Article

Mining Indole Alkaloid Synthesis Gene Clusters from Genomes of 53 Claviceps Strains Revealed Redundant Gene Copies and an Approximate Evolutionary Hourglass Model

Miao Liu 1,*, Wendy Findlay 1, Jeremy Dettman 1, Stephen A. Wyka 2, Kirk Broders 3, Parivash Shoukouhi 1, Kasia Dadej 1, Miroslav Kolarík 4, Arpece Basnyat 1 and Jim G. Menzies 5

1 Ottawa Research & Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; wendy.findlay@agr.gc.ca (W.F.); jeremy.dettman@agr.gc.ca (J.D.); parivash.shoukouhi@agr.gc.ca (P.S.); kasia.dadej@agr.gc.ca (K.D.); abasn046@uottawa.ca (A.B.)
2 Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; stephenwyka@gmail.com
3 USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Mycotoxin Prevention and Applied Microbiology Research Unit, 1815 N. University St., Peoria, IL 61604, USA; kirk.broders@usda.gov
4 Institute of Microbiology of the Czech Academy of Sciences CAS, 14220 Prague, Czech Republic; mkolarik@biomed.cas.cz
5 Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada; jim.menzies@agr.gc.ca
* Correspondence: miaoindy.liu@agr.gc.ca; Tel.: +1-613-759-1385

Abstract: Ergot fungi (Claviceps spp.) are infamous for producing sclerotia containing a wide spectrum of ergot alkaloids (EA) toxic to humans and animals, making them nefarious villains in the agricultural and food industries, but also treasures for pharmaceuticals. In addition to three classes of EAs, several species also produce paspaline-derived indole diterpenes (IDT) that cause ataxia and staggers in livestock. Furthermore, two other types of alkaloids, i.e., loline (LOL) and peramine (PER), found in Epichloë spp., close relatives of Claviceps, have shown beneficial effects on host plants without evidence of toxicity to mammals. The gene clusters associated with the production of these alkaloids are known. We examined genomes of 53 strains of 19 Claviceps spp. to screen for these genes, aiming to understand the evolutionary patterns of these genes across the genus through phylogenetic and DNA polymorphism analyses. Our results showed (1) varied numbers of eas genes in C. sect. Claviceps and sect. Pusillae, none in sect. Citrinae, six idt/ltm genes in sect. Claviceps (except four in C. cyperi), zero to one partial (idtG) in sect. Pusillae, and four in sect. Citrinae, (2) two to three copies of dmaW, easE, easF, idt/ltmB, idt/ltmQ in sect. Claviceps, (3) frequent gene gains and losses, and (4) an evolutionary hourglass pattern in the intra-specific eas gene diversity and divergence in C. purpurea.

Keywords: ergot alkaloids; ergot fungi; gene divergence; gene diversity; indole diterpenes; phylogeny; secondary metabolites

Key Contribution: Indole alkaloid gene clusters from a wide range of Claviceps spp. were identified through genome screening. Six indole diterpene/lolitrem genes, idt/ltmP, Q, B, C, S, and M, were commonly present in various species in C. sect. Claviceps. Micro-evolution of eas genes within Claviceps purpurea revealed that their evolutionary rates fit an hourglass model.

1. Introduction

Fungi in the genus Claviceps (Clavicipitaceae, Hypocreales, Sordariomycetes) infect the florets of cereal crops, nonagricultural grasses (Foaceae), sedges (Cyperaceae), and rushes (Juncaceae) [1], followed by occupying the unfertilized ovaries and eventually replacing the seeds with fungal resting bodies, i.e., sclerotia, known as ergots [2]. In light
of molecular phylogenetics, 63 named species [3,4] are classified into four sections, i.e., *Claviceps* sect. *Claviceps*, C. sect. *Citrinae*, C. sect. *Paspalorum*, and C. sect. *Pusillae*, on the basis of morphological, ecological, and alkaloid-producing features [3]. Ergot bodies or sclerotia contain a wide spectrum of alkaloids toxic to humans and animals, making them unwelcome pathogens in agricultural and food production [5,6], but also important resources for pharmaceuticals [7,8]. Among the alkaloids produced by *Claviceps*, ergot alkaloids (EAs) are the major culprit for the mass food/feed poisoning in human and livestock, as well as a number of tragedies in human history [9,10]. EAs are indole compounds characterized by a tricyclic or tetracyclic ring system. Over 80 different EAs found in nature fall into three structural groups: clavines, lysergic acid amides, and ergopeptides [8,11], corresponding to their structural complexity. Clavines are the intermediates or derivatives of the intermediates in the lysergic acid amide pathway, whereas ergopeptines are the most complex group [11]. Intensive investigations on biochemistry and molecular genetics have elucidated the EA biosynthetic pathways in EA producers especially *Claviceps* spp. [12,13]. A cluster of 12 functioning EA synthesis (*eas*) genes (*cloA, dmaW, easA, easC–H, lpsA–C*) in *C. purpurea* strain 20.1 were considered to encode all the enzymes needed for the end-product ergotamine and ergocryptine [14]. The four early steps, requiring *dmaW, easF, easC*, and *easE*, are responsible for the closure of the third ring resulting in chanoclavine, followed by middle steps, requiring *easD, easA, easG*, and *cloA*, for forming tetracyclic clavines, and later steps for producing the lysergic acid amides, dihydroergot alkaloids, and complex ergot peptines [13] (Figure 1). Among the 12 genes, the homologs of nine were found in *C. fusiformis* in a cluster. In *C. paspali*, two additional genes (*easP* and *easO*) were found; however, *easE* was defective. The presence or absence of *eas* genes has proven to be correlated with EA profiles in several *Claviceps* spp. and strains [13,14]. However, the investigation of *eas* gene clusters in a wide range of *Claviceps* spp. is lacking, and less is reported about the evolution of the individual gene in these clusters among and within the species.

Figure 1. The ergot alkaloid biosynthetic pathway in *Claviceps* spp. Modified from Young et al. [13] and Robinson and Panaccione [15].

Indole diterpenes (IDTs) are another large group of bioactive compounds with diverse structural variations, triggering toxicity in animals and insects through interfering with ion channels [16,17]. In the literature, there are copious reports that certain species in *Claviceps* (i.e., *C. paspali* and *C. cynodontis*) and close relatives in *Epichloë* (Neotyphodium as the asexual name before implementation of the International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) [18]) produce the paspaline-derived IDTs,
such as paspalitrem, lolitrem, and paxilline, causing ataxia and staggers in livestock that feed on the grasses infected by those fungal species [19–21]. Biosynthetic pathways and associated gene clusters of these paspaline-derived IDTs have been investigated [22–24], resulting in the discovery of at least 10 genes involved in IDT production in Epichloë spp. and the prediction that \(ltmG \), \(M \), \(C \), and \(B \) were responsible for the synthesis of paspaline, the basic structural backbone of IDTs, whereas \(ltmP \) and \(Q \) were essential for the production of lolitrem and \(ltmF \), \(J \), \(K \), and \(E \), which are required for more complex structures [25,26]. The proposed scheme for the biosynthesis of paspalitrem in \(C. paspali \) involved seven genes including the initial formation of paspaline through \(ltmG \), \(M \), \(C \), and \(B \), followed by the sequential functioning steps of \(ltmP \), \(Q \), and \(F \) [22]. Recently, the pre-paspaline steps were further resolved as three sequential steps: starting from \(ltmG \) converting farnesyl diphosphate (FPP) to Geranylgeranyl diphosphate (GGPP), followed by \(ltmC \) transferring GGPP to 3-geranylgeranylindole, and finally through \(ltmM \) and \(B \) yielding paspaline [27]. In addition to \(C. paspali \) and \(C. cynodontis \), other Claviceps spp., i.e., \(C. arundinis \), \(C. humidiphila \), and \(C. purpurea \), could also produce indole diterpenes or paspaline-like compounds [28–30]. The genome investigation of \(C. purpurea \) 20.1 revealed the presence of \(ltmM \), \(C \), \(B \), \(P \), \(Q \), and an extra gene \(ltmS \) [14]. It is not known whether these genes are consistently present in various strains of \(C. purpurea \) and other Claviceps species. In addition, two other classes of alkaloids, i.e., lolines (LOL) and peramines (PER), produced by \(Epichloë \) spp., are known to function as insecticides, but are not associated with any toxicity symptoms in grazing mammals [31,32]. Given the close relationship between \(Epichloë \) and Claviceps, it is reasonable to raise the question of whether any of the loline or peramine gene homologs are present in any of the Claviceps spp. even though those two classes of alkaloids have not been reported in Claviceps.

The ‘hourglass model’ borrowed from ontogeny refers to the pattern that the morphological divergence of mid-development stages of an embryo are more conserved compared with earlier and later stages, resembling an hourglass with a narrow waist, but broad ends [33,34]. Before the hourglass model (HGM) was proposed in the 1990s, the early conservation model (ECM) was widely accepted, which echoed von Baer’s third law [35], i.e., embryos progressively diverge in morphology during ontogeny. The debates about these two, along with other models, i.e., adaptive penetrance model [36] and unconstrained model (random) [37], are still ongoing, although recent evidence at molecular and genomic levels has provided support for the presence of the phylotypic stage (the waist stage of development) in fungi, insects, plants, and vertebrates [38–40]. According to Haeckel’s biogenetic hypothesis, ontogeny recapitulates phylogeny [41]. The evident similarities between the development of an individual and the evolution of the whole biological system have been addressed by many generations [42] to verify that these models in ontogeny are recapitulated in other evolutionary processes. For example, studies on gene evolution in \(Drosophila \) spp. recaptured the hourglass model in that the early maternal genes showed a higher level of diversity than zygotic genes [43]. Here, we propose the biosynthesis of complex biological compounds as an analogy of the development of an organism, and ask whether any of the models fit to the evolution of the genes involved in the biosynthesis.

