Range-expansion effects on the belowground plant microbiome

Kelly S. Ramirez1,4, L. Basten Snoek1,2,3, Kadri Koorem1,4, Stefan Geisen5,1, L. Janneke Bloem1,5, Freddy ten Hooven1, Olga Kostenko1, Nikos Krigas6,7, Marta Manrubia8,1, Danka Caković6, Debbie van Raaij1, Maria A. Tsiafouli6, Branko Vreš9, Tatjana Čelik9, Carolin Weser1, Rutger A. Wilschut1,3 and Wim H. van der Putten1,3

Plant range expansion is occurring at a rapid pace, largely in response to human-induced climate warming. Although the movement of plants along latitudinal and altitudinal gradients is well-documented, effects on belowground microbial communities remain largely unknown. Furthermore, for range expansion, not all plant species are equal: in a new range, the relatedness between range-expanding plant species and native flora can influence plant–microorganism interactions. Here we use a latitudinal gradient spanning 3,000 km across Europe to examine bacterial and fungal communities in the rhizosphere and surrounding soils of range-expanding plant species. We selected range-expanding plants with and without congeneric native species in the new range and, as a control, the congeneric native species, totalling 382 plant individuals collected across Europe. In general, the status of a plant as a range-expanding plant was a weak predictor of the composition of bacterial and fungal communities. However, microbial communities of range-expanding plant species became more similar to each other further from their original range. Range-expanding plants that were unrelated to the native community also experienced a decrease in the ratio of plant pathogens to symbionts, giving weak support to the enemy release hypothesis. Even at a continental scale, the effects of plant range expansion on the belowground microbiome are detectable, although changes to specific taxa remain difficult to decipher.

Species range expansion in response to climate change is recognized as a major uncertainty in predicting the consequences of global warming for biodiversity and ecosystem functions1–4. Initially, attention was given to the ability of species to keep up with their shifting climate envelope; now, research questions have expanded to include the consequences of range shifts for community interactions5. The disruption of plant range expansions on aboveground interactions have been well-documented5–6, including on aboveground herbivores and higher trophic levels7. Although evidence suggests that introduced invasive species can alter soil communities8–9, the effects of plant range expansion on belowground microbial communities remain ambiguous.

The relationships between plants and their associated microorganisms can influence plant establishment, fitness and community assembly10–11. It has been proposed that range-expanding plants will be successful in their new range, because they lose their specialized soil pathogens12–13. At the same time, range-expanding plants may also lose specialized mutualistic microorganisms14–15. Results of these studies lead to the similar expectation that the plant-associated microbial community in the rhizosphere and surrounding soil (here called the belowground plant microbiome) of range-expanding plant species will associate less with the belowground microbiome in their new range compared to their native range, and compared to native plant species. However, few studies have characterized or compared the structure and diversity of the microbiome communities associated with range-expanding plant species (although see a previous study16), nor has a direct comparison been made with related native plant species at a continental scale.

The soil and rhizosphere microbiome, made up largely of bacteria and fungi, is taxonomically and functionally diverse17. The community composition of the belowground microbiome is broadly structured by abiotic factors, yet effects differ between bacteria and fungi18–20. For example, whereas at large spatial scales bacterial communities are strongly influenced by soil pH19–20, the composition of fungal communities are simultaneously affected by climate and nutrients21–22. At the same time, both the soil and rhizosphere microbiomes are strongly controlled by biotic factors, including the composition of root exudates, plant species identities and plant traits23–28. Through these properties, plant species can assemble species-specific microbiomes in which microbial taxa are enriched or suppressed under some plants and not under others29–31. At the same time, phylogenetic relatedness of range-expanding plants with native flora can represent another potential effect of range expansion on microbial communities—for which some research suggests that closely related plant species can contain similar microbial taxa, especially pathogens32–33. Finally, plant–microorganism interactions evolve over time, changing over years and even decades34–35. Therefore, during range expansion, both the distance from the original range and the evolutionary history between plants and microorganisms can have the potential to influence the belowground plant microbiome.

Here we analyse the microbiome of intra-continental range-expanding plant species along a latitudinal gradient to explore key...
hypotheses that have been previously proposed for exotic and invasive plants, but that may also apply to climate warming-induced range expansions. To test for the influence of plant phylogeny on the belowground microbiome during range expansion, we selected range-expanding plants that are either related or unrelated to the native flora (Fig. 1a). To test for the effects of range expansion on the belowground plant microbiome, we compared changes in community composition and the relative abundance of pathogens across the range-expansion gradient (Fig. 1b). We hypothesize that if plant range expansion influences the belowground plant microbiome, observed patterns will be stronger in the rhizosphere than in bulk soil. Furthermore, if range-expanding plants that are further from their original range either lose the ability to interact with certain microbial taxa or preferentially promote the growth of a beneficial community, the microbiome of the range-expanding plants will become more similar and alpha diversity of communities will decrease in the new range. However, because plants that are more closely related to the native community may share microorganisms, this change will be less pronounced for range-expanding plants that encounter congeneric native species in the new habitat. Finally, if the enemy release hypothesis common to invasive plant species is also applicable to range-expanding plants, we expect fewer belowground pathogens to be associated with range-expanding plants that are unrelated to the native flora compared to related expanding and native species.

