Lipophilicity and Click Reactivity Determine the Performance of Bioorthogonal Tetrazine Tools in Pretargeted In Vivo Chemistry

E. Johanna L. Stéen,¹ Jesper T. Jørgensen,¹ Christoph Denk,¹ Umberto M. Battisti, Kamilla Norregaard, Patricia E. Edem, Klas Bratteby, Vladimir Shalgunov, Martin Wilkovitsch, Dennis Svatunek, Christian B. M. Poulie, Lars Hvass, Marina Simón, Thomas Wanek, Raffaella Rossin, Marc Robillard, Jesper L. Kristensen, Hannes Mikula,*, Andreas Kjaer,*, and Matthias M. Herth*

ABSTRACT: The development of highly selective and fast bioorthogonal reactions for ligation and cleavage has paved the way for new diagnostic and therapeutic applications of pretargeted in vivo chemistry. The concept of bioorthogonal pretargeting has attracted considerable interest, in particular for the targeted delivery of radionuclides and drugs. In nuclear medicine, pretargeting can provide increased target-to-background ratios at early time-points compared to traditional approaches. This reduces the radiation burden to healthy tissue and, depending on the selected radionuclide, enables better imaging contrast or higher therapeutic efficiency. Moreover, bioorthogonally triggered cleavage of pretargeted antibody-drug conjugates represents an emerging strategy to achieve controlled release and locally increased drug concentrations. The toolbox of bioorthogonal reactions has significantly expanded in the past decade, with the tetrazine ligation being the fastest and one of the most versatile in vivo chemistries. Progress in the field, however, relies heavily on the development and evaluation of (radio)labeled compounds, preventing the use of compound libraries for systematic studies. The rational design of tetrazine probes and triggers has thus been impeded by the limited understanding of the impact of structural parameters on the in vivo ligation performance. In this work, we describe the development of a pretargeted blocking assay that allows for the investigation of the in vivo fate of a structurally diverse library of 45 unlabeled tetrazines and their capability to reach and react with pretargeted trans-cyclooctene (TCO)-modified antibodies in tumor-bearing mice. This study enabled us to assess the correlation of click reactivity and lipophilicity of tetrazines with their in vivo performance. In particular, high rate constants (>50 000 M⁻¹ s⁻¹) for the reaction with TCO and low calculated logD₂₄ values (below −3) of the tetrazine were identified as strong indicators for successful pretargeting. Radiolabeling gave access to a set of selected ¹⁸F-labeled tetrazines, including highly reactive scaffolds, which were used in pretargeted PET imaging studies to confirm the results from the blocking study. These insights thus enable the rational design of tetrazine probes for in vivo application and will thereby assist the clinical translation of bioorthogonal pretargeting.

KEYWORDS: bioorthogonal chemistry, tetrazine ligation, pretargeted imaging, PET, fluorine-18, molecular imaging

The concept of in vivo chemistry based on the development of bioorthogonal reactions has led to a renaissance of pretargeting strategies in nuclear medicine and for controlled drug delivery.¹⁻⁴ Monoclonal antibodies (mAbs) have found widespread application in this regard, particularly as selective targeting vectors for specific antigens expressed on cancer cells.⁵ For example, immuno-positron emission tomography (PET) can be used for precision medicine, i.e., to guide the selection of patients who show the highest probability to benefit from a specific therapy.⁵,⁶ Similarly, radioimmunotherapy (RIT) is based on the application of the unique targeting ability of mAbs to deliver therapeutic radionuclides to diseased tissue, most often to tumors.⁸ RIT has several advantages over conventional external radiation therapy, notably the ability to target and treat the entire tumor burden, including micrometastases.⁸ However, due to the long blood circulation time of mAbs (several days to weeks), adequate tumor-to-background ratios are usually not achieved until 2–4 days after administration, requiring the use of long-lived radionuclides. Most often, this results in a relatively high radiation burden to the patient.⁹,¹⁰ In order to reduce the
absorbed radiation dose and reach higher tumor-to-background ratios at earlier time-points, pretargeting has emerged as an efficient strategy, enabling in vivo radiolabeling of mAbs upon accumulation at their target.2,10−16 This is realized by modifying the mAb with a specific reactive molecular tag, which can later selectively react with a radiolabeled agent via a rapid bioorthogonal reaction. Similarly, pretargeting can be applied for spatiotemporally controlled drug delivery.2,17−21 In this approach, a highly potent drug is bioorthogonally cleaved from a pretargeted mAb conjugate upon its accumulation at the site of disease, achieving higher local drug concentrations while simultaneously reducing systemic toxicity to healthy tissue.

Due to its fast reaction kinetics, high selectivity and biocompatibility, the inverse electron demand Diels−Alder (IEDDA)-initiated ligation between a 1,2,4,5-tetrazine (Tz) and a trans-cyclooctene (TCO) has become state-of-the-art for time-critical application of in vivo chemistry as well as bioorthogonally controlled drug delivery.2,13,19−24 Currently, the understanding of the scope and limitations of IEDDA-initiated ligation for pretargeting strategies in vivo is limited, and the design of suitable Tz-derivatives for this purpose is mainly a "trial-and-error" game, heavily depending on the time-intensive development of radiolabeled compounds for in vivo evaluation. Current labeling strategies have, so far, mostly been focused on chelator approaches, overall impeding the use of compound libraries for systematic studies.4,2,5,26 In order to enable the rational design of Tz-derivatives for in vivo chemistry, it is important to understand the structure−property relationship between the physicochemical parameters of Tz-derivatives and their capability to reach and react in vivo with TCO-modified (bio)molecules accumulated at the target site of interest.

