A Nonsense Variant in the ACADVL Gene in German Hunting Terriers with Exercise Induced Metabolic Myopathy

Vincent Lepori,*t,a Franziska Mühlhause,†t,a Adrian C. Sewell,† Vidhya Jagannathan,* Nils Janzen,**tt Marco Rosati,†t Filipe Miguel Maximiano Alves de Sousa,§t Aurélie Tschopp,§t Gertraud Schüpbach,§t Kaspar Matiasek,†t Andrea Tipold,† Tosso Leeb,*b,† and Marion Kornberg†t,b

*Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001, Switzerland, †Veterinary Clinic for Small Animals Elmer-Komberg-Schanen, 54294 Trier, Germany, ‡Department of Small Animal Medicine and Surgery, University of Veterinary Medicine Hannover, 30559, Germany, §Biocentrum, Laboratory for Veterinary Diagnostics, 55218 Ingelheim, Germany, **Screening-Labor Hannover, 30430, Germany, ††Department of Clinical Chemistry, Hannover Medical School, 30625, Germany, †‡Section of Clinical & Comparative Neuropathology, Institute of Veterinary Pathology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-University, 80539 Munich, Germany, and †§Veterinary Public Health Institute, Vetsuisse Faculty, University of Bern, 3097 Liebefeld, Switzerland.

ORCID IDs: 0000-0001-5628-0484 (V.L.); 0000-0003-0553-4880 (T.L.)

ABSTRACT Several enzymes are involved in fatty acid oxidation, which is a key process in mitochondrial energy production. Inherited defects affecting any step of fatty acid oxidation can result in clinical disease. We present here an extended family of German Hunting Terriers with 10 dogs affected by clinical signs of exercise induced weakness, muscle pain, and suspected rhabdomyolysis. The combination of clinical signs, muscle histopathology and acylcarnitine analysis with an elevated tetradecenoylcarnitine (C14:1) peak suggested a possible diagnosis of acyl-CoA dehydrogenase very long chain deficiency (ACADVLD). Whole genome sequence analysis of one affected dog and 191 controls revealed a nonsense variant in the ACADVL gene encoding acyl-CoA dehydrogenase very long chain, c.1728C>A or p.(Tyr576*). The variant showed perfect association with the phenotype in the 10 affected and more than 500 control dogs of various breeds. Pathogenic variants in the ACADVL gene have been reported in humans with similar myopathic phenotypes. We therefore considered the detected variant to be the most likely candidate causative variant for the observed exercise induced myopathy. To our knowledge, this is the first description of this disease in dogs, which we propose to name exercise induced metabolic myopathy (EIMM), and the identification of the first canine pathogenic ACADVL variant. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring.

KEYWORDS dog canis lupus familiaris metabolism myopathy beta-oxidation very long-chain acyl-CoA dehydrogenase deficiency whole genome sequencing animal model

Mitochondrial β-oxidation of fatty acids is one of the major sources of cellular energy, in particular in organs with a high metabolic rate such as heart, liver and skeletal muscle. During fasting or prolonged exercise, ketone bodies produced in the liver become the major source to meet energy requirements (Andresen et al. 1999; Bartlett and Eaton 2004; Hisahara et al. 2015) whereby long-chain fatty acids are released from triglycerides in fat tissue and activated to acyl-CoA esters. The inner mitochondrial membrane is impermeable to long-chain fatty acids which are transported into the mitochondria via the carnitine shuttle. Carnitine is transported into cells by a high-affinity carnitine transporter. Within the mitochondria, several chain-length specific enzymes shorten acyl-CoA by two carbon atoms (one acetyl-CoA) in subsequent β-oxidation cycles. Most of the long-chain specific enzymes are associated with the inner mitochondrial membrane (Ogilvie et al. 1994; Souri et al. 1996; Souri et al. 1998; Andresen et al. 1999; Fukuao et al. 2001; Bartlett and Eaton 2004; Goetzman et al. 2007; McAndrew et al. 2008; Liang and Nishino 2011; Schiff et al. 2013; Zhang et al. 2014; Miller et al. 2015).

Inherited disorders of mitochondrial β-oxidation can present with great variability. In humans, insufficient ketone body production during catabolic states (prolonged fasting, surgery, infection etc.) may cause hypoketotic hypoglycemic coma sometimes accompanied by signs of hepatic failure. Accumulation of toxic long-chain acylcarnitines, particularly in long-chain fatty acid oxidation disorders, may
cause lactic acidosis, cardiomyopathy and hepatopathies similar to some mitochondrialriopathies. Milder deficiency variants of long-chain fatty acid oxidation and the carnitine shuttle may affect skeletal muscle and manifest as chronic weakness, myalgia or rhabdomyolysis (Zschocke and Hoffmann 2011).

In humans, acyl-CoA dehydrogenase very long-chain deficiency (ACADVLD; OMIM 201475) is considered to be the most common inherited disorder of mitochondrial long-chain fatty acid oxidation (Tucci 2017). The acyl-CoA dehydrogenase very long chain (ACADVL; EC 1.3.8.9) is specific for fatty acids with 16 to 20 carbon atoms and is encoded by the nuclear ACADVL gene. While all other acyl-CoA dehydrogenase family members form homotetrameric structures with a monomer size of about 45 kD, ACADVLD is a homodimer with a monomer size of about 67 kD due to an extended 180 amino acid C-terminal region, which plays a role in maintaining the quaternary structure and mediates the interactions with the inner mitochondrial membrane (Souri et al. 1996; Souri et al. 1998; Goetzman et al. 2007; McAndrew et al. 2008; Schiff et al. 2013).

