On relative OR-complexity of Boolean matrices and their complements *

Igor S. Sergeev†

We construct explicit Boolean square matrices whose rectifier complexity (OR-complexity) differs significantly from the complexity of the complement matrices. This note can be viewed as an addition to the material of [2, §5.6].

Recall that rectifier \((m, n)\)-circuit is an oriented graph with \(n\) vertices labeled as inputs and \(m\) vertices labeled as outputs. Rectifier circuit (OR-circuit) implements a Boolean \(m \times n\) matrix \(A = (A[i, j])\) iff for any \(i\) and \(j\) the value \(A[i, j]\) indicates the existence of an oriented path from \(j\)-th input to \(i\)-th output. Complexity of a circuit is the number of edges in it, circuit depth is the maximal length of an oriented path. See details in [2, 5].

We denote by \(\text{OR}(A)\) the complexity of an edge-minimal circuit implementing a given matrix \(A\); if we speak about circuits of depth \(\leq d\), then the corresponding complexity is denoted by \(\text{OR}_d(A)\).

It was proved in [2] via method [3] the existence of \(n \times n\)-matrices \(A\) satisfying

\[
\frac{\text{OR}(\bar{A})}{\text{OR}(A)} = \Omega(n / \log^3 n).
\]

Note that due to general results [5, 6] on the asymptotic complexity of the class of Boolean matrices the ratio in the question cannot exceed \(\Theta(n / \log n)\).

A \(k\)-rectangle is an all-ones \(k \times k\) matrix. A matrix is \(k\)-free if it does not contain a \(k\)-rectangle as a submatrix.

It was established in [2] the existence of an \(n \times n\) matrix \(A\) simple for depth-2 circuits, \(\text{OR}_2(A) = O(n \log^2 n)\), whose complement matrix \(\bar{A}\) is 2-free and has relatively high weight (the number of ones) \(|\bar{A}| = \Omega(n^{5/4})\). As a consequence of [6], \(\text{OR}(\bar{A}) = \text{OR}_2(\bar{A}) = |\bar{A}|\).

Below, we provide an explicit construction of matrices satisfying similar conditions.

Theorem 1. (i) For an explicit Boolean \(n \times n\) matrix \(C\):

\[
\frac{\text{OR}(\bar{C})}{\text{OR}(C)} = n \cdot 2^{-O(\sqrt{\ln n \ln \ln n})}.
\]

*Research is supported in part by RFBR, grant 14–01–00671a.
†e-mail: isserg@gmail.com
For an explicit Boolean \(n \times n \) matrix \(C \) the following conditions hold: \(\text{OR}(C) = O(n) \), matrix \(\overline{C} \) is 2-free and \(|\overline{C}| = \Omega(n^{4/3}) \).

(Recall that the weight of any 2-free matrix is at most \(n^{3/2} + n \).) The proof of the theorem is based on the following simple combinatorial lemma.

Lemma 1. Let the weight of an \(n \times n \) matrix \(A \) be \(|A| \geq 2n^{3/2} \). Then \(A \) contains \(\Omega((|A|/n)^4) \) 2-rectangles.

Proof. Say that a row covers a pair \(u \) of two columns, if this row has ones in these columns. If \(a_i \) denotes the number of ones in the \(i \)-th row of \(A \), then the number of pairs of columns covered by the rows of \(A \) is

\[
\sigma = \sum_{i=1}^{n} \left(\frac{a_i}{2} \right) = \frac{1}{2} \sum_{i=1}^{n} a_i^2 - \frac{|A|}{2} \geq \left(\frac{\sum_{i=1}^{n} a_i^2}{2n} \right) - \frac{|A|}{2} = \frac{|A|^2}{2n} - \frac{|A|}{2} \geq \frac{|A|^2}{4n}.
\]

