A LOWER BOUND FOR $\chi(O_S)$

VINCENZO DI GENNARO

Abstract. Let (S, \mathcal{L}) be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle \mathcal{L} of degree $d > 25$. In this paper we prove that $\chi(O_S) \geq -\frac{1}{8}d(d - 6)$. The bound is sharp, and $\chi(O_S) = -\frac{1}{8}d(d - 6)$ if and only if d is even, the linear system $|H^0(S, \mathcal{L})|$ embeds S in a smooth rational normal scroll $T \subset \mathbb{P}^5$ of dimension 3, and here, as a divisor, S is linearly equivalent to $\frac{d}{2}Q$, where Q is a quadric on T. Moreover, this is equivalent to the fact that the general hyperplane section $H \in |H^0(S, \mathcal{L})|$ of S is the projection of a curve C contained in the Veronese surface $V \subset \mathbb{P}^5$, from a point $x \in V \setminus C$.

Keywords: Projective surface, Castelnuovo-Halphen’s Theory, Rational normal scroll, Veronese surface.

MSC2010: Primary 14J99; Secondary 14M20, 14N15, 51N35.

1. Introduction

In [6], one proves a sharp lower bound for the self-intersection K_S^2 of the canonical bundle of a smooth, projective, complex surface S, polarized by a very ample line bundle \mathcal{L}, in terms of its degree $d = \deg \mathcal{L}$, assuming $d > 35$. Refining the line of the proof in [6], in the present paper we deduce a similar result for the Euler characteristic $\chi(O_S)$ of S [1, p. 2], in the range $d > 25$. More precisely, we prove the following:

Theorem 1.1. Let (S, \mathcal{L}) be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle \mathcal{L} of degree $d > 25$. Then:

$$\chi(O_S) \geq -\frac{1}{8}d(d - 6).$$

The bound is sharp, and the following properties are equivalent.

(i) $\chi(O_S) = -\frac{1}{8}d(d - 6)$;

(ii) $h^0(S, \mathcal{L}) = 6$, and the linear system $|H^0(S, \mathcal{L})|$ embeds S in \mathbb{P}^5 as a scroll with sectional genus $g = \frac{1}{8}d(d - 6) + 1$;

(iii) $h^0(S, \mathcal{L}) = 6$, d is even, and the linear system $|H^0(S, \mathcal{L})|$ embeds S in a smooth rational normal scroll $T \subset \mathbb{P}^5$ of dimension 3, and here S is linearly equivalent to $\frac{d}{2}(H_T - W_T)$, where H_T is the hyperplane class of T, and W_T the ruling (i.e. S is linearly equivalent to an integer multiple of a smooth quadric $Q \subset T$).
By Enriques’ classification, one knows that if \(S \) is unruled or rational, then \(\chi(O_S) \geq 0 \). Hence, Theorem 1.1 essentially concerns irrational ruled surfaces.

In the range \(d > 35 \), the family of extremal surfaces for \(\chi(O_S) \) is exactly the same for \(K_S^2 \). We point out there is a relationship between this family and the Veronese surface. In fact one has the following:

Corollary 1.2. Let \(S \subseteq \mathbb{P}^r \) be a nondegenerate, smooth, irreducible, projective, complex surface, of degree \(d > 25 \). Let \(L \subseteq \mathbb{P}^r \) be a general hyperplane. Then \(\chi(O_S) = -\frac{1}{8}d(d - 6) \) if and only if \(r = 5 \), and there is a curve \(C \) in the Veronese surface \(V \subseteq \mathbb{P}^5 \) and a point \(x \in V \setminus C \) such that the general hyperplane section \(S \cap L \) of \(S \) is the projection \(p_x(C) \subseteq L \) of \(C \) in \(L \sim \mathbb{P}^4 \), from the point \(x \).

In particular, \(S \cap L \) is not linearly normal, instead \(S \) is.

