Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution

Abstract

In this paper the stochastic thermo-elastic stability of laminated composite plates resting on elastic foundations under non-uniform temperature distribution is analyzed. The mathematical model is based on higher order shear deformation theory [HSDT] and von-Karman nonlinear kinematics is presented. A C0 nonlinear finite element method combined with direct iterative method in conjunction with mean centered first order Tailor series based perturbation technique is employed for the Eigen value problem in random environment to derive the second order statistics (mean and the standard deviation) of the thermal post buckling load under non-uniform temperature distribution. Typical numerical results for stacking sequence, no of plies, plate thickness ratios, amplitude ratios, aspect ratios, boundary conditions and temperature change are generated. Numerical results have been compared with available results in literatures and with independent Monte Carlo simulation [MCS].

Keywords: non uniform temperature distribution, thermal post buckling temperature, composite plates, system properties, elastic foundation, perturbation technique

Abbreviations: MCS, monte carlo simulation; HSDT, higher order shear deformation theory; FEM, finite element method; SFEM, stochastic finite element method

Introduction

Composite structures have inherent dispersion in system properties due to lack of strict quality control and the characteristics of the large parameters involved with the manufacturing and fabrication process. The transverse shear deformation effects are considerably pronounced in composite laminates and must be incorporated while studying the buckling and post-buckling behavior of laminates under in-plane thermally induced loading. Thermal buckling of geometrically nonlinear plate structures is one of the major design criteria for an efficient and optimal usage of materials and then buckling loads are of extremely inherent in the design and developments of high performance composite component for stability point of view. The variation in the system properties of the composite materials necessitates the inclusion of randomness of system properties in the analysis; otherwise predicted response may differ significantly rendering the structures unsafe. For reliable and safe design especially for sensitive engineering applications in thermal environments, accurate prediction of system behavior of composite structures in the present of uncertainties in the system properties fevers a probabilistic analysis approach by modeling their properties as basic random variables.

A considerable amount of literature exists on the thermal buckling and post-buckling of laminated composite plates with temperature dependent and temperature independent thermo-elastic material properties.7, 17

However, the analysis of the structures with randomness in system properties is not developed to the some extent. The deterministic analysis is not sufficient to predict system behavior due to various system uncertainties as it gives only mean response and misses the deviation caused by the system parameters.

A considerable amount of literature exists on the initial thermal buckling and post buckling of laminated composite plates with temperature dependent and temperature independent thermo-elastic material properties.7, 17
A rectangular laminated composite plate of length a, width b, and total thickness h, defined in (X, Y, Z) system with x- and y-axes located in the middle plane and its origin placed at the corner of the plate with consisting of N orthotropic layers with the fiber orientation of (θi). Let \((\pi, \tau, \psi) \) be the displacement parallel to the \((X, Y, Z)\) respectively as shown in Figure 1. The thickness coordinate \(Z \) of the top and bottom surfaces of any \(k_th \) layer are denoted by \(Z_{(t)} \) and \(Z_{(b)} \) respectively. The fiber of the \(k_th \) layer is oriented with angle \(\theta \) to the X-axes. The plate is resting on elastic foundation excluding the mid plane. The load displacement relationship between the plate and the supporting foundation can be described by two-parameter model of the Pasternak-type as

\[
P = K_{1}w - K_{2}w^{2} \quad \text{with} \quad P = K_{1}w - K_{2}w^{2}.
\]

Where, \(P \) is the foundation reaction per unit area, and \(V \) is the Laplace differential operator, \(K_{1} \) and \(K_{2} \) are the Winkler and Pasternak Foundation stiffness, respectively, and "w" is the transverse displacement of the plate. This model is called Winkler type when \(K_{2} = 0 \).

Figure 1 Geometry of laminated composite plate resting on elastic foundation.

Displacement field model

In the present study the Reddy’s higher order shear deformation theory has been employed. The difficulty and complexity associated with making a choice of \(C^1 \) continuity is inherent generality and has led to the development of nonconforming approaches. The displacement field model, after incorporating zero transverse shear stress conditions at the top and the bottom of the plate, is slightly modified, so that a \(C^1 \) continuous element would be sufficient. The \(C^0 \) continuity permits easy so parameters finite element formulation and consequently can be applied for non rectangular geometry as well. In modified form, the derivatives of out-of-plane displacement are themselves considered as separate degree of freedom (DOFs). Thus five DOFs with \(C^1 \) continuity are transformed into seven DOFs due to conformity with HSDT. In this change artificial constraints are imposed which can be enforced valiantly through the penalty approach, in ordered to satisfy the imposed.

The displacement field along the x, y, and z directions for an arbitrary composite laminated plate is now written as

\[
\begin{align*}
\sigma_{x} &= f_{x}(z)w_{x} + f_{y}(z)\theta_{x}, \\
\sigma_{y} &= f_{x}(z)w_{y} + f_{y}(z)\theta_{y}, \\
\sigma_{z} &= f_{x}(z)w_{z} + f_{y}(z)\theta_{z}, \\
\end{align*}
\]

(2)

Where, \(u, v, \) and \(w \) are corresponding displacements of a point on the mid plane. \(\theta_{x} \) and \(\theta_{y} \) are the rotations of normal to the mid plane about the y-axis and x-axis respectively, with \(\theta_{x} = w_{x} \) and \(\theta_{y} = w_{y} \).

\[
f_{x}(z) = C_{1}z - C_{2}z^{3}, \quad f_{y}(z) = -C_{4}z^{3}
\]

With \(C_{1} = 1, C_{2} = C_{4} = 4h^{2}/\beta \).

\[
\{\epsilon\} = \{\pi\} + \{\tau\} - \{\psi\}
\]

The displacement vector for the modified \(C^1 \) continuous model can be written as

\[
\{\alpha\} = \begin{bmatrix} u & v & w & \theta_{x} & \theta_{y} & \psi_{x} & \psi_{y} \end{bmatrix}^{T}
\]

(3)

With \(\theta_{x} = w_{x} \) and \(\theta_{y} = w_{y} \).

Where, comma (,) denotes partial differentiation.

Strain-displacement relations: The strain-displacements relations are obtained by using the small deformation theory with linear elasticity based on HSDT are expressed.

Stress–strain relation: The constitutive relationship between stress resultants and corresponding strains of laminated composite plate accounting for thermal effect can be written as

\[
\begin{bmatrix} \sigma_{i} \end{bmatrix} = \begin{bmatrix} [Q] \end{bmatrix} \begin{bmatrix} \epsilon_{i} \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} \sigma_{i} \end{bmatrix} = \begin{bmatrix} Q_{i1} & Q_{i2} & Q_{i3} & Q_{i4} & 0 & 0 & 0 \\
Q_{i1} & Q_{i2} & Q_{i3} & Q_{i4} & 0 & 0 & 0 \\
Q_{i1} & Q_{i2} & Q_{i3} & Q_{i4} & 0 & 0 & 0 \\
Q_{i1} & Q_{i2} & Q_{i3} & Q_{i4} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix} \begin{bmatrix} \epsilon_{i} \end{bmatrix} \quad \begin{bmatrix} \Lambda_{i} \end{bmatrix} \quad \begin{bmatrix} \delta_{i} \end{bmatrix}
\]

(4)

with

\[
\lambda_{i} = Q_{i1} \alpha_{1} + Q_{i2} \alpha_{2} + Q_{i3} \alpha_{3} + Q_{i4} \alpha_{4}, \quad \lambda_{2} = Q_{i1} \alpha_{2} + Q_{i2} \alpha_{3} + Q_{i3} \alpha_{4} + Q_{i4} \alpha_{2}, \quad \lambda_{12} = Q_{i1} \alpha_{2} + Q_{i2} \alpha_{3} + Q_{i3} \alpha_{4} + Q_{i4} \alpha_{1}
\]

where, \(\{[Q] \} \), \(\{\sigma\} \), and \(\{\epsilon\} \) are transformed stiffness matrix, stress and strain vectors of the \(k_th \) lamina, respectively and \(\alpha_{i}, \alpha_{j}, \alpha_{k} \) are the thermal expansion coefficients along \(x, y, z \), respectively.
direction, respectively which can be obtained from the thermal coefficients in the longitudinal \(a_i\) and transverse \(a_t\) directions of the fibers using transformation matrix. \(T(X,Y,Z) = T_0 \left[1 + \frac{z}{R}\right]\) is the uniform temperature \(UT\) and combined uniform temperature with linearly varying transverse temperature \(TT\) rise. \(\Delta T\) is the non-uniform tent-like temperature distribution. The non-uniform tent like temperature rise is assumed to be

\[
\Delta T(X,Y,Z) = \begin{cases}
T_0 + 2T_1 Y/b & 0 \leq Y < b/2 \\
T_0 + 2T_1 (1-Y)/b & b/2 \leq Y \leq b
\end{cases}
\]

where \(T_0\) is the uniform temperature rise, and \(T_1\) is the temperature gradient, as shown in Figure 2. The constitutive relationship between stress resultants per unit length and mid-plain strains and curvatures can be written in matrix form.

\[
\left[\begin{array}{c}
\mathbf{N}_i \\
\mathbf{M}_i \\
\mathbf{P}_i
\end{array}\right] = \left[\begin{array}{ccc}
A_{ij} & B_{ij} & E_{ij} \\
B_{ij} & D_{ij} & F_{ij} \\
E_{ij} & F_{ij} & H_{ij}
\end{array}\right] \mathbf{e}_i \mathbf{e}_j
\]

\[
\mathbf{Q}_i = \left[\begin{array}{c}
A_{ij} \\
B_{ij} \\
C_{ij}
\end{array}\right] \mathbf{e}_i \mathbf{e}_j
\]

