A Novel AXIN2 Missense Mutation Is Associated with Non-Syndromic Oligodontia

Haochen Liu1☯, Tingting Ding1☯, Yuan Zhan2, Hailan Feng1*

1 Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing, China, 2 The Third Dental Center, Peking University School and Hospital of Stomatology, Beijing, China

☯ These authors contributed equally to this work.
* kqfenghl@bjmu.edu.cn

Abstract

Oligodontia is defined as the congenital absence of six or more permanent teeth, excluding the third molars. Oligodontia may contribute to masticatory dysfunction, speech alteration, aesthetic problems and malocclusion. Numerous gene mutations have been association with oligodontia. In the present study, we identified a de novo AXIN2 missense mutation (c.314T>G) in a Chinese individual with non-syndromic oligodontia. This mutation results in the substitution of Val at residue 105 for Gly (p.Val105Gly); residue 105 is located in the highly conserved regulator of G protein signaling (RGS) domain of the AXIN2 protein. This is the first report indicating that a mutation in the RGS domain of AXIN2 is responsible for non-syndromic oligodontia. Our study supports the relationship between AXIN2 mutation and non-syndromic oligodontia and extends the mutation spectrum of the AXIN2 gene.

Introduction

Tooth agenesis, the congenital lack of one or more permanent and/or deciduous teeth, is a well-recognized morphologic anomaly in humans. The absence of one to six teeth (excluding the third molars), more than six teeth (excluding the third molars), and the complete absence of teeth have been termed hypodontia, oligodontia, and anodontia, respectively [1]. Tooth agenesis can occur either as isolated findings or as part of a syndrome [2]. Both environmental and genetic factors can cause tooth agenesis, with genetic factors representing by far the most common cause of tooth agenesis [3].

Numerous genes have been implicated in tooth development and in theory, any of these genes may cause tooth agenesis. To this day, mutations in nine genes (MSX1, PAX9, AXIN2, WNT10A, EDA, EDAR, EDARADD, NEMO and KRT17) have been associated with non-syndromic oligodontia [4–13]. The transcription factor genes MSX1 and PAX9 were the first and second genes to be identified in non-syndromic oligodontia [7,14]. The MSX1 and PAX9 proteins are responsible for the interaction between dental tissues and are essential for the establishment of the odontogenic potential of the mesenchyme [15]. AXIN2 is an intracellular antagonist of Wnt signaling and WNT10A is a member of the Wnt family. Both AXIN2 and WNT10A can cause non-syndromic oligodontia [16–17]. EDA is a well-known gene that causes ectodermal dysplasia; however, several studies also reported that mutations in EDA can cause non-syndromic oligodontia[4,9,18–19]. EDARADD is a downstream signaling.
mediator of EDA and one study reported that a mutation in this gene led to non-syndromic oligodontia[6].

In the present study, we investigated six genes (MSX1, PAX9, AXIN2, WNT10A, EDA and EDARADD) in a patient with sporadic non-syndromic oligodontia. Finally, we identified a de novo AXIN2 missense mutation, which was located in a highly conserved region of the encoded protein.

Materials and Methods

Study Individuals and Samples

Subjects of this study were of Chinese descent. The 8-year-old male was recruited from among the patients referred to the Peking University School of Stomatology (the 3rd Dental Center for diagnostic evaluation and treatment of oligodontia). A pedigree was constructed by clinical examination of available family members and through interviews. An experienced dentist determined the status of dentition through oral and panoramic radiographic examinations for the proband and his parents. Peripheral blood samples were taken from the proband and his parents, in addition to 100 unrelated healthy individuals who were not affected with tooth agenesis or other craniofacial abnormalities (control group). Written informed consent was obtained from all the participants and the parents on the behalf of the minors or children participants. The study protocol and subject consent were approved by the Institutional Review Board of Peking University School and Hospital of Stomatology (No. IRBSS2014NNSF01).

