Degenerate spacetimes in first order gravity

Romesh K. Kaul1,* and Sandipan Sengupta2,†

1The Institute of Mathematical Sciences, Chennai-600113, INDIA
2Indian Institute of Technology, Gandhinagar-382355, INDIA

Abstract

We present a systematic framework to obtain the most general solutions of the equations of motion in first order gravity theory with degenerate tetrads. There are many possible solutions. Generically, these exhibit non-vanishing torsion even in the absence of any matter coupling. These solutions are shown to contain a special set of eight configurations which are associated with the homogeneous model three-geometries of Thurston.

\ast kaul@imsc.res.in
\dagger ssandipan@iitgn.ac.in
I. INTRODUCTION

The usual theory of gravity based on Einstein-Hilbert action functional involves invertible metric. Solutions of the vacuum equation of motion are, by construction, torsion-free. On the other hand, first-order gravity based on Hilbert-Palatini action accommodates invertible as well as non-invertible tetrad configurations. The phase containing degenerate tetrads can support solutions of the vacuum equations of motion with torsion. In the quantum theory in first order formalism, configurations with both invertible and non-invertible tetrads are to be integrated over in the functional integral.

Gravity theory with degenerate metrics has evoked interest for a long time [1–12]. These metrics are expected to be relevant to the discussion of topology change [2, 5, 6, 12–14]. Such a topology change may have a quantum and even a classical origin [12].

In this article, we shall present, in the first order formalism, a detailed analysis of degenerate tetrads with one zero eigenvalue. An elaborate procedure to solve the equations of motion will be developed. In particular, a set of eight explicit solutions of the equations of motion of pure gravity will be presented. These are associated with eight independent homogeneous model three-geometries of Thurston [15–17]. These include, besides the three isotropic constant curvature three-geometries E_3, S_3, and H_3, others which are homogeneous but not isotropic. It is remarkable that all such degenerate solutions of four dimensional gravity theory are not generically torsion-free.

Examples of degenerate tetrad configurations as solutions of equations of motion have appeared earlier in the interesting work of Tseytlin [5]. In particular, two explicit solutions reported in this reference correspond to two special cases, S_3 and $S_2 \times R$, as discussed in Section V.

The article is organised as follows. In Section II, we recall Hilbert-Palatini action functional without any cosmological constant or matter fields and write down the consequent equations of motion. Section III outlines the standard analysis for invertible tetrads to demonstrate the well known fact that such a theory is equivalent to the usual theory based on Einstein-Hilbert action. The equations of motion are exactly same as the vacuum Einstein field equations. Section IV contains an elaborate discussion of degenerate tetrads with one zero eigenvalue. Equations of motion are shown to exhibit many possible solutions. Eight explicit solutions corresponding to Thurston’s homogeneous three-geometries are displayed.
in detail in Section V. Next, the nature of the underlying geometry of these degenerate solutions is argued to be represented by Sen Gupta geometry \[18\] in Section VI. Finally, some concluding remarks are presented in Section VII. An appendix contains details of the calculations used earlier in Section IV.

II. HILBERT-PALATINI ACTION

Euclidean gravity in the first order formulation is described in terms of tetrad fields \(e^I_\mu\) and connection fields \(\omega_{I\mu}^J\) corresponding to the local Lorentz group SO(4). Both these sets of fields are treated as independent in the Hilbert-Palatini action functional:

\[
S = \frac{1}{8\kappa^2} \int d^4 x \ \epsilon^{\mu\nu\alpha\beta} \epsilon_{IJKL} e^I_\mu e^J_\nu R^{KL}_{\alpha\beta}(\omega)
\]

where the curvature \(R_{\mu\nu}^{IJ}(\omega) = \partial_{[\mu} \omega_{\nu]}^{IJ} + \omega_{[\mu}^{IK} \omega_{\nu]}^{KJ}\) is the field strength of the gauge connection \(\omega_{\mu}^{IJ}\) of the local SO(4) symmetry of Euclidean gravity. Here the Greek indices \(\mu \equiv (a, \tau)\) are associated with the spatial coordinates \(a \equiv (x, y, z)\) and Euclidean time coordinate \(\tau\). Internal indices are \(I \equiv (i, 4), \ i = 1, 2, 3\). Completely antisymmetric epsilon symbols take constant values 0 and \(\pm 1\) with \(\epsilon^{xyz\tau} = +1\) and \(\epsilon_{1234} = +1\). Internal indices are raised and lowered by the flat metric \(\eta^{IJ} = \delta^{IJ} = \eta_{IJ}\).

Euler-Lagrange equations of motion are obtained by varying the action \((1)\) with respect to \(\omega_{\mu}^{IJ}\) and \(e^I_\mu\) independently:

\[
\frac{\delta S}{\delta \omega_{\mu}^{IJ}} : e^{\mu\alpha\beta} \epsilon_{IJKL} e^K_\mu D_\nu(\omega)e^L_\alpha = 0
\]

\[
\frac{\delta S}{\delta e^I_\mu} : e^{\mu\alpha\beta} \epsilon_{IJKL} e^J_\mu R^{KL}_{\alpha\beta}(\omega) = 0
\]

An equivalent way to display these equations of motion is:

\[
e^{I}_\mu D_\nu(\omega) e^J_\alpha = 0
\]

\[
e^{I}_\mu R_{\alpha\beta}^{JK}(\omega) = 0
\]

We need to solve these equations for the tetrads and connections. Since the Hilbert-Palatini action functional \((1)\) accommodates both invertible and non-invertible tetrads, we may consider these two cases separately.
III. INVERTIBLE TETRADS