Where \(A_{ij}, B_{ij}, \text{ etc.} \) are the plate stiffness's defined in appendix. Thermal stress resultants

\[
\mathbf{N}_i^T = \left[\begin{array}{ccc}
N_{ix} & N_{iy} & N_{iz}
\end{array}\right]^T, \quad \mathbf{M}_i^T = \left[\begin{array}{ccc}
M_{ix} & M_{iy} & M_{iz}
\end{array}\right]^T
\]

And

\[
\mathbf{P}_i^T = \left[\begin{array}{ccc}
P_{ix} & P_{iy} & P_{iz}
\end{array}\right]^T
\]

are calculated by

\[
\left[\begin{array}{c}
\mathbf{N}_i^T, \mathbf{M}_i^T, \mathbf{P}_i^T
\end{array}\right] = \sum_{k=1}^{z_{1z}} \sum_{j=1}^{z_{2z}} \left[\begin{array}{ccc}
\mathbf{Q}_{i}^{1x} + \mathbf{Q}_{i}^{2x} + \mathbf{Q}_{i}^{3x} \\
\mathbf{Q}_{i}^{1y} + \mathbf{Q}_{i}^{2y} + \mathbf{Q}_{i}^{3y}
\end{array}\right] \Delta T \Delta z
\]

Strain energy of the plate: The potential energy \(\Pi_1\) of the laminated composite plates can be expressed as

\[
\Pi_1 = \frac{1}{2} \int_{E} \left[\mathbf{N}_i^{t} \mathbf{N}_i^{t} + \mathbf{M}_i^{t} \mathbf{M}_i^{t} + \mathbf{P}_i^{t} \mathbf{P}_i^{t}\right] dx dy
\]

Potential energy due to thermal stresses: Due to uniform change in temperature, non-uniform tent like temperature distribution, pre-buckling stresses in the plate are generated. These stress resultants are the reason for the buckling. The potential energy due to the in plane thermal stress resultants is expressed as

\[
\Pi_2 = \frac{1}{2} \int_{\text{A}} \left[\mathbf{N}_i^{t} \mathbf{N}_i^{t} + \mathbf{M}_i^{t} \mathbf{M}_i^{t} + \mathbf{P}_i^{t} \mathbf{P}_i^{t}\right] \mathbf{w}_x \mathbf{w}_x + \mathbf{w}_y \mathbf{w}_y dx dy
\]

Where, \(N_{ix}, N_{iy}, N_{iz}\) and \(M_{ix}, M_{iy}, M_{iz}\) are in plane applied thermal compressive stress resultants per unit length.

Strain energy due to foundation: The strain energy \(\Pi_3\) due to elastic foundation having foundation layers can be written as

\[
\Pi_3 = \frac{1}{2} \int_{\text{A}} \left[\mathbf{K}_i \mathbf{w}_x^2 + \mathbf{K}_i \mathbf{w}_y^2\right] dA
\]

Finite element model

Strain energy of the Plate Element: In the present study a \(C^0\) nine-noded isoparametric finite element with 7 DOFs per node is employed. For this type of element, the displacement vector and the element geometry are expressed as

\[
\mathbf{u} = \sum_{i=1}^{N_{E}} \mathbf{N}_i \mathbf{q}_i + \mathbf{q}_{\text{fn}} + \mathbf{q}_{\text{fn}}
\]

\[
\mathbf{q}_{\text{fn}} = \mathbf{q}_{\text{xc}} + \mathbf{q}_{\text{yc}}
\]

Where \(\mathbf{N}_i\) is the interpolation function for the \(i\) node, \(\mathbf{f}_i\) is the vector of unknown displacements for the \(i\) node, \(\mathbf{N}_{\text{xc}}\) is the vector of displacements for the \(i\) node, \(\mathbf{N}_{\text{yc}}\) is the vector of nodal displacements, \(N_{E}\) is the number of nodes per element and \(x\) and \(y\) are Cartesian Coordinate of the \(i\) node.

Total potential energy which can be expressed as

\[
\Pi_1 = \sum_{e=1}^{N_{E}} \left[\mathbf{K}_e \mathbf{u}_e^T \mathbf{u}_e + \mathbf{K}_f \mathbf{f}_e^T \mathbf{f}_e\right]
\]

\[
\Pi_2 = \sum_{e=1}^{N_{E}} \left[\mathbf{K}_e \mathbf{u}_e^T \mathbf{u}_e\right]
\]

With \(\mathbf{K}_e = \mathbf{K}_{\text{xc}} + \mathbf{K}_{\text{yc}}\)

Where global bending stiffness matrix \(\mathbf{K}_{\text{xc}}\), shear stiffness matrix \(\mathbf{K}_{\text{yc}}\), foundation stiffness matrix \(\mathbf{K}_f\), global displacement vector \(\mathbf{q}\) and thermal load vector \(\mathbf{F}\) are defined in the appendix.

Thermal buckling analysis

Using finite element model Eq. (13), Eq. (11) after summing over the entire element can be written as

\[
\Pi_2 = \sum_{e=1}^{N_{E}} \Pi_2^e
\]

\[
\Pi_2^e = \frac{1}{2} \sum_{e=1}^{N_{E}} [\mathbf{u}_e^T \mathbf{K}_e \mathbf{u}_e] dA
\]

\[
\Pi_1^e = \frac{1}{2} \int_{\text{A}} \left[\mathbf{K}_i \mathbf{w}_x^2 + \mathbf{K}_i \mathbf{w}_y^2\right] dA
\]

\[
\Pi_3^e = \frac{1}{2} \int_{\text{A}} \left[\mathbf{K}_i \mathbf{w}_x^2 + \mathbf{K}_i \mathbf{w}_y^2\right] dA
\]
Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation

under non-uniform temperature distribution

Copyright: ©2017 Kumar

\[\lambda \frac{1}{2} \frac{\partial}{\partial q^T} \left[K_e \right] q \]

where \(\lambda \) and \(\left[K_e \right] \) are defined as the thermal buckling load parameters and the global geometric stiffness matrix, respectively.

Foundation analysis

Using finite element model

\[\Pi = \sum_{c=1}^{NE} \Pi_{c}^{(1)} = \frac{1}{2} \int_{A} \frac{\partial}{\partial q^T} \left[K_{c}^{(1)} \right] \left[q^{(1)} \right] \]

(15)

Where, \(\left[K_{c}^{(1)} \right] \) are the elemental linear foundation stiffness matrices for the \(c \)th element.

Adopting Gauss quadrature integration numerical rule, the element linear and non-linear stiffness matrices, foundation stiffness matrix and geometric stiffness matrix respectively can be obtained by transforming expression in \(x, y \) coordinate system to natural coordinate system \(\xi, \eta \).

Governing equations

The governing equation for thermal buckling of laminated composite plate can be derived using Variational principle, which is generalization of the principle of virtual displacement. For the prebuckling analysis, the first variation of total potential energy \((\Pi) \) must be zero. By using Eq. 13 and Eq. 15

\[\left[K_{c}^{(1)} + K_{u} \right] \left[q^{(1)} \right] = \frac{\partial}{\partial q^T} \]

(16)

Eq. 16 can be rewritten as

\[\left[K \right] q = \lambda \left[K_e \right] q \]

Where \(\left[K \right] = \left[K_{c}^{(1)} + K_{u} \right] \)

For the critical buckling state corresponding to the neutral equilibrium condition, the second variation of total potential energy \((\Pi - \Pi_{1} - \Pi_{2} - \Pi_{3}) \) must be zero. Following this conditions, ones obtains as standard eigenvalue problem

\[\left[K + K_{u} \right] + \lambda \left[K_e \right] \left[q \right] = 0 \]

(17)

The stiffness matrix \(\left[K \right] \), foundation stiffness matrix \(\left[K_{u} \right] \) and geometric stiffness matrix \(\left[K_e \right] \) are random in nature, being dependent on the system geometric and thermo-elastic properties. Therefore the eigenvalues and eigenvectors also become random. The (Eq. 17) can be solved with the help probabilistic FEM in conjunction with perturbation technique or Monte Carlo simulation (MCS) to compute the mean and variance of the thermal post buckling load.

Solution technique: random thermal post buckling problem

Direct iterative method in conjunction with perturbation technique

Steps for the direct iterative technique

The nonlinear eigenvalue problem as given in (eq. 15), is solved by employing a direct iterative method in conjunction with the mean centered first order perturbation technique assuming that the random changes in eigenvector during iterations does not affect the nonlinear stiffness matrices with the following steps.

By setting amplitude to zero, the random linear eigenvalue problem \(\left[\left[K \right] \right] q = \lambda \left[K_e \right] q \) is obtained from the (Eq. 15), by assuming that the system vibrates in its principal mode. Then the random linear eigenvalue problem is broken up into zeroth and first order equations using perturbation technique by neglecting higher order equations. The zeroth order linear eigenvalue problem is solved by normal Eigen solution procedure to obtain the linear critical load parameters \(\lambda \) and the linear Eigen vector \(\{ q_{\lambda} \} \). The first order perturbation equation is used to obtain the standard deviation of the thermal post buckling which is presented in next sub-section 6.2. of perturbation technique.

a. For a specified maximum deflection \(C \) at a center of the plate, the linear normalized eigenvector is scaled up by \(C \) times, so that resultant vector will have a displacement \(C \) at the maximum deflection point.

