UV-light photocatalytic degradation of non-ionic surfactants using ZnO nanoparticles

K. Huszla1 · M. Wysokowski2 · A. Zgoła-Grześkowiak1 · M. Staszak2 · M. Janczarek2 · T. Jesionowski2 · B. Wyrwas1

Received: 21 August 2020 / Revised: 14 December 2020 / Accepted: 18 January 2021 / Published online: 8 February 2021
© The Author(s) 2021

Abstract
The aim of this study was to evaluate the performance of zinc oxide nanoparticles as a photocatalyst for photodegradation of two model non-ionic surfactants (Triton X-100 and C12E10). The first part of the investigation was focused on the synthesis and characterization of ZnO nanoparticles, since its crystalline structure strongly impacts its photocatalytic properties. Based on the results of the XRD analysis, it was concluded that the obtained material occurred in the form of hexagonal wurtzite with a polycrystalline structure. FT-IR and XPS analyses were used to elucidate and confirm the nanomaterial structure, whereas investigation of N2 adsorption/desorption and SEM/TEM imaging allowed to establish that the synthesized ZnO was characterized as a mesoporous material with uniform, spherical shape and particle size fluctuating between 90 and 130 nm. The second part of the study included spectrophotometric assessment of the photodegradation process. The use of the obtained ZnO nanoparticles allowed to achieve efficient photodegradation of both C12E10 (92%) and Triton X-100 (82%) after 1 h of UV irradiation. The Langmuir–Hinshelwood mechanism was used to describe the reaction kinetics. Subsequent LC-MS/MS analysis of the residues indicated that the degradation mechanism is most likely based on both central fission of the surfactant molecules with further terminal oxidation of poly(ethylene glycol) and terminal oxidation leading to carboxylic derivatives of surfactants.

Keywords Photodegradation · Nanomaterials · Zinc oxide · Surfactants · C12E10 · Triton X-100 · Central fission

Introduction
Surface active agents (surfactants) are among the most commonly used products in the chemical industry and possess a broad spectrum of practical applications (Rosen and Kunjappu 2012). The versatility of surfactants results from their specific structure and properties, which allow for emulsification, micellization, wetting and reduction of surface tension (Rosen and Kunjappu 2012). Surfactants are usually classified based on the nature of their hydrophilic group as: anionic, cationic, zwitterionic and non-ionic (Rosen and Kunjappu 2012). Analysis of global production in terms of surfactant structure indicates that the industrial synthesis is dominated by anionic and non-ionic surfactants. Surfactants are present in such diverse products as motor oils, pharmaceuticals, detergents, drilling muds used in prospecting for petroleum, and flotation agents used in mineral processing (Rosen and Kunjappu 2012; Pattanaik and Venugopal 2019). The last decades have shown the practical utility of surfactants in more sophisticated technologies including synthesis of nanomaterials (Deng et al. 2018), production of advanced electronic devices (Deng et al. 2018; Li et al. 2018; Kim et al. 2018), biotechnology (Janoska et al. 2018), cell imaging (Komatsu et al. 2018) and many others. Future outlook for the global surfactants market forecasts that the market will grow to 16.60 million tons by 2022. The growing spectrum of surfactant applications also results in an increased quantity of surfactants released to the terrestrial and aquatic environments (Liwarska-Bizukojc et al. 2005). Uncontrolled releases of industrial wastewater with high concentration of surfactants are particularly hazardous,
especially in developing countries (Babayemi et al. 2017; Huszla et al. 2018). It has been reported that surfactants and the products of their biodegradation are harmful for a variety of organisms (Giger et al. 1984; Könnecker et al. 2011; Lechuga et al. 2016; Rios et al. 2018; Shukla and Trivedi 2018), including humans (Cserati et al. 2002; Khunt et al. 1993) reported that surfactants alter soil chemistry and soil biology even at low concentrations and, as a result, significantly suppress the development of plant roots. Very recently, it has been reported that detergents present in irrigation water affect maize (Zea mays L.) at higher concentrations by impairing its light-harvesting pigments and cell viability (Uzma et al. 2018). Several studies regarding the aquatic toxicity of surfactants indicate that these compounds induce oxidative stress and tend to bioaccumulate in fish (Shukla and Trivedi 2018), which act as an exposure gateway to the human consumers (Tan et al. 2010).

The environmental risk caused by surfactants mostly depends on the final concentration reached in the aquatic medium, but it also varies based on their chemical structure. Nevertheless, successful elimination of surfactant contamination from wastewater is of critical importance (Jardak et al. 2016). Various physical, chemical and biological methods of surfactant detoxification are reported (Noorimotlagh 2019, Rebello et al. 2014). Biodegradation is one of the cheapest and most commonly applied methods for neutralization of surfactant-polluted wastewater. Nevertheless, uncontrolled biodegradation may lead to the formation of stable degradation products, which are even more harmful than the initial surfactants (Giger et al. 1984). Additionally, high surfactant load may result in incomplete biodegradation and cause the wastewater treatment plants to discharge considerable amounts of surfactant degradation products into the environment (Chen et al. 2005, Wyrwas et al. 2013). Therefore, the search for alternative, highly effective methods for neutralization of surfactants is still of high importance. Heterogenous photocatalysis is one of the promising modern methods of eliminating hazardous organic pollutants, which received great attention (Byrne et al. 2015; Fox and Dulay 1993; Kabra et al. 2004; Noorimotlagh et al. 2019). In photocatalysis, semiconductors are irradiated by UV or near-UV light. When the photon energy \(h\nu \) is equal to or exceeds the band gap of the semiconductor/photocatalyst, a photon is absorbed and this excites an electron from the valence band to the conduction band, simultaneously leaving positive charge holes in the valance band. The electron and hole pairs then migrate to the surface of the applied photocatalyst and participate in a series of redox reactions forming reactive oxygen species (Fox and Dulay 1993; Imbhodon and Fitzpatrick et al. 2013; Kabra et al. 2004). Thus, due to the strong oxidizing ability, photocatalysis is an efficient method to decompose organic contaminants in water, especially in heavy contaminated industrial waste waters, which are not suitable for biological processing due to their toxicity to microorganisms (Imbhodon and Fitzpatrick et al. 2013). Photocatalytic degradation of various organic pollutants including dyes (Salata et al. 2019, Siwińska-Ciesielczyk et al. 2020), phenol (Shet and Shetty 2015, Norman et al. 2018), antibiotics and pharmaceuticals (Liu et al. 2018; Sabouni and Gomaa 2019; Jia et al. 2020) with the use of broad variety of photocatalysts is comprehensively studied and well described. However, there is a considerable lack of reports regarding photocatalytic degradation of surfactants. Taking into account the recent progress in the design and modification of photocatalysts, it is surprising that photocatalytic degradation of surfactants was realized mostly by utilization of commercial TiO\(_2\) as a photocatalyst (Hidaka and Zhao et al. 1992; Hidaka et al. 1986; 1989; 1992a, b; Rao and Dube 1995; Zhao et al. 1993). Only recently, Noorimotlagh et al. (2019) reported the application of TiO\(_2\) modified with graphite for the treatment of surfactants and Rahimpour et al. (2020) reported application of ZnO/FeVO\(_4\) in photo-Fenton-like process in SDS removal. Nevertheless, there is still a broad field for research regarding the photodegradation of surfactants with modern sensitized photocatalysts or alternatives to TiO\(_2\). In the framework of this study, for the first time, we report the application of ZnO nanoparticles as an effective catalyst for the photocatalytic degradation of non-ionic surfactants. The aim of this study was to evaluate the performance of zinc oxide nanoparticles as a photocatalyst for photodegradation of two model non-ionic surfactants (Triton X-100 and C\(_{12}\)E\(_{10}\)).

