ABSTRACT

Aim: The primary objective of the research work is to develop an effective, sensitive, economical and simple reverse phase HPLC method to estimate Emtricitabine and tenofovir alafenamide fumarate in its pure and binary mixture of tablets.

Study Design: HPLC based Quantification Studies.

Place and Duration of Study: Department of Chemistry, Acharya Nagarjuna University, Guntur, Andhra Pradesh between April 2019 and August 2020.

Methodology: Separation of the analytes were done by using Eclipse XDB-Phenyl (250 x 4.6mm, 5µ,100 A) column and a mobile phase ratio of 30:10:70 percentage of 0.1% trifluoro acetic acid: acetonitrile: methanol at a flow rate of 1 ml/min. The injected standard and sample solutions were detected 260nm wavelength.

Results: The retention time of Emtricitabine and tenofovir alafenamide fumarate were found at 2.3min and 2.8 min respectively. The method has good linearity range about 50 to 150µg/ml of Emtricitabine and 6.5 to 19.5 µg/ml of tenofovir alafenamide fumarate. The method has validated as per ICH guidelines and all the validation parameter were satisfy the ICH Q2 specification acceptance limits.
Conclusion: The developed method said to be highly sensitive, accurate, specific and robust, therefore this method has high probability to adopt in pharmaceutical industry for regular analysis of Emtricitabine and tenofovir alafenamide.

Keywords: Tenofovir alafenamide fumarate; Emtricitabine, HPLC based Quantification Studies; Eclipse XDB-Phenyl column; Sensitive.

ABBREVIATIONS

FDA: Food and Drug Administration
HIV: Human Immune Virus
TAF: Tenofovir alafenamide fumarate
HPLC: High-Performance Liquid Chromatography
RT: Retention Time
LOD: Limit of Detection
LOQ: Limit of Quantification
ICH: International Council on Harmonization
SD: Standard Deviation
RSD: Relative Standard Deviation

1. INTRODUCTION

Research scientists and health care experts have been doing research against effective treatment of human immune virus (HIV) infection for 20 years. To treat this infection, till now around 20 anti viral agents have been approved by food and drug administration (FDA). Significant changes have been occurring in the treatment due to drug resistance, pill burden, and drug tolerability. To overcome this problem, fixed dose combinations of anti viral agents have been developed. Among those a fixed dose combination Emtricitabine and Tenofovir alafenamide fumarate (TAF) tablet administered once a day is effect in the treatment of HIV infection.

Chemically Emtricitabine is 4-amino-5-fluoro-1-[(2R,5S)-2-(hydroxymethyl)-1,3-oxathiolan-5-yl]pyrimidin-2-one with chemical formula C_{10}H_{10}FN_{3}O_{3}S. The antiviral activity of Emtricitabine is due to its metabolite Emtricitabine 5'-triphosphate, which effectively inhibits the reverse transcriptase enzyme blocks replication of the HIV [1,2]. Tenofovir alafenamide fumarate is a prodrug of Tenofovir prepared by reacting one mole of fumaric acid with two moles of tenofovir alafenamide. The IUPAC name of TAF is (2E)-but-2-enedioic acid, propan-2-yl(2S)-2-[[[(2R)-1-(6-aminopurin-9-yl)propan-2-yl]oxy]methyl phenoxypyrophosphoryl] amino]propanoate with chemical formula C_{24}H_{25}N_{2}O_{11}P_{2}. It is also reverse transcriptase inhibitor most commonly used in antiviral combination therapy. Based on literature as of now different analytical method were reported for both Emtricitabine and TAF individually [2-8]. Along with the individual methods, analytical and bio analytical methods were available in simultaneous estimation in combination with other antiviral drugs [9,10]. Only few RP-HPLC method were reported for simultaneous estimation of Emtricitabine and TAF in fixed combination regimen which are not economical due to longer runtime, less sensitivity and composition of complicated mobile phase [11-12]. Hence a new method development was attempted to make a good method with cost effective and industrial use for routine analysis of fixed dose combination of Emtricitabine and TAF. The Chemical structures of Emtricitabine and TAF were mentioned in Fig. 1.

