Chromosome-level genome assembly of the shuttles hoppfish, *Periophthalmus modestus*
--Manuscript Draft--

Manuscript Number:	GIGA-D-21-00233R1	
Full Title:	Chromosome-level genome assembly of the shuttles hoppfish, *Periophthalmus modestus*	
Article Type:	Data Note	
Funding Information:	national marine biodiversity institute of korea (2021M00600)	Not applicable

Abstract:
Background The shuttles hoppfish (mudskipper), *Periophthalmus modestus*, is one of mudskippers which are the largest group of amphibious teleost fishes that are uniquely adapted to live on mudflats. Since mudskippers can survive on land for extended periods of time by breathing through their skin and through the lining of the mouth and throat, they were evaluated as a model for the evolutionary sea-land transition of Devonian protoamphibians, ancestors of all present tetrapods.
Results A total of 39.6, 80.2 and 52.9 Gbp of Illumina, PacBio, 10X linked and Hi-C data, respectively, was assembled into 1,419 scaffolds with a N50 length of 33 Mbp and BUSCO score of 96.6%. The assembly covered 117% of the estimated genome size (729 Mbp) and included 23 pseudo-chromosomes anchored by a Hi-C contact map, which corresponded to the top 23 longest scaffolds were above 20 Mbp in size and close to the estimated one. Of the genome, 43.8% were various repetitive elements such as DNAs, tandem repeats, LINEs and simple repeats. Ab initio and homology-based gene prediction identified 30,505 genes, of which 94% had homology to the 14 Actinopterygii transcriptomes and 89% and 85% did Pfam families and InterPro domains respectively. Comparative genomics with 15 Actinopterygii species identified 59,448 gene families of which 12% were only in *P. modestus*.
Conclusions We present the high quality of the first genome assembly and gene annotation of the shuttles hoppfish. It will provide a valuable resource for further studies on sea-land transition, bimodal respiration, nitrogen excretion, osmoregulation, thermoregulation, vision and mechanoreception.

Corresponding Author: Jeong-Hyeon Choi, Ph.D.
National Marine Biodiversity Institute of Korea
Seocheon-gun, Chungcheongnam-do KOREA, REPUBLIC OF

First Author: Youngik Yang

Order of Authors: Youngik Yang, Ji Yong Yoo, Sang Ho Baek, Ha Yeun Song, Seonmi Jo, Seung-Hyun Jung, Jeong-Hyeon Choi, Ph.D.
Question	Response
Are you submitting this manuscript to a special series or article collection?	No
Experimental design and statistics	Yes
Full details of the experimental design and statistical methods used should be given in the Methods section, as detailed in our Minimum Standards Reporting Checklist. Information essential to interpreting the data presented should be made available in the figure legends.	
Have you included all the information requested in your manuscript?	Yes
Resources	Yes
A description of all resources used, including antibodies, cell lines, animals and software tools, with enough information to allow them to be uniquely identified, should be included in the Methods section. Authors are strongly encouraged to cite Research Resource Identifiers (RRIDs) for antibodies, model organisms and tools, where possible.	
Have you included the information requested as detailed in our Minimum Standards Reporting Checklist?	Yes
Availability of data and materials	Yes
All datasets and code on which the conclusions of the paper rely must be either included in your submission or deposited in publicly available repositories (where available and ethically appropriate), referencing such data using a unique identifier in the references and in the "Availability of Data and Materials" section of your manuscript.	
Have you met the above requirement as detailed in our Minimum Standards Reporting Checklist?
DATA NOTE

Chromosome-level genome assembly of the shuttles hoppfish, *Periophthalmus modestus*

Youngik Yang¹, Ji Yong Yoo², Sang Ho Baek², Ha Yeun Song³, Seonmi Jo¹, Seung-Hyun Jung¹ and Jeong-Hyeon Choi¹,*

¹Department of Applied Research and ²Marine Bio-Resources and Information Center, National Marine Biodiversity Institute of Korea, Seocheon, 33662, South Korea, and ³Division of Bioresources Bank, Honam National Institute of Biological Resources, Mokpo, 58762, South Korea

*jeochoi@gmail.com

Abstract

Background

The shuttles hoppfish (mudskipper), *Periophthalmus modestus*, is one of mudskippers which are the largest group of amphibious teleost fishes that are uniquely adapted to live on mudflats. Since mudskippers can survive on land for extended periods of time by breathing through their skin and through the lining of the mouth and throat, they were evaluated as a model for the evolutionary sea-land transition of Devonian protoamphibians, ancestors of all present tetrapods.

Results

A total of 39.6, 80.2, 52.9 and 33.3 Gbp of Illumina, PacBio, 10X linked and Hi-C data, respectively, was assembled into 1,419 scaffolds with a N50 length of 33 Mbp and BUSCO score of 96.6%. The assembly covered 117% of the estimated genome size (729 Mbp) and included 23 pseudo-chromosomes anchored by a Hi-C contact map, which corresponded to the top 23 longest scaffolds above 20 Mbp and close to the estimated one. Of the genome, 43.8% were various repetitive elements such as DNAs, tandem repeats, LINEs and simple repeats. *Ab initio* and homology-based gene prediction identified 30,505 genes, of which 94% had homology to the 14 Actinopterygii transcriptomes and 89% and 85% did Pfam families and InterPro domains respectively. Comparative genomics with 15 Actinopterygii species identified 59,448 gene families of which 12% were only in *P. modestus*.

Conclusions

We present the high quality of the first genome assembly and gene annotation of the shuttles hoppfish. It will provide a valuable resource for further studies on sea-land transition, bimodal respiration, nitrogen excretion, osmoregulation, thermoregulation, vision and mechanoreception.