In Europe, the range expansion of plants induced by climate change is well-documented; many plant species are expanding their range into higher latitudes and altitudes. Here we use high-throughput Illumina sequencing to explore how the belowground microbiome of plant species changes when plants expand from their original range (in lower latitudes) to new ranges (in higher latitudes). We targeted the microbiome of three plant groups: unrelated range-expanding plants (species without native species from the same genus in their new range); related range-expanding plants (species that have native species from the same genus in their new range) (Supplementary Table 1 and Supplementary Fig. 1); and native plant species, which are congeneric to the related range-expanding plants and native throughout the entire gradient.

All range-expanding plants had either arrived or greatly expanded within the Netherlands in the late twentieth and early twenty-first centuries. In an effort to minimize variation in abiotic factors, we selected 11 plant species grown on similar parent soil (see Methods). For each species, we sampled the microbiome in the rhizosphere and surrounding (bulk) soil of up to 9 plant individuals collected from up to 6 countries, spanning from Greece to the Netherlands, totalling 382 plant individuals (Supplementary Table 1 and Supplementary Data 2). While some species were cosmopolitan, others were quite rare and more difficult to find. Here we included replicates not only for individual plant species, but also for each plant type (native, and related and unrelated range-expanding plant species), and we collected 382 bulk-soil and rhizosphere samples to obtain a number that should be sufficient to capture large-scale patterns in the microbial communities.

Results and discussion

Overall, rhizosphere and bulk-soil communities were significantly different from each other, both in community overlap—as visualized by principal component analysis (PCA) (P < 0.001 for both bacteria and fungi; Fig. 2a,b)—and in taxa overlap (Fig. 2c,d). We found 47,704 bacterial phylotypes and 9,374 fungal phylotypes in soils, and 33,939 bacterial phylotypes and 6,438 fungal phylotypes in the rhizosphere. Furthermore, there was little community overlap among plant individuals in both the soil (averaging 4,092 (8%) unique bacterial taxa and 523 (5.5%) unique fungal phylotypes per sample) and the rhizosphere (averaging 1,932 (5.6%) unique bacterial phylotypes and 257 (4%) unique fungal phylotypes per sample). High microbiome diversity among 11 plant species is not a surprise, especially because the selected plants represent a range of phylogenetically and ecologically distinct species.

Across the gradient, plant species was the strongest predictor of the composition of the bacterial and fungal communities in both soil and rhizosphere environments, explaining 7 to 14% of the variation (Fig. 3 and Supplementary Table 2) and plant genus as a proxy of phylogenetic relatedness (Supplementary Fig. 1) provided no additional predictive power. Conversely, the effects of plant grouping (unrelated range-expanding, related range-expanding and native plant species, which are congeneric to the related range-expanding plants and native throughout the entire gradient. Further, the relatedness of the range-expanding plant to the native flora affects the strength of the response.
plants (Supplementary Fig. 2), as was the goal of choosing plant species that grow on the same parent soil material. In comparison, other studies have been more focused on elucidating patterns in the composition and explained a maximum of 2% of the variation in all plant types (ρ varied between -0.08 and -0.32 and $P < 0.05$ for all). However, for fungal communities, correlations were only observed in soils (ρ varied from -0.10 to -0.13, $P < 0.05$ for all) and not in the rhizosphere. The negative correlation between range and community dissimilarity was strongest in unrelated range-expanding species (Supplementary Table 3). We also found a significant difference in the degree of microbial community similarity by plant group, although there was an interaction of country in two scenarios (soil fungi and rhizosphere bacteria) ($P < 0.0001$ in all cases) (Supplementary Table 4). This suggests that controls on the composition of microbiome communities of native and range-expanding plants differs across the gradient. For instance, the microbiomes of native plants (and to a lesser extent related range-expanding species) may be more influenced by a long-term co-evolutionary history that would be consistent across this latitudinal gradient, whereas microbiome patterns of unrelated range-expanding plants might be more determined by more recent spatial effects and the native (neighbour) plant community. Because we used a survey to explore changes to the belowground microbiome across a natural range expansion transect, we were unable to test for co-evolutionary history between microorganisms and plants. Still, our results suggest that future studies should be designed with this process in mind, particularly to identify the role of the microbial community for plant adaptations during climate change.

Whereas community structure became more similar across the gradient, changes in bacterial richness and fungal richness...
was much more variable (Fig. 5 and Supplementary Table 5). Under unrelated range-expanding species, fungal alpha diversity in the rhizosphere significantly increased with distance from the original range ($\rho = 0.36, P < 0.001$ in the rhizosphere, $P > 0.05$ in soil). However, related range-expanding plants showed no relationship between fungal diversity and distance from original range ($P > 0.05$ for both soil and rhizosphere) in comparison to native plants, for which fungal alpha diversity increased with latitude in both the rhizosphere ($\rho = 0.20, P < 0.05$) and the bulk soil ($\rho = 0.23, P < 0.05$). The mechanisms behind increased fungal diversity in the rhizosphere of unrelated range-expanding remain unclear. It could be that if range-expanding plants do not need to invest in belowground defence or to soilborne pathogens combined with continued association with symbionts. It has been proposed that in novel ecosystems, the success or failure of a plant species is based on reduced exposure to soilborne pathogens combined with continued association with symbionts.

