Title
A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo

Permalink
https://escholarship.org/uc/item/4jm4f7bb

Journal
Journal of Chemical Theory and Computation, 13(6)

ISSN
1549-9618

Authors
Zhao, Luning
Neuscamman, Eric

Publication Date
2017-06-13

DOI
10.1021/acs.jctc.7b00119

Peer reviewed
A Blocked Linear Method for Optimizing Large Parameter Sets in Variational Monte Carlo

Luning Zhao† and Eric Neuscamman*†‡

†Department of Chemistry, University of California, Berkeley, California 94720, United States
‡Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: We present a modification to variational Monte Carlo’s linear method optimization scheme that addresses a critical memory bottleneck while maintaining compatibility with both the traditional ground state variational principle and our recently introduced variational principle for excited states. For wave function ansatzes with tens of thousands of variables, our modification reduces the required memory per parallel process from tens of gigabytes to hundreds of megabytes, making the methodology a much better fit for modern supercomputer architectures in which data communication and per-process memory consumption are primary concerns. We verify the efficacy of the new optimization scheme in small molecule tests involving both the Hilbert space Jastrow antisymmetric geminal power ansatz and real space multi-Slater Jastrow expansions. Satisfied with its performance, we have added the optimizer to the QMCPACK software package, with which we test a systematically convergent, nonperturbative approach to excitation energies on the example of a Mott-insulating hydrogen ring.

1. INTRODUCTION

In the ansatz-based approach to electronic structure theory, the capabilities of the method used to optimize the ansatz for a particular system are every bit as important as the flexibility of the ansatz itself. For example, both the coupled cluster1 and matrix product state2 ansatzes would be much less useful if we lacked the projected Schrödinger equation and density matrix renormalization group methods that allow us to optimize them efficiently. To address unsolved problems in electronic structure—such as catalytic cycles in which many bonds are simultaneously rearranged,3 double excitations in large π-conjugated molecules,4 and high-temperature superconductivity5—it is therefore essential that improvements to optimization methods be made alongside innovations in ansatz design.

In few areas is the need for improved optimization methods more pressing than in quantum Monte Carlo (QMC). Until very recently, optimization methods in this area were limited to a few thousand variational parameters when using a fully ab initio Hamiltonian, a constraint that holds back progress in a wide variety of areas. In fixed-node projector Monte Carlo (DMC),7–9 the inability to systematically converge the trial function’s nodal surface due to insufficiently flexible ansatzes is responsible for both the fixed node error and the pseudopotential locality error, the latter of which becomes acutely problematic in third-row and heavier elements where the nonlocal part of the pseudopotential cannot be ignored. Even in variational Monte Carlo7,8 (VMC) itself, recent innovations in ansatz design create a pressing need for expanding the number of variational parameters that can be treated. Examples in this category include the variation after response approach to excited states,10 efficient methods for large multi-Slater Jastrow (MSJ) expansions,11–13 variational analogues of coupled cluster theory,14–16 and wave function stenciling approaches13–17 that tightly couple the optimization of correlation factors and molecular orbitals. For all of these reasons, and indeed for the simple reason of enabling systematic improbability within a given ansatz, improvements in VMC optimization capabilities are sorely needed.

The linear method18–21 (LM) developed by Umrigar and coworkers is currently the most effective VMC optimizer for cases in which the number of variables is a few thousand or less. By solving a projected Schrödinger equation in the vector space spanned by the current wave function and its first parameter derivatives, a space we refer to as the self-plus-tangent space, the LM produces update steps that account for second-order couplings between variables and in practice often out-perform Newton–Raphson steps, a success due in no small part to the fact that these updates satisfy a strong zero variance principle.20,21 However, the standard LM’s need to explicitly construct the Hamiltonian and overlap matrices in the self-plus-tangent space becomes cumbersome when the number of variational parameters exceeds a few thousand due to the large amounts of memory required to store these matrices. This issue...
becomes especially fraught when trying to match the LM to
modern supercomputing resources, as each parallel Markov
chain must make space for its own copies of these matrices (a
tall order given typical per-core memory restrictions), which
must then be communicated and combined prior to
diagonalization. While one could use Krylov subspace methods
to solve the eigenproblem without explicitly constructing the
matrices, as was done for the related stochastic reconfiguration
(SR) method,22 our experience in practice has taught us that
finding a preconditioning scheme capable of reducing the
condition numbers of the LM matrices to manageable levels is
not trivial. As far as we are aware, these various issues have
prevented the LM from being used in regimes beyond about
16,000 variables, which occurred in the context of a ground
state capabilities in the context of a hydrogen ring
mott-insulating regimes of real materials.

