Title:

Magnetic resonance imaging for individual prediction of treatment response in major depressive disorder: a systematic review and meta-analysis

Authors:

Sem E. Cohen¹ MD, Jasper B. Zantvoord¹,² MD, Babet N. Wezenberg¹ BSc, Claudi L.H. Bockting ¹,³ PhD, Guido A. van Wingen¹ PhD

¹ Amsterdam UMC, University of Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, Amsterdam, The Netherlands
² Department of Child and Adolescent Psychiatry, Amsterdam University Medical Center, Amsterdam, The Netherlands
³ Centre for Urban Mental Health, Amsterdam University Medical Center, Amsterdam, The Netherlands

Correspondence

Guido van Wingen, Department of Psychiatry, Amsterdam UMC, Meibergdreef 5, 1105 AZ, Amsterdam, The Netherlands. Email: g.a.vanwingen @amsterdamumc.nl, Phone number: +31 (0)208913523, Fax number: +31 (0)20 890 10 10

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Keywords

MRI, depression, machine learning, SSRI, antidepressant, ECT

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Abstract

Objective: No tools are currently available to predict whether a patient suffering from major depressive disorder (MDD) will respond to a certain treatment. Machine learning analysis of magnetic resonance imaging (MRI) data has shown potential in predicting response for individual patients, which may enable personalized treatment decisions and increase treatment efficacy. Here, we evaluated the accuracy of MRI-guided response prediction in MDD.

Methods: We conducted a systematic review and meta-analysis of all studies using MRI to predict single-subject response to antidepressant treatment in patients with MDD. Classification performance was calculated using a bivariate model and expressed as area under the curve, sensitivity, and specificity. In addition, we analyzed differences in classification performance between different interventions and MRI modalities.

Results: Meta-analysis of twenty-two samples including 957 patients showed an overall area under the bivariate summary receiver operating curve of 0.84 (95% CI 0.81-0.87), sensitivity of 77% (95% CI 71-82), and specificity of 79% (95% CI 73 - 84). Although classification performance was higher for electroconvulsive therapy outcome prediction (n = 285, 80% sensitivity, 83% specificity) than medication outcome prediction (n = 283, 75% sensitivity, 72% specificity), there was no significant difference in classification performance between treatments or MRI modalities.

Conclusion: Prediction of treatment response using machine learning analysis of MRI data is promising but should not yet be implemented into clinical practice. Future studies with more generalizable samples and external validation are needed to establish the potential of MRI to realize individualized patient care in MDD.

PROSPERO registration number: CRD42019137497
Introduction

Major depressive disorder (MDD) is a debilitating disease, accounting for 40 percent of the global disability-adjusted life years caused by psychiatric disorders (1). Depression is associated with impaired social functioning and unemployment, and is a causal factor in a wide range of chronic physical illnesses such as diabetes and cardiovascular disease (2, 3). MDD is estimated to have a life-time prevalence of 20.6 percent in the United States (4). Despite general consensus that effective treatment of depression is paramount for both a patient’s health and for reducing global burden of disease, MDD disease burden has not decreased in the last decades (5). This is partly because treatment selection is based on trial and error, with no possibility to predict an individuals’ response to certain treatment (6). Non-response to initial pharmacological and psychotherapeutic interventions is highly prevalent, with treatment-resistant depression affecting 20-30 percent of depressed patients in current clinical practice (7-9). Treatment of choice for patients who have not responded to pharmacological and psychotherapeutic treatments is electroconvulsive therapy (ECT), which produces remission rates in about 50 percent of therapy resistant patients (10, 11). Furthermore, non-response can only be determined at least four weeks after initiation of pharmacotherapy, ECT requires 4-6 weeks on average and effects of psychotherapy can even take sixteen weeks to manifest (7, 12). Consequently, patients are regularly exposed to multiple unsuccessful treatments and might spend months to years waiting for adequate treatment. This stresses the need for markers which, before treatment commencement, can inform clinicians on the chance of responding to a particular treatment.

A large number of studies have correlated baseline clinical characteristics and biomarkers with MDD status and treatment outcome, and have identified many factors that are associated with treatment success (13) (14). However, such descriptive analyses only provide inference at the group level and not at the level of the individual patient, which is required for clinical decision making (15). More recent studies have started to use machine learning analyses that aim to develop predictive models, and which are tested using independent data (13). More than with correlational analysis, single-subject response prediction studies using machine learning might be able to redeem the promise of
individualized psychiatry (16). Without being explicitly pre-programmed, these algorithms are able to learn from aggregated data in a patient sample using multivariate pattern recognition, in order to provide the best prediction of an output variable (17, 18). Machine learning algorithms could enable clinicians to judge the viability of treatments for individual patients. As such it might increase treatment efficacy, decrease illness duration and reduce MDD disease burden.

Multiple modalities have been considered for single-subject response prediction. A recent review covering different markers, found neuroimaging to overall be most successful in predicting treatment response in depressed patients (i.e. more than phenomenological or genetic studies) (19). However, the review pooled different treatments and neuroimaging modalities such as electroencephalography (EEG) and magnetic resonance imaging (MRI), and thus offers little insight into treatment specific biomarkers or specific imaging modalities. A recent meta-analysis on EEG for individual prediction of antidepressant treatment response found reasonable accuracy (72% sensitivity and 68% specificity) but concludes that EEG should not yet be used clinically as a prediction tool, since generalizability and validity of literature is limited (20). However, a meta-analysis of single-subject MRI-studies for prediction of anti-depressive treatment does not yet exist.

The primary aim of the present study was to calculate the aggregate classification performance of predictive MRI biomarkers in patients with MDD using a bivariate random effect model meta-analysis. We further investigated if classification performance was influenced by intervention type (i.e. pharmacotherapy, psychotherapy or ECT) or imaging modality (i.e. structural MRI, resting-state fMRI, task-based fMRI, DTI).
Methods

Inclusion and exclusion criteria

Two authors (SC and BW) included studies using any form of MRI (structural, resting-state, task-based, spectroscopy, diffusion tensor imaging) which were conducted at baseline, i.e. within 4 weeks before start of antidepressant treatment. Furthermore, inclusion criteria were an overarching definition of antidepressant treatment according to the current NICE-guidelines and a non-selective patient population with MDD suffering from a current depressive episode. Studies which used feature selection based on in-sample data without validating prediction outcomes either internally (e.g. through cross-validation) or externally (through independent set validation), were excluded. In- or exclusion conflicts were resolved by consensus, or if necessary by authors JZ and GW.

Search strategy

We conducted a search in EMBASE, Medline, PsycInfo and Web of Science databases. Each database was searched from inception to January 2020. Furthermore, we searched the WHO International Clinical Trial Registry Platforms search portal for registered and unpublished studies and we looked for ‘grey’ literature such as abstracts and conference articles through conference websites and from other relevant sources. Additionally, we checked included articles for references and conducted citation screening. For a full account of our search strategy and inclusion criteria, see the supplementary material.

Data extraction

Two authors (SC and BW) independently extracted data from included studies, including: number of participants, patient population and depression severity subtype, treatment history, antidepressant intervention and outcome measures, response/remission rates, neuroimaging technique, brain region and feature selection, method of analysis and validation strategy (see table 1). From included articles we extracted the confusion table (a 2x2 table for correctly and incorrectly classified patients) for sensitivity or specificity. If these were not supplied, we computed the matrix from additional
information in the article. If multiple studies analyzed the same patient sample, we used mean outcome measures based on these studies. If necessary, we contacted authors requesting additional information.

Meta-analytic method

For quantitative analysis, we used confusion matrices to pool studies using Reitsma’s bivariate random effect model, as suggested in the Cochrane handbook for diagnostic tests of accuracy studies (21, 22). We used this method for computing our main outcomes, which were the overall area under the summary receiver operating characteristic (ROC) curve, sensitivity, and specificity, as well as sensitivity and specificity of intervention subsets. Additionally, we performed a separate bivariate regression for modalities (functional and structural MRI) by including from each study both sMRI and fMRI, if provided in the original article or after our request for further information.

Heterogeneity and publication bias

To visualize between-study-differences, we conducted a univariate random-effect forest plot of the diagnostic odds ratios, subdivided per treatment group. We identified clinical and statistical heterogeneity by visually assessing confidence interval overlap and by identifying outlying studies. We avoided using an objective measure of heterogeneity, since these have shown to be inappropriately conservative for accuracy studies (23). Rather, we used a random-effect model that assumes that our data was heterogeneous and set out to investigate potential sources of heterogeneity (22). We did not perform any sensitivity analyses, as no studies were of such low quality, or were such outliers that sensitivity analysis was appropriate. To assess sample size effects and possible publication bias, we used Deeks’ test, as recommended for diagnostic accuracy studies (24, 25). For assessing quality of the primary studies, we used the QUADAS-2 tool (26). We pre-specified methods in the PROSPERO database for systematic reviews (registration number CRD42019137497) (ref naar prospero). All analyses were conducted using the mada and metafor package in R.
Results

3.1 Search results

Our search yielded 5624 hits, 168 of which were included for full-text review (see figure 1). After contacting the authors for additional information, we excluded 21 studies for not reporting data necessary for reconstructing a confusion matrix, all of which were ‘grey literature’, i.e. abstracts or conference summary articles. Furthermore, we excluded 11 articles for not reporting any form of validation of their prediction model. After exclusion of non-eligible studies and, through citation searching, addition of two eligible studies which did not come up in search hits, 27 remained (27-53).