Using the scale-up eigenvector, the nonlinear terms in the stiffness matrix \(\left[K \right] \) can be obtained. The problem may now be treated as linear eigenvalue problem with a new updated stiffness matrix. The random eigenvalue problem can again be broken up into zeroth and first order equation using perturbation technique. The deterministic zeroth order can be used to obtain nonlinear critical load \(\lambda_{d} \) and eigenvector \(\{ q_{\lambda} \} \) and the random first order equations can be used to obtain the standard deviation (SD) of the Eigen solutions using the first order perturbation technique as presented in the next section.

Steps (ii)-(iii) are repeated by replacing \(\{ q_{\lambda} \} \) by \(\{ q_{d} \} \) in the step (ii) to obtain the converged mean and standard deviation of the nonlinear critical buckling load \(\lambda_{d} \) to a prescribed accuracy (=10^-3)

Steps (i) to (iv) are repeated for various value of \(C \).

Solution technique: perturbation technique

In the present analysis, the lamina material properties, thermal expansion coefficients and the geometric properties are treated as independent random variables (RVs). In general, without any loss of generality any arbitrary random variable can be represented as the sum of its mean and zero mean random part, denoted by superscripts ‘d’ and ‘r’, respectively.

\[K = K_{d} + K_{r}, K_{g} = K_{g}^{d} + K_{g}^{r}, \lambda = \lambda_{d} + \lambda_{r}, q = q_{d} + q_{r} \]

(18)

Taylor’s series keeping the first order terms and neglecting the second and higher order terms, collecting same order of the magnitude term, one obtains as

Zeroth order:

\[\left[K_{d} \right] \left[q_{d} \right] = \lambda_{d} \left[K_{d}^{e} \right] \left[q_{d} \right] \]

(19)

First order:

\[\left[K_{d} \right] \left[q_{d} \right] = \lambda_{d} \left[K_{d}^{e} \right] \left[q_{d} \right] + \lambda_{r} \left[K_{d}^{r} \right] \left[q_{d} \right] + \lambda_{d} \left[K_{d}^{r} \right] \left[q_{d} \right] + \lambda_{r} \left[K_{d}^{r} \right] \left[q_{r} \right] \]

(20)

Eq. 19 is the deterministic equation relating to the mean eigenvalues and corresponding mean eigenvectors, which can be determined by conventional eigensolution procedures (eq. 20) is

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
the random equation, defining the stochastic nature of the thermal buckling which cannot be solved using conventional method. For this a further analysis is required.

\[\{q_i^r\}^T[K_g^r]\{q_i^r\} = \delta_{ij} \] \hspace{1cm} (21)

\[\{q_i^d\}^T[K_g^d]\{q_i^d\} = \delta_{ij} \hat{\lambda}^d, \quad (i, j) = 1, 2, \ldots, p \] \hspace{1cm} (22)

Where \(\delta_{ij} \) is the Kronecker delta.

The eigenvectors, which meet orthogonality, conditions after being properly, normalized form a complete orthonormal set and any vector in the space can be expressed as their linear combination of these eigenvectors. Hence, the \(m \) random part of the eigenvectors can be expressed as

\[\{q_i^r\} = \sum_{j=1}^{N_r} C_{ij}^r \{q_i^d\}, \quad C_{ij}^r = 0, i = 1, 2, \ldots, m \] \hspace{1cm} (23)

Where \(C_{ij}^r \)'s are small random coefficients to be determined.

Substituting eq. 23 in eq. 20, premultiplying, the first by \(\{q_i^d\}^T \) and second by \(\{q_i^d\}^T \) \((j \neq i)\), respectively and making use of orthogonality (eq. 22), one obtains as

\[\lambda^r_i = \{q_i^r\}^T[K_g^r]\{q_i^r\} - \hat{\lambda}^d \{q_i^d\}^T[K_g^d]\{q_i^r\} \] \hspace{1cm} (24)

\[C_{ij}^r = \frac{\{q_i^r\}^T[K_g^r]\{q_i^d\}-\hat{\lambda}^d \{q_i^d\}^T[K_g^d]\{q_i^d\}}{\hat{\lambda}^d - \hat{\lambda}^d} \] \hspace{1cm} (25)

Substituting eq. 25 into eq. 23, we obtain

\[\{q_i^r\} = \sum_{j=1}^{N_r} C_{ij}^r \{q_i^d\}^T[K_g^r]\{q_i^d\} - \hat{\lambda}^d \{q_i^d\}^T[K_g^d]\{q_i^d\} \{q_i^r\} \] \hspace{1cm} (26)

For the present case \(\lambda^r, \{q_i^r\}, [K_g^r] \) and \([K_g^d] \) are random because of random geometric and material properties. Let \(b_1^r, b_2^r, b_3^r, \ldots, b_q^r \) denote random variables (system properties).

The FEM in conjunction with FOPT has been found to be accurate and efficient.1-13 According to this method, the random variables are expressed by Taylor’s series expansion. The expression only up to the first-order terms and neglecting the second- and higher-order terms

\[b_1 = E_{11}, \quad b_2 = E_{22}, \quad b_3 = G_{12}, \quad b_4 = G_{13}, \quad b_5 = G_{23}, \quad b_6 = \nu_{12}, \] \hspace{1cm}

The following dimensionless thermal buckling temperature, foundation parameters and post buckling temperature have been used in this study.

\[T_r = \lambda^r T_a^r \times 1000; \quad k_1 = K_h b_h / E_{22} h^3; \quad k_2 = K_o \beta^2 / E_{22} h^3; \quad \] \hspace{1cm} and

\[T_v = \lambda_v T_a^v \times 1000 \]

where \(\lambda_r, \lambda_v, T, k, h \) and \(k \) are the dimensionless mean thermal buckling load, the initial thermal expansion coefficient and the initial guessed temperature, Dimensionless Winkler and Pasternak foundation parameters, and \(T_r, T_v \) and \(T \) are dimensionless mean thermal post buckling temperature, initial thermal expansion coefficient and the initial guessed dimensionless temperature (980)

\[\lambda^r_i = \sum_{j=1}^{N_r} \lambda^d_j h^r_j; \quad \{q_i^r\} = \sum_{j=1}^{N_r} \{q_i^d\} h^r_j; \] \hspace{1cm} (27)

\[[K_g^r] = \sum_{i=1}^{N_r} [K^d_i] h^r_i; \quad [K_g^d] = \sum_{i=1}^{N_r} [K^d_i] h^d_i \]

Where \((i, j)\) denotes the partial differentiation with respect to \(b_j \).

On substitution of eq. 27 into eq. 24, one obtain as

\[\lambda^d_i = \{q_i^d\}^T[K_g^d]\{q_i^d\} - \hat{\lambda}^d \{q_i^d\}^T[K_g^d]\{q_i^d\} \] \hspace{1cm} (28)

The variance of the eigenvalues can now be expressed as \(^2^1\)

\[Var(\lambda) = \sum_{i=1}^{N_r} \lambda^d_i \lambda^d_i \] \hspace{1cm} (29)

Where \(Cov(b_j^r, b_j^r) \) is the covariance between \(b_j^r \) and \(b_k^r \). The standard deviation (SD) is obtained by the square root of the variance.

Numerical examples and discussion

In present work a program in mat lab has been developed to find out Second-order statistics of the thermal buckling and thermal post buckling temperature for laminated composite plates subjected to uniform temperature (U.T) distribution and combined uniform temperature with linearly varying temperature along transverse direction (T, T) and non-uniform tent like temperature distribution with random system properties. A nine noded Lagrange isoparametric element with 63 DOFs per element for the present HSDT model has been used for discretizing the laminate and (5×5) mesh has been used throughout the study. The mean and standard deviation of the thermal buckling temperature are obtained considering the random material input variables, thermal expansion coefficients, foundation parameters and lamina plate thickness taking combined as well as separately as basic random variables (RVs) as stated earlier. However, the results are only presented taking SD/mean of the system property equal to 0.10 as the nature of the SD (Standard deviation) variation is linear and passing through the origin. However the obtained results revealed that the stochastic approach would be valid upto SD/mean=0.20. Moreover, the presented results would be sufficient to extrapolate the results for other SD/mean value keeping in mind the limitation of the FOPT. The basic random variables such as \(E, G, \nu \), \(k_1, k_2, k_3, k_4, k_5, k_6 \) and \(k_7 \) are sequenced and defined as

\[b_1 = a_1, \quad b_2 = a_2, \quad b_3 = a_3, \quad b_4 = k_4, \quad b_5 = k_5, \quad b_6 = h, \]

applied in \(x \) and \(y \) direction respectively. In the present study various combination of edge support conditions such as all edges simply support conditions (SSSS) (S1 and S2), Clamped conditions (CCCC) and simply support and clamped condition (CSCS) have been used for the analysis.

The following relative numerical values and relationship between the mean values of the material properties and thermal expansion coefficients for graphite/epoxy composite have been used in the present investigates.

\[E_{11} = 5.0 E_{22}, \quad G_{12} = G_{13} = 0.6 E_{22}, \quad G_{23} = 0.5 E_{22}, \quad \nu_{12} = 0.25, \]

\[a_1^d = a_0^d, \quad a_2^2/a_2^d = 2, \quad a_3^d = 1, 10^{-6}, \quad E_{22} = 1 \times 10^5. \]

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aerop Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
The plate geometry supported with elastic foundation used is characterized by various aspect ratios, side to thickness ratios, laminination scheme and number of layers.

