Acute pain assessment and management in the prehospital setting, in the Western Cape, South Africa: A Knowledge, Attitudes and Practices Survey

Andrit Lourens andritl@gmail.com
University of Cape Town Division of Emergency Medicine
Corresponding Author
ORCiD: 0000-0003-0180-6017

Peter Hodkinson
University of Cape Town Division of Emergency Medicine

Romy Parker
University of Cape Town Department of Anaesthesia and Perioperative Medicine

DOI: 10.21203/rs.2.12353/v1

SUBJECT AREAS
Critical Care & Emergency Medicine

KEYWORDS
Prehospital; Acute pain assessment and management; Analgesia; Knowledge, Attitudes and Practices
Abstract

Background: Acute pain is frequently encountered in the prehospital setting, and therefore, is known to be a fundamental aspect of quality emergency care. Research has shown a positive association between pain management practices and health care providers’ knowledge of, and attitudes towards pain. This study aimed to describe the knowledge, attitudes, and practices of emergency care providers in relation to acute pain assessment and management in the prehospital setting, in the Western Cape, South Africa.

Methods: A web-based descriptive cross-sectional survey was conducted among emergency care providers of all qualifications, using a face-validated Knowledge, Attitudes and Practices of Pain survey.

Results: A hundred (n=100) respondents, with a mean age of 34.74 (SD 8.13) years and mean of 10.02 (SD 6.47) years of experience participated. Most respondents were male (69%), employed in the public/government sector (93%) as operational emergency care providers (85%) with 54% (n=54) of respondents having attended medical education on pain assessment and management in the last two years. The overall mean percentage of correct answers for knowledge and attitudes regarding pain among emergency care providers was 58.01% (SD 15.66) with gaps identified in various aspects of pain and pain management including: basic knowledge of pain physiology; pain assessment; indicators of severe pain; pharmacological and non-pharmacological pain management; culture and spiritual influences; and pain expression. Practitioners with a higher qualification, more years’ experience and those who did not attend medical education on pain, achieved higher overall scores. Pain scores were not assigned to patients’ as self-reported while overall, limited
pain relief was provided.

Conclusion: Our results suggest that there is suboptimal knowledge and attitudes regarding pain among most levels of emergency care qualifications. Pain education is essential, it should occur regularly, and specific educational initiatives aimed at addressing pain knowledge and attitudes have been indicated. Future work should focus on the additional description of the gaps in pain knowledge and attitudes among emergency care providers and exploring the decline over time. Description of barriers to and enablers of pain care in the South African prehospital setting is imperative. Organisational culture should endorse and monitor prehospital pain care.

Background

The prevalence of acute pain in patients managed in the prehospital arena is thought to be high with the assessment and management of pain widely shown to be insufficient at large (1–4). The South African prehospital setting appears to be no different with two recent studies displaying limited evidence of pain assessment, and pain management being likely ineffective (5,6). Very little is known about acute pain in the African prehospital setting (7). In low- and middle-income countries, inadequate pain management is often attributed to a lack of resources, lack of knowledge, poor pain assessment and/or pain being a low priority (8,9). Benefits of alleviating acute pain in the prehospital setting are numerous. Suffering, recovery time, risk of infection and the risk for the development of chronic pain are reduced while diagnostic and treatment processes are enabled and patient satisfaction and patient outcomes are improved (10–13). Evidence has also suggested that analgesia administered in the prehospital setting, reduces the time to analgesia and may
increase the likelihood of timeous subsequent emergency department analgesia (13,14). Pain management is a fundamental aspect of quality prehospital care, and despite apparently straight forward approaches, in theory, it is extremely challenging to achieve, even in well-developed prehospital systems (15-17). Barriers to prehospital pain management are numerous, with language barriers, organisational culture, lack of knowledge, challenges with pain assessment, underestimation of pain and practitioners beliefs and attitudes frequently highlighted (13,18-21). Adults are more likely than paediatrics to receive analgesia (22), males are more likely than females (regardless of age and pain severity) to receive opioids (23-26), and those thought to be in severe pain and spending longer time with Emergency Medical Services (EMS), similarly, are more likely to receive opioids (25). When compared to female prehospital practitioners, male practitioners express more enduring (stoic) viewpoints regarding the need for analgesia while older practitioners express more negative attitudes about assessing pain medication requirements (27). Some prehospital practitioners express an attitude that pain is not life-threatening, therefore, resulting in a minor priority during trauma care (18). Despite the known importance of pain management and the positive influence of pain knowledge and attitudes on pain management practices, prehospital providers from various high-income countries still report limited focus on pain assessment and management during undergraduate studies (18,20,21).

Knowledge, attitudes, and practices (KAP) surveys can be conducted to measure what a study population knows about a health problem, to develop a baseline understanding of beliefs and behaviours, and even to measure changes after health interventions (28,29). Considering, the high prehospital pain prevalence, scarcity of acute pain evidence in the African prehospital setting and the potential lasting
impact of unalleviated pain, this study aimed to describe the KAP of emergency care providers regarding acute pain assessment and management in the prehospital setting, in the Western Cape (WC), South Africa (SA). The specific objectives were to, (1) identify gaps in pain knowledge; (2) assess attitudes regarding pain assessment and management, (3) describe pain assessment and management behaviours and practices and (4) identify barriers to and enablers of pain care.

Methods

Study design:

A web-based (30) descriptive cross-sectional KAP in Pain survey was conducted among prehospital emergency care providers of all qualifications, registered with the Health Professionals Council of South Africa (HPCSA) and currently practising in the WC, SA.

Study setting:

Respondents to this study were emergency care providers from the WC province, one of nine provinces in SA with a population of more than 6.3 million people, which accounts for 11.3% of the SA population. The WC is sub-divided into six districts, one large metropolitan area with a well-developed healthcare network including several tertiary and many district-sized hospitals (the City of Cape Town), and five (rural or peri-urban areas) districts (Cape Winelands; Overberg; West Coast; Eden (or Garden Route) and Central Karoo districts) characterised by largely small district or regional hospitals separated by long distances (31). Most of the communities in the WC are served by the public (government-operated) EMS system while various private ambulances services deliver a service to the minority of the population who can afford medical insurance.
Emergency care education in SA are broadly categorised into basic (BLS), intermediate (ILS) or advanced life support (ALS) level qualifications which evolved from a three-tiered short course framework to more professional tertiary (undergraduate) level qualifications in recent years (32,33). At the time of the study, non-ALS practitioners’ scope of practice limited their analgesic options to inhaled nitrous oxide (Entonox®), which is regularly not available on most ambulances in the WC. For these practitioners (the majority of the workforce (32)), to deliver pain relief or to provide stronger analgesia, a request for assistance from a higher (ALS) qualified practitioner, who is able to administer intravenous (IV) analgesia (morphine or ketamine), needs to be made and the availability of these practitioners is often limited.

