Avian Chlamydiosis: A World-wide Emerging and Public Health Threat

WAFAA A. ABD EL-GHANY*

Poultry Diseases Department, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt.

Abstract | Avian chlamydiosis is a respiratory disease affecting all types of birds and mammals. It is a disease of public health importance as it severely affects human being. The disease is mainly caused by Chlamydia psittaci (C. psittaci) which is obligate intracellular Gram-negative bacterium. Other species of Chlamydia like C. gallinacea and C. avium have been recorded. All avian species including psittacine, domestic and wild birds are susceptible to infection with C. psittaci. Infection is usually occur through inhalation or ingestion of infected droplets or direct contact with infected or carrier birds. Avian chlamydiosis in psittacine birds or human is called psittacosis or parrot fever while in commercial domestic poultry is known as ornithosis. The clinical picture of C. Psittaciin birds is mainly respiratory and/or enteric and sometimes nervous. Infection of human with C. Psittaci is usually acquired from direct contact with infected living birds or carcasses. The disease in human starts as fever and headache, changes to cough difficult respiration and may death. Diagnosis of the disease in birds is based on the clinical picture as well as detection of the causative agent. Isolation, identification as well as serological monitoring of Chlamydia species are crucial for the disease diagnosis. Controlling of avian chlamydiosis depends on specific treatment of the infected birds using tetracyclines for long time. There is no available vaccine to Chlamydia species in birds till now. Quarantine and testing of imported pet birds are the must for prevention of avian chlamydiosis. From the all mentioned above, this review article gives an overview on avian chlamydiosis considering the incidence especially in Egypt and some Middle East countries, causative agent, susceptibility, infection and transmission, the clinical picture in birds and human, diagnosis as well as prevention and control.

Keywords | Chlamydia, Birds, Psittacosis, Zoonosis, Human

INTRODUCTION

Avian chlamydiosis is a highly infectious, systemic, fetal and zoonotic disease of psittacine, wild and domestic birds (Andersen, 1997). It is a reportable disease in many countries due to human affection and public health significance (Naveed et al., 2018; Hogerwerf et al., 2020).

Chlamydia in psittacine birds and in human was initially termed as psittacosis or parrot-fever, but a new term “ornithosis” has been introduced to describe the disease in domestic and wild birds (Meyer, 1941). Both terms have been considered as the same and the name “avian chlamydiosis” is more common (Andersen et al., 1997). The main cause of avian chlamydiosis is Chlamydia psittaci (C. psittaci), in addition, C. gallinacea, C. avium, C. ibidis and C. buteonis are new avian chlamydial species (Sachse et al., 2014, 2015; Cheong et al., 2019, Laroucau et al., 2019; Li et al., 2020). C. avium has been found mainly in pigeons and psittacines, while C. gallinacea has been reported in asymptomatic poultry flocks and linked to chlamydiosis in workers. It is interestingly to found these species not only in the same flock, but also in the same bird.

Chlamydophila is a relatively new genre name that divided Chlamydiaceae family to Chlamydia and Chlamydophila...
Considerable economic losses have been noted in outbreaks of chlamydiosis in ornamental and some domestic birds (Kaleta and Taday, 2003; Siraj et al., 2018). In addition, the disease is regarded as a potential zoonosis to human (Evans et al., 2011; Pal, 2017). Chlamydiosis in pet and domestic poultry is a systemic disease and represented in acute, subacute, chronic or subclinical forms (Taylor-Brown et al., 2015). Psittacosis in human causing atypical pneumonia, but the disease may be fatal if not treated (Bommana and Polkinghorne, 2019). Awareness among bird owners about the disease risk is very important (Overmars-Marx, 2019). Treatment of Chlamydia infection in birds is the most important means of disease control (Rodolakis and Laroucau, 2015). There is no commercial vaccine for chlamydiosis till now. Quarantine and testing of imported birds are very critical to prevent introduction of the disease (Matsui et al., 2008).

Chlamydial infection is not only demonstrated in psittacines, but also in domesticated birds. So, great effort should be directed toward this important infection. Chlamydiosis is often accompanied with concurrent infections as well as several outbreaks. In addition, Human in contact with all types of living birds and with dead or slaughter carcasses are also susceptible and exposed to infection hazard. In Egypt, despite the rapid growth of psittacine bird’s populations, there are few available information about chlamydial infection in birds or human.

So, this review article gains more insight to avian chlamydiosis considering the incidence especially in Egypt and some Middle East countries, the causative agent, susceptibility, infection and transmission, the clinical picture in birds and human, diagnosis as well as prevention and control.

The History and Incidence of Avian Chlamydiosis

Avian chlamydiosis is a widely distributed disease all over the world. The disease has been recorded in several countries. The incidence of C. psittaci infection in different avian species and human either in Egypt or different Middle East countries (Saudi Arabia, Iran, Israel and Turkey) is present in Table 1. In these countries, the reported studies about avian chlamydiosis are few, so comprehensive studies about such infection are urgently required.

The Causative Agent

The cause of avian chlamydiosis is *C. psittaci* which is a Gram-negative obligatory intracellular coccoid bacterium. The organism is belonging to family *Chlamydiaceae*, order *Chlamydiales* and genus *Chlamydia*. The phylogenetic analysis of the 16S and 23S rRNA genes showed that order *Chlamydiales* contained two distinguished groups’ genera at the family level; *Chlamydia* and *Chlamydophila* (Everett et al., 1999; Geens et al., 2005). About 7 genotypes of *C. psittaci* was isolated from avian origin (A to F, E/B) and 2 mammalian (M56 and WC) that can be transmitted to human (Andersen and Vanrompay, 2003; Lent et al., 2012). These genotypes are host or species specific as genotypes A and F for psittacine birds, B for pigeons and doves, C for ducks and geese, D for turkeys and E for pigeons, turkeys, ducks, ratters and sometimes human (Andersen, 1997; Andersen and Vanrompay, 2000; Meijer and Ossewaarde, 2002; Zhang et al., 2015; Wang et al., 2018). Genotype E/B was isolated from ducks (Pannekoek et al., 2010). Other genotypes (I, J, 1V, 6N, Mat16, R54, YP84 and CPX0308) are also demonstrated in birds. Genotypes WC and M56 are infecting their specific hosts (Piasecki et al., 2012).

Sachse et al. (2014) isolated *C. avium* strains from cloacal swabs and organs of pigeons and psittacine birds suffered from respiratory signs and/or diarrhoea. *C. avium* appears to be common among pigeons and psittacines in Europe (Sachse et al., 2015). A German study found *C. avium* 15% of breeder flocks of domesticated pigeons, and a French study detected it in 8% of urban pigeons. A little data is available about this type of chlamydioidal infection in birds and human.

The first detection of *C. gallinacea* was in France where the organism has been isolated from poultry slaughterhouse workers with atypical pneumonia (Laroucau et al., 2009a). *C. gallinacea* can be regarded as a bacterium with the potential to infect humans and animals. From different European countries, China and Argentina, *C. gallinacea* has been isolated from chickens, turkeys and ducks (Frutos et al., 2015; Hulin et al., 2015; Guo et al., 2016). Experimental infection of chickens with *C. gallinacea* was done by Guo et al. (2016) and the results revealed only weight loss of the infected birds without obvious signs. Moreover, *C. gallinacea* has been found in asymptomatic chickens, guinea fowl, turkeys and ducks. The sequence analysis of *C. gallinacea* plasmid has been carried out with detection of specific virulent factor (Ho’izer et al., 2016). From wild birds in Korea, genetic variant strains of *C. gallinacea* have been detected that was differ from those of European and Chinese origin (Jeong et al., 2017). In China, mixed infections with *C. gallinacea*, *C. psittaci* and *C. pneumoniae* have been detected in apparently healthy dairy and beef cattle that was in close contact with poultry (Li et al., 2016).
Table 1: The incidence of avian chlamydiosis in Egypt and in some Middle East countries

