The potential of radiotherapy to enhance the efficacy of renal cell carcinoma therapy

Katrien De Wolf1,*, Karim Vermaelen2, Gert De Meerleer1, Bart N Lambrecht3,4,5,6, and Piet Ost1

1Department of Radiation Oncology and Experimental Cancer Research; Ghent University Hospital; Ghent, Belgium; 2Tumor Immunology Laboratory; Department of Pulmonary Medicine; Ghent University Hospital; Ghent, Belgium; 3Unit Immunoregulation and Mucosal Immunology; VIB Inflammation Research Center; Ghent, Belgium; 4GROUP-ID Consortium; Ghent University and University Hospital; Ghent, Belgium; 5Department of Respiratory Medicine; Ghent University; Ghent, Belgium; 6Department of Pulmonary Medicine; Erasmus MC; Rotterdam, The Netherlands

Keywords: antitumor immunity, immunotherapy, radiotherapy, renal cell carcinoma, targeted therapy, treatment combination

Abbreviations: APCs, antigen presenting cells; APM, antigen processing machinery; ASMase, acid sphingomyelinase; ATP, adenosine triphosphate; ccRCC, clear cell renal cell carcinoma; CRT, calreticulin; CTL, cytotoxic T lymphocyte; CTLA-4, cytotoxic T lymphocyte associated protein 4; DAMPs, damage-associated molecular patterns; DCs, dendritic cells; ER, endoplasmic reticulum; HIFRT, hypofractionated radiotherapy; HIF-1α, hypoxia-inducible factor α; HMGB1, high-mobility group box 1; HSP70, heat shock protein 70; ICAM-1, intercellular adhesion molecule 1; ICD, immunogenic cell death; IDO, immune regulating enzyme indoleamine-2,3-dioxxygenase; IFNγ, interferon γ; IL-2, interleukin 2; IL-6, interleukin 6; IL-10, interleukin 10; IL-12, interleukin 12; M1 macrophages, pro-inflammatory macrophages; M2 macrophages, anti-inflammatory macrophages; MDCs, myeloid-derived suppressor cells; MHC, major histocompatibility complex; MICA, MHC class I-related chain A; mTOR, mammalian target of rapamycin; NK cells, natural killer cells; PDGFR, platelet-derived growth factor receptor; PD-L1, programmed death ligand 1; RCC, renal cell carcinoma; ROS, reactive oxygen species; SBRT, stereotactic body radiotherapy; STAT3, signal transducer and activator of transcription 3; TCR, T cell receptor; TGF-β, transforming growth factor β; Th1 cells, T helper 1 cells; Th 2 cells, T helper 2 cells; TILs, tumor infiltrating lymphocytes; TIM-3, T cell immunoglobulin and mucin domain 3; TKIs, tyrosine kinase inhibitors; TNFα, tumor necrosis factor α; Tregs, regulatory T cells; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor; VHL, von Hippel-Lindau.

Renal cell carcinoma (RCC) is an immunogenic tumor, but uses several immune-suppressive mechanisms to shift the balance from tumor immune response toward tumor growth. Although RCC has traditionally been considered to be radiation resistant, recent evidence suggests that hypofractionated radiotherapy contributes to systemic antitumor immunity. Because the efficacy of antitumor immune responses depends on the complex balance between diverse immune cells and progressing tumor cells, radiotherapy alone is unlikely to induce persistent antitumor immunity. Therefore, the combination of radiotherapy with drugs having synergistic immunomodulatory properties holds great promise with the optimal timing and sequence of modalities depending on the agent used. We highlight the immunomodulatory properties of targeted therapies, such as tyrosine kinase inhibitors, mammalian target of rapamycin (mTOR) inhibitors and vascular endothelial growth factor (VEGF) neutralizing antibodies, and will suggest a combination schedule with radiotherapy based on the available literature. We also address the combination of radiotherapy with innovative treatments in the field of immunotherapy.

Introduction

RCC presents with metastatic disease in about 30% of patients, while another third of patients with localized advanced disease will ultimately develop metastases.1,2 Molecular therapies that block the VEGF or mTOR pathways are currently considered the mainstay treatment3 for metastatic RCC. Nevertheless, a durable response to targeted therapy is rare and most patients eventually develop progressive disease.4,5 We therefore have to look at new therapeutic options to improve the outcome of these patients. Since RCC is considered an immunogenic tumor,6-8 we might find the answer in the field of immunotherapy. There are some clinical cases in RCC describing responses outside the irradiated regions, following high-dose stereotactic body radiotherapy (SBRT) to metastases.9,10 These responses are termed “abscopal effects.” Both pre-clinical and clinical data11-13 suggest that these effects are immune mediated.14,15 Despite these observations, both the tumor and its microenvironment seem to be able to evade the immune system in the majority of cases. Radiotherapy alone is probably unlikely to induce persistent antitumor immunity and a combination with synergistic immunomodulatory agents might be necessary to induce long-term clinical results, as suggested by promising preclinical and clinical data.12,16-20
The current review offers insights into the specific immune escape mechanisms present in RCC with a specific focus on the potential role of radiotherapy in combination with systemic treatment to improve clinical responses by enhancing antitumor immunity.

Immune Modulation in RCC

Although the immune system tries to control the proliferation of RCC, the tumor is able to progress. By evasion of the antitumor immune response, RCC is able to shift the balance from tumor immune response toward tumor growth (Fig. 1). In the next paragraphs, these evasion mechanisms of RCC influencing both the innate and adaptive immune system are highlighted.

