Uniformization and Skolem Functions in the Class of Trees.

BY

SHMUEL LIFSCHES and SAHARON SHELAH*

Institute of Mathematics, The Hebrew University of Jerusalem, Jerusalem, Israel

ABSTRACT

The monadic second-order theory of trees allows quantification over elements and over arbitrary subsets. We classify the class of trees with respect to the question: does a tree T have definable Skolem functions (by a monadic formula with parameters)? This continues [LiSh539] where the question was asked only with respect to choice functions. Here we define a subclass of the class of tame trees (trees with a definable choice function) and prove that this is exactly the class (actually set) of trees with definable Skolem functions.

1. Introduction: The Uniformization Problem

Definition 1. The monadic second-order logic is the fragment of the full second-order logic that allows quantification over elements and over monadic (unary) predicates only. The monadic version of a first-order language L can be described as the augmentation of L by a list of quantifiable set variables and by new atomic formulas $t \in X$ where t is a first order term and X is a set variable. The monadic theory of a structure \mathcal{M} is the theory of \mathcal{M} in the extended language where the set variables range over all subsets of $|\mathcal{M}|$ and \in is the membership relation.

Definition 2. The \textit{monadic language of order} L is the monadic version of the language of order $\{<\}$. For simplicity, we add to L the predicate $\text{sing}(X)$ saying “X is a singleton” and use only formulas with set variables. Thus the meaning of $X < Y$ is: $X = \{x\}$ & $Y = \{y\}$ & $x < y$.

Definition 3. Let T be a tree and $\bar{P} \subseteq T$.

1. φ is an (n, l)-formula if $\varphi = \varphi(X, Y, \bar{P})$ with $\text{dp}(\varphi) = n$ and $l(\bar{P}) = l$.

2. $\varphi = \varphi(X, Y, \bar{P})$ is \textit{potentially uniformizable in} T (p.u) if $T \models (\forall Y)(\exists X)\varphi(X, Y, \bar{P})$.

* The second author would like to thank the U.S.–Israel Binational Science Foundation for partially supporting this research. Publ. ***
2. Tame Trees

Definition 2.1. A tree is a partially ordered set (T, \triangleleft) such that for every $\eta \in T$, $\{\nu : \nu \triangleleft \eta\}$ is linearly ordered by \triangleleft.

Note, a chain $(C, <^*)$ and even a set without structure I is a tree.

Branch, Sub-branch, Initial segment.

Definition 2.2. (1) $(C, <^*)$ is a scattered chain iff ...

(2) For a scattered chain $(C, <^*)$ $Hdeg(C)$ is defined inductively by:

$Hdeg(C) = 0$ iff ...

$Hdeg(C) = \alpha$ iff ...

$Hdeg(C) \geq \delta$ iff ...

Theorem 2.3. $Hdeg(C)$ exists for every scattered chain C.

Lemma 2.4. $Hdeg(C) < \omega$ then C has a definable well ordering.

Proof. See A1 in the appendix

Definition 2.5. \sim_0^A, \sim_1^A (from [LiSh539] 4.1)

Definition 2.6. (1) A tree T is called wild if either

(i) $\sup\{|top(A) / \sim_0^A| : A \subseteq T \text{ an initial segment}\} \geq \aleph_0$ or

(ii) There is a branch $B \subseteq T$ and an embedding $f : Q \rightarrow B$ or

(iii) All the branches of T are scattered linear orders but $\sup\{Hdeg(B) : B \text{ a branch of } T\} \geq \omega$.

(iv) There is an embedding $f : \omega > 2 \rightarrow T$

(2) A tree T is tame for (n^*, k^*) if the value in (i) is $\leq n^*$, (ii) does not hold and the value in (iii)

is $\leq k^*$

(3) A tree T is tame if T is tame for (n^*, k^*) for some $n^*, k^* < \omega$.

The following is the content of [LiSh539], (2) \Rightarrow (3) is given in theorem A2 in the appendix.

Theorem 2.7. The following are equivalent:

1. T has a definable choice function.
2. T has a definable well ordering.
3. T is tame.

3. Composition Theorems

Notations. x, y, z denote individual variables, X, Y, Z are set variables, a, b, c elements and A, B, C

sets. \bar{a}, \bar{A} are finite sequences and $\lg(\bar{a}), \lg(\bar{A})$ their length. We write e.g. $\bar{a} \in C$ and $\bar{A} \subseteq C$ instead

of $\bar{a} \in \text{lg}(\bar{a}) C$ or $\bar{A} \in \text{lg}(\bar{A}) P(C)$

Definition 3.1. For any chain C, $\bar{A} \in \text{lg}(\bar{A}) P(C)$, and a natural number n, define by induction

$t = Th^n(C; \bar{A})$
for \(n = 0 \):
\[
\{\phi(\bar{X}) : \phi(\bar{X}) \in L, \phi(\bar{X})\text{ quantifier free, } C \models \phi(\bar{A})\}.
\]

for \(n = m + 1 \):
\[
\{\text{Th}^m(C; \bar{A}) : B \in \mathcal{P}(C)\}.
\]

We may regard \(\text{Th}^n(C; \bar{A}) \) as the set of \(\varphi(\bar{X}) \) that are boolean combinations of monadic formulas of quantifier depth \(\leq n \) such that \(C \models \varphi(\bar{A}) \).

Definition 3.2. \(T_{n,l} \) is the set of all formally possible \(\text{Th}^n(C; \bar{P}) \) where \(C \) is a chain and \(\lg(P) = l \). \(T_{n,l} \) is \(|T_{n,l}| \).

Fact 3.3.
(A) For every formula \(\psi(\bar{X}) \in L \) there is an \(n \) such that from \(\text{Th}^n(C; \bar{A}) \) we can effectively decide whether \(C \models \psi(\bar{X}) \). If \(n \) is minimal with this property we will write \(\text{dp}(\psi) = n \).
(B) If \(m \geq n \) then \(\text{Th}^m(C; \bar{A}) \) can be effectively computed from \(\text{Th}^n(C; \bar{A}) \).
(C) For every \(t \in T_{n,l} \) there is a monadic formula \(\psi_t(\bar{X}) \) with \(\text{dp}(\psi) = n \) such that for every \(\bar{A} \in \mathcal{P}(C), \ C \models \psi_t(\bar{A}) \iff \text{Th}^n(C; \bar{A}) = t \).
(D) Each \(\text{Th}^n(C; \bar{A}) \) is hereditarily finite, and we can effectively compute the set \(T_{n,l} \) of formally possible \(\text{Th}^n(C; \bar{A}) \).

Proof. Easy.

\(\Box \)

Definition 3.4. If \(C, D \) are chains then \(C + D \) is any chain that can be split into an initial segment isomorphic to \(C \) and a final segment isomorphic to \(D \).

If \(\langle C_i : i < \alpha \rangle \) is a sequence of chains then \(\sum_{i<\alpha} C_i \) is any chain \(D \) that is the concatenation of segments \(D_i \), such that each \(D_i \) is isomorphic to \(C_i \).

Theorem 3.5 (composition theorem for linear orders).
(1) If \(\lg(\bar{A}) = \lg(\bar{B}) = \lg(\bar{A}') = \lg(\bar{B}') = l \), and
\[
\text{Th}^m(C; \bar{A}) = \text{Th}^m(C'; \bar{A}') \quad \text{and} \quad \text{Th}^m(D; \bar{B}) = \text{Th}^m(D'; \bar{B}')
\]
then
\[
\text{Th}^m(C + D; A_0 \cup B_0, \ldots, A_{l-1} \cup B_{l-1}) = \text{Th}^m(C' + D'; A'_0 \cup B'_0, \ldots, A'_{l-1} \cup B'_{l-1}).
\]
(2) If for \(i < \alpha \), \(\text{Th}^m(C_i; \bar{A}_i) = \text{Th}^m(D_i; \bar{B}_i) \) where \(\bar{A}_i = \langle A'_0, \ldots, A'_{i-1} \rangle, \bar{B}_i = \langle B'_0, \ldots, B'_{i-1} \rangle \), then
\[
\text{Th}^m\left(\sum_{i<\alpha} C_i; \cup_{i<\alpha} A^i_0, \ldots, \cup_{i<\alpha} A^i_{l-1}\right) = \text{Th}^m\left(\sum_{i<\alpha} D_i; \cup_{i<\alpha} B^i_0, \ldots, \cup_{i<\alpha} B^i_{l-1}\right)
\]

Proof. By [Sh] Theorem 2.4 (where a more general theorem is proved), or directly by induction on \(m \).

\(\Box \)

Definition 3.6.
(1) \(t_1 + t_2 = t_3 \) means:
for some \(m,l < \omega \), \(t_1,t_2,t_3 \in T_{m,l} \) and if
\[
t_1 = \text{Th}^m(C; A_0, \ldots, A_{l-1}) \quad \text{and} \quad t_2 = \text{Th}^m(D; B_0, \ldots, B_{l-1})
\]
then
\[
t_3 = \text{Th}^m(C + D; A_0 \cup B_0, \ldots, A_{l-1} \cup B_{l-1}).
\]

By the previous theorem, the choice of \(C \) and \(D \) is immaterial.
(2) \(\sum_{i<\alpha} \text{Th}^m(C_i; \bar{A}_i) \) is \(\text{Th}^m(\sum_{i<\alpha} C_i; \cup_{i<\alpha} A^i_0, \ldots, \cup_{i<\alpha} A^i_{l-1}) \).

3
Notation 3.7.
(1) \(\text{Th}^n(C; \bar{P}, \bar{Q}) \) is \(\text{Th}^n(C; \bar{P} \wedge \bar{Q}) \).
(2) If \(D \) is a subchain of \(C \) and \(X_1, \ldots, X_{l-1} \) are subsets of \(C \) then \(\text{Th}^m(D; X_0, \ldots, X_{l-1}) \) abbreviates \(\text{Th}^m(D; X_0 \cap D, \ldots, X_{l-1} \cap D) \).
(3) For \(C \) a chain, \(a < b \in C \) and \(\bar{P} \subseteq C \) we denote by \(\text{Th}^n((a, b); \bar{P} \cap [a, b]) \) the theory \(\text{Th}^n((a, b); \bar{P}) \mid_{[a, b]} \).
(4) We will use abbreviations as \(\bar{P} \cup \bar{Q} \) for \(\langle P_0 \cup Q_0, \ldots \rangle \) and \(\cup_i \bar{P}_i \) for \(\langle \bigcup_i P_i, \ldots \rangle \) (of course we assume that all the involved sequences have the same length).
(5) We shall not always distinguish between \(\text{Th}^n((C; \bar{P}, \emptyset) \) and \(\text{Th}^n(C; \bar{P}) \).

Theorem 3.8. For every \(n, l < \omega \) there is \(m = m(n, l) < \omega \), effectively computable from \(n \) and \(l \), such that whenever \(I \) is a chain, for \(i \in I \) \(C_i \) is a chain, \(\bar{Q}_i \subseteq C_i \) and \(\log((Q_i)) = l \), if \((C; \bar{Q}) = \sum_{i \in I} (C_i; \bar{Q}_i) := (\sum_{i \in I} C_i; \cup_{i \in I} \bar{Q}_i) \) and if for \(t \in \mathcal{T}_{n,l} \) \(P_t := \{ i \in I : \text{Th}^n(C_i; \bar{Q}_i) = t \} \) and \(\bar{P} := \langle P_t : t \in \mathcal{T}_{n,l} \rangle \) then from \(\text{Th}^m(\bar{I}; \bar{P}) \) we can effectively compute \(\text{Th}^n(C; \bar{Q}) \).

