Multilevel Coordinate Optimization of Cloud Manufacturing

Hui Wang\textsuperscript{1,a}, Yuantao Song\textsuperscript{2,b,*}, Run Zhang\textsuperscript{2,c} and Yijun Li\textsuperscript{1,d}

\textsuperscript{1}Harbin Institute of Technology, Harbin, China
\textsuperscript{2}University of Chinese Academy of Sciences, Beijing, China
E-mail: \textsuperscript{a}wanghui@volinco.com, \textsuperscript{b}songyuantao@ucas.ac.cn, \textsuperscript{c}zhangrun16@mails.ucas.ac.cn, \textsuperscript{d}liyijun@hit.edu.cn.

Abstract. In order to solve the allocation and logistics service resources in cloud manufacturing environment coordination and optimization, based on the analysis of operation mode of cloud manufacturing and resources allocation process, fully consider the group of cloud manufacturing platforms, the author made a model concerning coordination and optimization of multi-layer cloud which includes public and private cloud. The experiment shows that the model is effective.

1. Introduction
In the era of intelligent economy, the development of an enterprise is no longer entirely dependent on its own human resources, equipment resources, site resources and other conditions, but mainly depends on its effective integration of the resources. Cloud manufacturing is a centralized and manageable mode that can virtualize manufacturing resources and capabilities, which can optimizes the allocation of resources to provide customer standard manufacturing services dynamically and transparently. This manufacturing mode means that the resources and capabilities in platforms will be used frequently and efficiently. The manufacturing model needs a corresponding allocation and logistics model. Cloud Manufacturing optimization has become the most complex field in the operation because it contains many links, such as procurement, production and sales, and the characteristics of each link are different.

Large manufacturing enterprises such as CASIC(China Aerospace Industry Group Corporation), whose logistics and manufactures demand scattered in various departments and enterprises. But a considerable number of subordinate enterprises still remain the "big and complete", "small and complete" mode, where resources are not used effective. The core problem of cloud manufacturing is resource coordination.

We create a new cloud platform contains private and public cloud which have three level of raw material procurement, production, wholesalers and sale.

2. Research status
Er Shi Qi and other Manufacturing experts [1] reviewed the cloud manufacturing mode. Resources allocation form raw materials to sales is the guarantee of intelligent manufacturing, also is an important issue in cloud manufacturing. Many scholars have been try to optimize this problem [2-11].

These models are applied in different areas such as agricultural machinery industry, large-scale equipment manufacturing industry [12,13] contained upstream raw materials to downstream manufacture problems. The model contains 4 different parties (raw materials, transportation and wholesalers process, manufacturing process and so on), some model considered manufacturing products demand pattern and function, manufacturing constraints, and the optimization targets.
There are also some scholars, such as Mao Dejun [14] did not consider the multi-level platform but created a model with limited resources and several constrains. Ren [15] divided tasks into different degrees by its importance. Coordination refers to the process and ability to achieve a goal with multiple or more than two different resources [16].

In practical application of the complex products for aerospace, CASIC and the BUAA (Beijing University of Aeronautics and Astronautics) built the cloud manufacturing service platform together. However, this platform had problems in high cost of resources distribution, multi-level optimization. Those problems are typical under the cloud manufacturing.

Besides, our platform is different from what we reviewed. It is divided into an internal manufacturing oriented private cloud, and an external oriented public cloud group. Enterprises under private have priority like less restriction in the flow in and out. We considered three levels which is different from what we had reviewed.

3. Model for aerospace manufacturing

3.1. Model basic assumption

Considering the users of the platform, the cloud manufacturing platform is usually composed of three levels, including raw material supplier, manufacturer, and wholesaler. The raw material is delivered to the manufacturer, and then delivered the product to the wholesaler after the manufacturer’s production. The raw material supplies are defined as set $A$, the product manufacturers is defined as set $B$, and the wholesalers is defined as set $C$. The three set of $A$, $B$, and $C$ are positive connections between hierarchies, flow from set $A$ to set $B$, and $B$ to $C$. The raw material suppliers of $A_{1}^{1}~A_{m}$, product manufactures of $B_{1}^{1}~B_{p}$, wholesalers of $C_{1}^{1}~C_{v}$ belong to the private cloud. The raw material suppliers $A_{m+1}^{1}~A_{e}$, manufactures $B_{p+1}^{1}~B_{q}$, and wholesalers $C_{v+1}^{1}~C_{v}$ belong to the public cloud. Figure 1 shows the structure.

