Variation in Headspace Volatiles of Saffron Determined by GC×GC-ToF-MS

Busisiwe N. Zwane¹, Guy P. Kamatou¹, Alvaro M. Viljoen², Georges Betti³, and Mathias Schmidt⁴

Abstract
Saffron, obtained from the stigmas of Crocus sativus L. (Iridaceae), is the most expensive spice traded worldwide. In addition to its culinary uses, various medicinal properties have been confirmed for saffron, which has recently captured the interest of the phytotherapy industry. The quality of saffron is determined by the presence of 3 compounds, namely, crocin, picrocrocin, and safranal, with the latter being responsible for the distinct aroma characteristic of saffron. To determine the volatiles and assess possible geographical variation, headspace analysis using 1-dimensional and 2-dimensional gas chromatography (GC) on 26 samples collected from 9 countries was undertaken. The major constituents identified include safranal, 4-ketoisophorone, acetic acid, 2(5H)-furanone, and 1,4-cyclohexanedione-2,2,6-trimethyl. Quantitative rather than a qualitative variation was noted in the samples from different origins. The levels of safranal ranged from 22.1% to 62.4%. This study represents the first report on the headspace volatiles of saffron using GC×GC-time-of-flight-mass spectrometry and clearly demonstrates the superior chromatographic potential of 2-dimensional GC compared with conventional 1-dimensional GC.

Keywords
Crocus sativus, saffron, safranal, GC, GCxGC, spice

Received: July 25th, 2020; Accepted: September 28th, 2020.

Saffron is obtained from the stigmas of Crocus sativus L. (Iridaceae), a Mediterranean Crocus species with a mysterious origin.¹ Pharmacological studies on saffron have confirmed various biological properties such as antihypertensive,² anticonvulsant,³ and antitussive activities.⁴ Other biological activities of saffron include its effects on sexual behavior⁵ and its anxiolytic⁶ and relaxant properties.⁷ The antinociceptive and anti-inflammatory activities of saffron extracts have also been reported.⁸ In clinical studies, positive results have been demonstrated in the treatment of depression,⁹,¹⁰ Morbus Alzheimer,¹¹,¹² and sexual dysfunction in women and men.¹³,¹⁴ Furthermore, antigenotoxic and cytotoxic effects of saffron have been evaluated, and results indicated that saffron is not toxic.¹⁵ Regardless of these promising medicinal properties, saffron is still primarily used as a coloring and flavoring substance in food.¹⁶

Due to its popularity, tedious, and labor-intensive cultivation, it ranks as the most expensive spice in the marketplace. The majority of saffron on the world markets stems from the region of Khorasan (Eastern Iran/Western Afghanistan), with further noteworthy cultivations in northern Africa (Morocco and Tunisia), India, and, to a smaller scale, in France and China. Albeit Spain has lost most of its saffron-producing capacities, considerable quantities of saffron are traded on the world market as “Spanish saffron” to justify higher prices. Next to testing the applicability of a gas chromatography (GC)×GC–time-of-flight (ToF)-mass spectrometry (MS) method for quality control, we wanted to test whether regional and climatic differences are reflected in the composition of saffron constituents from sources with a traceable origin.

No single compound gives a food product its distinctive flavor and aroma, but it is the combination of volatile compounds that collectively impart the unique flavor and fragrance which defines a specific culinary herb or spice. The quality of saffron is determined by the ISO 3632 standard (1993)¹⁷ and is based on the levels and relative ratios of crocin (color), safranal

1Department of Pharmaceutical Sciences, Tshwane University of Technology, Pretoria, South Africa
2SAMRC Herbal Drugs Research Unit, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
3Medicinal & Aromatic Plants R&D, Les Algorithmes, Aristote A, Route des Lucioles, Sophia Antipolis, France
4Herbresearch, Wartbergweg, Mattsies, Germany

