Expression and clinical significance of S100 family genes in patients with melanoma
Ting-feng Xiong, Fu-qiang Pan and Dong Li

Genes in the S100 family are abnormally expressed in a variety of tumor cells and are associated with clinical pathology, but their prognostic value in melanoma patients has not yet been fully elucidated. In this study, we extracted and profiled S100 family mRNA expression data and corresponding clinical data from the Gene Expression Omnibus database to analyze how expression of these genes correlates with clinical pathology. Compared with normal skin, S100A1, S100A13, and S100B were expressed at significantly higher levels in melanoma samples. S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, and S100P were all highly expressed in primary melanoma samples but were expressed at low levels in metastatic melanoma, and all of these genes were strongly correlated with each other ($P < 0.001$). We found the expression of these S100 family genes to be significantly correlated with both lymphatic and distant melanoma metastasis, as well as with American Joint Committee on Cancer grade but not with Clark’s grade, age, or sex. This suggests that expression of these genes may be related to the degree of tumor invasion. Although further validation through basic and clinical trials is needed, our results suggest that the S100 family genes have the potential to play an important role in the diagnosis of melanoma. S100 expression may be related to tumor invasion and may facilitate the early diagnosis of melanoma, allowing for a more accurate prognosis. Targeted S100 therapies are also potentially viable strategies in the context of melanoma.

Introduction
Melanoma is a highly invasive malignant tumor of the skin associated with significant morbidity and mortality, the incidence of which has been increasing in recent years [1]. The 5-year survival rate of melanoma is high when the tumor does not metastasize; however, this 5-year survival rate declines dramatically if tumors metastasize [2]. Therefore, the ability to diagnose melanoma early in its progression and to differentiate between benign tissue and melanoma tumors is key to allowing for effective and rapid intervention and treatment of affected individuals [3]. Many molecular mechanisms are involved in the occurrence, development, and metastasis of cancer. One such family of proteins believed to be linked to the development and metastasis of cancer is the S100 proteins family. S100 proteins family plays important roles in multiple stages of tumor proliferation, migration, invasion, and apoptosis [4,5] and is closely related to the development and progression of various cancer types including lung, breast, and ovarian cancer [6–10]. The abnormal expression of S100 proteins has also been reported in melanoma. For example, $S100A4$ interacts with RAGE to promote the metastasis of melanoma cells [11,12]. There is also a significant correlation between $S100A6$ expression in metastatic melanoma and both duration of patient survival as well as the thickness of the associated primary tumor [13]. However, the biological roles played by $S100A$ proteins in melanoma is not fully understood, nor has there been any systematic attempt to assess the expression of these genes in melanoma or to assess how their expression relates to the clinical progression of this cancer. In this study, we therefore used the Gene Expression Omnibus database maintained by the NCBI (American Center for Biotechnology Information) to study the expression of $S100A$ family genes in skin and melanoma samples, with the goal of further understanding the pathogenic roles of $S100A$ family genes in melanoma.

Materials and methods
Sources of data
We downloaded the gene expression profile data set with the accession number GSE46517 from the NCBI Gene Expression Omnibus database. This data set was submitted...
and published by Kabbarah and colleagues using the Affymetrix HG-U133A gene chip [13]. This data set included 73 cases of metastatic melanoma and 31 cases of primary melanoma, as well as eight normal skin tissue controls. Of these samples, basic patient data were available for 52 cases of metastatic melanoma and 31 cases of primary melanoma. The S100 family mRNA expression values were extracted. Clinical and pathological data were also extracted where available, including patient sex, age, Clark’s level, TNM grade, and New-American Joint Committee on Cancer (AJCC) grade.

The relationship between S100 family gene expression and clinical pathology

The gene expression data and clinicopathological data in 52 patients with metastatic melanoma and 31 patients with primary melanoma were analyzed. Wilcoxon signed rank tests were used to compare the data between the two groups. Log fold change values were used as a reference to generate a significance heatmap, with \(P \) value less than 0.01 serving as a significance threshold. The log fold change is equal to the logarithm of the value less than 0.01 indicating a strong correlation. The \(\chi^2 \) tests was used to compare the count data, and the Wilcoxon test was used to compare numerical data, with the significance threshold being set at \(P \) value less than 0.01. Measured data were expressed as mean±SD. The Kruskal–Wallis test was used for comparison between groups, with the significance threshold being set at \(P \) value less than 0.01. \(R \) was used to generate box plots and related heatmaps, whereas Excel 2016 was used to draw a difference heatmap.

