LEFSCHETZ DECOMPOSITIONS FOR EIGENFORMS ON A KÄHLER MANIFOLD

DONU ARAPURA

Abstract. We show that the eigenspaces of the Laplacian Δ_k on k-forms on a compact Kähler manifold carry Hodge and Lefschetz decompositions. Among other consequences, we show that the positive part of the spectrum of Δ_k lies in the spectrum of Δ_{k+1} for $k < \dim X$.

Given a compact Riemannian manifold X without boundary, let Δ_k denote the Laplacian on k-forms and $\lambda_1^{(k)}$ its smallest positive eigenvalue. We can ask how these numbers vary with k. By differentiating eigenfunctions, we easily see that $\lambda_1^{(0)} \geq \lambda_1^{(1)}$. For $k > 1$, the situation is more complicated: Takahashi [T2] has shown that the sign of $\lambda_1^{(k)} - \lambda_1^{(0)}$ can be arbitrary for compact Riemannian manifolds. More generally, Guerini and Savo [G, GS] have constructed examples, where the sequence $\lambda_1^{(2)}, \lambda_1^{(3)}, \ldots \lambda_1^{(\dim X/2)}$ can do just about anything. The goal of this note is to show that when X is compact Kähler, the eigenspaces carry extra structure, and that this imposes strong constraints on the eigenvalues and their multiplicities. For instance, we show that the eigenvalues of Δ_k occur with even multiplicities when k is odd. We also show that the positive part of the spectrum of Δ_k is contained in the spectrum of Δ_{k+1} for all $k < \dim C X$. Therefore the sequence $\lambda_1^{(0)}, \ldots, \lambda_1^{(\dim C X)}$ is weakly decreasing.

After this paper was submitted, it was brought to my attention that Jakobson, Strohmaier, and Zelditch [JSZ] have also studied the spectra of Kähler manifolds, although for rather different reasons.

1. Main theorems

For the remainder of this paper, X will denote a compact Kähler manifold of complex dimension n, with Kähler form ω. Let $\Delta = d^* d + dd^*$ be the Laplacian on complex valued forms \mathcal{E}^*. Standard arguments in Hodge theory guarantee that the spectrum of Δ is discrete, and the eigenspaces

$$\mathcal{E}^*_\lambda = \{ \alpha \in \mathcal{E}^* | \Delta \alpha = \lambda \alpha \}$$

are finite dimensional. Since Δ is positive and self adjoint, the eigenvalues are nonnegative real. We let \mathcal{E}^k_λ and $\mathcal{E}^{(p,q)}_\lambda$ denote the intersection of \mathcal{E}^*_λ with the space of k forms and (p,q)-forms respectively.

The proofs of the following statements will naturally hinge on the Kähler identities [GH, W], which we recall below. We have

$$\Delta = 2(\partial \partial^* + \partial^* \partial) = 2(\partial \partial^* + \partial^* \partial)$$

Partially supported by the NSF.
which implies that it commutes with the projections $\pi^{pq}, \pi^k : \mathcal{E}^* \to \mathcal{E}^{(p,q)}, \mathcal{E}^k$. The Laplacian Δ also commutes with the Lefschetz operator $L(-) = \omega \wedge -$ and its adjoint Λ. An additional set of identities implies that L, Λ and $H = \sum (n-k) \pi^k$ together determine an action of the Lie algebra $sl_2(\mathbb{C})$ on \mathcal{E}^*.

