Quasars as probes of the submillimetre cosmos at $z > 5$ – I. Preliminary SCUBA photometry

Robert S. Priddey,1* Kate G. Isaak,2 Richard G. McMahon,3 E. I. Robson4 and C. P. Pearson1,5

1 Imperial College, Blackett Laboratory, Prince Consort Road, London SW7 2BZ
2 Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE
3 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA
4 UK Astronomy Technology Centre, Blackford Hill, Edinburgh EH9 3HJ
5 School of Physical Sciences, University of Kent at Canterbury, Canterbury CT2 7NR

Accepted 2003 August 5. Received 2003 July 28; in original form 2003 April 8

ABSTRACT
We present submillimetre (submm) continuum observations of a sample of some of the highest redshift quasars currently known, made with the Submillimetre Common-User Bolometer Array (SCUBA) on the James Clerk Maxwell Telescope (JCMT). 12 of the sample have redshifts $z > 5$ and two have $z \geq 6$; the median redshift of the sample is 5.3. Two of the $z > 5$ objects are strong (6σ) detections, and are bright sources with $S_{850 \mu m} > 10 \text{ mJy}$. Another firm (5σ) detection is obtained for the $z = 5.7$ quasar SDSS J1044$-$0125; SDSS J1306$+0356$, at $z = 6.0$, is detected with a signal-to-noise ratio ≈ 4. We have obtained sensitive ($\sigma \approx 1.5 \text{ mJy}$) upper limits for much of the remainder of the sample, including the $z = 6.3$ quasar SDSS J1030$+0524$.

Submm spectral indices measured for two of the sources ($\alpha \approx 3.3$) are consistent with thermal reradiation from dust, rather than from synchrotron emission. Sensitive upper limits at 450 μm imply that the dust is cool, requiring large dust masses (10^8–10^9 M_\odot) to account for the observed fluxes, suggesting substantial prior star formation – even at $z = 6$, when the Universe was only 1.0 Gyr old.

Key words: dust, extinction – galaxies: high-redshift – quasars: general – cosmology: observations – submillimetre.

1 INTRODUCTION
Forty years ago, an accurate optical identification was obtained for the curious radio source 3C 273 (Hazard, Mackey & Shimmims 1963). Subsequent spectroscopy revealed an unexpectedly high redshift, $z = 0.16$, heralding a dramatic new type of astrophysical phenomenon – dubbed the ‘quasi-stellar object’ (QSO). Ever since, the extremely luminous, compact emission from quasars has rendered them almost unrivalled as beacons to the distant Universe – whether as spotlights shining through absorption systems, pinpoints fixing their host galaxies or as tracers of large-scale structure.

Recently, however, dedicated searches for galaxies at the highest redshifts have unveiled new populations of star-forming sources at $z > 5$ and $z > 6$ (e.g. Hu et al. 2002; Stanway, Bunker & McMahon 2003). Nevertheless, the latest active galactic nuclei (AGNs) surveys keep pace, and efficiently yield quasars at $z > 5$ (Fan et al. 1999, 2000a,b, 2001, 2003; Sharp et al. 2001), with the promise of many more to be discovered over the coming years. That AGNs remain important cosmological tools was recently highlighted by the first evidence for Gunn–Peterson absorption, discovered in the spectrum of a $z = 6.3$ quasar (Becker et al. 2001). The high-redshift quasars of this new generation stand tantalizingly as signposts to the epoch of reionization.

Indeed, the very existence of luminous quasars at $z > 5$ poses a challenge to structure formation theory. Their supermassive black hole engines ($M \sim 10^9 \text{ M}_\odot$), and the fuel reservoir required to supply them ($\dot{M} \sim 100 \text{ M}_\odot \text{ yr}^{-1}$), constitute a large mass concentration already in place only a gigayear after recombination. The cold dark matter cosmogony, in contrast, predicts that the first objects to form were of predominantly low mass ($\sim 10^6 \text{ M}_\odot$). Therefore, high-redshift quasars offer a test of hierarchical cosmology operating at its extreme (Efstathiou & Rees 1988; Turner 1991). The signatures of high overdensity – for example, the biased evolution of the surrounding region – can, in principle, be detected observationally by targeting quasars and their environs [e.g. in the submillimetre (submm): Ivison et al. 2000].