3.2 Description of study characteristics

We included 27 studies with an accumulated number of 957 unique patients and a mean sample size of 44 per study, with a median of 33 (see Table 1 and Supplementary table 1 for a full methodological study summary). Three patient samples were used in more than one article (27, 29, 37, 38, 48-52).

Of the included studies, 50% used some form of pharmacotherapeutic intervention (total n = 283), all of which administered a clinically viable dosage, with response time varying from two weeks (early response), to 12 weeks. ECT was administered in 35% of studies (total n = 285), 8% used transcranial magnetic stimulation and 8% used cognitive therapy. Most studies used either sMRI (31%) or task-based fMRI (31%), most often using emotional stimuli, 19% used resting-state fMRI and 8% used diffusion tensor imaging (DTI). Two studies combined multiple modalities (37, 47).

As machine learning paradigm, 31% studies used support vector machine (SVM) for data-analysis, while 28% used logistic regression. After comparing classification accuracy with multiple algorithms (among others SVM and random forest) Patel and colleagues used an alternating decision tree method (47). For validation, 85% used leave-one-out cross-validation. Two studies used an independent cohort to validate their results, while one study first cross-validated classification results, after which authors validated their prediction model in two small, independent cohorts, achieving similar results (36, 40,
For additional information on approaches to imaging analysis, please refer to supplementary table 2.

3.3 Meta-analysis

3.3.1 General outcome

After pooling results from studies with overlapping patient samples, we quantitatively analyzed 22 samples, including one independent cohort replication which we have interpreted as a separate study (40). For all imaging modalities and interventions taken together, the meta-analytic estimates for the sROC AUC was 0.84 (95% CI 0.81-0.87), with 77% sensitivity (95% CI 71-82) and 79% specificity (95% CI 73 - 84), amounting to a moderately high classification performance.

3.3.2 Intervention differences

Sensitivity and specificity of ECT-interventions were 80% (95% CI 73-85) and 83% (95% CI 72-90), respectively, compared to 75% (95% CI 68-82) and 72% (95% CI 64-80) for antidepressant medication. Although prediction outcomes in ECT-studies do show a trend towards higher precision, confidence intervals overlap (see table 2).

3.3.3 Modality differences

In order to assess whether sMRI studies yielded different performance measures compared to fMRI studies, we performed random-effect meta-regression for modality subtypes. When comparing fMRI and sMRI, Z-regression values for sensitivities and specificities were non-significant, suggesting that prediction success for structural or functional neuroimaging did not differ between studies (see table 3).

3.4 Quality assessment
Three studies included only late-life-depression, which reduces applicability in the general MDD population (see supplementary figure 1 and supplementary table 3). In terms of flow and timing, drop-outs were a common issue, with 10 studies having a drop-out rate of 30 percent or higher, while 11 studies did not clarify drop-outs, possibly leading to attrition bias. Furthermore, two studies adapted the definition of response to create an even split in responders/non-responders, causing applicability concerns (42, 45). One study did not pre-specify the pharmacological intervention (47).

3.5 Heterogeneity and publication bias

The univariate forest plot of diagnostic performance (in ln OR) showed considerable overlap in confidence intervals between studies with different odds ratio’s, indicating that heterogeneity might be caused by sample variance (see Figure 3) (23). As described in the study description above, inter-study differences were present in population, modalities, intervention type, response/remission definition, feature selection and analysis technique. Deeks’ test showed study size and diagnostic odds ratio to be inversely related (p = 0.044) see supplementary figure 2), indicating that classification performance was lower in studies with larger samples. Inspection of the grey literature that was excluded due to missing information in order to construct a confusion matrix (all of which were conference/poster abstracts) showed that the grey literature had comparable mean sample sizes (n = 22, mean n = 56) and accuracies (ranging from 73%-95%) compared to the included studies. For an overview of grey literature results, see supplementary table 4.

Figure 1: Flow-diagram of study inclusion process

Table 1: Methodological summary of studies

Figure 2: Meta-analysis of MRI-studies for prediction of antidepressant response, bivariate SROC

Table 2: Summary estimates of sensitivity/specificity for different interventions

Table 3 Bivariate random-effect metaregression Z-scores for modality as covariate

Figure 3: Univariate random-effect forest plot of ln diagnostic odds ratio’s
Supplementary figures:

Supplementary figure 1: Quality assessment

Supplementary figure 2: Deeks’ test for sample-size effect

Supplementary tables:

Supplementary table 1: Full table of results

Supplementary table 2: Specific regions of interest

Supplementary table 3: Quality assessment

Supplementary table 4: Table of grey literature outcomes
Discussion

Our results show that machine learning analysis of MRI data can predict antidepressive treatment success with an AUC of 0.84, 77% sensitivity, and 79% specificity (figure 2). Furthermore, we did not find a difference in classification performance between studies using pharmacotherapy and ECT. Although ECT showed somewhat higher sensitivity and specificity, confidence intervals largely overlapped between the two intervention types (table 2). In addition, classification performance of structural and functional MRI did not differ significantly (table 3).

To our knowledge, this is the first meta-analysis specifically examining MRI for predicting treatment effects in depression. The overall classification performance is comparable to the one reported by Lee et al., who found a general accuracy of 85% for neuro-imaging (defined as EEG, CT, PET or MRI) (54). Those results were however based on a total of 8 MRI-studies, whereas our search resulted in 21 individual samples for analysis. This is partly due to the time gap between studies, which underscores the rapid development in this research area. Our results show that MRI prediction studies perform somewhat better than EEG (AUC of 0.76) and comparable to accuracy of diagnostic classification studies with MRI that distinguish depressed patients and healthy controls (20, 55). In contrast to the review of EEG studies, we excluded studies that tested their model on the training set, which increased generalizability of our sample and avoided presenting inflated accuracy results.

Clinical practice would require different prediction approaches for a broad range of specific settings. It would be useful to have a single predictive test for therapy resistant patients, especially to guide decision making for invasive treatments such as ECT. For example, ECT is associated with cognitive side-effects that are preferably avoided in case the treatment is unsuccessful (56). In addition, ECT is only applied in 1-2% of patients with persistent or severe depression and a biomarker that indicates a high probability of success may reduce the hesitance of its use (57). However, for most treatments, a differential biomarker would be preferable, which would enable selecting the treatment with the highest chance of success. As of yet, no MRI-study has used such prospective prediction and
subsequent treatment matching to guide decision making between two treatment options (for instance, between cognitive behavioral therapy and an SSRI). Furthermore, no studies have yet compared efficacy of prediction-guided treatments versus regular treatment based on patient-clinician preference. Thus, although the predictive performance of MRI biomarkers is certainly promising, the current study designs do not yet enable the translation of research findings to the clinic.

Generally, studies were of acceptable quality, although drop-out rates could cause concern in terms of reliability. Drop-out rates were not mentioned in 11 studies and for 10 studies, drop-out rates were larger than 30 percent without using an intention-to-diagnose approach. Not accounting for drop-outs, who might be less likely to respond to treatment, could inflate response/remission data and consequently alter sensitivity and specificity of the predictive test. Additionally, our results show between-study variety regarding the response criterion, which typically consisted of clinical response (≥50% symptom reduction) or symptom remission. Furthermore, although no objective investigation for clinical heterogeneity in prediction studies exists, our random-effect forest plot shows considerable overlap of confidence intervals with differing study results, implying the presence of sampling variation (figure 3) (22). Clinical variance between samples is an important obstacle in generalizability of any diagnostic or predictive marker, especially in psychiatric illnesses such as major depressive disorders, which is heterogeneous in both its clinical and neurophysiological manifestation (58, 59). Thus, intersample diversity of inclusion criteria and methodological design might hamper the realization of a reliable predictive biomarker.

In the current literature on diagnostic accuracy studies, the possibility of publication selection as a source of bias is still under debate (25, 60). However, our funnel plot (figure 4) shows the presence of a sample-size effect, with the n of a study being negatively correlated to classification performance, which could be attributable to publication bias (61). Another explanation of this significant correlation might be that large-scale studies with large samples are more likely to consist of heterogeneous patient groups, which in turn reduces prediction accuracy (62). As a further exploration of publication bias, our
search also took into account grey literature, which indicated that publication (or positive result) bias was absent. In conclusion, quantitative testing could not distinguish between a real effect (due to accuracy reduction in large heterogeneous samples) or publication bias. Although the grey literature deems its presence less likely, we cannot exclude the presence of publication bias.

The following limitations warrant further discussion. First, we did not find modality differences, but studies conducting functional MRI research might have also attempted prediction with structural MRI which remained unpublished. Although we did contact authors for additional information, response was poor, so we were unable to rule out reporting bias for modality differences. Second, the number of studies predicting psychotherapy outcome was low, resulting in a blind spot for one of the most commonly deployed treatment modalities in MDD (63). Third, cross-validation in small samples results in large variation of the estimated accuracy and as indicated above, accuracy reduces with larger sample heterogeneity (62, 64). Since the mean sample size of our studies was 44 (with a median \(n \) of 33), the reported results may be optimistic. Furthermore, characteristics of the test set during cross-validation will approximate the characteristics of the training set more than when tested in the general population, due to selection bias (65). Only two included studies replicated their training data in an independent cohort, and one included study used an out-of-sample cohort to further test their cross-validated results, leaving the question open to which extend the majority of results can be generalized to new patients (30, 36, 50).

