Future Perspectives on Infections Associated with Gastrointestinal Tract Diseases

Guy D. Eslick, PhD, MMedSc(Clin Epi), MMedStat

CHANGING BURDEN OF GASTROINTESTINAL DISEASE

In 2004, in the United States, there were 72 million presentations with a primary diagnosis of a digestive disease and 104 million presentations with combined gastrointestinal (GI) tract diseases and other diseases (Table 1). It was also found that those who are older tend to have more GI problems, there was no difference in the rates of digestive disease between the African Americans and the whites, and women were 20% more likely to present than men with digestive diseases. Thus, more than one-third (35%) of all presentations are for digestive diseases. In 2009, in the United States, the cancer statistics revealed 275,720 new cases of GI cancer, with colorectal and pancreatic cancer in the top 10 for both men and women. There were 135,830 deaths due to GI cancer, with colorectal, pancreatic, hepatic, and esophageal cancers in the top 10 for both men and women, except for esophageal cancer, which was only listed for men (Fig. 1). Furthermore, 2 of these 3 cancers that have an increasing mortality were GI tract cancers for both genders, with esophageal and hepatic cancers among men and pancreatic and hepatic cancers among women. Worldwide the rates of digestive diseases are staggering.

From 1979 to 1989, in the United States, a decrease was observed in the ambulatory care visits and hospital discharges for digestive diseases. These rates remained constant between 1990 and 1999, until 2000 when the rates climbed dramatically and was still increasing in 2004 (Fig. 2). During this period, substantial increases in the
Digestive Disease	Deaths, Underlying Cause^a	Years of Potential Life Lost to Age 75 Years^b	Ambulatory Care Visits, All-Listed Diagnoses^c	Hospital Discharges, All-Listed Diagnoses^c
All Digestive Diseases	236,164	2,007,500	104,790,000	13,533,000
All Digestive Cancers	135,107	945,200	4,198,000	726,000
Colorectal Cancer	53,226	333,000	2,589,000	255,000
Pancreatic Cancer	31,800	206,800	415,000	68,000
Esophageal Cancer	13,667	113,800	372,000	44,000
Gastric Cancer	11,253	84,200	141,000	31,000
Primary Liver Cancer	6323	72,400	63,000	33,000
Bile Duct Cancer	4954	32,900	—	17,000
Gall Bladder Cancer	1939	10,900	—	6,000
Cancer of the Small Intestine	1115	9300	—	9000
Liver Disease	36,090	559,100	2,398,000	759,000
All Viral Hepatitis	5393	101,800	3,510,000	475,000
Hepatitis C	4595	87,500	2,747,000	419,000
Hepatitis B	645	11,800	729,000	69,000
Hepatitis A	58	800	—	10,000
GI Infections	4396	12,800	2,365,000	450,000
Peptic Ulcer Disease	3692	19,700	1,473,000	489,000
Pancreatitis	3480	42,800	881,000	454,000
Disease	Code	Rate	Incidence	Mortality
---	------	------	------------	------------
Diverticular Disease	3372	8600	3,269,000	815,000
Abdominal Wall Hernia	1172	6900	4,787,000	372,000
Gastroesophageal Reflux Disease	1150	6000	18,342,000	3,189,000
Gallstones	1092	4400	1,836,000	622,000
All Inflammatory Bowel Disease	933	9100	1,892,000	221,000
Crohn Disease	622	7000	1,176,000	141,000
Ulcerative Colitis	311	2000	716,000	82,000
Appendicitis	453	5000	782,000	325,000
All Functional Intestinal Disorders	423	2500	11,648,000	1,241,000
Chronic Constipation	137	900	6,306,000	700,000
Irritable Bowel Syndrome	20	0	3,054,000	212,000
Hemorrhoids	14	200	3,275,000	306,000

a Vital statistics of the United States.
b The National Ambulatory Medical Care Survey and the National Hospital Ambulatory Medical Care Survey.
c The Healthcare Cost and Use Project Nationwide Inpatient Sample.