The aim of the present study was to identify and explore the key parameters that influence the in vivo performance of a Tz (Figure 1). Consequently, we prepared a library of Tz-derivatives with a set of different rate constants (in the reaction with TCO), lipophilicities, and topological polar surface areas (TPSAs) and applied a pretargeted blocking assay to evaluate their ligation performance in vivo. The blocking effect of each Tz was correlated with its lipophilicity (calculated logD7.4 (clogD7.4) values), calculated TPSA, as well as IEDDA reactivity.

The obtained results were verified by in vivo pretargeted PET imaging of a set of selected Tz-derivatives radiolabeled with fluorine-18.

RESULTS AND DISCUSSION

Experimental Design and Preparation of the Tz-Library

A structurally diverse library of 45 Tz-derivatives was prepared, covering a wide spectrum of physicochemical properties, in particular, calculated TPSAs between 60−350 Å² and different lipophilicities, with calculated logD7.4 values (clogD7.4) ranging from approximately −7.0 to 2.5 (Table 1; for synthetic procedures and details, see the Supporting Information). The Tz-scaffolds (A−L) include mono- and disubstituted methyl-, phenyl-, 2-pyrimidyl-, and 2-pyridyl-substituted Tz-derivatives with second-order rate constants for the reaction with TCO ranging from 1.4 to 230 M⁻¹ s⁻¹ in 1,4-dioxane at 25 °C and from 1100 to 73 000 M⁻¹ s⁻¹ in buffered aqueous solution at 37 °C. Table 1 provides an overview of the synthesized Tz-library and displays the measured rate constants.
Table 1. Structural Scaffolds, Calculated Physicochemical Properties (TPSA and clogD_{7.4}), Measured Second-Order Rate Constants for the Ligation with TCO, and Blocking Efficiencies of All Investigated Tz-derivatives

Tz	Tz-scaffold	R	clogD_{7.4}	TPSA \(\AA^2\)	Rate constant \(1:1\)-dioxane, \(25^\circ C\), \(M^{-1} \cdot s^{-1}\)	Rate constant \(1:1\)-DBPS, \(37^\circ C\), \(M^{-1} \cdot s^{-1}\)	Blocking effect (\%)	% Tumor Uptake of \(^{125}\)I In 46 h after binding
1 A			0.29 \(R\)	91	72	39,000	9	91
2 A			-0.06 \(R\)	119	72	39,000	4	96
3 A			-1.53 \(R\)	161	72	39,000	20	20
4 A			-2.85 \(R\)	217	72	39,000	95	5
5 B			0.89 \(R\)	91	14	1,100	9	91
6 B			0.54 \(R\)	119	14	1,100	1	99
7 B			-0.93 \(R\)	161	14	1,100	13	87
8 B			-5.81 \(R\)	221	14	1,100	49	51
9 C			-2.19 \(R\)	114	14	1,100	14	88
10 C			-3.05 \(R\)	214	14	1,100	72	68
11 C			-3.2 \(R\)	184	14	1,100	34	66
12 D			1.89 \(R\)	104	13	nd	0	100
13 D			1.53 \(R\)	132	13	nd	0	100
14 D			0.06 \(R\)	174	13	nd	24	76
15 D			-1.98 \(R\)	111	13	nd	78	22
16 D			-0.65 \(R\)	167	13	nd	79	21
17 E			0.45 \(R\)	82	200	60,000	0	100
18 E			0.29 \(R\)	109	200	60,000	28	72
19 E			-1.18 \(R\)	152	200	60,000	76	24
20 E			-2.46 \(R\)	208	200	60,000	94	6
21 F			-1.97 \(R\)	114	83	nd	87	13
22 F			0.64 \(R\)	134	83	nd	27	73
23 F			0.12 \(R\)	129	83	nd	72	28
24 F			-4.2 \(R\)	278	83	nd	95	9
25 G			2.46 \(R\)	157	230	73,000	15	84
26 G			2.10 \(R\)	164	230	73,000	30	70
27 G			0.63 \(R\)	207	230	73,000	51	49
28 H			1.11 \(R\)	90	210	58,000	45	55
29 H			-0.14 \(R\)	78	210	58,000	55	45
30 H			-0.18 \(R\)	63	210	58,000	62	38
31 H			-0.41 \(R\)	80	210	58,000	60	40
32 H			-3.03 \(R\)	100	210	58,000	85	14
33 H			-4.89 \(R\)	129	210	58,000	97	3
34 H			-4.4 \(R\)	202	210	58,000	93	5
35 H			9.16 \(R\)	320	210	58,000	96	4
36 H			1.79 \(R\)	61	160	nd	0	100
37 K			-0.77 \(R\)	129	230	73,000	75	24
38 K			-2.23 \(R\)	161	230	73,000	83	17
39 K			-3.37 \(R\)	143	230	73,000	96	4
40 K			-3.81 \(R\)	263	230	73,000	97	3
41 K			-4.13 \(R\)	362	230	73,000	99	1
42 K			1.62 \(R\)	129	230	73,000	75	25
43 L			0.84 \(R\)	137	230	73,000	67	33
44 L			0.48 \(R\)	164	230	73,000	72	28
45 L			-0.99 \(R\)	207	230	73,000	99	1

