A dynamic CTCF chromatin binding landscape promotes DNA hydroxymethylation and transcriptional induction of adipocyte differentiation

SUPPLEMENTARY DATA

Figure S1. Genomic distribution of conCTS and dynCTS.
Genomic annotation of conCTS and dynCTS was performed using CEAS from the cistrome analysis platform [1]. The percentage of CTS found within gene promoters, downstream regions, exons, introns and intergenic domains are shown in comparison with the their genomic coverage (Genome).

Figure S2. Effect of CTCF silencing on mitotic clonal expansion and cell viability.
3T3-L1 pre-adipocytes (day 0) were transfected using siRNAs directed against CTCF (si-CTCF) or a control set of non-targeting siRNAs (si-Control) and concomitantly induced to differentiate using the regular MDI protocol (A) or rosiglitazone (Rosi) (B). After 3 days, cells were harvested, stained using trypan blue and counted. The number of viable and non-viable cells is reported relative to the total number of cells at day 0. Results are means ± S.D from 2 independent experiments performed in triplicates.

Figure S3. Validation of Adipoq, Lgals12, Pnpla8, Fabp4 and Mgl1 as PPARG target genes in 3T3L1 cells.
3T3-L1 adipocytes were transfected using siRNAs directed against PPARG (si-PPARG) or a control set of non-targeting siRNAs (si-Control). RT-qPCR assays were performed after 3 days and results expressed for each analyzed gene as relative mRNA expression levels compared to those obtained with cells transfected with si-Control, arbitrarily set to 1. Results
are means ± S.D from a representative experiment performed in triplicates. Statistical significance was assessed using Student’s t tests for unpaired data. *** $p < 0.001$.

Figure S4. CTCF is required for PPARG-mediated gene transcriptional activations involved in adipogenesis.

A-B) The Integrated Genome Browser (IGB) was used to visualize PPARG and CTCF ChIP-seq signals obtained from 3T3-L1 at the indicated stages of the differentiation process. Normalized wig files were used and the scale was kept identical for the different tracks related to CTCF. Shown are regions spanning 25 kb on each side of the TSS of Fabp4 (A) and Mgl1 (B), which are indicated by arrows. DynCTS are indicated on top of the tracks using a letter that refers to clusters identified in Fig.2.

C-D) 3T3-L1 cells were transfected using siRNAs directed against CTCF (si-CTCF) or a control set of non-targeting siRNAs (si-Control) and concomitantly induced to differentiate in the absence (-Rosi) or the presence (+Rosi) of the PPARG agonist rosiglitazone. RT-qPCR assays were performed after 3 days and results expressed for each analyzed gene as relative mRNA expression levels compared to those obtained with cells transfected with si-Control and not exposed to rosiglitazone, arbitrarily set to 1. Results are means ± S.D from a representative experiment performed in triplicates. Statistical significance was assessed using Student’s t tests for unpaired data. * $p < 0.05$; ** $p < 0.01$.

Figure S5. Additional chromatin features that characterize active transcriptional regulatory regions are found at gainCTS co-bound by PPARG.

Analyses were performed as in Fig.7 and show average DHS-seq (A) and FAIRE-seq (B) signal levels in 3T3-L1 pre-adipocytes (day 0) and adipocytes (day ≥ 6) at gainCTS. All gainCTS were centered (arrowhead) and a region spanning 2.5 kb on each side was analyzed.
Figure S6. DynCTS from cluster A behave as transcriptional regulatory regions repressed during adipocyte differentiation.

A-D) Average H3K4me1 (A), H3K4me2 (B), H3K4me3 (C) and H3K27ac (D) ChIP-seq signal levels at days -2, 0, 2 and 7 of the 3T3-L1 differentiation process at dynCTS from cluster A. All dynCTS were centered (arrowhead) and a region spanning 2.5 kb on each side was analyzed.

E) Similar analyses as in A-D were performed using ChIP-seq for the indicated TFs or cofactors obtained in differentiated 3T3-L1 adipocytes (day ≥ 6).

