RNase E/G-dependent degradation of metE mRNA, encoding methionine synthase, in Corynebacterium glutamicum

(Received January 29, 2018; Accepted May 7, 2018; J-STAGE Advance publication date: July 9, 2018)

Satoshi Endo, Tomoya Maeda, Takahiro Kawame, Noritaka Iwai, and Masaaki Wachi*

Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan

Corynebacterium glutamicum is used for the industrial production of various metabolites, including L-glutamic acid and L-lysine. With the aim of understanding the post-transcriptional regulation of amino acid biosynthesis in this bacterium, we investigated the role of RNase E/G in the degradation of mRNAs encoding metabolic enzymes. In this study, we found that the cobalamin-independent methionine synthase MetE was overexpressed in ΔrneG mutant cells grown on various carbon sources. The level of metE mRNA was also approximately 6- to 10-fold higher in the ΔrneG mutant strain than in the wild-type strain. A rifampicin chase experiment showed that the half-life of metE mRNA was approximately 4.2 times longer in the ΔrneG mutant than in the wild-type strain. These results showed that RNase E/G is involved in the degradation of metE mRNA in C. glutamicum.

Key Words: Corynebacterium glutamicum; metE; mRNA degradation; RNase E/G

Introduction

Corynebacterium glutamicum is a Gram-positive, non-pathogenic soil bacterium that is a workhorse for amino acid production. More than 2.5 million tons of the flavor enhancer L-glutamic acid and one million tons of the feed additive L-lysine per year are produced using C. glutamicum (Hirasawa and Shimizu, 2016). This bacterium has also been widely used for the production of various other metabolites, including D-amino acids, organic acids, diamines, fuels, proteins, and aromatic compounds (Becker and Wittmann, 2012; Kogure et al., 2016; Kubota et al., 2016; Matsuda et al., 2014). C. glutamicum belongs to the mycolic acid-containing actinomycetes, which also includes the genera Mycobacterium, Nocardia, and Rhodococcus.

Ribonucleases (RNases) play an important role in the post-transcriptional regulation of gene expression (Mackie, 2013). In most bacteria, such as E. coli, mRNA decay depends on the initial cleavage, which is mainly catalyzed by RNase E/G family enzymes (Arraiano et al., 2010). RNase E/G endoribonucleolytically cleaves single-stranded AU-rich regions (Mackie, 2013). In E. coli, mRNA decay is often initiated by RNase E via one of two pathways. In one pathway, RNase E directly accesses internal sites in target mRNAs with 5'-terminal triphosphate (Clarke et al., 2014). The other pathway is 5'-end-dependent, and it is stimulated by the removal of two of the three phosphates from the 5'-terminus of primary transcripts (Celesnik et al., 2007; Deana et al., 2008; Luciano et al., 2017). E. coli has two RNase E/G family enzymes, RNase E and RNase G, and RNase E is essential for cell viability in E. coli (Apprion and Lassar, 1978; Arraiano et al., 2010). In contrast, C. glutamicum has only one RNase E/G encoded by rneG, and it is not essential (Maeda and Wachi, 2012a). The C. glutamicum RNase E/G is involved in 5'-end processing of the 5S rRNA and 3'-end processing of the 4.5S RNA (Maeda and Wachi, 2012a; Maeda et al., 2017). In addition, the RNase E/G degrades aceA mRNA, which encodes the glyoxylate cycle enzyme isocitrate lyase. Degradation of aceA mRNA by RNase E/G depends on the 3'-untranslated region (3'-UTR) (Maeda and Wachi, 2012b). It was also reported that the transcriptional termination factor Rho and RNase E/G play a central role in FMN riboswitch regulation in C. glutamicum (Takemoto et al., 2015). In C. glutamicum, both Rho and RNase E/G are individually dispensable, whereas simultaneous disruption is synthetic lethal (Takemoto et al., 2015).

