A new cytotoxic 12-membered macrolactone from the endophytic fungus Exserohilum rostratum LPC-001

Peng-Cheng Lina,1, Yu-Zhuo Wub,1, Ting-Wen Baoa, Ya-Nan Wangb, Xiao-Ya Shangc*, and Sheng Lina,b*

a College of Pharmaceutical Sciences, Qinghai university for nationalities, Xining 810000, P. R.China.

b State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P. R. China.

c Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, P. R.China

Supplementary Information
The List of Contents

No.	Contents	Page
1	Conformational Analysis and ECD Calculations of Compound 1 and its Enantiomer	S3
2	**Figure S1.** B3LYP/6-31+G (d) optimized the lowest energy 3D conformers of 1a and their relative Gibbs free energies ($\Delta G < 9.0$ kcal/mol)	S3
3	**Figure S2.** The experimental ECD spectrum of 1 (black), and the calculated ECD spectra of (13R,14S,15R)-1 (red) and (13S,14R,15S)-1 (blue)	S4
4	**Figure S3.** The CD Spectrum of Compound 1	S4
5	**Figure S4.** The HRESIMS Data of Compound 1	S5
6	**Figure S5.** The 1H NMR Spectrum of Compound 1 in DMSO-d_6 (600 MHz)	S6
7	**Figure S6.** The 13C NMR Spectrum of Compound 1 in DMSO-d_6 (150 MHz)	S7
8	**Figure S7.** The DEPT Spectrum of Compound 1 in DMSO-d_6 (150 MHz)	S8
9	**Figure S8.** The 1H-1H COSY Spectrum of Compound 1 in DMSO-d_6 (600 MHz)	S9
10	**Figure S9.** The HSQC Spectrum of Compound 1 in DMSO-d_6 (600 MHz)	S10
11	**Figure S10.** The HMBC Spectrum of Compound 1 in DMSO-d_6 (600 MHz)	S11
12	**Figure S11.** The NOESY Spectrum of Compound 1 in DMSO-d_6 (600 MHz)	S12
13	**Figure S12.** The 1H NMR Spectrum of Compound 1 in acetone-d_6 (600 MHz)	S13
14	**Figure S13.** The 13C NMR Spectrum of Compound 1 in acetone-d_6 (150 MHz)	S14
15	**Figure S14.** The DEPT Spectrum of Compound 1 in acetone-d_6 (150 MHz)	S15
16	**Figure S15.** The 1H-1H COSY Spectrum of Compound 1 in acetone-d_6 (600 MHz)	S16
17	**Figure S16.** The HSQC Spectrum of Compound 1 in acetone-d_6 (600 MHz)	S17
18	**Figure S17.** The HMBC Spectrum of Compound 1 in acetone-d_6 (600 MHz)	S18
19	**Figure S18.** The NOESY Spectrum of Compound 1 in acetone-d_6 (600 MHz)	S19
20	**Figure S19.** The 1H NMR Spectrum of R-MTPA ester 1a in acetone-d_6 (600 MHz)	S20
21	**Figure S20.** The 1H-1H COSY Spectrum of R-MTPA ester 1a in acetone-d_6 (600 MHz)	S21
22	**Figure S21.** The 1H NMR Spectrum of S-MTPA ester 1b in acetone-d_6 (600 MHz)	S22
23	**Figure S22.** The 1H-1H COSY Spectrum of S-MTPA ester 1b in acetone-d_6 (600 MHz)	S23
24	**Figure S23.** The NOESY Spectrum of (14S,15R)-deoxyoxacyclododecindione Cited from *Bioorg. Med. Chem.* 23, 556 (2015) and *Org. Biomol. Chem.* 14, 3695 (2016).	S24
Conformational Analysis and ECD Calculations of Compound 1 and its Enantiomer

Conformational analysis and quantum computations of 1 were performed by Gaussian 16 program package. Conformational analysis of 1 showed 9 (C1–C9) lowest energy conformers with relative energy within 9.0 kcal/mol via the Discovery studio 2018 software package. The 9 conformers (C1-C9) were further optimized using TDDFT at B3LYP/6-31g(d) level in MeOH (Figure S1). And the frequency was calculated at the same level of theory. The ECD calculations of stable conformers without imaginary frequencies were calculated using the TDDFT method at the CAM-B3LYP/6-311+G (2d,p) level in MeOH. The final calculated ECD spectra of 1 were obtained according to the Boltzmann-calculated contribution of the 9 conformers (C1-C9). The ECD spectra of different conformers were simulated using SpecDis v1.70.1 with a half-bandwidth of 0.3 eV. Those of the enantiomer of 1 were depicted by inverting that of 1. In the 200-400nm region, the theoretically calculated ECD spectrum of 1 was in agreement with the experimental ECD spectra of 1 (Figure S2), supporting assignment of the 13R,14S,15R configuration for 1.