Figure S7. GainCTS co-bound by PPARG comprise both promoters and enhancers activated during differentiation.

Analyses were performed as in Fig.7 and S5 using gainCTS, which were previously separated into 2 classes with respect to their distance to the nearest RefSeq gene transcriptional start site (TSS), i.e < 2.5 kb or > 2.5 kb from gene TSS, respectively.

Figure S8. Controls showing lack of PPARG recruitment and recognition motif enrichment in gainCTS – PPARG.

A) Average PPARG ChIP-seq signal levels from 3T3-L1 adipocytes at gainCTS + PPARG and gainCTS – PPARG. All gainCTS were centered (arrowhead) and a region spanning 2.5 kb on each side was analyzed.

B) Top 10 transcription factor recognition motifs identified using CENDIST for both gainCTS + PPARG and gainCTS – PPARG.
Figure S9. CTCF silencing does not impact on TET enzyme expression in differentiating 3T3-L1 cells.

3T3-L1 cells were transfected using siRNAs directed against CTCF (si-CTCF) or a control set of non-targeting siRNAs (si-Control) and concomitantly induced to differentiate in the absence (-Rosi) or the presence (+Rosi) of the PPARG agonist rosiglitazone. RT-qPCR assays were performed after 3 days and results expressed for each analyzed gene as relative mRNA expression levels compared to those obtained with cells transfected with si-Control and not exposed to rosiglitazone, arbitrarily set to 1. Results are means ± S.D from a representative experiment performed in triplicates.

Figure S10. PPARG is barely expressed in HEK293T cells and not co-immunoprecipitated by Flag-CTCF.

A) Normalized PPARG mRNA expression in NCI60 human cell-lines shows basal PPARG levels in HEK293T cells (arrow). Data were obtained from BioGPS [2].

B) Western blot for PPARG was performed using cell extracts from 3T3-L1 cells and HEK293T expressing Flag-CTCF (Input). Proteins co-immunoprecipitated with Flag-CTCF were also analyzed. PPARG appears in 3T3-L1 adipocytes as 3 bands including PPARG1 and PPARG2, as previously described [3]. Only the smallest from of PPARG is barely observable in the HEK293T input and was not co-immunoprecipitated by Flag-CTCF.

Figure S11. Dynamic CTCF cistrome during differentiation of human adipose stromal cells identify gained CTS associated with PPARG signalling.

A) CTS from differentiating human adipose stromal cells (hASC) (days -2, 0 and 9) [4] were identified and analyzed as described for 3T3-L1 cells. Note that CTCF ChIP-seq data from day 3 were removed from the analyses because of its significantly lower quality compared to
CTCF ChIP-seq data from days -2, 0 and 9 as judged by using NGS QC Generator [5]. 37,149 conCTS and 16,348 dynCTSs were identified. Identification of 8 different dynamic pattern of CTCF binding during hASC adipogenesis was performed using k-means clustering on dynCTS. CTCF chromatin binding intensities are shown for all CTS from the 8 different clusters (clusters A-H) at days -2, 0 and 9 of the differentiation process. The number of CTS within each cluster is provided as well as the average binding profile (red curve).

B) The presence of CTS from the 8 different clusters identified in A within 25 kb of the TSS of RefSeq genes induced during adipogenesis and bound by PPARG (Induced+PPARG) or other genes. The fraction of recovered genes is shown for each CTS cluster relative to that obtained with “Other genes”, which was arbitrarily set to 1. Statistical significance was assessed using Chi-squared with a Holm's correction tests. *** $p < 0.001$

Figure S12. Transcriptional expression profiles of genes associated with various combinations of gainCTS and PPARG binding sites during adipogenesis.

Average RMA-normalized mRNA expression levels of genes associated with the indicated combinations of gainCTS and PPARG recruitment sites (taking a region spanning 25 kb on each side of their TSS) at days -2, 0, 2 and 7 of the 3T3-L1 differentiation process. Results are means ± S.E.M.

Figure S13. Genomic co-localisation of CTCF, TET1 and 5hmC.

