Many-body spin related phenomena in ultra-low-disorder quantum wires

D. J. Reilly, G. R. Facer, A. S. Dzurak, B. E. Kane, R. G. Clark, P. J. Stiles, J. L. O’Brien and N. E. Lumpkin
Semiconductor Nanofabrication Facility, University of New South Wales, Sydney 2052, Australia

L. N. Pfeiffer and K. W. West
Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA

Zero length quantum wires (or point contacts) exhibit unexplained conductance structure close to $0.7 \times 2e^2/h$ in the absence of an applied magnetic field. We have studied the density- and temperature-dependent conductance of ultra-low-disorder GaAs/AlGaAs quantum wires with nominal lengths $l=0$ and $2\mu m$, fabricated from structures free of the disorder associated with modulation doping. In a direct comparison we observe structure near $0.7 \times 2e^2/h$ for $l=0$ whereas the $l = 2\mu m$ wires show structure evolving with increasing electron density to $0.5 \times 2e^2/h$ in zero magnetic field, the value expected for an ideal spin-split sub-band. Our results suggest the dominant mechanism through which electrons interact can be strongly affected by the length of the 1D region.

$73.61.-r$, 73.23.Ad, 73.61.Ey III-V

Quantum wires have been used extensively to study ballistic transport in one dimension (1D) where the conductance is quantised in units of $2e^2/h$ $[1]$. This result is well explained by considering the allowed energies of a non-interacting electron gas confined to 1D, where the factor of 2 is due to spin degeneracy. Electron interaction effects in 1D have been considered for some time, involving models $[2]$ which go beyond the conventional Fermi liquid picture. Such correlated electron models have been applied to quantum wire systems $[4]$ and recent experimental studies $[5,6]$ have investigated their predictions. Although recent theories have considered the effect of weak disorder on correlation effects $[7]$, it is generally accepted that low-disorder nanostructures are necessary for such investigations.

Low-disorder quantum point contacts (which are quantum wires of length $l = 0$) formed in GaAs/AlGaAs heterostructures exhibit unexplained conductance structure close to $0.7 \times 2e^2/h$ in the absence of a magnetic field $[8,9]$. Studies by Thomas et al. $[8]$ suggest that the structure is a manifestation of electron–electron interactions involving spin. The continuous evolution of the $0.7 \times 2e^2/h$ structure into a Zeeman spin–split conductance plateau with the application of an in-plane magnetic field $[10]$ is consistent with this interpretation $[11]$.

In this article we present transport data for 1D systems free from the disorder associated with modulation doped heterostructures, including strong evidence for spin related many-body effects in long 1D regions. We find conductance structure comparable to Thomas’ in our zero length wires, while our $2 \mu m$ quantum wire exhibits plateau-like structure near $0.5 \times 2e^2/h$ in zero magnetic field, the value expected for an ideal spin-split level.

Our results are suggestive of an interpretation in which spin splitting in zero magnetic field is only fully resolved in long 1D regions, perhaps above a critical length scale. This does not explain why structure in short constrictions consistently occurs near $0.7 \times 2e^2/h$. A clue may be found in recent theories $[12,13]$ which consider the possibility of a feature at $0.75 \times 2e^2/h$ due to a splitting between the one singlet and three triplet states where electron pairs (attractive interaction) dominate transport. As the length of the 1D region is increased it is suggested $[13]$ that the dominant many-body interaction can alter and if spontaneous spin polarisation occurs, a principal feature at $0.5 \times 2e^2/h$ would be observed, perhaps with some remnant weak structure close to $0.75 \times 2e^2/h$.

The study of correlated electron states requires devices with ultra-low-disorder since such states are expected to be easily destroyed by disorder and may be masked by other effects associated with localisation. We have developed a novel GaAs/AlGaAs layer structure which avoids the major random potential present in conventional HEMT devices by using epitaxially grown gates to produce an enhancement mode FET $[14]$. These devices are advantageous for the study of 1D interacting systems because they eliminate the need for a dopant layer in the AlGaAs adjacent to the 2DEG, thus greatly reducing disorder while allowing the electron density in the 2DEG to be varied over a large range. The electron mobility in the 2DEG is typically $4 - 6 \times 10^6$ cm2V$^{-1}$s$^{-1}$ at 4.2K and increases further at lower temperatures. At 100mK the 2D ballistic mean free paths exceed 10$^5 \mu m$ $[15]$ which is greater than our sample dimensions.

