Statistical modeling of spatial and temporal vulnerability of groundwater level in the Gaza Strip (Palestine)

Hassan Al-Najjar, Gokmen Ceribasi, Emrah Dogan, Khalid Qahman, Mazen Abualtayef and Ahmet Iyad Ceyhunlu

ABSTRACT

The water supply in the Gaza Strip substantially depends on the groundwater resource of the Gaza coastal aquifer. The climate changes and the over-exploiting processes negatively impact the recovery of the groundwater balance. The climate variability is characterized by the decline in the precipitation by $\sim 5.2\%$ and an increase in the temperature by $+1^\circ C$ in the timeframe of 2020–2040. The potential evaporation and the sunshine period are expected to increase by about 111 mm and 5 hours, respectively, during the next 20 years. However, the atmosphere is predicted to be drier where the relative humidity will fall by a trend of $\sim 8\%$ in 20 years. The groundwater abstraction is predicted to increase by 55% by 2040. The response of the groundwater level to climate change and groundwater pumping was evaluated using a model of a 20-neuron ANN with a performance of the correlation coefficient (r) = $0.95–0.99$ and the root mean square error (RMSE) = $0.09–0.21$. Nowadays, the model reveals that the groundwater level ranges between 0.38 and 18.5 m below MSL and by 2040 it is expected to reach 1.13 and 28 m below MSL at the northern and southern governorates of the Gaza Strip, respectively.

Key words: climate change, coastal aquifer, Gaza Strip, groundwater, Palestine

HIGHLIGHTS

- Groundwater in the Gaza Strip faces serious decline of about 18 m below mean sea level.
- The climate change affects the future balance by more decline of about 10 m.

1. INTRODUCTION

Groundwater is the dominant water resource supplier for more than half of the domestic and agricultural needs on Earth (Anderson 2017). The Mediterranean arid and semi-arid regions are experiencing serious water supply threats due to the impacts of extreme climate changes which affect the natural recovery of the limited groundwater resources (Gopalakrishnan et al. 2019; Hussain et al. 2019). Moreover, the abuse of the groundwater through high over-pumping processes causes severe and subnational depression in the groundwater table to levels below the mean sea level (MSL) and this, in turn, causes prolonged salinization, irreversible economic losses, and a serious threat to food security (Zekri et al. 2017). In this scope, groundwater modeling-based management becomes crucial to evaluate the groundwater level variability to develop effective mitigation strategies and efficient management policies in order to preserve the groundwater resources sustainably (Gladden & Park 2016; Karimi et al. 2019). The data-driven statistical models are a common type of climate and groundwater models that are widely developed to simulate the long-term time series data of groundwater level for future forecasting and decision-making (Yan & Ma 2016; Zhou et al. 2017). In addition, artificial intelligence (AI) techniques are intelligent data-driven methods that can capture efficiently the nonlinear relationships between the groundwater level and other related climatic parameters (Emamgholizadeh et al. 2014). In applicability, the artificial neural networks (ANNs) are the most promising and competitive algorithms among the AI algorithms which are widely utilized in the applications of groundwater modeling (Chang et al. 2016; Ebrahimi &
Rajaee 2017). The power of ANN models in groundwater studies refers to their advantages as groundwater management tools for studying the impact of water policies and intervention plans on the sustainability and the recovery of groundwater resources (Krishna et al. 2008; Trichakis et al. 2009; Mohanty et al. 2010). The statistical data-driven methods have been exploited by many researchers to simulate the climate and hydrology of water (Kumbuyo et al. 2014; Al-Najjar et al. 2020, 2021). The stochastic ARIMA models are widely used in water resources management applications, especially for modeling hydrological stream flows, groundwater level fluctuations, and drought patterns (Myronidis et al. 2018; Takafulji et al. 2018; Sakizadeh et al. 2019; Al-Najjar 2020). Moreover, the ability of AI in hydrology and water resources management and for groundwater level modeling has been examined by many studies (Rakhshandehroo et al. 2012; Ghose et al. 2018; Kouziokas et al. 2018; Guzman et al. 2019; Lee et al. 2019; Tang et al. 2019). In particular, this study aims to simulate the fluctuations in the groundwater level of the Gaza coastal aquifer in light of the climate change consequences.

2. SCOPE OF THE STUDY AREA

The Gaza Strip (Figure 1) is a littoral strip of land that comprises an area of 365 km² on the southeast coast of the Mediterranean Sea with a stretch of 42 km and a width that ranges between 6 and 12 km. The Gaza Strip is categorized as one of the world’s highly populated areas with a population of about two million inhabitants (PCBS 2020).

Several agencies identify the current situation in the Gaza Strip as a severe humanitarian crisis where the coastal aquifer that is the only accessible resource for water supply is heavily contaminated and suffers from chronic degradation conditions (UN 2012; PWA 2014). Quantitatively, the total water extracted from the Gaza coastal aquifer is reported by about four times the amount, i.e., 55 million cubic meters per year, that the aquifer can sustainably produce each year (PWA 2013, 2014, 2015). The groundwater of the Gaza coastal aquifer is, in general, neutral with a slight trend to the alkalinity condition, with a pH value that ranges from 6.7 to 8.3, due to the existence of the carbonate mineral dissolution in the form of bicarbonate (HCO_3^-). The electrical conductivity (EC) ranges between 597 and 30,400 $\mu\text{S/cm}$ that demonstrates recorded values ranging between 370 and 18,848 mg/L for total dissolved solids (TDS). The concentrations of the detected ions in the groundwater for chloride (Cl^-), sodium (Na^+), magnesium (Mg^{2+}), calcium (Ca^{2+}), potassium (K^+), (SO_4^{2-}), (HCO_3^-), and (NO_3^-) were 78–10,318, 41–5,400, 23–665, 25–657, 1.4–155, 8–1,604, 101–1,280, and 18–496 mg/L, respectively (Abu-alnaeem et al. 2018). Climatic drought

![Figure 1](https://www.example.com/image1.png)
Figure 1 | The geographical location of the Gaza Strip.
is of significant occurrence in the Gaza Strip owing to climate change consequences which adversely influence the vulnerability of the coastal aquifer and the sustainability of agricultural activities. Drought investigation studies reveal that the incidence of drought occurrence increased from about 20% in the 1970s to more than 80% in the last ten years (Al-Najjar 2020). The jump in the event of drought imputes the decrease in precipitation and the spike of evaporation related to temperature rises. Generally, the total average annual rainfall in the Gaza Strip is typically attributed to be about 370 mm. Climate models indicate that the amount of precipitation is diminishing, and the local downscaling of the drought demonstrates that the southern Gaza Strip governorates are in prolonged drought, while the northern areas are experiencing drought every 9–12 years (Al-Najjar 2020).