The latter proposition, that range-expanding plants enrich their rhizosphere, is congruent with our findings that community composition becomes more similar among individuals in the northern part of the range (Fig. 4), and that unrelated range-expanding plants had higher fungal and bacterial diversities in their rhizosphere and lower diversities in the associated soils ($P < 0.0001$ in all cases) (Supplementary Table 6). Overall, the inconsistency between the responses of the two types of range-expanding plant species suggests that related and unrelated range-expanding plants have different controls on microbial diversity. Furthermore, the variability in alpha diversity patterns indicates that alpha diversity and community similarity are affected by different mechanisms.

It has been proposed that in novel ecosystems, the success or failure of a plant species is based on reduced exposure to soilborne pathogens combined with continued association with symbionts. We applied this concept here and used FunGuild to test how the abundance of potential fungal functional groups changes as range-expanding plants move further from their original range. Specifically, we examined potential plant pathogens and arbuscular mycorrhizal fungi, as these are the relevant mutualistic symbionts most of our plant species, except for the crucifers. However, we could not detect any significant changes in the relative abundance in either of these groups under range-expanding plant species (Supplementary Fig. 3). However, there was a significant positive correlation in the ratio of plant pathogens to symbionts across the transect ($\rho = 0.31, P < 0.001$) (Supplementary Table 7). By contrast, under native plants the relative abundance of plant pathogens increased in both the soil and rhizosphere from south to north ($\rho = 0.23$ for both). In contrast to previous studies, these results do not directly verify that range-expanding plants lose their specialist microorganisms or are released from specialist enemies. Instead, the results suggest that compared to native species, range-expanding plants are exposed to fewer potential pathogens and symbionts in the new range, which has been predicted for range-expanding plant species and demonstrated for introduced exotic species in their new range. At the same time, recent studies of plant succession clearly demonstrate that plant success and nutrient cycling is tied to the microbial communities. However, it remains unclear whether the mechanisms that underlie plant range expansion are the same as those observed elsewhere.

Still, these results are not without caveats. Notably, the molecular methods used are not infallible—the DNA community analysis...
Fig. 4 | Changes in microbial community dissimilarly across the range-expansion gradient.

a. Bacterial communities in both the soil and rhizosphere become more similar under unrelated range-expanding plants (red) and, to some extent, under native plants (purple) that are further from their original range. Similar but weaker patterns were observed in related range-expanding plants (green).

b. For fungal communities, significant decreases were only observed in soils. Spearman rank correlation coefficients are shown; *P* < 0.05; **P** < 0.01; ***P*** < 0.001; NS, not significant. The lines indicate the mean, and grey shading indicates the s.e.m.

Fig. 5 | Changes in alpha diversity across the latitudinal gradient of range expansion differs between bacterial and fungal communities.

a. Bacterial alpha diversity (operational taxonomic unit (OTU) count) did not change significantly (not significant in all cases).

b. By contrast, fungal alpha diversity increased in the rhizosphere of unrelated range-expanding and, to some extent, native plants, although no pattern was seen in related range-expanding plants. The line and shading indicate mean ± s.e.m.
does not assess the active microbial community nor the true functional capabilities of the detected microorganisms. Thus, potential functional groupings and relative abundances of taxa cannot indicate the expected pathogenicity of these fungi in the rhizospheres of the host plant. Equally important is that, for all plant groups, the relative abundance of these functional groupings make up approximately 5% of the fungal community. This indicates that any changes in composition or diversity may overinflated or obscure true changes in these low-abundance groups and specific primers or culture work is necessary to explore the functional changes more thoroughly. Our study exemplifies that high-throughput sequence data can be used to assess large-scale patterns in plant–soil associations; however, future functional analyses (for example, metagenomics and metatranscriptomics approaches) and experimental studies must be designed to take the low abundance of pathogen sequences into account.

Our study contributes initial steps for the identification of the patterns of the changes in the plant microbiome that occur during plant range expansion. Although we show that microbial community and diversity dynamics change across a range-expansion gradient, clarifying the mechanisms behind the observed changes would require further experimental study. In the present study, we attempted to link the concepts from plant ecology to the microbiome by assuming that plant establishment outside the native range resulted in altered exposure to soil microorganisms. Our results suggest that although terms such as ‘exotic species’, ‘range-expanding species’ and ‘native species’ are helpful descriptors in plant ecology, it should not be assumed that these labels are equally relevant to describe the belowground microbial community of such plant species. Future research will require consideration of the ecological roles of both plants and microorganisms; however, the ecological roles of many microbial taxa currently remain unknown. At the same time, we think that this large-scale biogeographical study of plant–soil–microorganism associations of native, related and unrelated range-expanding plant species along a latitudinal gradient is an essential step to understand how climate warming-induced range-expanding plant species may assemble a new microbiome in their novel range. This approach may also stand as a model for processes that take place belowground after introduction of exotic plant species in a new continent. Subsequent experimental work is needed to understand the functional consequences of invasiveness and naturalization.

