Dynamics of a guanaco–sheep competitive system with unilateral and bilateral control

Jing Xu · Mingzhan Huang · Xinyu Song

Received: 7 July 2021 / Accepted: 30 November 2021 / Published online: 24 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract In this paper, based on a guanaco–sheep competitive system, we develop and analyze mathematical models with unilateral and bilateral control for the management of overgrazing. We first analyze the dynamics of the uncontrolled system. It then follows the analysis of the system with impulsive control by differential equation geometry theory. We mainly prove the existence and stability of order-1 periodic solution for unilateral control system and order-2 periodic solution for bilateral control system. Some numerical simulations including the bifurcation diagrams of periodic solution are carried out, which not only verify the validity of the theoretical results, but also reveal some special dynamic phenomena, such as the appearance of higher-order periodic solutions and the existence of parameter intervals with the order change of periodic solution. Comparing the unilateral and bilateral control strategy, we encourage bilateral control rather than unilateral control for the management of sheep species.

Keywords Guanaco–sheep competitive model · Successor function · Periodic solution · Existence and stability

1 Introduction

The guanaco, which distributed in the arid and semi-arid areas [1], is a native and wild camelid species in South America [2], and the population size of this species has suffered a sustained decline. Authors of [3] showed that the guanacos occupy only 26% of its original scope. The results of [4] suggested that the range distribution of the guanacos has been reduced by 60% in Argentina, 75% in Chile. This phenomenon is mainly attributed to habitat change and loss, competition with livestock (sheep, cattle and horses) for pasture and the lack of a proper management for livestock [5].

Literature study shows that there is a competitive relationship between the guanaco and sheep species. Puig et al. [6] indicated that competition between guanaco and domestic animals is due to the fact that their diets overlap up to 83%. Baldi et al. [7] and Gordon [8] suggested that guanaco and sheep compete for food and water resources. Ranchers believe that guanaco depletes food supplies, hence reducing productivity of sheep species [9]. So it is very meaningful to investigate the interaction of these two species. In this regard, Laguna et al. [10] developed a three-dimensional mathematical model with two competing herbivores (sheep and guanaco) and one predator, and analyzed the steady state of the occupation of patches for the three species. Daza et al. [11] proposed a delayed differential model capturing the interaction between sheep and guanaco,
and investigated coexistence and extinction of these two species.

However, overgrazing or domestic animal overstock has caused vegetation degradation, and the reduction of wildlife is the most serious consequences of vegetation degradation. Pedrana et al. [1] indicated that sheep species seems to have a higher impact on vegetation. Marino et al. [12] showed that grassland degradation and the decline of guanaco species will continue due to overgrazing. Bharucha et al. [13] pointed out that overgrazing modified the plant cover and impaired its productive capacity. So what management programs should be developed by human beings to change this situation and protect guanaco species and grassland? With human intervention, the population size of sheep and guanaco species will change in a short time, and this phenomenon could be well described by impulsive differential equation [14] which has been extensively applied in applications [15–27]. For example, integrated pest management models were studied in [15–17] where the existence of order-1 periodic solution is proved. Meanwhile, the authors of [18] and [19] also considered the optimal control problem. For resource management, Guo et al. [22] analyzed an algae–fish with unilateral control. Moreover, bilateral control strategy is applied in [23,25,27] where the existence and stability of order-2 periodic solution are mainly proved. Huang et al. [27] also analyzed the attraction region of the system, and performed bifurcation diagrams of periodic solution. In addition, bilateral control strategy has also been applied to biodiversity conservation and commodity price adjustment [24,26].

Motivated by the above research, in this paper, by constructing semi-continuous dynamical systems, we develop mathematical models for the management of sheep and guanaco species. On the one hand, the number of sheep species will be limited to avoid overgrazing; on the other hand, the economic interests of farmers should also be protected while keeping sheep from overgrazing. In practical operation, the number of sheep is more controllable compared with guanaco, and its number monitoring is more convenient and feasible, so we take the number of sheep as the state variable of feedback control in the design of state feedback control strategy. Based on these two aspects, we consider unilateral and bilateral control strategies to keep the sheep species in a suitable range.

The rest of the paper is organized as follows. In Sect. 2, we develop guanaco–sheep competitive systems with unilateral and bilateral control strategy. In Sect. 3, the existence of the order-1 and order-2 periodic orbit is proved by successor function. And stability of the order-1 and order-2 periodic orbit is verified by analogue of the Poincaré criterion. In Sect. 4, the numerical simulations are carried out with a special case to validate the theoretical results. Finally, a brief conclusion is presented in Sect. 5.

2 Model formulation

For the guanaco and sheep species, their competitive ability is related to their body size. Tilman et al. [28] considered that the competitiveness of these two competing herbivores is not in the same hierarchy. Daza et al. [11] also pointed out that there exists hierarchical competition between guanaco and sheep, the guanaco is assumed to be the superior species, and sheep is the inferior one. So we assume that the effect of inferior species on superior species satisfies Holling II functional response \(\frac{c y}{1+cy} \) [29–31], and the influence of higher competitors on lower competitors satisfies a linear function \(ex \). Based on the classical two-species competitive system [32], we get a modified competitive system as follows:

\[
\begin{align*}
\frac{dx}{dt} &= x \left(a - bx - \frac{cy}{1+cy} \right), \\
\frac{dy}{dt} &= y \left(d - ex - fy \right),
\end{align*}
\]

where \(x(t), y(t) \), respectively, stands for the density of guanaco and sheep species. \(a, d \), respectively, represents the intrinsic increasing rate of the guanaco and sheep species; \(c \) measures the strength of the effect of sheep species on the guanaco; \(e \) measures the strength of the effect of the guanaco on the sheep species; \(b, f \), respectively, stands for the intra-specific competition coefficient of the guanaco and sheep species.