3. MATERIAL AND METHODS

The study aims at investigating the climate change traces and modeling the groundwater level of the Gaza coastal aquifer according to the approaches described in Figure 2. The methodology relies on the merit of coupling the stochastic time series models and the artificial neural networks (ANNs) to construct an integrated groundwater management model capable of describing the groundwater dynamic of the Gaza coastal aquifer in terms of the change in climate conditions over the next 20 years to 2040.

The available data for climate and water supply in the Gaza Strip were collected through a field survey of the meteorological stations and the monitoring groundwater wells; however, the lack of possibility and the operational phase of these monitoring stations led to a lack in the available data to a period extending only to 2016 for climate parameters and 2018 for groundwater level. The available historical records for the climate parameters of the monthly precipitation (\(P\)), minimum temperature (\(T_{\text{min}}\)), average temperature (\(T_{\text{avg}}\)), maximum temperature (\(T_{\text{max}}\)), evaporation (\(E_o\)), sunshine (\(S_o\)), and humidity (\(H_o\)) for the period of 1974–2016 were collected, screened, and statistically analyzed for the meteorological stations distributed over the Gaza Strip. The groundwater table level due to the excessive pumping and the low recharge rate shows significant depression; therefore, the historical water-table level records from ten groundwater wells, shown in Figure 1, which exhibit an influential change in the water level and over-abstraction activity from the Gaza coastal aquifer were collected throughout 1974–2018. In generating the models, 90% of the observed data were utilized for calibration while the other 10% of the data were used for validation and testing the performance of the model in forecasting the future.

In terms of models, the stochastic autoregressive integrated moving average (ARIMA) models, mathematically described in Equation (1), were used in this study to forecast the future trend of the time series (Box & Jenkins 1976; Kottegoda 1990; Tong 1990; Polvak 1996; Sharma et al. 2019).

\[
\begin{align*}
(1 - \phi_1 B - \phi_2 B^2 - \cdots - \phi_p B^p)(1 - \theta_1 B^{-S} - \theta_2 B^{-2S} - \cdots - \theta_q B^{-qS})X_t &= (1 + \sum_{i=1}^{q} \phi_i B^i)(1 - \theta_1 B^{-S} - \theta_2 B^{-2S} - \cdots - \theta_q B^{-qS}) \epsilon_t
\end{align*}
\]

where, \(\phi_i\) is the \(i^{th}\) autoregressive (AR) parameters, \(\phi_{S,i}\) is the \(i^{th}\) seasonal autoregressive (AR) parameters, \(\theta_i\) is the \(i^{th}\) moving average (MA) parameters, \(\theta_{S,i}\) is the \(i^{th}\) seasonal moving average (MA) parameters, \(B\) is the backshift operator, \(d\) is the differencing, \(D\) is the seasonal differencing, \(S\) is the seasonality period, and \(\epsilon_t\) is a noise random component.

Moreover, the logistic sigmoid ANN of multi-layer feed-forward perceptron (MLP), shown in Equations (2) and (3), with a single hidden layer was exploited to obtain the relationships between the climate factors and

\[
\text{Logistic Sigmoid ANN:}
\]

\[
H(x) = \frac{1}{1 + e^{-x}}
\]

\[
\text{where, } H(x) \text{ is the logistic sigmoid function.}
\]

Figure 2 | The methodology of the study.
Table 1 | The model non-seasonal autoregressive (ar) and moving average (ma) parameters for the climate parameters

Parameter	Model	Φ_1	Φ_2	Φ_3	Φ_4	Φ_5	Θ_1	Θ_2	Θ_3	Θ_4	Θ_5
Minimum temperature	(3,1,2) (2,1,1)$_{12}$	0.8972	-0.273	0.0476	-	-	-1.5116	0.5117	-	-	-
Average temperature	(3,1,2) (2,1,1)$_{12}$	0.9692	-0.2214	0.0184	-	-	-1.6557	0.6560	-	-	-
Maximum temperature	(3,1,2) (2,1,1)$_{12}$	0.9377	-0.1725	0.0154	-	-	-1.6136	0.6203	-	-	-
Evaporation	(2,1,5) (2,1,1)$_{12}$	-0.1266	0.6175	-	-	-	-0.5577	-0.7155	0.4327	-0.1447	-0.0148
Sunshine	(5,1,3) (2,1,3)$_{12}$	-1.0384	-0.8514	0.0600	-0.0779	-0.0676	0.2856	-0.0553	-0.8846	-	-
Humidity	(4,1,2) (5,1,2)$_{12}$	-0.8294	0.0525	0.008	0.0839	-	-0.0415	-0.8815	-	-	-
groundwater level (Bishop 1995; Haykin 2009; Sahoo & Jha 2013).

\[y_k = \sum_{j=1}^{l} w_{jk} z_j + b_j \]

where, \(w_{jk} \) is the connection weight between \(j \)th node of hidden layer and output node \(k \), \(z_j \) is the output of the \(j \)th hidden neuron resulting from the input data, and \(b_j \) is the connection weight for bias term.

For quality control and quality assurance, both R-statistical analysis language and the Statistical Package for Social Sciences (SPSS) were used in this research to evaluate the nature of the rainfall time series. The R-statistical analysis language is highly recommended for climatic studies because of the vast availability of case studies. The SPSS is a familiar and established tool to confirm the consistency of results. The software of MATHLAB was used to establish the ANN where the MATLAB has a high and fast ability to manipulate the long and complex networks better than R. As well, the use of MATLAB gives some indication about the quality control of the data integrity and the model workability.

