Is there any progress in the treatment of non-alcoholic fatty liver disease?

Emmanuel A Tsochatzis, George V Papatheodoridis

Abstract

Despite the fact that non-alcoholic fatty liver disease (NAFLD) and its severe clinical form, non-alcoholic steatohepatitis (NASH), are becoming increasingly prevalent in industrialised countries, there are no licensed pharmacological treatments for them. Weight loss and life modifications, antioxidant therapies and insulin-sensitising agents are the current treatment strategies and have all been tested with inconclusive results. Low sample numbers, inadequate treatment duration and use of markers for treatment response other than histology might all account for these results. As NAFLD is a systemic rather than a liver disease, future trials should address the patient as a whole and also address cardiovascular risk factors.

© 2011 Baishideng. All rights reserved.

Key words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Weight loss; Pioglitazone; Metformin

Peer reviewer: Dimitrios Papandreou, Associate Professor, 2nd Department of Pediatrics, Aristotle University of Thessaloniki, Ahepa General Hospital, 54622 Thessaloniki, Greece

Tsochatzis EA, Papatheodoridis GV. Is there any progress in the treatment of non-alcoholic fatty liver disease? World J Gastrointest Pharmacol Ther 2011; 2(1): 1-5 Available from: URL: http://www.wjgnet.com/2150-5349/full/v2/i1/1.htm DOI: http://dx.doi.org/10.4292/wjgpt.v2.i1.1

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) and its severe clinical form, non-alcoholic steatohepatitis (NASH), are becoming increasingly prevalent in industrialised countries, along with the epidemic of obesity. The prevalence of NAFLD is estimated to be 10%-25% in the Western world, while the corresponding prevalence of NASH ranges from 2%-7% (Table 1). Insulin resistance and metabolic syndrome have been implicated both in the pathogenesis and disease progression of NAFLD, causing, among other symptoms, increased free fatty acid influx to the liver, oxidative stress, mitochondrial toxicity, deregulation of adipokines and subsequently inflammation and fibrosis (Figure 1). It has become clear that NAFLD is not a benign non-progressive disease, as originally suggested, but results in increased morbidity and mortality, as shown in several studies with longitudinal follow-up. It is notable that cardiovascular events and non liver-related deaths were the main cause of mortality in patients studied. This is not surprising given the high prevalence of metabolic syndrome and its components in NAFLD patients. Currently, there are no licensed therapies for NAFLD, despite the abundance of clinical trials. In this review we will explore the current status of such treatments and propose a future research agenda.

TREATMENT STRATEGIES FOR NAFLD

The existing treatment strategies for NAFLD can be divided into three main categories: weight loss and lifestyle modifications, insulin-sensitising agents and antioxidant therapies. As a general comment, most studies suffer from inadequate patient numbers, lack of randomisation and use of markers for treatment response other than histology.
Bariatric surgery is normally limited to morbidly obese patients and is considered as a therapeutic option in selected patients with NASH [33]. However, the recent Cochrane metaanalysis found that evidence on the potential benefits and risks of bariatric surgery is derived from cohort studies and is, therefore, not conclusive [34].

It should be also underlined that in addition to food quantity, quality also matters. Results from cohort studies suggest that patients with NAFLD have higher consumption of saturated fatty acids and cholesterol, higher consumption of soft drinks that contain fructose and lower consumption of vitamins A and E [15-18]. Therefore, counselling regarding the quality of calories consumed should also be offered. Lipid lowering therapies are safe in patients with liver disease [9] and preliminary evidence suggests that they might prove beneficial in patients with NAFLD [35].

