Crosstalk between the IncRNA UCA1 and microRNAs in cancer

Wei Xuan1, Hongyu Yu2, Xiaoling Zhang3 and Dandan Song4

1 Department of Hepatopancreaticobiliary Surgery, China-Japan Union Hospital, Jilin University, Changchun, China
2 Department of Nephrology, Second Hospital of Jilin University, Changchun, China
3 The First Hospital and Institute of Immunology, Jilin University, Changchun, China
4 Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China

Correspondence
D. Song, Department of Clinical Laboratory, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun 130041, China
Tel: +86 13756257866
E-mail: sddhappyforever@sina.com

doi:10.1002/1873-3468.13470

Edited by Tamas Dalmay

Long non-coding RNAs (lncRNAs) are a major subset of highly conserved non-coding RNAs (ncRNAs) that consist of at least 200 nucleotides and have limited protein-coding potential. Cumulative data have shown that lncRNAs are deregulated in many types of cancer and may control pathophysiological processes of cancer at various levels, including transcription, post-transcription and translation. Recently, lncRNAs have been demonstrated to interact with microRNAs (miRNAs), another major subset of ncRNAs, which regulate physiological and pathological processes by inhibiting target mRNA translation or promoting mRNA degradation. The IncRNA urothelial carcinoma-associated 1 (UCA1) has recently gained much attention as it is overexpressed in many types of cancer and is involved in carcinogenesis. Here, we review the crosstalk between UCA1 and miRNAs during the pathogenesis of cancer, with a focus on cancer-cell proliferation, invasion, drug resistance, and metabolism.

Keywords: cancer; drug resistance; invasion; metabolism; micro RNA; proliferation; UCA1

Long non-coding RNAs (lncRNAs) are a major component of the highly conserved non-coding RNAs (ncRNAs) that consist of > 200 nucleotides with limited protein-coding potential [1]. LncRNAs exert regulatory functions at different levels including transcription, post-transcription, and translation, or can...
directly modulate protein activity and participate in physiological and pathological processes including embryonic development, cell growth, and carcinogenesis [2]. In the last decade, many studies have shown that lncRNAs are aberrantly regulated in various malignant tumors and play an important role on carcinogenesis [3–7].

Urothelial cancer associated 1 (UCA1) is a lncRNA that has gained attention in recent years due to its aberrant expression in a broad range of cancer tissues and cells. The UCA1 gene is located in chromosome 19p13.12 with two transcripts of 1.4 and 2.2 kb in length [8]. UCA1 is upregulated at 5–10 weeks of gestation; after 28 weeks of gestation, it is highly expressed in bladder, heart, and uterus compared to cervix, kidney, liver, lung, intestine, skin, spleen, and stomach; after birth, it is turned off in most tissues except heart and spleen [9,10]. It was first identified in bladder cancer and reactivated in various malignant tumors [11–19]. It plays an important role in tumor growth, apoptosis, invasion, anti-cancer drug resistance, and metabolism. Thus, it is of great clinical significance to understand the functional mechanism of UCA1 in cancer.

The role of lncRNAs in regulating genes by diverse mechanisms has been largely validated. Recently, crosstalk of lncRNAs with microRNAs (miRNAs) has rapidly emerged, indicating a novel mechanism for lncRNA in regulating cancers [20]. MiRNAs, another class of ncRNAs, repress target gene expression through their partial complementarity with the mRNA sequence [21]. LncRNAs could function as competing endogenous RNAs (ceRNAs) to communicate with miRNAs by competing for shared miRNAs [22]. In contrast, miRNAs also negatively modulate lncRNA expression [23]. In addition, some lnc RNAs could act as the host gene of miRNAs or activate the promoter of miRNAs to upregulate the expression of miRNAs [24,25]. The crosstalk of lncRNAs with miRNAs plays a pivotal role in the pathophysiological processes of cancers.

In this review, we present a comprehensive summary of the roles of the UCA1–miRNA–mRNA axis in regulating the processes of cancer, including proliferation, invasion, drug resistance, and metabolism.

Regulation of IncRNA UCA1 and miRNAs in cancers

A remarkable hallmark of various solid tumors is their hypoxia, which regulates expression of genes, including those of lncRNAs [26]. UCA1 is found to be upregulated by the hypoxic microenvironment of bladder cancer [27]. Hypoxia-inducible factor 1α (HIF-1α) is activated under hypoxic tumor microenvironments and can bind to the hypoxia response elements of UCA1 promoter to enhance UCA1 expression in a hypoxia-dependent manner [28]. Thus, there is an interaction between HIF-1α and UCA1 under hypoxic conditions. In addition, UCA1 is regulated by other transcription factors such as special AT-rich sequence binding protein 1 (SATB1), which binds to the upstream region of UCA1 to block its transcription [29]. SATB1 depletion increases the promoter activity of UCA1 [30]. Moreover, the transforming growth factor-β (TGF-β) pathway could induce the expression of UCA1 by recruiting a transcriptional complex composed of TAZ, yes-associated protein (YAP), TEAD and SMAD2/3 in breast cancer cells [31,32]. Notably, these pathways also regulate UCA1-related miRNAs. For example, the HIF-1α signaling pathway regulates the expression of miRNAs such as miR-1 and miR-26, which have been reported to be inhibited by UCA1 [26,33,34]. The TGF-β signaling pathway could also induce the expression of UCA1-related miRNAs such as miR-1 and miR-203a [35]. Thus, the crosstalk of UCA1 and miRNAs may play an important role in tumor genesis.

Regulatory relationships of UCA1 with miRNAs

The regulatory networks between lncRNAs and miRNAs have been investigated in many tumors. LncRNAs can function as ceRNAs to communicate with miRNAs through competing for shared miRNAs; on the other hand, miRNAs can also negatively modulate lncRNA expression, and in addition, some lncRNAs can positively regulate the level of miRNAs [36]. Several studies have revealed abnormal expression of UCA1 in various kinds of tumors and regulation of the progress of a tumor through sponging miRNAs such as miR-193a-3p, miR-216b, miR-16, and miR-143 [37–40]. In contrast to sponging miRNAs, UCA1 is negatively modulated by miRNAs. A recent study reported that miR-1 inhibited UCA1 expression, and knockdown of miR-1 resulted in UCA1 up-regulation in bladder cancer cells [26]. In addition, UCA1 also could promote tumor growth by increasing expression of miR-196a-5p, which acts as a potential ‘onco-miR’ and was upregulated in multiple tumors [24,25].

UCA1–miRNA–mRNA axis in cancer genesis

Cancer growth is a process in which tumor initiating cells develop into a visible tumor mass, and refers to
cancer cell proliferation, resistance to cell death, and angiogenesis [41]. Cancer metastasis is the key reason for cancer death [42]. In addition, drug resistance is a major obstacle to the effective treatment of cancer patients [43].

Much evidence supports that metabolic change is a key event in tumor progression. Specific metabolic reprogramming sustains cancer growth, invasion, and drug resistance [44]. During tumor metabolism, glucose and glutamine are the main sources used to maintain active essential metabolic pathways and their metabolisms are changed during tumorigenesis [45]. Most cancer cells rely mainly on aerobic glycolysis to generate ATP for cellular processes instead of mitochondrial oxidative phosphorylation for glucose metabolism, a phenomenon known as the Warburg effect, resulting in an accelerated rate of glucose consumption and rapid proliferation and apoptosis resistance [46]. Glutaminolysis is pivotal for cancer cells to maintain the redox balance and to reduce excessive reactive oxygen species (ROS) levels. Glutamine metabolism may generate antioxidants such as NADPH and glutathione to contribute to the redox balance in cancer cells [47]. Mitochondria play an important role in metabolism of cancer with the ability to produce ATP and ROS, provide building blocks for anabolism by anaplerosis, and regulate cell death signaling [48]. Mitochondrial metabolism plays multifaceted roles in cancer progression including cancer initiation, development, apoptosis, and autophagy [48].