2. MATERIALS AND METHODS

Pure drug substance of Emtricitabine and TAF were collected as gift sample from Fortune Pharma private limited, Hyderabad. HPLC grade solvents were obtained from Merck India, Mumbai, India

2.1 Chromatographic Conditions

To carry out the present reverse phase liquid chromatography method WATERS HPLC, Model: 2695 with 2487 PDA detector having an automated sample injecting system was used. The output signal was processed and computed using Empower 2 software. Chromatographic separation was done by using Eclipse XDB-Phenyl (250 x 4.6mm, 5µ,100 Å) column and a mobile phase ratio of 30:10:70 percentage of 0.1% trifluoro acetic acid : acetonitile: methanol at a flow rate of 1ml/min. The injected standard and sample solutions were detected 260nm wavelength. All the solutions have been filtered through the 0.45µm nylon filters. To prepare standard and sample solution water: methanol (50:50) selected as diluent based on the solubility of Emtricitabine and TAF. Optimized chromatogram was shown in Fig. 2.

2.2 Preparation of Standard Solution

10mg of Emtricitabine and 1.3 mg of TAF pure API’s were weighed accurately and dissolved...
with to diluent (Methanol and water(50:50)) to made a solution having 100µg/ml and 13µg/ml concentration of Emtricitabine and TAF respectively, which is expressed as 100% level solution.

2.3 Preparation of Standard Solution

Tablet (Taficita™) powder equivalent to 10mg of Emtricitabine and 1.3 mg of TAF were weighed accurately and dissolved with to diluent (Methanol and water(50:50)) to made a solution having 100µg/ml and 13µg/ml concentration of Emtricitabine and TAF respectively.

2.4 Method Validation

The adopted method has been validated with respective to Q2 guidelines of ICH.

2.4.1 System SUITABILITY TEST

Five replicate injections of Emtricitabine and TAF standard solution used to carry out the system suitability test. Parameters such as USP plate count (N), USP tailing (T) and percentage relative standard deviation (%RSD) values have been computed.

2.4.2 Linearity

The linearity of the method reflects that the peaks areas are directly proportional to concentrations. Linearity of the method was done by plotting a graph between concentration Vs peak area for both drugs in standard solutions concentrations of 50µg/ml to 150µg/ml of Emtricitabine and 6.5µg/ml to 19.5µg/ml of TAF into HPLC instrument. Regression coefficient (r²) values were determined from the linearity graphs of the both drugs.

2.4.3 Precision

The closeness relationship among the peak areas of homogenous solution on repeated injections termed as precision. It has performed by injecting 100% level solution for 5 replicates in a day for three days, % RSD value was computed for obtained responses.

2.4.4 Accuracy

The accuracy represents the closeness relationship between standard and observed responses. It was done by performing percentage recovery studies, where spiking of sample solution in to standard solution at three levels like 50, 100, and 150%. The each spiked level solutions introduced in to HPLC system in triplicate. The mean percentage recovery at three different levels of the drug solution was calculated.

![Emtricitabine](image1.png)

![Tenofovir alafenamide fumarate](image2.png)

Fig. 1.Chemical structures of Emtricitabine and Tenofovir alafenamide fumarate
2.4.5 Specificity

The capacity of the method to determine the substance to be analyzed in the presence of impurities and other substances without intrusion represents the method's specificity. It has been performed by injecting blank, standard solution, and standard solution with placebo. Chromatograms were observed for interference with the RT of Emtricitabine and TAF.

2.4.6 Sensitivity

The LOD and LOQ of the method were calculated by using the Standard deviation method.

\[
\text{LOD} = 3\sigma/S
\]

\[
\text{LOQ} = 10 \sigma/S
\]

Where, \(\sigma\) - Standard deviation of the response and \(S\) - Slope of the standard curve

2.4.7 Robustness

To check the robustness of the adopted method, small changes were made in the flow rate (± 0.1 ml/min) and maximum absorption wavelength (± 2nm).

2.5 Assay

The percentage purity of marketed tablets was estimated by injecting 100% level concentration of standard solution and sample solution.

3. RESULTS AND DISCUSSION

3.1 Method Validation

3.1.1 System suitability

All the system suitability parameters values were within the showed acceptance limits, which are mentioned by ICH. Results and acceptance limits were shown in Table 1 and Table 2 respectively.

