RELATIVE COMPLEXITY OF RANDOM WALKS IN RANDOM SCENERY IN THE ABSENCE OF A WEAK INVARIANCE PRINCIPLE FOR THE LOCAL TIMES

GEORGE DELIGIANNIDIS AND ZEMER KOSLOFF

Abstract. We answer a question of Aaronson about the relative complexity of Random Walks in Random Sceneries driven by either aperiodic two dimensional random walks, two-dimensional Simple Random walk, or by aperiodic random walks in the domain of attraction of the Cauchy distribution. A key step is proving that the range of the random walk satisfies the F"olner property almost surely.

1. Introduction

The notion of entropy was introduced to ergodic theory by Kolmogorov as an isomorphism invariant. That is, if two measure preserving systems are measure-theoretically isomorphic then their entropy is the same. It was later shown in the seminal paper of Ornstein [Or] that two Bernoulli automorphisms, transformations isomorphic to a shift of an i.i.d. sequence, are isomorphic if and only if their entropies coincide. Therefore entropy is a complete invariant for Bernoulli automorphisms. In an attempt to understand whether two zero entropy systems are isomorphic, Ferenczi [Fe], Katok and Thouvenot [KT] and others introduced notions of measure theoretic complexity, which roughly measure the rate of growth of information.

Aaronson [Aa] recently introduced relative complexity which is a relativised notion of complexity. He calculated the relative complexity of Random Walk in Random Scenery (RWRS), where the jump random variable is integer-valued, centred, aperiodic and in the domain of attraction of an \(\alpha \)-stable distribution with \(1 < \alpha \leq 2 \). The main tool used there is Borodin’s weak invariance principle for the local times [Bor1, Bor2]. Random walks in random scenery are examples of non-Bernoulli \(K \)-automorphisms [Ka], and the relative complexity was conjectured by Thouvenot to be an isomorphism invariant for them. Indeed Austin [Au] recently introduced the bi-covering number as an isomorphism invariant, and used the weak convergence of local times to show that for the class of random walks in random scenery with jump distribution of finite variance, the bi-covering number grows at the same rate as Aaronson’s relative complexity.

In this paper we treat random walks in random sceneries driven by the simple random walk in \(\mathbb{Z}^2 \), by aperiodic, recurrent, \(\mathbb{Z}^2 \)-valued random walks with finite variance, or by an aperiodic.

The research of Z.K. was supported in part by the European Advanced Grant StochExtHomog (ERC AdG 320977).
recurrent, integer-valued random walk in the domain of attraction of the Cauchy distribution. Since the limiting distributions do not have local times, Aaronson’s and Austin’s methods do not apply. For these types of RWRS, Kesten and Spitzer [KS] conjectured that when var(Z₀) < ∞, there exists a sequence aₙ → ∞ such that \(\frac{1}{\sum_{k=1}^{n} Z_{s_k}} \) converges weakly to a Brownian motion. This was shown to be true by Bolthausen [Bol] when Sₙ is the planar simple random walk and by the first author and Utev [DU11] for the case of the Cauchy distribution. Bolthausen’s argument was generalized by Černý [Če] and the ideas there were a major inspiration for us. Since there is no weak invariance principle for the local time, Černý’s argument relies on the asymptotic behaviour of the self-intersection local times, see Section 4, in order to prove that “for most of the points in R(n), the local time up to time n, is greater than a constant times log(n)”;

We think that this simpler and softer method can be used to calculate the relative complexity of other RWRS’s such as those in [Ru, Ba].

The paper is organized as follows. In Section 2 we provide the relevant definitions and results from ergodic theory. Section 3 contains the precise formulation of RWRS and the main results. In section 4 we state and prove the results we need for the random walk and its range. Section 5 contains the proof of the main Theorem. For the sake of completeness, we include an Appendix with proofs of some standard facts about the random walks we consider, and a formulation of Karamata’s Tauberian Theorem.

2. Preliminaries

2.1. Relative complexity over a factor. Let \((X, \mathcal{B}, m)\) be a standard probability space and \(T : X \to X\) a \(m\)-preserving transformation. Denote by \(\mathcal{B}(X)\) the collection of all measurable countable partitions of \(X\). In order to avoid confusion with notions from probability, we will denote the partitions by Greek letters \(\beta \in \mathcal{B}(X)\) and the atoms of \(\beta\) by \(\beta^{1}, \beta^{2}, \ldots, \beta^{\#\beta}, \#\beta \in \mathbb{N} \cup \{\infty\}\). A partition \(\beta\) is a generating partition if the smallest \(\sigma\)-algebra containing \(\{T^{-n}\beta : n \in \mathbb{Z}\}\) is \(\mathcal{B}\). For \(\beta \in \mathcal{B}(X)\) and \(n \in \mathbb{N}\) let

\[\beta_{n}^{\beta} := \bigvee_{j=0}^{n} T^{-j}\beta = \left\{ \bigcap_{j=0}^{n} T^{-j}b_{j} : b_{1}, \ldots, b_{n} \in \beta \right\}.
\]

The \(\beta\)-name of a point \(x \in X\) is the sequence \(\beta(x) \in (\#\beta)^{\mathbb{N}}\) defined by

\[\beta_{n}(x) = i\text{ if and only if } T^{n}x \in \beta_{i}^{\beta}.
\]

The \((T, \beta, n)\)-Hamming pseudo-metric on \(X\) is defined by

\[\bar{d}_{n}^{(\beta)}(x, y) = \frac{1}{n} \# \{ k \in \{0, \ldots, n-1\} : \beta_{k}(x) \neq \beta_{k}(y) \}.
\]

That is two points \(x, y \in X\) are \(\bar{d}_{n}^{(\beta)}\)-close if for most of the \(k\)'s in \(\{0, \ldots, n-1\}\), \(T^{k}x\) and \(T^{k}y\) lie in the same partition element of \(\beta\). An \(\epsilon\)-ball in the Hamming pseudo-metric will be denoted by

\[B(n, \beta, x, \epsilon) := \left\{ y \in X : \bar{d}_{n}^{(\beta)}(x, y) < \epsilon \right\}.
\]

This pseudo-metric was used in [KT, Fe] to define complexity sequences and slow-entropy-type invariants. It was shown for example by Katok and Thouvenot [KT] that if the growth rate of the complexity sequence is of order \(e^{h_{n}}\) with \(h > 0\), then \(h\) equals the entropy of \(X\) and by Ferenczi [Fe] that \(T\) is isomorphic to a translation of a compact group if and only if the complexity is of lesser order than any sequence which grows to infinity. In this paper we will be interested with the relativised versions of these invariants which were introduced in Aaronson [Aa].

A \(T\)-invariant sub-\(\sigma\)-algebra \(C \subset \mathcal{B}\) is called a factor. An equivalent definition in ergodic theory is a probability preserving transformation \((Y, \mathcal{C}, \nu, S)\) with a (measurable) factor map \(\pi : X \to Y\) such that \(\pi T = S \pi\) and \(\nu = m \circ \pi^{-1}\), in this case \(C = \pi^{-1} \mathcal{C}\).
Given a factor $\mathcal{C} \subset \mathcal{B}$, $n \in \mathbb{N}$, $\beta \in \mathfrak{B}(X)$ and $\epsilon > 0$, we define a \mathcal{C}-measurable random variable $K_\mathcal{C}(\beta, n, \epsilon) : X \to \mathbb{N}$ by

$$K_\mathcal{C}(\beta, n, \epsilon) (x) := \min \left\{ \#F : F \subset X, m \left(\bigcup_{z \in F} B(n, \beta, z, \epsilon) \right) < C(x) + 1 - \epsilon \right\},$$

where $m(\cdot | \mathcal{C})$ denotes the conditional measure of m with respect to \mathcal{C}. The sequence of random variables $\{K_\mathcal{C}(\beta, n, \epsilon)\}_{n=1}^{\infty}$ is called the relative complexity of (T, β) with respect to \mathcal{C}.

Given a sequence of random variables Y_n, $n \in \mathbb{N}$ taking values in $[0, \infty]$ we write $Y_n \overset{D}{\longrightarrow} Y$ to denote “Y_n converges to Y in distribution” and $Y_n \overset{n \to \infty}{\longrightarrow} Y$ to denote convergence in probability.

The upper entropy dimension of T given \mathcal{C} is defined by

$$\overline{\text{Edim}}(T, \mathcal{C}) := \inf \left\{ t > 0 : \frac{\log K_\mathcal{C}(\beta, n, \epsilon)}{n^t} \xrightarrow{n \to \infty, \epsilon \to 0} 0, \forall \beta \in \mathfrak{B}(X) \right\},$$

and the lower entropy dimension of T given \mathcal{C} is

$$\underline{\text{Edim}}(T, \mathcal{C}) := \sup \left\{ t > 0 : \exists \beta \in \mathfrak{B}(X), \frac{\log K_\mathcal{C}(\beta, n, \epsilon)}{n^t} \xrightarrow{n \to \infty, \epsilon \to 0} \infty \right\}.$$

In case $\text{Edim}(T, \mathcal{C}) = \overline{\text{Edim}}(T, \mathcal{C}) = a$ we write $\text{Edim}(T, \mathcal{C}) = a$ and call this quantity the entropy dimension of T given \mathcal{C}.

The next Theorem is a special case of [Aa Thm 2] when $\{n_k\}_{k=1}^{\infty} = \mathbb{N}$.

Theorem 1 (Aaronson’s Generator Theorem). Let (X, \mathcal{B}, m, T) be a measure preserving transformation and $d_n > 0$ a sequence.

(a) If there is a countable \mathcal{T}-generator $\beta \in \mathfrak{B}(X)$ and a random variable Y on $[0, \infty]$ satisfying

$$\frac{\log K_\mathcal{C}(\beta, n, \epsilon)}{d_n} \xrightarrow{n \to \infty, \epsilon \to 0} Y,$$

Then for all \mathcal{T}-generating partitions $\alpha \in \mathfrak{B}(X)$,

$$\frac{\log K_\mathcal{C}(\alpha, n, \epsilon)}{d_n} \xrightarrow{n \to \infty, \epsilon \to 0} Y.$$

(b) if for some $\beta \in \mathfrak{B}(X)$, a generating partition for T,

$$\frac{\log K_\mathcal{C}(\beta, n, \epsilon)}{n^t} \xrightarrow{n \to \infty, \epsilon \to 0} 0,$$

then $\overline{\text{Edim}}(T, \mathcal{C}) \leq t$.