2. Proof of Theorem 1.1

Remark 2.1. (i) We say that \(S \subseteq \mathbb{P}^r \) is a *scroll* if \(S \) is a \(\mathbb{P}^1 \)-bundle over a smooth curve, and the restriction of \(O_S(1) \) to a fibre is \(O_{\mathbb{P}^1}(1) \). In particular, \(S \) is a geometrically ruled surface, and therefore \(\chi(O_S) = \frac{1}{8}K_S^2 [1, \text{Proposition III.21}] \).

(ii) By Enriques’ classification \([1, \text{Theorem X.4 and Proposition III.21}]\), one knows that if \(S \) is unruled or rational, then \(\chi(O_S) \geq 0 \), and if \(S \) is ruled with irregularity \(> 0 \), then \(\chi(O_S) \geq \frac{1}{8}K_S^2 \). Therefore, taking into account previous remark, when \(d > 35 \), Theorem 1.1 follows from \([6, \text{Theorem 1.1}]\). In order to examine the range \(25 < d \leq 35 \), we are going to refine the line of the argument in the proof of \([6, \text{Theorem 1.1}]\).

(iii) When \(d = 2\delta \) is even, then \(\frac{1}{8}d(d - 6) + 1 \) is the genus of a plane curve of degree \(\delta \), and the genus of a curve of degree \(d \) lying on the Veronese surface.

Put \(r + 1 := h^0(S, L) \). Therefore, \(|H^0(S, L)| \) embeds \(S \) in \(\mathbb{P}^r \). Let \(H \subseteq \mathbb{P}^{r-1} \) be the general hyperplane section of \(S \), so that \(L \cong O_S(H) \). We denote by \(g \) the genus of \(H \). If \(2 \leq r \leq 3 \), then \(\chi(O_S) \geq 1 \). Therefore, we may assume \(r \geq 4 \).

The case \(r = 4 \).

We first examine the case \(r = 4 \). In this case we only have to prove that, for \(d > 25 \), one has \(\chi(O_S) > -\frac{1}{4}d(d - 6) \). We may assume that \(S \) is an irrational ruled surface, so \(K_S^2 \leq 8\chi(O_S) \) (compare with previous Remark 2.1 (ii)). We argue by contradiction, and assume also that

\[
(1) \quad \chi(O_S) \leq -\frac{1}{8}d(d - 6).
\]

We are going to prove that this assumption implies \(d \leq 25 \), in contrast with our hypothesis \(d > 25 \).

By the double point formula:

\[
d(d - 5) - 10(g - 1) + 12\chi(O_S) = 2K_S^2,
\]

and \(K_S^2 \leq 8\chi(O_S) \), we get:

\[
d(d - 5) - 10(g - 1) \leq 4\chi(O_S).
\]
And from $\chi(O_S) \leq -\frac{1}{8}d(d-6)$ we obtain
\begin{equation}
10g \geq \frac{3}{2}d^2 - 8d + 10.
\end{equation}

Now we distinguish two cases, according that S is not contained in a hypersurface of degree < 5 or not.

First suppose that S is not contained in a hypersurface of \mathbb{P}^4 of degree < 5. Since $d > 16$, by Roth’s Theorem ([12, p. 152], [8, p. 2, (C)]), H is not contained in a surface of \mathbb{P}^3 of degree < 5. Using Halphen’s bound [9], we deduce that
\[g \leq \frac{d^2}{10} + \frac{d}{2} + 1 - \frac{2}{5}(\epsilon + 1)(4 - \epsilon), \]
where $d - 1 = 5m + \epsilon$, $0 \leq \epsilon < 5$. It follows that
\[\frac{3}{2}d^2 - 8d + 10 \leq 10g \leq \frac{d^2}{4} + 5d + 10 \left(1 - \frac{2}{5}(\epsilon + 1)(4 - \epsilon) \right). \]
This implies that $d \leq 25$, in contrast with our hypothesis $d > 25$.

