IL-10 Polymorphisms and Tuberculosis Susceptibility: An Updated Meta-Analysis

Zunqiong Ke¹, Leyong Yuan², Jun Ma³, Xiaoyan Zhang¹, Yi Guo⁴, and Hui Xiong¹

¹Department of Pharmacy, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei Province; ²Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province; ³Department of Clinical Laboratory, Wuhan Medical Treatment Center, Wuhan, Hubei Province; ⁴Department of Epidemiology, Wuhan University School of Public Health, Wuhan, Hubei Province, P.R. China.

Purpose: The association of interleukin-10 (IL-10) polymorphisms (-1082G/A, -819C/T, -592A/C) and interleukin-6 (IL-6) polymorphisms (-174G/C) with tuberculosis (TB) risk has been widely reported. However, the results are controversial. To clarify the role of these polymorphisms in TB, we performed a meta-analysis of all available and relevant published studies.

Materials and Methods: Based on comprehensive searches of the PubMed, Medline, Embase, Web of Science, Elsevier Science Direct and Cochrane Library database, we identified outcome data from all articles estimating the association between IL-10 and IL-6 polymorphisms and TB risk.

Results: The results indicated significant association of the allele model, heterozygous model and dominant model of IL-6 -174G/C polymorphism with decreased risk of TB. In the stratified analysis by ethnicity, significantly increased risk was observed for IL-10 -1082G/A polymorphism in Europeans under recessive model, for IL-10 -819C/T polymorphism in Asians under heterozygous model and dominant model and IL-10 -592A/C polymorphism in Asians under Allele model, homozygous model and recessive model. Moreover, significantly decreased risk of TB was associated with Asians for IL-6 -174C/G polymorphism in allele model, heterozygous model and dominant model. We also performed the analyses by sample types in IL-10 -1082G/A polymorphism, and observed significantly increased TB risk in mixed group under homozygous model.

Conclusion: The results suggested that the IL-10 -1082G/A polymorphism is associated with increased TB risk in Europeans, while IL-10 -819C/T and IL-10 -592A/C polymorphisms in Asians. However, IL-6 -174G/C polymorphism might be a genetic risk factor that decreases TB susceptibility in Asians.

Key Words: IL-10, IL-6, polymorphism, tuberculosis, susceptibility, meta-analysis

INTRODUCTION

Tuberculosis (TB) is one of the important leading causes of death in humans, and it remains a serious public health obstacle in the developing countries. It is estimated that 1.4 million people annually die due to this treatable disease and 9 million incident cases of TB are estimated globally.¹ According to the report, Mycobacterium tuberculosis (MTB) infect about one-third of population; however, only approximately one-tenth of those infected will ever develop active TB, which indicate that MTB infection is the result of the interplay between host genetic susceptibility and environmental factors.²

Interleukin-10 (IL-10) is a multifunctional regulatory cytokine of inflammatory responses. Increasing numbers of studies³ have demonstrated that IL-10 acts as a general inhibitor of proliferative and cytokine responses of both T helper (Th) 1 and Th2 cells in vitro and in vivo. IL-10 plays an anti-inflammatory action by suppressing the production of cytokines such as IL-1α, IL-1β, IL-6, IL-8, IL-12, and tumor necrosis factor-alpha in activated macrophage and interferon gamma in T cells. The IL-10 gene is located on chromosome 1 (1q31-1q32) with five exons. The promoter region of IL-10 gene has been found to be
highly polymorphic and its many polymorphisms have been identified.\(^4\) In the past few years, the impact of three common polymorphisms in the promoter of \(IL-10\) gene -592A/C, -1082G/A, and -819C/T on susceptibility to TB have been reported, and results suggested that these polymorphisms contribute to the risk of TB by affecting \(IL-10\) transcription level, but the findings are controversial.

The human interleukin-6 (\(IL-6\)) gene is located at 7p21-24 locus with an upstream promoter containing 303 bp. \(IL-6\) is a pleiotropic cytokine, secreted as a T-cell derived factor by a variety of cell types including lymphocytes, monocytes, and endothelial cells. It has endocrine as well as paracrine and autocrine actions implicated in several physiologic and pathologic processes including immunity and inflammation, activation of fibroblasts, mast cells, endothelial cells, monocytes, and keratinocytes.\(^5\) Furthermore, the genetic polymorphism in the \(IL-6\) promoter (-174G/C) that influences its transcription rate might play a crucial role in host immunity and susceptibility to TB.\(^6\)

A relatively large number of studies found the association between \(IL-10\) and \(IL-6\) polymorphisms and TB risk, however, the results have been inconsistent and inconclusive due to limited sample sizes and different study populations. Therefore, we performed this meta-analysis on all eligible case-control studies to estimate the effect of polymorphisms in the \(IL-10\) and \(IL-6\) genes on the risk of TB.

MATERIALS AND METHODS

Identification of relevant studies

Relevant publications were identified with a literature search using terms “\(IL-10\)" or “Interleukin-10" or “\(IL-6\)" or “Interleukin-6" and "tuberculosis" or "TB" or "TB infection" or "TB disease" and "polymorphism" or "genotype" or “variant" in the PubMed, Medline, Embase, Web of Science, Elsevier Science Direct and Cochrane Library database (the last search update was 1 February 2014), and the search was limited to English-language journals. Additional studies were identified by a manual search of the references of original studies. The following criteria were used for inclusion in the analysis: 1) a case-control or cohort design was used and 2) studies contained available genotype frequencies. The major reasons for exclusion of studies were: no usable data were reported.

Data extraction and quality assessment

Two investigators independently extracted data and jointly reached a consensus on all of the studies researched. The following data were collected from each study: first author’s name, publication year, original country, ethnicity, number of cases and controls, genotype frequencies for cases and controls, Hardy-Weinberg equilibrium (HWE) of controls and Newcastle-Ottawa Scale (NOS).\(^7\) Star symbol was used to denote the quality, based on 3 aspects of the study: selection, comparability, and exposure. Studies with a score of 7 stars or greater were considered to be of high quality.

Statistical analysis

The risks [odds ratios (ORs), and 95% confidence intervals (95% CIs)] of TB associated with \(IL-10\) and \(IL-6\) polymorphisms were estimated for each study based on extracted genotype data. The statistical significance of the pooled OR was determined using the Z-test. Heterogeneity assumption was examined by the Cochran’s Q-test. If Q-test indicated \(p<0.10\), thus indicating a lack of heterogeneity among studies, then the fixed effect model was used (the Mantel-Haenszel method).\(^8\) Otherwise, the random-effects model (the DerSimonian and Laird method)\(^9\) was performed. Sensitivity analysis was mainly performed to assess the stability of the results, namely, a single study in the meta-analysis was deleted to reflect the influence of the individual data set on the pooled OR. Asymmetry funnel plots were inspected to assess potential publication bias. The Egger’s linear regression test was also used to assess publication bias statistically. All the above statistical analyses were performed by using the software Stata Version 12.0 (Stata Corporation, College Station, TX, USA) and \(p\) values were two-tailed.

