Potential stock of stony corals in Indonesia

T A Hadi, Giyanto, R M Siringoringo, A Budiyanto, O Johan, J Souhoka, M Abrar, N W P Sari, B Sadarun, B Prayudha, R Sutiadi, A R Dzumalek, S Sulha and Suharsono

1Research Center for Oceanography, Pasir Putih Street No 1 Ancol Timur, Jakarta 14430
2Research Center for Fisheries, Ragunan Street No 20 Pasar Minggu, Jakarta 12540
3Conservation Unit for Bitung Marine Life, Tandu Rusa Street – Bitung, North Sulawesi 95511
4Faculty of Fisheries and Marine Science, Halu Oleo University, Kendari 93561
5Corresponding author: ari_080885@yahoo.com

Abstract. Indonesia is part of the coral triangle region which is known as the world’s highest marine biodiversity, including stony corals. This situation used to benefit local people by trading ornamental corals. The aims of this study are to investigate the potential stock of ornamental corals as well as the reef conditions. The study took place in Kendari, Luwuk, Sumbawa and Belitung where the ornamental coral-collecting activities used to occur. The result indicates there were approximately 110 species of corals found with the majority of coral status are common (harvest limited) and uncommon (harvest with cautions). Based on the juvenile existence, only 66 corals have potential stocks. Euphyllidae (Euphyllia glabrescens and Plerogyra sinousa) had the highest potential stock in Kendari and Luwuk, while Fungiidae (Fungia spp) held the highest potential stock in Belitung and Sumbawa. This difference is likely related to different locality or habitat type. In general, coral reefs in Kendari, Luwuk and Belitung are in good condition, while fair condition occurs in Sumbawa. To conclude, the stock of ornamental corals is still high and the reefs are generally good, suggesting the collecting activities may be allowed with proper quota and continuous monitoring habitat condition to ensure the sustainability.

1. Introduction

Indonesia is part of the coral triangle region, well known as the world’s highest marine biodiversity. There are about 2,500,000 hectares of Indonesia coral reefs with 83 genera and 569 species of hard corals, representing approximately 76% and 69% for genera and species of corals of the world [1]. 70.48% of the reefs have less than 50% coral covers, mainly distributed on the south coast of Java, south coast of East Timor, South Sulawesi, west coast of Sumatera, and the South China Sea. This situation is firmly attributed to its natural condition (especially the reefs facing the Indian Ocean), natural disturbances, and anthropogenic factors [2]. Thus, the authority should not only concern about managing the reefs, but also the people’s activities.

Ornamental corals have been popular as people become more interested in keeping them in aquariums for their house decoration. This causes the collection activities to soar for export, especially and has become an essential economic factor for the locals. Surprisingly, over 90% of coral trading occurred in Indonesia [3]. In this situation, the authority had already set up the quotas for export to...
ensure that there would be no detrimental effect on the species as listed on CITES appendix II. However, smuggling activities still occurred and might deplete the potential stock on the local scale [4]. Furthermore, the harvest could alter the benthic community structures and decrease the coral cover. Since 2018, the activity has ceased as fish quarantine and inspection agency has no longer issued the health certificate for both wild and coral farms to export.

In this study, we provide the information regarding the potential stock of ornamental corals in some locations where people used to harvest the corals actively. Furthermore, this study also investigates the coral reef condition as another consideration of whether the reefs are healthy enough to sustain the ecosystem. Besides, a recommendation will be provided to policymakers to achieve a sustainable environment and society.

2. Materials and methods
2.1. The study area
The study took place at four locations, two locations located in the coral triangle region (Kendari and Luwuk), and the rest are outside (Sumbawa and Belitung) (figure 1). These locations were selected as the harvest activities mainly occurred. Each of these has ten sites to observe; involving local people to guide where they used to collect the corals.