Numerous studies have demonstrated that crosstalk between UCA1 and miRNAs participates in tumor growth, invasion (Table 1), drug resistance (Table 2), and metabolism (Table 3) in many types of cancer.

Glioma

Glioma is the most common type of adult primary brain tumor with poor prognosis due to its strong capacity for cell proliferation and migration [49]. UCA1 promoted glioma cell proliferation and migration by inhibition of miR-204. Zinc-finger E-box-binding homeobox 1 (ZEB1) is a downstream target of miR-204 and is associated with invasion of many types of tumor via modulation of epithelial–mesenchymal transition (EMT) [44]. UCA1 has also been found to promote glioma proliferation and migration by inhibition of miR-182 [50]. Inhibitor of apoptosis-stimulating protein of p53 (iASPP) and the heart 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB2) are the targets of miR-182 and were found to inhibit p53-dependent cell apoptosis and facilitate glioma invasion, respectively [50,51]. In addition, PFKFB2 is also regarded as a critical gene in charge of glycolysis [52], and the UCA1–miR-182–PFKFB2 axis plays an important role in glioma glycolysis [51].

UCA1 up-regulated the expression of transcription factor nuclear receptor subfamily 2 group member 2 (NR2C2) to promote glioma proliferation and invasion by sponging miR-627-5p [53]. Furthermore, UCA1 promoted glioma cell proliferation and invasion by sponging miR-122, which is a tumor suppressor in many tumors [54]. UCA1 was significantly increased by TGF-β treatment in glioma cells and had a higher level in glioma tissues than in normal adjacent tissues. Knockdown of UCA1 decreased TGF-β-induced EMT, which was associated with tumor invasion. The molecular mechanism is that UCA1 acts as a ceRNA for slug through competitive binding with miR-1 and miR-203a [55].

Oral cancers

Tongue cancer is an oral cavity malignancy threatening public health worldwide [55]. UCA1 interacted with miR-124, thereby modulating the metastasis of tongue cancer cells through jagged 1 (JAG1) and downstream signaling upon TGF-β1 stimulation [56]. UCA1 knockdown or miR-124 inhibition could partially attenuate the invasion of tongue cancer cells induced by TGF-β1 through Notch signaling [56]. Squamous cell carcinoma is the most common oral cancer and frequently involves the tongue [57]. Higher expression of UCA1 was associated with the proliferation or lymph node metastases of squamous cell carcinoma [15]. In addition, UCA1 promoted cisplatin resistance in oral squamous cell carcinoma via up-regulation of zinc finger gene in MEN1 locus (ZFMI) by sponging miR-184 [58]. ZFMI, also named SF1, was found to promote tumor-genesis of colon cancer and testicular germ cell tumors [59].

Gastrointestinal cancers

Gastrointestinal cancers, including esophageal, gastric, and colon cancer, are a major public health problem with poor prognosis. Esophageal cancer is a common gastrointestinal cancer [60], and UCA1 contributed to the proliferation of esophageal cancer by directly interacting with miR-204, and decreasing the binding of miR-204 to the 3′ untranslated region (3′UTR) of Sox4 [61].

Gastric cancer (GC) is a malignant tumor and has the highest morbidity and mortality in Asian countries; UCA1 is positively associated with GC proliferation and invasion [62]. UCA1 could significantly promote...
cell migration and inhibit apoptosis in GC cell lines SUN-216 and SGC-7091 via inhibition of miR-182, whose downstream target is tissue inhibitors of metalloproteinase 2 (TIMP2) [63]. Similarly, UCA1 enhanced the invasion of GC by directly interacting with miR-203 or miR-7-5p, increasing the release of miR-203-targeted transcripts zinc finger E-box-binding homeobox2 (ZEB2) or miR-7-5p-targeted epidermal growth factor receptor (EGFR), respectively [64,65]. Moreover, UCA1 could also promote the proliferation and invasion of GC through sponging miR-495-3p [30]. SATB1 is a target of miR-495-3p and positively correlated with the advanced tumor node metastasis stage of GC [66]. Furthermore, UCA1 could sponge

Tumor	microRNA	mRNA	Function	Reference
Glioma	miR-204↓	ZEB1↑	Proliferation and invasion (+)	[44]
	miR-182↓	IASPP↑	Proliferation and invasion (+)	[50]
		PKF6B2↑	Invasion (+)	[51]
	miR-627-5p↓	NR2C2↑	Proliferation and invasion (+)	[53]
	miR-122↓	—	Proliferation and invasion (+)	[54]
	miR-1↑	Slug	Proliferation and invasion (+)	[35]
	miR-203a↓	—	Proliferation and invasion (+)	
Tongue cancer	miR-124↓	JAG1↑	Invasion (+)	[56]
Squamous cell carcinoma	miR-184↓	ZFM1↑	Proliferation and invasion (+)	[58]
Esophageal cancer	miR-204↓	SOX4↑	Proliferation (+)	[61]
GC	miR-182↓	TIMP2↑	Proliferation and invasion (+)	[63]
	miR-203↓	ZEB2↑	Invasion (+)	[64]
	miR-495-3p↓	SATB1↑	Proliferation and invasion (+)	[30]
	miR-590-3p↓	CREB1↑	Proliferation (+)	[67]
	miR-7-5p↑	EGFRI↑	Invasion (+)	[65]
Colon cancer	miR-28-5p↓	HOXB3↑	Proliferation and invasion (+)	[71]
Pancreatic cancer	miR-107↓	ITGA2↑	Invasion (+)	[74]
	miR-96↓	FOXO3↑	Proliferation and invasion (+)	[75]
	miR-135a↓	Bmi1↑	Proliferation and invasion (+)	[76,77]
Hepatocellular carcinoma	miR-218b↓	FGFR1↑	Proliferation (+)	[38]
	miR-203↓	Snail2↑	Invasion (+)	[79]
	miR-301a↓	CCR4↑	Invasion (+)	[80]
Thyroid cancer	miR-135a↓	c-myc↑	Proliferation and invasion (+)	[84]
	miR-204↓	BRD4↑	Proliferation (+)	[85]
Lung cancer	miR-193a↓	ERBB4↑	Proliferation and invasion (+)	[37,87]
		HMGB1↑	Proliferation (+)	[88]
	miR-144↓	PBX3↑	Proliferation and invasion (+)	[90]
	miR-143↓	MAPK1↑	Proliferation and invasion (+)	[92]
	miR-506-3p↓	COTL1↑	Proliferation and invasion (+)	[93]
Bladder cancer	miR-143↓	HMGB1↑	Invasion (+)	[95]
	miR-145↓	ZEB1↑	Invasion (+)	[96]
	miR-582-5p↓	ATG7↑	Proliferation and invasion (+)	[97]
RCC	miR-129-3p↓	SOX4↑	Proliferation (+)	[103]
Breast cancer	miR-495↓	EZH2↑	Proliferation and invasion (+)	[106]
Epithelial ovarian cancer	miR-485-5p↓	MMP14↑	Invasion (+)	[109]
Cervical cancer	miR-206↓	VEGF↑	Proliferation and invasion (+)	[123]
Prostate cancer	miR-184↓	Bcl2↑	Proliferation (+)	[127]
	miR-204↓	Sirt1↑	Proliferation and invasion (+)	[128]
		ATF2↑	Proliferation and invasion (+)	[129]
Melanoma	miR-185↓	—	Proliferation and invasion (+)	[132]
	miR-507↓	FOXM1↑	Proliferation and invasion (+)	[108]
Osteosarcoma	miR-182↓	TIMP2↑	Proliferation (+)	[139]
Myeloid leukemia	miR-126↓	RAC1↑	Invasion (+)	[141]
the miR-590-3p targeting cyclic adenosine monophosphate response element-binding protein 1 (CREB1), and knockdown of CREB1 inhibits the growth of human GC in vitro and in vivo [67,68]. Moreover, UCA1 increased multi-drug resistance of GC by down-regulating miR-27b [69].