Very recently, Booth and co-workers introduced an
alternative VMC optimization method that takes advantage of
optimal descent theory and a stochastic gradient evaluation in
order to produce robust energy minimizations despite avoiding
second derivatives entirely.17 Impressively, this method appears
capable of handling more than 60,000 variational parameters
for ansatzes that support efficient inner products with the Slater
determinant basis functions of Fock space. Although stochastic
gradient descent is very general, their particular method relies
on having fast access to Hamiltonian matrix elements between
basis functions through the full configuration interaction QMC
algorithm, and so it is not immediately obvious how to extend
this approach to the delta function basis of real space, where
such matrix elements are ill-defined. Nonetheless, promising
new directions in VMC optimization are a welcome develop-
ment.

In the present study, we seek to retain the advantages of the
standard LM—which include Fock space and real space
compatibility, robust convergence in a small number of
iterations, and access to excited states through our recently
introduced23 excited state variational principle—while reducing
its memory footprint so as to facilitate larger variable sets and
better compatibility with modern parallel computers. Our
strategy is to separate the variable space into blocks, within each of
which we estimate a small number of important update
directions that can then be used to construct a relatively small
LM eigenproblem in the overall basis of important directions.
We demonstrate that this approach drastically reduces memory
requirements without significantly affecting the accuracy of the
optimization. In addition to tests on small molecules using our
in-house Hilbert space software, we use the implementation
that we recently contributed to the open-source QMCPACK
software package24,25 to demonstrate this method’s excited state capabilities in the context of a hydrogen ring’s Mott-like metal—insulator transition. By evaluating the optical gap for a series of increasingly flexible MSJ expansions, the largest of which contains over 25,000 variational parameters, this study points the way toward a systematically convergent and nonperturbative approach to predicting optical gaps in the Mott-insulating regimes of real materials.

2. THEORY

2.1. Linear Method. The standard LM works by repeatedly
solving the Schrödinger equation in the self-plus-tangent
subspace of the full Hilbert space, defined by the span of the
wave function and its first derivatives with respect to its
variational parameters. As the derivatives are not necessarily
orthogonal to each other, this approach leads to a generalized
eigenvalue problem

\[
\sum_{j \in \{0,1,\ldots\}} \langle \Psi_j | H | \Psi \rangle \xi_j = \lambda \sum_{j \in \{0,1,\ldots\}} \langle \Psi_j | \Psi \rangle \xi_j
\]

(1)

where \(\Psi_j\) and \(\Psi\) are the derivatives of \(\Psi\) with respect to
the \(j\)th and \(j\)th wave function parameters \(\mu_j\) and \(\mu_j\), respectively, and \(\langle \Psi_j | \Psi \rangle \equiv | \Psi \rangle\). After solving this eigenvalue
problem for \(\xi\), one updates the parameters by

\[
\mu_j \rightarrow \mu_j + c_j / \xi
\quad \forall \ x \in \{1, 2, \ldots\}
\]

(2)

after which the updated \(\Psi\) will be a good approximation for
the subspace eigenfunction \(\sum_j c_j | \Psi_j \rangle\), so long as the updates \(c_j / \xi\) are sufficiently small in magnitude. This requirement can
be ensured by applying a diagonal shift to the Hamiltonian matrix,21 which plays the same role as a trust radius would in a
Newton–Raphson optimization. The updated ansatz in hand, a
new self-plus-tangent space may be constructed, and the
procedure repeated until convergence is reached.

In practice, the Hamiltonian and overlap matrix elements are
estimated via Monte Carlo sampling

\[
\sum_{x \in \{0,1,\ldots\}} \sum_{y \in \{0,1,\ldots\}} \left(\frac{\langle \overline{n} | \Psi \rangle^2}{\mathcal{P}(\overline{n})} \right) \frac{\langle \overline{n} | \overline{n} | \overline{n} \rangle}{\langle \overline{n} | \overline{n} \rangle} \xi_j
\]

(3)

where \(\xi\) is a set of samples drawn from the probability distribution
\(\mathcal{P}(\overline{n})\) (which is typically chosen as \(| \overline{n} | \overline{n} \rangle^2 \))
using Markov chain Monte Carlo. Note that although we have
depicted the sampling as running over occupation-number-vector-labeled determinants in Fock space, the LM is equally
viable if instead the sampling is carried out in real space, where
\(\mathcal{P}(\tau)\) is typically chosen to be \(| \Psi | \Psi \rangle^2\). The LM will thus
be efficient (i.e., polynomial cost) for ansatzes that support the
efficient evaluation of the derivative ratios \(\langle \overline{n} | | \overline{n} \rangle / \langle \overline{n} | \overline{n} \rangle\) and
\(\langle \overline{n} | \overline{n} \rangle / \langle \overline{n} | \overline{n} \rangle\), examples of which include MSJ expan-

sions,11,12,19 the Jastrow antisymmetric geminal power20–28
(JAGP), and amplitude determinant coupled cluster with
pairwise doubles.14