![Figure 1. The locations of the study](image)

2.2. Methods
The study collected the data of the number of occurrences, genera dominance, size of the colony, and coral cover, which then were classified into a 1-4 scaled value for each. Afterward, the total amount could be obtained by adding up all of the benefits and then sorted into five categories; very rare (5-7), rare (8-10), uncommon (11-13), common (14-16), and very common (17-20) [5]. To investigate the potential stock, the abundance of juveniles sized less than 5 cm was calculated – assuming that the juveniles are subject to the harvest – and then extrapolated to the size of reef areas. Identification of corals refers to “Corals of the World” [6].
3. Results and discussion

3.1. Total value-based coral status

The total number of species found from 4 locations in this study is about 110 species belonging to 14 families (appendix A). This number is much fewer than previous studies conducted in the areas [7, 8, 9]. In this case, the method used was different; this study did not use an explorative approach to observe the biodiversity of hard corals in the reefs but focused on the corals along the belt transect, thus making the result much different in terms of the number of species. However, the corals found are nearly similar to what the studies confirmed. Therefore, it indicates that there might be no, at least, genera loss in the locations.

In terms of the total value, the range starts from 6 (very rare) to 20 (very common) (appendix B). There are only one species that are categorized “very rare”, Heliofungia actiniformis, meaning that the coral is strictly prohibited for harvest. Interestingly, this condition only occurs at Belitung’s Station 4. Still, at the other five stations in Belitung, the coral status is uncommon (limited to harvest) to common (yield with caution), and the other four stations were not found. The farmers should recognize this uneven distribution that they could only collect at particular sites only with caution or limited numbers. However, this long polyp mushroom coral has been the main target for collection in Makassar and caused a significant decline in the population, especially the juveniles due to its higher price [10].

In general, the majority of the corals’ total value range from 14 to 17 (common to uncommon) (appendix B). In Luwuk, the range of total value is between 14 and 20 (common to very common) from 54 species found, and this is relatively similar to Kendari, where the range is between 12 and 19 (common to very common) from 72 species seen. In this case, although having the same coral status as Luwuk, Kendari is more diverse, indicating that the environmental condition in Kendari is much suitable for plenty of corals to strive. On the other hand, Sumbawa and Belitung have a nearly similar number of species found, 49 and 52 species respectively, but have a relatively different range of corals’ total value, 9 – 19 (rare to very common) for Sumbawa and 6 – 19 (very rare to very common) for Belitung. Such a result could be attributed to its natural conditions where the biodiversity is declining as the distance gets far from the biodiversity center [11] or to over-harvesting in which the collection activities are faster than the corals’ reproduction and growth [12]. Overall, the results could be assumed that the majority of corals are still abundant in the field, but there is a tendency of a rarity for some corals. Also, although not all corals are preferable for trading - only the unique colors, shapes, and appropriate sizes that farmers commonly collect – the very rare and rare-categorized corals may vanish if the morphological characters meet what the market demands.

3.2. Potential stock of corals

Not all of the corals found in the locations could be harvested, although the corals are categorized common. In this case, to preserve the population, only corals that have juveniles can be collected. Furthermore, juveniles’ corals sized less or equal to 5 cm is the main target for collection as they do not take too much space in aquariums. However, more than 5 cm sized corals may have reached reproductive maturity, which is very important for population sustainability [13], thus not recommended to be harvested. Also, harvesting big-sized corals may damage the reefs as they need to break the colonies to get the proper size.

In terms of the juvenile abundance of coral families, in general, Sumbawa has the highest abundance for Fungiidae by 296 ind/100m², followed Pocilloporidae 178 ind/100 m² and then Poritidae by 86 ind/100 m² (figure 2). Other significant families, such as Euphylliidae, Faviidae, Mussidae, and Trachyphylliidae, possess the highest abundance in Kendari by 145 ind/100 m², 26 ind/100 m², 110 ind/100 m² and 28 ind/100 m² respectively. In terms of total abundance, the most abundant family is Fungiidae and followed by Euphylliidae by 362 ind/100 m² and 341 ind/100 m², respectively. In contrast,
Acroporidae, Agariciidae, Dendrophylliidae, and Stylasteridae have a total abundance of fewer than ten ind/100 m². This result might be attributed to the mode of development - Fungiidae, Pocilloporidae, and Poritidae are generally categorized brooder corals where the planula larvae commonly settle within hours after release and close to the parent corals, making them more abundant on particular sites than broadcast spawning corals which have wider dispersal [14, 15, 16, 17].

