Effect of Preharvest Application of Some Antioxidants on The Fruit Yield, Quality and Storability of “Manfalouty” Pomegranate Fruits (Punica granatum L.)

Ahmed H. A. Mansour¹, Hayam M. Elmenofy¹ and Abdel-Moety Salama²

¹Fruit Handling Department, Horticultural Research Institute, Agricultural Research Centre, (Affiliation ID: 60019332), 9 Gamaa Street, 12619, Giza, Egypt.
²Physiology and Breeding of Horticultural Crops Lab (PBHC), Horticulture Dept., Fac. Agric., Kafrelsheikh Univ., 33516 Kafr El Sheikh, Egypt.

Received: 26 Oct. 2020 / Accepted 10 Dec. 2020 / Publication date: 25 Dec. 2020

ABSTRACT
Pomegranate (Punica granatum L.) is one of the oldest and most important fruit crops in tropical and subtropical regions. However, its spread and consumption were very low till the end of last century due to the difficulty of aril extractions for eating (Kahramanoğlu, 2019). By the beginning of the 21st century, many reports cleared the nutritional, pharmacological and therapeutic values of pomegranate fruits which have a potential effect as strong antioxidative and anti-inflammatory (Kahramanoğlu, 2019; Vučić et al., 2019), which made it to be called a “Super fruit”. Thus, the demands and production of pomegranates were highly increased in the last years which was estimated 3.8 million tons in 2017 compared to 3 million tons in 2014 (Kahramanoğlu, 2019). Recently, in Egypt, production and consumption of pomegranate fruits are highly increasing which made it the seventh producer over the world. As well as, for exportation, according to the Ministry of Agriculture and Land Reclamation, Egypt exported 90969 tons of pomegranate fruits in the period of January to November 2020, which recorded the pomegranates as the fifth crop in term of exported fruit crops (Elsawy, 2020). According to the Ministry of Agriculture and Land Reclamation Statistics (2016), the total area devoted for pomegranate was 85415 fed (35,888 ha), with production of 269070 tons. Pomegranate cv. “Manfalouty” is one of the most successfully cultivars that is growing in Upper Egypt, especially in Assiut Governorate (El-Orabi et al., 2020).

Pomegranate fruits are subjected to many damages during the growing season, especially with “Manfalouty” cultivar which is classified as a sensitive to fruit cracking that decreases the fruit yield and marketing value (Abdel Aziz et al., 2017; El-Orabi et al., 2020), as well as during storage such chilling injury, weight loss, curliness, decay and the decrease in fruit quality during the shelf life or cold storage. In spite of the pomegranate fruit is classified as a non-climacteric, it still subjected to qualitative and quantitative losses during postharvest life due to weight loss, chilling injuries, husk scald and decay (Kader et al., 1984). The most noticeable symptoms of fruit chilling injury are pitting in fruit surface and discoloration in fruit peel and arils that made it susceptible to decay (Kader et al., 1984; Fawole and Opara, 2013). Moreover, cracking incidence in pomegranate fruit is one of the most important

Keywords: Pomegranate, Ascorbic acid, Salicylic acid, Cold storage, Shelf life

Introduction
Pomegranate (Punica granatum L.) is one of the oldest and most important fruit crops in tropical and sub-tropical regions. However, its spread and consumption were very low till the end of last century due to the difficulty of aril extractions for eating (Kahramanoğlu, 2019). By the beginning of the 21st century, many reports cleared the nutritional, pharmacological and therapeutic values of pomegranate fruits which have a potential effect as strong antioxidative and anti-inflammatory (Kahramanoğlu, 2019; Vučić et al., 2019), which made it to be called a “Super fruit”. Thus, the demands and production of pomegranates were highly increased in the last years which was estimated 3.8 million tons in 2017 compared to 3 million tons in 2014 (Kahramanoğlu, 2019). Recently, in Egypt, production and consumption of pomegranate fruits are highly increasing which made it the seventh producer over the world. As well as, for exportation, according to the Ministry of Agriculture and Land Reclamation, Egypt exported 90969 tons of pomegranate fruits in the period of January to November 2020, which recorded the pomegranates as the fifth crop in term of exported fruit crops (Elsawy, 2020). According to the Ministry of Agriculture and Land Reclamation Statistics (2016), the total area devoted for pomegranate was 85415 fed (35,888 ha), with production of 269070 tons. Pomegranate cv. “Manfalouty” is one of the most successfully cultivars that is growing in Upper Egypt, especially in Assiut Governorate (El-Orabi et al., 2020).

Pomegranate fruits are subjected to many damages during the growing season, especially with “Manfalouty” cultivar which is classified as a sensitive to fruit cracking that decreases the fruit yield and marketing value (Abdel Aziz et al., 2017; El-Orabi et al., 2020), as well as during storage such chilling injury, weight loss, curliness, decay and the decrease in fruit quality during the shelf life or cold storage. In spite of the pomegranate fruit is classified as a non-climacteric, it still subjected to qualitative and quantitative losses during postharvest life due to weight loss, chilling injuries, husk scald and decay (Kader et al., 1984). The most noticeable symptoms of fruit chilling injury are pitting in fruit surface and discoloration in fruit peel and arils that made it susceptible to decay (Kader et al., 1984; Fawole and Opara, 2013). Moreover, cracking incidence in pomegranate fruit is one of the most important

Corresponding Author: Abdel-Moety Salama, Horticulture Department, Agriculture Faculty, Kafrelsheikh University, Kafr El-Sheikh, Egypt, P.O. 33615. Email: ask002047@yahoo.com, abdelmoaty.mohamed@agr.kfs.edu.eg
physiological disorder that cause great loss in fruit yield and value which account 3.64%, 6.30% and 19.40% for early, mid and late season, respectively, from the total fruit yield (Abdel Aziz et al., 2017). Therefore, it was important to search for some natural compounds that able to improve the productivity of fruit trees and maintaining the quality of the fruits during storage and shelf life, as well as to reduce the effect of stresses (biotic and abiotic stresses) and the sensitivity of fruit crops to them.

Antioxidants such as salicylic acid and ascorbic acid are safe compounds capable of reducing the stresses effect (biotic and abiotic stresses) and or sensitivity of fruit crops to stresses that made them are of great importance from both of the theoretical and practical point of view (Khan et al., 2011; Khan et al., 2015; Paciolla et al., 2019). Also, their application increased the fruit yield and quality of many fruit crops (Bondok et al., 2011; Osman, 2014; Ayed, 2014; Akl et al., 2014; Mohamed-Attiat, 2016; Abdel Aziz et al., 2017 and Abd-El-Rhman et al., 2017).