The plate geometry used is characterized by aspect ratios \((a/h) = 1\) and \(2\), side to thickness ratios \((a/h) = 20, 30, 40, 50, 60, 80\) and \(100\). The only exception is the Poisson’s ratio, which can reasonably be assumed as constant deterministic due to weakly dependency on temperature change. The relation among elastic constants for the plate having all plies of equal thickness and temperature dependent material properties is given as.\(^{1,2,3}\) For the temperature independent material properties (TID) \(E_{111}, E_{221}, G_{112}, G_{131}, G_{231}, \alpha_{111},\text{and } \alpha_{221}\) quantities are equal to zero. The material properties for non-uniform tent like and parabolic distribution are used as:

Validation study

Validation for mean buckling temperature for composite plate

The dimensionless mean thermal post buckling loads \((T_{crnl})\) of angle-ply \((\pm 45^\circ)_{2T}\) square laminated composite plate, temperature

\[
E_{1101}/E_{2201} = 40, G_{1201}/E_{2201} = G_{3301}/E_{2201} = 0.2, \quad \nu_{12} = 0.25, \quad \alpha_{110} = \alpha_{2201} = 0
\]

with simple support SSSS (S1) boundary conditions are compared for validation in Figure 5. It is observed the present results are good in agreements and validated with semi analytical approach by Shen.\(^{12}\)

The present theoretical model is validated by comparing the mean dimensionless results with those available in literature\(^6\) (Figure 3). Compares the results obtained from present FEM with existing results for a two layer and four layer anti-symmetric \(45^\circ / -45^\circ\) and \(45^\circ / -45^\circ\) \(_{2T}\) square laminate, \((a/h)=20\), for all edges CCCC supported boundary condition respectively. The

\[
E_{1101}/E_{2201} = 40, G_{1201}/E_{2201} = G_{3301}/E_{2201} = 0.2, \quad \nu_{12} = 0.25, \quad \alpha_{110} = \alpha_{2201} = 0
\]

The post buckling temperature results are compared in Figure 6 with\(^7\) of FSDT results and\(^8\) of HSDD results.

Thermal post buckling response of angle-ply \((\pm 45^\circ)_{6T}\) square laminated composite thin plates with amplitude ratios

\[
E_{1101}/E_{2201} = 40, G_{1201}/E_{2201} = G_{3301}/E_{2201} = 0.2, \quad \nu_{12} = 0.25, \quad \alpha_{110} = \alpha_{2201} = 0
\]

having temperature-dependent thermo-elastic properties and subjected to a uniform temperature rise with simple support SSSS (S2). Where \(E_{111}\) is assumed to be function of temperature and \(\nu_{12} = 0.0, -0.5 \times 10^{-4}, -0.2 \times 10^{-3}\) respectively, \(b/h=100\), material properties are

\[
E_{111}/E_{2211} = G_{1211} = G_{1311} = G_{2311} = \alpha_{111} = \alpha_{2211} = 0
\]

The post buckling temperature results are compared in (Figure 7) with Shen\(^9\) of HSDD results. To validate the present method, the results for thermal post buckling of a simply supported thin \((b/h)=20\) square plate under non-uniform loading and resting on two parameters elastic foundation are listed in Figure 8 and compared with these given by Shen.\(^7\) Clearly results obtained from present HSDD approach are in good agreement with the solution obtained from Riser midline plate theory approach.

Figure 9 examines the thermal post buckling load of 4-ply anti-symmetric angle-ply \((\pm 45^\circ)_{2T}\) laminated composite square plate under non-uniform temperature distribution, \(b/h=10\) with simply supported S2 boundary conditions and are compared with those of Shen\(^9\) and Shen & Lin.\(^7\) Clearly, the results obtained from the present method accord quite well with the existing ones.

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10-29. DOI: 10.15406/aaoaj.2017.01.00003
Validation study for random material and geometric properties

The present results of thermal buckling and post-buckling load of laminated composite plates obtained from present FOPT approach have been compared and validated with an independent MCS approach.

Validation result for random material and geometric properties (TID)

(Figure 10) (Figure 11) plot the normalized standard deviation, SD/mean (i.e., the ratio of the standard deviation (SD) to the mean value), of the thermal buckling load versus the SD/mean of the random material and geometric parameter for an all simply supported cross-ply [0°/90°] and angle-ply [45°/-45°] square laminated composite plate subjected to non-uniform tent-like temperature distribution changing from 0 to 20% respectively. It is assumed that one of the material property (i.e., E₂) and lamina plate thickness h changing at a time keeping other as a deterministic, with their mean values. The dashed line is the present [FOPT] result that is obtained by using FOPT and the solid line is independent MCS approach. For the MCS approach, the samples are generated using Mat Lab to fit the desired mean and SD. The number of samples used for MCS approach is 10,000 for material properties and 12,000 for lamina plate thickness based on satisfactory convergence of the results. The normal distribution has been assumed for random number generations in MCS.
and geometric properties. From the (Figure 12) (Figure 13) it is clear
that, close correlation is achieved between two results subjected to TD
thermo-material properties.

Numerical results: second order statistics of
thermal buckling and post buckling temperature

Parametric analysis of second order statistics (TD)

Table 1: It is observed that increase in amplitude ratio \(W_{\max}/h\)
increases the mean thermal post buckling load and COV. Random
input variable thickness \(h\) effects are significant where as shear
modulus \(G(12)\) effects are least for uniform temperature (U.T) as well
as combined uniform with transverse temperature (T.T) distribution.
However for (T.T) temperature distribution, individual random
input variables \(E_{ij}, E_{12}, G_{ij}, h\) have effect whereas the
other random input variables have no effects compared to uniform
temperature distribution.

Table 2: The thermal buckling temperature is most affected by
random change in the \(E_{ij}\) and \(h\) in the case of plate supported without
foundation \((k_1=0, k_2=0)\) while \(k_1\) and \(h\) for Winkler elastic foundation
\((k_1=100, k_2=0)\) and \(k_1\) and \(h\) for Pasternak elastic foundation
\((k_1=100, k_2=10)\) respectively, and the least affected by \(a_i\), all in the foundation
cases. From the table it is clear that the dimensionless mean thermal
buckling temperature increases when the plate supported with elastic
foundation as the stiffness of the plate increases.

Table 3: It is expected that the thermal post buckling temperature
increases as the amplitude ratio increases. It is observed that thermal
post buckling strength is more pronounced when the plate becomes relatively thick. The COV of the thermal buckling temperature increases as the plate thickness ratio increases for all random system parameters \(b_i \) \(\{i = (1.....8), (7, 8) \text{ and } (9)\} \) varying simultaneously or individual.

Table 1 Effects of individual random variables \(b_i \) \(\{i = 1 \text{ to } 9\}=0.10\), keeping others as deterministic with amplitude ratio \(W_{\text{max}}/h \) on the dimensionless mean \((T_{\text{cr}},) \) in brackets and coefficient of variations \((\lambda_{\text{cr}},) \) of thermal post buckling load of angle ply \([45\sqrt{0}]\), square laminated composite plates under combination of uniform and transverse temperature \((u.t)\), uniform temperature \((u.t)\) distribution, plate thickness ratio \((a/h)=30\) with simple support sssss \((s2)\) boundary conditions. tcrl=dimensionless linear mean thermal buckling load

\(b_i \)	\(W_{\text{max}}/h \)	\((T.T)\)	\((U.T)\)		
\(b_i \)	\(W_{\text{max}}/h \)	\(T_{\text{cr}} \)	\(\lambda_{\text{cr}} \)	\(T_{\text{cr}} \)	\(\lambda_{\text{cr}} \)
\(0.1 \)	\(0.016 \)	\(0.0064 \)	\(0.106 \)	\(0.0061 \)	
\(0.1 \)	\(0.017 \)	\(0.0073 \)	\(0.107 \)	\(0.0063 \)	
\(0.1 \)	\(0.018 \)	\(0.0084 \)	\(0.108 \)	\(0.0068 \)	
\(0.2 \)	\(0.019 \)	\(0.0135 \)	\(0.209 \)	\(0.0135 \)	
\(0.2 \)	\(0.020 \)	\(0.0145 \)	\(0.210 \)	\(0.0146 \)	
\(0.2 \)	\(0.021 \)	\(0.0155 \)	\(0.211 \)	\(0.0147 \)	
\(0.2 \)	\(0.022 \)	\(0.0165 \)	\(0.212 \)	\(0.0148 \)	
\(0.2 \)	\(0.023 \)	\(0.0175 \)	\(0.213 \)	\(0.0149 \)	
\(0.2 \)	\(0.024 \)	\(0.0185 \)	\(0.214 \)	\(0.0150 \)	

Table 2: For the fixed foundation parameters, the thermal buckling temperature increases as the plate thickness ratio decreases and vice versa for the case of dispersion. The thin plate \((a/h=20)\) supported on Pasternak elastic foundation shows the highest dispersion with random change in all material properties and lamina plate thickness. However no definite trend is observed with random change in foundation parameters.

Table 3: It is observed that increase of amplitude ratio increases the mean thermal post buckling temperature in both \((U.T)\) and \((T.T)\) temperature distribution. The effects of aspect ratios decreases the mean thermal post buckling temperature and dispersion significantly increases. If lay-up is changed then for square plate the mean thermal post buckling temperature decreases and for rectangular plate increases. The COV is significantly increased by increase of aspect ratio. The difference in results of \((U.T)\) and \((T.T)\) temperature distribution is insignificant.

Table 4: For the fixed foundation parameters and number of layers, rectangular plate shows higher random change in material properties plus thermal expansion coefficients and vice versa for random change in thermal expansion coefficients, foundation parameters and lamina plate thickness. For the same aspect ratio and foundation parameters, as the number of layer increases the dimensionless mean and dispersion increases for random change in all system properties.