Key words: shuttles hoppfish; shuttles mudskipper; *Periophthalmus modestus*; draft genome; PacBio sequencing; Hi-C sequencing

Introduction

Mudskippers are of the subfamily Oxudercinae and the family Oxudercidae which was recently separated from the family Gobiidae (Nelson et al.; 2016), and the largest group of amphibious teleost fishes that are uniquely adapted to live on mudflats (You et al.; 2014). They can survive on land for extended periods of time by breathing through their skin and through the lining of the mouth and throat. They propel themselves over land on their sturdy fore fins, and some of them are also able to climb trees and skip atop the surface of the water (Wicaksono et al.; 2020). They inhibit in tropical, subtropical, and temper...
Methods

Sample collection and extraction of genomic DNA and total RNA

P. modestus samples were collected from Gochang-gun, Jeollabuk-do, South Korea (35.34N, 126.37E) in May 2018. Total DNA was isolated from the muscle of P. modestus using the DNeasy Blood & Tissue kit (QIAGEN, USA), following the manufacturer’s protocol.

For species identification, the mitochondrial DNA Cytb gene barcode region was amplified using PCR as described in Chen et al. (2015). The PCR product of approximately 803 bp was purified using the QIAquick PCR purification kit (QIAGEN, USA) and sequenced on an ABI 3730xl DNA Analyzer (Applied Biosystems, USA) with the same PCR primer set. The sequence data were edited and aligned using the ATGC 4.0 software (Genetyx, Japan).

Organs of specimens collected in July 2019 were manually dissected for eye, brain, liver, gut, muscle and fin tissues, and total RNA was extracted from the dissected organs using the RNeasy Mini Kit (QIagen, USA). The RNA preparation was repeated three times, and then three–replicate RNA samples were mixed and processed for RNA-seq and Iso-seq.

DNA library construction and sequencing

For short read sequencing, a paired-end library with insert sizes of 550 bp was constructed using Illumina TruSeq DNA Nano Prep. Kit (Illumina, USA) and sequenced on an Illumina HiSeq 4000 instrument. For long read sequencing, a 20 kb SMRTbell library (PacBio, USA) was prepared and sequenced on a PacBio Sequel using 11 cells. To increase continuity in genome assembly, we further produced linked reads and Hi-C reads.

For linked read sequencing, a 10X Chromium genome v2 library (10X genomics, USA) was constructed and sequenced on an Illumina NovaSeq 6000 instrument. For long range scaffolding, a Dovetail Hi-C library was prepared with Dovetail Hi-C Library kit (Dovetail, USA) and sequenced on an Illumina NovaSeq 6000 instrument.

RNA library construction and sequencing

For RNA-seq, paired-end libraries with insert size of 150 bp were prepared with the Truseq mRNA Prep kit (Illumina, USA) from total mRNA, which was subsequently sequenced on an Illumina HiSeq 2500. For PacBio Iso-seq, three libraries of length 1-2, 2-3 and 3-6 Kbp were prepared from polyA+ RNA according to the Pacbio Iso-seq protocol (PacBio, USA). Six SMRT cells were run on a PacBio RS II system.

Genome size estimation

Trimmomatic (Bolger et al.; 2014) was used to clean raw short reads by removing leading and trailing low-quality regions or those that contained the TruSeq index and universal adapters. JELLYFISH (Marçais and Kingsford; 2011) generated a 17-mer distribution and GenomeScope (Vurture et al.; 2017) estimated the size where the main peak was chosen.

Genome assembly and evaluation

MiniASM (Li; 2016) assembled contigs from pairwise alignments generated by MiniMap2 (Li; 2018) using PacBio long reads. Contigs were polished using RACON (Vaser et al.; 2017) with the alignments generated by MiniMap2 using PacBio long reads, and further polished using Pilon (Walker et al. 2014) with the alignments generated by BWA (Li and Durbin; 2009) using Illumina short reads. Then, 10x Genomics linked reads were used to correct mis-assembled contigs using tig-mint (Jackman et al.; 2018) and to generate scaffolds using ARCS (Yeo et al.; 2017) and LINKS (Warren et al.; 2015). Dovetail HiRise assembler (Putnam et al.; 2016) linked the scaffolds to pseudo-chromosomes. In brief, Hi-C reads were aligned to the scaffolds using a modified version of SNAP and PCR duplicates were marked using Novosort (Putnam et al.; 2016). Then HiRise analyzed the separations of Hi-C read pairs mapped within the scaffolds to produce a likelihood model for the genomic distance between read pairs, and the model was used to identify and break putative misjoins, to score prospective joins, and to make joins above a threshold. QUAST (Gurevich et al.; 2013) accessed the length statistics of the genome assembly, and BUSCO (Simão et al.; 2015) evaluated the completeness of genome and transcriptome with metazoa conserved genes.

Repeat analysis

Repeats were predicted by three ways. Tandem Repeat Finder (Benson; 1999) identified tandem repeats. Repeat-
Gene prediction and annotation

To predict protein-coding genes, we combined \textit{ab initio} and homology-based gene prediction methods. For the \textit{ab initio} gene prediction, Illumina RNA-seq and PacBio Iso-seq datasets were used to generate two hint files. Tophat (Kim et al.; 2013) aligned RNA-seq reads to the soft repeat–masked genome assembly. To obtain intron hints from Iso-seq, LSC (Au et al.; 2012) corrected sequencing errors in full-length transcripts with RNA-seq, GMAP (Wu and Watanabe; 2005) aligned the corrected transcripts to the genome, and gmap2hints.pl in the AUGUSTUS package (Stanke et al.; 2008) generated intron hints from the alignments. BRAKER (Brüna et al.; 2020) predicted protein–coding genes by incorporating the outputs of GeneMark-ET (Lomsadze et al.; 2014) and AUGUSTUS. GeneMark-ET predicts genes with unsupervised training, whereas AUGUSTUS predicts genes with supervised training based on intron and protein hints.

