Towards an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms

Michael Murphy, Simone Montangero, and Tommaso Calarco
Institut für Quanteninformationsverarbeitung, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany

Philippe Grangier and Antoine Browaeys
Laboratoire Charles Fabry, Institut d’Optique, CNRS, Univ Paris-Sud, Campus Polytechnique, RD 128, 91127 Palaiseau cedex, France

We investigate the implementation of a controlled-Z gate on a pair of Rydberg atoms in spatially separated dipole traps where the joint excitation of both atoms into the Rydberg level is strongly suppressed (the Rydberg blockade). We follow the adiabatic gate scheme of Jaksch et al. [1], where the pair of atoms are coherently excited using lasers, and apply it to the experimental setup outlined in Gaëtan et al. [2]. We apply optimisation to the experimental parameters to improve gate fidelity, and consider the impact of several experimental constraints on the gate success.

I. INTRODUCTION

Using neutral atoms for quantum information has garnered much theoretical interest over the last decade, fuelled by advances in their experimental manipulation, particularly trapping and cooling. Several novel schemes for entangling pairs of atoms (an essential operation for quantum logic) via controlled collisions have been developed [3, 4], but schemes that make use of the special properties of Rydberg atoms are also very promising (see [5] for a review). In particular, several schemes for producing quantum gates by exciting pairs of Rydberg atoms with tuned lasers have emerged [1, 6], which capitalise on the strong dipole-dipole interaction that prevents the simultaneous excitation of neighbouring Rydberg atoms, known as the Rydberg blockade. Several steps towards realising such schemes experimentally have already been achieved, particularly the observation of the blockade [2] and entanglement generation [7] in a system of two confined Rydberg atoms. There has even been some early success in producing a gate with trapped Rydberg atoms [8].

In this paper, we consider the implementation of a controlled-Z (cz) gate on a pair of Rydberg atoms confined in spatially separated dipole traps subject to the Rydberg blockade effect. We follow the scheme outlined in [1], but with specific application to the experimental setup detailed in [2], where the Rydberg atom is excited via a two-photon transition. This proposal has the advantage that both atoms are excited by the same laser, reducing the need for single-atom addressability; the gate is also adiabatic, which softens the experimental requirement for strong fields or precise timings. However, the experimental considerations do present additional challenges in the implementation of the gate, particularly due to loss from the intermediate state of the transition and the movement of the atoms in the dipole trap. We will attempt to address both of these issues here by applying a gradient ascent control algorithm to search for the ideal set of parameters for implementing the gate on a short timescale (∼1 µs) and with high fidelity. Our results will show that the physical system allows for a great deal of control and gate times and fidelities approaching our desired range, providing a positive outlook for implementing high-fidelity gates with such systems.

The paper is arranged as follows. In Sec. II we briefly recount the cz gate, followed by a description of how it may be synthesised on a pair of Rydberg atoms. In particular, we expose the operation of the gate by considering the effective two-level dynamics of each atom and its interaction with a laser field. In Sec. III we describe how we optimise the operation of the laser using a gradient descent to achieve the gate with high-fidelity. In Sec. IV we consider the details of the experiment and the constraints it imposes on the gate operation, particularly with regards to loss and effects arising from atomic motion. Finally, we conclude our paper in Sec. V.

II. CONTROLLED PHASE GATE

A. Gate definition

The controlled-Z (cz) gate is a two-qubit gate in quantum information, and belongs to the class of controlled unitary operations [10]. Given the computational basis \(|0\rangle, |1\rangle \), it is defined as the unitary transformation

\[
\begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1 \\
\end{pmatrix}
\] (1)

This gate is of particular importance because it generates entanglement between two unentangled qubits. In addition, together with a finite set of single-qubit operations, one can construct any desired gate operation simply by...
A pair of hyperfine states of the atom will encode the gate is performed by adiabatically driving the two-atom system 11.

B. Blockaded Rydberg atoms

The physical system we are considering for the implementation of the gate is a pair of trapped Rydberg atoms 2, specifically 87Rb. The atoms are trapped a distance r apart in two separate microscopic dipole traps 2. For our purposes, we need only consider a small number of the internal states on which the dynamics will take place.

