Research article

Boundedness and stabilization of a predator-prey model with attraction-repulsion taxis in all dimensions

Wenbin Lyu∗

School of Mathematical Sciences, Shanxi University, Taiyuan 030006, China

* Correspondence: Email: lvwenbin@sxu.edu.cn.

Abstract: This paper establishes the existence of globally bounded classical solutions to a predator-prey model with attraction-repulsion taxis in a smooth bounded domain of any dimensions with Neumann boundary conditions. Moreover, the global stabilization of solutions with convergence rates to constant steady states is obtained. Using the local time integrability of the L^2-norm of solutions, we build up the basic energy estimates and derive the global boundedness of solutions by the Moser iteration. The global stability of constant steady states is established based on the Lyapunov functional method.

Keywords: predator-prey; attraction-repulsion; global boundedness; global stability

1. Introduction and main results

A taxis is the movement of an organism in response to a stimulus such as chemical signal or the presence of food. Taxes can be classified based on the types of stimulus, such as chemotaxis, prey-taxis, galvanotaxis, phototaxis and so on. According to the direction of movements, the taxis is said to be attractive (resp. repulsive) if the organism moves towards (resp. away from) the stimulus. In the ecosystem, a widespread phenomenon is the prey-taxis, where predators move up the prey density gradient, which is often referred to as the direct prey-taxis. However some predators may approach the prey by tracking the chemical signals released by the prey, such as the smell of blood or specific odo, and such movement is called indirect prey-taxis (cf. [1]). Since the pioneering modeling work by Kareiva and Odell [2], prey-taxis models have been widely studied in recent years (cf. [3–12]), followed by numerous extensions, such as three-species prey-taxis models (cf. [13–15]) and predator-taxis models (cf. [16, 17]). The indirect prey-taxis models have also been well studied (cf. [18–20]).

Recently, a predator-prey model with attraction-repulsion taxis mechanisms was proposed by Bell and Haskell in [21] to describe the interaction between direct prey-taxis and indirect chemotaxis, where the direct prey-taxis describes the predator’s directional movement towards the prey density gradient,
while the indirect chemotaxis models a defense mechanism in which the prey repels the predator by releasing odour chemicals (like a fox breaking wind in order to escape from hunting dogs). The model reads as

\[
\begin{align*}
 u_t &= d \Delta u + u (a_1 - a_2 u - a_3 v), \\
 v_t &= \nabla \cdot (\nabla v + e \nabla w - \xi v \nabla u) + sv (v - 1) + \rho v, \\
 w_t &= \eta \Delta w + rv - \gamma w, \\
 \nabla u \cdot \nu = \nabla v \cdot \nu = \nabla w \cdot \nu = 0, \\
 (u, v, w)(x, 0) &= (u_0, v_0, w_0)(x),
\end{align*}
\]

(1.1)

where the unknown functions \(u(x, t), v(x, t) \) and \(w(x, t) \) denote the densities of the prey, predator and prey-derived chemical repellent, respectively, at position \(x \in \Omega \) and time \(t > 0 \). Here, \(\Omega \subset \mathbb{R}^n \) is a bounded domain (habitat of species) with smooth boundary \(\partial \Omega \), and \(v \) is the unit outer normal vector of \(\partial \Omega \). The parameters \(d, \eta, \xi, a_1, a_2, a_3, e, \rho, r, \gamma \) are all positive, where \(\chi > 0 \) and \(\xi > 0 \) denote the (attractive) prey-taxis and (repulsive) chemotaxis coefficients, respectively. The predator \(v \) is assumed to be a generalist, so that it has a logistic growth term \(\rho v (1 - v) \) with intrinsic growth rate \(\rho > 0 \). More modeling details with biological interpretations are referred to in [21]. We remark that the predator-prey model with attraction-repulsion taxes has some similar structures to the so-called attraction-repulsion chemotaxis model proposed originally in [22], where the species elicit both attractive and repulsive chemicals (see [23–26] and references therein for some mathematical studies).

The initial data satisfy the following conditions:

\[
v_0 \in C^0(\overline{\Omega}), \quad u_0, w_0 \in W^{1,\infty}(\Omega), \quad \text{and} \quad u_0, v_0, w_0 \geq 0 \quad \text{in} \quad \overline{\Omega}.
\]

(1.2)

In [21], the global existence of strong solutions to (1.1) was established in one dimension \((n = 1) \), and the existence of nontrivial steady state solutions alongside pattern formation was studied by the bifurcation theory. The main purpose of this paper is to study the global dynamics of (1.1) in higher dimensional spaces, which are usually more physical in the real world. Specifically, we shall show the existence of global classical solutions in all dimensions and explore the global stability of constant steady states, by which we may see how parameter values play roles in determining these dynamical properties of solutions.

The first main result is concerned with the global existence and boundedness of solutions to (1.1). For the convenience of presentation, we let

\[
K_1 = \max \left\{ \frac{a_1}{a_2}, ||u_0||_{L^\infty(\Omega)} \right\}, \quad K_2 = \max \left\{ a_1 K_1 + a_2 K_1^2, a_3 K_1 \right\}
\]

(1.3)

and

\[
K_3(z) = \frac{2 \xi^2 (n + 2(z - 1)K_2^2)^{\frac{\gamma}{2}}}{d^{\gamma}} \left(\frac{(z - 1)(4z^2 + n)K_1^2}{z + 1} \right)^{\frac{\gamma}{2}} + \frac{2 \xi^2 (z - 1)K_2^2}{d^{\gamma}} \left(\frac{4z^2 + n)K_1^2}{z + 1} \right)^{\frac{\gamma}{2}}.
\]

(1.4)

Then, the result on the global boundedness of solutions to (1.1) is stated as follows.
Theorem 1.1 (Global existence). Let $\Omega \subset \mathbb{R}^n (n \geq 1)$ be a bounded domain with smooth boundary and parameters $d, \eta, \chi, \xi, a_1, a_2, a_3, e, \rho, r, \gamma$ be positive. If

$$
P \begin{cases}
\xi > 0, & n \leq 2, \\
\geq \frac{2K_3([\xi] + 1)}{[\xi] + 1}, & n > 2,
\end{cases}
$$

where $K_3(p)$ is defined in (1.4), then for any initial data (u_0, v_0, w_0) satisfying (1.2), the system (1.1) admits a unique classical solution (u, v, w) satisfying

$$u, \quad v, \quad w \in C^0(\Omega \times [0, +\infty)) \cap C^{2,1}(\overline{\Omega} \times (0, +\infty)),
$$

and $u, v, w > 0$ in $\Omega \times (0, +\infty)$. Moreover, there exists a constant $C > 0$ independent of t such that

$$\|u(\cdot, t)\|_{w^{1,\infty}(\Omega)} + \|v(\cdot, t)\|_{L^{\infty}(\Omega)} + \|w(\cdot, t)\|_{w^{1,\infty}(\Omega)} \leq C \quad \text{for all} \quad t > 0.
$$

Our next goal is to explore the large-time behavior of solutions to (1.1). Simple calculations show the system (1.1) has four possible homogeneous equilibria as classified below:

$$
\begin{cases}
(0, 0, 0), (0, 1, 0), \left(\frac{a_1}{a_2}, 0, \frac{a_3}{a_2}\right), & \text{if } a_1 \leq a_3, \\
(0, 0, 0), (0, 1, 0), \left(\frac{a_1}{a_2}, 0, \frac{a_3}{a_2}\right), (u_*, v_*, w_*), & \text{if } a_1 > a_3,
\end{cases}
$$

with

$$
u_* = \frac{\rho(a_1 - a_3)}{\rho a_2 + ea_3^2}, \quad v_* = \frac{ea_1 a_3 + \rho a_2}{\rho a_2 + ea_3^2}, \quad w_* = \frac{\rho a_1 - a_3}{\gamma(\rho a_2 + ea_3^2)} \quad (1.5)
$$

where the trivial equilibrium $(0, 0, 0)$ is called the extinction steady state, $(0, 1, 0)$ is the predator-only steady state, and (u_*, v_*, w_*) is the coexistence steady state. We shall show that if $a_1 > a_3$, then the coexistence steady state is globally asymptotically stable with exponential convergence rate, provided that ξ and χ are suitably small, while if $a_1 \leq a_3$, the predator-only steady state is globally asymptotically stable with exponential or algebraic convergence rate when ξ and χ are suitably small. To state our results, we denote

$$
\Gamma = \frac{4d\rho(a_1 - a_3)}{K_1^2(ea_1 a_3 + \rho a_2)}, \quad \Phi = \frac{2a_2 \rho}{a_3} + e, \quad \Psi = \frac{\gamma a_1 a_3^2 K_1^2 (\rho a_2 + ea_3^2)}{d^2 r^2 (a_1 - a_3)} \quad (1.6)
$$

and

$$
A = \frac{\xi^2}{4d}, \quad B = \frac{ea_2}{a_1}, \quad D = \frac{16\eta a_1}{r^2}, \quad (1.7)
$$

where K_1 is defined in (1.3). Then, the global stability result is stated in the following theorem.

Theorem 1.2 (Global stability). Let the assumptions in Theorem 1.1 hold. Then, the following results hold.

(1) Let $a_1 > a_3$. If ξ and χ satisfy

$$
\xi^2 < \Gamma \left(\Phi + \sqrt{\Phi^2 - e^2}\right) \quad \text{and} \quad \chi^2 < \Psi \max_{y \in [a,b]} \left(\frac{\Gamma y - \xi^2}{y^2 + 2\Phi y - e^2}\right),
$$

where $a = \max\{\sqrt[4]{\frac{\xi^2}{\Gamma}}, \Phi - \sqrt{\Phi^2 - e^2}\}, b = \Phi + \sqrt{\Phi^2 - e^2}$, then there exist some constants $T_*, C, \alpha > 0$ such that the solution (u, v, w) obtained in Theorem 1.1 satisfies for all $t \geq T_*

$$
\|u(\cdot, t) - u_*\|_{L^{\infty}(\Omega)} + \|v(\cdot, t) - v_*\|_{L^{\infty}(\Omega)} + \|w(\cdot, t) - w_*\|_{L^{\infty}(\Omega)} \leq Ce^{-\alpha t}.
$$
(2) Let $a_1 \leq a_3$. If ξ and χ satisfy

$$
\xi^2 < \frac{4dea_2}{a_1} \quad \text{and} \quad \chi^2 < D \left(A + B - 2 \sqrt{AB} \right),
$$

then there exist some constants T^*, C, $\beta > 0$ such that the solution (u, v, w) obtained in Theorem 1.1 satisfies, for all $t \geq T^*$,

$$
\|u(\cdot, t)\|_{L^\infty(\Omega)} + \|v(\cdot, t) - 1\|_{L^\infty(\Omega)} + \|w(\cdot, t)\|_{L^\infty(\Omega)} \leq \begin{cases}
Ce^{-\beta t} & \text{if } a_1 < a_3, \\
C(t + 1)^{-1} & \text{if } a_1 = a_3.
\end{cases}
$$

Remark 1.1. In the biological view, the relative sizes of a_1 and a_2 determine the coexistence of the system. The results indicated that a large $\frac{a_1}{a_2}$ facilitates the coexistence of the species.

