Principal minors Pfaffian half-tree theorem

Béatrice de Tilière *

Abstract

A half-tree is an edge configuration whose superimposition with a perfect matching is a tree. In this paper, we prove a half-tree theorem for the Pfaffian principal minors of a skew-symmetric matrix whose column sum is zero; introducing an explicit algorithm, we fully characterize half-trees involved. This question naturally arose in the context of statistical mechanics where we aimed at relating perfect matchings and trees on the same graph. As a consequence of the Pfaffian half-tree theorem, we obtain a refined version of the matrix-tree theorem in the case of skew-symmetric matrices, as well as a line-bundle version of this result.

Keywords: Pfaffian, half-trees, perfect matchings, Matrix-tree theorem.

1 Introduction

We prove a half-tree theorem for the Pfaffian principal minors of a skew-symmetric matrix whose column sum is zero. This is a Pfaffian version of the classical matrix-tree theorem [Kir47], see also [Cha82] and references therein. Introducing an explicit algorithm, we give a constructive proof of our result and a full characterization of half-trees involved. A precise statement of our main theorem, as well as consequences for the determinant, are given in Section 1.1 of the introduction. An outline of the paper is provided in Section 1.2. Motivations for proving such a result come from statistical mechanics and are exposed in Section 1.3.

1.1 Statement of main result

Let \(V^R = V \cup R \), where \(V = \{1, \ldots , n\} \), \(R = \{n + 1, \ldots , n + r\} \) and \(n \) is even. Let \(A^R = (a_{ij})_{(i,j) \in V^R} \) be a skew-symmetric matrix whose column sum is zero, i.e. satisfying \(\forall i \in V^R, \sum_{j \in V^R} a_{ij} = 0 \). Denote by \(A = (a_{ij})_{(i,j) \in V} \) the matrix obtained from \(A^R \) by removing the \(r \) last lines and columns. The matrix \(A \) is also skew-symmetric and the Pfaffian of \(A \), denoted \(\text{Pf}(A) \), is defined as:

\[
\text{Pf}(A) = \frac{1}{2^\frac{n}{2}(\frac{n}{2})!} \sum_{\sigma \in S_n} \text{sgn}(\sigma)a_{\sigma(1)}a_{\sigma(2)} \cdots a_{\sigma(n-1)}a_{\sigma(n)}.
\]

*Laboratoire de Probabilités et Modèles Aléatoires, UMR 7599, Université Pierre et Marie Curie, 4 place Jussieu, F-75005 Paris. beatrice.de_tiliere@upmc.fr. Supported by the ANR Grant 2010-BLAN-0123-02.
where S_n is the set of permutations of $\{1, \ldots, n\}$. Using the skew-symmetry of the matrix A it is possible to avoid summing over all permutations. Let \mathcal{P}_n be the set of partitions of $\{1, \ldots, n\}$ into $n/2$ unordered pairs, also known as the set of pairings. A permutation $\sigma \in S_n$ is a description of a pairing $\pi \in \mathcal{P}_n$ if $\{\sigma(1)\sigma(2), \ldots, \sigma(n-1)\sigma(n)\}$ represents the pairing. A pairing π is described by $2^n/2!$ permutations: there are 2^n ways of ordering elements of the pairs and $(\frac{n}{2})!$ ways of ordering pairs among themselves. Because of the skew-symmetry of the matrix A, the quantity:

$$\text{sgn}(\sigma)a_{\sigma(1)\sigma(2)} \cdots a_{\sigma(n-1)\sigma(n)},$$

is independent of the choice of permutation σ describing a given pairing π. Indeed, choosing another permutation amounts to exchanging elements of a pair or exchanging pairs. The first operation changes the sign of the permutation, which is compensated by the change of sign in the corresponding matrix element. The second operation does not change the sign, and only changes the order of the matrix elements. As a consequence, the Pfaffian can be rewritten as:

$$\text{Pf}(A) = \sum_{\pi \in \mathcal{P}_n} \text{sgn}(\sigma_\pi)a_{\sigma_\pi(1)\sigma_\pi(2)} \cdots a_{\sigma_\pi(n-1)\sigma_\pi(n)},$$

where σ_π is any of the $2^n/2!$ permutations describing the pairing π. If n is odd, then by convention $\text{Pf}(A) = 0$.

To the matrix A^R one associates the graph $G^R = (V^R, E^R)$, where $E^R = \{(i, j) : i, j \in V^R, a_{ij} \neq 0\}$. Every oriented edge (i, j) of G^R is assigned a weight a_{ij}, thus defining a skew-symmetric weight function on oriented edges. The matrix A^R is the weighted adjacency matrix of the graph G^R.

A spanning forest of G^R is an oriented edge configuration of G^R, spanning vertices of V, such that each connected component is a tree containing exactly one vertex of R. This vertex is taken to be the root and edges of the component are oriented towards it. Equivalently, a spanning forest of G^R is an oriented edge configuration containing no cycle, such that each vertex of V has exactly one outgoing edge of the configuration. A leaf of a spanning forest is a vertex with no incoming edge.

Let $G = (V, E)$ be the graph naturally associated to the matrix A. A perfect matching M_0 of G is a subset of edges such that each vertex of V is incident to exactly one edge of M_0. Note that a perfect matching of G contains exactly $|V|/2$ edges. In the whole of this paper, we suppose that G has at least one perfect matching; if this is not the case, then $\text{Pf}(A) = 0$ (see also Section 2.1). We let \mathcal{M} denote the set of perfect matchings.

Let F be a spanning forest of G^R, then F is said to be compatible with M_0 if it consists of the $|V|/2$ edges of M_0 and of $|V|/2$ edges of $E^R \setminus M_0$. The oriented edge configuration $F \setminus M_0$ is referred to as a half-spanning forest. In the specific case where R is reduced to a point, then F is a tree and $F \setminus M_0$ is referred to as a half-tree.

Example. Let $V^R = \{1, 2, 3, 4, 5\}$, $V = \{1, 2, 3, 4\}$, $R = \{5\}$. Consider the graphs G^R and G pictured in Figure 1 below. A choice of perfect matching M_0 of G is pictured in white, and F_1, F_2, F_3 are examples of spanning trees of G^R compatible with M_0.

Here is the statement of our main theorem.
Theorem 1.1 (Principal minors Pfaffian half-tree theorem). Let A^R be a skew-symmetric matrix of size $(n + r) \times (n + r)$, whose column sum is zero, such that n is even; and let A be the matrix obtained from A^R by removing the r last lines and columns. Let G^R and G be the graphs naturally constructed from the matrices A^R and A, respectively.

For every perfect matching M_0 of G, the Pfaffian of A is equal to:

$$\text{Pf}(A) = \sum_{F \in F(M_0)} \text{sgn}(\sigma_{M_0}(F \setminus M_0)) \prod_{e \in F \setminus M_0} a_e,$$

where a_e is the coefficient of the matrix A^R corresponding to the oriented edge e; $\text{sgn}(\sigma_{M_0}(F \setminus M_0))$ is the sign of the permutation $\sigma_{M_0}(F \setminus M_0)$ of Definition 1.1 below; $F(M_0)$ is the set of spanning forests of G^R compatible with M_0, satisfying Condition (C) of Definition 1.2 below.

Definition 1.1. Let F be a spanning forest of G^R compatible with M_0. The orientation of F induces an orientation of edges of the perfect matching M_0, and we let $(i_1, i_2), \ldots, (i_{n-1}, i_n)$ be a description of the oriented matching. Then, $\sigma_{M_0}(F \setminus M_0)$ is the permutation:

$$\sigma_{M_0}(F \setminus M_0) = \begin{pmatrix} 1 & 2 & \cdots & n \\ i_1 & i_2 & \cdots & i_n \end{pmatrix}.$$

Note that the interchange of two pairs does not change the sign of the permutation.

Here is the algorithm used to characterize half-spanning forests which contribute to Pf(A).

Trimming algorithm

Input: a spanning forest F of G^R compatible with M_0.

Initialization: $F_1 = F$.

Step i, $i \geq 1$

Since vertices of the graph G^R are labeled by $\{1, \ldots, n + r\}$, there is a natural order on vertices of any subset of V^R. We let ℓ_1 be the leaf of F_1 with the largest label, and consider the connected component containing ℓ_1. Start from ℓ_1 along the unique path joining ℓ_1 to the root of this component, until the first time one of the following vertices is reached:

- the root vertex,
- a fork, that is a vertex with more than one incoming edge,
- a vertex which is smaller than the leaf ℓ_1.
This yields a loopless path λ_{ℓ_1} starting from ℓ_1, of length ≥ 1. Let $F_{i+1} = F_i \setminus \lambda_{\ell_1}$. If F_{i+1} is empty, stop; else go to Step $i + 1$.

End: since edges are removed at every step, and since F contains a finite number of edges, the trimming algorithm ends in finite time N.

Definition 1.2. A spanning forest F compatible with M_0 is said to satisfy *Condition (C)* if each of the paths $\lambda_{\ell_1}, \ldots, \lambda_{\ell_N}$ obtained from the trimming algorithm, starts from an edge of M_0 and has even length. We let $\mathcal{F}(M_0)$ be the set of spanning forests compatible with M_0, satisfying Condition (C).

Example. Applying the trimming algorithm to each of the spanning forests F_1, F_2, F_3 of Figure 1 yields:

- **F_1:** Step 1: $\ell_1^1 = 2, \lambda_2 = 2, 3, 1$. Step 2: $\ell_1^2 = 1, \lambda_1 = 1, 4, 5$.
- **F_2:** Step 1: $\ell_1^1 = 2, \lambda_2 = 2, 3, 5$. Step 2: $\ell_1^2 = 1, \lambda_1 = 1, 4, 5$.
- **F_3:** Step 1: $\ell_1^1 = 4, \lambda_4 = 4, 1$. Step 2: $\ell_1^2 = 1, \lambda_1 = 1, 2, 3, 5$.

The spanning trees F_1 and F_2 satisfy Condition (C) but not F_3.

Remark 1.2.

- It is interesting to note that taking different perfect matchings M_0 yields different families of half-spanning forests. It is not clear a priori, without using the Pfaffian half-tree theorem, that these families should have the same total weight.

- Suppose that we change the labeling of the vertices. Let \tilde{A}^R be the corresponding skew-symmetric adjacency matrix, and \tilde{A} be the matrix obtained by removing the r last lines and columns. As long as the re-labeling does not affect vertices of R, the matrix \tilde{A} is obtained from the matrix A by exchanging lines and columns, so that $\text{Pf}(\tilde{A}) = \pm \text{Pf}(A)$. Applying the Pfaffian half-tree theorem to the matrices A and \tilde{A} nevertheless yields a different set of half-spanning forests and again, it is not clear a priori that they should have the same total weight in absolute value. Note that taking other principal minors amounts to changing the labeling of the vertices.

- In the paper [MY02], Masbaum and Vaintrob assign to a weighted 3-uniform hypergraph a skew-symmetric matrix whose column sum is zero, and prove that the Pfaffian of any principal minor of this matrix enumerates signed spanning trees of the 3-uniform hypergraph. The matrix considered by Masbaum and Vaintrob satisfies the assumptions of Theorem [11] implying that the Pfaffian half-tree theorem can also be used. This naturally raises the question of possible connections between spanning trees of 3-graphs and half-spanning trees of Theorem [11]. A detailed account of this question, illustrated by examples, is provided in Appendix [A]. Our conclusion is that both theorems can be seen as related to half-spanning trees, but the latter are of a very different nature. The Pfaffian half-tree theorem takes its full meaning for (regular) graphs. It can also be applied for 3-graphs, but the result obtained in that case is rather different from the one of Masbaum and Vaintrob, and not naturally connected to spanning trees of 3-graphs.
Using the fact that the determinant of a skew-symmetric matrix is the square of the Pfaffian, we obtain the following corollary.

Corollary 1.3. Let A^R be a skew-symmetric matrix of size $(n+r) \times (n+r)$, whose column sum is zero, such that n is even; and let A be the matrix obtained from A^R by removing the r last lines and columns. Let G^R and G be the graphs naturally constructed from the matrices A^R and A respectively.

The determinant of the matrix A is equal to:

$$\det(A) = \sum_{M_0 \in \mathcal{M}} \sum_{F \in \mathcal{F}(M_0)} \prod_{e \in F} a_e,$$

where a_e is the coefficient of the matrix A^R corresponding to the oriented edge e, and $\mathcal{F}(M_0)$ is the set of spanning forests compatible with M_0, satisfying Condition (C).

Remark 1.4.

- The fact that principal minors of a skew-symmetric matrix whose column sum is zero, count spanning forests is also a consequence of the more general all-minors matrix-tree theorem (which holds for any matrix whose column sum is zero). A combinatorial way of proving this result is to use the explicit expansion of configurations due to Chaiken [Cha82]. This method is not satisfactory in our context, since it does not shed a light on how spanning forests are obtained from double perfect matchings, which is what we aim for, see Section 1.3. Indeed, the idea of Chaiken’s proof is to expand terms on the diagonal of the matrix and show that only spanning forests remain. In the case of skew-symmetric matrices, since diagonal terms are 0 this amounts to ‘artificially’ creating configurations which do not exist. As a result of our proof, we explicitly construct spanning forests from double perfect matchings, and identify a specific family of spanning forests counted by principal minors. In particular, this implies that in the case of skew-symmetric matrices, specific cancellations occur within spanning forests of the general matrix-tree theorem, a fact hard to establish without using Corollary 1.3.

- An intrinsic definition of $\cup_{M_0 \in \mathcal{M}} \mathcal{F}(M_0)$, not using reference perfect matchings, is given in Remark 3.4 of Section 3.2.

- A line bundle version of this result, in the spirit of [For93] and [Ken11], is proved in Section 3.3 see Corollary 3.7.

1.2 Outline of the paper

- **Section 2** In Section 2.1 we state the interpretation of the Pfaffian as counting signed perfect matchings of the graph G. Fixing a reference perfect matching M_0, we then introduce an explicit algorithm, which constructs from the superimposition of M_0 and a generic perfect matching M counted by the Pfaffian, a family of half RC-spanning forests whose connected components are trees rooted on vertices of R, or on cycles of even length ≥ 4; and whose total weight is equal to the contribution of
M to the Pfaffian. The main tool of the algorithm is the ‘opening’ of doubled edges procedure, described in Section 2.3. Step 1 of the algorithm is exposed in Section 2.4 and the complete algorithm is the subject of Section 2.5. A characterization of configurations obtained is given in Section 2.6.

