Toward A “Standard Model” of Machine Learning

Zhiting Hu
Assistant Professor
Halicioglu Data Science Institute
Computer Science and Engineering
UC San Diego

06/12/2023
The universe of problems ML/AI is trying to solve
Experience of all kinds

Type-2 diabetes is 90% more common than type-1

Data examples Rules/Constraints Knowledge graphs Rewards Auxiliary agents

Adversaries Master classes

• And all combinations of such
• Interpolations between such
• ...

Knowledge graphs
Human learning vs machine learning

Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

- And all combinations of such
- Interpolations between such
- ...

Type-2 diabetes is 90% more common than type-1

Adversaries

Master classes
The zoo of ML algorithms

- maximum likelihood estimation
- data re-weighting
- inverse RL
- policy optimization
- active learning
- reinforcement learning as inference
- actor-critic
- imitation learning
- reward-augmented maximum likelihood
- softmax policy gradient
- posterior regularization
- constraint-driven learning
- adversarial domain adaptation
- GANs
- generalized expectation
- learning from measurements
- label smoothing
- intrinsic reward
- knowledge distillation
- intrinsic reward
- prediction minimization
- regularized Bayes
- energy-based GANs
- weak/distant supervision
- active learning
- intrinsic reward
- knowledge distillation
- prediction minimization
- regularized Bayes
- energy-based GANs
- weak/distant supervision
Physics in the 1800’s

• Electricity & magnetism:
 • Coulomb’s law, Ampère, Faraday, ...

• Theory of light beams:
 • Particle theory: Isaac Newton, Laplace, Plank
 • Wave theory: Grimaldi, Chris Huygens, Thomas Young, Maxwell

• Law of gravity
 • Aristotle, Galileo, Newton, …
Standard Model in Physics

Maxwell’s Eqns:

1. **original form**
 - \(\varepsilon_{uvk}\lambda \partial_v F_{k\lambda} = 0\)
 - \(\nabla \cdot \mathbf{D} = \rho_v\)
 - \(\nabla \cdot \mathbf{B} = 0\)
 - \(\nabla \times \mathbf{E} = \frac{\partial \mathbf{B}}{\partial t}\)
 - \(\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}\)

2. **Simplified w/ rotational symmetry**
 - \(\nabla \cdot \mathbf{D} = \rho_v\)
 - \(\nabla \cdot \mathbf{B} = 0\)

3. **Further simplified w/ symmetry of special relativity**
 - \(\varepsilon_{uvk}\lambda \partial_v F_{k\lambda} = 0\)
 - \(\nabla \cdot \mathbf{D} = \rho_v\)

4. **Standard Model w/ Yang-Mills theory and US(3) symmetry**
 - \(\mathcal{L}_{gf} = -\frac{1}{2} \text{Tr}(F^2)\)
 - \(-\frac{1}{4} F_{\mu\nu} F^{\mu\nu}\)

Diverse electromagnetic theories

- **Maxwell’s Eqns:**
 - **original form**
 - **simplified w/ rotational symmetry**
 - **further simplified w/ symmetry of special relativity**
 - **Standard Model w/ Yang-Mills theory and US(3) symmetry**

Unification of fundamental forces?
Quest for more standardized, unified ML principles

EDITORIAL
Toward a Unified Science of Machine Learning
(P. Langley, 1989)

A Unifying Review of Linear Gaussian Models

Sam Roweis*
Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, U.S.A.

Zoubin Ghahramani*
Department of Computer Science, University of Toronto, Toronto, Canada

*Corresponding author.
Quest for more standardized, unified ML principles

Is Large Language Model (LLM) the answer?

“Self-supervised” learning + large (text) data

😍 Limited understanding of the world

John put a book on the desk.

…

Mary took the book. She placed it on the sofa.

…

Where was the book?

ChatGPT

It was on the desk. ❌

figure credit: Voicebot.ai
Quest for more standardized, unified ML principles
Is Large Language Model (LLM) the answer?

“Self-supervised” learning + large (text) data

🤔 Limited understanding of the world

John put a book on the desk.

