Do not judge a book by its cover: would *Triatoma tibiamaculata* (Pinto, 1926) belong to *Triatoma* Laporte, 1832, or to *Panstrongylus* Berg, 1879, with misleading homoplasies?

Isadora Freitas Bittinelli1†, Jader de Oliveira2,3†, Yago Visinho dos Reis1†, Amanda Ravazi1, Fernanda Fernandez Madeira4, Ana Beatriz Bortolozo de Oliveira4, Giulia Montanari3, Ana Julia Chaves Gomes1, Laura Poloto Cesaretto1, Isabella da Silva Massarin1, Cleber Galvão5*, Maria Tercilia Vilela de Azeredo-Oliveira4, João Aristeu da Rosa3 and Kaio Cesar Chaboli Alevi1,2,3,5

Abstract

Background: *Triatoma tibiamaculata* is a species distributed in ten Brazilian states which has epidemiological importance as it has already been found infecting household areas. The taxonomy of this triatomine has been quite unstable: it was initially described as *Eutriatoma tibiamaculata*. Later, the species was transferred from the genus *Eutriatoma* to *Triatoma*. Although included in the genus *Triatoma*, the phylogenetic position of *T. tibiamaculata* in relation to other species of this genus has always been uncertain once this triatomine was grouped in all phylogenies with the genus *Panstrongylus*, rescuing *T. tibiamaculata* and *P. megistus* as sister species. Thus, we evaluated the generic status of *T. tibiamaculata* using phylogenetic and chromosomal analysis.

Methods: Chromosomal (karyotype) and phylogenetic (with mitochondrial and nuclear markers) analyses were performed to assess the relationship between *T. tibiamaculata* and *Panstrongylus* spp.

Results: The chromosomal and phylogenetic relationship of *T. tibiamaculata* and *Panstrongylus* spp. confirms the transfer of the species to *Panstrongylus* with the new combination: *Panstrongylus tibiamaculatus*.

Conclusions: Based on chromosomal and phylogenetic characteristics, we state that *P. tibiamaculatus* comb. nov. belongs to the genus *Panstrongylus* and that the morphological features shared with *Triatoma* spp. represent homoplasies.

Keywords: Chagas disease vector, Triatomines, Taxonomy, *Panstrongylus tibiamaculatus* comb. nov

Background

The members of the subfamily Triatominae (Hemiptera, Reduviidae) are hematophagous insects of great epidemiological importance as they act as vectors of the protozoan *Trypanosoma cruzi* (Chagas, 1909) (Kinetoplastida, Trypanosomatidae), the etiological agent of Chagas disease [1]. Chagas disease is a neglected disease that affects about 8 million people and puts another approximately 25 million at risk of infection [1]. The main way to
minimize the incidence of new cases is based on the control of vector populations [1], the studies related to these insects being of extreme importance for public health once they can generate results to help vector control programs in the prophylaxis of Chagas disease.

Systematics has contributed to the correct identification of triatomines and consequently to the surveillance activities of vector control programs [2, 3]. However, in the face of evolutionary events (cryptic speciation and phenotypic plasticity [4]) and associated taxonomic problems, in most cases, with classical taxonomy [5, 6] (based on the morphological characterization of the species [3, 6]), > 190 synonymizations have occurred in the Triatominae subfamily [7]. This highlights the importance of integrative taxonomy for the description of new species [6], as performed by Dorn et al. [8], Lima-Cordón et al. [9] and Alevi et al. [10].

Currently, 157 species are described in the subfamily Triatominae (with 154 extant species and three fossil species), grouped into 18 genera and 5 tribes [6–12]. In Brazil, > 60 species are distributed among the following genera: Alberprosenia Martínez & Carcavallo, 1977, Belminus Stål, 1859, Microtriatoma Prosen & Martínez, 1952, Parabalminus Lent, 1943, Cavernicola Barber, 1937, Psammolestes Berghoef, 1911, Rhodnius Stål, 1859, Eratyrus Stål, 1859, Panstrongylus Berg, 1879, and Triatoma Laporte, 1832 [7]. Rhodnius, Triatoma and Panstrongylus are the most important from an epidemiological point of view [13].

The genera Rhodnius and Triatoma have been considered paraphyletic [13]. Panstrongylus was initially considered monophyletic based on morphological data [2]; however, Marcilla et al. [14], using the internal transcribed spacer 2 (ITS-2) nuclear marker, suggested that Panstrongylus was polyphyletic. Later, several phylogenetic analyses indicated this genus is paraphyletic once species of Panstrongylus are grouped with species of Nesotriatoma Usinger, 1944, and T. tibiamaculata (Pinto, 1926) [13, 15–17].