As the application of semi-continuous dynamic system in overgrazing management, we mainly investigate guanaco–sheep competitive systems with unilateral and bilateral control strategies. In practical operation, the number of sheep is more controllable compared with guanaco, and its number monitoring is more convenient and feasible, so we take the number of sheep as the state variable of feedback control in the design of state feedback control strategy. On the one hand, desertification caused by overgrazing should be gradually mitigated; on the other hand, the interests of farmers should also be protected. So we are committed to
keeping the number of sheep within a reasonable range $[h_1, h_2]$. To this end, we extend system (1) by incorporating two control thresholds $y = h_1$ and $y = h_2$. When the number of sheep species decreases to h_1, herdsman can increase the number of sheep by a certain proportion, while reducing the number of guanacos by a certain amount. When the quantity of sheep species reaches to h_2, people can release guanaco and harvest sheep suitably. Thus, two guanaco–sheep competitive systems with unilateral control are established as follows:

$$\begin{align*}
\frac{dx}{dt} &= x \left(a - bx - \frac{cy}{1+y} \right) & y > h_1, \\
\frac{dy}{dt} &= y(d - ex - fy), \\
\Delta x &= -\tau_1, \Delta y = \alpha_1 y & y = h_1, \\
x(0) > 0, y(0) > h_1.
\end{align*}$$

and

$$\begin{align*}
\frac{dx}{dt} &= x \left(a - bx - \frac{cy}{1+y} \right) & y < h_2, \\
\frac{dy}{dt} &= y(d - ex - fy), \\
\Delta x &= -\tau_2, \Delta y = -\alpha_2 y & y = h_2, \\
x(0) > 0, y(0) < h_2.
\end{align*}$$

When two kinds of control are considered simultaneously, we have the following competitive system with bilateral control:

$$\begin{align*}
\frac{dx}{dt} &= x \left(a - bx - \frac{cy}{1+y} \right) & h_1 < y < h_2, \\
\frac{dy}{dt} &= y(d - ex - fy), \\
\Delta x &= -\tau_1, \Delta y = \alpha_1 y & y = h_1, \\
\Delta x &= -\tau_2, \Delta y = -\alpha_2 y & y = h_2, \\
x(0) > 0, h_1 < y(0) < h_2.
\end{align*}$$

All the parameters in systems (2), (3) and (4) are positive, and $0 < \alpha_1, \alpha_2 < 1$.

3 Main results

In this section, we mainly discuss the dynamical properties of system (1) and the existence and stability of periodic solution of systems (2), (3) and (4).

3.1 Dynamics of free system (1)

For system (1), it is easy to determine that trivial equilibrium $O(0, 0)$ is always unstable. The equilibrium $E_1(\frac{a}{b}, 0)$ is locally stable if $ae > bd$, otherwise it is unstable; equilibrium $E_2(0, \frac{c}{d})$ is locally stable if $a(f + d) > cd$, otherwise it is unstable. Positive equilibrium (x^*, y^*) satisfies the following equation:

$$\begin{align*}
a - bx - \frac{cy}{1+y} := w(x, y), \\
d - ex - fy := g(x, y).
\end{align*}$$

(5)

After simple calculation, we have $x^* = \frac{(d-f)y^*}{e}$, and y^* satisfies the following second-order algebraic equation:

$$a_1 y^2 + b_1 y + c_1 = 0,$$

where $a_1 = bf$, $b_1 = b(f-d) + e(a-c)$, $c_1 = ae - bd$. Define $\Delta = b_1^2 - 4a_1c_1$.

Obviously, the curve $l_2 := \{(x, y)|w(x, y) = 0\}$ has a horizontal asymptote $y = -1$ and a vertical asymptote $y = \frac{a-c}{b}$, respectively. Combining with differential equation geometry theory, we analyze the existence and stability of the positive equilibrium of system (1) from the following two cases.

Case 1. If $a > c$, then vertical asymptote $y = \frac{a-c}{b}$ lies on the right of y-axis. The location of the two isoclines l_1 and l_2 is shown in Fig. 1.

1. If $\Delta > 0$, $a > c$, $ae < bd$, $b(f-d) + e(a-c) < 0$, $a(d + f) > cd$, system (1) exists unique positive equilibrium $E^*_1(x^*_1, y^*_1)$ (see Fig. 1a). The Jacobian matrix of system (1) evaluated at E^*_1 is

$$JE^*_1 = \begin{pmatrix} -bx^*_1 - \frac{cy^*_1}{1+y^*_1} & -ey^*_1 \\ -fy^*_1 & -ax^*_1 \end{pmatrix}.$$

Since $-\frac{f(y^*_1, y^*_1)}{y^*_1} \cdot \frac{x(y^*_1, y^*_1)}{y(y^*_1, y^*_1)} < \frac{g(x^*_1, y^*_1)}{y(y^*_1, y^*_1)}$, i.e., $bf > \frac{ce}{(1+y^*_1)^2}$, then we have

$$Tr(JE^*_1) = -(bx^*_1 + fy^*_1) < 0;$$

$$\det(JE^*_1) = x^*_1 y^*_1 \left(bx^*_1 + \frac{ce}{(1+y^*_1)^2} \right) > 0.$$

So E^*_1 is locally stable. By constructing Dulac function $D(x, y) = \frac{1}{xy}$, it is easy to find that system (1) has no limit cycle. So we conclude that E^*_1 is globally stable.

2. If $\Delta > 0$, $a > c$, $ae > bd$, $b(f-d) + e(a-c) < 0$, $a(d + f) > cd$, system (1) has two positive equilibria $E^*_1(x^*_1, y^*_1)$ and $E^*_2(x^*_2, y^*_2)$ (see Fig. 1b). Similarly, we can conclude that $E^*_1(x^*_1, y^*_1)$ is locally stable, and $E^*_2(x^*_2, y^*_2)$ is a saddle point.

Case 2. If $a < c$, then vertical asymptote $y = \frac{a-c}{b}$ lies on the left of y-axis. The location of the two isoclines l_1 and l_2 is shown in Fig. 2.
Fig. 1 The location of the two isoclines l_1 and l_2 \(a > c \)

Fig. 2 The location of the two isoclines l_1 and l_2 for \(a < c \)

1. If $\Delta > 0$, $a < c$, $b(f - d) + e(a - c) < 0$, $a(d + f) < cd$, $ae > bd$, system (1) exists unique positive equilibrium $E_1^*(x_1^*, y_1^*)$ (see Fig. 2a). It is easy to determine that $E_1^*(x_1^*, y_1^*)$ is unstable.

2. If $\Delta > 0$, $a < c$, $b(f - d) + e(a - c) > 0$, $a(d + f) > cd$, $ae < bd$, system (1) exists unique positive equilibrium $E_1^*(x_1^*, y_1^*)$ (see Fig. 2b). It is easy to determine that $E_1^*(x_1^*, y_1^*)$ is globally stable.