Results

Basic information

Expression values for a total of 17 S100 family gene members were obtained, including \(S100A1, S100A14, S100B, S100G, \) and \(S100P \). For these genes, 104 samples yielded gene expression data and 83 cases yielded both gene expression data and clinicopathological data. The age range of these 83 patients at the time of tumor resection was 28–93 years (57.47±16.11 years). N stage \((\chi^2 = 30.132, P < 0.001) \), M stage \((\chi^2 = 31.176, P < 0.001) \) and AJCC \((\chi^2 = 62.34, P < 0.001) \) stage are more later in primary melanoma compared with metastatic melanoma (Table 1).

The expression level of S100 family genes in different tissues

For the available 104 patients, S100 gene expression was compared in 73 patients with metastatic melanoma, 31 patients with primary melanoma, and eight patients with normal skin who served as controls. \(S100A1, S100A2, S100A3, S100A7, S100A8, S100A9, S100A10, S100A11, S100A13, S100A14, S100B, \) and \(S100P \) mRNA were all differentially expressed among the skin, primary melanoma, and metastatic melanoma samples \((P < 0.01) \). Genes were further divided into two classes. The first class of genes – \(S100A1, S100A13, \) and \(S100B \) – were all highly expressed in primary melanoma and in metastatic melanoma as compared with normal skin tissue \((P < 0.01) \). The second class of genes – \(S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, \) and \(S100P \) – were all highly expressed in primary melanoma and were expressed at lower levels in metastatic melanoma compared with normal skin tissue \((P < 0.01) \). In addition, \(S100A3 \) mRNA was expressed at lower levels in metastatic melanoma samples relative to primary melanoma samples. Compared with normal skin tissue, there was also reduced expression of \(S100A14 \) mRNA in both primary melanoma and metastatic

Table 1 Basic information of 83 patients with melanoma with clinical and pathological information
Parameters
Age (years)
< 60
> 60
TNM T category
T1–T2
T3–T4
Missing
TNM N category
N0–N1
N2–N4
Missing
TNM M category
M0
M1
Missing
Clark’s level
I–III
IV–V
Sex
Female
Male
AJCC
1–2
3–4
Missing
Site of primary tumor
Extremity
Head or neck
Trunk

AJCC, American Joint Committee on Cancer.
melanoma, with lower levels in metastatic melanoma relative to primary melanoma. No significant differences in the expression of \(S100A4, S100A5, S100A6, S100A12 \), or \(S100G \) mRNA were observed (Fig. 1).

The relationship between \(S100 \) family mRNA expression and clinical pathology

We found that eight genes \(S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, S100A14, \) and \(S100P \) – were
expressed at low levels in metastatic melanoma and were associated with the N and M categories of TNM staging ($P<0.01$). There was no association with the T category. S100 mRNA expression was also associated with both lymphatic and distant site tumor metastasis, as well as with the AJCC stage ($P<0.01$). Patients in the terminal stages of melanoma showed lower expression of these differentially expressed S100 family genes. No significant associations with Clark’s rating, age, or sex were observed (Fig. 2).

S100 family genes correlation analysis

Upon performing correlation analyses comparing S100 family gene expression with each other, we found that the first class type of each gene has a weak positive correlation ($P<0.05$; Fig. 3b and Table 2). The genes in the second class of S100 family – *S100A2*, *S100A7*, *S100A8*, *S100A9*, *S100A10*, *S100A11*, *S100A14*, and *S100P* – were all strongly positively correlated with each other ($P<0.001$; Fig. 3b and Table 2). *S100A14* mRNA expression correlated similarly with clinical pathology, as did S100 family genes in this second class, suggesting *S100A14* may itself be a member of this class. These results also showed that these genes were strongly correlated with each other ($P<0.001$; Fig. 3c and Table 2). In addition, *S100A3* is positively correlated with the genes in this second class (Fig. 3a and Table 2), even though its expression is lower in metastatic melanoma than in primary melanoma.