(c) if for some partition $\beta \in \mathfrak{B}(X)$,

$$\frac{\log K_\mathcal{C}(\beta, n, \epsilon)}{n^t} \xrightarrow{n \to \infty, \epsilon \to 0} \infty$$

then $\underline{\text{Edim}}(T, \mathcal{C}) \geq t$.

2.2. Basic ergodic theory for \mathbb{Z}^d actions. Let (X, \mathcal{B}, m) be a standard probability space and G be a countable Abelian group. A measure preserving action of G on (X, \mathcal{B}, m) is a map $S : G \to \text{Aut}(X, \mathcal{B}, m)$ such that for every $g_1, g_2 \in G$, $S_{g_1 g_2} = S_{g_1} S_{g_2}$ and for all $g \in G$, $(S_g)_* m = m$. The action is ergodic if there are no non trivial S-invariant sets.

Given an ergodic G action on (X, \mathcal{B}, m, S) and an increasing sequence F_n of subsets of G, one can define a sequence of averaging operators $A_n : L_2(X, \mathcal{B}, m) \to L_2(X, \mathcal{B}, m) \trianglelefteq$ by

$$A_n(f) := \frac{1}{\#F_n} \sum_{g \in F_n} f \circ S_g$$

and ask whether for all $f \in L_2(X, \mathcal{B}, m)$ one has $A_n(f) \to \int_X f dm$ in L_2. The sequences of sets $\{F_n\}_{n=1}^{\infty}$ for which this is necessarily true are called Földner sequences and they are characterised
by the property that for every $g \in G$,
$$\frac{\# [F_n \Delta \{F_n + g\}]}{\# F_n} \to 0.$$

In this work we will be concerned with either actions of $G = \mathbb{Z}$ which is generated by one measure preserving transformation or $G = \mathbb{Z}^2$ which corresponds to two commuting measure preserving transformations. For a finite partition β of X, one defines the entropy of S with respect to β by

$$h(S, \beta) := \lim_{n \to \infty} \frac{1}{n^d} H \left(\bigvee_{j \in [0,n]^d \cap \mathbb{Z}^d} S_j^{-1}\beta \right),$$

where $H(\beta) = \sum_{i=1}^{\# \beta} m(\beta_i) \log m(\beta_i)$ is the Shannon entropy of the partition. The entropy of S is then defined by

$$h(S) = \sup_{\beta \in \mathcal{B}(X): \beta \text{ finite}} h(S, \beta).$$

As in the case of a \mathbb{Z}-action, one says that β is a generating partition if the smallest sigma algebra containing $\bigvee_{j \in \mathbb{Z}^d} S_j^{-1}\beta$ is \mathcal{B}. In an analogous way to the case of \mathbb{Z}-actions, it follows that if β is a generating partition for S then $h(S) = h(S, \beta)$ and if $h(S) < \infty$ then there exist finite generating partitions $[\xi_1, \xi_2, \ldots]$.

3. Random walks in random sceneries and statement of main theorem

In what follows we will be interested in a random walk in random scenery where the jump random variable $\xi \in \mathbb{Z}^2$ is in the domain of attraction of 2-dimensional Brownian Motion, or $\xi \in \mathbb{Z}$ and is in the domain of attraction of the Cauchy law. The reason that these two models are of most interest to us is that the limiting distribution does not have a local time process.

To be more precise let $\xi, \xi_1, \xi_2, \ldots$ be i.i.d. \mathbb{Z}^d-valued random variables defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with characteristic function $\phi_{\xi}(t) := \mathbb{E}(e^{it\xi})$ for $t \in [-\pi, \pi]^d$, and that either

A1: (1-stable) $\xi \in \mathbb{Z}$ and $\phi_{\xi}(t) = 1 - \gamma |t| + o(|t|)$ for $t \in [-\pi, \pi]$, for some $\gamma > 0$; or

A2: ξ is in \mathbb{Z}^2 and $\mathbb{E} |\xi|^2 < \infty$ with non-singular covariance matrix Σ; equivalently $\phi_{\xi}(t) = 1 - \langle t, \Sigma t \rangle + o(|t|^2)$ for $t \in [-\pi, \pi]^d$.

In the above cases the random walk is given by $S_n(\xi) := \xi_1 + \xi_2 + \cdots + \xi_n$. We will also assume that the random walk is strongly aperiodic in the sense that there is no proper subgroup L of \mathbb{Z}^d such that $\mathbb{P}(\xi - x \in L) = 1$ for some $x \in \mathbb{Z}^d$.

We are also interested in the two dimensional Simple Random Walk, which has period 2 and is thus not covered by A2 above.

A2$: \xi \in \mathbb{Z}^2$ and $\mathbb{P}[\xi = e] = 1/4$ for $|e| = 1$. Then $\sqrt{\det(\Sigma)} = 1/2$.

Denote by μ_{ξ} the distribution of ξ. The base of the RWRS is then defined as $\Omega = (\mathbb{Z}^d)^N$ the space of all \mathbb{Z}^d-valued sequences, $\mathbb{P} = \prod_{k=1}^{\infty} \mu_{\xi}$, the product measure, and $\sigma : \Omega \to \Omega$ the left shift on Ω defined by

$$(\sigma w)_n = w_{n+1}.$$

When $d = 2$, the random scenery is an ergodic probability preserving \mathbb{Z}^2- action (Y, C, ν, S) and when $d = 1$ it is just an ergodic probability preserving transformation $S : (Y, C, \nu) \to (Y, C, \nu)$.

The skew product transformation on $Z = \Omega \times Y$, $B_Z = B_\Omega \otimes B_Y$, $m = \mathbb{P} \times \nu$, defined by

$$T(w, y) = (\sigma w, Sw_1(y)),$$

is the random walk in random scenery with scenery (Y, C, ν, S) and jump random variable ξ.

Remark. The results of Kalikow were extended to more general RWRSs, including the planar case, by den Hollander and Steif. In particular they show that these RWRS’s are not Bernoulli.

Theorem 2. Let (Z, B_Z, m, T) be RWRS with random scenery (Y, C, ν, S) and jump random variable ξ.

(a) If \(d = 1 \) and \(\xi \) satisfies \(A1 \) then for any generating partition \(\beta \) for \(T \),
\[
\frac{\log(n)}{\pi \gamma n} \log \mathcal{K}_{\Omega} (\beta, n, e) \xrightarrow{m} h(S).
\]
(b) If \(d = 2 \) and \(\xi \) satisfies \(A2 \) or \(A2' \) then for any generating partition \(\beta \) for \(T \),
\[
\frac{\log n}{2\pi \sqrt{\det(\Sigma)n}} \log \mathcal{K}_{\Omega} (\beta, n, e) \xrightarrow{m} h(S).
\]
In particular in both cases
\[\text{Edim} (T, \mathcal{B}_\Omega) = 1.\]

Remark 3. This Theorem states that the rate of growth of the complexity is of order \(\#R(n) \), where \(R(n) \) is the range of the random walk up to time \(n \). This conclusion is similar to the conclusion of Aaronson for the case where the random walk is in the domain of attraction of an \(\alpha \)-stable random variable with \(1 < \alpha \leq 2 \). Our method of proof can apply to these cases as well. In addition, since we are not using the full theory of weak convergence of local times, one can hope that this method will apply also to a wider class of dependent jump distributions.

Two probability preserving transformations \((X_i, \mathcal{B}_i, m_i, T_i), 1 = 1, 2, \) are relatively isomorphic over the factors \(\mathcal{C}_i \subset \mathcal{B}_i \) if there exists a measurable isomorphism \(\pi : (X_1, B_1, m_1, T_1) \rightarrow (X_2, B_2, m_2, T_2) \) such that \(\pi^{-1}C_2 = C_1 \). The following corollary follows from Theorem 2 together with \[\text{Aa} \] Corollary 4.

Corollary 4. Suppose that \((Z_i, \mathcal{B}_{Z_i}, m_i, T_i), i = 1, 2, \) are two Random walks in random sceneries with strongly aperiodic \(\mathbb{Z}^2 \)-valued jump random variable \(\xi \) which satisfy \(A2 \) or \(A2' \) and their sceneries \(S^{(i)} \) have finite entropies.
If these two systems are isomorphic over their bases \(\mathcal{B}_\Omega \), then
\[
\sqrt{\det (\Sigma_1) h(S^{(1)})} = \sqrt{\det (\Sigma_2) h(S^{(2)})}.
\]

4. THE RANGE OF THE RANDOM WALK

Let \(R(n) = \{S(1), \cdots, S(n)\} \), be the range of the random walk and for \(x \in \mathbb{Z}^d \) define the local time,
\[
l(n, x) = \sum_{j=1}^{n} \mathbf{1}\{S(j) = x\}.
\]
Denote by \(\mathcal{F} \) the \(\sigma \)-algebra generated by \(\{X_n\}_{n=1}^\infty \).

The following theorem extends \([\text{Ce}, \text{Theorem 2}]\) to the case \(A1 \).

Theorem 5. Let \(Y_n \) be a point chosen uniformly at random from \(R(n) \), that is
\[
\mathbb{P}[Y_n = x \mid \mathcal{F}] = \frac{1\{x \in R(n)\}}{\#R(n)}.
\]

(i) If \(A1 \) holds, then
\[
\mathbb{P} \left[\pi \gamma \frac{l(n, Y_n)}{\log n} \geq u \mid \mathcal{F} \right] \xrightarrow{a.s.} e^{-u}, \quad \text{as } n \rightarrow \infty;
\]

(ii) If \(A2 [\text{Ce}, \text{Theorem 2}] \) or \(A2' \) holds then
\[
\mathbb{P} \left[2\pi \sqrt{\det(\Sigma)} \frac{l(n, Y_n)}{\log n} \geq u \mid \mathcal{F} \right] \xrightarrow{a.s.} e^{-u}, \quad \text{as } n \rightarrow \infty.
\]

The following is the main result of this section.

Theorem 6. Suppose that \(A1, A2 \) or \(A2' \) holds, then \(R(n) \) is almost surely a Fölner sequence, that is almost surely for all \(j \in \mathbb{Z}^d \)
\[
\lim_{n \rightarrow \infty} \frac{\# \left[R(n) \triangle (R(n) + j) \right]}{\#R(n)} = 0.
\]
4.1. Auxiliary results. Before we embark on the proofs of Theorems 5 and 6, we require several standard results. The next result is a direct consequence of strong aperiodicity and Assumptions A1 and A2. Its proof is a standard application of Fourier inversion, and is included in the Appendix for the sake of completeness.