3. If $\Delta > 0$, $a < c$, $b(f - d) + e(a - c) < 0$, $ae > bd$, $a(d + f) > cd$, system (1) has two positive equilibria $E_1^*(x_1^*, y_1^*)$ and $E_2^*(x_2^*, y_2^*)$ (see Fig. 2c). We can conclude that $E_1^*(x_1^*, y_1^*)$ is locally stable, and $E_2^*(x_2^*, y_2^*)$ is a saddle point.
3.2 Existence and stability of the order-1 periodic solution

In this work, we mainly prove the existence and stability of periodic solution when the unique positive equilibrium $E_1^*(x_1^*, y_1^*)$ is unstable. It then follows that the proof the existence of order-1 periodic solution of system (2).

3.2.1 Existence of the order-1 periodic solution of system (2)

As is shown in Fig. 3, the dashed lines indicate the separatrices of saddle point which divide the first quadrant into four regions. Line l_3 intersects with the phase set $N_1 = \{(x, y) \in R^2_+ | y = (1 + \alpha_1)h_1 \}$ and impulsive set $M_1 = \{(x, y) \in R^2_+ | y = h_1 \}$ at point A_2 and B_2, respectively. Denote the coordinates of points A_2 and B_2 as $(x_{A_2}, (1 + \alpha_1)h_1)$ and (x_{B_2}, h_1). We now illustrate the existence of the order-1 periodic solution of system (2).

Theorem 1 If $x_{A_2} < x_{B_2} - \tau_1$, then system (2) exists an order-1 periodic solution.

Proof Denote the intersection point of the curve l_2 and the line M_1 by B_1. According to the phase diagram of system (2), there must exist a point $A_1(x_{A_1}, h_1) \in N_1$ such that the trajectory from A_1 intersects with M_1 at point B_1, then jumps to A_1^+ due to the impulsive effect. Obviously, $x_{A_1^+} < x_{B_1} < x_{A_1}$, so we have that the successor function of point A_1 satisfies that $G(A_1) = x_{A_1^+} - x_{A_1} < 0$. Thus, we only need to find another point $A_2 \in N_1$ such that $G(A_2) > 0$. Consider the intersection point A_2 of the dashed line l_3 and N_1, the trajectory from A_2 intersects with N_1 at point B_2, and then jumps to A_2^+ due to the impulsive effect. Based on the condition $x_{A_2} < x_{B_2} - \tau_1$, we have that $G(A_2) = x_{B_2} - \tau_1 - x_{A_2} > 0$, as is shown in Fig. 4. According to the continuity of successor functions, there must exist a point $A \in N_1$ between A_1 and A_2 satisfying that $G(A) = 0$, i.e., the trajectory $AB \cup BA$ forms an order-1 periodic solution of system (2).

It then follows the proof of the stability of order-1 periodic solution of system (2).

![Fig. 3 The existence of order-1 periodic solution of system (2)](image)

3.2.2 Stability of order-1 periodic solution of system (2)

Assume that $T_1(t) = (\xi_1(t), \eta_1(t))$ is the order-1 periodic solution of system (2) with period T_1. Define $\xi_1(0) = x_A, \eta_1(0) = y_A, \xi_1(T_1) = x_B, \eta_1(T_1) = y_B = h_1, \xi_1(T_1 + 0) = x_B - \tau_1 = x_A, \eta_1(T_1 + 0) = (1 + \alpha_1)h_1 = y_A$.

Theorem 2 The order-1 periodic solution of system (2) is orbitally asymptotically stable if $|\Theta_1| < 1$ holds, where

$$\Theta_1 = \frac{x_B(d - e(x_B - \tau_1) - f h_1(1 + \alpha_1))}{(d - e x_B - f h_1)(x_B - \tau_1)}.$$**Proof**

$$P(x, y) = x \left(a - bx - \frac{cy}{1 + y} \right),$$

$$Q(x, y) = y(d - ex - fy),$$

$$\frac{\partial P}{\partial x} = a - 2bx - \frac{cy}{1 + y},$$

$$\frac{\partial Q}{\partial y} = d - ex - 2fy,$$

$$E(x, y) = -\tau_1, F(x, y) = \alpha_1 y, \varphi(x, y) = y - h_1,$$

$$\frac{\partial E}{\partial x} = 0, \frac{\partial E}{\partial y} = 0, \frac{\partial F}{\partial x} = 0,$$

$$\frac{\partial F}{\partial y} = \alpha_1, \frac{\partial \varphi}{\partial x} = 0, \frac{\partial \varphi}{\partial y} = 1.$$
3.2.3 Existence and stability of the order-1 periodic solution of system (3)

Next, we mainly investigate the existence of the order-1 periodic solution of system (3).

As is shown in Fig. 4, line l_4 intersects with the phase set $N_2 = \{(x, y) \in \mathbb{R}^2_+ | y = (1 - \alpha_2)h_2\}$ and impulsive set $M_2 = \{(x, y) \in \mathbb{R}^2_+ | y = h_2\}$ at points A_4 and B_4, respectively. Denote the coordinates of points A_4 and B_4 as $(x_{A_4}, (1 - \alpha_2)h_2)$ and (x_{B_4}, h_2). In the following, we prove the existence of order-1 periodic solution of system (3).

Theorem 3 If $x_{B_4} + \tau_2 < x_{A_4}$, then system (3) exists an order-1 periodic solution.

Proof Select a point $A_3(x_{A_3}, (1 + \alpha_2)h_2)$ in phase set N_2 where x_{A_3} is sufficiently small, the trajectory from A_3 intersects with M_2 at point B_3, and then jumps to A_3^+ due to the impulsive effect. Since x_{A_3} is sufficiently small, then the successor function of point A_3 satisfies that $G(A_1) = x_{A_3^+} - x_{A_3} > 0$. Next, we only need to find another point $A_4 \in N_2$ such that $G(A_4) < 0$. Consider the intersection point A_4 of the dashed line l_4 and N_2, the trajectory from A_4 intersects with M_2 at point B_4, and then jumps to A_4^+ due to the impulsive effect. Since $x_{B_4} + \tau_2 < x_{A_4}$, we get $G(A_4) = x_{B_4} + \tau_2 - x_{A_4} < 0$, as is shown in Fig. 4. By the continuity of successor function, there must exist a point A between A_3 and A_4 satisfying that $G(A) = 0$, i.e., there exists an order-1 periodic solution of system (3).}

Remark 2 The proof of the stability of order-1 periodic solution of system (3) is similar to the proof of theorem 2, so we omit it here.

