Fermionic full counting statistics with smooth boundaries: From discrete particles to bosonization

Dmitri A. Ivanov1,2 and Ivan P. Levkivskyi1,3

1 Institute for Theoretical Physics, ETH Zürich - 8093 Zürich, Switzerland
2 Institute for Theoretical Physics, University of Zürich - 8057 Zürich, Switzerland
3 Bogolubov Institute for Theoretical Physics - 14-b Metrolohichna Street, Kyiv 03680, Ukraine

received 21 August 2015; accepted in final form 14 January 2016
published online 4 February 2016

PACS 71.10.Pm – Fermions in reduced dimensions
PACS 05.30.Fk – Fermion systems and electron gas
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Abstract – We revisit the problem of full counting statistics of particles on a segment of a one-dimensional gas of free fermions. Using a combination of analytical and numerical methods, we study the crossover between the counting of discrete particles and of the continuous particle density as a function of smoothing in the counting procedure. In the discrete-particle limit, the result is given by the Fisher-Hartwig expansion for Toeplitz determinants, while in the continuous limit we recover the bosonization results. This example of full counting statistics with smoothing is also related to orthogonality catastrophe, Fermi-edge singularity and non-equilibrium bosonization.

Copyright © EPLA, 2016

Introduction. – Full counting statistics (FCS), in theoretical-condensed-matter context, refers to a class of problems involving the probability distribution of a quantum observable (usually the number of electrons found in a certain region of space or transported through the system over a certain time) with a particular focus on quantum behavior. Examples of FCS problems are the anti-bunching of electrons in a one-dimensional conductor due to their fermionic statistics [1,2] and a single-electron emitter, first proposed theoretically [3] and recently realized experimentally [4].

The simplest FCS problems assume non-interacting fermions (electrons), so that the resulting counting statistics can be expressed in terms of a determinant taking into account antisymmetrization of the relevant multi-particle processes [1]. An alternative approach is based on the bosonization technique (using the equivalence between bosons and fermions in one dimension) [5]. Bosonization methods for FCS can be extended to include interactions, but they usually do not fully take into account the discreteness of particles [2,6-8].

It is therefore important to understand limitations of the bosonization approach to FCS and its connection to the exact calculation with discrete fermions. In this letter, we address this problem by studying FCS in a one-dimensional free-fermion model, where an uncertainty (smoothing) in the counting procedure is introduced, so that the particle number is no longer quantized. In this model, we can study in full detail a crossover between the discrete-particle and bosonization results as the uncertainty increases. While the details of this crossover depend on the profile of the introduced uncertainty, the qualitative description of the crossover is found to be universal: FCS respects the discreteness of particles if the uncertainty region is much narrower than the (average) inter-particle distance, but crosses over to the bosonization result when the uncertainty region is much wider than the inter-particle distance.

Mathematically, this problem amounts to studying an evolution of the asymptotic behavior of a Toeplitz (or, more precisely, Wiener-Hopf) determinant with a Fisher-Hartwig singularity [9,10] as the singularity is smoothed in a certain way. In the case of a sharp singularity, the corresponding determinant is given by a double asymptotic series of a Fisher-Hartwig type fully respecting the particle discreteness [11,12]. As the singularity is smoothed, the secondary branches of this expansion get suppressed, and the remaining leading branch reproduces the bosonization result.

Model. – We consider the one-dimensional model of spinless free fermions on a line (both coordinate and
In this case, smoothing is absent (smoothing length scale nihiliation operators and $w_1 = 1$) at zero temperature. The system is in its ground state, which is the Slater determinant (momentum are continuous) at zero temperature. The system is in its ground state, which is the Slater determinant of plane waves characterized by the Fermi wave vector k_F: the states with the wave vectors smaller than k_F (in absolute value) are occupied, and the states with the wave vectors larger than k_F are empty. We introduce the FCS generating function as [1,13]

$$\chi_{L,a}(\kappa) = \langle \exp (2\pi i\kappa Q_{L,a}) \rangle,$$

(1)

where the average is taken over the ground state. The particle-counting operator $Q_{L,a}$ is defined as

$$Q_{L,a} = \int_{-\infty}^{\infty} \Psi^\dagger(x)\Psi(x)w_{L,a}(x)dx,$$

(2)

where $\Psi^\dagger(x)$ and $\Psi(x)$ are the fermionic creation and annihilation operators and $w_{L,a}(x)$ is the weight function for the particle counting. The weight function depends on the two parameters: the length of the interval L and the smoothing length scale a, fig. 1. We always assume $L \gg a$.

