Preservation analysis of macrophage gene co-expression between human and mouse identifies PARK2 as a genetically controlled master regulator of oxidative phosphorylation in humans.

Veronica Codoni*,†, Yuna Blum‡, Mete Civelek‡,§, Carole Proust*,†, Oscar Franzen**,††, Cardiogenics Consortium, Leducq Consortium CAD Genomics, Johan LM Björkøgren**,††, Wilfried Le Goff*,†, Francois Cambien*,†, Aldons J Lusis‡, David-Alexandre Trégouët*†.

* Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 1166, F-75013, Paris, France.
† ICAN Institute for Cardiometabolism and Nutrition, F-75013, Paris, France.
‡ Department of Medicine/Division of Cardiology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA.
§ Center for Public Health Genomics, Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA.
** Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, 10029, NY, USA.
†† Icahn Institute of Genomics and Multiscale Biology Icahn School of Medicine at Mount Sinai, New York, NY, USA.
‡‡ Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 141 52, Sweden.
Abstract

Macrophages are key players involved in numerous pathophysiological pathways and an in-depth characterization of their gene regulatory networks can help in better understanding how their dysfunction may impact on human diseases. We here conducted a cross-species network analysis of macrophage gene expression data between Human and Mouse to identify conserved networks across both species and assessed whether such networks could reveal new disease-associated regulatory mechanisms. From a sample of 684 individuals processed for genome-wide macrophage gene expression profiling, we identified 27 groups of co-expressed genes (modules). Six modules were found preserved ($p < 10^{-4}$) in macrophages from 86 mice of the Hybrid Mouse Diversity Panel. One of these modules was significantly (false discovery rate (FDR) = 8.9×10^{-11}) enriched for genes belonging to the oxidative phosphorylation (OXPHOS) pathway. This pathway was also found significantly ($FDR < 10^{-4}$) enriched in susceptibility genes for Alzheimer, Parkinson, and Huntington diseases. We further conducted an expression quantitative trait loci analysis to identify SNP that could regulate macrophage OXPHOS gene expression in humans. This analysis identified the PARK2 rs192804963 as a trans acting variant influencing (minimal p-value = 4.3×10^{-8}) the expression of most OXPHOS genes in humans. Further experimental work demonstrated that PARK2 knock down expression was associated with increased OXPHOS gene expression in THP1 human macrophages. This work provided strong new evidence that *PARK2* participates to the
regulatory networks associated with oxidative phosphorylation and suggested that *PARK2* genetic variations could act as a trans regulator of OXPHOS gene macrophage expression in humans.
Introduction

Macrophages play critical roles in several human physiological processes including atherosclerosis (Madamanchi et al. 2005), inflammation (Akira et al. 2013), insulin resistance (Jacobi et al. 2012), oxidative phosphorylation (Tavakoli et al. 2013) and pathogen clearance (Murray and Wynn 2011). As a consequence, their uncontrolled dysfunction has been associated with various human diseases such as autoimmune disorders (Casanova and Abel 2009; Nathan and Ding 2010), Alzheimer disease (Saresella et al. 2014), coronary artery disease (Ghattas et al. 2013), obesity (Jacobi et al. 2012) and Type 2 diabetes (Eguchi and Manabe 2013; Van Gassen et al. 2015). Despite intensive research, the mechanisms of macrophage activation and regulation, and their impact on disease susceptibility, are not fully understood, a mandatory pre-requisite prior to devising efficient therapeutic strategies oriented towards the aforementioned diseases. A possible strategy to uncover novel pathophysiological roles for genes within specific cell types is to assess the impact of genetic variations on transcript abundance (i.e gene expression) and map the results to disease-associated loci (Chen et al. 2008; Fairfax and Knight 2014). In addition, gene expression network and gene annotation enrichment analyses may identify highly co-regulated genes and reveal new partners of physiopathological interest (Subramanian et al. 2005; Schadt 2009; Rotival et al. 2011). This approach may be conducted across different species to achieve deeper understanding of regulatory mechanisms and reveal novel gene functions (Oldham et al. 2006; Miller et al. 2010; Hansen et al. 2014) and may be integrated within efficient multi-layers or system biology approach (Bunyavanich and Schadt 2015).

Here we used a system biology approach to better understand regulatory mechanisms in human and mouse macrophages. To reduce the risk of focusing on spurious or irrelevant network, we checked the networks (or modules) identified in human macrophages in mouse macrophages. The rationale of this approach was that gene co-expression networks that are conserved across
both species are more likely to reflect key biological functions (Hansen et al. 2014). Gene annotation enrichment analysis was then performed on the identified modules to assess whether they correspond to physiopathologically relevant functions or pathways. Finally, using genome-wide single nucleotide polymorphism (SNP) data, we identified genetic variants influencing gene expression within conserved modules. Our specific aim was to identify trans-acting SNPs that affect the transcriptome of conserved modules as these variants may reveal the existence of master regulator genes with pleiotropic effects.

Materials and Methods

This work relied on two genome-wide macrophage expression resources, one performed on human samples from the Cardiogenics Transcriptome Study (CTS) and the second on mice from the Hybrid Mouse Diversity Panel. The methodologies used for obtaining and processing CTS data have been previously described in details (Rotival et al. 2011, Charchar et al. 2012, Garnier et al. 2013). The present work was based on the analysis of 684 individuals with macrophage gene expression. Mice expression data were obtained from 86 mice, of which the extraction and preprocessing analyses have been extensively described in Orozco et al. 2012.

Mouse macrophages data used in this study are deposited in the NCBI GEO repository (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE38705. Cardiogenics macrophage expression data are deposited in the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/) under the accession number EGAS00001000411.

Macrophages isolation and RNA extraction (human)
Macrophages were derived-monocytes. Monocytes were isolated from whole blood positive selection with CD14 microbeads (Miltenyi) according to the manufacturer's instructions. Monocytes purity was measured as the percentage of CD14+ cells analyzed by flow cytometry. Macrophages were obtained from culturing of monocytes for 7 days in macrophage-SFM medium (Gibco/Invitrogen) with 50 ng.ml-1 recombinant human M-CSF (R&D Systems GmbH). RNA was extracted from both monocytes and macrophages with TRizol, followed by clean-up with RNeasy columns (Qiagen, Venlo, Netherlands) and DNase-based treatment (Charchar et al. 2012).