Data from Everhart JE, editor. The burden of digestive diseases in the United States. US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Washington, DC: US Government Printing Office, 2008; NIH Publication No. 09–6443; p. 6–7.
prevalence were observed for certain GI tract diseases, including gastroesophageal reflux disease (GERD) with an increase of 376 per 100,000 population, hepatitis C with 79 per 100,000 population, chronic constipation with 62 per 100,000 population, intestinal infections with 41 per 100,000 population, and pancreatitis with 23 per 100,000 population.1

The prevalence of digestive diseases around the world is enormous and varies from country to country (Table 2). Worldwide there has been a dynamic shift in the epidemiology of GI tract diseases, with some diseases such as peptic ulcer decreasing dramatically since the discovery of Helicobacter pylori infection and a larger number of conditions increasing, such as GERD, nonalcoholic fatty liver disease, diverticular disease, Barrett esophagus, cholelithiasis, alcoholic liver disease, hepatitis C, chronic pancreatitis, esophageal cancer and colorectal cancer.3–8 In conjunction with this increasing incidence of digestive diseases are the re-emergence of certain infectious agents (Box 1) (eg, cholera) and the identification of new agents (eg, H pylori, Laribacter, Campylobacter concisus), which are associated with GI tract diseases.9 Since the discovery of H pylori there has been an enormous interest in the relationship between microorganisms and GI tract diseases, including cancers.

CAUSE-AND-EFFECT ISSUES

One of the main issues associated with infections and disease is determining the relationship of the cause and effect. The landmark article by Sir Austin Bradford Hill in 1965 titled The environment and disease: association or causation? became widely known as the Bradford Hill’s criteria.10 There were 8 criteria that were required to
be met to determine a cause-and-effect relationship (Box 2). It is usually difficult to meet all these criteria, particularly when trying to find the cause-and-effect relationships between organisms in the small intestine or colon because of the large number of organisms living in these environments. Even for *H pylori* infection and the relationship with gastric cancer, although it is currently the only bacterium classified as a class I carcinogen, the evidence supporting this relationship is not complete in terms of Bradford Hill’s criteria.

ORGANISMS ASSOCIATED WITH GI TRACT DISEASES

There are a large number of organisms believed to be responsible for diseases of the digestive system. Some of these organisms are true pathogens, whereas others are merely commensal in nature and are unlikely to ever produce any pathologic condition. Table 3 shows the various types of microbes that are associated with diseases of the GI tract covered in this issue; it is by no means all-inclusive but provides the current magnitude of an ever-increasing field of research. At present, some of these diseases are only associated with a single group of organisms (eg, irritable bowel syndrome), whereas other diseases are affected by all groups of organisms (eg, appendicitis).

FUTURE CHALLENGES

There are a variety of methodological and technical issues related to infectious agents and their role in digestive diseases. For diseases of the colon, the major limitation remains the inability to completely identify these organisms. Identification of bacteria was mainly conducted using culture-based methods. Now, the focus in identification of bacteria is increasingly based on using molecular techniques. Many of these techniques allow the detection and identification of viable but nonculturable cells that are metabolically active but not reproducing. Gene sequencing using single-stranded RNA has been a key method in being able to elucidate multitudes of organisms that remain unknown. At present, there are approximately 9000 bacterial species, and this number is estimated as just the tip of the iceberg. The development of molecular
Country/Region	Extrapolated Prevalence	Population Estimated Used
Digestive Diseases in North America (Extrapolated Statistics)		
United States of America	64,776,924	293,655,405
Canada	7,170,854	32,507,874
Digestive Diseases in Europe (Extrapolated Statistics)		
Austria	1,803,256	8,174,762
Belgium	2,282,707	10,348,276
Britain (United Kingdom)	13,295,008	60,270,708 for UK
Czech Republic	274,892	10,246,178
Denmark	1,194,130	5,413,392
Finland	1,150,259	5,214,512
France	13,328,869	60,424,213
Greece	2,348,719	10,647,529
Germany	18,181,898	82,424,609
Iceland	64,845	293,966
Hungary	2,213,023	10,032,375
Liechtenstein	7375	33,436
Ireland	875,637	3,969,558
Italy	12,806,795	58,057,477
Luxembourg	102,063	462,690
Monaco	7118	32,270
Netherlands (Holland)	3,599,602	16,318,199
Poland	8,520,517	38,626,349
Portugal	2,321,502	10,524,145
Spain	8,885,465	40,280,780
Country	Population	Expenditure
-------------------------------	------------	-------------
Sweden	1,982,294	8,986,400
Switzerland	1,643,573	7,450,867
United Kingdom	13,295,008	60,270,708
Wales	643,676	2,918,000

Digestive Diseases in the Balkans (Extrapolated Statistics)