• Section 3. Section 3.1 consists in the proof of Theorem 1.1. The idea is to show that the contribution of half RC-spanning forests constructed above, having connected components rooted on cycles of length ≥ 4 cancel, and that only the contribution of spanning forests (rooted on vertices of R) remains. The characterization of configurations obtained from the algorithm is also simplified in the case of spanning forests, yielding the trimming algorithm of Section 1.1 of the introduction. The proof of Corollary 1.3 is the subject of Section 3.2. Finally, in Section 3.3 Corollary 3.7 proves a line bundle version of the matrix-tree theorem for skew-symmetric matrices of Corollary 1.3.

1.3 A question from statistical mechanics

As stated in the introduction, the Pfaffian half-tree theorem 1.1 is a Pfaffian version of the classical matrix-tree theorem of Kirchhoff. One of its interesting features is that half-trees involved satisfy specific conditions characterized by the trimming algorithm, allowing for a refinement of the matrix-tree theorem in the case of skew-symmetric matrices. As such, the Pfaffian half-tree theorem is a standalone result. It nevertheless answers a question raised when working on the paper [dT13] in the field of statistical mechanics. In the paper [dT13] we prove an explicit relation, on the level of configurations, between two models of statistical mechanics: the dimer model on the Fisher graph corresponding to the low temperature expansion of the critical Ising model (through Fisher’s correspondence [Fis66]), and spanning forests. The question raised does not rely on the Fisher graph and can be rephrased in the following, more general framework.

In the setting of statistical mechanics, a perfect matching of a graph is known as a dimer configuration. Assigning non-negative weights to edges of the graph naturally defines a weight for each dimer configuration (by taking the product of the edge-weights present in the configuration) and a probability measure on all dimer configurations of G, thus yielding a statistical mechanics model. The dimer model on planar graphs has been the subject of extensive studies in the last 50 years, and of huge progresses in the last 15 years, see [Ken09] for an overview.

A double dimer configuration is the superimposition of two dimer configurations. It consists of a collection of disjoint cycles covering all vertices of the graph. This is because, by definition of a dimer configuration, each vertex is incident to exactly one edge of each of the two dimer configurations, so that in the superimposition, each vertex has degree exactly two. Our goal is to explicitly construct spanning forests from double dimer configurations when the model is critical, and to do so on the same graph, thus proving an unexpected relation, on the level of configurations, between two models of statistical mechanics. This relation is unexpected because configurations of the first model consist of cycles, and those of the second contain no cycle, so that they appear to be of a very different nature.
When the graph is planar, dimer configurations are counted by the Pfaffian of the Kasteleyn matrix \[\text{[Kas67, TF61]}, \] which is a weighted adjacency matrix of an oriented version of the graph; this matrix is skew-symmetric by construction. It is a general fact that the Pfaffian of an adjacency matrix counts signed perfect matchings. Signs of perfect matchings come from coefficients of the matrix and from the signs of permutations naturally assigned to matchings, see Section 2.1. The contribution of \[\text{[Kas67, TF61]}, \] is to prove that the orientation of the graph can be chosen so that signs cancel, implying that all perfect matchings appear with the same sign. The square of the Pfaffian of the Kasteleyn matrix, which is the determinant of the matrix, counts double dimer configurations: when expanding the product, each term consists of two dimer configurations, their superimposition is a double dimer configuration.

In the case of the dimer model corresponding to the critical Ising model, the column sum of the Kasteleyn matrix is zero (when the graph is embedded on the torus), a fact related to the model being critical. Let us give a little hint at what criticality is. The Ising model is a model of ferro-magnetism: a magnet is represented by a graph, vertices of the graph can take two possible values \(\pm 1 \), and an external temperature influences the system. When the temperature is zero, all spins are equal to +1 or −1; and when the temperature is very high, the configuration is completely random. At a specific temperature, referred to as the critical one, the system undergoes a phase transition and has a very interesting and rich behavior, see \[\text{[CS12]}, \] In the dimer interpretation of the Ising model \[\text{[Fis66]}, \] being critical is related to the fact that a certain polynomial in two complex variables has zeros on the unit torus \[\text{[Li12, CD13]}, \] This polynomial is the determinant of a modified weight Kasteleyn matrix, and it has zeros on the unit torus precisely when the column sum of the matrix is zero. This motivates our choice of taking column-sum equal to zero.

Our initial question which was constructing spanning forests from double dimer configurations when the model is critical thus translates into: given a Kasteleyn matrix whose column sum is zero, how are spanning forests obtained from double dimer configurations counted by the determinant of the matrix. It turned out that the only feature required of the Kasteleyn matrix is that of being skew-symmetric, the specific orientation of the graph did not play a role, thus taking us away from the setting of statistical mechanics. The question thus transformed into: how are spanning forests obtained from the signed superimpositions of perfect matchings counted by the determinant of a skew-symmetric matrix whose column sum is zero. We obtained more than what we expected, since we have a result on the Pfaffian. Theorem 1.1 proves that principal minors of the Pfaffian of a general skew-symmetric matrix whose column sum is zero count a specific family of half-spanning forests, and half-spanning forests are explicitly constructed from perfect matchings. Corollary 1.3 proves that principal minors of the determinant of such a matrix count a family of spanning forests, and the latter are explicitly constructed from superimposition of perfect matchings. Specifying this result to the case of planar graphs or graphs embedded on the torus, and Kasteleyn matrices, answers our initial question. The main drawback of our result in the context of statistical mechanics is that, even when the matrix is Kasteleyn and perfect matchings all have positive weights, corresponding spanning forests might have negative weights.

To close this section on statistical mechanics, let us also mention the work of Temperley \[\text{[Tem72]}, \] Kenyon, Propp and Wilson \[\text{[KPW00]}, \] proving that spanning trees of planar graphs
are in bijection with dimer configurations of a related bipartite graph. The proof consists in a one-to-one correspondence between configurations. Although their result involves the same kind of objects, the two are quite different in spirit. In our case, perfect matchings and trees live on the same graph, the graph must not be bipartite nor even planar, the weight function on edges of the graph must not be positive, but the column sum must be zero.

2 From matchings to half RC-rooted spanning forests

Let us recall the setting: A^R is a skew-symmetric matrix of size $(n + r) \times (n + r)$, whose column sum is zero, such that n is even; and A is the matrix obtained from A^R by removing the r last lines and columns; G^R and G are the graphs naturally constructed from the matrices A^R and A in Section 1.1 of the introduction.

Definition 2.1. An RC-rooted spanning forest, referred to as an RCRSF is an oriented edge configuration of G^R spanning vertices of G, such that each connected component is, either a tree rooted on a vertex of R, or a tree rooted on a cycle of G, which we refer to as a unicycle. Edges of each of the components are oriented towards its root, and edges of the cycles are oriented in one of the two possible directions.

Definition 2.2. Let M_0 be a reference perfect matching of G. An RCRSF F is said to be compatible with M_0, if it consists of the $|V|/2$ edges of M_0, and of $|V|/2$ edges of $E^R \setminus M_0$. Moreover cycles of uni-cycles have even length ≥ 4, and alternate between edges of M_0 and $F \setminus M_0$. The oriented edge configuration $F \setminus M_0$ is referred to as a half-RCRSF.

In Section 2.1, we give the graphical interpretation of the Pfaffian of the matrix A as counting signed perfect matchings of G. Let M be a generic perfect matching counted by the Pfaffian and M_0 be a fixed reference perfect matching of G. In Sections 2.4 and 2.5, we introduce an explicit algorithm which constructs, from the superimposition of M_0 and M, a family of half RC-rooted spanning forests compatible with M_0, whose total weight is equal to the contribution of M to the Pfaffian. In Section 2.6, we characterize RC-spanning forests obtained. Notations used are given in Section 2.2. The main graphical idea of the algorithm is the subject of Section 2.3.

2.1 Graphical interpretation of the Pfaffian

Recall that \mathcal{P}_n denotes the set of pairings of $\{1, \ldots, n\}$, and let \mathcal{M} be the set of perfect matchings of G. Observing that every perfect matching of G corresponds to a pairing of \mathcal{P}_n, and that pairings of \mathcal{P}_n which do not correspond to perfect matchings of G contribute 0 to the Pfaffian, we can rewrite $\text{Pf}(A)$ as:

$$\text{Pf}(A) = \sum_{M \in \mathcal{M}} \text{sgn}(\sigma_M) a_{\sigma_M(1)\sigma_M(2)} \cdots a_{\sigma_M(n-1)\sigma_M(n)},$$

where σ_M is a permutation such that $\{\sigma_M(1)\sigma_M(2), \ldots, \sigma_M(n-1)\sigma_M(n)\}$ is a description of the perfect matching M.

8
Choosing the permutation σ_M amounts to choosing an order for the $n/2$ pairs and an order for the two elements of each of the pairs, meaning that there are $\left(\frac{n}{2}\right)!2^{\frac{n}{2}}$ choices. Exchanging two pairs does not change the sign nor the corresponding coefficients of the matrix, whereas changing two elements of a pair changes the sign of the permutation and the sign of the corresponding element of the matrix. As a consequence, the global sign is unchanged, and fixing the sign of the permutation amounts to choosing an orientation of edges of the perfect matching.

We now specify the choice of sign of the permutation σ_M by choosing an orientation of edges of M. Let M_0 be a fixed reference matching of G. The superimposition of M_0 and M, denoted by $M_0 \cup M$, consists of disjoint doubled edges (covered by both M_0 and M) and alternating cycles of even length ≥ 4, covering all vertices of G. Let us, for the moment, consider doubled edges as cycles of length 2. The orientation of the superimposition $M_0 \cup M$ is fixed by the following rule: for each cycle, the orientation is compatible with that of the edge (ℓ_1, ℓ_1'), where ℓ_1 is the smallest vertex of the cycle, and ℓ_1' is its partner in M_0. This yields an orientation of edges of M, and thus a choice of σ_M. This procedure also gives an orientation of edges of M_0, and thus a choice of σ_{M_0}. Let us also denote by $M_0 \cup M$ the oriented superimposition.

Example (Figure 2). In white is a choice of reference perfect matching M_0 and in black are the three possible matchings M_1, M_2, M_3 of the graph G. Edges of the respective superimpositions are oriented according to the rule described above.

![Figure 2: Oriented superimposition.](image)

Let $\sigma_{M_0 \cup M}$ be the permutation whose cyclic decomposition corresponds to cycles of the superimposition $M_0 \cup M$. Then,

$$\text{sgn}(\sigma_{M_0 \cup M}) = (-1)^{|D(M_0 \cup M)|}(-1)^{|C(M_0 \cup M)|},$$

where $D(M_0 \cup M)$ is the set of doubled edges of $M_0 \cup M$ and $C(M_0 \cup M)$ is the set of alternating cycles of length ≥ 4 of $M_0 \cup M$. Note that this sign does not depend on the orientation of the cycles. Following Kasteleyn [Kas67], the signs of the permutations σ_{M_0} and σ_M are related as follows:

$$\text{sgn}(\sigma_M) = \text{sgn}(\sigma_{M_0}) \text{sgn}(\sigma_{M_0 \cup M}) = \text{sgn}(\sigma_{M_0}) (-1)^{|D(M_0 \cup M)|}(-1)^{|C(M_0 \cup M)|}.$$

Writing σ_{M_0} as $\sigma_{M_0}(M)$ to remember that our choice of orientation of edges of M_0 depends on M, the Pfaffian of A can be expressed as:

$$\text{Pf}(A) = \sum_{M \in \mathcal{M}} w_{M_0}(M), \quad (2.1)$$
where

$$w_{M_0}(M) = \text{sgn}(\sigma_{M_0(M)})(-1)^{|D(M_0 \cup M)| - 1}^{|C(M_0 \cup M)|} \prod_{e \in M} a_e,$$

and a_e is the coefficient of the matrix A corresponding to the oriented edge e of M.

2.2 Notations

Let M_0 be a fixed reference perfect matching of the graph G, M be a generic perfect matching, and $M_0 \cup M$ be the oriented superimposition of M_0 and M constructed in Section 2.1. In order to shorten notations, we write D instead of $D(M_0 \cup M)$ for the set of doubled edges of the superimposition, C instead of $C(M_0 \cup M)$ for the set of cycles of length ≥ 4, and $w(M)$ instead of $w_{M_0}(M)$.

We now introduce definitions and notations used in the algorithm of Sections 2.4 and 2.5.

Let V^c denote the set of vertices of V which belong to a cycle of C. For every subset D' of doubled edges of D, let $V^{D'}$ denote the set of vertices of V which belong to doubled edges of D'.

Every vertex $i \in V^D$ belongs to a doubled edge covering vertices i and i' of D. We denote by e_i (or e'_i) this doubled edge and define V_i to be the set of vertices in the full graph G^R, adjacent to i' other than i.

For every subset D' of D, denote by $V^{D'}_i$ the set of vertices of V_i which belong to doubled edges of D', and by $(V^{D'}_i)^c$ those which don’t. Then V_i can be partitioned as: $V_i = V^{D'}_i \cup (V^{D'}_i)^c$.

2.3 Idea of the algorithm

The idea of the algorithm is to use the reference configuration M_0 as a skeleton for opening up doubled edges of the superimposition $M_0 \cup M$. Indeed, because of the condition $\sum_{j \in V^R} a_{ij} = 0$, configurations of Figure 3 have opposite weights.

![Figure 3: 'Opening' of doubled edges procedure: $a_{i'} = -\sum_{j \in V_i} a_{i'j}$](image)

There are two main difficulties in realizing this procedure: the first is that there is, a priori, no natural way of deciding whether to ‘open’ up the doubled edge at the vertex i or at the vertex i'. The second is that we want to keep track of configurations constructed, show that we obtain RC-rooted spanning forests, characterize them and prove that only spanning forests remain. It turns out that the ‘opening’ procedure depends strongly on the labeling of vertices.
2.4 Algorithm: Step 1

Recall that the goal of the algorithm is to construct, from the superimposition $M_0 \cup M$ of a reference perfect matching M_0 and a generic perfect matching M, a family of half-RC-rooted spanning forests of G^R compatible with M_0, whose total weight is equal to the contribution of M to the Pfaffian. In this section, we introduce the first step of the algorithm, setting rules for the opening up of doubled edges of $M_0 \cup M$. The complete algorithm, which in essence consists of iterations of Step 1, is the subject of Section 2.5.

Input: oriented superimposition $M_0 \cup M$.