Still need more types of experience through richer learning mechanisms

It was on the desk. X

ChatGPT
A “Standard Model” of Machine Learning

Different Model Types
- Graphical Models
- Deep Neural Network
- Symbolic Knowledge
- World Model

Experience f
- Data
- Knowledge
- Other Models
- Reward

Uncertainty (Self-regularization)
- World Model

Standard Equation (SE)

Hu and Xing, Towards A ‘Standard Model’ of Machine Learning, Harvard Data Science Review, 2022
A “Standard Model” of Machine Learning

\[
\min_{q, \theta} - \mathbb{E}_{q(x, y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_\theta(x, y) \right) - \beta \mathbb{H}(q)
\]

3 terms:
- **Experience** (exogenous regularizations)
 - e.g. data examples, reward
- **Divergence** (fitness)
 - e.g. Cross Entropy
- **Uncertainty** (self-regularization)
 - e.g. Shannon entropy

Textbook: \(f(x, y) \)

Teacher: \(q(x, y) \)

Student: \(p_\theta(x, y) \)

Uncertainty

Hu and Xing, *Towards A ‘Standard Model’ of Machine Learning*, Harvard Data Science Review, 2022
A “Standard Model” of Machine Learning

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_{\theta}(x, y) \right) - \beta \mathbb{H}(q)
\]

Hu and Xing, *Towards A ‘Standard Model’ of Machine Learning*, Harvard Data Science Review, 2022
“Standard Model” encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_\theta (x, y) \right) - \beta \mathbb{H}(q)
\]
"Standard Model" encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathcal{D} \left(q(x, y), p_{\theta}(x, y) \right) - \beta \mathcal{H}(q)
\]

Experience type	Experience function \(f \)	Divergence \(\mathcal{D} \)	\(\alpha \)	\(\beta \)	Algorithm
Data instances					
\(f_{\text{data}}(x; D) \)	CE	1	1		Unsupervised MLE
\(f_{\text{data}}(x, y; D) \)	CE	1	\(\epsilon \)		Supervised MLE
\(f_{\text{data-self}}(x, y; D) \)	CE	1	\(\epsilon \)		Self-supervised MLE
\(f_{\text{data-w}}(t; D) \)	CE	1	\(\epsilon \)		Data Re-weighting
\(f_{\text{data-aug}}(t; D) \)	CE	1	\(\epsilon \)		Data Augmentation
\(f_{\text{active}}(x, y; D) \)	CE	1	\(\epsilon \)		Active Learning (Ertekin et al., 2007)
"Standard Model" encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_\theta(x, y) \right) - \beta \mathbb{H}(q)
\]

Experience type	Experience function f	Divergence \mathbb{D}	α	β	Algorithm
Data instances					
$f_{\text{data}}(x; D)$	CE	1	1		Unsupervised MLE
$f_{\text{data}}(x, y; D)$	CE	1	ϵ		Supervised MLE
$f_{\text{data-self}}(x, y; D)$	CE	1	ϵ		Self-supervised MLE
$f_{\text{data-w}}(t; D)$	CE	1	ϵ		Data Re-weighting
$f_{\text{data-aug}}(t; D)$	CE	1	ϵ		Data Augmentation
$f_{\text{active}}(x, y; D)$	CE	1	ϵ		Active Learning (Ertekin et al., 2007)

$$f_{\text{data}}(x, y; D) := \log \mathbb{E}_{(x^*, y^*) \sim D} \left[\mathbb{1}_{(x^*, y^*)}(x, y) \right]$$

$$q(x, y) = \tilde{p}_{\text{data}}(x, y)$$

$$\min_\theta - \mathbb{E}_q \left[\log p_\theta(x, y) \right]$$

(Negative data log-likelihood)
“Standard Model” encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_\theta(x, y) \right) - \beta \mathbb{H}(q)
\]

Experience type	Experience function \(f \)	Divergence \(\mathbb{D} \)	\(\alpha \)	\(\beta \)	Algorithm
Reward	\(\log Q^\theta(x, y) \)	CE	1	1	Policy Gradient
	\(\log Q^\theta(x, y) + Q^{in, \theta}(x, y) \)	CE	1	1	+ Intrinsic Reward
	\(Q^\theta(x, y) \)	CE	\(\rho > 0 \)	\(\rho > 0 \)	RL as Inference
“Standard Model” encompasses well-known ML algorithms as special cases

\[
\min_{\theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_\theta(x, y) \right) - \beta H(q)
\]