Salicylic acid (SA) belongs to a group of plant phenolic compounds and being involved in regulating plant growth, development and disease resistance (Raskin, 1992; Shah, 2003; Beckers and Spoel, 2006). They protect the plant cells by preventing the accumulation of reactive oxygen species (ROS) (Taiz and Zeiger, 2002; Joseph et al., 2010). SA is a phenolic growth regulator which enhanced plant photosynthesis, uptake and transport of nutrients, cell division and the biosynthesis of plant pigments (Abdel Aziz et al., 2017; Sharma et al., 2020), which demonstrated to play a definite role on increasing the tolerance of many fruit crops to different stresses such as heat, salinity and heavy metal stresses. It is also considered as a natural plant hormone that inhibits ethylene biosynthesis and delays the fruit senescence (Erogul and Özsoydan, 2020). Beckers and Spoel (2006) reported that the SA is involved in systemic acquired resistance. There are several studies indicating the beneficial influences of SA on preserving fruit quality and reducing decay percentage (Ennab et al., 2020; Lokesh et al., 2020; Haider et al. 2020).

Moreover, ascorbic acid [ASA or vitamin C (VC)] is physiologically active antioxidant compound that plays a key substrate for the detoxification of ROS which could protect the plants against various environmental stresses like heavy metal, heat and salinity (Shalata and Neumann, 2001; Vwioko et al., 2008; Hagagg et al., 2020). Ascorbic acid plays multiple roles in many developmental processes including cell division and cell wall expansion leading to improve plant growth, photosynthesis and increase yield of the crop (Pignocchi and Foyer, 2003). Vitamin C also, was reported to be in the defense response against many pathogens (Boubakri et al., 2017). As well, exogenous application of ASC acts as an inducer of disease resistance in different plant-pathogen interactions (Egan et al., 2007; Botanga et al., 2012; Fujiwara et al., 2013 and Li et al., 2016).

Therefore, this study aimed to investigate the effects of preharvest applications of some antioxidants (ascorbic acid and salicylic acid) for reducing fruit cracking, improving the fruit yield and quality at harvest as well as storability during cold storage and shelf life of pomegranate fruits under Assiut Governorate conditions.

Materials and Methods

The present study was carried out on “Manfalouty” pomegranate trees (Punica granatum L.) grown in clay soil in a private orchard situated at El Badary, Assiut Governorate, Egypt in 2016 and 2017 seasons Healthy trees and uniformly in growth were selected for this study. The age of the trees was approximately 15 years old at the beginning of the experiment and they were planted at 5x5 m apart.

Application of antioxidant treatments:

Seven treatments were applied with three replicates for each (1 replicate = 1 tree) as follows:

Treatments

Treatment	Description
T₁	Spraying with water (control),
T₂	Spraying with ascorbic acid (ASA) at 250 ppm,
T₃	Spraying with ascorbic acid (ASA) at 500 ppm,
T₄	Spraying with salicylic acid (SA) at 250 ppm,
T₅	Spraying with salicylic acid (SA) at 500 ppm,
T₆	Spraying with ASA (250 ppm) plus SA (250 ppm),
T₇	Spraying with ASA (500 ppm) plus SA (500 ppm)
The trees were sprayed three times (at the first week of July, August and September, respectively). Trees were sprayed in early morning by using a back gun sprayer 20 liters even runoff.

At harvest date (early October), which was detected according to commercial criteria based on fruit size, weight, skin color and total soluble solids (TSS), the fruits were manually and carefully harvested and total yield was calculated, then the fruits were examined and separated into sound and cracked for each replicate (tree). The percentage of cracked fruits was calculated. For each treatment, about 200 to 250 fruits (about 90 kg) were directly brought to the laboratory of Agricultural Research Station (Arab Elawamer), Assiut Governorate. The fruits of each treatment were divided into 3 groups. The first one was to examine the physical and chemical characteristics of the fruits at the harvest date (about 12 to 15 fruits). The second group (about 40 to 45 fruits, 15 to 20 kg for each treatment) was stored at 5 ± 1 °C and 85-90 % relative humidity (RH), and used to measure the weight loss every three weeks during 12 weeks of cold storage. Finally, the third one was the rest of fruits (about 140 to 190 fruits, 65 to 70 kg each), packed in 12 carton boxes, 5-6 kg (12-15 fruits) each, divided into four batches, each batch has three replicates, one carton for each, stored also at 5 ± 1 °C and 85-90 % RH. Every three weeks, one batch (three cartons) from above mentioned (after three, six, nine and 12 weeks of cold storage), was removed then divided into two groups. The first group was used to examine fruit quality properties and decay index at the day of extraction of cold storage. The second one was placed on room temperature for five days of shelf life then the weight loss percentage, fruit quality properties and decay index were recorded.

Table 1: Average monthly meteorological data of Assiut weather station during two years 2016 and 2017.

Month	Max T (°C)	Min T (°C)	RH %	W.S / km/h	Sunshine
January	19.0	5.10	60.3	15.2	8.90
February	24.5	8.30	50.7	14.5	9.70
March	28.0	13.1	41.0	17.0	9.90
April	35.1	17.1	31.5	17.0	10.3
May	36.1	20.0	27.7	20.3	11.4
June	40.7	24.6	28.0	19.5	12.3
July	37.4	24.1	37.9	19.5	12.2
August	37.5	24.1	36.8	19.5	11.9
September	35.0	21.6	43.5	21.7	10.8
October	32.8	17.7	49.5	19.2	10.0
November	27.0	12.7	54.7	15.1	9.40
December	19.9	6.30	59.7	16.8	9.00

2017

January	19.3	5.30	55.3	14.8	8.90
February	20.5	6.30	52.6	14.5	9.70
March	25.3	11.0	42.5	17.2	9.90
April	31.3	15.5	36.6	17.3	10.3
May	36.3	20.0	31.4	16.2	11.4
June	37.4	23.4	34.6	21.0	12.3
July	39.1	25.3	32.7	16.3	12.2
August	37.8	24.6	38.8	17.6	11.9
September	35.3	20.9	44.6	20.7	10.8
October	30.3	16.5	47.0	17.2	10.0
November	25.1	10.9	54.6	15.2	9.40
December	23.2	9.00	58.8	14.6	9.00

Max T = Maximum temperature (°C) Min T = Minimum temperature (°C), RH= Relative humidity (%)
W.S = Wind speed (Km/h)

1- Yield

At harvest time the fruits per each tree was harvested and weighed as kg/tree.

2- Fruit cracking percentage

The percentage of cracked fruits was calculated as follows:
Cracking (%)/tree = (weight of cracked fruits per tree / Total yield per tree) x 100.

3- Physical characteristics
1- Fruit weight (g): was estimated as average weight of 10 fruits per replicate.
2- Weight loss %: calculated as a percentage from the initial weight.
3- Chilling injured fruit %: The weight of discarded fruits mainly due to chilling injury was recorded after every storage period (three weeks) and five days of shelf life at room temperature, and calculated as a percentage from the total weight of fruits.
4- Peel weight %: was calculated as a percentage of the fruit weight.
5- Aril weight %: was calculated as a percentage of the fruit weight.
6- Juice weight %: was expressed as percent of fruit weight (W/W).

