SOME APPROXIMATION RESULTS ON HIGHER ORDER GENERALIZATION OF BERNSTEIN TYPE OPERATORS DEFINED BY (p, q)-INTEGERS

M. MURSALEEN AND MD. NASIRUZZAMAN

Abstract. In this paper, we introduce the higher order generalization of Bernstein type operators defined by (p, q)-integers. We establish some approximation results for these new operators by using the modulus of continuity.

1. Introduction and preliminaries

In 1912, S.N Bernstein [2] introduced the following sequence of operators $B_n : C[0, 1] \to C[0, 1]$ defined for any $n \in \mathbb{N}$ and for any $f \in C[0, 1]$ such as

$$B_n(f; x) = \sum_{k=0}^{n} \binom{n}{k} x^k (1-x)^{n-k} f \left(\frac{k}{n} \right), \quad x \in [0, 1]. \quad (1.1)$$

In approximation theory, q-type generalization of Bernstein polynomials was introduced by Lupas [5].

For $f \in C[0, 1]$, the generalized Bernstein polynomial based on the q-integers is defined by Phillips [10] as follows

$$B_n,q(f; x) = \sum_{k=0}^{n} \left[\binom{n}{k}_q \right] x^k \prod_{s=0}^{n-k-1} (1-q^s x) f \left(\frac{k}{n} \right), \quad x \in [0, 1]. \quad (1.2)$$

Recently, Mursaleen et al. [7] applied (p, q)-calculus in approximation theory and introduced first (p, q)-analogue of Bernstein operators(Revised) and defined as:

$$B_{n,p,q}(f; x) = \frac{1}{p^{n(n-1)/2}} \sum_{k=0}^{n} f \left(\frac{\left[k \right]_p}{p^{k-n}[n]} \right) P_{n,k}(p, q; x), \quad 0 < q < p \leq 1, \quad x \in [0, 1] \quad (1.3)$$

where

$$P_{n,k}(p, q; x) = p^{k(k-1)/2} \left[\binom{n}{k}_{p,q} \right] x^k \prod_{s=0}^{n-k-1} (p^s - q^s x). \quad (1.4)$$

They have also introduced and studied approximation properties based on (p, q)-integers given as: Bernstein-Stancu operators [8] and Bernstein-Shurer operators [9].

1Corresponding author. Email: mursaleenm@gmail.com; Phone: +919411491600
2010 Mathematics Subject Classification. 41A10, 41A36.
Key words and phrases. (p, q)-integers; (p, q)-Bernstein operators; modulus of continuity; approximation theorems.
We recall some basic properties of \((p, q)\)-integers.

The \((p, q)\)-integer \([n]_{p,q}\) is defined by
\[
[n]_{p,q} = \frac{p^n - q^n}{p - q}, \quad n = 0, 1, 2, \ldots, \quad 0 < q < p \leq 1.
\]

The \((p, q)\)-Binomial expansion is
\[
(x + y)^n_{p,q} := (x + y)(px + qy)(p^2x + q^2y) \cdots (p^{n-1}x + q^{n-1}y)
\]
and the \((p, q)\)-binomial coefficients are defined by
\[
\left[\begin{array}{c} n \\ k \end{array}\right]_{p,q} := \frac{[n]_{p,q}!}{[k]_{p,q}![n-k]_{p,q}!}.
\]

For \(p = 1\), all the notions of \((p, q)\)-calculus are reduced to \(q\)-calculus. For details on \(q\)-calculus and \((p, q)\)-calculus, one can refer [11, 12, 1, 3] and [5], respectively.

In this paper we use the notation \([n]\) in place of \([n]_{p,q}\).

In [3], \((p, q)\)-derivative of a function \(f(x)\) is defined by
\[
D_{p,q}f(x) = \frac{f(px) - f(qx)}{(p - q)x}, \quad x \neq 0,
\]
and the formulae for the \((p, q)\)-derivative for the product of two functions is given as
\[
D_{p,q}(fg)(x) = f(px).D_{p,q}g(x) + \{D_{p,q}f(x)\}.g(qx), \quad \text{(1.6)}
\]
also
\[
D_{p,q}(fg)(x) = f(qx).D_{p,q}g(x) + \{D_{p,q}f(x)\}.g(px). \quad \text{(1.7)}
\]

Let \(r \in \mathbb{N} \cup \{0\}\) be a fixed number. For \(f \in C^n[0, 1]\) and \(m \in \mathbb{N}\), we define an operator of \(r^{th}\) order for \((p, q)\)- Bernstein type operators as follows:
\[
B^{[r]}_{n,p,q}(f; x) = \frac{1}{p^{(n-1)x}} \sum_{k=0}^{n} P_{n,k}(p, q; x) \sum_{i=0}^{r} \frac{1}{i!} f^{(i)} \left(\frac{[k]}{p^k q^n} \right) \left(x - \frac{[k]}{p^k q^n} \right)^i.
\]

In this paper, using the moment estimates from [6], we give the estimates of the central moments for operators defined by (1.3). We also study some approximation properties of an \(r^{th}\) order generalization of the operators defined by (1.8) using the techniques of the work on the higher order generalization of \(q\)-analogue [13]. Further, we study approximation properties and prove Voronovskaja type theorem for these operators.

