IgG4-related Lung Disease With Recurrent Pulmonary Lesions During Steroid Therapy and Difficulty in Differentiating From Malignancy: Case Report and Literature Review

Tomohito Okubo (tomohito.okubo@hotmail.co.jp)
Sakaide City Hospital
https://orcid.org/0000-0002-9089-1948

Nariyasu Nakashima
Sakaide City Hospital

Yoshimasa Tokunaga
KKR Takamatsu Hospital: KKR Takamatsu Byoin

Nobuyuki Kita
Sakaide City Hospital

Hiroyuki Nakamura
Sakaide City Hospital

Ryou Ishikawa
Kagawa University Hospital: Kagawa Daigaku Igakubu Fuzoku Byoin

Setsuo Okada
Sakaide City Hospital

Tetsuhiko Go
Kagawa University Hospital: Kagawa Daigaku Igakubu Fuzoku Byoin

Hiroyasu Yokomise
Kagawa University Hospital: Kagawa Daigaku Igakubu Fuzoku Byoin

Case report

Keywords: IgG4-related lung disease, lung mass, multiple lung nodules, thoracoscopic lung biopsy, thoracoscopic partial lung resection

DOI: https://doi.org/10.21203/rs.3.rs-724365/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Immunoglobulin G4-related disease (IgG4-RD) is characterized by the formation of inflammatory lesions with fibrosis and infiltration of IgG4-positive plasma cells and lymphocytes in various organs of the body. Since the first report of IgG4-related autoimmune pancreatitis, IgG4-RD affecting various organs has been reported; however, there are still only a few reports of IgG4-related lung disease (IgG4-RLD). In this report, we describe a case of IgG4-RLD with recurrent pulmonary lesions during steroid therapy that were difficult to differentiate from malignancy.

Case presentation: A 61-year-old man was referred to our hospital after an abnormal chest shadow on X-ray was noted during his visit to his previous doctor for asthma treatment. Chest computed tomography (CT) revealed a middle lobe hilar mass with irregular margins and swelling of the right hilar and mediastinal lymph nodes. 18F-fluorodeoxyglucose-positron emission tomography revealed a mass lesion with a maximum diameter of 5.5 cm, maximum standardized uptake value (SUVmax) of 11.0, and areas with high SUV in the hilar and mediastinal lymph nodes. We suspected lung cancer or malignant lymphoma and performed a thoracoscopic lung biopsy to confirm the diagnosis. A total of five tumor sites and an enlarged lymph node (LN#10) were biopsied; histopathological examination revealed no malignant findings, and IgG4-RLD was diagnosed. One month after treatment with prednisolone (PSL), the tumor had shrunk, but a CT scan during the third month of PSL treatment revealed multiple nodular shadows in both lungs. Considering the possibility of malignant complications and multiple lung metastases, we performed thoracoscopic partial lung resection of the new left lung nodules to determine the treatment strategy. Histopathological examination revealed no malignant findings in any of the lesions, and the patient was diagnosed with IgG4-RLD refractory to PSL monotherapy. We are considering the combination of azathioprine and PSL as future treatment.

Conclusions: IgG4-RLD refractory to PSL monotherapy showed changes from a solitary large mass (pseudotumor) to multiple nodules on chest CT. It was difficult to distinguish malignancy from IgG4-RLD based on imaging tests and blood samples alone, and performing thoracoscopic lung biopsies and partial lung resection were useful in determining the diagnosis and treatment plan.

Background

Since autoimmune pancreatitis with high serum IgG4 concentrations was reported in 2001, the new disease concept of IgG4-related disease (IgG4-RD) has been widely recognized [1]. IgG4-RD is characterized by the development of inflammatory lesions in various organs of the body; however, there are only a few reports on pulmonary lesions and their clinical course. In this report, we describe a case of IgG4-RLD with recurrent pulmonary lesions during steroid therapy that was difficult to differentiate from malignancy.

