ON THE FROBENIUS STABLE PART OF WITT VECTOR
COHOMOLOGY

ANDRE CHATZISTAMATIOU

Abstract. For a proper (not necessarily smooth) variety over a finite field
with q elements, Berthelot-Bloch-Esnault proved a trace formula which com-
putes the number of rational points modulo q in terms of the Witt vector coho-
mology. We show the analogous formula for Witt vector cohomology of finite
length. In addition, we prove a vanishing result for the compactly supported
étale cohomology of a constant p-torsion sheaf on an affine Cohen-Macaulay
variety.

Introduction

Let p be a prime number and let k be a finite field with p^n elements. For a
proper (not necessarily smooth) scheme X over k we know (at least) two congruence
formulas for the number of k-rational points #X(k) modulo powers of p. The first
formula, by Katz [Kat73], states that
\[\sum_{i \geq 0} (-1)^i \text{Tr}(F^a | H^i(X, \mathcal{O}_X)) \equiv #X(k) \mod p. \]

Here F denotes the absolute Frobenius with its Frobenius linear operation on coho-
mology, but F^a is linear. The second formula is due to Bloch-Illusie in the smooth
case and Berthelot-Bloch-Esnault [BBE07] in general. If WO_X = \varprojlim W_n\mathcal{O}_X
denotes the sheaf of Witt vectors on X with the Frobenius endomorphism F then
\[\sum_{i \geq 0} (-1)^i \text{Tr}(F^a | H^i(X, WO_X) \otimes \mathbb{Q}) \equiv #X(k) \mod p^n. \]

In this paper we study this trace formula on a finite level, i.e. for W_n\mathcal{O}_X where
n \geq 1 is an integer. For a fixed n we obtain the following result.

Theorem 1 (cf. Corollary 3.7.2). If the cohomology groups H^i(X, W_n\mathcal{O}_X) are free
W_n(k)-modules for all i \geq 0 then
\[\sum_{i \geq 0} (-1)^i \text{Tr}(F^a | H^i(X, W_n\mathcal{O}_X)) \equiv #X(k) \mod p^{\min\{a,n\}}. \]

However, the assumption of the theorem is non-trivial for n \geq 2. In particular,
it implies that the Frobenius is bijective on H^i(X, W_n\mathcal{O}_X) for all i.

More generally, the purpose of this paper is to study the maximal subpace
of H^*(X, W_n\mathcal{O}_X) (and H^*(X, WO_X)) on which the Frobenius is a bijection, we
call it the Frobenius stable Witt vector cohomology. By using compactifications
we extend the definition of Frobenius stable Witt vector cohomology to separated
schemes of finite type over a perfect field \(k \) (\(\text{char}(k) = p \)), we denote these groups by \(H^*_c(X, W_n \mathcal{O}_X) \) and \(H^*_c(X, W \mathcal{O}_X) \) (Definition 1.3.2). In contrast to usual Witt vector cohomology (for proper schemes), the groups \(H^*_c(X, W \mathcal{O}_X) \) are always finitely generated \(W(k) \)-modules. The first result is a weak Lefschetz-type statement.

Theorem 2 (cf. Theorem 1.4.9). Let \(k \) be a perfect field of positive characteristic \(p \). Let \(X \) be an affine scheme of finite type over \(k \). Suppose \(X \) is equidimensional of dimension \(d \) and suppose that \(X \) is Cohen-Macaulay. Then

\[
H^i_c(X, \mathcal{O}_X) = 0 \quad \text{for all } i \neq d.
\]

The \(W_n(k) \)-modules \(H^*_c(X, W_n \mathcal{O}_X) \), together with the Frobenius endomorphism, are closely related to compactly supported étale cohomology \(H^*_c(X \times_k \mathbb{F}_p, \mathbb{Z}/p^n) \) equipped with the operation of the Galois group \(\text{Gal}(\bar{k}/k) \) (see Proposition 2.1.1 for a precise statement). Via this correspondence the Theorem 2 asserts that

\[
H^1_{c, \mathrm{rig}}(X, \mathbb{Z}/p) = 0 \quad \text{for all } i \neq d.
\]

We denote by \(K \) the quotient field of \(W(k) \). By using the comparison theorem of [BBE07] between Witt vector cohomology and compactly supported rigid cohomology we prove that \(H^*_c(X, W \mathcal{O}_X)_s \otimes_{W(k)} K \) is the slope zero part of \(H^*_c(X/K) \).

In order to prove Theorem 1 it is not sufficient to work with cohomology groups, but instead we have to work with perfect complexes. We observe that the Frobenius stable Witt vector cohomology of \(X \) has a natural interpretation as Witt vector cohomology. This paper is inspired by the paper [BBE07]. In particular, the definition of Frobenius stable Witt vector cohomology for non-proper varieties follows [BBE07].

Acknowledgements. It is a pleasure to thank Hélène Esnault for her strong encouragement. This paper is inspired by the paper [BBE07]. In particular, the definition of Frobenius stable Witt vector cohomology for non-proper varieties follows [BBE07].

1. **The stable part of Witt vector cohomology**

1.1. Let \(k \) be a perfect field of positive characteristic \(p \). We denote by \(W(k) \) the ring of Witt vectors and by \(W_n(k) \) the ring of Witt vectors of length \(n \). The Frobenius automorphism on \(W(k) \) and \(W_n(k) \) is denoted by \(\sigma \). We denote by \(D \) the Dieudonné ring \(D = W(k)[F, V] \) with relations

\[
F a = \sigma(a) F, \quad a V = V \sigma(a), \quad F V = V F = p,
\]

for all \(a \in W(k) \). For an integer \(n \geq 1 \), we define \(D_n := D/p^n \).

By a \(D \)-module we will mean a left \(D \)-module. Given a \(D \)-module \(M \) we obtain a \(\sigma \)-linear (and a \(\sigma^{-1} \)-linear) map \(F : M \to M \) (and \(V : M \to M \), respectively).

For a \(W(k) \)-module \(M \) we define

\[
\sigma_* M := W(k) \otimes_{\sigma^{-1}, W(k)} M.
\]
In other words, the multiplication in $\sigma_*(M)$ is twisted by σ: $a \otimes m = 1 \otimes \sigma(a)m$. If M is equipped with a σ-linear map F then $\sigma \otimes F$ defines a σ-linear map $\sigma_* M \to \sigma_* M$. Similarly, if M is a D-module then $\sigma_* M$ inherits a D-module structure.

Definition 1.1.1. Let M be a $W(k)$-module together with a σ-linear map $F : M \to M$. We define

$$M_s := \bigcap_{a \geq 1} F^a(M).$$

We call M_s the (Frobenius) stable part of M. We call M stable if $M_s = M$.

Obviously, $F(M_s) \subset M_s$, and thus M_s is equipped with the map F. If M is a D-module then M_s is a D-module.

Proposition 1.1.2. Let M, M', M'' be $W(k)$-modules equipped with σ-linear maps F, F', F''. Let $n \geq 1$ be an integer.

(i) The equality $(\sigma_*(M))_s = \sigma_*(M_s)$ holds.

(ii) If M is a finite and free $W_n(k)$-module then M_s is a finite and free $W_n(k)$-module.

(iii) If M is a finite $W(k)$-module then $M_s \xrightarrow{\cong} \lim_{\leftarrow n} (M/p^n)_s$ is an isomorphism.

(iv) If M is a finite $W(k)$-module then $F : M_s \to M_s$ is bijective.

(v) Suppose that

$$0 \to M' \to M \to M'' \to 0$$

is a short exact sequence (compatible with the σ-linear maps) and M is a finite $W(k)$-module. Then

$$0 \to (M'_s) \to M_s \to (M''_s) \to 0$$

is exact.

Proof. The assertion (i) is obvious. The statement (ii) follows from the elementary fact stated in Lemma 1.1.3. By assumption k is perfect and this implies that M_s and M_{nil} are sub-$W_n(k)$-modules. Therefore M_s is a projective $W_n(k)$-modules and thus free.

For (iii): The σ-linear map on M/p^n is induced by M. If M is a finite $W(k)$-module then $M \to \lim_{\leftarrow n} M/p^n$ is an isomorphism. We get inclusions

$$M_s \subset \lim_{\leftarrow n} (M/p^n)_s \subset M.$$

By Lemma 1.1.3 F is bijective on $\lim_{\leftarrow n} (M/p^n)_s$, thus $\lim_{\leftarrow n} (M/p^n)_s \subset M_s$.

For (iv): Follows from (iii) and the fact that F is bijective on $(M''/p^n)_s$.