Table 1 Prevalence of non-alcoholic fatty liver disease in different countries

Author	Country	Population	n	Prevalence of NAFLD (%)	Methods of diagnosis
Fan et al [6], 2007	China	Normal	14446	14	US
Papahuedoridis et al [8], 2007	Greece	Normal	30503	18	Liver enzymes
Zelbers-Sagi et al [9], 2006	Israel	Normal	326	30	US
Bedogni et al [10], 2007	Italy	Normal	598	20	US
Tarhier et al [11], 2007	Italy	T2DM	2839	70	US
Sorrentino et al [12], 2004	Italy	Bariatric surgery	80	72	Biopsy
Hamaguchi et al [13], 2005	Japan	Normal	4401	18	US
Yamamoto et al [14], 2007	Japan	Normal	263	18	US
Park et al [15], 2006	Korea	Normal	6648	19	US
Roesch-Dietlen et al [16], 2006	Mexico	Metabolic syndrome	337	16	US
Browning et al [17], 2004	USA	Normal	2287	31	MRS
Tran et al [18], 2006	USA	Living donors	70	38.5	Biopsy
Kunde et al [19], 2005	USA	Bariatric surgery	233	97	Biopsy
Weston et al [20], 2005	USA	Chronic liver disease	742	39	US/CT

NAFLD: Non-alcoholic fatty liver disease; T2DM: Type 2 diabetes mellitus; US: Ultrasonography; MRS: Magnetic resonance spectroscopy; CT: Computerized tomography.

Figure 1 Mechanisms of progression from normal liver to non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. NASH: Non-alcoholic steatohepatitis.

is not, therefore, surprising that they are often inconclusive and fail to show any treatment effect. Currently, there is no licensed pharmacological treatment for NASH and patients are usually advised to lose weight and exercise.

Weight loss

As NAFLD is most commonly associated with obesity, weight loss is a reasonable initial step towards treating this condition. The theoretical advantages of weight loss include decreasing insulin resistance and, if combined with exercise, increasing muscle insulin sensitivity. Despite the pathophysiological evidence of such an approach, there has been only one randomised control trial (RCT) of weight loss in patients with NAFLD, with a sample size of just 31 patients [27]. Patients in the intervention group were targeted for a 7%-10% weight reduction through intensive lifestyle intervention and were monitored for a year with initial and end-of-treatment liver biopsies. Although there was significant improvement in the NASH histological activity score (NAS) in the intervention group and a significant correlation of percent weight loss with improvement in NAS, no significant improvement in fibrosis was documented [28]. All other trials have been non-randomised, with no control group and have usually comprised selected patients or case series [29]. However, improved liver biochemistry and even resolution of stigmata of liver disease have been shown with weight loss in selected overweight patients [30,31]. The main concerns with this strategy include the feasibility of maintaining weight loss over a prolonged time course. Furthermore, rapid weight loss in morbidly obese can actually worsen fibrosis [32]. Therefore, counselling should aim towards gradual weight loss with appropriate life-style modifications and behavioural therapies that would allow weight loss to be maintained over the course of time [33].

Orlistat, which is a reversible inhibitor of gastric and pancreatic lipase and thus prevents the absorption of diet triglycerides, is used for weight loss and has been tested in the management of NASH in a small RCT [34]. Although patients who achieved a weight loss of > 9% improved in biochemical and inflammation measures, there were no significant differences in weight loss between the orlistat and the placebo group.

Bariatric surgery is normally limited to morbidly obese patients and is considered as a therapeutic option in selected patients with NASH [35]. However, the recent Cochrane metaanalysis found that evidence on the potential benefits and risks of bariatric surgery is derived from cohort studies and is, therefore, not conclusive [36].
Anti-oxidant therapies

Ant-oxidant therapies have been tried for NAFLD on the theoretical basis that oxidative stress is involved in the pathogenesis of the disease. The results of trials are inconclusive and contradictory, probably because of the small patient numbers. A small pilot trial of pentoxifylline showed improvement in aminotransferases in the 11 patients who completed the 1-year course of medication, although no follow-up histological evaluation was available. Ursodeoxycholic acid failed to show any benefit after two years of therapy in a RCT of 165 patients. A combination of vitamins E and C taken for 6 mo improved fibrosis but not necroinflammation or liver enzymes. A recent RCT, published in abstract form, of vitamin E or pioglitazone or placebo, showed significant improvement in the NAS score of patients who received vitamin E compared to the other two groups. However, no improvement in fibrosis was documented. However, other small RCTs have failed to demonstrate any treatment effect of vitamin E.

Insulin-sensitising therapies

As insulin resistance is considered the main underlying mechanism and predisposing condition for NASH, treatment strategies targeting insulin resistance are a main focus of the current research agenda. Metformin and thiazolidinediones which are licensed antidiabetic medications that target peripheral and hepatic insulin resistance have been used in the treatment of patients with NASH.