While the cost scaling may be polynomial with system size,
the memory required to store the Hamiltonian and overlap
matrices in the self-plus-tangent space can be a serious
impediment to practical computation. For example, when
using 8-byte floating point numbers and an ansatz with 30,000
variational parameters, the standard LM requires 14.4 gigabytes
of memory per Markov chain. Such storage requirements create
problems with the typical parallelization scheme of running one
Markov chain per core, as modern supercomputers typically
have closer to 2 gigabytes of memory available per core.

One approach to circumventing matrix storage difficulties
would be to use a Krylov subspace method to solve for \(\xi\)
without constructing the matrices explicitly. While this strategy
has shown promise in the related SR method, where it
succeeded in working with an ansatz containing half a million
variables,22 Krylov subspace methods are only efficient if the
condition numbers of the matrices involved (the ratio of the
magnitudes of their largest and smallest magnitude eigenvect-
ors) can be brought close to unity through preconditioning.
Usually, the matrices encountered in the LM are ill-conditioned
since most ansatzes used in QMC contain nonlinear

DOI: 10.1021/acs.jctc.7b00119
J. Chem. Theory Comput. 2017, 13, 2604–2611
parameters, such as Jastrow factors, orbital rotation parameters, and pairing matrix elements in JAGP, and the wave function first derivative vectors with respect to these parameters are not necessarily orthogonal therefore could contain linearly dependencies. Although we have made some ad hoc investigations into this area, such as applying the so-called Subspace Projected Approximate Matrix (SPAM) modification to the Davidson Method and normalizing LM derivative vectors before any matrix operations, we have not found preconditioners that can reliably reduce the condition numbers involved below about 10^{10}. This reality mattered less in SR, as in that case each Krylov subspace iteration requires only effecting an overlap matrix multiplication and so does not involve the Hamiltonian operator. In the LM, both overlap and Hamiltonian matrix multiplications must be effect for each Krylov iteration, which for a fully ab initio Hamiltonian greatly increases the cost per Krylov iteration. Thus, in practice, the cost of the Krylov approach in the LM appears to be more sensitive to condition number than for SR. While this does not preclude the existence of an effective preconditioning scheme, it does prompt us to investigate approaches, like the one in the next section, that remain effective even in the face of highly ill-conditioned matrices.

2.2. Blocked Linear Method. Ultimately, the goal of the LM is to find the best update direction and step length within the tangent space of the wave function. Imagine instead holding half the variables fixed and inspecting the tangent space for the other half. The diagonalization of the linear method eigenproblem within this self-plus-half-tangent space will produce a set of update directions that can be ordered by importance, as measured by their eigenvalues, which inform us as to how much a move along an eigendirection would decrease or increase the energy. Noting that the optimal direction $\tilde{\zeta}_{opt}$ in the full tangent space, whose dimension is the total number of variational parameters N_V, can be written as a linear combination of $N_V/2$ orthogonal directions within one-half-tangent space and $N_V/2$ orthogonal directions from the other half-tangent space, it seems intuitive that a very bad update direction in one of the half-tangent spaces is unlikely to be an important component of $\tilde{\zeta}_{opt}$. Taken further, this logic suggests that it may be possible to construct a close approximation to $\tilde{\zeta}_{opt}$ using a linear combination of only a few update directions from each half-tangent space. In essence, the blocked linear method (BLM) is an attempt to systematically exploit this structure by (a) dividing the variable space into a number of blocks, (b) making intelligent estimates for which directions within those blocks will be most important for constructing $\tilde{\zeta}_{opt}$, and (c) estimating $\tilde{\zeta}_{opt}$ by solving a smaller, more memory-efficient eigenproblem in the basis of these supposedly important block-wise directions.

Rather than the standard LM’s expansion of the wave function in its self-plus-tangent space, consider instead the “one-block” expansion

$$\langle \Phi_{b} | \hat{H} | \Phi_{b} \rangle = \alpha_{b} \langle \Psi | \Psi \rangle + \sum_{i=1}^{M_{b}} \beta_{bi} \langle \Psi_{i,b} | \Psi_{i,b} \rangle + \sum_{j=1}^{N_{b}} \sum_{k=1}^{N_{b}} \gamma_{bjk} \langle \Theta_{jk} | \Psi \rangle$$

(4)

