LYAPUNOV FUNCTIONS FOR FRACTIONAL-ORDER SYSTEMS IN BIOLOGY: METHODS AND APPLICATIONS

ADNANE BOUKHOIMAa, KHALID HATTAFa,b, EL MEHDI LOTFIa, MAROUANE MAHROUFa, DELFIM F. M. TORRESc,* AND NOURA YOUSFIa

aLaboratory of Analysis, Modeling and Simulation (LAMS)
Faculty of Sciences Ben M’sik, Hassan II University
P.O. Box 7955 Sidi Othman, Casablanca, Morocco

bCentre Régional des Métiers de l’Éducation et de la Formation (CRMEF)
20340 Derb Ghaief, Casablanca, Morocco

cCenter for Research and Development in Mathematics and Applications (CIDMA)
Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

ABSTRACT. We prove new estimates of the Caputo derivative of order $\alpha \in (0, 1]$ for some specific functions. The estimations are shown useful to construct Lyapunov functions for systems of fractional differential equations in biology, based on those known for ordinary differential equations, and therefore useful to determine the global stability of the equilibrium points for fractional systems. To illustrate the usefulness of our theoretical results, a fractional HIV population model and a fractional cellular model are studied. More precisely, we construct suitable Lyapunov functionals to demonstrate the global stability of the free and endemic equilibriums, for both fractional models, and we also perform some numerical simulations that confirm our choices.

1. INTRODUCTION

Fractional calculus (FC) is the mathematical theory that generalizes the integrals and derivatives to real or complex order [7]. During the last decades, FC has gained popularity and importance in diverse fields of science and engineering, including biology, physics, chemistry, engineering, finance, and control theory, see, e.g., [15, 17, 18, 25, 30, 53, 65]. Recently, several works have appeared in the literature that deal with various applications of FC in real-life problems. In [32], the authors discuss general fractional optimal control problems (FOCPs) involving fractional derivatives (FD) with singular and non-singular kernels. They derive necessary optimality conditions and propose an efficient method for solving, numerically, these problems. Yildiz et al. [64] formulate new time FOCPs governed by Caputo–Fabrizio FD. To solve these problems, they firstly convert them into Volterra-type systems and then apply a new numerical scheme based on the approximation of Volterra integrals. Since most fractional-order problems cannot be solved explicitly,
their numerical simulations are of crucial importance to researchers. In the work of Veeresha et al. [62], the existence of solutions for fractional generalized Hirota–Satsuma coupled Korteweg-de-Vries (KdV) and coupled modified KdV equations are investigated with the aid of a fractional natural decomposition method. In a similar way, Singh et al. [57] perform a comparison between the reduced differential transform method and the local fractional series expansion method for solving local fractional Fokker–Planck equations on the Cantor set. They confirm that the two proposed methods are very successful and simple to solve differential equations with fractional derivative operators of local nature. The authors of [37] extend the fractional vibration equation for very large membranes, with distinct special cases, by considering the Atangana–Baleanu fractional derivative. They also employ a numerical algorithm, based on the homotopy technique, to examine the fractional vibration equation. For that, they show the effects of space, time, and order of the Atangana-Baleanu derivative on the graphical displacement, and confirm that the Atangana-Baleanu fractional derivative is very efficient in describing vibrations in large membranes.

The advantage of fractional differentiation is that it provides a powerful tool to model real-world processes with long-range memory, long-range interactions, and hereditary properties, which exist in most biological systems, as opposed to integer-order differentiation, where such effects are neglected [1, 50, 51, 66]. For these reasons, modeling with fractional differential equations (FDEs) has attracted the interest of researchers in biology [23, 27, 43]. In [33], the authors investigate a fractional version of the SIRS model for the human respiratory syncytial virus (HRSV) disease, involving a new derivative operator with Mittag–Leffler kernel in the Caputo sense. They confirm, from simulations, that fractional modeling is more realistic and effective than the proposed approach in the classical version of the model, to diminish the number of HRSV infected individuals. Sajjadi et al. [52] analyze hyperchaotic behaviors of a biological snap oscillator and study the chaos control and synchronization via a fractional-order model. They conclude that fractional calculus leads to more realistic and flexible models with memory effects, which could help to design more efficient controllers. Singh et al. [60] analyze the dynamical behavior of a fish farm model, related with the Atangana–Baleanu (AB) derivative. They discuss the influence of the derivative order on nutrients, fish, and mussels, and show that when this order tends to one, then the AB derivative gives interesting results. Elettreby et al. [24] propose a fractional-order species model to study the interaction of a system that consists of two-prey and one-predator. They study the stability of the equilibria and prove that the coexistence equilibrium points are stable without any conditions, in contrast with the corresponding ordinary differential equations (ODEs) model, where some conditions are imposed for the stability of the same points. This means that FDEs have a larger stability region than those of ODEs [24].

FDEs have been also successfully applied in epidemiology, as well as in virology [4, 48, 49]. Huo et al. [31] proposed a fractional homogeneous-mixing population model for human immunodeficiency virus (HIV), which incorporates anti-HIV preventive vaccines, and studied the backward bifurcation of the equilibrium points. They also generalize the integer-order LaSalle invariant theorem for fractional-order systems and demonstrate the global stability of the disease-free equilibrium point [31].
In the work [63] of Wojtak et al., the authors investigate the uniform asymptotic stability of the unique endemic equilibrium for a Caputo fractional-order tuberculosis (TB) model. They confirm that the proposed fractional-order model provides richer and more flexible results when compared with the corresponding integer-order TB model [49, 63].

In [28], González-Parra et al. propose a nonlinear fractional-order model to explain, and help to understand, the outbreak of influenza A(H1N1) worldwide. They show that the fractional-order model gives wider peaks and leads to better approximations of the real epidemic data [28].

Rihan et al. [46] develop a fractional-order model for hepatitis C dynamics, in order to describe the interactions between healthy liver cells \(H \), infected liver \(I \), and virus load \(V \). They confirm that the proposed model gives consistent results with the reality of the interactions [46].

In the study of Arafa et al. [3], the authors compare the results of the fractional-order model with the ones from the integer/classical model, taking into account real data obtained from 10 patients during primary HIV infection. They prove that the results of the fractional-order model give better predictions to the plasma virus load of the patients than those of the integer-order model [3].

In [59], the authors study diabetes and its complications with the help of the Caputo–Fabrizio fractional derivative. They observe, via numerical simulations, that when the derivative order is near to one, then the Caputo–Fabrizio non-integer order derivative reveals better absorbing characteristics. For other related works, see, e.g., [4, 12, 16, 36, 40, 45, 58].

