Engineering technology plays a pivotal role in the delivery of health care in under-resourced countries by providing an infrastructure to improve patient outcomes. However, sustainability of these technologies is difficult in these settings oftentimes due to limited resources or training. The framework presented in this editorial focuses on establishing medical and laboratory equipment sustainability in developing countries and is comprised of four steps: 1) establishing reliable in-country relationships with stakeholders, 2) identifying needs for sustainable solutions locally, 3) exploring potential solutions and assessing their effort-to-impact ratios, and 4) working with strategic partners to implement solutions with clear performance metrics. By focusing on the sustainability of donated equipment instead of the equipment itself, this method presented distinguishes itself from other philanthropic endeavors in the field by seeking to establish preventive maintenance habits that can impact clinical outcomes of a community long term. Application of this methodology is reported in the Original Research Article “A Low-Cost Humidity Control System to Protect Microscopes in a Tropical Climate” by Asp et al.

Establish in-country relationships
Existing relationships with non-profit organizations can be leveraged to establish introductory meetings and arrange visits with local healthcare facilities and laboratories. These relationships can also facilitate additional connections with government offices (e.g., Ministry of Health) and education sectors (e.g., local medical and technical universities with programs on medical device usage). An initial needs assessment visit may help to identify common or impactful equipment problems, as well as securing access to an appropriate supply chain of replacement parts. This editorial details the following steps for developing sustainable medical equipment repair and maintenance strategies: 1) establishing in-country relationships, 2) assessing the equipment and material needs locally, 3) exploring feasible solutions, and 4) implementing a plan and measuring potential impact.
Assess local needs
The initial needs assessment exploratory visit is also important to assess available medical and laboratory equipment, quality of personnel training, existing standard operating procedures, local infrastructure, and needs of the local communities. Understanding how both personnel and equipment are utilized on-site will help to develop a risk assessment of current protocols and continued performance. Previously established in-country relationships can help ensure a detailed appraisal of risks and community needs. This appraisal could be communicated to donating organizations to help inform future targeted donations.

Key topics to cover during the needs assessment include: equipment inventory lists (manufacturer, model, operational status, photographs, location, useful life expectancy, replacement cost, and availability of consumables), points of contact (name, job title, phone number, email), and existing protocols for equipment usage, maintenance, and repair. It is important to listen to the needs expressed by in-country colleagues as they use this equipment regularly. Information on personnel availability and the financial situation in-country will also prove to be necessary when assessing needs. A second, more focused needs assessment trip may be required to fully identify and characterize potential areas of impact.

Prioritize focus and explore solutions
Equipment prioritization should be completed based on the team’s needs assessment with local input, accessibility to technical experts, complexity of equipment, international standards, effort-to-impact ratio, and relevance of the problem to in-country partners. Once target equipment is identified based on local needs assessment, possible solutions for maintenance and repair education should be evaluated. A coordinated, team-based approach with local partners ensures feasibility and capacity for appropriate solution implementation. It necessitates detailed research, outreach, communication, and patience. Multiple solutions may exist for each type of equipment and should be researched to ensure redundancy. Research into multiple solutions is more efficient in groups. It is important to establish clear deadlines and move forward in a timely manner in this phase. Information gathered can include: total cost of ownership, implementation challenges, preparation time, length of implementation, type of assessment metrics, and reproducibility. If a solution requires engaging local personnel, all members must have a clear understanding of personnel, time, and effort necessary for successful implementation. This information facilitates decisions about which plan to implement while accounting for in-country partners, chain of command, and cultural context, as well as the team’s capabilities and economic resources. It is, however, recommended to start with a straightforward solution even if it yields a small reward. This will help the team gain confidence, as well as establish credibility with partners.