Injection no	Emtricitabine (100µg/ml)	TAF (13µg/ml)						
	RT	Peak area	USP plate count	USP tailing	RT	Peak area	USP plate count	USP tailing
1	2.37	1003973	7210	1.11	2.897	120631	8048	1.06
2	2.369	1004573	7277	1.1	2.898	120664	7936	1.06
3	2.37	1003068	7102	1.1	2.899	120644	7876	1.07
4	2.368	1003764	7293	1.1	2.895	120518	8107	1.07
5	2.369	1000930	7253	1.1	2.897	120077	7933	1.06
Mean	2.369	1003262	7227	1.108	120506.8	7980	1.064	
STDEV	1409.9	76.56	0.0044	246.8	94.4	0.0054		
%RSD	0.14	1.0	0.40	0.20	1.18	0.51		
Table 2. Acceptance limits of system suitability parameters

Parameter	Acceptance limit
USP Plate count	>2000
USP tailing	≤2
%RSD	≤2
Resolution	>2

3.1.2 Linearity

The r^2 values for the linearity curves of 50 to 150 µg/ml concentration of Emtricitabine and 6.5 to 19.5 µg/ml of TAF were found as 0.999 and 0.999 respectively. Those values states that the proposed method has acceptable linearity over the specified concentration ranges. The results were stated in Table 3 and Fig. 3.

3.1.3 Accuracy

The Percentage mean recovery At the mentioned three different levels mean recovery percentages for Emtricitabine and TAF were in the range of 99.2 to 99.8% which are within the Table 4.

3.1.4 Precision

The % RSD of the injected 100% level standard solution of Emtricitabine and TAF and were not more than 2 and results were represented in Table 5 states the methods precision.

3.1.5 Sensitivity

The LOD and LOQ of Emtricitabine was 1.3 µg/ml and 4 µg/ml and TAF was 1 µg/ml and 2 µg/ml states high level sensitivity of the developed method.

3.1.6 Robustness

Intentionally made small changes in flow rate and maximum absorption wavelength in the proposed method has produced system suitability parameter observed values were in the acceptance limit (Table 6) depicts the robustness of the developed method.

3.2 Assay

The percentage purity of the marketed tablet was found to be 100.02% and 99.3% mentioned in Table 7.

Table 3. Linearity curve of Emtricitabine and TAF

% level	Emtricitabine	Concentration(µg/ml)	Peak area	TAF	Concentration(µg/ml)	Peak area
50	50	504197	6.5	60649		
75	75	728128	9.75	88129		
100	100	995636	13	116620		
125	125	1253650	16.25	149852		
150	150	1514911	19.5	181028		

Correlation coefficient(r^2) 0.9996 0.9993

Table 4. Results of accuracy studies

% Level	Emtricitabine (µg/ml)	TAF (µg/ml)						
	Amount added	Amount recovered	% Recovery	% Mean recovery	Amount added	Amount recovered	% Recovery	% Mean recovery
50%	50	49.7	99.4	99.3	6.5	6.46	99.5	99.8
50	50	49.8	99.7	99.3	6.5	6.48	99.8	99.8
100%	100	99.8	99.8	99.4	13	12.96	99.7	99.7
100	100	99.5	99.5	99.3	13	12.83	98.7	99.2
100	100	98.9	99.8	99.4	13	12.92	99.4	99.4
150%	150	148.6	99.1	98.7	19.5	19.4	99.5	99.5
150	150	147.7	98.5	98.7	19.5	19.4	99.8	99.7
150	150	148.0	98.7	98.7	19.5	19.4	99.9	99.9

Acceptance limit: 100±2
Table 5. Results of precision of 100% level solution

Repeatability	Parameter	Emtricitabine	TAF	
S.NO	RT (Min)	Area	RT (Min)	Area
Mean	2.31	1003262	2.89	120506.8
Std. Dev.	0.001	1409.9	0.011	246.8
% RSD	0.04	0.14	0.38	0.20
Mean	2.369	999966	2.901	118414
Std. Dev.	0.001	2450	0.001	528
% RSD	0.02	0.25	0.03	0.45

Table 6. Robustness results of Emtricitabine and TAF

Parameter	RT (Min)	Peak area	USP plate count	RT (Min)	Peak area	USP Plate count
Flow rate	0.9	2.584	1084907	3.17	115306	8127
(±0.1ml) 1	2.37	1003973	7210	2.897	120631	8048
1.1	2.19	926656	7283	2.685	98598	8201
Maximum wavelength	258	2.37	1003973	2.89	120631	8195
(± 2nm) 260	2.37	1003973	7365	2.897	120631	8048
262	2.369	1004573	7156	2.898	120664	8056

Fig. 3. Calibration curve of Emtricitabine and TAF
Table 7. Results of % assay of the tablet dosage form

Drug	Peak name	Retention time	Peak Area	USP Tailing	USP Plate count	%Assay
	Standard	2.369	1000291	1.12	7365	100.02%
	Test	3.369	1002599	1.11	7059	
TAF	Standard	2.901	119223	1.07	8265	99.3%
	Test	2.9	118428	1.04	8726	