Materials and methods

Reagents and chemicals

The non-ionic surfactants dodecyl alcohol ethoxylate (C\(_{12}\)E\(_{10}\)) and octylphenol ethoxylate (Triton X-100) were obtained from Sigma-Aldrich (Saint Louis, MO, USA). All reagents used in spectrophotometric analysis (bismuth(III) nitrate, glacial acetic acid, potassium iodide, barium chloride, anhydrous sodium phosphate, thiourea, nitric acid) were obtained from Avantor Performance Materials Poland S.A. (Gliwice, Poland). Zinc acetate dihydrate used in synthesis of ZnO nanoparticles was obtained from Sigma-Aldrich (Saint Louis, MO, USA). LC/MS-grade methanol and ammonium acetate were purchased from Sigma–Aldrich (Saint Louis, MO, USA). HPLC-grade water was prepared by reverse osmosis in a Demiwa system from Watek (Ledeć, The Czech Republic) followed by double distillation from a quartz apparatus.
Synthesis of ZnO nanoparticles

The preparation of ZnO was performed according to the method published previously by Tian et al. (2012) with a slight modification. The crucible containing 25 g of solid zinc acetate dihydrate was placed in the furnace P320 MB1 (Nabertherm GmbH, Germany) and annealed to 600°C with a heating rate of 5°C/min in the air atmosphere and kept at the maximum temperature for 120 min. Afterward, the sample was naturally cooled down to ambient temperature and 9 g of the gray precipitate was collected and used for further studies.

Physicochemical characterization of ZnO nanoparticles

The XRD analysis was performed with a D8 Advance diffractometer (Bruker, Germany) equipped with an X-ray tube with Cu Kα radiation (α=1.5418 Å). The patterns were obtained in a step-scanning mode (Δ2θ=0.05°) over an angular range of 10–80°. The average crystallite size has been calculated with the Scherrer equation (1) by using the full width at half maximum (FWHM) values of the (101) peak line.

\[D = \frac{K \lambda}{\beta \cos \Theta} \]

(1)

where D is the mean crystallite size, K is the Scherrer constant, β is the full width at half maximum (FWHM) of the diffraction line, Θ is the diffraction angle, and λ is the wavelength of the X-ray radiation.

The FT-IR spectra were recorded using a VERTEX 70 Fourier transform infrared spectrophotometer (BrukerOptik GmbH, Germany). The spectrometer was equipped with a multireflection variable angle horizontal ATR accessory (Platinum ATR – BrukerOptik GmbH, Germany). Data processing was carried out with the Opus 7.5 software package (BrukerOptik GmbH, Germany). The X-ray photoelectron spectroscopy (XPS) experiments were recorded on Specs UHV spectrometer (SPECs, Germany) with a charge neutralizer. The C 1s peak at 284.8 eV was used as a reference to rectify the binding energies. The microstructure of the obtained photocatalyst was visualized using an EVO40 scanning electron microscope. Before testing, samples were coated with gold for 45 s using a Balzers PV205 P sputter (Zeiss, Germany). Additionally, to get a better insight into the nanostructural features, the obtained material was analyzed using a Jeol 1200 EX II transmission electron microscope (TEM, Jeol, Peabody, MA, USA) at an accelerating voltage of 100 kV. The textural properties of the synthesized ZnO nanoparticles were determined by N₂ adsorption/desorption isotherm measurements at −196°C using an ASAP 2020 physisorption analyzer (Micromeritics Instrument Co., Norcross, CA, USA). The Brunauer–Emmett–Teller (BET) model was used to calculate the specific surface area of obtained photocatalyst. The pore size and the total volume of pores were calculated by the Barrett–Joyner–Halenda (BJH) method, using the Halsey equation. Prior to the measurement, the sample was degassed at 120 °C for 24 h.

Photocatalytic degradation experiment

Photoactivity tests were performed in a UV-RS2 laboratory reactor (Heraeus, Hanau, Germany) equipped with a 150-W medium-pressure mercury lamp as a UV light source, surrounded by a water cooling quartz jacket, at room temperature. In the experiment, the photocatalyst (200 mg) was suspended in 200 mL of selected surfactant solution at an initial concentration of 10 mg/L. The catalyst concentration was experimentally selected as most effective, (see SI). First, the surfactant solution and photocatalyst were magnetically stirred using an R05 IKAMAG magnetic stirrer (IKA Werke GmbH, Staufen im Breisgau, Germany) in darkness for 30 min to reach the adsorption/desorption equilibrium prior to UV–Vis irradiation. After equilibrium was reached, the concentration of surfactants was measured and the radiation was then turned on to initiate the photocatalytic reaction. In the next step, the irradiated mixtures (8 mL) were collected from the reactor at intervals (1, 5, 10, 20, 30, 40, 50, 60 min) and centrifuged at 12,000 rpm (MPW-352, MPW MED. Instruments, Warsaw, Poland) to remove the photocatalyst nanoparticles.