Let \(b_u \) be the number of rows covering the pair \(u \) of columns. Then \(\sum_u b_u = \sigma \). Thus, the number of 2-rectangles in \(A \) is

\[
\sum_u \left(\frac{b_u}{2} \right) = \frac{1}{2} \sum_u b_u^2 - \frac{\sigma}{2} \geq \left(\frac{\sum_u b_u^2}{n(n-1)} \right) - \frac{\sigma}{2} = \frac{\sigma^2}{n(n-1)} - \frac{\sigma}{2} \geq \frac{\sigma^2}{2n^2} = \Omega \left(\left(\frac{|A|}{n} \right)^4 \right).
\]

\(\square \)

Let \(n = \binom{m}{2} \). Given an \(m \times m \) matrix \(A \) construct an \(n \times n \) matrix \(B \) as follows. Label rows and columns of \(B \) by 2-element subsets of \([m] \). Set \(B[a, b] = 1 \) iff \(a \times b \) forms a 2-rectangle in \(B \).

Lemma 2. If \(A \) is \(k \)-free, then \(B \) is \(K \)-free, \(K = \left(\binom{k-1}{2} \right) + 1 \).

Proof. Suppose that \(B \) contains a \(K \)-rectangle at the intersection of rows \(s_1, \ldots, s_K \) and columns \(t_1, \ldots, t_K \). Then \(A \) contains a rectangle at the intersection of rows \(\cup s_i \) and columns \(\cup t_i \). But necessarily \(|\cup s_i|, |\cup t_i| \geq k \), contradicting \(k \)-freeness of \(A \). \(\square \)

Lemma 3. If \(A \) is \(k \)-free and \(|A| \geq 2m^{3/2} \), then

\[
\text{OR}(B) = \Omega \left(\left(\frac{|A|}{kn} \right)^4 \right),
\]

on the other hand, \(\text{OR}_3(B) = O(n) \).
Proof. By Lemma 1, $|B| = \Omega((|A|/n)^4)$, and Lemma 2 implies that B is K-free. Therefore, by the Nechiporuk’s theorem \([6]\)

$$\text{OR}(B) \geq \frac{|B|}{K^2} = \Omega\left(\left(\frac{|A|}{kn}\right)^4\right).$$

We are left to show that the matrix \bar{B} can be implemented by a depth-3 circuit of linear complexity. Take a depth-3 circuit where the nodes on the second and the third layer are numbers $1, \ldots, m$, and there is an edge joining an input or an output a with a node i iff $i \in a$. The edges between the second and the third layers are drawn according to the entries of the matrix \bar{A}.

By the construction, the circuit has $O(m^2)$ edges. Indeed, it implements the matrix \bar{B} since there exists a path connecting an input a with an output b iff the submatrix at the intersection of rows b and columns a is not all-zero.

To prove p. (i) of the Theorem take $m \times m$ norm-matrix A \([4]\), which is Δ-free and has m^2/Δ ones, where $\Delta = 2^{O(\sqrt{\log m \log \log m})}$, under appropriate choice of parameters. Put $C = \bar{B}$.

To prove p. (ii) take 3-free $m \times m$ Brown’s matrix A \([1]\) of weight $\Theta(m^{5/3})$. Put $C = \bar{B}$. \[\square\]

The author is grateful to Stasys Jukna for suggestions improving the presentation.

References

[1] Brown W.G. On graphs that do not contain a Thomsen graph. Canad. Math. Bull. 1966. 9, 281–285.

[2] Jukna S., Sergeev I. Complexity of linear boolean operators. Foundations and Trends in TCS. 2013. 9(1), 1–123.

[3] Katz N.H. On the CNF-complexity of bipartite graphs containing no squares. Lithuanian Math. Journal. 2012. 52(4), 385–389.

[4] Kóllar J., Rónyai L., Szabó T. Norm-graphs and bipartite Turán numbers. Combinatorica. 1996. 16(3), 399–406.

[5] Lupanov O.B. On rectifier and switching-and-rectifier schemes. Doklady Akad. Nauk SSSR. 1956. 111(6), 1171–1174 (in Russian).

[6] Nechiporuk E.I. On the topological principles of self-correction. Problemy Kibernetiki. 1970. 21, 5–102 (in Russian). [English translation in: Systems Theory Research. 1970. 21, 1–99.]