Triatoma tibiamaculata is distributed in ten Brazilian states [7] and has epidemiological importance as it has already been found infecting household areas [18] and colonizing peridomiciliar environments [19]. The taxonomy of this triatomine was quite unstable because Pinto [20], based only on morphological characteristics, initially described this species in the genus Eutriatoma Pinto, 1926, highlighting that it had intermediate characteristics between Rhodnius and Triatoma. Later, the species was transferred from the genus Eutriatoma to Triatoma [21, 22].

Although grouped in Triatoma, the phylogenetic position of T. tibiamaculata in relation to the other species of this genus has always been uncertain once this triatomine was grouped in all phylogenies with the genus Panstrongylus [13, 15–17], rescuing T. tibiamaculata and P. megistus (Burmeister, 1835) as sister species [13, 16, 17]. Based on this, Gardim et al. [16] suggested a review of the generic status of T. tibiamaculata, highlighting that this species possibly belongs to Panstrongylus.

Thus, we evaluated the generic status of T. tibiamaculata through phylogenetic and chromosomal analysis.

Methods

Type of material examined

Eutriatoma tibiamaculata Pinto, 1926, syntype. Determined: Pinto, C. 1926, Collected: Travassos, L. 16.XII.1926., Location: Angra dos Reis, Rio de Janeiro, Brazil, deposited in the Entomological Collection of the Instituto Oswaldo Cruz (CEIOC), Rio de Janeiro, Brazil.

Molecular analysis

For molecular analysis, the genomic DNA of five specimens of *P. lignarius* (Walker, 1873) (from Porto Velho, Rondônia, Brazil), *P. lutzi* (Neiva & Pinto, 1923) (from Irecê, Bahia, Brazil) and *T. tibiamaculata* (from Mogi Guará, São Paulo, Brazil) was extracted from gonads using the DNeasy Blood and Tissue kit (QIAGEN®). Amplification of the fragments was performed by polymerase chain reaction (PCR), using primers targeting cytochrome b (*cytb*) and internal transcribed spacer 1 (ITS-1), as described in the literature [23, 24]. The amplified PCR products were visualized by electrophoresis in 1% agarose gel and later purified using the GFX PCR DNA & Gel Band Kit (GE Healthcare and Life Technology®) according to the manufacturer’s instructions. Subsequently, this material was submitted for direct sequencing on an ABI 3730 DNA Analyzer (Life Technologies) sequencer from the Research Center on the Human Genome and Stem Cells, University of São Paulo (USP), Brazil.

The gene sequences obtained were grouped with sequences of several molecular markers for 17 taxa available in GenBank (Table 1), which were aligned in the MEGA X program [25] using the Muscle method [26]. For the alignment of ITS-1 and ITS-2, the sequences of the *brasiliensis* subcomplex species are only available concatenated (Table 1); thus, the sequences for the other species had been previously concatenated and then aligned with species of the *Brasiliensis* subcomplex (representatives of the *Triatoma* genus of the *Brasiliensis* subcomplex were used in the phylogeny because *T. tibiamaculata* was initially considered in this subcomplex based on morphological data and geographic distribution [16]).
The alignments were concatenated by name using the Seaview4 program [27], resulting in an alignment with 7993 nucleotides, which was converted in Mesquite 3.2 [28]. Data were partitioned for each molecular marker, and the best model for each one (lowest Akaike information criterion value) was determined in the jModeltest 2 program [29] (Table 2). For the phylogenetic reconstruction by Bayesian inference, the data were submitted to MrBayes 3.2 [30] in an analysis with 100 million generations. Trees were sampled every 1000 generations in two independent runs (each with four Markov chains) and burn-in adjusted to 25%. Tracer v. 1.7 [31] was used to verify the stabilization (ESS values > 200) of the sampled trees, and the generated phylogenetic tree was visualized and edited in the FigTree v.1.4.4 program [32].

Cytogenetic analysis
Triatoma tibiamaculata (from Mogi Guaçu, São Paulo, Brazil), P. megistus (from Araraquara, São Paulo, Brazil), P. lignarius (from Porto Velho, Rondônia, Brazil) and P. lutzii (from Irecê, Bahia, Brazil) males were dissected; the testes were removed and stored in methanol:acetic acid solution (3:1).Slides were prepared by the cell crushing technique (as described by Alevi et al. [33]), and cytogenetic analyses were applied to confirm the karyotype of the species using the lacto-acetic orcein technique [33, 34]. The slides were examined using Jenaval light microscopy (Zeiss) coupled to a digital camera and the Axios Vision LE 4.8 image analyzer system, with a 1000-fold increase.