Proof. By [Sh] Theorem 2.4. \(\heartsuit \)

Definition 3.9.
(1) Let \(T_0, T_1 \) be disjoint trees with \(\eta_0 = \text{root}(T_0) \). Define a tree \(T \) to be the ordered sum of \(T_0 \) and \(T_1 \) by:
\[
T = T_0 \bigoplus T_1 \text{ iff } T = T_0 \cup T_1 \text{ where the partial order on } T, \prec_T, \text{ is induced by the partial orders of } T_0 \text{ and } T_1 \text{ and the (only) additional rule:}
\[
\sigma \in T_1 \Rightarrow \eta_0 \prec \sigma.
\]
(2) If \(T_0 \) doesn’t have a root then \(\prec_T \) is the disjoint union \(\prec_{T_0} \cup \prec_{T_1} \) (So \(\tau \in T_0 \& \sigma \in T_1 \Rightarrow \tau \perp \sigma \)).
(3) When \(I \) is a chain and \(T_i \) are pairwise disjoint trees for \(i \in I \) we define \(T = \bigoplus_{i \in I} T_i \) by \(T = \cup_{i \in I} T_i \) with similar rules on \(\prec = \prec_T \), namely
\[
\sigma, \tau \in T_i \Rightarrow [\sigma \prec \tau \iff \sigma \prec_{T_i} \tau]
\]
\[
[\sigma = \text{root}(T_i), i < j, \tau \in T_j] \Rightarrow \sigma \prec \tau
\]
\[
[\sigma \in T_i, \sigma \neq \text{root}(T_i), i \neq j, \tau \in T_j] \Rightarrow \sigma \perp \tau
\]

Theorem 3.10 (composition theorem along a complete branch).
For every \(n < \omega \) there is an \(m = m(n) < \omega \), effectively computable from \(n \), such that if \(I \) is a chain and \(T_i \) are trees for \(i \in I \) then \(\langle \text{Th}^m(T_i) : i \in I \rangle \) and \(\text{Th}^m(\langle \eta_i : i \in I \rangle) \) (which is a theory of a chain) determine \(\text{Th}^m(\bigoplus_{i \in I} T_i) \).

Proof. See theorem 3.14. \(\heartsuit \)

Given a tree \(T \), we would like to represent it as a sum of subtrees, ordered by a branch \(B \subseteq T \). Sometimes however we may have to use a chain \(B \) that embeds \(B \).
Definition 3.11. Let T be a tree T, $B \subseteq T$ a branch $\nu \in T$, $\eta \in B$ and $X \subseteq B$ be an initial segment without a last element.

(a) ν cuts B at η if $\eta \tau \nu$ and for every $\tau \in B$, if $-\tau \epsilon \eta$ then $-\tau \epsilon \nu$. (In particular, η cuts B at η).

(b) ν cuts B at X if $\eta \epsilon \nu$ for every $\eta \in X$ and $-\tau \epsilon \nu$ for every $\tau \in B \setminus X$.

(c) $B^t \subseteq P(B)$ is defined by $X \in B^t$ if $[X \ni \eta]$ for some $\eta \in B$ or $[X \subseteq B$ is an initial segment without a last element and there is $\nu \in T \setminus B$ that cuts B at $X]$.

(d) Define a linear order $\leq \leq_{B^t}$ on B^t by $X_0 \leq X_1$ iff $[X_0 = [\eta_0], X_1 = [\eta_1]$ and $\eta_0 \epsilon \eta_1]$ or $[X_0 \subseteq X_1]$.

Note that the statements $X \in B^t$ and $X_0 \leq_{B^t} X_1$ are expressible by monadic formulas $\psi(x, B)$ and $\psi(x, X_0, X_1, B)$.

(e) For $X \in B^t$ define $T_X := \{\nu \in T : \nu$ cuts B at $X\}$.

Now B^t has the disadvantage of not being a subset of T and (at the small cost of adding a new parameter) we shall replace the chain (B^t, \leq_{B^t}) by a chain (B, \leq_B) where $B \subseteq T$.

Definition 3.12. $B \subseteq T$ is obtained by replacing every $X \in B^t$ by an element $\eta_x \in T$ in the following way: if $X = [\eta]$ then $\eta_x = \eta$ and if $X \subseteq B$ is an initial segment then η_x is a favourite element from T_X. \leq_B is defined by $\eta_x \leq_B \eta_{x'}$ if $X_1 \leq_{B^t} X_2$ and $B^t \subseteq T$ will be $B \setminus \{\eta_x : X = [\nu], \nu \in B\}$, $(B \setminus B^t, \leq_B) \cong (B, \leq_B)$). For $\eta \in B$ let T_η be $T_{\{\eta\}}$ as defined in (e) above, and for $\eta = \eta_x \in B^t$ let $T_\eta = T_X$ as above (in this case T_η is $\{\nu \in T : \nu \sim_B \eta\}$ as in definition 2.5).

Fact 3.13. \leq_B is definable from B and B^c, T_η is definable from η, B and B^c and $T = \bigoplus_{\eta \in B} T_\eta$ in accordance with definition 3.9.

Theorem 3.14 (Composition theorems for trees).

Assume T is a tree, $B \subseteq T$ a branch and $\bar{Q} \subseteq T$ with $\text{lg}(\bar{Q}) = l$. Let B and B^c be defined as above, for $\eta \in B$ T_η is defined as above (so $T = \bigoplus_{\eta \in B} T_\eta$) and S_η is $T_\eta \setminus B$ (so, abusing notations, $T = B \cup \bigoplus_{\eta \in B} S_\eta$). Then:

1) Composition theorem on a branch: for every $n < \omega$ there is $k = k(n, l) < \omega$, effectively computable from n and l, such that $T^k(B; B, B^c, \bar{P})$ determines $T^n(T; \bar{Q})$ where for $t \in T_{\eta, l}$, $P_t := \{\eta \in B : T^n(T_\eta; \bar{Q} \cap T_\eta) = t\}$ and $\bar{P} := \langle P_t : t \in T_{\eta, l}\rangle$.

2) Composition theorem along a branch: for every $n < \omega$ there is $k = k(n, l) < \omega$, effectively computable from n and l, such that $T^k(B; \bar{Q})$ and $T^n(S_\eta; B, B^c, \bar{Q}) : \eta \in B)$ determine $T^n(T; \bar{Q})$.

Proof. By Theorem 1 in [GuSh]\S2.4.

Definition 3.15. Additive colouring....

Theorem 3.16 (Ramsey theorem for additive colourings). ...

Proof. By [Sh] Theorem 1.1. ✽
4. Well Orderings of Ordinals

A chain is tame iff it is scattered of Hausdorff degree $< \omega$. We will define for a tame chain C, $\log(C)$ and show later (in proposition 4.8) that this function is well defined.

Definition 4.1. Let $\log:\{\text{tame chains}\} \to \omega \cup \{\infty\}$ be defined by:

- $\log(C) = \infty$ iff there is $\varphi(x,y,\bar{P})$ that defines a well ordering on the elements of C of order type $\geq \omega^\omega$.
- $\log(C) = k$ iff there is $\varphi(x,y,\bar{P})$ that defines a well ordering on the elements of C of order type α with $\omega^k \leq \alpha < \omega^{k+1}$.

Fact 4.2. A tame chain C has a reconstrutible well ordering i.e. there is a formula $\varphi(x,y,\bar{P})$ ($\bar{P} \subseteq C$) that defines a well ordering on the elements of C of order type α and there is a formula $\psi(x,y,\bar{Q})$ ($\bar{Q} \subseteq \alpha$) that defines a linear order $<^*$ on the elements of α such that $(\alpha, <^*) \cong (C, <)$.

Proof. By induction on $\hdeg(\alpha)$, using the proof of Theorem A1 in the appendix.

Definition 4.3. Let α, β be ordinals. $\alpha \to \beta$ means the following: “there is $\varphi(x,y,\bar{P})$ that defines a well ordering on the elements of α of order type β”.

Claim 4.4.

1) $\alpha \to \beta$ & $\beta \to \gamma \Rightarrow \alpha \to \gamma$.
2) $\alpha \to \gamma$ & $\gamma \geq \alpha \cdot \omega \Rightarrow \alpha \to \alpha \cdot \omega$.

Proof. Straightforward.

Notation. Suppose $\alpha \to \beta$ holds by $\varphi(x,y,\bar{P})$. Define a bijection $f: \alpha \to \beta$ by $f(i) = j$ iff i is the j'th element in the well order defined by φ.

Lemma 4.5. For any ordinal α, $\alpha \not\to \alpha \cdot \omega$.

Proof. Assume that α is minimal such that $\alpha \to \alpha \cdot \omega$. It follows that:

- (i) $\alpha \geq \omega$,
- (ii) α is a limit ordinal (by $\alpha \to \alpha+1$ and 2.7),
- (iii) for $\beta < \alpha$, $\{f(i): i < \beta\}$ does not contain a final segment of $\alpha \cdot \omega$ (otherwise clearly $\beta \to \alpha \cdot \omega$ hence by 2.7 $\beta \to \alpha \cdot \omega$ but α is minimal).

So let $\varphi(x,y,\bar{P})$ define a well order of α of order type $\alpha \cdot \omega$ and let $Q \subseteq \alpha$ be the following subset:

$x \in Q$ iff for some $k < \omega$, $\alpha \cdot 2k \leq f(x) < \alpha \cdot (2k+1)$. Let E an equivalence relation on α defined by xEy if for some $l < \omega$, $f(x)$ and $f(y)$ belong to the segment $[\alpha \cdot l, \alpha \cdot (l+1))$. Clearly there is a monadic formula $\psi(x,y,\bar{P},Q)$ that defines E moreover, some monadic formula $\theta(X,Y,Z)$ expresses the statement “$\bigvee_{i < \omega} (X = Q_i)$” where $\langle Q_i : i < \omega \rangle$ are the E-equivalence classes.

Let $n := \max\{dP(\varphi), dP(\psi), dP(\theta)\} + 5$, and

Let $\delta = \text{cf}(\alpha)$ and $\{x_i\}_{i < \delta}$ be stricly increasing and cofinal in α. By [Sh]Theorem 1.1 applied to the colouring $h(i,j) = \text{Th}^n(\alpha; \bar{P}, Q, x_i, x_j)$ we get a cofinal subsequence $\{j_i\}_{i < \delta}$ such that $\text{Th}^n(\alpha; \bar{P}, Q, \beta_{j_i}, \beta_{j_i})$ is constant for $j_1 < j_2 < \delta$. Note that it follows

- \uparrow the theories $\text{Th}^n(\alpha; \bar{P}, Q) \mid_{[0,\beta_{j_1}]}$, $\text{Th}^n(\alpha; \bar{P}, Q) \mid_{[\beta_{j_1}, \alpha]}$, and $\text{Th}^n(\alpha; \bar{P}, Q, \beta_{j_1}) \mid_{[\beta_{j_1}, \beta_{j_2}]}$ are constant for every $j < \delta$ and for every $j_1 < j_2 < \delta$.

\[\vspace{1cm} \]
Note that each E-equivalence class Q_i is unbounded in α since if some $\beta < \alpha$ contains some E-equivalence class Q_i, it would easily follow that $\beta \to \alpha$ contradicting fact (iii).