In this study we have demonstrated in quantum wires up to $5 \mu m$ in length, with the data exhibiting more than 15 plateaux $[16]$. To investigate the sensitivity of many-body effects to the length of the 1D region, we have measured the conductance of quantum wires of nominal length $l=0$, $2 \mu m$ and $5 \mu m$. The devices were patterned from ultra-high-mobility heterostructures, comprising a 75 nm layer of Al$_0.3$Ga$_{0.7}$As on top of GaAs to produce the 2DEG interface. A 25 nm GaAs spacer separated the epitaxial conducting top gate from the AlGaAs. NiAuGe ohmic
contacts were made to the 2DEG using a self-aligned technique. Electron beam lithography and shallow wet etching were used to selectively remove the top gate to form the quantum wires. The top gate was sectioned into three separately controllable gates. The center (top gate) was biased positively relative to the contacts to induce a 2DEG at the GaAs/AlGaAs interface. This positive bias V_T determined the carrier density in the 2DEG reservoirs which was tunable from $0.6-6\times 10^{11}$cm$^{-2}$ corresponding to $V_T=0.05$V to 0.8V. A negative voltage V_s was then applied to the side gates to produce electrostatic 1D confinement in addition to the geometric confinement already present (see Figure 1).

Low frequency four-terminal conductance measurements were made with an excitation voltage below 10μV using two lock-in amplifiers to monitor both current and voltage. We stress that the results presented here are raw data as no equivalent series resistance has been subtracted and no attempt has been made to adjust the plateau heights to fit with quantised units of $2e^2/h$.

![Cross-sectional schematic of a quantum wire](image)

Figure 1: a) Cross-sectional schematic of a quantum wire, showing the positively biased top gate and the side gates biased negatively. b) SEM micrograph of a quantum wire with length $l = 5\mu m$. c) SEM micrograph of a quantum wire with length $l = 0\mu m$.

The conductance G of a zero-length quantum wire is shown in Figure 2 as a function of the side gate voltage V_s at a temperature $T = 50$mK. Data were taken at a series of top gate voltages corresponding to different 1D densities. The 1D electron density n_{1D} may be controlled using both the top and side gates to vary the shape of the potential well perpendicular to the channel. When both the top and side gates are strongly (weakly) biased positive and negative respectively the confining potential is steep (shallow), leading to a large (small) 1D sub-band spacing and a corresponding high (low) 1D electron density. In this way it is possible to maintain a constant 1D occupancy, and hence conductance, while varying n_{1D}.

For $G < 2e^2/h$ an additional feature is observed close to $0.7 \times 2e^2/h$, as seen by others [8][12]. A similar feature is also observed in a second identical quantum wire with length $l = 0$ (not shown). As with other workers we find that this feature is robust to cryogenic cycling, indicating that it is unlikely to be related to an impurity state. Although the data in Figure 2 implies a small enhancement of the 0.7 structure with increasing n_{1D}, the trend is not fully monotonic and is less so for the second $l = 0$ wire measured. The inset of Figure 2 shows the temperature dependence of the conductance for the wire with length $l = 0$. These temperature measurements were made with an average electron density ($n_{2D} \approx 3 \times 10^{11}cm^{-2}$, $V_T = 0.4$V). Similar behavior with temperature is seen at high and low electron densities in both of the zero length quantum wires studied. This temperature dependence deviates from the expected single particle result with little thermal smearing below $0.7 \times 2e^2/h$. Such puzzling behavior is consistent with measurements made by others [8][11].

![Conductance measurements of a zero-length quantum wire](image)

Figure 2: Conductance measurements of a $l = 0$ quantum wire as a function of side gate voltage for top gate voltages, $V_T = 172$nmV - 300nmV (right to left) in steps of 4nmV. Inset: Temperature dependence of the conductance at $V_T=0.4$V. The curves are for temperatures 0.5K, 1.0K, 1.5K & 2.9K.

The results in Figure 2 demonstrate that these epitaxially gated nanostructures produce ultra-low-disorder quantum wires for $l = 0$ which exhibit the $0.7 \times 2e^2/h$ conductance feature comparable with the strongest so far observed. When we extend to longer quantum wires, new and unexpected results are seen.

Figure 3 shows the conductance G of a quantum wire with $l = 2\mu m$ as a function of side gate voltage V_s. The density n_{1D} increases from right to left as the confining potential is steepened. Data were obtained at temperatures $T=1K$ and $T=50$mK. Clear conductance quantisation is seen near integer multiples of $2e^2/h$ with up to 15 plateaus evident, indicating ballistic transport along the full length of the 2μm wire, as previously re-
The data collected at $T=1K$ show a clear plateau-like feature which becomes more pronounced and evolves downwards in G towards $0.5 \times 2e^2/h$ as V_T is increased. A much weaker inflection is also present near $0.7 \times 2e^2/h$ across the full density range. Further evidence of many-body phenomena is seen evolving in the range $1.5 - 1.7 \times 2e^2/h$ where the structure is strong enough to resemble the conductance feature seen near $0.7 \times 2e^2/h$ in quantum wires with $l=0$.