The rest of this paper is organized as follows. In Section 2, we state the local existence of solutions to (1.1) with extensibility conditions. Then, we deduce some a priori estimates and prove Theorem 1.1 in Section 3. Finally, we show the global convergence to the constant steady states and prove Theorem 1.2 in Section 4.

2. Preliminary

For convenience, in what follows we shall use $C_i (i = 1, 2, \cdots)$ to denote a generic positive constant which may vary from line to line. For simplicity, we abbreviate $\int_0^t \int_\Omega f(\cdot, s) dxds$ and $\int_\Omega f(\cdot, t) dx$ as $\int_0^t \int_\Omega f$ and $\int_\Omega f$, respectively. The local existence and extensibility result of problem (1.1) can be directly established by the well-known Amman’s theory for triangular parabolic systems (cf. [27, 28]). Below, we shall present the local existence theorem without proof for brevity, and we refer to [21] for the proof in one dimension as a reference.

Lemma 2.1 (Local existence and extensibility). Let $\Omega \subset \mathbb{R}^n$ be a bounded domain with smooth boundary. The parameters d, η, χ, ξ, a_1, a_2, a_3, e, ρ, r, γ are positive. Then, for the initial data (u_0, v_0, w_0) satisfying (1.2), there exists $T_{\text{max}} \in (0, \infty]$ such that the system (1.1) admits a unique classical solution (u, v, w) satisfying

$$
u, w \in C^0(\Omega \times [0, T_{\text{max}})) \cap C^{2,1}(\Omega \times (0, T_{\text{max}})),$$

and $u, v, w > 0$ in $\Omega \times (0, T_{\text{max}})$. Moreover, we have

$$
\text{either } T_{\text{max}} = +\infty \text{ or } \limsup_{t \nearrow T_{\text{max}}} \left(\|u(\cdot, t)\|_{W^{1,\infty}(\Omega)} + \|v(\cdot, t)\|_{L^\infty(\Omega)} + \|w(\cdot, t)\|_{W^{1,\infty}(\Omega)}\right) = +\infty.
$$

We recall some well-known results which will be used later frequently. The first one is a uniform Grönwall inequality [29].

Lemma 2.2. Let $T_{\text{max}} > 0$, $\tau \in (0, T_{\text{max}})$. Suppose that c_1, c_2, y are three positive locally integrable functions on $(0, T_{\text{max}})$ such that y' is locally integrable on $(0, T_{\text{max}})$ and satisfies

$$
y'(t) \leq c_1(t)y(t) + c_2(t) \quad \text{for all } t \in (0, T_{\text{max}}).
$$
If
\[
\int_t^{t+\tau} c_1 \leq C_1, \quad \int_t^{t+\tau} c_2 \leq C_2, \quad \int_t^{t+\tau} y \leq C_3 \quad \text{for all } t \in [0, T_{max} - \tau),
\]
where $C_i(i = 1, 2, 3)$ are positive constants, then
\[
y(t) \leq \left(\frac{C_3}{\tau} + C_2 \right) e^{C_1} \quad \text{for all } t \in [\tau, T_{max}).
\]

Next, we recall a basic inequality [30].

Lemma 2.3. Let $p \in [1, \infty)$. Then, the following inequality holds:
\[
\int_{\Omega} |\nabla u|^{2(p+1)} \leq 2 \left(4p^2 + n \right) \|u\|_{L^p(\Omega)}^2 \int_{\Omega} |\nabla u|^{2(p-1)}|D^2 u|^2
\]
for any $u \in C^2(\bar{\Omega})$ satisfying $\frac{\partial u}{\partial \nu} = 0$ on $\partial \Omega$, where $D^2 u$ denotes the Hessian of u.

The last one is a Gagliardo-Nirenberg type inequality shown in [31, Lemma 2.5].

Lemma 2.4. Let Ω be a bounded domain in \mathbb{R}^2 with smooth boundary. Then, for any $\varphi \in W^{2,2}(\Omega)$ satisfying $\frac{\partial \varphi}{\partial \nu}|_{\partial \Omega} = 0$, there exists a positive constant C depending only on Ω such that
\[
\|\nabla \varphi\|_{L^2(\Omega)} \leq C(\|\Delta \varphi\|_{L^2(\Omega)}^{\frac{1}{2}}\|\nabla \varphi\|_{L^2(\Omega)}^{\frac{1}{2}} + \|\nabla \varphi\|_{L^2(\Omega)}).
\]

3. Global existence

In this section, we establish the global boundedness of solutions to the system (1.1). To this end, we will proceed with several steps to derive a priori estimates for the solution of the system (1.1). The first one is the uniform-in-time $L^\infty(\Omega)$ boundedness of u.

Lemma 3.1. Let (u, v, w) be the solution of (1.1) and K_1 be as defined in (1.3). Then, we have
\[
\|u\|_{L^\infty(\Omega)} \leq K_1 \quad \text{for all } t \in (0, T_{max}).
\]

Furthermore, there is a constant $C > 0$ such that for any $0 < \tau < \min\{T_{max}, 1\}$, it follows that
\[
\int_t^{t+\tau} |\nabla u|^2 \leq C \quad \text{for all } t \in (0, T_{max} - \tau).
\]

Proof. The result is a direct consequence of the maximum principle applied to the first equation in (1.1). Indeed, if we let $\bar{u} = \max \left\{ \frac{a_1}{a_3}, \|u_0\|_{L^\infty(\Omega)} \right\}$, then \bar{u} satisfies
\[
\begin{align*}
\bar{u}_t &\geq d\Delta \bar{u} + \bar{u} (a_1 - a_2 \bar{u} - a_3 v), \quad x \in \Omega, t > 0, \\
\nabla \bar{u} \cdot v &= 0, \quad x \in \partial \Omega, t > 0, \\
\bar{u}(x, 0) &\geq u_0(x), \quad x \in \Omega.
\end{align*}
\]

Apparently, the comparison principle of parabolic equations gives $u \leq \bar{u}$ on $\Omega \times (0, T_{max})$.

Next, we multiply the first equation of (1.1) by u and integrate the result to get
\[
\frac{d}{dt} \int_{\Omega} u^2 + d \int_{\Omega} |\nabla u|^2 = a_1 \int_{\Omega} u^2 - \int_{\Omega} u (a_2 u + a_3 v) \leq a_1 K_1^2 |\Omega|.
\]

Then, the integration of the above inequality with respect to t over $(t, t + \tau)$ completes the proof by noting that $\int_0^T u_0^2$ is bounded.
Having at hand the uniform-in-time $L^\infty(\Omega)$ boundedness of u, the \textit{a priori} estimate of w follows immediately.

Lemma 3.2. Let (u, v, w) be the solution of (1.1). We can find a constant $C > 0$ satisfying
\[\|w\|_{W^{1,\infty}(\Omega)} \leq C \quad \text{for all } t \in (0, T_{\text{max}}). \]

Proof. Noting the boundedness of $\|u\|_{L^\infty(\Omega)}$ from Lemma 3.1, we get the desired result from the third equation of (1.1) and the regularity theorem [32, Lemma 1].

Now, the \textit{a priori} estimate of v can be obtained as below.

Lemma 3.3. Let (u, v, w) be the solution of (1.1). Then, there exists a constant $C > 0$ such that
\[\int_{\Omega} v \leq C \quad \text{for all } t \in (0, T_{\text{max}}), \quad (3.1) \]
and
\[\int_{t}^{t+\tau} \int_{\Omega} v^2 \leq C \quad \text{for all } t \in (0, T_{\text{max}} - \tau), \quad (3.2) \]

where τ is a constant such that $0 < \tau < \min\{T_{\text{max}}, 1\}$.

Proof. Integrating the second equation of (1.1) over Ω by parts, using Young’s inequality and Lemma 3.1, we find some constant $C_1 > 0$ such that
\[
\frac{d}{dt} \int_{\Omega} v = \rho \int_{\Omega} v - \rho \int_{\Omega} v^2 + e\alpha_3 \int_{\Omega} uv \\
\leq \left(\rho + e\alpha_3 \sup_{t \in (0, T_{\text{max}})} \|u\|_{L^\infty(\Omega)}\right) \int_{\Omega} v - \rho \int_{\Omega} v^2 \\
\leq - \int_{\Omega} v - \frac{\rho}{2} \int_{\Omega} v^2 + C_1 \quad \text{for all } t \in (0, T_{\text{max}}).
\]
\[
(3.3)
\]

Hence, (3.1) is obtained by the Grönwall inequality. Integrating (3.3) over $(t, t + \tau)$, we get (3.2) immediately.

Due to the estimates of u and v obtained in Lemmas 3.1 and 3.3 respectively, we have the following improved uniform-in-time $L^2(\Omega)$ boundedness of ∇u and the space-time L^2 boundedness of Δu when $n = 2$.

Lemma 3.4. Let (u, v, w) be the solution of (1.1). If $n = 2$, then we can find a constant $C > 0$ such that
\[\int_{\Omega} |\nabla u|^2 \leq C \quad \text{for all } t \in (0, T_{\text{max}}), \quad (3.4) \]
and
\[\int_{t}^{t+\tau} \int_{\Omega} |\Delta u|^2 \leq C \quad \text{for all } t \in (0, T_{\text{max}} - \tau), \quad (3.5) \]

where τ is defined in Lemma 3.3.
Proof. Integrating the first equation of (1.1) by parts and using Lemma 3.1, we find a constant $C_1 > 0$ such that

\[
\frac{d}{dt} \int_{\Omega} |\nabla u|^2 = 2 \int_{\Omega} \nabla u \cdot \nabla u_t = -2 \int_{\Omega} u_t \Delta u = -2 \int_{\Omega} \Delta u (d \Delta u + a_1 u - a_2 u^2 - a_3 uv) \leq -2d \int_{\Omega} |\Delta u|^2 + C_1 \int_{\Omega} (v + 1)|\Delta u| \quad \text{for all } t \in (0, T_{\text{max}}).
\] (3.6)

The Gagliardo-Nirenberg inequality in Lemma 2.4, Young’s inequality and Lemma 3.1 yield some constants $C_2, C_3 > 0$ satisfying

\[
\int_{\Omega} |\nabla u|^2 = \|\nabla u\|_{L^2(\Omega)}^2 \leq C_2 (\|\Delta u\|_{L^2(\Omega)} \|u\|_{L^2(\Omega)}^2 + \|u\|_{L^\infty(\Omega)}^2) \leq \frac{d}{2} \int_{\Omega} |\Delta u|^2 + C_3
\]

and

\[
C_1 \int_{\Omega} (v + 1)|\Delta u| \leq \frac{d}{2} \int_{\Omega} |\Delta u|^2 + C_3 \int_{\Omega} v^2 + C_3 \quad \text{for all } t \in (0, T_{\text{max}}),
\]

which along with (3.6) imply

\[
\frac{d}{dt} \int_{\Omega} |\nabla u|^2 + \int_{\Omega} |\nabla u|^2 + d \int_{\Omega} |\Delta u|^2 \leq C_3 \int_{\Omega} v^2 + 2C_3 \quad \text{for all } t \in (0, T_{\text{max}}). \tag{3.7}
\]

Then, applications of Lemma 2.2, 3.1 and 3.3 give (3.4). Finally, (3.5) can be obtained by integrating (3.7) over $(t, t + \tau)$.

