State-resolved ultrafast charge and spin dynamics in [Co/Pd] multilayers

Loïc Le Guyader,1, 2 Daniel J. Higley,1, 3, 4 Matteo Pancaldi,5 Tianmin Liu,1, 6 Zhao Chen,1, 6 Tyler Chase,1, 3 Patrick W. Granitzka,1, 7 Giacomo Coslovich,4 Alberto A. Lutman,4 Georgi L. Dakovski,4 William F. Schlotter,4 Padraic Shafer,8 Elke Arenholz,8 Olav Hellwig,9, 10, 11 Mark L.M. Lalieu,12 Bert Koopmans,12 Alexander H. Reid,1, 4 Stefano Bonetti,5 Joachim Stöhr,1 and Hermann A. Dürr1, 13

1) Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
2) European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
3) Department of Applied Physics, Stanford University, Stanford, California 94305, USA
4) Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
5) Department of Physics, Stockholm University, Stockholm, 10691 Sweden
6) Department of Physics, Stanford University, Stanford, California 94305, USA
7) van der Waals-Zeeman Institute, University of Amsterdam, 1018XE Amsterdam, The Netherlands
8) Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
9) San Jose Research Center, HGST a Western Digital Company, 3403 Yerba Buena Road, San Jose, California 95135, USA
10) Institute of Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
11) Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328 Dresden, Germany
12) Department of Applied Physics, Institute for Photonic Integration, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
13) Department of Physics and Astronomy, Uppsala University, Box 516, 75120 Uppsala, Sweden

(*Electronic mail: hermann.durr@physics.uu.se)

(*Electronic mail: loic.le.guyader@xfel.eu)

(Dated: 1 November 2021)
State-resolved dynamics in CoPd

We use transient absorption spectroscopy with circularly polarized x-rays to detect laser-excited hole states below the Fermi level and compare their dynamics with that of unoccupied states above the Fermi level in ferromagnetic [Co/Pd] multilayers. While below the Fermi level an instantaneous and significantly stronger demagnetization is observed, above the Fermi level the demagnetization is delayed by 35 ± 10 fs. This provides a direct visualization of how ultrafast demagnetization proceeds via initial spin-flip scattering of laser-excited holes to the subsequent formation of spin waves.
State-resolved dynamics in CoPd

Femtosecond optical excitation of magnetic materials and heterostructures leads to strongly non-equilibrium conditions displaying many novel phenomena that are absent in equilibrium physics (for reviews see Refs. [1] and [2] and references therein). Discoveries such as all-optical magnetization reversal[3–6], superdiffusive spin transport[7–14] and optically induced spin transfer effect[15,16] not only challenge our fundamental understanding but also provide future perspectives for information storage and processing. It is generally accepted that laser excitation initially leads to a highly non-equilibrium electron system while conserving the total electron spin polarization.[17–19] Subsequently, electronic thermalization and magnetization dynamics set in that distribute the deposited laser energy over the system’s electron, spin and orbital degrees of freedom and ultimately to the lattice.[17–22] While such dynamics can be described by a phenomenological three temperature model, the underlying physics at play remain hidden behind ad hoc coupling constants.[23]

For understanding the angular momentum flow during ultrafast demagnetization it is important to disentangle the influence of magnetic interactions such as exchange and spin-orbit coupling in the non-equilibrium dynamics. While the exchange interaction leads to processes that conserve spin such as angular momentum transfer between magnetic sub-systems[24] and the excitation of spin waves[25–28], spin-orbit coupling can cause electronic spin-flips where the corresponding change in angular momentum is transferred to phonons.[29] Such Elliott–Yafet type spin-flip scattering on phonons has been investigated and is considered a key ingredient of ultrafast demagnetization.[20,23,30,31] Flipping electron spins also leads to the excitation of spin waves[32] via exchange scattering. However, the direct observation of spin waves in momentum space and in the time-domain remains challenging.[33] Several studies reported ultrafast excitation of spin waves for instance via a delayed onset of demagnetization.[34–36] This situation is visualized in Fig. 1(a) where the initial spin-conserving laser excitation and subsequent spin-flip processes are depicted. The decay of a flipped electron spin (top of Fig. 1(a)) into spin waves (top of Fig. 1(b)) is thought to take a characteristic time of several 10 fs.[34–36]

Here we use time-resolved x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) to follow these processes as they evolve in real time in [Co/Pd] multilayers. We show that $2p \rightarrow 3d$ core-valence transitions can directly probe the spin-polarization of laser-induced holes below the Fermi level. These states display an instantaneous response to fs laser excitation. Surprisingly, $2p \rightarrow 3d$ transitions into unoccupied states above the Fermi level show a demagnetization dynamics that is delayed by 35 ± 10 fs. In addition, laser-induced hole states below the Fermi level display a much stronger demagnetization. These observations are consistent
State-resolved dynamics in CoPd

with the notion that spin-orbit scattering in strong ferromagnets is the driving force for ultrafast demagnetization.