Results
Phylogenetic analysis
Phylogenetic reconstruction with cytb and ITS-1 combined with several mitochondrial and nuclear DNA sequences was deposited in GenBank (16S, 18S, 28S, COI, COII, ITS-2 and 12S) rescued T. tibiamaculata with Panstrongylus spp. (Fig. 1) in a clade distinct from

Table 1	GenBank accession number for each marker used in the phylogenetic analysis							
Species	Molecular markers							
16S	18S	28S	cytb	COI	COII	ITS-1	ITS-2	12S
Panstrongylus genus								
P. chinai	JX400960							
P. geniculatus	AF39493	KX109907	KX109903					
P. howardi	JX400969							
P. lignarius	AU185833	JQ9897584	KX109906					
P. lutzii	KC249069	KC249135	KC249227	KC249307	KC249401			
P. megistus	KC249075	AJ243336	KC249141	KC249232	KC249312	KC249403		
P. rufotuberculatus	KY178239	AJ241955						
P. tibiamaculatus comb. nov	KC249089	KC249127	KC249214	KC249296	KC249389	KC249485	ON262109	
P. pygmaeus	KC24978	KC249142	KC249234					
Brasiliensis subcomplex								
T. brasiliensis	KC249889	AJ241957	KC249145	KC249239	KC249318	KC249413	KJ125138	
T. bahiensis	KT347298							
T. juazeirensis	KC249026	KC249173	AY94169	KF826892	KJ125150			
T. lenti	K57678	K576789	K576791					
T. melanica	KC249041	KC249183	AY336527	KC249041	KC249461	KJ125147		
T. petrociotreus	KY5407	KY54075	KY54074					
T. scheschini	EU489057	KC249205	EU489058	KC249087	KC249478	KJ125149		
Outgroup								
Rhodnius prolixus	AJ241962	AF435860	AF45718	AF449138				

Table 2	Substitution models for each marker
Molecular markers	Substitution models
16S, cytb	GTR + I + G
12S, 28S, COI, COII	GTR + G
18S	HKY + I
ITS-1 + ITS-2	HKY + G
Fig. 1 Phylogeny obtained by Bayesian approach. *Rhodnius prolixus* was placed as outgroup. The number in the nodes indicates the posterior probability (> 0.5)

Table 3 Cytogenetic characteristics of *P. tibiamaculatus* comb. nov. and *Panstrongylus* spp.

Panstrongylus spp.	Karyotype	Autosomal number	Sex determination system	FISH (45S rDNA)
P. chinai	2n = 23\(^a\)	20\(^a\)	X1X2Ya	The largest autosomal par\(^9\)
P. geniculatus	2n = 23\(^a\)	20\(^b\)	X1X2Ya	The largest autosomal par\(^9\)
P. howardi	2n = 23\(^b\)	20\(^b\)	X1X2Ya	The largest autosomal par\(^1\)
P. lignarius	2n = 23\(^b\)	20\(^b\)	X1X2Ya	The largest autosomal par\(^9\)
P. lutzi	2n = 24\(^c\,d\)	20\(^c\,d\)	X1X2X3Ya\(^c\,d\)	The largest autosomal par\(^1\)
P. megistus	2n = 21\(^e\)	18\(^e\)	X1X2Y\(^e\)	The largest autosomal par\(^9\)
P. rufotuberculatus	2n = 23\(^a\)	20\(^f\)	X1X2Y\(^a\)	The largest autosomal par\(^h\)
P. tibiamaculatus comb. nov.	2n = 23\(^f\)	20\(^f\)	X1X2Y\(^f\)	The largest autosomal par\(^9\)
P. tupynambai	2n = 23\(^f\)	20\(^f\)	X1X2Y\(^f\)	–

\(^a\) Crossa et al. [35]
\(^b\) Panzera et al. [36]
\(^c\) Santos et al. [37]
\(^d\) Alevi et al. [38]
\(^e\) Schreiber and Pellegrino [39]
\(^f\) Panzera et al. [40]
\(^g\) Panzera et al. [41]
\(^h\) Pita et al. [42]
\(^i\) Panzera et al. [43]
Triatoma spp., demonstrating that *T. tibiamaculata* is a species of *Panstrongylus*.

Chromosomal analysis

The confirmation of the karyotype of the species *T. tibiamaculata*, *P. megistus*, *P. lignarius* and *P. lutzi*, when combined with literature data [35–40], demonstrates that, except for *P. megistus* and *P. lutzi*, *T. tibiamaculata* and all other species of *Panstrongylus* have the same diploid chromosome set (2n = 23 chromosomes) (Table 3). In addition, based on FISH data in the literature, *T. tibiamaculata* and all species of *Panstrongylus* present markings in a pair of autosomes [41–43] (Table 3), confirming that *T. tibiamaculata* is a species of *Panstrongylus*.

