Differential Cross Section for $\gamma d \rightarrow \omega d$ using CLAS at Jefferson Lab

Taya Chetry
Ken Hicks
Ohio University

APS April Meeting
15 April 2018
Goal

- $\pi-N$ scattering provides access to fundamental questions
 - Baryon spectrum of QCD
 - Chiral dynamics of QCD
 - Study of isospin violation
 - Internal structure of the nucleon

- Just imagine the possibilities with other mesons, say a vector meson!

- Experimental challenges:
 - Short lifetimes $\sim 10^{23}$ s
 - Vector meson beams cannot be produced in a lab.

- Extract ωN cross section
 - LQCD ($\pi\pi$ - scattering)
 - Physics Models
Goal

- **π-N** scattering provides access to fundamental questions
 - Baryon spectrum of QCD
 - Chiral dynamics of QCD
 - Study of isospin violation
 - Internal structure of the nucleon

- Just imagine the possibilities with other mesons, say a vector meson!

- **Experimental challenges:**
 - Short lifetimes \(\sim 10^{23} \text{s} \)
 - Vector meson beams cannot be produced in a lab.

- **Extract** \(\omega N \) cross section
 - LQCD (\(\pi\pi \) - scattering: \(\rho \) resonance)
 - Physics Models

Motivation

- \(\sqrt{s} = 783(2)-(i/2)90(8) \text{ MeV} \)
- \(\sqrt{s} = 853(2)-(i/2)12.4(6) \text{ MeV} \)
- \(m_\pi = 391 \text{ MeV} \)
- \(m_\pi = 236 \text{ MeV} \)

\[I = 1 \]

\[t(s) = \frac{1}{\rho(s)} \frac{\sqrt{8} \Gamma(s)}{m_R^2 - s - i \sqrt{8} \Gamma(s)} \]

Energy dependent width:
\[\Gamma(s) = \frac{g_R^2 k^3}{6\pi s} \]

Parameters:
\[m_R = 0.13171(36)(6) \cdot a_i^{-1} \begin{bmatrix} 1 & 0.04 \\ 1 & 1 \end{bmatrix} \]
\[g_R = 5.691(70)(25) \]
Vector Meson Dominance

Theory

Phenomenologically:

\[
\frac{d\sigma}{dt} \propto e^{-bt}
\]

- Deuteron acts as an Isospin filter for \(I = 0 \) only.
- Vector Meson off deuterium simplifies theoretical interpretations of the data.

- Two processes:
 - \(\gamma N \rightarrow \omega N \)
 - \(\omega N \rightarrow \omega N \)

- Slope parameters:
 - \(b_{\gamma N} \) and \(b_{\omega N} \)

- Ratio of Re(A) and Im(A):
 - \(\alpha_{\gamma N} \) and \(\alpha_{\omega N} \)
CLAS @ JLab

- Jefferson Lab: Newport News, VA;
- CEBAF: accelerated electrons up to 6 GeV;
- Experimental Halls: A, B, C and D;
- Hall B: electron or photon beam;

- Data from $g10$ run period (Spring, 2004);
- Target: 24 cm long liquid deuterium at $Z = -25$ cm;
- Electron beam energy 3.778 GeV;
Vector Mesons off Deuteron in CLAS

Motivation

Highlights:
- g_{10} data
- A rescattering model is used.
- Within VMD, data is consistent with $\sigma_{\phi N}$ at about 10 mb.
- In the model, larger $\sigma_{\phi N}$ is possible by taking $b_{\gamma N} > b_{\phi N}$
Previous results

Limited World Data

- Mostly from Bubble Chamber experiments.
- Missing double scattering effect.

