Storage of Stock Cultures of Filamentous Fungi, Yeasts, and Some Aerobic Actinomycetes in Sterile Distilled Water

M. R. McGINNIS, A. A. PADHYE, AND L. AJELLO
Center for Disease Control, Atlanta, Georgia 30333

Received for publication 12 April 1974

Castellani's procedure for maintaining cultures of filamentous fungi and yeasts in sterile distilled water was evaluated. Four hundred and seventeen isolates of 147 species belonging to 66 genera of filamentous fungi, yeasts, and aerobic actinomycetes were maintained in sterile distilled water at room temperature over periods ranging from 12 to 60 months in four independent experiments. Of the 417 cultures, 389 (93%) survived storage in sterile distilled water. The selection of good sporulating cultures and sufficient inoculum consisting of spores and hyphae suspended in sterile distilled water were the most important factors influencing survival in water over a longer period of time. The technique was found to be simple, inexpensive, and reliable.

Several methods have been proposed for maintaining culture collections of fungi. Among these, dispersal of spores in sterile soil (1), sterile mineral oil overlays (3), deep freezing (4), ultra-low temperature freezing (9), and lyophilization (7) are the most favored. With the exception of the sterile soil and sterile mineral oil overlay techniques, the other methods involve time and expensive equipment.

Castellani (5, 6) reported maintenance of several cultures of human pathogenic fungi and yeasts in sterile distilled water for 12 months without any apparent changes in their morphology or physiology. A slightly modified version of Castellani's method, wherein physiological salt solution was substituted for distilled water and screw-capped bottles were used in place of cotton-plugged test tubes, was described by Benedek (2). Hejtmankova-Uhrova (8) reported successful maintenance of 73 strains of fungi belonging to 13 genera in sterile distilled water for 12 months.

The present study comprises four independent experiments. They were initiated at different times to evaluate Castellani's technique of maintaining fungal cultures in sterile distilled water. The results of these experiments are presented.

MATERIALS AND METHODS

Four hundred and seventeen isolates of 147 species belonging to 66 genera were included. Of these genera, 48 were of filamentous fungi, 15 were yeast genera, and 3 were aerobic actinomycetes.

The viability of fungal cultures stored in sterile distilled water was tested by four independent workers. Even though many of the species and genera investigated were common to all four experiments, the individual isolates selected by each worker differed in each experiment. Some of the genera were represented by several species, and each species in turn included several isolates. In some cases, on the other hand, the genus and species were represented by a single isolate.

The first experiment was initiated in 1969, and covered only 16 isolates of 16 species belonging to 15 genera. The viability of these isolates maintained in sterile distilled water was tested only once, that is, after 60 months of storage. No attempt was made to revive these cultures between 1969 and 1974.

Similarly, the second and third experiments were started in 1970 and 1972, and their results were read only once. The second experiment included 18 isolates of 17 species belonging to 12 genera. The third experiment covered 48 species belonging to 27 genera. Fifty-three isolates were included in the third experiment. The cultures stored in sterile distilled water from these two experiments were revived at the same time that those from the first experiment were cultured for viability.

The fourth experiment, which was started in 1973, included a greater number of cultures than were used in the three previous experiments. One hundred and twenty-six species of 58 genera were represented by 330 isolates. These 330 water cultures were revived after 12 months along with the other cultures from the three previous experiments.

Cultures were inoculated onto slants of potato dextrose agar in screw-capped tubes (20 by 150 mm) and were incubated at 25°C for 2 weeks. Six to seven milliliters of sterile distilled water was pipetted aseptically onto each 2-week-old culture. The spores and fragments of hyphae were dislodged by lightly scraping the aerial growth with the same pipette, and the resultant suspension was withdrawn and trans-
Yeasts tightened labeled Pathogenic Saprophytes Pathogenic Saprophytes

Species	Viable isolates/ no. tested
Candida albicans	1/1
Cryptococcus neoformans	1/1
Geotrichum candidum	1/1
Cladosporium werneckii	1/1
Epidermophyton floccosum	0/1
Leptosphaeria senegalensis	1/1
Nocardia asteroides	1/1
Petriellidium boydii	1/1
Phialophora jeanselmi	1/1
P. verrucosa	1/1
Trichophyton schoenleinii	1/1
Alternaria sp.	1/1
Aspergillus vernicolor	1/1
Aureobasidium pullulans	1/1
Cladosporium sp.	1/1
Syncephalastrum sp.	1/1

*Total number of genera = 15; total number of species = 16; number of viable isolates/number tested = 15/16; viability = 94%.

