Janssen, NA; Hoek, G; Simic-Lawson, M; Fischer, P; van Bree, L; ten Brink, H; Keuken, M; Atkinson, RW; Anderson, HR; Brunekreef, B; Cassee, FR (2011) Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environmental health perspectives, 119 (12). pp. 1691-9. ISSN 0091-6765 DOI: 10.1289/ehp.1003369

Downloaded from: http://researchonline.lshtm.ac.uk/812734/

DOI: 10.1289/ehp.1003369

Usage Guidelines

Please refer to usage guidelines at http://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by-nc-nd/2.5/
Supplemental Material

Black Carbon as an Additional Indicator of the Adverse Health Effects of Airborne Particles Compared to PM$_{10}$ and PM$_{2.5}$

Nicole AH Janssen, Gerard Hoek, Milena Simic-Lawson, Paul Fischer, Leendert van Bree, Harry ten Brink, Menno Keuken, Richard W Atkinson, H Ross Anderson, Bert Brunekreef, Flemming R Cassee
Tables of contents

Table A1. Estimation of elemental carbon (EC) from black smoke or absorbance of PM$_{2.5}$ filters ... 3
Single city estimates for mortality and hospital admissions in studies that include both PM$_{10}$ and Black Smoke ... 4
Table B1. All cause mortality; all age ... 4
Table B2. CVD mortality; all age .. 5
Table B3. Respiratory mortality; all age .. 6
Table B4. Respiratory hospital admissions, age ≥65 7
Table B5. Respiratory hospital admissions; Asthma and COPD, age ≥65 7
Table B6. Respiratory hospital admissions, Asthma, age 0-14 8
Table B7. Respiratory hospital admissions: Asthma, age 15-64 8
Table B8. Hospital admissions: Cardiac, age ≥65 ... 9
Table B9. Hospital admissions: Cardiac, age ≥65 ... 9
Table B10. Hospital admission; IHD, age ≥65 ... 10
Table C1. Effect estimates for PM$_{2.5}$ and EC for all cause mortality 11
Table C2. Effect estimates for PM$_{2.5}$ and EC for cardiovascular mortality 11
Table C3. Effect estimates for PM$_{2.5}$ and EC on respiratory mortality 11
Table D1. Effect estimates for PM$_{2.5}$, EC and sulfate on hospital admissions and emergency department visits ... 12
Table E1. Effect estimates for EC and other particle components 13
Table E2. Results from single and multi-pollutant models including BCP and sulfate ... 14
Effects of PM$_{2.5}$ and BCP in cohort studies of respiratory health in children ... 15
Table F1: Effects of PM$_{2.5}$ and BCP in birth cohort studies 15
Table F2: Effects of PM$_{2.5}$ and BCP in cohort studies on lung function growth ... 17
Table G1. Contrasts between traffic and background locations for BCP and PM$_{2.5}$... 18
Table G2. Estimated percentage EC in the roadside increment of PM$_{2.5}$ 20
References ... 21
Table A1. Estimation of elemental carbon (EC) from black smoke or absorbance of PM$_{2.5}$ filters

Reference	Study period	locations	Measurement method	Ra	Regression equation slope	Increase in EC per 10 µg/m3 increase in BSb
Edwards et al. 1983 NA	Washington, US; urban + traffic	Thermal optical c	BS	0.82	-0.1	1.3
Erdman et al. 1993 1989/1990	Berlin; Germany; urban	VDI 3481 BS	BS	0.93	0	1.8
Schaap et al. 2007 1998/99; 2001/02	Netherlands, urban	Sunset BS	BS	0.92	0.32	0.9
Kinney et al. 2000 1996	New York, US urban + traffic	Sunset Abs	BS	0.95	0	0.8
Janssen et al. 2001d 1997/1998	Netherlands; urban+traffic	VDI 2465-part 1 Abs	BS	0.92	0	1.7
Lena et al. 2002 1999	New York, US urban + traffic	Sunset Abs	NIOSH Abs	0.90	0	0.5
Adams et al. 2002 1999/2000	London, UK; urban + traffic	Sunset Abs	NIOSH Abs	0.98	0	1.2
Cyrys et al. 2003 1999/2000	Munich, Germany urban+traffic	VDI 2465-part 1 Abs	BS	0.97	-1.19	1.6
Cyrys et al. 2003 1999/2000	Netherlands, rural, urban, traffic	VDI 2465-part 1 Abs	BS	0.97	-0.26	1.3
Cyrys et al. 2003 1999/2000	Sweden, rural, urban, traffic	VDI 2465-part 1 Abs	BS	0.85	0.36	0.7

a coefficient of the correlation between EC and BCP concentrations

b: Results from studies that have used the VDI protocol were divided by 1.25, as this method has been shown to overestimate EC by on average 25% (Schmid et al. 2001); An increase in 1 unit of Abs is considered to equal an increase of 10 µg/m3 BS, according to Roorda-Knape et al. 1998

c measurement method not further specified

d paper presents regression equation as Abs = EC; inverse equation, forced through zero, calculated using the original data from the study

	Meane	Min	Max
	1.1	0.5	1.8
Supplement B:

Single city estimates for mortality and hospital admissions in studies that include both PM$_{10}$ and Black Smoke

Table B1. All cause mortality; all age
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM$_{10}$	Estimate BS	IQR (µg/m3)	Concentrationa	Corr (R)	Period	Selected lagc
Verhoeff, 1996	Amsterdam	0.00060	0.00038	0.00171	0.00077	22	10	38
Roemer, 2001	Amsterdam	0.00027	0.00020	0.00324	0.00093	18	7	39
Katsouyanni, 2001	Athensc	0.00153	0.00028	0.00065	0.00012	NA	NA	40
Katsouyanni, 2001	Barcelona	0.00093	0.00018	0.00157	0.00027	24d	18d	60
Katsouyanni, 2001	Birmingham	0.00028	0.00026	0.00034	0.00047	15d	7d	21
Katsouyanni, 2001	Cracowe	0.00013	0.00035	-0.00021	0.00021	NA	NA	54
Zeghnoun, 2001a	Le Havre	0.00079	0.00057	0.00026	0.00085	24	12	36
Katsouyanni, 2001	London	0.00069	0.00017	0.00093	0.00030	14d	8d	25
Bremner, 1999	London	0.00026	0.00023	0.00074	0.00038	NA	NA	28
Hoek, 2000	Netherlands	0.00018	0.00008	0.00040	0.00010	23d	9d	34
Zeghnoun, 2001b	Paris	0.00066	0.00020	0.00043	0.00015	15	14	22
Katsouyanni, 2001	Paris	0.00043	0.00023	0.00038	0.00015	13d	15d	22
Zeghnoun, 2001a	Rouen	0.00024	0.00040	0.00035	0.00083	21	14	33
Anderson, 2001	Midlands	0.00008	0.00042	0.00036	0.00064	NA	NA	23

% change per 10 µg/m3 increase

	%	95% CI	%	95% CI
Pooled Fixed Effects	0.34	(0.23-0.47)	0.52	(0.37-0.66)
Pooled Random Effects	0.48	(0.18-0.79)	0.68	(0.31-1.06)
Heterogeneity chi-squared (df=6)	Q=19.9	p=0.003	Q=19.2	P=0.004

a Mean or median (µg/m3)

b Coefficient of the correlation between PM$_{10}$ and BS concentrations

c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’

d Taken from APHEA II paper on hospital admissions (le Tetre, 2002)