Fix some $1 < j < \delta$ let $x < \beta_j$ and let $Q_i(x)$ be the E-equivalence class containing x. Since $Q_i(x)$ is unbounded in α there is some $j < l < \delta$ such that $[\beta_j, \beta_l) \cap Q_i(x) \neq \emptyset$. This statement is expressible by $\text{Th}^n(\alpha; \bar{P}, Q, x, \beta_j, \beta_l)$ which is equal to

$$\text{Th}^n(\alpha; \bar{P}, Q, x, \beta_j, \beta_l) |_{[0, \beta_j)} + \text{Th}^n(\alpha; \bar{P}, Q, x, \beta_j, \beta_l) |_{[\beta_j, \beta_l)} + \text{Th}^n(\alpha; \bar{P}, Q, x, \beta_j, \beta_l) |_{[\beta_l, \alpha)} = \text{Th}^n(\alpha; \bar{P}, Q, x, 0, \emptyset, \emptyset) |_{[0, \beta_j)} + \text{Th}^n(\alpha; \bar{P}, Q, x, 0, \emptyset, \emptyset) |_{[\beta_j, \beta_l)} + \text{Th}^n(\alpha; \bar{P}, Q, x, 0, \emptyset, \emptyset) |_{[\beta_l, \alpha)}.$$

By (i) we may replace the second theory by $\text{Th}^n(\alpha; \bar{P}, Q, \emptyset, \emptyset, \emptyset) |_{[\beta_j, \beta_l)}$ and the third theory by $\text{Th}^n(\alpha; \bar{P}, Q, \emptyset, \emptyset, \emptyset) |_{[\beta_l, \alpha)}$, and conclude:

$$\text{Th}^n(\alpha; \bar{P}, Q, x, \beta_j, \beta_l) = \text{Th}^n(\alpha; \bar{P}, Q, x, \beta_j, \beta_{l+1})$$

Therefore for every $x < \beta_j$, $[\beta_j, \beta_{j+1}) \cap Q_i(x) \neq \emptyset$.

Finally, let $j < \delta$ be such that the segment $[0, \beta_j)$ intersects $m + 1$ different E-equivalence classes, say Q_{i_0}, \ldots, Q_{i_m}. By the previous argument we have $[\beta_j, \beta_{j+1} \cap Q_{i_l} \neq \emptyset$ for every $l \leq m$.

By the choice of m there are different $a, b \in \{i_0, \ldots, i_m\}$ such that

*(+) $\text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_j, \beta_{j+1})} = \text{Th}^n(\alpha; \bar{P}, Q, Q_b) |_{[\beta_j, \beta_{j+1})}.$

Let $\beta \in \alpha$ be $((0, \beta_j) \cap Q_a) \cup ((\beta_j, \beta_{j+1}) \cap Q_a) \cup (\beta_{j+1}, \alpha) \cap Q_a)$. Now $\text{Th}^n(\alpha, \bar{P}, Q, R) =$

$$\text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[0, \beta_j)} + \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_j, \beta_{j+1})} + \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_{j+1}, \alpha)} = \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[0, \beta_j)} + \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_j, \beta_{j+1})} + \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_{j+1}, \alpha)} = \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[0, \beta_j)} + \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_j, \beta_{j+1})} + \text{Th}^n(\alpha; \bar{P}, Q, Q_a) |_{[\beta_{j+1}, \alpha)} = \text{Th}^n(\alpha; \bar{P}, Q, Q_a).

But Q_a is an E-equivalence class while R is not. Since $\text{Th}^n(\alpha, \bar{P}, Q, Z)$ computes the statement “Z is E-equivalence class” we get a contradiction from $\text{Th}^n(\alpha; \bar{P}, Q, R) = \text{Th}^n(\alpha, \bar{P}, Q, Q_a)$.

\diamond

Claim 4.6. If $\alpha \to \beta$ and $\beta < \alpha$ then $(\exists \gamma_1, \gamma_2)((\gamma_1 + \gamma_2 = \alpha) \& (\gamma_2 + \gamma_1 = \beta))$.

Proof. Let’s prove first:

Subclaim: $\omega + \omega \not\to \omega$.

Proof of the subclaim: Assume that $\varphi(x, y, \bar{P})$ well orders $\omega + \omega$ of order type ω and that $dp(\varphi) = n$, $l(\bar{P}) = l$. Let $x <^* y$ mean $(\omega + \omega, <) \models \varphi(x, y, \bar{P})$. Using Ramsey theorem (and as $<^*$ is well founded) we may assume that $i_1 < i_2 \Rightarrow x_{i_1} <^* x_{i_2}$ and $j_1 < j_2 \Rightarrow y_{j_1} <^* y_{j_2}$.

We will show now that for $0 < i < \omega$ and $0 < j < \omega$, $\text{Th}^n(\omega + \omega; x_i, y_j, \bar{P})$ is constant. Indeed,
Now proceed as before: choose a contradiction.

\(\beta \)

then by (\(\ast \)) \(\gamma + \beta = \gamma + \gamma \) and \(\alpha \) does not witness the weirdness of \(\beta \), so \(\alpha \geq \beta + \beta \).

Let \(\varphi(x, y, P) \) well order \(\alpha \) of order type \(\beta \) with \(\text{dp}(\varphi) = n \) and \(l(P) = l \). As above \(x <^* y \) means \((\alpha, <) \models \varphi(x, y, P) \) and finally let \(\delta = \text{cf}(\beta) \).

Now \(\text{otp}(\alpha, <^*) = \beta \) but what is \(\text{otp}(0, \beta), <^*|_{[0, \beta)}) \)? Clearly, as \(\text{Th}^n(\alpha, P) = \text{Th}^n(\alpha, P) \upharpoonright_{[0, \beta)} + \text{Th}^n(\alpha, P) \upharpoonright_{[\beta, \alpha)} \) we have \(\beta \to \text{otp}(0, \beta), <^*|_{[0, \beta)} \) hence \(\beta = \text{otp}(0, \beta), <^*|_{[0, \beta)} \) (otherwise, by (\(\ast \)), \(\text{otp}(0, \beta), <^*|_{[0, \beta)} \) is weird and \(< \beta \)). Similarly we can show that \(\text{otp}(\beta, \beta + \beta), <^*|_{[\beta, \beta + \beta)} = \beta \).

\(\to \) Insert Ramsey theorems

Now proceed as before: choose \(\{ x_i \}_{i < \delta} \subseteq [0, \beta) \) and \(\{ y_j \}_{j < \delta} \subseteq [\beta, \beta + \beta) \) that are homogeneous unbounded and \(<^* \) unbounded and use them to show that \(\text{otp}(\alpha, <^*) \geq \beta + 1 \).

Second case: (\(\ast \ast \)) holds i.e. \(\beta = \gamma + \gamma \).

Call \(\epsilon \) quite weird if for some \(k < \omega \) \(\epsilon \cdot k \) is weird. Let \(\epsilon \leq \gamma \) be the first quite weird ordinal. Let \(k_1 \) be the first such that \(\epsilon \cdot k_1 \) is weird. Look at \(\gamma \): if \(\gamma = \gamma_1 + \gamma_2 \) and \(\gamma_2 + \gamma_1 < \gamma \) we would have \(\alpha \to \beta = \gamma + \gamma \to \gamma + \gamma_2 + \gamma_1 < \beta \) and a contradiction. Hence either \(\gamma_1 < \gamma \Rightarrow (\gamma_1 + \gamma_1 < \gamma) \) and in this case \(\gamma = \epsilon \) or \(\gamma = \gamma_1 + \gamma_1 \). Repeat the same argument to get \(\gamma_1 = \epsilon \) or \(\gamma_1 = \gamma_2 + \gamma_2 \). After finitely many steps we are bound to get \(\beta = \epsilon \cdot 2k \) where \(2k = k_1 \) and \(\epsilon_1 < \epsilon \Rightarrow \epsilon_1 \cdot \omega \leq \epsilon \) and of course \(\epsilon_1 < \epsilon \Rightarrow \epsilon \neq \epsilon_1 \).

Let \(\varphi(x, y, P) \) and \(<^* \) be as usual and \(\delta := \text{cf}(\beta) = \text{cf}(\epsilon) \). Let \(\alpha = \beta + \epsilon^* \) if \(\epsilon^* < \epsilon \) then \(\epsilon^* + \beta = \beta \) and \(\alpha \) doesn’t witness weirdness, therefore \(\epsilon^* \geq \epsilon \).

Proceed as before: choose \(\{ x_i^0 \}_{i < \delta}, \{ x_i^1 \}_{i < \delta}, \ldots, \{ x_i^l \}_{i < \delta} \) with \(\{ x_i^l \}_{i < \delta} \subseteq [\epsilon \cdot l, \epsilon(l + 1)) \), homogeneous, unbounded and \(<^* \) increasing.

By the composition theorem it will follow that \(\text{otp}(\epsilon \cdot l, \epsilon(l + 1)), <^*) \geq \epsilon \) and by homogeneity we will have, for \(0 < i, j < \omega \) and \(l \leq k \), \(x_i^l <^* x_j^{l+1} \). It follows that \(\text{otp}(\alpha, <^*) \geq (\epsilon \cdot k) + 1 = \beta + 1 \) and a contradiction.
Theorem 4.7. Well ordering of ordinals are obtained only by the following process:

let \((P_0, P_1, \ldots, P_{n-1})\) be a partition of \(\alpha\) and

\[i <^* j \iff [(\exists k < n)(i \in P_k \& j \in P_k \& i < j)] \lor [i \in P_k, \& j \in P_{k_2} \& k_1 < k_2]. \]

Proposition 4.8. \(\Log(C)\) is well defined.

Proof. Let \((C, <^*)\) be a scattered chain and let \((\alpha, <)\) and \((\beta, <)\) be results of a definable well orderings of \((C, <^*)\) where in addition (by 4.2) there is \(\psi(x, y, \bar{Q})\) that defines \(C\) in \(\alpha\). So \(\alpha \rightarrow \beta\) and by 4.5 and 4.6 \(\alpha < \omega^\omega \iff \beta < \omega^\omega\ and \alpha \in [\omega^k, \omega^{k+1}) \iff \beta \in [\omega^k, \omega^{k+1}).\)

5. \((\omega^\omega, <)\) and longer chains

The following lemma is a part of Theorem 3.5(B) in [Sh]:

Lemma 5.1. Let \(I\) be a well ordered chain of order type \(\geq \omega^k\). Let \(f: I^2 \rightarrow \{t_0, t_1, \ldots, t_{l-1}\}\) be an additive colouring and assume that for \(\alpha < \beta \in I\), \(f(\alpha, \beta)\) depends only on the order type in \(I\) of the segment \([\alpha, \beta)\).

Then there is \(i < l\) such that for some \(p \leq l\), for every \(r \geq p\), if \(\otp([\alpha, \beta)) = \omega^r\) then \(f(\alpha, \beta) = t_i\). Moreover, \(t_i + t_i = t_i\).

Proof. To avoid triviality assume \(k > l\). For \(\alpha < \beta\) in \(I\) with \(\ otp([\alpha, \beta)) = \delta\), denote \(f(\alpha, \beta)\) by \(t(\delta)\) (makes sense by the assumptions).

