Procontractile G protein–mediated signaling pathways antagonistically regulate smooth muscle differentiation in vascular remodeling

Till F. Althoff,1 Julián Albarrán Juárez,1 Kerstin Troidl,1,2 Cong Tang,1 Shengpeng Wang,1 Angela Wirth,1,3 Mikito Takefuji,1 Nina Wettchureck,1,2 and Stefan Offermanns1,2

Vascular smooth muscle (Sm) cells (VSMCs) are highly plastic. Their differentiation state can be regulated by serum response factor (SRF), which activates genes involved in Sm differentiation and proliferation by recruiting cofactors, such as members of the myocardin family and ternary complex factors (TCFs), respectively. However, the extracellular cues and upstream signaling mechanisms regulating SRF–dependent VSMC differentiation under in vivo conditions are poorly understood. In this study, we show that the procontractile signaling pathways mediated by the G proteins G12/G13 and G13/G11 antagonistically regulate VSMC plasticity in different models of vascular remodeling. In mice lacking G12/G13 or their effector, the RhoGEF protein LARG, RhoA–dependent SRF regulation was blocked and down-regulation of VSMC differentiation marker genes was enhanced. This was accompanied by an excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm–specific G13/G11 deficiency blocked activation of extracellular signal–regulated kinase 1/2 and the TCF Elk–1, resulting in a reduced VSMC dedifferentiation in response to flow cessation or vascular injury. These data show that the balanced activity of both G protein–mediated pathways in VSMCs is required for an appropriate vessel remodeling response in vascular diseases and suggest new approaches to modulate Sm differentiation in vascular pathologies.

Unlike skeletal or cardiac muscle cells, which are terminally differentiated, vascular smooth muscle (Sm) cells (SMCs [VSMCs]) retain a remarkable degree of plasticity throughout their lives. They can switch between a quiescent contractile state and phenotypes of increased proliferation, migration, and synthetic capacity (Owens, 1995). Dedifferentiation and redifferentiation of VSMCs are believed to be involved in vascular remodeling processes that physiologically enable vascular development and repair, as well as adaptation to chronically altered hemodynamics. However, dysregulation of VSMC plasticity also plays a role in the pathogenesis of vascular diseases such as atherosclerosis, restenosis after percutaneous interventions, and systemic as well as pulmonary hypertension (Owens et al., 2004).

The differentiation state of VSMCs is under the control of transcriptional regulators. Many genes involved in the regulation of SMC contractility are controlled by serum response factor (SRF), a widely expressed transcription factor which is believed to play a key role in the regulation of Sm differentiation (Miano et al., 2007; Owens, 2007). However, SRF can also induce the transcription of growth-related genes involved in Sm proliferation and dedifferentiation, and it is now well established that two families of transcriptional cofactors, the myocardin family (Pipes et al., 2006; Parmacek, 2007) and the ternary complex factor (TCF) family of Ets domain proteins (Treisman, 1994), differentially modulate the transcription of these distinct SRF target genes through their mutually exclusive binding to SRF (Wang et al., 2004). Whereas coactivators of the myocardin family,
Figure 1. Differential effects of G_q/G_{11} and G_{12}/G_{13} on neointima formation. (A) Relative levels of mRNAs encoding Sm differentiation markers normalized against 18S and of miR143/miR145 normalized against 4.5S RNA in the media of carotid arteries from WT, Sm-G_q/G_{11}-KO (Sm-q/11-KO), or Sm-G_{12}/G_{13}-KO (Sm-12/13-KO) mice (the data are representative for five to six males and three independent experiments per group). Levels in the media of WT mice were set as 100%. (B) Effect of increasing concentration of phenylephrine or KCl on the vascular tone of carotid arteries from WT or Sm-12/13-KO mice in percentage of maximal response (the data are representative for four males and two independent experiments per group). (C and D) Analysis of carotid artery remodeling after ligation. (C) Shown are sections of the carotid arteries from WT, Sm-12/13-KO, and Sm-q/11-KO mice.
consisting of myocardin itself and myocardin-related transcription factors (MRTFs) A and B, promote VSMC differentiation, competitive binding of TCFs induces decreased expression of SMC-selective marker genes and VSMC proliferation (Mack, 2011). TCFs are phosphorylated and activated through the Ras/MAPK pathway (Posern and Teisrman, 2006), whereas RhoA-mediated signaling has been shown to promote nuclear translocation of MRTFs and to induce Sm differentiation (Lu et al., 2001; Mack et al., 2001; Olson and Nordheim, 2010). However, the extracellular cues and upstream signaling mechanisms regulating SRF-dependent VSMC differentiation under in vivo conditions have remained poorly understood.

Most of the extracellular stimuli that regulate vascular Sm tone and increase contractility exert their effects via G protein–coupled receptors (GPCRs), which regulate two major G proteins involving the heterotrimeric G proteins Gq/G11 and G12/G13. Whereas Gq/G11 mediates the activation of phospholipase C β-isomers and subsequent Ca2+-/calmodulin-dependent activation of myosin light chain kinase, the G12/G13 family of G proteins couples to Rho guanine nucleotide exchange factor (RhoGEF) proteins to activate RhoA and thereby induces a Ca2+-independent VSMC contraction via inhibition of myosin phosphatase (Gohla et al., 2000; Somlyo and Somlyo, 2003; Maguire and Davenport, 2005). Gq/G11-mediated signaling in SMCs is required for basal vascular tone induced by vasoactive mediators, whereas both Gq/G11 and G12/G13 need to be activated for pathological increases in vascular tone like in hypertension (Wirth et al., 2008).

Here we report that the procontractile signaling pathways mediated by the G proteins G12/G13 and Gq/G11 antagonistically regulate SRF-dependent VSMC differentiation. Whereas G12/G13 promotes differentiation, Gq/G11 reduces SMC-selective marker gene expression and stimulates proliferation. Our data indicate that the balanced activities of both procontractile G protein–mediated signaling pathways control VSMC plasticity under basal conditions as well as after vascular injury or in response to changes in blood flow.

RESULTS
Reduced expression of Sm differentiation marker genes in Gq12/Gq13 but not in Gq12/Gq11-deficient vascular Sm

Using quantitative RT-PCR (qRT-PCR) analysis, we evaluated the effect of Sm-specific Gαq/Gq11; and Gα12/Gq13 deficiency on vascular gene expression in the media of arterial vessels using SMMHC-CreERT2;Gqαq11floxflox;Gα11−/− mice (Sm-Gαq/Gq11−/−KO) and SMMHC-CreERT2;Gα12q12−/−;Gα13q13floxflox mice (Sm-Gα12/Gα13−/−KO; Wirth et al., 2008). In different vessels from Sm-Gα12/Gα13−/−KO mice, we detected decreased mRNA levels of Sm differentiation marker genes such as Acta2 (α-Sm actin [α-SMA]), Myh11 (Sm myosin heavy chain [SMMHC]), Cnn1 (calponin-1), or Tagln (SM22), as well as of the Sm-enriched microRNAs 143 and 145, compared with WT and Sm-Gαq/Gq11−/−KO mice (Fig. 1 A and not depicted). Despite the down-regulation of genes encoding proteins of the contractile apparatus of SMCs, myometric experiments of agonist-induced contraction in carotid arteries did not reveal any functional defect in Sm-Gα12/Gα13−/−KO mice (Fig. 1 B). These results are in line with our previous finding that Sm-Gα12/Gα13−/−KO mice display a normal blood pressure profile (Wirth et al., 2008), suggesting that the observed subtle but significant changes in expression pattern are of no functional relevance.