Implement plan and measure impact
Redundancy also plays an important role in the implementation phase. A main project objective should be to eliminate any dependency on a single individual or process that can halt implementation. For example, if the goal is to teach in-country partners to service and maintain equipment, then an ideal scenario would be to maximize the number trained during a single session, providing each person with the skills to teach others. A Train-the-Trainer model helps create a larger base of locally available experts, providing long-term project security. To enhance sustainability, be sure to include readily available supporting resources such as multimedia content, training videos, user manuals, maintenance tools, and/or replacement parts. Training can be a labor and resource intensive process, but it is critical for sustainable maintenance and increased longevity of medical devices. Ultimately, a sustainable solution should have a long-term impact and aim at independence. These tools will help work towards that.

Furthermore, metrics to assess efficacy of a strategy should be well defined prior to solution implementation, including assessment timepoints. Project metrics help gauge effectiveness and appropriateness of the intervention. Metrics should include both retrospective and prospective data and minimize potential confounders. Example metrics can include number of personnel trained, maintenance requests on equipment, procedures completed using equipment, and financial impact. It is vital to carefully choose metrics to be collected, as collection can place undue burden on in-country partners, making its collection less likely. Retrospective data may be sparse, so working with local partners to learn what has been collected previously can aid in prospective metric development. This communication could also reveal efforts that may impact metrics and confound impact assessment. Periodic updates on progress can enable evidence based decision making throughout the process, with continuous engagement of in-country partners. While measuring impact can be more challenging and resource intensive than the donation itself, these efforts are vital to ensure impactful future donations.

Conclusion
The framework presented for equipment sustainability in developing countries is comprised of four steps: 1) establishing reliable in-country relationships with
stakeholders, 2) identifying needs for sustainable solutions locally, 3) exploring potential solutions and assessing their effort-to-impact ratios, and 4) working with strategic partners to implement solutions with clear performance metrics. While intuitive at first, every step involves a nontrivial level of nuance that can significantly hinder progress. Firstly, team members need to be aware that their efforts will likely require a long-term commitment, as bureaucracy and communication chains can slow down implementation time significantly. Projects may take long enough to require careful planning of leadership transitions, ensuring effective communication lines and shifting of responsibilities. Moreover, when selecting which equipment to target first, priority should be given to those that pose the lowest barriers to completion. These types of solutions can shorten the time to impact while enabling teams to become familiar with stakeholders, internal politics, chains of command, and response times. Early displays of success will likely motivate goodwill from stakeholders, potentially impacting downstream projects positively. An example of such a project is discussed further in this issue [3]. Simpler solutions like this may not be immediately obvious, requiring extensive feasibility research. Thus, sufficient time should be allocated to brainstorming and exploring solutions. Self-imposed deadlines may lead to time and resources being invested in subpar solutions requiring more effort and expenses while achieving less impact. It should be expected that many reasonable solutions require skills outside of the expertise of the team. In these scenarios, teams may find it useful to leverage local resources (brand, engineering or media departments, networks) or third-party experts, shifting towards a coordinating role. By focusing on the sustainability of donated equipment instead of the equipment itself, this method presented distinguishes itself from other philanthropic endeavors in the field by seeking to establish preventive maintenance habits that can impact clinical outcomes of a community long-term.

Funding Information
Funding provided by Mayo Clinic Program in Underserved Global Health (PUGH).

Competing Interests
The authors have no competing interests to declare.

Author Contributions
All authors had access to the data and played a role in writing the manuscript.

References
1. World Health Organization. Medical device donations: Considerations for solicitation and provision, WHO Medical device technical series, World Health Organization; 2011. https://apps.who.int/iris/bitstream/handle/10665/44568/9789241501408_eng.pdf;jsessionid=0F818980993D652E78556C0E F487D300?sequence=1.
2. Wilson JW, Merry SP, Franz WB. Rules of engagement: the principles of underserved global health volunteerism. The American Journal of Medicine. 2012 Jun 1; 125(6): 612–7. DOI: https://doi.org/10.1016/j.amjmed.2012.01.008
3. Asp AJ, Webber CM, Nicolai EN, Martínez-Gálvez G, Marks VS, Ben-Abraham EI, Willson JW, Luján JL. A Low-Cost Humidity Control System to Protect Microscopes in a Tropical Climate. Annals of Global Health. 2020; 86(1): 6. DOI: http://doi.org/10.5334/aogh.2585