Colon cancer is one of the most common cancers in the world, characterized by unlimited proliferation and high metastasis [70]. High UCA1 level in colon cancer tissues is positively associated with the tumor size and advanced tumor stages via inhibition of miR-28-5p. Homeobox B3 (HOXB3), a downstream target of miR-28-5p, could mediate the functions of UCA1 in proliferation and migration of colon cancer cells [71]. In addition, UCA1 also enhanced colorectal cancer proliferation and 5-fluorouracil (5-FU) resistance by sponging miR-204-5p, whose downstream target is CREB1 [72].

Pancreatic cancer

Pancreatic cancer is a highly aggressive malignant tumor with the characteristic of hepatic metastasis [73]. UCA1 promoted migration of pancreatic cancer by sponging miR-107 targeting integrin subunit α 2 (ITGA2) [74]. Moreover, UCA1 could promote pancreatic cancer cell multiplication and metastatic ability by down-regulating miR-96 and up-regulating forkhead box O3 (FOXO3). FOXO3, a target of miR-96, could impair pancreatic cancer cell viability and inhibit cell apoptosis [75]. Furthermore, UCA1 promoted growth and metastasis of pancreatic cancer by sponging miR-135a [76]. It was found that miR-135a inhibited the proliferation of pancreatic ductal adenocarcinoma by targeting B-cell-specific moloney murine leukemia virus integration site 1 (Bmi1) [77].

Liver cancer

Hepatocellular carcinoma is the most common type of liver cancer [78]. UCA1 promoted hepatocellular carcinoma cell proliferation and suppressed G0/G1 cell cycle arrest by inhibiting miR-216b [38]. MiR-216b targeted the fibroblast growth factor receptor 1 (FGFR1)–extracellular signal-regulated kinase pathway and played an important role in hepatocellular carcinoma cell invasion [38]. In another study, UCA1 sponged miR-203 targeting transcription factor Snail2 to promote the invasion of hepatocellular carcinoma [79]. Aberrant expression of UCA1 was also found in human liver cancer cell line MHCC97 and was associated with tumor cell invasion through sponging miR-301a and up-regulating the expression of chemokine receptor 4 (CXCR4) [80]. CXCR4 is a target of miR-301a and promoted devolvement of HepG2 cells [81]. MiR-301a could block the tumor-genesis promoting effect of UCA1 via activation of the Wnt–β-catenin pathway [82].
Thyroid cancer
Thyroid cancer is the most common malignancy in thyroid tissue and, based on the pathological features, includes papillary carcinoma, follicular carcinoma, medullary carcinoma, and undifferentiated carcinoma [83]. It was found that UCA1 significantly promoted proliferation and migration of thyroid cancer cells; the underlying mechanism was that UCA1 competed with c-myc proto-oncogene (c-myc) for miR-135a binding [84]. Similarly, UCA1 promoted growth and invasion of papillary thyroid carcinoma by competing with bromodomain containing 4 (BRD4) or insulin-like growth factor-binding protein 5 (IGFBP5) for miR-204 binding [85,86].

Lung cancer
Lung cancer is the leading cause of cancer death among both men and women. High UCA1 level in non-small cell lung cancer tissues remarkably promotes cell growth and metastasis via inhibition of miR-193a [37,87]. Both ERBB4 and high mobility group box 1 (HMG1) are the targets of miR-193a and were up-regulated by UCA1 in lung cancer [87,88] and shown to promote proliferation or invasion, respectively [88,89]. Furthermore, UCA1 up-regulates the expression of pre-B-cell leukemia homeobox 3 (PBX3) to promote lung cancer proliferation and invasion by inhibition of miR-144 [90]. Inhibition of miR-144 also was found to promote the proliferation and invasion of bladder cancer by targeting enhancer of zeste homolog 2 (EZH2) [91]. Moreover, silencing of UCA1 could induce G2/M cell cycle arrest and apoptosis via up-regulation of miR-143. Both UCA1 silencing and miR-143 overexpression could cause a significant decrease of mitogen-activated protein kinase 1 (MAPK1) [92]. Similarly, UCA1 contributed to proliferation and invasion of non-small cell lung cancer by functioning as a ceRNA to miR-506-3p, up-regulating its direct downstream target, coactosin-like protein 1 (COTL1) [93].

Bladder cancer
Bladder cancer is a highly prevalent disease with substantial morbidity and mortality [94]. UCA1 overexpression in bladder cancer significantly repressed miR-143 expression [95]. MiR-143 exerted a tumor suppressive role by targeting the 3’UTR of HMGB1, leading to the up-regulation of EMT, which was associated with invasion of bladder cancer [95]. Similarly, UCA1 up-regulated EMT and promoted the invasion of bladder cancer cells though targeting the miR-145–ZEB1/2–fascin homologue 1 pathway [96]. UCA1 promoted cell growth and metastasis of T24 and 5637 cells via enhancement of autophagy-related gene 7 (ATG7) by inhibiting miR-582-5p [97].

In addition to tumor proliferation and invasion, UCA1 also contributed to resistance to cisplatin and gemcitabine, the preferred drugs for chemotherapy after surgery for muscle-invasive bladder cancer patients, through activation of CREB by p-AKT and subsequent up-regulation of miR-196a-5p [25,98]. Moreover, UCA1 promoted the glycolysis of bladder cancer by sponging miR-143, which targeted hexokinase 2 (HK2), through regulating mechanistic target of rapamycin and signal transducer and activator of transcription 3 [40]. HK2, as the first rate-limiting enzyme of glycolysis, helps couple ATP formation in mitochondria to glucose phosphorylation, and was overexpressed in several malignancies, resulting in cancer cell growth, survival, and metastasis [99]. Furthermore, UCA1 contributed to glutamine metabolism and redox state regulation by sponging miR129-3p targeting glutaminase 2 (GLS2), which acts as an antioxidant defense and represses ROS formation by bladder cancer cells. [39,47]. UCA1 also could promote mitochondrial function of bladder cancer by inhibiting the expression level of miR-195, resulting in elevated expression of ADP ribosylation factor-like protein 2 (ARL2), which is essential for mitochondrial function [100]. Consistently, it has been reported that ARL2 expression was directly regulated by miR-195 in human neural progenitor cells [101].

Renal cell carcinoma
Renal cell carcinoma (RCC) accounts for ~90% of kidney cancers [102]. A recent study indicated that UCA1 promoted proliferation and invasion of RCC by sponging the miR-129-3p targeting SOX4 [103]. Consistently, miR129-3p weakened migration and invasion of RCC cells [104], while SOX4 facilitated migration of RCC cells [105]. In addition, UCA1 promoted proliferation of RCC through sponging miR-495, whose downstream target is EZH2 [106].

Breast cancer
Breast cancer is the second leading cause of cancer death among women after lung cancer [107]. UCA1 promoted the growth of breast cancer via inhibition of miR-122-5p, up-regulating its targets, type 1 insulin-like growth factor receptor (IGF-1R) and pyruvate kinase M2 (PKM2). The binding of miR-122-5p to UCA1 was regulated by insulin-like growth factor II mRNA binding protein-1, which is a multifunctional
RNA-binding protein that contains four KH domains for target RNA recognition [108]. UCA1 promoted the growth of breast cancer through interacting with miR-143, which targets the 3‘UTR of the ERBB3/HER3, a kinase-impaired HER receptor tyrosine kinase family member, thereby suppressing the proliferation and invasion of breast cancer cells [109].