Human Expression Data

Gene expression profiling was performed using the Illumina's Human Ref-8 Sentrix Bead Chip arrays (Illumina, San Diego, USA) containing 24,516 probes corresponding to 18,311 distinct genes and 21,793 Ref Seq annotated transcripts. mRNA was amplified and labelled using the Illumina Total Prep RNA Amplification Kit (Ambion, Inc., Austin, TX, USA). After hybridization, array images were scanned using the Illumina BeadArray Reader, and probe intensities were extracted using the Gene expression module (version 3.3.8) of the Illumina's Bead Studio software (version 3.1.30). Expression signals were background corrected using GenomeStudio software. Probes were included in the analysis if their expression was considered detected (Illumina detection p<0.01) in at least 90% of samples. After removing non-well characterized probes, a total of 15,539 probes corresponding to 12,502 distinct genes remained for the analysis. Variance stabilization transformation was applied to the raw intensities and quantile normalization was done in the R statistical environment with the Lumi package (Lin et al. 2008; Du et al. 2008). Principal Variance Components Analysis was used to identify main factors contributing to the variability of expression data. Given the strong influence of the variables centre, sample batches, date of hybridization and microarray we performed an adjustment on these factors using the function Combat implemented in sva R package (Leek et al. 2012).
CTS participants were typed for genome-wide genotype data using the Human Custom 1.2M and the Human 610 Quad Custom arrays from Illumina. Single Nucleotide Polymorphisms with genotyping call rate < 99%, minor allele frequency (MAF) < 0.01 or showing significant (p < 10^{-5}) deviation from Hardy-Weinberg equilibrium were filtered out. This led to 506,290 quality-control (QC) validated autosomal SNPs. Individuals were excluded according to the following criteria: genotyping rate < 95% close relatedness as suspected from pairwise clustering of identity by state distances and multidimensional scaling implemented in PLINK (Purcell et al. 2007) and genetic outliers of non European ancestry detected by principal components analysis as implemented in the EIGENSTRAT program (Price et al. 2006). The 506,290 QC-checked SNPs were then used for imputing 11,672,179 autosomal SNPs from the 1000 Genomes 2012-02 release reference dataset. For this, the MACH (version 1.0.18.c) software was used (Li et al. 2010). All SNPs with acceptable imputation quality r2 > 0.3 (Johnson et al. 2013) and imputed MAF > 0.01 were kept for genotype-expression association analysis (N = 8,989,527).

Macrophage mouse expression study

Macrophages were primary intraperitoneal macrophages in control condition isolated and processed as in Orozsco et al. 2012.

Total RNA extracted from 86 strains was profiled with Affymetrix Mouse Genome HT MG-430A arrays. The image data were processed using the Robust Multichip Average (RMA) method to determine the hybridization signal for each gene. A total of 17,962 probes corresponding to 12,242 genes were available for further analysis.

Mouse genotyping
Mouse inbred strains were genotyped using the Mouse Diversity Array which contains probes for 623,124 SNPs (Yang et al. 2009). After filtering the SNPs for MAF< 5% and genotype missingness rate <5%, 205,539 SNPs remained for association testing.

Data combination

Human and mouse macrophage gene expressions have been pre-processed separately, as described above. The probe-level measurements were converted into gene-level measurements in both datasets to allow comparison across different platforms. The probe within a gene that had the maximum average expression across samples was used to represent that gene. In order to compare gene expressions between the different species, the ENSEMBL Gene ID was used to derive mouse orthologous to human genes. The result of this step was an overall of 7,890 genes commonly expressed in human and in mouse gene expression datasets.

Human and mouse macrophage samples were clustered separately, based on their Euclidian distance to detect outlier observations. 19 human, and 7 mouse samples were removed as outliers for further analysis.

From the 665 (= 684-19) CTS individuals analyzed for their expression data, 576 individuals had also quality-controlled genome-wide genotype data.

Gene co-expression network construction for Human macrophages

A weighted gene co-expression network analysis (WGCNA) was conducted on human macrophage expression dataset, composed by 7,890 genes and 665 samples, to identify modules of co-expressed genes. To construct the network, the absolute values of correlation coefficients (biweight mid-correlation (Zheng et al. 2014)) were calculated for all possible gene pairs. Values were entered into a matrix, and the data were weighted into an adjacency matrix such that it
followed an approximate scale-free topology (estimated beta power = 5). Finally, the Topological
Overlap Matrix (TOM) was converted from the adjacency matrix and used to derive a TOM-based
distance matrix for the next hierarchical clustering of expressions. We performed an average
hierarchical clustering with TOM-based metric as distance and we identified groups of highly
correlated human genes cutting the branches of dendrogram by dynamic tree cut algorithm
(Langfelder et al. 2008), which iteratively search for stable branch size and selects cluster based on
the shape of each branch. We set up deepSplit=3, minModuleSize=50 as parameters for the
dynamic tree cut function (others were default values).

The expression of each identified human module was then summarized in terms of their
eigengene (ME) value, calculated as the first principal component derived from all gene expression
belonging to the given module. To assess the co-expression similarity between identified modules,
a hierarchical clustering was performed on module eigengene expressions. At a height cut-off of
0.15, corresponding to a pairwise correlation of 0.85, no strong similarity was observed between
modules.

We also quantified the contribution of a gene to a module by the module membership (kME)
metric defined as the correlation between a single gene's expression and the specific module
eigengene ME.

Preservation analysis on mouse macrophages dataset

In order to assess how well a human module was preserved in mouse macrophage data, we
computed using mouse expression data the MEs and kMEs metrics derived from the human
modules genes composition. Preservation of human modules in mouse data was then determined
using both human and mouse kME values. "Consistent genes" between species were then defined
as the set of genes in each human module that had concordant sign of kME values in both dataset.
Then, the percentage of consistent genes between species was computed for each human module, the higher the percentage, the most preserved the modules.

A permutation procedure was used to assign a p-value to this measure of preservation between the two datasets. The null hypothesis was that the proportion of consistent genes observed for each human module was no better than the corresponded proportion of consistent genes of modules derived from random clustering. To evaluate this hypothesis, human gene identifiers were randomly permuted such that human gene modules of the same size but with random gene composition were generated. 10,000 such bootstrap iterations were performed and the percentage of consistent genes of each human random module assignment between the two species was calculated for each iteration. The probability of the null hypothesis was then calculated as the proportion of bootstrap iterations in which the percentage of consistent genes of random modules across species was greater than that of the human observed ones. We also evaluated module preservation using alternative more complex methods based on composite statistics, Z-summary and median rank statistic, derived from the density and the connectivity of the modules as implemented in the WGCNA R package (Langfelder et al. 2011). These statistics summarize the evidence that a human module is preserved more significantly than a random sample of genes.

Gene Ontology and pathway enrichment analysis

To study the biological relevance of consistent genes, we performed a functional enrichment analysis using the Database for Annotation, Visualization and Integrated Discovery tool (DAVID, Huang et al. 2009)) using the human gene annotation list as background. GO, KEGG, REACTOME and PANTHER databases were interrogated among the consistent genes of preserved modules.

1000G imputation based eQTL analysis in human macrophages
Associations between imputed genotypes and expression were computed using a linear regression model where the imputed allele dosage was used as covariate to assess SNP effect. Analyses were conducted by use of MatrixEQTL R package (Shabalin 2012) while adjusting for sex, age and potential contaminations cell types (i.e. CD4+, CD8+, CD19+, CD56+, CD66b+, erythroblasts and megakaryocytes counts). eQTLs effects were considered as cis the SNP was located within a 10^6 bp distance upstream or downstream from probe sequence. Otherwise, they were considered as trans. A statistical threshold of 5×10^{-8} was used to declare significance. 576 individuals with both imputed genotypes and macrophage gene expressions were available for eQTL analysis.

eQTL analysis in mouse macrophages

eQTL mapping was performed using FaST-LMM (Lippert et al. 2011), a linear mixed model method that is able to account for uncontrolled population structure of the data.

RNA interference (RNAi)-mediated PARK2 silencing using small interference (si)RNA.

