Phase Transitions in Traffic Models

E. Levine1, G. Ziv1, L. Gray2, and D. Mukamel1

1 Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel 76100.
2 School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455.

PACS. 02.50.Ey – Stochastic Processes.
PACS. 64.75.+g – Phase Separation.
PACS. 89.40.+k – Transportation.

Abstract. – It is suggested that the question of existence of a jamming phase transition in a broad class of single-lane cellular-automaton traffic models may be studied using a correspondence to the asymmetric chipping model. In models where such correspondence is applicable, jamming phase transition does not take place. Rather, the system exhibits a smooth crossover between free-flow and jammed states, as the car density is increased.

Traffic flow and the formation of traffic jams have been extensively studied for many years \cite{1}. A very useful quantity which has often been used to characterize traffic flow is the relation between the density of cars in the road and the traffic throughput. This relation, termed the fundamental diagram, was measured empirically in various situations, and was studied in a large variety of models \cite{2,1}. When the density of cars in the system is low, the traffic flow is expected to grow linearly with the density. At high densities traffic jams are formed, lowering down the flow sometimes even to a complete stop \cite{3,2}. This enables one to identify three regimes in the density-flow plane: a free-flow regime at low densities; a regime of wide moving jams at high densities; and a synchronized flow regime, where jams and free-flow coexist, at intermediate densities \cite{1}. The question whether the transition from one regime to another is a smooth crossover or is a result of a genuine phase transition is still not settled in most traffic models.

In recent years Probabilistic Cellular Automata (CA) models have been introduced to analyze traffic flow \cite{4,5,1}. In such models both time and space are discrete and the physical state of the system (e.g. position and velocity of all cars) is updated simultaneously according to some update scheme. This provides a rather efficient way for carrying out numerical studies of the fundamental diagram. Some traffic CA models were suggested to exhibit phase transitions \cite{6,7,8,9}. However, the existence of such a transition can only be explicitly demonstrated in some limiting cases where certain dynamical processes are deterministic. The existence of a jamming phase transitions in more generic cases, where all dynamical processes are non-deterministic, is still an open question. Such transitions have been suggested to occur in some models on the basis of mean-field methods and numerical simulations, which cannot yield a definitive answer to this question. In this Letter we address this issue in more detail.

Within a more general framework, the existence of phase transitions in one-dimensional driven systems has been studied rather extensively in recent years and several mechanisms for such transitions
have been proposed. Examples include the zero range process \cite{10, 11}, two species driven models \cite{12} and the chipping model \cite{13, 14}. The chipping model introduced by Majundar et. al. incorporates dynamical processes which are closely related to those taking place in traffic dynamics, so one would hope to obtain useful insights for traffic jams from what is known about the chipping model.

In this Letter we examine the correspondence between traffic CA models and the chipping model more closely. This correspondence suggests that for a large class of traffic models with non-deterministic dynamics, a genuine phase transition is not expected. Rather, these models exhibit a smooth crossover between the free flow and the jammed phases. In the following we briefly review the main known results for the chipping model. We then introduce a simple CA traffic model for which the correspondence to the chipping model could be made explicit. Other CA traffic models which have been introduced and studied in the past are also examined within this approach.

We start by considering the Chipping Model (CM). The model is defined on a periodic lattice, where each site can contain any number of particles. The dynamics is defined through the rates by which two nearest neighbor sites containing k and m particles, respectively, exchange particles:

\[(k, m) \xrightarrow{1} (k + m, 0) \quad (k, m) \xrightarrow{\omega_R} (k + 1, m - 1) \quad (k, m) \xrightarrow{\omega_L} (k - 1, m + 1). \]

(1)