For (v): We only need to prove that $M_s \to (M''_s)$ is surjective. Consider the exact sequence

$$0 \to K_n \to M/p^n \to M''/p^n \to 0.$$

Lemma 1.1.3 implies that

$$0 \to (K_n)_s \to (M/p^n)_s \to (M''/p^n)_s \to 0$$

is again exact. The projective system (K_n) satisfies the Mittag-Leffler condition, and taking the limit $\lim_{\leftarrow n}$ implies the claim. \square
Lemma 1.1.3. Let M be an abelian group. Let $F : M \to M$ be an endomorphism. Suppose that there are integers $n, m \geq 1$ such that $\ker(F^n) = \ker(F^{n+1})$ and $F^m(M) = F^{m+1}(M)$. Then there exists a unique decomposition

$$M = M_s \oplus M_{\text{nil}}$$

with $F(M_s) \subset M_s$, $F(M_{\text{nil}}) \subset M_{\text{nil}}$, such that the restriction of F to M_s is bijective, and the restriction of F to M_{nil} is nilpotent. Moreover,

$$M_s = F^{n+m}(M), \quad M_{\text{nil}} = \ker(F^{n+m}).$$

Proof. We leave the proof to the reader. \qed

1.2. Let X be a separated scheme of finite type over k, we denote by $W_n(\mathcal{O}_X)$ the Witt sheaf of rings of X of length n. We have the Frobenius endomorphism

$$F : W_n(\mathcal{O}_X) \to W_n(\mathcal{O}_X), \quad (a_1, \ldots, a_n) \mapsto (a_1^p, \ldots, a_n^p).$$

For $X = \text{Spec}(k)$ we keep the notation σ for F. Of course, $W_n(\mathcal{O}_X)$ is an $W_n(k)$ module. We have the Verschiebung

$$V : W_n(\mathcal{O}_X) \to W_n(\mathcal{O}_X), \quad (a_1, \ldots, a_n) \mapsto (0, a_1, \ldots, a_{n-1}),$$

and the relation $V \circ F = F \circ V = p$.

If X is proper then the cohomology groups $H^i(X, W_n(\mathcal{O}_X))$ are finite $W_n(k)$ modules. Moreover, F (and V) induces a σ-linear map (a σ^{-1}-linear map, respectively,

$$H^i(X, W_n(\mathcal{O}_X)) \to H^i(X, W_n(\mathcal{O}_X)), \quad \text{for all } i.$$

For simplicity we write $F = H^i(F)$ and $V = H^i(V)$.

1.3. Let X be a separated (not necessarily proper) scheme of finite type over k. We may choose a compactification Y of X. Let $Z = Y \setminus X$ and choose a ideal sheaf \mathcal{I} for Z. Denoting

$$W_n(\mathcal{I}) := \{(a_1, \ldots, a_n) \in W_n(\mathcal{O}_X); a_i \in \mathcal{I}\}$$

we get by restriction a Frobenius and a Verschiebung endomorphism.

The groups $H^i(Y, W_n(\mathcal{I}))$ are finite $W_n(k)$-modules and equipped with the σ-linear map F and the σ^{-1}-linear map V satisfying $FV = VF = p$. Thus they are D_n-modules.

In general, $H^*(Y, W_n(\mathcal{I}))$ depends on the choice of the ideal and the compactification. However, we will see that the stable part does not.

Lemma 1.3.1. Let $n \geq 1$ be an integer.

(i) If \mathcal{I}' is another ideal for Z such that $\mathcal{I}' \subset \mathcal{I}$ then

$$H^i(Y, W_n(\mathcal{I}'))_s \cong H^i(Y, W_n(\mathcal{I}))_s$$

is an isomorphism of D_n-modules for all i.

(ii) Suppose Y' is another compactification of X with a morphism $g : Y' \to Y$ which induces the identity on X. Then

$$g^*: H^i(Y, W_n(\mathcal{I}))_s \to H^i(Y', W_n(\mathcal{O}_{Y'}))_s$$

is an isomorphism of D_n-modules for all i.

Proof. There is a short exact sequence

\begin{equation}
0 \to W_{n-1}(\mathcal{I}) \xrightarrow{V} W_n(\mathcal{I}) \xrightarrow{R^{n-1}} \mathcal{I} \to 0,
\end{equation}

where \(V \) is the Verschiebung \((a_1, \ldots, a_{n-1}) \mapsto (0, a_1, \ldots, a_{n-1})\) and \(R^{n-1} \) is the projection \((a_1, \ldots, a_n) \mapsto a_1\). This gives a long exact sequence of \(D_n \)-modules:

\[
\ldots \to H^{i-1}(Y, \mathcal{I}) \to \sigma_* H^i(W_{n-1}(\mathcal{I})) \xrightarrow{V} H^i(W_n(\mathcal{I})) \xrightarrow{R^{n-1}} H^i(\mathcal{I}) \to \ldots
\]

The maps in (i) and (ii) are compatible with this long exact sequence, thus it is sufficient to show the assertion in the case \(n = 1 \).

For (i). For \(a \geq 1 \) the morphism \(\text{Frob}^a : \mathcal{I} \to \text{Frob}_\mathcal{I}^a \mathcal{I}, r \mapsto r^p \), factors through

\begin{equation}
\mathcal{I} \xrightarrow{\phi^a} \text{Frob}_\mathcal{I}^a (\mathcal{I}^p) \xrightarrow{\sigma_*} \text{Frob}_\mathcal{I}^a \mathcal{I},
\end{equation}

which induces a morphism of \(D_1 \)-modules (\(V \) acts as zero)

\[
\phi^a : H^1(Y, \mathcal{I}) \to \sigma_* H^1(Y, \mathcal{I}^p).
\]

Since \(F \) is bijective on the stable part,

\[
H^1(Y, \mathcal{I}) \xrightarrow{\phi^a} \sigma_* H^1(Y, \mathcal{I}^p) \xrightarrow{\sigma_* (\text{inclusion})} \sigma_* H^1(Y, \mathcal{I})
\]

is surjective. Since \(\mathcal{I}^p \subset \mathcal{I}' \) for some \(a \) this implies the surjectivity of

\begin{equation}
H^1(Y, \mathcal{I}') \to H^1(Y, \mathcal{I})_s.
\end{equation}

We also obtain that \(H^1(Y, \mathcal{I}^p)_s \to H^1(Y, \mathcal{I}')_s \) is surjective when \(\mathcal{I}^p \subset \mathcal{I}' \).

In order to prove the injectivity of \(\text{Frob}^a \) it is sufficient to prove that \(\phi^a \) is surjective. This follows from the commutative diagram

\[
\begin{array}{ccc}
H^1(Y, \mathcal{I})_s & \xrightarrow{\phi^a} & \sigma_* H^1(Y, \mathcal{I}^p)_s \\
\downarrow \text{inclusion} & & \downarrow \sigma_* \phi^a \\
H^1(Y, \mathcal{I}^p)_s & \xrightarrow{F^a} & \sigma_* H^1(Y, \mathcal{I}^p)_s
\end{array}
\]

and the surjectivity of \(F^a \).

For (ii). We prove the claim in two steps. In the first step we show that

\begin{equation}
H^1(Y, \mathcal{I})_s \xrightarrow{\sim} H^1(Y, g_* \mathcal{I} \mathcal{O}_{Y'})_s,
\end{equation}

and in the second step we prove

\begin{equation}
H^1(Y, g_* \mathcal{I} \mathcal{O}_{Y'})_s \xrightarrow{\sim} H^1(Y, \mathcal{I} \mathcal{O}_{Y'})_s.
\end{equation}

Defining

\[
K_n = \ker(\mathcal{I}^n \to g_* \mathcal{I}^n \mathcal{O}_{Y'}), \quad C_n = \text{coker}(\mathcal{I}^n \to g_* \mathcal{I}^n \mathcal{O}_{Y'}),
\]

the \(\oplus_{n \geq 0} \mathcal{I}^n \) modules \(\oplus_{n \geq 0} K_n \) and \(\oplus_{n \geq 0} C_n \) are finitely generated [Gro61, 3.3.1]. Thus there exists \(d \) such that for all \(n \geq d \) the following maps are surjective

\[
\mathcal{I} \otimes \mathcal{O}_Y, K_n \to K_{n+1}, \quad \mathcal{I} \otimes \mathcal{O}_Y, C_n \to C_{n+1}.
\]

Since \(K_n, C_n \) are supported in \(Y \setminus X \) (for \(n \leq d \)), we can choose an integer \(e \geq 1 \) such that \(\mathcal{I}^e K_n = 0 = \mathcal{I}^e C_n \) for all \(n \). It follows that for \(m = e + d \) the maps

\begin{equation}
K_{n+m} \to K_n, \quad C_{n+m} \to C_n
\end{equation}

vanish for all \(n \).
From the commutative diagram

\[
\begin{array}{ccc}
\text{Frob}^a \mathcal{I} & \rightarrow & \text{Frob}^a g_* \mathcal{O}_{Y'} \\
\uparrow & & \uparrow \\
\text{Frob}^a \mathcal{T}^a & \rightarrow & \text{Frob}^a g_* \mathcal{T}^a \mathcal{O}_{Y'} \\
\phi^a & \rightarrow & g_* \phi^a \\
\downarrow & & \downarrow \\
\mathcal{I} & \rightarrow & g_* \mathcal{I} \mathcal{O}_{Y'} \\
\end{array}
\]

we obtain induced morphisms \(\text{Frob}^a : K_1 \rightarrow \text{Frob}^a K_1 \) and \(\text{Frob}^a : C_1 \rightarrow \text{Frob}^a C_1 \) which factor through \(\text{Frob}^a(K_{p^n}) \subset \text{Frob}^a(K_1) \) and \(\text{Frob}^a(C_{p^n}) \rightarrow \text{Frob}^a(C_1) \), respectively. Thus Frob is nilpotent on \(K_1 \) and \(C_1 \) by 1.3.1.6 This proves 1.3.1.4.