If we put \(p = 1\), then we get the moments for \(q\)-Bernstein operators [6] and the usual generalization higher order \(q\)-Bernstein operators [13], respectively.
2. Main results

The following result is (p, q)-analogue of [1].

Proposition 2.1. For $n \geq 1$, $0 < q < p \leq 1$

\[
D_{p,q}(1 + x)^n_{p,q} = [n](1 + qx)^{n-1}_{p,q}.
\]

Proof. By applying simple calculation on (p, q)-analogue, we have

\[
(1 + px)^n_{p,q} = p^{n-1}(1 + px)(1 + qx)^{n-1}_{p,q}; (1 + qx)^n_{p,q} = (p^{n-1} + q^n x)(1 + qx)^{n-1}_{p,q}.
\]

(2.2)

Applying (p, q)-derivative and result (2.2) we get the desired result. □

Lemma 2.2. Let $B_{n,p,q}(f; x)$ be given by (1.3). Then for any $m \in \mathbb{N}$, $x \in [0,1]$ and $0 < q < p \leq 1$ we have

\[
B_{n,p,q}((t - x)^{m+1}_{p,q}; x) = \frac{p^{m+n}x(1 - x)}{[n]}D_{p,q}\left\{B_{n,p,q}((t - \frac{x}{p})^m_{p,q}; \frac{x}{p})\right\} + \frac{p^{m+n-1}m x(1-x)}{[n]}B_{n,p,q}((t - \frac{qx}{p})^{m-1}_{p,q}; \frac{qx}{p}) + \frac{m (p^n - q^n)}{[n]}B_{n,p,q}((t - x)^m_{p,q}; x).
\]

(2.3)

Proof. First of all by using (1.6) and Lemma 2.1, we have

\[
D_{p,q}\left(\frac{1}{p^{n-1}x}\sum_{k=0}^{n} (t - \frac{x}{p})^m_{p,q} P_{n,k}(p, q; \frac{x}{p})\right)
\]

\[
= \frac{1}{p^{n-1}x}\left(\sum_{k=0}^{n} (t - x)^{m}_{p,q} P_{n,k}(p, q; \frac{x}{p})\right) - \frac{m}{p}\sum_{k=0}^{n} \left(1 - \frac{qx}{p}\right)^{m-1}_{p,q} P_{n,k}(p, q; \frac{qx}{p}).
\]

(2.3)

Now in the same way by using (1.6) and Lemma 2.1, we have

\[
D_{p,q}\left\{P_{n,k}(p, q; \frac{x}{p})\right\} = D_{p,q}\left\{p^{\frac{k(k-1)}{2}}\left[\begin{array}{c} n \\ k \end{array}\right]_{p,q} \left(\frac{x}{p}\right)^k \left(1 - \frac{x}{p}\right)^k\right\}
\]

\[
= p^{\frac{k(k-1)}{2}}\left[\begin{array}{c} n \\ k \end{array}\right]_{p,q} \frac{1}{p^k x^{k-1}} \left(1 - \frac{qx}{p}\right)^{n-k}_{p,q} - \frac{1}{p^k x^{k}} \left[\begin{array}{c} n \\ k \end{array}\right]_{p,q} \frac{1}{p} x^{k-1} \left(1 - \frac{q}{p}\right)^{n-k-1}_{p,q}.
\]

(2.4)

By a simple calculation, we have

\[
\left(1 - \frac{qx}{p}\right)^{n-k}_{p,q} = \frac{1}{p^{n-k}(p - qx)_{p,q}^{n-k+1}} \frac{1}{p^{n-k}(1 - x)_{p,q}} (p^{n-k} - q^{n-k}x)(1 - x)_{p,q}^{n-k}.
\]

(2.5)

\[
\left(1 - \frac{q}{p}\right)^{n-k-1}_{p,q} = \frac{1}{p^{n-k-1}(1 - x)_{p,q}} (1 - x)_{p,q}^{n-k}.
\]

(2.6)
From (2.4), (2.5) and (2.6), we get

\[
D_{p,q} \left\{ P_{n,k} \left(p, q; \frac{x}{p} \right) \right\} = \frac{P_{n,k}(p, q; x)}{p^n x (1 - x)} \left([k] (p^{n-k} - q^{n-k}) x - p^k [n - k] x \right),
\]
which implies that

\[
D_{p,q} \left\{ P_{n,k} \left(p, q; \frac{x}{p} \right) \right\} = \frac{P_{n,k}(p, q; x)}{p^n x (1 - x)} \left(p^{n-k} [k] - [n] x \right). \tag{2.7}
\]