Table 5: It is observed that increase of amplitude ratio increases the mean thermal post buckling temperature and decreases the dispersion for both \((U.T)\) and \((T.T)\) temperature distribution. Clamp support \((CCCC)\) conditions significantly affect the thermal post buckling temperature and lowers the dispersions where as simple support conditions have least effects. It shows that for \(CCC\) boundary conditions can withstand higher thermal post buckling temperature. On comparing uniform temperature and combined uniform with transverse temperature distribution the difference in parameters is very less.

Table 6: For the three cases of support conditions, the plate with \(CCCC\) boundary condition shows the highest thermal buckling temperature and its scattering, while the SSSSS plate shows the least for the fixed foundation parameters considered. For the fixed support conditions, the thermal buckling temperature is greatest for plate resting on Pasternak elastic foundation, while least for plate without elastic foundation. From the table it can be seen that the scattering in the thermal buckling temperature is strongest to random change in all system parameters in the case of plates resting on Winkler elastic foundation with SSSS and CCC boundary conditions, while strongest for plate without elastic foundation in case of CSCS support condition. The dispersion in the plates resting on Pasternak elastic foundation is highest with random change in foundation parameters and lamina plate thickness, while plate without foundation shows highest dispersion with the random change in thermal expansion coefficients.

Table 7: It is noticed that on rise in temperature the mean thermal post buckling temperature decreases for TID material properties, however the coefficient of variations for combination of input random variables and considering only thermal coefficients or geometric property plate thickness also decreases. For the TD material properties there is further decrease of expected mean thermal post buckling temperature while the COV for all input random variables increases.

Table 8: For the three cases of support conditions, the plate with \(CCCC\) boundary condition shows the highest thermal buckling temperature and its scattering, while the SSSSS plate shows the least for the fixed foundation parameters considered. For the fixed support conditions, the thermal buckling temperature is greatest for plate resting on Pasternak elastic foundation, while least for plate without elastic foundation. From the table it can be seen that the scattering in the thermal buckling temperature is strongest to random change in all system parameters in the case of plates resting on Winkler elastic foundation with SSSS and CCC boundary conditions, while strongest for plate without elastic foundation in case of CSCS support condition. The dispersion in the plates resting on Pasternak elastic foundation is highest with random change in foundation parameters and lamina plate thickness, while plate without foundation shows highest dispersion with the random change in thermal expansion coefficients.

Table 9: It is observed that increase of amplitude ratio increases the mean thermal post buckling temperature in both \((U.T)\) and \((T.T)\) temperature distribution. Clamp support \((CCCC)\) conditions significantly affect the thermal post buckling temperature and lowers the dispersions where as simple support conditions have least effects. It shows that for \(CCC\) boundary conditions can withstand higher thermal post buckling temperature. On comparing uniform temperature and combined uniform with transverse temperature distribution the difference in parameters is very less.

Table 10: For the three cases of support conditions, the plate with \(CCCC\) boundary condition shows the highest thermal buckling temperature and its scattering, while the SSSSS plate shows the least for the fixed foundation parameters considered. For the fixed support conditions, the thermal buckling temperature is greatest for plate resting on Pasternak elastic foundation, while least for plate without elastic foundation. From the table it can be seen that the scattering in the thermal buckling temperature is strongest to random change in all system parameters in the case of plates resting on Winkler elastic foundation with SSSS and CCC boundary conditions, while strongest for plate without elastic foundation in case of CSCS support condition. The dispersion in the plates resting on Pasternak elastic foundation is highest with random change in foundation parameters and lamina plate thickness, while plate without foundation shows highest dispersion with the random change in thermal expansion coefficients.

Table 11: It is noticed that on rise in temperature the mean thermal post buckling temperature decreases for TID material properties, however the coefficient of variations for combination of input random variables and considering only thermal coefficients or geometric property plate thickness also decreases. For the TD material properties there is further decrease of expected mean thermal post buckling temperature while the COV for all input random variables increases.

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aerosp Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
which is an important parameter when the rise of temperature is taken into consideration.

Table 10: For the TD material properties there is further decrease of expected mean thermal post buckling temperature while the COV for all input random variables increases which is an important parameter when the rise of temperature is taken into consideration.

Table 11: For the fixed foundation parameters, an anti-symmetric plate shows higher dispersion to random change in all system properties. However the mean thermal buckling temperature of symmetric cross-ply plate is higher than anti-symmetric cross-ply plate.

(Table 12) (Table 13): The effects of amplitude ratios increases the mean thermal post buckling temperature and decreases the COV in both uniaxial and biaxial compression with TD and TID thermo-material properties, however the effects are more dominant in uniaxial TID for mean thermal post buckling load and dispersion in biaxial TD compression respectively. Among individual random variation in material properties, thermal expansion coefficients and plate thickness the COV is significant decreases for plate thickness in uniaxial as well as in biaxial for TD and TID material properties. As a matter of facts the COV for temperature dependent thermo material properties is of significant nature.

Table 14: It can be seen that the laminated plate under non-uniform tent-like temperature distribution has higher initial buckling load and post buckling load than non-uniform parabolic temperature distribution for the same thermal load ratio. It can also be seen that thermal post buckling strength under non-uniform tent like temperature distribution is more pronounced when the plate becomes heavily loaded thermal load as compared to parabolic temperature distribution. The dispersion of thermal post buckling temperature are same for both of the non-uniform tent-like and parabolic temperature distribution are almost same for all random system parameters $b_i, \{i = (1,\ldots,8)\text{ and } (7, 8)\}$ varying simultaneously. However, dispersion of thermal post buckling temperature of the plate subjected to non-uniform tent-like distribution is higher than parabolic temperature distribution having random lamina properties $b_i, \{i = (9)\}$.

Table 2	Effects of individual random input variables ($b_i, i=1\text{ to }11=0.10$) keeping other as deterministic at a time with various foundation stiffness parameters on the dimensionless mean and dispersion of thermal buckling temperature of anti-symmetric, angle-ply [450/-450/450/-450] square laminates with ssss boundary conditions subjected non-uniform tent like structures.		
	Mean T_{crnld} = 17.9472	Mean T_{crnld} = 39.0972	Mean T_{crnld} = 80.8726
$COV, \lambda_{\text{crnld}}$	$COV, \lambda_{\text{crnld}}$	$COV, \lambda_{\text{crnld}}$	
$E_{11} (i = 1)$	0.0697	0.032	0.0155
$E_{22} (i = 2)$	0.051	0.0234	0.0113
$G_{12} (i = 3)$	3.29E-04	1.54E-04	7.42E-05
$G_{11} (i = 4)$	0.0056	0.0026	0.0012
$G_{22} (i = 5)$	0.0046	0.0021	0.001
$V_{12} (i = 6)$	0.0142	0.0065	0.0031
$\alpha_{11} (i = 7)$	0.0011	5.20E-04	2.51E-04
$\alpha_{22} (i = 8)$	1.35E-04	6.19E-05	2.99E-05
$k_1 (i = 9)$	0	0.0541	0.0261
$k_2 (i = 10)$	0	0	0.0517
$h (i = 11)$	0.0488	0.1332	0.213

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution

Table 3 The comparison of variation of plate thickness ratios (a/h) with amplitude ratios (W_{max} / h) = (0.2, 0.4, 0.6) on the dimensionless mean (T_{crnl}) and coefficient of variations (λ_{crnl}) of thermal post buckling load of 4-layers anti-symmetric cross-ply [0/90]2s square plate with simply supported ssss (s2) condition for cov, ($bi, i = (1,...,8), (7,8) and (9) = 0.10$) under combination of uniform and transverse temperature (t.t), uniform temperature (u.t) distribution, with simple support ssss (s2) boundary conditions. tcrl – dimensionless linear mean thermal buckling load

(a/h	W_{max} / h	Mean, T_{crnl}	COV, λ_{crnl}	Mean, T_{crnl}	COV, λ_{crnl}				
		(bi	($i=1,...,8$)	($i=7,8$)	($i=9$)	(bi	($i=1,...,8$)	($i=7,8$)	($i=9$)
30	0.2	0.441	0.2153	0.1462	0.1855	0.441	0.2156	0.1462	0.1855
	0.4	0.5399	0.1753	0.1194	0.1765	0.5399	0.176	0.1194	0.1765
	0.6	0.6516	0.145	0.099	0.1706	0.6516	0.146	0.099	0.1706
	T_{crl}	-0.4003				-0.4003			
40	0.2	0.2536	0.3519	0.2542	0.1856	0.2536	0.3523	0.2542	0.1856
	0.4	0.3121	0.2843	0.2066	0.1752	0.3121	0.2855	0.2066	0.1752
	0.6	0.3886	0.2266	0.1659	0.1678	0.3886	0.2283	0.1659	0.1676
	T_{crl}	-0.2303				-0.2303			

Table 4 Effects of plate thickness ratios (a/h) with foundation parameters on the dimensionless mean and the dispersion of thermal buckling temperature for angle-ply anti-symmetric [$45/450/450$] laminated composite square plate resting on elastic foundation subjected to non-uniform tent-like temperature distribution for cov, ($bi, i = (1,...,8), (7,8), (9,10) and (11) = 0.10$) with ssss boundary conditions

a/h	Foundation parameters	Mean, T_{crnl}	COV, λ_{crnl}			
5	($k_1 = 0, k_2 = 0$)	49.5857	0.0996	4.13E-04	0	0.0414
	($k_1 = 100, k_2 = 0$)	112.851	0.0763	1.80E-04	0.0296	0.0494
	($k_1 = 100, k_2 = 10$)	278.6206	0.0308	7.28E-05	0.0607	0.1837
	($k_1 = 0, k_2 = 0$)	15.4511	0.1022	0.0013	0	0.0318
	($k_1 = 100, k_2 = 0$)	36.4957	0.0442	5.61E-04	0.0574	0.1514
	($k_1 = 100, k_2 = 10$)	78.2641	0.0206	2.61E-04	0.0597	0.224
	($k_1 = 0, k_2 = 0$)	4.1756	0.1028	0.0049	0	0.0261
10	($k_1 = 100, k_2 = 0$)	9.4379	0.0462	0.0022	0.0556	0.1517
	($k_1 = 100, k_2 = 10$)	19.8818	0.0219	0.001	0.0588	0.2263

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10-29. DOI: 10.15406/aaoaj.2017.01.00003
Figure 5: Effects of number of layers, aspect ratios (a/b), amplitude ratios \(\left(\frac{W_{\max}}{h} \right) \) and random input variables \(b_i, (i = 1 \text{ to } 8), (7, 8) \) and \((9) = 0.10 \) on dimensionless mean \(\left(\frac{T_{\text{crnl}}}{\max} \right) \) and coefficient of variations \(\left(\frac{\lambda_{\text{crnl}}}{\max} \right) \) of thermal post buckling load of symmetric cross-ply [00/900/00] and antisymmetric [00/900], laminated composite plates under combination of uniform and transverse temperature (t.t), uniform temperature (u.t) distribution, plate thickness ratio \((a/h=100) \), with simple support sss (s2) boundary conditions.