Remark 3 According to Theorem 1 and Remark 2, we can see that when the upper threshold of the number of...
sheep is limited and the state feedback control is carried out, through the timely supply of guanaco (τ_2) and reasonable harvest of sheep (α_2), we can also ensure that the number of the two species presents a stable periodic change.

3.3 Existence and stability of the order-2 periodic solution

In this subsection, we mainly prove the existence and stability of order-2 periodic solution of system (4).

3.3.1 Existence of the order-2 periodic solution of system (4)

Next, we will prove the existence of order-2 periodic solution of system (4). For convenience, we suppose that the isocline l_1 intersects with impulsive set M_2 and phase set N_1 at points $G_1(x_{G_1}, h_2)$ and $G_2(x_{G_2}, 1 + \alpha_1) h_1)$, respectively. Isocline l_2 and the line l_3 intersect with impulsive set M_1 at point $D_3(x_{D_3}, h_1)$ and point $H(x_H, h_1)$, respectively. l_5 and l_6 intersect with N_1 and N_2 at point $F_1(x_{F_1}, 1 - \alpha_2) h_2)$, $F_2(x_{F_2}, 1 + \alpha_1) h_1)$, respectively. Besides, there must exist a point $S(x_S, 1 - \alpha_2) h_2)$ in N_2, such that the trajectory from point S intersects with impulsive set M_1 at point D_3.

Theorem 4 If $x_{D_1} - x_{F_2} < \tau_1 < x_H, x_{F_1} < \tau_2 < x_S - x_{G_1}$, then system (4) has an order-2 periodic solution.

Proof Choose a point $A_1 \in N_1$, where A_1 is very closed to y-axis, i.e., x_{A_1} is positive and small enough. The trajectory starting from point A_1 will intersect with the impulsive set M_2 at point $B_1(x_{B_1}, h_2)$. Based on the second impulsive function, point B_1 is mapped to point $C_1(x_{C_1}, (1 - \alpha_2)h_2) \in N_2$, where $x_{C_1} = x_{B_1} + \tau_2$. Due to that $x_{F_1} < \tau_2 < x_S - x_{G_1}$, so $x_{F_1} < x_{C_1} < x_S$. The trajectory starting from point C_1 will intersect with the impulsive set M_1 at point $D_1(x_{D_1}, h_1)$, then D_1 is on the right side of the line l_3. Based on the first impulsive function, point D_1 is mapped to point $A_1^+ \in N_1$, where point A_1^+ is the order-2 successor point of A_1, and $x_{A_1^+} = x_{D_1} - \tau_1$. Since $x_{D_1} - x_{F_2} < \tau_1 < x_H < x_{D_1}$, we have $0 < x_{A_1^+} < x_{D_1} - (x_{D_1} - x_{F_2}) < x_{F_2}$. In addition, x_{A_1} is positive and small enough, so we have $G(A_1) = x_{A_1^+} - x_{A_1} > 0$ (see Fig. 5a).

Choose another point $A_2 \in N_1$, and A_2 is sufficiently closed to point F_2 and it is on the left side of point F_2. Similar to the discussion above, the trajectory starting from point A_2 intersects with M_2 at point $B_2(x_{B_2}, h_1)$, where $x_{B_2} > x_{B_1}$. Then, point B_2 is mapped to point $C_2(x_{C_2}, (1 - \alpha_2)h_2) \in N_2$, and we have $x_{F_1} < x_{C_2} = x_{B_2} - \tau_2$. The trajectory starting from C_2 intersects with impulsive set M_1 at point $D_2(x_{D_2}, h_1)$ satisfying that $x_H < x_{D_1} < x_{D_2} < x_{D_1}$. Then, point D_2 is mapped to $A_2^+ \in N_1$, where $x_{A_2^+} = x_{D_2} - \tau_2$, thus $0 < x_{A_2^+} < x_{D_2} - (x_{D_2} - x_{F_2}) < x_{F_2}$. Since A_2 is sufficiently closed to F_2, we have $x_{A_2^+} < x_{A_2}$, i.e., $G(A_2) = x_{A_2^+} - x_{A_2} < 0$. By the continuity of successor function, there is a point A between A_1 and A_2 satisfying $G(A) = 0$, then $AB \cup BC \cup CD \cup DA$ forms an order-2 periodic solution, as is shown in Fig. 5b.

It then follows that the stability of order-2 periodic solution of system (4).
3.3.2 Stability of the order-2 periodic solution

Let $T(t) = (\xi(t), \eta(t))$ be the order-2 periodic solution of system (4). Define $\xi(0) = x_A$, $\eta(0) = y_A$, $\xi(T_1) = x_B$, $\eta(T_1) = y_B = h_2$, $\xi(T_1 + 0) = x_C$, $\eta(T_1 + 0) = y_C = (1 - \alpha_2) h_2$, $\xi(T_1 + T_2) = x_D = h_1$, $\eta(T_1 + T_2) = y_D, \xi(T_1 + T_2 + 0) = x_A = x_D - \tau_1$ and $\eta(T_1 + T_2 + 0) = (1 + \alpha_1) y_D = y_A$ (see Fig. 5b). Next, we prove the stability of the order-2 periodic solution.

Theorem 5 The order-2 periodic solution of system (4) is orbitally asymptotically stable if $|\Phi_2| < 1$ holds, where

$$
\Phi_2 = \frac{\Delta_1 \Delta_2 x_B(x_A + \tau_1)}{x_A(x_B + \tau_2)},
$$

$$
\Delta_1 = \frac{(1 - \alpha_2)(d - e(x_B + \tau_2) - fh_1(1 - \alpha_2))}{d - eX_B - fh_2},
$$

$$
\Delta_2 = \frac{(1 + \alpha_1)(d - e(x_D - \tau_1) - fh_1(1 + \alpha_1))}{d - eX_D - fh_1}.
$$