The objectives of the present study were to shed light on the presence of four classes of alkaloid genes (clusters) in 53 strains of 19 Claviceps species, and to understand the evolutionary patterns of these genes at inter- and intraspecific levels. This information helps build the foundation for future studies on chemo- and genotype associations and for developing gene-based chemotyping and toxin detection.

2. Results

2.1. Genome Assemblies

The 37 genome sequences assembled in this study resulted in 1362 to 2581 contigs, N50 values ranged from 19,946 to 55,909 bp, and the completeness measured by Benchmarking Universal Single-Copy Orthologs (BUSCO) over the fungal database (fungi odb10) ranged from 97% to 99.1% (Table 1, available in GenBank https://www.ncbi.nlm.nih.gov/
(accessed on 9 November 2021) as accessions JAIURI000000000–JAIUSS000000000 available upon publication of the article). The quality of the assemblies was equivalent to the assemblies of 17 genomes from previous studies (Table 1) [44,45]. Overall, the 54 assemblies of 53 strains (two versions of assemblies for CCC1102 were included because certain genes were obtained from one or the other assemblies) of 19 Claviceps species included in this study belong to three sections: C. sect. Citrinae, C. sect. Claviceps, and C. sect. Pusillae, from six continents (Africa, Asia, Australia, Europe, North America, and South America) and on host plants in 26 genera (Table S1).

2.2. Presence of Four Classes of Alkaloid Genes in 53 Genomes

One thousand sequences of 19 loci were extracted from the 53 genome assemblies as detailed below. The DNA sequences of each genes were submitted to Genbank associated with accession numbers: cloA (49 sequences) MZ882098–MZ882146, dmaW (118 sequences) MZ871640–MZ871757, easA (51 sequences) MZ851397–MZ851447, easC (50 sequences) MZ851807–MZ851856, easD (51 sequences) MZ871767–MZ871817, easE (66 sequences) MZ877968–MZ878033, easF (88 sequences) MZ881959–MZ882046, easG (50 sequences) MZ882047–MZ882096, easH1 (50 sequences) MZ934760–MZ934810, easH2 (32 sequences) MZ934840–MZ934841, lpsB (48 sequences) MZ934842–MZ934889, lpsC (44 sequences) MZ934890–MZ934933, idt/ltmB (55 sequences) MZ935033–MZ935087, idt/ltmC (47 sequences) MZ935088–MZ935134, idt/ltmG (three sequences) MZ935227–MZ935229, idt/ltmH (47 sequences) MZ935135–MZ935181, idt/ltmP (46 sequences) MZ934987–MZ935032, idt/ltmQ (60 sequences) MZ934934–MZ934986, and idt/ltmS (45 sequences) MZ935182–MZ935226.

2.2.1. Ergot Alkaloid Genes (eas)

More consistency in terms of presence/absence of eas genes was observed in C. sect. Claviceps than C. sect. Pusillae. The results from BLASTn searches using in-house script (see Section 4.2 for details) and Geneious mapping (https://www.geneious.com, accessed on 9 November 2021) with reference genes showed the genomes of all isolates from C. sect. Claviceps contained at least 10 eas genes matching the C. purpurea 20.1 reference sequences (Table 2; lpsA1 and lpsA2 were excluded from analyses as they were heavily fragmented due to the significantly long length. A study on long-read sequencing of several selected strains by Hicks et al. was focused on these two genes (in this Special Issue). The 10–12 genes were assembled on two to three contigs. For most strains, nine genes (lpsC, easA, lpsB, cloA, and easC-G) were on the same contig. Genes after dmaW, i.e., easH1, easH2, and fragments of lpsA, were on different contigs. The easH2 gene was either not detected or on a separate contig possibly due to the long length of lpsA1 because it was located between lpsA1 and A2 in the reference genome C. purpurea 20.1. The exceptions were C. humidiphila LM576, C. spartinae CCC533, C. purpurea LM461, and C. ripicola LM220 and LM454, in which lpsC was on a different contig, or lpsC along with the next three to four genes were on the same contig separated from other genes (Table 2).

Both inter- and intraspecific variation was observed, regardless of the general consistency of presence of eas genes. Species-specific features included all three strains of C. occidentalis have two partial copies of dmaW (~658 bp, ~641 bp composed of a partial exon 1 and full-length exon 2 and 3) and a single copy of all other eas genes except easH. Of a relevant note, all partial genes detected in the present study were located at the end of contigs. Moreover, all three strains of C. quebecensis had a second partial nonfunctioning copy of easE (275, 275, and 1208 bp) and two partial copies of easF with good open reading frames (ORFs), and they were lacking easH2 (Table 2).
Species	Strain	BioSample	WGS #	Contigs	Total Length (bp)	Largest Contig (bp)	N50 (bp)	L50	GC (%)	Coverage (x)	Complete BUSCO’s (%)
C. arundinum	CCC1102	SAMN11159893	JAUSP000000000	1406	29,878,863	375,533	55,009	156	51.42	61x	98.1
C. africana	CCC489	SAMN07983559	SRP01	5329	31,933,801	98,049	12,225	752	44.68	56x	95*
C. asiatica	LM583	QZK01	1613	30,053,381	164,904	39,306	223	51.42	69x	96.9	
C. digitaria	CCC659	SRP101	8281	31,170,596	116,859	16,077	572	45.5	56x	97*	
C. homochilus	LM376	QXR01	1831	30,498,242	190,067	24,767	264	51.51	77%	97.9	
C. koreensis	CCC647	SRU01	5201	34,575,813	65,439	574	1781	43.61	53x	91.6*	
C. maximensis	CCC398	SRZ01	2317	29,114,417	192,851	37,101	230	46.5	58x	98.3*	
C. occidentalis	LM375	QX01	2331	28,571,683	125,400	21,416	422	51.32	64x	97.3	
C. perluinichilus	LM81	QZX01	1423	30,694,913	232,023	46,526	515	15.4	140x	96.9	
C. purpurea s.s.	LM952	QER01	1938	30,751,797	260,642	31,815	274	51.74	49x	98.3	
C. pusilla	CCC602	SRW01	2207	30,195,640	217,924	32,682	268	51.74	49x	97.9	
C. pseudocitrus	LM458	QRX01	1703	35,882,953	1,853,151	41,794	191	51.87	78%	98.0	
C. ripicola	LM454	QRC01	2108	30,692,668	218,169	35,956	250	51.42	60x	98.9	
C. ripicola	LM218	QRC01	1621	30,598,295	200,763	39,763	232	51.46	146x	97.6	
C. ripicola	LM323	QRC01	7206	31,897,900	112,296	6643	1389	45.24	60x	89.9*	

* BUSCO completeness for these strains was based on the Dikyfan fungal genome, see Wyka et al. [44] for details.
Table 2. The eae gene copies and their locations in 18 species in Claviceps sect. Claviceps and sect. Pusillae.

Section	Organism	Asb1	Sample	IpaC	eaeA	eaeB	eaeD	eaeE	eaeF	eaeG	W1	dmaW	W2	eaeH	W2
C. arundinum															
Claviceps															
C. occidentalis															
C. pazoutovae															
C. monticola															
C. purpruea															
C. lovelessii															
C. cyperi															
C. occidentalis															
C. pazoutovae															
C. monticola															
C. purpruea															
C. lovelessii															
C. cyperi															
C. occidentalis															
C. pazoutovae															
C. monticola															
C. purpruea															
C. lovelessii															
C. cyperi															
C. occidentalis															
C. pazoutovae															
C. monticola															
C. purpruea															
C. lovelessii															
C. cyperi															

* The assembly versions: BW was from Wingfield et al. [45], SW was from Wyka et al. [44], and WF was generated in the present study; values in the cells denote contig numbers; the 2nd contig number was led
Intraspecific variation among the 27 strains of \textit{C. purpurea} was evident as most strains contained one copy of \textit{lpsC}, \textit{easA}, \textit{lpsB}, \textit{cloA}, \textit{easC}, \textit{D}, \textit{G}, \textit{H1}, and \textit{H2}, and two copies of \textit{dmaW}. However, three strains (LM65, LM72, and LM582) lacked \textit{easH2}. Eleven strains had a second copy of \textit{easE} (\textit{easE2}), six full- or near-full-length and five partial, but these gene fragments contained indels of various sizes and internal stop codons (Table 2). This would indicate that they may not be functional genes unless those variations were caused by sequencing or assembly errors. In contrast, the second copy of full-length \textit{easF} (\textit{easF2}) from LM72 (MZ881984) and LM461 (MZ881981) had good ORFs. The \textit{easF2} gene of the other six strains was split on two contigs with gaps in the middle. Most of these fragments, except the second exon at the 3′ end of Clav26, Clav55, and LM470, were free of internal stop codons. Four strains had a full length (or close to full length), and one strain (LM469 652 bp) had a partial third copy, \textit{easF3}, yet these gene fragments had a number of indels and internal stop codons (Table 2). The intraspecific variations were also found in \textit{C. arundinis} and \textit{C. ripicola} (Table 2).

