Conservation zones in a cultural heritages area of Penanggungan Volcano, based on volcanic-hydrogeological assessment, Mojokerto Regency, East Java, Indonesia

S B Kusumayudha*, Y O Putra1 and P Pratiknyo1
1Universitas Pembangunan Nasional Veteran Yogyakarta

*corresponding author: saribk@upnyk.ac.id

Abstract. In the vicinity of Penanggungan volcano, Mojokerto regency, east Java, Indonesia, there is an area of cultural heritages, where numerous sites of ancient temples being distributed widely from the flank to near the summit. Fortunately the volcano has been not active anymore since the Holocene epoch. The surrounding area represents variety of volcanic stratigraphy, consisting of Watukosek volcanic cone, Arjuna - Welirang volcanic cones represented by Bulak dome, Penanggungan volcanic cone represented by Bekel dome, Gajahmungkur dome, Genting dome, Bendo dome and Kemuncup dome. Hydrogeologically, the study area performs an aquifer system comprises intergrain, fracture, and intergrain with fracture combination water bearing formations. Some springs occur in the fracture aquifer and the intergrains with fractures aquifer. In general the quality of groundwater is good. Catchment area occupies the summit toward the flank of Penanggungan volcano, whereas runoff area lies on the lowlands.

The distribution of ancient cultural sites in the study area can be divided into 5 (five) groups, including cultural sites group at Penanggungan Volcano, cultural sites group at Bekel Volcano, cultural sites group at Genting Volcano, cultural sites group at Kemuncup Volcano, and outer cultural sites group. Finally, based on its volcanic stratigraphy and hydrogeological conditions, the study area can be delineated to be three conservation zones namely zone of protected areas, zone of supporting areas, and zone of unprotected areas. The zone of protected areas is 5,577.78 hectares wide, containing units of protected forest area, critical land area, river border area, springs area, reserve area, cultural site and temple area, area with slope of above 45°, and geological heritage area.

Keywords: Cultural heritages, Volcanostratigraphy and Hydrogeological assessment, Conservation Zones

1. Introduction

Penanggungan is the name of a strato type Quaternary volcano, located in the Mojokerto regency and Pasuruan regency, East Java Province. This mountain has a function as a living space, land for cultivation, industrial, sand and rock mining, sources of groundwater utilization, and area with historical temples enclosures.

Utilization of landuse as a sector of industrial activity occupies the North and East of the mountain. The expanding industrial areas in the North part is approaching the sites of springs and historical temples in Wotanmasjedong Village. On the other hand, there is increasingly critical landscape damage due to
sand and stone mining in the villages of Kunjorowesi and Wonosunyo. The mining activity is now expanding to the Southeast side of the volcano.

Referring to government's regulation number 26/2008 on Protection of geological and areas providing groundwater, and East Java Governor Regulation no. 66/2015 on Preservation of Cultural Heritage of East Java Province, Penanggungan volcano has the criteria as a region that must be preserved and protected, therefore a study related to develop conservation zones is needed to be held.

This research was conducted to set up conservation zonation in Penanggungan volcano and surrounding area which is suitable with geological condition, hydrogeology, and distribution of historical sites, so that the land use will be not overlapping one another.

The location of the study area is geographically positioned at 7 ° 31'00" LU - 7 ° 41'00" LS and 112 ° 35'00" BT - 112 ° 43'00" BT, with UTM (Universal Transverse Mercator) coordinate 674000mT - 690000mT and 9150000mU - 9170000mU zone 49 m. The maximum elevation reaches 1,605 meters above sea level (asl). Administratively, the scope of research area covers: Ngoro District and Trawas District of Mojokerto Regency, Gempol District and Prigen District of Pasuruan Regency. (Figure 1).

Figure 1. Location of the study area

2. Methods of Study
The method applied to this study is analyses and assessment on both primary and secondary data. The primary data obtained by surface mapping including geological mapping, hydrogeological mapping, historical sites mapping, landuse mapping, and observation of environmental carrying capacity. The entire data was then processed into a thematic map and in integration overlaying to create a zonation map of conservation area, based on geological, hydrogeological and cultural sites preservation.

In order to determine the volcanic geological and hydrogeological condition of the study area, some rock samples were taken for petrological analysis, and water samples were also taken for groundwater quality classification. Flow rate measurements of some springs were also done to get the data on groundwater potency.

