Porphyrin-Induced Protein Oxidation and Aggregation as a Mechanism of Porphyria-Associated Cell Injury

Dhiman Maitra,1 Juliana Bragazzi Cunha,1 Jared S. Elenbaas,2 Herbert L. Bonkovsky,3 Jordan A. Shavit,4 and M. Bishr Omary1,5,6

1Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan; 2Medical Scientist Training Program, Washington University in St. Louis, St. Louis, Missouri; 3Gastroenterology & Hepatology, and Molecular Medicine & Translational Science, Wake Forest University School of Medicine/NC Baptist Hospital, Winston-Salem, North Carolina; 4Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Michigan Medical School, Ann Arbor, Michigan; 5Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan; and 6Cell Biology, Faculty of Science and Technology, Åbo Akademi University, Turku, Finland

SUMMARY

Porphyrias are caused by pathological accumulation of porphyrins and their precursors, with liver damage and cancer risk, photosensitivity, and neurovisceral involvement. Fluorescent porphyrins bind proteins reversibly and lead, in the presence of oxygen, to protein oxidation and aggregation with consequent cellular damage.

Eukaryotic heme biosynthesis occurs in all eukaryotic cells with mitochondria,1 and is an 8-step pathway spanning mitochondrial and cytoplasmic compartments (Figure 1A). The heme precursors, porphyrins, are cyclic tetrapyrroles with the pyrrole rings connected by carbon methene bridges and a central metal coordinating site. In mammalian systems, the metal center is occupied by Fe to form heme, Co (cobalt protoporphyrin-IX), or Zn (zinc protoporphyrin-IX). The pyrrole rings have 4 types of modifications (vinyl, methyl, ethanoate, propionate) in different combinations and positions depending on the specific porphyrin (Figure 1A). The modifications have profound effects on the physical properties of the

Genetic porphyrias comprise eight diseases caused by defects in the heme biosynthetic pathway that lead to accumulation of heme precursors. Consequences of porphyria include photosensitivity, liver damage and increased risk of hepatocellular carcinoma, and neurovisceral involvement, including seizures. Fluorescent porphyrins that include protoporphyrin-IX, uroporphyrin and coproporphyrin, are photo-reactive; they absorb light energy and are excited to high-energy singlet and triplet states. Decay of the porphyrin excited to ground state releases energy and generates singlet oxygen. Porphyrin-induced oxidative stress is thought to be the major mechanism of porphyrin-mediated tissue damage. Although this explains the acute photosensitivity in most porphyrrias, light-induced porphyrin-mediated oxidative stress does not account for the effect of porphyrins on internal organs. Recent findings demonstrate the unique role of fluorescent porphyrins in causing subcellular compartment-selective protein aggregation. Porphyrin-mediated protein aggregation associates with nuclear deformation, cytoplasmic vacuole formation and endoplasmic reticulum dilation. Porphyrin-triggered proteotoxicity is compounded by inhibition of the proteosome due to aggregation of some of its subunits. The ensuing disruption in proteostasis also manifests in cell cycle arrest coupled with aggregation of cell proliferation-related proteins, including PCNA, cdk4 and cyclin B1. Porphyrins bind to native proteins and, in presence of light and oxygen, oxidize several amino acids, particularly methionine. Noncovalent interaction of oxidized proteins with porphyrins leads to formation of protein aggregates. In internal organs, particularly the liver, light-independent porphyrin-mediated protein aggregation occurs after secondary triggers of oxidative stress. Thus, porphyrin-induced protein aggregation provides a novel mechanism for external and internal tissue damage in porphyrrias that involve fluorescent porphyrin accumulation. (Cell Mol Gastroenterol Hepatol 2019;8:535–546; https://doi.org/10.1016/j.jcmgh.2019.06.006)

Keywords: Porphyria; Oxidative Stress; Protein Aggregation; Phototoxicity.

Abbreviations used in this paper: O2, singlet oxygen; ABCB6, adenosine triphosphate-binding cassette sub-family B member 6 G2; ABCG2, adenosine triphosphate-binding cassette sub-family G member 2; ADP, ALA-dehydratase porphyrin; AIP, acute intermittent porphyria; ALA, α-aminolevulinic acid; ALAS, aminolevulinic acid synthase; BCRP, breast cancer resistance protein; CEP, congenital erythropoietic porphyria; CLPX, adenosine triphosphate-dependent Clp protease adenosine triphosphate-binding subunit clpX-like; Copro, coproporphyrin; CP, core particle; CPOX, coproporphyrinogen oxidase; Cytochrome 545, cytochrome P450; ΔDCC, 3,5-diethoxycarbonyl-1,4-dihydrocollidine; DFO, deferoxamine; EPP, erythropoietic protoporphyrin; ER, endoplasmic reticulum; FLVCR1, feline leukemia virus subgroup C receptor-related protein 1; GOX, glucose oxidase; HCP, hereditary coproporphyrin; IF, intermediate filament; NMP, N-methyl protoporphyrin-IX; PCT, porphyrin cutanea tarda; PP-IX, protoporphyrin-IX; ROS, reactive oxygen species; RP, regulatory particle; Ub, ubiquitin; UPR, unfolded protein response; Uro, uroporphyrin; UROD, uroporphyrinogen decarboxylase; XLP, X-linked protoporphyria.

© 2019 The Authors. Published by Elsevier Inc. on behalf of the AGA Institute. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Figure 1. The heme biosynthetic pathway and experimental porphyria models. (A) Heme biosynthesis starts in mitochondria, where ALAS condenses glycine and succinyl Co-A to form the first committed metabolite of the pathway, ALA, that exits mitochondria through an unidentified transporter/channel to the cytosol. In the cytosol, 2 molecules of ALA are cyclized by porphobilinogen synthase (PBGS) to form the monopyrrole, porphobilinogen (PBG). Next, 4 molecules of PBG are joined by the hydroxymethylbilane synthase (HMBS) to form the linear tetrapyrrole, hydroxymethylbilane (HMB). Ring closure of HMB by uroporphyrinogen synthase (UROS) forms the first cyclic tetrapyrrole of the pathway, uroporphyrinogen III, which is decarboxylated by UROD to form coproporphyrinogen III. Coproporphyrinogen III enters the mitochondria through ABCB6, where it is oxidized by coproporphyrinogen oxidase (CPOX) to form protoporphyrinogen IX, which is further oxidized by protoporphyrinogen oxidase (PPOX) to form PP-IX. In the last step of the pathway, FECH inserts Fe into the PP-IX molecule to form heme. Heme and PP-IX can be exported from mitochondria through the transporter FLVCR1b and exported outside the cell by FLVCR1a and ABCG2/BRCP. In addition to heme and PP-IX, ABCG2/BRCP exports other cytosolic mono/tetrapyrroles including PBG, Uro, and Copro.

(B) Summary of the experimental models used to study porphyria. (C) Mechanism of DDC-mediated disruption of the hepatic heme biosynthesis that leads to porphyrin accumulation and protein aggregation in mouse liver. DDC methylates hepatocyte heme to form NMP (a potent ferrochelatase inhibitor). Methylation of the nitrogen atom of the pyrrole ring disrupts the Fe coordination and free Fe is released. Heme depletion, in turn, activates ALAS by the removing the feedback inhibitory effect of heme on ALAS. Thus DDC through a combination of ferrochelatase inhibition (by NMP) and de-repressing ALAS (by decreasing heme levels), causes a buildup of porphyrins. In addition, hepatic inflammation-induced ROS including hypochlorous acid (HOCl) (from myeloperoxidase [MPO]) and superoxide (O2−) (from reduced nicotinamide adenine dinucleotide phosphate oxidase) react with free iron and generate (by the Fenton reaction) other potent oxidants, such as a hydroxyl radical (OH·), which oxidize proteins and subsequently lead to protein-porphyrin aggregate formation. Through these combined actions, DDC feeding leads to hepatic porphyrin accumulation and liver damage. Hepatic Cyp3A1 metabolizes DDC to its inactive form DDCox, thereby diminishing the effect of DDC. β-catenin modulates DDC-mediated porphyrin accumulation, protein aggregation and liver damage by blocking Cyp3A1, thereby increasing the porphyrinogenic potency of DDC.
Porphyrias, such as solubility and aggregation into macrostructures. Uroporphyrin (Uro)/coproporphyrin (Copro) (which contain 8 and 4 polar carboxylate side chains, respectively, Figure 1A) are hydrophilic, while apolar groups (eg, vinyl, methyl) and fewer carboxylates render heme/protoporphyrin-IX (PP-IX) hydrophobic. This in turn modulates porphyrins’ biologic properties such as cell permeability and cellular retention (PP-IX >> Uro/Copro).