e Excluded from meta-analyses because PM$_{10}$ was partly derived from BS
Table B2. CVD mortality; all age
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM$_{10}^a$	Estimate BS	IQR (µg/m3)	Concentrationa	Corr (R)	Period	Selected lagc				
		Beta	SE	Beta	SE	PM$_{10}$	BS	PM$_{10}$	BS	PM-BSb		
Analitis, 2006	Athense	0.00167	0.00045	0.00069	0.00018	NA	NA	40	64	NA	1992-96	Lag0-1
Analitis, 2006	Barcelonab	0.00055	0.00032	0.00137	0.00050	24	18	60	50	NA	1991-96	Lag0-1
Analitis, 2006	Birmingham	0.00021	0.00040	0.00039	0.00071	15	7	21	11	NA	1992-96	Lag0-1
Analitis, 2006	Cracowd	0.00032	0.00052	-0.00007	0.00031	NA	NA	54	36	NA	1990-96	Lag0-1
Zeghnoun, 2001a	Le Havre	0.00252	0.00126	0.00164	0.00155	24	12	36	16	0.70	1990-95	BS lag0-3
Analitis, 2006	Londone	0.00091	0.00028	0.00156	0.00046	14	8	25	11	NA	1992-96	Lag0-1
Bremner, 1999	London	0.00055	0.00031	0.00117	0.00066	NA	NA	28	13	NA	1992-94	Lag1
Hoek, 2000	Netherlands	0.00019	0.00018	0.00079	0.00020	23	9	34	10	0.77	1986-94	lag 0-6
Analitis, 2006	Netherlands	0.00017	0.00016	0.00026	0.00027	23	9	33	9	NA	1990-95	Lag0-1
Hoek, 2001	Netherlands	0.00015	0.00018	0.00071	0.00020	23	9	34	10	0.77	1992/86-1994f	lag 0-6
						NA	NA	23	13	0.64	1994-96	Lag0-1
Zeghnoun, 2001b	Parise	0.00086	0.00037	0.00036	0.00029	15	14	22	16	NA	1990-95	BS lag 1
Analitis, 2006	Parisb	0.00081	0.00047	0.00063	0.00029	13	15	22	21	NA	1991-96	Lag0-1
Zeghnoun, 2001a	Rouend	0.00106	0.00069	0.00276	0.00155	21	14	33	19	0.73	1990-95	Lag1
Anderson, 2001	West Midlands	0.00041	0.00061	0.00089	0.00092	NA	NA	23	13	0.64	1994-96	Lag0-1

% change per 10 µg/m3 increase

	%	95% CI	%	95% CI
Pooled Fixed Effects	0.45	(0.22-0.68)	0.73	(0.41-1.06)
Pooled Random Effects	0.60	(0.23-0.97)	0.90	(0.40-1.41)

Heterogeneity chi-squared (df=6) Q=9.9, p=0.127 Q=10.2, p=0.116

a Mean or median (µg/m3)

b Coefficient of the correlation between PM$_{10}$ and BS concentrations

c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’

d Taken from APHEA II paper on hospital admissions (le Tetre, 2002)

e Excluded from meta-analyses because PM$_{10}$ was partly derived from BS

f 1992-1994 for PM$_{10}$; 1986-1994 for BS
Table B3. Respiratory mortality; all age
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM$_{10}$	Estimate BS	IQR (µg/m3)	Concentrationa	Corr (R) PM-BSb	Period	Selected lagc
Analitis, 2006	Athense	0.00101	0.0006	NA	40	NA	1992-96	Lag0-1
Analitis, 2006	Barcelonad	0.00117	0.00075	24d	18d	60	1991-96	Lag0-1
Analitis, 2006	Birmingham	0.00003	0.00078	15d	7d	21	1992-96	Lag0-1
Analitis, 2006	Cracowe	0.00529	0.00216	0.00357	0.00132	NA	1990-96	Lag0-1
Zeghnoun, 2001a	Le Havred	0.00200	0.00196	24	12	36	1990-95	BS lag0-1
Analitis, 2006	Londond	0.00022	0.00044	14d	8d	25	1992-96	Lag0-1
Bremner, 1999	London	0.00128	0.00050	0.00190	0.00084	NA	1992-94	Lag3
Analitis, 2006	Netherlands	0.00031	0.00036	23d	9d	33	1990-95	Lag0-1
Dab, 1996	Parisd	0.00155	0.00059	0.00069	0.00048	NA	1987-92	PM lag0-1; BS lag0-1
Analitis, 2006	Parisd	-0.00121	0.00095	0.00063	0.00029	NA	1991-96	Lag0-1
Zeghnoun, 2001a	Rouend	0.00176	0.00120	13d	15d	22	1990-95	Lag0-1
Anderson, 2001	West Midlands	-0.00058	0.00100	0.00006	0.00153	NA	1994-96	Lag0-1

% change per 10 µg/m3 increase

Pooled Fixed Effects	0.31 (-0.16-0.78)	0.70 (-0.05-1.45)
Pooled Random Effects	0.31 (-0.23-0.86)	0.95 (-0.31-2.22)
Heterogeneity chi-squared (df=6)	Q=6.9 p=0.329	Q=12.5 p=0.051

a Mean or median (µg/m3)
b Coefficient of the correlation between PM$_{10}$ and BS concentrations
c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’
d Taken from APHEA II paper on hospital admissions (le Tetre, 2002)
e Excluded from meta-analyses because PM$_{10}$ was partly derived from BS
Table B4. Respiratory hospital admissions, age ≥65
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM₁₀	Estimate BS	IQR (µg/m³)	Concentration^a	Corr (R) PM-BS^b	Period	Selected lag^c		
Atkinson, 2001	Barcelona	0.00198	-0.00070	0.00083	24	18	56	39	1994-96	Lag0-1
Atkinson, 2001	Birmingham	0.00090	-0.00286	0.00115	15	7	25	13	1992-94	Lag0-1
Prescott, 1998	Edinburgh	0.00208	-0.00305	0.00338	NA	NA	21	9	1992-95	Lag1-3
Atkinson, 2001	London	0.00040	-0.00111	0.00068	14	8	28	13	1992-94	Lag0-1
Atkinson, 1999	London	0.00096	0.00082	0.00063	NA	NA	29	13	1992-94	Lag3
Atkinson, 2001	Netherlands	0.00119	0.00000	0.00036	23	9	40	13	1992/89-	Lag0-1
									1995^e	
Atkinson, 2001	Paris	-0.00010	0.00050	0.00046	13	15	23	23	1992-96	Lag0-1
Anderson, 2001	West midlands	-0.00045	-0.00018	0.00100	NA	NA	23	13	1994-96	Lag0-1

% change per 10 µg/m³ increase

- pooled fixed effects: 0.85 (0.49-1.20)
- pooled random effects: 0.70 (0.00-1.40)

Heterogeneity chi-squared (df=5) Q=13.1 p=0.023 Q=5.4 p=0.372

Table B5. Respiratory hospital admissions; Asthma and COPD, age ≥65
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM₁₀	Estimate BS	IQR (µg/m³)	Concentration^a	Corr (R) PM-BS^b	Period	Selected lag^c		
Atkinson, 2001	Barcelona	0.00257	-0.00212	0.00116	24	18	56	39	1994-96	Lag0-1
Atkinson, 2001	Birmingham	0.00050	0.00218	0.00199	15	7	25	13	1992-94	Lag0-1
Atkinson, 2001	London	0.00030	0.00040	0.00103	14	8	28	13	1992-94	Lag0-1
Atkinson, 1999	London	0.00227	-0.00091	0.00099	NA	NA	29	13	1992-94	Lag3
Atkinson, 2001	Netherlands	0.00109	0.00070	0.00046	23	9	40	13	1992/89-	Lag0-1
									1995^e	
Atkinson, 2001	Paris	-0.00660	0.00098	0.00020	13	15	23	23	1992-96	Lag0-1

% change per 10 µg/m³ increase

- pooled fixed effects: 0.95 (0.48-1.42)
- pooled random effects: 0.86 (0.03-1.70)