RESULTS

Literature search and characteristics of eligible studies

The flow chart that displays the study selection process is shown in Fig. 1. The search of the selected databases retrieved 30 potentially relevant articles, including 7800 cases and 8793...
Table 1. Baseline Characteristics of the 30 Eligible Studies Included in This Meta-Analysis

Study	Yr	Mean age (yrs)	Sample type	SNP studied	Control diagnoses performed	Control source	Sample tested	Genotyping method	NOS score	P-HWE for controls		
Bellamy, et al.	1998	34.7±13.2	PTB	-1082G/A, -819C/T, -592A/C	Acidfast, bacilli (AFB)	HB	Blood	PCR-slot-blotting	7	0.824		
Delgado, et al.	2002	37.3±14.1	PTB	-1082G/A	Sputum smear, medical history, physical examination	HB	Blood	RFLP-PCR	9	<0.001		
López-Maderuelo, et al.	2003	37.5±12.9	PTB	-1082G/A	Culture, radiologic diagnosed	HB	Blood	ARMS-PCR	8	0.949		
Scola, et al.	2003	35–60	PTB	-1082G/A	Clinical history, radiologic diagnosed	PB	Blood	ARMS-PCR	7	<0.001		
Fitness, et al.	2004	NR	PTB	-1082G/A, -819C/T, -592A/C	Culture, smear, history	HB	Blood	ARMS-PCR	7	0.524		
Shin, et al.	2005	46.9 (18–86)	PTB	-1082G/A, -592A/C	AFB	HB	Blood	Single-base extension methods	8	0.168		
Amirzargar, et al.	2006	NR	PTB	-1082G/A, -819C/T, -592A/C	AFB, chest X-ray (CXR)	HB	Blood	PCR-SSP	8	<0.001		
Oral, et al.	2006	NR	PTB, EPTB	-1082G/A, -819C/T, -592A/C	Staining of sputum smears, culture, biopsy, radiography	HB	Blood	PCR-SSP	9	0.06		
Henao, et al.	2006	NR	PTB, EPTB	-1082G/A, -819C/T, -592A/C	Ziehl-Nielsen staining of sputum smears, culture, biopsy, CXR, clinical history	HB	Blood	PCR-SSP	9	0.94		
Oh, et al.	2007	46.8 (18–81)	PTB	-1082G/A	Staining of sputum smears, culture, radiography	HB	Blood	ARMS-PCR	8	0.612		
Prabhu Anand, et al.	2007	35.5±12.3	PTB	-1082G/A, -592A/C	Staining of sputum smears, culture, radiography	HB	Blood	PCR-RFLP	8	0.123		
Ates, et al.	2008	62	PTB, EPTB	-1082G/A, -819C/T, -592A/C	Radiographic, clinical presentation, smears, culture	HB	Blood	ARMS-PCR	9	0.978		
Selvaraj, et al.	2008	71.7	PTB	-1082G/A, -819C/T, -592A/C	Radiographic, clinical presentation, smears, culture	PB	Blood	PCR-RFLP	7	0.204		
Wu, et al.	2008	NR	PTB	-1082G/A, -819C/T, -592A/C	Radiographic, clinical presentation, smears, culture	HB	Blood	PCR-RFLP	7	0.379		
Ansari, et al.	2009	NR	PTB	-1082G/A	Microscopy, culture, histology, imaging	PB	Blood	ARMS-PCR	8	<0.001		
Thye, et al.	2009	NR	PTB	-1082G/A, -819C/T, -592A/C	Smears, culture	PB	Blood	FRET	8	0.542		
Trajkov, et al.	2009	20–59	PTB	-1082G/A, -819C/T, -592A/C	WHO based	PB	Blood	PCR-SSP	7	<0.001		
Taype, et al.	2010	97.6	PTB, EPTB	-1082G/A, -592A/C	Smears, culture, biopsy, clinical	HB	Blood	Taqman PCR	9	0.142		
Study	Male patients (%)	Mean age (yrs)	Sample types	Sample size	SNP studied	Clinical diagnoses performed	Control source	Sample tested	Genotyping method	NOS score	P-HWE for controls	
-----------------------	-------------------	----------------	--------------	-------------	-------------	------------------------------	----------------	---------------	-------------------	-----------	-------------------	
IL-10												
Mosaad, et al.	67.3 (0.025–1.5)	NR	PTB, EPTB	110	-1082G/A	Smear, culture	HB	Blood	ARMS-PCR	9	<0.001	
Ma, et al.	27.8 34.75±16.67	38.17±17.39	PTB	543	-819C/T	Radiographic, smears, culture	HB	Blood	ARMS-PCR	9	0.491	
Ben-Selma, et al.	51.9	NR	PTB, EPTB	131	-1082G/A, -819C/T, -592A/C	Sputum smear, CXR, radiologic, histologic grounds	HB	Blood	PCR-RFLP	9	<0.05	
Liang, et al.	NR	NR	PTB, EPTB	235	-1082G/A, -819C/T, -592A/C	Radiographic, biopsy, clinical presentation, smears, culture	HB	Blood	SNaPshot assay	9	0.589	
Ramsaeri Sunder, et al.	NR	NR	PTB, EPTB	104	-1082G/A	Fine Needle Aspiration Cytology (FNAC)	HB	Blood	ARMS-PCR	8	0.057	
Spinassé, et al.	NR	NR	PTB, EPTB	221	-1082G/A, -819C/T, -592A/C	Culture	HB	Blood	Sequencing	7	0.189	
Garcia-Elorriaga, et al.	38.9 38–65	26–41	PTB	77	-1082G/A, -819C/T, -592A/C	WHO based	HB	Blood	Taqman PCR	7	0.728	
Ulger, et al.	84.5 32.57±15.94	29.40±11.56	PTB, EPTB	84	-1082G/A	Smear, culture	HB	Blood	PCR-RFLP	8	<0.001	
Meenakshi, et al.	50	27.4±13.9	30±10.7	PTB	100	-1082G/A	Radiographic, sputum culture, AFB, histocytological examination	HB	Blood	ARMS-PCR	8	0.058
Mhmoud, et al.	69.6 36.9 (15–89)	31.2 (17–85)	PTB	191	-819C/T, -592A/C	Culture, smear	HB	Blood	PCR-RFLP	8	<0.001	
IL-6												
Oral, et al.	NR	NR	PTB, EPTB	81	-174G/C	Staining of sputum smears, culture, biopsies, radiography	HB	Blood	PCR-SSP	9	<0.05	
Henao, et al.	NR	NR	PTB, EPTB	190	-174G/C	Ziehl-Nielsen staining of sputum smears, culture, biopsy, CXR, clinical history	HB	Blood	PCR-SSP	9	0.699	
Amirzargar, et al.	NR	NR	PTB	40	-174G/C	AFB, CXR	HB	Blood	PCR-SSP	8	<0.05	
Selvaraj, et al.	71.7	35.3±10.5; female: 29.2±10.3	PTB, EPTB	160	-174G/C	Radiographic, clinical presentation, smears, culture	PB	Blood	PCR-RFLP	7	0.419	
Trajkov, et al.	NR	20–59	PTB	75	-174G/C	WHO based	PB	Blood	PCR-SSP	7	0.492	
Ansari, et al.	NR	Minimal/ moderate disease: 32.4±15.5; advanced disease: 27±17.0	PTB	97	-174G/C	Radiographic, smears, culture	PB	Blood	ARMS-PCR	8	0.567	
Zhang, et al.	62.0	38.64±18.44	36.92±16.52	PTB	495	Radiographic, smears, culture	HB	Blood	Mass spectrometry	8	0.979	