Stability analysis of FDEs through Lyapunov functions is investigated by Delavari et al. [19]. Their method requires to construct a suitable function, which is not easy to find in the fractional case. In mathematical biology, the stability of equilibrium points, via Lyapunov method, is a very effective way to determine the global behavior of a system without solving it analytically. This is based on the construction of well-chosen Lyapunov functions, according to the nature of the system under study. In the literature, the most well-known Lyapunov functions are quadratic and Volterra-type functions. Accordingly, Aguila-Camacho et al. [2] extend such quadratic functions to the fractional case and then study the stability of fractional-order time-varying systems. In 2015, Duarte-Mermoud et al. [20] generalized the result of [2] to the vector case, in order to prove the stability of fractional-order models with reference adaptive control schemes.

Vargas-De-León uses Volterra-type Lyapunov functions to determine the stability of several fractional-order epidemic systems [61]. However, quadratic and Volterra-type Lyapunov functions can be successfully used to demonstrate the stability of the equilibrium points only in particular cases, and further work is needed.

Motivated by these works, we prove here a new result that estimates the Caputo fractional derivative for certain specific functions. Based on our result, we are able to construct Lyapunov functions for systems of FDEs in biology by using the Lyapunov functions of corresponding systems formulated by ODEs and, subsequently, to establish the global asymptotic stability of constant steady-state solutions.

The paper is organized as follows. In Section 2, new inequalities to estimate the FD of order \(\alpha \in (0,1] \), for specific functions, are rigorously proved and a detailed description of the proposed method is presented with proofs. Then, in Section 3, we apply our method to study the asymptotic stability of two models in virology and epidemiology. We end up with Section 4 of conclusions.
2. Description of the method

Consider an n-dimensional autonomous system formulated by ordinary differential equations,

$$
\begin{align*}
\frac{du}{dt} &= f(u), \\
u(t_0) &= u_0,
\end{align*}
$$

(1)

where u is a non-negative vector of concentration u_1, \ldots, u_n and $f : \mathbb{R}^n \to \mathbb{R}^n$ is a C^1-function.

Let $V(u)$ be a C^1-function defined on some domain in \mathbb{R}^n_+. When $u(t)$ is a solution of (1), it is often necessary to compute the time derivative of $V(u(t))$:

$$
\frac{dV}{dt}(u(t)) = \nabla V(u(t)) \cdot \frac{du}{dt} = \nabla V(u(t)) : f(u(t)).
$$

We assume that the range of $u(t)$ is contained in the domain of $V(\cdot)$. The right-hand side is given by the gradient of function $V(\cdot)$ and the vector field $f(\cdot)$. Thus, the right-hand side is defined without the fact that $u(t)$ is a solution of (1), which is important for our construction of Lyapunov functions.

In the literature, many authors define explicit Lyapunov functions of the form

$$
V(u) = \sum_{i=1}^{n} a_i \Psi_i(u_i)
$$

(2)

with $a_i > 0$ and

$$
\Psi_i(u_i) = \int_{u_i^*}^{u_i} \frac{g_i(s) - g_i(u_i^*)}{g_i(s)} ds
$$

(3)

where $u^*(u_1, \ldots, u_n)$ is any equilibrium of (1), $u_i^* > 0$ for all $1 \leq i \leq n$, and g_i is a non-negative, differentiable, and strictly increasing function on \mathbb{R}^+_+, see, e.g., [21, 22, 26, 29].

Remark 1. If $u_i^* = 0$, then function $\Psi_i(u_i)$ reduces to

$$
\Psi_i(u_i) = u_i.
$$

Remark 2. If $g_i(s) = s$, then function $\Psi_i(u_i)$ becomes

$$
\Psi_i(u_i) = u_i - u_i^* - \int_{u_i^*}^{u_i} \frac{g_i(u_i^*)}{g_i(s)} ds, \quad \forall i = 1, \ldots, n,
$$

with $u_i^* = (u_1^*, \ldots, u_n^*)$ is any equilibrium of (1), $u_i^* > 0$ for all $1 \leq i \leq n$, and g_i is a non-negative, differentiable, and strictly increasing function on \mathbb{R}^+_+, see, e.g., [21, 22, 26, 29].

It is easy to see that function Ψ_i is strictly positive in $\mathbb{R}^+_+ \setminus \{u_i^*\}$ with $\Psi_i(u_i^*) = 0$. In fact, Ψ_i is differentiable and

$$
\frac{d\Psi_i}{du_i} = 1 - \frac{g_i(u_i^*)}{g_i(u_i)}.
$$

Since g_i is a strictly increasing function, then Ψ_i is strictly decreasing if $u_i < u_i^*$ and strictly increasing if $u_i > u_i^*$, with u_i^* its global minimum. In this case, we have

$$
\frac{dV(u(t))}{dt} = \sum_{i=1}^{n} a_i \left(1 - \frac{g_i(u_i^*)}{g_i(u_i)} \right) f_i(u_i),
$$

(4)
where
\[f(u) = (f_1(u_1), \ldots, f_n(u_n))^T. \]

On the other hand, let us consider the following general type of fractional-order system:
\[
\begin{align*}
C_0 D_t^\alpha u(t) &= f(u(t)), \quad \alpha \in (0, 1], \\
u(t_0) &= u_0,
\end{align*}
\]
where \(C_0 D_t^\alpha \) denotes the Caputo fractional derivative of order \(\alpha \), defined for the function \(u \) by
\[
C_0 D_t^\alpha u(t) = \frac{1}{\Gamma(1-\alpha)} \int_{t_0}^{t} \frac{u'(y)}{(t-y)^\alpha} dy
\]
(see, e.g., [44]). Here, \(' \) denotes \(\frac{d}{dy} \). We note that system (5) has the same equilibrium points as system (1).

The Caputo fractional derivative of \(V \) along the solution of (5) is given by
\[
C_0 D_t^\alpha V(u(t)) = \sum_{i=1}^{n} a_i C_0 D_t^\alpha \Psi_i(u_i).
\]

To extend the Lyapunov functions (2) to the Caputo fractional-order system (5), through an inequality that estimates the Caputo fractional derivative of these functions, we prove the following lemma, which is the main result of this section.

Lemma 2.1. Let \(x(t) \in \mathbb{R}^+ \) be a continuous and differentiable function. Then, for any \(t \geq t_0, 0 < \alpha \leq 1 \), and \(\bar{x} > 0 \), we have
\[
C_0 D_t^\alpha \Psi(x(t)) \leq \left(1 - \frac{g(\bar{x})}{g(x(t))} \right) C_0 D_t^\alpha x(t),
\]
where
\[\Psi(x) = x - \bar{x} - \int_{\bar{x}}^{x} \frac{g(s)}{g(\bar{x})} ds, \]
with \(g : \mathbb{R}^+ \to \mathbb{R}^+ \) a differentiable and strictly increasing function.