A pair of hyperfine states of the atom will encode the computational basis, and are labelled |e⟩ = |0⟩, |g⟩ = |1⟩. Each atom has its |g⟩ state coupled to a highly excited Rydberg state (which we label |r⟩) via a two-photon transition through an intermediate state |i⟩. The internal level scheme with state transitions for a single atom is shown in Fig. 1. If two neighbouring atoms are excited to the |r⟩ state, then they interact via a dipole-dipole potential with energy \(U(r) = C_3/r^3 \). This interaction energy shifts the energy of the state where both atoms are excited. When this shift is much larger than the two-photon detuning \(\delta \), the two-photon transition is far off-resonant with the doubly-excited state, leading to a strong suppression of both atoms becoming excited. This effect is known as the Rydberg blockade, and has been observed experimentally 2,12. The effect is shown schematically in Fig. 2.

The important point about the blockade mechanism in our case is that it is state dependent: only if both atoms are in the ground state |g⟩ will they be subject to the blockade. The potential use of this as a mechanism for performing a quantum gate has been explored in several papers 1, 6, 13, 14, but here we follow the adiabatic (model B) scheme of Jaksch et al., where the gate is performed by adiabatically driving the two-atom system 11.

C. Gate operation in outline

There are two critical elements that allow us to synthesise the gate with our system. The first is the blockade mechanism, which prevents excitation to the doubly-excited |rr⟩ state (where we have used the shorthand notation |r⟩⊗|r⟩ = |rr⟩ for the tensor product of the state of the two atoms, which will used throughout). This avoids unwanted mechanical effects stemming from the strong interaction of the two Rydberg atoms, as well as reducing the time spent in the Rydberg state, which is subject to loss. The second crucial aspect is the super-radiant enhancement of excitation from |gg⟩ as compared with the states |ge⟩ and |eg⟩. This results in a higher rate of phase accumulation on the |gg⟩ state during excitation in comparison to |ge⟩ and |eg⟩. By carefully choosing the excitation profile of the incident lasers, we can control these two different accumulated phases to produce the CZ gate.

D. Hamiltonian

The two-photon transition is driven via two lasers; one blue-detuned on the transition from |g⟩ to |i⟩ by an amount \(\Delta \) with a Rabi frequency \(\Omega_B(t) \), and the other red-detuned on the transition |i⟩ to |r⟩ by an amount \(\Delta + \delta \) with a Rabi frequency \(\Omega_R(t) \) (see Fig. 1). The general form of the Hamiltonian for our two-atom system can be written as

\[
\hat{H} = \hat{H}_r + \hat{H}_g + \hat{H}_{\text{int}}.
\]

The single-atom Hamiltonians are composed of both the internal and external dynamics, such that (after the rotating wave approximation)

\[
\hat{H}_r = \hat{H}_S + \hat{H}_I + \hat{H}_E,
\]

\[
\hat{H}_S = (\Delta - i\gamma_i)|i⟩⟨i| + (\Delta + \delta)|r⟩⟨r|,
\]

\[
\hat{H}_I = -\frac{\hbar\Omega_B(t)}{2}\left(e^{i(k_{r}r_r + \Delta t)}|g⟩⟨i| + \text{H.c.}\right)
\]

\[
-\frac{\hbar\Omega_R(t)}{2}\left(e^{i(k_{i}r_i + (\Delta + \delta)t)}|i⟩⟨r| + \text{H.c.}\right),
\]

\[
\hat{H}_E = (\hat{T} + V_{\text{trap}})(|g⟩⟨g| + |e⟩⟨e| + |i⟩⟨i| + |r⟩⟨r|),
\]