Experiments were performed at the SXR instrument of the Linac Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The experimental setup is described in detail in Ref. [37]. X-ray absorption spectra were measured in transmission. The incident X-ray intensity was measured via the x-ray fluorescence from a Si$_3$N$_4$ membrane placed in the beam before the sample and detected with an microchannel plate (MCP). The transmitted X-ray intensity behind the sample was recorded by a fast charge coupled device (CCD) detector. XAS spectra over the L$_3$ absorption edge corresponding to $2p_{3/2} \rightarrow 3d$ transitions were acquired by varying the x-ray energy via the LCLS electron beam energy. A 250 meV x-ray bandwidth was selected by the beamline monochromator using a 100 lines per mm grating resulting in an effective resolving power of 3000 at 780 eV [38]. Circularly polarized X-ray pulses were produced using the “Delta” afterburner undulator [39], enabling the measurement of XAS and XMCD spectra by alternating the magnetic field saturating the sample along the beam direction and computing sum and difference for XAS and XMCD, respectively. Time-resolved XAS and XMCD data were acquired by scanning the time delay between the 50 fs Full Width at Half Maximum (FWHM) X-ray probe pulse and the 60 fs FWHM pump laser at a central wavelength of 798 nm. The data was corrected for timing jitter between the pump and probe pulses by measuring the arrival time of the electron pulses via the so-called phase cavity [40]. Slower timing drifts on the few-minutes-scale was corrected using a cross-correlation-based time delay estimation method as detailed in the supplementary information. The pump laser was focused on the sample to a spot size of 190×150 µm2 FWHM giving a fluence of $\mathcal{F} = 35$ mJ/cm2. The x-ray spot size was 50×50 µm2 FWHM and the x-ray fluence below 5 mJ/cm2.

A [Co(6Å)/Pd(6Å)]$_{38}$ multilayer sample capped with a Pd(20Å) layer and grown onto a 100 nm Si$_3$N$_4$ membrane with a Ta(10Å)/Pd(30Å) buffer layer was used in the measurements described below. The sample was grown by DC magnetron sputtering with fabrication details given in the supplementary information. Prior to the LCLS experiments the sample was characterized at beamline 4.0.2 of the Advanced Light Source (ALS) using XAS and XMCD measurements, where sum rules analysis confirmed the magnetic properties of the multilayer with previously published work as discussed in the supplementary information.

Conceptually, the experiment is depicted in the schematic shown in Fig. [1]. In an itinerant strong ferromagnet such as Co in [Co/Pd] multilayers, the density of states (DOS) can be separated
FIG. 1. (Color online) (a) Schematic of the experiment where the unoccupied 3d spin-resolved density of states (DOS) are probed by 2p core-level absorption spectroscopy. Upon excitation by a femtosecond laser pulse, electrons are promoted from below to above the Fermi level, E_F, in a spin-conserving process (purple arrow). In a strong ferromagnet such as [Co/Pd], spin relaxation can only occur below E_F by a hole spin-flip (green arrow). (b) After the localized hole spin-flip excitation, spin-waves are generated and correspondingly the spin-resolved DOS are partially mirrored.

into completely occupied majority (spin “up”) and partially occupied minority spin (spin “down”) channels which are shifted in energy by the exchange splitting. At the L$_3$ absorption edge, valence hole states are probed via $2p_{3/2} \rightarrow 3d$ core-valence transitions. In the ground state all electronic states up to the Fermi level E_F are occupied. As the pump laser pulse excites the 3d electronic system by promoting electrons from below to above the Fermi level, transient XAS can detect the additional hole states below E_F. XAS transitions into states above E_F, however, are reduced by the laser-excited transient electron population in these states. Exactly at E_F no XAS changes should be observed. Laser-excited holes below E_F are thought to lead to demagnetization in strong ferromagnets via spin-flip scattering events, where an electron from the majority spin fills the hole in the minority spin, as depicted in Fig. 1(a). This flipped spin could then decay into spin waves as illustrated in Fig. 1(b), which induces a band mirroring in the nearby atoms where the quantization axis has now changed. By using time-resolved XAS and XMCD we aim at uncovering the different timescales and energies of the different processes involved.
State-resolved dynamics in CoPd