The first is a diffusion (or coalescence) process\(^{(1)}\) while the last two processes correspond to right and left chipping of a particle from one site to the other. It has been shown \cite{13} that if the chipping process is symmetric ($\omega_R = \omega_L$) there is a condensation transition at a critical density, above which one site becomes macroscopically occupied. Furthermore, numerical simulations and mean-field studies show that the probability $P(k)$ of finding k particles in a site has the asymptotic form $P(k) \sim z^k / k^\tau$ for large k, with $\tau = 5/2$. The parameter $z \leq 1$ is determined by the average particles density and serves as the fugacity. The condensation transition is a result of the fact that $\tau > 2$, for which the distribution $P(k)$ cannot sustain high densities even at $z = 1$. This transition is analogous to the Bose-Einstein condensation. In contrast, if the chipping is asymmetric there exists no phase transition at any density \cite{14}. In this case numerical studies indicate that the domain size distribution has the same form as above, but here $\tau = 2$. This distribution remains valid at any density with z approaching 1 at high densities, indicating that no condensation transition takes place.

In the following we argue that the chipping model with an asymmetric chipping process provides a framework within which a large class of traffic models can be characterized. Starting from a particular traffic model we first identify the domains which characterize the flow. A domain can either be a low density segment, termed a gap or a hole in some studies; a high density segment, termed a jam; or a segment of some other characteristics, defined ad-hoc. A domain of size k is then associated with a site of the CM occupied by k particles. One then proceeds by examining the evolution of the domains, and identifying their dynamical processes. As will be demonstrated, in many cases these processes are closely related to the diffusion and the chipping processes of the asymmetric CM.

We now consider a particular traffic model for which the correspondence to the CM can be made rather explicit. The model, referred as Velocity Dependent Braking (VDB), is a variant of the Nagel-Serreckenberg model \cite{5}. It is defined on a periodic lattice of size L with $M = \rho L$ cars. Each car is characterized by a velocity $v_i(t) = 0 \ldots v_{\max}$ and a position $x_i(t)$. The dynamics is performed in parallel by first updating the velocities as

\[v_i(t + 1) = \begin{cases} \min \{ v_i(t) + 1, v_{\max}, x_{i+1}(t) - x_i(t) - 1\} & \text{with probability } 1 - p(v_i(t)) \\ 0 & \text{with probability } p(v_i(t)) \end{cases}, \]

(2a)

and then increasing the position of each car by its speed,

\[x_i(t + 1) = x_i(t) + v_i(t + 1). \]

(2b)

\(^{(1)}\)Here only a diffusion to the left is considered. One can also introduce diffusion to the right, without changing the relevant results.
The braking probability $p(v)$ is defined in terms of the two parameters of the model, p and q, as

$$p(v) = \begin{cases} p & v < v_{\text{max}} \\ q & v = v_{\text{max}} \end{cases}. \quad (3)$$

We proceed by first considering the model in the cruise control (CC) limit, $q = 0$. In this limit cars residing in dilute regions of the system move deterministically with the maximal allowed velocity v_{max}. It is thus straightforward to define a free-flow domain as a segment which consists of vacancies and deterministically moving cars. For $\rho \leq \rho_f = 1/(v_{\text{max}} + 1)$ a free-flow steady state exists, where all cars move deterministically and the current is simply given by $J(\rho) = v_{\text{max}} \rho$. At higher densities such a state does not exist, local jams are formed and the current is reduced. A phase transition between the two regimes thus takes place at some density $\rho_0 \leq \rho_f$. This particular phase transition is a result of the fact that due to the deterministic processes, the free-flow state is an absorbing state which has no dynamics. It is thus expected to exist only in the CC limit, and to turn into a smooth crossover for $q > 0$, where no absorbing state exists.

