Concurrence of HOST to some conventional sperm quality parameters and seminal enzymes of Jersey bulls semen

SHRIYA GUPTA¹ and MADHUMEET SINGH²

Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176 062 India

Received: 13 September 2018; Accepted: 8 October 2018

Key words: Fresh diluted semen, Hypo-osmotic swelling test, Jersey bull, Seminal enzymes

Artificial insemination is an important assisted reproductive technique that facilitates the extensive dissemination of genetics from elite sires. Cryopreservation, is known to cause damage to the spermatozoa (Kumar et al. 2016). A number of laboratory evaluation tests measuring the physical and functional integrity of spermatozoa have been devised over the past few decades, although no single measurement is regarded as reliable indicator for predicting fertility (Faulkner and Pinedia 1980). One such quick and easy tool of evaluating sperm membrane integrity by Jeyendran et al. (1984) is HOS test, proved to be radically important in fertilization process (Lodhi et al. 2008). Endeavors have been made to correlate sperm plasma membrane integrity to fertility, though a great disparity is seen between studies and methods used, still positive correlation had been reported between HOS test and non-return rate (Correa et al. 1997) which prospectively makes it one of the most suitable and effortless method for assessment of semen quality. Biochemical estimation of various enzymes, considered as an indicator for determining the semen quality as they play a key role in functional integrity and function of sperm cell membranes (Macanovic et al. 2015). In order to maintain the conformance quality, a minimum standards protocols (MSP) for production of semen had evolved in consultation with experts from Bharatiya Agro-Industries Foundation (BAIF), National Dairy Development Board (NDDB), National Dairy Research Institute (NDRI) and Central Frozen Semen Production and Training Institute (CFSP&TI) and has been made effective since 2004. In order to analyze the above facts, a study was undertaken to determine the relationship of HOS test to other semen quality parameters and seminal enzymes in semen of Jersey bulls and to validate viability of HOS test to evaluate sperm quality.

Work was conducted from December 2017-March 2018. Semen from the 8 Jersey bulls maintained at Himachal Pradesh Livestock Development Board Sperm Station, Palampur. Total 64 ejaculates were collected (8 from each bull) and were classified into the freezable and non-freezable Ejaculates depending upon their initial parameters (volume, concentration, mass motility and progressive motility). According to Central Monitoring units for semen stations, ejaculates with motility \geq70% and concentrations \geq500 million/ml were processed after dilution in egg yolk trisbuffer citrate and packed in 0.25 ml straws for further processing. After dilution, progressive motility, morphological abnormalities, acrosomal integrity and HOST were assessed as per the standard methods. In order to estimate progressive motility, a drop of fresh diluted semen was placed on a slide with a cover slip on a warm stage and assessed using phase contrast microscope. Acrosomal integrity based on the acrosomal damage was studied by Giemsa stain (Watson 1975) and morphological abnormalities were assessed using Rose Bengal Stain. Hypo-osmotic swelling test was performed as per Jeyendran et al. (1984). A drop of incubated semen in test and control solution was placed on a clean sterilized dry glass slide and covered with a cover slip. A total of 200 spermatozoa were counted in different fields at 400\times under phase contrast microscope. For estimation of enzymes, viz. alkaline phosphatase (ALP), aspartate aminotransferase (AST), alanine aminotransferase (ALT), seminal plasma was separated by centrifuging the semen at 4,000 rpm for 15 min. Estimation of these enzymes was done using the

Parameter	Quantity	Correlation coefficient
Acrosome	Freezable	0.58178**
	Nonfreezable	0.62609**
Morphology	Freezable	-0.26161**
	Nonfreezable	0.06317
HOST	ALP	-0.66682**
	AST	0.08898
	ALT	-0.63720**

**P<0.01.
Thus, HOS-test can be considered as a useful tool for assessment of semen quality on daily basis to acquire a quick quality result since it is easy, simple, frugal and quick technique and also correlated with other evaluation parameters.

SUMMARY

In this study, hypoosmotic swelling test (HOST) was correlated with sperm quality such as motility, acrosome integrity, morphological abnormality and seminal enzymes including AST, ALT and ALP. Results revealed positive concurrence of HOS test to motility and acrosomal integrity and negative correlation between ALP and ALT in both the freezable and nonfreezable ejaculates. Since the HOS test is quick, easy and inexpensive method so it can be deployed as routine semen assessment procedure in semen stations to differentiate between the freezable and non-freezable bull semen.

REFERENCES

Correa J R, Heerche J R G and Zavos P. 1997. Sperm membrane functional integrity and response of frozen thawed bovine spermatozoa during the hypoosmotic swelling test incubation at varying temperatures. Theriogenology 47: 715–21.

EI-Sisy G A, EI-Sheshtawy R I, Mohamed A A and EI-Nattat W S. 2010. Correlations between semen parameters and conception rate in buffaloes. Global Veterinaria 5: 15–21.

Faulkner L C and Pineda M H. 1980. Artificial insemination, pp. 330–336. Veterinary Endocrinology and Reproduction. 3rd edn. (Ed.) Donald M C. Lea and Febiger, Philadelphia.

Fonseca J F, Torres C A A, Maffili V V, Borges A M, Santos A D F, Rodrigues M T and Oliveira R F M. 2005. The hypoosmotic swelling test in fresh goat spermatozoa. Animal Reproduction 2: 139–44.

Henkel R, Muller C, Miska W, Gips H and Schill W. 1993. Determination of the acrosome reaction in human spermatozoa is predictive of fertilization in vitro. Human Reproduction 8:
2128–32.
Jeyendran R S, Van Der Ven H H, Perez-Pelaez M, Grabo B G and Zanaveld L Z D. 1984. Development of an assay to assess the functional integrity of human sperm membrane and its relationship to other sperm characteristics. *Journal of Reproduction and Fertility* 70: 219–28.
Kumar D, Kumar P, Singh P, Yadav S P and Yadav P S. 2016. Assessment of sperm damages during different stages of cryopreservation in water buffalo by florescent probes. *Cryotechnology* 68: 451–58.
Lodhi L A, Zubair M, Qureshi Z I, Ahmad I and Jamil H. 2008. Correlation between hypo-osmotic swelling test and various conventional semen evaluation parameters in fresh Nili-Ravi buffalo and Sahiwal cow bull semen. *Pakistan Veterinary Journal* 28(4): 186–88.
Macanovic B, Vucetic M, Jankovic A, Stancic A, Buzadzic B, Garalejic E, Korac A, Korac B and Otasevic V. 2015. Correlation between sperm parameters and protein expression of antioxidative defense enzymes in seminal plasma: A pilot study. *Disease Markers*. Article ID # 436236.
Mantovani R, Rota A, Faloma M E, Bailoni L and Vincenti L. 2002. Comparison between glycerol and ethylene glycol for the cryopreservation of equine spermatozoa semen quality assessment with standard analyses and with the hypoosmotic swelling test. *Reproduction, Nutrition and Development* 42: 217–26.
Suri A. 2005. Contraceptive vaccines targeting sperm. *Expert Opinion in Biological Therapy* 5: 381–92.
Watson P F. 2000. The causes of reduced fertility with cryopreserved semen. *Animal Reproduction Science* 60: 481–492.
Zubair M, Lodhi L A, Ahmad E and Muhammad G. 2013. Hypo-osmotic swelling test as screening for evaluation of semen of bull. *Journal of Entomology and Zoology Studies* 1: 124–28.