Now, the uniform-in-time boundedness of v in $L^2(\Omega)$ can be established when $n = 2$.

Lemma 3.5. Let (u, v, w) be the solution of (1.1). If $n = 2$, then there exists a constant $C > 0$ such that

\[
\int_{\Omega} v^2 \leq C \quad \text{for all } t \in (0, T_{\text{max}}).
\]

Proof. Multiplying the second equation of (1.1) by v, integrating the result by parts and using Young’s inequality, we have

\[
\frac{d}{dt} \int_{\Omega} v^2 + 2 \int_{\Omega} |\nabla v|^2 = -2\chi \int_{\Omega} v \nabla v \cdot \nabla w + 2\xi \int_{\Omega} v \nabla u \cdot \nabla v + 2\rho \int_{\Omega} v^2 - 2\rho \int_{\Omega} v^3 + 2ea_3 \int_{\Omega} uv^2 \leq \int_{\Omega} |\nabla v|^2 + 2\chi^2 \|\nabla w\|^2_{L^2(\Omega)} \int_{\Omega} v^2 + 2\xi^2 \int_{\Omega} v^2 |\nabla u|^2 + 2\rho \int_{\Omega} v^2 - 2\rho \int_{\Omega} v^3 + 2ea_3 \|u\|^2_{L^2(\Omega)} \int_{\Omega} v^2,
\]

which along with Lemma 3.1 and Lemma 3.2 gives some constant $C_1 > 0$ such that

\[
\frac{d}{dt} \int_{\Omega} v^2 + \int_{\Omega} |\nabla v|^2 \leq 2\chi^2 \int_{\Omega} v^2 |\nabla u|^2 + C_1 \int_{\Omega} v^2 - 2\rho \int_{\Omega} v^3 \quad \text{for all } t \in (0, T_{\text{max}}). \tag{3.8}
\]
Using Lemmas 3.1 and 3.3, Hölder’s inequality, Lemma 2.4 and Young’s inequality, we find some constants $C_2, C_3, C_4 > 0$ such that

$$
2\varepsilon \int_\Omega v^2|\nabla u|^2 \leq 2\varepsilon \|v\|_{L^2(\Omega)}^2 \|\nabla u\|_{L^2(\Omega)}^2 \\
\leq C_2 \left(\|\nabla v\|_{L^2(\Omega)}^2 \|v\|_{L^2(\Omega)}^2 + \|v\|_{L^2(\Omega)} \right) \left(\|\Delta u\|_{L^2(\Omega)}^2 \|u\|_{L^2(\Omega)}^2 + \|u\|_{L^\infty(\Omega)} \right) \\
\leq C_3 \left(\|\nabla v\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \|\Delta u\|_{L^2(\Omega)} + \|\nabla v\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} + \|\nabla v\|_{L^2(\Omega)} \|v\|_{L^2(\Omega)} \right) \\
\leq \|\nabla v\|_{L^2(\Omega)}^2 + C_4 \left(1 + \|\Delta u\|_{L^2(\Omega)}^2 \right) \|v\|_{L^2(\Omega)}^2 \quad \text{for all } t \in (0, T_{\text{max}}).
$$

(3.9)

Furthermore, Young’s inequality yields some constant $C_5 > 0$ such that

$$
C_1 \int_\Omega v^2 - 2\rho \int_\Omega v^3 \leq C_5 \quad \text{for all } t \in (0, T_{\text{max}}).
$$

(3.10)

Substituting (3.9) and (3.10) into (3.8), we get

$$
\frac{d}{dt} \int_\Omega v^2 \leq C_4 \left(1 + \|\Delta u\|_{L^2(\Omega)}^2 \right) \|v\|_{L^2(\Omega)}^2 + C_5 \quad \text{for all } t \in (0, T_{\text{max}}),
$$

which alongside Lemma 2.2, Lemma 3.3 and Lemma 3.4 completes the proof.

To get the global existence of solutions in any dimensions, we derive the following functional inequality which gives an a priori estimate on ∇u.

Lemma 3.6. Let (u,v,w) be the solution of (1.1) and $q \geq 2$. If $n \geq 1$, then there exists a constant $C > 0$ such that

$$
\frac{d}{dt} \int_\Omega |\nabla u|^{2q} + dq \int_\Omega |\nabla u|^{2(q-1)} |D^2 u|^2 \\
\leq \frac{q(n + 2(q - 1))K_2^2}{d} \int_\Omega \left(v^2 + 1 \right) |\nabla u|^{2(q-1)} + C \quad \text{for all } t \in (0, T_{\text{max}}),
$$

where K_2 is defined in (1.3).

Proof. From the first equation of (1.1) and the fact $2\nabla u \cdot \nabla u = \Delta |\nabla u|^2 - 2|D^2 u|^2$, it follows that

$$
\frac{d}{dt} \int_\Omega |\nabla u|^{2q} = 2q \int_\Omega |\nabla u|^{2(q-1)} \nabla u \cdot \nabla u, \\
= 2q \int_\Omega |\nabla u|^{2(q-1)} \nabla u \cdot \nabla \left(d\Delta u + a_1 u - a_2 u^2 - a_3 uv \right) \\
= dq \int_\Omega |\nabla u|^{2(q-1)} \Delta |\nabla u|^2 - 2dq \int_\Omega |\nabla u|^{2(q-1)} |D^2 u|^2 \\
+ 2q \int_\Omega |\nabla u|^{2(q-1)} \nabla u \cdot \nabla \left(a_1 u - a_2 u^2 - a_3 uv \right)
$$

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13458–13482.
which implies

\[
\frac{d}{dt} \int_{\Omega} |\nabla u|^{2q} + 2d \int_{\Omega} |\nabla u|^{2(q-1)}|D^2 u|^2 = \frac{d}{dt} \int_{\Omega} |\nabla u|^{2(q-1)}|D^2 u|^2 + 2d \int_{\Omega} |\nabla u|^{2(q-1)} \nabla u \cdot \nabla (a_1 u - a_2 u^2 - a_3 uv)
\]

\[
= : I_1 + I_2 \quad \text{for all } t \in (0, T_{\text{max}}).
\]

Now, we estimate the right hand side of (3.11). Choosing \(s \in (0, \frac{1}{2}) \) and

\[
\theta = \frac{1}{2} - \frac{s}{n} - \frac{q}{3}
\]

we get

\[
\frac{1}{2} - \frac{s}{n} = \theta \left(\frac{1}{2} - \frac{1}{n} \right) + (1 - \theta)q,
\]

which, along with the Gagliardo-Nirenberg inequality, Young’s inequality and the embedding

\[
W^{s+\frac{1}{2}, 2}(\Omega) \subset W^{s, 2}(\partial \Omega) \subset L^2(\partial \Omega),
\]

gives some constants \(C_1, C_2, C_3, C_4 > 0 \) such that

\[
\int_{\partial \Omega} |\nabla u|^{2(q-1)} \frac{\partial |\nabla u|^2}{\partial \nu} \leq C_1 \int_{\partial \Omega} |\nabla u|^{2q} = C_1 \| |\nabla u|^q \|_{L^2(\partial \Omega)}^2
\]

\[
\leq C_2 \| |\nabla u|^q \|_{w^{s+\frac{1}{2}, 2}(\Omega)}^2
\]

\[
\leq C_3 \| |\nabla u|^q \|_{L^2(\partial \Omega)}^2 \| |\nabla u|^q \|_{L^{2(1-\theta)}(\Omega)}^2 + C_3 \| |\nabla u|^q \|_{L^2(\Omega)}^2
\]

\[
\leq \frac{2(q-1)}{q^2} \| |\nabla u|^q \|_{L^2(\Omega)}^2 + C_4 \quad \text{for all } t \in (0, T_{\text{max}}).
\]

Therefore, it holds that

\[
I_1 = \frac{d}{dt} \int_{\partial \Omega} |\nabla u|^{2(q-1)} \frac{\partial |\nabla u|^2}{\partial \nu} - dq \int_{\partial \Omega} \nabla |\nabla u|^{2(q-1)} \cdot \nabla |\nabla u|^2
\]

\[
\leq \frac{2d(q-1)}{q} \int_{\Omega} |\nabla |\nabla u|^q \|_2^2 + C_4 dq - \frac{4d(q-1)}{q} \int_{\Omega} |\nabla |\nabla u|^q \|_2^2
\]

\[
\leq - \frac{2d(q-1)}{q} \int_{\Omega} |\nabla |\nabla u|^q \|_2^2 + C_4 dq \quad \text{for all } t \in (0, T_{\text{max}}).
\]

Owing to the fact \(|\nabla u| \leq \sqrt{n} |D^2 u|\), Young’s inequality and Lemma 3.1, we have

\[
I_2 = -2q(q-1) \int_{\Omega} (a_1 u - a_2 u^2 - a_3 uv) |\nabla u|^{2(q-2)} \nabla |\nabla u|^2 \cdot \nabla u
\]

\[
-2q \int_{\Omega} (a_1 u - a_2 u^2 - a_3 uv) |\nabla u|^{2(q-1)} \nabla u
\]
\[2q(q - 1)K_2 \int_{\Omega} (v + 1)|\nabla u|^{2(q - 2)}|\nabla|\nabla u| |\nabla u| + 2q \sqrt{n}K_2 \int_{\Omega} (v + 1)|\nabla u|^{2(q - 1)}|D^2 u| \]

\[\leq \frac{q(d(q - 1))}{2} \int_{\Omega} |\nabla u|^{2(q - 2)}|\nabla|\nabla u| |\nabla u| + 2q(q - 1)K_2^2 \int_{\Omega} (v + 1)|\nabla u|^{2(q - 1)} \]

\[+ dq \int_{\Omega} |\nabla u|^{2(q - 1)}|D^2 u| + \frac{qnK_2^2}{d} \int_{\Omega} (v + 1)|\nabla u|^{2(q - 1)} \]

\[= \frac{2d(q - 1)}{q} \int_{\Omega} |\nabla|\nabla u| |\nabla u| + dq \int_{\Omega} |\nabla u|^{2(q - 1)}|D^2 u| \]

\[+ \frac{q(n + 2(q - 1))K_2^2}{d} \int_{\Omega} (v + 1)|\nabla u|^{2(q - 1)} \text{ for all } t \in (0, T_{\max}), \]

where \(K_2 \) is defined in (1.3). Hence, substituting the estimates \(I_1 \) and \(I_2 \) into (3.11), we finish the proof of the lemma.