"Notes: The distribution coefficient at physiological pH (clogD_{7.4}) and TPSA were calculated using the software Chemicalize. Tetrazines conjugated to DOTA were calculated with chelated trivalent cations, and Tzs with other chelators were calculated with bivalent cations. Second-order rate constants for the Tz-scaffolds A–L were determined by stopped-flow spectrophotometry (n ≥ 4), monitoring the reaction of representative tetrazines with unsubstituted trans-cyclooctene (TCO) at 25 °C in 1,4-dioxane and with TCO-PEG₅ (modified TCO-Sax−OH, "minor-TCO") in Dulbecco’s phosphate buffered saline (DBPS) at 37 °C. n ≥ 3; (see Supporting Information, Tables S1 and S2). Blocking data from ref 48."
and calculated physicochemical properties of each Tz. Several compounds were obtained as copper(II) complexes (for details, see the Supporting Information), which was taken into account in the calculation of clogD_{7.4} and TPSA (as described in the Notes of Table 1).

Pretargeted Blocking Studies. The blocking assay allows for the assessment of the in vivo ligation performance of unlabeled Tz-derivatives, avoiding the need for time-consuming development of radiolabeling procedures as well as the preparation of labeled analogues or surrogates. The assay was inspired by receptor blocking experiments and based on the pretargeted imaging approach reported by Rossin et al.\(^{13,27}\) An \(^{111}\)In-labeled Tz ([\(^{111}\)In]46, see Supporting Information, Figure S1) was used in pair with TCO-modified CC49, a non-

Figure 2. Results from the blocking assay. (A) Schematic display of the blocking assay. (B) The blocking effect of nonradiolabeled Tz was determined as the change in tumor uptake of \([^{111}\text{In}]46\) 22 h p.i. Each Tz was administered 1 h prior to \([^{111}\text{In}]46\), and the uptake was normalized to a group of animals in which no blocking was performed (control). Data represent mean from \(n = 3\) mice/group; detailed information can be found in the SI. (C,D) Correlation of blocking effect and clogD_{7.4} for Tz-derivatives with similar IEDDA reactivity. Data was fitted to exponential growth equation \(Y = Y_0 e^{kx}\) (dotted line). (E) Statistical analysis of the correlation between tumor uptake and clogD_{7.4} for the different groups of Tz-derivatives. Pearson’s correlation coefficient \((r)\) describes the goodness of fit between the blocking effect and clogD_{7.4}. Notes: aReaction of representative Tz with unsubstituted TCO. bReaction of representative Tz with TCO-PEG4. cMeasured for Tz-scaffold A only. n.d. = not determined.
Table 2. Cu-Mediated Click-Radiolabeling for the Synthesis of 18F-Labeled Tz-Probes

Tz-alkyne (I–VI)	azide-functionalized 18F click agent	RCP (%)	A_m (GBq/μmol)	RCP (%)	$\%$ intact $[^{18}$F$]Tz$ after 30 min	blocking effect (%) (of unlabeled Tz)
$[^{18}$F$]1$	$[^{18}$F$]Az1$	25*	55	99	90	9
$[^{18}$F$]2$	$[^{18}$F$]Az2$	23	22	96	37	4
$[^{18}$F$]3$	$[^{18}$F$]Az3$	61	31	98	76	81
$[^{18}$F$]4$	$[^{18}$F$]Az1$	14*	106	≥99	26	10
$[^{18}$F$]5$	$[^{18}$F$]Az2$	33	100	≥99	85	1
$[^{18}$F$]6$	$[^{18}$F$]Az3$	52	230	≥99	60	3
$[^{18}$F$]7$	$[^{18}$F$]Az1$	1*	107	96	10	0
$[^{18}$F$]8$	$[^{18}$F$]Az2$	11	21	94	16	0
$[^{18}$F$]9$	$[^{18}$F$]Az3$	68	102	98	43	24
$[^{18}$F$]10$	$[^{18}$F$]Az1$	8*	209	98	32	0
$[^{18}$F$]11$	$[^{18}$F$]Az2$	17	37	92	22	29
$[^{18}$F$]12$	$[^{18}$F$]Az3$	59	29	98	87	76
$[^{18}$F$]13$	$[^{18}$F$]Az1$	16*	n.d.	83	n.d.	16
$[^{18}$F$]14$	$[^{18}$F$]Az2$	36	54	≥85	27	30
$[^{18}$F$]15$	$[^{18}$F$]Az3$	18*	n.d.	≥90	n.d.	51
$[^{18}$F$]16$	$[^{18}$F$]Az1$	1	5	90	10	67
$[^{18}$F$]17$	$[^{18}$F$]Az2$	20	85	98	n.d.	72
$[^{18}$F$]18$	$[^{18}$F$]Az3$	11	151	≥90	42	99

*Notes: Details on experimental procedures are provided in the Supporting Information. RCYs were decay-corrected to the starting amount of radioactivity for the respective azide, or *RCY was determined starting from $[^{18}$F$]-c.$ Molar activities (A_m) differ due to the use of different cyclotrons (see Supporting Information). RCP was determined by radio-HPLC. dIn vivo stability of $[^{18}$F$]Tz$ was assessed by determining the fraction (%) of radioactivity corresponding to intact compound after 30 min ($n = 4$) from radio-TLC analysis. n.d. = not determined.