Almost 4% of extant global vascular flora have established outside their native range, and range expansion induced by climate change is not expected to slow down. Although soil microorganisms exert strong selective pressures on plant species and communities, our understanding of microbial community dynamics during range expansion remains limited. Range expansion offers an opportunity to explore not only how global change may alter the relationship between plants and their microbiome, but also how the belowground microbiome changes across large geographical scales. Understanding the effect of range expansion on the belowground plant microbiome can provide baseline knowledge for predicting ecological consequences of current rapid climate warming, and it may also be used to enhance our understanding of community responses to invasion scenarios for introduced exotic species.

Methods

Plant species and soil collection. In central Europe, rivers flow to the south and north away from the Alps, resulting in habitats with sediments from similar parent materials and soils that spread across a latitudinal gradient. Within these well-connected river habitats, and in response to climate change, many plant species are expanding their range with much more movement expected in the coming decades. Within this latitudinal gradient, spanning almost 3,000 km from Greece in the south to the Netherlands in the north, we identified 7 range-expanding species for which the range has expanded north into Austria, Germany and the Netherlands over the last 50 years, approximately. Range-expanding plants without native congeneric species in the northern sites (that is, unrelated range-expanding plants) include Dittrichia graveolens, Lactuca serriola and Raphanus raphanistrum. Range-expanders with native congeners (that is, related range-expanding plants) include Centaurea stoebe, Geranium pyrenenum, Tragopogon pratensis and Rorippa austriaca. As a control, we also included 4 native plant species that are congeneric with the related range-expanding species, Centaurea jacea, Geranium molle, Tragopogon dubius and Rorippa sylvestris. C. stoebe and R. austriaca originated from central and eastern Europe, while all other range-expanding species originated from southern Europe (www.gbif.org). Plant populations were sampled from 6 countries in Europe—Greece, Montenegro, Slovenia, Austria, Germany and the Netherlands—in the summer growing seasons of 2013 and 2014. All plants were flowering at the time of sampling. At each sampling site, environmental parameters, including weather conditions at sampling dates, were recorded (Supplementary Data 2). For each sampling location, a single species, 3 individuals of 3 distinct populations (in most cases, with a separation of at least 400 m) were chosen, totalling 9 plant individuals for each location (see Supplementary Table 1 for sample numbers). For collection of all samples, permissions were obtained from both the nature reserves and government agencies that are responsible for the land.

To assess the soil and rhizosphere microbiomes of native and range-expanding plant species, soil and roots plus rhizosphere were collected from under individual plants. In brief, the entire plant was dug up within a 10-cm radius around the plant and bulk soil was shaken off the plant roots. Bulk soil was homogenized and 10 g was collected for microbial and chemical analyses. Separately from the bulk soil, the fine plant root and rhizosphere soil was then collected separately, which is referred to as the rhizosphere community. All rhizosphere and soil samples were stored at 4 °C until shipped, within 1 week, to the Netherlands Institute of Ecology (NIOO). At the NIOO, soil and rhizosphere samples for DNA extraction were frozen at −80 °C. A subset of soil was stored in the fridge at 4 °C for chemical analyses.

Soil chemical analyses. For all soil samples collected in 2014, nutrients and pH were measured on fresh soil stored at 4 °C (Supplementary Data and Supplementary Fig. 2). Gramimetric moisture (percentage of water) was determined on soil samples that were oven-dried at 105 °C. Total soil carbon and nitrogen content was determined from these dried soils on an elemental analyser (LECO). Extractable NO3 and NH4 were measured using the KCI extraction protocol. In brief, soils were dried at 4 °C. 10 g dry soil was then mixed with 110 ml KCl solution and shaken, after which the supernatant was used for analyses of NO3 and NH4. Soil pH was measured in an H2O slurry solution using a bench-top pH meter following the ISO 10309 standard procedure.

Community level sequence analysis. To identify the bulk-soil and rhizosphere microbiomes of native and range-expanding plants, DNA was extracted from 0.25 g of bulk soil bulk soil and 0.5 g of ground rhizosphere material using the PowerSoil-htp 96-well soil DNA isolation kit (MO BIO Laboratories) according to the manufacturer’s instructions. Bacterial community composition was determined by targeting 16S rRNA amplicons using 515F/806R primers and the fungal community composition was determined by targeting the ITS region using ITS1/ITS4. PCR products were amplified using the AmpliTaq Gold PCR Master Mix (Applied Biosystems) and only reads that had a minimum overlap of 150 bp and a PHRED score of 25 (1–6,000 bp). Pooled PCR amplicons were sequenced with the Illumina MiSeq platform at BGI Tech Solutions.

MiSeq paired-end reads targeting the 16S rRNA amplicon were merged and only reads that had a minimum overlap of 150 bp and a PHRED score of 25 (estimated using the RDP extension of PANDASeq). Primer sequences were stripped using Flexbar version 2.5. Sequences were then clustered to OTUs with VSEARCH version 1.0.10, using the UPARSE strategy of dereplication, sorting by abundance and clustering using the UCLUST smallmem algorithm. All singletons were removed and potential chimeric sequences were removed using the UCHIME algorithm. Taxonomic classification for each OTU was obtained using the RDP classifier version 2.10.