Human THP-1 monocyctic cells (ATCC) were cultured and differentiated into macrophage-like cells as previously described (Larrede et al. 2009). PARK2 knock-down (KD) THP-1 macrophages were obtained by application of siRNA oligonucleotides (Eurogentec) targeted to the cDNA sequence of the human PARK2 gene (Genebank: NM_004562). The sequences of the siRNA were 5’-UUGCUUAGACUGUUCCACUUAAC-UU-3’ and 5’-P-GUAUAAGGAAACAGUCUAAGCAA-UU-3’, respectively.

RNA extraction and gene expression analysis

Forty-eight hours following transfection with siRNA, control and PARK2 KD cells were washed twice with cold PBS and total RNA was extracted using a RNeasy mini kit (Qiagen) according to the
manufacturer's instructions. Reverse transcription of RNA and real time quantitative PCR using a LightCycler LC480 (Roche) were performed as previously described (Larrede et al. 2009). Primers used for quantification of PARK2, COX6A and COX6C mRNA are indicated in Supplementary Table S1. Expression data were based on the crossing points calculated with the software for LightCycler data analysis and corrected for PCR efficiencies of the target and the reference gene. mRNA levels were normalized to housekeeping genes (δ-aminolevulinate synthase, hypoxanthine phosphoribosyltransferase and α-tubulin). Data were expressed as a fold change in mRNA expression relative to control values. Four independent experiments were conducted in triplicates. Non-parametric Mann-Whitney test was used to test for the impact of PARK2 KD on gene expressions.

Results

We identified 7,890 genes that are orthologous in humans and mice and for which we had expression data in both species, these genes serve as the basis of our analysis. The overall analysis workflow adopted in this work is summarized in Figure 1.

Gene expression modules in human macrophage.

Human gene expression data were first investigated using weighted gene co-expression network analysis (WGCNA) (Langfelder and Horvath 2008) to identify modules (or clusters) of gene whose expressions were highly correlated (see methods). Twenty seven modules encompassing 6,802 genes (86%) were identified (Table 1). The remaining 1,088 genes were only weakly correlated with other genes and were not included in any module. The size of the identified modules, labeled by a number to allow their distinction, ranged from 62 (M27) to 967 (M1) (Table 1). Each module was then characterized by its first principal component (module eigengene [ME]) (Langfelder et al. 2009).
2011) computed from the covariance matrix of expression levels of the genes in the module. The percentage of module expression variability explained by MEs ranged from 17% (M3 module of size 449) to 30% (M26 module of size 67) (Table 1). The contribution of a given gene to its module was defined as the correlation of its expression with that of its module-associated ME (the module membership metric (kME) (Langfelder et al. 2011)).

Preservation analysis of human modules in mouse

In a second step, we assessed whether the 27 modules identified in human macrophages were preserved in mouse. For this, we first partitioned the mouse genes into the same module assignments as in humans. We then computed mouse specific MEs and kMEs. For each module, we then calculated the percentage of genes exhibiting similar module membership (kME) between human and mouse (see supplementary Figure S1 for illustrative examples). Consistent genes are those with similar kME sign across the two species. A higher percentage of consistent genes indicates the preservation of human module in the mouse dataset. Figure 2 shows the distribution of the percentage of consistent genes for each human modules. This percentage ranged from 42% for the M18 module to 93% for the M19 module, with mean ~65%. From this distribution, 6 modules (M19, M15, M21, M17, M23 and M22) were considered preserved between human and mouse. We also used additional metrics based on other network properties to assess module preservation such as the composite Z summary and Z median rank statistics (Langfelder et al. 2011). Their application led to similar results with consistent identification of the same preserved modules between humans and mice (Figure S2). We also performed bootstrap analyses (10,000 bootstrap samples) to assess the statistical significance of the observed proportion of consistent genes for these 6 modules (see Methods). For each module, none of the bootstrap samples produced proportions of consistent genes that were higher than the observed ones (p < 10^-4). Gene composition of the 6 identified preserved modules is shown in Supplementary Table S2.
Enrichment analysis of preserved modules

Pathway analysis was then applied to the 6 most preserved modules to assess whether they were enriched for genes belonging to specific biological pathways. Enrichment analysis was performed using the DAVID software (Huang et al. 2009) interrogating the GO, KEGG, REACTOME and PANTHER database (see Methods). Results of the enrichment analysis are provided in Table 2. At a false discovery rate (FDR) of 5%, three modules were found to be significantly enriched in genes belonging to specific biological pathways. The M21 module was significantly enriched (FDR = 8.85 \times 10^{-27}) for genes coding for ribosomal associated proteins and the M15 module for proteasome related genes (FDR = 1.37 \times 10^{-3}). The M15 was also significantly enriched (FDR = 0.003) for genes belonging to the oxidation phosphorylation (OXPHOS) pathway as was, but much more significantly, the M19 module (FDR = 3.28 \times 10^{-11}). OXPHOS genes present in the M15 and M19 modules, with size 10 and 18 respectively, were not overlapping, which is expected given the way modules were constructed.

As the OXPHOS module was enriched in candidates genes for Diabetes and Neurological disorders, we decided to further focus in the following section on the genetic components of these genes with the aim of identifying additional genetic information that could be relevant for these human diseases. Results of the corresponding analyses for the Ribosome and Proteasome pathways genes are left to Supplementary Tables S3-S5.

Genetic regulation of the OXPHOS genes

We further investigated whether the human macrophage expression of the 28 OXPHOS genes from the M19 and M15 modules could be under genetic control. A GWAS analysis was conducted on the human macrophage expression of each of the 28 OXPHOS genes in Cardiogenics samples.
Significant cis eQTLs were detected for 4 genes, COX6B1, COX8A, NDUFB7 and NDUFC1, with minimum association p-values of $p = 2.1 \times 10^{-9}$, $p = 1.9 \times 10^{-8}$, $p = 6.8 \times 10^{-9}$ and $p = 4.3 \times 10^{-9}$, respectively (Supplementary Table S6). Three trans-associations were also detected.

LPCAT1. The minor T allele of rs115960372 SNP at the LPCAT1 gene on chromosome 5 was associated with increased NDUFV2 gene expression ($p = 1.9 \times 10^{-9}$) (Table 3). It also showed suggestive evidence of association with increased expression of 2 other OXPHOS genes, ATP5C1 ($p = 5.64 \times 10^{-5}$) and NDUFAB1 ($p = 2.12 \times 10^{-6}$) (Table 3). None of the other studied genes was associated with the LPCAT1 rs115960372.

TMEM252. The rs35179438 A allele at the TMEM252 locus on chromosome 9 was associated with decreased SHDB gene expression ($p = 2.7 \times 10^{-8}$) (Table 4). None of the other studied gene expressions was associated with rs35179438.