For tetrads with $\det e^I_\mu \neq 0$, inverse tetrad e^μ_I is given by $e^\mu_I e^I_\nu = \delta^\mu_\nu$, $e^\mu_I e^I_\mu = \delta^I_I$. Multiplying eq.(4) by inverse tetrads, it is straightforward to check the following identities:

$$
e^\mu_I e^I_\nu = \delta^\mu_\nu$$

and

$$e^\mu_I e^I_\mu D_\nu(\omega) e^\nu_j = -4 e^\mu_I D_\nu(\omega) e^\nu_j = 0$$

From these, it readily follows that, for invertible tetrads, 24 equations of motion in (4) are equivalent to the fact that torsion is zero:

$$T^I_{\mu\nu} \equiv D_{[\mu}(\omega)e^I_{\nu]} = 0 \quad (6)$$

As is well known, these 24 equations can in turn be solved for 24 connection fields showing that these are not independent but can be written in terms of the tetrad fields as:

$$\omega^{IJ}_{\mu} = \omega^{IJ}_{\mu}(e) \equiv \frac{1}{2} \left[e^\nu_I \partial_\mu e^J_\nu - e^\nu_I \partial_\mu e^I_\nu - e^K_\mu e^\nu_J e^I_\nu \partial_\lambda e^K_\mu \right] \quad (7)$$

Other set of 16 equations of motion in (5), by multiplying with $e^\mu_I e^I_J$, yield the standard 16 equations of motion:

$$R^K_\alpha - \frac{1}{2} e^K_\alpha R = 0 \quad (8)$$

where $R^K_\alpha \equiv e^K_I R^{IK}_{\mu\alpha}(\omega)$ and $R \equiv e^K_\alpha R^K_\alpha$. These equations are same as Einstein field equations. This follows readily by realizing that the local Lorentz field strength, for invertible tetrads, is related to the Riemann curvature as :

$$R^{IJ}_{\mu\nu}(\omega)e^K_\lambda e^\rho_J = R^{IJ}_{\mu\nu\lambda}(\Gamma) \quad (9)$$

Thus the first order formalism for invertible tetrads is exactly equivalent to the second order formalism based on Einstein-Hilbert action functional.

It is important to notice that for invertible tetrads, solutions of equations of motion would all be torsion-free.

As stated earlier, Hilbert-Palatini action functional \mathcal{L} and also the equations of motion (2, 3) or (4, 5) are well defined both for invertible tetrads ($\det e^I_\mu \neq 0$) and non-invertible tetrads ($\det e^I_\mu = 0$). Unlike the case above where $\det e^I_\mu \neq 0$, any solution of equations of motion with degenerate tetrads can in general possess torsion. Degenerate tetrads can have one or more zero eigenvalues. We shall consider the case of tetrads with only one zero eigenvalue here.
IV. DEGENERATE TETRADS WITH ONE ZERO EIGENVALUE

Through appropriate local $SO(4)$ rotations and general coordinate transformations, any degenerate tetrad e^I_μ with one zero eigenvalue can be cast as an invertible 3×3 block of triads e^i_a ($a = x, y, z$ and $i = 1, 2, 3$) with $e^I_\tau = e^4_a = 0$ as follows:

$$e^I_\mu = \begin{pmatrix} e^i_a \\ 0 \\ 0 \end{pmatrix}$$ \hspace{1cm} (10)

The four-dimensional metric is:

$$g_{\mu\nu} = e^I_\mu e^I_\nu = \begin{pmatrix} g_{ab} \\ 0 \\ 0 \end{pmatrix}, \quad g_{ab} = e^i_b e^a_i$$

We denote the determinant of the triad as e, $\text{det} e^i_a \equiv e \neq 0$ and its inverse as $\hat{e}^a_i e^i_a$; $\hat{e}^a_i e^i_a = \delta^a_b$, $\hat{e}^a_i e^i_a = \delta^i_j$. Note that the triad fields e^i_a and the inverse \hat{e}^a_i depend on all four spacetime coordinates (x, y, z, τ). The four dimensional infinitesimal length element is: $ds^2(4) = 0 + g_{ab}dx^a dx^b$.

Let us analyse the set of 24 equations in (4) for such degenerate tetrads. Unlike the case of invertible tetrads where these equations can be solved for all the 24 components of the connection fields $\omega^I_{\mu J}$ as in eqn.(7), here for the degenerate tetrads (10), eqns (4) cannot be solved for all the components.

As shown in the Appendix, eqns (4) can be solved to yield the following constraints for triads e^i_a and connection fields $\omega^I_{\mu J}$:

$$D_\tau(\omega) e^k_a = 0 \quad \text{where} \quad \omega^i_j = \bar{\omega}^i_j(e) \equiv e^a_i \partial_\tau e^j_a = e^a_i \partial_\tau \hat{e}^a_j$$ \hspace{1cm} (11)

$$\omega^4_k = 0; \quad \omega^4_a \equiv M^k_a e^l_a = M^{kl} e^l_a \quad \text{with} \quad M^{kl} = M^{lk}$$ \hspace{1cm} (12)

and

$$\omega^i_j = \bar{\omega}^i_j(e) + \kappa^i_j; \quad \kappa^i_j \equiv \hat{e}^{ij} N^k_a = \hat{e}^{ij} N^{kl} e^l_a \quad \text{with} \quad N^{kl} = N^{lk}$$

$$\bar{\omega}^i_j(e) \equiv \frac{1}{2} \left[\hat{e}^b_i \partial_{[a} e^j_{b]} - \hat{e}^b_j \partial_{[a} e^i_{b]} - \hat{e}^i_{[a} \hat{e}^j_{b]} \partial_{c]} e^c_{\tau} \right]$$ \hspace{1cm} (13)

Here $\bar{\omega}^i_j(e)$ and κ^i_j are the torsion-free Levi-Civita connection and contortion fields respectively.

These equations state that the triads e^i_a are covariantly conserved with respect to τ and the connection components ω^4_k are fixed to be zero. Of the 9 independent fields ω^4_a, three represented by the antisymmetric part of the matrix M^{ij} are zero and other six represented by the symmetric matrix $M^{ij} (= M^{ji})$ are not determined at all. Similarly, of the
9 components of the contortion fields \(\kappa_{aij} \), six as represented by the symmetric matrix \(N^{ij} \) are left undetermined. Thus, for degenerate tetrads (10), eqns (4) fix only 12 independent fields in \(\omega_{ij} \) and leave other 12, as encoded by two symmetric matrices \(M^{ij} \) and \(N^{ij} \), undetermined. Some of these will be further fixed by other equations of motion (5) as discussed below.