4. RESULTS AND DISCUSSION

4.1. Forecasting of climate parameters

The forecasted rainfall time series data up to 2040 was obtained from Al-Najjar et al. (2020). The rainfall model reveals that the rainfall declines by a yearly average trend of about –0.26%, hence the average yearly rainfall for the Gaza Strip over the next 20 years is assigned to 370 mm. The stochastic time series model (Tables 1 and 2) of the structure (3,1,2) (2,1,1)\(_{12}\) was recommended to simulate the manner of minimum temperature, average temperature, and maximum temperature. Moreover, the stochastic models of (2,1,5) (2,1,1)\(_{12}\), (5,1,3) (2,1,3)\(_{12}\), (4,1,2) (5,1,2)\(_{12}\) were structured to demonstrate the time series of evaporation, sunshine and humidity, respectively. In terms of climate change tracking, as shown in Figure 3, the effect of climate change is tangible in the Gaza Strip where, according to expectations of the stochastic models, there is a significant increasing trend in the temperature by approximately +0.03 to +0.09 °C each year, which is averagely compatible with the IPCC assessment scenarios of climate change where the worst climate scenario of RCP 8.5 indicates that the temperature will increase by 1.5 °C above the normal by 2040. However, in the most optimistic scenario of RCP 2.8 the increase in temperature will be about 1 °C by 2040. Therefore, it is expected that the average temperature in the Gaza Strip be between 21 °C in the winter seasons and 25 °C in the summer seasons with an overall average temperature of about 23 °C by the year 2040.

Parameter	Model	\(\phi_{1s} \)	\(\phi_{2s} \)	\(\phi_{3s} \)	\(\phi_{4s} \)	\(\phi_{5s} \)	\(\theta_{1s} \)	\(\theta_{2s} \)	\(\theta_{3s} \)
Minimum temperature	(3,1,2) (2,1,1)\(_{12}\)	–0.0482 0.0605 – – – –1.0000 – –							
Average temperature	(3,1,2) (2,1,1)\(_{12}\)	–0.0707 0.0927 – – – –0.9723 – –							
Maximum temperature	(3,1,2) (2,1,1)\(_{12}\)	–0.0961 0.0244 – – – –0.9992 – –							
Evaporation	(2,1,5) (2,1,1)\(_{12}\)	0.1487 –0.1042 – – – –0.9210 – –							
Sunshine	(5,1,3) (2,1,3)\(_{12}\)	–0.576 –0.8670 – – – –0.4308 0.5696 –0.9059							
Humidity	(4,1,2) (5,1,2)\(_{12}\)	–1.0158 –0.3057 –0.1495 –0.1191 –0.1211 0.0613 –0.6850 –							
The climatic parameters of evaporation, sunshine, and humidity reflect tangible traces as well about the tendency of climate changes in the Gaza Strip. The annual period of sunshine shows a rising behavior by 1 hour where the simulation manner indicates that the sunshine is expected to reach 2,891 hours by the year 2040. In response, the evaporation reveals an increasing trend by about 7 mm per year. However, the humidity demonstrates a declining yearly trend of −0.3%.

Figure 3 | Time series modeling for: (a) minimum temperature, (b) average temperature, (c) maximum temperature, (d) sunshine, (e) evaporation, and (f) humidity.
The performance testing of the models that were examined using the correlation coefficient (r) and the root mean square error (RMSE) shows that the stochastic models introduce proper simulations for the climate data and gives a good indication in forecasting the future. The data fitted for temperature by the suggested stochastic models indicate a robust simulation manner where the models give a correlation coefficient of \(r = 0.98-0.99\% \) and an RMSE of 0.69–0.94. The performance of the sunshine and evaporation models reveal high simulating quality with a correlation coefficient of \(r = 0.94-0.96\), RMSE = 21.68–23.49 and \(r = 0.97\), RMSE = 10.30–11.03 for the sunshine and evaporation, respectively. However, the stochastic model of humidity shows less performance in fitting the data and in forecasting the future, where the correlation coefficient was \(r = 0.74-0.81\), RMSE = 3.07–2.88.

4.2. Modeling and forecasting of groundwater

The groundwater table was evaluated and simulated through a 20-neuron ANN which demonstrates the linkage processes for the relationship between the inputs and the output within a reasonable period. The monthly data of the \(P(t) \), \(T_{\text{min}}(t) \), \(T_{\text{avg}}(t) \), \(T_{\text{max}}(t) \), \(E_o(t) \), \(S_o(t) \), and \(H_o(t) \) were chosen as a combination of inputs to represent the comprehensive influence of the climatic and hydrological factors on the aquifer water level. The combination of the input parameters within the ANN enhances the interpretation of the groundwater time series and it shows better presentations for the outliers’ points of the observed data. The network was developed using MATLAB by training the network on 540 combinations of the data for each time series of the ten groundwater wells. In terms of performance testing, the generated stochastic-ANN model shows a valid presentation of the observed groundwater level. In an overall manner, as shown in Figure 4, the stochastic models describe the relationship between the observed and the simulated data by a correlation coefficient (r) of 94–99\% and RMSE of 0.1–0.22.

The fluctuation of groundwater levels was represented by an ANN of 20 neurons, and the model was generalized (Table 3) to simulate the groundwater level at all of the ten water wells. Generally, the groundwater levels demonstrate a declining trend over time due to the groundwater over-pumping activities and the negative effects of climate changes.

![Figure 4](https://example.com/figure4.png)

Figure 4 | Performance testing of ANN.