Deficiency of ACADVL (ACADVLD) in humans is an autosomal recessive inherited disorder with considerable allelic heterogeneity and more than one hundred pathogenic variants in the human ACADVL gene have been reported until now (Zhang et al. 2014; Miller et al. 2015). The first human patient was identified as early as 1985 before the era of molecular genetics and the identification of the ACADVL gene (Hale et al. 1985; Iszi et al. 1992; Uchida et al. 1992; Souri et al. 1996). The clinical phenotype is quite variable with respect to the severity of clinical signs and age of onset. Human ACADVLD can be subdivided into three major clinical forms (Andresen et al. 1999; Miller et al. 2015). A severe neonatal onset form presents shortly after birth with hepatic encephalopathy, Reye-like syndrome, and cardiomyopathy leading to a high mortality. The infantile onset form usually presents with recurrent hypoketotic hypoglycemia and liver dysfunction. The adult-onset form, which occurs during adolescence or later, presents mainly with muscle signs which include myalgia, weakness, episodes of rhabdomyolysis, intermittent or permanently elevated plasma creatine kinase levels and myoglobinuria. Symptoms are triggered by stress such as physical exercise, fasting or cold exposure (Ogilvie et al. 1994; Souri et al. 1998; Saudubray et al. 1999; Fukao et al. 2001; Wood et al. 2001; Goetzman et al. 2007; Liang and Nishino 2011; Schiff et al. 2013; Tucci et al. 2014; Zhang et al. 2014; Miller et al. 2015). Histopathological examination of patients suffering from ACADVLD demonstrates the accumulation of lipid droplets within muscles fibers. Therefore, the adult-onset form of ACADVLD may be included in the group of lipid storage induced myopathies (Liang and Nishino 2010; Liang and Nishino 2011).

Elevated tetradecenoylcarnitine (C14:1) is used as a biomarker for the disease. In human medicine, newborn screening based on the levels of acylcarnitines and especially tetradecenoylcarnitine (C14:1) in dried blood spots is widely used to diagnose ACADVLD (Wood et al. 2001; Zytkovicz et al. 2001; Lindner et al. 2010; Miller et al. 2015).

In dogs, cases of myopathies have been reported with features suggestive of defects in oxidative metabolism (Platt et al. 1999; Biegen et al. 2015), but to the best of our knowledge, no genetic variant has been identified so far. Recently, breeders noticed several cases of exercise induced muscle pain and weakness in German Hunting Terriers. The aim of the present study was the characterization of this phenotype, which we term exercise induced metabolic myopathy (EIMM) and the identification of the presumed causative genetic variant.

MATERIALS AND METHODS

Ethics statement

The dogs in this study were examined with the consent of their owners. Blood samples were collected with the approval of the Cantonal Committee for Animal Experiments (Canton of Bern; permit BE75/16). All animal experiments were done in accordance with local laws and regulations.

Breed nomenclature

The Federation Cynologique Internationale (FCI) describes the German Hunting Terrier dog as a compact, well-muscled and hardy hunting dog breed (FCI-st. N° 103/26.05.2015). In this paper, all references to the breed correspond to the FCI standards.

Animal selection for phenotyping

For the phenotype analyses, German Hunting Terriers with signs of exercise induced intolerance were examined. Control animals consisted of German Hunting Terriers without any signs of exercise induced intolerance, which were presented at the Veterinary Clinic for Small Animals Trier, Germany, for routine medical examinations.

Clinical examinations

Clinical, neurological and laboratory examinations of dogs were performed at the Veterinary Clinic for Small Animals, Trier, Germany, by a specifically trained thesis student (FM) and a Diplomate of the European College for Veterinary Neurology (MK) to characterize the phenotype of a novel disease associated with exercise intolerance in German Hunting Terriers. Cases consisted of nine German Hunting Terriers with a history of exercise induced weakness, myalgia and pigmentation. Controls included 14 German Hunting Terrier dogs without signs of exercise intolerance. One affected dog died during the study for reasons unrelated to the described novel disease. Therefore, laboratory findings could only be evaluated in eight affected dogs. Clinical signs and their history after different levels of exercise were further evaluated using a questionnaire filled in by the dog owners.

Laboratory analyses

Blood samples were taken from the vena cephalica and collected in Li-heparin (Li-H) (Micro tube Sarstedt, Germany), sodium fluoride (NaF; BD Vacutainer, Plymouth UK) and ethylenediaminetetraacetic acid (K-EDTA Sarstedt, Germany) tubes. Using plasma from the Li-H tube, chemistry profiles including the measurement of electrolytes, hepatic enzymes and creatine kinase were obtained using the IDEXX Catalyst Dx Chemistry Analyzer (IDEXX Laboratories, Germany). Blood in NaF tubes was used for measuring the lactate level at the Synlab Laboratory, Trier, Germany. Complete blood cell count was performed using the IDEXX ProCyte Dx Hematology Analyzer (IDEXX...
laboratories, Germany) with full EDTA blood. The concentration of the brain natriuretic peptide (BNP) was determined from EDTA plasma by the diagnostic test Cardiopet (IDEXX Laboratories, Germany) as described (Fox et al. 2015). An acylcarnitine profile screening was performed in the Screening-Labor Hannover, Germany. For this test, EDTA blood was placed onto human newborn screening cards and air-dried. Dried blood spots of 3.2 mm diameter were extracted with 200 μl methanol containing the deuterated internal acylcarnitine standards. After evaporation of the extracts acylcarnitines were butylated using 50 μl of 3 N butanolic HCl at 65°C for 15 min. After drying the residue was dissolved in methanol/water 80/20, the mobile phase was acetonitrile/water 80/20. The acylcarnitines were analyzed without chromatographic separation in the positive ion mode, using multichannel analyzer scan (MCA). Long-chain hydroxyacetyl carnitines were measured in positive MRM mode. The system consisted of a Waters Micro tandem mass spectrometer equipped with electrospray ionization (ESI) source connected with a LC pump and a PAL autosampler. Urine samples were taken by urinary catheterization and then investigated with urine dipsticks (Multistix Siemens Healthcare Diagnostics Inc, Tarrytown, NY, USA). The urinary sediment was examined under a microscope (Motic B Series, Motic Asia, China). All laboratory parameters are summarized in Table 1.