*Corresponding author: Masaaki Wachi, Department of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
E-mail: mwachi@bio.titech.ac.jp

*Present address: RIKEN Quantitative Biology Center, 6-2-3 Furuedai, Suita, Osaka 565-0874, Japan.

None of the authors of this manuscript has any financial or personal relationship with other people or organizations that could inappropriately influence their work.
In this study, we showed that RNase E/G is involved in the degradation of metE mRNA encoding cobalamin-independent methionine synthase in C. glutamicum.

Materials and Methods

Media and growth conditions. L broth containing 1% polypeptide, 0.5% yeast extract, 0.5% NaCl, and 0.1% glucose (pH 7.0) was used as the complex medium. CGC medium (Eikmanns et al., 1991) containing an appropriate carbon source, 5.0 g/L (NH₄)₂SO₄, 5.0 g/L urea, 21 g/L morpholinepropanesulfonic acid (MOPS), 1.0 g/L K₂HPO₄, 1.0 g/L KH₂PO₄, 0.25 g/L MgSO₄·7H₂O, 0.01 g/L CaCl₂, 16.4 mg/L FeSO₄·7H₂O, 10 mg/L MnSO₄·H₂O, 0.2 mg/L CuSO₄·5H₂O, 1.0 mg/L ZnSO₄·7H₂O, 0.2 mg/L NiCl₂-6H₂O, 0.2 mg/L thiamine (pH 6.8) was used as the minimal medium. When necessary, media were supplemented with 20 μg/mL kanamycin. Glucose, fructose, sucrose, ribose, D-arabinose, sodium acetate, sodium lactate, or sodium gluconate (1% w/v) was added as a carbon source. C. glutamicum was grown aerobically at 30°C, and cell growth in liquid medium was monitored by measuring the optical density at 660 nm (OD₆₆₀). E. coli JM109 [recA1 endA1 gyrA96 thi hsdR17 supE44 relA1 Δ(lac-proAB)/F'(traD36 proAB⁺ lacI² lacZAM15)] and JM110 [dam dcm supE44 hsdR17 thi leu rpsL1 lacY galK galT ara tnaA thr tss Δ(lac-proAB)/F'(traD36 proAB⁺ lacI² lacZAM15)] cells were used for all genetic manipulations. E. coli strains were cultivated at 37°C in L medium supplemented with 50 μg/mL kanamycin when necessary.

Bacterial strains and plasmids. The strains and plasmids used in this study are listed in Table 1. A 3.14-kb DNA fragment containing the metE gene with 445 bp upstream region, which contains its own promoter sequence, and 455 bp downstream region, which contains a Rho-dependent terminator-like sequence, was amplified by PCR using the primers 5'-CGCGTTGAAATTCTCGCAAACCC-3' and 5'-GGGAATGTCGACGCAAGTTGGCCGC-3' (the artificially generated EcoRI and SalI sites are underlined). The amplified fragment was digested with EcoRI and SalI, and then the digested DNA fragment was cloned into the E. coli-C. glutamicum shuttle vector plasmid pECtS (Maeda and Wachi, 2012b) digested with the same enzymes to construct plasmid pCmE-FL.

Table 1. C. glutamicum strains and plasmids used in this study.

Strains or Plasmid	Relevant genotype or description	Source or reference
C. glutamicum		Laboratory stock, Maeda and Wachi (2012a)
ATCC31831	Wild type	Laboratory stock, Maeda and Wachi (2012a)
D2281	The same as ATCC31831 but ΔmetE	Laboratory stock, Maeda and Wachi (2012a)
Plasmids		Maeda and Wachi (2012b)
pECtS	The same as pECt but ΔlacI⁻trc	This study
pCmE-FL	pECtS with C. glutamicum metE	This study

Table 2. Primers used in qRT-PCR analysis.