Figure S1 B3LYP/6-31G(d) optimized 9 lowest energy 3D conformers of (13R, 14S, 15R)-1 and their relative Gibbs free energies (ΔG < 9.0 kcal/mol)
Figure S2. The experimental ECD spectrum of 1 (black), and the calculated ECD spectra of (13R,14S,15R)-1 (red) and (13S,14R,15S)-1 (blue)

Figure S3. The CD Spectrum of Compound 1
Figure S4. The HRESIMS Data of Compound 1

m/z	z	Abund	Formula	Ion
141.063	1	10925	C18 H22 Cl O6	(M+H)+
369.1107	1	131736	C18 H22 Cl O6	(M+H)+
370.1136	1	26483	C18 H22 Cl O6	(M+H)+
371.1083	1	42931	C18 H22 Cl O6	(M+H)+
391.0923	1	58666	C18 H21 Cl Na O6	(M+Na)+
392.0958	1	112026	C18 H21 Cl Na O6	(M+Na)+
393.0912	1	20928	C18 H21 Cl Na O6	(M+Na)+
451.3434	1	23780	C18 H21 Cl Na O6	(M+Na)+
475.3264	1	119466	C18 H21 Cl Na O6	(M+Na)+
476.3286	1	122698	C18 H21 Cl Na O6	(M+Na)+

Formula Calculator Element Limits

Element	Min	Max
C	0	100
H	0	500
O	0	90
N	0	5
S	0	5
Cl	0	2
Br	0	0
F	0	0
P	0	0

Formula Calculator Results

Formula	Best	Mass	Tgt Mass	Diff (ppm)	Ion Species	Score
C19 H17 Cl N4 O2	TRUE	368.1034	368.104	1.62	C19 H18 Cl N4 O2	99.85
C18 H21 Cl O6	TRUE	368.1034	368.1027	-1.99	C18 H22 Cl O6	99.8
C19 H25 Cl O5	TRUE	368.1035	368.1035	0.31	C19 H26 Cl O5	98.67
C18 H21 Cl O6	TRUE	368.1031	368.1027	-1.22	C18 H21 Cl Na O6	99.89
C19 H17 Cl N4 O2	368.1031	368.104	2.39	C19 H17 Cl N4 Na O2	99.67	
C19 H25 Cl O5	368.1031	368.1035	1.07	C19 H25 Cl Na O5	99.14	

--- End Of Report ---
Figure S5. The 1H NMR Spectrum of Compound 1 in DMSO-d_6 (600 MHz)
Figure S6. The 13C NMR Spectrum of Compound 1 in DMSO-d_6 (150 MHz)
Figure S7. The DEPT NMR Spectrum of Compound 1 in DMSO-d_6 (150 MHz)
Figure S8. The 1H-1H COSY Spectrum of Compound 1 in DMSO-d_6 (600 MHz)
Figure S9. The HSQC Spectrum of Compound 1 in DMSO-d_6 (600 MHz)
Figure S10. The HMBC Spectrum of Compound 1 in DMSO-\textit{d}_6 (600 MHz)
Figure S11. The NOESY Spectrum of Compound 1 in DMSO-d_6 (600 MHz)
Figure S12. The 1H NMR Spectrum of Compound 1 in Acetone-d_6 (500 MHz)
Figure S13. The 13C NMR Spectrum of Compound 1 in Acetone-d_6 (125 MHz)
Figure S14. The DEPT Spectrum of Compound 1 in Acetone-d_6 (125 MHz)
Figure S15. The 1H-1H COSY Spectrum of Compound 1 in Acetone-d_6 (500 MHz)
Figure S16. The HSQC Spectrum of Compound 1 in Acetone-d_6 (500 MHz)
Figure S17. The HMBC Spectrum of Compound 1 in Acetone-\textit{d}_6 (500 MHz)
Figure S18. The NOESY Spectrum of Compound 1 in Acetone-d_6 (500 MHz)

S19
Figure S19. The 1H NMR Spectrum of (R)-MPTA ester of 1 in Acetone-d_6 (600 MHz)
Figure S20. The 1H NMR Spectrum of (S)-MPTA ester of 1 in Acetone-d_6 (600 MHz)
Figure S21. The 1H-1H COSY Spectrum of (R)-MPTA ester of 1 in Acetone-d_6 (600 MHz)
Figure S22. The 1H-1H COSY Spectrum of (S)-MPTA ester of 1 in Acetone-d_6 (600 MHz)

S23
Figure S23. The NOESY Spectrum of (14S,15R)-deoxyoxacyclododecindione
Cited from Bioorg. Med. Chem. 23, 556 (2015) and Org. Biomol. Chem. 14, 3695 (2016).