In the first two terms, we have a linear expansion of the wave function with respect to the variables belonging to the bth block, with α_{b} and β_{bi} the expansion coefficients, M_{b} the number of variables in the block, and $\langle \Psi_{i,b} | \Psi_{i,b} \rangle$ defined as the wave function derivative with respect to the ith variable of the bth block. If we drop the third term for now (i.e., set $\gamma_{bjk} = 0$), we have a wave function whose energy minimization

$$\min_{b, \beta} \langle \Phi_{b} | \hat{H} | \Phi_{b} \rangle / \langle \Phi_{b} | \Phi_{b} \rangle$$

leads to a generalized eigenvalue problem in the same form as for the standard LM, eq 1, the only difference being that we are now holding the variables outside the chosen block fixed. (Note that while we develop the discussion here in terms of energy minimization, the BLM is equally applicable to the target function used in the direct, variational targeting of excited states and has been implemented and tested for both cases). Each eigenvector will have its own values for the α_{b} and β_{bi} coefficients and will correspond to an eigenvalue that gives an estimate for what the energy of our original wave function would be if we were to update this block’s variables according to $\mu_{ib} \rightarrow \mu_{ib} + \beta_{bi}/\alpha_{b}$. Thus, the eigenvalues of this block’s eigenproblem inform us as to which directions in its variable space are expected to be “good” update directions (those with the lowest eigenvalues) and which are expected to be “bad” directions (those with the highest eigenvalues).

Having performed this diagonalization within each of our blocks, we are now in a position to construct an approximation to the wave function in its full self-plus-tangent space by retaining from each variable block only a small number of what are expected to be the best update directions. By organizing the best N_{b} update directions from the bth block into the rows of a matrix $B^{(b)}$, this self-plus-tangent space approximation can be written as

$$\langle \Psi | \Psi \rangle = \alpha_{A} + \sum_{b=1}^{N_{b}} \sum_{j=1}^{N_{b}} A_{bj} \sum_{i=1}^{M_{b}} B^{(b)}_{ji} | \Psi_{i,b} |$$

(6)

As the elements of the B matrices are now held fixed, this expansion is not as flexible as that of the standard LM, but we hope the fact that it is built out of a linear combination of the best update directions from each block will give it the correct flexibility to closely approximate the optimal update direction in the full tangent space. This direction is now estimated via

$$\min_{A, A} \langle \Psi | \hat{H} | \Psi \rangle / \langle \Psi | \Psi \rangle$$

(7)

which again produces a generalized eigenvalue problem, this time of dimension $1 + N_{b}N_{f}$, whose lowest energy eigenvector corresponds to the overall BLM update

$$\mu_{ib} \rightarrow \mu_{ib} + \frac{[AB^{(b)}]_{ib}}{\alpha}$$

(8)

Crucially, the Hamiltonian and overlap matrix elements involved in the eigenvalue problems that stem from eqs 5 and 7 can be estimated using the same information as in the standard LM, namely, the derivative ratios $\langle \Psi_{i,b} | \Psi_{i,b} \rangle / \langle \Psi | \Psi \rangle$ and $\langle \Psi_{i,b} | \hat{H} | \Psi_{i,b} \rangle / \langle \Psi | \Psi \rangle$, at each sampled configuration \vec{n} (or position \vec{r} in real space). While the most efficient way to construct these matrices now that the $B^{(b)}$ coefficients are known appears to be to rerun the same sample that was used to construct the block-specific matrices, we feel that this second sampling is a price worth paying in order to remove the standard LM’s memory bottleneck.

So far, we have ignored the fact that interblock variable couplings will affect which directions in a block are optimal for use in constructing an overall update direction. Accounting for such couplings is the purpose of the third term in eq 4, in which
\[|\Theta_k\rangle = \sum_{i=1}^{M_k} D_{ik} |\Psi_i^L\rangle \]

(9)

is a linear combination of wave function derivatives from the \(k\)th block that is presumed to correspond to a good update direction for that block. By including a small number \(N_0\) of these directions from each other block in the wave function expansion \(|\Theta_k\rangle\) for the current block, we hope to provide the minimization

\[\min_{\Theta_k} \langle \Theta_k | \hat{H} | \Theta_k \rangle / \langle \Theta_k | \Theta_k \rangle \]

(10)

which replaces that of eq 5 in the overall method outlined above, with the coupling information necessary so that the directions it contributes to \(B^{(k)}\) are optimal with respect to both intrablock and interblock variable couplings. While there are many possible choices for the linear combinations \(|\Theta_k\rangle\), we thought it natural to derive them from previous iterations’ BLM updates, following the idea that using previous update directions to inform the current direction is a common theme in numerical minimization, occurring for example in both the BFGS\(^{30}\) and accelerated descent\(^{31}\) methods. Specifically, for the \(n\)th iteration of the BLM, we take \(|\Theta_k\rangle\) as the \(k\)th block’s component of the \((n-j)\)th iteration’s overall update, with \(j \in \{1, 2, \ldots, N_0\}\). As our results demonstrate, even relatively short history lengths \(N_0\) can be beneficial in accounting for interblock variable couplings and thereby recovering the performance of the standard LM.

