COMMENTARY

Flexibility of the “rigid” classics or rugged bottom of the folding funnels of myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome c, and carboxypeptidase A1

Vladimir N. Uversky

Department of Molecular Medicine, USF Health Byrd Alzheimer Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA; Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia

ABSTRACT

The abilities to crystalize of a globular protein and to solve its crystal structure seem to represent triumph of the lock-and-key model of protein functionality, where the presence of unique 3D structure resembling aperiodic crystal is considered as a prerequisite for a given protein to possess specific biologic activity. The history of protein crystallography has its roots in first crystal structures of myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome c, and carboxypeptidase A1 solved more than 50 y ago. This article briefly considers extensive structural information currently available for these proteins and shows that the bottoms of their folding funnels (i.e., the lowest parts of their potential energy landscapes) are not smoothed but rugged. In other words, these crystallization classics are characterized by significant conformational flexibility and are not rigid (immobile) crystal-like entities.

ARTICLE HISTORY

Received 7 July 2017
Accepted 8 July 2017

KEYWORDS

conformational dynamics; intrinsically disordered proteins; protein function; protein structure; structural flexibility; structure-function relationship

For a long time, it was believed that the specific functionality of a given protein is predetermined by the precise spatial positioning of amino acid side chains and prosthetic groups, which, in its turn, is predestined through a defined 3-D structure of this protein (the so-called structure-function paradigm). Although proteins participate in a large variety of biologic functions, historically, one class, namely enzymes, has attracted the majority of the attention of researchers at the early stages of protein science. This is because the enzymes are biologic catalysts that regulate numerous biologic chemical reactions, the kinetic mechanism of which could be deduced indirectly from the effect of enzymes on their substrates, which can be easily monitored by one of many spectroscopic techniques. As a result, in early studies (see, for example, ref 1), much was learned about the kinetics of enzyme action and the mechanisms of enzymatic catalysis just by the simple analysis of substrate to product conversion, despite the fact that little information was available about structural peculiarities of enzymes themselves. However, even at those times, it was clear that the precise knowledge of enzyme structure might allow better understanding of the molecular mechanisms of its catalytic action and potentially might open ways to modulate or change existing enzymatic activities, or even create new enzymes with new functions. This explains why enzymology became a major focus for the scientific curiosity of a great many researchers, and why the majority of significant breakthroughs in the understanding of protein folding, structure, and function were made using enzymes as models.

The classic structure-function paradigm, where protein functionality is directly linked to its unique rigid 3-D structure, is based on the fruitful analogy of enzymes to inorganic catalysts, which are known to accelerate chemical reaction by providing a lower energy pathway between reactants and products, typically via the formation of an intermediate, which cannot be formed in the absence of the catalyst. In this view, since the active surface of a classical catalyst is expected (and is known) to be rigid to do its job efficiently, protein catalysts were assumed to have rigid 3-D structures (at least in the vicinity of their active sites) to be functional. This hypothesis represents
critical foundation of the modern structural biology and was a cornerstone of protein science well before the resolution of the first protein 3-D structure. As a matter of fact, as early as 1894, Emil Fischer formulated his famous “lock-and-key” hypothesis to explain the remarkable specificity of the enzymatic hydrolysis of glucosidic bonds by different enzymes, where the efficiency of catalysis was suggested to depend on the unique complementarity of rigid structures of a substrate and an enzyme.4

It is not surprising, therefore, that when the first crystal structures of proteins were solved by X-ray diffraction, this was taken as a strong support of a global validity of the “lock-and-key” hypothesis. As a result, the sequence-structure-function paradigm, according to which unique 3-D structure of a protein is a prerequisite for its function, seemed to become the absolute truth. In fact, already the first 3-D structure determined for an enzyme, where the bound inhibitor (N-acetylglucosamine, (NAG)s) was co-crystallized with lysozyme, clearly showed that the precise locations of the amino acid side chains in the active site were crucial for facilitating catalysis.5 The unique and very specific spatial orientation of substrate/inhibitor/products within active sites of enzymes relative to catalytic amino acid side chains, being incontrovertibly demonstrated for many enzymes, is now a well-established fact. Furthermore, the X-ray structures gave exceptional stereochemical clarity and insight to enzyme action, enabling the ascription of precise roles to functional groups that were localize in the active sites. This hypothesis was tested and proven in many instances by modifying specific functional groups (i.e., by using the site-directed mutagenesis, a technique that allows amino-acid sequences in proteins to be altered at will) and demonstrating the effects of such substitutions on enzymatic activity.6-12

However, although structure-function paradigm is broadly accepted and seems to be strictly based upon the crucial need of the presence of unique 3-D structure for protein functionality, not all proteins are structured throughout their entire lengths, and many proteins are, in fact, highly flexible or structurally disordered as a whole or contain substantial intrinsically disordered regions.13-24 Furthermore, even if one excludes such intrinsically disordered proteins and hybrid proteins containing ordered domains and functional intrinsically disordered regions from the consideration and focuses only on ordered, well-folded globular proteins, which are known to be characterized by the presence of unique 3D structures, one could immediately see many of these ordered proteins cannot be considered as completely rigid, rock-like entities. On the contrary, the importance of conformational flexibility and the need of structural dynamics for the successful functionality of globular proteins (even enzymes) was emphasized in many studies over the past 55 y (e.g., refs.25-37).