Here, we report continuum submm observations, made with the Submillimetre Common-User Bolometer Array (SCUBA) on the
James Clerk Maxwell Telescope (JCMT), of a sample of some of the highest-redshift quasars currently known. These observations form part of a larger project to establish the fiducial properties of cool dust emission from radio-quiet, optically selected quasars over a wide range in redshift (z < 1: Isaak et al., in preparation; z = 2: Priddey et al. 2003; z > 4: McMahon et al. 1999; Isaak et al. 2002). Our earlier work suggested that a significant fraction of optically bright quasars are ultra- or even hyper-luminous at far-infrared wavelengths. Additionally, no significant difference between the z = 2 and z > 4 samples was detected, contrasting with the SCUBA radio galaxy survey by Archibald et al. (2001). Several lines of evidence suggest that the submm light is powered by star formation, and multiband follow-up is in progress to test this hypothesis. Observation beyond z > 5, reaching yet further back in cosmic time, is a vital extension to the project. Are conditions at the highest redshifts favourable or adverse to the formation of luminous, dusty sources? Do we catch the quasars during an even more turbulent phase of youth (gas-rich, violently star-forming), or does there exist a redshift cut-off beyond which too little dust has formed for the object to be a SCUBA source?

This Letter is the first in a series of papers discussing submm sources at z > 5. Here, we present initial submm photometry of the sample, leaving a presentation of follow-up data – and a more thorough account of interpretation – to forthcoming works (Isaak et al., in preparation; Robson et al., in preparation). Throughout, we assume a flat, Λ-dominated cosmology ΩM = 0.3, ΩL = 0.7 with H0 = 65 km s−1 Mpc−1. Additional quantities (in parentheses) are for an Einstein–de Sitter (EdS) universe with H0 = 50 km s−1 Mpc−1.

2 OBSERVATIONS

The observed quasars are listed in Table 1.

2.1 The sample

The parent sample consisted of all quasars above a redshift of 4.90 that were known at the time of observation (i.e. late 2001). The targets were drawn from the Sloan Digital Sky Survey (SDSS: Fan et al. 1999, 2000a,b, 2001, 2003), the Isaac Newton Wide Field Survey (WFS: Sharp et al. 2001) and the single object (RD J0301+0020) reported by Stern et al. (2000). Targets were prioritized solely on the basis of redshift, with target visibility providing the only additional constraint.

Absolute B magnitudes are calculated from 1450-Å continuum fluxes obtained from published spectra, assuming an optical spectral index α = −0.5. In Table 1, the primary values are for the Λ cosmology; those for ΩM = 1 are given in parentheses. In our previous submm quasar surveys (McMahon et al. 1999; Isaak et al. 2002; Priddey et al. 2003), we had targeted quasars brighter than MB = −27.5 (based on the EdS cosmology). At z > 5, too few sources are known for this stringent criterion to be maintained: the median and mean magnitude are each now MB = −26.6 (EdS again).

2.2 JCMT–SCUBA submm data

Data for SDSS J1044−0125 were obtained through service observing time in 2000 July and 2001 January. The bulk of the rest of the data was obtained during the period 2001 autumn–2002 summer, through a combination of ‘flexible’ scheduling, the scheduled time itself and Director’s Discretionary Time.

SCUBA was employed in photometry mode, with the wide 850-450 filter set and a standard 60-arcsec chop in azimuth at 7.8 Hz. The source was placed on the central bolometer (H7, C14), and against the median of the remaining (quiet) bolometers was used for additional sky removal. Flux calibration was performed against the planets Mars and Uranus, and against the standard continuum calibrators CRL 618, OH 231.8, IRC 10216 and 16293−2422. Telescope pointing was checked frequently. Sky opacity was monitored via regular sky observations, using the JCMT Water Vapour Monitor and the CSO Tau Meter: over the whole set of observations, τ225GHz ranged between 0.04 and 0.14. Data were reduced with both the ORAC-DR pipeline and the SURF software.

