Mutagenicity testing with transgenic mice. Part II: Comparison with the mouse spot test
Ulrich Wahnschaffe, Annette Bitsch, Janet Kielhorn* and Inge Mangelsdorff

Abstract
The mouse spot test, an in vivo mutation assay, has been used to assess a number of chemicals. It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484). It is however rather insensitive, animal consuming and expensive type of test. More recently several assays using transgenic animals have been developed. From data in the literature, the present study compares the results of in vivo testing of over twenty chemicals using the mouse spot test and compares them with results from the two transgenic mouse models with the best data base available, the lacI model (commercially available as the Big Blue® mouse), and the lacZ model (commercially available as the Muta™ Mouse). There was agreement in the results from the majority of substances. No differences were found in the predictability of the transgenic animal assays and the mouse spot test for carcinogenicity. However, from the limited data available, it seems that the transgenic mouse assay has several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo.

Background
This is the second presentation from a project for the International Programme on Chemical Safety (IPCS) evaluating the possible use of transgenic animal mutagenicity assays in toxicity testing and mechanistic research. Part I, preceeding this article, discussed comparison of effects of chemicals using certain transgenic assays with results using the bone marrow micronucleus test.

The assessment of the potential genotoxicity of chemicals in vivo is important for both the verification and confirmation of intrinsic mutagenicity and for establishing the mode of action of chemical carcinogens. Although the present trend is to reduce animal testing, in vitro data must be confirmed by testing in in vivo conditions which take into account whole animal processes like absorption, tissue distribution, metabolism and excretion of the chemical and its metabolites, and overall toxicity [1]. In the mid 1980s, the mouse spot test [2] was suggested as a complementary in vivo test to the bacterial mutagenicity assay for detection of mutagenic substances and as a confirmatory test for the identification of carcinogens [3]. The mouse spot test has been used to assess a number of chemicals (see e.g. Additional file 1, see separate file). It is at present the only in vivo mammalian test system capable of detecting somatic gene mutations according to OECD guidelines (OECD guideline 484 [4]). However to achieve an acceptable sensitivity, a large number of animals are...
necessary and it is therefore an expensive type of test and seldom used. More recently assays using transgenic animals have been developed for testing in vivo gene mutagenicity. The two transgenic mouse models with the best data base available are the lacI model (commercially available as the Big Blue® mouse), and the lacZ model (commercially available as the Muta™ Mouse). The present study compares the results of in vivo testing of a number of chemicals using the mouse spot test and compares it with results from these two transgenic mouse models.

Descriptions of test systems

Mouse spot test

In the spot test, mouse embryos which are heterozygous for different recessive coat colour genes, are treated in utero at gestation day 9–11 with the test substance. The exposed embryo at gestation day 10 contains about 150–200 melanoblasts and each melanoblast has 4 coat colour genes under study [2,3]. The in utero exposure may result in an alteration or loss of a specific wild-type allele in a pigment precursor cell resulting in a colour spot in the coat of the adult animal. The frequency of spots is compared with the frequency in sham-exposed controls [2,4].

In the mouse spot test there are 4 possible mechanisms by which the recessive coat-colour alleles can be expressed: 1) gene mutation in the wild-type allele, 2) deficiency (large or small) of a chromosomal segment involving the wild-type allele, 3) nondisjunctional (or other) loss of the chromosome carrying the wild-type allele and 4) somatic recombination (marker gene then homozygous) [5]. Gene mutagenic but also clastogenic effects are detected by this test system.

Transgenic mouse models

The transgenic mutation test systems the lacI model (Big Blue® mouse), and the lacZ model (Muta™ Mouse) are described in detail in the preceding article: Mutagenicity testing with transgenic mice. Part I: Comparison with the mouse bone marrow micronucleus test

Methods

Data presented in this documentation are the results of an extensive literature research. Concerning data on transgenic mouse assays only primary literature was used. Data on the mouse spot test were extracted from reliable reviews on this item or from primary literature. For all other data informations from secondary literature or data banks were used.

Results and Discussion

Comparison of the mouse spot test with transgenic mouse model systems

In the literature search chemicals have been identified that had been tested using the spot test and the Muta™ mouse assay (n = 20) or the Big Blue® mouse assay (n = 9) or both transgenic mutation assays (n = 8). The results (including references) are given in Additional file 1.

