A goodness of fit test for the Pareto distribution

Emanuele Taufera, Flavio Santia, Giuseppe Espaa, Maria Michela Dicksonb,

aDepartment of Economics and Management, University of Trento - Italy aDepartment of Statistics, University of Padua - Italy

Abstract

The Zenga (1984) inequality curve \(\lambda(p) \) is constant in \(p \) for Type I Pareto distributions. This characterizing behavior will be exploited to obtain graphical and analytical tools for tail analysis and goodness of fit tests. A testing procedure for Pareto-type behavior based on a regression of \(\lambda(p) \) against \(p \) will be introduced.

Keywords: Tail index, inequality curve, non-parametric estimation, goodness-of-fit.

1 Introduction

Let \(X \) be a positive random variable with finite mean \(\mu \), distribution function \(F \), and probability density \(f \). The inequality curve, \(\lambda(p) \), defined in \cite{11} is defined as:

\[
\lambda(p) = 1 - \frac{\log(1 - Q(F^{-1}(p)))}{\log(1 - p)}, \quad 0 < p < 1,
\]

where \(F^{-1}(p) = \inf\{x: F(x) \geq p\} \) is the generalized inverse of \(F \) and \(Q(x) = \int_0^x t f(t)dt/\mu \) is the first incomplete moment. \(Q \) can be defined as a function of \(p \) via the Lorenz curve

\[
L(p) = Q(F^{-1}(p)) = \frac{1}{\mu} \int_0^p F^{-1}(t)dt.
\]

\(\lambda(p) \) can be used to define a concentration measure as it has been done in \cite{11}. Here we exploit the curve in order to define goodness-of-test for the Pareto. In fact as it will be more formally shown below \(\lambda(p) \) is constant in \(p \) for type I Pareto distributions. Indeed the above properties can also be exploited in order to define graphical tools for the analysis of distributions and their tails. For related works see \cite{8, 10, 2, 4, 5, 6, 7, 9}.

For a Type I Pareto distribution \cite{3} 573 ff.] with

\[
F(x) = 1 - (x/x_0)^{-\alpha}, \quad x \geq x_0
\]

it holds that \(\lambda(p) = 1/\alpha \), i.e. \(\lambda(p) \) is constant in \(p \). This is actually an if-and-only-if result, as we formalize in the following lemma:

Lemma 1. The curve \(\lambda(p) \) defined in \cite{11} is constant in \(p \) if, and only if, \(F \) satisfies \cite{3}.

2 Goodness-of-fit tests

Let $X_{(1)}, \ldots, X_{(n)}$ be the order statistics of the sample, $\mathbb{I}_{(A)}$ the indicator function of the event A. To estimate $\lambda(p)$, define the preliminary estimates

$$ F_n(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}_{(X_i \leq x)} \quad Q_n(x) = \frac{\sum_{i=1}^{n} X_i \mathbb{I}_{(X_i \leq x)}}{\sum_{i=1}^{n} X_i} $$

Under the Glivenko-Cantelli theorem (see e.g. [9]) it holds that $F_n(x) \to F(x)$ almost surely and uniformly in $0 < x < \infty$; under the assumption that $E(X) < \infty$, it holds that $Q_n(x) \to Q(x)$ almost surely and uniformly in $0 < x < \infty$. F_n and Q_n are both step functions with jumps at $X_{(1)}, \ldots, X_{(n)}$. The jumps of F_n are of size $1/n$ while the jumps of Q_n are of size $X_{(i)}/T$ where $T = \sum_{i=1}^{n} X_{(i)}$. Define the empirical counterpart of L as follows:

$$ L_n(p) = Q_n(F_n^{-1}(p)) = \frac{\sum_{j=1}^{i} X_{(j)}}{T}, \quad \frac{i}{n} \leq p < \frac{i+1}{n}, \quad i = 1, 2, \ldots, n - 1, $$

where $F_n^{-1}(p) = \inf \{x : F_n(x) \geq p\}$. To estimate $\lambda(p)$ define

$$ \hat{\lambda}_i = 1 - \frac{\log(1 - L_n(p_i))}{\log(1 - p_i)}, \quad p_i = \frac{i}{n}, \quad i = 1, 2, \ldots, n - \lfloor \sqrt{n} \rfloor. $$

The choice of $i = 1, \ldots, n - \lfloor \sqrt{n} \rfloor$ guarantees that $\hat{\lambda}_i$ is consistent for λ_i for each $p_i = i/n$ as $n \to \infty$.

Goodness-of-fit tests can be defined by linear regression of λ_i, on p_i. From Lemma 1 for a distribution F satisfying (3) with $\lambda > 1$, for any choice of $p_i, 0 < p_i < 1, i = 1, \ldots, m$, one has the linear equation

$$ \lambda_i = \beta_0 + \beta_1 p_i, $$

where $\beta_0 = 1/\alpha$ and $\beta_1 = 0$. Given a random sample X_1, \ldots, X_n, estimation and testing procedures can be defined through the regression

$$ \hat{\lambda}_i = \beta_0 + \beta_1 p_i + \varepsilon_i $$

where $\varepsilon_i = \hat{\lambda}_i - \lambda_i$. Hence an estimator of β_0 can be used to estimate α while a test on the hypothesis $H_0 : \beta_1 = 0$ can be used to test that a distribution F satisfies (3).