PARK2. The minor A allele of rs192804963 SNP, located in the PARK2 gene, was significantly ($p = 4.27 \times 10^{-8}$) associated with increased COX6C expression and also demonstrated suggestive evidence for association ($p < 10^{-5}$) with the expression of several other OXPHOS genes (Table 5). For 15 of the 28 OXPHOS gene expressions, the PARK2 rs192804963 association p-value <0.01 (Table 5), a proportion (~53%) which was significantly higher ($p = 5.2 \times 10^{-4}$) than the corresponding proportion (23% = 1,833/7,862) observed in the remaining 7,862 expressions. The rs192804963 effect on OXPHOS gene expressions was nearly codominant (Figure S3). We performed an eQTL analysis to identify other genes that could be under the genetic influence of the PARK2 rs192804963 in human macrophages. Expression of 4 additional macrophage genes was significantly influenced by rs192804963 ($p < 5 \times 10^{-8}$) including PRPSAPI ($p = 1.6 \times 10^{-8}$), PPME1 ($p = 1.9 \times 10^{-8}$), CAMK2G ($p = 2.8 \times 10^{-8}$) and PTPN6 ($p = 2.9 \times 10^{-8}$). Of note, these 4 genes, whose
expression were modestly negatively correlated with those of the OXPHOS genes, were not assigned to the preserved modules.

PARK2 gene expression in humans was tagged by two probes (ILMN_2395692, ILMN_1714511) available on our array. However, none of them satisfied our QC criteria for detection p-values, the associated detection p-values being higher than 0.20 for more than 95% of the samples. As a consequence, we were not able to test whether rs192804963 associates with PARK2 macrophage expression in our study.

The PARK2 rs192804963 is intronic and common, with a minor allele frequency ~0.20, and was inferred with a correct imputation quality of 0.66. According to public database, it is in complete linkage disequilibrium (LD) (D’ = +1) with many other 3' PARK2 SNPs including the genotyped rs75203550. The minor allele frequencies of the rs192804963 and rs75203550 slightly differed, 0.21 vs 0.13 in CTS, leading to a moderate pairwise LD r^2 of ~0.55. Nevertheless, the rs75203550 demonstrated a pattern of association with macrophage OXPHOS gene expressions similar to that observed with rs192804963 (Supplementary Table S7). In addition, after adjusting for the effect of the genotyped rs75203550, the associations of rs192804963 with most OXPHOS gene expressions were no longer significant (Supplementary Table S8). We were unable to test whether the PARK2 trans effect observed in human macrophages also hold in mice macrophages because the mouse study had very low power to assess this effect reliably.

However, to follow-up on these epidemiological observations, we conducted preliminary experimental investigations to assess whether PARK2 gene expression could associate in vitro with OXPHOS gene expressions in human THP-1 macrophages (see Methods). For this experimental work, we focused on COX6C and COX6A genes, the two OXPHOS genes whose expressions were the most significantly associated with rs192804963 (Table 5). As illustrated in Figure 3, knock
down PARK2 expression was accompanied with significant \(p = 0.02 \) increase in COX6C and COX6A THP-1 expressions.

Discussion

To our knowledge, this work is the first to propose a comprehensive approach investigating the genetic architecture of gene co-expressions networks observed in human macrophages and that are preserved in mouse. We provide strong evidence that genetic variability at PARK2 gene influences the macrophage expression of several OXPHOS genes that are candidates for mitochondrial dysfunction, a biological pathway associated with several human diseases such as neurological disorders.

Preservation analysis identified 6 gene co-expression modules in humans that were conserved in mouse transcriptome macrophage data. Four of these modules were significantly enriched into genes belonging to known biological pathways such as ribosomal associated proteins, proteasome related gene and oxidative phosphorylation. The oxidative phosphorylation pathway (OXPHOS) was of particular interest as several OXPHOS genes were annotated as susceptibility disease genes, in particular for diabetes and Alzheimer, Huntington and Parkinson’s diseases (Table 2). These results are consistent with recent works reporting that oxidation phosphorylation could represent a key mechanism related to mitochondrial dysfunction pathway that could explain the association between Type 2 Diabetes and neurological disorders (Gibson 2005; Khan *et al.* 2014; Hao *et al.* 2015). Oxidative phosphorylation is an important component of mitochondrial function, the later has previously been shown to be conserved between mouse and human brain transcriptome (Miller *et al.* 2010). In that sense, our results partially extend to macrophage previous findings observed in brain. However, the preservation of the OXPHOS pathway between mouse and human
does not appear to be ubiquitous as this pathway was not identified among the most commonly co-expressed in an extensive comparison across 30 different tissues (Monaco et al. 2015).

Because of the reported possible links between OXPHOS and human diseases, we further focused our genetic investigations on the OXPHOS genes and observed strong evidence of trans-association of PARK2 rs192804963 with most macrophage OXPHOS gene expression. PARK2 gene codes for Parkin, an E3 ubiquitin-protein ligase with rare missense mutations causing early onset disease Parkinson (Kitada et al. 1998). Several experimental works have shown that Parkin plays an important role in mitochondrial dysfunction by participating to mitochondria autophagic degradation (mitophagy) (Gehrke et al. 2015; Geisler et al. 2010; Narendra et al. 2010). The mode of action of Parkin in mitophagy is known to involve several partner such as HDAC6, MFN1, MFN2, PINK1, SQSTM1, VDAC1, (Narendra et al. 2010; Geisler et al. 2010; Lee et al. 2010; Chan et al. 2011; Gehrke et al. 2015). Interestingly, these genes were all expressed in our macrophages data but their expression was not associated with PARK2 rs192804963 (all p > 0.05). Conversely, the strong associations of PARK2 rs192804963 observed with most OXPHOS gene expressions open new perspectives into the downstream functions of Parkin. OXPHOS is known to associate with mitochondrial dysfunction (Breuer et al. 2013) but the precise mechanisms and the involved partners are not well understood. A recent experimental study (Gehrke et al. 2015) showed that Parkin participates in mRNA degragation of OXPHOS genes in HEK cells. Our results obtained from a large scale epidemiological study as well as those derived from experimental works that demonstrated that PARK2 down-regulation was associated with increased OXPHOS gene expression in human macrophages are in line with this hypothesis. Our study additionally raises the hypothesis that the Parkin-dependent mRNA regulation of OXPHOS genes could be genetically determined. Altogether these observations provide strong support for a role of Parkin into the regulation of genes participating to the OXPHOS biological system and that this regulation is
partially dependent on the genetic variability of the PARK2 locus. Due the emerging links between OXPHOS, neurological disorders (e.g., Alzheimer, Parkinson) and Diabetes (Lima et al. 2014; De Felice and Ferreira 2014; Santiago and Potashkin 2014), it is tempting to hypothesize that the identified PARK2 polymorphisms could impact the risk of such human diseases. Unfortunately, the PARK2 variants discussed in this work were not available in the IGAPS, IPDGC nor DIAGRAM public depository for GWAS results in Alzheimer, Parkinson and T2D diseases, respectively. This is likely due to the fact that these results were not obtained through 1000G imputation. Conversely, PARK2 is a susceptibility gene for leprosy (Mira et al. 2004) and de Léséleuc and co-workers (de Léséleuc et al. 2013) have reported that polymorphisms mapping to the PARK2 promoter region could also exert some regulator effect in trans on the secretion of inflammatory cytokines. As the PARK2 SNP identified in our work do not show any LD with PARK2 promoter polymorphisms, it would be tempting to hypothesize that parkin could have pleiotropic influence on several biological mechanisms through different genetic regulations. Several investigations, including a fine mapping of the whole PARK2 locus, would be mandatory to assess this hypothesis.

