ON HIGHLY-REGULAR GRAPHS

TAICHI KOUSAKA

Abstract. Highly-regular graphs can be regarded as a combinatorial generalization of distance-regular graphs. From this standpoint, we study combinatorial aspects of highly-regular graphs. As a result, we give the following three main results in this paper. Firstly, we give a characterization of a distance-regular graph by using the index and diameter of a highly-regular graph. Secondly, we give two constructions of highly-regular graphs. Finally, we generalize well-known properties of the intersection numbers of a distance-regular graph.

1. Introduction

All graphs which we consider in this paper are finite undirected graphs without loops and multiple edges. For a graph Γ, we denote the vertex set of Γ by \(V(\Gamma) \), the edge set of Γ by \(E(\Gamma) \). For a connected graph Γ and two vertices \(u, v \in V(\Gamma) \), let \(d(u, v) \) be the distance of \(u \) and \(v \), that is, the length of the shortest path from \(u \) to \(v \), and \(\text{diam}(\Gamma) \) be the diameter of a graph Γ, that is, the maximum length of \(d(u, v) \), \(u,v \in V(\Gamma) \). If Γ is not connected, the diameter of Γ is defined as infinity. For a vertex \(u \) and an integer \(i \in \{0, \ldots, \text{diam}(\Gamma)\} \), let \(D_i(u) \) or \(D_i,\Gamma(u) \) be a set of all vertices which are at distance \(i \) from \(u \). Let \(V(\Gamma) = \{v_1, \ldots, v_n\} \) a labeling of \(V(\Gamma) \) and \(A \) be the adjacency matrix of a graph Γ with spectrum \(\text{sp}(\Gamma) = \{\lambda_0^{m(\lambda_0)}, \ldots, \lambda_d^{m(\lambda_d)}\} \), where \(\lambda_0 > \cdots > \lambda_d \), and the superscripts \(m(\lambda_i) \) stand for the multiplicities. Let \(E_i, i = 0, \ldots, d \) be the minimal idempotents representing the orthogonal projections on the eigenspaces associated with \(\lambda_i \). The above notation is used throughout this paper.

Classically, many special regular graphs have been widely studied. An important class of regular graphs is the class of strongly-regular graphs. Here, a connected graph Γ is strongly-regular with parameters \((k, \alpha, \beta) \) if it is \(k \)-regular, for any \(u,v \in V(\Gamma) \) with \(\{u,v\} \in E(\Gamma) \), \(|D_1(u) \cap D_1(v)| = \alpha \) and for any \(u,v \in V(\Gamma) \) with \(\{u,v\} \notin E(\Gamma) \), \(|D_1(u) \cap D_1(v)| = \beta \). The class of strongly-regular graphs is much smaller than the class of regular graphs. There is a wider class which is contained in the class of regular graphs and contains the class of strongly-regular graphs. It is the class of highly-regular graphs. Here, a graph Γ of order \(n \) is highly-regular with collapsed adjacency matrix (CAM, for short) \(C = [c_{i,j}]_{1 \leq i,j \leq m} \) \((2 \leq m < n) \) if for every vertex \(u \in V(\Gamma) \) there is a partition of \(V(\Gamma) \) into \(V_1(u) = \{u\}, V_2(u), \ldots, V_m(u) \)

2010 Mathematics Subject Classification. 05E30, 05C50.

Key words and phrases. highly-regular graph, distance-regular graph, symmetric association scheme, intersection numbers.
such that each vertex \(y \in V_j(u) \) is adjacent to \(c_{i,j} \) vertices in \(V_i(u) \). In this paper, we allow \(m = n \) only if \(n = 2 \). Namely, we regard the 1-regular graph as a highly-regular graph. The class of highly-regular graphs was introduced as an interesting class of regular graphs by B. Bollobás (cf. [7]). Highly-regular graphs are a combinatorial generalization of strongly-regular graphs (cf. [6]). From this standpoint, strongly-regular graphs are characterized by index of highly-regular graphs (cf. [1]). Here, the index of a highly-regular graph is the least positive integer of the size of CAMs. The index is an important invariant of highly-regular graphs.

In addition to the above two classes, there are other classically well-known classes of regular graphs. One of these classes is the class of distance-transitive graphs. Here, a connected graph \(\Gamma \) is distance-transitive if for every four vertices \(u, v, x, y \in V(\Gamma) \) with \(d(u, v) = d(x, y) \), there exists an automorphism \(\sigma \) of \(\Gamma \) such that \(\sigma(x) = u \) and \(\sigma(y) = v \) (cf. [8]). One of the important and remarkable properties of distance-transitive graphs is that there are only finitely many distance-transitive graphs of fixed valency greater than 2 (cf. [9], [10]). There are many important properties of distance-transitive graphs which are related to the other mathematical theory such as algebraic combinatorics. N. Biggs introduced distance-regular graphs as a combinatorial generalization of distance-transitive graphs by observing that several combinatorial properties of distance-transitive graphs also hold in the class of distance-regular graphs. Here, a connected graph \(\Gamma \) is distance-regular if the integers \(|D_1(v) \cap D_{i-1}(u)| \), \(|D_1(v) \cap D_i(u)| \), and \(|D_1(v) \cap D_{i+1}(u)| \) depend only on \(i = d(u, v) \in \{1, \ldots, \text{diam}(\Gamma)\} \) (cf. [8]). In 1984, E. Bannai and T. Ito conjectured that there are only finitely many distance-regular graphs of fixed valency greater than 2 (cf. [1]). In 2015, S. Bang, A. Dubickas, J. H. Koolen and V. Moulton proved this conjecture conclusively (cf. [3]).

So far, we introduced four classes of regular graphs, that is, strongly-regular graphs, highly-regular graphs, distance-transitive graphs and distance-regular graphs. As we mentioned above, highly-regular graphs and distance-regular graphs were introduced in different contexts. However, there is a naturally connection. Distance-regular graphs are highly-regular graphs, that is, highly-regular graphs can be regarded as a combinatorial generalization of distance-regular graphs. From this standpoint, we study combinatorial aspects of highly-regular graphs. As a result, we give the following three main results in this paper.

Firstly, distance-regular graphs are characterized by index and diameter of highly-regular graphs.

Theorem 1.1. A connected highly-regular graph \(\Gamma \) has the index \(\text{diam}(\Gamma) + 1 \) if and only if it is a distance-regular graph.

Secondly, we give a construction of connected highly-regular graphs with diameter 2 which are not distance-regular graphs. Moreover, we also give a construction of highly-regular graphs which do not always have diameter 2 by using a symmetric association scheme.
Theorem 1.2. For a highly-regular graph Γ with $3 \leq \text{diam}(\Gamma) < \infty$, the complement of the graph is a highly-regular graph with $\text{diam}(\overline{\Gamma}) = 2$ which is not a distance-regular graph. Moreover, Let $\mathcal{X} = (X, \{R_i \}_{i=0}^d)$ be a symmetric association scheme of class d. Then, for each $l \in \{1, \ldots, d\}$, the graph $\Gamma_{R_l} = (X, E_{R_l})$ is a highly-regular graph, where $E_{R_l} = \{\{x,y\} \mid (x,y) \in R_l\}$.

