Plasma Lactate Dehydrogenase Levels Predict Mortality in Acute Aortic Syndromes

A Diagnostic Accuracy and Observational Outcome Study

Fulvio Morello, MD, PhD, Anna Ravetti, MD, Peiman Nazerian, MD, Giovanni Liedl, MD, Maria Grazia Veglio, MD, Stefania Battista, MD, Simone Vanni, MD, Emanuele Pivetta, MD, Giuseppe Montrucchio, MD, Giulio Mengozzi, MD, Mauro Rinaldi, MD, Corrado Moiraghi, MD, and Enrico Lupia, MD, PhD

Abstract: In acute aortic syndromes (AAS), organ malperfusion represents a key event impacting both diagnosis and outcome. Increased levels of plasma lactate dehydrogenase (LDH), a biomarker of malperfusion, have been reported in AAS, but the performance of LDH for the diagnosis of AAS and the relation of LDH with outcome in AAS have not been evaluated so far.

This was a bi-centric prospective diagnostic accuracy study and a cohort outcome study. From 2008 to 2014, patients from 2 Emergency Departments suspected of having AAS underwent LDH assay at presentation. A final diagnosis was obtained by aortic imaging. Patients diagnosed with AAS were followed-up for in-hospital mortality.

One thousand five hundred seventy-eight consecutive patients were clinically eligible, and 999 patients were included in the study. The final diagnosis was AAS in 201 (20.1%) patients. Median LDH was 424 U/L (interquartile range [IQR] 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with alternative diagnoses (P < 0.001). Using a cutoff of 450 U/L, the sensitivity of LDH for AAS was 44% (95% confidence interval [CI] 37–51) and the specificity was 73% (95% CI 69–76). Overall in-hospital mortality for AAS was 23.8%. Mortality was 32.6% in patients with LDH > 450 U/L and 16.8% in patients with LDH < 450 U/L (P = 0.006). Following stratification according to LDH quartiles, in-hospital mortality was 12% in the first (lowest) quartile, 18.4% in the second quartile, 23.5% in the third quartile, and 38% in the fourth (highest) quartile (P = 0.01). LDH ≥ 450 U/L was further identified as an independent predictor of death in AAS both in univariate and in stepwise logistic regression analyses (odds ratio 2.28, 95% CI 1.11–4.66; P = 0.025), in addition to well-established risk markers such as advanced age and hypotension. Subgroup analysis showed excess mortality in association with LDH ≥ 450 U/L in elderly, hemodynamically stable and in nonsurgically treated patients.

Plasma LDH constitutes a biomarker of poor outcome in patients with AAS. LDH is a rapid and universally available assay that could be used to improve risk stratification and to individualize treatment in patient groups where options are controversial.

INTRODUCTION

Acute aortic syndromes (AAS), which include acute aortic dissection (AD), intramural aortic hematoma (IMH), and penetrating aortic ulcer (PAU), are cardiovascular emergencies affecting ~5/100,000 individuals/y. To minimize the heavy morbidity and mortality associated with AAS, key factors are represented by rapid diagnosis and individualization of therapeutic interventions.1–4 The diagnosis of AAS is challenging, with a misdiagnosis rate as high as 35%, as the clinical manifestations of AAS are unpecific and most diseases in differential diagnosis are by far more frequent than AAS.5 Therapeutic individualization also constitutes a challenge, with increasing proportions of patients with AAS presenting with advanced age, comorbidities, and AAS types not requiring immediate surgical treatment. Organ malperfusion has emerged as a key risk factor for adverse outcome, but standardized definition and assessment of organ perfusion in AAS is presently lacking.4,5 In this scenario, circulating biomarkers are advocated to improve diagnosis, risk stratification, and mortality prediction in AAS, as in other acute cardiovascular emergencies such as acute coronary syndromes and pulmonary embolism.6–9