Spectrophotometric analysis

The concentration of non-ionic surfactants after adsorption and UV irradiation was analyzed by means of the iodobismuthate method with final measurement of absorbance of the bismuth-thiourea complex (BIAS-thio), based on the precipitation of oxyethylate with Dragendorff’s reagent (Cierniak et al. 2020). The precipitate dissolved with the bismuth-thiourea complex (BiAS-thio), based on the simultaneous formation of the bismuth-thiourea complex, the absorbance of which was proportional to the surfactant content of the sample tested. The modified Dragendorff’s solution (iodide bismuth(III) complex in the presence of barium ions) was prepared by dissolving in a 1000 mL volumetric flask 1.2 g basic bismuth(III) nitrate, 150 mL glacial acetic acid, 50 g potassium iodide, 100 g barium chloride and 5 g of anhydrous sodium phosphate in approx. 300 mL of demineralized water. After the solids had dissolved, the flask was filled to volume with demineralized water. Before use, the solution was filtered through a medium filtration paper filter. A complexing-dissolution solution (100 mL) was prepared by dissolving 15 g of thiourea and 6.9 mL of concentrated nitric acid (65%) in water (15% thiourea in...
1 M HNO₃). 1 mL of modified Dragendorff’s reagent was added to an 8 mL centrifuge tube containing 0.1 mL of test sample. Then, after precipitation of oxyethylates, the precipitate was centrifuged for 5 min in a high-speed centrifuge at 12,000 rpm (MPW-352, MPW MED. Instruments, Warsaw, Poland), the supernatant was drained as waste, and the remaining precipitate was washed with glacial acetic acid (3 × 1 mL) to wash away the residual Dragendorff’s reagent. Next, 2 mL of thecomplexing solution was added to the isolated precipitate of oxyethylate with Dragendorff’s reagent. Then, the absorbance of the solution at λ = 468 nm was measured using a UV–Vis spectrophotometer (V-530, Jasco, Hachioji City, Japan) using water as a reference. Based on the obtained results, the efficiency of surfactant degradation was determined (percentage removal of analyte from the solution) using formula (2):

\[
\text{Degradation(\%)} = \left(\frac{C_0 - C_i}{C_0} \right) \cdot 100\% \tag{2}
\]

where \(C_0 \) is the surfactant concentration before the degradation process, mg/L, and \(C_i \) is the surfactant concentration in samples collected during the degradation process, mg/L.

Liquid chromatography–mass spectrometry

Identification of degradation products was performed using the UltiMate 3000 HPLC from Dionex (Sunnyvale, CA, USA) connected with the 4000 QTRAP mass spectrometer from ABSciex (Foster City, CA, USA). Exactly 5 µL samples were injected into a Gemini-NX C18 column (100 mm × 2.0 mm I.D.; 3 µm) from Phenomenex (Torrance, CA, USA) maintained at 35°C. The mobile phase consisted of 5 mM ammonium acetate in water and methanol at a flow rate of 0.3 mL \(\text{min}^{-1} \) in a gradient from 70 to 95% methanol in 3 minutes and then 3 minutes in isocratic conditions. The electrospray (ESI) ion source operated in a positive mode. Nitrogen was used in both the source and the mass spectrometer. The following parameters of the ESI source and mass spectrometer were used: curtain gas pressure 20 psi, nebulization gas pressure 40 psi, auxiliary gas pressure 40 psi, source temperature 350 °C, ESI voltage 4500 V, declustering potential 50 V, entrance potential 10 V. Chromatograms were collected in the Q1 mass spectra mode in a 100–1200 m/z range.

Results and discussion

Characterization of synthesized ZnO

Zinc oxide nanoparticles have received substantial attention in a wide range of practical applications due to their exceptional properties. One of them is application as an alternative photocatalyst to TiO₂ (Kołodziejczak-Radzimska and Jesionowski 2014). Zinc oxide possess the same band gap energy (3.37 eV) as TiO₂, while its absorption efficiency across a large fraction of the solar spectrum is higher (Ong et al. 2018; Özgür et al. 2018). Furthermore, according to the literature reports (Kołodziejczak-Radzimska and Jesionowski 2014; Ong et al. 2018), the production costs of ZnO are ca. 75% lower than in case of TiO₂. The photocatalytic properties of ZnO are closely associated with its crystal structure. Zinc oxide is a compound that possesses a tetrahedral bonding configuration corresponding to the sp³ covalent bonding (Ong et al. 2018; Özgür et al. 2018), but this material also exhibits a substantial ionic character that tends to increase the bandgap beyond the expected from the covalent bonding (Özgür et al. 2018). ZnO can form crystals in three different forms: hexagonal wurtzite, cubic zinc blende and rock salt (Özgür et al. 2018). The phase and crystal parameters of the obtained zinc oxide nanoparticles were investigated by X-ray diffraction pattern presented in Fig. 1a. The registered diffractogram corresponds with the lines of ZnO wurtzite (hexagonal) matching with the database JCPDS card No. 36-1451 in line with the previously reported data (Dimapilis et al. 2018, van Heerden and Swanepoel 1997). The sharpness and strong intensity of recorded diffractions indicate that the synthesized ZnO sample is well crystallized and has a polycrystalline structure, with a (101) preferred orientation. The calculated average size of the obtained ZnO crystallites was 40.5 nm. It should be noted that the crystallite size is assumed to be the size of a coherently diffracting domain and it is not reflecting the particle size (Bindu & Thomas 2014). Therefore, further observations with SEM and TEM were necessary and will be discussed in the next paragraphs.