Case Presentation
A 61-year-old man undergoing treatment for bronchial asthma was referred to our hospital because of an abnormal mass shadow on chest radiography. Blood tests showed a mild increase in C-reactive protein to 3.5 mg/dL, but no other abnormalities in blood count or biochemical findings were observed. No elevation of tumor markers related to lung cancer was observed, but interleukin (IL)-2R was elevated to 536 U/mL (normal value 124 to 466). Chest computed tomography (CT) revealed a middle lobe hilar mass with irregular margins and swelling of the right hilar and mediastinal lymph nodes (Figure 1). 18F-fluorodeoxyglucose-positron emission tomography (FDG-PET)/CT revealed a mass lesion with a maximum diameter of 5.5 cm and maximum standardized uptake value (SUVmax) of 11.0, and high SUV areas in the hilar and mediastinal lymph nodes (Figure 2). Therefore, we included middle lobe lung cancer with mediastinal lymph node metastasis (T3N2M0 Stage IIIB) and malignant lymphoma in the differential diagnosis. Transbronchial lung biopsy of the mass revealed no malignant findings. Based on the above, we decided to perform a thoracoscopic lung biopsy; if intraoperative histology revealed malignant findings, a radical middle lobectomy plus lymph node dissection was planned.

Surgical findings: A 1.5-cm camera port was made on the mid-axillary line of the 7th intercostal space, and the thoracic cavity was observed; however, it was difficult to evaluate the pleural effusion because of extensive pleural adhesions. After thoracoscopic dissection of the pleural adhesions, a total of five tumor sites and an enlarged lymph node (LN#10) were biopsied; however, intraoperative rapid pathological examination revealed no malignant findings. Identification of the interlobar pulmonary artery was impossible due to severe interlobar adhesions, and a right total pneumonectomy was necessary to completely resect the primary lesion. Since it would be over-invasive to perform a total right pneumonectomy in a patient with an undetermined diagnosis, we decided to terminate the surgery and determine the treatment plan based on the results of the histopathological examination.

Histopathological findings: Hematoxylin–eosin (HE) staining showed an inflammatory cell infiltrate consisting of plasma cells, lymphocytes, and neutrophils. Storiform fibrosis was observed using the silver impregnation method. Immunohistochemical staining showed that there were approximately 40 IgG4-positive cells per High Power Field (HPF), and the IgG4/IgG ratio was approximately 20% (Figure 3).

Based on the above findings, the patient was diagnosed with IgG4-RD occurring only in the lungs, and treatment with prednisolone (PSL) 60 mg/day was initiated. After one month of treatment with PSL, the mass had shrunk, and improvement in fever and cough symptoms was observed. However, a CT scan during the third month of PSL treatment (30 mg/day) showed multiple nodular shadows in both lungs (Figure 4). No physical symptoms were observed. Considering the possibility of malignant complications and multiple lung metastases, we performed thoracoscopic partial lung resection of the newly appearing left lung nodules to determine the treatment strategy.

Surgical findings: We performed 3-port video-assisted thoracic surgery (VATS). Extensive pleural adhesions were observed in the thoracic cavity. After detachment of the adhesions, the surgery was completed with partial lung resection of the lower lobe.
Histopathological findings: HE staining revealed a dense inflammatory cell infiltrate consisting of plasma cells, lymphocytes, and neutrophils. Immunohistochemical staining showed that there were approximately 40 IgG4-positive cells per HPF, and the IgG4/IgG ratio was approximately 70% (Figure 5). There was no evidence of malignancy.

Thus, we diagnosed IgG4-RLD refractory to PSL monotherapy.