Fig. 2 shows transient XAS and XMCD of laser-induced holes below and above the Fermi level. XAS (Fig. 2(a)) and XMCD spectra (Fig. 2(b)) were measured at a fixed time delay of 0.4 ps at the Co L\textsubscript{3} edge. The pump induced changes are shown as green symbols and shading. While the change in XMCD appears to be mostly an homogeneous reduction at all photon energies, the change in XAS clearly displays a derivative-like shape with a zero crossing at an x-ray energy of 777.2 eV (see top axis of Fig. 2) as indicated by the dashed vertical line. At lower x-ray energy the XAS signal is increased as expected for fs laser-induced hole states. At higher energy XAS transitions into previously unoccupied states are blocked by laser-excited electrons leading to the observed intensity reduction. It is, therefore, possible to identify 777.2 eV as the position of the Fermi level (see bottom axis of Fig. 2).

Fig. 3 displays time-delay traces obtained for various state energies relative to the Fermi level, E-E\textsubscript{F}. Below E\textsubscript{F} the curves display initial increases in the XAS intensity followed by subsequent decays on timescales longer than several 100 fs. Above E\textsubscript{F} the transient XAS changes are negative while directly at E\textsubscript{F} a more complex behavior emerges. In the following we describe these observations in terms of changes in the hole population, \(\Delta N \), at state of energy E-E\textsubscript{F}. The small contribution due to spin-orbit coupling of the state-resolved XAS intensity42,43 will be neglected here. It is important to emphasize that \(\Delta N \) can also include time dependent changes in the electronic structure.44 It is apparent in Fig. 2(a) that such electronic structure changes indeed occur. For instance at E-E\textsubscript{F} near 4 eV, i.e. much higher than the pump photon energy, the observed variations of \(\Delta N \) are unlikely to be caused by the population dynamics of electrons in these states.

The curves for \(\Delta N \) in Fig. 3(a) were fitted with a double exponential to describe an excitation and a relaxation process. The fit parameters are summarized in Table II in the supplementary information. Far above and below the Fermi level, the initial rise times of \(\Delta N \) are essentially determined by the length of the pump pulses. The subsequent decay time scales are shorter further away from the Fermi level as one would expect from a Fermi liquid behavior of the electronic system.

The XMCD spectra can be described as being proportional to the product of state-dependent population, \(N \) and a polarization term, \(P \). The latter contains both spin and orbital polarization with the orbital contribution being significantly smaller than the spin polarization as shown in the sum rule analysis detailed in the supplementary information42,43. Similar to conventional sum-rule-analysis of time-resolved XMCD spectra, the magnetic dipole term can be neglected for our poly-crystalline samples45,46 and was found to be negligible in similar samples.47 Using the re-
State-resolved dynamics in CoPd

FIG. 2. (Color online) Pumped, unpumped and their differences in (a) XAS and (b) XMCD at the Co L$_3$ edge at a delay of 0.4 ps. The vertical dashed line indicates the position of the observed zero crossing at the Fermi level E_F. The photon energy is shown on the top axis, while the energy with respect to the Fermi level is shown on the bottom. The differences (pumped-unpumped) are shown on a separate vertical axis on the right. For the XMCD difference the sign was reversed to ease visual comparison with the unpumped XMCD profile.

For the results for ΔN from Fig. 3(a) we can separate the state polarization from state-dependent charge dynamics. The time-resolved polarization dynamics, normalized to the ground-state polarization of the respective states, are shown in Fig. 3(b). The individual experimental results (symbols) are shifted vertically for clarity and are compared to exponential polarization decays that include the magnitude of the decay, ΔP, the decay time constant, τ, and a delayed demagnetization onset, Δt, as fit parameters. All parameters are summarized in Table II in the supplementary information. To highlight the difference between the curves below and above the Fermi level, the same relative polarization dynamics for $E-E_F = 0.88$ eV is shown as a dashed grey curve together with each trace. This allows two visual observations. Firstly, the amount of demagnetization is not the same
FIG. 3. (Color online) Time-resolved change in state resolved (a) charge ΔN and (b) relative polarization change $P(t)/P_0$ around the E_F at the L_3 edge. In (b), the data are shifted vertically for clarity and the gray dashed curves are the fit as explained in the text at $E-E_F = 0.88$ eV.