In the second case, assume that S is contained in an irreducible and reduced hypersurface of degree $s \leq 4$. When $s \in \{2, 3\}$, one knows that, for $d > 12$, S is of general type [2, p. 213]. Therefore, we only have to examine the case $s = 4$. In this case H is contained in a surface of \mathbb{P}^3 of degree 4. Since $d > 12$, by Bezout’s Theorem, H is not contained in a surface of \mathbb{P}^3 of degree < 4. Using Halphen’s bound [9], and [8, Lemme 1], we get:
\[g \leq \frac{d^2}{8} + \frac{d}{2} + 1 \leq \frac{d^2}{8} + 1. \]
Hence, there exists a rational number $0 \leq x \leq 9$ such that
\[g = \frac{d^2}{8} + d \left(\frac{x - 9}{8} \right) + 1. \]
If $0 \leq x \leq \frac{15}{2}$, then $g \leq \frac{d^2}{8} - \frac{3}{16}d + 1$, and from (2) we get
\[\frac{3}{20}d^2 - \frac{4}{5}d + 1 \leq g \leq \frac{d^2}{8} - \frac{3}{16}d + 1. \]
It follows $d \leq 24$, in contrast with our hypothesis $d > 25$.

Assume $\frac{15}{2} < x \leq 9$. Hence,
\[\left(\frac{d^2}{8} + 1 \right) - g = -d \left(\frac{x - 9}{8} \right) < \frac{3}{16}d. \]
By [9] proof of Proposition 2, and formula (2.2)], we have
\[\chi(O_S) \geq 1 + \frac{d^3}{96} - \frac{d^2}{16} - \frac{5d}{3} - \frac{349}{16} - (d - 3) \left[\left(\frac{d^2}{8} + 1 \right) - g \right] \]
\[> 1 + \frac{d^3}{96} - \frac{d^2}{16} - \frac{5d}{3} - \frac{349}{16} - (d - 3) \frac{3}{16}d = \frac{d^3}{96} - \frac{d^2}{4} - \frac{53}{48}d - \frac{333}{16}. \]
Combining with (1), we get
\[\frac{d^3}{96} - \frac{d^2}{4} - \frac{53}{48}d - \frac{333}{16} + \frac{1}{8}d(d - 6) < 0, \]
i.e.
\[d^3 - 12d^2 - 178d - 1998 < 0. \]
It follows \(d \leq 23 \), in contrast with our hypothesis \(d > 25 \).

This concludes the analysis of the case \(r = 4 \).

The case \(r \geq 5 \).

When \(r \geq 5 \), by [3] Remark 2.1, we know that, for \(d > 5 \), one has \(K^2_S > -d(d-6) \), except when \(r = 5 \), and the surface \(S \) is a scroll, \(K^2_S = 8\chi(O_S) = 8(1-g) \), and

\[
g = \frac{1}{8}d^2 - \frac{3}{4}d + \frac{(5-\epsilon)(\epsilon + 1)}{8},
\]

with \(d - 1 = 4m + \epsilon \), \(0 < \epsilon \leq 3 \). In this case, by [6] pp. 73-76, we know that, for \(d > 25 \), \(S \) is contained in a smooth rational normal scroll of \(\mathbb{P}^5 \) of dimension 3. Taking into account that we may assume \(K^2_S \leq 8\chi(O_S) \) (compare with Remark 2.1 (i) and (ii)), at this point Theorem 1.1 follows from [6] Proposition 2.2, when \(d > 30 \).

In order to examine the remaining cases \(26 \leq d \leq 30 \), we refine the analysis appearing in [6]. In fact, we are going to prove that, assuming \(r = 5 \), \(S \) is a scroll, and (3), it follows that \(S \) is contained in a smooth rational normal scroll of \(\mathbb{P}^5 \) of dimension 3 also when \(26 \leq d \leq 30 \). Then we may conclude as before, because [6] Proposition 2.2 holds true for \(d \geq 18 \).

First, observe that if \(S \) is contained in a threefold \(T \subset \mathbb{P}^5 \) of dimension 3 and minimal degree 3, then \(T \) is necessarily a smooth rational normal scroll [6] p. 76]. Moreover, observe that we may apply the same argument as in [3] p. 75-76] in order to exclude the case \(S \) is contained in a threefold of degree 4. In fact the argument works for \(d > 24 \) [6] p. 76, first line after formula (13)].

