Security Improvement of an Image Encryption Based on mPixel-Chaotic-Shuffle and Pixel-Chaotic-Diffusion

Musheer Ahmad
Department of Computer Engineering, Faculty of Engineering and Technology, Jamia Millia Islamia, New Delhi-110025, India
E-mail: musheer.cse@gmail.com

Hamed D. Alsharari
Department of Electrical Engineering, College of Engineering, AlJouf University, AlJouf, Kingdom of Saudia Arabia
E-mail: hamed_100@yahoo.com

Munazza Nizam
Department of Information Technology, Galgotia College of Engineering & Technology, Greater Noida, India
E-mail: munazzanizam23@gmail.com

Abstract

In this paper, we propose to improve the security performance of a recently proposed color image encryption algorithm which is based on multi-chaotic systems. The existing cryptosystem employed a pixel-chaotic-shuffle mechanism to encrypt images, in which the generation of shuffling sequences are independent to the plain-image/cipher-image. As a result, it fails to the chosen-plaintext and known-plaintext attacks. Moreover, the statistical features of the cryptosystem are not up to the standard. Therefore, the security improvements are framed to make the above attacks infeasible and enhance the statistical features as well. It is achieved by modifying the pixel-chaotic-shuffle mechanism and adding a new pixel-chaotic-diffusion mechanism to it. The keys for diffusion of pixels are extracted from the same chaotic sequences generated in the previous stage. The simulation analyses and studies are performed to demonstrate that the updated version of cryptosystem has better statistical features and resistant to the chosen-plaintext and known-plaintext attacks than the existing algorithm.

Keywords: Multiple Chaotic Systems, Image Cryptosystem, Attacks, Modified Pixel-Chaotic-Shuffle, Pixel-Chaotic-Diffusion

1. Introduction

In today’s world of technological advancements in web, multimedia and wireless networks, the multimedia data such as digital images, audio, video becomes a crucial means of communication. It leads to easiness in unauthorized access, illegal usage, malicious alteration and disruption of sensitive multimedia data for intruders and attackers. So, there is an increasing demand for building robust and
efficient security methods for privacy protection of digital multimedia data while transmitting them over the Internet and wireless networks. A possible conventional solution is to use encryption techniques to secure sensitive data. Encryption is the mathematical transformation of plaintext data into unintelligible form to provide data confidentiality, integrity, authentication and non-repudiation. It provides an end-to-end secure communication. The core idea behind encryption is to protect plaintext data that can only be apprehensible on decryption with correct secret key by a legal recipient. A strong encryption technique should have high statistical features, resistant to cryptographic attacks and fulfill the classical Shannon requirement of confusion and diffusion [1]. Confusion makes the relationship between the key and ciphertext as complex as possible, where as diffusion reshuffle bits of plaintext so that any redundancy in the plaintext is spread out over the ciphertext [2]. There are a number of traditional encryption techniques like DES, AES, IDEA, RSA, etc [2-4]. These techniques are effective in providing good confusion and diffusion for encrypting text data, but these number-theory based encryption techniques are not well-suited for multimedia data. The multimedia data is usually very large-sized and bulky; its adjacent pixels/frames have high correlation, has spatial and temporal redundancies. Encrypting such data using traditional techniques incurs high computing power, large computation time and high expenses for real-time multimedia applications like video conferencing, image-surveillance, image-based military and satellite communication etc. Hence, it demands better solutions to resolve the security problems of multimedia data effectively.

The chaotic signals have several features that resembles to some cryptographic properties like

(1) The ergodicity property of chaotic signals resembles the confusion property in cryptography, (2) High sensitivity of chaotic signals to their initial conditions/system-parameters resembles the diffusion property of cryptography and (3) Noise-like behavior of chaotic sequences resembles the key sequences used in cryptography. The highly sensitive response of chaotic systems to initial conditions makes their trajectory unpredictable and highly random. Moreover, the generation of discrete chaotic signals using chaotic systems often requires low cost. Consequently, the chaos-based cryptography has gained attention of researchers and academician to develop chaos-based methods for securing multimedia data. The first chaos based image encryption algorithm was proposed by R. Matthews [5]. Chaos-based cryptosystems provide strong encryption effect, better statistical features and high security. As a result, they are extensively exploited for encrypting multimedia images and videos [6-21]. However, some of them suffer from serious security flaws and are incompetent to withstand even the classical and other types of cryptographic attacks, as exposed by many cryptanalysts [22-28].