Species	Viable isolates/ no. tested
Candida albicans	2/2
C. krusei	1/1
C. parapsilosis	1/1
C. stellatoidea	1/1
C. tropicalis	1/1
Cryptococcus laurentii	2/2
C. neoformans	1/1
Geotrichum candidum	1/1
Saccharomyces cerevisiae	1/1
Torulopsis glabrata	1/1
Trichosporon cutaneum	1/1
Alternaria sp.	1/1
Aspergillus tamarii	1/1
A. ustus	1/1
Curvularia sp.	1/1
Fusarium sp.	1/1
Helicostylum piriforme	0/1
Helminthosporium sp.	1/1
Paecilomyces sp.	1/1
Trichoderma viride	1/1

*Total number of genera = 27; total number of species = 48; number of viable isolates/number tested = 49/53; viability = 92%.

For revival of cultures, 0.2 to 0.3 ml of the suspension was withdrawn with a sterile pipette and transferred to a fresh slant of PDA. The cultures were referred to a sterile glass 1-g vial. The cap of the vial was tightened to prevent evaporation of the water. The labeled vials then were stored at 25°C on laboratory shelves.

Table 1. Viability of water-stored cultures after 60 months (experiment 1)

Table 2. Viability of water-stored cultures after 48 months (experiment 2)

Table 3. Viability of water-stored cultures after 24 months (experiment 3)
Yeasts

Species	Viable isolates/no. tested	Species	Viable isolates/no. tested
Candida albicans	5/5	*Madurella mycetomi*	1/2
C. curvata	1/1	*Microsporum audouini*	1/1
C. guilliermondii	3/3	*M. canis*	4/5
C. kefyr	2/2	*M. cookei*	2/2
C. lypolytica	1/1	*M. distortum*	1/1
C. parapsilosis	3/3	*M. fuxigineum*	1/1
C. stellatoidea	2/2	*M. gypseum*	2/2
C. tropicalis	2/2	*M. persicolor*	5/6
Cryptococcus albidus	10/10	*M. racemosum*	1/1
C. diffuens	1/1	*M. vanbreuseghemii*	1/1
C. lauritii	3/3	*Mucor pusillus*	1/1
C. luteolus	1/1	*Nannizzia incurvata*	2/2
C. neoformans	12/12	*Nocardia asteroides*	5/5
C. terreus	2/2	*N. caviae*	1/1
C. unguiculatus	1/1	*Petriellidium boydii*	2/2
Debaromyces hansenii	3/3	*Phialophora dermatitidis*	1/1
Endomyces fibuligera	1/1	*P. guogeroti*	4/4
Geotrichum candidum	3/3	*P. jeanselmei*	9/9
Hansenula californica	2/2	*P. parasitica*	1/1
H. petersonii	1/1	*P. verrucosa*	2/2
H. polymorpha	2/2	*Piedraia hortai*	0/1
Kluveromyces fragilis	2/2	*Rhinoocladiella mansoniai*	2/2
Pichia sp.	4/4	*Scolecosidium humicola*	3/3
P. acaciae	1/1	*Scopulariopsis brevicaulis*	1/1
P. brasiliensis	1/1	*Sporothrix schenckii*	2/2
Pityosporum pachydermatis	1/1	*Streptomyces griseus*	1/2
Prototheca sp.	1/1	*Trichophyton ajelloi*	1/1
P. wickerhamii	10/11	*T. equinum*	1/1
P. zoopfi	5/5	*T. gallinae*	13/23
Rhodotorula sp.	1/1	*T. georgiae*	1/1
R. glutinis	2/2	*T. megnini*	2/2
R. rubra	5/5	*T. mentagrophytes*	12/13
Saccharomyces cerevisiae	1/1	*T. rubrum*	5/5
Sporabolomyces sp.	1/1	*T. schoenleinii*	1/1
Torrilopsis glabrata	4/4	*T. soudanensae*	2/2
Trichosporon cutaneum	3/3	*T. terrestrae*	3/3
T. capitatum	3/3	*T. tonsurans*	1/1
T. fermentans	1/1	*T. verrucosum*	2/2
T. penicillum	1/1	*T. violaceum*	0/1
Total	108/109	*T. yondulei*	0/1

Pathogenic molds and actinomycetes

Species	Viable isolates/no. tested	Species	Viable isolates/no. tested
Actinomadura pelletieri	1/2	*Abasia sp.*	2/2
Ajellomyces dermatitidis	2/2	*Acromonium sp.*	1/1
Arthroderma ciferrii	1/1	*Alternaria sp.*	2/2
A. uncinatum	1/1	*Aspergillus clavatus*	1/1
Aspergillus fumigatus	1/1	*A. glaucus*	1/1
A. niger	1/1	*A. nidulans*	4/4
Cladosporium bantianum	1/1	*A. terreus*	1/1
C. carrionii	5/5	*A. versicolor*	1/1
C. werneckii	17/17	*Aureobasidium pullulans*	21/22
Conidiobolus coronatus	0/1	*Beauveria sp.*	1/1
Epidermophyton floccosum	1/1	*Ceratocystis fimbriata*	1/1
Exophiala pisciphilus	1/1	*C. megalobrunnea*	1/1
E. salmonis	1/1	*C. stenoceras*	1/1
Fonsecaea pedrosii	4/4	*Chaetomium sp.*	1/1
Histoplasma capsulatum	1/1		