By the pigeon-hole principle there are \(1 \leq p \leq l, s > p\) and some \(t_i\) with \(t(\omega^p) = t(\omega^s) = t_i\). Now \(\omega^{p+2} = \sum_{i<\omega}(\omega^{p+1} + \omega^p)\) and by the additivity of \(f\):

\[t(\omega^{p+2}) = t(\sum_{i<\omega}(\omega^{p+1} + \omega^p)) = \sum_{i<\omega} t(\omega^{p+1} + \omega^p) = \sum_{i<\omega} (t(\omega^{p+1}) + t(\omega^p)) = \sum_{i<\omega} t(\omega^{p+1}) + t(\omega^p) = t(\sum_{i<\omega} \omega^p) = t(\omega^{p+1}). \]

Hence

\[t(\omega^{p+2}) = t(\omega^{p+1}). \]

Using this and as \(\omega^{p+3} = \sum_{i<\omega}(\omega^{p+2} + \omega^{p+1})\) we have

\[t(\omega^{p+3}) = t(\sum_{i<\omega}(\omega^{p+2} + \omega^{p+1})) = \sum_{i<\omega} t(\omega^{p+2} + \omega^{p+1}) = \sum_{i<\omega} (t(\omega^{p+2}) + t(\omega^{p+1})) = \]

\[\sum_{i<\omega} t(\omega^{p+1}) + t(\omega^{p+1}) = \sum_{i<\omega} t(\omega^{p+1}) = t(\sum_{i<\omega} \omega^{p+1}) = t(\omega^{p+2}). \]

Hence

\[t(\omega^{p+3}) = t(\omega^{p+2}). \]
So for every \(j > 0 \), \(t(\omega^{p+1}) = t(\omega^{p+j}) \) and in particular \(t(\omega^{p+1}) = t(\omega^p) = t_i \).

This proves the first part of the lemma. As for the moreover clause, since \(\omega^{p+1} = \omega^p + \omega^{p+1} \) we have
\[
t_i = t(\omega^{p+1}) = t(\omega^p + \omega^{p+1}) = t(\omega^p) + t(\omega^{p+1}) = t_i + t_i.
\]

\[\blacklozenge\]

Proposition 5.2. The formula \(\varphi(X, Y) \) saying “if \(Y \) is without a last element then \(X \subseteq Y \) is an \(\omega \)-sequence unbounded in \(Y \) (and if not then \(X = \emptyset \))” can not be uniformized in \((\omega^\omega, <) \).

Moreover, if \(\psi_m(X, Y, \bar{P}_m) \) uniformizes \(\varphi \) on \(\omega^m \) then one of the sets \(\{dp(\psi_m) : m < \omega\} \) or \(\{lg(\bar{P}_m) : m < \omega\} \) is unbounded.

Proof. Suppose the second statement fails, then:

(†) there is a formula \(\psi(X, Y, Z) \) such that for an unbounded set \(I \subseteq \omega \), for every \(m \in I \) there is \(\bar{P}_m \subseteq \omega^m \) such that \(\psi(X, Y, \bar{P}_m) \) uniformizes \(\varphi \) on \(\omega^m \).

Let \(\bar{P}_m = \bar{P} \) let \(n = dp(\bar{V}) + 1 \) and \(M := |\{Th^n(C; X, Y, Z) : C \text{ a chain }, X, Y, Z \subseteq C, lg(Z) = lg(\bar{P})\}| \).

Let \(m \in I \) be large enough \((m > 2M + 3 \text{ will do}) \), and let’s show that \(\psi \) doesn’t work for \(\omega^m \) and a subset \(Y_k \) that will be defined now.

If \(\alpha < \omega^m \) then \(\alpha = \omega^{m-1}k_{m-1} + \omega^{m-2}k_{m-2} + \ldots + \omega k_1 + k_0 \). Let \(k(\alpha) := \min\{i : k_i \neq 0\} \) and let \(A_k := \{\alpha < \omega^m : k(\alpha) = k\} \). Note that \(otp(A_k) = \omega^{m-k} \).

For \(k \in \{1, 2, \ldots, m-1\} \) we will choose \(Y_k \subseteq A_k \) with \(otp(Y_k) = otp(A_k) = \omega^{m-k} \) such that for \(\alpha < \beta \) in \(Y_k \):

\[(*) \quad Th^n(\omega^m; \bar{P}, Y_k) \upharpoonright_{[\alpha, \beta)} \text{ depends only on otp}((\alpha, \beta) \cap Y_k)\]

we will start with \(k = m - 1 \) and proceed by inverse induction:

Let \(A_{m-1} = \{\alpha_j : j < \omega\} \). Let for \(l < p < \omega \), \(h(l, p) := Th^n(\omega^m; \bar{P}, \alpha_l) \upharpoonright_{[\alpha_l, \alpha_p]} \). Let \(J \subseteq \omega \) be homogeneous with respect to this colouring namely, for some fixed theory \(t_{m-1} \), for every \(l < p \) in \(J \),

\[Th^n(\omega^m; \bar{P}, \alpha_l) \upharpoonright_{[\alpha_l, \alpha_p]} = t_{m-1} \bigl.\bigr|_{[\alpha_l, \alpha_p]}\]

By the composition theorem, for every \(l < p \) in \(J \),

\[Th^n(\omega^m; \bar{P}, Y_{m-1}) \upharpoonright_{[\alpha_l, \alpha_p]} = t_{m-1} \cdot |Y_{m-1} \cap [\alpha_l, \alpha_p]|\]

and this proves \((*) \) for \(Y_{m-1} \).

Rename \(Y_{m-1} \) by \((\alpha_i) : i < \omega \). In each segment \([\alpha_i, \alpha_{i+1}) \) choose \(\langle \beta_i^l : 0 < l < \omega \rangle \subseteq A_{m-2} \) increasing and cofinal such that for every \(l < p < \omega \) the theory \(Th^n(\omega^m; \bar{P}, \beta_i^l) \upharpoonright_{[\beta_i^l, \beta_i^p]} \) is constant.

Returning to \(Y_{m-1} \), for \(i < j < \omega \) let

\[h_1(i, j) := \langle Th^n(\omega^m; \bar{P}) \upharpoonright_{[\alpha_i, \beta_j^{i-1}]}, Th^n(\omega^m; \bar{P}, \beta_j^{i-1}) \upharpoonright_{[\beta_j^{i-1}, \beta_j^j]} \rangle\]

w.l.o.g. (by thinning out and re-renaing and noting that we don’t harm \((*) \)) \(Y_{m-1} \) is homogeneous with respect to this colouring.

Hence, for some theories \(t^* \) and \(t_{m-2} \), for every \(i < j < \omega \) we have

\[h_1(i, j) = \langle t^*, t_{m-2} \rangle\]
Let $Y_{n-2} := \langle \beta^n : 0 < l < \omega, i < \omega \rangle$, clearly \text{otp}(Y_{n-2}) = \omega^2$. Let's check (*) for Y_{n-2}:

Firstly, note that for $l < p < \omega$,

$$\text{Th}^n(\omega^m; \bar{P}, Y_{n-2}) |_{[\beta_l, \beta_p]} = t_{m-2} \cdot (p - l).$$

Secondly, for $i < j < \omega$ \text{Th}^n(\omega^m; \bar{P}, Y_{n-2}) |_{[\beta_i, \beta_j]} = \text{Th}^n(\omega^m; \bar{P}, Y_{n-2}) |_{[\alpha_i, \alpha_{i+1}]} + \text{Th}^n(\omega^m; \bar{P}, Y_{n-2}) |_{[\alpha_{i+1}, \alpha_{i+2}]} + \cdots + \text{Th}^n(\omega^m; \bar{P}, Y_{n-2}) |_{[\alpha_{j-1}, \alpha_j]} + \text{Th}^n(\omega^m; \bar{P}, Y_{n-2}) |_{[\alpha_j, \beta_j]}$$

where the first theory is equal to $t_{m-2} \cdot \omega$, the last theory is $t^* + t_{m-2} \cdot (p - l)$, and the middle theories are $t^* + t_{m-2} \cdot \omega$. These observations prove (*) for Y_{n-2}.

For defining Y_{n-3} let's restrict ourselves to a segment $[\alpha_i, \alpha_{i+1}]$ where $\alpha_i, \alpha_{i+1} \in Y_{n-1}$. In this segment we have defined $[\beta_l : 0 < l < \omega] \subseteq Y_{n-2}$. Now choose in each $[\beta_l, \beta_{l+1}]$ an increasing cofinal sequence $\langle \gamma_j^i : 0 < j < \omega \rangle$ such that for $j < p < \omega$, $\text{Th}^n(\omega^m; \bar{P}, \gamma_j^i) |_{[\gamma_j^i, \beta_j^i]}$ is constant.

For $0 < l < p < \omega$ let

$$h_1^l(l, p) := \langle \text{Th}^n(\omega^m; \bar{P}) |_{[\beta_l, \gamma_j^l]}, \text{Th}^n(\omega^m; \bar{P}, \gamma_j^{l-1}) |_{[\gamma_j^l, \beta_j^l]} \rangle$$

and again w.l.o.g we may assume that $\langle \beta_l^i : 0 < l < \omega \rangle$ is homogeneous with respect to h_1^l.

Next, for $i < j < \omega$ define

$$h_2^l(i, j) := \langle \text{Th}^n(\omega^m; \bar{P}) |_{[\alpha_i, \gamma_j^{i-1}]}, \text{Th}^n(\omega^m; \bar{P}, \gamma_j^{i-1}) |_{[\gamma_j^{i-1}, \beta_j^{i-1}]} \rangle$$

by thinning out and renaming we may assume that Y_{n-1} is homogeneous with respect to h_2, now Y_{n-2} is also thinned out but each new $\langle \beta_l^i : 0 < l < \omega \rangle$ which is some old $\langle \beta_l^i : 0 < l < \omega \rangle$ is still homogeneous.

As a result we will have, for some theories t^*, t^{***}, t_{m-3}:

$$(\forall i < j < \omega)(\forall 0 < l < p < \omega)[h_1^l(l, p) = \langle t^*, t_{m-3} \rangle \& h_2^l(i, j) = \langle t^{***}, t_{m-3} \rangle].$$

Let $Y_{m-3} := \{ \gamma_j^i : i < \omega, 0 < l < \omega, 0 < j < \omega \}$, as before (*) holds by noting that if for example $i_1 < i_2 < \omega$ and $1 < l_2$ then

$$\text{Th}^n(\omega^m; \bar{P}, \gamma_j^{i_1,i_2}) |_{[\gamma_j^{i_1,i_2}, \gamma_j^{i_2,i_2}]} = t_{m-3} \cdot \omega + (t^* + t_{m-3} \cdot \omega) \cdot \omega + [t^{***} + (t^* + t_{m-3} \cdot \omega) \cdot \omega] \cdot (i_2 - i_1 - 1) + t^{***} + t_{m-3} \cdot \omega + (t^* + t_{m-3} \cdot \omega)(l_2 - 1) + t^* + t_{m-3} \cdot (j_2 - 1)$$

and similarly for the other possibilities.

$Y_{m-4}, Y_{m-5}, \ldots, Y_1$ are defined by using the same prescription i.e. Y_{n-1} is defined by taking a homogenous sequence between two successive elements of Y_{n-1} then homogenous sequences between two successive elements of Y_{n-2} by using colouring of the form h_1, h_2, \ldots. The thinning out and w.l.o.g’s for already defined Y_{n-k}’s are not necessary but they ease notations considerably.

We will show now that ψ doesn’t choose an unbounded ω-sequence in Y_1 that is, for every ω-sequence $X \subseteq Y_1$ there is an ω-sequence $X' \subseteq Y_1$ such that $\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, X) = \text{Th}^n(\omega^m; \bar{P}, Y_1, X')$.

11
By (\ast), for \(\alpha < \beta \) in \(Y_1 \) the additive colouring \(f(\alpha, \beta) := \text{Th}^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{(\alpha, \beta)} \) depends only on otp\((\alpha, \beta) \cap Y_1) \) hence we can apply lemma 5.1 and conclude that for some \(p \leq m/2 \), for every \(r \geq p \), Th\(^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{(\alpha, \beta)} \) is equal to some fixed theory \(t \) whenever otp\((\alpha, \beta) \cap Y_1) = \omega^r \). (Remember that \(f \) has at most \(M \) possibilities and that \(m > 2M \)). Moreover, we know that \(t + t = t \).