Country	Findings	Reference
Egypt	Early in 1984, the incidence and public health importance of ornithosis and psittacosis in the imported and exported lovebirds had been demonstrated. A case report study was demonstrated in Egypt, where confirmed case of woman psittacosis had been confirmed. The history of exposure to diseased psittacine bird, clinical presentation and laboratory tests supported the diagnosis of such infection. It has been detected that *C. psittaci* antibodies were found in 20 out of 68 (29.91%) chicken's serum samples using complement fixation test. Ten blood samples of the serologically positive cases were subjected. The PCR results were positive for *C. psittaci* at 119 base pair. In a local commercial market in Egypt, 466 cloacal, 311 ocular and 205 nasal swabs were collected from diseased and apparently healthy turkeys, pigeons, ducks and chickens. Isolation of *C. psittaci* in embryonated chickens eggs revealed presence of the organism at incidences 74.5%, 79.2%, 5.6% and 17.5% in turkeys, pigeons, ducks and chickens, respectively. Specimens including liver, lung, heart and spleen were taken from suspected *C. psittaci* infected chickens, ducks, turkeys and pigeons. The results of specimen's inoculation in eggs and staining showed presence of *C. psittaci* in chickens (92%), ducks (88%), turkeys (76%) and pigeons (72%). The organism was identified in chickens and turkeys (91.6%) by PCR and (83.3%) using immunofluorescence, while in ducks and pigeons this percentage was 75%. Complement fixation test revealed *C. psittaci* in chickens, pigeons, ducks and turkeys in percentages 91.6%, 83.3%, 75% and 66.6%; respectively.	Mousa (1984) Kay (1997) Osman et al. (2007) El-Jakee et al. (2014) Hegazy et al. (2014) El-Jakee et al. (2014) Hegazy et al. (2014) Mostafá et al. (2015) Hegazy et al. (2017) El-Jakee et al. (2017) Hegazy et al. (2017) Hegazy et al. (2018) Mahmmod et al. (2018) Hegazy et al. (2018) Hegazy et al. (2017)
Saudi Arabia	It is the first report of chlamydiosis outbreak in captive breeding group of birds belonging to family Otididae. Birds showed peracute deaths, severe and variable signs, pathological and histological typical lesions. Stained impression smears of spleen showed typical inclusions with prevalence rate (80%) of anti- Chlamydia antibodies using a competitive enzyme immunoassay test.	Greth et al. (1993)

Saudi Arabia It is the first report of chlamydiosis outbreak in captive breeding group of birds belonging to family Otididae. Birds showed peracute deaths, severe and variable signs, pathological and histological typical lesions. Stained impression smears of spleen showed typical inclusions with prevalence rate (80%) of anti- Chlamydia antibodies using a competitive enzyme immunoassay test.
Iran

Study	Country	Method	Sample Size	Species	C. psittaci Genotypes
Ciftci et al. (2008)	Turkey	Fecal samples	96 samples	Pet birds	Genotype F
Mahzonieh et al. (2011)	Iran	Nasal and cloacal swabs	200 birds	27 avian species	Genotype A, B
Madani and Pighambari (2013)	Iran	Nasal and cloacal swabs	253 clinical samples	27 avian species	Genotype A, B

Israel

Study	Country	Method	Sample Size	Species	Genotype
Huminer et al. (1988)	Israel	Necropsy	22 patients	30 symptomatic birds	Genotype A
Mina et al. (2019)	Israel	Fecal samples	37 samples	10 different species of exotic birds	Genotype A, B

Turkey

Study	Country	Method	Sample Size	Species
Khodadadi et al. (2015)	Turkey	Microscopy	100 samples	Different species of exotic birds

Host Susceptibility

The highest incidence of chlamydial infections was recorded in Psittaciformes, Passeriformes, Galliformes, Columbiformes and Anseriformes. Avian chlamydiosis is a world-wild disease that affects more than 465 avian species including companion, domestic and wild birds (Tan et al., 2019) as well as 30 different orders of birds (Kaleta and Taday, 2003). Pet birds, domestic poultry species (chickens, turkeys, ducks and geese) and wild birds can be infected with C. psittaci (Vanrompay et al., 1995a). Psittacidae (parrots, parakeets, cockatoos, cockatiels, amazon parrots and macaws) (Mousa, 1984; Smith et al., 2011) as well as...
Columbiformes (pigeons and doves) are particularly affected with chlamydiosis (Ghorbanpoor et al., 2015). Zoo, fancy or pet marked birds are very susceptible host to *C. psittaci* that can transmit the infection to human and other domestic birds (Feng et al., 2016; Siraj et al., 2018). Pal and Dahiya (1985) and Sachse et al. (2015) noted that captive parrots are the main global reservoir of *C. psittaci*. Wild birds have been shown susceptibility to *C. psittaci* with persistent infection for long period (Roberts and Grimes, 1978; Brand, 1989; Holzinger-Umlauf et al., 1997; El-Ja-kee et al., 2014).

Several reports showed natural infections with *C. psittaci* in broiler, layer and breeder chickens (Durée et al., 1975; Barr et al., 1986; Malkinson et al., 1987; Arzey and Arzey, 1990; Osman et al., 2007; Yang et al., 2007; Gaede et al., 2008; Zhang et al., 2008; Laroucau et al., 2009; Robert-son et al., 2010; Zhou et al., 2010; Dickx and Vanrompay, 2011; Zocevic et al., 2012; Yin et al., 2013; Lægæ et al., 2014; Guo et al., 2016; Čehová et al., 2018), geese (Sadowski and Minta, 1979), ducks (Bracewell and Bevan, 1982; Farmer et al., 1982; Arzey et al., 1990; Newman et al., 1992; Hinton et al., 1993; Laroucau et al., 2009b; Lin et al., 2019), pigeons (Sachse et al., 2012; Zocevic et al., 2013; Sara et al., 2018) and turkeys (Hedberg et al., 1989; Newmann, 1989; Vanrompay et al., 1997b; Enany et al., 2009; Dickx and Vanrompay, 2011).

Young birds are more susceptible to infection than older birds. Adult birds may have sub-clinical disease, while young birds have acute infection (Herrmann et al., 2006).

It has been shown that mammals could be infected with avian *C. psittaci* strains. For example, *C. psittaci* has been detected in rabbits (Ni et al., 2015), goat and sheep (Osman et al., 2011), cattle (Reinhold et al., 2011; Li et al., 2016), dogs (Sprague et al., 2009), horses (Bocklisch et al., 1991; Henning et al., 2000; Szeredi et al., 2005; Theegarten et al., 2008; Gough et al., 2019) and pigs (Kauffold et al., 2006).

Mode of Infection and Transmission

The dose and the virulence of the strain are critical for induction of chlamydial infection. The avian respiratory and intestinal organs are the main targets of *C. psittaci* (Rodolakis and Mohamad, 2010). Infection and transmission of *C. psittaci* infection in birds is illustrated in Figure 1.

Infection is usually occur through inhalation or ingestion of contaminated material (Burkhat and Page, 1971; Andersen and Vanrompay, 2003). As elementary bodies do not survive very long outside the host, so close contact with infected birds is very important for induction of infection. Infected birds may transmit chlamydial infection for other avian species and humans (Harkinezhad et al., 2009). Insects, mites and lice may help in mechanical transmission of chlamydiosis (Longbottom and Coulter, 2003; Cobb, 2011). Asymptomatic carrier birds act as a reservoirs and shed the pathogen for long time. Vertical transmission via contamination of egg shell surface has been experimentally documented in chickens, ducks, parakeets, seagulls and snow geese (Vanrompay et al., 1995a). This type of transmission induced high embryonic mortalities. Moreover, vertical mean of transmission creates a problem during preparation of live vaccines of *C. psittaci* due to contamination of the prepared biological vaccine product. Contact transmission of *Chlamydia* infection from infected parents to their offspring in the nest was reported in *Columbiformes*, cormorants, egret, herons, snow geese, gulls and shorebirds. This type of transmission from parent to young may occur via feeding, regurgitation, or contamination of the nest with infective exudates and droppings (Brand, 1989; Harkinezhad et al., 2009). Wild birds are important sources for transmission of chlamydiosis to domestic poultry (Andersen, 1991, 1997). Mechanical transmission through contaminated fomites with the bacterial elementary bodies has been recorded.

Figure 1: Infection and transmission of *C. psittaci* in birds

The shedding period of *Chlamydia* organisms from birds depends mainly on the pathogen's strain and the host (Harkinezhad et al., 2009). Some apparently healthy and sub-clinically infected birds shed *Chlamydia* for long time (Longbottom and Coulter, 2003). The shedding rate can be exaggerated by transportation, overcrowdings, very high temperature and reproductive activities (Deschuyfelle et al., 2012).

Clinical Signs

The incubation period of *C. psittaci* in birds varies from 3 days to many weeks (Fudge, 1997). The severity of avian chlamydiosis depends mainly on species, age and immune-status of the birds and the virulence of the infective strain (Guzman et al., 2010).
Some avian species, especially older psittacine birds, may reveal sub-clinical asymptomatic chlamydial infection but shed the organism in the nasal secretions and feces for long time (Smith et al., 2005). Stressors as overcrowding, nutritional deficiency, transportation and temperature variations may transfer sub-clinical intermittent chlamydial infection to acute one.

The disease picture of chlamydiosis in psittacines has three forms; acute, sub-acute and chronic. Clinical signs often appear as fever, anorexia, greenish watery diarrhea, respiratory signs (sneezing, nasal and ocular discharge, sinusitis and dyspnea), dehydration, weight loss and lethargy (Andersen and Vanrompay, 2009).