Notice that eqns (11) imply that the three-metric is \(\tau \) independent: \(\partial_{\tau} g_{ab} \equiv D_{\tau}(\omega)(e_{a}^{i}e_{b}^{j}) = 0 \). Therefore, \(\tau \) dependence of triads \(e_{a}^{i} \) is only a pure gauge artifact and can be rotated away by an \(SO(3) \) transformation. That is, for an appropriate orthogonal matrix \(O^{ij} \), it is always possible to write:

\[
e_{a}^{i} = O^{ij}e_{a}^{j}, \quad \bar{\omega}_{\mu}^{ij} = O^{il}O^{jk}\bar{\omega}_{\mu}^{lk} + O^{il}\partial_{\mu}O^{jl} \tag{14}\]

such that \(\partial_{\tau}e_{a}^{i} = 0 \), \(\partial_{\tau}\bar{\omega}_{a}^{ij}(e') = 0 \) and \(\bar{\omega}_{\tau}^{ij} = 0 \)

As shown in Appendix, the 16 tetrad equations of motion in (5), for degenerate tetrads (10), are equivalent to the following four sets of 3, 9, 3 and 1 equations respectively:

\[
\hat{e}_{i}^{a}R_{\tau a}^{ij}(\omega) = 0 \tag{15} \\
R_{\tau a}^{4k}(\omega) = D_{\tau}(\omega)M_{a}^{k} = 0 \tag{16} \\
\hat{e}_{i}^{a}R_{ab}^{4k}(\omega) = \left(\delta_{i}^{a}\delta_{b}^{a} - \delta_{i}^{a}\delta_{b}^{a} \right)D_{a}(\bar{\omega})M^{il} = 0 \tag{17} \\
\hat{e}_{i}^{a}\bar{R}_{ab}^{ij}(\bar{\omega}) + \left(M^{ij}M^{ji} - M^{ii}M^{jj} \right) + \left(N^{ij}N^{ji} - N^{ii}N^{jj} \right) = 0 \tag{18}
\]

where \(D_{a}(\bar{\omega})M^{il} \equiv \partial_{a}M^{il} + \bar{\omega}_{a}^{ij}(e)M^{ij} + \bar{\omega}_{a}^{ij}(e)M^{ij} \) and \(\bar{R}_{ab}^{ij}(\bar{\omega}) \) is the curvature for the torsion-free Levi-Civita spin-connection \(\bar{\omega}_{aij}(e) \) of (13):

\[
\bar{R}_{ab}^{ij}(\bar{\omega}) \equiv \partial_{[a}\bar{\omega}_{b]}^{ij} + \bar{\omega}_{[a}^{il}\bar{\omega}_{b]}^{lj}.
\]

Equations (15) is identically valid for all configurations which satisfy eqns (11,13). To show this, note that \(R_{\tau a}^{ij}(\omega) = \bar{R}_{\tau a}^{ij}(\bar{\omega}) + D_{\tau}(\bar{\omega})\kappa_{aij} \) where \(\bar{R}_{\tau a}^{ij}(\bar{\omega}) \equiv \partial_{[r}\bar{\omega}_{a]}^{ij} + \bar{\omega}_{[r}^{il}\bar{\omega}_{a]}^{lj} \)

We can write \(\bar{R}_{\tau a}^{ij}(\bar{\omega}) = O^{il}O^{jk}\bar{R}_{\tau a}^{lk}(\bar{\omega}') \) where the gauge rotated primed quantities are as defined in eqns. (14). Now since \(\bar{\omega}_{\tau}^{ij}(e') = 0 \) and \(\partial_{\tau}\bar{\omega}_{a}^{ij}(e') = 0 \) for the primed connections of (14), the curvature \(\bar{R}_{\tau a}^{ij}(\bar{\omega}') \equiv \partial_{[r}\bar{\omega}_{a]}^{ij} + \bar{\omega}_{[r}^{il}\bar{\omega}_{a]}^{lj} \equiv 0 \) and hence \(\bar{R}_{\tau a}^{ij}(\bar{\omega}) = 0 \).

This thus implies: \(R_{\tau a}^{ij}(\omega) = D_{\tau}(\bar{\omega})\kappa_{aij} \). Contracting with \(\hat{e}_{i}^{a} \), we note that \(\hat{e}_{i}^{a}R_{\tau a}^{ij}(\omega) = \hat{e}_{i}^{a}D_{\tau}(\bar{\omega})\kappa_{aij} = D_{\tau}(\bar{\omega})\left(\delta_{i}^{a}\kappa_{aij} \right) = 0 \) because \(\hat{e}_{i}^{a}\kappa_{aij} = 0 \) for \(\kappa_{aij} = \epsilon_{ij}N^{kl}e_{a}^{l} \) where \(N^{kl} = N^{lk} \).

Next, using eqns (11), we note that the constraints (16) and (17) are solved by the choice

\[
M_{a}^{i} = \lambda e_{a}^{i} \implies M^{ij} \equiv M_{a}^{i}e_{a}^{j} = \lambda\delta^{ij} \tag{19}
\]
where λ is a spacetime constant. This further implies that

$$M^{ij}M^{ji} - M^{ii}M^{jj} = -6\lambda^2$$ (20)

Using this the last constraint (18) can then be recast as:

$$\zeta = 6\lambda^2 - \varepsilon_i^a\varepsilon_j^b\bar{R}_{ab}^{ij}(\bar{\omega})$$ (21)

where

$$\zeta \equiv N^{ij}N^{ji} - N^{ii}N^{jj} = 2\left(\eta_1^2 + \eta_2^2 + \eta_3^2 - \alpha\beta - \beta\gamma - \gamma\alpha\right)$$ (22)

for the symmetric matrix

$$N^{ij} = \begin{pmatrix} \alpha & \eta_3 & \eta_2 \\ \eta_3 & \beta & \eta_1 \\ \eta_2 & \eta_1 & \gamma \end{pmatrix}$$ (23)

We conclude this Section, by noting that the action (1) for any configuration with degenerate tetrads (10) satisfying the equations of motion is zero:

$$S = \frac{1}{8\kappa^2} \int d^4x \varepsilon^\mu\nu\alpha\beta\varepsilon_{IJKL}e^I_\mu e^J_\nu R_{\alpha\beta}^{KL}(\omega) = \frac{1}{2\kappa^2} \int d^4x \varepsilon^{abc}\varepsilon_{ijk}e^i_a e^j_b \bar{R}_{c\tau}^{ij}(\bar{\omega}) = 0,$$ (24)

where we have used the constraint (16) in the last step.