Experiment	Energy	Target	Measured quantities	$	T	^2$ (mb/GeV2)	$\sigma_{\omega N}$ (mb)	$\gamma^2/4\pi$	Assumptions	Comments	
SLAC–Berkeley Ballam et al. (1973)	9.3	H	$\frac{d\sigma}{dt}	_{\omega}$	11.4 ± 2.1	25.3 ± 4.7	$\gamma^2/4\pi$	$\alpha_{\omega N} = 0.27$	No correction for A_2 exchange		
Rochester Ballam et al. (1976)	8.3	D, Be, C, Al, Cu, Pb	$\frac{d\sigma}{dt}	_{t=0}$	7.4 ± 0.5	25.4 ± 2.7	30.4 ± 4.8	$\alpha_{\omega N} = -0.24$	Corrected for A_2 exchange		
Tel Aviv Alexander et al. (1975)	7.5	D	$\frac{d\sigma}{dt}	_{\omega}$	11.2 ± 2.5	25.7 ± 6.5	$\alpha_{\omega N} = 0.27$	$\alpha_{\omega N} = -0.24$			
Tel Aviv Alexander et al. (1975)	7.5	D	$\frac{d\sigma}{dt}	_{p,\omega}$	15.8 ± 3.8	$\gamma^2/\gamma^2 = \frac{d\sigma}{dt}	_{t=0} / \frac{d\sigma}{dt}	_{\omega}$	The rho cross section was anomalously low
Pisa–Bonn Braccini et al. (1970)	5.7	C, Al, Zn, Ta, Ag, Pb	$\frac{d\sigma}{dt}	_{\omega}$	13.5 ± 3.3	27.0 ± 6.5	22.0 ± 5.4	$\alpha_{\omega N} = -0.3$	Poor t resolution and uncertainties in background correction		

Differential Cross Section for $\gamma d \rightarrow \omega d$

T. Chetry, Ohio University

APS April Meeting 2018
Previous results

Limited World Data
- Best data till date is from the Weizman Institute of Science
- $E_γ = 4.3$ GeV and $|t| < 0.2$ GeV$^2/c^2$

| Experiment | Energy | Target | Measured quantities | $|T|^2$ (µb/GeV2) | $σ_ω$ (mb) | $P_ω/4π$ | Assumptions | Comments |
|---------------------|--------|--------|---------------------|----------------------|------------|----------|-------------|----------|
| Weizmann Eizensberg et al. (1970) | 4.3 | D | $\frac{dσ}{dt}_ω$ | 18.5 ± 4.5 | ... | 15.6 ± 3.8 | $σ_ω$ = 27 mb, $α_ω$ = -0.24 | |
| Weizmann Eizensberg et al. (1970) | 4.3 | D | $\frac{dσ}{dt}_ω$ | ... | ... | 14.6 ± 1.2 | $P_ω/P_ω^*$ = $\frac{dσ}{dt}_ω$ / $\frac{dσ}{dt}_ω^*$ | |
| | | | $\frac{dσ}{dt}_ω$ | $6.7^{+4.1}_{-2.3}$ | | | $P_ω/4π$ = 2.18 | |
| Harvard–CEA Gladding et al. (1973) | 4.2 | H | $\frac{dσ}{dt}_ω$ | 16.8 ± 2.8 | ... | 14.6 ± 1.2 | $P_ω/P_ω^*$ = $\frac{dσ}{dt}_ω$ / $\frac{dσ}{dt}_ω^*$ | No correction for OPE or A_2 exchange |
| | | | $\frac{dσ}{dt}_ω$ | $7.7 ± 0.12$ | | | $P_ω/4π$ = 2.18 | |
| ABHIM Benz et al. (1974) | 1.3−5.3| D | $σ_ω$ | 15.7 ± 2.7 | ... | 14.5 ± 5.4 | $P_ω/P_ω^*$ = $\frac{σ(d \rightarrow ωd)}{σ(d \rightarrow ωd)}$ | Poor-resolution experiment |
| | | | $\frac{dσ}{dt}_ω$ | $7.2^{+3.1}_{-1.8}$ | | | $P_ω/4π$ = 2.18 | |
| Lancaster Morris et al. (1978) | 3.9 | D | $\frac{dσ}{dt}_ω$ | 15.3 ± 6.4 | ... | 14.5 ± 5.4 | $P_ω/P_ω^*$ = $\frac{σ(d \rightarrow ωd)}{σ(d \rightarrow ωd)}$ | Poor-resolution experiment |
| | | | $\frac{dσ}{dt}_ω$ | 18.4 ± 1.8 | | | $P_ω/4π$ = 2.18 | |

Differential Cross Section for $γd \to ωd$

T. Chetry, Ohio University

APS April Meeting 2018
Global Spectrum: $g10$ Data

- Basic cuts to reduce background:
 - z-vertex cut
 - Fiducial cut
- Minimum Momentum cut, etc.

