On Borsuk’s conjecture for two-distance sets

Andriy V. Bondarenko

Abstract

In this paper we answer Larman’s question on Borsuk’s conjecture for two-distance sets. We found a two-distance set consisting of 416 points on the unit sphere $S^{64} \subset \mathbb{R}^{65}$ which cannot be partitioned into 83 parts of smaller diameter. This also reduces the smallest dimension in which Borsuk’s conjecture is known to be false. Other examples of two-distance sets with large Borsuk’s numbers will be given.

Keywords: Borsuk’s conjecture, two-distance sets, strongly regular graphs
AMS subject classification. 05C50, 52C35, 41A55, 41A63

1 Introduction

For each $n \in \mathbb{N}$ the Borsuk number $b(n)$ is the minimal number such that any bounded set in \mathbb{R}^n consisting of at least 2 points can be partitioned into $b(n)$ parts of smaller diameter. In 1933 Karol Borsuk [3] conjectured that $b(n) = n + 1$. The conjecture was disproved by Kahn and Kalai [10] who showed that in fact $b(n) > 1.2\sqrt{n}$ for large n. In particular, their construction implies that $b(n) > n + 1$ for $n = 1325$ and for all $n > 2014$. This result attracted substantial amount of attention from many mathematicians; see for example [1], [4], and [18]. Improvements on the smallest dimension n such that $b(n) > n + 1$ were obtained by Nilli [14] $(n = 946)$, Raigorodskii [17] $(n = 561)$, Weißbach [19] $(n = 560)$, Hinrichs [8] $(n = 323)$, and Pikhurko [16] $(n = 321)$. Currently the best known result is that Borsuk’s conjecture is false for $n \geq 298$; see [9]. On the other hand, many related problems are still
unsolved. The Borsuk’s conjecture can be wrong even in dimension 4. Only the estimate $b(4) \leq 9$ is known; see [12].

In ’70s Larman asked if the Borsuk’s conjecture is true for two-distance sets; see also [11] and [18]. Denote by $b_2(n)$ the Borsuk number for two-distance sets in the dimension n, that is the minimal number such that any two-distance set in \mathbb{R}^n can be partitioned into $b(n)$ parts of smaller diameter. The aim of this paper is to construct two-distance sets with large Borsuk’s numbers. Two basic constructions follow from Euclidean representations of $G_2(4)$ and F_{i23} strongly regular graphs. First we prove

Theorem 1. There is a two-distance subset $\{x_1, \ldots, x_{416}\}$ of the unit sphere $S^{64} \subset \mathbb{R}^{65}$ such that $\langle x_i, x_j \rangle = 1/5$ or $-1/15$ for $i \neq j$ which cannot be partitioned into 83 parts of smaller diameter.

Hence $b(65) \geq b_2(65) \geq 84$. We also prove the following

Theorem 2. There is a two-distance subset $\{x_1, \ldots, x_{31671}\}$ of the unit sphere S^{781} such that $\langle x_i, x_j \rangle = 1/10$ or $-1/80$ for $i \neq j$ which cannot be partitioned into 1376 parts of smaller diameter.

Then, using the configurations from Theorem 1 and Theorem 2 we prove

Corollary 1. For integers $n \geq 1$ and $k \geq 0$ we have

\begin{equation}
(1) \quad b_2(66n + k) \geq 84n + k + 1,
\end{equation}

and

\begin{equation}
(2) \quad b_2(783n + k) \geq 1377n + k + 1.
\end{equation}

Finally, using again the configuration from Theorem 2 we prove

Corollary 2. The following inequalities hold:

\begin{equation}
 b_2(781) \geq 1225, \quad b_2(780) \geq 1102, \quad \text{and} \quad b_2(779) \geq 1002.
\end{equation}

The paper is organized as follows. First, in Section 2 we describe Euclidean representations of a strongly regular graph by two-distance sets and then in Section 3 we prove our main results.
2 Eucledian representations of strongly regular graphs