4- Chemical juice constituents
1- The total soluble solids (TSS) were determined by using a hand refractometer.
2- Titratable acidity (TA %) as citric acid was determined by titration using 0.1 N of NaOH according to (A.O.A.C., 2000).
3- TSS / TA ratio was calculated by dividing TSS on TA.

Statistical analysis
All treatments of the field experiment were arranged in a randomized complete block design with three replicates. However, the storage treatments were arranged in a split-plot design, storage periods assigned in main plot and spraying with antioxidant treatments was considered as sup-plot with three replicates. The data was statistically analyzed by Statistix 8.1 software (Analytical Software, 2005), according to Snedecor and Cochran (1990) using L.S.D. at the level of 0.05.

Results
Effect of ascorbic acid and salicylic acid on yield, cracking and physico-chemical attributes of pomegranate fruit at harvest

Fruit yield/tree
The results in Table 2 indicate that all treatments were significantly increased yield compared to the non-treated control. The highest fruit yield was obtained by spraying trees with T3 (ascorbic acid (ASA) at 500ppm) followed by T2 (ascorbic acid at 250ppm), while the control treatment gave the lowest yield in both seasons.

Fruit cracking (%)
The results in Table 2 reveal that the highest fruit cracking % was recorded with control treatment by 10.70% and 9.85% for the 1st and 2nd seasons, respectively. On the other hand, the lowest fruit cracking% in the 1st season was 6.91% with T7 (ASA at 500 ppm + salicylic acid (SA) at 500 ppm), while in the second season it was 5.67% with T3. In general, all treatments recorded fruit cracking % lower than control treatment.

Physical properties of fruits
Fruit weight (g)
The results clearly show a significant effect on fruit weight (Table 2). T3 surpassed the other foliar spraying treatments, where it gave the highest fruit weight (394.6g and 409.8g) in both seasons, respectively. On the other hand, the lowest fruit weight (380.5g and 382.5g) in both seasons, respectively, was obtained by the control treatment.

Fruit peel%
In terms of their impact on the percentage of fruit peel, the highest percentage was observed by control treatment (46.8 % and 40.2 % during both of seasons, respectively). However, the lowest value of fruit peel percentage was recorded by T7, which recorded 39.4% and 33.9% in the first and second seasons, respectively. Moreover, no significant differences were found among T7 (ASA, 500 ppm +
SA, 500 ppm), T2 (ASA, 250 ppm), T3 (ASA, 500 ppm), T4 (SA, 250 ppm) and T5 (SA, 500 ppm) treatments.

Fruit aril (%)

The treatment 7 induced the highest percentage of fruit aril in both seasons followed by T6 with no significant differences. The lowest percentage was recorded by the control treatment (Table 2).

Fruit juice %

The results in Table 2 show that the highest fruit juice % was found by T7, whereas the lowest was observed with control treatment (T1). In general, all levels of SA alone or in combination with ASA recorded significantly higher juice % compared to the control. Similar trend was observed in both seasons the study.

C- Chemical properties

Total soluble solids (TSS), Acidity (TA) % and TSS/TA ratio:

The highest TSS% was achieved by T3 which had no significant differences with T2 and T4 (Table 2). On the other hand, the lowest TSS% was noticed at control treatment (T1), which had no significant differences with T5 and T6 in the first season. As well, in the second season the highest TSS% was recorded by T2 and T3 but no significant differences with the rest treatments were found.

Regarding TA, the results in Table 2 show that the highest acidity value was obtained with control treatment compared to other treatments in both seasons. While T2 and T4 recorded lowest TA for 1st and 2nd seasons, respectively.

Table 2: Effect of ascorbic acid and salicylic acid on yield and physico-chemical fruit attributes of Manfalouty pomegranate fruits at harvest.

Treatments	Cross yield/tree (kg)	Fruit cracking (%)	Fruit weight (g)	Fruit peel weight (%)	Aril weight (%)	Juice (%)	TSS (%)	TA (%)	TSS/TA ratio
Season 2016									
T1	79.50	10.70	380.5	46.8	53.2	37.19	14.13	1.39	10.17
T2	96.55	7.49	390.7	44.9	55.1	38.97	14.80	0.96	15.42
T3	100.45	7.10	394.6	42.9	57.1	39.15	14.97	1.14	13.13
T4	89.77	8.31	388.7	43.0	57	39.70	14.60	1.22	11.97
T5	87.45	7.90	386.9	40.8	59.2	39.02	14.40	1.23	11.71
T6	88.19	7.21	387.5	39.5	60.5	41.94	14.47	1.27	11.39
T7	85.70	6.91	383.8	39.4	60.6	42.89	14.33	1.28	11.20
L.S.D. 0.05:	5.53	1.19	3.12	1.13	3.53	1.77	0.44	0.11	0.47

Season 2017

Treatments	Cross yield/tree (kg)	Fruit cracking (%)	Fruit weight (g)	Fruit peel weight (%)	Aril weight (%)	Juice (%)	TSS (%)	TA (%)	TSS/TA ratio
T1	86.60	9.85	382.5	40.2	59.8	38.40	14.00	1.49	9.40
T2	102.50	6.22	404.1	38.9	61.1	39.88	14.97	1.56	11.01
T3	107.54	5.67	409.8	37.9	62.1	38.70	14.97	1.31	11.43
T4	100.39	6.86	400.9	38.2	61.8	40.95	14.23	1.16	12.27
T5	99.29	6.87	399.2	37.9	62.1	41.92	14.63	1.20	12.19
T6	91.59	8.62	395.9	35.1	64.9	40.84	14.50	1.19	12.18
T7	88.50	7.21	389.2	33.9	66.1	42.92	14.50	1.32	10.98
L.S.D. 0.05:	3.76	0.32	1.47	2.74	2.38	1.35	0.87	0.29	0.88

T1: Control
T2: ASA at 250 ppm
T3: ASA at 500 ppm
T4: SA at 250 ppm
T5: SA at 250 ppm
T6: ASA (250 ppm) plus SA (250 ppm)
T7: ASA (500 ppm) plus SA (500 ppm)

Results in Table 2 showed clearly that the T2 gave the highest TSS/TA value (15.42) in 1st season, whereas in 2nd season T4 recorded the highest one (12.27) compared to the control which recorded the lowest TSS/TA during 2016 and 2017 seasons.
Effect of ascorbic acid and salicylic acid on weight loss, fruit decay and physico-chemical attributes of fruits during cold storage and shelf life during:

Weight loss percentage

Results in Table (3) clear that fruit weight loss percentage was markedly increased with advancing storage period during the cold storage. As a general view, all treatments induced significant reduction in fruit weight loss % during cold storage periods as well as during shelf life through the two studied seasons. T6 gave the lowest level of fruit weight loss % (4.24%, 5.55% in cold storage in 2016 and 2017 seasons, respectively). However, no significant differences were found among T3, T5 and T6. Also, the interaction between treatments and cold storage periods showed a significant reduction in weight loss % during the two studied seasons as well as in the interaction between treatments and shelf life periods. Moreover, the lowest values of weight loss (%) during shelf life were recorded by the fruits under T5 and T4 in 2016 and 2017 seasons, respectively, compared with the other treatments.

