The suppression of DC-link voltage fluctuations through a source active current feedforward in the active power filter

Runquan Meng1 | Yi Du1 | Xiaoqing Han1 | Peng Wang2

1 School of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, Shanxi Province, China
2 College of Electrical and Electronic Engineering, Nanyang Technological University, Singapore

Abstract

An active power filter (APF), which operates under the power-balance-based scheme (PB scheme), suffers heavier DC-link voltage fluctuation when the loads change suddenly, so that it is apt to be interfered and degraded or even out of stable operation. By analyzing the cause of DC-link voltage fluctuation, this study proposes an improved PB scheme which feeds forward the increment of the fundamental-frequency positive sequence component of the source current. The feed-forward channel is designed by use of the cascaded delayed signal cancellation algorithm and integrated into the conventional PB scheme APF without adding any extra hardware circuit. The current increment fed forward is added into the output of the voltage controller to timely amend the reference current of the current control loop, and thus the active power flow, which caused by loads change, between the APF and its external circuitry can be suppressed. As a result, the DC-link voltage fluctuation is mitigated to allow the APF to better accommodate the abrupt load changes. The configuration of the improved control system is introduced and the stability is analysed. The experiment results demonstrate the effectiveness of the proposed control scheme.

1 INTRODUCTION

Following the widespread use of various non-linear loads and harmonic-susceptive loads, along with increasing renewable energy generators being put into operation via PWM converters, the power quality issues became significant and urgent [1–5]. The active power filter (APF) is widely used to eliminate harmonics and reactive currents for better power quality of distribution systems [6–9]. Whether the target harmonic components are needed to be detected from load or source currents leads to two APF control schemes: the harmonic-extraction-based scheme (HE scheme) and the power-balance-based scheme (PB scheme).

In the HE scheme [10–14], the harmonic components must be detected and extracted from load or source currents first, so as to produce the corresponding same amplitude and antiphase harmonic currents and inject them into the point of common coupling (PCC) to maintain the source current as a sinusoid in phase with the grid voltage. Therefore, the HE scheme is always considered as an open-loop system, some factors such as the harmonic sensing and acquiring circuits, the harmonic extraction algorithm and the current control methods will easily affect the performance of the HE-based APF in the practical field. Comparatively, the PB scheme calculates the reference value of the source side current through the DC voltage regulation link and directly controls the source side current, which is regarded as a controlled variable to form a close-loop system from the point of the entire power distribution system and has the advantages of high accuracy and robustness with low requirements of the parameters matching [15–18].

The PB scheme exhibits a more promising filtering performance. However, the serious oscillation of the DC-link voltage will occur at some sudden load change conditions when an APF employs the existing PB scheme [19]. It decreases the DC voltage utilisation and deteriorates the compensating performance of the APF, and even induces the instability and even damages the APF, limiting the application of APFs in occasions of frequent load changes such as traction motor,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
© 2021 The Authors. IET Power Electronics published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology

IET Power Electron. 2021;14:481–491. wileyonlinelibrary.com/iet-pel
beam-pumping unit and so forth. Therefore, how to keep the oscillation of the DC-link voltage within a reasonable range is vital for implementation of the PB scheme in an APF.

There have been some reports regarding to improve the APF performance via regulating its DC-link voltage [19–28]. Literature [20] suggests suppressing the DC-link voltage oscillation in transient states by controlling the energy flowing into the DC capacitor to be zero in one source cycle. Afterwards, a more accurate 7-step compensator had been presented in [21] to maintain the mean active-power flowing into or out of the DC capacitor at zero every 1/(k – 1) source cycle. Based on this, Tomoyuki et al. modified the voltage feedback reference utilising the calculated value of the theoretical stored energy ripple [22]. Considering the impact induced by the third-order harmonic current compensation, an additional fundamental current compensating scheme was used in [23] to suppress DC-link voltage impulse. In order to enhance the dynamic performance of the APF under load variation condition, a controller based on online trained recurrent probabilistic fuzzy neural network with an asymmetric membership function (RPFN-AMF) had been developed to substitute for the conventional proportional-integral (PI) controller in [24]. Additionally, some non-linear and adaptive control strategies were studied [25–27]. However, these approaches are only suitable for the HE scheme APF and not for the PB scheme APF.

In the studies of the PB scheme APF, a modified one cycle control scheme was proposed in [15] to distinguish harmonic components from reactive components of load currents and an advanced control strategy with the conventional PI and vector PI controller was proposed in [30] to enhance the compensation performance. However, the DC-link voltage regulation performance of the APF was still poor. To overcome the DC-link voltage fluctuation of the PB scheme APF, a feed-forward method has been used, in which the fundamental component is filtered out from the load current and fed forward to improve the dynamic speed of responding to load change [18]. Undoubtedly, it is an effective restraint method against the DC-link voltage impulse. In order to enhance the dynamic performance of the APF under load variation condition, a controller based on online trained recurrent probabilistic fuzzy neural network with an asymmetric membership function (RPFN-AMF) had been developed to substitute for the conventional proportional-integral (PI) controller in [24]. Additionally, some non-linear and adaptive control strategies were studied [25–27]. However, these approaches are only suitable for the HE scheme APF and not for the PB scheme APF.

