Application of Network Information Technology in Physical Education and Training System under the Background of Big Data

Ye Chen and Wen Zhou

General Education Department of Wuhan College, Wuhan, Hubei 430070, China

Correspondence should be addressed to Wen Zhou; 8419@whxy.edu.cn

Received 25 March 2022; Revised 16 May 2022; Accepted 27 May 2022; Published 6 June 2022

Academic Editor: Rahim Khan

During the last two decades, rapid development in the network technology has been observed, particularly hardware, and the development of software technology has accelerated, resulting in the launch of a variety of novel products with a wide range of applications. Traditional sport training systems, on the other hand, have a single function and a complex operation that cannot be fully implemented in colleges and universities, causing China’s sports training to stagnate for a long time. The goal of physical education and training is to teach a specific action to attain its maximum potential in a variety of ways. As a result, we should use the system to collect scientifically sound and trustworthy data to aid relevant staff in completing their training tasks. Therefore, in the context of big data, network information technology has become the main way to improve the physical education system. By applying cloud computing technology, machine vision technology, and 64-bit machine technology to the physical education training system, extract the video data of the physical education system, design the system video teaching process, and complete the construction of three-dimensional human model, so as to analyze the training situation of the trainers. In this paper, 30 basketball majors in a university are selected as the professional group and 30 computer majors as the control group. The average reaction time, scores, and expert scores of the two groups are analyzed. The results show that the test of the professional group is significantly higher than that of the amateur group. At the same time, the feedback results of students using physical education and training system and normal physical education teaching and training are compared and analyzed. One week later, the students trained by the physical education system have improved their thinking ability, movement accuracy, and judgment ability, indicating that the application of the physical education training system to the actual effect is ideal.

1. Introduction

Due to the recent advances in the field of micro-electro mechanical system, network information technology has been reported as one of the major technologies which is utilized in numerous domains for resolving real-world problems. It becomes possible due to their overwhelming characteristic and efficiency of the underlined systems. This technology has various application areas in which physical education is one of the most challenging as it is related to various activities such as sports and physical health status of the sports man and trainers.

In order to study the effectiveness of studying the physical education and training system, this paper combines machine vision, cloud computing, and 64-bit computer technology to create a comprehensive and reasonable technical model that ensures that each system module can play a role. The overall training level and ability of trainers can be effectively improved by integrating multiple processes to ensure the efficient operation of the physical education and training system [1]. Because the current traditional physical education teaching mode takes the coach and the trainer to train together, and the coach guides their actions, when the trainer trains by himself after the course, he cannot understand whether the individual training action is standard or not, and there is no professional guidance, resulting in the poor effect of after-school training [2]. In view of this problem, the combination of physical education and training system and network information technology can better capture the trainer’s training action, automatically...
judge, and point out the existing problems of the action, so that the trainer can clearly grasp the standard action.

It is to be noted that utilization of the physical education and training system in basketball instruction allows students to develop a perceptual understanding of the game, which is beneficial for mastering the fundamentals of technology in a short amount of time, correcting incorrect actions independently, and unlocking students’ potential. This research examines the relationship between average response time, scores, and expert scores in a study conducted on college students at a Chinese institution.

Main contributions and novelty of this paper are as given below.

(1) When studying the physical education and training system, we use network information technology, including machine vision technology, 64-bit machine technology, and cloud computing technology to collect the trainer’s video data, convert the target point into the data in the image processing system, further process and analyze the collected image information, and improve the accuracy of image acquisition [3].

(2) It uses Kinect algorithm to design three-dimensional module to realize user action data acquisition. The DTW algorithm is used to analyze the average reaction time of students in the professional group and the control group of the sports system, so as to realize the correlation analysis between the test results and the expert scores. The results show that the test results are consistent with the expert scores, and the personnel in the professional group have stronger tactical awareness and training awareness than those in the amateur group.

The remaining paper is organized as follows.

In subsequent section, a comprehensive review of the existing studies which are available in literature is presented. In Section 3, big data-based network information technology and its applications in resolving the real-world problems have been reported. Simulation results along with possible explanation have been reported in Section 4 of the paper. In this section, a detailed discussion of both graph and textual representation is provided in plain English. Finally, concluding remarks in summarized form are given in the last section of the paper.