Generic transfer

Kingdom Animalia Linnaeus, 1758, Phylum Arthropoda von Siebold, 1848, Class Insecta Linnaeus, 1758, Order Hemiptera Linnaeus, 1758, Suborder Heteroptera Latreille, 1810, Family Reduviidae Latreille, 1807, Subfamily Triatominae Jeannel, 1919, Tribe Triatomini Jeannel, 1919, Genus *Panstrongylus* Berg, 1879, Species *Panstrongylus tibiamaculatus* (Pinto, 1926) comb. nov. (Fig. 2).

- *Eutriatoma tibiamaculata* Pinto, 1926 (p. 134, Figs. C–E [20]).
- *Triatoma (Eutriatoma) tibia-maculata* (Lima, 1940) (p. 199, Fig. 383 [22]).
- *Triatoma tibiamaculata* (Pinto, 1926) (p. 902, Fig. 2 [21]).

Panstrongylus: the genus name comes from the Greek "pan" means whole, and "strongylus" means round, plump, burly, a reference to the insect’s robust, rounded body [44].

tibiamaculatus: the specific epithet comes from the Latin "tibia" and "maculatus," and the combination means stained tibias, a reference to the insect’s tibiae being totally "stained" in orange [44].

The change of the specific epithet "*tibiamaculata*" to "*tibiamaculatus*" was carried out based on Art. 31.2 of the International Code of Zoological Nomenclature (ICZN) [45] since "Panstrongylus" is masculine—because (i) the ending ‘-us’ usually indicates masculine words; (ii) the ICZN requires that the specific epithet be of the same grammatical gender as the generic epithet, for example, the species of the genus *Panstrongylus* are all male, as *P. geniculatus* (Latreille, 1811), *P. lignarius* and *P. rufotuberculatus* (Champion, 1899), and so is the genus; (iii) the Portuguese versions of Latin words retain the grammatical gender: if the term "strongyl" is masculine, so is *Panstrongylus* [46]—and "*tibiamaculatus*" is a latinized adjective.

Discussion

The chromosomal and phylogenetic relationship of *Panstrongylus tibiamaculatus* comb. nov. and *Panstrongylus* spp. confirms the change of generic status to this species. Thus, the genus *Panstrongylus* includes 16 species now, namely, *P. chinai* (Del Ponte, 1929), *P. diasi* Pinto & Lent, 1946, *P. geniculatus*, *P. guentheri* Berg, 1879, *P. hispaniolae* Poinar, 2013 (fossil species), *P. howardi* (Neiva, 1911), *P. humeralis* (Usinger, 1939), *P. lenti* Galvão & Palma, 1968, *P. lignarius*, *P. lutzi*, *P. martinezorum* Ayala, 2009, *P. megistus*, *P. mitarakaeensis* Bérenger & Blanchet, 2007, *P. rufotuberculatus*, *P. tibiamaculatus* comb. nov. and *P. tupynambai* Lent, 1942 [3].

As already mentioned, since 2002, phylogenetic studies have shown the relationship between *P. tibiamaculatus* and *P. humeralis* as very close...
P. chinai, P. rufotuberculatus, and P. megistus. Our results also retrieved four groups, namely, Panstrongylus example, is a tool that discriminated and triatomines is the short head, with antennae close to Panstrongylus that distinguishes the genus this genus), the most prominent morphological feature spp. (which led to the misclassification of the species in logical characteristics that approximate it to P. rufotuberculatus, more recently Monteiro et al. [5] considered four groups: P. megistus into two groups: However, related to P. megistus is widespread across the Atlantic forests but also occurs in gallery forests throughout the drier Cerrado and stretches into the semiarid Caatinga, the Chaco and parts of the Pantanal and Uruguayan savannahs. On the other hand, Monteiro et al. [5] pointed out that P. tibiamaculatus comb. nov. is associated with palms and bromeliads along a narrow strip of coastal Brazil including the Pernambuco, Bahia and Serra do Mar coastal moist forests.

Gardim et al. [16] evaluated ecoepidemiological issues related to P. tibiamaculatus comb. nov. and P. megistus. The authors also emphasized that the close relationship between P. megistus and P. tibiamaculatus comb. nov. may help to explain the recent finding of the latter species invading human domiciles in downtown Salvador, Bahia State, Brazil.

Justi et al. [17] grouped the species of Panstrongylus into two groups: geniculatus and megistus. However, more recently Monteiro et al. [5] considered four groups: P. rufotuberculatus, P. lignarius, P. geniculatus and P. megistus. Our results also retrieved four groups, namely, P. rufotuberculatus (composed of P. chinai, P. rufotuberculatus and P. howardi), P. lignarius (composed of P. lignarius), P. geniculatus (composed of P. geniculatus, P. lutzi and P. tupynambai) and P. megistus (composed of P. megistus and P. tibiamaculatus comb. nov.).