No. of layers	a/b	\(\frac{W_{\max}}{h} \)	Mean, \(T_{\text{crnl}} \)	COV, \(\lambda_{\text{crnl}} \)
1	0.2	0.0478	0.911	1.2972
	0.6	0.0551	1.6901	1.1684
[00/900/00]	0.2	T_{\text{crnl}} 0.0446	-0.0446	1.6912
	0.6	T_{\text{crnl}} -0.0111	-0.0111	1.1684
2	0.2	0.0416	1.2174	1.5254
	0.4	0.0419	4.4345	2.8642
[00/900/90]	0.2	T_{\text{crnl}} -0.0383	-0.0383	2.218
	0.4	T_{\text{crnl}} -0.0383	-0.0383	1.5254
2	0.2	0.0433	2.7309	1.8726
	0.4	0.0408	2.2275	1.5599
[00/900/90]	0.2	T_{\text{crnl}} -0.0383	-0.0383	2.7315
	0.4	T_{\text{crnl}} -0.0383	-0.0383	1.8726

Figure 6: Effects of aspect ratios (a/b), number of layers with random input variables \(b_i, (i = 1 \text{ to } 8), (7, 8) \) and \((9) = 0.10 \) on dimensionless mean \(T_{\text{crnl}} \) and coefficient of variations \(\lambda_{\text{crnl}} \) of thermal post buckling load of laminated composite plates under combination of uniform and transverse temperature (t.t), uniform temperature (u.t) distribution, plate thickness ratio \((a/h=100) \), with simple support sss (s2) boundary conditions.

a/b	Lamination scheme	Foundation parameters	Mean, \(T_{\text{crnl}} \)	COV, \(\lambda_{\text{crnl}} \)
	\(k_1 = 0, k_2 = 0 \)		0.1739	0.1554
1	\(45^0 / -45^0 \)	\(k_1 = 100, k_2 = 0 \)	0.3843	0.0707
	\(k_1 = 100, k_2 = 10 \)		0.8021	0.0339
	\(k_1 = 0, k_2 = 0 \)		0.1847	0.1446
1	\(45^0 / -45^0 / 45^n \)	\(k_1 = 100, k_2 = 0 \)	0.3935	0.0689
	\(k_1 = 100, k_2 = 10 \)		0.8213	0.0325

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10-29. DOI: 10.15406/aaoaj.2017.01.00003
Table Continued...

a/b	Lamination scheme	Foundation parameters	Mean, T_{crnl}	COV, λ_{crnl}
			bi	
			$i=1,...,8$	$i=7,8$
			$i=9,10$	$i=11$
		($k_1 = 0, k_2 = 0$)	0.2052	0.1358
	[45° / -45°]	($k_1 = 100, k_2 = 0$)	0.2472	0.1128
2		($k_1 = 100, k_2 = 10$)	0.4561	0.0612
		($k_1 = 0, k_2 = 0$)	0.2197	0.1256
	[45° / -45° / 45°]	($k_1 = 100, k_2 = 0$)	0.2616	0.1055
		($k_1 = 100, k_2 = 10$)	0.4736	0.0582

Figure 7 Effects of boundary conditions (BCs), amplitude ratios (W_{max} / h) and random input variables (b_i) on dimensionless mean (T_{crnl}) and coefficient of variations (λ_{crnl}) of thermal post buckling load of angle-ply antisymmetric [45°/-45°]$_2t$ square laminated composite plates under combination of uniform and transverse temperature (TT), uniform temperature (UT) distribution, plate thickness ratio ($a/h = 50$)

BCs	W_{max} / h	Mean, T_{crnl}	COV, λ_{crnl}
		bi	
		($i=1,...,8$)	($i=7,8$)
		($i=9$)	
SSSS (S1)	0.2	0.2989	0.2813
	0.4	0.3277	0.2557
	0.6	0.3706	0.2249
	T_{crnl}	-0.2883	-0.2884
SSSS	0.2	0.2956	0.2861
	0.4	0.324	0.2602
	0.6	0.3665	0.2291
	T_{crnl}	-0.2851	-0.2851
CCCC(1)	0.2	0.5721	0.1741
	0.4	0.6249	0.159
	0.6	0.7023	0.1409
	T_{crnl}	-0.5531	-0.5531
CSCS(2)	0.2	0.408	0.2165
	0.4	0.4594	0.1921
	0.6	0.5329	0.165
	T_{crnl}	0.3896	-0.3895

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
Figure 8: Effects of three different support conditions, SSSS, CCCC and CSCS with various foundation parameters and random input variables \(b_i\) \((i = 1\) to \(8\)), \(7, 8\) and \(9, 10\) and \(11 = 0.10\) on dimensionless mean \(\left(\bar{T}_{\text{crnl}}\right)\) and coefficient of variations \(\left(COV_{\bar{T}_{\text{crnl}}}\right)\) of thermal post buckling load of cross-ply symmetric \([00/90/90/00]\) laminated composite plates under combination of uniform and transverse temperature (t.t), uniform temperature (u.t) distribution, plate thickness ratio \((a/h=10)\).

BCs	Foundation parameters	Mean, \(\bar{T}_{\text{crnl}}\)	\(COV_{\bar{T}_{\text{crnl}}}\), \(\bar{\lambda}_{\text{crnl}}\)
	\((k_1 = 0, k_2 = 0)\)	14.1382	0.0719, 0.0014, 0, 0.0461
SSSS	\((k_1 = 100, k_2 = 0)\)	33.0055	0.0935, 6.16E-04, 0.0255, 0.021
	\((k_1 = 100, k_2 = 10)\)	74.7823	0.0413, 2.72E-04, 0.057, 0.17
	\((k_1 = 0, k_2 = 0)\)	37.3257	0.0794, 5.48E-04, 0, 0.0475
CCCC	\((k_1 = 100, k_2 = 0)\)	51.7059	0.1284, 3.93E-04, 0.0124, 0.0227
	\((k_1 = 100, k_2 = 10)\)	93.4827	0.071, 2.18E-04, 0.0452, 0.1161
	\((k_1 = 0, k_2 = 0)\)	23.1902	0.0742, 8.82E-04, 0, 0.0464
CSCS	\((k_1 = 100, k_2 = 0)\)	38.1211	0.0721, 5.35E-04, 0.0296, 0.0429
	\((k_1 = 100, k_2 = 10)\)	79.8979	0.0344, 2.55E-04, 0.0542, 0.171

Figure 9: Effects of temperature change \((\Delta T)\), amplitude ratios and random input variables \(b_i\) \((i = 1\) to \(8\)), \(7, 8\) and \(9 = 0.10\) on dimensionless mean \(\bar{\lambda}_{\text{crnl}}\) and coefficient of variations \(\bar{\lambda}_{\text{crnl}}\) of thermal post buckling load of angle-ply \(\pm 45\)\(^{2}\)2t square laminated composite plates under combination of uniform and transverse temperature (t.t), uniform temperature (u.t) distribution, plate thickness ratio \((a/h=20)\).

\((\Delta T)\)	\(W_{\text{max}} / h\)	Mean, \(\bar{T}_{\text{crnl}}\)	\(COV_{\bar{T}_{\text{crnl}}}, \bar{\lambda}_{\text{crnl}}\)
	\(i = 1, ... 8\)	\(i = 7, 8\)	\(i = 9\)
50	0.2	0.0459	0.0733, 0.0016, 0.0755
	0.4	0.051	0.0677, 0.0015, 0.0718
	0.6	0.0524	0.0662, 0.0014, 0.0679
	\(T_{\text{crnl}}\)	-0.0439	
100	0.2	0.0229	0.0717, 0.0033, 0.0755
	0.4	0.0255	0.0663, 0.0029, 0.0718
	0.6	0.0287	0.0615, 0.0026, 0.0679
	\(T_{\text{crnl}}\)	-0.0219	
150	0.2	0.0153	0.0702, 0.0049, 0.0755
	0.4	0.017	0.0649, 0.0044, 0.0718
	0.6	0.0191	0.0602, 0.0039, 0.0679
	\(T_{\text{crnl}}\)	-0.0146	

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aerosp Open Access J. 2017;1(1):10–29. DOI: 10.15406/aoaaj.2017.01.00003
Table Continued...

