Extension of Stein’s lemma derived by using an integration by differentiation technique

Konstantinos Mamis

*Department of Mathematics, North Carolina State University, 2311 Stinson Drive, Raleigh, NC 27695-8205, USA

Abstract

We extend Stein’s lemma for averages that explicitly contain the Gaussian random variable at a power. We present two proofs for this extension of Stein’s lemma, with the first being a rigorous proof by mathematical induction. The alternative, second proof is a constructive formal derivation in which we express the average not as an integral, but as the action of a pseudodifferential operator defined via the Gaussian moment-generating function. In extended Stein’s lemma, the absolute values of the coefficients of the probabilist’s Hermite polynomials appear, revealing yet another link between Hermite polynomials and normal distribution.

Keywords: normal distribution, Stein’s lemma, Hermite polynomials, generalized factorial coefficients, pseudodifferential operator

2000 MSC: primary 60E05, secondary 60E10, 47G30, 05A10

1. Introduction and main results

Stein’s lemma [12] is a celebrated result in probability theory with many applications in statistics, see e.g. [8]. For a scalar, zero-mean Gaussian random variable X with variance σ^2, Stein’s lemma reads

$$\mathbb{E}[g(X)X] = \sigma^2 \mathbb{E}[g'(X)],$$

(1)

where $\mathbb{E}[\cdot]$ is the mean value operator, and prime denotes the first derivative of function g. By Theorem 1 of the present work, we extend Stein’s lemma for the average $\mathbb{E}[g(X)X^n]$, which is expressed as a finite series that contains averages of derivatives of $g(X)$ up to the nth order. We present two ways of proving Theorem 1; in Sec. 2, the extended Stein’s lemma is proven rigorously by mathematical induction on index n of power X^n inside the average. Furthermore, and in order to provide the reader with more insight, we present an alternative, constructive proof in Sec. 3. The constructive proof is based on a formal expression of the average as the action of a pseudodifferential operator, introduced by Definition 1 via the Gaussian moment-generating function. Series expansion of this pseudodifferential operator allows us to treat the averages not as integrals, but as Taylor-like infinite series. Thus, and under the formal assumption that all infinite series involved are summable, we are able to calculate $\mathbb{E}[g(X)X^n]$ without performing any integrations; instead, we perform only the differentiations that appear in the series terms, justifying thus the name integration by differentiation for this technique.

Theorem 1 (Extension of Stein’s lemma). Let X be a scalar Gaussian variable with zero mean value and variance σ^2. Given an $n \in \mathbb{N}$, let also g be a $C^n(\mathbb{R} \to \mathbb{R})$ function for which averages $\mathbb{E}[g(X)X^n]$ and $\mathbb{E}[g^{(n-2k)}(X)]$ for $k = 0, \ldots, \lfloor n/2 \rfloor$ exist, with $g^{(\ell)}$ denoting the ℓth derivative of g, $g^{(0)} := g$, and $\lfloor \cdot \rfloor$ being the floor function. It holds true that:

$$\mathbb{E}[g(X)X^n] = \sum_{k=0}^{\lfloor n/2 \rfloor} H_{n,k} \sigma^{2(n-k)} \mathbb{E}[g^{(n-2k)}(X)],$$

(2)

where

$$H_{n,k} = \frac{n!}{2^k k! (n-2k)!}, \quad k = 0, \ldots, \lfloor n/2 \rfloor,$$

(3)

are the absolute values of the coefficients appearing in the nth-order probabilist’s Hermite polynomial $H_n(x)$ [1, expression 22.3.11]:

$$H_n(x) = \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k H_{n,k} x^{n-2k}.$$

(4)

In the On-Line Encyclopedia of Integer Sequences (OEIS) [9], $H_{n,k}$ are referred to as the Bessel numbers. In this work, we shall call $H_{n,k}$ the signless Hermite coefficients, as a more suggestive term in our context.

Proof. Theorem 1 is proven by mathematical induction, performed in Sec. 2. In Sec. 3, we also present a constructive derivation of Eq. (2) that employs an integration by differentiation technique. \Box

Remark 1 (Orders of derivatives in Eq. (2)). We easily observe that for an even (odd) power n of X, only the averages of the even (odd)-order derivatives of $g(X)$, up to the nth order, appear in the right-hand side of Eq. (2). The average of $g(X)$ itself appears in Eq. (2) only for even powers.

