A Be–type star with a black–hole companion

J. Casares¹,², I. Negueruela³, M. Ribó⁴, I. Ribas⁴, J. M. Paredes⁴, A. Herrero¹,² & S. Simón–Díaz¹,²

Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars¹–³ (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Milky Way, however, only pulsating neutron stars have been found as companions¹–⁴. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification⁶ and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5–B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than $1.6 \times 10^{−7}$ times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.

The majority of Be X-ray binaries (BeXBs) contain proven neutron stars and are characterized by their transient changes in X-ray luminosity, when episodes of increased accretion onto the compact star are modulated either by the periastron passage or tidal disruption of the Be circumstellar disk⁴. When in quiescence, they have very low (or even undetectable) X-ray emission. It has been proposed that BeXBs with black holes (Be–BH) are difficult to find because of efficient disk truncation, leading to very long quiescent states⁵. Alternatively, their absence could be driven by binary evolution, with Be–BH binaries having a lower probability of being formed and surviving a common envelope phase⁶.

MWC 656 is a Be star located within the error box of the point-like γ-ray source AGL J2241+4454 (ref. 9). A photometric modulation of 60.37 ± 0.04 days was reported, suggesting that MWC 656 is a member of a binary; this was subsequently confirmed through radial velocities of He I lines from the photosphere of the Be star⁶. The radial velocity curve, though, displays considerable scatter, likely to be caused by filled-in emission from the circumstellar wind contaminating the broad absorption profiles (a common limitation in the analysis of BeXBs; see, for example, ref. 10) and only a tentative orbital solution is available⁶. Here we revisit the 32 Liverpool telescope spectra previously reported⁶. These are complemented with 4 additional Liverpool telescope spectra and a further high-resolution echelle spectrum obtained with the 1.2-m Mercator telescope (see Methods and Extended Data Table 1).

A close-up of the Mercator telescope spectrum is presented in Fig. 1, showing classic Fe II emission lines from the Be circumstellar disk. In addition, a He II 4,686 Å emission line (which was overlooked in a previous work⁷) stands out clearly: its presence is remarkable because it requires temperatures hotter than can be achieved in disks around B-type stars. Further, the He II profile is double-peaked, which is the signature of gas orbiting in a Keplerian geometry⁸. Gaussian fits to the He II profiles in the Liverpool telescope spectra reveal that the centroid of the line is modulated with the 60.37-day orbital period, reaching maximum velocity at photometric phase 0.06 (see Methods and Extended Data Fig. 1). This is approximately in antiphase with the radial velocity curve of the Be star⁷, a strong indication that the He II emission arises from gas in an accretion disk around the invisible companion and not from the Be disk. We can therefore use its radial velocity curve to trace the orbit of the Be companion. An eccentric orbital fit to the He II velocities was performed using the Spectroscopic Binary Orbit Program (SBOP⁹), fixing the period to 60.37 days (Methods); the resulting orbital elements are given in Extended Data Table 2. The orbital evolution of the He II line is presented in Fig. 2. The line flux is also found to be modulated with the orbital period (Methods and Extended Data Fig. 1), owing to the presence of an S-wave component swinging between the double peak (see Fig. 2).

To improve on the radial velocity curve of the Be star previously reported⁶, we fitted the sharp double-peaked profile of the Fe II 4,583 Å emission line with a two-Gaussian model (Methods). Fe II lines are known to arise from the innermost regions of the circumstellar disk¹²,¹³,¹⁴, and therefore reflect the motion of the Be star much more accurately

¹Instituto de Astrofísica de Canarias, E-38205 La Laguna, Santa Cruz de Tenerife, Spain. ²Departamento de Astrofísica, Universidad de La Laguna, E-38206 La Laguna, Santa Cruz de Tenerife, Spain. ³Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain. ⁴Departament d’Astronomia i Meteorologia, Institut de Ciències del Cosmos, Universitat de Barcelona, IEEC-UB, Martí i Franquès 1, E-08028 Barcelona, Spain. ⁵Instituto de Ciencias de l’Espai—(IEEC-CSIC), Campus UAB, Facultat de Ciències, Torre C5 - parell - 2a planta, E-08193 Bellaterra, Spain.
than the broad He II absorptions. The Fe II velocities were also modelled with SBOP, fixing the period to 60.37 days. The eccentric orbit obtained results in orbital elements that are consistent with the Fe II orbit being the reflex of the He II orbit, as expected from the motion of two components in a binary system (see Methods and Extended Data Table 2). Only the eccentricities are slightly discrepant, but just at the 1.6σ level.