Gq/G11 and G12/G13 antagonistically regulate VSMC differentiation

As vascular remodeling processes such as neointima formation in response to vascular injury or flow cessation are often accompanied by decreased expression of SMC differentiation marker genes, we tested the response of Sm-specific Gαq/Gq11−/− and Gα12/Gα13−/−deficient mice to flow cessation in the carotid artery ligation model. In WT vessels, carotid artery ligation results in neointimal hyperplasia, adjacent to the ligation site. Histological evaluation 4 wk after ligation revealed a severely exaggerated response to flow cessation in Sm-Gα12/Gα13−/−KO mice, with excessive neointimal as well as medial hyperplasia (Fig. 1, C–E). By morphometric analysis, Sm-specific deletion of Gα12/Gα13 increased neointima and media thickness several fold compared with WT animals.

A closer analysis of the expanded media of ligated vessels from Sm-Gα12/Gα13−/−KO mice showed a disarray of elastic lamina and the presence of proteoglycans stained with Alcian blue (Fig. 1 E). Although the number of α-SMA–positive cells in the vessels of Sm−/−;Gα12/Gα13−/−KO mice was increased compared with WT animals 4 wk after ligation, the proportion of CD68- and CD3–positive cells was indistinguishable between both genotypes (Fig. 1, F and G). VSMCs in the absence of Gα12/Gα13 showed an increased acute proliferative response to vascular injury as indicated by the strongly increased number of Ki-67–positive cells among α-SMA–positive cells (the data are representative for four males and two independent experiments per group). Shown are mean values ± SEM; *, P < 0.05; **, P < 0.01; †††, P < 0.001 (compared with WT). Bars: (C) 100 µm; (F, E, and H) 50 µm.
Vascular remodeling through γ_i/γ_{11} and γ_{12}/γ_{13} | Althoff et al.

in concentrations that reduced blood pressure to a level comparable with that in γ_{12}/γ_{13}-KO mice, the extent of neointima formation equaled that in untreated littermates (Fig. 2 A), suggesting that the reduced response of γ_{12}/γ_{13}-KO mice to flow cessation was unlikely to be a consequence of reduced blood pressure.

3 d after carotid artery ligation, RNA levels of SMC differentiation marker genes were significantly decreased in the media of operated WT vessels compared with contralateral control vessels (Fig. 2 B). In addition to the reduced basal expression of SMC differentiation marker genes, carotid artery ligation resulted in an exaggerated down-regulation of the genes in γ_{12}/γ_{13}-KO mice (Fig. 2 B). In contrast,

Figure 2. Effects of γ_{12}/γ_{13} and γ_{12}/γ_{13} deficiency on SMC differentiation marker gene expression. (A) Effect of hydralazine- and metoprolol-induced hypotension on neointima formation after carotid ligation. WT mice were treated without or with 500 mg/liter hydralazine or 2.5 g/liter metoprolol in the drinking water resulting in a 10–15% reduction of the mean arterial blood pressure in the treated group compared with untreated animals. Shown are the mean arterial blood pressure values during 2 d before treatment (before) and during days 3 and 4 after the start of treatment (after) and an evaluation of the neointima areas in sections from untreated and treated animals at the indicated distances from the ligation site ($n = 3$). (B) Relative levels of mRNAs encoding SMC differentiation markers as well as of miR143/miR145 in the media of carotid arteries from WT, γ_{12}/γ_{13}-KO, and γ_{11}-KO mice 3 d after carotid artery ligation relative to the levels in the media of the sham-operated contralateral vessel ($n = 5–6$). (C) Carotid artery sections at a distance of 1,000 µm from the ligation site from WT, γ_{12}/γ_{13}-KO, and γ_{11}-KO mice 7 d after sham operation (sham) or carotid artery ligation stained with an anti-α-SMA antibody. White boxes indicate enlarged areas at the bottom of each image. (D) 3 d after sham operation or ligation, carotid arteries of WT, γ_{12}/γ_{13}-KO (Sm-12/13-KO), or γ_{11}-KO (Sm-q/11-KO) were prepared free of adventitia and intima, and lysates were analyzed by immunoblotting using antibodies against α-SMA, Sm22, and tubulin. (A–D) Shown is one representative of at least three experiments. Shown are mean values ± SEM; *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.001$ (compared with WT). Bars: (C, bottom) 40 µm; (C, top) 100 µm.

of Ki-67 and α-SMA double-positive cells in the media 3 d after ligation (Fig. 1 H).

Surprisingly, an opposite phenotype was observed in γ_{12}/γ_{13}-KO mice, in which neointimal size was reduced compared with WT mice (Fig. 1, C and D). In most sections from γ_{12}/γ_{13}-KO mice, no neointima formation could be detected. This correlated with a reduced proliferative response to vascular injury compared with WT mice (Fig. 1 H). Because systemic blood pressure is reduced by 10–15% in γ_{12}/γ_{13}-deficient mice (Wirth et al., 2008), we tested whether the observed phenotype in γ_{12}/γ_{13}-KO animals was caused by hypotensive hemodynamics. In mice treated with the antihypertensives hydralazine or metoprolol,

Vascular remodeling through γ_i/γ_{11} and γ_{12}/γ_{13} | Althoff et al.
Figure 3. VSMC differentiation via RhoA/LARG. (A) Relative RhoA activity in the media of carotid arteries from WT, Sm-12/13-KO, Sm-LARG-KO, and Sm-q/11-KO mice 24 h after sham operation or carotid artery ligation (the data are representative for four to six males and three independent experiments per group). (B and C) The left common carotid artery of WT and Sm-LARG-KO mice was ligated and analyzed. Shown are sections of the vessel (B) as well as the determination of the neointima and media areas (C) at a distance of 250, 1,000, and 3,000 µm from the ligation site (the data are representative for six males and three independent experiments per group). (D) Carotid arteries from WT or Sm-LARG-KO mice were
down-regulation of Sm differentiation marker genes was significantly reduced in Sm-Gα₁₂/Sm-Gα₁₃-KO compared with WT vessels. Consistent with the results from qRT-PCR, immunohistochemistry revealed a decreased α-SMA expression in response to carotid artery ligation in WT VSMCs. However, although α-SMA expression in Gα₁₂/Gα₁₃-deficient VSMCs was reduced after ligation to almost undetectable levels, no significant down-regulation was apparent in Gα₄/Gα₁₁-deficient VSMCs (Fig. 2 C). Similarly, immunoblotting of lysates of the media from sham-operated and ligated WT, Sm-Gα₁₂/Gα₁₃-KO, and Sm-Gα₄/Gα₁₁-KO vessels showed reduced levels of α-SMA and Sm22 in sham-operated Sm-Gα₁₂/Gα₁₃-KO media compared with WT (Fig. 2 D). 3 d after ligation, protein levels were more reduced in media from Sm-specific Gα₁₂/Gα₁₃-deficient vessels compared with WT media, whereas the reduction was less pronounced in media from ligated Sm-αq/11-KO vessels when compared with WT (Fig. 2 D).