The features of the existing relevant schemes are summarised in Table 1 for easier comparison. It can be seen from Table 1 that the proposed method requires less sensors and can eliminate the DC-link voltage fluctuation of the PB scheme to achieve satisfactory harmonics compensation performance by simpler computation.

On the basis of analysing the relationships of the source current, the APF current and the DC-link voltage fluctuation, this study introduces a source current feed-forward channel into the conventional PB scheme to mitigate the DC-link voltage fluctuation. By feeding the increment of the source active current forward and adding it to the output of the voltage control loop (VCL) to amend the reference current of the current control loop (CCL), the proposed improved PB scheme finally managed to prevent the active-power from flowing into or out of the APF. In this study, the cascaded delayed signal cancellation (CDSC) operator has been used to design the feed-forward channel to extract control signals from the source current effectively. The proposed method can be developed without adding any extra hardware circuit and can share the same algorithm (i.e. CDSC) with PLL, thus it is easier to be integrated into the existing PB scheme based APF.

The rest of this study is organised as follows. The proposed method of the source active current feed-forward is derived based on the analysis of the cause of DC-link voltage fluctuation in Section 2. The implementation of the proposed method is introduced in Section 3, including the configuration of DC-link voltage and current regulators, the design of newly added feed-forward link and the stability analysis of the improved PB scheme. Experiments have been conducted to compare the performances of the conventional and improved PB schemes in Section 4. Section 5 gives a conclusion and Section 6 gives the acknowledgements.

Scheme	Harmonics filtering	u_{dc} Regulation	Sensors number	Computation
CS scheme	Poorer	Good	10	Complex
PB scheme	Good	Poorer	7	Simple
Improved CS scheme [14]	Good	Good	10	Moderate
Improved PB scheme [18]	Good	Good	10	Complex
Improved PB scheme [19]	Good	Moderate	7	Complex
Proposed scheme	Good	Good	7	Simple

CS scheme: Current-source-based scheme.
2 | THE CAUSE OF DC-LINK VOLTAGE FLUCTUATIONS AND THE SUPPRESSING SOLUTION

2.1 | The APF configuration and the cause of DC-link voltage fluctuation

Figure 1 presents the one-line diagram of a three-phase shunt APF with the schematic of the PB scheme. It takes voltage source converter (VSC) as the power circuit and accesses PCC through a LCL low pass filter (LPF) to filter switching frequency noises. The symbols involved are defined as follows, where bold letters denote three-phase variables:

\[
\begin{align*}
\text{Grid voltage } \epsilon &= \begin{bmatrix} \epsilon_{a} \epsilon_{b} \epsilon_{c} \end{bmatrix}^T; \\
\text{Phase signal of grid voltage } \epsilon_{ph} &= \begin{bmatrix} \epsilon_{pha} \epsilon_{phb} \epsilon_{phc} \end{bmatrix}^T; \\
\text{Source current } \bar{i} &= \begin{bmatrix} \bar{i}_{a} \bar{i}_{b} \bar{i}_{c} \end{bmatrix}^T; \\
\text{Reference source current } \bar{i}_{sref} &= \begin{bmatrix} i_{srefa} i_{srefb} i_{srefc} \end{bmatrix}^T; \\
\text{Amplitude of the reference source current } I_{sref} &= \begin{bmatrix} i_{srefa} i_{srefb} i_{srefc} \end{bmatrix}^T; \\
\text{Source current error } \Delta \bar{i} &= \begin{bmatrix} \Delta i_{srefa} \Delta i_{srefb} \Delta i_{srefc} \end{bmatrix}^T; \\
\text{Load current } \bar{I} &= \begin{bmatrix} \bar{I}_{a} \bar{I}_{b} \bar{I}_{c} \end{bmatrix}^T; \\
\text{Compensation current } \bar{I} &= \begin{bmatrix} i_{ca} i_{cb} i_{cc} \end{bmatrix}^T; \\
\text{DC-link voltage } u_{dc}; \\
\text{DC-link voltage error } \Delta u_{dc}; \\
\text{DC-link capacitor } C_{dc}; \\
\end{align*}
\]

As observed from Figure 1 that the APF utilises the double close loop structure:

- The inner CCL for the supply current regulation.
- The outer VCL for the DC-link voltage regulation.

Only three kinds of electric variables (\(e, i, u_{dc}\)) need to be detected for the PB scheme control implementation. \(e\) is sent to the phase-locked loop (PLL) to provide the \(s_{ph}\), which tracks the real-time phase of the grid voltage. \(u_{dc}\) is fed to the outer loop to compare with \(U_{dc}\) first, and then the compared result \(\Delta u_{dc}\) turns into the voltage regulator (VR) to generate the desired \(I_{sref}\), which multiplies \(s_{ph}\) to get \(i_{sref}\). Finally, \(i_{s}\) is directly fed back to track its reference \(i_{sref}\) and the error signal \(\Delta i_{s}\) is fed to current regulator (CR) to produce compensating signal. It is thus obvious that an APF with the PB scheme not only saves sensors but also avoids designing the complicated harmonics extraction link, and this also makes the CR computation more efficient relatively. However, a defect of heavy DC-link voltage fluctuation would begin to surface when this control scheme faces abrupt load changes.