Table 3: Effect of ascorbic acid and salicylic acid on weight loss (%) of Manfalouty pomegranate fruits during cold storage and shelf life through 2016 and 2017 seasons.

Treatments	Cold storage	Storage period	Shelf life			
	3W 6W 9W 12W Mean	3W 6W 9W 12W Mean				
Season 2016						
T1	2.95 3.33 6.64 12.67	**6.40**	12.01 12.91 7.78 4.73	**9.36**		
T2	2.56 3.48 5.95 7.55	**4.89**	9.56 7.55 6.49 3.15	**6.69**		
T3	2.24 3.55 4.61 7.52	**4.48**	9.30 8.45 6.35 3.16	**6.82**		
T4	3.27 4.61 6.24 8.89	**5.75**	9.00 8.65 5.32 3.60	**6.64**		
T5	2.26 3.57 5.04 7.22	**4.52**	8.76 9.06 4.17 3.51	**6.38**		
T6	2.15 3.18 4.66 6.98	**4.24**	10.75 9.74 5.89 4.97	**7.84**		
T7	2.57 3.38 5.06 8.44	**4.86**	8.57 10.19 5.59 4.55	**7.23**		
Mean	2.57 3.59 5.46 8.47	**9.71**	9.51 5.94 3.95			
L.S.D. 0.05	(P): 0.17 (T): 0.40 (PxT): 0.80	(P): 0.49 (T): 0.37 (PxT): 0.74				
Season 2017						
T1	2.97 4.78 8.81 11.97	**7.13**	9.78 7.30 5.54 5.57	**7.05**		
T2	2.34 4.37 6.12 9.28	**5.53**	8.31 9.66 5.09 3.49	**6.64**		
T3	2.41 4.40 5.51 9.66	**5.50**	8.21 7.33 4.13 4.28	**5.99**		
T4	2.83 5.51 6.19 9.67	**6.05**	9.07 5.22 4.97 3.58	**5.71**		
T5	3.03 4.46 5.61 9.52	**5.66**	9.93 9.24 3.77 3.84	**6.70**		
T6	3.75 4.07 6.11 8.26	**5.55**	8.22 7.10 4.86 4.33	**6.13**		
T7	2.77 4.27 5.69 10.52	**5.81**	9.58 9.22 4.27 3.88	**6.74**		
Mean	2.87 4.55 6.29 9.84	**9.01**	7.87 4.66 4.14 6.42			
L.S.D. 0.05	(P): 0.22 (T): 0.36 (PxT): 0.71	(P): 0.23 (T): 0.33 (PxT): 0.66				
W = week	T1 Control	T2 ASA at 250 ppm	T3 ASA at 500 ppm	T4 ASA (250 ppm) plus SA (250ppm)	T5 ASA (500 ppm) plus SA (500 ppm)	T6 SA at 250 p.p.m

Fruit chilling percentage

At the end of cold storage or shelf life, in general, the results showed that all treatments markedly reduced chilled fruit percentage compared to the control treatment. However, the percentage of chilled fruits was increased with progress of storage periods or shelf life. The most significant treatments in reducing chilled fruits were T6 and T7 in the first season and T2 in the second season. Furthermore, during shelf life, salicylic acid 500ppm (T5) markedly reduced the percentage of chilled fruits comparing with all other treatments in the first season and both ascorbic acid at 250ppm (T2) and ascorbic acid at 500ppm plus salicylic acid 500ppm (T7) in the second season (Table 4).

Juice weight %

Results in Table (5) clear that fruit juice content was gradually and significantly decreased from the beginning until the end of cold storage. While, during the shelf life, this decrease was not significant during 2016 and 2017 seasons. As shown in Table (5), it could be obviously noticed that all treatments induced significant differences in juice weight % of fruits either during cold storage or shelf life in 2016 and 2017 seasons. However, T6 (ascorbic acid at 250ppm plus salicylic acid at 250ppm) gave the
Table 4: Effect of ascorbic acid and salicylic acid on chilling injury (%) of Manfalouty pomegranate fruits during cold storage and shelf life through 2016 and 2017 seasons.

Treatments	Cold storage	Shelf life	
	3W 6W 9W 12W	Mean 3W 6W 9W 12W Mean	
Season2016	T₁	16.67 27.78 33.33 50.00 31.95 Mean 3.19	24.00 33.44 16.72
	T₂	0.00 0.00 18.45 48.22 16.67 Mean 3.19	7.99 26.35 8.59
	T₃	0.00 15.56 35.44 49.03 25.01 Mean 3.19	16.42 33.58 12.50
	T₄	0.00 16.67 34.12 49.21 25.00 Mean 3.19	15.89 34.11 12.50
	T₅	0.00 0.00 10.01 23.32 8.33 Mean 3.19	0.00 16.67 4.17
	T₆	0.00 0.00 0.00 14.67 3.67 Mean 3.19	0.00 16.34 33.64 12.50
	T₇	0.00 0.00 0.00 16.67 4.17 Mean 3.19	0.00 32.98
Mean	2.38 8.57 18.76 35.87 Mean 3.19	11.52 30.11	

L.S.D. 0.05 : (P): 0.96 (T): 1.25 (PxT): 2.50 (P): 1.28 (T): 0.60 (PxT): 1.20

W = week
T₁ Control
T₂ ASA at 250 ppm
T₃ ASA at 500 ppm
T₄ ASA at 500 ppm plus SA (250ppm)
T₅ SA at 250 p.m.
T₆ ASA at 500 ppm plus SA (500 ppm)
T₇ ASA at 500 ppm plus SA (500 ppm)

Table 5: Effect of ascorbic acid and salicylic acid on juice (%) of Manfalouty pomegranate fruits during cold storage and shelf life through 2016 and 2017 seasons.