3. Results and Discussion
3.1 Volcanic Geology
Based on van Bemmelen [12] physiographic division, the study area is located in the central depression zone of East Java, on a flank and lowland of Penanggungan volcano. Referring to the classification of van Zuidam [14], the slope can be divided into seven classes, including flat or almost flat slope ranging 0° - 2°, gentle incline slope ranging 2° - 4°, incline slope ranging 4° - 8°, very incline slope ranging 8° - 16°, moderately steep slope ranging 16° - 35°, steep slope ranging 35° - 55°, and very steep slope > 55°. Geomorphology of the study area can be divided into 6 (six) geomorphic units, such as old crater, volcanic cone, middle slope, foot slope, fault scarp, and aluvial plain. On the other side, the drainage pattern can be classified based on Howard (1967) vide van Zuidam ([13], [14]), into four types, including
radial, parallel, subdendritic, and dendritic. The radial pattern is found on the body, parallel pattern occupies the lower slope of Penanggungan volcano and middle slope of Arjuna – Welirang volcano (Mount Bulak). Subdendritic pattern occupies the Western slope and dendritic pattern exists on the Northeastern slope of Penanggungan volcano.

According to Santos and Suwarti [9], rock units of Penanggungan volcano and its surroundings, from the older to the younger consists of the Central Quaternary Volcanic Rock (Qpvr), Quaternary Arjuna - Welirang Volcanic Rock (Qvaw), Quaternary Upper Volcanic Rock (Qvn), and Alluvial Deposits (Qa). On the other hand, referring to Bronto (2006), the volcano-stratigraphy of Penanggungan area can be described as consists of Watukosek Khuluk (crown); Arjuna - Welirang Khuluk including Bulak Gumuk (dome); Penanggungan Khuluk represented by Bekel Gumuk, Gajahmungkur Gumuk, Genting Gumuk, Bendo Gumuk, and Kemuncup Gumuk. Other deposits are colluvium and alluvium (Figure 2). The description of each unit can be found in Table 1.

Table 1. Description of Volcano-stratigraphy of the Penanggungan Area

Volcano-stratigraphy Unit	Rock Composition	Geological Time	Explanation
Alluvial deposits (Qa)	loose material of various grain size	Recent time.	resulting from weathering activity
Colluvium deposits (Qk)	loose volcanic material of various grain size	Holocene to Recent	derived from the accumulation of transported volcanic rock debris
Debris deposits	loose andesitic volcanic rocks It can be divided into Arjuna – Welirang debris (Awdb), Bekel debris (Bnd), Genting debris (Gdb), and Bendo debris (BNdb)	Holocene to Recent	formed due to weathering and debris movements.
Bendo Gumuk (Bnl)	pyroxene andesitic lava	Holocene	a member of Penganggungan Khuluk, a parasitic cone, located on the southern flank
Genting Gumuk	There were two eruption phases: First phase: Kemuncup dome, lava 1 (Kl1) porphyritic andesite pyroxene lava Second phase: Wangi dome lava 2 (Kl2) as vesicular textured pyroxes andesite lava, and volcanic breccia	Holocene.	parasitic member of Penanggungan volcano, located on the eastern side
Gajah Mungkur Gumuk (Gml)	pyroxene andesite lava	Holocene	a member of Penanggungan Khuluk, in the same age with Bekel lava 1. It is a parasitic

...
cone of Penanggungan volcano, formed by a side eruption

Bekel Gumuk
Bekel lava 1 (Bl1): pyroxene hornblende andesite lava, partly altered and weathered, Bekel lava 2 (Bl2): basaltic andesite lava.

Holocene
another parasitic cone, results of the side eruption of Penanggungan volcano

Penanggungan Khuluk
hornblende andesite lava, pyroclastic flow (Pap), crystal tuff, tuff breccia, scoria, associated with sandstones and volcanic breccia

Holocene
Overlays the Watukosek Khuluk

Bulak Gumuk (Buvu)
pyroxene andesite lava, andesitic breccia, and tuff breccia

late Pleistocene
a parasitic cone of old Arjuna – Welirang, is an eccentric eruption before the existing of young Arjuna – Welirang, positioned on the north-northwest slope,

Watukosek Khuluk (Wvu)
volcanic breccia with altered micro diorite fragments

middle to late Pleistocene
represents the oldest volcanostratigraphy in the study area

Geological structure of the study area was developed related with volcanic activity, in the form of shear fractures and fault. In general the strike directions of the shear fractures are N 22°W and N 28°E, while the direction of the main stress is N 2°E. On the other hand, the fault belongs to left lateral slip fault.
3.2 Hydrogeology