A strongly regular graph Γ with parameters (v, k, λ, μ) is an undirected regular graph on v vertices of valency k such that each pair of adjacent vertices has λ common neighbors, and each pair of nonadjacent vertices has μ common neighbors. The adjacency matrix A of Γ has the following properties:

$$AJ = kJ$$

and

$$A^2 + (\mu - \lambda)A + (\mu - k)I = \mu J,$$

where I is the identity matrix and J is the matrix with all entries equal to 1 of appropriate sizes. These conditions imply that

$$(3) \quad (v - k - 1)\mu = k(k - \lambda - 1).$$

Moreover, the matrix A has only 3 eigenvalues: k of multiplicity 1, one positive eigenvalue

$$r = \frac{1}{2} \left(\lambda - \mu + \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right)$$

of multiplicity

$$(4) \quad f = \frac{1}{2} \left(v - 1 - \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}} \right),$$

and one negative eigenvalue

$$s = \frac{1}{2} \left(\lambda - \mu - \sqrt{(\lambda - \mu)^2 + 4(k - \mu)} \right)$$

of multiplicity

$$g = \frac{1}{2} \left(v - 1 + \frac{2k + (v - 1)(\lambda - \mu)}{\sqrt{(\lambda - \mu)^2 + 4(k - \mu)}} \right).$$
Clearly, both \(f \) and \(g \) must be integers. This together with (3) gives a collection of feasible parameters \((v, k, \lambda, \mu)\) for strongly regular graphs.

Let \(V \) be the set of vertices \(\Gamma \). Consider columns \(\{y_i : i \in V\} \) of the matrix \(A - sI \) and put \(x_i := z_i/\|z_i\|, \ i \in V \). Note that while the vectors \(x_i \) lie in \(\mathbb{R}^v \), they span at most a \(f \)-dimensional vector space. Thus for convenience we consider them to lie in \(\mathbb{R}^f \). By easy calculations
\[
\langle x_i, x_j \rangle = \begin{cases} 1, & \text{if } i = j, \\ p, & \text{if } i \text{ and } j \text{ are adjacent,} \\ q, & \text{otherwise,} \end{cases}
\]
where
\[
p = \frac{\lambda - 2s - \beta}{s^2 + k - \beta}, \quad q = \frac{\mu - \beta}{s^2 + k - \beta}, \quad \beta = \frac{1}{v}(s^2 + k(\lambda - 2s) + (v - k - 1)\mu).
\]
Denote by \(\Gamma_f \) the configuration \(x_i, i \in V \). Similarly, we can define the configuration \(\Gamma_g \) in \(\mathbb{R}^g \). The configurations \(\Gamma_f \) and \(\Gamma_g \) were also considered in [6] and have many other fascinating properties. For example, they are spherical 2-designs.

3 Proof of main results

For any vertex \(v \in V \) of a strongly regular graph \(\Gamma \), let \(N(v) \) be the set of all neighbors of \(v \) and let \(N'(v) \) be the set of non-neighbors of \(v \), i.e. \(N'(v) = V \setminus (\{v\} \cup N(v)) \).

Proof of Theorem 1. We consider the configuration \(\Gamma_f \) of the well-known strongly regular graph \(\Gamma = G_2(4) \) with parameters \((416, 100, 36, 20)\). By [6] we have that \(f = 65 \). Moreover, \(p = 1/5 \) and \(q = -1/15 \). Therefore the diameter of \(\Gamma_f \) is the distance between \(x_i \) and \(x_j \) where \(i \) and \(j \) are non-adjacent. Hence, the configuration cannot be partitioned into less than \(v/m \) parts, where \(m \) is the size of the largest clique in \(\Gamma \). To prove Theorem 1
it is enough to show that $G_2(4)$ has no 6-clique. Now we use the following result \cite{5}.

\textbf{Theorem A.}

(i) For each $u \in V$ the subgraph of Γ induced on $N(u)$ is a strongly regular graph with parameters $(100, 36, 14, 12)$ (the Hall-Janko graph). In other words the Hall-Janko graph is the first subconstituent of Γ.

(ii) The first subconstituent of the Hall-Janko graph is the $U_3(3)$ strongly regular graph with parameters $(36, 14, 4, 6)$.

(iii) The first subconstituent of $U_3(3)$ is a graph on 14 vertices of regularity 4 (the co-Heawood graph).

(iv) The co-Heawood graph has no triangles.

Parts (i)-(iii) are folklore. They follows from D.G. Higman’s theory of rank 3 permutation groups (see also \cite{7} and \cite{13}). Part (iv) follows from the fact that the co-Heawood graph is a subgraph of the Gewirtz graph with parameters $(56, 10, 0, 2)$; see also \cite{2}.

Now, for vertices $u, v, w \in V$ forming a triangle, (i)-(iii) implies that

$$|N(u) \cap N(v) \cap N(w)| = 14.$$

Moreover, the subgraph induced on $N(u) \cap N(v) \cap N(w)$ is the co-Heawood graph. Therefore by (iv) the maximal cliques in Γ are of size 5.