Why does the PB scheme induce a poor performance under the severe load variations? How to speed up the dynamic response of the source current to the load change and reserve excellent steady state filtering performance of the APF at the same time? To solve these problems, this study turns to the control block diagram of the conventional PB scheme shown in Figure 2 to find the factors in slowing down the speed of response to abrupt load changes.

As shown in Figure 2, the sudden change of \(i_{s}\) will certainly lead to a corresponding change of \(i_{s}\) first, but this incipient change of \(i_{s}\) will be suppressed swiftly by the CCL because its reference, \(i_{sref}\), still remains unchanged. However, due to the system need of maintaining a power balance, the power difference between the source and the load has to be supplemented instantly by the APF current \(i_{s}\) that comes from charging or discharging the DC-capacitor, and this will make for a DC-link voltage fluctuation, which is also the only variable to reflect the active-power change of the system according to the PB scheme. Subsequently, after the time-consuming filtering and regulating process of the VCL, the VR generates the updated \(I_{sref}\) with the changed \(u_{dc}\), and then new value of \(i_{sref}\) is obtained by modulating \(I_{sref}\) with \(s_{ph}\), and thus the updated \(i_{s}\) can finally be obtained, via the CCL, to fit the changed load and recover the value of DC-link voltage.

From the above adjustment process after the load changes, it can be discerned that the \(u_{dc}\) fluctuation cannot be eliminated completely because the power imbalance originated from the load change has not been sensed by the control system until it gave rise to variation of \(u_{dc}\). Furthermore, the VCL has only a narrow frequency band in general to prevent the DC-link voltage ripple from entering the CCL, which also further prolongs
the update duration of $i_{\text{ref,ag}}$ and aggravate the fluctuation of u_{dc}

2.2 The solution to suppress the DC-link voltage fluctuation

According to the aforementioned analysis, in the transient process, a part of active-power which should have been supplied directly to the load from the source, now with interventions from the APF controller, has to be buffered by the APF before being provided to the load. This is exactly the operating principle of the PB scheme as well as the intrinsic reason of u_{dc} fluctuation. Therefore, trying to speed up the update speed of $i_{\text{ref,ag}}$ to keep up with the changed i_t could be the fundamental approach to lessen the exchange capacity of instantaneous active power between the APF and its external circuitry to suppress the excessive u_{dc} fluctuation. Improving the dynamic performance of the VCL would broaden its frequency band and leak some voltage ripples into CCL, which would degrade the harmonics compensation performance and even lead to an instability of the whole control system. Taking the active component of i_t as a feed-forward signal and adding it to the initial value of $i_{\text{ref,ag}}$ could help acquiring new reference current more quickly [18], however, additional sensors for load currents measurement would not only increase cost but also make the system more complicated.

Considering the relationship between i_t and i_t in the PB scheme based APF, the fundamental-frequency active component (FFAC) increment of source current, Δi_{sp}, is an appropriate variable as a feed-forward signal to modify the current reference of the CCL.

From Figure 1, there is

$$i_t = i_t - i_c$$ \hfill (1)

When the system goes into steady state, currents i_s, i_c, i_l meet following expressions:

$$\begin{cases}
 i_s = i_{sp} \\
 i_c = i_{lh} - i_p \\
 i_l = i_{lh} + i_p
\end{cases}$$ \hfill (2)

where i_{sp} is the FFAC of source current, and i_{sp}, i_{lh} are the FFAC and other components of the load current respectively, i_p is the dissipating current of APF itself. From Equations (1) and (2), Equation (3) can be obtained as

$$i_s = i_{sp} = i_{lp} + i_p$$ \hfill (3)

After the load changed to i'_t as

$$i'_t = i_t + \Delta i_t = i_t + \Delta i_{lp} + \Delta i_{lh}$$ \hfill (4)

and in view of the change possibility of i_p throughout the control process, the source current would change with the load and produce corresponding increment Δi_t as

$$\Delta i_t = \Delta i_l + \Delta i_p = \Delta i_{lp} + \Delta i_{lh} + \Delta i_p$$ \hfill (5)

where $\Delta i_{lp}, \Delta i_{lh}$ and Δi_p are the increments of i_{lp}, i_{lh} and i_p respectively. The corresponding active power current variation is the increment of i_{sp}, that is

$$\Delta i_{sp} = \Delta i_{lp} + \Delta i_p.$$ \hfill (6)

From Equation (6), Δi_{sp} represents the total active power current demand of the whole APF system caused by the load change. Therefore, it is more reasonable to use Δi_{sp} instead of Δi_{lp} as a feed-forward signal to help updating the reference input of CCL more quickly.