Corresponding Author:
Guy P. Kamatou, Department of Pharmaceutical Sciences, Tshwane University of Technology, Private Bag X680, 0001, Pretoria, South Africa.
Email: kamatoug@tut.ac.za
(aroma), and picrocrocin (taste) determined by photometric methods. A high amount of these compounds is used as a parameter to benchmark for quality.18 The chemical composition of saffron may not only be geographically variable as saffron is cultivated in a range of climatic conditions which may impact the quality. This variation may also be a function of parameters such as the harvesting protocol, the drying method, and storage conditions.19-21

Many chromatographic techniques have been used to isolate and identify the nonvolatile saffron compounds or to determine its volatile constituents which include high-performance liquid chromatography,22,23 GC coupled to MS (GC-MS),24,25 GC coupled to flame ionization detector.25,26 Headspace analysis has been widely used to generate flavor profiles for a variety of foods and spices. This technique is simple, non destructive, clean, and can be applied to both liquid and solid matrices. Usually, only the volatile fraction is sampled and transferred to conventional GC (1-dimensional GC) for analysis.7-20 However, this technique is less sensitive, and separation of isomers may not be achieved.

In this study, headspace analysis by 2-dimensional GC coupled to MS (GC×GC-ToF-MS) was undertaken to achieve a comprehensive analysis of saffron volatiles. Results obtained from various samples sourced from different countries are compared with compositional data generated by conventional 1-dimensional GC.

Materials and Methods

Sample Collection

Twenty-six samples obtained from 9 countries, including Afghanistan, Algeria, China, France, Greece, India, Iran, Morocco, and Spain (Table 1), were selected for this study. The samples were supplied by Dr Mathias Schmidt and Georges Betti.

Sample Preparation

Saffron stigmas were ground into a fine powder. The powdered saffron samples (0.5 g) were weighed into the 20 mL headspace vials for analysis. The headspace analysis is a solvent-free technique aimed at sampling the gaseous or vapor phase in equilibrium (or not) with a solid phase in order to characterize its composition.27-29 However, this technique is less sensitive, and separation of isomers may not be achieved.

In this study, headspace analysis by 2-dimensional GC coupled to MS (GC×GC-ToF-MS) was undertaken to achieve a comprehensive analysis of saffron volatiles. Results obtained from various samples sourced from different countries are compared with compositional data generated by conventional 1-dimensional GC.

Materials and Methods

Sample Collection

Twenty-six samples obtained from 9 countries, including Afghanistan, Algeria, China, France, Greece, India, Iran, Morocco, and Spain (Table 1), were selected for this study. The samples were supplied by Dr Mathias Schmidt and Georges Betti.

Sample Preparation

Saffron stigmas were ground into a fine powder. The powdered saffron samples (0.5 g) were weighed into the 20 mL headspace vials for analysis. The headspace analysis is a solvent-free technique aimed at sampling the gaseous or vapor phase in equilibrium (or not) with a solid phase in order to characterize its composition.

GC×GC-ToF-MS, GC-ToF-MS, and Headspace Analysis Procedure

GC×GC-ToF-MS and headspace analysis procedure. The GC×GC system consisted of a multipurpose sampler (Gerstel) which was operated in the headspace mode. The system was equipped with a 1000 μL gas syringe and a tray for 20 mL vials (Gerstel). Each sample was heated and agitated at the same time for 5 minutes, at 50 °C in the preheating module. The 26 saffron samples (0.5 g) were placed in headspace vials and were analyzed using a Leco Pegasus 4 GC×GC-ToF-MS system.

Each sample (1000 μL) was injected into the GC×GC system with a 5:1 split ratio. The system consisted of an Agilent 7890 Gas Chromatograph with a cryogenic thermal modulator (Leco) and a secondary oven. A 30 m × 0.25 mm × 0.25 μm film thickness, Rxi-5Sil MS GC capillary column, was used as the first column analysis; the second column was 0.790 m × 0.25 mm × 0.25 μm film thickness, Rxi-5Sil MS GC capillary column. Helium was used as the carrier gas at a constant flow rate of 1.50 mL/min, front inlet septum purge flow at 3 mL/min, and purge valve time 60 seconds after the beginning of the run. The inlet temperature was 200 °C, from the beginning and throughout the run. The primary column was programmed with an initial oven temperature at 40 °C for 1 minute at the rate of 10 °C/min and was ramped to 220 °C for 2 minutes. The secondary column temperature program was set to an initial temperature of 60 °C for 0.50 minutes then ramped at 10 °C/min to 240 °C for 2 minutes. The thermal modulator’s initial temperature was set at 80 °C for 1 minute at the rate of 10 °C /min and was ramped to 260 °C for 2 minutes. Both the

Table 1. Origin of Saffron Samples Studied.