Sampling and sample size:

A non-probability, convenience sampling strategy was utilised, with the aim to obtain a representative sample of each level of qualification within the target population. Based on the number of emergency care providers (9091) registered under the different HPCSA (iRegister) (34) emergency care registers in the WC, a sample size of 192 was calculated using an online sample size calculator (35) with a 7% margin of error, 95% confidence interval (CI) and a 50% response distribution. The actual sample size obtained was 100 respondents. With this sample, the margin of error was 9.75% with a 95% CI and a 50% response distribution.

Data collection:

The development of the questionnaire was based primarily on two existing surveys - the Knowledge and Attitudes Survey Regarding Pain (KASRP) used to assess nurses and other Healthcare Providers (HCPs) (revised 2014) (36) and the Pediatric Nurses’ Knowledge and Attitudes Survey Regarding Pain (37) as well as including questions
adapted from the article by Pocock (38) and questions specific to the SA prehospital setting (see Additional File 1). Three experts made comments and suggestions for enhancement after which the survey was piloted and refined. The questionnaire consisted predominantly of closed-ended questions with limited open-ended questions in six sections including demographical questions; “true/false/don’t know” statements (18); likert scale statements (8); multiple-choice questions (MCQ) (5); barriers and enablers (selection from the list provided); and two case studies (measuring pain assessment and management practices).

A recruitment flyer containing an embedded link and quick response (QR) code to the online survey was sent to senior management of the different EMS systems for distribution to staff members. Data collection started on the 11th of October 2018 and was extended due to poor participation until the 31st of March 2019. The management structure of the services involved was requested to remind staff of the survey in December 2018 and January 2019. All completed questionnaires were anonymised by the web-based survey service (30).

Data Analysis:

Data were analysed using SPSS Statistics for Windows, Version 25 (39). For descriptive statistics, measures of frequency, central tendency and dispersion were calculated where appropriate and presented in tables and graphs. Shapiro-Wilk tests were conducted to assess for normality. For inferential statistics, Spearman’s correlation was conducted to determine significant relationships between variables whereas the non-parametric tests, Mann-Whitney U test and Kruskal-Wallis H test, was conducted to determine differences between demographic groups. Developers of the KASRP survey (36) set the minimum acceptable score for pain knowledge and
attitudes regarding pain at ≥80% and recommended that distinguishing between knowledge and attitude items during data analysis be avoided.

Results

Participation:

Figure 1 presents a flow diagram of informed consent provided (n=201), the number of responses included in the data analysis (n=100) and the number of respondents who completed each section of the questionnaire. Since the questionnaire was distributed by the organisations which approved the research, the response rate could not be accurately determined (denominator unknown).

Demographic information (Section 1):

The age of respondents ranged between 21 and 57 years with a mean age of 34.74 (SD 8.13, 95%CI 33.13 - 36.35) years, while years’ of experience ranged between 1 and 29 with a mean of 10.02 (SD 6.47, 95%CI 8.74

Knowledge and attitudes regarding pain management in the SA prehospital setting (Sections 2, 3 and 4):

For the “true/false/don’t know” section (2) of the questionnaire, scores (n=100) ranged between 3 (17%) and 18 (100%) with a mean score of 10.14 out of 18 or 56.38% (SD 17.02, 95%CI 53.00 - 59.76). Correct responses are ranked and summarised in Table 2.

Ninety-one (91%) of the 100 respondents completed the 3-point Likert-scale section (3) which was scored, 1 for a positive response and 0 for a negative or neutral response. Overall positive responses for respondents ranged between 0 (0%) and 7 (100%) out of 7 with an average overall percentage of 64.68% (SD 22.87, 95%CI 59.92 - 69.44). Positive responses are depicted and ranked in Table 3.
Statement 26 of section 3 required respondents to share their own opinion on whether they believe the current HPCSA protocols provide sufficient and appropriate pain management options for the SA prehospital setting. Of the 91 respondents, 46.2% (n=42) disagreed while 14.3% (n=13) neither agreed nor disagreed and 39.6% (n=36) agreed with the statement.

The mean score for the MCQ (see Table 4) section (4) was 2.59 out of 5 or 51.72% (SD 21.03, 95%CI 47.24 - 56.21) and ranged between 0 (0%) and 5 (100%).

For the 87 (87%) respondents who completed all three sections (2-4), the overall mean score was 17.40 out of 30 or 58.01% (SD 15.66, 95%CI 54.67 - 61.35) with scores ranging between 6 (20.0%) and 29 (96.67%).

Factors influencing knowledge and attitudes regarding pain in the SA prehospital setting:

There was a significant difference in the overall scores obtained by respondents with different levels of qualification ($H=30.79, p<0.001$). Respondents with ALS qualifications obtained a higher overall mean rank score compared to those with BLS and ILS qualifications. Further, there was a significant difference between the overall scores of respondents with different number of years of experience ($H=9.051, p=0.011$) obtained. Respondents with less (0-10 years) years’ experience obtained lower overall mean rank scores compared to respondents with more (11-20 years and 21-30 years) years’ experience (see Additional File 2: Table S1). A weak positive relationship ($r_s=0.323, p=0.002$, two-tailed) was found between overall score and years’ experience and a strong positive relationship ($r_s=0.597, p<0.001$, two-tailed) between overall score and level of qualification.

Respondents from the Cape Winelands, Overberg, and Cape Town Metropolitan districts achieved higher overall mean rank scores compared to the other three
districts ($H=16.74$, $p=0.005$). Respondents who had not attended any specific training on pain management in the preceding two years obtained a statistically significant ($U=664.0$, $p=0.017$) higher overall mean rank score compared to those who did. There was no difference in overall mean scores analysed by gender ($U=718.5$, $p=0.327$) and age group ($H=2.800$, $p=0.424$) (see Additional File 2: Table S1).

Barriers to and enablers of pain assessment and management (section 5) (n=73):

The three most frequently selected (from list provided) barriers to pain assessment and management were: alcohol and drug use by patients (n=49, 67.1%); language (n=45, 61.6%); and workload or lack of time (n=44, 58.9%). The three most frequently selected enablers were: the availability of higher qualified emergency care providers (n=54, 74%); the understanding that pain management is important (n=43, 58.9%); and the availability of resources such as medication, disposables, and monitoring equipment and a cooperative patient with 52.1% (n=38), each. The complete list of barriers and enablers, as well as the additional barriers and enablers cited by respondents, are available in Additional File 2, Table S2.