Tamoxifen is one of the major hormone therapies for endoplasmic reticulum positive breast cancer in clinical practice, and acquired resistance to tamoxifen remains a major obstacle in breast cancer treatment [110]. Tamoxifen treatment up-regulated expression of UCA1 in breast cancer cells through a miR-18a–HIF1α feedback loop [110]. The overexpression of UCA1 conferred tamoxifen resistance by increasing the activity of Wnt–β-catenin signaling, which was accompanied by a decrease of miR-18a, an important modulator of cell cycle proteins [111,112]. Knockdown of UCA1 increased apoptosis upon tamoxifen treatment accompanied by an increase of cleaved caspase-3 and reduction in p-AKT and p-mechanistic target of rapamycin [113]. In addition, UCA1 also conferred resistance to trastuzumab, which is a monoclonal antibody for human epidermal growth factor receptor 2 (HER2)-positive breast cancer treatments. The molecular mechanism was that UCA1 sponged miR-18a targeting YAP1, which was associated with trastuzumab resistance [114].

Ovarian cancer

Epithelial ovarian cancer is the fifth most common cause of cancer death in women worldwide [115]. The overexpression of UCA1 was involved in the development of epithelial ovarian cancer via inhibition of miR-485-5p [116]. The downstream target of miR-485-5p is matrix metallopeptidase 14 (MMP14), which is the first membrane type matrix metalloproteinase involved in pathological invasion [116]. Thus, the UCA1–miR-485-5p–MMP14 axis plays an important role in development of ovarian cancer.

In addition, UCA1 also conferred cisplatin resistance in ovarian cancer through up-regulation of serine/arginine-rich protein-specific kinase 1 [11], a target of miR-216b [117–119]. Consistently, miR-216b increases cisplatin sensitivity in ovarian cancer cells [120] and could be sponged by UCA1 [34]. Furthermore, UCA1 could sponge miR-129 to enhance resistance to paclitaxel, which is used for chemotherapeutic treatment of many cancers including ovarian cancer [121]. ATP-binding cassette subfamily B member 1 transporter (ABCB1) was a direct target of miR-129 and associated with cisplatin and paclitaxel resistance in ovarian cancer [121].

Cervical cancer

Cervical cancer has the second highest incidence rate among cancers in females, accounting for the majority of cancer-related deaths globally [122]. UCA1 also could promote the proliferation and invasion of cervical cancer cells through inhibiting miR-206 expression. Vascular endothelial growth factor (VEGF) is a target of miR-206, and up-regulated by UCA1 [123]. In addition, UCA1 was found to promote glycolysis of cervical cancer by sponging miR-493-5p targeting HK2, which was proposed as a metabolic target for cancer therapeutic development [124,125].

Prostate cancer

Prostate cancer is one of the main causes of cancer-related death and morbidity in men [126]. UCA1 protected prostate cancer against apoptosis by sponging miR-184, leading to up-regulation of B-cell lymphoma/leukemia 2 [127]. It was also found that UCA1 promoted prostate cancer cell proliferation and invasion via inhibition of miR-204. Silent mating type information regulation 2 homologue 1 (Sirt1) and activating transcription factor-2 (ATF2) are the downstream targets of miR-204 [128–130]. Sirt1 and ATF2 when up-regulated by UCA1 facilitate metastasis and proliferation of prostate cancer, respectively [128–130]. In addition, the UCA1–miR-204–Sirt1 axis also contributed to resistance to docetaxel, which is a standard chemotherapy for patients with metastatic prostate cancer [128,131].

Melanoma

Melanoma is an aggressive skin carcinoma with poor prognosis. UCA1 could inhibit miR-185-5p to promote the growth or invasion of melanoma via regulation of the Wnt–β-catenin signaling pathway [132]. Consistently, miR-185 was also demonstrated to inhibit the proliferation and migration of melanoma [133]. In addition, UCA1 also sponged miR-507 to promote the proliferation of melanoma accompanied by up-regulation of mammalian transcription factor forkhead box protein M1 (FOXM1) [108]. FOXM1, a target of miR-507, is an essential effector of G2/M phase and miR-507 has been defined as a tumor suppressor in many types of cancer [134–136].

Osteosarcoma and myeloid leukemia

Osteosarcoma is the most common form of primary bone cancer and UCA1 is associated with its growth
UCA1/miRNA/mRNA axis in cancer

W. Xuan et al.

[137,138]. UCA1 played oncogenic roles by inhibiting miR-182 and up-regulating TIMP2 accompanied by activation of the phosphoinositide 3-kinase–AKT–glycogen synthase kinase 3 β and nuclear factor κB signaling pathways in osteosarcoma cells [139]. TIMP2, a target of miR-182, could suppress MMP activation, thus facilitating the invasion of multiple cancer cells [139]. Consistently, down-regulation of miR-182 could inhibit the growth of osteosarcoma [140].

Acute myeloid leukemia is a bone marrow malignancy. UCA1 knockdown could promote apoptosis and inhibit proliferation of myelogenous leukemia (ML) cell lines K562 and HL60, respectively [141]. The underlying mechanism is that UCA1 functions as an endogenous sponge for miR-126, thus up-regulating the expression of Ras-related C3 botulinum toxin substrate 1 (RAC1) [141]. Consistently, RAC1 overexpression could alleviate the anti-growth and anti-metastasis actions of miR-126 in ML cells [141]. Additionally, UCA1 conferred imatinib resistance in chronic ML as a ceRNA of multidrug resistance protein-1 (MDR1), which induced imatinib resistance by sequestering miR-16 [142]. Other evidences also favored that imatinib resistance was associated with overexpression of the MDR1 gene in tumor cells [143, 144]. In addition, UCA1 also conferred the resistance of adriamycin, a chemotherapy drug used for the treatment of AML, by sponging the miR-125a targeting HK2 to promote glycolysis [145]. Consistently, miR-125a/HK2 axis was found to regulate the energy metabolism of hepatocellular carcinoma or squamous cell carcinoma [146, 147].

Conclusion and perspective

UCA1 is unregulated in many types of tumor and plays an important role in tumor genesis via regulation of miRNAs. Crosstalk by way of UCA1 with miRNA is diverse, but usually, UCA1 as a ceRNA can sponge miRNAs, up-regulating their target genes. The UCA1–miRNA–mRNA axis participates in diverse biological functions including cancer growth, invasion, drug resistance, and metabolism. Understanding the molecular mechanism is of benefit for exploring the potential applications of UCA1 as a therapeutic target for human cancers.

Acknowledgements

This work was supported by Scientific Research Planning Project of the Education Department of Jilin Province (Grant Nos.JJKH20180205KJ) and Key laboratory of organ regeneration and transplant, Ministry of Education.