Experience type	Experience function \(f \)	Divergence \(\mathbb{D} \)	\(\alpha \)	\(\beta \)	Algorithm
Knowledge	\(f_{\text{rule}}(x, y) \)	CE	1	1	Posterior Regularization (Ganchev et al., 2010)
	\(f_{\text{rule}}(x, y) \)	CE	\(\mathbb{R} \)	1	Unified EM (Samdani et al., 2012)
“Standard Model” encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_{\theta}(x, y) \right) - \beta \mathbb{H}(q)
\]

Experience type	Experience function \(f \)	Divergence \(\mathbb{D} \)	\(\alpha \)	\(\beta \)	Algorithm
Model	\(f_{\text{mimicking}}(x, y; D) \)	CE	1	\(\epsilon \)	Knowledge Distillation (G. Hinton et al., 2015)
"Standard Model" encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_\theta(x, y) \right) - \beta \mathbb{H}(q)
\]

Experience type	Experience function f	Divergence \(\mathbb{D}\)	\(\alpha\)	\(\beta\)	Algorithm
binary classifier		JSD	0	1	Vanilla GAN (Goodfellow et al., 2014)
discriminator	\(f\)-divergence		0	1	f-GAN (Nowozin et al., 2016)
1-Lipschitz discriminator	\(W_1\) distance		0	1	WGAN (Arjovsky et al., 2017)
1-Lipschitz discriminator	KL		0	1	PPO-GAN (Y. Wu et al., 2020)
”Standard Model” encompasses well-known ML algorithms as special cases

\[
\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathcal{D} \left(q(x, y), p_\theta(x, y) \right) - \beta \mathbb{H}(q)
\]

Experience type	Experience function \(f \)	Divergence \(\mathcal{D} \)	\(\alpha \)	\(\beta \)	Algorithm
Online	\(f_\tau(t) \)	CE	\(\rho > 0 \)	\(\rho > 0 \)	Multiplicative Weights (Freund & Schapire, 1997)
“Standard Model” encompasses well-known ML algorithms as special cases

Experience type	Experience function f	Divergence \mathbb{D}	α	β	Algorithm
Data instances	$f_{\text{data}}(x; \mathcal{D})$	CE	1	1	Unsupervised MLE
	$f_{\text{data}}(x, y; \mathcal{D})$	CE	1	ϵ	Supervised MLE
	$f_{\text{data-self}}(x, y; \mathcal{D})$	CE	1	ϵ	Self-supervised MLE
	$f_{\text{data-w}}(t; \mathcal{D})$	CE	1	ϵ	Data Re-weighting
	$f_{\text{data-aug}}(t; \mathcal{D})$	CE	1	ϵ	Data Augmentation
	$f_{\text{active}}(x, y; \mathcal{D})$	CE	1	ϵ	Active Learning (Ertekin et al., 2007)
Knowledge	$f_{\text{rule}}(x, y)$	CE	1	1	Posterior Regularization (Ganchev et al., 2010)
	$f_{\text{rule}}(x, y)$	\mathbb{R}	ϵ	1	Unified EM (Samdani et al., 2012)
Reward	$\log Q^\theta(x, y)$	CE	1	1	Policy Gradient
	$\log Q^\theta(x, y) + Q^{\text{in}, \theta}(x, y)$	CE	1	1	+ Intrinsic Reward
	$Q^\theta(x, y)$	CE	$\rho > 0$	$\rho > 0$	RL as Inference
Model	$f_{\text{mimicking}}(x, y; \mathcal{D})$	CE	1	ϵ	Knowledge Distillation (G. Hinton et al., 2015)
Variational	binary classifier	JSD	0	1	Vanilla GAN (Goodfellow et al., 2014)
	discriminator	f-divergence	0	1	f-GAN (Nowozin et al., 2016)
	1-Lipschitz discriminator	W_1 distance	0	1	WGAN (Arjovsky et al., 2017)
	1-Lipschitz discriminator	KL	0	1	PPO-GAN (Y. Wu et al., 2020)
Online	$f_r(t)$	CE	$\rho > 0$	$\rho > 0$	Multiplicative Weights (Freund & Schapire, 1997)

Table 1. Example configurations of the components in the standard equation (Eqs. 3.1, 3.2), which recover different existing algorithms. Here, ‘CE’ means Cross Entropy; ‘JSD’ is the Jensen-Shannon divergence; ‘W$_1$ dist.’ is the first-order Wasserstein distance; and ‘KL’ is the KL divergence. Refer to Sections 4, 5, and 6 for more details.
Applications: “Panoramic” learning with ALL experience