Moreover, according to the PB scheme, i_t is constantly controlled to track i_{lp} by the close loop control system, so its fundamental frequency positive sequence (FFPS) component is automatically equal to i_{lp} when the system reaches a dynamic balance. They both have the same phase with the grid voltage, that is, the output phase of the PLL. Thus, only the amplitude increment of FFPS component is needed to be directly added up to the output of the VR as shown in Figure 3.

Figure 3 shows the modified control system structure of the proposed strategy for the PB scheme APF. A feed-forward channel made up of the CDSC filter and the amplitude increment operator (AIO) is added to the conventional PB scheme. The CDSC filter is employed to extract the FFPS component, $i_{sp,ag}$, from i_t. Then, the amplitude of $i_{sp,ag}$ and its increment for every interval Δi_t, denoted by Δi_{sp}, are figured out by the AIO and sent to merge with I_{ref} to form the modified amplitude of the current reference, I'_{ref}, which can be expressed as

$$I'_{\text{ref}} = I_{\text{ref}} + \Delta I_{sp}$$ \hfill (7)

The updated reference input of CCL is eventually gained as

$$I'_{\text{ref,ff}} = I'_{\text{ref}} \Delta \phi_{ph,ff}$$ \hfill (8)
3 IMPLEMENTATION OF THE PROPOSED SCHEME

From Figure 3, it is demonstrated that only a feed-forward branch is to be added and nothing else of the conventional control system of the PB scheme APF needs to be changed in the proposed strategy. So, classical control methods such as PI control and proportional-resonant (PR) control are still suitable for the VR and CR. The configuration of relevant controllers will be presented below. The crucial performance of the feed-forward channel is its rapidity. In order to shorten the signal processing time, the CDSC algorithm was designed to extract the FFPS current from \(i_s \) in the study.

3.1 Configuration of DC-link voltage regulator and current regulator

In this study, the control model has been established on the basis of instantaneous energy balance principle [37]. A PI controller has been employed as the VR, whose transfer function \(G_{VR}(s) \) is

\[
G_{VR}(s) = k_{VP} + \frac{k_{V1}}{s}
\]

where \(k_{VP} \) affects response speed and stability of VR, and \(k_{V1} \) is related to static errors and dynamic performance of VR.

According to the internal model principle, a PR controller in a stationary reference frame is able to compensate the target harmonics without steady-state tracking errors [38]. In order to avoid the instability derived from an infinite gain and to improve the adaptability to frequency jitters, a quasi-PR controller has been applied here, combining with an integral unit, to form the CR which transfer function \(G_{CR}(s) \) is expressed as

\[
G_{CR}(s) = k_{CP} + \frac{k_{CI}}{s} + \sum_{n=3,5,9} \frac{\omega_n}{s^2 + \omega_n s + (\omega_n)^2}
\]

In Equation (10), \(k_{CP} \) and \(k_{CI} \) have the similar effects on CR as \(k_{VP} \) and \(k_{V1} \) have on VR. The value of resonant coefficient \(k_{CR,n} \) affects system immunity and actual effect of compensation for the target harmonics \((\omega_n)\), and the cutoff angle frequency \(\omega_C \) can change the bandwidth around \(\omega_C \). In this study, \(k_{CP} \) and \(k_{CI} \) were adjusted to meet requirements of stability, dynamic and steady-state performance, and \(\omega_C \) was selected to put up with frequency jitter from 49.5 to 50.5 Hz. The specific parameters of the VR and CR are shown in Table 2.

3.2 Design of the CDSC-filter for the FFPS component

The CDSC filter is made up of several delayed signal cancellation (DSC) operators. For ease of presentation of the DSC operator, the three-phase source current \(i_s = [i_{a,s}, i_{b,s}, i_{c,s}]^T \) is first transformed into a \(\alpha\beta \)-frame variable \(i_{\alpha\beta}(t) \) as follows:

\[
i_{\alpha\beta}(t) = \begin{bmatrix} i_{\alpha}(t) \\ i_{\beta}(t) \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} \\ 0 & \frac{1}{2} \sqrt{3} \end{bmatrix} \begin{bmatrix} i_a \\ i_b \end{bmatrix}
\]

where \(T_{\alpha\beta} \) is Clarke transformation matrix. When \(i_s \) is asymmetric and distorted, \(i_{\alpha\beta}(t) \) can be decomposed as a series harmonics \(\sum k_{\alpha\beta} b(t) \) where \(b \) is the harmonic order. The DSC operator distinguishes the targeted harmonic component from multitudinous harmonic components in the distorted current signal by the law that different harmonics rotate over different angles in the same duration [31–36]. According to references [32–33], the structure diagram of the generalised DSC operator can be given as in Figure 4 and the corresponding equation can be expressed as:

\[
DSC_{\alpha\beta}^m \left[i_{\alpha\beta}(t) \right] = \frac{1}{2} \begin{bmatrix} i_{\alpha\beta}(t) + R(\theta_c) \cdot i_{\alpha\beta} \left(t - \frac{T}{m} \right) \\ 0 \end{bmatrix}
\]