Initialization: if the superimposition $M_0 \cup M$ consists of cycles only, that is if the set \mathcal{D} is empty, let $O_0 = \{M\}$ and stop. Else, let $O_0 = \{\emptyset\}$ and go to the first iteration.

Example (Figure 4). Consider Figure 4 as input of the algorithm. The algorithm will be explicitly performed on this example, throughout Sections 2.4 and 2.5.

Since $M_0 \cup M$ contains doubled edges, the output O_0 is $\{\emptyset\}$.

Iteration 1

- Define $\ell_1 = \min \{i \in V : i \text{ belongs to a doubled edge of } \mathcal{D}\}$. Then ℓ_1 is the partner of a vertex ℓ'_1 in M_0 and M. By our choice of orientation for M_0 and M, the edge $\ell_1 \ell'_1$ is oriented from ℓ_1 to ℓ'_1 in M_0 and from ℓ'_1 to ℓ_1 in M. For every $\ell_2 \in V_{\ell_1}$, define:

\[
M_{\ell_1, \ell_2} = \{M \setminus \{(\ell'_1, \ell_1)\} \cup \{(\ell'_1, \ell_2)\} \}
\]

\[
w(M_{\ell_1, \ell_2}) = \text{sgn}(\sigma_{M_0(M)}) (-1)^{|\mathcal{D}| - 1} (-1)^{|\mathcal{C}|} \prod_{e \in M_{\ell_1, \ell_2}} a_e.
\]

Example (Figure 5): $\ell_1 = 1$, $\ell'_1 = 4$. By definition, see Section 2.2, V_{ℓ_1} consists of vertices incident to $\ell'_1 = 4$ other than $\ell_1 = 1$, that is, $V_{\ell_1} = V_1 = \{2, 3, 5\}$. This yields configurations $M_{1,2}$, $M_{1,3}$, $M_{1,5}$.

- Let D_{ℓ_1} be the set of doubled edges $\mathcal{D} \setminus \{e_{\ell_1}\}$. Then, the set V_{ℓ_1} can be partitioned as the set of vertices of V_{ℓ_1} which belong to a doubled edge of D_{ℓ_1} and the set of those which don’t. Using notations of Section 2.2 this can be rewritten as: $V_{\ell_1} = V_{\ell_1}^{D_{\ell_1}} \cup (V_{\ell_1}^{D_{\ell_1}})^c$.

11
For every M, Figure 5: From left to right: black edges are the oriented edge configurations $M_{1,2}$, $M_{1,3}$, $M_{1,5}$.

The output of Iteration 1 is the set of configurations M_{ℓ_1,ℓ_2} such that ℓ_2 does not belong to a doubled edge of D_{ℓ_1}:

$$O_1 = \bigcup_{\ell_2 \in (V_{\ell_1}^{D_{\ell_1}})^c} M_{\ell_1,\ell_2},$$

$$w(O_1) = \sum_{M_{\ell_1,\ell_2} \in O_1} w(M_{\ell_1,\ell_2}).$$

where by convention, if $(V_{\ell_1}^{D_{\ell_1}})^c = \emptyset$, then $O_1 = \emptyset$ and $w(O_1) = 0$.

- The algorithm continues with configurations M_{ℓ_1,ℓ_2} where ℓ_2 belongs to a doubled edge of D_{ℓ_1}. Formally we have: if $V_{\ell_1}^{D_{\ell_1}} = \emptyset$, then stop; else, go to Iteration 2.

EXAMPLE: the set $D_{\ell_1} = D_1$ consists of the doubled edge 23. As a consequence, the set $V_{\ell_1} = V_1 = \{2, 3, 5\}$ is partitioned as $V_1 = \{2, 3\} \cup \{5\}$, and the output of Iteration 1 is $O_1 = \{M_{1,5}\}$. The algorithm continues with $M_{1,2}$ and $M_{1,3}$.

Iteration k, $(k \geq 2)$

For every $\ell_2 \in V_{\ell_1}^{D_{\ell_1}}, \ldots, \ell_k \in V_{\ell_{k-1}}^{D_{\ell_{k-1}}}$, do the following.

- The vertex ℓ_k is the partner of a vertex ℓ'_k in M_0 and M (since $D_{\ell_1,\ldots,\ell_k-1}$ is a subset of D). If $\ell_k < \ell'_k$, then by our choice of orientation, the edge $\ell_k\ell'_k$ is oriented from ℓ_k to ℓ'_k in M_0 and from ℓ'_k to ℓ_k in M_{ℓ_1,\ldots,ℓ_k}. If $\ell_k > \ell'_k$, then we change the orientation of this edge in M_0 and in M_{ℓ_1,\ldots,ℓ_k}. Let us also denote by M_{ℓ_1,\ldots,ℓ_k} this new configuration. This change of orientation has the effect of changing the permutation assigned to M_0, and we denote by $\sigma_{M_0(M_{\ell_1,\ldots,\ell_k})}$ this new permutation. It also negates the contribution of M_{ℓ_1,\ldots,ℓ_k} so that the global contribution remains unchanged. For every $\ell_{k+1} \in V_{\ell_k}$, define:

$$M_{\ell_1,\ldots,\ell_{k+1}} = (M_{\ell_1,\ldots,\ell_k} \setminus (\ell'_k, \ell_k)) \cup (\ell'_k, \ell_{k+1})$$

$$w(M_{\ell_1,\ldots,\ell_{k+1}}) = \text{sgn}(\sigma_{M_0(M_{\ell_1,\ldots,\ell_k})})(-1)^{|D_{\ell_1,\ldots,\ell_k-1}|} \prod_{e \in M_{\ell_1,\ldots,\ell_{k+1}}} a_e$$ (2.2)

Example (Figure 6). Recall that $V_{\ell_1}^{D_{\ell_1}} = V_1^{(23)} = \{2, 3\}$, so that $\ell_2 \in \{2, 3\}$. If $\ell_2 = 2$, then $V_{\ell_2} = V_2 = \{1, 4, 5\}$, yielding configurations $M_{1,2.1}$, $M_{1,2.4}$, $M_{1,2.5}$. If $\ell_2 = 3$, then $V_{\ell_2} = V_3 = \{1, 4\}$, yielding configurations $M_{1,3.1}$, $M_{1,3.4}$.
Figure 6: First line, from left to right, black edges consists of the configurations $M_{1,2,1}$, $M_{1,2,4}$, $M_{1,2,5}$. Second line, from left to right, black edges consists of the configurations $M_{1,3,1}$, $M_{1,3,4}$.

- Let D_{ℓ_1,\ldots,ℓ_k} be the set of doubled edges $D_{\ell_1,\ldots,\ell_{k-1}} \setminus \{e_{\ell_k}\}$. Then, the set V_{ℓ_k} can be partitioned as: $V_{\ell_k} = V_{\ell_k}^{D_{\ell_1,\ldots,\ell_k}} \cup (V_{\ell_k}^{D_{\ell_1,\ldots,\ell_k}})^c$, and the output of Iteration k is the set of configurations $M_{\ell_1,\ldots,\ell_{k+1}}$ such that ℓ_{k+1} does not belong to a doubled edge of D_{ℓ_1,\ldots,ℓ_k}.

$$O_k = \bigcup_{\ell_2 \in V_{\ell_1}^{D_{\ell_1}}} \cdots \bigcup_{\ell_k \in V_{\ell_{k-1}}^{D_{\ell_1,\ldots,\ell_{k-1}}}} \bigcup_{\ell_{k+1} \in (V_{\ell_k}^{D_{\ell_1,\ldots,\ell_k}})^c} M_{\ell_1,\ldots,\ell_{k+1}},$$

$$w(O_k) = \sum_{M_{\ell_1,\ldots,\ell_{k+1}} \in O_k} w(M_{\ell_1,\ldots,\ell_{k+1}}).$$

- If $V_{\ell_k}^{D_{\ell_1,\ldots,\ell_k}} = \emptyset$, then stop. Else, go to Step $k + 1$.

Example: when $\ell_2 = 2$, the set $D_{1,2}$ is empty so that V_2 is partitioned as $\{\emptyset\} \cup \{1,4,5\}$ and the contribution to the output O_2 of Iteration 2 is $M_{1,2,1}$, $M_{1,2,4}$, $M_{1,2,5}$. When $\ell_2 = 3$, the set $D_{1,3}$ is also empty, implying that V_3 is partitioned as $\{\emptyset\} \cup \{1,4\}$ and the contribution to the output O_2 of Iteration 2 is $M_{1,3,1}$, $M_{1,3,4}$. After Iteration 2, for every $\ell_2 \in V_{\ell_1}^{D_{\ell_1}}$, the set $V_{\ell_2}^{D_{\ell_1,\ell_2}}$ is empty, so that the algorithm stops.

End

Step 1 of the algorithm stops at time m for the first time, if it hasn’t stopped at time $m - 1$, and if for every $\ell_2 \in V_{\ell_1}^{D_{\ell_1}}, \ldots, \ell_m \in V_{\ell_{m-1}}^{D_{\ell_1,\ldots,\ell_{m-1}}}; V_{\ell_m}^{D_{\ell_1,\ldots,\ell_m}} = \emptyset$. This implies in particular that $(V_{\ell_m}^{D_{\ell_1,\ldots,\ell_m}})^c = V_{\ell_m}$. Since the number of doubled edges decreases by 1 every time an iteration of the algorithm occurs, and since the number of doubled edges in D is finite, we are sure that Step 1 of the algorithm stops in finite time.
2.4.1 Output of Step 1, geometric properties of configurations

The output of Step 1 of the algorithm is the set of configurations $S_1 = \bigcup_{k=0}^{m} O_k$. The weight of this set is defined to be $w(S_1) = \sum_{k=0}^{m} w(O_k)$.

If the initial superimposition $M_0 \cup M$ consists of cycles only, i.e., if the set D is empty, then $m = 0$ and $S_1 = \{M\}$. In all other cases, the set S_1 can be rewritten in a more compact way as:

$$S_1 = \bigcup_{\gamma_{\ell_1} \in \Gamma_{\ell_1}} M_{\gamma_{\ell_1}},$$

where:

$$\Gamma_{\ell_1} = \left\{ \gamma_{\ell_1} : \gamma_{\ell_1} \text{ is a path of length } 2k \text{ for some } k \in \{1, \ldots, m\} : \gamma_{\ell_1} = \ell_1, \ell'_1, \ldots, \ell_k, \ell'_k, \ell_{k+1}, \right\}$$

$$\ell_1 = \min\{i \in V : i \text{ belongs to a doubled edge of } D\},$$

$$\forall j \in \{2, \ldots, k\}, \ell_j \in V_{\ell_j-1}^{D_{\ell_1-1} \cdots \ell_{j-1}} \text{ and } \ell'_j \text{ is the partner of } \ell_j \text{ in } M_0 \text{ and } M,$$

$$\ell_{k+1} \in (V_{\ell_k}^{D_{\ell_1-1} \cdots \ell_k})^c.$$

$$M_{\gamma_{\ell_1}} = M_{\ell_1, \ldots, \ell_{k+1}}.$$

Let $\gamma_{\ell_1} = \ell_1, \ell'_1, \ldots, \ell_k, \ell'_k, \ell_{k+1}$ be a generic path of Γ_{ℓ_1} for some $k \in \{1, \ldots, m\}$, and let $F_{\gamma_{\ell_1}}$ denote the superimposition $M_0 \cup M_{\gamma_{\ell_1}}$. The configuration $F_{\gamma_{\ell_1}}$ and the path γ_{ℓ_1} satisfy the following properties.

- The oriented edge configuration $F_{\gamma_{\ell_1}}$:

 (I) has one outgoing edge at every vertex of V, and contains the path γ_{ℓ_1}.

 (II) has k doubled edges less than $M_0 \cup M$.

- The oriented path γ_{ℓ_1}:

 (III) has even length $2k$, is alternating (meaning that edges alternate between M_0 and $M_{\gamma_{\ell_1}}$). It starts from the vertex ℓ_1 followed by an edge of M_0.

 (IV) The vertex ℓ_1 is the smallest vertex belonging to a doubled edge of D. The $2k$ first vertices of γ_{ℓ_1} are all distinct and the last vertex ℓ_{k+1} belongs to $(V_{\ell_k}^{D_{\ell_1-1} \cdots \ell_k})^c$.

Observing that:

$$(V_{\ell_k}^{D_{\ell_1-1} \cdots \ell_k})^c = V_{\ell_k} \cap (R \cup V^c \cup \{\ell_1, \ell'_1, \ldots, \ell_k, \ell'_k\}),$$

we deduce that one of the following holds.

(IV)(1) If $\ell_{k+1} \in R$, then γ_{ℓ_1} is a loopless oriented path from ℓ_1 to one of the root vertices of R, and ℓ_1 is a leaf of $F_{\gamma_{\ell_1}}$. Since $R = \{n+1, \ldots, n+r\}$, ℓ_1 is smaller than all vertices of γ_{ℓ_1}.

14
(IV)(2) If $\ell_{k+1} \in V^C$, then γ_{ℓ_1} is a loopless oriented path ending at a vertex of one of the cycles of C that is, the connected component containing ℓ_1 is a unicycle with a unique branch. The vertex ℓ_1 is a leaf of $F_{\gamma_{\ell_1}}$ and is smaller than the $2k$ first vertices of the path, but cannot be a priori compared to vertices of the cycle of C. By construction of the orientation of $M_0 \cup M$, see Section 2.1, the orientation of the cycle is compatible with that of the edge (i_1, i_2), where i_1 is the smallest vertex of the cycle and i_2 is its partner in M_0.

(IV)(3) If $\ell_{k+1} \in \{\ell_1, \ell'_1, \ldots, \ell_k, \ell'_k\}$, then γ_{ℓ_1} contains a loop of length ≥ 3. If $\ell_{k+1} = \ell_i$ for some $i \in \{1, \ldots, k\}$, then the loop has even length and is alternating and the part of γ_{ℓ_1} to the loop also has even length, is alternating and starts with an edge of M_0. Moreover, the orientation of the loop is compatible with the orientation of the edge (ℓ_i, ℓ'_i), and the vertex ℓ_1 is smaller than all vertices of the path to the cycle and smaller than all vertices of the cycle.

Note that if $\ell_{k+1} \neq \ell_1$, then ℓ_1 is a leaf and the connected component containing ℓ_1 is a unicycle with a unique branch. Else, if $\ell_{k+1} = \ell_1$, the connected component is a cycle.