Consequently, we modelled the ensemble of Fe II and He II radial velocities with a double-line eccentric binary orbit in SBOP. Figure 3 presents the radial velocity curves of the two emission lines with the best combined solution superimposed. The resulting orbital elements are listed in Table 1. Our solution yields a mass ratio \(q = M_2/M_1 = 0.41 \pm 0.07 \), which implies a rather massive companion star. A precise determination of the companion’s mass requires an accurate spectral classification of the Be star. Accordingly, we have compared the Mercator telescope spectrum with a collection of observed B-type templates, broadened by 330 km s\(^{-1}\) to mimic the large rotation velocity in MWC 656 (Methods and Extended Data Fig. 3). Using excitation temperature diagnostics based on several absorption line ratios, we determine a spectral type of B1.5–B2, and the strength of the metallic lines combined with the moderate width of the Balmer absorption wings implies luminosity class III (Methods). Our adopted B1.5–B2 III classification implies a mass of 10–16 solar masses (\(M_\odot \)) for the Be star (Methods), and hence a companion star of 3.8–6.9 \(M_\odot \). The large dynamical mass of the companion to the Be star MWC 656 is puzzling. A normal main-sequence star with such mass would have a spectral type in the range B3–B9 and its spectrum would be easily detected in the optical range. Nor can it be a subdwarf, because these typically have masses in the range 0.8–1.3 \(M_\odot \) (ref. 15). The stripped He core of a massive progenitor (that is, a Wolf–Rayet star) is also rejected because it possesses strong winds which show up through intense high-excitation emission lines, not present in our spectra. In

Parameter	Value
\(P_{\text{orb}} \) (days)	60.37 (fixed)
\(T_0 \) (HJD – 2,450,000)	3,243.70 ± 4.30
\(e \)	0.10 ± 0.04
\(i \) (degrees)	163.0 ± 25.6
\(K_1 \) (km s\(^{-1}\))	32.0 ± 5.3
\(K_2 \) (km s\(^{-1}\))	78.1 ± 3.2
\(a \sin i \) (R\(_\odot\))	38.0 ± 6.3
\(a \sin i \) (R\(_\odot\))	92.8 ± 3.8
\(M_2 \) (\(M_\odot\))	\(5.83 \pm 0.70 \)
\(M_2 \sin^2 i \) (\(M_\odot\))	2.39 ± 0.48
\(M_2/M_1 \)	0.41 ± 0.07
\(\sigma_1 \) (km s\(^{-1}\))	16.7

The solution was obtained from a combined fit to the radial velocity curves of the He II 4,686 Å and Fe II 4,583 Å lines. The orbital period \(P_{\text{orb}} \) has been fixed to the photometric value \(T_0 \) is the epoch of periastron (where HJD refers to heliocentric Julian date), \(e \) the orbit eccentricity, \(i \) the longitude of periastron, \(\omega \) the system inclination, \(\psi \) the systemic velocity, \(K \) the semi-amplitude of radial velocity, \(a \sin i \) the semimajor axis, \(\gamma \) the binary inclination, \(M_1 \) the stellar mass and \(M_2 \) the mass of the companion (Methods). Subscripts 1 and 2 refer to the primary (Be star) and secondary (companion) components, respectively. \(\sigma_1 \) refers to periastron passage occurs at photometric phase 0.01 ± 0.10.
addition, this should be detected as an ultraviolet excess in the spectral energy distribution, which is not observed in the fluxes available in the literature (Methods). On the other hand, the evidence of a He II accretion disk encircling the companion star strongly points towards the presence of a compact object. The large dynamical mass rules out a white dwarf or a neutron star, so the only viable alternative is a black hole. It should be noted that none of the ~170 BeXBs currently known shows any evidence for an accretion disk, providing circumstantial evidence for a difference in the nature of the compact stars. The accretion disk in MWC 656 is expected to also radiate Balmer and He I lines but these are blended with the corresponding (stronger) emission lines from the Be disk and thus are not detected.