V. EXPLICIT SOLUTIONS WITH DEGENERATE TETRADS

To obtain explicit solutions of the equations of motion (11-13) and (15-17), all we need to do is to prescribe a set of triads e_a^i and associated torsion-free Levi-Civita spin-connections $\bar{\omega}_a^{ij}(e)$ and evaluate the spatial (three-) curvature scalar $\varepsilon_i^a\varepsilon_j^b\bar{R}_{ab}^{ij}(\bar{\omega})$ to fix the combination ζ of eqn.(21). There are many possible solutions. A set of solutions for homogeneous three-geometries described by the triads can be put in eight classes as given by Thurston’s model three-geometries [15]. We shall now display all these eight solutions.
(i) E_3 geometry:

This flat solution is the simplest where, for affine coordinates $x^a \equiv (x, y, z)$, the infinitesimal (squared) length element is: $ds^2_{(4)} = dx^2 + dy^2 + dz^2$. The triads here are simply: $e_x^1 = e_y^2 = e_z^3 = 1$ and all others zero. Corresponding spin-connection $\tilde{\omega}_{a}^{ij}(e) = 0$ and so is the three-curvature, $\tilde{R}_{ab}^{ij}(\tilde{\omega}) = 0$. The contortion components as given by the symmetric matrix N^{ij} are constrained as:

$$\zeta \equiv 2 \left(\eta_1^2 + \eta_2^2 + \eta_3^2 - \alpha \beta - \beta \gamma - \gamma \alpha \right) = 6\lambda^2$$ \hspace{1cm} (25)

(ii) S_3 geometry:

The metric in terms of the angular coordinates $x^a = (\theta, \phi, \chi)$ for this spherical three-geometry is:

$$ds^2_{(4)} = l^2 \left[d\theta^2 + \sin^2 \theta (d\phi^2 + \sin^2 \phi d\chi^2) \right]$$

The only non-zero components of triad are:

$$e_\theta^1 = l, \quad e_\phi^2 = l \sin \theta, \quad e_\chi^3 = l \sin \theta \sin \phi$$

Associated torsion-free spin-connections for this set of triads are:

$$\tilde{\omega}_{\phi}^{12} = -\cos \theta, \quad \tilde{\omega}_{\chi}^{23} = -\cos \phi, \quad \tilde{\omega}_{\chi}^{31} = \cos \theta \sin \phi$$

and all others zero. This is a constant curvature three-geometry with the curvature components given by $\tilde{R}_{ab}^{ij}(\tilde{\omega}) = \frac{1}{l^2} e_i^a e_j^b \tilde{R}_{ab}^{ij}(\tilde{\omega}) = \frac{6}{l^2}$. The contortion components are given by:

$N^1_a = l(\alpha, \eta_3 \sin \theta, \eta_2 \sin \theta \sin \phi)$, $N^2_a = l(\eta_3, \beta \sin \theta, \eta_1 \sin \theta \sin \phi)$, $N^3_a = l(\eta_2, \eta_1 \sin \theta, \gamma \sin \theta \sin \phi)$

where the six fields $(\alpha, \beta, \gamma, \eta_1, \eta_2, \eta_3)$ are as in (23). The final constraint (21) takes the form:

$$\zeta = 6\lambda^2 - \frac{6}{l^2}$$ \hspace{1cm} (26)

For the special choice, $N_a^i = l \mu e_a^i$, this S_3 configuration is exactly a gauge rotated version of the first of the two solutions obtained by Tseytlin [5].
(iii) \(H_3 \) geometry:

The metric for this hyperbolic three-geometry is:

\[
d s^2_{(i)} = \frac{l^2}{z^2}(d x^2 + d y^2 + d z^2), \quad z > 0
\]

Only non-zero components of triad are \(e_x^1 = e_y^2 = e_z^3 = \frac{l}{z} \) and those of torsion-free connection are \(\bar{\omega}_x^{31} = \frac{1}{z} = -\bar{\omega}_y^{23} \). This is again a constant curvature three-geometry with the curvature components as \(\bar{R}_{ab}^{ij}(\bar{\omega}) = -\frac{1}{l^2} e_i^a e_j^b \) so that the spatial curvature scalar becomes \(\hat{e}_i^a \hat{e}_j^b \bar{R}_{ab}^{ij}(\bar{\omega}) = -\frac{6}{l^2} \). The contortion is given by

\[
N_a^1 = \frac{l}{z}(\alpha, \eta_3, \eta_2), \quad N_a^2 = \frac{l}{z}(\eta_3, \beta, \eta_1), \quad N_a^3 = \frac{l}{z}(\eta_2, \eta_1, \gamma)
\]

and the constraint \((21)\) becomes:

\[
\zeta = \frac{6}{l^2} + 6\lambda^2 \quad (27)
\]

(iv) \(R \times S_2 \) geometry:

The metric here is:

\[
d s^2_{(ii)} = dx^2 + l^2(\theta^2 + \sin^2 \theta d\phi^2)
\]

Nontrivial triad components are \(e_x^1 = 1, \quad e_\theta^2 = l, \quad e_\phi^3 = l \sin \theta \) and the only non-zero component of the associated spin connection is \(\bar{\omega}_\phi^{23} = -\cos \theta \). There is only one non-vanishing curvature component \(\bar{R}_{\theta\phi}^{23}(\bar{\omega}) = \sin \theta \) so that the spatial three-curvature scalar is \(\hat{e}_i^a \hat{e}_j^b \bar{R}_{ab}^{ij}(\bar{\omega}) = \frac{2}{l^2} \). The contortion components are given by:

\[
N_a^1 = (\alpha, l\eta_3, l\eta_2 \sin \theta), \quad N_a^2 = (\eta_3, l\beta, l\eta_1 \sin \theta), \quad N_a^3 = (\eta_2, l\eta_1, l\gamma \sin \theta)
\]

and the master constraint \((21)\) is:

\[
\zeta = 6\lambda^2 - \frac{2}{l^2} \quad (28)
\]