In the original formulation of the FCS problem, the smoothing is absent ($a = 0$), and the weight function is the characteristic function of a line segment,

$$w_{L,0}(x) = \theta(x)\theta(L - x) = \begin{cases} 0, & x < 0 \text{ or } x > L, \\ 1, & 0 < x < L. \end{cases}$$

(3)

The coefficients in this double expansion can be explicitly calculated: $C(\kappa)$ is expressed in terms of Barnes G functions as $C(\kappa) = 2\ln |G(1 + \kappa)G(1 - \kappa)|$, and $f_n(\kappa)$ are polynomials in κ, which can be computed iteratively, order by order [12] (the same coefficients are denoted $P_{na}(\kappa)$ in [21]). $\chi_{L,0}(\kappa)$ depends only on one parameter: the average particle number on the segment,

$$N_L = k_F L/\pi.$$

(5)

On the other hand, a bosonization approach proposed for the generating function $\chi_{L,a}(\kappa)$ [2] leads to

$$\chi_{L,a}^{bos}(\kappa) = \exp \left(2\pi i\kappa N_L - 2\kappa^2[\ln(N_L/N_a) + \text{const}]\right),$$

(6)

where we have defined the average number of particles in the smoothing region

$$N_a = k_F a/\pi,$$

(7)

and the constant at the logarithm depends on the details of the smoothing. The bosonization expression (6) corresponds to the leading terms in the leading branch ($j = 0$) of the double expansion (4). We expect (and confirm it the present work) that this result applies provided the smoothing a is sufficiently large. It is not periodic in κ, which is consistent with a continuous spectrum of the operator $Q_{L,a}$ at a finite a.

The goal of the present study is to examine in detail the crossover from the discrete-particle counting given by the expansion (4) to the bosonization result (6) as a function of the smoothing parameter a. Some of the results are derived analytically, while a more detailed picture of the crossover is obtained numerically. Smoothing is introduced as a convolution

$$w_{L,a}(x) = \int_{-\infty}^{\infty} \frac{dx'}{a} \theta(x)\theta(L - x) \ g(x'/a),$$

(8)

where $g(\tilde{x})$ is a smoothing function for the scaled coordinate $\tilde{x} = x/a$. We always assume the normalization $\int d\tilde{x}g(\tilde{x}) = 1$. The convolution (8) is equivalent to smoothing the position of each fermion by the kernel $g(x/a)$. To be specific, we consider three models of smoothing corresponding to the three choices of the smoothing function: RC (this type of smoothing may be relevant for particle counting in time, where the counter has a RC-type response function), Lorentzian (Lo) and Gaussian (Ga):

$$g(\tilde{x}) = \begin{cases} \theta(\tilde{x})\exp(-\tilde{x}), & \text{RC}, \\ \pi(\tilde{x}^2 + 1)^{-1}, & \text{Lo}, \\ \exp(-\tilde{x}^2/2)/\sqrt{2\pi}, & \text{Ga}, \end{cases}$$

(9)

(see fig. 1). In any of these models, the FCS generating function $\chi_{L,a}(\kappa)$ depends on L and a via the two dimensionless parameters N_L and N_a.

Fig. 1: (Colour online) The weight functions $w_{L,a}(x)$ for $L = 10$ and $a = 1$ for the three models of smoothing.