2. Related Work

The country with the fastest development of global information technology is the USA, which is directly related to American science and technology, policy, education, and other aspects [4]. American BM company developed a computer-aided education system for the first time in 1958, which marked the beginning of human beings to move toward the information age of computer education [5]. Puuska scholars pointed out that in 1995, the number of people using computers in the USA reached hundreds of millions, accounting for 1/3 of the total population of the USA, and formulated the “national information base facility” plan [6]. Experts from Zagoumenov proposed that the USA should carry out educational reform in 1996, realize information-based basic education, and fully complete the construction of educational information in 2002 [7]. Albadri pointed out that the British government established the world’s first computer center in 1966 to carry out information technology training on this computer. Most British teachers pay attention to the cultivation of students’ information technology, realize the change of traditional teaching mode, and integrate information technology into all aspects of life, so as to successfully transform into an information society [8]. Our government also attaches great importance to information education, which has shown a state of rapid development in recent years. Gao Te pointed out that nowadays, Chinese college students are generally not interested in volleyball and their participation is low, which has limitations on the popularization and development of volleyball at the social level [9]. In the literature, to overcome this issue, thorough use of network information technology is recommended to increase volleyball class innovation and engagement, therefore motivating students during their studies. Yang suggested to the school officials that they use information technology-assisted teaching and invest some dollars in completing campus network services and multimedia teaching equipment [10]. Li studies multimedia technology based on basketball referee theory. Students can obtain a lot of knowledge by listening, watching, thinking, practicing, explaining, and other ways in a fixed period of time, so as to expand students’ knowledge [11]. Chen has fully proved the auxiliary effect of multimedia on volleyball teaching in the process of studying multimedia volleyball teaching. Its remarkable advantages lie in its high efficiency, scientificity, intuitiveness, and simplicity of operation. At the same time, multimedia teaching instruments are installed in stadiums and gymnasiums to realize the multi-dimensional combination of different teaching media and maintain the ideal state of educational communication [12]. Chen et al. proposed that the study of the functions in the sports management system can improve the operation efficiency under multiple preconditions. In the literature, the physical quality of each athlete is evaluated first, and then its impact on the effect of sports education is studied from multiple perspectives such as sports technology, training methods, and physical fitness [13]. Chen and Zhang studied the basketball training information management system from a theoretical point of view and pointed out that the components of the system are mainly information collectors, procedures, and tools. Its responsibility is to evaluate the collected training data, sort out and analyze them, and finally apply them in practical physical education teaching [14].

3. Big Data-Based Network Information Technology

3.1. Machine Vision Technology. Machine vision directly affects the analysis results of sports video. Selecting high-precision equipment can improve the reliability and efficiency of data, and machine vision is one of the important technologies to restore the authenticity of sports video [15].
One or more video cameras, analog-to-digital conversion (ADC), and digital signal processing are used to give a computer the capacity to see (DSP). The data are then sent to a computer or a robot controller. Machine vision is akin to speech recognition in terms of intricacy. Machine vision may successfully expand the distance between human eyes and boost definition by using a computer to replicate human visual function. The most essential feature is the human brain’s intelligent analytical function, which can extract unique information from physical images, process and analyze it, track data, and recognize images, and is widely employed in control and detection [16]. At present, the application of machine vision technology in image analysis, social production, and sports analysis shows significant advantages compared with artificial vision algorithm [17]. The local features of each thing cannot be found directly by the naked eye, and it is difficult to analyze the surface features of things in detail. At this time, machine vision can be used for detection, which can eliminate all the interference of subjective factors, and quantitatively describe the automatic indicators, so as to avoid the impact of human factors on the accuracy of detection results, which can effectively improve the detection efficiency.