\textbf{Proof of Theorem 2.} Consider the configuration Γ_f of the Fi_{23} graph with parameters $(31671, 3510, 693, 351)$. We have $f = 782$, $p = 1/10$, and $q = -1/80$. Hence, the diameter of Γ_f is the distance between non adjacent vertices. Similarly to the proof of Theorem 1 Γ_f cannot be partitioned into less than v/m parts, where m is the size of the largest clique in Γ. We will use the well-known fact (see \cite{15}) that the first subconstituent of Γ is the strongly regular graph with parameters $(3510, 693, 180, 126)$ and the second subconstituent of Γ is the strongly regular graph G with parameters $(693, 180, 51, 45)$. Now we will estimate from above the size of a clique in G. To this end consider the complement graph \tilde{G} having parameters $(693, 512, 376, 384)$. For the configuration \tilde{G}_f, we have that $f = 440,$
\(p = 1/64 \), and \(q = -1/20 \). Therefore, the size of a clique \(K \) in \(G \) cannot be larger than 21. Otherwise the vector
\[
\sum_{i \in K} x_i, \quad x_i \in \bar{G}_f,
\]
is of negative norm. Thus, the size of a clique in \(\Gamma \) is not larger than 23 and hence \(\Gamma_f \) cannot be partitioned into less than \(31671/23 = 1377 \) parts of smaller diameter.

Proof of Corollary 1. Let us first prove (1) for \(k = 0 \). Fix \(n \in \mathbb{N} \) and put \(m = 66n \). Consider the following coordinate representation of a vector \(y \in \mathbb{R}^m \):
\[
y = (y_1, \ldots, y_n|a_1, \ldots, a_n),
\]
where \(y_k \in \mathbb{R}^{65} \) and \(a_k \in \mathbb{R} \), \(k = 1, \ldots, n \). Now we take the following set of unit vectors in \(\mathbb{R}^m \):
\[
Y = \{ v_{ik}, i = 1, \ldots, 416, k = 1, \ldots, n \},
\]

where each \(v_{ik} \) has only two nonzero coordinates \(y_k \) and \(a_k \), and vectors \(x_i \) are such as in Theorem 1. Clearly, \(\langle v_{ik}, v_{jl} \rangle = 0 \) if \(k \neq l \). Moreover,
\[
\langle v_{ik}, v_{jk} \rangle = \begin{cases}
1, & \text{if } i = j, \\
1/4, & \text{if } i \text{ and } j \text{ are adjacent}, \\
0, & \text{otherwise}.
\end{cases}
\]

Therefore, \(Y \) is a two-distance set consisting of 416n vectors. Now, by Theorem 1, this set cannot be partitioned into less than 84n parts of smaller diameter. Adding the vector \(v \) which is on the distance \(\sqrt{2} \) to each vector of \(Y \)
\[
v = (0, \ldots, 0 | \alpha, \ldots, \alpha), \quad \alpha = 1 + \sqrt{1 + 16n} / 4n
\]
(\(\alpha \) is a solution of the equation \((\alpha - 1/4)^2 + (n - 1)\alpha^2 = 17/16\)) we obtain that \(b_2(66n) \geq 84n + 1 \). Finally we note that all these 416n + 1 vectors are on the same distance \(R \) to the vector \((0, \ldots, 0 | \gamma, \ldots, \gamma)\), where
\[
\gamma = \frac{\alpha}{4n\alpha - 1} \quad \text{and} \quad R = \frac{4\sqrt{n}}{\sqrt{16n + 1}} < 1
\]
\(\gamma \) is a solution of the equation \((\gamma - 1/4)^2 + (n - 1)\gamma^2 + 15/16 = n(\alpha - \gamma)^2\).

Hence we can add a new vector on the diameter distance \(\sqrt{2} \) to each of these 416n + 1 vectors to get a new set of 416n + 2 vectors in \(\mathbb{R}^{m+1} \) providing that \(b_2(m + 1) \geq 84n + 2 \). We can also rescale this new set to be on the sphere \(S^m \). Now inductive application of this procedure immediately gives us (1).