For the homology-based gene prediction, the assembly of \textit{P. modestus} were aligned against the genes of 14 Actinopterygii species (Table S1) and vertebrata in orthoDB using TBLASTN (Camacho et al.; 2009) with an E-value cutoff of iE-5. GenBlastA (She et al.; 2009) clustered matching sequences, and retained only best–matched regions which were used to predict gene models for a homology–based approach using Exonerate (Slater and Birney; 2005). Finally, the homology–based gene prediction were merged to the \textit{ab initio} prediction only when there was no conflict. Then the merged genes were removed if their coding sequences (CDSs) contained premature stop codons or were not supported by hints. InterProScan (Jones et al.; 2014) annotated the predicted genes with various databases, including Hamap (Lima et al.; 2008), Pfam (Punta et al.; 2011), PIRSF (Nikolskaya et al.; 2007), PRINTS (Attwood et al.; 2000), ProDom (Bru et al.; 2005), PROFste (Sigrist et al.; 2009), SUPERFAMILY (Madera et al.; 2004) and TIGRFAM (Haft et al.; 2012).

To predict non–coding genes, Infernal (Nawrocki and Eddy; 2013), RNAmmer (Lagesen et al.; 2007) and trNAscan (Lowe and Eddy; 1997) were used.

Comparative genomics

Chromeiome (Pérez–Wohlfeil et al.; 2019) performed all pairwise comparison with 17 Actinopterygii genomes to generate a synteny map. OrthoMCL (Li et al.; 2003) identified orthologous gene families among 15 Actinopterygii transcriptomes (Table S1). \textit{Go enrichment} was performed using Fisher’s exact test and false discovery rate correction to identify functionally enriched \textit{GO} terms among gene families relative to the “genome background,” as annotated by Pfam.

For phylogenetic analysis and divergence time estimation, MUSCLE (Edgar; 2004) aligned the amino acid sequences of single–copy gene families, trimAl (Capella–Gutierrez et al.; 2009) filtered low alignment quality regions, RAxML (Stamatakis; 2014) constructed a phylogenetic tree with the \textit{PROTGRAMMJTT} model (100 bootstrap replicates), and MEGA7 (Kumar et al.; 2016) calculated divergence time with the Jones–Taylor–Thornton model and the previously determined topology. Gene family expansion and contraction were analyzed by CAFE (Han et al.; 2013) with the identified orthologous gene families and the estimated phylogenetic information.

Results

Species identification

Comparison of Cytb sequences against the NCBI GenBank database (http://www.ncbi.nlm.nih.gov/) showed above 99% sequence identity to \textit{P. modestus} (GenBank accession No. DQ901364.1), 89% to \textit{P. argentinianus} (AP019359.1) and 85% to \textit{P. barbarus} (KF415633.1).

Chromosomal-level genome assembly

We generated 39.6, 80.2, 52.9 and 33.3 Gbp (46, 94, 62, and 39 coverage) of Illumina, PacBio, 10X linked and Hi–C data, respectively, for genome sequencing (Table S2). The genome size was estimated at 729 Mbp using the 17–mer peak and distribution from cleaned Illumina data (Fig. S1). MiniMAP2 and MiniASM followed by polishing using RACON and Pilon generated 3,839 contigs (854 Mbp and N50 of 579 Kbp) using PacBio sequencing data. Tigmint, ARCS and LINKS generated 2,170 scaffolds (854 Mbp and N50 of 1.5 Mbp) using 10X linked data, and Dovetail HiRise finally generated 1,419 scaffolds including 23 pseudo–chromosomes (854 Mbp and N50 of 33 Mbp) using Hi–C data (Table 1). The pseudo–chromosomes were anchored by a Hi–C contact map (Fig. S2), and corresponded to the top 23 longest scaffolds of which the sum of lengths was close to the estimated genome size (742 Mb, Table S3). Interestingly, the number of pseudo–chromosomes is the same as that of chromosomes (Lee; 1986). Table 1 showed the length statistics of the genome assembly while Table S4 showed the genome completeness of 96.3% for contigs and scaffolds. Haplotigs and heterozygous overlaps of length 45 Mbp were purged, leaving 665 scaffolds (810 Mbp and N50 of 32.9 Mbp).

Genome annotation

Repetitive elements predicted by the three ways were merged to a total of 452 Mbp, which covered 42% of the genome: 11, 6, 5, 10 and 17% for DNA, LINE, simple repeat, tandem repeat and unknown, respectively (Table S5). We compared \textit{P. modestus} with 16 Actinopterygii species for repeats (Table S7). As shown in Fig. 2, \textit{P. modestus} had more simple and tandem repeats than the other Actinopterygii species.

For \textit{ab initio} gene prediction, we generated 172 Gbp and 125 Mbp of RNA–seq and PacBio data, respectively, which yielded 366,298 and 131,807 hints for introns. BRAKER with GeneMark and AUGUSTUS predicted 132,821 genes. For homology–based gene prediction, we used 14 Actinopterygii species (Table S1). A pipeline of TBLASTN, GenBlastA and Exonerate predicted

Table 1. Statistics of the genome assembly.
Contigs
contigs (≥ 0 bp)
contigs (≥ 1000 bp)
contigs (≥ 5000 bp)
Total length (≥ 0 bp)
Total length (≥ 10000 bp)
Total length (≥ 50000 bp)
contigs
Largest contig
Total length
GC (%)
N50
N75
L50
L75
N’s per 100 kbp
22,721 genes. Merging the two outputs and filtering incomplete genes produced 30,505 genes and 34,916 transcripts (Table S6), of which 94% had homology to the 14 Actinopterygii transcripts. As a result of InterProScan annotation, 27,045 orthologous families were compared to identify orthologous gene families using OrthoMCL. Among 59,448 gene families, 7,358 were common in all genomes, while 2,277 GO terms, and 6,059 genes had 5,489 Pfam families, 25,995 genes had 5,121 InterPro domains, 17,310 genes had 2,777 GO terms, and 6,059 genes had 5,489 Pfam families, 25,995 genes had 5,121 InterPro domains.

