A Multi-level Algorithm for Quantum-impurity Models

Jaebeom Yoo, Shailesh Chandrasekharan, and Harold U. Baranger

Department of Physics, Duke University, Durham, NC 27708

(Dated: March 22, 2022)

A continuous-time path integral Quantum Monte Carlo method using the directed-loop algorithm is developed to simulate the Anderson single-impurity model in the occupation number basis. Although the method suffers from a sign problem at low temperatures, the new algorithm has many advantages over conventional algorithms. For example, the model can be easily simulated in the Kondo limit without time discretization errors. Further, many observables including the impurity susceptibility and a variety of fermionic observables can be calculated efficiently. Finally, the new approach allows us to explore a general technique, called the multi-level algorithm, to solve the sign problem. We find that the multi-level algorithm is able to generate an exponentially large number of configurations with an effort that grows as a polynomial in inverse temperature such that configurations with a positive sign dominate over those with negative signs. Our algorithm can be easily generalized to other multi-impurity problems.

I. INTRODUCTION

Developing efficient algorithms to solve problems in statistical mechanics involving strongly correlated fermions is an important area of research in computational physics. Such problems are often afflicted with sign problems and are difficult to handle using Monte Carlo techniques. The conventional approach is to integrate the fermions out and write the problem in terms of a statistical mechanics of a bosonic system where the fermionic physics is hidden in the Boltzmann weight as a determinant of a matrix [1, 2]. In some interesting cases the determinant is positive definite which makes it possible to design Monte Carlo methods for solving the problem. This approach is often referred to as the determinant Monte Carlo method. Unfortunately, the method fails in many cases since the fermion determinant can often be negative. Even when the determinant is guaranteed to be positive the algorithms can be inefficient in certain interesting range of parameters. Determinantal Monte Carlo methods can often be formulated only when the partition function is written as a path integral in discrete Euclidean time, which leads to time-discretization errors. Although such errors are controllable through extrapolation techniques they can be time consuming. All these difficulties make it important to explore alternative algorithms.

Recently, another approach to fermionic physics in which fermionic partition functions are written in the occupation number basis has gained popularity [3, 4]. Although in this approach one encounters sign problems it is sometimes possible to design efficient algorithms in regions of parameter space where the sign problems are mild. In certain cases this approach also leads to novel solutions to the sign problems [2], which in turn lead to algorithms which are much more efficient than conventional ones. This has lead recently, for instance, to the first successful confirmation of the Kosterlitz-Thouless behavior in a fermionic model [4]. In this article, we explore a new algorithm to study the physics of electrons in a partially filled band interacting with a few impurities.

Quantum impurity models are, of course, classics of condensed matter many-body physics [5]. Interest in them has been reawakened in recent years because of developments from two completely different points of view. On the one hand, quantum dots in semiconductor heterostructures allow for the creation of tunable quantum impurities which can be studied individually and with exquisite precision [6]. Our particular interest is in studying the effects of mesoscopic fluctuations on the many-body physics [7]. On the other hand, the study of strongly correlated electron systems away from half filling – systems which continue to be investigated intensively – leads naturally to fermionic quantum impurity models through the dynamical mean theory approximation [9]. We plan to use our method in this connection in the future. Since the Anderson single impurity model is the simplest in this class [10–12], we focus on it; it is straightforward to extend the method to include more impurities.

The Hamiltonian of the Anderson impurity model which we consider is

\[
H = \sum_{k, \sigma} \epsilon_k c_k^{\dagger} c_{k \sigma} + \sum_{\sigma} \epsilon_d d_{\sigma}^{\dagger} d_{\sigma} + \sum_{k, \sigma} V_k (c_k^{\dagger} c_{k \sigma} + d_{\sigma}^{\dagger} d_{-\sigma}) + U d_{\uparrow}^{\dagger} d_{\downarrow}^{\dagger} d_{\downarrow} d_{\uparrow},
\]

where the first term represents the free band electron energy levels, the second term is the impurity energy, the third represents the hopping amplitudes between free electron states and the impurity, and the last term is the repulsive coulomb interaction term at the impurity site. We assume that \(-D \leq \epsilon_k \leq D\) where \(2D\) is the bandwidth. This model was introduced over forty years ago by Anderson [11] to study the affects of impurity spins embedded in metals. Today, this model plays a very important role in understanding a variety of condensed matter systems [12]. The problem can be solved analytically for
In the case of a constant hopping amplitude and a constant density of energy levels with an infinite bandwidth, using the Bethe ansatz \[13, 14\]. In the limit of large U one can relate this model to the famous Kondo model \[12\]. After his discovery of renormalization, Wilson used this model to illustrate the numerical renormalization group program \[13\], which is a powerful method to solve this problem. It is now well understood that the low temperature properties of this model require a non-perturbative approach.