Figure 1b presents the FT-IR spectrum of as-obtained ZnO nanoparticles. The broad absorption bands at 3438 cm⁻¹ and ~1630 cm⁻¹ are assigned to the vibration of the hydroxyl groups, most likely resulting from the re-absorption of water molecules from ambient atmosphere (Krishnakumar et al. 2009). The band registered at 1558 cm⁻¹ corresponds to the asymmetric stretching of the carboxyl group, resulting from small amounts of residual, unreacted zinc acetate. The sharp peak located at 530 cm⁻¹ is atypical band of the wurtzite hexagonal phase of pure ZnO (Krishnakumar et al. 2009).

XPS is an effective tool for analyzing the chemical states of constituent elements. Therefore, the ZnO nanoparticles were also analyzed by X-ray photoelectron spectroscopy (XPS). The Zn 2p core-level (Fig. 2a) of the prepared ZnO nanoparticles has four fitting peaks. The peaks located at approx. 1044.2 and 1021.1 eV are attributed to Zn 2p₁/₂ and Zn 2p₃/₂, respectively. Symmetrical shape of the Zn 2p spectra and their small half-width values (1.58 and 1.53 eV, respectively) indicate that Zn²⁺ ions...
are in a tetrahedral oxygen environment and the chemical Zn-O bonds are dominant in the studied nanoparticles (Al-Gashani et al. 2013). Higher binding energy at Zn 2p (peaks located at about 1045.5 and 1022.3 eV) is associated with the presence of Zn-OH groups on the sample surface. The O 1s core-level spectrum (Fig. 2b) of ZnO nanoparticles shows three different forms of oxygen. Two fitting Gaussians peaks located at 529.8 and 531.2 eV can be attributed to O^{2-} ions in the Zn–O bonding of the wurtzite structure of ZnO and to the Zn–OH bonding, respectively (Al-Gashani et al. 2013). The peak located at 530.5 eV is characteristic for the presence of C=O groups most likely associated with the presence of adventitious carbon, which is usually found on the surface of most air exposed samples. The presence of adventitious carbon is also confirmed by the C 1s core-level spectrum (Fig. 2c).

The SEM and TEM observations (Fig. 3 a,b) were necessary to determine the structure; morphology and particle size of obtained ZnO nanoparticles. Both SEM and TEM images of obtained synthesized photocatalyst confirm that it exhibits a uniform, spherical shape with the particle size fluctuating between 90 and 130 nm and possesses a tendency for aggregation and formation of larger conglomerates. To further confirm the chemical composition of the ZnO nanoparticles, an EDS analysis shown in Fig. 3c was carried out, which revealed only the presence of Zn and O elements. As a less sensitive technique than XPS, it strongly confirms that the carbon detected by XPS is adventitious.
To assess the parameters of the porous structure of the ZnO photocatalyst, the N$_2$ adsorption/desorption was recorded (Fig. 4). In accordance with the IUPAC classification, the registered isotherm is classified as type IV isotherm with an H3 type hysteresis loop $p/p_0=0.45–0.99$. This means that the sample has a mesoporous texture, tendency to aggregate and slit-shaped pores (Cychosz&Thommes 2018). The specific surface area calculated by the BET method is equal to 9.64 m2/g, while the total pore volume is 0.55 cm3/g and average pore diameter is equal to 21.27 nm. The obtained ZnO characteristics correspond with the previous studies by Tian et al. (2012) and Pourrahimi et al. (2016).

Degradation of surfactants

The removal efficiency of selected surfactants under UV irradiation (150 W) with and without the presence of ZnO nanoparticles is presented in Fig. 5. The calculated non-catalytic removal efficiency of octylphenol ethoxylate (Triton X-100) was equal to 18%, 7% of which was caused by adsorption of this compound on the photoreactor surface. Correspondingly, low removal efficiency (equal to 10%, 4% of which was adsorbed on the photoreactor surface) was calculated for dodecyl alcohol ethoxylate (C$_{12}$E$_{10}$). Addition of 200 mg of ZnO nanoparticles significantly improved the removal efficiency for both tested surfactants. The maximal removal efficiencies, achieved after only 1h of UV irradiation, were equal to 82% and 92%, for Triton X-100 and C$_{12}$E$_{10}$, respectively. Removal of surfactants from the aqueous environment during photodegradation is based on several indirect processes: (i) diffusion of surfactants from the solution to the zinc oxide surface (external mass transport), (ii) their diffusion between or inside the catalyst particles to its active surface (internal mass transport); (iii) adsorption of surfactants on photon-activated zinc oxide surface, photodegradation reaction of the adsorbed phase on the zinc oxide surface, desorption of intermediate products from the ZnO surface and transfer of primary photodegradation products from the interface to the liquid phase. Results presented in Fig. 5a indicate that the removal of Triton X-100 from the aqueous solutions is mainly caused by the adsorption of this compound on the catalyst surface (60% of the removal efficiency) with slight effect of photocatalytic oxidation (22%). In contrast, adsorption of dodecyl alcohol ethoxylate (C$_{12}$E$_{10}$) was equal to 20%, while photodegradation process reached 72%, which contributes to a total removal efficiency of 92% (Fig. 5b).
Fig. 3 SEM a; TEM b images and EDS spectrum c of synthesized ZnO nanoparticles

Fig. 4 N$_2$ adsorption/desorption isotherms of ZnO nanoparticles
The number of catalyst active sites occupied by the substrate is expressed by fractional occupancy of the adsorption sites θ which is defined as the ratio of the amount of substrate adsorbed on the catalyst to the maximum number of molecules that can be adsorbed on a given mass of ZnO catalyst. In mathematical terms, it is defined by the use of initial substrate concentrations C_{init}, the equilibrium concentrations C_{equil} and the amount of catalyst per unit amount of solution C_{cat} (3). The θ depends on the concentration of the substrate in the region of catalyst reaction. It can be defined by the Langmuir adsorption isotherm at a constant temperature by taking into account the following assumptions: the catalyst adsorption sites on the surface are evenly distributed and their number is limited, adsorption site has the ability to adsorb only one molecule, the adsorption takes place in catalyst monolayer only adsorbed particles do not interact each other.