Synteny map

The 17 Actinopterygii genomes (Table S1) were compared to identify a synteny map using ChromoMite. Fig. S3 shows dot plots in the upper triangular matrix and distance scores in the lower triangular matrix. As expected, the pair of O. latipes and P. modestus had the lowest score, meaning the closest pair. The second and third lowest score corresponded to the pair of B. pectinirostris with P. magnuspinnatus and P. modestus, respectively. Note that the scores of D. rerio and L. oculatus with the others were greater than 0.99 because of the evolutionary distances.

Orthologous gene family

The 15 Actinopterygii whole-genome gene datasets (Table S1) were compared to identify orthologous gene families using OrthoMCL. Among 59,448 gene families, 7,358 were common in all genomes, while 2,277 GO terms, and 6,059 genes had 5,489 Pfam families, 25,995 genes had 5,121 InterPro domains, 17,310 genes had 2,777 GO terms, and 6,059 genes had 5,489 Pfam families, 25,995 genes had 5,121 InterPro domains.

Phylogenetic relationships and divergence time

All genomes had 281 single-copy orthologous gene families which were used to construct a phylogenetic tree and estimate divergence time. The TimeTree database (Hedges et al.; 2006) was used to take calibration times between L. calcarifer – S. maximus, K. marmoratus – O. latipes and T. rubireps – T. nigroviridis divergence as 70–94, 76–114, and 42–59 MYA. As shown in Fig. 4, the infraclass Teleostei was separated at ~320MYA, consistent to the previous study (Betancur–R et al.; 2017), the order Cypriniformes at ~287MYA, the order Esociformes at ~224MYA, and the order Gobiiformes at ~141MYA. P. modestus clustered with the other species in the order Gobiiformes, and diverged from P. magnuspinnatus and B. pectinirostris during the late and mid Cenozoic era (15 and 25 MYA), respectively.

Gene family expansion and contraction

Orthologous gene families among the 15 Actinopterygii genomes were used for analyzing gene family expansion and contraction. The number of expanded and contracted gene families of P. modestus with its common ancestor were 411 and 225 while those of P. magnuspinnatus, the closest genome, were 257 and 442, respectively (Fig. 4). The expanded gene families of P. modestus were enriched in base–excision repair, transmembrane receptor protein tyrosine kinase signaling pathway, and enzyme linked receptor protein signaling pathway (Table S9) while the contracted gene families of P. modestus were in FMN binding, ion binding, and reactive oxygen species metabolic
Figure 4. Time tree was constructed by MEGA7 with 281 single-copy orthologous gene families among 15 Actinopterygii where the first (black) numbers represent divergence time in million of years; the second (red) and third (blue) numbers represent the number of expanded and contracted, respectively, gene families identified by CAFE; the geologic timescale, earth impacts, oxygen, carbon dioxide and solar luminosity were generated on the TimeTree database.

process (Table S10). Fig. S4 shows word cloud for GO term description enriched in unique, expanded and contracted gene families of *P. modestus*.

Conclusions

We presented a chromosome-level high-quality genome assembly of *P. modestus* with N50 length of 33 Mbp using Illumina, PacBio, 10X, Hi-C, RNA and Isoform sequencing respectively. The completeness of the genome was confirmed by the BUSCO score of 96.3%. The top 23 longest scaffolds were above 20 Mbp in size and close to the estimated genome size of 728 Mbp. *P. modestus* had various repetitive elements in 43.8% of the genome and more repetitive elements than the 16 Actinopterygii genomes. We predicted 34,871 protein coding and 7,865 non-coding genes, and 93% of the protein coding genes had homology to the 14 Actinopterygii transcriptomes. This dataset will provide a valuable resource for further studies on sea-land transition, bimodal respiration, nitrogen excretion, osmoregulation, thermoregulation, vision and mechanoreception.

Availability of source code and requirements

Table S12 shows the software versions, settings and parameters.

Availability of supporting data and materials

All raw sequencing reads have been deposited in the NCBI SRA (Table S2) under BioProject No. PRJNA660579. The assembled genome was submitted to NCBI Assembly. Gene annotation and transcript sequences were provided as supplementary files. JBrowse (Buesis et al.; 2016) was set up on http://magic.re.kr/jbrowse/jb/mabik/?data=shuttles_hoppfish.

Additional files

Supplementary figures:

- Fig. S1. Genome size estimation by 17-mer distribution.
- Fig. S2. Hi-C contact map.
- Fig. S3. Synteny map of 17 Actinopterygii genomes.
- Fig. S4. Word cloud for GO term description.
Supplementary tables:
1. Table S1. Taxonomy and statistics of 17 Actinopterygii species.
2. Table S2. Statistics of sequencing data.
3. Table S3. Top 23 longest scaffolds.
4. Table S4. BUSCO assessment of genome assembly and gene prediction with metazoa.
5. Table S5. Statistics of repetitive elements.
6. Table S6. Statistics of predicted protein-coding genes.
7. Table S7. Repeat analysis for the 17 Actinopterygii genome.
8. Table S8. Top 40 GO terms enriched in unique gene families of *P. modestus*.
9. Table S9. Top 40 GO terms enriched in expanded gene families of *P. modestus*.
10. Table S10. Top 40 GO terms enriched in contracted gene families of *P. modestus*.
11. Table S11. Statistics of predicted non-coding genes.
12. Table S12. A list of software and parameters used for genome analyses.