Proof Based on system (4), we have

$$
P(x, y) = x \left(a - bx - \frac{cy}{1 + y} \right),
$$

$$
Q(x, y) = y(d - ex - fy),
$$

$$
\frac{\partial P}{\partial x} = a - 2bx - cy, \quad \frac{\partial Q}{\partial y} = d - ex - 2fy.
$$

$$
E_1(x, y) = \tau_1, \quad F_1(x, y)
$$

$$
= -\alpha_1 y, \quad \varphi_1(x, y) = y - h_1,
$$

$$
E_2(x, y) = -\tau_2, \quad F_2(x, y)
$$

$$
= \alpha_2 y, \quad \varphi_2(x, y) = y - h_2.
$$

By simple calculation,

$$
\Delta_1 = \frac{P_+ \left(\frac{\partial F_1}{\partial y} \frac{\partial \psi_1}{\partial x} - \frac{\partial F_1}{\partial x} \frac{\partial \psi_1}{\partial y} + \frac{\partial \psi_1}{\partial x} \right) + Q_+ \left(\frac{\partial E_1}{\partial y} \frac{\partial \psi_1}{\partial x} - \frac{\partial E_1}{\partial x} \frac{\partial \psi_1}{\partial y} + \frac{\partial \psi_1}{\partial y} \right)}{P \left(\frac{\partial \psi_1}{\partial x} \right) + Q \left(\frac{\partial \psi_1}{\partial y} \right)}
$$

$$
= \frac{Q_+ (\xi(T_1 + 0), \eta(T_1 + 0))}{P_+ (\xi(T_1), \eta(T_1))} \frac{(1 - \alpha_2)(d - e(x_B + \tau_2) - fh_2(1 - \alpha_2))}{(d - eX_B - fh_2)}
$$

$$
\Delta_2 = \frac{P_+ \left(\frac{\partial F_2}{\partial y} \frac{\partial \psi_2}{\partial x} - \frac{\partial F_2}{\partial x} \frac{\partial \psi_2}{\partial y} + \frac{\partial \psi_2}{\partial x} \right) + Q_+ \left(\frac{\partial E_2}{\partial y} \frac{\partial \psi_2}{\partial x} - \frac{\partial E_2}{\partial x} \frac{\partial \psi_2}{\partial y} + \frac{\partial \psi_2}{\partial y} \right)}{P \left(\frac{\partial \psi_2}{\partial x} \right) + Q \left(\frac{\partial \psi_2}{\partial y} \right)}
$$

$$
= \frac{Q_+ (\xi(T_1 + T_2 + 0), \eta(T_1 + T_2 + 0))}{Q_+ (\xi(T_1 + T_2), \eta(T_1 + T_2))} \frac{(1 + \alpha_1)(d - e(x_D - \tau_1) - fh_1(1 + \alpha_1))}{(d - eX_D - fh_1)}.
$$
Then, we have
\[
\int_{0^+}^{T_1+T_2} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dt = \int_{0^+}^{T_1+T_2} \left(a - 2bx - \frac{cy}{1+y} + d - ex - 2fy \right) dt
\]
\[
= \int_{0^+}^{T_1} \left(a - 2ux - \frac{cy}{1+y} + d - ex - 2fy \right) dt + \int_{T_1}^{T_1+T_2} \left(a - 2ux - \frac{cy}{1+y} + d - ex - 2fy \right) dt
\]
\[
= \int_{x_A}^{x_B} \frac{1}{x} dx + \int_{y_A}^{y_B} \frac{1}{y} dy + \int_{x_C}^{x_D} \frac{1}{x} dx + \int_{y_C}^{y_D} \frac{1}{y} dy
\]
\[
- \int_{0^+}^{T_1+T_2} (bx + fy) dt
\]

Then, we have
\[
\mu_2 = \Delta_1 \Delta_2 \exp \left\{ \int_{0^+}^{T_1+T_2} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} \right) dt \right\}
\]
\[
= \Delta_1 \Delta_2 \frac{x_B(x_A + \tau_1)}{x_A} \exp \left\{ - \int_{0^+}^{T_1+T_2} (bx + fy) dt \right\},
\]
and \(\exp \left\{ - \int_{0^+}^{T_1+T_2} (bx + fy) dt \right\} < 1 \). Define \(\Phi_2 = \Delta_1 \Delta_2 \frac{x_B(x_A + \tau_1)}{x_A} \frac{1}{\Phi_1} \). If \(|\Phi_2| < 1 \), then \(|\mu_2| < 1 \), thus the order-2 periodic solution of system (4) is orbitally asymptotically stable.

Remark 4 According to Theorems 4 and 5, we can see that for the bilateral control that both the upper and lower thresholds of the number of sheep are limited and the state feedback control is carried out, through reasonable adjustment of the harvest and supply strategy of the two populations \((\alpha_1, \alpha_2, \tau_1, \tau_2)\), their number will maintain a sustained and stable periodic change.

4 Examples and numerical simulations

In this section, some numerical simulations will be presented to verify the theoretical results in the previous section. Different types of periodic solutions are performed with different control parameters.

Example 1 Select model parameters as follows: \(a = 0.45, b = 0.7, c = 0.9, d = 0.4, e = 1, f = 0.3\). If we just take unilateral control measure, then we have following two guanaco–sheep competitive systems with unilateral control:
\[
\begin{align*}
\frac{dx}{dt} &= x \left(0.45 - 0.7x - \frac{0.9y}{1+y} \right), & y > h_1, \\
\frac{dy}{dt} &= y(0.4 - x - 0.3y), & y < h_2, \\
\Delta x &= -\tau_1, \Delta y = \alpha_1 y \quad y = h_1, \\
\Delta x &= \tau_2, \Delta y = -\alpha_2 y \quad y = h_2, \\
x_0 > 0, y_0 > h_1.
\end{align*}
\]

In order to get the order-1 periodic solution of system (6), we select control parameters \(h_1 = 0.15, \alpha_1 = 0.25\) and \(\tau_1 = 0.02\). The trajectory starting from the initial value \((x_0, y_0) = (0.4, 0.5)\) will tend to be an order-1 periodic solution (see Fig. 6). Figure 6d is a partial enlargement of Fig. 6c.

Keep other parameters unchanged but \(\tau_1 = 0.2\), then the trajectory from the same initial value also tends to be an order-1 periodic solution (see Fig. 7). Obviously, comparing Figs. 6d and 7c, we find that system (6) exhibits different types of order-1 solution with different values of \(\tau_1\).

In order to get the order-1 periodic solution of system (7), we select control parameters: \(h_2 = 0.75, \alpha_2 = 0.4\) and \(\tau_2 = 0.12\). Then, the trajectory starting from initial value \((x_0, y_0) = (0.2, 0.5)\) tends to be an order-1 periodic solution (see Fig. 8).