The first evidence of the potential effect of metformin came from a small cohort study of 20 patients with no follow-up histological evaluation, in which transaminase values and insulin sensitivity improved after 4 mo of treatment. A small Turkish RCT of 36 patients, comparing metformin with no treatment and with 6 mo follow up, confirmed the improvement in transaminases but failed to demonstrate any effect on liver histology. An RCT of metformin vs vitamin E vs no treatment in patients who were all assigned to prescriptive diet showed a significantly higher rate of transaminase normalization as well as a significant improvement in necroinflammation and fibrosis compared to baseline biopsy in the metformin group. However, liver biopsy was not performed in the control group and it is thus difficult to assess if the histological improvement was due to weight loss or metformin. Therefore, although metformin is a safe and promising medication, it has not yet been assessed in properly designed and adequately powered RCTs.

Thiazolidinediones (TZDs) are peroxisome proliferator-activated receptor-γ agonists that improve insulin resistance in liver, muscle and adipose tissue. The licensed TZDs, pioglitazone and rosiglitazone, have been both tried in RCTs in patients with NAFLD. The two drugs appear to have different effects on lipid metabolism, as rosiglitazone has no effect on de novo hepatic lipogenesis and plasma triglycerides, while pioglitazone actually decreases both. An RCT of 45 mg of pioglitazone vs placebo for 6 mo, showed significant improvements in steatosis, necroinflammation and ballooning in the treatment group although improvement in fibrosis did not reach statistical significance ($P = 0.008$). These encouraging results provided the rationale for further RCTs of longer duration. A lower dose of pioglitazone (30 mg/d) improved fibrosis and hepatocellular injury compared to placebo in an RCT of 74 non-diabetic patients with NASH. However, the biggest RCT to date, with a follow-up of 2 years, failed to show any significant histological improvement in the pioglitazone group (30 mg/d) compared to the placebo group. RCTs on rosiglitazone, of one and two year duration, have shown no significant effects on liver histology.

CRITICAL APPRAISAL AND FUTURE DIRECTIONS

Although NAFLD is an increasingly prevalent disease, there is a lack of approved therapies for it. There are several reasons for this absence of effective therapies.

Firstly, most published studies are not adequately powered to demonstrate significant treatment effects and some of the non-significant findings that they report might actually be type II errors.

Secondly, treatment effects are assessed after 6 or 12 mo of therapy duration, which is an arbitrary time cut-off and might be inadequate. Although such treatment durations have been successfully implemented for chronic viral hepatitis B and C infections, these conditions have totally different pathophysiology of liver injury and probably a more rapid clinical course than NAFLD.

Thirdly, the NAS activity score is increasingly being used as a surrogate marker to assess therapeutic effect. However, this score is not a valid surrogate marker for NAFLD as it does not take fibrosis into account. Existing studies suggest that the presence and severity of fibrosis actually dictate long-term mortality in patients with NAFLD, while the NAS score is an untested, if not irrelevant, surrogate marker. Therefore, although improvements in the NAS score not accompanied by improvements in fibrosis would currently classify a study as having a positive result, the true value of these studies is unknown.

Fourthly, metformin remains an untested therapeutic option, despite preliminary evidence of its benefits. This may be because it is a cheap and well established drug and there is, therefore, limited interest in funding and any RCT would have to be investigator-initiated.

Lastly, and most importantly, NAFLD is a systemic rather than a liver disease. Indeed, cardiovascular disease is the main cause of death in NAFLD patients. Therefore, all risk factors should be globally assessed and therapeutic strategies should ideally target the patient as a whole rather than liver-specific disease manifestations alone.