(ΔT) / Tw	Wmax / h	Mean, Tcrl	COV, λcrl	
		(i=1,...,8)	(i=7,8)	(i=9)
0.2	0.0115	0.0687	0.0065	0.0755
0.4	0.0127	0.0636	0.0059	0.0718
0.6	0.0143	0.0591	0.0052	0.0679
		0.0011		

Figure 10 Effects of temperature change (ΔT), amplitude ratios and random input variables [bi , (i =1 to 8), (7, 8) and (9) = 0.10] on dimensionless mean (Tcrl) and coefficient of variations (λcrl) of thermal post buckling load of angle-ply [+45-45]2t square laminated composite plates under combination of uniform and transverse temperature (t.t), uniform temperature (u.t) distribution , plate thickness ratio (a/h=20)

(ΔT) / Tw	Wmax / h	Mean, Tcrl	COV, λcrl		
		(i=1,...,8)	(i=7,8)	(i=9)	
50	0.2	0.0306	0.0884	0.0022	0.077
	0.4	0.034	0.0823	0.002	0.072
	0.6	0.0386	0.0785	0.0017	0.067
	Tcrl	-0.0294			
0.2	0.0153	0.0861	0.0044	0.077	
	0.4	0.017	0.0802	0.004	0.072
	0.6	0.0193	0.0767	0.0035	0.067
	Tcrl	-0.0147			
100	0.2	0.0102	0.0838	0.0066	0.077
	0.4	0.0113	0.0782	0.0059	0.072
	0.6	0.0129	0.0749	0.0052	0.067
	Tcrl	-0.0098			
150	0.2	0.0077	0.0817	0.0088	0.077
	0.4	0.0085	0.0763	0.0079	0.072
	0.6	0.0097	0.0731	0.007	0.067
	Tcrl	-0.0073			

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
Table 11 Effects of lamination scheme with foundation parameters and random input variables \([b_i, (i = 1 \text{ to } 8), (7, 8) \text{ and } (9) = 0.10]\) on dimensionless mean \(\overline{T_{\text{crnl}}}\) and coefficient of variations \(\lambda_{\text{crnl}}\) of thermal post buckling load of laminated composite plates under combination of uniform and transverse temperature (c.t), uniform temperature (u.t) distribution., plate thickness ratio \((a/h=50)\)

Lamination scheme	Foundation parameters	Mean, \(\overline{T_{\text{crnl}}}\)	\(\lambda_{\text{crnl}}\)			
	\(k_1 = 0, k_2 = 0\)	0.3265	0.1026	0.0689	0	0.0419
\([0/90]2T\)	\(k_1 = 100, k_2 = 0\)	0.7915	0.0423	0.0284	0.0587	0.1574
	\(k_1 = 100, k_2 = 10\)	1.7098	0.0196	0.1457	0.0602	0.2325
	\(k_1 = 0, k_2 = 0\)	0.3473	0.0978	0.0648	0	0.0379
\([0/90]2s\)	\(k_1 = 100, k_2 = 0\)	0.8123	0.0418	0.0277	0.0572	0.154
	\(k_1 = 100, k_2 = 10\)	1.7306	0.0196	0.013	0.0595	0.23

Table 12 Effects of material properties, amplitude ratios \(W_{\text{max}} / h\) and random input variables \([b_i, (i = 1 \text{ to } 8), (7, 8) \text{ and } (9) = 0.10]\) on dimensionless mean \(\overline{T_{\text{crnl}}}\) and coefficient of variations \(\lambda_{\text{crnl}}\) of thermal post buckling load of of angle-ply symmetric \([45/-45]2t\) square laminated composite plates under combination of uniform and transverse temperature (c.t), uniform temperature (u.t) distribution., plate thickness ratio \((a/h=100)\)

Material properties	\(W_{\text{max}} / h\)	Mean, \(\overline{T_{\text{crnl}}}\)	\(\lambda_{\text{crnl}}\)		
	\((i=1\ldots8)\)	\((i=7, 8)\)	\((i=9)\)		
TD	0.2	0.1316	1.4007	0.9774	0.3417
	0.4	0.1487	1.2385	0.8655	0.3226
	0.6	0.1676	0.9928	0.6984	0.2833
	\(T_{\text{ct}}\)	-0.1254			
	0.2	0.2024	0.9505	0.6977	0.351
	0.4	0.2293	0.8378	0.6161	0.3307
	0.6	0.2533	0.6754	0.5027	0.2909
TID	0.2	0.1925			
	0.4	0.2293	0.8378	0.6161	0.3307
	0.6	0.2533	0.6754	0.5027	0.2909

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
Figure 13 Effects of material properties, amplitude ratios \(\left(\frac{W_{\text{max}}}{h} \right) \) and random input variables \([b_i, (i = 1 \text{ to } 8), (7, 8) \text{ and } (9) = 0.10] \) on dimensionless mean \(\left(T_{\text{crnl}} \right) \) and coefficient of variations \(\left(\lambda_{\text{crnl}} \right) \) of thermal post buckling load of of angle-ply symmetric \([45/-45]_2t \) square laminated composite plates under combination of uniform and transverse temperature \((\text{c.t}), \) uniform temperature \((\text{u.t}) \) distribution.. plate thickness ratio \((a/h=100)\)

Material properties	\(W_{\text{max}} / h \)	\(COV, \lambda_{\text{crnl}} \)			
	Mean, \(T_{\text{crnl}} \)	\(\text{bi} \)			
	\((i=1..8) \)	\((i=7, 8) \)	\((i=9) \)		
TD	0.2	0.0659	1.4024	0.9786	0.2422
	0.4	0.0745	1.2386	0.8656	0.2228
	0.6	0.0871	1.0565	0.74	0.2023
	\(T_{\text{at}} \)	-0.0628	0.952	0.6987	0.2515
TID	0.2	0.1014	0.8379	0.6161	0.2307
	0.4	0.1149	0.7129	0.5258	0.2092
	0.6	0.1347	0.7129	0.5258	0.2092

Figure 14 The Effect of thermal load ratio \(\frac{t_0}{t_1} \) \((= 0.0, 0.5, 1.0) \) with amplitude ratios \(\frac{w_{\text{max}}}{h} \) \((= 0.2, 0.4, 0.6) \) and random input variables \([b_i, (i = 1 \text{ to } 8), (7, 8) \text{ and } (9) = 0.10] \) on the dimensionless mean \(\left(T_{\text{crnl}} \right) \) and dispersion\(\lambda_{\text{crnl}} \) of thermal post buckling load of 4-layers anti-symmetric angle-ply \([450/-450]_2t \) square plate with simply supported ssss \((s2) \) condition and a/h=20 under non-uniform tent like and parabolic temperature distribution.

\(T_0 / T_1 \)	\(W_{\text{max}} / h \)	\(COV, \lambda_{\text{crnl}} \)	\(COV, \lambda_{\text{crnl}} \)					
	Mean, \(T_{\text{crnl}} \)	\(\text{bi} \)	Mean, \(T_{\text{crnl}} \)	\(\text{bi} \)				
	\((i=1..8) \)	\((i=7, 8) \)	\((i=9) \)	\((i=1..8) \)	\((i=7, 8) \)	\((i=9) \)		
0.2	3.8831	0.0796	0.0059	0.0438	2.0885	0.0795	0.00588	0.041
0.4	4.2161	0.0747	0.0054	0.0429	2.266	0.0746	0.00538	0.0402
0.6	4.5643	0.0705	0.005	0.0424	2.4533	0.0704	0.005	0.0398
\(T_{\text{at}} \)	-3.7319		-2.0076					
0.2	1.9411	0.0802	0.0118	0.0438	1.114	0.0802	0.0118	0.0412
0.4	2.1061	0.0754	0.0109	0.0429	1.2116	0.0752	0.0108	0.0402
0.6	2.2802	0.0711	0.01	0.0425	1.3147	0.071	0.01	0.0394
\(T_{\text{at}} \)	-1.8659		-1.0708					
0.2	1.294	0.0813	0.0177	0.0438	1.006	0.0813	0.0177	0.0424
0.4	1.4041	0.0763	0.0163	0.0429	1.0942	0.0763	0.0163	0.0415
0.6	1.519	0.072	0.0151	0.0426	1.1873	0.072	0.0151	0.0406
\(T_{\text{at}} \)	-1.244		-0.9671					
Table 15 Nomenclature

Symbol	Description
A_{ij}, B_{ij}	Laminate stiffnesses
a, b	Plate length and breadth
h	Thickness of the plate
E_f, E_m	Elastic moduli of fiber and matrix, respectively.
G_f, G_m	Shear moduli of fiber and matrix, respectively.
v_f, v_m	Poisson's ratio of fiber and matrix, respectively.
V_f, V_m	Volume fraction of fiber and matrix, respectively.
α_f, α_m	Coefficient of thermal expansion of fiber and matrix, respectively.
b_i	Basic random material properties
E_{11}, E_{22}	Longitudinal and Transverse elastic moduli
G_{12}, G_{13}, G_{23}	Shear moduli
K_l	Linear bending stiffness matrix
K_g	Thermal geometric stiffness matrix
D	Elastic stiffness matrices
M_{ij}, m_{ij}	Mass and inertia matrices
n_e, n_l	Number of elements, number of layers in the laminated plate
N_{xx}, N_{yy}, N_{xy}	In-plane thermal buckling loads
n_n	Number of nodes per element
N_i	Shape function of ith node
\bar{C}^{ijkl}	Reduced elastic material constants
$f_r \{ f \}^{(r)}$	Vector of unknown displacements, displacement vector of rth element
u, v, w	Displacements of a point on the mid plane of plate
$\bar{\pi}_1, \bar{\pi}_2, \bar{\pi}_3$	Displacement of a point (x, y, z)
$\bar{\sigma}_{ij}, \bar{\epsilon}_{ij}$	Stress vector, Strain vector
ψ_{x}, ψ_{y}	Rotations of normal to mid plane about the x and y axis respectively
$\theta_x, \theta_y, \theta_k$	Two slopes and angle of fiber orientation wrt x-axis for kth layer
x, y, z	Cartesian coordinates
$\rho, \lambda, Var(\cdot)$	Mass density, eigenvalue, variance
Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution

Table Continued..

