Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
The association between problematic internet use, psychological distress, and sleep problems during COVID-19

1. Introduction

1.1. Pandemic outbreak during the information age

The COVID-19 global pandemic has reset the world, and mandatory policies such as social isolation have restricted people’s activities and space [1–3]. In this critical time, Llorente pointed out that social isolation has a direct impact on how we interact [4]. To satisfy the need for social interaction and overcome physical restrictions, information technology provides an opportunity for our generation to help curb these challenges. Although early research indicated that the role of the Internet may interfere with human psychological problems [5,6]. During the COVID-19 pandemic, Internet communication has become increasingly indispensable.

1.2. The impact of increased internet use

Internet infrastructure is vital to the development of a country. According to China’s Internet Development Statistics Report, the proportion of Internet users using mobile phones to access the Internet has reached 99.1% [7]. Internet access via smartphones is one of the sources of problem behaviors, especially among young people [8–10]. However, the culprit of problematic internet use (PIU) is not the smartphone itself, but the excessive use of applications installed on the smartphone [11]. Any APPs on a smart phone device can integrate the exchange of instant messages, pictures, videos, games, and voice calls via the Internet [12,13]. Today, social media apps such as Facebook, Instagram, Reddit, and Tik-Tok play an important role as a platform for social behavior [14,15]. In addition, because of the high loyalty of social platforms, various online activities such as games, chat, and creation may also appear on social platforms [16]. During the COVID-19 quarantine period, young people often used social networks to relax, and shopping behaviors also occurred instantaneously, when recommended ads popped up on their social platforms [15]. The use of social media on smartphones today means more complex multitasking behaviors, the results of which require constant attention. In the new information age, this study investigated two types of behaviors: problematic smartphone use (PSU) and problematic social media use (PSMU) within the framework of problematic Internet use (PIU).

During this pandemic, children and adolescents have spent significantly more time surfing the Internet at home as students take classes remotely [17], resulting in more screen time usage. This habitual situation has increased as people also need to use their smartphones to contact relatives and friends, update epidemic information, and obtain contact tracking information [18]. However, excessive internet usage and extended screen time can adversely affect cognition and development, especially in children, adolescents, and young people [19]. Studies have indicated that if students have a high rate of social media usage, they may use social media as an unhealthy strategy for dealing with negative emotions and daily problems [20].

Contrary to students who have been observed to exhibit a high risk of mental health problems during the school suspension period, school teachers (another potentially vulnerable population) have not been adequately examined. School teachers who partake in online courses spend more time on the Internet than students because they prepare lectures and provide personalized guidance to individual students [21]. Excessive use of virtual video conferencing platforms also leads to a new phenomenon: fatigue, anxiety, or worry [17]. A survey conducted using Facebook and Instagram data of 380 teachers from different schools during COVID-19 revealed that more than 50% of the teachers spend more than four hours on distance learning every day [22]. Teachers did not devote time to this kind of online work prior to the pandemic [23].

Teachers are prone to experience excessive Internet use during the pandemic because, in addition to the requirement of the aforementioned work, they may also want to use the Internet (e.g., smartphones and social media) to maintain awareness regarding the latest developments on the pandemic and to communicate socially, similar to the general adults identified in COVID-19 literature [8,24–26]. Unfortunately, we believe that as teachers excessively use the Internet, their mental health might be negatively affected since problematic Internet use (PIU) is associated with psychological distress [27–29].

Although abundant references support the association between PIU and psychological distress, the results are inconsistent. For example, Coyne et al. conducted an 8-year longitudinal study, and the results indicated that an increase in time spent on social media was not related to an increase in mental health problems [30]. The possible reason for the inconsistent results may be due to confounding variables (e.g., gender, interpersonal relationships, and health status). Among these variables, sleep problems are critical factors that have been identified to be associated with PIU [31] and psychological distress [32]. Rationally, the association between PIU and psychological distress is intensified in people with severe sleep problems. Similarly, this association may also be less notable in people without severe sleep problems. However, this moderating effect should be tested.