Both SDSS J1044−0125 and SDSS J1306+0356 were re-observed, after showing some inconsistencies in their initial data.

Table 1. Quasars at z > 5 observed with SCUBA.

Target name	z	MB	(RA)	Dec. (2000)	Number of integrations	s850μm (mJy)	s250μm (mJy)	Ref.
SDSS J1030+0524	6.28	−27.8 (−27.4)	10°30′27.10	475	1.3 ± 1.0	−21 ± 10	1	
SDSS J1106+0356	5.99	−27.8 (−27.4)	13°06′10826	490	3.7 ± 1.0	−7 ± 14	1	
SDSS J0836−0054	5.82	−28.5 (−28.1)	08°36′43′58	250	1.7 ± 1.5	−24 ± 10	1	
SDSS J1044−0125	5.74	−28.1 (−27.7)	10°44′33′04	500	6.1 ± 1.2	9 ± 9	2	
RD J0301+0020	5.50	−23.1 (−22.7)	03°17′1701	200	1.9 ± 1.5	−5 ± 8	3	
SDSS J0231−0728	5.17	−28.0 (−27.6)	02°31′37′65	200	1.8 ± 1.6	2 ± 15	4	
SDSS J1208+0010	5.27	−26.7 (−26.3)	12°08′23′82	200	−2.0 ± 2.5	−64 ± 102	5	
WF J2245+0024	5.17	−25.3 (−24.9)	22°45′24′28	180	2.3 ± 1.6	2 ± 15	6	
SDSS J0913+5191	5.11	−26.0 (−26.0)	09°13′16′56	200	2.8 ± 1.8	4 ± 28	4	
SDSS J1204−0021	5.11	−27.0 (−27.6)	12°04′17′00	200	4.2 ± 2.0	−104 ± 50	7	
SDSS J0756+4104	5.09	−27.0 (−26.6)	07°56′18′14	100	13.4 ± 2.1	14 ± 19	4	
SDSS J0338+2931	5.07	−27.0 (−26.7)	03°38′29′31	100	11.9 ± 2.0	5 ± 16	8	
SDSS J2216+0013	4.99	−26.9 (−26.6)	22°16′44′02	250	1.7 ± 1.4	14 ± 19	4	
WF J1612+5253	4.95	−26.4 (−26.1)	16°12′53′10	250	2.1 ± 1.9	21 ± 50	6	

References: Fan et al. (2001); 2. Fan et al. (2000b); 3. Stern et al. (2000); 4. Anderson et al. (2001); 5. Zheng et al. (2000); 6. Sharp et al. (2001); 7. Fan et al. (2000a); 8. Fan et al. (1999).

a Observations made during high atmospheric opacity (Weather Grade 3): short-wave data consequently very poor.

b Radio source: S1.4GHz = 17.7 mJy (NVSS catalogue).
sets; the detections were confirmed in each case. For example, during initial observation of SDSS J1306+0356 in 2001 November, the final two blocks of integrations were inconsistent with the data taken over the preceding few hours. Their mean signals were zero or negative, whereas the others had been strongly positive throughout. This marked change in consistency coincided not only with deteriorating weather (seeing poorer than 4 arcsec), but with sunrise and consequent fleeting changes in atmosphere, dish figure and absolute pointing accuracy. We re-observed the quasar under good, stable conditions (seeing of 0.5 arcsec, $\tau_{225GHz} = 0.065$) in 2002 March. Thereby, the signal obtained was consistent with the first seven blocks from the previous November. Therefore, the final flux quoted in Table 1 consists of the November data minus the last two blocks, plus the March data. Adding back the suspect data would give $S_{850\mu m} = 3.1 \pm 0.9$ mJy – a signal-to-noise which is still greater than three.