FIGURE 4 Structure diagram of the general delayed signal cancellation (DSC) operator

Regulators	Parameters	Value
VR	\(k_{VP} \)	0.1
	\(k_{V1} \)	0.2
CR	\(k_{CP} \)	0.03
	\(k_{CI} \)	0.1
	\(\omega_c \)	3.14 rad/s
	\(k_{CR2} \)	20
	\(k_{CR3} \)	20
	\(k_{CR7} \)	20
	\(k_{CR11} \)	20
	\(k_{CR13} \)	20
	\(k_{CR17} \)	20
	\(k_{CR19} \)	20
where $R(\theta)$, T, and m are the rotation matrix, the fundamental period of source current and the delay factor, respectively, and $R(\theta)$ is

$$R(\theta) = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

(13)

where $\theta = \frac{2\pi b^*}{m}$ is the controllable rotation angle determined by m and the targeted harmonic order b^*. By choosing parameters m and b^* suitably, a generalised DSC operator can be configured to retain the desired frequency component and eliminate or attenuate other frequency components as well. Furthermore, a specified harmonic can be eliminated by multiple DSC operators with different m and b^*, and in turn, a given DSC operator under a pair of m and b^* can eliminate a series of harmonics. Therefore, it is possible to construct a CDSC filter with the minimum number of optimal DSC operators to extract FFPS component, $i_{sp,\alpha\beta}$, from distorted source current.

In this study, aiming at an APF working in the typical three-phase three-wire supply system with the rated frequency of 50 Hz and the asymmetrical harmonic source load, DSC1, DSC4, DSC8, DSC16 and DSC32 are selected and the overall CDSC filter can be constituted as shown in Figure 5. The amplitude-frequency characteristics of each DSC operator and overall CDSC filter are given in Figure 6, which shows obviously that the FFPS current can be extracted exactly whereas almost all other frequency components had been removed.

3.3 | Stability analysis of the improved PB scheme

According to Figure 3, the closed-loop transfer function of the source current controller can be expressed as

$$G_{CCT}(s) = \frac{G_{CR}(s) \cdot G_d(s) \cdot G_{PWM}(s) \cdot G_L(s)}{1 + G_{CR}(s) \cdot G_d(s) \cdot G_{PWM}(s) \cdot G_L(s)}$$

(14)

where $G_d(s) = \frac{1}{1 + 1.5 \cdot T_s \cdot s}$ is used to characterise the delay of sampling and filtering, and T_s is the sampling period; $G_L(s) = \frac{1}{\frac{L_1 + L_2}{R} + s}$, in which $L_1 = L_2 + L_2$ and R are the equivalent inductance and internal resistance of the output filter respectively.

Bode diagram of the $G_{CCT}(s)$ is plotted in Figure 7.

From Figure 3, the closed-loop transfer function of VCL can be expressed as

$$G_{VCL}(s) = \frac{G_d(s) \cdot G_{VR}(s) \cdot G_{CCT}(s) \cdot G_{dc}(s)}{1 + G_d(s) \cdot G_{VR}(s) \cdot G_{CCT}(s) \cdot G_{dc}(s)}$$

(15)

where $G_{dc}(s) = \frac{k_p}{s \cdot \tau_{C_{dc}}}$, in which k_p is the equivalent gain between the APF current and the DC-link capacitor current.

Figure 8 shows the bode diagram of the $G_{VCL}(s)$ with the proposed control scheme. From Figure 8, it can be seen that $G_{VCL}(s)$ maintain unity gain at low frequency range up to 10 Hz and the designed current regulators do not cause the magnitude of $G_{VCL}(s)$ going higher than 0 dB.

Figure 9 shows the pole-zero map of the $G_{VCL}(s)$ with the proposed control scheme. From Figure 9, it can be seen that all poles of the voltage closed-loop transfer function $G_{VCL}(s)$
remain to the left of the imaginary axis, which means that the proposed control system is stable.

Besides, considering the influence of the feed-forward link on the system, the transfer function of DC-link voltage and load disturbance is obtained as

\[
G_N(s) = \frac{G_{dc}(s) \cdot (1 - G_{FF}(s) \cdot G_{CCT}(s))}{1 + G_{d}(s) \cdot G_{VR}(s) \cdot G_{CCT}(s) \cdot G_{dc}(s)}
\]

(16)

where \(G_{FF}(s) = 1 + \frac{e^{-T_2 s^2}}{1 + \frac{e^{-T_4 s^2}}{1 + \frac{e^{-T_8 s^2}}{1 + \frac{e^{-T_{32} s^2}}}}}} \) is the equivalent transfer function of designed feed-forward link and the delay brought by the CDSC filter is about \(T \approx 0.97T \).