The six genomes from \textit{C. sect. Pusillae} had more variable numbers of the \textit{eas} genes observed, but all six genomes lacked \textit{lpsC} and \textit{easH2} (Table 2). The strain \textit{C. lovelessii} CCC647 had the highest number of matches, i.e., 10 full- or near-full-length matches (\textit{cloA} 1788 bp, \textit{easD} had an 8 bp short gap at split region), while all but \textit{easH1} and \textit{lpsB} had good ORFs. In contrast, \textit{C. digitaria} CCC659 had only two gene matches: \textit{ dmaW} and \textit{easA}, but both were full-length with good ORFs. \textit{C. maximensis} CCC398 and \textit{C. citrina} CCC265 (\textit{C. sect. Citrinae}) had no matches for any \textit{eas} genes (Table 2).

Examining each \textit{eas} genes, \textit{easA} was present the most consistently in 51 of 53 genomes as a single copy and had good ORFs, except for the one in \textit{C. pusilla} CCC602 which had an internal stop codon. Similarly, \textit{lpsB}, \textit{cloA}, \textit{easC}, \textit{easD}, and \textit{easG} were present as a single copy in all species of sect. \textit{Claviceps} and two to four species in sect. \textit{Pusillae} (Table 2). For \textit{easE}, all species in sect. \textit{Claviceps} contained at least one copy, six strains of \textit{C. purpurea} (LM39, LM63, LM72, LM461, LM469, and LM474)) had a full length second copy (\textit{easE2}), and the other five strains \textit{C. purpurea} (Clav04, Clav46, Clav52, Clav55, and LM470), all three \textit{C. quebecensis}, one \textit{C. spartina}, and one \textit{C. monticola} had a second partial copy. Compared with the \textit{C. purpurea} 20.1 \textit{easE1} reference sequence, all the \textit{easE2} sequences contained a large number of deletions (gaps) of various sizes in exon and intron regions, internal stop codons, and no start codon, indicating that they are likely not functional. For species in sect. \textit{Pusillae}, one copy of \textit{easE} was found in four species with good ORFs (\textit{C. africana} CCC489, \textit{C. lovelessii} CCC647, \textit{C. pusilla} CCC602, and \textit{C. sorghi} CCC632).

For \textit{easF}, all species in sect. \textit{Claviceps} contained at least one copy; however, two strains of \textit{C. purpurea} (Clav55 and LM470) had internal stop codons near the 3′ end. Twenty-three strains of seven species (\textit{C. arundinis}, \textit{C. humidiphila}, \textit{C. monticola}, \textit{C. pazoutovae}, \textit{C. purpurea}, \textit{C. quebecensis}, and \textit{C. spartinae}) had a second full-length or partial copy, among which 19 strains had good ORFs. In addition, a third copy was found in some \textit{C. purpurea} strains in full length (LM39, LM63, and LM65) or partial (LM461 and LM469). Even though with 77–93% similarity to \textit{C. purpurea} 20.1 \textit{easF1}, none of the third copies had a correct open reading frame (not functional) (Table 2). Three species in sect. \textit{Pusillae} (\textit{C. africana}, \textit{C. lovelessii}, and \textit{C. sorghi}) had one functioning copy.

For \textit{dmaW}, most species (strains) in sect. \textit{Claviceps} contained two full-length copies or copies split on two contigs with gaps. Six strains of \textit{C. purpurea} (Clav26, Clav52, LM223, LM232, LM4, and LM470) had a partial second copy, but all three strains of \textit{C. occidentalis} had partial sequences (~650 bp) for both copies. One strain of \textit{C. arundinis} (CCC1102) had a third copy in full length, with 81% and 83% similarities with \textit{dmaW1} and \textit{dmaW2}, but frameshifts and internal stop codons were present. Five species in sect. \textit{Pusillae}, except \textit{C. maximensis}, had one copy.

Interestingly, the additional copies of \textit{easE}, \textit{easF}, and \textit{dmaW} were more or less clustered together, such that the second copies of all three genes were present on the same contig in \textit{C. monticola} CCC1483 and \textit{C. spartinae} CCC535 (Figure 2A). Alternatively, the \textit{easF2} sequence was split on two contigs, which were located with \textit{easE2} on one contig and...
dmaW2 on the other, i.e., C. purpurea Clav55, and C. quebecensis Clav32, Clav50, and LM458 (Figure 2B). More commonly, easE2 was on the same contig as easF2, whereas dmaW was on another contig, such as in seven strains of C. purpurea (Clav46, Clav52, LM470, LM474, and LM72; Table 2), or easF2 co-located with dmaW when easE was a single copy (LM583; Figure 2C). In cases when the third copy of easF was present, they were often on the same contig with dmaW2, i.e., C. purpurea LM39, LM63, LM65, and LM469 (Figure 2D). The arrangement in LM461 was more peculiar in that the second copies of easE and easF were on the same contig with dmaW1 and easG (a single-copy gene), which indicates that they may all be on the primary ergot alkaloid gene cluster (Figure 2E). The third dmaW from CCC1102 (from SW assembly) was not connected to other eas genes (Table 2).

Figure 2. The schematic arrangements of multiple copies of easE, easF, and dmaW in relation to the primary cluster of other eas genes. The dark solid bars denote the contigs, while gray boxes represent genes labeled accordingly, with the ranges underneath. The lengths of genes and spaces are in approximate scale. The dashed bars and genes on them indicate that those genes are on the same contig; however, the details are not displayed. (A–E) represent different patterns of locations (see the text Section 2.2.1 for details).

For easH, easH1 was present in 50 genomes, except C. citrina, C. digitariae, and C. maximensis; however, the genes of the four species (CCC489, CCC602, CCC632, and CCC647) in C. sect. Pusillae had numerous indels of various sizes throughout the sequence, causing frameshifts and internal stop codons. Further validation of the sequences is needed to confirm whether these are functioning. The easH2 gene was present in 32 strains of six species (C. arundinis,
C. humidiphila, C. occidentalis, C. perihumidiphila, C. purpurea, and C. ripicola). The reference sequence of *easH2* from *C. purpurea* 20.1 was 840 bp, which is about 100 bp shorter than *easH1* (945 bp), and it was considered a pseudogene. Our results showed that the 32 *easH2* sequences had variable lengths and high levels of nucleotide variation (see more notes in later sections: phylogenies and gene diversity). Most of these sequences appeared not functional; however, the lengths of the sequences from two strains of *C. ripicola* (LM218 and LM220) were 954 bp and contained full-length ORFs, indicating that they are likely functioning genes.

For *lpsC*, at least one strain per species in sect. *Claviceps* (except *C. perihumidiphila*) showed one copy of *lpsC*, i.e., in total, 43 out of 46 strains contained a single copy of *lpsC*, among which three strains of *C. purpurea*, i.e., Clav26, LM4, and LM232, had a single internal stop codon; otherwise, the full range of sequences aligned very well with the reference. It is possible that the single internal stop codon could be a sequencing error. Another five strains/species, including *C. capensis* CCC1504, *C. cyperi* CCC1219, *C. humidiphila* LM576, *C. monticola* CCC1483, *C. purpurea* LM223, and *C. spartinae* CCC535 had partial sequences 1000–5000 bp long. This sequence fragments contained several indels and internal stop codons, and they are apparently not functional genes. Only one strain of *C. perihumidiphila* lacked *lpsC*.

2.2.2. Indole-Diterpene/Lolitrem (idt/ltm) Genes

Compared with *eas* genes, the presence/absence and copy numbers of *idt/ltm* genes were less variable. Through mapping genome assemblies to the reference genes, all members in sect. *Claviceps* had one copy of *ltmC*, *M*, *P*, and *S* and one or two copies of *idt/ltmB* and *Q*, except *C. cyperi* CCC1219 that lacked *ltmQ* and *S*. All members in *C*. sect. *Pusillae* had no matches to any *ltm* genes, whereas members of sect. *Citrinae* (*C. citrina* CCC265) had full-length matches with *ltmB*, *C*, *G*, and *M*.

Notable species-specific features were that all three strains of *C. occidentalis* (LM77, LM78, and LM84) had two partial copies *ltmQ* (1517–1518 bp); *C. arundinis* (CCC1102, LM583), *C. perihumidiphila* (LM81), *C. ripicola* (LM218, LM219, LM220, and LM454), and *C. spartinae* (CCC535) had two functional copies of *ltmB* (Table 3). The translated sequences of *ltmS* from three strains of *C. occidentalis* (LM77, LM78, and LM84) and three strains of *C. quebecensis* (Clav32, Clav50, and LM458) were 14 amino-acid residues longer than other species, and those 14 amino acids were identical among the six strains.

Intraspecific variations were observed in *C. purpurea*; four out of 27 strains showed a second copy of *ltmQ* (Table 3). In the strain Clav04, the fragment on the primary cluster (contig130) *ltmQ1* was a partial copy, whereas another copy on contig 637 was a full-length copy (*ltmQ2*) with a good ORF. Clav46 had two partial copies; ironically, the copy on contig 43 (where all other *ltm* genes co-located) had a number of short deletions causing framshifts and internal stop codons, whereas the copy on contig 229 had good ORFs, except that the first 243 bp (including 53 residuals in exon 1 and partial exon 2) were missing. On the other hand, some of the single-copy *ltmQ* sequences, such as in *C. arundinis* CCC1102, *C. pazoutvae* CCC1485, *C. perihumidiphila* LM81, *C. purpurea* LM72, *C. quebecensis* Clav32 and LM458, *C. ripicola* LM218 and LM219, and *C. spartinae* CCC535, had varied number of indels causing framshifts and internal stop codons; however, phylogenetically, they still belonged to copy 1 (more details in in Section 2.3).