SCUBA consists of two detector arrays, dedicated to long- and short-wavelength observations, respectively – in this case, 850 and 450 μm. The atmospheric transmission decreases with frequency, hence the long-wave array is the usual primary instrument. Nevertheless, 450-μm data are obtained gratis, and they are of particular interest here, for they provide important constraints on the physical temperature of the dust. Thus 450-μm fluxes are included in Table 1 for reference; however, none of the sources was detected in the band. Observations were made under a wide range of atmospheric conditions (450-μm opacities $0.75 < \tau_{850\mu m} < 3.0$), resulting in a very heterogeneous set of RMS values, between 10 and 100 mJy. We emphasize that accurate calibration of these short-wavelength observations is possible only under the very best observing conditions. For comparison, the relative errors in flux calibration with the 850 and 450 arrays are typically 5–10 per cent and ~20 per cent, respectively.

3 RESULTS

Two of the targets, SDSS J0756+4104 and SDSS J0338+0021 (both $z = 5.1$), are strikingly bright submm sources with $S_{850\mu m} > 10$ mJy. The latter was also detected at 1.2 mm by Carilli et al. (2001), $S_{1.2mm} = 3.7$ mJy. The 850-μm flux is consistent with a thermal spectrum (see Fig. 1 and Section 4.1). SDSS J1044–0125 ($z = 5.7$) is a moderately bright detection, $S_{850} = 7$ mJy. Its 1.2-mm flux of around 2 mJy (Isaak et al., in preparation) is consistent with the steep Rayleigh–Jeans tail of a thermal greybody spectrum from dust. This source and its environs have formed the target of a range of follow-up observation, reported in a companion paper (Isaak et al., in preparation). It is notable that SDSS1044 is a broad absorption line (BAL) quasar, a fact drawn upon to account for its X-ray weakness relative to the optical, as measured by Brandt et al. (2001). It is conceivable that the gaseous outflow responsible for the optical absorption also absorbs the X-rays, and that dust embedded within the gas gives rise to the submm emission. SDSS J1306+0536 ($z = 6.0$) was detected at 850 μm with a significance of 3.7σ (see also Section 2.2).

RD J0301+0020 ($z = 5.50$) was detected at 1.2 mm in a very deep IRAM–MAMBO observation by Bertoldi & Cox (2002); the 850-μm limit presented here is consistent with a thermal spectrum, given their $S_{1.2} = 0.87 \pm 0.20$ mJy. RD J0301+0020 stands out from the other $z > 5$ quasars by virtue of its extremely low optical luminosity, $M_B = -23.1$. Using the Elvis et al. (1994) bolometric correction from νL_ν ($C_B = 12$) implies $L_{bol} \approx 2 \times 10^{42} L_\odot$. This is comparable to the far-infrared luminosity derived from the millimeter flux, if we assume a canonical cool dust spec-

![Figure 1. Constraining the dust temperature of SDSS 0338. The 1.2-mm point is from Carilli et al. (2001); the 850- and 450-μm points are from this work. Curves are for the maximum dust temperatures (labelled) consistent with the 450-μm upper limit (plotted as signal plus 2σ with a σ-length bar), for three greybody indices: $\beta = 2.0$ (solid), $\beta = 1.5$ (dashed) and $\beta = 1.0$ (dotted). The steep mm–submm slope renders a better fit for a high β, thus favouring a low temperature.](https://academic.oup.com/mnras/article-abstract/344/4/L74/971057)

3.1 Caveat emptor: the effects of lensing

In neither Table 1 nor Table 2 do we attempt to correct the observed fluxes, or their derived quantities, for a gravitational lensing magnification. At $z > 5$, one would expect the optical depth to lensing to be significant; Wyithe & Loeb (2002) point out additionally that the $z > 5$ SDSS survey selects quasars on the steep, bright tail of the luminosity function, rendering it prone to magnification bias. Gravitational lensing is therefore a serious problem whose effects must be addressed on a source-by-source basis. For now, we can only do so statistically: for our two $z > 5.5$ detections, SDSS J1106 and SDSS J1044, Wyithe & Loeb (2002) estimate a 7–30 per cent probability of multiple imaging, with median (mean) magnifications between 1.1 (5) and 1.2 (30), respectively.