Furthermore, for the complete treatment of $\mathbb{E}[g(X)X^n]$, we also have to consider the case where the mean value of X is non-zero. Thus, we state the following Theorem:
Theorem 2 (Extension of Stein’s lemma for non-zero mean). For a Gaussian variable X with non-zero mean value μ, the extended Stein’s lemma reads

$$
\mathbb{E}[g(X)X^{n}] = \sum_{k=0}^{n} \binom{n}{k} \mu^{n-k} \sum_{\ell=0}^{\lfloor k/2 \rfloor} H_{\ell,k} \sigma^{2(n-k)} \mathbb{E}\left[g^{(\ell)}(X) \right],
$$

where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ is the binomial coefficient.

Proof. Eq. (5) can be proven by mathematical induction, similar to the one of Sec. 2 for Theorem 1. Alternatively, one can perform a constructive proof for Eq. (5) similar to the one of Sec. 3 for Theorem 1, by expressing the averages via Eq. (B.3).

The formulas of extended Stein’s lemma, stated in Theorems 1, 2, are useful in engineering applications where averages $\mathbb{E}[g(X)X^n]$ arise, see e.g. the recent work [11] in tribology. Note that the respective extensions of Stein’s lemma for multivariate Gaussian variables are also feasible and will be the topic of a forthcoming work.

Remark 2 (The need for extended Stein’s lemma). One could argue that the evaluation of averages $\mathbb{E}[g(X)X^n]$ can always be performed by repetitive applications of the classical Stein’s lemma. However, the advantage of closed-form formulas (2), (5) over the recursive ones is manifested for increasing n, see e.g. [11, Sec. 2.3], where keeping track of the repetitive applications of Eq. (1) becomes progressively more difficult. On the other hand, the averages and coefficients appearing in the right-hand sides of Eqs. (2), (5) are a priori known for any n, offering thus an easy and tractable calculation.

Corollary 1 (Central moments of a zero-mean Gaussian variable). The higher order moments of a zero-mean Gaussian variable X are given by the formula

$$
\mathbb{E}[X^n] = \begin{cases}
0 & \text{for } n \text{ odd}, \\
\sigma^n (n-1)!! & \text{for } n \text{ even}.
\end{cases}
$$

Proof. Eq. (6) is usually derived by repetitive integrations by parts, see e.g. [10, p. 148]. Here, we easily derive it from Eq. (2), by considering $g(x) = 1$. In this case, all derivatives of g appearing in the right-hand side of Eq. (2) are zero except for the zeroth-order one, which equals to 1. Since Eq. (2) does not contain $\mathbb{E}[g(X)]$ for odd n (see Remark 1), all odd moments of X are equal to zero. For even $n = 2\ell$, zeroth-order derivative appears for $k = \ell$, and Eq. (2) for $g(x) = 1$ reads

$$
\mathbb{E}[X^{2\ell}] = H_{\ell,\ell} \sigma^{2\ell} = \frac{(2\ell)!}{2^\ell} \sigma^{2\ell}.
$$

Then, by using factorial relations $n! = n!(n-1)!!$, and $n!! = 2^\ell \ell!$ for $n = 2\ell$, we obtain the branch of Eq. (6) for even n.

2. Proof of Theorem 1 by mathematical induction

Theorem 1 can be proven by mathematical induction. For $n = 1$, it is easy to see that Eq. (2) results in Stein’s lemma (1), or

$$
\mathbb{E}[g(X)X^{n}] = \sum_{k=0}^{\lfloor n/2 \rfloor} H_{n,k} \sigma^{2(n-k)} \mathbb{E}\left[g^{(n-k)}(X) \right],
$$

since, from Eq. (3), $H_{1,0} = 1$. We then assume that Eq. (2) holds true for a particular n (inductive hypothesis). Now, for $n + 1$, and by using the inductive hypothesis, we obtain:

$$
\mathbb{E}[g(X)X^{n+1}] = \mathbb{E}[g(X)X^n] = \sum_{k=0}^{\lfloor n/2 \rfloor} H_{n,k} \sigma^{2(n-k)} \mathbb{E}\left[g^{(n-k)}(X) \right].
$$