Theorem 1.1. For each λ, there is a Hodge decomposition

\[
\mathcal{E}^k_{\lambda} = \bigoplus_{p+q=k} \mathcal{E}^{(p,q)}_{\lambda}
\]

(1)

\[
\overline{\mathcal{E}^{(p,q)}_{\lambda}} = \mathcal{E}^{(q,p)}_{\lambda}
\]

(2)

If $i > 0$, there is a hard Lefschetz isomorphism

\[
\omega^i \wedge : \mathcal{E}^{n-i}_{\lambda} \to \mathcal{E}^{n+i}_{\lambda}
\]

(3)

Proof. (1) follows from the fact that Δ commutes with π^{pq}. Since Δ and λ are real, we obtain (2). The proof of (3) is identical to the usual proof of the hard Lefschetz theorem [GH, pp 118-122]. The key point is that by representation theory, L_i maps $V \cap \mathcal{E}^{n-i}_{\lambda}$ isomorphically to $V \cap \mathcal{E}^{n+i}_{\lambda}$ for any $sl_2(\mathbb{C})$-submodule $V \subset \mathcal{E}^*$. Applying this to the subspace $V = \mathcal{E}_{\lambda}$, which is an $sl_2(\mathbb{C})$-submodule because L, Λ, H commute with Δ, proves (3). \square

The first part of the theorem can be rephrased as saying that \mathcal{E}^k_{λ} is a real Hodge structure of weight k. We define the multiplicities $h^{pq}_{\lambda} = \dim \mathcal{E}^{(p,q)}_{\lambda}$ and $b^k_{\lambda} = \dim \mathcal{E}^k_{\lambda}$. When $\lambda = 0$, these are the usual Hodge and Betti numbers. In general, they depend on the metric. These numbers share many properties of ordinary Hodge and Betti numbers:

Corollary 1.2. For each λ,

(a) $b^k_{\lambda} = \sum_{p+q=k} h^{pq}_{\lambda}

(b) $h^{pq}_{\lambda} = h^{qp}_{\lambda}$

(c) b^k_{λ} is even if k is odd.

(d) $h^{2n-k}_{\lambda} = b^k_{\lambda}$.

(e) if $k < n$, $b^k_{\lambda} \leq b^{k+2}_{\lambda}$

(f) if $p + q < n$, $h^{pq}_{\lambda} = h^{n-p,n-q}_{\lambda}$.

(g) if $p + q < n$, $h^{pq}_{\lambda} \leq h^{p+1,q+1}_{\lambda}$

Proof. The first four statements are immediate. For (e) we use the fact that $\omega \wedge : \mathcal{E}^k_{\lambda} \to \mathcal{E}^{k+2}_{\lambda}$ is an injection by (3). For (f) and (g), we use (3), and observe that $\omega^i \wedge -$ shifts the bigrading by (i, i). \square

The above results can be visualized in terms of the geometry of the “Hodge diamond”. When $\lambda > 0$, there are some new patterns as well. We start with a warm up.

Lemma 1.3. If λ is a positive eigenvalue of Δ_0, then $h^{0,1}_{\lambda} \geq h^{0,0}_{\lambda} = b^0_{\lambda}$ and $b^1_{\lambda} \geq 2b^0_{\lambda}$.

Proof. The map $\bar{\partial} : \mathcal{E}^0_{\lambda} \to \mathcal{E}^{0,1}_{\lambda}$ is injective, because the kernel consists of global holomorphic eigenfunctions which are necessarily constant and therefore 0. This implies the first inequality, which in turn implies the second. \square

We will give an extension to higher degrees, but first we start with a lemma.
Lemma 1.4. If \(\lambda > 0 \),
\[
E^{k}_\lambda = dE^{k-1}_\lambda \oplus d^* E^{k+1}_\lambda
\]
and
\[
E^{(p,q)}_\lambda = \bar{\partial}E^{(p,q-1)}_\lambda \oplus \bar{\partial}^* E^{(p,q+1)}_\lambda
\]

Proof. By standard Hodge theory \[GH, W\], we have the decompositions
\[
E^k = E_0 \oplus dE^{k-1} \oplus d^* E^{k+1}
\]
These can be combined to yield the decomposition
\[
E^k = E^k_0 \oplus \bigoplus_{i=1}^{\infty} dE^{k-1}_{\lambda, i} \oplus \bigoplus_{i=1}^{\infty} d^* E^{k+1}_{\lambda, i}
\]
Since \(dE^{k-1}_\lambda, d^* E^{k+1}_\lambda \subset E^k_\lambda\), the first part of the lemma
\[
E^k_\lambda = dE^{k-1}_\lambda \oplus d^* E^{k+1}_\lambda
\]
follows immediately. The proof of the second part is identical. \(\square\)

Theorem 1.5. Suppose that \(\lambda > 0 \).

