Design of a ribozyme targeting human telomerase reverse transcriptase and cloning of it’s gene

Zhi-Ming Hao, Jin-Yan Luo, Jin Cheng, Quan-Yin Wang, Guang-Xiao Yang

AIM: To design a hammerhead ribozyme targeting human telomerase reverse transcriptase (hTERT) and clone it’s gene for future use in the study of tumor gene therapy.

METHODS: Using the software RNAstructure, the secondary structure of hTERT mRNA was predicted and the cleavage site of ribozyme was selected. A hammerhead ribozyme targeting this site was designed and bimolecular fold between the ribozyme and hTERT was predicted. The DNA encoding the ribozyme was synthesized and cloned into pGEMEX-1 and the sequence of the ribozyme gene was confirmed by DNA sequencing.

RESULTS: Triplet GUC at 1742 of hTERT mRNA was chosen as the cleavage site of the ribozyme. The designed ribozyme was comprised of 22nt catalytic core and 17nt flanking sequence. Computer-aided prediction suggested that the ribozyme and hTERT mRNA could cofold into a proper conformation. Endonuclease restriction and DNA sequencing confirmed the correct insertion of the ribozyme gene into the vector pGEMEX-1.

CONCLUSION: This fundamental work of successful designing and cloning of an anti-hTERT hammerhead ribozyme has paved the way for further study of inhibiting tumor cell growth by cleaving hTERT mRNA with ribozyme.

Hao ZM, Luo JY, Cheng J, Wang QY, Yang GX. Design of a ribozyme targeting human telomerase reverse transcriptase and cloning of it’s gene.World J Gastroenterol 2003; 9(1): 104-107
http://www.wjgnet.com/1007-9327/9/104.htm

INTRODUCTION

Telomeres form the ends of eukaryotic chromosomes consisting of an array of tandem repeats of the hexanucleotide 5’-TTAGGG-3’. Their functions are protecting the ends of chromosomes against exonucleases and ligase, preventing the activation of DNA-damage checkpoints, and countering the loss of terminal DNA segments that occur during linear DNA is replicated[2,3]. Telomerase, a ribonucleoprotein enzyme, add the hexanucleotides to the ends of replicating chromosomes[4,5]. It is believed that telomerase plays a crucial role in cellular senescence and immortalization[1-5]. Telomerase is strongly repressed in most human somatic cells, and telomeres shorten progressively with each cell division[6]. Most cancer cells express telomerase activity[6-9]. The restoration of telomerase activity is considered to immortalize cells and to be an important step in carcinogenesis. Inhibition of telomerase can lead to telomere shorting and tumor cell death. Thus, specific inhibition of human telomerase is suggested to be an efficient means of tumor therapy. Nowadays, a limited number of means can be used experimentally to inhibit the activity of human telomerase including chemical agents[10], antisense oligonucleotides[11,12], peptide nucleic acid[13], and ribozymes[14,15]. Telomerase is composed of at least three subunits[16]. The RNA subunit and the catalytic subunit are the essential components for telomerase activity[17]. The RNA subunit of telomerase serves as the template for addition of short sequence repeats to the chromosome 3’ends[18-20]. And the catalytic subunit, telomerase reverse transcriptase (TERT), is the most important component in telomerase complex which is responsible of catalytic activity of telomerase. The expression of TERT correlates with the presence of telomerase activity[20]. These studies suggest that hTERT is a good target for cancer gene therapy.

Ribozymes are cis- or trans-acting, sequence-specific catalytic RNA molecules. Based on the studies about natural ribozymes, we can design site-specific trans-acting ribozymes to suppress the expression of genes by recognize and splice the mRNA. Hammerhead ribozyme and hairpin ribozyme are intensively studied because of their simple structures and dual activity of splicing as well as blocking[21]. Ribozymes may surpass the efficiency of the antisense oligonucleotide and are considered a promising means of gene therapy[22,23]. In this study, we designed a hammerhead ribozyme targeting hTERT and cloned the gene encoding the ribozyme for future study of this ribozyme in the treatment of malignancies.