Codes	Origin of the samples	Year
S1	Val de Voi Touraine (France, old cultivar)	2011
S2	Limousin (France, old cultivar)	2012
S3	France, cultivar introduced from unknown origins	2008
S4	Algeria (Constantine, originally from France)	2012
S5	Sold in Spain as “Spanish saffron,” non-traceable	2012
S6	Sold in Spain as “Spanish saffron,” non-traceable	2009
S7	Greece (Kozani, biocultivation, old cultivar)	2011
S8	Greece (Kozani, biocultivation, old cultivar)	2011
S9	Greece (Kozani, biocultivation, old cultivar)	2009
S10	Greece (Kozani, old cultivar)	2010
S11	Afghanistan (Herat, origin Khorasan)	2011
S12	Afghanistan (origin Khorasan?)	2010
S13	Afghanistan (origin Khorasan?)	2011
S14	Morocco (Taliouine, old cultivar)	2010
S15	Morocco (Taliouine, old cultivar)	2008
S16	Morocco (Taliouine, old cultivar)	2009
S17	Iran (North Khorasan, old cultivar)	2010
S18	Iran (South Khorasan, old cultivar)	2012
S19	Iran (Tarbat/Khorasan, old cultivar)	2009
S20	Iran (Kurdistan, old cultivar originally from Khorasan)	2010
S21	Iran (Torbate)	2011
S22	Iran (Ghaenat)	2012
S23	Iran (Gonabad)	2010
S24	India (Mogra)	2010
S25	India (Lacha)	2010
S26	China	2011
Table 2. Chemical Constituents (% Area) of Headspace Analysis of Saffron Using 1-Dimensional and 2-Dimensional GC.

Name	1st Dimension (RT, s)	2nd Dimension (RT, s)	% Area	GC×GC-ToF-MS	GC-ToF-MS
Pentanal	210 0.57	0.8	nd		
5-(1,1-dimethylpropyl)-1,3-cyclopentadiene	210 0.75	1.3	1.4		
2-methyl-3-Pentanone	212 0.61	1.1	nd		
Hexanal	256 0.62	2.8	0.9		
2,3-Dihydro-3-methyl-Furan	296 0.56	0.4	nd		
3-Methyl-2-butanal	300 0.56	0.7	nd		
1-Butanol	306 0.52	1.2	nd		
1-Penten-3-ol	318 0.52	1.8	nd		
2,3,4,5-tetramethyl-2-cyclopenten-1-one	324 0.76	0.3	nd		
Heptanal	352 0.65	0.2	0.1		
3-Methyl-2-butanol	354 0.55	0.1	nd		
1-Pentanol	390 0.53	0.4	0.2		
2-Pentyl-furan	390 0.73	0.4	nd		
6-Methyl-2-heptanone	392 0.67	0.2	0.1		
4,4-Dimethyl-2-cyclopenten-1-one	414 0.59	0.6	0.3		
Acetoin	418 0.5	0.4	nd		
Ethanone, 1-((2-methyl-1-cyclopent-1-yl)-	418 0.64	0.5	0.1		
1-Hydroxy-2-propanone	428 0.49	0.08	nd		
Octanal	436 0.68	0.1	0.1		
1-((1-Cyclohexen-1-yl)-ethanone	450 0.63	0.2	0.3		
Unidentified	456 0.68	0.8	0.5		
Propanoic acid, 2-hydroxy-, ethyl ester, (S)-	462 0.52	tr	nd		
Unidentified	468 0.64	0.4	0.2		
Hemellitol	474 0.68	0.6	0.2		
α-Phellandrene	510 0.64	0.3	0.2		
1,4-Cyclohexadiene, 3,3,6,6-tetramethyl-	516 0.68	0.3	0.2		
Nonanal	520 0.71	0.3	0.1		
β-Isophorone	522 0.67	1.8	nd		
3 Furfural	530 0.5	0.1	0.05		
Unidentified	538 0.64	0.1	nd		
Unidentified	540 0.65	0.5	nd		
Arba Cyclocitratal	546 0.69	0.9	0.1		
1-Octen-3-ol	550 0.57	0.1	nd		
1-Heptanol	554 0.56	0.1	nd		
Acetic acid	556 0.46	11.0	3.9		
3,4,4-Trimethyl-2-Cyclohexen-1-one	556 0.65	0.1	0.1		
Unidentified	558 0.5	0.1	nd		
Unidentified	564 0.53	0.1	tr		
3,4 Dimethylacetophenone	568 0.66	0.1	0.1		
1H-Pyrazole, 4,5-dihydro-5,5-dimethyl-4-	576 0.64	0.1	0.3		
2-Acetyl-5-methylfuran	580 0.56	0.1	tr		
1-Hexanoyl, 2-ethyl-	582 0.58	tr	nd		
5-Methyl furfural	584 0.53	tr	nd		
2-Caren-10-al	594 0.65	1.8	1.8		
t-Decalin	598 0.57	0.1	0.1		
Benzaldehyde	608 0.55	0.1	0.1		
Unidentified	622 0.63	2.4	0.9		
Propanoic acid	626 0.46	0.1	0.1		
3,7-Dimethyl-1,6-Octadien-3-ol	626 0.6	tr	nd		
Unidentified	630 0.49	0.2	nd		