For the evaluation of the derivative inside the average in the right-hand side of Eq. (7), we use the general Leibniz rule [1, expression 3.3.8]:

$$
(g(x)x)^{(n-2k)} = \sum_{\ell=0}^{n-2k} \binom{n-2k}{\ell} g^{(n-2k-\ell)}(x) x^{\ell}.
$$

Since $x^{(0)} = x$, $x^{(1)} = 1$, and $x^{(\ell)} = 0$ for $\ell \geq 2$, Eq. (8) is simplified into

$$
(g(x)x)^{(n-2k)} = g^{(n-2k)}(x) x + (n-2k)g^{(n-2k-1)}(x),
$$

under the convention that $g^{(-1)}(x) = 0$. By using Leibniz rule (9) in Eq. (7), we have

$$
\mathbb{E}[g(X)X^{n+1}] = \sum_{k=0}^{n/2} H_{n,k} \sigma^{2(n-k)} \mathbb{E}\left[g^{(n-k)}(X) \right],
$$

and

$$
\sum_{k=0}^{\lfloor n/2 \rfloor} (n-2k)H_{n,k} \sigma^{2(n-k)} \mathbb{E}\left[g^{(n-k-1)}(X) \right].
$$

Note that the upper limit of k-sum in the right-hand side of Eq. (12) has been changed from $n/2$ to $(n-1)/2$, in order to exclude any term containing $g^{(-1)}$. The only such term is for even n and $k = \lfloor n/2 \rfloor$. Thus, the upper limit of k-sum is $n/2$ for n odd and $n/2 - 1$ for n even. These two values can be expressed in a unified way as $(n-1)/2$. By also performing a change in index, and using the fact that $\lfloor (n+1)/2 \rfloor = \lfloor (n-1)/2 \rfloor + 1$, Σ_2 reads

$$
\sum_{k=1}^{\lfloor (n+1)/2 \rfloor} (n-2k+2)H_{n,k-1} \sigma^{2(n-k+1-k)} \mathbb{E}\left[g^{(n-k+1-2k)}(X) \right].
$$

For Σ_1, we apply Stein’s lemma (1) again, at the average appearing in the right-hand side of Eq. (11), resulting into

$$
\sum_{k=0}^{n/2} H_{n,k} \sigma^{2(n-k+1-k)} \mathbb{E}\left[g^{(n-k+1-2k)}(X) \right].
$$

Under Eqs. (13), (14), the right-hand side of Eq. (10) is rearranged into

$$
\mathbb{E}[g(X)X^{n+1}] = \sum_{k=0}^{\lfloor (n+1)/2 \rfloor} \left[(n-2k+2)H_{n,k-1} + H_{n,k} \right] \times \sigma^{2(n-k+1-2k)} \mathbb{E}\left[g^{(n-k+1-2k)}(X) \right],
$$

under the convention that $H_{n,k} = 0$ for $k < 0$ or $k > n/2$.
Lemma 1 (Recurrence relation for $H_{n,k}$). For $n \in \mathbb{N}$, $k = 0, \ldots, [(n + 1)/2]$, and with $H_{n,k} = 0$ for $k < 0$ or $k > n/2$, it holds true that

$$H_{n+1,k} = (n - 2k + 2)H_{n,k-1} + H_{n,k}.$$

Proof. See Appendix A. Eq. (16) is also stated in the relevant OEIS entry [9].

Substitution of Eq. (16) into Eq. (15) results in

$$E\left[g(X)X^{n+1}\right] = \sum_{k=0}^{[(n+1)/2]} H_{n+1,k} \sigma^{2(n+1-k)} E\left[g^{n+1-2k}(X)\right] ,$$

which is Eq. (2) for $n + 1$, completing thus the proof of Theorem 1 by induction.

3. Formal derivation of Theorem 1 using integration by differentiation

Stein’s lemma (1) is usually proven by integration by parts (see e.g. [12, lemma 1]), by employing the definition of mean value operator $E\lfloor \cdot \rceil$ as an integral over \mathbb{R}. That is, since random variable X follows the univariate normal distribution $f(x) = (\sqrt{2\pi})^{-1} \exp(-x^2/2\sigma^2)$, we calculate:

$$E[g(X)X] = \int_{\mathbb{R}} g(x)xf(x)dx = -\sigma^2 \int_{\mathbb{R}} g'(x)f(x)dx = \sigma^2 \int_{\mathbb{R}} g'(x)f(x)dx = \sigma^2 E[g'(X)].$$

While one could also go on to try to find the adequate repetitive integrations by parts for the calculation of $E[g(X)X^n]$, here we shall follow a different, more tractable path, based on the interpretation of average not as an integral, but as the action of a pseudodifferential operator, defined as follows.