It can be seen intuitively from Figures 13 and 14 that the waveforms of \(i_{sa} \) had been close to a sinusoid after having been compensated by the APF with either the conventional or the improved PB scheme. The THD values of \(i_{sa} \) were reduced to [39–41]. The loads are composed of a resistive load, an inductive load and a three-phase diode rectifier with resistors \(R_1 \) (called case 1) or \(R_1 \) in parallel with \(R_2 \) (called case 2) in DC side. The supply voltage is generated by a 12 kVA programmable AC source supply (Chroma 61511). The simplified main circuit diagram and experimental platform appear in Figures 10 and 11. The detailed parameters are given in Table 3.

4 EXPERIMENTAL VERIFICATION

A series of simulations and experiments were carried out based on the three-phase APF depicted in Figure 1 and had similar results, so only experimental results are given here. The VSC consisted of three Infineon IGBT modules (FF150R12RT4) driven by the Concept 2SC0108Ts which received control signals from digital signal processor chip TMS320F28377, by which the algorithms of the two different schemes were implemented. The LCL output filter was designed according to [39–41]. The loads are composed of a resistive load, an inductive load and a three-phase diode rectifier with resistors \(R_1 \) (called case 1) or \(R_1 \) in parallel with \(R_2 \) (called case 2) in DC side. The supply voltage is generated by a 12 kVA programmable AC source supply (Chroma 61511). The simplified main circuit diagram and experimental platform appear in Figures 10 and 11. The detailed parameters are given in Table 3.

4.1 The steady state performance

Figure 12 shows the steady state waveforms and harmonic spectra of phase A source current, \(i_{sa} \), before the APF put into operation. Obviously, the time domain waveforms of \(i_{sa} \) distorted seriously and THD values of \(i_{sa} \) were 23.89% (in case 1) and 16.03% (in case 2).

It can be seen intuitively from Figures 13 and 14 that the waveforms of \(i_{sa} \) had been close to a sinusoid after having been compensated by the APF with either the conventional or the improved PB scheme. The THD values of \(i_{sa} \) were reduced to
TABLE 3 System parameter settings in the experiments

Parameters	Value
Power supply Voltage e_s	50 V/50 Hz
Line impedance	
Line inductance L_s	330 μH
Line resistance R_s	0.5 ohms
LCL LPF	
Grid-side inductor L_1	0.13 mH
VSC-side inductor L_2	0.82 mH
Capacitor C_{ac}	12 μF
APF	
DC-link voltage u_{dc}	200 V
Switching frequency f_s	12.8 kHz
DC-link capacitor C_{dc}	2350 μF
Rectifier loads	
DC-side resistor R_1	44 Ω
DC-side resistor R_2	44/10/5 Ω
AC-side inductor L_3	6 mH
Linear loads	
Resistive loads R_L	150 Ω
Inductive loads L_L	0.115 H

FIGURE 12 Experimental waveforms and frequency spectrums of phase A source current without an APF

3.42% (in case 1) and 2.22% (in case 2) with the conventional PB scheme, and to 3.38% (in case 1) and 2.21% (in case 2) with the improved PB scheme, respectively. Thus, the steady state compensation performances of the two different schemes were almost identical and satisfying.

4.2 The DC-link voltage regulating performance

Figure 15 presents the experiment waveforms of DC-link voltage, phase A load current, i_{dc} under the two different schemes. In Figure 15(a), with the conventional PB scheme, u_{dc} dropped down to 180.5 V and went upward to 219.4 V, respectively, with the rectifier load shifting from case 1 to case 2 and back to case 1 again, and took about 2.2 s to restore to the set value of 200 V. The control effect of the improved PB scheme is shown in Figure 15(b). When the load changed from case 1 to case 2, u_{dc} went down to 194.5 V at first and rebounded to 203.7 V, and then reverted to the set value. The whole transient process lasted about 0.42 s. Similarly, when the load got back to case 1 from case 2, u_{dc} ranged from 200 V through 205 to 196.5 V, then recovered to 200 V again. The entire process lasted about 0.44 s. It is obvious that the improved PB scheme has obtained
MENG ET AL.

4.3 The compensation performance and the adaptability to the load fluctuation

Figure 16 displays the waveforms of u_{dc}, i_s_a, i_{la_a}, phase A filter current i_{c_a} and frequency spectrum of i_{s_a} under two different schemes. Figures 16(a) and (c) give the entire waveforms of the conventional PB scheme during the load shifting between case 1 and case 2, and the zoom-in waveforms from 1 s to 1.2 s after the load had switched, respectively, while Figures 16(b) and (d) give the corresponding waveforms of the improved PB scheme. It can be observed from the waveforms of i_{c_a} and its frequency spectrums in Figures 16(c) and (d) that there were a large number of harmonic components superimposing on i_{s_a} with the conventional PB scheme, but a good sine wave had been obtained by the improved PB scheme due to its shorter transient process.

Further, to compare the immunities to the load sudden change between the two schemes, the experiments had been redone with replacing value of R_2 with 5 ohms. As in Figure 17(a), the APF with the conventional PB scheme was not able to limit the DC-link voltage to a manageable range and quit running owing to overvoltage protection. But with the improved PB scheme, the APF controlled the DC-link voltage back to the set value effectively and maintained normal operations under the same conditions, as shown in Figure 17(b).