Several limitations must be acknowledged. First, macrophages are heterogeneous cells that may have different regulations and functions according to tissue specificity (Pollard 2009). In our study, mouse macrophages were primary peritoneal macrophage cells while, in humans, macrophages were generated from monocytes by M-CSF stimulation. RNA preparation, microarray hybridization and expression data preprocessing were performed in different laboratories and followed different bioinformatic workflows. Nevertheless, such discrepancies may be considered as strengths as they introduced positive preferential bias in favor of genes ubiquitously expressed in most common macrophage cell types. Second, our strategy for preservation analysis of gene expression modules between mouse and human was based on first identifying modules in human and then assessing whether these were preserved in mouse. Several parameters had to be fixed at
different steps of the analysis workflow such as the minimum size of the modules, the beta power used in transforming the correlation matrix to an adjacent matrix satisfying a scale free topology criteria. We performed sensitivity analyses by modifying these parameters and observed similar findings (data not shown). Third, we reported here the results of the preservation of human modules in the mouse dataset. We also conducted the module identification in mouse [despite much smaller sample size] and assessed their preservation in human. Similar findings were observed. For example, modules enriched for ribosome genes (FDR $\sim 10^{-8}$) and oxidative phosphorylation (FDR $\sim 10^{-5}$) were identified as preserved. Fourth, our preservation analysis and genetic investigations relied on the use of the module eigengene (ME) approach. This strategy may not fully detect the preserved modules and the genetic variations underlying their expression variability as the percentage of module expression variability explained by the ME was rather moderate. By design (Charchar et al. 2012, Garnier et al. 2013), CTS was composed of individuals affected with coronary artery disease (CAD) and healthy individuals. Even though we cannot exclude that this may have introduced additional heterogeneity in the study sample, it is important to emphasize that the trans effect observed at PARK2 rs192840963 hold both in healthy and diseased individuals (Supplementary Table S9). Finally, our results were mainly derived from a comprehensive epidemiological investigation of large scale and well-powered genomic/transcriptomic resources. It was not possible to replicate the statistical associations/correlations we observed in macrophages as there are no other human epidemiological resources available that are similar to Cardiogenics resources. This is an important point, especially for the trans association observed at the lead PARK2 SNP that was imputed. Even though its imputation quality was correct, validation of the observed association on genotyped SNP data could be valuable. However, it was not possible to test it in the present study due to the inability to have easy access to sample DNA of the studied individuals. Further experimental works, including PARK2 knock-down in mice, are mandatory to support the claimed findings.
In conclusion, this study provides new arguments supporting the role of Parkin as a key regulator of oxidative phosphorylation in macrophages and suggested that this mechanism could be partially genetically determined in human.

Declarations

List of abbreviations

eQTL: Expression Quantitative Trait Locus
FDR: False Discovery Rate
GWAS: Genome Wide Association Study
OXPHOS: oxidation phosphorylation pathway
WGCNA: Weighted Gene Co-expression Network Analysis

Ethic approval and consent to participate

The Cardiogenics study was approved by the Institutional Ethical Committee of each Cardiogenics participating centre. All CTS individuals gave written informed consent. All animal work was conducted according to relevant national and international guidelines and was approved by the UCLA Animal Research Committee, the UCLA IACUC

Competing interests
The authors declare that they have no competing interest.

Funding

This work was supported by Transatlantic Networks of Excellence Award (12CVD02) from Foundation Leducq and National Institutes of Health K99HL121172 (MC). Cardiogenics was supported by the European Project reference LSHM-CT-2006-037593. Statistical analyses were performed using the C2BIG computing cluster, funded by the Région Ile de France, Pierre and Marie Curie University, and the ICAN Institute for Cardiometabolism and Nutrition (ANR-10-IAHU-05).

Authors’ contributions

FC, AJL and DAT conceived the study design. VC, YB, MC, OF and JLMB contributed to data processing and bioinformatics analyses. CP and WLG performed experimental works. VC and DAT drafted the manuscript that was further reviewed by YB, MC, JLMB, WLG, FC and AJL. All authors have read and approved the final version of the manuscript.

REFERENCES

Akira, S., T. Misawa, T. Satoh, and T. Saitoh, 2013 Macrophages control innate inflammation. Diabetes Obes. Metab. 15 Suppl 3: 10–18.

Breuer, M. E., W. J. Koopman, S. Koene, M. Nooteboom, R. J. Rodenburg et al., 2013 The role of mitochondrial OXPHOS dysfunction in the development of neurologic diseases. Neurobiol. Dis. 51: 27–34.

Bunyavanich, S., and E. E. Schadt, 2015 Systems biology of asthma and allergic diseases: a multiscale approach. J. Allergy Clin. Immunol. 135: 31–42.
Casanova, J.-L., and L. Abel, 2009 Revisiting Crohn’s disease as a primary immunodeficiency of macrophages. J. Exp. Med. 206: 1839–1843.

Chan, N. C., A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa et al., 2011 Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy. Hum. Mol. Genet. 20: 1726–1737.

Charchar, F. J., L. D. Bloomer, T. A. Barnes, M. J. Cowley, C. P. Nelson et al., 2012 Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet 379: 915–922.

Chen, Y., J. Zhu, P. Y. Lum, X. Yang, S. Pinto et al., 2008 Variations in DNA elucidate molecular networks that cause disease. Nature 452: 429–435.

De Felice, F. G., and S. T. Ferreira, 2014 Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes 63: 2262–2272.

de Léséleuc, L., M. Orlova, A. Cobat, M. Girard, M. Thu Huong et al., 2013 PARK2 mediates interleukin 6 and monocyte chemoattractant protein 1 production by human macrophages. PLoS Negl Trop Dis 7:e2015.

Du, P., W. A. Kibbe, and S. M. Lin, 2008 lumi: a pipeline for processing Illumina microarray. Bioinforma. Oxf. Engl. 24: 1547–1548.

Eguchi, K., and I. Manabe, 2013 Macrophages and islet inflammation in type 2 diabetes. Diabetes Obes. Metab. 15 Suppl 3: 152–158.

Fairfax, B. P., and J. C. Knight, 2014 Genetics of gene expression in immunity to infection. Curr. Opin. Immunol. 30: 63–71.

Garnier, S., V. Truong, J. Brocheton, T. Zeller, M. Rovital et al., 2013 Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes. PLoS Genet. 9: e1003240.

Gehrke, S., Z. Wu, M. Klinkenberg, Y. Sun, G. Auburger et al., 2015 PINK1 and Parkin control localized translation of respiratory chain component mRNAs on mitochondria outer membrane. Cell Metab. 21: 95–108.

Geisler, S., K. M. Holmström, D. Skujat, F. C. Fiesel, O. C. Rothfuss et al., 2010 PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 12: 119–131.

Ghattas, A., H. R. Griffiths, A. Devitt, G. Y. H. Lip, and E. Shantsila, 2013 Monocytes in coronary artery disease and atherosclerosis: where are we now? J. Am. Coll. Cardiol. 62: 1541–1551.

Gibson, B. W., 2005 The human mitochondrial proteome: oxidative stress, protein modifications and oxidative phosphorylation. Int. J. Biochem. Cell Biol. 37: 927–934.