MATERIALS AND METHODS

Materials
Plasmid vector pGEMEX-1, X-gal and IPTG were Promega products. T4 DNA ligase, Klenow fragment and restriction endonucleases used in this study were purchased from Sino-America Biototechnology Co.

Design of the hammerhead ribozyme
Using the software RNAstructure 3.6 (mFOLD for windows version), the full-length telomerase mRNA (GenBank NM003219) was analyzed and the second structure of telomerase mRNA was predicted. Since trans-acting hammerhead ribozymes preferentially recognize and cleave the GUC sequence, all the fragments containing GUC were candidate target sequences for ribozyme binding and cleavage. Considering the predicted local conformation near the GUC triplets and the nucleotide sequences flanking the GUCs, triplet GUC located at 1 742 of the hTERT mRNA was chosen as the target site of ribozyme. According to the rules of hammerhead ribozyme design suggested by Haseloff et al[24], the ribozyme...
was primarily designed. Then, bimolecular fold between the ribozyme and substrate RNA was predicted and modification of the ribozyme sequence was made according to the prediction to improve the binding between the ribozyme and the substrate. The hammerhead ribozyme designed was comprised of 39 nucleotides, including 22nt catalytic core and 17nt (5'7nt and 3'10nt) flanking antisense sequence. The sequence is 5’-TCTCCTGTAGTAGCCGGAAAACTAAAGA-3’ (The underlined are nucleotides complementary to the substrate).

Synthesis of the ribozyme gene

DNA synthesis was carried out by Shanghai Sangon Biotechnology Co. LTD. with 3 900 DNA autosynthesis instrument. The primers used for the ribozyme were as follows: 5' - CCCAAGCTTCTCTCGTATGAGTCTCGTAGGGAGCAA3' (strand A) and 5' - GGAATTCTAGATAGATCTTCTTGTTTCGTCCTCAG-3' (strand B). Twelve nucleotides from the 3' ends of the two strands were complementary to each other. A HindIII restriction site was introduced into the 5' end of strand A. And restriction sites of BglII, ClaI, and EcoRI were introduced into the 5' end of strand B. Equal molecule of the two strands were mixed and annealed to form a hemiduplex. The hemiduplex was extended with Klenow fragment to form full duplexes. The reaction mixture contained 50 mM Tris-HCl (pH 7.2), 10 mM MgSO₄, 0.1 mM DTT, 0.4 mM dNTP mixture, 4 µM each of the two single strand oligonucleotides, 20 U Klenow fragment in a final volume of 50 µl. The reaction was carried out at 37 °C for an hour. The reaction mixture was extracted with phenol-chloroform and precipitated with sodium acetate ethanol (The methods referred to Sambrook et al[25]).

Cloning of ribozyme gene

The double strand DNA was digested with HindIII and EcoRI. The product was electrophoresed in 2 % agarose for purification followed by electrophoretion in a dialysis bag for DNA recovery. The recovered fragment was inserted into the HindIII/EcoRI site of plasmid vector pGEMEX-1 with T4 DNA ligase. E.coli JM109 was transformed with the recombinant plasmid and cultured on a solid medium containing ampicillin, X-gal and IPTG. Six white colonies were picked and plasmid was extracted by alkaline lysis. The plasmid was digested by HindIII, NotI, EcoRI, BglII, respectively. Endonuclease digests of plasmid DNA were analyzed on 1 % agarose. DNA sequencing was carried out to further confirm the inserted sequence of ribozyme gene (The methods referred to Sambrook et al[25]).

RESULTS

Selection of cleavage site and design of the ribozyme

Aided by computer prediction of RNA secondary structure, we selected the triplex GUC situated at 1 742 of the hTERT mRNA as the cleavage site (Figure 1). The ribozyme could co-fold with the substrate RNA to form a desired conformation in computer-aided prediction (Figure 2).

Analysis of the transformants

Six white colonies were picked. All the plasmids were cleaved into two fragments (1.0kb+3.0kb) by BglII. The plasmid from colony number 6 was digested with HindIII, NotI and EcoRI respectively. The plasmid DNA was linearized by HindIII or EcoRI but not by NotI. This result suggested plasmid from colony number 6 was a correct recombinant (Figure 3,4).