Definition 1 (Mean value as the action of an averaged shift operator). Let X be a zero-mean Gaussian random variable with variance σ^2 and g be a $C^\infty(\mathbb{R} \rightarrow \mathbb{R})$ function. Then, average $E[g(X)]$ is expressed as

$$E[g(X)] = \exp\left(\frac{\sigma^2}{2} \frac{d^2}{dx^2}\right) g(x)\Bigg|_{x=0}.$$

In Eq. (19), $\exp\left(\frac{\sigma^2}{2} \frac{d^2}{dx^2}\right)$ is a pseudodifferential operator, called the averaged shift operator (see Appendix B), whose action is to be understood by its series form

$$E[g(X)] = \sum_{m=0}^{\infty} \frac{\sigma^{2m}}{2^m m!} \frac{d^m g(x)}{dx^m}\Bigg|_{x=0} ,$$

with $\downarrow_{x=0}$ denoting that all derivatives appearing in the right-hand side of Eq. (20) are calculated at $x = 0$.

Proof. Definition 1 is formally derived in Appendix B by employing the moment-generating function of X. Its infinite dimensional version is presented in [2], and this concept is also found in [7, Ch. 4].

Remark 3 (Integration by differentiation). Choosing Eq. (20) for the evaluation of $E[g(X)X^n]$ is more convenient than integration by parts, since, by using Eq. (20), only the calculation of derivatives is needed. Other integration by differentiation techniques have also been recently proposed, see e.g. [6], exploiting the fact that differentiation is generally easier than integration.

Thus, under the additional assumption that g is $C^\infty(\mathbb{R} \rightarrow \mathbb{R})$, we express $E[g(X)X^n]$ via Eq. (20) as

$$E[g(X)X^n] = \sum_{m=0}^{\infty} \frac{\sigma^{2m}}{2^m m!} \frac{d^m [g(x)x^n]}{dx^{2m}}\bigg|_{x=0} .$$

We evaluate the derivatives appearing in the right-hand side of Eq. (21) by using the general Leibniz rule

$$\frac{d^m [g(x)x^n]}{dx^{2m}} = \sum_{\ell=0}^{m} \binom{m}{\ell} g^{2m-\ell}(x)(x^n)^{(\ell)} ,$$

and since $(x^n)^{(\ell)} = (n!(n-\ell))x^{n-\ell}$ for $n \geq \ell$ and zero for $n < \ell$:

$$\frac{d^m [g(x)x^n]}{dx^{2m}} = \sum_{\ell=0}^{\min(m,n)} \binom{m}{\ell} \frac{n!}{(n-\ell)!} g^{2m-\ell}(x)x^{n-\ell} .$$

(23)

Note that, in Eq. (21), derivative (23) has to be calculated for $x = 0$. Since, for $x = 0$, all terms of the sum in the right-hand side of (23) are zero except for $\ell = n$, we obtain:

$$\frac{d^m [g(x)x^n]}{dx^{2m}}\bigg|_{x=0} = \left\{ \begin{array}{ll} 0 & \text{for } m < n/2, \\ \frac{(2m)!}{2^{m-n} m!} g^{2m-n}(0) & \text{for } m \geq n/2. \end{array} \right.$$

(24)

By substitution of expression (24) into Eq. (21), and after some algebraic manipulations, we have

$$E[g(X)X^n] = \sum_{m=\max(0,\lfloor n/2 \rfloor)}^{\infty} \frac{\sigma^{2m}}{2^m m!} \frac{(2m)!}{m!} g^{2m-n}(0)\bigg|_{x=0} ,$$