Abbreviations: PIU, Problematic Internet use; PSU, Problematic smartphone use; PSMU, Problematic social media use; DASS-21, Depression, Anxiety, and Stress Scale-21; SABAS, Smartphone Application-Based Addiction Scale; BSMAS, Bergen Social Media Addiction Scale; PCL-5, PTSD Checklist for DSM-5; SEM, Structural equation modeling; CFI, Comparative fit index; NFI, Non-normed fit index; RMSEA, Root mean square error of approximation; SRMR, Standardized root mean square residual.

https://doi.org/10.1016/j.sleep.2021.100005
Received 5 May 2021; Received in revised form 26 August 2021; Accepted 8 September 2021
2667-3436/© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
1.3. Statement of the problem

As adults, teachers are not restricted from using the Internet for seeking information or entertainment, and this excessive Internet use can easily become PIU. The situation may worsen if school teachers also use the Internet for work purposes. Although previous studies have indicated an association between PIU and psychological distress [27–29,33], few studies have focused on school teachers. Furthermore, a possible moderator for sleep problems has not yet been clarified in the context of school suspension. Before the pandemic, school teachers were prone to mental illness [34]. Considering the nature of teachers’ work tasks during the outbreak (e.g., school teachers should devote more time to work), we should examine teachers’ mental illness during this difficult time. As such, this study aims to examine the association between PIU, psychological distress, and sleep problems among school teachers. Moreover, the possible moderating effect of sleep problems was examined.

2. Material and methods

2.1. Procedure and participants

A non-probability sampling method with an online survey was conducted between May 25 and June 30, 2020, on school teachers (primary and middle school). Ethics approval for the study was provided by the institutional review board of the Jianxi Psychological Consultant Association (IRB ref. JXSXL–2020–J013). The procedure was as follows: (i) we sought help from principals of primary and middle schools in three provinces (Jiangxi, Sichuan, and Shandong) in China; (ii) we provided the online survey’s hyperlink to the principals who accepted our invitation; (iii) these principals forwarded the hyperlink to their respective school’s teachers. The online survey was voluntary and anonymous. Informed consent was obtained at the beginning of the survey. Finally, 11014 school teachers (primary school = 6921, middle school = 4093) completed the online survey.

2.2. Measures

In this study, to address the COVID-19 circumstances, common mental illnesses (e.g., depression, anxiety, and stress) were used to represent psychological distress; PIU included two types of problematic Internet activities: problematic smartphone use (PSU) and problematic social media use (PSMU). The instruments used in this study are described in detail below.

2.2.1. Psychological distress

The Depression, Anxiety, and Stress Scale-21 (DASS-21), comprised of 21 items evenly divided into three subscales—depression, anxiety, and stress—was used to reflect participants’ psychological distress [35]. The items in the DASS-21 were scored on a four-point Likert scale (from 0 to 3), with higher scores indicating higher levels of depression, anxiety, or stress. The DASS-21 has sound psychometric properties in the Chinese version [36,37]. The Cronbach’s alpha of the Chinese DASS-21 utilized in this study was excellent: (i) depression: 0.92 on both categories of school teachers; (ii) anxiety: 0.91 on both categories of school teachers; (iii) stress: 0.90 (primary school) and 0.91 (middle school).

2.2.2. Problematic smartphone use

In this study, we used the Smartphone Application-Based Addiction Scale (SABAS) to measure participants’ PSU levels, which was developed by Csibi et al. [38] and included six items. A single construct was used in the SABAS: addiction to smartphone use. The items in the SABAS were scored on a six-point Likert scale (from 1 to 6), with higher scores indicating greater PSU. Previous studies have conducted and verified the Chinese version of SABAS [39,40]. The Chinese version of SABAS also has high internal reliability in this study. Cronbach’s alpha was 0.88 for primary school teachers, and 0.87 for middle school teachers.

2.2.3. Problematic social media use

The Bergen Social Media Addiction Scale (BSMAS) developed by Andreassen et al. [41] was adopted to measure participants’ PSMU. The BSMAS includes six items scored on a five-point Likert scale (from 1 to 6). The results of previous studies have demonstrated that BSMAS has powerful psychometric properties among primary school students in mainland China [40]. Higher scores on the BSMAS indicated a greater risk of social media addiction. The internal reliability of the Chinese version of the BSMAS in this study was satisfactory, and the Cronbach’s alpha for both categories of school teachers was 0.87.