(a) For all \(k \), \(b^k_\lambda \leq b^{k-1}_\lambda + b^{k+1}_\lambda \)

(b) If \(p + q < n \), then \(h^{pq}_\lambda \leq h^{p+1,q}_\lambda + h^{p,q+1}_\lambda \).

(c) If \(k < n \), then \(b^k_\lambda \leq b^{k+1}_\lambda \)

Proof. The first statement is an immediate consequence of lemma 1.4.

By lemma 1.4, we have a direct sum \(E^{(p,q)}_\lambda = E^{(p,q)}_{\im \bar{\partial}, \lambda} \oplus E^{(p,q)}_{\im \bar{\partial^*}, \lambda} \) of the \(\bar{\partial} \)-exact \(E^{(p,q)}_{\im \bar{\partial}, \lambda} \) and \(\bar{\partial}^* \)-coexact \(E^{(p,q)}_{\im \bar{\partial^*}, \lambda} \) parts. We denote the dimensions of these spaces by \(h^{pq}_{\im \bar{\partial}, \lambda} \) and \(h^{pq}_{\im \bar{\partial^*}, \lambda} \) respectively.

Suppose that \(\alpha \in E^{(p,q)}_{\im \bar{\partial^*}, \lambda} \) then we can write \(\alpha = \bar{\partial}^* \beta \). We have \(\bar{\partial} \alpha \in E^{(p,q+1)}_\lambda \) because \(\bar{\partial} \) and \(\Delta \) commute. Suppose that \(\bar{\partial} \alpha = 0 \). Then
\[
\alpha = \frac{1}{\lambda} \Delta \alpha = \frac{2}{\lambda} (\bar{\partial} \bar{\partial} + \bar{\partial} \bar{\partial}^*) \alpha = \frac{2}{\lambda} \bar{\partial} \bar{\partial}^* \alpha = \frac{2}{\lambda} \bar{\partial} (\bar{\partial}^*)^2 \beta
\]
This is zero, because \(\langle (\bar{\partial}^*)^2 \beta, \xi \rangle = \langle \beta, \bar{\partial}^* \xi \rangle = 0 \) for any \(\xi \). Thus the map
\[
\bar{\partial} : E^{(p,q)}_{\im \bar{\partial^*}, \lambda} \hookrightarrow E^{(p,q+1)}_{\im \bar{\partial}, \lambda}
\]
is injective. Although, we will not need it, it is worth noting that it also surjective because
\[
E^{(p,q+1)}_{\im \bar{\partial}, \lambda} = \bar{\partial} (E^{(p,q)}_{\im \bar{\partial}, \lambda} \oplus E^{(p,q)}_{\im \bar{\partial^*}, \lambda}) = \bar{\partial} E^{(p,q)}_{\im \bar{\partial^*}, \lambda}
\]
Therefore
\[
\tag{4} h^{p,q}_{\im \bar{\partial^*}, \lambda} = h^{p+1,q}_{\im \bar{\partial}, \lambda}
\]
for all \(p, q \). We now assume that \(p + q < n \). We will also establish an inequality
\[
\tag{5} h^{p,q}_{\im \bar{\partial}, \lambda} \leq h^{p+1,q}_{\im \bar{\partial}, \lambda}
\]
Let $\alpha = \bar{\partial}\beta \in \mathcal{E}_{\im\bar{\partial},\lambda}^{(p,q)}$ be a nonzero element. The previous theorem shows that $\gamma = \omega \wedge \alpha$ is a nonzero element of \mathcal{E}_{λ}. The form $\bar{\partial}^* \gamma \neq 0$, since otherwise

$$\gamma = \frac{1}{\lambda} \Delta \gamma = \frac{2}{\lambda} \bar{\partial}^2 (\omega \wedge \beta) = 0$$