Biopsy procurement and examination

Muscle and nerve biopsies were taken from two cases (JT007 and JT009) under general anesthesia. Biopsies were taken from biceps femoris and tibialis cranialis muscles as well as from fibular nerve. Samples were shipped on wet ice by overnight service to the neuropathology laboratory of the Ludwig-Maximilians-Universität in Munich where they underwent routine processing. Muscle samples were snap-frozen in isopentane cooled in liquid nitrogen. Cryosections were performed and stained with hematoxylin-eosin, periodic acid Schiff, Engel’s modified Gomori stain and Oil Red O. Additional sections underwent enzyme histochemistry for cytochrome oxidase (COX) and nicotinamide adenine dinucleotide tetrazolium reductase (NADH-TR). Muscle fiber typing was performed immunohistochemically (IHC) using murine antibodies directed against skeletal fast myosin (clone MY-32, Sigma-Aldrich Inc., St. Louis, MO, USA). secondary labeling by polymer antibodies (IMPRESS, Linaris Inc. Freiburg) and a horseradish peroxidase-diaminobenzidine tetrahydrochloride detection system.

Further samples of each muscle were fixed in 6.5% glutaraldehyde for embedding in epoxy resin. Semithin sections were taken and stained with azure II methyleneblue-safranin O for prelocalisation. Selected areas then were cut at 50 nm thickness, mounted on copper grids, contrasted with lead citrate and uranyl acetate for transmission electron microscopy (Zeiss EM 10, Jena).

Nerve samples were fixed in 2.5% glutaraldehyde, contrasted with osmium tetroxide and likewise embedded in epoxy resin. Semithin sections were stained as mentioned above. Further pieces of osmium stained nerves were subjected to nerve fiber teasing for longitudinal fiber examination. Procedures and diagnostic algorithms concisely have been described, elsewhere (Gross et al. 2016).

Animal selection for genotyping

For the genetic analysis we included 120 German Hunting Terriers consisting of 10 cases and 110 controls. The ten cases consisted of the nine dogs that underwent the detailed clinical and laboratory examinations and one additional dog with owner-reported exercise intolerance. Furthermore, samples from 435 dogs of 60 genetically diverse breeds, which had been donated to the Vetsuisse Biobank, were used as controls (Table S1).

Reference sequences

All analyses were performed using the dog CanFam 3.1 genome assembly as reference sequence. Numbering within the ACADVL gene refers to the NCBI accessions XM_546581.5 (mRNA) and XP_546581.3 (protein) for dogs and NM_000188.3 (mRNA) and NP_000099.1 (protein) for humans. The human and dog proteins both consist of 655 amino acids with 92% sequence identity.

Whole genome resequencing and variant filtering

An Illumina TruSeq PCR-free library with an insert size of 350 bp was prepared from one affected German Hunting Terrier (JT007) and 334 million 2 × 150 bp paired-end reads corresponding to 37x coverage were obtained on an Illumina HiSeq 3000 instrument. The reads were mapped to the dog CanFam3.1 reference genome assembly and aligned using Burrows-Wheeler Aligner version 0.7.5a with default settings (Li and Durbin 2009). The generated SAM file was converted to a BAM file and the reads were sorted using samtools (Li 2011). Picard tools (http://sourceforge.net/projects/picard/) was used to mark PCR duplicates. To perform local realignments and to produce a cleaned BAM file, we used the Genome Analysis Tool Kit (GATK version 3.6.1, 50; McKenna et al. 2010). The GATK software was also used for base quality recalibration with canine dbSNP data as training set.

Variant calling

Putative single nucleotide and small variants were identified in each sample individually using Broad GATK HaplotypeCaller v3.6 in gVCF mode, and subsequently jointly genotyped using Broad GenomeGVCFS walker (-stand_emit_conf 20.0; -stand_call_conf 30.0); (Van der Auwera et al. 2013). Variants were marked but not removed using VariantFilter GATK module, based on the following specifications: SNPs: Quality by Depth: QD < 2.0; Mapping quality:

Laboratory tubes	Examined parameters	Technical devices or external laboratory
Li-heparin	chemistry profile (Glucose, Urea, Creatinine, Creatine kinase, Phosphorous, Calcium, Total protein, Albumin, Globulin, Alanine aminotransferase, Alkaline phosphatase, Gamma-glutamyltransferase, Bilirubin, Cholesterol, Amylase, Lipase)	IDEXX Catalyst Dx
NaF	lactate	Synlab Laboratory Trier
K-EDTA	hematology	IDEXX ProCyte Dx
K-EDTA	acylcarnitine screening, multichannel analyzer scan (MCA)	Screening-Labor Hannover
K-EDTA	brain natriuretic peptide (BNP)	Cardiopet IDEXX
Urine	urine specific gravity, leukocytes, nitrite, urobinogen, protein, pH, erythrocytes, ketones, bilirubin, glucose	Multistix Siemens Healthcare