2.2.4. Sleep problem

We adopted three items to measure sleep problems. Among these items, two were from the Chinese Post-traumatic stress disorder (PTSD) Checklist for DSM-5 (PCL-5) [42] and one was from the Chinese version of FCV-19S [43,44]. The two items from PCL-5 were: “In the past few months, the severity of the following conditions has bothered you”: (i) repeated dreams of disturbing stressful events (0 = not at all, 1 = a little bit, 2 = moderate, 3 = very serious, and 4 = extremely); (ii) difficulty falling asleep or sleeping well (0 = not at all, 1 = a little bit, 2 = moderate, 3 = very serious, and 4 = extremely). The item from FCV-19S was: “I couldn’t sleep well because I was worried about being infected by COVID-19” (1 = totally disagree to 5 = completely agree). The contents of these three items all sought to ask the participants about the severity of sleep disturbances; therefore, we summed the score of each item to represent the severity of the sleep problem with higher scores indicating high sleep problems. Cronbach’s alpha was 0.65 for both categories of school teachers, meeting an acceptable level.

2.2.5. Demographic information

In addition to the above measures, we also collected demographic information from the participants, including their respective school types, gender, years of work experience, whether they served as a home-teacher, or they had online teaching experience before school suspension.

2.3. Data analysis

Following the testing of the moderating effect (e.g., Schloederer et al. divided their participants into high and low-income groups to test the moderating effect of their socioeconomic status [38]), the two groups showed a statistically significant difference in the scores of sleep problems ($F = 222420.98, p < 0.001$), and $r^2 = 0.67$, indicating a significant effect [45] As such, our grouping distinguished between those with high and low levels of sleep problems.

In the Results section, we first provide the key characteristics of the demographic variables between the high and low sleep problem groups separately with descriptive statistics (i.e., frequency (percentage)) and a chi-squared test. Second, an independent t-test was used to compare the differences between the high and low sleep problem groups regarding psychological distress, PSU, and PSMU. Third, the Pearson correlation was used to analyze the correlation among the observed variables (i.e., psychological distress, PSU, and PSMU) by high and low sleep problem groups. Finally, a structural equation modeling (SEM) approach was used to evaluate the overall model fit for the high and low sleep groups. Consequently, a multiple-group analysis with SEM was adopted to test the moderating effect of sleep problems on the influence of PSU and PSMU on psychological distress. In the model, PSU and PSMU served as exogenous latent variables, and psychological distress was an endogenous latent variable using the scores of three subscales (i.e., subscales of depression, anxiety, and stress) as respective indicators. Some critical demographic variables were included in the model as control variables: school type, gender, years of work experience, whether they served as a home-teacher, or had online teaching experience before school suspension. A combination of model fit
indices was used to evaluate the overall model fit: comparative fit index (CFI), non-normed fit index (NNFI) > 0.90, root mean square error of approximation (RMSEA) < 0.10, and standardized root mean square residual (SRMR) < 0.08 [46]. Furthermore, the moderating effect was examined by a chi-square difference test. Specifically, we constrained the coefficient from PSU and PSMU on psychological distress effect as equal across high and low sleep problem groups. When the difference of the value of chi-square from the unconstrained model to constrained model meets the significant level, the moderating effect is considered present.

3. Results

3.1. The differences of the demographic variables between high and low sleep problem groups

Table 1 presents the results of the frequency (percentage) and the chi-squared test for the demographic variables. The results indicate that there are significant differences between the high and low sleep problem groups regarding school type, gender, and years of work experience. Specifically, the proportion of middle school teachers in the high sleep problem group is significantly higher than that of primary school teachers ($\chi^2 = 9.82, p < 0.001$), and the proportion of male teachers in the high sleep problem group is significantly higher than that of female teachers ($\chi^2 = 31.53, p < 0.001$); those with more than 11 years of work experience have a significantly higher proportion in the high sleep problem group, while those with less than 5 years of work experience have a significantly higher proportion in the low sleep problem group ($\chi^2 = 66.20, p < 0.001$). We also identified that the two demographic variables (whether they served as a home-teacher or had online teaching experience before school suspension) had no significant relationship with teachers’ sleep problems.