Heterogeneity chi-squared (df=4) Q=8.3 p=0.08 Q=6.0 p=0.199

^a Mean or median (µg/m³);
^b Coefficient of the correlation between PM₁₀ and BS concentrations;
^c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’
^d Range in correlation coefficient for all 8 cities described in Atkinson et al (2001) (3 cities not included in this review as no data on black smoke was available)
^e 1992-1995 for PM₁₀; 1989-1995 for BS
Table B6. Respiratory hospital admissions, Asthma, age 0-14
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM$_{10}$ Beta	SE	Estimate BS Beta	SE	IQR (µg/m3) PM$_{10}$	BS	Concentrationa PM$_{10}$	BS	Corr (R) PM-BS	Period	Selected lag
Atkinson, 2001	Barcelona	0.00266	0.00392	0.00989	0.00484	24	18	56	39	0.5-0.8a	1994-96	Lag0-1
Atkinson, 2001	Birmingham	0.00276	0.00110	0.00199	0.00199	15	7	25	13	0.5-0.8a	1992-94	Lag0-1
Atkinson, 2001	London	0.00060	0.00072	0.00109	0.00123	14	8	28	13	0.5-0.8a	1992-94	Lag0-1
Atkinson, 1999	London	0.00324	0.00203	0.00245	0.00179	NA	NA	29	13	0.6-0.7	1992-94	Lag3
Atkinson, 2001	Netherlands	-0.00090	0.00062	0.00139	0.00091	23	9	40	13	0.5-0.8a	1992/89.	Lag0-1
Atkinson, 2001	Paris	0.00070	0.00113	0.00090	0.00087	13	15	23	13	0.5-0.8a	1992-96	Lag0-1
Anderson, 2001	West midlands	0.00797	0.00321	0.00714	0.00329	NA	NA	23	13	0.64	1994-96	Lag0-1

% change per 10 µg/m3 increase

Pooled Fixed Effects 0.24 (-0.56-1.05) 1.47 (0.41-2.54)
Pooled Random Effects 0.69 (-0.74-2.14) 1.64 (0.28-3.02)

Heterogeneity chi-squared (df=4) Q=9.5 P=0.050 Q=5.6 p=0.231

Table B7. Respiratory hospital admissions: Asthma, age 15-64
(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM$_{10}$ Beta	SE	Estimate BS Beta	SE	IQR (µg/m3) PM$_{10}$	BS	Concentrationa PM$_{10}$	BS	Corr (R) PM-BS	Period	Selected lag
Atkinson, 2001	Barcelona	0.00040	0.00202	0.00208	0.00121	24	18	56	39	0.5-0.8a	1994-96	Lag0-1
Atkinson, 2001	Birmingham	0.00247	0.00121	0.00276	0.00239	15	7	25	13	0.5-0.8a	1992-94	Lag0-1
Atkinson, 2001	London	0.00139	0.00076	0.00178	0.00137	14	8	28	13	0.5-0.8a	1992-94	Lag0-1
Atkinson, 1999	London	0.00555	0.00249	0.00234	0.00224	NA	NA	29	13	0.6-0.7	1992-94	PM Lag3; BS lag2
Atkinson, 2001	Netherlands	0.00040	0.00066	-0.00040	0.00093	23	9	40	13	0.5-0.8d	1992/89-1995	Lag0-1
Atkinson, 2001	Paris	0.00119	0.00097	0.00080	0.00076	13	15	23	13	0.5-0.8d	1992-96	Lag0-1
Anderson, 2001	West midlands	-0.00233	0.00419	-0.00284	0.00432	NA	NA	23	13	0.64	1994-96	Lag0-1

% change per 10 µg/m3 increase

Pooled Fixed Effects 0.77 (-0.05-1.61) 0.52 (-0.50-1.55)
Pooled Random Effects 0.77 (-0.05-1.61) 0.52 (-0.50-1.55)

Heterogeneity chi-squared (df=4) Q=2.2 P=0.697 Q=3.1 p=0.549

a Mean or median (µg/m3); b Correlation coefficient between PM$_{10}$ and BS concentrations
c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’
d Range in correlation coefficient for all 8 cities described in Atkinson et al (2001) (3 cities not included in this review as no data on black smoke was available)
e 1992-1995 for PM$_{10}$; 1989-1995 for BS
Table B8. Hospital admissions: Cardiac, age ≥ 65

Reference	City	Estimate PM$_{10}$	Estimate BS	IQR (µg/m3)	Concentrationa	Corr (R) PM-BSb	Period	Selected lagc		
Le Tertre, 2002	Barcelona	0.00050	0.00046	0.00666	0.00664	24 18	56 39	0.5-0.8d	1994-96	Lag0-1
Le Tertre, 2002	Birmingham	-0.00014	0.00039	0.00114	0.00078	15 7	25 13	0.5-0.8d	1992-94	Lag0-1
Le Tertre, 2002	London	0.00104	0.00027	0.00214	0.00049	14 8	28 13	0.5-0.8d	1992-94	Lag0-1
Le Tertre, 2002	Paris	0.00020	0.00028	0.00057	0.00022	13 15	23 23	0.5-0.8d	1992-96	Lag0-1
Anderson, 2001	West midlands	0.00030	0.00108	0.00169	0.00117	NA NA	23 13	0.64	1994-96	Lag0-1

% change per 10 µg/m3 increase

Pooled Fixed Effects	0.54 (0.21-0.87)	0.83 (0.47-1.19)						
Pooled Random Effects	0.51 (0.04-0.98)	1.07 (0.27-1.89)						
Heterogeneity chi-squared (df=3)	Q=5.7 p=0.129	Q=8.8 p=0.032						

a Mean or median (µg/m3); b Coefficient of the correlation between PM$_{10}$ and BS concentrations

c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’

d Range in correlation coefficient for all 8 cities described in Le Tertre et al (2002) (no information on cardiac admissions available for the Netherlands; 3 other cities not included in this review as no data on black smoke was available)

Table B9. Hospital admissions: Cardiac, age ≥ 65

Reference	City	Estimate PM$_{10}$	Estimate BS	IQR (µg/m3)	Concentrationa	Corr (R) PM-BSb	Period	Selected lagc		
Le Tertre, 2002	Barcelona	0.00068	0.00055	0.00130	0.00075	24 18	56 39	0.5-0.8d	1994-96	Lag0-1
Le Tertre, 2002	Birmingham	0.00031	0.00047	0.00168	0.00094	15 7	25 13	0.5-0.8d	1992-94	Lag0-1
Le Tertre, 2002	London	0.00096	0.00032	0.00227	0.00057	14 8	28 13	0.5-0.8d	1992-94	Lag0-1
Le Tertre, 2002	Paris	0.00053	0.00035	0.00042	0.00027	13 15	23 23	0.5-0.8d	1992-96	Lag0-1

% change per 10 µg/m3 increase

Pooled Fixed Effects	0.67 (0.28-1.06)	0.86 (0.41-1.30)						
Pooled Random Effects	0.67 (0.28-1.06)	1.32 (0.28-2.38)						
Heterogeneity chi-squared (df=3)	Q=1.5 p=0.673	Q=9.9 p=0.019						

a Mean or median (µg/m3); b Coefficient of the correlation between PM$_{10}$ and BS concentrations

c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’

d Range in correlation coefficient for all 8 cities described in Le Tertre et al (2002) (no information on cardiac admissions available for the Netherlands; 3 other cities not included in this review as no data on black smoke was available)
Table B10. Hospital admission; IHD, age ≥ 65

(cities in italics occur more than once; city in bold included in meta-analysis)

Reference	City	Estimate PM$_{10}$ Beta	Estimate BS SE Beta	IQR (µg/m3) PM$_{10}$ BS	Concentration* PM$_{10}$ BS	Corr (R) PM-BSb	Period	Selected lagc
Le Tertre, 2002	**Barcelona**	-0.00087 0.00087	0.00061 0.00120	24 18	56 39	0.5-0.8d	1994-96	Lag0-1
Le Tertre, 2002	Birmingham	0.00033 0.00076	-0.00073 0.00150	15 7	25 13	0.5-0.8d	1992-94	Lag0-1
Le Tertre, 2002	**London**	0.00104 0.00049	0.00265 0.00086	14 8	28 13	0.5-0.8d	1992-94	Lag0-1
Atkinson, 1999	**London**	0.00298 0.00128	0.00288 0.00119	NA NA	29 13	0.6-0.7	1992-94	PM lag0; BS Lag3
Le Tertre, 2002	Netherlands	0.00036 0.00018	0.00100 0.00026	23 9	40 13	0.5-0.8d	1992/89-1995	Lag0-1
Le Tertre, 2002	**Paris**	0.00168 0.00057	0.00116 0.00043	13 15	23 23	0.5-0.8d	1992-96	Lag0-1
Anderson, 2001	West Midlands	0.00208 0.00209	0.00198 0.00220	NA NA	23 13	0.64	1994-96	Lag0-1