Assume now that for some \(X \subseteq Y_1 \), \(\psi(X, Y, \bar{P}) \) holds, so \(X \) is a cofinal \(\omega \)-sequence. Let \(X = \{ \delta_i : i < \omega \} \). As otp\((Y_1) = \omega^{m-1} \) for unboundedly many \(i \)'s we have otp\((\delta_i, \delta_{i+1}) \cap Y_1) \geq \omega^{m-2} > \omega^p \).

Let \(\beta_i := \text{otp}(\delta_i, \delta_{i+1}) \cap Y_1 \) and denote by \(t(\epsilon) \) the theory Th\(^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{(\alpha, \beta)} \) when otp\((\alpha, \beta) \cap Y_1) = \epsilon \) (by (\ast) it doesn’t matter which \(\alpha \) and \(\beta \) we use).

We are interested in Th\(^{n-1}(\omega^m; \bar{P}, Y_1, X) \) which is

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, 0) \upharpoonright_{[0, \delta_0)} + \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_0) \upharpoonright_{[\delta_0, \delta_1)} + \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_1) \upharpoonright_{[\delta_1, \delta_2)} + \ldots
\]

As \(\delta_i \) is the first element in \([\delta_i, \delta_{i+1}) \cap Y_1 \), Th\(^{n-1}(\omega^m; \bar{P}, Y_1, \delta_i) \upharpoonright_{[\delta_i, \delta_{i+1})} \) is determined by Th\(^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{(\delta_i, \delta_{i+1})} = t(\beta_i) \) and abusing notations we will say

\[
(**) \quad \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, X) \simeq t(\delta_0) + \sum_{i < \omega} t(\beta_i).
\]

Let \(i < \omega \) be such that \(\beta_i \geq \omega^{m-2} \) and let \(j > i \) be the first with \(\beta_j \geq \omega^{m-2} \).

First case: \(i+1 = j \).

Let \(\beta_i := \text{otp}(\delta_i, \delta_{i+1}) \cap Y_1) = \omega^{m-2} \cdot k_1 + \epsilon_1 \) and \(\beta_{i+1} = \text{otp}(\delta_{i+1}, \delta_{i+2}) \cap Y_1) = \omega^{m-2} \cdot k_2 + \epsilon_2 \) where \(k_1, k_2 \geq 1 \) and \(\epsilon_1, \epsilon_2 < \omega^{m-2} \).

Define \(\gamma := \text{the } \omega^{m-2} \cdot k_1 + \omega^{m-3} + \epsilon_1 \text{'th successor of } \delta_i \text{ in } Y_1 \). So \(\delta_{i+1} < \gamma < \delta_{i+2} \) but otp\((\delta_{i+1}, \delta_{i+2}) \cap Y_1) = \beta_{i+1} \) hence

\[
\text{Th}^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{[\gamma, \delta_{i+2})} = \text{Th}^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{[\delta_{i+1}, \delta_{i+2})} = t(\beta_{i+1})
\]

hence

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \gamma) \upharpoonright_{[\gamma, \delta_{i+2})} = \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_{i+1}) \upharpoonright_{[\delta_{i+1}, \delta_{i+2})}.
\]

On the other hand,

\[
\text{Th}^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{[\delta_i, \gamma)} = t(\omega^{m-2} \cdot k_1) + t(\omega^{m-3}) + t(\epsilon_1)
\]

but \(m - 3 \geq p \) hence \(t(\omega^{m-3}) = t(\omega^{m-2}) = t \) moreover \(t + t = t \) and it follows that

\[
t(\omega^{m-2} \cdot k_1) + t(\omega^{m-3}) = t(\omega^{m-2}) \cdot k_1 + t(\omega^{m-3}) = t(\omega^{m-2}) \cdot (k_1 + 1) = t(\omega^{m-2}) \cdot (k_1) = t(\omega^{m-2} \cdot k_1)
\]

hence

\[
\text{Th}^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{[\delta_i, \gamma)} = t(\omega^{m-2} \cdot k_1) + t(\epsilon_1) = \text{Th}^n(\omega^m; \bar{P}, Y_1) \upharpoonright_{[\delta_i, \delta_{i+1})} = t(\beta_{i+1})
\]

hence

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_i) \upharpoonright_{[\delta_i, \gamma)} = \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_i) \upharpoonright_{[\delta_i, \delta_{i+1})}.
\]

Now all other relevant theories are left unchanged therefore, letting \(X' := X \setminus \{ \delta_{i+1} \} \cup \{ \gamma \} \) we get \(X \neq X' \) but

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, X) = \text{Th}^n(\omega^m; \bar{P}, Y_1, X')
\]

General case: \(j = i + l \).
Look at \(\delta_{i+1}, \delta_{i+2}, \ldots, \delta_{i+t-1}, \delta_{i+t} = \delta_j \). We’ll define \(\gamma_1, \gamma_2, \ldots, \gamma_t \) with \(\delta_{i+k} < \gamma_k < \delta_{i+k+1} \) for \(0 < k < l \) and \(\gamma_l = \delta_i + 1 = \delta_j \). This will be done by ‘shifting’ the \(\delta_{i+k} \)’s by \(\omega^{m-3} \) (remember that \(\beta_{i+k} < \omega^{m-2} \) for \(0 < k < l \)).

Assume as before that \(\beta_i = \text{otp}(\{\delta_i, \delta_{i+1}\} \cap Y_1) = \omega^{m-2} \cdot k_1 + \epsilon_1 \) where \(k_1 \geq 1 \) and \(\epsilon_1 < \omega^{m-2} \).

Define \(\gamma_1 := \omega^{m-2} \cdot k_1 + \omega^{m-3} + \epsilon_1 \)'th successor of \(\delta_i \) in \(Y_1 \), \(\gamma_2 := \beta_{i+1} \)'th successor of \(\gamma_1 \) in \(Y_1 \), \(\gamma_3 := \beta_{i+2} \)'th successor of \(\gamma_2 \) in \(Y_1 \) and so on, \(\gamma_i \) will clearly be equal to \(\delta_j \).

As before we have for \(1 < k \leq l \), (by preserving the order types)

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \gamma_k) |_{[\gamma_k, \gamma_{k+1})} = \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_{i+k}) |_{[\delta_{i+k}, \delta_{i+k+1})} .
\]

and (using \(t + t = t \))

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_i) |_{[\delta_i, \gamma_1)} = \text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, \delta_i) |_{[\delta_i, \delta_{i+1})} .
\]

Letting \(X' := X \setminus \{\delta_{i+1}, \delta_{i+2}, \ldots, \delta_{j-1}\} \cup \{\gamma_1, \gamma_2, \ldots, \gamma_{l-1}\} \) we get \(X \not= X' \) but

\[
\text{Th}^{n-1}(\omega^m; \bar{P}, Y_1, X) = \text{Th}^n(\omega^m; \bar{P}, Y_1, X') .
\]

Since \(\text{dp}(\psi) = n - 1 \), \(X \) is not the unique \(\omega \)-sequence chosen by \(\psi \) from \(Y_1 \). Therefore, \(\psi \) does not uniformize \(\phi \) on \(\omega^m \), a contradiction.

[complete, using composition theorem, for \(\omega^n \)]

\[\heartsuit\]

Theorem 5.3. If \(C \) has the uniformization property then \(\text{Log}(C) < \omega \).

\[\heartsuit\]

6. Very Tame Trees

Proposition 6.1. If the ordinals \(\alpha \) and \(\beta \) have the uniformization property then so do \(\alpha + \beta \) and \(\alpha \cdot \beta \).

Proof. \(\alpha + \beta \) is similar to \(\alpha + \alpha = \alpha \cdot 2 \) and we leave it to the reader. We shall prove that \(\alpha \cdot \beta \) has the uniformization property.

Let \(\varphi(X, Y, \bar{Q}) \) be p.n in \(\alpha \beta \) with \(\text{dp}(\varphi) = n \) and \(\text{lg}(\bar{Q}) = l \). Let \(\langle t_0, \ldots, t_{a-1} \rangle \) be an enumeration of the the theories in \(T_{a, l+2} \). For \(i < a \) and \(X, Y \subseteq \alpha \beta \) define \(P_i(X, Y, \bar{Q}) \subseteq K := \{\alpha \gamma : \gamma < \beta\} \) by

\[
P_i(X, Y, \bar{Q}) := \{\alpha \gamma : \text{Th}^n(\alpha \beta; X, Y, \bar{Q}) |_{[\alpha \gamma, \alpha \gamma + \alpha)} = t_i\}
\]

it follows that, for every \(X, Y \subseteq \alpha \beta \) \(\bar{P} = \bar{P}(X, Y, \bar{Q}) = \langle P_0(X, Y, \bar{Q}), \ldots, P_{a-1}(X, Y, \bar{Q}) \rangle \) is a partition of \(K \) that is definable from \(X, Y, \bar{Q} \) and \(K \).

\(\alpha \cdot \beta = \sum_{\gamma < \beta}[\alpha \gamma, \alpha \gamma + \alpha] \) and by theorem 3.8 there is \(m = m(n, l) \) such that \(\text{Th}^n(K; \bar{P}(X, Y, \bar{Q})) \) determines \(\text{Th}^n(\alpha \beta; X, Y, \bar{Q}) \).

Let \(R = \{r_0, \ldots, r_{c-1}\} \) be the set of theories that satisfy, for every \(X, Y \subseteq \alpha \beta \):

\(\text{Th}^n(K; \bar{P}(X, Y, \bar{Q})) \in R \Rightarrow \alpha \beta \models \varphi(X, Y, \bar{Q}) \).
Now let \(\langle s_0, \ldots, s_{b-1} \rangle \) be an enumeration of the the theories in \(T_{n+1,l+1} \). For \(i < b \) and \(Y \subseteq \alpha \beta \) define \(R^0_i(Y, \bar{Q}) \subseteq K \) by

\[
R^0_i(Y, \bar{Q}) := \{ \alpha \gamma : \text{Th}^{n+1}(\alpha \beta; Y, \bar{Q}) |_{[\alpha \gamma, \alpha \gamma + \alpha]} = s_i \}
\]
as before, for every \(Y \subseteq \alpha \beta \), \(\bar{R}^0 = \bar{R}^0(\alpha \beta; Y, \bar{Q}) := (R^0_0(Y, \bar{Q}), \ldots, R^0_{b-1}(Y, \bar{Q})) \) is a partition of \(K \) that is definable from \(Y, \bar{Q} \) and \(K \).

Now let \(\bar{R}^1 = \langle R^1_0, \ldots, R^1_{a-1} \rangle \) be any partition of \(K \). We will say that \(\bar{R}^0(Y, \bar{Q}) \) and \(\bar{R}^1 \) are coherent if

1. \(\alpha \gamma \in (R^0_i \cap R^1_j) \) implies that for every chain \(C, B \subseteq C \) and \(\bar{D} \subseteq C \) of length \(l \):
 \[
 \text{if } \text{Th}^{n+1}(C; B, \bar{D}) = s_i \text{ then } (\exists A \subseteq C)[\text{Th}^n(C; A, B, \bar{D}) = t_j],
 \]
2. \(\text{Th}^n(K; \bar{R}^1) \in \mathcal{R} \).

