Study of full cuff tympanoplasty technique with temporalis fascia graft

Abstract
This report compares two techniques of underlay technique for tympanic membrane repair with full cuff and without full cuff technique. The Non Randomized Clinical Prospective Study included a total of 81 patients out of which 37 had undergone full cuff tympanoplasty technique surgery. In both the techniques, the results were reliable. Full cuff technique has less chance of post operative tympanosclerosis and granulations and residual perforation as compared to without full technique. Full cuff technique has more chances of gain in hearing postoperatively. Careful technique and precise work are the keys to successful tympanoplasty. Thus otologic surgeons should cultivate effective techniques, attempting to continuously improve their results to achieve perfection.

Keywords: full cuff technique, tympanoplasty, large perforation

Introduction
Tympanic membrane (TM) perforation is usually a consequence of chronic ear disease, trauma, or iatrogenic effects following surgical treatment. A. Chronic suppurrative otitis media (csom) is a long standing infection of a part or whole of middle ear cleft characterised by intermittent or persistent, chronic purulent drainage through a perforated tympanic membrane.

B. It is of two types:
1. Tubotympanic disease (safe type)
2. Atticoantral disease (unsafe type)
3. For surgical repair of TM perforation, myringoplasty is usually proposed. The myringoplasty procedure is now one of the most common performed methods on the ear. In TM reconstruction, two aims should be fulfilled. The first aim is the closure of the perforation, and the second aim is to obtain a new TM with acoustic qualities similar to those of a normal TM.

Tympanoplasty is defined as a surgical procedure to eradicate disease in the middle ear cleft and to reconstruct the hearing mechanism, with or without mastoid surgery.

a. Term Was Coined By Wullstein
b. It includes reconstruction of tympanic membrane and ossicular chain, tympanic membrane reconstruction.

The perforation size is also a factor affecting the success of TM reconstruction besides the chosen surgical technique. Subtotal or total TM perforations present a surgical challenge. It has been reported that the perforation size is a prognostic factor, and poorer results are obtained with large versus small perforations. These perforations are at a high risk of reperforation, retraction pockets and obligatory revision surgeries. These TM perforations are more difficult to treat because of less extensive TM margins to support graft survival and less tension to resist tympanic retraction postoperatively. Reasons for graft failure include graft displacement, improper placement, autolysis, infection, and Eustachian tube dysfunction.

There are three different underlay techniques:
1. Subannular placement of temporalis fascia graft
2. Anterior tucking of temporalis fascia graft
3. Full cuff placement
4. Vascular strip incision is taken 3 to 5 mm lateral to the annulus of the malleus and residue of TM. Kartush et al. used the over-underlay technique for the tympanoplasty procedure. The perforation size is also a factor affecting the success of TM reconstruction besides the chosen surgical technique. Subtotal or total TM perforations present a surgical challenge. It has been reported that the perforation size is a prognostic factor, and poorer results are obtained with large versus small perforations. These perforations are at a high risk of reperforation, retraction pockets and obligatory revision surgeries. These TM perforations are more difficult to treat because of less extensive TM margins to support graft survival and less tension to resist tympanic retraction postoperatively. Reasons for graft failure include graft displacement, improper placement, autolysis, infection, and Eustachian tube dysfunction.

There are three different underlay techniques:
1. Subannular placement of temporalis fascia graft
2. Anterior tucking of temporalis fascia graft
3. Full cuff placement
4. Vascular strip incision is taken 3 to 5 mm lateral to the annulus of the malleus and residue of TM. Kartush et al. used the over-underlay technique for the tympanoplasty procedure. The perforation size is also a factor affecting the success of TM reconstruction besides the chosen surgical technique. Subtotal or total TM perforations present a surgical challenge. It has been reported that the perforation size is a prognostic factor, and poorer results are obtained with large versus small perforations. These perforations are at a high risk of reperforation, retraction pockets and obligatory revision surgeries. These TM perforations are more difficult to treat because of less extensive TM margins to support graft survival and less tension to resist tympanic retraction postoperatively. Reasons for graft failure include graft displacement, improper placement, autolysis, infection, and Eustachian tube dysfunction.