Figure 2A displays the blocking assay, and Figure 2B summarizes the results for the entire Tz-library in the assay. The highest blocking efficiencies (95–99%) were observed for the Tz-chelator conjugates 4, 24, 35, and 41, the Tz-carboxylic acids 33 and 39, the Tz-PEG derivative 40, and the Tz-sugar conjugate 45. All of these probes include H-phenyl-, pyrimidyl-phenyl-, or bis(pyridyl)-Tz-scaffolds with second-order rate constants for the reaction with TCO of >70 M$^{-1}$ s$^{-1}$ (1,4-dioxane, 25 °C) or of >39 000 M$^{-1}$ s$^{-1}$ (DPBS, 37 °C) (cf. Table 1). Further details of the blocking studies are provided in the Supporting Information (Figure S2). Next, potential correlations between the blocking effect, the clogD$_{2.5}$ and the TPSA, as well as the IEDDA reactivity were investigated. As expected, high IEDDA reactivity was shown to directly correlate with the blocking effect and thus confirmed to be a key parameter for the in vivo ligation performance of Tz-derivatives (Figure 2C,D). We did not observe a strong correlation between the blocking effect and TPSA (Figure S14). However, a distinct relationship between clogD$_{2.5}$ values and the blocking effect was evidently observed when comparing Tz-derivatives with similar IEDDA reactivity (Figures 2C,D and S15). For all Tz-scaffolds, a Pearson’s correlation coefficient >0.78 was found. Our results

internalizing mAb that targets the tumor-associated glycoprotein 72 (TAG72) as a benchmark model for the in vivo ligation. The TCO-modification of CC49 was carried out according to Rossin et al. To study the in vivo ligation performance of Tz-derivatives 1–45, BALB/c nude mice bearing LS174T colon carcinoma xenografts were injected intravenously (i.v.) with CC49-TCO 72 h prior to i.v. injection of the unlabeled Tz, followed by administration of $[^{111}$In$]Tz$ 1 h later (for experimental details, see the Supporting Information). The animals were euthanized after 22 h, and an ex vivo biodistribution was carried out to quantify the tumor uptake of $[^{111}$In$]Tz$ (Figure 2A). The efficiency of the in vivo ligation of the unlabeled Tz can thus be correlated to a reduced uptake of $[^{111}$In$]Tz$ (Figure 2A). As a control, blocking was performed using the nonradioactive precursor of $[^{111}$In$]Tz$ (DOTA-Tz 41, see the Supporting Information), which blocked ≥96% of the $[^{111}$In$]Tz$ tumor uptake. A group of CC49-TCO-pretreated mice were injected exclusively with $[^{111}$In$]Tz$ (without blocking), and the determined uptake was used as reference value (100%) to normalize the observed changes in tumor uptake in blocking experiments.
show that high IEDDA reactivity (>50,000 M$^{-1}$ s$^{-1}$) and a clogD$_{7.4}$ of −3 or lower are strong indicators for high in vivo ligation performance of Tz-derivatives in pretargeting approaches using the described tumor model (Figure 2).