Lemma 7. Suppose that A1 or A2 holds. Then with $\gamma_1 := \pi \gamma$ and $\gamma_2 := 2\pi \sqrt{\|\Sigma\|}$

\[
\sup_w \mathbb{P}[S(m) = w] = O \left(\frac{1}{m} \right),
\]

\[
\mathbb{P}[S(m) = w] = \mathbb{P}[S(m) = 0] = O \left(\frac{|w|}{m^2} \right),
\]

\[
\mathbb{P}[S(m) = w] \sim \frac{1}{\gamma_d m}.
\]

Lemma 8. Suppose that A1 holds. Then as $\lambda \uparrow 1$,

\[
\frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)} \sim \frac{1}{\pi \gamma} \log \left(\frac{1}{1 - \lambda} \right).
\]

Since simple random walk is not aperiodic, to prove Theorem 5 for the case A2' we recall the following (see \[Law\] Theorem 1.2.1).

Lemma 9. Under A2'

\[
\sup_x \mathbb{P}[S(m) = x] = O \left(\frac{1}{m} \right),
\]

\[
\sum_{k=0}^{n} \mathbb{P}[S_m = 0] \sim \frac{1}{\pi} \log n.
\]

4.2. Proof of Theorem 5. The result under A2 has been proven in \[Če\]. We will therefore focus on the remaining cases, explaining how to adapt the arguments in \[Če\]. We write C for a generic positive constant.

For $\alpha \geq 0$ define the α-fold self-intersection local time as follows,

\[
L_n(\alpha) := \sum_{x \in \mathbb{Z}^d} l(n, x)^{\alpha}, \quad \alpha > 0
\]

\[
L_n(0) := \lim_{\alpha \downarrow 0} L_n(\alpha) = \sum_{x \in \mathbb{Z}^d} \mathbf{1}\{l(n, x) > 0\} = \#R(n).
\]

The first step of the method in \[Če\] is to calculate the asymptotic behaviour of $L_n(\alpha)$ for $\alpha \in \mathbb{N}$. The next step is to use the aforementioned asymptotics to show that all integer moments of $2\pi \sqrt{\|\Sigma\| l(n, Y_n)/\log(n)}$, where Y_n is uniformly distributed in $R(n)$, converge to those of the exponential distribution with unit mean for almost every random walk path. Since the exponential distribution is uniquely determined by its integer moments the result follows.

The following Proposition 10 extends the estimates of \[Če\] to the cases A1 and A2'.

Proposition 10. For $d = 1, 2$, and any integer $k \geq 1$ if A1 or A2' holds then as $n \to \infty$

\[
\mathbb{E}[L_n(k)] \sim \frac{\Gamma(k + 1)}{(\pi \gamma_d)^{k-1}} n(\log n)^{k-1},
\]

\[
\text{var}(L_n(k)) = O(n^2 (\log n)^{2k-4}),
\]

\[
\lim_{n \to \infty} \frac{n(\log n)^{k-1}}{(\pi \gamma_d)^{k-1}} L_n(k) = \Gamma(k + 1), \quad \text{almost surely.}
\]

Proof of Proposition 10. Once (11) and (12) have been established, (13) follows for geometric subsequences by Chebyshev’s inequality, and the complete result by the same argument as in Černý [Če], which uses in addition the monotonicity of $L_n(\alpha)$ with respect to n in order to interpolate.
By Theorem 2.1.3, we have that

\[\text{Letting } \rho(b, k) = k!, \text{ while the remaining factors will not be important.} \]

\[\text{and } \bar{p}(m) = 1/(\pi m). \]

Case A1: The estimate (12) is contained in Theorem 3 of Deligiannidis and Utev [DU15]. It remains to prove (11).

Similar to \(\bar{p} \), we write

\[\mathbb{E} L_n(k) = \sum_{j_1 \leq \cdots \leq j_n = 0} \mathbb{P}[S_{j_1} = \cdots = S_{j_n}] = \sum_{b=1}^{k} \rho(b, k) \sum_{0 \leq j_1 < \cdots < j_n \leq n} \mathbb{P}[S_{j_1} = \cdots = S_{j_n}], \]

where \(\rho(b, k) = k! \), while the remaining factors will not be important.

\[\text{The estimate (12) is contained in Theorem 3 of Deligiannidis and Utev [DU15]. It:} \]

\[\text{Letting } M_n(b) := \{(m_0, \ldots, m_b) \in \mathbb{N}^{b+1} : m_1, \ldots, m_{b-1} \geq 1, \sum m_i = n\}, \]

we have by the Markov property

\[a_b(n) := \sum_{0 \leq j_1 < \cdots < j_n \leq n} \mathbb{P}[S_{j_1} = \cdots = S_{j_n}] = \sum_{m \in M_n(b)} \prod_{i=1}^{b-1} \mathbb{P}[S_{m_i} = 0]. \]

Then for \(\lambda \in [0, 1) \), by standard Fourier inversion

\[\sum_{n=0}^{\infty} a_b(n) \lambda^n = \sum_{n=0}^{\infty} \lambda^n \sum_{m \in M_n(b)} \prod_{i=1}^{b-1} \mathbb{P}[S_{m_i} = 0] \]

\[= \sum_{m_0 \geq 0} \sum_{m_1, \ldots, m_{b-1} \geq 1} \sum_{n=0}^{\infty} \lambda^{m_0 + \cdots + m_{b-1} + n} \prod_{i=1}^{b-1} \mathbb{P}[S_{m_i} = 0] \]

\[= \sum_{m_0 \geq 0} \lambda^{m_0} \sum_{n=0}^{\infty} \lambda^n \prod_{i=1}^{b-1} \sum_{m_i = 1}^{\infty} \mathbb{P}[S_{m_i} = 0] \]

\[= \frac{1}{(1 - \lambda)^2} \left[\frac{\lambda \phi(t)}{2\pi} \int_{-\pi}^{\pi} \frac{dt}{1 - \lambda \phi(t)} \right]^{b-1} \sim \left(\frac{\gamma^2}{(1 - \lambda)^2} \log \left(\frac{1}{1 - \lambda} \right) \right)^{b-1}, \]

as \(\lambda \uparrow 1 \), by Lemma 8. Then under A1 (11) follows by Karamata’s Tauberian Theorem, given in Appendix B, since the sequence \(a_b(n) \) is monotone increasing.

Case A2': The estimate (11) follows from (15) and (10).

The proof of (12) can be adapted from [DU15]. The variance is given by

\[\text{var}(L_n(k)) = C(k) \sum_{i_1 \leq \cdots \leq i_k} \sum_{l_1 \leq \cdots \leq l_k} \left\{ \mathbb{P}[S(i_1) = \cdots = S(i_k); S(l_1) = \cdots = S(l_k)] \right. \]

\[\left. - \mathbb{P}[S(i_1) = \cdots = S(i_k)] \mathbb{P}[S(l_1) = \cdots = S(l_k)] \right\}. \]

The terms where \(l_1, \ldots, l_k \) are not completely contained in any of the intervals \([i_j, i_{j+1}] \) can be bounded above by the positive term in the sum using (9). A similar, albeit more involved, calculation is performed in the proof of Proposition 12.

Suppose then that \(l_1, \ldots, l_k \in [i_j, i_{j+1}] \) for some \(j \), and by symmetry we can take \(j = 1 \). Define \(M_n(2k) \) as in (14) and change variables to

\[i_1 = m_0, \quad i_2 = m_0 + m_1, \quad \ldots, \]

\[i_k = l_k + m_{k+1}, \quad \ldots, \quad i_k = l_k + m_{k+1} + \cdots + m_{2k-1}. \]

Write \(p(m) = \mathbb{P}[S(m) = 0] \) and \(\bar{p}(m) = 1/(\pi m) \). The contribution of these terms is then

\[J_n(k) = C(k) \sum_{M_n(2k)} \prod_{1 \leq j \leq 2k-1} p(m_j) \times \left\{ p(m_1 + m_{k+1}) - p(m_1 + \cdots + m_{k+1}) \right\}. \]

By Theorem 2.1.3 we have that

\[|p(m) + p(m + 1) - 2\bar{p}(m)| \leq \frac{C}{m^2}; \]
Let \(q := m_2 + \cdots + m_k \) and

\[
M := n - \sum_{0 \leq j \leq 2k-1} m_j.
\]

Then

\[
\begin{align*}
& \left| \sum_{m_1 + m_{k+1} = 0}^{M} p(m_1 + m_{k+1}) - p(m_1 + m_{k+1} + q) \right| \\
& \leq \sum_{m_1 = 0}^{M} \sum_{m_{k+1} = 0}^{\lfloor (M-m_1)/2 \rfloor} \left| p(m_1 + 2m_{k+1}) + p(m_1 + 2m_{k+1} + 1) \\
& \quad - p(m_1 + 2m_{k+1} + q) - p(m_1 + 2m_{k+1} + 1 + q) \right| \\
& \leq \sum_{m_1 = 0}^{M} \sum_{m_{k+1} = 0}^{\lfloor (M-m_1)/2 \rfloor} \left(|p(m_1 + 2m_{k+1}) - p(m_1 + 2m_{k+1} + q)| + \frac{C}{(m_1 + 2m_{k+1})^2} \right) \\
& \leq \sum_{m_1 = 0}^{M} \sum_{m_{k+1} = 0}^{\lfloor (M-m_1)/2 \rfloor} \left(\frac{q}{(m_1 + 2m_{k+1})(m_1 + 2m_{k+1} + q) + (m_1 + 2m_{k+1})^2} \right).
\end{align*}
\]

Thus going back to \(J_n(k) \) we have

\[
J_n(k) \leq \sum_{M_n(2k)} \prod_{1 \leq k \leq 2k-1 \atop k \neq 1, k+1} p(m_k) \times \left\{ \frac{m_2 + \cdots + m_k}{(m_1 + \cdots + m_{k+1})(m_1 + m_{k+1})} + \frac{C}{(m_1 + m_{k+1})^2} \right\} \\
= \sum_{M_n(2k)} \prod_{1 \leq k \leq 2k-1 \atop k \neq 1, k+1} p(m_k) \frac{m_2 + \cdots + m_k}{(m_1 + \cdots + m_{k+1})(m_1 + m_{k+1})} + O(n(\log n)^{2k-2}) \\
=: J'_n(k) + O(n(\log n)^{2k-2}).
\]

By symmetry after we split the sum in the numerator and we combine \(m = m_1 + m_{k+1} \)

\[
J'_n(k) \leq Cn \sum_{m_1, \ldots, m_{2k-1}}^{n} \frac{1}{m_3 \cdots m_{2k-1}(m_1 + m_{k+1})(m_1 + \cdots + m_{k+1})} \\
\leq Cn(\log n)^{2k-4} \sum_{m, m_2 = 0}^{n} \frac{1}{m + m_2} \leq Cn^2(\log n)^{2k-4}.
\]

\[\square\]

Remark 11. A similar proof can be performed for any periodic random walk, by summing over the period.