Now, we show the following functional inequality to derive the \emph{a priori estimate} on \(v \) in any dimensions.

Lemma 3.7. Let \((u, v, w)\) be the solution of (1.1) and \(q \geq 2 \). If \(n \geq 1 \), we can find a constant \(C > 0 \) such that

\[\frac{d}{dt} \int_{\Omega} v^\theta + \frac{2(q - 1)}{q} \int_{\Omega} |\nabla v|^2 + \rho q \int_{\Omega} v^{\theta + 1} \leq q(q - 1) \xi^2 \int_{\Omega} v^\theta|\nabla u|^2 + C \int_{\Omega} v^\theta \]

for all \(t \in (0, T_{\max}) \).

Proof. Utilizing the second equation of (1.1) and integration by parts, we get

\[\frac{d}{dt} \int_{\Omega} \dot{v}^\theta = q \int_{\Omega} \dot{v}^{\theta - 1}v \cdot q \int_{\Omega} \dot{v}^{\theta - 1}(\nabla \cdot (\nabla v + \chi v \nabla w - \xi \nabla u) + v(\rho(1 - v) + ea_3 u)) \]

\[= -q(q - 1) \int_{\Omega} \dot{v}^{\theta - 1}|\nabla v|^2 - \chi q(q - 1) \int_{\Omega} \dot{v}^{\theta - 1}w \cdot \nabla v \]

\[+ \xi q(q - 1) \int_{\Omega} \dot{v}^{\theta - 1}u \cdot \nabla v + \rho q \int_{\Omega} \dot{v}^\theta - \rho q \int_{\Omega} v^{\theta + 1} + ea_3 q \int_{\Omega} v^\theta. \]

Now, we estimate the right hand side of (3.12). An application of Young’s inequality and Lemma 3.2 yields some constant \(C_1 > 0 \) such that

\[-\chi q(q - 1) \int_{\Omega} \dot{v}^{\theta - 1}w \cdot \nabla v \leq \chi q(q - 1) \sup_{t \in (0, T_{\max})} ||\nabla w||_{L^\infty(\Omega)} \int_{\Omega} \dot{v}^{\theta - 1}||\nabla v|| \]

\[\leq \frac{q(q - 1)}{4} \int_{\Omega} \dot{v}^{\theta - 2}||\nabla v||^2 + C_1 \int_{\Omega} v^\theta \]

and

\[\xi q(q - 1) \int_{\Omega} \dot{v}^{\theta - 1}u \cdot \nabla v \leq \frac{q(q - 1)}{4} \int_{\Omega} \dot{v}^{\theta - 2}||\nabla v||^2 + q(q - 1) \xi^2 \int_{\Omega} v^\theta||\nabla u||^2, \]
which along with (3.12), Lemma 3.1 and the fact
\[v^{q-2} |\nabla v|^2 = \frac{4}{q^2} |\nabla v|^2 \]
gives a constant \(C_2 > 0 \) such that
\[
\frac{d}{dt} \int_\Omega v^q + \frac{2(q-1)}{q} \int_\Omega |\nabla v|^2 \\
eq q(q-1) \xi^2 \int_\Omega v^q |\nabla u|^2 + (\rho q + C_1) \int_\Omega v^q - \rho q \int_\Omega v^{q+1} + eaq \int_\Omega uv^q \\
eq q(q-1) \xi^2 \int_\Omega v^q |\nabla u|^2 - \rho q \int_\Omega v^{q+1} + C_2 \int_\Omega v^q \text{ for all } t \in (0, T_{\text{max}}).
\]

Hence, we finish the proof of the lemma.

Combining Lemmas 3.6 and 3.7, we have the following inequality which can help us to achieve the
global existence of solutions in any dimensions.

Lemma 3.8. Let \((u, v, w)\) be the solution of (1.1) and \(p \geq 2 \). If \(n \geq 1 \), we can find a constant \(C > 0 \) such that
\[
\frac{d}{dt} \left(\int_\Omega |\nabla u|^2 + \int_\Omega v^p \right) + \frac{2(p-1)}{p} \int_\Omega |\nabla v|^2 + \int_\Omega |\nabla u|^{2p} + \int_\Omega v^p \\
\leq \left(K_3(p) - \frac{\rho p}{2} \right) \int_\Omega v^{p+1} + C \text{ for all } t \in (0, T_{\text{max}}),
\]
where \(K_3(p) \) is defined in (1.4).

Proof. Combining Lemmas 3.6 and 3.7, we see for any \(p = q \geq 2 \) there exists a constant \(C_1 > 0 \) such that for all \(t \in (0, T_{\text{max}}) \)
\[
\frac{d}{dt} \left(\int_\Omega |\nabla u|^2 + \int_\Omega v^p \right) + \frac{2(p-1)}{p} \int_\Omega |\nabla v|^2 + \int_\Omega |\nabla u|^{2p} + \int_\Omega v^p \\
\leq \frac{p(n+2(p-1))K_2^2}{d} \int_\Omega v^2 |\nabla u|^{2(p-1)} + p(p-1)\xi^2 \int_\Omega v^p |\nabla u|^2 \\
+ C_1 \int_\Omega |\nabla u|^{2(p-1)} + C_1 \int_\Omega v^p + C_1.
\]

Now, we estimate the right hand side of the above inequality. Indeed, owing to Lemma 2.3 and
Young’s inequality, for all \(t \in (0, T_{\text{max}}) \), we have
\[
\frac{p(n+2(p-1))K_2^2}{d} \int_\Omega v^2 |\nabla u|^{2(p-1)} \\
\leq \frac{dp(p+1)}{8(4p^2 + n)|\nabla u|^{2p + 2} - 1} \int_\Omega |\nabla u|^{2(p+1)} \\
+ \frac{2}{p+1} \left(\frac{dp(p+1)}{8(p-1)(4p^2 + n)|\nabla u|^{2p + 2} - 1} \right)^{\frac{p+1}{p+1}} \left(\frac{p(n+2(p-1))K_2^2}{d} \right)^{\frac{p+1}{p+1}} \int_\Omega v^{p+1} \\
\leq \frac{dp}{4} \int_\Omega |\nabla u|^{2(p-1)} |\nabla^2 u| + \frac{2^{\frac{p-1}{p}}}{d^p} p \left(\frac{n+2(p-1)K_2^2}{p+1} \right)^{\frac{p+1}{p+1}} \left((p-1)(4p^2 + n)K_1^2 \right)^{\frac{p+1}{p+1}} \int_\Omega v^{p+1}
\]
and
\[p(p - 1)\xi^2 \int_{\Omega} v^p |\nabla u|^2 \leq \frac{dp}{8(4p^2 + n) ||u||_{L^{\infty}(\Omega)}^2} \int_{\Omega} |\nabla u|^{2(p+1)} \]
\[+ \frac{p}{p+1} \left(\frac{dp(p+1)}{8(4p^2 + n) ||u||_{L^{\infty}(\Omega)}^2} \right)^{-\frac{1}{p}} (p(p - 1)\xi^2)^{\frac{p+1}{p}} \int_{\Omega} v^{p+1} \]
\[\leq \frac{dp}{4} \int_{\Omega} |\nabla u|^{2(p-1)} |D^2 u|^2 + \frac{2^{\frac{p}{p+1}}}{p+1} \left((p - 1)\xi^2 \right)^{\frac{p+1}{p}} \int_{\Omega} v^{p+1}, \]
where \(K_1 \) and \(K_2 \) are defined in (1.3). Similarly, we can find a constant \(C_2 > 0 \) such that
\[C_1 \int_{\Omega} |\nabla u|^{2(p-1)} \leq \frac{dp}{8(4p^2 + n) ||u||_{L^{\infty}(\Omega)}^2} \int_{\Omega} |\nabla u|^{2(p+1)} + C_2 \]
\[\leq \frac{dp}{4} \int_{\Omega} |\nabla u|^{2(p-1)} |D^2 u|^2 + C_2 \quad \text{for all } t \in (0, T_{\text{max}}). \]
Substituting the above estimates into (3.13), we get
\[
\frac{d}{dt} \left(\int_{\Omega} |\nabla u|^{2p} + \int_{\Omega} v^p \right) + \frac{2(p - 1)}{p} \int_{\Omega} |\nabla u|^{2p} + \frac{dp}{4} \int_{\Omega} |\nabla u|^{2(p-1)} |D^2 u|^2 + \rho \int_{\Omega} v^{p+1} \]
\[\leq K_3(p) \int_{\Omega} v^{p+1} + C_1 \int_{\Omega} v^{p} + C_1 + C_2 \quad \text{for all } t \in (0, T_{\text{max}}), \]
where \(K_3(p) \) is given in (1.4). Furthermore, we can use Young’s inequality and Lemma 2.3 to get a constant \(C_3 > 0 \) such that
\[(C_1 + 1) \int_{\Omega} v^{p} \leq \frac{\rho p}{2} \int_{\Omega} v^{p+1} + C_3, \]
and
\[\int_{\Omega} |\nabla u|^{2p} \leq \frac{dp}{8(4p^2 + n) ||u||_{L^{\infty}(\Omega)}^2} \int_{\Omega} |\nabla u|^{2(p+1)} + C_3 \]
\[\leq \frac{dp}{4} \int_{\Omega} |\nabla u|^{2(p-1)} |D^2 u|^2 + C_3 \quad \text{for all } t \in (0, T_{\text{max}}), \]
which together with (3.14) finishes the proof.

Next, we shall deduce a criterion of global boundedness of solutions for the system (1.1) inspired by an idea of [33].

Lemma 3.9. Let \(n \geq 1 \). If there exist \(M > 0 \) and \(p_0 > \frac{n}{2} \) such that
\[\int_{\Omega} v^{p_0} \leq M \quad \text{for all } t \in (0, T_{\text{max}}), \]
then \(T_{\text{max}} = +\infty \). Moreover, there exists \(C > 0 \) such that
\[||u(\cdot, t)||^{1-n}_{L^{\infty}(\Omega)} + ||v(\cdot, t)||^{1-n}_{L^{\infty}(\Omega)} + ||w(\cdot, t)||^{1-n}_{L^{\infty}(\Omega)} \leq C \quad \text{for all } t > 0. \]
Proof. We divide the proof into two steps.