Figure 3: Conductance of a 2µm quantum wire. Conductance as a function of sidegate voltage for top gate voltages, $V_T = 300$mV - 620mV (right to left). The data at the top was obtained close to 1K and the bottom section was obtained at approximately 50mK.

Conductance measurements of quantum wires with $l=5µm$ exhibit similar plateau-like features near $0.5 \times 2e^2/h$ to wires with $l=2µm$, as noted in our previous work [10]. However, for $l=5µm$ the weak disorder which is present leads to a distortion of the conductance plateaus, making interpretation more difficult and here we focus on wires with $l=2µm$ where the single particle plateaus are as clear as those seen in $l=0$ devices.

As the 2µm wire is cooled to $T=50$mK the feature near $0.5 \times 2e^2/h$ remains, however, rich evolving structure is also revealed. Conductance inflections occur below each of the integer plateaus (within e^2/h) which predominantly evolve downwards in G with increasing n_{1D}. One explanation within a single-particle picture is weak disorder, leading to interference of electron waves along the quantum wire. However, against this, remnants of the strongest features survive at $T=1K$, in particular the feature below $2 \times 2e^2/h$ is reminiscent of the $0.7 \times 2e^2/h$ feature seen in low-disorder $l=0$ wires, implying a possible many-body origin.

Figure 4: Evolution of the conductance features seen in $l=0$ and 2µm quantum wires as a function of n_{1D}. The evolution of the corresponding plateau at $2e^2/h$ is also shown. Single conductance traces are included for both devices to facilitate interpretation. Open circles are 2µm data and closed circles are $l=0$ data.

Figure 4 details the evolution of the conductance features seen in quantum wires of length $l=0$ and 2µm with varying n_{1D}. We define the position of the feature seen in $l=0$ devices near $0.7 \times 2e^2/h$ as the conductance G at which dG/dV_s is a local minimum. In a similar manner, for the $l=2µm$ quantum wire we define the position of the plateau-like feature as the first local minimum in the dG/dV_s curve for $T=1K$.

Note that the plateau at $2e^2/h$ remains almost constant for the $l=0$ wire but for $l=2µm$ the plateau falls in G (by up to 8%) as n_{1D} is increased. Suppression of plateaus below the ideal quantised values has been observed in previous studies on quantum wires [10-11], and considered theoretically in a number of many-body treatments [2-4]. In our case the suppression cannot be explained by a simple increase of the effective series resistance associated with the 2D contact regions, since the
2D sheet resistance decreases with increasing V_T. Abrupt coupling of the 2D reservoirs to the low density 1D region could result in a reduction of the transmission coefficient as the 2D electron density is increased. We note that the density mismatch is larger for the longer wire, since the top-gate voltage threshold for conduction is almost twice as large for $l = 2 \mu m$ as for $l = 0$.

Turning now to the non-integer plateaus we see that the feature near $0.7 \times 2e^2/h$ in $l = 0$ devices becomes slightly more pronounced with increasing n_{1D} (Figure 2) but the variation in conductance is small. This is in contrast to the plateau-like feature seen in the $l = 2 \mu m$ wire data, which evolves towards $0.5 \times 2e^2/h$ with increasing n_{1D}. It is significant that if the single particle plateau for $l = 2 \mu m$ is normalised to equal $2e^2/h$ then this feature still evolves downwards in G but never falls below $0.5 \times 2e^2/h$, the position expected for a spin-split 1D plateau.

Conductance data suggestive of many-body effects in 1D have now been observed in a variety of high mobility structures including split-gated HEMTs [6], gate metallised structures [7] and our undoped enhancement mode FETs considered here. Some evidence for this effect has also been seen in low mobility quantum wires based on ion-beam defined GaAs transistors [8] and other material systems such as GaInAs/InP [9] and n-PbTe [10]. The diverse number of experimental systems that have been examined would seem to establish the feature as an intrinsic property of a 1D correlated system. In particular the temperature dependence, described as activated by [11] and detailed in our $l = 0$ wires, remains consistent between devices of different design [8][11]. Some important exceptions do exist, however, as in measurements of narrow wires by Yacoby et al. [3] and Tarucha et al. [12] there appears to be no strong feature present even though clear quantisation is seen. The absence of the feature in reference [3] may be associated with a large 1D sub-band spacing made possible in that case due to a novel epitaxial confinement technique.