Given Proposition 10, the proof of Theorem 5 is very similar to \(\hat{\text{Ce}} \) and is thus omitted. We just point out that under \(\textbf{A1} \)

\[
\frac{\log(n)}{\pi^\gamma n} \# R(n) \to 1, \quad \text{a.s. as } n \to \infty,
\]

by a simple application of Result 2 in Le Gall and Rosen [RL] with \(\beta = d = 1 \) and \(s(n) \equiv 1 \), after one notices that in our case the truncated Green’s function satisfies

\[
h(n) := \sum_{k=0}^{n} P(S_k = 0) \sim \frac{\log(n)}{\pi^\gamma},
\]

by Lemma 8 and Karamata’s Tauberian Theorem 16.

For \(\textbf{A2} \) note that [DE] Theorem 4 states that almost surely

\[
\frac{\log n}{\pi n} \# R(n) \to 1.
\]
4.3. Proof of the Föllner property of the Range (Theorem [6]). Let \(\alpha > 0 \) and define
\[
L_{n,w}(\alpha) := \sum_{x \in \mathbb{Z}^d} l(n, x)^\alpha l(n, x + w)^\alpha.
\]
These quantities are of interest since
\[
L_{n,w}(0) := \lim_{\alpha \downarrow 0} L_{n,w}(\alpha) = \frac{1}{\mathbb{P}} \sum_{x \in \mathbb{Z}^d} \mathbf{1}(l(n, x) > 0) \mathbf{1}(l(n, x + w) > 0)
= \#(R(n) \cap R(n) + w).
\]
Using the above notation the Föllner property ([4]) can be written as
\[
\lim_{n \to \infty} \frac{L_{n,w}(0)}{L_{n,0}(0)} = 1, \text{ a.s.}
\]
We will use the following result.

Proposition 12. Assume A1 or A2 holds. For all \(w \in \mathbb{Z}^d \) and \(\alpha \in \mathbb{Z}, \alpha \geq 1 \)
\[
\frac{L_{n,w}(\alpha)}{n(\log n)^{2\alpha - 1}} \to \begin{cases}
\frac{\Gamma(2\alpha + 1)}{\sqrt{\pi} \Gamma(\alpha + 1)} & \text{for } d = 1 \\
\frac{\Gamma(2\alpha + 1)}{(2\pi)^{2\alpha - 1} \Gamma^{2}(\alpha)} n^\alpha \gamma_d / \log(n) ^{2\alpha - 1} R(n) & \text{for } d = 2,
\end{cases}
\text{almost surely as } n \to \infty.
\]

We first complete the proof of Theorem [6] and then we prove the above Proposition.

Proof of Theorem [6] We first treat the cases A1 and A2.
Let \(Y_n \) be defined as in [1]. Setting \(\gamma_d = 2\pi \sqrt{\Sigma} \) for \(d = 2 \) and \(\gamma_d = \pi \gamma \) for \(d = 1 \), define
\[
W_n := \frac{\gamma_d l(n, Y_n) l(n, Y_n + w)}{\log(n)^2}.
\]
For integer \(\alpha \), by Proposition [12]
\[
\mathbb{E}[W_n^\alpha | F] = \frac{\gamma_d^{2\alpha}}{\# R(n)} \sum_{x} \frac{l(n, x)^\alpha l(n, x + w)^\alpha}{\log(n)^{2\alpha}}
= \frac{\gamma_d^{2\alpha - 1} L_{n,w}(\alpha) \gamma_d n / \log(n) ^{2\alpha - 1} R(n)}{\# R(n)} \to \Gamma(2\alpha + 1),
\]
almost surely. These are the moments of \(Y^2 \), where \(Y \sim \text{Exp}(1) \). Since
\[
\lim_{k \to \infty} \Gamma(1 + 2k)^{1/2k} \frac{2k}{k} = \lim \frac{\Gamma(1 + 2k)^{1/2k}}{2k} = e^{-1} < \infty,
\]
these moments define a unique distribution on the positive real line (see [D]), and therefore \(\mathbb{P} \)-almost surely, we have that conditionally on \(F \), \(Z_n \to Y^2 \) in distribution. Then
\[
\sum_x \mathbf{I}(l(n, x) > 0, l(n, x + w) > 0) / \#R(n) = \lim_{\alpha \downarrow 0} \frac{\gamma_d^{2\alpha}}{\# R(n)} \sum_{x} \frac{l(n, x)^\alpha l(n, x + w)^\alpha}{\log(n)^{2\alpha}}
= \lim_{\alpha \downarrow 0} \mathbb{E}[W_n^\alpha | F], \text{ and by monotone convergence}
= \mathbb{E} \left[\lim_{\alpha \to 0} W_n^\alpha \right] = \mathbb{P}(Z_n > 0 | F),
\]
almost surely. This shows that
\[
\sum_x \mathbf{I}(l(n, x) > 0, l(n, x + w) > 0) / \#R(n) = \mathbb{P}(W_n > 0 | F) \to \mathbb{P}(Y^2 > 0) = 1.
\]

Simple Random Walk. For the simple random walk in \(\mathbb{Z}^2 \) notice that one can consider the lazy version of the random walk, where \(\mathbb{P}[\xi^t = 0] = 1/2 \) while for \(e \in \mathbb{Z}^2 \), with \(|e| = 1\) we have \(\mathbb{P}[\xi^t = e] = 1/4d \). Then the lazy simple random walk \(S'_n := \sum_{i=1}^n \xi^t \), is strongly aperiodic and
and we claim that E in the time of R which for the case α we have for all $w \in \mathbb{Z}^2$
\[
\frac{|R'(n) \cap R'(n) + w|}{|R'(n)|} \rightarrow 1,
\]
almost surely. Define recursively the successive jump times
\[
T_0 := \min\{j \geq 1 : S'_j \neq S'_{j-1}\}, \quad T_k := \min\{j > T_{k-1} : S'_j \neq S'_{j-1}\}.
\]
Notice that the range of the simple random walk $R(n)$ is equal to the range of the lazy walk at the time of the n-th jump, $R'(T_n)$. Therefore
\[
\frac{|R(n) \cap R(n) + w|}{|R(n)|} = \frac{|R'(T_n) \cap R'(T_n) + w|}{|R'(T_n)|} \rightarrow 1,
\]
since $T_n \rightarrow \infty$ almost surely. \hfill \qedsymbol

Remark 13. Note that it is also possible to prove Theorem 9 under A2’ directly, by proving the corresponding version of Proposition 12 and then following the same argument as for A2. To adapt the variance calculation in Proposition 12 to the simple random walk, one has to sum first over the period similarly to the proof of Proposition 10.

Proof of Proposition 12. First we prove the result for $\alpha \in \mathbb{N}$ and then we extend it to the general case $\alpha \geq 0$. For $\alpha \in \mathbb{N}$, we have
\[
L_{n,w}(\alpha) = \sum_{x \in \mathbb{Z}^2} \left(\sum_{i=0}^{n} I(S_i = x) \right)^{\alpha} \left(\sum_{i=0}^{n} I(S_i = x + w) \right)^{\alpha}
\]
\[
= \sum_{x \in \mathbb{Z}^2} \sum_{i_1, \ldots, i_n = 0}^{n} I\left(S(i_1) = \cdots = S(i_\alpha) = x \right) \sum_{k_1, \ldots, k_\alpha = 0}^{n} I\left(S(k_1) = \cdots = S(k_\alpha) = x + w \right)
\]
\[
= \sum_{i_1, \ldots, i_{2\alpha} = 0}^{n} I\left\{ S(i_1) = \cdots = S(i_\alpha) = S(i_{\alpha+1}) - w = \cdots = S(i_{2\alpha}) - w \right\},
\]
which for $w = 0$ corresponds to the term $L_n(2\alpha)$. Then we can rewrite $L_{n,w}(\alpha)$ as
\[
\sum_{\beta=1}^{2\alpha} \sum_{j=(\beta-\alpha) \vee 0}^{\beta} j!(\beta - j)! \sum_{0 \leq i_1 < \cdots < i_{\beta} \leq \alpha} I\left\{ S(i_1) + \epsilon_1 w = \cdots = S(i_{\beta}) + \epsilon_\beta w \right\},
\]
where the third sum is over the set
\[
E(\beta, j) := \{ \epsilon = (\epsilon_1, \ldots, \epsilon_\beta) \in \{-1, 0\}^{\beta} : \sum |\epsilon| = j \}.
\]

Expectation of $L_{n,w}(\alpha)$. For given β, n and $\epsilon \in E(\beta, j)$, we have using the Markov property
\[
\alpha(\epsilon, \beta, n) := \mathbb{E} \sum_{0 \leq i_1 < \cdots < i_{\beta} \leq \alpha} I\left\{ S(i_1) + \epsilon_1 w = \cdots = S(i_{\beta}) + \epsilon_\beta w \right\}
\]
\[
= \sum_{m \in M_n(\beta)} \prod_{i=1}^{\beta-1} \mathbb{P}[S(m_i) = (\epsilon_i - \epsilon_{i+1})w].
\]
Next we show that the asymptotic behaviour does not actually depend on w or ϵ. In this direction we rewrite
\[
\alpha(\epsilon, \beta, n) = \sum_{m \in M_n} \prod_{i=1}^{\beta-1} \mathbb{P}[S(m_i) = 0] + \sum_{m \in M_n} \left\{ \prod_{i=1}^{\beta-1} \mathbb{P}[S(m_i) = (\epsilon_i - \epsilon_{i+1})w] - \prod_{i=1}^{\beta-1} \mathbb{P}[S(m_i) = 0] \right\}
\]
\[
= \alpha(0, \beta, n) + \mathcal{E}(\epsilon, \beta, n, w),
\]
and we claim that $\mathcal{E}(\beta, n, w) = o(\alpha(0, \beta, n))$ as $n \rightarrow \infty$.\hfill \qedsymbol
Let \(\delta_i = \epsilon_i - \epsilon_{i+1} \) we telescope the product to get

\[
\mathcal{E}(\epsilon, \beta, n, w) = \sum_{m \in M_n} \left\{ \prod_{i=1}^{\beta-1} \mathbb{P}[S_{m_i} \neq \delta_i w] - \prod_{i=1}^{\beta-1} \mathbb{P}[S_{m_i} = 0] \right\}
\]

\[
= \sum_{j=0}^{\beta-1} \sum_{m \in M_n} \prod_{i=1}^{\beta-1-j} \mathbb{P}[S(m_i) = \delta_i w] \times \left[\mathbb{P}[S(m_{\beta-j+1}) = \delta_{\beta-j+1} w] - \mathbb{P}[S(m_{\beta-j+1}) = 0] \right]
\]

\[
\times \prod_{l=\beta-j+2}^{\beta-1} \mathbb{P}[S(m_l) = 0],
\]

where implicitly the indices are not allowed to exceed their corresponding ranges.