Declarations

List of abbreviations

- Cytb: cytochrome b
- PCR: polymerase chain reaction
- RNA-sequencing: RNA-seq
- Isoform sequencing: Iso-seq
- Kbp: kilo base pair
- Mbp: mega base pair
- Gbp: giga base pair
- GO: gene ontology
- MYA: million years ago

Competing Interests

The authors declare no competing interests.

Funding

This study was financially supported by the National Marine Biodiversity Institute of Korea Research Program (2021M00600).

Author’s Contributions

J.H.C and Y.Y. conceived concept, H.Y.S., S.I., and S.H.J collected and classified the sample, J.H.C. and Y.Y. designed the experiments, J.Y.Y., S.H.B, Y.Y. and J.H.C. analyzed the genomic data, S.H.B and Y.Y deposited the data into NCBI, H.Y.S., Y.Y. and J.H.C. wrote the paper. All authors reviewed the manuscript.

References

Abreu, W., Kohjina, K. and Kohany, O. (2015). Repbase Update, a database of repetitive elements in eukaryotic genomes, *Mobile DNA* 6: 11.
Bedell, J. A., Korf, I. and Gish, W. (2000). MaskerAid: a performance enhancement to RepeatMasker, *Bioinformatics* 16(11): 1040–1041.
Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences, *Nucleic Acids Research* 27(2): 573–580.
Betancur–R., R., Wiley, E. O., Arratia, G., Acero, A., Bailly, N., Miya, M., Lecointre, G. and Ortí, G. (2017). Phylogenetic classification of bony fishes, *BMC Evolutionary Biology* 17: 162.
Bolger, A. M., Lahse, M. and Usadel, B. (2014). Trimomatic: a flexible trimmer for Illumina sequence data, *Bioinformatics* 30(15): 2114–2120.
Bru, C., Courcelle, E., Carrère, S., Beausse, Y., Dalmar, S. and Kahn, D. (2005). The ProDom database of protein domain families: more emphasis on 3D, *Nucleic Acids Research* 33(suppl): D212–D215.
Brúna, T., Hoff, K. J., Lomsadze, A., Stanke, M. and Borodovsky, M. (2020). Braker2: Automatic eukaryotic genome annotation with genemark–cp and augustus supported by a protein database, *bioRxiv*.
Buels, R., Yao, E., Diesh, C. M., Hayes, R. D., Munoz–Torres, M., Helt, G., Goodstein, D. M., Elsik, C. G., Lewis, S. E., Stein, L. and Holmes, I. H. (2016). JBrowse: a dynamic web platform for genome visualization and analysis, *Genome Biology* 17: 66.
Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. and Madden, T. L. (2009). BLAST+: architecture and applications, *BMC Bioinformatics* 10: 421.
Cantor, T. E. (1842). General features of chusan, with remarks on the flora and fauna of that island, *Annuals and Magazine of Natural History* 9(58, 59, 60): 265–278, 361–370, 481–493.
Capella–Gutiérrez, S., Silla-Martínez, J. M. and Gabaldón, T. (2009). trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, *Bioinformatics* 25(15): 1972–1973.
Chen, W., Hong, W., Chen, S., Wang, Q. and Zhang, Q. (2015). Population genetic structure and demographic history of the mudskipper boleophthalmus pectinirostris on the northwestern pacific coast, *Environmental Biology of Fishes* 98(3): 845–856.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput, *Nucleic Acids Research* 32(5): 1792–1797.
Guan, D., McCarthy, S. A., Wood, J., Howe, K., Wang, Y. and Durbin, R. (2020). Identifying and removing haplotype duplication in primary genome assemblies, *Bioinformatics* 36(9): 2896–2898.
Gurevich, A., Saveliev, V., Vyahhi, N. and Tesler, G. (2013). QUAST: quality assessment tool for genome assemblies, *Bioinformatics* 29(8): 1072–1075.
Haft, D. H., Selengut, J. D., Richter, R. A., Harkins, D., Basu, M. K. and Beck, E. (2012). TIGRFAMs and Genome Properties in 2013, *Nucleic Acids Research* 41(D1): D387–D395.
Han, M. V., Thomas, G. W., Lugo–Martínez, J. and Hahn, M. W. (2012). Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3, *Molecular Biology and Evolution* 30(8): 1987–1997.
Hedges, S. B., Dudley, J. and Kumar, S. (2006). TimeTree: a public knowledge–base of divergence times among organisms, *Bioinformatics* 22(23): 2971–2972.
Jackman, S. D., Coombo, L., Chu, J., Warren, R. L., Vandervalk, B. P., Yeo, S., Xue, Z., Mohamadi, H., Bohlmann, J., Jones, S. J. M. and Birol, I. (2018). Tigmint: correcting assembly errors using linked reads from large molecules, *BMC Bioinformatics* 19(1): 393:1–393:10.
Jones, P., Binns, D., Chang, H.-Y., Fraser, M., Li, W., McAnulla, C., McWilliam, H., Maslen, J., Mitchell, A., Nuka, G., Pesseat,
S., Quinn, A. F., Sangrador–Vegas, A., Scheremetjew, M.,
Yong, S.-Y., Lopez, R. and Hunter, S. (2014). InterProScan 5:
genome–scale protein family classification, Bioinformatics
30(9): 1236–1240.

Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. and
Salzberg, S. L. (2013). TopHat2: accurate alignment of tran-
scriptomes in the presence of insertions, deletions and gene
fusions, Genome Biology 14: R36.

Kumar, S., Stecher, G. and Tamura, K. (2016). MEGA7: Molec-
ular Evolutionary Genetics Analysis Version 7.0 for Bigger
Datasets, Molecular Biology and Evolution 33(7): 1780–1784.