Experimental Design of a $[^{18}\text{F}]$Tz-Library. In order to verify that the results from the blocking study can be used to predict the outcome for in vivo PET imaging, 18 Tz-derivatives from the first library were selected. The selection was based on criteria such as the possibility for $[^{18}\text{F}]$-labeling, structural diversity, lipophilicities, and distinct IEDDA reactivities. For this purpose, we decided to use an indirect radiolabeling approach, enabling the combination of different building blocks to rapidly access a series of $[^{18}\text{F}]$-labeled Tz-derivatives. The Cu-catalyzed azide−alkyne [3 + 2] cycloaddition (CuAAC) appeared to be suitable in this respect, as it allows for fast and efficient radiolabeling under mild reaction conditions.$^{28–32}$ Six precursor Tz-alkynes (I−VI) were prepared and reacted with three $[^{18}\text{F}]$-labeled azides ($[^{18}\text{F}]$Az1−Az3) to obtain 18 different $^{[18}\text{F}]$Tz-probes (Table 2).
Indirect 18F-Labeling of a Tz Series via Cu-Catalyzed Click Chemistry. Azide building blocks were 18F-labeled using fully automated procedures to afford [18F]Az1−[18F]Az3 (Scheme S15),33,34 and Tz−alkynes I−VI were synthesized as described in the Supporting Information. Subsequent radio-labeling via the CuAAC was achieved in various yields, up to approximately 70% (Table 2). Applied conditions for the CuAAC differed depending on the substituents attached to the Tz-scaffold. In general, radiolabeling was carried out at room temperature with reaction times of 10−15 min using aqueous solutions of CuSO4, sodium ascorbate, and disodium bathophenanthroline disulfonate (BPDS). For the synthesis of the bis(pyridyl)Tz-derivatives [18F]25, [18F]44, and [18F]45, increased amounts of the catalysts, longer reaction times (20−25 min), and elevated temperatures (120 °C) were required in order to reach radiochemical conversions (RCCs) of ≥70%. A possible reason for the harsher conditions required for this scaffold may be a result from coordination of Cu by the bis(pyridyl)-Tz-moiety. Radiochemical yields (RCYs) and molar activities (Am) for all 18F-labeled Tz-derivatives are presented in Table 2. Radiochemical purities (RCPs) of the isolated compounds were high (>90%), except for [18F]25 and [18F]26 (83−85%) due to radiolysis (observed for [18F]25), undesired decomposition, and difficult separation of the resulting byproducts. During the radiolabeling, partial reduction of [18F]19 and [18F]44 to the corresponding dihydro-Tz (cf. Figures S73 and S74) was observed. However, these Tz-derivatives were reoxidized using phenylidonium diacetate (PIDA). In the case of [18F]44, complete reduction to the dihydro-Tz (using ascorbic acid) and reoxidation upon purification was applied to prevent radiolysis. Excess PIDA and byproducts were removed during solid-phase extraction to obtain [18F]44 in an RCP of 98% (Table 2; for details see the Supporting Information). Moreover, during the synthesis of [18F]45, an alternative deprotection method for the azide ([18F]Az3) was required to avoid decomposition of the Tz-scaffold during the CuAAC. All 18F-labeled Tz-derivatives were formulated in 0.9% saline prior to further studies. Overall, radiofluorination via the CuAAC allowed for the preparation of a structurally diverse series of 18F-labeled Tz-derivatives. In contrast to routinely used direct radiofluorination methods, this building block approach gave access to highly reactive [18F]Tz-probes, using Tz-scaffolds that have previously been reported to be inaccessible.1,35,36

In Vivo Stability of 18F-Labeled Tz-derivatives in Naïve Mice. Next, we investigated whether there is a relationship between the in vitro stability of Tz-derivatives and their blocking ability. A total of 15 18F-labeled tetrazines were studied in naïve mice. Blood was collected after 30 min, and plasma samples were analyzed by radio-TLC (for details, see the Supporting Information) for stability assessment (Table 2 and Figures S75 and S76). Interestingly, the in vivo stability 30 min p.i. had only a limited or even no effect on the in vivo ligation performance as evaluated in the blocking study (cf. Table 1). Consequently, six [18F]Tz ([18F]4, [18F]3, [18F]19, [18F]26, [18F]44, and [18F]45) were selected for further in vivo studies solely based on the IEDDA reactivity (second-order rate constants between 72 and 230 M−1 s−1) and lipophilicity (clogD7,4 between −1.53 and 2.10). These radioabeled Tz-probes were used to investigate if the results from the blocking assay can be translated to pretargeted PET imaging at tracer doses.

Pretargeted PET Imaging. Of the six Tz-probes selected for evaluation in pretargeted PET imaging studies, four compounds (3, 19, 44, and 45) showed a good to excellent blocking effect (72−99%), while two probes (1 and 26) only showed a limited effect (9% for 1 and 30% for 26). The latter were included to verify that blocking results can reliably be used to predict the capability of radioabeled Tz for pretargeted in vivo chemistry.

Mice (n = 3−4 per group) were injected i.v. with either CC49-TCO or 0.9% saline (control experiments). After 72 h, 18F-labeled Tz (5−10 MBq) was administered, and the mice were PET/CT-scanned 1 h p.i. A 3D region of interest (ROI) was created on the entire tumor volume as well as heart and muscle tissue, and the uptake was quantified as a percentage of the injected dose per gram (mean% ID/g) as well as the tumor-to-blood (T/B) and tumor-to-muscle (T/M) ratios (Figure 3A−D, Table S3 and S4).

The tumor uptake of the different 18F-labeled Tz-probes was at a rather similar level; however, [18F]3, [18F]19, and [18F]45 showed a significantly increased tumor accumulation in mice pretreated with CC49-TCO compared to control animals (Figure 3A−F and Tables S3 and S4). As expected and in accordance with blocking results, there was no significant difference in tumor uptake between pretargeting experiments and controls for [18F]1 and [18F]26. In the case of [18F]44, no increase in tumor accumulation was observed in mice pretreated with TCO-modified mAb. However, this Tz showed higher radioactivity levels in the heart in mice pretreated with CC49-TCO compared to controls (2.5 ± 0.7 and 1.5 ± 0.2%ID/g, respectively; Figure 3B and Table S1). This indicates that [18F]44 binds to mAb still circulating in the blood pool. This difference was also observed for the three 18F-labeled Tz-derivatives showing specific tumor accumulation ([18F]3, [18F]19, and [18F]45), but not for the nonaccumulating probes [18F]1 and [18F]26 (Figure 3B). Binding to residual mAb in the blood pool is a frequently reported challenge in pretargeted imaging approaches and has been addressed by the development of clearing agents.14,37−39 However, ligation in blood did not hinder the investigation of the in vivo ligation performance of 18F-labeled Tz-probes in comparison to blocking efficiencies.