We analyse the first term in detail to obtain

\[
\left| \sum_{m \in M_n} \prod_{i=1}^{\beta-2} \mathbb{P}[S(m_i) = \delta_i w] \times \left[\mathbb{P}[S(m_{\beta-1}) = \delta_{\beta-1} w] - \mathbb{P}[S(m_{\beta-1}) = 0] \right] \right|
\]

\[
\leq \sum_{m_0, \ldots, m_{\beta-2} = 0}^{n} \prod_{i=1}^{\beta-2} \mathbb{P}[S(m_i) = \delta_i w] \times \sum_{m_{\beta-1} = 0}^{n} \left[\mathbb{P}[S(m_{\beta-1}) = \delta_{\beta-1} w] - \mathbb{P}[S(m_{\beta-1}) = 0] \right]
\]

\[
\leq \sum_{m_0, \ldots, m_{\beta-2} = 0}^{n} \prod_{i=1}^{\beta-2} \mathbb{P}[S(m_i) = \delta_i w] \left[1 + \sum_{m_{\beta-1} = 1}^{\infty} \frac{C}{m^{2\epsilon}} \right] = O(n \log(n)^{\beta-2}),
\]

by Lemma \([\text{C}7]\). The remaining errors are very similar.

The asymptotic behaviour of \(\alpha(0, \beta, n) \) follows from \([\text{C}6]\) for \(d = 2 \) and Lemma \([\text{B}8]\) for \(d = 1 \) and is given by

\[
\alpha(0, \beta, n) \sim n \left(\frac{\log n}{\gamma_d} \right)^{\beta-1},
\]

where \(\gamma_1 := \pi \gamma \) and \(\gamma_2 := 2\pi \sqrt{\det(\Sigma)} \). Going back to \((18)\) we see that the leading term corresponds to \(\beta = 2\alpha \), while from the above discussion we can replace the terms \(\alpha(\epsilon, 2\alpha, n) \) by \(\alpha(0, 2\alpha, n) \). Since \(\# E(2\alpha, \alpha)(\alpha)!^2 = \Gamma(2\alpha + 1) \) we conclude that

\[
\mathbb{E} L_{n, w}(\alpha) = \mathbb{E} \sum_{i \in \mathbb{Z}^d} l(n, x)^{\alpha} l(n, x + w)^{\alpha} \sim \Gamma(2\alpha + 1) n \left(\frac{\log n}{\gamma_d} \right)^{2\alpha-1}.
\]

Variance of \(L_{n, w}(\alpha) \). To compute the variance we will follow the approach developed in \([\text{DU}15]\). First notice that

\[
\mathbb{E} L_{n, w}(\alpha)^2 = \mathbb{E} \sum_{i_1, \ldots, i_{2\alpha} = 0}^{n} \mathbf{1}(S(i_1) = \cdots = S(i_\alpha) = S(i_{\alpha+1}) - w = \cdots = S(i_{2\alpha}) - w)
\]

\[
\times \sum_{j_1, \ldots, j_{2\alpha} = 0}^{n} \mathbf{1}(S(j_1) = \cdots = S(j_\alpha) = S(j_{\alpha+1}) - w = \cdots = S(j_{2\alpha}) - w).
\]

Let \(A_m, A'_m \) be 0 or 1 according to whether there is a \(w \) or not in the \(m \)-th increment. Then

\[
\text{var} \left(L_{n, w}(\alpha) \right) = \sum_{k_1, \ldots, k_{2\alpha}, l_1, \ldots, l_{2\alpha}} \left\{ \mathbb{P} \left[S(k_1) = S(k_2) + A_2w = \cdots = S(k_{2\alpha}) + A_{2\alpha}w \right] \right.
\]

\[
\times \mathbb{P} \left[S(l_1) = S(l_2) + A'_2w = \cdots = S(l_{2\alpha}) + A'_{2\alpha}w \right]
\]

\[
\left. - \mathbb{P} \left[S(k_1) = S(k_2) + A_2w = \cdots = S(k_{2\alpha}) + A_{2\alpha}w \right] \times \mathbb{P} \left[S(l_1) = S(l_2) + A'_2w = \cdots = S(l_{2\alpha}) + A'_{2\alpha}w \right] \right\}.
\]

As we shall see the presence of \(w \) does not affect the asymptotic behaviour. The main role is played by the interlacement of the sequences \(k = (k_1, \ldots, k_{2\alpha}) \) and \(l = (l_1, \ldots, l_{2\alpha}) \). In order to
define the interlacement index \(v(k, l) \), of two sequences \(k = (k_1, \ldots, k_r) \) and \(l = (l_1, \ldots, l_s) \), let \(j \) be the combined sequence of length \(r + s \), where ties between elements of \(k \) and \(l \) are counted twice. We also define \(\epsilon = (\epsilon_1, \ldots, \epsilon_{r+s}) \), where \(\epsilon_i = 1 \) if the \(i \)-th element of the combined sequence is from \(k \) and 0 if it is from \(l \); that is \(\epsilon_1 = 1 \) if \(j_i \in k \) and 0 otherwise. Then we define the interlacement index,

\[
v(k, l) = v(k_1, \ldots, k_r; l_1, \ldots, l_s) := \sum_{i=1}^{r+s-1} |\epsilon_{i+1} - \epsilon_i|,
\]

which counts the number of times \(k \) and \(l \) cross over.

When \(v = 1 \) then the contribution is zero by the Markov property. The main contribution will be from \(v = 2 \). Similar to [DUL15], the contributions of terms with \(v \geq 3 \) can be bounded above by just considering the positive part, \(\mathbb{E} L_{n,w}(\alpha)^2 \). Let us first treat this case leaving \(v = 2 \) for later.

Case \(v \geq 3 \). Letting \(\rho(\alpha) \) denote combinatorial factors, the contribution to \(\mathbb{E} L_{n,w}(\alpha)^2 \) from the terms with interlacement \(v \geq 3 \) is trivially bounded above by

\[
I_n(w, \alpha) := \rho(\alpha) \sum_{k_1, \ldots, k_{2\alpha}} \sum_{l_1, \ldots, l_{2\alpha}} \left\{ \mathbb{P} \left[S(k_1) = S(k_2) + A_2w = \cdots = S(k_{2\alpha}) + A_{2\alpha}w \right] \right. \\
S(l_1) = S(l_2) + A_2'w = \cdots = S(l_{2\alpha}) + A_{2\alpha}'w \\
\left. \mathbb{P} \left[S(k_1) = \cdots = S(k_{2\alpha}) + A_{2\alpha}w \right] \right. \\
S(l_1) = S(l_2) - x, S(l_1) = S(l_2) + A_2'w = \cdots = S(l_{2\alpha}) + A_{2\alpha}'w,
\]

where \(A_\cdot, A_\cdot' \in \mathbb{Z} \) and may vary from line to line. Let \((j_1, \ldots, j_{4\alpha}) \) denote the combined sequence, allowing for matches. Changing variables

\[j_1 = m_0, j_2 = m_0 + m_1, \ldots, j_{4\alpha} = m_0 + \cdots + m_{4\alpha-1}, n = m_0 + \cdots + m_{4\alpha}, \]

with \(m_0, \ldots, m_{4\alpha} \geq 0 \), we get

\[
I_n(w, \alpha) \leq \rho(\alpha) \sum_{m_0, \ldots, m_{4\alpha-1} \geq 0} \sum_{x} \mathbb{P} \left[S(m_1) = S(m_2) + A_2w + \delta_2x = \cdots = S(m_1 + \cdots + m_{4\alpha}) + A_{4\alpha}w + \delta_{4\alpha}x \right],
\]

where \(\delta_i := \epsilon_i - \epsilon_{i+1} \in \{-1, 0, +1\} \), and \(\epsilon \) is defined as earlier. A simple application of the Markov property results in

\[
I_n(w, \alpha) \leq \rho(\alpha)n \sum_{m_1, \ldots, m_{4\alpha-1} \geq 0} \prod_{k=1}^{4\alpha-1} \mathbb{P}[S(k) = (\delta_{k-1} - \delta_k)x + A_kw],
\]

where the factor \(n \) resulted from the free index \(m_0 \). Notice that since \(v \) is the number of interlacements, exactly \(u := 4\alpha - 1 - v \) of the \(\delta \)'s are 0 and thus by (17)

\[
I_n(w, \alpha) \leq Cn \log(n)^{4\alpha-1-v} \sum_{j_1, \ldots, j_v} \sum_{x} \prod_{t=1}^{v} \mathbb{P}[S(j_t) = \delta_t'x + A_kw],
\]

where \(\delta_t' \in \{-1, +1\} \). Letting

\[D_{n,v} := \sum_{j_1, \ldots, j_v=0}^{n} \sum_{x} \prod_{k=1}^{v} \mathbb{P}[S(j_k) = \delta_k'x + A_kw], \]