Most of the chaos-based image encryption algorithms are based on confusion and diffusion techniques. Confusion technique shuffles the positions of pixels in plain-image to get visually disordered and unrecognizable image. Diffusion technique alters the statistical characteristics of image by modifying the gray-values of pixels. Deployment of confusion and diffusion stages together provides higher encryption effect, robustness and security. Scharinger [6] suggested a chaotic kolmogorov-flow based image encryption algorithm. The image is permuted through a key-controlled system and gray-value substitution is based on a shift-registered pseudo-random number generator. Fridrich [7] suggested a cryptosystem in which the permutation of image pixels is done using 2D chaotic map. In the diffusion stage, the pixel values are changed depending on the accumulated effect of all previous pixels. Chen et al. [8] extended a 2D Cat map to 3D map to de-correlate relations among image pixels. The confusion is done by permuting the image pixels through extended 3D Cat map. Logistic map and 3D Chen's system are employed to diffuse the image. Mao et al. [9] extended the concept of Chen et al. [8] by employing a 3D Baker’s map instead of 3D Cat map at the confusion stage. Fu et al. [10] employed preprocessed sequences generated by 3D Lorenz system to perform the confusion and diffusion. The encryption speed is improved as the position permutation and gray-value substitution of pixel is done in one iteration operation. Dongming et al. [11] constructed an ergodic matrix using Logistic map after executing an optimized preprocessing to permute the pixels of plain-image and a discretized Chen system is employed at diffusion stage to improve the encryption performance. Liu et al. [12] used an improved 3D Cat map for pixels shuffling and gray-value substitution, where the control parameters of Cat map are generated through 2D Henon’s map and 2D
coupled Logistic map is employed to generate parameters of substitution. Patidar et al. [13] presented a loss-less symmetric color image encryption algorithm based on chaotic 2D standard map and 1D Logistic map. In their algorithm, there are four rounds: two rounds for substitution/confusion and two rounds for diffusion. The first round of substitution/confusion is achieved with the help of intermediate XORing keys calculated from secret key. Then rounds for horizontal and vertical diffusions are completed by mixing the properties of horizontally and vertically adjacent pixels, respectively. In the last round, substitution/confusion is accomplished by generating an intermediate chaotic key stream image using chaotic standard and logistic maps. Tang et al. [14] suggested a new image encryption scheme using coupled map lattices (CML) with time-varying delays. A discretized tent map is employed to permute the positions of image pixels and a delayed CML is used to confuse the relationship between the plain-image and the cipher-image. The features of fourth-order hyper-chaotic system are improved and explored by Zhu [15] for designing an image encryption method. In [16], a new image encryption scheme based on coupling of chaotic function and XOR operator is provided. The scheme has the features of high security, sensitivity and randomness. Hongjun et al. [17] designed a stream-cipher algorithm based on one-time keys and robust chaotic maps in order to get high security and improved dynamical degradation, where the initial conditions are generated by the MD5 of mouse positions. This makes the algorithm robust against noise and makes known attacks infeasible. In [18], the authors proposed an image encryption algorithm by exploring the features of DNA computing and chaotic logistic function.

In 2009, Huang et al. [20] proposed pixel-chaotic-shuffle based color image encryption algorithm. The algorithm uses four three-dimensional chaotic systems for pixels bits shuffling. Solak et al. [22] breaks their scheme successfully by cracking the shuffling sequences that are equivalent keys of cryptosystem. This paper presents security improvements to make existing cryptosystem robust against Solak et al. attacks and to enhance its statistical features.

2. Proposed Security Improvements

The Huang et al. [20] proposed a pixel-chaotic-shuffle mechanism which utilizes four 3D chaotic systems namely the Henon map, the Lorenz map, the Chua map and the Rossler map for encrypting color images. The four 3D chaotic systems used in the design are described by Eqns (1)-(4) in Section 2.1 of Ref. [20]. We refer them as Eqns (1)-(4) in the later part of this paper. These chaotic systems are iterated and processed to generate the shuffling sequences. In pixel-chaotic-shuffle mechanism, the whole idea of encryption of RBG images involves two phases. In the first phase, the bits of binarized-image component are permuted vertically by performing column-wise indexing and shuffling. In the second phase, the 8-bits of each pixels of image component are rearranged horizontally within themselves through row-wise indexing and shuffling. One major shortcoming of Huang et al. algorithm is that the generation of shuffling sequences is independent to the pending plain-image or the cipher-image. As a consequence, it generates same sequences for encrypting different plain-images. Another reason which makes the work of attacker easier is that each color component of plain-image is processed separately and independently. These shortcomings facilitate the cryptanalysts Solak et al. [22] to break their algorithm.