Hansen, B. O., N. Vaid, M. Musialak-Lange, M. Janowski, and M. Mutwil, 2014 Elucidating gene function and function evolution through comparison of co-expression networks of plants. Front. Plant Sci. 5: 394.
Hao, K., A. F. Di Narzo, L. Ho, W. Luo, S. Li et al., 2015 Shared genetic etiology underlying Alzheimer’s disease and type 2 diabetes. Mol. Aspects Med. 43-44: 66–76.

Huang, D. W., B. T. Sherman, and R. A. Lempicki, 2009 Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: 44–57.

Jacobi, D., K. J. Stanya, and C.-H. Lee, 2012 Adipose tissue signaling by nuclear receptors in metabolic complications of obesity. Adipocyte 1: 4–12.

Johnson, E. O., D. B. Hancock, J. L. Levy, N. C. Gaddis, N. L. Saccone et al., 2013 Imputation across genotyping arrays for genome-wide association studies: assessment of bias and a correction strategy. Hum. Genet. 132: 509–522.

Khan, N. M., A. Ahmad, R. K. Tiwari, M. A. Kamal, G. Mushtaq et al., 2014 Current challenges to overcome in the management of type 2 diabetes mellitus and associated neurological disorders. CNS Neurol. Disord. Drug Targets 13: 1440–1457.

Kitada, T., S. Asakawa, N. Hattori, H. Matsumine, Y. Yamamura et al., 1998 Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608.

Langfelder, P., and S. Horvath, 2008 WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9: 559.

Langfelder, P., R. Luo, M. C. Oldham, and S. Horvath, 2011 Is my network module preserved and reproducible? PLoS Comput. Biol. 7: e1001057.

Langfelder, P., B. Zhang, and S. Horvath, 2008 Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 24: 719–720.

Larrede, S., C. M. Quinn, W. Jessup, E. Frisdal, M. Olivier et al., 2009 Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent. Arterioscler. Thromb. Vasc. Biol. 29: 1930–1936.

Lee, J. T., W. E. Johnson, H. S. Parker, A. E. Jaffe, and J. D. Storey, 2012 The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28: 882–883.

Lee, J.-Y., Y. Nagano, J. P. Taylor, K. L. Lim, and T.-P. Yao, 2010 Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy. J. Cell Biol. 189: 671–679.

Lima, M. M. S., A. D. S. Targa, A. C. D. Nosed, L. S. Rodrigues, A. M. Delattre et al., 2014 Does Parkinson’s disease and type-2 diabetes mellitus present common pathophysiological mechanisms and treatments? CNS Neurol. Disord. Drug Targets 13: 418–428.

Lin, S. M., P. Du, W. Huber, and W. A. Kibbe, 2008 Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36: e11.

Lippert, C., J. Listgarten, Y. Liu, C. M. Kadie, R. I. Davidson et al., 2011 FaST linear mixed models for genome-wide association studies. Nat. Methods 8: 833–835.
Li, Y., C. J. Willer, J. Ding, P. Scheet, and G. R. Abecasis, 2010 MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34: 816–834.

Madamanchi, N. R., A. Vendrov, and M. S. Runge, 2005 Oxidative stress and vascular disease. Arterioscler. Thromb. Vasc. Biol. 25: 29–38.

Miller, J. A., S. Horvath, and D. H. Geschwind, 2010 Divergence of human and mouse brain transcriptome highlights Alzheimer disease pathways. Proc. Natl. Acad. Sci. U. S. A. 107: 12698–12703.

Mira, M.T., A. Alcaïs, V.T. Nguyen, M.O. Moraes, C. Di Flumeri et al., 2004 Susceptibility to leprosy is associated with PARK2 and PACRG. Nature. 427:636-40.

Monaco, G., S. van Dam, J. L. Casal Novo Ribeiro, A. Larbi, and J. P. de Magalhães, 2015 A comparison of human and mouse gene co-expression networks reveals conservation and divergence at the tissue, pathway and disease levels. BMC Evol. Biol. 15: 259.

Murray, P. J., and T. A. Wynn, 2011 Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11: 723–737.

Narendra, D. P., S. M. Jin, A. Tanaka, D.-F. Suen, C. A. Gautier et al., 2010 PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 8: e1000298.

Nathan, C., and A. Ding, 2010 Nonresolving inflammation. Cell 140: 871–882.

Oldham, M. C., S. Horvath, and D. H. Geschwind, 2006 Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc. Natl. Acad. Sci. U. S. A. 103: 17973–17978.

Orozco, L. D., B. J. Bennett, C. R. Farber, A. Ghazalpour, C. Pan et al., 2012 Unraveling inflammatory responses using systems genetics and gene-environment interactions in macrophages. Cell 151: 658–670.

Pollard, J. W., 2009 Trophic macrophages in development and disease. Nat. Rev. Immunol. 9: 259–270.

Price, A. L., N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick et al., 2006 Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38: 904–909.

Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira et al., 2007 PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81: 559–575.

Rotival, M., T. Zeller, P. S. Wild, S. Maouche, S. Szymczak et al., 2011 Integrating genome-wide genetic variations and monocyte expression data reveals trans-regulated gene modules in humans. PLoS Genet. 7: e1002367.

Santiago, J. A., and J. A. Potashkin, 2014 System-based approaches to decode the molecular links in Parkinson’s disease and diabetes. Neurobiol. Dis. 72 Pt A: 84–91.
Saresella, M., I. Marventano, E. Calabrese, F. Piancone, V. Rainone et al., 2014 A complex proinflammatory role for peripheral monocytes in Alzheimer’s disease. J. Alzheimers Dis. JAD 38: 403–413.

Schadt, E. E., 2009 Molecular networks as sensors and drivers of common human diseases. Nature 461: 218–223.

Schunkert, H., I. R. König, S. Kathiresan, M. P. Reilly, T. L. Assimes et al., 2011 Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat. Genet. 43: 333–338.

Shabalain, A. A., 2012 Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinforma. Oxf. Engl. 28: 1353–1358.

Subramanian, A., P. Tamayo, V. K. Mootha, S. Mukherjee, B. L. Ebert et al., 2005 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102: 15545–15550.

Tavakoli, S., D. Zamora, S. Ullevig, and R. Asmis, 2013 Bioenergetic profiles diverge during macrophage polarization: implications for the interpretation of 18F-FDG PET imaging of atherosclerosis. J. Nucl. Med. Off. Publ. Soc. Nucl. Med. 54: 1661–1667.

Van Gassen, N., W. Staels, E. Van Overmeire, S. De Groef, M. Sojoodi et al., 2015 Concise Review: Macrophages: Versatile Gatekeepers During Pancreatic β-Cell Development, Injury, and Regeneration. Stem Cells Transl. Med. 4: 555–563.

Yang, H., Y. Ding, L. N. Hutchins, J. Szatkiewicz, T. A. Bell et al., 2009 A customized and versatile high-density genotyping array for the mouse. Nat. Methods 6: 663–666.

Zheng, C.-H., L. Yuan, W. Sha, and Z.-L. Sun, 2014 Gene differential coexpression analysis based on biweight correlation and maximum clique. BMC Bioinformatics 15 Suppl 15: S3.
Figure 1 Analysis workflow of the present study.