Treatments	Cold storage	Shelf life	
	3W 6W 9W 12W	Mean 3W 6W 9W 12W Mean	
Season2016	T₁	37.16 36.77 36.27 35.93 36.53 Mean 3.01	41.86 41.38 41.28 41.25 41.44
	T₂	38.76 38.73 38.67 38.44 38.65 Mean 3.01	41.67 41.65 41.61 41.60 41.63
	T₃	38.93 38.52 38.27 38.67 38.60 Mean 3.01	41.53 41.38 41.24
	T₄	39.61 39.55 39.38 39.34 39.47 Mean 3.01	41.74 41.43 41.29 41.12 41.40
	T₅	38.95 38.89 38.69 38.26 38.70 Mean 3.01	40.81 40.77 40.36 40.15 40.52
	T₆	42.73 42.47 42.44 42.18 42.46 Mean 3.01	38.83 38.81 38.63 38.34 38.65
	T₇	41.63 41.42 41.34 41.11 41.38 Mean 3.01	40.96 40.83 40.79 40.01 40.65
Mean	39.68 39.48 39.29 39.13 Mean 3.01	41.06 40.89 40.74 40.52 40.80	

L.S.D. 0.05 : (P): 0.45 (T): 0.79 (PxT): 1.58 (P): NS (T): 0.52 (PxT): 1.05

W = week
T₁ Control
T₂ ASA at 250 ppm
T₃ ASA at 500 ppm
T₄ ASA at 500 ppm plus SA (250ppm)
T₅ SA at 250 p.m.
T₆ ASA at 500 ppm plus SA (500 ppm)
highest value (42.46%) of juice weight % followed by T7 (fruits treated with ASA at 500ppm plus SA at 500ppm) (41.38%), while un-sprayed fruits (T1) gave the lowest value of juice weight % (36.53%) during 2016 season. In 2017, T7 (ascorbic acid at 500ppm plus salicylic acid at 500ppm) gave the highest value of juice weight % per fruits (42.48%), followed by T5 (salicylic acid at 500ppm) (41.38%), while the fruits sprayed with ascorbic acid at 500ppm (T3) or un-sprayed trees (T1) recorded the lowest value of juice weight % under cold storage.

On the other hand, regarding the shelf life, fruits treated by ASA at 250ppm (T2) recorded the highest value of juice weight %. While, ASA at 250ppm plus SA at 250 ppm (T6) gave the lowest value of juice weight % under cold storage. However, un-sprayed fruits (T1) gave the highest value of juice weight % compared with T4 (SA at 250 ppm) which recorded the lowest value during the shelf life of 2017 season.

Total soluble solids (TSS), titratable acidity % (TA, %) and (TSS/TA ratio) in juice:

Results in table (6) clear that total soluble solids percentage was markedly and gradually increased with advancing of storage period or shelf life in 2016 and 2017 seasons. The application of ascorbic acid at 250ppm (T2) gave the lowest total soluble solids percentage values during the cold storage in both study seasons without significant differences compared to the other treatments except with T3 and T5 in 1st season and T5 in 2nd one. Similar trend was noticed during shelf life, where T2 recorded the lowest TSS value whereas T5 gave the highest one. Hence, there is a positive relationship between the total soluble solids percentage and storage period.

Table 6: Effect of ascorbic acid and salicylic acid on TSS (%) of Manfalouty pomegranate fruits during cold storage and shelf life through 2016 and 2017 seasons.

Treatments	3W	6W	9W	12W	Mean	3W	6W	9W	12W	Mean
Season 2016										
T1	14.50	14.80	15.20	16.13	15.16	14.80	15.27	15.33	16.40	15.45
T2	14.70	14.90	14.96	15.07	14.91	14.87	14.93	14.97	15.13	14.98
T3	15.20	15.33	15.40	15.57	15.38	15.30	15.40	15.57	15.67	15.49
T4	14.77	14.93	15.33	15.67	15.18	14.87	15.07	15.40	15.73	15.27
T5	14.93	15.20	15.60	15.90	15.41	15.33	15.40	15.67	15.97	15.59
T6	14.67	15.13	15.47	15.70	15.24	14.87	15.17	15.50	15.73	15.32
T7	14.87	15.13	15.20	15.35	15.14	15.00	15.20	15.27	15.60	15.27
Mean	14.81	15.06	15.31	15.63	15.63	15.01	15.21	15.39	15.75	15.75
L.S.D. 0.05:	(P): 0.25	(T): 0.40	(PxT): 0.80	(P): 0.36	(T): 0.25	(PxT): 0.51				
Season 2017										
T1	14.93	15.20	15.60	16.00	15.43	15.00	15.30	15.73	16.13	15.54
T2	14.87	15.13	15.33	15.53	15.22	15.00	15.30	15.40	15.60	15.33
T3	15.00	15.30	15.50	15.73	15.38	15.07	15.33	15.53	15.73	15.42
T4	14.93	15.00	15.34	15.87	15.29	15.33	15.40	15.50	16.10	15.58
T5	14.93	15.47	15.93	16.07	15.60	15.30	15.60	16.00	16.10	15.75
T6	14.67	15.53	15.80	16.13	15.53	14.73	15.60	15.83	16.13	15.57
T7	14.53	15.33	15.35	15.60	15.20	14.80	15.40	15.60	15.67	15.37
Mean	14.84	15.28	15.55	15.85	15.03	15.42	15.66	15.92		
L.S.D. 0.05:	(P): 0.65	(T): 0.35	(PxT): 0.71	(P): 0.13	(T): 0.12	(PxT): 0.24				

W = week
T1 Control
T2 ASA at 250 ppm
T3 ASA at 500 ppm
T4 SA at 250 ppm
T5 ASA at 500 ppm plus SA (250ppm)
T6 ASA (500 ppm) plus SA (500 ppm)
T7 ASA (500 ppm) plus SA (500 ppm)

Results in table (7) showed that titratable acidity content was decreased with the advancing of storage period. Such trait was gradually and significantly decreased from the beginning of storage either during cold storage or shelf life. The application of ascorbic acid at 250ppm plus SA at 250ppm (T6) or control (T1) had higher values of total acidity percentage (1.04) and (1.03) in the first seasons, while, (1.03) and (1.05) in the second season. Thus, the highest values of total acidity percentage (0.91 and 0.98%) were obtained in both seasons, respectively, under shelf life.
Table 7: Effect of ascorbic acid and salicylic acid on acidity (%) of Manfalouty pomegranate fruits during cold storage and shelf life through 2016 and 2017 seasons.

Treatments	Storage period	Mean	3W	6W	9W	12W	Mean
	Season 2016						
T1		1.10	1.02	0.93	1.09	0.93	0.84
T2		0.90	0.85	0.77	0.92	0.81	0.75
T3		0.89	0.86	0.83	0.88	0.93	0.73
T4		0.95	0.80	0.72	0.89	0.82	0.77
T5		1.11	1.01	0.98	1.00	0.97	0.82
T6		1.12	1.11	1.02	1.04	0.98	0.84
T7		1.03	0.99	0.87	0.93	1.10	0.80
Mean		1.03	0.96	0.89	0.82	1.03	0.89

L.S.D. 0.05: (P): 0.02 (T): 0.02 (PxT): 0.05 (P): 0.04 (T): 0.03 (PxT): 0.06

W = week
T1 Control
T2 ASA at 250 ppm
T3 ASA at 500 ppm
T4 ASA (500 ppm) plus SA (500 ppm)
T5 SA at 250 ppm

Table 8: Effect of ascorbic acid and salicylic acid on TSS/acid ratio of Manfalouty pomegranate fruits during cold storage and shelf life through 2016 and 2017 seasons.