More than a decade ago Hirsch and Fye developed a determinantal Monte-Carlo algorithm to study this model \[2\]. Such an approach is necessary to solve the Hamiltonian in Eq. (1) with general parameters. In this method the partition function for a given temperature is rewritten as a statistical mechanics of a model on a discrete temporal lattice. An auxiliary Ising variable for the impurity is introduced as a function of time in order to convert the Hamiltonian into a problem in which fermions are free but interact with the Ising spin. It is then possible to integrate the fermions completely to write the problem as a statistical mechanics of the Ising spin. The Boltzmann weight can be written in terms of certain Green functions which can be computed easily. Unfortunately, the algorithm slows down as the temporal lattice spacing is taken to zero for a fixed temperature. It is also difficult to approach the large U limit since the discretization error becomes significant. Finally, some observables are difficult to evaluate. One famous example is the impurity susceptibility which is known to contain large fluctuations \[21\].

Here we explore an alternate approach, by writing the partition function in the occupation number basis in continuous Euclidean time. Since fermionic occupations consist of two states one can use the recently developed directed-loop algorithm for quantum spin systems \[16\] in continuous time \[17\]. Unlike the Hirsch and Fye algorithm, in our method one can only deal with a finite number of energy levels, but the discretization error in the Euclidean time direction can be eliminated. This allows us to simulate a large value of U with little effort. In the occupation number basis we can also easily calculate observables such as the average occupation numbers, and the local susceptibility. Moreover, as we will discuss later we are able to calculate the impurity susceptibilities efficiently.

Inspite of these advantages, the Boltzmann weights of our configurations can be negative due to the fermion permutation sign. Thus, our method suffers from a sign problem. However, we find that the sign problem is rather mild down to the Kondo temperature. Interestingly, our approach also allows us to explore a new technique, called the multi-level algorithm, to solve the sign problem. This technique was recently used in lattice QCD in determining the string tension between quarks and anti-quarks \[18\]. A similar technique was also explored in \[20\]. Since the multi-level technique is a general method, our method allows us to study the usefulness of this approach to solve a class of fermion sign problems. Here we show that the multi-level technique is indeed useful in alleviating the sign problem. We were able to estimate signs of the order of 10^{-8} using this approach.

The paper is organized as follows: In section II we introduce the Monte Carlo algorithm for updating the Anderson impurity model in the occupation number basis. In section III we explain the multi-level algorithm and show how one can use it to calculate the average signs efficiently. In section IV we discuss how one can measure observables in our method. We discuss the calculation of the impurity susceptibility and how our method allows us to compute it efficiently. Section V contains some results from the algorithm. Section VI contains our conclusions.

II. THE DIRECTED LOOP ALGORITHM

In this section we construct a Monte Carlo method to calculate quantities for the Anderson impurity model described by the Hamiltonian of Eq. (1). We begin by rewriting the partition function, $Z = \text{Tr} e^{-\beta H}$ at temperature $T = 1/\beta$, as a path integral in Euclidean time. This is accomplished by introducing $M(= \beta/\tau)$ imaginary time slices and writing

$$Z = \text{Tr} e^{-\beta H} \approx \sum_{C} \prod_{i=0}^{M-1} < C_i | e^{-\tau H} | C_{i+1} >, \quad (2)$$

where C_i represent the electron states on the i-th time slice in the occupation number basis. Since we are evaluating the trace we must have $C_0 = C_M$. The true partition function in continuous time is obtained in the limit of large M and small τ at fixed β. We can define

$$W[C|\sigma[C] \equiv \prod_{i=0}^{M-1} < C_i | e^{-\tau H} | C_{i+1} >, \quad (3)$$

where $W(C)$ is the magnitude and $\sigma[C]$ the sign of the Boltzmann weight. Then the partition function can be written as

$$Z = \sum_{C} W[C|\sigma[C]. \quad (4)$$

In the Monte Carlo method each space-time configuration C is generated stochastically with probability

$$P(C) = \frac{W[C]}{\sum_{C} W[C]. \quad (5)}$$

Ignoring the sign, each configuration of fermion occupation numbers is analogous to that of a configuration of a quantum spin-half particles. Hence we can use an extension of the directed loop algorithm discussed in \[16\] to update the space-time occupation number configurations C directly in continuous time. A simple way to construct such an update is to construct the update rules for finite
Our directed loop update begins by choosing a point, \(M \) and then take the limit of infinite \(M \). Below we describe our rules.