Mutation Analysis for Candidate Genes

Genomic DNA was isolated from peripheral blood samples by use of the Biotek DNA Mini-kit (Biotek, Beijing, China), following the manufacturer’s instructions. The MSX1 (NM_002448), PAX9 (NM_006194), AXIN2 (NM_004655), WNT10A (NM_025216), EDA (NM_001399) and EDARADD (NM_080738) genes were selected for genetic analysis, and their exons and exon-intron junctions were amplified by polymerase chain reaction (PCR). Direct DNA sequencing was performed using ABI Dye terminator v3.1 (Applied Biosystems, Foster City, USA) and a 3730 DNA sequencer (Applied Biosystems). PCR primers and conditions were consistent with previous studies[6,9,17,20–23].

Conservation Analysis and WebLogo Analysis

Multiple-species amino acid sequence alignment and WebLogo analysis of the AXIN2 protein (NP_004646.3) were carried out separately by ClustalX 2.1 and WebLogo Version 2.8.2 (http://weblogo.berkeley.edu) [24]. AXIN2 sequences from zebrafish to human were obtained from ENSEMBL.

Structural Analysis

Three-dimensional models of the wild-type regulator of G protein signaling (RGS) domain of the AXIN2 protein and the mutant RGS (p.Val105Gly) domain were designed using the Phyre threading software (www.sbg.bio.ic.ac.uk/phyre/) [25], based on primary sequence conservation and known protein structures. The models were manipulated using the PyMOL software (PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, CA).
Results

Clinical findings

The proband was an 8-year-old male with a normal appearance. Clinical and radiographic examinations revealed that, in addition to retained deciduous teeth, the patient was missing a total of seven permanent teeth excluding third molars, all of them premolars (Fig 1). The incisors, canines, first molars and second molars were normal. No tooth germ for third molars was detected. Considering his young age, a diagnosis could not yet be made in relation to the lack of third molars. The proband’s facial features, skin, hair and nails appeared normal. Also, he reported normal sweating and lachrymal secretion and denied intolerance to heat, or
susceptibility to respiratory tract infections. His parents’ dentition was normal, and they reported no family history of tooth agenesis, ectodermal abnormalities or cancer.

Mutation analysis
Following mutation analysis of six genes (MSX1, PAX9, AXIN2, WNT10A, EDA and EDAR-ADD), we found a novel missense mutation in AXIN2 in the proband. The nucleotide sequence showed a heterozygous T to G transition at nucleotide 314 (c.314T>G) of the coding sequence in exon 2 of AXIN2 (Fig 2), which resulted in the substitution of Val at residue 105 for Gly. We have submitted the information of this AXIN2 mutation to ClinVar database in NCBI (www.ncbi.nlm.nih.gov/clinvar/; Accession number: SCV000223708). The proband’s parents did not carry the mutation (Fig 2). Also, the mutation was not detected in 100 normal controls (Fig 2). Therefore, this mutation is likely to have occurred de novo.

Conservation analysis
Val105 is located at the RGS domain of the AXIN2 protein (Fig 3). Evolutionary conservation analysis revealed that the Val105 site is conserved from zebrafish to humans (Fig 3), suggesting that Val105 may play an important role in the function of the RGS domain. To evaluate the conservation of the RGS domain of the AXIN2 protein, we carried out WebLogo analysis (http://weblogo.berkeley.edu) and compared the conservation of all amino acids of the RGS domain from zebrafish to humans based on multiple alignments. We found that the RGS domain was relatively conserved (Fig 3).

Structural Analysis
Structural analysis predicted that the 3D structures of the wild-type and mutant RGS domain of AXIN2 are different at residue 105 (Fig 4), which suggests that the p.Val105Gly substitution may affect the structure of the RGS domain of the AXIN2 protein.