All available experience

Arbitrary model

Data examples

Rules/Constraints

Knowledge graphs

Rewards

Auxiliary agents

Type-2 diabetes is 90% more common than type-1

Adversaries

Master classes

Applications: “Panoramic” learning with ALL experience

…

- And all combinations of such
- Interpolations between such
- …
App (1): Using *symbolic knowledge* to learn *neural networks*

\[
\min_{q, \theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D} \left(q(x, y), p_\theta(x, y) \right) - \mathbb{E}_{q(x, y)} \left[f(x, y) \right]
\]

Hu et al., 2016, “Harnessing Deep Neural Networks with Logic Rules”
Hu et al., 2020, “Deep Generative Models with Learnable Knowledge Constraints”
Tan et al., 2020, “Summarizing Text on Any Aspects: A Knowledge-Informed Weakly-Supervised Approach”
App (2): Using *neural networks* to "learn" *symbolic knowledge*

\[
\min_{q, \theta} - \alpha H(q) + \beta D(q(x, y), p_\theta(x, y)) - \mathbb{E}_{q(x,y)} \left[f(x, y) \right]
\]

- \(\theta\): graph structure to be learned
- \(p_\theta\): a simulation model generating medical task samples \((x, y)\) based on the knowledge graph \(\theta\)

Measuring likelihood of sample \((x, y)\) under a trained *medical neural model*

Hao, Tan et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models”
App (2): Using **neural networks** to “learn” **symbolic knowledge**

\[
\min_{q, \theta} - \alpha \mathcal{H}(q) + \beta \mathbb{D}(q(x, y), p_\theta(x, y)) - \mathbb{E}_{q(x,y)} \left[f(x, y) \right]
\]

Head entity	Relation	Tail entity	Head entity	Relation	Tail entity
exercise	prevent	obesity	students	worth celebrating	graduate
apple	business	Mac	newborn	can but not good at	sit
sleep	prevent	illness	social worker	can help	foster child
mall	place for	shopping	honey	ingredient for	honey cake
gym	place for	sweat	cabbage	ingredient for	cabbage salad
wheat	source of	flour	China	separated by the ocean	Japan
oil	source of	fuel	Africa	separated by the ocean	Europe

Figure 4: Examples of knowledge tuples harvested from ROBERTA-LARGE with MULTI-PROMPTS.

Hao, Tan et al., 2022, “BertNet: Harvesting Knowledge Graphs from Pretrained Language Models”
App (3): Building **World Models** beyond **Language Models**

\[
\min_{q, \theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D}(q(x, y), p_\theta(x, y)) - \mathbb{E}_{q(x,y)}[f(x, y)]
\]

- **Language models**

Xiang, Tao et al., 2023, “Language Models Meet World Models: Embodied Experiences Enhance Language Models”
App (3): Building **World Models** beyond **Language Models**

\[
\min_{q, \theta} - \alpha \mathbb{H}(q) + \beta \mathbb{D} \left(q(x, y), p_{\theta}(x, y) \right) - \mathbb{E}_{q(x,y)} \left[f(x, y) \right]
\]

John put a *book* on the *desk*.

...
Mary took the *book*.
She placed it on the *sofa*.
...
Where was the *book*?

ChatGPT: It was on the *desk*.
WM (small-size): It was on the *sofa*.

Xiang, Tao et al., 2023, “Language Models Meet World Models: Embodied Experiences Enhance Language Models”
App (3): Building **World Models** beyond **Language Models**

\[
\min_{q, \theta} \left(-\alpha \mathbb{H}(q) + \beta \mathcal{D}(q(x, y), p_\theta(x, y)) - \mathbb{E}_{q(x, y)} \left[f(x, y) \right] \right)
\]

Xiang, Tao et al., 2023, “Language Models Meet World Models: Embodied Experiences Enhance Language Models”
Summary

- A “Standard Model” of machine learning
 \[\min_{q, \theta} - \mathbb{E}_{q(x,y)} \left[f(x, y) \right] + \alpha \mathbb{D} \left(q(x, y), p_{\theta}(x, y) \right) - \beta \mathbb{H}(q) \]

- “Panoramic learning” with ALL experience
 - Neuro-symbolic learning
 - Building world models

Figure 4: Examples of knowledge tuples harvested from ROBERTA-LARGE with MULTI-PROMPTS.