% change per 10 µg/m3 increase

- Pooled Fixed Effects: 0.50 (0.20-0.81) 1.13 (0.72-1.54)
- Pooled Random Effects: 0.68 (0.01-1.36) 1.13 (0.72-1.54)

Heterogeneity chi-squared (df=4): Q=8.8 p=0.066 Q=3.6 p=0.463

a Mean or median (µg/m3)

b Coefficient of the correlation between PM$_{10}$ and BS concentrations

c In case multiple lags were reported in the paper, we used the estimate discussed by the author, as indicated in APED as ‘selected lag’

d Range in correlation coefficient for all 8 cities described in Le Tertre et al (2002) (no information on cardiac admissions available for the Netherlands; 3 other cities not included in this review as no data on black smoke was available)
Supplement C: Study specific effect estimates for mortality in studies that include both PM$_{2.5}$ and EC

Table C1. Effect estimates for PM$_{2.5}$ and EC for all cause mortality

Reference	City	Estimate PM$_{2.5}$	Estimate EC	IQR	Concentrationa	Corr (R) PM-ECb	Period	Selected lagc
Klemm, 2004b	Atlanta	0.00544	0.01343	11.6	19.6	2.0	1998-2000	Lag01
Ostro, 2007b	6 California counties	0.00056	0.00829	14.6	19.3	1.0	2000-2003	Lag3
Cakmak, 2009	Santiago, Chile	0.00212	0.01440	35.8	NA	3.3	1998-2006	PM NA; EC lag1

% change per 1 µg/m3 increased

Pooled Fixed Effects 0.17 (0.13-0.21) 1.45 (1.32-1.57)

Pooled Random Effects 0.19 (0.03-0.35) 1.45 (1.32-1.57)

a Mean or median; b Coefficient of the correlation between PM$_{2.5}$ and EC concentrations;

d Please note that in supplement B the % change was calculated per 10 µg/m3.

Table C2. Effect estimates for PM$_{2.5}$ and EC for cardiovascular mortality

Reference	City	Estimate PM$_{2.5}$	Estimate EC	IQR	Concentrationa	Corr (R) PM-ECb	Period	Selected lagc
Mar, 2000	Phoenix	0.00685	0.04400	8.5	12.0	1.3	1995-1997	Lag1
Ostro, 2007b	6 California counties	0.00105	0.02574	14.6	19.3	1.0	2000-2003	Lag3
Cakmak, 2009	Santiago, Chile	0.00327	0.01736	35.8	NA	3.3	1998-2006	PM NA; EC lag1

% change per 1 µg/m3 increased

Pooled Fixed Effects 0.26 (0.20-0.32) 1.76 (1.57-1.96)

Pooled Random Effects 0.29 (0.07-0.50) 1.77 (1.08-3.08)

a Mean or median; b Coefficient of the correlation between PM$_{2.5}$ and EC concentrations;

d Please note that in supplement B the % change was calculated per 10 µg/m3.

Table C3. Effect estimates for PM$_{2.5}$ and EC on respiratory mortality

Reference	City	Estimate PM$_{2.5}$	Estimate EC	IQR	Concentrationa	Corr (R) PM-ECb	Period	Selected lagc
Ostro, 2007b	6 California counties	0.00098	-0.03298	14.6	19.3	1.0	2000-2003	Lag3
Cakmak, 2009	Santiago, Chile	0.00648	0.03453	35.8	NA	3.3	1998-2006	PM NA; EC lag2

a Mean or median; b Coefficient of the correlation between PM$_{2.5}$ and EC concentrations;

d Please note that in supplement B the % change was calculated per 10 µg/m3.
Supplement D: Study specific effect estimates for hospital admissions and emergency department visits in studies that include both PM$_{2.5}$ and EC

Table D1. Effect estimates for PM$_{2.5}$, EC and sulfate on hospital admissions and emergency department visits.
(significant effects (p<0.05) in bold)

Reference	City	Endpoint	PM$_{2.5}$	EC	Sulfate	IQR (µg/m3)	Concentration (µg/m3)							
			beta	se	beta	beta	PM$_{2.5}$	EC	Sulfate	PM$_{2.5}$	EC	Sulfate		
Hospital admissions														
Zanobetti, 2006	Boston; elderly	Pneumonia	0.0037	0.0015	0.0540	0.0159	8.9	1.0	11.1	1.2				
Ostro, 2009	6 california counties; children	All respiratory	0.0027	0.0008	0.0640	0.0277	**0.0199**	0.0089	14.6	0.8	1.5	19.4	1.0	2.0
Peng, 2009	119 US Counties; elderly	CVD	**0.00068**	0.00021	**0.01794**	0.00375	**0.00140**	0.00075	9.5	0.4	3.1	12.2	0.6	2.6
Tolbert, 2007	Atlanta; All agea	CVD	0.00046	0.00056	**0.01295**	0.00439	-0.00026	0.00161	11.0	1.2	3.8	17.1	1.6	4.9
Cakmak, 2009b	Santiago, Chile; All age	All non-accid.	**0.00152**	0.00018	**0.02287**	0.00184	**0.02232**	0.00804	40.3	4.8	2.3	40.3	2.8	2.6

a also estimates from additional endpoints available from 3 older papers that included a shorter study period (Metzger et al. 2004; Sarnat et al. 2008; Tolbert et al. 2000)

b sulfate estimated from S
Table E1. Effect estimates for EC and other particle components
Effects expressed as % increase per IQR, (significant effects (p<0.05) in bold)

Reference	City	Endpoint	% increase per IQR	IQR (µg/m³)												
			EC	OC	Sulfate	Nitrate	Zn	K	Si	EC	OC	Sulfate	Nitrate	Zn	K	Si
Mortality																
Mar, 2000	Phoenix	All cause	ns	ns	-3.0	ns	ns	1.2	3.0	0.8	na	0.06				
		Cardiovascular	5.2	4.4		ns	ns	3.2								
Klemm, 2004	Atlanta	All cause	1.5	1.3	3.4	-0.1	1.1	2.4	3.9	1.3						
Ostro, 2007	6 California counties	All cause	0.7	0.6	0.2	0.1	0.6	0.2	0.0	0.8	4.6	1.5	5.5	0.01	0.08	0.15
		Cardiovascular	2.1	1.6	0.6	1.5	2.2	0.5	0.6							
		Respiratory	-2.6	-2.9	1.1	1.0	-0.5	0.5	1.5							
Maynard, 2007	Boston	All cause	2.3	1.1		0.2		2.3								
		Respiratory	3.7	2.1												
		Cardiovascular	1.5	-0.2												
		Stroke	4.4	2.0												
		Diabetes	5.7	2.9												
Cakmak, 2009	Santiago, Chile	All cause	7.9	6.6	3.2	5.3	3.5	1.7	5.3	7.4	2.8	0.08	0.23	0.20		
		Cardiac	9.6	8.3	5.1	5.9	5.1	4.2								
		Respiratory	20.0	17.9	6.9	13.6	11.7	8.1								
Hospital admission																
Ostro, 2009	6 California counties; children	All respiratory	5.4	3.4	3.0	3.3	1.6	0.8	2.8							
		Asthma	5.3	4.0	0.4	2.4	1.8	0.3	2.9	0.8	4.5	1.5	5.6	0.01	0.08	0.15
		Bronchitis	4.4	4.8	6.9	3.9	1.7	2.1	6.1							
		Pneumonia	5.3	4.5	2.8	2.2	2.0	0.7	4.3							
Peng, 2009	119 US counties; elderly	Cardiovascular	0.7	0.7	0.4	0.5	0.2			0.4	3.2	3.1	1.6	0.07		
		Respiratory	0.4	0.8	-0.3	0.0	0.1									
Emergency department visits																
Sarnat, 2008	Atlanta; all age	CVD	2.5	2.4	0.7	0.2	1.3	3.0	0.8							
		Respiratory	-0.4	-0.3	2.0	-0.1	-0.3	0.2	-0.4							
Cakmak, 2009	Santiago, Chile; all age	All non-accid.	11.5	9.3	5.2	5.2	5.8	5.8	4.8	8.5	2.3	0.07	0.21	0.18		
		Respiratory	18.3	14.3	7.5	7.5	9.8	11.4								