From (2.3), (2.7), we have

\[
D_{p,q} \left(\sum_{k=0}^{n} \left(t - \frac{x}{p} \right)^m P_{n,k}(p, q; \frac{x}{p}) \right) = \frac{1}{p^{m+n+1}} \left[m \right] \sum_{k=0}^{n} \left(t - \frac{x}{p} \right)^{m-1} P_{n,k}(p, q; \frac{x}{p})
+ \frac{1}{p^{m+n+1}} \sum_{k=0}^{n} (t - x)^m P_{n,k}(p, q; x) (p^{n-k} [k] - [n] x)
- \frac{1}{p^{m+n+1}} \sum_{k=0}^{n} (t - x)^m P_{n,k}(p, q; x)
\times \left(\left\lfloor \frac{n}{m} \right\rfloor p^m t - q^n x - \left\lfloor \frac{n}{m} \right\rfloor p^m (p^m - q^m) x \right).
\]

Hence we have

\[
D_{p,q} \left\{ B_{n,p,q} \left((t - \frac{x}{p})^m; \frac{x}{p} \right) \right\} = - \frac{\left[m \right]}{p} B_{n,p,q} \left((t - \frac{x}{p})^{m-1}; \frac{x}{p} \right) + \frac{\left[n \right]}{p^{m+n} x (1 - x)} B_{n,p,q} \left((t - x)^{m+1}; x \right)
- \frac{\left[m \right] (p^n - q^n)}{p^{m+n} (1 - x)} B_{n,p,q} \left((t - x)^m; x \right).
\]

This complete the proof of Lemma 2.2. \hfill \Box

Lemma 2.3. Let \(B_{n,p,q} \left((t - x)^m; x \right) \) be a polynomial in \(x \) of degree less than or equal to \(m \) and the minimum degree of \(\frac{1}{[n]} \) is \(\left\lfloor \frac{m+1}{2} \right\rfloor \). Then for any fixed \(m \in \mathbb{N} \) and \(x \in [0, 1] \), \(0 < q < p \leq 1 \) we have

\[
B_{n,p,q} \left((t - x)^m; x \right) = \frac{x (1 - x)^{m-2}}{\left[n \right]^{\frac{m+1}{2}}} \sum_{k=0}^{m-2} b_{k,m,n}(p, q) x^k, \tag{2.8}
\]
such that the coefficients \(b_{k,m,n}(p, q) \) satisfy \(b_{k,m,n}(p, q) \leq b_m \), \(k = 1, 2, \ldots, m-2 \) and \(b_m \) does not depend on \(x, t, p, q; \) where \(\left\lfloor a \right\rfloor \) is an integer part of \(a \geq 0 \).

Proof. By induction it is true for \(m = 2 \). Assuming it is true for \(m \), then from Lemma 2.2 and equation (2.8) we have
Higher Order Generalization of Bernstein Type Operators Defined by \((p, q)\)-Integers

\[B_{n,p,q} \left((t - x)^{m+1}; x\right) \]

\[
= \frac{p^{m+n-1}x(1-x)}{[n]^{1+\frac{m+n}{2}}} D_{p,q} \left\{ x \left(1 - \frac{x}{p}\right) \sum_{k=0}^{m-2} \frac{b_{k,m,n}(p,q)}{p_k} \left(\frac{q}{p} \right)^{k+1} x^{k+1} + \left(\frac{q}{p} \right)^{k+2} x^{k+2} \right\} \\
+ \frac{p^{m+n-1}m(x - 1)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-3} \frac{b_{k,m-1,n}(p,q)}{p_k} \left(\frac{q}{p} \right)^{k+1} x^{k+1} - \left(\frac{q}{p} \right)^{k+2} x^{k+2} \\
+ \frac{[m](p^n - q^n)x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-2} b_{k,m,n}(p,q)x^{k+1} \\
= \frac{p^{m+n}x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-2} [k] b_{k,m,n}(p,q) \left(\frac{q}{p} \right)^{k} \left(x^{k} - \left\lfloor \frac{2}{p} \right\rfloor x^{k+1} \right) \\
+ \frac{p^{m+n+1}x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-2} \frac{b_{k,m,n}(p,q)}{p_k} \left(\frac{q}{p} \right)^{k} \left(x^{k} - \left\lfloor \frac{2}{p} \right\rfloor x^{k+1} \right) \\
+ \frac{p^{m+n-1}[m]x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-3} \frac{b_{k,m-1,n}(p,q)}{p_k} \left(\frac{q}{p} \right)^{k+1} x^{k+1} - \left(\frac{q}{p} \right)^{k+2} x^{k+2} \\
+ \frac{[m](p^n - q^n)x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-2} b_{k,m,n}(p,q)x^{k+1} \\
= \frac{x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-2} \left(p^{m+n-k}[k] + p^{m+n-k-1}q^k \right) b_{k,m,n}(p,q)x^{k} \\
- \frac{x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-1} \left(p^{m+n+1-k}[k-1]\right) b_{k-1,m,n}(p,q)x^{k} \\
+ \frac{x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=1}^{m-2} [m] p^{m+n-k-1}q^k b_{k-1,m-1,n}(p,q)x^{k} \\
- \frac{x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=1}^{m-1} [m] p^{m+n-k-1}q^k b_{k-2,m-1,n}(p,q)x^{k} \\
+ \frac{x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=1}^{m-1} [m](p^n - q^n) b_{k-1,m,n}(p,q)x^{k} \\
= \frac{x(1-x)}{[n]^{1+\frac{m+n}{2}}} \sum_{k=0}^{m-1} b_{k,m+1,n}(p,q)x^{k}
where

