Family Stress and The Risk of Cardiovascular Diseases in Working-Age Population 25-64 Years (WHO program MONICA-Psychosocial)

Gafarov VV1,2, Gromova EA1,2, Panov DO1,2, Gagulin IV1,2 and Gafarova AV1,2

1Institute of Internal and Preventive Medicine – branch of Institute of Cytology and Genetics RAS, Novosibirsk
2Collaborative laboratory of Cardiovascular Diseases Epidemiology, Novosibirsk

Abstract

Purpose: To determine the influence of family stress on the risk of cardiovascular diseases (myocardial infarction and stroke) in an open population aged 25–64 years in Russia / Siberia.

Methods: Within the framework of the III screening of WHO’s MONICA-psychosocial program, a random representative sample of the population of both sexes of 25-64 years of Novosibirsk in 1994 (men n = 657, mean age 44.3 ± 0.4y, response 82.1%; women: n = 689, mean age 45.4 ± 0.4y, response 72.5%) was examined. The screening included: socio-demographic data, the definition of the family stress. New-onset cases of MI and stroke in women - 15 and 35 cases and in men - 30 and 22 cases, respectively detected in the cohort over follow-up period in frame of budgetary theme № AAAA-A17-117112850280-2.

Results: In the open population aged of 25-64 years the prevalence of high family stress was higher in men (31.5%) than women (20.9%). The risk of myocardial infarction in men and women experiencing stressful situations in the family was 5.9 and 5.58-fold higher, respectively over 16-year period. The most significant risk factors for the development of myocardial infarction were divorce (HR = 3.9) and widowhood (HR = 6.3). The risk of developing a stroke was 3.45-fold higher in men and 3.52-fold higher in women with family stress. The risk of developing stroke was higher among those with high school and elementary education levels, both in men (HR = 3.9 and HR = 6.3) and women (HR = 2.87 and HR = 3.33).

Conclusion: Stress in the family is more common in men within the working-age population. Family stress increases the risk of developing both myocardial infarction and stroke among men and women.

Keywords: Men, Women, Stress at Home, Relative Risk, Myocardial Infarction, Stroke

Introduction

Cardiovascular disease remains the leading cause of the burden of disease globally, which underpins the continuing need to identify new additional targets for prevention [1]. To reduce the burden of cardiovascular diseases in addition to identifying generally recognized risk factors for CVD it is necessary to determine a target group in the population undergoing high risk of future cardiovascular events which need timely preventive programs [2]. Although 80% of CVD risk can be predicted based on well-known CVD risk factors such as old age, male gender, hypertension, hyperlipidemia, smoking and diabetes mellitus the determinants for another 20% of risk remain unclear [3]. The unconventional risk factors that may be associated with CVD include psychosocial factors in particularly the family stress [4]. A favorable psychological climate in the family leads to a decrease in the risk of developing both myocardial infarction [5, 6] and stroke [7]. There are studies that have not found the effect of stressful situations in the family on the risk of future CVD [8, 9]. In addition, there are studies that show certain gender differences in the effect of family stress on CVD risk [10]. In view of the fragmentation of the results and different interpretations of problems in the family, as well as probable gender characteristics, the purpose of our study was to study the prognostic effect of stress in the family on the risk of CVD (myocardial infarction and stroke) in an open population aged of 25-64 years in Novosibirsk.

Methods

Within the framework of the III screening of the WHO MONICA-
psychosocial program (Monitoring trends in morbidity and mortality from cardiovascular diseases and their determining factors) [11] a random representative sample of general population 25-64 years in the city district in Novosibirsk was examined in 1994. (men n = 657, mean age - 44.3 ± 0.4 years, response - 82.1%; women n = 689, mean age - 45.4 + 0.4 years, response - 72.5%). The sample was formed according to the requirements of the WHO MONICA – psychosocial protocol [11].

The screening examination program included the following sections:

1) registration of socio-demographic data was carried out according to the standard epidemiological protocol of the WHO MONICA-psychosocial program: identification number, place of residence, full name, date of birth, date of registration. Gender: 1 - male, 2 - female. The distribution by age group is presented in Table 1. Marital status (Table 2), education level (Table 3), professional level (Table 4) were taken into account.