Since \(a, b \) and \(c \) are finite, there is a formula \(\theta_1(\bar{U}, \bar{W}) \) (with \(\lg(\bar{U}) = b \) and \(\lg(\bar{W}) = a \)) such that for any \(\bar{R}^0, \bar{R}^1 \subseteq K \),
\(K \models \theta_1(\bar{R}^0, \bar{R}^1) \) iff \(\bar{R}^0 \) and \(\bar{R}^1 \) are coherent partitions of \(K \).

Moreover, as \(K \cong \beta \) and \(\beta \) has the uniformization property, there exists \(S \subseteq K \) and a formula \(\theta_2(\bar{U}, \bar{W}) \) such that for every \(\bar{R}^0 \subseteq K \),
\(\text{if } (\exists W)\theta_1(\bar{R}^0, \bar{W}) \text{ then } (\exists W)\theta_2(\bar{R}^0, \bar{W}, S). \)

Let \(\theta(\bar{U}, \bar{W}, \bar{S}) := \theta_1 \land \theta_2 \).

Now let \(Y \subseteq \alpha \beta \), let \(\bar{R}^0 = \bar{R}^0(\alpha \beta; Y, \bar{Q}) \) and suppose that \(\bar{R}^0 \) and some \(\bar{R}^1 \) are coherent partitions of \(K \). When \(\alpha \gamma \in (R^0_0 \cap R^1_1) \), we know by the first clause in the definition of coherence that
\((\exists X \subseteq \alpha \beta) [\text{Th}^n(\alpha \beta; X, \bar{Y}, \bar{Q}) |_{[\alpha \gamma, \alpha \gamma + \alpha]} = t_j]. \)

Now as \([\alpha \gamma, \alpha \gamma + \alpha] \cong \alpha \) and \(\alpha \) has the uniformization property, there is \(\bar{T}_\gamma \subseteq [\alpha \gamma, \alpha \gamma + \alpha] \) and a formula \(\psi_j^\gamma(X, Y, \bar{T}_\gamma) \) (of depth \(k(n,l) \) that depends only on \(n \) and \(l \)) that uniformizes the formula that says \(\text{Th}^n(\alpha \beta; X, \bar{Y}, \bar{Q}) |_{[\alpha \gamma, \alpha \gamma + \alpha]} = t_j \). It follows that when \(\psi_j^\gamma(X, Y, \bar{T}_\gamma) \) holds, \(X \cap [\alpha \gamma, \alpha \gamma + \alpha] \) is unique.

W.l.o.g all \(\bar{T}_\gamma \) have the same length and (by taking prudent disjunctions) \(\psi_j^\gamma(X, Y, \bar{T}_\gamma) = \psi_j(X, Y, \bar{T}_\gamma) \) and let \(\bar{T} = \cup_{\gamma < \beta} \bar{T}_\gamma \) (the union is disjoint). We are ready to define \(U(X, Y, \bar{Q}, \bar{T}, \bar{S}) \) that uniformizes \(\varphi(X, Y, \bar{Q}): \)
\(U(X, Y, \bar{Q}, \bar{T}, \bar{S}) \) says: “for every partition \(\bar{R}^0 \) of \(K \) that is equal to [the definable] \(\bar{R}^0(\alpha \beta; Y, \bar{Q}) \) every \(\bar{R}^1 \) that is a [in fact the only] partition that satisfies \(\theta(\bar{R}^0, \bar{R}^1, \bar{S}) \), if \(\alpha \gamma \in R^1_j \) and \(D = [\alpha \gamma, \alpha \gamma + \alpha] \) and \(\alpha \gamma \) and \(\alpha \gamma + \alpha \) are two successive elements of \(K \) then \(D \models \psi_j(X \cap D, Y \cap D, \bar{Q} \cap D, \bar{T} \cap D) \).”

Check that \(U(X, Y, \bar{Q}, \bar{T}, \bar{S}) \) does the job: clause (1) in the definition of coherence and the \(\psi_j \)’s guarantee that \(X \) is unique, clause (2) guarantees that \(U(X, Y, \bar{Q}, \bar{T}, \bar{S}) \Rightarrow \varphi(X, Y, \bar{Q}) \).

\(\heartsuit \)

Fact 6.2. Every finite chain has the uniformization property.

\(\heartsuit \)

Theorem 6.3. \((\omega, <) \) has the uniformization property.

Corollary 6.4. An ordinal \(\alpha \) has the uniformization property iff \(\alpha < \omega^\omega \).

Definition 6.5. \((T, <) \) is very tame if
1. \(T \) is tame
2. \(\text{Sup}\{\text{Log}(B) : B \subseteq T, \ B \text{ a branch}\} < \omega \)

Lemma 6.6. If \((T, <) \) is not very tame then \((T, <) \) does’nt have the uniformization property.
Proof. If T is not tame then by theorem 2.7 it doesn’t have even a definable choice function.
If T is tame then either there is a branch $B \subseteq T$ with $\log(B) = \infty$ or it has branches of unbounded \log. By 3.14(3) and 5.2 and using the definable well ordering of T, there is a formula $\varphi(X, Y, Z)$ that can’t be uniformized.

\[\Box \]

Theorem 6.7. (T, \prec) has the uniformization property iff (T, \prec) is very tame.

Proof. Assume T is (l^*, n^*, k^*) very tame and let $\varphi(X, Y, \bar{Q})$ be p.u in T with $dp(\varphi) = n$ and $\log(\bar{Q}) = l$.

As T is (n^*, k^*) tame it can be well ordered T in the following way [the full construction is given in theorem A.2 in the appendix]: partition T into a disjoint union of sub-branches, indexed by the nodes of a well founded tree Γ and reduce the problem of a well ordering of T to a problem of a well ordering of Γ. At the first step we pick a branch of T in theorem A.2 in the appendix: partition $\bar{\eta}$ well ordering of Γ and the well ordering of each second step we pick a branch chain with $\log(\bar{\eta})$ nodes of a well founded tree Γ and reduce the problem of a well ordering of Γ we will define partitions $\bar{\eta}$ won’t always mention $\bar{\eta}$.

To get started let $T = A(\}) \cup \bigoplus_{\eta \in \{\}^+} T_\eta$. The union $\bar{\eta}$ won’t always mention $\bar{\eta}$ and we want to define some $\bar{\eta}$ won’t always mention $\bar{\eta}$.

The sequence $\bar{\eta}$ won’t always mention $\bar{\eta}$ and we want to define some $\bar{\eta}$ won’t always mention $\bar{\eta}$.

What we’ll do here in order to uniformize $\varphi(X, Y, \bar{Q})$ is the following: given $\bar{Q} \subseteq T$ we will use the decomposition $T = \bigcup_{\eta \in \Gamma} A_\eta$ and the fact that each A_η is a scattered chain with $\log(A_\eta) < l^*$, (hence satisfies the uniformization property), to define a unique $X_\bar{\eta} \subseteq A_\eta$. This will be done in such a way that when we glue the parts letting $X^* = \bigcup_{\eta \in \Gamma} X_\eta$ we will still get $T = \varphi(X, Y, \bar{Q})$.

We will use the set of representatives $\bar{\eta}$ and the fact that A_η and T_η are defined from u_η but we won’t always mention $\bar{\eta}$. We will also rely on the fact that Γ is well founded (in fact, we only need to know that Γ does not have a branch of order type $\geq \omega + 1$).

So let $\eta \in \Gamma$ and we want to define some $X^* = X^*(Y, \bar{Q}) \subseteq T$. The proof will go as follows: for each $\eta \in \Gamma$ we will define partitions $P^1(Y, \bar{Q})_\eta$ and $P^2(Y, \bar{Q})_\eta$ of $K_{\eta^+} := \{u_\nu : \nu \in \eta^+\}$ then, using the composition theorem 3.14 and similarly to the proof of proposition 6.1, we will define a notion of coherence and let $\bar{R}^1(Y, \bar{Q})_\eta$ and $\bar{R}^2(Y, \bar{Q})_\eta$ be a pair that is coherent with $P^1(Y, \bar{Q})_\eta$ and $P^2(Y, \bar{Q})_\eta$.

The union $\bar{R}^1(Y, \bar{Q}) = \bigcup_{\eta \in \Gamma} \bar{R}^1(Y, \bar{Q})_\eta$ is a partition of K and $\Th^\eta(A_\eta; X_\eta, Y \cap A_\eta, \bar{Q} \cap A_\eta)$ will be determined by the unique member of $\bar{R}^1(Y, \bar{Q})$ to which u_η belongs. Moreover, we will be able to choose X_η uniquely and by coherence $X^* = \bigcup_{\eta \in \Gamma} X_\eta$ will satisfy $\varphi(X, Y, \bar{Q})$.

To get started let $T = A(\}) \cup \bigoplus_{\eta \in \{\}^+} T_\eta$. Now as in definition 3.12 $K_{\{\}^+}$ has a natural structure of a chain with $\log(K_{\{\}^+}) = \log(A_\{\}) < l^*$ and by theorem 3.14(2) there is some $m = m(n, l)$ such that when $X \subseteq T$ is given, from $\Th^m(A_\{\}; X, Y, \bar{Q})$ and $\langle \Th^m(T_\eta; X, Y, \bar{Q}) : \eta \in \{\}^+\rangle$ we can compute $\Th^m(T; X, Y, \bar{Q})$.

Let $\langle s_0, \ldots, s_{n-1} \rangle$ be an enumeration of the the theories in $T_{n+1, l+1}$.

15
Define \(\tilde{P}^1(Y, \bar{Q})_{(i)} = \langle P^1_Y(Y, \bar{Q}), \ldots, P^1_{b-1}(Y, \bar{Q})_{(i)} \rangle \) a partition of \(K_{(i)}^+ \) by

\[
\eta \in \mathcal{P}^1_Y(Y, \bar{Q}_{(i)}) \iff \text{Th}^{n+1}(T_\eta; Y, \bar{Q}) = s_i
\]

By the previous remarks \(\tilde{P}^1(Y, \bar{Q})_{(i)} \) is definable from \(u_{(i)}, K, Y, \bar{Q} \) (and \(\bar{K}_0 \)).

Define \(\tilde{P}^2(Y, \bar{Q})_{(i)} = \langle P^2_Y(Y, \bar{Q}), \ldots, P^2_{b-1}(Y, \bar{Q})_{(i)} \rangle \) a partition of \(K_{(i)}^+ \) by

\[
\eta \in \mathcal{P}^1_Y(Y, \bar{Q})_{(i)} \iff \text{Th}^{n+1}(A_\eta; Y, \bar{Q}) = s_i
\]

Again, \(\tilde{P}^2(Y, \bar{Q})_{(i)} \) is definable from \(u_{(i)}, K, Y, \bar{Q} \) and \(\bar{K}_0 \).

Let \(\langle t_0, \ldots, t_{a-1} \rangle \) be an enumeration of the the theories in \(\mathcal{T}_{n,t+2} \).

A partition of \(K_{(i)}^+ \), \(\bar{R}^1 = \langle R^1_0, \ldots, R^1_{a-1} \rangle \) is coherent with \(\tilde{P}^1(Y, \bar{Q})_{(i)} \) if \(P^1_Y(Y, \bar{Q})_{(i)} \cap R^1_j \neq \emptyset \) implies “for every tree \(S \) and \(B, \bar{C} \subseteq S \) with \(\lg(\bar{C}) = l \), if \(\text{Th}^{n+1}(S; B, \bar{C}) = s_i \) then there is \(A \subseteq S \) such that \(\text{Th}^n(S; A, B, \bar{C}) = t_j \).”