\[
\begin{align*}
 b_{k,m+1,n}(p, q) &= \frac{1}{[n]^\alpha} \left(p^{m+n-k} [k] + p^{m+n-k-1} q^k \right) b_{k,m,n}(p, q) \\
 &- \frac{1}{[n]^\alpha} \left(p^{m+n+1-k} [k-1] + [2] p^{m+n-k-1} q^{k-1} \right) b_{k-1,m,n}(p, q) \\
 &+ \frac{1}{[n]^\alpha} [m] (p^n - q^n) b_{k-1,m,n}(p, q) + [m] p^{m+n-k-1} q^k b_{k-1,m-1,n}(p, q) \\
 &- [m] p^{m+n-k-1} q^k b_{k-2,m-1,n}(p, q).
\end{align*}
\]

Clearly

\[
\alpha = 1 + \left\lfloor \frac{m+1}{2} \right\rfloor - \left\lfloor \frac{m+2}{2} \right\rfloor,
\]

which lead us that either \(\alpha = 0\) or \(\alpha = 1\).

Since \(| b_{k,m,n}(p, q) | \leq b_m\), for \(k = m-1\), clearly we have

\[
\begin{align*}
 | b_{k,m+1,n}(p, q) | &\leq \frac{1}{[n]^\alpha} (p^{n+1} [m-1] + p^{n} q^{m-1}) b_m + \frac{1}{[n]^\alpha} (p^{n+2} [m-2] + [2] p^{n} q^{m-2}) b_m \\
 &+ \frac{1}{[n]^\alpha} [m] (p^n - q^n) b_m + [m] p^{n} q^{m-1} b_{m-1} \\
 &+ [m] p^{n} q^{m-1} b_{m-1} \\
 &= \frac{1}{[n]^\alpha} (p [m-1] + q^{m-1}) b_m + \frac{1}{[n]^\alpha} (p^2 [m-2] + [2] q^{m-2}) b_m \\
 &+ \frac{1}{[n]^\alpha} [m] b_m + [m] q^{m-1} b_{m-1} + [m] q^{m-1} b_{m-1} \\
 &= b_{m+1}, k = 1, 2, \ldots m-1,
\end{align*}
\]

and \(b_m\) does not depend on \(x, t, p, q\). This complete the proof. \(\square\)

From the Lemma 2.2 and Lemma 2.3 we have the following theorem.

Theorem 2.4. Let \(m \in \mathbb{N}\) and \(0 < q < p \leq 1\). Then there exits a constant \(C_m > 0\) such that for any \(x \in [0, 1]\), we have

\[
| B_{n,p,q} ((t-x)_p^m; x) | \leq C_m \frac{x(1-x)}{[n]^\frac{m+1}{2}}.
\]

Corollary 2.5. Let \(m \in \mathbb{N}\) and \(0 < q < p \leq 1\). Then there exits a constant \(K_m > 0\) such that for any \(x \in [0, 1]\), we have

\[
B_{n,p,q} ((| t-x |)_p^m; x) \leq K_m \frac{x(1-x)}{[n]^\frac{m}{2}}. \tag{2.9}
\]
Proof. For an even \(m \), clearly we have
\[
B_{n,p,q}\left((t - x)^m_{p,q}; x\right) = C_m x(1 - x)^\frac{m+1}{n+1}.
\]

In case if \(m \) is odd, say \(m = 2u + 1 \), we have
\[
B_{n,p,q}\left((t - x)^{2u+1}_{p,q}; x\right) \leq \sqrt{B_{n,p,q}\left((t - x)^{4u+1}_{p,q}; x\right) \sqrt{B_{n,p,q}\left((t - x)^2_{p,q}; x\right)}}
\]
\[
\leq \sqrt{C_{4u} x(1 - x)^\frac{4u+1}{n}} \sqrt{C_2 x(1 - x)^\frac{1}{2}}
\]
\[
= \sqrt{C_{4u} x(1 - x)^\frac{2u}{n}} \sqrt{C_2 x(1 - x)^\frac{1}{2}}
\]
\[
= K_{2u+1} x(1 - x)^\frac{2u+1}{n}.
\]

This complete the proof. \(\square \)