Schwartz (2002) examined the Chandra–ACIS images of the three highest-redshift objects in this sample. The six photons comprising the SDSS J1030 detection are widely distributed, statistically inconsistent with a point source. This is a possible signature of lensing; however, the counts are too few to differentiate between a single extended source and multiple point sources. In contrast, Fan et al. (2003) report that HST–ACS images of SDSS J1030 and J0836 are consistent with unresolved point sources. Their ground-based imaging of SDSS J11036 promotes a similar conclusion.

4 DISCUSSION

4.1 Dust, metals and star formation at $z > 5$

The mm–submm spectral indices measured for SDSS J1044–0125 and J0338+0021 – each $\alpha_{mm/submm} \approx 3.3$ – are consistent with the
Rayleigh–Jeans tail of thermal emission from cool dust. Such a spectral energy distribution (SED) would be expected to peak at a rest wavelength $\approx 50–100 \mu m$ – similar, for example, to star-forming galaxies such as M82. Indeed, existing 450–μm detections of $z \approx 4$ quasars suggest that the SED tends to a plateau [see, for example, Priddey & McMahon (2001) (PM01)] at around 100 μm rest-frame; all but the brightest sources would lie below the short-wavelength limit that we could detect. At $z > 5$, then, a 450-μm detection would imply that the dust is hot; conversely, the deep limits obtained for the bright 850-μm detections are valuable constraints on their dust temperature. Again considering J0338+0021, the 450-μm upper limit requires $T < 100 K$ for a greybody index $\beta = 1$ and $T < 50 K$ for $\beta = 2$, the higher β favoured by the steep μm–submm slope (Fig. 1). (However, we warn of the potentially considerable systematic uncertainties in the 450-μm calibration.) In the following, therefore, we shall assume the SED of PM01, namely $\beta = 2$, $T = 40 K$.

Notwithstanding temperature uncertainty, determination of the dust opacity (κ) has, in the past, presented additional uncertainties to a derivation of dust mass from a submm flux. We adopt a value $\kappa (125 \mu m) = 30 cm^2 g^{-1}$, at a normalization wavelength (125 μm) corresponding to observed 850 μm at $z = 5.8$. This is consistent with the $\kappa (125 \mu m)$ determined by Hildebrand (1983). Extrapolated to longer wavelengths, assuming $\kappa \propto \lambda^{-2}$, it is also consistent with a Galactic mixture of Draine & Lee (1984) grains, as well as with more recent measurements – for example, the 850 μm value of James et al. (2002). For our $z > 5$ sample, it yields masses in the range $10^{8–9} M_\odot$ (Table 2).

The youth of the Universe – 1 Gyr at $z = 5$ – imposes a constraint on the mechanisms of dust production, for it is comparable to the evolutionary time-scale of the stars in whose atmospheres the dust is believed to condense. An alternate method of manufacture, on the winds of Type II supernovae, requires much shorter time-scales, but its efficacy has yet to be proven. Crudely assuming an overall dust enrichment rate per mass of newly formed stars of around 1 per cent, and an absolute upper limit of 1Gyr available for star formation, then a dust mass of $10^{-9} M_\odot$ would require a minimum average star formation rate of $\approx 100 M_\odot$ yr$^{-1}$. Thus it is plausible that star-forming activity is responsible for some or all of the observed submm luminosity. In Table 2, the quantity M_\ast (min) is the minimum star formation rate necessary to produce the estimated dust masses, averaged over the lifetime of the Universe. Alternatively, L_{FIR} could be used to estimate the instantaneous star formation rate, $M_\ast/(M_\odot$ yr$^{-1}) = \Psi[L_{\mathrm{FIR}}/(10^{10} L_\odot)]$, where Ψ is a constant of order unity, depending on the stellar initial mass function (IMF).

This quantity represents an upper limit on the star formation rate, as a result of the potential AGN contribution to dust heating. Nevertheless, it is plausible that the dust we observe was formed during production of a substantial fraction of stars in the host galaxy of the quasar.

Morgan & Edmunds (2003) present a detailed model of dust synthesis and discuss its implications for very high-redshift submm sources, such as the current sample. Their model implies that, in the absence of supernovae as a source of dust, the star formation efficiency must be very high to yield, by $z = 5$, the masses we observe.