DNA sequencing

The DNA sequencing of the plasmid DNA from colony number 6 confirmed that the ribozyme gene was correctly inserted into the vector pGEMEX-1. This recombinant was named pGEMEX-1-RZ. The diagram of DNA sequencing is shown in Figure 5.

![Figure 1](image1.png)
Figure 1 Predicted second structure of the substrate RNA surrounding the selected cleavage site.

![Figure 2](image2.png)
Figure 2 Predicted bimolecular co-fold between the hammerhead ribozyme and the substrate RNA

![Figure 3](image3.png)
Figure 3 Diagram of the cloning of the hammerhead ribozyme.
The premise of ribozyme cleavage is the base pairing between flanking sequence of the ribozyme and the substrate mRNA. This step is akin to the antisense oligodeoxyribonucleotide used for the same purpose. And the base pairing is determined by the secondary structure of the target site. Triplet NUH situated in a loop, protruding or linker of the substrate is advantageous to the annealing between ribozyme and substrate and then the cleavage of the substrate RNA by the ribozyme. The selection of the cleavage sites is most important in the design of ribozymes. Nowadays, two approaches are available in the selection of the cleavage sites of ribozymes. One approach is to use in vitro accessibility assays. The other is to use theoretical prediction, that is, computer-aided prediction. A number studies aimed to compare the two approaches in their consistency have suggested that theoretical prediction is positively correlate with the intracellular accessibility of the target sites in mRNA. So we performed computer-aided analysis of the secondary structure of the substrate RNA. mFOLD is a commonly used software for RNA secondary structure prediction, so we used mFOLD to predict the secondary structure of hTERT mRNA previous to designing the ribozyme. We choose 1742 GUC as the cleavage site of ribozyme in total 57 triplet GUC in hTERT mRNA. The reasons included: (1) 1744 triplet RNA is located in coding region of an essential motif of telomerase activity; (2) triplet GUC is rich of adenosine and uridine. It is reported that for efficient catalytic turnover, the free energy of the ribozyme-substrate duplex should be less than -16 kcal/mol, that is, higher ratio of A+U will be advantageous to the annealing between ribozyme and substrate. Next, we performed a computer-aided bimolecular fold prediction between the ribozyme and the substrate and modified the complementary sequences until the ribozyme and the substrate can co-fold into a correct conformation in computer-aided prediction.

Commonly, cloning of short double-strand DNA is carried out by synthesizing the full-length sense strand and antisense strand, annealing and then inserting into a cloning vector. In this study, both the sense strand and antisense strand synthesized were partial of the ribozyme gene which were 12 nucleotides complementary to each other on the 3' ends. After annealing to form a hemiduplex, the hemiduplex was extended with Klenow fragment to obtain full-length double-strand DNA. The reliability of this method is proven by the present study. The advantages of this method including comparative simplicity, higher precision and lower cost to synthesize shorter single-strand DNA.

Since the hammerhead ribozyme gene is only about 50 bps in length, primary analysis of the recombinant relies on PAGE conventionally. Because PAGE is comparatively complex, in this study, we introduced BglIIand ClaI restriction sites to the 3' end of the ribozyme gene for the convenience of restriction analysis. As shown in figure, correct recombinants can be linearized by ClaI as well as cleaved into two fragments (1.0kb+3.0kb) by BglII. Also, because NotI restriction site in pGEMEX-1 had been removed, correct recombinant could not be cleaved by NotI. Then agarose electrophoresis can be used to analyze the recombinants. One of the six recombinants selected by this strategy was sequenced, and the sequence of the inserted ribozyme gene was confirmed. The result suggests that this strategy is applicable. The recombinant plasmid pGEMEX-1 also would be used as an in vitro transcription vector to test the in vitro cleavage activity of the ribozyme. The recovered 2.0 kb fragment after BglII restriction would be used as the transcription template. The transcribed product would have two additional nucleotides on the 3’ end of the ribozyme, but these two additional nucleotides have no influence on the secondary structure of the ribozyme predicted by computer.