Dmitri A. Ivanov and Ivan P. Levkivskyi

17009-p2
Results. — We conjecture (and support this conjecture by analytical and numerical results) that, at a finite \(a \), the FCS generating function admits the same structure of the expansion (4) as at \(a = 0 \), except that the expansion coefficients are not periodic in the branch index \(j \) and depend on the smoothing parameter \(a \). If we limit the range of \(\kappa \) to the interval \([0,1] \), we can write the leading terms of the expansion as

\[
\chi_{L,a}(\kappa) \approx \exp \left[2\pi i\kappa N_L - 2\kappa^2\ln N_L + C_0(\kappa, a) \right] + \exp \left[2\pi i(\kappa - 1)N_L - 2(\kappa - 1)^2\ln N_L + C_1(\kappa, a) \right].
\]

At \(a = 0 \), in agreement with the full expansion (4), the coefficients \(C_0(\kappa, a) \) and \(C_1(\kappa, a) \) are given by

\[
C_0(\kappa, 0) = C_1(1 - \kappa, 0) = 2\ln |G(1 + \kappa)G(1 - \kappa)| - 2\kappa^2\ln(2\pi).
\]

We expect that, as \(a \) increases, \(C_0(\kappa, 0) \) also increases to reproduce the bosonization result (6), while \(C_1(\kappa, 0) \) decreases to suppress the second term in the expansion (10).

This behavior is indeed confirmed by numerical studies. We report the details of our numerics in the appendix, and here we only plot in fig. 2(a)–(c) the results of the numerical fits for the coefficients \(C_0(\kappa, a) \) and \(C_1(\kappa, a) \) for the three models of the smoothing. Figure 2(d) shows more detailed results for the coefficient \(C_1(1,a) \) representing the suppression of the secondary Fisher-Hartwig branch at \(\kappa = 1 \). This coefficient was, in fact, computed as a doubled contribution from a single “phase slip” (at the beginning or at the end of the interval) in the weight function \(w_{L,a}(x) \) (note that at \(\kappa = 1 \) the values \(w_{L,a}(x) = 0 \) and \(w_{L,a}(x) = 1 \) are equivalent, see appendix). An agreement between the results computed with this method (at \(\kappa = 1 \)) and the fitting procedure for the full function \(\chi_{L,a}(\kappa) \) serves as an independent check of our numerical scheme.

As expected, while the actual values of the coefficients \(C_0(\kappa, a) \) and \(C_1(\kappa, a) \) depend on the chosen smoothing model, qualitatively the crossover between the discrete-particle counting and a continuous bosonization description occurs at \(N_a \sim 1 \) in all the three models.

Furthermore, some of the numerical results presented above can be verified by analytical means. First, the constant in the bosonization formula (6) can be computed from the corresponding Toeplitz determinant using the strong Szegő theorem [22,23]. This results in the asymptotic behavior for \(C_0(\kappa, a) \):

\[
C_0(\kappa, a \to \infty) = 2\kappa^2(\ln N_a - \Upsilon),
\]

where

\[
\Upsilon = \gamma + \lim_{\epsilon \to 0} \left[\int_{-\infty}^{\infty} \frac{dk}{k} g_k g_{-k} + \ln \epsilon \right],
\]

in the case of a general smoothing model (8). Here \(\gamma = 0.5772 \ldots \) is the Euler-Mascheroni constant and \(g_k \) are the Fourier components of the smoothing function,

\[
g_k = \int_{-\infty}^{\infty} d\tilde{x} e^{-ik\tilde{x}} g(\tilde{x}).
\]

For the three models considered in our paper, a calculation gives

\[
\Upsilon_{RC} = \gamma, \quad \Upsilon_{Lo} = -\ln 2, \quad \Upsilon_{Ga} = \gamma/2.
\]

These analytical results perfectly agree with our numerical fits: for the RC and Lorentzian smoothing, the computed values of \(C_0(\kappa, a) \) for \(N_a \geq 0.25 \) and \(N_a \geq 0.125 \), respectively, are indistinguishable in the plots of fig. 2(a), (b) from the bosonization asymptotics (12), (15). For the Gaussian smoothing, the difference between \(C_0(\kappa, a) \) and the bosonization asymptotics is visible for \(N_a = 0.125 \), but not for \(N_a \geq 0.25 \) (fig. 2(c)).