Target gene	5’ primer sequence	3’ primer sequence	Reference or source
16S rRNA-1	CTGGCCTTGTCGATGTAACACA	CCCAGTTTCGGCTTATC	This study
16S rRNA-2	CGGCGGCGTGAATACGTTCC	CTCCGGGTACGCTACCTTG	This study
metE	GAGCGAAGCGTGAAACTGAAG	ACGTCCCTGCAAACGGGACGGG	This study

Analysis of cellular proteins. The total cellular proteins of C. glutamicum were prepared as described previously (Maeda and Wachi, 2012b). Briefly, cells were suspended in sodium phosphate buffer (50 mM, pH 7.0) and disrupted by sonication. After removal of the unbroken cells, the proteins in the lysates were separated by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE), and the gel was stained with Coomassie brilliant blue. The 80-kDa protein band was cut out and analyzed by mass spectrometry (MALDI-TOF/TOF ultrafleXtreme; Bruker Daltonics, Inc., Billerica, MA) after in-gel trypsin digestion.

Total RNA purification. Total cellular RNA from C. glutamicum cells was isolated as described previously (Maeda and Wachi, 2012b). Briefly, overnight cultures grown in CGC medium containing a carbon source (1%) at 30°C were washed and then inoculated into fresh CGC minimal medium containing a carbon source (1%). Then, two volumes of RNA Protect bacterial reagent (Qiagen, Valencia, CA) were added directly to one volume of exponentially growing cultures (OD₆₆₀ of ~1; mid-exponential growth phase) to stabilize cellular RNA. The cells were harvested by centrifugation at 5,000 x g for 10 min at 25°C, and total cellular RNA was isolated using the RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. Total RNA was treated with DNase I at 37°C for 1 h.

qRT-PCR. The mRNA was quantified using the Eco Real-Time PCR System (Illumina, Inc., San Diego, CA) as described previously (Maeda and Wachi, 2012b). Primers used in this quantitative real-time PCR (qRT-PCR) analysis are listed in Table 2. Briefly, 50 ng of total RNA was used in each RT-PCR using the Quantifast SYBR green RT-PCR kit (Qiagen) according to the manufacturer’s in-
structons. Negative controls, with no reverse transcriptase, were included for each RNA sample to rule out genomic DNA contamination. Target gene transcript levels were normalized to the reference gene transcript (16S rRNA) in the same RNA sample. Each gene was analyzed using RNA isolated from at least three independent samples.

Results

Overproduction of MetE protein in the ΔrneG strain

We previously reported that isocitrate lyase encoded by aceA was overproduced in ΔrneG mutant cells grown on acetate as a single carbon source (Maeda and Wachi, 2012b). We performed a proteome analysis using cells grown to a stationary phase on various sugars and organic acids as the sole carbon source. Then, the total cellular proteins were analyzed by 10% SDS-PAGE, and stained with Coomassie brilliant blue. The positions of the 80-kDa protein and AceA are shown on the right of the gel. The carbon sources are shown at the top of the gel. L: L broth, Glu: glucose, Fru: fructose, Suc: sucrose, Rib: ribose, Ara: l-arabinose, Ace: acetate, Lac: lactate, and Gln: gluconate.

Wild-type (+) and ΔrneG (−) mutant cells harboring a metE overexpression plasmid (pCmE-FL) were grown to the mid-exponential growth phase on glucose, fructose, or acetate as the sole carbon source. The total cellular proteins were analyzed by 10% SDS-PAGE, and stained with Coomassie brilliant blue. The position of MetE is shown on the right of the gel. The carbon sources are shown at the top of the gel. A protein band (indicated by an arrowhead) migrated just below MetE, which is overproduced in the wild-type cells harboring pCmE-FL grown on acetate, is malate synthase encoded by aceB. The expres-
cells resulted from a defect in metE mRNA degradation by RNase E/G. To examine the effect of the DrneG mutation on the stability of metE mRNA, we first performed a qRT-PCR analysis. Total RNA was extracted from wild-type and DrneG cells growing exponentially on glucose, fructose, or acetate as a sole carbon source. As shown in Fig. 4, the level of metE mRNA in DrneG cells was approximately 6.1-fold higher than that in wild-type cells when grown on fructose as the sole carbon source. In addition, increased levels of metE mRNA were also observed in the DrneG mutant when the cells were grown on glucose or acetate as the sole carbon source. The levels of metE mRNA in the DrneG mutant were approximately 10.8-fold and 9.7-fold higher than that in the wild-type cells when grown on either glucose or acetate as the sole carbon source, respectively (Fig. 4). These results suggest that RNase E/G degrades metE mRNA regardless of the carbon source.