A special feature of the Anderson model is that electron hopping must include the impurity and any of the band electron sites. However, since all the band electron sites are involved, in our algorithm a “vertex”, in the language of \(\text{Fig. 1} \), is change in the configuration between two adjacent time slices, \(C_i \) and \(C_{i+1} \). If \(C_i = C_{i+1} \) then one has a diagonal configuration with weight

\[
< C_i | e^{-\tau H} | C_{i+1} > = 1 - \tau \sum_{k,\sigma} \epsilon_k n_{k\sigma} - \tau \sum_{\sigma} (\epsilon_d n_{d\sigma} + U n_{d\uparrow} n_{d\downarrow}),
\]

up to first order in \(\tau \). Since we will take the continuum time limit this is sufficient. If \(C_i \neq C_{i+1} \) then the two configurations can only differ in the occupation numbers of either the spin up or the spin down impurity fermion and the corresponding spin of one of the band fermion levels with momentum say \(k \). Further both spins cannot hop simultaneously! Thus, if these constraints are met then

\[
< C_i | e^{-\tau H} | C_{i+1} > = \tau |V_k|,
\]

otherwise the matrix element is zero and is disqualified.

Our directed loop update begins by choosing a point, with 50% probability on the impurity and 50% probability on the other sites chosen randomly on one of the spin layers. Then with probability half the path enters the vertex either in the positive time direction or the negative time direction. Using a set of rules that governs the exit of the update path at each “vertex” given the entrance of the path, the loop grows until it finds the starting point, where the update ends. The occupation numbers are changed while the loop is being constructed.

Since the Hamiltonian commutes with the total spin operator and the total fermion number operator, the rules that generate the loop must satisfy the appropriate conservation laws. In addition, since we will ultimately take the \(\tau \to 0 \) limit, processes of order \(\tau^2 \) should not be considered. Thus, only one hopping can occur at a vertex. Using these constraints one can determine all the allowed processes in a given vertex. This is illustrated in \(\text{Fig. 1} \) in which the directed loop enters the vertex through a filled electron state in the band with a definite spin. On the right, four occupation number conserving exit paths ((a),(b),(c),(d)) are shown. It is easy to see that, up to order \(\tau \), only (a) and (b) are allowed. Once all the possible paths are determined, all the processes are given probability weights such that they satisfy detailed balance. For example in this case the bounce weight (a) can be chosen to be zero, so that the continuation process (b) occurs with probability one. For vertices where the path enters an occupied site, all possible loop segment assignments are shown in \(\text{Fig. 2} \). The example considered in \(\text{Fig. 2} \) is shown as vertex \(E \) in \(\text{Fig. 2} \). Let us now discuss the other vertices.

First, consider a vertex where a hopping occurs at site \(k \) and the loop enters the vertex at site \(k_q \) (vertex \(A \) in \(\text{Fig. 2} \)). There are a total of \(N+1 \) different possible exits in this vertex where \(N \) is the total number of band energy levels. Let \(A_{kq} \) be the weight for the path to exit at another band electron level \(q \). We choose

\[
A_{kq} = \tau \frac{\min(|V_k||V_q|)}{N + 1}.
\]

The probability for this process will then be given by \(P_{kq} = A_{kq} / (\tau|V_k|) \). Since \(A_{kq} \) is symmetric in \(k \) and \(q \) detailed balance is satisfied. The remaining probability must be the probability for the loop to exit at the impurity. Since there are two possible paths, for simplicity the weight for each of these processes is chosen to be

\[
A_{kd} = \frac{1}{2} (\tau|V_k| - \sum_{q \neq k} A_{kq}).
\]

Then, the probability for these process is \(A_{kd}/\tau|V_k| \). The factor \(N + 1 \) guarantees that all of \(A_{kq}, A_{kd} \) are positive numbers. Our choice of weights is such that in the case where all \(|V_k| \) are the same all possible processes are
equally likely. Note that the loop does not bounce back at this vertex, and there is a unique direction for the loop at each of the band levels.

In the case of vertex B the incoming path is on the impurity. The outgoing path can be at one of the electron band levels with momentum k which has the weight A_{dk} which will be chosen to be equal to A_{dk} to satisfy detailed balance. In this case there is a possibility for the loop to continue forward or to bounce back. In order to fix the weights of these processes one compares the weight of the original vertex with that of the vertex obtained if the loop continues to go forward. If the forward continuation produces a vertex of the smaller weight, the bounce weight is chosen to be the absolute value of difference of the two weights; otherwise the bounce weight is zero. There are two cases to be considered: for the case in which the impurity site contains an electron with the opposite spin (to the spin at which the path is being constructed), the bounce weight is $|\tau(e_d + U)|$, and in the other case $|\tau(e_d)|$. This prescription along with the normalization condition fixes the weight of the continuation process.