*a ns = non-significant (effect estimates not reported in paper)
*b estimates from Sarnat (2008) used instead of Tolbert (2007), despite shorter period (4 instead of 6 years) as the Sarnat paper included more other elements.
*c sulfate estimated from S;
Table E2. Results from single and multi-pollutant models including BCP and sulfate

Ref. / city	Health endpoint	BCP metric	R Sulfate-BCP	Sulfate single	Sulfate multi	BCP single	BCP multi
Hoek, 2000	Total mortality	BS	0.65	3.2 (0.6 to 5.9)	2.7 (-0.3 to 5.8)	2.8 (1.7 to 3.8)	1.2 (-1.5 to 4.1)
	CVD mortality			2.1 (-1.9 to 6.3)	0.8 (-3.7 to 5.4)	3.2 (1.6 to 4.8)	2.9 (-1.3 to 7.4)
Anderson, 2001; West Midlands	Respiratory admissions	BS	0.30	0.8 (-1.3 to 2.9)	Na	2.1 (-0.1 to 4.2)	2.4 (0.1 to 4.7)
Maynard, 2007	Total mortality	BC	0.44	1.1 (0.01 to 2.0)	0.5 (-0.45 to 1.6)	2.3 (1.2 to 3.4)	2.2 (0.2 to 4.2)
Peng, 2009; 119 US Counties	Respiratory admissions	EC	0.18	-0.3 (-1.1 to 0.5)	-0.6 (-1.1 to 0.3)	0.4 (-0.1 to 0.9)	0.0 (-0.1 to 0.8)
	Cardiovascular admissions			0.4 (-0.0 to 0.9)	0.0 (-0.5 to 0.6)	0.7 (0.4 to 1.0)	0.8 (0.3 to 1.3)
Cakmak, 2009a; Santiago, Chile	Total mortality	EC	0.33	3.2 (1.4 to 5.0)	Lost significance	7.9 (7.2 to 8.6)	Remained significantly associated
	Cardiac mortality			5.1 (2.4 to 8.0)		9.6 (8.5 to 10.8)	
	Respiratory mortality			6.9 (1.9 to 12.1)		20.0 (18.2 to 21.9)	
Cakmak, 2009b; Santiago, Chile	All non-accidental adm.	EC	0.20	5.2 (1.5 to 9.1)	Lost significance	11.5 (9.6 to 13.5)	Remained significant
	Respiratory admissions			7.5 (2.4 to 12.8)		18.3 (15.6 to 21.2)	

\[a\] Coefficient of the correlation between sulfate and BCP concentrations;
\[b\] RRs expressed as reported in the paper: IQR for Maynard (2007); Peng (2009) and Cakmak (2009a; 2009b); 1 to 9\(^{th}\) percentile for Hoek (2000); 10-90\(^{th}\) percentile for Anderson (2001);
\[c\] Multi-pollutant estimates also adjusted for OCM, Nitrate, Silicon, Sodium\(_{i\text{on}}\) and Ammonium
\[d\] Multi-pollutant estimates also adjusted for 16 other PM components and 3 gases; quantitative estimates for multi-pollutant models requested from the authors, but not received
Supplement F:

Effects of PM$_{2.5}$ and BCP in cohort studies of respiratory health in children

Table F1: Effects of PM$_{2.5}$ and BCP in birth cohort studies

Reference	Cohort	R PM-BCP a	RR expressed per	Health endpointb	RR PM	RR BCP			
Gehring, 2002	Birth cohort (GINI / LISA) 1756 children born in Munich city Age 2	0.96	Expressed per IQR: PM$_{2.5}$: 1.5 µg/m3 Abs: 0.4 m3 x 10$^{-5}$	Wheeze	0.96	(0.83-1.12)	0.98	(0.84-1.14)	
				Dry cough at night	1.20	(1.02-1.42)	1.16	(0.98-1.37)	
				DD obstr/spast/astmoid bronchitis	0.92	(0.78-1.09)	0.94	(0.79-1.12)	
				Respiratory infections	0.98	(0.80-1.20)	0.99	(0.80-1.22)	
				Sneeze/runny stuffed nose	0.96	(0.82-1.12)	0.92	(0.78-1.09)	
Brauer, 2002	Piama cohort; 3000 children throughout the Netherlands; symptoms at age 2	0.99	Expressed per IQR: PM$_{2.5}$: 3.2 µg/m3 Abs: 0.54 m3 x 10$^{-5}$	Wheeze	1.14	(0.98-1.34)	1.11	(0.97-1.26)	
				DD-asthma	1.12	(0.84-1.50)	1.12	(0.88-1.43)	
				Dry cough at night	1.04	(0.88-1.23)	1.02	(0.88-1.17)	
				DD bronchitis	1.04	(0.85-1.26)	0.99	(0.84-1.17)	
				E,N,T infections	1.20	(1.01-1.42)	1.15	(1.00-1.33)	
				DD flu/serious colds	1.12	(1.00-1.27)	1.09	(0.98-1.21)	
				Itchy rash	1.01	(0.88-1.16)	1.02	(0.91-1.15)	
				DD eczema	0.95	(0.83-1.10)	0.96	(0.85-1.08)	
Brauer, 2006	Birth cohort (Piama); 3000 children throughout the Netherlands Birth cohort (LISA), 600 children from Munich, Germany	0.99	Expressed per IQR: PM$_{2.5}$: 3 µg/m3 EC: 0.5 µg/m3 Age 1	Otitis media	1.13	(0.98-1.32)	1.11	(0.98-1.26)	
				Age 2	1.13	(1.00-1.27)	1.10	(1.00-1.22)	
				Expressed per IQR: PM$_{2.5}$: 3 µg/m3	Otitis media	1.19	(0.73-1.92)	1.12	(0.83-1.51)
				Age 1	1.24	(0.84-1.83)	1.10	(0.86-1.41)	
				Age 2	1.24	(0.84-1.83)	1.10	(0.86-1.41)	
Brauer, 2007	PIAMA cohort; 3000 children throughout the Netherlands; symptoms at age 4	0.99	Expressed per IQR: PM$_{2.5}$: 3.3 µg/m3 Abs: 0.58 m3 x 10$^{-5}$	Wheeze	1.20	(0.99-1.46)	1.18	(1.00-1.40)	
				DD-asthma	1.32	(0.98-1.71)	1.30	(0.98-1.71)	
				Dry cough at night	1.14	(0.98-1.33)	1.14	(1.00-1.31)	
				DD bronchitis	0.86	(0.66-1.11)	0.88	(0.69-1.11)	
				E,N,T infections	1.17	(1.02-1.34)	1.16	(1.03-1.31)	
				DD flu/serious colds	1.25	(1.07-1.46)	1.19	(1.04-1.37)	
				Itchy rash	0.98	(0.85-1.14)	0.97	(0.85-1.10)	
				DD eczema	0.98	(0.82-1.17)	0.97	(0.83-1.14)	
Condition	Morgenstern, 2007	Expressed per IQR: 0.49	Morgenstern, 2008	Expressed per IQR: 0.49					
---	-------------------	------------------------	-------------------	------------------------					
GINI / LISA cohort 3577 children residing in the Munich metropolitan area; age 2	PM$_{2.5}$: 1.0 µg/m3 Abs: 0.22 m$^{-3}$ x 10^{-5}	Wheeze	1.10 (0.96-1.25)	1.09 (0.90-1.33)					
		Dry cough at night		1.03 (0.89-1.19)					
		DD obstr/spast/		1.05 (0.92-1.20)					
		astmoid bronchitis		0.85 (0.31-2.34)					
		Respiratory infections		1.09 (0.94-1.27)					
		Sneezing/runny stuffed		1.19 (1.04-1.36)					
		nose		1.27 (1.04-1.56)					
		DD obstr/spast/		1.05 (0.92-1.20)					
		astmoid bronchitis		0.85 (0.31-2.34)					
		Respiratory infections		1.09 (0.94-1.27)					
		Sneezing/runny stuffed		1.19 (1.04-1.36)					
		nose		1.27 (1.04-1.56)					
		DD obstr/spast/		1.05 (0.92-1.20)					
		astmoid bronchitis		0.85 (0.31-2.34)					
		Respiratory infections		1.09 (0.94-1.27)					
		Sneezing/runny stuffed		1.19 (1.04-1.36)					
		nose		1.27 (1.04-1.56)					