In fact, internal dynamics is known to be crucial for the biologic activity of many ordered, well-folded proteins. Here, functional dynamics involves movements of not only individual amino acid residues or groups of amino acids relative to each, but even displacements of entire domains. In enzymes, such function-related movements are needed to facilitate catalytic activity, and they can happen in a wide spread of time-scales, ranging from femtoseconds to seconds.27,33,34 Therefore, the honest description of a functional globular protein should include consideration of the presence of conformational substates (some of which could be quite different). Such substates of the same overall protein structure originate from the atomic displacements of different range and result in the appearance of interconverting local configurations.38-44

This idea is illustrated by Fig. 1 schematically representing the potential energy landscape of an ordered protein.45 Although such landscape is traditionally considered as a folding funnel with a large set of unfolded conformations constituting a broad mouth at the top of the funnel, and with the lowest energy state corresponding to the native structure being located at the narrow end at the bottom of funnel,46-50 careful analysis revealed that the surface of the bottom of the funnel for many globular proteins is actually not smooth, being rough or rugged, reflecting the presence of many smaller minima corresponding to different substates sampled by the a protein (see Fig. 1).

The first crystal structure of myoglobin (an important protein containing a heme group that reversibly binds oxygen) was solved in 1958,51 and then refined in 1960.52 This, actually, was the very first high-resolution crystal structure of a protein molecule. The crystal structure of lysozyme determined in 1965 was the first crystal structure of an enzyme.53 Same year, crystal structure of the lysozyme-inhibitor complexes was determined.54 Crystal structure of another enzyme, RNase A, an RNA-cleaving enzyme stabilized by 4
disulfide bonds was determined in 1967. Same year, crystal structure of another enzyme, chymotrypsin, which is one of the serine proteases, was solved. The first crystal structure of another heme-containing protein, cytochrome c, one of the first mammalian proteins subjected to X-ray crystallography, was also determined in 1967. Finally, the first crystal structure of carboxypeptidase A1, a zinc metallopeptidase, was solved in 1969. Curiously, although first crystal structures of globular proteins (such as myoglobin, lysozyme, RNase A, chymotrypsin, cytochrome c, and carboxypeptidase A1) were crucial for “crystallization” of a rigid view of functional protein, the analysis of currently available structural information for these proteins clearly shows that these “rigid” crystallization classics are in fact rather flexible and are characterized by rugged bottoms of their folding funnels (i.e., by presence of several, and often rather different) structural substates. This idea is illustrated by Fig. 2 that represents 2 aligned structures determined by X-ray crystallography for each of these 6 crystallization classics. Structures presented in this figure clearly shows that all 6 proteins are characterized by rather significant structural flexibility, which is limited to local structural rearrangement of different range for myoglobin, lysozyme, chymotrypsin, and carboxypeptidase A1, but reaches very large scales for cytochrome c and RNase A.

Since for each of these proteins multiple crystal structures are known, the PDBFlex database (http://pdbflex.org/) can be exploited to analyze the degree of their structural flexibility. In fact, PDBFlex generates useful information on the flexibility of protein structure based on the analysis of variations between the different structural models of the same protein in the Protein Data Bank (PDB). Brief description of the results of these analyses are summarized below.