Design and cloning of a ribozymes are the essential work of
studies about ribozymes. In this study, we designed and cloned the anti-hTERT ribozyme successfully. Next, we will test the in vitro cleavage activity of the ribozyme and will investigate the growth inhibition effect of this ribozyme on colonic tumor cell lines.

REFERENCES

1 Greider CW. Chromosome first aid. Cell 1991; 6: 645-647
2 Levy MZ, Allsopp RC, Dutcher AB, Greider CW, Harley CB. Telomere end-replication problem and cell aging. J Mol Biol 1992; 225: 951-960
3 de Lange T. Activation of telomerase in a human tumor. Proc Natl Acad Sci USA 1994; 91: 2882-2885
4 Rhyu MS. Telomeres, telomerase, and immortality. J Natl Cancer Inst 1995; 87: 884-893
5 Shen ZY, Xu LY, Li EM, Cai WJ, Chen MH, Shen J, Zeng Y. Telomeres and telomerase in the initial stage of immortalization of esophageal epithelial cells. World J Gastroenterol 2002; 8: 357-362
6 Bodnar AG, Ouellette M, Frolkis M, Holt SE, Chiu CP, Morin GB, Harley CB, Shaw JY, Lichtsteiner S, Wright WE. Extension of life-span by introduction of telomerase into normal human cells. Science 1998; 279: 349-352
7 Harley CB. Telomerase loss: Mitotic clock or genetic time tomb? Maturitas 1991; 25: 271-282
8 Dhaene K, van Marck E, Parwaresch R. Telomeres, telomerase, and cancer: an up-date. Virchows Arch 2000; 437: 1-16
9 Zhan WH, Ma JP, Peng JS, Gao JS, Cai SR, Wang JP, Zheng ZQ, Wang L. Telomerase activity in gastric cancer and its clinical implications. World J Gastroenterol 1999; 5: 316-319
10 Yakoob J, Hu GL, Fan XG, Zhang Z. Telomere, telomerase and digestive cancer. World J Gastroenterol 1999; 5: 334-337
11 Xu D, Gruber A, Peterson C, Pisa P. Suppression of telomerase activity in HLE cells after treatment with differentiating agents. Leukemia 1999; 10: 1354-1357
12 Herbert BS, Pitts AE, Backer SJ, Hamilton WE, Shaw JY, Corey DR. Inhibition of human telomerase in immortal human cells lead to progressive telomere shortening and cell death. Proc Natl Acad Sci USA 1999; 96: 14276-14281
13 Zhang FX, Zhang XY, Fan DM, Deng ZY, Yan Y, Wu HP, Fan JJ. Antisense telomerase RNA induced human gastric cancer cell apoptosis. World J Gastroenterol 2000; 6: 430-432
14 Shammas MA, Simmons CG, Corey DR, Shmookler-Reis RJ. Telomerase inhibition by peptide nucleic acids reverse "immortality" of transformed human cells. Oncogene 1999; 8: 6191-6200
15 Yokoyama Y, Takahashi Y, Shinohara A, Lian Zenglin, Wan Xiaoyun, Niwa K, Tamaya T. Attenuation of telomerase activity by a hammerhead ribozyme targeting the template region of telomerase RNA in endometrial carcinoma cells. Cancer Res 1998; 58: 5406-5410
16 Ludwig A, Saretzki G, Holm PS, Tiemann F, Lorenz M, Emrich T, Harley CB, von Zglinick T. Ribozyme cleavage of telomerase mRNA sensitizes breast epithelial cells to inhibitors of topoisomerase. Cancer Res 2001; 61: 3053-3061
17 Yokoyama Y, Takahashi Y, Shinohara A, Wan X, Takahashi S, Niwa K, Tamaya T. The 5’-end of hTERT mRNA is a good target for hammerhead ribozyme to suppress telomerase activity. Biochem Biophys Res Commun 2001; 273: 316-321
18 Ramakrishnan S, Sharma HW, Farris AD, kKaufman KM, Harley JB, Collins K, Prujin GJ, van Venrooij WJ, Martin ML, Narayanan R. Characterization of human telomere complex. Proc Natl Acad Sci USA 1997; 94: 10075-10079