Table 1: Distribution on age groups in population aged of 25-64 years (III screening, 1994)

age groups	Total
25-34 years	
35-44 years	
45-54 years	
55-64 years	

χ²=2.087 df=3 p=0.555

Table 2: Distribution on marital status in population aged of 25-64 years (III screening, 1994)

marital status	Total
Never Married	
Married	
Divorced	
Widowed	

χ²=33.113 df=3 p=0.0001

Table 3: Distribution on educational degree in population aged of 25-64 years (III screening, 1994)

educational degree	Total
University	
College	
High school	
Elementary/primary	

χ²=8.133 df=3 p=0.043

Table 4: Distribution on occupational status in population aged of 25-64 years (III screening, 1994)

occupational status	Total
TM	
MM	
Manag	
Engineers	
WHPL	
WAPL	
WLPL	
Students	
Retired	

χ²=238.16 df=8 p=0.001
The study identified the following “endpoints”: new-onset cases of myocardial infarction (MI), stroke. Registration of all cases of MI was carried out on the basis of the WHO program “Registry of acute myocardial infarction”. Sources used to identify cases of stroke: annual survey of individuals in the population cohort, medical records, inpatient discharge reports, district clinics, death certificates, interviews with relatives, autopsy and forensic reports. During the observation period in frame of budgetary theme № AAAA-A17-117112850280-2, the cohort revealed 15 cases of new-onset myocardial infarction in women and 30 in men, and 35 cases of new-onset stroke in women and 22 in men.

Statistical analysis was performed using the SPSS software package version 11.5 [12]. To check the statistical significance of differences between groups, we used: Pearson’s chi-square test χ^2. To assess the risk ratio - hazard ratio (HR) and its 95% CI (confidence interval) (minimum-maximum), taking into account different control times, we used the univariate single-factor Cox-regression and multivariate proportional-hazards regression model [13]. Reliability in all types of analysis was accepted at a significance level of $p\leq0.05$.

Results

In the open population of 25-64 years in Novosibirsk both a high level (31.5% and 20.9%, respectively) and an average level (50.3% and 48.2%, respectively) of stress in the family were higher among men than among women ($\chi^2 = 29.638$ df = 2 $p = 0.001$). Indicators of a high level of stress in the family were more common in men aged of 55-64 years (39.3%) ($\chi^2 = 19.744$ df = 2 $p = 0.001$) and in women at the age of 45-54 years (22.9%) ($\chi^2 = 7.659$ df = 2 $p = 0.022$) as presented in table 5.

Family stress	25-34	35-44	45-54	55-64	25-64					
	M	F	M	F	M	F	M	F	M	F
Low	32	20.8	34	20.9	24	18.9	18	12	18	12
Moderate	80	51.9	61	48.4	61	48	62	44.3	73	48.7
High	42	27.3	29	23	42	33.1	59	39.3	186	31.5
Total	154	100	126	100	163	100	127	100	140	100
χ^2	2.400	df = 2	5.611	df = 2	7.659	df = 2	19.744	df = 2	29.638	df = 2
	0.301	$P = 0.06$	0.022	$P = 0.001$	0.001	$P = 0.001$				

The highest level of family stress in our population was experienced by widowed men (30%) and widowed women (22.5%) ($\chi^2 = 6792$ df = 2; $p = 0.003$) (Table 6).
Table 6: Family stress and marital status in population 25-64 years (III screening, 1994)

Family stress	Never Married			Married			Divorced			Widowed						
	M	F	M	F	M	F	M	F	M	F	M	F				
	N	%	N	%	N	%	N	%	N	%	N	%				
Low	9	23.1	12	37.5	162	31.7	114	29.8	8	9.4	14	29.8	3	30	14	35
Moderate	17	43.6	9	28.1	256	50.1	194	50.8	21	65.6	22	46.8	4	40	17	42.5
High	13	33.3	11	34.4	93	18.2	74	19.4	3	25	11	23.4	3	30	9	22.5
Total	39	100	32	100	511	100	382	100	32	100	47	100	10	100	40	100

χ²=2.39 df=2; P=0.303
χ²=0.426 df=2; P =0.808
χ²=4.945df=2;P = 0.084
χ²=6.792df= 2; P =0.03

Men were more likely than women to experience family stress regardless of education level. Among men and women with university degree stress was experienced by 29.7% and 24.1%, respectively (χ²=8492 df=2 p=0.01). In those with college degree prevalence of stress was 33.9% and 19.5%, respectively (χ²=10617 df=2 p=0.03). Among people with primary level of education men experienced the highest level of stress in the family (39.3%) than women (24.7%) (χ²=5.946 df= 2; p=0.05) (Table 7).