There are three different underlay techniques:
1. Subannular placement of temporalis fascia graft
2. Anterior tucking of temporalis fascia graft
3. Full cuff placement
4. Vascular strip incision is taken 3 to 5 mm lateral to the annulus of the malleus and residue of TM. Kartush et al. used the over-underlay technique for the tympanoplasty procedure. The perforation size is also a factor affecting the success of TM reconstruction besides the chosen surgical technique. Subtotal or total TM perforations present a surgical challenge. It has been reported that the perforation size is a prognostic factor, and poorer results are obtained with large versus small perforations. These perforations are at a high risk of reperforation, retraction pockets and obligatory revision surgeries. These TM perforations are more difficult to treat because of less extensive TM margins to support graft survival and less tension to resist tympanic retraction postoperatively. Reasons for graft failure include graft displacement, improper placement, autolysis, infection, and Eustachian tube dysfunction.

There are three different underlay techniques:
1. Subannular placement of temporalis fascia graft
2. Anterior tucking of temporalis fascia graft
3. Full cuff placement
4. Vascular strip incision is taken 3 to 5 mm lateral to the annulus of the malleus and residue of TM. Kartush et al. used the over-underlay technique for the tympanoplasty procedure. The perforation size is also a factor affecting the success of TM reconstruction besides the chosen surgical technique. Subtotal or total TM perforations present a surgical challenge. It has been reported that the perforation size is a prognostic factor, and poorer results are obtained with large versus small perforations. These perforations are at a high risk of reperforation, retraction pockets and obligatory revision surgeries. These TM perforations are more difficult to treat because of less extensive TM margins to support graft survival and less tension to resist tympanic retraction postoperatively. Reasons for graft failure include graft displacement, improper placement, autolysis, infection, and Eustachian tube dysfunction.
in the posterior canal wall and extended 1 to 3mm lateral to the
annulus in the anterior canal wall.
5. Thus the incision is extended from 11 o’ clock to 1 o’ clock
position
6. Incision is taken along the 5 o’ clock and along the 2 o’ clock
position along the external auditory canal and tympanomeatal flap
is raised.18
7. In the present study, the tympanoplasty results of patients with
chronic otitis media who have undergone full cuff tympanoplasty
in our tertiary care centre were compared in terms of re-
perforation, lateralization, and hearing improvement. The results
were also compared with those reported previously.

Aims and objectives
a. To assess the success rate of Full Cuff Technique in Tympanoplasty
b. To compare the Results of Temporalis Fascia Placement with and
Without Full Cuff Technique in Tympanoplasty Surgery in Terms
of Hearing and Graft Uptake.
c. To assess THE Patient’s Satisfaction Score in Full Cuff Technique.

Materials and methods
1. Type of study – non randomized clinical prospective study
2. Place of study –tertiary care centre
3. Study period – august 2015 to july 2016.
4. Follow up – 6 months.

Inclusion criteria
1. Chronic suppurative otitis media of tubotympanic type with
perforation (small, moderate , large and subtotal perforations)
2. Age group 15 to 55 years and both sexes
3. Dry ear for three weeks (inactive or quiescent stage of disease).
4. Patient giving consent for the surgery.
5. Co-operative patient giving regular follow up.

Exclusion criteria
1. Cases of Chronic Suppurative Otitis Media of Atticoantral Type
2. Cases of Chronic Suppurative Otitis Media With Extensive
Disease Requiring Procedure Like Modified Radical
Mastoidectomy
3. Patients with Tuberculous Otitis Media
4. Patient not Cooperative
5. Patient with Poor Follow Up
6. Mentally Retarded Patients and Pregnant Female Patients.
7. Patient not Fit for Surgery in Anesthetic Point of View
8. Patients not Giving Consent for the Surgery

Preoperative evaluation
a. History And Ent Examination
b. Tuning Fork Tests
c. Pure Tone Audiometry
d. Examination Under Microscope
e. All Anaesthetic Examinations
f. Written and Informed Consent For Surgery

Preoperative preparation
a. Vital parameters were recorded.
b. Written informed consent of the patient taken
c. Pre-operative audiometry done and evaluated under microscope
d. Preparation of the patients, shaving of hair of the post auricular
region 3cm inside the hair line done.
e. Lignocaine sensitivity test done
f. Inj. Tetanus toxoid 0.5 mg given.
g. Preoperative dose of antibiotic given.