References

1. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12, 861–874.
2. Liz J and Esteller M (2016) IncRNAs and microRNAs with a role in cancer development. Biochim Biophys Acta 1859, 169–176.
3. Liu XH, Sun M, Nie FQ, Ge YB, Zhang EB, Yin DD, Kong R, Xia R, Lu KH, Li JH, De W, Wang KM and Wang ZX (2014) Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol Cancer 13, 92.
4. Gutschner T, Hämmerle M and Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med 91, 791–801.
5. Qiao HP, Gao WS, Huo JX and Yang ZS (2013) Long non-coding RNA GAS5 functions as a tumor suppressor in renal cell carcinoma. Asian Pac J Cancer Prev 14, 1077–1082.
6. Ding C, Yang Z, Lv Z, Du C, Xiao H, Peng C, Cheng S, Xie H, Zhou L, Wu J and Zheng S (2015) Long non-coding RNA PVT1 is associated with tumor progression and predicts recurrence in hepatocellular carcinoma patients. Oncol Lett 9, 955–963.
7. Yao Y, Ma J, Xue Y, Wang P, Li Z, Liu J, Chen L, Xi Z, Teng H, Wang Z, Li Z and Liu Y (2015) Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett 359, 75–86.
8. Huang J, Zhou N, Watabe K, Lu Z, Wu F, Xu M and Mo YY (2014) Long non-coding RNA UCA1 promotes breast tumor growth by suppression of p27 (Kip1). Cell Death Dis 5, e1008.
9. Wang XS, Zhang Z, Wang HC, Cai JL, Xu QW, Li MQ, Chen YC, Qian XP, Lu TJ, Yu LZ, Zhang Y, Xin DQ, Na YQ and Chen WF (2006) Rapid identification of UCA1 as a very sensitive and specific unique marker for human bladder carcinoma. Clin Cancer Res 12, 4851–4858.
10. Wang F, Li X, Xie X, Zhao L and Chen W (2008) UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett 582, 1919–1927.
11. Wang F, Zhou J, Xie X, Hu J, Chen L, Hu Q, Guo H and Yu C (2015) Involvement of SRPK1 in cisplatin resistance related to long non-coding RNA UCA1 in human ovarian cancer cells. Neoplasma 62, 432–438.
12. Zheng Q, Wu F, Dai WY, Zheng DC, Zheng C, Ye H, Zhou B, Chen JJ and Chen P (2015) Aberrant
expression of UCA1 in gastric cancer and its clinical significance. Clin Transl Oncol 17, 640–646.

13 Li JY, Ma X and Zhang CB (2014) Overexpression of long non-coding RNA UCA1 predicts a poor prognosis in patients with esophageal squamous cell carcinoma. Int J Clin Exp Pathol 7, 7938–7944.

14 Tian Y, Zhang X, Hao Y, Fang Z and He Y (2014) Potential roles of abnormally expressed long non-coding RNA UCA1 and Malat-1 in metastasis of melanoma. Melanoma Res 24, 335–341.

15 Fang Z, Wu L, Wang L, Yang Y, Meng Y and Yang H (2014) Increased expression of the long non-coding RNA UCA1 in tongue squamous cell carcinomas: a possible correlation with cancer metastasis. Oral Surg Oral Med Oral Pathol Oral Radiol 117, 89–95.

16 Han Y, Yang YN, Yuan HH, Zhang TT, Sue H, Wei XL, Liu L, Huang P, Zhang WJ and Bai YX (2014) UCA1, a long non-coding RNA up-regulated in colorectal cancer influences cell proliferation, apoptosis and cell cycle distribution. Pathology 46, 396–401.

17 Hughes JM, Legnini I, Salvatori B, Macciarelli S, Marchionni M, Fazi F, Morlando M, Bozzoni I and Fatica A (2015) C/EBPβ-p30 protein induces expression of the oncogenic long non-coding RNA UCA1 in acute myeloid leukemia. Oncotarget 6, 18534–18544.

18 Chen P, Wan D, Zheng D, Zheng Q, Wu F and Zhi Q (2016) Long non-coding RNA UCA1 promotes the tumorigenesis in pancreatic cancer. Biomed Pharmacother 83, 1220–1226.

19 Zhao W, Sun C and Cui Z (2017) A long noncoding RNA UCA1 promotes proliferation and predicts poor prognosis in glioma. Clin Transl Oncol 19, 735–741.

20 Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, Cen B and Ji A (2014) Regulation of lncRNA expression. Cell Mol Biol Lett 19, 561–575.

21 Lai EC (2002) Micro RNAs are complementary to 3’UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30, 363–364.

22 Miliollo G, Weirick T, John D, Döring C, Dimmeler S and Uchida S (2017) Screening and validation of lncRNAs and circRNAs as miRNA sponges. Brief Bioinform 18, 780–788.

23 Wang T, Yuan J, Feng N, Li Y, Lin Z, Jiang Z and Gui Y (2014) Hsa-miR-1 downregulates long non-coding RNA urothelial cancer associated 1 in bladder cancer. Tumor Biol 35, 10075–10084.

24 Xie X, Pan J, Wei L, Wu S, Hou H, Li X and Chen W (2016) Gene expression profiling of microRNAs associated with UCA1 in bladder cancer cells. Int J Oncol 48, 1617–1627.

25 Pan J, Li X, Wu W, Xue M, Hou H, Zhai W and Chen W (2016) Long non-coding RNA UCA1 promotes cisplatin/gemcitabine resistance through CREB modulating miR-196a-5p in bladder cancer cells. Cancer Lett 382, 64–76.

26 Chang YN, Zhang K, Hu ZM, Qi HX, Shi ZM, Han XH, Han YW and Hong W (2016) Hypoxia-regulated lncRNAs in cancer. Gene 575, 1–8.

27 Xue M, Li X, Li Z and Chen W (2014) Urothelial carcinoma associated 1 is a hypoxia-inducible factor-1α-targeted long noncoding RNA that enhances hypoxic bladder cancer cell proliferation, migration, and invasion. Tumor Biol 35, 6901–6912.

28 Xue M, Li X, Li Z and Chen W (2016) Urothelial cancer associated 1: a long noncoding RNA with a crucial role in cancer. J Cancer Res Clin Oncol 142, 1407–1419.

29 Lee JJ, Kim M and Kim HP (2016) Epigenetic regulation of long noncoding RNA UCA1 by SATB1 in breast cancer. BMB Rep 49, 578–583.

30 Su Sun L, Liu L, Yang J, Li H and Zhang C (2019) SATB1 3’-UTR and lncRNA-UCA1 competitively bind to miR-495-3p and together regulate the proliferation and invasion of gastric cancer. J Cell Biochem 120, 6671–6682.

31 Hiemer SE, Szymaniak AD and Varelas X (2014) The transcriptional regulators TAZ and YAP direct transforming growth factor β-induced tumorigenic phenotypes in breast cancer cells. J Biol Chem 289, 13461–13474.

32 Li GY, Wang W, Sun JY, Xin B, Zhang X, Wang T, Zhang QF, Yao LB, Han H, Fan DM, Yang AG, Jia LT and Wang L (2018) Long non-coding RNAs AC026904.1 and UCA1: a “one-two punch” for TGF-β-induced SNAI2 activation and epithelial-mesenchymal transition in breast cancer. Theranostics 8, 2846–2861.

33 Chai ZT, Kong J, Zhu XD, Zhang YY, Lu L, Zhou JM, Wang LR, Zhang KZ, Zhang QB, Ao JY, Wang M, Wu WZ, Wang L, Tang ZY and Sun HC (2013) MicroRNA-26a inhibits angiogenesis by down-regulating VEGFA through the PI3K/akt/HIF-1α pathway in hepatocellular carcinoma. PLoS ONE 8, e77957.

34 Tian S, Yuan Y, Li Z, Gao M, Lu Y and Gao H (2018) LncRNA UCA1 sponges miR-26a to regulate the migration and proliferation of vascular smooth muscle cells. Gene 673, 159–166.

35 Li Z, Liu H, Zhong Q, Wu J and Tang Z (2018) LncRNA UCA1 is necessary for TGF-β-induced epithelial-mesenchymal transition and stemness via acting as a ce RNA for Slug in glioma cells. FEBS Open Bio 8, 1855–1865.