at each value of $E-E_F$. Clearly, the demagnetisation is significantly stronger below E_F than above. Secondly, there is a time delay, Δt, apparent in the response, with faster dynamics for states below E_F. The complete fitting model and analysis of the uncertainties on the fitted values is presented in Table II in the supplementary information. In Fig. 4 the relative change in polarization $\Delta P/P_0$ and the time lag Δt are shown as function of $E-E_F$. We stress here that this time lag Δt is determined by the delayed apparent response of the relative change in polarization $\Delta P/P_0$ with respect to the charge dynamics ΔN, for the same given photon energy. It can also be visualized by comparing the relative change in polarization $\Delta P/P_0$ at different photon energy but this is not how we extracted it.

The data we presented in this letter conclusively demonstrate a vastly different magnetization dynamics above and below the Fermi level for Co $3d$ levels in [Co/Pd] multilayers. Below E_F, the ultrafast drop in magnetic polarization is up to 32% larger than above (see Fig. 4). This is clearly
State-resolved dynamics in CoPd

outside any experimental uncertainty as demonstrated in Fig. 3(b). Moreover, the onset of the polarization dynamics occurs simultaneously to the charge dynamics, i.e. $\Delta t = 0 \pm 10$ fs. This is the behavior expected for individual electrons/holes being scattered between different electronic states as depicted in Fig. 1(a). This also leads to Stoner excitations where electrons/holes are scattered between the spin up and down states. In strong ferromagnets such as [Co/Pd] multilayers, spin-flip scattering can only occur for states below E_F where spin up and down states are hybridized via spin-orbit coupling. The same Elliot-Yaffet-type spin-flip scattering processes are thought to also transfer spin angular momentum to the lattice.

However, for ultrafast demagnetization to occur, the flipped spins of individual electrons/holes need to be transferred to the whole electronic system. This usually takes place via the formation of collective spin excitations, i.e. spin waves. In the Heisenberg model, spin waves lead to slight changes of the atomic spin quantization axis and result in a mixing of spin up and down states as observed in photoemission spectroscopy. This situation is depicted in Fig. 1(b). Since the formation of spin waves takes time, we expect a characteristic time delay relative to the instantaneous demagnetization of individual electrons/holes. We assign the observed delayed onset of demagnetization above E_F of $\Delta t = 35 \pm 10$ fs (see Fig. 4) to this effect. This is observable above the Fermi level since there the majority of unoccupied states reflects the atomic magnetic moments.

In summary, taking advantage of the high FEL brightness and improved I_0 normalization scheme, we were able to show that time-resolved XAS and XMCD spectroscopy can provide detailed information in the microscopic mechanism at play during ultrafast laser excitation. In particular we report on different dynamics of the spin system below and above the Fermi level. This is manifested by both a 32% larger change in spin dynamics below the Fermi level and a

FIG. 4. (Color online) Fitted relative change in polarization $\Delta P/P^0$ and time lag Δt in polarization change response as function of $E-E_F$ at L₃ edge.
State-resolved dynamics in CoPd

35 ± 10 fs delayed response above it. Both of these effects suggest a scenario for a strong ferromagnet where spin-flips occur preferentially below the Fermi level where spin up and down states are hybridized. Moreover, we also report on initial evidence that indicates effects beyond a simple electronic redistribution and demagnetization with changes in XAS observed 4 eV above the Fermi level, suggestive of band structure dynamics. With ever improved normalization schemes and higher repetition rate FELs, transient near-edge soft X-ray spectroscopy promises to be a valuable tool in understanding out-of-equilibrium phenomena.

SUPPLEMENTARY MATERIAL

See supplementary material for the sample preparation, sum-rules analysis, timing drift correction, pump and probe absorption profiles in the sample and finally the complete fitting model with uncertainty estimation.

ACKNOWLEDGMENTS

L.L.G. acknowledges the Volkswagen-Stiftung for the financial support through the Peter-Paul-Ewald Fellowship. Work at SLAC and the operation of LCLS are supported by the U.S. Department of Energy, Office of Science.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author upon reasonable request.