Country	Population	Expenditure
Albania	781,942	3,544,808
Bosnia and Herzegovina	89,913	407,608
Croatia	991,956	4,496,869
Macedonia	450,018	2,040,085
Serbia and Montenegro	2,388,066	10,825,900

Digestive Diseases in Asia (Extrapolated Statistics)

Country	Population	Expenditure
Bangladesh	31,178,044	141,340,476
Bhutan	482,110	2,185,569
China	286,510,493	1,298,847,624
East Timor	224,834	1,019,252
Hong Kong SAR	1,512,159	6,855,125
India	234,942,036	1,065,070,607
Indonesia	52,599,913	238,452,952
Japan	28,088,161	127,333,002
Laos	1,338,555	6,068,117
Macau SAR	98,224	445,286
Malaysia	5,188,782	23,522,482
Mongolia	606,907	2,751,314
Philippines	19,023,902	86,241,697
Papua New Guinea	1,195,649	5,420,280
Vietnam	18,234,440	82,662,800
Singapore	960,417	4,353,893

(continued on next page)
Country/Region	Extrapolated Prevalence	Population Estimated Used
Pakistan	35,116,837	159,196,336
North Korea	5,006,812	22,697,553
South Korea	10,639,799	48,233,760
Sri Lanka	4,390,845	19,905,165
Taiwan	5,018,346	22,749,838
Thailand	14,308,570	64,865,523
Digestive Diseases in Eastern Europe (Extrapolated Statistics)		
Azerbaijan	1,735,673	7,868,385
Belarus	2,274,379	10,310,520
Bulgaria	1,658,376	7,517,973
Estonia	295,955	1,341,664
Georgia	1,035,417	4,693,892
Kazakhstan	3,340,522	15,143,704
Latvia	508,743	2,306,306
Lithuania	795,860	3,607,899
Romania	4,931,371	22,355,551
Russia	31,758,982	143,974,059
Slovakia	1,196,375	5,423,567
Slovenia	443,707	2,011,473
Tajikistan	1,546,666	7,011,556
Ukraine	10,529,134	47,732,079
Uzbekistan	5,825,826	26,410,416
Digestive Diseases in Australasia and Southern Pacific (Extrapolated Statistics)		
Australia	4,392,605	19,913,144
New Zealand	880,989	3,993,817
Digestive Diseases in the Middle East (Extrapolated Statistics)

Country	Population	Affected Population
Afghanistan	6,289,781	28,513,677
Egypt	16,790,606	76,117,421
Gaza Strip	292,277	1,324,991
Iran	14,890,412	67,503,205
Iraq	5,597,358	25,374,691
Israel	1,367,428	6,199,008
Jordan	1,237,765	5,611,202
Kuwait	497,988	2,257,549
Lebanon	833,209	3,777,218
Libya	1,242,261	5,631,585
Saudi Arabia	5,690,280	25,795,938
Syria	3,974,310	18,016,874
Turkey	15,197,187	68,893,918
United Arab Emirates	556,745	2,523,915
West Bank	509,824	2,311,204
Yemen	4,417,249	20,024,867

Digestive Diseases in South America (Extrapolated Statistics)

Country	Population	Affected Population
Belize	60,208	272,945
Brazil	40,610,537	184,101,109
Chile	3,490,578	15,823,957
Colombia	9,333,258	42,310,775
Guatemala	3,150,131	14,280,596
Mexico	23,152,850	104,959,594
Nicaragua	1,182,299	5,359,759
Paraguay	1,365,742	6,191,368
Peru	6,075,949	27,544,305
Puerto Rico	859,844	3,897,960
Venezuela	5,518,541	25,017,387

(continued on next page)
Country/Region	Extrapolated Prevalence	Population Estimated Used
Angola	2,421,739	10,978,552^b
Botswana	361,595	1,639,231^b
Central African Republic	825,547	3,742,482^b
Chad	2,104,090	9,538,544^b
Congo Brazzaville	661,332	2,998,040^b
Congo Kinshasa	12,864,050	58,317,030^b
Ethiopia	15,736,007	71,336,571^b
Ghana	4,578,756	20,757,032^b
Kenya	7,275,464	32,982,109^b
Liberia	747,934	3,390,635^b
Niger	2,506,000	11,360,538^b
Nigeria	3,915,519	125,750,356^b
Rwanda	1,817,354	8,238,673^b
Senegal	2,393,855	10,852,147^b
Sierra Leone	1,297,916	5,883,889^b
Somalia	1,831,897	8,304,601^b
Sudan	8,635,623	39,148,162^b
South Africa	9,804,809	44,448,470^b
Swaziland	257,920	1,169,241^b
Tanzania	7,956,793	36,070,799^b
Uganda	5,821,380	26,390,258^b
Zambia	2,432,137	11,025,690^b
Zimbabwe	809,969	12,671,860^b

Abbreviation: SAR, special administrative region.