For evaluation of the flexibility of myoglobin, the 101mA cluster of the PDBFlex database (http://pdbflex.org/php/api/rmsdProfile.php?pdbID=101mandchainID=A) was analyzed. This cluster contains structural information on 232 individual chains of sperm whale myoglobin with known X-ray structures. Analysis of this cluster revealed that myoglobin is characterized by low, but noticeable structural flexibility. In fact, the average Root Mean Square Deviation of Ca atoms (RMSD) between all structures in this cluster is 0.551 Å, and these structures are characterized by an average contact map overlap (CMO) of 0.942. Since CMO corresponds to the proportion of inter-residue contacts conserved between a pair of similar structures, CMO values of 1 correspond to the completely preserved contacts, whereas a CMO value of 0 indicates that all contacts are different. The maximal pairwise RMSD of 2.476 Å, which is the averaged RMSD between a pair of similar structures, was found for the structures with PDB IDs 105mA and 2eb8A. The minimal pairwise CMO that serves as the measure of the proportion of inter-residue contacts conserved between a pair of similar structures, was 0.779. It was noted that the RMSD and CMO, being specifically sensitivity to different levels of protein flexibility, provide different measures of protein structural dynamics. Here, the presence of high global structural flexibility in the form of hinge-like movements is reflected in high RSMD scores, whereas the presence of high local flexibility corresponding to the changes in secondary structure can be found by low CMO values. Finally, to compare the structural flexibility of myoglobin with the intrinsic disorder predisposition of this protein, Fig. 3A represent the output of the PDBFlex analysis of the 101mA cluster combined
Figure 2. Characterization of structural flexibility of 6 proteins considered as crystallization classics. For each protein, structural alignments were conducted using the MultProt (http://bioinfo3d.cs.tau.ac.il/MultiProt/) for pairs of structures characterized by the largest difference according to the PDBFlex analysis. Analyzed structures include PDB entries 105mA (blue ribbon) and 2eb8A (green ribbon) for myoglobin, 1krB (blue ribbon) and 1a2yC (green ribbon) for lysozyme, 1f0vB (blue ribbon) and 3fkzA (green ribbon) for RNase A, 1oxgA (blue ribbon) and 1ex3A (green ribbon) for chymotrypsin, 1u75B (blue ribbon) and 3nbsC (green ribbon) for cytochrome c, and 2abzB (blue ribbon) and 1hdqA (green ribbon) for carboxypeptidase A1. Structures presented in this plot were generated using a molecular graphics program VMD.

Figure 3B compares the PDBFlex output for hen egg white lysozyme with the intrinsic disorder propensity of this protein (UniProt ID: P00698). In this case, the PDBFlex cluster 1lsgA (http://pdbflex.org/php/api/rmsdProfile.php?pdbID = 1lsgandchainID = A) includes 673 chains. The members of this cluster are characterized by relatively low structural flexibility, possessing the average RMSD of 0.504 Å and the average CMO of 0.950. However, some members of the cluster (e.g., chains 1krB and 1a2yC) possess noticeable changes in local secondary structure. As a result, the maximal pairwise RMSD for this pair of chains is 1.97 Å, and its minimal pairwise CMO is rather low, 0.661, indicating the presence of significant structural difference between chains 1krB and 1a2yC. Again, Fig. 3B shows there is a remarkable agreement between the results of structural flexibility analysis and the propensity of lysozyme for intrinsic disorder. Maximal structural flexibility (in a form of average local RMSD) is observed for the 90–11 region that includes 99–104 fragment, which previously was reported to be
This Val99-Gly104 variable region is known to be a part of the active site cleft, and can be found in a conformation inflected toward the active site (proximal conformational) or can turn away from the active site cleft (distal conformation), suggesting that structural flexibility of this region can be of functional importance for the hen egg white lysozyme.

Figure 3. Comparison of the PDBFlex-evaluated structural flexibility and intrinsic disorder propensity of 6 crystallization classics: A. Sperm whale myoglobin (UniProt ID: P02185); B. Hen egg white lysozyme (UniProt ID: P00698); C. Bovine pancreatic ribonuclease A (UniProt ID: P61823); D. Bovine chymotripsin (UniProt ID: P00766); E. Horse cytochrome c (UniProt ID: P00004); and F. Bovine carboxypeptidase A1 (UniProt ID: P00730). For each protein, the PDBFlex-evaluated structural flexibility is shown in a form of sequence distribution of local average RMSD values (dark cyan curves with crosses). Disorder profiles were generated by the superposition of the outputs of PONDRVLXT, PONDRVL3, PONDRVSL2, and PONDRFIT, as well as the IUPred web server, IUPred_short and IUPred_long. The corresponding outputs are shown by black, red, green, pink, yellow, and blue lines, respectively. In each plot, dark red line shows the mean disorder propensity calculated by averaging disorder profiles of individual predictors. The light pink shadow around the PONDRFIT shows error distribution. In these analyses, the predicted intrinsic disorder scores above 0.5 are considered to correspond to the disordered residues/regions, whereas regions with the disorder scores between 0.2 and 0.5 are considered flexible.
Figure 3C shows the results of the structural flexibility and intrinsic disorder analyses for pancreatic ribonuclease A (RNase A) from Bos taurus (UniProt ID: P61823). This protein can be present as monomer or exists in 2 dimeric forms (major and minor) displaying different types of 3D domain swapping. In fact, the minor dimer forms is stabilized by swapping of the N-terminal α-helix of one protomer with that of another molecule, whereas the major dimer is formed by swapping its C-terminal β-strand. This clearly indicates the presence of noticeable structural flexibility in the termini of this protein. In agreement with these observations, PDBFlex analysis of the 1kh8A cluster revealed that this cluster contains 301 chains and is characterized by the average RMSD and CMO values of 2.009 Å and 0.949, respectively. The maximal pairwise RMSD of 18.076 Å and the minimal pairwise CMO of 0.747, respectively, were found for the chains 3fkzA and 1f0vB. Curiously, the average RMSD for PDBFlex cluster corresponding to this protein was comparable to the maximal pairwise RMSD values found for myoglobin and lysozyme. These observations indicate that RNase A is characterized by high structural flexibility, especially in its N- and C-terminal regions and that this structural flexibility is needed for function of this protein (at least, it seems to play different roles in different modes of RNase A dimerization). Both termini are also predicted to have significant levels of intrinsic disorder (see Fig. 3C).