Figure 2. The abundance of hard coral families in four different location

![Figure 2](image_url)

Figure 3. a) *Heliofungia actiniformis* in Belitung, b) mushroom corals, *Fungia* spp, in Sumbawa

In terms of harvest, in total, there are about 66 out of 110 corals that are allowed to collect from all locations with each location has its own number (figure 4, 5, 6, 7). In Kendari, the highest potential stock of hard corals belongs to *Euphyllia glabrescens* by 85611 ind/145.99 ha. In Luwuk, *Plerogyra sinousa* possesses the highest potential stock by 154003 ind/468.39 ha. Both in Belitung and Sumbawa, *Fungia* spp holds the highest potential stock by 444114 ind/1110.01 ha and 1535505 ind/330.39 ha respectively. *E. glabrescens* and *P. sinousa*, belonging to Family Euphylliidae, are the main target for trading due to its beautiful fleshy polyps [18]. Although such corals have wide distribution and were distributed in all locations, the study found that they are commonly abundant in unexposed reefs with high water transparency. The majority of observed reefs in Kendari and Luwuk are sheltered to semi-exposed with low turbidity and far from human anthropogenic impact. Previous studies indicate the
same result that Euphylliidae was poor both in abundance and diversity in the places where environment stress is high [19, 20]. On the other hand, *Fungia* appears to be the most abundant in Sumbawa and Belitung where the reefs have generally declining slopes with sandy bottom. This result difference could be attributed to different locality or habitat type. In general, the potential stock hard corals are still high, but not all corals have the same number to be harvested.

Figure 4. Potential stock of stony corals in Kendari

Figure 5. Potential stock of stony corals in Luwuk
Figure 6. Potential stock of stony corals in Belitung

Figure 7. Potential stock of stony corals in Sumbawa
3.3 Coral reef condition

The result indicates that there is a significant difference in the live coral cover among the locations (p-value = 0.00) (figure 9). Three sites are categorized as good condition (Luwuk, Kendari, and Belitung), while fair conditions occurred in Sumbawa by having the lowest percent cover. Nevertheless, Sumbawa possesses the highest potential stocks among the locations, showing that the reefs have more juveniles than adults. This result of coral cover is much better than previous studies conducted in the same places [7, 8, 9, 21], indicating that the collection activities might have minimal impact on the reefs.

4. Conclusion

In general, the potential stock of ornamental corals is still high, and the majority of reefs are in good condition. Thus, collection activities may be allowed under clear regulations that consider the environment and economic sustainability. It is strongly suggested to develop the mariculture that can replace the wild harvest in the future.
5. References

[1] Suharsono 2017 Jenis jenis karang di Indonesia (Jakarta: Pusat Penelitian Oseanografi) p 546.
[2] Hadi T A, Giyanto, Prayudha B, Haftiz M, Budiyanto A and Suharsono 2018 Status terumbu karang Indonesia 2018 (Jakarta: Pusat Penelitian Oseanografi) p 34
[3] Burke L, Reytar K, Spalding M and Perry A 2011 Reefs at risk revisited: technical notes on modeling threats to the world’s coral reefs (Washington: World Resources Institute) p 130
[4] Ramses R 2017 Simb. 6, 57-66
[5] Suharsono and Giyanto 2006 Mar Res Ind. 31, 1-11
[6] Veron J 2000 Corals of the world (Townsville: Australian Institute of Marine Science) p 239.
[7] Pramudji 2015 Monitoring kesehatan terumbu karang dan ekosistem terkait di Kota Kendari dan sekitarnya (Jakarta: COREMAP-CTI) p 78
[8] Siringoringo R M and Hadi T A 2013 Mar Res Ind. 38, 9-19
[9] Fahmi, Suharsono, Adrim M, Azkab M H, Suyarso, Arbi U Y, Wibowo K, Hadi T A, Purba R, Budiyanto A and Anggraini K 2015 Monitoring Kesehatan Terumbu Karang dan Ekosistem Terkait di Perairan Belitung (Jakarta: COREMAP-CTI) p 110
[10] Knittweis L and Wolff M 2010 Biol Cons. 143, 2722-2729
[11] Veron J E, Devantier L M, Turak E, Green A L, Kininmonth S, Stafford-Smith M and Peterson N 2009 Jour of Cor Re Stud. 11, 91-100
[12] Johan O, Ginanjar R and Priyadi A 2017 Jur Nas. 7, 133-138
[13] Connell J H 1973 Population ecology of reef-building corals Biology and geology of coral reefs eds O A Jones and R Endean (New York: Academic Press) pp 205 – 244
[14] Edinger E N and Risk M J 1995 Paleobiol. 21, 200-219
[15] Ritson-Williams R, Arnold S N, Fogarty N D, Steneck R S, Vermeij M J and Paul V J 2009 Contrib to the Mar Sci. 38, 437-458
[16] Harrison P L 2011 Sexual reproduction of scleractinian corals Coral reefs: an ecosystem in transition eds Z Dubinsky and N Stumbler (Dordrecht : Springer) pp 59-85
[17] Richmond R H and Hunter C L 1990 Reproduction and recruitment of corals: comparisons among the Caribbean, the Tropical Pacific, and the Red Sea. Mar Ecol Prog Ser. 60, 185-203
[18] Wabnitz C 2003 From ocean to aquarium: the global trade in marine ornamental species (Cambridge : UNEP World Conservation Monitoring Center) p 60
[19] Khodzori M F, Saad S, Nordin N F, Salleh M F, Yusof M H and Noor N M 2015 Jur Tek. 24, 17-22
[20] Waheed Z and Hoeksema B W 2014 Raff Bull of Zool. 62, 66-82
[21] Bachtai I 2004 Jur Biol Trop. 5, 1-9