Discussion
Our findings indicate that the novel heterozygous transition found in AXIN2 (c.314T>G) might be responsible for the presentation of non-syndromic oligodontia in the proband. This mutation, which results in a Val105Gly substitution, is localized to the regulator of G protein signaling (RGS) domain found in the Axin protein. RGS domains are protein structural domains that activate GTPases via heterotrimeric G-protein alpha-subunits; RGS proteins have been conserved in evolution [26]. This missense mutation (c.314T>G) may affect the function of the RGS domain of the AXIN2 protein, leading to oligodontia.

In families with severe tooth agenesis and in several mutant mouse lines, the phenotypes are variable in expression, presumably due to the effects of modifying genes and other genetic backgrounds as well as postgenetic factors [27]. In tooth agenesis, this variation in effect of major genetic factors can be reflected as incomplete penetrance. In this study, the proband’s parents displayed normal dentition and reported no family history of tooth agenesis or other ectodermal abnormalities. This may suggest incomplete penetrance of oligodontia in this family. However, the novel mutation was identified only in the proband, and his parents did not carry the mutation (Fig 2). Moreover, the highly conserved character of the mutated nucleotide (Fig 3), as well as the number of analyzed control alleles (100), precludes the possibility that this transition is a rare polymorphism of AXIN2. Hence, we confirm that this missense mutation is a de novo germline mutation. A number of studies have reported SNPs in AXIN2 associated with tooth agenesis [23,28–29], Mu et al. [23] presented 7 SNPs in the AXIN2, and 3 SNPs...
were in exons. We did not find any SNPs in AXIN2 in the proband and his parents. It’s seemed that SNPs in AXIN2 is not a risk factor for this family.

Fig 2. Sequence analyses of the AXIN2 gene. (A) A normal control shows the wild-type genotype. (B) A de novo heterozygous mutation, c.314T>G, was found in the proband, but not in his parents.

doi:10.1371/journal.pone.0138221.g002
Five conserved signaling pathways, including the fibroblast growth factors (Fgf), bone morphogenetic proteins (Bmp), ectodysplasin (Eda), wingless-related (Wnt) and sonic hedgehog (Shh) pathways, play a critical role throughout tooth development [30]. Inactivation of any of these pathways results in early tooth developmental arrest in mice. Mutations in these pathways have also been identified in human patients with tooth agenesis. The MSX1 and PAX9 transcription factors are involved in the Bmp and Fgf pathways during tooth development [31]. The Eda pathway is active during the development of ectodermal organs, including teeth, hairs, feathers, and mammary glands and was discovered by studying human patients affected by anhidrotic/hypohidrotic ectodermal dysplasia. It comprises three main gene products: EDA, a ligand that belongs to the tumor necrosis factor (TNF)-α family, EDAR, a receptor related to the TNFα receptors, and EDARADD, a specific adaptor [32]. Recently, WNT10A, belonging to the Wnt pathway, became a focal candidate gene for tooth agenesis. WNT10A was identified as a causal gene of autosomal recessive ectodermal dysplasia or isolated tooth agenesis [33–35].
Moreover, Pakeeza et al. [36] stated that WNT10A mutations account for one-quarter of population-based isolated oligodontia, and Van den Boogaard et al. [8] reported that mutations in WNT10A are present in more than half of isolated hypodontia cases. In the present study, we did not identify any mutation in WNT10A, but one was identified in AXIN2. AXIN2 is an intracellular antagonist of the Wnt signaling pathway. Thus, this missense mutation (c.314T>G) in AXIN2 may affect tooth development via the Wnt pathway.