Proof. We start by reformulating inequality (8). By the linearity of the Caputo fractional derivative, we obtain that
\[
C_0 D_t^\alpha \Psi(x(t)) = C_0 D_t^\alpha x(t) - C_0 D_t^\alpha \left[\int_{\bar{x}}^{x(t)} \frac{g(s)}{g(\bar{x})} ds \right].
\]
Hence, inequality (8) becomes
\[
C_0 D_t^\alpha x(t) - C_0 D_t^\alpha \left[\int_{\bar{x}}^{x(t)} \frac{g(s)}{g(\bar{x})} ds \right] \leq \left(1 - \frac{g(\bar{x})}{g(x(t))} \right) C_0 D_t^\alpha x(t).
\]
Because \(g \) is a non-negative function, we get
\[
g(x(t)) C_0 D_t^\alpha x(t) - g(x(t)) C_0 D_t^\alpha \left[\int_{\bar{x}}^{x(t)} \frac{g(s)}{g(\bar{x})} ds \right] \leq g(x(t)) C_0 D_t^\alpha x(t) - g(\bar{x}) C_0 D_t^\alpha x(t).
\]
Thus,
\[
C_0 D_t^\alpha x(t) - g(x(t)) C_0 D_t^\alpha \left[\int_{\bar{x}}^{x(t)} \frac{1}{g(s)} ds \right] \leq 0.
\]
Using the definition of Caputo fractional derivative (6), we have

\[\frac{C_0^a D_t^a}{\Gamma(1-\alpha)} x(t) = \frac{1}{\Gamma(1-\alpha)} \int_{t_0}^{t} \frac{x'(y)}{(t-y)\alpha} dy \]

and

\[\frac{C_0^a D_t^a}{\Gamma(1-\alpha)} \left[\int_{x(t)}^{x(y)} \frac{1}{g(s)} ds \right] = \frac{1}{\Gamma(1-\alpha)} \int_{t_0}^{t} \frac{x'(y)}{(t-y)\alpha g(x(y))} dy. \]

Consequently, the inequality (9) can be written as follows:

\[\frac{1}{\Gamma(1-\alpha)} \int_{t_0}^{t} \frac{x'(y)}{(t-y)\alpha} \left(1 - \frac{g(x(t)))}{g(x(y))} \right) dy \leq 0. \] (10)

Now, we show that the inequality (10) is verified. Denoting

\[H(t) = \frac{1}{\Gamma(1-\alpha)} \int_{t_0}^{t} \frac{x'(y)}{(t-y)\alpha} \left(1 - \frac{g(x(t)))}{g(x(y))} \right) dy, \]

we integrate by parts by defining

\[v(y) = \frac{(t-y)^{-\alpha}}{\Gamma(1-\alpha)}; \]
\[v'(y) = \frac{\alpha(t-y)^{-(\alpha+1)}}{\Gamma(1-\alpha)}; \]

and

\[w(y) = x(y) - x(t) - \int_{x(t)}^{x(y)} \frac{g(x(t))}{g(s)} ds; \]
\[w'(y) = x'(y) \left(1 - \frac{g(x(t)))}{g(x(y))} \right); \]

to obtain

\[H(t) = \left[\frac{(t-y)^{-\alpha}}{\Gamma(1-\alpha)} \left(x(y) - x(t) - \int_{x(t)}^{x(y)} \frac{g(x(t))}{g(s)} ds \right) \right]_{y=t}^{y=t} \]

(11)

\[- \frac{(t-t_0)^{-\alpha}}{\Gamma(1-\alpha)} \left(x(t_0) - x(t) - \int_{x(t)}^{x(t_0)} \frac{g(x(t))}{g(s)} ds \right) \]

\[- \int_{t_0}^{t} \frac{\alpha(t-y)^{-(\alpha+1)}}{\Gamma(1-\alpha)} \left(x(y) - x(t) - \int_{x(t)}^{x(y)} \frac{g(x(t))}{g(s)} ds \right) dy. \]

We can easily see that the first term in (11) is undefined at \(u = t \left(\frac{0}{t} \right) \). Let us analyze the corresponding limit. By L'Hôpital's rule, we get

\[\lim_{y \to t} \frac{(t-y)^{-\alpha}}{\Gamma(1-\alpha)} \left(x(y) - x(t) - \int_{x(t)}^{x(y)} \frac{g(x(t))}{g(s)} ds \right) = \lim_{y \to t} \frac{x'(y) \left(1 - \frac{g(x(t)))}{g(x(y))} \right)}{-\alpha \Gamma(1-\alpha)(t-y)^{\alpha-1}} = 0. \]

Hence,

\[H(t) = - \frac{(t-t_0)^{-\alpha}}{\Gamma(1-\alpha)} \left(x(t_0) - x(t) - \int_{x(t)}^{x(t_0)} \frac{g(x(t))}{g(s)} ds \right) \]

\[- \int_{t_0}^{t} \frac{\alpha(t-y)^{-(\alpha+1)}}{\Gamma(1-\alpha)} \left(x(y) - x(t) - \int_{x(t)}^{x(y)} \frac{g(x(t))}{g(s)} ds \right) dy. \]
From (3), we get

\[H(t) = \frac{1}{\Gamma(1-\alpha)} \int_{t_0}^{t} x'(u) \left(1 - \frac{g(x(t))}{g(x(u))} \right) du \leq 0 \]

and, as a result, the inequality (10) is satisfied. This completes the proof. \(\square \)

A particular case of Lemma 2.1 is given in the following corollary.

Corollary 1. Let \(x(t) \in \mathbb{R}^+ \) be a continuous and differentiable function. Then, for any \(t \geq t_0, 0 < \alpha \leq 1, \) and \(\bar{x} \geq 0, \) one has

\[\frac{C_0^a D_t^\alpha}{\alpha} \left[x(t) - \bar{x} - \bar{x} \ln \frac{x(t)}{\bar{x}} \right] \leq \left(1 - \frac{\bar{x}}{x(t)} \right) \frac{C_0^a D_t^\alpha}{\alpha} x(t). \]

Proof. Define function \(g \) on \([0, +\infty)\) by \(g(s) = s. \) Obviously, function \(g \) is a non-negative and strictly increasing function on \([0, +\infty)\) with

\[\psi(x(t)) = x(t) - \bar{x} - \bar{x} \ln \frac{x(t)}{\bar{x}}. \]

The result follows by Lemma 2.1. \(\square \)

Remark 3. We can see that the inequality obtained for Volterra-type Lyapunov functions in [61, Lemma 3.1] is a special case of our Lemma 2.1.

Finally, using Lemma 2.1, we estimate the Caputo fractional derivative of \(V \) in (7) through the following inequality:

\[\frac{C_0^a D_t^\alpha}{\alpha} V(u(t)) \leq \sum_{i=1}^{n} a_i \left(1 - \frac{g_i(u_i^*)}{g_i(u_i)} \right) \frac{C_0^a D_t^\alpha}{\alpha} u_i(t) = \sum_{i=1}^{n} a_i \left(1 - \frac{g_i(u_i^*)}{g_i(u_i)} \right) f_i(u_i). \]

We summarize the above discussion in the following proposition.