Average TET1 (A-B) ChIP-seq signals and 5hmC levels issued from hMeDIP-seq (C) at CTS specifically detected in mouse ES cells, heart, cerebellum or cortex. Cell/tissue-specific CTS were determined using all available CTCF peaks from ENCODE. Details of the TET1 ChIP-seq and hMeDIP-seq data used are provided in Table S1. All CTS were centered (arrowhead) and a region spanning 2.5 kb on each side was analyzed.
Figure S14. Evidences for the biological relevance of gainCTS from 3T3-L1 adipocytes.

A) GainCTS + PPARG and gainCTS – PPARG from 3T3-L1 cells were compared to DHS sites identified in the indicated mouse cells and tissues by the ENCODE consortium. The percentage of sites that lies within DHS sites from a given cell/tissue was reported.

B) GainCTS + PPARG from 3T3-L1 cells were compared to PPARG binding sites identified using ChIP-seq in primary brown, inguinal and epididymal adipocytes [6]. The percentage of gainCTS + PPARG overlapping with PPARG binding sites from the different primary adipocytes was reported.

Figure S15. Functional genomic analysis of changes in CTCF binding intensity at conCTS during adipocyte differentiation.

A) Violin plots showing the differential CTCF ChIP-seq signals at conCTS and dynCTS obtained using Manorm for the indicated stages of 3T3-L1 adipocytes differentiation. The data show that changes in CTCF signal intensity are significantly greater at dynCTS than at conCTS. Statistical significance was assessed using Mann-Whitney’s tests for unpaired data. *** $p < 0.001$.

B) CTCF chromatin binding intensities are shown for all CTS from the 7 different clusters (clusters A-G) identified using k-means clustering from conCTS using CTCF ChIP-seq signals at days -2, 0, 2 and 7 of the 3T3-L1 differentiation process. The number of CTS within each cluster is provided as well as the average binding profile (red curve).

C) % conCTS from clusters A-G that overlap transcriptional regulatory regions active at days -2, 0, 2 and 7 of the 3T3-L1 differentiation process. Active regulatory regions were defined as those significantly enriched for H3K4me1 or H3K4me3 and H3K27ac identified in [4].
D) Average RMA-normalized mRNA expression levels of genes associated with CTS (genes with at least 1 CTS within 25 kb of their TSS) from the 7 different clusters identified in B at days -2, 0, 2 and 7 of the 3T3-L1 differentiation process. Results are means ± S.E.M.

E) The indicated categories of RefSeq genes were analyzed for the presence of CTS from the 7 different clusters identified in B within 25 kb of their TSS. The fraction of recovered genes is shown for each CTS cluster relative to that obtained with “Other genes”, which was arbitrarily set to 1. Statistical significance was assessed using Chi-squared with a Holm's correction tests. * $p < 0.05$; ** $p < 0.01$; *** $p < 0.001$.

F) Average 5hmC levels issued from hMeDIP-seq data obtained using 3T3-L1 pre-adipocytes (day 0) or adipocytes (day 8) at conCTS from cluster G (using sites localized at active enhancers as for Fig.8A). All CTCF sites were centered (arrowhead) and a region spanning 2.5 kb on each side was analyzed.

SUPPLEMENTARY REFERENCES

1. Liu T, Ortiz JA, Taing L, Meyer CA, Lee B, Zhang Y, Shin H, Wong SS, Ma J, Lei Y et al.: Cistrome: an integrative platform for transcriptional regulation studies. *Genome Biol* 2011,12:R83.

2. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW3 et al.: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. *Genome Biol* 2009,10:R130.

3. Jeninga EH, Bugge A, Nielsen R, Kersten S, Hamers N, Dani C, Wabitsch M, Berger R, Stunnenberg HG, Mandrup S et al.: Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). *J Biol Chem* 2009,284:26385-26393.
4. Mikkelsen TS, Xu Z, Zhang X, Wang L, Gimble JM, Lander ES, Rosen ED: Comparative epigenomic analysis of murine and human adipogenesis. *Cell* 2010, **143**:156-169.