All six genes were clustered on the same contig in 29 strains of the 12 species in sect. *Claviceps*; otherwise, at least three genes were on the same contig. The clustered six *ltm* genes were arranged in the same order as in *C. purpurea* 20.1 [14] (Table 3; gene coordinates are not shown). In *C. citrina*, *ltmB* and *C* were on the same contig (1947), whereas *ltmM* and *G* were on separate contigs. It is not assessable whether they were in one cluster. In general, the inter-gene sequences ranged from 500–1200 bp; however, several strains had very long spaces between *ltmP* and *B*, such as 4 kb in *C. ripicola* LM220 and over 2 kb in LM218 and *C. arundinis* CCC1102 and LM583 (results not shown).
Table 3. The idt/ltm gene copies and their locations in C. sect. Claviceps and sect. Citrinae.

Section	Organism	Assembly*	HtmQ1	HtmQ2	HtmP	HtmB1	HtmB2	HtmS	HtmM	HtmE
Citrinae	C. arundinis	BW	1268	1268	1268	1268	1268	1268	1268	1268
	C. sericeus	BF	1268	1268	1268	1268	1268	1268	1268	1268
	C. purpurea	BF	1268	1268	1268	1268	1268	1268	1268	1268
Claviceps	C. purpurea	BW	1268	1268	1268	1268	1268	1268	1268	1268
		BF	1268	1268	1268	1268	1268	1268	1268	1268

* The assembly versions: BW was from Wingfield et al. [45], SW was from Wyka et al. [44], and BF was generated in the present study; values in the cells denote contig numbers, two values connected by / indicate the fragment was on two contigs; green color represents

Through the additional BLAST searches with lower stringency (E-value < E−50), fragments of 483 and 501 bp of ltmG from C. maximensis CCC398 and C. digitariae CCC659, respectively, were pulled out by using ltmG from C. paspali RRC-1481. They were 76% and 78% similar, respectively, to the reference sequence in the coverage (comparable to the 74% similarity between C. citrinae CCC265 and C. paspali RRC-1481). Running BLAST searches of these two fragments to the NCBI database indicated that 60 bp of the 483 bp from C. maximensis matched with Beauveria bassiana ARSEF 2860 geranylgeranyl pyrophosphate synthase; 279 of 501 bp from C. digitariae matched with idtG (geranylgeranyl diphosthate synthase) from Periglandula ipomoeae strain IasaF13.

2.2.3. Loline Alkaloid (lol) and Peramine (per) Genes

All the searches with lol and per reference genes resulted in no hits, except for the low-stringency BLAST with lolC that resulted in small fractions of sequences (~150–180 bp) matched with the start of the fifth exon for seven species (strains): C. africana (CCC485), C. citrina (CCC265), C. digitariae (CCC659), C. lovelelissi (CCC647), C. maximensis (CCC398), C. pusilla (CCC602), and C. sorghi (CC6632). These fragments matched with 80% to 92% identity to O-acetylhomoserine from Purpureocillium lilacinum (XM 018324292), Drechmeria conospora (XM 040800194), and Verticillium dahliae (XM 00965423) in the NCBI database https://blast.ncbi.nlm.nih.gov/Blast.cgi accessed in August 2021. These sequences were not submitted to GenBank because of their short length.
2.3. Phylogenies of eas and idt/ltm Genes

The individual phylogenetic trees of 11 eas genes all agreed on the long-branched separation between C. sect. Pusillae and sect. Claviceps, which was congruent with the pattern inferred by the previous multigene analyses combined with morphological, ecological, and metabolic features [3] and supported by the phylogenomic analyses [44] (Figure 3a). In C. sect. Pusillae, all genes agreed on the close proximity of C. fusiformis, C. lovelessii, and C. pusilla, as well as of C. africana and C. sorghii. The main incongruence among the gene trees appeared in the uncertain placements of C. digitariae and C. pusilla, as well as the variant relationships among C. fusiformis, C. lovelessii, and C. pusilla, which could be a result of insufficient sampling (see further explanation in Section 3; Figure 3b–d and S1).

In terms of the species relationships in the sect. Claviceps, considering single-copy genes, a majority of gene trees agreed on the grouping of the four major clades inferred by the previous phylogenomic study [44]. For communication convenience, we named them as four Batches to avoid confusion with species level and general use of clades: Batch humidiphila including C. arundinis, C. humidihiphila, and C. perihumidiphila, Batch purpurea including C. capensis, C. monticola, C. pazoutovae, and C. purpurea (previously designated as Clade purpurea by Pichová et al. [3]), Batch occidentalis including C. occidentalis and C. quebecensis, and Batch spartinae including C. ripicola and C. spartinae (Figures 3a and S1). The exceptions were C. perihumidiphila and C. cypri that had uncertain placement on different gene trees (Figure 5b,d,f,g). The more notable disparities among the gene trees appeared in the order of divergence of the four Batches from C. sect. Pusillae or sect. Paspalorum (Figures 4, S1 and S2). Previous phylogenomic analyses resulted in the topology of a twice bifurcate pattern, ((Batch humidiphila)(Batch spartinae); (Batch occidentalis)(Batch purpurea)) [44], and this pattern was only supported by easG (Figure 4a).

A slight variation of the easA tree appeared in that Batch humidiphila was an earlier diverged lineage than Batch spartinae, and these two formed a paraphyletic group instead of a monophyletic group (Figure 4b). All other gene trees supported the derived position of Batch humidiphila and Batch spartinae (Figure 4c–e). Furthermore, eight genes (cloA, dmaW1, easC, easE1, easH1, lpsC, and ltmB1) placed Batch purpurea at a more ancestral position than Batch occidentalis, whereas six genes (easF1, lpsB, ltmM, ltmP, ltmS, and ltmQ1) reversed the divergence order of these two Batches (Figure 4c,d). The other three genes (easD, lpsC, and ltmC) showed an unresolved order of divergence (Figure 4e).

As for genes with multiple copies, the most complex was dmaW. The dmaW2 sequences were separated into two groups. Group I included 16 strains of eight species (all non-C. purpurea dmaW2 except C. monticola CCC1483 and C. pazoutovae CCC1485), forming a parallel lineage with their dmaW1 counterpart and representing one gene duplication at node (Figures 5a and S2a). Group II included C. purpurea, C. monticola CCC1483, and C. pazoutovae CCC1485, as well as one strain of each dmaW1 (LM60) and dmaW2 (CCC1102). This group diverged from C. purpurea dmaW1, representing the second duplication at node (2). Within group II, the otherwise consistent close relationship between C. monticola and C. pazoutovae was broken by seven strains of C. purpurea. This can be explained by a third duplication at node (3). The presence of dmaW3 of C. arundinis CCC1102 and dmaW1 C. purpurea LM60 in group II indicated extra duplication events at nodes (4) and (5) (Figure 5a).

The second and third copies of easF (easF2, easF3) grouped in one clade diverged from C. cypri easF1. Within this clade, C. purpurea easF2 (14 strains) appeared as a paraphyletic group, from which diverged a clade composed of C. purpurea easF3 (five strains) and a subclade easF2 of C. quebecensis, C. humidiphila, C. arundinis, C. spartinae, C. pazoutovae, and C. monticola. From this tree topology, at least two gene duplication events were inferred (Figures 5b and S2b).
Figure 3. (a) The hypothetical species relationships of *Claviceps* spp. inferred by orthologous genes from Wyka et al. [44]. (b–d) Variant species relationships in Sect. *Pusillae* summarized from phylogenies inferred by each *eas* gene trees (Supplementary Figures S1 and S2). The thickened branches denote bootstrapping values >80%. The letters next to thick branches denote the genes supporting the grouping, abbreviated as *A*, *C*—*H1* = *easA*, *easC*—*H1*; *cl* = *cloA*; *W1* = *dmaW1*. Dashed branches indicate that taxon was present on the gene trees listed after the species name. *lpsC* and *lpsB* are not listed here because only one or three sequences were available on the trees. DNA sequences of *C. fusiformis* and *C. paspali* were from GenBank EU006773 and JN613321.

Figure 4. (a–e) Varied species relationships in sect. *Claviceps* summarized from phylogenetic trees of *eas* and *ltm* genes by PhyML analyses (the full trees are provided in Supplementary Figures S1 and S2). The thick branches denote bootstrapping values >80%. The letters beside the thick branches indicate that those genes had strong support for those branches; otherwise, all genes listed below the figure had strong support.

The second copy of *easE* (*easE2*) from 16 samples grouped into one clade, which diverged from *easE1* of *C. occidentalis*. However, within the *easE2* clade, *C. purpurea* samples
were separated into two subclades. The sample Clav 04 appeared as an orphan clade located close to *C. quebecensis* *easE2*, and another 10 samples grouped together and had affinity with *C. monticola* *easE2*, indicating that the historical gene duplications possibly occurred twice at nodes ① and ② (Figures 5c and S2c).

The second copies of *easH* (*easH2*) were grouped into three groups that diverged three times independently. Group I includes two strains of *C. ripicola* (LM218 and LM220) that diverged from *easH1* of the clade composed of *C. capensis*, *C. moticola*, and *C. pazoutovae*. As noted earlier, the sequence lengths of *easH2* from these two strains are similar to *easH1* and contained good ORFs, indicating that they were likely from a very recent gene duplication. Group II, including three strains of *C. occidentalis*, one strain each of *C. arundinis*, *C. humidiphila*, and *C. perihumidiphila*, and 15 strains of *C. purpurea*, diverged from the *easH1* clade composed of eight species in sect. *Claviceps* (*C. occidentalis*, *C. cyperi*, *C. quebecensis*, *C. perihumidiphila*, *C. ripicola*, *C. spartinae*, *C. arundinis*, *C. humidiphila*, and *C. purpurea*). Group III, including nine strains of *C. purpurea* and the reference sequence of *C. purpurea* 20.1 *easH2*, diverged within the clade of *C. purpurea* *easH1* (Figures 5d and S2d).