RCC is able to escape cytotoxic T lymphocyte (CTL)-mediated killing through different mechanisms (Fig. 2). T cells are initially stimulated to recognize cancer cells through cross-priming by dendritic cells (DCs). However, RCC interferes with DC activation by secreting immunosuppressive factors. Consequently, only a minority of the DCs show signs of activation and are able to prime naive T cells. Moreover, deficiencies in the proteasome and transporter associated with antigen processing, reduction of other antigen processing machinery (APM)-components, and altered expression of major histocompatibility complex (MHC)-I molecules, allows RCC to escape recognition by CTLs.

Most RCCs are highly vascularized because of mutations of the von Hippel–Lindau (VHL) tumor suppressor gene. pVHL is needed for the degradation of hypoxia-inducible factor α (HIF-1α). Deficient pVHL leads to accumulation of HIF-1α and stimulation of angiogenesis through HIF-induced VEGF production. In addition to stimulating tumor angiogenesis, VEGF also arrests the differentiation of myeloid cells, resulting in accumulation of immature myeloid cells. These immature myeloid cells are myeloid-derived suppressor cells (MDSCs) and block T cell responses by producing IL-10, transforming growth factor (TGF)-β, prostaglandin E2, reactive oxygen species (ROS) and arginine I. Compared to healthy controls, higher levels of MDSCs are found in the peripheral blood of RCC patients, associated with a 6–10-fold increase in arginase activity. Arginase production by MDSCs results in a decreased expression of the CD3ξ chain on tumor-infiltrating lymphocytes (TILs) of RCC. The CD3ξ chain is part of the T cell receptor (TCR) complex and normally plays a critical role in the proximal signaling events leading to T cell activation. Its reduced expression leads to impaired TCR signaling, causing a disturbed lytic function of the TILs. VEGF, along with IL-6 and IL-10, also induces signal transducer and activator of transcription 3 (STAT3) activation. STAT3 activation is thought to be involved in the accumulation of immunosuppressive cells, such as MDSCs and regulatory T cells (Tregs), and in the absence of functional DCs. In addition, STAT3 activation might be responsible for the reduced CTL reactivity in RCC, since STAT3 is required for the expression of HIF-1α, constitutively activated in the majority of RCC, and gene silencing of HIF-1α was seen to restore the susceptibility of tumor cells to CTL-mediated killing. These mechanisms might explain why both VEGF expression in tumor tissue and serum levels of VEGF are associated with poor prognosis in RCC patients.

T cells are only activated when the balance between co-stimulatory and co-inhibitory signals crosses the threshold for T cell activation. Therefore, the expression, by both primary and metastatic RCC tumor cells, of the co-inhibitory molecule programmed death ligand 1 (PD-L1) might shift the balance toward T cell inhibition. The expression of the co-inhibitory molecule PD-L1 in RCC is associated with aggressive tumor behavior and poor outcome. RCC tumor cells also often express the negative co-stimulatory molecule B7-H4. Its expression is associated with adverse clinical features. Recently, a new co-inhibitory molecule, T cell immunoglobulin and mucin domain 3 (TIM-3), was described. The molecule is expressed by Th1 cells and CTLs and induces cell death by binding its ligand, galactin-9. Furthermore, the upregulated expression of TIM-3 on tumorspecific and tumor-infiltrating CD8+ T cells from patients with clear cell (cc)RCC was associated with poor prognosis.

Since Th1 cells are considered to be effector cells with antitumor activity, achieving a Th1-dominated immune response...
against RCC cancer cells would be desirable. However, RCC is able to counteract Th1 cell differentiation. Production of IL-10 by the tumor cells causes Th1 cell loss and Th2 cell prevalence.24 Additionally, RCCs do not produce the necessary cytokines, such as IL-2 and IL-12, to foster an optimal development of tumor-specific T cells. On the contrary, they produce TGF-β, which is known to stimulate the recruitment and activation of regulatory T cells (Tregs). They downregulate the function of immune effector cells through secretion of immunosuppressive factors such as indoleamine-2,3-dioxygenase (IDO).
RCC also influences the innate immune system (Fig. 1 Supplementary data). In patients with RCC a high frequency of natural killer (NK) cells in the lymphocytic infiltrate of the primary tumor seems to predict a better prognosis.\(^4\),\(^5\) However, in advanced RCC, NK cell frequency and activity are often decreased, correlating with poor survival.\(^2\) One possible mechanism for the impaired NK cell activity is the shedding of MHC class I-related chain A (MICA), a soluble NKGD2 ligand, from the tumor cell surface into the circulation.\(^2\) This causes a down-modulation of the NK cell-activating receptor, NKGD2D, resulting in decreased cytotoxicity.\(^5\) In addition, by secreting IL-10, cancer cells induce the polarization of tumor-associated macrophages from a pro-inflammatory (M1) to an anti-inflammatory (M2) phenotype.\(^2\),\(^4\),\(^5\) It is STAT3 signaling that plays an important role in this conversion.\(^3\) M1 macrophages are hypothesized to bear antitumor activities because they produce high levels of inflammatory cytokines, such as IL-12 and tumor necrosis factor α (TNFα). On the contrary, M2 macrophages produce anti-inflammatory cytokines, such as IL-10 and IL-6.\(^4\),\(^5\) In RCC, M2 macrophages are associated with a more advance tumor stage, while the opposite is held true for M1 macrophages.\(^2\),\(^4\),\(^5\)