MWC 656 is a key system in the study of BeXBs and massive binary evolution. At a distance $d = 2.6 \pm 0.6$ kpc (Methods) it is relatively nearby and also one of the visually brightest Be binaries. It thus seems reasonable to assume that many other Be–BHs exist in the Galaxy but remain hidden by the lack of transient X-ray activity. Analysis of archival ROSAT images yields an upper limit to the X-ray flux at 10^{-17} erg cm$^{-2}$ s$^{-1}$ (Methods), which, for our estimated distance, translates into an X-ray luminosity $L_X < 1.0 \times 10^{32}$ erg s$^{-1}$ or $<1.6 \times 10^{-7}$ times the Eddington luminosity, L_{Edd}. Therefore, accretion is highly inefficient in MWC 656, akin to accretion onto black holes in quiescent low-mass X-ray binaries, where accretion disks are truncated at $\sim 10^2$–10^3 Schwarzschild radii and then behave as an accretion dominated accretion flow.

In the context of disk instability theory, the very low mass-transfer rates expected for BeXBs (with peak values of $\sim 10^{-11}$ M_\odot yr$^{-1}$ near periastron) lead to extremely long outburst recurrence periods or even to completely suppressed transient activity. It is the dormant condition of the accretion disk together with the absence of a solid surface radiating the accretion energy that makes Be–BHs very difficult to detect through X-ray surveys, thus providing an explanation for the missing Be–BH population. This is in stark contrast with the other black-hole high-mass X-ray binary known in the Galaxy, Cygnus X-1, where an X-ray-persistent accretion disk is fed by the powerful wind ($\sim 10^{-8}$ M_\odot yr$^{-1}$) of an O supergiant star.

The detection of a Be–BH is also important for our understanding of BeXB evolution. Whereas the total number of neutron-star BeXBs in the Galaxy depends strongly on the distribution of kick velocities, the number of Be–BHs is very sensitive to the survival probability during the common envelope phase. Modern population synthesis models predict a Galactic number ratio of neutron-star to black-hole BeXBs of 54, for the case of no common envelope survival during the Hertzsprung gap and a Maxwellian distribution of kick velocities with reduced root mean square (r.m.s.) $\sigma = 133$ km s$^{-1}$ (model C in ref. 3). There are currently ~81 BeXBs known in the Galaxy with ~48 pulsating neutron stars, and thus our discovery of a black-hole companion to MWC 656 is consistent with these model predictions. However, it should be noted that the X-ray spectra of the remaining BeXBs, whenever they are available, also indicate the presence of a neutron star. Further, in stark contrast with the known BeXBs, MWC 656 has been identified through a claimed γ-ray flare (see Methods) and not by its X-ray activity. This seems to imply that the discovery of Be–BHs is observationally biased, in which case common envelope mergers would be less frequent than commonly assumed and/or neutron star kicks would be best described by the radio pulsar birth velocity distribution. Last, it is interesting to note that MWC 656 will probably evolve into a black-hole/neutron-star binary, a potential source of strong gravitational waves and a short γ-ray burst (Methods).

METHODS SUMMARY

The Fe II line was fitted with a two-Gaussian model with Gaussian positions, intensities and separation left as free parameters. The Fe II velocities were obtained from the mean of the Gaussians offset with respect to the rest velocity at 4583.837 Å. A detailed radial velocity study of the He I profile was performed using the double-Gaussian technique, and this shows that the systemic velocity is pushed down in the line core by the S-wave component while the phasing and velocity semi-amplitude remain very stable. Therefore, a +30 km s$^{-1}$ offset was applied to the He I velocities before fitting all the data points with a double-line orbital model. The S-wave also modulates the He I flux with the orbital period, and its phasing can be interpreted as either enhanced mass transfer during periastron or the visibility of a hotspot in the accretion disk. The spectral classification of the star was obtained by direct comparison with a range of templates conveniently broadened, and the best match is provided by the B1.5 III star HD 214993. We used several calibrations available in the literature to constrain the mass of MWC 656 from its spectral type, including evolutionary tracks, a dynamical determination from the detached eclipsing binary V380 Cyg and robust lower limits from dynamical masses of main-sequence stars. The distance is obtained through combining the absolute magnitude of B1.5–2 III stars with the observed brightness of MWC 656, corrected for interstellar reddening. Upper limits to the X-ray flux of MWC 656 are derived from archival ROSAT and Swift pointings, using a neutral hydrogen column density $N_H = 1.4 \times 10^{20}$ cm$^{-2}$ and a photon index $\Gamma = 2.0$, typical of black holes in quiescence. We further discuss the future evolution of MWC 656 and its fate, a possible black-hole/neutron-star binary.