Table 7: Family stress and educational level in population 25-64 years (III screening, 1994)

Family stress	University			College			High school			Elementary/primary						
	M	F	M	F	M	F	M	F	M	F	M	F				
	N	%	N	%	N	%	N	%	N	%	N	%				
Low	28	15.4	39	29.3	32	18.7	47	29.6	29	22.7	46	37.1	19	17	23	28.4
Moderate	100	54.9	62	46.6	81	47.4	81	50.9	70	54.7	59	47.6	49	43.8	38	46.9
High	54	29.7	32	24.1	58	33.9	31	19.5	29	22.7	19	15.3	44	39.3	20	24.7
Total	182	100	133	100	171	100	159	100	128	100	124	100	112	100	81	100

χ²=8.492 df=2; P =0.01
χ²=10.617 df= 2;P = 0.05
χ²=6.813 df=2; P = 0.03
χ²=5.946df= 2; P= 0.05

In the studied population, among workers with average physical labor, there were more men (35.9%) experiencing stress in the family than women (20.3%) (χ²=9.736 df=2 p = 0.008). Male pensioners were also reliably more likely to experience stress in the family (46.9%) in comparison with females (23.6%) belonging to this group (χ²=11.283 df=2 p=0.004). In other groups, differing in professional level, there was a tendency of increased stress in men, compared with women (Table 8).
Family stress	TM M	F	MM M	F	Managers M	F	Engineers M	F	WHPL M	F	WAPL M	F	WLPL M	F	Students M	F	Retired M	F		
Low	27	100	0	0	11	19.6	9	27.3	14	20.6	28	33.3	23	14.7	22	29.7	2	18.2	23	29.5
Moderate	14	51.9	3	100	28	50	16	48.5	10	53.6	21	53.8	37	54.4	35	41.7	28	52.2	3	27.3
High	5	18.5	0	0	17	30.4	8	24.2	15	26.8	5	12.8	17	25	21	25	29	25.2	2	18.2
Total	8	29.6	3	100	56	100	33	100	56	100	39	100	68	100	84	100	115	100	11	100

\(\chi^2 = 6.015\) df = 2; \(P = 0.049\)

\(\chi^2 = 0.824\) df = 2; \(P = 0.662\)

\(\chi^2 = 3.386\) df = 2; \(P = 0.147\)

\(\chi^2 = 3.498\) df = 2; \(P = 0.065\)

\(\chi^2 = 5.479\) df = 2; \(P = 0.008\)

\(\chi^2 = 9.736\) df = 2; \(P = 0.004\)

\(\chi^2 = 0.611\) df = 2; \(P = 0.737\)

\(\chi^2 = 4.041\) df = 1; \(P = 0.133\)

\(\chi^2 = 11.283\) df = 2; \(P = 0.004\)

TM - Top Managers
MM - Middle Managers
WHPL - Workers of heavy physical labor
WAPL - Workers of average physical labor
WLPL - Workers of light physical labor
In Cox’s univariate regression analysis, the risk of myocardial infarction over a 16-year period among individuals experiencing stress in the family was: among men HR = 5.9 (95% CI 2.54-12.9; p <0.001) and among women HR = 5.58 (95% CI 1.98-15.7; p <0.001) (Table 9).

Table 9: Relative risk of myocardial infarction (Univariate Cox regression model)

Risk Factors	male		female			
	p	HR	95.0% CI HR	p	HR	95.0% CI HR
High & Moderate family stress	0.001	5.9	2.54	12.9		
	0.001	5.58	1.98	15.70		

In Cox’s multivariate regression analysis, the following risk factors were included in the model: stress in the family, as well as social gradient (marital status, educational level and occupational status) and age. The risk of developing myocardial infarction among people with stress in the family compared with those with a low level of stress in the family remained significant for men HR=2.3 (95% CI 1.09-5.5; p <0, 05) and for women HR=6.52 (95% CI 2.13-19.97; p <0.001). Living alone is most significant risk factors for myocardial infarction for men compared to married ones. The risk of myocardial infarction among divorced men was 3.9 times higher (95% CI 1.2-12.1; p <0.01) and among widowed ones it was 6.3 times higher (95% CI 1.3-30, 9; p <0.02). And MI risk was also higher in retired HR=1.7 (95% CI 1.2-2.4; p <0.02) (Table 10).