NR, not report; PTB, pulmonary tuberculosis; EPTB, extra-pulmonary tuberculosis; SNP, single nucleotide polymorphism; PB, population-based controls; HB, hospital-based controls; PCR, polymerase chain reaction; SSP, sequence-specific primers; ARMS, amplification refractory mutation system; RFLP, restriction fragment length polymorphism; NOS, newcastle-ottawa scale; C, confirmed to HWE; HWE, Hardy-Weinberg equilibrium.
Polymorphisms	Study	Country	Ethnicity	Case	Control	Case	Control						
IL-10-1082G/A	Bellamy, et al.	Gambia	African	51	185	165	45	184	179	287	515	274	542
Delgado, et al.	Cambodia	Asian	11	259	86	3	64	39	281	431	70	42	
López-Maderuelo, et al.	Spain	European	33	47	33	29	50	21	113	113	108	92	
Scola, et al.	Italy	European	17	22	6	24	77	13	56	34	125	103	
Fitness, et al.	Malawi	African	23	78	69	87	251	203	124	216	425	657	
Shin, et al.	Korea	Asian	2	53	394	9	124	718	57	841	142	1560	
Amirzargar, et al.	Iran	Asian	2	31	7	5	79	18	35	45	89	115	
Oral, et al.	Turkey	European	10	41	30	5	13	32	61	101	23	77	
Henao, et al.	Colombia	American	32	92	66	26	66	43	156	224	118	152	
Oh, et al.	Korea	Asian	4	43	98	19	53	45	51	239	91	143	
Prabhu, et al.	India	Asian	3	55	74	6	61	73	61	203	73	207	
Ates, et al.	Turkey	European	26	65	37	6	32	42	117	139	44	116	
Selvaraj, et al.	India	Asian	5	42	102	6	69	108	52	246	81	285	
Wu, et al.	China	Asian	1	12	48	0	18	104	14	108	18	226	
Ansari, et al.	Pakistan	Asian	27	132	29	20	136	32	186	190	176	200	
Thye, et al.	Ghana	African	117	631	793	160	783	1025	865	2217	1103	2833	
Trajkov, et al.	Macedonia	European	10	48	17	172	212	70	86	82	246	352	
Taype, et al.	Peru	American	22	187	414	10	153	347	231	1015	173	647	
Mosaad, et al.	Egypt	African	16	92	2	22	88	8	124	96	132	104	
Ben-Selma, et al.	Tunisia	African	21	65	45	9	26	60	168.8	155	44	146	
Liang, et al.	China	Asian	0	28	207	0	9	69	28	442	9	147	
Ramaseri Sunder, et al.	India	Asian	3	25	76	2	43	57	31	177	47	157	
Spinaissé, et al.	Brazil	American	24	100	97	31	107	133	148	294	168	373	
García-Erroírriaga, et al.	Mexico	American	54	20	3	31	25	4	128	26	87	33	
Ulger, et al.	Turkey	European	0	84	0	1	104	5	84	86	104	114	
Meenakshi, et al.	India	Asian	4	81	15	16	59	25	89	111	91	109	
Polymorphisms	Study	Country	Ethnicity	Case	Control	Case	Control						
---------------	-------	---------	-----------	------	---------	------	---------						
IL-10-819C/T	Bellamy, et al.	Gambia	African	89	192	120	88	206	114	370	432	382	434
Fitness, et al.	Malawi	African	27	98	85	108	303	287	152	268	519	877	
Amirzargar, et al.	Iran	Asian	2	20	19	9	52	62	24	58	70	176	
Oral, et al.	Turkey	European	10	23	48	7	19	24	43	119	33	67	
Henao, et al.	Colombia	American	32	92	66	21	64	50	156	224	106	164	
Ates, et al.	Turkey	European	7	58	63	8	36	36	72	184	52	108	
Selvaraj, et al.	India	Asian	45	86	24	56	82	45	176	134	194	172	
Wu, et al.	China	Asian	24	34	3	50	62	10	82	40	162	82	
Thye, et al.	Ghana	African	267	762	515	365	942	665	1296	1792	1672	2272	
Trajkov, et al.	Macedonia	European	5	35	35	19	125	155	45	105	163	435	
Ma, et al.	China	Asian	229	256	58	230	253	61	714	372	713	375	
Ben-Selma, et al.	Tunisia	African	11	65	55	10	42	43	87	175	62	128	
Liang, et al.	China	Asian	123	90	22	35	31	12	336	134	101	55	
Spinaissé, et al.	Brazil	American	32	100	89	38	124	109	164	278	200	342	
Mhmoud, et al.	Sudan	African	42	126	23	70	73	63	210	172	213	199	
Polymorphisms	Study	Country	Ethnicity	Case	Control	Case	Control						
---------------	-------	---------	-----------	------	---------	------	---------						
IL-10-592A/C	Bellamy, et al.	Gambia	African	89	192	120	88	206	114	370	432	382	434
Fitness, et al.	Malawi	African	27	98	85	107	301	297	152	268	515	895	
Shin, et al.	Korea	Asian	238	173	39	376	384	9	649	251	1136	566	
Amirzargar, et al.	Iran	Asian	2	20	18	9	52	62	24	56	70	176	
controls, according to inclusion and exclusion criteria. There are 26 case-control studies concerning IL-10 -1082G/A polymorphism, 6,10,16,17,20,22,24,25,28-30,32,36 15 case-control studies for IL-10 -819C/T polymorphism,6,10,14,16,17,20,22,24,25,28,30,32,36 16 case-control studies for IL-10 -592A/C polymorphism,6,10,14,17,20,21,24,26,29,30,32,33,36 and 7 case-control studies about IL-6 -174G/C polymorphism,6,14,16,17,20-22,24,25,28-30,32,36 Among the 30 eligible studies, 14 of them were of Asians,6,11,15,18,19,21,23,28,30,31,35,37,38 6 studies were of Europeans,10,11,15,16,20,25,34 6 studies were of Africans,10,14,24,27,29,36 and 4 studies were of Americans,7,26,30,31 The NOS scores ranged from 7 to 9, indicating that the methodological quality was generally good. The detailed characteristics of the eligible studies included in this meta-analysis are shown in Table 1, and the genotype and allele distributions of all four polymorphisms are shown in Table 2. The genotype distributions among the controls of all studies were consistent with the HWE except for six studies for the IL-10 -1082G/A,6,11,13,23,25,27,29,34 one study for the IL-10 -819C/T,6 six studies for the IL-10 -592A/C,6,14,33,36 and two studies for the IL-6 -174G/C (Table 1).6,16

Quantitative synthesis

The summary of the meta-analysis for IL-10 -1082G/A, -819C/T, -592A/C, and IL-6 -174G/C polymorphisms and tuberculosis susceptibility is shown in Table 3.