Operative procedure
1. Supine position of patient given with painting and draping
2. Infiltration of LA with adrenaline postaurally
3. Infiltration of LA with adrenaline endaurally only in the
cartilagenous part in all quadrants.
4. Post auricular incision
5. Incision taken through skin and subcutaneous tissue
6. Temporalis fascia graft exposed and areolar tissue removed
7. Temporalis fascia graft harvested
8. ‘c’ shaped incision taken in subcutaneous tissue
9. Posterior meatotomy done
10. Under microscope , margins of perforation freshened
11. Full cuff placement of graft is done
12. Suturing is done in layers
13. Mastoid dressing is done
14. Postoperative examination is done for facial palsy and nystagmus

Post operative care
a. Check dressing done on the day after surgery.
b. Patient discharged on oral antibiotics, analgesics and anti-
histaminic.
c. Patient advised to avoid nose blowing.
d. Patient called in OPD after seven days for suture removal.
e. Dressing taken off, sutures removed and patient advised to apply
 (Table 1–4).

 Neosporin ointment over the scar and instill drops into the ear
ten times a day, keep ear dry, avoid contact with water for 6 weeks
and keep ear canal covered with a cotton ball round the clock:
1. Patients come after 2 to 3weeks
2. Patient further called for follow up at 1, 3 and 6 months post-
 operatively and analyzed for hearing status, presence of
discharging ear, waterproof ear, and residual perforation.
Table 1 Post operative examination findings in full cuff technique

Complications	1 month	3 month	6 month
Blunting of anterior angle	0	2	3
Narrowing of external auditory canal	0	0	3
Otitis media	5	0	0
Gain in hearing	5 db	7 db	21 db
Residual perforation/medialization of graft	7	7	8
Tympanosclerosis	0	1	3
Granulations	0	3	4

Table 2 Post operative complications in without full cuff technique

Complications	1 month	3 month	6 month
Blunting of anterior angle	0	1	2
Narrowing of external auditory canal	0	0	2
Otitis media	4	0	0
Gain in hearing	5 db	6 db	19 db
Residual perforation/medialization of graft	7	8	10
Tympanosclerosis	0	1	5
Granulations	0	3	7

Table 3 Preoperative symptoms

Preoperative symptoms	Total 81 patients
Ear discharge (intermittent)	75 % - 60 patients
Reduced Hearing	65 % - 52 patients
Otalgia	25 % - 20 patients
Tinnitus	5 % - 4 patients
Vertigo	0 %

Table 4 Postoperative subjective assessment

0–No change	One month	Three months	Six months
1–mild	0–20	0–2	0–1
2–moderate	1–17	1–18	1–16
3–severe	2–0	2–17	2–10
	3–0	3–0	3–10
Hearing improvement	0–0	0–10	0–27
	1–25	1–23	1–10
	2–10	2–4	2–0
	3–2	3–0	3–0
	0–25	0–6	0–29
Pain in ear	1–10	1–19	1–8
	2–2	0–16	2–0
	3–0	0–16	3–0
	0–17	0–27	0–32
Discharge in ear	1–20	1–10	1–5
	2–0	2–0	2–0
	3–0	3–0	3–0
Tinnitus	0–0	0–10	0–16
	1–20	1–10	1–5
	2–0	2–0	2–0
	3–0	3–0	3–0

Postoperative assessment

Follow up study done at the period of 1 month, 3 month and 6 months in terms of:

1. Graft uptake
2. Residual perforation
3. Gain in hearing
4. Canal wall sagging
5. Granulations

The results were as follows:

1. Granulations in 4 patients (10%)
2. Narrowing of EAC in 3 (8%)
3. Residual perforation in 8 (20%)
4. Average hearing gain was 21 db.