Theorem 2.6. Let \(B^{[r]}_{n,p,q}(f; x) \) be an operator from \(C^r[0, 1] \to C^r[0, 1] \). Then for \(0 < q < p \leq 1 \) there exits a constant \(M(r) \) such that for every \(f \in C^r[0, 1] \), we have
\[
\| B^{[r]}_{n,p,q}(f; x) \|_{C[0,1]} \leq M(r) \sum_{i=0}^{r} \| f^{(i)} \| = M(r) \| f \|_{C^r[0,1]}.
\]

Proof. Clearly \(B^{[r]}_{n,p,q}(f; x) \) is continuous on \([0, 1] \). From (1.8) we have
\[
B^{[r]}_{n,p,q}(f; x) = \sum_{i=0}^{r} \frac{(-1)^i}{i!} B_{n,p,q}\left((t - x)^i f^{(i)}(t); x\right).
\]

From the Corollary 2.5, we have
\[
| B_{n,p,q}\left((t - x)^i f^{(i)}(t); x\right) | \leq \| f^{(i)} \| B_{n,p,q}\left((t - x)^i; x\right)
\]
\[
\leq K_i \| f^{(i)} \| [n]^{-\frac{i}{2}}.
\]

Therefore
\[
\| B^{[r]}_{n,p,q}(f; x) \| \leq \sum_{i=0}^{r} \frac{(-1)^i}{i!} \| B_{n,p,q}\left((t - x)^i f^{(i)}(t); x\right) \|
\]
\[
\leq M(r) \sum_{i=0}^{r} \| f^{(i)} \|.
\]

This complete the proof. \(\square \)
3. Convergence properties of $B_{n,p,q}^{[r]}(f; x)$

The modulus of continuity of the derivative $f^{(r)}$ is given by

$$
\omega \left(f^{(r)}; t \right) = \sup \left\{ | f^{(r)}(x) - f^{(r)}(y) | : | x - y | \leq t, \ x, y \in [0, 1] \right\}. \quad (3.1)
$$

Theorem 3.1. Let $0 < q < p \leq 1$ and $r \in \mathbb{N} \cup \{0\}$ be a fixed number. Then for $x \in [0, 1], \ n \in \mathbb{N}$ there exits $D_r > 0$ such that for every $f \in C^r[0, 1]$ the following inequality holds

$$
| B_{n,p,q}^{[r]}(f; x) - f(x) | \leq D_r \frac{1}{|n|^2} \omega \left(f^{(r)}; \frac{1}{\sqrt{|n|}} \right). \quad (3.2)
$$

Proof. Let $r \in \mathbb{N}$. Then for $f \in C^r[0, 1]$ at a given point $t \in [0, 1]$, we have from the Taylor formula that

$$
f(x) = \sum_{i=0}^{r} \frac{f^{(i)}(t)}{i!} (x - t)^i + \frac{(x - t)^r}{(r - 1)!} \int_0^1 (1 - u)^{r-1} \left(f^{(r)}(t + u(x - t)) - f^{(r)}(t) \right) du.
$$

On applying $B_{n,p,q}^{[r]}(f; x)$, we get

$$
f(x) - B_{n,p,q}^{[r]}(f; x) = \sum_{k=0}^{n} \frac{x - \frac{[k]}{p^{k-n}[n]}}{(r - 1)!} \int_0^1 (1 - u)^{r-1} P_{n,k}(p, q; x)
$$

$$
\times \left[f^{(r)} \left(\frac{[k]}{p^{k-n}[n]} + u \left(x - \frac{[k]}{p^{k-n}[n]} \right) \right) - f^{(r)} \left(\frac{[k]}{p^{k-n}[n]} \right) \right] du. \quad (3.3)
$$

Now from the definition and properties of modulus of continuity, we have

$$
| f^{(r)} \left(\frac{[k]}{p^{k-n}[n]} + u \left(x - \frac{[k]}{p^{k-n}[n]} \right) \right) - f^{(r)} \left(\frac{[k]}{p^{k-n}[n]} \right) | \leq \omega \left(f^{(r)}; u \left| x - \frac{[k]}{p^{k-n}[n]} \right| \right)
$$

$$
\omega \left(f^{(r)}; u \left| x - \frac{[k]}{p^{k-n}[n]} \right| \right) \leq \left(\sqrt{|n|} \left| x - \frac{[k]}{p^{k-n}[n]} \right| + 1 \right) \omega \left(f^{(r)}; \frac{1}{\sqrt{|n|}} \right). \quad (3.4)
$$