Discussion

S100 was first discovered in the bovine brain by Moore [14], with two family members – *S100A1* and *S100B* – being initially identified. To date, more than 25 S100 family members have been found in humans, including *S100A1–S100A16, S100B, S100P, S100G*, and *S100Z* [6,15]. *S100A16* is located in the chromosome 1q21 region, *S100B* is located in the chromosome 21q22 region, *S100P* is located in the chromosome 4p16 region, *S100G* is located in the chromosome Xp22 region, and *S100Z* is located in the chromosome 5q13 region[4,16,17]. The S100 gene family is the largest subfamily of EF-hand calcium-binding proteins and is present only in vertebrates [15]. Gens of this family interact with different protein targets after undergoing calcium-dependent conformational changes, resulting in a wide range of intracellular and extracellular functions. Within a cell, a single S100 protein can modulate multiple targets, or multiple S100 proteins can co-regulate a single target, leading to a complex biology regulatory mechanism. These proteins have been shown to regulate the cell cycle, growth, migration, phosphorylation, cytoskeleton components, and many other cellular functions [4]. Extracellular S100 proteins can interact with multiple cell surface receptors including G protein-coupled receptors, Toll-like receptor 4, scavenger receptors, fibroblast growth factor receptor 1, and extracellular receptors such as matrix metalloproteinase inducer [18,19]. In the context of cancer, these proteins have also
been shown to be involved in cell proliferation, metastasis, angiogenesis, invasion, inflammation, and the differentiation of physiological functions [3]. In many cancers, expression of S100 family genes is significantly altered, implying that the S100 family is associated with tumor progression [4,20].

In this study, we studied the expression levels of each S100 family gene member in the context of melanoma. Our results revealed that there are two major classes of expression patterns for S100 family genes in this context. The first class of genes, S100B, S100A1, S100A12 and...
Table 2 Correlations between S100 family genes at the mRNA level

Gene	S100A1	S100A2	S100A3	S100A4	S100A5	S100A6	S100A7	S100A8	S100A9	S100A10	S100A11	S100A12	S100A13	S100B	S100G	S100P
S100A1	<0.001	0.896	<0.001	<0.001	0.003	0.042	0.094	0.002	<0.001	<0.001	<0.001	<0.001	<0.001	0.004	<0.001	
S100A2	0.846	<0.001	0.092	<0.001	0.049	0.082	0.164	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	<0.001	
S100A3	0.309	<0.001	0.853	<0.001	0.084	0.045	0.094	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A4	0.089	<0.001	0.092	<0.001	0.045	0.045	0.028	0.032	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A5	<0.001	0.890	<0.001	<0.001	0.019	0.024	0.078	0.008	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	
S100A6	<0.001	<0.001	<0.001	<0.001	0.001	0.037	0.098	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A7	<0.001	<0.001	<0.001	<0.001	0.001	0.037	0.098	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A8	<0.001	<0.001	<0.001	<0.001	0.001	0.037	0.098	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A9	<0.001	<0.001	<0.001	<0.001	0.001	0.037	0.098	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A10	<0.001	<0.001	<0.001	<0.001	0.001	0.037	0.098	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A11	<0.001	<0.001	<0.001	<0.001	0.001	0.037	0.098	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100A12	0.632	0.032	<0.001	<0.001	0.052	0.026	0.072	0.001	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100B	0.845	<0.001	0.092	<0.001	0.049	0.082	0.164	0.004	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100G	0.089	<0.001	0.092	<0.001	0.045	0.045	0.028	0.032	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	
S100P	0.400	<0.001	0.853	<0.001	0.084	0.045	0.094	0.003	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	0.001	

The correlations of gene mRNA expression in S100 family members were tested using the Spearman’s rank correlation.

S100A13, is highly expressed in the melanoma group compared with normal skin, which was consistent with previous reports. S100B is highly expressed in melanoma and plays a role in the treatment of melanoma as it can predict the efficacy of treatment [21]. High levels of S100B in melanoma are associated with a poor efficacy of the treatment, whereas low levels of S100B predict efficient response to the treatment and improved patient survival, and it is often associated with LDH expression [22] and can predict melanoma patient survival [23]. Overexpression of S100A1 is associated with melanoma, breast cancer, ovarian cancer, and endometrial carcinoma [7,24,25]. In ovarian cancer, S100A1 is highly expressed and is significantly associated with lymph node metastasis, tumor stage, and tumor grade [7]. S100A12 mRNA expression is significantly upregulated in bladder cancer tissues, and S100A13 is upregulated in astroglial gliomas and melanomas and is correlated with vascular endothelial growth factor-A expression, microvessel density, and tumor grade [26]. Cell lines with high expression of S100A13 are more aggressive in lung cancer cell lines [27]. However, no association between expression of S100 family members in this first class gene expression and clinical pathology was observed. The second class of S100 genes was highly expressed in primary melanoma, but was expressed at low levels in metastatic melanoma. Genes in this class included S100A2, S100A7, S100A8, S100A9, S100A10, S100A11 and S100P, and all of these genes were strongly correlated with one another. Expression of these genes was associated with AJCC grade and with both lymphatic and distant melanoma metastasis. We therefore speculate that these genes are likely to be associated with the degree of melanoma malignancy, consistent with the findings of earlier studies, wherein such genes are highly expressed in noninvasive tumors and are expressed at low levels in invasive tumors [6]. For example, S100A11 is considered to be a tumor suppressor gene whose expression increases during the early stages of pancreatic cancer development and decreases upon subsequent cancer progression [28]. The expression of S100A11 is suppressed during the development of bladder cancer, and the loss of its expression is associated with the poor survival of patients with bladder cancer [29]. Previous reports have found that the differential expression of S100 family members varies by tumor type. For example, S100A8 and S100A9 are upregulated in tumors including those of gastric, esophageal, and colonic origin but downregulated in head and neck squamous cell carcinoma, esophageal cancer, and cervical cancer [30,31]. S100A10 is upregulated in renal cell carcinoma and gastric cancer but downregulated in breast cancer [32]. S100 family members may have different expression patterns at different stages of cancer progression. Many previous studies have not distinguished between noninvasive and invasive tumors, which may lead to some differences in results and will necessitate further verification. These
two groups of S100 genes thus yield two different progression-associated expression patterns, allowing for effective monitoring of cancer progression. If the expression of S100 family genes of the second class is low, this may be indicative of tumor metastasis. High expression of genes in the first class, meanwhile, predicts tumorigenesis.