It is straightforward to analyze the fundamental diagram in the CC limit ($q = 0$) for the case $v_{\text{max}} = 1$. We find $\rho_f = 1/2$ and $\rho_0 = (1-p)/(2-p)$. It can be shown that in the jammed state ($\rho > \rho_0$) the current is $J(\rho) = \rho_0(1-\rho)/(1-\rho_0)$. For $\rho_0 \leq \rho \leq \rho_f$ both free-flow states and jammed states coexist in the thermodynamic limit. In this region a free-flow state evolves deterministically and jams are never produced. However, starting from a random initial condition a jammed state is formed, which slowly evolves towards the free-flow one. However, the time it takes for a system to reach a free-flow state increases exponentially with the system size [15]. Thus in the thermodynamic limit both the free flow and the jammed phases exist as stable steady states of the system. For $q > 0$ the $J(\rho)$ curve can be calculated numerically, and it shows no singularity, as expected. The fundamental diagram of the model for the case $v_{\text{max}} = 1$ is given in Fig. 1a.

As in many traffic models, the general features of the model are revealed only at $v_{\text{max}} > 1$. We still expect a genuine phase transition between the free-flow and jammed states in the CC limit. Again this transition is expected to turn into a crossover for $q > 0$ (see Fig. 1b). The question is whether there is another transition at $\rho > \rho_0$ which is not associated with the existence of absorbing free-flow states, and which may persist beyond the CC limit, namely for $q > 0$.

In what follows we consider $v_{\text{max}} = 2$ in the $\rho > \rho_0$ regime. Here no exact solution is available. Instead, we analyze the evolution of free-flow domains, and examine its correspondence to the dynam-
Some textual content that needs to be converted into a plain text representation.
$\tau = 2$, the existence of a macroscopic domain in Fig. 4 as is demonstrated by the peak at large blocks, should be interpreted as a finite-size effect, which would disappear in the thermodynamic limit \cite{14}.

It is interesting to note that unlike the CM, the number of domains in the traffic model is not conserved, but is subject to fluctuations. The number of domains is given by $M - M_D$, where M_D is the number of deterministic cars \cite{3}, i.e., cars moving at $v = v_{\text{max}}$. The fluctuations in M_D are expected to scale as \sqrt{L}. This was verified by direct numerical studies of systems of size up to 10^4. Therefore, these fluctuations are not expected to influence the dynamics of the system in the thermodynamic limit.

We conclude that in the CC limit of the VDB model there is no phase transition for $\rho > \rho_0$. It is interesting to examine the implication of this result on the question of existence of a phase transition beyond the CC limit, namely for $q > 0$. Here the free-flow phase is no longer an absorbing state, and thus the transition taking place at ρ_0 in the CC limit is expected to become a smooth crossover. Since no other transition is found at $\rho > \rho_0$ in the CC limit we also expect no such transition for $q > 0$. The reason is that in addition to the CM dynamics, a model with $q > 0$ exhibits other processes, which clearly disfavor condensation of macroscopic domains. For example, here a domain may split into fractions of comparable size, leading to fast fragmentation of large domains.

In examining other traffic models, we find that in many cases the dynamical processes characterizing the CM may still be used to describe the domain dynamics. However, it may turn out that the chipping process involves a detachment of more than a single particle. Nevertheless, as long as the number of chipped particles r is bounded by a finite number, or the probability of chipping r particles $u(r)$ decays sufficiently fast with r (say exponentially), the main results obtained from the CM are expected to be valid. Namely, condensation transition should not take place as long as the chipping process is asymmetric. To verify this point we studied numerically chipping models for the case $u(r) \sim \exp(-r)$ and for the case where r is distributed uniformly over a finite range. In both cases we found that the domain size distribution decays as z^k/k^2 for large k, as expected from the CM. The

\footnote{Alternatively, one may associate each domain with a stationary car, say, the one to its left. Within this definition the number of domains is given by the number of stationary cars, where domains of size zero are counted as well. Such a domain corresponds to two adjacent stationary cars. For the purpose of the present study each definition can be used.}
VDB model with \(v_{\text{max}} > 2 \) corresponds to CM with chipping of more than a single particle. However, in the CC limit the number of chipped particles is bound by \(v_{\text{max}}(v_{\text{max}} - 1)/2 \). Thus the analysis presented above for \(v_{\text{max}} = 2 \) remains valid for any finite \(v_{\text{max}} \).

