Inverted c-functions in thermal states

Matthias Kaminski
University of Alabama

at DPG-Tagung der Sektion Materie und Kosmos, September 2nd, 2021
Entropic c-function in vacuum state

c-theorem: decreasing towards IR
Entropic c-function in thermal state

increasing towards IR

length scale
1. c-function & entanglement entropy
2. Gauge/gravity correspondence
3. $N=4$ Super-Yang-Mills (CFT)
 - c-function in vacuum state
 - c-function in thermal states
 - effect of the chiral anomaly
4. Discussion
1.1 c-Function

Zamolodchikov’s c-theorem in 2D

\[(c)_{UV} \geq (c)_{IR}\]

energy-momentum tensor:

\[\langle T^a_a \rangle = -\frac{c}{12} R\]

trace anomaly

[Zamolodchikov; JETP Lett.(1986)]

- IR/UV fixed points: c-function equals central charge of IR/UV CFT
- c-function measures degrees of freedom
- take a CFT: c-function constant

c-theorem in 4D (the a-theorem)

\[(a_4)_{UV} - (a_4)_{IR}\]

\[\langle T^b_b \rangle = \frac{c_{TT}}{16\pi^2} C^2 - \frac{a_4}{16\pi^2} \mathcal{E} - \frac{1}{4} F^2\]

[Komargodski,Schwimmer; (2011)]
[Cardy; Phys.Lett.B(1988)]
[Osborn; Phys.Lett.B(1988)]
1.2 **Entropic c-function**

\[c_2 = 3\ell \frac{\delta S_a}{\delta \ell} \]

- **2D**

[Casini, Huerta; Phys. Lett. B (2004)]

\(\ell \): length scale (inverse energy scale)

\[a_4 = \beta_4 \frac{\ell^3}{H^2} \frac{\partial S_a}{\partial \ell} \]

- **4D**

[Nishioka, Takayanagi; JHEP (2007)]

[Myers, Sinha; JHEP (2011)]

- **H**: IR-regulator
- **\(\beta_4 \)**: known constant

c-function defined by entanglement entropy
2. Holography: *theories & states*

[corresponding theories]

Conformal field theory (CFT) - *N=4 Super-Yang-Mills theory*

Gravitational theory - *Einstein-Maxwell-Chern-Simons theory*

corresponding states

Renormalization scale ↔ radial AdS coordinate

Vacuum state ↔ empty Anti de Sitter space

- A particular *metric* in gravity corresponds to a particular *state* in the CFT

[Maldacena; Adv.Theor.Math.Phys. (1998)]
2. Holography: *theories & states*

- **Conformal field theory (CFT)**
 - *N=4 Super-Yang-Mills theory*

- **Gravitational theory**
 - *Einstein-Maxwell-Chern-Simons theory*

Corresponding theories

Corresponding states

- Renormalization scale ➔ radial AdS coordinate
- Vacuum state ➔ empty Anti de Sitter space
- Thermal state ➔ black hole

Boundary of Anti de Sitter space

- A particular *metric* in gravity corresponds to a particular *state* in the CFT

Maldacena; Adv.Theor.Math.Phys. (1998)
2.1 Holographic entanglement entropy

Definition

\[S_a = - \text{Tr} \rho_a \log \rho_a, \quad \rho_a = \text{Tr}_b |\psi\rangle \langle \psi| \]
2.1 Holographic entanglement entropy

Definition

\[S_a = -\text{Tr} \rho_a \log \rho_a, \quad \rho_a = \text{Tr}_b |\psi\rangle \langle \psi| \]

Holographically dual definition
[Ryu, Takayanagi; JHEP (2006)]

\[S_a = \frac{1}{4G_5} A \]

\(G_5 \) is the 5-dimensional gravitational constant of Anti de Sitter spacetime

- Minimal surface area
- Holographic direction \(z \) (additional dimension)
- Strip length \(\ell \)
2.2 Gravity dual to $N=4$ SYM theory with magnetic field

Einstein-Maxwell-Chern-Simons action

$$S_{\text{grav}} = \frac{1}{2\kappa^2} \left[\int_{\mathcal{M}} d^5x \sqrt{-g} \left(R + \frac{12}{L^2} - \frac{1}{4} F_{mn}F^{mn} \right) - \frac{\gamma}{6} \int_{\mathcal{M}} A \wedge F \wedge F \right]$$

5-dimensional Einstein-Maxwell action encodes $N=4$ Super-Yang-Mills theory with axial $U(1)$ gauge symmetry

5-dimensional Chern-Simons term encodes chiral anomaly

Einstein-Maxwell equations

$$R_{\mu\nu} + 4g_{\mu\nu} \frac{1}{2} \left(F_{\mu\alpha} F_{\nu}{}^{\alpha} - \frac{1}{6} g_{\mu\nu} F_{\alpha\beta} F^{\alpha\beta} \right)$$

$$\nabla_{\mu} F^{\mu\nu} = -\frac{\gamma}{8\sqrt{-g}} \epsilon^{\nu\alpha\beta\lambda\sigma} F_{\alpha\beta} F_{\lambda\sigma}.$$