![Figure 1. Aerospace Cloud Platform Structure](image)

The cost function between the set $A$ and $B$ is $T$, and the unit cost from $A_{i}$ to $B_{j}$ is $T_{i,j}$, and the cost between $B$ and $C$ is $T_{2,jk}$. $T_{i,j}$ is given cost matrices, in the form of Table 1, and $T_{2,jk}$ Structure is similar with $T_{i,j}$ and thus omitted.

We assumed the inventory of manufacturers are $b$, we also assume that the handling parameter of manufacturing is $e$. the handling parameter means the scale from raw material into finished goods. Considering the priority of the private cloud, we defined a priority factor $d$, used as a supplement to the private cloud, let the cost in private cloud reduced to $T_{i,j} - d$.

We define the manufacturing cost as set $M$, the single manufacturing cost of each manufacturer is $m_{j}$.
3.2. Model construction

\[
\text{min } \text{cost} = \sum_{i} \sum_{j} x_{ij} \cdot t_{ij} + \sum_{j} x_{ij} \cdot m_{j} + \sum_{j} \sum_{k} y_{jk} \cdot t_{2ij}
\]

\[\text{st.}\]

\[
\sum_{j} x_{ij} \leq A_i \quad i \in A
\]

\[
e \sum_{j} x_{ij} + bj = \sum_{k} y_{jk} \quad j \in B
\]

\[
\sum_{j} y_{jk} = C_k \quad k \in C
\]

The formula (1) is the optimization goal of the model: to minimize the sum of transportation cost and manufacture cost.

The formula (2) shows how many materials can be sent from each supplier.

The formula (3) constraints how many materials need to be sent to each manufacture and its products can be sent to each wholesaler.

The formula (4) means each wholesaler’s requirement must be satisfied.

4. Numerical simulation

4.1. Case situation

The actual demand of 30 closely related (A level) 10 suppliers, (B level) 10 producers and 10 C group needs to be listed below.

4.2. Experimental data

Table 1. The unit cost matrix between the \( t_{1ij} \): material layer and the main body of the manufacturing layer

| \( B_i \) | \( A_i \) | \( A_1 \) | \( A_2 \) | \( A_3 \) | \( A_4 \) | \( A_5 \) | \( A_6 \) | \( A_7 \) | \( A_8 \) | \( A_9 \) | \( A_{10} \) |
|-------|------|------|------|------|------|------|------|------|------|------|------|
| \( B_1 \) | 64   | 38   | 56   | 29   | 65   | 20   | 1    | 35   | 45   | 22   |
| \( B_2 \) | 57   | 18   | 54   | 52   | 37   | 37   | 47   | 30   | 64   | 51   |
| \( B_3 \) | 57   | 57   | 49   | 12   | 6    | 6    | 27   | 5    | 46   | 15   |
| \( B_4 \) | 46   | 68   | 7    | 28   | 19   | 43   | 66   | 67   | 40   | 62   |
| \( B_5 \) | 19   | 50   | 12   | 66   | 35   | 19   | 65   | 26   | 47   | 9    |
| \( B_6 \) | 55   | 56   | 69   | 26   | 35   | 31   | 15   | 53   | 22   | 9    |
| \( B_7 \) | 38   | 49   | 29   | 37   | 5    | 29   | 61   | 35   | 0    | 3    |
| \( B_8 \) | 17   | 10   | 57   | 5    | 5    | 49   | 30   | 58   | 38   | 35   |
| \( B_9 \) | 63   | 44   | 9    | 47   | 38   | 29   | 34   | 11   | 7    | 45   |
| \( B_{10} \) | 55   | 59   | 25   | 41   | 33   | 20   | 52   | 64   | 41   | 0    |
Table 2. T2jk, the unit cost matrix of the manufacturing and demand layer

| Cj | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 |
|----|----|----|----|----|----|----|----|----|----|-----|
| C1 |  0 | 32 | 62 | 60 | 41 |  3 | 63 | 28 | 12 |
| C2 |  7 | 47 | 30 | 35 | 47 | 18 | 53 | 41 | 45 |
| C3 |  65|  2 | 27 |  7 |  9 | 22 | 36 |  4 | 47 |
| C4 | 54 |  45| 40 |  64| 66 |  36|  69|  9 | 56 |
| C5 | 60 |  56| 32 | 34 | 36 | 49 | 27 | 13 | 33 |
| C6 | 64 |  2 | 20 | 27 | 37 | 44 | 58 | 54 |  9 |
| C7 |  4 |  64|  18|  61| 58 |  54|  27| 12 |
| C8 | 14 |  5 |  26|  53|  16|  60|  17|  65|  56|  46|
| C9 | 69 |  42|  44|  54|  7 |  12|  27|  44|  48|  18|
| C10| 19 |  61|  44|  32|  43|  46|  42|  23|  4 | 16 |