5. Mendoza-Parra M, Van Gool W, Mohamed Saleem MA, Ceschin DG, Gronemeyer H: A quality control system for profiles obtained by ChIP sequencing. *Nucleic Acids Res* 2013, **41**:e196.

6. Siersbæk MS, Loft A, Aagaard MM, Nielsen R, Schmidt SF, Petrovic N, Nedergaard J, Mandrup S: Genome-wide profiling of peroxisome proliferator-activated receptor γ in primary epididymal, inguinal, and brown adipocytes reveals depot-selective binding correlated with gene expression. *Mol Cell Biol* 2012, **32**:3452-3463.
Fig. S6

A H3K4me1

B H3K4me2

C H3K4me3

D H3K27ac

E Transcriptional Regulators
Distance to gene TSS of gainCTS

< 2.5 kb (11 %) > 2.5 kb (89 %)

A
H3K4me1
Average ChIP-seq signal intensity

B
H3K4me2
Average ChIP-seq signal intensity

C
H3K4me3
Average ChIP-seq signal intensity

D
H3K27ac
Average ChIP-seq signal intensity

E
DHS
Average DHS-seq signal intensity

F
FAIRE
Average FAIRE-seq signal intensity

G
Transcriptional Regulators
Average ChIP-seq signal intensity
B

GainCTS + PPARG

RANK	Name	Family	Score	Binding Range	Threshold	Count1	Count2	Z0Score	Z1Score	P-value
1	VSJTCCF_ES	jaspar_BetaBetaAlpha_zinc_finger	16.3413	200 2.8323	0.2651163	0.2837209	14.2033	1.13802	0	
2	VSJTJaspac_CTCF	jaspar_BetaBetaAlpha_zinc_finger	12.6112	320 3.0479	0.2604651	0.2604651	11.6202	0.990975	0	
3	VSJTCCF_RXRA	jaspar_Hormone_nuclear_Receptor	8.20674	600 3.29	0.4186047	0.3116279	7.15685	1.04089	0	
4	VSJCQUTF_Q6	ERE	7.19997	480 3.1835	0.2093023	0.1906877	6.79056	0.499413	0	
5	VSJTJaspac_NFC	jaspar_NFL_CCAAT_binding	5.71372	400 2.9389	0.2576744	0.2976744	5.43989	0.273529	0	
6	VSJTCCF_RXRA	ERE	5.69637	680 3.1495	0.2651163	0.2	4.48552	1.21064	0	
7	VSJTJaspac_HNF4	jaspar_Hormone_nuclear_Receptor	5.63993	560 3.2354	0.2186047	0.172093	5.10255	0.537373	0	
8	VSJTJaspac_ESR1	jaspar_Hormone_nuclear_Receptor	5.27775	680 3.0434	0.2186047	0.1674419	4.17081	1.10694	3.33e-16	
9	VSJTJaspac_Q3	ERE	5.03723	520 2.3059	0.2232558	0.1953488	4.24316	0.794069	4.55e-15	
10	VSJTJaspac_Q6_Q3	ERE	4.96027	400 2.1066	0.2372039	0.2372039	3.26928	1.6912	1.08e-14	