The disease in turkeys is affected by the virulence of C. psittaci. Serovar D induces severe respiratory distress and high mortalities, while low virulence serotypes prompts anorexia and diarrhea (Vanrompay et al., 1995b). It has shown that feral pigeons are carriers of C. psittaci as they shed the organism in the droppings, respiratory and conjunctival secretions without signs (Magnino et al., 2009). Nevertheless, concurrent diseases as trichomoniasis, salmonellosis, paramyxovirus and herpesvirus infection can induce diarrhea and respiratory disease condition (Longbottom and Coulter, 2003; Andersen and Vanrompay, 2009).

Although ducks are usually asymptomatic carriers, but they can transmit chlamydial infection to human and induce severe pneumonia (Laroucau et al., 2009b).

Natural infection of commercial chickens flocks with C. psittaci is not common, however, some experimentally infected birds showed signs and mortalities. Moreover, some human cases of chlamydiosis have been reported as a result of processing of sub-clinically infected chickens.

The mortality rate of chlamydiosis depends on the species of the affected birds, the virulence of the invading strain and the presence of secondary invaders of pathogens. Mortalities can reach to 50% or more in psittacine birds, however, less rate was seen in pigeons and it has been usually caused by secondary infections. In turkeys, infected cases showed mortalities ranged from 5% to more than 40%.

PATHOLOGY

Asymptomatically C. psittaci infected birds often have no post-mortem lesions.

The post-mortem lesions of the affected pet birds showed multifocal necrosis of liver and spleen with enlargement and fibrinous airsacculitis, perihepatitis, pericarditis and peritonitis (Mohan, 1984; Andersen, 1997). Generalized vascular congestion and enteritis may also observed. Challenging of broilers with C. psittaci induced septicemia, nephritis and thickening of the air sac (Zhou et al., 2010; Yin et al., 2013).

Turkeys affected with C. psittaci serovar D showed rhinitis, conjunctivitis, sinusitis, tracheitis, airsacculitis, pneumonia, pericarditis and enteritis.

HUMAN INFECTION

The different means of C. psittaci infection and transmission in human is represented in Figure 2. Psittacosis in humans contracted from turkeys and ducks is often as severe as at contracted from psittacine birds. Human gain C. psittaci infection through direct contact and/or inhalation of infected droplets in the respiratory exudates, droppings dust or feathers of infected living birds (Rzedzicki and Tołkiewski, 2001; Andersen and Vanrompay, 2003; Beeckman and Vanrompay, 2009; Harkinezhad et al., 2009).

Psittacosis is a notifiable disease. The incubation period of...
Psittacosis in human may be 1-2 weeks, with the possibility of a longer incubation period. Human infected with *C. psittaci* show symptoms vary from asymptomatic infection to severe systemic disease with fever, headache, respiratory disease (sore throat, pharyngitis, cough, dyspnea and pneumonia), gastro-intestinal problems (abdominal pain, vomiting and diarrhea), hepatomegaly, splenomegaly and other complications like conjunctivitis, arthritis, endocarditis, encephalitis and fetal death (Pal, 2004; Petrovay and Balla, 2008; Beeckman and Vanrompay, 2009; Chau et al., 2015; DE Boeck et al., 2016; Radomski et al., 2016).

C. gallinacea has been discovered in poultry flocks and was associated with workers in abattoirs had atypical pneumonia while *C. avium* has not been recorded in human. Human-to-human transmission of psittacosis has been recorded (Hughes et al., 1997; Ito et al., 2002; McGuigan et al., 2012; Wallensten et al., 2014; Schlossberg, 2015).

Diagnosis

Diagnosis of avian chlamydiosis is based on the typical signs, the isolation and identification of the pathogen, the detection of *Chlamydia* in tissues, or the demonstration of a four-fold increase in specific humoral antibodies (Vanrompay et al., 1995a). The different means of isolation and identification of *Chlamydia* organism is summarized in Figure 3.

Figure 3: The different means of isolation and identification of *Chlamydia* organism

Isolation of *Chlamydia* organism has been done in eggs or on tissue culture (gold standard) (Madani et al., 2011; Mostafa et al., 2015), although other methods are also used (OIE, 2000; Vanrompay, 2000). Isolation of *C. psittaci* is somewhat shows some difficulties as some affected birds have sub-clinical asymptomatic infection, the isolation techniques require specific cell cultures or specific pathogen free embryonated chicken eggs and the frequency of obtaining false-negative results is common due to intermittent shedding of *C. psittaci* in the droppings (Fudge, 1997; Balsamo et al., 2017). In addition, there is a risk health hazard to laboratory workers during isolation process (Spoorenberg et al., 2016) as some strains of *C. psittaci* have been categorized as a biosafety level 3 organism (Oregta et al., 2011).

Samples for *C. psittaci* isolation should be taken in acute conditions from nasal, ocular and cloacal swabs and the tissues of liver, spleen, lung and heart (Andersen, 1996). More than one type of *Chlamydia* can be detected in one case. It is important to not collect the sample after antibiotic treatment of birds to avoid false negative results. Specific pathogen-free 6-7 day-old embryonated eggs are used mainly for primary isolation of *C. psittaci* (Messmer et al., 2000). Although inoculation of eggs is a standard method for detection of *C. psittaci*, this method requires long time at high temperature 39°C (Pearson et al., 1989; Bougiouklis et al., 2000; Condon and Oakey, 2007). Death of the embryo is usually occur within 3-10 days post-inoculation as well avascular congestion of the yolk sac membranes may be also seen. Some cases require two additional blind passages to induce embryonic deaths or before considering the sample as negative.

Yolk sac suspension could be inoculated on cell culture monolayers as Buffalo Green Monkey cells and HeLa, Vero or L-929 cells, and then examined after staining using immuno-fluorescence technique for the presence of inclusion bodies (Vanrompay et al., 1992; Andersen, 1998; Yin et al., 2013).

Microscopic examination of the yolk sac, tissue culture or organs impression smears after staining with modified Gimenez, Giemsa, Castaneda, Macchiavello or Ziehl-Neelsen revealed presence of specific inclusion bodies (Sachse et al., 2009). Typical intracytoplasmic inclusion bodies appear as small, round or hat-shaped red dots against a bluish green background. In some virulent strains of *C. psittaci*, the inclusions break up and disperse in the cytoplasm (Trevejo et al., 1999).

As mentioned before, traditional standard isolation methods of *C. psittaci* need long period, require good sample quality as well as the risk of zoonotic transmission for microbiologist (Trevejo et al., 1999). Accordingly, Polymerase Chain Reaction (PCR) has been developed as a rapid, safe, simple and sensitive method for detection of *C. psittaci* (Hewinson et al., 1991; Kaltenboeck et al., 1991; Hewinson et al., 1997; Moroney et al., 1998; Olsen et al., 1998; McElnea and Cross, 1999; Messmer et al., 2000; Sachse et al., 2005, 2009). Mahmmod et al. (2018) evaluated the
accuracy of different isolation and detection methods of *C. psittaci* and concluded that PCR assay outperforms chick- en embryo and other inoculation tests as well as holds a better promise for surveillance programs for psittacosis. It is recommended that samples are taken on 3 consecutive days to detect intermittent shedding of the organism.

Furthermore, the different species of *Chlamydia* can be differen-tiated using DNA microarray hybridization tests. Immuno-fluorescence, immuno-peroxidase and immuno-his-tochemistry as immuno-staining methods have been used for detection of chlamydial antigens (Sachse et al., 2009). Monoclonal antibodies toward some chlamydial antigens as lipopolysaccharides or major outer membrane protein have been found to be more sensitive than histochemical methods of diagnosis (Borel et al., 2014).

Serological tests as elementary body agglutination test (Grimes et al., 1994) and latex agglutination (Arizmendi and Grimes, 1993) can be used for demonstration of antibo-dies against *Chlamydia* recently immunoglobulins IgM in recent infection. Different types of Enzyme Linked Im-muno-sorbent Assay (ELISA) has been developed to de-tect *C. psittaci* infection (Evans et al., 1983; Ruppanner et al., 1984; Verminnen et al., 2006), Dickx et al. (2010) and Dickx and Vanrompay (2011) used *C. psittaci* recombinant major outer-membrane protein based antibody ELISA to examine broiler breeder, broiler and layer chicken farms in Belgium and demonstrated positive cases in percentages of 98, 95 and 95 in layers, broilers and broiler breeders, re-spectively. Conventional type of ELISA showed non-spe-cific reaction and cross reactivity with other Gram-nega-tive organisms (Andersen, 1998), but blocking ELISA revealed higher sensitivity (Gerlach, 1999). Complement fixation test detected four fold rise in *Chlamydia* antibody titer in paired samples. Indirect fluorescent antibody tech-nique (Andersen, 1991) and PCR-restriction fragment length polymorphism (Vanrompay et al., 1997a) have been used also to identify *Chlamydia* serovar using specific mon-oclonal antibodies against outer membrane protein.