In conclusion, assuming \(r = 5 \), \(S \) is a scroll, and (3), it remains to exclude that \(S \) is not contained in a threefold of degree \(< 5 \), when \(26 \leq d \leq 30 \).

Assume \(S \) is not contained in a threefold of degree \(< 5 \). Denote by \(\Gamma \subset \mathbb{P}^3 \) the general hyperplane section of \(H \). Recall that \(26 \leq d \leq 30 \).

- **Case I:** \(h^0(\mathbb{P}^3, \mathcal{I}_T(2)) \geq 2 \).

It is impossible. In fact, if \(d > 4 \), by monodromy [3] Proposition 2.1, \(\Gamma \) should be contained in a reduced and irreducible space curve of degree \(\leq 4 \), and so, for \(d > 20 \), \(S \) should be contained in a threefold of degree \(\leq 4 \) [3 Theorem (0.2)].

- **Case II:** \(h^0(\mathbb{P}^3, \mathcal{I}_T(2)) = 1 \) and \(h^0(\mathbb{P}^3, \mathcal{I}_T(3)) > 4 \).

As before, if \(d > 6 \), by monodromy, \(\Gamma \) is contained in a reduced and irreducible space curve \(X \) of degree \(\deg(X) \leq 6 \). Again as before, if \(\deg(X) \leq 4 \), then \(S \) is contained in a threefold of degree \(\leq 4 \). So we may assume \(5 \leq \deg(X) \leq 6 \).

Since \(d \geq 26 \), by Bezout’s Theorem we have \(h_T(i) = h_X(i) \) for all \(i \leq 4 \). Let \(X' \) be the general plane section of \(X \). Since \(h_X(i) \geq \sum_{j=0}^{i} h_X(j) \), we have \(h_X(3) \geq 14 \) and \(h_X(4) \geq 19 \) [7] pp. 81-87]. Therefore, when \(d \geq 25 \), taking into account [7] Corollary (3.5)], we get:

\[
\begin{align*}
 h_T(1) &= 4, \\
 h_T(2) &= 9, \\
 h_T(3) &\geq 14, \\
 h_T(4) &\geq 19, \\
 h_T(5) &\geq 22, \\
 h_T(6) &\geq \min\{d, 27\}, \\
 h_T(7) &= d.
\end{align*}
\]
It follows that:
\[p_a(C) \leq \sum_{i=1}^{+\infty} d - h_\Gamma(i) \leq (d - 4) + (d - 9) + (d - 14) + (d - 19) + (d - 22) + 3 = 5d - 65, \]
which is \(\frac{1}{8}d(d - 6) + 1 \) for \(d \geq 26 \). This is in contrast with (3).

- **Case III:** \(h^0(\mathbb{P}^3, \mathcal{I}_\Gamma(2)) = 1 \) and \(h^0(\mathbb{P}^3, \mathcal{I}_\Gamma(3)) = 4 \).

We have:
\[h_\Gamma(1) = 4, \ h_\Gamma(2) = 9, \ h_\Gamma(3) = 16, \ h_\Gamma(4) \geq 19, \ h_\Gamma(5) \geq 24, \ h_\Gamma(6) = d. \]

It follows that:
\[p_a(C) \leq \sum_{i=1}^{+\infty} d - h_\Gamma(i) \leq (d - 4) + (d - 9) + (d - 16) + (d - 19) + (d - 24) = 5d - 72, \]
which is \(\frac{1}{8}d(d - 6) + 1 \) for \(d \geq 26 \). This is in contrast with (3).

- **Case IV:** \(h^0(\mathbb{P}^3, \mathcal{I}_\Gamma(2)) = 0 \).

We have:
\[h_\Gamma(1) = 4, \ h_\Gamma(2) = 10, \ h_\Gamma(3) \geq 13, \ h_\Gamma(4) \geq 19, \ h_\Gamma(5) \geq 22, \ h_\Gamma(6) \geq \min\{d, 28\}, \ h_\Gamma(7) = d. \]

It follows that:
\[p_a(C) \leq \sum_{i=1}^{+\infty} d - h_\Gamma(i) \leq (d - 4) + (d - 10) + (d - 13) + (d - 19) + (d - 22) + 2 = 5d - 66, \]
which is \(\frac{1}{8}d(d - 6) + 1 \) for \(d \geq 26 \). This is in contrast with (3).