To understand the reduced memory footprint of the BLM, it is helpful to consult a visual guide to the structure of the Hamiltonian and overlap matrices resulting from eq 10. Figure 1 shows this structure for the Hamiltonian; the overlap matrix has an analogous structure. Noting that the different blocks’ eigenproblems can be solved independently, we can see that only one block’s matrices need to be fully constructed at a time, which greatly reduces memory requirements by allowing us to store one copy, rather than \(N_B\) copies, of the blue elements in Figure 1. For the green elements, however, we must store \(N_B\) copies simultaneously, so that each sampled configuration \(\bar{n}\) or \(\bar{r}\) can efficiently add its unique contribution to each of them. Nonetheless, storage requirements are much lower than in the standard LM, whose Hamiltonian matrix contains \((1 + N_0)^2\) elements. Although the precise formula for the BLM’s Hamiltonian storage requirement is more long winded, the terms that dominate, \(N_B^2/N_0^2\) and \(2 N_0 N_B (N_B - 1)\), are much smaller than the dominant \(N_B^2\) term in the LM. Thus, if no previous updates are being used (i.e., \(N_0 = 0\)), the BLM reduces the memory requirement by a factor of \(N_B^2\), and although the use of \(N_0 > 0\) increases the BLM’s memory requirement somewhat, the savings remain substantial. For example, when using 8-byte floats and 30,000 variational parameters, the standard LM requires 14.4 gigabytes of memory per process, while the BLM with \(N_B = 100\) and \(N_0 = 5\) requires only 0.5 gigabytes per process.

3. RESULTS

3.1. Computational Details. JAGP results for \(\text{N}_2\) and \(\text{H}_2\text{O}\) were obtained using Hilbert space sampling via our own VMC software, which extracts one- and two-electron integrals from PySCF.\(^{32}\) MSJ results for \(\text{C}_2\) and the hydrogen ring were obtained using real-space sampling via QMCPACK\(^{24,25}\) with configuration state functions (CSFs) taken from GAMESS.\(^{33}\) For JAGP, we work exclusively in the symmetrically orthogonalized “\(S^{1/2}\)” one particle basis. The VMC sample size is universally chosen as \(2.4 \times 10^5\), which produces statistical uncertainties whose standard deviations are less than 0.7 kcal/mol (0.03 eV) in all cases.

3.2. \(\text{N}_2\) and \(\text{H}_2\text{O}\) with JAGP. We begin our numerical tests with the ground states of two small molecules, \(\text{N}_2\) and \(\text{H}_2\text{O}\), choosing the JAGP for our ansatz and performing VMC sampling in the second-quantized Hilbert space of the 6-31G\(^*\) orbital basis. These choices give us 408 and 273 nonlinear parameters to optimize in \(\text{N}_2\) and \(\text{H}_2\text{O}\), respectively, which are few enough so as to make direct comparisons to the standard LM straightforward. Tables 1 and 2 show the results for various combinations of the number of blocks \(N_B\), previous update vectors \(N_0\), and retained block directions \(N_k\). The reported optimization error is defined as the difference in energy between the minimums found by the BLM and the standard LM, the latter of which is denoted by \(N_B = 1\) in the tables.

The first observation to be made is that although small, errors with respect to the standard LM are not zero. The likely

\(N_k\)	\(N_0\)	\(N_B\)	energy (a.u.)	error (10\(^{-3}\) a.u.)	number of iterations
1	N/A	N/A	-109.089	0.0	18
4	1	1	-109.088	1.5	19
4	5	1	-109.088	1.5	21
8	1	1	-109.087	3.0	29
8	5	1	-109.087	3.0	19
16	1	1	-109.086	3.3	38
16	5	1	-109.086	3.3	24

Table 1. Comparison of LM (\(N_B = 1\)) and BLM for Ground State of \(\text{N}_2\) Using the JAGP Ansatz with Hilbert Space Sampling in 6-31G Basis