Prevention and Control Strategies

Prevention and eradication programs of avian chlamydiosis is difficult due to presence of large number of asymptomatic carrier hosts, the intermittent shedding of the pathogen, the endemic nature of the bacteria and the long survival time in the organic matter (Vanrompay et al., 2007).

Specific antibiotics including tetracyclines, macrolides (erythromycin and azithromycin) and fluoroquinolones prove their efficacy for the treatment of chlamydial in-fection. Tetracyclines group of medicaments is the most preferable group for the treatment of the affected birds with *Chlamydia*. Treatment should be maintained for long time, whenever, 45 days is recommended for the treatment of pet birds (Vanrompay et al., 1995a). Chlorotetetracycline is usually given in feed and the dose differs according to bird’s species and the type of feed (Gerlach, 1999). Chlorotetracycline treatment has some disadvantages including less tendency of the birds to feed on the treated feed, insufficient blood level of the drug as well as destruction of natural gut microbiota (Gerlach, 1999). Other medic-ament like oxytetracycline could be used intramuscularly especially for large size birds (Flammer et al., 1990). How-ever, injection of muscle may induce necrosis at the inocu-lation site as well as prolonged withdrawal period with residual effect (Jawad et al., 2014). Doxycycline may be used either in feed (Gerlach, 1999) or in the drinking wa-ter (Flammer, 2000) with effective results especially after 45 days treatment period. Although tetracyclines inhibit the synthesis of chlamydial ribosomal proteins, prolonged administration of antibiotic arises the chance of drug re-sistance (Guzman et al., 2010; Rodolakis and Laroucau, 2015). Pet birds could be treated in feed with enrofloxacin (Gerlach, 1999). Azithromycin water treatment has been found to be effective for Cockatiels after 21 days treatment period (Guzman et al., 2010). Periodical sampling of the treated birds after each treatment to check the relapse and clearance of the bacteria.

It is very important to treat concomitant bacterial patho-gens as *Streptococcus* and *Lactobacillus* that associated with *Chlamydia* infection. It has been shown that prolonged anti-biotic treatment of chlamydial infection arising the prob-lem of antibiotic resistance especially in case of preventive medication (Dugan et al., 2004; Di Francesco et al., 2008; Beeckman and Vanrompay, 2009) as well as persistence of the bacteria even after treatment.

Accordingly, new substances like phytobiotics may replace the usage of antibiotic for the treatment of chlamydiosis (Vanka et al., 2001). The effect of natural herbal plants ex-tracts like aqueous neem on *C. psittaci* infection of broil-ers was studied (Hegazy et al., 2018). The results proved poten-effect of 8% concentration of neem extract on *C. psittaci* without adverse effect on liver or kidneys tissues as it could be substitute oxytetracycline treatment.

There is no available commercial vaccine for prevention of *Chlamydia* infection in birds. The production of chlamydial vaccine depends mainly on the protective level of the prepared vaccine as well as the cost of production. In the studies of Vanrompay et al. (1999a,b) and Vanrompay et al. (2001), the gene encoding for the major outer membrane protein of *C. psittaci* serovar A was used for produc-tion of plasmid DNA vaccines in turkeys and the results showed promising protection. In addition, the demonstra-tion of the outer membrane protein expression for at least
10 weeks past-vaccination with such vaccine was reported (Loots et al., 2006).

For prevention of the disease introduction, newly introduced birds or birds returned from shows or fairs should be quarantined for at least one month and observed for specific signs (Davies and Collins; 1995; De Freitas Raso et al., 2004; Dovc et al., 2007; Matsui et al., 2008). Testing and isolation of birds from unknown sources before boarding are also important (Van Loock et al., 2005; Heddema and isolation of birds from unknown sources before boarding are also important (Van Loock et al., 2005; Heddema et al., 2006). Mixing of birds from different sources should be prohibited (Schlossberg et al., 1993; Circella et al., 2011). Thorough cleaning and disinfection using some lipid solvents disinfectants like 1:1000 quaternary ammonium compounds, formaldehyde, chlorophenols and 70% alcohol (Jencek et al., 2012). Wild birds and insects should be controlled. Hygienic disposal of dead birds is the must. For Veterinarians, workers in the poultry farms and processing plants and pet birds should wear protective clothes, gloves and filter mask should be wear. Keeping ventilation and continuous air disinfection should be considered to avoid aerosol contamination and transmission of Chlamydia (Deschuyffeleer et al., 2012).

As psittacosis is a reportable disease, so local public health authorities must be reported within 48 hours of the disease detection (Chau et al., 2015). In addition, oral tetracycline treatment of psittacosis in human (Aundria, 2011) can induce sub-clinical persistent disease and may provoke chronic infection with relapsing after the treatment course (Elwell et al., 2016).

CONCLUSION

From the previously mentioned information, it can be concluded that avian chlamydiosis causes severe losses especially in pet birds, besides its public health significance in human. So, it is very important to pay attention toward this disease regarding the epidemiology, the methods of diagnosis and the strategies of prevention and control.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTION

Wafaa A. Abd El-Ghany collected the data, wrote and prepared the manuscript.

REFERENCES

• Andersen AA (1991). Serotyping of Chlamydia psittaci isolates using serovar-specific monoclonal antibodies with the micro-immunofluorescence test. J. Clin. Microbiol. 29(4): 707-711. https://www.ncbi.nlm.nih.gov/pubmed/1890172
• Andersen AA (1996). Comparison of pharyngeal, fecal, and cloacal samples for the isolation of Chlamydia psittaci from experimentally infected cockatiels and turkeys. J. Vet. Diag. Invest. 8(4): 448-450. https://doi.org/10.1177/10403879600800407
• Andersen AA (1997). Two new serovars of Chlamydia psittaci from North American birds, J. Vet. Diag. Invest. 9: 159-164.
• Andersen AA (1998). Chlamydiosis. In: A Laboratory Manual for the Isolation and Identification of Avian Pathogens, 4th ed. D.E. Swayne, J.R. Glisson, M.W. Jackwood, J.E. Pearson, and W.M. Reed (eds.). American Association of Avian Pathologists, University of Pennsylvania, New Bolton Center, Kennett Square, PA. pp. 81-88.
• Andersen AA, Vanrompay D (2000). Avian chlamydiosis. Rev. Sci. Tech. 19(2): 396-404.
• Andersen AA, Vanrompay D (2003). Avian chlamydiosis (psittacosis, ornithosis). Saif YM, ed. Diseases of Poultry, 11th edition, Iowa State University Press, Iowa, USA; 2003. pp. 863-897.
• Andersen A, Vanrompay D (2009). Avian Chlamydiosis. In ‘Diseases of Poultry.’ (Eds YM Saif, AM Fadly, JR Glisson, LR McDougald, LK Nolan, DE Swayne.) Vol. 12 pp. 978-981.
• Andersen AA, Grimes JE, Wyrick PB (1997). Chlamydiosis (psittacosis, ornithosis). In: Diseases of Poultry, 10th ed. B.S. Calnek, H.J. Barnes, C.W. Beard, L.R. McDougald, and Y.M. Saif (eds.). Iowa State University Press, Ames, Iowa. pp. 333-349.
• Arizmendi F, Grimes JE (1993). Evaluation of latex agglutination for detecting chlamydial antibody activity in psittacine bird sera by comparison with direct complement fixation. J. Vet. Diagn. Invest. 5(2): 277-279.
• Arzey GG, Arzey KE (1990). Chlamydiosis in layer chickens. Aust. Vet. J. 67(12): 461. https://doi.org/10.1111/j.1751-0813.1990.tb03069.x
• Arzey KE, Arzey GG, Reece RL (1990). Chlamydiosis in commercial ducks. Aust. Vet.J.67(9): 333-334. https://doi.org/10.1111/j.1751-0813.1990.tb07817.x
• Aundria W (2011). A brief review of chlamydophila psittaci in birds and humans, J. Exot. Pet. Med. 20: 18-20. https://doi.org/10.1053/j.jepm.2010.11.006
• Balsamo G, Maxted AM, Midia JW, Murphy JM, Wohrle R, Edling TM, Fish PH, Flammer K, Hyde D, Kobayashi M, Ouijifstad B, Ritchie BW, Stobierski MG, Ehnert K, Tully Jr TN (2017). Compendium of measures to control Chlamydia psittaci infection among humans (psittacosis) and pet birds (avian chlamydiosis). J. Avian Med. Surg. 31(3): 262-282. https://doi.org/10.1647/217-265
• Barr DA, Scott PC, OiRourke MD, Coulter RJ (1986). Isolation of Chlamydia psittaci from commercial broiler chickens. Aust. Vet. J. 63(11): 377-378. https://doi.org/10.1111/j.1751-0813.1986.tb02906.x
• Beeckman DSA, Vanrompay DCG (2009). Zoonotic Chlamydophila psittaci infections from a clinical perspective. Clin. Microbiol. Infect. 15(1): 11-17. https://doi.org/10.1111/j.1469-0691.2008.02669.x
• Bocklisch H, Ludwig C, Lange S (1991). Chlamydia as the cause of abortions in horses. Berl. Munch. Tierarztl. Wochenschr. 104(4): 119-124.
• Bommmana S, Polkinghorne A (2019). Mini review: Antimicrobial control of chlamydial infections in animals:
Borel N, Polkinghorne A, Pospischil A (2018). A review on chlamydial diseases in animals: Still a challenge for pathologists. Vet. Pathol. 55(3):374-390. https://doi.org/10.1177/0300958517751218