We also examined mRNA levels at the stationary phase. The expression levels of metE mRNA were decreased to about 1/20 both in wild-type and DrneG mutant cells at the stationary phase compared with those at the exponential phase; that is, the increased levels of metE mRNA in DrneG mutant were still observed in the stationary phase (data not shown). This suggests that RNase E/G degrades metE mRNA both at the exponential and stationary phase. It is possible that the effect of the DrneG mutation is more prominent for highly expressed genes when observed at protein levels. Previously identified RNase E/G target mRNAs, adhE of E. coli and aceA of C. glutamicum, are also highly expressed genes (Maeda and Wachi, 2012b; Umitsuki et al., 2001).

Next, we measured the half-lives of metE mRNA in wild-type and DrneG cells grown on fructose as a sole carbon source. Exponentially growing cells were treated with 150 µg/mL rifampicin to prevent further initiation of transcription. Then, total RNA was isolated at various time points after the addition of rifampicin, and the rates of decay of metE mRNA were determined in wild-type and DrneG cells (Fig. 5). metE mRNA showed a half-life of 2.1 min in wild-type cells, and a prolonged half-life of 8.9 min in DrneG cells. These results indicated that the overexpression of MetE in the DrneG mutant results from the increased stability of metE mRNA.

Discussion

In this study, we have, for the first time, identified metE mRNA as a substrate of RNase E/G, in addition to aceA mRNA. We showed that MetE was overproduced in DrneG mutant cells when compared to the levels in wild-type cells during the exponential growth phase. The levels of metE mRNA were also increased in DrneG mutant cells. A rifampicin chase experiment showed that the half-life of
metE mRNA was prolonged in ΔrneG mutant cells. These results indicate that RNase E/G is involved in the degradation of **metE** mRNA in *C. glutamicum*. Methionine is synthesized from homoserine in *C. glutamicum*. Homoserine is converted to O-acetylhomoserine by MetX (homoserine O-acetyltransferase) (Rückert et al., 2003). Then, homocysteine is synthesized by a trans-sulfuration pathway with MetB (cystathionine γ-synthase) and MetC (cystathionine β-lyase), or direct sulfhydrylation with MetY (O-acetylhomoserine sulfhydrylase) (Lee and Hwang, 2003; Rückert et al., 2003). The final step in l-methionine biosynthesis is catalyzed by methionine synthase. *C. glutamicum* possesses two methionine synthases, one encoded by **metE** and the other encoded by **metH** (Rückert et al., 2003). MetE is cobalamin (vitamin B12) independent, whereas MetH is cobalamin dependent. Our preliminary experiment showed that a Δ**metE** mutant was auxotrophic for methionine, suggesting that MetE but not MetH plays a major role in methionine synthesis, at least, under our experimental conditions (data not shown). The transcriptional repressor McbR regulates the expression of almost all enzymes involved in methionine biosynthesis (Rey et al., 2003, 2005; Suda et al., 2008). Methionine production by fermentation has been explored by over-producing biosynthetic enzymes and/or deleting McbR in *C. glutamicum*, but productivity was still low for commercial purposes (Li et al., 2016; Park et al., 2007; Qin et al., 2015). Overproduction of MetE by the rneG mutation might be applied for improving the productivity of methionine.