Analysis of IL-10 -1082G/A and TB susceptibility

In all, twenty-six studies consisted of 5949 cases and 6948 controls, and assessed the potential influence of the IL-10 -1082G/A polymorphism with TB susceptibility. Random effects models were used to calculate the pooled OR in all genetic models. Overall, the combined results showed no significant association in all genetic models (Fig. 2A-E). In the stratified analysis by ethnicity, IL-10 -1082G/A polymorphism was associated with a significantly increased risk of TB in European group under recessive model (GG vs. AA: OR=1.69, 95% CI=1.19-2.39). However, no significant association was found in American, Asian and African populations in all tested models. On subgroup analysis by sample types, significantly increased TB risk was observed under homozygous model (GG vs. AA: OR=2.00, 95% CI=1.16-3.45) in PTB and extra-pulmonary tuberculosis (EPTB) mixed group. The results are shown in Table 3.

Analysis of IL-10 -819C/T and TB susceptibility

As for IL-10 -819C/T, there were fifteen studies involving 4207 cases and 5264 controls for data synthesis in our meta-analysis. The results showed that IL-10 -819C/T polymorphism was not significantly associated with the risk of TB in all genetic models (Fig. 2F-J). In the stratified analyses by ethnicity and control source for the -819C/T polymorphism, a significantly increased risk was observed among Asians in heterozygous model and dominant model (TC vs. CC: OR=1.34, 95% CI=1.02-1.77; TT+TC vs. CC: OR=1.31, 95% CI=1.01-1.70). The results are shown in Table 3.

Table 2. Genotype and Allele Distributions of IL-10 and IL-6 Polymorphisms in Cases and Controls (Continued)

Polymorphisms	Study	Country	Ethnicity	Case	Control
IL-6 -174G/C					
Oral, et al.	Turkey	European			
Henao, et al.	Colombia	American			
Ates, et al.	Turkey	European			
Wu, et al.	China	Asian			
Thye, et al.	Ghana	African			
Trajkov, et al.	Macedonia	European			
Taype, et al.	Peru	American			
Ben-selma, et al.	Tunisia	African			
Liang, et al.	China	Asian			
Spinaissé, et al.	Brazil	American			
García-elorrriaga, et al.	Mexico	American			
Mhmoud, et al.	Sudan	African			

Table 3. Genotype and Allele Distributions of IL-10 and IL-6 Polymorphisms in Cases and Controls

Polymorphisms	Study	Country	Ethnicity	Case	Control
IL-6 -174G/C					
Oral, et al.	Turkey	European			
Henao, et al.	Colombia	American			
Amirzargar, et al.	Iran	Asian			
Selvaraj, et al.	India	Asian			
Trajkov, et al.	Macedonia	European			
Ansari, et al.	Pakistan	Asian			
Zhang, et al.	China	Asian			

Analysis of IL-10 -1082G/A and TB susceptibility

In all, twenty-six studies consisted of 5949 cases and 6948 controls, and assessed the potential influence of the IL-10 -1082G/A polymorphism with TB susceptibility. Random effects models were used to calculate the pooled OR in all genetic models. Overall, the combined results showed no significant association in all genetic models (Fig. 2A-E). In the stratified analysis by ethnicity, IL-10 -1082G/A polymorphism was associated with a significantly increased risk of TB in European group under recessive model (GG vs. AA: OR=1.69, 95% CI=1.19-2.39). However, no significant association was found in American, Asian and African populations in all tested models. On subgroup analysis by sample types, significantly increased TB risk was observed under homozygous model (GG vs. AA: OR=2.00, 95% CI=1.16-3.45) in PTB and extra-pulmonary tuberculosis (EPTB) mixed group. The results are shown in Table 3.

Analysis of IL-10 -819C/T and TB susceptibility

As for IL-10 -819C/T, there were fifteen studies involving 4207 cases and 5264 controls for data synthesis in our meta-analysis. The results showed that IL-10 -819C/T polymorphism was not significantly associated with the risk of TB in all genetic models (Fig. 2F-J). In the stratified analyses by ethnicity and control source for the -819C/T polymorphism, a significantly increased risk was observed among Asians in heterozygous model and dominant model (TC vs. CC: OR=1.34, 95% CI=1.02-1.77; TT+TC vs. CC: OR=1.31, 95% CI=1.01-1.70). The results are shown in Table 3.
Table 3. Determination of the Genetic Effects of *IL-10* and *IL-6* Polymorphisms on TB and Subgroup Analysis

Allele model	Homozygous model	Heterozygous model	Dominant model	Recessive model
	Effect model OR	p value	Effect model OR	p value
	(95% CI)		(95% CI)	
IL-10-1082G/A				
Ethnicity				
Overall	1.05 (0.93, 1.19)	0.423	1.08 (0.90, 1.29)	0.393
European	1.34 (1.00, 1.80)	0.054	1.35 (0.70, 2.63)	0.369
American	F1.10 (0.95, 1.27)	0.201	F1.07 (0.88, 1.30)	0.509
Asian	0.86 (0.67, 1.08)	0.209	0.91 (0.66, 1.26)	0.940
African	1.12 (0.91, 1.38)	0.289	1.32 (0.93, 1.87)	0.126
Sample types				
PTB	0.98 (0.85, 1.12)	0.726	0.97 (0.81, 1.15)	0.691
PTB+PTB	1.23 (0.94, 1.62)	0.130	1.53 (0.95, 2.49)	0.084
IL-10-592C/T				
Ethnicity				
Overall	F1.01 (0.95, 1.07)	0.788	1.21 (1.00, 1.46)	0.056
European	F0.92 (0.71, 1.19)	0.512	F0.97 (0.68, 1.37)	0.846
American	F1.04 (0.86, 1.27)	0.732	F1.03 (0.76, 1.39)	0.870
Asian	F1.08 (0.96, 1.23)	0.265	F1.34 (1.02, 1.77)	0.035
African	F0.99 (0.92, 1.07)	0.812	1.34 (0.90, 2.00)	0.148
Control source				
HB	F0.10 (0.93, 1.10)	0.785	1.20 (0.92, 1.55)	0.175
PB	F0.10 (0.92, 1.08)	0.919	1.26 (0.89, 1.78)	0.201
IL-10-174G/C				
Ethnicity				
Overall	1.07 (0.95, 1.19)	0.270	1.08 (0.89, 1.33)	0.401
European	F0.84 (0.65, 1.08)	0.181	F0.90 (0.63, 1.27)	0.536
American	1.01 (0.80, 1.28)	0.188	0.91 (0.64, 1.31)	0.623
Asian	F1.26 (0.78, 1.45)	0.002	F1.21 (0.88, 1.67)	0.250
African	1.12 (0.91, 1.37)	0.290	F1.11 (0.97, 1.27)	0.144
Control source				
HB	1.08 (0.94, 1.24)	0.254	1.14 (0.93, 1.35)	0.289
PB	1.00 (0.88, 1.11)	0.933	0.94 (0.75, 1.19)	0.607
IL-6-174G/C				
Ethnicity				
Overall	F0.77 (0.64, 0.91)	0.003	F0.72 (0.57, 0.89)	0.005
European	F0.92 (0.67, 1.26)	0.594	F0.90 (0.64, 1.57)	0.987
Asian	F0.71 (0.54, 0.93)	0.013	F0.61 (0.44, 0.85)	0.004