Borel N, Frey CF, Gottstein B, Hilbe M, Pospischil A, Franzoso FD, Waldvogel A (2014). Laboratory diagnosis of ruminant abortion in Europe. Vet. J. 200(2): 218-229. https://doi.org/10.1016/j.vetj.2014.03.015

Bougiouklis P, Papaioannou N, Georgopoulos I, Iordanidis in infection in ducks: Bracewell CD, Bevan BJ (1982).

Brand CJ (1989). Chlamydial infections in free-living birds. J.

Burkhart RL, Page LA (1971). Chlamydiosis (ornithosis-

Celebi BS, Seyyel Ak (2006). A Comparative study of detecting

Chan J, Doyle B, Branley J, Sheppeard, V, Gabor, M, Viney

Cheong HC, Lee CYQ, Cheok YY, Tan GMY, Looi CY,

Ciftci B, Guler ZM, Aydogdu M, Konur O, Erdogan Y (2008).

Circella E, Pugliese N, Todisco G, Cafiero MA, Sparagano OA, Camarda A (2011). Chlamydia psittaci infection in canaries heavily infected by Dermamyssus gallinae. Exp. Appl. Acarol. 55(4): 329-338. https://doi.org/10.1007/s10493-011-9478-9

Cobb SP (2011). The spread of pathogens through trade in poultry meat: overview and recent developments. Rev. Sci. Tech. 30: 149-64. https://doi.org/10.20506/rst.30.1.2026

Coles AC (1930). Micro-organisms in psittacosis. Lancet i: 1011.

Condon K, Oakley J (2007). Detection of Chlamydialaeae DNA in Veterinary specimens using a familyspecific PCR. Lett. Appl. Microbiol.45: 121-127. https://doi.org/10.1111/
Everett KDE, Bush RM, Andersen AA (1999). Amended Chlamydia.

Flammer K (2000). Preliminary notes on treatment of

Feng Y, Feng YM, Zhang ZH, Wu SX, Zhong DB, Liu CJ.

Gaede W, Reckling KF, Dresenkamp B, Kenklies S, Schubert.

Geens T, Desplanques A, Van Loock M, Bönner BM, Kaleta.

Ghorbanpoor M, Bakhtiari NM, Mayahi M, Moridveisi H.

Gough SL, Carrick J, Raidal SL, Keane S, Collins N, Cudmore L, Russell CM, Raidal S, Hughes KJ (2019). Chlamydia

Guo W, Li J, Kaltenboeck B, Gong J, Fan W, Wang C (2016).

Harkinezhad T, Geens T, Vanrompay D (2009). Chlamydophila

Heinemann T, Andral B, Gerbermann H, Vassant M, Gerlach H, E, Noack U, Irmscher HM, Ludwig C, Hotzel H, Sachse K, Sting R (2000). Demonstration of

Hedberg K, White KE, Forfang JC, Korfalh JA, Friendshu KA, Hedberg CW, MacDonald KL, Osterholm MT (1989). An outbreak of psittacosis in Minnesota turkey industry workers: implications for modes of transmission and control. Am. J. Epidemiol. 130(3): 569-577. https://doi.org/10.1093/oxfordjournals.aje.a115371

Heddena ER, van Hannen EJ, Diem B, de Jongh BM, Kaan JA, van Kessel R, Lumeij JT, Visser CE, Vandenbroucke-Grauls CMJE (2006). An outbreak of psittacosis due to Chlamydiophila psittaci genotype A in a veterinary teaching hospital. J. Med. Microbiol. 55(11): 1571-1575. https://doi.org/10.1099/jmm.0.46692-0

Hegazy AM, El-Sisi MA, Hadiya AA, Hala MNT (2014). Prevalence and genotype of Chlamydia

Hegazy AM, El-Sisi MA, Hassanin O, Tolba HMIN, Baz HA (2017). Prevalence of Chlamydiaphila psittaci in some wild and pet birds. Zag. Vet. J. 45(3): 206-217.

Hegazy AM, Tolba HMIN, Abd EL-Samie LK, Abdelaziz AM, Ali AMA (2018). Effect of the medicinal plant (Azadirachta indica) on Chlamydiaphila psittaci infection in broiler chickens. Slov. Vet. Res. 55 (Suppl 20): 85-93. https://doi.org/10.26873/SVR-633-2018

Hegazy AM, El-Sisi MA, Hadiya AA, Hala MNT (2014). Incidence of Chlamydiaphila psittaci in domestic birds in Sharkia governorate, Egypt. Zag. Vet. J. 42: 67-76.

Hederg K, White KE, Forfang JC, Korfalh JA, Friendshu KA, Hedberg CW, MacDonald KL, Osterholm MT (1989). An outbreak of psittacosis in Minnesota turkey industry workers: implications for modes of transmission and control. Am. J. Epidemiol. 130(3): 569-577. https://doi.org/10.1093/oxfordjournals.aje.a115371

Henning K, Sachse K, Sting R (2000). Demonstration of Chlamydia from an equine abortion. Dtsch. Tierarztl. Wochenschr. 107(2):49-52.

Herrmann B, Persson H, Jensen JK, Joensen HD, Klint M, Olsen B (2006). Chlamydiaphila psittaci in Fulmars, the Faroe Islands. Emerg. Infect. Dis. 12: 330-332. https://dx.doi.org/10.3201/feid1202.050404

Hewinson RG, Griffiths PC, Bevan BJ, Kirwan SES, Field ME, Woodward MJ, Dawson M (1997). Detection of Chlamydiaphila psittaci DNA in avian clinical samples by polymerase chain reaction. Vet. Microbiol. 54(2): 155-166. https://doi.org/10.1016/S0378-1135(96)01268-0

Hewinson RG, Rankin SES, Bevan BJ, Field M, Woodward MJ (1991). Detection of Chlamydiaphila psittaci from avian field samples using the PCR. Vet. Rec. 199: 129-130. https://doi.org/10.1016/S0378-1135(96)01268-0
Chlamydiiosis in workers at a duck farm and processing plant. Aust. Vet. J. 70(5): 174-176. https://doi.org/10.1111/j.1751-0813.1993.tb01233.x

Hogerwerf L, Roof I, de Jong MJK, Dijkstra F, van der Hoek W (2020). Animal sources for zoonotic transmission of psittacosis: a systematic review. BMC Infect. Dis. 20(1): 192. https://doi.org/10.1186/s12879-020-4918-y

Hoizner M, Laroucau K, Creasy HH, Ott S, Vorimore F, Hughes C, Maharg P, Rosario P, Herrell M, Bratt D, Salgado Hulin V, Oger S, Vorimore F, Aaziz R, de Barbeyrac B, Ito I, Ishida T, Mishima M, Osawa M, Arita M, Hashimoto T, Kaltenboeck B, Kousoulas KG, Storz J (1991). Detection and zoonotic potential of Chlamydia psittaci and C. gallinacea in poultry. Pathog. Dis. 73(1): 1-11. https://doi.org/10.1093/femspd/ftc05

Hummer D, Samra Z, Weiszman Y, Pidik S (1988). Family outbreaks of psittacosis in Israel. Lancet 2:615-618.