Figure 5. Cont.
Figure 5. The simplified phylogenies of individual multicopy genes showing potential duplication events. The unedited trees generated by PhyML are presented in the Supplementary Figure S2. (a) dmaW, (b) easF, (c) easE, (d) easH, (e) ltmB, and (f) ltmQ. The thickened branches indicate bootstrapping values ≥80%; dashed and hatches branches are shorter than their real length. The lineages that are not shaded gray are the first copies of each gene.

For idt/ltm genes, the second copies of ltmB can be considered as one group arising from one gene duplication, except that ltmB1 of C. humidiphila LM576 was placed in this group. This sequence was the only copy detected in LM576 and, therefore, labeled as copy one. However, it was on a separate contig (contig 478), clustered with neither ltmP and ltmQ (contig 945, Table 3) nor ltmC, ltmS, and ltmM (contig 745). It is very likely that this represents the second copy of this gene, and copy one was either lost or not detected (Figures 5e and S2e).

The three partial ltmQ2 genes from three strains of C. occidentalis grouped closely with a clade composed of four strains C. purpurea ltmQ1 (Clav04, Clav46, LM71, and LM72)
and two ltmQ2 (Clav55, and LM461) (Figures 5f and S2f). As noted earlier in Section 2.2.2, ltmQ1 of Clav04 and Clav46 was either a partial gene or a nonfunctional gene, respectively, whereas the second copies were functioning genes. Here, ltmQ2 of Clav04 and Clav46 grouped in C. purpurea ltmQ1 clade 1. This situation can be explained by a scenario in which these two copies might have switched locations due to errors in assembling. For another two sequences, ltmQ1 of LM71 was on a different contig with other ltm genes, and in LM72, the gene was split into two contigs, where one half was connected with ltmP, while the other half was independent. Overall, these four sequences appeared as the same copy in C. purpurea ltmQ2 (Clav55 and LM461). If that is the case, one gene duplication event possibly happened at node ①. Alternatively, the ltmQ2 of Clav04 and Clav26, as well as the two ltmQ2 groups, could have resulted from independent gene duplications (Figures 5f and S2f). Long-read sequencing, i.e., Nanopore or PacBio, could bring more insight by ruling out the possible assembly errors.

2.4. Intraspecific Genetic Variation within C. purpurea

Overall, the haplotype diversities (Hd) of eas genes ranged from 0.936 to 1 (close to saturation), except for easH2 that had a lower value, 0.858. Nucleotide diversity (Pi) of eas genes ranged from 0.08 (easD) to 0.168 (easH2), the average number of nucleotide difference (K) ranged from 7.1510 (easD) to 212.238 (easE2), tree-based divergence from COT ranged from 0.06 (easA and easD) to 0.150 (easH2), and tree-based diversity ranged from 0.01 (easD) to 0.219 (easE2). In general, easD and easA had lower values for divergence and/or diversity. The second copies of dmaW, easE, easF, and easH had much higher values of the four parameters. Some of those genes may not function and, therefore, had fewer functional constraints. If only the first copy of the genes was considered, the genes with the highest diversity and divergence values were Pi 0.03 (dmaW1), K 92.379 (lpsC), tree-based divergence from COT 0.0025 (dmaW1), and tree-based diversity 0.038 (dmaW1). The two genes functioning in the middle of the pathway, i.e., easA and easD, were observed to be the most conserved genes compared with the other genes in the earlier or later steps (Table 4, Figure 6a).

Compared with the first copy of eas genes, idt/ltm genes had a similar level of the highest diversity and divergence. Pi ranged from 0.007 (ltmM and ltmS) to 0.02 (ltmQ1), average number of nucleotide difference (K) ranged from 6.839 (ltmS) to 41.486 (ltmQ1), tree-based divergence from COT ranged from 0.005 (ltmM) to 0.066 (ltmB1), and tree-based diversity ranged from 0.009 (ltmM) to 0.04 (ltmQ) (Table 4, Figure 6b).

Figure 6. Nucleotide diversity and tree-based diversity and divergence for individual eas genes (a) and idt/ltm genes (b). Error bars denote the standard deviation for Pi and standard error for the other two parameters. The genes are arranged from top to bottom according to their order in the biosynthetic pathway. ltmS is not included in the chart as its function is unknown.
Table 4. Nucleotide polymorphism, tree-based divergence, and diversity of ergot alkaloid (eas) and indole-diterpene/lolitrem (idt/ltm) synthesis genes in C. purpurea.

Biosynthesis Genes	# of Sequences	Total # of Sites	# of Sites (Excluding Indel)	Segregating Sites	Ratio	# of Haplotypes	Haplotype (Gene) Diversity	Nucleotide Diversity	Average Number of Nucleotide Differences	Tree-Based Divergence from COT	Tree-Based Diversity	Tree-Based Divergence from COT			
Ergot Alkaloid (eas) Genes															
dmaW	35	1516	921	196	0.213	32	0.995	0.055	0.004	50.523	0.062	0.004	0.086	0.002	
dmaW1	21	1480	938	154	0.164	19	0.99	0.03	0.006	27.886	0.025	0.003	0.038	0.002	
dmaW2	14	1516	923	101	0.159	8	1	0.048	0.02	0.004	30.464	0.042	0.015	0.055	0.010
easF	32	1232	630	121	0.192	24	0.966	0.03	0.006	24.526	0.017	0.006	0.039	0.002	
easF1	25	1232	642	40	0.062	17	0.953	0.016	0.001	10.54	0.017	0.002	0.029	0.001	
easF2	8	1232	634	101	0.159	8	1	0.048	0.02	0.004	39.11	0.042	0.015	0.055	0.010
easE	34	2283	1607	577	0.359	28	0.979	0.085	0.021	10.94	0.011	0.006	0.017	0.003	
easE1	28	1921	1891	112	0.059	23	0.979	0.013	0.001	24.526	0.017	0.006	0.039	0.002	
easE2	23	1195	571	232	0.406	15	0.953	0.016	0.001	35.796	0.014	0.008	0.026	0.003	
easC	28	1508	1503	89	0.059	23	0.979	0.013	0.001	10.94	0.011	0.006	0.017	0.003	
easD	28	851	846	37	0.044	22	0.976	0.008	0.001	12.516	0.006	0.001	0.024	0.001	
easA	28	1143	1143	51	0.045	21	0.966	0.009	0.001	12.516	0.006	0.001	0.024	0.001	
easG	28	1151	923	258	0.226	22	0.979	0.013	0.001	10.94	0.011	0.006	0.017	0.003	
easH	51	1195	571	232	0.406	15	0.953	0.016	0.001	35.796	0.014	0.008	0.026	0.003	
easH1	28	947	943	64	0.064	15	0.944	0.012	0.004	35.796	0.014	0.008	0.026	0.003	
easH2	23	1195	571	232	0.406	15	0.953	0.016	0.001	35.796	0.014	0.008	0.026	0.003	
lpsB	28	4006	3961	255	0.064	24	0.979	0.012	0.001	10.94	0.011	0.006	0.017	0.003	
lpsC	27	5431	5416	421	0.078	25	0.994	0.017	0.001	92.379	0.017	0.001	0.029	0.001	
ltpC	28	1249	1246	60	0.048	25	0.992	0.008	0.000	10.94	0.011	0.006	0.017	0.003	
ltpC1	28	1249	1246	60	0.048	25	0.992	0.008	0.000	10.94	0.011	0.006	0.017	0.003	
ltpD	28	1766	1731	74	0.043	25	0.992	0.007	0.001	12.68	0.005	0.001	0.009	0.000	
ltpQ	25	2180	2119	293	0.138	24	0.997	0.019	0.006	41.38	0.026	0.010	0.040	0.004	
ltpQ1	24	2180	2119	293	0.138	23	0.996	0.020	0.006	41.38	0.026	0.010	0.040	0.004	
ltpP	28	1949	1895	111	0.059	24	0.981	0.010	0.001	19.479	0.008	0.001	0.017	0.000	
lpsS	28	955	924	34	0.037	24	0.989	0.007	0.001	6.839	0.008	0.001	0.015	0.000	

1 Sequences with large gaps causing a significant reduction in the number of sites were excluded from the analyses.
2 Tree-based divergence from the center of tree (COT) and diversity were estimated by DIVIEN; other parameters were estimated by DnaSP.

3. Discussion

3.1. Correlations between the Presence/Absence of Alkaloid Genes and Alkaloid Production

It has been shown while attempting to induce EA production for pharmaceutical purposes (see review by Flieger [46]) that different ergot species produce varied types of ergot alkaloids. Simultaneously, mycologists explored the use of alkaloid chemistry for characterizing *Claviceps* species [47,48]. Pažoutová and colleagues [49] differentiated chemoraces using the qualitative and quantitative features of EA production. A systematic study on EA production in 43 *Claviceps* species confirmed that ergopeptides were produced only by the members in *C. sect. Claviceps*, whereas dihydroergot alkaloids (DH-ergot alkaloids) were produced only by certain members of *C. sect. Pusillae*, i.e., *C. africana*, *C. gigantea*, and *C. eriochloe*. Sixteen out of 28 species in *C. sect. Pusillae* were shown not to produce any EAs, including *C. maximesis*, *C. pusillae*, and *C. sorghi*. Species only producing clavines included *C. fusiformis*, *C. lovelessii*, and three other species [3]. More recent studies...
demonstrated that the indole alkaloid profiles supported the recognition of new species based on molecular and ecological data [29,30].