Step 1: We claim that there exists a constant $C_1 > 0$ such that

$$\int_{\Omega} v^{2p_0} \leq C_1 \quad \text{for all } t \in (0, T_{\text{max}}).$$

Indeed, due to Lemma 3.8, for any $p = 2p_0$, there exists a constant $C_2 > 0$ such that

$$\frac{d}{dt} \left(\int_{\Omega} |\nabla u|^{4p_0} + \int_{\Omega} v^{2p_0} \right) + \frac{2p_0 - 1}{p_0} \int_{\Omega} |\nabla u|^{2p_0} + \int_{\Omega} |\nabla u|^{4p_0} + \int_{\Omega} v^{2p_0} \leq (K_3(2p_0) - \rho p_0) \int_{\Omega} v^{2p_0+1} + C_2 \quad \text{for all } t \in (0, T_{\text{max}}). \quad (3.16)$$

Let

$$\theta = \frac{n - 2p_0 + 2}{n + 2p_0 + 1} \in (0, 1).$$

Then, $\frac{2p_0+1}{2p_0} \theta < 1$ due to $p_0 > \frac{n}{2}$. By the Gagliardo-Nirenberg inequality, Young’s inequality and (3.15), we can find some constants $C_3, C_4 > 0$ such that

$$(K_3(2p_0) - \rho p_0) \int_{\Omega} v^{2p_0+1} = (K_3(2p_0) - \rho p_0) \|v^{p_0}\| \frac{2p_0+1}{2p_0} \bar{\theta} \|v^{p_0}\|_{L^{2p_0+1}(\Omega)}$$

$$\leq C_3 \left(\|v^{p_0}\|_{L^1(\Omega)}^{2p_0+1/\theta} \|\nabla v^{p_0}\|_{L^2(\Omega)}^{2p_0+1} + \|v^{p_0}\|_{L^1(\Omega)}^{2p_0+1/\theta} \right)$$

$$\leq C_3 \left(M^{2p_0+1/\theta} \|\nabla v^{p_0}\|_{L^2(\Omega)}^{2p_0+1} + M^{-2p_0+1/\theta} \right)$$

$$\leq \frac{2p_0 - 1}{p_0} \int_{\Omega} |\nabla v|^{2p_0} + C_4 \quad \text{for all } t \in (0, T_{\text{max}}),$$

which along with (3.16) implies

$$\frac{d}{dt} \left(\int_{\Omega} |\nabla u|^{4p_0} + \int_{\Omega} v^{2p_0} \right) + \int_{\Omega} |\nabla u|^{4p_0} + \int_{\Omega} v^{2p_0} \leq C_2 + C_4 \quad \text{for all } t \in (0, T_{\text{max}}).$$

Therefore, the claim follows from the Grönwall inequality applied to the above inequality.

Step 2: Thanks to the regularity theorem \[32, \text{Lemma 1}\], we can find a constant $C_5 > 0$ such that $\|\nabla u\|_{L^\infty(\Omega)} \leq C_5$ due to $2p_0 > n$. With (3.12) and Lemmas 3.1 and 3.2, we get a constant $C_6 > 0$ such that for any $p \geq 2$

$$\frac{d}{dt} \int_{\Omega} v^p + p(p - 1) \int_{\Omega} v^{p-2} |\nabla v|^2 \leq p(p - 1)(C_6 \chi + C_5 \xi) \int_{\Omega} v^{p-1} |\nabla v| + p(p + ea_3 K_1) \int_{\Omega} v^p. \quad (3.17)$$

Thanks to Young’s inequality, we find a constant $C_7 > 0$ such that

$$p(p - 1)(C_6 \chi + C_5 \xi) \int_{\Omega} v^{p-1} |\nabla v| \leq \frac{p(p - 1)}{2} \int_{\Omega} v^{p-2} |\nabla v|^2 + C_7 p(p - 1) \int_{\Omega} v^p,$$

which together with (3.17) implies

$$\frac{d}{dt} \int_{\Omega} v^p + p(p - 1) \int_{\Omega} v^p + \frac{2(p - 1)}{p} \int_{\Omega} |\nabla v|^2 \leq p(p - 1) C_8 \int_{\Omega} v^p, \quad (3.18)$$
with $C_8 = C_3 + \rho + ea_3 K_1 + 1$. Applying $1 + p^n \leq (1 + p)^n$ and the following inequality [34]
\[
\|f\|^2_{L^2} \leq \varepsilon \|\nabla f\|^2_{L^2} + C_8 (1 + \varepsilon^{-2}) \|f\|^2_{L^1},
\]
with $f = v^\varepsilon$ and $\varepsilon = \frac{2}{p + C_8}$, we find a constant $C_{10} > 0$ such that
\[
p(p - 1)C_8 \int_\Omega u^n \leq \frac{2(p - 1)}{p} \int_\Omega \|\nabla v^\varepsilon\|^2 + C_{10} p(p - 1)(1 + p^n) \left(\int_\Omega u^2 \right)^2. \tag{3.19}
\]
Substituting (3.19) into (3.18), we have
\[
\frac{d}{dt} \int_\Omega u^n + p(p - 1) \int_\Omega u^n \leq C_{10} p(p - 1)(1 + p^n) \left(\int_\Omega u^2 \right)^2.
\]
Then, employing the standard Moser iteration in [35] or a similar argument as in [34], we can prove that there exists a constant $C_{11} > 0$ such that
\[
\|v\|_{L^\infty(\Omega)} \leq C_{11} \quad \text{for all } t \in (0, T_{\text{max}}).
\]
Thus, with the help of Lemma 3.2, we finish the proof.

Now, utilizing the criterion in Lemma 3.9, we prove the global existence and boundedness of solutions for the system (1.1).

Proof of Theorem 1.1. If $n \leq 2$, then the conclusion of the theorem can be obtained by Lemmas 3.3, 3.5 and 3.9. If $n \geq 3$ and
\[
\rho \geq 2K_3 \left(\left\lceil \frac{n}{2} \right\rceil + 1 \right),
\]
then according to Lemma 3.8, by fixing $p = \left\lceil \frac{n}{2} \right\rceil + 1$ we can find a constant $C_1 > 0$ such that
\[
\frac{d}{dt} \left(\int_\Omega |\nabla u|^2 \frac{n}{2} + \int_\Omega v_{\frac{n}{2} + 1} \right) + \int_\Omega |\nabla u|^2 \frac{n}{2} + \int_\Omega v_{\frac{n}{2} + 1} \leq C_1 \quad \text{for all } t \in (0, T_{\text{max}}),
\]
which along with the Grönwall inequality gives a constant $C_2 > 0,
\[
\int_\Omega v_{\frac{n}{2} + 1} \leq C_2 \quad \text{for all } t \in (0, T_{\text{max}}).
\]
Together with Lemma 3.9, we finish the proof by Lemma 2.1.

4. Stabilization

In this section, we will employ suitable Lyapunov functionals to study the large-time behavior of u, v and w. We first improve the regularity of the solution.

Lemma 4.1. There exist constants $\theta_1, \theta_2, \theta_3 \in (0, 1)$ and $C > 0$ such that
\[
\|u\|_{C^{2+\theta_1,1+\frac{\theta_1}{2}}(\Omega \times [t, t+1])} + \|v\|_{C^{2+\theta_2,1+\frac{\theta_2}{2}}(\Omega \times [t, t+1])} + \|w\|_{C^{2+\theta_3,1+\frac{\theta_3}{2}}(\Omega \times [t, t+1])} \leq C \quad \text{for all } t > 1.
\]
In particular, one can find $C > 0$ such that
\[
\|\nabla u\|_{L^\infty(\Omega)} + \|\nabla v\|_{L^\infty(\Omega)} + \|\nabla w\|_{L^\infty(\Omega)} \leq C \quad \text{for all } t > 1.
\]

Proof. The conclusion is a consequence of the regularity of parabolic equations in [36].

We split our analysis into two cases: $a_1 > a_3$ and $a_1 \leq a_3$.
4.1. Coexistence: $a_1 > a_3$

We know that there are four homogeneous equilibria $(0,0,0)$, $(0,1,0)$, $(\frac{a_1}{a_2^2}, 0, \frac{a_1}{a_2^2})$ and (u_*, v_*, w_*) when $a_1 > a_3$, where u_*, v_* and w_* are defined in (1.5). In this case, we shall prove the coexistence steady state (u_*, v_*, w_*) is globally exponentially stable under certain conditions. Define an energy functional for (1.1) as follows:

$$
F(t) = \varepsilon_1 \int_{\Omega} \left(u - u_* - u_* \ln \frac{u}{u_*} \right) + \int_{\Omega} \left(v - v_* - v_* \ln \frac{v}{v_*} \right) + \frac{\varepsilon_2}{2} \int_{\Omega} (w - w_*)^2,
$$

where ε_1 and ε_2 are to be determined below.

Proof of Theorem 1.2–(1). We complete the proof in four steps.

Step 1: The parameters ε_1 and ε_2 can be chosen in the following way. First, we recall from (1.5) and (1.6) that

$$
\Gamma = \frac{4du_*}{K^2_{1}v_*}, \Phi = \frac{2a_2 \rho}{a_3^2} + \varepsilon, \Psi = \frac{\gamma \eta a_2^2 K_1^2}{\rho r^2 u_*}.
$$

Let

$$
f(y) = \frac{\Psi(\Gamma - \varepsilon^2)(-y^2 + 2\Phi y - \varepsilon^2)}{y}, \quad y > 0.
$$

It is clear that $f \in C^0((0, +\infty))$. Then, if

$$
\frac{\xi^2}{\Gamma} < \Phi + \sqrt{\Phi^2 - \varepsilon^2},
$$

the following holds:

$$
\frac{\xi^2 K_{1}^2 v_*}{4du_*} < \frac{2a_2 \rho}{a_3^2} + \varepsilon + \frac{2}{a_3} \sqrt{a_2 \rho \left(\frac{2a_2 \rho}{a_3^2} + \varepsilon \right)}.
$$

Under (4.2), we let $a = \max \left\{ \frac{\xi^2}{\Gamma}, \Phi - \sqrt{\Phi^2 - \varepsilon^2} \right\}$ and $b = \Phi + \sqrt{\Phi^2 - \varepsilon^2}$ with $a < b$. Then, $f(y)$ is continuous on $[a, b]$ with $f(a) = f(b) = 0$, and consequently $f(y)$ must attain the maximum at some point, say ε_1, in (a, b), namely $f(\varepsilon_1) = \max_{y \in [a,b]} f(y)$. Then, $a < \varepsilon_1 < b$, or equivalently (see (4.1))

$$
\max \left\{ \frac{\xi^2 u_* v_*}{4du_*}, \frac{2a_2 \rho}{a_3^2} + \varepsilon - \frac{2}{a_3} \sqrt{a_2 \rho \left(\frac{2a_2 \rho}{a_3^2} + \varepsilon \right)} \right\} < \varepsilon_1 < \frac{2a_2 \rho}{a_3^2} + \varepsilon + \frac{2}{a_3} \sqrt{a_2 \rho \left(\frac{2a_2 \rho}{a_3^2} + \varepsilon \right)}.
$$