In order to optimize patient care, reduce treatment resistance and shorten duration of illness, developing models that predict treatment success on individual-patient level is an urgent task. In a 2012 consensus report on diagnostic imaging markers in psychiatry, the American Psychiatric Association research council proposed 80% sensitivity and specificity as prerequisite for the clinical application of a biomarker (66). Furthermore, biomarkers should be ideally be reliable, reproducible, non-invasive, simple to perform, and inexpensive. The results for an ECT biomarker fulfilled the 80% criterion, but the results for a medication biomarker fell short. But following these terms, primarily
reproducibility has not yet been sufficiently well established with small sample-sizes and external validation in only a minority of studies. This precludes recommending MRI for treatment response prediction in clinical practice at this point.

Future multicenter studies with large patient samples that represent clinical heterogeneity are required to warrant MRI biomarker generalizability (67). However, one might question whether excellent generalizability is a goal which should be aimed for: if each clinical site were to develop its own, locally reliable and replicable biomarker that incorporates the local hardware, patient, and treatment variability, the predictive accuracy is expected to be higher than when all potential sources of heterogeneity are accounted for (62, 68). Standard machine learning analysis would, then, mean a departure from the traditional universalist paradigm in diagnostics, and instead initiate a shift to a paradigm of localization: heterogeneous yet locally applicable classification models. This will enable to retrain predictive models to obtain even better performance with more data after biomarker deployment. And this may enable to take advantage rather than disadvantage from (inevitable) hardware upgrades, such as higher signal-to-noise for new generations of MR scanners and coils.

In conclusion, prediction of treatment success using machine learning analysis of MRI data holds promise but has not transcended the research status and should not yet be implemented into clinical practice. Once it overcomes the aforementioned hurdles, MRI may become a clinical decision support tool aimed to reduce unsuccessful treatments, and improve treatment efficacy and efficiency.

References
1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575-86.
2. Kawakami N, Abdulghani EA, Alonso J, Bromet EJ, Bruffaerts R, Caldas-de-Almeida JM, et al. Early-life mental disorders and adult household income in the World Mental Health Surveys. Biol Psychiatry. 2012;72(3):228-37.
3. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119-38.
4. Hasin DS, Sarvet AL, Meyers JL, Saha TD, Ruan WJ, Stohl M, et al. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA psychiatry. 2018;75(4):336-46.
5. Herrman H, Kiely C, McGorry P, Horton R, Sargent J, Patel V. Reducing the global burden of depression: a Lancet–World Psychiatric Association Commission. The Lancet. 2019;393(10189):e42-e3.
6. Gelenberg AJ, Freeman MP, Markowitz JC ea. American Psychiatric Association Practice Guideline for the Treatment of Patients With Major Depressive Disorder, Third Edition. Am J Psychiatry. 2010;;167:167.
7. Pigott HE, Leventhal AM, Alter GS, Boren JJ. Efficacy and effectiveness of antidepressants: current status of research. Psychother Psychosom. 2010;79(5):267-79.
8. Loerinc AG, Meuret AE, Twohig MP, Rosenfield D, Bluett EJ, Raske MG. Response rates for CBT for anxiety disorders: Need for standardized criteria. Clinical psychology review. 2015;42:72-82.
9. A. John Rush MD, Madhukar H. Trivedi MD, Stephen R. Wisniewski PD, Andrew N. Nierenberg MD, Jonathan W. Stewart MD, Diane Warden PD, M.B.A., et al. Acute and Longer-Term Outcomes in Depressed Outpatients Requiring One or Several Treatment Steps: A STAR*D Report. American Journal of Psychiatry. 2006;163(11):1905-17.
10. Heijnen WT, Birkenhager TK, Wierdsma AI, van den Broek WW. Antidepressant pharmacotherapy failure and response to subsequent electroconvulsive therapy: a meta-analysis. J Clin Psychopharmacol. 2010;30(5):616-9.
11. Charles H. Kellner, M.D., Robert M. Greenberg, M.D., James W. Murrough, M.D., Ethan O. Bryson, M.D., Mimi C. Briggs, B.A., and, Rosa M. Cascalli, B.A. ECT in Treatment-Resistant Depression. American Journal of Psychiatry. 2012;169(12):1238-44.
12. McIntyre RS, Fiteau MJ, Martin L, Patry S, Carvalho A, Cha DS, et al. Treatment-resistant depression: definitions, review of the evidence, and algorithmic approach. Journal of affective disorders. 2014;156:1-7.
13. Perlman K, Benrimoh D, Israel S, Rollins C, Brown E, Tunteng JF, et al. A systematic meta-review of predictors of antidepressant treatment outcome in major depressive disorder. Journal of affective disorders. 2019;243:503-15.
14. Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry. 2020;25(2):321-38.
15. Ozomaro U, Wahlestedt C, Nemeroff CB. Personalized medicine in psychiatry: problems and promises. BMC Med. 2013;11:132.
16. Bzdok D, Meyer-Lindenberg A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3(3):223-30.
17. Yahata N, Kasai K, Kawato M. Computational neuroscience approach to biomarkers and treatments for mental disorders. Psychiatry Clin Neurosci. 2017;71(4):215-37.
18. Deo RC. Machine Learning in Medicine. Circulation. 2015;132(20):1920-30.
19. Lee Y, Ragguett R-M, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Corrigendum to “Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review.” J Affect Disord. 241 (2018) 519-532. Journal of affective disorders. 2020.
20. Widge AS, Bilge MT, Montana R, Chang W, Rodriguez CI, Deckersbach T, et al. Electroencephalographic Biomarkers for Treatment Response Prediction in Major Depressive Illness: A Meta-Analysis. The American journal of psychiatry. 2019;176(1):44-56.

21. Reitsma JB, Glas AS, Rutjes AW, Scholten RJ, Bossuyt PM, Zwinderman AH. Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews. Journal of clinical epidemiology. 2005;58(10):982-90.

22. Macaskill P GC, Deeks JJ, Harbord RM, Takwoingi Y. Chapter 10: Analysing and Presenting Results. In: Deeks JJ BP, Gatsonis C (editors), editor2010. (editors), Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 0.9. 2013.

23. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of clinical epidemiology. 2005;58(9):882-93.

24. van Enst WA, Ochodo E, Scholten RJPM, Hooft L, Leeflang MM. Investigation of publication bias in meta-analyses of diagnostic test accuracy: a meta-epidemiological study. BMC medical research methodology. 2014;14:70-.

25. Whiting PF, Rutjes AWS, Westwood ME, Mallett S, Deeks JJ, Reitsma JB, et al. QUADAS-2: A Revised Tool for the Quality Assessment of Diagnostic Accuracy Studies. Annals of Internal Medicine. 2011;155(8):529-36.

26. Costafreda SG, Chu C, Ashburner J, Fu CH. Prognostic and diagnostic potential of the structural neuroanatomy of depression. PloS one. 2009;4(7):e6353.

27. Costafreda SG, Khanna A, Mourao-Miranda J, Fu CH. Neural correlates of sad faces predict clinical remission to cognitive behavioural therapy in depression. Neuroreport. 2009;20(7):637-41.

28. Nouretdinov I, Costafreda SG, Gammerman A, Chervonenkis A, Vovk V, Vapnik V, et al. Machine learning classification with confidence: application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage. 2011;56(2):809-13.

29. Siegle GJ, Thompson WK, Collier A, Berman SR, Feldmiller J, Thase ME, et al. Toward clinically useful neuroimaging in depression treatment: prognostic utility of subgenual cingulate activity for determining depression outcome in cognitive therapy across studies, scanners, and patient characteristics. Archives of general psychiatry. 2012;69(9):913-24.

30. Queirazza F, Fouragnan E, Steele JD, Cavanagh J, Philiaistides MG. Neural correlates of weighted reward prediction error during reinforcement learning classify response to cognitive behavioral therapy in depression. Sci Adv. 2019;5(7):eaav4962-eaav.

31. van Waarde JA, Scholte HS, van Oudheusden LJ, Verwey B, Denys D, van Wingen GA. A functional MRI marker may predict the outcome of electroconvulsive therapy in severe and treatment-resistant depression. Mol Psychiatry. 2015;20(5):609-14.

32. Moreno-Ortega M, Prudic J, Rowny S, Patel GH, Kangarlu A, Lee S, et al. Resting state functional connectivity predictors of treatment response to electroconvulsive therapy in depression. Scientific Reports. 2019;9(1):5071.

33. Sun H, Jiang R, Qi S, Narr KL, Wade BSC, Upston J, et al. Preliminary prediction of individual response to electroconvulsive therapy using whole-brain functional magnetic resonance imaging data. NeuroImage: Clinical. 2019;102080.

34. Redlich R, Opel N, Grotegerd D, Dohm K, Zaremba D, Burger C, et al. Prediction of Individual Response to Electroconvulsive Therapy via Machine Learning on Structural Magnetic Resonance Imaging Data. JAMA psychiatry. 2016;73(6):557-64.