Although P. tibiamaculatus comb. nov. has morphological characteristics that approximate it to Triatoma spp. (which led to the misclassification of the species in this genus), the most prominent morphological feature that distinguishes the genus Panstrongylus from other triatomines is the short head, with antennae close to the eyes [3]. The geometric morphometric of head, for example, is a tool that discriminated Panstrongylus and Triatoma based on the position of the antennal insertion relative to the eyes [47]. Justi et al. [12] highlighted that the morphological divergences observed between P. tibiamaculatus comb. nov. and the other Panstrongylus may be due to morphological convergence with Triatoma spp., because variations in the size of the eyes of Panstrongylus spp. have already been reported in the literature [48], and these variations influence the distances between the antennae and the eyes.

Some morphological similarities between P. tibiamaculatus comb. nov. and the species in the brasiliensis subcomplex led Schofield and Galvão [49] to group these species in this complex. However, based on chromosomal divergences, Alevi et al. [33] proposed the exclusion of the species from this complex. From a karyosystematic point of view, while P. tibiamaculatus comb. nov. has 2n = 23 chromosomes (which approximates it to most species of Panstrongylus), all South American Triatoma species have 2n = 22 (species of the Brasiliensis, Infestans, Maculata, Pseudomaculata, Rubrovaria and Sordida subcomplexes) or 24 chromosomes (Viticeps subcomplex species) [50]. Based on the ancestral karyotype of Triatominae (2n = 22) [51], Alevi et al. [52] suggested that during the divergence of the common ancestor of Panstrongylus there was a fission in sex chromosome X, which resulted in the karyotype 2n = 23 (karyotype shared by P. chinai, P. geniculatus, P. howardi, P. lignarius, P. rufotuberculatus, P. tibiamaculatus comb. nov. and P. tupynambai). However, the authors suggested that during the karyotypic evolution of Panstrongylus, two possible punctual events occurred: fusion in a pair of autosomes in P. megistus and fission in the sex chromosome X in P. lutzi. The karyotypes of P. megistus and P. lutzi (2n = 21 and 2n = 24, respectively) were observed only in five species of Triatoma (T. nitida Usinger, 1939, T. eratyrusiformis Del Ponte, 1929, T. melanocephala Neiva & Pinto, 1923, T. viticeps (Stål, 1859) and T. breyeri Del Ponte, 1929 [52]), suggesting that these evolutionary events occurred independently during the chromosomal evolution of triatomines.

In addition, P. tibiamaculatus comb. nov. and all other Panstrongylus species (regardless of the number of chromosomes) have 45S rDNA probes restricted to a pair of autosomes [41–43]. Pita et al. [53] suggest that the chromosomal position of 45S rDNA is variable in Triatominae, although it is conserved among closely related species (such as P. tibiamaculatus comb. nov. and Panstrongylus spp.). In addition to the genetic relationships observed between P. tibiamaculatus comb. nov. and Panstrongylus spp., morphological similarities between fifth-instar female nymphs of P. megistus and P. tibiamaculatus comb. nov. (more specifically in the structures of the eighth ventral segment as well as between setae) were observed [54]. Furthermore, Nascimento et al. [55] also...
observed similarities between spermathecae morphology from *P. lignarius*, *P. megistus* and *P. tibiamaculatus* comb. nov., and Mello et al. [36] recorded a relationship between exocorial cells in eggs of *P. tibiamaculatus* comb. nov. with *Panstrongylus*.

Conclusion

Thus, based on chromosomal and phylogenetic characteristics, we state that *P. tibiamaculatus* comb. nov. belongs to the genus *Panstrongylus* and that the morphological features shared with *Triatoma* spp. represent homoplasies.

Acknowledgements

We thank the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil)-Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil) for financial support.

Author contributions

ISB: Conceptualization, Methodology, Investigation, Writing—Original Draft Preparation and Writing—Review & Editing, IO. Conceptualization, Methodology, Investigation, Data Curation and Writing—Review & Editing, AR: Methodology, Investigation and Data Curation, FFM: Methodology, Investigation and Data Curation, YVR: Methodology, Investigation and Data Curation, AJCG: Methodology, Investigation and Data Curation, GM: Methodology, Investigation and Data Curation, YVR: Methodology, Investigation and Data Curation, ABBO: Methodology, Investigation and Data Curation, FMM: Methodology, Investigation and Data Curation, AR: Methodology, Investigation and Data Curation, ISB: Conceptualization, Methodology, Investigation, Writing—Original Draft Preparation and Writing—Review & Editing, KCCA: Conceptualization, Methodology, Investigation, Data Curation, CG: Conceptualization, Writing—Review & Editing, and Funding acquisition. All authors read and approved the final manuscript.