This procedure was also described in [9, Lemma 9]. Similarly, Theorem 2 implies (2).

\[\square \]

Proof of Corollary 2. Let \(\Gamma \) be the \(Fi_{23} \) graph. For a vertex \(u \in V \), consider the subset \(\{ x_i : i \in N'(u) \} \) of the configuration \(\Gamma_f \). This subset lies in the hyperplane \(\langle x_u, x \rangle = -1/80 \) and consists of 31671 - 3510 - 1 = 28160 vectors. Hence, \(b_2(781) > [28160/23] = 1224 \).

Similarly, for adjacent vertices \(u \) and \(v \), the subset \(\{ x_i : i \in N'(u) \cap N'(v) \} \) consists of 31671 - 2 \times 3510 + 693 = 25344 vectors. This subset lies in the hyperplane \(\{ x \in \mathbb{R}^{782} : \langle x_u, x \rangle = -1/80 \text{ and } \langle x_v, x \rangle = -1/80 \} \), and provides that \(b_2(780) > [25344/23] = 1101 \).

Finally, consider a subset \(\{ x_i : i \in N'(u) \cap N'(v) \cap N'(w) \} \) such that vertices \(u, v, w \) form a triangle. This subset consists of 31671 - 3 \times 3510 + 3 \times 693 - 180 = 23040 vectors, and provides that \(b_2(779) > [23040/23] = 1001 \).

Acknowledgement. The author thanks Danylo Radchenko for several fruitful discussions.

References

[1] N. Alon, *Discrete mathematics: methods and challenges*, Proceedings of the International Congress of Mathematicians, Beijing 2002, vol. 1, 119-135.

[2] J. Bamberg, F. de Clerck, and N. Durante, *Intriguing sets in partial quadrangles*, Journal of Combinatorial Designs, 19 (2011), 217-245.

[3] K. Borsuk. *Three theorems on the \(n \)-dimensional sphere*, (in German) Fund. Math., 20 (1933), 177-190.

[4] P. Brass, W. Moser, and J. Pach, *Research Problems in Discrete Geometry*, Springer-Verlag, 2005.

[5] A. Brouwer, *A slowly growing collection of graph descriptions*, published electronically at http://www.win.tue.nl/~aeb/graphs/index.html
[6] P. Cameron, Strongly regular graphs, in Selected Topics in Algebraic Graph Theory (eds. L.W. Beineke and R.J. Wilson), Cambridge Univ. Press, 2004.

[7] R. Griess, Twelve sporadic groups, Springer Monographs in Mathematics, 1998.

[8] A. Hinrichs, Spherical codes and Borsuk's conjecture, Discrete Math. 243 (2002), 253-256.

[9] A. Hinrichs, C. Richter, New sets with large Borsuk numbers, Discrete Math. 270 (2003), 137-147.

[10] J. Kahn, G. Kalai, A counterexample to Borsuk's conjecture, Bull. Amer. Math. Soc. 29 (1993), 60-62.

[11] G. Kalai, Around Borsuk's Conjecture, published electronically at http://gilkalai.wordpress.com.

[12] M. Lassak, An estimate concerning Borsuk's partition problem, Bull. Acad. Pol. Sci. Ser. Math. 30 (1982), 449-451.

[13] D. Leemans, A Family of Geometries Related to the Suzuki Tower, Comm. Algebra 33 (2005), 2201-2217.

[14] A. Nilli, On Borsuk's problem, In Jerusalem combinatorics '93, 200-210. Amer. Math. Soc., Providence, RI, 1994.

[15] D. Pasechnik, Geometric characterization of the sporadic groups Fi_{22}, Fi_{23}, and Fi_{24}, Journal of Combinatorial Theory, Series A, 68 (1994), 100-114.

[16] O. Pikhurko, Borsuk's conjecture fails in dimensions 321 and 322, arXiv:math.CO/0202112 2002.

[17] A. M. Raigorodskii, On dimensionality in the Borsuk problem [in Russian], Uspekhi Mat. Nauk 52 (1997), 181-182. English translation in Russian Math. Surveys 52 (1997), 1324-1325.

[18] A. Raigorodskii, Around Borsuk's hypothesis, Journal of Mathematical Sciences, 154 (2008), 604-623.

[19] B. Weißbach, Sets with large Borsuk number, Beiträge Algebra Geom. 41 (2000), 417-423.

Andriy V. Bondarenko
Department of Mathematical Analysis,
Taras Shevchenko National University of Kyiv, str. Volodymyrska, 64,
Kyiv, 01033, Ukraine
and
Department of Mathematical Sciences, Norwegian University of Science and Technology,
NO-7491 Trondheim, Norway
Email address: andriybond@gmail.com