The most commonly invoked explanation for additional conductance structure near $0.7 \times 2e^2/h$ has been some form of spontaneous spin polarisation mediated through the exchange interaction, as detailed in references [19][20]. The possibility of a ferromagnetic instability below a critical electron concentration has also been considered [21]. It has so far remained a mystery as to why measurements show structure near $0.7 \times 2e^2/h$, rather than $0.5 \times 2e^2/h$, the value expected for a fully spin-polarised 1D level. The fact that we see structure near $0.7 \times 2e^2/h$ in $l = 0$ wires and structure evolving towards $0.5 \times 2e^2/h$ in longer wires (with $l = 2 \mu m$ and $l = 5 \mu m$ [10]) leads to a possible scenario in which spin-splitting is only fully resolved in wires above some critical length scale. The additional structure we observe near $1.7 \times 2e^2/h$, and in higher sub-bands below 1K, also suggest that many-body effects become enhanced in longer 1D regions. We note that conductance anomalies in higher sub-bands have been predicted in reference [20].

An alternative explanation for the $0.7 \times 2e^2/h$ feature has been argued in two recent theories [8][14] which consider a scenario in which two- (or more) body processes dominate. In the proposed case where electron pairs dominate transport and $l = 0$, the three triplet states are lower in energy than the one singlet state, leading to a plateau at (slightly less than) $0.75 \times 2e^2/h$, since the triplet states are transmitted (with transmission coefficient not precisely 1) while the singlet is reflected by the constriction. Within this model the observation in our $l = 2 \mu m$ wire of a dominant feature near $0.5 \times 2e^2/h$ together with remanent weaker structure in the vicinity of $0.75 \times 2e^2/h$, which is still noticeable at $T = 1K$ (see Figure 3), would be interpreted as the dominance of spin polarisation in the finite length wire with increasing n_{1D} with some remanent signature associated with the singlet/triplet mechanism. However this observation could also be compatible with 1D Wigner crystallisation (dominant repulsive interaction) providing the Landauer-Büttiker framework can be extended to this regime [13].

In conclusion, we have studied ultra-low-disorder quantum wires utilising a novel GaAs/AlGaAs layer structure which avoids the random impurity potential associated with modulation doping, making these devices ideal for the study of electron correlations in 1D. In common with other workers we find structure near $0.7 \times 2e^2/h$ in wires with $l = 0$, whereas in longer wires the dominant structure evolves towards $0.5 \times 2e^2/h$ at high 1D carrier concentrations. It is not possible to be conclusive as to whether these effects are related to a many-electron spin polarisation, or to a more complex explanation (for example 1D Wigner crystallisation). However it is clear that both the length over which interactions occur and the 1D density play an important role in determining the effect of these mechanisms upon electrical transport.

We are grateful to B. Altschuler, V. Flambaum and A. R. Hamilton for valuable discussions and R. P. Starrett for technical support. This work was funded by the Australian Research Council grant A69700583.

\[^{†}\] Now at The Department of Physics, Princeton University, NJ USA.

\[^{‡}\] Now at The Laboratory for Physical Sciences, the University of Maryland, USA.

\[^{§}\] Permanent Address: Department of Physics, North Carolina State University, USA.

[1] D. A. Wharam et al., J. Phys. C 21, L209 (1988).

[2] B. J. van Wees et al., Phys. Rev. Lett. 60, 848 (1988).

[3] J. M. Luttinger, J. Math. Phys. 4, 1154 (1963).
[4] C. L. Kane and M. P. A. Fischer, Phys. Rev. Lett. 68, 1220 (1992).
[5] S. Tarucha, T. Honda, and T. Saku, Solid State Commun. 94, 413 (1995).
[6] A. Yacoby et al., Phys. Rev. Lett. 77, 4612 (1996).
[7] D. L. Maslov, Phys. Rev. B 52, R14368 (1995).
[8] K. J. Thomas et al., Phys. Rev. Lett. 77, 135 (1996).
[9] K. J. Thomas et al., Phys. Rev. B 58, 4846 (1998).
[10] B. E. Kane et al., Appl. Phys. Lett. 72, 3506 (1998).
[11] A. Kristensen et al., Physica B 249-251, 180 (1998).
[12] R. Tscheuschner and A. Wiek, Super Lattices and Micro. 20, 615 (1996).
[13] V. V. Flambaum and M. Y. Kuchiev, cond-mat/9910413 (1999) and private communication.
[14] T. Rejec et al., cond-mat/9910399 (1999).
[15] B. E. Kane, L. N. Pfeiffer, and K. W. West, Appl. Phys. Lett. 67, 1262 (1995).
[16] G. R. Facer et al., Phys. Rev. B 59, 4622 (1999).
[17] P. Ramvall et al., Appl. Phys. Lett. 71, 918 (1997).
[18] G. Grabek et al., cond-mat/9906178 (1999).
[19] A. Gold and L. Calmels, Phil. Mag. Lett. 74, 33 (1996).
[20] C. K. Wang and K. F. Berggren, Phys. Rev. B. 54, R14257 (1996).
[21] K. Byczuk and T. Dietl, cond-matt/9812380. (1998).