Treatments	Storage period	Mean	3W	6W	9W	12W	Mean
	Season 2016						
T1		12.18	13.70	14.90	19.20	15.00	13.58
T2		16.33	17.53	19.43	19.83	18.28	15.99
T3		17.08	17.83	18.55	19.71	18.29	14.17
T4		15.55	18.66	21.29	22.07	19.39	15.02
T5		13.45	15.05	15.92	17.67	15.52	15.80
T6		13.10	13.63	15.17	17.25	14.79	13.77
T7		14.44	15.28	17.47	18.27	16.37	13.64
Mean		14.59	15.95	17.53	19.14	14.57	14.07

L.S.D. 0.05: (P): 1.00 (T): 1.16 (PxT): 2.33 (P): 0.88 (T): 0.80 (PxT): 1.60

W = week
T1 Control
T2 ASA at 250 ppm
T3 ASA at 500 ppm
T4 ASA (500 ppm) plus SA (500 ppm)
T5 SA at 250 ppm

DOI: 10.36632/mejar/2020.9.4.75
Concerning the effect of all treatments on TSS/TA ratio in juice, it could be observed that TSS/TA ratio in fruit juice was increased with increasing cold storage periods and shelf life during the two seasons. Moreover, in 2016, fruits treated with SA at 250ppm (T4) induced the highest value of TSS/TA ratio; followed by ASA at 250ppm (T2) then ASA at 500ppm (T3), with no significant difference among them. While ASA at 250 ppm plus SA at 250 ppm (T6) recorded the lowest level of TSS/TA ratio during the same season. On the other hand, in 2017, the application of ASA 250ppm (T2) gave the highest level of TSS/TA ratio in juice. However, control fruits (T1) produced the lowest level of TSS/TA ratio in juice. In addition, control (T1) resulted in the least level of TSS/TA ratio in juice during shelf life in the first season, while SA at 250 ppm (T4) recorded the least value in second season.

Discussion

The cultivated area of Pomegranates greatly spread in Egypt as well as over the world due to high demands of their high nutritional value (Kahramanoglu, 2019). Many problems face pomegranate fruits export and prolong storage such as weight loss, shrinking, chilling injury and maintaining fruit quality during transport and storage (Orabi et al., 2020). Assiut governorate are exposed to heat stress as cleared in metrological data in Table (1), environmental conditions, including high temperatures, especially in the summer months affect productivity, yield, and marketable fruits.

From the above mentioned results, all treatments of preharvest application of salicylic acid (SA) and ascorbic acid (ASA) significantly increased yield and fruit weight in both seasons. T3 (ASA at 500ppm), recorded the highest yield by 26.35 and 24.18 % increasing compared to control for both seasons respectively, followed by T4 (SA, 250ppm). It was previously proved that SA increased cell division and cell expansion (Hayat et al., 2005). The results of present study are in line with the previous results obtained by Abdel Aziz et al. (2017) on pomegranates who found that the application of SA from 50 to 200 ppm significantly increased fruit yield. Also, the application of SA at 1mM and 2mM increased the average of peach fruit weight by 20 and 16 %, respectively, as well as the fruit dimensions (diameter and length) were also significantly increased (Erogul and Özsöydan, 2020). Similar results were obtained on olives (Hagagg et al., 2020) and grapevine (Marzouk and Kassem, 2011) by application of SA and ASA. ASA and SA could play as auxinic action that might increase fruit size and number (Ragab, 2002). They also could decrease the abscission of fruit.

Fruit cracking (splitting), is the most important physiological disorder faces pomegranate growers and reduces pomegranate fruit yield, quality, marketability and exportability (Ahmed et al., 2014; Abdel Aziz et al., 2017; Singh et al., 2020). The present results showed that all treatments significantly decreased fruit cracking % compared to the control. In general, our results showed lower cracking percentage compared to the previous studies, about 30 % (in control treatment) Abdel Aziz et al., (2017), to 65% Singh et al., (2020). The different observation reasons of fruit cracking were previously reported and might be due to inconstancy of day and night temperature, imbalance of water relation, sharp temperature, low humidity and high evapo-transpiration during fruit growth and development as well as unbalanced nutrition, irregular irrigation and cultivar (Taiz and Zeiger, 2002; Singh et al., 2020). The beneficial effect of SA on decreasing fruit cracking was previously reported (Abdel Aziz et al 2017), who found that the application SA at 200 ppm three times reduced fruit cracking in pomegranate from 20 and 19.9 % to 6.9 and 5.7 % in both seasons. SA and ASA are enhancing plant photosynthesis (Pignocchi and Foyer, 2003; Sharma et al., 2020), improving uptake and transport of nutrients that could contribute in decreasing fruit cracking and /or increase the tolerance of plant to inconstant conditions that cause fruit cracking.

The deterioration of pomegranate during cold storage is mainly due to the chilling injuries. Our present results revealed that all treatments greatly and significantly reduced chilled fruits % (discarded fruits) compared to the control. SA alone or combined with ASA was more effective in suppressing fruit chilling. The percentage of chilled fruits was reduced to less than 4% by T6 (SA, 205ppm and ASA, 250ppm) compared to 30% with control treatment in first season. The application of SA and / or ASA induced the systemic resistance that improve the tolerance of fruit to abiotic and /or biotic stresses (Yao and Tian, 2005; Chan and Tian 2006; Shah et al., 2011). Commercially pomegranate fruits are stored at 5 ± 1 °C to prolong fruits storability. Under these conditions fruits are subjected to chilling injuries such as discoloration in fruit peel and arils. The application of antioxidants compounds such as SA and ASA could increase the activities of antioxidant enzymes that decrease the activity of cell wall degrading enzymes and increase the fruit postharvest life as well as delaying fruit ripening (Vlot et al.,
Moreover, they induce plant tolerance to different stresses such as high and low temperature (Khan et al., 2013a; Muzammil et al., 2014). SA at 0.5 mM can moderate heat stress by increasing pro-production and restriction of the stress ethylene formation under heat stress (Khan et al., 2013b).

The above mentioned results revealed that the lower rate of fruit weight loss (%) was recorded by SA and/ or ASA treated fruits during the cold storage and shelf life. The low rate of weight loss may be due to lower rates of respiration and transpiration (Manthe et al., 1992; Sartaj et al., 2013). TSS values were generally increased in the fruits during the cold storage or shelf life that could be due to the reduction in fruit weight and subsequently fruit juice concentration (Khademi and Ershadi, 2013). TSS% was higher by application of different treatments that could be as above mentioned due to the reduction of respiration rate (Sartaj et al., 2013). Also, Chanikan et al., (2015) reported that the application of SA could slow the rate of respiration that also may decrease the decline in TA. Our results showed significant effects on TA that in contrast with those found by Ranjbaran et al., (2011) on grapes, where they found no significant effects of SA on TSS or TA. The beneficial effect of SA and ASA on reducing weight loss, chilling injury, reducing decay and improving fruit quality of many fruit crops during the storage were previously reported (Yao and Tian, 2005; Asghari and Aghdam, 2010; Wei et al., 2011; Bondok et al., 2011; Khademi and Erachidi, 2013; Alejandra et al., 2017; Ennab et al., 2020; Lokesh et al., 2020; Haggag et al., 2020; Haider et al., 2020).