To demonstrate the more general applicability of the CM picture to traffic models, we briefly consider three other traffic models which have been studied in the past.

Model for Emergent Traffic Jams [16] — This is another variant of the Nagel-Screckenberg traffic model. The model is closely related to the CC limit of the VDB model defined above, except that the velocity update rule (Eq. 2a) is replaced by

\[
v_i(t + \frac{1}{2}) = \min \left\{ v_i(t) + 1, v_{\text{max}}, x_{i+1}(t) - x_i(t) - 1 \right\}
\]

\[
v_i(t + 1) = \begin{cases} v_i(t + \frac{1}{2}) & \text{with probability } 1 - p(v_i(t)) \\ \max \left\{ 0, v_i(t + \frac{1}{2}) - 1 \right\} & \text{with probability } p(v_i(t)) \end{cases}
\]

Unlike the VDB model, here non-deterministic cars slow down rather than brake, and thus with \(v_{\text{max}} = 1 \) the two models are identical. This model was shown to exhibit self-organized criticality. Based on general considerations and numerical simulations [16], it was argued that the size distribution of the domains (termed holes in [16]) behaves asymptotically as \(k^{-2} \). Indeed, in [16] the evolution of domains was described in terms similar to those of the CM. Note that in this case the chipping size distribution \(u(r) \) decays exponentially with \(r \).

Traffic Cellular Automata [17] — This model belongs to a different class of CA traffic models where no velocity variable is attached to a car. Cars move to their nearest neighbor site with a probability that depends on the configuration of their neighborhood. In [17] the dynamics is defined as

\[
\begin{array}{ccccccc}
\bullet & \circ & \circ & \alpha \rightarrow & \bullet & | & \circ \\
\bullet & \circ & \circ & \beta \rightarrow & \circ & \circ & \bullet \\
\bullet & \circ & \circ & \gamma \rightarrow & \bullet & \circ & \circ \\
\bullet & \circ & \circ & \delta \rightarrow & \circ & \circ & \circ \\
\end{array}
\]

where \(\bullet \) denotes a car and \(\circ \) a vacancy. In the symmetric CC case, \(\gamma = \delta = 1 \), the model exhibits a low-density absorbing state at \(\rho < 1/3 \) and a high-density absorbing state at \(\rho > 2/3 \). It has been suggested [17] that for intermediate densities \(1/3 < \rho < 2/3 \) and in some region of the \(\alpha, \beta \)-plane, the system exhibits a macroscopic jam, suggesting a jamming phase transition at some density. The correspondence between this case and the CM is less transparent, and will be addressed in a future publication [15]. Here we consider the CC limit, \(\delta = 1 \), with \(\gamma < 1 \), and apply the CM approach to analyze the jammed phase. In this phase a typical microscopic configuration is given by an alternating left-to-right sequence of (a) free-flow regions, composed of vacancies and cars separated from their nearest neighbor cars by at least two vacancies, (b) finite mixed region of alternating cars and vacancies, and (c) an uninterrupted sequence of cars. In order to apply the approach described above, it is convenient to define a domain as a union of adjacent free-flow and mixed regions (a and b above). By examining the dynamics of such domains one finds that they indeed exhibit the characteristic processes of the CM [15]. We performed Monte-Carlo simulations of this model in the CC limit and measured the domain size distribution (Fig. 5). We find that the distribution is consistent with \(k^{-2} \), as expected from the CM picture, indicating again that a phase transition does not take place in the jammed state.

It is interesting to note that if instead of \(\delta = 1 \) we consider \(\gamma = 1 \), the role played by cars and vacancies is interchanged. Here one can define a domain as a stretch of cars, within which deterministic vacancies are embedded, followed to the left by a mixed region. In this case the distribution of these domains (or jams) behaves as \(k^{-2} \), and thus no macroscopic jam is expected.