Gα₁₂/Gα₁₃ promotes VSMC differentiation through LARG-mediated activation of RhoA

As Gα₁₂/Gα₁₃ link GPCRs to activation of RhoA, we assessed whether RhoA is activated upon carotid artery ligation. Indeed, RhoA activity significantly increased upon carotid artery ligation in the media of WT and Sm-Gα₄/Gα₁₁-KO mice (Fig. 3 A). However, Sm-specific deletion of Gα₁₂/Gα₁₃ blocked activation of RhoA. Gα₁₂/Gα₁₃ activates RhoA through a subfamily of RhoGEFs consisting of p115-RhoGEF (Arhgef1), PDZ-RhoGEF (Arhgef11), and LARG (Arhgef12). Because LARG is the predominant RhoGEF effector of Gα₁₂/Gα₁₃ in VSMCs (Wirth et al., 2008), we analyzed mice with Sm-specific LARG deficiency (SMMHC-CreER¹²Arhgef1^{2floxed/flox}[Sm-LARG-KO]). Sm-LARG-KO mice also lacked RhoA activation after carotid artery ligation (Fig. 3 A), and as in Gα₄/Gα₁₁-deficient mice, ligation resulted in excessive neointima and media hyperplasia, accompanied by a disarray of elastic lamina (Fig. 3 B and C) and enhanced down-regulation of α-SMA (Fig. 3 D). Thus, Sm-specific LARG-deficient mice phenocopy Sm-12/13-KO animals, indicating that the Gα₁₂/Gα₁₃-dependent differentiation of VSMCs in vivo involves LARG-dependent activation of RhoA.

Cell-based studies have suggested that RhoA can induce SRF-dependent transcription of Sm marker genes through two mechanisms, up-regulation of myocardin expression (Wamhoff et al., 2004; Yoshida et al., 2004) and facilitation of MRTF nuclear translocation (Miralles et al., 2003; Lockman et al., 2004; Jeon et al., 2008). We therefore tested the effect of Sm-specific Gα₄/Gα₁₁ and LARG deficiency on nuclear translocation of MRTF-A in primary VSMCs. Serum-induced nuclear translocation of MRTF-A was absent in Gα₁₂/Gα₁₃- and LARG-deficient VSMCs (Fig. 3, E and F). In contrast, nuclear translocation of MRTF-A in Gα₄/Gα₁₁-deficient VSMCs was comparable with WT VSMCs (Fig. 3, E and F). We also investigated expression levels of myocardin and found reduced levels in the media of carotid arteries from sham-operated and operated Sm-Gα₁₂/Gα₁₃-KO mice compared with WT animals or animals with Sm-specific Gα₄/Gα₁₁ deficiency (Fig. 3 G).

Gα₄/Gα₁₁ regulates MAPK-dependent induction of early response genes

To determine the mechanism that underlies the Sm-Gα₄/Gα₁₁-KO phenotype of reduced neointima formation, we analyzed the phosphorylation of the MAPK Erk1/2 as well as of the TCF Elk-1, which have been shown to mediate an inhibition of Sm differentiation (Mack, 2011). 24 h after ligation, we observed a significant increase of anti-phospho-Erk1/2 staining in the media of WT and Sm-Gα₁₂/Gα₁₃-KO mice but not in that of Sm-Gα₄/Gα₁₁-KO mice (Fig. 4, A and B). Similarly, the Elk1/2 substrate Elk-1 showed increased phosphorylation in WT and Sm-specific Gα₁₂/Gα₁₃-deficient mice compared with the media of Sm-Gα₄/Gα₁₁-KO animals 24 h after carotid artery ligation (Fig. 4, C and D). Finally, the ligation-induced and TCF-mediated up-regulation of early response genes such as Fox, Egr1, and Ets1 was blocked by Sm-specific Gα₄/Gα₁₁ deficiency, whereas their up-regulation was not affected in Sm-Gα₁₂/Gα₁₃-KO mice (Fig. 4, E–G).

Gα₁₂/Gα₁₃ and Gα₄/Gα₁₁ antagonistically regulate the VSMC response to injury

Having uncovered an antagonistic role of Gα₁₂/Gα₁₃- and Gα₄/Gα₁₁-mediated signaling in the regulation of SRF cofactors and neointima formation in the carotid artery ligation model, we wondered whether our findings apply analogously to other vascular remodeling processes. This prompted us to use a femoral artery injury model for restenosis. Our observations 4 wk after femoral artery injury paralleled those from the carotid artery ligation model. Sm-Gα₁₂/Gα₁₃-KO mice displayed excessive neointimal and medial hyperplasia, whereas Sm-specific deficiency of Gα₄/Gα₁₁ significantly attenuated the response to injury compared with WT animals (Fig. 5, A and B). Moreover, down-regulation of VSMC...
in ApoE-deficient Sm-G\(_{12}\)/G\(_{13}\)-KO mice compared with ApoE-deficient control mice were far more pronounced in terms of intimal plaque and media area (Fig. 6, A and B). In addition, we found total occlusions of the right common carotid artery in about a quarter of ApoE-deficient Sm-G\(_{12}\)/G\(_{13}\)-KO mice compared with none in the ApoE-deficient control mice. Consistent with the results obtained from carotid artery ligation and femoral artery injury, we observed a reduced \(\alpha\)-SMA staining of the media in atherosclerotic vessels of Sm-12/13-KO mice (Fig. 6 C).

Immunostaining of atherosclerotic lesions of ApoE-deficient control mice and mice lacking G\(_{12}\)/G\(_{13}\) in VSMCs with antibodies against \(\alpha\)-SMA and against the proliferation marker Ki-67 revealed that the number of \(\alpha\)-SMA–positive cells as well as the number of proliferating \(\alpha\)-SMA–positive cells (Ki-67 and \(\alpha\)-SMA double-positive cells) were significantly increased in ApoE-deficient Sm-G\(_{12}\)/G\(_{13}\)-KO mice compared with ApoE-deficient control mice. We did not analyze the effect of Sm-specific G\(_{q}\)/G\(_{11}\) deficiency on atherosclerosis as any result would be confounded by the reduced vascular tone and blood pressure in Sm-G\(_{q}\)/G\(_{11}\)-deficient VSMCs (Wirth et al., 2008). After 12 wk of a high-fat diet, atherosclerotic lesions in Sm-specific G\(_{q}\)/G\(_{11}\)-deficient but not in G\(_{q}\)/G\(_{11}\)-deficient VSMCs (Fig. 5 C). This further indicates a critical role of G\(_{q}\)/G\(_{11}\) and G\(_{12}\)/G\(_{13}\) signaling in the regulation of vascular Sm differentiation.

Sm-specific deficiency of G\(_{12}\)/G\(_{13}\) promotes atherosclerotic plaque progression

As changes in vascular Sm differentiation may be involved in the pathogenesis of atherosclerosis (Dzau et al., 2002; Owens et al., 2004), we crossed Sm-G\(_{12}\)/G\(_{13}\)-KO mice with atherosclerosis-prone ApoE\(^{-/-}\) mice. We did not analyze the effect of Sm-specific G\(_{q}\)/G\(_{11}\) deficiency on atherosclerosis as any result would be confounded by the reduced vascular tone and blood pressure in Sm-G\(_{q}\)/G\(_{11}\)-KO mice (Wirth et al., 2008). After 12 wk of a high-fat diet, atherosclerotic lesions