Figure 1. Structure of the BLM Hamiltonian matrix for the \(l\)th block, with each section of the matrix displaying the type of matrix element it contains. Green-shaded sections contain elements that are unique to each block; for the larger among these, we print the total storage requirement across all blocks. Total memory consumption can then be evaluated as blue + \(N_B\) x green.
explanation for this fact is that the BLM update direction, like that of the standard LM, is a nonlinear function of the random variables drawn by our Markov chains. Unlike linear functions of random variables that have statistical uncertainty but no systematic bias, nonlinear functions produce a systematic bias, albeit one that can in principle be mitigated by increasing the sample size. We suspect that our 2-step process of first diagonalizing N_b block-wise eigenproblems before constructing and diagonalizing one overall eigenproblem, which we note uses the same VMC sample for both steps, is essentially more nonlinear than the standard method’s 1-step process. In other words, both the BLM and LM should be expected to converge to a point in variable space that is slightly off-center from the true minimum due to systematic bias, but we expect the BLM to be more off-center due to its additional nonlinearities. Indeed, we have verified that the two methods converge to the same minimum in the limit of infinite sampling, and as can be seen in the results, differences for finite sample lengths are modest and decrease as we retain more directions N_k from each block.

The second observation is that the error behaves as expected for different values of N_B, N_O, and N_k. Increasing the number of blocks N_B, which makes it harder to account for second-order couplings between variables when choosing update directions, increases the deviation from the standard LM. Also as expected, increasing N_k and N_O tends to decrease the deviation. As hypothesized in the motivation for the BLM, only modest values of N_k and N_O are required to produce close approximations to the optimal update direction, and so mitigating deviations from the standard LM is not difficult. Finally, we note that although the BLM typically requires more iterations to converge, the convergence speed remains similar to the standard LM, especially when taking advantage of both multiple directions N_k per block and some number N_O of previous update directions.

3.3. C$_2$ with MSJ. We next switch from sampling in Fock space to sampling in real space, with Table 3 giving results for the ground state of C$_2$, as modeled by a MSJ ansatz containing 1100 CSFs and 30 spline-based Jastrow variables. To construct our CSF expansion, we began with a GAMESS optimization of an (8,8) complete active space self-consistent field (CASSCF) ansatz in the cc-pVTZ basis. The 1100 largest-coefficient CSFs were then selected from a single-reference configuration interaction calculation including up to quadruples (CISD(TQ)) performed in the optimized CASSCF orbital basis. As before, we see that increasing the number of blocks eventually results in a significant deviation from the standard LM energy, which is then reduced by increasing the number of old updates used and the number of directions retained from each block. Again, while larger, the number of iterations required to converge the BLM was similar to that for the standard LM.

3.4. H$_{16}$ Hydrogen Ring. Having tested our method in settings where it can be easily checked against the standard LM, we now turn our attention to the metal—insulator transition in a 16-atom hydrogen ring, where we use the BLM in conjunction with our excited state targeting method to systematically converge the post-transition optical gap via a series of increasingly large MSJ expansions. Closely related hydrogen chains have been the subject of much attention, but to the Mott-like behavior of the metal—insulator transition that occurs as one enlarges the interatomic distance a. As a surpasses a certain critical distance a_c, a large number of natural orbitals become degenerate as the electrons transition out of the weakly correlated metallic state and into the strongly correlated and more localized Mott-insulator state.

Using JAGP approximations for the ground state of the 1D chain, Sorella and co-workers, located a_c by evaluating the complex polarization function

$$z = \langle \Psi | \exp \left(\frac{2\pi i}{L} \sum_k \mathbf{r}_k \right) | \Psi \rangle$$

(11)

where \mathbf{r}_k is the component of \mathbf{r}_k parallel to the chain axis. The modulus of z can be thought of as a measurement of insulating behavior: $|z| \to 1$ as electrons localize about the nuclei, as occurs in the insulating phase, while $|z| \to 0$ as the electrons become fully delocalized, as occurs in the metallic phase. As we are studying a hydrogen ring instead of a periodic chain, we find it appropriate to instead define the complex polarization function as

$$z = \langle \Psi | \exp (i \sum_k \theta_k) | \Psi \rangle$$

(12)

where θ_k is the angle around the ring for the kth electron’s position. As for the chain, fully localized versus delocalized behavior in the ring will lead to the $|z| \to 1$ and $|z| \to 0$ limits, respectively.