Online Content Any additional methods, Extended Data display items and Source Data are available in the online version of the paper; references unique to these sections appear only in the online publication.
2010119 from the Gobierno de Canarias. J.M.P. acknowledges financial support from ICREA Academia.

Author Contributions J.C. performed the radial velocity analysis of the spectra and wrote the paper. I.N. obtained the Mercator spectrum and contributed to the interpretation of the data. I.R. computed the eccentric orbital fits to the radial velocity curves. M.R. calculated the distance and X-ray luminosity, and contributed to the interpretation of the data. J.M.P. also contributed to the interpretation of the data. A.H. computed the rotational broadening of the star and, together with I.N., performed the spectral calibration of the star. S.S.-D. observed the standard stars and reduced the Mercator spectra. J.M.P. and M.R. assisted in writing the section on γ-ray binaries in Methods.

Author Information Reprints and permissions information is available at www.nature.com/reprints. The authors declare no competing financial interests. Readers are welcome to comment on the online version of the paper. Correspondence and requests for materials should be addressed to J.C. (jorge.casares@iac.es).
METHODS

Spectroscopic observations. Thirty-two 10-min spectra of MWC 656 were obtained between 23 April and 28 July 2011 using the Fibre-fed RObotic Dual-beam Optical Spectrograph (FRODOspec) on the robotic 2.0-m Liverpool telescope at the Observatorio del Roque de Los Muchachos on La Palma (Spain). Full details of these observations are given elsewhere. Four additional FRODOspec spectra were collected on the nights of 28 May and 2–4 June 2012 using an identical instrument configuration. We also used the High Efficiency and Resolution Mercator Echelle Spectrograph (HERMES) on the 1.2-m Mercator telescope to obtain a 15-min spectrum on the night of 26 October 2012. We employed the high-resolution mode in HERMES which yields a resolving power $R = 85,000$ across the entire optical range 3,770–9,000 Å. A series of B-type MK standards (where MK refers to the Morgan–Keenan spectral classification) were also observed with HERMES on the nights of 14 June and 9 November 2011 using an identical set-up as for MWC 656. The automatic pipeline products were used for the extraction and calibration of the Liverpool telescope and Mercator telescope data. A full log of the observations is presented in Extended Data Table 1.

Radial velocity analysis. Radial velocities were extracted from the Fe II 4,686 Å emission by fitting a single Gaussian to the line profile in the 36 Liverpool telescope spectra. A least-squares sine fit to the velocity points yields an orbital period of 59.5 ± 0.6 days (Extended Data Fig. 1a), which is consistent within 1σ with the (more accurate) photometric period determination. The difference is also explained by the fact that our radial velocities only cover two full orbital cycles. Consequently, we henceforth adopt 60.37 ± 0.04 days as the true orbital period of the binary. The radial velocities were modelled with an eccentric binary orbit using the code SBOP28, with the period fixed to 60.37 days. Individual points were weighted proportionally to 1/σ2, where σ is the radial velocity uncertainty. We adjusted the following orbital parameters: epoch of periastron (T0), eccentricity (e), argument of the periastron (ω), systemic velocity (V) and velocity semiamplitude (K). The resulting orbital elements are listed in the first column of Extended Data Table 2, together with their implied fundamental binary parameters. The fitted solution yields maximum velocity at phase 0.06, where phase 0 is arbitrarily set to HJD 2453243.3 or the epoch of maximum brightness in the photometric light curve.31 This is approximately in antiphase with the radial velocity of the Be star previously determined2, and therefore the Fe II emission most probably follows the orbit of the companion star.

To further constrain the orbital motion of the Be star, we measured radial velocities from the Fe I 4,583 Å emission line by fitting a two-Gaussian model to the individual profiles. The Gaussians are set to have identical widths but their intensities and separation are allowed to vary to account for possible profile changes. In any case, these three free parameters are found to be very stable, with differences which are always within 10%. Only in one case was the double-peak separation found to be 13% smaller than the average. This corresponds to one spectrum where the profile appears blurred. For this particular case we decided to fit the Gaussian separation to the average value, 270 km s−1. The radial velocity of the Fe II line was then obtained from the centre of the double Gaussian model relative to the line rest velocity at 4,583.87 Å. We subsequently fitted the radial velocity points with an eccentric orbit model using SBOP28 after fixing the orbital period to 60.37 days and weighting data points proportionally to 1/σ2, as before. The best set of fitting parameters are listed in the second column of Extended Data Table 2.