In vertices C, D and G every weight for the exit path hopping to or out of the impurity is chosen as $|\tau V_k/2|$ so that the forward and backward probabilities in G are equal. Continuation and bounce weights in vertices C and D are determined in the same way as for vertex B; the bounce weight turns out to be $|\tau_{dk}|$ if forward continuation lowers the weights, otherwise zero. In G, there is no bounce back. In vertex F a hopping from site k to site q occurs with weight $\tau \min[|V_k|,|V_q|]$. Finally, as discussed earlier, in vertex E the path is always forced to continue.

The above rules can easily be extended to the case in which the directed loop enters a vertex on an empty site. Although the above rules satisfy detailed balance, they are in no way unique. We chose the above rules after testing a few other possibilities since they were similar in efficiency if not better than other ones. It has been suggested that if the bounce probability is large then the algorithm is likely to become inefficient, since the proposed change is being rejected. In our case a large bounce weight in electron sites far away from the Fermi surface is natural since the electron sites there either remain occupied or empty most of the time. On the other hand, a large e_d or U leads to a large bounce probability in the vertex B at the impurity. Thus, a large e_d or U may cause inefficiencies in our algorithm. One can choose a different set of weights to reduce the bounce weights by taking into account e_k at all values of k, but determining the weights in this case becomes difficult. We have tested a few different set of weights which gives less bounce back at the impurity and band electrons. Unfortunately, our attempts have not improved the efficiency of the algorithm further. So here we report on the results using simplest algorithm discussed above.

Until now the limit of $\tau \to 0$ was not taken. As τ is taken to the zero, one gets the continuous time version. From A_{qk}, A_{dk}, and the bounce weights, one can easily evaluate the decay rates for the continuous time simulation. The Monte Carlo simulation in continuous time proceeds as follows: First, we pick a starting time, spin, and path direction. For the starting site, the impurity site is picked more often. Typically 50% of the starting points are at the impurity and the remaining 50% on the levels in the band with equal probability τ. The path for the loop continues in time until a decay occurs into one of the possible vertices. Then, the new level and the direction are determined by the exit process. If a path hits a time slice where the configuration changes before a decay occurs, then the vertex at that time slice is used to decide the exit process. The loop update continues until it closes. As the loop is constructed the occupation states along the loop are flipped.

III. THE MULTILEVEL ALGORITHM

In a given configuration C electrons hop between the band and the impurity site so that in a periodic configuration in imaginary time, the electrons permute their positions. Due to the Pauli principle, this causes configurations to have a positive or a negative sign. This is the reason for the factor $\sigma[C]$ in Eq. ψ. Any physical quantity O can be computed using

$$\langle O \rangle = \frac{1}{Z} \text{Tr} \, O \, e^{-\beta H} = \frac{\sum_C O \, \sigma[C] W(C)}{\sum_C \sigma[C] W(C)} = \frac{\langle O \sigma \rangle}{\langle \sigma \rangle},$$

where the final expectation values are computed using the Monte Carlo algorithm discussed in the previous section that generates configurations with probability $P(C)$ defined in Eq. ψ. Unfortunately, as the temperature decreases, both the numerator and the denominator decrease exponentially which makes the calculations of fermionic observables at low temperatures extremely difficult. Thus one needs an efficient method to compute exponentially small numbers by averaging large positive and negative numbers, a problem that is generically referred to as the Sign Problem.

Recently, a clever trick referred to as the multi-level algorithm was discovered in the context of lattice QCD to compute exponentially small numbers ψ. In particular it was possible to compute the potential $V(R)$ between quarks and anti-quarks, by computing the corresponding exponentially small Boltzmann weight $\exp(-V(R)/T)$ at a temperature T. In lattice QCD this quantity can be computed by averaging the Wilson loop which is typically of order 1 for a given configuration. It was shown that the multi-level algorithm could compute averages of Wilson loops that were as small as 10^{-20}. The basic idea was to write the observable, in this case the Wilson loop, as a product of many terms such that each of the terms is not very small even though the product is very small. In this article we show that a similar approach can be applied to compute the sign fermionic problem using the directed-loop algorithm.
In order to apply the multi-level algorithm let us divide the Euclidean time β of the lattice into 2^{K-1} parts with the same time thickness. Let us denote the sub-lattice configuration of fermions inside each of these parts by C_s, $i = 1, 2, ..., 2^{K-1}$ and the boundaries between the sub-lattices by C_b, where $\tau = 0, \varepsilon, 2\varepsilon, ..., \beta$ represents the Euclidean times at the boundaries. Periodic boundary conditions in time means that $C_{b0} = C_{b\beta}$. Now, the boundary configurations C_b and sub-lattice configurations C_s determine the entire configuration C. The probability $P(C)$ can then be expressed as