* Coefficient of the correlation between PM$_{2.5}$ and BCP concentrations;
* DD = doctor diagnosed; PR = parental report
* Further analyses of Gehring et al. (2002). Here, the study population was expanded by also including subjects who lived outside the Munich area. Although this resulted in a lower correlation between PM$_{2.5}$ and BCP (R=0.49), the performance of the land use regression model used to assign exposure to individual participants was poorer than that of the smaller population (Morgenstern et al. 2007).
Table F2: Effects of PM$_{2.5}$ and BCP in cohort studies on lung function growth

Reference	Cohort	R PM-BCP	RR expressed per	Health endpoint	RR PM	RR BCP
Gauderman, 2002	Results from 2 cohorts	0.91	Expressed for concentration range (max - min) PM$_{2.5}$: 22.2 µg/m3 EC: 1.1 µg/m3	Growth rate FVC (%)	-0.42 (-0.86-0.03)	-0.49 (-0.88-0.09)
1) 1457 children Recruited 1993 4 year follow-up				Growth rate FEV1 (%)	-0.63 (-1.28-0.02)	-0.71 (-1.30-0.12)
2) 1678 children Recruited 1996 4 year follow-up	0.93			Growth rate MMEF (%)	-0.94 (-1.88-0.01)	-1.07 (-1.94-0.19)
			Growth rate FVC (%)	-0.14 (-0.67-0.40)	-0.17 (-0.67-0.33)	
			Growth rate FEV1 (%)	-0.39 (-1.06-0.28)	-0.40 (-1.02-0.23)	
			Growth rate MMEF (%)	**-0.94** (-1.87-0.00)	**-0.92** (-1.78-0.05)	
Gauderman, 2004	Cohort 1	0.91	Expressed for concentration range (max - min) PM$_{2.5}$: 22.8 µg/m3 EC: 1.1 µg/m3	Growth rate FVC (ml)	-60.1 (-166.1-45.9)	-77.7 (-166.7-11.3)
8 years follow-up				Growth rate FEV1 (ml)	**-79.7** (-153.0-6.4)	**-87.9** (-146.4-29.4)
				Growth rate MMEF (ml)	-168.9 (-345.5-7.8)	**-165.5** (-323.4-7.6)

* Coefficient of the correlation between PM$_{2.5}$ and BCP concentrations;
Table G1. Contrasts between traffic and background locations for BCP and PM$_{2.5}$

- Ratios and differences values in bold were provided in the paper; values in regular print were calculated from the paper; grey for footnote A

Reference	Location / period	Site characteristics	Measurement method	Averaging time / # observations	Mean concentration at traffic sitea	Mean concentration at background siteb	Ratio traffic/background						
Janssen, 1997	Arnhem, The Netherlands / Oct–Nov 1994	Curbside (0.5 m); 15,000 veh/day; 200 m from nearest busy road	PM$_{2.5}$ mass	8 h (8:30 – 16:30) 28 paired observations	42.9	51.0	35.0	22.7	1.3	2.6			
Roorda-Knape, 1998	Arnhem, The Netherlands / May–Aug 1995	1) 15 m from highway; 131,907 veh/day 305 m from the same highway 2) 32 m from highway; 132,559 veh/day	PM$_{2.5}$ mass	1 week; 10 paired observations 1 week; 8 paired observations	20.1	14.9	18.5	7.4	1.09	2.01			
Roemer, 2001	Amsterdam, Netherlands / Jan 1998 – March 1999	12-14 m from highway (94,000 veh/day) 7 m from busy street (30,000 veh/day)	PM$_{2.5}$	24 h; 65 days with complete information on all 3 sites	14	36	10	7	1.4	5.14			
Fischer, 2000	Amsterdam, Netherlands / Jan–Apr 1995	Outside 18 homes in main streets (5,951-30,974 veh/day) Outside 18 homes in side street (<3,000 veh/day)	PM$_{2.5}$ mass Abs. of PM$_{2.5}$ filters	24 h; 1-2 samples per home; 18 days with ≥ 1 obs at both types of homes	12	18	10	7	1.2	2.57			
Janssen, 2001; Smargiassi, 2005	Outside 24 schools<400m of highways in NL. (1) Apr 1997 - May ‘98; (2) Nov 2001-Oct ’02	50 m from busy highway; ±1,400 veh/day; 10% trucks 300 m from highway; ±10,000 veh/day; 17% trucks 200 m from highway; ±100,000 veh/day; 10% trucks	PM$_{2.5}$ mass Abs. of PM$_{2.5}$ filters; Annual average, calculated from 5-10 week measurements per site (adjusted for temporal variation at reference site)	17.5 (1)	17.5 (1)	1.00 (1)	1.38 (2)	1.00 (1)	1.38 (2)	1.00 (1)	1.38 (2)	1.00 (1)	1.38 (2)
Lena, 2002	New York, USA July – Aug 1999	Intersection along truck route (515 veh/h; 24% large trucks) Intersection along truck route; highly congested (783 veh/h; 35% large trucks) Intersection along truck route; spacious and open (657 veh/h; 23% large trucks)	Garden of home in residential street; no-truck traffic zone	PM$_{2.5}$ EC estimated from Abs of PM$_{2.5}$ filters (using 12 co-located EC measurements) 10-12h; starting at 6:00 each day; 2-6 samples per traffic site; 9 days at control site (corresponding values at control site calculated from table)	29.9	5.86	17.7	2.34	1.69	2.50			
Smargiassi, 2005	Montreal, Canada May – June, YEAR: NA	<10 m of a major urban residential arteries (20,457 veh/day) <10 m of a major urban residential arterie (32,713 veh/day) On a collector artery; 19.137 veh/day on collector; >150,000 on highway	Quiet residential street	PM$_{2.5}$ Abs of PM$_{2.5}$ filter	24 h; 7 weeks; weekdays only; all sites simultaneously	13.7	1.42	12.4	1.18	1.11	1.20		

a PM concentration at traffic site

b PM concentration at background site
Reference	Location / period	Site characteristics	Measurement method	Averaging time / # observations	Mean concentration at traffic site	Mean concentration at background site	Ratio traffic/background
Janssen, 2008	Munich, Germany March–Dec 2002	Along highway (30,000 veh/day); 40 m away from another highway (24,000 veh/day)	Suburban residential area	PM$_{2.5}$ Abs. of PM$_{2.5}$ filters;	Annual avg, calculated from 16 week samples per site (adj. for temp variation at ref site)	15.8 2.60 12.2 1.36 1.30 1.91	
Boogaard, 2010	8 traffic sites; 9-15 m of busy road in 5 different large cities in the Netherlands; June 2008 – January 2009	Amsterdam; 15,253 veh/24h; The Hague; 17,438 veh/24h; Den Bosch; 17,896 veh/24h; Den Bosch; 17,138 veh/24h	Urban background site in the same city	PM$_{2.5}$ Abs of PM$_{2.5}$ filter	Six one week measurements Per site; traffic and corresponding background site measured simultaneously	17.8 4.1 14.8 2.0 1.2 2.1	
Kinney, 2000	New York, USA July, 1996	Busy intersection; 18,375 cars; 2,467 trucks +buses	Control site in quiet residential area	PM$_{10}$ mass EC	8 h (10:00-18:00); 5 obs per site; All sites measured simultaneously	45.7 6.2 38.7 1.5 1.9 1.8	
Finasaka, 2000	Osaka, Japan / Sampling period not specified	Outside 5 homes; <5 m from the road; 27,000-29,000 veh/day	Outside homes 60-150 m from the same roads	PM$_{2.5}$ EC	7 days; cascade impactors; area B	27 10 21 6.4 1.29 1.56	
Roosli, 2001	Basel, Switzerland April 1998 – March 1999	Street canyon near traffic light 18,000 veh/day	Urban background	PM$_{10}$ EC	Annual average; filters every 4th day analysed	29.9 5.4 21.1 3.0 1.40 1.80	
Cyrys, 2003	Munich / March 1999-2000 6 sites; Average 10 m from traffic	6 sites; urban background	PM$_{2.5}$ EC and Abs. of PM$_{2.5}$ filters;	Annual average, based on 4-2-week samples per site; adjusted for temporal variation at reference site	14.3 3.1 13.3 2.1 1.08 1.43		
Riediker, 2003	Raleigh, USA / Aug-Oct 2001 Near major routes; rotating locations	Fixed ambient site	PM$_{2.5}$ EC	Workshift; 7-9 h; 3pm to midnight; 25 days	29.9 4.0 31.7 1.7 0.94 2.35		
Harrison, 2004	London+Birmingham, UK / April 2000-2001 4 roadside locations; <1 m of kerbside; 27,300-140,400 veh/day	4 background locations; paired to roadside	PM$_{2.5}$ EC	24h; 97 complete sets	22.3 8.4 14.4 2.2 1.6 3.8		
Fromme, 2005	Berlin, Ger-many Feb–June, 2000	Outside 29-33 apartments 14,000-37,000 cars/day	PM$_{2.5}$ EC	Daytime; 7-8h; 1 obs per home	32.0 3.4 23.6 2.8 1.36 1.70		