Keep other parameters unchanged, choosing the control parameter \(\tau_2 = 0.05\), and the trajectory from same initial value also tends to be an order-1 periodic solution (see Fig. 9). It is obvious that system (7) exhibits different types of order-1 solutions with different values of \(\tau_2\) by comparing Figs. 8c and 9c.

Example 2 In order to illustrate the existence of order-2 periodic solution of system (4) in Sect. 3.3, by using the same model parameters, we get the following specific system:
\[
\begin{align*}
\frac{dx}{dt} &= x \left(0.45 - 0.7x - \frac{0.9y}{1+y} \right), & h_1 < y < h_2, \\
\frac{dy}{dt} &= y(0.4 - x - 0.3y), & y > h_2, \\
\Delta x &= -\tau_1, \Delta y = \alpha_1 y \quad y = h_1, \\
\Delta x &= \tau_2, \Delta y = -\alpha_2 y \quad y = h_2, \\
x_0 > 0, h_1 < y_0 < h_2.
\end{align*}
\]

To get the order-2 periodic solution of system (8), we select control parameters \(h_1 = 0.25, h_2 = 0.75, \alpha_1 = \)
Fig. 6 Existence of the order-1 periodic solution of system (6) with control parameters $h_1 = 0.15$, $\alpha_1 = 0.25$ and $\tau_1 = 0.02$.

(a) (b) (c) (d)

Fig. 7 Existence of the order-1 periodic solution of system (6) with control parameters $h_1 = 0.15$, $\alpha_1 = 0.25$ and $\tau_1 = 0.2$.
Fig. 8 Existence of the order-1 periodic solution of system (7) with control parameters \(h_2 = 0.75, \alpha_2 = 0.4 \) and \(\tau_2 = 0.12 \)

Fig. 9 Existence of the order-1 periodic solution of system (7) with control parameters \(h_2 = 0.75, \alpha_2 = 0.4 \) and \(\tau_2 = 0.05 \)

0.6, \(\alpha_2 = 0.45 \), \(\tau_1 = 0.12 \) and \(\tau_2 = 0.25 \). It is obvious that the trajectory from initial value \((x_0, y_0) = (0.35, 0.3)\) tends to be an order-2 periodic solution (see Fig. 10). Keep other parameters unchanged but \(\tau_1 = 0.075 \), and it is easy to find that the trajectory from the same initial value tends to be an order-2 periodic solution (see Fig. 11).

Example 3 To show the bifurcation diagram of system (4), we choose \(\tau_2 \in (0, 0.9) \) as bifurcation parameter and \(h_1 = 0.25, h_2 = 0.75, \alpha_1 = 0.6, \alpha_2 = 0.45, \tau_1 = 0.075 \). From Fig. 12, we can see that system (4) can exhibit order 1, 2, 3 and 4 periodic orbits with \(\tau_2 \in (0, 0.9) \). More precisely, there exist an order-1 periodic orbit for \(\tau_2 \in (0, 0.258) \), and then an order-2 periodic solution bifurcates from the order-1 periodic solution at \(\tau_2 \approx 0.258 \). Also, system (4) exists order-2 periodic orbit for \(\tau_2 \in (0.258, 0.45) \) and order-3 periodic solution for \(\tau_2 \in (0.45, 0.792) \). Similarly, system (4) appears order-3 periodic solution at \(\tau_2 \approx 0.45 \) and order-4 periodic solution at \(\tau_2 \approx 0.792 \). Choose \(\tau_2 = 0.79, 0.8 \) and keep other parameters fixed, we show the existence of order-3 and order-4 periodic solution of system (4) (see Fig. 13). Obviously, system (4) has different types of periodic solutions with the change of parameter \(\tau_2 \). And if we select \(\tau_1, \alpha_1 \) or \(\alpha_2 \) as bifur-
Fig. 10 Existence of the order-2 periodic solution of system (4) with control parameters $h_1 = 0.25$, $h_2 = 0.75$, $\alpha_1 = 0.6$, $\alpha_2 = 0.45$, $\tau_1 = 0.12$ and $\tau_2 = 0.25$

Fig. 11 Existence of the order-2 periodic solution of system (4) with control parameters $h_1 = 0.25$, $h_2 = 0.75$, $\alpha_1 = 0.6$, $\alpha_2 = 0.45$, $\tau_1 = 0.075$ and $\tau_2 = 0.25$

ication parameter, there exist similar results, so omitted here.

Remark 5 Numerical results show that there is always a periodic solution when the conditions of the theorems in Sect. 3 are satisfied. In addition, we also note that for the two models of unilateral control (4) and (3), the first pays more attention to the minimum economic interests of herdsmen, and emphasizes that the number of sheep should not be lower than an economic threshold in state control. The second focuses on the maximum benefits that herdsmen can obtain. At this time, the number of guanacos in the environment is at a relatively low level. Corresponding to them, after adopting the bilateral control model (4), on the one hand, the interests of herdsmen have been fully guaranteed; on the other hand, the number of guanacos in the environment has also been maintained at a relatively reasonable level.
5 Conclusions

In this paper, we develop and analyze a mathematical model for the management of overgrazing based on a guanaco–sheep competitive system with unilateral and bilateral control. The case of that the unique positive equilibrium E_1^+ of the basic ODE model is unstable is mainly discussed. More precisely, the existence of order-1 and order-2 periodic solution is verified by the method of successor function. Also, the stability of order-1 and order-2 periodic solution is proved by applying the geometry theory and analogue of Poincaré criterion.

Numerical results show that if the control parameters α_1, τ_1 are given suitably, then system (2) exists an order-1 periodic solution. It means that guanaco and sheep species can be maintained periodically in certain level. If we change the value of τ_1 and keep other parameters unchanged, then system (2) also has an order-1 periodic solution. Besides, system (2) exhibits different types of order-1 periodic solution with different values of τ_1. There exist similar results for system (3). In addition, if the control parameters α_1, τ_1, α_2, τ_2 are chosen suitably, then system (4) has an order-2 periodic solution. In the research of mathematical model, the exploration of the influence of different parameters on the system has always been highly valued by scholars [33–38]. By drawing bifurcation diagram of periodic solution with $\tau_2 \in (0, 0.9)$, it is easy to find that system (4) exists high-order periodic solution, such as order-3 and order-4 periodic solutions. Compared with the results obtained in [24,32], the proposed control models in this paper exhibit different dynamical behaviors, such as the different types of order-1 and order-2 periodic solutions, high-order periodic solutions and the existence of parameter intervals with the order change of periodic solution.