As it follows from Fig. 3D and F, chymotrypsin from Bos taurus (UniProt ID: P00766) and carboxypeptidase A1 from Bos taurus (UniProt ID: P00730) are both characterized by relatively low structural flexibility and are expected to have mostly ordered structure. However, even these mostly ordered proteins possess several regions of local structural flexibility (see also Fig. 2) that perfectly coincide with the regions predicted to be disordered/flexible by a set of disorder predictors (see Fig. 3D and F).

The 1cgiE PDBFlex cluster corresponding to chymotrypsin includes 40 chains and is characterized by the average RMSD and average CMO values of 0.704 Å and 0.931, respectively (http://pdbflex.org/php/api/rmsdProfile.php?pdbID = 1cgiE & chainID = E). The largest structural difference is detected between chains 1oxgA and 1ex3A, which have the maximal pairwise RMSD of 2.162 Å and the minimal pairwise CMO of 0.766.

Similarly, analysis of the PDBFlex cluster 1pytB corresponding to the carboxypeptidase A1 (http://pdbflex.org/php/api/rmsdProfile.php?pdbID = 1pytB & chainID = B) indicated that this protein is expected to have low structural flexibility. In fact, the 1pytB cluster that includes 46 chains is characterized by the average RMSD and average CMO values of 0.355 Å and 0.961, respectively. This makes carboxypeptidase A1 the least flexible representative of crystallization classics cohort. In fact, even the most different structures in the cluster, chains 2azB and 1hdqA, have the maximal pairwise RMSD of 0.649 Å and the minimal pairwise CMO of 0.906.

Finally, Figs. 2 and 3 show that although heme-containing myoglobin is characterized by low structural flexibility, another heme-containing protein from this set of crystallization classics, cytochrome c from Equus caballus (UniProt ID: P00004), has high structural flexibility. In fact, the PDBFlex cluster 1crcA corresponding to this protein shows the average RMSD and the average CMO values of 6.519 Å and 0.936, respectively. Among the members of this cluster (http://pdbflex.org/php/api/rmsdProfile.php?pdbID = 1crcA & chainID = A), the largest structural difference is found between chains 3nbsC and 1u75B that have the maximal pairwise RMSD of 16.062 Å and the minimal pairwise CMO of 0.784. Similar to RNase A, cytochrome c is able to form domain swapped dimers using its C-terminal α-helix. Also, similar to RNase A, cytochrome c is predicted to contain significant levels of intrinsic disorder. Therefore, it seems that high structural flexibility manifested as difference between different crystal structures solved for a given protein goes hand by hand with the relatively high predisposition of this protein for intrinsic disorder.

I find it really peculiar (if not funny) that proteins considered as crystallization classics and typically used as a strong “living” proof of the “lock-and-key” model of protein functionality and associated with it the sequence-structure-function paradigm are in fact characterized by rather high structural flexibility. Numerous structures reported for crystallization classics emphasize that (a) crystallization of a given protein can be induced by different conditions, (b) a protein can be crystallized in different crystal forms, and (c) these different crystal forms can correspond to rather different protein structures. Even more structural differences can be induced by interaction with biologic partners, suggesting that movements of
different parts of a protein molecule relative to each other could be crucial for its functionality. All this clearly indicates that crystal structure of a protein should be considered only as a synchronized snapshot of a conformational ensemble. Although members of such an ensemble are characterized by variable structural flexibility and intrachain mobility, the amplitudes and frequencies of their structural fluctuations or movements can be changed by changes in the protein environment or by interaction of a query protein with biologic partners. Note that these considerations of structural flexibility are applicable for different structures solved for a given protein. However, the manifestations of protein structural flexibility are not limited to the existence of these different structures, but also can be found within a given X-ray structure, where there are regions with high B-factor (isotropic temperature factor), which is a reflection of another level of structural flexibility; i.e., fluctuations about the mean (native state) positions, and finally there are disordered (or highly flexible) regions characterized by missing electron density.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