(Continued)
Name	1st Dimension (RT, s)	2nd Dimension (RT, s)	% Area
2,2,4,4-Tetramethyl-1,3-cyclobutanedione,	630	0.56	0.2
Isophorone epoxide	630	0.61	tr
1-Octanol	632	0.57	0.3
Unidentified	636	0.56	nd
Bicyclo[2.2.1]hept-2-ene, 1,7,7-trimethyl-	640	0.6	0.1
Propanoic acid, 2-methyl	644	0.47	0.1
Unidentified	660	0.57	0.3
4,4-Dimethyl-cyclohex-2-en-1-ol	660	0.58	0.3
α-Isophorone	664	0.61	2.5
Ethanol, 2-(2-ethoxyethoxy)-	670	0.53	tr
Unidentified	670	0.54	tr
Oxalic acid	676	0.44	8.4
Butanoic acid, 4-hydroxy-	680	0.5	0.3
Benzaldehyde, 2-methyl	682	0.56	tr
2-Isopropylidene-3-methylhexa-3,5-dienal	688	0.61	tr
Acetophenone	698	0.56	tr
2,5,5-Trimethyl-1-hexen-3-ynes	700	0.66	0.4
Safranal	702	0.64	11.2
2-Decenal, (Z)	704	0.67	0.2
2-Hydroxy-3,5,5-trimethyl-cyclohex-2-ene	708	0.59	0.6
Unidentified	712	0.58	0.1
Unidentified	716	0.59	0.1
5-Hexen-2-one	720	0.5	tr
4-Ketoisophorone	728	0.58	18.2
Unidentified	738	0.61	0.1
2(5H)-Furanone, 3-methyl	740	0.5	tr
Unidentified	750	0.58	0.1
1,4-Cyclohexanediene-2,2,6-trimethyl	752	0.57	0.4
Unidentified	758	0.45	tr
Benzaldehyde, 2,5-dimethyl	758	0.58	0.2
2,4-Cycloheptadien-1-one, 2,6,6-trimethyl-	758	0.62	0.7
2(5H)-Furanone	762	0.48	2.5
Benzaldehyde, 2,5-dimethyl	762	0.59	tr
Benzenemethanol, α,α-dimethyl-	766	0.53	tr
Unidentified	768	0.61	tr
Unidentified	772	0.58	0.1
2-Undecenal	778	0.69	0.1
Unidentified	784	0.56	2.8
Unidentified	786	0.57	tr
Unidentified	790	0.46	tr
Unidentified	832	0.6	tr
Hexanoic acid	834	0.48	0.1
Dimethyl sulfoxide	852	0.47	0.2
Propanoic acid, 2-methyl−1-(1,1-dimethyl-ethyl)−2-methyl-1,3-propanediyl ester	882	0.83	0.3
Phenylethyl alcohol	864	0.51	0.2
3,5-Octadiene, 4,5-diythyl−(E,Z)	870	0.59	0.09
Unidentified	892	0.52	tr
Ethanone, 1-(1H-pyrrol-2-yl)-	898	0.48	tr
Unidentified	900	0.57	0.3
Phenol	918	0.46	0.3