To date, four studies reported seven AXIN2 mutations associated with syndromic or non-syndromic tooth agenesis [6,16,21,37]. Among the seven, two mutations caused syndromic tooth agenesis: in 2004, Lammi et al. [16] showed that a nonsense mutation in AXIN2 (c.1966C>T, p.Arg656Stop) caused oligodontia and predisposed to cancer. Additionally, in 2009, Marvin et al. [37] described a family with a novel, nonsense AXIN2 mutation (c.1989G>A, p.Tyr663X) segregating in an autosomal dominant pattern with oligodontia and variable other findings, including colonic polyposis, gastric polyps, a mild ectodermal dysplasia phenotype with sparse hair and eyebrows, and early onset colorectal and breast cancers. In the remaining five AXIN2 mutations causing non-syndromic tooth agenesis, four are missense mutations (p.Ala758Thr, p.Ala684Val, p.Thr308Met and p.Met830Ile), and one is a frameshift mutation (p.Gly666GlyfsX42) [6,16,21]. It appears that AXIN2 mutations that lead to a truncated AXIN2 protein are more likely to lead to syndromic oligodontia and predispose to cancer. In this study the missense mutation in AXIN2 (c.314T>G) resulted in the substitution of Val at residue 105 for Gly. Structural analysis predicted that the 3D structures of the wild-type and mutant RGS domain of AXIN2 are different at residue 105 (Fig 4). This results suggests that although the overall structure of the protein is complete, the p.Val105Gly substitution may affect some functional activity of AXIN2 protein. This may lead to the occurrence of clinical symptoms. Of course, functional study of the mutant protein need to be done to confirm the assumption in the future. Because the AXIN2 mutation (c.314T>G) identified in the

Fig 4. Structural analysis of the RGS domain of the AXIN2 protein. (A) Location of the Val105 residues within the RGS domain of AXIN2. (B) Location of the Gly105 residues within the RGS domain of AXIN2.

doi:10.1371/journal.pone.0138221.g004
The present study occurred de novo, cancer prevention measures are necessary for the 8-year-old male proband.

Interestingly, in the present study, the proband was missing a total of seven permanent teeth (excluding third molars), all of which were premolars. In previous studies, the positions of missing teeth in patients with AXIN2 mutation were not identical [6,16,21,37]. At present, the phenotype-genotype association in AXIN2-related patients is unclear. However, in all cases, patients with an AXIN2 mutation were missing at least seven teeth. This indicates that any change in the AXIN2 protein can cause severe tooth agenesis.

In conclusion, this study report describes a de novo AXIN2 missense mutation (c.314T>G) in a Chinese individual with non-syndromic oligodontia. This mutation is located at the regulator of G protein signaling (RGS) domain of the AXIN2 protein, which is a highly conserved region. In addition, this study extends the mutation spectrum of the AXIN2 gene in individuals with non-syndromic tooth agenesis. Furthermore, our findings confirm that AXIN2 plays an important role in human tooth development. However, further studies are necessary to clarify the precise role of AXIN2 in tooth development.

Acknowledgments

We would like to thank the subjects for their participation.

Author Contributions

Conceived and designed the experiments: HF. Performed the experiments: TD HL YZ. Analyzed the data: TD HL. Contributed reagents/materials/analysis tools: YZ TD HL. Wrote the paper: TD HL HF.