Glucose (Gl), urea (Urea), creatinine (Cr), creatine kinase (CK), phosphorous (P), calcium (Ca), total protein (TP), albumin (Alb), globulin (Glob), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), bilirubin (TBil), cholesterol (Chol), amylase (Amy), lipase (Lip)
DNA extraction, PCR and Sanger sequencing
Genomic DNA was extracted from EDTA blood samples using the Maxwell RSC Whole Blood DNA Kit in combination with the Maxwell RSC machine (Promega Corporation, Madison, WI, USA). For targeted genotyping of the ACADVL gene, we used a Sanger sequencing protocol. Specifically, PCR products were amplified from genomic DNA using the AmpliTaqGold360 Mastermix (Thermo Fischer Scientific Corporation, Waltham, MA, USA) and primers 5'-TCTTTATGCAGACCGTGCAG-3' (forward) and 5'-ACAGGGAGGTTGTTGTGAGCTC-3' (reverse). After treatment with exonuclease I and alkaline phosphatase, we sequenced amplicons on an ABI 3730 DNA Analyzer (Thermo Fischer Scientific Corporation, Waltham, MA, USA). Sanger sequences were analyzed with the Sequencher 5.1 software (Gene Codes Corporation, Ann Arbor, MI, USA).

Statistical analysis
Continuous data were expressed as median values and ranges. The data for CK, ALT, C14:1 and lactate levels were tested for normality using the Shapiro Wilk test. To investigate if there were significant differences in the laboratory results between cases and controls Wilcoxon Rank Sum tests were used for non-normally distributed data. We repeated these investigations with respect to the three genotype classes (homozygous mutant, heterozygous, homozygous wildtype) of the previously investigated dogs with Kruskal-Wallis tests. For evaluating differences between genotypes, the level of significance was corrected for multiple testing ($z \geq 2.394; P < 0.017$). As the plasma lactate levels were normally distributed, a two-samples T-test and a one way ANOVA instead of the previously mentioned tests were applied. All the statistical analyses were performed using the NCSS 11 Statistical Software (NCSS, LLC, Kaysville, UT, USA). The level of significance was set to $P < 0.05$.

Data availability
Figure S1 illustrates the genotypes of the dogs from the extended family for the ACADVL:c.1728C>A variant. Table S1 contains genotypes of 435 control dogs from 60 diverse dog breeds for the ACADVL:c.1728C>A variant. Table S2 contains the accession numbers of the sequenced case and the 191 control-genomes used for variant filtering. Table S3 lists the detected private variants and their functional annotation in the affected German Hunting Terrier. The sequence data were deposited under study accession PRJEB16012 and sample accession SAMEA104125120 at the European Nucleotide Archive.

RESULTS
Clinical examination
Three female and six male affected German Hunting Terrier dogs with an age range from 7 to 42 months were examined (median 32 months). The dogs showed a history of generalized weakness, exercise intolerance and severe diffuse muscle pain. All owners reported, that their dogs could not be used for hunting, as they all collapsed and developed tetraparesis to tetraplegia after 30 to 120 min of exercise. During these episodes, all affected dogs presented a brownish discoloration of the urine. On physical examination all dogs were alert and responsive. Two dogs (JT007, JT009) were tetraparetic and palpation elicited diffuse muscle pain. Furthermore, dog JT009 had mild muscle atrophy in the fore- and hind limbs. None of the affected dogs had cardiac or pulmonary abnormalities; the neurological examination did not reveal further abnormalities in addition to the previously described tetraparesis in two dogs. Physical and neurological examinations were unremarkable in all examined 14 control German Hunting Terriers.

Laboratory findings
Complete blood cell counts were available for 22 German Hunting Terriers (8 cases and 14 controls). All hematomal values were within the normal reference ranges. In contrast, chemistry profiles revealed several abnormalities in affected dogs. Plasma creatine kinase (CK) activity was significantly higher in affected dogs (145-15,090 IU/l, median 533 IU/l) than in controls (52-219 IU/l, median 71 IU/l; $P = 0.0007$). Similar findings were obtained regarding plasma alanine transaminase (ALT) activities. Cases (44-2,705 IU/l, median 383 IU/l) had significantly higher ALT activity than controls (28-108 IU/l, median 63 IU/l; $P = 0.002$). The plasma lactate levels were only available for 19 dogs (7 cases and 12 controls). Cases (0.2-1.6 mmol/l, median 1.2 mmol/l) were not significantly different from controls (0.1-2.7 mmol/l, median 1.3 mmol/l; $P = 0.3$). All other chemistry parameters were in the respective reference ranges in the examined German Hunting Terriers.

An acylcarnitine profile was available for 22 dogs. Cases revealed a prominent tetracosecarnitine (C14:1) peak with a range from 0.5-2.6 μmol/l and a median of 1.3 μmol/l. In controls, virtually no tetracosecarnitine (C14:1) was detectable (0.0-0.1 μmol/l, median 0.0 μmol/l; $P = 0.00004$).

All eight cases excreted a dark brownish urine after exercise. In comparison, urine of controls appeared normal. Urinalysis was in the reference range. Brain natriuretic peptide (BNP) levels, marker for myocardial disease, were within the reference ranges in four affected dogs tested.