Table 3. The raw data of supplier's raw material wholesalers, manufacturer's capability, manufacturer's value in product. (Demand business and unit price of manufactured goods are confidential).

| Supplier | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
|----------|----|----|----|----|----|----|----|----|----|-----|
| Numbers  |  30|  34|  54|  34|  42|  31|  39|  34|  34|  30 |
| Producer | B1 | B2 | B3 | B4 | B5 | B6 | B7 | B8 | B9 | B10 |
| Capability| 32 | 38 | 49 | 58 | 49 | 52 | 36 | 45 | 45 |  54 |
| On-Hand  | h1 | h2 | h3 | b4 | b5 | b6 | b7 | b8 | b9 | b10 |
| OHQ      | 14 |  23|  42|  24|  34|  24|  24|  34|  23|  35 |
| Demand   | B1 | B2 | B3 | B4 | C5 | C6 | C7 | C8 | C9 | C10 |
| DQ       | 26 | 26 |  8 |  26|  30|  10|  1 |  7 |  12|  24 |
| Product  | m1 | m2 | m3 | m4 | m5 | m6 | m7 | m8 | m9 | m10 |
| Price    | 6.00 | 8.40 | 1.52 | 9.71 | 2.99 | 8.80 | 2.29 | 3.98 | 1.79 | 3.36 |

Notes:
OHQ is On-hand quantity
DQ is demand quantity
We deem e and d as matrix with value 1 for easy test.

4.3. Case results
Using the model of part two, the data are written into the model in turn, and the tables IV, V are calculated as Xij and Yik, respectively.
Under the premise that the target is the cost of processing and the lowest circulation cost of the goods, the final total cost is 15722 after the iteration of the solver. At the same time, the results of the coordinated optimal allocation between the A layer and the B layer at the lowest cost and the coordinated optimal allocation between the B layer and the C layer are obtained.

Table 4. Coordination and optimal allocation of raw material layer to manufacturing layer

| Xij | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
|-----|----|----|----|----|----|----|----|----|----|-----|
| B1  |  0 | 6  | 0  | 8  | 0  | 10 | 12 |  1 |  1 |  2  |
| B2  |  0 | 3  | 0  | 1  | 0  | 0  |  1 |  0 |  0 |
| B3  |  0 |  0 | 5  | 10 |  4 | 0  |  4 |  0 |  2 |
| B4  |  2 |  0 | 1  | 3  | 1  | 1  |  0 |  0 |  1 |
| B5  |  5 |  1 |  0 | 0  |  0 |  3 |  0 |  2 |  1 |
| B6  |  1 |  0 | 4  |  0 |  2 |  0 |  0 |  5 |  3 |
| B7  |  3 |  1 |  0 |  3 |  2 |  2 |  0 |  1 |  6 |
| B8  |  5 |  4 |  0 |  5 |  2 |  0 |  0 |  3 |  1 |
| B9  |  1 |  1 |  5 |  2 |  0 |  2 |  0 |  3 |  6 |
| B10 |  1 |  0 |  2 |  0 |  3 |  0 |  0 |  3 |  4 |
Table 5. Coordination and optimal allocation of raw material layer to manufacturing layer