Cardiogenics Transcriptomic Study
N = 684 samples
Human macrophage expressions:
Illumina HumanRef-8 v3
15,539 QC probes

Hybrid Diversity Mouse Panel
N = 86 samples
Mouse macrophage expressions: Affymetrix
Mouse Genome HT MG-430A arrays
17,962 probes

7,890 ortholog genes

Weighted Gene Cluster analysis

27 modules of co-expressed genes in humans

Preservation analysis between human & mouse

6 preserved modules

Enrichment analysis

"Ribosome " module

"Proteosome " module

"Oxydation Phosphorylation " module

GWAS on human disease associated gene expressions

4 cis eQTL effects
3 trans eQTL effects
Figure 2 Distribution of the percentage of consistent genes across identified human macrophage gene expression modules.
Figure 3 Increased *COX6A* and *COX6C* expression in *PARK2* KD human macrophages

Relative quantification of mRNA levels in human THP-1 macrophages transfected with control siRNA (circle) or siRNA targeting human PARK2 (triangle). The height of the open rectangle represents the mean (±SEM) over 4 independent experiments.
Table 1. Characteristics of the 27 modules identified in human macrophage data

Modules	Size	ME%	% consistent genes
M27	62	23.4	0.71
M26	67	30.1	0.64
M25	68	28.1	0.49
M24	73	26.5	0.82
M23	90	28.1	0.80
M22	91	25.8	0.79
M21	96	26.2	0.82
M20	98	28.7	0.63
M19	131	28.4	0.93
M18	141	20.7	0.42
M17	158	24.1	0.82
M16	159	25.2	0.53
M15	160	24.7	0.86
M14	185	21.4	0.67
M13	186	25.8	0.51
M12	209	29.3	0.45
M11	217	27.1	0.60
M10	270	28.6	0.60
M9	282	24.4	0.70
M8	292	25.0	0.58
M7	295	22.9	0.60
M6	369	22.0	0.65
M5	394	26.8	0.69
M4	439	22.6	0.46
M3	449	17.1	0.54
M2	854	18.1	0.61
M1	967	24.2	0.74
M0 (unassigned genes)	1088	3.2	0.70

Size: number of genes composing the module
ME%: percentage of gene expression variability explained by the module eigengene (ME)
The last "module" in this table corresponds to isolated genes (i.e. genes not assigned to any modules).
Table 2. Enrichment analysis on the most preserved human modules

Preserved Module	Pathway	Enrichment Score	FDR	#Genes	Genes
	Oxidative phosphorylation	8.92	3.28 10^{-11}	18	NDUFB3, ATP5J2, COX7A2, NDUFB7, NDUA9, COX8A, ATP5G2, UQCRQ, NDUA1, COX6C, NDUFB2, NDUA11, SDHB, COX6B1, COX6A1, ATP5I, COX17, ATP5J
M19 (n_c=131)	(Huntington's disease)	8.85 10^{-8}	17	17	NDUFB3, CLTA, COX7A2, POLR2L, NDUFB7, NDUA9, COX8A, POLR2I, ATP5G2, UQCRQ, NDUA1, COX6C, NDUFB2, SDHB, COX6B1, COX6A1, ATP5J
	(Diabetes pathway)	3.62 10^{-7}	20	20	NDUFA12, COX6C, NDUFB2, NDUA11, SDHB, IDH3G, COX6B1, DAD1, COX6A1, ATP5I, ATP5J
	(Parkinson's disease)	1.31 10^{-6}	14	14	NDUFB3, COX7A2, NDUFB7, NDUA9, COX8A, ATP5G2, UQCRQ, NDUFB2, COX6C, SDHB, COX6B1, COX6A1, ATP5J
	(Alzheimer's disease)	2.57 10^{-5}	14	14	NDUFB3, COX7A2, NDUFB7, NDUA9, COX8A, ATP5G2, UQCRQ, NDUFB2, COX6C, SDHB, COX6B1, COX6A1, ATP5J
	Proteasome	3.72	1.37 10^{-3}	8	UBE2N, PSMD14, UBE2D2, PSMD12, PSMC2, UCHL5, PSMD6, PSMD7
	Ribosome	26.70	8.85 10^{-27}	22	RPL18, RPSA, RPL17, RPL35, RPS9, RPL27, RPL38, RPS6, RPS5, RPS25, RPS19, RPL31, RPL22, RPL3, RPL5, RPS10, RPL11, RPL4, RPS20, RPL10A, UBA52, RPS24

FDR: False Discovery Rate.

n_c: number of consistent genes in the module.

Modules M17, M23 and M22 were not significantly enriched for any specific biological pathways.
Table 3: Association of *LPCAT1* rs115960372 with human macrophage expression of 28 OXPHOS genes

Gene	Probes	Chr	Probe_Start	Probe_End	Beta*	Se	Pvalue
M19 OxPho genes							
SDHB	ILMN_1667257	1	17476541	17476590	0.024	0.0135	0.080
NDUFB3	ILMN_2119945	2	201943702	201944702	0.045	0.0168	6.82 \(10^{-3}\)
COX17	ILMN_2187718	3	119396160	119396209	0.000	0.0195	0.982
ATP5I	ILMN_1772506	4	678058	678107	0.0144	0.0125	0.250
UQCRQ	ILMN_1666471	5	132174747	132174796	0.013	0.0152	0.389
COX7A2	ILMN_1701293	6	75950943	75951943	0.019	0.0145	0.182
ATP5J2	ILMN_2307883	7	99217929	99217978	0.028	0.0156	0.075
NDUFB2	ILMN_2117330	7	140402713	140402762	-0.008	0.0172	0.635
COX6C	ILMN_1654151	8	100904152	100904201	0.006	0.0116	0.611
COX8A	ILMN_1809495	11	63742263	63743263	0.020	0.0152	0.183
NDUFA9	ILMN_1760741	12	4796151	4796200	0.040	0.0175	0.021
ATP5G2	ILMN_1660577	12	54063071	54063120	-0.027	0.0185	0.137
COX6A1	ILMN_1783636	12	120876242	120876291	0.024	0.0164	0.146
NDUFA11	ILMN_2175712	19	5945952	5946001	-0.018	0.0162	0.259
NDUFB7	ILMN_1813604	19	14816068	14817068	-0.002	0.0159	0.876
COX6B1	ILMN_2154671	19	36139232	36139281	-0.019	0.0132	0.150
ATP5J	ILMN_2348093	21	28180168	28180217	-0.010	0.0154	0.509
NDUFA1	ILMN_1784286	X	119005887	119005936	0.017	0.0139	0.232
M15 OxPho genes							
ATP5F1	ILMN_1721989	1	112003559	112003608	0.033	0.0130	0.0110
PPA2	ILMN_1687785	4	106292029	106293029	0.046	0.0205	0.0256
NDUFC1	ILMN_1733603	4	140216254	140217254	0.050	0.0175	4.70 \(10^{-3}\)
NDUFA4	ILMN_1751258	7	11006668	11006717	0.033	0.0171	0.0522
ATP5C1	ILMN_1701269	10	7801069	7801118	0.074	0.0183	5.64 \(10^{-5}\)
SDHD	ILMN_1698487	11	111966144	111966193	0.049	0.0201	0.015
ATP5L	ILMN_2079285	11	118280301	118280350	0.049	0.022	0.029
NDUFA8B1	ILMN_2179018	16	23684934	23684983	0.091	0.0190	2.12 \(10^{-6}\)
ATP5H	ILMN_1666372	17	75524607	75524656	0.029	0.0136	0.031
NDUVF2	ILMN_2086417	18	9126871	9127871	0.104	0.0170	1.89 \(10^{-9}\)