19 Masutomi K, Kaneko S, Hayashi N, Yamashita T, Shirota Y, Kobayashi K, Murakami S. Telomerase activity reconstituted in vitro with purified human telomerase reverse transcriptase and human telomerase RNA component. J Bio Chem 2000; 275: 22568-22573
20 Feng J, Funk WD, Wang SS, Weinrich SL, Avillon AA, Chiu CP, Adams RR, Chang E, Allsopp RC, Yu J, Le S, West MD, Harley CB, Andrews WH, Greider CW, Villepontaine. The RNA component of human telomerase. Science 1995; 269: 1236-1241
21 Martin-Rivera L, Herrera E, Alba JP, Blasco MA. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc Natl Acad Sci USA 1998; 95: 10471-10476
22 Cristoffersen RE, Marn JJ. Ribozymes as human therapeutic agents. J Med Chem 1995; 38: 2023-2037
23 Jen KY, Gewirtz AM. Suppression of gene expression by targeted disruption of messenger RNA: A valuable options and current strategies. Stem Cell 2000; 18: 307-319
24 Haseloff J, Gerlach WL. Simple RNA enzymes with new and highly specific endoribonuclease activity. Nature 1988; 334: 585-591
25 Sambrook J, Fritsch EF, Maniatis T, eds. Molecular cloning A laboratory manual, 2nd ed. Cold spring harbor laboratory press, 1989
26 Vaish NK, Kore AR, Eckstein F. Recent development in the hammerhead ribozyme field. Nucleic Acids Res 1998; 26: 5237-5242
27 Kore AR, Vaish NK, Kutzeck U, Eckstein F. Sequence specificity of the hammerhead ribozyme revisited; the NHH rule. Nucleic Acids Res 1998; 26: 4116-4120
28 Herschlag D. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: More isn’t always better. Proc Natl Acad Sci USA 1991; 88: 6921-6925
29 Hertel KJ, Herschlag D, Uhlenbeck OC. A kinetic and thermodynamic framework for the hammerhead ribozyme reaction. Biochemistry 1994; 33: 3374-3385
30 Hornes R, Homann M, Oelze I, Marschall P, Tabler M, Eckstein F, Szakiel G. The subcellular localization and length of hammerhead ribozyme determine efficacy in human cells. Nucleic Acids Res 1997; 25: 769-775
31 Sioud M. Effects of variations in length of hammerhead ribozyme antisense arms upon the cleavage of longer RNA substrates. Nucleic Acids Res 1997; 25: 333-338
32 Helene C, Touilme J. Specific regulation of gene expression by antisense, sense and antigenic nucleic acids. Biochim Biophys Acta 1990; 1049: 99-125
33 Tabler M, Homann M, Tsytrotzakaki S, Szakiel G. A three nucleotide helix I is sufficient for full activity of a hammerhead ribozyme. Advantages of an asymmetric design. Nucleic Acids Res 1994; 22: 395
34 Campbell TB, McDonal CK, Hagen M. The effect of structure in a long target RNA on ribozyme cleavage efficiency. Nucleic Acids Res 1997; 25: 4985-4993
35 Amarzguioui M, Brede G, Baiae E, Grotti M, Sproat B, Przydz H. Secondary structure prediction and in vitro accessibility of mRNA as tools in the selection of target sites for ribozymes. Nucleic Acids Res 2000; 28: 413-4124
36 Patzel V, Steidl U, Kronenwett R. A theoretical approach to select effective antisense oligodeoxynucleotides at optimal statistical probability. Nucleic Acid Res 1999; 27: 4328-4334
37 Scherr M, Ross JJ, Szakiel G, Patzel V. RNA accessibility prediction: a theoretical approach is consistent with experimental studies in cell extracts. Nucleic Acids Res 2000; 28: 2455-2461
38 Mathews DH, Sabina J, Zuker M, Turner DH. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 1999; 288: 911-940
39 Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Lininger J, Harley CB, Cech TR. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277: 993-999

Edited by Zhao M