This solution is a gauge rotated version of the second solution obtained earlier by Tseytlin \(_5 \).
(v) \(R \times H^2 \) geometry:

The infinitesimal arc length square is:

\[
\text{ds}^2_{(4)} = dx^2 + \frac{l^2}{z^2}(dy^2 + dz^2), \quad z > 0
\]

Non-zero components of triad and the corresponding torsion-free connection are \(e'_x = 1 \), \(e'_y = e'_z = \frac{4}{z} \) and \(\bar{\omega}^{23} = -\frac{1}{z} \). Curvature has only one non-zero component, \(\bar{R}^{23}_{yz}(\bar{\omega}) = -\frac{1}{z^2} \), leading to the spatial curvature scalar \(\hat{e}^{a}_i \hat{e}^{b}_j \bar{R}^{ij}_{ab}(\bar{\omega}) = -\frac{2}{l^2} \). The contortion is given by

\[
N^1_a = (\alpha, \frac{l}{z} \eta_3, \frac{l}{z} \eta_2), \quad N^2_a = (\eta_3, \frac{l}{z} \beta, \frac{l}{z} \eta_1), \quad N^3_a = (\eta_2, \frac{l}{z} \eta_1, \frac{l}{z} \gamma)
\]

Finally we have the constraint:

\[
\zeta = \frac{2}{l^2} + 6\lambda^2
\]

(vi) Sol-geometry:

Here the metric is:

\[
\text{ds}^2_{(4)} = e^{2\hat{\tau}} dx^2 + e^{-2\hat{\tau}} dy^2 + dz^2
\]

with non-zero components of the triads and spin-connection fields as:

\[
e'_x = e^{\hat{\tau}}, \quad e'_y = e^{-\hat{\tau}}, \quad e'_z = 1
\]

\[
\bar{\omega}^{23} = -\frac{e^{-\hat{\tau}}}{l}, \quad \bar{\omega}^{31} = -\frac{e^{\hat{\tau}}}{l}
\]

Non-vanishing curvature components are

\[
\bar{R}^{12}_{xy}(\bar{\omega}) = \frac{1}{l^2}, \quad \bar{R}^{23}_{yz}(\bar{\omega}) = -\frac{e^{-\hat{\tau}}}{l^2}, \quad \bar{R}^{31}_{zx}(\bar{\omega}) = -\frac{e^{\hat{\tau}}}{l^2}
\]

so that \(\hat{e}^{\alpha}_i \hat{e}^{\beta}_j \bar{R}^{ij}_{ab}(\bar{\omega}) = -\frac{2}{l^2} \). The contortion fields are

\[
N^1_a = (\alpha e^{\hat{\tau}}, \eta_3 e^{-\hat{\tau}}, \eta_2), \quad N^2_a = (\eta_3 e^{\hat{\tau}}, \beta e^{-\hat{\tau}}, \eta_1), \quad N^3_a = (\eta_2 e^{\hat{\tau}}, \eta_1 e^{-\hat{\tau}}, \gamma)
\]

With these, the constraint (21) becomes:

\[
\zeta = \frac{2}{l^2} + 6\lambda^2
\]
(vii) Nil-geometry:

This geometry is characterized by the metric:

\[ds^2 = dx^2 + dy^2 + (dz - \frac{x}{l}dy)^2 \]

with non-zero triad components as \(e_x^1 = 1; \ e_y^1 = 1; \ e_y^3 = -\frac{x}{l}; \ e_z^3 = 1 \) and the nontrivial components of the inverse as \(\tilde{e}^x_1 = 1; \ e^y_2 = 1; \ e^z_2 = \frac{x}{l}, \ e^z_3 = 1 \). Non-vanishing components of the torsion-free spin connection are:

\[\bar{\omega}_{y}^{12} = -\frac{x}{2l^2}, \ \bar{\omega}_{z}^{12} = -\bar{\omega}_{x}^{23} = -\bar{\omega}_{y}^{31} = \frac{1}{2l}. \]

These lead to \(\bar{R}_{xy}^{12}(\bar{\omega}) = -\frac{3}{4l^2}, \ \bar{R}_{yz}^{23}(\bar{\omega}) = \frac{1}{4l^2} = \bar{R}_{zx}^{31}(\bar{\omega}), \ \bar{R}_{xy}^{31}(\bar{\omega}) = \frac{x}{4l^2} \) as the only non-zero curvature components. Thus, the curvature scalar is \(\bar{\epsilon}^a_i \bar{\epsilon}^b_j \bar{R}_{ij}^{ab}(\bar{\omega}) = -\frac{1}{2l^2} \). The contortion fields are:

\[N_1^a = (\alpha, \eta_3 - \frac{x}{l} \eta_2, \eta_2), \ N_2^a = (\eta_3, \beta - \frac{x}{l} \eta_1, \eta_1), \ N_3^a = (\eta_2, \eta_1 - \frac{x}{l} \gamma, \gamma) \]

and the constraint (21) reads:

\[\zeta = \frac{1}{2l^2} + 6\lambda^2 \] (31)

(viii) \(SL_2R \)-geometry:

The metric is given by \[17\]

\[ds^2 = dr^2 + l^2 \left[c^2 s^2 d\theta^2 + (d\phi + s^2 d\theta)^2 \right] \]

where \(c \equiv \cosh \left(\frac{r}{l} \right) \) and \(s \equiv \sinh \left(\frac{r}{l} \right) \). The non-vanishing components of triad, inverse triad and torsion-free spin connection are:

\[
\begin{align*}
& e_r^1 = 1; \ e_\theta^1 = lsc; \ e_\theta^3 = ls^2; \ e_\phi^3 = l; \\
& \tilde{e}^r_1 = 1; \ e_\theta^2 = \frac{1}{lsc}; \ e_\phi^2 = -\frac{s}{lc}; \ e_\phi^3 = \frac{1}{l}; \\
& \bar{\omega}_\theta^{12} = -(c^2 + 2s^2), \ \bar{\omega}_\phi^{12} = -1, \ \bar{\omega}_r^{23} = \frac{1}{l}, \ \bar{\omega}_r^{31} = cs.
\end{align*}
\]