Discussion

IgG4-RD is a relatively new disease concept that was historically proposed based on observations of autoimmune pancreatitis and Mikulicz's disease with high IgG4 levels in the serum [1, 2]. This disease is characterized by the formation of inflammatory lesions with fibrosis and infiltration of IgG4-positive plasma cells and lymphocytes in various organs (e.g., pancreas, biliary tract, lacrimal gland, salivary gland, kidney, retroperitoneum). Although the frequency of lung or pleural lesions in IgG4-RD has been reported to be 14%, there are still only a few reports of IgG4-related lung disease (RLD) [3]. The clinical symptoms may be nonspecific, such as cough, respiratory distress, fever, and chest pain, but it may also be asymptomatic. The ACR/EULAR IgG4-RD classification criteria were developed and proposed in 2019 as diagnostic criteria [4]. According to the IgG4-RD classification criteria proposed by Wallace et al., the diagnostic criteria are as follows: pathological tissue score, immunohistochemistry (IHC) score, serum IgG4, and findings in each organ. In this patient, the pathological tissue score was 13 points, the IHC score was 7 points, the serum IgG4 was 0 points, and the organs were 4 points, for a total of 24 points according to the test results when VATS lung biopsy was performed. At the time of VATS partial lung resection, the test results were 4 points for the pathological tissue score, 14 points for the IHC score, 0 points for serum IgG4, and 4 points for organs, for a total of 22 points. Since this case met the diagnostic criteria of over 20 points, the patient was diagnosed with IgG4-RD. Epidemiologically, it is more common in middle-aged and older men and varies from systemic to single-organ diseases. According to previous reports, imaging findings such as consolidation, ground-glass opacity, nodular shadows, and septal thickening are often seen in the peripheral lung fields, and abnormalities are often seen just below the pleura on chest CT. Fibrosis has been observed but is less common. The presence of fibrosis may be accompanied by honeycombing and traction bronchiectasis [5].

In our case, FDG-PET/CT scans showed a mass lesion measuring 5.5 cm in size in the middle lobe with an SUVmax of 11.0, and high SUV areas in the hilar and mediastinal lymph nodes. IL-2R levels were also elevated, and it was difficult to differentiate malignant tumors from benign lung disease based on the preoperative examination. Thoracoscopic lung biopsy is useful in determining the diagnosis of IgG4-RLD. In general, glucocorticoids are effective in the treatment of IgG4-RLD, and it is recommended to start glucocorticoids with an equivalent PSL dose ranging from 20 mg to 60 mg/day depending on the severity of the presentation [5, 6, 7].

We started treatment with PSL at 60 mg/day, and after one month, the lesion had shrunk, and symptoms, such as fever and cough, had improved. However, when the dose was reduced to 30 mg/day in the third
month of PSL therapy, multiple nodular shadows appeared in both lungs on chest CT.

Previous reports have shown that malignancies tend to be associated with IgG4-RD. Wallace et al. reported that 20 of 125 patients diagnosed with IgG4-related disease had a history of malignancy, with a standardized prevalence ratio as high as 2.5 [8]. Yamamoto et al. reported that 10.4% of patients with IgG4-RD had malignant complications, and the standardized incidence ratio was as high as 383 [9]. Based on the imaging findings of our case, the possibility of multiple lung metastases due to malignant disease was also suspected. To determine the treatment plan, thoracoscopic partial lung resection was performed on the newly appearing multiple nodules in the left lung. As a result, we found that IgG4-RLD refractory to PSL monotherapy showed shade changes from a solitary large mass (pseudotumor) to multiple nodules on chest CT. In addition, since the mass in the middle lobe was shrinking and the new shadow was not a malignant metastasis, the possibility of a malignant tumor was almost completely ruled out.

It has been reported that the combination of immunosuppressants and steroids is effective in treating IgG4-RLD refractory to PSL monotherapy [10], and we are considering the combination of azathioprine and PSL as a future treatment.

Conclusion

We encountered a patient with IgG4-RLD refractory to PSL monotherapy with a change in shade from a solitary large mass (pseudotumor) to multiple nodules on chest CT. It was difficult to distinguish malignancy from IgG4-RLD, and actively undertaking thoracoscopic lung biopsies and partial lung resection were useful in determining the diagnosis and treatment plan.

Abbreviations

IgG4, immunoglobulin G4; IgG4-RD, IgG4-related disease; IgG4-RLD, IgG4-related lung disease; CT, computed tomography; FDG-PET, 18F-fluorodeoxyglucose-positron emission tomography; SUVmax, maximum standardized uptake value; PSL, prednisolone; IL, interleukin; HE, hematoxylin–eosin; HPF, high power field; VATS, video-assisted thoracic surgery; IHC, immunohistochemistry

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in Chief of this
Availability of data and materials

Not applicable.