Funding

The study was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brazil), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil)-Finance Code 001, and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brazil).

Availability of data and materials

GenBank accession numbers of sequences generated in this study: *P. tibiamaculatus* ITS-1 (ON262109), *P. lutzi* ITS-1 (ON262110) and *P. lignarius* cytb (ON262111).

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1. Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Faculdade de Ciências Farmacêuticas, Rodovia Araçariguama-Jaú km 1, 14801-902 Araçariguama, SP, Brazil. 2. Laboratório de Biologia Celular, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), Instituto de Biociências, Letras e Ciências Exatas, Rua Cristóvão Colombo 2265, 15054-000 São José do Rio Preto, SP, Brazil. 3. Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz (IOC/RJ), Av. Brasil 4365, Pavilhão Rocha Lima, sala 505, 21040-360 Rio de Janeiro, RJ, Brazil.

Received: 31 October 2021 Accepted: 6 May 2022

Published online: 28 May 2022

References

1. World Health Organization. Chagas disease (American trypanosomiasis). http://www.who.int/news-room/fact-sheets/detail/chagas-disease—american-trypanosomiasis. 2022. Accessed 04 May 2022.

2. Lent H, Wygodzinsky P. Revision of the Triatomíneos (Hemiptera: Reduviidae) and their significance as vector of Chagas disease. Bull Am Mus Nat Hist. 1979;163:123–520.

3. Galvão C. Taxonomia dos vetores da doença de Chagas: da forma à molécula, quase três séculos de história. In: Oliveira J, Alevi KCC, Camargo LMA, Meneguetti DUO, editors. Atualidades em medicina tropical no Brasil: vetores. Rio Branco: Strut Sensus Editora; 2020. p. 9–37.

4. Abad-Franch F, Pavan G, Jaramillo-D N, Palemeque S, Dale C, Chaverra D, et al. *Rhodius barretti*, a new species of Triatomíneos (Hemiptera: Reduviidae) from western Amazonia. Mem Inst Osw Cruz. 2013;108:92–9.

5. Monteiro FA, Weirach C, Felix F, Lazoski C, Abad-Franch F. Evolution, systematics, and biogeography of the Triatomíneos vectors of Chagas disease. Adv Parasitol. 2018;99:265–344.

6. Alevi KCC, de Oliveira J, Rocha DS, Galvão C. Trends in taxonomy of Chagas disease vectors (Hemiptera, Reduviidae, Triatomíneos) from Linnaean to integrative taxonomy. Pathogens. 2021;10:1627.

7. Galvão C, Carcavelho R, Rocha DS, Jurburg J. A checklist of the current valid species of the subfamily Triatomíneos: Jeannel, 1919 (Hemiptera, Reduviidae) and their geographical distribution, with nomenclatural and taxonomic notes. Zootaxa. 2003;201:1–36.

8. Dorn PL, Justi AS, Dale C, Stevens L, Galvão C, Cordon RL, et al. Description of *Triatoma mopan* sp. n. (Hemiptera, Reduviidae, Triatomíneos) from a cave in Belize. Zookeys. 2018;775:69–95.

9. Lima-Cordon RA, Money CV, Stevens L, Rodas A, Rodas GA, Dorni PL, et al. Description of *Triatoma hvuehvenemongueni* sp. n., a potential Chagas disease vector (Hemiptera, Reduviidae, Triatomíneos). Zookeys. 2019;820:51–70.

10. Alevi KCC, Oliveira J, Garcia CCC, Cristal DC, Delgado LMG, Bittinelli IF, et al. *Triatoma rosai* sp. nov. (Hemiptera, Triatomíneos): a new species of Argentinian Chagas disease vector described based on integrative taxonomy. Insects. 2020;11:830.

11. Zhao Y, Galvão C, Cai W. *Rhodius nichki*, a new species of Triatomíneos (Hemiptera, Reduviidae) from Bolivia. ZooKeys. 2021;1012:71–93.

12. Dale C, Justi SA, Galvão C. *Belminus santosmalletae* (Hemiptera: Heteroptera: Reduviidae): new species from Panama, with an updated key for *Belminus Stål*, 1859 species. Insects. 2021;12:686.

13. Justi SA, Russo CAM, dos Mallet JR, Obara MT, Galvão C. Molecular phylogeny of Triatomíneos (Hemiptera: Reduviidae: Triatomíneos). Parasit Vect. 2014;7:149.

14. Marcella A, Bargues MD, Abad-Franch F, Panzer F, Carcarullo RR, Noireau F, et al. Nuclear rDNA ITS-2 sequences reveal polyphyly of *Panstrongylus* species (Hemiptera Reduviidae: Triatomíneos), vectors of *Trypanosoma cruzi*. Infect Genet Evol. 2002;1:225–35.