Case Studies (section 6) (n=65):

Two case scenarios (see Table 5) were used for respondents to indicate what pain score (0 - 10) they would assign as well as to indicate the pain management they would provide. Of the 65 respondents who completed this section, only 35.4% (n=23) assigned a pain score of 8 as self-reported by the patient (patient 1) presenting with no behavioural indicators of severe pain whereas for the patient (patient 2) with behavioural indicators of severe pain, 64.6% (n=42) of respondents assigned a pain score of 8 as self-reported (see Additional File 2: Figure S1 and S2). The median pain score given by the respondents for patient 1 was 5 (IQR 3-8) and 8
(IQR 6-8) for patient 2.

The pain management indicated by respondents for both patients is summarised per level of qualification in Additional File 2: Table S3. Although, both patients self-reported a pain score of 8/10 (severe pain), the pain management strategies for the two patients suggest that respondents will manage a patient more aggressively with behavioural indicators of severe pain with pharmacological agents than a patient without behavioural signs of severe pain. Positive points to highlight was the consideration of requesting pain medication from the referring facility (BLS & ILS) before transportation, providing pain relief before moving the patient and the consideration given to non-pharmacological pain management in the form of making the pain comfortable and repositioning as well as continuous reassessment. Points of concern were the administration of placebo to test whether the patient is reporting pain honestly and the fact that overall, the descriptions provided suggested that the patients (specifically patient 1) without behavioural indicators of severe pain, would have been transported with little to no pain relief.

Discussion

To our knowledge, this is the first study investigating prehospital acute pain knowledge, attitude and practices in an African setting and therefore the findings will be valuable in terms of making recommendations for pain education and further research.

Knowledge and attitudes regarding pain:

Our findings show that there are significant gaps in knowledge and attitude regarding pain in this cohort of prehospital providers, across provider levels. Research investigating acute pain KAP in Africa and around the world are more
commonly conducted in hospitals among nurses and other HCPs, limiting comparison with the present study results. Given the vast differences between nursing curricula and the curricula for prehospital practitioners in South Africa and the fact that the questionnaire used was only face validated, makes direct comparison difficult.

The low scores obtained by the respondents in the present study are similar to those reported in studies from Africa (40–42), Italy (43), the Middle East (44–48), Taiwan (49), Hong Kong (50) and Turkey (51), conducted among nurses and other HCPs. On the other hand, studies from Northern America (52–54), Norway (55) and Australia (56), found substantively higher (72% to 79%) knowledge and attitudes scores among nurses. Although the scores obtained in these studies were about 70%, most still recommend targeted pain education to overcome specific areas of knowledge and attitude deficits, notably pharmacological pain, pain assessment and non-pharmacological pain management approaches along with regular in-service pain education (52,54,56). Research among nurses has shown that knowledge and attitudes regarding pain predict pain management practice, with attitudes proven to contribute more to variances in pain management practices than knowledge (57). Additionally, adequate pain knowledge and favourable pain attitudes among nurses has also been found to correlate positively with patient satisfaction (52). Although pain education is paramount to changing attitudes and improving pain knowledge, the opinion of some is that education alone may not suffice (53). In addition to pain education, organizational culture must promote effective pain management practices, provide leadership and support, encourage a culture of continuous learning and promote interdisciplinary teamwork (53).

Factors influencing knowledge and attitudes regarding pain:
Our findings show that the level of qualification is a key factor influencing provider knowledge and attitudes regarding pain. The relationship between the level of qualification and knowledge and attitudes regarding pain has been confirmed by many international studies (44-46,51,53,55,58,59). However, the effect of years’ of experience on KAP scores is uncertain with many differing findings across other studies (50-53,55,58,59). As would be thought, prior pain education usually results in higher knowledge and attitudes regarding pain scores (44,52) yet our findings echoed that of an Ethiopian study by Germossa et al. (41) which showed higher scores amongst those not having attended further pain education.

Gaps in pain knowledge, attitudes and pain management practices:
When comparing the percentage of correct responses, gaps in knowledge and attitudes regarding pain can be identified, showing overall poor to average basic pain and pain physiology knowledge and attitudes. Although, a high proportion of respondents agreed that pain assessment using a pain assessment tool is necessary, and allows for quick and easy pain measurement, and even that the patient is the best judge of pain severity, a surprisingly high proportion (40%) of respondents believed it to be appropriate to administer sterile water to test whether the pain is real, and almost 40% believed that pain relief should not be provided if (in their opinion) the condition is not painful. Despite evidence indicating that vital signs are not a reliable indicator of pain severity (60), about 70% of respondents believed the contrary. Further, more than 65% of respondents believed that their prior experience dealing with patients in pain, allows them to score pain more accurately than patients themselves. The above demonstrates highly questionable knowledge and attitudes regarding pain assessment and indicators of pain severity. Although most respondents indicated that non-pharmacological approaches to pain
management like splinting are effective methods to assist pain relief, answers to other statements related to non-pharmacological approaches like distraction and emotional support from parents were less positive. Most were correct with regards to pharmacological pain management, however, more than 70% held the belief that infants less than 6 months cannot tolerate opioids (poor performance on this item must be considered in terms of the scope of many practitioners limiting their familiarity with infants).

Understanding of the influence of culture and spirituality on pain experience and expression was poor, despite strong evidence that culture, ethnicity and spirituality plays a significant role in both pain expression and pain behaviour, making pain behaviour a poor indicator of pain severity (61). These misconceptions were further evident in the case scenarios with respondents linking behaviour indicators as more important than self-reported pain. Pain management practices described by respondents for the two case studies suggest that the patients will not receive ideal pain management during the prehospital phase. Considering that emergency care providers do not trust patients to accurately self-report pain and the less than ideal management proposed by most respondents in the case study scenarios were suggestive of deficient pain management practices.

Educational interventions:

A 2018 study by Germossa et al. (41) showed a significant increase in the mean percentage (41.4% to 63%) of nurses obtained for the KASRP after an educational intervention, suggesting that educational initiatives are effective in improving knowledge and attitudes regarding pain. The positive effects of educational initiatives on pain care are also supported in prehospital research (62,63). However, our findings contradict these reports with respondents in this study (with recent
training on pain assessment and management) which showed that as part of continued medical education, they had performed more poorly than others. Various factors could have affected the acquisition and retention of the knowledge respondents received during educational initiatives, such as the extent, content, depth and form of continued medical education which was not the focus of the current study. It is also indicated in the literature that knowledge gained from pain education will likely decline over time (64). Although further research is necessary, the current findings suggest that pain education should focus on all aspects relating to pain in order to improve knowledge and attitudes among emergency care providers in SA and that pain education must be continuous.