Next, we assume $\chi > 0$ is suitably small such that

$$
\chi^2 < f(\varepsilon_1) = \frac{\gamma \eta a_2^2 K_1^2}{d \rho r^2 u_* v_*} \left(\frac{4du_* \varepsilon_1}{v_* K_1^2} - \xi^2 \right) \left(-\varepsilon_1^2 + 2 \left(\frac{2a_2 \rho}{a_3^2} + \varepsilon \right) \varepsilon_1 - \varepsilon^2 \right)
$$

$$
= \frac{4 \gamma \eta}{d \rho r^2 u_* v_*} \left(\frac{4du_* \varepsilon_1}{v_* K_1^2} - \xi^2 v_* K_1^2 \right) \left(a_2 \rho \varepsilon_1 - \frac{a_2^2 (\varepsilon_1 - \varepsilon)^2}{4} \right),
$$

which implies

$$
\frac{d \chi^2 u_* v_* \varepsilon_1}{\eta \left(4du_* v_* \varepsilon_1 - \xi^2 v_* K_1^2 \right)} < \frac{4 \gamma}{d \rho r^2} \left(\frac{a_2 \rho \varepsilon_1}{4} - \frac{a_2^2 (\varepsilon_1 - \varepsilon)^2}{4} \right).
$$
Hence, there exists a constant $\varepsilon_2 > 0$ such that

$$
\frac{d\chi^2 u_* v_* e_1}{\eta (4du_* v_* e_1 - \varepsilon^2 v_*^2 K_1^2)} < \varepsilon_2 < \frac{4\gamma}{\rho r^2} \left(a_2 \rho e_1 - \frac{a_3^2 (e_1 - e)^2}{4} \right)
$$

which along with Lemma 3.1 yields

$$
\frac{d\chi^2 u_* v_* e_1}{\eta (4du_* v_* e_1 - \varepsilon^2 v_*^2 u^2)} < \varepsilon_2 < \frac{4\gamma}{\rho r^2} \left(a_2 \rho e_1 - \frac{a_3^2 (e_1 - e)^2}{4} \right). \quad (4.4)
$$

Step 2: We claim

$$
\|u - u_*\|_{L^\infty(\Omega)} + \|v - v_*\|_{L^\infty(\Omega)} + \|w - w_*\|_{L^\infty(\Omega)} \to 0 \quad \text{as} \ t \to +\infty.
$$

Indeed, using the equations in system (1.1) along with integration by parts, we have

$$
\frac{d}{dt} \int_{\Omega} \left(u - u_* - u_* \ln \frac{u}{u_*} \right) = \int_{\Omega} \frac{u - u_*}{u} u_t
$$

$$
= -du_* \int_{\Omega} \frac{|\nabla u|^2}{u^2} + \int_{\Omega} (u - u_*) (a_1 - a_2 u - a_3 v)
$$

$$
= -du_* \int_{\Omega} \frac{|\nabla u|^2}{u^2} - a_2 \int_{\Omega} (u - u_*)^2 - a_3 \int_{\Omega} (u - u_*) (v - v_*).
$$

Similarly, we obtain

$$
\frac{d}{dt} \int_{\Omega} \left(v - v_* - v_* \ln \frac{v}{v_*} \right) = \int_{\Omega} \frac{v - v_*}{v} v_t
$$

$$
= -v_* \int_{\Omega} \frac{|\nabla v|^2}{v^2} - \chi v_* \int_{\Omega} \frac{\nabla v \cdot \nabla w}{v} + \xi v_* \int_{\Omega} \frac{\nabla u \cdot \nabla v}{v} + \int_{\Omega} (v - v_*) (\rho - \rho v + e a_3 u)
$$

$$
= -v_* \int_{\Omega} \frac{|\nabla v|^2}{v^2} - \chi v_* \int_{\Omega} \frac{\nabla v \cdot \nabla w}{v} + \xi v_* \int_{\Omega} \frac{\nabla u \cdot \nabla v}{v}
$$

$$
- \rho \int_{\Omega} (v - v_*)^2 + e a_3 \int_{\Omega} (u - u_*) (v - v_*)
$$

and

$$
\frac{d}{dt} \int_{\Omega} (w - w_*)^2 = 2 \int_{\Omega} (w - w_*) w_t = 2 \int_{\Omega} (w - w_*) (\eta \Delta w + ru - \gamma w)
$$

$$
= -2\eta \int_{\Omega} |\nabla w|^2 + 2r \int_{\Omega} (u - u_*) (w - w_*) - 2\gamma \int_{\Omega} (w - w_*)^2 \quad \text{for all} \ t > 0.
$$

Then, it follows that

$$
\frac{d}{dt} F(t) = -du_* e_1 \int_{\Omega} \frac{|\nabla u|^2}{u^2} - v_* \int_{\Omega} \frac{|\nabla v|^2}{v^2} - \eta e_2 \int_{\Omega} |\nabla w|^2
$$

$$
- \chi v_* \int_{\Omega} \frac{\nabla v \cdot \nabla w}{v} + \xi v_* \int_{\Omega} \frac{\nabla u \cdot \nabla v}{v}. $$
\[-a_2\varepsilon_1 \int_\Omega (u - u_*)^2 - \rho \int_\Omega (v - v_*)^2 - \gamma \varepsilon_2 \int_\Omega (w - w_*)^2 - a_3(\varepsilon_1 - e) \int_\Omega (u - u_*)(v - v_*) + re_2 \int_\Omega (u - u_*)(w - w_*) = : -X^T SX - Y^T TY,
\]

where $X = (\nabla u, \nabla v, \nabla w)$, $Y = (u - u_*, v - v_*, w - w_*)$, and

$$S = \begin{bmatrix}
a_{\varepsilon_1} & -\frac{\xi v}{2v} & 0 \\
-\frac{\xi v}{2v} & \frac{v_s}{2v} & \eta \varepsilon_2 \\
0 & \frac{v_s}{2v} & \eta \varepsilon_2
\end{bmatrix}, \quad T = \begin{bmatrix}
a_{\varepsilon_1} & \frac{a_3(\varepsilon_1 - e)}{2} & -\frac{re_2}{2} \\
\frac{a_3(\varepsilon_1 - e)}{2} & \rho & 0 \\
-\frac{re_2}{2} & 0 & \gamma \varepsilon_2
\end{bmatrix}.
$$

Note that (4.3) yields

$$\frac{du,v_1\varepsilon_1}{u^2v^2} - \frac{\xi^2 v^2}{4v^2} > \frac{v^2}{4v^2} \left(\frac{4du,v}{K^2} - \xi^2\right) > 0,$$

and (4.4) gives

$$\frac{\eta du,v_1\varepsilon_2}{u^2v^2} - \frac{d\chi^2 u_*v^2\varepsilon_1}{4u^2v^2} - \frac{\eta\xi^2 v^2\varepsilon_2}{4v^2} > 0.$$

The above results indicate that matrix S is positive definite. Using (4.3) and (4.4) again, we observe that

$$a_2\rho \varepsilon_1 - \frac{a_3^2(\varepsilon_1 - e)^2}{4} > 0,$$

and

$$a_2\rho \varepsilon_1 - \frac{\rho r^2 e_2^2}{4} - \frac{a_3^2(\varepsilon_1 - e)^2 e_2}{4} > 0,$$

which imply that matrix T is positive definite. Therefore, one can choose a constant $C_1 > 0$ such that

$$\frac{d}{dt} \mathcal{F}(t) \leq -C_1 \left(\int_\Omega (u - u_*)^2 + \int_\Omega (v - v_*)^2 + \int_\Omega (w - w_*)^2\right) \quad \text{for all } t > 0. \quad (4.5)$$

Integrating the above inequality with respect to time, we get a constant $C_2 > 0$ satisfying

$$\int_1^{+\infty} \int_\Omega (u - u_*)^2 + \int_1^{+\infty} \int_\Omega (v - v_*)^2 + \int_1^{+\infty} \int_\Omega (w - w_*)^2 \leq C_2,$$

which together with the uniform continuity of u, v and w due to Lemma 4.1 yields

$$\int_\Omega (u - u_*)^2 + \int_\Omega (v - v_*)^2 + \int_\Omega (w - w_*)^2 \to 0, \quad \text{as } t \to +\infty. \quad (4.6)$$

By the Gagliardo-Nirenberg inequality, we can find a constant $C_3 > 0$ such that

$$\|u - u_*\|_{L^p(\Omega)} \leq C_3 \|u - u_*\|_{W^{1,\infty}(\Omega)}^{\frac{p}{n}} \|u - u_*\|_{L^\infty(\Omega)}^{rac{n}{p}}, \quad (4.7)$$

$$\|v - v_*\|_{L^p(\Omega)} \leq C_3 \|v - v_*\|_{W^{1,\infty}(\Omega)}^{\frac{p}{n}} \|v - v_*\|_{L^\infty(\Omega)}^{rac{n}{p}}. \quad (4.8)$$
\[\|w - w_*\|_{L^\infty(\Omega)} \leq C_3 \|w - w_*\|_{W^{1,\infty}(\Omega)} \|w - w_*\|_{L^2(\Omega)^n} \quad \text{for all } t > 1, \quad (4.9) \]

which along with (4.6) and Lemma 4.1 prove the claim.

Step 3: From the L'Hôpital rule, it holds that for any \(s_0 > 0 \)

\[\lim_{s \to s_0} \frac{s - s_0 - s \ln \frac{s}{s_0}}{(s - s_0)^2} = \lim_{s \to s_0} \frac{1 - \frac{s_0}{s}}{2(s - s_0)} = \lim_{s \to s_0} \frac{1}{2s_0} = \frac{1}{2s_0}, \]

which gives a constant \(\eta > 0 \) such that for all \(|s - s_0| \leq \eta \)

\[\frac{1}{4s_0}(s - s_0)^2 \leq s - s_0 - s \ln \frac{s}{s_0} \leq \frac{1}{s_0}(s - s_0)^2. \quad (4.10) \]

By (4.6), there exists \(T_1 > 1 \) such that

\[\|u - u_*\|_{L^\infty(\Omega)} + \|v - v_*\|_{L^\infty(\Omega)} + \|w - w_*\|_{L^\infty(\Omega)} \leq \eta \quad \text{for all } t \geq T_1. \]

Therefore, by (4.10), we get

\[\frac{1}{4u_*} \int_{\Omega} (u - u_*)^2 \leq \int_{\Omega} \left(u - u_* - u_* \ln \frac{u}{u_*} \right) \leq \frac{1}{u_*} \int_{\Omega} (u - u_*)^2 \quad \text{for all } t \geq T_1 \quad (4.11) \]

and

\[\frac{1}{4v_*} \int_{\Omega} (v - v_*)^2 \leq \int_{\Omega} \left(v - v_* - v_* \ln \frac{v}{v_*} \right) \leq \frac{1}{v_*} \int_{\Omega} (v - v_*)^2 \quad \text{for all } t \geq T_1. \quad (4.12) \]

Step 4: From (4.11) and (4.12), it follows that

\[\mathcal{F}(t) \leq \max \left\{ \frac{\varepsilon_1}{u_*}, \frac{\varepsilon_2}{v_*} \right\} \left(\int_{\Omega} (u - u_*)^2 + \int_{\Omega} (v - v_*)^2 + \int_{\Omega} (w - w_*)^2 \right), \]

which alongside (4.5) yields a constant \(C_4 > 0 \) such that

\[\frac{d}{dt} \mathcal{F}(t) \leq -C_4 \mathcal{F}(t) \quad \text{for all } t \geq T_1. \]

This immediately gives a constant \(C_5 > 0 \) such that

\[\mathcal{F}(t) \leq C_5 e^{-C_4 t} \quad \text{for all } t \geq T_1. \]

Hence, utilizing (4.11) and (4.12) again, one obtains a constant \(C_6 > 0 \) such that

\[\int_{\Omega} (u - u_*)^2 + \int_{\Omega} (v - v_*)^2 + \int_{\Omega} (w - w_*)^2 \leq C_6 e^{-C_4 t} \quad \text{for all } t \geq T_1. \]

Finally, by (4.7)–(4.9) and Lemma 4.1, we get the decay rates of \(\|u - u_*\|_{L^\infty(\Omega)} \), \(\|v - v_*\|_{L^\infty(\Omega)} \) and \(\|w - w_*\|_{L^\infty(\Omega)} \), as claimed in Theorem 1.2–(1).