Poulos showed that finite upper half plane graphs are highly-regular graphs (cf. [2], [15]). The construction of highly-regular graphs by using a symmetric association scheme in Theorem 1.2 is a generalization of Poulos’s result.

Finally, we give a generalization of well-known properties of the intersection numbers of distance-regular graphs.

Theorem 1.3. Let Γ be a connected highly-regular graph with $\text{CAM} C = [c_{i,j}]_{i,j \leq m}$ and valency k. Here, let a labeling of C be a labeling with respect to distance. For each $i \in \{0, \ldots, \text{diam}(\Gamma)\}$, there exists a nonempty subset S_i of $I = \{1, \ldots, m\}$ such that $D_i(u) = \bigcup_{l \in S_i} V_l(u)$, $u \in V$. For each $i \in \{1, \ldots, \text{diam}(\Gamma)\}$, let the integers b_{i-1}^{max}, c_i^{max}, and c_i^{min} be the following:

- $b_{i-1}^{\text{max}} = \max \{\sum_{l \in S_i} c_{i,l} \mid l \in S_{i-1}\}$.
- $c_i^{\text{max}} = \max \{\sum_{l \in S_{i-1}} c_{i,l} \mid l \in S_i\}$.
- $c_i^{\text{min}} = \min \{\sum_{l \in S_{i-1}} c_{i,l} \mid l \in S_i\}$.

Then, the following inequalities hold:

1. $k = b_0^{\text{max}} \geq b_1^{\text{max}} \geq \cdots \geq b_{\text{diam}(\Gamma)-1}^{\text{max}} \geq 1$.
2. $1 = c_1^{\text{min}} \leq c_2^{\text{min}} \leq \cdots \leq c_{\text{diam}(\Gamma)}^{\text{min}} \leq k$.

Moreover, we suppose that Γ satisfies the following property: \((\ast)\) For any $u \in V(\Gamma)$, $i \in \{0, 1, \ldots, \text{diam}(\Gamma) - 1\}$, $x \in D_i(u)$, the set $D_1(x) \cap D_{i+1}(u)$ is nonempty set. Then, the following inequality holds:

3. If $i \geq 1$ and $i + j \leq \text{diam}(\Gamma)$, then $c_i^{\text{max}} \leq b_j^{\text{max}}$.

It is well-known that distance-regular graphs have interesting combinatorial properties. Moreover, distance-regular graphs have many applications such as coding theory. On the other hand, the class of highly-regular graphs is very wide. For example, vertex-transitive graphs with non-identity stabilizers are highly-regular graphs. For such reasons, it seems that it is difficult to investigate interesting properties of highly-regular graphs. As we described above, however, highly-regular graphs have similar properties of distance-regular graphs. Therefore, we believe that it is an interesting approach to study highly-regular graphs that highly-regular graphs are considered as a generalization of distance-regular graphs.

2. Preliminaries

Let Γ be a graph of order n. We denote the complement of Γ by $\overline{\Gamma}$. If Γ is a distance-regular graph, the complement of Γ is not always a distance-regular graph. However, if Γ is a strongly-regular graph and Γ is connected, Γ is also a strongly-regular graph. This property is generalized to a highly-regular graph as follows.
Proposition 2.1. (cf. [1, PROPOSITION 1]). A graph Γ is a highly-regular graph if and only if the complement of Γ is a highly-regular graph.

For two graphs Γ_1 and Γ_2, the Cartesian product $\Gamma_1 \square \Gamma_2$ of Γ_1 and Γ_2 is a graph such that the vertex set of $\Gamma_1 \square \Gamma_2$ is $V(\Gamma_1) \times V(\Gamma_2)$, and two vertices $(u_1, v_1), (u_2, v_2)$ are adjacent if and only if $u_1 = u_2$ and $\{v_1, v_2\} \in E(\Gamma_2)$, or $v_1 = v_2$ and $\{u_1, u_2\} \in E(\Gamma_1)$. In general, the Cartesian product of two distance-regular graphs is not always a distance-regular graph. However, the Cartesian product of two highly-regular graphs is a highly-regular graph.

Proposition 2.2. (cf. [1, PROPOSITION 6]). If Γ_1 and Γ_2 are highly-regular graphs, the Cartesian product $\Gamma_1 \square \Gamma_2$ is a highly-regular graph.

Properties of a partition of a vertex set corresponding to a CAM are important in the class of highly-regular graphs. It is straightforward to see that distance-regular graphs are highly-regular graphs. Therefore, highly-regular graphs are a combinatorial generalization of distance-regular graphs. The following expected properties are satisfied.

Proposition 2.3. (cf. [1, PROPOSITION 3]). Let Γ be a connected highly-regular graph with CAM $C = \{c_{ij}\}_{i,j \leq m}$. For $u, v \in V(\Gamma)$, let $V_1(u) = \{u\}, V_2(u), \ldots, V_m(u)$ and $V_1(v) = \{v\}, V_2(v), \ldots, V_m(v)$ be the corresponding partitions of $V(\Gamma)$. Then the following properties are satisfied.

1. For each $i \in \{0, 1, \ldots, \text{diam}(\Gamma)\}$, there exists a nonempty subset S_i of $I = \{1, 2, \ldots, m\}$ such that $D_i(u) = \bigcup_{i \in S_i} V_i(u)$, $D_i(v) = \bigcup_{i \in S_i} V_i(v)$.

2. For $t \in \{1, 2, \ldots, m\}$, $|V_t(u)| = |V_t(v)|$.

3. For $i \in \{0, 1, \ldots, \text{diam}(\Gamma)\}$, the induced subgraph of $D_i(u)$ and the induced subgraph of $D_i(v)$ have the same degree sequence.

In Section 1, we introduced four classes of regular graphs, that is, strongly-regular graphs, highly-regular graphs, distance-transitive graphs and distance-regular graphs. Now, we introduce an invariant of highly-regular graphs (cf. [1]).

Let Γ be a highly-regular graph of order n. The index of Γ is the least positive integer m such that a CAM has the size m ($2 \leq m < n$), and we denote by $i(\Gamma)$. By Proposition 2.1, the index of a highly-regular graph is equal to that of the complement of the graph. By Proposition 2.3, the index $i(\Gamma)$ is greater than $\text{diam}(\Gamma)$ if the graph Γ is connected. Moreover, we get a lower bound of $i(\Gamma)$.

Let Γ be a connected highly-regular graph. For any vertex $u \in V(\Gamma)$ and for any $i \in \{1, \ldots, \text{diam}(\Gamma)\}$, we denote the induced subgraph of $D_i(u)$ by $\langle D_i(u) \rangle$. Then, we have the following proposition.