Conclusion

In this study we have comprehensively examined the expression of S100 family genes as they relate to melanoma progression and clinicopathology. Our results show that S100 family genes may be divided into two classes of genes, one class is composed of S100A1, S100A13, and S100B, whereas the other is composed of S100A2, S100A7, S100A8, S100A9, S100A10, S100A11, and S100A14. We believe that the differential expression of these S100 genes is directly associated with the development and progression of melanoma. These genes can thus be used as an independent prognostic indicator in patients with melanoma, especially in the early stages of disease. These genes may also be effective markers allowing for differentiation between benign and malignant tumors. Further research and both basic and clinical experimentation will be needed to validate these findings. This study has greatly advanced the current understanding of the expression of S100 family genes in the context of melanoma, demonstrating that the S100 family may play a unique and important role in melanoma.

Acknowledgements

Conflicts of interest

There are no conflicts of interest.

References

1. Previous version: SEER cancer statistics review, 1975–2011. 2014. Available at: https://seer.cancer.gov/archive/csr/1975_2011/. [Accessed 7 March 2018].
2. Rausch MP, Hastings KT. Immune checkpoint inhibitors in the treatment of melanoma; from basic science to clinical application. In: Ward WH, Farma JM, editors. Cutaneous melanoma: etiology and therapy. Brisbane, Australia: Codon Publications; 2017. pp. 121–142
3. Weinstein D, Leninger J, Hamby C, Saffi B. Diagnostic and prognostic biomarkers in melanoma. J Clin Aesthet Dermatol 2014; 7:13–24.
4. Chen H, Xu C, Jin Q, Liu Z. S100 protein family in human cancer. Am J Cancer Res 2014; 4:89–115.
5. Zhu W, Xue Y, Liang C, Zhang R, Zhang Z, Li H, Su D, Liang X, Zhang Y, Huang Q, et al. S100A1 promotes cell proliferation and metastasis via AKT and ERK cell signaling pathways in human prostate cancer. Tumour Biol 2016; 37:12241–12250.
6. Ji YF, Huang H, Jiang F, Ni RX, Xiao MB. S100 family signaling network and related proteins in pancreatic cancer (Review). Int J Mol Med 2014; 33:769–776.
7. Tian T, Li X, Jia H, Sun F. S100A13 promotes cell proliferation and migration and is associated with lymph node metastasis in ovarian cancer. Discov Med 2017; 23:235–245.
8. Liu Y, Cui J, Tang YL, Huang L, Zhou CY, Xu JX. Prognostic roles of mRNA expression of S100 in non-small-cell lung cancer. Biomed Res Int 2018; 2018:8915806.
9. Sun X, Wang T, Zhang C, Ning K, Guan ZR, Chen SX, Hong TT, Hua D. S100A16 is a prognostic marker for colorectal cancer. J Surg Oncol 2018; 117:275–283.
10. Chen A, Wang L, Li BY, Sherman J, Ryu JE, Hamamura K, Liu Y, Nakashita H, Yokota H. Reduction in migratory phenotype in a metastasized breast cancer cell line via downregulation of S100A4 and GRM3. Sci Rep 2017; 7:3459.
11. Leclerc E, Heizmann CW, Vetter SW. RAGE and S100 protein transcription levels are highly variable in human melanoma tumors and cells. Gen Physiol Biophys 2009; 28:F65–F75.
12. Tesarova P, Kalousova M, Zima T, Tesar V. HMGB1, S100 proteins and other RAGE ligands in cancer – markers, mediators and putative therapeutic targets. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2016; 160:1–10.