For 1.3.1.5 it is sufficient to show that Frob acts as a nilpotent endomorphism on \(R^i g_* (\mathcal{I} \mathcal{O}_{Y'}) \) for \(i > 0 \). Then the assertion follows from the Leray spectral sequence. In view of [D66, Appendix-Proposition 5] the map \(R^i g_* (\mathcal{I} \mathcal{O}_{Y'}) \rightarrow R^i g_* (\mathcal{I} \mathcal{O}_{Y'}) \), induced by \(\mathcal{T}^a \mathcal{O}_{Y'} \subset \mathcal{I} \mathcal{O}_{Y'} \), vanish if \(a \) is sufficiently large. Thus the factorization 1.3.1.2 implies the claim.

For two ideals of \(Z = Y' \setminus X \) we can take the intersection, and two compactifications can be dominated by a third one, thus Lemma 1.3.1 shows that \(H^i(Y, W_n(\mathcal{I}))_s \) is independent of the choice of \(\mathcal{I} \) and \(Y \).

Definition 1.3.2. Let \(Y \) be a compactification of \(X \) and \(\mathcal{I} \) an ideal for \(Y' \setminus X \). For all \(i \) we denote by \(H^i_c(X, W_n \mathcal{O}_X)_s \) the \(D_n \)-module \(H^i(Y, W_n(\mathcal{I}))_s \). If \(X \) is compact we will omit the index \(c \).

1.4. Let \(X \) be of finite type and separated over \(k \). Choose a compactification \(Y \) and an ideal \(\mathcal{I} \) for \(Y' \setminus X \). The restriction of the Frobenius to the nilradical \(\mathcal{N} \) of \(\mathcal{O}_Y \) is nilpotent and from the short exact sequence

\[
0 \rightarrow \mathcal{I} \cap \mathcal{N} \rightarrow \mathcal{I} \rightarrow \mathcal{I} \mathcal{O}_{\text{red}} \rightarrow 0
\]

we conclude

\[
H^i_c(X, W_n \mathcal{O}_X)_s \xrightarrow{\cong} H^i_c(X_{\text{red}}, W_n(\mathcal{O}_{X_{\text{red}}}))_s \quad \text{for all } i, n.
\]

Let \(U \subset X \) be an open subset and choose an ideal \(\mathcal{J} \) for \(Y \setminus U \). In view of the short exact sequence

\[
0 \rightarrow \mathcal{J} \rightarrow \mathcal{I} \rightarrow \mathcal{I}/\mathcal{J} \rightarrow 0
\]

we get a long exact sequence

\[
(1.4.0.1) \quad \cdots \rightarrow H^i_c(U, W_n \mathcal{O}_U)_s \rightarrow H^i_c(X, W_n \mathcal{O}_X)_s \rightarrow H^i_c(X \setminus U, W_n \mathcal{O}_{X \setminus U})_s \rightarrow H^{i+1}_c(U, W_n \mathcal{O}_U)_s \rightarrow \cdots
\]

Let \(U_1, U_2 \) be open sets of \(X \) such that \(X = U_1 \cup U_2 \). Choose ideals \(\mathcal{I}_1 \) and \(\mathcal{I}_2 \) for \(Y \setminus U_1 \) and \(Y \setminus U_2 \), respectively. Then \(\mathcal{I}_1 + \mathcal{I}_2 \) is an ideal for \(Y \setminus X \) and \(\mathcal{I}_1 \cap \mathcal{I}_2 \) is an ideal for \(Y \setminus (U_1 \cap U_2) \). From the short exact sequence

\[
0 \rightarrow W_n(\mathcal{I}_1 \cap \mathcal{I}_2) \rightarrow W_n(\mathcal{I}_1) \oplus W_n(\mathcal{I}_2) \rightarrow W_n(\mathcal{I}_1 + \mathcal{I}_2) \rightarrow 0
\]
we get a long exact sequence

\[(1.4.0.2)\]
\[
\ldots \to H_i^s(U_1 \cap U_2, W_n \mathcal{O}_{U_1 \cap U_2})_s \to H_i^s(U_1, W_n \mathcal{O}_{U_1})_s \oplus H_i^s(U_2, W_n \mathcal{O}_{U_2})_s \to H_i^s(X, W_n \mathcal{O}_X)_s \to H_i^{s+1}(U_1 \cap U_2, W_n \mathcal{O}_{U_1 \cap U_2})_s \to \ldots
\]

Definition 1.4.1. Let \(X\) be a separated scheme of finite type over a perfect field \(k\) of positive characteristic \(p\). By taking the inverse limit we define

\[H_i^s(X, W \mathcal{O}_X)_s = \lim_{n} H_i^s(X, W_n \mathcal{O}_X)_s \quad \text{for all} \quad i.\]

If \(X\) is compact we will omit the index \(c\).

We have a natural inclusion

\[(1.4.1.1)\]
\[H_i^s(X, W \mathcal{O}_X)_s = \lim_{n} H^i(Y, W_n \mathcal{I})_s \subset \lim_{n} \mathcal{H}^i(Y, W_n \mathcal{I}) = \mathcal{H}^i(Y, W \mathcal{I}),\]

and after inverting \(p\) we obtain in the notation of [BBE07, 2.13]:

\[H_i^s(X, W \mathcal{O}_X)_s \otimes W(k) K \subset \mathcal{H}^i(Y, W \mathcal{I}) \otimes W(k) K =: H_i^s(X, W \mathcal{O}_X)_s.\]

In general, the \(D\)-module \(\mathcal{H}^i(Y, W \mathcal{I})\) is not a finite \(W(k)\)-module. However, the \(K\)-vector space \(\mathcal{H}^i(Y, W \mathcal{I}) \otimes W(k) K\) is finite dimensional and independent of the choice of the compactification \(Y\) and the ideal \(\mathcal{I}\) (BBE07 §2).

Proposition 1.4.2. Via the inclusion \((1.4.1.1)\) we get \(H_i^s(X, W \mathcal{O}_X)_s = \mathcal{H}^i(Y, W \mathcal{I})_s\) for all \(i\).

Proof. The inclusion \(\subset\) follows immediately from the definitions, and \(\supset\) follows since \(F\) is bijective on \(H_i^s(X, W \mathcal{O}_X)_s\).

Proposition 1.4.3. For all \(n \geq 1\) there is a long exact sequence of \(D\)-modules

\[
\ldots \to H_i^s(X, W \mathcal{O}_X)_s \xrightarrow{F^n} H_i^{s+1}(X, W \mathcal{O}_X)_s \to H_i^{s+1}(X, W \mathcal{O}_X)_s \to \ldots
\]

Proof. For all \(m > n\) we have a short exact sequence (notation as in Definition 1.3.2)

\[(1.4.3.1)\]
\[0 \to W_{m-n}(\mathcal{I}) \xrightarrow{V^n} W_m(\mathcal{I}) \xrightarrow{R^{m-n}} W_n(\mathcal{I}) \to 0,
\]

with

\[V^n(a_0, \ldots, a_{m-n-1}) = (0, \ldots, 0, a_1, \ldots, a_{m-n-1}),\]

\[R^{m-n}(a_0, \ldots, a_{m-1}) = (a_0, \ldots, a_{m-1}).\]

Now, \((1.4.3.1)\) induces a long exact sequence of \(D_m\)-modules

\[
\ldots \to \sigma^n \mathcal{H}^i(Y, W_{m-n}(\mathcal{I})) \xrightarrow{V^n} \mathcal{H}^i(Y, W_{m}(\mathcal{I})) \to \mathcal{H}^i(Y, W_n(\mathcal{I})) \to \ldots
\]

Taking stable part and using the isomorphism

\[F^n : \mathcal{H}^i(Y, W_{m-n}(\mathcal{I}))_s \xrightarrow{\cong} \sigma^n \mathcal{H}^i(Y, W_{m-n}(\mathcal{I}))_s,
\]

we obtain a long exact sequence

\[(1.4.3.2)\]
\[
\ldots \to H_i^s(Y, W_{m-n}(\mathcal{I}))_s \xrightarrow{V^n \circ F^n} H_i^s(Y, W_m(\mathcal{I}))_s \to H_i^s(Y, W_n(\mathcal{I}))_s \to \ldots
\]
Since all groups are finite $W_m(k)$-modules the projective limit $\varprojlim_{n} H^i_c(X, W_n\mathcal{O}_X)$ is exact, and $V \cdot F = p$ implies the claim. \hfill\qed

Corollary 1.4.4. Let X be a separated scheme of finite type over a perfect field k of positive characteristic p. The $W(k)$-module $H^i_c(X, W\mathcal{O}_X)_s$ is finitely generated for all i.