The research shows that if unilateral control measure is adopted, then system (2) or (3) has order-1 periodic solution, it means that population size of these two species changes periodically. For system (2), the aim of this control measure is to avoid the extinction of the sheep species and guarantee the farmers’ profits, but it may not alleviate desertification caused by overgraz-
The authors declare that there is no conflict of interest. No datasets were generated or analyzed during the current study.

Consider semi-continuous dynamical system

\[
\begin{align*}
\frac{dx}{dt} &= P(x, y), \\
\frac{dy}{dt} &= Q(x, y), \\
\Delta x &= E(x, y), \\
\Delta y &= F(x, y),
\end{align*}
\]

where \(M(x, y) \) is called the impulsive set. Denote the impulsive map \(\phi : (x, y) \rightarrow (x + \Delta x, y + \Delta y) \), i.e. \(N(x, y) = \phi(M(x, y)) \). And if \((x, y) \notin M(x, y) \), the system develops under the regulation of \(f(x, y) = \left(\begin{array}{c} \frac{dx}{dt} = P(x, y), \\
\frac{dy}{dt} = Q(x, y) \end{array} \right) \), this part is similar to a continuous system.

Next, the definition of the successor function and periodic solution of system (4) are introduced.

Definition 1 For system (4), the two impulsive sets can be denoted by \(M_1 = \{(x, y) \in \mathbb{R}_+^2 | y = h_1 \} \) and \(M_2 = \{(x, y) \in \mathbb{R}_+^2 | y = h_2 \} \), respectively. The corresponding impulsive mappings are defined as: \(\phi_1 : (x, h_1) \in M_1 \rightarrow (x^+, y^+) = (x - \tau_1, (1 + \alpha_1)h_1) \) and \(\phi_2 : (x, h_2) \in M_2 \rightarrow (x^+, y^+) = (x + \tau_2, (1 - \alpha_2)h_2) \), while the Phase sets of the impulsive mappings are denoted by \(N_1 = \phi_1(M_1) \) and \(N_2 = \phi_1(M_2) \).

Definition 2 1. For a certain point \(P_1 \in N_1 \), the trajectory from \(P_1 \) intersects with \(M_1 \) at point \(Q_1 \), then the impulsive mapping \(\phi_1 \) maps it to the phase point \(Q_1^+ \). \(Q_1^+ \) is called the order-1 successor point of \(P_1 \), and \(G(P_1) = y_{Q_1^+} - y_{P_1} \) is called the successor function of point \(P_1 \). If \(Q_1^+ \) coincides with \(P_1 \), then the trajectory \(\overrightarrow{P_1 Q_1} \cup \overrightarrow{Q_1 P_1} \) forms an order-1 periodic solution, as is shown in Fig. 14a.
2. For a certain point \(P_2 \in N_2 \), the trajectory from \(P_2 \) intersects with \(M_2 \) at point \(Q_2 \), then the impul-

Figure 14 Schematic diagram of the existence of order-1 and order-2 periodic solution

- **a** and **b** show different aspects of the system's behavior under control strategies. **a** illustrates unilateral control, where the trajectory from point \(P \) intersects with \(M_1 \) at point \(Q_1 \), leading to a periodic solution. **b** depicts bilateral control, with trajectories intersecting with \(M_1 \) and \(M_2 \) at points \(Q_1 \) and \(Q_2 \), respectively, leading to a more complex periodic behavior.

Acknowledgements We are grateful to the editor and the four anonymous reviewers for their valuable and constructive comments and suggestions, which greatly helped us to improve the presentation of this paper. This work is supported by the National Natural Science Foundation of China (12071407).

Data availability Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Conflict of interest The authors declare that there is no conflict of interests.

Appendix

In this section, we introduce some definitions and lemmas about the geometric theory of the semi-continuous dynamical system.
sive mapping ϕ_2 maps it to the phase point Q_2^+. Q_2^+ is called the order-1 successor point of P_2, and $G(P_1) = y_{Q_1^+} - y_{P_1}$ is called the successor function of point P_2. If Q_2^+ coincides with P_2, then the trajectory $P_2 Q_2 \cup Q_2 P_2$ forms an order-1 periodic solution, as is shown in Fig. 14a.

3. For a certain point $P_1 \in N_2$, the trajectory from P_2 intersects with M_1, if the first mapping ϕ_1 maps it to the phase point $Q_1^+ \in N_1$. And, the trajectory from Q_1^+ intersects with M_2 at point S_1, then the mapping ϕ_2 maps it to the phase point $S_1^+ \in N_2$. S_1^+ is called order-2 successor point of P_1. If S_1^+ coincides with P_1, then the trajectory $P_1 Q_1 \cup Q_1 Q_1^+ \cup Q_1^+ S_1 \cup S_1 P_1$ forms an order-2 periodic solution, as is shown in Fig. 14b. Besides, point S_1^+ is called the order-2 successor point of P_1, and $G(P_1) = y_{S_1^+} - y_{P_1}$ is called the order-2 successor function of point P_2.