Proposition 1. If \(V \) is a Lyapunov function for the ordinary differential equation (1) of the form described by (2), then \(V \) is also a Lyapunov function for the Caputo fractional-order system (5).

In other cases, some authors constructed a Lyapunov function for system (1) given by the composition of \(V \) and a quadratic function \(Q, \) that is, of the form

\[L(u(t)) = V(u(t)) + Q(u(t)), \]

where

\[Q(u) = \sum_{i=1}^{n} b_i(u_i - u_i^*)^2, \]

with \(b_i \geq 0 \) [6, 14, 41]. The time derivative of \(L \) is given by

\[\frac{dL(u(t))}{dt} = \sum_{i=1}^{n} \left[a_i \left(1 - \frac{g_i(u_i^*)}{g_i(u_i)} \right) + b_i(u_i - u_i^*) \right] f_i(u_i). \]

Therefore, computing the fractional time derivative of \(L \) by using our Lemma 2.1 and Lemma 1 of [2], we obtain that

\[\frac{C_0^a D_t^\alpha}{\alpha} L(u(t)) = \frac{C_0^a D_t^\alpha}{\alpha} V(u(t)) + \frac{C_0^a D_t^\alpha}{\alpha} Q(u(t)) \leq \sum_{i=1}^{n} \left[a_i \left(1 - \frac{g_i(u_i^*)}{g_i(u_i)} \right) + b_i(u_i - u_i^*) \right] f_i(u_i). \]
Thus, the following result holds.

Corollary 2. If L is a Lyapunov function for the ordinary differential equation (1) of the form described by (12), then L is also a Lyapunov function for the Caputo fractional-order system (5).

Let D be a bounded closed set in \mathbb{R}^n. Assume that the largest invariant set in

$$\{ u \in D \mid C_t^\alpha D_t^\alpha L(u(t)) = 0 \}$$

is just the singleton $\{ u^* \}$. Then, we get the following result.

Proposition 2. If (4) (respectively (13)) is non-positive, then $C_t^\alpha D_t^\alpha V(u(t)) \leq 0$ (respectively, $C_t^\alpha D_t^\alpha L(u(t)) \leq 0$). It follows that the positive equilibrium u^* of the fractional-order system (5) is globally asymptotically stable.

Proof. By Lemma 4.6 of [31], every solution originating in D tends to the largest invariant set of

$$\{ u \in D \mid C_t^\alpha D_t^\alpha L(u(t)) = 0 \} = \{ u \in D \mid u = u^* \}.$$

Thus,

$$\lim_{t \to +\infty} u(t) = u^*.$$

This completes the proof.

3. Applications

In this section, we apply our method to study the stability of two fractional-order biological models. Our procedure is based on the construction of Lyapunov functions for FDEs using Lyapunov functions for ODEs.

3.1. Example 1: an HIV population model. In this example, we consider the SICA model of Silva and Torres [55], which contains four variables: the susceptible individuals (S), HIV-infected individuals with no clinical symptoms of AIDS (I), HIV-infected individuals under ART treatment (C), and HIV-infected individuals with AIDS clinical symptoms (A). The model is given by the following nonlinear system of differential equations:

$$\begin{align*}
\frac{dS}{dt} &= \Lambda - \mu S(t) - \beta S(t)I(t), \\
\frac{dI}{dt} &= \beta S(t)I(t) - (\rho + \phi + \mu)I(t) + \alpha A(t) + \omega C(t), \\
\frac{dC}{dt} &= \phi I(t) - (\omega + \mu)C(t), \\
\frac{dA}{dt} &= \rho I(t) - (\alpha + \mu + d)A(t).
\end{align*}$$

(14)

The basic reproduction number of system (14), which represents the expected average number of new HIV infections produced by a single HIV-infected individual when in contact with a completely susceptible population, is given by

$$R_0 = \frac{\beta \xi_1 \xi_2}{N},$$

where $\xi_1 = \alpha + \mu + d$, $\xi_2 = \omega + \mu$, and $N = \mu[\xi_2(\rho + \xi_1) + \xi_1 \phi + \rho d] + \rho \omega d$. Silva and Torres proved that if $R_0 > 1$, then system (14) has an endemic equilibrium.
The time derivative of S is just the singleton E given by constructing a Lyapunov function for system (15) at E^* as follows:

$$V_1(S, I, C, A) = \Psi_1(S) + \Psi_2(I) + \frac{\omega}{\xi_2} \Psi_3(C) + \frac{\alpha}{\xi_1} \Psi_4(A)$$

$$= S - S^* - \int_{S^*}^{S} \frac{S}{X} dX + I^* - \int_{I^*}^{I} \frac{I}{X} dX$$

$$+ \frac{\omega}{\xi_2} \left(C - C^* - \int_{C^*}^{C} \frac{C}{X} dX \right) + \frac{\alpha}{\xi_1} \left(A^* - \int_{A^*}^{A} \frac{A}{X} dX \right).$$

The time derivative of V_1 is computed as

$$\frac{dV_1}{dt} = (\beta I^* S^* + \mu S^*) \left(2 - \frac{S}{S^*} - \frac{S^*}{S} \right) + \alpha A^* \left(2 - \frac{A I^*}{A^* I} - \frac{A^* I}{AI^*} \right)$$

$$+ \omega C^* \left(2 - \frac{C I^*}{C^* I} - \frac{C^* I}{CI^*} \right) \leq 0.$$

However, when $R_0 < 1$, the global stability of the disease-free equilibrium $E_f = (S_0, 0, 0, 0)$, where $S_0 = \frac{A}{\mu}$, was determined without using a Lyapunov function. Here we discuss the global stability of E_f when $R_0 \leq 1$. For this, we construct a Lyapunov function for system (14) at E_f:

$$V_0(S, I, C, A) = \Psi_1(S) + \Psi_2(I) + \frac{\omega}{\xi_2} \Psi_3(C) + \frac{\alpha}{\xi_1} \Psi_4(A)$$

$$= S - S_0 - \int_{S_0}^{S} \frac{S_0}{X} dX + I + \frac{\omega}{\xi_2} C + \frac{\alpha}{\xi_1} A.$$

The time derivative of V_0 along the solutions of system (14) satisfies

$$\frac{dV_0}{dt} = \left(1 - \frac{S_0}{S} \right) \frac{dS}{dt} + \frac{dI}{dt} + \frac{dC}{dt} + \frac{dA}{dt}$$

$$\leq - \frac{\mu(S - S_0)^2}{S} + \frac{N}{\xi_1} I(R_0 - 1).$$

Therefore, $\frac{dV_0}{dt} \leq 0$ if $R_0 \leq 1$. Furthermore, the largest compact invariant set in $\left\{ (S, I, C, A) \mid \frac{dV_0}{dt} = 0 \right\}$ is just the singleton E_f. Using LaSalle’s invariance principle [39], we conclude that E_f is globally asymptotically stable.