Proof. Proposition 1.4.3 implies that
\[H^i_c(X, W\mathcal{O}_X)_s/p^nH^i_c(X, W\mathcal{O}_X)_s \subset H^i_c(X, W_n\mathcal{O}_X)_s \]
for all i, n. Therefore
\[H^i_c(X, W\mathcal{O}_X)_s = \lim_{n} \left(H^i_c(X, W\mathcal{O}_X)_s/p^nH^i_c(X, W\mathcal{O}_X)_s \right), \]
and the assertion follows since $H^i_c(X, \mathcal{O}_X)_s$ is a finite dimensional k-vector space. \hfill\qed

Remark 1.4.5. Corollary 1.4.4 follows immediately from [Ser58 §5, Proposition 3]. We include a proof for the convenience of the reader.

Proposition 1.4.6. Suppose X is proper over k. Suppose that $H^i(X, \mathcal{O}_X)_s = H^i(X, \mathcal{O}_X)$ for all i. Then $H^i(X, W_n\mathcal{O}_X)_s = H^i(X, W_n\mathcal{O}_X)$ for all i and $n \geq 1$. In particular, $H^i(X, W\mathcal{O}_X)_s = H^i(X, W\mathcal{O}_X)$ for all i.

Proof. The equality $H^i(X, W_n\mathcal{O}_X)_s = H^i(X, W_n\mathcal{O}_X)$ for all i, follows by induction on n from the short exact sequence
\[0 \to W_{n-1}(\mathcal{O}_X) \xrightarrow{V} W_n(\mathcal{O}_X) \xrightarrow{R^{n-1}} \mathcal{O}_X \to 0. \]
\hfill\qed

Proposition 1.4.7. Let X be a separated scheme of finite type over a perfect field k of positive characteristic p. Let $n \geq 1$. The following statements are equivalent:

(i) For all i, $H^i_c(X, W_n\mathcal{O}_X)_s$ is a free $W_n(k)$-module.

(ii) For all i, $H^i_c(X, W_n\mathcal{O}_X)_s$ is a free $W_n(k)$-module of rank $\dim_k H^i_c(X, \mathcal{O}_X)_s$.

(iii) For all i, the map $H^i_c(X, W_n\mathcal{O}_X)_s \to H^i_c(X, \mathcal{O}_X)_s$ is surjective.

Proof. Obviously (ii) implies (i). Now, suppose (i) holds. It is clear from the long exact sequence 1.4.3.2 that
\[\text{length}(H^i_c(X, W_m\mathcal{O}_X)_s) \leq m \cdot \dim_k H^i_c(X, \mathcal{O}_X)_s \]
for all $m \leq n$. If the canonical map $H^i_c(X, W_n\mathcal{O}_X)_s/p \to H^i_c(X, \mathcal{O}_X)_s$ is surjective (which holds for $i \geq \dim X$) then equality holds in (1.4.7.1) for $m = n$, and thus
\[H^i_c(X, W_{n-1}\mathcal{O}_X)_s \xrightarrow{V \cdot F} H^i_c(X, W_n\mathcal{O}_X)_s \]
is injective. It follows that $H^i_c(X, W_n\mathcal{O}_X)_s/p \to H^i_c(X, \mathcal{O}_X)_s$ is surjective. By descending induction on i (starting from $i = \dim X$) we see that (ii) holds.

Now, suppose that (iii) holds. By induction on n we may suppose that for all i, $H^i_c(X, W_{n-1}\mathcal{O}_X)_s$ is free of rank $\dim_k H^i_c(X, \mathcal{O}_X)_s$. Since $H^i_c(X, W_{n-1}\mathcal{O}_X)_s/p \to H^i_c(X, \mathcal{O}_X)_s$ is surjective (by assumption (iii)) it is an isomorphism. It follows that
\[H^i_c(X, W_n\mathcal{O}_X)_s \to H^i_c(X, W_{n-1}\mathcal{O}_X)_s \]
is surjective. From the long exact sequence 1.4.3.2 we get short exact sequences
\[0 \to H^i_c(X, W_{n-1}\mathcal{O}_X)_s \xrightarrow{V \cdot F} H^i_c(X, W_n\mathcal{O}_X)_s \to H^i_c(X, \mathcal{O}_X)_s \to 0. \]
The surjectivity of $H_i(X, W_n \mathcal{O}_X)_s$ and $V \circ F = p$ on $H_i^s(X, W_n \mathcal{O}_X)_s$ implies
\[
H_i^s(X, W_{n-1} \mathcal{O}_X)_s = p \cdot H_i^s(X, W_n \mathcal{O}_X)_s
\]
which yields (together with $H_i^s(X, W_n \mathcal{O}_X)_s / p \cong H_i^c(X, \mathcal{O}_X)_s$) that $H_i^c(X, W_n \mathcal{O}_X)_s$ is free of rank $\dim_k H_i^c(X, \mathcal{O}_X)_s$. □

Proposition 1.4.8. (cf. [Ser58, §5, Corollaire 2]) Suppose X is proper and $n \geq 2$. The following statements are equivalent:

(i) For all i, $H^i(X, W_n \mathcal{O}_X)$ is a free $W_n(k)$-module.

(ii) For all i, $H^i(X, \mathcal{O}_X)_s = H^i(X, \mathcal{O}_X)$ and $H^i(X, W_n \mathcal{O}_X) \rightarrow H^i(X, \mathcal{O}_X)$ is surjective.

(iii) For all i, $H^i(X, W_n \mathcal{O}_X)_s = H^i(X, W_n \mathcal{O}_X)$ and $H^i(X, W_n \mathcal{O}_X)_s$ is a free $W_n(k)$-module.

Proof. Proposition 1.4.6 and 1.4.7 imply (ii) ⇒ (iii). Obviously, (iii) ⇒ (i).

Now, suppose that (i) holds. From the long exact sequence associated to 1.4.3.1 we obtain
\[
\text{length}(H^i(X, W_m \mathcal{O}_X)) \leq m \cdot \dim_k H^i(X, \mathcal{O}_X)
\]
for all m. If $H^i(X, W_n \mathcal{O}_X)/p \rightarrow H^i(X, \mathcal{O}_X)$ is surjective then in 1.4.8.1 equality holds; this implies that
\[
V : \sigma_* H^i(X, W_{n-1} \mathcal{O}_X) \rightarrow H^i(X, W_n \mathcal{O}_X)
\]
is injective. Thus $V(\sigma_* H^i(X, W_{n-1})) = p H^i(X, W_n \mathcal{O}_X)$ and in particular, we see that $H^i(X, W_{n-1} \mathcal{O}_X)$ is free. We also obtain $H^{i-1}(X, W_n \mathcal{O}_X)/p \xrightarrow{\cong} H^{i-1}(X, \mathcal{O}_X)$. By induction on i we get $H^i(X, W_n \mathcal{O}_X)/p \xrightarrow{\cong} H^i(X, \mathcal{O}_X)$ for all i. We conclude that $H^i(X, W_m \mathcal{O}_X)$ is free of rank $\dim_k H^i(X, \mathcal{O}_X)$ for all $i, m \leq n$. Consider the case $m = 2$: we have a short exact sequence
\[
0 \rightarrow \sigma_* H^i(X, \mathcal{O}_X) \xrightarrow{\nu} H^i(X, W_2 \mathcal{O}_X) \xrightarrow{\beta} H^i(X, \mathcal{O}_X) \rightarrow 0
\]
for all i. The composition $H^i(X, \mathcal{O}_X) \xrightarrow{\nu} \sigma_* H^i(X, \mathcal{O}_X) \xrightarrow{\nu} H^i(X, W_2 \mathcal{O}_X)$ equals $p \cdot R^{-1}$. Because $H^i(X, W_2 \mathcal{O}_X)$ is free, V and thus F is injective, which proves $H^i(X, \mathcal{O}_X)_s = H^i(X, \mathcal{O}_X)$. □

Theorem 1.4.9. Let k be a perfect field of positive characteristic p. Let X be an affine scheme of finite type over k. Suppose X is equidimensional of dimension d and suppose that X is Cohen-Macaulay. Then
\[
H_i^c(X, \mathcal{O}_X)_s = 0 \quad \text{for all} \quad i \neq d.
\]

Proof. Let Y be a compactification of X. By blowing up the complement $Y \setminus X$ we may suppose that we can find an ideal \mathcal{I} for $Y \setminus X$ which is a Cartier divisor. It is sufficient to prove that the projective system $(H^i(Y, \mathcal{I}^n))_n$ is essentially zero if $i < d$. Let ω_Y be the dualizing complex of Y. We obtain
\[
H^i(Y, \mathcal{I}^n)^Y = H^{-i}(Y, \omega_Y \otimes \mathcal{I}^{-n}),
\]
thus we need to prove that the inductive system $(H^{-i}(Y, \omega_Y \otimes \mathcal{I}^{-n}))_n$ is essentially zero. Since
\[
\lim_n \omega_Y \otimes \mathcal{I}^{-n} = j_*(\omega_Y|_X),
\]
with \(j : X \to Y \) the open immersion, we get
\[
\lim_{n \to \infty} H^{-i}(Y, \omega_Y \otimes \mathcal{I}^{-n}) = H^{-i}(Y, j_*(\omega_Y|_X)) = H^{-i}(Y, Rj_*(\omega_Y|_X)) = H^{-i}(X, \omega_Y|_X).
\]
By assumption \(X \) is Cohen-Macaulay, and therefore \(\omega_Y|_X \cong \omega_X \) is concentrated in degree \(-d\).