If $\ell_{k+1} = \ell'_i$ for some $i \in \{1, \ldots, k\}$, then the loop has odd length with two edges of M incident to the vertex ℓ'_i. Observing that the loop in both directions is obtained from Step 1 of the algorithm, and using the fact that the matrix A is skew-symmetric, we deduce that the contributions of these configurations cancel and we remove them from the output of Step 1. Thus we only consider configurations such that $\ell_{k+1} = \ell_i$ for some $i \in \{1, \ldots, k\}$.

Example. The output S_1 of Step 1 is: $S_1 = \{M_{1,5}, M_{1,2,1}, M_{1,2,4}, M_{1,2,5}, M_{1,3,1}, M_{1,3,4}\}$. Configurations $M_{1,5}$, $M_{1,2,5}$ are in Case (IV)(1), configurations $M_{1,2,1}$, $M_{1,3,1}$ are in Case (IV)(3) with even cycles created, and configurations $M_{1,2,4}$, $M_{1,3,4}$ are in Case (IV)(3) with odd cycles created. Contributions of $M_{1,2,4}$ and $M_{1,3,4}$ cancel so that they are removed from the output. As a consequence the final output of Step 1 is, see also Figure 7:

$$S_1 = \{M_{1,5}, M_{1,2,1}, M_{1,2,5}, M_{1,3,1}\},$$

Figure 7: Output of Step 1 of the algorithm.

2.4.2 Weight of configurations

As a consequence of the next two lemmas, we obtain that Step 1 of the algorithm is weight preserving \textit{i.e.} $w(S_1) = w(M)$, see Corollary 2.3.
Lemma 2.1. We have:

- \(w(M) = \sum_{\ell_2 \in V_{\ell_1}} w(M_{\ell_1, \ell_2}). \)

- If \(m \geq 2, \) then for every \(k \in \{2, \ldots, m\} \) and every \(\ell_2 \in V_{\ell_1}, \ldots, \ell_k \in V_{\ell_{k-1}}^D, \)

\[
w(M_{\ell_1, \ldots, \ell_k}) = \sum_{\ell_{k+1} \in V_{\ell_k}} w(M_{\ell_1, \ldots, \ell_{k+1}}).
\]

Proof. Suppose that \(m \geq 2, \) the proof in the other case being similar. For every \(\ell_{k+1} \in V_{\ell_k}, \)

\[
M_{\ell_1, \ldots, \ell_{k+1}} = \{M_{\ell_1, \ldots, \ell_k} \setminus (\ell_{k}', \ell_{k+1})\} \cup \{(\ell_{k}', \ell_{k+1})\},
\]

then for every \(\ell_{k+1} \in V_{\ell_k}, \)

\[
\prod_{e \in M_{\ell_1, \ldots, \ell_{k+1}}} a_e = \frac{a_{\ell_{k}', \ell_{k+1}}}{a_{\ell_{k}', \ell_{k}}} \prod_{e \in M_{\ell_1, \ldots, \ell_k}} a_e.
\]

By assumption, coefficients of each line of the matrix \(A^R \) sum to 0. Returning to the definition of \(V_{\ell_k}, \)

\[
\sum_{\ell_{k+1} \in V_{\ell_k}} \prod_{e \in M_{\ell_1, \ldots, \ell_{k+1}}} a_e = - \prod_{e \in M_{\ell_1, \ldots, \ell_k}} a_e.
\] (2.3)

Combining Equation (2.3) with the definition of the weight of configurations given in Equation (2.2) yields:

\[
\sum_{\ell_{k+1} \in V_{\ell_k}} w(M_{\ell_1, \ldots, \ell_{k+1}}) = \text{sgn}(\sigma_{M_0(M_{\ell_1, \ldots, \ell_k})})(-1)^{|C|}(-1)^{|D|-k} \sum_{\ell_{k+1} \in V_{\ell_k}} \prod_{e \in M_{\ell_1, \ldots, \ell_{k+1}}} a_e
\]

\[
= \text{sgn}(\sigma_{M_0(M_{\ell_1, \ldots, \ell_k})})(-1)^{|C|}(-1)^{|D|-k}(-1) \prod_{e \in M_{\ell_1, \ldots, \ell_k}} a_e
\]

\[
= w(M_{\ell_1, \ldots, \ell_k}). \]

\(\square \)

Lemma 2.2. Suppose \(m \geq 2. \) Then for every \(k \in \{2, \ldots, m\}, \)

\[
\sum_{i=k}^m w(O_i) = \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_k \in V_{\ell_{k-1}}^D} w(M_{\ell_1, \ldots, \ell_k}).
\]

Proof. In order to simplify notations let us write, only in this proof, \(V_{\ell_k}^D \) instead of \(V_{\ell_k}^{D_{\ell_1, \ldots, \ell_k}}, \) Lemma 2.1 is proved by backward induction on \(k. \)

Suppose \(k = m. \) By definition of the last step of the algorithm, \(V_{\ell_m}^D = \emptyset, \) so that \((V_{\ell_m}^D)^c = V_{\ell_m} \) and:

\[
w(O_m) = \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_m \in V_{\ell_{m-1}}^D} w(M_{\ell_1, \ldots, \ell_{m+1}})
\]

\[
= \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_m \in V_{\ell_{m-1}}^D} w(M_{\ell_1, \ldots, \ell_m}), \text{ by Lemma 2.1,}
\]

\[
= \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_m \in V_{\ell_{m-1}}^D} w(M_{\ell_1, \ldots, \ell_m}).
\]
thus proving the case $k = m$. Suppose that the statement is true for some $k \in \{3, \ldots, m\}$. By Iteration $k - 1$ of Step 1 of the algorithm, we know that:

$$w(O_{k-1}) = \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_{k-1} \in V_{\ell_k}^D} \sum_{\ell_k \in (V_{\ell_{k-1}}^D)^c} w(M_{\ell_1, \ldots, \ell_k})$$

Combining this with the induction hypothesis yields:

$$\sum_{i=k}^{m} w(O_i) = w(O_{k-1}) + \sum_{i=k}^{m} w(O_i)$$

$$= \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_{k-1} \in V_{\ell_k}^D} \left(\sum_{\ell_k \in (V_{\ell_{k-1}}^D)^c} w(M_{\ell_1, \ldots, \ell_k}) \right)$$

$$= \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_{k-1} \in V_{\ell_k}^D} \sum_{\ell_k \in V_{\ell_k-1}} w(M_{\ell_1, \ldots, \ell_k})$$

$$= \sum_{\ell_2 \in V_{\ell_1}^D} \cdots \sum_{\ell_{k-1} \in V_{\ell_k}^D} w(M_{\ell_1, \ldots, \ell_{k-1}}) \quad \text{(by Lemma 2.1),}$$

proving the statement for $k - 1$ and ending the proof of Lemma 2.2. □

Corollary 2.3.

$$w(S_1) = w(M).$$

Proof. Suppose $m \geq 1$. Then,

$$w(S_1) = w(O_1) + \sum_{k=2}^{m} w(O_k)$$

$$= w(O_1) + \sum_{\ell_2 \in V_{\ell_1}^D} w(M_{\ell_1, \ell_2}), \quad \text{(by Lemma 2.2)}$$

$$= \sum_{\ell_2 \in (V_{\ell_1}^D)^c} w(M_{\ell_1, \ell_2}) + \sum_{\ell_2 \in V_{\ell_1}^D} w(M_{\ell_1, \ell_2}), \quad \text{(by definition of } O_1)$$

$$= \sum_{\ell_2 \in V_{\ell_1}} w(M_{\ell_1, \ell_2})$$

$$= w(M), \quad \text{(by Lemma 2.1).}$$

When $m = 0$, $S_1 = \{M\}$, and the conclusion is immediate. □

2.5 Complete algorithm

Let M_0 be a reference perfect matching of the graph G and let M be a generic one. Recall that C denotes the set of cycles of length ≥ 4 of the superimposition $M_0 \cup M$, and D denotes its set of doubled edges.
In Section 2.4, we established Step 1 of the algorithm, starting from the superimposition \(M_0 \cup M \), yielding a set of oriented edge configurations \(S_1 \) through the opening of doubled edges procedure, whose total weight is equal to the contribution of \(M \) to the Pfaffian. In this section, we introduce the complete algorithm, which in essence consists of iterations of Step 1 performed until no doubled edges of \(D \) remain.

Let us directly handle the following trivial case. If \(M_0 \cup M \) consists of cycles only, that is, if the set \(D \) is the empty, then the opening of edges procedure does not start, and recall that the output of Step 1 is \(S_1 = \{ M \} \). The same holds for the complete algorithm and its output is \(T = \{ M \} \).

2.5.1 Step 1 of the complete algorithm

Assume that the initial superimposition contains at least one doubled edge, i.e. \(D \neq \emptyset \).

Notations are complicated by the fact that the algorithm depends on the labeling of the vertices and that iterations of Step 1 depend on previous steps. We thus need many indices to keep track of everything rigorously, but one should keep in mind that, in essence, we are iterating Step 1. Let us add sub/superscripts to Step 1 of Section 2.4. That is, \(\ell_1 \) becomes \(\ell_1^0 \), Iteration \(k \) becomes \(k_1 \) and Step 1 ends at time \(m_1 \). The set of configurations obtained from Step 1 is \(S_1 = \bigcup_{\gamma_{l_1}^1 \in \Gamma_{l_1}^1} M_{\gamma_{l_1}^1} \), and its weight is \(w(S_1) = \sum_{\gamma_{l_1}^1 \in \Gamma_{l_1}^1} w(M_{\gamma_{l_1}^1}) \).

For every \(\gamma_{l_1}^1 \in \Gamma_{l_1}^1 \), let \(D_{\gamma_{l_1}^1} \) be the set of doubled edges of the superimposition \(M_0 \cup M_{\gamma_{l_1}^1} \). If \(D_{\gamma_{l_1}^1} = \emptyset \), then stop; else go to Step 2.

Output of Step 1 of the complete algorithm. It is the subset \(T_1 \) of \(S_1 \), consisting of configurations \(M_{\gamma_{l_1}^1} \) where \(\gamma_{l_1}^1 \in \Gamma_{l_1}^1 \) and \(D_{\gamma_{l_1}^1} \) is empty. Formally,

\[
T_1 = \bigcup_{\gamma_{l_1}^1 \in (\tilde{\Gamma}_{l_1})^e} M_{\gamma_{l_1}^1},
\]

where \((\tilde{\Gamma}_{l_1})^e \) is the set of paths \(\gamma_{l_1}^1 \) of \(\Gamma_{l_1}^1 \) such that \(D_{\gamma_{l_1}^1} \) is non-empty. If for all \(\gamma_{l_1}^1 \in \Gamma_{l_1}^1 \), the set \(D_{\gamma_{l_1}^1} \) is non-empty, then \(T_1 = \emptyset \).

Example. Recall that the output of Step 1 is \(S_1 = \{ M_{1,5}, M_{1,2,1}, M_{1,2,5}, M_{1,3,1} \} \). The set of doubled edges of the superimposition of \(M_0 \) and \(M_{\gamma_{l_1}^1} \) is empty, so that the output of Step 1 of the complete algorithm is \(T_1 = \{ M_{1,2,1}, M_{1,2,5}, M_{1,3,1} \} \), and the algorithm continues with the configuration \(M_{1,5} \).

2.5.2 Step \(j \) of the complete algorithm, \(j \geq 2 \)

For every \(\gamma_{l_1}^1 \in \tilde{\Gamma}_{l_1}^1, \ldots, \gamma_{l_j-1}^1 \in \tilde{\Gamma}_{l_j-1}^1(\gamma_{l_1}^1, \ldots, \gamma_{l_{j-2}}^1) \), perform Step 1 of the algorithm with the initial superimposition \(M_0 \cup M_{\gamma_{l_1}^1, \ldots, \gamma_{l_{j-1}}^1} \). That is, define \(\ell_{l_1}^j = \min\{i \in V : i \text{ belongs to a doubled edge of } D_{\gamma_{l_1}^1, \ldots, \gamma_{l_{j-1}}^1}\} \), and iterate until the algorithm ends at some
Then, the output \(T \) is non-empty. If \(D \) is empty, stop; else go to Step \(j+1 \).

Output of Step \(j \) of the complete algorithm.

Let \(T_j(\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}) \) be the subset of \(S_j(\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}) \), consisting of configurations \(M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}} \) such that \(D_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}} \) is empty. Formally,

\[
T_j(\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}) = \bigcup_{\gamma_{\ell_1}^{1} \in \Gamma_{\ell_1}^{(1)}} M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}},
\]

where

\[
\Gamma_{\ell_1}^{(1)}(\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}) = \left\{ \gamma_{\ell_1}^{1} : \text{\(\gamma_{\ell_1}^{1} \) is a path } \ell_1^{\prime},\ell_1^{\prime\prime},\ldots,\ell_k^{1},\ell_k^{1\prime},\ell_k^{1\prime\prime},\ell_k^{1+1}, \text{ for some } k \in \{1,\ldots,m_j\}, \text{ such that } \ell_1^{1} = \min\{i \in V : i \text{ belongs to a doubled edge of } D_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}} \} \right\}
\]

\[
\forall i \in \{2,\ldots,k\}, \ell_i^{1} \in V_{\ell_i^{1-1}}, \quad \ell_i^{1\prime} \text{ is the partner of } \ell_i^{1} \text{ in } M_0 \text{ and } M,
\]

\[
\ell_{k_j+1}^{1} \in \left(V_{\ell_{k_j}^{1}} \right)^{D_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}}},
\]

\[
M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}} = M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1},\ell_{k_j+1}^{1}},
\]

\[
w(M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}}) = \text{sgn}(\sigma_{M_0}(M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1},\ell_{k_j}^{1},\ell_{k_j+1}^{1}))(-1)^{|D|-(k_1+\ldots+k_j)}(-1)^{|C|} \prod_{e \in M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}}} a_e.
\]

For every \(\gamma_{\ell_1}^{1} \in \Gamma_{\ell_1}^{(1)}(\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1-1}) \), do the following: if \(D_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}} \) is empty, stop; else go to Step \(j+1 \).

For convenience, we shall also use the notation \(\Gamma_j \) for the paths \((\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}) \) involved in \(T_j \), i.e:

\[
T_j = \bigcup_{(\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}) \in \Gamma_j} M_{\gamma_{\ell_1}^{1},\ldots,\gamma_{\ell_i}^{1}}.
\]
The weight of \mathcal{T}_j is the sum of the weights of the configurations it contains.