Barriers and enablers:

As elsewhere in the world, language barriers, and alcohol/drug use were identified as key barriers to prehospital pain management (65,66). Workload and lack of time with patients appear to be barriers specific to the South African prehospital setting. Public EMS, in particular, have a significant workload burden, (67) frequently dealing with more than one patient at a time which is likely to influence the delivery of pain care. The focus on the availability of higher qualified emergency care practitioners as the foremost enabler of pain management is also likely to be specific to the SA prehospital setting and due to the structure of the EMS workforce in SA and pain management limitations in the scopes of practice of different levels of prehospital qualifications. Although more than half of respondents identified that pain management is important, the influence that organisational culture, EMS leadership support and emergency department culture and pain prioritisation may have on the provision of pain care in the prehospital setting must not be underestimated or overlooked (19,20). Since the South African prehospital setting is
unique in terms of the various levels of qualification and coinciding limitations in scopes of practices, skillset and experience of advanced life support practitioners, organisational culture, workload, high trauma burden etc. all which may influence prehospital care, barriers to and enablers of pain assessment and management in this environment are worth investigating further (68).

Study limitations:
Being the first survey of its kind in the African prehospital setting, this study is an important point of departure for acute pain research. Observational studies have limitations, and in this study, participation was poor despite additional recruitment and extended data collection. Since the participating services was either unable to or declined to share staff personal information, the survey was distributed internally hence limiting the ability to calculate a response rate. The generalisability of these findings is not clear, but we believe that despite the small number of respondents, and limited diversity of respondents in terms of the level of qualification, the role within EMS and the region of origin within the province (which may weigh rural practitioners disproportionately), the findings will nevertheless create a foundation towards the understanding of the assessment and management of acute pain in the prehospital setting in SA.

Reporting bias may have originated from participants responding in what they perceive to be a professionally desirable manner, instead of exclusively based on personal beliefs, but we believe this bias is reduced by anonymity of the survey, the wide range of questions in different formats and the case study scenarios. Finally, although emergency care providers are required to be fluent in the English language, it is not the home language (69) of a significant proportion of respondents which may have led to the misinterpretation of statements or questions
answered in the survey.

Conclusions

Our results suggest suboptimal knowledge and attitudes regarding pain among most levels of emergency care qualifications. Since very little is known about acute pain knowledge and attitudes in the African prehospital setting, further work should focus on describing specific gaps in pain knowledge and attitudes among emergency care providers. Specific educational initiatives aimed at addressing pain knowledge and attitudes are indicated and should be designed and evaluated for both undergraduate and postgraduate training. Future work should focus on the implementation of pain educational initiatives and describing their impact on both knowledge and attitudes regarding pain and patient care as well as exploring the decline of pain knowledge and attitudes over time and what aspects may influence this decline. Additional description of barriers to and enablers of prehospital pain management in SA are essential. EMS systems must cultivate a culture which promotes quality pain care and monitor the effectiveness and efficiency of the pain management practice in the prehospital setting, ensuring feedback to operational staff.

Abbreviations

AEA: Ambulance Emergency Assistant; BAA: Basic Ambulance Assistant; CCA: Critical Care Assistant; CI: Confidence Interval; ECP: Emergency Care Practitioner; ECT: Emergency Care Technician; EMS: Emergency Medical Services; HCP: Healthcare Provider; HPCSA: Health Professionals Council of South Africa; KAP: Knowledge, Attitudes and Practices; KASRP: Knowledge and Attitudes Survey
Regarding Pain; MCQ: Multiple Choice Questions; SA: South Africa; WC: Western Cape.

Declarations

Ethics approval and consent to participate:
Approval was obtained from the Human Research Ethics Committee at the University of Cape Town (Reference: 220/2017) and three ambulance services. Informed consent was obtained through a tick box and participation was voluntary.

Consent for publication:
Not applicable.

Availability of data and material:
The datasets used and/or analysed during the study are not publicly available but are available from the corresponding author on reasonable request.

Competing interests:
The authors declare that they have no competing interest.

Funding:
The authors declare that no funding or financial support was received for this paper.

Authors' contributions:
AL conceived the study design, conducted the data analysis and drafted the report.
PH and RP assisted with the final report. All authors have read and approved the manuscript.

Acknowledgements:
Not applicable.

Authors’ Information:
AL: Division of Emergency Medicine, University of Cape Town (UCT), Cape Town,
South Africa

PH: Division of Emergency Medicine, University of Cape Town (UCT), Cape Town, South Africa

RP: Department of Anaesthesia and Perioperative Medicine, University of Cape Town (UCT), Cape Town, South Africa

References

1. Galinski M, Ruscev M, Gonzalez G, Kavas J, Ameur L, Biens D, et al. Prevalence and management of acute pain in prehospital emergency medicine. Prehospital Emerg Care [Internet]. 2010;14(3):334–9. Available from: https://doi.org/10.3109/10903121003760218

2. Jennings PA, Cameron P, Bernard S. Epidemiology of prehospital pain: An opportunity for improvement. Emerg Med J [Internet]. 2011;28(6):530–1. Available from: http://dx.doi.org/10.1136/emj.2010.098954

3. Murphy A, McCoy S, O'Reilly K, Fogarty E, Dietz J, Crispino G, et al. A Prevalence and Management Study of Acute Pain in Children Attending Emergency Departments by Ambulance. Prehospital Emerg Care [Internet]. 2016;20(1):52–8. Available from: https://doi.org/10.3109/10903127.2015.1037478

4. Friesgaard KD, Riddervold IS, Kirkegaard H, Christensen EF, Nikolajsen L. Acute pain in the prehospital setting: A register-based study of 41,241 patients. Scand J Trauma Resusc Emerg Med [Internet]. 2018;26(1):1-10. Available from: https://doi.org/10.1186/s13049-018-0521-2

5. Matthews R, McCaul M, Smith W. A description of pharmacological analgesia administration by public sector advanced life support paramedics in the City of Cape Town. African J Emerg Med [Internet]. 2017;7(1):24–9. Available from:
6. Vincent-Lambert, C, de Kock J. Use of morphine sulphate by South African paramedics for prehospital pain management. Pain Res Manag [Internet]. 2015;20(3):141–4. Available from: http://dx.doi.org/10.1155/2015/507470