Table 3 | ANN parameters for groundwater

Water well	\(P(t) \)	\(T_{\text{min}}(t) \)	\(T_{\text{avg}}(t) \)	\(T_{\text{max}}(t) \)	\(E_o(t) \)	\(S_o(t) \)	\(H_o(t) \)
C/48	0.3144	0.2179	–0.2246	–0.2746	0.0283	–0.0411	–0.1023
E/45	0.4368	0.207	–0.2662	–0.4434	–0.0791	0.0106	–0.0032
G/24B	–0.9390	–0.3240	0.7909	0.0644	–0.1924	–0.1409	0.0095
F/68B	0.1147	0.4551	0.1237	–0.544	–0.2357	–0.0305	–0.0105
S/15	–0.0248	0.2567	0.1335	–0.3582	–0.1767	–0.0672	–0.0879
L/86	0.4634	0.2497	–0.5946	–0.2145	–0.1113	0.0214	0.1273
L/66	–0.1522	0.1769	0.3225	–0.4422	–0.3210	0.0373	–0.1208
N/12	–0.0313	0.4298	0.1935	–0.5718	–0.3219	–0.1102	0.0795
N/16	–0.3282	0.6212	0.4375	–0.8122	–0.3422	0.0127	0.1050
P/48A	0.0778	–0.8018	0.1100	0.7464	–0.0357	–0.1446	–0.1755
The data of the groundwater level and the findings of the model, shown in Figure 5, reveal that the groundwater resource faces real threats in terms of water balance. Historically, the groundwater level was in an abundant state in the 1970s. However, the groundwater is declining and it is significantly overexploited where the groundwater level shows a drop to less than -15 m below the MSL.

The general indication of the groundwater model reveals that the level is in a continuous decreasing manner except for some parts in the eastern region of the study area that form semi-separated small basins. The groundwater simulation findings, shown in Figure 6, illustrate that the groundwater level drop is between -0.38 and -18.49 m below MSL in 2020 and between -1.13 and -27.77 m below MSL in 2040. Geographically, the southern governorates of the Gaza Strip, especially in Rafah, show more deficit in the groundwater balance than other locations where the decline in the groundwater will reach -27.77 m below MSL in 2040.

The southern part of the Gaza Strip demonstrates the most populated area in the Gaza Strip. The municipal wells pump the groundwater at an extensive rate of more than 100 m3 per hour which adversely affects the quality of groundwater.
and quantity of the Gaza coastal aquifer in this part of the area. Regionally, the groundwater depression cone started to form in 1992 and followed an expansion pattern towards the north of the Gaza Strip. The diameter of the cone was less than 1 km in 1992 and it is expected to reach 4–5 km in 2040. In consequence, the zero-lateral flow recharging of the groundwater was supposed as deep groundwater wells were excavated along the eastern border of the Gaza Strip to catch the water before passing to the Gaza Strip and this, in turn, causes seawater intrusion which is the most dominant phenomenon impacting the quality of the groundwater by lifting the chloride concentration to an acceptable level. In comparison with the Mediterranean Sea countries, the groundwater level investigations show significant depression below sea water level where in Cairo the drop could reach \(-27.81\) m (Mohamed Ibrahim 2020). In Jordan, the groundwater is being rapidly depleted with observed groundwater level declines of \(0.9–3.5\) m per year (Yoon et al. 2021).

Figure 6 | Groundwater level of the Gaza coastal aquifer.
5. CONCLUSION AND RECOMMENDATIONS

The environment of the Gaza Strip is changing dramatically as a result of global warming, putting a strain on the Gaza coastal aquifer, which is the only viable water source. Furthermore, the fast increase in groundwater pumping operations in tandem with the rapid increase in population has a direct impact on the coastal aquifer’s long-term productivity. The lack of a reliable simulator to research groundwater behavior for the Gaza coastal aquifer inhibits proper knowledge of groundwater dynamics through time and space. The stochastic and ANN models are both capable of simulating data and identifying abnormal data values. The modeling outputs reveal the following points:

- The period 2020–2040 is critical for climate and water security in the Gaza Strip, as monthly average precipitation will be assigned to about 21–33 mm by 2040, as well the temperature is expected to increase by +1 °C by 2040.
- The low recharge rate due to the decrease in rainfall and the high temperature and evaporation rate causing a depression in the groundwater level to reach a low level of about –28 m in 2040.
- The variation in the groundwater distribution pattern of the Gaza coastal aquifer will alter by about 51%, indicating greater deterioration.
- At all areas in the Gaza Strip, the groundwater table will be below the MSL. In this context, rapid water intervention plans and optimal management strategies are strongly required to support the coastal aquifer’s long-term sustainability and to boost the Gaza Strip’s economic activity. The management measures should primarily improve the manner of groundwater use, while also encouraging the use of non-conventional resources like seawater desalination and wastewater reclamation.
- To stop the groundwater decline in the southern governorates a quantity of water equaling 60 and 90 million cubic meters per year is needed by 2020 and 2040, respectively. However, at present, the whole area of the Gaza Strip needs a quantity of water equal to 123 million cubic meters, and by 2040 the quantity should be 193 million cubic meters.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