TB, tuberculosis; PTB, pulmonary tuberculosis; EPTB, extra-pulmonary tuberculosis; PB, population-based controls; HB, hospital-based controls; R, random effect model; F, fixed effect model; *IL-10*, interleukin 10; *IL-6*, interleukin 6; CI, confidence interval; OR, odds ratio.
In total, sixteen studies including 4115 cases and 5441 controls examined the relationship between the IL-10 -592A/C polymorphism and TB susceptibility. As shown in Table 3, we failed to find the association between the IL-10 -592A/C polymorphism and TB risk in all genetic models. In the stratified analyses for the IL-10 -592A/C polymorphism, a significantly increased risk was observed among Asians in allele model (A allele vs. C allele: OR=1.26, 95% CI=1.08–1.28), homozygous model (AA vs. CC: OR=1.50, 95% CI=1.07–2.12), and recessive model (AA vs. AC+CC: OR=1.33, 95% CI=1.03–1.70).

Analysis of IL-10 -592A/C and TB susceptibility

In total, sixteen studies including 4115 cases and 5441 controls examined the relationship between the IL-10 -592A/C polymorphism and TB susceptibility. As shown in Table 3, we failed to find the association between the IL-10 -592A/C polymorphism and TB risk in all genetic models. In the stratified analyses for the IL-10 -592A/C polymorphism, a significantly increased risk was observed among Asians in allele model (A allele vs. C allele: OR=1.26, 95% CI=1.08–1.28), homozygous model (AA vs. CC: OR=1.50, 95% CI=1.07–2.12), and recessive model (AA vs. AC+CC: OR=1.33, 95% CI=1.03–1.70).

Analysis of IL-10 -592A/C and TB susceptibility

In total, sixteen studies including 4115 cases and 5441 controls examined the relationship between the IL-10 -592A/C polymorphism and TB susceptibility. As shown in Table 3, we failed to find the association between the IL-10 -592A/C polymorphism and TB risk in all genetic models. In the stratified analyses for the IL-10 -592A/C polymorphism, a significantly increased risk was observed among Asians in allele model (A allele vs. C allele: OR=1.26, 95% CI=1.08–1.28), homozygous model (AA vs. CC: OR=1.50, 95% CI=1.07–2.12), and recessive model (AA vs. AC+CC: OR=1.33, 95% CI=1.03–1.70).

Analysis of IL-10 -592A/C and TB susceptibility

In total, sixteen studies including 4115 cases and 5441 controls examined the relationship between the IL-10 -592A/C polymorphism and TB susceptibility. As shown in Table 3, we failed to find the association between the IL-10 -592A/C polymorphism and TB risk in all genetic models. In the stratified analyses for the IL-10 -592A/C polymorphism, a significantly increased risk was observed among Asians in allele model (A allele vs. C allele: OR=1.26, 95% CI=1.08–1.28), homozygous model (AA vs. CC: OR=1.50, 95% CI=1.07–2.12), and recessive model (AA vs. AC+CC: OR=1.33, 95% CI=1.03–1.70).
A Meta-Analysis for IL-10 and IL-6 Variants

Analysis of IL-6 -174G/C and TB susceptibility

A total of 1138 cases and 1311 controls from seven case-control studies were included for data synthesis. A decreased risk between IL-6 -174G/C polymorphism and the risk of TB was observed in Allele model (C allele vs. G allele: OR=0.77, 95% CI=0.64–0.91), heterozygous model (CC vs. GG: OR=0.72, 95% CI=0.57–0.90), and dominant genetic model (CC+CG vs. GG: OR=0.71, 95% CI=0.57–0.88). In the stratified analysis by ethnicity, IL-6 -174G/C polymorphism was associated with a significantly decreased risk of TB in Asian populations in Allele model (C allele vs. G allele: OR=0.71, 95% CI=0.54–0.93), heterozygous model (CC vs. GG: OR=0.61, 95% CI=0.44–0.85), and dominant genetic model (CC+CG vs. GG: OR=0.63, 95% CI=0.46–0.86). The results are shown in Table 3.

Heterogeneity analysis

There were statistically significant heterogeneity in all genetic models for IL-10 -1082G/A polymorphism, heterozygous mod-
el and dominant model for IL-10 -819C/T polymorphism, and all genetic models except for heterozygous model for IL-10 -592A/C (Table 3). To elucidate the heterogeneity, Galbraith plots were performed in these genetic models. When the studies which were outliers in some genetic models were excluded respectively, all F values were less than 50%, and \(P_{\text{heterogeneity}} \) were greater than 0.1 (Fig. 3, Table 4). The significance of pooled OR in all genetic models was not influenced after excluding the studies. By meta-regression analysis, the heterogeneity sources were attributable to the sample types, ethnicity, control source, and the genotyping method. Ethnicity and sample types might be predominant sources of heterogeneity in IL-10 -1082G/A polymorphism, and ethnicity and control source in both IL-10 -819C/T and IL-10 -592A/C polymorphisms (Table 5).

Fig. 3. Galbraith plot of IL-10 promoter polymorphism and TB risk. (A-E) The five studies\(^\text{18,20,22,31,33}\) in G vs. A, three studies\(^\text{20,22,31}\) in GG vs. AA, seven studies\(^\text{13,18,20,22,31,33,37}\) in AG vs. AA, six studies\(^\text{13,18,20,22,31,33}\) in GG+AG vs. AA, and five studies\(^\text{20,22,27,35,37}\) in GG vs. AG+AA were outliers for -1082G/A. (F and G) The one study\(^\text{38}\) in TC vs. CC and one study\(^\text{38}\) in TT+TC vs. CC for -819C/T. (H-K) The three studies\(^\text{26,28,38}\) in A vs. C, one study\(^\text{38}\) in AA vs. CC, one study\(^\text{38}\) in AA+AC vs. CC, and two studies\(^\text{17,38}\) in AA vs. AC+CC for -592A/C. TB, tuberculosis; IL-10 interleukin 10.
Sensitivity analysis
Sensitivity analysis was performed by sequentially excluding individual studies, including studies which was not in agreement with HWE. Statistically similar results were obtained in all genetic models after sequentially excluding each study, indicating the stability of our data.

Publication bias
Begg’s funnel plot and Egger’s test were performed to assess the publication bias of included studies. The shapes of the funnel plots did not reveal any evidence of obvious asymmetry in the all genetic models. In all genetic models, Egger’s test also did not show any significant statistical evidence of publication bias, indicating low risk of publication bias in this meta-analysis (Fig. 4, Table 6).