Now, we propose the following fractional-order SICA model defined by

\begin{align*}
\frac{d^\theta S(t)}{dt^\theta} &= \Lambda - \mu S(t) - \beta S(t)I(t), \\
\frac{d^\theta I(t)}{dt^\theta} &= \beta S(t)I(t) - (\rho + \phi + \mu)I(t) + \alpha A(t) + \omega C(t), \\
\frac{d^\theta C(t)}{dt^\theta} &= \phi I(t) - (\omega + \mu)C(t), \\
\frac{d^\theta A(t)}{dt^\theta} &= \rho I(t) - (\alpha + \mu + d)A(t),
\end{align*}

where $0 < \theta \leq 1$, subject to the initial conditions

\begin{align*}
S(0) &\geq 0, & I(0) &\geq 0, & C(0) &\geq 0, & A(0) &\geq 0.
\end{align*}
Remark 4. Following [11], one can easily prove that system (15)–(16) has a unique solution for any $t > 0$.

Applying Proposition 2, we have

$$C_0 D_t^\theta V_0(S, I, C, A) \leq 0, \quad \text{when } R_0 \leq 1$$

and

$$C_0 D_t^\theta V_1(S, I, C, A) \leq 0, \quad \text{when } R_0 > 1.$$

Then, the following result holds.

Theorem 3.1. Suppose that $0 < \theta \leq 1$.

(i) If $R_0 \leq 1$, then the disease-free equilibrium E_f is globally asymptotically stable.

(ii) If $R_0 > 1$, then the endemic equilibrium E^* is globally asymptotically stable.

Proof. (i) Obviously, the largest invariant set in

$$\{(S, I, C, A) \in \mathbb{R}_+^4 \mid C_0 D_t^\theta V_0(S, I, C, A) = 0\}$$

is just the singleton E_f. By LaSalle’s invariance principle in [31], E_f is globally asymptotically stable.

(ii) It is easy to see that the largest invariant set in

$$\{(S, I, C, A) \in \mathbb{R}_+^4 \mid C_0 D_t^\theta V_1(S, I, C, A) = 0\}$$

is just the singleton E^*. Using LaSalle’s invariance principle, we conclude that E_f is globally asymptotically stable.

Finally, we present some numerical simulations to illustrate the stability results of model (15)–(16), for different values of θ. We consider the following parameter values:

$$\Lambda = 10724, \quad \mu = 1/69.54, \quad \beta = 0.066, \quad \rho = 0.1,$$

$$\phi = 1, \quad \alpha = 0.33, \quad \omega = 0.09, \quad d = 1.$$

A direct calculation gives $R_0 = 0.2900$, which satisfies item (i) of Theorem 3.1. Then, the disease-free equilibrium $E_f = (7.4575 \times 10^5, 0, 0, 0)$ is globally asymptotically stable, which leads to the eradication of HIV and AIDS from the population. Numerical simulations illustrate this result (see Figure 1).

In Figure 2, we choose $\beta = 0.866$, while keeping the other parameter values as before. In this case, we have $R_0 = 3.8049$ and system (15)–(16) has an endemic equilibrium $E^* = (0.8909 \times 10^5, 4.1489 \times 10^4, 3.9748 \times 10^5, 3.0861)$. Hence, by item (ii) of Theorem 3.1, E^* is globally asymptotically stable, which means that the disease persists in the population.

3.2. **Example 2: an HIV cellular model.** We consider the HIV infection model with cure rate of infected cells in eclipse stage as proposed by Maziane et al. [42]. This model contains also four variables: the uninfected CD4$^+$ T cells (T), infected cells in the eclipse stage (unproductive cells, denoted by E), productive infected cells
Figure 1. Stability of the disease-free equilibrium E_f for the fractional-order SICA model (15) with $\theta = 0.5$ (blue), $\theta = 0.7$ (red), $\theta = 0.9$ (yellow), and $\theta = 1$ (green).

The model is given by the following non-linear system of ODEs:

$$
\begin{align*}
\frac{dT(t)}{dt} &= \lambda - \mu_T T(t) - f(T(t), V(t)) V(t) + \rho E(t), \\
\frac{dE(t)}{dt} &= f(T(t), V(t)) V(t) - (\mu_E + \rho + \gamma) E(t), \\
\frac{dI(t)}{dt} &= \gamma E(t) - \mu_I I(t), \\
\frac{dV(t)}{dt} &= k I(t) - \mu_V V(t),
\end{align*}
$$

where λ is the recruitment rate of uninfected cells. The constants μ_T, μ_E, μ_I, and μ_V represent the death rates of uninfected cells, unproductive cells, productive cells, and virus, respectively. The constant ρ is the rate at which the unproductive infected cells may revert to the uninfected cells. The incidence of HIV infection of health CD4$^+$T cells has the form

$$
f(T, V) = \frac{\beta T}{1 + \alpha_1 T + \alpha_2 V + \alpha_3 TV},$$
where β is the infection rate and $\alpha_1, \alpha_2, \alpha_3 \geq 0$ are non-negative constants. The constant γ is the rate at which infected cells in the eclipse stage become productive infected cells and the constant k is the rate of production of virions by infected cells. The basic reproduction number R_0 is given by

$$R_0 = \frac{\lambda \beta k \gamma}{\mu_1 \mu_2 (\lambda \alpha_1 + \mu_T) (\rho + \mu_E + \gamma)},$$

which is the average number of secondary infections produced by one productive infected cell during the period of infection when all cells are uninfected. Moreover, Maziane et al. [42] show that model (17) is globally asymptotically stable. The proof is done by using the following Lyapunov function in \mathbb{R}_+^4:

$$L(T, E, I, V) = \Psi_1(T) + \frac{\rho + \mu_E + \gamma}{\gamma} \Psi_2(I) + \Psi_3(E) + \frac{\mu_1 (\rho + \mu_E + \gamma)}{k \gamma} \Psi_4(V) + \frac{\rho(1 + \alpha_2 V)}{2(1 + \alpha_1 T + \alpha_2 V + \alpha_3 T V)} (T - T + E - E)^2.$$
\begin{equation}
T - T - \int_T^T f(T, V) d\theta + \frac{\rho + \mu E + \gamma}{\gamma} \left(I - \int_T^I \frac{I}{\theta} d\theta \right) + E + E + \int_E^E E d\theta + \frac{\mu_1 (\rho + \mu E + \gamma)}{k\gamma} \left(V - V + \int_V^V V d\theta \right) + \frac{\rho (1 + \alpha_2 V)}{2(1 + \alpha_1 T + \alpha_2 V + \alpha_3 T V)} (T - T + E - E)^2,
\end{equation}

where \(\mathbf{V} = (T, E, I, V) \) is an arbitrary equilibrium of system (17) and when \(\mathbf{V} \) is zero, for some equilibrium coordinate, the corresponding integral term vanishes.