where \(i = 1, 2 \) labels the two atoms. \(\hat{H}_S \) describes the energy splitting of the internal states along with the effective decay from those states, \(\hat{H}_I \) describes the laser coupling between the internal states, and \(\hat{H}_E \) contains the kinetic and potential energy terms. The factors \(\gamma_i, \gamma_r \) account for an effective loss of population from the
We can now rewrite the system Hamiltonian as \(\hat{H} = \hat{H}_R + \hat{H}_{\text{int}} \), where
\[
\hat{H}_R = \hat{H}_1 + \hat{H}_2 + \hat{H}_I ,
\]
\[
\hat{H}_I = \frac{\hbar \Omega(t)}{2} \left(e^{-i k \cdot r_I} \langle ge \rangle \langle re \rangle + e^{-i k \cdot r_Z} \langle eg \rangle \langle er \rangle \right) - \frac{\sqrt{2} \hbar \tilde{\Omega}(t)}{2} \langle gg \rangle \langle \Psi^+ \rangle + \langle \Psi^+ \rangle \langle gg \rangle ,
\]
with the effective Rabi frequency of the two-level dynamics
\[
\tilde{\Omega}(t) = \Omega_B \Omega_R(t)/2 \Delta .
\]
The magnitude of the dipole matrix elements
\[
\langle gg | \hat{H}_I | \Psi^+ \rangle = \sqrt{2} \cdot \frac{\hbar \tilde{\Omega}}{2}, \quad \langle gg | \hat{H}_I | \Psi^- \rangle = 0 ,
\]
\[
\langle ge | \hat{H}_I | re \rangle = \langle \langle eg | \hat{H}_I | er \rangle = \frac{\hbar \tilde{\Omega}}{2} .
\]
show that the state \(| \Psi^- \rangle \) is not coupled to any of the other states via the laser interaction; in other words, it is sub-radiant \(10 \). In addition, the state \(| \Psi^+ \rangle \) is a super-radiant state, so that the coupling between the ground state \(| gg \rangle \) and \(| \Psi^+ \rangle \) is enhanced by a factor of \(\sqrt{2} \) compared to the transition \(| ge \rangle \rightarrow | re \rangle (| eg \rangle \rightarrow | er \rangle).

Finally, note that since \(| i \rangle \) is never populated in this approximation, so we neglect the loss term \(\gamma_i \). We will also for the moment assume that the atoms are stationary, and so the phases accumulated from their movement in the light-field can be neglected.

F. Gate operation in full

Now we describe the operation of the gate in more detail. We start with the initial state
\[
| \psi(t = 0) \rangle = \frac{1}{2} (| gg \rangle + | ge \rangle + | eg \rangle + | ee \rangle) .
\]
and define the target state at final time \(T \)
\[
| \psi_T \rangle = \frac{1}{2} (-| gg \rangle + | ge \rangle + | eg \rangle + | ee \rangle) .
\]
Note that while this seems to a specific state transformation, as opposed to the unitary transformation from Eq. (11), they are in this case equivalent by virtue of the basis states \(\{ | gg \rangle , | ge \rangle , | eg \rangle , | ee \rangle \} \) not being directly coupled to one another. Hence any initial state-dependent phases will not affect the final outcome of the gate.

To perform the gate, the blue laser is always switched on, while the red laser is modulated in a time-dependent fashion using an acoustic-optical modulator. If this modulation is slow on the timescale given by \(\tilde{\Omega}(t) \) and \(\delta \), then
the system will adiabatically follow the dressed states of the Hamiltonian \hat{H}. Performing the same treatment as in [1] for our system, we similarly find that the energy of the dressed levels adiabatically connected to $|gg\rangle$ and $|ge\rangle(|eg\rangle)$ are

$$\varepsilon_{gg}(t) = \frac{1}{2} \left[\delta'' - 4E_R(t) + \left(\delta'' + 2\tilde{\Omega}^2(t) \right) \right],$$

$$\varepsilon_{ge}(t) = \frac{1}{2} \left[\delta' - 2E_R(t) + \left(\delta' + \tilde{\Omega}^2(t) \right) \right],$$

respectively, where $\delta' \equiv \delta - E_B + E_R(t)$ is the effective two-photon detuning including the Stark shifts from the adiabatic elimination of $|i\rangle$:

$$E_R(t) \equiv \frac{\tilde{\Omega}_e^2(t)}{4\Delta}, \quad E_B \equiv \frac{\tilde{\Omega}_e^2}{4\Delta};$$

and

$$\delta'' \equiv \delta' - \frac{\tilde{\Omega}_e^2(t)}{2u + 4\delta' - 4E_R(t)}$$

includes the additional Stark shift from the adiabatic elimination of the $|rr\rangle$ state. The final state is

$$|\psi(T)\rangle = e^{-i\phi_{gg}}|gg\rangle + e^{-i\phi_{ge}}(|ge\rangle + |eg\rangle) + |ee\rangle,$$

where

$$\phi_{gg} = \int_0^T \varepsilon_{gg}(t) \, dt, \quad \phi_{ge} = \int_0^T \varepsilon_{ge}(t) \, dt.$$