Proposition 2.4. (cf. [1, PROPOSITION 5]). If the cardinality of the degree set of $\langle D_i(u) \rangle$ ($1 \leq i \leq \text{diam}(\Gamma)$) is k_i, then

$$i(\Gamma) \geq 1 + \sum_{i=1}^{\text{diam}(\Gamma)} k_i.$$
By the above discussion, we have the following inequalities.

\[i(\Gamma) \geq 1 + \sum_{i=1}^{\text{diam}(\Gamma)} k_i \geq 1 + \text{diam}(\Gamma). \]

Here, we note that we can easily find highly-regular graphs which do not attain the above equalities.

3. A characterization of distance-regular graphs by using index and diameter of highly-regular graphs

In Section 2, we introduced index of highly-regular graphs. By using the index, we can characterize a strongly-regular graph, that is, a connected highly-regular graph has the index 3 if and only if it is a strongly-regular graph (cf. [1]). In this section, we characterize a distance-regular graph by using the index.

Theorem 3.1. A graph \(\Gamma \) is a connected highly-regular graph with the valency \(k \) and CAM of the form (up to a labeling)

\[
\begin{pmatrix}
0 & 1 & 0 & \cdots & 0 & 0 \\
k & a_1 & c_2 & \vdots & \vdots \\
0 & b_1 & \ddots & \ddots & 0 & \vdots \\
\vdots & 0 & \ddots & \ddots & c_{m-2} & 0 \\
\vdots & \vdots & \ddots & \ddots & 0 & b_{m-2} \\
0 & 0 & \cdots & 0 & b_{m-2} & a_{m-1}
\end{pmatrix}
\]

if and only if it is a distance-regular graph with \(\text{diam}(\Gamma) = m - 1 \).

Proof. Let \(\Gamma \) be a connected highly-regular graph which satisfies the above condition. For any \(v \in V(\Gamma) \), there exists a partition of \(V(\Gamma) \) with respect to the above CAM. Let \(V_0(v) = \{v\}, V_1(v), \ldots, V_{m-1}(v) \) be the partition of \(V(\Gamma) \). First, we have \(D_0(v) = \{v\} = V_0(v) \). By the first column of the CAM, we have \(D_1(v) = V_1(v) \). Then, by the second column of the CAM, we have \(D_2(v) = V_2(v) \). By repeating this argument, we have \(D_{\text{diam}(\Gamma)} = V_{m-1}(v) \). Hence, \(m = \text{diam}(\Gamma) + 1 \) and \(\Gamma \) is a distance-regular graph.

Conversely, we suppose a graph \(\Gamma \) is a distance-regular graph with \(\text{diam}(\Gamma) = m - 1 \). By the definition of a distance-regular graph and the index, we have \(1 + \text{diam}(\Gamma) \geq i(\Gamma) \). By \(i(\Gamma) \geq 1 + \text{diam}(\Gamma) \), we have \(i(\Gamma) = m \). Therefore, we have the desired result.

\[\square \]

By Theorem 3.1, we conclude the following characterization of a distance-regular graph by using the index.

Corollary 3.2. Let \(\Gamma \) be a connected highly-regular graph. Then, the graph \(\Gamma \) has the index \(\text{diam}(\Gamma) + 1 \) if and only if it is a distance-regular graph.
This is very useful to determine whether a highly-regular graph is a distance-regular graph.

4. A CONSTRUCTION OF HIGHLY-REGULAR GRAPHS WITH DIAMETER 2 WHICH ARE NOT DISTANCE-REGULAR GRAPHS

In Section 3, we characterize a distance-regular graph by the index of a highly-regular graph. In this section, we construct highly-regular graphs with diameter 2 which are not distance-regular graphs.

Let Γ be a highly-regular graph with $2 \leq \text{diam}(\Gamma) < \infty$.

First, we consider the case where Γ is a distance-regular graph. By Corollary 3.2, the graph Γ has the index $\text{diam}(\Gamma) + 1$.

If $\text{diam}(\Gamma)$ is equal to 2, the graph Γ and the complement $\overline{\Gamma}$ have the index 3. In this case, if $\overline{\Gamma}$ is connected, both Γ and $\overline{\Gamma}$ are strongly-regular graphs.

If $\text{diam}(\Gamma)$ is greater than 2, $\text{diam}(\overline{\Gamma})$ is equal to 2. Here, we note that for a connected regular graph with the diameter greater than 2, the diameter of the complement is 2. Hence, we have the following inequality.

$$i(\Gamma) = 1 + \text{diam}(\Gamma) > 1 + \text{diam}(\overline{\Gamma}).$$

By Proposition 2.1, the index of Γ is equal to the index of $\overline{\Gamma}$. Therefore, we have the following inequality.

$$i(\overline{\Gamma}) > 1 + \text{diam}(\overline{\Gamma}).$$

By Corollary 3.2, the graph $\overline{\Gamma}$ is a highly-regular graph which is not a distance-regular graph with $\text{diam}(\overline{\Gamma}) = 2$.

Next, we consider the case where the graph Γ is not a distance-regular graph. If $\text{diam}(\overline{\Gamma})$ is equal to 2, the index of $\overline{\Gamma}$ is greater than 3. If $\text{diam}(\Gamma)$ is greater than 2, the index of $\overline{\Gamma}$ is greater than 3. Therefore, the graph $\overline{\Gamma}$ is a highly-regular graph which is not a distance-regular graph with $\text{diam}(\overline{\Gamma}) = 2$.

By the above discussion, we conclude the following theorem.

Theorem 4.1. For a highly-regular graph Γ with $3 \leq \text{diam}(\Gamma) < \infty$, the complement of the graph is a highly-regular graph with $\text{diam}(\overline{\Gamma}) = 2$ which is not a distance-regular graph.

By taking the complement of a distance-regular graph with the diameter greater than 2, we obtain a highly-regular graph with the diameter 2 which is not a distance-regular graph.

5. ANOTHER CONSTRUCTION OF HIGHLY REGULAR GRAPHS BY USING A SYMMETRIC ASSOCIATION SCHEMES

In Section 4, we gave a construction of highly-regular graphs which are not distance-regular graphs. However, this construction can generate only highly-regular graphs with diameter 2 which are not distance-regular graphs. In this section, we
give another construction of highly-regular graphs by using a symmetric association
scheme.

Let \(X \) be a finite set and \(R_i (i = 0, \ldots, d) \) be nonempty subsets of \(X \times X \). A

symmetric association scheme of class \(d \) **is a pair** \(\mathfrak{X} = (X, \{R_i\}_{i=0}^d) **satisfying the following conditions:**

- \((SAS-1)\) \(R_0 = \{(x,x) \mid x \in X\}\).
- \((SAS-2)\) \(X \times X = \bigsqcup_{i=0}^d R_i \).
- \((SAS-3)\) \(^tR_i = R_i \) for any \(i \in \{0, \ldots, d\} \), where \(^tR_i = \{(y,x) \mid (x,y) \in R_i\}\).
- \((SAS-4)\) for any \(i, j, l \in \{1, \ldots, d\} \), there exists constants \(p_{i,j}^l \) such that for all \(x, y \in X \) with \((x,y) \in R_l \),
 \(p_{i,j}^l = |\{z \in X \mid (x,z) \in R_i \text{ and } (z,y) \in R_j\}| \).