Now, we propose the following fractional-order HIV infection model with cure rate of infected cells in eclipse stage:

\begin{equation}
\begin{cases}
\frac{D_t^\alpha}{5} T(t) = \lambda - \mu T(t) - f(T(t), V(t)) V(t) + \rho E(t), \\
\frac{D_t^\alpha}{5} E(t) = f(T(t), V(t)) V(t) - (\mu_E + \rho + \gamma) E(t), \\
\frac{D_t^\alpha}{5} I(t) = \gamma E(t) - \mu_1 I(t), \\
\frac{D_t^\alpha}{5} V(t) = k I(t) - \mu V(t),
\end{cases}
\end{equation}

subject to initial conditions

\begin{equation}
T(0) \geq 0, \quad E(0) \geq 0, \quad I(0) \geq 0, \quad V(0) \geq 0,
\end{equation}

where \(0 < \alpha \leq 1 \).

Remark 5. It follows from the results of Boukhouima et al. [13] that system (19)–(20) has a unique global solution.

Let \(u(t) = (T(t), E(t), I(t), V(t)) \) be a solution of (19)–(20). According to our Corollary 2, since \(L \) given by (18) is a Lyapunov function for the ordinary differential equations (17) of the form described by (12), then \(L \) is also a Lyapunov function for the fractional-order system (19)–(20).

4. Conclusion

Mathematical models using ordinary differential equations have proved valuable to understand the interactions and the evolution of different biological phenomena [34]. However, such models ignore memory effects and long-range interactions, which exist in most biological systems. For this reason, fractional differential equations have recently been used to model more accurately such real processes: see, e.g., [5, 8, 35, 38]. As is well known, stability analysis is an important performance metric for any dynamical system [10, 47, 56]. The fractional-order extension of Lyapunov’s direct method becomes, naturally, one of main interesting techniques to study the global behavior of fractional-order models without solving explicitly such systems [9]. This method provides a way to determinate asymptotic stability by constructing a suitable Lyapunov function, which is not easy to find. Here, a new lemma for Caputo fractional derivatives of order \(0 < \alpha \leq 1 \), of some functions, is presented. Our approach consists to construct Lyapunov functions for FDEs using Lyapunov functions for ODEs. This result is shown to be useful to determine the asymptotic stability of fractional-order systems in biology. In addition, the inequality obtained by Vargas-De-León [61] for Volterra-type Lyapunov functions is generalized and improved.
On the other hand, two proposed fractional HIV models are studied to show the effectiveness of our method. Firstly, we demonstrated the global stability of the endemic equilibrium of a fractional SICA model based on the Lyapunov functional proposed by Silva and Torres [55], when the basic reproduction number is greater than one, that is, $R_0 > 1$. Secondly, we have improved the global stability of the disease-free equilibrium by constructing an appropriate Lyapunov functional when $R_0 \leq 1$. To validate these theoretical results, we carried out some numerical simulations for different values of the order of the fractional derivative. We also remarked that when the value of this order is small, the solution of the fractional SICA model converges rapidly to the steady-states. The same approach is applied to prove the global stability of any arbitrary equilibrium point for a fractional HIV cellular model.

Time delay is a very important element in mathematical biology [23]. Generally, it represents the incubation time, the time needed for the activation of immunity or other biological effects [54]. To study the global stability of delayed systems, we often combine Volterra-type Lyapunov functions with others depending on the delays. Our method can be useful in biology to extend such functions to fractional systems with delays. This is under investigation and will be addressed elsewhere.

ACKNOWLEDGMENT

Torres is supported by the Portuguese Foundation for Science and Technology (FCT – Fundação para a Ciência e a Tecnologia), within project UIDB/04106/2020 (CIDMA). The authors are strongly grateful to two anonymous referees for their suggestions and invaluable comments.

REFERENCES

[1] R. P. Agarwal, D. Baleanu, J. J. Nieto, D. F. M. Torres and Y. Zhou, A survey on fuzzy fractional differential and optimal control nonlocal evolution equations, *J. Comput. Appl. Math.* **339** (2018), 3–29. doi: 10.1016/j.cam.2017.09.039 arXiv:1709.07765

[2] N. Aguila-Camacho, M. A. Duarte-Mermoud and J. A. Gallegos, Lyapunov functions for fractional order systems, *Commun. Nonlinear Sci. Numer. Simul.* **19** (2014), no. 9, 2951–2957. doi: 10.1016/j.cnsns.2014.01.022

[3] A. A. M. Arafa, S. Z. Rida and M. Khalil, A fractional-order model of HIV infection: numerical solution and comparisons with data of patients, *Int. J. Biomath.* **7** (2014), no. 4, 1450036, 11 pp. doi: 10.1142/S1793524514500363

[4] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh and A. Torres, On a fractional order Ebola epidemic model, *Adv. Difference Equ.* **2015**, 2015:278, 12 pp. doi: 10.1186/s13662-015-0613-5

[5] S. Arshad, O. Defterli and D. Baleanu, A second order accurate approximation for fractional derivatives with singular and non-singular kernel applied to a HIV model, *Appl. Math. Comput.* **374** (2020), 125061, 18 pp. doi: 10.1016/j.amc.2020.125061

[6] E. J. Avila-Vales and A. G. Cervantes-Pérez, Global stability for SIRS epidemic models with general incidence rate and transfer from infectious to susceptible, *Bol. Soc. Mat. Mex.* **25** (2019), no. 3, 637–658. doi: 10.1007/s40590-018-0211-0

[7] D. Baleanu, K. Diethelm, E. Scalas and J. J. Trujillo, *Fractional calculus*, second edition, Series on Complexity, Nonlinearity and Chaos, 5, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2017.