Similarly, MiSeq paired-end reads targeting the ITS region were treated as described above with the following adjustments: ITS primer sequences were stripped using ITS4 version 1.0.11 before clustering, and sequences were classified using the UNITE database. All bioinformatics steps were implemented with a publicly available workflow made with Snakemake. After samples were removed due to sampling error or falling below the rarified threshold, 382 samples were included in downstream analyses of plant soil and rhizosphere microbiomes. Community similarity was visualized with a PCA of the dissimilarity matrix based on Bray–Curtis distances. Plotted in Fig. 3 is the centroid of each plant species community with lines representing connections to all other samples of the plant species. We calculated a pairwise Euclidean distance matrix based on beta diversity, but did not make a full analysis of these distances with differences in microbiome composition, as plant genus or family-specific issues might interfere with pure
phylogenetic distances (Supplementary Fig. 1). To investigate how distance from the original range influences the microbiome for each plant species, we tested within-country dissimilarity of bacterial and fungal communities in both the rhizosphere and the soil. In brief, pairwise Bray–Curtis dissimilarity was estimated between samples of each plant species within each country. Diversity of soil communities were analysed using the ‘vegan’ package41 using the PERMANOVA test and visualized with the ‘ggplot2’ package. Correlation patterns were visualized with the LOESS smoothing function42. Because within-country distance was much smaller than between-country distance, diversity patterns were the same whether plotted by latitude, country or geographical distance, which here we refer to as ‘range’. Spearman rank correlations were run on latitude and plots show country name for clarity. FunGuild analyses were generated using the web interface and only taxa that received a ‘highly probable’ classification were included. When all taxa were included results remained the same. All other analyses were performed using the R programming language (R Development Core Team).

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The authors declare that the data supporting the findings of this study are available in the European Nucleotide Archive under accession numbers PRJEB25697, PRJEB25694, PRJEB25693 and PRJEB25692.