3.2. Differences in psychological distress, PSU, and PSMU among teachers with different levels of sleep problems

The results of the differences in psychological distress, PSU, and PSMU between the high and low sleep problem groups are presented in Table 2. The results indicate that the high sleep problem group has significantly higher values for psychological distress ($t = 51.89, p < 0.001$, Cohen’s $d = 1.07$), PSU ($t = 33.09, p < 0.001$, Cohen’s $d = 0.63$), and PSMU ($t = 26.26, p < 0.001$, Cohen’s $d = 0.51$).

3.3. The Pearson correlation between psychological distress, PSU, and PSMU

Regarding the association between psychological distress, PSU, and PSMU, the results indicate that there are significant correlations between psychological distress and both types of PIU. Pearson’s coefficient between psychological distress with PSU in the high sleep problem group was 0.26 ($p < 0.001$) and 0.23 ($p < 0.001$) in the low sleep problem group. Pearson’s coefficient between psychological distress with PSMU in the high sleep problem group was 0.24 ($p < 0.001$) and 0.20 ($p < 0.001$), respectively, in the low sleep problem group (See Table 3).

3.4. The results of structural equation modeling and the moderating effect of sleep problem

The results indicate that the model fits well in the high and low sleep problem groups, and the fit indices meet the criterion (see Table 4, Figs. 1, and 2). Specifically, CFI was 0.970 (high sleep problem group) and 0.977 (low sleep problem group); NNFI was 0.960 (high sleep problem group) and 0.969 (low sleep problem group); RMSEA was 0.069 (high sleep problem group) and 0.060 (low sleep problem group); SRMR was 0.048 (high sleep problem group) and 0.034 (low sleep problem group). Moreover, the effect of PSMU on psychological distress (the coefficient in the high sleep problem group was 0.23, $t = 11.22, p < 0.001$; the coefficient in the low sleep problem group was 0.18, $t = 9.11, p < 0.001$) was higher than that of PSU in both groups (the coefficient in the high sleep problem group was 0.13, $t = 6.23, p < 0.001$; the coefficient in the low sleep problem group was 0.14, $t = 7.27, p < 0.001$). Given that the model fits well with the data, we subsequently tested the moderating effect of sleep problems on the relationship between PIU (PSU and PSMU) and psychological distress using multiple-group analysis. Through the model comparison, we identified that the moderating effect of sleep problems only existed in the direct effect of PSMU on psychological distress, and the $\Delta \chi^2 (1)$ was 79.36, meeting the significant level ($p < 0.001$). Particularly, the harm from PSMU on psychological distress was enhanced in the high sleep problem group.

4. Discussion

This study revealed some fundamental results. First, there were varying degrees of differences in sleep problems regarding teachers’ school type, gender, and years of work experience. We identified that during the pandemic, male, older teachers (teachers with more teaching experience), and middle school teachers have been under unknown pressures,
Table 2
The differences between high and low sleep problem groups in psychological distress, PSU and PSMU.

	M (SD) High sleep problem (n = 4769)	Low sleep problem (n = 6245)	t (p-value)
Psychological distress	12.94 (11.29)	3.42 (6.57)	51.89 (p < 0.001)
PSU	3.11 (0.98)	2.49 (0.98)	33.09 (p < 0.001)
PSMU	2.47 (0.78)	2.08 (0.76)	26.26 (p < 0.001)

Note: Psychological distress was assessed by the Depression, Anxiety, and Stress Scale-21 (DASS-21); PSU: problematic smartphone use; PSMU: problematic social media use.

Fig. 1. Model of high sleep problem group.

Fig. 2. Model of low sleep problem group.
Table 3
Correlation matrix among psychological distress, PSU, and PSMU.

	1	2	3
High sleep problem group			
1. Psychological distress	1.00		
2. PSU	0.26	1.00	
3. PSMU	0.24	0.52	1.00
Low sleep problem group			
1. Psychological distress			
2. PSU			
3. PSMU			

Note: Psychological distress was assessed by the Depression, Anxiety, and Stress Scale-21 (DASS-21); PSU: problematic smartphone use; PSMU: problematic social media use. All Pearson correlations meet the significant level ($p < 0.001$).

Table 4
Results of the model fit.

	x² (df)	CFI	NNFI	RMSEA	SRMR
High sleep problem group	3460.03 (144)	0.970	0.960	0.069	0.048
Low sleep problem group	3394.97 (144)	0.977	0.969	0.060	0.034
Non-constrained model	6855.00 (288)	0.974	0.965	0.064	0.034
Constrained-model	6852.32 (289)	0.974	0.965	0.064	0.034

Note: CFI = comparative fit index; NNFI = non-normed fit index; RMSEA = root mean square error of approximation; SRMR = standardized root mean square residual.