Immunogenic Potential of Radiotherapy in RCC

The role of radiotherapy in metastatic RCC is used to palliate symptomatic metastases\(^3\) as RCC has been traditionally considered a radiation-resistant tumor. Although RCC might be resistant to conventional fractionated radiation (daily fractions of 1.8–3.0 Gy), a recent review suggested the opposite for hypofractionated radiotherapy (HFRT), typically delivering ≥ 5 Gy per fraction, in a single or a few fractions. HFRT, results in a different tumor radiobiology compared to conventional fractionated radiotherapy. One of the effects involves increased endothelial cell apoptosis, triggered by acid sphingomyelinase (ASMase)-induced ceramide release. Others have suggested that HFRT activates de novo synthesis of ceramide. Ceramide is able to initiate an apoptotic cell death through the release of mitochondrial cytochrome c.\(^4\) Therefore, HFRT, in contrast to conventional radiotherapy, efficiently destroys tumor microvasculature and is expected to have better results in tumors that are highly dependent on angiogenesis, such as RCC. This is supported by the excellent local tumor control of HFRT.\(^5\) HFRT has already been proven to be very safe in the treatment of oligometastatic disease. A systematic review of Kohari et al. reported one year local control rates of 88% and 86% for intra- and extracranial metastases, respectively. Grade 3–4 toxicity ranged between 0 and 6%.\(^6\) A prospective phase II trial for patients with brain metastases from so-called radio-resistant primary tumors, including RCC, showed median survival rates with stereotactic radiosurgery (SRS), which were comparable to surgical series.\(^5\) A prospective phase II trial using extracranial HFRT in mRCC or inoperable primary RCC showed local control in 98% of treated lesions,\(^5\) making it an excellent alternative to metastasectomy for treatment of extracranial metastases that are technically inoperable. Future randomized trials are required to confirm the additional benefit of HFRT above conventional radiotherapy.

The encouraging results of HFRT might also be explained by the effect radiotherapy has on the immune system.\(^3\) In the next paragraphs, we provide evidence for the potential of radiotherapy in shifting the balance back toward tumor control (Fig. 3). To date, little is known about which dose/fractionation regimens optimally enhance the antitumor immune response (25), but the majority of preclinical studies has investigated the effect of HFRT (22, 25) (Table 1).

Radiotherapy is able to hinder RCC in escaping CTL-mediated killing on different levels (Fig. 4). Firstly, irradiated dying cells provide a source of multiple tumor antigens\(^6\),\(^6\) for cross-presentation by circulating DCs.\(^7\),\(^8\) Radiotherapy stimulates DC activation by inducing immunogenic cell death (ICD), a cell death modality that is part of a ROS-dependent endoplasmic reticulum (ER) stress response.\(^9\),\(^8\) ICD stimulates an immune response against dead-cell associated antigens\(^6\) and is characterized by exposure of damage-associated molecular patterns (DAMPs), such as calreticulin (CRT)\(^6\) and heat shock protein (HSP)70 and release of high-mobility group box 1 (HMGB1)\(^8\) and adenosine triphosphate (ATP).\(^6\),\(^8\) These DAMPs are able to stimulate DC maturation,\(^6\) diversifying the TCR repertoire of tumor-specific T cells.\(^6\) Therefore, irradiated tumor cells might serve as an in situ autologous tumor vaccine.\(^6\) Radiation also induces interferon (IFN)y production within the tumor microenvironment,\(^7\),\(^8\) which has been shown to enhance the level of APM-components and to increase the expression of MHC-I molecules on the surface of the tumor cells.\(^1\),\(^6\),\(^6\) Activation of the ceramide pathway in response to HFRT, triggers vascular endothelial cell apoptosis via the ASMase pathway. Such damage also stimulates expression of MHC molecules.\(^2\),\(^4\),\(^5\)

Secondly, the upregulation of IFNγ following radiotherapy also plays a role in the trafficking of CD8\(^{+}\) T cells\(^6\),\(^5\),\(^8\) leading to the accumulation of CD8\(^{+}\) T cells in the tumor. The efficacy of high-dose radiotherapy has been proven to depend on the presence of these CD8\(^{+}\) T cells, since antibody-mediated depletion of CD8\(^{+}\) T cells completely abolished the therapeutic effect.\(^9\),\(^7\) The accumulation of CD8\(^{+}\) T cells is the result of different IFNγ-induced mechanisms, such as the expression of the adhesion molecules vascular cell adhesion molecule (VCAM)-1\(^7\) and intercellular adhesion molecule (ICAM)-1\(^7\),\(^2\) on tumor vasculature, facilitating T cell adhesion before transmigration and the secretion of CXCL9 and CXCL10, important T cell chemo-attractants with an anti-angiogenic effect.\(^7\) Besides T cells, they also attract monocytes who replenish the amount of DCs.\(^7\) The expression of the co-stimulatory molecule CD80 on DCs in the tumor microenvironment has also been found to be increased by radiation\(^8\) and could therefore shift the balance toward T cell activation.

Thirdly, radiotherapy is able to restore the limited recruitment of Th1-polarized lymphocytes in the tumor microenvironment of RCC\(^4\) by shifting the balance from a tumor
microenvironment dominated by TGF-β toward a tumor microenvironment enriched with IFNγ, which is responsible for the differentiation of CD4+ T cells into Th1 cells. This is important, because a Th2-dominated response was consistently observed as a poor prognostic factor for patients with RCC.79 Consequently, radiotherapy is able to induce tumor-specific Th1 cells in the non-irradiated draining lymph nodes of the irradiated tumor and favor the trafficking of effector cells into tumors.