* Effect of the minor rs115960372-T allele on gene expression. Its allele frequency was 0.10 and its imputation quality 0.86.
Table 4. Association of \textit{TMEM252} rs35179438 with human macrophage expression of 28 OXPHOS genes

Gene Probes	Chr	Probe_Start	Probe_End	Beta*	Se	Pvalue
M19 OxPho genes						
SDHB \textit{ILMN}_1667257	1	17476541	17476590	-0.053	0.0094	2.66 10^{-8}
NDUFB3 \textit{ILMN}_2119945	2	201943702	201944702	-0.034	0.0120	5.24 10^{-3}
COX17 \textit{ILMN}_2187718	3	119396160	119396209	-0.031	0.0139	0.0286
ATP5I \textit{ILMN}_1772506	4	678058	678107	-0.020	0.0090	0.0244
UQCRQ \textit{ILMN}_1666471	5	132174747	132174796	-0.045	0.0108	3.55 10^{-5}
COX7A2 \textit{ILMN}_1701293	6	75950943	75950943	-0.028	0.0104	7.53 10^{-3}
ATP5J2 \textit{ILMN}_2307883	7	99217929	99217978	-0.035	0.0112	1.58 10^{-3}
NDUFB2 \textit{ILMN}_2117330	7	140402713	140402762	-0.039	0.0122	1.44 10^{-3}
COX6C \textit{ILMN}_1654151	8	100904152	100904201	-0.024	0.0083	4.07 10^{-3}
COX8A \textit{ILMN}_1809495	11	63742263	63743263	-0.042	0.0108	1.16 10^{-4}
NDUFA9 \textit{ILMN}_1760741	12	4796151	4796200	-0.049	0.0124	1.04 10^{-4}
ATP5G2 \textit{ILMN}_1660577	12	54063071	54063120	-0.006	0.0133	0.675
COX6A1 \textit{ILMN}_1783636	12	120876242	120876291	-0.018	0.0118	0.119
NDUFA11 \textit{ILMN}_2175712	19	5945952	5946001	-0.028	0.0115	0.0142
NDUFB7 \textit{ILMN}_1813604	19	14816068	14817068	-0.020	0.0114	0.0764
COX6B1 \textit{ILMN}_2154671	19	36139232	36139281	-0.028	0.0094	0.0355
ATP5J \textit{ILMN}_2348093	21	28180168	28180217	-0.041	0.0109	1.63 10^{-4}
NDUFA1 \textit{ILMN}_1784286	X	119005887	119005936	-0.034	0.0099	6.42 10^{-4}

M15 OxPho genes						
ATP5F1 \textit{ILMN}_1721989	1	112003559	112003608	-0.022	0.0093	0.0195
PPA2 \textit{ILMN}_1687785	4	106292029	106293029	-0.023	0.0148	0.123
NDUFC1 \textit{ILMN}_1733603	4	140216254	140217254	0.007	0.0126	0.559
NDUFA4 \textit{ILMN}_1751258	7	11006668	11006717	-0.007	0.0123	0.559
ATP5C1 \textit{ILMN}_1701269	10	7801069	7801118	-0.032	0.0133	0.0157
SDHD \textit{ILMN}_1698487	11	111966144	111966193	-0.016	0.0145	0.262
ATP5L \textit{ILMN}_2079285	11	118280301	118280350	-0.013	0.0160	0.426
NDUFA81 \textit{ILMN}_2179018	16	23684934	23684983	-0.026	0.0138	0.0561
ATP5H \textit{ILMN}_1666372	17	75524607	75524656	-0.034	0.0097	5.44 10^{-4}
NDUVF2 \textit{ILMN}_2086417	18	9126871	9127871	-0.022	0.0125	0.0754

* Effect of the minor rs35179438-TA allele on gene expression. Its allele frequency was 0.25 and its r2 imputation quality 0.79.
Table 5. Association of PARK2 rs192804963 with human macrophage expression of 28 OXPHOS genes

Gene	Probes	Chr	Probe_Start	Probe_End	Beta*	Se	Pvalue
M19 OxPho genes							
SDHB	ILMN_1667257	1	17476541	17476590	0.027	0.0116	0.021
NDUFB3	ILMN_2119945	2	201943702	201944702	0.072	0.0143	5.22 10^-7
COX17	ILMN_2187718	3	119396160	119396209	0.064	0.0167	1.36 10^-4
ATP5I	ILMN_1772506	4	678058	678107	0.042	0.0107	9.34 10^-5
UQCRQ	ILMN_1666471	5	132174747	132174796	0.035	0.0131	8.31 10^-3
COX7A2	ILMN_1701293	6	75950943	75950943	0.055	0.0123	8.29 10^-6
ATP5J2	ILMN_2307883	7	99217929	99217978	0.061	0.0133	5.13 10^-6
NDUFB2	ILMN_2117330	7	140402713	140402762	0.035	0.0147	9.62 10^-3
COX6C	ILMN_1654151	8	100904152	100904201	0.055	0.0098	4.27 10^-8
COX8A	ILMN_1809495	9	63742263	63743263	0.056	0.0128	1.74 10^-5
NDUFA9	ILMN_1760741	12	4796151	4796200	0.058	0.0152	1.08 10^-4
ATP5G2	ILMN_1660577	12	54063071	54063120	0.024	0.0159	0.128
COX6A1	ILMN_1783636	12	120876242	120876291	0.071	0.0139	3.81 10^-7
NDUFA11	ILMN_2175712	19	5945952	5946001	0.027	0.0139	0.055
NDUFB7	ILMN_1813604	19	14816068	14817068	0.026	0.0137	0.055
COX6B1	ILMN_2154671	19	36139232	36139281	0.022	0.0114	0.053
ATP5J	ILMN_2348093	21	28180168	28180217	0.023	0.0132	0.086
NDUFA1	ILMN_1784286	X	119005887	119005936	0.031	0.0119	0.010
M15 OxPho genes							
ATP5F1	ILMN_1721989	1	112003559	112003608	0.033	0.0112	3.32 10^-3
PPA2	ILMN_1687785	4	106292029	106293029	0.000	0.0178	0.967
NDUFC1	ILMN_1733603	4	140216254	140217254	0.026	0.0152	0.085
NDUFA4	ILMN_1751258	7	11006668	11006717	0.051	0.0146	4.65 10^-4
ATP5C1	ILMN_1701269	10	7801069	7801118	0.028	0.0160	0.079
SDHD	ILMN_1698487	11	111966144	111966193	0.027	0.0174	0.122
ATP5L	ILMN_2079285	11	118280301	118280350	0.009	0.0192	0.655
NDUFA81	ILMN_2179018	16	23684934	23684983	0.052	0.0165	1.86 10^-3
ATP5H	ILMN_1666372	17	75524607	75524656	0.020	0.0118	0.083
NDUVF2	ILMN_2086417	18	9126871	9127871	0.044	0.0150	3.52 10^-3

* Effect of the minor rs192804963-A allele on gene expression. Its allele frequency was 0.21 and its r^2 imputation quality 0.66.