smadici, G.D. Gu, G.A. Sawatzky, and D.L. Feng, Spatially modulated 'Mottness' in \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \), Nat. Phys. 1, 155 (2005).
8 Häcker, M.v. Zimmermann, G.D. Gu, Z.J. Xu, J.S. Wen, Guangyong Xu, H.J. Kang, A. Zhitenev, and J.M. Tranquada, Stripe order in superconducting \(\text{La}_{2-x}\text{Ba}_x\text{CuO}_4 \).
E. Fradkin, S.A. Kivelson, and J.M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 83, 104506 (2011).

G.M. Luke, L.P. Le, B.J. Sternlieb, W.D. Wu, Y.J. Uemura, J.H. Brewer, T.M. Riseman, S. Ishibashi, and S. Uchida, Static Magnetic Order in La$_{1.875}$Ba$_{0.125}$CuO$_4$. Physica C 185-9, 1175 (1991).

J. Arni, T. Ishiguro, T. Goko, S. Igaya, K. Nishiyama, I. Watanabe, and K. Nagamine, Journal of Low Temperature Physics 131, 375 (2003).

T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W.N. Hardy, R. Liang, D.A. Bonn, and M.H. Julien, Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa$_2$Cu$_3$O$_9$. Nature 477, 191-194 (2011).

Y. Kohsaka, C. Taylor, K. Fujita, A. Schmidt, C. Lupien, T. Hanaguri, M. Azuma, M. Takano, H. Eisaki, H. Takagi, S. Uchida, and J. C. Davis, An Intrinsic Bond-Centered Electronic Glass with Unidirectional Domains in Underdoped Cuprates. Science 315, 1380 (2007).

J.M. Tranquada, Spins, stripes, and superconductivity in hole-doped cuprates. AIP Conference Proceedings 1550, 114 (2013).

J.M. Tranquada, G.D. Gu, M. Hücker, Q. Jie, H.-J. Kang, R. Klingeler, Q. Li, M. Hücker, G. D. Gu, A. M. Tsvelik, and J. M. Tranquada, Two-Dimensional Superconducting Fluctuations in Stripe-Ordered La$_{1.875}$Ba$_{0.125}$CuO$_4$. Phys. Rev. Lett. 99, 067001 (2007).

T. Valla, A.V. Fedorov, J. Lee, J.C. Davis and G.D. Gu, The Ground State of the Pseudogap in Cuprate Superconductors. Science 314, 1914 (2006).

R.-H. He, K. Tanaka, S.-K. Mo, T. Sasagawa, M. Fujita, T. Adachi, N. Mannella, K. Yamada, Y. Koike, Z. Husain, and Z.-X. Shen, Energy gaps in the failed high-temperature superconductor La$_{1.875}$Ba$_{0.125}$CuO$_4$. Nat. Phys. 5, 119-123 (2009).

E. Fradkin, S.A. Kivelson, and J.M. Tranquada, Colloquium: Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

A. Himeda, T. Kato, and M. Ogata, Stripe States with Spatially Oscillating d-Wave Superconductivity in the Two-Dimensional t-J Model. Phys. Rev. Lett. 88, 117001 (2002).

E. Berg, E. Fradkin, E.-A. Kim, S.A. Kivelson, V. Oganesyian, J. Tranquada, and S. Zhang, Dynamical Layer Decoupling in a Stripe-Ordered High-T$_c$ Superconductor. Phys. Rev. Lett. 99, 127003 (2007).

Z. Xu, C. Stock, S. Chi, A.I. Kolesnikov, G. Xu, G. Gu, and J.M. Tranquada, Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La$_{1.905}$Ba$_{0.095}$CuO$_4$. Phys. Rev. Lett. 113, 177002 (2014).

H. Jacobsen, I.A. Zaliznyak, A.T. Savici, B.L. Winn, S. Chang, M. Hücker, G.D. Gu, and J.M. Tranquada, Neutron scattering study of spin ordering and stripe pinning in superconducting La$_{1.93}$Sr$_{0.07}$CuO$_4$. Phys. Rev. B 92, 174525 (2015).

P. A. Lee, Amperian Pairing and the Pseudogap Phase of Cuprate Superconductors. Phys. Rev. X 4, 031017 (2014).

F. Yu, M. Hirschberger, T. Loew, G. Li, B.J. Lawson, T. Asaba, J.B. Kemper, T. Liang, J. Porras, G.S. Boebinger, J. Singleton, B. Keimer, L. Li, and N.P. Ong, Diamagnetic response in under-doped YBa$_2$Cu$_3$O$_{6.6}$ in high magnetic fields. arXiv:1402.7371.

Z. Guguchia, A. Maisuradze, G. Ghambashidze, R. Khasanov, A. Shengelaya, and H. Keller, Tuning the static spin-stripe phase and superconductivity in La$_{2-x}$Ba$_x$CuO$_y$ (x = 1/8) by hydrostatic pressure. New Journal of Physics 15, 093005 (2013).

R. Khasanov, Z. Guguchia, A. Maisuradze, D. Andreica, M. Elender, A. Raselli, Z. Shermadini, T. Goko, F. Knecht, E. Morenzoni, and A. Amato, High pressure research using muons at the Paul Scherrer Institute. High Pressure Research 36, 140-166 (2016).

G. Gaëtan, W. Wang, J.P. Atfield, A.D. Huxley, and K.V. Kamenev, Turnbuckle diamond anvil cell for high-pressure measurements in a superconducting quantum interference device magnetometer. Rev. Sci. Instrum. 81 073905 (2010).