- Concentrations in µg/m3 for PM, black smoke and EC; concentration in m3x10$^{-3}$ for Absorbance.
- b: Table only includes results of the 4 schools that were measured in both periods; EC derived from regression equation from 47 co-located EC measurements in 1997/98.
- c: Not specified if samples were conducted simultaneously at traffic and background homes (in grey print).
| Reference | Location / period | Measurement method | Difference traffic background (µg/m³) | % EC in roadside increment |
|--------------------|-----------------------------------|--------------------|--------------------------------------|----------------------------|
| Kinney, 2000 | New York, USA; 1996; sidewalk | EC; sunset | PM 4.4 BCP 2.6 | 58 |
| Funasaka, 2000 | Osaka, Japan / outside homes; period NA | EC | PM 6.0 BCP 3.6 | 60 |
| Janssen, 2001; 2008 | Netherlands; 1997/98; 50 m of highway | EC from Abs^a; VDI 2465 | PM 2.1 BCP 2.0 | 76^b |
| Lena, 2002 | New York, USA; 1999; sidewalk | EC from Abs^a; sunset | PM 6.2 BCP 3.1 | 50 |
| Cyrys, 2003 | Munich; 1999/2000 | EC; VDI 2465 | PM 1.0 BCP 1.0 | 80^b |
| Lena, 2002 | New York, USA; 1999; sidewalk | EC; VDI 2465 | PM 1.0 BCP 1.0 | 80^b |
| Cyrys, 2003 | Munich; 1999/2000 | EC; VDI 2465 | PM 2.1 BCP 1.8 | 69^b |
| Janssen, 2008 | Netherlands; 2001/02; 50 m of highway | EC; VDI 2465 | PM 3.6 BCP 1.1 | 24^b |
| Boogaard, 2010 | NL; 2008/09; 9-15 m of busy roads in large cities | Abs of PM_{2.5} filters^c | PM 2.2 BCP 1.6 | 77 |

Average includes all studies; average of studies that directly measured EC was 61%.

Note:
- ^a calculated using a study specific calibration derived from co-located samples (see table A1)
- ^b Results from studies that have used the VDI protocol were divided by 1.25, as this method has been shown to overestimate EC by on average 25% (Schmid et al, 2001)
- ^c An increase in 1 unit of Abs is considered to equal an increase of 10 µg/m³ BS, according to Roorda-Knape et al. 1998.
- ^d Average includes all studies; average of studies that directly measured EC was 61%.
References

Adams HS, Nieuwenhuijsen MJ, Colvile RN, Older MJ, Kendall M. 2002. Assessment of road users’ elemental carbon personal exposure levels, London, UK. Atmospheric Environment 36:5335-5342.

Analitis A, Katsouyanni K, Dimakopoulou K, et al. 2006. Short-term effects of ambient particles on cardiovascular and respiratory mortality. Epidemiology 17:230233.

Anderson HR, Bremner SA, Atkinson RW, Harrison RM, Walters S. 2001. Particulate matter and daily mortality and hospital admissions in the west midlands conurbation of the United Kingdom: associations with fine and coarse particles, black smoke and sulphate. Occup Environ Med 58:504-510.

Atkinson RW, Anderson HR, Strachan DP, Bland JM, Bremner SA, Ponce de Leon A. 1999a. Short-term associations between outdoor air pollution and visits to accidents and emergency departments in London for respiratory complaints. Eur Respir J 13:257-265.

Atkinson RW, Bremner SA, Anderson HR, Strachan DP, Bland JM, de Leon AP. 1999b. Short-term associations between emergency hospital admissions for respiratory and cardiovascular disease and outdoor air pollution in London. Arch Environ Health 54:398-411.

Atkinson RW, Anderson HR, Sunyer J, et al. 2001. Acute effects of particulate air pollution on respiratory admissions. Am J Respi Crit Care Med 2001;164:1860-1866.

Behndig AF, Mudway IS, Brown JL, Stenfors N, Helleday R, Duggan ST, et al. 2006. Airway antioxidant and inflammatory responses to diesel exhaust exposure in healthy humans. Eur Respir J 27:359-365.

Boogaard H, Kos GPA, Weijers E, Janssen NAH, Fischer PH, van der Zee S, et al. 2011. Contrast in air pollution components between major streets and background locations: particulate matter mass, black carbon, elemental composition, nitrogen oxide and ultrafine particle number. Atmospheric Environment 45:650-658.

Brauer M, Hoek G, van Vliet P, Meliefste K, Fischer PH, Wijga A, et al. 2002. Air pollution from traffic and the development of respiratory infections and asthmatic and allergic symptoms in children. Am J Respir Crit Care Med 166:1092-1098.

Brauer M, Gehring U, Brunekreef B, de Jongste J, Gerritsen J, Rovers M, et al. 2006. Traffic-related air pollution and otitis media. Environ Health Pespect 114:1414-1418.

Brauer M, Hoek G, Smit HA, de Jongste JC, Gerritsen J, Postma DS. 2007. Air pollution and development of asthma, allergy and infections in a birth cohort. Eur J Respir 29:879-888.
Bremner SA, Anderson HR, Atkinson RW, McMichael AJ, Strachan DP, Bland JM, et al. 1999. Short term associations between outdoor air pollution and mortality in London 1992-4. Occup Environ Med 56:237-244.

Cakmak S, Dales RE, Blanco Vida C. 2009a. Components of particulate air pollution and mortality in Chile. Int J Occup Environ Health 15:152-158.

Cakmak S, Dales R, Gultekin T, Vidal CB, Farnendaz M, Rubio MA, et al. 2009b. Components of particulate air pollution and emergency department visits in Chile. Arch Environ Occup Health 64:148-155.

Cancado JED, Saldiva PHN, Pereira LAA, et al. 2006. The impact of sugar cane-burning emissions on the respiratory system of children and the elderly. Environ Health Perspect 115:725-729.

Cyrys J, Heinrich J, Hoek G, Meliefste K, Lewne M, Gehring U, et al. 2003. Comparison between different traffic-related particle indicators: Elemental carbon (EC), PM$_{2.5}$ mass, and absorbance. J Expo Anal Environ Epidemiol 13:134-143.

Dab W, Medina S, Quenel P, et al. 1995. Short term respiratory health effects of ambient air pollution: results of the APHEA project in Paris. J Epidemiol Comm Health 1996;50(Suppl 1):S42-S46.

Edwards JD, Ogren JA, Weiss JE, Charlson RJ. 1983. Particulate air pollutants: A comparison of British “Smoke” with optical absorption coefficient and elemental carbon concentration. Atmospheric Environment 17:2337-2341.

Fischer PH, Hoek G, van Reeuwijk H, Briggs DJ, Lebret E, van Wijnen JH, et al. 2000. Traffic-related differences in outdoor and indoor concentrations of particles and volatile organic compounds in Amsterdam Atmospheric Environment 34:3713-3722.