The results on 15 out of 20 substances (2-acetylaminofluorene, acrylamide, benz[a]pyrene, 1,3-butadiene, cyclophosphamide, ethylmethanesulfonate, N-ethyl-N-nitrosourea, N-methyl-N’-nitro-N-nitrosoguanidine, N-methyl-N-nitrosourea, 4-nitroquinoline-1-oxide, N-nitrosodiethylamine, N-nitrosodimethylamine, procarbazine, 4-acetylaminofluorene and N-propyl-N-nitrosourea) showed agreement between the Muta™ mouse and the mouse spot test. No agreement was seen with 5 out of 20 substances (4-acetylaminofluorene, 2-amino-3-methylimidazo(4,5-f)quinoline (IQ), hydrazine, mitomycin C, trichloroethylene).

The positive results obtained with the Big Blue® mouse assay agreed with results in the mouse spot test for 7 out of 9 substances (2-acetylaminofluorene, benz[a]pyrene, 1,3-butadiene, cyclophosphamide, N-ethyl-N-nitrosourea, N-methyl-N-nitrosourea, N-nitrosodimethylamine); one (di-(2-ethylhexyl)phthalate) was negative in both test systems and only one (methyl methanesulfonate) showed no agreement between the two test systems.

With two exceptions, 4-acetylaminofluorene and N-propyl-N-nitrosourea (discussed later), all of the tested substances showed also clearly positive results in in vitro gene mutation assays (exception of 1,3-butadiene, negative results) and in the majority of in vivo studies on this endpoint. Further they induced carcinogenic effects in long-term studies on mice.

Although no data on carcinogenicity on mice is available on N-propyl-N-nitrosourea, this substance might also be included in the category mentioned above, since carcinogenic effects were reported in rats [113] and in vitro gene mutation assays revealed clearly positive results.

The following substances did not show agreement between results in the mouse spot test and transgenic mouse assays or negative results were reported in both test systems (see Additional file 1). These are therefore discussed in more detail here; for references see Additional file 1.

4-Acetylaminofluorene

This substance showed mutagenic activity in the Muta™ mouse assay [19] but negative results in the mouse spot test [12,13]. No data on carcinogenicity are available on 4-acetylaminofluorene. However, data on two in vitro test systems indicated gene mutagenic activity supporting results in the transgenic assay [15-18].
2-Amino-3-methylimidazo(4,5-f)quinol (IQ)
IQ is mutagenic in the Muta™ mouse assay [28] but negative results were obtained in the mouse spot test [29]. This negative result in the mouse spot test is in contrast to all other in vivo gene mutation assays on rodents and insects which revealed positive results [27]. Furthermore, gene mutagenic activity was detected in in vitro test systems and carcinogenic effects were observed in long-term studies on mice [27]. The results in the Muta™ mouse assay are in accordance with these data.

Di-(2-ethylhexyl)phthalate
Negative results in the mouse spot test [51] are in agreement with the negative Big Blue® assay [11]. Furthermore no gene mutagenic or questionable activity was reported in in vitro tests and in tests on Drosophila. Carcinogenic effects were obtained in studies on mice but nongenotoxic mechanisms are presumed.

Hydrazine
This substance induced mutagenic effects in the mouse spot test [72] but negative results were observed in the Muta™ mouse assay [71]. Other in vivo as well as in vitro test systems revealed gene mutagenic effects [70]. Increased tumor incidences were observed in carcinogenicity studies on mice. Overall, the mouse spot test but not the Muta™ mouse assay reflects data on genotoxicity and carcinogenicity. However, a single exposure was used in the Muta™ mouse assay [71]. Studies on other in vivo genotoxicity endpoints have shown generally negative results after single exposure but genotoxic activity after repeated application, for example the mouse bone marrow micronucleus assay was positive [20]. It is possible that positive results may be found using another experimental design in the Muta™ mouse assay e.g. repeated exposure.

Methyl methanesulfonate
Only weak mutagenic effects were observed in the Muta™ mouse [19,57,75-77] and negative results in the Big Blue® mouse [63-65,78]. In the mouse spot test this carcinogenic substance is mutagenic [3] as well as in other gene mutation assays in vitro and in vivo [73,74]. However, there is evidence that the chromosome mutagenic activity is detectable at much lower doses than the gene mutagenic activity. Tinwell et al. [19] have shown in Muta™ mice a weak gene mutagenic effect in the liver but no effect in the bone marrow. The same dose induced in these animals a significant increase in bone marrow micronuclei indicating clear clastogenic activity. However, the transgenic mutation assay is less suitable for detection of these effects [1].