Figure 4. G\(_{q}/G_{11}\)-mediated signaling in VSMCs after carotid artery ligation. (A and B) 24 h after carotid artery ligation or sham operation, carotid arteries of WT, Sm-12/13-KO, or Sm-q/11-KO mice were isolated and sectioned. Shown are sections at a distance of 250–500 µm from the ligation site stained with an anti–phospho-Erk1/2 antibody (A), and the relative pERK-positive area was determined (n = 3–4; B). (C and D) 24 h after carotid artery ligation or sham operation, carotid arteries from WT, Sm-12/13-KO, or Sm-q/11-KO mice were isolated and sectioned. Shown are sections at a distance of 250–500 µm from the ligation site stained with an anti–phospho-Elk1 antibody and counterstained with hematoxylin (n = 3–4; C). (D) The percentage of pElk1–positive nuclei is shown. (E–G) 3 d after carotid artery ligation or sham operation of WT, Sm-12/13-KO, or Sm-q/11-KO mice, the media of carotid arteries was isolated, and the levels of mRNAs encoding Fos, Ets1, or Egr1 were determined. (A–G) Shown are mean values ± SEM (n = 3–6); *, P < 0.05; **, P < 0.01; ***, P < 0.001 (compared with sham). Shown is one representative of at least three experiments. Bars, 20 µm.
in lesions from Sm-specific Go_{12}/G_{13}-deficient mice (Fig. 6, C and D). This suggests that lack of Go_{12}/G_{13} in SMCs results in an increased propensity of α-SMA–positive cells in the atherosclerotic lesion to proliferate. Immunostaining with anti-CD68 antibodies revealed no significant differences in numbers of macrophages per plaque area in lesions from mice with Sm-specific Go_{12}/G_{13} deficiency compared with WT animals (Fig. 6 E).

DISCUSSION

VSMCs are highly plastic, and their dedifferentiation as well as their redifferentiation are thought to underlie many vascular remodeling processes. In this study, we show that the G proteins Go_{12}/G_{13} and Go_{q}/G_{11} antagonistically regulate VSMC plasticity in different models of vascular remodeling. Our data from mice lacking Go_{q}/G_{11} or their effector, the Rho-GEF protein LARG, specifically in SMCs reveal the dramatic consequences of an imbalance in the activity of the two G protein–mediated pathways. The predominance of Go_{q}/G_{11}–over Go_{12}/G_{13}–LARG–mediated signaling promoted down-regulation of SMC differentiation marker genes and resulted in a highly abnormal phenotype of excessive vascular remodeling and exacerbation of atherosclerosis. In contrast, Sm-specific Go_{q}/G_{11} deficiency protected mice from neointimal hyperplasia in response to flow cessation or femoral artery injury.

Based on these findings, we conclude that Go_{12}/G_{13}–mediated signaling is required to maintain VSMCs in a fully differentiated state and to prevent their unrestrained dedifferentiation in response to extracellular cues. Consistent with our observations, various vasoconstrictors acting through receptors coupled to both Go_{12}/G_{13} and Go_{q}/G_{11} such as thrombin, lysophosphatidic acid, thromboxane A_{2}, angiotensin-II, sphingosine-1-phosphate (S1P), or endothelin-1 have been reported to be capable of promoting the expression of Sm differentiation marker genes in vitro (Andrawis et al., 1996; Yoshida et al., 2004; Kim et al., 2009; Martin et al., 2009; Medlin et al., 2010). Our data from mice lacking Go_{12}/G_{13} or LARG specifically in SMCs suggest that Go_{12}/G_{13} promotes VSMC differentiation through LARG-mediated activation of RhoA. This is supported by in vitro data indicating that RhoA and LARG can mediate SMC differentiation (Lu et al., 2001; Mack et al., 2001; Gorenen et al., 2006; Medlin et al., 2010). In addition, evidence from cell-based studies shows that RhoA can induce SRF-dependent transcription of Sm differentiation marker genes through two distinct mechanisms, up-regulation of myocardin expression (Wannhoff et al., 2004; Yoshida et al., 2004; Martin et al., 2009) and facilitation of MRTF-A nuclear translocation (Miralles et al., 2003; Lockman et al., 2004; Jeon et al., 2008). Concordant with these data, we observed a down-regulation of myocardin expression in response to Go_{12}/G_{13} deletion in VSMCs in vivo. Moreover, our data show that G_{13}-LARG–mediated signaling is required for serum-induced nuclear translocation of MRTF-A. A precise analysis of the involvement of individual myocardin factors in the regulation of SMC differentiation has been difficult because of their overlapping expression and potential heterodimerization. Studies in mice lacking individual factors clearly indicate considerable functional redundancy in most types of VSMCs (Li et al., 2005; Oh et al., 2005; Pipes et al., 2005; Li et al., 2006; Sun et al., 2006). There are several effectors downstream of RhoA that can link RhoA to MRTFs such as Rho-kinase or mammalian homologue of diaphanous (mDia; Olson and Nordheim, 2010). A study using bone marrow chimeras has provided evidence that at least Rho-kinase subtype 1 in non-SMCs is involved in neointima formation (Noma et al., 2008); however, this study could not rule out a function of Rho-kinases in VSMCs. It is also possible that the RhoA-regulated actin nucleating protein mDia links Go_{12}/G_{13}–RhoA to the regulation of...
We found that the Gq/11-mediated signaling pathway in VSMCs mediates the expression of early response genes and the suppression of SMC differentiation marker gene expression, as well as proliferation in response to flow cessation and SRF-mediated transcriptional events via MRTFs as it has been shown to promote actin polymerization and SMC-specific gene expression (Copeland and Treisman, 2002; Staus et al., 2007).

Figure 6. Increased plaque size in Sm-specific Gα12/Gα13-deficient mice lacking ApoE. (A and B) After 12 wk of a high-fat diet, the innominate and right common carotid arteries of ApoE−/− or ApoE−/−;SMMHC-CreERT2;Gα12−/--;Gα13foxflx (ApoE−/−;Sm-12/13-KO) mice were isolated and analyzed histologically. (A) Shown are representative sections. (B) The plaque and media areas in animals of both genotypes were determined in innominate arteries at a distance of 1,000 µm from the aortic arch (innom.), in the right common carotid artery at a distance of 1,000 µm from the bifurcation of the innominate artery (prox. RCCA), at a distance of 1,000 µm from the bifurcation of the common carotid artery (dist. RCCA), or in between (med. RCCA; the data are representative for nine males and two independent experiments per group). (C) The innominate artery or right common carotid artery (RCCA) of ApoE−/− or ApoE−/−;Sm-12/13-KO mice was isolated and stained with an anti-α-SMA antibody. (D) Atherosclerotic plaques from ApoE−/− or ApoE−/−;Sm-12/13-KO mice were immunostained with antibodies against α-SMA and Ki-67. Shown are representative images. The right image is a magnification of the area indicated by the white box, and arrows point to α-SMA and Ki-67 double-positive cells. The bar graphs show a statistical evaluation of the number of α-SMA-positive cells per cells in the plaque area and the percentage of Ki-67-positive cells per α-SMA-positive cells in plaques from ApoE−/− (WT) and ApoE−/−;Sm-12/13-KO mice (12/13; the data are representative for four males and two independent experiments per group). (E) Sections of atherosclerotic plaques from ApoE−/− or ApoE−/−;Sm-12/13-KO mice were immunostained with antibodies against CD68. Shown are individual images counterstained with DAPI (media and plaques [p] are marked) as well as a bar graph showing the statistical evaluation of the percentage of CD68-positive cells in plaques of both groups of animals (the data are representative for six males and two independent experiments per group). Shown are mean values ± SEM; *, P < 0.05; **, P < 0.01; ***, P < 0.001. Bars: (A and C) 100 µm; (D and E) 50 µm.
vascular injury. In addition, our data indicate that this pathway involves activation of Erk1/2 as well as of its effector, the TCF Elk-1. This is consistent with earlier studies showing a central role for Erk in the regulation of TGFs (Treisman, 1994; Xi et al., 1997; Lockman et al., 2004). How Gq/G11 regulates Erk1/2 in VSMCs is not fully clear. In vitro studies and studies in other organ systems suggest that Gq/G11 can mediate Erk1/2 activation through transactivation of receptor tyrosine kinases (Hsieh et al., 2009) or by direct regulation of Erk1/2 through βγ-subunits released from Gq/G11 (Lorenz et al., 2009). In SMCs, several mechanisms have been described that link Gq/G11-mediated signaling to the activation of RhoA (Guilluy et al., 2010; Wuertz et al., 2010; Momotani et al., 2011). However, Gqαi/Gqα11 deletion in VSMCs did not affect RhoA activity in our in vivo experiments, indicating that RhoA activation via Gq/G11 is not critically involved in vascular remodeling.