We propose security improvements in Huang et al. algorithm with similar basic description, parameters and functions used. The improvements are framed to rule out the aforesaid shortcomings of the existing method. A modified pixel-chaotic-shuffle mechanism is presented to (1) create a dependency of twelve shuffling sequences to the plain-image to be encrypted and (2) process three components of color image collectively and dependently. Moreover, the modified pixel-chaotic-shuffle mechanism is appended by proposed pixel-chaotic-diffusion mechanism to enhance the statistical features of updated version. As a result, the improvements make the cryptanalysis, executed in [22], infeasible and also improves the statistical features of cryptosystem.
The plaintext color image P of size $m \times n \times 3$, is first vectorized using raster-scan method (in $R \rightarrow G \rightarrow B$ order) to obtain an array of size $N \times 3$, where $N = mn$. The pixel’s intensity values are decomposed into its binary equivalents of 8-bit format to form a binary image matrix ξ of size $N \times 24$. To make the shuffling sequences dependent on plain-image, the total number of 1s in binarized color image ξ is calculated, let it be Δ. The four parameters N_H, N_L, N_C and N_R are evaluated based on the value of Δ. The four chaotic systems with specified key parameters are iterated for N_H, N_L, N_C and N_R times and resulted chaotic values are discarded. It is done to achieve two purposes: (1) to establish a relation between the plain-image and the chaotic sequences or eventually the shuffling sequences and (2) to remove the transient effect of the chaotic systems used. The future trajectories of the four systems are solely controlled by the parameter Δ, which is specific to the pending plain-image. Thus, it extracts information from the plain-image and utilizes it to iterate the chaotic systems. Consequently, an entirely different set of sequences are generated when encrypting a slightly different plain-image. It plays a key role in defeating the potential chosen-plaintext attack and known-plaintext attack. The 24-bits of each row of binary image matrix ξ is manually arranged in a manner shown in Figure 1, to bring the initial confusion among RGB pixels, let Ψ_{rgb} be the matrix obtained. This way establishing the dependency of components on each other, this in turn increases the computation of cryptanalysis. Thus 8-bit pixel of each R, G, B component, that was shuffled individually in [20], is replaced by 24-bit pattern for each RGB pixel in the updated version. The procedure is then followed by column-wise indexing and shuffling, row-wise indexing and shuffling and pixel-chaotic-diffusion.

The following twelve chaotic sequences are obtained on applying next mn iterations to each chaotic systems, $X_i(k)$, $Y_i(k)$ and $Z_i(k)$ where $i = 1, 2, 3, 4$.

$$
\begin{align*}
X_i &= \{x_i(1), x_i(2), \ldots, x_i(mn)\} \\
Y_i &= \{y_i(1), y_i(2), \ldots, y_i(mn)\} \\
Z_i &= \{z_i(1), z_i(2), \ldots, z_i(mn)\}
\end{align*}
$$

To improve their stochasticity and randomness, these sequences are preprocessed using following formulation [10], where $k = 1, 2, \ldots, mn$.

$$
\begin{align*}
\hat{X}_i(k) &= \{X_i(k) \times 10^6 - \text{floor}(X_i(k) \times 10^6)\} \\
\hat{Y}_i(k) &= \{Y_i(k) \times 10^6 - \text{floor}(Y_i(k) \times 10^6)\} \\
\hat{Z}_i(k) &= \{Z_i(k) \times 10^6 - \text{floor}(Z_i(k) \times 10^6)\}
\end{align*}
$$

(5)

Now, each member of the sequences lies in the interval of $(0, 1)$. To quantify the randomness of above preprocessed sequences, they are transformed to binary sequences $bSeqX$, $bSeqY$ and $bSeqZ$ using a threshold of $\theta = 0.5$ by Eqn. (6)-(8). The standard NIST statistical test suite [29] is applied to evaluate the randomness performance of these sequences.

$$
\begin{align*}
bSeqX_i(k) &= \begin{cases}
0 & \text{for } \hat{X}_i(k) < \theta \\
1 & \text{for } \hat{X}_i(k) \geq \theta
\end{cases} \\
bSeqY_i(k) &= \begin{cases}
0 & \text{for } \hat{Y}_i(k) < \theta \\
1 & \text{for } \hat{Y}_i(k) \geq \theta
\end{cases} \\
bSeqZ_i(k) &= \begin{cases}
0 & \text{for } \hat{Z}_i(k) < \theta \\
1 & \text{for } \hat{Z}_i(k) \geq \theta
\end{cases}
\end{align*}
$$

(6) (7) (8)