However, radiotherapy also induces immunosuppressive mechanisms by activating TGF-β,80,81 stimulating Tregs and inducing the activation of STAT3 and VEGF.82 STAT3 and TGF-β, might hinder the response to ICD.14

Total dose, fractionation, dose distribution and timing of radiotherapy are key variables in determining the effects of radiotherapy on the immune system.83 In a murine melanoma model, a hypofractionated regimen with two fractions of 7, 5 Gy gave the best tumor control and tumor immunity while maintaining low Treg numbers.84 However, the optimal radiation regimen may not necessarily be the same for all tumor types or settings.

Radiotherapy influences components of the innate immune response as well (Fig. 1 Supplementary data). Radiation increases the surface expression of NKG2D ligand,85 which binds the NK cell-activating receptor NKG2D, increasing the susceptibility of NK cells. On the other hand, radiation might also decrease the expression of the NK cell-activating NKG2D receptor,86 through the release of TGF-β.80 In addition, radiotherapy induces the expression of MHC-I molecules. Since NK cells destroy cells that have downregulated expression of MHC class I molecules, induction of MHC-I expression might decrease recognition by NK cells.87 Therefore, it is difficult to predict the net effect of radiotherapy on NK cells. In addition, after radiotherapy a misdirected tissue repair response can promote tumor recurrence and progression. This wound healing response is orchestrated by M2 macrophages which stimulate angiogenesis and contribute to the suppression of antitumor immunity by secreting cytokines such as IL-10.73,88 In contrast, other studies show that HFRT results in the priming of MHC-I molecules and augments cytolytic activity.89,90 Radiotherapy is also able to prime macrophages for pro-inflammatory signaling in a dose-dependent manner, as shown by enhanced IFNγ-mediated NO production and increased TLR-mediated TNF-α secretion.91,92 Furthermore, conventional fractionated radiotherapy was observed to skew macrophage function to an antitumor mode in different murine carcinoma models,93 and both conventional and HFRT caused a significant increase of tumor-infiltrating M1 macrophages.94 Importantly, radiotherapy was able to enhance M2 activity in C57BL/6 mice, while increasing M1 activity in CBA/CaJ mice.95 Thus, not only depending on the modulation of cytokine production, but also on the experimental model, radiotherapy has been reported to have different effect on tumor-infiltrating macrophages, therefore the net results in clinical practice is still unclear.

Repurposing of Molecular Targeted Therapies

Because the efficacy of antitumor immune responses depends on the complex balance between diverse immune cells and progressing tumor cells, radiotherapy alone is unlikely to induce persistent antitumor immunity in all treated patients. Therefore, a new role for radiotherapy in combination with synergistic immunomodulatory agents is emerging.62 Significant progress in the understanding of RCC biology has led to the development of targeted therapies such as tyrosine kinase inhibitors (TKIs), mTOR inhibitors and VEGF neutralizing antibodies. Since the pro-oncogenic pathways targeted by these therapies also drive many of the immune-evasion mechanisms of RCC, target therapies have the capacity to optimize antitumor immune responses.96 In the next paragraphs, we highlight the immunomodulatory properties of these agents and will suggest a combination schedule with radiotherapy based on the available literature. The agents and their effects are summarized in Table 2.
In RCC, TKIs not only inhibit angiogenesis and tumor growth, but also have the potential to interact with the immune system.97 TKIs approved for treatment of advanced RCC currently include sunitinib, sorafenib, pazopanib and axitinib. They all target VEGFR, PDGFR and c-kit tyrosine kinases, be it with a different affinity. The most-studied TKI in the treatment of RCC, sunitinib, has important immunostimulatory capacities. It causes downregulation of immunosuppressive Tregs and MDSCs.97,98 It reduces the level of MDSCs through exposure of calreticulin (CRT) and release of ATP and high-mobility group protein B1 (HMGB1). Activated DCs migrate to local lymphoid organs and stimulate CD8+ effector T cells. CD8+ effector T cells will infiltrate the tumor and produce interferon γ (IFNγ). Conventional radiotherapy (daily fractions of 1.8–3.0 Gy) is known to promote the antitumor immune response by upregulation of MHC-I and activation of DCs.

Table 1. Immunoenic potential of radiotherapy

A. Pro-immunogenic effects	Conventional RT	HFRT	
Increases the surface expression of NKG2D ligand	Unknown	Yes	81
Provide tumor antigens	Unknown	Yes	57,58
DC activation	Yes	Yes	56,61
CRT exposure	Unknown	Yes	57
ATP secretion	Unknown	Yes	57
Release of HMGB1	Unknown	Yes	57
Increase of MHC-I expression	Yes	Yes	57,70
Increase of ICAM-1 expression	Unknown	Yes	57,70
Induction of IFN\textgamma production	Unknown	Yes	66
Induction of type 1 IFN	Unknown	Yes	72
Stimulation of CD8+ effector T cells	Unknown	Yes	72

B. Immunosuppressive effects	Conventional RT	HFRT	
Induction of TGF-β	Yes	Yes	77
Secretion of VEGF	Yes	Yes	78
Induction of M2 macrophages	Unknown	Yes	69,84
Activation of STAT3	Unknown	Yes	14,84

(A) Pro-immunogenic effects: Hypofractionated radiotherapy (HFRT) (fraction sizes more than 5 Gy) is known to promote the antitumor immune response by upregulation of NKG2D ligands (NKG2DL), major histocompatibility complex class I (MHC-I) and intercellular adhesion molecule 1 (ICAM-1). HFRT activates dendritic cells (DCs) through exposure of calreticulin (CRT) and release of ATP and high-mobility group protein B1 (HMGB1). Activated DCs migrate to local lymphoid organs and stimulate CD8+ effector T cells. CD8+ effector T cells will infiltrate the tumor and produce interferon γ (IFNγ). Conventional radiotherapy (daily fractions of 1.8–3.0 Gy) is known to promote the antitumor immune response by upregulation of MHC-I and activation of DCs.