Lactate dehydrogenase (LDH) is a widely expressed intracellular enzyme, which reduces pyruvate to lactate during hypoxia. Measurement of plasma LDH levels is rapidly and almost universally available to Emergency Departments (EDs),
with increased LDH typically found in hemolysis and in myocardial or skeletal muscle ischemia. A previous study from this group found increased plasma LDH in a cohort of patients with AAS, and expert opinion has indicated LDH assay as a potential biomarker applicable in the workup of AAS. Furthermore, increased plasma LDH has been associated with worse outcome and mortality in other conditions such as pneumonia, pancreatitis, hemolysis, thrombosis, and bowel ischemia. However, evidence supporting the use of plasma LDH in the diagnosis of AAS, or to predict outcome in patients with documented AAS, is currently lacking. In the present study, we sought to evaluate the diagnostic accuracy of plasma LDH for the diagnosis of AAS and the association of plasma LDH with in-hospital outcome. The working hypothesis was that increased plasma LDH at presentation may identify patients at higher risk of in-hospital death.

METHODS

Study Design, Setting, and Enrollment Criteria

This was a bi-centric prospective diagnostic accuracy and a cohort outcome study performed on patients from 2 clinical centers: Molinette Hospital (Torino, Italy) and Careggi Hospital (Firenze, Italy). Both centers are regional hubs for emergency and cardiovascular medicine and surgery. The study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki, and was approved by the local Ethics Committee. The study is compliant with the STARD and STROBE guidelines.

From January 2008 to June 2014, consecutive outpatients who presented to the ED were eligible for the study if they had a clinical suspicion of AAS, defined as an acute onset of chest pain, back pain, abdominal pain, syncpe, or signs/symptoms of perfusion deficit (including central/peripheral nervous system, mesenteric, myocardial, or limb ischemia), without another known etiology. The suspicion of AAS needed to be high enough for the attending physician to order an urgent aortic imaging examination, as in previous studies. Trauma patients were excluded. Plasma LDH was assayed in a conveniencesample of patients meeting inclusion criteria. Informed consent was obtained from each patient or next of kin.

LDH Assay

A plasma LDH assay was performed on blood collected in the ED during medical evaluation. Attending physicians caring for the patients were not blinded to the results of plasma LDH assay. Patients underwent venipuncture in the ED as part of the initial diagnostic workup, and venous blood samples were immediately sent to the local laboratory for plasma LDH assay. Plasma LDH levels were measured with a Roche/Hitachi Cobas automated platform, using a calorimetric pyruvate-lactate enzymatic assay technique (Cobas LDHL, Roche Diagnostics, Basel, Switzerland), where LDH catalyzes the following reaction: pyruvate + NADH + H⁺ → lactate + NAD⁺. The initial oxidation velocity of NADH is directly proportional to the catalytic activity of LDH, which is measured by recording absorbance reduction at 340 nm. This assay is optimized by the manufacturer according to the Deutsche Gesellschaft für Klinische Chemie, and is calibrated on the reference lactate-pyruvate assay standardized by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). Intra- and inter-assay coefficient of variations were <2.3%. The reference values of plasma LDH levels with this assay are 250 to 450 U/L, and are calibrated on the normal range obtained with the IFCC method.

Final Diagnosis

Enrolled patients underwent an urgent aortic imaging examination for final AAS diagnosis or rule-out in the ED. The examination used to confirm or to exclude the diagnosis of AAS was chest and abdomen computed tomography angiography (CTA) or transesophageal echocardiography (TEE). CTA was performed with Lightspeed VCT 64 (GE, Piscataway, NJ) or with Somatom Definition AS+4 and AS128 (Siemens, Erlangen, Germany) and interpreted by specialized radiologists not involved in the present study. TEE was performed with MyLab 30 (Esaote, Genova, Italy) and HD7 (Philips, Amsterdam, Holland) and interpreted by specialized cardiologists not involved in the present study.

The results of aortic imaging were used to categorize patients as affected by AAS or by an alternative diagnosis (AltD). Two senior emergency physicians established the AAS subtype or a specific AltD in each study patient after review of all ED and hospital records, including medical, radiological, and surgical data. The following diagnoses were considered in the definition of AAS, according to guidelines: Stanford type A and type B “classic” AD, IMH, and PAU.