Acknowledgements
The authors would like to thank CORE MAP-CTI for the financial support and the local government agencies for the permit. The authors also thank Mr. Heri, who assisted the team during the observation in Kendari and Luwuk.
Appendix A. Abundance of < 5 cm juvenile corals found in the observation locations

No	Family	Coral Type	Kendari	Luwuk	Belitung	Sumbawa	
1	Mussidae	Acanthastrea bowerbanki	4	2	0	0	
2	Mussidae	Acanthastrea echinata	0	0	0	0	
3	Mussidae	Acanthastrea rotundiflora	0	0	0	0	
4	Mussidae	Acanthastrea spp	0	0	1	0	
5	Acroporidae	Acropora elegans	1	0	0	0	
6	Acroporidae	Acropora carduus	0	0	0	0	
7	Acroporidae	Acropora formosa	0	0	0	0	
8	Acroporidae	Acropora granulosa	0	0	0	0	
9	Acroporidae	Acropora loriipes	0	0	0	0	
10	Acroporidae	Acropora brueggemannii	0	0	0	0	
11	Acroporidae	Acropora caroliniana	0	0	0	0	
12	Acroporidae	Acropora spp	0	0	0	0	
13	Poritidae	Alveopora alingi	0	0	0	0	
14	Poritidae	Alveopora catalai	0	7	0	0	
15	Poritidae	Alveopora tizardi	0	1	0	0	
16	Acroporidae	Anacropora pillai	0	0	0	0	
17	Acroporidae	Astreopora myriophthalma	0	0	0	0	
18	Mussidae	Astralommussa rowleyensis	12	1	0	1	
19	Faviidae	Barabattoia amicorum	0	0	0	0	
20	Mussidae	Blastomussa welsi	2	0	2	0	
21	Faviidae	Caulastrea curvata	15	3	0	0	
22	Faviidae	Caulastrea furcata	0	0	2	0	
23	Euphyllidae	Catalaphyllia jardinei	2	0	0	38	
24	Fungiidae	Ctenactis echinata	0	0	0	0	
25	Mussidae	Cynarina lacrymalis	66	18	2	2	
26	Fungiidae	Cycloseris costulata	1	0	0	0	
27	Fungiidae	Cycloseris fragilis	2	0	0	75	
28	Faviidae	Cyphastrea microphthalma	0	0	0	0	
29	Faviidae	Cyphastrea decadia	0	0	0	0	
30	Faviidae	Diploastraea heliopora	0	0	6	0	
31	Euphyllidae	Euphyllia ancora	11	15	3	5	
32	Euphyllidae	Euphyllia cristata	29	10	4	8	
33	Euphyllidae	Euphyllia paradivisa	8	0	0	0	
34	Euphyllidae	Euphyllia divisa	11	19	0	0	
35	Euphyllidae	Euphyllia globrescens	19	8	2	3	
36	Euphyllidae	Euphyllia paraancora	18	4	0	0	
37	Euphyllidae	Euphyllia yaeyamaensis	10	12	0	2	
38	Euphyllidae	Euphyllia sp.	0	2	0	0	
39	Pectinidae	Echinophyllia echinata	0	0	0	0	
40	Pectinidae	Echinophyllia sp.	0	0	2	1	
41	Pectinidae	Echinophyllia aspera	0	0	0	0	
	Family	Genus	Count 1	Count 2	Count 3		
---	-----------	----------------	---------	---------	---------		
42	Faviidae	*Echinopora lamellosa*	0	0	0		
43	Faviidae	*Echinopora spp*	0	0	0		
44	Faviidae	*Favia speciosa*	0	0	0		
45	Faviidae	*Favia matthai*	0	0	0		
46	Faviidae	*Favia spp*	5	0	2		
47	Faviidae	*Favites spp*	6	1	0		
48	Fungiidae	*Fungia*	21	0	40		
49	Oculinidae	*Galaxea astraea*	4	0	6		
50	Oculinidae	*Galaxea fascicularis*	4	0	4		
51	Oculinidae	*Galaxea paucisepta*	0	1	0		
52	Oculinidae	*Galaxea longisepta*	0	9	0		