7. Lourens A, McCaul M, Parker R, Hodkinson P. Acute Pain in the African Prehospital Setting: A Scoping Review. Pain Res Manag [Internet]. 2019;1–13. Available from: https://doi.org/10.1155/2019/2304507

8. Ogboli-Nwasor E, Hogans BB. Fact Sheet 8: Pain Education in Low-Resource Countries [Internet]. International Association of the Study of Pain. 2018. p. 1–7. Available from: https://www.iasp-pain.org/GlobalYear/PainEducation

9. Size, M, Soyannwo, OA, Justins D. Pain management in developing countries. Anaesthesia [Internet]. 2007;62(Suppl 1):38–43. Available from: https://doi.org/10.1111/j.1365-2044.2007.05296.x

10. Wells N, Pasero C, McCaffery M. Improving the Quality of Care Through Pain Assessment and Management. In: Hughes RG, editor. Patient Safety and Quality: An Evidence-Based Handbook for Nurses, Vol 1 [Internet]. Rockville, MD: Agency for Healthcare Research and Quality; 2008. p. 474-502. Available from: http://www.ncbi.nlm.nih.gov/books/NBK2658/

11. Glowacki D. Pain Management and Improvements in Patient’s Outcomes and Satisfaction. Crit Care Nurse [Internet]. 2015;35(3):33–43. Available from: http://dx.doi.org/10.4037/ccn2015440

12. Sinatra R. Causes and Consequences of Inadequate Management of Acute Pain. Pain Med [Internet]. 2010;11:1859–71. Available from: https://doi.org/10.1111/j.1526-4637.2010.00983.x

13. Hennes H, Kim MK. Prehospital pain management: Current status and future
direction. Clin Pediatr Emerg Med [Internet]. 2006;7(1):25–30. Available from:
http://dx.doi.org/10.1016/j.cpem.2006.01.008

14. Thomas SH, Shewakramani S. Prehospital Trauma Analgesia. J Emerg Med [Internet]. 2008;35(1):47–57. Available from:
https://doi.org/10.1016/j.jemermed.2007.05.041

15. Hanson S, Hanson A, Aldington D. Pain priorities in pre-hospital care. Anaest Intensive Care Med [Internet]. 2017;18(8):380–2. Available from:
http://dx.doi.org/10.1016/j.mpaic.2017.05.001

16. McManus JG, Sallee DR. Pain management in the prehospital environment. Emerg Med Clin North Am [Internet]. 2005;23(2):415–31. Available from:
https://doi.org/10.1016/j.emc.2004.12.009

17. Studnek JR, Fernandez AR, Vandeventer S, Davis S, Garvey L. The Association between Patients’ Perception of Their Overall Quality of Care and Their Perception of Pain Management in the Prehospital Setting. Prehospital Emerg Care [Internet]. 2013;17(3):386–91. Available from: https://doi.org/10.3109/10903127.2013.764948

18. Berben SAA, Meijs THJM, Van Grunsven PM, Schoonhoven L, Van Achterberg T. Facilitators and barriers in pain management for trauma patients in the chain of emergency care. Injury [Internet]. 2012;43(9):1397–402. Available from:
http://dx.doi.org/10.1016/j.injury.2011.01.029

19. Williams DM, Rindal KE, Cushman JT SM. Barriers to and enablers for prehospital analgesia for pediatric patients. Prehospital Emerg Care [Internet]. 2012;16(4):519–26. Available from: https://doi.org/10.3109/10903127.2012.695436

20. Whitley DE, Li T, Jones CMC, Cushman JT, Williams DM, Shah MN. An assessment of newly identified barriers to and enablers for prehospital pediatric pain management. Pediatr Emerg Care [Internet]. 2017;33(6):381–7. Available from:
21. Murphy A, Barrett M, Cronin J, McCoy S, Larkin P, Brenner M, et al. A qualitative study of the barriers to prehospital management of acute pain in children. Emerg Med J [Internet]. 2014;31(6):493–8. Available from: http://dx.doi.org/10.1136/emermed-2012-202166

22. Hennes H, Kim MK, Pirrallo RG. Prehospital pain management: A comparison of providers’ perceptions and practices. Prehospital Emerg Care [Internet]. 2005;9(1):32–9. Available from: https://doi.org/10.1080/10903120590891705

23. Platts-Mills, TF, Hunold KM, Weaver, MA, Dickey, RM, Fernandez, AR, Fillingim, RB, Cairns, CB, McLean S. Pain Treatment for Older Adults During Prehospital Emergency Care: Variations by Patient Gender and Pain Severity. J Pain [Internet]. 2014;14(9):966–74. Available from: https://doi.org/10.1016/j.jpain.2013.03.014

24. Lord B, Bendall JC, Reinten T. The Influence of Paramedic and Patient Gender on the Administration of Analgesics in the Out-of-Hospital Setting. Prehospital Emerg Care [Internet]. 2014;18(2):195–200. Available from: https://doi.org/10.3109/10903127.2013.856502

25. Michael GE, Sporer KA, Youngblood GM. Women are less likely than men to receive prehospital analgesia for isolated extremity injuries. Am J Emerg Med [Internet]. 2007;25(8):901–6. Available from: https://doi.org/10.1016/j.ajem.2007.02.001%0A

26. Bendall JC, Simpson PM, Middleton PM. Prehospital analgesia in New South Wales, Australia. Prehosp Disaster Med [Internet]. 2012;26(6):422–6. Available from: https://doi.org/10.1017/S1049023X12000180

27. Castrèn M, Lindström V, Hagman Branzell J, Niemi-Murola L. Prehospital personnel’s attitudes to pain management. Scand J Pain [Internet].
28. World Health Organisation and Stop TB Partnership. Advocacy, communication and social mobilization for TB control: a guide to developing knowledge, attitude and practice surveys [Internet]. Geneva: World Health Organisation; 2008. 1–68 p. Available from: papers2://publication/uuid/F52C6E32-6B86-4DCC-A96C-4ED36F8491A8

29. Gumucio, S, Luhmann, N, Guillaume, F, Zompi , S, Ronsse, A, Courcaud, A, Bouchon, M, Trehin, C, Schapman, S, Cheminat, O, Ranchal, H, Simon, S, Monde M. The KAP Survey Model [Internet]. Médecins Du Monde. 2011. Available from: https://www.researchgate.net/publication/51761253_Measuring_Quality_in_Emergency_Medical_Services_A_Review_of_Clinical_Performance_Indicators

30. SurveyMonkey Inc. [Internet]. San Mateo, California, USA; Available from: www.surveymonkey.com

31. Western Cape Government. Overview of the Western Cape [Internet]. 2019 [cited 2019 Jun 7]. Available from: https://www.westerncape.gov.za/your_gov/70#overview