35. Jiang R, Abbott CC, Jiang T, Du Y, Espinoza R, Narr KL, et al. SMRI Biomarkers Predict Electroconvulsive Treatment Outcomes: Accuracy with Independent Data Sets. Neuropsychopharmacology. 2017;43:1078.
37. Leaver AM, Wade B, Vasavada M, Hellemann G, Joshi SH, Espinoza R, et al. Fronto-Temporal Connectivity Predicts ECT Outcome in Major Depression. Frontiers in psychiatry. 2018;9:92.

38. Wade BSC, Sui J, Njau S, Leaver AM, Vasavada M, Gutman BA, et al. DATA-DRIVEN CLUSTER SELECTION FOR SUBCORTICAL SHAPE AND CORTICAL THICKNESS PREDICTS RECOVERY FROM DEPRESSIVE SYMPTOMS. Proceedings IEEE International Symposium on Biomedical Imaging. 2017;2017:502-6.

39. Cao B, Luo Q, Fu Y, Du L, Qiu T, Yang X, et al. Predicting individual responses to the electroconvulsive therapy with hippocampal subfield volumes in major depression disorder. Scientific Reports. 2018;8(1):5434.

40. Drysdale AT, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, et al. Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature medicine. 2017;23(1):28-38.

41. Cash RFH, Cocchi L, Anderson R, Rogachov A, Kucyi A, Barnett AJ, et al. A multivariate neuroimaging biomarker of individual outcome to transcranial magnetic stimulation in depression. Hum Brain Mapp. 2019;40(16):4618-29.

42. Gong Q, Wu Q, Scarpazza C, Lui S, Jia Z, Marquand A, et al. Prognostic prediction of therapeutic response in depression using high-field MR imaging. NeuroImage. 2011;55(4):1497-503.

43. Marquand AF, Mourao-Miranda J, Brammer MJ, Cleare AJ, Fu CH. Neuroanatomy of verbal working memory as a diagnostic biomarker for depression. Neureport. 2008;19(15):1507-11.

44. Godlewska BR, Browning M, Norbury R, Igoumenou A, Cowen PJ, Harmer CJ. Predicting Treatment Response in Depression: The Role of Anterior Cingulate Cortex. The international journal of neuropsychopharmacology. 2018;21(11):988-96.

45. Meyer BM, Rabl U, Huemer J, Bartova L, Kalcher K, Provenzano J, et al. Prefrontal networks dynamically related to recovery from major depressive disorder: a longitudinal pharmacological fMRI study. Transl Psychiatry. 2019;9(1):64.

46. Karim HT, Wang M, Andreescu C, Tudorascu D, Butters MA, Karp JF, et al. Acute trajectories of neural activation predict remission to pharmacotherapy in late-life depression. NeuroImage Clinical. 2018;19:831-9.

47. Patel MJ, Andreescu C, Price JC, Edelman CF, Reynolds CF, 3rd, Aizenstein HJ. Machine learning approaches for integrating clinical and imaging features in late-life depressive disorder classification and response prediction. International journal of geriatric psychiatry. 2015;30(10):1056-67.

48. Goldstein-Piekarski AN, Korgaonkar MS, Green E, Suppes T, Schatzberg AF, Hastie T, et al. Human amygdala engagement moderated by early life stress exposure is a biobehavioral target for predicting recovery on antidepressants. Proceedings of the National Academy of Sciences of the United States of America. 2016;113(42):11955-60.

49. Goldstein-Piekarski AN, Staveland BR, Ball TM, Yesavage J, Korgaonkar MS, Williams LM. Intrinsic functional connectivity predicts remission on antidepressants: a randomized controlled trial to identify clinically applicable imaging biomarkers. Transl Psychiatry. 2018;8(1):57.

50. Grieve SM, Korgaonkar MS, Gordon E, Williams LM, Rush AJ. Prediction of nonremission to antidepressant therapy using diffusion tensor imaging. The Journal of clinical psychiatry. 2016;77(4):e436-43.

51. Korgaonkar MS, Williams LM, Song YJ, Usherwood T, Grieve SM. Diffusion tensor imaging predictors of treatment outcomes in major depressive disorder. The British journal of psychiatry : the journal of mental science. 2014;205(4):321-8.

52. Williams LM, Korgaonkar MS, Song YC, Paton R, Eagles S, Goldstein-Piekarski A, et al. Amygdala Reactivity to Emotional Faces in the Prediction of General and Medication-Specific Responses to Antidepressant Treatment in the Randomized iSPOT-D Trial. Neuropsychopharmacology. 2015;40(10):2398-408.

53. Wade BS, Joshi SH, Njau S, Leaver AM, Vasavada M, Woods RP, et al. Effect of Electroconvulsive Therapy on Striatal Morphometry in Major Depressive Disorder. Neuropsychopharmacology. 2016;41(10):2481-91.
54. Lee Y, Ragguett RM, Mansur RB, Boutilier JJ, Rosenblat JD, Trevizol A, et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: A meta-analysis and systematic review. Journal of affective disorders. 2018;241:519-32.
55. Kambeitz J, Cabral C, Sacchet MD, Gotlib IH, Zahn R, Serpa MH, et al. Detecting Neuroimaging Biomarkers for Depression: A Meta-analysis of Multivariate Pattern Recognition Studies. Biol Psychiatry. 2017;82(5):330-8.
56. Semkovska M, McLoughlin DM. Objective Cognitive Performance Associated with Electroconvulsive Therapy for Depression: A Systematic Review and Meta-Analysis. Biol Psychiatry. 2010;68(6):568-77.
57. Slade EP, Jahn DR, Regenold WT, Case BG. Association of Electroconvulsive Therapy With Psychiatric Readmissions in US Hospitals. JAMA psychiatry. 2017;74(8):798-804.
58. Fried EI. Moving forward: how depression heterogeneity hinders progress in treatment and research. Expert Review of Neurotherapeutics. 2017;17(5):423-5.
59. Dinga R, Schmaal L, Penninx BWJH, van Tol MJ, Veltman DJ, van Velzen L, et al. Evaluating the evidence for biotypes of depression: Methodological replication and extension of Drysdale et al. (2017). NeuroImage: Clinical. 2019:101796.
60. Murad MH, Chu H, Lin L, Wang Z. The effect of publication bias magnitude and direction on the certainty in evidence. BMJ Evidence-Based Medicine. 2018;23(3):84.
61. Leeflang MMG. Systematic reviews and meta-analyses of diagnostic test accuracy. Clinical Microbiology and Infection. 2014;20(2):105-13.
62. Schnack HG, Kahn RS. Detecting Neuroimaging Biomarkers for Psychiatric Disorders: Sample Size Matters. Frontiers in psychiatry. 2016;7:50-.
63. Widnall E, Price A, Trompetter H, Dunn BD. Routine Cognitive Behavioural Therapy for Anxiety and Depression is More Effective at Repairing Symptoms of Psychopathology than Enhancing Wellbeing. Cognitive Therapy and Research. 2020;44(1):28-39.
64. Varoquaux G. Cross-validation failure: Small sample sizes lead to large error bars. NeuroImage. 2018;180(Pt A):68-77.
65. Schmidt RL, Factor RE. Understanding sources of bias in diagnostic accuracy studies. Archives of pathology & laboratory medicine. 2013;137(4):558-65.
66. First MB, Cameron S Carter, Francisco Xavier Castellanos, Daniel P. Dickstein, Wayne C. Drevets, Kerri L. Kim, Matthew , F. Pescosolido, Scott Rausch, Karen E. Seymour , Jon Kar Zubieta, editor Consensus Report of the APA Work Group on Neuroimaging Markers of Psychiatric Disorders RESOURCE DOCUMENT2012.
67. Woo C-W, Chang LJ, Lindquist MA, Wager TD. Building better biomarkers: brain models in translational neuroimaging. Nature neuroscience. 2017;20:365.
68. Dluhos P, Schwarz D, Cahn W, Haren NEM, Kahn R, Spaniel F, et al. Multi-center Machine Learning in Imaging Psychiatry: A Meta-Model Approach. NeuroImage. 2017;155.
Table 1: methodological summary of studies