Mitomycin C
No mutagenic activity was observed in the Muta™ mouse assay after single application and ambiguous results after repeated exposure [93] but positive results were obtained with the mouse spot test [2,3] and other gene mutation assays in vitro and in vivo with this carcinogenic substance [90-92]. The reason for this discrepancy is similar to that presumed for methyl methanesulfonate above. Clastogenicity in bone marrow but no gene mutagenic activity in liver and bone marrow has been shown in the same animals in the Muta™ mouse assay combined with a micronucleus assay [93]. However, using another experimental design for detection of gene mutations in the Muta™ mouse assay (dose level up to the MTD, repeated exposure) positive results might be obtained.
Trichloroethylene

Also with this carcinogenic substance, no mutagenicity was detected in the Muta™ mouse assay [117], the mouse spot test was positive [3], but this result is possibly related to contaminations with epoxides [116]. Further in vitro and in vivo assays on gene mutation resulted in weak positive, questionable, or negative effects [116]. Results in chromosome mutation assays are equivocal. However, a further (simple) reason for this discrepancy between the Muta™ mouse assay and the mouse spot test might be that the MTD was not reached in the Muta™ mouse assay presented by Douglas et al. [117].

In general, from the studies on genotoxic carcinogens given above, the results do not seem to give a preference for either the spot test or transgenic mouse model system.

However, considering the mechanisms of action of specific substances there is some evidence, that the mouse spot test detects gene mutations as well as chromosome mutations whereas the transgenic mouse assays are restricted to gene mutations. Evidence for this hypothesis has been shown with the examples methyl methanesulfonate, mitomycin C, and trichloroethylene. In the mouse spot test, there are four possible mechanisms by which the recessive coat-colour alleles can be expressed (see introduction) including gene and chromosome mutations. Although the chromosome mutations have to survive several mitoses to cause the expression of the recessive allele [118], there is evidence that also predominantly clastogenic substances might result in a positive mouse spot test. In contrast, the transgenic mutation assays detected point mutations and maximal small deletions and insertions [1].

Predictivity of the transgenic animal assays and the mouse spot test for carcinogenicity

The sensitivity, specificity and predictivity of carcinogenicity for the transgenic mouse model (Muta™ mouse assay and the Big Blue® mouse assay combined) and the mouse spot test are documented in Table 1. Data on 18 substances (see Additional file 1) are available on carcinogenicity in mice and mutagenic effects in transgenic mice as well as mutagenic effects in the mouse spot test (trichloroethylene not included because of inconclusive results in the mouse spot test).

Although the data pool is not sufficient for a comprehensive comparison, there is some indication, that no significant differences were detectable between the two test systems.

Advantages and disadvantages of both test systems

Sensitivity of the test system

In comparison to models using endogenous genes like the target genes in the mouse spot test, the spontaneous mutant frequency in transgenic animals is relatively high. This might be due to the fact that bacterial DNA is the target gene (high methylation rate) and/or the transgene is silent and no transcription related repair occurs as in endogenous genes which are more efficiently repaired [1]. However, comparing the number of cells and genes at risk at the time of exposure, the mouse spot test is numerical inferior to the transgenic mouse mutation assays. In the mouse spot test, the exposed embryo at gestation day 10 contains about 150–200 melanoblasts and each melanoblast has 4 coat colour genes under study [2,5]. In the transgenic Big Blue® mouse, for example, 30–40 copies of the target gene (the constructed λLIZα shuttle vector) are integrated on chromosome 4 of each cell of the animal [1].

Other factors

To achieve an acceptable sensitivity, a large number of animals are necessary in the mouse spot test. Many pregnant dams have to be in one treatment group to get a sufficient number of surviving F1-animals, since the test substance may induce maternal and developmental toxicity. Fahrig [2] suggested that 30–40 pregnant mice are needed per treatment group for evaluation of spots in the progeny. At least 150 F1-mice are recommended for the concurrent vehicle control [5] and at least two dose groups are used (OECD guideline 484 [4]). Therefore, the mouse spot test is an expensive type of in vivo test.

In contrast, in transgenic mutation assays ca. 20 animals (3 dose groups and 1 concurrent vehicle control group in laboratories which already established this test system) are recommended per species and gender [119-121].

In the mouse spot test the discrimination between spots of mutagenic and non-mutagenic origin may be problematic [2].