Remark 1.4.10. In general the statement of the Theorem 1.4.9 fails if \(X \) is not Cohen-Macaulay. For example consider two affine planes glued at a point 0, \(X = \mathbb{A}^2 \cup_0 \mathbb{A}^2 \). Then \(H^1_\varepsilon(X, \mathcal{O}_X)_s \cong k \).

Corollary 1.4.11. With the assumptions of Theorem 1.4.9. The group \(H^i_\varepsilon(X, W\mathcal{O}_X)_s \) vanishes if \(i \neq d \), and is a finite free \(W(k) \)-module for \(i = d \).

Proof. Follows from Proposition 1.4.3 and 1.4.7.

1.5. Next, we want to show that
\[
H^i_\varepsilon(X, W\mathcal{O}_X)_s \otimes_{W(k)} K \cong H^i_{\text{rig}, c}(X/K)_{[0]}
\]
where the right hand side is the slope = 0 part of compactly supported rigid cohomology. We will need the following Lemma.

Lemma 1.5.1. Suppose \(k \subset L \) is an extension of perfect fields. Let \((M_n) \) be a projective system of \(W(k) \)-modules such that \(p^n M_n = 0 \) and \(M_n \) is a finite \(W_n(k) \) module. We set \(M = \varprojlim_n M_n \) and consider the natural map
\[
(1.5.1.1) \quad M \otimes_{W(k)} W(L) \to \varprojlim_n (M_n \otimes_{W_n(k)} W_n(L)).
\]

(i) If \(M \) is a finite \(W(k) \)-module then the map \((1.5.1.1) \) is an isomorphism.

(ii) The map \((1.5.1.1) \) is injective.

Sketch of proof. Since \(k \) and \(L \) are perfect we conclude that \(W_n(L) \) is flat over \(W_n(k) \). Assertion (i) follows by reduction to the case \(M_n = M/p^n \). Statement (ii) follows from (i). We leave the details to the reader.

Proposition 1.5.2. Let \(k \) be a perfect field of positive characteristic \(p \), with ring of Witt vectors \(W = W(k) \) and \(K = \text{Frac}(W(k)) \). Let \(X \) be a separated scheme of finite type over \(k \). For all \(i \), there is an isomorphism
\[
H^i_\varepsilon(X, W\mathcal{O}_X)_s \otimes_{W(k)} K \to H^i_{\text{rig}, c}(X/K)_{[0]}
\]
which is compatible with the \(F \)-operation.

Proof. Let \(Y \) be a compactification of \(X \) and \(\mathcal{I} \) an ideal for \(Y \setminus X \). By the work of Berthelot, Bloch and Esnault [BBE07], there is an isomorphism of \(F \)-isocrystals
\[
H^i(Y, W(\mathcal{I})) \otimes_{W(k)} K \to H^i_{\text{rig}, c}(X/K)_{<1},
\]
where the right hand side is the slope \(< 1\) part of (compactly supported) rigid cohomology. By definition we have
\[
H^i_\varepsilon(X, W(\mathcal{O}_X))_s \otimes_{W(k)} K \subset H^i(Y, W(\mathcal{I})) \otimes_{W(k)} K,
\]
and since \(F \) is bijective on the finite \(W(k) \)-module \(H^i_\varepsilon(X, W(\mathcal{O}_X))_s \) we obtain
\[
(1.5.2.1) \quad H^i_\varepsilon(X, W(\mathcal{O}_X))_s \otimes_{W(k)} K \subset H^i_{\text{rig}, c}(X/K)_{[0]}.
\]
We set $\bar{K} = \text{Frac}(W(\bar{k}))$. In order to prove the surjectivity of $1.5.2.1$, we need to show that every $v \in H^i_{\text{rig},c}(X/K)[0] \otimes_K \bar{K}$ with $(F \otimes \sigma)(v) = v$ is contained in $H^i_c(X, W(O_X))_s \otimes_W \bar{K}$. Multiplying v by a suitable power of p we may assume that v lies in the image of $H^i(Y, W(\mathcal{I})) \otimes_W W(\bar{k})$. Choose a preimage v' of v; v' is well-defined up to p-power torsion. Again, by multiplying v' with a power of p we may assume that $(F \otimes \sigma)(v') = v'$. Denote by v'_n the image of v' in $H^i(Y, W_n(\mathcal{I})) \otimes_W W_n(\bar{k})$, it is obviously contained in the Frobenius stable part (for $F \otimes \sigma$). It is easy to see that

$$(H^i(Y, W_n(\mathcal{I})) \otimes_W W_n(\bar{k}))_s = H^i(Y, W_n(\mathcal{I}))_s \otimes_W W_n(\bar{k}),$$

and $v' \in H^i_c(X, W(O_X))_s \otimes_W W(\bar{k})$ follows from Lemma $1.5.1$, (ii). \hfill \square

Corollary 1.5.3. Under the assumption of Proposition $1.5.2$. If $H^i_c(X, O_X)_s = 0$ for all i then $H^i_{\text{rig},c}(X/K)[0]$ for all i.

Proof. The vanishing of $H^i_c(X, O_X)_s$ implies the vanishing of $H^i_c(X, W O_X)_s$ by Proposition $1.4.3$ and Corollary $1.4.4$. \hfill \square

2. Comparison with étale p-adic cohomology

2.1. Let k be a perfect field of positive characteristic p. We fix an algebraic closure \bar{k}. Let G be the Galois group of \bar{k} over k. We denote by $\mathcal{D}(k)$ and $\mathcal{D}(\bar{k})$ the Dieudonné ring of k and \bar{k}, respectively (see Section I.1). We have a functor

$$\mathcal{G}: (\text{Frobenius stable } \mathcal{D}(k)\text{-modules } M \text{ s.t. } M \text{ is a finite } W(k)\text{-module}) \rightarrow (\text{finite } \mathbb{Z}_p\text{-modules with } G\text{-action})$$

which is defined as follows. For M we denote by

$$\tilde{M} := \mathcal{D}(\bar{k}) \otimes_{\mathcal{D}(k)} M = W(\bar{k}) \otimes_{W(k)} M$$

the induced module over $\mathcal{D}(\bar{k})$. It is equipped with the obvious G-action, and the G-action commutes with F, V. Moreover, we have $\tilde{M}^G = M$. The functor

$$N \mapsto N^{1-F} := \ker(1 - F : N \rightarrow N)$$

is exact when restricted to the category of $\mathcal{D}(\bar{k})\text{-modules } N$ such that N is a finite $W(\bar{k})\text{-module}$ (see [Ill79] II, Lemme 5.3]). Moreover, if N is stable then

$$(2.1.0.1) \quad W(\bar{k}) \otimes_{\mathbb{Z}_p} N^{1-F} \xrightarrow{\cong} N,$$

thus N^{1-F} is a finite $\mathbb{Z}_p\text{-module } (W(\bar{k})$ is faithfully flat over \mathbb{Z}_p). We set

$$\mathcal{G}(M) = \tilde{M}^{1-F}.$$

The functor \mathcal{G} is exact and fully faithful.

Let M be again a stable $\mathcal{D}(k)$-module such that M is a finite $W(k)$-module. Suppose that $M = \lim_n M_n$ for stable $\mathcal{D}_n(k)$-modules M_n such that M_n is a finite $W_n(k)$-module. Lemma $1.5.1$, (i) implies that $M = \lim_n \tilde{M}_n$ and thus

$$(2.1.0.2) \quad \mathcal{G}(M) = \lim_n \mathcal{G}(M_n).$$

Proposition 2.1.1. Let k be a perfect field of positive characteristic p with ring of Witt vectors $W = W(k)$ and $K = \text{Frac}(W(k))$. Let X be a separated scheme of finite type over k.

(1) For all i we have

$$G(H^i_c(X, W(\mathcal{O}_X)))_s \cong H^i_{\acute{e}t,c}(X \times_k \bar{k}, \mathbb{Z}_p).$$

(2) For all i and $n \geq 1$ we have

$$G(H^i_c(X, W_n(\mathcal{O}_X)))_s \cong H^i_{\acute{e}t,c}(X \times_k \bar{k}, \mathbb{Z}/p^n).$$

Proof. Again, let Y be a compactification of X and \mathcal{I} an ideal for $Z = Y \setminus X$. We denote by $\bar{X} := X \times_k \bar{k}$ the base change, and set $\bar{\mathcal{I}} := \mathcal{I} \otimes_k \bar{k}$.