In addition to probing the locality of its physics, theoretical methods can also offer predictions about an insulator’s optical gap. Although this gap was not accessible in the ground-state

N_B	N_O	N_k	energy (a.u.)	error (10^{-3} a.u.)	number of iterations
1	N/A	N/A	−76.109	0.0	8
2	5	1	−76.108	1.5	10
4	1	1	−76.106	3.0	11
4	3	1	−76.106	3.3	11
4	5	1	−76.106	3.0	11
8	1	1	−76.103	5.9	9
8	1	2	−76.104	4.8	10
8	1	4	−76.107	2.2	13
8	3	1	−76.104	4.8	12
8	3	2	−76.106	2.9	12
8	3	4	−76.106	2.9	11
8	5	1	−76.107	2.6	12
8	5	2	−76.106	2.9	13
8	5	4	−76.108	1.5	12

N_B	N_O	N_k	energy (a.u.)	error (10^{-3} a.u.)	number of iterations
1	N/A	N/A	−75.834	0.0	8
4	1	1	−75.834	0.4	8
8	1	1	−75.833	1.1	10
16	1	1	−75.833	0.4	11
50	1	1	−75.832	1.5	10
100	1	1	−75.827	6.6	12
100	5	1	−75.831	2.9	11
100	5	5	−75.832	1.5	10

Table 2. Comparison of LM ($N_B = 1$) and BLM for Ground State of H$_2$O Using the JAGP Ansatz with Hilbert Space Sampling in 6-31G Basis

Table 3. Comparison of LM ($N_B = 1$) and BLM for Ground State of C$_2$ Using a MSJ Expansion with Real-Space Sampling
work of Sorella, the BLM can directly target an excited state by minimizing the function
\[\Omega = \frac{\langle \Psi | (\omega - \hat{H}) | \Psi \rangle}{\langle \Psi | (\omega - \hat{H})^2 | \Psi \rangle}, \]
which, when the energy shift \(\omega \) is placed inside the gap, will have the first excited state as its global minimum.\(^{23}\) As this excited state approximates the state at the bottom of the infinite ring’s conduction band, this approach would represent a direct, many-body, nonperturbative, and systematically improvable route to estimating the optical gap of a solid. In this study, we explore a simple prototype of this idea by converging the gap for the H\(_{16}\) ring by systematically increasing the number of CSFs included in a MSJ expansion. Although linear combinations of CSFs are not natural fits for the strongly correlated physics of a Mott transition and will thus require a large number of CSFs be employed, they do offer straightforward systematic improbability and allow us to demonstrate that the BLM can handle the correspondingly large number of variational parameters.

To construct our MSJ expansion, we begin by using GAMESS to optimize a (6,6) state-average CASSCF ansatz in the cc-pVDZ basis.\(^{35}\) We then perform a single-reference CISDTQ for each state, after which we truncate this expansion at different coefficient thresholds to produce a series of increasingly large CSF expansions. By combining these with QMCPACK’s standard spline-based, cusp-inducing \(\epsilon-p \) and \(\epsilon-n \) two-body Jastrow factors, we produce two sets of MSJ expansions, one each for the ground and excited state. Finally, choosing the value of \(\omega \) that is appropriate for each state by adjusting it to find the overall minimum of the target function \(\Omega,\(^{23}\) we optimize both the CSF coefficients and Jastrow variables simultaneously using the BLM.

Figure 2 shows the norm of the complex polarization function as well as the optical gap estimate (defined as the difference between excited and ground state energies) as functions of interatomic distance \(a \) for a coefficient truncation threshold of 0.01. As expected, both \(|z| \) and the gap are zero for small \(a \), where previous studies have found hydrogen chains to be metallic. As \(a \) increases, we see an abrupt change in \(|z| \) that suggests that by \(a = 3.0 \) a.u., the ring has transitioned into an insulating state. Being a finite system, the energy gap does not open discontinuously, and we see instead a rapid rise in the gap until it reaches a plateau beyond \(a = 3.0 \) a.u., thus agreeing with \(|z| \) as to the location of the transition.

To ensure we have accurately converged the size of the gap in the insulating plateau region, we have performed our analysis of systematically increasing CSF expansion sizes at \(a = 2.95 \) a.u., where we transition from \(N_B = 1 \) (the standard LM) to \((N_B = 100, N_0 = 5, N_K = 3) \) when the number of variables surpasses 5000. Figure 3 shows the convergence behavior for the optimization of the largest MSJ expansions for both the ground and excited states, which involved 21,401 and 25,297 variational parameters, respectively. Note that, as is typical for the standard LM, the BLM converges in a handful of iterations. It is also important to point out that the total computational cost for evaluating all of the data points in Figure 3 amounted to 8000 core hours using the 2.3 GHz Intel Xeon 12-core Haswell processors of Berkeley’s Savio computing cluster. Although this cost is not trivial, it is modest on the scale of modern parallel computation, giving ample room for this approach to be scaled up both to larger systems and larger variational parameter sets. Finally, in Figure 4, we show the convergence of the energy gap.

Figure 2. Complex polarization \(|z| \) and optical gap of the H\(_{16}\) ring as a function of the interatomic distance, evaluated using a MSJ ansatz containing all CISDTQ configurations with coefficients above 0.01.