Note: Table 4. Viability of water-stored cultures after 12 months (experiment 4)
incubated at 25°C for 3 weeks and were observed periodically for growth. Those cultures that did not grow by the end of 3 weeks were retested with the same procedure. When no growth was observed after the second subculture, the isolates were recorded as not viable.

RESULTS AND DISCUSSION

It became clear from the results of the four experiments (Tables 1 to 4) that the viability of the isolates ranged from 92 to 94%. None of the cultures were found to be contaminated by bacteria or other fungi. All the yeast cultures survived. In addition, several fungi that are notoriously difficult to maintain over an extended period, such as *Aureobasidium pullulans*, showed a better survival rate when stored in water than on conventional media.

About 6 to 8% of the 417 cultures did not survive storage in water. These belonged to the following genera and species: *Madurella myceliomyces*, *Paracoccidioides brasiliensis*, *Trichophyton concentricum*, *T. gallinae*, *T. megginii*, *T. verrucosum*, and *T. yaoundii*. All of these species are poor sporulators. On routine media like Sabouraud dextrose agar or potato dextrose agar, the above-mentioned species do not sporulate regularly. A reexamination of the storage vials of these species revealed that the inoculum had been too scanty in most cases. When inocula were adequate in regard to size, and consisted of several wefts of hyphae, even some of the poorly sporulating or nonsporulating species like *T. violaceum*, *T. schoenleinii*, and *M. ferrugineum* survived storage very well.

To insure success, care must be taken to select actively sporulating isolates and to suspend adequate amounts of spores and pieces of hyphae in sterile distilled water for storage in vials. Care must also be taken not to allow the water to evaporate from the vials.

Some of the revived cultures of species with perfect forms were tested for their mating ability after storage in water. The species like *Arthroderma ciferrii* and *Petriellidium boydii* readily formed ascocarps in abundance on oatmeal salts agar. In case of heterothallic species like *Arthroderma uncinatum* and *Nannizzia incurvata*, numerous ascocarps were formed on oatmeal salts agar when the revived cultures were crossed with the opposite mating type strains. In the case of other imperfect species, the revived cultures were comparable to the originals with respect to morphology and sporulation. The storage in water showed suppression of pleomorphic changes in many cases, and, in cases of perfect species, showed no loss of mating competence.

Results of the present study clearly show that the method of maintaining fungal cultures in sterile distilled water for extended periods of time is simple, inexpensive, and reliable. The method offers many advantages for laboratories that maintain small culture collections for reference or teaching purposes. The water culture technique is simple, as is the technique for reviving these cultures. The storage space required for the vials is minimal, and, since the vials are stored at room temperature, expensive refrigeration is not needed. The revival technique is less messy than that for cultures stored under mineral oil.

ACKNOWLEDGMENT

We thank Sheila Whaley for her assistance in preparing the water cultures used in experiments 1 and 2.

LITERATURE CITED

1. Bakerspigil, A. 1953. Soil as a storage medium for fungi. Mycologia 45:596–604.
2. Benedek, T. 1962. On Castellani’s “water cultures” and Benedek’s “mycotheca” in chloroactophenol. Mycopathol. Mycol. Appl. 17:255–260.
3. Buell, C. B., and W. H. Weston. 1947. Application of the mineral oil conservation method to maintaining collections of fungus cultures. Amer. J. Bot. 3:555–561.
4. Carmichael, J. W. 1956. Frozen storage of stock cultures of fungi. Mycologia 48:378–381.
5. Castellani, A. 1939. Viability of some pathogenic fungi in distilled water. J. Trop. Med. Hyg. 42:225–226.
6. Castellani, A. 1967. Maintenance and cultivation of common pathogenic fungi of man in sterile distilled water. Further researches. J. Trop. Med. Hyg. 70:181–184.
7. Harris, R. J. C. (ed.). 1954. Biological applications of freezing and drying. Academic Press Inc. New York.
8. Hejtmanova-Uhrova, N. 1969. Nase zkusenosti s vodnimi kulurami dermatofytu. Csalka Derm. 44:154–155.
9. Shuh Wei Hwang. 1960. Effects of ultra-low temperatures on the viability of selected fungus strains. Mycologia 52:527–529.