(B) Immunosuppressive effects: HFRT is also known to activate signal transducer and activator of transcription 3 (STAT3), promote the secretion of vascular endothelial growth factor (VEGF) and the accumulation of pro-tumorigenic M2 macrophages. Conventional radiotherapy has been observed to activate the immunosuppressive transforming growth factor β (TGF-β) and VEGF.
STAT3 signaling and stimulates the antigen presenting capacity of DCs which results in increased T cell proliferation.114 Therefore, combination of radiotherapy with bevacizumab might promote the formation of a radiation-induced antitumor immune response in patients with RCC. Since bevacizumab stimulates DC maturation and T cell priming and increases radiation sensitivity, we suggest that bevacizumab should be administrated prior to radiotherapy.96

Immunotherapy

The combination of radiotherapy with immunotherapies that possess...
synergistic immunomodulatory properties might also be promising.

Since IL-2 is known to stimulate Th1 responses and treatment with high-dose IL-2 occasionally has been observed to induce complete responses in patients with RCC,6 combining it with radiotherapy may improve clinical effects. A phase 1 study evaluating the combination of SBRT and IL-2, could not detect any dose-limiting adverse effects related to SBRT. Furthermore, response to the combination therapy was correlated to an increased frequency of proliferating early effector CD4+ memory T cells in the peripheral blood.13

Preclinical and clinical evidence suggest that inhibition of CTLA-4, a known inhibitory competitor for the co-stimulatory molecules CD80 and CD86,14 might increase the stimulation of antitumor T effector cells. Ipilimumab, an anti-CTLA-4 antibody, was able to induce tumor regression in 10% of patients with metastatic RCC in a phase II study.116 Since anti-CTLA-4 antibodies decrease co-inhibitory signaling, they might also be able to increase the strength of radiotherapy-induced T cell stimulation. In a murine carcinoma model, the combination of anti-CTLA-4 treatment and radiotherapy was observed to inhibit tumor growth through the formation of a stable interaction between TILs and tumor cells. This stable interaction was largely due to the improved formation of a NKG2D-mediated immunological synapse, complementing weak stimulatory signals from the tumor cells.117 There are already clinical cases and a phase I/II clinical trial69 describing an immune-mediated abscopal effect in melanoma patients receiving a combination of high-dose radiotherapy and ipilimumab.11,12 We suggest that anti-CTLA-4 antibodies should be administered before radiotherapy since they stimulate the removal of Tregs and continued following radiotherapy to prolong the proliferation of antitumor T effector cells.96

Since resistance to the combination of HFRT and ipilimumab in metastatic melanoma patients was correlated to an upregulation of PD-L1, addition of PD-L1 blockade might reverse T cell exhaustion and prevent resistance to the combination therapy. Importantly, preclinical evidence suggests that the combination with radiotherapy is mandatory as dual checkpoint blockade alone proved to be inferior.69 As previously described, the co-inhibitory molecule PD-L1 suppresses T cell responses in RCC, by binding PD-1, and could shift the balance toward tumor progression.29 Furthermore, the expression of PD-L1 in RCC is associated with aggressive tumor behavior and poor outcome.29,40 Blocking PD-1 pathways, therefore, has the

Table 2. General working mechanism of approved targeted therapies and their effect on immune cells

Drug	General working mechanism	Effect on the immune system	Refs.
Sunitinib	Blocks multiple tumor-associated tyrosine kinases, including VEGFR and PDGFR and c-kit tyrosine kinases	Immunostimulatory: Blocks STAT3 Decreases numbers and effectiveness of MDSCs and Treg cells	85–89,92
Sorafenib	Blocks multiple tumor-associated tyrosine kinases, including VEGFR and PDGFR and c-kit tyrosine kinases	Immunostimulatory: reduces Tregs, decreases NK cell inhibition, stimulates pro-inflammatory activity of macrophages Immunosuppressive: prevents upregulation of co-stimulatory molecules, reduces T cell proliferation, lowers cytokine secretion by DCs	92,94–96
Pazopanib	Blocks multiple tumor-associated tyrosine kinases, including VEGFR and PDGFR and c-kit tyrosine kinases	Unknown	97
Axitinib	Blocks multiple tumor-associated tyrosine kinases, including VEGFR and PDGFR and c-kit tyrosine kinases	Immunostimulatory: Reduces Tregs Reduces MDSCs	98,99
Temsirolimus and Everolimus = mTOR inhibitors	Blocks mTOR pathway	Immunostimulatory: enhances CD8+ T cell activation, enhance IFNγ production, enhance CD8+ T cell differentiation into memory T cells and decreases IDO expression Immunosuppressive: augments the responsiveness of Tregs to antigen	85,102
Bevacizumab	Blocks angiogenesis	Immunostimulatory: Blocks STAT3 Increases DC maturation Shifts DC differentiation toward mature DCs instead of MDSCs Increases DC priming of T cells	85