REFERENCES

1. A. Kirilyuk, A. V. Kimel, and T. Rasing, “Ultrafast optical manipulation of magnetic order,” Reviews of Modern Physics 82, 2731–2784 (2010).
2. F. Hellman, A. Hoffmann, Y. Tserkovnyak, G. S. Beach, E. E. Fullerton, C. Leighton, A. H. MacDonald, D. C. Ralph, D. A. Arena, H. A. Dürr, P. Fischer, J. Grollier, J. P. Heremans, T. Jungwirth, A. V. Kimel, B. Koopmans, I. N. Krivorotov, S. J. May, A. K. Petford-Long, J. M. Rondinelli, N. Samarth, I. K. Schuller, A. N. Slavin, M. D. Stiles, O. Tchernyshyov, A. Thiaville,
and B. L. Zink, “Interface-induced phenomena in magnetism,” Reviews of Modern Physics 89 (2017), 10.1103/revmodphys.89.025006.

3C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Kirilyuk, A. Tsukamoto, A. Itoh, and T. Rasing, “All-optical magnetic recording with circularly polarized light,” Physical Review Letters 99 (2007), 10.1103/physrevlett.99.047601.

4T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, U. Atxitia, O. Chubykalo-Fesenko, S. E. Moussaoui, L. L. Guyader, E. Mengotti, L. J. Heyderman, F. Nolting, A. Tsukamoto, A. Itoh, D. Afnasiev, B. A. Ivanov, A. M. Kalashnikova, K. Vahaplar, J. Mentink, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet,” Nature Communications 3, 666 (2012).

5S. Mangin, M. Gottwald, C.-H. Lambert, D. Steil, V. Uhlíř, L. Pang, M. Hehn, S. Alebrand, M. Cinchetti, G. Malinowski, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “Engineered materials for all-optical helicity-dependent magnetic switching,” Nature Materials 13, 286–292 (2014).

6C.-H. Lambert, S. Mangin, B. S. D. C. S. Varaprasad, Y. K. Takahashi, M. Hehn, M. Cinchetti, G. Malinowski, K. Hono, Y. Fainman, M. Aeschlimann, and E. E. Fullerton, “All-optical control of ferromagnetic thin films and nanostructures,” Science 345, 1337–1340 (2014).

7M. Battiato, K. Carva, and P. M. Oppeneer, “Superdiffusive spin transport as a mechanism of ultrafast demagnetization,” Phys. Rev. Lett. 105, 027203 (2010).

8M. Battiato, K. Carva, and P. M. Oppeneer, “Theory of laser-induced ultrafast superdiffusive spin transport in layered heterostructures,” Phys. Rev. B 86, 024404 (2012).

9B. Pfau, S. Schaffert, L. Müller, C. Gutt, A. Al-Shemmary, F. Büttner, R. Delaunay, S. Düsterer, S. Flewett, R. Frömter, J. Geihufe, E. Guehrs, C. Günther, R. Hawaldar, M. Hille, N. Jaouen, A. Kobs, K. Li, J. Mohanty, H. Redlin, W. Schlotter, D. Stickler, R. Treusch, B. Vodungbo, M. Kläui, H. Oepen, J. Lüning, G. Grübel, and S. Eisebitt, “Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls,” Nature Communications 3 (2012), 10.1038/ncomms2108.

10D. Rudolf, C. La-O-Vorakiat, M. Battiato, R. Adam, J. M. Shaw, E. Turgut, P. Maldonado, S. Mathias, P. Grychtol, H. T. Nembach, T. J. Silva, M. Aeschlimann, H. C. Kapteyn, M. M. Murnane, C. M. Schneider, and P. M. Oppeneer, “Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current,” Nature Communications 3 (2012), 10.1038/ncomms2029.
State-resolved dynamics in CoPd

11 A. Eschenlohr, M. Battiato, P. Maldonado, N. Pontius, T. Kachel, K. Holldack, R. Mitzner, A. Föhlisch, P. M. Oppeneer, and C. Stamm, “Ultrafast spin transport as key to femtosecond demagnetization,” *Nature Materials* 12, 332–336 (2013).

12 T. Kampfrath, M. Battiato, P. Maldonado, G. Eilers, J. Nötzold, S. Mährlein, V. Zbarsky, F. Freimuth, Y. Mokrousov, S. Blügel, M. Wolf, I. Radu, P. M. Oppeneer, and M. Münzenberg, “Terahertz spin current pulses controlled by magnetic heterostructures,” *Nature Nanotechnology* 8, 256–260 (2013).

13 A. J. Schellekens, K. C. Kuiper, R. de Wit, and B. Koopmans, “Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation,” *Nature Communications* 5 (2014), 10.1038/ncomms5333.

14 I. Razdolski, A. Alekhin, N. Ilin, J. P. Meyburg, V. Roddatis, D. Diesing, U. Bovensiepen, and A. Melnikov, “Nanoscale interface confinement of ultrafast spin transfer torque driving non-uniform spin dynamics,” *Nature Communications* 8 (2017), 10.1038/ncomms15007.