$$P(C) = P(C_b) \prod_{i=1}^{2^{K-1}} P(C_b, C_s),$$

where $P(C_b)$ is the probability of finding the configuration C_b on the boundaries and $P(C_b, C_s)$ is the conditional probability of finding the configuration C_s, given the boundary configurations C_b. Clearly, $P(C_b, C_s)$ depends only on the boundaries that bound the ith sub-lattice. Since the sign of a configuration $\sigma[C]$ can be written as a product of sign factors coming from each of the sub-lattices, the average sign can be written as

$$\langle \sigma \rangle = \sum_{C_b, C_s} P(C_b) \prod_{i} \sigma_i P(C_b, C_s),$$

where σ_i is the sign that comes from the sub-lattice i. Now $\sum_{C_s} \sigma_i P(C_b, C_s)$ is just the average sign of the ith sub-lattice with a fixed boundary configuration. So

$$\langle \sigma \rangle = \sum_{C_b} P(C_b) \prod_{i} \langle \sigma_i \rangle (C_b),$$

where $\langle \sigma_i \rangle (C_b)$ is the average sign of the sub-lattice i with the boundary C_b.

The multi-level algorithm proceeds as follows: First, to generate a sequence of boundaries C_b, one updates the entire lattice. Then, with a fixed boundary configuration C_b, one generates a subsequence of N_s configurations for each sub-lattice. The directed loop algorithm is well suited for this update; when the directed-loop encounters the fixed time slice the path is forced to bounce back! Clearly one can estimate the average sign $\langle \sigma_i \rangle$ of each sub-lattice independently using the N_s configurations and then use their product to compute $\langle \sigma \rangle$. It should be emphasized that although the sub-lattice averages are not exact there is no systemic errors in this approach. N_s is determined empirically so as to make the calculation efficient. The sub-averages do not have to be calculated more accurately than the size of the fluctuations due to change in the boundaries. Once the sub-lattices are updated the entire configuration is again updated to generate a new set of boundary configurations C_b. Repeating this process, a series of sign measurements are generated. The final result of the sign is obtained by averaging these measurements. The statistical noise in the sign is reduced because effectively one is summing over $N_s^2^{K-1}$ configurations for each of these measurements.

In the multi-level algorithm one can also build nested levels of update. In particular one can performs a K level update if the Euclidean time direction is divided into 2^{K-1} parts. During the update at the first level all time slices $t = 0, \varepsilon, ..., (2^{K-1} - 1)\varepsilon$ are held fixed, in the update as discussed above. At this level N_s loop updates are performed between the fixed time-slices. At the second level only time slices at $t = 0, 2\varepsilon, 4\varepsilon, ...$ are held fixed. After every update at the second level, the full first level update is performed. This procedure is repeated N_s times. This process is repeated at higher levels; such that at each highest level update, all the complete lower level updates are performed. Thus, at the Kth level the whole lattice is updated with just the $t = 0$ time-slice held fixed. One can extend the ideas of measuring the sign for a single level update as discussed above, to the K-level update. After summing over the signs of all the configurations generated during the K level update one computes a value of the sign. If at each level one performs N_s updates for each sub-lattice, one performs on the order of $(N_s)^K \times 2^{K-1}$ loop updates after the Kth-level update. Since $\beta = 2^{K-1}\varepsilon$, then for a fixed ε if the effort for a single loop update remains fixed, the effort to compute the sign for a full K-level update grows as a power of β. As more levels are introduced, it takes longer for the measurement of sign. In Fig. 3 we show a schematic description of the multi-level idea.

One can apply the multi-level technique to other observables which can be written as product of quantities on each of the sub-lattices. We call such observables as being compatible with the multi-level algorithm. The optimum number of levels should be determined empirically. This number can depend on the observable to be calculated. We also found that the full multi-level algorithm is the most efficient for fermion sign problems due to the large oscillations.
IV. OBSERVABLES

Since the Monte Carlo update is performed in the occupation number basis, all diagonal observables $O[n]$ that are functions of the occupation numbers can easily be calculated using the formula

$$\langle O \rangle = \frac{\langle O[n] \sigma[C] \rangle}{\langle \sigma[C] \rangle}.$$
(13)

Average occupation number of a level is one of the observables which belongs to this class. Another important diagonal observable in the Anderson impurity model is the local susceptibility

$$\chi_{lo} = \int_0^\beta \langle s(\tau)s(0) \rangle,$$
(14)

which can be obtained from configurations of the impurity as a function of imaginary time. This method of computation can only be reliable for regions of temperature as a function of imaginary time. This method of computation can only be reliable for regions of temperature as a function of imaginary time. This method of computation can only be reliable for regions of temperature as a function of imaginary time. This method of computation can only be reliable for regions of temperature as a function of imaginary time. The observables that go into Eq.(15) are again compatible with the multi-level algorithm and hence the algorithm can be used to alleviate the sign problem in calculating these quantities. The quantity more directly relevant to experiment is the impurity susceptibility, χ_{im}, which is the total susceptibility minus the free susceptibility:

$$\chi_{im} = \chi_{tot} - \sum_i \chi_i,$$

where χ_i is the susceptibility from the i-th free electron site. In the determinantal Monte Carlo (the Hirsch and Fye algorithm) the impurity susceptibility is very difficult to calculate due to statistical noises in the simulation. The problem is that one has to calculate the total susceptibility for the Anderson Hamiltonian and then subtract the susceptibility for the free case from it. The total susceptibility is a quantity of order N (the number of band electron sites), but the impurity susceptibility is of order 1. So one has to calculate the total susceptibility with the error of order 1 or less, which is extremely difficult for large lattice N. From the Clogston-Anderson compensation theorem, for a large bandwidth with a flat energy density and equal hopping amplitudes, one can expect that the local susceptibility is equal to the impurity susceptibility. But in the study of mesoscopic fluctuations the two susceptibilities can be quite different. One of the main advantages of our method is that with our algorithm the impurity susceptibility can be measured with significantly reduced statistical noise. Let us now discuss how we compute χ_{im}.

For configurations in the occupation number basis generated during the update, the hopping of electrons occurs at only a small number of electron sites. The rest of the energy sites appear to be free; an advantage of working in the “momentum” space lattice. Suppose that N_{hop} sites are involved in the hopping for a given configuration C. Denote the configuration of those sites by C_{hop}, and the free part by C_f. Then, one can express the probability of C as $P(C) = P(C_{hop})P(C_{hop}, C_f)$, where $P(C_{hop}, C_f)$ is the probability of C_f with a given C_{hop}. The impurity susceptibility can be expressed with $P(C_f)$ and $P(C_{hop}, C_f)$ as

$$\chi_{im} = \frac{1}{\langle \sigma \rangle} \sum_{C_{hop}} P(C_{hop}) \sigma[C_{hop}]$$

$$\times \{ \chi(C_{hop}) + \sum_{C_f} P(C_{hop}, C_f) [\chi(C_f) - \sum_{i \in C_f} \chi_i - \sum_{i \in C_{hop}} \chi_i] \},$$

where $\chi(C_{hop}), \chi(C_f)$ are the susceptibilities from sites that contain electron hops and those that appear free in a given configuration. Since C_f contains no hop, one can see that

$$\sum_{C_f} P(C_{hop}, C_f) [\chi(C_f) - \sum_{i \in C_f} \chi_i] = 0.$$

Using this one can find that the impurity susceptibility is given by

$$\chi_{im} = \frac{1}{\langle \sigma \rangle} \left(\sigma[C_{hop}] [\chi(C_{hop}) - \sum_{i \in C_{hop}} \chi_i] \right),$$
(15)

where the free susceptibility of the sites in C_{hop} only needs to be subtracted. In this method the size of statistical fluctuation of the measurements of the impurity susceptibility is of order of the number of electron sites in which the hopping occurs for a configuration. So the statistical noise in this method are substantially reduced. The observables that go into Eq.(15) are again compatible with the multi-level algorithm.

Unfortunately, we have found that the above technique is still noisy in practice. Interestingly, one can reduce the statistical noise in $\chi(C_{hop})$ further by using the technique of improved estimator that is commonly used in cluster algorithms. In this method one identifies all spin clusters for a given configuration C_{hop} that can be flipped independently and performs a partial average over these cluster flips. Unfortunately, this step is not compatible with the multi-level algorithm. But for the case where the sign problem is moderate the impurity susceptibility can be computed very efficiently using our algorithm.

V. RESULTS

In this section we discuss results from the simulation of the Anderson Hamiltonian given in Eq.(11) with the algorithm described in the previous sections. First, let us focus on the calculation of the average sign using the multi-level algorithm. For this purpose we choose
The average sign at

The average is so small and the projected time is so long that

new boundaries between sub-lattices. Higher level sub-lattices were updated 4 times to generate numbers of the order of 10

However, the fact that for \(\beta = 160 \) we could compute numbers of the order of \(10^{-8} \) itself is an indication that some progress has been achieved. Without the multi-level algorithm this would have been impossible. If we look at the individual values of the sign computed by the multi-level algorithm after each update we learn something further. Fig. 5 shows these values of the signs for different values of \(\beta \). We see that using the multi-level algorithm the values of the signs are dominated by positive values. For example one can see that at \(\beta = 160 \) the average sign has most contributions from the positive side. We show this in Fig. 5 by focusing on the first 2000 positive and negative values. We see that although the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations. However, the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations.

In order to show that the new algorithm is indeed interesting, for the parameters chosen above we compute the average occupation numbers for the various energy levels. In Fig. 6 we plot the differences between the average occupation numbers for the various energy levels. We see that although the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations but always in the positive direction. In the next section we will discuss why this observation is interesting.