Thus we have proved that the map

$$\mathcal{E}_{\im\bar{\partial},\lambda}^{(p,q)} \rightarrow \mathcal{E}_{\im\bar{\partial}^*,\lambda}^{(p+1,q)}$$

given by $\alpha \mapsto \bar{\partial}^* (\omega \wedge \alpha)$ is injective. Equation (5) is an immediate consequence.

Adding (4) and (5) yields

$$h_{\lambda}^{pq} \leq h_{\im\bar{\partial},\lambda}^{p,q+1} + h_{\im\bar{\partial}^*,\lambda}^{p+1,q}$$

which implies (b). Equation (6) also implies

$$h_{\lambda}^{k} = h_{\lambda}^{0,k} + h_{\lambda}^{1,k-1} + \ldots$$

Let $\lambda_1^{(k)}$ denote the first strictly positive eigenvalue of $\Delta_k = \Delta|_{E^k}$.

Corollary 1.6. The positive spectrum of Δ_k is contained in the union of the spectra of Δ_{k-1} and Δ_{k+1}.

Let $\lambda_1^{(k)}$ denote the first strictly positive eigenvalue of $\Delta_k = \Delta|_{E^k}$.

Corollary 1.7. If $k < n$, the positive spectrum of Δ_k is contained in the positive spectrum of Δ_{k+1}. Consequently, $\lambda_1^{(0)} \geq \lambda_1^{(1)} \geq \ldots \geq \lambda_1^{(n)}$.

We can show that the positive spectra of Δ_k coincide for certain values of k.

Corollary 1.8. The positive spectra of Δ_{n-1}, Δ_n and Δ_{n+1} coincide. In particular when $n = 1$, the positive spectra of all the Laplacians coincide.

Proof. If $\lambda > 0$, then the inequalities

$$b_{\lambda}^{n-1} = b_{\lambda}^{n+1}$$

follow from theorems 1.1 and 1.5. These imply the corollary.

The spectra are difficult to calculate in general, although there is at least one case where it is straightforward.

Example 1.9. Let $L \subset \mathbb{C}^n$ be a lattice with dual lattice L^* with respect to the Euclidean inner product. The spectrum of each Δ_k on the flat torus \mathbb{C}^n/L is easily calculated to be the same set $\{4\pi^2 ||v||^2 | v \in L^*\}$, cf. [BGM, pp 146-148].
References

[BGM] M. Berger, P. Gauduchon, E. Mazet, Le spectre d’une variété riemannienne. LNM 194, Springer-Verlag (1971)

[GH] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Pure and Applied Mathematics. Wiley-Interscience, New York, (1978)

[G] P. Guerini, Prescription du spectre du Laplacian de Hodge-de Rham, Ann. Sci. Ecole Norm. Sup. (4) 37 (2004)

[GS] P. Guerini, A. Savo, Eigenvalue and gap estimates for the Laplacian acting on p-forms. Trans. AMS (2004)

[JSZ] D. Jakobson, A. Strohmaier, S. Zelditch, On the spectrum of geometric operators on Kähler manifolds. J. Mod. Dyn. 2 (2008), no. 4, 701-718.

[T1] J. Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms. J. Math. Soc. Japan 53 (2001)

[T2] J. Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and p-forms. Ann. Global Anal. Geom. 23 (2003)

[W] R. Wells, Differential analysis on complex manifolds, Second edition. Graduate Texts in Mathematics, 65. Springer-Verlag, (1980)

Department of Mathematics, Purdue University, West Lafayette, IN 47907, U.S.A.