(25)

where $\lfloor x \rfloor$ denotes the ceiling function and $(2m)! = (2m)(2m-1) \cdots (2m-n + 1)$ is the falling factorial. In order to evaluate further the right-hand side of Eq. (25), the falling factorial of $2m$ has to be expressed in terms of the falling factorial of m. Following Charalambides [4, Sec. 8.4], this is performed by using the generalized factorial coefficients with parameter 2 $C(n, \ell; 2)$, that have the property

$$(2m)! = \sum_{\ell=0}^{m} C(n, \ell; 2) m^{2\ell}. \tag{26}$$

Generalized factorial coefficients $C(n, \ell; 2)$ are defined in terms of the Stirling numbers of first $s(n, k)$ and second $S(n, k)$ kind [4, theorem 8.13]:

$$C(n, \ell; 2) = \sum_{k=\ell}^{n} 2^k s(n, k) S(k, \ell), \tag{27}$$

and obey the following recurrence relation for $n \in \mathbb{N}$, $\ell = 1, 2, \ldots, n + 1$ [4, theorem 8.19]:

$$C(n + 1, \ell; 2) = (2\ell - n)C(n, \ell; 2) + 2C(n, \ell - 1; 2). \tag{28}$$
with initial conditions \(C(0, 0; 2) = 1, C(n, 0; 2) = 0 \) for \(n > 0 \), and \(C(n, \ell; 2) = 0 \) for \(\ell > n \). Also, since \(s(n, n) = S(n, n) = 1 \), see [3, proposition 5.3.2], we deduce from Eq. (27) that
\[
C(n, n; 2) = 2^n, \quad \text{for } n \in \mathbb{N}. \tag{29}
\]
Furthermore, in [4, remark 8.8], it is proved that \(C(n, \ell; 2) = 0 \) for \(\ell < n/2 \). This property results in Eq. (26) to be updated into
\[
(2m)! = \sum_{\ell = [n/2]}^{n} C(n, \ell; 2)m^\ell \tag{30}
\]
Last, from the definition of falling factorial, \(m^\ell \) is zero for \(n > m \), and thus Eq. (30) is finally expressed as
\[
(2m)! = \sum_{\ell = [n/2]}^{\min(n,m)} C(n, \ell; 2)m^\ell \tag{31}
\]
Substituting Eq. (31) into Eq. (25), and use of \(m^\ell /m! = 1/(m - \ell)! \) results in
\[
\mathbb{E}[g(X)^m] = \sum_{m=0}^{\infty} \sum_{\ell=[m/2]}^{m} C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0} = \frac{n}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0} + \frac{1}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} C(n, \ell: 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0}. \tag{32}
\]
Double summations in the rightmost side of Eq. (32) are easily rearranged into
\[
\mathbb{E}[g(X)^m] = \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0} + \frac{1}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0} = \frac{1}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} \frac{C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0}}{\ell} = \frac{1}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} \frac{C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0}}{\ell}. \tag{33}
\]
An index change in the second sum, as well as the use of formula (20), results in
\[
\mathbb{E}[g(X)^m] = \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} \frac{C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0}}{\ell} = \frac{1}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} \frac{C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0}}{\ell} = \frac{1}{\ell} \sum_{\ell=2}^{n} \sum_{m=\ell}^{n} \frac{C(n, \ell; 2) \frac{\sigma_2^{2m}}{(m - \ell)!} \frac{g^{(2m-n)}(x)}{2^m} |_{x=0}}{\ell}. \tag{34}
\]
By also performing the change of summation index \(k = n - \ell \) in Eq. (34), we obtain
\[
\mathbb{E}[g(X)^m] = \sum_{k=0}^{[n/2]} \frac{C(n, n - k; 2) \frac{\sigma_2^{2(n-k)}}{2^{n-k}} \frac{g^{(2n-2k)}(x)}{2^m} |_{x=0}}{2^{n-k}}. \tag{35}
\]
Eq. (35) is of the same form as the extended Stein’s lemma, Eq. (2). What remains to be proven is the identification of \(C(n, n-k; 2)/2^{n-k} \) as the signless Hermitian coefficients \(H_{n,k} \). This is performed in the following Lemma, which concludes the constructive formal derivation of Theorem 1.

Lemma 2 (Signless Hermite coefficients as rearranged, rescaled, generalized factorial coefficients with parameter 2). For \(H_{n,k} \) being the signless Hermite coefficients defined by Eq. (3) and \(C(n, \ell; 2) \) being the generalized factorial coefficients with the property (26), it holds true that
\[
H_{n,k} = \frac{C(n, n-k; 2)}{2^{n-k}}, \quad \text{for } n \in \mathbb{N}, \quad k = 0, \ldots, \lfloor n/2 \rfloor. \tag{36}
\]

Proof. See Appendix C. To the best of our knowledge, relation (36) has not been pointed out before. \(\square \)

Declaration of Competing Interest

The author declares that he has no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgement

Part of this work was conducted while the author was a PhD candidate in the National Technical University of Athens, under the supervision of professor G.A. Athanassoulis.