DISCUSSION
This is not the first meta-analysis to assess the associations between three polymorphisms (-1082G/A, -819C/T, and -592A/C) in the IL-10 gene promoter and the risk of TB. We found that the results of our meta-analysis are inconsistent with a recent study of Liang, et al.\(^7\) in which some following shortcomings were found: 1) the NOS scores of 3 Chinese articles included were lower than 7 stars through quality assessment, 2) two studies that meet the inclusion criterion were excluded (Ma, et al., and Ates, et al.; 3) the choice of genetic models was incorrect, 4) heterogeneity analysis and sensitivity analysis were missing, and 5) some extracted data was not accurate enough. Therefore, we performed this meta-analysis to examine the association between three IL-10 and IL-6 polymorphisms and TB risk again. Our meta-analysis results indicated that the presence of the IL-10 -1082G/A, -819C/T, and -592A/C polymorphisms was not associated with the risk of TB in all genetic models. On the other hand, the IL-6 -174G/C polymorphism might be associated with an decreased risk of TB in some genetic models (C allele vs. G allele: OR=0.77, 95% CI=0.64–0.91, \(p=0.003\); CC vs. GG: OR=0.72, 95% CI=0.57–0.90, \(p=0.005\); CC+CG vs. GG: OR=0.71, 95% CI=0.57–0.88, \(p=0.002\)).

We also carried out subgroup analysis based on ethnicity, sample types and control source in consideration of obvious heterogeneity. In the stratified analysis by ethnicity, we observed significantly increased TB risk associated with the IL-10 -1082G/A polymorphism in recessive model, IL-10 -819C/T polymorphism in Asians in heterozygous model and dominant model, IL-10 -592A/C polymorphism in Asians in Allele model, homozygous model and recessive model respectively, and a decreased TB risk associated with IL-6 -174G/C polymorphism was found in allele model, heterozygous model and dominant model in Asians. Different genetic background and environmental exposures might contribute to this ethnic difference. Subgroup analysis based on sample types suggested that IL-10 -1082G/A polymorphism may be related with an increased risk of TB in homozygous model in the PTB+EPTB mixed sample. The results of subgroup analysis control source revealed no significant association with TB susceptibility among IL-10 and IL-6 polymorphisms.

In our meta-analysis, obvious heterogeneity was observed for IL-10 -1082G/A polymorphism in all genetic models, -819C/T polymorphism in heterozygous model and dominant model, and -592A/C polymorphism in all genetic models except for

Table 4. Meta-Analyses of IL-10 Polymorphisms and Risk of TB after Omitting the Studies

Polymorphisms	Omitted studies	OR (95% CI)	Z	\(P_{OR}\)	\(I^2\) (%)	\(P_{heterogeneity}\)	Effect model	
IL-10-1082G/A	G vs. A	Ates, et al.,\(^{20}\) García-Elorriaga, et al.,\(^{33}\) Oh, et al.,\(^{18}\) Ramaseri Sunder, et al.,\(^{23}\) Wu, et al.,\(^{22}\)	1.02 (0.96, 1.09)	0.69	0.488	9.4	0.336	F
	GG vs. AA	Ates, et al.,\(^{20}\) Ramaseri Sunder, et al.,\(^{23}\) Wu, et al.,\(^{22}\)	1.04 (0.90, 1.21)	0.54	0.588	2.2	0.430	F
	AG vs. AA	Ansari, et al.,\(^{37}\) Ates, et al.,\(^{20}\) García-Elorriaga, et al.,\(^{33}\) Oh, et al.,\(^{18}\) Scola, et al.,\(^{13}\) Wu, et al.,\(^{22}\)	1.00 (0.92, 1.09)	0.01	0.989	0.0	0.486	F
	GG+AG vs. AA	Ates, et al.,\(^{20}\) García-Elorriaga, et al.,\(^{33}\) Oh, et al.,\(^{18}\) Ramaseri Sunder, et al.,\(^{23}\) Scola, et al.,\(^{13}\) Wu, et al.,\(^{22}\)	1.01 (0.93, 1.10)	0.25	0.802	11.6	0.311	F
	GG vs. AG+AA	Ansari, et al.,\(^{37}\) Ates, et al.,\(^{20}\) Meenakshi, et al.,\(^{25}\) Mosaad, et al.,\(^{27}\) Wu, et al.,\(^{22}\)	1.03 (0.90, 1.19)	0.46	0.645	0.0	0.623	F
IL-10-819C/T	TC vs. CC	Zhang, et al.,\(^{38}\)	1.06 (0.96, 1.17)	1.19	0.234	0.0	0.671	F
	TT+TC vs. CC	Zhang, et al.,\(^{38}\)	1.04 (0.95, 1.14)	0.80	0.424	0.0	0.683	F
IL-10-592A/C	A vs. C	Ma, et al.,\(^{29}\) Taype, et al.,\(^{26}\) Zhang, et al.,\(^{36}\)	1.08 (0.99, 1.17)	1.78	0.075	3.7	0.409	F
	AA vs. CC	Zhang, et al.,\(^{36}\)	0.99 (0.87, 1.13)	0.11	0.913	5.9	0.386	F
	AA+AC vs. CC	Zhang, et al.,\(^{36}\)	1.00 (0.91, 1.10)	0.08	0.936	29.1	0.138	F
	AA vs. AC+CC	Henao, et al.,\(^{31}\) Zhang, et al.,\(^{28}\)	0.96 (0.85, 1.09)	0.63	0.526	0.0	0.845	F

TB, tuberculosis; CI, confidence interval; OR, odds ratio; \(P_{heterogeneity}\), \(p\) value of \(Q\) test for heterogeneity; F, fixed-effect models; IL-10, interleukin 10.
heterozygous model, whereas there was no obvious heterogeneity for IL-6 -174G/C polymorphism. Then, we used the Galbraith plots to explore the sources of heterogeneity. We found that all the F² values were less than 50% and I² heterogeneity were greater than 0.1 after excluding some studies, thus indicating that these studies might be the major source of the heterogeneity for the IL-10 -1082G/A, -819C/T, and -592A/C polymorphisms. Owing to the limited number of studies in this meta-analysis, we restricted meta-regression analysis to four factors (sample types, ethnicity, control source, and genotyping method), which are the most likely to cause the heterogeneity between studies. Although the four above-mentioned factors had no significant impact on the heterogeneity except sample types factor for IL-10 -1082G/A in homozygous model, the results of subgroup analyses revealed that the ethnicity and sample type might contribute to the potential heterogeneity.

Some limitations of this meta-analysis exist which should be considered when interpreting the present results. Firstly, heterogeneity is a potential problem when interpreting the results of meta-analysis. Significant heterogeneity existed among some comparisons, especially for IL-10 -1082G/A and -592A/C polymorphisms. Secondly, this meta-analysis included the only published studies and publication bias may occur, although our results of publication bias showed no significance. Thirdly, host genetic susceptibility, environment factors and other factors might contribute to the pathogenesis of TB. Although many other factors such as age or gender may play a profound role in the development of TB, we did not make subgroup analysis based on these factors as data is not sufficient. Finally, some genetic polymorphisms of studies deviant from HWE were included in this meta-analysis, which suggested that there was potential bias during control selection or genotyping errors.