15. Hpyša V, Tietz D, Zrzavý J, Rego RO, Galvão C, Jurbberg J. Phylogeny and biogeography of Triatomíneos (Hemiptera, Reduviidae): molecular evidence of a new world origin of the asiasi clade. Mol Phylogenet Evol. 2002;23:447–57.

16. Gardim S, Almeida CE, Takya DM, Oliveira J, Araújo RF, Cicarelli RM, et al. Multiple mitochondrial genes of some sylvatic Brazilian Triatoma: non-monophyly of the *T. brasiliensis* subcomplex and the need for a generic revision in the Triatomíneos. Infect Genet Evol. 2014;23:74–9.

17. Justi SA, Galvão C, Schrago G. Geological changes of the Americas and their influence on the diversification of the Neotropical kissing bugs (Hemiptera: Reduviidae: Triatomíneos). PLoS Negl Trop Dis. 2016;10:4.
18. Steindel M, Pacheco KL, Scholl D, Soares M, Moraes MH, Eger L, et al. Characterization of Trypanosoma cruzi isolated from humans, vectors, and animal reservoirs following an outbreak of acute human Chagas disease in Santa Catarina State, Brazil. Diagn Microbiol Infect Dis. 2008;60:25–32.

19. Santana KSO, Bavia ME, Ribeiro-Jr GF, Santos CGS, Guimarães IC, Silva MMN, et al. Presence of Triatoma dimidiata (Pinto) nymphs in peridomiciles, in Salvador. Bahia Rev Patol Trop. 2013;3:452–5.

20. Pinto C. Hypoppygios of Triatomides (Hemiptera-Heteroptera-Hemipteromorphs) and d gênero Axiospermus. Bol Biol São Paulo. 1926;2:27–33.

21. Del Ponte E. Catálogo dos descriptivos de los géneros Triatoma Lapi, Rhodnius Stål, e Enyus Panstrongylus. Rev Inst Bacteriol Dept Nac Hig. 1930;5:855–937.

22. Lima AC. Insetos do Brasil. 2º Tomo. Capítulo XXII. Hemipteros. Rio de Janeiro: Escola Nacional de Agronomia; 1940.

23. Monteiro FA, Perez R, Panzena F, Dujuard JP, Galvão C, Rocha D, et al. Mitochondrial DNA variation of Triatoma infestans populations and its implication on the specific status of T. melanosoma. Mem Inst Oswaldo Cruz. 1999;94:229–38.

24. Tartarotti E, Ceron CR. Ribosomal DNA ITS-1 intergenic spacer polymorphism in triatomines (Triatominae, Heteroptera). Biochom Genet. 2005;43:365–73.

25. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.

26. Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and fast, convenient online submission thorough peer review by experienced researchers in your field fast, convenient online submission.

27. Mallet JRS. New sex determination system in the genus (Hemiptera: Reduviidae). Cytogenet Genome Res. 2010;128:77–87.

28. Ronquist F, Teslenko M, Van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model selection among a large model space. Syst Biol. 2012;61:539–42.

29. Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772.

30. Rambaut A. Mesquite: a modular system for evolutionary analysis—version 3.2. 2017. http://www.mesquiteproject.org. Accessed 20 Oct 2021.

31. Ronquist F, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model selection across a large model space. Syst Biol. 2012;61:539–42.

32. Rambaut A. FigTree–tree figure drawing tool version v.1.4.4. Institute of Evolutionary Biology, University of Edinburgh. Edinburgh, 2018. http://tree.bio.ed.ac.uk/software/figtree/. Accessed 20 Oct 2021.

33. Alevi KCC, Mendonça PP, Pereira NP, Rosa JA, Azeredo-Oliveira MTV. Karyotype of Triatoma melanocephala Neiva & Pinto (1923). Does this species fit in the Brasiliensis subcomplex? Infect Genet Evol. 2012;12:1652–3.

34. De Vio ES, Guacci R, Castagnino AM, Franca ME, Martinez ME. Meiotic differences between three triatomine species (Hemiptera:Reduviidae). J Hered. 1985;67:901–4.

35. Mello F, Jurberg J, Grazia J. Morphological study of the eggs and nymphs of Triatoma dimidiata (Latreille, 1811) observed by light and scanning electron microscopy. Mem Inst Oswaldo Cruz. 1992;92:187–99.

36. Santos SM, Pompgodo SG, Gonçalves TCM, Freitas SPC, Rangel EF, Santos-Mallet JRS. New sex-determination system in the genus (Hemiptera: Reduviidae) revealed by chromosomal analysis of Panstrongylus latu. Parasit Vvect. 2016;9:295.