Basically the hydrogeological system of the study area includes in the Pasuruan Groundwater Basin. Based on its productivity, the aquifers of Pasuruan Groundwater Basin can be grouped into five types, namely: Productive aquifers with wide distribution, productive aquifers are broadly distributed, local productive aquifers, small productive local aquifers, and rare groundwater areas ([8]). The free surface water around Pandaan to Purwosari has an elevation of about 200 meters above sea level (asl), the more
towards the Northland the position of the free groundwater surface gradually drops to about 50 meters asl, while in the northern part, the elevation of free groundwater table is only about 5 m asl [8].

Confined ground water conditions are located on the slopes of Mount Arjuno - Penanggungan - Welirang, with a depth of 1 to 5 meters. The hydraulic gradient is about 0.05. In the North direction this hydraulic pressure decreases to 0.01. There are springs of Pasuruan Groundwater Basin, that found evenly spread throughout the region except at the peak of the volcano and the coastal plains (Figure 3). The flow rates of the springs are also very diverse, ranging from 5 l/sec to 5000 l/sec. On the slopes of Arjuno volcano and Penanggungan volcano, springs are often found at altitudes between 50 to 1000 m asl. At Prigen District, springs have a water flow between 15 to 30 l/sec, in the lower areas such as Pandaan District, the flow rate of the springs is greater than that of the upper places, recorded as 20 to 40 l/sec, and in the Gempol - Beji area the springs flow rate varies between 10 - 40 l/sec.

Referring to Kusumayudha et.al [2], related to the hydrogeological properties of the lithology, aquifers of the study area can be divided into three types, including intergranular aquifer, intergranular and fissure aquifer, and fissure aquifer (Figure 4). The intergranular aquifer is composed of alluvial deposits sediments having uniform grains loose debris deposits, intergranular and fissure aquifer comprises volcanic deposits such as pyroclastic breccia, volcanic sandstone, while fissure aquifer is composed of lava and igneous rocks having fractures. All the aquifers represent free aquifers (Figure 3). Groundwater quality in the study area in general shows good quality. There are some springs existing in the Penanggungan area. They are potential to be developed as fresh water sources to fulfill the people need of water. The potency of springs of the study area is listed in the Table 2.

Table 2. Springs in Penanggungan Volcano and Surrounding Area.

No.	Name	Location & Village	Elevation (m.asl)	Flow Rate (l/sec)	Water Quality Description
1	Sumber Pesatren	Jedong Village	235	0.071	colorless, odorless, tasteless, viscousless temperature 26°C, Ph 7.1, conductivity 0.07 ppt, TDS 79 ppm, electricity 0.116 mS.
2	Sumber Kunjorowesi	Kunjorowesi Village	520	0.024	colorless, odorless, tasteless, viscousless, temperature 25.1°C, Ph 7, conductivity 0.15 ppt, TDS 146 ppm, electricity 0.215 mS.
3	Sumber Jolotundo	Seloliman Village	557	0.38 and 0.12	colorless, odorless, tasteless, viscousless, temperature 25°C, Ph 7.2, conductivity 0.05 ppt, TDS 40 ppm, electricity 0.054 mS.
4	Sumber Reco Macan	Balekambang Village	357	0.17 L/sec	colorless, odorless, tasteless, viscousless, temperature 27°C, Ph 7, conductivity 0.08 ppt, TDS 73 ppm, electricity 0.104 mS.
5	Sumber Brugan	Kedungundi Village	554	0.15 L/sec	colorless, odorless, tasteless, viscousless, temperature 25°C, Ph 7.4, conductivity 0.11 ppt, TDS 113 ppm, electricity 0.166 mS.
6	Sumber Sendang Drajat	Penanggungan Village	582	0.49 L/sec, 0.37 L/sec, and 0.14 L/sec.	colorless, odorless, tasteless, viscousless, temperature 26°C, Ph 7.1, conductivity 0.10 ppt, TDS 111 ppm, electricity 0.167 mS.
7	Sumber Lumpang	Duyung Village	587	0.33 L/sec	colorless, odorless, tasteless, viscousless, temperature 25.4°C,
8. Sumber Temple Tetek Belahan Village 297 0.07 L/sec and 0.28 L/sec, Ph 6.59, conductivity 0.09 ppt, TDS 77 ppm, electricity 0.108 mS. colorless, odorless, tasteless, viscousless, temperature 26°C, Ph 6.85, conductivity 0.07 ppt, TDS 72 ppm, electricity 0.106 mS. brownish white color, turbidy, odorless, brackish, viscousless, temperature 27.4°C, Ph 6.89, conductivity 0.08 ppt, TDS 77 ppm, electricity 0.110 mS.