Conclusion

In general, it could be concluded from the above mentioned results that the preharvest application of salicylic acid (SA) and/or ascorbic acid (ASA) improved total fruit yield per tree as well as most of fruit quality parameters such as fruit weight, fruit aril weight %, juiciness %, TSS and TSS/acid ratio at harvest date. In addition, they significantly reduced fruit cracking and peel weight % at harvest that increased the marketability % of the fruits. Moreover, the treatment of SA and or ASA improved the storability of Manfalouty pomegranate fruits at cold storage (12 weeks), as well as shelf life for five days. They significantly decreased the fruit chilling injury (discoloration) and fruit weight loss % and delayed the decline in fruit quality parameters at the cold storage and shelf life.

Conflict Of Interest

The authors declare no conflict of interest.

References

A.O.A.C., 2000. Official Methods of Analysis A.O.A.C. 17th Ed. Published by A.O.A.C. Washington, D. C. (U.S.A.), 490 – 510.
Abdel Aziz, F.H., M.A. El-Sayed and H.A. Aly, 2017. Response of “Manfalouty” pomegranate trees to foliar application of salicylic acid. Assiut J. Agric. Sci., 48(2): 59-74.
Abd-El-Rhman, I. E., M. F. Attia, E.S. El-Hady and L. F. Haggag, 2017. Effect of foliar spraying of some antioxidants and micronutrients on yield, fruit quality and leaf mineral content of Manfaloty pomegranate trees (Punica Granatum L.) grown in a calcareous soil. Middle East Journal of Applied, 7(4): 713-725.
Ahmed, F.F., M.M. Mohamed, A.M.A. Abou El-Kashab and S.H.A. Aeed, 2014. Controlling fruit splitting and improving productivity of Manfalouty pomegranate trees by using salicylic acid and some nutrients. World Rural Observ., 6(1): 87-93.
Akl, A.M.A., F.H. Abdelaziz, M.A. El-Sayed, and T.M.M. Mohamed, 2014. Response of Superior grapevines to spraying salicylic and boric acid. World Rural Observations, 6(4): 1-5.
Alejandra, M., M. Serrano, D. Valero, D. Martinez-Romero, S. Castillo and P.J. Zapata, 2017. Enhancement of antioxidant systems and storability of two plum cultivars by preharvest treatments with salicylates. Int. J. Mol. Sci., 18(9): 1911.
Analytical software, 2005. Statistix 8.1 for Windows analytical software. Tallahassee, Florida.
Asghari, M.R. and M. Soleimani Aghdam, 2010. Impact of salicylic acid on post-harvest physiology of horticultural crops. Trends in Food Sci. & Technol., 21: 502-509.
Ayed, S.H.A., 2014. Attempts for reducing fruit splitting and improving productivity of Manfalouty pomegranate trees grown under Assiut conditions. M.Sc. Thesis Fac. of Agric. Minia Univ. Egypt.
Beckers, G.J.M. and S.H. Spoel, 2006. Fine-tuning plant defence signaling: salicylate versus jasmonate. Plant Biol., 8:1–10.

Bondok-Sawsan, A., M.M. Shoeib and M.A. Abada, 2011. Effect of ascorbic and salicylic acids on growth and fruiting of Ruby seedless grapes. Minia J. of Agric. Res. & Develop, 30(1): 85-95.

Botanga, C.J., G. Bethke, Z. Chen, D.R. Gallie, O. Fiehn and J. Glazebrook, 2012. Metabolite profiling of Arabidopsis inoculated with Alternaria brassicicola reveals that ascorbate reduces disease severity. Mol. Plant Microbe., 25, 1628–1638.

Boubakri, H., M.A. Hossain, S. Munnè-Bosch, D.J. Burritt, P. Diaz-Vivancos, M. Fujita, A. Lorence, 2017. In Ascorbic Acid in Plant Growth, Development and stress Tolerance.; Springer: Cham, Switzerland, 255–268.

Chan, Z. and S. Tian, 2006. Induction of H2O2-metabolizing enzymes and total protein synthesis by antagonist and salisylic acid in harvested sweet cherry fruit. Postharvest Biol. Technol., 39: 314-320.

Chanikan, J., B. Faiyueb, S. Rotarayanonta, J. Uthaibutra and D. Boonyakiatc, 2015. Cold storage in salicylic acid increases enzymatic and non-enzymatic antioxidants of Nam Dok Mai No. 4 mango fruit. Science Asia, 41: 12-21.

Egan, M.J., Z.Y. Wang, M.A. Jones, N. Smirno, N.J. Talbot, 2007. Generation of reactive oxygen species by fungal NADPH oxidases is required for rice blast disease. Proc. Natl. Acad. Sci. USA, 104: 11772–11777.

El-Orabi, S.G.E., A.M. Hassan and A.H.A. Mansour, 2020. Estimation of post-harvest losses of “Manfalouty” pomegranate fruits. European Journal of Biological Research, 10 (4): 336-342.

Elsawy, A., 2020. The prices of Egyptian orange are increasing in Gulf markets. Almalnews, accessed at 07.01.2021, available at https://almalnews.com.

Ennab, H.A., M.A. El-Shemy and S.M. Alam-Eldin, 2020. Salicylic acid and putrescine to reduce post-harvest storage problems and maintain quality of Murcott mandarin fruit. Agronomy, 10: 115.

Erogul, D. and I. Özsozdan, 2020. Effect of pre-harvest salicylic acid treatments on the quality and shelf life of the “Cresthaven” peach cultivar. Folia Hort., 32(2):1-7 https://doi.org/10.2478/fohort-2020-0020

Fawole, O.A., and U.L. Opara, (2013. Effects of storage temperature and duration on physiological responses of pomegranate fruit. Ind. Crops Prod. 47: 300-309.

Fujiwara, A., H. Shimura, C. Masuta, S. Sano, and T. Inukai, 2013. Exogenous ascorbic acid derivatives and dehydroascorbic acid are elective antiviral agents against Turnip mosaic virus in Brassica rapa. J. Gen. Plant Pathol., 79: 198–204.

Hagagg L.F., N. Abd-Alhamid, H.S.A. Hassan, A.M. Hassan, M. Ahmed and E.A.E. Geanidy, (2020). Influence of foliar application with putrescine, salicylic, and ascorbic acid on the productivity and physical and chemical fruit properties of Picual olive trees. Bulletin of the National Research Centre. 44:87

Haider, S., T., S. Ahmad, A.S. Khan, M.A. Anjum, M. Nasir, and S. Naz, 2020. Effects of salicylic acid on postharvest fruit quality of “Kinnnow” mandarin under cold storage. Scientia Horticulturae, 259.

Hayat, S., Q. Fariduddin, B. Ali, and B.A. Ahmad, 2005. Effect of salicylic acid on growth and enzyme activities of wheat seedlings. Acta Agronomica Hungarica, 53: 433–437.