* The direct effect of PSU on psychological distress was constrained equally across the high and low sleep problem groups.

$^+$ The direct effect of PSMU on psychological distress was constrained equally across the high and low sleep problem groups.

which may be affecting their sleep quality. Additionally, we also identified that teachers’ sleep problems did not differ depending on whether they served as a home-teacher or had prior online teaching experience. In other words, during the pandemic, teachers’ home-teaching and online teaching experiences were not the main reasons for their sleep problems, and other factors must be explored.

Second, the rapid development of Internet media also has a profound impact on interpersonal relationships. The closure of the city has led to more Internet activity. When we distest from physical and social activities to go online, we are more likely to experience PIU. Our findings confirm that there is a significant correlation between the two types of PIU (PSU and PSU) and psychological distress. This echoes previous research findings [31].

Third, through the multiple-group analysis, we examined the moderating effect and identified that the moderating effect of sleep problems only existed on the direct effect of PSMU. The rapid development of social media has also had a profound impact on interpersonal relationships. At present, we rely heavily on social media to establish connections with family and friends. During the pandemic, people may spend more time on social media to address concerns about COVID-19 and the restrictions of the COVID-19 lockdown. In our findings, the harm from PSMU on psychological distress was enhanced in the high sleep problem group.

5. Conclusion

Our analysis indicates that during the pandemic, the burden of teaching was not directly related to the main cause of psychological distress. Changes in lifestyle during the pandemic mainly depend on time spent on social media, which may be the real cause of sleep problems and psychological distress.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] Huremović D. Social distancing, quarantine, and isolation. In: Psychiatry of pandemics. Cham: Springer; 2019. p. 85–94.
[2] Farbood M, Jarrosh G, Shimer R. Internal and external effects of social distancing in a pandemic. J Econ Theory 2021;196:105293 Sep 1.
[3] Suppawittaya P, Vienphat P, Yari P. Effects of social distancing, self-quarantine and self-isolation during the COVID-19 pandemic on people’s well-being, and how to cope with it. Int J. Sci. Health. Res. 2020;5(2):12–20 Jun.
[4] Llorente-Adán JA. La enseñanza de la geografía en tiempos de coronavirus: percepción de la comunidad educativa. Educat Geogr. 2020;12(1):203–25 Dec.
[5] Hepler EJ, Smahel D. Excessive internet use by young Europeans: psychological vulnerability and digital literacy. Inf Commun Soc 2020;23(9):1255–73 Jul 28.
[6] Wong HY, Mo HY, Potenza MN, Chan MN, Lau WM, Chui TK, Polkpeer AJ, Lin CY. Relationships between severity of internet gaming disorder, severity of problematic social media use, sleep quality and psychological distress. Int J Environ Res Public Health 2020;17(6):Jan187.
[7] Gao W, Zhang B. Research on Development Strategy of News App under the Background of Artificial Intelligence. Int Conf Ser 2020:806(1):012301 Apr 1.
[8] Elhai JD, Gallinari EF, Rozgonjuk D, Yang H. Depression, anxiety and fear of missing out as correlates of social, non-social and problematic smartphone use. Addict Behav 2020;106:106335 Jun.
[9] Nakayama H, Ueno F, Mihara S, Kitayuguchi T, Higuchi S. Relationship between problematic internet use and age at initial weekly internet use. J Beh Advic 2020;9(1):29–39 Apr 7.
[10] Yuan G, Elhai JD, Hall BJ. The influence of depressive symptoms and fear of missing out on severity of problematic smartphone use and Internet gaming disorder among Chinese young adults: a three-wave mediation model. Addict Behav 2021;112:106648 Jan 1.