GainCTS - PPARG

RANK	Name	Family	Score	Binding Range	Threshold	Count1	Count2	Z0Score	Z1Score	P-value
1	VSJTJaspac_CTCF	jaspar_BetaBetaAlpha_zinc_finger	26.204	80 3.0403	0.1544554	0.239634	25.0837	1.12029	0	
2	VSJTCCF_ES	jaspar_BetaBetaAlpha_zinc_finger	24.5128	80 3.1112	0.1326733	0.2534653	23.6979	0.814914	0	
3	VSJTJaspac_Tcf21_	jaspar_CP2	5.09074	280 3.1352	0.0990099	0.1148515	3.74634	1.3444	3.33e-8	
4	VSJTAP_Q3	AP2	5.05403	840 2.9826	0.1584158	0.0970297	4.13674	0.917286	4.15e-8	
5	VSJTJaspac_RXRA	jaspar_Hormone_nuclear_Receptor	4.92267	640 3.3001	0.1069307	0.1168317	3.79695	1.12572	9.01e-8	
6	VSJTJaspac_RXRA	jaspar_Hormone_nuclear_Receptor	4.8654	200 2.5247	0.09108911	0.1363373	4.13945	0.725954	1.26e-7	
7	VSJTJaspac_HNF4_Q3	jaspar_Hormone_nuclear_Receptor	4.86317	680 3.2386	0.1465347	0.09306931	3.8037	0.929795	1.27e-7	
8	VSJTJaspac_ESR1	jaspar_Hormone_nuclear_Receptor	4.70325	360 2.8057	0.1069307	0.1188119	3.60809	1.09517	3.15e-7	
9	VSJTJaspac_Q3	AP2	4.68197	600 2.8628	0.180198	0.1267327	3.45288	1.22909	3.54e-7	
10	VSJTJaspac_Q6_Q3	AP2	4.43661	280 2.9337	0.08712871	0.1049505	3.4364	1.00241	1.32e-6	
Fig. S9

Tet1

Relative mRNA expression

Rosi - +

- si-Control
- si-CTCF

Tet2

Relative mRNA expression

Rosi - +

- si-Control
- si-CTCF

Tet3

Relative mRNA expression

Rosi - +

- si-Control
- si-CTCF
A

Normalized PPARG mRNA expression

B

3T3-L1 adipocytes

HEK293T + Flag-CTCF

WB:

PPARG

input

IP anti-Flag
TF binding	# genes	mRNA expression
GainCTS + PPARG and gainCTS - PPARG	21	
GainCTS + PPARG	212	
GainCTS - PPARG and PPARG - CTCF	377	
GainCTS - PPARG	396	
Fig. S13

A

TET1 (Xu et al. 2011)_ES cells

Cell/tissue-specific CTS

ES cells
Heart
Cerebellum
Cortex

Average ChIP-seq signal intensity

B

TET1 (Wu et al. 2011)_ES cells

C

5hmC_ES cells
Reference	Cell/Tissue	Experiment	Differentiation stages	Series Accession number	database
Nielsen R et al., Genes Dev, 2008	3T3-L1	ChIP-seq RXR	Day 6	GSE13511	Gene Expression Omnibus
Raghav SK et al., Mol Cell, 2012	3T3-L1	ChIP-seq SMRT	Day 6	E-MTAB-1031	ArrayExpress [http://www.ebi.ac.uk/arrayexpress/]
Siersbaek R et al., EMBO J, 2011	3T3-L1	DHS-seq	Days 0, 6	GSE27826	Gene Expression Omnibus
Waki H et al., PLoS Genet, 2011	3T3-L1	FAIRE-seq	Days 0, 8	DRR000382	DNA data bank of Japan [http://trace.ddbj.nig.ac.jp/DRASearch/]
Sérandour AA et al., Nucleic Acid Res, 2012	3T3-L1	hMeDIP-seq	Days 0, 8	GSE38407	Gene Expression Omnibus
Neri F et al., Genome Biol, 2013	Brain, MEF	hMeDIP-seq	N/A	GSE57582	Gene Expression Omnibus
Colquitt BM et al., Proc Natl Acad Sci USA, 2013	HBC, GBC, mOSN (Main olfactory epithelium)	hMeDIP-seq	N/A	GSE38604	Gene Expression Omnibus
Mellén M et al., Cell, 2012	Granule cells (Cerebellum)	hMeDIP-seq	N/A	GSE42080	Gene Expression Omnibus
Siersbaek MS et al., Mol Cell Biol, 2012	Primary adipocytes	ChIP-seq PPARγ	Day 7	GSE41481	Gene Expression Omnibus
Wu H et al., Nature, 2011	ES	ChIP-seq TET1	N/A	GSE659799	Gene Expression Omnibus
Xu Y et al., Mol Cell, 2011	ES	hMeDIP-seq	N/A	GSE28532	Gene Expression Omnibus
Database CTCFBSDB 2.0	Multiple	Mouse CTCF recruitment sites from ChIP-seq	N/A	http://insulatordb.uthsc.edu/	
Mouse ENCODE	Multiple	CTCF recruitment sites from ChIP-seq, DHS sites from DHS-seq	N/A	https://genome.ucsc.edu/ENCODE/	
Mikkelisen TS et al., Cell, 2010	3T3-L1, hASC	Gene expression profiling by microarray	Days -2, 0, 2, 7	GSE20606	Gene Expression Omnibus