The results of various statistical tests are listed in the Table 1. It is clear from the Table that all twelve sequences successfully passed the randomness tests as the associated p-values are higher than 0.01. These stochastically better preprocessed sequences are utilized to produce shuffling and encryption key sequences in proposed improved version.
Statistical Test	bSeqX1 (p_value)	bSeqX2 (p_value)	bSeqX3 (p_value)	bSeqX4 (p_value)	bSeqY1 (p_value)	bSeqY2 (p_value)	bSeqY3 (p_value)	bSeqZ1 (p_value)	bSeqZ2 (p_value)	bSeqZ3 (p_value)	bSeqZ4 (p_value)	Results
Frequency Test	0.83384	0.096299	0.350555	0.593732	0.838384	0.881516	0.962459	0.525157	0.844519	0.366986	0.832259	0.777631
Block Frequency Test	0.649814	0.334810	0.669590	0.918253	0.850038	0.354371	0.654242	0.497521	0.795345	0.807055	0.035018	0.401879
Cusum-Forward Test	0.694591	0.017580	0.208817	0.768087	0.698272	0.538884	0.611328	0.572753	0.701954	0.471638	0.079373	0.720381
Cusum-Reverse Test	0.877724	0.124895	0.447502	0.804052	0.886807	0.421359	0.654330	0.735115	0.877724	0.679896	0.912647	0.948732
Runs Test	0.124118	0.486900	0.277482	0.137872	0.124118	0.319077	0.712359	0.998736	0.126652	0.94433	0.566756	0.017443
Longest Runs Test	0.111325	0.103773	0.121785	0.080958	0.111325	0.580547	0.240356	0.676767	0.111325	0.188293	0.582790	0.507158
Rank Test	0.211605	0.621915	0.674257	0.014727	0.674257	0.918215	0.047407	0.669556	0.206921	0.776819	0.038096	0.472473
FFT Test	0.702631	0.296714	0.959403	1.000000	0.702631	0.779504	0.898737	0.721601	0.838657	0.460460	0.683845	0.524591
Linear Complexity Test	0.211212	0.846274	0.083533	0.193590	0.645366	0.912424	0.467533	0.165069	0.063691	0.846274	0.030934	0.543717
Serial Test	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000	1.000000
The block diagram of the proposed algorithm is depicted in Figure 1 and the algorithmic steps are as follows:

Step 1. Read the color image P_{RGB} and prepare it to get binary image matrix ξ_{rgb} of size $mn \times 24$.

[modified Pixel-Chaotic-Shuffle Stage]

Step 2. Determine the number of 1’s in the matrix ξ_{rgb}, let it be Δ and evaluate the parameters N_H, N_L, N_C and N_R from Δ as:

- $N_H = (\Delta \mod (997)) + 829$
- $N_L = (\Delta \mod (937)) + 529$
- $N_C = (\Delta \mod (1097)) + 719$
- $N_R = (\Delta \mod (397)) + 1123$

Step 3. Manually arrange the bits of image matrix ξ_{rgb}, as shown in Figure 2, to form matrix $\Psi_{rgb(mn \times 24)}$.

Step 4. Select the initial conditions and parameters for the four chaotic systems.

Step 5. Iterate the four chaotic systems of Eqns (1)-(4) for N_H, N_L, N_C and N_R times and discard the chaotic values.

Step 6. Again iterate the chaotic systems of Eqns (1)-(4) for next mn times to capture the sequences $X_{i(\mu,1)}$ to $X_{4(\mu,1)}$, $Y_{i(\mu,1)}$ to $Y_{4(\mu,1)}$ and $Z_{i(\mu,1)}$ to $Z_{4(\mu,1)}$, where $\mu = 1, 2, 3, \ldots, mn$.

Step 7. Preprocess the chaotic sequences through Eqn. (5).
Step 8. Extract the indexing sequences $F_{X1} \sim F_{X4}$, $F_{Y1} \sim F_{Y4}$ and $F_{Z1} \sim F_{Z4}$ from preprocessed chaotic sequences $\hat{X}_1 \sim \hat{X}_4$, $\hat{Y}_1 \sim \hat{Y}_4$ and $\hat{Z}_1 \sim \hat{Z}_4$ as:

$$F_{X1} = \text{sort}(\hat{X}_{1(n,i)}) \quad F_{X2} = \text{sort}(\hat{X}_{2(n,i)}) \quad F_{X3} = \text{sort}(\hat{X}_{3(n,i)}) \quad F_{X4} = \text{sort}(\hat{X}_{4(n,i)})$$

$$F_{Y1} = \text{sort}(\hat{Y}_{1(n,i)}) \quad F_{Y2} = \text{sort}(\hat{Y}_{2(n,i)}) \quad F_{Y3} = \text{sort}(\hat{Y}_{3(n,i)}) \quad F_{Y4} = \text{sort}(\hat{Y}_{4(n,i)})$$

$$F_{Z1} = \text{sort}(\hat{Z}_{1(n,i)}) \quad F_{Z2} = \text{sort}(\hat{Z}_{2(n,i)}) \quad F_{Z3} = \text{sort}(\hat{Z}_{3(n,i)}) \quad F_{Z4} = \text{sort}(\hat{Z}_{4(n,i)})$$

where $\text{sort}(\cdot)$ is a sequencing index function defined in [20].