By performing state-selective qubit operations, we can realise the cz gate. To see this, we first apply a state-selective phase on the first atom; if the first atom is in the state $|g\rangle$, then it receives a phase $e^{-i\varepsilon_{ge}}$. Similarly, we then apply the same phase rotation on the second atom. After these operations, the state becomes

$$|\tilde{\psi}(T)\rangle = e^{-i(\phi_{gg} - 2\phi_{ge})}|gg\rangle + |ge\rangle + |eg\rangle + |ee\rangle.$$

We can now define the gate phase

$$\phi \equiv \phi_{gg} - 2\phi_{ge}.$$

The operation of the gate is now clear: we seek to modulate $\Omega_R(t)$ such that $\phi = (2k+1)\pi$, $k \in \mathbb{Z}$, and there is no remaining population in the excited states of either atom (this is taken for granted in the adiabatic limit). The next step is to design $\Omega_R(t)$ to achieve these conditions.

III. OPTIMISATION OF THE GATE

A. Simulation

The system evolves in accordance with the Schrödinger equation ($\hbar = 1$):

$$\frac{\partial}{\partial t} |\psi(t)\rangle = \hat{H}|\psi(t)\rangle.$$

Ω_0	Ω_B	Δ	δ	
Initial	300	300	1000	0
Optimised	304.66	292.55	974.78	0

 TABLE I. A set of initial parameters that produces a gate with fidelity of around 89%, and the optimised parameters that produce a gate with fidelity better than 99.9%. All values are in units of 2π MHz

Since the Hilbert space dimension $|\hat{H}| = N$ is relatively small, we can simulate the gate by directly diagonalising the Hamiltonian and using discrete time steps dt, such that the solution of Eq. (22) can be written as

$$|\psi(t)\rangle = Pe^{-iDdt}p^{-1}|\psi(t-dt)\rangle,$$

where $P = [x_1, x_2, \ldots, x_N]$ is the square matrix constructed from the eigenvectors x_i of \hat{H}, and $D = \text{diag}(\lambda_1, \lambda_2, \ldots, \lambda_N)$ is a diagonal matrix whose elements are the eigenvalues λ_i of \hat{H}.

B. Optimisation method

Many tools exist for numerical optimisation that we could employ here to design the Rabi frequency $\Omega_R(t)$ that produces the gate. We start by making a guess for the form of $\Omega_R(t)$, so that the evolution is characterised by only a handful of parameters. One particular choice is a Gaussian:

$$\Omega_R(t) = \Omega_0 e^{-\left(\frac{t}{\tau}\right)^2},$$

where we will choose $\tau = 0.1$. The constant Ω_0 is a parameter which we can, in principle, choose arbitrarily (in reality there will be constraints on this value, which we will come to later). There are also parameters associated with the system that one may vary, namely the atom separation r, the Rabi frequency Ω_B, and the detunings δ and Δ. We begin by choosing a set of reasonable values, and then we numerically optimise each of the parameters to achieve the desired gate with a high fidelity. The numerical method used to optimise the parameters is gradient descent.

As an example, we start with the set of parameters in Table I. The total time for the gate is fixed at 500 ns, and the atoms are separated at a distance of 0.3 µm, and the detuning $\delta = 2\pi 300$ MHz. The dipole-dipole interaction strength $U(r) = 3200$ MHz/µm3 is taken from [2]. This is a particularly strong interaction due to the existence of a Förster resonance [17, 18], a point which we will come back to later when we describe the experimental setup in more detail. We define the fidelity of the gate operation as $F = |\langle \psi(T)|\psi_G\rangle|^2$. The resultant fidelity of the gate with these initial parameters is only around 89%. Now we apply our optimisation algorithm to the parameters Ω_0, Ω_B, and Δ. After 1600 iterations, we achieve a fidelity of better than 99.9%, or, more precisely, and infidelity
FIG. 3. The decrease in infidelity of the quantum gate for the set of initial parameters given in Table I. One sees that the infidelity decreases monotonically until saturating in a local minimum of the optimisation. The final achieved infidelity was $1 - F = 3.8 \times 10^{-3}$.

Δ required for the validity of the adiabatic elimination. We have, however, confirmed that even when considering the full evolution under \hat{H} in Eq. (2) the population in $|i\rangle$ is heavily suppressed, such that it may be neglected. In what follows, we will abandon the effective model given by \hat{H}_R (which provided insight into the gate mechanism) in favour of the full treatment by \hat{H}.