Appendix A. Proof of Lemma 1

By using definition relation (3), it is easily calculated that
\[
H_{n,0} = H_{n+1,0} = 1. \tag{A.1}
\]
Since, by convention, \(H_{n,-1} = 0 \), Eq. (A.1) coincides with recurrence relation (16) for \(k = 0 \). For \(k = 1, \ldots, \lfloor n/2 \rfloor \), we have
\[
(n - 2k + 2)H_{n,k-1} + H_{n,k} = \frac{2k! + n - 2k + 1}{2^k}! = \frac{(n + 1)!}{2^k!} \frac{n - 2k + 1}{2^k!}! = H_{n+1,k}. \tag{A.2}
\]
Eqs. (A.1) and (A.2) constitute the proof of recurrence relation (16) for even \(n \) and \(k = 0, \ldots, \lfloor n/2 \rfloor \), since \(\lfloor (n + 1)/2 \rfloor = \lfloor n/2 \rfloor \) for even \(n \). For odd \(n = 2\ell + 1 \), Eq. (16) has to be also proven for \(k = \lfloor (n + 1)/2 \rfloor = \ell + 1 \):
\[
H_{2\ell+1,\ell} = \frac{(2\ell + 1)!}{2\ell!} = \frac{(2\ell + 2)!}{2\ell!}, \tag{A.3}
\]
Since, by convention, \(H_{2\ell+1,\ell+1} = 0 \), we can easily see that Eq. (A.3) coincides with recurrence relation (16) for \(n = 2\ell + 1, k = \ell + 1 \). Thus, the proof of recurrence relation (16) for both odd and even \(n \), and for \(k = 0, \ldots, \lfloor (n + 1)/2 \rfloor \) is completed.

Remark 4. Note that \(H_{n+1,0} = 1 \) is the initial condition supplementing recurrence relation (16). Linear recurrence relation (16) and initial condition (A.1), under the convention that \(H_{n,k} = 0 \) for \(k < 0 \) or \(k > n/2 \), constitute a complete definition for signless Hermite coefficients \(H_{n,k} \), whose unique solution is formula (3) (see [4, Sec. 7.2]).
Appendix B. Formal derivation of Definition 1

First, we recall that, for a deterministic $C^\infty(\mathbb{R} \to \mathbb{R})$ function $g(x)$, its Taylor series expansion around x_0 is alternatively expressed via the translation (shift) pseudodifferential operator (see e.g. [5, Sec. 1.1]), first introduced by Lagrange:

$$g(x) = \sum_{m=0}^{\infty} \frac{\hat{x}^m}{m!} \frac{d^m g(x)}{dx^m} \bigg|_{x=x_0} \exp \left(\frac{d}{dx} \right) g(x) \bigg|_{x=x_0},$$

where $\hat{x} = x - x_0$ is the shift argument. Now, we substitute X as the argument of function g, with X being a random variable with non-zero, in general, mean value μ. By choosing $x_0 = \mu$, and taking the average in both sides, Eq. (B.1) results into

$$E[g(X)] = E \left[\exp \left(\frac{\hat{X} d}{dx} \right) g(x) \right]_{\mu} = M_{\hat{X}} \left(\frac{d}{dx} \right) g(x) \bigg|_{\mu}.$$

In Eq. (B.2), $M_{\hat{X}}(u)$ is identified as the moment-generating function of centered variable $\hat{X} := X - \mu$ [10, Sec. 5.5]; $M_{\hat{X}}(u) = E \left[\exp \left(\hat{X} u \right) \right]$. Due to its resemblance to the shift operator of Eq. (B.1), we shall call pseudodifferential operator $M_{\hat{X}}(d/dx)$ the averaged shift operator. For a Gaussian variable X with variance σ^2, the moment-generating function of \hat{X} takes the form $M_{\hat{X}}(u) = \exp \left(\sigma^2 u^2 / 2 \right)$ [10, example 5.28], and Eq. (B.2) is specified into

$$E[g(X)] = \exp \left(\frac{\sigma^2}{2} \frac{d^2}{dx^2} \right) g(x) \bigg|_{\mu}.$$

For the zero-mean value case, $\mu = 0$, Eq. (B.3) results in Eq. (19).