$$\theta = \frac{C_{\text{init}} - C_{\text{equil}}}{C_{\text{cat}}}$$

(3)
In order to estimate the kinetic constants of the La-
muir–Hinshelwood kinetic model (4), K-Langmuir adsorption
constant, and \(k_r \)-rate of the adsorption constant, the
least squares method was used. This is the classic approach
in regression analysis to bring the model closer to the value
of the experiment by minimizing the sum of the squares
of the residuals calculated for each measurement. For this
purpose, the differential kinetic equation is embedded in
the method of minimizing the least squares.

\[
r = \frac{\mathrm{d}C}{\mathrm{d}t} = -k_1 C + \frac{k_1}{K_{eq}} (C_{\text{init}} - C)
\]

(4)

The least squares method requires multiple, iterative cal-
culations of the fitting function (4), at points corresponding
to the positions of the experimental values. For this pur-
pose, numerical integration of the above differential kinetic
equation is carried out using the classic Adams–Bashforth
method in the range between the initial integration time \(t = 0 \)
to the time corresponding to the given experimental value. The
residual sum minimization algorithm can then calculate the
square of the distance for a given point and consequently the
sum of all squares. The sum defined in this way is then mini-
mized by the Levenberg–Marquardt algorithm by successive
stepwise adjustments of the searched parameters \(k_1 \) and \(K \).

The comparative study for the reaction without catalyst
follows typical equilibrium reaction path. With the assump-
tion of equimolar reaction, the kinetic equation for equilib-
rium system reads:

\[
r = \frac{\mathrm{d}C}{\mathrm{d}t} = \frac{k_r K \cdot C}{1 + K \cdot C} = k_r \theta
\]

(5)

The algorithm of estimating the rate constant \(k_1 \) and equi-
librium constant \(K \) is exactly the same as for the adsorption
case discussed earlier in the text.

The results obtained for all C\(_{12}\)E\(_{10}\) and Triton X-100 cases
clearly indicate correctness of the applied assumptions. For
reactions without ZnO catalyst, the reactions exhibit equi-
librium type (5), while the photodegradation catalyzed with
ZnO follows the Langmuir–Hinshelwood model (2). The
Table below shows the individual results obtained for the
respective constants for the above-mentioned reactions. The
statistical quality of the fit is measured with the minimized
value of the residual sums \(R \). The obtained \(R \)-values, which
are small compared to the square of the absolute values,
indicate that the obtained models are of good quality and
correctly reflect the analyzed photodegradation processes.

The models fit to the experimental results are presented
on two figures for catalyzed and non-catalyzed reactions.
The relative fractional occupancy of the adsorption sites
\(\theta \) is presented on separate graphs (Fig. 6ab) for clarity of
presentation. It is visible that the coverage decreases during
the process which corresponds to the decreasing substrate
concentrations.

Comparative analysis of the kinetic parameters of pho-
todegradation process for both surfactants revealed that the
photodegradation rate in the case of C\(_{12}\)E\(_{10}\) increases signifi-
cantly, in comparison with Triton X-100 (Tables 1 and 2).

The observed difference in photodegradation rate may be
due to the branched hydrocarbon chain, which increases the
resistance to photocatalytic oxidation. On the other hand,
dodecyl alcohol ethoxylate (C\(_{12}\)E\(_{10}\)) possesses a straight
hydrocarbon chain, which undergoes efficient photodegra-
dation (Figs. 5, 7). Similar behavior is observed for the com-
pletely different biodegradation processes using microorgan-
isms, in case of which the biological oxidation processes of
non-ionic surfactants usually shorten the oxyethylene chain
by 2–3 units with the formation of a homologue series. Fur-
ther metabolism is associated with the degradation of the
alkyl group and finally with ring cleavage (Ding et al. 1996;
Staples et al. 2001).

The LC-MS/MS analysis was carried out to obtain infor-
mation regarding compounds formed during the photode-
gradation of both non-ionic surfactants. Figure 8 presents
the spectra of two surfactants subjected to the tests and pro-
ducts resulting from their photodegradation. Spectra of Triton
X-100 and its degradation products are presented on the left
side of Fig. 8, whereas spectra of dodecyl alcohol ethoxyl-
ate (C\(_{12}\)E\(_{10}\)) on the right side. The degradation products
were studied after 30 and 60 minutes. Similar products have
been identified in all tests although at different intensities.
Triton X-100 contains homologues which include from \(n = 2 \)
(\(\text{m/z} \) 312) to \(n = 21 \) (\(\text{m/z} \) 1060) ethoxy groups in
the molecule, as can be seen in the spectrum (Fig. 8a), while
C\(_{12}\)E\(_{10}\) contains homologues which include from \(n = 3 \)
(\(\text{m/z} \) 336) to \(n = 21 \) (\(\text{m/z} \) 1128) ethoxy groups (Fig. 8b).
The peaks differ from each other by 44 Da, which indicates
the difference of a single ethoxy unit. The peak series in each
homologue can be identified as the \(\text{NH}_4 \) adducts. The next
sections in Fig. 8 present the spectra of products formed
during photodegradation. Triton X-100 and C\(_{12}\)E\(_{10}\) oxidized
to their carboxylic acid derivatives are presented in Fig. 8b,
f, respectively. Series of homologues from \(\text{m/z} \) 370 (\(n = 3 \))
to \(\text{m/z} \) 810 (\(n = 13 \)) and from \(\text{m/z} \) 350 (\(n = 3 \)) to \(\text{m/z} \) 966
(\(n = 17 \)) were found for oxidized Triton X-100 and C\(_{12}\)E\(_{10}\),
respectively. The last four spectra (Fig. 8c, d, g, h) indicate
the presence of polyethylene glycol and its oxidized form
with the carboxylic group on one side of the chain. The pre-
scence of polyethylene glycol among photodegradation prod-
ucts suggests that the parent molecules (both octylphenol
ethoxylate and dodecyl alcohol ethoxylate) were possibly
cleaved into the hydrophobic and hydrophilic part, as was
the case described in the report of Zhang and Wan (2014)
regarding the photodegradation of Triton X-100 using TiO\(_{2}\).
Fig. 6 Coverage fraction of catalyst θ for the case with a Triton X-100 and b C\textsubscript{12}E\textsubscript{10}.