IV. EXPERIMENTAL CONSIDERATIONS

A. Level description

We have now demonstrated the optimisation method, but we must also consider the experimental conditions which will have an effect on the gate fidelity. We consider the setup given in [2]. The gate is well suited to this system because we do not require single atoms to be addressable, and the Rydberg blockade is relatively strong. The reason for this is the use of a Förster resonance that exists in 87Rb [15], which comes about due to the quasi-degeneracy of the two-atom states ($58d_{3/2}$, $58d_{5/2}$) and ($60p_{1/2}$, $56f_{5/2}$). This enhances the dipole interaction, leading to an interaction energy $U(r) \propto 1/r^3$.

The choice of states for the levels are $|g\rangle = |5s_{1/2}, F = 1, M_F = 1\rangle$, $|e\rangle = |5s_{1/2}, F = 2, M_F = 2\rangle$, and $|i\rangle = |5p_{1/2}, F = 2, M_F = 2\rangle$, as in reference 3.

B. Correspondence to experimental results

As mentioned earlier, we describe the loss from both the intermediate state $|i\rangle$ and the excited Rydberg state $|r\rangle$ phenomenologically through the decay rates γ_i and γ_r respectively. Examining the literature [9, 12], we find for our setup that $\gamma_i = 2\pi \cdot 5.75$ MHz and $\gamma_r = 2\pi \cdot 4.8$ kHz.

FIG. 5. (Color online) (a) The solid (red) line is the population of the state $|gg\rangle$ and the dashed (green) line is the population of the state $|\Psi^+\rangle$ over the duration of the gate. (b) Similarly to (a), the solid (red) line is the population of the state $|ge\rangle$ and the dashed (green) line is the population of the state $|gr\rangle$ over the duration of the gate. The populations of $|eg\rangle$ and $|er\rangle$ are respectively the same.
We have verified that the simulation corresponds to the experimental results from Fig. 4. Fig. 6 shows the agreement between the simulated Rabi oscillations of the $\frac{1}{2}(|e\rangle + |r\rangle)$ state and the $|\Psi^+\rangle$ state. While the fit is not exact, we do reproduce the correct frequency of oscillation, as well as an indication of the typical decay from the intermediate level. We also find a relative difference in frequency of the two oscillations of a factor $\sim \sqrt{2}$, as expected from the theory. The discrepancies between theory and experiment arise from experimental imperfections which are not taken into account in our model, namely laser fluctuations in both power and frequency of the lasers, which lead to some dephasing. Our phenomenological loss model also does not account for the possibility that an atom can decay to $|g\rangle$ from where it may be repumped, which partially accounts for the discrepancy in total population.

C. Typical experimental parameters

While it would be ideal if the gate parameters described in the last section could be immediately applied in the experiment, the reality is that there are certain experimental limitations that prevent us from doing so. Firstly, the power of both lasers has certain maximum values: Ω_R has a maximum operating value of 400 MHz, while Ω_B is limited to 30 MHz. Secondly, we do not have the freedom to modulate the laser power as we like; acoustic-optical modulators (AOMs) control the power of the laser beams incident on the atoms, and they have limits on the rate at which the intensity of the beam can be changed. (In any case, since the gate is adiabatic, we expect that the final result will not depend very strongly on the exact shape of the excitation as long as the area of the pulse is preserved.) The ‘rise-time’ (the time it takes to increase the laser power from zero to its maximum) is typically in the range 200–400 ns. We take the profile of this rise-time to be Gaussian. Lastly, due to the separate dipole traps, the minimum distance between the two Rydberg atoms is limited to 3 μm or above. A final condition is put on the detuning Δ of the red laser: this should be less than 500 MHz due to experimental constraints (although this is not a stringent condition).

There is also an additional probability of loss when the atoms is excited to the Rydberg level: when excited, the motional wavepacket starts to spread, so that when the dipole trap is reapplied, there is a finite probability that the atom is lost (this is actually used as a method of detection in the experiment). This motivates us to limit the time spent in the Rydberg state.