Abbreviations: VEGFR: vascular endothelial growth factor receptor, PDGFR platelet derived growth factor receptor, STAT3: signal transducer and activator of transcription 3, MDSCs: myeloid-derived suppressor cells, Tregs: regulatory T cells, DC: dendritic cell, VEGF: vascular endothelial growth factor, PD-1: programmed cell death protein-1, CTLA-4: cytotoxic T lymphocyte associated protein 4, NK cell: natural killer cell, mTOR: mammalian target of rapamycin, IFNγ: interferon γ, IDO: indoleamine-2,3-dioxygenase.
RCC is considered an immunogenic tumor, but uses several immune suppressive mechanisms to shift the balance from tumor immune response toward tumor growth. Radiotherapy tries to shift the balance back. However, radiotherapy alone is unlikely to induce persistent antitumor immunity. Therefore, the combination of radiotherapy with drugs having synergistic immunomodulatory properties holds great promise in preventing the immune escape in RCC and might result in superior therapeutic responses. Consequently, prospective trials examining these combinations hold great potential. It should be considered that HFRT might increase the risk of inflammatory reactions. Therefore, phase I trials, assessing the safety of these novel combinations, are essential. In addition, preclinical evidence suggests that high-dose radiation, such as typically delivered by HFRT, results in increased antitumor immunity. Preclinical data also indicate that fractionated radiotherapy might be preferable to single dose radiation. However, these findings need to be confirmed in clinical studies. Besides the optimal HFRT pattern, it is just as important to determine the optimal timing of each treatment combination. Since the optimal treatment sequence, leading to maximum immunologic and clinical benefit while maintaining tolerable toxicities, may vary depending on the specific type of agent used.

References
1. Auden F, Yates DR, Cancel-Tassin G, Cusenot O, Roupret M. Genetic pathways involved in carcinogenesis of clear cell renal cell carcinoma: genomics towards personalized medicine. BJU Int 2012; 109(12):1864-70; PMID:22052599; http://dx.doi.org/10.1111/j.1464-410X.2011.10661.x
2. Swanson DA. Surgery for metastases of renal cell carcinoma: Scand J Surg 2004; 93(2):150-5; PMID:15288568
3. Ljungberg B, Cowan NC, Hanbury DC, Hora M, Kuczyk MA, Merseburger AS, Patard JJ, Mulders PF, Sinicco EC. European Association of Urology Guidelines Group. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 2010; 58(3):398-406; PMID:20635979; http://dx.doi.org/10.1016/j.eururo.2010.06.032
4. Coppen C, Le L, Ponzolli F, Wilk T. Targeted therapy for advanced renal cell carcinoma: Cochrane Database Syst Rev 2008(2):CD00617; PMID:18425931; http://dx.doi.org/10.1002/14651858.CD00617.pub2
5. Iacovelli R, Alessini D, Palazzo A, Tenta P, Santoni M, De Marchis L, Casolini S, Nao G, Cosentino E. Targeted therapy and complete responses in first line treatment of metastatic renal cell carcinoma: A meta-analysis of published trials. Cancer Treat Rev 2014; 40(2):271-5; PMID:24076900; http://dx.doi.org/10.1016/j.ctvr.2013.09.003
6. Klapper JA, Dowen SG, Smith FO, Yang JC, Hughes MS, Kammula US, Sherry RM, Royal RE, Steinberg SM, Merseburger AS, Patard JJ, Mulders PF, Sinicco EC. European Association of Urology Guidelines Group. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 2010; 58(3):398-406; PMID:20635979; http://dx.doi.org/10.1016/j.eururo.2010.06.032
7. Iacovelli R, Alessini D, Palazzo A, Tenta P, Santoni M, De Marchis L, Casolini S, Nao G, Cosentino E. Targeted therapy and complete responses in first line treatment of metastatic renal cell carcinoma: A meta-analysis of published trials. Cancer Treat Rev 2014; 40(2):271-5; PMID:24076900; http://dx.doi.org/10.1016/j.ctvr.2013.09.003
8. Rendon RA. New surgical horizons: the role of cytoreductive surgery for metastatic kidney cancer. Can Urol Assoc J 2007; 1(2 Suppl):S62-8; PMID:17854278; http://dx.doi.org/10.1489/cuaj.69
9. Ishiyama H, Teh BS, Ren H, Chiang S, Tann A, Blanco AI, Paulino AC, Amato R. Spontaneous regression of metastatic renal cell carcinomas while progression of brain metastases after stereotactic radiosurgery and stereotactic body radiotherapy for metastatic renal cell carcinoma: abscopal effect prevented by the blood-brain barrier? Clin Gastrointest Cancer 2012; 19(3):196-8; PMID:22493865; http://dx.doi.org/10.1016/j.clgc.2012.01.004
10. Wersall PJ, Blomgren H, Pisa P, Lar I, Kalkner E. Immunologic correlates of the abscopal effect in renal cell carcinoma. J Radiat Res 2013; 54(4):493-7; PMID:16760190; http://dx.doi.org/10.1080/02895363.2006.10406461
11. Stammell EF, Wolchok JD, Gnjatic S, Lee NY, Brownerg I. The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys 2013; 85(2):293-5; PMID:22560555; http://dx.doi.org/10.1016/j.ijrobp.2012.03.017
12. Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kinoso S, Mu Z, Rasalan T, Adamow M, Ritter E. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 2012; 366(10):925-31; PMID:22397654; http://dx.doi.org/10.1056/NEJMoa1123824
13. Zeng J, Jun AP, Phullen J, Jackson CM, Belcaid Z, Raveick J, Durham N, Meyer C, Harris TJ, Albesiano E et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 2013; 86(2):343-9; PMID:23462419; http://dx.doi.org/10.1016/j.ijrobp.2012.12.025

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Supplemental Material
Supplemental data for this article can be accessed on the publisher’s website.
20. Deng L, Liang H, Burnette B, Beckert M, Darga T, Weichselbaum RR, Fu YX. Irradiation and anti-PD-L1 treatment synergistically promote anti-tumor immunity in mice. J Clin Invest 2014; 124(7):3187-98; PMID:24738248; http://dx.doi.org/10.1172/JCI67313.