Biopsy findings
Muscle samples harvested from the affected German Hunting Terriers JT007 and JT009 revealed a mild to moderate necrotizing myopathy with enrichment of interstitial lipid droplets and mitochondrial abnormalities (Figure 1). Changes were widely spread and more prominent in type 2 fibers. Nerve biopsies from both dogs were unremarkable (not shown).

Genetic analysis
Given the results of the metabolic and histopathological analysis, the ACADVL gene became the primary functional candidate gene for the observed phenotype. In humans, ACADVL-D has a strictly autosomal recessive mode of inheritance. In agreement with our hypothesis, pedigree analysis of the extended German Hunting Terrier family strongly suggested an autosomal recessive mode of inheritance. Both male and female dogs were affected. The available cases belonged to five different litters with unaffected parents. The pedigree of these dogs revealed many inbreeding loops (Figure 2).

We performed whole genome sequencing on one affected dog and called single nucleotide and small indel variants with respect to the reference genome of a presumably unaffected Boxer (CanFam 3.1). We searched for private homozygous protein-changing variants by comparing the variants in the case with the genomes of 3 wolves and 188 dogs from various breeds (Table S2). We did not have any specific
information regarding a potential myopathy phenotype in the control animals. However, as this is a rare condition, we assumed the control dogs and wolves to be homozygous wildtype at the causative variant.

The variant calling pipeline detected more than 3 million homozygous variants in the genome of the sequenced case. Of these, 23 were absent from the control genomes and predicted to be protein changing. One of them was located in the ACADVL gene, while the other 22 were in genes that we did not consider to be likely functional candidate genes (Table 2; Table S3). The ACADVL variant was a nonsense variant, c.1728C>A, predicted to result in a premature stop codon that truncates 80 amino acids from the C-terminus of the ACADVL protein. The formal variant designation on the protein level is p.(Tyr576X). The variant was confirmed by Sanger sequencing (Figure 3).

We then genotyped the variant in a cohort of 10 affected and 110 unaffected German Hunting Terriers. This revealed a perfect association of the genotypes with the phenotype (Table 3). All

Figure 1 Myopathological characteristics of German Hunting Terriers with exercise induced myopathy (A-H). On light microscopic level, the muscles show widespread individual myofiber necroses (A, B: arrow) at active (A) and resorptive/postresorptive stages (B) surrounded by normal myocytes (A, B: N). (C) Necrotic fibers (filled asterisks) accumulate mitochondria that appear red on Engel’s stain and exhibit high activity of mitochondrial enzyme NADH-TR in histochemical preparations (inlet; black stain). Also non-necrotic fibers (empty asterisk) present with prominent subsarcolemmal and interfibrillar mitochondria if compared to normal fibers (C main/inlet: N). (D) Fiber necroses and atrophy both are predominantly recognized in fatiguable fast-twitch type II fibers (brown), which parallels to relative type I fiber (pale fibers) enrichment. Mitochondrial areas on semithin sections (E) appear vacuolated (frame: subsarcolemmal/perinuclear vacuolation; red arrows: lined interfibrillar vacuoles), which matches with the distribution of lipid droplets in oil red O stained fibers (F; black asterisk), if compared to normal fibers (N). Ultrastructurally, both perinuclear (G) and interfibrillar (H) vacuolated areas contain masses of dysmorphic mitochondria (white asterisks) showing disorganized cristae, trilaminar membranous bodies (black asterisks) and other electron dense inclusions (blue arrow), as well as membrane-bound lipid droplets (black asterisks). Stains: (A, B): hematoxylin-eosin, (C, main): Engel’s modified Gomori, (C, inlet): NADH-TR, (D): anti-fast myosin IHC, (E): azure II methyleneblue-safranin O, (F): oil red O, (G, H): lead citrate-uranyl acetate.
10 affected dogs carried the variant in homozygous state. Five available parents of affected dogs were heterozygous (obligate carriers; Figure S1). The genotyped cohort was not necessarily representative for the entire population as we preferentially collected close relatives of the affected dogs. In a subset of 90 dogs that were not part of the extended pedigree shown in Figure 2, we observed 15 heterozygous carriers (17%). We also genotyped 435 dogs from genetically diverse breeds (Table S1). None of these dogs carried the ACADVL:c.1728C>A variant.

Genotype and phenotype correlation
We divided the 22 dogs with laboratory parameters in three groups based on their ACADVL:c.1728C>A genotype and re-evaluated the CK, ALT, C14:1 and plasma lactate levels (affected A/A, n = 8; carrier C/A, n = 6; clear C/C, n = 8). The plasma lactate level did not show any significant differences between the three groups. CK, ALT and C14:1 showed significant differences between affected dogs and either carriers or clear dogs. There were no statistically significant differences for CK, ALT and C14:1 between carriers and clear dogs (Table 4; Figure 4).

DISCUSSION
This study comprised clinical, laboratory and histopathological examinations to describe the phenotype of an inherited form of exercise induced metabolic myopathy (EIMM) in German Hunting Terriers.

![Figure 2](image-url) Pedigree of EIMM affected German Hunting Terriers used for this study. Filled symbols represent dogs with signs of myopathy. The gray filled symbol indicates an owner-reported affected dog that was not clinically examined by one of the authors. Numbers indicate dogs from which samples were available. The pedigree was drawn with a limited subset of animals for clarity. Multiple other inbreeding loops are not shown. It was not possible to unambiguously identify the potential founder of the trait.

![Figure 3](image-url) Sanger electropherograms of the ACADVL:c.1728C>A variant. A genomic ACADVL fragment was amplified by PCR and sequenced with the Sanger method. The figure shows representative data from dogs with the three different genotypes.
A whole genome resequencing approach revealed the ACADVL:c.1728C>A nonsense variant as candidate causative defect for the observed phenotype.