Finally, the relationship between the in vivo performance of the used Tz-probes and the results obtained from the blocking assay was investigated. A strong correlation was found between the blocking effect of the unlabeled Tz and the T/M ratio (Figure 3D) as well as the selective tumor uptake (tumor to tumor-control (T/Tc) ratio) (Figure S78 and Table S4) of the respective 18F-labeled probes in pretargeted PET imaging studies. These significant relationships confirm the validity of the blocking assay and our finding that reduced lipophilicity and high IEDDA reactivity are key parameters for the in vivo performance of Tz-derivatives. Our results show that low lipophilicity enhances the ability of the bioorthogonal Tz-agent to bind to TCO−mAbs at the tumor site. Moreover, faster excretion of radioabeled probes, which is crucial for obtaining high tumor-to-background ratios, is also facilitated by the low lipophilicity of Tz-derivatives (Figure 3).

CONCLUSION

The advancement of in vivo chemical tools based on a better understanding of the scope and limitations of bioorthogonal reactions, in vitro and in living systems, paves the way to clinical translation of pretargeting approaches for diagnostic (e.g., pretargeted imaging19,36,39−41) and therapeutic application
orcid.org/0000-0002-9218-9722; Email: hannes.mikula@tuwien.ac.at

Authors

E. Johanna L. Stéen — Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark

Jesper T. Jorgensen — Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark

Christoph Denk — Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), 1060 Vienna, Austria

Umberto M. Battisti — Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark

Kamilla Norregaard — Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark

Patricia E. Edem — Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences and Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark

Klas Bratteby — Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Radiation Physics, Skåne University Hospital, 22242 Lund, Sweden; orcid.org/0000-0003-0930-2390

Vladimir Shalgunov — Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences and Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark

Martin Wilkovitsch — Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), 1060 Vienna, Austria

Dennis Svatunek — Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), 1060 Vienna, Austria

Christian B. M. Poulie — Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences and Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; orcid.org/0000-0003-2662-9803

Lars Hvass — Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark

Marina Simón — Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark

ASSOCIATED CONTENT

Supporting Information
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsptsci.1c00007.

Details on experimental procedures for organic synthesis, radiochemistry, reaction kinetics, and in vivo studies are provided in the Supporting Information (PDF).

NMR spectra for compounds 1–45 (PDF)

NMR spectra for Tz I–VI, precursor, and supplementary compounds (PDF)

AUTHOR INFORMATION

Corresponding Authors
Matthias M. Herth — Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark; orcid.org/0000-0002-7788-513X; Phone: +45 3533 6624; Email: matthias.herth@sund.ku.dk

Andreas Kjaer — Cluster for Molecular Imaging, Department of Biomedical Sciences, University of Copenhagen, 2100 Copenhagen Ø, Denmark; Department of Clinical Physiology, Nuclear Medicine & PET, Rigshospitalet, 2100 Copenhagen, Denmark; orcid.org/0000-0002-2706-5547; Phone: +45 2725 8614; Email: akjaer@sund.ku.dk

Hannes Mikula — Institute of Applied Synthetic Chemistry, Technische Universität Wien (TU Wien), 1060 Vienna, Austria; orcid.org/0000-0002-2706-5547; Phone: +45 2725 8614; Email: akjaer@sund.ku.dk
The experimental work was carried out through contributions of EJLS, JTJ, CD, UMB, KN, PEE, KB, VS, MW, DS, CBMP, LH, and RR. The study was designed by EJLS, JTJ, CD, UMB, KN, PEE, KB, VS, MW, DS, CBMP, LH, and RR. The experimental work was carried out through contributions of EJLS, JTJ, CD, UMB, KN, PEE, KB, VS, MS, TW, and RR. The study was designed by EJLS, JTJ, CD, UMB, KN, PEE, MR, JLK, HM, AK, and MMH. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest. All animal experiments in this study were approved by national animal welfare committees in Austria and Denmark, and the experiments were performed in accordance with European guidelines.

ACKNOWLEDGMENTS

This project has received funding from the European Union’s EU Framework Programme for Research and Innovation Horizon 2020, under grant agreements no. 670261 and 668532. VS was supported by BRIDGE Translational Excellence Programme at the Faculty of Health and Medical Sciences, University of Copenhagen, funded by the Novo Nordisk Foundation (grant agreement no. NNF18SA0034956). The Lundbeck Foundation, the Novo Nordisk Foundation, the Innovation Fund Denmark, The Carlsberg Foundation (CF18-0126), the Danish Cancer Society, the Arvid Nilsson Foundation, the Svend Andersen Foundation, the Neve Foundation, the Research Foundation of Rigshospitalet, the Danish National Research Foundation (grant 126), the Research Council of the Capital Region, and the Research Council for Independent Research are further acknowledged. Ida Nyman Petersen, Giorgos Kougioumtzoglou, and Placid Nnamdi Orji are thanked for technical assistance.

REFERENCES

(1) Steen, E. J. L., Edem, P. E., Norregaard, K., Jorgensen, J. T., Shalgunov, V., Kjaer, A., and Herth, M. M. (2018) Pretargeting in nuclear imaging and radionuclide therapy: Improving efficacy of theranostics and nanomedicines. **Biomaterials** 179, 209–245.