REFERENCES

Abu-alnnaeem, M. F., Yusoff, I., Ng, T. F., Alias, Y. & Raksmey, M. 2018 Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: an integrated statistical, geostatistical and hydrogeochemical approaches study. Science of the Total Environment 615, 972–989.
Abualtayef, M., Al-Najjar, H., Mogheir, Y. & Seif, A. K. 2016 Numerical modeling of brine disposal from Gaza central seawater desalination plant. Arabian Journal of Geosciences 9 (10), 572.
Abualtayef, M., Kahail, A., Al-Najjar, H. & AbuShbak, T. 2020 Applicability of using reverse osmosis membrane technology for wastewater reclamation in the Gaza Strip. The Journal of Engineering Research (TJER) 17 (1), 11–23.
Adamowski, J. & Chan, F. H. 2011 A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology 407 (1-4), 28–40.
Adamowski, J., Chan, H. F., Prasher, S. O., Ozga-Zielinski, B. & Sliusarieva, A. 2012 Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural network methods for urban water demand forecasting in Montreal, Canada. Water Resources Research 48, 273–279.
Afan, H. A., El-Shafie, A., Yaseen, Z. M., Hameed, M. M., Wan Mohtar, W. H. M. & Hussain, A. 2015 ANN-based sediment prediction model utilizing different input scenarios. Water Resources Management 29 (4), 1231–1245.
Alagha, J. S., Said, M. A. M. & Mogheir, Y. 2014 Modeling of nitrate concentration in groundwater using artificial intelligence approach – a case study of Gaza coastal aquifer. Environmental Monitoring and Assessment 186, 35–45.
Alagha, J. S., Seyam, M., Md Said, M. A. & Mogheir, Y. 2017 Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: the case of Gaza coastal aquifer (Palestine). Hydrogeology Journal 25, 2347–2361.
Alcamo, J., Dronin, N., Endejan, M., Golubev, G. & Kiriленко, A. 2007 A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Globalal Environmental Change 17, 429–444.
Al-Najjar, H., Ceribasi, G., Dogan, E., Abualtayef, M., Qahman, K. & Shaqqa, A. 2020 Stochastic time-series models for drought assessment in the Gaza Strip (Palestine). Journal of Water and Climate Change 11 (S1), 85–114.
Al-Najjar, H., Ceribasi, G. & Ceyhunlu, A. I. 2021 Effect of unconventional water resources interventions on the management of Gaza Coastal Aquifer in Palestine. Water Science & Technology Water Supply.
Anderson, D. J. 2017 Coastal Groundwater and Climate Change. WRI Technical Report 2017/4. Water Research laboratory, School of Civil Engineering, University of New South Wales, Sydney, Australia.
Barzegar, R., Fijani, E., Asghari Moghadam, A. & Tziritis, E. 2017 Forecasting of groundwater level fluctuations using ensemble hybrid multi-wavelet neural network-based models. Science of the Total Environment 599–600, 20–31.

Bazrafshan, O., Salajegheh, A., Bazrafshan, I., Mahdavi, M. & Marj, A. F. 2015 Hydrological drought forecasting using ARIMA models (case study: Karkheh Basin). ECOFORESIA 5 (3), 1099–1117.

Bishop, C. M. 1995 Neural Networks for Pattern Recognition. Oxford University Press, New York, NY, USA.

Box, G. E. P. & Jenkins, G. M. 1970 Time Series Analysis, Forecasting and Control, 1st edn. Holden-Day, San Francisco, CA, USA.

Box, G. E. P. & Jenkins, G. M. 1976 Time Series Analysis: Forecasting and Control, 2nd edn. Holden-Day, San Francisco, CA, USA.

Box, G. E. P., Jenkins, G. M. & Reinsel, G. C. 2008 Time Series Analysis: Forecasting and Control, 4th edn. Wiley Series in Probability and Statistics, Wiley, Hoboken, NJ, USA.

Butler, J. J., Stotler, J. R. L., Whittemore, D. O. & Reboulet, E. C. 2013 Interpretation of water-level changes in the High Plains aquifer in western Kansas. Groundwater 51 (2), 180–190.

Chang, C. J., Chang, L. C., Huang, C. W. & Kao, I. F. 2016 Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. Journal of Hydrology 541, 965–976.

Chatfield, C. 2008 The Analysis of Time Series: An Introduction, 6th edn. CRC Press, New York, USA.

Chen, S. H., Jakeman, A. J. & Norton, J. P. 2008 Artificial intelligence techniques: an introduction to their use for modelling environmental systems. Mathematics and Computers in Simulation 78 (2), 379–400.

Chen, L. H., Chen, C. T. & Lin, D. W. 2011 Application of integrated back-propagation network and self-organizing map for groundwater level forecasting. Journal of Water Resources Planning and Management 137 (4), 352–365.

Clifton, C., Evans, R., Hayes, S., Hirji, R., Puz, G. & Pizarro, C. 2010 Water and Climate Change: Impacts on Groundwater Resources and Adaptation Options. Water Working Notes, Note: No. 25. World Bank, Washington, DC, USA.

Denton, M., Deidda, R., Paniconi, C., Qahman, K. & Lecca, G. 2014 A simulation/optimization study to assess seawater intrusion management strategies for the Gaza Strip coastal aquifer (Palestine). Hydrogeology Journal 23 (2), 249–264.

Djebbouri, S. & Souag-Gamane, D. 2016 Drought forecasting using neural networks, wavelet neural networks, and stochastic models: case of the Algerian Basin in North Algeria. Water Resources Management 30 (7), 2445–2464.

Djurovic, N., Domazet, M., Stricevic, R., Pocuva, V., Spalevic, V., Pivic, R., Gregoric, E. & Domazet, U. 2015 Comparison of groundwater level models based on artificial neural networks and ANFIS. The Scientific World Journal, 1–15.

Dogrul, E., Brush, C. & Kadir, T. 2016 Groundwater modeling in support of water resources management and planning under complex climate, regulatory, and economic stresses. Water 8 (12), 592.

Ebrahim, H. & Rajaee, T. 2017 Simulation of groundwater level variations using wavelet combined with neural network, linear regression and support vector machine. Global and Planetary Change 148, 181–191.

Emamgholizadeh, S., Moslemi, K. & Karami, G. 2014 Prediction the groundwater level of Bastam Plain (Iran) by artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS). Water Resources Management 15, 5433–5446.

FAO 2010 Global Forest Resource Assessment. Food and Agriculture Organization of the United Nations, Rome, Italy.

Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., Knauf, V. C., Lobell, D., Mazur, B. J., Molden, D., Ronald, P. C., Sanchez, P. A., Vonshak, A. & Zhu, J.-K. 2010 Radically rethinking agriculture for the 21st century. Science 327, 833–834.

Galloway, D. L. & Burbery, T. J. 2011 Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal 19 (8), 1459–1486.

Ghose, D., Das, U. & Roy, P. 2018 Modeling response of runoff and evapotranspiration for predicting water table depth in arid region using dynamic recurrent neural network. Groundwater for Sustainable Development 6, 263–269.

Gladden, L. A. & Park, N. S. 2016 Coastal Groundwater Development: Challenges and Opportunities, 1st edn. CRC Press, Boca Raton, FL, USA.