These imply that only the following curvature components are non vanishing:

\[
\begin{align*}
& \bar{R}_{r\theta}^{12}(\bar{\omega}) = -\frac{7cs}{l}, \ \bar{R}_{\theta\phi}^{23}(\bar{\omega}) = cs, \ \bar{R}_{r\phi}^{31}(\bar{\omega}) = -\frac{s^2}{l}, \ \bar{R}_{\phi\theta}^{31}(\bar{\omega}) = \frac{1}{l}
\end{align*}
\]

so that the curvature scalar is \(\bar{\epsilon}^a_i \bar{\epsilon}^b_j \bar{R}_{ij}^{ab}(\bar{\omega}) = -\frac{10}{4l^2} \). The contortion components are:

\[
\begin{align*}
& N_1^a = (\alpha, lsc\eta_3 + ls^2 \eta_2, l \eta_2), \ N_2^a = (\eta_3, lsc\beta + ls^2 \eta_1, l \eta_1), \ N_3^a = (\eta_2, lsc \eta_1 + ls^2 \gamma, l \gamma)
\end{align*}
\]
The final constraint (21) now is:

\[\zeta = \frac{10}{l^2} + 6\lambda^2 \]

(32)

With this we have completed the discussion of various explicit solutions associated with Thurston’s eight model three-geometries. All these solutions generically contain torsion as reflected by the symmetric matrix \(N_{ij} \) where the contortion is parametrized as \(\kappa_{a}^{ij} = \epsilon^{ijk} N_{kl} e_{a}^l \). Six component fields of symmetric \(N_{ij} \) depend on all the four spacetime coordinates \((x, y, z, \tau)\). These are independent except for one constraint so that the combination \(\zeta = (N_{ij} N_{ji} - N_{ii} N_{jj}) \) has fixed values as dictated by the condition (21) for various solutions. For all the eight solutions above, \(\zeta \) as given by eqns (25-32), is spacetime constant in each case.

To emphasize, unlike the case of invertible tetrads where torsion enter into the theory through matter couplings such as fermions, here in the phase with degenerate tetrads torsion is exhibited by the solutions even in the case of pure gravity without any torsion-inducing matter fields.

Our discussion of degenerate tetrads above has been set up in Euclidean gravity. As is obvious, it holds equally well for Lorentzian signature where zero eigenvalue of the tetrad is in the time direction. Also, the analysis has a straightforward generalization even when the zero eigenvalue is in a spatial direction where the nontrivial three-geometry would now be Lorentzian and corresponding changes for three of the six torsional components will appear.

VI. SEN GUPTA GEOMETRY

The degenerate tetrad solutions we have discussed here do not represent the usual geometry as seen in the Einsteinian gravity. To understand the nature of these solutions, let us go to the flat spacetime limit.

We shall use Lorentzian signature in the discussion that follows. In the flat limit, square of the infinitesimal length element is given by

\[ds_{(a)}^2 = -c^2 dt^2 + dx^2 + dy^2 + dz^2 \]

Degenerate tetrad with one zero eigenvalue as considered here correspond to the limit where the metric component \(g_{tt} \equiv c^2 \to 0 \) in this flat spacetime case.
Under a change of frame, the length element stays unaltered:

$$ds^2_{(4)} = -c^2 dt^2 + dx^2 + dy^2 + dz^2 = -c^2 dt'^2 + dx'^2 + dy'^2 + dz'^2$$

There are two ways of writing transformations which leave $ds^2_{(4)}$ invariant. First is the standard Lorentz transformation:

$$dt' = \frac{dt - \frac{v}{c^2}dx}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad dx' = \frac{dx - vdt}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad dy' = dy, \quad dz' = dz$$ \hspace{1cm} (33)$$

where we have introduced the boost transformation in the $t-x$ plane. Here the parameter v, bounded from above as $v^2 < c^2$, is the relative velocity between the frames. In other words, $v = \frac{\Delta x}{\Delta t}$ (for $\Delta x' = 0$) is the velocity of a fixed point in the primed frame in the spacetime of the unprimed frame. As pointed out by Sen Gupta [18], there is another transformation which leaves the length element $ds^2_{(4)}$ invariant:

$$dt' = \frac{dt - \frac{w}{c}dx}{\sqrt{1 - \frac{w^2}{c^2}}}, \quad dx' = \frac{dx - \frac{c^2}{w^2}dt}{\sqrt{1 - \frac{w^2}{c^2}}}, \quad dy' = dy, \quad dz' = dz$$ \hspace{1cm} (34)$$

Here the parameter w is bounded from below as $w^2 > c^2$. Despite its dimensions, w is not a relative frame velocity. Since $w = \frac{dx}{dt}$ for $\Delta t' = 0$, it rather represents the rate of change of an event that occurs at a fixed time in the primed system as measured in the unprimed system. The two transformations (33) and (34) are dual to each other. They go to each other under the changes $v \rightarrow \frac{c^2}{w}$ and $w \rightarrow \frac{c^2}{v}$.

The non-relativistic limit of the Lorentz transformation is obtained by taking $c \rightarrow \infty$ limit in (33) to yield the standard Galilean transformation:

$$dt' = dt, \quad dx' = dx - vdt, \quad dy' = dy, \quad dz' = dz$$ \hspace{1cm} (35)$$

On the other hand, it is the transformation (34) that is appropriate for studying the limit $c \rightarrow 0$. In this limit, as was pointed out by Sen Gupta, transformation (34) leads to the following dual transformation:

$$dt' = dt - \frac{dx}{w}, \quad dx' = dx, \quad dy' = dy, \quad dz' = dz$$ \hspace{1cm} (36)$$

This transformation [18, 19], though analogous to the Galilean transformation (35), yet is different with the roles of space and time interchanged. We may refer to the spacetime with transformation properties (36) as Sen Gupta spacetime.
The phase of degenerate tetrads in the first order formalism discussed in this article describes the curved spacetime generalizations of the Sen Gupta spacetime. This is in contrast to the phase with invertible tetrads which corresponds to the usual Einstein curved spacetime.