Ito I, Ishida T, Mishima M, Osawa M, Arita M, Hashimoto T, Kishimoto S (2002). Familial cases of psittacosis: possible person-to-person transmission. Intern. Med. 41(7): 58-583. https://doi.org/10.2169/internalmedicine.41.580

Jawad Z, Younis M, Rehan MU, Munir R, Magbool A, Shahaz W, Asad M, Muhammad K (2014). Effect of Asadidactra indica on the hepato-renal functions in broilers chickens. J. Anim. Plant Sci. 24: 1012-1018. http://www.thejaps.org.pk/docs/v-24-4/07.pdf

Jelocić M, Branley J, Heller J, Raidal, S, Alderson S, Galea F, Gabor M, Polkinghorne A (2017). Multilocus sequence typing identifies an avian-like Chlamydia psittaci strain involved in equine placentitis and associated with subsequent human psittacosis. Emerg. Microbes Infect. 6(2): e7. https://dx.doi.org/10.1002/emmi.120

Jencek J, Beaufrére H, Tully T, Garner M, Dunker F, Baszler T (2012). An outbreak of Chlamyphlobilosa psittaci in an outdoor colony of Magellanic penguins (Spheniscus magellanicus). J. Avian Med. Surg.26(4):225-231. https://doi.org/10.1647/2010-0461.1

Jeong J, An I, Oem JK, Wang SJ, Kim Y, Shin JH, Woo C, Kim Y, Jo SD, Son K, Lee S, Jheong W (2017). Molecular prevalence and genotyping of Chlamydia spp. in wild birds from South Korea. J. Vet. Med. Sci. 79(7): 1204-1209. https://doi.org/10.1016/jjvms.2016.05-016

Joseph SJ, Marti H, Didelot X, Castillo-Ramirez S, Read TD, Dean D (2015). Chlamydiaeae geneomics reveals interspecies admixture and the recent evolution of Chlamydia abortus infecting lower mammalian species and humans. Genome Biol. Evol. 7(11): 3070-84. https://dx.doi.org/10.1093/gbe/evs201

Kaltenboeck B, Kousoulas KG, Storz J (1991). Detection and strain differentiation of Chlamydia psittaci mediated by a two-step polymerase chain reaction. J. Clin. Microbiol. 29: 1969-1975. https://www.ncbi.nlm.nih.gov/pubmed/1774323

Kauffold J, Melzer F, Henning K, Schulze K, Leiding C, Sachse K (2006). Prevalence of Chlamydiaeiae in boars and semen used for artificial insemination. Theriogenology. 65: 1750-1758. https://doi.org/10.1016/j.theriogenology.2005.10.010

Kay, RS (1997). Psittacosis in Egypt: A case study. J. Travel. Med. 4: 48-49.

Khodoradji M, Hemmatinezhad B, Doosti A, Khamesipour F, Awosile B (2015). Molecular detection and prevalence of Chlamydophila psittaci in the blood, liver and muscle tissue of urban pigeons (Columbia livia domestica) in Iran. Ka�nas Universitesi Veteriner Fakultesi Dergisi, 21: 265-269.

Knittler M, Sachse K (2015). Chlamydia psittaci: update on an underestimated zoonotic agent. Pathog. Dis. 73(1):1-15. https://doi.org/10.1093/femsdp/fuu007

Lage S, Kalmar I, Laroucau K, Vorimore F, Vanroompay D (2014). Emerging Chlamydiaeiae infections in chickens and examination of transmission to humans. J. Med. Microbiol.63: 399-407. https://doi.org/10.1099/jmm.0.064675-0

Laroucau K, de Barbeyrac B, Vorimore F, Clerc M, Bertin C, Harkinezhad T, Verminnen K, Obeniche F, Capek I, Bebear C, Durand B, Zanella G, Vanropmay D, Garin-Bastuji B, Sachse K (2009b). Chlamydia infections in duck farms associated with human cases of psittacosis in France. Vet. Microbiol. 135(1-2): 82-89. http://dx.doi.org/10.1016/j.vetmic.2008.09.048

Laroucau K, Vorimore F, Aaziz R, Berndt A, Schubert E, Sachse K (2009a). Isolation of a new chlamydial agent from infected domestic poultry coincided with cases of atypical pneumonia among slaughterhouse workers in France. Infect. Genet. Evol. 9(6): 1240-1247. https://doi.org/10.1016/j.meegid.2009.08.005

Laroucau K, Vorimore F, Aaziz R, Solmonson L, Hsie RC, Bavoil PM, Fache P, Hoizner M, Wuenschmann B, Sachse K (2019). Chlamydiaeiae baetonis, a new Chlamydia species isolated from a red-shouldered hawk. Syst. Appl. Microbiol. 42: 125997. https://doi.org/10.1016/j.syapm.2019.06.002

Lent SV, Piet JR, Beeckman D, Arie van der E, Nieuwerburgh J, D Howard (1997). Possible nosocomial transmission of Chlamydia spp. in wild birds. Vet. Microbiol.63: 399-407. https://doi.org/10.1016/j.vetmic.2016.08.008

Levinthal W (1930). Die A¨ tiologie der Psittakosis (article in German). Klin. Woehrchr. 9:654.

Li Z, Liu P, Hou J, Xu G, Zhang J, Lei Y, Lou Z, Liang L, Wen Y, Zhou J (2020). Detection of Chlamydiaeiae psittaci and Chlamydiaeibidis in the endangered Ibis (Nipponia nippon). Epidemiol. Infect. 148:e1. https://www.ncbi.nlm.nih.gov/pubmed/31802233

Li J, Guo W, Kaltenboeck B, Sachse K, Yang Y, Lu G, Zhang J, Luan L, You J, Huang K, Qiu H, Wang Y, Li M, Yang Z, Wang C (2016). Chlamydiaeiae pecorum is the endemic intestinal species in cattle while C. gallinacae, C. psittae and C. pneumoniae associate with sporadic systemic infection. Vet. Microbiol. 193:93-99. https://doi.org/10.1016/j.vetmic.2016.08.008

Lillie RD (1930). Psittacosis: Riskettsia-like inclusions in man and experimental animals. U.S. Pub. Health Repts. 45: 773-778.
Lin W, Chen T, Liao L, Wang Z, Xiao J, Lu J, Song C, Qin J, Chen F, Chang Y-F, Xie Q (2019). A parrot-type Chlamydia psittaci strain is in association with egg production drop in laying ducks. Transbound Emerg. Dis. 66: 2002-2010. https://doi.org/10.1111/tbed.13248

Longbottom D, Coulter LJ (2003). Animal chlamydioses and zoonotic implications. J. Comp. Pathol. 128: 217-244. https://doi.org/10.1053/jcpa.2002.0629

Loos K, Loock MV, Vanrompay D, Goddeeris BM (2006). CpG motifs as adjuvant in DNA vaccination against Chlamydomphila psittaci in turkeys. Vaccine. 24: 4598-4601. https://doi.org/10.1016/j.vaccine.2005.08.042

Madani A, Peighambari M (2013). PCR-based diagnosis, molecular characterization and detection of atypical strains of avian Chlamydia psittaci in companion and wild birds. Avian Pathol. 42(1): 38-44. https://doi.org/10.1080/03074572.2012.757288

Madani A, Peighambari M, Barin A (2011). Isolation of Chlamydia psittaci from pet birds in Iran. Iran. J. Vet. Med. 5(2): 95-98. https://doi.org/10.22059/jvirm.2011.231040

Mannino TP, Haag-Wackernagel D, Geigenfeld I, Helmcke S, Dowc A, Prukner Radovic, E, Residbegovic E, Ilieski V, Lorouca K, Donati M, Martinov S, Kaleta EF (2009). Chlamydial infections in feral pigeons in Europe: Review of data and focus on public health implications. Vet. Microbiol. 135(1-2): 54-67. https://doi.org/10.1016/j.vetmic.2008.07.025

Mahmood YS, Mweu MM, Abou Elez RMM, Tolha HNM, Elsehaby I (2018). Bayesian evaluation of the performance of three diagnostic tests for Chlamyphila psittaci in humans. J. Zoonotic Dis. 3(1): 22-32.

Mahzoonieh, M, Khoel HH, Shamsabad MG, Heidari F (2013). Prevalence of Chlamydia psittaci in pigeons in Chaharmahal va Bakhtiari and Yazd provinces of Iran, by nested-PCR, 2012. Iran. J. Med. Microbiol. 7(1): 1-6.

Malkinson M, Machany S, Aronovici A, Davidov K, Weisman Y (1987). Mixed infection with Chlamydia psittaci, fowlpox virus and Haemophilus gallinarum in broiler breeding chickens. Vet. Rec. 120(19): 461-462.

Matsu T, Nakashima K, Ohyama T, Kobayashi J, Arima Y, Kishimoto T, Ogawa M, Cai Y, Shiga S, Ando S, Kurane I, Tabara K, Itagaki A, Nitta N, Fukushima H, Matsumoto A, Okabe N (2008). An outbreak of psittacosis in a bird park in Japan. Epidemiol. Infect. 136(4): 492-495. https://doi.org/10.1017/S0950268807008783

McElnea CL, Cross GM (1999). Methods of detection of Chlamydia psittaci in domesticated and wild birds. Aust. Vet. J. 77(8): 516-521. https://doi.org/10.1111/j.1751-0813.1999.tb12123.x

McGuigan CC, McIntyre PG, Templeton K (2012). Psittacosis outbreak in Tayside, Scotland, November 2011 to February 2012. Euro. Surveill. 17(22): pii=20186. https://doi.org/10.2807/ese.17.22.20186-en

Meijer A, Ossewaarde JKM (2002). Description of a wider diversity within the order Chlamydiales than currently classified. International Chlamydia Conference, Antalya, Turkey: P: 16-21.