Since $W_n(\bar{k})$ is flat over $W_n(k)$ the natural map

$$(2.1.1.1) \quad H^i(Y, W_n(\mathcal{I}))_s \otimes_{W_n(k)} W_n(\bar{k}) \xrightarrow{\cong} H^i(\bar{Y}, W_n(\bar{\mathcal{I}}))_s$$

is an isomorphism. In view of Lemma 1.5.1(i) we obtain

$$H^i_c(X, \mathcal{O}_X)_s \otimes_{W(k)} W(\bar{k}) \xrightarrow{\cong} H^i_c(\bar{X}, \mathcal{O}_{\bar{X}})_s.$$

Let $j : \bar{X} \to \bar{Y}$ be the open immersion. We have an exact sequence of sheaves on the étale site $\bar{Y}_{\acute{e}t}$,

$$(2.1.1.2) \quad 0 \to j^! \mathbb{Z}/p^n \to W_n(\bar{\mathcal{I}}) \xrightarrow{1-F} W_n(\bar{\mathcal{I}}) \to 0.$$

Indeed, 2.1.1.2 is exact because there is a commutative diagram

\[
\begin{array}{ccc}
0 & \xrightarrow{i_*} & \mathbb{Z}/p^n & \xrightarrow{1-F} & W_n(\mathcal{O}_\bar{Z}) & \xrightarrow{1-F} & W_n(\mathcal{O}_Z) & \to 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \xrightarrow{j^!} & \mathbb{Z}/p^n & \xrightarrow{1-F} & W_n(\mathcal{O}_\bar{Y}) & \xrightarrow{1-F} & W_n(\mathcal{O}_Y) & \to 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & \\
0 & \xrightarrow{j^!} & \mathbb{Z}/p^n & \xrightarrow{1-F} & W_n(\bar{\mathcal{I}}) & \xrightarrow{1-F} & W_n(\bar{\mathcal{I}}) & \\
\end{array}
\]

with exact first two lines and $i : \bar{Z} = \bar{Y} \setminus \bar{X} \to \bar{Y}$ being the closed immersion.

If M is a finite $W_n(k)$-module equipped with a σ-linear endomorphism F then the map $1 - F : M \to M$ is surjective [Ill79 II, Lemme 5.3]. Thus 2.1.1.2 yields (2). The compatibility with the Galois action is readily verified. The statement (1) follows from the compatibility of G with projective limits (see 2.1.0.2). \qed

Remark 2.1.2. Proposition 2.1.1(1) and (2) is well-known for proper schemes. The case $n = 1$ is Proposition 2.2.5 in [Kat73].

Corollary 2.1.3. Let k be a perfect field of positive characteristic p. Let X be an affine scheme of finite type over k. Suppose X is equidimensional of dimension d and suppose that X is Cohen-Macaulay. Then

$$H^i_{\acute{e}t,c}(X \times_k \bar{k}, \mathbb{Z}/p) = 0 \quad \text{for all } i \neq d.$$

Proof. This follows from Theorem 1.4.9 and Proposition 2.1.1 \qed
3. The formal Euler characteristic of the slope zero part of rigid cohomology modulo powers of \(p \).

3.1. Let \(k \) be a perfect field of positive characteristic \(p \). We denote by \(W(k) \) and \(K \) the ring of Witt vectors and its quotient field, respectively.

Notation 3.1.1. In order to simplify the notation we will write \(\Lambda \) for \(W(k) \) or \(W_n(k) \) or \(K \). We denote by \(D_\Lambda \) the ring \(D \) for \(\Lambda = W(k) \), the ring \(D_n \) for \(\Lambda = W_n(k) \), and the ring \(D \otimes_{W(k)} K \) for \(\Lambda = K \).

Definition 3.1.2. We denote by \(K_\Lambda \) the quotient of the free abelian group generated by Frobenius stable \(D_\Lambda \)-modules \(M \) (see Definition 1.1.1) which are finite and free as \(\Lambda \)-modules, modulo the relations \([M] - [M'] - [M''] \) for every exact sequence \(0 \rightarrow M' \rightarrow M \rightarrow M'' \rightarrow 0 \) as \(D_\Lambda \)-modules. Note that since \(M, M', M'' \) are free the sequence is split as sequence of \(\Lambda \)-modules.

In order to get a comparison theorem we need to find natural perfect complexes \(R\Gamma(X, W\mathcal{O}_X)_s \) and \(R\Gamma(X, W_n\mathcal{O}_X)_s \) with cohomology groups \(H^*_c(X, W\mathcal{O}_X)_s \) and \(H^*_c(X, W_n\mathcal{O}_X)_s \), respectively.

3.2. Recall that we have a functor

\[(\text{Schemes}/\mathbb{F}_p) \rightarrow (\text{Schemes}/\mathbb{F}_p), \quad X \mapsto X^{\text{perf}},\]

defined by \(\text{Spec}(A) \mapsto \text{Spec}(A^{\text{perf}}) \) on affine schemes, and

\[A^{\text{perf}} = \lim_{\text{Frob}} A := \lim_{\text{Frob}} (A \xrightarrow{\text{Frob}} A \xrightarrow{\text{Frob}} \ldots).\]

In general \(X^{\text{perf}} \) is not noetherian, but the underlying topological spaces of \(X \) and \(X^{\text{perf}} \) are identified via the natural map \(X^{\text{perf}} \rightarrow X \).

Let \(X \) be separated and of finite type over a perfect field \(k \). Choose a compactification \(Y \) of \(X \) and an ideal \(\mathcal{I} \) for the complement \(Y \setminus X \). We define

\[H^i_c(X, W_n\mathcal{O}_{X^{\text{perf}}}) := H^i(Y, W_n(\lim_{\text{Frob}} \mathcal{I})).\]

The next proposition implies the independence of \(Y, \mathcal{I} \).

Proposition 3.2.1. Let \(k \) be a perfect field of positive characteristic \(p \). Let \(X \) be separated and of finite type over \(k \). The natural map

\[H^i_c(X, W_n\mathcal{O}_X)_s \rightarrow H^i_c(X, W_n\mathcal{O}_{X^{\text{perf}}})\]

is an isomorphism for all \(i \) and all \(n \geq 1 \).

Proof. Since the topological space of \(Y^{\text{perf}} \) is noetherian we obtain

\[H^i(Y, W_n(\lim_{\text{Frob}} \mathcal{I})) = H^i(Y, \lim_{\text{Frob}} W_n(\mathcal{I})) = \lim_{\text{Frob}} H^i(Y, W_n(\mathcal{I})).\]

In view of Lemma 1.1.3 we see that

\[H^i(Y, W_n(\mathcal{I})) \rightarrow \lim_{\text{Frob}} H^i(Y, W_n(\mathcal{I}))\]

induces an isomorphism with the stable part \(H^i(Y, W_n(\mathcal{I}))_s \). \(\Box \)
3.3. An \mathbb{F}_p-algebra R is called perfect if Frob induces an automorphism of R, equivalently $R = R^{\text{perf}}$; an ideal $I \subset R$ is called perfect if Frob induces an automorphism on I. For any \mathbb{F}_p-algebra R and any ideal $I \subset R$ the ideal $\lim_{\text{Frob}} I \subset R^{\text{perf}}$ is perfect.

Lemma 3.3.1. Let R be a perfect k-algebra. Let $I \subset R$ be a perfect ideal. The following holds:

(i) For all $m \geq 1$: $W(I) \otimes_{W(k)} W_m(k) = W_m(I)$.
(ii) For all $n \geq m \geq 1$: $W_n(I) \otimes_{W_n(k)} W_m(k) = W_m(I)$.

Proof. We leave the proof to the reader. \qed

3.4. Let X be separated and of finite type over a perfect field k. Choose a compactification Y of X and an ideal \mathcal{I} for the complement $Y \setminus X$. Attached to a finite affine covering $\{U_i\}_i$ of Y we get the Cech-complex

$$(3.4.0.1) \quad R\Gamma([U_i], W(\lim_{\text{Frob}} \mathcal{I})) \in D^b(W(k)-\text{modules}).$$

We have

$$R\Gamma([U_i], W(\lim_{\text{Frob}} \mathcal{I})) = \lim_{\text{Frob}} R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I})) = R\lim_{\text{Frob}} R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I})).$$

Indeed, the first equality is obvious and the second follows because

$$R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I})) \to R\Gamma([U_i], W_m(\lim_{\text{Frob}} \mathcal{I}))$$

is surjective on the components. Proposition 3.2.1 implies

$$H^i(R\Gamma([U_i], W(\lim_{\text{Frob}} \mathcal{I}))) \cong H^i \lim_{\text{Frob}} R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I})).$$

for all i. For $(*)$ we used

$$H^i R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I})) = H^i R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I}))) \cong H^i(X, W_n \mathcal{O}_X)_s = H^i_c(X, W \mathcal{O}_X)_s$$

and the fact that the projective system

$$n \mapsto H^i(Y, W_n(\lim_{\text{Frob}} \mathcal{I})) \cong H^i_c(X, W_n \mathcal{O}_X)_s$$

satisfies the Mittag-Leffler condition.