A comparison of both test systems is presented in Table 2.

Conclusions

Although the mouse spot test is a standard genotoxicity test system according to the OECD guidelines, this system has seldom been used for detection of somatic mutations in vivo in the last decades. This is partly due to considerations of cost effectiveness and number of animals needed for testing but also for toxicological considerations. The usefulness of the mouse spot test in toxicology is limited by restrictions in toxicokinetics, sensitivity, target cell/organ, and molecular genetics. From the limited data available, it seems that the transgenic mouse assay has
several advantages over the mouse spot test and may be a suitable test system replacing the mouse spot test for detection of gene but not chromosome mutations in vivo.

Author’s contributions

UW was the main author. The other authors were involved in the discussions, writing small parts of text and in final preparation of the manuscript.

Additional material

Additional File 1

Results in the transgenic mouse assay versus mouse spot test

Click here for file

http://www.biomedcentral.com/content/supplementary/1477-3163-4-4-S1.doc

Table 2: Advantages and Disadvantages of mouse spot test compared to the transgenic Big Blue® and Muta™ mouse assays

	Mouse spot test [2-5]	Transgenic mouse mutation assay[1, 122]
Age restriction	Exposure restricted to embryos at gestation day 9–11	Usually less than 3 months
Toxicokinetics and metabolism	Restrictions in toxicokinetics: test substance reaches the fetal melanoblasts after administration to the dams and absorption of the test substance itself or the toxic metabolites via the placenta	No further barrier like the placenta after absorption and distribution
Target tissue	Restricted to melanoblasts	No tissue restriction; analysis of mutagenic potency in different organs
Type of mutation	Detects 1) gene mutation, 2) large or small deletions, 3) loss of the chromosome carrying the wild-type allele and 4) somatic recombination (marker gene then homozygous)	Detects 1) gene mutation, 2) small deletions or insertions
Dependency of effects on application route	Only systemic effects can be detected; no application route specific effects	For different routes systemic as well as local mutagenic effects can be detected
Target gene/cell	4 genes per cell in ca. 200 melanocytes	Ca. 40 (Big Blue) or ca. 80 (Muta™ mouse) copies of the transgene per nucleus of each cell of the organism
Number of animals	Animal consuming test system	Not more than 5 animals per gender per dose necessary
Specificity of test system	Discrimination between spots of mutagenic and non-mutagenic origin may be problematically identified and isolating mutated genes with a high specificity	
Characterisation of mutations by molecular methods	Less suitable for identification of mutations in DNA analysis due to size of the genes	Detection of the “molecular signature” of a particular mutagen by DNA sequence analysis with standardized methods
Possibility of parallel investigation of several genetic endpoints	No combination with other genotoxic endpoints possible	The transgenic mouse assay can be combined with other in vivo genotoxic endpoints in the same animal: e.g. micronuclei, chromosomal aberration, unsheduled DNA synthesis, sister chromatid exchange
Endogenous versus foreign target gene	The mouse spot test shows an in situ end point (expression of the target genes)	Target genes are integrated parts of foreign DNA and consequently no “normal” mutational target
Costs	Expensive type of in vivo test	Less expensive

Acknowledgements

This paper is based on work performed by the authors in preparation of an Environmental Health Criteria document on ‘Transgenic Animals in Mutagenicity Testing’ for the International Programme on Chemical Safety (IPCS). However, opinions expressed in this paper are the sole responsibility of the authors. We acknowledge the financial support of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety.

References

1. RIVM: Mutagenicity of chemicals in genetically modified animals. RIVM Report no. 650210 002, TNO Report no. V99.1097 Bilthoven: National Institute of Public Health and the Environment (RIVM); 2000.
2. Fahrig R: The mammalian spot test (Fellfleckentest) with mice. Arch Toxicol 1977, 38:87-98.
3. Styles JA, Penman MG: The mouse spot test. Evaluation of its performance in identifying chemical mutagens and carcinogens. Mutat Res 1985, 154:183-204.
4. OECD: OECD 484; Genetic toxicology: mouse spot test: OECD guideline for testing of chemicals 1986.
5. Russell LB, Selby PB, von Halle E, Sheridan W, Yalcovic L: Use of the mouse spot test in chemical mutagenesis: interpretation of past data and recommendations for future work. Mutat Res 1981, 86:355-379.
6. Shephard SE, Sengstc C, Lutz WK, Schlatter C: Mutations in liver DNA of lacI transgenic mice (Big Blue) following subchronic exposure to 2-Acetylaminofluorene. Mutat Res 1993, 302:91.