A. Maisuradze, B. Granelli, Z. Guguchia, A. Shengelaya, E. Pomjakushina, K. Conder, and H. Keller, Effect of pressure on the Cu and Pr magnetism in Nd$_{2−x}$Pr$_x$Ba$_2$Cu$_3$O$_{7−δ}$ investigated by muon spin rotation. Phys. Rev. B 87 054401 (2013).

D. Andreica, Magnetic Phase Diagram in Some Kondo- Lattice Compounds : Microscopic and Macroscopic Studies (PhD, thesis, ETH-Zürich, 2001).

B. Nachumi, Y. Fudamoto, A. Keren, K.M. Kojima, M. Larkin, G.M. Luke, J. Merrin, O. Tchernyshyov, Y.J. Uemura, N. Ichikawa, M. Goto, H. Takagi, S. Uchida, M.K. Crawford, E.M. McCarron, D.E. MacLaughlin, and R.H. Heffner, Muon spin relaxation study of the stripe phase order in La$_{1.6−x}$Nd$_x$Sr$_2$Cu$_3$O$_{6.8}$ and related 214 cuprates. Phys. Rev. B 58, 8760-8772 (1998).

A. Suter, and B.M. Wojek, MuSRfit: a free platform-independent framework for μSR data analysis. Physics Procedia 30, 69-73 (2012).

Z. Guguchia, R. Khasanov, M. Bendele, E. Pomjakushina, K. Conder, A. Shengelaya, and H. Keller, Negative Oxygen Isotope Effect on the Static Spin Stripe Order in Superconducting La$_{2-x}$Ba$_x$CuO$_y$ (x = 1/8) Observed by Muon-Spin Rotation. Phys. Rev. Lett. 113, 057002 (2014).

D. Shoenberg, Superconductivity. (Cambridge : Cambridge University Press) p. 164 (1954).

A. Maisuradze, A. Shengelaya, A. Amato, E. Pomjakushina, and H. Keller, Muon spin rotation investigation of the pressure effect on the magnetic penetration depth in YBa$_2$Cu$_3$O$_{7−δ}$. Phys. Rev. B 84, 184523 (2011).

David F. Mross, and T. Senthil, Spin- and Pair-Density-Wave Glasses. Phys. Rev. X 5, 031008 (2015).

V.J. Emery, and S.A. Kivelson, Frustrated electronic phase separation and high-temperature superconductors. Physica C 209, 597-621 (1993).

K.M. Kojima, S. Uchida, Y. Fudamoto, I.M. Gat, M.I. Larkin, Y.J. Uemura and G.M. Luke, Physica B 326, 316-320 (2003).

Y.J. Uemura, G.M. Luke, B.J. Sternlieb, J.H. Brewer, J.F. Carolan, W.N. Hardy, R. Kadono, J.R. Kempton, R.F. Kiefl, S.R. Kreitzman, P. Mulhern, T.M. Riseman, D.L. Williams, B.X. Yang, S. Uchida, H. Takagi, J. Gopalakrishnan, A.W. Sleight, M.A. Subramanian, C.L. Chien, M.Z. Cieplak, Gang Xioa, V.Y. Lee, B.W. Statt, C.E. Stronach, W.J. Kossler, and X.H. Yu, Universal Correlations between T_c and n_s/m^* (Carrier Density over Effective Mass) in High-T_c Cuprate Superconductors. Phys. Rev. Lett. 62, 2317 (1989).
R. Khasanov, J. Karpinski, and H. Keller, Pressure effect on the in-plane magnetic penetration depth in YBa$_2$Cu$_4$O$_8$. J. Phys.: Condens. Matter 17, 2453 (2005).

A. Shengelaya, and K.A. Müller, The intrinsic heterogeneity of superconductivity in the cuprates. EPL 109, 27001 (2015).

R. Khasanov, A. Shengelaya, K. Conder, E. Morenzoni, I. M. Savić and H. Keller, The oxygen-isotope effect on the in-plane penetration depth in underdoped Y$_{1-x}$Pr$_x$Ba$_2$Cu$_3$O$_{7-δ}$ as revealed by muon-spin rotation. J. Phys.: Condens. Matter 15, L17 (2003).

E. Demler, S. Sachdev, and Y. Zhang, Spin-Ordering Quantum Transitions of Superconductors in a Magnetic Field. Phys. Rev. Lett. 87, 067202 (2001).

M. Hücke, M.v. Zimmermann, M. Debessai, J.S. Schilling, J.M. Tranquada, and G.D. Gu, Spontaneous Symmetry Breaking by Charge Stripes in the High Pressure Phase of Superconducting La$_{1.875}$Ba$_{0.125}$CuO$_4$. Phys. Rev. Lett. 104, 057004 (2010).

E.S. Bozin, R. Zhong, K.R. Knox, G. Gu, J.P. Hill, J.M. Tranquada, and S.J.L. Billinge, Reconciliation of local and long range tilt correlations in underdoped La$_{2-x}$Ba$_x$CuO$_4$. Phys. Rev. B 91, 054521 (2015).

Z. Guguchia, D. Sheptyakov, E. Pomjakushina, K. Conder, R. Khasanov, A. Shengelaya, A. Simon, A. Bussmann-Holder, and H. Keller, Oxygen isotope effects on lattice properties of La$_{2-x}$Ba$_x$CuO$_4$ (x=1/8). Phys. Rev. B 92, 024508 (2015).