(Continued)
front inlet and transfer line temperature were constant at 200 °C and 225 °C, respectively. The total analysis time for the GC method was 21 minutes. The MS mass range was 45-400 m/z with an acquisition rate of 100 spectra/s. The ion source chamber was set at 200 °C. To confirm the identity of the major volatile constituent, safranal was purchased from Sigma Aldrich and also injected under similar conditions.

GC-ToF-MS analysis. For the GC-ToF-MS analysis, the procedure was the same as described above with the exception that only the 30 m × 0.25 mm × 0.25 μm film thickness capillary column (Restek) was used. The GC conditions are those described for the GC×GC analysis above with the secondary oven turned off.

Data Processing and Analysis

Data were processed automatically using LECO ChromaTOF software version 4.50. The minimum signal to noise ratio (S/N) cut off >500 based on “unique mass,” the most specific mass usually extracted for analyte after deconvolution of the mass spectra signal. Identification of peaks was based on NIST Mass Spectral Library (NIST 11). Library similarity factors were reported on a scale ≥800 in the MS fragmentation in the database (high match is associated with better match) for both forward and reverse search and only compounds with the similarity higher than 80% were tentatively assigned a name. The percentage area on the chromatogram and the retention time were obtained using the ChromaTOF software version. Relative abundance (% area) calculations were based on the ratio between the peak area of each compound and the sum of areas of all selected compounds.

Results and Discussions

In this study, headspace GC×GC-ToF-MS was applied for the first time to determine the volatile constituents of saffron from

Table 3. Maximum and Minimum Relative Percentage Area of the 5 Major Volatile Constituents of Saffron From Various Origins.

Compounds	Minimum	Maximum	Average
Safranal, 2,6,6-Trimethyl-1,3-cyclohexadiene-1-carboxaldehyde	22.1	62.4	41.2
4-Ketoisophorone, 2,6,6 trimethyl-2-cyclohexene-1,4 dione	5.0	13.0	8.9
Acetic acid	1.0	6.2	2.7
2(3H)-Furanone, dihydro-4-hydroxy-	0.7	6.8	2.7
1,4-Cyclohexanedione-2,2,6-trimethyl	1.6	6.8	4.4
different origins. Out of the 26 saffron samples investigated from 9 countries, quantitative rather than a qualitative variation of chemical constituents was recorded. Since no significant qualitative variation was obtained, 1 sample (from France, S2) was arbitrarily selected as a representative sample for the headspace of saffron using 1-dimensional and 2-dimensional GC presented in Figure 1. The chemical constituents on 1-dimensional and 2-dimensional GC of saffron are presented in Table 2. The major compounds detected in all the samples were safranal, 4-ketoisophorone, acetic acid, 2,2,6-trimethyl-1,4-cyclohexanedione, and 2(5H)-furanone. The amount of these compounds ranged as follows: safranal (22.1%-62.4%), 4-ketoisophorone (5.0%-13.0%), acetic acid (1.0%-6.2%), 2(5H)-furanone (0.7%-6.8%), and cyclohexanedione-2,2,6-trimethyl-1,4 (1.6%-6.8%) (Table 3, Figure 2). Safranal, one of the compounds used to determine the quality of the spice, was found in significant amounts in the samples investigated.