The components of machine vision system mainly include digital image processing, applied engineering machinery, communication control, optical lens, light source, analog and digital conversion, and computer software and hardware. Figure 1 shows the machine vision system:

3.2. 64-Bit Computer Technology. The CPU transits from 32 bits to 64 bits, and its bytes double. At the same time, the data transmission speed, numerical accuracy, addressing range, and memory capacity are expanded to a certain extent, which promotes the leapfrog development of computing technology, so that the computer can complete analog operations and large-capacity values, and enhance the manipulation advantage after the increase of data throughput [18]. The application of super-large concurrent processing can promote the development of synchronization technology. Games and 3D animation are produced faster, and the speed of database processing information is accelerated. It has also become a crucial technology to enable the development of artificial intelligence, and video processing has gotten faster as capacity has increased. A 64-bit computer has enough memory to process a huge quantity of data. Because of the vast volume of data in physical education, computer hardware requirements are greater. The emergence of 64-bit computer technology can give technological assistance for sports informatization, allowing for quicker speeds and higher storage capacity.

3.3. Cloud Computing Technology. As a virtual resource pool that can be called, cloud computing dynamically reconfigures the resource pool data according to the actual load to achieve optimal processing [19]. The service provider and the user agree on the service level and agreement in advance, and the user can use the technology free or paid. Figure 2 shows the cloud computing mode.

At present, with the rapid development of communication technology and information technology, the task mode of computer processing has also changed greatly. The earliest computer sent tasks to large-scale processors and processed them. After development, it has become a network-based distributed task processing mode until the current cloud computing mode according to demand. The earliest single machine processing mode can process a small amount of data, which is difficult to meet people’s requirements. After sending the request, it has to wait for a period of time to complete, and the efficiency is low. Since then, with the rapid development of network technology, after the server cluster with high load configuration meets with low load, it wastes configuration resources and increases customer operation and maintenance costs. Cloud computing technology can virtualize network service resources and equip special staff to schedule, maintain, and manage service resources. Users do not need to understand the internal implementation of “cloud.” At the same time, cloud computing is formed by integrating utility computing, distributed computing, network technology, and virtualization technology. Cloud computing is the supply of various
services, such as data storage, servers, databases, networking, and software, through the Internet. Cloud storage allows you to save files to a distant database and retrieve them whenever you want. Users can use the network to call the data in the virtual resource pool, which is not limited by time and space, and can effectively deal with large-scale computing problems. The application of cloud computing technology can realize the convenient interaction of data and information. Users can use the mobile terminal to synchronize cloud data and find the valuable data and operations they need.

From the perspective of physical education curriculum management, this paper analyzes that the use of cloud computing technology can enable the rapid transmission of information between managers and teachers, innovate the classroom mode, and avoid the traditional single teaching mode from losing students’ interest. Under the cloud system, it can break the division of physical education teaching mode of administrative class and combine such students in a way similar to physical quality. For students with good physical quality, professional training can be carried out to improve the efficiency of physical education.

4. Application System of Physical Education and Training Based on Network Information Technology

4.1. Video Data Acquisition of Physical Education System.

In this paper, network information technology is applied to physical education and training system, combined with relevant technical standards and technical core to maintain comprehensive operation effectiveness, replace the traditional manual judgment and measurement methods, and convert the target point to the data on the image processing system. By cooperating with mathematical algorithms to complete data processing and analysis, it is conducive to the smooth development of the later upgrading and improvement of physical education system. One of the main carriers of physical education and training system is to obtain sports video. It is necessary to complete the shooting task with the cooperation of industrial cameras to ensure the standardization and rationality of digital analysis. Generally, the commonly used industrial cameras are automatic receiving type and automatic storage type. However, affected by the cost and performance, the automatic receiving industrial camera is widely used in the market. When in use, just click the driver module to receive the data, ensure the image integrity and effectiveness according to the frame, build a complete monitoring program, and cooperate with the underlying Windows API to establish the programming mode.

Initially, the process or program needs to acquire or collect digital images which are needed to be examined. Usually, RGB is used to process information which is combined with the secondary system code to save the processed information and generate BMP suffix file. In addition, industrial cameras have the capability to minimize quickly the rate of distortion and further ensure that the collected images have research and analysis value.

Secondly, in order to deal with the bitmap format images more specifically if it has a BMP file header, then it means that the contents in the file are mainly file bitmap information and size information. The definition structure is as follows:

```c
typedef struct tagBITMAPFILEHEADER {
    WORD bfType; //bitmap.
    DWORD bfSIZE;
    WORD bf1;
    WORD bf2;
} BITMAPFILEHEADER;
```

Through the above code, the offset of the document and image file of the relevant data can be obtained, the corresponding bytes can be calculated, and the image content can be displayed visually.