Gq/G11- and G12/13-mediated signaling pathways are able to increase myosin light chain phosphorylation and Sm tone through different mechanisms (Gohla et al., 2000; Somlyo and Somlyo, 2003; Maguire and Davenport, 2005; Wirth et al., 2008). In contrast to their synergistic function in vascular tone regulation, our data show that Gq/G11- and G12/13-mediated signaling pathways antagonistically regulate the differentiation state of VSMCs at sites of vascular dysfunction or injury. Interestingly, both the Gq/G11-Erk1/2-mediated pathway mediating suppression of SMC-selective marker gene expression and proliferation as well as the G12/13-RhoA-mediated pathway, which promotes Sm differentiation, are activated in parallel in VSMCs shortly after induction of vascular injury. The net response of the vessel, which is also affected by other upstream signaling mechanisms involving integrins or receptor tyrosine kinases such as PDGFR–β (Ferns et al., 1991; Raines, 2000), is a dedifferentiation, which obviously requires intact Gq/G11-mediated signaling. The parallel activation of the G12/13-mediated pathway, which promotes Sm differentiation, therefore appears counterintuitive. However, activation of the G12/13-RhoA-mediated pathway prevented excessive loss of SMC-selective marker gene expression and proliferation of VSMCs in the course of vascular remodeling and may facilitate the redifferentiation of VSMCs, once the influence of proliferative stimuli declines. Thus, a well-balanced parallel activation of antagonistic pathways promoting differentiation and dedifferentiation of VSMCs appears to be required for the adaptive response to vascular injury or to changing hemodynamics. Alternatively or in addition, the balance of Gq/G11- and G12/13-mediated signaling may be modulated in VSMCs during vascular remodeling by other factors such as regulators of G protein signaling, which have been shown to specifically affect G protein–mediated signaling in VSMCs (Heximer et al., 2003; Tang et al., 2003; Cho et al., 2008; Gunaje et al., 2011).

The receptors of most vasocontractile stimuli including angiotensin-II, S1P, thrombin, thromboxane A2, or endothelin-1 are dually coupled to Gq/G11 and G12/13, albeit some receptors show a certain preference (Maguire and Davenport, 2005). The question therefore arises as to whether receptor ligands can be used to modulate Sm differentiation under pathological conditions. Pharmacological approaches indicate that individual S1P receptor subtypes play antagonistic roles in the regulation of neointima formation (Wanhoff et al., 2008), and global loss of the S1P-receptor S1P2, which efficiently couples to G12/G13 (Chun et al., 2010), increases susceptibility to injury-induced neointima formation (Shimizu et al., 2007). Thus, activation or blockade of receptor subtypes preferentially coupled to either of the two G protein families may promote VSMC differentiation and dedifferentiation, respectively. To efficiently reduce vascular remodeling by preferential inhibition of Gq/G11-mediated signaling, it may also be of interest to interfere directly with Gq/G11 or downstream signaling components. In addition, a preferential inhibition of Gq/G12- or activation of G12/13-mediated signaling in VSMCs could be achieved by receptor ligands, which act as allosteric modulators or biased agonists (Reiter et al., 2012; Valant et al., 2012) on procontractile GPCRs.

Our data show that Gq/G11 and G12/13, which both mediate effects of procontractile stimuli in VSMCs, antagonistically regulate VSMC differentiation by controlling the recruitment of transcriptional cofactors by SRF. Our in vivo experiments in different models of vascular disorders indicate that the balanced activity of both pathways in VSMCs controls the remodeling response of the vessel in vascular diseases. The opposite regulation of SMC differentiation marker gene expression by the two pathways may allow for modulation of VSMC differentiation under pathological conditions by biased GPCR ligands or by inhibitors of G protein–mediated signaling processes.

MATERIALS AND METHODS

Materials. Phenylephrine, hydralazine, metoprolol, Alcian blue, and Acustain Elastic Stain were purchased from Sigma-Aldrich, DAPI was purchased from Workingham Biochemical Corporation.

Genetic mouse models. The generation of SMMHC-CreER² mice as well as genotyping procedures and induction of Cre activity by tamoxifen have been described previously (Wirth et al., 2008). The generation of floxed or null alleles of genes encoding G protein α-subunits Gα11 (Gna11), Gα12 (Gna12), Gα13 (Gna13), or LARG (Arhgef12) as well as genotyping procedures have been described previously (Wettschureck et al., 2001; Moers et al., 2003; Herroeder et al., 2009). All animals were on a C57BL/6 background, and care and experimental procedures in this study were approved by the local authorities (Regierungspatrizid Staatssparkasse Karlsruhe).

qRT-PCR. Snap-frozen carotid media samples, isolated 3 d after ligation and sham operation, respectively, were disrupted and homogenized at 4°C using a mixer head mill. RNA was then extracted using the RNeasy Micro kit (Qiagen) for mRNA and the miRNeasy kit (Qiagen) for microRNA according to the manufacturer’s instructions. 250 ng of total RNA was reverse transcribed using the Transcriptor High Fidelity kit (Roche). For microRNA, we used the NCode Vilo miRNA cDNA Synthesis kit (Invitrogen). Quantitative real-time PCR was performed with LightCycler 480 Probe Master (Roche) for mRNA analyses and LightCycler 480 SYBR Green Master (Roche) for microRNA analyses. Gene-specific RT-PCR primers were selected using the Roche ProbeFinder software. The relative
amount of target miRNA normalized to 18S and of microRNA normalized to S4.5 RNA was calculated as previously described (Pfaffl et al., 2001).