Study + year	n	outcome	intervention	duration	modality	analysis	validation
Costafreda, 2009-1	16	remission	CBT	16 wk	tbfMRI	SVM	LOO CV
Siegle, 2012	12	response	CBT	12 wk	tbfMRI	RF	Ind. rep.
Queirazza, 2019	37	response	CBT	6-10 wk	tbfMRI	SVM, LR	LOO nested CV
Van Waarde, 2015	45	remission	ECT	10 wk	rsfMRI	lSVM	LOO CV
Moreno-Ortega, 2019	19	remission	ECT	ns	rsfMRI	LR	LOO CV
Sun, 2019	122	remission	ECT	3-4 wk	rsfMRI	LR	LOO CV
Redlich, 2016	23	response	ECT	3-8 wk	smMRI	ISVM/ GPC	LOO CV
Wade, 2016	34	response	ECT	2-7 wk	sMRI	RBFSVM	LOO CV
Cao, 2018	24	response	ECT	3-4 wk	sMRI	ISVM	LOO CV
Jiang, 2018	38	remission	ECT	3-4 wk	sMRI	LR	10-fold LOO CV + Ind. replication
Wade, 2017	44*	remission	ECT	ns	sMRI	RF	Nested CV
Leaver, 2017	70	response	ECT	ns	rsfMRI, astMRI	RBFSVM	5-fold LOO CV
Drysdale, 2017	124	response	rTMS	4-6 wk	rsfMRI	ISVM	LOO CV
Cash, 2019	33	remission	rTMS	5-8 wk	rsfMRI	ISVM	LOO + k fold CV
Costafreda, 2009-2	18*	remission	SSRI	8 wk	sMRI	ISVM	LOO CV
Nourredinov, 2011	46	remission	SSRI	8 wk	sMRI	TCP	LOO CV
Gong, 2011	20	response	SSRI	8 wk	tbfMRI	ISVM	LOO CV
Marquand, 2008	20	response	SSRI	8 wk	tbfMRI	ISVM	LOO CV
Godlewksa, 2018	32	response	SSRI	6 wk	tbfMRI	LR	LOO CV
Meyer, 2019	22	remission	SSRI	8 wk	tbfMRI	LR	LOO CV
Karim, 2018	49	remission	SNRI	12 wk	tbfMRI	LR	10-fold LOO CV
Patel, 2015	19	remission	SSRI/SNRI	ns	rsfMRI, DTI, sMRI	ADTree/ ISVM/ RBFSVM/ L1LR	Nested LOO CV
iSPOT trials	77*	remission	SSRI/SNRI	8 wk	DTI	LR	K-fold CV
Korgaonkar, 2014							
Williams, 2015							
Goldstein-Piekarski, 2016		remission					
Griewe, 2016							
Goldstein-Piekarski, 2018		remission					

* n is a weighted average across studies. Reported sample sizes were not necessarily equal in articles with overlapping sample.

SSRI = selective serotonin reuptake inhibitor, TCA = tricyclic antidepressant, SNRI = serotonin-norepinephrine reuptake inhibitor, CBT = cognitive behavioral therapy, rTMS = repetitive transcranial magnetic stimulation, ITBS = intermittent theta burst stimulation, AP = antipsychotics, ns = not specified, tb = task-based, rs= resting state, asl = arterial spin labeling, fMRI = functional magnetic resonance imaging, sMRI = structural magnetic resonance imaging, WB = whole-brain, ROI = region-of-interest, DTI = diffusion tensor imaging, ISVM = linear support vector machine, RBF = radial basic function, TCP = Transductive conformal predictor, LR = logistic regression, LinR = linear regression, LDA = linear discriminant analysis, RF = random forest, LOO CV = leave-one-out cross-validation, wm = white matter, slR = stepwise linear regression, beta-w = beta-weights, LARS = least-angle regression, PMVD = proportional marginal decomposition.

Table 2: Summary estimates of sensitivity/specificity for different interventions

Intervention group	Sensitivity	95% CI	Specificity	95% CI
Combined	77%	71-82	79%	73 - 84
Medication	75%	68- 82	73%	64 - 80
ECT	80%	73 – 85	83%	72 - 90
Psychotherapy	84%	68 - 92	72%	39 - 92
rTMS	79%	71 – 86	82%	74 - 88

CI = confidence interval, rTMS = repetitive
Table 3: Bivariate random-effect metaregression Z-scores for modality as covariate

	Point estimate	Standard Error	95% Lower	95% Upper	Z-value	p-Value
Sens (lat)	0.221	0.233	-0.236	0.677	0.948	0.343
Spec (lat)	0.217	0.252	-0.77	0.711	0.861	0.389

Figure 1: Flow-diagram of study inclusion process

- Records after search & duplicate removal (n = 5824)
- Records excluded after screening (n = 5656)
- Full-text articles assessed for eligibility (n = 168)
- Records excluded after full-text review (n = 143)
 - 62 no individual prediction
 - 26 no dichotomous prediction
 - 21 missing data for matrix
 - 18 no intervention
 - 11 no validation
 - 5 wrong diagnostic modality
- Studies included (n = 27)
- Included from citation search (n=2)

Figure 2: Meta-analysis of MRI-studies for prediction of antidepressant response, bivariate SROC

See PDF

Area under the bivariate summary receiver operating curve 0.84 (95% CI 0.81-0.87), sensitivity 77% (95% CI 71-82), specificity 79% (95% CI 73 - 84)

Figure 3: Univariate random-effect forest plot of ln diagnostic odds ratio’s

See PDF
Log(OR) = the natural logarithm (ln) of the odds ratio.
Author and Year	TP Response	FN Non−Response	FP	TN	log (Odds Ratio) [95% CI]
rTMS					
Drysdale rep, 2017	31	7	9	45	3.10 [2.01, 4.19]
Drysdale, 2017	55	15	12	42	2.55 [1.69, 3.41]
Cash, 2019	10	3	2	18	3.40 [1.45, 5.35]
Siegle, 2012	19	1	5	7	3.28 [0.97, 5.60]
Weighed Estimate					2.83 [2.19, 3.47]
Psychotherapy					
Queirazza, 2019	12	7	3	15	2.15 [0.60, 3.70]
Costafreda, 2009	5	2	1	6	2.71 [0.03, 5.39]
Weighed Estimate					2.54 [1.38, 3.70]
Pharmacotherapy					
Patel, 2015	8	1	1	9	4.28 [1.35, 7.21]
Meyer, 2019	5	2	0	7	3.50 [0.27, 6.73]
Marquand, 2008	11	2	3	4	1.99 [-0.13, 4.12]
Karim, 2018	18	7	8	16	1.64 [0.42, 2.86]
iSPOT trials, 2014–2018	31	10	9	28	2.27 [1.23, 3.30]
Gong, 2011	16	7	7	16	1.65 [0.40, 2.91]
Godlewska, 2018	15	5	4	8	1.79 [0.22, 3.36]
Costafreda & Nouretdinov, 2009, 2011	1	1	8		4.16 [1.22, 7.10]
Weighed Estimate					2.11 [1.55, 2.67]
ECT					
Wade & Leaver, 2017, 2018	13	6	9	17	1.41 [0.15, 2.67]
Wade, 2016	16	4	1	13	3.95 [1.64, 6.26]
Van Waarde, 2015	21	4	3	17	3.39 [1.77, 5.02]
Sun, 2019	24	23	6	69	2.48 [1.47, 3.50]
Redlich, 2016	13	0	5	5	3.30 [0.24, 6.36]
Moreno–Ortega, 2019	8	1	1	8	4.16 [2.22, 7.10]
Jiang, 2018	22	5	1	10	3.78 [1.51, 6.06]
Cao, 2018	11	1	3	9	3.50 [1.07, 5.93]
Weighed Estimate					2.89 [2.11, 3.68]
Weighed Estimate					2.52 [2.19, 2.85]
Supplementary material

Supplementary methods

Search Strategy

Our search strategy included terms regarding the population, the diagnostic predictor and the study results, in a measure of accuracy. Studies were included up to January 2020. We used no language or date and we excluded animal/non-human studies. The search was conducted by a clinical librarian and search specialist (JD), in order to ensure a high degree of thoroughness.

We searched the following electronic databases: EMBASE, Medline and PsycInfo and Web of Science. Our Medline search was constructed as follows:

```
((depression/ or postnatal depression/ or major depression/ or treatment resistant depression/) OR (mdd or major depressi* or unipolar or postnatal depressi* or post natal depressi* or postpartum depressi* or post partum depressi* or refractory depression or (depressi* adj3 resistan*) or late life depressi*).ab,kw,ti.) ) AND

((nuclear magnetic resonance imaging/ or diffusion tensor imaging/ or exp neuroimaging/ or functional magnetic resonance imaging/) OR ((magnetic resonance or mr imaging or mri or fmri or dti or diffusion tensor or tensor imaging or structural neuroimaging or functional neuroimaging or structural neuranatomy or functional connectivity).ab,kw,ti.)) AND

(("sensitivity and specificity"/ or predictive value/ or exp diagnostic error/ or diagnostic accuracy/) OR ("sensitivity and specificity" or npv or ppv or roc or predict* or prognos* or accuracy).ab,kw,ti.))
```

Additionally, we checked every included article for relevant references. As of yet no central registration database exists for unpublished diagnostic studies, however we searched in the WHO International Clinical Trial Registry Platforms search portal for registered and unpublished studies. Furthermore, we looked for ‘grey’ literature such as (poster) abstracts and conference articles through conference websites (SOBP, ISAD, APAAM, ACNP, ECNP, HBP, WCP, Molecular Psychiatry, ADAA, going back to 2009) and from other relevant sources.

Our inclusion criteria, as well as our meta-analytic methods of procedure were pre-registered in the PROSPERO register of systematic reviews (registration ID CRD42019137497).

Inclusion and exclusion

Inclusion criteria:
- Adults (18 years or older) diagnosed with Major Depressive Disorder, as diagnosed using the DSM III, IV or 5 criteria. We included the entire MDD-population, including all severity subtypes. Therapy resistance status was allowed to range from naive to resistant. We included both in- and outpatients.
 Magnetic Resonance Imaging (structural MRI, task-based functional MRI, resting state functional MRI, diffusion tensor imaging) before the start of antidepressive treatment (all-compassing, ranging from psychotherapy to pharmaceutical treatment or electroconvulsive therapy, as included in the National Institute for Health and Care Excellence Guidelines for antidepressive treatment) [3]. To ensure that data used for treatment prediction correspond with the situation at treatment-baseline, MRI had to be performed within a month before treatment commencement date.

