A note on interval edge-colorings of graphs

R.R. Kamaliana*, P.A. Petrosyanac†

aInstitute for Informatics and Automation Problems, National Academy of Sciences, 0014, Armenia

bDepartment of Applied Mathematics and Informatics, Russian-Armenian State University, 0051, Armenia

cDepartment of Informatics and Applied Mathematics, Yerevan State University, 0025, Armenia

An edge-coloring of a graph G with colors 1, 2, \ldots, t is called an interval t-coloring if for each $i \in \{1, 2, \ldots, t\}$ there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In this paper we prove that if a connected graph G with n vertices admits an interval t-coloring, then $t \leq 2n - 3$. We also show that if G is a connected r-regular graph with n vertices has an interval t-coloring and $n \geq 2r + 2$, then this upper bound can be improved to $2n - 5$.

Keywords: edge-coloring, interval coloring, bipartite graph, regular graph

1. Introduction

All graphs considered in this paper are finite, undirected, and have no loops or multiple edges. Let $V(G)$ and $E(G)$ denote the sets of vertices and edges of G, respectively. An (a, b)-biregular bipartite graph G is a bipartite graph G with the vertices in one part all having degree a and the vertices in the other part all having degree b. A partial edge-coloring of G is a coloring of some of the edges of G such that no two adjacent edges receive the same color. If α is a partial edge-coloring of G and $v \in V(G)$, then $S(v, \alpha)$ denotes the set of colors of colored edges incident to v.

An edge-coloring of a graph G with colors 1, 2, \ldots, t is called an interval t-coloring if for each $i \in \{1, 2, \ldots, t\}$ there is at least one edge of G colored by i, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. A graph G is interval colorable, if there is $t \geq 1$ for which G has an interval t-coloring. The set of all interval colorable graphs is denoted by \mathcal{N}. For a graph $G \in \mathcal{N}$, the greatest value of t for which G has an interval t-coloring is denoted by $W(G)$.

*email: rrkamalian@yahoo.com.

†email: pet.petros@ipia.sci.am, ysu.am, yahoo.com
The concept of interval edge-coloring was introduced by Asratian and Kamalian [2]. In [2, 3] they proved the following theorem.

Theorem 1 If G is a connected triangle-free graph and $G \in \mathcal{N}$, then

$$W(G) \leq |V(G)| - 1.$$

In particular, from this result it follows that if G is a connected bipartite graph and $G \in \mathcal{N}$, then $W(G) \leq |V(G)| - 1$. It is worth noting that for some families of bipartite graphs this upper bound can be improved. For example, in [1] Asratian and Casselgren proved the following

Theorem 2 If G is a connected (a, b)-biregular bipartite graph with $|V(G)| \geq 2(a + b)$ and $G \in \mathcal{N}$, then

$$W(G) \leq |V(G)| - 3.$$

For general graphs, Kamalian proved the following

Theorem 3 [6]. If G is a connected graph and $G \in \mathcal{N}$, then

$$W(G) \leq 2|V(G)| - 3.$$

The upper bound of Theorem 3 was improved in [5].

Theorem 4 [5]. If G is a connected graph with $|V(G)| \geq 3$ and $G \in \mathcal{N}$, then

$$W(G) \leq 2|V(G)| - 4.$$

On the other hand, in [7] Petrosyan proved the following theorem.

Theorem 5 For any $\varepsilon > 0$, there is a graph G such that $G \in \mathcal{N}$ and

$$W(G) \geq (2 - \varepsilon)|V(G)|.$$

For planar graphs, the upper bound of Theorem 3 was improved in [4].

Theorem 6 [3]. If G is a connected planar graph and $G \in \mathcal{N}$, then

$$W(G) \leq \frac{11}{6}|V(G)|.$$

In this note we give a short proof of Theorem 3 based on Theorem 1. We also derive a new upper bound for the greatest possible number of colors in interval edge-colorings of regular graphs.
2. Main results

Proof of Theorem 3. Let $V(G) = \{v_1, v_2, \ldots, v_n\}$ and α be an interval $W(G)$-coloring of the graph G. Define an auxiliary graph H as follows:

$$V(H) = U \cup W,$$

where

$$U = \{u_1, u_2, \ldots, u_n\}, W = \{w_1, w_2, \ldots, w_n\}$$

and

$$E(H) = \{u_iw_j, u_jw_i \mid v_iv_j \in E(G), 1 \leq i \leq n, 1 \leq j \leq n\} \cup \{u_iw_i \mid 1 \leq i \leq n\}.$$

Clearly, H is a connected bipartite graph with $|V(H)| = 2|V(G)|$.

Define an edge-coloring β of the graph H in the following way:

1. $\beta(u_iw_j) = \beta(u_jw_i) = \alpha(v_iv_j) + 1$ for every edge $v_iv_j \in E(G)$,

2. $\beta(u_iw_i) = \max S(v_i, \alpha) + 2$ for $i = 1, 2, \ldots, n$.

It is easy to see that β is an edge-coloring of the graph H with colors $2, 3, \ldots, W(G) + 2$ and $\min S(u_i, \beta) = \min S(w_i, \beta)$ for $i = 1, 2, \ldots, n$. Now we present an interval $(W(G) + 2)$-coloring of the graph H. For that we take one edge u_iw_i with $\min S(u_i, \beta) = \min S(w_i, \beta) = 2$, and recolor it with color 1. Clearly, such a coloring is an interval $(W(G) + 2)$-coloring of the graph H. Since H is a connected bipartite graph and $H \in \mathfrak{N}$, by Theorem 1 we have

$$W(G) + 2 \leq |V(H)| - 1 = 2|V(G)| - 1,$$

thus

$$W(G) \leq 2|V(G)| - 3.$$

\square

Theorem 7. If G is a connected r-regular graph with $|V(G)| \geq 2r + 2$ and $G \in \mathfrak{N}$, then

$$W(G) \leq 2|V(G)| - 5.$$

Proof. In a similar way as in the prove of Theorem 3 we can construct an auxiliary graph H and to show that this graph has an interval $(W(G) + 2)$-coloring. Next, since H is a connected $(r + 1)$-regular bipartite graph with $|V(H)| \geq 2(2r + 2)$ and $H \in \mathfrak{N}$, by Theorem 2 we have

$$W(G) + 2 \leq |V(H)| - 3 = 2|V(G)| - 3,$$

thus

$$W(G) \leq 2|V(G)| - 5.$$

\square
References

[1] A.S. Asratian, C.J. Casselgren, On interval edge colorings of \((\alpha, \beta)\)-biregular bipartite graphs, Discrete Mathematics 307 (2006) 1951-1956.

[2] A.S. Asratian, R.R. Kamalian, Interval colorings of edges of a multigraph (in Russian), Appl. Math. 5 (1987) 25-34.

[3] A.S. Asratian, R.R. Kamalian, Investigation on interval edge-colorings of graphs, J. Combin. Theory Ser. B 62 (1994) 34-43.

[4] M.A. Axenovich, On interval colorings of planar graphs, Congr. Numer. 159 (2002) 77-94.

[5] K. Giaro, M. Kubale, M. Malafiejski, Consecutive colorings of the edges of general graphs, Discrete Math. 236 (2001) 131-143.

[6] R.R. Kamalian, Interval edge-colorings of graphs, Doctoral Thesis, Novosibirsk, 1990.

[7] P.A. Petrosyan, Interval edge-colorings of complete graphs and \(n\)-dimensional cubes, Discrete Mathematics 310 (2010) 1580-1587.