It was previously shown that acidic stress induced oxidative stress in *C. glutamicum*. Oxidative stress caused MetE inactivation by S'-mycothiolation, which resulted in methionine synthesis impairment. Under these conditions, MetE protein levels were increased (Funahashi et al., 2015). Overproduction of MetE by the rneG mutation might be applied for improving the productivity of methionine.

Several studies in *E. coli* and other bacteria have shown that mRNA decay is frequently initiated by RNase E cleavage in the 5'-UTR (Hankins et al., 2007; Kaderdin and Bläsi, 2006). The 5'-UTRs can contain regulatory elements involved in up- or down-regulation of translation, including ribosome binding signals, translation repressors, low molecular-weight effectors, and small RNA with corresponding effects on mRNA stability (Kaderdin and Bläsi, 2006). In contrast, strong stem-loop structures such as the transcription terminator at the 3' end of many bacterial mRNAs are resistant to 3' to 5' exoribonucleolytic degradation (McLaren et al., 1991; Spickler and Mackie, 2000). Our previous study showed that the degradation of *adhe* mRNA was 5'-UTR dependent in *E. coli* (Ito et al., 2013; Uimitsuki et al., 2001). We also showed that RNase E/G cleavage of *aceA* mRNA is dependent on the 3'-UTR in *C. glutamicum* (Maeda and Wachi, 2012b). The 3'-UTR of *aceA* mRNA contains a typical Rho-independent termina-
	on. RNase E/G cleavage removes this Rho-independent terminator and generates an unprotected 3' end, which is rapidly degraded by 3' to 5' exoribonucleases (Maeda and Wachi, 2012b). In these studies, lacZ assay fused with 5'- or 3'-UTR was valid for estimating cleavage sites. Therefore, we constructed plasmids harboring *metE* 5'-UTR-lacZ and lacZ-metE 3'-UTR fusion genes. However, neither *metE* 5'-UTR-lacZ nor lacZ-metE 3'-UTR showed significant difference in the expression between wild-type and ΔrneG strains (data not shown). This suggests that the mechanism for **metE** mRNA degradation by RNase E/G is different from 5'- or 3'-UTR dependent mechanism. Unlike in *aceA* mRNA, a Rho-dependent terminator-like sequence (i.e., C-rich and G-poor sequences that lack obvious secondary structure followed by a boxA signal) was found at the 3' end of the **metE** transcript (Friedman and Olson, 1983; Richardson and Richardson, 1996). It was previously shown that RNase III-mediated degradation of mraZ mRNA in *C. glutamicum* is coding region dependent (Maeda et al., 2016). Secondary structures within the coding region would slow down translation by ribosomes, which consequently increases the probability of degradation by endoribonucleases such as RNase III and RNase E/G (Braun et al., 1998; Maeda et al., 2016). Determination of RNase E/G cleavage site in **metE** mRNA remains to be done.

Acknowledgments

This work was supported in part by a Grant-in-Aid for Challenging Exploratory Research (No. 25660088 to M.W.) from the Japan Society for the Promotion of Science. The authors thank Dr. Ayako Takada (Biomaterials Analysis Division, Technical Department, Tokyo Institute of Technology) for technical assistance with the mass spectrometry.

References

Apprion, D. and Lassar, A. (1978) A conditional lethal mutant of *Escherichia coli* which affects the processing of ribosomal RNA. *J. Biol. Chem.*, 253, 1738–1742.

Arraiano, C. M., Andrade, J. M., Domingues, S., Guinote, I. B., Malecki, M. et al. (2010) The critical role of RNA processing and degrada-
tion in the control of gene expression. *FEBS Microbiol. Rev.*, 34, 883–923.

Becker, J. and Wittmann, C. (2012) Bio-based production of chemicals, materials and fuels—*Corynebacterium glutamicum* as versatile cell factory. *Curr. Opin. Biotechnol.*, 23, 631–640.