References

1. Chishti MS, Muhammad D, Haider M, Ahmad W. A novel missense mutation in MSX1 underlies autosomal recessive oligodontia with associated dental anomalies in Pakistani families. J Hum Genet. 2006; 51:872–878. PMID:16932841
2. Klein OD, Oberoi S, Huyseune A, Hovorakova M, Peterka M, Peterkova R. Developmental disorders of the dentition: An update. American Journal of Medical Genetics Part C: Seminars in Medical Genetics. 2013; 163:318–332.
3. Chhabra N, Goswami M, Chhabra A. Genetic basis of dental agenesis—molecular genetics patterning clinical dentistry. Med Oral Patol Oral Cir Bucal. 2014; 19:e112–e119. PMID:24121910
4. Song S, Han D, Qu H, Gong Y, Wu H, Zhang X, et al. EDA gene mutations underlie non-syndromic oligodontia. J Dent Res. 2009; 88:126–131. doi: 10.1177/0022034508328627 PMID: 19278982
5. Wang Y, Wu H, Wu J, Zhao H, Zhang X, Mues G, et al. Identification and functional analysis of two novel PAX9 mutations. Cells Tissues Organs. 2009; 189:80–87. doi: 10.1159/000151448 PMID: 18701815
6. Bergendal B, Klar J, Stecksen-Blicks C, Norderyd J, Dahl N. Isolated oligodontia associated with mutations in EDARADD, AXIN2, MSX1, and PAX9 genes. Am J Med Genet A. 2011; 155A:1616–1622. doi: 10.1002/ajmg.a.34045 PMID: 21626677
7. Stockton DW, Das P, Goldenberg M, D’Souza RN, Patel PI. Mutation of PAX9 is associated with oligodontia. Nat Genet. 2000; 24:18–19. PMID: 10615120
8. van den Boogaard MJ, Creton M, Bronkhorst Y, van der Hout A, Hennekam E, Lindhout D, et al. Mutations in WNT10A are present in more than half of isolated hypodontia cases. J Med Genet. 2012; 49:327–331. doi: 10.1136/jmedgenet-2012-100750 PMID: 22581971
9. Han D, Gong Y, Wu H, Zhang X, Yan M, Wang X, et al. Novel EDA mutation resulting in X-linked non-syndromic hypodontia and the pattern of EDA-associated isolated tooth agenesis. Eur J Med Genet. 2008; 51:536–546. doi: 10.1016/j.ejmg.2008.06.002 PMID: 18657636
10. Arte S, Parmanen S, Pirinen S, Alaluusua S, Nieminen P. Candidate Gene Analysis of Tooth Agenesis Identifies Novel Mutations in Six Genes and Suggests Significant Role for WNT and EDA Signaling and Allele Combinations. PLoS One. 2013; 8:e73705. doi: 10.1371/journal.pone.0073705 PMID: 23991204
11. Pan Y, Wang L, Ma J, Zhang W, Wang M, Zhong W, et al. PAX9 polymorphisms and susceptibility to sporadic tooth agenesis: a case-control study in southeast China. Eur J Oral Sci. 2008; 116:98–103. doi: 10.1111/j.1600-0722.2007.00517.x PMID: 18353002

12. Silva ER, Reis-Filho CR, Napimoga MH, Alves JB. Polymorphism in the Msx1 gene associated with hypodontia in a Brazilian family. J Oral Sci. 2009; 51:341–345. PMID: 19776500

13. Ruf S, Klimas D, Honemann M, Jabin S. Genetic background of nonsyndromic oligodontia: a systematic review and meta-analysis. J Orofac Orthop. 2013; 74:295–308. doi: 10.1007/s00056-013-0138-z PMID: 23828301

14. Vastardis H, Karimbux N, Guthua SW, Seidman JG, Seidman CE. A human MSX1 homeodomain mis-sense mutation causes selective tooth agenesis. Nat Genet. 1996; 13:417–421. PMID: 8696335

15. Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, et al. Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer. Am J Hum Genet. 2004; 74:1043–1050. doi:10.1086/423399 PMID: 15042511

16. Song S, Zhao R, He H, Zhang J, Feng H, Lin L. WNT10A variants are associated with non-syndromic tooth agenesis in the general population. Hum Genet. 2014; 133:117–124. doi: 10.1007/s00439-013-1360-x PMID: 24043634

17. Nikopensius T, Annilo T, Jagomagi T, Gilissen C, Kals M, Krijtuskov K, et al. Non-syndromic tooth agenesis associated with a nonsense mutation in ectodysplasin-A (EDA). J Dent Res. 2013; 92:507–511. doi: 10.1177/0022034513487210 PMID: 23603338

18. Peters H, Balling R. Teeth. Where and how to make them. Trends Genet. 1999; 15:59–65. PMID: 10098408

19. Mu YD, Xu Z, Contreras CI, McDaniel JS, Donly KJ, Chen S. Mutational analysis of AXIN2, MSX1, and PAX9 in two Mexican oligodontia families. Genet Mol Res. 2013; 12:4446–4458. doi:10.4238/2013.October.10.10 PMID: 24222224