Fromme H, Lahrz T, Hainsch A, Oddoy A, Piloty M, Ruden H. 2005. Elemental carbon and respirable particulate matter in the indoor air of apartments and nursery schools and ambient air in Berlin (Germany). Indoor Air 15:335-341.

Funasaka K, Miyazaki T, Tsuruho K, Tamura K, Mizuno T, Kuroda K. 2000. Relationship between indoor and outdoor carbonaceous particulates in roadside households. Environ Poll 110:127-134.

Gauderman WJ, Gilliland F, Vora H, Avol E, Stram D, McDonnel R, et al. Association between air pollution and lung function growth in southern California children. 2002. Am J Crit Care Med 166:76-84.

Gauderman WJ, Avol E, Gilliland F, Vora H, Thomas D, Berhane K, et al. 2004. The effects of air pollution on lung development from 10 to 18 years of age. N Engl J Med 351:1057-1067.
Gehring U, Cyrys J, Sedlmeir G, Brunekreef B, Bellander T, Fischer P, et al. 2002. Traffic-related air pollution and respiratory health during the First 2 yrs of life. Eur Respir J 19:690-698.

Harrison RM, Jones AM, Lawrence RG. 2004. Major component composition of PM$_{10}$ and PM$_{2.5}$ from roadside and urban background sites. Atmospheric Environment 38:4531-4538.

Hoek G, Brunekreef B, Verhoeff A, van Wijnen J, Fischer P. 2000. Daily mortality and air pollution in the Netherlands. J Air Waste Manage Assoc 50:1380-1389.

Hoek G, Brunekreef B, Fischer P, van Wijnen J. 2001. The association between air pollution and heart failure, arrhythmia, embolism, thrombosis, and other cardiovascular causes of death in a time series study. Epidemiology 12:355-357.

Janssen NAH, van Mansom DFM, van der Jagt K, Harssema H, Hoek G. 1997. Mass concentration and elemental composition of airborne particulate matter at street and background location. Atmospheric Environment 31:1185-1193.

Janssen NAH, van Vliet PHN, Aarts F, Harssema H, Brunekreef B. 2001. Assessment of exposure to traffic related air pollution of children attending schools near motorways. Atmospheric Environment 35:3875-3884.

Janssen NAH, Meliefste K, Fuchs O, Weiland SK, Cassee F, Brunekreef B, Sandstrom T 2008. High and low volume sampling of particulate matter at sites with different traffic profiles in the Netherlands and Germany: Results from the HEPMEAP study. Atmospheric Environment 42:1110-1120.

Katsouyanni K, Touloumi G, Samoli E, et al. 2001. Confounding and effect modification in the short-term effects of ambient particles on total mortality: results from 29 cities within the APHEA2 project. Epidemiology 12:521-531.

Kinney PL, Aggarwal M, Northridge ME, Janssen NA, Shepard P. 2000. Airborne concentrations of PM(2.5) and diesel exhaust particles on Harlem sidewalks: a community-based pilot study. Environ Health Perspect 108:213-218.

Klemm RJ, Lipfert FW, Wyzga RE, Gust C. 2004. Daily mortality and air pollution in Atlanta: two years of data from ARIES. Inhal Tox 16(suppl 1):131-141.

Lena TS, Ochieng V, Carter M, Holguin-Veras J, Kinney PL. 2002. Elemental Carbon and PM$_{2.5}$ levels in an urban community heavily impacted by truck traffic. Environ Health Perspect 110:1009-1015.
Le Tertre A, Medina S, Samoli E, Forsberg B, Michelozzi P, Boumghar A, et al. 2002. Short-term effects of particulate air pollution on cardiovascular disease in eight European cities. J Epidemiol Comm Health 56:773-779.

Mar TF, Norris GA, Koenig JQ, Larson TV. 2000. Associations between air pollution and mortality in Phoenix, 1995-1997. Environ Health Perspect 108:347-353.

Maynard D, Coull BA, Gryparis A, Schwartz J. 2007. Mortality risk associated with short-term exposure to traffic particles and sulfates. Environ Health Perspect 115:751-755.

Metzger KB, Tolbert PE, Klein M, et al. 2004. Ambient Air pollution and cardiovascular emergency department visits. Epidemiology 15:46-56.

Morgenstern V, Zutavern A, Cyrys J, Brockow I, Gehring U, Koletzko S, et al. 2007. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup Environ Med 64:8-16.

Morgenstern V, Zutavern A, Cyrys J, Brockow I, Koletzko S, Kramer U. 2008. Atopic diseases, allergic sensitization, and exposure to traffic-related air pollution in children. Am J Crit Car Med 177:1331-1337.

Ostro B, Feng WY, Broadwin R, Green S, Lipsett M. 2007. The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ Health Perspect 15:13-19.

Ostro B, Roth L, Malig B, Marty M. 2009. The effects of fine particle components on respiratory hospital admissions in children. Environ Health Perspect 117:475-480.

Peng RD, Bell ML, Geyh AS, McDermott A, Zeger SL, Samet JM, et al. 2009. Emergency admissions for cardiovascular and respiratory diseases and the chemical composition of fine particle air pollution. Environ Health perspect 117:957-963.

Prescott GJ, Cohen GR, Elton RA, et al. 1998. Urban air pollution and cardiopulmonary ill health: a 14,5 year time series study. Occup Environ Med 55:697-704.

Riediker M, Williams R, Devlin R, Griggs T, Bromberg P. 2003. Exposure to particulate matter, volatile organic compounds, and other air pollutants inside patrol cars. Environ Sci Technol. 37:2084-93.

Roemer WH, van Wijnen JH. 2001a. Daily mortality and air pollution along busy streets in Amsterdam, 1987-1998. Epidemiology 12:649-653.
Roemer WH, van Wijnen JH. 2001b. Differences among black smoke, PM(10), and PM(1.0) levels at Urban Measurement Sites. Environ Health Perspect 109:151-4.

Roorda-Knape M, Janssen NAH, de Hartog JJ, van Vliet PHN, Harssema H, Brunekreef B. 1998. Air pollution from traffic in city districts near major motorways. Atmospheric Environment 32:1921-1930.

Sarnat JA, Marmur A, Klein M, Kim E, Russell AG, Sarnat SE, et al. 2008. Fine particle sources and cardiorespiratory morbidity: an application of chemical mass balance and factor analytical source-apportionment methods. Environ Health Perspect 116:459-466.

Schaap M, van der Gon HAC. 2007. On the variability of black smoke and carbonaceous aerosols in the Netherlands. Atmospheric Environment 41:5908-5920.

Schmid H, Laskus L, Abraham HJ, Baltensperger U, Lavanchy V, Bizjak M, et al. 2001. Results of the ‘Carbon conference’ international aerosol carbon round robin test stage 1. Atmospheric Environment 35:2111-2121.

Smargiassi A, Baldwin M, Pilger C, Dugandzic R, Brauer M. 2005. Small scale spatial variability of particle concentration and traffic levels in Montreal: a pilot study. Sci Tot Environ 338:243-251.

Tolbert PE, Klein M, Metzger KB, et al. 2000. Interim results of the study of particulates and health in Atlanta (SOPHIA). J Expo Anal Environ Epidemiol 10:446-460.

Tolbert PE, Klein M, Peel JL, Sarnat SE, Sarnat JA. 2007. Multipollutant modeling issues in a study of ambient air quality and emergency department visits in Atlanta. J Expo Sci Environ Epidemiol 7:S29-S35.

Verhoeff AP, Hoek G, Schwartz J, van Wijnen JH. 1996. Air pollution and daily mortality in Amsterdam. Epidemiology 1996;7:225-230.

Zanobetti A, Schwartz J. 2006. Air pollution and emergency admissions in Boston, MA. J Epidemiol Commun Health 60:890-895.

Zeghoun A, Czernichow P, Beaudeau P, et al. 2001a. Short-term effects of air pollution on mortality in the cities of Rouen and Le Havre, France, 1990-1995. Arch Environ Health 56:327-335.

Zeghoun A, Eilstein D, Saviuc P, et al. 2001b. Surveillance des effets a court terme de la pollution atmosphérique sur la mortalité en milieu urbain. Résultats d’une étude de faisabilité dans 9 villes francaises. Revue d’Epidemiol et de Sante Publique 49:3-12.