Figure 3. BLM convergence for the hydrogen ring’s MSJ energy in the ground state (left, 21,401 parameters) and first excited state (right, 25,297 parameters).
as the variational flexibility of the ansatz is increased, seeing clearly that, to within our statistical uncertainty, the gap has converged with respect to the addition of further CSFs into the wave function. Thus, by combining the direct optimization of ansatzes for the ground and conduction edge states with the ability to optimize the large number of parameters inherent to a systematic expansion of ansatz flexibility, we provide an example of how the optical gap of a Mott insulator may be converged with respect to the effects of strong, many-body correlations.

To verify that the predicted gap is insensitive to the choice of \(N_O\) and \(N_K\) and that it appears converged with respect to decreasing \(N_B\), we have repeated the optimization several times. As shown in Table 4, the results are unchanged for various choices of the number of old directions \(N_O\) and kept directions \(N_K\) when we use \(N_B = 100\) blocks. Furthermore, reducing the number of blocks toward the \(N_B = 1\) limit where the LM and BLM are identical does not show any sign of altering the predicted gap.

Table 4. Optical Gap of Hydrogen Ring for Various Choices of \(N_B\), \(N_O\), and \(N_K\) When Using Our Largest MSJ Expansions for Ground and Excited States

\(N_B\)	\(N_O\)	\(N_K\)	gap (eV)
100	5	3	1.14(2)
100	5	1	1.13(2)
100	3	3	1.15(2)
100	3	1	1.16(2)
50	3	1	1.16(2)
25	3	1	1.14(2)

4. CONCLUSIONS

We have presented the blocked linear method, a wave function optimization method for variational Monte Carlo, that addresses a crucial memory bottleneck in the highly successful standard linear method. By dividing ansatz variables into blocks, finding important update directions in each block, and then combining these directions to find an overall update for the current wave function, our method minimizes either the energy or a function suitable for targeting excited states while avoiding both the construction of overly large matrices and any requirement that such matrices be well conditioned. In small molecule tests that employed multiple ansatz types and involved both real space and Hilbert space sampling, we showed that the method reproduces the results of the standard linear method to a very good approximation.

In a demonstration of the method’s ability to optimize large variable sets, we showed that the optical gap of a Mott-insulating hydrogen ring could be systematically converged with respect to increasing flexibility in the ansatzes for the ground and conduction band edge states. While many of the challenges inherent to simulating real Mott insulators are not present in this example, the method’s success here raises interesting questions about the role it might play in the solid state. For example, it may be possible to pursue the systematic convergence of conduction band states’ nodal structures for use in DMC. Furthermore, given the importance of addressing finite size effects by examining larger and larger simulation cells, the ability to optimize a large number of variables could prove especially useful in the solid state. We thus look forward to future work exploring applications of the blocked linear method in both solids and larger molecules, as well as further investigations aimed at improving the methodology itself.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jctc.7b00119.

Data used in constructing our plots and figures in a machine-readable format. (TXT)

AUTHOR INFORMATION

Corresponding Author

*E-mail: eneuscamman@berkeley.edu.

ORCID

Eric Neuscamman: 0000-0002-4760-8238

Notes

The authors declare no competing financial interest.

Input and output files for calculations are available (DOI: 10.18126/M2S59H) via the Materials Data Facility.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, as part of the Computational Materials Sciences Program and Center for Predictive Simulation of Functional Materials. Calculations were performed using the Berkeley Research Computing Savio cluster.

REFERENCES

1. Bartlett, R. J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291.
2. Schollwöck, U. The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 2011, 326, 96–192.
3. Kurashige, Y.; Chan, G. K-L.; Yanai, T. Entangled quantum electronic wavefunctions of the Mn4CaO5 cluster in photosystem II. Nat. Chem. 2013, 5, 660–666.
4. Grimme, S.; Parac, M. Substantial Errors from Time-Dependent Density Functional Theory for the Calculation of Excited States of Large pi Systems. ChemPhysChem 2003, 4, 292.
5. Subedi, A.; Zhang, L.; Singh, D. J.; Du, M. H. Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity. Phys. Rev. B: Condens. Matter Mater. Phys. 2008, 78, 134514.
6. Keimer, B.; Kivelson, S. A.; Norman, M. R.; Uchida, S.; Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 2015, 518, 179–186.
The Journal of Chemical Theory and Computation is a peer-reviewed scientific journal that publishes original research articles in the field of theoretical chemistry and computational chemistry. The journal covers a wide range of topics, including quantum chemistry, molecular dynamics, electronic structure calculations, and computational materials science. The articles in the journal are written by researchers from around the world, and they are peer-reviewed to ensure the highest standards of scientific quality. The journal is widely regarded as one of the most influential publications in the field of chemical theory and computation.