Braun, F., Le Derout, J., and Régnier, P. (1998) Ribosomes inhibit an RNase E cleavage which induces the decay of the *rpsO* mRNA of *Escherichia coli*. *EMBO J.*, 17, 4790–4797.

Celemski, H., Deana, A., and Belasco, J. G. (2007) Initiation of RNA decay in *Escherichia coli* by 5' pyrophosphate removal. *Mol. Cell.*, 17, 79–90.

Clarke, J. E., Kime, L., Romero A. D., and McDowell, K. J. (2014) Direct entry by RNase E is a major pathway for the degradation and processing of RNA in *Escherichia coli*. *Nucleic Acids Res.*, 42, 11733–11751.

Deana, A., Celemski, H., and Belasco, J. G. (2008) The bacterial enzy-
me RppH triggers messenger RNA degradation by 5' pyrophos-
phate removal. *Nature*, 451, 355–358.

Eikmanns, B. J., Metzger, M., Reinscheid, D., Kircher, M., and Sahm, H. (1991) Amplification of three threonine biosynthesis genes in *Corynebacterium glutamicum* and its influence on carbon flux in different strains. *Appl. Microbiol. Biotechnol.*, 34, 617–622.

Follmann, M., Ochrombel, I., Krämer, R., Trötschel, C., Poetsch, A. et al. (2009) Functional genomics of pH homeostasis in *Corynebacter-
ium glutamicum* revealed novel links between pH response,
oxidative stress, iron homeostasis and methionine synthesis. BMC Genomics, 10, 621.

Friedman, D. I. and Olson, E. R. (1983) Evidence that a nucleotide sequence, “boxA,” is involved in the action of the NusA protein. Cell, 34, 143–149.

Hankins, J. S., Zappavigna, C., Prud’homme-Généreux, A., and Mackie, G. A. (2007) Role of RNA structure and susceptibility to RNase E in regulation of a cold shock mRNA, cspa mRNA. J. Bacteriol., 189, 4353–4358.

Hirasawa, T. and Shimizu, H. (2016) Recent advances in amino acid production by microbial cells. Curr. Opin. Biotechnol., 42, 133–146.

Hondorp, E. R. and Matthews, R. G. (2004) Oxidative stress inactivates cobalamin-independent methionine synthase (MetE) in Escherichia coli. PLoS Biol., 2, e336.

Ito, K., Hamasaki, K., Kayamori, A., Nguyen, P. A., Amagai, K. et al. (2013) A secondary structure in the 5′ untranslated region of adhE mRNA required for RNase G-dependent regulation. Biosci. Biotechnol. Biochem., 77, 2473–2479.

Kaberding, V. R. and Bläsi, U. (2006) Translation initiation and the fate of bacterial mRNAs. FEMS Microbiol. Rev., 30, 967–979.

Kogure, T., Kubota, T., Suda, M., Hiraga, K., and Inui, M. (2016) Metabolite engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction. Metab. Eng., 38, 204–216.

Kubota, T., Watanabe, A., Suda, M., Kogure, T., Hiraga, K. et al. (2016) Production of para-aminobenzoate by genetically engineered Corynebacterium glutamicum and non-biological formation of an N-glucosyl byproduct. Metab. Eng., 38, 322–330.

Lee, H. S. and Hwang, B. J. (2003) Methionine biosynthesis and its regulation in Corynebacterium glutamicum: Parallel pathways of transsulfuration and direct sulfhydrylation. Appl. Microbiol. Biotechnol., 62, 459–467.

Li, Y., Cong, H., Liu, B., Song, J., Sun, X. et al. (2016) Metabolic engineering of Corynebacterium glutamicum for methionine production by removing feedback inhibition and increasing NADPH level. Antonie van Leeuwenhoek, 109, 1185–1197.