Accuracy of prediction had to be evaluated by comparing the predicted outcome, to a validated disease-severity questionnaire or semi-structures interview after treatment. Such questionnaires/interviews included: the Hamilton Depression Rating Scale -17, the Beck Depression Inventory, the Montgomery Asberg Depression Rating Scale or the (Quick) Inventory of Depressive Symptomatology, specified as either self-rated or clinician rated. We considered the validity of all these rating scales to be equal. Furthermore, we included studies that measure symptom severity/response status within 12 weeks after treatment commencement. We chose this cut-off to allow pharmacotherapeutic dose escalation corresponding with routine clinical practice, and to allow time for psychotherapeutic therapies to take effect.

We included studies that set out to predict, on the level of the individual patient with a depressive episode, response or remission to therapy. We did allow for any therapy that is part of official treatment guidelines, since our main aim is to investigate the general possibility of MRI to predict therapeutic response. We allowed for psychiatric co-medication such as benzodiazepines, since these are administered routinely in daily clinical practice.

We allowed any study with a pre-specified definition of response/remission.

We included studies that have defined prediction as sensitivity/specificity, positive or negative likelihood ratio, positive or negative predictive value, a measure of overall accuracy, the area under the ROC-curve, a Youden’s index, diagnostic odds ratio or any other measure that illustrates accuracy and/or may be used to compute a confusion matrix.

Exclusion criteria:
- We excluded studies with patients younger than 18 years old, or patients with a bipolar disorder. We chose to exclude patients with a depressive episode in context of a bipolar disorder, since there is evidence that bipolar depression exhibits characteristics which significantly differ from unipolar depression, both clinically and neurobiologically [1, 2]. If an article included a mixed sample of bi- and unipolar depressant patients, we excluded the study if more than two-thirds of patients suffered from bipolar disorder.
- If studies used feature selection based on in-sample data, we excluded them if they did not validate their prediction outcome either internally (e.g. through cross-validation) or externally (through independent set validation). We chose this approach since accuracy measures based on data that are included in model training are positively biased and have unknown (and presumably low) levels of generalizability, deeming them irrelevant for making a substantiated recommendation, as was the goal of our review. Studies that did not validate their data, but did use a-priori defined methods and features for analysis, were included.
Data extraction
Two authors (SC and BW) extracted, if provided, from included studies the following data: number of participants, gender distributions (male/female), age, mean severity pre-intervention, number of prior episodes, duration of current (index) depressed episode, whether or not patients had a history of failed antidepressant treatment, if patients used current psychiatric medication (and if so, which ones), specific exclusion criteria. Furthermore, we specified treatment, dosage/frequency, duration of treatment, defined endpoint and response or remission rates. For the diagnostic tests, we specified modality, region of interest, machine-learning algorithm, cross-validation analysis. As results, we extracted sensitivity, specificity and the confusion matrix (true positive, false negative, false positive, true negative). For the full result table, please refer to supplementary table 1.

Quality analysis
For risk of bias in patient selection we asked if a consecutive or random sample of patients enrolled and if the study used proper exclusion criteria. For the index test (i.e. the MRI biomarker) we asked if multiple comparison testing was used for feature selection. For the reference standard (i.e. the questionnaire or rating scale) we asked if the reference standard was validated for MDD. For flow and timing, we considered an appropriate interval between MRI and questionnaire (i.e. within 12 weeks), and whether all patients did indeed receive the same rating scale. Furthermore, we considered which percentage of patients who underwent an initial predictive MRI, did indeed finish the treatment protocol. If there was a drop-out rate of more than 30%, we considered this as a high risk of bias. We added a section intervention, in which we took into account whether the intervention (kind, dosage, duration) was pre-specified at baseline.

Studies that selected patients who did not solely include MDD patients (i.e. also included a small portion of depressed bipolar patients) or who included a specific subsection of MDD patients, such as late-life depression, were registered as having a high applicability concern. Furthermore, if the index test (i.e. the MRI) were to be combined with clinical data other than age, disease severity and sex, we considered concerns to be ‘high’. Cut-offs of response/remission the reference standard (i.e. rating scale/questionnaire) were preferable pre-specified and if not, applicability concerns were high. If for the intervention, frequency, dosage and time did not match clinical standards, applicability concerns were high.

Meta-analytic procedure
We pooled studies using a bivariate random effect model according to Reitsma, as suggested in the Cochrane handbook for diagnostic tests of accuracy studies [34, 36]. Main outcomes were the overall area under the sROC-curve and sensitivity/specificity, as well as sens/spec of intervention subset (pharmacological treatment, specified in appropriate considering amount of studies, electroconvulsive therapy, psychotherapy, transcranial magnetic stimulation and any other intervention with a 5 or more studies). A cause of heterogeneity in diagnostic or predictive tests is the threshold effect; in prediction models, studies use varying cut-offs for classifying a patient as responder or remitter. This threshold effect causes an inverse relation between sensitivity and specificity. Most neuroimaging studies establish empirically which threshold should will used for prediction, based on which produces the highest overall accuracy. The bivariate sROC curve is specifically suitable for this kind of heterogeneity
since its visual properties take the correlative relation between sensitivity and specificity into account [35]. For computing confidence intervals for the area under the ROC-curve, we used the method of Hanley and McNeil (1982).

To detect sample size effect and possible publication bias, we plotted a funnel plot based of $1/\sqrt{1}$ (effective sample size) as a function of the natural logarithm of the diagnostic odds ratio [43]. Known as the Deeks’ test, this function is the recommended test for sample size effect [44]. More common forms of formalizations of publication bias, such as the Egger’s or Begg’s test are not recommended for this review, since their sensitivity for diagnostic accuracy studies is generally poor [36, 43] [35].

QUADAS quality assessment

Risk of bias

1) Patient selection
 - Was a consecutive or random sample of patients enrolled?
 - Did the study avoid inappropriate exclusions?

2) Index test
 - Were the index test results interpreted without knowledge of the results of the reference standard?
 - If a threshold was used, was it pre-specified?

3) Reference standard
 - Is the reference standard likely to correctly classify the target condition?
 - Were the reference standard results interpreted without knowledge of the results of the index test?

4) Flow/timing
 - Was there an appropriate interval between index test and reference standards?
 - Did all patients receive a reference standard?
 - Did patients receive the same reference standard?
 - Were all patients included in the analysis?

5) Intervention
 - Was the intervention (kind, dosage, duration) pre-specified?

Applicability

1) Risk of bias
 - Is there concern that the included patients do not match the review question?

2) Index test
 - Is there concern that the index test, its conduct, or interpretation differ from the review question?

3) Reference standard
 - Is there concern that the target condition as defined by the reference standard does not match the review question?
Supplementary discussion

Discussion of quality assessment

Not one study used a consecutive patient enrollment, causing concern for selection bias and thus low applicability. A problem might arise specifically when researchers choose not to include certain patients for their study, on the basis of reasons outside of a-priori protocol. Such reasons might include expectations about whether patients will be reliable in finishing the study, co-morbid substance abuse or predominantly ‘psychosocial’ events leading up to depressive disorder. Consecutive enrollment is not an issue generally discussed within diagnostic studies, but since our included studies are at the same time intervention studies, these concerns might be especially relevant.

Furthermore, three studies included only late-life-depression, reducing applicability in the general MDD population, as late-life-depression, although being symptomatically similar with MDD in a lot of aspects, is thought to co-occur more often with medical disorders such as vascular illnesses and neurocognitive disorders.

In the terms of flow and timing, drop-out-rates, as discussed in the main body of text, cause issues around attrition bias. All studies used multiple correction control in feature selection for the index test, through the process of cross-validation, as was one of the inclusion criteria. One study did not pre-specify the pharmacological intervention (Patel et al.). Two studies adapted their definition of response to create an even split in responders/non-responders, causing applicability concerns since one would have to know exactly which predefined outcome to predict for response prediction to be clinically relevant (Meyer et al., 2019; Leaver et al., 2018).

Non-validated studies

Remarkably, we did exclude as much as eleven articles that did not use a form of validation after they used their training data for response prediction. In most of these cases, dichotomous response prediction was a secondary, or post-hoc, analysis, and some authors do note that these results might not be generalizable or should be interpreted with caution. However, all authors did report their results in the abstract, clouding research on this topic. Furthermore, for a clinician, critically evaluating the absence of cross-validation or independent test set validation is infeasible which could lead to overestimation of prediction success. Therefore, we would advise against publishing non-validated prediction results if these studies use feature selection in the training sample.