Lagesen, K., Hallin, P., Rodland, E. A., Staerfeldt, H.-H.,
Rognes, T. and Ussery, D. W. (2007). RNAmmer: consis-
tent and rapid annotation of ribosomal RNA genes, Nucleic
Acids Research 35(9): 3100–3108.

Lee, G. (1986). Karyotypes of the family gobidae fishes in korea
(1), Korea J. Limnol. 19: 49–58.

Li, H. (2016). Minimap and miniasm: fast mapping and
de novo assembly for noisy long sequences, Bioinformatics
32(14): 2103–2110.

Li, H. (2018). Minimap2: pairwise alignment for nucleotide
sequences, Bioinformatics 34(18): 3094–3100.

Li, H. and Durbin, R. (2009). Fast and accurate short read
alignment with Burrows–Wheeler transform, Bioinformatics
25(14): 1754–1760.

Li, L., Stoeckert, C. J. and Roos, D. S. (2003). Orthomcl: Identi-
fication of ortholog groups for eukaryotic genomes, Genome
Research 13(9): 2178–2189.

Lima, T., Aucinhos, A. H., Coudert, E., Keller, G., Mi-
ochond, K., Rivoire, C., Builliard, V., de Castro, E., Lachai-
ze, C., Baratín, D., Phan, I., Bouguerel, L. and Bairoch, A.
(2008). HAMAP: a database of completely sequenced mi-
crobial proteome sets and manually curated microbial pro-
ein families in UniProtKB/Swiss–Prot, Nucleic Acids Research
37(suppl1): D471–D478.

Lomsadze, A., Burns, P. D. and Borodovsky, M. (2014). Inte-
gration of mapped RNA-Seq reads into automatic training
of eukaryotic gene finding algorithm, Nucleic Acids Research
42(15): e119–e119.

Lowe, T. M. and Eddy, S. R. (1997). RNAscan-SE: A Program
for Improved Detection of Transfer RNA Genes in Genomic
Sequence, Nucleic Acids Research 25(5): 955–964.

Madera, M., Vogel, C., Kummerfeld, S. K., Chothia, C. and Gough, J. (2004). The SUPERFAMILY database in
2004: additions and improvements, Nucleic Acids Research
32(suppl2): D235–D239.

Marçais, G. and Kingsford, C. (2011). A fast, lock-free ap-
proach for efficient parallel counting of occurrences of k-
mers, Bioinformatics 27(6): 764–770.

Nawrocki, E. P. and Eddy, S. R. (2013). Infernal 1.1: 100-fold
faster RNA homology searches, Bioinformatics 29(22): 2933–
2935.

Nelson, J. S., Grande, T. C. and Wilson, M. V. H. (2016). Fishes
of the World, John Wiley & Sons, Ltd.

Nikolskaya, A. N., Arighi, C. N., Huang, H., Barker, W. C. and
Wu, C. H. (2007). Pirsf family classification system for pro-
tein families in UniProtKB/Swiss-Prot, Bioinformatics 23(9):
725–731.

Parenti, L. R. and Jaafar, Z. (2017). The Natural Distribution
of Mudskippers, CRC Press, chapter 2.

Putnam, C., Coggin, P. C., Eberhardt, R. Y., Mistry, J., Tate, J.,
Boursnell, C., Pang, N., Forslund, K., Ceric, G., Clements, J.,
Heger, A., Holm, L., Sonnhammer, E. L. L., Eddy, S. R., Bate-
man, A. and Finn, R. D. (2011). The Pfam protein families
database, Nucleic Acids Research 40(D1): D290–D301.

Putnam, N. H., O’Connell, B. L., Stites, J. C., Rice, B. J.,
Blanchette, M., Calef, R., Troll, C. J., Fields, A., Hartley,
F. D., Sugnet, C. W., Haussler, D., Rokhsar, D. S. and Green,
R. E. (2016). Chromosome–scale shotgun assembly using
an in vitro method for long–range linkage, Genome Research
26(3): 342–350.

Pérez–Wohlfeil, E., del Pino, S. D. and Trelles, O. (2019). Ultra-
fast genome comparison for large-scale genome experi-
ments, Scientific Reports 9: 10274.

She, R., Chu, J. S.-C., Wang, K., Pei, J. and Chen, N. (2009).
genblasta: Enabling blast to identify homologous gene se-
quences, Genome Research 19(1): 143–149.

Sigrist, C. J. A., Cerutti, L., de Castro, E., Langendijk–Genevaux,
P. S., Builliard, V., Bairoch, A. and Hulo, N. (2009). PROSITE,
a protein domain database for functional characterization
and annotation, Nucleic Acids Research 38(suppl1): D616–
D666.

Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva,
E. V. and Zdobnov, E. M. (2015). BUSCO: assessing genome
assembly and annotation completeness with single–copy or-
thologs, Bioinformatics 31(19): 3210–3212.

Slater, G. S. C. and Birney, E. (2005). Automated generation of
heuristics for biological sequence comparison, BMC Bioinfor-
matics 6: 31.

Stamatakis, A. (2014). RAxML version 8: a tool for phyloge-
netic analysis and post–analysis of large phylogenies, Bioin-
formatics 30(9): 1312–1313.

Stanke, M., Diekhans, M., Baertsch, R. and Haussler, D. (2008).
Using native and syntenically mapped cDNA alignments to
improve de novo gene finding, Bioinformatics 24(5): 637–
644.

Thacker, C. E. and Roje, D. M. (2011). Phylogeny of gobidiidae
and identification of gobid lineages, Systematics and Biodiversity
9(4): 329–347.

Vaser, R., Sović, I., Nagarajan, N. and Šikić, M. (2017). Fast and
accurate de novo genome assembly from long uncorrected
reads, Genome Research 27(5): 737–746.