32. National Department of Health. National Emergency Care Education and Training Policy [Internet]. 2017 p. 1–16. Available from: http://www.health.gov.za/index.php/2014-08-15-12-53-24/category/327-2017po?download=2126:national-emergency-care-education-and-training-policy

33. Sobuwa S, Christopher LD. Emergency care education in South Africa: past, present and future. Australas J Paramed [Internet]. 2019;16:1–6. Available from: https://doi.org/10.33151/ajp.16.647

34. HPCSA. iRegister [Internet]. 2017. Available from: http://isystems.hpcsa.co.za/iregister/

35. Raosoft.com. Sample Size Calculator [Internet]. Raosoft, Inc; 2016. Available
from: http://www.raosoft.com/samplesize.html

36. Ferrell, BR, McCaffery M. Knowledge and Attitudes Survey Regarding Pain [Internet]. Vol. 10, Journal of Palliative Medicine. Available from: https://prc.coh.org/Knowldege & Attitude Survey 7-14 (1).pdf

37. Manworren R. Development and Testing of the Pediatric Nurses' Knowledge and Attitudes Survey Regarding Pain. Pediatr Nurs [Internet]. 2001;27(2):151-8. Available from: http://link.galegroup.com/apps/doc/A73827307/AONE?u=unict&sid=AONE&xid=7d19588e

38. Pocock H. Adaptation of a tool measuring attitudes towards pain in paramedics. Int Emerg Nurs [Internet]. 2013;21(3):210-5. Available from: http://dx.doi.org/10.1016/j.ienj.2012.07.003

39. IBM. SPSS Statistics for Windows [Internet]. Armonk, NY: IBM Corp; 2017. Available from: https://www.ibm.com/za-en/analytics/spss-statistics-software

40. Eyob T, Mulatu A, Abrha H. Knowledge And Attitude Towards Pain Management Among Medical And Paramedical Students Of An Ethiopian University. J Pain Reli [Internet]. 2014;03(01):1-5. Available from: http://www.dx.doi.org/10.4172/2167-0846.1000127

41. Germossa GN, Sjetne IS, Hellesø R. The Impact of an In-service Educational Program on Nurses’ Knowledge and Attitudes Regarding Pain Management in an Ethiopian University Hospital. Front Public Heal [Internet]. 2018;6(229):1-7. Available from: https://doi.org/10.3389/fpubh.2018.00229

42. Woldehaimanot T, Saketa Y, Zeleke A, Gesesew H, Woldeyohanes T. Pain knowledge and attitude: a survey among nurses in 23 health institutions in Western Ethiopia. Gaziantep Med J [Internet]. 2014;20(3):254. Available from: https://doi.org/10.5455/gmj-30-157196
43. Zanolin ME, Visentin M, Trentin L, Saiani L, Brugnolli A, Grassi M. A Questionnaire to Evaluate the Knowledge and Attitudes of Health Care Providers on Pain. J Pain Symptom Manage [Internet]. 2007;33(6):727–36. Available from: https://doi.org/10.1016/j.jpainsymman.2006.09.032

44. Al Qadire, M, Al Khalaileh M. Jordanian Nurses Knowledge and Attitude Regarding Pain Management. Pain Manag Nurs [Internet]. 2014;15(1):220-8. Available from: http://dx.doi.org/10.1016/j.pmn.2012.08.006

45. Al-Quliti KW, Alamri MS. Knowledge, attitudes, and practices of health care providers in Almadinah Almunawwarah, Saudi Arabia. Neurosciences [Internet]. 2015;20(2):131–6. Available from: https://doi.org/10.17712/nsj.2015.2.20140546

46. Alotaibi, K, Higgins, I, Chan S. Nurses ’ Knowledge and Attitude toward Pediatric Pain Management : A Cross-Sectional Study. Pain Manag Nurs [Internet]. 2018;1-12. Available from: https://doi.org/10.1016/j.pmn.2018.09.001

47. Eid, T, Manias, E, Bucknall, T, Almazrooa A. Nurses ’ Knowledge and Attitudes Regarding Pain in Saudi Arabia. Pain Manag Nurs [Internet]. 2014;15(4):e25–36. Available from: http://dx.doi.org/10.1016/j.pmn.2014.05.014

48. Samarkandi O. Knowledge and attitudes of nurses toward pain management. Saudi J Anesth [Internet]. 2018;12(2):220–6. Available from: http://www.saudija.org/text.asp?2018/12/2/220/227002

49. Lin P, Chiang H, Chiang T, Chen C. Pain management: evaluating the effectiveness of an educational programme for surgical nursing staff. J Clin Nurs [Internet]. 2008;17(315):2032–41. Available from: https://doi.org/10.1111/j.1365-2702.2007.02190.x

50. Lui LYY, Winnie SKW, Fong DYT. Knowledge and attitudes regarding pain management among nurses in Hong Kong medical units. J Clin Nurs [Internet].
2008;17(25):2014–21. Available from: https://doi.org/10.1111/j.1365-2702.2007.02183.x

51. Ekim A, Ocakçı A. Knowledge and Attitudes Regarding Pain Management of Pediatric Nurses in Turkey. Pain Manag Nurs [Internet]. 2013;14(4):e262–7. Available from: http://dx.doi.org/10.1016/j.pmn.2012.02.004

52. Brant JM, Mohr C, Coombs NC, Finn S, Wilmarth E. Nurses’ Knowledge and Attitudes about Pain: Personal and Professional Characteristics and Patient Reported Pain Satisfaction. Pain Manag Nurs [Internet]. 2017;18(4):214–23. Available from: http://dx.doi.org/10.1016/j.pmn.2017.04.003

53. Lewthwaite BJB, Jabusch KM, Cmsn C, Jabusch, KM, Wheeler, BJ, Schnell-Hoehn, KN, Mills, J, Estrella-Holder, E, Fedorowicz A. Nurses’ Knowledge and Attitudes Regarding Pain Management in Hospitalized Adults HOW TO OBTAIN CONTact hours BY. J Contin Educ Nurs [Internet]. 2011;42(6):251–7. Available from: http://doi.org/10.3928/00220124-20110103-03

54. Moceri, JT, Drevdahl D. Nurses’ Knowledge and Attitudes Toward Pain in the Emergency Department. J Emerg Nurs [Internet]. 2014;40(1):6–12. Available from: http://dx.doi.org/10.1016/j.jen.2012.04.014