Future trials should recruit larger number of patients for a longer treatment period. The recent pioglitazone or vitamin E for nonalcoholic steatohepatitis RCT demonstrated that insulin resistance might not be the driving force behind fibrosis progression in NAFLD patients and that combination therapy targeting different mechanisms might represent the optimal strategy for NAFLD.
REFERENCES

1 Angulo P. Nonalcoholic fatty liver disease. N Engl J Med 2002; 346: 1221-1231
2 Farrell GC. Larter CZ. Nonalcoholic fatty liver disease: from steatosis to cirrhosis. Hepatology 2010; 43: 599-5112
3 Bedongi G, Miglioli L, Masotti F, Castiglione A, Crocè LS, Tiribelli C, Bellentani S. Incidence and natural course of fatty liver in the general population: the Dionysos study. Hepatology 2007; 46: 1387-1391
4 Browning JD, Szczepaniak LS, Dobbins R, Nuremberg P, Horton JD, Cohen JC, Grundy SM, Hobbs HH. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology 2004; 40: 1387-1395
5 Fan JG, Li F, Cai XB, Peng YD, Ao QH, Gao Y. The importance of metabolic factors for the increasing prevalence of fatty liver in Shanghai factory workers. J Gastroenterol Hepatol 2007; 22: 663-668
6 Hamaguchi M, Kojima T, Takeda N, Nakagawa T, Taniguchi H, Fujii K, Omatu T, Nakajima T, Harui H, Shimazaki M, Kato T, Okuda J, Ida K. The metabolic syndrome as a predictor of non-alcoholic fatty liver disease. Ann Intern Med 2005; 143: 722-728
7 Kunde SS, Lazenby AJ, Clemens RH, Abrams GA. Spectrum of NAFLD and diagnostic implications of the proposed new normal range for serum ALT in obese women. Hepatology 2005; 42: 650-656
8 Papanicolaou GV, Goulis J, Christoudoulou D, Manolakopoulou S, Raptopoulou M, Andriotis C, Apostolou A, Kapris F, Konstantinou E, Zafiropoulos P. Nonalcoholic fatty liver disease: A population-based study and its association with biochemical and anthropometric measures. Liver Int 2006; 26: 856-863
9 Tsochatzis EA, Papaioannou GV, Manesis EK, Kafiri G, Tinakiagis DG, Archimandrits AJ. Metabolic syndrome is associated with severe fibrosis in chronic viral hepatitis and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2008; 27: 80-89

Yamamoto K, Takada Y, Fujimoto Y, Haga H, Oike F, Kobayashi N, Tanaka K. Nonalcoholic steatohepatitis in donors for living donor liver transplantation. Transplantation 2007; 83: 257-262
10 Zelber-Sagi S, Nitzan-Kalush D, Halpern Z, Oren R. Prevalence of primary non-alcoholic fatty liver disease in a population-based study and its association with biochemical and anthropometric measures. Liver Int 2006; 26: 856-863
11 Tsochatzis EA, Papaioannou GV, Manesis EK, Kafiri G, Tinakiagis DG, Archimandrits AJ. Metabolic syndrome is associated with severe fibrosis in chronic viral hepatitis and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2008; 27: 80-89
12 Tsochatzis EA, Manolakopoulos S, Papaioannou GV, Archimandrits AJ. Insulin resistance and metabolic syndrome in chronic liver diseases: old entities with new implications. Scand J Gastroenterol 2009; 44: 6-14
13 Marchesini G, Bugianesi E, Forlani G, Cerrelli F, Lenzi M, Raciopi N, Raiti S, Tosti A, Villanueva S, Melchionda N, Rizzetto M. Nonalcoholic fatty liver disease, steatohepatitis, and the metabolic syndrome. Hepatology 2003; 37: 917-923
14 Tsochatzis EA, Papaioannou GV, Archimandrits AJ. Adipokines in nonalcoholic steatohepatitis: from pathogenesis to implications in diagnosis and therapy. Mediators Inflamm 2009; 2009: 831670
15 Pessayre D, Fromenty B. NASH: a mitochondrial disease. J Hepatol 2005; 42: 928-940
16 Tsochatzis E, Papaioannou GV, Archimandrits AJ. The evolving role of leptin and adiponectin in chronic liver diseases. Am J Gastroenterol 2006; 101: 2629-2640
17 Adams LA, Lymp JF, St Sauver J, Sanderson SO, Lindor KD, Feldstein A, Angulo P. The natural history of nonalcoholic fatty liver disease: a population-based cohort study. Gastroenterology 2015; 148: 126-134
18 Ekstedt M, Franzén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodenar G, Chekhasias S. Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology 2006; 44: 865-873
19 Söderberg C, Stål P, Asling J, Glaumann H, Lindberg G, Marmur J, Hultcrantz R. Decreased survival of subjects with elevated liver function tests during a 28-year follow-up. Hepatol 2010; 51: 595-602
20 Machado M, Cortez-Pinto H. Non-alcoholic steatohepatitis and metabolic syndrome. Curr Opin Clin Nutr Metab Care 2006; 9: 637-642
21 Promrat K, Kleiner DE, Niemeier HM, Jackvony E, Kears M, Wands JR, Fava JL, Wing RR. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 2010; 51: 121-129
22 Bellentani S, Dalle Grave R, Suppini A, Marchesini G. Behavior therapy for nonalcoholic fatty liver disease: The need for a multidisciplinary approach. Hepatology 2008; 47: 746-754
23 Palmer M, Schaffner F. Effect of weight reduction on hepatic abnormalities in overweight patients. Curr Opin Crit Care 2009; 15: 408-413
24 Ueno T, Sugawara H, Sujaku K, Hashimoto O, Tsuji R, Tama K, Toriuma T, Inuzuka S, Sata M, Tanikawa K. Therapeutic effects of restricted diet and exercise in obese patients with fatty liver, J Hepatol 1997; 27: 103-107
25 Andersen T, Glaud C, Christoffersen P. Hepatic effects of dietary weight loss in morbidly obese subjects. J Hepatol 1991; 13: 224-229
26 Harrison SA, Fecht W, Brunet EM, Neuschwander-Tetri BA. Orlistat for overweight subjects with nonalcoholic steatohepatitis: A randomized, prospective trial. Hepatology 2009; 49: 80-86
27 Younossi ZM. Review article: current management of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2008; 20: 2-2
Mendez-Sanchez N, Lizardi-Cervera J, Uribe M. Bariatric surgery for non-alcoholic steatohepatitis in obese patients. Cochrane Database Syst Rev 2010; CD007340