In order to show that the new algorithm is indeed interesting, for the parameters chosen above we compute the average occupation numbers for the various energy levels. In Fig. 6 we plot the differences between the average occupation numbers for the various energy levels. We see that although the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations but always in the positive direction. In the next section we will discuss why this observation is interesting.

In order to show that the new algorithm is indeed interesting, for the parameters chosen above we compute the average occupation numbers for the various energy levels. In Fig. 6 we plot the differences between the average occupation numbers for the various energy levels. We see that although the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations but always in the positive direction. In the next section we will discuss why this observation is interesting.

In order to show that the new algorithm is indeed interesting, for the parameters chosen above we compute the average occupation numbers for the various energy levels. In Fig. 6 we plot the differences between the average occupation numbers for the various energy levels. We see that although the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations but always in the positive direction. In the next section we will discuss why this observation is interesting.

In order to show that the new algorithm is indeed interesting, for the parameters chosen above we compute the average occupation numbers for the various energy levels. In Fig. 6 we plot the differences between the average occupation numbers for the various energy levels. We see that although the very small values come with equal weight between positive and negative values, there are a few positive numbers that dominate over the negative numbers. The multi-level algorithm has allowed us to find configurations whose signs, when summed up, leads to a very small number which can either be positive or negative but occasionally it also leads to numbers which are orders of magnitude larger but mostly positive. The large error in the average sign is mainly due to these large fluctuations but always in the positive direction. In the next section we will discuss why this observation is interesting.
passes through most of the data points.

Since our simulations are in continuous Euclidean time, we can simulate a large U without increasing the discretization error. In the limit of large U, the Anderson model converges to the Kondo model. In the Kondo model, band electrons and impurity spin interact with the coupling J. From the Schrieffer-Wolff transformation [23], the effective coupling J of the Anderson Hamiltonian for a large U is $\frac{8\pi U}{\Gamma}$. In order to go towards the Kondo limit we fix $U/T = 4$ and study the case where $U = 25(\epsilon_d = -12.5)$. The local and impurity susceptibilities are plotted in Fig. 8. We see that now these two are completely different. We attribute this difference to the fact that $U \gg D$ in which case the compensation theorem is no longer valid.

We have also computed the various observables discussed in this article for the Hamiltonian that contains mesoscopic fluctuations. We find that typically we can use our new method to compute quantities for temperatures as low as $T \sim T_k/4$. Using the multi-level technique we can also go down to temperatures of about $T \sim T_k/10$.

VI. CONCLUSION

In this article we have investigated a new algorithm for a model involving a band of fermions interacting with a single impurity in the occupation number basis in “momentum” space. We use the efficient directed loop algorithm to update the configurations and absorb the sign into observables. We find that the sign problem is mild down to temperatures of order $T_k/4$. Further, the new approach allows us to explore a new multi-level algorithm to compute average signs efficiently. We were able to compute signs of the order of 10^{-8} with moderate effort. The new approach also allows us to calculate certain quantities like the impurity susceptibility more efficiently than conventional Monte Carlo methods. Finally, our algorithm can easily be extended to several impurities.

The average of the sign over configurations that are generated in the multi-level algorithm fluctuates between small values which can be both positive and negative and large values which are orders of magnitude larger but always positive. The effort for this grows as $(2N_s)^K/2$ where $\beta = 2^{K-1}$. Although this does not solve the sign problem completely, since the positive numbers can still fluctuate a lot, perhaps half of the sign problem has been solved. If this is true then we think this is an exciting step in the solution to the full sign problem based on the recent progress in solving certain sign problems using the meron cluster algorithm [5]. There it was possible to rewrite the partition function in terms of configurations where the Boltzmann weight was either zero or positive. Thus all negative signs were eliminated. The second step was algorithmic when all zero configurations were eliminated in an accept reject step. An intriguing question is whether something similar can be achieved in the present case. We leave this question for future research.

\[T_k = 0.09 \] as seen from the numerical renormalization method [22]. In this case $\beta = 25$ and 50 correspond to a temperature of about $T_k/2$ and $T_k/4$. We see that indeed the Kondo resonance appears as expected.

Finally, we focus on the local and impurity susceptibilities. To check the Clogston-Anderson compensation theorem, a larger bandwidth $2D = 20$ is chosen with $N = 2000$. For $U = 2(\epsilon_d = -1)$, χ_{lo} and χ_{im} are shown in Fig. 8. For the local susceptibility, with the multi-level method we were able to calculate the local susceptibility at a much lower temperature than the impurity susceptibility. We find that χ_{lo} and χ_{im} are in reasonable agreement as expected from the Clogston-Anderson compensation theorem. We also compare our result with the NRG curve (solid line) obtained for $T_k = 0.08$ which

\[\chi_{lo} = 2(\epsilon_d = -1), \chi_{im} \]

In order to go towards the Kondo limit we fix $U/T = 4$ and study the case where $U = 25(\epsilon_d = -12.5)$. The local and impurity susceptibilities are plotted in Fig. 8. We see that now these two are completely different. We attribute this difference to the fact that $U \gg D$ in which case the compensation theorem is no longer valid.