20. Cluzeau C, Hadj-Rabia S, Jambou M, Mansour S, Guigue P, Masmoudi S, et al. Only four genes (EDA1, EDAR, EDARADD, and WNT10A) account for 90% of hypohidrotic/anhidrotic ectodermal dysplasia cases. Hum Mutat. 2011; 32:70–72. doi: 10.1002/humu.21384 PMID: 20979233

21. Crooks GE, Hon G, Chandonia JM, Brenner SE. WebLogo: a sequence logo generator. Genome Res. 2004; 14:1188–1190. PMID: 15173120

22. Kelley LA, Sternberg MJ. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009; 4:363–371. doi: 10.1038/nprot.2009.2 PMID: 19247286

23. De Vries L, Zheng B, Fischer T, Elenko E, Farquhar MG. The regulator of G protein signaling family. Annu Rev Pharmacol Toxicol. 2000; 40:235–271. PMID: 10836135

24. Nieminen P. Genetic basis of tooth agenesis. J Exp Zool B Mol Dev Evol. 2009; 312B:320–342. doi: 10.1002/jez.b.21277 PMID: 19219933

25. Callahan N, Modesto A, Meira R, Seymen F, Patir A, Vieira AR Axis inhibition protein 2 (AXIN2) polymorphisms and tooth agenesis. Arch Oral Biol. 2009; 54:45–49. doi: 10.1016/j.archoralbio.2008.08.002 PMID: 18790474

26. Mostowska A, Biedziak B, Jagodziński PP. Axis inhibition protein 2 (AXIN2) polymorphisms may be a risk factor for selective tooth agenesis. J Hum Genet. 2006; 51:262–266. PMID: 16432638

27. Lan Y, Jia S, Jiang R. Molecular patterning of the mammalian dentition. Semin Cell Dev Biol. 2014; 25–26:61–70. doi: 10.1016/j.semcdb.2013.12.003 PMID: 24355660

28. Neubuser A, Peters H, Balling R, Martin GR. Antagonistic interactions between FGF and BMP signaling pathways: a mechanism for positioning the sites of tooth formation. Cell. 1997; 90:247–255. PMID: 9244299

29. Sadier A, Viriot L, Pantalacci S, Lauder V. The ectodysplasin pathway: from diseases to adaptations. Trends Genet. 2014; 30:24–31. doi: 10.1016/j.tig.2013.08.006 PMID: 24070496
33. Nagy N, Wedgeworth E, Hamada T, White JM, Hashimoto T, McGrath JA. Schopf-Schulz-Passarge syndrome resulting from a homozygous nonsense mutation in WNT10A. J Dermatol Sci. 2010; 58:220–222. doi:10.1016/j.jdermsci.2010.03.012 PMID: 20418069

34. Petrof G, Fong K, Lai-Cheong JE, Cockayne SE, McGrath JA. Schopf-Schulz-Passarge syndrome resulting from a homozygous nonsense mutation, p.Cys107X, in WNT10A. Australas J Dermatol. 2011; 52:224–226. doi:10.1111/j.1440-0960.2011.00788.x PMID: 21834823

35. Nawaz S, Klar J, Wajid M, Aslam M, Tariq M, Schuster J, et al. WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome. Eur J Hum Genet. 2009; 17:1600–1605. doi:10.1038/ejhg.2009.81 PMID: 19471313

36. Arzoo PS, Klar J, Bergendal B, Norderyd J, Dahl N. WNT10A mutations account for (1/4) of population-based isolated oligodontia and show phenotypic correlations. Am J Med Genet A. 2014; 164A:353–359. doi:10.1002/ajmg.a.36243 PMID: 24449199

37. Marvin ML, Mazzoni SM, Herron CM, Edwards S, Gruber SB, Petty EM. AXIN2-associated autosomal dominant ectodermal dysplasia and neoplastic syndrome. Am J Med Genet A. 2011; 155A:898–902. doi:10.1002/ajmg.a.33927 PMID: 21416598