Saffron volatile constituents are divided into 2 groups depending on their structures and/or precursors. The first is made up of groups of compounds having structures that bear a distinct similarity as safranal, such as isophorone and 4-ketoisoprophorone. The second group, known as C_{13}-norisoprenoids, proceeds from the degradation of lipophilic carotenoids and includes the constituents with a partially unsaturated 4-hydroxy-2, 6, 6-trimethyl-3-oxycyclohexa-1, 4-diene-1-carboxyaldehyde and an isomer of safranal.
Zwane et al.

(2,6,6-trimethyl-1, 4-cyclohexadiene-1-carboxaldehyde).31-34 Isophorone also present in saffron plays a noticeable role in the generation of new compounds during the aging process.27

Safranal is responsible for the aroma of this spice, and the quality of saffron is based on the amount of this compound. Safranal is an important key odorant in saffron as determined by GC-MS-Olfactometry in previous studies.35 The ISO norm 3632 classifies the quality of saffron by safranal content. No valid conclusions can, however, be drawn from the safranal determination as the samples were not standardized by harvesting technique and storage time. The latter has a major impact on safranal contents.22,36 Fresh stigmas do not contain important quantities of safranal; this compound is formed during drying and storage through liberation from picrocrocin.20,37,38 Said transformation is possibly the reason why in the sequence of safranal contents the Spanish samples range higher than the Iranian and Moroccan samples, although there is a high probability that the Spanish samples were in fact just relabeled saffron from Iran or Morocco and reached the higher safranal levels only by longer storage and transit times.

A comparison between the analysis using 1-dimension and 2-dimension showed a high sensitivity of 2-dimensional chromatography with more compounds identified. Table 2 shows some compounds on 1-dimension eluted at the same retention time, while on 2-dimension, they eluted at different retention times. Furthermore, some isomers such as safranal isomer, 3-furfural (Table 2), could not be separated using 1-dimensional GC.

Based on the results obtained in this study, the different chemical constituents in saffron are highly variable as there are major quantitative differences of the same compounds from saffron obtained even from the same country.

Conclusions

Safranal was identified as the major constituent in all the samples investigated. The 26 samples analyzed showed a general similarity in chemical constituents but differed quantitatively. Such differences in a complex matrix such as saffron can be detected and quantified using the superior separation abilities of 2-dimensional GC. Unfortunately, the comparison of samples of different origins did not yield parameters and specifications typical for a given geographic origin, which might have been used to detect fraudulent labeling in saffron samples.

Acknowledgments

We would like to thank Mr Peter Gorst-Allman from LECO for his technical assistance. We also thank Prof Sandra Combrinck for editing the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Financial assistance of Tshwane University of Technology and the National and Research Foundation for this research are hereby acknowledged.
ORCID ID
Guy P. Kamatou https://orcid.org/0000-0001-5518-9611