References

1. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. *Science* 355, eaar9214 (2017).
2. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. *Nature* 421, 37–42 (2003).
3. Classen, A. T. et al. Direct and indirect effects of climate change on soil microbial and soil microbial–plant interactions: what lies ahead? *Ecosphere* 6, art130 (2015).
4. Meisner, A., De Deyn, G. B., de Boer, W. H. Soil biotic legacy effects of extreme weather events influence plant invasiveness. *Proc. Natl Acad. Sci. USA* 110, 9835–9838 (2013).
5. Engkels, T. et al. Successful range-expanding plants experience less above-ground and below-ground enemy impact. *Nature* 456, 946–948 (2008).
6. van der Putten, W. H., Bradfourn, M. A., Brinkman, E. P., van der Voorde, T. F. J., Coats, V. C. & Rumpho, M. E. The rhizosphere microbiota of plant invaders: a functional phylogeographic analysis. *New Phytol.* 205, 1399–1403 (2015).
7. Lai, J. A. & Lennon, J. T. Rapid responses of soil microorganisms improve plant fitness in novel environments. *Proc. Natl Acad. Sci. USA* 109, 10458–10462 (2012).
8. Parlevliet, E. J. et al. Land use alters the resistance and resilience of soil food webs to drought. *Nat. Clim. Change* 2, 276–280 (2012).
9. Peay, K. G. Back to the future: natural history and the way forward in modern fungal ecology. *Fungal Ecol.* 12, 4–9 (2014).
10. Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. *Proc. Natl Acad. Sci. USA* 112, E991–E920 (2015).
11. Bakker, J. M. J., De Jonge, R. & Berendes, R. L. The soil-borne supremacy. *Trends Plant Sci.* 21, 171–173 (2016).
12. Prober, S. M. et al. Plant diversity predicts beta but not alpha diversity of soil microbes across grasslands worldwide. *Ecol. Lett.* 18, 85–95 (2015).
13. Gilbert, G. S. & Webb, C. O. Phylogenetic signal in plant pathogen–host relationships influences plant growth. *Proc. Natl Acad. Sci. USA* 104, 4979–4983 (2007).
14. Parker, I. M. et al. Phylogenetic structure and host abundance drive disease pressure in communities. *Nature* 520, 542–544 (2015).
15. Lankau, R. A. Coevolution between invasive and native plants driven by chemical competition and soil biota. *Proc. Natl Acad. Sci. USA* 109, 11240–11245 (2012).
16. Morriën, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. *Nat. Commun.* 8, 14349 (2017).
17. Keymer, D. P. & Lankau, R. A. Disruption of plant–soil–microbial relationships influences plant growth. *J. Ecol.* 105, 816–827 (2017).
18. Leach, J. E., Triplett, L. R., Argueso, C. T. & Trivedi, P. Communication in the phytophibiome. *Cell* 169, 587–596 (2017).
19. Bakkenes, M., Alkemade, J. R. M., Ible, F., Leemans, R. & Latour, J. B. Assessing effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. *Glob. Change Biol.* 8, 390–407 (2002).
20. Wilschut, R. A., Kostenko, O., Koore, K. & van der Putten, W. H. Nematode community responses to range-expanding and native plant communities in original and new range soils. *Ecol. Evol.* 8, 10288–10297 (2018).
21. Koore, K. et al. Relatedness with plant species in native community influences ecological consequences of range expansions. *Oikos* 127, 981–990 (2018).
22. van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. *Plos Biol.* 14, e1002378 (2016).
23. Leff, J. Y. et al. Predicting the structure of soil communities from plant community taxonomy, phytology, and traits. *ISME J.* 12, 1394–1403 (2018).
24. Fierer, N. et al. Reconstructing the Microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. *Science* 342, 621–624 (2013).
25. Emmett, B. D., Youngblut, N. D., Buckley, D. H. & Drinkwater, L. E. Plant phylogeny and life history shape rhizosphere bacterial microbiome of summer annuals in an agricultural field. *Front. Microbiol.* 8, 2414 (2017).
26. Gobena, M., Navarro-Can, J. A. & Verdu, M. Opposing phylogenetic diversity gradients of plant and soil bacterial communities. *Proc. R. Soc. B* 283, 20153003 (2016).
50. Reynolds, H. L., Packer, A., Bever, J. D. & Clay, K. Grassroots ecology: plant–microbe–soil interactions as drivers of plant community structure and dynamics. *Ecology* 84, 2281–2291 (2003).
51. Bennett, J. A. et al. Plant–soil feedbacks and mycorrhizal type influence temperate forest population dynamics. *Science* 355, 181–184 (2017).
52. Golivets, M. & Wallin, K. F. Neighbour tolerance, not suppression, provides competitive advantage to non-native plants. *Ecol. Lett.* 21, 745–759 (2018).
53. Geml, J. & Wagner, M. R. Out of sight, but no longer out of mind — towards an increased recognition of the role of soil microbes in plant speciation. *New Phytol.* 217, 965–967 (2018).
54. Dawson, W. Release from belowground enemies and shifts in root traits as interrelated drivers of alien plant invasion success: a hypothesis. *Ecol. Evol.* 5, 4505–4516 (2015).
55. Blumenthal, D., Mitchell, C. E., Pysek, P. & Jarosik, V. Synergy between pathogen release and resource availability in plant invasion. *Proc. Natl. Acad. Sci. USA* 106, 7899–7904 (2009).
56. Wilschut, R. A., Silva, J. C. P., Garbeva, P. & van der Putten, W. H. Belowground plant–herbivore interactions vary among climate-driven range-expanding plant species with different degrees of novel chemistry. *Front. Plant Sci.* 8, 1861 (2017).
57. Inderjit & van der Putten, W. H. Impacts of soil microbial communities on exotic plant invasions. *Trends Ecol. Evol.* 25, 512–519 (2010).
58. Rout, M. E. & Callaway, R. M. Interactions between exotic invasive plants and soil microbes in the rhizosphere suggest that ‘everything is not everywhere’. *Trends Ecol. Evol.* 36, 215–227 (2012).
59. Nguyen, N. H. et al. FUNGuld: an open annotation tool for parsing fungal community datasets by ecological guild. *Fungal Biol.** 20, 241–248 (2016).
60. van der Putten, W. H. Climate change, aboveground–belowground interactions, and species’ range shifts. *Ann. Rev. Ecol. Evol. Syst.* 43, 365–383 (2012).
61. Mitchell, C. E. & Power, A. G. Release of invasive plants from fungal and viral pathogens. *Nature* 421, 625–627 (2003).
62. Bever, J. D., Mangan, S. A. & Alexander, H. M. Maintenance of plant species diversity by pathogens. *Ann. Rev. Ecol. Evol. Syst.* 46, 305–325 (2015).
63. Mørslien, E. et al. Soil networks become more connected and take up more carbon as nature restoration progresses. *Nat. Commun.* 8, 14349 (2017).
64. Hannula, S. E. et al. Shifts in rhizosphere fungal community during secondary succession following abandonment from agriculture. *ISME J.* 11, 2294–2304 (2017).
65. Jousset, A. et al. Where less may be more: how the rare biosphere pulls ecosystem strings. *ISME J.* 11, 853–862 (2017).
66. van Kleunen, M., Dawson, W. & Maurel, N. Characteristics of successful alien plants. *Mol. Ecol.* 24, 1954–1968 (2015).
67. Chen, I.-C., Hill, J. K., Ohlemuller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. *Science* 333, 1024–1026 (2011).
68. Bever, J., Platt, T. & Morton, E. Microbial population and community dynamics on plant roots and their feedbacks on plant communities. *Ann. Rev. Microbiol.* 66, 265–283 (2012).
69. Wubs, E. R. J., van der Putten, W. H., Bosch, M. & Bezemer, T. M. Soil inoculation steers restoration of terrestrial ecosystems. *Nat. Plants* 2, 16107 (2016).
70. Alexander, J. M., Diez, J. M. & Levine, J. M. Novel competitors shape species' responses to climate change. *Nature* 525, 515–518 (2015).
71. Fordham, D. A. et al. Plant extinction risk under climate change: are forecast range shifts alone a good indicator of species vulnerability to global warming? *Glob. Change Biol.* 18, 1357–1371 (2012).
72. Tann, W. L. M., vanZelj, M., van de Meiijen, R. & de Haes, H. A. U. Changes in vascular plant biodiversity in the Netherlands in the 20th century explained by their climatic and other environmental characteristics. *Climatic Change* 72, 37–56 (2005).
73. Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *ISME J.* 6, 1621–1624 (2012).
74. Ihrmark, K. et al. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. *FEMS Microbiol. Ecol.* 82, 666–677 (2012).
75. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. & Dangl, J. L. Practical innovations for high-throughput amplicon sequencing. *Nat. Methods* 10, 999–1002 (2013).
76. Masella, A. P., Bartram, A. K., Truszkowski, J. M., Brown, D. G. & Neuflied, J. D. PANDAseq: paired-end assembler for illumina sequences. *BMC Bioinformatics* 13, 31 (2012).
77. Dodč, M., Roehr, I., Ahmed, R. & Dieterich, C. FLEXBAR—flexible barcode and adapter processing for next-generation sequencing platforms. *Biology (Basel)* 1, 895–905 (2012).
78. Rognes, T., Frouli, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. *PeerJ* 4, e2584 (2016).
79. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics* 26, 2460–2461 (2010).
80. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194–2200 (2011).
81. Cooke, J. R. et al. Ribosomal Database Project: data and tools for high throughput rRNA analysis. *Nucleic Acids Res.* 42, D633–D642 (2014).
82. Bengtsson-Palme, J. et al. Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. *Methods Ecol. Evol.* 4, 914–919 (2013).
83. Kóljag, U. et al. Towards a unified paradigm for sequence-based identification of fungi. *Mol. Ecol.* 22, 5271–5277 (2013).
84. Koster, J. & Rahmann, S. Snapemake—a scalable bioinformatics workflow engine. *Bioinformatics* 28, 2520–2522 (2012).
85. Okasanen, J. et al. vegan: Community Ecology Package. R package version 2.0-11 (2013).
86. Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).