ORCID

Vladimir N. Uversky http://orcid.org/0000-0002-4037-5857

References

1. Haldane J.B.S, Enzymes, Longmans, Green and Co., Great Britain, 1930
2. Fersht AR. Enzyme structure and mechanism, 2nd. ed., Freeman WH and Co., New York, 1985
3. Creighton TE, Proteins: Structures and molecular properties, 2nd. ed, Freeman WH and Company, New York, 1993
4. Fischer E. Einfluss der configuration auf die wirkung der enzyme. Ber Dt Chem Ges 1894; 27:2985-93; https://doi.org/10.1002/cher.18940270364
5. Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 1965; 206:757-61; PMID:5891407; https://doi.org/10.1038/206757a0
6. Winter G, Fersht AR, Wilkinson AJ, Zoller M, Smith M. Redesigning enzyme structure by site-directed mutagenesis: tyrosyl tRNA synthetase and ATP binding. Nature 1982; 299:756-8; PMID:6811955; https://doi.org/10.1038/299756a0
7. Dalbadie-McFarland G, Cohen LW, Riggs AD, Morin C, Itakura K, Richards JH. Oligonucleotide-directed mutagenesis as a general and powerful method for studies of protein function. Proc Natl Acad Sci U S A 1982; 79:6409-13; PMID:6983070; https://doi.org/10.1073/pnas.79.21.6409
8. Sigal IS, Harwood BG, Arentzen R. Thiol-beta-lactamase: replacement of the active-site serine of RTEM beta-lactamase by a cysteine residue. Proc Natl Acad Sci U S A 1982; 79:7157-60; PMID:6818541; https://doi.org/10.1073/pnas.79.23.7157
9. Ward WH, Timms D, Fersht AR. Protein engineering and the study of structure–function relationships in receptors, Trends Pharmacol Sci 1990; 11:280-4; PMID:2202140; https://doi.org/10.1016/0165-6147(90)90009-W
10. Stevens RC, Chook YM, Cho CY, Lipscomb WN, Kantonwitz ER. Escherichia coli aspartate carbamoyltransferase: the probing of crystal structure analysis via site-specific mutagenesis. Protein Eng 1991; 4:391-408; PMID:1881865; https://doi.org/10.1093/protein/4.4.391
11. Fersht A, Winter G. Protein engineering. Trends Biochem Sci 1992; 17:292-5; PMID:1412703; https://doi.org/10.1016/0968-0004(92)90438-F
12. Heinemann U, Ay J, Gaiser O, Muller JJ, Ponnsawamy MN. Enzymology and folding of natural and engineered bacterial beta-glucanases studied by X-ray crystallography. Biol Chem 1996; 377:447-54; PMID:8922278
13. Iakoucheva LM, Kimzey AL, Masselon CD, Smith RD, Dunker AK, Ackerman EJ. Aberrant mobility phenomena of the DNA repair protein XPA. Protein Sci 2001; 10:1353-62; PMID:11420437; https://doi.org/10.1110/ps.40101
14. Tompa P. The functional benefits of protein disorder. J Mol Structure-Theochem 2003; 666:361-71; https://doi.org/10.1016/j.theochem.2003.08.047
15. Uversky VN, Gillespie JR, Fink AL, Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 2000; 41:415-27; PMID:11025552; https://doi.org/10.1002/1097-0134(20001115)41:3%3c415::AID-PROT130%3e3.0.CO;2-7
16. Wright PE, Dyson HJ. Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 1999; 293:321-31; PMID:10550212; https://doi.org/10.1006/jmbi.1999.3110
17. Xue B, Williams RW, Oldfield CJ, Dunker AK, Uversky VN. Archaic chaos: intrinsically disordered proteins in Archaea. BMC Syst Biol 2010; 4 Suppl 1:S1; PMID:20522251; https://doi.org/10.1186/1752-0509-4-S1-S1
18. van der Lee R, Buljan M, Lang B, Weatherritt RJ, Daughdrill GW, Dunker AK, Fuxreiter M, Gough J, Gsponer J, Jones DT, et al. Classification of intrinsically disordered regions and proteins, Chem Rev 2014; 114:6589-631; PMID:24773235; https://doi.org/10.1021/ cr400525m
19. Habchi J, Tompa P, Longhi S, Uversky VN. Introducing protein intrinsic disorder, Chem Rev 2014; 114:6561-88; PMID:24739139; https://doi.org/10.1021/ cr400514h

INTRINSICALLY DISORDERED PROTEINS e1355205-7
20. Dunker AK, Garner E, Guillet S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE. Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 1998;473-84; PMID:9697205

21. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-32; PMID:12368089; https://doi.org/10.1016/S0968-0004(02)02169-2

22. Daughdrill GW, Pielak GJ, Uversky VN, Cortese MS, Dunker AK, Natively disordered proteins, in: Buchner J, Kiefhaber T (Eds.) Handbook of Protein Folding, Wiley-VCH, Verlag GmbH & Co., Weinheim, Germany, 2005, pp. 271-353