Data Collection

Relevant clinical data including presenting signs and symptoms, medical history, vital signs, and presence/absence of risk factors for AAS as defined in guidelines were collected and annotated during patient evaluation in the ED. A team of 4 emergency physicians blinded to LDH levels reviewed ED and hospital charts and records to obtain data on in-hospital treatment (medical, surgical, and endovascular) and outcome (survival, death, and date of death). Patients with missing data on in-hospital treatment or outcome were annotated.

Statistical Analysis

Dichotomous data were expressed as proportions and compared with Fisher exact test. Continuous data were expressed as mean and standard deviation for normal variables, or as median and interquartile range (IQR) for non-normal variables (including plasma LDH). For normal data, group comparison was performed with unpaired Student t test. For non-normal data, group comparison was performed with Mann–Whitney U test. The diagnostic performance of plasma LDH was assessed by receiver operated characteristic (ROC) analysis, estimating the area under the curve (AUC). Sensitivity, specificity, negative/positive predictive values (NPV, PPV), and negative/positive likelihood ratios (LR−, LR+) were computed with their 95% confidence interval (95% CI).

The following variables were evaluated in univariate analysis for association with mortality: female gender, age ≥70 years, female gender, hypertension, diabetes, smoke, chest pain, back pain, abdominal pain, syncope, Marfan syndrome, family history of AAS, aortic valve disease, recent aortic manipulation, known thoracic aortic aneurysm, severe pain, abrupt pain, tearing pain, pulse deficit, neurologic deficit, new diastolic murmur, hypotension, surgical intervention, endovascular intervention, and LDH ≥450 U/L. The association of categorical variables with in-hospital mortality was compared using the Pearson χ² test. We selected for stepwise multivariable logistic regression the variables showing in univariate analysis at least a trend in association with mortality (P < 0.20 by Pearson χ² test). The calibration of the multivariable model was evaluated by the Hosmer–Lemeshow goodness-of-fit test. In-hospital mortality
in different patient groups was evaluated and compared by standard Kaplan–Meier plots and log-rank test. *P* values were 2-sided, and a *P* value < 0.05 was considered as statistically significant. Analysis was performed with the SPSS statistical package 17.0 (SPSS Inc., Chicago, IL) and Prism 5.0 (GraphPad Software, San Diego, CA).

RESULTS

Study Population

In the study period, 1578 consecutive patients satisfied inclusion criteria defining clinical suspicion of AAS. Plasma LDH was assayed in a convenience sample of 999 patients (Figure 1). The final diagnosis was AAS in 201 (20.1%) patients, while an AltD was made in 798 (79.9%) patients. Table 1 reports the prevalence of AAS subtypes and AltD in the study population. Patients with AAS and patients with AltD were similar in their demographic characteristics, except from a higher prevalence of smokers in patients with AAS (Table 2). Back pain and signs/symptoms of possible perfusion deficit were more prevalent in patients with AAS than in patients with AltD, while blood pressure was significantly lower in patients with AAS.

LDH Levels

Median time from symptom onset to sampling time was 4 h (IQR 2–12) in patients with AAS and 6 h (IQR 2–24) in patients with AltD (*P* = 0.043). Median plasma LDH at presentation was 424 U/L (IQR 367–557) in patients with AAS and 383 U/L (IQR 331–460) in patients with AltD (*P* < 0.001, Figure 2A). Among patients with AAS, median LDH level was 443 U/L (IQR 380–559) in patients with Stanford type A AD, 424 U/L (IQR 324–561) in patients with IMH, and 341 U/L (IQR 321–375) in patients with PAU (*P* < 0.001, Figure 2B). In patients without AAS, no significant differences were found in LDH levels among different alternative diagnoses (data not shown). Patients with AAS also presented increased levels of white blood cell count, troponin T, creatinine, and D-dimer, and lower levels of hemoglobin and fibrinogen, compared to patients with AltD (Supplementary Table 1, http://links.lww.com/MD/A701).