The two independent solutions presented in Extended Data Table 2 give peri- astron phases T0 which are consistent at 1σ. Also, the arguments of periastron are in antiphase within 1σ uncertainties, that is, $\omega_{FeII} = \omega_{FeI} + 180^\circ$. Further, the eccentricities are consistent at the 1σ level. These are all strong indications that both radial velocity curves display the reflex motion of two components in a binary system, thus endorsing fitting a combined double orbit to the ensemble of 72 He II radial velocity points. This technique allows us to disentangle the different contributions to the line absorption profiles (4,387 Å, 4,471 Å and 4,922 Å) and the Si III line 4,552 Å. Further, the absorption profiles (4,387 Å, 4,471 Å and 4,922 Å) of He II 4,686 Å are expected to closely trace the motion of the compact star. Extended Data Fig. 2 as a diagnostic diagram23. Note that we prefer to fit a simple sine wave model rather than a full eccentric orbit because the extra fitting parameters (that is, e, ω, and periastron phase) become poorly constrained as we approach the noisy wings of the line profile. Given the small orbital eccentricity the fitted sine wave parameters are still meaningful, although they should be taken as a first approximation to the true values because of the model oversimplification.

The high-velocity wings of the He II profile are formed in the inner regions of the accretion disk and are less affected by the core S-wave component. Therefore, they are expected to closely trace the motion of the compact star. Extended Data Fig. 2 shows that, as we move away from the line core, the systemic velocity rises quickly from about −46 km s−1 to about −25 km s−1, thus approaching the value of the Fe II solution. This demonstrates that the Fe II velocities provide a more accurate description of the true binary systemic velocity than the centroid of the He II line and, therefore, we decide to apply a +30 km s−1 offset to the latter. Beyond $v > 500$ km s−1, K drops below 70 km s−1 and hence there is a possibility that the velocity semi-amplitude of the compact star was overestimated in Table 1. Note, however, that this would raise the binary mass ratio which would make even stronger the argument for a black-hole companion.

Orbital modulation of the He II flux. Extended Data Fig. 1b shows that the equivalent width of the Fe II 4,686 Å line is strongly modulated with the orbital period. It peaks at phase −0.9, which is very close to the maximum in the photometric light curve (that is, phase 0 by convention). On the other hand, the amplitude of the equivalent width modulation is an order of magnitude larger (−40%) than that of the photometric light curve15,24. These two arguments imply that the equivalent width variability is driven by true changes in the line flux rather than in the continuum.

Extended Data Fig. 1 also reveals that the maximum equivalent width (phase −0.93 ± 0.04) almost coincides with the peak in the He II radial velocity curve, when the compact star is receding from us at maximum speed. The latter agrees well with the time of maximum visibility of the hotspot or shock region between the gas stream and the accretion disk. Alternatively, the modulation of the He II flux can be interpreted as caused by enhanced mass transfer near periastron, which is constrained to phase 0.01 ± 0.10 by our orbital solution.

Spectral classification, mass and distance to MWC 656. The spectral classification of MWC 656 is complicated by the effects of fast rotation, and by the presence of many (mostly Fe II) emission lines affecting many of the features useful for this purpose. To provide an improved classification, our high-quality Mercator telescope + HERMES spectrum was compared to the spectra of several MK standards taken with the same instrumentation and set-up as for MWC 656. Before this, we measured the rotational broadening (vsini) in MWC 656 by applying the Fourier technique28, combined with a goodness-of-fit method29, to the He I absorption profiles (4,387 Å, 4,471 Å and 4,922 Å) and the Si III line 4,552 Å. This allows us to quantify the effects of the different components of the line broadening, with the first zeroes of the transformed profile due to rotation. We obtain $v_{sini} = 330 ± 30$ km s−1, with the error reflecting the dispersion of the individual lines, in good agreement with the value previously reported3. All our MK standards have very small intrinsic broadenings27, and thus they were subsequently broadened by 330 km s−1 to reproduce the observed broadening in MWC 656. This was done by convolving the MK spectra with a Gray rotational profile30, using a limb-darkening coefficient $e = 0.34$ which is appropriate for the stellar parameters of our target (see below) and the spectral range of interest.