The above constants \(p_{i,j}^l \) are called the **intersection numbers**. For each \(i \in \{0, \ldots, d\} \), we denote the matrix \([p_{i,j}^l]_{0 \leq j, l \leq d} \) by \(B_i \). The matrix \(B_i \) is called the **i-th intersection matrix** of \(\mathfrak{X} \). For any \(x \in X \) and \(R_i \), we denote a set of elements \(y \in X \) with \((x,y) \in R_i \) by \(xR_i \).

Let \(\mathfrak{X} = (X, \{R_i\}_{i=0}^d) **be a symmetric association scheme of class** \(d \). Then, we
have the following theorem.

Theorem 5.1. For each \(l \in \{0, \ldots, d\} \), the graph \(\Gamma_{R_l} = (X, E_{R_l}) **is a highly-regular graph with CAM** \(B_l \).

Proof. We take arbitrary \(x \in X \). By \((SAS-2) \), we get the decomposition of \(X \) as follows:

\[
X = \bigsqcup_{i=0}^d xR_i.
\]

We take any two partitions \(xR_i, xR_j \) of the above decomposition. By \((SAS-4) \), for any \(y \in xR_j \), the number of vertices \(z \in xR_i \) such that \(\{y,z\} \in E_{R_l} \) is equal to \(p_{i,j}^l \).

The integer \(p_{i,j}^l \) is independent of choice of an element \((x,y) \in R_j \). In particular,
the integer \(p_{i,j}^l \) is independent of choice of \(y \in xR_j \). Therefore, the graph \(\Gamma_{R_l} \) is a
highly-regular graph with CAM \(B_l \). \(\square \)

Moreover, let \(G \) be a finite group and \(G \) acts on \(X \) transitively. Let \(S = \{\Delta_0, \ldots, \Delta_d\} \) be the set of \(G \)-orbits of \(X \times X \). We suppose that each \(G \)-orbit of \(X \times X \) is symmetric. Then, \(\mathfrak{X} = (X, S) **is a symmetric association scheme of class** \(d \). This symmetric association scheme is closely related to harmonic analysis
of finite homogeneous spaces (cf. [4], [11]). By Theorem 5.1, we have the following corollary.

Corollary 5.2. For each \(l \in \{0, \ldots, d\} \), the graph \(X_{\Delta_l} \) **is a highly-regular graph with CAM** \(B_l \).

By Theorem 5.1 and Corollary 5.2, we get many examples of highly-regular graphs
which are not always distance-regular graphs. For example, Euclidean graphs and
finite upper half plane graphs are highly-regular graphs (cf. [15]). Generalized Euclidean graphs are highly-regular graphs (cf. [5], [13]). Moreover, the other graphs which appear in [13] are also.

In the rest of this section, we construct graphs which are a special case of graphs defined by W. Li in [14]. Let \(p \) be an odd prime, \(r \) be an even number and \(\mathbb{F}_p^r / \mathbb{F}_p \) be a finite field extension of degree \(r \). Let \(N_r \) be the kernel of the norm map of the extension \(\mathbb{F}_p^r / \mathbb{F}_p \). \(N_r \) acts \(\mathbb{F}_p^r \) by multiplication. Then, we consider the semidirect product group \(N_r \rtimes \mathbb{F}_p^r \). The semidirect product group \(N_r \rtimes \mathbb{F}_p^r \) acts \(\mathbb{F}_p^r \) naturally.

Fix \(0 \in \mathbb{F}_p^r \). The stabilizer of \(0 \) is \(N_r \rtimes \{0\} \cong N_r \). Then, we have the \(N_r \rtimes \mathbb{F}_p^r \)-orbit decomposition of \(\mathbb{F}_p^r \times \mathbb{F}_p^r \) as follows:

\[
\mathbb{F}_p^r \times \mathbb{F}_p^r = \bigsqcup_{i \in \mathbb{F}_p^r} \Delta_i,
\]

where for each \(i \in \mathbb{F}_p^r \), \(\Delta_i = \{(x, y) \in \mathbb{F}_p^r \times \mathbb{F}_p^r \mid N_{\mathbb{F}_p^r / \mathbb{F}_p}(y - x) = i\} \) and \(\Delta_0 = \{(x, x) \in \mathbb{F}_p^r \times \mathbb{F}_p^r\} \). Since \(p \) is an odd and \(r \) is an even, each \(N_r \rtimes \mathbb{F}_p^r \)-orbit is symmetric. Therefore, the pair \((N_r \rtimes \mathbb{F}_p^r, N_r \rtimes \{0\})\) is a (symmetric) Gelfand pair. By Corollary 5.2, for each \(l \in \{0, \ldots, p-1\} \), the graph \(X_{\Delta_l} \) is a highly-regular graph. We denote \(X_{\Delta_l} \) by \(WL(p, r, l) \) in this paper. Here, we note that we can easily compute the \(N_r \rtimes \mathbb{F}_p^r \)-irreducible decomposition of the \(\ell^2 \)-space \(\ell^2(\mathbb{F}_p^r) \) by using (1).

Therefore, we get Kloosterman sums as the spherical functions and several formulas corresponding to formulas of spherical functions such as convolution property and addition theorem. Moreover, we get a formula of Kloosterman sums by using the fact that they are simultaneous eigenfunctions of the intersection matrices.

Remark 5.3. We can apply the above ways to give several formulas of character sums arising as spherical functions including Gauss periods and Kloosterman sums (cf. [5], [13]). Moreover, we note that both eigenvalues and eigenvectors of \(B_l \) are expressed by the same spherical functions. This is an interesting property of highly-regular graphs constructed by using Corollary 5.2.

6. Basic properties of the elements of a CAM

In Section 3, we showed that a connected highly-regular graph has the index \(\text{diam}(\Gamma) + 1 \) if and only if it is a distance-regular graph. Naturally, hence, we can regard the elements of a CAM as generalized constants of the intersection numbers of distance-regular graphs.

Let \(\Gamma \) be a highly-regular graph which satisfies the condition in Theorem 3.1. The following are well-known basic properties of the intersection numbers of a distance-regular graph:

- \(k = b_0 \geq b_1 \geq \cdots \geq b_{m-2} \geq 1 \).
- \(1 = c_1 \leq c_2 \leq \cdots \leq c_{m-1} \leq k \).