Table 10: Relative risk of myocardial infarction (Multivariate Cox Regression Model)

Risk Factors	Reference group	male		female		
	p	HR	95.0% CI HR	p	HR	95.0% CI HR
High & Moderate family stress	0.05	2.3	1.09	5.5		
45-64 years	0.1	1.5	0.5	4.5		
Never married	0.8	1.2	0.16	10.3		
Divorced	0.01	3.9	1.2	12.1		
Widowed University	0.02	6.3	1.3	30.9		
High School	0.2	2.4	0.5	11.2		
Primary	0.07	3.3	0.9	12.7		
Physical labor	0.4	2.5	0.2	26.5		
Retired	0.02	1.7	1.2	2.4		

The risk of stroke, as shown by Cox univariate analysis, among those experiencing stress at home was approximately the same compared to those who had lower levels of stress both in men HR=3.45 (95% CI 2.11-7.53; p <0.0001) and women HR=3.52 (95% CI 1.81-6.84; p <0.0001) (Table 11).

Table 11: Relative risk of stroke (Univariate Cox regression model)

Risk Factors	male		female			
	p	HR	95.0% CI HR	p	HR	95.0% CI HR
High & Moderate family stress	0.0001	3.45	2.11	7.53		

Multivariate modeling, including social factors and age in the model, showed that family stress increases the risk of stroke among men by 2.3 times (95% CI 1.9-5.5; p <0.05) and among women in 3.72 times (95% CI 1.85-7.5; p <0.001). The risk of stroke was higher in those with high school and primary education compared with those having university degree both in men (HR = 3.9 95% CI 1.2-12.1; p <0.01 and HR = 6.3 95% CI 1.3-30.9; p <0.02, respectively) and in women (HR=2.87 95%CI 1.78-10.61; p<0.03 and HR=3.33 95%CI 1.76-14.52; p<0.01, respectively). The risk of stroke was 1.7-fold higher among pensioners in comparison with managers in male group (95% CI 1.2-2.4; p<0.02) (Table 12).
Table 12: Relative risk of stroke (Multivariate Cox Regression Model)

Risk Factors	Reference group	Male p	HR	95.0% CI HR	Female p	HR	95.0% CI HR		
High & Moderate family stress	Low family stress	0.05	2.3	1.9	5.5	0.0001	3.72	1.85	7.50
55-64 years	25-54 years	0.1	1.5	0.5	4.5	0.11	3.52	0.73	16.82
Never married	Married	0.4	1.6	0.3	6.9	0.82	5.46	1.23	24.28
Divorced	Widowed	0.2	2.4	0.5	11.2	0.92	0.91	0.12	6.76
Widowed	0.07	3.3	0.9	12.7	0.86	0.93	0.42	2.05	
College	University	0.8	1.2	0.16	10.3	0.14	2.44	0.74	8.03
High School	0.01	3.9	1.2	12.1	0.03	2.87	1.78	10.61	
Primary	0.02	6.3	1.3	30.9	0.01	3.33	1.76	14.52	
Workers of heavy physical labor	0.9	4.6	0.4	46.3	0.82	1.18	0.04	5.83	
Workers of average physical labor	Managers	0.4	2.5	0.2	26.5	0.74	1.16	0.46	2.90
Retired	0.02	1.7	1.2	2.4	0.54	1.56	0.37	6.63	

Discussion

The concept that family stress can be associated with coronary heart disease (CHD) has existed since the late 1970s, beginning with the pioneering work of Medalie and Goldbourt in 1976 [14]. To date, most research on family problems and their health effects has focused on feelings of happiness and satisfaction in the family. Interpersonal responses to conflict as well as the impact of spousal work outside the home are new concepts in predicting the health outcomes of family stress. For example, some criteria of stress in the family are very often used to form a conceptual understanding of family well-being: a) family happiness and satisfaction; b) the number and type of disagreements; c) the feelings of people in marriage, which reflects the level of interaction between spouses. Of greatest interest are other parameters: d) how a person reacts to a conflict with a spouse, which reflects an interpersonal response to stress, and e) the influence of a spouse’s work, which shows how the spouse’s external activities affect married life [15].