VII. CONCLUDING REMARKS

The phase containing invertible tetrads in the first order gravity based on Hilbert-Palatini action is exactly same as the usual Einstein geometry described by the second order formalism based on Einstein-Hilbert action. However, in the first order formulation there is another phase containing non-invertible tetrads. Thus, even classically the two formalisms are not equivalent.

Here we have studied in detail possible degenerate tetrad solutions with one zero eigenvalue in first order gravity. Many such solutions are possible. A special class of solutions obtained are associated with Thurston’s eight homogeneous three-geometries. All these solutions generically possess torsion without the presence of any matter fields such as fermions.

While the solutions with invertible tetrads correspond to the usual Einstein geometry, the degenerate ones with one zero eigenvalue are curved spacetime generalizations of Sen Gupta (flat) spacetime geometry.

In the quantum theory of gravity we need to integrate over all possible configurations, including those with degenerate tetrads, in the functional integral as prescribed by Feynman path integral formulation. Such non invertible configurations can play an important role in the quantum theory.

Although our analysis has been presented in the framework of Euclidean gravity, it is also valid for Lorentzian gravity where the zero eigenvalue of the tetrad is in the time direction. In particular, the eight explicit solutions displayed in Section V are valid for this case as well. The analysis with the null eigenvalue in a spatial direction is also a mere simple generalization of the analysis elucidated here.
ACKNOWLEDGMENTS

R.K.K. acknowledges the support of Department of Science and Technology, Government of India, through a J.C. Bose National Fellowship. S.S. acknowledges the hospitality and generous support of the Institute of Mathematical Sciences, Chennai where part of this work was done.

Appendix

Here we shall present the details of derivations of eqns. (11-13) and (15-18).

For the degenerate tetrads (10), we may break the 24 equations in (4) into two sets of 18 and 6 equations respectively as:

\[e^I_a D_a (\omega) e^J_b = 0 \] \hspace{1cm} (37)
\[e^I_a D_b (\omega) e^J_c = 0 \] \hspace{1cm} (38)

It is straightforward to see that eqns. (37) can be recast as equivalent 18 equations:

\[D_\tau (\omega) (e^I_a e^J_b) = 0 \] \hspace{1cm} (39)

Taking \(I = i \) and \(J = 4 \), these result in nine equations: \(e^i_a e^k_b \omega_{r4k} = 0 \). These in turn imply vanishing of \(\omega_{r4i} \) as claimed in (12). Again, for \(I = i, J = j \), eqns. (39) lead to the 9 equations \(D_\tau (\omega) (e^i_a e^j_b) = 0 \). These are equivalent to nine equations \(D_\tau (\omega) e^i_a = 0 \) as claimed in (11). These further imply \(D_\tau (\omega) \hat{e}^a_i = 0 \) and \(\partial_\tau e_i = 0 \) where \(e = \text{det} e_a^i \). These equations can be solved for the connection components \(\omega_{rij} \) as:

\[\omega_{rij} = \hat{\omega}_{rij}(e) \equiv \hat{e}^a_i \partial_\tau e^j_a = e^i_a \partial_\tau \hat{e}^a_i = - \hat{e}^a_j \partial_\tau e^i_a = - e^j_a \partial_\tau \hat{e}^a_i \] \hspace{1cm} (40)

Next, we take \(I = i, J = 4 \) in eqns. (38) and multiply by \(\hat{e}^a_i \) to show that \(D_{[b}(\omega)e^A_c] \equiv \omega_{[b}^4k e^k_c] = 0 \) which in turn imply that \(\omega^4_b \equiv M^k_b = M^{kl} e^l_b \) is such that the \(3 \times 3 \) matrix \(M^{kl} \) is symmetric. Further for \(I = i, J = j \) in (38), multiplying by \(\hat{e}^a_i \hat{e}^b_j \), it can readily be shown to lead to three conditions:

\[\hat{e}^a_i D_{[c}(\omega)e^i_a] = 0 \] \hspace{1cm} (41)

Now let us split the connection fields as \(\omega_{a}^{ij} = \bar{\omega}_a^{ij}(e) + \kappa_a^{ij} \) where \(\kappa_a^{ij} \equiv \epsilon^{ijk} N_k a \equiv \epsilon^{ijk} N^{kl} e^l_a \) are the contortion fields and \(\bar{\omega}_a^{ij}(e) \), as given in eq. (13), are the torsion-free Levi-Civita spin
connections for the triads e_a^i:

$$D_{ia}(\bar{\omega})e^i_b = 0$$ \hspace{1cm} (42)

With this, eqn. (41) can be shown to imply that $\hat{e}^a_i \kappa_a^{ij} = 0$. This further leads to the fact that the 3×3 contortion matrix N^{ij} does not have any anti-symmetric part, that is, $N^{ij} = N^{ji}$.

Next, we split the 16 equations in (5) into two sets of 12 and 4 equations respectively as:

$$e^i_{[i} R^{JK]}_{ab} \omega^{(i} = 0$$ \hspace{1cm} (43)

$$e^i_{[a} R^{JK}_{bc]} \omega^{(i} = 0$$ \hspace{1cm} (44)

In eqns. (43) we take $I = 4$, $J = j$, $K = k$ and multiply by inverse triads to note that $\hat{e}^a_i e^{[i} R^{jk]}_{ab} \omega^{(i} = 4 \frac{e^a_i}{\tau_k^{(i}} R_{ab}^{jk}] \omega^{(i} = 0$ and $\hat{e}^a_i \kappa_a^{ij} R_{ab}^{jk] \omega^{(i} = 16 \hat{e}^a_i R_{ab}^{jk] \omega^{(i} = 0$. This leads to the 9 conditions $R_{a\tau}^{4k} \omega^k = 0$. Further using the fact that $\omega^4_k = 0$ as argued above, we note that $R_{a\tau}^{4k} \omega^k = - (\partial_{\tau} \omega^4_k + \omega^4_k \partial_{\tau} \omega^k_i \partial_{\tau} \omega^l_i \partial) \equiv - (\partial_{\tau} M^k_a + \omega_{\tau}^k M_i^l \partial) \equiv - D_{\tau}^{} \omega^k_m M_a^k$. Thus we have the nine constraints:

$$R_{a\tau}^{4k} \omega^k = - D_{\tau}^{} \omega^k M_a^k = 0$$ \hspace{1cm} (45)