55. Smeland, AH, Twycross, A, Lundeberg, S, Rustøen T. Nurses’ Knowledge, Attitudes and Clinical Practice in Pediatric Postoperative Pain Management. Pain Manag Nurs [Internet]. 2018;19(6):585–98. Available from: https://doi.org/10.1016/j.pmn.2018.04.006

56. Peirce D, Corkish, V, Lane, M, Wilson S. Nurses’ Knowledge and Attitudes Regarding Pediatric Pain Management in Western Australia. Pain Manag Nurs [Internet]. 2018;19(6):707-17. Available from: https://doi.org/10.1016/j.pmn.2018.03.002
57. Alzghoul BI, Azimah N, Abdullah C. Pain Management Practices by Nurses: An Application of the Knowledge, Attitude and Practices (KAP) Model. Glob J Health Sci [Internet]. 2016;8(6):154-60. Available from: http://dx.doi.org/10.5539/gjhs.v8n6p154

58. Wurjine TH, Nigussie BG. Knowledge, attitudes and practices of nurses regarding to post-operative pain management at hospitals of Arsi zone, Southeast Ethiopia, 2018. Women’s Heal [Internet]. 2019;7(4):130-5. Available from: https://doi.org/10.15406/mojwh.2018.07.00183

59. Kizza IB, Muliira JK, Kohi TW, Nabirye RC. Nurses’ knowledge of the principles of acute pain assessment in critically ill adult patients who are able to self-report. Int J Africa Nurs Sci [Internet]. 2016;4:20-7. Available from: http://dx.doi.org/10.1016/j.ijans.2016.02.001

60. Lord B, Woollard M. The reliability of vital signs in estimating pain severity among adult patients treated by paramedics. Emerg Med J [Internet]. 2011;28:147-50. Available from: https://doi.org/10.1136/emj.2009.079384

61. Peacock S, Patel S. Cultural Influences on Pain. Rev Pain [Internet]. 2008;1(2):6-9. Available from: http://journals.sagepub.com/doi/10.1177/204946370800100203

62. French SC, Salama NP, Baqai S, Raslavicus S, Chan SB, Ramaker J. Effects of Educational Interventions on Prehospital Pain Management. Prehospital Emerg Care [Internet]. 2006;10(1):71-6. Available from: https://doi.org/10.1080/10903120500366086

63. French S, Chan S, Ramaker J. Education on Prehospital Pain Management: A Follow-Up Study. West J Emerg Med [Internet]. 2013;14(2):96-102. Available from: http://www.escholarship.org/uc/item/9qp925q9

64. Howell, D, Butler, L, Vincent, L, Watt-Watson, J, Stearns N. Influencing Nurses’
Knowledge, Attitudes, and Practice in Cancer Pain Management. Cancer Nurs [Internet]. 2000;23(1):55–63. Available from: https://doi.org/10.1097/00002820-200002000-00009

65. Parker M, Rodgers A. Management of pain in pre-hospital settings. Emerg Nurse [Internet]. 2015;23(3):16-21. Available from: https://doi.org/10.7748/en.23.3.16.e1445

66. Iqbal M, Spaight PA, Siriwardena AN. Patients’ and emergency clinicians’ perceptions of improving pre-hospital pain management: a qualitative study. Emerg Med J [Internet]. 2013;30(3):1-6. Available from: http://dx.doi.org/10.1136/emermed-2012-201111

67. Western Cape Department of Health. Western Cape Government Health, Annual Report 2016/2017 [Internet]. 2017. Available from: http://www.westerncape.gov.za

68. Norman R, Matzopoulos R, Groenewald P, Bradshaw D. The high burden of injuries in South Africa. Bull World Health Organ [Internet]. 2007;85(9):695–702. Available from: https://doi.org/10.2471/BLT.06.037184

69. Government of South African. Western Cape [Internet]. South Africa’s provinces. 2019 [cited 2019 Jun 7]. Available from: https://www.gov.za/about-sa/south-africas-provinces#wc

Tables

Table 1: Demographic characteristics of respondents (n=100)
Gender:

Gender	n (%)
Male	69 (69%)
Female	31 (31%)

Level of qualification:

Qualification	n (%)
Basic Life Support (BLS)^a	20 (20%)
Intermediate Life Support (ILS)^b	48 (48%)
Advanced Life Support (ALS)^c	32 (32%)

Region of employment:

Region	n (%)
Cape Town Metropolitan	29 (29%)
Cape Winelands District	8 (8%)
Central Karoo District	8 (8%)
Eden District	41 (41%)
Overberg District	8 (8%)
West Coast District	6 (6%)

Years’ experience (range):

Range	n (%)
0 - 10 Years	60 (60%)
11 - 20 Years	32 (32%)
21 - 30 Years	8 (8%)

Current role within EMS:

Role	n (%)
Operational Emergency Care Provider	85 (85%)
Other^d	15 (15%)

Continuing medical education on acute pain assessment and management received in the last 2 years:

Received	n (%)
Yes	54 (54%)
No	46 (46%)

Sector of employment:

Sector	n (%)
Public/Government Sector	93 (93%)
Private Sector	7 (7%)

Age groups:

Age Group	n (%)
21 - 30 Years	38 (38%)
31 - 40 Years	40 (40%)
41 - 50 Years	19 (19%)
51 - 60 Years	3 (3%)

Footnote:

- ^a Include the Basic Ambulance Assistant (BAA) qualification,
- ^b Include the Ambulance Emergency Assistant (AEA) qualification,
- ^c Include the following qualifications: Emergency Care Technician (ECT), Critical Care Assistant (CCA) paramedic, National Diploma in Emergency Medical Care (NDEMC) paramedic, Emergency Care Practitioner (ECP),
- ^d Include the following roles: Supervisor/Manager, Higher education, Rescue, CQI/Patient safety, Emergency Medical Care Student and Emergency Medical Services Volunteer

Table 2: Frequencies and percentages of correct responses for “true/false/don’t know” section (n=100)
Pain can be defined as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage" **(True).**

Non-pharmacological methods, such as splinting, are effective methods to assist pain relief **(True).**

In the event that a patient’s pain is not managed, their overall clinical condition may deteriorate (progressively worse) **(True).**

Self-reports of pain according to the numeric rating scale (pain assessment tool) are the quickest way to assess pain **(True).**

Entonox® (Nitrous Oxide) is a potent analgesic with a very rapid onset of action and is quickly eliminated from the body **(True).**

Children younger than 11 years cannot reliably report pain, therefore, clinicians should rely solely on the parent’s assessment of the child's pain intensity **(False).**

Similar or comparable stimuli, in different people, will produce the same intensity or severity of pain **(False).**