5 CONCLUSION

Existing PB scheme based APFs have the drawback of DC-link voltage fluctuation caused by sudden load change, which degrades their compensation performances, threatens their operation safety and limits their application scenarios. The reason for the DC-link voltage fluctuation is that the DC-capacitor buffered some of the active power while the load changed. This study proposed an improved PB scheme, in which a feedforward link had been added to prevent the active power from being buffered. The CDSC filter that had been selected and designed to draw out the FFPS active components from the source current, combined with the amplitude increment operator to form the feed-forward link. Simulations and experiments
are conducted to validate the proposed scheme and relevant designs. Confirmed by Figures 12–17, the proposed scheme has significantly weakened the DC-link voltage fluctuation and improved the adaptability to sudden load changes along with a certain extent improvement in the compensation performance. The scheme is not only easy to implement but also cost saving because it only needs to add the feed-forward correlation algorithm to the original algorithm without adding any hardware.

ACKNOWLEDGEMENTS
The authors acknowledge the financial support of the National Natural Science Foundation of China under Project U1610121 and the Natural Science Foundation of Shanxi Province under Project 201701D121134 and Major Science and Technology Projects 20181102028 in Shanxi Province.

REFERENCES
1. Manoj, B., et al.: Implementation of echo-state network-based control for power quality improvement. IEEE Trans. Ind. Electron. 64(7), 5576–5584 (2017)
2. Jalil, Y., et al.: Power quality issues of distorted and weak distribution networks in mining industry: A review. IEEE Access. 7, 162500–162518 (2019)
3. Yunwei, L., Jinwei, H.: Distribution system harmonic compensation methods: An overview of DG-interfacing inverters. IEEE Ind. Electron. Mag. 8(4), 18–31 (2014)
4. Xiaodong, L.: Emerging power quality challenges due to integration of renewable energy sources. IEEE Trans. Ind. Appl. 53(2), 855–866 (2017)
5. Gregory Arthur de Almeida, C., et al.: Shunt active power filter based on cascaded transformers coupled with three-phase bridge converters. IEEE Trans. Ind. Appl. 53(2), 4673–4681 (2017)
6. Abu-Jalala, A.M., et al.: Power quality improvement of synchronous generators using an active power filter. IEEE Trans. Ind. Appl. 54(5), 4080–4090 (2018)
7. Mostafa, S.H., et al.: Medium-voltage 12-pulse converter: Output voltage harmonic compensation using a series APF. IEEE Trans. Ind. Electron. 61(1), 43–52 (2014)
8. Yap, H., et al.: Operation of three-level inverter-based shunt active power filter under non-ideal grid voltage conditions with dual fundamental component extraction. IEEE Trans. Power Electron. 33(9), 7588–7570 (2018)
9. Raphael, J., et al.: A simplified control technique for a dual unified power quality conditioner. IEEE Trans. Ind. Electron. 61(11), 5851–5860 (2014)
10. Hao, Z., et al.: An optimal compensation method of shunt active power filters for system-wide voltage quality improvement. IEEE Trans. Ind. Electron. 67(2), 1270–1281 (2019)
11. Yap, H., et al.: Neutral-point voltage deviation control for three-level inverter-based shunt active power filter with fuzzy-based dwell time allocation. IET Power Electron. 10(4), 429–441 (2017)
12. Xinwen, C., et al.: Harmonic compensation and resonance damping for SAPF with selective closed-loop regulation of terminal voltage. IET Power Electron. 10(6), 619–629 (2017)
13. Lei, W., et al.: Unbalanced control strategy for a thyristor-controlled LC-coupling hybrid active power filter in three-phase three-wire systems. IEEE Trans. Power Electron. 32(2), 1056–1069 (2017)
14. Hao, Y., et al.: A source-current detected shunt active power filter control scheme based on vector resonant controller. IEEE Trans. Ind. Appl. 50(3), 1953–1965 (2014)
15. Lei, W., et al.: A modified one-cycle-control-based active power filter for harmonic compensation. IEEE Trans. Ind. Electron. 65(1), 738–748 (2018)
16. Gibong, S., et al.: Improved modulated carrier control with on-time doubler for a single-phase shunt active power filter. IEEE Trans. Power Electron. 33(2), 1715–1723 (2018)
17. Ricardo Lucio de Araujo, R., et al.: A robust adaptive control strategy of active power filter for power-factor correction, harmonic compensation, and balancing of non-linear loads. IEEE Trans. Power Electron. 27(2), 718–730 (2012)
18. Zhong, C., et al.: Control and performance of a cascaded shunt active power filter for aircraft electric power system. IEEE Trans. Ind. Electron. 59(9), 3614–3623 (2012)