We have also computed the various observables discussed in this article for the Hamiltonian that contains mesoscopic fluctuations. We find that typically we can use our new method to compute quantities for temperatures as low as $T \sim T_k/4$. Using the multi-level technique we can also go down to temperatures of about $T \sim T_k/10$.

\[T_k = 0.09 \] as seen from the numerical renormalization method [22]. In this case $\beta = 25$ and 50 correspond to a temperature of about $T_k/2$ and $T_k/4$. We see that indeed the Kondo resonance appears as expected.

Finally, we focus on the local and impurity susceptibilities. To check the Clogston-Anderson compensation theorem, a larger bandwidth $2D = 20$ is chosen with $N = 2000$. For $U = 2(\epsilon_d = -1)$, χ_{lo} and χ_{im} are shown in Fig. 8. For the local susceptibility, with the multi-level method we were able to calculate the local susceptibility at a much lower temperature than the impurity susceptibility. We find that χ_{lo} and χ_{im} are in reasonable agreement as expected from the Clogston-Anderson compensation theorem. We also compare our result with the NRG curve (solid line) obtained for $T_k = 0.08$ which

\[\chi_{lo} = 2(\epsilon_d = -1), \chi_{im} \]
VII. ACKNOWLEDGMENTS

We thank U.J. Wiese and R.K. Kaul for useful discussions. This work was supported in part by the NSF grant (DMR-0103003).

[1] R. Blankenbecler, D.J. Scalapino and R.L. Sugar, Phys. Rev. D24, 2278 (1981).
[2] J.E. Hirsch and R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986).
[3] U.J. Wiese, Phys. Lett. B311, 235 (1993).
[4] N. Kawashima, J. Gubernatis and H.G. Evertz, Phys. Rev. B50, 136 (1994).
[5] S. Chandrasekharan and U.J. Wiese, Phys. Rev. Lett. 83, 3116 (1999).
[6] S. Chandrasekharan and J.C. Osborn, Phys. Rev. B66, 045113 (2002).
[7] J.M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972) chapter 10; P. Phillips, Advanced Solid State Physics (Westview Press, Cambridge MA, 2003) chapters 6 and 7.
[8] L Kouwenhaven and L. Glazman, Physics World, January 2001, pp. 33-38; M. Pustilnik, L.I. Glazman, D.H. Cobden, and I.P. Kouwenhoven, Lecture Notes in Physics 3, 579 (2001), http://www.arxiv.org/abs/cond-mat/0010336 L. Borda, G. Zarand, W. Hofstetter, B.I. Halperin, and J. von Delft, Phys. Rev. Lett. 90, 026602 (2003).
[9] R.K. Kaul, D. Ullmo, S. Chandrasekharan, and H.U. Baranger, preprint, cond-mat/?? (2004).
[10] G. Kotliar and D. Vollhardt, Physics Today 57, no. 3, pp. 53-63 (March 2004); A. Georges, G. Kotliar, W. Krauth, and M.J. Rozenberg Rev. Mod. Phys. 68, 13 (1996).
[11] P.W. Anderson, Phys. Rev. 124, 41 (1961).
[12] A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).
[13] P.B. Wiegmann, Phys. Lett. A31, 163 (1981).
[14] N. Kawakami and A. Okiji, Phys. Lett. A86, 483 (1981).
[15] H.R. Krishna-murthy, J.W. Wilkins and K.G. Wilson, Phys. Rev. B21, 1003 (1980).
[16] O.F. Syljuasen and A.W. Sandvik, Phys. Rev. E46, 046701 (2002).
[17] B. Bernard and U.J. Wiese, Phys. Rev. Lett. 77, 5130 (1996).
[18] One can use other distributions: e.g., a exponentially decaying function away from the Fermi level.
[19] M. Lüscher and P. Weisz, JHEP 0109, 010 (2001).
[20] C. H. Mak, R. Egger, and H. Weber-Gottschick Phys. Rev. Lett. 81, 4533 (1998).
[21] R.M. Fye and J.E. Hirsch, Phys. Rev. B38, 433 (1988).
[22] G.E. Santoro and G.F. Giuliani, Phys. Rev. B44, 2209 (1991).
[23] J.R Schrieffer and P.A. Wolff, Phys. Rev. 149, 419 (1966).