23. Uversky VN. Unusual biophysics of intrinsically disordered proteins, Biochim Biophys Acta 2013; 1834:932-51; PMID:23269364; https://doi.org/10.1016/j.bbabio.2012.12.008

24. Uversky VN, Dunker AK. The case for intrinsically disordered proteins playing contributory roles in molecular recognition without a stable 3D structure. F1000 Biol Rep 2013; 5:1; PMID:23361308; https://doi.org/10.3410/B5-1

25. Tompa P. Intrinsically unstructured proteins. Trends Biochem Sci 2002; 27:527-32; PMID:12368089; https://doi.org/10.1016/S0968-0004(02)02169-2

26. Villar J, Strajbl M, Glennon TM, Sham YY, Chu ZT, Warschel A. How important are entropic contributions to enzyme catalysis?, Proc Natl Acad Sci U S A 2000; 97:11899-904; PMID:11050223; https://doi.org/10.1073/pnas.97.22.11899

27. Eisenmesser EZ, Bosco DA, Akke M, Kern D. Enzyme dynamics during catalysis, Science 2002; 295:1520-3; PMID:11859194; https://doi.org/10.1126/science.1066176

28. Sutcliffe MJ, Scrutton NS. A new conceptual framework for enzyme catalysis. Hydrogen tunnelling coupled to enzyme dynamics in flavoprotein and quinoprotein enzymes. Eur J Biochem 2002; 269:3096-102; PMID:12084049; https://doi.org/10.1046/j.1432-1033.2002.03020.x

29. Rajagopalan PT, Benkovic SJ. Preorganization and protein dynamics in enzyme catalysis, Chem Rev 2002; 2:24-36; PMID:11933259; https://doi.org/10.1021/cr000109k

30. Agarwal PK, Biller SR, Rajagopalan PT, Benkovic SJ, Hammes-Schiffer S. Network of coupled promoting motions in enzyme catalysis, Proc Natl Acad Sci U S A 2002; 99:2794-9; PMID:11867722; https://doi.org/10.1073/pnas.052005999

31. Agarwal PK, Geist A, Gorin A. Protein dynamics and enzymatic catalysis: investigating the peptidyl-prolyl cis-trans isomerization activity of cyclophilin A. Biochemistry 2004; 43:10605-18; PMID:15311922; https://doi.org/10.1021/bi0495228

32. Tousignant A, Pelletier JN. Protein motions promote catalysis. Chem Biol 2004; 11:1037-42; PMID:15324804; https://doi.org/10.1016/j.chembiol.2004.06.007

33. Agarwal PK. Role of protein dynamics in reaction rate enhancement by enzymes, J Am Chem Soc 2005; 127:15248-56; PMID:16248667; https://doi.org/10.1021/ja055251s

34. Eisenmesser EZ, Millet O, Labeikovsky W, Korzhnev DM, Wolf-Watz M, Bosco DA, Skalicky JJ, Kay LE, Kern D. Intrinsically dynamic of an enzyme underlies catalysis. Nature 2005; 438:117-21; PMID:16267559; https://doi.org/10.1038/nature04105

35. Yang LW, Bahar I. Coupling between catalytic site and collective dynamics: a requirement for mechanochemical activity of enzymes. Structure 2005; 13:893-904; PMID:15939021; https://doi.org/10.1016/j.str.2005.03.015

36. Olsson MH, Parson WW, Warschel A. Dynamical contributions to enzyme catalysis: critical tests of a popular hypothesis. Chem Rev 2006; 106:1737-56; PMID:16683752; https://doi.org/10.1021/cr040427e

37. Frauenfelder H, Chen G, Berendzen J, Fenimore PW, Janson H, McMahon BH, Stroz IR, Swenson J, Young RD. A unified model of protein dynamics. Proc Natl Acad Sci U S A 2009; 106:5129-34; PMID:19251640; https://doi.org/10.1073/pnas.0900336106

38. Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC. Dynamics of ligand binding to myoglobin, Biochemistry 1975; 14:5355-73; PMID:1191643; https://doi.org/10.1021/bi00695a021

39. Frauenfelder H, Petsko GA, Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature 1979; 280:558-63; PMID:460437; https://doi.org/10.1038/280558a0

40. Artyumiuk PJ, Blake CC, Grace DE, Oatley SJ, Phillips DC, Sternberg MJ. Crystallographic studies of the dynamic properties of lysozyme, Nature 1979; 280:563-8; PMID:460438; https://doi.org/10.1038/280563a0

41. Frauenfelder H, Petsko GA. Structural dynamics of liganded myoglobin, Biophys J 1980; 32:465-83; PMID:7248456; https://doi.org/10.1016/S0022-0364(80)84984-8

42. Beece D, Eisenstein L, Frauenfelder H, Good D, Marden MC, Reinisch L, Reynolds AH, Sorensen LB, Yue KT. Solvent viscosity and protein dynamics. Biochemistry 1980; 19:5147-57; PMID:7448161; https://doi.org/10.1021/bi00564a001