The narrow wings of the Balmer lines definitely indicate that the star is a giant, which is consistent with the strength of the O II spectrum (which makes it B2 or earlier, in contrast with a previous classification3) which reported a B3 IV. The absence of Si IV and He II absorption lines places MWC 656 in the B1–B2 range. As shown in Extended Data Fig. 3, the best match to the overall spectrum is provided by the B1.5 III standard HD 214093, although MWC 656 has rather stronger N II features. Nitrogen enhancement is frequently found in fast rotators26,27, and understood as a natural product of stellar evolution35. Nitrogen enhancement is often accompanied by C depletion. Therefore, we cannot completely rule out the possibility that MWC 656 is a B2 III giant with some C depletion (compare to the spectrum of the MK standard HD 35468 in Extended Data Fig. 3), but the strength of Si II and N II lines, which are the most sensitive to temperature in this spectral range, strongly supports a B1.5 III classification.

Armed with the spectral classification, we can now set constraints on the mass of the Be star using the several calibrations available in the literature. Based on evolutionary tracks31, giant stars in the range B1–B2 have mass 12–17 M⊙. On
the other hand, the most precise calibrations are provided by dynamical determinations in detached eclipsing binaries but unfortunately data on B1–B2 giants are very scarce. The closest example is provided by the B1.5 III star in V380 Cyg, where a dynamical mass of $13.1 \pm 0.2 \, M_\odot$ has been reported\(^{22}\). No further analogues are found in a recent exhaustive compilation of detached binaries\(^{24}\). In any case, robust lower limits to the mass of our target are provided by dynamical masses of main-sequence stars. For instance, ref. 33 gives $11 M_\odot$ for B1 and $9 M_\odot$ for B2 V, while ref. 34 yields $10 M_\odot$ for B1.5 V. Taking into account all the above, we support a mass range of $10–16 \, M_\odot$ for the Be star MWC 656. We also remark that the above mass range might be an underestimate because of the large rotational velocity of MWC 656. This causes the star to appear cooler and slightly less luminous than an object of the same stellar mass rotating at lower speed. This effect could increase our estimated mass by $\sim 10–15\%$, which would raise the black-hole mass even more\(^{25}\).

We can also estimate the distance to MWC 656 by comparing the absolute magnitudes of B1.5–B2 III stars with the observed brightness, corrected for interstellar reddening with TLUSTY\(^{38}\) and FASTWIND\(^{39}\) models reddened by variable amounts, was fitted in the range 150–500 nm (where the contribution of the Be disk is marginal) with TLUSTY\(^{38}\) and FASTWIND\(^{39}\) models reddened by variable amounts, which would raise the black-hole mass even more\(^{25}\).

A candidate black-hole/neutron-star progenitor. The future evolution of MWC 656 will probably lead to a black-hole/neutron-star binary\(^{46}\). During the red giant phase the 13 M_\odot Be star will expand by several hundred solar radii\(^{47}\), thus engulfing the black hole. Mass transfer from the expanding Be star onto the black hole will be dynamically unstable and a common envelope will ensue. This is a highly dissipative process which leads to spin-in of the black hole, efficient circularization of the orbit and the ejection of the Be star envelope. The outcome of the common envelope phase will then be a 2 M_\odot He star\(^{48}\) and the present 5 M_\odot black-hole companion in a close circular orbit. In the event of a symmetric core collapse, the newly born black-hole/neutron-star binary will remain bound because less than half the total initial mass is expelled in the explosion\(^{49}\). In the case of an asymmetric supernova, the initial mass will depend on the magnitude and direction of the kick.

Black-hole/neutron-star binaries, which have not yet been detected, are instrumental in providing fundamental tests of gravitational theories, strong sources of gravitational waves and prime candidates for the production of short γ-ray bursts through coalescence\(^{50–53}\). The fate of MWC 656 as a possible black-hole/neutron-star binary is very relevant because it provides tight empirical constraints on detection rates for gravitational wave observatories, such as advanced LIGO/VIRGO\(^{50}\).