(2) Rossin, R., Versteegen, R. M., Wu, J., Khasanov, A., Wessels, H. J., Steenbergen, E. J., Ten Hoeve, W., Jansen, H. M., van Onzen, A., Hudson, P. J., and Robillard, M. S. (2018) Chemically triggered drug release from an antibody-drug conjugate leads to potent antitumour activity in mice. **Nat. Commun.** 9 (1), 1484.

(3) Hapuarachchige, S., and Artemov, D. (2020) Theranostic Pretargeting Drug Delivery and Imaging Platforms in Cancer Precision Medicine. **Front. Oncol.** 10, 1131.

(4) Altai, M., Membreno, R., Cook, B., Tolmachev, V., and Zeglis, B. M. (2017) Pretargeted Imaging and Therapy. **J. Nucl. Med.** 58 (10), 1553–1559.

(5) Scott, A. M., Wolchok, J. D., and Old, L. J. (2012) Antibody therapy of cancer. **Nat. Rev. Cancer** 12 (4), 278–87.

(6) van Dongen, G. A., Visser, G. W., Lub-De Hooge, M. N., de Vries, E. G., and Perk, L. R. (2007) Immuno-PET: a navigator in monoclonal antibody development and applications. **Oncologist** 12 (12), 1379–89.

(7) Boswell, C. A., and Brechbiel, M. W. (2007) Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. **Nucl. Med. Biol.** 34 (7), 757–78.

(8) Larson, S. M., Carraquillo, J. A., Cheung, N. K., and Press, O. W. (2015) Radioimmuno-therapy of human tumours. **Nat. Rev. Cancer** 15 (6), 347–60.

(9) Borjesson, P. K., Jaw, Y. W., de Bree, R., Roos, J. C., Castelijn, J. A., Leemans, C. R., van Dongen, G. A., and Boellaard, R. (2009) Radiation dosimetry of 89Zr-labeled chimeric monoclonal antibody U36 as used for immuno-PET in head and neck cancer patients. **J. Nucl. Med.** 50 (11), 1828–36.

(10) Dijkers, E. C., Oude Munnink, T. H., Kosterink, J. G., Brouwers, A. H., Jager, P. L., de Jong, J. R., van Dongen, G. A., Schroder, C. P., Lub-De Hooge, M. N., and de Vries, E. G. (2010) Biodistribution of 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. **Clin. Pharmacol. Ther.** 87 (5), 586–92.

(11) Reardan, D. T., Meares, C. F., Goodwin, D. A., McIntigue, M., David, G. S., Stone, M. R., Leung, J. P., Bartholomew, R. M., and Frincke, J. M. (1985) Antibodies against metal chelates. **Nature** 316 (6025), 265–8.

(12) Goodwin, D. A., Mears, C. F., McIntigue, M., and David, G. S. (1986) Monoclonal antibody hapten radiopharmaceutical delivery. **Nucl. Med. Commun.** 7 (8), 569–80.

(13) Rossin, R., Renart Verkerk, P., van den Bosch, S. M., Volders, R. C., Verel, I., Lub, J., and Robillard, M. S. (2010) In vivo chemistry for pretargeted tumor imaging in live mice. **Angew. Chem., Int. Ed.** 49 (19), 3388–92.

(14) Zeglis, B. M., Brand, C., Abdel-Atti, D., Carnazza, K. E., Cook, B. E., Carlin, S., Reiner, T., and Lewis, J. S. (2015) Optimization of a Pretargeted Strategy for the PET Imaging of Colorectal Carcinoma via 89Zr-trastuzumab and PET imaging of HER2-positive lesions in patients with metastatic breast cancer. **Clin. Pharmacol. Ther.** 87 (5), 586–92.

(15) Rossin, R., Lappchen, T., van den Bosch, S. M., Laforest, R., and Robillard, M. S. (2013) Diels–Alder reaction for tumor pretargeting: in vivo chemistry can boost tumor radiation dose compared with directly labeled antibody. **J. Nucl. Med.** 54 (11), 1989–95.

(16) Keinanen, O., Fung, K., Brennan, J. M., Zia, N., Harris, M., van Dam, E., Biggin, C., Hedt, A., Stoner, J., Donnelly, P. S., Lewis, J. S., and Zeglis, B. M. (2020) Harnessing (64)Cu/$\langle 67 \rangle$Cu for a theranostic cocktail for targeting murine mammary tumor and breast cancer. *Sci. Transl. Med.* 12 (532), 27.

(17) Edirweera, G. R., Simpson, J. D., Fuchs, A. V., Venkatachalam, T. K., Van De Walle, M., Howard, C. B., Mahler, S. M., Blinco, J. P., Fletcher, N. L., Houston, Z. H., Bell, C. A., and Thurecht, K. J. (2020) Targeted and modular architectural polymers employing bioorthogonal chemistry for quantitative therapeutic delivery. *Chem. Sci.* 11 (12), 3268–80.

(18) Khan, I., Agris, P. F., Yigit, M. V., and Royzen, M. (2016) In situ activation of a doxorubicin prodrug using imaging-capable nanoparticles. **Chem. Commun.** 52 (36), 6174–77.