ω_i	Fundamental frequency and its dimensionless form
$\bar{\omega}_i$	
RV	
$\Delta \varepsilon$, ΔX	Difference in temperatures and moistures
α_1, α_2, β_1, β_2	Thermal expansion and hygroscopic coefficients along x and y direction, respectively

Conclusion

A C* FEM and direct iterative method in conjunction with FOPT is employed to compute the mean and standard deviation of the thermal post buckling load of the laminated composite plate with thermo-mechanical properties, random change in all input variables, aspect ratios, amplitude ratios and plate thickness. The following conclusion can be drawn from this limited study:

i. The characteristics of the thermal buckling load of plates are significantly influenced by various support conditions, plate thickness ratios, aspect ratios, number of layers, lamination scheme and foundation parameters. The first order perturbation technique gives acceptable results for the range of dispersion (SD/mean) taken in the study. The characteristics of the thermal post buckling temperature of plates are significantly influenced by various support conditions, plate thickness ratios, aspect ratios and temperature changes. The mean and dispersion of thermal post buckling temperature of laminated composite plates is higher when the plates are subjected to temperature dependent (TD) thermo-material properties.

ii. The thermal buckling load strongly depends on the foundation parameters and increases with increase the foundation parameters. The clamp supported plates buckle at slightly higher temperature compared to other supports as mean thermal post buckling temperature is higher and COV is lower for clamped support when compared with other types of support conditions. Post buckling is more dominant in plates of (TD) thermo-material properties. The random change in input variables thickness (h) has more impact on thermal post buckling temperature scattering compared to individual random changes in material properties and thermal expansion coefficients.

The dispersion in thermal buckling is the greatest with scatter in E_z and h in the case of the plate supported without foundation, k_x and h for Winkler elastic foundation and k_z and h for Pasternak elastic foundation respectively. This means that the care should be taken during fabrication process so as to allow less variation in these system properties with various foundation parameters. The sensitivity of thermal post buckling temperature and COV due to variation in temperature dependent thermo-material properties is dependent mainly on thickness ratio, and boundary conditions besides other parameters of the laminate. The COV in the thermal post buckling temperature is most affected with random change in lamina thickness h and least affected with scatter in G_{12}. In general the plate is more sensitive to individual random change in E_{11}, V_{12} and α_{11}. The strict control of these random parameters is therefore required for reliable design if high reliability of laminated composite plate is required

In general, the square plate is more sensitive as compared to rectangular plate. The thermal post buckling temperature for square plate is more compared to rectangular plate. The thermal post buckling temperature is more prone to SSSS (S2) boundary conditions while it is least for clamped support CCCC boundary conditions.

The plate with all edges clamped support condition is less desirable in comparison with other support conditions from scattering point of view. The impact of randomness in all random system variables is more for thin plate as compared to thick and moderately thick plate.

Acknowledgements

None.

Conflict of interest

Author declares that there is no conflict of interest.

References

1. Chen WS, Lin PD, Chen LW. Thermal buckling behavior of thick composite laminated plates under non-uniform temperature distribution. Comput Struct. 1991;41(4):637–645.
2. Shen HS. Thermal post-buckling analysis of imperfect shear-deformable plates on two-parameter elastic foundations. Computers & Structures. 1997;63(6):1187–1193.
3. Shen HS. Thermal post-buckling analysis of imperfect laminated plates using higher order shear deformation theory. Int J Non-Linear Mechanics. 1997;32(6):1035–1050.
4. Shen HS, Zhu XG. Thermal post-buckling analysis of moderately thick plates. Applied Mathematics and Mechanics. 1995;16(5):475–484.
5. Shen HS, Lin Zhong-Qin. Thermal post-buckling analysis of imperfect laminated plates. Computer & Structures. 1995;57(3):533–540.
6. Shen HS. Nonlinear analysis of composite laminated thin plates subjected to lateral loading and resting on elastic foundation. Composite Structures. 2000;49(2):115–128.
7. Shen HS. Thermal post-buckling analysis of imperfect Reissner-Mindlin plates on softening nonlinear foundation. J Engineering Mathematics. 1998;33(3):259–270.
8. Chen LW, Chen LY. Thermal buckling behavior of laminated composite plates with temperature-dependent properties. Composite Structures. 1989;13(4):275–287.
9. Chen LW, Chen LY. Thermal post buckling behaviors of laminated composite plates with temperature-dependent properties. Composite Structures. 1991;19:267–283.
10. Huang A, Tauchert TR. Post buckling response of antisymmetric angle-ply laminates to uniform temperature loading. Acta Mechanica. 1988;72(1):173–183.
11. Pandey Ramesh, Shukla KK, Jain Anuj. Thermoelastic stability analysis of laminated composite plates, An analytical approach. Communications in Nonlinear Science and Numerical Simulation. 2009;14(4):1679–1699.
12. Shariyat M. Thermal buckling analysis of rectangular composite plates with temperature-dependent properties based on a layer wise theory. Thin-Walled Structures. 2007;45(4):439–452.

Citation: Kumar R. Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution. Aeron Aero Open Access J. 2017;1(1):10–29. DOI: 10.15406/aaoaj.2017.01.00003
Stochastic thermo-elastic stability analysis of laminated composite plates resting on elastic foundation under non-uniform temperature distribution

13. Shen HS. Thermal post buckling behaviors of imperfect shear deformable laminated composite plates with temperature-dependent properties. Comput Methods Appl Mech Engg. 2001;190:5377–5390.

14. Thankam Sita V, Singh G, Venkateswara Rao G, et al. Thermal Post buckling Behaviors of Laminated Composite Plates using shear flexible element based on coupled-displacement field. Composite Structures. 2003;59(3):351–359.

15. Nigam NC, Narayan S. Application of Random vibrations. Narosa Publishing House, New Delhi; 1994. p. 557.

16. Zang Z, Chen S. The standard deviations of the eigensolutions for random MDOF systems. Comp Struct. 1991;39(6):603–607.

17. Graham LL, Deodatis G. Response and eigenvalue analysis of stochastic finite element systems with multiple correlated material and geometric properties. Prob Eng Mech. 2001;16(1):11–29.

18. Van den, Nieuwenhof B, Coyette JP. Modal approaches for the stochastic finite element analysis of structures with material and geometric uncertainties. Comput Methods Appl Mech Engrg. 2003;192(33–34):3705–3729.

19. Stefanou G, Papadrakakis M. Stochastic finite element analysis of shell with combined random material and geometric properties. Comput Methods Appl Mech Engrg. 2004;193:139–160.

20. Singh BN, Iyengar NGR, Yadav D. Effects of random material properties on buckling of composite plates. J Engrg Mech. 2001;127(9):873–879.

21. Singh BN, Iyengar NGR. Yadav D. A C_0 finite element investigation for buckling analysis of composite plates with random material properties. Struct Engg and Mech. 2002;13(1):53–74.

22. Onkar AK, Upadhyay CS, Yadav D. Generalized buckling analysis of laminated plates with random material properties using stochastic finite elements. Int J Mech Sci. 2006;48(7):780–798.

23. Onkar AK, Upadhyay CS, Yadav D. Stochastic finite element buckling analysis of laminated plates with circular cutout under uniaxial compression. J Appl Mech. 2007;74(4):789–809.

24. Shakhar A, Abedelrahman WG, Tawfik Mohammad, et al. Stochastic finite element analysis of the free vibration of laminated composite plates. Comput Mech. 2008;41(4):493–503.

25. Shankara CA, Iyenger NGR. A C_0 element for the free vibration analysis of laminated composite plates. J Sound and Vibration. 1996;191(5):721–738.

26. Lal A, Singh BN, Kumar R. Effect of random system properties on the initial buckling of laminated composite plate resting on an elastic foundation. Int J Struct Stability Dyn. 2008;8(1):1–28.

27. Jones RM. Mechanics of Composite Materials. MC Graw-Hill Book Company, MC Graw Hill, New York USA; 1975.

28. Franklin JN. Matrix theory. Englewood Cliff, Prentice Hall, USA; 1968. p. 292.

29. Reddy JN. Mechanics of Laminated Composite Plate. CRC Press, Florida, USA; 1996.

30. Graham LL, Siragy EF. Stochastic finite element analysis for elastic buckling of stiffened panels. J Engg Mech. 2001;127(1):91–97.

31. Liu WK, Belytschko T, Mani A. Random field finite elements. Int J Numer Meth Engrrg. 1986;23:1831–1845.

32. Klieber M, Hien TD. The Stochastic Finite Element Method. Wiley, Chester, UK; 1992.

33. Reddy JN. A simple higher order theory for laminated composite plates. J Appl Mech. 1984;51(4):745–752.

34. Chia CY. Nonlinear analysis of plates. McGraw-Hill, New York USA; 1980.

35. Reddy JN. Energy and variational methods in applied mechanics. Wiley, New York, USA; 1981. p. 560.

36. Yamin Z, Chen S, Lee Q. Stochastic perturbation finite elements. Comp and Struct. 1996;59(3):425–429.