notice that

\[
D_{n,v} \leq D_{n,v-1} \sup_{y} \mathbb{P} \left[S(j_v) = y \right] \leq CD_{n,v-1} \sum_{j_v=1}^{n} \frac{1}{j_v} \leq C \log(n)D_{n,v-1}.
\]
Repeating we arrive at $D_{n,v} \leq C \log(n)^{v-3} D_{n,3}$, and therefore
\[I_n(w, \alpha) \leq C n \log(n)^{4\alpha - 4} D_{n,3}. \]
To complete our study of the $v \geq 3$ case we now treat the term $D_{n,3}$,
\[
D_{n,3} \leq C \sum_{i,j \leq k \leq n} \mathbb{P}[S(i) = \delta_i' x + A_i w] \times \mathbb{P}[S(j) = \delta_j' x + A_j w] \times \mathbb{P}[S(k) = \delta_k x + A_k w]
\]
\[
\leq C \sum_{i,j \leq k \leq n} \left(\sup_y \mathbb{P}[S(j) = y] \sup_y \mathbb{P}[S(i) = y] \right).
\]
By symmetry and Lemma 7
\[
D_{n,3} \leq C \sum_{0 \leq i \leq j \leq k \leq n} \frac{1}{j} \frac{1}{i+k} \leq C \sum_{m_1,m_2,m_3=0}^{n} \frac{1}{m_1+m_2+2m_1+m_2+m_3}
\]
\[
\leq C \sum_{m_1,m_2=0}^{n} \frac{1}{m_1+m_2} \log \left(1 + \frac{n}{m_1+m_2} \right) \leq C \sum_{j=0}^{2n} \log \left(1 + \frac{n}{j} \right)
\]
\[
\leq C \int_{x=1}^{2n} \log \left(1 + \frac{n}{x} \right) dx \leq n \int_{1/2}^{n} \log(1+y) \frac{dy}{y^2} \leq C n.
\]
Therefore $D_{n,3} = O(n)$ and thus the total contribution of the terms with $v \geq 3$ is $O(n^2 \log(n)^{4\alpha-4})$.

Case $v = 2$. Letting $M_n(4\alpha)$ be defined as usual, we have for some q that $l_1, \ldots l_{2\alpha} \in [k_q, k_{q+1}]$.

Denoting by $J_n(w, \alpha)$ the contribution of a single term with $v = 2$
\[
J_n(w, \alpha) = \sum_{M_n(4\alpha) \leq m \leq 4\alpha-1} \prod_{k \neq q, q+2\alpha} \mathbb{P}[S(m_k) = A_k w]
\]
\[
\times \left[\mathbb{P} \left(S(m_q) + S(m_{q+2\alpha}) = K_1 w \right) - \mathbb{P} \left(S(m_q) + \cdots + S(m_{q+2\alpha}) = K_2 w \right) \right],
\]
where K_1, K_2 are integers determined by k, l and their interlacement. By (7) it follows that
\[
J_n(w, \alpha) \leq C n \log(n)^{2\alpha - 2} \sum_{p_0, \ldots, p_{2\alpha}} \frac{1}{p_2 \cdots p_{2\alpha}} \left[\frac{1}{p_0 + p_1} - \frac{1}{p_0 + p_1 + \cdots + p_{2\alpha}} \right]
\]
\[
= C n \log(n)^{2\alpha - 2} \sum_{p_0, \ldots, p_{2\alpha}} \frac{1}{p_2 \cdots p_{2\alpha}} \frac{p_0 + p_1 + p_2 + \cdots + p_{2\alpha}}{p_0 + p_1 + p_2 + \cdots + p_{2\alpha}}
\]
\[
\leq C n \log(n)^{2\alpha - 2} \sum_{p_0, \ldots, p_{2\alpha}} \frac{1}{p_3 \cdots p_{2\alpha}} \frac{p_0 + p_1 + p_2 + \cdots + p_{2\alpha}}{p_0 + p_1 + p_2 + \cdots + p_{2\alpha}}
\]
\[
\leq C n \log(n)^{2\alpha - 2} \log(n)^{2\alpha - 3} \sum_{p_1, p_2=0}^{n} \frac{1}{p_1 + p_2} \leq C n^2 \log(n)^{4\alpha - 4}.
\]
Thus the total contribution of terms with interlacement index $v = 2$ is $O \left(n^2 \log(n)^{4\alpha - 4} \right)$.

To complete the proof of Proposition 12 we first use Chebyshev’s inequality to prove convergence along subsequences $n = \lfloor \rho^k \rfloor$, for $0 < \rho < 1$. We can fill in the gaps following the standard trick, as in [Ce].

5. Proof of Theorem 2

Our proof follows closely the outline of the proof of [Aa] and [KT]. The main difference in our approach is that we are using the almost sure Fölner property of the range and that we substitute the role of the local times with Theorem 5. In the following we assume that the entropy of S is finite. The case of infinite entropy can be easily derived by the same method.
Fix a finite generator β for S, the existence of which is a consequence of Krieger’s Finite Generator Theorem [Kr] for $d = 1$ and [KW, DP] for $d = 2$. Let $\alpha = \{[x]: x \in \Omega\}$ be the partition of Ω according to the first coordinate. The partition $\Upsilon := \alpha \times \beta$ is a countable generating partition of $\Omega \times Y$ for T. Thus by Aaronson’s Generator Theorem (Theorem 1), we need to show that

$$\frac{\log n}{n} \log \mathcal{K}_{B_1 \times Y} (\Upsilon, n, \epsilon) \overset{m}{\rightarrow} \pi h (S) \cdot \begin{cases} \gamma, & d = 1, \ \text{A1} \\ \frac{2}{\sqrt{\det \Sigma}}, & d = 2, \ \text{A2, A2’}. \end{cases}$$

For $a_0, a_1, \ldots, a_n \in \Upsilon$ we write

$$[a_0, a_1, \ldots, a_n] := \bigcap_{j=0}^n T^{-j} a_j$$

and the d_n metric on $\mathbb{V}^{n-1}_{j=0} T^{-j} \Upsilon$,

$$d_n ([a_0, a_1, \ldots, a_{n-1}], [a_0', a_1', \ldots, a_{n-1}]) := \frac{\# \{0 \leq j \leq n - 1 : a_j \neq a_j' \}}{n}.$$

Since $T^n (w, y) = \left(\sigma^n w, \sum_{j=1}^n w_j (y) \right)$ it is straightforward to check that for all $n \in \mathbb{N}$ and $(w, y) \in \Omega \times Y$,

$$\left(\bigvee_{j=0}^{n-1} T^{-j} \Upsilon \right) (w, y) = \left[w_0^{n-1} \right] \times \beta R_n (w) (y),$$

where $\beta R_n (w) (y) := \left(\bigvee_{j \in R_n (w)} S_j^{-1} \beta \right) (y)$ and $R_n (w) := \{ \sum_{j=1}^l w_j : 1 \leq l \leq n \}$ is the range of the random walk up to time n. For $n \in \mathbb{N}$, define $\Pi_n : \Omega \rightarrow 2^{\mathbb{V}^{n}_{j=0} T^{-j} \Upsilon}$ by

$$\Pi_n (w) := \left\{ a \in \bigvee_{j=0}^{n-1} T^{-j} \Upsilon : m (a \mid B \Omega \times Y) (w) > 0 \right\}.$$

These are the partition elements seen by w. The function

$$\Phi_{n, \epsilon} (x) := \min \{ \# F : F \subset \Pi_n (x), \ m (\cup_{a \in F} a \mid B \Omega \times Y) > 1 - \epsilon \},$$

is an upper bound for $\mathcal{K}_{B_1 \times Y} (\Upsilon, n, \epsilon) (x)$ since in the definition of $\Phi_{n, \epsilon}$ we are using all sequences in $\Pi_n (x)$ on their own and not grouping them into balls.

To get a lower bound, introduce

$$Q_{n, \epsilon} (x) := \max \left\{ \# \left\{ z \in \Pi_n (x) : d_n (a, z) \leq \epsilon \right\} : a \in \Pi_n (x) \right\}$$

to be the maximal cardinality of elements of $\Pi_n (x)$ at a d_n ball centred at some $a \in \Pi_n (x)$. It then follows that

$$\mathcal{K}_{B_1 \times Y} (P, n, \epsilon) (x) \geq \Phi_{n, \epsilon} (x) \cdot \frac{\Phi_{n, \epsilon} (x)}{Q_{n, \epsilon} (x)}.$$

Therefore the proof is separated into two parts. Firstly we prove that

$$\frac{\log n}{n} \log \Phi_{n, \epsilon} \overset{m}{\rightarrow} \pi h (S) \cdot \begin{cases} \gamma, & d = 1, \ \text{A1} \\ \frac{2}{\sqrt{\det \Sigma}}, & d = 2, \ \text{A2, A2’}, \end{cases} \tag{23}$$

and the second part consists of showing that

$$\frac{\log n}{n} \log Q_{n, \epsilon} \overset{m}{\rightarrow} 0. \tag{24}$$

We will deduce (23) from the following Shannon-McMillan-Breiman Theorem.

Lemma 14. For P-almost every $w \in \Omega$,

$$- \frac{\log n}{n} \log \nu (\beta R_n (w) (y)) \overset{m}{\rightarrow} \pi h (S) \cdot \begin{cases} \gamma, & d = 1, \ \text{A1} \\ \frac{2}{\sqrt{\det \Sigma}}, & d = 2, \ \text{A2, A2’}, \text{ as } n \rightarrow \infty. \end{cases}$$
Proof. Let $d \in \{1, 2\}$. By Theorem 5 for \mathbb{P}-almost every w, the range $\{R_n(w)\}$ is a Föllner sequence for \mathbb{Z}^d. Whence by Kieffer’s Shannon-McMillan-Breiman Theorem [K], for \mathbb{P}-a.e. w,

$$- \frac{1}{\#R_n(w)} \log \nu \left(\beta_{R_n(w)}(y) \right) \xrightarrow{n \to \infty} h(S)$$

and thus by Fubini,

$$- \frac{1}{\#R_n(w)} \log \nu \left(\beta_{R_n(w)}(y) \right) \xrightarrow{n \to \infty} h(S).$$

Notice that $h(S, \beta) = h(S)$ since β is a generating partition. Since by [DE] and (16),

$$\log n \#R_n(w) \xrightarrow{n \to \infty} \pi \left\{ \gamma, \frac{n}{2\sqrt{\det \Sigma}}, \begin{array}{ll} d = 1, & A_1, \\
 d = 2, & A_2, A_2'. \end{array} \right.$$

the conclusion of the lemma follows.