Gong, Y., Zhang, Y., Lan, S. & Wang, H. 2016 A comparative study of artificial neural networks, support vector machines and adaptive neuro fuzzy inference system for forecasting groundwater levels near Lake Okeechobee, Florida. Water Resources Management 30, 375–391.

Gopalakrishnan, T., Hasan, M. K., Haque, A. S., Jayasinghe, S. L. & Kumar, L. 2019 Sustainability of coastal agriculture under climate change. Sustainability 11 (24), 7200.

Guzman, S. M., Paz, J. O., Tagert, M. L. M. & Mercer, A. E. 2019 Evaluation of seasonally classified inputs for the prediction of daily groundwater levels: NARX networks vs support vector machines. Environmental Modelling and Assessment 24, 223–234.

Haykin, S. 2009 Neural Networks and Learning Machines, 3rd edn. Pearson Education, Inc., Upper Saddle River, NJ, USA.

He, Z., Zhang, Y., Guo, Q. & Zhao, X. 2014 Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions. Water Resources Management 28, 5297–5317.

Hussain, M. I., Muscolo, A., Farooq, M. & Ahmad, W. 2019 Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agricultural Water Management 221, 462–476.

Jalalkamali, A., Sedghi, H. & Manshouri, M. 2011 Monthly groundwater level prediction using ANN and neuro-fuzzy models: a case study on Kerman plain, Iran. Journal of Hydroinformatics 13 (4), 867–876.

Juan, C., Gen Xu, W. & Tian Xu, M. 2015 Simulation and prediction of suprapermafrost groundwater level variation in response to climate change using a neural network model. Journal of Hydrology 529, 1211–1220.
Karimi, L., Motagh, M. & Entezam, I. 2019 Modeling groundwater level fluctuations in Tehran aquifer: results from a 3D unconfined aquifer model. *Groundwater for Sustainable Development* 8, 439–449.

Kashyap, R. L. & Rao, A. R. 1976 Dynamic stochastic models from empirical data. In: *Mathematics in Science and Engineering*, Vol. 122 (Kashyap, A., ed.). Academic Press, London, UK, p. 334.

Khaki, M., Yusoff, I. & Ismaili, N. 2015 Simulation of groundwater level through artificial intelligence system. *Environmental Earth Sciences* 73 (12), 8357–8367.

Khalil, B., Broda, S., Adamowski, J., Ozga-Zielinski, B. & Donohoe, A. 2015 Short-term forecasting of groundwater levels under conditions of mine-tailings recharge using wavelet ensemble neural network models. *Journal of Hydrogeology* 23, 121–141.

Khorasani, M., Ehteshami, M., Ghadimi, H. & Salari, M. 2016 Simulation and analysis of temporal changes of groundwater depth using time series modeling. *Modeling Earth Systems and Environment* 2 (2), 1–10.

Koopmans, L. H. 1974 *The Spectral Analysis of Time Series*. Academic Press, Inc, New York, USA.

Kotegoda, N. T. 1990 *Stochastic Water Resources Technology*, 1st edn. Palgrave Macmillan, London, UK, p. 384.

Kouziokas, G. N., Chatzigeorgiou, A. & Perakis, K. 2018 Multilayer feed forward models in groundwater level forecasting using meteorological data in public management. *Water Resources Management* 32, 5041–5052.

Krishna, B., Satyaji Rao, Y. R. & Vijaya, T. 2008 Modelling groundwater levels in an urban coastal aquifer using artificial neural networks. *Hydrological Processes* 22 (8), 1180–1188.

Kumbuyi, C. P., Yasuda, H., Kitamura, Y. & Shimizu, K. 2014 Fluctuation of rainfall time series in Malawi: an analysis of selected areas. *GEOFIZIKA* 51 (1).

Lee, S., Lee, K. K. & Yoon, H. 2019 Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors. *Journal of Hydrogeology* 27, 567–579.

Lin, J., Snodsmith, J. B., Zheng, C. & Wu, J. 2009 A modeling study of seawater intrusion in Alabama Gulf Coast, USA. *Environmental Geology* 57 (1), 119–130.

Maier, H. R., Jain, A., Dandy, G. C. & Sudheer, K. P. 2010 Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. *Environmental Modelling Software* 25, 891–909.

May, D. B. & Sikavum, M. 2009 Prediction of urban stormwater quality using artificial neural networks. *Environmental Modelling and Software* 24 (2), 296–302.

Mirzavand, M. & Ghazavi, R. 2015 A stochastic modelling technique for groundwater level forecasting in an arid environment using time series methods. *Water Resources Management* 29 (4), 1315–1328.

Mogaji, K. A., Lim, H. S. & Abdullah, K. 2015 Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. *Arabian Journal of Geosciences* 8, 3235–3258.

Mohamed Ibrahim, S. M. 2020 Groundwater hydrology and characteristics of the tertiary aquifers, Northwest Cairo, Egypt. *NRIAG Journal of Astronomy and Geophysics* 9 (1), 420–432. doi:10.1080/20909977.2020.1751924.

Mohanty, S., Jha, M. K., Kumar, A. & Sudheer, K. P. 2010 Artificial neural network modeling for groundwater level forecasting in a river island of eastern India. *Water Resources Management* 24, 1845–1865.

Mohanty, S., Jha, M. K., Raul, S. K., Panda, R. K. & Sudheer, K. P. 2015 Using artificial neural network approach for simultaneous forecasting of weekly groundwater levels at multiple sites. *Water Resources Management* 29 (15), 5521–5532.

Moosavi, V., Vafakhah, M., Shirmohammadi, B. & Ranjbar, M. 2013 Optimization of wavelet-ANFIS and wavelet-ANN hybrid models by Taguchi method for groundwater level forecasting. *Arabian Journal for Science and Engineering* 39 (3), 1785–1796.

Moreaux, M. & Reynaud, A. 2006 Urban freshwater needs and spatial cost externalities for coastal aquifers: a theoretical approach. *Regional Science and Urban Economics* 36 (2), 163–186.