53	Oculinidae	*Galaxea archelia*	0	0	0		
54	Oculinidae	*Galaxea spp*	0	6	1		
55	Poritidae	*Goniastrea aspera*	0	1	0		
56	Poritidae	*Goniopora columna*	3	1	5		
57	Poritidae	*Goniopora lobata*	0	1	0		
58	Poritidae	*Goniopora spp*	1	0	3		
59	Poritidae	*Goniopora stokesi*	13	0	0		
60	Fungiidae	*Heliofungia actiniformis*	0	1	0		
61	Fungiidae	*Herpolitha limax*	0	0	1		
62	Merulinidae	*Hydnophora pilosa*	1	0	0		
63	Merulinidae	*Hydnophora rigida*	0	0	2		
64	Faviidae	*Leptastrea purpurea*	0	0	0		
65	Faviidae	*Leptoria phrygia*	0	0	0		
66	Agariciidae	*Leptoseris exlanulata*	0	0	0		
67	Agariciidae	*Leptoseris scabra*	1	0	0		
68	Mussidae	*Lobophyllia robusta*	0	0	0		
69	Mussidae	*Lobophyllia dentatus*	0	0	0		
70	Mussidae	*Lobophyllia hemprichii*	1	0	0		
71	Mussidae	*Lobophyllia corymbosa*	1	0	0		
72	Mussidae	*Lobophyllia spp*	0	1	28		
73	Merulinidae	*Merulina ampiata*	0	0	21		
74	Faviidae	*Montastrea multipunctata*	0	0	2		
75	Faviidae	*Montastrea sp.*	0	0	0		
76	Acroporidae	*Montipora sp.*	0	0	4		
77	Euphyllida	*Nemenzophyllia turbida*	3	0	0		
78	Pectinidae	*Mycedium elephantotus*	0	2	0		
79	Pectinidae	*Mycedium robokaki*	0	4	0		
80	Faviidae	*Oulophyllia sp.*	0	0	0		
81	Pectinidae	*Oxypora glabra*	0	0	0		
82	Pectinidae	*Oxypora lacera*	0	0	0		
83	Pectinidae	*Oxypora spp*	0	0	0		
84	Agariciidae	*Pavona sp.*	0	0	0		
No.	Family	Genus	Species	Juveniles 5 cm	Harvested 5 cm	Total	Ref.
-----	----------------	------------	------------------	----------------	----------------	-------	-----
85	Pocilloporidae	*Palauastrea*	*ramosa*	0	0	0	
86	Agariciidae	*Pachyseris*	*speciosa*	0	0	0	
87	Pectinidae	*Pectinia*	*alicornis*	8	1	4	6
88	Pectinidae	*Pectinia*	*paenia*	0	0	7	0
89	Pectinidae	*Pectinia*	*elongata*	0	0	0	
90	Pectinidae	*Pectinia*	*lactuca*	0	1	0	0
91	Euphyllidae	*Physogyra*	*lichtensteinii*	0	2	9	0
92	Euphyllidae	*Plerogyra*	*simplex*	2	7	4	0
93	Euphyllidae	*Plerogyra*	*sinuosa*	32	21	10	9
94	Faviidae	*Platygyra*	*lamellina*	0	0	0	
95	Pocilloporidae	*Pocillopora*	*damicornis*	0	0	0	
96	Fungiidae	*Podabacea*	sp.	0	0	0	
97	Fungiidae	*Polyphylia*	*talpina*	0	0	0	
98	Poritidae	*Porites*	*lutea*	0	0	0	
99	Poritidae	*Porites*	sp.	0	0	3	0
100	Fungiidae	*Sandalolitha*	sp.	0	0	0	
101	Mussidae	*Scolymia*	*vitiensis*	16	1	5	0
102	Pocilloporidae	*Seriatopora*	*caliendrum*	0	0	0	
103	Stylastreidae	*Stylaster*	sp.	0	0	0	2
104	Mussidae	*Symphyllia*		8	0	4	0
105	Pocilloporidae	*Stylophora*	*pistillata*	0	0	0	178
106	Trachyphyllidae	*Trachyphyllia*	*geoffroyi*	28	6	0	0
107	Dendrophyllidae	*Tubastrea*	*micrantha*	0	1	0	0
108	Dendrophyllidae	*Turbinaria*	*frondens*	0	0	2	0
109	Dendrophyllidae	*Turbinaria*	*reniformis*	1	0	0	0
110	Dendrophyllidae	*Tubastrea*	*faulkneri*	3	0	0	0