^a US Census Bureau, population estimates, 2004.

^b US Census Bureau, international database, 2004.
Box 1
List of the National Institute of Allergy and Infectious Diseases on emerging and re-emerging diseases

Group I: pathogens newly recognized in the past 2 decades
Acanthamebiasis
Australian bat Lyssavirus
Babesia, atypical
Bartonella henselae
Ehrlichiosis
Encephalitozoon cuniculi
Encephalitozoon hellem
Enterocytozoon bieneusi
H pylori
Hendra or equine morbillivirus
Hepatitis C
Hepatitis E
Human herpesvirus 8
Human herpesvirus 6
Lyme borreliosis
Parvovirus B19

Group II: re-emerging pathogens
Enterovirus 71
Clostridium difficile
Mumps virus
Streptococcus, group A
Staphylococcus aureus

Group III: Agents with bioterrorism potential
National Institute of Allergy and Infectious Diseases (NIAID): category A
Bacillus anthracis (anthrax)
Clostridium botulinum toxin (botulism)
Yersinia pestis (plague)
Variola major (smallpox) and other related poxviruses
Francisella tularensis (tularemia)
Viral hemorrhagic fevers
Arenaviruses: lymphocytic choriomeningitis virus, Junin virus, Machupo virus, Guanarito virus, Lassa fever
Bunyaviruses: Hantaviruses, Rift Valley fever, Flaviviruses, dengue virus
Filoviruses: Ebola, Marburg
NIAID: category B
Burkholderia pseudomallei
Coxiella burnetii (Q fever)
Brucella species (brucellosis)
Burkholderia mallei (glanders)
Chlamydia psittaci (psittacosis)
Ricin toxin (from Ricinus communis)
Epsilon toxin of Clostridium perfringens
Staphylococcus enterotoxin B
Typhus fever (Rickettsia prowazekii)
Food- and waterborne pathogens
Diartheagenic Escherichia coli
Pathogenic vibrios
Shigella species
Salmonella
Listeria monocytogenes
Campylobacter jejuni
Yersinia enterocolitica
Viruses (Caliciviruses, Hepatitis A)
Protozoa: Cryptosporidium parvum, Cyclospora cayetanensis, Giardia lamblia, Entamoeba histolytica, Toxoplasma
Fungi
Microsporidia
Additional viral encephalitides: West Nile virus, La Crosse virus, California encephalitis virus, Venezuelan equine encephalitis virus, Eastern equine encephalitis virus, Western equine encephalitis, Japanese encephalitis virus, Kyasanur forest virus
NIAID: category C
Emerging infectious disease threats such as Nipah virus and additional hantaviruses
NIAID priority areas
Tick-borne hemorrhagic fever viruses: Crimean-Congo hemorrhagic fever virus
Tick-borne encephalitis viruses
Yellow fever
Multidrug-resistant tuberculosis
Influenza
Other rickettsias
Rabies
Prions
Chikungunya virus
Severe acute respiratory syndrome–associated coronavirus
Antimicrobial resistance, excluding research on sexually transmitted organisms
 Research on mechanisms of antimicrobial resistance
 Studies of the emergence and/or spread of antimicrobial resistance genes within pathogen populations
methods offers great promise not only in research and development but also in the diagnostic setting (eg, stool samples) (Table 4).11,12 Clearly, metagenomics, in which genetic material is directly retrieved from environmental sources, will play a critical role in the future development of determining infectious agents of the GI tract. The use of high-throughput technology has already produced important findings in relation to the GI tract microflora, including the differences between adults and children, with numerous uncultured organisms being the crux of the normal human adult gut flora which remain stable but other organisms change depending on environmental and genetic factors, whereas in infants there appear to be a constant transformation of organisms over time (Figs. 3 and 4).11 There have been several new detection methods developed, with some of these using nanoscale electrochemical detectors and others using DNA sensors (extrachromosomal DNA).13 The use of stable-isotope probing is also being investigated, but even this technique has limitations.14 Although these technologies are increasing the understanding of the gut microflora, there remains large gaps of knowledge regarding the metabolic functions of these organisms and the relationship they have with human GI disease. These will be extremely fruitful areas of research and development in the coming years.