In this section, we give a generalization of the above basic properties of intersection numbers of a distance-regular graph.
Proposition 2.3, for each $i \in \{0, 1, \ldots, \operatorname{diam}(\Gamma)\}$, there exists a nonempty subset S_i of $I = \{1, \ldots, m\}$ such that for any $u \in V$, $D_i(u) = \bigcup_{t \in S_i} V_t(u)$. For each $i \in \{1, \ldots, \operatorname{diam}(\Gamma)\}$, let the integers $b_{i-1}^\text{max}, c_i^\text{max},$ and c_i^min be the following:

- $b_{i-1}^\text{max} = \max\{\sum_{t \in S_i} c_{t,l} \mid l \in S_{i-1}\}$.
- $c_i^\text{max} = \max\{\sum_{t \in S_i} c_{t,l} \mid l \in S_i\}$.
- $c_i^\text{min} = \min\{\sum_{t \in S_i} c_{t,l} \mid l \in S_i\}$.

Then, we get the following proposition.

Proposition 6.1. We have the following inequalities:

1. $k = b_0^\text{max} \geq b_1^\text{max} \geq \cdots \geq b_{\operatorname{diam}(\Gamma)-1}^\text{max} \geq 1$.
2. $1 = c_1^\text{min} \leq c_2^\text{min} \leq \cdots \leq c_{\operatorname{diam}(\Gamma)}^\text{min} \leq k$.

Proof. (1) For $i = 1$, it is clear that b_0^max is equal to k. For $i \geq 1$, we take arbitrary $y \in V(\Gamma)$ and $l \in S_i$. Then, there exist elements $z \in D_1(y)$ and $s \in S_{i-1}$ such that $V_l(y) \cap V_s(z) \neq \emptyset$. We take arbitrary $x \in V_l(y) \cap V_s(z)$. First, we show that $D_1(x) \cap D_{i+1}(y) \subset D_1(x) \cap D_i(z)$. We take $w \in D_1(x) \cap D_{i+1}(y)$. The distance $d(z, w)$ is less than or equal to $d(z, x) + d(x, w) = i$. On the other hand, the distance $d(z, w)$ is greater than or equal to i since the distance $d(z, w) + d(z, y)$ is greater than or equal to the distance $d(w, y) = i + 1$. Hence, the element w is in $D_1(x) \cap D_i(z)$. Then, we have $D_1(x) \cap D_{i+1}(y) \subset D_1(x) \cap D_i(z)$. By using this, we have

$$\sum_{t \in S_{i+1}} c_{t,l} \leq \sum_{t \in S_i} c_{t,s}.$$

Then, for any $l \in S_i$, we have

$$\sum_{t \in S_{i+1}} c_{t,l} \leq b_{i-1}^\text{max}.$$

Therefore, we have $b_{i-1}^\text{max} \leq b_{i-1}^\text{max}$.

(2) For $i = 1$, it is clear that c_i^min is equal to 1. For $i \geq 1$, we take arbitrary $z \in V(\Gamma)$ and $s \in S_{i+1}$. Then, there exist $y \in D_1(z)$ and $l \in S_i$ such that $V_s(z) \cap V_l(y) \neq \emptyset$. We take arbitrary $x \in V_l(y) \cap V_s(z)$. First, we show that $D_1(x) \cap D_{i-1}(y) \subset D_1(x) \cap D_i(z)$. We take $w \in D_1(x) \cap D_{i-1}(y)$. The distance $d(w, z)$ is less than or equal to i since $d(w, z)$ is less than or equal to $d(y, z) + d(y, w)$. On the other hand, the distance $d(w, z)$ is greater than or equal to i since $d(w, z) + d(w, x)$ is greater than or equal to $d(z, x)$. Hence, the element w is in $D_1(x) \cap D_i(z)$ and we have $D_1(x) \cap D_{i-1}(y) \subset D_1(x) \cap D_i(z)$. By using this, we have

$$\sum_{t \in S_{i-1}} c_{t,l} \leq \sum_{t \in S_i} c_{t,s}.$$

By taking any $l \in S_i$, we have

$$\sum_{t \in S_{i-1}} c_{t,l} \leq c_i^\text{min}.$$
Then, for any $k \in S_{i+1}$, we have
\[c_{i}^{\min} \leq \sum_{t \in S_{i}} c_{t,s}. \]
Therefore, we have $c_{i}^{\min} \leq c_{i+1}^{\min}$. \hfill \Box

Remark 6.2. It is clear that the following property holds:
\[\sum_{j=0}^{m} c_{i,j} = k. \]

Remark 6.3. We note that the following statement may not always hold in general:
\((\star)\) For any $u \in V(\Gamma)$, $i \in \{0, 1, \ldots, \text{diam}(\Gamma) - 1\}$, $x \in D_{i}(u)$, the set $D_{i}(x) \cap D_{i+1}(u)$ is nonempty set. In fact, there is a counter-example of this statement such as the graph $WL(7, 2, 1)$ which we defined in Section 5 (cf. Figure 1). The graph $WL(7, 2, 1)$ has the diameter 3 and for each vertex u, there exists a vertex x which is at distance 2 from the vertex u such that $D_{1}(x) \cap D_{3}(u) = \emptyset$.

![Figure 1. $WL(7, 2, 1)$](image)

The above phenomenon is a difference between highly-regular graphs and distance-regular graphs. For a highly-regular graph which satisfies the above statement $\,(\star)$, the integers b_{i-1}^{\max} and c_{i}^{\max} are satisfied the following property.

Proposition 6.4. We have the following inequality: If $i \geq 1$ and $i + j \leq \text{diam}(\Gamma)$, then $c_{i}^{\max} \leq b_{i}^{\max}$.

Proof. We take arbitrary $y \in V(\Gamma)$, $l \in S_{i}$ and $x \in V_{l}(y)$. By the assumption $\,(\star)$, there exists the shortest path from x to some element $z \in D_{i+j}(y)$. Then, there exists $s \in S_{j}$ such that $x \in V_{s}(z)$. First, we show that $D_{1}(x) \cap D_{i-1}(y) \subset D_{1}(x) \cap D_{j+1}(z)$. We take $w \in D_{1}(x) \cap D_{i-1}(y)$. The distance $d(w, z)$ is less than or equal to $1 + j$. The above phenomenon is a difference between highly-regular graphs and distance-regular graphs. For a highly-regular graph which satisfies the above statement $\,(\star)$, the integers b_{i-1}^{\max} and c_{i}^{\max} are satisfied the following property.

Proposition 6.4. We have the following inequality: If $i \geq 1$ and $i + j \leq \text{diam}(\Gamma)$, then $c_{i}^{\max} \leq b_{i}^{\max}$.