23. Shafter, A. W., Szokody, P. & Thorstensen, J. R. X-ray and optical observations of the ultrashort period dwarf nova SW Ursae Majoris — a likely new DQ Hercules star. Astrophys. J. 308, 765–780 (1986).
24. Paredes-Fortuny, X., Ribé, M., For, O. & Núñez, J. Optical photometric monitoring of gamma-ray binaries. Ann. Inst. Phys. Conf. Ser. 1505, 390–393 (2012).
25. Gray, D. F. The Observations and Analysis of Stellar Photophses (CUP 20, Wiley-VCH, 1992).
26. Ryans, R. S. et al. Macroturbulent and rotational broadening in the spectra of B-type supergiants. Astron. Astrophys. 336, 577–586 (2002).
27. Abt, H. A., Levato, H. & Grosso, M. Rotational velocities of B stars. Astron. J. 573, 359–365 (2002).
28. Howarth, I. D. & Smith, K. C. Rotational mixing in early-type main-sequence stars. Mon. Not. R. Astron. Soc. 327, 393–368 (2001).
29. Walborn, N. R. et al. Further results from the Galactic O-star spectroscopic survey: rapidly rotating late ON giants. Astron. J. 142, 150–156 (2011).
30. Przybilla, N., Feinstein, M., Nieva, M. F., Meynet, G. & Maeder, A. A Mixing of CNO-processed matter in massive stars. Astron. Astrophys. 517, A38–A43 (2010).
31. Straizys, V. & Kuriliene, G. Fundamental stellar parameters derived from the evolutionary tracks. Astrophys. Space Sci. 80, 353–368 (1981).
32. Pavlovski, K. et al. Chemical evolution of high-mass stars in close binaries — II. The evolutionary stage of an ultraviolet eclipsing binary V830 Cygni. Mon. Not. R. Astron. Soc. 400, 791–804 (2009).
33. Torres, G., Andersen, J. & Giménez, A. Accurate masses and radii of normal stars: modern results and applications. Astron. Astrophys. Rev. 18, 67–120 (2010).
34. Harmanec, P. Stellar masses and radii based on modern binary data. Bull. Astron. Inst. Czech. 39, 329–345 (1988).
35. Negueruela, I. et al. Astrophysical parameters of LS 2883 and implications for the PSR B1259-63 gamma-ray binary. Astron. J. 732, L11–L15 (2011).
36. Thompson, G. L. et al. Catalogue of Stellar Ultraviolet Fluxes. A Compilation of Absolute Stellar Fluxes Measured by the Sky Survey Telescope (S2/68) Aboard the ESRO Satellite TD-1 (Science Research Council, UK, 1978).
37. Merrill, P. W. & Burwell, C. G. Supplement to the Mount Wilson catalogue and bibliography of stars of classes B and A whose spectra have bright hydrogen lines. Astrophys. J. 98, 153–184 (1943).
38. Hubeny, I. & Lanz, T. NLTE line blanketed model atmospheres of hot stars. I. Hybrid complete linearization/accelerated lambda iteration method. Astrophys. J. 439, 675–904 (1995).
39. Puls, J. et al. Atmospheric NLTE-models for the spectroscopic analysis of blue stars with winds. II. Line-blanketed models. Astron. Astrophys. 435, 669–698 (2005).
40. Nicolet, B. Catalogue of homogeneous data in the UV by photometric photometric system. Astron. Astrophys. Suppl. Ser. 34, 1–49 (1978).
41. Piskunov, R. M., Giallo, E. & P. G. The X-ray spectral evolution of galactic black hole X-ray binaries toward quiescence. Astron. J. 773, 59–74 (2013).
42. Bohlin, R. C., Savage, B. D. & Drake, J. F. A survey of interstellar H I from L-alpha absorption measurements. II. Astrophys. J. 224, 132–134 (1978).
43. Mirabel, I. F. Gamma-ray binaries revealed. Science 335, 175–176 (2012).
44. Albert, J. et al. Very high energy gamma-ray radiation from the stellar mass black hole binary Cygnus X-1. Astrophys. J. 665, L51–L54 (2007).
45. Sabatini, S. et al. Gamma-ray observations of Cygnus X-1 above 100 MeV in the hard and soft states. Astrophys. J. 766, 83–97 (2013).
46. Lipunov, V. M., Postnov, K. A., Prokhorov, M. E. & Osminkin, E. Yu. Binary radiopulsars with black holes. Astrophys. J. 423, L121–L124 (1994).
47. Schaller, G., Schaerer, D., Meynet, G. & Maeder, A. New grids of stellar models from 0.8 to 120 solar masses at $Z = 0.020$ and $Z = 0.001$. Astron. Astrophys. 96 (suppl.), 269–331 (1992).