Example. In Step 2, we perform Step 1 of the algorithm starting from the initial superimposition $M_0 \cup M_{1,5}$. The latter contains one doubled edge 23, thus the vertex ℓ_{1}^{2} is the smallest of 2 and 3, that is 2. The output \mathcal{S}_2 consists of the configurations $M_{1,5;2,1}, M_{1,5;2,4}, M_{1,5;2,5}$, depicted in Figure 8 below.

The superimposition of M_0 and the above three configurations contains no doubled edges. As a consequence, the complete algorithm stops and the output \mathcal{T}_2 of Step 2 is:

$$\mathcal{T}_2 = \{M_{1,5;2,1}, M_{1,5;2,4}, M_{1,5;2,5}\}.$$

2.5.3 End and output of the complete algorithm

The algorithm stops at Step T for the first time, if it hasn’t stopped at time $T - 1$, and if for every $\gamma_{\ell_{1}^{1}}, \ldots, \gamma_{\ell_{1}^{T-1}} \in \mathcal{\Gamma}_{\ell_{1}^{T}}(\gamma_{\ell_{1}^{1}}, \ldots, \gamma_{\ell_{1}^{T-2}})$, the superimposition $M_0 \cup M_{\gamma_{\ell_{1}^{1}}, \ldots, \gamma_{\ell_{1}^{T-1}}}^{\ell_{1}}$ contains no doubled edge. This implies in particular that $\mathcal{\Gamma}_{\ell_{1}^{T}}(\gamma_{\ell_{1}^{1}}, \ldots, \gamma_{\ell_{1}^{T-1}}) = \mathcal{\Gamma}_{\ell_{1}^{T}}(\gamma_{\ell_{1}^{1}}, \ldots, \gamma_{\ell_{1}^{T-2}})$. Since the number of doubled edges decreases at every step and since \mathcal{D} is finite, we are sure that this happens in finite time.

The output \mathcal{T} of the complete algorithm is:

$$\mathcal{T} = \bigcup_{j=1}^{T} \mathcal{T}_j.$$

Example. The output of the complete algorithm is:

$$\mathcal{T} = \mathcal{T}_1 \cup \mathcal{T}_2 = \{M_{1,2,1}, M_{1,2,5}, M_{1,3,1}, M_{1,5;2,1}, M_{1,5;2,4}, M_{1,5;2,5}\},$$

summarized in Figure 9 below.

The weight of \mathcal{T} is the sum of the weights of the configurations it contains. If the initial superimposition $M_0 \cup M$ consists of cycles only, i.e. the set \mathcal{D} is empty, then $\mathcal{T} = \{M\}$, and

$$w(\mathcal{T}) = w(M) = \text{sgn}(\sigma_{M_0(M)})(-1)^{|\mathcal{C}|} \prod_{e \in M} a_e.$$
Figure 9: Output of the complete algorithm.

In all other cases:

$$w(T) = \sum_{j=1}^{T} \sum_{(\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}) \in \Gamma_j} w(M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}).$$

Since for every $j \in \{1, \ldots, T\}$, and for every $(\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}) \in \Gamma_j$, the superimposition $M_0 \cup M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}$ contains no doubled edge of \mathcal{D}, we have:

$$w(M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}) = \text{sgn}(\sigma_{M_0(M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}})})(-1)^{|C|} \prod_{e \in M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}} a_e. \quad (2.5)$$

By iterating the argument of Section 2.4.2, we obtain the following:

Corollary 2.4. The complete algorithm is weight preserving, that is:

$$w(T) = w(M).$$

2.6 Geometric characterization of configurations

Consider the superimposition $M_0 \cup M$, recall that \mathcal{C} denotes the set of cycles of length ≥ 4 of $M_0 \cup M$, and that \mathcal{D} denotes its set of doubled edges. Consider the complete algorithm with initial superimposition $M_0 \cup M$ in the case where $M_0 \cup M$ contains doubled edges, that is, when $\mathcal{D} \neq \emptyset$. Let $j \in \{1, \ldots, T\}$, $(\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}) \in \Gamma_j$, and $M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}} \in T$ be a generic output; and denote by $F_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}$ the superimposition $M_0 \cup M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}$. In order to simplify notations, we introduce:

$$\forall i \in \{1, \ldots, j\}, \quad F_i := F_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_i}}.$$

One should keep in mind that the index j refers to the last step of the algorithm, and that indices $i \in \{1, \ldots, j - 1\}$ refer to intermediate steps. As a consequence of the algorithm, see 2.4, the configuration F_j and the paths $\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}$ satisfy the following properties.

- **The oriented edge configuration F_j:**

 (I) has one outgoing edge at every vertex of V. It consists of the paths $\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}$ and of the cycles \mathcal{C} of the initial superimposition $M_0 \cup M$;

 (II) has no doubled edge of \mathcal{D} since the complete algorithm precisely stops when this is the case.
For every $i \in \{1, \ldots, j\}$, the path γ_{ℓ_1} satisfies the following.

(III) It has even length $2k_i$ for some $k_i \in \{1, \ldots, m_i\}$ and is alternating. It starts from the vertex ℓ_1, followed by an edge of M_0.

(IV) The vertex ℓ_i is the smallest vertex belonging to a doubled edge of F_{i-1} (understood as $M_0 \cup M$ when $i = 1$). The first vertices of the path ℓ_{k_i+1} belongs to:

$$
\left(V_{\ell_{k_i}}^{D_{\gamma_{\ell_1}}^{1-1}, \ldots, \ell_{k_i}^{1-1}} \right)^c = V_{\ell_{k_i}} \cap \{ R \cup V^C \cup V^{\gamma_{\ell_1}}, \ldots, \ell_{k_i}^1, (\ell_{k_i}^1)' \}.
$$

As a consequence, one of the following 5 cases holds.

- If $\ell_{k_i+1} \in R \cup V^C \cup \{ \ell_1^1, (\ell_1^1)', \ldots, \ell_{k_i}^1, (\ell_{k_i}^1)' \}$, then γ_{ℓ_1} consists of a new connected component, and we recover the three cases obtained after Step 1 of the algorithm, replacing γ_{ℓ_1} by γ_{ℓ_1}, see Section 2.4.1 For convenience of the reader, we repeat these cases here.

(IV)(1) If $\ell_{k_i+1} \in R$, then γ_{ℓ_1} is a loopless oriented path from ℓ_1^1 to one of the root vertices of R. Since $R = \{ n + 1, \ldots, n + r \}$, ℓ_1^1 is smaller than all vertices of γ_{ℓ_1}. The vertex ℓ_1^1 is a leaf of a connected component of F_i, which consists of the path γ_{ℓ_1}.

(IV)(2) If $\ell_{k_i+1} \in V^C$, then γ_{ℓ_1} is a loopless oriented path ending at a vertex of one of the cycles of C. The vertex ℓ_1^1 is smaller than the 2k_i first vertices of the path, but cannot be compared to vertices of the cycle of C. By construction of the orientation of $M_0 \cup M$, see Section 2.1, the orientation of the cycle is compatible with that of the edge $\{ i_1, i_2 \}$, where i_1 is the smallest vertex of the cycle and i_2 is its partner in M_0. The vertex ℓ_1^1 is a leaf of a connected component of F_i, which is a unicycle with γ_{ℓ_1} as unique branch and a cycle of C as cycle.

(IV)(3) When $\ell_{k_i+1} \in \{ \ell_1^1, (\ell_1^1)', \ldots, \ell_{k_i}^1, (\ell_{k_i}^1)' \}$, then γ_{ℓ_1} contains a loop of length ≥ 3. Recall that configurations with odd cycles cancel because of the skew-symmetry of the matrix, so that we only consider configurations where $\ell_{k_i+1} = \ell_s^1$ for some $s \in \{ 1, \ldots, k_i \}$. In this case, the part of the path γ_{ℓ_1} to the loop has even length, is alternating and start with an edge of M_0. The loop has even length ≥ 4, is alternating and its orientation is compatible with the orientation of the edge (ℓ_s^1, ℓ_s^1). The vertex ℓ_1^1 is smaller than all vertices of the path to the cycle and smaller than all vertices of the cycle.

If $\ell_{k_i+1} \neq \ell_1^1$, then ℓ_1^1 is a leaf of a connected component of F_i which is a unicycle with a unique branch, consisting of the path γ_{ℓ_1}.

If $\ell_{k_i+1} = \ell_1^1$, then ℓ_1^1 is the smallest vertex of a connected component of F_i which is a cycle, consisting of the path γ_{ℓ_1}.

- If $\ell_{k_i+1} \in V^{\gamma_{\ell_1}^{1-1}}$ then the path γ_{ℓ_1} attaches itself to a connected component of F_{i-1}, this can only occur when $i \geq 2$, and one of the following happens.
(IV)(4) The path γ_{ℓ_1} attaches itself to a leaf of F_{i-1}, that is, $\ell_{k_i+1} = \ell_1$ for some $t \in \{1, \ldots, i-1\}$. Then γ_{ℓ_1} is a loopless oriented path from ℓ_1 to ℓ_1. The vertex ℓ_1 is smaller than the $2k_i$ following ones, but greater than ℓ_1. Indeed ℓ_1 is the starting point of a previous step of the algorithm. This allows to identify the ending vertex of the path γ_{ℓ_1}. The vertex ℓ_1 is a leaf of F_i.

(IV)(5) The path γ_{ℓ_1} creates a new branch of the component. Then γ_{ℓ_1} is a loopless oriented path. The vertex ℓ_1 is smaller than the $2k_i$ following ones, but we have no a priori information on the last vertex of the path. The last vertex of the path γ_{ℓ_1} is nevertheless identified as being a fork. The vertex ℓ_1 is a leaf of F_i. Note that the component of ℓ_1 might be a unicycle with a unique branch. If this is the case, the branch is the path γ_{ℓ_1} and the cycle was created by Case (IV)(3) in a previous step of the algorithm. The vertex ℓ_1 is thus larger than the smallest vertex of the cycle.

Lemma 2.5. The oriented edge configuration F_j is an RCRSF compatible with M_0.

Proof. By definition of the algorithm, the oriented edge configuration F_j contains as many edges as $M_0 \cup M$, that is $|V|$ edges. By definition, it contains all edges of M_0, that is $|V|/2$ edges, and by the algorithm no doubled edges of D, that is $|V|/2$ edges not in M_0.

By Point (I) the oriented edge configuration F_j has one outgoing edge at every vertex of V, which is equivalent to saying that it is an RCRSF such that edges of each component are oriented towards its root, and cycles are oriented in one of the two possible directions.

It thus remains to show that cycles of unicyles are alternating, and have even length ≥ 4. By Point (II), the oriented edge configuration F_j has no doubled edge of D, thus if F_j has a cycle, it either comes from Point (IV)(2) meaning that it is a cycle of C implying that it is even, alternating and has length ≥ 4; or from Point (IV)(3), when it is created by the algorithm. Returning to the description of Point (IV)(3) and recalling that the contribution of configurations with odd cycles cancel, we know that it has the same properties in this case.

For every $i \in \{1, \ldots, j\}$, and for every connected component of F_i which is a cycle C created by the algorithm (i.e. not a cycle of the initial superimposition), denote by m_C the smallest vertex of C. Define x_i to be:

$$x_i = \begin{cases} \max\{m_C : C \text{ is a cycle-connected component of } F_i, \text{ but not of } C\} & \text{if } \{\} \neq \emptyset \\ -\infty & \text{otherwise.} \end{cases}$$

If F_i has at least one leaf, let y_i be the maximum leaf of F_i, else let $y_i = -\infty$.

If both x_i and y_i are $-\infty$, then F_i has no leaves and only contains cycles of the initial superimposition $M_0 \cup M$. This means that the set D is empty, and that F is the initial superimposition $M_0 \cup M$. This has been excluded here, since the complete algorithm doesn’t even start the opening of edges procedure in this case. Thus $\max\{x_i, y_i\} > -\infty$.

Lemma 2.6. For every $i \in \{1, \ldots, j\}$, the initial vertex ℓ_i of Step i is the maximum of x_i and y_i.

23
Proof. By Point (IV) above, the vertex ℓ_1^i is either a leaf of F_i or the smallest vertex of a connected component of F_i, which is a cycle created by the algorithm, meaning that it is not a cycle of C i.e. not a cycle of the initial superimposition $M_0 \cup M$. Arguing by induction, all leaves and smallest vertices of cycle-components of F_i which are not present in C, must be initial vertices of steps i of the algorithm for some $i \in \{1, \ldots, j\}$. Moreover by construction, the vertex ℓ_1^i is larger than all previous initial steps of the algorithm, thus proving the lemma.

Properties described in Point(IV) also characterize the path $\gamma_{\ell_1^i}$ once the initial vertex ℓ_1^i is fixed. This can be summarized in the following lemma.

Lemma 2.7. Let ℓ_1^i be the initial vertex of Step i. Then:

- Suppose that ℓ_1^i is a leaf of a connected component of F_i. When the component is a unicycle rooted on a cycle created by the algorithm, we assume moreover that it contains more than one branch. Then, we are in Cases (IV)(1)(2) or (5) and the path $\gamma_{\ell_1^i}$ is characterized as the subpath of the unique path from ℓ_1^i to the root of the connected component, stopping the first time one visits a vertex which: belongs to R or to the cycle of the component; is a fork; is smaller than ℓ_1^i.

- Suppose that ℓ_1^i is the leaf of a unicycle of F_i rooted on a cycle created by the algorithm and containing a unique branch. If ℓ_1^i is larger than the smallest vertex of the cycle, then we are in Case (IV)(5) and the path $\gamma_{\ell_1^i}$ is the path from ℓ_1^i to the cycle, stopping when the cycle is reached. Else, if ℓ_1^i is smaller than the smallest vertex of the cycle, we are in Case (IV)(3) and the path $\gamma_{\ell_1^i}$ is the path from ℓ_1^i to the cycle, followed by the cycle, with the orientation specified in (IV)(3).

- If ℓ_1^i is the smallest vertex of a connected component of F_i which is a cycle created by the algorithm, then we are in Case (IV)(3) and the path $\gamma_{\ell_1^i}$ is the cycle, with the orientation specified in (IV)(3).

Remark 2.8. If the initial superimposition $M_0 \cup M$ consists of cycles only, that is, if the set D is empty, then the output of the complete algorithm is $F = M_0 \cup M$, which consists of alternating cycles of even length ≥ 4. The orientation of cycles is specified in Section 2.1, and cycles are oriented in one of the possible two directions. In this case also, F is an RCRSF compatible with M_0.