21. Dronoff G. Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer 2004; 4(1):11-22; PMID:14708824; http://dx.doi.org/10.1038/nrc1252.

22. Rahalovitch D, Soromayor EM. Immunosuppressive strategies that are mediated by tumor cells. Ann Rev Immunol 2007; 25:267-96; PMID:17134371; http://dx.doi.org/10.1146/annurev.immunol.25.030706.141609.

23. Teng L, Chen Y, Ding D, Dai H, Lu G, Li C. Immunosuppressive effect of renal cell carcinoma on phenotype and function of dendritic cells. Int Urol Nephrol 2013; 45(5):915-20; PMID:24202958; http://dx.doi.org/10.1007/s10953-013-0395-8.

24. Frankenberger B, Nause C, Schendel DJ. Immune suppression in renal cell carcinoma. Semin Cancer Biol 2007; 17(4):330-43; PMID:17656104; http://dx.doi.org/10.1016/j.semcancer.2007.06.004.

25. Jonasch E, Futreal PA, Davis IJ, Bailey ST, Kim WY, Tekouw PM, van Engeland M, de Bruine AP. VHL and HIF signalling in renal cell carcinogenesis. J Pathol 2010; 221(2):125-38; PMID:20225324; http://dx.doi.org/10.1002/path.2689.
enhanced killing by cytotoxic T lymphocytes. Cancer Res 2004; 64(21):7985-94; PMID:15520206; http://dx.doi.org/10.1158/0008-5472.CAN-04-1525

62. Demaria S, Formenti SC. Radiation as an immunolog- ical adjuvant: Lord in evidence, dose and fraction- ation. Front Oncol 2012; 2:125; PMID:23112958; http://dx.doi.org/10.3389/fonc.2012.00153

63. Finkelstein SE, Timmerman R, McBride WH, Schaue
64. Gerber SA, Sedlacek AL, Cron KR, Murphy SP, Moran JP, Fre-
65. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Fre-
66. Shiao SL, Coussens LM. The tumor-immune micro-
67. Dudek AM, Garg AD, Krysko DV, De Ruysscher D,
68. Hodge JW, Guha C, Neefjes J, Gulley JL. Synergizing
69. Chang CC, Seiser N, Brown DJ, Knobel D, Schneider
70. Vanneman M, Dranoff G. Combining immunother-
71. Ma Y, Kepp O, Ghiheltingh F, Apenth I, Aymeric L, Lock C, Targovik T, et al. Chemotherapy and radiotherapy: cryptic anti-
cancer vaccines. Semin Immunol 2010; 22(3):113-24; PMID:20403709; http://dx.doi.org/10.1016/j. 72. Sorensen EW, Gerber SA, Moran JP, Fre-
73. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Fre-
74. Shiao SL, Coussens LM. The tumor-immune micro-
75. Dudek AM, Garg AD, Krysko DV, De Ruysscher D,
76. Lim JY, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation enhance the recruitment and effector function of CD8+ T cells. Cancer Immunol Immunother 2014; 63(3):259-71; PMID:24357146; http://dx.doi.org/10.1007/s00262- 7306-7
77. Ueno H, Klechovsky E, Morita R, Aspord C, Cao T, May L, Jenkins J, et al. Immunogenic cancer cell death induced by sublethal doses of radiation. Clin Cancer Res 2013; 58:1340-8; PMID:23824380; http://dx.doi.org/10.1158/1078-0432.CCR-12-0475
78. Benzemann MB, Garnett CT, Zhang H, Veldich A, Wattenberg MM, Gameiro SR, Kalnicski S, Hodge JW, Guha C. Radiation-induced modulation of costi-
79. Schiller M, Coussens LM. The role of tumor-associated macrophages in cancer therapy. Ann Rev Immunol 2013; 31:51-72; PMID:23157455; http://dx.doi.org/10.1146/annurev-immunol-031212-010008
80. Schiller M, Coussens LM. The role of tumor-associated macrophages in cancer therapy. Ann Rev Immunol 2013; 31:51-72; PMID:23157455; http://dx.doi.org/10.1146/annurev-immunol-031212-010008
81. Schiller M, Coussens LM. The role of tumor-associated macrophages in cancer therapy. Ann Rev Immunol 2013; 31:51-72; PMID:23157455; http://dx.doi.org/10.1146/annurev-immunol-031212-010008
82. Kil WJ, Tofilon PJ, Camphausen K. Post-radiation 83. Formenti SC, Demaria S. Combining radiotherapy and cancer immunotherapy: a paradigm shift. J Natl 84. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. 85. Vanneman M, Dranoff G. Combining immunother-
86. Porta C, Paglino I, Imarisco I, Ganini C, Pedrazzoli P. Immunological effects of multiunsaturated fatty acids for kidney cancer: a clue for integration with cellular ther-
87. Klug F, Prakash H, Huber PE, Seitel B, Naluma NF, Rorke L, Stefkovic D, Rock ER, Feichter K, et al. Ionizing radiation promotes migration and invasion of cancer cells through transforming growth-factor-beta-medi-
88. Lerman OZ, Greives MR, Singh SP, Thanik VD, 89. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. 90. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. 91. McKinney LC, Aquilla EM, Coffin D, Wink DA, 92. Fujii MB, Woo B, Burnett B, Fu YX, Gajewski TF. Type I interferon response and innate immune sensing of cancer. Trends Immunol 2013; 34(2):67- 93. Lugade AA, Sorensen EW, Gerber SA, Moran JP, Fre-
102. Truman JP, Garcia-Barros M, Kaag M, Hambardzumyan D, Stancevic B, Chan M, Fuks Z, Kolesnick R, Haimovitz-Friedman A. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One 2010; 5(9): e120568a97