9. Sumber Betro Betro Village 382 0.24 L/sec and 0.39 L/sec, Ph 6.89, conductivity 0.08 ppt, TDS 77 ppm, electricity 0.110 mS.

Figure 3. Sendang Drajet spring (left) and Tetek Temple spring (right)
3.3 Cultural Heritage
In the study area, there are 51 relics represented as temples and archaeological heritages of the ancient kingdoms of East Java, namely Kahuripan and Majapahit. The kingdoms existed during 10th to 12th century. The naming of the relics refers to the secondary data of Ubaya Exploration Team that has been done in the year 2012 to 2016. Material used to build the temples is andesite and red soil taken from Penanggungan volcanic products. Distribution of these archaeological sites can be grouped into 4 (four), consisting of group of Penanggungan sites, group of Bekel sites, group of Genting sites, group of Kemuncup site, and group of outer sites (Table 3).

Name of the Group	Situation	The included cultural heritages
Group of Penanggungan Sites	Upper part slope	Consists of 18 temples: Bayi Temple, Kama 1 Temple, Wishnu Temple, Guru Temple, Shiwa Temple, Lurah
Temple, Putri Temple, Pura Temple, Carik Temple, Genthong Temple, Shinta Temple, Jolotundo Temple, Pendawa Temple, Naga 1 Temple, Yudha Temple, Lemari Temple, Merak Temple, and XXX Temple (no name).

Group of Bekel Sites
Batu Berwajah, Reco Macan, Kama 2 Temple, Kama 3 Temple, Kendali Temple, and Kendalisodo Temple.

Group of Genting Sites
There are 8 temples: Griya Temple, Kama 4 Temple, Gajah Temple, Dharmawangsa Temple, YYY Temple (no name), Kerajaan Temple, Wayang Temple, and Jedong Temple

Group of Kemuncup Sites
Naga 2 Temple, Naga 3 Temple, and Tetek Temple

Group of Outer Part
1. Southeastern part of Sukoren village. (6 sites)
 Foot slope Southeast of Penanggungan volcano
 Bricks cemetery site, ruins of temple site, Batu Lumpang site, Mbah Giri inscription site, Keramat Mencil site, and Keramat Sumo site.

2. Northwestern part of Srigading and Kutogirang villages (9 sites)
 Western part of the foot slope of Penanggungan volcano
 Bricks Temple site, Batu Lumpang site, ancient bricks 1 site, ancient bricks 2 site, ancient bricks 3 site, stone temple sites, Lingga stone site, Kutogirang site, and ancient cemetery of Mbah Mendek site. Bangkal Temple.

3. Northern part (1 temple), located at Candiharjo village
 berada pada daerah dataran rendah bagian Utara Gunung Penanggungan

Figure 5. Temple Genthong in Gunung Penanggungan (left) and Reco Macan Heritage
3.4 Conservation Zonation

By considering geological, volcano-statigraphical, and hydrogeological aspects, respecting the distribution of cultural heritage, and referring to the government regulations both central and regional, such a conservation zonation can be established in the study area. The conservation zonation covers 3 zones, namely conservation zone, supporting zone, and non-conservation zone. The area of conservation zone is 5,577.78 hectares (Ha), containing protected forest area, steep slope area (above 45°), natural heritage area, cultural heritage area, river border area, springs area, geological heritage area, and critical land area. Protected forest area serve as areas of life buffer protection systems, water regulation, soil fertility, flood prevention, and erosion control. The supporting zone area is 5,493.10 Ha, and the non-conservation zone area is 10,781.40 Ha (Figure 7).
Figure 7. Map of Conservation Zones of Penanggungan Volcano and Surrounding Area

Conclusions
The volcanic geology of Penanggungan area consists of Watukosek Khuluk, Arjuna - Welirang Khuluk that is represented as Bulak Gumuk, and Penanggungan Khuluk that is composed of Bekel Gumuk, Gajah Gungkur Gumuk, Genting Gumuk, Bendo Gumuk, and Kemuncup Gumuk. In addition, there are also debris deposits, collovium deposits, and alluvial deposits. Geological structures of the study area are
joints and fault that is classified into left lateral slip fault, formed due to volcanic activities of Penanggungan volcano.