15 J. K. Dewhurst, P. Elliott, S. Shallcross, E. K. U. Gross, and S. Sharma, “Laser-induced intersite spin transfer,” *Nano Letters* 18, 1842–1848 (2018).

16 M. Hofherr, S. Häuser, J. K. Dewhurst, P. Tengdin, S. Sakshath, H. T. Nembach, S. T. Weber, J. M. Shaw, T. J. Silva, H. C. Kapteyn, M. Cinchetti, B. Rethfeld, M. M. Murnane, D. Steil, B. Stadtmüller, S. Sharma, M. Aeschlimann, and S. Mathias, “Ultrafast optically induced spin transfer in ferromagnetic alloys,” *Science Advances* 6, eaay8717 (2020).

17 H.-S. Rhie, H. A. Dürr, and W. Eberhardt, “Femtosecond electron and spin dynamics in Ni/W(110) films,” *Phys. Rev. Lett.* 90, 247201 (2003).

18 E. Carpene, E. Mancini, C. Dallera, M. Brenna, E. Puppin, and S. D. Silvestri, “Dynamics of electron-magnon interaction and ultrafast demagnetization in thin iron films,” *Physical Review B* 78 (2008), 10.1103/physrevb.78.174422.

19 W. Töws and G. M. Pastor, “Many-body theory of ultrafast demagnetization and angular momentum transfer in ferromagnetic transition metals,” *Phys. Rev. Lett.* 115, 217204 (2015).

20 B. Koopmans, J. J. M. Ruigrok, F. D. Longa, and W. J. M. de Jonge, “Unifying ultrafast magnetization dynamics,” *Phys. Rev. Lett.* 95, 267207 (2005).

21 B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M. Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, “Explaining the paradoxical diversity of ultrafast laser-induced demagnetization,” *Nature Materials* 9, 259 (2010).
State-resolved dynamics in CoPd

22 P. Maldonado, T. Chase, A. H. Reid, X. Shen, R. K. Li, K. Carva, T. Payer, M. H. von Hoegen, K. Sokolowski-Tinten, X. J. Wang, P. M. Oppeneer, and H. A. Dürr, “Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom in crystalline nickel,” Physical Review B 101 (2020), 10.1103/physrevb.101.100302.

23 E. Beaurepaire, J.-C. Merle, A. Daunois, and J.-Y. Bigot, “Ultrafast spin dynamics in ferromagnetic nickel,” Phys. Rev. Lett. 76, 4250–4253 (1996).

24 I. Radu, K. Vahaplar, C. Stamm, T. Kachel, N. Pontius, H. A. Dürr, T. A. Ostler, J. Barker, R. F. L. Evans, R. W. Chantrell, A. Tsukamoto, A. Itoh, A. Kirilyuk, T. Rasing, and A. V. Kimel, “Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins,” Nature 472, 205–208 (2011).

25 J. Schäfer, D. Schrupp, E. Rotenberg, K. Rossnagel, H. Koh, P. Blaha, and R. Claessen, “Electronic Quasiparticle Renormalization on the Spin Wave Energy Scale,” Physical Review Letters 92 (2004), 10.1103/physrevlett.92.097205.

26 A. B. Schmidt, M. Pickel, M. Donath, P. Buczek, A. Ernst, V. P. Zhukov, P. M. Echenique, L. M. Sandratskii, E. V. Chulkov, and M. Weinelt, “Ultrafast Magnon Generation in an Fe Film on Cu(100),” Physical Review Letters 105 (2010), 10.1103/physrevlett.105.197401.

27 A. Goris, K. M. Döbrich, I. Panzer, A. B. Schmidt, M. Donath, and M. Weinelt, “Role of spin-flip exchange scattering for hot-electron lifetimes in cobalt,” Physical Review Letters 107 (2011), 10.1103/physrevlett.107.026601.

28 E. Turgut, D. Zusin, D. Legut, K. Carva, R. Knut, J. M. Shaw, C. Chen, Z. Tao, H. T. Nembach, T. J. Silva, S. Mathias, M. Aeschlimann, P. M. Oppeneer, H. C. Kapteyn, M. M. Murnane, and P. Grychtol, “Stoner versus heisenberg: Ultrafast exchange reduction and magnon generation during laser-induced demagnetization,” Phys. Rev. B 94, 220408 (2016).