Table S1. Summary of the functional genomic and transcriptomic data used in this manuscript.
RT-qPCR primer sequence

Primer Sequence	Targeted Gene
CATGCTCAACATCTCCCCCCTTCTCC	Rplp0
GGGAAAGTTGAATCCGTCTCCACAG	
CCGTGATGGAAGACCACCTCG	Pparg
AGGCTGTGAGTACGTTGGGTC	
ACGACACAAAAAGGGTCAGGAT	Adipoq
TCTTGGCAGACTGGGCAAGGAT	
GGGCTTCCCTCCAGACAGA	Lgals12
CATTGAGTGCAACTTCACGC	
AAAATGTGGCAGGCGTATTAG	Pnpla8
AAGGCCGAGGGTTTATCAG	
GTG CTG TCT TTG TGG GAA CCT GG	Fabp4
TGT GCC AAA GCC CAC TCC CAC T	
TGGACACCATCCAGAAAGGAC	Mgll
CCTCTCTCGGACACTAGGA	
GGTTGCGAGGACAGTGCG	Rps28
TAACGCAACCTTCAGCCTTC	
CTC CTA TCA GCA CCC TGA GC	Rxra
CCT TGA GGA CGC CAT TGA GG	
GAG CTT GTT CCT CGA TGT GG	Tet1
CAA ACC CAC CTG AGG CTG TT	
GTT GTT GTC AGG GTG AGA ATC	Tet2
TCT GTC TIC TGG CAA ACT TAC A	
CCG GAT TGA GAA GGT CAT CTAC	Tet3
AAG ATA ACA ATC ACG GCG TTC TT	

hMeDIP-qPCR primer sequence

Primer Sequence	Targeted Regions
CAGAGAGGCGCAGTTTGGAGG	GainCtcf + Pparg #1
CGTGCGATACCCACTTCCACC	
GTCTGGGGAAATGTTCAAGGGA	GainCtcf + Pparg #2
CATGTCTGTGGTGTGCTTGTGTC	
AAGCCTCTAGTTGGGACGAC	GainCtcf + Pparg #3
AGTGCAACAACGCGACAAAG	
CACGCTTGGCTGCCTGGGAA	GainCtcf + Pparg #4
TCTGGCACCAGCAGCTCAAGC	
TAGCTTACTGGTGCTTGGG	GainCtcf + Pparg #5
GCGAGCATTGGTGCTTGCTTG	
TGAAGGCAGAGTGGCTGAGA	GainCtcf - Pparg #1
CACAGGCTGGCTTACTTGGA	
CTGCTGCTTCTAGTGCTGGTG	
GGCCTGCAATGAGTGGAGACC	
ATTACAGATCAGCGGGGTGT	GainCtcf - Pparg #2
GCAGCTTCCACAGGTCAT	
ACTGCACTTTGGCTCTACC	GainCtcf - Pparg #3
CAGGCCGGGAAAGAAGTCAT	
Primers	Function
--	-------------------------
GCCCAGTTGCTAGTAGCTGCTTT	GainCtcf - Pparg #4
AGCGTTCGCGGGAACATTCT	GainCtcf - Pparg #5
CCCGGGAACACTTCTGCTTT	GainCtcf - Pparg #6
GTTCCTTCTCGGACCATTGC	Control #1
CGGTGTCCCAATCTTTGTT	Control #2
CCGTCTGGCCAAGAAATCTACT	Control #3
GCCACCAGTATTTTCAAAGCG	Control #4
GGGAGACAGGAAATAGGAGA	Control #5
ACCTCCTTACACCTAGGAG	Control #6

Table S2. Real-time PCR primers used in this study.