In our study, we analyzed both the external activities of the spouses (indicators of the level of education and professional activity) and marital status, and their impact on the level of stress in the family. In the studied working-age population men (31.5%) more often experienced a high level of stress in the family than women (20.9%). The prevalence of stress was higher in middle-aged women (22.9%) while it was higher in older men (39.3%). The highest level of stress in the family was observed among widowed men (30%) and women (22.5%). The death of a husband or wife is one of the most severe stressors. For example, according to the Holmes – Rahe comparative scale, the death of a spouse is estimated at a maximum of 100 points on the scale [16]. The loss of spouse played the most significant role in the risk of myocardial infarction in men which increased more than 6 times and the risk of myocardial infarction increased almost 4 times among divorced men. Our results are consistent with the Framingham study, which showed that married men have a survival advantage compared to unmarried men [15]. In a study of middle-aged men in the Netherlands unmarried men had a significantly higher risk of all-cause death (HR = 1.7) and coronary mortality (HR = 2.2) than married men [17]. In a Finnish study unmarried men had significantly higher mortality rates compared with married men [18].

The highest level of stress in the family (39.3%) was experienced by men with primary educational level as well as those related to workers with average physical labor (35.7%). In our population a low level of education contributed to an increased risk of stroke in both men (HR = 6.3) and women (HR = 3.33). Our findings are consistent with a cohort study in Australia where low educational attainment was associated with an increased risk of stroke in both men and women [19].

We did not find significant differences in groups experiencing stress in the family and differing by gender over 16 years of follow-up. The risk of myocardial infarction in men and women was almost 6 times higher and the risk of stroke was 3.5 times higher.

In the past 5-10 years, many datasets have been pooled in ‘meta-analyzes’, which has greatly accelerated progress in research on stress as a predictor of CVD risk. Severe stressful experiences in childhood such as physical violence and substance abuse in the family can be harmful to health and increase the risk of multiple chronic conditions in adulthood. Compared to childhood stress and classic adult risk factors such as smoking, high blood pressure and high serum cholesterol, the harmful effects of stress in adulthood are generally less pronounced. However, stress in adulthood plays an important role as a disease trigger in people who already have high levels of atherosclerotic plaques and as a determinant of prognosis and outcome in people with pre-existing cardiovascular or cerebrovascular disease. Longitudinal studies support earlier laboratory stress related observations concerned pathophysiological alterations. The decrease in the arrhythmic threshold and sympathetic activation with a corresponding increase in blood pressure as well as pro-inflammatory and procoagulant
reactions are precursors of mental stress. In some clinical
guidelines, stress has already been recognized as a prevention goal
for people with a high overall risk of cardiovascular disease or
with established cardiovascular disease [20].

Conclusions
1. In the open population of 25-64 years in Novosibirsk family
stress was higher among men (31.5%) compared to women
20.9%. High level of stress were more common among men
aged of 55-64 years (39.3%) and women aged of 45-54 years
(22.9%).
2. The highest level of family stress in our population was
experienced by widowed men (30%) and women (22.5%);
persons with primary level of education: men - 39.3%, women
- 24.7%; workers of average physical labor: men - 35.9%,
women - 20.3%.
3. The risk of myocardial infarction over a 16-year period in
persons experiencing family stress was among men HR=5.9
and among women HR=5.58. The most significant risk factors
for myocardial infarction incidence were divorcing (HR=3.9)
and widowhood (HR=6.3).
4. The risk of stroke in men with family stress 3.45-fold higher
and in women 3.52-fold higher. The risk of stroke was higher
in those with high school and primary education both in men
(HR=3.9 and HR = 6.3) and women (HR=2.87 and HR=3.33).