4.2 The growth of supermassive black holes

The four highest-redshift quasars in the sample are all very luminous in the optical, $M_B \approx -28$. Then the assumption that this luminosity is supplied by Eddington-limited accretion requires a black hole of at least $5 \times 10^8 M_\odot$ (Table 2). How does a black hole of such mass form? Imposing the maximum available light time of ~ 1 Gyr implies an average accretion rate of $5 M_\odot$ yr$^{-1}$. In comparison, assuming an (optimistic) radiative efficiency $\epsilon = 0.1$ (where $L_{\mathrm{Edd}} = \epsilon M_\odot c^2$), an (instantaneous) accretion rate of $\gtrsim 100 M_\odot$ yr$^{-1}$ is required to fuel the bolometric power inferred from the optical. The e-folding time for Eddington accretion is $\approx 0.5 \epsilon$ Gyr; starting from a $10^{4–5} M_\odot$ seed (e.g. Haehnelt, Natarajan & Rees 1998), an observed redshift of $z = 6$ would require a formation redshift of $z = 10–18$ in the Λ cosmology, but an upper limit longer than the age of the Universe in the matter-dominated cosmology.

In the local Universe, quiescent supermassive black holes and their surrounding stellar bulges correlate in their mass and velocity dispersion (Magorrian et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000). It is likely, therefore, that their formation processes – the one through accretion and an AGN phase, the other perhaps through a dusty starburst – are closely linked. What can we conclude concerning the coevolution of a quasar and its host galaxy, given these data? Both PM01 and Archibald et al. (2002) consider this matter. They propose a simple model in which a black hole exponentializing according to the Eddington rate, and an elliptical host galaxy forming stars and dust at a roughly constant rate, conspire to produce a submm-luminous AGN just before the gaseous fuel supply is exhausted. In a future paper, we will consider a wider range of possibilities.
5 CONCLUSIONS AND FUTURE WORK

We have presented SCUBA 850-µm observations of a sample of quasars at $z > 5$, where the youth of the Universe itself (≈ 1 Gyr) starts to become a constraint on the histories of accretion and star formation, detecting four sources at 850 µm. The few 1.2 mm–850 µm spectral indices that we can determine are consistent with thermal reradiation from dust; deep 450-µm limits imply that the dust is cool ($T < 100$ K), consistent with their siblings at $z = 4$ (Priddey & McMahon 2001). Although the sample is much smaller, and its median optical luminosity is fainter, its submm properties seem tentatively similar to those of radio-quiet quasars we have studied at $z = 4$ and $z = 2$ (Isaak et al. 2002; Priddey et al. 2003).

It is plausible that we are observing extreme, high-σ peaks in the overdensity distribution. The quasar host galaxies are likely to be massive, gas-rich and actively forming stars. We are pursuing a range of follow-up observations designed to investigate such a scenario. For example, submm imaging of the fields of high-redshift AGN has been used (e.g. Ivison et al. 2000) to test for biased galaxy formation. In this spirit, we have obtained SCUBA jiggle maps of three of the sources from the current sample, and our findings will be reported in a forthcoming paper (Isaak et al., in preparation).

An important quantifier of the evolutionary state of the sources themselves will be obtained through detection of carbon monoxide emission lines, which would reveal the existence of reservoirs of molecular gas indicative of star formation. Simultaneously, it will be essential to improve the constraints on the infrared/submm SEDs of these quasars, to confirm the presence of dust, to differentiate between AGN- and starburst-powered components and to improve estimates of the dust mass and star formation rate. Of no less importance is the need to obtain high-resolution optical/near-infrared images of the quasars, to assess the probable effects of gravitational lensing.

It is an oft-cited consequence of the negative submm K-correction that it hypothetically permits an unidentified SCUBA source to lie at a redshift as high as 10, without being intrinsically more luminous than a local object like Arp 220. The difficulty of optically identifying such a source has prevented this claim becoming more than hypothetical. Now, however, the submm study of samples of quasars at $z > 5$ provides a ready means of inferring the properties – indeed, the very existence – of dust within 1 Gyr of the big bang.