Feature selection and analysis

We did not discuss different machine-learning methods or feature-selection techniques in depth, since these issues go beyond the scope of our research question. However, summary of our results (see supplementary table 2) indicates that no single region-of-interest, network-analysis or functional task seems to stand out in prediction success, although with our data we could not quantitatively substantiate this finding. For instance, one found an important predictive role for the subcallosal cingulate gyrus, while another, after whole-brain data mining, did not include this brain part in their final predictive model [57, 59]. Thus, cerebral processes which influence treatment success seem to be overdetermined and prediction might be made in a multitude of ways.
Supplementary tables

Modality Study + year Analysis approach ROI’s / top regions Task

Modality	Study + year	Analysis approach	ROI’s / top regions	Task
tfMRI	Marquand, 2008	PCA	FG, TG, CgC, midbrain, cerebellum, precuneus	3-back verbal memory
	Sniegle, 2012	ROI, hypothesis-driven	sgACC	personal relevance rating
	Williams, 2015	ROI, hypothesis-driven	amygdala	facial emotion paradigm
	Goldstein-Piekarski, 2016	ROI, hypothesis-driven	amygdala	facial emotion paradigm
	Godlewksa, 2018	ROI, hypothesis-driven, SVC	pgACC	facial expression, masked
	Karim, 2018	PCA	left iOFC, hippocampus, bilateral FG, left Cd, right PCL	facial expression / shapes
	Kraus, 2018	Gaussian kernel	right TPJ	pain anticipation
	Meyer, 2019	Context-independent FC	amPFC, dIPFC, pCgC	n-back working memory
	Queirazza, 2019	Gaussian kernel	right amygdala, right striatum	Reversal-learning
rsfMRI	Patel, 2015*	ROI hypothesis-driven, DTM computation, PCA	dDMN, aSN	
	Van Waarde, 2015	ICA	brainstem, CB, dIPFC, dIPFC, iTC, OFC	
	Drysdale, 2015	CCA	25 regions of interest	
	Leaver, 2017	ICA	23 regions of interest	
	Wade, 2017	Automated volumetric parcellation (FreeSurfer)	CA, iTC	
	Goldstein-Piekarski, 2018	ROI, hypothesis-driven, GLM	amygdala	
	Moreno-Ortega, 2019	Multimodal parcellation	dIPFC	
	Sun, 2019	Functional connectome, CBPM	Top features: Thalamus, temporal/hippocampal/frontal gyri	
sMRI	Costafreda, 2009	Gaussian kernel	CgC, OcC, MFG	
	Nouroetdinov, 2011	Gaussian kernel	CgC	
	Gong, 2011	WB, high-dimensional normalization protocol	Grey/white matter; FTC, OcC, putamen	
	Redlich, 2016	WB, high-dimensional normalization protocol	Grey-matter integrity	
	Wade, 2016	VBM, GLM	CA, iTC	
	Cao, 2018	Automated volumetric parcellation (FreeSurfer)	CA	
	Jiang, 2018	VBM, unified segmentation	CA, left FTG, left LG, left precuneus	
DTI	Korgaonkar, 2014	DTM	CgC, ST	
	Grieve, 2016	ROI, hypothesis-driven, DTM	CgC, ST	

Supplementary table 2: Imaging and regions of interest

PCA = principal component analysis, ROI = region of interest, SVC = small-volume correction, FC = functional connectivity, DTM = diffusion tensor model, ICA = individual component analysis, CCA = canonical correlation analysis, GLM = general linear modeling, WB = whole-brain, VBM = voxel-based morphometry, FG = frontal gyrus, TG = temporal gyrus, CgC = cingulate gyrus, sgACC = subgenual anterior cingulate cortex, pgACC = pregenual anterior cingulate cortex, iOFC = inferior orbitofrontal cortex, Cd = caudate, PCL = paracentral lobule, TPJ = tempoparietal junction, amPFC = anterior medial prefrontal cortex, dl = dorsolateral, dDMN = dorsal default mode network, aSN = anterior salience network, iTC = inferior temporal cortex, OCc = occipital cortex, MFGL = mediofrontal gyrus, FTC = frontotemporal cortex, CA = hippocampus, ST = stria terminalis, CBPM = connection-based predictive modelling
Supplementary table 3: QUADAS quality assessment

Study	Risk of bias	Applicability concerns									
	Patient selection	Index test	Reference standard	Flow and Timing	Intervention	Patient selection	Index test	Reference standard	Intervention		
Marquand, 2008	?	+	+	-	?	+	+	+	?		
Costafreda, 2009	?	+	+	?	+	+	+	+	+		
Costafreda 2, 2009	?	+	+	?	+	+	+	+	+		
Nouretdinov, 2011	?	+	+	?	+	+	+	+	+		
Gong, 2011	?	+	+	-	+	+	-	+	+		
Siegle, 2012	?	+	+	-	+	-	+	+	+		
Patel, 2015	?	+	+	?	-	-	-	-	- (MMSE)	+	+
Van Waarde, 2015	?	+	+	+	+	+	+	+	+		
Redlich, 2016	?	+	+	+	+	+	+	+	+		
Wade, 2016	?	+	+	?	+	?	+	+	+		
Drysdale, 2016	?	+	+	+	+	+	+	+	+		
Wade, 2017	?	+	+	?	+	?	+	+	+		
Leaver, 2018	?	-	-	?	+	?	+	-	+		
Cao, 2018	-	+	+	?	+	-	+	+	+		
Godlewska, 2018	?	+	+	-	+	+	+	+	+		
Jiang, 2018	?	+	+	+	+	-	(LLD)	+	+	+	
Karim, 2018	?	+	+	-	+	-	(LLD)	+	+	+	
Cash, 2019	?	+	+	+	+	+	+	+	+		
Meyer, 2019	?	-	-	+	+	+	+	-	+		
Moreno-Ortega, 2019	?	+	+	?	?	+	+	+	?		
Queirazza, 2019	?	+	+	?	+	+	+	+	+		
Sun, 2019	?	+	+	?	+	?	+	+	+		
Korgaonkar, 2014	?	+	+	-	+	+	+	+	+		
Williams, 2015	?	+	+	-	+	+	+	+	+		
Goldstein-Piekarski, 2016	?	+	+	-	+	+	+	+	+		
Grieve, 2018	?	+	+	-	+	+	+	-	(non-rem)	+	+
Goldstein-Piekarski, 2018	?	+	+	-	+	+	+	+	+		

? = unknown (not mentioned in article), - = high risk of bias or low applicability, + = low risk of bias or high applicability. MMSE = mini mental state examination, LLD = late-life depression, non-rem = non-remission
Name + year	N	Accuracy	AUC	Sensitivity	specificity	Modality	intervention
Cash, 2019	47	85-95%	-	-	-	rsfMRI	rTMS
Etkin, 2013	102	-	-	-	-	tbfMRI	SSRI
Fitzgerald, 2019	120	>85%	-	-	-	fMRI	rTMS
Geraci, 2014	-	83, 90%	-	-	-	fMRI	rTMS
Godlewska, 2017	32	75%	-	-	-	fMRI	SSRI
Hou, 2016	82	-	0.69, 0.71	-	-	fMRI	-
Karim, 2018	-	-	80, 63	-	-	fMRI	SSRI
Kloobl, 2019	35	-	0.73	-	-	fMRI	SSRI
Klumpp, 2019	20	80%	-	-	-	fMRI	rTMS
Korgaonkar	157	85%	-	-	-	fMRI	SSRI
Kozel, 2010	13	85%	-	-	-	fMRI	rTMS
Langenecker, 2014	24	-	-	-	-	fMRI	SSRI
Long, 2019	59	-	-	-	-	fMRI	rTMS
Miller, 2018	31	-	-	-	-	fMRI	-
Narr, 2016	22	76-77%	0.75-0.80	-	-	fMRI	ECT
Nguyen, 2019	37	0.71	-	-	-	fMRI	bupropion
Schultz, 2018	21	88.95%	-	-	-	fMRI	-
Siegle	53	-	-	-	-	fMRI	SSRI
Vila-Rodriguez, 2018	62	76%-84%	0.75-0.87	-	-	fMRI	rTMS
Wade, 2015	-	-	-	-	-	fMRI	ECT
Webb, 2018	35	-	-	-	-	fMRI	CBT
Williams, 2013	101	-	-	-	-	fMRI	SSRI

Supplementary table 4: Overview of grey literature

N = number of participants, AUC = area-under-the curve, rsfMRI = resting-state functional MRI, rTMS = repetitive transcranial magnetic stimulation, tbfMRI = task-based fMRI, SSRI = selective-serotonin reuptake inhibitor, CBT = cognitive behavioral therapy
Supplementary figure: QUADAS-2 quality assessment

Applicability concerns (%)

Category	Unknown	High	Low
Intervention			
Reference standard			
Index test			
Patient selection			

Risk of bias (%)

Category	Unknown	High
Reference standard		
Index test		
Patient selection		
Intervention		
Flow and timing		
Supplementary figure 2: Deeks’ test, or sample size effect: $1/\sqrt{\text{Effective Sample Size}} = (4RxNR)/(R+NR)$ as a function of the ln Diagnostic Odds Ratio of each study. Regression equation: $y = 0.11 + 0.025x, \ p = 0.044$ The positive correlation between ln(DOR) and $1/\sqrt{\text{ESS}}$ indicates an negative correlation between DOR and ESS. The larger the sample size becomes, the smaller is the diagnostic accuracy. (R = responder, NR = non-responder).
Supplementary table 1: all-encompassing study summary