3 Proofs and corollaries

We now prove Theorem 1.1, Corollary 1.3 and state and prove the line bundle version of the result.

3.1 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Let M_0 be a reference perfect matching of G, and let F be an RCRSF compatible with M_0, containing k_F unicycles. In Lemma 3.2, we
suppose that F is an output of the complete algorithm and identify 2^{k_F} possible perfect matchings M for the initial superimposition $M_0 \cup M$. Then, we introduce a partial reverse algorithm used to define Condition (C) for RCRSFs compatible with M_0. In Proposition 3.3, we prove that an RCRSF compatible with M_0 is an output of the complete algorithm if and only if it satisfies Condition (C), and if this is the case, it is obtained 2^{k_F} times. The remainder of the proof consists in showing that contribution of RCRSFs containing unicycles cancel, and that only spanning forests remain with the appropriate weight, thus proving Theorem 1.1.

Let F be an RCRSF compatible with M_0, and let k_F denote the number of unicycles it contains. If $k_F \neq 0$, we let $\{C_1, \ldots, C_{k_F}\}$ be its set of cycles. For every $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$, define the edge configuration $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ as follows:

$$M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} = \begin{cases}
\text{edges of } M_0 \text{ on branches of } F & \text{if } \varepsilon_j = 0, \\
\text{edges of } M_0 \text{ on the cycle } C_j, \text{ when } \varepsilon_j = 0 & \text{if } \varepsilon_j = 0, \\
\text{edge of } F \setminus M_0 \text{ on the cycle } C_j, \text{ when } \varepsilon_j = 1. & \text{if } \varepsilon_j = 1.
\end{cases}$$

If $k_F = 0$, then the set of cycles of F is $\{\emptyset\}$, and we set $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} = M_0$.

Lemma 3.1. For every RCRSF F compatible with M_0, and every $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$, the edge configuration $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ is a perfect matching of G.

Proof. If F contains no unicycles, $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} = M_0$ and this is immediate. Suppose $k_F \neq 0$. Since M_0 is a perfect matching, and since the restriction of M_0 and the restriction of $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ to branches of F are the same, all vertices of $V \setminus \{V(C_1), \ldots, V(C_{k_F})\}$ are incident to exactly one edge of $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$. Moreover, by assumption for every j, the cycle C_j is alternating, implying that each vertex of $V(C_j)$ is incident to exactly one edge of the restriction of M_0 and one edge of the restriction of $F \setminus M_0$ to C_j. As a consequence, every vertex of V is incident to exactly one edge of $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$, proving that it is a perfect matching of G. \qed

Lemma 3.2. Let F be the superimposition of M_0 and of an output of the complete algorithm. Then, the perfect matching M of the initial superimposition $M_0 \cup M$, must be equal to $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ for some $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$.

Proof. If F is an output of the complete algorithm, then by Lemma 2.5 and Remark 2.8, it is an RCRSF compatible with M_0, so that $\forall (\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$, the perfect matching $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ is well defined. Suppose that F is an output of the complete algorithm with initial superimposition $M_0 \cup M$, where M is not $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ for some $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$. Then, $M_0 \cup M$ contains at least one cycle C which is not C_1, \ldots, C_{k_F}. Returning to the definition of the algorithm, we know that cycles present in the initial superimposition are also present in the output F. This yields a contradiction since F contains exactly the cycles C_1, \ldots, C_{k_F}. \qed

Partial reverse algorithm

Input: an RCRSF F compatible with M_0 not consisting of cycles only.

25
Initialization: $F_1 = F$.

Step i, $i \geq 1$

Let $\bar{\ell}_1$ be the largest leaf of F_i, and consider the connected component containing $\bar{\ell}_1$. Start from $\bar{\ell}_1$ along the unique path joining $\bar{\ell}_1$ to the root or the cycle of the component, until the first time one of the following vertices is reached:

- the root vertex if the component is a tree, or the cycle if it is a unicycle;
- a fork;
- a vertex which is smaller than the leaf $\bar{\ell}_1$.

This yields a loopless path $\lambda_{\bar{\ell}_1}$ starting from $\bar{\ell}_1$, of length ≥ 1. Let $F_{i+1} = F_i \setminus \lambda_{\bar{\ell}_1}$. If F_{i+1} is empty or contains cycles only, then stop. Else, go to Step $i+1$.

End: since edges are removed at every step and since F contains finitely many edges, the algorithm ends in finite time N.

Definition 3.1. An RCRSF F compatible with M_0 is said to satisfy Condition (C) if either F consists of cycles only, or if each of the paths $\lambda_{\bar{\ell}_1}, \ldots, \lambda_{\bar{\ell}_N}$, obtained from the partial reverse algorithm has even length and starts from an edge of M_0.

Proposition 3.3. Let F be an RCRSF compatible with M_0. Then, for every $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$, F is the superimposition of M_0 and of an output of the complete algorithm, with initial superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$, if and only if F satisfies Condition (C). The orientation of cycles of F is specified by the proof.

Proof. Let F be an RCRSF compatible with M_0 containing k_F unicycles, and denote by $\{C_1, \ldots, C_{k_F}\}$ its set of cycles. For every $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$, the edge configuration $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ is well defined, and by Lemma 3.1 is a perfect matching. We now fix $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$. Recall that if $k_F = 0$, then the perfect matching $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ is simply M_0.

In the case where $k_F \neq 0$, $(\varepsilon_1, \ldots, \varepsilon_{k_F}) = (1, \ldots, 1)$, and F consists of cycles only, the superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ consists of cycles only, and $F = M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ is an output of the complete algorithm. The orientation of the cycles is specified by the choice of orientation of Section 2.1, thus proving Proposition 3.3.

Assume that we are not in the above case. Then F is an output of the algorithm with initial superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ if and only if there exists a positive integer j and a sequence of paths $(\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}) \in \Gamma_j$ such that $F = M_0 \cup M_{\gamma_{\ell_1}, \ldots, \gamma_{\ell_j}}$.

Lemmas 2.6 and 2.7 give a characterization of ℓ_1 and γ_{ℓ_1} at every step of the algorithm. This allows us to define a complete reverse algorithm.

Complete reverse algorithm

Input: an RCRSF F compatible with M_0, $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$ as above, and the corresponding perfect matching $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$. If $k_F = 0$, then $M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} = M_0$. 26
Initialization: $F_1 = F$.

Step i, $i \geq 1$.

Since F_i is either F_1 or is obtained from F_{i-1} by removing edges, the set of cycles of F_i is included in the set of cycles $\{C_1, \ldots, C_{k_F}\}$ of F_1.

For every connected component of F_i which is a cycle C_α such that $\varepsilon_\alpha = 0$ (meaning that C_α is not a cycle of the initial superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$), let m_{C_α} be the smallest vertex of C_α. Define

$$x_i = \begin{cases} \max\{m_{C_\alpha} : C_\alpha \text{ is a cycle-connected component of } F_i, \text{ and } \varepsilon_\alpha = 0\} & \text{if } \{\} \neq \emptyset \\ -\infty & \text{else.} \end{cases}$$

If F_i has at least one leaf, let y_i be the maximum leaf, else let $y_i = -\infty$. Note that by assumption, we do not have $x_i = y_i = -\infty$. We let $\ell_1 = \max\{x_i, y_i\}$, and γ_{ℓ_1} be the oriented path as characterized in Lemma 2.7.

Let $F_{i+1} = F_i \setminus \gamma_{\ell_1}$. If the oriented edge configuration F_{i+1} is empty, or if it consists of cycles of the superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ only, then stop; else go to Step $i + 1$.

End: since edges are removed at every step and since F contains finitely many edges, the algorithm ends in finite time j, for some integer j.

This defines for every RCPSF F compatible with M_0, a sequence of paths $\gamma_{\ell_1}, \ldots, \gamma_{\ell_N}$ such that F is the union of these paths and of cycles of the initial superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$. As a consequence, the oriented edge configuration F satisfies Properties (I), (II), (IV)(1)-(5). We are thus left with proving that F satisfies Property (III) if and only if it satisfies Condition (C), i.e. we need to show that the paths $(\gamma_{\ell_1}, \ldots, \gamma_{\ell_N})$ all have even length, are alternating and start from an edge of M_0 if and only if F satisfies Condition (C).

Observe that initial vertices (ℓ_1, \ldots, ℓ_N) of the complete reverse algorithm consist of initial vertices (ℓ_1, \ldots, ℓ_1) of the partial reverse algorithm, interlaced with smallest vertices of components which are cycles. Indeed, the only difference in the partial reverse algorithm is that cycles are not removed, but this does not change the characterization of largest leaf.

If ℓ_1 is the smallest vertex of a component of F_i which is a cycle, that is, if $\ell_1 = x_i$, then γ_{ℓ_1} is a cycle $C_\alpha \in \{C_1, \ldots, C_{k_F}\}$ such that $\varepsilon_\alpha = 0$. Since F is compatible with M_0, the cycle has even length and is alternating. The orientation is fixed by the algorithm and γ_{ℓ_1} always satisfies Property (III).

If ℓ_1 is the largest leaf of F_i, that is, if $\ell_1 = y_i$, then in all cases except one, which we treat below, the path γ_{ℓ_1} is exactly the path $\lambda_{\ell_1'}$ of the partial reverse algorithm, for some $\ell' \leq i$. Condition (C) says that $\lambda_{\ell_1'}$ has even length and starts from an edge of M_0. In order to show that this is equivalent to satisfying Property (III), we are left with showing that, by construction, the path $\lambda_{\ell_1'}$ is always alternating. Suppose that this is not the case, then there are at least two edges of the same kind (either in M_0 or not in M_0) which follow each other. This implies that there is a vertex v of the path incident to two edges of the same kind. Since M_0 is a perfect matching, every vertex is incident to exactly one edge of
M_0, so that we cannot have two edges of M_0 following each other. Thus these two edges do not belong to M_0. Again, since M_0 is a perfect matching, the vertex v is also incident to an edge of M_0, implying that v is the end of a branch. By construction of the path $\lambda_{\bar{F}'}$, the path must stop at v, implying that one of the two edges is not in $\lambda_{\bar{F}'}$, yielding a contradiction.

We now treat the last case. If ℓ_1 is a leaf of a connected component of F_i which is a unicycle rooted on a cycle C_α such that $\varepsilon_\alpha = 0$, with a unique branch, and such that ℓ_1 is smaller than the smallest vertex of the cycle. Then the path γ_{ℓ_1} is the path $\lambda_{\bar{F}'}$ followed by the cycle with the appropriate orientation. We have to show that γ_{ℓ_1} satisfies Property (III) if and only if $\lambda_{\bar{F}'}$ satisfies Condition (C). By Property (III), we know that the part of γ_{ℓ_1} stopping when the cycle is reached, which is precisely $\lambda_{\bar{F}'}$, has even length and starts from an edge of M_0. This is exactly Condition (C), since by the same argument as above, the path $\lambda_{\bar{F}'}$ is alternating. We conclude by observing that since F is compatible with M_0, the cycle part of γ_{ℓ_1} is alternating, and starts from an edge of M_0 by construction of the orientation of the cycle. Thus γ_{ℓ_1} satisfies Property (III) if and only if F is compatible with M_0 and satisfies Condition (C).

We denote by $\mathcal{G}(M_0)$ the set of RCRSFs compatible with M_0 satisfying Condition (C). Let F be an RCRSF of $\mathcal{G}(M_0)$, and let k_F be its number of unicyles. If $k_F \neq 0$, then for every $(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}$, denote by $F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ the version of F obtained from the complete algorithm with initial superimposition $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$, with the orientation of cycles given by Proposition 3.3. If $k_F = 0$, then F is obtained exactly once from the complete algorithm with initial superimposition $M_0 \cup M_0$.

Since $M_0 \cup M^{(\varepsilon_1, \ldots, \varepsilon_{k_F})}$ has exactly $\sum_{i=1}^{k_F} \varepsilon_i$ cycles, and since $M_0 \cup M_0$ has none, we have as a consequence of the complete algorithm, see Equation (2.5), that the weight $w_{M_0}(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0)$ is equal to:

$$
\text{sgn}(\sigma_{M_0(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0)}) \cdot \begin{cases}
(-1)^{\sum_{i=1}^{k_F} \varepsilon_i} \prod_{\varepsilon \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_{\varepsilon} & \text{if } k_F \neq 0 \\
\prod_{\varepsilon \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_{\varepsilon} & \text{if } k_F = 0.
\end{cases}
$$

(3.1)

Recall that T denotes the output of the complete algorithm with initial superimposition $M_0 \cup M$ for a fixed reference perfect matching M_0 and a generic perfect matching M of G. Since we now aim at taking the union over all perfect matchings M, we write T as $T_{M_0}(M)$.