Finally, the table item is coupled with the bitmap and color information to examine the data of the rgbquad structure type. By using the appropriate editing mode to achieve data reading and color separation, effectively control the instruction content in the controllable area, collaborate with the distinguished digits, and comprehensively improve the analysis effect and ensure more accurate comprehensive analysis results, the bitmap color table and information header can be obtained.

4.2. System Video Teaching Design. Starting from the basic characteristics of sports, this paper needs repeated practice for many times to master sports skills. Therefore, the designed physical education and training system should provide standard actions for reference to trainers. By writing the video teaching method into the teaching module, the trainer can open the video learning by using the mobile terminal or computer [20]. Figure 3 shows the video teaching design.

The video source in the video teaching design shown in Figure 3 is the teaching resources in the system teaching module, which involves teaching content, including guidance video, action video, and decomposition teaching video. Trainers can select video content to complete relevant training. At the same time, this module also gives a detailed explanation for each sport, describing its theoretical knowledge and training methods, so that trainers can master the essentials of sports. The user selects the interested sports on the system operation page. The program controls the video source under the control of input instructions and controls various functions on the screen.

4.3. System 3D Reconstruction Design. When designing the three-dimensional module of the system, Kinect is used to extract the rotation data of each joint point of the human body and assign values to the joints on the unity3d task model. After obtaining the data of a node, it is disturbed by Kinect noise, and the data shall be denoised, then analyze the
4.4. Principle of DTW Algorithm. Due to its simple operation and high efficiency, DTW algorithm is widely used in text data matching, speech recognition, and other fields. It belongs to template matching optimization algorithm. The basic principle of this algorithm is to find the similarity between standard samples and test samples by shortening or extending time series, construct the time calibration matching period of two samples as the optimal path. The human action sequence can be regarded as multi-frame continuous skeleton data, and the two action sequences are represented by \(U = (U_1, U_2, \ldots, U_m) \) and \(V = (V_1, V_2, \ldots, V_n) \). \(U \) is the standard sequence of test sequence \(V \), and the length of the two sequences is \(m \) frames and \(n \) frames. \(U_i \) is the posture angle feature of human body in frame \(f \) of \(u \) action sequence.

On the premise that \(m \) and \(N \) are not equal and construct \(M \times N \)-matrix grid, \(D \) matrix can be expressed by

\[
D = \begin{bmatrix}
 d(U_1, V_1) & d(U_1, V_2) & \ldots & d(U_1, V_n) \\
 d(U_2, V_1) & d(U_2, V_2) & \ldots & d(U_2, V_n) \\
 \vdots & \vdots & \ddots & \vdots \\
 d(U_m, V_1) & d(U_m, V_2) & \ldots & d(U_m, V_n)
\end{bmatrix}.
\]

(1)

\(U_i \) and \(V_j \) in the above formula \(d(U_i, V_j) \) represent the Euclidean distance on the corresponding angular feature. The purpose is to find the shortest path of multiple different grid points in the grid matrix, and the two sequences passing through the grid points correspond to the points on the frame. The shortest path is defined as a regular path, that is, \(W_k = (\omega_1, \omega_2, \ldots, \omega_k) \), the group of continuous matrix elements corresponds to the angular characteristics of \(U \) and \(V \) action sequences, which is defined by the \(k-1 \) pair \(W_{k-1} = (i, j)_{k-1} \) on \(W \), and \(K \) elements define \(W_k=(i, j)_k \).

5. System Performance Analysis

5.1. Average Reaction Time Analysis. In this paper, the use of network information technology in the physical education and training system can comprehensively improve the operation efficiency of the system, and its practical application effect is more significant. In order to test the application effect of the physical education and training system, 30 basketball majors in physical education colleges are selected as the professional group, and 30 other majors are randomly selected as the amateur group. The students in the professional group are basically equipped with computers, and the hardware environment meets the requirements.