The work was performed within the framework of the
budgetary theme NITPM - branch of the ICG SB RAS Reg. №
AAAA-A17-117112850280-2, Gov.Task № 0324-2018-0001

References
1. GBD 2013 Mortality and Causes of Death Collaborators
(2015) Global, regional, and national age-sex specific all-
cause and cause-specific mortality for 240 causes of death,
1990-2013: a systematic analysis for the Global Burden of
Disease Study 2013. Lancet 385: 117-171.
2. Wong CW, Kwok CS, Narain A, Gulati M, Mihalidou AS, et
al. (2018) Marital status and risk of cardiovascular diseases:
a systematic review and meta-analysis. Heart 104: 1937-1948.
3. Xie G, Zou H, Myint PK, Shi P, Ren F, et al. (2016) Baseline
overall health-related quality of life predicts the 10-year
incidence of cardiovascular events in a Chinese population.
Qual Life Res 25: 363-371.
4. Satyjeet FNU, Naz S, Kumar V, Aung NH, Bansari K, et al.
(2020) Psychological Stress as a Risk Factor for Cardiovascular
Disease: A Case-Control Study. Cureus 12: e10757.
5. Consuegra-Sanchez M, Melgarejo-Moreno A, Jaulent-Huertas
L, Diaz-Pastor A, Escudero-Garcia G, et al. (2015) Unraveling
the relations between marital status and prognosis among
myocardial infarction survivors: impact of being widowed on
mortality. Int J Cardiol 185: 141-143.
6. Vujic I, Vlajinac H, Dubljicanin E, Vasiljevic Z, Matanovic
D, et al. (2015) Long-term prognostic significance of living
alone and other risk factors in patients with acute myocardial
infarction. Ir J Med Sci 184: 153-158.
7. Andersen KK, Andersen ZJ, Olsen TS (2011) Predictors of
early and late case-fatality in a nationwide Danish study of
26,818 patients with first-ever ischemic stroke. Stroke 42:
2806-2812.
8. Floud S, Balkwill A, Canoy D (2014) Marital status and
ischemic heart disease incidence and mortality in women: a
large prospective study. BMC Med 12: 42.
9. Kriegbaum M, Christensen U, Lund R, Prescott E, Osler M
(2008) Job loss and broken partnerships: do the number of
stressful life events influence the risk of ischemic heart disease
in men? Ann Epidemiol 18: 743-745.
10. Kilpi F, Konttinen H, Silventoinen K, Martikainen P (2015)
Living arrangements as determinants of myocardial infarction
incidence and survival: a prospective register study of over
300,000 Finnish men and women. Soc Sci Med 133: 93-100.
11. MONICA Monograph and Multimedia Sourcebook. Helsinki:
2003: 237.
12. Nasledov AD (2013) IBM SPSS 20 Statistics and AMOS:
Professional Statistical Data Analysis. A practical guide. Spb.:
Peter. (In Russ.)
13. Cox DR (1972) Regression Models and Life Tables. Journal
of the Royal Statistical Society Series B.; 34: 187-220.
14. Medalie JH, Goldbourt U (1976) Angina pectoris among
10,000 men. II. Psychosocial and other risk factors as
evidenced by a multivariate analysis of a five-year incidence
study. Am J Med 60: 910-921.
15. Eaker ED, Sullivan LM, Kelly-Hayes M, D’Agostino RB Sr,
Benjamin EJ (2007) Marital status, marital strain, and risk of
coronary heart disease or total mortality: The Framingham
Offspring Study. Psychosomatic Medicine 69: 509-513.
16. Noone PA (2017) The Holmes–Rahe Stress Inventory.
Occupational Medicine 67: 581-582.
17. Mendes de Leon CF, Appels AW, Otten FW, Schouten EG
(1992) Risk of mortality and coronary heart disease by marital
status in middle-aged men in the Netherlands. Int J Epidemiol
21: 460-466.
18. Valkonen T (1982) Psychosocial stress and sociodemographic
differentials in mortality from ischaemic heart disease in
Finland. Acta Med Scand Suppl 660: 152-164.
19. Jackson CA, Sudlow CLM, Mishra GD (2018) Education,
sex and risk of stroke: a prospective cohort study in New
South Wales, Australia. BMJ Open 8: e024070.
20. Dhindsa DS, Khamhlati J, Schultz WM, Tahhan AS, Quyyumi
AA (2020) Marital status and outcomes in patients with
cardiovascular disease. Trends Cardiovasc Med 30: 215-220.