Liu, Y., Yang, X., Yin, Y., Lin, J., Chen, C. et al. (2016) Mycothiol protects Corynebacterium glutamicum against acid stress via maintaining intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE. J. Gen. Appl. Microbiol., 62, 144–153.

Luciano, D. J., Vasilyev, N., Richards, J., Serganov, A., and Belasco, J. G. (2017) A novel RNA phosphorylation state enables 5′¢-5′¢ mycothiolating MetE. Protects, regulates intracellular pH homeostasis, scavenging ROS, and S-mycothiolating MetE. J. Gen. Appl. Microbiol., 62, 144–153.

Maeda, T., Tanaka, Y., Wachi, M., and Inui, M. (2017) Polynucleotide phosphorylase, RNase E/G, and YbeY are involved in the maturation of 5′S RNA in Corynebacterium glutamicum. J. Bacteriol., 199, pii:00798-16.

Matsuda, Y., Itaya, H., Kitahara, Y., Theresia, N. M., Kutukova, E. A. et al. (2014) Double mutation of cell wall proteins CspB and PBP1a increases secretion of the antibody Fab fragment from Corynebacterium glutamicum. Microb. Cell Fact., 13, 1–10.

McLaren, R., Newbury, S., Dance, G., Causton, H., and Higgins, C. (1991) mRNA degradation by processive 3′-5′ exoribonucleases in vitro and the implications for prokaryotic mRNA decay in vivo. J. Mol. Biol., 221, 81–95.

Park, S. D., Lee, J. Y., Sim, S. Y., Kim, Y., and Lee, H. S. (2007) Characteristics of methionine production by an engineered Corynebacterium glutamicum strain. Metab. Eng., 9, 327–336.

Qin, T., Hu, X., Hu, J., and Wang, X. (2015) Metabolic engineering of Corynebacterium glutamicum strain ATCC13032 to produce l-methionine. Biotechnol. Appl. Biochem., 62, 563–573.

Rey, D. A., Pühler, A., and Kalinowski, J. (2003) The putative transcriptional repressor McbR, member of the TetR-family, is involved in the regulation of the metabolic network directing the synthesis of sulfur containing amino acids in Corynebacterium glutamicum. J. Biotechnol., 103, 51–65.

Rey, D. A., Nentwich, S. S., Koch, D. J., Rückert, C., Pühler, A. et al. (2005) The McbR repressor modulated by the effector substance S-adenosylhomocysteine controls directly the transcription of a regulon involved in sulphur metabolism of Corynebacterium glutamicum ATCC 13032. Mol. Microbiol., 56, 871–887.

Richardson, L. V. and Richardson, J. P. (1996) Rho-dependent termination of transcription is governed primarily by the upstream Rho utilization (rut) sequences of a terminator. J. Biol. Chem., 271, 21597–21603.

Rückert, C., Pühler, A., and Kalinowski, J. (2003) Genome-wide analysis of the l-methionine biosynthetic pathway in Corynebacterium glutamicum by targeted gene deletion and homologous complementation. J. Biotechnol., 104, 213–228.

Spickler, C. and Mackie, G. A. (2000) Action of RNase II and polynucleotide phosphorylase against RNAs containing stem-loops of defined structure. J. Bacteriol., 182, 2422–2427.

Suda, M., Teramoto, H., Imamiya, T., Inui, M., and Yukawa, H. (2008) Transcriptional regulation of Corynebacterium glutamicum methionine biosynthesis genes in response to methionine supplementation under oxygen deprivation. Appl. Microbiol. Biotechnol., 81, 505–513.

Takemoto, N., Tanaka, Y., and Inui, M. (2015) Rho and RNase play a central role in FMN riboswitch regulation in Corynebacterium glutamicum. Nucleic Acids Res., 43, 520–529.

Umemitsu, T., Wachi, M., Takada, A., Hikichi, T., and Nagai, K. (2001) Involvement of RNase G in in vivo mRNA metabolism in Escherichia coli. Genes Cells, 6, 403–410.