Primer sequences are as follows: 18s, forward 5′-GCAATATTTTCCCCACAT-GAACG-3′, reverse 5′-GGGACTTATCTCAGGTTGTA-3′, probe #48; Myh11, forward 5′-TGGAGGCCAAGATTTGCAC-3′, reverse 5′-GGCCGGCCTTCTCCTCTC-3′, probe #68; Acta2, forward 5′-CCAGCACCAATGAGATCAGG-3′, reverse 5′-TGGAGGTTAGACGACGGAAGC-3′, probe #58; SM22-α, forward 5′-GCAATCTGGCCCTCTGTA-3′, reverse 5′-TCACCAATTTTTGCTCAGAATCA-3′, probe #5; Cnn1, forward 5′-GAAGGCTAATGCTGATCACTGAA-3′, reverse 5′-CTCCAGGTTCTGACTGGTT-3′, probe #20; Elk1, forward 5′-GCTCCACCACATATCTCTTGA-3′, reverse 5′-GGGGTGCAATTTGGACATGAG-3′, probe #50; Fox, forward 5′-GAAGGGGGCA-AAGTGAGACG-3′, reverse 5′-CAGCTCTCCCTCCTCAGTT-3′, probe #46; Ets1, forward 5′-ACTGTGTGTCCTCGTTGTAAGG-3′, reverse 5′-CCTGTATATGTTTCTACATCCTC-3′, probe #50; Egf1, forward 5′-CCTTGGAGCCATCCTGACCAACA-3′, reverse 5′-TGCTTGGGCT-GGAAATCTAC-3′, probe #22-45s, universal forward 5′-GTACCTGCGGT-GGAGGAGGAAT-3′, reverse 5′-GTCCAATCTCTTGGAAGGAGGCA-3′, miR-143, universal forward 5′-GTCTGCGCTGTTGGAGGAAATTT-3′, reverse 5′-TGAATGAGCACCTTGATGCTCA-3′, and miR-145, universal forward 5′-GTACTCCCGGTGGAGGAAGGTT-3′, reverse 5′-CAGTTTTCCAGGAAATCCTT-3′.

Western blotting. Snap-frozen carotid media samples, isolated 3 d after ligation and sham operation, respectively, were homogenized on ice in lysis buffer, pH 8.0 containing 0.1 M Tris/HCl, 0.01 M EDTA, 10% SDS, 1% protease, and phosphatase inhibitor cocktail (Roche) using a handheld rotor–stator homogenizer (MM300; Retsch) and 3-mm stainless steel beads. The homogenates were centrifuged for 20 min at 10,000 g at 4°C to remove debris, and aliquots of the supernatants were assayed for total protein content by the BCA method (Thermo Fisher Scientific). Equal amounts of protein were separated by 10% SDS-PAGE gels and transferred onto nitrocellulose membranes (Whatman; GE Healthcare). Immunoblotting was performed by using specific antibodies. In brief, polyclonal antisera against α-SM22 (Abcam), α-SMA (Abcam), and monoclonal antibody against α-tubulin (Sigma-Alrich) were used. All primary antibodies were used at 1:200 dilutions, except for anti-α-tubulin, which was used at 1:3,000 dilutions. Secondary antibodies (1:3,000 dilutions) were from Cell Signaling Technology (goat anti–rabbit HRP and goat anti–mouse HRP). Immunopositive reactions were visualized with corresponding HRP-conjugated secondary antibodies using a commercially available kit (Immobilon Western; Millipore) and developed through exposure to x-ray film.

Determination of RhoA activity. Snap-frozen carotid media samples, isolated 24 h after ligation or sham operation, respectively, were disrupted and homogenized at 4°C using a mixer head block. Total protein concentrations where measured and equalized with lysis buffer. The homogenates were centrifuged for 20 min at 10,000 × g at 4°C to remove debris, and aliquots of the supernatants were assayed for total protein content by the BCA method. Protein aliquots (10 µg per lane) were separated by 13% SDS-PAGE gels and transferred onto nitrocellulose membranes. Immunoblotting was performed by using specific antibodies. In brief, polyclonal antisera against α-tubulin, which was used at 1:3,000 dilutions for all primary antibodies were used at 1:200 dilutions, except for anti-α-tubulin, which was used at 1:3,000 dilutions. Secondary antibodies (1:3,000 dilutions) were from Cell Signaling Technology (goat anti–rabbit HRP and goat anti–mouse HRP). Immunopositive reactions were visualized with corresponding HRP-conjugated secondary antibodies using a commercially available kit (Immobilon Western; Millipore) and developed through exposure to x-ray film.

Wire injury. Male mice underwent femoral artery dilation at the age of 12 wk. After induction of anesthesia, a medial skin incision of the hind limb thigh was performed, and the femoral as well as the profundus femoris artery were dissected. Using 6/0 silk thread (Fine Science Tools) a loop was placed at the proximal femoral artery, and tension was applied to disrupt blood flow.

A straight spring wire (diameter 0.38 mm; Cook) was introduced into the femoral artery via transverse arteriotomy of the profunda femoris artery. The wire was advanced ∼5 mm proximally and left in place for ∼10 min to dilate the femoral artery. After removal of the wire and ligature of the profunda femoris branch, blood flow was reconstituted.

Atherosclerosis. To obtain Sm-specific Go deficiency in ApoE−/− mice, ApoE−/− animals were crossed with tamoxifen-inducible Sm-GO smG-/-KO mice. The offspring were then intercrossed. ApoE−/− mice without or with inducible Sm-specific Go/G0 deficiency were treated with tamoxifen at an age of 6 wk. At the age of 8 wk, a high-fat diet was started and continued for 12 wk. Thereafter, animals were sacrificed, and atherosclerotic lesions were analyzed as described under Histology and immunohistochemistry.

Telemetric blood pressure measurements and morphometry. Telemetry experiments were performed as described previously (Wirth et al., 2008). A 10–15% decrease in mean arterial blood pressure was induced pharmacologically by application of 500 mg/liter hydralazine or 2.5 g/liter metoprolol in the drinking water. Treatment was started 7 d before and continued throughout the experiments. For isometric tension recordings, common carotid arteries were isolated after euthanization and PBS perfusion of mice. 3-mm-long carotid segments were prepared, mounted on a conventional myograph setup (610-M; Danish Myo Technology), and myography was performed as described previously (Wirth et al., 2008). Individual experiments were performed at least three times.

Histology and immunohistochemistry. For histology, vessels were perfused and fixed in 4% PFA overnight. Vessels were then dehydrated using increasing concentrations of ethanol and embedded in paraffin. Paraffin-embedded arteries were cut in 5-µm serial cross sections, and predefined sections (see below) were mounted on slides and stained with Accustain Elastic Stain according to the manufacturer’s instructions. In ligated left common carotid arteries, cross sections from four predefined proximal distances from the ligation site (250, 1,000, 2,000, and 3,000 µm) were analyzed. In sham-operated right common carotid arteries, sections from within ∼1,000-µm distance to the bifurcation of internal and external carotid artery were analyzed. Femoral arteries were analyzed 4 wk after injury. Within the injured distal region (5,000 µm) of the left femoral artery, cross sections were analyzed in regular intervals of 1,000 µm to calculate a vessel mean for each parameter. Sections from the distal part of the contralateral right femoral artery (i.e., within ∼1,000-µm distance to the branching of the profunda femoris artery) were analyzed as an internal control. For the analysis of atherosclerotic vessels, cross sections of the innominate artery and right common carotid artery were analyzed. Photoshop CS3 extended software (Adobe) was used to measure circumferences of internal elastic lamina, external elastic lamina, and lumen, as well as medial, intimal, and luminal cross-sectional areas. Staining with Alcian blue was performed according to the manufacturer’s instructions.