The EA genes detected in the present study were consistent with the known EA production of the included species, for the most part. For example, C. africana CCC489 had eight genes detected (lacking cloA, easH2, lpsB, and lpsC), and all appeared to be functional, consistent with its production of DH-ergot alkaloids. Similarly, in C. lovelessii CCC647, ten EA genes were detected (lacking lpsC and easH2); however, easH1 and lpsB had mutations resulting in a number of internal stop codons, which is consistent with the production of clavines, a product of the early pathway [3]. A lack of EA production corresponded to no matches for any EA genes in C. maximensis CCC398 and C. citrina CCC265 (C. sect. Citrinae). However, for C. pusillae and C. sorgi, several functional genes were detected even though no EA production was reported [3]. In C. pusillae CCC602, eight genes had full-length matches (dmaW1, easA, C, D, E, G, and H1, and lpsB) and one partial match (cloA 332 bp), but only dmaW1, easC, and easE had ORFs. The lack of easF, the second step in the pathway encoding dimethylallyltryptophan N-methyltransferase, might explain the lack of production of EAs. C. sorgi CCC632 had seven full-length matches (dmaW1 and easA, C, E, F, G, and H1) and two partial (cloA 435 bp and easD 653 bp). Except for cloA and easH1, all other genes had good ORFs. Theoretically, at least chanoclavine should be produced unless those genes were not expressed possibly due to a lack of triggers from physical or environmental conditions [50].

Only the members in C. sect Claviceps had lpsC and easH2, although C. perihumidiphila LM81, one strain of C. ripicola (LM454), and C. arundinis (LM583) lacked lpsC, and C. capensis, C. cyperi, C. humidiphila, and C. monticola had a partial lpsC. Moreover, three C. purpurea strains (LM65, LM72, and LM582) and three C. quebecensis strains (Clav32, Clav50, and LM458) lacked easH2. Whether the absence of these genes causes variations in their EA profiles requires a systematic investigation on the associations between eas genes and products in those species. It is worth noting, however, that the possibility of false negatives in genome screening cannot be ruled out. For instance, for C. arundinis CCC1102, lpsC was detected in the WF version of the genome assembly (created in the present study), but not in the previous version (SW [44], Table 2). The opposite also occurred in that a full length of dmaW3 was detected in SW assemblies, but only partially (360 bp) in WF assemblies (this study).

The production of indole diterpenoid compounds in ergot fungi was reported in a small number of species, i.e., C. arundinis, C. cyanodontis, C. humidiphila, C. paspali, and C. purpurea [21,28–30]. Our genome mining showed that ltmQ, P, B, C, M, and S were present in all species in C. sect. Claviceps except C. cyperi. Furthermore, ltmB, C, and M and a nonfunctioning ltmG were detected in C. citrina, while a partial ltmG was detected in C. maximensis CCC389 and C. digitariae CCC659. According to the proposed pathway, to produce paspaline, the first step requires ltmG, followed by ltmC, ltmM, and ltmB [27]. The absence of ltmG could stop production unless GGPP is present through other resources. This might be the case in the producers of indole diterpenoid compounds listed above. In the same way, it is very likely that most of the species in C. sect. Claviceps and the three species in sect. Citrinae and sect. Pusillae could also produce some forms of indole diterpenoid compounds.

3.2. Macro-Evolution of the Gene Clusters—Frequent Gene Duplications and Losses

Ergot alkaloid diversity among diverse producers, i.e., species in Hypocreales, Eurotiales, and Xylariales, was formed by three major processes: gene gains, gene losses, and gene sequence changes [13,14]. This is true within the genus Claviceps. A recent genus-level genome comparison hypothesized that unconstrained tandem gene duplications were caused by putative loss of repeat-induced point mutations in C. sect. Claviceps [44]. This pattern of duplication was confirmed here by the presence of a cluster of second or third copies of easE, easF, and dmaW, as well as second copies of ltmQ and B (Tables 2 and 3). Moreover, easE2 and F2 of C. purpurea LM461 were on the same contig as easG and partial
Toxins 2021, 13, 799

3.3. Micro-Evolution of eas Genes within C. purpurea—An Approximate Hourglass Model

The inter- and intraspecific variations of the second metabolite gene clusters in fungi are typically reported as variations in structures, gene contents, copy numbers, null alleles, and nonhomologous clusters (see review by Rokas [52]). Fewer studies have focused on the DNA sequence variations in each of the gene members. Lorenz et al. [53] identified the sequence differences in lpsA between two C. purpurea strains (P1 and ECC93) that were associated with the different alkaloid types; however, they could not find differences in cloA between C. fusiformis and C. hirtella that could explain why this gene was functional in the former but not in the latter. Phylogenetic analyses of DNA sequences of four core genes (dmaW, easF, easC, and easE) from selected samples across Clavicipitaceae (with emphasis on Epichloë) uncovered extensive gene losses, and the origin of EA clusters on Clavicipitaceae fungi was determined to be direct descent rather than horizontal transfer [13].

The present study is the first, to our knowledge, to examine the variations of each gene on a fine scale, i.e., among 28 strains of C. purpurea. Both DNA polymorphism analyses of the DNA sequence alignments through DnaSP and tree-based diversity and divergence analyses using the DEVIELN software indicated that the evolutionary rate of early step genes, i.e., dmaW and easF is much higher than the middle step genes, i.e., easA, C, D, and E (Figure 6, Table 4). The pattern matches with the hourglass model in ontogeny, which was also evidenced in genomic studies [39]. The hourglass model (HGM) and early conservation model (ECM) in ontogeny are explained by developmental constraints. HGM considers that, at the middle stage, the meta- and cis-interactions reach the highest complexity, posing constraints for development [54,55], whereas ECM considers the constraints at early stage to be critical because any alterations at early stage would cause cascading effects [56]. The EA pathway was reported as an unusually inefficient one such that a high volume of certain intermediates were accumulated more than needed for producing the end-products [57]. This may impose less selective pressure on the middle steps. The sclerotia of C. purpurea from tall fescue contained chanoclavine (4 ± 3 µg/g) and agroclavine (2 ± 1 µg/g) in

dmaW1, suggesting that the second copies of easE and F were arranged on the primary cluster possibly as a result of tandem gene duplication. None of the extra gene copies were found in C. sect. Pusillae or sect. Citrinae, consistent with a previous observation that the genomes of sect. Pusillae and sect. Citrinae had much fewer gene duplication events predicted [44]. According to the phylogenies of multicopy genes, one to five gene duplications can be inferred for individual genes. The dmaW gene, encoding the enzyme for the first and determinant step of EA production, had the highest number of potential gene duplications. Even though the presence of dmaW was conserved across various EA producers and proven to be a monophyletic group [51], its evolutionary rate was faster than genes in the middle steps of the EA pathway.

Gene losses can be inferred through the discrepant placement of certain gene copies on the phylogenies. For instance, one copy of ltmB in C. humidiphila LM576 was detected; however, this copy grouped with ltmB2. It is very likely that this was the second copy of ltmB gene, and the first copy was either lost or not detected (Figure 5e, see also Sections 2.2.2 and 2.2.3). The ltmQ1 from four strains of C. purpurea (LM71, LM72, Clav04, and Clav46) was placed in the ltmQ2 clade. For LM71 and LM72, there was only one copy detected (ltmQ1); the scenario is likely similar to ltmB of LM576, where this single copy was the second copy, and the original gene was either lost or not detected (Figure 5f). On a related note, ltmQ2 of Clav04 and Clav46 was located in the ltmQ1 clade. An intuitive explanation would be that the identities of the two copies switched due to assembly artefacts (Figure 5f). Lastly, the incongruent order of divergence of the four Batches of species in C. sect. Claviceps inferred by single-copy genes could be explained as lineages sorted during the frequent gains and losses of the ancestral genotypes (Figure 4). Unlike C. sect. Claviceps, the phylogeny incongruence in C. sect Pusillae was mainly caused by the uncertain placement of C. digitariarum and C. puspali. In light of the genome structure, this was likely caused by insufficient sampling instead of gene lineage sorting.

3.3. Micro-Evolution of eas Genes within C. purpurea—An Approximate Hourglass Model

The inter- and intraspecific variations of the second metabolite gene clusters in fungi are typically reported as variations in structures, gene contents, copy numbers, null alleles, and nonhomologous clusters (see review by Rokas [52]). Fewer studies have focused on the DNA sequence variations in each of the gene members. Lorenz et al. [53] identified the sequence differences in lpsA between two C. purpurea strains (P1 and ECC93) that were associated with the different alkaloid types; however, they could not find differences in cloA between C. fusiformis and C. hirtella that could explain why this gene was functional in the former but not in the latter. Phylogenetic analyses of DNA sequences of four core genes (dmaW, easF, easC, and easE) from selected samples across Clavicipitaceae (with emphasis on Epichloë) uncovered extensive gene losses, and the origin of EA clusters on Clavicipitaceae fungi was determined to be direct descent rather than horizontal transfer [13].