Now for every $0 \leq x \leq 1, \ 0 < q < p \leq 1, \ k \in \mathbb{N} \cup \{0\}, \ n \in \mathbb{N}$ and from (3.3) and (3.4), we get

$$
| B_{n,p,q}^{[r]}(f; x) - f(x) | \leq \frac{1}{r!} \omega \left(f^{(r)}; \frac{1}{\sqrt{|n|}} \right) \sum_{k=0}^{n} \left| x - \frac{[k]}{p^{k-n}[n]} \right|^r \left(\sqrt{|n|} \left| x - \frac{[k]}{p^{k-n}[n]} \right| + 1 \right) P_{n,k}(p, q; x)
$$
\[
= \frac{1}{r!}\omega \left(f^{(r)}; \frac{1}{\sqrt[n]{n}} \right) \left(\sqrt[n]{n} B_{n,p,q} \left(|x-t|^{r+1}; x \right) + B_{n,p,q} \left(|x-t|^r; x \right) \right). \tag{3.5}
\]

Using (3.9) and (3.5) for \(x \in [0, 1] \), we have

\[
|B_{n,p,q}^{[r]}(f; x) - f(x)| \leq \frac{1}{r!}(K_{r+1} + K_r) \left(\frac{1}{\sqrt[n]{n}} \right)^r \omega \left(f^{(r)}; \frac{1}{\sqrt[n]{n}} \right)
= D_r \left(\frac{1}{\sqrt[n]{n}} \right)^r \omega \left(f^{(r)}; \frac{1}{\sqrt[n]{n}} \right).
\]

In order to obtain the uniform convergence of \(B_{n,p,q}^{[r]}(f; x) \) to a continuous function \(f \), we take \(q = q_n \), \(p = p_n \) where \(q_n \in (0, 1) \) and \(p_n \in (q_n, 1] \) satisfying,

\[
\lim_n p_n = 1, \lim_n q_n = 1. \tag{3.6}
\]

Corollary 3.2. Let \(p = p_n, q = q_n, 0 < q_n < p_n \leq 1 \) satisfy (3.6) and \(f \in C^r[0, 1] \) for a fixed number \(r \in \mathbb{N} \cup \{0\} \). Then

\[
\lim_{n \to \infty} |n|^\frac{r}{2} \|B_{n,k}^{[r]}(f) - f\| = 0. \tag{3.7}
\]

We say that (cf. [13]) a function \(f \in C^r[0, 1] \) belongs to \(Lip_M(\alpha) \), \(0 < \alpha \leq 1 \), provided

\[
|f(x) - f(y)| \leq M |x - y|^{\alpha}, \ (x, y \in [0, 1] \text{ and } M > 0). \tag{3.8}
\]

Corollary 3.3. Let \(p = p_n, q = q_n, 0 < q_n < p_n \leq 1 \) satisfy (3.6) and \(f \in C^r[0, 1] \) for a fixed number \(r \in \mathbb{N} \cup \{0\} \). If \(f^{(r)} \in Lip_M(\alpha) \) then

\[
\|B_{n,p,q}^{[r]}(f) - f\| = O \left(|n|^{-\frac{r+\alpha}{2}} \right). \tag{3.9}
\]

Proof. From (3.2) and (3.8), we have

\[
\|B_{n,p,q}^{[r]}(f) - f\| \leq D_r M \frac{1}{|n|^\frac{r}{2}} \frac{1}{|n|^\frac{r}{2}}.
\]

\[\square\]

Theorem 3.4. Let \(0 < q < p \leq 1 \). Suppose that \(f \in C^{r+2}[0, 1], \) where \(r \in \mathbb{N} \cup \{0\} \) is fixed then we have

\[
\left| B_{n,p,q}^{[r]}(f; x) - f(x) \right| - \frac{(-1)^r f^{(r+1)}(x) B_{n,p,q} \left((t-x)^{r+1}; x \right)}{(r+1)!} \right.
- \left. \frac{(-1)^r f^{(r+2)}(x) B_{n,p,q} \left((t-x)^{r+2}; x \right)}{(r+2)!} \bigg| \right| \leq \left(K_{r+2} + K_{r+4} \right) \frac{x(1-x)}{|n|^{\frac{r}{2}+1}} \sum_{i=0}^{r} \frac{1}{i!(r+2-i)!} \omega \left(f^{(r+2-i)}; \frac{1}{|n|^{\frac{1}{2}}} \right).
\]
Proof. Let \(f \in C^{r+2}[0,1] \) and \(x \in [0,1] \) for a fixed number \(r \in \mathbb{N} \cup \{0\} \) we have \(f^{(i)} \in C^{r+2-i}[0,1], \ 0 \leq i \leq r \). Then by Taylor formula we can write

\[
f^{(i)}(t) = \sum_{i=0}^{r+2-i} \frac{f^{(i+j)}(x)}{j!} (t-x)^j + R_{r+2-i}(f; t; x), \tag{3.10}
\]

where

\[
R_{r+2-i}(f; t; x) = \frac{f^{(r+2-i)}(\zeta^{n-k-1}_t) - f^{(r+2-i)}(x)}{(r+2-i)!} (t-x)^{r+2-i},
\]

and

\[
| \zeta_t - x | < | t - x |.
\]