Mathematical Biosciences and Engineering

Volume 19, Issue 12, 13458–13482.
4.2. Predator-only: $a_1 \leq a_3$

In this case, there are three homogeneous equilibria $(0, 0, 0), (0, 1, 0)$ and $(\frac{a_1}{m_1}, 0, \frac{a_1}{m_1})$, and we shall show that the steady state $(0, 1, 0)$ is global asymptotically stable, where the convergence rate is exponential if $a_1 < a_3$ and algebraic if $a_1 = a_3$. Define an energy functional for (1.1) as follows:

$$G(t) = e \int_\Omega u + \frac{\xi_1}{2} \int_\Omega u^2 + \int_\Omega (v - 1 - \ln v) + \frac{\xi_2}{2} \int_\Omega w^2,$$

where ξ_1 and ξ_2 will be determined below.

Proof of Theorem 1.2–(2). We divide the proof into five steps.

Step 1: We shall choose the appropriate parameters ξ_1 and ξ_2. By the definitions of A and B in (1.7), since $A < B$, we have

$$(\xi_2)\sqrt{a_1} < \xi_2 < (ea_2-a_1).$$

(4.13)

Let

$$g(y) = \frac{16\eta y (dy - \frac{\xi_1}{4})(ea_2 - a_1y)}{4d}, \quad \frac{\xi_2}{4d} < y < \frac{ea_2-a_1}{a_1}.

Then, $g \in C^1\left((\frac{\xi_2}{4d}, \frac{ea_2-a_1}{a_1})\right)$, and $g(y) > 0$ in $\left(\frac{\xi_2}{4d}, \frac{ea_2-a_1}{a_1}\right)$. We further observe that

$$g\left(\frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}}\right) = D(A + B - 2\sqrt{AB})$$

which along with $\chi^2 < D(A + B - 2\sqrt{AB})$ implies

$$\chi^2 < g\left(\frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}}\right).$$

By the definition of g, one has

$$g'(y_0) = \frac{16\eta y (dy - \frac{\xi_1}{4})(ea_2 - a_1y)}{4d^2} = 0,$

which alongside (4.13) gives $y_0 = \frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}} \in \left(\frac{\xi_2}{4d}, \frac{ea_2-a_1}{a_1}\right)$. Thus, $g(y)$ is increasing in $\left(\frac{\xi_2}{4d}, \frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}}\right)$ and decreasing in $\left(\frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}}, \frac{ea_2-a_1}{a_1}\right)$. We can find a constant $\xi_1 > 0$ such that

$$\frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}} < \xi_1 < \frac{ea_2}{a_1}$$

(4.14)

and

$$0 = g\left(\frac{ea_2}{a_1}\right) < \chi^2 < g(\xi_1) < g\left(\frac{\xi}{2} \sqrt{\frac{ea_2-a_1}{a_1}}\right).$$

With the definition of g, we get

$$\frac{d\chi^2 \xi_1}{4\eta d(\xi_1 - \frac{\xi_1}{4})} < \frac{4y}{r^2}(ea_2 - a_1 \xi_1),$$

Mathematical Biosciences and Engineering

Volume 19, Issue 12, 13458–13482.
which implies that there exists $\zeta_2 > 0$ such that

$$\frac{d\chi^2 \zeta_1}{4\eta(d\zeta_1 - \frac{\zeta_1}{4})} < \zeta_2 < \frac{4\gamma}{r^2}(ea_2 - a_1\zeta_1).$$ (4.15)

One can verify that

$$\eta d\zeta_1 \zeta_2 - \frac{d\chi^2}{4}\zeta_1 - \eta \frac{\zeta_1^2}{4} \zeta_2 > 0,$$ (4.16)

and

$$(ea_2 - a_1\zeta_1)\rho\gamma \zeta_2 - \frac{pr^2}{4}\zeta_2^2 > 0.$$ (4.17)

Thanks to (4.13) and (4.14), one obtains

$$\frac{\zeta^2}{4d} < \zeta_1 < \frac{ea_2}{a_1}.$$ (4.18)

Step 2: We claim

$$\|u\|_{L^\infty(\Omega)} + \|v - 1\|_{L^\infty(\Omega)} + \|w\|_{L^\infty(\Omega)} \to 0 \text{ as } t \to +\infty.$$ (4.19)

Indeed, if (u, v, w) is the solution of system (1.1), then we get

$$\frac{d}{dt} \int_{\Omega} u = a_1 \int_{\Omega} u - a_2 \int_{\Omega} u^2 - a_3 \int_{\Omega} uv,$$ (4.20)

$$\frac{d}{dt} \int_{\Omega} u^2 = 2 \int_{\Omega} uu_t = -2d \int_{\Omega} |\nabla u|^2 + 2a_1 \int_{\Omega} u^2 - 2a_2 \int_{\Omega} u^3 - 2a_3 \int_{\Omega} u^2v,$$ (4.21)

$$\frac{d}{dt} \int_{\Omega} (v - 1 - \ln v) = \int_{\Omega} \frac{v - 1}{v} v_t$$

$$= -\int_{\Omega} \frac{|\nabla v|^2}{v^2} - \chi \int_{\Omega} \frac{\nabla v \cdot \nabla w}{v} + \xi \int_{\Omega} \frac{\nabla u \cdot \nabla v}{v} + \int_{\Omega} (v - 1)(\rho - \rho v + ea_3u)$$

$$= -\int_{\Omega} \frac{|\nabla v|^2}{v^2} - \chi \int_{\Omega} \frac{\nabla v \cdot \nabla w}{v} + \xi \int_{\Omega} \frac{\nabla u \cdot \nabla v}{v} - \rho \int_{\Omega} (v - 1)^2 + ea_3 \int_{\Omega} uv - ea_3 \int_{\Omega} u$$

and

$$\frac{d}{dt} \int_{\Omega} w^2 = 2 \int_{\Omega} ww_t = -2\eta \int_{\Omega} |\nabla w|^2 + 2r \int_{\Omega} uw - 2\gamma \int_{\Omega} w^2 \text{ for all } t > 0.$$ (4.23)

Then, combining (4.20), (4.21), (4.22) and (4.23), we have from the definition of $G(t)$ that

$$\frac{d}{dt} G(t) \leq - d\zeta_1 \int_{\Omega} |\nabla u|^2 - \int_{\Omega} |\nabla v|^2 - \eta \zeta_2 \int_{\Omega} |\nabla w|^2$$

$$- \chi \int_{\Omega} \frac{\nabla v \cdot \nabla w}{v} + \xi \int_{\Omega} \frac{\nabla u \cdot \nabla v}{v} + e(a_1 - a_3) \int_{\Omega} u$$

$$- (ea_2 - a_1\zeta_1) \int_{\Omega} u^2 - \rho \int_{\Omega} (v - 1)^2 - \gamma \zeta_2 \int_{\Omega} w^2 + r \zeta_2 \int_{\Omega} uw$$

$$= - X^T PX - Y^T QY + e(a_1 - a_3) \int_{\Omega} u,$$ (4.24)
where $X = (\nabla u, \nabla v, \nabla w)$, $Y = (u, v - 1, w)$,

$$
P = \begin{bmatrix}
d\xi_1 & -\xi_1 & 0 \\
-\xi_1 & \xi_1 & \xi_1 \\
0 & \xi_1 & \eta\xi_2
\end{bmatrix}
$$

and

$$
Q = \begin{bmatrix}
ea_2 - a_1\xi_1 & 0 & -\frac{\xi_2}{2} \\
0 & \rho & 0 \\
-\frac{\xi_2}{2} & 0 & \gamma\xi_2
\end{bmatrix}.
$$

It can be checked that (4.16) and (4.18) ensure that the matrix P is positive definite while (4.17) and (4.18) guarantee that the matrix Q is positive definite. Thus, there is a constant $C_1 > 0$ such that if $a_1 < a_3$, then

$$
\frac{d}{dt}G(t) \leq -C_1 \left(\int_\Omega u + \int_\Omega u^2 + \int_\Omega (v - 1)^2 + \int_\Omega w^2 \right)
$$

for all $t > 0$, (4.25)

and if $a_1 = a_3$, then

$$
\frac{d}{dt}G(t) \leq -C_1 \left(\int_\Omega u^2 + \int_\Omega (v - 1)^2 + \int_\Omega w^2 \right)
$$

for all $t > 0$. (4.26)

Integrating the above inequalities with respect to time, we find a constant $C_2 > 0$ satisfying

$$
\int_1^{+\infty} \int_\Omega u^2 + \int_1^{+\infty} \int_\Omega (v - 1)^2 + \int_1^{+\infty} \int_\Omega w^2 \leq C_2,
$$

which together with the uniform continuity of u, v and w due to Lemma 4.1 yields

$$
\int_\Omega u^2 + \int_\Omega (v - 1)^2 + \int_\Omega w^2 \to 0, \quad \text{as } t \to +\infty.
$$

(4.27)

Thus, (4.19) is obtained by the Gagliardo-Nirenberg inequality and Lemma 4.1.