To keep the notation short, write

$$b_d(n) := \frac{\pi n}{\log(n)} \begin{cases} \gamma, & d = 1, \ A_1, \\
\frac{\gamma}{2\sqrt{\det \Sigma}}, & d = 2, \ A_2, A_2'. \end{cases}$$

Proof of (23). Let $\epsilon > 0$ and for $n \in \mathbb{N}, x \in \Omega$ let

$$H_{n,x,\epsilon} := \left\{ y \in Y : \nu \left(\beta_{R_n(x)}(y) \right) = e^{-b_d(n)h(S)(1+\epsilon)} \right\}.$$

By Lemma 14 there exists N_ϵ such that for all $n > N_\epsilon$, $\exists G_{n,\epsilon} \in B_\Omega$ so that $\mathbb{P}(G_{n,\epsilon}) > 1 - \epsilon$ and for all $x \in G_{n,\epsilon},$

$$\nu(H_{n,x,\epsilon}) > 1 - \frac{\epsilon}{2}. \tag{25}$$

For $x \in G_{n,\epsilon}$, set $F_{n,x,\epsilon} := \left\{ \beta_{R_n(x)}(y) : y \in H_{n,x,\epsilon} \right\}$. Since

$$\min \{ \log \nu(a) : a \in F_{n,x,\epsilon} \} > -b_d(n)h(S)(1 + \epsilon),$$

one has by a standard counting argument that for $x \in G_{n,\epsilon}$,

$$\log \Phi_{n,\epsilon}(x) \leq \log \#F_{n,x,\epsilon} \leq b_d(n)h(S)(1 + \epsilon).$$

On the other hand, it follows from (25) that for small ϵ and $x \in G_{n,\epsilon}$, if $F \subset \Pi_{n}(x)$ with

$$m(\bigcup_{a \in F} a|B_\Omega \times Y)(x) > 1 - \epsilon,$$

then for large n

$$\#F \geq \frac{1 - 3\epsilon/2}{\max \{ \log \nu(a) : a \in F_{n,x,\epsilon} \}} \geq e^{b_d(n)h(S)(1-\epsilon)}.$$

Thus for every $x \in G_{n,\epsilon}$ with n large,

$$\log \Phi_{n,\epsilon}(x) \geq b_d(n)h(S)(1 - \epsilon) + \log(1/2) \geq b_d(n)h(S)(1 - 2\epsilon).$$

The conclusion follows since

$$m(\{ \log \Phi_{n,\epsilon}(x) = b_d(n)h(S)(1 \pm 2\epsilon) \}) \geq \mathbb{P}(G_{n,\epsilon}) \xrightarrow{n \to \infty, \epsilon \to 0} 1. \tag{24}$$

5.1. Proof of Equation (24). Let $\epsilon > 0$ and choose $\delta > 0$ such that

$$2H(3\delta/2) + 3\delta \log(\#\beta) < \epsilon$$

where for $0 < p < 1$,

$$H(p) = -p \log_2(p) - (1 - p) \log_2(1 - p),$$

is the entropy appearing in the Stirling approximation for the binomial coefficients. It follows from Theorem 3 that there exists $c > 0$ such that for all large n, the sets

$$A_{\delta,n} = \left\{ w \in \Omega : \frac{\# \{ x \in R_n(w) : l(n,x) > c \log(n) \}}{\#R_n(w)} > 1 - \delta \right\},$$

satisfy $\mathbb{P}(A_{\delta,n}) > 1 - \delta$. Since $\#R_n(w) \sim b_d(n)$ almost surely we can assume further that for all $w \in A_{\delta,n}$, $\#R_n(w) \lesssim 2b_d(n)$.

Lemma 15. For large \(n \in \mathbb{N} \) and \(w \in A_{\delta,n} \), if \(a, a' \in \Pi_n(w) \) then
\[
\# \left\{ j \in R_n(w) : z(a)_j \neq z(a')_j \right\} \leq b_d(n) \left(\frac{\tilde{d}_n(a, a')}{\tilde{c}} + 2\delta \right),
\]
where \(\tilde{c} := c \cdot b_d(n) \log(n)/n \).

Proof. Define
\[
K_n(w) := \left\{ j \in R_n(w) : z(a)_j \neq z(a')_j \right\},
\]
and
\[
F_n(w) := \left\{ j \in R_n(w) : l(n, x)(w) \geq c \log(n) \right\}.
\]
Then \(K_n \subset (K_n \cap F_n) \cup F_n^c \) and therefore since \(w \in A_{\delta,n} \),
\[
\# K_n(w) \leq \# (K_n \cap F_n)(w) + \# F_n^c(w)
\]
\[
\leq \# (K_n \cap F_n)(w) + \delta \# R_n(w)
\]
\[
\lesssim \# (K_n \cap F_n)(w) + 2\delta b_d(n).
\]
Finally,
\[
\# (K_n \cap F_n) \leq \frac{1}{c \log(n)} \sum_{j \in F_n(w)} l(n, j) 1_{K_n(w)}
\]
\[
\leq \frac{1}{c \log(n)} \# \left\{ 0 \leq i \leq n - 1 : z(a)_{s_i(w)} \neq z(a')_{s_i(w)} \right\}
\]
\[
= \frac{n}{c \log(n)} \tilde{d}_n(a, a').
\]
The conclusion follows.

Proof of (24). First we show that for \(n \) large enough so that \(A_{\delta,n} \) is defined,
\[
\max_{w \in A_{\delta,n}} \log Q_{n,\delta\delta}(w) \leq \varepsilon b_d(n).
\]
To see this first notice that by Lemma 15 for every \(a \in \Pi_n(w) \),
\[
\left\{ a' \in \Pi_n(w) : \tilde{d}_n(a, a') \leq \tilde{c} \delta \right\} \subset \left\{ z \in \beta_{R_n(w)} : \# \left\{ j \in R_n(w) : z(a)_j \neq z_j \right\} \leq 3\delta b_d(n) \right\}.
\]
Thus for \(w \in A_{\delta,n} \), using the Stirling approximation for the Binomial and \(\# R_n(w) \lesssim 2b_d(n) \),
\[
\log Q_{n,\delta\delta}(w) \leq \log \left[\frac{\# R_n(w)}{3\delta b_d(n)} \right]^{\# \beta} \lesssim 3b_d(n) \delta \log(\# \beta) + \log \left(\frac{2b_d(n)}{3\delta b_d(n)} \right)
\]
\[
\sim b_d(n) \left[3\delta \log(\# \beta) + 2H(3\delta/2) \right]
\]
\[
\leq \varepsilon b_d(n).
\]
This shows that for large \(n \),
\[
\mathbb{P} \left(\log Q_{n,\delta\delta} > 2\varepsilon b_d(n) \right) \leq \mathbb{P} \left(A_{\delta,n}^c \right) \leq \delta,
\]
and thus we have finished the proof of (24).

As was mentioned before, Theorem 2 follows from (23) and (24).
APPENDIX A. PROOFS OF AUXILIARY RESULTS

Proof of Lemma 4 We only prove the second statement, the first being simpler. For \(d = 1 \) and any \(\epsilon > 0 \) by strong aperiodicity for \(|t| > \epsilon \) it is true that \(|\phi(t)| < C(\epsilon) < 0 \). Therefore

\[
\left| \mathbb{P}[S(m) = 0] - \mathbb{P}[S_m = w] \right| \leq \int_{-\pi}^{\pi} |1 - e^{itw}| |\phi(t)|^m dt \\
\leq \int_{|t|<\epsilon} |1 - e^{itw}| |\phi(t)|^m dt + 4\pi C(\epsilon)^m,
\]

where the second term decays exponentially. For the first term we have, since \(\phi(t) = 1 - \gamma |t| + o(|t|) \), for \(\epsilon \) small enough and \(|t| < \epsilon \),

\[
|\phi(t)| \leq |1 - \gamma |t|| + D(\epsilon)|t| \leq 1 - \frac{\gamma}{2}|t|.
\]

Therefore

\[
\int_{|t|<\epsilon} |1 - e^{itw}| |\phi(t)|^m dt \leq C \int_{|t|<\epsilon} |t||w| \left(1 - \frac{\gamma}{2} |t| \right)^m dt \\
= C|w| \int_{0}^{\epsilon} \left(1 - \frac{\gamma t}{2} \right)^m dt \\
\leq C|w| \int_{0}^{\epsilon} t \exp \left(- \frac{\gamma t}{2} \right) dt \leq C \frac{|w|}{m^2}.
\]

We prove (7) for \(d = 1 \). By (3) it suffices to consider \(w = 0 \). For the moment fix a small \(\epsilon > 0 \). Then, by aperiodicity, for \(|t| > \epsilon \), there exists \(\rho(\epsilon) \in (0,1) \), such that \(|\phi(t)| < \rho(\epsilon) \). Thus

\[
\mathbb{P}[S(n) = 0] = \frac{1}{2\pi} \int_{-\pi}^{\pi} \phi(t)^n dt = \frac{1}{2\pi} \int_{-\epsilon}^{\epsilon} \phi(t)^n dt + O(\rho(\epsilon)^n) \\
= \frac{1}{2\pi} \int_{-\epsilon}^{\epsilon} \left[1 - \gamma |t| + R(t) \right]^n dt + O(\rho(\epsilon)^n) \\
=: I(n,\epsilon) + O(\rho(\epsilon)^n).
\]

Since \(R(t) = o(t) \), for \(|t| < \epsilon \) we can find \(C(\epsilon) \) such that \(|R(t)| \leq C(\epsilon) |t| \) and such that \(C(\epsilon) \to 0 \) as \(\epsilon \to 0 \).