Table 1 Results for the reaction catalyzed with ZnO according to Langmuir–Hinshelwood model

Substance	k_t	K	R
C\textsubscript{12}E\textsubscript{10}	1.348	6.061 \times 10^{-2}	2.994
Triton X-100	7.411 \times 10^{-1}	2.814 \times 10^{-2}	8.35 \times 10^{-1}

Table 2 Results for the non-catalyzed, comparative reaction according to equilibrium model

Substance	k_1	K	R
C\textsubscript{12}E\textsubscript{10}	2.243 \times 10^{-3}	9.377 \times 10^{-2}	1.251 \times 10^{-2}
Triton X-100	2.248 \times 10^{-2}	1.15 \times 10^{-1}	1.43 \times 10^{-2}
Photocatalytic degradation of non-ionic surfactants can proceed in three main stages: (i) adsorption of surfactant molecules on the ZnO surface, (ii) fast photoinduced steps (electron–hole pairs formation, generation of reactive oxygen species), (iii) slow dynamic steps (gradual transformation of organic molecules to simpler forms and their final mineralization) (Hoffmann et al. 1995; Hidaka et al. 1992a, b). As it is shown in Fig. 9 ZnO photocatalyst absorbs UV light with energy above band gap of 3.37 eV. The absorption of photon excites an electron to the conduction band (e_{CB}^-) and simultaneously generates a positive hole in the valence band (h_{VB}^+) (eq. 6). Another consequence of the second stage is the migration of charge carriers to the photocatalyst surface to initiate redox reactions with adsorbate molecules (Hoffmann et al. 1995; Hoffmann et al. 1994; Pelaez et al. 2012). Holes (h_{VB}^+) can oxidize H_2O or OH^- to produce hydroxyl radicals with high redox potential (2.8 V) (eq. 7, 8). Electrons (e_{CB}^-) located in the conduction band can be rapidly trapped by oxygen adsorbed on ZnO surface and its reduction to superoxide radical anion ($O_2^{•-}$)
occurs (eq. 9). This reactive oxygen specimen can further react with H\(^+\) to form hydroperoxyl radicals (eq. 10) which can then be transformed to H\(_2\)O\(_2\) (eq. 11). Furthermore, H\(_2\)O\(_2\) can also react with trapped electrons and superoxide radical anions to form *OH (eq. 12, 13) (Schneider et al. 2014, Giahi et al. 2012). The resulting reactive oxygen species (primarily hydroxyl radicals) can further react (in the third slower stage) with adsorbed surfactant molecules.

In the third (slow dynamic) stage, reactive oxygen species (mainly hydroxyl radicals) participate in oxidation reactions of organic compounds. After addition of *OH radicals to aromatic groups, the hydroxylated ring is opened and the transformation through hydroxyl intermediates, aldehydes and carboxylic acids, and finally to CO\(_2\) can be observed. In the case of alkyl chain, hydroxyl radicals can attack carbon in the \(\alpha\)- or \(\beta\)-position to form peroxides, aldehydes and carboxylic acid derivatives, and then also to cause a final mineralization (Hidaka et al. 1992a, b).

Conclusion

The experimental data presented in this study confirm that the nanocrystalline, hexagonal ZnO nanoparticles can be used as a photocatalyst for effective removal of selected non-ionic surfactants from the aqueous environment with removal efficiency 82% and 92% for Triton X-100 and C\(_{12}\)E\(_{10}\), respectively. The obtained results clearly show that dodecyl alcohol ethoxylate (C\(_{12}\)E\(_{10}\)) is more susceptible to photocatalytic degradation than octylphenol ethoxylate (Triton X-100) due to linear molecular structure. The kinetic behavior for photocatalytic degradation of C\(_{12}\)E\(_{10}\) and Triton X-100 on ZnO nanoparticles can be described in terms of the Langmuir–Hinshelwood model. Identification of photodegradation products by the LC-MS/MS method indicated the mechanism of central fission terminal oxidation, which results in the removal of the hydrophilic part of the surfactant molecule form of poly(ethylene glycols). Such a course of biodegradation has also been found for numerous consortia of microorganisms present in surface waters, sewage and soil. The polydispersity of the non-ionic surfactants used in the study, the structure of the alkyl chain or the length of the oxyethylene chain, did not affect the mechanism of photodegradation, although it did affect their kinetics. This allows to establish that ZnO nanoparticles can be efficiently applied as an alternative to TiO\(_2\).

Supplementary Information The online version contains supplementary material available at (https://doi.org/10.1007/s13762-021-03160-1).

Acknowledgements Authors are thankful for the financial support from the Ministry of Science and Higher Education, Poland, granted...
to Poznan University of Technology (0911/SBAD/0398 and 0912/SBAD/2006).

Funding This work was financially supported from the Ministry of Science and Higher Education, Poland, granted to Poznan University of Technology (0911/SBAD/0398 and 0912/SBAD/2006).

Compliance with ethical standards

Conflict of interest None.

Consent to participate All of the co-workers have agreed to participate.