The hydrogeological conditions of Penanggungan area comprises three free aquifers showing intergranular, intergranular and fissure, and fissure aquifers types. The groundwater quality belongs to good classification. There are nine potential springs exist in the study area, that the water can be utilized for fulfilling the fresh water needs of people in the surrounding areas.

There are 51 historical sites of the ancient Kahuripan and Majapahit kingdoms. The distribution of temples and archaeological sites can be grouped into 3 (three) group, they are group of sites on Penanggungan volcano, roup of sites on Bekel dome, group of sites on Genting dome, group of sites on Kemuncup hill, and group of outer sites.

Based on volcanic geology, hydrogeology, and the existence of archaeological sites, the research area can be divided into 3 (three) zoning areas, including conservation zone (5,577.78 Ha), supporting zone (5,493.1 Ha), and unprotected zone (10,781.4 Ha). The conservation zone contains some units of protected forest area, the steep slope area, natural heritage area, cultural heritage area, river border area, springs area, spring area, geological heritage area, and critical land area.

References
[1] Bronto S (2006) Fasies Gunungapi dan Aplikasinya (Volcanic Facies and its Applications), Jurnal Geologi Indonesia, Vol. 1 No. 2 Juni 2006: 59-71
[2] Kusumayudha SB, Pratiknyo P, Purwanto, Riswandi H, Ciptahening AN, Hermawanti N (2018) Fissure structure analysis to unravel groundwater inflow problem in gold mining site of Pongkor area, West Java, Indonesia, Int. Journal of Hydrology Science and Technology, Vol 8 Number 2, 2018: 148-162
[3] Peraturan Daerah Kabupaten Pasuruan No. 12 Tahun 2010 Tentang Rencana Tata Ruang Wilayah Kabupaten Pasuruan Tahun 2009 - 2029. Lembaran Negara RI tahun 2010, No. 12. Sekretaris Daerah Kabupaten Pasuruan. Pasuruan
[4] Peraturan Daerah Kabupaten Mojokerto No. 9 Tahun 2012 Tentang Rencana Tata Ruang Wilayah Kabupaten Mojokerto Tahun 2012 - 2032. Lembaran Daerah Kabupaten Mojokerto tahun 2012, No. 9. Sekretaris Daerah. Mojokerto
[5] Peraturan Daerah Kabupaten Mojokerto No. 11 Tahun 2015 Tentang Cagar Budaya. Lembaran Daerah tahun 2015, No. 15. Sekretaris Daerah Kabupaten Mojokerto. Mojokerto
[6] Peraturan Pemerintah Republik Indonesia No. 26 Tahun 2008 Tentang Penataan Ruang Nasional. Lembaran Negara RI tahun 2008, No. 48. Sekretariat Negara. Jakarta
[7] Peraturan Pemerintah Republik Indonesia No. 43 Tahun 2008 Tentang Air Tanah. Lembaran Negara RI tahun 2008, No. 83. Sekretaris Negara Republik Indonesia. Jakarta
[8] Pratiknyo P (2016) Hidrogeologi Kawasan Cagar Budaya Gunung Penanggungan. Jurnal Ilmu Kebumian Teknologi Mineral, Universitas Pembangunan Nasional Yogyakarta. Vol. 28, No. 1. Yogyakarta.
[9] Santosa S and Suwarti T (1992) Geologi Regional Lembah Malang. Pusat Penelitian and Pengembangan Geologi. Bandung, pp 25
[10] Sidomulyo H (2016) 200 Tahun Eksporasi Gunung Penanggungan 1816 – 2016. Tim Eksporasi Gunung Penanggungan Universitas Surabaya (UBAYA). Surabaya
[11] Undang – Undang Republik Indonesia No. 11 Tahun 2010 Tentang Cagar Budaya. Lembaran Negara RI tahun 2010, No. 130. Sekretariat Negara. Jakarta
[12] Van Bammelen RW (1949) Geology Of Indonesia. 1st ed. Amsterdam : Government Printing Office the Hague Netherlands
[13] Van Zuidam RA (1983) Guide to Geomorphologic Aerial Photographic Interpretation and Mapping. ITC. Netherlands
[14] Van Zuidam RA (1985) Aerial Photo - Interpretation in Terrain Analysis and Geomorphologic Mapping. International Institute for Aerospace Survey and Earth Sciences. Smits Publ. Enschede. Netherlands