Box 2
Bradford Hill's criteria for causality
Consistency: The association is consistent when results are replicated in studies in different settings using different methods.
Strength: This is defined by the size of the risk as measured by appropriate statistical tests.
Specificity: This is established when a single putative cause produces a specific effect.
Dose-response relationship: An increasing level of exposure (in amount and/or time) increases the risk.
Temporal relationship: Exposure always precedes the outcome.
Biologic plausibility: The association agrees with currently accepted understanding of pathobiologic processes. This criterion should be applied with caution.
Coherence: The association should be compatible with existing theory and knowledge.
Experiment: The condition can be altered by an appropriate experimental regimen. Experiment is possibly the most important support for a causal relationship.
GI Tract Disease

Esophageal Cancer
Gastric Cancer
Cholangiocarcinoma
Gall Bladder Disease
Hepatocellular Carcinoma
Diarrheal Disease

Acute Pancreatitis
Small Intestinal Bacterial Overgrowth
Irritable Bowel Syndrome
Inflammatory Bowel Disease
Appendicitis
Colorectal Cancer
Instrument

ABI PRISM 6100 nucleic acid PrepStation (Applied Biosystems)
ABI PRISM 6700 automated nucleic acid workstation (Applied Biosystems)
BioRobot EZ1 workstation (QIAGEN)
iPrep Purification Instrument (Invitrogen)
KingFisher ML/96 (Thermo Scientific)
MagNA pure compact/LC (Roche Applied Science)
Maxwell 16 Instrument (Promega)
NucliSens miniMAG (BioMérieux)
QIAcube (QIAGEN)
X-Tractor Gene RNA/DNA Extraction System (Corbett Life Science)

Data from Barken KB, Haagensen JA, Tolker-Nielsen T. Advances in nucleic acid-based diagnostics of bacterial infections. Clin Chim Acta 2007;384:1–11.
Fig. 3. High-throughput analysis of human GI tract microbiota via brute force sequencing and phylogenetic microarray analysis. SSU rRNA, small subunit ribosomal RNA. (From Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605–15; with permission.)

Fig. 4. Metagenomics and other community-based “omics” approaches. SSU rRNA, small subunit ribosomal RNA. (From Zoetendal EG, Rajilic-Stojanovic M, de Vos WM, High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605–15, with permission.)
REFERENCES

1. Everhart JE editor. The burden of digestive diseases in the United States. US Department of Health and Human Services, Public Health Service, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases. Washington, DC: US Government Printing Office. NIH Publication No. 09–6443; 2008. p. 1–12
2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2009. CA Cancer J Clin 2009; 59:225–49.
3. Goh KL. Changing trends in gastrointestinal disease in the Asia-Pacific region. J Dig Dis 2007;8:179–85.
4. Shaheen NJ, Hansen RA, Morgan DR, et al. The burden of gastrointestinal and liver diseases, 2006. Am J Gastroenterol 2006;101:2128–38.
5. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part I: overall and upper gastrointestinal diseases. Gastroenterology 2009;136:376–86.
6. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part II: lower gastrointestinal diseases. Gastroenterology 2009;136:741–54.
7. Everhart JE, Ruhl CE. Burden of digestive diseases in the United States part III: liver, biliary tract, and pancreas. Gastroenterology 2009;136:1134–44.
8. Hellier MD, Williams JG. The burden of gastrointestinal disease: implications for the provision of care in the UK. Gut 2007;56:165–6.
9. Schlenker C, Surawicz C. Emerging infections of the gastrointestinal tract. Best Pract Res Clin Gastroenterol 2009;23:89–99.
10. Hill AB. The environment and disease: association or causation? Proc R Soc Med 1965;58:295–300.
11. Zoetendal EG, Rajilic-Stojanovic M, de Vos WM. High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut 2008;57:1605–15.
12. Barken KB, Haagensen JA, Tolker-Nielsen T. Advances in nucleic acid-based diagnostics of bacterial infections. Clin Chim Acta 2007;384:1–11.
13. Fan C, Plaxco KW, Heeger AJ. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA3. Proc Natl Acad Sci U S A 2003;100:9134–7.
14. Kovatcheva-Datchary P, Zoetendal EG, Venema V, et al. Tools for the tract: understanding the functionality of the gastrointestinal tract. Therap Adv Gastroenterol 2009;2(Suppl 1):S9–22.