(19) Wilkovitsch, M., Haider, M., Sohr, B., Herrmann, B., Klubnick, J., Weissleder, R., Carlson, J. C. T., and Mikula, H. (2020) A Cleavable C$_2$-Symmetric trans-Cyclooctene Enables Fast and Complete Bioorthogonal Disassembly of Molecular Probes. *J. Am. Chem. Soc.* 142 (45), 19132–41.

(20) Carlson, J. C. T., Mikula, H., and Weissleder, R. (2018) Unraveling Tetrazine-Triggered Bioorthogonal Elimination Enables Chemical Tools for Ultrafast Release and Universal Cleavage. *J. Am. Chem. Soc.* 140 (10), 3603–12.
Exploring Structural Parameters for Pretargeting Radiogold Optimization. J. Med. Chem. 60 (19), 8201−17.

(39) Keinanen, O., Fung, K., Pourat, J., Jallinoja, V., Vivier, D., Pillarsetty, N. K., Airaksinen, A. J., Lewis, J. S., Zeglis, B. M., and Sarparaanta, M. (2017) Pretargeting of internalizing trastuzumab and cetuximab with a 18F-tetrazine tracer in xenograft models. EJNMMI Res. 7 (1), 95.

(40) Denk, C., Svatunek, D., Mairinger, S., Stanek, J., Filip, T., Matscheko, D., Kuntner, C., Wanek, T., and Mikula, H. (2016) Design, Synthesis, and Evaluation of a Low-Molecular-Weight 11C-Labeled Tetrazine for Pretargeted PET Imaging Applying Bioorthogonal (Vivo) Click Chemistry. Bioconjugate Chem. 27 (7), 1707−12.

(41) Edem, P. E., Jorgensen, J. T., Norregaard, K., Rossin, R., Yazdani, A., Valliant, J. F., Robillard, M., Herth, M. M., and Kjaer, A. (2020) Evaluation of a 68Ga-Labeled DOTA-Tetrazine as a PET Alternative to 11In-SPECT Pretargeted Imaging. Molecules 25 (3), 463.

(42) Steen, E. L. J., Jørgensen, T. J., Petersen, I. N., Norregaard, K., Lehel, S., Shalgunov, V., Birke, A., Edem, P. E., L’Estrade, E. T., Hansen, H. D., Villadsen, J., Erlandsson, M., Ohlsson, T., Yazdani, A., Valliant, J. F., Kristensen, J. L., Barz, M., Knudsen, G. M., Kjaer, A., and Herth, M. M. (2019) Improved radiosynthesis and preliminary in vivo evaluation of the 11C-labeled tetrazine [11C]AE-1 for pretargeted PET imaging. Bioorg. Med. Chem. Lett. 29 (8), 986−90.

(43) Meyer, J. P., Houghton, J. L., Kozlokowski, P., Abdel-Atti, D., Reiner, T., Pillarsetty, N. V. K., Scholz, W. W., Zeglis, B. M., and Lewis, J. S. (2016) 18F-Based Pretargeted PET Imaging Based on Bioorthogonal Diels Alder Click Chemistry. Bioconjugate Chem. 27 (2), 298−301.

(44) Edem, P. E., Sinnes, J. P., Pektor, S., Bausbacher, N., Rossin, R., Yazdani, A., Miederer, M., Kjaer, A., Valliant, J. F., Robillard, M. S., Rosch, F., and Herth, M. M. (2019) Evaluation of the inverse electron demand Diels-Alder reaction in rats using a 48Sc-labeled tetrazine for pretargeted PET imaging. EJNMMI Res. 9, 49.

(45) Keinanen, O., Li, X. G., Chenna, N. K., Lumen, D., Ott, J., Molthoff, C. F., Sarparaanta, M., Helariutta, K., Vuorinen, T., Windhorst, A. D., and Airaksinen, A. J. (2016) A New Highly Reactive and Low Lipophilicity Fluorine-18 Labeled Tetrazine Derivative for Pretargeted PET Imaging. ACS Med. Chem. Lett. 7 (1), 62−6.

(46) Herth, M. M., Andersen, V. L., Lehel, S., Madsen, J., Knudsen, G. M., and Kristensen, J. L. (2013) Development of a 11C-labeled tetrazine for rapid tetrazine-trans-cyclooctene ligation. Chem. Commun. 49 (36), 3805−7.

(47) Lappchen, T., Rossin, R., van Mourik, T. R., Gruntz, G., Hoeben, F. J. M., Versteegen, R. M., Janssen, H. M., Lub, J., and Robillard, M. S. (2017) DOTA-tetrazine probes with modified linkers for tumor pretargeting. Nucl. Med. Biol. 55, 19−26.

(48) Poulié, C. M. B., Jørgensen, T. J., Shalgunov, V., Kougiumtzoglou, G., Jeppesen, E. T., Kjaer, A., and Herth, M. M. (2021) Evaluation of [68Cu]Cu-NOTA-PEG-H-Tz for Pretargeting Imaging in LS174T Xenografts—Comparison to [111In]In-DOTA-Peptide-BisPy-Tz. Molecules 26 (3), 544.