Appendix C. Proof of Lemma 2

By taking into consideration that $C(n, \ell; 2) = 0$ for $\ell < n/2$ [4, remark 8.8], recurrence relation (28) for generalized factorial coefficients with parameter ℓ is rewritten as

$$C(n + 1, \ell; 2) = (2\ell - n)C(n, \ell; 2) + 2C(n, \ell - 1; 2), \quad n \in \mathbb{N}, \quad \ell = [(n + 1)/2], \ldots, n + 1,$$

supplemented by the final condition deduced from Eq. (29):

$$C(n + 1, n + 1; 2) = 2^{n+1}, \quad n \in \mathbb{N}.$$

By performing the index change $k = n + 1 - \ell$, Eq. (C.1) is expressed as

$$C(n + 1, n + 1 - k; 2) = (n - 2k + 2)C(n, n - (k - 1); 2) + 2C(n, n - k; 2), \quad k = 0, \ldots, [(n + 1)/2].$$

Dividing both sides of Eq. (C.3) by 2^{n-1+k} results in

$$\frac{C(n + 1, n + 1 - k; 2)}{2^{n-1+k}} = \frac{(n - 2k + 2)C(n, n - (k - 1); 2)}{2^{n-(k-1)}} + \frac{C(n, n - k; 2)}{2^{n-k}}, \quad k = 0, \ldots, [(n + 1)/2].$$

and dividing Eq. (C.2) by 2^n results in

$$\frac{C(n + 1, n + 1; 2)}{2^{n+1}} = 1, \quad n \in \mathbb{N}.$$

Thus, recurrence relation (C.4) and initial condition (C.5) for $C(n, n - k; 2)/2^{n-k}$ coincides with the recurrence relation (B.1) and initial condition (A.1) for $H_{n,k}$. This constitutes the proof of Eq. (36).

References

[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications (1983 reprint), 10th edition, 1964.

[2] G.A. Alhamassouls and K.I. Mamis. Extensions of the Novikov-Furutsu theorem, obtained by using Volterra functional calculus. Physica Scripta, 94(11):151217, 2019. https://doi.org/10.1088/1402-4896/ab10b5

[3] P. J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, Cambridge UK, 1994.

[4] Ch. A. Charalambides. Enumerative combinatorics. Chapman & Hall/CRC, Boca Raton, 2002.

[5] H.-J. Glaeske, A.P. Prudnikov, and K.A. Skôrnik. Operational Calculus and Related Topics. Chapman & Hall/CRC, Boca Raton, 2006.

[6] D. Jia, E. Tang, and A. Kempf. Integration by differentiation: new proofs, methods and examples. Journal of Physics A: Mathematical and Theoretical, 50:235201, 2017. https://doi.org/10.1088/1751-8121/aa6f32

[7] V. I. Klyatskin. Stochastic Equations through the eye of the Physicist. Elsevier, Amsterdam, 2005.

[8] N. Mukhopadhyay. On Rereading Stein’s Lemma: Its Intrinsic Connection with Cramér-Rao Identity and Some New Identities. Methodology and Computing in Applied Probability, 23:355–367, 2021. https://doi.org/10.1007/s11009-020-09830-w

[9] OEIS Foundation Inc. Triangle of Bessel numbers read by rows, Entry A100861 in The On-Line Encyclopedia of Integer Sequences. url: https://oeis.org/A100861

[10] A. Papoulis and S. U. Pillai. Probability, Random variables, and Stochastic processes. McGraw-Hill, New York, 4th edition, 2002.

[11] D. Skalskas, G. N. Rossopoulos and Ch. I. Papadopoulos. A Comparative Study of the Reynolds Equation Solution for Slider and Journal Bearings with Stochastic Roughness on the Stator and the Rotor. Tribology International, 167:107410, 2022. https://doi.org/10.1016/j.triboint.2021.107410

[12] Ch. M. Stein. Estimation of the Mean of a Multivariate Normal Distribution. The Annals of Statistics, 9(6):1135–1151, 1981. https://doi.org/10.1214/aos/1176345632