- Corrections applied:
 - Momentum corrections
 - Energy loss corrections
- Signal over smooth background.
Binning

4 incident photon energy and variable 4-momentum transfer bins.
Yield extraction

$$E_\gamma = [1.4, 1.8] \text{ GeV}$$

Yield is extracted by taking integral of the Voigt function

Fit Functions

Voigt

Pol2
Differential Cross Section

\[\frac{d\sigma}{dt} = \frac{Y_D}{\Delta t A L} \times \frac{\Gamma_\omega}{\Gamma_{\omega \rightarrow \pi^+\pi^-\pi^0}} \times \gamma_{corr} \]

- \(A \) = Acceptance
- \(\Delta t \) = Width of t-bin
- \(Y_D \) = Signal Yield
- \(\gamma_{corr} \) = PhotonMultiplicity
 Correction factor

Luminosity,

\[L(E_\gamma) = \frac{\rho_T N_{AT}}{M_d} N_\gamma(E_\gamma) \]

- \(\rho_d = 0.169 \text{ gcm}^{-3} \)
- \(l_d = 24 \text{ cm} \)
- \(M_d = 2.014 \text{ g mole}^{-1} \)
- \(N_\gamma(E_\gamma) = \text{ Photon Flux} \)
Model based on VMD

\[f_{\gamma N \rightarrow \omega N} = \sigma_{\gamma^* \omega} (i + \alpha_{\gamma N}) e^{-b_{\gamma N} t} \]

\[\alpha = \frac{Re(A)}{Im(A)} \]

Calculation based on VMD (provided by M. Sargsian, FIU)*

\[\frac{d\sigma}{dt} \]

Comparison with Data

\[\sigma_{\omega N} \]

* Frankfurt et al.
 Nucl. Phys. A622 (1997) 511-537
Results

\[2.8 < E_t < 3.4 \text{ GeV} \]

\[\pi^+ \varpi d (\pi^0) \]

\[7.5 _ 15 _ 31 \]

\[8.0 _ 15 _ 33 \]

\[8.0 _ 19 _ 30 \]

\[8.5 _ 16 _ 39 \]

Single Scattering

2.8 < E_t < 3.4 GeV
\(\pi^+ \varpi d (\pi^0) \)
7.5 15 31
8.0 15 33
8.0 19 30
8.5 16 39

\(b_{\gamma N} = b_{\omega N} \)

\[\frac{d\sigma}{dt}_{t=0;\gamma N} \]

\[[\text{mb}/(\text{GeV}^2/c^2)] \]

\[\sigma_{\omega N} \]

\[\chi^2/\text{NDF} \]

7.5	15	31	1.13
8.0	14	34	1.15
8.0	15	33	1.01
8.0	16	32	0.96
8.0	17	31	1.00
8.0	18	30	1.15
8.0	19	30	0.91
8.0	19	31	0.87
8.0	20	30	1.03
8.5	16	35	1.11
8.5	16	39	1.00
8.5	17	34	1.05
8.5	18	33	1.07
9.0	19	39	0.89
9.0	20	38	0.87

\[|\chi^2/F - 1.0| < 0.15 \]

\[30 < \sigma_{\omega N} < 40 \text{ mb} \]

This range is typical of hadronic cross-sections in the energy range!
Summary

- Access to lower energy and larger momentum transfer to investigate ω-N scattering.
- First high statistics world data for the reaction: $\gamma d \rightarrow \omega d$. Extracted $30 < \sigma_{\omega N} < 40 \text{ mb}$ using a rescattering model based on VMD for $E_{\gamma} = [2.8, 3.4] \text{ GeV}$.
- The cross-section data provides sensitivity to the nucleon-scattering data in the energy and momentum transfer range mentioned.

Submitted to PLB, arXiv:1802.06746
Outline

- Physics Motivation
- Vector Meson Dominance
- CLAS Detector @ JLab
- Differential Cross Section
- Results
- Summary