References
1. Gismondi A, Sero M, Canuti L, Canini A. Biochemical, antioxidant and antineoplastic properties of Italian saffron (Crocus sativus L.). Am J Plant Sci. 2012;3:1573-1580.
2. Fatehi M, Rashidibady T, Fatehi-Hassanabad Z. Effects of Crocus sativus petals’ extract on rat blood pressure and on responses induced by electrical field stimulation in the rat isolated vas deferens and guinea-pig ileum. J Ethnopharmacol. 2003;84(2-3):199-203. doi: 10.1016/S0378-8741(02)00299-4
3. Hosseinizadeh H, Talebzadeh F. Anticonvulsant evaluation of safranal and crocin from Crocus saffron in mice. Fitoterapia. 2005;76(7-8):722-724. doi:10.1016/j.fitote.2005.07.008
4. Hosseinizadeh H, Gheenati J. Evaluation of the antitussive effect of stigma and petals of saffron (Crocus sativus) and its components, safranal and crocin in guinea pigs. Fitoterapia. 2006;77(6):446-448. doi:10.1016/j.fitote.2006.04.012
5. Hosseinizadeh H, Zaeec T, Sadeghi A. The effect of saffron, Crocus sativus stigma, extract and its constituents, safranal and crocin on sexual behaviors in normal male rats. Phytomedicine. 2008;15(6-7):491-495. doi:10.1016/j.phymed.2007.09.020
6. Pitsikas N, Bouladakis A, Georgiadou G, Tarantilis PA, Sakellaris N. Effects of the active constituents of Crocus sativus L., crocins, in an animal model of anxiety. Phytomedicine. 2008;15(12):1135-1139. doi:10.1016/j.phymed.2008.06.005
7. Nemati H, Boskabady MH, Ahmadzadef Vostakolaei H, Ahmadzadef VH. Stimulatory effect of Crocus sativus (saffron) on beta2-adrenoceptors of guinea pig tracheal chains. Phytomedicine. 2008;15(12):1038-1045. doi:10.1016/j.phymed.2008.07.008
8. Hosseinizadeh H, Younesi H. Petal and stigma extracts of (Crocus sativus L.) have antinociceptive and anti-inflammatory effects in mice. BMC Pharmacol. 2002;2:1-8.
9. Modabbernia A, Akhondzadeh S. Saffron, passionflower, valerian and SAGE for mental health. Psychiatr Clin North Am. 2013;36(1):85-91. doi:10.1016/j.psc.2012.12.007
10. Shahansouri N, Farokhnia M, Abbasi S-H, et al. A randomized, double-blind, clinical trial comparing the efficacy and safety of Crocus sativus L. with fluoxetine for improving mild to moderate depression in post percutaneous coronary intervention patients. J Affect Disord. 2014;155:216-222. doi:10.1016/j.jad.2013.11.003
11. Akhondzadeh S, Shafigee Sabet M, Harirchian MH, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacology. 2010;207(4):637-643. doi:10.1007/s00213-009-1706-1
12. Farokhnia M, Shafiee Sabet M, Iranpour N, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol. 2014;29(4):351-359. doi:10.1002/hup.2412
13. Kashani L, Raisi F, Saroukhani S, et al. Saffron for treatment of fluoxetine-induced sexual dysfunction in women: randomized double-blind placebo-controlled study. Hum Psychopharmacol. 2013;28(1):54-60. doi:10.1002/hup.2282
14. Modabbernia A, Sohrabi H, Naschi A-A, et al. Effect of saffron on fluoxetine-induced sexual impairment in men: randomized double-blind placebo-controlled trial. Psychopharmacology. 2012;223(4):381-388. doi:10.1007/s00213-012-2729-6
15. Abdullahi F, Riveron-Negrette L, Caballero-Ortega H, et al. Use of in vitro assays to assess the potential antigenotoxic and cytotoxic effects of saffron (Crocus sativus). Toxicol In Vitro. 2003;17(5-6):731-736. doi:10.1016/S0887-2333(03)00098-5
16. Bhargava KV. Medicinal uses and pharmacological properties of Crocus sativus Linn (saffron). Int J Pharm Pharm Sci. 2011;5:22-26.
17. ISO 3632-1. The International Organisation for Standardisation (1st), 1993; Switzerland. www.iso.ch/iso/en/
18. Tarvand. Saffron classification. 2006. www.tarvandsaffron.com/classification.htm
19. Kanakis CD, Daferera DJ, Tarantinis PA, Polissiou MG. Qualitative determination of volatile compounds and quantitative evaluation of safranal and 4-hydroxy-2,6,6-trimethyl-1-cyclohexene-1-carboxaldehyde (HTCC) in Greek saffron. J Agric Food Chem. 2002;50(4):4515-4521. doi:10.1021/jf0104908j
20. Lozano P, Delgado D, Gómez D, Rubio M, Iborra JL. A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography. J Biochem Biophys Methods. 2000;43(1-3):367-378. doi:10.1016/S0165-022X(00)00090-7
21. Zareena AV, Vairay PS, Gholap AS, Bongirwar DR. Chemical investigation of gamma-irradiated saffron (Crocus sativus L.). J Agric Food Chem. 2001;49(2):687-691. doi:10.1021/jf000092I
22. Caballeo-Ortega H, Pereda-Miranda R, Abdullahi F. HPLC quantification of major active components from 11 different saffron (Crocus sativus L.) sources. Food Chem. 2007;2007(3):1126-1131.
23. Lage M, Cantrell CL. Quantification of saffron (Crocus sativus L.) metabolites crocins, picrocrocin and safranal for quality determination of the spice grown under different environmental Moroccan conditions. Sci Hortic. 2009;121(3):366-373. doi:10.1016/j.scienta.2009.02.017
24. Jalali-Heravi M, Parastar H, Ebrahimi-Najafabadi H. Characterization of volatile components of Iranian saffron using factorial-based response surface modeling of ultrasonic extraction combined with gas chromatography-mass spectrometry analysis. J Chromatogr A. 2009;1216(33):6088-6097. doi:10.1016/j.chroma.2009.06.067
25. Maggi I, Carmona M, Zalacain A, et al. Changes in saffron volatile profile according to its storage time. Food Res Int. 2010;43(5):1329-1334. doi:10.1016/j.foodres.2010.03.025
26. Culleré L, San-Juan F, Cacho J. Characterisation of aroma active compounds of Spanish saffron by gas chromatography–olfactometry: quantitative evaluation of the most relevant aromatic compounds. Food Chem. 2011;127(4):1866-1871. doi:10.1016/j.foodchem.2011.02.015
27. Carmona M, Martínez J, Zalacain A, Rodríguez-Méndez ML, de Saja JA, Alonso GL. Analysis of saffron volatile fraction by
28. Carmona M, Zalacain A, Salinas MR, Alonso GL. A new approach to saffron aroma. *Crit Rev Food Sci Nutr*. 2007;47(2):145-159. doi: 10.1080/10408390600626511