Porphyrin and heme levels are maintained by several membrane transporters, including adenosine triphosphate-binding cassette sub-family B member 6 G2 (ABCB6), feline leukemia virus subgroup C receptor-related protein 1 (FLVCR1a/b), and adenosine triphosphate-binding cassette sub-family G member 2 (ABCG2)/breast cancer resistance protein (BCRP) (Figure 1A). Heme is an essential co-factor for numerous enzymes and hemoproteins including hemoglobin, nitric oxide synthase, and cytochrome P450. In terms of tissue biosynthesis, 80% of heme is made in bone marrow, 15% in liver, with the remaining 5% coming from kidney and other tissues. Given the cytotoxic nature of free heme and its precursors (Uro/Copro/PP-IX), heme biosynthesis is strictly regulated. Dysregulation of the heme biosynthetic pathway and subsequent abnormal accumulation of the heme precursors leads to the pathological condition, porphyria.

Porphyrias and Their Clinical Manifestations

Porphyrias, first reported by Schultz in 1874, are a group of 8 disorders, each caused by a defect in a specific enzyme of the heme biosynthetic pathway, leading to accumulation of heme precursors (Table 1). Of the 8 porphyrias, only X-linked protoporphyria (XLP) is caused by a gain-of-function mutation in ALAS2 (an erythroid-specific isoform of aminolevulinic acid synthase [ALAS]) thereby leading to overproduction of δ-aminolevulinic acid (ALA) and porphyrins in erythrocytes and bone marrow erythroid cells. The remaining 7 porphyrias are caused by acquired or inherited loss of function of relevant enzymes that block pathway progression and lead to accumulation of the preceding substrates. For example, type-I porphyria cutanea tarda (PCT) is an acquired defect of hepatic uroporphyrinogen decarboxylase (UROD) activity (<25% of normal) (Figure 1A, Table 1). Type-I PCT is acquired through excess alcohol, viral infection (particularly human immunodeficiency virus and hepatitis C virus), smoking, iron overload, and estrogen treatment. In addition to the inherited genetic defects, multiple susceptibility factors can exacerbate the clinical manifestations of porphyria and trigger acute porphyrin attacks. For example, barbiturates and steroids (acute intermittent porphyria [AIP]), and anabolic steroids (hereditary coproporphyria [HCP]) are contributing risk factors. The clinical features of porphyria are heterogeneous and their manifestations depend on the type of porphyria. These features include neurovisceral manifestations (abdominal pain, constipation, seizures), photosensitivity, liver damage, and increased risk of hepatocellular cancer. Of these, photosensitivity (ranging from bullous/erosive photodermatosis to acute painful photosensitivity) is the most common feature that occurs in all porphyrias, except for AIP and ALA-dehydratase porphyria (ADP) (Table 1). Different degrees of liver damage are also a common feature of porphyrias including ADP, AIP, erythropoietic protoporphyrin (EPP), HCP, PCT, and variegated porphyria (VP). The extent of liver damage varies, with a small subset of patients developing end-stage liver disease requiring liver transplantation.

Experimental Models of Porphyria

Several model systems for studying porphyria have been generated (Figure 1B), as detailed subsequently. These models mimic the various etiologies of porphyria to different degrees and have unique benefits and limitations. Ultimately, the choice of the model system depends on the question being asked.

In Vitro Models

When cultured cells are treated with ALA and deferroxamine (DFO) (an iron chelator), there is accumulation of PP-IX, Copro, and Uro. We have utilized this system to induce endogenous porphyrinogenic stress in primary mouse hepatocytes and various cell lines, including HepG2, Huh-7, Hepa-1c1c7, and n-TERT keratinocytes, and studied cellular and secreted porphyrin speciation. Additionally, hydrophobic porphyrins, such as PP-IX, zinc protoporphyrin-IX, and PP-IX dimethyl ester, are taken up by cells when added to culture media. The major advantage of using in vitro models is that they provide a reductionist approach to study the effect of porphyrins in different tissue cell types. For example, they could be utilized to assay putative porphyrin binding and transporting proteins and how they modulate cellular porphyrin uptake. Also, RNA interference–mediated gene knockdown and/or transient overexpression coupled with porphyrin treatment could be utilized to study the role of specific enzymes and transporter proteins that may be involved in porphyria. In addition, cell culture systems provide useful models for testing small molecule modulators of porphyrin import, biosynthesis, export, and turnover. Although in vitro models offer several advantages, they lack the physiologic complexity of in vivo systems such as mouse and zebrafish models described subsequently.

Mouse Models

Numerous genetic mouse models of porphyria have been described in which a particular gene in the porphyrin biosynthetic pathway is deleted/mutated, causing a blockade of the pathway and accumulation of porphyrin precursors proximal to the alteration. These include models of AIP, congenital erythropoietic porphyria (CEP), PCT, HCP, VP, and EPP (ie, all except XLP and ADP). Many of these models phenocopy the pleiotropic features of human disease. For example, EPP mice are characterized by hepatic and erythrocyte porphyrin accumulation, liver damage, and acute photosensitivity. The EPP mouse model harbors a ferrochelatase (FECH) mutation (which decreases hepatic FECH activity to 3% of wild-type) and mimics several features of EPP, including

2019 Protein Aggregation and Porphyria Pathogenesis 537
photosensitivity (e.g., the animals require housing in opaque cages to avoid developing skin lesions). In addition, inducible mouse models of porphyrias have been described. Similar to cell culture, many of these models involve administering ALA to mice, either topically, intraperitoneally, or through drinking water, thereby resulting in porphyrin accumulation in several tissues. Similarly, mice fed ALA with iron and polychlorinated biphenyls develop PCT by selective inhibition of UROD. Another strategy is to feed mice porphyrinogenic compounds such as 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC), a heme synthesis inhibitor, which generates the potent FECH inhibitor N-methyl protoporphyrin-IX (NMP), a heme methylating agent, which inhibits the enzyme that converts ALAS to ALA. This leads to a significant increase in ALA substrate from ALAS, which is converted to ALA by ALAD, a heme synthesis enzyme. ALA is then incorporated into the heme synthesis pathway, leading to the accumulation of porphyrins and their derivatives. These models have been useful for studying the pathophysiology of EPP, but they do not fully mimic the commonly found (≈97% of all EPP-related EPP cases) c.315-48C polymorphism. Given the high incidence of the c.315-48C polymorphism, it is a common therapeutic target for EPP. To address the unmet need for a suitable preclinical EPP model, a humanized mouse EPP model carrying c.315-48C polymorphism has been developed. Though limitations still exist, mouse models are important for preclinical studies including hepatocyte transplantation and gene transfer.