Vurture, G. W., Sedlazeck, F. J., Nattestad, M., Underwood,
C. J., Fang, H., Gurtowski, J. and Schatz, M. C. (2017).
GenomeScope: fast reference–free genome profiling from
short reads, Bioinformatics 33(16): 2202–2204.

Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelilie, A., Sak-
thikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young,
S. K. and Earl, A. M. (2014). Pilon: An integrated tool for
comprehensive microbial variant detection and genome as-
sembly improvement, PLOS ONE 9(1): 1–14.

Warren, R. L., Yang, C., Vandervalk, B. P., Bebsaz, B. L., Lag-
erman, A., Jones, S. J. M. and Birol, I. (2015). LINKS: Scal-
able, alignment–free scaffolding of draft genomes with long
reads, GigaScience 4(1): s1372–015–0076–3.

Wicaksono, A., Hidayat, S., Retnoaji, B. and Alam, P. (2020).
The water–hopping kinematics of the tree–climbing fish,
Periophthalmus variabilis, Zoology 139: 125750.

Wu, T. D. and Watanabe, C. K. (2005). GMAP: a genomic map-
ing and alignment program for mRNA and EST sequences,
Bioinformatics 21(9): 1859–1875.

Yeo, S., Coome, L., Warren, R. L., Chu, J. and Birol, I. (2017).
ARCS: scaffolding genome drafts with linked reads, Bioinfor-
matics 34(5): 725–731.

Yoo, X., Bian, C., Zan, Q., Xu, X., Liu, X., Chen, J., Wang, J.
Qiu, Y., Li, W., Zhang, X., Sun, Y., Chen, S., Hong, W., Li,
Y., Cheng, S., Fan, G., Shi, C., Liang, J., Tom Tang, Y., Yang,
C., Ruan, Z., Bai, J., Peng, C., Mu, Q., Lu, Jun and Fan, M.,
Yang, S., Huang, Z., Jiang, X., Fang, X., Zhang, G., Zhang,
Y., Polgar, G., Yu, H., Li, J., Liu, Z., Zhang, G., Ravi, V., Coon,
S. L., Wang, J., Yang, H., Venkatesh, B., Wang, J. and Shi,
Q. (2014). Mudskipper genomes provide insights into the
terrestrial adaptation of amphibious fishes, Nature Commu-
nications 5: 5594.
Supplementary tables

Click here to access/download
Supplementary Material
supplementary_tables.pdf
Click here to access/download

Supplementary Material
Karyotypes of the family gobiiidae fishes in korea.pdf
We very much appreciate the reviewer for precise and valuable comments. The added and modified text were colored in the red in the revised manuscript. BUSCO V 4.1.4 and ODB V10 were used as requested by the editor. Additional files were uploaded to the FTP site.

Reviewer #1: In this manuscript, Yang et al., presents the genome assembly of the shuttles hoppfish, Periophthalmus modestus. This reference genome was primary assembled using PacBio data and following with a polishing step, then scaffolding using 10X/Hi-C data, and supplemented with annotations via RNA-seq and Iso-seq data. In addition, the author also completed some standard phylogenetic analysis with ~17 Actinopterygii species. The presented results may be a valuable resource for research on shuttles hoppfish and related species. The manuscript is well written. I have few comments that would need to be addressed before publication.

1) The title is about "chromosome-level genome assembly", but the author did not mention how many chromosomes are in the shuttles hoppfish genome and whether the top 23 longest scaffolds are 23 chromosomes?

We found Lee's study that uncovered that P. modestus has 23 chromosomes: "Lee, G.Y. 1986. Karyotypes of the family Gobiidae fishes in Korea (I). Korea J. Limnol., 19 : 49~58." Periophthalmus cantonensis (Osbeck, 1765) in the article is a synonymised name of P. modestus. We uploaded the article only for review.

The top 23 longest scaffolds were above 20 Mbp while the others below 1.3 Mbp.

The modified text in Section Abstract is “The assembly covered 117% of the estimated genome size (729 Mbp) and included 23 pseudo-chromosomes anchored by a Hi-C contact map, which corresponded the top 23 longest scaffolds above 20 Mbp and close to the estimated one.”

The added text in Section Introduction is “P. modestus can reach a length of 10 centimeters (Fig. 1) and was known to have 23 chromosomes (Lee; 1986).”

The modified text in Section Method is “Dovetail HiRise assembler (Putnam et al.; 2016) linked the scaffolds to pseudo-chromosomes. In brief, Hi-C reads were aligned to the scaffolds using a modified version of SNAP and PCR duplicates were marked using Novosort (Putnam et al.; 2016). Then HiRise analyzed the separations of Hi-C read pairs mapped within the scaffolds to produce a likelihood model for the genomic distance between read pairs, and the model was used
to identify and break putative misjoins, to score prospective joins, and to make joins above a threshold."

The modified text in Section Results is “MiniMAP2 and MiniASM followed by polishing using RACON and Pilon generated 3,839 contigs (854 Mbp and N50 of 579 Kbp) using PacBio sequencing data. Tigmint, ARCS and LINKS generated 2,170 scaffolds (854 Mbp and N50 of 1.5 Mbp) using 10X linked data, and Dovetail HiRise finally generated 1,419 scaffolds including 23 pseudo–chromosomes (854 Mbp and N50 of 33 Mbp) using Hi–C data (Table 1). The pseudo–chromosomes anchored by a Hi–C contact map (Fig. S2), and corresponded the top 23 longest scaffolds of which the sum is close to the estimated genome size (742 Mb, Table S3). Interestingly, the number of pseudo–chromosomes is the same as that of chromosomes (Lee; 1986)."