Mushtaha, A. & Walraevens, K. 2018 Quantification of submarine groundwater discharge in the Gaza Strip. *Water* 10 (12), 1818.

Myronidis, D., Ioannou, K., Fotakis, D. & Dörflinger, G. 2018 Streamflow and hydrological drought trend analysis and forecasting in Cyprus. *Water Resources Management* 32 (5), 1759–1776.

Narayan, K. A., Schleberger, C. & Bristow, K. L. 2007 Modelling seawater intrusion in the Burdekin Delta Irrigation Area, North Queensland, Australia. *Agricultural Water Management* 89 (3), 217–228.

Nourani, V. & Moussavi, S. 2016 Spatiotemporal groundwater level modeling using hybrid artificial intelligence-meshless method. *Journal of Hydrology* 536, 10–25.

Nourani, V., Ejjali, R. G. & Alami, M. T. 2011 Spatiotemporal groundwater level forecasting in coastal aquifers by hybrid artificial neural network-geostatistics model: a case study. *Environmental Engineering Science* 28 (3), 217–228.

Nourani, V., Alami, M. T. & Daneshvar Vosoughi, F. 2015 Wavelet-entropy data pre-processing approach for ANN-based groundwater level modeling. *Journal of Hydrology* 524, 255–269.

Otkin, J. A., Svoboda, M., Hunt, E. D., Ford, T. W., Anderson, M. C., Hain, C. & Basara, J. B. 2018 Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. *Bulletin of the American Meteorological Society* 99, 911–919.

Patle, G. T., Singh, D. K., Sarangi, A., Rai, A., Khanna, M. & Sahoo, R. N. 2015 Time series analysis of groundwater levels and projection of future trend. *Journal of the Geological Society of India* 85, 232–242.

PCBS 2020 *Estimated Population in the Palestinian Territory mid-Year by Governorate, 1997–2021*. IOP Publishing Web. Available from: http://www.pcbs.gov.ps (accessed 25 December 2020).

Polyak, I. 1996 *Computational Statistics in Climatology*. Oxford University Press, Oxford, UK.
PWA 2000 Integrated Aquifer Management Plan. Palestinian Water Authority, Gaza.

PWA 2011 The Comparative Study of Options for an Additional Supply of Water for the Gaza Strip (CSO-G), the Updated Final Report. Palestinian Water Authority.

PWA 2012 Palestinian water sector: status summary report. In Preparation for the Meeting of the Ad Hoc Liaison Committee (AHLC), 23 September 2012. Palestinian Water Authority, New York.

PWA 2013 National Water and Wastewater Policy and Strategy for Palestine: Toward Building A Palestinian State From Water Perspective. Palestinian Water Authority.

PWA 2014 Gaza Strip: No Clean Drinking Water, Not Enough Energy, and Threatened Future. Palestinian Water Authority.

PWA. 2015 Gaza Strip: Desalination Facility Project: Necessity, Politics and Energy. Palestinian Water Authority.

PWA 2017 Water Resources Status Summary Report/Gaza Strip; Water Resources Directorate: Palestinian Water Authority, Palestine.

Qahman, K. & Larabi, A. 2006 Evaluation and numerical modeling of seawater intrusion in the Gaza aquifer (Palestine). Hydrogeology Journal 14 (5), 713–728.

Rakhshandehroo, G. R., Vaghefi, M. & Asadi Aghbolaghi, M. 2012 Forecasting groundwater level in Shiraz plain using artificial neural networks. Arabian Journal for Science and Engineering 37, 1871–1883.

Sahoo, S. & Jha, M. K. 2013 Groundwater-level prediction using multiple linear regression and artificial neural network techniques, a comparative assessment. Journal of Hydrogeology 21, 1865–1887.

Sahoo, S., Russo, T. A., Elliott, J. & Foster, I. 2017 Machine learning algorithms for modeling groundwater level changes in agricultural regions of the U.S. Water Resources Research 53 (5), 3878–3895.

Sakizadeh, M., Mohamed, M. M. A. & Klammler, H. 2019 Trend analysis and spatial prediction of groundwater levels using time series forecasting and a novel spatio-temporal method. Water Resources Management 33, 1425–1437.

Schiermeier, Q. 2018 Droughts, heatwaves and floods: how to tell when climate change is to blame. Nature 560, 20–22.

Seyam, M., Alagha, J. S., Abunama, T., Mogheir, Y., Affam, A. C., Heydari, M. & Ramlawi, K. 2020 Investigation of the influence of excess pumping on groundwater salinity in the Gaza Coastal Aquifer (Palestine) using three predicted future scenarios. Water 12 (8), 2218.

Shahin, M., Van Oorschot, H. J. L. & De Lange, S. J. 1993 Statistical Analysis in Water Resources Engineering. A.A. Balkema, Rotterdam, The Netherlands, p. 394.

Shammas, M. I. & Jacks, G. 2007 Seawater intrusion in the Salalah plain aquifer, Oman. Journal of Environmental Hydrology 53 (3), 575–587.

Sharma, P., Machiwal, D. & Jha, M. K. 2019 Overview, current status, and future prospect of stochastic time series modeling in subsurface hydrology. In: GIS and Geostatistical Techniques for Groundwater Science (Venkatramanan, S., Viswanathan, P. M. & Chung, S. Y., eds). Elsevier, Amsterdam, The Netherlands, pp. 133–151.

Shirmohammadi, B., Vafakhah, M., Moosavi, V. & Moghaddamnia, A. 2013 Application of several data-driven techniques for predicting groundwater level. Water Resources Management 27 (2), 419–432.

Siebert, S., Burke, J., Faures, K., Hoogeveen, J., Döll, P. & Portmann, F. T. 2010 Groundwater use for irrigation—a global inventory. Hydrology and Earth System Sciences 14 (10), 1863–1880.

Singh, A. 2014a Simulation and optimization modeling for the management of groundwater resources. I: combined applications. Journal of Irrigation and Drainage Engineering 140 (4).

Singh, A. 2014b Groundwater resources management through the applications of simulation modeling: a review. Science of the Total Environment 499, 414–423.