7. Hazkova, Kretz PL, Bullock WO, Sorge JA: Mutagenicity studies with 2-Acetylaminofluorene. Mutat Res 1993, 302:91.

8. Skopek TR, Kort KL, Marino DR, Umbenhauer DR, Laws GM, Adams SP: Mutagenic response of the endogenous hprt gene and lacI transgene in benzo[a]pyrene-treated Big Blue B6C3F1 mice. Environ Mol Mutagen 1996, 28:378-384.

9. Shah SS, Boer Y, Watson DS, Haseman JK, Glickman BW, Tidall KR: Mutagenesis research information system (CCRIS) 2000, 21:715-725.

10. IARC: 1,3-butadiene. In Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide (part one). Monographs on the evaluation of carcinogenic risks to humans, Suppl. 7. Lyon: International Agency for Research on Cancer (IARC); 1999:109-225.

11. Recio L, Bond JA, Pluta LJ, Sisk SC: Use of transgenic mice for assessing the mutagenicity of 1,3-butadiene in vivo. IARC (Int Agency Res Cancer) Sci Pub 1993, 127:235-243.

12. Sisk SC, Pluta LJ, Bond JA, Recio L: Molecular analysis of lacI mutants from bone marrow of B6C3F1 transgenic mice following inhibition exposure to 1,3-butadiene. Carcinogenesis 1994, 15:471-477.

13. Recio L, Meyer KG, Pluta LJ, Moser OR, Saranko CJ: Assessment of 1,3-butadiene mutagenicity in the bone marrow of B6C3F1 lacI transgenic mice (Big Blue): a review of mutational spectrum and lacI mutant frequency after a 5-day 625 ppm 1,3-butadiene exposure. Environ Mol Mutagen 1996, 28:424-429.

14. Adler I-D, Cao J, Filtzer JG, Gassner P, Kessler W, Kliebsch U, Neuhäuser-Klaus A, Nuess M: Mutagenicity of 1,3-butadiene inhaled in somatic and germinal cells of mice. Mutat Res 1994, 309:307-314.

15. IARC: Cyclophosphamide. In Some antineoplastic and immunosuppressive agents. Monographs on the evaluation of the carcinogenic risk to humans, No. 26 Lyon: International Agency for Research on Cancer (IARC); 1981:165-202.

16. IARC: Cyclophosphamide (Group 1). In Overall evaluations of carcinogenicity: An updating of IARC Monographs volumes 1 to 42. Monographs on the evaluation of carcinogenic risks to humans, Suppl. 7 Lyon: International Agency for Research on Cancer (IARC); 1987:182-184.

17. Gorelick NJ, Andrews JL, de Boer JG, Young R, Gibson DP, Walker VE: Tissue-specific mutant frequencies and mutational spectra in cyclophosphamide-treated lacI transgenic mice. Environ Mol Mutagen 1999, 34:154-166.
47. Walker VE, Andrews JL, Upton PB, Skopek TR, deBoer JG, Walker DM, Shi X, Sussman HE, G orelick NJ: Detection of cyclophosphamide-induced mutations at the Hprt but not the lloc locus in splenic lymphocytes of exposed mice. Environ Mol Mutagen 1999, 34:167-181.

48. Hoyes KP, Wadeson PJ, Sharma HL, Hendry JH, Morris ID: Mutation studies in lloc transgenic mice after exposure to radiation or cyclophosphamide. Mutagenesis 1998, 13:407-412.

49. Hart J: The mouse spot test: results with a new cross. Arch Toxicol 1985, 58:1-4.

50. DFG: Di(2-ethylhexyl)phthalat (DEHP). In Gesundheitsschädliche Arbeitsstoffe: toxikologisch-arbeitsmedizinische Begründung von MAK-Werten. Goss, Darmstädt, Aerolase; Dazionnn bni N,N-Dimethyland Edited by: Henschel D. Weinheim: Verlag Chemie; 2002:1-81.

51. Fachri R, Steinlamp-Zucht A: Co-recombinogenic and anti-mutagenic effects of diethylhexylphthalate, inactivity of pentachlorophenol in the spot test with mice. Mutat Res 1996, 354:59-67.