As a consequence of Proposition 3.3 we have that $\bigcup_{M \in \mathcal{M}} T_{M_0}(M)$ is equal to:

$$
\left(\bigcup_{\{F \in \mathcal{G}(M_0): k_F \neq 0\}} \bigcup_{(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0, 1\}^{k_F}} F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0 \right) \bigcup \left(\bigcup_{\{F \in \mathcal{G}(M_0): k_F = 0\}} F \setminus M_0 \right).
$$

(3.2)

Returning to the definition of the Pfaffian of Equation (2.1), using Corollary 2.4 and
Equation (3.2) in the last line, we deduce that:

\[Pf(A) = \sum_{M \in \mathcal{M}} w_{M_0}(M), \quad \text{(Definition of Equation (2.1))} \]

\[= \sum_{M \in \mathcal{M}} w(\mathcal{T}_{M_0}(M)), \quad \text{(by Corollary 2.4)} \]

\[= \sum_{\{F \in \mathcal{G}(M_0) : k_F \neq 0\}} \sum_{(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0,1\}^{k_F}} w_{M_0}(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0) + \sum_{\{F \in \mathcal{G}(M_0) : k_F = 0\}} w_{M_0}(F \setminus M_0). \]

Let us show that (I) is equal to zero. As a consequence of Equation (3.1), it is equal to:

\[(I) = \sum_{\{F \in \mathcal{G}(M_0) : k_F \neq 0\}} \sum_{(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0,1\}^{k_F}} \text{sgn}(\sigma_{M_0(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0)})\prod_{e \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_e. \]

Observing that the term \(\text{sgn}(\sigma_{M_0(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0)})\prod_{e \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_e \) is independent of \((\varepsilon_1, \ldots, \varepsilon_{k_F}), \) we conclude that:

\[(I) = \sum_{\{F \in \mathcal{G}(M_0) : k_F \neq 0\}} \text{sgn}(\sigma_{M_0(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0)})\prod_{e \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_e \left(\sum_{(\varepsilon_1, \ldots, \varepsilon_{k_F}) \in \{0,1\}^{k_F}} (-1)^{\sum_{i=1}^{k_F} \varepsilon_i} \prod_{e \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_e \right) \]

\[= \sum_{\{F \in \mathcal{G}(M_0) : k_F \neq 0\}} \text{sgn}(\sigma_{M_0(F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0)})\prod_{e \in F^{(\varepsilon_1, \ldots, \varepsilon_{k_F})} \setminus M_0} a_e \left(1 - 1^{k_F}\right) \]

\[= 0. \]

Thus,

\[Pf(A) = \sum_{\{F \in \mathcal{G}(M_0) : k_F = 0\}} w_{M_0}(F \setminus M_0) \]

\[= \sum_{\{F \in \mathcal{G}(M_0) : k_F = 0\}} \text{sgn}(\sigma_{M_0(F \setminus M_0)})\prod_{e \in F \setminus M_0} a_e. \]

The set \(\{F \in \mathcal{G}(M_0) : k_F = 0\} \) consists of RCRSFs compatible with \(M_0 \) containing no unicycles, and satisfying Condition (C). Observing that:

- the set of RCRSFs compatible with \(M_0 \), containing no unicycle is exactly the set of spanning forests of \(G^R \) compatible with \(M_0 \) of Section 1.1 of the introduction,
- in the case of spanning forests, the partial reverse algorithm is exactly the trimming algorithm of Section 1.1,
- Condition (C) of Definition 1.2 and Condition (C) of Definition 3.1 are the same in the case of spanning forests,
- the permutation \(\sigma_{M_0(F \setminus M_0)} \) obtained from the algorithm is the permutation of Definition 1.1.
we deduce that \(\{ F \in \mathcal{G}(M_0) : k_F = 0 \} = \mathcal{F}(M_0) \), and thus conclude the proof of Theorem 1.1.

Example. Let us take the reference matching \(M_0 \) which followed us throughout the paper, and consider the three possible perfect matchings \(M_1, M_2, M_3 \) of the graph \(G \) given in Figure 2. Figure 9 shows the output of the complete algorithm with initial superimposition \(M_0 \cup M_1 \). Since the superimpositions \(M_0 \cup M_2 \) and \(M_0 \cup M_3 \) contain doubled edges only, the output of the algorithm with these respective initial superimpositions, are the configurations themselves. By the Theorem 1.1, configurations \(M_2 \) and \(M_{1,2,1} \) have opposite weights, and configurations \(M_3 \) and \(M_{1,3,1} \) as well, so that their contributions cancel in the Pfaffian. As a consequence, signed weighted half-spanning trees counted by the Pfaffian of the matrix \(A \) are those of Figure 10 below.

![Figure 10: Black edges of the above configurations are half-spanning trees counted by the Pfaffian of the matrix A.](image)

3.2 Proof of Corollary 1.3

Let us recall the setting: \(A^R \) is a skew-symmetric matrix of size \((n + r) \times (n + r)\), whose column sum is zero, with \(n \) even; \(A \) is the matrix obtained from \(A^R \) by removing the \(r \) last lines and columns; \(G^R \) and \(G \) are the graphs naturally constructed from \(A^R \) and \(A \) in the introduction.

Recall, see Section 2.1, that the sign of the permutation \(\sigma_M \) assigned to a perfect matching \(M \) counted by the Pfaffian of \(A \), depends on the ordering of the two elements of pairs involved in the perfect matching, but not on the ordering of the pairs themselves. Choosing the sign of \(\sigma_M \) thus amounts to choosing an orientation of edges of the perfect matching \(M \). The Pfaffian of \(A \) can thus be written as:

\[
\text{Pf}(A) = \sum_{M \in \mathcal{M}} \text{sgn}(\sigma_M) \prod_{e \in M} a_e,
\]

where the product is over coefficients corresponding to a choice of orientation of edges of the perfect matching \(M \), specifying a choice of permutation \(\sigma_M \).

Now, it is a known fact that the determinant of a skew-symmetric matrix is equal to the square of the Pfaffian:

\[
\det(A) = \left(\sum_{M_0 \in \mathcal{M}} \text{sgn}(\sigma_{M_0}) \prod_{e \in M_0} a_e \right) \left(\sum_{M \in \mathcal{M}} \text{sgn}(\sigma_M) \prod_{e \in M} a_e \right).
\]
As in Section 2.1, for every $M_0 \in \mathcal{M}$, we choose the permutation σ_{M} using the superposition $M_0 \cup M$. Equation (2.1) thus yields:

$$\det(A) = \sum_{M_0 \in \mathcal{M}} \text{sgn}(\sigma_{M_0}) \prod_{e \in M_0} a_e \left(\sum_{M \in \mathcal{M}} \text{sgn}(\sigma_{M_0(M)}) (-1)^{|D(M_0 \cup M)|}(-1)^{|C(M_0 \cup M)|} \prod_{e \in M} a_e \right).$$

As a consequence of Theorem 1.1, this can be rewritten as:

$$\det(A) = \sum_{M_0 \in \mathcal{M}} \text{sgn}(\sigma_{M_0}) \prod_{e \in M_0} a_e \left(\sum_{F \in \mathcal{F}(M_0)} \text{sgn}(\sigma_{M_0(F \setminus M_0)}) \prod_{e \in M_0 \setminus F} a_e \right),$$

$$= \sum_{M_0 \in \mathcal{M}} \sum_{F \in \mathcal{F}(M_0)} \left(\text{sgn}(\sigma_{M_0}) \prod_{e \in M_0} a_e \text{sgn}(\sigma_{M_0(F \setminus M_0)}) \prod_{e \in F \setminus M_0} a_e \right),$$

where $\sigma_{M_0(F \setminus M_0)}$ is defined in Definition 1.1.

We have not yet chosen the permutation σ_{M_0} assigned to M_0, we do so now. For every $F \in \mathcal{F}(M_0)$, we chose the orientation of M_0 to be the orientation of edges induced by the spanning forest F: this is precisely $\sigma_{M_0(F \setminus M_0)}$. Combining the product of coefficients a_e over oriented edges in M_0 and in $F \setminus M_0$ yields:

$$\det(A) = \sum_{M_0 \in \mathcal{M}} \sum_{F \in \mathcal{F}(M_0)} \text{sgn}(\sigma_{M_0(F \setminus M_0)})^2 \prod_{e \in F} a_e,$$

$$= \sum_{M_0 \in \mathcal{M}} \sum_{F \in \mathcal{F}(M_0)} \prod_{e \in F} a_e,$$

thus proving Corollary 1.3.

Remark 3.4.

1. We now give an intrinsic characterization of $\cup_{M_0 \in \mathcal{M}} \mathcal{F}(M_0)$, not using reference perfect matchings.

Consider the trimming algorithm of Section 1.1 applied to general spanning forests of G^R (not assuming that they are compatible with a reference perfect matching M_0). Since the reference perfect matching is not used in the algorithm, everything works out in the same way, and the algorithm yields a sequence of paths $\lambda^1_{1}, \ldots, \lambda^N_{N}$. This yields the following more general form of Definition 1.2.

Definition 3.2. A spanning forest F of G^R is said to satisfy Condition (C) if each of the paths $\lambda^1_{1}, \ldots, \lambda^N_{N}$ obtained from the trimming algorithm has even length. Let \mathcal{F} denote the set of spanning forests of G^R satisfying Condition (C).

Lemma 3.5.

$$\mathcal{F} = \bigcup_{M_0 \in \mathcal{M}} \mathcal{F}(M_0).$$

Proof. By definition, we have the following immediate inclusion: $\bigcup_{M_0 \in \mathcal{M}} \mathcal{F}(M_0) \subset \mathcal{F}$. If M_0 and M'_0 are two distinct perfect matchings of G, then $\mathcal{F}(M_0) \cap \mathcal{F}(M'_0) = \emptyset$. Indeed suppose there exists a spanning forest F in the intersection. Then, it must be
compatible with M_0 and M'_0, meaning that it contains all edges of $M_0 \cup M'_0$. Since M_0 and M'_0 are distinct, the superimposition $M_0 \cup M'_0$ must contain a cycle, yielding a contradiction with the fact that F is a spanning forest.

Thus it remains to show that given a spanning forest F satisfying Condition (C) there exists a perfect matching M_0 such that $F \in \mathcal{F}(M_0)$, meaning that F is compatible with M_0 and satisfies Condition (C) of Definition 1.2. Let F be a spanning forest satisfying Condition (C), and let $\lambda_1, \ldots, \lambda_N$ be the sequence of paths obtained from the trimming algorithm. For every $i \in \{1, \ldots, N\}$, let $M_0(\lambda_i)$ consist of half of the edges of λ_i such that λ_i alternates between edges of $M_0(\lambda_i)$ and edges of $\lambda_i \setminus M_0(\lambda_i)$, starting from an edge of $M_0(\lambda_i)$. Then F is compatible with M_0 and satisfies Condition (C) of Definition 1.2. It remains to show that M_0 is a perfect matching. The edge configuration consists of $|V|/2$ edges, since by construction, it consists of half of the edges of a spanning forest. Moreover, since each of the paths $\lambda_1, \ldots, \lambda_N$ has even length, no vertex is incident to two edges of M_0, thus proving that M_0 is a perfect matching.

As a consequence, Corollary 1.3 can be rewritten in the simpler form:

Corollary 3.6.

$$\det(A) = \sum_{F \in \mathcal{F}} \prod_{e \in F} a_e.$$

2. Let Ξ be the set of cycle coverings of the graph G by cycles of even length: a typical element $\xi \in \Xi$ is of the form $\xi = (C_1, \ldots, C_k)$ for some k. Then, since the matrix A is skew-symmetric, the determinant of A is equal to:

$$\det(A) = \sum_{\xi = (C_1, \ldots, C_k) \in \Xi} \prod_{i : |C_i| \geq 4} (-1) \left(\prod_{e \in C_i} a_e + \prod_{e \in \overline{C_i}} a_e \right) \prod_{i : |C_i| = 2} (-1)a_e a_{-e}$$

$$= \sum_{\xi = (C_1, \ldots, C_k) \in \Xi} \prod_{i : |C_i| \geq 4} (-2)(\prod_{e \in C_i} a_e) \prod_{i : |C_i| = 2} a_e^2.$$

It is also possible to prove Corollary 3.6 directly, without passing through the Pfaffian, by applying the complete algorithm to doubled edges of configurations counted by the determinant, and by taking into account all edges instead of half of them.

3.3 Line-bundle matrix-tree theorem for skew-symmetric matrices

In the whole of this section, we change notations slightly, and we let A be a skew-symmetric matrix of size $n \times n$, whose column sum is zero, with n even; $G = (V, E)$ denotes the graph associated to the matrix A.

We now state a line-bundle version of the matrix-tree theorem for skew-symmetric matrices of Corollary 1.3 in the spirit of what is done for the Laplacian matrix in [For93, Ken11], but first we need a few definitions.

A \mathbb{C}-bundle is a copy \mathbb{C}_v of \mathbb{C} associated to each vertex $v \in V$. The *total space* of the bundle is the direct sum $W = \oplus_{v \in V} \mathbb{C}_v$. A *connection* Ψ on W is the choice, for each
oriented edge \((i,j)\) of \(G\) of linear isomorphism \(\psi_{i,j} : C_i \to C_j\), with the property that
\[\psi_{i,j} = \psi_{j,i}^{-1}\]; that is, we associate to each oriented edge \((i,j)\) a non-zero complex number
\(\psi_{i,j}\) such that \(\psi_{i,j} = \psi_{j,i}^{-1}\). We say that \(\psi_{i,j}\) is the parallel transport of the connection
over the edge \((i,j)\). The monodromy of the connection around an oriented cycle \(\vec{C}\) is the
complex number
\[\omega_{\vec{C}} = \prod_{e \in \vec{C}} \psi_e.\]

We consider the matrix \(A^\psi\) constructed from the matrix \(A\) and the connection \(\psi\):
\[(A^\psi)_{i,j} = a^\psi_{i,j} = a_{i,j} \psi_{i,j}.\]

A cycle-rooted spanning forest of \(G\), also denoted CRSF, is an oriented edge configuration spanning vertices of \(G\) such that each connected component is a tree rooted on a cycle. In all that follows, we assume that cycles have length \(\geq 3\). Edges of branches of the trees are oriented towards the cycle, and the cycle is oriented in one of the two possible directions.

Consider the partial reverse algorithm of Section 3.1 applied to a general CRSF \(F\). Since the reference perfect matching plays no role in this algorithm, everything works out in the same way, and the algorithm yields a sequence of paths \(\lambda_{33}^{C_1}, \ldots, \lambda_{33}^{C_N}\), whose union corresponds to branches of \(F\).

Definition 3.3. A CRSF of \(G\) is said to satisfy Condition (C) if all of the paths \(\lambda_{33}^{C_1}, \ldots, \lambda_{33}^{C_N}\) obtained from the partial reverse algorithm have even length. Let us denote by \(\mathcal{G}\) the set of CRSFs satisfying Condition (C). Then,

Then, for a generic CRSF \(F\) of \(G\), let us denote by \((C_1, \ldots, C_k)\) its cycles.