[11] Nieborg DB, Helmond A. The political economy of Facebook’s platformization in the mobile ecosystem: Facebook Messenger as a platform instance. Media Culture Soc 2019;41(2):196–218 Mar.
[12] Wan WS, Dastane O, Mohd Satar NS, Ma’arif D, Yusnarmiz M. What WeChat can learn from WhatsApp? Customer value proposition development for mobile social networking (MSN) apps: a case study approach. J Theor Appl Inf Technol 2019 Feb 28.
[13] Gupta S, Johnson EM, Peacock JG, Jiang L, McBeth MP, Sneider MB, Krupinski EA. Radiology, mobile devices, and internet of things (IoT). J Digit Imaging 2020;33(3):735–46 Jun.
[14] Eightadid M, Florea A. Facebook, Instagram, Reddit and TikTok: a proposal for health authorities to integrate popular social media platforms in contingency planning amid a global pandemic outbreak. Cam J Public Health 2020;111:389–91 Jun.
[15] Barbu A. An Analysis of Youth Behavior on Social Networks During the COVID-19 Pandemic. Evidence from Romania. Bus Excel Manage 2020;10(31):177–93.
[16] Wu JX, Zheng C, Ye S, Law R. Love too deep or hard to leave? A study of mobile application loyalty. E-Rev Tourism Res 2020;17(5):Jan 1.
[17] Wiederhold, BK. ’Children’s screen time during the Covid-19 pandemic: boundaries and etiquette.’ 2020. 359-60.
[18] Walrave M, Waeterloon C, Potnet K. Ready or not for contact tracing? Investigating the adoption intention of COVID-19 contact-tracing technology using an extended unified theory of acceptance and use of technology model. Cyberpsychol Behav Soc Neu 2021;24(6):377–83 Jun 1.
[19] Neophytou E, Manwell LA, Elkebloom R. Effects of excessive screen time on neurodevelopment, learning, memory, mental health, and neurodegeneration: a scoping review. Int J Mental Health Addict 2021;19(3):724–44 Jun.
[20] Lerma M, Marquez C, Sandsoval K, Cooper TV. Psychosocial correlates of excessive social media use in a Hispanic college sample. Cyberpsychol Behav Soc Neu 2021 May 5.
[21] Kaden U. COVID-19 school closure-related changes to the professional life of a K–12 teacher. Educ Sci 2020:6(4):165 Jun.
[22] Klapproth F, Fedellek L, Heinschke F, Jungmann T. Teachers’ experiences of stress and their coping strategies during COVID-19 induced distance teaching. J Pedagogic Res 2020;4(4):444–52.
[23] Aperibai L, Cartabbarla A, Aguirre T, Verchec E, Borges Á. Teacher’s physical activity and mental health during lockdown due to the COVID-19 pandemic. Front Psychol 2020;11:2673 Nov 11.
[24] Gao J, Zheng P, Jia Y, Chen H, Mao Y, Chen S, Wang Y, Fu H, Dai J. Mental health problems and social media exposure during COVID-19 outbreak. PLoS One 2020;15(4):e0231924 Apr 16.
[25] Islam MS, Sujan MS, Tasnim R, Ferdous MZ, Masud JH, Kundu S, Mosaeddek AS, Choudhuri MS, Kuricabun K, Griffiths MD. Problematic internet use among young and adult population in Bangladesh: correlates with lifestyle and online activities during the COVID-19 pandemic. Addict Behav Rep 2020;12:100311 Dec 1.
[26] Riehm KE, Holingue C, Kalb LG, Bennett D, Kaptayen A, Jiang Q, Veldhuis CB, John- son RM, Fallin MD, Kreuter F, Stuart EA. Associations between media exposure and
mental distress among US adults at the beginning of the COVID-19 pandemic. Am J Prev Med 2020;59(5):630–8 Nov 1.

[27] Hasan AA. Prevalence of internet addiction, its association with psychological distress, coping strategies among undergraduate students. Nurse Educ Today 2019;81:78–82 Oct 1.

[28] El Asam A, Samara M, Terry P. Problematic internet use and mental health among British children and adolescents. Addict Behav 2019;90:428–36 Mar 1.

[29] Tsunura H, Kanda H, Sugaya N, Tsuboi S, Fukuda M, Takahashi K. Problematic internet use and its relationship with psychological distress, insomnia, and alcoholism among schoolteachers in Japan. Cyberpsychol Behav Soc Netw 2018;21(12):788–96 Dec 1.

[30] Coyne SM, Rogers AA, Zurcher JD, Stockdale L, Booth M. Does time spent using social media impact mental health?: An eight year longitudinal study. Comput Hum Behav 2020;104:106160 Mar 1.