Our claim of causality for the ACADVL:c.1728C>A variant is supported by three lines of evidence, perfect co-segregation of the mutant allele in an extended family, perfect genotype-phenotype association in a fairly large cohort of dogs, and the knowledge about the functional allele in an extended family, supporting the notion that the observed phenotype is similar to the adult-onset form of ACADVL in humans (Andresen et al. 1999; Miller et al. 2015). ALT is mostly a specific enzyme of the liver, but can also be found in erythrocytes and skeletal muscle (Nelson and Couto 2014). We observed that the affected dogs had significantly increased plasma ALT values in comparison to the non-myopathic dogs. As other liver function indicators were all within the reference ranges and as the blood count did not reveal any abnormalities, we assume that the liver integrity and the erythrocytes were normal in the affected dogs. Therefore the observed elevated ALT levels most likely reflect muscle damage. This finding also supports the notion that the observed phenotype is similar to the adult-onset form of ACADVL in humans, as a liver disorder is only found in the early-onset forms of human ACADVL (Andresen et al. 1999; Miller et al. 2015).

Using mass spectrometry we discovered a highly elevated level of C14:1 in the acylcarnitine profile in dogs with EIMM. An abnormal elevation of long-chain acylcarnitine such as tetradecenoylcarnitine (C14:1), is characteristic for an inherited disorder of mitochondrial β-oxidation disorders such ACADVL in humans (Tucci, 2017, Liang and Nishino 2010). The routinely used human cutoff value for this metabolite is 0.25 μmol/l. One published study in dogs suggested a range of 0-0.14 μmol/l for adult healthy dogs (Osorio and Uribe-Velásquez 2007). Our results confirm that C14:1 can be used as a laboratory marker for ACADVL in dogs as there was a significant difference and no overlap between the affected and unaffected animals. EIMM

Table 3 Association of the ACADVL:c.1728C>A genotypes with myopathy
Genotype
German Hunting Terriers with signs of myopathy
German Hunting Terrier controls
Dogs from other breeds

A9 clinically examined cases included.

A14 clinically examined controls included.

Table 4 Laboratory findings
Dog ID
JT007
JT009
JT033
JT044
JT045
JT082
JT112
JT114
JT005
JT012
JT013
JT018
JT019
JT117
JT008
JT010
JT015
JT016
JT017
JT020
JT021
JT118

Reference values in dog: CK = 48-400 IU/l; ALT = 18-86 IU/l; C14:1 = 0-0.14 μmol/l; lactate = 0.22-1.44 mmol/l; NT-proBNP ≤ 900 pmol/l (Vaden 2009; Osorio and Uribe-Velásquez 2007).
suddenly present with EIMM (Hoffman et al. 1999). In humans, ACADVL variants have been described for the adult-onset form of ACADVL deficiency in dogs. Episodes of rhabdomyolysis and myoglobinuria have been observed during episodes of hemolysis due to the presence of hemoglobin or erythrocytes in urine, or during episodes of muscular injury, such as after exercise (McClelland et al. 2015). The canine ACADVL:c.1728C>A variant is located close to the homologous position of three known human pathogenic variants, p.Arg567Gln (eight cases, Schiff et al. 2013), p.Ser583Trp (three cases, Souri et al. 1998) and p.Ser583Leu (three cases, Buján et al. 2014). Moreover, human ACADVL frame-shift variants, comparable to the dog variant, have also been described: p.Leu575Profs*17 and p.Met578Ilefs*15 (Miller et al. 2015). Unfortunately, the human patients with these variants were not clearly classified into one of the three forms of ACADVL deficiency (Andresen et al. 1999). In humans, it was shown that the C-terminal 180 amino acids of ACADVL play a role for homodimer assembly and are important for the interaction between the protein and the inner membrane of the mitochondrion (Souri et al. 1998).

The clinical phenotype in the affected German Hunting Terriers was comparatively mild and most closely resembled the adult form of ACADVL in humans. Further studies will be necessary to clarify whether affected German Hunting Terriers retain some residual ACADVL enzyme function. In a scenario with complete loss of ACADVL function, the relatively mild phenotype in dogs would suggest some physiological differences between humans and dogs that allow the dogs to better compensate for the lack of ACADVL function. Alternatively, as the dog variant is located near the end of the ACADVL gene, in the antepenultimate exon, it seems conceivable that a fraction of the mutant transcripts might escape nonsense mediated decay and that the truncated protein is actually expressed. The truncated protein is predicted to have an intact catalytical domain, which might give rise to a loss of function, even if homodimer formation and/or the interaction with the inner mitochondrial membrane is compromised. Residual ACADVL enzyme function in homozygous mutant dogs might also very well explain the relatively mild canine clinical phenotype. As mentioned above, further studies including protein function studies are required to answer these open questions.

In conclusion we discovered a novel hereditary disease and provide a first description of the EIMM phenotype in German Hunting Terriers. Furthermore, we identified a nonsense variant in the ACADVL gene as most likely underlying genetic defect. Our findings provide a large animal model for a known human disease and will enable genetic testing to avoid the unintentional breeding of affected offspring.