Zebrafish Models

Zebrafish are a powerful model organism since they mimic the physiologic complexity of humans heme biosynthetic pathway but are more amenable to high throughput studies, and drug and genetic screening, than mouse models. Fluorescent porphyrins (PP-IX/Uro/Copro) can be readily tracked and quantified in transparent zebrafish larvae with basic imaging techniques. Several genetic zebrafish models have been reported including montalcino (protoporphyrinogen oxidase deficiency), yquem (UROD deficiency), and dracula (FECH deficiency). Genetic models of porphyria in zebrafish produce consistent

Table 1. Classification and Clinical Features of the Genetic Porphyrias

Porphyria	Classification	Defective Enzyme	Enzyme Activity (% of Normal)	Inheritance Pattern	Increased Precursors	Clinical Manifestations
X-linked protoporphyria	Erythropoietic cutaneous	ALAS2	>100	X-linked	PP-IX, Zn-PP	Photosensitivity, rapid onset of painful and itchy skin post–sun exposure, liver damage, end-stage liver disease
ALA-dehydratase porphyria	Hepatic, acute	ALAD	~5	AR	ALA, Copro III, Zn-PP	Neurovisceral (abdominal pain, peripheral neuropathy, seizures, behavioral changes), liver damage, end-stage liver disease
Acute intermittent porphyria	Hepatic, acute	HMBS	~50	AD	ALA, PBG	Neurovisceral, liver damage, end-stage liver disease
Congenital erythropoietic porphyria	Erythropoietic, cutaneous	UROS	1–5	AR	Uro I, Copro I	Severe photosensitivity, scars, hemolysis, erythrodontia, disfigurement of face and hands
Porphyrria cutanea tarda	Hepatic, cutaneous	UROD	<20	Acquired (type I), AR (type II)	Uro I, Uro III, Hepta, Isocopro	Photosensitivity, skin fragility, slow onset of painless blisters, scars, increased risk for HCC
Hereditary coproporphyria	Hepatic, cutaneous	CPOX	~50	AD	ALA, PBG, Copro III	Acute attacks, neurovisceral, photosensitivity, skin fragility, blisters, increased risk for HCC
Variegate porphyria	Hepatic, cutaneous	PPOX	~50	AD	ALA, PBG, Copro III, PP-IX	Acute attacks, neurovisceral, photosensitivity, chronic liver abnormalities
Erythropoietic protoporphyria	Erythropoietic, cutaneous	FECH	20–30	AR	PP-IX	Photosensitivity, rapid onset of painful and itchy skin post–sun exposure, liver damage, end-stage liver disease

Increased precursors are found in body fluids (urine, blood), tissues, and stool. AD, autosomal dominant; ALA, α-aminolevulinic acid; ALAS, aminolevulinic acid synthase; AR, autosomal recessive; Copro, coproporphyrin; CPOX, coproporphyrinogen oxidase; FECH, ferrochelatase; HCC, hepatocellular carcinoma; Hepta, heptacarboxyl porphyrin; HMBS, hydroxymethylbilane synthase; Isocopro, isocoproporphyrin; PBG, porphobilinogen; PP-IX, protoporphyrin-IX; PPOX, protoporphyrinogen oxidase; Uro, uroporphyrin; UROS, uroporphyrinogen synthase; Zn-PP, zinc protoporphyrin-IX.
phenotypes in offspring including photosensitivity.50 Targeted silencing with morpholinos and gene disruption with transcription activator-like effectors nucleases or clustered regularly interspaced short palindromic repeats have also been used to generate porphyria models.51,52,54 Inducible porphyria models in zebrafish have also been generated by retro-orbitally injecting porphyrins or ALA.53 Injecting PP-IX or ALA+DFO caused accumulation of PP-IX in the liver (similar to EPP),53 whereas injection of Uro I resulted in accumulation of Uro I in the bones and teeth of zebrafish, similar to CEP (unpublished observations). These zebrafish models mimic the various etiologies of porphyria to different degrees and have unique benefits and limitations. Ultimately the choice of the system depends on the question being asked, and typically a combination of different models offers advantage toward a better understanding of the disease.

Features of Porphyrin-Induced Protein Aggregation and Cell Damage

Porphyrin-Induced Oxidative Stress Causes Cell Damage

Given the site of synthesis, Uro and Copro localize in the cytosol compared with PP-IX in mitochondria (Figure 1A).455 However, several reports highlight the “ectopic” localization of porphyrins in other subcellular compartments, including the nucleus,56 plasma membrane,57 Golgi, endoplasmic reticulum (ER),58 and lysosome.59,60 Structural features of the porphyrins guide their cellular localization; anionic porphyrins (Uro, Copro, PP-IX, with their carboxylates) (Figure 1A) tend to localize in the acidic compartment of the lysosome.59 Porphyrins also show preferential intracellular retention.3 For example, upon ALA+DFO treatment of cultured cells, Uro and Copro are preferentially secreted into the culture media while PP-IX is mostly retained intracellularly.3 Until recently, the paradigm has been that porphyrin-mediated cellular damage occurs by reactive oxygen species (ROS) generated through type I/II photosensitized reactions of porphyrins.61-63 Several biological macromolecules (e.g., lipids) act as electron rich nucleophiles to the electrophilic porphyrin-generated ROS. Indeed porphyrin accumulation has been reported to cause significant lipid peroxidation.14 However, several clinical and recent experimental observations suggest that additional effects are likely to be involved. For example, porphyrin-photosensitized ROS generation is a viable explanation only for the photosensitivity, and does not explain how porphyrins damage internal organs. Also, specific targets of porphyrin-generated ROS oxidation were poorly understood, but recent work has demonstrated the unique property of porphyrins to cause organelle-selective protein oxidation and aggregation,3,16,65 which we posit to be a major mechanism of cellular injury in porphyria. Notably, lysosomal porphyrins generate significantly less ROS such as singlet oxygen (1O$_2$)16 and do not appear to cause prominent protein aggregation,3 possibly due to the inhibitory effect of the acidic pH on porphyrin-mediated protein damage.16 The porphyrin effects on other organelles, in addition to the associated proteins that aggregate, are discussed subsequently.

Porphyrin Accumulation Leads to Intermediate Filament Protein Aggregation and Nuclear Shape Alterations

Intermediate filament (IF) proteins are 1 of the 3 major cytoskeletal protein families.67,68 The major cytoplasmic IF proteins in epithelial cells are keratins (e.g., K8/K18 in hepatocytes, K5/K14 in basal keratinocytes) and lamin A/C and B1 in the nucleus.69 Keratins and lamins play important roles in cellular homeostasis and maintaining mechanical and structural integrity by acting as a scaffold, targeting of proteins to subcellular compartments, and modulating cell-signaling.69 They are also implicated in gastrointestinal organ pathologies, including liver and pancreas.67,70 Several studies utilizing genetic (FECH mutant)65,71 and inducible (DDC-feeding)31,65,71 models of porphyria demonstrated that PP-IX caused K8/K18 aggregation in association with Mallory-Denk body hepatocyte inclusion formation.65 Aggregation was also observed in nuclear IF proteins, lamin A/C and B1, which occurs earlier than keratin aggregation.65 Aggregation of IF proteins was also associated with morphologic changes in the cellular compartments. For example, porphyrin-mediated nuclear lamin aggregation caused nuclear ultrastructural deformation.3,65 Aggregation of K8/K18 led to the formation of cytosolic electron-dense particles.3,53,65 Several of these phenotypes, namely protein aggregation in the presence of light, were observed in vitro and with purified protein-porphyrin reaction mixtures,3,16 indicating that this phenomena occurs due to direct protein-porphyrin interaction.