[31] Arrivillaga C, Rey L, Extremera N. Adolescents’ problematic internet and smartphone use is related to suicide ideation: Does emotional intelligence make a difference? Comput Hum Behav 2020;110:106575 Sep 1.

[32] Wang S, Zhang Y, Ding W, Meng Y, Hu H, Liu Z, Zeng X, Wang M. Psychological distress and sleep problems when people are under interpersonal isolation during an epidemic: a nationwide multicenter cross-sectional study. Eur Psychiatry 2020;68(11).

[33] Elhai JD, Yang H, McKay D, Asmundson GJ. COVID-19 anxiety symptoms associated with problematic smartphone use severity in Chinese adults. J Affect Disord 2020;274:576–82 Sep 1.

[34] Iwaibara A, Fukuda M, Tsunura H, Kanda H. At-risk Internet addiction and related factors among junior high school teachers—based on a nationwide cross-sectional study in Japan. Environ Health Prevent Med 2019;24(1):1–8 Dec.

[35] Lovibond SH, Lovibond PF. Manual for the depression anxiety stress scales. Psychol Record Aust 1996.

[36] Wong CW, Tsai A, Jonas JB, Ohno-Matsui K, Chen J, Ang M, Ting DS. Digital screen time during the COVID-19 pandemic: risk for a further myopia boom? Am J Ophthalmol 2021;223:333–7 Mar 1.

[37] Wang K, Shi HS, Geng FL, Zou LQ, Tan SP, Wang Y, Neumann DL, Shum DH, Chan RC. Cross-cultural validation of the Depression Anxiety Stress Scale–21 in China. Psychol Assess 2016;28(5):888 May.

[38] Cuih S, Griffiths MD, Cook B, Demetrovics Z, Szabo A. The psychometric properties of the smartphone application-based addiction scale (SABAS), Int J Mental Health Addict 2018;16(2):393–403 Apr.

[39] Yam CW, Pakpour AH, Griffiths MD, Yau WY, Lo CL, Ng JM, Lin CY, Leung H. Psychometric testing of three Chinese online-related addictive behavior instruments among Hong Kong university students. Psychol Q 2019;90(1):117–28 Mar.

[40] Chen IH, Aborsu OK, Pakpour AH, Griffiths MD, Lin CY, Chen CY. Psychometric properties of three simplified Chinese online-related addictive behavior instruments among mainland Chinese primary school students. Front Psychiatry 2020;11.

[41] Andreassen CS, Billieux J, Griffiths MD, Kuss DJ, Demetrovics Z, Mazzoni F, Pallesen S. The relationship between addictive use of social media and video games and symptoms of psychiatric disorders: a large-scale cross-sectional study. Psychol Addict Behav 2016;30(2):252 Mar.

[42] Bovin MJ, Marx BP, Weathers FW, Gallagher MW, Rodriguez P, Schnurr PP, Keane TM. Psychometric properties of the PTSD checklist for diagnostic and statistical manual of mental disorders—fifth edition (PCL-5) in veterans. Psychol Assess 2016;28(11):Nov1379.

[43] Chang KC, Hsu WL, Pakpour AH, Lin CY, Griffiths MD. Psychometric testing of three COVID-19-related scales among people with mental illness. Int J Mental Health Addict 2020;11:1–3 Jul.

[44] Lin CY, Hou WL, Mamun MA, Aparecido da Silva J, Broche-Pérez Y, Ullah I, Mauyama A, Wakashima K, Mailliez M, Carre A, Chen YP. Fear of COVID-19 Scale (FCV-19S) across countries: Measurement invariance issues. Nurs Open 2021;8(4):1892–908 Jul.

[45] Huremović D. Social distancing, quarantine, and isolation. In: Psychiatry of pandemics. Cham: Springer, 2019. p. 85–94.

[46] Browne MW, Cudeck R. Alternative ways of assessing model fit. Sociol Methods Res 1992;21(2):230–58 Nov.

Zeng-Han Lee*
School of Education Science, Minnan Normal University, Zhangzhou, Fujian, China
Jingxuan West Road, Qufu, Shandong, China
I-Hua Chen
Chinese Academy of Education Big Data, Qufu Normal University, 57

*Corresponding author.
E-mail address: zenghan88@gmail.com (Z.-H. Lee)
Revised 26 August 2021