13. Marklandso GM, Finones VA, Mellingesaeter T, Hovig E, Kebbel RS, Fostod O. Differential expression patterns of S100A2, S100A4 and S100A6 during progression of human malignant melanoma. Int J Cancer 1997; 74:464–469.
14. Moore BW. A soluble protein characteristic of the nervous system. Biochem Biophys Res Commun 1965; 19:739–744.
15. Shang X, Cheng H, Zhou R. Chromosomal mapping, differential origin and evolution of the S100 gene family. Genet Sel Evol 2008; 40:449–464.
16. Donato R, Cannon BR, Sorci G, Rizzato F, Hsu K, Weber DJ, Gezcy CL. Functions of S100 proteins. Curr Mol Med 2013; 13:24–47.
17. Zimmer DB, Eubanks J, Ramakrishnan D, Crocitelli MF. Evolution of the S100 family of calcium sensor proteins. Cell Calcium 2013; 53:170–179.
18. Heizmann CW, Fritz G, Schaefer BW. S100 proteins: structure, functions and pathology. Front Biosci 2002; 7:d1356–d1368.
19. Donato R. Intracellular and extracellular roles of S100 proteins. Micros Res Tech 2003; 60:540–551.
20. Bresnick AR, Weber DJ, Zimmer DB. S100 proteins in cancer. Nat Rev Cancer 2015; 15:96–109.
21. Kruff S, Bastiaannet E, Brouwer H, Nengagast WB, Speijers MJ, Suurmeijer AJ, et al. Use of S-100B to evaluate therapy effects during bevacizumab induction treatment in AJCC stage III melanoma. Ann Surg Oncol 2019; 19:620–626.
22. Abusafi S, Jadi Z, Heid L, Pillimfelder A, Weide B, Meier F, et al. S100B and lactate dehydrogenase as response and progression markers during treatment with vemurafenib in patients with advanced melanoma. Melanoma Res 2013; 23:396–401.
23. Weide B, Richter S, Buttrup P, Leiter U, Forschner A, Bauer J, et al. Serum S100B, lactate dehydrogenase and brain metastasis are prognostic factors in patients with distant melanoma metastasis and systemic therapy. PLoS One 2013; 8:e61624.
24. McKiernan E, McDermott EW, Eovy D, Crown J, Duffy MJ. The role of S100 genes in breast cancer progression. Tumour Biol 2011; 32:441–450.
25. Sviatohla V, Tani E, Klein R, Sperga M, Skog O. Immunohistochemical analysis of the S100A1, S100B, CD44 and Bcl-2 antigens and the rate of cell proliferation assessed by Ki-67 antibody in benign and malignant melanocytic tumours. Melanoma Res 2010; 20:118–125.
26. Tiao H, Landriscina M, Piscaszi A, Cosci E, Kroiv A, Paglierani M, et al. S100A13 is a new angiogenic marker in human melanoma. Mod Pathol 2010; 23:804–813.
27. Pierce A, Barron N, Linehan R, Ryan E, O’Driscoll L, Daly C, Clynes M. Identification of a novel, functional role for S100A13 in invasive lung cancer cell lines. Eur J Cancer 2008; 44:151–159.
28. Ohuchiida K, Mizumoto K, Ohhashi S, Yamaguchi H, Konomi H, Nagai E, et al. S100A11, a putative tumor suppressor gene, is overexpressed in pancreatic carcinogenesis. Clin Cancer Res 2006; 12:5417–5422.
29. Yao R, Davidson DD, Lopez-Beltran A, MacLennan GT, Montironi R, Cheng L. The S100 proteins for screening and prognostic grading of bladder cancer. Histol Histopathol 2007; 22:1025–1032.
30. Funk S, Mark R, Bayo P, Flechtenmacher C, Grabe N, Angel P, Pinkert PK, Hess J. High S100A8 and S100A12 protein expression is a favorable prognostic factor for survival of oropharyngeal squamous cell carcinoma. Int J Cancer 2015; 136:2037–2046.
31. Srikrishna G, S100A8 and S100A9; new insights into their roles in malignancy. J Innate Immun 2012; 4:31–40.
32. Zoback N, Gerke V, Rescher U. Complex formation and submembranous localization of annexin 2 and S100A10 in live HepG2 cells. FEBS Lett 2001; 503:137–140.