Full cuff technique has fewer chances of post operative tympanosclerosis and granulations and residual perforation as compared to without full technique:

a. Full cuff technique has more chances of gain in hearing postoperatively.

b. But disadvantages include more risks of blunting of anterior angle and narrowing of external auditory canal (Figure 1).

c. Thus, the satisfaction score for (Table 5)
d. Hearing gain was 1.21 ie less than expected 1.314
e. Ear discharge was 0.40 - satisfactory since less than 0.51
f. Pain was 0.82–satisfactory since less than 0.96
g. Tinnitus 0.31–satisfactory since less than 0.4031

Table 5 Satisfaction score

HE	Mean	Std. deviation	Satisfactory
1 Month	0.4595	0.50523	0.6279
3 Months	1.4054	0.59905	1.6051
6 Months	1.7838	0.88616	2.0792
Total	2.2162	0.87807	1.3814
1 Month	1.3784	0.59401	1.5764
3 Months	0.8378	0.60155	1.0384
6 Months	0.2703	0.45023	0.4204
Total	0.8288	0.7119	0.9627
1 Month	0.3784	0.59401	0.5764
3 Months	0.6216	0.59401	0.8197
6 Months	0.2162	0.41734	0.3554
Total	0.4054	0.56211	0.5111
1 Month	0.5405	0.50523	0.709
3 Months	0.2703	0.45023	0.4204
6 Months	0.1351	0.34658	0.2507
Total	0.3153	0.466675	0.4031
Discussion

Large perforations of the tympanic membrane (TM) have always been more difficult to repair and require modification in technique in many aspects. There are several ways in which canal wall incisions are placed during tympanoplasty. For large perforations, it is very important to provide support to the graft material by additional canal incisions in order to avoid any residual perforations. Problems of granulations and canal skin edema or sagging are frequently encountered. Most tympanoplasty techniques require skin incision of the external auditory canal (EAC). This step is not without the morbidity and postoperative complications such as delayed healing, granulation tissue, lateralization, blunting, and iatrogenic cholesteatoma. Anterior tucking is done in all the cases of full cuff technique. For large perforations of the TM, the vascular strip incision with anterior tucking (VSAT) technique has the best success rates and minimal canal skin related complication rates with comparatively quick healing. The tympanomatal flap with anterior tucking (TMFAT) gives good success rates and is comparatively easy to perform. The full cuff technique appears more appealing during surgery, but the problems of granulations and canal wall sagging are more as compared to other techniques. The success rate is acceptable for full cuff, but the healing time is higher than the other techniques. Mokhtarinejad et al. have described a technique of circumferential subannular grafting with good results. They have concluded that underlay tympanoplasty with elevation of the annulus away from the sulcus tympanicus in the anterior sharp tympanometal angle and placement of the graft between it and anterior bony canal is not associated with increased risk of blunting and lateralization of the graft, if that sharp angle is adequately restored.

Roychaudhuri has described a three flap technique with three incisions in the canal at 1 o’clock, 11 o’clock and 6 o’clock positions. The incision at 6 o’clock position cuts through the annulus tympanicus. Lee et al., have described a superiorly based flap for anterior or subtotal perforations with good results. Cvjetkovic et al. have made a quantitative analysis of vascularization after two basic incisions of tympanoplasty namely the TM incision and the vascular strip incision and found out that there were no significant differences in vascularization of auditory canal skin between TMF and VS patients from one side and the control group on the other side. Rogha et al have compared two methods of TM grafting when graft materials medial or lateral to the malleus and found that the hearing results and success rates are very much similar in both these techniques. In their study, the graft material is pierced in a near central part of the graft, and they lodged so that the malleus handles projects through the graft and gives good success rates and is comparatively easy to perform. The tympanometal flap with anterior tucking (TMFAT) technique has the best success rates and minimal canal skin related complication rates with comparatively quick healing. The tympanomatal flap with anterior tucking (TMFAT) gives good success rates and is comparatively easy to perform.

Karansingh yadav did retrospective study of modified full cuff technique found graft uptake was 95.4% and hearing has improved in all patients and concluded that this technique is easier and less time consuming. This technique can be taught to beginners. P Hosmani, L Ananth, SB Medikeri “comparative study of efficacy of graft placement with and without anterior tagging in type one tympanoplasty for mucosal-type chronic otitis media” journal of laryngology and otology, 2012Feb; issue02;vol 126; pp125-130.

Farhad Mokhtarinejad et al., did 38 cases (group-A) circumferential sub annular grafting and 25 cases (group-B) of underlay tympanoplasty with extension of anterior edge of the graft forward against the lateral wall of the Eustachian tube, they found success rate in 97% in group-A and 100% in group B patients, improvement of the air conduction thresholds in all frequencies and closure of the mean air bone gap were significant and similar among two groups.