Acknowledgements

We are grateful for the support of Ž. Modrič-Surina, S. Dragičević, I. Starke and M. Hohla, who all helped with sampling. This work was supported in large part by the European Research Council (ERC advanced grant ERC-Adg 323020 (SPECIALS) to W.H.v.d.P. Additional support came from the Estonian Research Council (grant PUTJD78) (K.K.) and the Slovenian Research Agency (research core funding no. P1-0236) (B.V. and T.Č.). Additional support came from the Slovenian Research Agency (research core funding no. P1-0236) (B.V. and T.Č.).

Author contributions

W.H.v.d.P. conceived the idea of this study. Sample collection was completed W.H.v.d.P., K.S.R., K.K., S.G., L.J.B., F.t.H., O.K., N.K., M.M., D.C., M.A.T., B.V., T.Č., C.W. and R.A.W. Soil analyses and sequencing were completed by L.J.B., F.t.H., C.W., D.e.v.R. and K.S.R. Data analyses were completed by L.B.S. and K.S.R. The manuscript was written by K.S.R., with contributions from all co-authors.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41559-019-0828-z.

Reprints and permissions information is available at www.nature.com/reprints.

Correspondence and requests for materials should be addressed to K.S.R.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2019
Corresponding author(s): Kelly S Ramirez
Last updated by author(s): Jan 18, 2019

Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- n/a

 - Confirmed

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- The statistical test(s) used AND whether they are one- or two-sided
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 Give P values as exact values whenever suitable.
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

- Data collection: In house python and R code
- Data analysis: R code

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

All data is available in the manuscript or upload to a sequence database and is freely available.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	Changes in the belowground microbiome of range-expanding plant species in central Europe.
Research sample	The soil and rhizosphere microbes were characterized of 11 plant species were collected with their plant populations were sampled from 6 countries in Europe – Greece, Montenegro, Slovenia, Austria, Germany and the Netherlands - in the summer growing seasons of 2013 and 2014. All plants were flowering at the time of sampling.
Sampling strategy	At each sampling site, environmental parameters, including weather conditions at sampling dates, were recorded. For each sampling location of a single species, 3 individuals from 3 distinct populations (in most cases at least 400m separation) were chosen, totaling 9 plant individuals for each location (see Supplementary Figure 1 for sample numbers).
Data collection	Illumina sequencing data and soil parameter data was collected by KSR, FTH, LIB, CW, DvR
Timing and spatial scale	Collected in summer of 2013/2014
Data exclusions	Samples where sequences did not meet predetermined quality checks were excluded.
Reproducibility	This is a survey of the belowground plant microbiome. Reproducibility is possible as we have recorded locations of all plant populations that were sampled.
Randomization	Describe how samples/organisms/participants were allocated into groups. If allocation was not random, describe how covariates were controlled. If this is not relevant to your study, explain why.
Blinding	Describe the extent of blinding used during data acquisition and analysis. If blinding was not possible, describe why OR explain why blinding was not relevant to your study.