The present study is the first, to our knowledge, to examine the variations of each gene on a fine scale, i.e., among 28 strains of C. purpurea. Both DNA polymorphism analyses of the DNA sequence alignments through DnaSP and tree-based diversity and divergence analyses using the DEVIELN software indicated that the evolutionary rate of early step genes, i.e., dmaW and easF is much higher than the middle step genes, i.e., easA, C, D, and E (Figure 6, Table 4). The pattern matches with the hourglass model in ontogeny, which was also evidenced in genomic studies [39]. The hourglass model (HGM) and early conservation model (ECM) in ontogeny are explained by developmental constraints. HGM considers that, at the middle stage, the meta- and cis-interactions reach the highest complexity, posing constraints for development [54,55], whereas ECM considers the constraints at early stage to be critical because any alterations at early stage would cause cascading effects [56]. The EA pathway was reported as an unusually inefficient one such that a high volume of certain intermediates were accumulated more than needed for producing the end-products [57]. This may impose less selective pressure on the middle steps. The sclerotia of C. purpurea from tall fescue contained chanoclavine (4 ± 3 µg/g) and agroclavine (2 ± 1 µg/g) in
addition to the end-products, i.e., ergopeptines and ergovine [57]. The extra amount of chanoclavine coincides with the lowest evolutionary rates of easD and easA inferred in the present study (Figure 6). The role of easD is to oxidize chanoclavine to chanoclavine aldehyde, followed by the reactions of easA and easG to yield agroclavine. It is likely that easD is under less selective pressure because plenty of supplies are available. Alternatively, it might be under a high level of functional constraints because of its pivotal position in the pathway (first step of closure of the D-ring). A different isoform of easA in C. africana and C. gigantean reacts differently, creating a shunt yielding dihydroergot alkaloids (Figure 1). This diversification may result from the change in ecological niches. Nevertheless, the rates of diversity and divergence of easA were the second lowest after easD, even though it is physically located in between lpsB and lpsC. Both of these later step genes had much higher rates than easA, possibly due to fewer constraints or more direct positive selection, as they are involved in the final steps. The cloA gene represents another point of the pathway where shunts may take place. Presumably depending on the different isoforms of cloA, varied levels of oxidation occur, resulting in different end-products [13,15]. The high rates of diversity and divergence of cloA may reflect a high level of positive selection.

The signatures of selective pressure in DNA sequences could be detected through neutrality tests. For instance, if the value of Tajima’s D significantly deviates from zero, it indicates the presence of selective pressures, i.e., negative values suggest a positive selection, whereas positive values indicate balancing selection [58]. We conducted neutrality tests and found that none of the genes departed significantly from neutrality (results not shown). These results are contradictory to Liu et al. [59], in that easE and easA were under positive selection in Canadian and western USA C. purpurea populations. We speculate here that the small sample sizes in present study (28 sequences versus 200–300 in the previous study) might be the factor limiting the ability of the Tajima’s D test to detect selective pressures.

Compared with eas gene pathways, it is difficult to evaluate whether or not the evolutionary pattern of ltm genes conformed with the hourglass model because the sequential order of steps was uncertain. Even if we assume that paspaline-derived compounds are the main products, in the absence of ltmG, there are only two to three sequential steps to paspaline. Nevertheless, ltmM had the lowest rate of divergence and diversity compared with earlier (ltmC) and later steps (ltmP and Q).

Our results provide evidence for the first time that eas gene evolution follows the hourglass model. Whether this pattern exists in other metabolic gene pathways and the mechanisms that underpin this or other patterns are questions to be answered in future work.

4. Materials and Methods

4.1. Genome Acquisition

Fifty-four genomes of 19 Claviceps spp. were studied. The assemblies of 17 genomes and the raw reads of another 34 genomes were from previous studies (Table 1) [44,45], which outlined the protocols for the DNA extraction, library preparation, and sequencing platforms. In the present study, three additional genomes were sequenced (LM63, LM65, and LM72) using a protocol similar to that described in [44]. Briefly, the gDNA samples were normalized to 300 ng and sheared to 350 bp fragments using an M220 Covaris Focused-Ultrasonicator instrument (Covaris, Woburn, MA, USA). The obtained inserts were used as a template to construct PCR-free libraries using the NxSeq AmpFREE Low DNA Library kit (LGC, Biosearch Technologies, Middleton, WI, USA) following LGC’s library protocol. Balanced libraries in equimolar ratios were pooled, and paired-end sequencing was carried on a NextSeq500/550 (Illumina, San Diego, CA, USA) using 2 × 150 bp NextSeq Mid Output Reagent Kit (Illumina, San Diego, CA, USA) according to the manufacturer’s recommendations.

The new assemblies of 37 genomes were achieved using the following protocols: raw reads were trimmed using BBduk, a component of BBTools downloaded from the Joint Genome Institute website (https://jgi.doe.gov/data-and-tools/bbttools/ accessed on
Both quality-trim and kmer-trim were applied using the parameters qtrim = rl, trimq = 20, forcertrimleft = 10, minlength = 36, ftm = 5, ref = adapters/adapters.fa, ktrim = r, k = 22, mink = 11, hdist = 1, tbo tpe. The qualities of initial reads and post-trimming reads were assessed using FastQC version 0.11.9, setting parameters as quiet, noextract. Pairs of trimmed reads for each strain were assembled using the SPAdes version 3.14.0 genome assembly toolkit with the default parameters [60]. QUAST version 5.0.2 was used to evaluate the resulting assemblies and to obtain statistics about the assembled contigs [61]. To assess the completeness of the genome assemblies, BUSCO 4.1.4 was run on the contigs using the fungal database (fungi odb10) (Creation date: 10 September 2020, number of species: 549, number of BUSCOs: 758) [62].

4.2. Alkaloid Gene Screening and Extraction

To investigate the presence/absence of the four classes of alkaloid synthesis genes in 54 genomes, BLAST searches were conducted to interrogate the genomes with the reference genes of interest using an in-house perl script (running blastn with an E-value of E^{-99} as the cutoff). Alternatively, each individual genome assembly was mapped onto the reference gene clusters using the 'Map to Reference' function in Geneious prime 2020.1.2 (https://www.geneious.com, accessed on 9 November 2021). The reference gene clusters were downloaded from GenBank and applied as follows: the clusters of 14 ergot alkaloid synthesis (eas) genes and six indole-diterpene/lolitrem genes (IDT/ltm) from C. purpurea strain 20.1 (JN186799 containing cloA, dmaW, easA, C–G, easH1, easH2, lpsA1, lpsA2, lpsB, and lpsC; JX402756 containing idt1tmlB, C, M, P, Q, and S) and C. paspali RRC-1481 JN186800 (easO) were first applied as a query to interrogate each genome. In addition, the cluster from C. fusiformis PRL1980 EU006773 (10 genes: cloA, dmaW, easA, C–H, and lpsB) were applied to further interrogate genomes in C. sect. Pusillae and C. citrina. For the IDT/ltm genes that were not previously reported in Claviceps purpurea 20.1, the reference sequences from C. paspali JN613321 (ltmF and ltmG) and Epichloë (ltmE and J on JN640287) were used to conduct lower stringency megablast searches (https://www.geneious.com, accessed in 9 November 2021) with E-values E^{-50} and E^{-20}. Megablast searches were also conducted for loline alkaloid genes (lolA, D, E, M–P, T, and U on JF830816, lolC FJ464781, and lolF FJ594413) and peramine (perA JN640287) in all 54 genomes. Genes that were present in genomes were extracted manually. Split fragments of a single gene on different contigs were concatenated on the basis of reference sequences. DNA sequences of genes extracted from the new genomes were submitted to GenBank.

When multiple copies of certain genes were present (such as dmaW, easE, easF, ltmB, and ltmQ), the copy on the main cluster was designated as copy 1, as determined by examining the contig numbers. The exception was easH, which was determined on the basis of the similarity to the two copies determined by previous studies [14]. Disconnected fragments shorter than 300 bps were not considered.

4.3. Phylogenetic Analyses

The extracted sequences for each gene were aligned individually through the Geneious Prime (https://www.geneious.com, accessed on 9 November 2021) Align/Assemble function using Global alignment with free end gaps, 93% similarity ($5.0 / 9.026168$) as the cost matrix, a gap open penalty of 12, a gap extension penalty of 3, and two refinement iterations. This protocol is particularly suitable for aligning sequences with large gaps or shorter fragments to full-length sequences. Maximum likelihood phylogenetic trees were developed using the PhyML 3.3.20180621 [63] plugin of Geneious Prime (https://www.geneious.com, accessed on 9 November 2021). Both GTR and HKY substitution models were attempted; branch supports were evaluated through bootstrapping analyses of 100 replicates. Reference sequences of lpsB of C. paspali has only 52% similarity with C. purpurea, causing spurious alignment and a significantly long branch; therefore, they were not included in the analyses.
4.4. Intraspecific Gene Diversity and Divergence Analyses

Population demographic parameters are suitable for investigating genetic differentiation and gene evolution at an intraspecific level. We investigated the DNA polymorphisms, nucleotide diversity (Pi), and average number of nucleotide differences (K) among 27 strains of *C. purpurea* using DnaSP [64]. Another reason for choosing this sub-set of data, instead of all 53 samples, is that all but three strains (LM65, LM2, and LMS82 lacked *easH2*) contained all 12 genes, making the results more comparable. Nonetheless, the sequences with long gaps causing a significant reduction in alignment length in *dmaW* and *easF* were excluded from the DnaSP analyses. In addition, the tree-based diversity and divergence from the center of the tree (COT) were calculated through the web-based DIVEIN software (https://indra.mullins.microbiol.washington.edu/DIVEIN/diver.html, accessed on 9 November 2021) [65]. The following parameters were applied: GTR substitution model, optimized equilibrium frequencies, the best of NNI and SPR tree improvement, and topology + branch length tree optimization algorithm. For multicopy genes (*dmaW*, *easE*, *easF*, and *easH*), we calculated the parameters for each individual copy and combined them as one gene (Table 4).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/toxins13110799/s1, Figure S1: The phylogenetic trees developed by PhyML for each individual single-copy *eas* and *idt/ltm* genes, thickened branches indicate bootstrapping values >80%. Figure S2: The phylogenetic trees developed by PhyML for each individual multi-copy *eas* and *idt/ltm* genes, Table S1: The collection information for 53 strains of *Claviceps* spp.