Consent for publication All of the co-workers have agreed to participate.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Al-Gashani R, Radiman S, Daud AR, Tabet N, Al-Douri Y (2013) XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram Int 39:2283–2292

Babayemi JO, Ogundiran MB, Osibanjo O (2017) Overview of environmental hazards and health effects of pollution in developing countries: a case study of Nigeria. Environ Qual Manag 26:51–71

Bindu P, Thomas S (2014) Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J Theor Appl Phys 8:123–134

Byrne JA, Dunlop PSM, Hamilton JWJ, Fernández-Ibáñez P, Pololáez P, Sharma PK, Vennard ASM (2015) A Review of heterogeneous photocatalysis for water and surface disinfection. Molecules 20:5574–5615

Chen HJ, Tseng DH, Huang SL (2005) Biodegradation of octylphenol polyethoxylate surfactant Triton X-100 by selected microorganisms. Bioreours Technol 96:1483–1491

Cierniak D, Woźniak-Karczewska M, Parus A, Wyrwas B, Loibner AP, Heipieper HJ, Ławniczak Ł, Chrzanowski Ł (2020) How to accurately assess surfactant biodegradation - impact of sorption on the validity of results. Appl Microbiol Biotechnol 104:1–12

Cserati T, Forgacs E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348

Cychosz KA, Thommes M (2018) Progress in the physisorption characterization of nanoporous gas storage materials. Engineering 4:559–566

Deng Y, Zheng X, Bai Y, Wang Q, Zhao J, Huang J (2018) Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat Energy 3:560–566

Dimapilis EAS, Hsu C-S, Mendoza RMO, Lu M-C (2018) Zinc oxide nanoparticles for water disinfection. Sust Envir Res 28:47–56

Ding WH, Fujita Y, Aeschimann R, Reinhard M (1996) Identification of organic residues in tertiary effluents by GC/El-MS; GC/Cl-Ms and GC/TSQ-MS. Fresenius J Anal Chem 354(1):48–55

Fox MA, Dulay MT (1993) Heterogeneous Photocatalysis. Chem Rev 93:341–357

Giahi M, Habibi S, Toutouchi S, Khavei M (2012) Photocatalytic degradation of anionic surfactant using zinc oxide nanoparticles. Russ J Phys Chem 86:689–693

Giger W, Brunner PH, Schaffner C (1984) 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225:623–625

Hidaka H, Kubota H, Grätzl M, Pelizzetti E, Serpone N (1986) Photodegradation of surfactants II: Degradation of sodium docycylbenzenesulphonate catalysed by titanium dioxide particles. J Photochem 30:219–230

Hidaka H, Yamada S, Suenaga S, Kubota H, Serpone N, Pelizzetti E, Grätzl M (1989) Photodegradation of surfactants V: Photocatalytic degradation of surfactants in the presence of semiconductor particles by solar exposure. J Photoch Photobiol A 47:103–112

Hidaka H, Zhao J (1992) Photocatalytic degradation of surfactants by TiO2 semiconductor. Colloid Surf 67:165–182

Hidaka H, Zhao J, Kitamura K, Nohara K, Serpone N, Pelizzetti E (1992) Photodegradation of surfactants IX: The photocatalysed oxidation of polyoxyethylene alkyl ether homologues at TiO2–water interfaces. J Photoch Photobiol A 67:103–113

Hidaka H, Zhao J, Pelizzetti E, Serpone N (1992) Photodegradation of surfactants. 8. Comparison of photocatalytic processes between anionic sodium dodecylbenzenesulfonate and cationic benzyldecyldimethylammonium chloride on the TiO2 surface. J Phys Chem 96:2226–2320

Hoffmann AJ, Carraway ER, Hoffmann MR (1994) Photocatalytic production of H2O2 and organic peroxides on quantum-sized semiconductor colloids. Environ Sci Technol 28:776–785

Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

Huszla K, Cierniak D, Wysokowski M, Wyrwas B (2018) Non-biological methods for degradation of nonionic surfactants in the aquatic environment. Przem Chem 97:2022–2025

Imbashon AO, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218

Janoska A, Vazquez M, Janssen M, Wijffels RH, Cucares M, Vilchez C (2018) Surfactant selection for a liquid foam-bed photobioreactor. Biotechnol Prog 34:711–720

Jardak K, Drogui P, Daghri R (2016) Surfactants in aquatic and terrestrial environment: occurrence, behavior, and treatment processes. Environ Sci Pollut Res 23:3195–3216