Similarly a partition of \(K_{(i)}^+ \), \(\bar{R}^2 = \langle R^2_0, \ldots, R^2_{a-1} \rangle \) is coherent with \(\tilde{P}^2(Y, \bar{Q})_{(i)} \) if \(P^2_Y(Y, \bar{Q})_{(i)} \cap R^2_j \neq \emptyset \) implies “for every chain \(S \) and \(B, \bar{C} \subseteq S \) with \(\lg(\bar{C}) = l \), if \(\text{Th}^{n+1}(S; B, \bar{C}) = s_i \) then there is \(A \subseteq S \) such that \(\text{Th}^n(S; A, B, \bar{C}) = t_j \).”

Finally, a pair of partitions of \(K_{(i)}^+ \), \(\langle \bar{R}^1, \bar{R}^2 \rangle \) is \(t^* \)-coherent with the pair \(\langle \tilde{P}^1(Y, \bar{Q})_{(i)}, \tilde{P}^2(Y, \bar{Q})_{(i)} \rangle \) if

1. \(\bar{R}^1 \) is coherent with \(\tilde{P}^1(Y, \bar{Q})_{(i)} \),
2. \(\bar{R}^2 \) is coherent with \(\tilde{P}^2(Y, \bar{Q})_{(i)} \), and
3. For every \(X \subseteq T \), if \(\text{Th}^n(A_{\eta}; X, Y, \bar{Q}) = t^* \) and if for every \(\eta \in \langle \eta \rangle^+ \) \(\text{Th}^n(T_\eta; X, Y, \bar{Q}) = t_i \) \(\iff u_\eta \in R^1_1 \), then \(T \models \varphi(X, Y, \bar{Q}) \).

As \(T = (\exists X) \varphi(X, Y, \bar{Q}) \) there are \(t^* \) (that will be fixed from now on), \(\bar{R}^1 \) and \(\bar{R}^2 \) such that \(\langle \bar{R}^1, \bar{R}^2 \rangle \) is \(t^* \)-coherent with the pair \(\langle \tilde{P}^1(Y, \bar{Q})_{(i)}, \tilde{P}^2(Y, \bar{Q})_{(i)} \rangle \).

Moreover, \(\langle \bar{R}^1, \bar{R}^2 \rangle \) is \(t^* \)-coherent with the pair \(\langle \tilde{P}^1(Y, \bar{Q})_{(i)}, \tilde{P}^2(Y, \bar{Q})_{(i)} \rangle \)

is determined by \(\text{Th}^n(K_{(i)}^+; \bar{R}^1, \bar{R}^2, \tilde{P}^1(Y, \bar{Q})_{(i)}, \tilde{P}^2(Y, \bar{Q})_{(i)}) \) where \(k \) depends only on \(n \) and \(l \).

The first two clauses are clear (since \(a \) and \(b \) are finite) and for the third clause use theorem 3.14(2).

So the statement is expressed by a p.u formula \(\psi^1(\bar{R}^1, \bar{R}^2, \tilde{P}^1(Y, \bar{Q})_{(i)}, \tilde{P}^2(Y, \bar{Q})_{(i)}) \) of depth \(k \).

As by a previous remark \(\text{Log}(K_{(i)}^+) < t^* \) there is \(\bar{S}_i \subseteq K_{(i)}^+ \) and a formula \(\psi^1(\bar{U}_1, \bar{U}_2, \bar{W}_1, \bar{W}_2, \bar{S}_i) \) that uniformizes \(\psi^1 \).

To conclude the first step use \(\text{Log}(A_{\eta}) < t^* \) to define, by a formula \(\theta_{(i)}(X, Y \cap A_{\eta}, \bar{Q} \cap A_{\eta}, \bar{O}_{(i)}) \) and a sequence of parameters \(\bar{O}_{(i)} \subseteq A_{\eta} \), a unique \(X_{(i)} \subseteq A_{\eta} \) that will satisfy \(\text{Th}^n(A_{\eta}; X_{(i)}, Y, \bar{Q}) = t^* \).

The result of the first step is the following:

a) we have defined \(X_{(i)} \subseteq A_{\eta} \) using \(\bar{O}_{(i)} \subseteq A_{\eta} \) and \(\theta_{(i)} \). \(X_{(i)} \) is the intesection of the eventual \(X^* \) with \(A_{\eta} \).

b) we have chosen \(\bar{R}^1_{(i)} \), \(\bar{R}^2_{(i)} \subseteq K_{(i)}^+ \) using \(\psi \) and \(\bar{S}_{(i)} \).

c) \(\bar{R}^1_{(i)} \) and \(\bar{R}^2_{(i)} \) tell us what are (for \(\eta \in \langle \eta \rangle^+ \) the theories \(\text{Th}^n(T_\eta; X^*, Y, \bar{Q}) \) and \(\text{Th}_n(A_\eta; X_\eta, Y, \bar{Q}) \) respectively: if \(u_\eta \in R^1_1 \) then the eventual \(X^* \cap T_\eta \subseteq T_\eta \) will satisfy \(\text{Th}^n(T_\eta; X^* \cap T_\eta, Y, \bar{Q}) = t_i \) and if \(u_\eta \in R^2_1 \) then the soon to be defined \(X_\eta \subseteq A_\eta \) will satisfy \(\text{Th}^n(A_\eta; X_\eta, Y, \bar{Q}) = t_j \).

We will proceed by induction on the level of \(\eta \) in \(\Gamma \) (remember, all the levels are \(< \omega \)) to define \(\bar{S}_\eta, \bar{O}_\eta \subseteq A_\eta \) and \(\bar{R}^1_{\eta^+, \bar{R}^2_{\eta^+} \subseteq K_{\eta^+} \) and \(X_\eta \subseteq T_\eta \).

The induction step:
We are at $\nu \in \Gamma$ where $\nu \in \eta^+$ and we want to define $S^\nu, O^\nu \subseteq A^\nu$, $R^1_\nu, R^2_\nu \subseteq K^\nu$ and $X^\nu \subseteq T^\nu$.

Now as $R^1_{\eta^+}$ and $R^2_{\eta^+}$ are defined, u^ν belongs to one member of $R^1_{\eta^+}$ say the i_1'th and to one member of $R^2_{\eta^+}$ say the i_2'th. This implies that there is some $X^\nu \subseteq T^\nu$ such that $Th^\eta(T^\nu; X^\nu, Y, Q) = t_{i_1}$ and $Th^\eta(A^\nu; X^\nu \cap A^\nu, Y, Q) = t_{i_2}$.

Let $P^1(Y, Q)_\nu$ and $P^2(Y, Q)_\nu$ be partitions of K_{ν^+} that are defined as in the first step by saying, for $\tau \in \nu^+$, what are $Th^{\eta^+}[(\tau; Y, Q)$ and $Th^{\eta^+}[(A^\tau; Y, Q)$. $(R^1_{\nu^+}, R^2_{\nu^+}) \subseteq K_{\nu^+}$ will be a pair that is t_{i_1}, t_{i_2}-coherent with $(P^1(Y, Q)_\nu, P^2(Y, Q)_\nu)$ that is:

(1) $R^1_{\nu^+}$ is coherent with $P^1(Y, Q)_\nu$,
(2) $R^2_{\nu^+}$ is coherent with $P^2(Y, Q)_\nu$, and
(3) For every $X \subseteq T^\nu$, if $Th^n(A^\nu; X, Y, Q) = t_{i_2}$ and for every $\tau \in \nu^+$ \[Th^n(T^\nu; X, Y, Q) = t_i \iff u^\tau \in \text{the } i^\text{th member of } R^1_{\nu^+}\], then $Th^n(T^\nu; X, Y, Q) = t_{i_1}$.

Using Log$(K_{\nu+}) < l^*$ choose $S^\nu \subseteq K_{\nu^+}$ and $\psi_{i_1,i_2}(R^1, R^2, P^1(Y, Q)_\nu, P^2(Y, Q)_\nu, S^\nu)$ that uniformizes the formula that says "(R^1, R^2) is t_{i_1}, t_{i_2}-coherent with $(P^1(Y, Q)_\nu, P^2(Y, Q)_\nu)$". We may assume that ψ_{i_1,i_2} depends only on i_1 and i_2 and that Log(S^ν) is constant.

Let $\eta = \cup_{\nu \in \Gamma} O^\nu$, $\bar{S} = \cup_{\nu \in \Gamma} S^\nu$. The uniformizing formula $U(X, Y, Q, O, \bar{S}, K, \bar{K}_0)$ says:

"$X \cap A^\nu$ is defined as in the first step, and for every pair of partitions (P^1, P^2) of K that agrees on each K_{ν^+} with [the definable] $(P^1_{\eta^+}(Y, Q), P^2_{\eta^+}(Y, Q))$, and $(\text{agrees with } (P^1_{\eta^+}(Y, Q), P^2_{\eta^+}(Y, Q)) \text{ on } K_{(\eta^+)}$, and for every (R^1, R^2) that is a [in fact the only] pair of partitions that satisfies for every $u^\eta \in K$: if $u^\eta \in P^1_{i_1} \cap P^2_{i_2}$ then $\psi_{i_1,i_2}(R^1 \cap K^\eta, R^2 \cap K^\eta, P^1 \cap K^\eta, P^2 \cap K^\eta, \bar{S} \cap K^\eta)$ holds, and $(\text{agrees with } (R^1_{(\eta^+)}, R^2_{(\eta^+)}) \text{ on } K_{(\eta^+)}$.

for every $u^\eta \in K$ if $u^\eta \in R^2_{i_1}$ then $\psi_{i_1,i_2}(X \cap A^\eta, Y \cap A^\eta, Q \cap A^\eta, O \cap A^\eta)$ holds."

$U(X, Y, \bar{Q}, O, \bar{S}, K, \bar{K}_0)$ does the job because it defines $X \cap A^\eta$ uniquely on each A^η and because, (by the conditions of coherence) the union of the parts, X, satisfies $\varphi(X, Y, \bar{Q})$. Note also that U does not depend on Y.

\[\heartsuit \]

7. Hopelessness of General Partial Orders

Theorem 7.1. Every partial order P can be embedded in a partial order Q in which P is first-order-definably well orderable.

Proof.

\[\heartsuit \]

Appendix
Lemma A.1. Let C be a scattered chain with $\text{Hdeg}(C) = n$. Then there are $P \subseteq C$, $\lg(P) = n-1$, and a formula (depending on n only) $\varphi_n(x, y, \bar{P})$ that defines a well ordering of C.

Proof. By induction on $n = \text{Hdeg}(C)$:

$n \leq 1$: $\text{Hdeg}(C) \leq 1$ implies $(C, <_C)$ is well ordered or inversely well ordered. A well ordering of C is easily definable from $<_C$.

$\text{Hdeg}(C) = n + 1$: Suppose $C = \sum_{i \in I} C_i$ and each C_i is of Hausdorff degree n. By the induction hypothesis there are a formula $\varphi_n(x, y, \bar{Z})$ and a sequence $\langle \bar{P}^i : i \in I \rangle$ with $\bar{P}^i \subseteq C_i$, $\bar{P}^i = \langle P^i_1, \ldots, P^i_{n-1} \rangle$ such that $\varphi_n(x, y, \bar{P}^i)$ defines a well ordering of C_i.

Let for $0 < k < n$, $P_k := \bigcup_{i \in I} P^i_k$ (we may assume that the union is disjoint) and $P_n := \bigcup \{ C_i : i \text{ even} \}$.

We will define an equivalence relation \sim by $x \sim y$ iff $\bigwedge_i (x \in C_i \iff y \in C_i)$.

\sim and $[x]$, (the equivalence class of an element x), are easily definable from P_n and $<_C$. We can also decide from P_n if I is well or inversely well ordered (by looking at subsets of C consisted of nonequivalent elements) and define $<'$ to be $<$ if I is well ordered and the inverse of $<$ if not.