Proof. We take arbitrary $y \in V(\Gamma)$, $l \in S_{i}$ and $x \in V_{l}(y)$. By the assumption $\,(\star)$, there exists the shortest path from x to some element $z \in D_{i+j}(y)$. Then, there exists $s \in S_{j}$ such that $x \in V_{s}(z)$. First, we show that $D_{1}(x) \cap D_{i-1}(y) \subset D_{1}(x) \cap D_{j+1}(z)$. We take $w \in D_{1}(x) \cap D_{i-1}(y)$. The distance $d(w, z)$ is less than or equal to $1 + j$. The above phenomenon is a difference between highly-regular graphs and distance-regular graphs. For a highly-regular graph which satisfies the above statement $\,(\star)$, the integers b_{i-1}^{\max} and c_{i}^{\max} are satisfied the following property.

Proposition 6.4. We have the following inequality: If $i \geq 1$ and $i + j \leq \text{diam}(\Gamma)$, then $c_{i}^{\max} \leq b_{i}^{\max}$.

Proof. We take arbitrary $y \in V(\Gamma)$, $l \in S_{i}$ and $x \in V_{l}(y)$. By the assumption $\,(\star)$, there exists the shortest path from x to some element $z \in D_{i+j}(y)$. Then, there exists $s \in S_{j}$ such that $x \in V_{s}(z)$. First, we show that $D_{1}(x) \cap D_{i-1}(y) \subset D_{1}(x) \cap D_{j+1}(z)$. We take $w \in D_{1}(x) \cap D_{i-1}(y)$. The distance $d(w, z)$ is less than or equal to $1 + j$.
since \(d(w, x) + d(x, z) \) is greater than or equal to \(d(w, z) \). On the other hand, the distance \(d(w, z) \) is greater than or equal to \(1 + j \) since \(d(w, z) + d(w, y) \) is greater than or equal to \(d(z, y) \). Hence, the element \(w \) is in \(D_1(x) \cap D_{j+1}(z) \). Then, we have \(D_1(x) \cap D_{i-1}(y) \subset D_1(x) \cap D_{j+1}(z) \). By using this, we have
\[
\sum_{t \in S_{i-1}} c_{t,l} \leq \sum_{t \in S_{j+1}} c_{t,s}.
\]
Then, for any \(l \in S_i \), we have
\[
\sum_{t \in S_{i-1}} c_{t,l} \leq b_{j}^{\max}.
\]
Therefore, we have \(c_{i}^{\max} \leq b_{j}^{\max} \). □

By Propositions 6.1, 6.4, we conclude the following theorem.

Theorem 6.5. For a connected highly-regular graph, we have the following inequalities:

1. \(k = b_0^{\max} \geq b_1^{\max} \geq \cdots \geq b_{m-1}^{\max} \geq 1 \).
2. \(1 = c_1^{\min} \leq c_2^{\min} \leq \cdots \leq c_m^{\min} \leq k \).

Moreover, we suppose that \(\Gamma \) satisfies the following property: \((\star)\) For any \(u \in V(\Gamma) \), \(i \in \{0, 1, \ldots, \operatorname{diam}(\Gamma) - 1\} \), \(x \in D_i(u) \), the set \(D_1(x) \cap D_{i+1}(u) \) is nonempty set. Then, the following inequality holds:

3. If \(i \geq 1 \) and \(i + j \leq \operatorname{diam}(\Gamma) \), then \(c_i^{\max} \leq b_j^{\max} \).

We give an example of Theorem 6.5. Let \(C \) be the following matrix:

\[
C = \begin{pmatrix}
0 & 1 & 0 & 0 & 0 \\
4 & 0 & 2 & 1 & 0 \\
0 & 2 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 2 & 2 & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{pmatrix}
\]

We consider the graph \(C_5 \square C_5 \) (cf. Figure 2). Here, \(C_5 \) is the cycle graph of order 5. Let the labeling of vertices be the same as in Figure 2. It is easy to check that this graph is a highly-regular graph with CAM \(C \) which satisfies the condition \((\star)\). For the vertex \(25 \in V(C_5 \square C_5) \), we can take the partition of \(V(C_5 \square C_5) \) with respect to \(25 \in V(C_5 \square C_5) \) as follows:

\[
\begin{align*}
V_0(25) &= \{25\}, \\
V_1(25) &= \{5, 20, 21, 24\}, \\
V_2(25) &= \{1, 4, 16, 19\}, V_2(25) &= \{10, 15, 22, 23\}, \\
V_3(25) &= \{2, 3, 6, 9, 11, 14, 17, 18\}, \\
V_4(25) &= \{7, 8, 12, 13\}.
\end{align*}
\]

The entries of the matrix \(C \) satisfy the inequalities in Theorem 6.5.
APPENDIX A. INFINITE FAMILIES OF CONNECTED HIGHLY-REGULAR GRAPHS WITH FIXED VALENCY WHICH ARE NOT DISTANCE-REGULAR GRAPHS

In this section, we give infinite families of connected highly-regular graphs with fixed valency which are not distance-regular graphs explicitly. More precisely, we discuss the following question:

Question 1. Are there only finitely many connected highly-regular graphs of fixed valency greater than 2 which are not distance-regular graphs?

First, we construct highly-regular graphs of the valency 3 and 4 which are not distance-regular graphs explicitly.

Let n, m be positive integers greater than 1. We denote the graph $C_n \Box C_m$ by $T_{n,m}$, where C_n and C_m are cycle graphs of order n and m respectively. Here, we note that C_2 is in Figure 3. Also, we note that the graph $T_{n,m}$ is vertex-transitive. Without loss of generality, We may assume $n \leq m$.

By Proposition 2.2, the graph $T_{n,m}$ is a connected highly-regular graph since a cycle graph is a distance-regular graph. Then, we have the following theorem.

Proposition A.1. The graph $T_{n,m}$ is a connected highly-regular graph which is not a distance-regular graph except for the cases $(n, m) = (2, 2), (2, 4), (3, 3), (4, 4)$.

Proof. In the case $n = 2$, $T_{2,m}$ has the valency 3. If $m = 2$, $T_{2,2}$ is the cycle graph of order 4. Hence, $T_{2,2}$ is a distance-regular graph. If $m = 3$, we take $v \in V(T_{2,3})$.
Then, the cardinality of the degree set of $\langle D_1(\mathbf{v}) \rangle$ is 2. By Proposition 2.4, $i(T_{2,3})$ is greater than $1 + \text{diam}(T_{2,3})$. By Corollary 3.2, $T_{2,3}$ is not a distance-regular graph. If $m = 4$, $T_{2,4}$ is the Hamming graph of order 8 (cube). Hence, $T_{2,4}$ is a distance-regular graph. In the case $m > 4$, we take arbitrary $\mathbf{v} \in V(T_{2,m})$. If $D_1(\mathbf{v})$ is divided, the graph $T_{2,m}$ is not a distance-regular graph. If $D_1(\mathbf{v})$ is not divided, at least $D_2(\mathbf{v})$ is divided into the following as a partition in a highly-regular graph:

$$D_2(\mathbf{v}) = \{ \mathbf{w} \in D_2(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 2 \} \cup \{ \mathbf{w} \in D_2(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 1 \}.$$

By Corollary 3.2, the graph $T_{2,m}$ is not a distance-regular graph.