29 C. Dornes, Y. Acremann, M. Savoini, M. Kubli, M. J. Neugebauer, E. Abreu, L. Huber, G. Lantz, C. A. F. Vaz, H. Lemke, E. M. Bothschafter, M. Porer, V. Esposito, L. Retting, M. Buzzi, A. Alberca, Y. W. Windsor, P. Beaud, U. Staub, D. Zhu, S. Song, J. M. Glownia, and S. L. Johnson, “The ultrafast einstein–de haas effect,” Nature 565, 209–212 (2019).

30 K. Carva, M. Battiato, and P. M. Oppeneer, “Ab InitioInvestigation of the elliott-yafet electron-phonon mechanism in laser-induced ultrafast demagnetization,” 107, 207201 (2011).

31 K. Carva, M. Battiato, D. Legut, and P. M. Oppeneer, “Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets,” Phys. Rev. B 87, 184425 (2013).
State-resolved dynamics in CoPd

32. R. Vollmer, M. Etzkorn, P. S. A. Kumar, H. Ibach, and J. Kirschner, “Spin-polarized electron energy loss spectroscopy of high energy, large wave vector spin waves in ultrathin fcc Co films on Cu(001),” Physical Review Letters 91 (2003), 10.1103/physrevlett.91.147201.

33. E. Iacocca, T.-M. Liu, A. H. Reid, Z. Fu, S. Ruta, P. W. Granitzka, E. Jal, S. Bonetti, A. X. Gray, C. E. Graves, R. Kukreja, Z. Chen, D. J. Higley, T. Chase, L. L. Guyader, K. Hirsch, H. Ohldag, W. F. Schlotter, G. L. Dakovski, G. Coslovich, M. C. Hoffmann, S. Carron, A. Tsukamoto, A. Kirilyuk, A. V. Kimel, T. Rasing, J. Stöhr, R. F. L. Evans, T. Ostler, R. W. Chantrell, M. A. Hoefer, T. J. Silva, and H. A. Dürr, “Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys,” Nature Communications 10 (2019), 10.1038/s41467-019-09577-0.

34. S. Mathias, C. La-O-Vorakiat, P. Grychtol, P. Granitzka, E. Turgut, J. M. Shaw, R. Adam, H. T. Nembach, M. E. Siemens, S. Eich, C. M. Schneider, T. J. Silva, M. Aeschlimann, M. M. Murane, and H. C. Kapteyn, “Probing the timescale of the exchange interaction in a ferromagnetic alloy,” Proceedings of the National Academy of Sciences 109, 4792–4797 (2012).

35. S. Günther, C. Spezzani, R. Ciprian, C. Grazioli, B. Ressel, M. Coreno, L. Poletto, P. Miotti, M. Sacchi, G. Panaccione, V. Uhlíř, E. E. Fullerton, G. D. Ninno, and C. H. Back, “Testing spin-flip scattering as a possible mechanism of ultrafast demagnetization in ordered magnetic alloys,” Physical Review B 90, 180407 (2014).

36. S. Jana, R. Knut, E. K. Delczeg-Czirjak, R. S. Malik, R. Stefanuik, R. Chimata, D. Phuyal, V. Mutta, S. Akansel, D. Primetshofer, M. Ahlberg, J. Söderström, J. Åkerman, P. Svedlindh, O. Eriksson, and O. Karis, “Exchange dependent ultrafast magnetization dynamics in Fe_{1-x}Ni_x alloys,” (2018), arXiv:1810.11001 [cond-mat.mtrl-sci].

37. D. J. Higley, K. Hirsch, G. L. Dakovski, E. Jal, E. Yuan, T. Liu, A. A. Lutman, J. P. MacArthur, E. Arenholz, Z. Chen, G. Coslovich, P. Denes, P. W. Granitzka, P. Hart, M. C. Hoffmann, J. Joseph, L. L. Guyader, A. Mitra, S. Moeller, H. Ohldag, M. Seaberg, P. Shafer, J. Stöhr, A. Tsukamoto, H.-D. Nuhn, A. H. Reid, H. A. Dürr, and W. F. Schlotter, “Femtosecond x-ray magnetic circular dichroism absorption spectroscopy at an x-ray free electron laser,” Review of Scientific Instruments 87, 033110 (2016).