Messmer T, McNulty MS, Ritchie BW, Moroney MJF (2000). A tale of discrimination: Differentiation of Chlamydiaceae by polymerase chain reaction. Semin. Avian Exot. Pet Med. 9(1): 36-42. https://doi.org/10.1016/S1055-937X(00)80014-6

Meyer KF (1941). Phagocytosis and immunity in psittacosis. Schweizerische. Medizinische. Wochenschrift. 71: 436-438.

Meyer KF, Eddie B (1933). Latent psittacosis infections in shell parakeets. Proc. Soc. Exptl. Biol. Med. 30: 484-488.

Mina A, Fatemeh A, Jamshid R (2019). Detection of Chlamydia psittaci genotypes among birds in Northeast Iran. J. Avian Med. Surg. 33(1): 22-28. https://doi.org/10.1647/2017-334

Mohan R (1984). Epidemiologic and laboratory observations of Chlamydia psittaci infection in pet birds. J. Am. Vet. Med. Assoc. 184: 1372-1374.

Moroney JF, Guevara R, Iverson C, Chen FM, Skelton SK, Messmer TO, Plikaytis B, Williams PO, Blake P, Butler JC (1998). Detection of chlamydiosis in a shipment of pet birds, leading to recognition of an outbreak of clinically mild psittacosis in humans. Clin. Infect. Dis. 26: 1425-1429. https://doi.org/10.1086/516368

Mostafa ER, Elhariri M, Ali HA, Jakee JKE (2015). Emergence of Chlamydia psittaci in lovebirds: A new potential risk factor of chlamydiosis. Int. J. Adv. Res. Biol. Sci. 2(11): 1-9.

Mousa HAA (1984). Incidence and public health importance of ornithosis and psittacosis in imported and exported love birds. M.Y.Sc. Thesis, Fac. Med., Cairo Univ., Egypt.

Navedd A, Abdullah S, Navedd R, Navedd MA (2018). Chlamydial psittaci: An omitted pathogen at the human-animal interface. Ann. Virol. Res. 4(1): 1033.

Newmann JA (1989). Chlamydia spp. infection in turkey flocks in Minnesota. J. Am. Vet. Med. Assoc. 195(11): 1528-1530.

Newman CPSTJ, Palmer SR, Kirby PF, Caul EO (1992). A prolonged outbreak of ornithosis in duck processors. Epidemiol. Infect. 108: 203-210. https://doi.org/10.1017/S0950268800049657

Ni X, Qin S, Lou Z, Ning H, Sun X (2015). Seroprevalence and risk factors of Chlamydia infection in domestic rabbits (Oryctolagus cuniculus) in China. Biomed. Res. Int. 2015: 460473. https://doi.org/10.1155/2015/460473

Office International des Epizooties (2000). Manual of standards diagnostic tests and vaccines. Chapter 2.7.4. Avian Chlamydiosis.

Olsen B, Persson K, Broholm KA (1998). PCR detection of Chlamyda psittaci in faecal samples from passerine birds in Sweden. Epidemiol. Infect. 121(2): 481-484. https://doi.org/10.1017/S0950268898001320

Ortega N, Apaza D, Gonzalez F, Salinas J, Caro MR (2011). Occurrence of Chlamydiaceae in non–symptomatic free- living raptors in Spain. Eur. J. Wildl. Res. 57: 122-128. http://doi.org/10.1007/s10344-011-0504-3

Osman KM, Ali HA, ElJakee JA, Galal HM (2011). Chlamyphila psittaci and Chlamybophila pectorum infections in goats and sheep in Egypt. Rev. Sci.Tech. 30(3): 939-948. http://dx.doi.org/10.20506/rst.30.3.2088

Osman W A, El-Naggar AL, Gooda ASA, Mahmoud MA (2007). Detection of Chlamydophila psittaci in chickens by complement fixation test and polymerase chain reaction. J. Vet. Med. Res. 17: 35-38. https://doi.org/10.21608/jvmer.2007.77891

Overmans-Marx T (2019). Increasing awareness about psittacosis among bird owners. Eur. J. Public Health. (29)3: 5-7.

Pal M (2004). Chlamydiosis: An anthropozoonosis. Vet. World 3: 5-7.

Pal M (2013). Public health concern due to emerging and reemerging zoonoses. Int. J. Livest Res. 3(1): 56-62.