36 Geisler S and Coller J (2013) RNA in unexpected cellular contexts. Nat Rev Genet 14, 699–712.

37 Nie W, Ge HJ, Yang XQ, Sun X, Huang H, Tao X, Chen WS and Li B (2016) LncRNA-UCA1 exerts
oncogenic functions in non-small cell lung cancer by targeting miR-193a-3p. Cancer Lett 371, 99–106.
38 Wang F, Ying HQ, He BS, Pan YQ, Deng QW, Sun HL, Chen J, Liu X and Wang SK (2015) Upregulated lncRNA-UCA1 contributes to progression of hepatocellular carcinoma through inhibition of miR-216b and activation of FGFR1/ERK signaling pathway. Oncotarget 6, 7899–7917.
39 Li HJ, Li X, Pang H, Pan JJ, Xie XJ and Chen W (2014) Long non-coding RNA UCA1 promotes glutamine metabolism by targeting miR-16 in human bladder cancer. Jpn J Clin Oncol 45, 1055–1063.
40 Li ZK, Li X, Wu SZ, Xue M and Chen W (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105, 951–955.
41 Quail DF and Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19, 1423–1437.
42 Chambers AF, Groom AC and MacDonald IC (2002) Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2, 563–572.
43 Dagogo-Jack I and Shaw AT (2018) Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol 15, 81–94.
44 Ward PS and Thompson CB (2012) Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 21, 297–308.
45 Sena LA and Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48, 158–167.
46 Hay N (2016) Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer 16, 635–649.
47 Cairns RA, Harris IS and Mak TW (2011) Regulation of cancer cell metabolism. Nat Rev Cancer 11, 85–95.
48 Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L (2018) Mitochondrial metabolism and cancer. Cell Res 28, 265–280.
49 Liang C, Yang Y, Guan J, Lv T, Qu S, Fu Q and Zhao H (2018) LncRNA UCA1 sponges miR-204-5p to promote migration, invasion and epithelial-mesenchymal transition of glioma cells via upregulation of ZEB1. Path Res Pract 214, 1474–1481.
50 He Z, Wang Y, Huang G, Wang Q, Zhao D and Chen L (2017) The lncRNA UCA1 interacts with miR-182 to modulate glioma proliferation and migration by targeting iASPP. Arch Biochem Biophys 623, 1–8.
51 He Z, You C and Zhao D (2018) Long non-coding RNA UCA1/miR-182/PFKFB2 axis modulates glioblastoma-associated stromal cells-mediated glycolysis and invasion of glioma cells. Biochem Biophys Res Comm 500, 569–576.
52 Tanner LB, Goglia AG, Wei MH, Sehgal T, Parsons LR, Park JO, White E, Toettcher JE and Rabinowitz JD (2018) Four key steps control glycolytic flux in mammalian cells. Cell Syst 7, 49–62e8.
53 Fan Z, Zheng J, Xue Y, Liu X, Wang D, Yang C, Ma J, Liu L, Ruan X, Wang Z and Liu Y (2018) NR2C2-uORF targeting UCA1-miR-627-5p-NR2C2 feedback loop to regulate the malignant behaviors of glioma cells. Cell Death Dis 9, 1165.
54 Sun Y, Jin JG, Mi WY, Zhang SR, Meng Q and Zhang ST (2018) Long noncoding RNA UCA1 targets miR-122 to promote proliferation, migration, and invasion of glioma cells. Oncol Rep 26, 103–110.
55 Rosebush MS, Rao SK, Samant S, Gu W, Handorf CR, Pfeffer LM and Nosrat CA (2011) Oral cancer: enduring characteristics and emerging trends. J Tenn Dental Assoc 94, 64–68.
56 Zhang TH, Liang LZ, Liu XL, Wu JN, Su K, Chen JY and Zheng QY (2019) LncRNA UCA1/miR-124 axis modulates TGFβ1-induced epithelial-mesenchymal transition and invasion of tongue cancer cells through JAG1/Notch signaling. J Cell Biochem 120, 10495–10504.
57 Zygogianni AG, Kyrigias G, Karakitpos P, Psyriy A, Kouvaris J, Keleksis N and Kouloulias V (2011) Oral squamous cell cancer: early detection and the role of alcohol and smoking. Head Neck Oncol 3, 2.
58 Fang Z, Zhao J, Xie W, Sun Q, Wang H and Qiao B (2017) LncRNA UCA1 promotes proliferation and cisplatin resistance of oral squamous cell carcinoma by suppressing miR-184 expression. Cancer Med 6, 2897–2908.
59 Zhu R, Heaney J, Nadeau JH, Ali S and Matin A (2010) Deficiency of splicing factor 1 suppresses the occurrence of testicular germ cell tumors. Can Res 70, 7264–7272.
60 Hongo M, Nagasaki Y and Shoji T (2009) Epidemiology of esophageal cancer: orient to occident. Effects of chronology, geography and ethnicity. J Gastroenterol Hepatol 24, 729–735.
61 Jiao C, Song Z, Chen J, Zhong J, Cai W, Tian S, Chen S, Yi Y and Xiao Y (2016) LncRNA-UCA1 enhances cell proliferation through functioning as a ceRNA of Sox4 in esophageal cancer. Oncol Rep 36, 2960–2966.
62 Li C, Liang G, Yang S, Sui J, Yao W, Shen X, Zhang Y, Peng H, Hong W, Xu S, Wu W, Ye Y, Zhang Z, Zhang W, Yin L and Pu Y (2017) Dysregulated IncRNA-UCA1 contributes to the progression of gastric cancer through regulation of the PI3K-Akt-mTOR signaling pathway. Oncotarget 8, 93476–93491.
63 Qin L, Jia Z, Xie D and Liu Z (2018) Knockdown of long noncoding RNA urethelial carcinoma-associated 1 inhibits cell viability, migration, and invasion by regulating microRNA-182 in gastric carcinoma. J Cell Biochem 119, 10075–10086.
64 Gong P, Qiao F, Wu H, Cui H, Li Y, Zheng Y, Zhou M and Fan H (2018) LncRNA UCA1 promotes tumor metastasis by inducing miR-203-ZEB2 axis in gastric cancer. *Cell Death Dis* 9, 1158.

65 Yang Z, Shi X, Li C, Wang X, Hou K, Li Z, Zhang X, Fan Y, Qu X, Che X and Liu Y (2018) Long non-coding RNA UCA1 upregulation promotes the migration of hypoxia-resistant gastric cancer cells through the miR-7-5p/EGFR axis. *Exp Cell Res* 368, 194–201.

66 Zhang S, Tong YX, Xu XS, Lin H and Chao TF (2017) Prognostic significance of SATB1 in gastrointestinal cancer: a meta-analysis and literature review. *Oncotarget* 8, 48410–48423.

67 Gu L, Lu LS, Zhou DL and Liu ZC (2018) UCA1 promotes cell proliferation and invasion of gastric cancer by targeting CREB1 sponging to miR-590-3p. *Cancer Med* 7, 1253–1263.

68 Rao M, Zhu Y, Cong X and Li Q (2017) Knockdown of CREB1 inhibits tumor growth of human gastric cancer in vitro and in vivo. *Oncol Rep* 37, 3361–3368.

69 Fang Q, Chen XY and Zhi XT (2016) Long non-coding RNA (LncRNA) urothelial carcinoma associated 1 (UCA1) increases multi-drug resistance of gastric cancer via downregulating miR-27b. *Med Sci Monit* 22, 3506–3513.

70 Vaiopoulos AG, Kostakis ID, Koutsilieris M and Papavassiliou AG (2012) Colorectal cancer stem cells. *Stem Cells* 30, 363–371.