This concludes the proof of Theorem 1.1.

Remark 2.2. (i) Let \(Q \subseteq \mathbb{P}^3 \) be a smooth quadric, and \(H \in |\mathcal{O}_Q(1, d - 1)| \) be a smooth rational curve of degree \(d \) [11, p. 231, Exercise 5.6]. Let \(S \subseteq \mathbb{P}^4 \) be the projective cone over \(H \). A computation, which we omit, proves that
\[\chi(\mathcal{O}_S) = 1 - \left(\frac{d - 1}{3} \right). \]

Therefore, if \(S \) is singular, it may happen that \(\chi(\mathcal{O}_S) < -\frac{1}{3}(d - 6) \). One may ask whether \(1 - \left(\frac{d - 1}{3} \right) \) is a lower bound for \(\chi(\mathcal{O}_S) \) for every integral surface.

(ii) Let \((S, \mathcal{L}) \) be a smooth surface, polarized by a very ample line bundle \(\mathcal{L} \) of degree \(d \). By Harris’ bound for the geometric genus \(p_g(S) \) of \(S \) [10], we see that \(p_g(S) \leq \left(\frac{d - 1}{3} \right) \). Taking into account that for a smooth surface one has \(\chi(\mathcal{O}_S) = h^0(S, \mathcal{O}_S) - h^1(S, \mathcal{O}_S) + h^2(S, \mathcal{O}_S) \leq 1 + h^2(S, \mathcal{O}_S) = 1 + p_g(S) \), from Theorem 1.1 we deduce (the first inequality only when \(d > 25 \)):
\[-\left(\frac{d^2 - 1}{2} \right) \leq \chi(\mathcal{O}_S) \leq 1 + \left(\frac{d - 1}{3} \right). \]
3. Proof of Corollary 1.2

- First, assume that $\chi(\mathcal{O}_S) = -\frac{1}{6}d(d-6)$.

By Theorem 1.1, we know that $r = 5$. Moreover, S is contained in a nonsingular threefold $T \subseteq \mathbb{P}^5$ of minimal degree 3. Therefore, the general hyperplane section $H = S \cap L$ of S ($L \cong \mathbb{P}^4$ denotes the general hyperplane of \mathbb{P}^5) is contained in a smooth surface $\Sigma = T \cap L$ of $L \cong \mathbb{P}^4$, of minimal degree 3.

This surface Σ is isomorphic to the blowing-up of \mathbb{P}^2 at a point, and, for a suitable point $x \in V \setminus L$, the projection of $\mathbb{P}^5 \setminus \{x\}$ on $L \cong \mathbb{P}^4$ from x restricts to an isomorphism

$$p_x : V \setminus \{x\} \to \Sigma \setminus E,$$

where E denotes the exceptional line of Σ [11 p. 58].

Since S is linearly equivalent on T to $\frac{d}{2}(H_T - W_T)$ (H_T denotes the hyperplane section of T, and W_T the ruling), it follows that H is linearly equivalent on Σ to $\frac{d}{2}(H_\Sigma - W_\Sigma)$ (now H_Σ denotes the hyperplane section of Σ, and W_Σ the ruling of Σ). Therefore, H does not meet the exceptional line $E = H_\Sigma - 2W_\Sigma$. In fact, since $H_\Sigma^2 = 3$, $H_\Sigma \cdot W_\Sigma = 1$, and $W_\Sigma^2 = 0$, one has:

$$(H_\Sigma - W_\Sigma) \cdot (H_\Sigma - 2W_\Sigma) = H_\Sigma^2 - 3H_\Sigma \cdot W_\Sigma + 2W_\Sigma^2 = 0.$$

This implies that H is contained in $\Sigma \setminus E$, and the assertion of Corollary 1.2 follows.

- Conversely, assume there exists a curve C on the Veronese surface $V \subseteq \mathbb{P}^5$, and a point $x \in V \setminus C$, such that H is the projection $p_x(C)$ of C from the point x.