In conclusion, our meta-analysis suggested that IL-10 -1082G/A, -819C/T, and -592A/C polymorphisms had no association with TB risk in general population, while the IL-6 -174G/C polymorphism was significantly associated with decreased risk of TB in all genetic models except for recessive model. In the subgroup analysis, IL-10 -1082G/A polymorphism was associated with TB risk in Europeans in recessive model, and IL-10 -592A/C polymorphisms were significantly associated with TB risk in Asians in Allele model, homozygous model and recessive model, respectively, and a decreased TB risk associated with IL-6 -174G/C polymorphism was found in allele model, heterozygous model and dominant model in Asians. Furthermore, IL-10 -1082G/A polymorphism was as-

Table 5. Multivariate Meta-Regression Analyses of Potential Source of Heterogeneity

Heterogeneity factors	Coefficient	SE	t	p value	95% CI	
					LL	UL
Sample types						
IL-10-1082G/A	0.234, 0.924, 0.407	0.183, 0.361, 0.278	1.28, 2.56, 1.46	0.215, 0.019, 0.158	-0.146, 0.170, -0.171	0.614, 1.679, 0.985
(AM, HoM, HeM, DM, RM)	0.433, 0.457	0.279, 0.289	1.55, 1.58	0.136, 0.130	-0.148, -0.146	1.014, 1.061
IL-10-819C/T (HeM, DM)	-0.119, -0.071	0.345, 0.285	-0.35, -0.25	0.737, 0.808	-0.887, -0.706	0.649, 0.564
IL-10-592A/C	-0.091, -0.104	0.158, 0.316	-0.57, -0.33	0.577, 0.748	-0.438, -0.800	0.256, 0.592
(AM, HoM, DM, RM)	-0.162, -0.055	0.203, 0.235	-0.80, -0.23	0.440, 0.819	-0.609, -0.572	0.284, 0.462
Ethnicity						
IL-10-1082G/A	-0.082, -0.118, -0.014	0.077, 0.141, 0.124	-1.07, -0.83, 0.11	0.298, 0.415, 0.910	-0.241, -0.413, -0.244	0.077, 0.177, 0.272
(AM, HoM, HeM, DM, RM)	-0.031, -0.223	0.124, 0.108	-0.25, -0.06	0.804, 0.052	-0.290, -0.448	0.227, 0.002
IL-10-819C/T (HeM, DM)	0.116, 0.082	0.141, 0.115	0.82, 0.71	0.433, 0.493	-0.120, -0.175	0.431, 0.339
IL-10-592A/C	0.067, 0.106	0.067, 0.137	1.00, 0.78	0.339, 0.453	-0.081, -0.195	0.215, 0.407
(AM, HoM, DM, RM)	0.084, 0.062	0.082, 0.110	1.02, 0.57	0.329, 0.583	-0.097, -0.179	0.264, 0.304
Control source						
IL-10-1082G/A	0.093, 0.528, -0.137	0.207, 0.366, 0.308	-0.45, 1.44, -0.44	0.659, 0.166, 0.661	-0.338, -0.239, -0.776	0.524, 1.295, 0.503
(AM, HoM, HeM, DM, RM)	-0.057, 0.545	0.311, 0.295	-0.18, 1.85	0.855, 0.080	-0.705, -0.070	0.590, 1.161
IL-10-819C/T (HeM, DM)	0.053, 0.051	0.363, 0.294	0.14, 0.17	0.888, 0.867	-0.757, -0.605	0.862, 0.707
IL-10-592A/C	-0.157, -0.368	0.191, 0.362	-0.82, -1.02	0.429, 0.331	-0.577, -1.165	0.263, 0.429
(AM, HoM, DM, RM)	-0.090, -0.395	0.225, 0.265	-0.40, -1.49	0.697, 0.165	-0.585, -0.978	0.405, 0.189
Genotyping method						
IL-10-1082G/A	0.075, 0.124, 0.051	0.064, 0.121, 0.098	1.17, 1.02, 0.52	0.254, 0.319, 0.606	-0.058, -0.129, -0.152	0.209, 0.376, 0.254
(AM, HoM, HeM, DM, RM)	0.068, 0.137	0.099, 0.085	0.69, 1.44	0.499, 0.164	-0.137, -0.061	0.273, 0.335
IL-10-819C/T (HeM, DM)	0.006, 0.022	0.131, 0.106	0.05, 0.21	0.965, 0.840	-0.285, -0.214	0.297, 0.257
IL-10-592A/C	0.015, 0.074	0.060, 0.117	0.24, 0.63	0.813, 0.538	-0.118, -0.183	0.147, 0.331
(AM, HoM, DM, RM)	-0.024, 0.090	0.073, 0.089	-0.32, 1.01	0.752, 0.336	-0.185, -0.107	0.137, 0.286

SE, standard error; CI, confidence interval; UL, upper limit; LL, lower limit; AM, allele model; HoM, homozygous model; HeM, heterozygous model; DM, dominant model; RM, recessive model; IL-10, interleukin 10.
A Meta-Analysis for IL-10 and IL-6 Variants

sociated also with an increased risk of TB in homozygous model in the PTB+EPTB mixed sample. However, additional well-designed and larger scale primary studies in populations with different ethnicities are required to further evaluate the IL-10 and IL-6 gene polymorphisms with TB risk in future.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Clinical Key Specialty Construction Projects to the Department of Clinical Laboratory of Renmin Hospital of Wuhan University.