References

1. Pedrana, J., Travaini, A., Zann, J.I., et al.: Environmental factors influencing guanaco distribution and abundance in central Patagonia, Argentina. Wildl. Res. 46(1), 1–11 (2019)
2. Franklin, W.L.: Contrasting socioecologies of South American wild camelds: the vicuna and the guanaco. In: Eisenberg, J.F., Kleinman, D.G. (eds.) Advances in the Study of Mammalian Behavior. American Society of Mammalogists, pp. 573–629. Allen Press, Kansas (1983)
3. Baldi, R.B., Acebes, P., Cullar, E., et al.: Lama Guanicoe. IUCN Red List Threat Species, London (2016)
4. Franklin, W.L., Bas, M.F., Bonacic, C.F., et al.: Striving to manage Patagonia guanacos for sustained use in the grazing agroecosystems of southern Chile. Wildl. Soc. Bull. 25(1), 65–73 (1997)
5. Cupaza, C., Puig, S., Villalba, L.: Situación actual del guanaco y su ambiente. In: Puig, S. (ed.) Técnicas para el manejo del guanaco, pp. 27–50. IUCN, Buenos Aires (1995)
6. Puig, S., Videla, F., Cona, M.L., et al.: Use of food availability by guanacos (Lama guanicoe) and livestock in Northern Patagonia (Mendoza, Argentina). J. Arid Environ. 47, 291–308 (2001)
7. Baldi, R., Albón, S.D., Estens, D.A.: Guanacos and sheep: evidence for continuing competition in arid patagonia. Oecologia 129, 561–570 (2001)
8. Gordon, I.J.: What is the future for wild, large herbivores in human-modified agricultural landscapes? Wildl. Biol. 15(1), 1–9 (2009)
9. Hernandez, F., Corcoran, D., Graells, G., et al.: Rancher perspectives of a livestock-wildlife conflict in Southern Chile. Rangelands 39(2), 56–63 (2017)
10. Laguna, M.F., Abramson, G., Kuperman, M.N., et al.: Mathematical model of livestock and wildlife: predation and competition under environmental disturbances. Ecol. Model. 309, 110–117 (2015)
11. Diaz, C., Laguna, M.F., Monjeau, J.A., et al.: Waves of desertification in a competitive ecosystem. Ecol. Model. 396, 42–49 (2019)
12. Marino, A., Rodriguez, V., Schroeder, N.M.: Wild guanacos as scapegoat for continued overgrazing by livestock across southern Patagonia. J. Appl. Ecol. 57(12), 2393–2398 (2020)
13. Bharucha, F.R., Shankarnarayan, K.A.: Effects of overgrazing on the grasslands of the western Ghats, India. Ecology 39(1), 152–153 (1958)
14. Chen, L.: Pest control and geometric of semi continuous dynamical system. J. Beihua Univ. (Nat. Sci.) 12(1), 1–9 (2011)
15. Zhang, H., Chen, L., Georgescu, P.: Impulsive control strategies for pest management. J. Biol. Syst. 15, 235–260 (2007)
16. Tang, S., Xiao, Y., Chen, L., Cheke, R.A.: Integrated pest management models and their dynamical behaviour. Bull. Math. Biol. 67, 115–135 (2005)
17. Tang, S., Cheke, R.A.: State-dependent impulsive models of integrated pest management (IPM) strategies and their dynamic consequences. J. Math. Biol. 50(3), 257–292 (2005)
18. Sun, K., Zhang, T., Tian, Y.: Dynamics analysis and control optimization of a pest management predator-prey model with an integrated control strategy. Appl. Math. Comput. 292, 253–271 (2017)
19. Xu, J., Tian, Y., Guo, H., Song, X.: Dynamical analysis of a pest management Leslie–Gower model with ratio-dependent functional response. Nonlinear Dyn. 93(4), 705–720 (2018)
20. Singh, A., Gakkhar, S.: State-dependent impulsive feedback control of a delayed prey-predator system. Dyn. Contin. Discrete Impulsive Syst. 19(2), 231–249 (2012)
21. Su, K.K., Giphil, C., Lin-Fei, N.: State-dependent impulsive control strategies for a tumor-immune model. Discrete Dyn. Nat. Soc. 2016, 2979414 (2016)
22. Guo, H., Chen, L., Song, X.: Qualitative analysis of impulsive state feedback control to an algae-fish system with bistable property. Appl. Math. Comput. 271, 905–922 (2015)
23. Fu, J., Chen, L.: Modelling and qualitative analysis of water hyacinth ecological system with two state-dependent impulse controls. Complexity 2018, Article ID:4543976 (2018)
24. Xu, J., Huang, M., Song, X.: Dynamical analysis of a two-species competitive system with state feedback impulsive control. Int. J. Biomath. 13(78), 2050007 (2020)
25. Zhang, M., Zhao, Y., Chen, L., et al.: State feedback impulsive modeling and dynamic analysis of ecological balance in aquaculture water with nutritional utilization rate. Appl. Math. Comput. 373, 125007 (2020)
26. Zhang, M., Zhao, Y., Song, X.: Dynamics of bilateral control system with state feedback for price adjustment strategy. Int. J. Biomath. (2021). https://doi.org/10.1142/S1793524521500315
27. Huang, M., Liu, S., Song, X., et al.: Dynamics of unilateral and bilateral control systems with state feedback for renewable resource management. Complexity 2020, Article ID 9453941 (2020)
28. Tilman, D., May, R.M., Lehman, C.L., et al.: Habitat destruction and the extinction debt. Nature 371, 65–66 (1994)
29. Gopalsamy, K.: Stability and Oscillation in Delay Differential Equations of Population Dynamics, in Mathematics and Its Applications, vol. 74. Kluwer Academic Press, Dordrecht (1992)
30. Liu, Z., Tan, R., Chen, Y.: Modeling and analysis of a delayed competitive system with impulsive perturbations. Rocky Mt. J. Math. 38(5), 1505–1523 (2008)
31. Liu, Z., Wang, Q.: An almost periodic competitive system subject to impulsive perturbations. Appl. Math. Comput. 231, 377–385 (2014)
32. Liu, S., Chen, L., Luo, G.: Asymptotic behaviors of competitive Lotka–Volterra system with stage structure. J. Math. Anal. Appl. 271, 124–138 (2002)
33. Khan, N.S., Kumam, P., Thounthong, P.: Computational approach to dynamic systems through similarity measure and homotopy analysis method for renewable energy. Curr. Comput. Aided Drug Des. 10, 1086 (2020)
34. Khan, N.S., Usman, A.H., Sohail, A., et al.: A framework for the magnetic dipole effect on the thixotropic nanofluid flow past a continuous curved stretched surface. Curr. Comput. Aided Drug Des. 11, 645 (2021)
35. Khan, N.S., Shah, Q., Sohail, A., et al.: Rotating flow assessment of magnetized mixture fluid suspended with hybrid nanoparticles and chemical reactions of species. Sci. Rep. 11(1), 11277 (2021)
36. Khan, N.S., Kumam, P., Thounthong, P.: Magnetic field promoted irreversible process of water based nanocomposites with heat and mass transfer flow. Sci. Rep. 11, 1692 (2021)
37. Usman, A.H., Khan, N.S., Humphries, U.W., et al.: Computational optimization for the deposition of bioconvection thin Oldroyd-B nanofluid with entropy generation. Sci. Rep. 11(1), 11641 (2021)
38. Usman, A.H., Khan, N.S., Humphries, U.W., et al.: Development of dynamic model and analytical analysis for the diffusion of different species in non-Newtonian nanofluid swirling flow. Front. Phys. 8, 616790 (2021)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.