35 Cortez-Pinto H, Jesus L, Barros H, Lopes C, Moura MC, Camilo ME. How different is the dietary pattern in nonalcoholic steatohepatitis patients? Clin Nutr 2006; 25: 816-823

36 Musso G, Gambino R, De Michieli F, Cassader M, Rizzetto M, Durazzo M, Fagá E, Silli B, Pagano G. Dietary habits and their relations to insulin resistance and postprandial lipemia in nonalcoholic steatohepatitis. Hepatology 2003; 37: 909-916

37 Musso G, Gambino R, De Michieli F, Brolli G, Fremoli A, Pagano G, Bo S, Durazzo M, Cassader M. Nitrosative stress predicts the presence and severity of nonalcoholic fatty liver at different stages of the development of insulin resistance and metabolic syndrome: possible role of vitamin A intake. Am J Clin Nutr 2007; 86: 661-671

38 Ouyang X, Cirillo P, Saftin Y, McCall S, Bruchette JL, Diehl AM, Johnson RJ, Abdelmalek MF. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol 2008; 49: 992-999

39 Chalasani N, Aljadyee H, Kesterson J, Murray MD, Hall SD. Patients with elevated liver enzymes are not at higher risk for statin hepatotoxicity. Gastroenterology 2004; 126: 1287-1292

40 Kimura Y, Hyogo H, Yamagishi S, Takeuchi M, Ishitobi T, Nabeshima Y, Arihiro K, Chayama K. Atorvastatin decreases serum levels of advanced glycation endproducts (AGEs) in nonalcoholic steatohepatitis (NASH) patients with dyslipidemia: clinical usefulness of AGEs as a biomarker for the attenuation of NASH. J Gastroenterol 2010; 45: 750-757

41 Adams LA, Zein CO, Angulo P, Lindor KD. A pilot trial of pentoxifylline in nonalcoholic steatohepatitis. Am J Gastroenterol 2004; 99: 2365-2368

42 Lindor KD, Kowdley KV, Heathcote EJ, Harrison ME, Jorgensen R, Angulo P, Lymp JB, Burgart L, Collins P. Ursodeoxycholic acid for treatment of nonalcoholic steatohepatitis: results of a randomized trial. Hepatology 2004; 39: 770-778