Porphyrin-Mediated ER Damage

The ER is the largest organelle in eukaryotic cells after the nucleus,2,272 and is a site for protein quality control, folding, and posttranslational modifications.74 Protoporphyrin-IX or ALA+DFO treatment of cells, or DDC-feeding to mice, caused prominent upregulation and/or aggregation of binding-immunoglobulin protein, an ER resident heat shock 70 kDa protein chaperone.3,75 Although several other ER stress-related proteins also aggregated (e.g., protein disulfide isomerase, calnexin, serine/threonine-specific protein kinase/endoribonuclease inositol-requiring enzyme 1 alpha),3,75 there was a difference in the extent of aggregation depending on the porphyrin and its source. For example, some ER proteins (protein disulfide isomerase and calnexin) aggregated more after ALA+DFO treatment than after PP-IX treatment,3 which maybe attributed to increased susceptibility of these proteins to Uro/Copro than PP-IX.3 Damage to the ER compartment was not limited to protein aggregation since electron microscopy also revealed distortion of the ER after porphyrin accumulation.53 The canonical ER stress response is initiated by the accumulation of aggregated/misfolded proteins, and upregulation of protective chaperones to mitigate the damage, and is termed the unfolded protein response.74 Porphyrin-mediated aggregation and inactivation of ER
chaperones might abrogate the ability of ER to mediate the unfolded protein response and lead to a novel form of ER damage.

Porphyrians Disrupt Protein Turnover by Aggregating and Inhibiting Key Components of the Protein Degradation Machinery

Protein turnover is a key facet of a healthy cell, and is performed by 2 major pathways, proteasomal degradation and autophagy. Poly-ubiquitination targets proteins to the proteasome, which, structurally, proteasomes consist of a core particle (CP) and 2 regulatory particles (RPs). Additionally, biochemical and proteomic analysis showed that PP-IX selectively aggregates several subunits of RPs, thus preventing poly-Ub proteins from binding to the proteasome and manifesting as increased accumulation of poly-Ub proteins. Therefore, porphyrians inhibit the proteasome by impeding protease activity of CP, and aggregating RP subunits, thereby preventing poly-Ub proteins from binding to RP.

Another vital pathway for protein turnover is autophagy, which involves p62/sequestosome 1–bound poly-Ub proteins that are targeted to the autophagosome where they undergo proteolytic degradation. Porphyrins aggregate several components of the autophagic machinery including p62 and microtubule-associated proteins 1A/1B light chain 3B, p62 is also known to aggregate upon autophagy induction, but porphyrin-mediated p62 aggregation is likely to take place via direct porphyrin-protein interaction since it is also observed in PP-IX treated cell-free extracts. Of note, Ub and p62 aggregates are present in Mallory-Denk bodies in livers of DDC-fed mice.

Porphyrians Cause Cell Growth Arrest by Aggregating Proteins That Control Cell Cycle Progression

In addition to the protein aggregation and overall disruption of cellular protein homeostasis, porphyrians also cause cellular energy imbalance by aggregating key glycolytic enzymes, including glyceraldehyde 3-phosphate dehydrogenase, and lead to mitochondrial dysfunction and decreased adenosine triphosphate synthesis. These are predicted to have a profound effect on cell growth. In support of this, exposure of cells to ALA+DFO results in cell growth arrest in association with aggregation of several key cell cycle proteins including proliferating cell nuclear antigen, cyclin B1, and cyclin dependent kinase 4.

Genetic Modifiers for Porphyrin-Mediated Damage

An outstanding question in the field of porphyria is why the causative porphyria mutations show such a wide range of penetrance in patients. For example, although EPP causes liver damage, only ~5% of patients develop end-stage liver disease that requires liver transplantation. Similarly, for acute hepatic porphyrias (AIP/HC/VP), although there is a 50% reduction in enzyme activity, a wide range of penetrance is observed for different gene variants. This raises the hypothesis that porphyria patients harbor genetic modifiers that increase or decrease the extent of heme biosynthesis disrupting mutations. If so, this in turn may contribute to the extent of porphyrin-triggered protein aggregation and its consequences. Some of the potential candidate genetic modifiers of porphyria end-organ damage are discussed subsequently.

Serum Porphyrin Transporters

Most porphyrin production occurs in the bone marrow and liver, which may lead to organ damage at distant sites such as skin and abdomen. Porphyrins are transported from the biosynthetic source to target tissues through blood by binding to porphyrin binding proteins such as serum albumin, haptoglobin, hemopexin, and high/low-density lipoproteins. The presence of albumin in culture media, protected from exogenous PP-IX induced protein aggregation. Further studies are needed to define the contribution of serum porphyrin-binding proteins to the heterogeneity of symptom presentation and end-organ damage in porphyria patients.

Cellular Porphyrin Binding Proteins and Porphyrin Transporters

Cellular porphyrin levels are also modulated by porphyrin transporters including FLVCR1a/b, BCRP/ABCG2, and ABCB6 (Figure 1A). Loss/gain-of-function mutations in these transporters might serve as genetic modifiers by sequestering porphyrins or increasing their uptake, and thereby exacerbating the symptoms. For example, Fukuda et al demonstrated that ABCB6—mitochondrial Uro/Copro importer, and cellular PP-IX exporter (Figure 1A)—variants that are found in porphyria patients are nonfunctional. Indeed, deletion of ABCB6 in a FECH mutant mouse porphyria model increased porphyrin retention, and subsequent liver injury. Of note, PP-IX is cleared from the body via bile but, not infrequently, high PP-IX concentrations in bile lead to canicular plugs or development of pigment gall stones that may cause cholestasis and a feed-forward cycle impeding excretion of PP-IX and leading to further hepatic accumulation. Thus, factors that promote cholestasis pose a risk for detrimental liver pathology in patients with EPP.

Another potential strategy for modulating intracellular porphyrin levels, that requires further investigation, is through cellular porphyrin-binding proteins, including glutathione S-transferase, liver fatty acid binding protein, heme binding protein 23, SOUL/p22HBP proteins, and glyceraldehyde 3-phosphate dehydrogenase. These proteins could be protective or may induce porphyrin-mediated protein aggregation depending on their relative kcat/Km of porphyrin binding vs that of the aggregating proteins such as keratins, lamins, and select ER proteins. Genetic variants of these porphyrin-binding
proteins could therefore contribute to the pathogenesis of some porphyrias.

Modulators of Porphyrin Biosynthesis

Indirect modulators of the porphyrin biosynthetic pathway such as adenosine triphosphate-dependent Clp protease adenosine triphosphate-binding subunit clpX-like (CLPX)\(^{108,109}\) and \(\beta\)-catenin\(^{75}\) may serve as porphyrin genetic modifiers. CLPX is a mitochondrial unfoldase that interacts with ALAS to partially unfold it and enhance its enzymatic activity.\(^{108}\) Notably, a dominant mutation in human CLPX, p.Gly298Asp, increases ALAS activity and PP-IX levels, and is found in patients with an EPP-like phenotype who do not harbor FECH mutations.\(^{109}\) Another recently identified modulator of hepatic porphyrin biosynthesis is \(\beta\)-catenin.\(^{75}\) \(\beta\)-catenin deletion significantly reduced mRNA levels of several heme biosynthetic enzymes, including ALAS, and protected from DDC-induced porphyrin accumulation, protein aggregation and liver damage.\(^{75}\) The mechanism of DDC-associated porphyria occurs via DDC-mediated methylation of hepatic heme methylation to form NMP with release of free iron.\(^{29,30}\) NMP then inhibits protease adenosine triphosphate-binding subunit clpX-like (CLPX)\(^{108,109}\) and cytochrome P450 3A1 (Cyp3A1) (a hepatic cytochrome oxidase)\(^{31}\) and thereby increases DDC-mediated hepatic protein aggregation and damage.\(^{75}\)