Corollary 3.7.

\[
\det(A^\psi) = \sum_{F \in \mathcal{G}} \left(\prod_{\{e \in \text{branch}(F)\}} a_e \right) \left(\prod_{\{i : |C_i| \text{ is odd}\}} \prod_{e \in C_i} a_e [\omega_{C_i} - \omega_{C_i}^{-1}] \right) \cdot \left(\prod_{\{i : |C_i| \text{ is even}\}} \prod_{e \in C_i} a_e [2 - \omega_{C_i} - \omega_{C_i}^{-1}] \right).
\]

Proof. We expand the determinant of \(A^\psi\) using cycle decompositions, as we have done for the determinant of \(A\) in Point 2 of Remark 3.4. Since the matrix \(A^\psi\) is not skew-symmetric, we cannot omit odd cycles, and we let \(\Xi\) be the set of cycle decompositions of the graph \(G\), that is, the set of coverings of the graph by disjoint cycles. A typical element of \(\Xi\) can be written as \(\xi = \{C_1, \ldots, C_k\}\), for some positive integer \(k\). Then, the determinant of the matrix \(A^\psi\) is:

\[
\det(A^\psi) = \sum_{\xi = \{C_1, \ldots, C_k\} \in \Xi} \prod_{\{i : |C_i| \geq 3\}} (-1)^{|C_i|+1} \left(\prod_{e \in C_i} a_e \psi_e + \prod_{e \in \overline{C_i}} a_e \psi_e \right) \prod_{\{i : |C_i| = 2\}} (-1)a_e \psi_e a_{-e} \psi_{-e}.
\]

Using the skew-symmetry of the matrix \(A\) and the fact that \(\psi_{-e} = \psi_{e}^{-1}\) this yields:

\[
\det(A^\psi) = \sum_{\xi = \{C_1, \ldots, C_k\} \in \Xi} \prod_{\{i : |C_i| \text{ is odd}\}} \left(\prod_{e \in C_i} a_e [\omega_{C_i} - \omega_{C_i}^{-1}] \right) \cdot \prod_{\{i : |C_i| \text{ is even} \geq 4\}} (-1) \left(\prod_{e \in C_i} a_e [\omega_{C_i} + \omega_{C_i}^{-1}] \right) \cdot \prod_{\{i : |C_i| = 2\}} \left(\prod_{e \in \overline{C_i}} a_e^2 \right).
\]
Note that in a given covering there is always an even number of odd cycles, since otherwise there is no covering of the remaining graph by even cycles. We now fix a partial covering of the graph by odd cycles, and sum over coverings of the remaining graph by even cycles. Since the contribution of the parallel transport to doubled edges cancels out, and since the matrix A has columns summing to zero, we then ‘open’ doubled edges according to the complete algorithm, using Remark 3.4. Everything works out in the same way, with the role of R played by odd cycles. In this case though, because of the parallel transport, the contributions of RCRSFs do not cancel, but looking at the proof of Theorem 1.1 we know precisely what those are. Summing over all partial coverings by odd cycles yields the result.

Remark 3.8. Theorem 3.7 can then be specified in the case of bipartite graphs, in which case there are no odd cycles, in the case of planar graphs or of graphs embedded on the torus etc.

Appendix A: Pfaffian matrix-tree theorem for 3-graphs and Pfaffian half-tree theorem for graphs

In the paper [MV02], Masbaum and Vaintrob prove a Pfaffian matrix-tree theorem for spanning trees of 3-uniform hypergraphs. We start by giving an idea of their result.

A 3-uniform hypergraph, or simply 3-graph consists of a set of vertices and a set of hyper-edges, hyper-edges being triples of vertices. Consider the complete 3-graph $K_{n+1}^{(3)}$ on the vertex set $\{1, \ldots, n+1\}$, where n is even; hyper-edges consist of the $\binom{n+1}{3}$ possible triples of points. Suppose that hyper-edges are assigned anti-symmetric weights $y = (y_{ijk})$, that is, $y_{ijk} = -y_{jki} = y_{jik}$, and $y_{iij} = 0$. Note that considering other 3-graphs amounts to setting some of the hyper-edge weights to zero.

A spanning tree of $K_{n+1}^{(3)}$ is a sub-3-graph spanning all vertices and containing no cycle; let us denote by $T^{(3)}$ the set of spanning trees of $K_{n+1}^{(3)}$. To apprehend spanning trees of 3-graphs, it is helpful to use their bipartite representation: a hyper-edge is pictured as a Y, where the end points are black and correspond to vertices of the hyper-edge, and the degree three vertex is white. Then a sub-3-graph is a spanning tree of $K_{n+1}^{(3)}$ if and only if its bipartite representation is a spanning tree of the corresponding bipartite graph, see Figure 11 for an example.

![Figure 11: Bipartite graph representation of the following 5 spanning trees of $K_5^{(3)}$: $\{123, 145\}$, $\{124, 235\}$, $\{134, 235\}$, $\{234, 145\}$, $\{145, 235\}$. The graph $K_5^{(3)}$ has a total of 15 spanning trees.](image-url)
Define the \((n + 1) \times (n + 1)\) matrix \(A^{n+1} = (a_{ij})\) by:

\[
\forall \, i, j \in \{1, \ldots, n + 1\}, \quad a_{ij} = \sum_{k=1}^{n+1} y_{ijk}.
\]

Then, Masbaum and Vaintrob \cite{MV02} prove that Pfaffian of the matrix \(A\), obtained from the matrix \(A^{n+1}\) by removing the last line and column, is a signed \(y\)-weighted sum over spanning trees of \(K^{(3)}_{n+1}\):

\[
Pf(A) = \sum_{T \in T^{(3)}} \text{sgn}(T) \prod_{(i,j,k) \in T} y_{ijk},
\]

where the product is over all hyper-edges of the spanning tree. We refer to the original paper \cite{MV02} for the definition of \(\text{sgn}(T)\). A combinatorial proof of this result is given by Hirschman and Reiner \cite{HR04} and yet another proof using Grassmann variables is provided by Abdesselam \cite{Abd04}.

Using Sivasubramanian’s result \cite{Siv06}, spanning trees of \(K^{(3)}_{n+1}\) can be related to half-spanning trees of the (usual) complete graph \(K_{n+1}\). Sivasubramanian introduces an analog of the Prüfer code for 3-graphs, allowing him to establish a bijection between spanning trees of \(K^{(3)}_{n+1}\) and pairs \((\gamma, M)\), where \(\gamma \in \{1, \ldots, n + 1\}^\frac{n}{2} - 1\) and \(M\) is a perfect matching of the (usual) complete graph \(K_n\) on the vertex set \(\{1, \ldots, n\}\). This bijection is also very clearly explained in the paper \cite{GDM11} by Goodall and De Mier. Writing \(\mathcal{M}(K_n)\) for the set of perfect matchings of \(K_n\), the set of spanning trees \(T^{(3)}\) can thus be written as \(\cup_{M \in \mathcal{M}(K_n)} T^{(3)}(M)\), where \(T^{(3)}(M)\) consists of the spanning trees corresponding to \(M\) in the bijection. Equation (A.1) then becomes:

\[
Pf(A) = \sum_{M \in \mathcal{M}(K_n)} \sum_{T \in T^{(3)}(M)} \text{sgn}(T) \prod_{(i,j,k) \in T} y_{ijk}.
\]

Example. When \(n + 1 = 5\), spanning trees of \(K^{(3)}_5\) are in bijection with pairs \((\gamma, M)\), where \(\gamma \in \{1, \ldots, 5\}\), and \(M\) is a perfect matching of \(K_4\). Returning to the ‘Prüfer code’ of \cite{Siv06}, one sees that the five spanning trees of Figure 11 are in bijection with the perfect matching \(M = \{14, 23\}\), and \(\gamma = 1, \ldots, \gamma = 5\), respectively.

We now fix a perfect matching \(M\) of \(K_n\) and let \(T_M\) be one of the \((n+1)\frac{n}{2} - 1\) corresponding spanning trees of \(K^{(3)}_{n+1}\). From \(T_M\), we construct a half-spanning tree of \(K_{n+1}\) compatible with \(M\) as follows. By the bijection, for every hyper-edge \(ijk\) of \(T_M\), exactly one of the pairs \(ij, ik, jk\) belongs to \(M\); without loss of generality, let us assume it is \(ij\) and that \(i < j\). To this hyper-edge, assign the edge configuration of \(K_{n+1}\) consisting of the edge \(ij\) and of the edge \(jk\). Repeating this procedure yields a half-tree of \(K_{n+1}\) compatible with \(M\). It seems that for different \(\gamma\)’s, the corresponding half-spanning trees are different.

Example. Recall that Figure 11 consists of the spanning trees of \(K^{(3)}_5\) corresponding to the perfect matching \(M = \{14, 23\}\) through the ‘Prüfer code’. Figure 12 pictures the half-spanning trees of \(K_5\) compatible with \(M\) obtained by the above construction.

It is interesting to note that not all half-spanning trees compatible with \(M\) are obtained, and that they do not all satisfy Condition (C) of Definition 1.2 (the third one does not
satisfy it, see also Figure 10. A new family of half-spanning trees compatible with M is constructed; it has $(n + 1)^2 - 1$ elements, and could probably be characterized using the ‘Prüfer code’ and the construction of the half-spanning trees.

This implies that the Pfaffian of the matrix A, written using the ‘Prüfer code’ of [Siv06] as in Equation (A.2), can be expressed as a sum over all perfect matchings M of K_n of a sum over a new family of half-spanning trees compatible with M.

Now, by the anti-symmetry of the y-weights, the matrix A^{n+1} constructed from the y-weights is skew-symmetric and has column sum equal to 0. It thus satisfies the hypothesis of Theorem 1.1. Let M_0 be a fixed perfect matching of K_n. Since the root R consists of a single vertex $n + 1$, the theorem involves half-spanning trees instead of forests, and we denote by $\mathcal{T}(M_0)$ the set of half-spanning trees compatible with M_0 of K_n, satisfying Condition (C) of Definition 1.2. By Theorem 1.1 we have:

$$\text{Pf}(A) = \sum_{T \in \mathcal{T}(M_0)} \text{sgn}(\sigma_{M_0}(T \setminus M_0)) \prod_{e \in T \setminus M_0} a_e.$$

Replacing a_e by its definition using y-variables, yields

$$\text{Pf}(A) = \sum_{T \in \mathcal{T}(M_0)} \text{sgn}(\sigma_{M_0}(T \setminus M_0)) \prod_{e \in T \setminus M_0} (\sum_{k=1}^{n+1} y_{ek}).$$

This time, the Pfaffian of A is written as a sum over half-spanning trees compatible with a single fixed perfect matching M_0, satisfying Condition (C). The term corresponding to a specific half-spanning tree is not a single spanning tree of $K_{n+1}^{(3)}$, but a sum over 3-subgraphs which are not necessarily trees. To recover the form of (A.1), there must be cancellations involved.

Example. Take $M_0 = \{14, 23\}$, and consider the leftmost half-tree compatible with M_0 of Figure 10. Not taking into account signs, its contribution to $\text{Pf}(A)$ is $a_{42}a_{35}$. Replacing with the y-weights, and using the fact that $y_{ij} = 0$ gives a contribution of:

$$(y_{421} + y_{423} + y_{425})(y_{351} + y_{352} + y_{354}) = y_{421}y_{351} + y_{421}y_{352} + \cdots + y_{425}y_{354}.$$

Each term corresponds to a 3-subgraph of $K_5^{(3)}$, but not necessarily a tree: as soon as a pair of triples of points has more than one index in common, it is not a tree, for example $y_{425}y_{354}$.

Summarizing, using the ‘Prüfer code’ of [Siv06], the Pfaffian matrix-tree theorem of [MV02] can be written as a sum over a new family of half-spanning trees, and to each half-spanning tree corresponds a single spanning tree of $K_n^{(3)}$.

36
When applied to 3-graphs, our Pfaffian half-tree theorem can be written as a sum over half-spanning trees compatible with a single perfect matching M_0, satisfying Condition (C). To each half-spanning tree corresponds a family of 3-subgraphs of $K_{n+1}^{(3)}$, not all of which are trees, there are cancellations involved. The Pfaffian half-tree theorem can be applied in the context of 3-graphs, but the result in this case is not naturally related to spanning trees of 3-graphs; this theorem takes its full meaning for (regular) graphs.

References

[Abd04] A. Abdesselam. The Grassmann–Berezin calculus and theorems of the matrix-tree type. *Adv. in Appl. Math.*, 33(1):51–70, 2004.

[CD13] D. Cimasoni and H. Duminil-Copin. The critical temperature for the Ising model on planar doubly periodic graphs. *Electron. J. Probab.*, 18:no. 44, 1–18, 2013.

[Cha82] S. Chaiken. A combinatorial proof of the all minors matrix tree theorem. *SIAM J. Alg. Discr. Meth.*, 3(3):319–329, 1982.

[CS12] D. Chelkak and S. Smirnov. Universality in the 2D Ising model and conformal invariance of fermionic observables. *Inv. Math.*, 189:515–580, 2012.

[dT13] B. de Tilière. Critical Ising model and cycle rooted spanning forests: an explicit correspondence. *Comm. Math. Phys.*, 319(1):69–100, 2013.

[Fis66] M. E. Fisher. On the dimer solution of planar Ising models. *J. Math. Phys.*, 7:1776–1781, 1966.

[For93] R. Forman. Determinants of Laplacians on graphs. *Topology*, 32(1):35–46, 1993.

[GDM11] A. Goodall and A. De Mier. Spanning trees of 3-uniform hypergraphs. *Adv. in Appl. Math.*, 47(4):840–868, 2011.

[HR04] S. Hirschman and V. Reiner. Note on the Pfaffian matrix-tree theorem. *Graphs Combin.*, 20(1):59–63, 2004.

[Kas67] P. W. Kasteleyn. Graph theory and crystal physics. In *Graph Theory and Theoretical Physics*, pages 43–110. Academic Press, London, 1967.

[Ken09] R. Kenyon. Lectures on dimers. In *Statistical mechanics*, volume 16 of *IAS/Park City Math. Ser.*, pages 191–230. Amer. Math. Soc., Providence, RI, 2009.

[Ken11] R. Kenyon. Spanning forests and the vector bundle Laplacian. *Ann. Probab.*, 39(5):1983–2017, 2011.

[Kir47] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. *Ann. Physik*, 148:497–508, 1847.
[KPW00] R. Kenyon, J. Propp, and D. B. Wilson. Trees and matchings. *Electron. J. Combin.*, 7:Research Paper 25, 34 pp. (electronic), 2000.

[Li12] Z. Li. Critical temperature of periodic Ising models. *Comm. Math. Phys.*, 315:337–381, 2012.

[MV02] G. Masbaum and A. Vaintrob. A new matrix-tree theorem. *Int. Math. Res. Not.*, 2002(27):1397–1426, 2002.

[Siv06] S. Sivasubramanian. Spanning trees in complete uniform hypergraphs and a connection to extended r-Shi hyperplane arrangements. *arXiv preprint math/0605083*, 2006.

[Tem72] H. N. V. Temperley. The enumeration of graphs on large periodic lattices. In *Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972)*, pages 285–294. Inst. Math. Appl., Southend, 1972.

[TF61] H. N. V. Temperley and M. E. Fisher. Dimer problem in statistical mechanics-an exact result. *Philos. Mag.*, 6(68):1061–1063, 1961.