For immunohistochemistry of paraffin sections, sections were dewaxed, rehydrated, and subsequently boiled for 18 min in 10 mM Tris/1 mM EDTA buffer, pH 9.0, for epitope retrieval. After 10-min incubation in 3% H2O2, sections were blocked in PBS supplemented with 5% normal goat serum for 2 h. After overnight incubation at 4°C with rabbit monoclonal anti–phospho-ERK1/2 (1:100; Cell Signaling Technology), rabbit polyclonal anti-phospho–Elk-1 (1:100; Cell Signaling Technology), or polyclonal rabbit anti–Sm-α-actin (1:200; Abcam), primary antibodies were detected with biotinylated antibody to rabbit IgG followed by incubation with Avizin–Biotin complex reagent (Vectastain ABC System; Vector Laboratories) according to the manufacturer’s instructions. Staining was visualized using a diaminobenzidine (DAB) peroxidase substrate kit (Vector Laboratories) according to the manufacturer’s instructions, followed by counterstaining with hematoxylin for detection of nuclei where indicated. Immunostaining of phosphorylated Erk1/2 and phosphorylated Elk-1 was performed in carotid arteries that were harvested 24 h after carotid artery ligation. The fraction of positively stained medial area (phospho–Erk1/2) or positively stained nuclei (phospho–Elk-1)
was quantified using Photoshop CS5 Extended software (Adobe). The threshold for positive staining was (pre)defined by an independent observer who was blinded to the treatment.

For cryoimmunohistochemistry, vessels were embedded in Tissue-Tek O.C.T. freezing medium, snap frozen in liquid nitrogen, and stored at −80°C until sectioning. Immunostaining of cryosections was performed using a rabbit anti-CD3 (clone SP7; 1:100; Abcam) or Alexa Fluor 488–conjugated rat anti-CD68 (clone FA-11; 1:100; AbD Serotec). After a 10-min fixation with 4% PFA and several washing steps with PBS, cryosections were incubated with primary antibodies at 4°C overnight followed by either CF555- or CF488-labeled anti-rabbit secondary antibody (1:300; Biotium) and counterstained with Cy3- or FITC-conjugated anti–Sm α-actin antibody (1:300; Sigma–Aldrich) and DAPI. This protocol was adapted for Kβ67 staining by a 20-min fixation with 4% PFA and an antigen retrieval in citrate buffer (20 min boiling). Overnight incubation of primary antibody anti-mouse Kβ67 (clone TEC-3; 1:20; Dako) was followed by 1-h Cy3-conjugated anti-rat IgG (1:300; Millipore) incubation. Sections were viewed with a confocal microscope (SP5; Leica).

Primary VSMC culture and immunocytochemistry. Primary VSMCs were isolated using a modified enzymatic digestion method based on Ray et al. (2001). 2 wk after tamoxifen induction, left and right common carotid arteries were isolated using a modified enzymatic digestion method based on Ray et al.

This work was supported by the Transregional Collaborative Research Center SFB/TR23 of the German Research Foundation. We wish to thank Svea Hümmer for excellent secretarial help.

Submitted: 13 February 2012
Accepted: 4 October 2012

REFERENCES
Andrawis, N.S., E. Wang, and D.R. Abernethy. 1996. Endothelin-1 induces an increase in total protein synthesis and expression of the smooth muscle alpha-actin gene in vascular smooth muscle cells. Life Sci. 59:523–528. http://dx.doi.org/10.1016/0024-3205(96)00332-3
Cho, H., C. Park, I.Y. Hwang, S.B. Han, D. Schimel, D. Despres, and J.H. Kehrel. 2008. RGS5 targeting leads to chronic low blood pressure and a lean body habitus. Mol. Cell. Biol. 28:2590–2597. http://dx.doi.org/10.1128/MCB.01889-07

Chun, J., T. Hla, K.R. Lynch, S. Spiegel, and W.H. Moolenaar. 2010. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophosphatidyl receptors: receptor nomenclature. Pharmacol. Rev. 62:579–587. http://dx.doi.org/10.1124/pr.110.031111
Copeland, J.W., and R. Treisman. 2002. The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol. Biol. Cell. 13:4088–4099. http://dx.doi.org/10.1091/mbc.02-06-0092
Dzau, V.J., R.C. Braun-Dullaeus, and D.G. Sedding. 2002. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat. Med. 8:1249–1256. http://dx.doi.org/10.1038/nm1102-1249
Ferns, G.A., E.W. Raines, K.H. Sprugel, A.S. Motani, M.A. Reidy, and R. Ross. 1991. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antiboody to PDGF. Science. 253:1129–1132. http://dx.doi.org/10.1126/science.1653454
Gohla, A., G. Schultz, and S. Offermanns. 2000. Role for G(12)/G(13) in agonist-induced vascular smooth muscle cell contraction. Circ. Res. 87:221–227. http://dx.doi.org/10.1161/01.RES.87.3.221
Gorenne, I., L. Jin, T. Yoshida, J.M. Sanders, I.J. Sarembock, G.K. Owens, A.P. Sonnky, and A.V. Sonnky. 2006. EPP expression during in vitro smooth muscle differentiation and stent-induced vascular injury. Circ. Res. 98:378–385. http://dx.doi.org/10.1161/01.RES.0000208200.34727.df
Guilluy, C., J. Brégeon, G. Toumaniantz, M. Rolli-Derkinderen, K. Retailleau, L. Loufrani, D. Henrion, E. Scallibr, A. Bril, R.M. Torres, et al. 2010. The Rho exchange factor Artghrel1 mediates the effects of angiotensin II on vascular tone and blood pressure. Nat. Med. 16:183–190. http://dx.doi.org/10.1038/nm.2079
Gunase, J.J., A.J. Balrani, S.M. Schwartz, G. Daum, and W.M. Mahoney Jr. 2011. PDGF-dependent regulation of regulator of G protein signaling-5 expression and vascular smooth muscle cell functionality. Am. J. Physiol. Cell Physiol. 301:C478–C489. http://dx.doi.org/10.1152/ajpcell.00348.2010
Herroeder, S., P. Reichardh, A. Sassmann, B. Zimmermann, D. Jænke, J. Hoeckner, M.W. Hollmann, K.D. Fischer, S. Vogt, R. Grosse, et al. 2009. Guanine nucleotide-binding proteins of the G12 family shape immune functions by controlling CD4+ T cell adhesion and motility. Immunity. 30:708–720. http://dx.doi.org/10.1016/j.immuni.2009.02.010
Hemmer, S.P., R.H. Knutten, X. Sun, K.M. Kaltenbronn, M.H. Rhee, N. Peng, A. Oliveira-dos-Santos, J.M. Penninger, A.J. Muslin, T.H. Steinberg, et al. 2003. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J. Clin. Invest. 111:1259.
Hsueh, H.L., W.H. Tung, C.Y. Wu, H.H. Wang, C.C. Lin, T.S. Wang, and C.M. Yang. 2009. Thrombin induces EGF receptor expression and cell proliferation via a PKC(delta)/c-Src-dependent pathway in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 29:1594–1601. http://dx.doi.org/10.1161/ATVBAHA.109.188901
Jeon, E.S., W.S. Park, M.J. Lee, Y.M. Kim, J.H. Kim, and J.H. Kim. 2008. A Rho kinase/myocardin-related transcription factor-A-dependent mechanism underlies the sphingosylphosphorylcholine-induced differentiation of mesenchymal stem cells into contractile smooth muscle cells. Circ. Res. 103:635–642. http://dx.doi.org/10.1161/CIRCRESAHA.108.180885
Kim, M.R., E.S. Jeon, Y.M. Kim, J.S. Lee, and J.H. Kim. 2008. A Rho kinase/myocardin-related transcription factor-A-dependent mechanism underlies the sphingosylphosphorylcholine-induced differentiation of mesenchymal stem cells into contractile smooth muscle cells. Circ. Res. 103:635–642. http://dx.doi.org/10.1161/CIRCRESAHA.108.180885
Kim, M.R., E.S. Jeon, Y.M. Kim, J.S. Lee, and J.H. Kim. 2009. Thromboxane a(2) induces differentiation of human mesenchymal stem cells to smooth muscle-like cells. Stem Cells. 27:191–199. http://dx.doi.org/10.1634/stemcells.2008-0061
Li, J., X. Zhu, M. Chen, L. Cheng, D. Zhou, M.M. Lu, K. Du, J.A. Epstein, and M.S. Parmacek. 2005. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and stent-induced vascular injury. Circ. Res. 97:221–227.http://dx.doi.org/10.1161/01.RES.0000180202.803001
Lockman, K., J.S. Hinson, M.D. Medlin, D. Morris, J.M. Taylor, and C.P. Mack. 2004. Sphinogosine 1 phosphate stimulates smooth muscle cell differentiation and proliferation by activating separate serum response factor co-factors. J. Biol. Chem. 279:42422–42430. http://dx.doi.org/10.1074/jbc.M405432200