Step 9. Apply shuffle function $\text{sq}(\cdot)$ on Ψ_{rgb} for column-wise shuffling as shown in Figure 3 using shuffling indices $F_{X1} \sim F_{X4}$, $F_{Y1} \sim F_{Y4}$ and $F_{Z1} \sim F_{Z4}$. The function $\text{sq}(\cdot)$ shuffles the bits of matrix Ψ_{rgb} using above indexing sequences. Thus, we get a partially encrypted column shuffled binary image matrix as:

$$\Psi_{ergb} = \left[\Psi_{ergb1}\Psi_{ergb2}\cdots\Psi_{ergb24}\right]$$

where,

$$\Psi_{ergb} = \begin{bmatrix}
\text{sq}(\text{rgb}_a, F_{X1}), i = 1,2 \\
\text{sq}(\text{rgb}_a, F_{X2}), i = 3,4 \\
\text{sq}(\text{rgb}_a, F_{X3}), i = 5,6 \\
\text{sq}(\text{rgb}_a, F_{X4}), i = 7,8 \\
\text{sq}(\text{rgb}_a, F_{Y1}), i = 9,10 \\
\text{sq}(\text{rgb}_a, F_{Y2}), i = 11,12 \\
\text{sq}(\text{rgb}_a, F_{Y3}), i = 13,14 \\
\text{sq}(\text{rgb}_a, F_{Y4}), i = 15,16 \\
\text{sq}(\text{rgb}_a, F_{Z1}), i = 17,18 \\
\text{sq}(\text{rgb}_a, F_{Z2}), i = 19,20 \\
\text{sq}(\text{rgb}_a, F_{Z3}), i = 21,22 \\
\text{sq}(\text{rgb}_a, F_{Z4}), i = 23,24 \\
\end{bmatrix}$$

and Ψ_{rgb} is the ith bit of the μth row of matrix Ψ_{rgb}.

Step 10. Perform row-wise shuffling of all bits within each row of matrix Ψ_{ergb} obtained in above step in pairs of 2 using indices obtained in Step 7. Let the matrix obtained be Ψ_{rgb} of size $mn \times 24$.

Step 11. Prepare the shuffled binary image matrix Ψ_{rgb} to get RGB shuffled image S_{RGB} of size $mn \times n \times 3$.

[Pixel-Chaotic-Diffusion Stage]

Step 12. Decompose the shuffled image S_{RGB} into three gray-scale images of S_R (red), S_G (green) and S_B (blue), arrange their pixels in raster-scan order to get three 1D sequences as:

$$S_R = \{S_R(1), S_R(2), \ldots, S_R(mn)\}$$

$$S_G = \{S_G(1), S_G(2), \ldots, S_G(mn)\}$$

$$S_B = \{S_B(1), S_B(2), \ldots, S_B(mn)\}$$

Step 13. Extract the key sequences for diffusion using the preprocessed chaotic sequences $\hat{X}_1 \sim \hat{X}_4$, $\hat{Y}_1 \sim \hat{Y}_4$ and $\hat{Z}_1 \sim \hat{Z}_4$ obtained earlier $(k = 1 \sim mn)$.

$$\text{keyX}_i(k) = \{\text{floor}(\hat{X}_i(k) \times 10^{14})\}\text{ mod}(256)$$

$$\text{keyY}_i(k) = \{\text{floor}(\hat{Y}_i(k) \times 10^{14})\}\text{ mod}(256)$$

$$\text{keyZ}_i(k) = \{\text{floor}(\hat{Z}_i(k) \times 10^{14})\}\text{ mod}(256)$$

Step 14. Choose $C_{ib}(0)$, $C_{cb}(0)$ and $C_{gb}(0)$.

Step 15. Iterate the following for $j = 1 \sim mn$.

\[t_1 = (C_B(j-1)) \mod(12); \quad t_2 = (C_R(j-1)) \mod(12); \quad t_3 = (C_G(j-1)) \mod(12); \]

\begin{align*}
C_B(j) &= S_B(j) \oplus (C_B(j-1) + \text{Key}(j, t_1)) \mod(256) \\
C_R(j) &= S_R(j) \oplus (C_R(j-1) + \text{Key}(j, t_2)) \mod(256) \\
C_G(j) &= S_G(j) \oplus (C_G(j-1) + \text{Key}(j, t_3)) \mod(256)
\end{align*}

the definition of Key is provided in Table 2.

Step 16. Combine the encrypted gray-scale images \(C_R, C_G \) and \(C_B \) to encrypted color image \(C_{RGB} \) of size \(m \times n \times 3 \).

Figure 3: Column-wise shuffling of bits in vertical direction in matrix \(\Psi_{rgb} \).

Table 2: Actual diffusion keys

Key(j, t)	keyX_1(j)	keyY_1(j)	keyZ_1(j)	keyX_2(j)	keyY_2(j)	keyZ_2(j)	keyX_3(j)	keyY_3(j)	keyZ_3(j)	keyX_4(j)	keyY_4(j)	keyZ_4(j)
t	0	1	2	3	4	5	6	7	8	9	10	11

3. Experimental Analyses and Results

Same standard color image \(Lena \) of size \(256 \times 256 \times 3 \) is taken as test image to justify the improved security and robustness performance of proposed version. The two algorithms under consideration are implemented in MATLAB. The following simulation analyses are carried out to evaluate the security performance of both the algorithms.