In particular, d is an even number, and H is contained in a smooth surface $\Sigma \subseteq L \cong \mathbb{P}^4$ of minimal degree, and is disjoint from the exceptional line $E \subseteq \Sigma$. By [8 Theorem (0.2)], S is contained in a threefold $T \subseteq \mathbb{P}^5$ of minimal degree. T is nonsingular. In fact, otherwise, H should be a Castelnuovo’s curve in \mathbb{P}^4 [6 p. 76]. On the other hand, by our assumption, H is isomorphic to a plane curve of degree $\frac{d}{7}$. Hence, we should have:

$$g = \frac{d^2}{6} - \frac{2}{3}d + 1 = \frac{d^2}{8} - \frac{3}{4}d + 1$$

(the first equality because H is Castelnuovo’s, the latter because H is isomorphic to a plane curve of degree $\frac{d}{7}$). This is impossible when $d > 0$.

Therefore, S is contained in a smooth threefold T of minimal degree in \mathbb{P}^5.

Now observe that in Σ there are only two families of curves of degree even d and genus $g = \frac{d^2}{7} - \frac{2}{7}d + 1$. These are the curves linearly equivalent on Σ to $\frac{d}{2}(H_\Sigma - W_\Sigma)$, and the curves equivalent to $\frac{d+1}{6}H_\Sigma + \frac{d-2}{2}W_\Sigma$. But only in the first family the curves do not meet E. Hence, H is linearly equivalent on Σ to $\frac{d}{2}(H_\Sigma - W_\Sigma)$. Since the restriction $\text{Pic}(T) \to \text{Pic}(\Sigma)$ is bijective, it follows that S is linearly equivalent on T to $\frac{d}{2}(H_T - W_T)$. By Theorem 1.1 S is a fortiori linearly normal, and of minimal Euler characteristic $\chi(\mathcal{O}_S) = -\frac{1}{6}d(d-6)$.

A LOWER BOUND FOR $\chi(\mathcal{O}_S)$

REFERENCES

[1] Beauville, A.: Surfaces algébriques complexes, Astérisque 54, société mathématiques de france, 1978.
[2] Braun, R. - Floystad, G.: A bound for the degree of smooth surfaces in \mathbb{P}^4 not of general type, Compositio Math., 93(2), 211-229 (1994).
[3] Chiantini, L. - Ciliberto, C.: A few remarks on the lifting problem, Astérisque, 218, 95-109 (1993).
[4] Chiantini, L. - Ciliberto, C. - Di Gennaro, V.: The genus of projective curves, Duke Math. J., 70(2), 229-245 (1993).
[5] Di Gennaro, V.: A note on smooth surfaces in \mathbb{P}^4, Geometriae Dedicata, 71, 91-96 (1998).
[6] Di Gennaro, V. - Franco, D.: A lower bound for K_S^2, Rendiconti del Circolo Matemático di Palermo, H. Ser (2017) 66:69-81.
[7] Eisenbud, D. - Harris, J.: Curves in Projective Space, Sém. Math. Sup. 85 Les Presses de l’Université de Montréal, 1982.
[8] Ellingsrud, G. - Peskine, Ch.: Sur les surfaces lisses de \mathbb{P}_4, Invent. Math., 95, 1-11 (1989).
[9] Gruson, L. - Peskine, Ch. Genre des courbes dans l’espace projectif, Algebraic Geometry: Proceedings, Norway, 1977, Lecture Notes in Math., Springer-Verlag, New York 687, 31-59 (1978).
[10] Harris, J.: A Bound on the Geometric Genus of Projective Varieties, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 8(4), 35-68 (1981).
[11] Hartshorne, R.: Algebraic Geometry, GTM, 52, Springer-Verlag, 1983.
[12] Roth, L.: On the projective classification of surfaces, Proc. London Math. Soc., 42, 142-170 (1937).

Università di Roma "Tor Vergata", Dipartimento di Matematica, Via della Ricerca Scientifica, 00133 Roma, Italy.

Email address: digennar@axp.mat.uniroma2.it