Second, the asymptotic behavior of \(C_1(1,a) \) as \(a \to \infty \) can also be calculated analytically using an asymptotic formula for the Toeplitz determinant with a non-zero winding number [24]. A calculation results in

\[
\frac{1}{2} C_1(1, a \to \infty) \approx \Xi - \Upsilon
\]

\[
+ \Re \ln \int_{-\infty}^{\infty} \frac{dz}{2\pi} \exp \left[2\pi i N_a z - \int_{-\infty}^{\infty} \frac{dk}{k} g_k \frac{1 - e^{ikz}}{|k|} \right],
\]

where \(\Upsilon \) is given by (13) and \(\Xi \) is defined as

\[
\Xi = 2\gamma + \lim_{\epsilon \to 0} \left[\int_{-\infty}^{\infty} \frac{dk}{k} (g_k + g_{-k}) + 2\ln \epsilon \right].
\]
An explicit calculation gives
\[\Xi_{RC} = 2\gamma, \quad \Xi_{Lo} = 0, \quad \Xi_{Ga} = \gamma + \ln 2. \]
(18)

Remarkably, the asymptotics (16), while not exactly coinciding with \(C_1(1, a) \), gives a very good approximation in the whole range of the values of \(a \) (in the plot in fig. 2(d) it would be indistinguishable from the exact values, see details in appendix).

The analytic approximation (16) also allows us to extract the leading asymptotic behavior. For the RC model, we find
\[
C_1(1, a \to \infty)_{RC} \approx 2\gamma - 4 \ln(2\pi N_a),
\]
(19)
i.e., the secondary branch of \(\chi(1, a) \) decays as \(N_a^{-4} \). For the Lorenzian smoothing, the Toeplitz determinant for a single “phase slip” \(w_a(x) = \frac{1}{2\pi} \ln(\frac{x+i\kappa}{x-i\kappa}) \) may be computed exactly by using the analyticity of the function \(\exp[2\pi w_a(x)] \) in one of the half-planes. An argument in the spirit of [3,25] then leads to the exact result
\[
C_1(1, a)_{Lo} = -4\pi N_a.
\]
(20)

Finally, for the Gaussian smoothing, the asymptotic behavior is
\[
C_1(1, a \to \infty)_{Ga} \sim -4\pi N_a \sqrt{\ln(2\pi N_a^2)}.
\]
(21)

However, this expression by itself (unlike the integral formula (16)) does not provide a good approximation for \(C_1(1, a) \), since the next-order corrections are not \(O(1) \).

Remarkably, even though the coefficient at the secondary branch is reduced with increasing \(N_a \), the dependence on \(N_L \) does not change. In particular, for \(\kappa > 1/2 \), the bosonization (first) term in (10) always decreases with \(N_L \) faster than the non-bosonization (second) one. This implies that the non-bosonization corrections arising from the discreteness of particles should be visible, in this range of \(\kappa \), at sufficiently large \(L \) (see appendix). The corresponding values of \(L \) depend on the particular choice of smoothing and can be deduced from comparing the two terms in (10) using the asymptotics at large \(N_a \) derived above. A practical observation of this effect may be limited at large \(N_a \) if both terms in (10) become too small.

Discussion. – In this letter, we have discussed the crossover from discrete to continuous FCS in the model of free one-dimensional fermions, as a function of smoothing. This model may serve as an illustration of a relation between discrete and continuous descriptions in a wide spectrum of similar problems, including FCS with temporal measurements, Fermi-edge singularity, orthogonality catastrophe, and non-equilibrium bosonization.