Did the study involve field work?
☑ Yes
☐ No

Field work, collection and transport

Field conditions	Samples were collected in natural systems between May and September. Samples were not collected during rain events. Temperatures ranged from 12 - 28C depending on the location and the day.
Location	Greece, Montenegro, Slovenia, Austria, Germany, The Netherlands
Access and import/export	In all relevant locations permits were obtained to collect samples or permissions from private landholders.
Disturbance	Small disturbances were made when soils were collected, but were approved by permits and permissions.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems

n/a	Involved in the study
☐	Antibodies
☐	Eukaryotic cell lines
☐	Palaeontology
☐	Animals and other organisms
☐	Human research participants
☐	Clinical data

Methods
n/a
☐
☐
☐

Antibodies

Antibodies used	Describe all antibodies used in the study; as applicable, provide supplier name, catalog number, clone name, and lot number.
Validation	Describe the validation of each primary antibody for the species and application, noting any validation statements on the manufacturer’s website, relevant citations, antibody profiles in online databases, or data provided in the manuscript.
Eukaryotic cell lines

Policy information about cell lines

- **Cell line source(s)**
 - State the source of each cell line used.

- **Authentication**
 - Describe the authentication procedures for each cell line used OR declare that none of the cell lines used were authenticated.

- **Mycoplasma contamination**
 - Confirm that all cell lines tested negative for mycoplasma contamination OR describe the results of the testing for mycoplasma contamination OR declare that the cell lines were not tested for mycoplasma contamination.

- **Commonly misidentified lines**
 - Provide any commonly misidentified cell lines used in the study and a rationale for their use.

Palaeontology

- **Specimen provenance**
 - Provide provenance information for specimens and describe permits that were obtained for the work (including the name of the issuing authority, the date of issue, and any identifying information).

- **Specimen deposition**
 - Indicate where the specimens have been deposited to permit free access by other researchers.

- **Dating methods**
 - If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are provided.

- [] Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

- **Laboratory animals**
 - For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

- **Wild animals**
 - Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, say where and when) OR state that the study did not involve wild animals.

- **Field-collected samples**
 - For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

- **Ethics oversight**
 - Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants

Policy information about studies involving human research participants

- **Population characteristics**
 - Describe the covariate-relevant population characteristics of the human research participants (e.g. age, gender, genotypic information, past and current diagnosis and treatment categories). If you filled out the behavioural & social sciences study design questions and have nothing to add here, write “See above.”

- **Recruitment**
 - Describe how participants were recruited. Outline any potential self-selection bias or other biases that may be present and how these are likely to impact results.

- **Ethics oversight**
 - Identify the organization(s) that approved the study protocol.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data

Policy information about clinical studies

All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

- **Clinical trial registration**
 - Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

- **Study protocol**
 - Note where the full trial protocol can be accessed OR if not available, explain why.

- **Data collection**
 - Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.
Outcomes

Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq

Data deposition

☐ Confirm that both raw and final processed data have been deposited in a public database such as GEO.
☐ Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links

May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links. For your "Final submission" document, provide a link to the deposited data.

Files in database submission

Provide a list of all files available in the database submission.

Genome browser session

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to enable peer review. Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates

Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth

Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and whether they were paired- or single-end.

Antibodies

Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot number.

Peak calling parameters

Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files used.

Data quality

Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software

Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community repository, provide accession details.

Flow Cytometry

Plots

Confirm that:

☐ The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).
☐ The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
☐ All plots are contour plots with outliers or pseudocolor plots.
☐ A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation

Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument

Identify the instrument used for data collection, specifying make and model number.

Software

Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a community repository, provide accession details.

Cell population abundance

Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples and how it was determined.

Gating strategy

Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

☐ Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
Magnetic resonance imaging

Experimental design

Design type	Indicate task or resting state; event-related or block design.
Design specifications	Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial or block (if trials are blocked) and interval between trials.
Behavioral performance measures	State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across subjects).

Acquisition

Imaging type(s)	Specify: functional, structural, diffusion, perfusion.
Field strength	Specify in Tesla
Sequence & imaging parameters	Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, slice thickness, orientation and TE/TR/flip angle.
Area of acquisition	State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.
Diffusion MRI	

Preprocessing

Preprocessing software	Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, segmentation, smoothing kernel size, etc.).
Normalization	If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.
Normalization template	Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.
Noise and artifact removal	Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and physiological signals (heart rate, respiration).
Volume censoring	Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings	Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).
Effect(s) tested	Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether ANOVA or factorial designs were used.
Specify type of analysis:	Whole brain, ROI-based, Both
Statistic type for inference	
Correction	

Models & analysis

| n/a | Involved in the study |
| Functional and/or effective connectivity | Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, mutual information). |
| Graph analysis |
| Multivariate modeling or predictive analysis | Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, etc.). |

Reporting summary

- **Table and figures:** Provide clear and concise tables and figures to represent data.
- **Discussion:** Discuss the results in detail, highlighting any unexpected findings or limitations.
- **Conclusion:** Summarize the main findings and their implications for future studies.
- **Acknowledgments:** Acknowledge any contributions from collaborators or institutions.
- **References:** Cite all relevant literature in APA format.
Multivariate modeling and predictive analysis

Specify independent variables, features extraction and dimension reduction, model, training and evaluation metrics.