Again in eqn. (13), we take $I = i$, $J = j$, $K = k$ and use the fact that $\hat{e}^a_i \kappa_a^{ij} R_{ab}^{jk] \omega^{(i} = 8 \hat{e}^a_i R_{a\tau}^{4k} \omega^k = 0$ leading us to three constraints:

$$\hat{e}^a_i R_{a\tau}^{4k} \omega^k = 0$$ \hspace{1cm} (46)

Next, let us take $I = 4$, $J = j$, $K = k$ in eqn. (44) and notice that $\hat{e}^a_j \kappa_a^{ij} R_{ab}^{jk] \omega^{(i} = 8 \hat{e}^a_j R_{ca}^{4j} \omega^j = 0$ leading us to three conditions:

$$\hat{e}^a_j R_{ab}^{4k} \omega^k = \left(\hat{e}^a_i \hat{e}^a_i - \delta^a_i ^a \delta^a_i
ight) D_{a}(\bar{\omega})M_{a}^{il} = 0$$ \hspace{1cm} (47)

where for the first step we have used $R_{ab}^{4k} \omega^k = D_{a}(\bar{\omega})M_{b}^{il} = D_{a}(\bar{\omega})M_{b}^{il} + \kappa_{a}^{il} M_{b}^{il}$ and $\hat{e}^a_i \kappa_a^{il} = 0$ and $M_{a}^{il} \equiv M_{a}^{il} \hat{e}^a_i = M_{i}^{il}$.

Finally taking $I = i$, $J = j$, $K = k$ in (44) and using $e^{abc} \epsilon_{ijk} e_a^i R_{bc}^{jk} = 2 \epsilon^{abc} \epsilon_{ijk} e_a^i R_{bc}^{jk}$ we obtain the last condition as:

$$\hat{e}^a_j \hat{e}^a_i R_{a\tau}^{ij} \omega^{(i} = 0$$ \hspace{1cm} (48)

Expanding $\omega_{a}^{ij} = \bar{\omega}_{a}^{ij}(e) + \epsilon^{ijk} N^{kl} e_a^l$, we find that:

$$R_{ab}^{ij}(\omega) = \tilde{R}_{ab}^{ij}(\bar{\omega}) - \epsilon^{ijk} \epsilon_{[a} D_{b]}(\bar{\omega}) N^{kl} - (M_{a}^{il} M_{a}^{jk} + N_{a}^{il} N_{a}^{jk}) e_{[a} e_{b]}$$ \hspace{1cm} (49)
where $\bar{R}_i^j(\bar{\omega}) = \partial_{[a} \bar{\omega}^{ij}_{b]} + \bar{\omega}^{ai}_{[a} \bar{\omega}^{lj}_{b]}$. Using this, the constraint (48) can be recast as:

$$\hat{e}_i^a \hat{e}_j^b \bar{R}_i^j(\bar{\omega}) + \left(M_{ij} M^{ji} - M^{ii} M^{jj} \right) + \left(N_{ij} N^{ji} - N^{ii} N^{jj} \right) = 0 \quad (50)$$

where we have used the fact that matrix N_{ij} is symmetric.

[1] A. Einstein and N. Rosen, Phys. Rev. 48 (1935) 73.
[2] S. Hawking, Nucl. Phys. B 144 (1978) 349.
[3] M. Henneaux, Bull. Soc. Math. Belg. 31 (1979) 47;
 M. Henneaux, M. Pilati, C. Teitelboim, Phys. Lett. B110 (1982) 123;
 M. Pilati, Phys. Rev. D26 (1982) 2645;
 M. Pilati, Phys. Rev. D28 (1983) 729.
[4] R. D’Auria and T. Regge, Nucl. Phys. B195 (1982) 308-324.
[5] A.A. Tseytlin, J. Phys. A: Math. Gen. 15 (1982) L105.
[6] A. Ashtekar, Phys. Rev. D36 (1987) 1587.
[7] I. Bengtsson, Int. J. Mod. Phys. A4 (1989) 5527;
 S. Koshti and N. Dadhich, Class. Quantum Grav. 6 (1989) L223;
 I. Bengtsson, Class Quantum Grav. 7 (1990) 27;
 I. Bengtsson, Class. Quantum Grav. 8 (1991) 1847.
[8] M. Varadarajan, Class. Quantum Grav. 8 (1991) 11, L235.
[9] I. Bengtsson, T. Jacobson, Class. Quantum Grav. 14 (1997) 3109;
 Erratum-ibid. 15 (1998) 3941.
[10] T. Jacobson, J.D. Romano, Class. Quantum Grav. 9 (1992) L119, gr-qc/9207005;
 J.D. Romano, Phys.Rev. D48 (1993) 5676, gr-qc/9306034;
 M.P. Reisenberger, Nucl. Phys. B457 (1995) 643, gr-qc/9505044;
 G. Yoneda, H. Shinkai, A. Nakamichi, Phys. Rev. D56 (1997) 2086.
[11] T. Jacobson, Class. Quantum Grav. 13 (1996) L111-L116 and Erratum ibid 13 (1996) 3269;
 S.H.S. Alexander and G. Calcagni, Found. Phys. 38 (2008) 1148;
 S.H.S. Alexander and G. Calcagni, Phys. Lett. B 672 (2009) 386.
[12] G.T. Horowitz, Class. Quantum Grav. 8 (1991) 587.
[13] J. A. Wheeler, Annals Phys. 2 (1957) 604;
 J.A. Wheeler, *Geometrodynamics*, Academic Press, New York, (1962).

[14] R.P. Geroch, J. Math. Phys. 8 (1967) 782.

[15] W.P. Thurston, Bull. A.M.S. 6 (1982) 357;
 W.P. Thurston, *The geometry and topology of 3-manifolds*, Princeton University Lecture Notes (1982).

[16] P. Scott, Bull. London Math. Soc. 15 (1983) 401.

[17] E. Molnar, Beitrage zur Algebra und Geometrie 38 No.2 (1997) 261.

[18] N.D. Sen Gupta, Nuovo Cimento 44 (1966) 512.

[19] J-M. Levy-Leblond, Ann. Inst. Henri Poincare, 3 (1965) 1.