71 Cui M, Chen M, Shen Z, Wang R, Fang X and Song B (2019) LncRNA-UCA1 modulates progression of colon cancer through regulating the miR-28-5p/HOXB3 axis. *J Cell Biochem* 120, 6926–6936.

72 Bian Z, Jin L, Zhang J, Yin Y, Quan C, Hu Y, Feng Y, Liu H, Fei B, Mao Y, Zhou L, Qi X, Huang S, Hua D, Xing C and Huang Z (2016) LncRNA-UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. *Sci Rep* 6, 23892.

73 Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, Bruns CJ and Heeschen C (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. *Cell Stem Cell* 1, 313–323.

74 Gong J, Lu X, Xu J, Xiong W, Zhang H and Yu X (2019) Coexpression of UCA1 and ITGA2 in pancreatic cancer cells target the expression of miR-107 through focal adhesion pathway. *J Cell Physiol* 234, 12884–12896.

75 Zhou Y, Chen Y, Ding W, Hua Z, Wang L, Zhu Y, Qian H and Dai T (2018) LncRNA UCA1 impacts cell proliferation, invasion, and migration of pancreatic cancer through regulating miR-96/FOXO3. *IUBMB Life* 70, 276–290.

76 Zhang X, Gao F, Zhou L, Wang H, Shi G and Tan X (2017) UCA1 regulates the growth and metastasis of pancreatic cancer by sponging MiR-135a. *Oncol Res* 25, 1529–1541.

77 Dang Z, Xu WH, Lu P, Wu N, Liu J, Ruan B, Zhou L, Song WJ and Dou KF (2014) MicroRNA-135a inhibits cell proliferation by targeting Bmi1 in pancreatic ductal adenocarcinoma. *Int J Biol Sci* 10, 733–745.

78 Starley BQ, Calacagno CJ and Harrison SA (2010) Nonalcoholic fatty liver disease and hepatocellular carcinoma: a weighty connection. *Hepatology* 51, 1820–1832.

79 Long non-coding RNA (2017) UCA1 regulates the expression of Snail2 by miR-203 to promote hepatocellular carcinoma progression. *J Cancer Res Clin Oncol* 143, 981–990.

80 Zhu G, Liu X, Su Y, Kong F, Hong X and Lin Z (2018) Knockdown of urothelial carcinoma-associated 1 suppressed cell growth and migration through regulating miR-301a and CXCR80 in Osteosarcoma MHCC97 Cells. *Oncol Rep* 27, 55–64.

81 Burger JA and Kipps TJ (2006) CXCR81: a key receptor in the crosstalk between tumor cells and their microenvironment. *Blood* 107, 1761–1767.

82 Zhou P, Jiang W, Wu L, Chang R, Wu K and Wang Z (2012) miR-301a is a candidate oncogene that targets the homeobox gene Gax in human hepatocellular carcinoma. *Dig Dis Sci* 57, 1171–1180.

83 Lu HW and Liu XD (2018) UCA1 promotes papillary thyroid carcinoma development by stimulating cell proliferation via Wnt pathway. *Eur Rev Med Pharmacol Sci* 22, 5576–5582.

84 Wang Y, Hou Z and Li D (2018) Long noncoding RNA UCA1 promotes anaplastic thyroid cancer cell proliferation via miR-135a-mediated c-myc activation. *Mol Med Rep* 18, 3068–3076.

85 Li D, Cui C, Chen J, Hu Z, Wang Y and Hu D (2018) Long non-coding RNA UCA1 promotes papillary thyroid cancer cell proliferation via miR-204-mediated BRD4 activation. *Mol Med Rep* 18, 3059–3067.

86 Liu H, Li R, Guan L and Jiang T (2018) Knockdown of IncRNA Uca1 inhibits proliferation and invasion of papillary thyroid carcinoma through regulating mir-204/igFBP5 axis. *Onco Targets Ther* 11, 7197–7204.

87 Liang H, Liu M, Yan X, Zhou Y, Wang W, Wang X, Fu Z, Wang N, Zhang S, Wang Y, Zen K, Zhang CY, Hou D, Li J and Chen X (2015) miR-193a-3p functions as a tumor suppressor in lung cancer by down-regulating ERBB4. *J Biol Chem* 290, 926–940.

88 Starr A, Greif J, Vexler A, Ashkenazy-Voghera M, Gladesh V, Rubin C, Kerber G, Marmor S, Lev-Ari S, Inbar M, Yarden Y and Ben-Yosef R (2006) ErbB4 increases the proliferation potential of human lung
cancer cells and its blockage can be used as a target for anti-cancer therapy. *Int J Cancer* **119**, 269–274.

89 Wu H and Zhou C (2018) Long non-coding RNA UCA1 promotes lung cancer cell proliferation and migration via microRNA-193a/HMGBl axis. *Biochem Biophys Res Comm* **496**, 738–745.

90 Li D, Li H, Yang Y and Kang L (2018) Long noncoding RNA urothelial carcinoma-associated 1 promotes the proliferation and metastasis of human lung tumor cells by regulating MicroRNA-144. *Oncol Res* **26**, 537–546.

91 Guo Y, Ying L, Tian Y, Yang P, Zhu Y, Wang Z, Qiu F and Lin J (2013) miR-144 downregulation increases bladder cancer cell proliferation by targeting EZH2 and regulating Wnt signaling. *FEBS J* **280**, 4531–4538.

92 Jun T, Zheng FS, Ren KM, Zhang HY, Zhao JG and Zhao JZ (2018) Long non-coding RNA UCA1 regulates the proliferation, migration and invasion of human lung cancer cells by modulating the expression of microRNA-143. *Eur Rev Med Pharmacol Sci* **22**, 8343–8352.

93 Guo S, Yang P, Jiang X, Li X, Wang Y, Zhang X, Sun B, Zhang Y and Jia Y (2017) Genetic and epigenetic silencing of microRNA-506-3p enhances COTL1 oncogene expression to foster non-small lung cancer progression. *Oncotarget* **8**, 644–657.

94 Sanli O, Dobruch J, Knowles MA, Burger M, Alemoazzar M, Nielsen ME and Lotan Y (2017) Bladder cancer. *Nat Rev Dis Primers* **3**, 17022.

95 Luo J, Chen J, Li H, Yang Y, Yun H, Yang S and Mao X (2017) LncRNA UCA1 promotes the invasion and EMT of bladder cancer cells by regulating the miR-143/HMGBl pathway. *Oncol Lett* **14**, 5556–5562.

96 Xue M, Pang H, Li H, Li H, Pan J and Chen W (2016) Long non-coding RNA urothelial cancer-associated 1 promotes bladder cancer cell migration and invasion by way of the hsa-miR-145–ZEB 1–2–FSCN 1 pathway. *Cancer Sci* **107**, 18–27.

97 Wu J, Li W, Ning J, Yu W, Rao T and Cheng F (2019) Long noncoding rna Uca1 targets mir-582-5p and contributes to the progression and drug resistance of bladder cancer cells through aTg7-mediated autophagy inhibition. *Onco Targets Ther* **12**, 495–508.

98 Barocas DA and Clark PE (2008) Bladder cancer. *Curr Opin Oncol* **20**, 307–314.

99 Lis P, Dylag M, Niedźwiecka K, Ko YH, Pedersen PL, Goffeau A and Ulaszewski S (2016) The HK2 dependent “Warburg effect” and mitochondrial oxidative phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. *Molecules* **21**, E1730.

100 Li HJ, Sun XM, Li ZK, Yin QW, Pang H, Pan JJ, Li X and Chen W (2017) LncRNA UCA1 promotes mitochondrial function of bladder cancer via the MiR-195/ARL2 signaling pathway. *Cell Physiol Biochem* **43**, 2548–2561.