Step 3: By the L'Hôpital rule, we get

$$
\lim_{s \to 1} \frac{s - 1 - \ln s}{(s - 1)^2} = \lim_{s \to 1} \frac{1 - \frac{1}{s}}{2(s - 1)} = \lim_{s \to 1} \frac{1}{2s} = \frac{1}{2},
$$

which gives a constant $\varepsilon > 0$ such that

$$
\frac{1}{4}(s - 1)^2 \leq s - 1 - \ln s \leq (s - 1)^2 \text{ for all } |s - 1| \leq \varepsilon.
$$

(4.28)

By (4.19), there exists $T_1 > 0$ such that

$$
\|u\|_{L^n(\Omega)} + \|v - 1\|_{L^n(\Omega)} + \|w\|_{L^n(\Omega)} \leq \varepsilon \quad \text{for all } t \geq T_1.
$$

(4.29)

Therefore, it follows from (4.28) that

$$
\frac{1}{4} \int_\Omega (v - 1)^2 \leq \int_\Omega (v - 1 - \ln v) \leq \int_\Omega (v - 1)^2 \text{ for all } t \geq T_1.
$$

(4.30)

Step 4: If $a_1 < a_3$, from the definition of $G(t)$ and (4.30), one has

$$
G(t) \leq \max \left\{ e, \frac{\xi_1}{2}, \frac{\xi_2}{2}, 1 \right\} \left(\int_\Omega u + \int_\Omega u^2 + \int_\Omega (v - 1)^2 + \int_\Omega w^2 \right).
$$
which along with (4.25) yields a constant $C_3 > 0$ such that
\[
\frac{d}{dt} G(t) \leq -C_3 G(t) \quad \text{for all } t \geq T_1.
\]
This gives a constant $C_4 > 0$ such that
\[
G(t) \leq C_4 e^{-C_3 t} \quad \text{for all } t \geq T_1.
\]
Hence, utilizing (4.30) again, we find a constant $C_5 > 0$ such that
\[
\int_{\Omega} u^2 + \int_{\Omega} (v - 1)^2 + \int_{\Omega} w^2 \leq C_5 e^{-C_3 t} \quad \text{for all } t \geq T_1.
\]
Then, by the Gagliardo-Nirenberg inequality and Lemma 4.1, we get the exponential convergence for $\|u\|_{L^\infty(\Omega)} + \|v - 1\|_{L^\infty(\Omega)} + \|w\|_{L^\infty(\Omega)}$.

Step 5: If $a_1 = a_3$, we use (4.29), (4.30) and Young’s inequality to find a constant $C_6 > 0$:
\[
G^2(t) \leq C_6 \left(\int_{\Omega} u + \int_{\Omega} u^2 + \int_{\Omega} (v - 1)^2 + \int_{\Omega} w^2 \right)^2 \\
\leq C_6 (\varepsilon + 1)^2 \left(\int_{\Omega} u + \int_{\Omega} (v - 1) + \int_{\Omega} w \right)^2 \\
\leq 3C_6 (\varepsilon + 1)^2 |\Omega| \left(\int_{\Omega} u^2 + \int_{\Omega} (v - 1)^2 + \int_{\Omega} w^2 \right) \quad \text{for all } t \geq T_1,
\]
which alongside (4.26) implies some constant $C_7 > 0$
\[
\frac{d}{dt} G(t) \leq -C_7 G^2(t) \quad \text{for all } t \geq T_1.
\]
Solving the above inequality directly yields a constant $C_8 > 0$ such that
\[
G(t) \leq C_8 (t + 1)^{-1} \quad \text{for all } t \geq T_1.
\]
Similar to the case $a_1 < a_3$, we can use (4.30), the Gagliardo-Nirenberg inequality and Lemma 4.1 to get the convergence rate of $\|u\|_{L^\infty(\Omega)} + \|v - 1\|_{L^\infty(\Omega)} + \|w\|_{L^\infty(\Omega)}$.

Acknowledgments

The author warmly thanks the reviewers for several inspiring comments and helpful suggestions. The research of the author was supported by the National Nature Science Foundation of China (Grant No. 12101377) and the Nature Science Foundation of Shanxi Province (Grant No. 20210302124080).

Conflict of interest

The author declares there is no conflict of interest.
References

1. Y. V. Tyutyunov, L. I. Titova, I. N. Senina, Prey-taxis destabilizes homogeneous stationary state in spatial gause–kolmogorov-type model for predator–prey system, *Ecol. Complexity*, 31 (2017), 170–180. https://doi.org/10.1016/j.ecocom.2017.07.001

2. P. Kareiva, G. Odell, Swarms of predators exhibit “prey-taxis” if individual predators use area-restricted search, *Am. Nat.*, 130 (1987), 233–270. https://doi.org/10.1086/284707

3. D. Grünbaum, Using spatially explicit models to characterize foraging performance in heterogeneous landscapes, *Am. Nat.*, 151 (1998), 97–113. https://doi.org/10.1086/286105

4. H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems, *J. Differ. Equations*, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010

5. H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, *Eur. J. Appl. Math.*, 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248

6. J. M. Lee, T. Hillen, M. A. Lewis, Pattern formation in prey-taxis systems, *J. Biol. Dyn.*, 3 (2009), 551–573. https://doi.org/10.1080/17513750802716112

7. W. W. Murdoch, J. Chesson, P. L. Chesson, Biological control in theory and practice, *Am. Nat.*, 125 (1985), 344–366. https://doi.org/10.1086/284347

8. N. Sapoukhina, Y. Tyutyunov, R. Arditi, The role of prey taxis in biological control: a spatial theoretical model, *Am. Nat.*, 162 (2003), 61–76. https://doi.org/10.1086/375297

9. Y. Tao, Global existence of classical solutions to a predator–prey model with nonlinear prey-taxis, *Nonlinear Anal. Real World Appl.*, 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005

10. J. Tian, P. Liu, Global dynamics of a modified leslie-gower predator-prey model with beddington-deangelis functional response and prey-taxis, *Electron. Res. Arch.*, 30 (2022), 929–942. https://doi.org/10.3934/era.2022048

11. J. P. Wang, M. X. Wang, Global solution of a diffusive predator–prey model with prey-taxis, *Comput. Math. Appl.*, 77 (2019), 2676–2694. https://doi.org/10.1016/j.camwa.2018.12.042

12. S. Wu, J. Shi, B. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, *J. Differ. Equations*, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024

13. H. Y. Jin, Z. A. Wang, L. Y. Wu, Global dynamics of a three-species spatial food chain model, *J. Differ. Equations*, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007

14. Y. Mi, C. Song, Z. C. Wang, Boundedness and global stability of the predator–prey model with prey-taxis and competition, *Nonlinear Anal. Real World Appl.*, 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521

15. Z. A. Wang, J. Xu, On the Lotka–Volterra competition system with dynamical resources and density-dependent diffusion, *J. Math. Biol.*, 82 (2021), 1–37. https://doi.org/10.1007/s00285-021-01562-w
16. M. Fuest, Global solutions near homogeneous steady states in a multidimensional population model with both predator-and prey-taxis, *SIAM J. Math. Anal.*, 52 (2020), 5865–5891. https://doi.org/10.1137/20M1344536

17. S. Wu, J. Wang, J. Shi, Dynamics and pattern formation of a diffusive predator–prey model with predator-taxis, *Math. Models Methods Appl. Sci.*, 28 (2018), 2275–2312. https://doi.org/10.1142/S0218202518400158

18. I. Ahn, C. Yoon, Global well-posedness and stability analysis of prey-predator model with indirect prey-taxis, *J. Differ. Equations*, 268 (2020), 4222–4255. https://doi.org/10.1016/j.jde.2019.10.019

19. P. Mishra, D. Wrzosek, The role of indirect prey-taxis and interference among predators in pattern formation, *Math. Methods Appl. Sci.*, 43 (2020), 10441–10461. https://doi.org/10.1002/mma.6426

20. J. I. Tello, D. Wrzosek, Predator–prey model with diffusion and indirect prey-taxis, *Math. Models Methods Appl. Sci.*, 26 (2016), 2129–2162. https://doi.org/10.1142/S0218202516400108

21. J. Bell, E. C. Haskell, Attraction-repulsion taxis mechanisms in a predator-prey model, *Partial Differ. Equations Appl.*, 2 (2021), 34. https://doi.org/10.1007/s42985-021-00080-0

22. M. Luca, A. Chavez-Ross, L. Edelstein-Keshet, A. Mogilner, Chemotactic signaling, microglia, and alzheimer’s disease senile plaques: is there a connection? *Bull. Math. Biol.*, 65 (2003), 693–730. https://doi.org/10.1016/S0092-8240(03)00030-2

23. Y. Chiyo, T. Yokota, Boundedness and finite-time blow-up in a quasilinear parabolic-elliptic-elliptic attraction-repulsion chemotaxis system, *Z. Angew. Math. Phys.*, 73 (2022), 1–27. https://doi.org/10.1007/s00033-022-01695-y

24. H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, *Discrete Contin. Dyn. Syst.*, 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027

25. H. Y. Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, *J. Differ. Equations*, 260 (2016), 162–196. https://doi.org/10.1016/j.jde.2015.08.040

26. P. Liu, J. Shi, Z. A. Wang, Pattern formation of the attraction–repulsion Keller–Segel system, *Discrete Contin. Dyn. Syst. -B*, 18 (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597

27. H. Amann, Dynamic theory of quasilinear parabolic systems, III. global existence, *Math. Z.*, 202 (1989), 219–250. https://doi.org/10.1007/BF01215256

28. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in *Function Spaces, Differential Operators and Nonlinear Analysis*, Teubner, Stuttgart, 133 (1993), 9–126. https://doi.org/10.1007/978-3-663-11336-2_1

29. R. Temam, *Infinite-Dimensional Dynamical Systems in Mechanics and Physics*, Springer-Verlag, New York, 68 (1988). https://doi.org/10.1007/978-1-4612-0645-3

30. J. Lankeit, Y. L. Wang, Global existence, boundedness and stabilization in a high-dimensional chemotaxis system with consumption, *Discrete Contin. Dyn. Syst.*, 37 (2017), 6099–6121. https://doi.org/10.3934/dcds.2017262

31. H. Y. Jin, Y. J. Kim, Z. A. Wang, Boundedness, stabilization, and pattern formation driven by density-suppressed motility, *SIAM J. Appl. Math.*, 78 (2018), 1632–1657. https://doi.org/10.1137/17M1144647
32. R. Kowalczyk, Z. Szymańska, On the global existence of solutions to an aggregation model, *J. Math. Anal. Appl.*, **343** (2008), 379–398. https://doi.org/10.1016/j.jmaa.2008.01.005

33. Z. A. Wang, On the parabolic-elliptic Keller-Segel system with signal-dependent motilities: a paradigm for global boundedness and steady states, *Math. Methods Appl. Sci.*, **44** (2021), 10881–10898. https://doi.org/10.1002/mma.7455

34. Y. S. Tao, Z. A. Wang, Competing effects of attraction vs. repulsion in chemotaxis, *Math. Models Methods Appl. Sci.*, **23** (2013), 1–36. https://doi.org/10.1142/S0218202512500443

35. N. D. Alikakos, L^p bounds of solutions of reaction-diffusion equations, *Commun. Partial Differ. Equations*, **4** (1979), 827–868. https://doi.org/10.1080/03605307908820113

36. M. M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, *J. Differ. Equations*, **103** (1993), 146–178. https://doi.org/10.1006/jdeq.1993.1045

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)