2) The assembly size (854 Mb) is larger than the estimated haploid genome size (729 Mb), which may be caused by duplicated assembly in heterozygous regions. Authors should use HaploMerger2 (https://github.com/mapleforest/HaploMerger2), or purge_dups (https://github.com/dfguan/purge_dups) to remove one haplotype in highly heterozygous regions, to avoid incorrect downstream analysis, such as comparative genomics.

We used purge_dups that removed haplotigs and heterozygous overlaps of length 45 Mbp, remaining 665 scaffolds (810 Mbp and N50 of 32.9 Mbp).

The added text in subsection Genome assembly and evaluation is “Purged_dups (Guan et al.; 2020) purged haplotigs and heterozygous overlaps.”

The added text in subsection Chromosome–level genome assembly is “Haplotigs and heterozygous overlaps of length 45 Mbp were purged, leaving 665 scaffolds (810 Mbp and N50 of 32.9 Mbp).”

3) Is there any special reason to use Miniasm for assembly instead of more commonly used assemblers for PacBio data, such as Falcon, Canu.

We have tried Canu, Falcon, Flye and wtdbg2, but the Miniasm assembly was the best in terms of the number of scaffolds and N50 length.

Reviewer #2: The authors completed a chromosome-level assembly of P. modestus. The BUSCOs estimation indicate a relatively high completeness (96.3%) about the genome. The sequencing depth is adequate for the final high–quality genome assembly generation. While the most content of this article clearly present the data and processing,
some paragraphs have slight loss of clarity, the details can be as following, which authors need to be revised or rephrased.

Page 4, Line 29-32, Why the RNA preparation here was required to repeat three times? If it is an approach that test whether contamination is in the extracted materials, why the final three-replicate RNA samples were mixed?

Although it is not critical, we tried to minimize the effect of pipetting errors during RNA preparation.

Page 4, Line 39-40, Please revise "To increase genome continuity," to "To increase continuity in genome assembly"

Thanks a lot for suggestion. The manuscript was revised as suggested.

Page 4, Line 62-64, Please describe more detail about the genome assembling. Miniasm assembling process should be based on minimap2 alignment, Racon is used for contigs polishing with long-reads. The authors should mention these processes with more details. More importantly, authors forget to write how to assemble super-length-scaffolds to chromosome-level scaffolds, this is core for this article, however, it is absent in the method paragraph.

We fully revised subsection “Genome assembly and evaluation.”

“MiniASM (Li; 2016) assembled contigs from pairwise alignments generated by MiniMap2 (Li; 2018) using PacBio long reads. Contigs were polished using RACON (Vaser et al.; 2017) with the alignments generated by MiniMap2 using PacBio long reads, and further polished using Pilon (Walker et al.; 2014) with the alignments generated by BWA (Li and Durbin; 2009) using Illumina short reads. Then, 10x Genomics linked reads were used to correct mis-assembled contigs using tigmint (Jackman et al.; 2018) and to generate scaffolds using ARCS (Yeo et al.; 2017) and LINKS (Warren et al.; 2015). Dovetail HiRise assembler (Putnam et al.; 2016) linked the scaffolds to pseudo-chromosomes. In brief, Hi-C reads were aligned to the scaffolds using a modified version of SNAP and PCR duplicates were marked using Novosort (Putnam et al.; 2016). Then HiRise analyzed the separations of Hi-C read pairs mapped within the scaffolds to produce a likelihood model for the genomic distance between read pairs, and the model was used to identify and break putative misjoins, to score prospective joins, and to make joins above a threshold. QUAST (Gurevich et al.; 2013) accessed the length statistics of the genome assembly, and BUSCO (Simão et al.; 2015) evaluated the completeness of genome and transcriptome with metazoa conserved genes. Purged_dups (Guan et al.; 2020) purged haplotigs and heterozygous overlaps.”
Page 4, Line 73-78, Authors describe "three ways to find repeats", however, I just find two ways, one is to identify tandem repeats and the another is to identify TE.

Identifying TE used two separate databases: a de novo library and known library (Fugu). The text is modified as “RepeatMasker identified transposable elements with a de novo library built by RepeatModeler and separately with a known library (Fugu) in RepBase using RMBlast.”

Page 4, Line 80-81, Authors actually used the RNA-seq based annotated methods according to the following description, but it was not mentioned in the first sentence.

We are sorry for not understanding the reviewer’s point. RNA-seq as well as Iso-seq were used for ab initio gene prediction. Could you please let us know how to modify the first sentence if the text below should be modified?

“To predict protein-coding genes, we combined ab initio and homology-based gene prediction methods. For the ab initio gene prediction, Illumina RNA-seq and PacBio Iso-seq datasets were used to generate two hint files.”

Page 5, Line 24, Change "GO term analysis" to "GO enrichment"

Thanks a lot for suggestion. The manuscript was revised as suggested.

Page 5, Line 99, Are sure the input datasets for gene family clustering is "15 Actinopterygii transcriptomes" or "15 whole-genome gene datasets"? Usually I used the latter to perform gene families clustering. In addition, authors should describe the standard about how to remove alternative transcript in transcriptomes or whole-genome gene datasets.

Thanks a lot for suggestion. "15 whole-genome gene datasets" is more correct. We have not removed alternative spliced transcripts because orthoMCL handles them.

Page 6, Line 19, Although this article is aimed to a data-note style, I want to look more result that describe phylogeny and species divergence time, which benefit readers to understand the academic significance of related to the data generated from this article.

We added “As shown in Fig. 4, the infraclass Teleostei was separated at ~320MYA, consistent to the previous study (Betancur–R et al; 2017), the order Cypriniformes at ~287MYA, the order Esociformes at ~224MYA, and the order Gobiiformes at ~141MYA. P. modestus clustered with the other species in Gobiiformes, and diverged from P. magnuspinnatus and B. pectinirostris during the late and mid Cenozoic era (15 and 25 MYA), respectively.”