[8] D. Baleanu, A. Jajarmi, S. S. Sajjadi and D. Mozyrska, A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator, *Chaos* **29** (2019), no. 8, 083127, 15 pp. doi: 10.1063/1.5096159

[9] D. Baleanu, A. Ranjbar Noei, S. J. Sadati, H. Delavari, T. Abdeljawad and V. Gejji, Lyapunov-Krasovskii stability theorem for fractional systems with delay, *Romanian J. Phys.* **56** (2011), no. 5-6, 636–643.
[10] D. Baleanu, G.-C. Wu and S.-D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solitons Fractals 102 (2017), 99–105. doi: 10.1016/j.chaos.2017.02.007

[11] A. Boukhouima, K. Hattaf and N. Yousfi, Dynamics of a fractional order HIV infection model with specific functional response and cure rate, Int. J. Differ. Equ. 2017 (2017), Art. ID 8372140, 8 pp. doi: 10.1155/2017/8372140

[12] A. Boukhouima, K. Hattaf and N. Yousfi, A fractional order model for viral infection with cure of infected cells and humoral immunity, Int. J. Differ. Equ. 2018 (2018), Art. ID 1019242, 12 pp. doi: 10.1155/2017/8372140

[13] A. Boukhouima, K. Hattaf and N. Yousfi, Modeling the Memory and Adaptive Immunity in Viral Infection. In: Trends in Biomathematics: Mathematical Modeling for Health, Harvesting, and Population Dynamics, Springer, Cham, (2019), 271–297. doi: 10.1007/978-3-7091486

[14] B. Buonomo and C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl. 385 (2012), no. 2, 709–720. doi: 10.1016/j.jmaa.2011.07.006

[15] R. Caponetto, G. Dongola, L. Fortuna and I. Petráš, Fractional order systems: Modelling and control applications, World Scientific, Singapore, 2010. doi: 10.1142/9789814304207

[16] L. C. Cardoso, F. L. P. Dos Santos and R. F. Camargo, Analysis of fractional-order models for hepatitis B, Comput. Appl. Math. 37 (2018), no. 4, 4570–4586. doi: 10.1007/s40314-018-0588-4

[17] K. S. Cole, Electric conductance of biological systems, Cold Spring Harb. Symp. Quant. Biol. 1 (1933), 107–116. doi: 10.1101/doi:10.1101/823.1933.001.01.014

[18] L. Debnath, Recent applications of fractional calculus to science and engineering, Int. J. Math. Math. Sci. 2003 (2003), no. 54, 3413–3442. doi: 10.1155/S0161171203501486

[19] H. Delavari, D. Baleanu and J. Sadati, Stability analysis of Caputo fractional-order nonlinear systems revisited, Nonlinear Dynam. 67 (2012), no. 4, 2433–2439. doi: 10.1007/s11071-014-0157-5

[20] M. A. Duarte-Mermoud, N. Aguila-Camacho, J. A. Gallegos and R. Castro-Linares, Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems, Commun. Nonlinear Sci. Numer. Simul. 22 (2015), no. 1-3, 650–659. doi: 10.1016/j.csns.2014.10.008

[21] A. M. Elaiw and N. H. AlShamrani, Global stability of humoral immunity virus dynamics models with nonlinear infection rate and removal, Nonlinear Anal. Real World Appl. 26 (2015), 161–190. doi: 10.1016/j.nonrwa.2015.05.007

[22] A. M. Elaiw, A. A. Raezah and A. M. Shehata Stability of general virus dynamics models with both cellular and viral infections, J. Nonlinear Sci. Appl. 10 (2017), no. 4, 1538–1560. doi: 10.22436/jnsa.010.04.21

[23] A. Elazzouzi, A. Lamrani Alaoui, M. Tilioua and D. F. M. Torres, Analysis of a SIRI epidemic model with distributed delay and relapse, Stat. Optim. Inf. Comput. 7 (2019), no. 3, 545–557. doi: 10.19139/soci-2310-5070-831 arXiv:1812.09626

[24] M. F. Elettreby, A. A. Al-Raezah and T. Nabil, Fractional-order model of two-prey one-predator system, Math. Probl. Eng. 2017 (2017), Art. ID 6714538, 12 pp. doi: 10.1155/2017/6714538

[25] H. Fazli and J. J. Nieto, Fractional Langevin equation with anti-periodic boundary conditions, Chaos Solitons Fractals 114 (2018), 332–337. doi: 10.1016/j.chaos.2018.07.009

[26] P. Georgescu and Y. Hsieh, Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM J. Appl. Math. 67 (2007), no. 2, 337–353. doi: 10.1137/0606654876

[27] B. Ghanbari, H. Günerhan and H. M. Srivastava, An application of the Atangana-Baleanu fractional derivative in mathematical biology: a three-species predator-prey model, Chaos Solitons Fractals 138 (2020), 109910, 15 pp. doi: 10.1016/j.chaos.2020.109910

[28] G. González-Parraga, A. J. Arenas and B. M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1), Math. Methods Appl. Sci. 37 (2014), no. 15, 2218–2226. doi: 10.1002/mma.2968

[29] K. Hattaf, M. Khabouze and N. Yousfi, Dynamics of a generalized viral infection model with adaptive immune response, Int. J. Dyn. Control 3 (2015), no. 3, 253–261. doi: 10.1007/s40435-014-0130-5

[30] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing Co., Inc., River Edge, NJ, 2000. doi: 10.1142/9789812817747
[31] J. Huo, H. Zhao and L. Zhu, The effect of vaccines on backward bifurcation in a fractional order HIV model, *Nonlinear Anal. Real World Appl.* **26** (2015), 289–305. doi: 10.1016/j.nonrwa.2015.05.014

[32] A. Jajarmi and D. Baleanu, On the fractional optimal control problems with a general derivative operator, *Asian Journal of Control*, in press. doi: 10.1002/asjc.2282

[33] A. Jajarmi, A. Yusuf, D. Baleanu and M. Inc, A new fractional HRSV model and its optimal control: A non-singular operator approach, *Physica A* (2020), 547 (2020), 123860. doi: 10.1016/j.physa.2019.123860

[34] D. S. Jones, M. J. Plank and B. D. Sleeman, *Differential equations and mathematical biology*, second edition, Chapman & Hall/CRC Mathematical and Computational Biology Series, CRC Press, Boca Raton, FL, 2010.

[35] M. A. Khan, Z. Hammouch and D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, *Math. Model. Nat. Phenom.* **14** (2019), no. 3, Paper No. 311, 19 pp. doi: 10.1051/mmnp/2018074

[36] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh 4, D. Baleanu and Mehdi Salimi, An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets, *Mathematics* **8** (2020), no. 4, 558. doi: 10.3390/math8040558

[37] D. Kumar, J. Singh and D. Baleanu, On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law, *Math. Methods Appl. Sci.* **43** (2020), no. 1, 443–457. doi: 10.1002/mma.5903

[38] D. Kumar, J. Singh, M. A. Qurashi and D. Baleanu, A new fractional SIRS-SI malaria disease model with application of vaccines, antimalarial drugs, and spraying, *Adv. Difference Equ.* 2019, Paper No. 278, 19 pp. doi: 10.1186/s13662-019-2199-9

[39] J. P. LaSalle, *The stability of dynamical systems*, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.