Pal M (2017). Chlamydiophila psittaci as an emerging zoonotic pathogen of global significance. Int. J. Vaccines Vaccin. 4(3): 80. https://doi.org/10.15406/ijvv.2017.04.00080
• Pal M, Dahiya SM (1985). Occurrence of chlamydial infection in parrots. Indian J. Anim. Res. 19: 69-72.
• Pannekoek Y, Dickx V, Beckman DSA, Jolley KA, Keijzers WC, Vreto E, Maiden MCJ, Vanrompay D, Ende VDA (2010). Multi sequence type screening of Chlamydia reveals an association between Chlamydia psittaci genotypes and host species. PLoS One. 5: e14179. https://doi.org/10.1371/journal.pone.0014179
• Pearson JE, Gustafson GA, Senne DA and Peterson LA (1989). Isolation and identification of Chlamydia psittaci from pet birds. J. Am. Vet. Med. Assoc. 195:1564-1567.
• Petrovay F, Balla E (2008). Two fatal cases of psittacosis caused by Chlamydiophila psittaci. J. Med. Microbiol. 57: 1296-1298. https://doi.org/10.1099/jmm.0.2008/001578-0
• Piasecki T, Chrzastek K, Wieliczko A (2012). Detection and identification of Chlamydiophila psittaci in asymptomatic parrots in Poland. BMC Vet. Res. 8: 233-238. https://doi.org/10.1186/1746-6148-8-233
• Polkinghorne A, Greub G (2017). A new equine and zoonotic threat emerges from an old chlamydial pathogen, Chlamydia psittaci. Clin. Microbiol. Infect. 23(10):693-694. https://doi.org/10.1016/j.cmi.2017.05.025
• Radomski N, Einenkel R, Müller A, Knittler MR (2016). Chlamydia-host cell interaction not only from a bird’s eye view: some lessons from Chlamydia psittaci. FEBS Lett. 590(21): 3920-3940. https://doi.org/10.1002/1873-3468.12295
• Reinhold P, Sachse K, Kaltenboeck B (2011). Evidence for the existence of two new members of the family Chlamydiaceae and proposal of Chlamydiophila psittaci strains from culture and clinical samples. Vet. Microbiol. 135(1-2): 22-30. https://doi.org/10.1016/j.vetmic.2008.09.041
• Sadowski JM, Minta Z (1979). Chlamydiosis of the air sacs in geese. Bull. Vet. Inst. Pulawy. 23(3-4): 111-115.
• Sachse K, Belting C, Abott AB, Röning RE, Hejne M (2018). Chlamydia psittaci and C. avium in feral pigeon (Columba livia domestica) droppings in two cities in the Netherlands. Vet. Q. 38(1): 63-66. https://doi.org/10.10010/F101652176.2018.1482028
• Schlossberg D (2015). Psittacosis (due to Chlamydia psittaci). In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 8th ed. Philadelphia, PA: Elsevier/Saunders; 2171-2173.
• Schlossberg D, Delgado J, Moore M, Wishner A, Mohn J (1993). An epidemic of avian and human psittacosis. Arch. Intern. Med. 153(22): 2594-2595. https://doi.org/10.1001/archinte.1993.0402150106012
• Siraj I, Rahman SU, Ahsan Naveed Anjum Fr, Hassan S, Zahid Ali Tahir (2018). Prevalence of Chlamydiosis Psittaci in domesticated and fancy birds in different regions of district Faisalabad, Pakistan. United J. Microbiol. Infec. Dis. (12): 1-5.
• Smith KA, Bradley KK, Stobierski MG, Tengelsen LA (2005). Compendium of measures to control Chlamydiophila psittaci (formerly Chlamydia psittaci) infection among humans (psittacosis) and pet birds, 2005. J. Am. Vet. Med. Assoc. 226: 532-539. https://doi.org/10.2460/jama.2005.226.532
• Smith KA, Campbell CT, Murphy J, Stobierski MG, Tengelsen LA (2011). Compendium of measures to control Chlamydiophila psittaci infection among humans (psittacosis) and pet birds (avian chlamydiosis), 2010. J. Exot. Pet Med. 20(1): 32-45.
• Spoorenberg SM, Bos WJ, van Hannen EJ, Dijkstra F, Hedema ER, van Velzen-Blad H, Heijligers R, Grutters JC, de Jongh BM (2016). Chlamydia psittaci: a relevant cause of community-acquired pneumonia in two Dutch hospitals. Neth. J. Med. 74(2): 75-81. http://hdl.handle.net/10029/621726
• Sprague LD, Schubert E, Hotzel H, Scharf S, Sachse K (2009). The detection of Chlamydiophila psittaci genotype C infection in dogs. Vet. J. 181(3): 274-279. https://doi.org/10.1016/j.tvjl.2008.04.002
• Szeredi L, Hotzel H, Sachse K (2005). High prevalence of chlamydial (Chlamydiophila psittaci) infection in fetal membranes of aborted equine fetuses. Vet. Res. Commun. 29(suppl 1): 37-49. https://doi.org/10.1007/s11259-005-0835-1
• Szyman ska-Czerwi ska M, Niemczuk K (2016). Avian chlamydiosis zoonotic disease. Vector Borne Zoonotic Dis.
Tan T, Alan JH, Ian EA, Gareth EJ (1990). Protection of
Telfer BL, Moberley SA, Hort KP, Branley JM, Dwyer
Travéncik M, Cisláková L, Deptuła W, Stosik M, Bhide
Trevejo RT, Chomel BB, Kass PH (1999). Evaluation of the
Vanka A, Tandon S, Rao SR, Udupa N, Ramkumar P (2001). The
Vanrompay D (2000). Avian Chlamydial Diagnostics. In:
Vanrompay D, Butaye P, Van Nerom A, Ducatelle R, Haesebrouck
Vanrompay D, Cox E, Volckaert G, Goddeeris B (1995b). Chlamydia psittaci in turkeys: pathogenesis of infections in avian serovars A, B and D. Vet. Microbiol. 47: 245-256. https://doi.org/10.1016/S0378-1135(95)00125-5
Vanrompay D, Mast J, Ducatelle R, Haesebrouck F, Goddeeris B (2005). Use of a nested PCR-enzyme immunoassay with an internal control to detect Chlamydia psittaci in turkeys. BMC Infect. Dis. 5:76. https://doi.org/10.1186/1471-2334-5-76
Vanrompay D (2000). Avian Chlamydial Diagnostics. In: Laboratory Medicine: Avian and Exotic Pets. Ed A.M. Fudge. Philadelphia, Saunders, pp. 99-110.
Vanrompay D, Butaye P, Sayada C, Ducatelle R, Haesebrouck F (1997a). Characterization of avian Chlamydia psittaci strains using emp1 restriction mapping and serovar-specific monoclonal antibodies. Res. Microbiol. 148(4): 327-333. https://doi.org/10.1016/S0923-2508(97)81588-4
Vanrompay D, Butaye P, Van Nerom A, Ducatelle R, Haesebrouck F (1997b). The prevalence of Chlamydia psittaci infections in Belgian commercial turkey poults. Vet. Microbiol. 54(1): 85-93. https://doi.org/10.1016/S0378-1135(96)01224-2
Vanrompay D, Cox E, Vandenbussche G, Goddeeris B (1999a). Protection of turkeys against Chlamydia psittaci challenge by gene gun–base DNA immunizations. Vaccine. 17(20-21): 2628-2635. https://doi.org/10.1016/s0264-410x(99)00053-5
Vanrompay D, Cox E, Volckaert G, Goddeeris B (1999b). Turkeys are protected from infection with Chlamydia psittaci by plasmid DNA vaccination against the major outer membrane protein. Clin. Exp. Immunol. 118(1): 49-55. https://doi.org/10.1046/j.1365-2249.1999.01024.x
Vanrompay D, Cox E, Kaiser P, Lawson S, Van Loock M, Volckaert G, Goddeeris B (2001). Protection of turkeys against Chlamydia psittaci challenge by parenteral and mucosal inoculation and the effect of turkey interferon-gamma on genetic immunization. Immunology. 103: 106-112. https://doi.org/10.1046/j.1365-2567.2001.01215.x
Vanrompay D, Ducatelle R, Haesebrouck F (1992). Diagnosis of avian chlamydiosis: specificity of the modified Gimenez staining on smears and comparison of the sensitivity of isolation in eggs and three different cell cultures. Zentralbl. Veterinarmed. B. 39(2): 105-112. https://doi.org/10.1111/j.1365-2028.1992.tb01144.x
Vanrompay D, Ducatella R, Haesebrouck F (1995a). Chlamydia psittaci infections: a review with emphasis on avian chlamydiosis. Vet. Microbiol. 45(2-3): 93-119. https://doi.org/10.1016/S0378-1135(95)00033-7
Vanrompay D, Harkinethad T, van de Walle M, Beeckman D, van Droogenbroeck C, Verminnen K, Leten R, Martel A, Camuerts K (2007). Chlamydia psittaci transmission from pet birds to humans. Emerg. Infect. Dis. 13: 108-110. https://doi.org/10.3201/FcID1307.070074
Vanrompay D, Mast J, Ducatelle R, Haesebrouck F, Goddeeris B (1995b). Chlamydia psittaci in turkeys: pathogenesis of infections in avian serovars A, B and D. Vet. Microbiol. 47: 245-256. https://doi.org/10.1016/S0378-1135(95)00125-5
Vanka A, Tandon S, Rao SR, Udupa N, Ramkumar P (2001). The effect of indigenous Neem Azadirachta indica (correction of Azadirachta indica) mouth wash on Streptococcus mutans and lactobacilli growth. Indian J. Dent. Res. 12:133-144. https://doi.org/10.1051/vetres:2006023
Wang X, Zhang NZ, Ma CF, Zhang XX, Zhao Q, Ni HB (2018). Epidemiological investigation and genotype of Chlamydia exposure in pigeons in three provinces in Northern China. Vector Borne Zoonotic Dis. 18(3): 181-184. https://doi.org/10.1089/vbz.2017.2214
West A (2011). A brief review of Chlamydia psittaci in birds and humans. J. Exot. Pet. Med. 20(1): 18-20. https://doi.org/10.1053/j.jepm.2010.11.006
Williams J, Tallis G, Dalton C, Ng S, Beaton S, Catton M, Elliott J, Carnie, J (1998). Community outbreak of psittacosis in a rural Australian town. Lancet. 351: 1697-1699. https://doi.org/10.1016/S0140-6736(97)10444-5
Yang J, Yang Q, Yang J, He C (2007). Prevalence of avian Chlamydia psittaci in China. Bull. Vet. Inst. Pulawy. 51: 347-350.
Yin L, Kalmar I, Laga S, Vandendriessche S, Vanderhaeghen W, Butaye P, Cox E, Vanrompay D (2013). Emerging Chlamydia psittaci infections in the chicken industry and pathology of Chlamydia psittaci genotype B and D strains in specific pathogen free chickens. Vet. Microbiol. 162: 740-
• Zhang F, Li S, Yang J, Pang W, Yang L, He C (2008). Isolation and characterization of Chlamydophila psittaci isolated from laying hens with cystic oviducts. Avian Dis. 52: 74-78. https://doi.org/10.1637/0819-051207-Reg

• Zhang NZ, Zhang XX, Zhou DH, Huang SY, Tian WP, Yang YC, Zhao Q, Zhu XQ (2015). Seroprevalance and genotype of Chlamydia in pet parrot in China. Epidemiol. Infect. 143(1): 55-61. https://doi.org/10.1017/s0950268814000363

• Zhou J, ChangQing Q, GuoZhen L, Xiaoan C, FuYing Z, XiaoWei G, GuangHua W (2010). Isolation of Chlamydophila psittaci from laying hens in China. Vet. Res. 3: 43-45. http://dx.doi.org/10.3923/vr.2010.43.45

• Zocevic A, Vorimore F, Marhold C, Horvatek D, Wang D, Slavec B, Pretz Z, Stavrias G, Pukner-Radovic E, Dovc A, Siarkou VI, Laroucau K (2012). Molecular characterization of atypical Chlamydia and evidence of their dissemination in different European and Asian chicken flocks by specific real-time PCR. Environ. Microbiol. 14(8): 2212-2222. https://doi.org/10.1111/j.1462-2920.2012.02800.x

• Zocevic A, Vorimore F, Vicari N, Gasparini J, Jacquin L, Sachse K, Magnino S, Laroucau K (2013). A real-time PCR assay for the detection of atypical strains of Chlamydiaceae from pigeons. PLoS One 8(3): e58741. https://doi.org/10.1371/journal.pone.0058741