101 Zhou Y, Jiang H, Gu J, Tang Y, Shen N and Jin Y (2013) MicroRNA-195 targets ADP-ribosylation factor-like protein 2 to induce apoptosis in human embryonic stem cell-derived neural progenitor cells. *Cell Death Dis* **4**, e695.

102 Ljungberg B, Hanbury DC, Kuczyk MA, Menseburger AS, Mulders PF, Patard JJ and Sinescu IC (2007) European association of urology guideline group for renal cell carcinoma. Renal cell carcinoma guideline. *Eur Urol* **51**, 1502–1510.

103 Liu Q, Li Y, Lv W, Zhang G, Tian X, Li X, Cheng H and Zhu C (2018) Uca1 promotes cell proliferation and invasion and inhibits apoptosis through regulation of the miR129–sOX4 pathway in renal cell carcinoma. *Onco Targets Ther* **11**, 2475–2487.

104 Chen X, Ruan A, Wang X, Han W, Wang R, Lou N, Ruan H, Qiu B, Yang H and Zhang X (2014) miR-129-3p, as a diagnostic and prognostic biomarker for renal cell carcinoma, attenuates cell migration and invasion via downregulating multiple metastasis-related genes. *J Cancer Res Clin Oncol* **140**, 1295–1304.

105 Ruan H, Yang H, Wei H, Xiao W, Lou N, Qiu B, Xu G, Song Z, Xiao H, Liu L, Zhou Y, Hu W, Chen K, Chen X and Zhang X (2017) Overexpression of SOX4 promotes cell migration and invasion of renal cell carcinoma by inducing epithelial-mesenchymal transition. *Int J Oncol* **51**, 336–346.

106 Lu Y, Liu WG, Lu JH, Liu ZJ, Li HB, Liu GJ, She HY, Li GY and Shi XH (2017) LncRNA UCA1 promotes renal cell carcinoma proliferation through epigenetically repressing p21 expression and negatively regulating miR-495. *Tumor Biol* **39**, 1010428317701632.

107 Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. *Int J Cancer* **136**, E359–E386.

108 Zhou Y, Meng X, Chen S, Li W, Li D, Singer R and Gu W (2018) IMP1 regulates UCA1-mediated cell invasion through facilitating UCA1 decay and decreasing the sponge effect of UCA1 for miR-122-5p. *Breast Cancer Res* **20**, 32.

109 Tuo YL, Li XM and Luo J (2015) Long noncoding RNA UCA1 modulates breast cancer cell growth and apoptosis through decreasing tumor suppressive miR-143. *Eur Rev Med Pharmacol Sci* **19**, 3403–3411.

110 Li X, Wu Y, Liu A and Tang X (2016) Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1z feedback regulatory loop. *Tumor Biol* **37**, 14733–14743.

111 Wu C and Luo J (2016) Long non-coding RNA (LncRNA) urothelial carcinoma-associated 1 (UCA1)
enhances tamoxifen resistance in breast cancer cells via inhibiting mTOR signaling pathway. Med Sci Monit 22, 3860–3867.

112 Liu H, Wang G, Yang L, Qu J, Yang Z and Zhou X (2016) Knockdown of long non-coding RNA UCA1 increases the tamoxifen sensitivity of breast cancer cells through inhibition of Wnt/β-catenin pathway. PLoS ONE 11, e0168406.

113 Xu CG, Yang MF, Ren YQ, Wu CH and Wang LQ (2016) Exosomes mediated transfer of IncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 20, 4362–4368.

114 Zhu HY, Bai WD, Ye XM, Yang AG and Jia LT (2018) Long non-coding RNA UCA1 functions as a competing endogenous RNA to suppress epithelial ovarian cancer metastasis. Tumor Biol 37, 10633–10641.

115 Odunsi K, Mhawech-Fauceglia P, Andrews C, Beck W, Xuan et al (2018) SRPK1. Biochem Biophys Res Commun 496, 1308–1313.

116 Longacre M, Snyder NA, Housman G, Leary M, Lapinska K, Heerboth S, Willbanks A and Sarkar S (2016) A comparative analysis of genetic and epigenetic events of breast and ovarian cancer related to tumorigenesis. Int J Mol Sci 17, E759.

117 Yang Y, Jiang Y, Wan Y, Zhang L, Qiu J, Zhou S and Cheng W (2016) UCA1/miRNA/mRNA axis in cancer. FEBS Letters 593, 1901–1914 © 2019 Federation of European Biochemical Societies 1913
Tang CH and Wang SW (2016) CCL5 promotes VEGF-C production and induces lymphangiogenesis by suppressing miR-507 in human chondrosarcoma cells. *Oncotarget* 7, 36896–36908.

Jia L, Liu W, Cao B, Li H and Yin C (2016) MiR-507 inhibits the migration and invasion of human breast cancer cells through Flt-1 suppression. *Oncotarget* 7, 36743–36754.

Li W, Xie P and Ruan W (2016) Overexpression of lncRNA UCA1 promotes osteosarcoma progression and correlates with poor prognosis. *J Bone Oncol* 5, 80–85.

Li T, Xiao Y and Huang T (2018) HIF-1α-induced upregulation of lncRNA UCA1 promotes cell growth in osteosarcoma by inactivating the PTEN/AKT signaling pathway. *Oncol Rep* 39, 1072–1080.

Li Q, Xing W, Gong X and Wang Y (2018) Long non-coding RNA urothelial carcinoma associated 1 promotes proliferation, migration and invasion of osteosarcoma cells by regulating microRNA-182. *Cell Physiol Biochem* 51, 1149–1163.

Zhang ZF, Wang YJ, Fan SH, Du SX, Li XD, Wu DM, Lu J and Zheng YL. (2017) MicroRNA-182 downregulates Wnt/β-catenin signaling, inhibits proliferation, and promotes apoptosis in human osteosarcoma cells by targeting HOXA9. *Oncotarget* 8, 101345–101361.

Sun MD, Zheng YQ, Wang LP, Zhao HT and Yang S (2018) Long noncoding RNA UCA1 promotes cell proliferation, migration and invasion of human leukemia cells via sponging miR-126. *Eur Rev Med Pharmacol Sci* 22, 2233–2245.

Xiao Y, Jiao C, Lin Y, Chen M, Zhang J, Wang J and Zhang Z (2017) lncRNA UCA1 contributes to imatinib resistance by acting as a ceRNA against miR-16 in chronic myeloid leukemia cells. *DNA Cell Biol* 36, 18–25.

Huang H, Luo Y, Liang Y, Long XD, Peng Y, Liu Z, Wen X, Jia M, Tian R, Bai C, Li C and Dong X (2015) CD4+ CD25+ cells in multiple myeloma related renal impairment. *Sci Rep* 5, 16565.

Peng XX, Tiwari AK, Wu HC and Chen ZS (2012) Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. *Chin J Cancer* 31, 110–118.

Zhang Y, Liu Y and Xu X (2018) Knockdown of LncRNA-UCA1 suppresses chemo-resistance of pediatric AML by inhibiting glycolysis through the microRNA-125a/hexokinase 2 pathway. *J Cell Biochem* 119, 6296–6308.

Jin F, Wang Y, Zhu Y, Li S, Liu Y, Chen C, Wang XH, Zen K and Li L (2017) The miR-125a/HK2 axis regulates cancer cell energy metabolism reprogramming in hepatocellular carcinoma. *Sci Rep* 7, 3089.

Sun Z, Zhang W and Li Q (2017) miR-125a suppresses viability and glycolysis and induces apoptosis by targeting Hexokinase 2 in laryngeal squamous cell carcinoma. *Cell Biosci* 7, 51.