ACKNOWLEDGMENTS

We are grateful to the observers who gathered much of the data in ‘flexible’ time, and to the TSSs and JAC staff (notably Jim Hoge, Ed Lundin and Iain Coulson) for providing efficient operation during our observing run. We thank Matt Fox for his presence through the 2002 March run. We are indebted to the anonymous referee for making valuable comments. The JCMT is operated by JAC, Hilo, on behalf of the parent organizations of the Particle Physics and Astronomy Research Council in the UK, the National Research Council of Canada and The Netherlands Organisation for Scientific Research.

REFERENCES

Anderson S. F. et al., 2001, AJ, 122, 503
Archibald E. N., Dunlop J. S., Hughes D. H., Rawlings S., Eales S. A., Ivison R. J., 2001, MNRAS, 323, 417
Archibald E. N., Dunlop J. S., Jimenez R., Priaça A. C. S., McLure R. J., Hughes D. H., 2002, MNRAS, 336, 353
Becker R. H. et al., 2001, AJ, 122, 2850
Bertoldi F., Cox P., 2002, A&A, 384, 11
Brandt W. N., Guainazzi M., Kaspi S., Fan X., Schneider D. P., Strauss M. A., Clavel J., Gunn J. E., 2001, AJ, 121, 591
Carilli C. L. et al., 2001, ApJ, 555, 625
Draine B. T., Lee H. M., 1984, ApJ, 285, 89
Efstathiou G. P., Rees M. J., 1988, MNRAS, 230, 5p
Elvis M. et al., 1994, ApJS, 95, 1
Fan X. et al., 1999, AJ, 118, 1
Fan X. et al., 2000a, AJ, 119, 1
Fan X. et al., 2000b, AJ, 120, 1167
Fan X. et al., 2001, AJ, 122, 2833
Fan X. et al., 2003, AJ, 125, 1649
Ferrarese L., Merritt D., 2000, ApJ, 539, L9
Gebhardt K. et al., 2000, ApJ, 539, L13
Haehnelt M. J., Natarajan P., Rees M. J., 1998, MNRAS, 300, 817
Hazard C., Mackey M. B., Shimmims A. J., 1963, Nat, 197, 1037
Hildebrand R. H., 1983, JQRAS, 24, 267
Hu E. M., Cowie L. L., McMahon R. G., Capak P., Iwamuro F., Kneib J.-P., Malhara T., Motohara K., 2002, ApJ, 568, L75
Isaak K. G., Priddey R. S., McMahon R. G., Omont A., Cox P., Peroux C., Sharp R., 2002, MNRAS, 329, 149
Ivison R. J., Dunlop J. S., Dey A., Liu M. C., Graham J. R., 2000, ApJ, 542, 27
James A., Dunne L., Eales S., Edmunds M. G., 2002, MNRAS, 335, 753
Magorrian J. et al., 1998, AJ, 115, 2285
McMahon R. G., Priddey R. S., Omont A., Snellen I., Withington S., 1999, MNRAS, 309, L1
Morgan H. L., Edmunds M. G., 2003, MNRAS, 343, 427
Priddey R. S., McMahon R. G., 2001, MNRAS, 324, L17 (PM01)
Priddy R. S., Isaak K. G., McMahon R. G., Omont A., 2003, MNRAS, 339, 1183
Schwartz D., 2002, ApJ, 571, L71
Sharp R. G., McMahon R. G., Irwin M. J., Hodgkin S. T., 2001, MNRAS, 326, L45
Stanway E. R., Bunker A. J., McMahon R. G., 2003, MNRAS, 342, 439
Stern D., Spinrad H., Eisenhardt P., Bunker A. J., Dawson S., Stanford S. A., Elston R., 2000, ApJ, 533, L75
Turner E. L., 1991, AJ, 101, 5
Wyithe J. S. B., Loeb A., 2002, ApJ, 577, 57
Zheng W. et al., 2000, AJ, 120, 1607

This paper has been typeset from a TeX/LATEX file prepared by the author.