Acceptance limit ≤2 >2000 100±2

The RP-HPLC method has key role in both qualitative and quantitative analysis of drug. As of now, few RP-HPLC methods were available for analysis of Emtricitabine and TAF. But the retention times in the previously reported studies were more, and a method with high retention time cannot be said as economical because it requires huge volume of mobile phase and takes longer run time. To overcome these problem developed a new method, in this the retention time was reduced hence in the short period of time more number of drug samples can be analyzed. In this RP-HPLC method the retention time of Emtricitabine and TAF were 2.3 and 2.8 minutes respectively which was attained by a simple mobile phase composition of 30:10:70 percentage of 0.1% trifluoroacetic acid: acetonitile: methanol at a flow rate of 1 ml/min). The lowest linearity range and sensitivity was gained by this method.

4. CONCLUSION

An effective, unique simple and specific RP HPLC method with isocratic elution method was developed to estimate Emtricitabine and TAF simultaneously in API and its combined market dosage form. Hence, the proposed approach is predicted as revival to normal evaluation of mixed dosage in pharmaceutical enterprise.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Saravolatz LD, Saag MS. Emtricitabine, a New Antiretroviral Agent with Activity against HIV and Hepatitis B Virus. Clin Infect Dis. 2006;42(1):126–31.
2. Runja C, Ravi Kumar P, Avanapu SR. A Validated Stability Indicating RP-HPLC Method for the Determination of Emtricitabine, Tenofovir Disoproxil Fumarate, Elvitegravir and Cobicistat in Pharmaceutical Dosage Form. J Chromatogr Sci. 2016;54(5):759–64.
3. Nagaraju PT, Channabasavaraj KP, Shantha Kumar PT. Development and Validation of Spectrophotometric Method for Estimation of Emtricitabine in Tablet Dosage Form. Int. J. Chem Tech. 2011;3(1):23-28.
4. Kumar P, Dwivedi SC, Kushnoor A. A Validated Stability Indicating RPHPLC Method For The Determination Of Emtricitabine In Bulk And Capsules, Farmacia, 2012;60(3):402-410.
5. Nevase PA, Hemalata M, Nimje1, Oswal RJ, Antre RV, Kshirsagar SS. UV Spectrophotometric Method for Estimation of Tenofovir Disoproxil Fumarate Tablet Dosage Form, IJPRD, 2011; 3(3):11:73–75.
6. Gnanarajan G, Gupta AK. A validated method for development of Tenofovir as API and Tablet dosage form by UV Spectroscopy, Pharmaceutical Analysis, 2009;1(4):351-353.
7. Kandagal PB, Manjunatha DH, Seetharamappa J, Kalanur SS. RP-HPLC Method for the Determination of Tenofovir in Pharmaceutical Formulations and Spiked Human Plasma, Pharmaceutical Analysis, 2008;41:561–570.
8. Sharma T, Mishra N, Moitra S, Sudam CS, Sankar DG. A Validated RP-HPLC Method for estimation of Tenofovir Disoproxil Fumarate in Bulk and Pharmaceutical Formulation, Asian J Pharm Clin Res, 2012;5(3):108-110.
9. Venkatesan S, Kannappan N, Mannemala SS. Stability-Indicating HPLC Method for the Simultaneous Determination of HIV Tablet Containing Emtricitabine, Tenofovir...
Disoproxil Fumarate, and Rilpivirine Hydrochloride in Pharmaceutical Dosage Forms. Int Sch Res Not. 2014;2014:1–9.

10. Sattar A, Achanta S. Analytical Method Development and Validation for the Determination of Emtricitabine and Tenofovir Disoproxil Fumarate Using Reverse Phase HPLC Method in Bulk and Tablet Dosage Form. J Pharm Sci. 2018;10:6.

11. Anandakumar K, Kannana K, Vetrichelvan T. Development And Validation Of Emtricitabine And Tenofovir Disoproxil Fumarate In Pure And In Fixed Dose Combination By UV Spectrophotometry, Digest Journal of Nanomaterials and Biostructures, 2011;6(3):1085-1090.

12. Rao BV, Vidyathara S, Nagaraju B, Jhonbi SK. A Novel Stability Indicating RP-HPLC Method Development And Validation For The Determination Of Tenofovir Disoproxil Fumarate And Emtricitabine In Bulk And Pharmaceutical Formulations, IJPSR, 2017;8(5):2168-2176.

© 2021 Sarat and Ramachandran; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here: https://www.sdiarticle4.com/review-history/73941