0 = not found or no ≤ 5 cm-sized juveniles (not allowed to harvest)
Appendix B. Total value of corals found at each site (very rare (5-7), rare (8-10), uncommon (11-13), common (14-16) and very common (17-20))

Kendari

No	Species	KDR1	KDR2	KDR3	KDR4	KDR5	KDR6	KDR7	KDR8	KDR9	KDR10
1	Acanthastrea bowerbanki	15									17
2	Acropora elegans	16	18								
3	Acropora carduus			19							
4	Acropora formosa				17						
5	Acropora granulosa					16					
6	Acropora loripes						18				
7	Alveopora alingi										16
8	Anacropora pillai										14
9	Astreopora myriophthalma										16
10	Australomussa rowleyensis	15	17	15	16	16	14	15	16		
11	Barabattoa amicorum										13
12	Blastomussa wellsi										16
13	Caulastrea curvata				15	16	17				
14	Caulastrea furcata										15
15	Catalaphyllia jardinei	13	19								15
16	Ctenactis echinata										16
17	Cynarina lacrymalis	15	17		16	16	14	14	17		
18	Cycloseris costulata										12
19	Cycloseris fragilis										15
20	Cyphastrea microphthalmal										14
21	Euphyllia ancora	15	17	15	16	16	15	15	17	18	
22	Euphyllia cristata				16	16	15	15	16		
23	Euphyllia paradivisa				16	15	16	16			
24	Euphyllia divisa	15	16	16	16	15	15	16	17		
25	Euphyllia glabrescens	15	16	15	15	15	16				
26	Euphyllia paraancora	15	17		16	15	15	16			
27	Euphyllia yaeyamaensis	18	16	16	15	16	17				
28	Echinophyllia echinata										17
29	Favia speciosa										15
30	Favia spp.	15	16	15	16	15	16	16	16	17	
31	Favites spp.	15	17	14	16	16	15	16	17		
32	Fangia spp.	15	15	16	16	14	16	17			
33	Galaxea astreata	13	17	13		15	17	16			
34	Galaxea fascicularis	15	13	15	15	15	15	18			
35	Galaxea puncisepta										16
36	Galaxea spp.										17
37	Goniopora columna								17	16	16
38	Goniopora lobata										17
No	Species	LWK1	LWK2	LWK3	LWK4	LWK5	LWK6	LWK7	LWK8	LWK9	LWK10
----	------------------------------	------	------	------	------	------	------	------	------	------	-------
39	Goniopora spp.										
40	Goniopora stokesi	18	16	16	16	17					
41	Heliofungia actiniformis	17	16	16	15						
42	Hydnophora pilosa	19	15								
43	Hydnophora rigida	17									
44	Leptastrea purpurea	12									
45	Leptoseris exanulata	15									
46	Leptoseris scabra	14									
47	Lobophyllia robusta	18									
48	Lobophyllia dentatus										17
49	Lobophyllia hemprichii	17	17								15
50	Lobophyllia corymbosa		14								18
51	Montastrea multifunctata										15
52	Nemenzophyllia turbida	16	16	16							17
53	Oxypora lacera	14									
54	Oxypora spp.		18								
55	Palauastrea ramosa	19									
56	Pachyseris speciosa	16									
57	Pectinia alcicornis	15	17	14	16	16	16	15			17
58	Pectinia paenonea	14									
59	Pectinia elongata	18	17								
60	Physogyra lichensteini										17
61	Plerogyra simplex	15	16	16	16	15	17	16			
62	Plerogyra simusosa	15	17	16	16	16	15	15	16	17	
63	Platygyra lamellina	16									
64	Pocillopora damicornis										15
65	Polyphyllia tajlina	16									
66	Porites lutea	15									
67	Scollymia vitiensis	15	16	16	16	16	13	15	13	16	
68	Sympyilla spp.	16	15	16	15						16
69	Trachyphyllia geoffroyi	14	16								17
70	Turbinaria frondens	17	18	15	16	16	17				
71	Turbinaria reniformis	12									15
72	Tubastrea falkneri										16