Solution: charged magnetic black brane metric

[D’Hoker, Kraus; JHEP (2010)]

- magnetic extension of a (charged) Reissner-Nordstrom black brane

$$ds^2 = \frac{1}{z^2} \left(\frac{dz^2}{U(z)} - U(z) dt^2 + v(z)^2 (dx_1^2 + dx_2^2) + w(z)^2 (dx_3^2 + c(z) dt)^2 \right)$$

with numerically known solutions for U, v, w, c
2.3 Gravitational calculation

- calculate a geodesic in conformally deformed AdS metric

Embedding Coordinates	Transverse $\chi^\mu = (z(\sigma), t(\sigma), x_1(\sigma), x_2, x_3)$	Longitudinal $\chi^\mu = (z(\sigma), t(\sigma), x_1, x_2, x_3(\sigma))$
Surface Coordinates	$\sigma^i = (\sigma, x_2, x_3)$	$\sigma^i = (\sigma, x_1, x_2)$

Recall:

$$S_a = \frac{1}{4G_5} A$$

Entanglement entropy

$$S_a = \frac{1}{4G_5} V_{||} \int d\sigma \sqrt{\frac{v(z(\sigma))^4 \left(w(z(\sigma))^2 x_3'(\sigma)^2 + \frac{z'(\sigma)^2}{U(z(\sigma))}\right)}{z(\sigma)^6}}$$

with $V_{||} = \int_a^b \int_{-a}^{-b} dx_1 dx_3$ minimal surface area A

Reminder: metric is

$$ds^2 = \frac{1}{z^2} \left(\frac{dz^2}{U(z)} - U(z) dt^2 + v(z)^2 \left(dx_1^2 + dx_2^2\right) + w(z)^2 \left(dx_3^2 + c(z) dt^2\right) \right)$$
3.1 Entropic c-function in $N=4$ SYM vacuum state

zero temperature, no magnetic field, vanishing charge

\Rightarrow c-function at all scales equal to central charge of $N=4$ SYM, which is a CFT
3.2 Entropic c-Function *increases* in **thermal** state

- **nonzero temperature**
- no magnetic field,
- vanishing charge

\Rightarrow c-function increases
\Rightarrow effect of the thermal state
3.3 Entropic c-Function \textit{increases} in \textit{thermal} state

now with temperature, magnetic field, charge, chiral anomaly

\begin{itemize}
 \item \textit{c}-function increases
 \item effect of the charged, magnetic, thermal state
 \item IR limit: thermal entropy
 \item proposal: measure of occupation number
\end{itemize}

\textcolor{red}{\textbf{Bold}}
3.4 Effect of the chiral anomaly

now with temperature, magnetic field, charge, chiral anomaly

⇒ maximal effect at 0.1
(thermal entropy has no maximum)
3.4 Effect of the chiral anomaly

now with temperature, magnetic field, charge, chiral anomaly

maximal effect at 0.1
(thermal entropy has no maximum)
4. Discussion

c-function

- *entropic* c-function defined from entanglement entropy
- entropic c-function in thermal states *increases* towards low energies (IR)
- proportional to *thermal* entropy in IR-limit (analytic result)
- *peaked* at intermediate scale of $B/T^2 \approx 0.1$

Applications

- heavy-ion-collisions: *measure for thermalization* via distribution of states
- quantum critical points (QCP): *detect QCP* via change in scaling behavior

[Yang et al.; Nature (2014)]
APPENDIX
Schematic picture: probing energy scales

- U, v, w, c, E, P
- Charged magnetic black brane geometry
- UV of QFT
- AdS_5
- IR of QFT
- Deformed $AdS_3 \times R^2$
- UV/IR crossover at z_{cross}
 - Depends on B/T^2
- Radial AdS coordinate z_{IR}
 - Parametrizing energy-scale
- Minimal surfaces
- $z = 0$
- $z = 1$
- ℓ_{UV}
- ℓ_{IR}
Numerical data confirming schematic picture
Thermal entropy density in the Einstein–Maxwell and Einstein–Maxwell–Chern–Simons theory

\[s/T^3 \]

\[\Delta s/T^3 \]

\[\frac{\Delta s}{T^3} \]

\[B/T^2 \]

\[\mu/T = 1/5, \gamma = 0 \]

\[\mu/T = 1/5, \gamma = \frac{2}{\sqrt{3}} \]

\[\mu/T = 5, \gamma = 0 \]

\[\mu/T = 5, \gamma = \frac{2}{\sqrt{3}} \]
Figure 13: The deviation δc_4 of the thermal c-function, evaluated in the thermal state dual to the AdS Schwarzschild black brane, from the central charge a_4, displayed as the blue points. The thermal subtraction $\beta_4 \ell^3 s$ is displayed as a black line. Its behavior precisely matches δc_4 in the IR. The bottom right inset graphic displays the same information only not in a log-log scale, the top left inset displays the difference as green points on a log-log scale.
Effect of chiral anomaly: entanglement entropy

Difference in entanglement entropy with and without Chern–Simons coupling

$S_{\text{EMGS}} - S_{\text{EM}}$

B/T^2

S_{EMGS}

S_{EM}