Using least squares estimators and exploiting the knowledge that $\beta_1 = 0$ in the estimation of β_0, define

$$ \hat{\beta}_0 = \frac{1}{m} \sum_{i=1}^{m} \hat{\lambda}_i, \quad \hat{\beta}_1 = \sum_{i=1}^{m} \frac{\hat{\lambda}_i (p_i - \bar{p})}{S_p^2} = \sum_{i} \frac{\hat{\lambda}_i c(p_i)}{S_p^2} $$

where \bar{p} is the mean of the p_i’s and $S_p^2 = \sum_{i} (p_i - \bar{p})^2, c(p_i) = (p_i - \bar{p})/S_p^2$.

Note that since
\[
\sum_{i=1}^{n} i = \frac{n(n + 1)}{2} \quad \text{and} \quad \sum_{i=1}^{n} i^2 = \frac{n(n + 1)(2n + 1)}{6}
\]
then, for \(p_i = i/n, i = 1, \ldots, m, m = n - \lfloor \sqrt{n} \rfloor, \)
\[
\bar{p} = \frac{1}{2} \frac{m(m+1)}{n^2} = \frac{1}{2} + O \left(\frac{1}{\sqrt{n}} \right) \quad \text{and} \quad S_p^2 = \frac{1}{12} \frac{m(m^2-1)}{n^2} = O(n).
\]

Remark 1. Since \(\lambda(p) \) does not depend on location parameters, one can construct goodness-of-fit tests free of \(x_0 \) for the Pareto distribution.

A formal test for the general hypothesis that the data comes from a distribution \(F \) satisfying \(\lambda(p) \) i.e.
\[
H_0 : F \text{ is } Pa(\alpha, x_0), \quad \alpha > 1, \quad x_0 > 0
\]
The null hypotheses is rejected if |\(\hat{\beta}_1 \)| is large. In order to carry on practically the test we have two possibilities. The first is to use a normal approximation to \(\hat{\beta}_1 \), properly normalized. This is feasible only for the cases \(\alpha > 2 \).

The second way is to carry on a parametric bootstrap procedure as follows:

1. Given a random sample of size \(n \), estimate \(\hat{\alpha} = 1/\hat{\beta}_0 \) and \(\hat{\beta}_1 \).
2. Generate a sample of size \(n \) from a \(Pa(\hat{\alpha}, 1) \)and estimate \(\hat{\beta}_1 \). Note that since \(\lambda(p) \) does not depend on \(x_0 \), we do not need to estimate it and use, for example, always the same value \(1 \).
3. Repeat step 2 \(M \) times.
4. Get an estimated \(p \)-value of \(\hat{\beta}_1 \) from the bootstrap distribution.

To compare the performance of the test proposed here, consider \(\text{[10]} \). For the distributions and sample sizes considered in Table 8 of \(\text{[10]} \), Table 1 contains the power estimates obtained with the parametric bootstrap for tests of level 0.05. Results are based on 500 samples of size \(n \) from null and alternative distributions; for each of them a parametric bootstrap with \(M = 500 \) was carried on.

We see that the test proposed here performs better than its competitors in several cases. The Log-normal distribution looks like a hard alternative for large values of the standard deviation. Further simulation and analyses will be carried on in a subsequent work.
Table 1: Estimated power for tests of size 0.05. Results based on 500 replications, p-value estimates were obtained by parametric bootstrap with $M = 500$.

n	Pa(2)	LN(1)	LN(2.5)	LN(3)	Exp	Ga(2)	LW(0.25)	LW(0.5)
20	0.19	0.99	0.99	0.23	0.46			
50	0.054	1.00	0.19	0.04	1.00	0.38	0.81	
100	0.048	1.00	0.61	0.03	1.00	0.59	0.96	
500	0.038	1.00	0.81	0.08	1.00	0.96	1.00	
1000	0.044	1.00	0.95	0.12	1.00	0.98	1.00	

References

[1] Embrechts, P., C. Klüppelberg, T. Mikosch (1997). Modelling Extremal Events. Springer.
[2] Grahovac, D., Jia, M., Leonenko, N. N., Taufer, E. (2015) Asymptotic properties of the partition function and applications in tail index inference of heavy-tailed data. *Statistics: A Journal of Theoretical and Applied Statistics* 49, 1221–1242.
[3] Johnson N. L., S. Kotz, N. Balakrishnan (1995) *Continuous Univariate Distributions, Vol. 2*, 2nd ed, Wiley.
[4] Jia, M., Taufer, E., Dickson, M. M. (2018). Semi-parametric regression estimation of the tail index. *Electronic Journal of Statistics* 12, 224–248.
[5] Leonenko, N. N., & Taufer, E. (2006). Weak convergence of functionals of stationary long memory processes to Rosenblatt-type distributions. *Journal of statistical planning and inference*, 136(4), 1220–1236.
[6] Leonenko, N., Petherick, S., & Taufer, E. (2013). Multifractal models via products of geometric OU-processes: Review and applications. *Physica A: Statistical Mechanics and its Applications*, 392(1), 7–16.
[7] McNeil, A. J., R. Frey, P. Embrechts (2005) *Quantitative Risk Management*, Princeton University Press.
[8] Meintanis, S. G., Ngatchou-Wandji, J., & Taufer, E. (2015). Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function. *Journal of Multivariate Analysis*, 140, 171–192.
[9] Resnik, S. I. (1999) *A probability path*, Birkhäuser.
[10] Volkova, K. (2016). Goodness-of-fit tests for the Pareto distribution based on its characterization. *Statistical Methods & Applications*, 25(3), 351-373.
[11] Zenga, M. (1984). Proposta per un indice di concentrazione basato sui rapporti fra quantili di popolazione e quantili di reddito. *Giornale degli Economisti e Annali di Economia* 5/6, 301–326