Mechanism of Porphyrin-Induced Protein Aggregation

PP-IX Causes Protein Aggregation Through Noncovalent Interactions With Proteins

One major difference of porphyrin-mediated protein aggregation from classical oxidative protein aggregation is that it occurs through noncovalent cross-linking.\(^{16}\) Oxidative protein modification and subsequent aggregation typically occur through covalent bonding of oxidized amino acids Cys-Cys, Tyr-Tyr, transamination (Lys-Gln), or carbonylation.\(^{31,71,84,110–113}\) Porphyrins are capable of generating oxidants through either type I or type II photosensitized reactions (Figure 2). Both type I and II states are initiated when porphyrins absorb light to go to higher energy states (singlet/triplet), but type I photosensitization does not require oxygen.\(^{54}\) Given that porphyrin-mediated protein aggregation requires oxygen,\(^{16}\) an alternate pathway for protein aggregation is through type-II pathway generation of singlet oxygen, which oxidizes specific amino acids (eg, Met/Trp) in the protein.\(^{16,114}\) Structural features of the porphyrin molecules are also important for protein aggregation. For example, esterification of the propionate group abolishes the ability of PP-IX to cause protein aggregation.\(^{16}\) However, free heme, with its well-documented ability to generate dityrosine cross-linked protein aggregates,\(^{115–117}\) does not affect proteins that are susceptible to porphyrin-mediated aggregation. Fluorescent porphyrins (PP-IX, Copro, Uro), with de-protonated propionate groups may stack and bind to oxidized proteins through hydrophobic, electrostatic, and hydrogen-bonding mechanisms to form a lattice of porphyrin-protein aggregates (Figure 2).\(^{16,118–120}\) Thus, uroporphyrinogen and coproporphyrinogen, which are nonfluorescent,\(^{125}\) are predicted not to cause protein aggregation. Instead, unstable porphyrinogens undergo rapid auto-oxidation to the corresponding fluorescent porphyrins, Uro and Copro, which do cause protein aggregation.

Importantly, porphyrin-mediated protein oxidation does not appear to occur at random positions. For example, IF proteins, which have a central coiled-coil \(\alpha\)-helical domain composed of heptad repeats represented as (a\(\text{-}\)b\(\text{-}\)c\(\text{-}\)d\(\text{-}\)e\(\text{-}\)f\(\text{-}\)g)\(n\), where residues at position \(a\) and \(d\) are typically hydrophobic while residues \(b\), \(c\) and in some cases \(e\), \(f\), \(g\) are charged,\(^{122}\) become oxidized predominantly at positions \(a\) and \(d\),\(^{16}\) thereby predictably disrupting the heptad periodicity. In support of this model, a 30-residue peptide with heptad sequence repeats self-assembled to form millimeter scale fibrils after reacting with cobalt(III)-PP-IX.\(^{128–125}\) Porphyrins could oxidize proteins with relative selectivity because of their ability to bind proteins in their native conformation, forming a sensitizer-acceptor complex.\(^{16}\) Similar systems, where the oxidant source was coupled to its target, have also been reported.\(^{126,127}\) Due to the noncovalent nature of the binding, porphyrin-protein complexes disaggregate when porphyrin is extracted.\(^{16}\) We hypothesize that remissions of porphyria acute attack symptoms, where protein aggregation may be a contributing factor, might occur through this porphyrination/deporphyrination cycle (Figure 2).

How Do Porphyrins Cause Internal Organ Damage?

Porphyrin-mediated tissue damage is not limited to skin photosensitivity, but extends to internal organs, including liver damage in several porphyrias (Table 1). Indeed, qualitatively similar protein aggregation patterns were observed in livers of DDC-fed mice that were harvested and processed under safe-light illumination as compared with ambient light, although the extent of aggregation was markedly less in samples shielded from light.\(^{1}\) As internal organs are not exposed to light, photosensitized porphyrin-protein aggregation is not applicable. To explain this discrepancy, we propose a 2-hit model. One hit is the porphyrin binding to select proteins in their native state that leads to localized unfolding (Figure 2). The second hit derives from internal organ oxidative stress that may derive from inflammation (macrophage infiltration and/or Kupffer cell activation) or other insults. This, in turn, leads to formation of ROS and protein oxidation.\(^{128}\) Porphyrins then bind to the oxidized proteins further promoting aggregation (Figure 2). Support for this model was demonstrated in cultured hepatoma cells using glucose oxidase (GOX)-generated hydrogen peroxide as a secondary oxidant source. Cells treated with ALA+DFO in dark showed limited protein aggregation,\(^{136}\) while
co-treatment with ALA+DFO and GOX led to readily detectable protein aggregate formation in the dark.16

Clinical Significance of Porphyrin-Mediated Protein Aggregation

Several facets of porphyrin cell and tissue damage, especially in liver, can be accounted for by porphyrin-mediated protein aggregation. For example, lamin B1 aggregates have been described in liver explants from patients with alcoholic cirrhosis, similar to the effect of PP-IX–induced lamin aggregation.65 Alcohol is a risk factor and trigger in acute porphyrias11 and leads to inhibition of several heme biosynthetic enzymes, as well as to upregulation of hepatic ALAS-1.129 Acquired PCT, associates with excess alcohol consumption, hepatitis C, excess iron8 that, in turn, provide a pro-oxidant toxic milieu. Porphyrin accumulation in absence of light causes protein aggregation when a secondary source of oxidant
such as GOX is present, though additional clinically-relevant sources of oxidants remain to be tested. Thus, we posit that fluorescent porphyrin accumulation, combined with oxidative stress, act in a feed forward manner to form porphyrin-oxidized protein aggregates. On the other hand, for acute porphyrias, ALA/porphobilinogen (PBG) levels increase (Table 1) in association with neurovisceral symptoms. Although, protein aggregation in neural tissues has not been tested, it is possible that the increased ALA/PBG (which cross the blood-brain barrier) may enter neural cells and induce porphyrin accumulation to levels that may lead to protein aggregation. Given the reversible nature of porphyrin-protein aggregates, via clearance mechanisms that remain to be defined, their transient accumulation could contribute to acute porphyria attacks. This speculation may find support by the observation that patients with EPP/XLP and with severe hepatopathy sometimes develop neurological features that resemble those of acute porphyria attacks.

Future Directions

Porphyrias are now well understood in terms of their underlying genetic defects but remain difficult-to-treat disorders. Recent appreciation for the extent, selectivity and mechanism of porphyrin-mediated protein oxidation and aggregation hints at several potential novel therapeutic strategies that may be targeted. The mechanism of turnover of protein aggregates remains to be determined, and relevant to this is the potential use of proteasome inhibition in the treatment of CEP. Devising tools for biochemical in situ detection of porphyrin-generated protein aggregates may be possible by the generation of epitope-specific antibodies that recognize oxidized and neo-epitopes. Also, characterization of the aggregates using cryoelectron microscopy and other structural-biology tools is likely to be beneficial. Other key areas that remain to be understood include defining molecular signatures in proteins susceptible to porphyrin-mediated aggregation, whether such signatures are unique to different porphyrias, and understanding the genetic modifiers that modulate disease severity in patients with porphyria.