If you do not consider the condition to be painful the patient should not receive analgesia (pain relief) **(False).**

In the pre-hospital environment, patients should not receive analgesia for chronic medical conditions **(False).**

Giving patients’ sterile water by injection (placebo) is a useful test to determine if their pain is real **(False).**

Unconscious patients do not experience pain **(False).**

Due to an underdeveloped nervous system, children younger than 2 years, have decreased sensitivity to pain and limited memory of painful experiences **(False).**

Adult and paediatric patients who can be distracted from their pain are usually not experiencing severe pain **(False).**

Vital signs are always reliable (good) indicators of the intensity or severity of a patient's pain **(False).**

Young infants, less than 6 months of age, cannot tolerate opioids/narcotics (like morphine) for pain relief **(False).**

Patient behaviour is a more reliable (good) indicator of pain than a patient’s self-report **(False).**

The experience and expression of pain are influenced by a patient's culture and/or spiritual beliefs **(True).**

If the source of a patient’s pain is unknown, opioids/narcotics (like morphine) should not be used during the pain evaluation period, as this could mask the ability to correctly diagnose the cause of pain **(False).**

True/false/don’t know statements	n (%)
Pain can be defined as "an unpleasant sensory and emotional experience associated with actual or potential tissue damage or described in terms of such damage" **(True).**	90 (90%)
Non-pharmacological methods, such as splinting, are effective methods to assist pain relief **(True).**	86 (86%)
In the event that a patient’s pain is not managed, their overall clinical condition may deteriorate (progressively worse) **(True).**	84 (84%)
Self-reports of pain according to the numeric rating scale (pain assessment tool) are the quickest way to assess pain **(True).**	83 (83%)
Entonox® (Nitrous Oxide) is a potent analgesic with a very rapid onset of action and is quickly eliminated from the body **(True).**	82 (82%)
Children younger than 11 years cannot reliably report pain, therefore, clinicians should rely solely on the parent’s assessment of the child's pain intensity **(False).**	75 (75%)
Similar or comparable stimuli, in different people, will produce the same intensity or severity of pain **(False).**	65 (66%)
If you do not consider the condition to be painful the patient should not receive analgesia (pain relief) **(False).**	61 (61%)
In the pre-hospital environment, patients should not receive analgesia for chronic medical conditions **(False).**	61 (61%)
Giving patients’ sterile water by injection (placebo) is a useful test to determine if their pain is real **(False).**	59 (59%)
Unconscious patients do not experience pain **(False).**	53 (53%)
Due to an underdeveloped nervous system, children younger than 2 years, have decreased sensitivity to pain and limited memory of painful experiences **(False).**	39 (39%)
Adult and paediatric patients who can be distracted from their pain are usually not experiencing severe pain **(False).**	39 (39%)
Vital signs are always reliable (good) indicators of the intensity or severity of a patient's pain **(False).**	31 (31%)
Young infants, less than 6 months of age, cannot tolerate opioids/narcotics (like morphine) for pain relief **(False).**	30 (30%)
Patient behaviour is a more reliable (good) indicator of pain than a patient’s self-report **(False).**	29 (29%)
The experience and expression of pain are influenced by a patient's culture and/or spiritual beliefs **(True).**	25 (25%)
If the source of a patient’s pain is unknown, opioids/narcotics (like morphine) should not be used during the pain evaluation period, as this could mask the ability to correctly diagnose the cause of pain **(False).**	23 (23%)

Table 3: Frequencies and percentages of positive responses for Likert-scale section (n=91)
Likert-scale statements	n (%)
Using a pain assessment tool is a necessary instrument in pain assessment and pain management decision making (Agree). | 76 (83.5%) |
Patients should not be included in the pain management decision-making process (Disagree). | 75 (82.4%) |
The main reason for administering analgesia (pain relief) is to enable the patient to get to the ambulance (Disagree). | 73 (80.2%) |
It is better to be stoic (endure pain or hardship without showing their feelings or complaining) about pain than totally open about it (Disagree). | 60 (65.9%) |
Parents or guardians of children should not be present during painful procedures (Disagree). | 57 (62.6%) |
Expectations of my peers or the company / EMS service I work for, strongly influence my pain management practice (Disagree). | 41 (45.1%) |
I believe that my prior experience dealing with patients in pain allows me to score patients’ pain more accurately than the patient themselves (Disagree). | 30 (33.0%) |

Table 4: Frequencies and percentages of correct responses for MCQ section (n=87)

Multiple choice questions (MCQ)	n (%)
The most accurate judge of the intensity of the patient’s pain is: The patient (C). | 69 (79.3%) |
The correct wording when using the Numeric Rating Scale is: Can you give your pain a score between 0 & 10 with 0 being no pain and 10 the worst imaginable pain (A). | 57 (65.5%) |
Effective management of acute pain is a fundamental component of: Quality patient care (C). | 55 (63.2%) |
Pain is believed to play a major part in the activation of the ‘stress’ response to injury, leading to all the below, EXCEPT: Decreased coagulability (C). | 24 (27.6%) |
With regards to pain, all the following descriptors are applicable EXCEPT: Always associated with actual tissue damage (C). | 20 (23.0%) |

Table 5: Case scenarios
Patient 1: Andrew
Andrew is 25 years old and this is his first day following abdominal surgery. As you enter his room, he smiles and joking with his visitor. You are required to transport him to a hospital closer to home. Your assessment reveals the foll = 120/80 mmHg; Heart Rate = 80 bpm; Respiratory Rate = 18 bpm. When questioned about his pain, on a scale (0 = no pain/discomfort, 10 = worst pain/discomfort) he rates his pain as 8.

Questions:
- On the patient care report form, you are required to indicate his pain score. Select the number on the below scale that represents your assessment of Andrew's pain.
- Indicate how you will manage Andrew’s pain.

Patient 2: Robert
Robert is 25 years old and this is his first day following abdominal surgery. As you enter his room, he is lying quietly in bed. You are required to transport him to a hospital closer to home. Your assessment reveals the follow = 120/80mmHg; Heart Rate = 80 bpm; Respiratory rate = 18 bpm. When questioned about his pain, on a scale (0 = no pain/discomfort, 10 = worst pain/discomfort) he rates his pain as 8.

Questions:
- On the patient care report form, you are required to indicate his pain score. Select the number on the below scale that represents your assessment of Robert’s pain.
- Indicate how you will manage Robert’s pain.

Figures

Figure 1
Flow diagram of survey participation
Supplementary Files

This is a list of supplementary files associated with the primary manuscript. Click to download.

Additional File 2.pdf
Additional File 1.pdf