$\varphi_{n+1}(x, y, P)$ will be defined by:

$$
\varphi_{n+1}(x, y, \bar{P}) \iff \left[x \not< y \land x <' y \right] \lor \left[x < y \land \varphi_n(x, y, P_1 \cap [x], \ldots, P_{n-1} \cap [x]) \right]
$$

$\varphi_{n+1}(x, y, \bar{P})$ well orders C.

Theorem A.2. Let T be a tame tree. If $\omega + 2$ is not embeddable in T then there are $\bar{Q} \subseteq T$ and a monadic formula $\varphi(x, y, \bar{Q})$ that defines a well ordering of T.

Proof. Assume T is (n^*, k^*) tame, recall definitions 4.1 and 4.2 and remember that for every $x \in T$, $rk(x)$ is well defined (i.e. $< \infty$). We will partition T into a disjoint union of sub-branches, indexed by the nodes of a well founded tree Γ and reduce the problem of a well ordering of T to a problem of a well ordering of Γ.

Step 1. Define by induction on α a set $\Gamma_{\alpha} \subseteq {\alpha}^{\text{Ord}}$ (this is a our set of indices), for every $\eta \in \Gamma_{\alpha}$ define a tree $T_\eta \subseteq T$ and a branch $A_\eta \subseteq T_\eta$.

$\alpha = 0$: $\Gamma_0 = \{ \langle \rangle \}$, T_\emptyset is T and A_\emptyset is a branch (i.e. a maximal linearly ordered subset) of T.

$\alpha = 1$: Look at $(T \setminus A_\emptyset)/\sim_{A_\emptyset}$, it’s a disjoint union of trees and name it $\langle T_{(i)} : i < i^* \rangle$, let $\Gamma_1 := \{ \langle i : i < i^* \rangle : i \in I \}$ and for every $i \in \Gamma_1$ let $A_{(i)}$ be a branch of $T_{(i)}$.

$\alpha = \beta + 1$: For $\eta \in \Gamma_\beta$ denote $(T_\eta \setminus A_\eta)/\sim_{A_\eta}$ by $\langle T_{\eta,i} : i < i_\eta \rangle$, let $\Gamma_{\eta,i} := \{ \langle \eta, i : \eta \in \Gamma_\beta, i < i_\eta \} \} and choose $A_{\eta,i}$ to be a branch of $A_{\eta,i}$.

α limit: Let $\Gamma_\alpha = \{ \eta \in {\alpha}^{\text{Ord}} : \land_{\beta < \alpha} \langle \beta \in \Gamma_\beta, \land_{\beta < \alpha} T_{\eta,\beta} \neq \emptyset \rangle \}$, let for $\eta \in \Gamma_\alpha$ $T_\eta = \cap_{\beta < \alpha} T_{\eta,\beta}$ and A_η a branch of T_η.

Now, at some stage $\alpha \leq |T|$ we have $\Gamma_\alpha = \emptyset$ and let $\Gamma = \cup_{\beta < \alpha} \Gamma_\beta$. Clearly $\{ A_\eta : \eta \in \Gamma \}$ is a partition of T into disjoint sub-branches.

Notation: having two trees T and Γ, to avoid confusion, we use x, y, s, t for nodes of T and η, ν, σ for nodes of Γ.

Step 2. We want to show that $\Gamma_\omega = \emptyset$ hence Γ is a well founded tree. Note that we made no restrictions on the choices of the A_η’s and we add one now in order to make the above statement true. Let $\land_{\eta,i} \in \Gamma$ define $A_{\land_{\eta,i}}$ to be the sub-branch $\{ t \in A_\eta : (\forall s \in A_{\land_{\eta,i}}) [rk(t) \leq rk(s)] \}$ and $\gamma_{\eta,i}$ to be $\overline{rk(t)}$ for some $t \in A_{\land_{\eta,i}}$. By 5.5(1) and the inexistence of a strictly decreasing sequence of ordinals, $A_{\land_{\eta,i}} \neq \emptyset \} and $\gamma_{\eta,i}$ is well defined. Note also that $s \in A_{\land_{\eta,i}} \Rightarrow rk(s) \leq \gamma_{\eta,i}$.

Proposition: For every $\eta \in \Gamma$ and $i < i_\eta$ the sub-branch $A_{\land_{\eta,i}}$ contains every $s \in T_{\land_{\eta,i}}$ with $rk(s) = \gamma_{\eta,i}$.
Following this we claim: “Γ does not contain an infinite, strictly increasing sequence”. Otherwise let \(\{ \eta_i \}_{i \in \omega} \) be one, and choose \(s_n \in A_{\eta_i} \cdot \sigma_{n+1} \) (so \(s_n \in A_{\eta_i} \)). Clearly \(rk(s_n) \geq rk(s_{n+1}) \) and by the proviso we get
\[
rk(s_n) = rk(s_{n+1}) \Rightarrow rk(s_{n+1}) > rk(s_{n+2})
\]
therefore \(\{ rk(s_n) \}_{n \in \omega} \) contains an infinite, strictly decreasing sequence of ordinals which is absurd.

Step 3. Next we want to make “\(x \) and \(y \) belong to the same \(A_\eta \)” definable.

For each \(\eta \in \Gamma \) choose \(s_\eta \in A_\eta \), and let \(Q \subseteq T \) be the set of representatives. Let \(h: T \rightarrow \{ d_0, \ldots, d_{n-1} \} \) be a colouring that satisfies: \(h \mid A_\eta = d_0 \) and for every \(\eta, i \in \Gamma \), \(h \mid A_{\eta,i} \) is constant and, when \(j < i \) and \(s_{\eta,j} \sim A_\eta s_{\eta,i} \) we have \(h \mid A_{\eta,i} \neq h \mid A_{\eta,j} \). This can be done as \(T \) is \((n^*, d^*)\) tame.

Using the parameters \(D_0, \ldots, D_{n-1} \) (\(x \in D_i \) iff \(h(x) = d_i \)), we can define \(\forall \eta x, y \in A_\eta \) by “\(x, y \) are comparable and the sub-branch \([x, y] \) (or \([y, x]) \) has a constant colour”.

Step 4. As every \(A_\eta \) has Hausdorff degree at most \(k^* \), we can define a well ordering of it using parameters \(P^0_1, \ldots, P^0_k \) and by taking \(\tilde{\mathcal{P}} \) to be the (disjoint) union of the \(P^0 \)'s we can define a partial ordering on \(T \) which well orders every \(A_\eta \).

By our construction \(\eta \sim \nu \) if and only if there is an element in \(A_\nu \) that ‘breaks’ \(A_\eta \) i.e. is above a proper initial segment of \(A_\eta \). (Caution, if \(T \) does not have a root this may not be the case for \(\langle \rangle \) and a \(n^* \) number of \(\langle i \rangle \)'s and we may need parameters for expressing that). Therefore, as by step 3 “being in the same \(A_\eta \)” is definable, we can define a partial order on the sub-branches \(A_\eta \) (or the representatives \(s_\eta \)) by \(\eta \sim \nu \Rightarrow A_\eta \leq A_\nu \).

Next, note that “\(\nu \) is an immediate successor of \(\eta \) in \(\Gamma \)” is definable as a relation between \(s_\nu \) and \(s_\eta \) hence the set \(A_\eta^+ := A_\eta \cup \{ s_{\eta,i} \} \) is definable from \(s_\eta \). Now the order on \(A_\eta \) induces an order on \(\{ s_{\eta,i} \sim A_\eta \} \) which is can be embedded in the compilation of \(A_\eta \) hence has \(\text{Hdeg} \leq k^* \). Using additional parameters \(Q^0_1, \ldots, Q^0_k \), we have a definable well ordering on \(\{ s_{\eta,i} \sim A_\eta \} \). As for the ordering on each \(\sim A_\eta \) equivalence class (finite with \(\leq n^* \) elements), define it by their colours (i.e. the element with the smaller colour is the smaller according to the order).

Using \(\tilde{\mathcal{D}}, \tilde{\mathcal{P}}, Q \) and \(\tilde{Q} = \cup \eta \tilde{Q}^0 \) we can define a partial ordering which well orders each \(A_\eta^+ \) in such a way that every \(x \in A_\eta \) is smaller then every \(s_{\eta,i} \).

Summing up we can define (using the above parameters) a partial order on subsets of \(T \) that well orders each \(A_\eta \), orders sub-branches \(A_\eta \), \(A_\nu \) when the indices are comparable in \(\Gamma \) and well orders all the “immediate successors” sub-branches of a sub-branch \(A_\eta \).

Step 5. The well ordering of \(T \) will be defined by \(x < y \iff \)
\(a) x \) and \(y \) belong to the same \(A_\eta \) and \(x < y \) by the well order on \(A_\eta \); or
\(b) x \in A_\eta, y \in A_\nu \) and \(\eta \sim \nu \); or
\(c) x \in A_\eta, y \in A_\nu, \) \(\eta \sim \nu \) in \(\Gamma \) (defined as a relation between sub-branches), \(\eta \sim \nu \) in \(\Gamma \) (defined as a relation between sub-branches), \(\eta \sim \nu \) and \(s_{\eta,i} < s_{\eta,j} \) in the order of \(A_\eta^+ \).

Note, that \(x < y \) is a linear order on \(T \) and every \(A_\eta \) is a convex and well ordered sub-chain. Moreover \(< \) is a linear order on \(\Gamma \) and the order on the \(s_\eta \)'s is isomorphic to a lexicographic order on \(\Gamma \).

Why is the above (which is clearly definable with our parameters) a well order? Because of the above note and because a lexicographic ordering of a well founded tree is a well order, provided that immediate successors are well ordered. In detail, assume \(X = \{ x_i \}_{i \in \omega} \) is a strictly decreasing sequence of elements of \(T \). Let \(\eta_i \) be the unique node in \(\Gamma \) such that \(x_i \in A_{\eta_i} \) and by the above note w.l.o.g \(i \neq j \Rightarrow \eta_i \neq \eta_j \). By the well foundedness of \(\Gamma \) and clause (b) we may also assume w.l.o.g.
that the η_i's form an anti-chain in Γ. Look at $\nu_i := \eta_1 \land \eta_i$ which is constant for infinitely many i's and w.l.o.g equals to ν for every i. Ask:

(*): Is there is an infinite $B \subseteq \omega$ such that $i, j \in B \Rightarrow x_i \sim^0_{A_\nu} x_j$?

If this occurs we have $\nu_1 \neq \nu$ with $\nu \triangleleft \nu_1$ such that for some infinite $B' \subseteq B \subseteq \omega$ we have $i \in B' \Rightarrow \nu_1 \triangleleft \eta_i$. (use the fact that $\sim^1_{A_\nu}$ is finite). W.l.o.g $B' = \omega$ and we may ask if (*) holds for ν_1. Eventually, since Γ does not have an infinite branch, we will have a negative answer to (*). We can conclude that w.l.o.g there is $\nu \in \Gamma$ such that $i \neq j \Rightarrow x_i \not\sim^0_{A_\nu} x_j$ i.e. the x_i's “break” A_ν in “different places”.

Define now ν_i to be the unique immediate successor of ν such that $\nu_i \triangleleft \eta_i$. The set $S = \{s_{\nu_i} \}_{i<\omega} \subseteq A^+_{\nu}$ is well ordered by the well ordering on A^+_{ν} and by clause (c) in the definition of $\nu_i > x_j$ is an infinite strictly decreasing subset of A^+_{ν} — a contradiction.

This finishes the proof that there is a definable well order of T.

\heartsuit