References

1. Ferreira GC, Franco R, Lloyd SG, Moura I, Moura JJ, Huynh BH. Structure and function of ferrochelatase. J Bioenerg Biomembr 1995;27:221–229.
2. Scolaro LM, Castriciano M, Romeo A, Patanè S, Cefalì E, Allegrini M. Aggregation behavior of porphyrin IX in aqueous solutions: clear evidence of vesicle formation. J Phys Chem B 2002;106:2453–2459.
3. Maitra D, Elenbaas JS, Whitesall SE, Basrur V, D’Aiccy LG, Omary MB. Ambient light promotes selective subcellular proteotoxicity after endogenous and exogenous porphyrinogenic stress. J Biol Chem 2015;290:23711–23724.
4. Puy H, Gouya L, Deybach JC. Porphyrias. Lancet 2010;375:924–937.
5. Schütz. Fall von pemphigus lerosus, kompliziert durch lepra visceralis. Diss. med. Greifswald 1874.
6. With TK. A short history of porphyrins and the porphyrias. Int J Biochem 1980;11:189–200.
7. Whatley SD, Ducamp S, Gouya L, Grandchamp B, Beaumont C, Badminton MN, Elder GH, Holme SA, Anstey AV, Parker M, Corrigall AV, Meissner PN, Hift RJ, Marsden JT, Ma Y, Mieli-Vergani G, Deybach JC, Puy H. C-terminal deletions in the ALAS2 gene lead to gain of function and cause X-linked dominant protoporphyria without anemia or iron overload. Am J Hum Genet 2008;83:408–414.
8. Ryan Caballes F, Sendi H, Bonkovsky HL. Hepatitis C, porphyria cutanea tarda and liver iron: an update. Liver Int 2012;32:880–893.
9. Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Blood 2012;120:4496–4504.
10. Ramanujam VM, Anderson KE. Porphyria diagnostics-part 1: a brief overview of the porphyrias. Curr Protoc Hum Genet 2015;86:17.20.1–26.
11. Bonkovsky HL, Dixon N, Rudnick S. Pathogenesis and clinical features of the acute hepatic porphyrias (AHPs). Mol Genet Metab 2019 Mar 6 [E-pub ahead of print].
12. Ayala F, Santoianii P. Drug-induced cutaneous porphyria. Clin Dermatol 1993;11:535–539.
13. Bonkovsky HL, Maddukuri VC, Yazici C, Anderson KE, Bissell DM, Bloomer JR, Phillips JD, Naik H, Peter I, Baillargeon G, Bossi K, Gandolfo L, Light C, Bishop D, Desnick RJ. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. Am J Med 2014;127:1233–1241.
14. Lane PR, Massey KL, Worobetz LJ, Jutras MN, Hull PR. Acute hereditary coproporphyria induced by the androgen/anabolic steroid methandrostanolone (Dianabol). J Am Acad Dermatol 1994;30:308–312.
15. Singal AK, Parker C, Bowden C, Thapar M, Liu L, McGuire BM. Liver transplantation in the management of porphyria. Hepatology 2014;60:1082–1089.
16. Maitra D, Carter EL, Richardson R, Rittiè L, Basrur V, Zhang H, Nesvizhskii AI, Osawa Y, Wolf MW, Ragsdale SW, Lehnert N, Herrmann H, Omary MB. Oxygen and conformation dependent, light-enhanced, reversible protein aggregation and oxidation by porphyrins. Cell Mol Gastroenterol Hepatol 2019 Jun 4 [E-pub ahead of print].
17. Lindberg RL, Porcher C, Grandchamp B, Ledermann B, Burki K, Brandner S, Aguazi A, Meyer UA. Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet 1996;12:195–199.
18. Bishop DF, Johansson A, Phelps R, Shady AA, Ramirez MC, Yasuda M, Caro A, Desnick RJ. Uroporphyrinogen III synthase knock-in mice have the human congenital erythropoietic porphyria phenotype, including the characteristic light-induced cutaneous lesions. Am J Hum Genet 2006;78:645–658.
19. Ged C, Mendez M, Robert E, Lalanne M, Lamrissi-Garcia I, Costet P, Daniel JY, Dubus P, Mazurier F, Moreau-Gaudry F, de Verneuil H. A knock-in mouse model of congenital erythropoietic porphyria. Genomics 2006;87:84–92.
20. Phillips JD, Jackson LK, Bunting M, Franklin MR, Thomas KR, Levy JE, Andrews NC, Kushner JP.
A mouse model of familial porphyria cutanea tarda. Proc Natl Acad Sci U S A 2001;98:259–264.

21. Conway AJ, Brown FC, Fullerfaw RO, Kile BT, Jane SM, Curtis DJ. A mouse model of hereditary coproporphyria identified in an ENU mutagenesis screen. Dis Model Mech 2017;10:1005–1013.

22. Medlock AE, Meissner PN, Davidson BP, Corrigall AV, Dailey HA. A mouse model for South African (R59W) variegate porphyria: construction and initial characterization. Cell Mol Biol (Noisy-le-Grand) 2002;48:71–78.

23. Tutois S, Montagutelli X, Da Silva V, Jouault H, Rouver-Fessard P, Leroy-Viard K, Guenet JL, Nordmann Y, Beuzard Y, Deybach JC. Erythropoietic protoporphyria in the house mouse. A recessive inherited ferrochelatase deficiency with anaemia, photosensitivity, and liver disease. J Clin Invest 1991;88:1730–1736.

24. Barman-Aksozen J, Wiek P, Bansode VB, Koentgen F, Malik Z, Kostenich G, Roitman L, Ehrenberg B, Tabba HD, Smith KM. Identification of 2,3,7,8-tetrachlorodibenzo(p)dioxin upon inheritance of aryl hydrocarbon hydroxylase responsiveness. Toxicol Appl Pharm 1980;53:42–49.

25. Ockner RK, Schmid R. Acquired porphyria in man and rat due to hexachlorobenzene intoxication. Nature 1961;189:499.

26. Jones KG, Sweeney GD. Dependence of the porphyrinogenic effect of 2,3,7,8-tetrachlorodibenzo(p)dioxin upon
47. Dooley KA, Fraenkel PG, Langer NB, Schmid B, Davidson AJ, Weber G, Chiang K, Footh H, Dwyer C, Wingert RA, Zhou Y, Paw BH, Zon LI; Tubingen Screen C. montalcino, A zebrafish model for variegate porphyria. Exp Hematol 2008;36:1132–1142.

48. Wang H, Long Q, Marty SD, Sassa S, Lin S. A zebrafish model for hepatocerebral porphyria. Nat Genet 1998;20:239–243.

49. Childs S, Weinstein BM, Mohideen MA, Donohue S, Tirel P, Chambon P. Biosynthesis of heme in cultured tumour cells. Br J Cancer 2003;88:1463–1470.

50. Ransom DG, Haffter P, Odenthal J, Brownlie A, Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 2015;32:756–764.

51. Dooley K, Zon LI. Zebrafish: a model system for the study of human disease. Curr Opin Genet Dev 2000;10:252–256.

52. Ablain J, Durand EM, Yang S, Zhou Y, Zon LI. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell 2015;32:756–764.

53. Elenbaas JS, Maitra D, Liu Y, Lentz SI, Nelson B, Hoenhoff MJ, Shavit JA, Omary MB. A precursor-inducible zebrafish model of acute protoporphyria with hepatic protein aggregation and multiorganelle stress. FASEB J 2016;30:1798–1810.

54. Zhang J, Harma Z. Zebrafish as a model system to delineate the role of heme and iron metabolism during erythropoiesis. Mol Genet Metab 2018 Dec 24, pii:S1096-7192(18)30626-7. https://doi.org/10.1016/j.ymgev.2018.12.007. [Epub ahead of print].

55. Ajoka RS, Phillips JD, Kushner JP. Biosynthesis of heme in mammals. Biochim Biophys Acta 2006;1763:723–736.

56. Ezzeddine R, Al-Banaw A, Tomvayan A, Craik JD, Baticic-Haberle I, Benov LT. Effect of molecular characteristics on cellular uptake, subcellular localization, and phototoxicity of Zn(II) N-alkylpyridylporphyrins. J Biol Chem 2013;288:36579–36588.

57. Hsieh YJ, Wu CC, Chang CJ, Yu JS. Subcellular localization of Photofrin determines the death phenotype of human epidermoid carcinoma A431 cells triggered by photodynamic therapy: when plasma membranes are the main targets. J Cell Physiol 2003;194:363–375.