Traffic Model with Passing [18] — Unlike all models mentioned above, this model is not a cellular automaton. The model is defined on a continuous ring, and evolves in continuous time. Each car is assigned a-priori a random velocity with which it moves on the ring. When a car encounters a slower
car it assumes its velocity, thus creating a jam. With some finite probability the next to leading car in a jam can bypass its predecessor and recover its original velocity. The direct correspondence with the CM was already noted in [18]. Treating the CM within mean-field approximation, the authors concluded that the model should exhibit macroscopic jam. However, numerical simulations show that the jam size distributions is again k^{-2} [18]. Our approach suggests that in the observed distribution is related to the asymmetric nature of the chipping, a feature which cannot be captured in mean-field.

In summary, it is suggested that in many traffic models the coarse-grained dynamics of domains (of either high or low density) in some deterministic limit, may be described by the two basic processes of the chipping-model, namely diffusion and chipping. Analysis of several traffic models within this approach indicates that as in the asymmetric CM, the traffic models do not exhibit a jamming transition beyond perhaps the one related to the existence of an absorbing state. It is concluded that in non-deterministic traffic models jamming phase transitions do not take place. Rather, a smooth crossover between a free-flow and a jammed state takes place as the car density is increased. The approach outlined in this paper could provide a useful tool for analyzing the behavior of traffic models. In studying a specific model one first has to establish (using numerical or other methods) that indeed the coarse-grained dynamics of the domains does follow the basic processes of the chipping model. Only then one can apply the correspondence between the two. It would be of interest to test the applicability of this approach to broader classes of traffic models.

** **

We thank M.R. Evans and J.L. Lebowitz for useful discussions. The support of the Israeli Science Foundation is gratefully acknowledged.

REFERENCES

[1] For a recent review see D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep. 329, 199 (2000).
[2] see e.g. F. L. Hall, B. L. Allen, and M. A. Gunter, Trans. Res. A: Gen. 20, 197 (1986).
[3] W. Brilon, M. Ponzlet in Workshop in Traffic and Granular Flow, edited by D.E. Wolf, M. Schreckenberg and A. Bachem, (World Scientific, 1996).
[4] M. Cremer and J. Ludwig, Mathematics and Computers in Simulation 28, 297 (1986).
[5] K. Nagel and M. Schreckenberg, J. Physique I 2, 2221 (1992).
[6] S. Krauss, P. Wahren, and C. Gawron, Phys. Rev. E 55, 5597 (1997).
[7] B. Eisenblätter, L. Santen, A. Schadschneider, and M. Schreckenberg, Phys. Rev. E 57, 1309 (1998).
[8] S. Lübeck, M. Schreckenberg, and K. D. Usadel, Phys. Rev. E 57, 1171 (1998).
[9] R. Barlovic, L. Santen, A. Schadschneider, M. Schreckenberg, Euro. Phys. J. B 5, 793 (1998).
[10] M. R. Evans, Braz. J. Phys. 30, 42 (2000).
[11] Kafri Y, Levine E, Mukamel D, Schütz GM, and J. Török, Phys. Rev. Lett. 89, 035702 (2002).
[12] For a recent review see Schütz GM, J. Phys. A: Math. Gen. 36, R339 (2003).
[13] S. N. Majumdar, S. Kirshnamurthy, and M. Barma, Phys. Rev. Lett. 81, 3691 (1998) ; R. Rajesh, S. N. Majumdar, Phys. Rev. E 63, 036114 (2001).
[14] R. Rajesh and S. Kirshnamurthy, Phys. Rev. E 66, 046132 (2002).
[15] E. Levine, G. Ziv, L. Gray, and D. Mukamel, in preparation.
[16] K. Nagel and M. Paczuski, Phys. Rev. E 51, 2909 (1995); in Workshop in Traffic and Granular Flow, edited by D.E. Wolf, M. Schreckenberg and A. Bachem, (World Scientific, 1996).
[17] L. Gray and D. Griffeath, J. Stat. Phys. 105, 413 (2001).
[18] I. Ispolatov, P.L. Krapivsky, and S. Redner, Phys. Rev. E 52, 2540 (1995).