REFERENCES

1. Gouzy A, Nigou J, Gillieron M, Neyrolles O, Tailleux L, Gordon SV. Tuberculosis 2012; biology, pathogenesis and intervention strategies; an update from the city of light. Res Microbiol 2013;164:270-80.
2. Hill AV. Aspects of genetic susceptibility to human infectious diseases. Annu Rev Genet 2006;40:469-86.
3. Abbas AK, Murphy KM, Sher A. Functional diversity of helper T
lymphocytes. Nature 1996;383:787-93.
4. Howell WM, Rose-Zerilli MJ. Cytokine gene polymorphisms, cancer susceptibility, and prognosis. J Nutr 2007;137(1 Suppl):194S-9S.
5. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol 1990;8:253-78.
6. Amirkarag AA, Rezaei N, Jabbari H, Danesh AA, Khosravi F, Hajibolbaghi M, et al. Cytokine single nucleotide polymorphisms in Iranian patients with pulmonary tuberculosis. Eur Cytokine Netw 2006;17:84-9.
7. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010;25:603-5.
8. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719-48.
9. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986;7:177-88.
10. Bellamy R, Ruwende C, Corrah T, McAdam KP, Whittle HC, Hill AV. Assessment of the interleukin 1 gene cluster and other candidate gene polymorphisms in host susceptibility to tuberculosis. Tuberc Lung Dis 1998;79:83-9.
11. Delgado JC, Baena A, Thim S, Goldfeld AE. Ethnic-specific genetic associations with pulmonary tuberculosis. J Infect Dis 2002;186:1463-8.
12. López-Maderuelo D, Arnalich F, Serantes R, González A, Codoco B, Madero R, et al. Interferon-gamma and interleukin-10 gene polymorphisms in pulmonary tuberculosis. Am J Respir Crit Care Med 2003;167:970-5.
13. Scola L, Civello A, Marino V, Gioia V, Serauto A, Candore G, et al. IL-10 and TNF-alpha polymorphisms in a sample of Sicilian patients affected by tuberculosis: implication for ageing and life span expectancy. Mech Ageing Dev 2003;124:569-72.
14. Fitzness J, Floyd S, Warndorff DK, Sichali L, Malema S, Crampin AC, et al. Large-scale candidate gene study of tuberculosis susceptibility in the Karonga district of northern Malawi. Am J Trop Med Hyg 2004;71:341-9.
15. Shin HD, Park BL, Kim YH, Cheong HS, Lee IH, Park SK. Common interleukin 10 polymorphism associated with decreased risk of tuberculosis. Exp Mol Med 2005;37:128-32.
16. Oral HB, Budak F, Uzaslan EK, Baştürk B, Bekar A, Akalin H, et al. Interleukin-10 (IL-10) gene polymorphism as a potential host susceptibility factor in tuberculosis. Cytokine 2006;35:143-7.
17. Henao MI, Montes C, Paris SC, García LF. Cytokine gene polymorphisms in Colombian patients with different clinical presentations of tuberculosis. Tuberculosis (Edinb) 2006;86:11-9.
18. Oh JH, Yang CS, Noh YK, Kweon YM, Jung SS, Son JW, et al. Polymorphisms of interleukin-10 and tumour necrosis factor-alpha genes are associated with newly diagnosed and recurrent pulmonary tuberculosis. Respirology 2007;12:594-8.
19. Prabhu Anand S, Selvaraj P, Jawahar MS, Adhilakshmi AR, Narayanan PR. Interleukin-12B & interleukin-10 gene polymorphisms in pulmonary tuberculosis. Indian J Med Res 2007;126:135-8.
20. Ates O, Muselli B, Ongen G, Topal-Sarikaya A. Interleukin-10 and tumor necrosis factor-alpha gene polymorphisms in tuberculosis. J Clin Immunol 2008;28:232-6.
21. Selvaraj P, Alagarsamy K, Harishankar M, Vidyarani M, Nisha Rajeswari D, Narayanan PR. Cytokine gene polymorphisms and cytokine levels in pulmonary tuberculosis. Cytokine 2008;43:26-33.
22. Wu F, Qu Y, Tang Y, Cao D, Sun F, Xiu Z. Lack of association between cytokine gene polymorphisms and siliosis and pulmonary tuberculosis in Chinese iron miners. J Occup Health 2008;50:445-54.
23. Ansari A, Talat N, Jamil B, Hasan Z, Razzaki T, Dawood G, et al. Cytokine gene polymorphisms across tuberculosis clinical spectrum in Pakistani patients. PLoS One 2009;4:e4778.
24. Thye T, Browne EN, Chinbua MA, Gyapong I, Osei I, Owusu-Dabo E, et al. IL10 haplotype associated with tuberculin skin test response but not with pulmonary TB. PLoS One 2009;4:e5420.
25. Trajkov D, Trajchevska V, Arsov T, Pedilichkovski A, Strezova A, Efinska-Mladenovska O, et al. Association of 22 cytokine gene polymorphisms with tuberculosis in Macedonians. Indian J Tuberc 2009;56:117-31.
26. Taype CA, Shamsuzzaman S, Accinelli RA, Espinoza JR, Shaw MA. Genetic susceptibility to different clinical forms of tuberculosis in the Peruvian population. Infect Genet Evol 2010;10:495-504.
27. Mosad YM, Soliman OE, Tawhid ZE, Sherif DM. Interferon-gamma +4747 T/A and interleukin-10 -1082 A/G single nucleotide polymorphism in Egyptian children with tuberculosis. Scand J Immunol 2010;72:258-64.
28. Ma MJ, Xie LP, Wu SC, Tang F, Li H, Zhang ZS, et al. Toll-like receptors, tumor necrosis factor-a, and interleukin-10 gene polymorphisms in risk of pulmonary tuberculosis and disease severity. Hum Immunol 2010;71:1005-10.
29. Ben-Selma W, Harizi H, Boukadida J. Association of TNF-a and IL-10 polymorphisms with tuberculosis in Tunisian populations. Microbes Infect 2011;13:837-43.
30. Liang L, Zhao YL, Yue J, Liu JF, Han M, Wang H, et al. Interleukin-10 gene promoter polymorphisms and their protein production in pleural fluid in patients with tuberculosis. FEMS Immunol Med Microbiol 2011;62:84-90.
31. Ramaseri Sander S, Hanumant SR, Nagaraju RT, Venkata SK, Suryadevara NC, Pydi SS, et al. IL-10 high producing genotype predisposes HIV infected individuals to TB infection. Hum Immunol 2012;73:605-11.
32. Spinassé LB, Miranda AB, Santos AR, Mello FCQ, Lapa e Silva JR, Lopes MQP, et al. Partial Mapping of the IL-10 Promoter Region: Identification of New SNPs and Association with Tuberculosis Outcome in Brazilians. In: Cardona PJ, editor. Understanding Tuberculosis:Analyzing the Origin of Mycobacterium Tuberculosis Pathogenicity. INTECH Open Access Publisher; 2012. p.357-66.
33. García-Elorriaga G, Vera-Ramírez L, del Rey-Pineda G, González-Bonilla C. -592 and -1082 interleukin-10 gene polymorphisms in pulmonary tuberculosis with type 2 diabetes. Asian Pac J Trop Med 2013;6:505-9.
34. Ulger M, Emekdas G, Aslan G, Taş D, Ilvan A, Tezcan S, et al. Determination of the cytokine gene polymorphism and genetic susceptibility in tuberculosis patients. Microbiyol Bul 2013;47:250-64.
35. Meenakshi P, Ramya S, Shruthi T, Lavanya J, Mohammed HH, Mohammed SA, et al. Association of IL-1 [-3954 C/T and IL-10-1082 G/A cytokine gene polymorphisms with susceptibility to tuberculosis. Scand J Immunol 2013;78:92-7.
36. Mhmod N, Fahal A, van de Sande WJ. Association of IL-10 and CCL5 single nucleotide polymorphisms with tuberculosis in the Sudanese population. Trop Med Int Health 2013;18:1119-27.
37. Ansari A, Hasan Z, Dawood G, Hussain R. Differential combination of cytokine and interferon-gamma +8747 T/A cytokine polymorphisms determines disease severity in pulmonary tuberculosis. PLoS One 2011;6:e27848.
38. Zhang G, Zhou B, Wang W, Zhang M, Zhao Y, Wang Z, et al. A functional single-nucleotide polymorphism in the promoter of the gene encoding interleukin 6 is associated with susceptibility to tuberculosis. J Infect Dis 2012;205:697-704.
39. Liang B, Guo Y, Li Y, Kong H. Association between IL-10 gene polymorphisms and susceptibility of tuberculosis: evidence based on a meta-analysis. PLoS One 2014;9:e88448.