52. IARC: Ethyl methanesulfonate. In Some anti-thyroid and related sub- stances, nitrofurans and industrial chemicals. Monographs on the evaluation of the carcinogenic risk of chemicals to man, No. 7 Lyon: International Agency for Research on Cancer (IARC); 1974:245-251.

53. DEGK: (Each expert committee for occupational standards): Health-based recommended occupational exposure limits for Ethyl Methanesulphonate (EMS) and Methyl Methanesulphonate (MMS) Voorburg; Directoraate-General of Labour; 1989.

54. Chemical Carcinogenesis Research Info System (CCRIS) 2007, Ethyl methanesulfonate, CAS: 62-50-0 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen/CCRIS]

55. Genetic toxicology (GENETOX) 1995, Ethyl methanesulphonate, CAS: 62-50-0 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen/GENETOX]

56. Suzuki T, Hayashi M, Wang X, Yamamoto K, Ono T, Myhr BC, Sofuni T: A comparison of the genotoxicity of ethynitrosourea and ethyl methanesulfonate in lacZ transgenic mice (Muta Mouse). Mutat Res 1997, 395:73-82.

57. Suzuki T, Hayashi M, Sofuni T: Initial experiences and future directions for transgenic mouse mutation assays. Mutat Res 1994, 307:489-494.

58. Mientes EJ, Luiten-Schuite A, van Delft JHM: Detection of cyclophosphamide on mutation frequency in Muta™ Mouse germ cells (seminiferous tubule cells and epididymis spermatooza). Mutat Res 1997, 388:145-153.

59. Brooks TM, Dean SW: The detection of gene mutation in the tubular sperm of Muta™ Mice following a single intraperitoneal treatment with methyl methanesulphonate or ethynitrosourea. Mutat Res 1997, 388:219-222.

60. IARC: Methylnitrosourea. In Re-evaluation of some organic chemicals, hydrazine and hydrogen peroxide. Monographs on the evaluation of carcinogenic risks to humans, No. 71/3 Lyon: International Agency for Research on Cancer (IARC); 1999:1059-1079.

61. IARC: N-Methyl-N'-nitro-N-nitrosoguanidine (Group 2B).

62. IARC: N-Nitroso-N-Ethylurea.

63. IARC: N-Nitroso-n-methylurea.

64. IARC: N-methyl-N'-nitro-N-nitrosoguanidine and <beta>-propiolactone to germ cells after treatment of transgenic mice with isoniazid and hydrazine. Mutat Res 1997, 191:111.

65. IARC: N-Methyl-nitro-nitrosoguanidine. In Some aromatic amines, hydrazine and related substances, N-nitroso compounds and miscellaneous alkylating agents. Monographs on the evaluation of the carcinogenic risk of chemicals to man, No. 4 Lyon: International Agency for Research on Cancer (IARC); 1974:183-195.

66. IARC: N-Methyl-N'-nitro-N-nitrosoguanidine. In Genetic and related effects: an update of selected IARC Monographs from volumes 1 to 42. Monographs on the evaluation of carcinogenic risks to humans, Suppl. 6 Lyon: International Agency for Research on Cancer (IARC); 1987:394-398.

67. IARC: N-Methyl-nitro-nitrosoguanidine (Group 2B).

68. IARC: N-Methyl-nitro-nitrosoguanidine. In Overall evaluations of carcinogenicity: an update of IARC Monographs Volume 1 to 42. Monographs on the evaluation of carcinogenic risks to humans, Suppl. 7 Lyon: International Agency for Research on Cancer (IARC); 1987:248-250.

69. Brooks TM, Dean SW: Detection of gene mutation in skin, stomach and liver of Muta Mouse following oral or topical treatment with N-methyl-N'-nitro-N-nitrosoguanidine or 1-chloromethylpyrene: some preliminary observations. Mutagenesis 1996, 11:529-532.

70. Brault D, Bouilly C, Renault D, Thybaud V: Tissue-specific induction of mutations by acute oral administration of N-methyl-N'-nitro-N-nitrosoguanidine and <beta>-propiolactone to the Muta Mouse: preliminary data on stomach, liver and bone marrow. Mutat Res 1996, 360:83-87.

71. IARC: N-nitroso-nitrosoguanidine. In Some nitrogenous compounds. Monographs on the evaluation on carcinogenic risk of chemicals to humans, No. 17 Lyon: International Agency for Research on Cancer (IARC); 1999:227-255.