Jia M, Yang Z, Xu H, Song P, Xiong W, Cao J, Zhang Y, Xiang Y, Hu J, Zhou C, Yang Y, Wang W (2020) Integrating N and F co-doped TiO2 nanotubes with ZIF-8 as photoelectrode for...
enhanced photo-electrocatalytic degradation of sulfamethazine. Chem Eng J 388:124388
Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Indust Eng Chem Res 43:7683–7696
Khunt G (1993) Behavior and fate of surfactants in soil. Environ Toxicol Chem 12:1813–1820
Kim J-H, Kim S-R, Kil H-J, Kim Y-C, Park J-W (2018) Highly conformable, transparent electrodes for epidermal electronics. Nano Lett 18:4531–4540
Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc Oxide—enhanced photo-electrocatalytic degradation of sulfamethazine. Environ Sci Pollut Res 21:11002–11013
Liu Y, Kong J, Yuan J, Zhaob W, Zhua X, Suna C, Xiec J (2018) Lithium-based anion exchange membranes for water electrolysis: a review. Int J Hydrogen Energy 43:7683–7696
Kołodziejczak-Radzimska A, Jesionowski T (2014) Zinc Oxide—enhanced photo-electrocatalytic degradation of sulfamethazine. Environ Sci Pollut Res 21:11002–11013
Komatsu H, Omori K, Kandeel F, Mullen Y (2018) Surfactants improve live cell imaging of human pancreatic islets. Pancreas 47:1093–1100
Könnecker G, Regelmann J, Belanger S, Genon K, Sedał R (2011) Environmental properties and aquatic hazard assessment of anionic surfactants: Physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 74:1445–1460
Krishnakumar T, Jayaprakash R, Pinna N, Singh VN, Mehta BR, Könnenker G, Regelmann J, Belanger S, Gamon K, Sedlak R (2018) Surfactants improve live cell imaging of human pancreatic islets. Pancreas 47:1093–1100
Lwarska-Bizukojc E, Miksch K, Malachowska-Jużta A, Kalka J (2005) Environmental properties and aquatic hazard assessment of anionic surfactants: Physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 74:1445–1460
Luchega M, Fernandez-Serrano M, Jurado E, Núñez-Olea J, Ríos F (2016) Non-ionic surfactant and detergent solutions used for increasing the efficiency of non-fullerene opaque and semitransparent organic solar cells with enhanced stability. Org Electron 62:195–202
Li X, Du X, Lin H, Li L, Kong X, Zheng C, Tao S, Zhang X (2018) Non-ionic surfactant-free agents to realize high efficiency non-fullerene opaque and semitransparent organic solar cells with enhanced stability. Org Electron 62:195–202
Liu Y, Kong J, Yuan J, Zhaob W, Zhua X, Suna C, Xiec J (2018) Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BrI/VO2 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J 331:242–254
Liwska-Bizukojc E, Miksch K, Malachowska-Jużta A, Kalka J (2005) Environmental properties and aquatic hazard assessment of anionic surfactants: Physico-chemical, environmental fate and ecotoxicity properties. Ecotoxicol Environ Saf 74:1445–1460
Noorimotlagh Z, Kazeminezhad I, Ahmadi M, Ramezani Z (2019) Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BrI/VO2 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J 331:242–254
Norman M, Żôtowska-Aksamitowska S, Zgoła-Grześkowiak A, Ehrlich H, Jesionowski T (2018) Iron(III) phthalocyanine supported on a spongin scaffold as an advanced photocatalyst in a highly efficient removal process of halophenols and bisphenol A. J Hazard Mater 347:78–88
Ong CB, Ng LY, Mohamad AW (2018) A review of ZnO nanoparticles as solar photocatalysts: synthesis, mechanisms and applications. Renew Sustain Energy Rev 81:536–551
Özgür Ü, Avrutin V, Morkoç H (2018) Zinc oxide materials and devices grown by molecular beam epitaxy. In: Henini M (ed) Molecular Beam Epitaxy (MBE): From Research to Mass Production. Elsevier, Amsterdam
Pattanaik A, Venugopal R (2019) Role of surfactants in mineral processing: an overview. IntechOpen. https://doi.org/10.5772/intechopen.85947
Pelaez M, Nolan NT, Pillai S, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionsiosi DD (2012) Acute toxicity and genotoxicity of five selected anionic and non-ionic surfactants and some commercial soap/detergent products using suspended TiO2 catalysts. J Mol Cat A 104:L197–L199
Rebello S, Asok AK, Mundayoor S, Jisha MS (2014) Surfactants: toxicity, remediation and green surfactants. Environ Chem Lett 12:275–287
Rios F, Fernandez-Arteaga A, Fernandez-Serrano M, Jurado E, Lechuga M (2018) Silica micro- and nanoparticles reduce the toxicity of surfactant solutions. J Hazard Mater 353:436–443
Rosen MJ, Kunjappu JT (2012) Surfactants and interfacial phenomena. John Wiley, New Jersey
Sabouni R, Gomaa H (2019) Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO. Environ Sci Pollut Res 26:5372–5380
Rahimpour R, Chaihaksh N, Zanjanchi MA, Moradi-Shoeili Z (2020) Fabrication of ZnO/FeVO4 heterojunction nanocomposite with high catalytic activity in photo-Fenton-like process. Journal of Alloys and Compounds 817:152702
Rao NN, Dube S (1995) Photocatalytic degradation of mixed surfactants and some commercial soap/detergent products using suspended TiO2 catalysts. J Mol Cat A 104:L197–L199
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horuchi Y, Anpo M, Bahnmann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986
Siwińska-Ciesielczyk K, Świgoń D, Rychtowski P, Moszyński D, Zgoła-Grześkowiak A, Jesionowski T (2020) The performance of multicomponent oxide systems based on TiO2, ZrO2 and SiO2 in the photocatalytic degradation of Rhodamine B: mechanism and kinetic studies. Coll Surf A: Physicochem Eng Asp. https://doi.org/10.1016/j.colsurfa.2019.124272
Shet A, Shetty KV (2015) Photocatalytic degradation of phenol using Ag core-TiO2 shell (Ag@TiO2) nanoparticles under UV light irradiation. Environ Sci Pollut Res 23:20055
Shukla A, Trivedi SP (2018) Anionic surfactant, linear alkyl benzene sulphonate induced oxidative stress and hepatic impairments in fish Channa punctatus. Proc Zool Soc 71:382–389
Staples CA, Naylor CG, Williams JB, Gledhill WE (2001) Ultimate biodegradation of alkylphenolethoxylate surfactants and their biodegradation intermediates. Environ Toxicol Chem 20(11):2450–2455
Tan X, Yim SY, Uppu P, Kleinow KM (2010) Enhanced bioaccumulation of dietary contaminants in catfish with exposure to the waterborne surfactant linear alkylbenzene sulfonate. Aquat Toxicol 99(2):300–308
Tian C, Zhang Q, Wu A, Jiang M, Liang Z, Jiang B, Fu H (2012) Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem Commun 48:2858–2860
Uzma S, Khan S, Murad W, Taimur N, Azizullah A (2018) Phytotoxic effects of two commonly used laundry detergents on germination, growth, and biochemical characteristics of maize Zea mays L seedlings. Environ Monit Assess. https://doi.org/10.1007/s10661-018-7031-6
van Heerden JL, Swanepoel R (1997) XRD analysis of ZnO thin films prepared by spray pyrolysis. Thin Solid Films 299:72–77
Yang Q, Lin TS, Burton C, Park SH, Ma Y (2016) Physicochemical insights of irradiation-enhanced hydroxyl radical generation from ZnO nanoparticles. Toxicol Res 5:482–491
Wyrwas B, Dymaczewski Z, Zgoła-Grześkowiak A, Szymański A, Frańska M, Kruszelnicka I, Ginter-Krąmczyk D, Cyplik P, Ławniczak Ł, Chrzanowski Ł (2013) Biodegradation of Triton X-100 and its primary metabolites by a bacterial community isolated from activated sludge. J Environ Manag 128:292–299
Zhang Y, Wan Y (2014) Heterogeneous photocatalytic degradation of Triton X-100 in aqueous TiO2 suspensions. Am J Environ Sci 3:28–35
Zhao J, Hidaka H, Takamura A, Pelizzetti E, Serpone N (1993) Photodegradation of surfactants. 11. Zeta-potential measurements in the photocatalytic oxidation of surfactants in Aqueous TiO2 dispersions. Langmuir 9:1646–1650