This experiment is conducted after class. 30 professional students are trained and tested separately, which can avoid the interference of other factors on the accuracy of the test results. Then copy the physical education and training system in the computer of the students in the professional group, and the students will correct their actions and training independently after class and start the second training after a week. Then, let the two teachers and teaching assistants in charge of basketball teaching in the professional group evaluate and score the students, and judge the standard degree of students’ action from their personal experience. Figure 5 shows the results of the comparison between the professional group and the amateur group.

The results of professional and amateur groups are listed in Table 1, and the results obtained after independent sample \(t \)-test are shown in Table 2.

Figure 6 shows the comparison results of the average reaction time of students in the professional group and the control group.
Table 3 lists the reaction data of the two groups of participants in the professional group and the amateur group. The results obtained by taking independent sample t to test the data are listed in Table 4.

The results of the above two t-tests show that there is a significant difference in the scores between the amateur group and the professional group ($P < 0.001$), and there is a very obvious gap in the reactions of the two groups of students ($P = 0.013 < 0.05$), which shows that the sports professionalism and consciousness of the professional group are much higher than those of the amateur group, and their tactical consciousness is strong.

5.2. Correlation Analysis between Test Scores and Expert Scores. If the scoring standard adopted between the expert score and the test score is inconsistent, 10 points will be deducted based on the expert score. After this method, it will have no impact on the relevant analysis results. Figure 7 shows the correlation analysis between the scores of the test professional group and the scores of experts.

According to the experimental data in Figure 7, the scores of the professional group are significantly higher than those of the amateur group, indicating that the physical education and training awareness of the professional group are higher than that of the amateur group. Therefore, it is concluded that there is a certain correlation between the test results and tactical awareness. When analyzing the correlation between the scores of the test professional group and the transformation score, the two are highly significant, which means that the test results are

Grouping	Mean	Standard deviation	Standard error
Amateur photographers	3.98	2.24	0.43
For professional	2.84	0.87	0.07

Table 4: Results after t-test of independent samples.

Homogeneity of variance P value	T value	Degrees of freedom	P values
0.001 < 0.05	2.62	37.6	0.013

Figure 5: Results of performance comparison between professional group and amateur group.

Table 1: Test the scores of professional group and amateur group.

Grouping	Mean	Standard deviation	Standard error
Amateur photographers	58.9	11.54	2.11
For professional	68/5	11.56	1.93

Table 2: Results after T-test of independent samples.

T value	Degrees of freedom	P values
−3.812	59	<0.001

Figure 6: Comparison of the average reaction time between the two groups of students in the professional group and the control group.

Figure 7: Correlation analysis chart of test professional group scores and expert scores.
basically consistent with the expert score results. The tactical awareness level of the tested can be evaluated according to the test results.

6. Conclusion and Future Work

At present, the rapid development of human society and the rapid expansion of knowledge and information promote the continuous innovation of information technology. With the emergence of network information technology, experts use the advantages of network information technology to apply it in physical education teaching and training, so as to provide a new model for teachers’ physical education. Network information technology can spread teachers’ sports training knowledge to students through pictures, words, sounds, videos, and animation, which makes the sports teaching content more diversified and intuitive, makes learners more intuitive to master more sports technology and basic knowledge, improves students’ interest in learning sports training, and significantly improves the teaching effect and quality. Therefore, the application of machine vision technology, cloud technology, and 64-bit computer technology in physical education and training system can further improve the system function, which is of great value to the development of physical education. According to the training standards of physical education teaching system, trainers can get data information and professional physical training and physical education guidance by cooperating with the control of key points and technical processes, so as to provide technical support for the sustainable development of China’s physical education industry. In order to verify the advantages of using network information technology in the sports training system, this paper selects students for testing and analyzes the correlation between the average reaction time of trainers, test scores, and expert scores. The results show that the students using the system have shorter average reaction time and stronger professional, sports training, and tactical awareness of sports training.

In the future, this work can be extended for finding correlation of students, teacher, and supporting staff as well.