3.1. Histogram Analysis

Image encryption performance evaluation via histograms is an effective criterion. Image histogram illustrates how pixels in an image are distributed. The histograms of \(R, G, B \) components of original \(Lena \) image and its encrypted image using existing algorithm are shown in Figure 4. Figure 5 depicts the histograms of \(R, G, B \) components of encrypted image obtained with proposed version. The histograms obtained for the case of existing technique has more number of peaks as compared to the histograms in proposed technique. The image with flat histogram level is analogous to a noise-image. The histograms shown in Figure 5 resemble that of a noisy image. It can be observed that more flat and fairly uniform histograms are obtained with proposed updated algorithm. The encrypted image shown in Figure 5 has cryptographically better pixels distribution than the pixels of encrypted image obtained with the existing Huang *et al.* algorithm.
3.2. Mean Gray Value Analysis

In the proposed version, the statistical properties of color plain-images are improved in such a manner that encrypted images have good balance property. To quantify the balance property of images, the mean gray values of plain-image and encrypted images are evaluated and listed in Table 3. As can be seen from scores that no matter how gray-values of plain-image are distributed, the mean gray-values of encrypted images come out closer to 127.5 (ideal value for a gray-scale perfect noise image) as compared to the existing cryptosystem. This shows that the improved version doesn’t provide any information regarding the distribution of gray values to the attacker in the encrypted images.

Table 3: Mean gray-values of images

	Red	Green	Blue
Original	180.22	99.05	105.41
Huang et al. [20]	147.78	109.03	127.51
Xiao et al. [21]	NA	NA	NA
Proposed version	127.51	127.97	127.93
3.3. Chi-Square Analysis

The security performance of an encryption method is also quantified through chi-square test [30]. It is a statistical test used to examine the variations of data from the expected value. The chi-square parameter χ^2 is defined as:

$$\chi^2 = \sum_{i=1}^{256} \frac{(P_i - C_i)^2}{C_i} \quad (9)$$

Where i is number of gray values, P_i and C_i are observed and expected occurrence of each gray value (0 to 255), respectively. The less the value of chi-square χ^2 better will be the encryption performance of the scheme. The values of chi-square for images under study are listed in Table 4. It can be observed that chi-square values for proposed method are extremely low as compared to the values obtained for the original image and Huang et al. encrypted image. The extremely low values of chi-square validate that the proposed method offers fairly high encryption effect.

Figure 4: Encrypted image of ‘Lena’ and histograms of its R, G, B components.
Table 4: Chi-square values of images

	Red	Green	Blue
Original	65274.12	30609.43	91931.33
Huang et al. [20]	12343.32	8570.18	37977.49
Xiao et al. [21]	NA	NA	NA
Proposed version	272.30	307.46	218.93

3.4. Correlation Analysis

The correlation between adjacent pixels of encrypted image should be as low as possible. For evaluating the correlation between the pixels in cipher image we randomly select pairs of adjacent pixels in image. The correlation coefficient is calculated as [19].

\[
\rho = \frac{N \sum_{i=1}^{N} (x_i \times y_i) - \sum_{i=1}^{N} x_i \times \sum_{i=1}^{N} y_i}{\sqrt{\left(N \sum_{i=1}^{N} x_i^2 - (\sum_{i=1}^{N} x_i)^2 \right) \times \left(N \sum_{i=1}^{N} y_i^2 - (\sum_{i=1}^{N} y_i)^2 \right)}}
\]

(10)

Where \(x\) and \(y\) are gray values of adjacent pixels and \(N\) is the total number of pairs of pixels of an image. The values of correlation coefficients for the proposed and existing algorithm are given in Table 5. The proposed algorithm provides lower value of \(\rho\) as compared to existing algorithms, thus our algorithm outperforms both Huang et al. [20] and Xiao et al. [21] algorithms.

Table 5: Correlation coefficient of pixels in images

	Horizontal	Vertical	Diagonal
Original	0.9597	0.9792	0.9570
Huang et al. [20]	0.1257	0.0581	0.0226
Xiao et al. [21]	0.0631	0.0226	-0.0192
Proposed version	-0.00513	0.00339	-0.00373

3.5. Entropy Analysis

Information entropy of an image is a basic criterion used to depict the randomness of data. A greater value of information entropy shows a more uniform distribution of gray values of image. The entropy \(H\) of a message source \(M\) can be computed as:

\[
H(M) = \sum_{i=0}^{255} p(m_i) \log \left(\frac{1}{p(m_i)} \right)
\]

(11)

Where \(p(m_i)\) represents the probability of symbol \(m_i\) and the entropy is expressed in bits. If the source \(M = \{m_0, m_1, \ldots, m_{255}\}\) emits \(2^8\) symbols with equal probability, then the entropy \(H(M) = 8\), which corresponds to a true-random source and represents the ideal value of entropy for message source. It is clear that the entropy scores for proposed algorithm are higher and closer to the ideal value than those computed with existing algorithm.