58. Teiten MH, Bezetna L, Morriere P, Santus R, Guillem F. Endoplasmic reticulum and Golgi apparatus are the preferential sites of Foscan localisation in cultured tumour cells. Br J Cancer 2003;88:146–152.

59. Woodburn KW, Vardaxis NJ, Hill JS, Kaye AH, Phillips DR. Subcellular localization of porphyrins using confocal laser scanning microscopy. Photochem Photobiol 1991;54:725–732.

60. Castano AP, Demidova TN, Hamblin MR. Mechanisms in photodynamic therapy: part one-photosensitizers, photochemistry and cellular localization. Photodiagnosis Photodyn Ther 2004;1:279–293.

61. Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol 1991;54:659.

62. Takeshita K, Takajo T, Hirata H, Ono M, Utsumi H. In vivo oxygen radical generation in the skin of the protoporphyria model mouse with visible light exposure: an L-band ESR study. J Invest Dermatol 2004;122:1463–1470.

63. Brun A, Sandberg S. Mechanisms of photosensitivity in porphyric patients with special emphasis on erythropoietic protoporphyria. J Photochem Photobiol B 1991;10:285–302.

64. Girotti AW. Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms. J Photochem Photobiol B 2001;63:103–113.

65. Singla A, Griggs NW, Kwan R, Snider NT, Maitra D, Ernst SA, Herrmann H, Omary MB. Lamin aggregation is an early sensor of porphyria-induced liver injury. J Cell Sci 2013;126:3105–3112.

66. Kim S, Tachikawa T, Fujitsuka M, Majima T. Far-red fluorescence probe for monitoring singlet oxygen during photodynamic therapy. J Am Chem Soc 2014;136:11707–11715.

67. Ku NO, Stmad P, Zhong BH, Tao GZ, Omary MB. Keratins let liver live: Mutations predispose to liver disease and crosslinking generates Mallory-Denk bodies. Hepatology 2007;46:1639–1649.

68. Ku NO, Zhou X, Toivola DM, Omary MB. The cytoskeleton of digestive epithelia in health and disease. Am J Physiol 1999;277:G1106–1137.

69. Omary MB. Intermediate filament proteins of digestive organs: physiology and pathophysiology. Am J Physiol Gastrointest Liver Physiol 2017;312:G628–634.

70. Brady GF, Kwan R, Bragazzi Cunha J, Elenbaas JS, Omary MB. Lamins and lamin-associated proteins in gastrointestinal health and disease. Gastroenterology 2018;154:1602–1619.e1.

71. Singla A, Moons DS, Snider NT, Wagenmaker ER, Jayasundera VB, Omary MB. Oxidative stress, Nrf2 and keratin up-regulation associate with Mallory-Denk body formation in mouse erythropoietic protoporphyria. Hepatology 2012;56:322–331.

72. Verkratsky A, Petersen OH. The endoplasmic reticulum as an integrating signalling organelle: from neuronal signalling to neuronal death. Eur J Pharmacol 2002;447:141–154.

73. Lodish HF. Molecular Cell Biology. 4th ed. New York: W.H. Freeman, 2000.

74. Schroder M, Kaufman RJ. ER stress and the unfolded protein response. Mutat Res 2005;569:29–63.

75. Saggi H, Maitra D, Zhang R, Wang P, Cornuet P, Singh S, Locker J, Ma X, Dailey H, Abrams M, Omary MB, Monga SP, Nejak-Bowen K. Loss of hepatic protein response. Mutat Res 2005;569:29–63.

76. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 1998;67:425–479.

77. Tanaka K. The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:12–36.
binding sites on human serum albumin using molecular docking. Molecules 2016;21:1519.

91. Adams PA, Berman MC. Kinetics and mechanism of the interaction between human serum albumin and monomeric haemoglobin. Biochim J 1980;191:95–102.

92. Wejman JC, Hovepian D, Wall JS, Hainfeld FJ, Greer J. Structure of haptoglobin and the haptoglobin-hemoglobin complex by electron microscopy. J Mol Biol 1984;174:319–341.

93. Hrkal Z, Vodrazka Z, Kalousek I. Transfer of heme from ferrihemoglobin and ferrihemoglobin isolated chains to hemopexin. Eur J Biochem 1974;43:73–78.

94. Miller YI, Shahkai N. Kinetics of hemin distribution in plasma reveals its role in lipoprotein oxidation. Biochim Biophys Acta 1999;1454:153–164.

95. Fukuda Y, Cheong PL, Lynch J, Brighton C, Frame S, Kargas V, Rampersaud E, Wang Y, Sankaran VG, Yu B, Nery PA, Weiss MJ, Vogel P, Bond PJ, Ford RC, Trent RJ, Schuetz JD. The severity of hereditary porphyria is modulated by the porphyrin exporter and Lan antigen ABCB6. Nat Commun 2016;7:12353.

96. Krishnamurthy P, Schuetz JD. Role of ABCG2/BCRP in biology and medicine. Annu Rev Pharmacol Toxicol 2006;46:381–410.

97. Krishnamurthy PC, Du G, Fukuda Y, Sun D, Sampath J, Mercer KE, Wang J, Sosa-Pineda B, Murti KG, Schuetz JD. Identification of a mammalian mitochondrial porphyrin transporter. Nature 2006;443:586–589.

98. Zhou S, Zong Y, Nery PA, Nair G, Stewart CF, Sorrentino BP. Increased expression of the Abcg2 transporter during erythroid maturation plays a role in decreasing cellular protoporphyrin IX levels. Blood 2005;105:2571–2576.

99. Anstey AV, Hift RJ. Liver disease in erythropoietic protoporphyria: insights and implications for management. Gut 2007;56:1009–1018.

100. Ketley JN, Habig WH, Jakoby WB. Binding of non-substrate ligands to the glutathione S-transferases. J Biol Chem 1975;250:8670–8673.

101. Vincent SH, Muller-Eberhard U. A protein of the Z class of liver cytosolic proteins in the rat that preferentially binds heme. J Biol Chem 1985;260:14521–14528.

102. Knobler E, Poh-Fitzpatrick MB, Kravetz D, Vincent WR, Muller-Eberhard U, Vincent SH. Interaction of hemopexin, albumin and liver fatty acid-binding protein with protoporphyrin. Hepatology 1989;10:995–997.

103. Iwahara S, Satoh H, Song DX, Webb J, Burlingame AL, Nagae Y, Muller-Eberhard U. Purification, characterization, and cloning of a heme-binding protein (23 kDa) in rat liver cytosol. Biochemistry 1995;34:13398–13406.

104. Taketani S, Adachi Y, Kohn H, Ikehara S, Tokunaga R, Ishii T. Molecular characterization of a newly identified heme-binding protein induced during differentiation of urine erythroleukemia cells. J Biol Chem 1998;273:31388–31394.

105. Zylka MJ, Reppert SM. Discovery of a putative heme-binding protein family (SOUL/HBP) by 2-tissue suppression subtractive hybridization and database searches. Brain Res Mol Brain Res 1999;74:175–181.
106. Hannibal L, Collins D, Brassard J, Chakravarti R, Vempati R, Dorlet P, Santolini J, Dawson JH, Stuehr DJ. Heme binding properties of glyceraldehyde–3-phosphate dehydrogenase. Biochemistry 2012;51:8514–8529.

107. Sweeny EA, Singh AB, Chakravarti R, Martinez-Guzman O, Saini A, Haque MM, Garee G, Dans PD, Hannibal L, Reddi AR, Stuehr DJ. Glyceraldehyde 3-phosphate dehydrogenase is a chaperone that allocates labile heme in cells. J Biol Chem 2018;293:14557–14568.