By FCS with temporal measurements we understand a FCS setup where the counting is performed over a certain time interval, e.g., by opening and closing an electric contact or by applying a time-dependent voltage pulse [1,2]. This formulation of FCS used in the original FCS papers differs from our approach where the measurement is extended in space instead of time. This difference implies the necessity of regularizing the contribution of the Fermi sea in temporal FCS: a large current of left-movers is compensated by a similarly large current of right-movers, so the average charge transfer is determined by the vicinity of the Fermi level, while the quantum noise depends on the ultraviolet cutoff defined by the Fermi energy \(\epsilon_F \) (arising from the bottom of the Fermi sea). In our spatial formulation, there is no cutoff introduced by the bottom of the Fermi sea, and both the total number of particles and its fluctuations depend on the same scale \(k_F \). As a consequence of this difference in ultraviolet cutoffs, our results cannot be literally translated to the case of temporal FCS. However, we expect that the main qualitative conclusion will hold also in the temporal case: the generating function \(\chi(\kappa) \) loses periodicity in \(\kappa \) when the smoothing time scale exceeds the typical time between particles (i.e., \(\epsilon_F^{-1} \)).

Determinants similar to the generating function \(\chi(\kappa) \) also appear in problems related to the orthogonality catastrophe and to the Fermi-edge singularity (FES). In those cases, the counterparts of the secondary branches of \(\chi(\kappa) \) are secondary singularities (cusps or peaks) in the frequency-dependent response function (the closed-loop contribution in the FES context). Such secondary cusps and peaks were studied, e.g., in the recent work [26] (and, in the case of a bound-state contribution, earlier in [27]). According to our predictions, such cusps and peaks should be most visible in the case of instant switching of the scattering potential, but get suppressed if the switching time of the scattering potential exceeds \(\epsilon_F^{-1} \).

We should also remark that most studies of FES involve an artificial regularization of the Fermi-sea contribution at energy scales smaller than \(\epsilon_F \), so that secondary singularities in the response function are neglected [28–30]. Such secondary singularities (separated from the main peak by \(\epsilon_F \)) are probably not observable in conventional metals where \(\epsilon_F \) is large, but may be relevant in other related systems where \(\epsilon_F \) defines an accessible frequency scale. Possible examples include fermionic cold-atom systems [26] and certain spin-liquid models [31].

Finally, we also mention recent works on non-equilibrium bosonization where determinants similar to ours appear (again, in the temporal form) [7]. Similarly to the FES problem discussed above, these works assume a regularization of the Fermi-sea contribution, which is equivalent to neglecting the secondary branches of the Fisher-Hartwig expansion related to the bottom of the Fermi sea.

The authors are grateful to A. G. ABANOV, E. DEMLER, M. V. FEIGELMAN, L. GLAZMAN, L. LEVITOV, A. MIRLIN, and E. V. SUKHORUKOV for helpful discussions. The work of DAI was supported by the Swiss National Foundation through the NCCR QSIT.
IPL was supported by Marie Curie Actions COFUND program.

Appendix

Toepplitz determinant for $\chi(\kappa)$. The FCS generating function (1) can be written as a trace in the multi-particle space and then re-expressed as a determinant in the single-particle space [1,2,32]:

$$\chi_{L,a}(\kappa) = \det \left[(1 - n_F) + n_F e^{2\pi i \kappa w}\right], \quad (A.1)$$

where n_F is the Fermi occupation number and w is the operator of multiplication by $w_{L,a}(x)$. The operator n_F is diagonal in the momentum space, while w is diagonal in the coordinate space. In this paper, we consider the zero-temperature case, so n_F is a projector onto the occupied states (below k_F).

In the limit of no smoothing ($a = 0$), w is also a projector (in the coordinate space), and the determinant is symmetric with respect to exchanging coordinate and momentum:

$$\chi_{L,a}(\kappa) = \det \left[1 - (1 - e^{2\pi i \kappa}) n_F w\right]. \quad (A.2)$$

This operator is of Toeplitz (or Wiener-Hopf) form in both coordinate and momentum representations.

After introducing smoothing, the operator in (A.1) is no longer Toeplitz in the coordinate representation, but remains Toeplitz in the momentum representation (at zero temperature).