Table 6: Information entropy of images

	Red	Green	Blue
Original	7.2359	7.5689	6.9179
Huang et al. [20]	7.8501	7.9028	7.5582
Xiao et al. [21]	NA	NA	NA
Proposed version	7.9970	7.9966	7.9976
3.6. NPCR and UACI Analysis

The NPCR and UACI are two most significant quantities that quantify the strength of encryption algorithms. NPCR is the measure of absolute number of pixels change rate and UACI computes average difference of color intensities between two images when the change in one image is subtle. The NPCR and UACI values can be evaluated by Eqns. (12) and (13), where T denotes the largest supported gray-value compatible with image format, $\lvert \cdot \rvert$ denotes the absolute value function.

\[
\text{NPCR: } N(C_1, C_2) = \frac{\sum_{i,j} D(i,j)}{m \times n} \times 100\%
\]

\[
\text{UACI: } U(C_1, C_2) = \frac{1}{m \times n} \sum_{i,j} |C_1(i,j) - C_2(i,j)| \times 100\%
\]

A pixel of plain-image P_1 is randomly chosen and is set to 0, let this new image be named P_2. Let C_1 and C_2 be the cipher images of images P_1 and P_2. NPCR and UACI values between C_1 and C_2 are calculated for the two schemes and listed in Table 7. Sufficiently high NPCR/UACI scores for C_1 and C_2 are usually considered as strong resistance to differential attacks. The Table shows that a tiny change in the plain image results almost no change for existing cryptosystem. However, it causes a significantly large difference in proposed method i.e. the proposed version is highly sensitive to a small change in the plain-image.

Table 7: NPCR and UACI between C_1 & C_2

	NPCR	UACI				
	Red	Green	Blue	Red	Green	Blue
Huang et al. [20]	0.0045	0.0030	0.0030	0.00046	0.00114	0.00010
Xiao et al. [21]	NA	NA	NA	NA	NA	NA
Proposed version	99.596	99.637	99.577	33.335	33.467	33.563

Now, the NPCR and UACI between P_1 and C_1 are evaluated and listed in Table 8. The scores determine the deviation of encrypted image from its plain-image. It is evident from the comparison that the NPCR values are comparable and UACI scores are significantly better than the scores obtained with existing two algorithms.

Table 8: UACI between P_1 & C_1

	NPCR	UACI				
	Red	Red	Green	Blue	Green	Blue
Huang et al. [20]	99.42	99.60	99.54	24.94	27.66	24.94
Xiao et al. [21]	99.54	99.55	99.46	23.91	27.18	23.91
Proposed version	99.63	99.57	99.53	27.56	30.67	27.56

3.6. Resistance to CPA/KPA Attacks

In the proposed version, the generation of shuffling sequences is made dependent to the pending image information in such a way that a tiny different plain-image results in distinct shuffling
sequences, which in turn produce totally different encrypted image. Moreover, the components of the pending image are processed collectively and dependently. These improvements make the attacks executed in [22] infeasible and impossible. So, proposed updated version can resist the chosen-plaintext and known-plaintext attacks.

4. Conclusion

In this paper an updated version of color image encryption algorithm has been proposed. The shortcomings of existing technique are eliminated by dynamically changing the shuffling sequences whenever there is a tiny change in plain-image. It is achieved by extracting information specific to the pending plain-image and using it to generate the shuffling sequences. The R, G, B components of image are operated collectively and dependently. This guarantees the robustness of the proposed algorithm against CPA/KPA attacks. The statistical features of the algorithm are further bettered by adding a pixel-chaotic-diffusion stage to it, where the diffusion keys are obtained out of the chaotic sequences generated earlier. The NPCR and UACI scores show that proposed version is very sensitive to a slight change in the plain-image. Several other simulation analyses and comparative studies validate the improved security performance of the proposed version.