108. Kardon JR, Yien YY, Huston NC, Branco DS, Hildick-Smith GJ, Rhee KY, Paw BH, Baker TA. Mitochondrial ClpX activates a key enzyme for heme biosynthesis and erythropoiesis. Cell 2015;161:858–867.

109. Yien YY, Duncamp S, van der Vorn LN, Kardon JR, Manceau H, Kannengiesser C, Bergonia HA, Kafina MD, Karim Z, Gouya L, Baker TA, Puy H, Phillips JD, Nicolas G, Paw BH. Mutation in human CLPX elevates levels of delta-aminolevulinate synthase and protoporphyria IX to promote erythropoietic protoporphyria. Proc Natl Acad Sci U S A 2017;114:E8045–8052.

110. Shacter E. Quantification and significance of protein oxidation in biological samples. Drug Metab Rev 2000;32:307–326.

111. Stadtman ER. Protein oxidation and aging. Free Radic Biol Med 2004;35:1781–1790.

112. Davies MJ. Protein oxidation and peroxidation. Biochem J 2016;473:805–825.

113. Davies MJ. Reactive species formed on proteins exposed to singlet oxygen. Photochem Photobiol Sci 2004;3:17–25.

114. Ehrenshaft M, Zhao B, Andley UP, Mason RP, Roberts JE. Immunological detection of N-formylkynurenine in porphyrin-mediated photodamaged lens alpha-crystallin. Photochem Photobiol 2011;87:1321–1329.

115. Kumar S, Bandyopadhyay U. Free heme toxicity and its detoxification systems in human. Toxicol Lett 2005;157:175–188.

116. Chiziane E, Telemann H, Krueger M, Adler J, Arnhold J, Alia A, Flemmig J. Free heme and amyloid-beta: a fatal liaison in Alzheimer's disease. J Alzheimers Dis 2018;61:963–984.

117. Ke Z, Huang Q. Haem-assisted dityrosine-cross-linking of fibrinogen under non-thermal plasma exposure: one important mechanism of facilitated blood coagulation. Sci Rep 2016;6:26982.

118. Stojanovic SD, Medakovic VB, Predovic G, Beljanski M, Zaric SD. XH/pi interactions with the pi system of porphyrin ring in porphyrin-containing proteins. J Biol Inorg Chem 2007;12:1063–1071.

119. Medakovic VB, Milicik MH, Bogdanovic GA, Zaric SDC-H. pi interactions in the metal-porphyrin complexes with chelate ring as the H acceptor. J Inorg Biochem 2004;98:1867–1873.

120. Stojanovic S, Isenovic ER, Zaric BL. Non-canonical interactions of porphyrins in porphyrin-containing proteins. Amino Acids 2012;43:1535–1546.

121. Badminton MN, Elder GH. CHAPTER 28 - the porphyrinas: inherited disorders of haem synthesis. In: Marshall WJ, Lapsley M, Day AP, Aylng RM, eds. Clinical biochemistry: metabolic and clinical aspects. 3rd ed. London: Churchill Livingstone, 2014;533–549.
136. Urquiza P, Lain A, Sanz-Parra A, Moreno J, Bernardo-Seisdedos G, Dubus P, Gonzalez E, Gutierrez-de-Juan V, Garcia S, Erana H, San Juan I, Macias I, Ben Bdira F, Pluta P, Ortega G, Oyarzabal J, Gonzalez-Muniz R, Rodríguez-Cuesta J, Anguita J, Diez E, Blouin JM, de Vermeuil H, Mato JM, Richard E, Falcon-Perez JM, Castilla J, Millet O. Repurposing ciclopirox as a pharmacological chaperone in a model of congenital erythropoietic porphyria. Sci Transl Med 2018;10:eaa7467.

137. Hunter GA, Ferreira GC. Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim Biophys Acta 2011;1814:1467–1473.

138. Dailey HA. Terminal steps of haem biosynthesis. Biochem Soc Trans 2002;30:590–595.

139. Chiabrando D, Marro S, Mercurio S, Giorgi C, Petrillo S, Vinchi F, Fionto V, Fagonee S, Camporeale A, Turco E, Merio GR, Silengo L, Altruda F, Pinton P, Tolosano E. The mitochondrial heme exporter FLVCR1 mediates erythroid differentiation. J Clin Invest 2012;122:4569–4579.

140. Keel SB, Doty RT, Yang Z, Quigley JG, Chen J, Kaplan J, Palis J, Abkowitz JL. A heme export protein is required for red blood cell differentiation and iron homoeostasis. Science 2008;319:825–828.

141. Vinchi F, Ingoglia G, Chiabrando D, Mercurio S, Turco E, Silengo L, Altruda F, Pinton P, Tolosano E. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation. J Clin Invest 2012;122:4569–4579.

142. Correia MA, Sinclair PR, De Matteis F. Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal. Drug Metab Rev 2011;43:1–26.

143. Candeias LP, Stratford MR, Wardman P. Formation of hydroxyl radicals on reaction of hypochlorous acid with ferrocyanide, a model iron(II) complex. Free Radic Res 1994;20:241–249.

144. Fernandez NF, Sansone S, Mazzini A, Brancalone L. Irradiation of the porphyrin causes unfolding of the protein in the protoporphyrin IX/beta-lactoglobulin non-covalent complex. J Phys Chem B 2008;112:7592–7600.

145. Belcher J, Sansone S, Fernandez NF, Haskins WE, Brancalone L. Photoinduced unfolding of beta-lactoglobulin mediated by a water-soluble porphyrin. J Phys Chem B 2009;113:6020–6030.

146. Moan J, Berg K. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol 1991;53:549–553.

147. Morehouse KM, Mason RP. The enzymatic one-electron reduction of porphyrins to their anion free radicals. Arch Biochem Biophys 1990;283:306–310.

148. Morehouse KM, Moreno SN, Mason RP. The one-electron reduction of uroporphyrin I by rat hepatic microsomes. Arch Biochem Biophys 1987;257:276–284.

149. Sardh E, Wahlin S, Bjornstedt M, Harper P, Andersson DE. High risk of primary liver cancer in a cohort of 179 patients with acute hepatic porphyria. J Inherit Metab Dis 2013;36:1063–1071.

150. Singal AK, Anderson KE. Variegate porphyria. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

151. Wang B, Bissell DM. Hereditary coproporphyria. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

152. Liu LU, Phillips J, Bonkovsky H. Familiar porphyria cutanea tarda. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

153. Erwin A, Balwani M, Desnick RJ. Congenital erythropoietic porphyria. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

154. Balwani M, Bloomer J, Desnick R. Erythropoietic porphyria, autosomal recessive. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

155. Balwani M, Bloomer J, Desnick R. X-linked porphyrin. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

156. Whatley SD, Badminton MN. Acute intermittent porphyria. In: Adam MP, Arding HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A, eds. GeneReviews. Seattle, WA: University of Washington, 1993.

157. Meyer UA, Schuurmans MM, Lindberg RL. Acute porphyrias: pathogenesis of neurological manifestations. Semin Liver Dis 1998;18:43–52.

Received March 15, 2019. Accepted June 14, 2019.

Correspondence
Address correspondence to: Dhiman Maitra, PhD, Department of Molecular & Integrative Physiology, University of Michigan Medical School, 7720 Medical Science Building II, 1137 Catherine Street, Ann Arbor, Michigan 48109.

Acknowledgments
The current address for Dhiman Maitra, Juliana Bragazzi Cunha, and M. Bishr Omary is Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey.

Conflicts of interest
The authors disclose no conflicts.

Funding
This work was supported by National Institutes of Health grant nos. R01 DK116548 (M. Bishr Omary), R01 HL124232 (Jordan A. Shavit), and R01 HL125774 (Jordan A. Shavit). U54 DK083909 (Herbert L. Bonkovsky), and an institutional National Institutes of Health award DK034933 to the University of Michigan.