Comparison of canal wall incisions for tympanoplasty for large central perforations.

Sohail Vaidya, Saumya K Shah, Mamta Choudhary.
Results

A total of 37 patients were examined who were falling in the criteria and had undergone full cuff tympanoplasty. They were examined for evidence of granulations, narrowing of the EAC, residual perforation, and hearing gain.

Conclusion

Full cuff technique requires expertise. It assures placement of graft correctly below the annulus from all sides ruling out the medialization of graft. It also has advantages in terms of gain in hearing, granulations, and residual perforation. The full cuff technique appears more appealing during surgery, but the problems of granulations and canal wall sagging are more as compared to other techniques. The success rate is acceptable for full cuff, but the healing time is higher than the other techniques. Blunting of angle, external auditory canal narrowing was more in full cuff technique. But residual perforation, tympanosclerosis, and granulations were less in full cuff technique as compared to without full cuff technique. Also, gain in hearing was more in full cuff technique. Full cuff technique is a skilled technique which requires expertise. The technique can be done for small, moderate, large and subtotal perforations. Gradually, this technique is gaining importance. Post operative care, pre operative evaluation, skill of the surgeon and compliance of the patient—all these factors are important for the success of this technique.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

1. Luetje CM. Reconstruction of the tympanic membrane and ossicular chain. In: Bailey B, et al., editors. Head & neck surgery otolaryngology. Lippincott: Williams & Wilkins; 2006.
2. Zahnert T, Huttenbrink KB, Murbe D, et al. Experimental investigation of the use of cartilage in tympanic membrane reconstruction. Am J Otol. 2000;21(3):322–328.
3. Glasscock–Shambaugh’s Surgery of the Ear, Sixth edition.
4. Scott-Brown’s Otorhinolaryngology, Head and Neck Surgery, Seventh edition.
5. Rizer FM. Overlay versus underlay tympanoplasty. Part I historical review of the literature. Laryngoscope. 1997;107(12 Pt 2):1–25.
6. Wehr RE. Grafting techniques. Otolaryngol Clin N Am. 1999;32(3):443–455.
7. Lee HY, Auo HJ, Kang JM. Loop overlay tympanoplasty for anterior or subtotal perforations. Auris Nasus Larynx. 2010;37(2):162–166.
8. Gerlinger I, Rath G, Szanyi I, et al. Myringoplasty for anterior and subtotal perforations using KTP-532 laser. Eur Arch Otorhinolaryngol. 2006;263(9):816–819.
9. Gersdorff M, Gerard J, Thié M. Overlay versus underlay tympanoplasty: comparative study of 122 cases. Rev Laryngol Otol Rhinol. 2003;124(1):15–22.
10. Raghavan U, Malik DSI, Mahmoud NA. Myringoplasty: update on onlay pedicle skin flap and temporalis fascia sandwich graft. J Laryngol Otol. 2000;114(3):174–177.
11. Farrior JB. The anterior tympanomeatal angle in tympanoplasty: surgical techniques for the prevention of blunting. Laryngoscope. 1983;93(8):992–997.
12. Shea JJ. Vein graft closure of eardrum perforations. J Laryngol Otol. 1966;74:358–362.
13. Tabb HG. Experience with transcanal and postauricular myringoplasty. In: Transactions of the Pacific Coast Ophthalmological Society Annual Meeting. 1968;52:121–125.
14. Kartush JM, Michaelides EM, Becvarovski Z, et al. Over-under tympanoplasty. Laryngoscope. 2002;112(5):802–807.
15. Lee P, Kelly G, Mills RP. Myringoplasty: does size of the perforation matter? Clinical Otolaryngol. 2002;27(5):331–334.
16. Indorewala S. Dimensional stability of free fascia grafts: clinical application. Laryngoscope. 2005;115(2):278–282.
17. Treatment of Large Tympanic Membrane Perforations: Medial to Malleus versus Lateral to Malleus; Erkan Kulduk, Riza Dundar Indian J Otolaryngol Head Neck Surg. 2015.
18. Sohil IV, Saumya KS, Mamta C. Comparison of canal wall incisions for tympanoplasty for large central perforations. Indian Journal of Otology. 2015;21(3):186–189.