Toepplitz determinant for $C_1(\kappa=1,a)$. At $\kappa = 1$, the term with $C_1(\kappa,a)$ in the decomposition (10) does not oscillate with L. It therefore arises from the end points of the segment of measurement ($x = 0$ and $x = L$). This allows us to calculate $C_1(\kappa=1,a)$ directly from a single-step contribution:

$$\frac{1}{2} C_1(\kappa=1,a) = \text{Re} \ln \det \left[(1 - n_F) + n_F e^{2\pi i \tilde{w}}\right], \quad (A.3)$$

where \tilde{w} is the operator of multiplication by the single-step counterpart of $w_{L,a}(x)$:

$$\tilde{w}_a(x) = \int_{-\infty}^{\infty} \frac{dx'}{a} \theta(x) g(x'/a). \quad (A.4)$$

Note that while $\tilde{w}_a(x)$ has different limits at $x \to \pm \infty$, the exponent $\exp(2\pi i \tilde{w})$ tends to 1 in both limits, and the determinant (A.3) is well defined.

Details of the numerical calculation. For numerical calculations of $\chi_{L,a}(\kappa)$ and $C_1(\kappa=1,a)$, we approximate the integral operators (A.1) and (A.3) by finite-dimensional matrices by discretizing the momentum space (which is equivalent to considering the system on a circle). In the momentum space, these matrices are of Toeplitz form. The determinants of those matrices are calculated numerically for several matrix sizes and then extrapolated to the infinite matrix size in order to obtain $\chi_{L,a}(\kappa)$ and $C_1(\kappa=1,a)$, respectively.

For numerical calculations of the determinants, we use the LAPACK library [33], and Fourier transformations necessary for computing the matrix elements were done with the help of the GNU scientific library [34]. In our calculations, determinants of matrices of the linear size up to 600 were calculated, which allowed us to achieve good precision for the considered ranges of parameters.

The values of $\chi_{L,a}(\kappa)$ were then fitted to the expansion (10), and the coefficients $C_0(\kappa,a)$ and $C_1(\kappa,a)$ were extracted (the fit also included terms up to L^{-2} in the exponents). As an additional check of this fitting procedure, we have verified that the values of $C_1(\kappa=1,a)$ obtained from these fits agree with those calculated independently using the one-step method described above.

Analytic approximation for $C_1(\kappa=1,a \to \infty)$. The approximation (16), while derived under the assumption $N_a \gg 1$, is remarkably accurate even at small N_a. In the L_0 model, where $C_1(\kappa=1,a)$ is given exactly by (20), the approximation (16) reproduces the same exact result for all N_a. In the RC and Ga models, the difference between (16) and $C_1(\kappa=1,a)$ tends to zero as $a \to \infty$, but remains finite at finite a. However, this difference is numerically small for these two models, even at $a = 0$. We plot this difference as a function of N_a in fig. 3.
Numerical illustration of the crossover. We illustrate the crossover described in the main body of the paper by two plots. In fig. 4(a), we show how the periodicity of $\chi_{L,a}(\kappa)$ in κ is gradually lost as N_a increases. Figure 4(b) illustrates how the second term in (10) dominates at large L (in RC model, for $\kappa = 1$, this happens at $L \gg k_F^a a^3$).