Thus the complex $[3.4.0.1]$ is in $D^b(W(k)-\text{modules})$ up to canonical isomorphisms independent of the choice of Y, \mathcal{I}, and the covering $\{U_i\}$.

Definition 3.4.1. We define

$$R\Gamma_c(X, W \mathcal{O}_X)_s := R\Gamma([U_i], W(\lim_{\text{Frob}} \mathcal{I})),$$

and similarly for all $n \geq 1$,

$$R\Gamma_c(X, W_n \mathcal{O}_X)_s := R\Gamma([U_i], W_n(\lim_{\text{Frob}} \mathcal{I})).$$

If X is proper we drop the index c.
Since the components of $3.4.0.1$ are flat by Lemma $3.3.1$, $R\Gamma_c(X, W\mathcal{O}_X)$ is a perfect complex (see [171, I] for the definition of a perfect complex which should not be confused with the notion of a perfect ring) and

$$(3.4.1.1) \quad R\Gamma_c(X, W\mathcal{O}_X)_s \otimes^L_{W(k)} W_n(k) = R\Gamma_c(X, W_n\mathcal{O}_X)_s.$$

The Frobenius morphism

$$F : R\Gamma((U_i, W(\lim T)) \mapsto \sigma_* R\Gamma((U_i, W(\lim T))$$

induces an isomorphism in $D^b(W(k))$-modules:

$$F : R\Gamma_c(X, W\mathcal{O}_X)_s \mapsto \sigma_* R\Gamma_c(X, W\mathcal{O}_X)_s,$$

which agrees with our F-operation on the cohomology.

3.5. As a unifying notation we write Λ for $W(k)$ and $W_n(k)$ in the following. Suppose $N \in D^b(\Lambda)$-modules is a perfect complex together with a quasi-isomorphism $F : N \mapsto \sigma_* N$. By definition we can find

$$M \in K^b(\text{free and finite } \Lambda)-\text{modules} =: K^b(\text{ff-}\Lambda)$$

together with $F_M : M \mapsto \sigma_* M$ and a quasi-isomorphism $\psi_M : M \mapsto N$ such that $\sigma_* (\psi_M) \circ F_M = F \circ \psi_M$ in $D^b(\Lambda)$. Induced by F_M we get a σ-linear map F_M^i on the components M^i of M. Taking the Frobenius-stable part is an exact functor when restricted to finite Λ-modules and preserves free modules (see Proposition 3.1.2), therefore $M_s \mapsto M$ is an isomorphism in $K^b(\text{ff-}\Lambda)$. For all i we get a stable D_Λ-module M^i_s with F-operation induced by F_M^i, and $V = pF^{-1}$. We define

$$(3.5.0.2) \quad e(M, F_M) = \sum_i (-1)^i [M^i_s] \in K_\Lambda.$$

Proposition 3.5.1. The class $e(M, F_M, \psi_M)$ depends only on N and the morphism $F : N \mapsto \sigma_* N$.

Proof. First, we observe that if $M \cong 0$ in $K^b(\text{ff-}\Lambda)$ then $e(M, F_M) = 0$ for any F_M.

Let $M_1, M_2 \in K^b(\text{ff-}\Lambda)$ and $F_M : M_i \mapsto \sigma_* M_i, i = 1, 2$, with a morphism of complexes $\psi : M_1 \mapsto \sigma_* M_2$ such that $\sigma_* (\psi_M) \circ F_M = F \circ \psi_M$ in $D^b(\Lambda)$. Induced by F_M we get a σ-linear map F_M^i. In particular, there is a homotopy $K : M_1 \mapsto \sigma_* M_2[-1]$ such that

$$F_M^2 \circ \psi - \sigma_* \psi \circ F_M^1 = K \circ d_{M_1} + d_{M_2} \circ K.$$

We need to show that $e(M_1, F_{M_1}) = e(M_2, F_{M_2})$.

We define a morphism of complexes

$$F_3 : \text{cone}(\psi) \mapsto \text{cone}(\sigma_* \psi) = \sigma_* \text{cone}(\psi)$$

where $F_3^i : M^i_2 \oplus M^{i+1}_1 \mapsto \sigma_* M^i_2 \oplus \sigma_* M^{i+1}_1$ is of the form

$$F_3^i = \begin{pmatrix} F^i_2 & K^{i+1} \\ 0 & F^{i+1}_1 \end{pmatrix}.$$

Therefore we get short exact sequences which are compatible with the F-operations

$$0 \rightarrow (M^2_2, F^2_2) \rightarrow (M^2_2 \oplus M^{i+1}_1, F_3) \rightarrow (M^{i+1}_1, F^{i+1}_1) \rightarrow 0$$

$$0 \rightarrow (M^2_2, F^2_2)_s \rightarrow (M^2_2 \oplus M^{i+1}_1, F_3)_s \rightarrow (M^{i+1}_1, F^{i+1}_1)_s \rightarrow 0.$$

Since cone(ψ) $\cong 0$ this implies the claim. □

In view of this proposition we write $e(N, F)$ for the class constructed in $3.5.0.2$.

3.6. Recall that we have obvious maps:

\[
\begin{array}{c}
\mathcal{K}_{W(k)} \otimes_{W(k)} K \\
\downarrow \\
\mathcal{K}_{W_n(k)}
\end{array}
\]

Proposition 3.6.1. Let \(X \) be separated and of finite type over \(k \).

(i) For all \(n \geq 1 \):

\[
e(R\Gamma_c(X, W_0X)_s, F) \otimes_{W(k)} W_n(k) = e(R\Gamma_c(X, W_nO_X)_s, F).
\]

(ii) The following equality holds

\[
e(R\Gamma_c(X, W_0X)_s, F) \otimes_{W(k)} K = \sum_i (-1)^i [H^i_c(X, W_0X)_s \otimes_{W(k)} K] \in \mathcal{K}_K.
\]

(iii) Let \(n \geq 1 \). If the cohomology groups \(H^i_c(X, W_0X)_s \) are free \(W_n(k) \)-modules for all \(i \) then

\[
e(R\Gamma_c(X, W_nO_X)_s, F) = \sum_i (-1)^i [H^i_c(X, W_nO_X)_s] \in \mathcal{K}_{W_n(k)}.
\]

Proof. Statement (i) follows from [3.4.11]. Statements (ii) and (iii) are obvious. \(\square \)

3.7. Let \(k \) be a finite field with \(q = p^a \) elements. Let \(r \) be an integer \(r \geq 1 \). We define a homomorphism

\[
\text{Tr}_A^r : \Lambda \to \Lambda, \quad [M] \mapsto \text{Tr}(F^{ar} | M).
\]

Obviously, for an element \(M \in \mathcal{K}_W(k) \) we get

\[
\text{Tr}_A^r(M \otimes_{W(k)} K) = \text{Tr}^r_{W(k)}(M), \quad \text{Tr}^r_{W_n(k)}(M \otimes_{W(k)} W_n(k)) = \text{Tr}^r_{W_n(k)}(M) \mod p^a.
\]

Corollary 3.7.1. Let \(k \) be a finite field with \(q = p^a \) elements. Let \(X \) be a proper scheme over \(k \). We denote by \(H^\ast_{rig}(X/K)_{[0]} \) the slope zero part of rigid cohomology. For an integer \(r \geq 1 \) we denote by \(k_r \) the field extension of \(k \) of degree \(r \). Let \(n \geq 1 \) be an integer.