| \( Y_{jk} \) | \( B_1 \) | \( B_2 \) | \( B_3 \) | \( B_4 \) | \( B_5 \) | \( B_6 \) | \( B_7 \) | \( B_8 \) | \( B_9 \) | \( B_{10} \) |
|---|---|---|---|---|---|---|---|---|---|---|
| \( C_1 \) | 23 | 31 | 6 | 0 | 0 | 26 | 0 | 5 | 20 |
| \( C_2 \) | 3 | 0 | 3 | 12 | 1 | 5 | 2 | 3 | 4 | 3 |
| \( C_3 \) | 0 | 1 | 7 | 7 | 8 | 8 | 2 | 6 | 7 | 2 |
| \( C_4 \) | 0 | 0 | 3 | 6 | 3 | 3 | 1 | 3 | 6 | 2 |
| \( C_5 \) | 0 | 0 | 2 | 6 | 5 | 6 | 0 | 7 | 6 | 4 |
| \( C_6 \) | 0 | 1 | 7 | 7 | 6 | 6 | 0 | 4 | 3 | 6 |
| \( C_7 \) | 3 | 0 | 4 | 4 | 7 | 4 | 0 | 5 | 5 | 5 |
| \( C_8 \) | 2 | 4 | 5 | 5 | 7 | 4 | 2 | 4 | 2 | 3 |
| \( C_9 \) | 0 | 1 | 3 | 5 | 8 | 8 | 2 | 6 | 3 | 5 |
| \( C_{10} \) | 2 | 0 | 3 | 6 | 5 | 5 | 0 | 7 | 7 | 5 |

5. Conclusion and prospect

Based on the actual situation of science and engineering group, this paper constructs a multi-level coordination optimization model of logistics resources under cloud platform. In order to meet the requirements of all levels, the model is solved with the aim of overall cost optimization. This paper considered the public cloud and private cloud in the aerospace science and technology group, and assumed that there is no resource exchange among the subjects at the same level. As a matter of fact, the same level of agents not only has different levels but also has the coordination of logistics resources among the subjects. Therefore, the next research area can mainly consider the coordination and optimization of logistics resources in the same level of resources flow.

6. References

[1] Qi Ershi, Li Tianbo, Liu Liang, Huang Yimin, A summary of the research on theory, technology and related application of cloud manufacturing [J]. Industrial engineering and management, 2015, 20 (01): 8-14.
[2] Ding Junmei, Collaborative technical service of Northeastern University [D]. Network oriented cloud manufacturing, 2015.
[3] Zheng Wei, Research on optimal scheduling of cloud resource services under the cloud manufacturing model [D]. Zhejiang University, 2015.
[4] Zhang Shuixiang, Hu Xiaojian, Cloud technology management research on [J]. Model and operation mechanism of logistics concept, 2015, 35 (19): 186-190+196.
[5] Zhao Jinhui, Wang Xuehui, Guan Wen revolution, Yin Lijie. Double layer planning of cloud manufacturing services considering the subject psychology choice [J/OL]. Computer application research, 2018, (02).
[6] Ren Lei, Zhang Lin, Zhang Yabin, Tao Fei, Luo Yongliang, Research on the virtualization of cloud manufacturing resources, [J]. Computer integrated manufacturing system, 2011, 17 (03): 511-518.
[7] Liu Renyang. [J]. system engineering theory and practice of multi-level spare parts transshipment configuration optimization model under random demand, 2016, 36 (10): 2689-2698.
[8] Zhao Guoqing, Pei Li, Liu Guojun, Wang Yang, Wang Zhihui. Based on cascaded genetic algorithm, the multi-level passive optical network in distribution network is optimized by [J]. Optoelectronic technology application, 2015, 30 (01): 80-84..
[9] Luo Shizhong. Multi-link supply and demand system model (English) [J]. Journal of operations research, 2000, (02): 75-82.
[10] Duni, Research on the behavior of the supply chain node enterprise under the cloud manufacturing model [D]. Tianjin University, 2016.
[11] Zheng Wei. Research on optimal scheduling of cloud resource services under the cloud manufacturing model [D]. Zhejiang University, 2015.
[12] Yang Xiaoying. Coordination and optimization of large equipment service operation under the model of cloud manufacturing [D]. Jiangsu University, 2013.
[13] Huang Haisong, Yao Liguo, Research on the architecture of agricultural machinery supply chain
service platform under the cloud manufacturing environment. [J]. Science and technology management research, 2017, 37 (2): 182-185.

[14] Mao Dejun, Li Qingmin, Ruan min Zhi, Random demand of spare parts inventory under the optimization [J]. Journal of Beijing Union University (NATURAL SCIENCE EDITION), 2010, 24 (03): 42-46+67.

[15] Ren Lei, former Minglun. Co allocation model [J/OL]. Computer integrated manufacturing system, a hybrid task network based on intelligent manufacturing task: 1-22 (2017-05-23).

[16] Wang Lei, Guo Shunsheng, Li Xixing, Du Baigang, Peng Zhao, The improved ant colony algorithm for manufacturing resource allocation conflict coordination method of [J/OL]. Computer integrated manufacturing system based on 1-16 (2016-10-21).