[40] H.-L. Li, L. Zhang, C. Hu, Y.-L. Jiang and Z. Teng, Dynamical analysis of a fractional-order predator-prey model incorporating a prey refuge, *J. Appl. Math. Comput.* **54** (2017), no. 1-2, 435–449. doi: 10.1007/s12190-016-1017-8

[41] M. Maziane, K. Hattaf and N. Yousfi, Global stability for a class of HIV infection models with cure of infected cells in eclipse stage and CTL immune response, *Int. J. Dyn. Control* **5** (2017), no. 4, 1035–1045. doi: 10.1007/s40435-016-0268-4

[42] M. Maziane, E. M. Lotfi, K. Hattaf and N. Yousfi, Dynamics of a class of HIV infection models with cure of infected cells in eclipse stage, *Acta Biotheoretica* **63** (2015), no. 4, 363–380. doi: 10.1007/s10441-015-9263-y

[43] K. M. Owolabi, *High-dimensional spatial patterns in fractional reaction-diffusion system arising in biology*, Chaos Solitons Fractals **134** (2020), 109723, 12 pp. doi: 10.1016/j.chaos.2020.109723

[44] I. Podlubny, *Fractional differential equations*, Mathematics in Science and Engineering, 198, Academic Press, Inc., San Diego, CA, 1999.

[45] F. A. Rihan, D. Baleanu, S. Lakshmanan and R. Rakkiyappan, On fractional SIRC model with Salmonella bacterial infection, *Abstr. Appl. Anal.* **2014** (2014), Art. ID 136263, 9 pp. doi: 10.1155/2014/136263

[46] F. A. Rihan, M. Sheek-Hussein, A. Tridane and R. Yafia, Dynamics of hepatitis C virus infection: mathematical modeling and parameter estimation, *Math. Model. Nat. Phenom.* **12** (2017), no. 5, 33–47. doi: 10.1051/mmnp/201712503

[47] D. Rocha, C. J. Silva and D. F. M. Torres, Stability and optimal control of a delayed HIV model, *Math. Methods Appl. Sci.* **41** (2018), no. 6, 2251–2260. doi: 10.1002/mma.4207 arXiv:1609.07654

[48] S. Rosa and D. F. M. Torres, Optimal control of a fractional order epidemic model with application to human respiratory syncytial virus infection, *Chaos Solitons Fractals* **117** (2018), 142–149. doi: 10.1016/j.chaos.2018.10.021 arXiv:1810.06900

[49] S. Rosa and D. F. M. Torres, Optimal control and sensitivity analysis of a fractional order TB model, *Stat. Optim. Inf. Comput.* 7 (2019), no. 3, 617–625. doi: 10.19139/soic-2310-5070-836 arXiv:1812.04507

[50] Y. A. Rossikhin and M. V. Shitikova, Application of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, *Appl. Mech. Rev.* **50** (1997), no. 1, 15–67. doi: 10.1115/1.3101682
[51] M. Saeedian, M. Khalighi, N. Azimi-Tafreshi, G. R. Jafari and M. Ausloos, Memory effects on epidemic evolution: the susceptible-infected-recovered epidemic model, Phys. Rev. E 95 (2017), no. 2, 022409, 9 pp. doi: 10.1103/physreve.95.022409

[52] S. S. Sajjadi, D. Baleanu, A. Jajarmi and H. M. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, Chaos, Solitons and Fractals 138 (2020), 109919. doi: 10.1016/j.chaos.2020.109919

[53] E. Scalas, R. Gorenflo and F. Mainardi, Fractional calculus and continuous-time finance, Phys. A 284 (2000), no. 1-4, 376–384. doi: 10.1016/S0378-4371(00)00255-7

[54] C. J. Silva, H. Maurer and D. F. M. Torres, Optimal control of a tuberculosis model with state and control delays, Math. Biosci. Eng. 14 (2017), no. 1, 321–337. doi: 10.3934/mbe.2017021

[55] C. J. Silva and D. F. M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, Ecological Complexity 30 (2017), 70–75. doi: 10.1016/j.ecocom.2016.12.001

[56] C. J. Silva and D. F. M. Torres, Stability of a fractional HIV/AIDS model, Math. Comput. Simulation 164 (2019), 180–190. doi: 10.1016/j.matcom.2019.03.016

[57] J. Singh, H. K. Jassim and D. Kumar An efficient computational technique for local fractional Fokker Planck equation, Physica A 555 (2020), 124525. doi: 10.1016/j.physa.2020.124525

[58] J. Singh, D. Kumar, M. Al Qurashi and D. Baleanu, A new fractional model for giving up smoking dynamics, Adv. Difference Equ. 2017 (2017), Paper No. 88, 16 pp. doi: 10.1186/s13662-017-1139-9

[59] J. Singh, D. Kumar and D. Baleanu, On the analysis of fractional diabetes model with exponential law, Adv. Difference Equ. 2018 (2018), Paper No. 231, 15 pp. doi: 10.1186/s13662-017-1139-9

[60] J. Singh, D. Kumar and D. Baleanu, A new analysis of fractional fish farm model associated with Mittag-Leffler-type kernel, Int. J. Biomath. 13 (2020), no. 2, 2050010, 17 pp. doi: 10.1142/S1793524520500102

[61] C. Vargas-De-León, Volterra-type Lyapunov functions for fractional-order epidemic systems, Commun. Nonlinear Sci. Numer. Simul. 24 (2015), no. 1-3, 75–85. doi: 10.1016/j.cnsns.2014.12.013

[62] P. Veeresha, D. G. Prakasha, D. Kumar, D. Baleanu and J. Singh, An Efficient Computational Technique for Fractional Model of Generalized Hirota–Satsuma-Coupled Korteweg-de Vries and Coupled Modified Korteweg-de Vries Equations, J. Comput. Nonlinear Dynam. 15 (2020), no. 7, 071003, 14 pp. doi: 10.1115/1.4046898

[63] W. Wojtak, C. J. Silva and D. F. M. Torres, Uniform asymptotic stability of a fractional tuberculosis model, Math. Model. Nat. Phenom. 13 (2018), no. 1, Art. 9, 10 pp. doi: 10.1051/mmnp/2018015

[64] A. Yıldız, A. Jajarmi, B. Yıldız and D. Baleanu, New aspects of time fractional optimal control problems within operators with nonsingular kernel, Discrete Contin. Dyn. Syst. Ser. S 13 (2020), no. 3, 407–428. doi: 10.3934/dcdss.2020023

[65] S. B. Yuste, L. Acedo and K. Lindenberg, Reaction front in an A + B \to C reaction-subdiffusion process, Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 69 (2004), no. 3, 036126, 10 pp. doi: 10.1103/PhysRevE.69.036126

[66] G. M. Zaslavsky, M. Edelman and V. E. Tarasov, Dynamics of the chain of forced oscillators with long-range interaction: from synchronization to chaos, Chaos 17 (2007), no. 4, 043124, 10 pp. doi: 10.1063/1.2819637

Submitted to Chaos, Solitons & Fractals May 25, 2020; revised July 25, 2020; accepted for publication August 19, 2020.