D. Optimising the gate for experiment

With these limitations, we now see that the gate parameters from Tab. 1 are not feasible in our chosen experimental setup. We must now start with a new set of parameters and run the optimisation again to see to what extent the gate is still implementable. Given the discussion above, we are motivated to make the following changes to our parameters:

- The gate should be performed as quickly as possible, meaning that the effective Rabi frequency $\tilde{\Omega} \propto \Omega_R$, Ω_B should be made large. This implies that we should choose Ω_R and Ω_B close to their maximum values. (This has the additional advantage that we spend less time in excited Rydberg levels, improving the probability of recapture.)
- To avoid excitation of the lossy $|i\rangle$ state, we need to keep the red laser far-detuned, ideally around 500 MHz. However, as can be seen in Eq. (11), increasing the detuning will reduce the effective Rabi frequency, which makes achieving the gate in a short time more difficult.
- To make maximum use of the laser power, we change the shape of the pulse from a simple Gaussian to a ‘flat-top’, given by

$$\Omega_R = \begin{cases} \Omega_0 \exp \left[\frac{t + \sin(t)(T/2)^2}{\tau/8} \right] & |t| > \frac{T}{2} - \tau, \\ \Omega_0 & \text{otherwise}. \end{cases} \quad (25)$$

Here, the Rabi frequency increases with a Gaussian profile to the maximum Ω_0 in a time τ (the rise-time), followed by a period of constant Rabi frequency for a time $T - 2\tau$, and then finally a reduction along a Gaussian profile to zero, again in a time τ. This allows us to have the laser at full power for the longest time possible, which in turn
TABLE II. A set of initial parameters, within experimental constraints, that produces a gate with fidelity of around 32%, and the optimised parameters that produce a gate with fidelity better than 96%. All values are in units of 2π MHz.

Parameter	Initial	Optimised
Ω_0	49	52.31
Ω_{12}	28	26.85
Δ	500	496.81
δ	0	-1.12

causes us to accumulate the time-dependent phase more rapidly.

- Since the minimum distance between the atoms in the experiment is $r_{\text{min}} = 3.0$ µm, we will use this value in what follows to ensure we are as deep in the blockade regime as possible.

Based on these considerations, we try the set of parameters given in Tab. II. As before, we can examine the convergence of the optimisation (Fig. 7), the accumulation of the entanglement phase (Fig. 8), and the shape of the Rabi frequency $\Omega_R(t)$ (Fig. 9). The final gate fidelity is only around 96%, but we are able to successfully avoid losses, resulting in a final population norm of 0.995. This high avoidance of loss can be seen in the high contrast Rabi oscillations in Fig. 8. By comparison with the results in Fig. 7, we can also see a relative difference in Rabi frequency of $\sim \sqrt{2}$ between the transitions $|gg\rangle \rightarrow |\Psi^+\rangle$ and $|eg\rangle \rightarrow |er\rangle$.

We believe that this result is close to the optimal case for this system and gate implementation given the experimental limitations. There are essentially two competing factors which makes performing the gate more difficult: one the one hand, the effective Rabi frequency should be made large to increase the rate at which we accumulate the phase, but this is countered by the need to make the single-photo detuning Δ as large as possible to avoid populating the intermediate state $|i\rangle$. In addition, this inevitably leads to long gate times on the order of microseconds, which increases the chances of losing the atom while in the Rydberg state (we approximate that each atom spends 500 ns in the Rydberg state for the gate with duration 2 µs).

E. Movement of the atoms in the light-field

Until now, we assumed that the atoms were stationary in the dipole traps. In reality, the atoms are Doppler-cooled to around 75 µK. During the laser excitation, the trapping fields are switched off, allowing the atoms to move freely in any direction in the plane perpendicular
FIG. 10. (Color online) The solid (red) line is the population of the state $|gg\rangle$ and the dashed (green) line is the population of the super-radiant state $|\Psi^+\rangle$ over the duration of the gate.

FIG. 11. (Color online) The solid (red) line is the population of the state $|ge\rangle$ and the dashed (green) line is the population of the state $|gr\rangle$ over the duration of the gate. The populations of $|eg\rangle$ and $|er\rangle$ are respectively the same.

to the trapping field. The terms $\vartheta_i \equiv \arccos(k \cdot r_i) \in [0, \pi]$ from Eq. (10) then produce additional independent phases on each atom. Since we don’t know \textit{a priori} in which direction the atoms will move with respect the light field, the phase difference between the two atoms is essentially random.