72. Genetic Toxicology (GENETOX) 1998, 1-Methyl-1-Nitroso-urea, CAS: 684-93-5 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen/GENETOX]

73. von Pressentin MdM, Kosinska W, Guttenplan JB: Mutagenesis induced by oral carcinogens in lacZ mouse (Muta Mouse) tongue and other oral tissues. Carcinogenesis 1999, 20:2167-2170.
87. Shephard SE, Gunz D, Schlatter C. Genotoxicity of agarinate in the lacI transgenic mouse mutation assay: evaluation of the health risk of mushroom consumption. Food Chem Toxicol 1995, 33:257-264.

88. Provost GS, Kretz P, Hamner RT, Matthews CD, Rogers BJ, Lundberg KS, Dyacico MJ, Short JM. Transgenic systems for in vivo mutation analysis. Mutat Res 1993, 288:133-149.

89. Ronco JJ, Korts KL, Miller JE, Marino DR, Slopek TR. A comparative study of in vivo mutation assays: analysis of hprt, lacI, cII cl as mutational targets for N-nitroso-N-methylurea and benz[a]pyrene in Big Blue mice. Mutat Res 1998, 421:121-136.

90. IARC: Mitomycin C. In: Some naturally occurring substances. Monographs on the evaluation of the carcinogenic risk of chemicals to man, No. 10 Lyon: International Agency for Research on Cancer (IARC); 1997:176-179.

91. Chemical Carcinogenesis Research Information System (CCRIS) 2002, Mitomycin C, CAS: 50-07-7 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS

92. Genetic Toxicology (GENETOX) 1998, Mitomycin C, CAS: 50-07-7 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX]

93. Suzuki T, Hayashi M, Sofuni T, Myhr BC. The concomitant detection of gene mutation and micronucleus induction by mitomycin C in vivo using lacI transgenic mice. Mutat Res 1993, 285:219-224.

94. Genetic toxicity (GENETOX) 1998, 4-Nitroquinoline 1-Oxide, CAS: 56-57-5 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX]

95. Nakajima M, Kikuchi M, Saeki K, Miyata Y, Terada M, Kishida F, Yamamoto R, Furutaka C, Dean SW. Mutagenicity of 4-nitroquinoline 1-oxide in the Muta Mouse. Mutat Res 1999, 444:321-336.

96. IARC: N-Nitrosodiethylamine. In Some N-Nitro Compounds. Monographs on the evaluation of the carcinogenic risk of chemicals to humans, No. 17 Lyon: International Agency for Research on Cancer (IARC); 1997:82, 89-106.

97. Chemical Carcinogenesis Research Information System (CCRIS) 2003, N,N-Diethylnitrosamine, CAS: 55-18-5 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS

98. Genetic Toxicology (GENETOX) 1998, Diethyl nitrosamine, CAS: 55-18-5 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX]

99. Ohkada N, Honda A, Kawabata M, Yajima N. Sodium phenobarbital-enhanced mutation frequency in the liver DNA of lacI transgenic mice treated with diethylnitrosamine. Mutagenesis 1999, 14:201-209.

100. Suzuki T, Hayashi M, Myhr B, Sofuni T. Diethylnitrosamine is mutagenic in liver but not in bone marrow of lacI transgenic mice (Muta Mouse). Honyu Dobutsu Shiken Bunkakai Kaiso 1995, 3:33-39.

101. IARC: N-nitrosodimethylamine. In Some N-Nitro Compounds. Monographs on the evaluation of the carcinogenic risk of chemicals to humans, No. 17 Lyon: International Agency for Research on Cancer (IARC); 1978:125-175.

102. Genetic toxicology (GENETOX) 1995, Dimethylnitrosamine, CAS: 62-75-9 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX]

103. Schneez P, Ecker C, Liebgel U, Klein R, Bartsh H. Use of transgenic mutational test systems in risk assessment of carcinogens. Arch Toxicol 1998:32-1.

104. Ainslie BM, Jones NJ, Lefevre PA, Provost GS, Rogers BJ, Martin EA, Parry JM, Burnette K, Glickman BW, Tinwell H. Mutagenicity of o-anisidine to the bladder of transgenic Big Blue transgenic mice. Environ Health Perspect 1996, 104:683-686.

105. Shane BS, Smith-Dunn DL, de Boer JG, Glickman BW, Cunningham ML. Mutant frequencies and mutation spectra of dimethylnitrosamine (DMN) at the lacI and cII loci in the livers of Big Blue transgenic mice. Mutat Res 2000, 452:197-210.