In the case $n = 3$, $T_{3,m}$ has the valency 4. If $m = 3$, $T_{3,3}$ is the graph as in Figure 4, and $T_{3,3}$ is a distance-regular graph. If m is greater than 3, we take arbitrary $\mathbf{v} \in V(T_{3,m})$. Then, at least $D_1(\mathbf{v})$ is divided into the following as a partition of a vertex set in a highly-regular graph:

$$D_1(\mathbf{v}) = \{ \mathbf{w} \in D_1(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 1 \} \cup \{ \mathbf{w} \in D_1(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 0 \}.$$

By Corollary 3.2, the graph $T_{3,m}$ is not a distance-regular graph.

In the case $n = 4$, $T_{4,m}$ has the valency 4. If $m = 4$, $T_{4,4}$ is the Hamming graph of order 16. Hence, $T_{4,4}$ is a distance-regular graph. If m is greater than 4, we take arbitrary $\mathbf{v} \in V(T_{4,m})$. If $D_1(\mathbf{v})$ is divided, the graph $T_{4,m}$ is not a distance-regular graph. If $D_1(\mathbf{v})$ is not divided, at least $D_2(\mathbf{v})$ is divided into the following as a partition in a highly-regular graph:

$$D_2(\mathbf{v}) = \{ \mathbf{w} \in D_2(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 1 \} \cup \{ \mathbf{w} \in D_2(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 2 \}.$$

By Corollary 3.2, the graph $T_{4,m}$ is not a distance-regular graph.

In the case $n > 4$, we take arbitrary $\mathbf{v} \in V(T_{n,m})$. If $D_1(\mathbf{v})$ is divided, the graph $T_{n,m}$ is not a distance-regular graph. If $D_1(\mathbf{v})$ is not divided, at least $D_2(\mathbf{v})$ is divided into the following as a partition in a highly-regular graph:

$$D_2(\mathbf{v}) = \{ \mathbf{w} \in D_2(\mathbf{v}) \mid |D_1(\mathbf{w}) \cap D_1(\mathbf{v})| = 2 \}.$$

By Corollary 3.2, the graph $T_{n,m}$ is not a distance-regular graph.

Remark A.2. As we mentioned above, $T_{2,m}$ $(m > 2)$ has the valency 3, and $T_{n,m}$ $(n \geq 3)$ has the valency 4.

Remark A.3. The graph $T_{n,m}$ has the diameter $\left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{m}{4} \right\rfloor$. Here, the symbol $\lfloor x \rfloor$ denotes the largest integer less than x. Therefore, $T_{n,m}$ has the diameter 2 if and only if $(n, m) = (2, 2), (2, 3), (3, 3)$. Then, we can easily observe the following:

- $\overline{T_{2,2}}$ is not connected.
- $\overline{T_{2,3}}$ is the cycle graph of order 6.
- $\overline{T_{3,3}} \simeq T_{3,3}$ is a distance-regular graph (cf. Figure 4).

Next, we construct some infinite families of connected highly-regular graphs of fixed valency greater than 4 which are not distance-regular graphs.
Proposition A.4. Let Γ_1 be a connected highly-regular graph which is not a distance-regular graph and Γ_2 be a connected highly-regular graph. Then, the Cartesian product $\Gamma_1 \square \Gamma_2$ is a connected highly-regular graph which is not a distance-regular graph.

Proof. First, we note that $\text{diam}(\Gamma_1 \square \Gamma_2) = \text{diam}(\Gamma_1) + \text{diam}(\Gamma_2)$. By Proposition 2.2, the Cartesian product $\Gamma_1 \square \Gamma_2$ is a highly-regular graph. We take arbitrary $v = (v_1, v_2) \in V(\Gamma_1) \times V(\Gamma_2)$. For each $j \in \{0, 1, \ldots, \text{diam}(\Gamma_1) + \text{diam}(\Gamma_2)\},$

$$D_{j,\Gamma_1 \square \Gamma_2}(v) = \bigcup_{k,l} \{(v, w) \in V(\Gamma_1) \times V(\Gamma_2) \mid v \in D_{k,\Gamma_1}(v_1) \text{ and } w \in D_{l,\Gamma_2}(v_2)\},$$

where k and l run through $0 \leq k \leq \text{diam}(\Gamma_1)$, $0 \leq l \leq \text{diam}(\Gamma_2)$ such that $k + l = j$. Since Γ_1 is not a distance-regular graph, there exist $i \in \{0, \ldots, \text{diam}(\Gamma_1)\}$, $j \in \{i - 1, i, i + 1\}$, $u_1, u_2 \in D_{i,\Gamma_1}(v_1)$ such that

$$|D_{1,\Gamma_1}(u_1) \cap D_{j,\Gamma_1}(v_1)| \neq |D_{1,\Gamma_1}(u_2) \cap D_{j,\Gamma_1}(v_1)|. \tag{2}$$

We consider the vertices $(u_1, v_2), (u_2, v_2) \in D_{i,\Gamma_1 \square \Gamma_2}(v)$. Then, $D_{j,\Gamma_1}(v_1) \cap D_{1,\Gamma_1}(u_1)$ and $D_{j,\Gamma_1}(v_1) \cap D_{1,\Gamma_1}(u_2)$ are divided into the following:

$$D_{1,\Gamma_1 \square \Gamma_2}((u_1, v_2)) \cap D_{j,\Gamma_1 \square \Gamma_2}(v) = \{(u_1, w) \in V(\Gamma_1) \times V(\Gamma_2) \mid \{w, v_2\} \in E(\Gamma_2) \text{ and } d(w, v_2) = j - i\}$$

$$\cup \{(v, v_2) \in V(\Gamma_1) \times V(\Gamma_2) \mid v \in D_{1,\Gamma_1}(u_1) \cap D_{j,\Gamma_1}(v_1)\},$$

$$D_{1,\Gamma_1 \square \Gamma_2}((u_2, v_2)) \cap D_{j,\Gamma_1 \square \Gamma_2}(v) = \{(u_2, w) \in V(\Gamma_1) \times V(\Gamma_2) \mid \{w, v_2\} \in E(\Gamma_2) \text{ and } d(w, v_2) = j - i\}$$

$$\cup \{(v, v_2) \in V(\Gamma_1) \times V(\Gamma_2) \mid v \in D_{1,\Gamma_1}(u_2) \cap D_{j,\Gamma_1}(v_1)\}.$$

By (2), we have

$$|D_{1,\Gamma_1 \square \Gamma_2}((u_1, v_2)) \cap D_{j,\Gamma_1 \square \Gamma_2}(v)| \neq |D_{1,\Gamma_1 \square \Gamma_2}((u_2, v_2)) \cap D_{j,\Gamma_1 \square \Gamma_2}(v)|.$$

Therefore, $\Gamma_1 \square \Gamma_2$ is not a distance-regular graph. \qed
Let \mathcal{P}_1 be the infinite family of connected highly-regular graphs of fixed valency 3 and \mathcal{P}_2 be the infinite family of connected highly-regular graphs of fixed valency 4 which we construct explicitly in Proposition A.1.