103. Hipp MM, Hill N, Walter S, Werth D, Brauer KM, Radsak MP, Weinschenk T, Singh-Jasuja H, Brossart P. Sorafenib, but not sunitinib, affects function of dendritic cells and induction of primary immune responses. Blood 2008; 111(12):5610-20; PMID:18310500; http://dx.doi.org/10.1182/blood-2007-02-075945

104. Dangaj D, Lanitis E, Zhao A, Joshi S, Cheng Y, Sandalzopoulos R, Ra HJ, Danet-Desnoyers G, Powell DJ Jr, Scholler N. Novel recombinant human b7-h4 antibodies overcome tumoral immune escape to potentiate T-cell antitumor responses. Cancer Res 2013; 73(15):4820-9; PMID:23722540; http://dx.doi.org/10.1158/0008-5472.CAN-12-3457

105. Desar IM, Jacobs JH, Hulsbergen-vandeKaa CA, Oyen WJ, Mulders PF, van der Graaf WT, Adema GJ, van Herpen CM, de Vries IJ. Sorafenib reduces the percentage of tumour infiltrating regulatory T cells in renal cell carcinoma patients. Int J Cancer 2011; 129(2):507-12; PMID:20839259; http://dx.doi.org/10.1002/ijc.25674

106. Kohga K, Takehara T, Tatsumi T, Ishida H, Miyagi T, Hosui A, Hayashi N. Sorafenib inhibits the shedding of major histocompatibility complex class I-related chain A on hepatocellular carcinoma cells by down-regulating a disintegrin and metalloproteinase 9. Hepatology 2010; 51(4):1264-73; PMID:20099300; http://dx.doi.org/10.1002/hep.23546

107. Lin JC, Liu CL, Lee JJ, Liu TP, Ko WC, Huang YC, Wu CH, Chen YJ. Sorafenib induces autophagy and suppresses activation of human macrophage. Int Immunopharmacol 2013; 13(2):333-9; PMID:23337882; http://dx.doi.org/10.1016/j.intimp.2013.01.006

108. Gupta S, Spies PE. The prospects of pazopanib in advanced renal cell carcinoma. Ther Adv Urol 2013; 5(5):223-32; PMID:24082917; http://dx.doi.org/10.1177/1756287213495099

109. Kessler ER, Bowles DW, Flaug TW, Lam ET, Jimeno A. Axitinib, a new therapeutic option in renal cell carcinoma. Drugs Today 2012; 48(10):633-44; PMID:23460531; http://dx.doi.org/10.1158/1078-0432.CCR-12-2214

110. Bose A, Lowe DB, Rao A, Storkus WJ. Combined vaccine+axitinib therapy yields superior antitumor efficacy in a murine melanoma model. Melanoma Res 2012; 22(3):236-43; PMID:22504156; http://dx.doi.org/10.1097/CMR.0b013e3283538293

111. Osada T, Chong G, Tansik R, Hong T, Spector N, Kumar R, Hurwitz HI, Dev I, Nissen AB, Lyerly HK et al. The effect of anti-VEGF therapy on immature myeloid cell and dendritic cells in cancer patients. Cancer Immunol Immunother 2008; 57(8):1115-24; PMID:18193223; http://dx.doi.org/10.1007/s00262-007-0441-x

112. Mezere I, Grimaldi AM, Perez-Gracia JL, Ascierro PA. Clinical development of immunostimulatory monoclonal antibodies and opportunities for combination. Clin Cancer Res 2013; 19(5):997-1008; PMID:23460531; http://dx.doi.org/10.1158/1078-0432.CCR-12-2214

113. Yang JC, Hughes M, Kammler U, Royal R, Sherry RM, Topalian SL, Suri KB, Levy C, Allen T, Mavroukakis S et al. Ipilimumab (anti-CTLA4 antibody) causes regression of metastatic renal cell cancer associated with enteritis and hypophysitis. J Immunother 2007; 30(8):825-36; PMID:18049334; http://dx.doi.org/10.1097/CJI.0b013e318156e47e

114. Ruecco MG, Pilones KA, Kawashima N, Cammer M, Huang J, Baib J, Liu M, Formenti SC, Dustin ML, Demaria S. Suppressing T cell motility induced by anti-CTLA-4 monotherapy improves antitumor effects. J Clinical Invest 2012; 122(10):3718-30; PMID:22945631; http://dx.doi.org/10.1172/JCI61931

115. Topalian SL, Drake CG, Pardoll DM. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity. Curr Opin in Immunol 2012; 24(2):207-12; PMID:22236695; http://dx.doi.org/10.1016/j.coi.2011.12.009