Competing interests

The authors declare they have no competing interests.

Funding

The listed authors have not received funding for this manuscript.

Authors' contributions

TO have operated this case and analyzed all data. NN and SO did the assistant of the operation. NK and HN analyzed patient data on the course of treatment and diagnostic criteria for IgG4-RLD. RI diagnosed the pathology in this case. YT, TG and HY have edited this manuscript and have researched the stated references. All authors read and approved the final manuscript.

Acknowledgements

We thank the clinical immunologist at Sakaide City Hospital for his medical expertise and useful discussions. This case have not been published elsewhere.

References

1. Hamano H, Kawa S, Horiuchi A, Unno H, Furuya N, Akamatsu T, et al.: High serum IgG4 concentrations in patients with sclerosing pancreatitis. N Engl J Med. 2001;344:732–738.

2. Yamamoto M, Takahashi H, Ohara M, Suzuki C, Naishiro Y, Yamamoto H, et al.: A new conceptualization for Mikulicz’s disease as an IgG4-related plasmacytic disease. Mod Rheumatol. 2006;16:335–340.

3. Zen Y, Nakanuma Y. IgG4-related disease: a cross-sectional study of 114 cases. Am J Surg Pathol. 2010;34:1812-9.

4. Wallace ZS, Naden RP, Chari S, Choi H, Della-Torre E, Dicaire JF, et al.: The 2019 American College of Rheumatology/European League Against Rheumatism classification criteria for IgG4-related disease. Ann Rheum Dis. 2020;79:77-87.

5. Wallace ZS, Perugini C, Matza M, Deshpande V, Sharma A, Stone JH. IgG4-Related Disease. Clin Chest Med. 2019;40:583–597.

6. Kamisawa T, Okazaki K. Diagnosis and Treatment of IgG4-Related Disease. Curr Top Microbiol Immunol. 2017;401:19-33.
7. Okazaki K, Kawa S, Kamisawa T, Shimosegawa T, Nakamura S, Ito T, et al. Comprehensive Diagnostic Criteria for IgG4-Related disease (IgG4-RD), 2011. J Jpn Soc Int Med. 2012;101:795-804.

8. Wallace ZS, Wallace CJ, Lu N, Choi HK, Stone JH. Association of IgG4-Related Disease With History of Malignancy. Arthritis Rheumatol. 2016;68:2283–9.

9. Yamamoto M, Takahashi H, Tabeya T, Suzuki C, Naishiro Y, Ishigami K, et al. Risk of malignancies in IgG4-related disease. Mod Rheumatol. 2012;22:414-8.

10. Onishi Y, Kawamura T, Kagami R, Nakahara Y, Yoshiro M. IgG4-related Lung Disease with Organizing Pneumonia Effectively Treated with Azathioprine. Intern Med. 2014;53:2701-4.

Figures

Figure 1

Chest CT a, b) Chest CT revealed a middle lobe hilar mass with irregular margins and swelling of the right hilar and mediastinal lymph nodes.
Figure 2

FDG-PET/CT revealed a mass lesion with a maximum diameter of 5.5 cm, SUVmax of 11.0, and high SUV areas in the hilar and mediastinal lymph nodes.

Figure 3

Microscopic examination a) HE staining showed an inflammatory cell infiltrate consisting of plasma cells, lymphocytes, and neutrophils. b) Storiform fibrosis was observed using the silver impregnation
method. c) Immunohistochemical staining showed that there were approximately 40 IgG4-positive cells per HPF, and the IgG4/IgG ratio was approximately 20%.

Figure 4

Chest CT view at the third month of PSL treatment (30 mg/day) a, b) Chest CT showing a shrinking middle lobe hilar mass and multiple nodular shadows in both lungs.

Figure 5

Microscopic examination a) HE staining showing a dense inflammatory cell infiltrate consisting of plasma cells, lymphocytes, and neutrophils. b) Immunohistochemical staining showing approximately 40 IgG4-positive cells per HPF, and an IgG4/IgG ratio of approximately 70%.