29. Du H, Wang J, Hu Z, Yao X. Quantitative Structure-Retention relationship study of the constituents of saffron aroma in SPME-GC-MS based on the projection pursuit regression method. *Talanta*. 2008;77(1):360-365. doi:10.1016/j.talanta.2008.06.038

30. Topi D. Volatile and chemical Compositions of freshly squeezed sweet Lime (*Citrus limetta*) Juices. *J Raw Mater Process Foods*. 2020;1:22-27.

31. Rödel W, Petrzika M. Analysis of the volatile components of saffron. *J. High Resol. Chromatogr.*. 1991;14(11):771-774. doi:10.1002/jhrc.1240141118

32. Tarantilis PA, Polissiou MG. Isolation and Identification of the Aroma Components from Saffron (*Crocus sativus*). *J Agric Food Chem*. 1997;45(2):459-462. doi:10.1021/jf960105e

33. Winterhalter P, Straubinger M, Saffron SRM. Renewed interest in an ancient spice. *Food Rev Int*. 2000;16(1):39-59. doi:10.1081/FRI-100100281

34. Zarghami NS, Heinz DE. Monoterpene aldehydes and isophorone-related compounds of saffron. *Phytochemistry*. 1971;10(11):2755-2761. doi:10.1016/S0031-9422(00)97275-3

35. Amanpour A, Sonmezdog AS, Kelebek H, Selli S. GC–MS–olfactometric characterization of the most aroma-active components in a representative aromatic extract from Iranian saffron (*Crocus sativus* L.). *Food Chem*. 2015;182:251-256. doi:10.1016/j.foodchem.2015.03.005

36. Carmona M, Zalacain A, Pardo JE, López E, Alvarruiz A, Alonso GL. Influence of different drying and aging conditions on saffron constituents. *J Agric Food Chem*. 2005;53(10):3974-3979. doi:10.1021/jf0404748

37. Himeno H, Sano K. Synthesis of crocin, picrocrocin and safraonal by saffron stigma-like structures proliferated in vitro. *Agric Biol Chem*. 1987;51(9):2395-2400. doi:10.1271/bbb1961.51.2395

38. Raina BL, Agarwal SG, Bhatia AK, Gaur GS. Changes in pigments and volatiles of Saffron (*Crocus sativus* L.) during processing and storage. *J Sci Food Agric*. 1996;71(1):27-32. doi:10.1002/(SICI)1097-0010(199605)71:1<27::AID-JSFA542>3.0.CO;2-U