REFERENCES

[1] Levitov L. S. and Lesovik G. B., Pis’ma Zh. Exp. Teor. Fiz., 58 (1993) 225 (English version: JETP Lett., 58 (1993) 230).
[2] Levitov L. S., Lee H.-W. and Lesovik G. B., J. Math. Phys., 37 (1996) 4845.
[3] Ivanov D. A., Lee H.-W. and Levitov L. S., Phys. Rev. B, 56 (1997) 6839 (e-print, arXiv:cond-mat/9501040).
[4] Dubois J. et al., Nature, 502 (2013) 659.
[5] Stone M., Bosonization (World Scientific, Singapore) 1994; Gogolin A. O., Nersesyan A. A. and Tsvelik A. M., Bosonization in Strongly Correlated Systems (University Press, Cambridge) 1998; Giamarchi T., Quantum Physics in One Dimension (Clarendon Press, Oxford) 2004.
[6] Levkivskyi I. P. and Sukhorukov E. V., Phys. Rev. Lett., 103 (2009) 036801; Helzel A., Litvin L. V., Levkivskyi I. P., Sukhorukov E. V., Wegscheider W. and Strunk C., Phys. Rev. B, 91 (2015) 245419.
[7] Gutzman D. B., Gefen Y. and Mirr lion A. D., EPL, 90 (2010) 37003; Phys. Rev. B, 81 (2010) 085436.
[8] Levkivskyi I. P. and Sukhorukov E. V., Phys. Rev. Lett., 109 (2012) 246806.
[9] Fisher M. E. and Hartwig R. E., Adv. Chem. Phys., 15 (1968) 333.
[10] Basor E. and Widom H., J. Funct. Anal., 50 (1983) 378.
[11] Kitanine N., Koslowski K. K., Maillet J. M., Slavnov N. A. and Terras V., Commun. Math. Phys., 291 (2009) 691; Koslowski K. K., Truncated Wiener–Hopf operators with Fisher–Hartwig singularities, e-print, arXiv:0805.3902.
[12] Ivanov D. A., Abanov A. G. and Cheianov V. V., J. Phys. A: Math. Theor., 46 (2013) 085003.
[13] Korepin V. E., Bogoliubov N. M. and Izergin A. G., Quantum Inverse Scattering Method and Correlation Functions (Cambridge University Press, Cambridge) 1993 and references therein.
[14] Basor E. L. and Morrison K. E., Linear Algebra Appl., 202 (1994) 129.
[15] Ehrhardt T., Oper. Theory: Adv. Appl., 124 (2001) 217.
[16] Calabrese P. and Essler F. H. L., J. Stat. Mech. (2010) P08029.
[17] Gutman D. B., Gefen Y. and Mirli and Millin A. D., J. Phys. A: Math. Theor., 44 (2011) 165003.
[18] Deift P., Its A. and Krasovsky I., Ann. Math., 174 (2011) 1243.
[19] Krasovsky I., Rogov Prog. Probab., 64 (2011) 305.
[20] Abanov A. G., Ivanov D. A. and Qian Y., J. Phys. A: Math. Theor., 44 (2011) 485001.
[21] Ivanov D. A. and Abanov A. G., J. Phys. A: Math. Theor., 46 (2013) 375005.
[22] Szeg˝o G., Comm. Sém. Math. Univ. Lund (1952) 228.
[23] Böttcher A. and Silbermann B., Analysis of Toeplitz Operators (Springer, Berlin) 1990.
[24] Böttcher A. and Widom H., Linear Algebra Appl., 419 (2006) 656.
[25] Keeling J., Klich I. and Levitov L. S., Phys. Rev. Lett., 97 (2006) 116403.
[26] Knap M., Shashi A., Nishida Y., Imambekov A., Abanin D. and Demler E., Phys. Rev. X, 2 (2012) 041020.
[27] Combes M. and Nozières P., J. Phys. (Paris), 32 (1971) 913.
[28] Nozières P. and De Dominicis C. T., Phys. Rev., 178 (1969) 1997.
[29] Abanov A. D. and Levitov I. S., Phys. Rev. Lett., 94 (2005) 186803.
[30] Cherni I., Levkivskyi I. P. and Sukhorukov E. V., Phys. Rev. B, 90 (2014) 245123.
[31] Tikhonov K. S. and Feigelman M. V., Phys. Rev. Lett., 105 (2010) 067207; Tikhonov K. S., Feigelman M. V. and Kitaev A. Yu., Phys. Rev. Lett., 106 (2011) 067203.
[32] Klitsch I., in Quantum Noise in Mesoscopic Physics, edited by Nazarov Yu. (Kluwer, Dordrecht) 2003
[33] Anderson E. et al., LAPACK Users’ Guide, 3rd edition (SIAM, Philadelphia) 1999.
[34] Galassi M. et al., GNU Scientific Library Reference Manual, 3rd edition (Network Theory Ltd., Surrey) 2009.