References

[1] Shannon, C. E., 1949, “Communication Theory of Secrecy Systems”, Bell System of Technical Journal 28, pp. 656-715.
[2] Menezes, A.J., Oorschot, P.C.V., Vanstone, S.A., 1997, “Handbook of Applied Cryptography” CRC Press, Boca Raton.
[3] Schneier, B., 1996, “Applied Cryptography: Protocols, Algorithms and Source Code in C”, Wiley, New York.
[4] Stinson, D.R., 1995, “Cryptography: Theory and Practice”, CRC Press, Boca Raton.
[5] Matthews, R., 1989, “On the Derivation of a Chaotic Encryption Algorithm”, Cryptologia 13, pp. 29–42.
[6] Scharinger, J., 1998, “Fast encryption of image data using chaotic Kolmogorov flows”, Journal of Electronic Imaging 7, pp. 318–325.
[7] Fridrich, J., 1998, “Symmetric ciphers based on two-dimensional chaotic maps”, International Journal of Bifurcation and Chaos 8, pp. 1259–1284.
[8] Chen G, Mao Y B, Chui C K., 2004, “A symmetric image encryption scheme based on 3D chaotic cat maps”, Chaos, Solitons & Fractals 21, pp. 749-761.
[9] Mao Y, Chen G, Lian S., 2004, “A novel fast image encryption scheme based on 3D chaotic Baker maps”, International Journal of Bifurcation and Chaos 14, pp. 3613–3624.
[10] Fu C, Zhang Z, Cao Y., 2007, “An Improved Encryption Algorithm Based on Chaotic Maps”, Third IEEE International Conference on Natural Computation, pp.
[11] Dongming C, Zhiliang Z, Guangming Y., 2008, “An Improved Image Encryption Algorithm Based on Chaos”, The 9th IEEE International Conference for Young Computer Scientists, pp. 2792-2796.
[12] Liu H, Zhu Z, Jiang H, Wang B., 2008, “A Novel Image Encryption Algorithm Based on Improved 3D Chaotic Cat Map”, The 9th IEEE International Conference for Young Computer Scientists, pp. 3016-3021.
[13] Patidar, V, Pareek, N. K., Sud, K. K., 2009, “A new substitution diffusion based image cipher using chaotic standard and logistic maps”, Communication in Nonlinear Science and Numerical Simulation 14, pp. 3056–3075.
[14] Tang, Y., Wang, Z., Fang, J., 2009, “Image encryption using chaotic coupled map lattices with time varying delays”, Communication in Nonlinear Science and Numerical Simulation pp.
[15] Zhu, C., 2012, “A novel image encryption scheme based on improved hyperchaotic sequences”, *Optics Communications* 285, pp. 29–37.

[16] Francois, M., Grosges, T., Barchiesi, D. and Erra, R., 2011, “A new image encryption scheme based on a chaotic function”, *Signal Processing: Image Communication* 27, pp. 249–259.

[17] Hongjun, L. and Xingyuan, W., 2010, “Color image encryption based on one-time keys and robust chaotic maps”, *Computers and Mathematics with Applications* 59, pp. 3320-3327.

[18] Zhang, Q., Guo, L. and Wei, X., 2010, “Image encryption using DNA addition combining with chaotic maps”, *Mathematical and Computer Modelling* 52, pp. 2028-2035.

[19] Ahmad, M., Ahmad, T., 2012, “A Framework to Protect Patient Digital Medical Imagery for Secure Telediagnosis”, *Procedia Engineering* 48, pp. 1055--1066.

[20] Huang, C. K., Nien, H. H., 2009, “Multi chaotic systems based pixel shuffle for image encryption”, *Optics Communications* 282, pp. 2123–2127.

[21] Xiao, D., Shih, F. Y., 2010, “Using the self-synchronizing method to improve security of the multi chaotic systems-based image encryption”, *Optics communications* 283, pp. 3030–3036.

[22] Solak, E., Rhouma, R., Belghith, S., 2010, “Cryptanalysis of a multi-chaotic systems based image cryptosystem”, *Optics Communications* 283, pp.232–236

[23] Wang, K., Pei, W., Zou, L., 2005, “On the Security of 3D Cat Map based Symmetric Image Encryption Scheme”, *Physics Letters A* 343, pp. 432–439.

[24] Alvarez, G., Li, S., 2005, “Breaking an Encryption Scheme based on Chaotic Baker Map”, *Physics Letters A* 352, pp. 78–82.

[25] Rhouma, R., Solak, E., Belghith, S., 2010, “Cryptanalysis of a New Substitution-Diffusion based Image Cipher”, *Communication in Nonlinear Science and Numerical Simulation* 15, pp. 1887–1892.

[26] Rhouma, R., Belghith, S., 2008, “Cryptanalysis of a Spatiotemporal Chaotic Image/Video Cryptosystem” *Physics Letters A* 372, pp. 5790–5794.

[27] Li, C., Li, S., Asim, M., Nunez, J., Alvarez, G., Chen, G., 2009, “On the Security Defects of an Image Encryption Scheme”, *Image and Vision Computing* 27, pp. 1371–1381.

[28] Rhouma, R., Belghith, S., 2011, “Cryptanalysis of a Chaos-based Cryptosystem on DSP”, *Communication in Nonlinear Science and Numerical Simulation* 16, pp. 876–884.

[29] Rukhin A, et al., 2001, ”A Statistical Test Suite for Random and Pseudo-random Number Generators for Cryptographic Applications”, *NIST Special Publication*, pp. 800-822.

[30] Kwok, H. S., Tang, W. K. S., 2007, “A fast image encryption system based on chaotic maps with finite precision representation”, *Chaos, Solitons and Fractals* 32, pp. 1518–1529.

[31] Wu, Y., Noonan, J. P., Agaian, S., 2011, “NPCR and UACI Randomness Tests for Image Encryption”, *Cyber Journals: Multidisciplinary Journals in Science and Technology, Journal of Selected Areas in Telecommunications*, pp. 31-38.