43. Parak F, Frolov EN, Mossbauer RL, Goldanskii VI. Dynamics of metmyoglobin crystals investigated by nuclear gamma resonance absorption. J Mol Biol 1981; 145:825-33; PMID:7248456; https://doi.org/10.1016/S0022-0364(80)84984-8

44. Hartmann H, Parak F, Steigemann W, Petsko GA, Ponzi DR, Frauenfelder H. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci U S A 1982; 79:4967-71; PMID:6956905; https://doi.org/10.1073/pnas.79.16.4967

45. Burger VM, Gurry T, Stultz CM. Intrinsically disordered proteins: Where computation meets experiment. Polymers 2014; 6:2684-719; https://doi.org/10.3390/polym6102684
46. Leopold PE, Montal M, Onuchic JN. Protein folding funnels: a kinetic approach to the sequence-structure relationship. Proc Natl Acad Sci U S A 1992; 89:8721-5; PMID:1528885; https://doi.org/10.1073/pnas.89.18.8721
47. Onuchic JN, Wolynes PG. Theory of protein folding. Curr Opin Struct Biol 2004; 14:70-5; PMID:15102452; https://doi.org/10.1016/j.sbi.2004.01.009
48. Socci ND, Onuchic JN, Wolynes PG, Protein folding mechanisms and the multidimensional folding funnel, Proteins 1998; 32:136-58; PMID:9714155; https://doi.org/10.1002/(SICI)1097-0134(19980801)32:2<%3c%136::AID-PROT2%3e3.0.CO;2-J
49. Onuchic JN, Luthey-Schulten Z, Wolynes PG. Theory of protein folding: the energy landscape perspective. Annu Rev Phys Chem 1997; 48:545-600; PMID:9348663; https://doi.org/10.1146/annurev.physchem.48.1.545
50. Onuchic JN, Socci ND, Luthey-Schulten Z, Wolynes PG. Protein folding funnels: the nature of the transition state ensemble. Fold Des 1996; 1:441-50; PMID:9080190; https://doi.org/10.1016/S1359-0278(96)00060-0
51. Kendrew JC, Bodo G, Dintzis HM, Parrish RG, Wyckoff H, Phillips DC. A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 1958; 181:662-6; PMID:13517261; https://doi.org/10.1038/181662a0
52. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC. Structure of myoglobin: A three-dimensional fourier synthesis at 2 A. resolution. Nature 1960; 185:422-7; PMID:18990802; https://doi.org/10.1038/185422a0
53. Blake CC, Koenig DF, Mair GA, North AC, Phillips DC, Sarma VR. Structure of hen egg-white lysozyme. A three-dimensional Fourier synthesis at 2 Angstrom resolution. Nature 1965; 206:761-3; PMID:5891407; https://doi.org/10.1038/206757a0
54. Johnson LN, Phillips DC, Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. Nature 1965; 206:761-3; PMID:5840126; https://doi.org/10.1038/206761a0
55. Kartha G, Bello J, Harker D. Tertiary structure of ribonuclease. Nature 1967; 213:862-5; PMID:6043657; https://doi.org/10.1038/213862a0
56. Matthews BW, Sigler PB, Henderson R, Blow DM. Three-dimensional structure of tosyl-alpha-chymotrypsin. Nature 1967; 214:652-6; PMID:6049071; https://doi.org/10.1038/214652a0
57. Dickerson RE, Kopka ML, Borders CL, Jr, Varnum J, Weinzier JE. A centrosymmetric projection at 4A of horse heart oxidized cytochrome c. J Mol Biol 1967; 29:77-95; PMID:6055338; https://doi.org/10.1016/0022-2836(67)90182-9
58. Lipscomb WN, Hartsuck JA, Reeke GN, Quiocio FA, Bethge PH, Ludwif ML, Stetz TA, Muirhead H, Coppola JC. The structure of carboxypeptidase A, VII. The 2.0-A resolution studies of the enzyme and of its complex with glycytyrosine, and mechanistic deductions. Brookhaven Symposia Biol 1969; 21:24-90
59. Hrabe T, Li Z, Sedova M, Rotkiewicz P, Jaroszewski L, Godzik A. PDBFlex: exploring flexibility in protein structures. Nucleic Acids Res 2016; 44:D423-428; PMID:26615193
60. Steinrauf LK. Structures of monoclinic lysozyme iodate at 1.6 A and of triclinic lysozyme nitrate at 1.1 A. Acta Crystallogr D Biol Crystallogr 1998; 54:767-80; PMID:9757091
61. Maroun RC. Molecular modeling of an active loop structure in lysozyme. Sequence effects or crystal packing? J Biomol Struct Dyn 1999; 16:873-89; PMID:10217456
62. Liu Y, Gotte G, Libonati M, Eisenberg D. A domain-swapped RNase A dimer with implications for amyloid formation. Nat Struct Biol 2001; 8:211-4; PMID:11224563
63. Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kami-kubo H, Wang Z, Takahashi I, Negi S, Sugiuara Y, et al. Cytochrome c polymerization by successive domain swapping at the C-terminal helix, Proc Natl Acad Sci U S A 2010; 107:12854-9; PMID:20615990
64. Shatsky M, Nussinov R, Wolfson HJ. A method for simultaneous alignment of multiple protein structures Proteins 2004; 56:143-56; PMID:15162494
65. Abe S, Ueno T, Reddy PA, Okazaki S, Hikage T, Suzuki A, Yamane T, Nakajima H, Watanabe Y. Design and structure analysis of artificial metalloproteins: selective coordination of His64 to copper complexes with square-planar structure in the apo-myoglobin scaffold. Inorg Chem 2007; 46:5137-9; PMID:17523632
66. Merlino A, Russo Krauss I, Perillo M, Mattia CA, Ercole C, Picone D, Vergara A, Sica F. Toward an antitumor form of bovine pancreatic ribonuclease: the crystal structure of three noncovalent dimeric mutants. Biopolymers 2009; 91:1029-37; PMID:19280639
67. Singh N, Jabeen T, Sharma S, Roy I, Gupta MN, Bilgrami S, Somvanshi RK, Dey S, Perbandt M, Betzel C, et al. Detection of native peptides as potent inhibitors of enzymes. Crystal structure of the complex formed between treated bovine alpha-chymotrypsin and an autocatalytically produced fragment, Ile-Val-Asn-Gly-Glu-Glu-Ala-Val-Pro-Gly-Ser-Trp-Pro-Trp, at 2.2 A resolution. FEBS J 2005; 272:562-72; PMID:15654893
68. Pjura PE, Lenhoff AM, Leonard SA, Gittis AG. Protein crystallization by design: chymotrypsinogen without precipitants. J Mol Biol 2000; 300:235-9; PMID:10873462; https://doi.org/10.1006/jmbi.2000.3851
69. Kang SA, Marjavaara PJ, Crane BR. Electron transfer between cytochrome c and cytochrome c peroxidase in single crystals. J Am Chem Soc 2004; 126:10836-7; PMID:15339156; https://doi.org/10.1021/ja049230u
70. Arolas JL, Popowicz GM, Bronsoms S, Aviles FX, Huber R, Holak TA, Ventura S. Study of a major intermediate in the oxidative folding of leech carboxypeptidase inhibitor: contribution of the fourth disulfide bond. J Mol Biol 2005; 352:961-75; PMID:16126224; https://doi.org/10.1016/j.jmb.2005.07.065
71. Cho JH, Kim DH, Chung SJ, Ha NC, Oh BH, Yong Choi K. Insight into the stereochemistry in the inhibition of
carboxypeptidase A with N-(hydroxyaminocarbonyl)phenylalanine: binding modes of an enantiomeric pair of the inhibitor to carboxypeptidase. A Bioorg Med Chem 2002; 10:2015-22; PMID:11937361; https://doi.org/10.1016/S0968-0896(01)00429-1

72. Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996; 14:27-38; https://doi.org/10.1016/0263-7855(96)00018-5

73. Romero P, Obradovic Z, Li X, Garner EC, Brown CJ, Dunker AK, Sequence complexity of disordered protein, Proteins 2001; 42:38-48; PMID:11093259; https://doi.org/10.1002/1097-0134(20010101)42:1%3c38::AID-PROT50%3e3.0.CO;2-3

74. Li X, Romero P, Rani M, Dunker AK, Obradovic Z. Predicting Protein Disorder for N-, C-, and Internal Regions, Genome Informatics. Workshop Genome Informatics 1999; 10:30-40; PMID:11072340

75. Xue B, Dunbrack RL, Williams RW, Dunker AK, Uversky VN. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 2010; 1804:996-1010; PMID:20100603; https://doi.org/10.1016/j.bbapap.2010.01.011

76. Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z. Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol 2005; 3:35-60; PMID:15751111; https://doi.org/10.1142/S0219720005000886

77. Obradovic Z, Peng K, Vucetic S, Radivojac P, Dunker AK. Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 2005; 61 Suppl 7:176-82; PMID:16187360; https://doi.org/10.1002/prot.20735

78. Peng K, Radivojac P, Vucetic S, Dunker AK, Obradovic Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 2006; 7:208; PMID:16618368; https://doi.org/10.1186/1471-2105-7-208

79. Dosztanyi Z, Csizmok V, Tompa P, Simon I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005; 21:3433-4; PMID:15955779; https://doi.org/10.1093/bioinformatics/bti541