Luwuk

No	Species	LWK1	LWK2	LWK3	LWK4	LWK5	LWK6	LWK7	LWK8	LWK9	LWK10
1	Acanthastrea bowerbanki										
2	Acanthastrea echinata										18
3	Acanthastrea rotundoflora	16									17
4	Alveopora catalai	17	16	17							17
	Species										
---	-------------------------------	---	---	---	---						
5	Alveopora tizardi				17						
6	Australomussa rowleyensis	16	16	17	17						
7	Caulastrea curvata				17						
8	Cynarina laccymalis			17	17						
9	Cyphastrea decadua				16						
10	Euphyllia ancora	17	17	17	18						
11	Euphyllia cristata	17	17	17	17						
12	Euphyllia paradivisa				17						
13	Euphyllia divisa	17	17	17	17						
14	Euphyllia glabrescens	17	17	17	17						
15	Euphyllia paraeocrina	16	17	17	17						
16	Euphyllia yaeyamaensis	17	18	17	17						
17	Euphyllia sp.				17						
18	Echinophyllia aspera				17						
19	Echinopora lamellosa	18	19								
20	Echinopora spp				18						
21	Favia sp.	18	17	17	17						
22	Favites sp.	17	17	17	17						
23	Fungia sp.				17						
24	Galaxea fascicularis				17						
25	Galaxea paucisecta	18	17	18	17						
26	Galaxea longisepa			17	17						
27	Galaxea spp	17	17	18	17						
28	Goniastrea aspera				17						
29	Goniopora columna	16	18	19	18						
30	Goniopora lobata	18	18	19	19						
31	Goniopora spp				18						
32	Heliophyllia actiniformis	17	17	17	17						
33	Lobophyllia hemprichii	20	19	18	18						
34	Lobophyllia corymbosa	20	19	19	19						
35	Lobophyllia spp	19	17		18						
36	Mycedium elephantotus	19	18	18	17						
37	Mycedium robokaki	17	19	18	17						
38	Oxypora glabra	17	18	19	19						
39	Oxypora lacerka	18	18								
40	Oxypora spp	20	18	18	18						
41	Pectinia alcicornis	16	18	18	17						
42	Pectinia lactuca			17							
43	Physogyra lichtensteini	17	17	17	19						
44	Plerogyra simplex	18	18	18	17						
45	Plerogyra sinuosa	17	17	17	17						
46	Scolymia vitiensis	16			16						
47	Seriatopora caliendrum	15									
No	Species	BLT1	BLT2	BLT3	BLT4	BLT5	BLT6	BLT7	BLT8	BLT9	BLT10
----	-------------------------------------	------	------	------	------	------	------	------	------	------	-------
48	Stylaster sp.										17
49	Symphyllia spp	14	17	18	18	18	18	17			
50	Stylophora pistillata										
51	Trachyphyllia geoffroyi										17
52	Tabastrea micrantha										16
53	Turbinaria frondens	18	18								18
54	Turbinaria reniformis										18