ACKNOWLEDGMENTS

We thank all the owners who donated samples and information on their dogs. We also thank Josef Andritzky of the German Hunting Terrier Club of Germany and Gabriele Schiller from TG-Verlag Beuing GmbH, Giessen, Germany for their help and providing access to the pedigree database of the German Hunting Terriers. We are grateful to Gabriele Zimmer, Kerstin Peter, Nathalie Besuchet...
Author contributions: FM and MK discovered the phenotype in German Hunting Terriers and performed the clinical investigations. ATi provided clinical counseling. MR and KM performed the histopathological examinations. ACS recognized the similarities to the human ACADVL/D phenotype, proposed ACADVL as candidate gene and provided counseling for biochemical and metabolic analyses. VL and TL analyzed the acylcarnitine profiles. VJ performed bioinformatics analyses of whole genome sequence data. FMMAS, ATs, and GT performed the whole genome re-sequencing experiments and provided counseling regarding the statistical analyses. VL and TL performed the genetic analyses. VL and FM wrote the initial manuscript draft and all authors helped in revising and finalizing this manuscript draft. Conflict of interests: FM and MK are affiliated with a private veterinary clinic. ACS and NJ are affiliated with private diagnostic laboratories.

LITERATURE CITED

Andresen, B. S., S. Olpin, B. J. Poorthuis, H. R. Scholte, C. Viane-Saban et al., 1999 Clear correlation of genotype with disease phenotype in very-long-chain acyl-CoA dehydrogenase deficiency. Am. J. Hum. Genet. 64(2): 479–494. https://doi.org/10.1086/302261

Bai, B., W. M. Zhao, B. X. Tang, Y. Q. Wang, L. Wang et al., 2015 DoGS: the dog and wolf genome SNP database. Nucleic Acids Res. 43(Database issue): D777–D783. https://doi.org/10.1093/nar/gku1174

Bartlett, K., and S. Eaton, 2004 Mitochondrial beta-oxidation. Eur. J. Biochem. 27(1): 462–469. https://doi.org/10.1046/j.1432-1033.2003.03947.x

Blegen, V. R., J. P. McCue, T. A. Donovan, and G. D. Shelton, 2015 Metabolic Encephalopathy and Lipid Storage Myopathy Associated with a Presumptive Mitochondrial Fatty Acid Oxidation Defect in a Dog. Front. Vet. Sci. 2: 64. https://doi.org/10.3389/fvets.2015.00064

Buján, N., A. Arias, R. Montero, J. García-Villoria, W. Lissens et al., 2014 Characterization of CoQ10 biosynthesis in fibroblasts of patients with primary and secondary CoQ10 deficiency. J. Inherit. Metab. Dis. 37(1): 53–62. https://doi.org/10.1007/s10545-013-9620-4

Cingolani, P., A. Platts, L. Wang, M. Coon, T. Nguyen et al., 2012 A program for annotating and predicting the effects of single nucleotide polymorphisms, SnPeff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly (Austin) 6(2): 80–92. https://doi.org/10.4161/fly.19695

Fox, P. R., M. A. Oyama, M. J. Hezzell, J. E. Rush, T. P. Nguyenba et al., 2015 Relationship of plasma N-terminal pro-brain natriuretic peptide concentrations to heart failure classification and cause of respiratory distress in dogs using a 2nd generation ELISA assay. J. Vet. Intern. Med. 29(1): 171–179. https://doi.org/10.1111/jvim.12472

Fukao, T., H. Watanabe, K. Orii, Y. Takahashi, A. Hirano et al., 2001 Myopathic form of very-long-chain acyl-coa dehydrogenase deficiency: evidence for temperature-sensitive mild mutations in both mutant alleles in a Japanese girl. Pediatr. Res. 49(2): 227–231. https://doi.org/10.1203/00006450-200102000-00016

Goetzman, E. S., Y. Wang, M. He, A. W. Mohnsen, B. K. Ninness et al., 2007 Expression and characterization of mutations in human very-long-chain acyl-CoA dehydrogenase using a prokaryotic system. Mol. Genet. Metab. 91(2): 138–147. https://doi.org/10.1016/j.ymgme.2007.01.013

Gross, S. A., Fischer, M. Rosati, L. Matiasek, D. Corlazzol et al., 2016 Nodo-paranodopathy, interonodopathy and cleftopathy: Target-based reclassification of Guillain-Barré-like immune-mediated polyradiculoneuropathies in dogs and cats. Neuromusc. Disord. 26(12): 825–836. https://doi.org/10.1016/j.nmd.2016.08.015

Hale, D. E., M. L. Batshaw, P. M. Coates, F. E. Freiman, S. I. Goodman et al., 1985 Long-chain acyl coenzyme A dehydrogenase deficiency: an inherited cause of nonketotic hypoglycemia. Pediatr. Res. 19(7): 666–671. https://doi.org/10.1203/00006450-198507000-00006

Hill, S. R., 2010 Changing the metabolism of dogs (Canis familiaris) and cats (Felis catus) at rest and during exercise by manipulation of dietary macronutrients. PhD Thesis, available at Massey Research Online: https://ro.massey.ac.nz (accessed 21.01.2018)

Hisahara, S., T. Matsuhashi, H. Furuyama, G. Tajima, Y. Shigematsu et al., 2015 A heterozygous missense mutation in adolescent-onset very long-chain acyl-CoA dehydrogenase deficiency with exercise-induced rhabdomyolysis. Tohoku J. Exp. Med. 235(4): 305–310. https://doi.org/10.1620/tjem.235.305

Hoffman, J. D., R. D. Steiner, L. Paradise, C. O. Harding, M. S. Li Ding et al., 2006 Rhabdomyolysis in the military: recognizing late-onset very long-chain acyl-CoA-dehydrogenase deficiency. Mil. Med. 171(7): 657–658. https://doi.org/10.7205/MILMED.171.7.657

Izai, K., Y. Uchida, T. Orii, S. Yamamoto, and T. Hashimoto, 1992 Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. I. Purification and properties of very-long-chain acyl-coenzyme A dehydrogenase. J. Biol. Chem. 267(2): 1027–1033.