37. Alevi KCC, Imperador HL, Fonseca EOL, Santos CGS, Azeredo-Oliveira MTV, Rosa JA, et al. Karyosystematic and karyotype evolution of Panstrongylus latu (Neiva & Pinto, 1923) (Hemiptera: Triatominae). Braz J Biol. 2017;78:180–2.

38. Schreiber G, Pellegrino J. Euteropinicos de autosomos como posible mecanismo de especiación. Sci Genet. 1950;3:215–26.

39. Panzera F, Scvortzoff E, Pérez R, Panzena F, Hornos S, Cestau R, et al. Cytogenetics of Triatomines. In: Carcavallo RU, Galíndez-Girón I, Jurberg J, editors. Atlas of chagas disease vectors in the Americas. Rio de Janeiro: Editora Fiocruz; 1998. p. 621–64.

40. Panzena Y, Pita S, Ferreiro MJ, Ferrandis I, Lages C, Pérez R, et al. High dynamics of rDNA cluster location in kissing bug holocentric chromosomes (Triatominae, Heteroptera). Cytores Genom Res. 2012;138:56–67.

41. Pita S, Lorete P, Cuadrado A, Panzena Y, Oliveira J, Alevi KCC, et al. High chromosomal mobility of ribosomal clusters in holocentric chromosomes of Triatominae, vectors of Chagas disease (Hemiptera-Reduviidae). Med Vet Entomol. 2022;36:66–80.

42. Panzena F, Pita S, Lorete, I. Chromosome structure and evolution of triatominae: a review. In: Guarnier AA, Lorenzo MG, editors. Triatominae: the biology of chagas disease vectors. 2021. doi: https://doi.org/10.1007/978-3-030-64548-9

43. Galvão C. Vétore da doença de Chagas no Brasil. Curitiba: Sociedade Brasileira de Zootologia; 2014.

44. The International Code of Zoological Nomenclature. 1999. https://www.iczn.org/. Accessed 30 Jan 2022.

45. Rogolon RG. A Pronúncia do Latim Científico. 2nd ed. Viçosa: Editora UFW; 2019.

46. Oliveira J, Marcell P, Takádi DM, Mendonça VJ, Belintani T, Bargues MD, et al. Combined phylogenetic and morphometric information to delimit the Triatoma brasiliensis species complex and the brasiliensis subgroup. Acta Trop. 2017;170:140–8.

47. Patterson JS, Barbosa SE, Feliciangeli MD. On the genus Panstrongylus Berg 1879: evolution, ecology and epidemiological significance. Acta Trop. 2009;110:187–99.

48. Schofield CJ, Galvão C. Classification, evolution, and species groups within the Triatominae. Acta Trop. 2009;108:88–100.

49. Reis Y, Alevi KCC. Revisão cariotípica dos vetores da doença de Chagas. In: Oliveira J, Alevi KCC, Camargo LMA, Meneguetti DUO, editors. Atualidades em Medicina Tropical na América do Sul: Vetores. Rio Branco: Strictu Sensu Editora; 2021. p. 70–79.

50. Ueshima N. Cytotaxonomy of the triatominae (Reduviidae: Hemiptera). Chromosoma. 1966;18:97–122.

51. Alevi KCC, Oliveira J, Rosa JA, Azeredo-Oliveira MTV. Karyotype evolution of Chagas disease vectors (Hemiptera, Triatominae). Am J Trop Med Hyg. 2018;99:87–9.

52. Pita S, Lorete P, Nattero J, Galvão C, Alevi KCC, Teves SC, et al. New arrangements on several species subcomplexes of Triatoma genus based on the chromosomal position of ribosomal genes (Hemiptera—Triatominae). Infect Genet Evol. 2016;43:225–31.

53. Rosa JA, Barata JMS, Barelli N. Spiracles of 5th instar nymphs in six species of Triatominae (Hemiptera, Reduviidae) using scanning electron microscopy. Mem Inst Oswaldo Cruz. 1992;87:301–2.

54. Nascimento JD, Ribeiro AR, Almeida LA, Oliveira J, Mendonça VJ, Cilense M, et al. Morphology of the spermathecae of twelve species of Triatominae (Heteroptera, Reduviidae) vectors of Chagas disease. Acta Trop. 2017;169:440–5.

55. Mello F, Jurberg J, Grazia J. Morphological study of the eggs and nymphs of Triatoma dimidiata (Latreille, 1811) observed by light and scanning electron microscopy (Hemiptera: Reduviidae: Triatominae). Mem Inst Oswaldo Cruz. 2009;104:1072–82.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Bittinelli et al. Parasites & Vectors (2022) 15:184