Sun, Y., Wendi, D., Kim, D. E. & Liong, S. 2016 Technical note: application of artificial neural networks in groundwater table forecasting – a case study in a Singapore swamp forest. Hydrology and Earth System Sciences 20 (4), 1405–1412.

Takafuji, E. H. D. M., Rocha, M. M. D. & Manzione, R. L. 2018 Groundwater level prediction/Forecasting and assessment of uncertainty using SGS and ARIMA models: a case study in the Bauru Aquifer System (Brazil). Natural Resources Research 28, 407–453.

Tang, Y., Zang, C., Wei, Y. & Jiang, M. 2019 Data-driven modeling of groundwater level with least-square support vector machine and spatial-temporal analysis. Geotechnical Engineering Journal 37, 1661–1670.

Taormina, R., Chau, K. & Sethi, R. 2012 Artificial neural network simulation of hourly groundwater levels in a coastal aquifer system of the Venice lagoon. Engineering Applications of Artificial Intelligence 25 (8), 1670–1676.

Tapoglou, E., Karatzas, G. P., Trichakis, I. C. & Varouchakis, E. A. 2014 A spatio-temporal hybrid neural network-Kriging model for groundwater level simulation. Journal of Hydrology 519, 3193–3203.

Thangarajan, M. & Singh, V. P. 2016 Groundwater Assessment, Modeling, and Management, 1st edn. CRC Press, Boca Raton, FL, USA.

Tong, H. 1990 Nonlinear Time Series: A Dynamical System Approach. Oxford University Press, Oxford, UK.

Trichakis, I. C., Niklos, I. K. & Karatzas, G. P. 2009 Optimal selection of artificial neural network parameters for the prediction of a karstic aquifer’s response. Hydrological Processes 23 (20), 2956–2969.

Trichakis, I. C., Niklos, I. K. & Karatzas, G. P. 2011 Artificial neural network (ANN) based modeling for karstic groundwater level simulation. Water Resources Management 25, 1143–1152.

UfM 2011 Gaza Desalination Project: the Largest Single Facility to be Built in Gaza. Union for the Mediterranean Secretariat, Barcelona, Spain.

UN 2012 Gaza 2020: A Livable Place? A Report by the United Nations Country Team in the Occupied Palestinian Territory. The United Nations, New York, USA.
Vengosh, A., Kloppmann, W., Marei, A., Livshitz, Y., Gutierrez, A., Banna, M. & Raanan, H. 2005 Sources of salinity and boron in the Gaza strip: natural contaminant flow in the southern Mediterranean coastal aquifer. *Water Resources Research* 41 (1).

Wen, X., Feng, Q., Deo, R. C., Wu, M. & Si, J. 2017 Wavelet analysis-artificial neural network conjunction models for multiscale monthly groundwater level predicting in an arid inland river basin, northwestern China. *Hydrology Research* 48 (6), 1710–1729.

Yan, Y. & Burbey, T. J. 2008 The value of subsidence data in ground water model calibration. *Ground Water* 46 (4), 538–550.

Yan, Q. & Ma, C. 2016 Application of integrated ARIMA and RBF network for groundwater level forecasting. *Environmental Earth Sciences* 75 (5), 396.

Yang, Q., Hou, Z., Wang, Y., Zhao, Y. & Delgado, J. 2015 A comparative study of shallow groundwater level simulation with WA-ANN and ITS model in a coastal island of south China. *Arabian Journal of Geosciences* 8 (9), 6583–6593.

Ye, G., Chou, L. M., Yang, S., Wu, J., Liu, P. & Jin, C. 2015 Is integrated coastal management an effective framework for promoting coastal sustainability in China’s coastal cities? *Marine Policy* 56, 48–55.

Yeh, H. D. & Chang, Y. C. 2013 Recent advances in modeling of well hydraulics. *Advances in Water Resources* 51, 27–51.

Ying, Z., Wenxi, L., Haibo, C. & Jiannan, L. 2014 Comparison of three forecasting models for groundwater levels: a case study in the semi-arid area of west Jilin Province, China. *Journal of Water Supply: Research and Technology-AQUA* 8, 671–683.

Yoon, H., Jun, S. C., Hyun, Y., Bae, G. O. & Lee, K. K. 2011 A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. *Journal of Hydrology* 396 (1), 128–138.

Yoon, H., Hyun, Y., Ha, K., Lee, K. K. & Kim, G. B. 2016 A method to improve the stability and accuracy of ANN- and SVM-based time series models for long-term groundwater level predictions. *Computers and Geosciences* 90, 144–155.

Yoon, J., Klassert, C., Selby, P., Lachaut, T., Knox, S., Avisse, N., Harou, J., Tilmant, A., Klauer, B., Mustafa, D., Sigel, K., Talozi, S., Gawel, E., Medellin-Azuara, J., Bataineh, B., Zhang, H. & Gorelick, S. M. 2021 A coupled human-natural system analysis of freshwater security under climate and population change. *Proceedings of the National Academy of Sciences of the United States of America* 118 (14), e2020431118. https://doi.org/10.1073/pnas.2020431118.

Yu, H., Wen, X., Feng, Q., Deo, R. C., Si, J. & Wu, M. 2018 Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, northwest China. *Water Resources Management* 32 (1), 301–323.

Zaqoot, H. A., Hamada, M. & Miqdad, S. 2018 A comparative study of ANN for predicting nitrate concentration in groundwater wells in the southern area of Gaza Strip. *Applied Artificial Intelligence* 32 (7–8), 1–18.

Zekri, S., Madani, K., Bazargan-Lari, M. R., Kotagama, H. & Kalbus, E. 2017 Feasibility of adopting smart water meters in aquifer management: an integrated hydro-economic analysis. *Agricultural Water Management* 181, 85–93.

Zhou, T., Wang, F. & Yang, Z. 2017 Comparative analysis of ANN and SVM models combined with wavelet preprocess for groundwater depth prediction. *Water* 9 (10), 781.

First received 10 August 2021; accepted in revised form 3 October 2021. Available online 1 November 2021.