48. Woosley, S. E. & Weaver, T. A. The evolution and explosion of massive stars. II. Astrophys. J. Suppl. Ser. 101, 181–235 (1995).
49. Boersma, J. Mathematical theory of the two-body problem with one of the masses decreasing with time. Bull. Astron. Inst. Neth. 15, 291–301 (1961).
50. Narayan, R., Piran, T. & Shemi, A. Neutron star and black hole binaries in the Galaxy. Astrophys. J. 379, L17–L20 (1991).
51. Portegies Zwart, S. F. & Yungelson, L. R. Formation and evolution of binary neutron stars. Astron. Astrophys. 332, 173–188 (1998).
52. Belczynski, K. et al. A Comprehensive study of binary compact objects as gravitational wave sources: evolutionary channels, rates, and physical properties. Astrophys. J. 572, 407–431 (2002).
53. Belczynski, K. et al. Cyg X-3: a galactic double black hole or black-hole-neutron-star progenitor. Astrophys. J. 676, 990–1002 (2008).
54. Lesh, J. R. The kinematics of the Gould Belt: an expanding group? Astron. J. 17 (suppl.), 371–444 (1969).
Extended Data Figure 1 | Time evolution of the He II 4,686 Å emission line in MWC 656. a, Radial velocities obtained from single Gaussian fits to the line profile. The best fitting sine wave, with a period of 59.5 days, is overplotted. Maximum velocity occurs at HJD 2455722.2 or photometric phase 0.06. b, Equivalent width (EW) as a function of time. We used the convention of positive equivalent widths for emission lines. Error bars, 1 s.d.
Extended Data Figure 2 | Diagnostic diagram for the He II 4,686 Å line in MWC 656. It has been computed using the double-Gaussian technique with a Gaussian width equal to the instrumental resolution full-width at half-maximum, 55 km s\(^{-1}\). The vertical dotted line indicates the Gaussian separation for which the continuum noise starts to dominate. Error bars, 1 s.d. Panels display the evolution of the sine wave fitting parameters with Gaussian separation \(a\). From top to bottom: the systemic velocity \(\gamma\), the sine wave \(\varphi_0\) phase, the velocity semi-amplitude \(K\) and the control parameter \(\sigma(K)/K\).
Extended Data Figure 3 | Classification spectrum of the Be star MWC 656. From top to bottom, spectra of MWC 656 and the MK standards HD 214993 (B1.5 III) and HD 35468 (B2 III) (ref. 54). The standards have been artificially broadened by 330 km s^{-1} to mimic the rotational broadening of MWC 656.
| Date | Telescope+ instrument | Spect. Range Å | # Exp. | Integration (sec.) | Res. Δλ/λ |
|-----------------|-----------------------|----------------|--------|--------------------|-----------|
| 23 Apr – 28 Jul 2011 | LT+FRODOspec | 3900–5215 | 32 | 600 | 5000 |
| 28 May 2012 | LT+FRODOspec | 3900–5215 | 1 | 600 | 5000 |
| 2 – 4 June 2012 | LT+FRODOspec | 3900–5215 | 3 | 600 | 5000 |
| 26 Oct 2012 | MT+HERMES | 3770–9000 | 1 | 900 | 85000 |
Extended Data Table 2 | Orbital elements derived from radial velocities of the He \textsc{ii} 4,686 Å and Fe \textsc{ii} 4,583 Å lines

Parameter	He \textsc{ii} \(\lambda \text{4686} \)	Fe \textsc{ii} \(\lambda \text{4583} \)
\(P_{\text{orb}} \) (days)	60.37 (fixed)	60.37 (fixed)
\(T_0 \) (HJD−2,450,000)	3245.3±7.5	3243.1±3.7
\(e \)	0.08±0.06	0.24±0.08
\(\omega \) (deg)	351.7±44.4	164.4±22.1
\(\gamma \) (km s\(^{-1}\))	−44.5±3.4	−13.5±1.8
\(K \) (km s\(^{-1}\))	78.8±4.6	31.0±2.4
\(a \sin i \) (R\(\odot\))	93.7±5.4	35.9±2.8
\(f(M) \) (M\(\odot\))	3.02±0.53	0.17±0.04
\(\sigma_f \) (km s\(^{-1}\))	19.2	10.3

\(T_0 \) is the epoch of periastron, \(e \) the orbit eccentricity, \(\omega \) the longitude of periastron, \(\gamma \) the systemic velocity, \(K \) the velocity semiamplitude, \(a \) the semimajor axis, \(i \) the binary inclination, \(f(M) \) the mass function and \(\sigma_f \) the r.m.s. of the fit.