38. P. Heimann, O. Krupin, W. F. Schlotter, J. Turner, J. Krzywinski, F. Sorgenfrei, M. Messerschmidt, D. Bernstein, J. Chalupský, V. Hájková, S. Hau-Riege, M. Holmes, L. Juha, N. Kelez, J. Lüning, D. Nordlund, M. F. Perea, A. Scherz, R. Souflis, W. Wurth, and M. Rowen, “Linac coherent light source soft x-ray materials science instrument optical design and monochromator
State-resolved dynamics in CoPd

39 A. A. Lutman, J. P. MacArthur, M. Ilchen, A. O. Lindahl, J. Buck, R. N. Coffee, G. L. Dakovski, L. Dammann, Y. Ding, H. A. Dürr, L. Glaser, J. Grünert, G. Hartmann, N. Hartmann, D. Higley, K. Hirsch, Y. I. Levashov, A. Marinelli, T. Maxwell, A. Mitra, S. Moeller, T. Osipov, F. Peters, M. Planas, I. Shevchuk, W. F. Schlotter, F. Scholz, J. Seltmann, J. Viefhaus, P. Walter, Z. R. Wolf, Z. Huang, and H.-D. Nuhn, “Polarization control in an X-ray free-electron laser,” Nature Photonics 10, 468–472 (2016).

40 J. M. Glownia, J. Cryan, J. Andreasson, A. Belkacem, N. Berrah, C. I. Blaga, C. Bostedt, J. Bozek, L. F. DiMauro, L. Fang, J. Frisch, O. Gessner, M. Gühr, J. Hajdu, M. P. Hertlein, M. Hoener, G. Huang, O. Kornilov, J. P. Marangos, A. M. March, B. K. McFarland, H. Merdji, V. S. Petrovic, C. Raman, D. Ray, D. A. Reis, M. Trigo, J. L. White, W. White, R. Wilcox, L. Young, R. N. Coffee, and P. H. Bucksbaum, “Time-resolved pump-probe experiments at the LCLS,” Optics Express 18, 17620 (2010).

41 P. M. Oppeneer and A. Liebsch, “Ultrafast demagnetization in Ni: theory of magneto-optics for non-equilibrium electron distributions,” Journal of Physics: Condensed Matter 16, 5519–5530 (2004).

42 R. Wu and A. J. Freeman, “Limitation of the magnetic-circular-dichroism spin sum rule for transition metals and importance of the magnetic dipole term,” Phys. Rev. Lett. 73, 1994–1997 (1994).

43 H. Ebert, “Magneto-optical effects in transition metal systems,” Reports on Progress in Physics 59, 1665 (1996).

44 C. Stamm, T. Kachel, N. Pontius, R. Mitzner, T. Quast, K. Holldack, S. Khan, C. Lupulescu, E. F. Aziz, M. Wietstruk, H. A. Dürr, and W. Eberhardt, “Femtosecond modification of electron localization and transfer of angular momentum in nickel,” Nature Materials 6, 740–743 (2007).

45 C. Stamm, N. Pontius, T. Kachel, M. Wietstruk, and H. A. Dürr, “Femtosecond x-ray absorption spectroscopy of spin and orbital angular momentum in photoexcited Ni films during ultrafast demagnetization,” Phys. Rev. B 81, 104425 (2010).

46 C. Boeglin, E. Beaurepaire, V. Halté, V. López-Flores, C. Stamm, N. Pontius, H. Dürr, and J. Bigot, “Distinguishing the ultrafast dynamics of spin and orbital moments in solids,” Nature 465, 458 (2010).

47 G. Guo, H. Ebert, W. Temmerman, and P. Durham, “Band theoretical investigation of circular magnetic x-ray dichroism in Fe and Co multilayers,” Journal of Magnetism and Magnetic
State-resolved dynamics in CoPd

Materials 148, 66 – 67 (1995)

48. S. Eich, M. Plötzing, M. Rollinger, S. Emmerich, R. Adam, C. Chen, H. C. Kapteyn, M. M. Murnane, L. Plucinski, D. Steil, B. Stadtmüller, M. Cinchetti, M. Aeschlimann, C. M. Schneider, and S. Mathias, “Band structure evolution during the ultrafast ferromagnetic-paramagnetic phase transition in cobalt,” Science Advances 3, e1602094 (2017).

49. P. Carra, B. T. Thole, M. Altarelli, and X. Wang, “X-ray circular dichroism and local magnetic fields,” Phys. Rev. Lett. 70, 694–697 (1993).

50. B. T. Thole, P. Carra, F. Sette, and G. van der Laan, “X-ray circular dichroism as a probe of orbital magnetization,” Phys. Rev. Lett. 68, 1943–1946 (1992).