Joseph, B., D. Jini and S. Sujatha, 2010. Insight into the role of exogenous salicylic acid on plants grown under salt environment. Asian J. Crop Sci., 2: 226-235.

Kader, A.A., A. Chordas, and S.M. Elyatem, 1984. Responses of pomegranates to ethylene treatment and storage temperature. Calif. Agri. 38: 4-15.

Kahramanoğlu, I., 2019. Trends in pomegranate sector: production, postharvest handling and marketing. Int. J. Agric. For. Life Sci., 3(2): 239-246.

Khademi, Z. and A. Ershadi, 2013. Postharvest application of salicylic acid improves storability of peach (Prunus persicae cv. Elberta) fruits. Intern. J. of Agric. and Crop Sci., 5 (6): 651-655.

Khan, M.I.R., F.I. Mehar, T.S. Per, N.A. Anjum and N.A. Khan, 2015. Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Frontiers in Plant Science, 6:462 doi: 10.3389/fpls.2015.00462

Khan, M.I.R., M. Asgher and N.A. Khan, 2013a. Rising temperature in the changing environment: a serious threat to plants. Climate Change Environ. Sustain. 1, 25–36. doi:10.5958/j.2320-6411.1.1.004.
Khan, M.I.R., N. Iqbal, A. Masood, T.S. Per and N.A. Khan, 2013b. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in praline production and ethylene formation. *Plant Signal. Behav.* 8:e26374. doi: 10.4161/psb.26374.

Khan, T. A., M. Mazid, and F. Mohammad, 2011. A review of ascorbic acid potentialities against oxidative stress induced in plants. *J. Agrobiol.*, 28(2): 97–111.

Li, J.Y., P. Trivedi, and N. Wang, 2016. Field evaluation of plant defense inducers for the control of citrus Huanglongbing. *Phytopathology*, 106: 37–46.

Lokesh, G., C. Madhumathi, M.R. Krishna, B.T. Priya and L. Kadir, 2020. Influence of preharvest application of salicylic acid and potassium silicate on postharvest quality of mango fruits (*Mangifera indica* L.) cv. Alphonso. *Acta Scientific Agriculture*, 4 (4): 11-15.

Manthe, B., M. Schulz and H. Schnabl, 1992. Effects of salicylic acid on growth and stomatal movements of *Vicia faba* L.: evidence for salicylic acid metabolization, *J. Chem. Ecol.*, 18: 1525-1539.

Marzouk, H.A. and H.A. Kassem, 2011. Improving yield, quality, and shelf life of Thompson seedless grapevine by preharvest foliar applications. *Scientia Horticulturae*, 130(2): 425-430.

Ministry of Agriculture and Land Reclamation Statistics, 2016. Annual Reports and Agricultural Economic Research in A.R.E.

Mohamed- Attiat, A.M., 2016. Trials for alleviating the adverse effects of salinity on some grapevine cv transplants. M.Sc. Thesis Fac. of Agric., Minia Univ., Egypt.

Muzammil, H., M.I. Hamid and M.U. Ghazanfar, 2014. Salicylic acid induced resistance in fruits to combat against postharvest pathogens: a review. *Archives of Phytopath. and Plant Protection*. Published online 05 Feb.: 1-9.

Osman, M.M., 2014. Response of Superior grapevines grown under hot climates to rest breakages. M.Sc. Thesis Fac. of Agric., Minia Univ., Egypt.

Paciolla, C., S. Fortunato, N. Dipierro, A. Paradiso, S. De Leonardis, L. Mastropasqua and M.C. de Pinto, 2019. Vitamin C in Plants: From Functions to Biofortification Antioxidants, 8, 519.

Pignocchi, C. and C. Foyer, 2003. Apoplastic ascorbate metabolism and its role in the regulation of cell signaling. *Curr. Opin. Plant Biol.*, 6: 379-389.

Ragab, M.M., 2002. Effect of spraying urea, ascorbic acid and NAA on fruiting of Washington Navel orange trees. *M. Sc. Thesis Fac. Agric. Minia. Nutr.*, 16: 163-166. Univ. Egypt.

Ranjbaran, E., H. Sarikhani, D. Bakhshi and P. Mehrdad, 2011. Investigation of salicylic acid application to reduce postharvest losses in stored ‘Bidanreh Ghermez’ table grapes. *Int. J. Fruit Sci.*, 11: 430-439.

Raskin, I., 1992. Salicylate, a new plant hormone. *Plant Physiol.*, 99: 799–803.

Sartaj, A, M. Tariq, S.A. Kashif, M. Talat, and A. Amjad, 2013. Effect of different concentrations of salicylic acid on keeping quality of apricot cv. Habi at ambient storage. *J. Biol. Food Sci. Res.*, 2(6): 62-68.

Shah, F, J. Huang, K. Cui, L. Nie, T. Shah, W. Wu, K. Wang, Z.H. Khan, L. Zhu and C. Chen, 2011. Physiological and biochemical changes in rice associated with high night temperature stress and their amelioration by exogenous application of ascorbic acid (vitamin C). *Aus. J. Crop Sci.*, 5: 1810-1816.

Shah, J., 2003. The salicylic acid loop in plant defense. *Curr. Opin. Plant Biol.*, 6: 365–371.

Shalata, A. and P.M. Neumann, 2001. Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. *J. Exp. Bot.*, 52: 2207-2211.

Singh, A., A.K. Shukla, and P.R. Meghwal, 2020. Fruit cracking in pomegranate: extent, cause, and management – A Review. *International Journal of Fruit Science*, 20: S1234-S1253, DOI: 10.1080/15538362.2020.1784074.

Snedenor, G.W. and W.G. Cochran, 1990. Statistical Methods 7th Ed, Iowa State University Press, Ames, IA, USA

Taiz, A and M. Zeiger, 2002. Plant Physiology, Third Ed. 306 p. Academic press, London, 100-120.

Vlot, A.C., D.A. Dempsey, D.F. Klessig, 2009. Salicylic acid, a multifaceted hormone to combat disease. *Annu. Rev. Phytopathol.* 47: 177–206
Vučić, V., M. Grabež, A. Trchounian, and A. Arsić, 2019. Composition and potential health benefits of pomegranate: A Review. Curr. Pharm., 25(16):1817-1827.

Vwioko, E.D., M.E. Osawaru, and O.L. Eruogun, 2008. Evaluation of Okro (Abelmoschus esculentus L. Moench.) exposed to paint waste contaminated soil for growth, ascorbic acid and metal concentration. Afr. J. Gen. Agric., 4: 39-48.

Wei, Y., Z. Liu, Y. Su, D. Liu, and X. Ye, 2011. Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. J. of Food Sci., 76: 126-132.

Yao, H. and S. Tian, 2005. Effects of pre-harvest application of salicylic acid or methyl jasmonate on inducing disease resistance of sweet cherry fruit in storage. Postharvest Biol. Technol., 35: 253–262.