19. Ricardo Lucio de Araujo, R., et al.: A robust DC-Link voltage control strategy to enhance the performance of shunt active power filters without harmonic detection schemes. IEEE Trans. Ind. Electron. 62(2), 803–813 (2015)
20. Muhammad Ammirrul Atiqi Mohd, Z., et al.: DC-link capacitor voltage control for single-phase shunt active power filter with step size error cancellation in self-charging algorithm. IET Power Electron. 9(2), 323–335 (2016)
21. Tomoyuki, M., Hideaki, F.: Dynamic control and analysis of dc capacitor voltage fluctuations in three-phase active power filters. IEEE Trans. Power Electron. 31(9), 6710–6718 (2016)
22. Tomoyuki, M., Hideaki, F.: A DC capacitor voltage control method for active power filters using modified reference including the theoretically derived voltage ripple. IEEE Trans. Ind. Appl. 52(5), 4179–4187 (2016)
23. Tomoyuki, M., et al.: A new control method of suppressing DC capacitor voltage ripples caused by third-order harmonic compensation in three-phase active power filters. IEEE Trans. Ind. Appl. 54(6), 6149–6158 (2018)
24. Kuang-hsiung, T., et al.: DC-link voltage regulation using RPFNN-AMF for three-phase active power filter. IEEE Access. 6, 37454–37463 (2018)
25. Salem, R., et al.: Experimental design of a non-linear control technique for three-phase shunt active power filter. IEEE Trans. Ind. Electron. 57(10), 3364–3375 (2010)
26. Shixi, H., et al.: Finite-time adaptive fuzzy-neural-network control of active power filter. IEEE Trans. Power Electron. 34(10), 10298–10313 (2019)
27. Seema, K., Bhim, S.: Modified amplitude adaptive control algorithm for power quality improvement in multiple distributed generation system. IET Power Electron. 12(9), 2321–2329 (2019)
28. Tomoyuki, M., Keiji, W.: Control method for overvoltage suppression across the DC capacitor in a grid-connection converter using leg short circuit of power mosfets during the initial charge. IEEE Trans. Ind. Appl. 55(4), 4012–4019 (2019)
29. Hani, V., et al.: Reduced DC-link voltage active power filter using modified PUC5 converter. IEEE Trans. Power Electron. 33(2), 943–947 (2018)
30. Quoc-Nam, T., Hong-Hee, L.: An advanced current control strategy for three-phase shunt active power filters. IEEE Trans. Ind. Electron. 60(12), 5400–5410 (2013)
31. Jan, S., et al.: Practical implementation of delayed signal cancellation method for phase-sequence separation. IEEE Trans. Power Del. 22(1), 18–26 (2007)
32. Yifei, W., Yunwei, L.: Three-phase cascaded delayed signal cancellation PLL for fast selective harmonic detection. IEEE Trans. Ind. Electron. 60(4), 1452–1463 (2013)
33. Yifei, W., Yunwei, L.: Analysis and digital implementation of cascaded delayed-signal-cancellation PLL. IEEE Trans. Power Electron. 26(4), 1067–1080 (2011)
34. Paulo, S.B.N., et al.: FPGA implementation of the generalized delayed signal cancellation—Phase locked loop method for detecting harmonic sequence components in three-phase signals. IEEE Trans. Ind. Electron. 60(2), 645–658 (2013)
35. Jose, Carlos, A., et al.: Enhanced grid fundamental positive-sequence digital synchronization structure. IEEE Trans. Power Del. 28(1), 226–234 (2013)
36. Francisco, A.S.N., et al.: A generalized delayed signal cancellation method for detecting fundamental-frequency positive-sequence three-phase signals. IEEE Trans. Power Del. 25(3), 1816–1825 (2010)
37. Xinning, H., et al.: A simplified shunt APF model based on instantaneous energy equilibrium and its application in DC voltage control. In: Proceedings 2008 IEEE Power Electronics Specialists Conference, pp. 2235–2241. Rhodes, June 2008
38. Leopold, H., et al.: A proportional-resonant current controller for selective harmonic compensation in a hybrid active power filter. IEEE Trans. Power Del. 29(5), 2055–2065 (2014)
39. Mehmet, B., et al.: Analysis and comparison of passive damping methods for shunt active power filter with output LCL filter. In: 2015 Intl Aegae Conference on Electrical Machines & Power Electronics (ACEMP), 2015 Intl Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 Intl Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), pp. 434–440. Side, Turkey, September 2015
40. Karshenas, H.R., Saghafi, H.: Basic criteria in designing LCL filters for grid connected converters. 2006 IEEE International Symposium on Industrial Electronics, pp. 1996–2000. Montreal, Quebec, Canada, July 2006
41. Fei, L., et al.: Design and research on parameter of LCL filter in three-phase grid-connected inverter. 2009 IEEE 6th International Power Electronics and Motion Control Conference, pp. 2174–2177. Wuhan, China, July 2009

How to cite this article: Meng R, Du Y, Han X, Wang P. The suppression of DC-link voltage fluctuations through a source active current feedforward in the active power filter. IET Power Electron. 2021;14:481–491. https://doi.org/10.1049/pel2.12001