Li, H., 2011 A statistical framework for SNP calling, mutation discovery, association mapping and population genetic parameter estimation from sequencing data. Bioinformatics 27(21): 2987–2993. https://doi.org/10.1093/bioinformatics/btr509

Li, H., and R. Durbin, 2009 Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14): 1754–1760. https://doi.org/10.1093/bioinformatics/btp324

Li, H. and I. Nishino, 2010 State of the art in muscle lipid diseases. Acta Myol. 29(2): 351–356.

Li, H. and I. Nishino, 2011 Lipid storage myopathy. Curr. Neurol. Neurosci. Rep. 11(1): 97–103. https://doi.org/10.1007/s11910-010-0154-y

Lindner, M. G., F. Hoffmann, and D. Matern, 2010 Newborn screening for disorders of fatty-acid oxidation: experience and recommendations from an expert meeting. J. Inherit. Metab. Dis. 33(5): 521–526. https://doi.org/10.1007/s10545-010-9076-8

McAndrew, R. P., Y. Wang, A. W. Mohnsen, M. He, J. Vockley et al., 2008 Structural basis for substrate fatty acid chain specificity: crystal structure of human very-long-chain acyl-CoA dehydrogenase. J. Biol. Chem. 283(14): 9435–9443. https://doi.org/10.1074/jbc.M709135200

McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis et al., 2010 The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20(9): 1297–1303. https://doi.org/10.1101/gr.107524.110

McClelland, G., G. Zwingelstein, C. R. Taylor, and J. M. Weber, 1995 Effect of exercise on the plasma nonesterified fatty acid composition of dogs and goats: species with different aerobic capacities and diets. Lipids 30(2): 147–153. https://doi.org/10.1007/BF02538268

Miller, M. J., L. C. Burrage, J. B. Gibson, M. E. Strenk, E. J. Lose et al., 2015 Recurrent ACADVL molecular findings in individuals with a positive newborn screen for very long chain acyl-coa dehydrogenase (VLCAD) deficiency in the United States. Mol. Genet. Metab. 116(3): 139–145. https://doi.org/10.1016/j.ymgme.2015.08.011

Nelson, R. W., and C. G. Couto, 2014 Small animal internal medicine, Elsevier, St. Louis, Mo.
Ogilvie, I., M. Pourfarzam, S. Jackson, C. Stockdale, K. Bartlett et al., 1994 Very long-chain acyl coenzyme A dehydrogenase deficiency presenting with exercise-induced myoglobinuria. Neurology 44(3 Pt 1): 467–473. https://doi.org/10.1212/WNL.44.3_Part_1.467

Osorio, J. H., and L. F. Uribe-Velasquez, 2007 Measurement of blood acylcarnitines in adult canines using tandem mass spectrometry. Arq. Bras. Med. Vet. Zootec. 1(1): 24–28.

Platt, S. R., C. L. Chrisman, and G. D. Shelton, 1999 Lipid storage myopathy in a cocker spaniel. J. Small Anim. Pract. 40(1): 31–34. https://doi.org/10.1111/j.1748-5827.1999.tb03251.x

Saudubray, J. M., D. Martin, P. de Lonlay, G. Touati, F. Poggi-Travert, 1996 Mutation analysis of very-long-chain acyl-coenzyme A dehydrogenase deficiency. J. Inherit. Metab. Dis. 19(3): 279–283. https://doi.org/10.1007/BF00010639

Souri, M., T. Aoyama, K. Orii, S. Yamaguchi, and T. Hashimoto, 1992 Novel fatty acid beta-oxidation enzymes in rat liver mitochondria. II. Purification and properties of enoyl-coenzyme A (CoA) hydratase/3-hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase trifunctional protein. J. Biol. Chem. 267(2): 1034–1041.

Souris, B. A., M. O. Carneiro, C. Hartl, R. Poplin, G. Del Angel et al., 2013 From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43:11.10.11–33. https://doi.org/10.1002/0471250953.bi1110s43

Tucci, S., U. Flögel, S. Hermann, M. Sturm, M. Schäfers et al., 2014 Development and pathomechanisms of cardiomyopathy in very-long-chain acyl-CoA dehydrogenase deficient (VLCAD–/–) mice. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 1842(5):677–685.

Vadnai, S. L., 2009 Blackwell's five-minute veterinary consult Laboratory tests and diagnostic procedures: canine & feline, Wiley-Blackwell, Ames, Iowa.

Wood, J. C., M. J. Magera, P. Rinaldo, M. R. Seashore, A. W. Strauss et al., 2001 Diagnosis of very long chain acyl-dehydrogenase deficiency from an infant’s newborn screening card. Pediatrics 108(1): E19. https://doi.org/10.1542/peds.108.1.e19

Zhang, R. N., Y. F. Li, W. J. Qiu, J. Ye, L. S. Han et al., 2014 Clinical features and mutations in seven Chinese patients with very long chain acyl-CoA dehydrogenase deficiency. World J. Pediatr. 10(2): 119–125. https://doi.org/10.1007/s12519-014-0480-2

Zschocke, J., and G. F. Hoffmann, 2011 Vademecum metabolicum diagnosis and treatment of inborn errors of metabolism, Schattauer, Stuttgart.

Communicating editor: D. Bannasch