Therefore from (1.8) and (3.10) we have

\[
B_{n,p,q}^{[r]}(f; x) = \sum_{k=0}^{n} P_{n,k}(p, q; x) \sum_{i=0}^{r} \frac{(-1)^i}{i!} \frac{f^{(r+2-i)}(\zeta_t) - f^{(r+2-i)}(x)}{(r+2-i)!} (t-x)^{r+2-i}
\]

\[
= I_1 + I_2, \ \text{where} \ t = \frac{[k]}{p^{k-n}[n]}
\]

Which implies that

\[
| B_{n,p,q}^{[r]}(f; x) - I_1 | = | I_2 |
\]

\[
= \left| \sum_{k=0}^{n} P_{n,k}(p, q; x) \sum_{i=0}^{r} \frac{(-1)^i}{i!} \frac{f^{(r+2-i)}(\zeta_t) - f^{(r+2-i)}(\zeta_t)}{(r+2-i)!} (t-x)^{r+2-i} \right|
\]

\[
= \left| B_{n,p,q} \left(\sum_{i=0}^{r} \frac{(-1)^i}{i!} \frac{f^{(r+2-i)}(\zeta_t) - f^{(r+2-i)}(x)}{(r+2-i)!} (t-x)^{r+2-i} \right) \right|.
\]

We use the well-known inequality

\[
\omega(f, \lambda \delta) \leq (1 + \lambda^2) \omega(f, \delta),
\]

\[
| f^{(r+2-i)}(\zeta_t) - f^{(r+2-i)}(x) | \leq \omega \left(f^{(r+2-i)}, | \zeta_t - x | \right)
\]

\[
\leq \omega \left(f^{(r+2-i)}, | t - x | \right)
\]

\[
\leq \omega \left(f^{(r+2-i)}, [n]^{-\frac{1}{2}} \right) (1 + [n](t-x)^2).
\]

Hence

\[
| I_2 | \leq B_{n,p,q} \left(\sum_{i=0}^{r} \frac{(-1)^i}{i!} \frac{f^{(r+2-i)}(\zeta_t) - f^{(r+2-i)}(x)}{(r+2-i)!} \right) \ | t - x |^{r+2}, x
\]

\[
\leq B_{n,p,q} \left(\sum_{i=0}^{r} \frac{1}{i!(r+2-i)} \omega \left(f^{(r+2-i)}, [n]^{-\frac{1}{2}} \right) (1 + [n](t-x)^2) | t - x |^{r+2}, x \right)
\]
\[\sum_{i=0}^{r} \frac{1}{n^{(r+2-i)}} \omega \left(f^{(r+2-i)} \right) \left(t - x \right)^{r+2} \left(t - x \right)^{r+1} \]

\[\leq \sum_{i=0}^{r} \frac{1}{n^{(r+2-i)}} \omega \left(f^{(r+2-i)} \right) \left(K_{r+2} \left(t - x \right)^{r+2} + K_{r+3} \left(t - x \right)^{r+1} \right) \]

\[= (K_{r+2} + K_{r+3}) \sum_{i=0}^{r} \frac{1}{n^{(r+2-i)}} \omega \left(f^{(r+2-i)} \right). \]

Therefore

\[|B_{n,p,q}^{[r]}(f; x) - I_1| \leq (K_{r+2} + K_{r+3}) \frac{x(1-x)}{n^{r+1}} \sum_{i=0}^{r} \frac{1}{i!(r+2-i)!} \omega \left(f^{(r+2-i)} \right). \]

Now we simplify for \(I_1 \)

\[I_1 = \sum_{k=0}^{n} P_n,k(p, q; x) \sum_{i=0}^{r} \frac{1}{p^{k-n}[n] \cdot i!} \sum_{l=i}^{r} f^{(l)}(x) \left(\frac{k}{p^{k-n}[n]} - x \right)^{l-i} \]

\[= \sum_{k=0}^{n} P_n,k(p, q; x) \sum_{i=0}^{r} \frac{1}{i!} \sum_{l=i}^{r} f^{(l)}(x) \left(\frac{k}{p^{k-n}[n]} - x \right)^{l} \]

\[+ \sum_{k=0}^{n} P_n,k(p, q; x) \sum_{i=0}^{r} \frac{1}{i!} f^{(r+1)}(x) \left(\frac{k}{p^{k-n}[n]} - x \right)^{r+1} \]

\[+ \sum_{k=0}^{n} P_n,k(p, q; x) \sum_{i=0}^{r} \frac{1}{i!} f^{(r+2)}(x) \left(\frac{k}{p^{k-n}[n]} - x \right)^{r+2} \]

\[= \sum_{k=0}^{n} P_n,k(p, q; x) \sum_{l=0}^{r} \frac{f^{(l)}(x)}{l!} \left(\frac{k}{p^{k-n}[n]} - x \right)^{l} \sum_{i=0}^{r} \left(\frac{l}{i} \right) (-1)^i \]

\[+ \frac{f^{(r+1)}(x)}{(r+1)!} \sum_{k=0}^{n} P_n,k(p, q; x) \left(\frac{k}{p^{k-n}[n]} - x \right)^{r+1} \sum_{i=0}^{r} \left(\frac{r+1}{i} \right) (-1)^i \]

\[+ \frac{f^{(r+2)}(x)}{(r+2)!} \sum_{k=0}^{n} P_n,k(p, q; x) \left(\frac{k}{p^{k-n}[n]} - x \right)^{r+2} \sum_{i=0}^{r} \left(\frac{r+2}{i} \right) (-1)^i. \]