Let k be an integer greater than 4. Then, there exist $r_1, r_2, r_3 \in \mathbb{Z}_{\geq 0}$ with $(r_2, r_3) \neq (0, 0)$ such that $k = r_1 \cdot 1 + r_2 \cdot 3 + r_3 \cdot 4$. Let $\mathcal{P}(r_2)$ and $\mathcal{P}(r_3)$ be the following:

- $\mathcal{P}(r_2) = \{\square_{j=1}^{r_2} \Gamma_{1,j} \mid \Gamma_{1,j} \in \mathcal{P}_1, 1 \leq j \leq r_2\}$.
- $\mathcal{P}(r_3) = \{\square_{l=1}^{r_3} \Gamma_{2,l} \mid \Gamma_{2,l} \in \mathcal{P}_2, 1 \leq l \leq r_3\}$.

Moreover, let $\mathcal{P}(r_1, r_2, r_3)$ be the following:

$$\mathcal{P}(r_1, r_2, r_3) = \{(\square_{r_2}^{C_2}) \square \Gamma_1 \square \Gamma_2 \mid \Gamma_1 \in \mathcal{P}(r_2), \Gamma_2 \in \mathcal{P}(r_3)\}.$$

By Proposition A.4, we have the following proposition.

Proposition A.5. The families $\mathcal{P}(r_1, r_2, r_3)$ with $r_1 \cdot 1 + r_2 \cdot 3 + r_3 \cdot 4 = k$, $(r_2, r_3) \neq (0, 0)$ are infinite families of connected highly-regular graphs of fixed valency k which are not distance-regular graphs.

By Proposition A.4, A.5 we conclude the following theorem.

Theorem A.6. There are infinitely many connected highly-regular graphs of fixed valency greater than 2 which are not distance-regular graphs.

Appendix B. Local spectral properties of highly-regular graphs

In this section, we give the following local spectral properties of highly-regular graphs. For vertices $u, v \in V$ and an eigenvalue λ_i, uv-crossed multiplicity $m_{uv}(\lambda_i)$ is uv-entry of E_i. Let Γ be a connected highly-regular graph with CAM $C = [c_{i,j}]_{1 \leq i,j \leq m}$. Here, let a labeling of C with respect to a distance. For each $i \in \{0, 1, \ldots, \text{diam}(\Gamma)\}$, there exists a nonempty subset S_i of $I = \{1, \ldots, m\}$ such that $D_i(u) = \bigsqcup_{i \in S_i} V_i(u)$, $u \in V$. Then, we have the following theorem.

Theorem B.1. A connected highly-regular graph Γ is a spectrally-regular graph. Moreover, for each $u \in V$ and for two vertices $v, w \in V_s(u_0)$, $s \in S_j$, we have $m_{uv}(\lambda_i) = m_{uw}(\lambda_i)$, for any λ_i.

Proof. We fix a vertex $u \in V$. We define the matrix $P_u \in M_m(\mathbb{R})$ whose entries are given by

$$(P_u)_{t,w} = \begin{cases} 1 & \text{if } w \in V_i(u), \\ 0 & \text{otherwise}. \end{cases}$$

It is easy to check that this matrix intertwines the adjacency matrix A and collapsed adjacency matrix C, that is, $P_u A = CP_u$. For each eigenvalue λ_i, there exists unique polynomial such that $E_i = Z_i(A)$ by using Lagrange interpolation. This implies that for each $l = 0, \ldots, d$, we have $P_u Z_l(A) = Z_l(C) P_u$. For $u \in V$, $t \in S_i$, $s \in S_j$, $w \in V_s(u)$, we have

$$\sum_{z \in V_t(u)} Z_t(A)_{z,w} = Z_t(C)_{t,s}. \quad (3)$$
Putting $s = t = 1 \in S_0$, $w \in V_1(u)$, we have

$$m_u(\lambda_l) = Z_l(A)_{u,u} = Z_l(C)_{1,1}.$$

Therefore, Γ is a spectrally-regular graph. Moreover, putting $t = 1$ in $[3]$, we have

$$Z_l(A)_{u,w} = Z_l(C)_{1,s}.$$

This implies that for $v, w \in V_s(u)$, $m_{u,v}(\lambda_l) = Z_l(C)_{1,s} = m_{u,w}(\lambda_l).$ □

Acknowledgment

The author expresses gratitude to Professor Hiroyuki Ochiai for his many helpful comments.

References

[1] Y. Alavi, G. Chartrand, D. R. Lick and H. C. Swart, Highly regular graphs, Ann. New York Acad. Sci. 576 (1989) 20–29.
[2] J. Angel, Finite upper half planes over finite fields, Finite Fields Appl. 2 (1996) 62–86.
[3] S. Bang, A. Dubickas, J. H. Koolen and V. Moulton, There are only finitely many distance-regular graphs of fixed valency greater than two, Adv. Math. 269 (2015) 1–55.
[4] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, Benjamin/Cummings Publishing Co. Inc., Menlo Park, CA, 1984.
[5] E. Bannai, O. Shimabukuro and H. Tanaka, Finite Euclidean graphs and Ramanujan graphs, Discrete Math. 309 (2009) 6126–6134.
[6] B. Bollobás, Graph theory: An Introductory Course, Springer-Verlag, Berlin, 1979.
[7] B. Bollobás, Modern graph theory, Springer-Verlag, Berlin, 2002.
[8] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-regular graphs, volume 18 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1989.
[9] P. J. Cameron, There are only finitely many finite distance-transitive graphs of given valency greater than two, Combinatorica 2 (1) (1982) 9–13.
[10] P. J. Cameron, C. E. Praeger, J. Saxl and G. M. Seitz, On the Sims conjecture and distance transitive graphs, Bull. Lond. Math. Soc. 15 (5) (1983) 499–506.
[11] T. Ceccherini-Silberstein, F. Scarabotti and F. Tolli, Representation Theory and Harmonic Analysis of wreath products of finite groups, Cambridge University Press (2014).
[12] M. A. Fiol, E. Garriga and J. L. A. Yebra, Locally pseudo-distance-regular graphs, J. Combin. Theory Ser. B 68 (1996) 179–205.
[13] W. M. Kwok, Character tables of association schemes of affine type, European J. Combin. 13 (1992) 167–185.
[14] W. Li, Character sums and abelian Ramanujan graphs, J. Number Theory 41 (1992) 199–217.
[15] A. Terras, Fourier analysis of finite groups and applications, London Mathematical Society Student Texts, 43, Cambridge University Press, Cambridge, 1999.

Graduate School of Mathematics, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395 JAPAN
E-mail address: t-kosaka@math.kyushu-u.ac.jp