43 Harrison SA, Torgerson S, Hayashi P, Ward J, Schenker S. Vitamin E and vitamin C treatment improves fibrosis in patients with nonalcoholic steatohepatitis. Am J Gastroenterol 2003; 98: 2485-2490

44 Sanyal AJ. A randomized controlled trial of pioglitazone or vitamin E for nonalcoholic steatohepatitis (PIVENS). Hepatology 2009; 50 (Suppl 1): LB4

45 Bugianesi E, Gentilcore E, Manini R, Natale S, Vanni E, Villanova N, David E, Rizzetto M, Marchesini G. A randomized controlled trial of metformin versus vitamin E or prescription diet in nonalcoholic fatty liver disease. Am J Gastroenterol 2005; 100: 1082-1090

46 Kugelmas M, Hill DB, Vivian B, Marsano L, McClain CJ. Cytokines and NASH: a pilot study of the effects of lifestyle modification and vitamin E. Hepatology 2003; 38: 413-419

47 Marchesini G, Brizi M, Bianchi G, Tomassetti S, Zoli M, Melchionda N. Metformin in non-alcoholic steatohepatitis. Lancet 2001; 358: 893-894

48 Uygur A, Kadayifi C, Isik AT, Ozgurtas T, Deveci S, Tuzun A, Yesilova Z, Gulsen M, Dagalk K. Metformin in the treatment of patients with non-alcoholic steatohepatitis. Aliment Pharmacol Ther 2004; 19: 537-544

49 Goldberg RB, Kendall DM, Deeg MA, Buse JB, Zagar AJ, Pinaire JA, Tan MH, Khan MA, Perez AT, Jacober SJ. A comparison of lipid and glycemic effects of pioglitazone and rosiglitazone in patients with type 2 diabetes and dyslipidemia. Diabetes Care 2005; 28: 1547-1554

50 Belfort R, Harrison SA, Brown K, Darland C, Finch J, Hardies J, Balas B, Gastaldelli A, Tio F, Pulcini J, Berria R, Ma JZ, Dwiwedi S, Havranek R, Fincke C, DeFronzo R, Bannayan GA, Schenker S, Cusi K. A placebo-controlled trial of pioglitazone in subjects with nonalcoholic steatohepatitis. N Engl J Med 2006; 355: 2297-2307

51 Ratziu V, Giral P, Jacqueminet S, Charlotte F, Hartemann-Heurtier A, Serfaty L, Podevin P, Lacorte JM, Bernhardt C, Bruckert E, Grimaldi A, Poynard T. Rosiglitazone for nonalcoholic steatohepatitis: one-year results of the randomized placebo-controlled Fatty Liver Improvement with Rosiglitazone Therapy (FLIRT) Trial. Gastroenterology 2008; 135: 100-110

52 Ratziu V, Charlotte F, Bernhardt C, Giral P, Halbron M, Lenaur G, Hartmann-Heurtier A, Bruckert E, Poynard T. Long-term efficacy of rosiglitazone in nonalcoholic steatohepatitis: results of the fatty liver improvement by rosiglitazone therapy (FLIRT 2) extension trial. Hepatology 2010; 51: 445-453

53 Sanyal AJ, Banas C, Sargeant C, Luketic VA, Sterling RK, Stravitz RT, Shiffman ML, Heuman D, Cotterrell A, Fisher RA, Contos MJ, Mills AS. Similarities and differences in outcomes of cirrhosis due to nonalcoholic steatohepatitis and hepatitis C. Hepatology 2006; 43: 682-689

54 Gluud C, Brok J, Gong Y, Koretz RL. Hepatology may have problems with putative surrogate outcome measures. J Hepatol 2007; 46: 734-742

55 Angulo P. Long-term mortality in non alcoholic fatty liver disease: is liver histology of any prognostic significance? Hepatology 2010; 51: 373-375

56 Vuppalanchi R, Chalasani N. Nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: selected practical issues in their evaluation and management. Hepatology 2009; 49: 306-317

57 Musso G, Gambino R, Cassader M. Emerging molecular targets for the treatment of nonalcoholic fatty liver disease. Annu Rev Med 2010; 61: 375-392

S-Editor Wang JL L-Editor Hughes D E-Editor Lin YP