Figures 12 and 13 show the effect of this phase on the final fidelity of the gate for the parameters for the sets of optimal parameters in Tabs. 1 and 2 respectively. In the first implementation of the gate, we see that the effect of the motional phase on the gate fidelity is, at worst, a drop in infidelity from 10^{-4} to 10^{-2}. In the second case, the effect is much more significant, in some cases producing fidelities near zero. This is mostly due to the increase in the gate time T.

To actually perform the gate in practice under these conditions, we would have to cool the atoms much closer to the motional ground state. This would reduce the distance that the atoms move in the light-field, and hence the amount of phase that they collect. The dependence of the fidelity on the average temperature of the atoms is given in Fig 14. Thus by reducing the temperature by a factor of around five will increase the fidelity to around 90%. This is experimentally realistic as demonstrated in reference [20].

V. CONCLUSION

We have investigated the implementation of the Rydberg two-qubit entangling gate from Jaksch \textit{et al.} [1] in the experiment outlined in [2]. We applied a gradient ascent control algorithm to find optimal sets of experimental parameters that produced a gate with low loss.
FIG. 14. (Color online) The final fidelity of the gate plotted against the average temperature of the atoms. Each (green) point is an average over 10,000 realisations of ϑ_1 and ϑ_2 chosen randomly in the range $[0, \pi]$. The (red) solid line is a linear fit to the points. The (blue) dashed line shows the current temperature of $75 \mu K$.

from the intermediate level while still achieving a fidelity of around 96%. The main source of error was found to be the random phase accumulated by the atoms in the light field.

While the system seems ideally suited for this scheme, the experimental limitations do not allow for a great deal of success in implementing the gate. The most notable source of error comes from the movement of the atoms in the light field, which could be minimised in future experiments by cooling the atoms further. Eliminating this source of error should allow gate fidelities of around 99% which, while not quite good enough to allow quantum computation (even with error correction), would be a significant step forward for the realisation of quantum computation with neutral atom systems.

It is worth pointing out that while we investigated the gate scheme of [1], there are some alternative schemes that could be implemented in our setup, most notably perhaps the scheme of [6] which uses a STIRAP pulse sequence to excite the atoms. We have also not investigated allowing the Rabi frequency of the blue laser Ω_B to modulate in time which could lead to a more robust gate implementation.

We acknowledge financial support by the EU under the contracts MRTN-CT-2006-035369 (EMALI), IP-AQUTE, and from the German SFB TRR21. We also acknowledge computational resource provided by the BW-grid.

[1] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)
[2] A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys. 5, 115 (2009)
[3] D. Jaksch, H.-J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller, Phys. Rev. Lett. 82, 1975 (1999)
[4] T. Calarco, H. J. Briegel, D. Jaksch, J. I. Cirac, and P. Zoller, J. Mod. Opt. 47, 2137 (2000)
[5] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010)
[6] D. Møller, L. B. Madsen, and K. Mølmer, Phys. Rev. Lett. 100, 170504 (2008)
[7] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko, P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502 (2010)
[8] L. Ibenbøcher, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev. Lett. 104, 010503 (2010)
[9] Y. Miroshnychenko, A. Gaëtan, C. Evellin, P. Grangier, D. Comparat, P. Pillet, T. Wilk, and A. Browaeys, Phys. Rev. A 82, 013405 (2010) arXiv:1005.2153 [quant-ph]
[10] A. Barenco, D. Deutsch, A. Ekert, and R. Jozsa, Phys. Rev. Lett. 74, 4083 (1995)
[11] A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995)
[12] K. Singer, M. Reetz-Lamour, T. Amthor, L. G. Marcassa, and M. Weidemüller, Phys. Rev. Lett. 93, 163001 (2004)
[13] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001)
[14] E. Brion, L. H. Pedersen, and K. Mølmer, J. Phys. B 40, S159 (2007)
[15] E. Brion, L. H. Pedersen, and K. Mølmer, J. Phys. A 40, 1033 (2007)
[16] R. H. Dicke, Phys. Rev. 93, 99 (1954)
[17] T. Förster, Modern quantum chemistry (Academic Press, New York, 1996).
[18] T. G. Walker and M. Saffman, J. Phys. B 38, S309 (2005)
[19] D. A. Stock, “Rubidium 87 d line data,” (2001), available online at http://stock.us/alkalidata (revision 2.1.2, 12 August 2009).
[20] C. Tuchendler, A. Lance, A. Browaeys, Y. Sortais, and P. Grangier, Phys. Rev. A 78, 033425 (2008).