Author Contributions: Conceptualization, M.L.; methodology, K.D., P.S. and S.A.W.; software (pipeline), W.F.; formal analysis, M.L., W.F., P.S. and A.B.; resources, J.D., M.K., J.G.M., S.A.W. and K.B.; data curation, W.F., P.S., S.A.W. and A.B.; writing—original draft preparation, M.L.; writing—review and editing, W.F., J.D., S.A.W., K.B., P.S., K.D., M.K. and J.G.M.; funding acquisition, M.L., J.D. and K.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Agriculture and Agri-Food Canada’s Growing Forward 2 for a research network on Emerging Mycotoxins (EmTox, project # J-000048), STB fungal and bacterial biosystematics J-002272, the Agriculture and Food Research Initiative (AFRI) National Institute of Food and Agriculture (NIFA) Fellowships Grant Program: Predoctoral Fellowships grant no. 2019-67011-29502/project accession no. 1019134 from the United States Department of Agriculture (USDA), and the American Malting Barley Association grant no. 17037621. Additional funding was provided by Agriculture and Agri-Food Canada grant J-001564, Biological Collections Data Mobilization Initiative (BioMob, Work Package 2). This research was supported in part by the U.S. Department of Agriculture, Agricultural Research Service.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The genome and gene data presented in this study are openly available in NCBI upon publication of this article https://www.ncbi.nlm.nih.gov/ (accessed on 9 November 2021). Accession numbers are detailed in the text Section 2.2 and Table 1.

Acknowledgments: We thank the Molecular Technologies Laboratory (MTL) at the Ottawa Research & Development Centre of Agriculture and Agri-Food Canada, and Kassandra R. Bisson for technical assistance, Chunfang Zheng, and Frank You for bioinformatics assistance, Christopher Schardl for advice during the early stages of the study, two anonymous reviewers for reviewing the manuscript.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results. The USDA is an equal opportunity provider and employer.
27. Jiang, Y.; Ozaki, T.; Harada, M.; Miyasaka, T.; Sato, H.; Miyamoto, K.; Kanazawa, J.; Liu, C.; Maruyama, J.-I.; Adachi, M.; et al. Biosynthesis of indole diterpene lolitrems: Radical-induced cyclization of an epoxycalcohol affording a characteristic lolitremane skeleton. Anzgew. Chem. Int. Ed. 2020, 59, 17996–18002. [CrossRef]

28. Uhlig, S.; Egge-Jacobsen, W.; Vrålstad, T.; Miles, C.O. Indole-diterpenoid profiles of Claviceps paspali and Claviceps purpurea from high-resolution Fourier transform Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2014, 28, 1621–1634. [CrossRef]

29. Negård, M.; Uhlig, S.; Kauserud, H.; Andersen, T.; Høiland, K.; Vrålstad, T. Links between genetic groups, indole alkaloid profiles and ecology within the grass-parasitic Claviceps purpurea species complex. Toxins 2015, 7, 1431–1456. [CrossRef]

30. Uhlig, S.; Rangel-Huerta, O.D.; Divon, H.H.; Rolén, E.; Pauchon, K.; Sumarah, M.W.; Vrålstad, T.; Renaud, J.B. Unraveling the ergot alkaloid and indole diterpenoid metabolome in the Claviceps purpurea species complex using lc–hrms/ms diagnostic fragmentation filtering. J. Agric. Food Chem. 2021, 69, 7137–7148. [CrossRef] [PubMed]

31. Schardl, C.L.; Grossman, R.B.; Nagabhryu, P.; Faulkner, J.R.; Mallik, U.P. Loline alkaloids: Currencies of mutualism. Phytochemistry 2007, 68, 980–996. [CrossRef]

32. Tanaka, A.; Tapper, B.A.; Popay, A.; Parker, E.J.; Scott, B. A symbiosis expressed non-ribosomal peptide synthetase from a mutualistic fungal endophyte of perennial ryegrass confers protection to the symbiotum from insect herbivory. Mol. Microbiol. 2005, 57, 1036–1050. [CrossRef] [PubMed]

33. Duboule, D. Temporal colinearity and the phylotypic progression: A basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. Development 1994, 194, 135–142. [CrossRef]

34. Slack, J.M.W.; Holland, P.W.H.; Graham, C.F. The zootype and the phylotypic stage. Appl. Environ. Microbiol. 2004, 70, 980–996. [CrossRef] [PubMed]

35. Liu, M.; Panaccione, D.G.; Schardl, C.L. Phylogenetic analyses reveal monophyletic origin of the ergot alkaloid gene dmaW in fungi. Evol. Bioinform. 2009, 5, EBO–S2633. [CrossRef] [PubMed]

36. Richardson, M.K. Vertebrate evolution: The developmental origins of adult variation. Nature 1999, 400, 688–690. [CrossRef] [PubMed]

37. Tanda, S. Mycological studies on ergot in Japan (Part 9). Distinct variant of Claviceps purpurea Tul. on Phalaris arundinacea L. and P. arundinacea var. picta L. J. Agric. Sci. Tokyo Nogyo Daigaku 1979, 24, 67–95.

38. Pažoutová, S.; Parbery, D.P. The taxonomy and phylogeny of Claviceps. In Ergot: The Genus Claviceps; Kren, V., Cvak, L., Eds.; Hardwood Academic Publishers (republished 2006 by Taylor and Francise e-Library): Amsterdam, The Netherlands, 1999; pp. 57–77.

39. Pažoutová, S.; Olsosvá, J.; Linka, M.; Kolínská, R.; Fieger, M. Chemoraces and habitat specialization of Claviceps purpurea populations. Appl. Environ. Microbiol. 2000, 66, 5419–5425. [CrossRef] [PubMed]

40. Tudzynski, P.; Correia, T.; Keller, U. Biotechnology and genetics of ergot alkaloids. Appl. Microbiol. Biotechnol. 2001, 57, 593–605. [CrossRef] [PubMed]

41. Liu, M.; Panaccione, D.G.; Schardl, C.L. Phylogenetic analyses reveal monophyletic origin of the ergot alkaloid gene dmaW in fungi. Evol. Bioinform. 2009, 5, EBO–S2633. [CrossRef] [PubMed]

42. Rokas, A.; Wisecaver, J.H.; Lind, A.L. The birth, evolution and death of metabolic gene clusters in fungi. Nat. Rev. Microbiol. 2018, 16, 731–744. [CrossRef]

43. Lorenz, N.; Haarmann, T.; Pažoutová, S.; Jung, M.; Tudzynski, P. The ergot alkaloid gene cluster: Functional analyses and evolutionary aspects. Phytochemistry 2009, 70, 1822–1832. [CrossRef] [PubMed]

44. Raff, R.A. The Shape of Life: Genes, Development, and the Evolution of Animal Form; University of Chicago Press: Chicago, IL, USA, 2012.
55. Galis, F.; van Dooren, T.J.; Metz, J.A. Conservation of the segmented germband stage: Robustness or pleiotropy? *Trends Genet. TIG* 2002, 18, 504–509. [CrossRef]

56. Schlosser, G.; Wagner, G.P. *Modularity in Development and Evolution*; University of Chicago Press: Chicago, IL, USA, 2004.

57. Panaccione, D.G. Origins and significance of ergot alkaloid diversity in fungi. *FEMS Microbiol. Lett.* 2005, 251, 9–17. [CrossRef]

58. Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. *Genetics* 1989, 123, 585–595. [CrossRef] [PubMed]

59. Liu, M.; Shoukouhi, P.; Bisson, K.R.; Wyka, S.A.; Broders, K.D.; Menzies, J.G. Sympatric divergence of the ergot fungus, *Claviceps purpurea*, populations infecting agricultural and nonagricultural grasses in North America. *Ecol. Evol.* 2021, 11, 273–293. [CrossRef]

60. Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. *J. Comput. Biol.* 2012, 19, 455–477. [CrossRef]

61. Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. *Bioinformatics* 2013, 29, 1072–1075. [CrossRef]

62. Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics* 2015, 31, 3210–3212. [CrossRef] [PubMed]

63. Guindon, S.; Dufayard, J.F.; Lefort, V.; Anisimova, M.; Hordijk, W.; Gascuel, O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. *Syst. Biol.* 2010, 59, 307–321. [CrossRef]

64. Rozas, J.; Ferrer-Mata, A.; Sanchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sanchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. *Mol. Biol. Evol.* 2017, 34, 3299–3302. [CrossRef] [PubMed]

65. Deng, W.; Maust, B.S.; Nickle, D.C.; Learn, G.H.; Liu, Y.; Heath, L.; Kosakovsky Pond, S.L.; Mullins, J.I. DIVEIN: A web server to analyze phylogenies, sequence divergence, diversity, and informative sites. *Biotechniques* 2010, 48, 405–408. [CrossRef] [PubMed]