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] Y. Dolynniy, “Influence of the motivational component of the physical education on the students’ training system,” Armenian Journal of Special Education, vol. 3, no. 1, pp. 105–113, 2021.
[2] S. Lu, “School + family community learning model of PE course under COVID-19 epidemic situation,” International Journal of Emerging Technologies in Learning (iJET), vol. 15, no. 18, p. 218, 2020.
[3] Q. L. Si, L. J. Liu, and H. X. Zhou, “3D laser image acquisition of motion injury posture,” Laser Journal, vol. 42, no. 12, pp. 124–1288, 2021.
[4] I. Ayyash, “The role of information technology (IT) in the economic development of Palestine,” Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, vol. 23, no. 1, pp. 352–359, 2021.
[5] M. Shinya, M. Tomohisa, C. Vlatko, and So, “A computer aided education system based on augmented reality by immersion to 3-D magnetic field,” IEEE Transactions on Magnetics, vol. 53, no. 6, pp. 1–4, 2017.
[6] H.-M. Puuska, J. Nikkanen, T. Engels, R. Guns, D. Ivanović, and J. Pölönen, “Integration of national publication databases - towards a high-quality and comprehensive information base on scholarly publications in Europe,” ITM Web of Conferences, vol. 33, no. 2, Article ID 02001, 2020.
[7] I. L. Zagoumennov, “Development of managerial competencies of students on the basis of democratization and informatization of educational process at the university,” Open Education, vol. 24, no. 2, pp. 55–64, 2020.
[8] H. Albadri, “Based model: using knowledge management to enhance information technology training outcomes among markets requirements,” Indian Journal of Science and Technology, vol. 13, no. 14, pp. 1486–1492, 2020.
[9] T. N. Gao, “Research on the application of modern information technology in volleyball teaching in the context of Internet,” Contemporary Sports Technology, vol. 10, no. 23, pp. 140–143, 2020.
[10] X. X. Yang, “Research on the advantage and application strategy of information technology assisted teaching,” DuYuXie, vol. 18, no. 34, p. 273, 2021.
[11] K. Li, “Current situation of basketball referees cultivation among students majoring in sports training-case study of Nanjing sport institute,” Hubei Sports Science, vol. 36, no. 7, pp. 636–638, 2017.
[12] S. H. Chen, “Research on the application of multimedia technology in volleyball training,” Contemporary Sports Technology, vol. 10, no. 29, pp. 89–91, 2020.
[13] X. M. Chen, Y. L. Duan, and J. K. Yang, “Study on the application effect of two-dimensional code directional movement management system in teaching -- taking Yunnan agricultural university as an example,” Contemporary Sports Technology, vol. 9, no. 23, pp. 86–88, 2019.
[14] L. Chen and A. Y. Zhang, “Investigation and analysis of current situation of Chongqing Basketball Referee team and countermeasure research,” Nei Jiang Science & Technology, vol. 39, no. 2, pp. 111–112, 2018.
[15] H. K. Leng, I. M. Rozmand, Y. H. Low, and Y. X. P. Phua, “Effect of social environment on brand recall in sports video games,” International Journal of Gaming and Computer-Mediated Simulations, vol. 13, no. 1, pp. 1–11, 2021.
[16] A. V. Gurjanov, V. I. Babenkov, A. V. Shukalov, I. O. Zharirov, and O. O. Zharirov, “Total quality control of the cyber-physical production using machine vision technologies,” Journal of Physics: Conference Series, vol. 1889, no. 5, Article ID 052014, 2021.
[17] Ó. de Francisco Ortiz, H. Carrero-Blanco, J. Martinez-Hombre, and J. Carrero-Blanco, “Enhanced positioning algorithm using a single image in an LCD camera system by mesh elements' recalculation and angle error orientation,” Updates in Production & Manufacturing, vol. 109, no. 5, pp. 1–16, 2020.
[18] C. J. aymar and M. G. Capili-Kummer, “Giddy ion reloaded: desktop manager, optimizer with multi utility tool,” International Journal of Recent Technology and Engineering, vol. 9, no. 5, pp. 154–158, 2021.

[19] J. Al-Ammary and Z. Saleh, “Assessing the readiness for cloud computing in higher education institutions in the kingdom of Bahrain: towards an education cloud computing strategy,” International Journal of Managing Information Technology, vol. 13, no. 1, pp. 33–54, 2021.

[20] M. Merilinen, R. Aurava, K. Annakaisa, and J. Stenros, “Game jams for learning and teaching: a review,” International Journal of Game-Based Learning, vol. 10, no. 2, pp. 54–71, 2020.