Therefore letting \(\gamma_1(\epsilon) := \gamma (1 + C(\epsilon)) \)

\[
I(n,\epsilon) \geq \frac{1}{2\pi} \int_{-\epsilon}^{\epsilon} \left[1 - \gamma |t| + C(\epsilon)|t| \right]^n dt = \frac{1}{\pi} \int_{0}^{\epsilon} \left[1 - \gamma_1(\epsilon) \right]^n dt \\
= \frac{1}{\pi \gamma_1(\epsilon)} \left[\frac{1}{n+1} - \frac{\left[1 - \gamma_1(\epsilon)\right]^{n+1}}{n+1} \right].
\]

Since for \(\epsilon > 0 \) small enough we have \(0 < 1 - \gamma_1(\epsilon) \epsilon < 1 \) we compute

\[
\liminf_{n \to \infty} n \mathbb{P}[S(n) = 0] \geq \frac{1}{\pi \gamma_1(\epsilon)}.
\]

On the other hand we also have

\[
I(n,\epsilon) \leq \frac{1}{2\pi} \int_{-\epsilon}^{\epsilon} \left[1 - \gamma |t| + C(\epsilon)|t| \right]^n dt = \frac{1}{\pi} \int_{0}^{\epsilon} \left[1 - \gamma_2(\epsilon) t \right]^n dt
\]

where \(\gamma_2(\epsilon) = 1 - C(\epsilon) \). Thus

\[
I(n,\epsilon) \leq \frac{1}{\pi} \int_{0}^{\epsilon} \left[1 - \gamma_2(\epsilon) t \right]^n dt = \frac{1}{\pi \gamma_2(\epsilon)} \left[\frac{1}{n+1} - \frac{\left[1 - \gamma_2(\epsilon)\right]^{n+1}}{n+1} \right].
\]

For \(\epsilon > 0 \) small enough we have that \(1 - \gamma_2(\epsilon) \epsilon \in (0,1) \), and therefore we obtain that

\[
\limsup_{n \to \infty} n \mathbb{P}[S(n) = 0] \leq \frac{1}{\pi \gamma_2(\epsilon)}.
\]

Since \(\epsilon > 0 \) is can be arbitrarily small and \(\gamma_1(\epsilon) \), \(\lim \gamma_2(\epsilon) \to \gamma \), (7) follows.
For $d = 2$ the proof is similar, using polar coordinates.

Proof of Lemma 8. Let $\delta > 0$ be arbitrary but small. Then
\[
\frac{1}{2\pi} \int_{\theta=\pi}^{\pi} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)} = \frac{1}{2\pi} \int_{|t| \leq \delta} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)} + \frac{1}{2\pi} \int_{|t| > \delta} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)}.
\]
By strong aperiodicity for small enough $\delta > 0$ there exists a small positive constant $D(\delta)$ such that $|\phi(t)| < 1 - D(\delta)$ when $|t| > \delta$. Thus
\[
\left| \frac{1}{2\pi} \int_{|t| > \delta} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)} \right| \leq CD(\delta)^{-1},
\]
for all $\lambda \leq 1$. Also
\[
\frac{1}{2\pi} \int_{|t| \leq \delta} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)} = \frac{1}{2\pi} \int_{|t| \leq \delta} \frac{\lambda \phi(t) dt}{1 - \lambda(1 - \gamma |t|)} + I(\lambda, \delta),
\]
where a standard argument using $A1$ and the strong aperiodicity shows that there exists $r(\delta) = o_\delta(1)$, as $\delta \to 0$ such that
\[
|I(\lambda, \delta)| \leq r(\delta) \log \left(\frac{1}{1 - \lambda} \right).
\]
Finally as $\lambda \uparrow 1$ it is easily seen that
\[
\frac{1}{2\pi} \int_{|t| \leq \delta} \frac{\lambda \phi(t) dt}{1 - \lambda(1 - \gamma |t|)} \sim \frac{1}{2\pi} \int_{0}^{\delta} \frac{dt}{1 - \lambda + \lambda \gamma t} = \frac{1}{2\pi} \int_{0}^{\delta} \frac{dt}{1 - \lambda + \lambda \gamma t} \sim \frac{1}{2\pi \gamma} \log \left(\frac{1}{1 - \lambda} \right).
\]
Therefore as $\lambda \uparrow 1$
\[
\frac{1}{2\pi} \int_{t=-\pi}^{\pi} \frac{\lambda \phi(t) dt}{1 - \lambda \phi(t)} = \frac{1}{2\pi \gamma} \log \left(\frac{1}{1 - \lambda} \right) \log \left(1 + O(r(\delta)) \right) + O(1)
\]
\[
\sim \frac{1}{2\pi \gamma} \log \left(\frac{1}{1 - \lambda} \right),
\]
since δ is arbitrarily small and $r(\delta) \to 0$ as $\delta \to 0$. □

Appendix B. Karamata’s Tauberian Theorem for Power Series

A function $h : \mathbb{R} \to \mathbb{R}$ is slowly varying at ∞ if for any $\lambda > 0$
\[
\lim_{x \to \infty} \frac{h(\lambda x)}{h(x)} = 1.
\]
The case we have in mind is $h(x) = \log x$.

For two functions (respectively, sequences) write $f(x) \sim g(x)$ as $x \to x_0$ if $\lim_{x \to x_0} f(x)/g(x) = 1$.

Theorem 16 (Corollary 1.7.3 in [BGT]). If $a_n \geq 0$ and the power series $I(\lambda) = \sum_{n \geq 0} a_n \lambda^n$ converges for $\lambda \in [0, 1)$, then for $c, \rho \geq 0$ and a slowly varying function h,
\[
\sum_{k=0}^{n} a_k \sim cn^\rho h(n)/\Gamma(1 + \rho)
\]
as $n \to \infty$, if and only if
\[
I(\lambda) \sim h\left(\frac{1}{1 - \lambda} \right) \frac{c}{(1 - \lambda)^\rho},
\]
as $\lambda \to 1$. If in addition $c\rho > 0$ and a_n is eventually monotone, both are equivalent to
\[
a_n \sim cn^{\rho-1} h(n)/\Gamma(\rho), \quad \text{as } n \to \infty.
\]
References

[Aa] Jon Aaronson. Relative complexity of random walks in random sceneries. *Ann. Probab.* 40, 2012, no. 6, pp. 2460-2482.

[Au] Tim Austin, Scenery entropy as an invariant of RWRS processes. preprint, 2014. Available at http://arxiv.org/abs/1405.1468.

[Ba] Karen Ball Entropy and σ-algebra equivalence of certain random walks on random sceneries. *Israel J. Math.* vol. 137 (2003), pp. 35-60.

[BGT] Nicholas H. Bingham, Charles M. Goldie and Józef L. Teugels, Regular Variation. *Cambridge University Press*, 1989.

[Bor1] Andrei N. Borodin, The asymptotic behavior of local times of recurrent random walks with finite variance. *Teor. Veroyatnost. i Primen. 26* (1981), no. 4, pp. 769-783.

[Bor2] Andrei N. Borodin, Asymptotic behavior of local times of recurrent random walks with infinite variance. *Teor. Veroyatnost. i Primen. 29* (1984), no. 2, pp. 312-326.

[Bol] Erwin Bolthausen, A central limit theorem for two-dimensional random walks in random sceneries. *Ann. Probab.* 17 (1989), no. 1, pp. 108-115.

[CPGP] Fabien Castell, Françoise Pène and Nadine Guillotin-Plantard. Limit theorem for one and two-dimensional random walk in random scenery. *Ann. Inst. Henri Poincaré Probab. Stat.,* 49 no. 2, (2013), 506–528.

[ˇCe] Jiří Černý. Moments and distribution of the local time of a two-dimensional random walk. *Stochastic Process. Appl.,* 117(2):262–270, 2007.

[DP] Alexandre I. Danilenko and Kyewon K. Park. Generators and Bernoullian factors for amenable actions and cocycles on their orbits. *Ergodic Theory Dynam. Systems* 22 (2002), no. 6, 1715-1745.

[dHS97] Frank den Hollander and Jeffrey E. Steif. Mixing properties of the generalized T, T^{-1}-process. *J. Anal. Math.,* 72 (1997), 165–202.

[DU11] George Deligiannidis and Sergey Utev, Computation of the asymptotics of the variance of the number of self-intersections of stable random walks using the Wiener-Darboux theory. (Russian) *Sibirsk. Mat. Zh.* 52 (2011), no. 4, pp. 809–822. translation in *Sib. Math. J.* 52 (2011), no. 4, pp. 639-650.

[DU15] George Deligiannidis and Sergey Utev. Optimal bounds for self-intersection local times. *Preprint*, available at http://arxiv.org/abs/1505.07956

[D] Rick Durrett. Probability: Theory and Examples, 4th Edition. *Cambridge University Press*, 2010.

[DE] Aryeh Dvoretzky and Paul Erdős, Some problems on random walk in space. *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles*, 1951, pp. 353–367.

[Fe] Sébastien Ferenczi. Measure-theoretic complexity of ergodic systems. *Israel J. Math.* 100, 1997, pp 189-207.

[Ka] Steven Arthur Kalikow, T, T^{-1} transformation is not loosely Bernoulli. *Ann. of Math.* (2) 115 (1982), no. 2, pp. 393-409.

[KW] Yitzhak Katznelson and Benjamin Weiss. Commuting measure preserving transformations. *Israel J. Math.* 12 (1972), pp 161-173.

[KT] Anatole Katok and Jean-Paul Thouvenot. Slow entropy type invariants and smooth realization of commuting measure-preserving transformations. *Ann. Inst. H. Poincaré Probab. Statist.* 33 1997, no. 3, pp 323-338.

[KS] Harry Kesten and Frank Spitzer. A limit theorem related to a new class of self-similar processes. *Z. Wahrsch. Verw. Gebiete* 50 1979, no. 1, pp 5-25.

[Ki] John C. Kieffer. A generalized Shannon-McMillan theorem for the action of an amenable group on a probability space. *Ann. Probab.* 3 1975, no. 6, pp. 1031-1037.

[Kr] Wolfgang Krieger. On entropy and generators of measure preserving transformations. *Trans. Amer. Math. Soc.* 149 (1970), pp. 453-464; (Erratum 168 (1972), 519.)

[Law] G. Lawler. Intersections of Random walks. *Birkhäuser*, 1991.
[LL] G. Lawler, V. Limic, Random Walk: a modern introduction. CUP, 2010.

[Or] Donald Ornstein, Bernoulli shifts with the same entropy are isomorphic. Advances in Math. 4 1970, pp. 337-352.

[RL] Jean-François Le Gall and Jay Rosen. The range of stable random walks. Ann. Probab., 19(2):650–705, 1991.

[Ru] Daniel J. Rudolph, Asymptotically Brownian skew products give non-losely Bernoulli K-automorphisms. Invent. Math. 91 (1988), no. 1, pp. 105-128.

Department of Statistics, University of Oxford, Oxford OX1 3TG, UK
E-mail address: deligian@stats.ox.ac.uk

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK
E-mail address: z.kosloff@warwick.ac.uk