For \(n \in \mathbb{N}, \ r \in \mathbb{N} \cup \{0\} \) we have

\[\sum_{i=0}^{r} \left(\frac{r+1}{i} \right) (-1)^i = (-1)^r, \ \sum_{i=0}^{r} \left(\frac{r+2}{i} \right) (-1)^i = (r+1)(-1)^r. \]

Therefore

\[I_1 = f(x) + \frac{(-1)^r f^{(r+1)}(x) B_{n,p,q} \left((t-x)^{r+1}; x\right)}{(r+1)!} \]

\[+ \frac{(-1)^r f^{(r+2)}(x) B_{n,p,q} \left((t-x)^{r+2}; x\right)}{(r+2)!}. \]

This complete the proof. \(\square \)
Corollary 3.5. Let \(p = p_n, \ q = q_n, \ 0 < q_n < p_n \leq 1 \) satisfy (3.6) and \(f \in C^2[0,1] \) for a fixed number \(r \in \mathbb{N} \cup \{0\} \). Then for every \(x \in [0,1] \) we have

\[
\left| B_{n,p_n,q_n}^{[r]}(f;x) - f(x) - \frac{f''(x)}{2} x(1-x) \right| \leq K \omega \left(f'', [n]^{-\frac{4}{2}} \right),
\]

where \(K = \frac{K_2 + K_4}{2} \). Moreover,

\[
\lim_{n \to \infty} \omega \left(f''^{[n]} - f''(x) \right) = \frac{x(1-x)}{2} f''(x)
\]

uniformly on \([0,1]\).

Acknowledgement. Second author (MN) acknowledges the financial support of University Grants Commission (Govt. of Ind.) for awarding BSR (Basic Scientific Research) Fellowship.

References

[1] A. Aral, V. Gupta and R. P. Agarwal, Application of \(q \)-Calculus in Operator Theory, Springer, New York, 2013.

[2] S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités, Comm. Soc. Math. Kharkow (2), 13 (1912/1913) 1-2.

[3] M.N. Hounkonnou, J. Désiré and B. Kyemba, \(R(p,q) \)-calculus: differentiation and integration, SUT Jour. Math., 49(2) (2013) 145-167.

[4] B. Lenze, Bernstein-Baskakov-Kantorovich operators and Lipschitz-type maximal functions, in: Colloq. Math. Soc. Janos Bolyai, 58, Approx. Th., (1990) 469-496.

[5] A. Lupaş, A \(q \)-analogue of the Bernstein operator, Seminar on Numerical and Statistical Calculus, University of Cluj-Napoca, 9(1987) 85-92.

[6] N. Mahmudov, The moments for \(q \)-Bernstein operators in the case \(0 < q < 1 \). Numer Algol (2010) 53:439–450, DOI 10.1007/s11075-009-9312-1.

[7] M. Mursaleen, K.J. Ansari and A. Khan, On \((p,q) \)-analogue of Bernstein operators, Appl. Math. Comput., 266(2015), 874-882.

[8] M. Mursaleen, K.J. Ansari and A. Khan, Some approximation results by \((p,q) \)-analogue of Bernstein-Stancu operators, Appl. Math. Comput., 264 (2015) 392-402.

[9] M. Mursaleen, Md. Nasiuzzaman and Ashirbayev Nurgali, Some approximation results on Bernstein-Schurer operators defined by \((p,q) \)-integrals, Jour. Ineq. Appl., 2015 (2015):249.

[10] G. M. Phillips, Bernstein polynomials based on the \(q \)-integrals, Ann. Numer. Math., 4 (1997), 511–518.

[11] P.N. Sadjang, On the fundamental theorem of \((p,q) \)-calculus and some \((p,q) \)-Taylor formulas, arXiv:1309.3934 [math.QA].

[12] V. Sahai and S. Yadav, Representations of two parameter quantum algebras and \((p,q) \)-special functions, J. Math. Anal. Appl. 335 (2007) 268-279.

[13] P. Sabancgil, Higher order generalization of \(q \)-Bernstein operators, Jour. Comput. Analy. Appl., 12 (2010) 821-827.

Department of Mathematics, Aligarh Muslim University, Aligarh–202002, India.

E-mail address: mursaleenm@gmail.com; nasir3489@gmail.com