106. IARC: Procarbazine hydrochloride. In Some Antineoplastic and Immunosuppressive Agents. Monographs on the evaluation of the carcinogenic risk of chemicals to humans, No. 26 Lyon: International Agency for Research on Cancer (IARC); 1981:311-339.

107. IARC: Procarbazine hydrochloride (Group 2A). In: Some Antineoplastic and Immunosuppressive Agents. Monographs on the evaluation of the carcinogenic risk of chemicals to humans, Suppl. 7 Lyon: International Agency for Research on Cancer (IARC); 1987:327-328.

108. Suzuki T, Uno Y, Iademara K, Baba T, Maniwa J, Okhouchi A, Wang X, Hayashi M, Sofuni T, Tsuruoka M, Miyahima J, Kondo K. Procarbazine genotoxicity in the Muta Mouse; strong clastogenicity and organ-specific induction of lacI mutations. Mutat Res 1999, 444:269-281.

109. Pletsia V, Valavanis C, van Delft JH, Steenwein M-JST, Kyrtopoulos SA. DNA damage and mutagenesis induced by procarbazine in <lambda>lacZ transgenic mice: evidence that bone marrow mutations do not arise primarily through miscoding by O6-methylguanine. Carcinogenesis 1997, 18:2191-2196.

110. Neuhausser A. Die Wirksamkeit von Nutulamin im Feilfecken-Test mit der Maus. GSF-Ber 1977, 798:42-44.

111. Pletsa V, Valavanis C, van Delft JH, Steenwein M-JST, Kyrtopoulos SA. DNA damage and mutagenesis induced by procarbazine in <lambda>lacZ transgenic mice: evidence that bone marrow mutations do not arise primarily through miscoding by O6-methylguanine. Carcinogenesis 1997, 18:2191-2196.

112. Neuhäuser A. Die Wirksamkeit von Nutulamin im Feilfecken-Test mit der Maus. GSF-Ber 1977, 798:42-44.

113. Chemical Carcinogenesis Research Information System (CCRIS) 2000, N-Propyl-N-nitrosourea, CAS: 816-57-9 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?CCRIS

114. Genetic Toxicology (GENETOX) 1992, N-Propyl-N-nitrosourea, CAS: 816-57-9 [http://toxnet.nlm.nih.gov/cgi-bin/sis/htmlgen?GENETOX]

115. Hara T, Hirano K, Hirano N, Tamiura K, Sui H, Shibuya T, Hyogo A, Hirashio T, Tokai H, Yasumasa Y, Kura K. Mutation induction by N-propyl-N-nitrosourea in eight Muta Mouse organs. Mutat Res 1999, 444:297-307.

116. DFG: Trichloroethene. In: Occupational toxicants. Critical data evaluation for MAK values and classification of carcinogens, Volume 10 Deutsche Forschungsgemeinschaft (DFG). Weinheim: Wiley-VCH; 1996:301-249.

117. Douglas GR, Gingerich JD, Soper LM, Potvin M, Bjarnason S. Evidence for the lack of base-change and small-deletion muta- tion induction by trichloroethylene in lacI transgenic mice. Environ Mol Mutagen 1999, 34:190-194.

118. Fahrig R. Genetic effects of dioxins in the spot test with mice. Environ Health Perspect 1993, 101(Suppl 3):257-261.

119. Mirsalis J, Monforte J, Winegar R. Transgenic animal models for detection of in vivo mutations. Annu Rev Pharmacol Toxicol 1995, 35:145-164.

120. Heddle JA, Dean S, Nohmi T, Boerrigter M, Casciano D, Douglas GR, Glickman BW, Gorelick NJ, Nohmi JC, Martin H-J, Slopek TR, Thys- baud Y, Tindall KR, Yajima N. In vivo transgenic mutation assays. Environ Mol Mutagen 2000, 35:253-259.

121. Thysbaud Y, Dean S, Nohmi T, deBoer J, Douglas GR, Glickman BW, Gorelick NJ, Heddle JA, Heftie HH, Lambert I, Martus H-J, Mirsalis JC, Suzuki T, Yajima N. In vivo transgenic mutation assays. Mutat Res 2003, 540:141-151.

122. Nomoto T, Suzuki T, Masumura K-I. Recent advances in the protocols of transgenic mouse mutation assays. Mutat Res 2000, 455:191-215.