Study yr	Patient population	Intervention	Diagnostic test	Results																				
N	Sex (F)	Age (yr)	Severity																					
		Nr of prior episodes	Duration index ep (wk)	Med. Inst.	Current med.	Exclusion criteria (coded)	Treatment	Dosage/ frequency	Duration	quest (unit)	Resp/rem. rate (perc/no) (95%CI)	Modality	Region	Analysis	Validation	Sens	Spec	TP, FN, FP, TN						
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---			
Marquand, 2008	20	70%	43.7	HDRS-17 21.2	-	-	unspecific d	None, > 4 weeks washout	1,2,7	Fluoxetine	20 mg/d	8 wk	HDRS (≤ 50%)	65% (13/7)	64MMRI, 3- back verbal memory	ROI (PCA, frontal, cingulate gyrus, medialbrain, cerebellum)	Linear kernel SVM	LOOCV	.85	.52	11,2,3,4			
Costafreda, 2009	18	78%	44.2	HDRS-17 20.6	-	-	-	None, 4 wk washout	1,2,3,7	Fluoxetine	CBT	20 mg/ day	8 wk	16 w	HDRS (≤ 7)	52% (9/9)	sMRI	ROI (ANANOVA t-testing), grey matter density cingulate, occipital cortex, frontal gyrus	Linear SVM	LOO CV	.89	.88	8, 1, 8	
Costafreda, 2009	24 (16)	-	-	HDRS-20:9	-	-	-	-	CBT	16 w	HDRS <7	50% (7/7)	(evened out)	sMRI	ROI (emotional paradigm)	WB (PCA)	Linear SVM	LOO CV	.71	.86	3,1,2,6			
Nooretdino, 2011 (Costafreda)	18	78%	44.2	HDRS-17 20.6	-	-	-	None, 4 wk washout	1,2,3,7	Fluoxetine	-	HDRS -17	50% (9/9)	unspcie d	sMRI	ROI (emotional paradigm)	WB (PCA)	Linear SVM	LOO CV	.77	.89	7,1, 1, 8		
Gong, 2011	46	48%	39.8	HDRS-17 23.9	-	-	-	AD naive	none	1,2,3,7	TCA/SNRI	≥150/day	imipramin equiv.	≥12 wk	HDRS (≤ 50%)	50% (5/9)	sMRI	ROI (t-testing), grey matter density cingulate cortex	Transductive conformal predictor	Linear SVM	LOO CV	.69	.89	16, 7, 7, 16
Sapes, 2012	32	84%	36.1	HDRS-14 20.3	-	-	-	AD naive	none	1,2,3,4	Cognitive Therapy	1-24wk: 16-20 ss	12 wk	HDRS (≤ 50%)	63% (20/12)	sMRI	ROI (a priori), nGAGE activity	Random Forest	Independent t test set	.95	.58	10,1,1,7		
Kangas-Törnäkär, 2014 (GSPOT)	80	50%	55.8	HDRS-17 21.0	-	-	-	AD naive-resistant	None, 3 wk washout	1,2,3,4,7,8	Escitalopram, sertraline, venlafaxine-XR	Resp 20- 20, 50- 200, 75- 225	8 wk	HDRS (≤ 7)	60% (37/62)	sMRI	ROI (a priori + data-driven), CgC, ST + age	Logistic reg.	K-fold CV	.56	.48	21, 16, 14, 20		
Williams, 2015 (GSPOT)	40	50%	51.0	HDRS-17 21.0	-	-	-	AD naive-resistant	None, 3 wk washout	1,2,3,4,7,8	Escitalopram, sertraline, venlafaxine-XR	Resp 20- 20, 50- 200, 75- 225	8 wk	HDRS (≤ 50%)	60% (46/72)	sMRI	age/bl severity (emotion paradigm)	ROI (bilateral amygdala)	LDA	LOO CV	.77	.72	37, 11, 9, 23	
Author, Year	n	%	HDRS or MADRS	Treatment	ECT, rTMS, or rUL	Baseline (BL)	Week (wk)	Follow-up (wk)	MRI	Analysis	Outcome	Notes												
-------------	---	---	--------------	-----------	------------------	--------------	-----------	----------------	-----	----------	----------	-------												
v. Wierle, 2015	45	62%	MADRS10 36.5	-	-	Naïve-resistant	AD: 64%, AP: 64%	2/wk	19 vs +	MADRS (p < 0.01)	rsfMRI	HDRS (<10), brainstem, cerebellum; DLPFC, ONFPC, SSC, DPC	Linear SVM	LOO CV	84	45	21, 4, 3, 17							
Patel, 2015	39	79%	HDRS 20.6	-	-	Naïve-resistant	AD: 100% AP: 74%, MS 6.7%	12 wk	HDRS (<10)	rsfMRI, sMRI	Linear SVM	ADTree	Linear SVM	LOO CV	89	90	1, 1, 9							
Redlich, 2016	23	51%	HDRS 16.0	5.4	53.3	Current med	AD: 100% AP: 64%, MS 6.4%	3/wk	21 ss +	rsfMRI, DTI, sMRI + MMSE	Linear SVM	ADTree	Linear SVM GPC	LOO CV	1.0	.50	17, 0, 3, 5							
Wade, 2016	34	74%	HDRS 17 24	26.2	24.3	Treatment resistant (>2 failed AD)	AD: 100% AP: 74%, MS 6.4%	1,3, 9	HDRS (≤ 50%), QIDS and MADRS	Linear SVM	LOO CV	16, 4, 1, 13												
Grieve, 2016	48	51%	HDRS 17 22.3	-	-	Naïve-resistant	AD: 100% AP: 74%, MS 6.4%	1,3, 4, 7, 8	HDRS >7 (non-remitter)	rsfMRI, DTI	Prespecified threshold z-score	Independent replication set	Linear SVM	LOO CV	.76	.85	48, 15, 17							
Drysdale, 2017	324	57%	HDRS 17 20.3	-	-	Naïve-resistant	AD: 100% AP: 74%, MS 6.4%	1/bid failed AD	HDRS (≤ 25%)	rsfMRI, ROI (recursive feature elimination), hippocampal, inf temp. thickness	Random forest	Linear SVM Nested CV	Linear SVM	.79	.78	35, 1, 12, 42								
Goldstein-Piekarski, 2016	70	48%	HDRS 17 21.31	-	-	Naïve-resistant	AD: 100% AP: 74%, MS 6.4%	1,3, 4, 7, 8	HDRS >7, QIDS <5	rsfMRI	RSI: amagdata, Connectivity feat + subtype diagnosis	Independent replication set	Linear SVM	LOO CV	11, 2, 11, 17									
Name	Year	Sex	Age (%)	HDRS	Treatment	Resistance	Duration	Baseline	Washout	MDRS	QIDS	HDRS	Severity	ROI (a priori)	ROI (data driven)	Logistic	RF	Supporting methods						
---------------------------	------	-----	---------	------	-----------	------------	----------	----------	---------	------	------	------	----------	-----------------	-------------------	----------	----	----------------------						
Crane, 2017	2019	29	59%	34.5	HAM-D	10	-	-	-	-	-	50%	-	-	-	-	-	-						
Goldstein-Piekarski, 2018	2018	75	49%	31.7	HAM-D	10	-	-	-	-	-	10%	-	-	-	-	-	-						
Jiang, 2018	2018	38	37%	83.8	HDRS-24	-	-	-	-	-	-	50%	-	-	-	-	-	-						
Can, 2018	2018	24	58%	31.3	HDRS-24	-	-	-	-	-	-	50%	-	-	-	-	-	-						
Ehrin, 2018	2018	14	7%	86.3	MDRS-25	-	-	-	-	-	-	50%	-	-	-	-	-	-						
Goldwaska, 2018	2018	32	56%	28.4	HDRS-17	-	-	-	-	-	-	10%	-	-	-	-	-	-						
Leaver, 2018	2018	44	62%	41.7	HAM-D	10	-	-	-	-	-	10%	-	-	-	-	-	-						
Cash, 2019 ***	2019	33	40%	34	MDRS	-	-	-	-	-	-	50%	-	-	-	-	-	-						
Moyar, 2019	2019	32	50%	33.5	HDRS-17	10	-	-	-	-	-	10%	-	-	-	-	-	-						
Study, Year	Sample Size	Gender %	HDRS Baseline	Treatment	Adjuvant Treatment	Outcome	Imaging	Imaging Modality	Imaging Analysis	Logistic Regression	80% CI	90% CI												
------------	-------------	----------	---------------	-----------	-------------------	---------	---------	-----------------	-----------------	-------------------	--------	--------												
Moreno-Ortega, 2019	28	60.0	HDRS-24 26.5	Treatment resistant	-	7, 5, 3	ECT, rUL	-	HDRS (≥7)	100% (4/4)	rsfMRI	ROI (a priori), functional connectivity	Logistic regression	80% CI	90% CI									
Sun, 2019	122	66.3	HDRS-17 25.6	Treatment resistant	-	7, 5, 3	ECT rUL, switched BL	3/4 wk	HDRS <7	80% (57/71)	rsfMRI	Functional connectivity, connectome-based	Linear regression	80% CI	90% CI									
Queirazza, 2019	37	59%	BDI-II 28	Treatment naive	-	7, 5, 3	CBT self-help	2/3/4 wk	BDI-II <50%	51% (18/35)	rsfMRI	reversal-learning	SVM (kernel)	80% CI	90% CI									

Exclusion criteria: Psychiatric comorbidity = 1, Neurological comorbidity = 2, Somatic comorbidity = 3, Pregnancy/breast feeding = 4, History of bipolar disorder = 5, History of psychotic disorder = 6, Substance abuse = 7, Suicidality = 8, Late-life onset = 9, Medication, not AD = 10, Treatment resistance = 11.