(i) The trace

\[
N := \sum_{i \geq 0} (-1)^i \text{Tr}(F^{ar} | H^i_{rig}(X/K)_{[0]}))
\]

lies in \(W(k) \), i.e. \(N \in W(k) \). For all \(r, n \) the following congruence holds:

\[
N \equiv \text{Tr}^r_{W_n(k)}(e(R\Gamma(X, W_nO_X)_s, F)) \mod p^n.
\]

(ii) There is an integer \(r_0 \) which depends on \(n \) and \(X \) such that for all \(r \geq r_0 \) the following congruence holds:

\[
\text{Tr}^r_{W_n(k)}(e(R\Gamma(X, W_nO_X)_s, F)) \equiv \#X(k_r) \mod p^n.
\]

(iii) Suppose that \(H^i(X, O_X) = H^i(X, O_X) \) for all \(i \). Then

\[
\text{Tr}^r_{W_n(k)}(e(R\Gamma(X, W_nO_X)_s, F)) \equiv \#X(k_r) \mod p^\min\{ra, n\}.
\]
Proof. For (i): Proposition \[3.6.1\] implies
\[
\begin{align*}
\text{Tr}_{W(k)}^r(e(RG(X, W\mathcal{O}_X)_s, F)) &= \sum_{i \geq 0}(-1)^i \text{Tr}(F^{\text{ar}} | H^i(X, W\mathcal{O}_X)_s \otimes W(k) K), \\
\text{Tr}_{W(k)}^r(e(RG(X, W\mathcal{O}_X)_s, F)) \equiv \text{Tr}_{W_n(k)}^r(e(RG(X, W_n\mathcal{O}_X)_s, F)) \mod p^n.
\end{align*}
\]
Thus the claim follows from Proposition \[1.5.2\].
For (ii): We have the trace formula for rigid cohomology:
\[
\sum_{i \geq 0}(-1)^i \text{Tr}(F^{\text{ar}} | H^i_{\text{rig}}(X/K)) = X(k_r).
\]
The isocrystal $H^*_{\text{rig}}(X/K)$ has a slope decomposition with slopes ≥ 0. On the slope λ-part the eigenvalues of F^a have p-adic valuation $a \cdot \lambda$. Let $\lambda > 0$ be the smallest slope $\neq 0$. Choose r_0 such that $a \cdot r_0 \cdot \lambda > n$. For every $r \geq r_0$ we get
\[
N := \sum_{i \geq 0}(-1)^i \text{Tr}(F^{\text{ar}} | H^i_{\text{rig}}(X/K)[0]) = X(k_r) \mod p^n,
\]
where $N \in W(k)$ by part (i). In view of (i), this proves the claim.
For (iii): Proposition \[1.4.8\] implies that
\[
H^i(X, W\mathcal{O}_X)_s = H^i(X, W\mathcal{O}_X) \quad \text{for all } i.
\]
In view of Proposition \[3.6.1\] (ii) we see that
\[
N := \text{Tr}_{W(k)}^r(e(RG(X, W\mathcal{O}_X)_s, F)) = \sum_{i \geq 0}(-1)^i \text{Tr}(F^{\text{ar}} | H^i(X, W\mathcal{O}_X) \otimes W(k) K)
\]
lies in $W(k)$. It is proved in \[BBE07\] Corollary 1.3] that $N \equiv \#X(k_r) \mod p^{r^2}$. Now, Proposition \[3.6.1\] (i) implies
\[
N \equiv \text{Tr}_{W_n(k)}^r(e(RG(X, W_n\mathcal{O}_X)_s, F)) \mod p^n,
\]
which proves the statement. \hfill \Box

Corollary 3.7.2. Let k be a finite field with $q = p^a$ elements. Let X be a proper scheme over k. Let $n \geq 1$ be an integer and suppose that $H^i(X, W_n\mathcal{O}_X)$ is a free $W_n(k)$-module for all i. Then
\[
\sum_{i \geq 0}(-1)^i \text{Tr}(F^a | H^i(X, W_n\mathcal{O}_X)) \equiv \#X(k) \mod p^{\min(a, n)}.
\]
Proof. The case $n = 1$ is Katz’s formula \[Kat73\]. In the case $n \geq 2$, Proposition \[1.4.8\] implies $H^i(X, \mathcal{O}_X)_s = H^i(X, \mathcal{O}_X)$ for all i. Proposition \[3.6.1\] (iii) and Corollary \[3.7.1\] (iii) imply the claim. \hfill \Box

Example 3.7.3. Let k be finite field with p^a elements. Let G be a finite (abstract) group. For every integer $d \geq 1$, Serre shows the existence of a regular complete intersection Y in projective space such that $\dim(Y) = d$ and G acts freely on Y \[Ser68\] §20.
Since Y is a complete intersection, we get for all $n \geq 1$:
\[
H^i(Y, W_n\mathcal{O}_Y) = 0 \quad \text{for all } i \notin \{0, d\}, \quad H^d(Y, W_n\mathcal{O}_Y) = W_n(k).
\]
Because $W_n\mathcal{O}$ is an étale sheaf and étale cohomology for $W_n\mathcal{O}$ agrees with Zariski cohomology \[Hill79\] Proposition 0.1.5.8], we obtain a spectral sequence
\[
E_2^{p,q} = H^p(G, H^q(Y, W_n\mathcal{O}_Y)) \Rightarrow H^{p+q}(X, W_n\mathcal{O}_X),
\]
where $X := Y/G$. From the spectral sequence we obtain

\[(3.7.3.2) \quad H^i(X, W_n\mathcal{O}_X) = H^i(G, W_n(k)) \quad \text{for all } i < d.\]

In particular, $H^i(X, W_n\mathcal{O}_X) = H^i(X, W_n\mathcal{O}_X)_s$ for all $i < d$.

For $G = \mathbb{Z}/p^n$ we have

\[(3.7.3.3) \quad H^i(G, W_n(k)) = \begin{cases} W_n(k) & \text{for } i = 0, \\
\ker(p^n : W_n(k) \to W_n(k)) & \text{for } i \text{ odd}, \\
\coker(p^n : W_n(k) \to W_n(k)) & \text{for } i \text{ even}. \end{cases}\]

Suppose $d \geq 2$. We conclude that the cohomology groups $H^*(X, W_n\mathcal{O}_X)_s$ are free $W_n(k)$-modules if and only if $m \geq n$ (for H^d we use Proposition 1.4.7). For the projective limit we have the following picture:

\[
H^i(X, W\mathcal{O}_X)_s = \begin{cases} 0 & \text{if } i \text{ is odd and } i < d, \\
W_m(k) & \text{if } i \text{ is even and } 0 < i < d. \end{cases}
\]

For $i = d$ we have to distinguish two cases:

1. If d is odd then $H^d(X, W\mathcal{O}_X)_s$ is free of rank $= \dim H^d(X, \mathcal{O}_X)_s$.
2. If d is even then $H^d(X, W\mathcal{O}_X)_s$ has $W_m(k)$ as torsion subgroup. The dimension of $H^d(X, W\mathcal{O}_X)_s \otimes \mathbb{Q}$ is $\dim H^d(X, \mathcal{O}_X)_s - 1$.

This follows from the long exact sequence in Proposition 1.4.3. Suppose d is even. We claim that for r sufficiently large and $m \geq n$:

\[
\text{Tr}(F^r|H^d(X, W\mathcal{O}_X) \otimes \mathbb{Q}) = \text{Tr}(F^r|H^d(X, W\mathcal{O}_X)_s \otimes \mathbb{Q}) \equiv \text{Tr}(F^r|H^d(X, W_n\mathcal{O}_X)_s) - 1 \mod p^n.
\]

The first equality follows (for $r \gg 0$) because $H^d(X, W\mathcal{O}_X)_s \otimes \mathbb{Q}$ is the slope zero part of $H^d(X, W\mathcal{O}_X) \otimes \mathbb{Q}$ (see the proof of Corollary 3.7.1). The second equality is a consequence of Proposition 3.6.1

\[
1 + \text{Tr}(F^r|H^d(X, W\mathcal{O}_X)_s \otimes \mathbb{Q}) = \sum_{i \geq 0} (-1)^i \text{Tr}(F^r|H^i(X, W\mathcal{O}_X)_s \otimes \mathbb{Q}) \equiv \sum_{i \geq 0} (-1)^i \text{Tr}(F^r|H^i(X, W_n\mathcal{O}_X)_s) = \text{Tr}(F^r|H^d(X, W_n\mathcal{O}_X)_s) \mod p^n.
\]

For the last equality we used 3.7.2, 3.7.3, and the assumption $m \geq n$.

References

[BBE07] Pierre Berthelot, Spencer Bloch, and Hélène Esnault. On Witt vector cohomology for singular varieties. *Compos. Math.*, 143(2):363–392, 2007.

[Gro61] A. Grothendieck. Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. 1. Inst. Hautes Études Sci. Publ. Math., 11, 1961.

[D66] Robin Hartshorne. *Residues and duality*. Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne. Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin, 1966.

[Ill71] L. Illusie. Généralités sur les conditions de finitude dans les catégories dérivées. *Théorie des Intersections et Théorème de Riemann-Roch*, pages 78–159, 1971. Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6), Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre.

[Ill79] Luc Illusie. Complexes de de Rham-Witt et cohomologie cristalline. *Ann. Sci. École Norm. Sup. (4)*, 12(4):501–661, 1979.
[Kat73] N. Katz. Une formule de congruence pour la fonction ζ. *Lecture Notes in Mathematics*, Vol. 340, pages 401–438, 1973. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II), Dirigé par P. Deligne et N. Katz.

[Ser58] J.P. Serre. Sur la topologie des variétés algébriques en caractéristique p. In *Symposium internacional de topología algebraica*, page 24. Universidad Nacional Autónoma de México y la UNESCO, 1958.

FACHBEREICH MATHEMATIK, UNIVERSITÄT DUISBURG-ESSEN, 45117 ESSEN, GERMANY

E-mail address: a.chatzistamatiou@uni-due.de