Vascular remodeling through G12β and G13β1
Althoff et al.
Parmacek, M.S. 2007. Myocardin-related transcription factors: critical co-regulators and their derivatives can bypass the requirement of myocardin for smooth muscle gene expression. Dev. Biol. 288:502–513. http://dx.doi.org/10.1016/j.ydbio.2005.10.014

Pipes, G.C., E.E. Creemers, and E.N. Olson. 2006. The myocardin family of transcriptional coactivators: versatile regulators of cell growth, migration, and myogenesis. Genes Dev. 20:1545–1566. http://dx.doi.org/10.1101/gad.142806

Posern, G., and R. Treisman. 2006. Actin’ together: serum response factor, its cofactors and the link to signal transduction. Trends Cell Biol. 16:588–596. http://dx.doi.org/10.1016/j.tcb.2006.09.008

Ranes, E.W. 2000. The extracellular matrix can regulate vascular cell migration, proliferation, and survival: relationships to vascular disease. Int. J. Exp. Pathol. 81:173–182. http://dx.doi.org/10.1016/j.ijep.2006.07.001

Ray, J.L., R. Leach, J.M. Herbert, and M. Benson. 2001. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 23:185–188. http://dx.doi.org/10.1023/A:1016357510143

Reiter, E., S. Ahn, A.K. Shokla, and R.J. Lefkowitz. 2012. Molecular mechanism of β-arrestin-based agonism at seven-transmembrane receptors. Annu. Rev. Pharmacol. Toxicol. 52:179–197. http://dx.doi.org/10.1146/annurev.pharmaco.010909.105800

Shimizu, T., T. Nakazawa, A. Cho, F. Dastvan, D. Shilling, G. Daum, and M.A. Reidy. 2007. Sphingosine-1-phosphate receptor 2 negatively regulates neutonial formation in mouse arteries. Circ. Res. 101:995–1000. http://dx.doi.org/10.1161/CIRCRESAHA.107.159228

Somlyo, A.P., and A.V. Somlyo. 2003. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83:1325–1388.

Staus, D.P., A.L. Blaker, J.M. Taylor, and C.P. Mack. 2007. Diaphanos 1 and 2 regulate smooth muscle cell differentiation by activating the myocardin-related transcription factors. Arterioscler. Thromb. Vasc. Biol. 27:478–486. http://dx.doi.org/10.1161/01.ATV.0000255559.77687.c1

Sun, Y., K. Boyd, W. Xu, J. Ma, C.W. Jackson, A. Fu, J.M. Shillingford, G.W. Robinson, L. Hemmingshausen, J.K. Hitzler, et al. 2006. Acute myeloid leukemia-associated Mkl1 (Mrtf-a) is a key regulator of mammary gland function. Mol. Cell. Biol. 26:5809–5826. http://dx.doi.org/10.1128/MCB.00249-06.

Tang, K.M., G.R. Wang, P. Lu, R.H. Karas, M. Aronovitz, S.P. Heximer, K.M. Kaltenbronn, K.J. Blumer, D.P. Siderovski, Y. Zhu, and M.E. Mendelsohn. 2003. Regulator of G-protein signaling-2 mediates vascular smooth muscle cell differentiation by activating the myocardin-related transcription factors. Arterioscler. Thromb. Vasc. Biol. 23:185–188. http://dx.doi.org/10.1161/01.ATV.0000138582.36921.99

Valant, C., J. Robert Lane, P.M. Sexton, and A. Christopoulos. 2012. The best of both worlds? Bitopic orthosteric/allosteric ligands of G protein-coupled receptors. Annu. Rev. Pharmacol. Toxicol. 52:153–178. http://dx.doi.org/10.1146/annurev-pharmaco.010611.134514

Wamhoff, B.R., D.K. Bowles, O.G. McDonald, S. Sinha, A.P. Somlyo, A.V. Somlyo, and G.K. Owens. 2004. L-type voltage-gated Ca2+ channels modulate expression of smooth muscle differentiation marker genes via a rho kinase/myocardin/SRF-dependent mechanism. Circ. Res. 95:406–414. http://dx.doi.org/10.1161/01.RES.0000138852.36021.9e

Wamhoff, B.R., K.R. Lynch, T.L. Macdonald, and G.K. Owens. 2008. Sphingosine-1-phosphate receptor subtypes differentially regulate smooth muscle cell phenotype. Arterioscler. Thromb. Vasc. Biol. 28:1454–1461. http://dx.doi.org/10.1161/ATVBaha.107.159392

Wang, Z., D.Z. Wang, D. Hockemeyer, J. McAnally, A. Nordheim, and E.N. Olson. 2004. Myocardin and ternary complex factors compete for SKF to control smooth muscle gene expression. Nature 428:185–189. http://dx.doi.org/10.1038/taut2382

Wetscherek, N., H. Rütten, A. Zeywitz, D. Gehring, T.M. Wilkie, J. Chen, K.R. Chien, and S. Offermanns. 2001. Absence of pressure overload induced myocardin hypertrophy after conditional inactivation of Galphalpha/Galphalpha in cardiomyocytes. Nat. Med. 7:1236–1240. http://dx.doi.org/10.1038/nm1101-1236
Wirth, A., Z. Benyó, M. Lukasova, B. Leutgeb, N. Wettchureck, S. Gorbey, P. Orsi, B. Horváth, C. Maser-Glahn, E. Greuner, et al. 2008. G12-G13-LARG-mediated signaling in vascular smooth muscle is required for salt-induced hypertension. Nat. Med. 14:64–68. http://dx.doi.org/10.1038/nm1666

Wuertz, C.M., A. Lorincz, C. Vettel, M.A. Thomas, T. Wieland, and S. Lutz. 2010. p63RhoGEF—a key mediator of angiotensin II-dependent signaling and processes in vascular smooth muscle cells. FASEB J. 24:4865–4876. PubMed http://dx.doi.org/10.1096/fj.10-155499

Xi, X.P., K. Graf, S. Goetze, W.A. Hsueh, and R.E. Law. 1997. Inhibition of MAP kinase blocks insulin-mediated DNA synthesis and transcriptional activation of c-fos by Elk-1 in vascular smooth muscle cells. FEBS Lett. 417:283–286. http://dx.doi.org/10.1016/S0014-5793(97)01303-3

Yoshida, T., M.H. Hoofnagle, and G.K. Owens. 2004. Myocardin and Prx1 contribute to angiotensin II-induced expression of smooth muscle alpha-actin. Circ. Res. 94:1075–1082. http://dx.doi.org/10.1161/01.RES.0000125622.46280.95