Belitung

No	Species	BLT1	BLT2	BLT3	BLT4	BLT5	BLT6	BLT7	BLT8	BLT9	BLT10	
1	Acanthastrea spp			15	16	15	17					
2	Acropora formosa										19	
3	Acropora brueggemanni	19	19	19							19	
4	Acropora spp	19	18	19	19							
5	Australomussa rowleyensis										14	
6	Blastomussa wellsi										11	
7	Caulastrea curvata										11	
8	Caulastrea furcata			18	19	17	18	11				
9	Ctenactis echinata										18	
10	Cynarina lacrymalis										11	
11	Diploastrea heliopora			18	19	18	18	16	19	18	18	
12	Euphyllia ancora	17	14	15	19	15	15	18	16	16	14	
13	Euphyllia cristata										10	
14	Euphyllia glabrescens			16	15	15		11	12			
15	Euphyllia paraancora										16	
16	Euphyllia yaeyamaensis										19	
17	Echinophyllia sp.	12	16	14	19			17	16			
18	Favia spp	13	14	18	15	15	17	16	18	15		
19	Favites spp	17	18	17	17	18	15	15	17	16	16	
20	Fungia spp	14	15	15	15	15	15	16	15			
21	Galaxea astreata										15	
22	Galaxea fascicularis										16	
23	Galaxea archelia										14	
24	Galaxea spp	17	16	19	17	18	17					
25	Goniastrea aspera										12	
26	Goniopora lobata										19	
27	Goniopora spp	19	18	19	17	15	15	16	16	14	18	
28	Goniopora stokesi											
29	Heliofungia actiniformis	12	11	6	12	16	14					
30	Herpolitha limax	13	17	16	14	16	17	14	18	16		
31	Hydnophora pilosa									18	17	
32	Leptoria phrygia	13	18									
No	Species	SBW1	SBW2	SBW3	SBW4	SBW5	SBW6	SBW7	SBW8	SBW9	SBW10	
----	--------------------------	------	------	------	------	------	------	------	------	------	-------	
1	Acanthastrea spp										13	
2	Acropora loriipes										11	
3	Acropora caroliniana										16	
4	Acropora spp	15									16	
5	Australomussa rowleyensis	15									11	
6	Catalaphyllia jardinei										14	
7	Ctenactis echinata	15									15	
8	Cynarina lacrymalis										13	
9	Cycloseris fragilis										15	
10	Diploastrea heliopora										16	
11	Euphyllia ancora	16	15	14	15	17	15	15	15	12		
12	Euphyllia cristata	9	9	15							13	
13	Euphyllia glabrescens	13		16	14							
14	Euphyllia paraancora	10										
15	Euphyllia yaeyamaensis	17		15	12	15						
16	Echinophyllia sp.	16	16	15	19						18	
17	Echinopora lamellosa										17	
18	Echinopora spp										18	
19	Favia matthai										10	
	Species	15	12	14	13	16	15	14	15	15	15	15
---	------------------------------	----	----	----	----	----	----	----	----	----	----	----
20	Favia spp											
21	Favites spp											
22	Fungia spp											
23	Galaxea fascicularis											
24	Galaxea archeaica											
25	Galaxea spp											
26	Goniatrea aspera											
27	Goniopora spp											
28	Heliofungia actiniformis											
29	Herpolitha limax											
30	Hydnophora pilosa											
31	Leptoria phrygia											
32	Lobophyllia corymbosa											
33	Lobophyllia spp											
34	Montastrea sp.											
35	Mycedium elephantotus											
36	Oxypora spp											
37	Pectinia alcicornis											
38	Pectinia lactuca											
39	Physogyra lichtenstein											
40	Plerogyra simplex											
41	Plerogyra simosa											
42	Podabacea crustacea											
43	Polyphyllia talpina											
44	Sandalolitha sp.											
45	Scolymia vitiensis											
46	Symphyllia sp.											
47	Trachyphyllia geoffroyi											
48	Tubastrea micrantha											
49	Turbinaria reniformis											