TABLE 1. Final Diagnosis in Study Patients

Final Diagnosis	n	%
Acute aortic syndrome	201	20.1
Stanford type A aortic dissection	115	11.5
Stanford type B aortic dissection	51	5.1
Intramural aortic hematoma	30	3.0
Penetrating aortic ulcer	5	0.5
Alternative diagnosis	798	79.9
Musculoskeletal chest pain	388	38.8
Acute coronary syndrome*	90	9.0
Gastrointestinal disease	88	8.9
Syncope*	60	6.0
Precordial pain	30	3.0
Pneumonia/pleuritis	14	1.4
Ischemic stroke*	22	2.2
Limb ischemia*	15	1.5
Pulmonary embolism	13	1.3
Other diagnoses	78	7.8

* Not related to acute aortic syndrome.

TABLE 2. Demographic and Clinical Characteristics of Study Patients Classified by Final Diagnosis

	AAS (n = 201)	AltD (n = 798)	*P* Value
Demographics			
Female gender	72 (35.8)	275 (34.5)	0.13
Age, y	69 ± 12	67 ± 15	0.05
Medical history			
Hypertension	130 (64.7)	522 (65.4)	0.85
Smoke	62 (30.8)	185 (23.2)	0.024
Diabetes	17 (8.5)	93 (11.7)	0.20
Clinical presentation			
Chest pain	118 (58.7)	491 (61.5)	0.46
Back pain	80 (39.8)	241 (30.2)	0.009
Abdominal pain	50 (24.9)	167 (20.9)	0.23
Syncope	30 (14.9)	109 (13.7)	0.64
Perfusion deficit	54 (26.9)	58 (7.3)	< 0.001
Systolic blood pressure	131 ± 37	143 ± 29	< 0.001
mm Hg			
Diastolic blood pressure	76 ± 20	82 ± 14	< 0.001
mm Hg			
Heart rate, bpm	78 ± 20	79 ± 17	0.33

Values are reported as mean ± standard deviation for continuous variables, or as absolute number and percent value (in brackets) for dichotomic variables.

AAS = acute aortic syndrome, AltD = alternative diagnosis, bpm = beats per minute.
Diagnostic Accuracy of LDH

ROC analysis was used to evaluate the diagnostic performance of plasma LDH for AAS (Figure 2C). The AUC of LDH was 0.61 (95% CI 0.57–0.66, P < 0.001). Diagnostic sensitivity and specificity values associated with different plasma LDH cutoffs are presented in Figure 2D. Using the higher normality cutoff of 450 U/L (Figure 1), the sensitivity of LDH for the diagnosis of AAS was 44% (95% CI 37–51), the specificity was 73% (95% CI 69–76), the PPV was 29% (95% CI 24–34), the NPV was 84% (95% CI 81–86), the LR+ was 1.61 (95% CI 1.33–1.95), and the LR− was 0.77 (95% CI 0.67–0.87). For the diagnosis of Stanford type A AD, the sensitivity of LDH (cutoff of 450 U/L) was 50% (95% CI 40–59), the specificity was 72% (95% CI 69–75), the PPV was 19% (95% CI 14–23), the NPV was 92% (95% CI 89–94), the LR+ was 1.75 (95% CI 1.42–2.17), and the LR− was 0.70 (95% CI 0.58–0.85).

We next evaluated the demographic and clinical profile of AAS patients presenting with increased plasma LDH to the ED (Table 3). Female gender was more prevalent in AAS patients with LDH ≥ 450 U/L. AAS patients with LDH ≥ 450 U/L were less likely to present with back pain and more likely to present with perfusion deficit. Systolic and diastolic blood pressures were significantly lower in patients with LDH ≥ 450 U/L. Furthermore, AAS patients with LDH ≥ 450 U/L showed significantly higher levels of white blood cell count, liver enzymes, creatine kinase, troponin T, international normalized ratio, and D-dimer levels than AAS patients with LDH <450 U/L.

Variables	LDH < 450 U/L (n = 112)	LDH ≥ 450 U/L (n = 89)	P Value
Demographics and medical history			
Female gender	30 (27)	42 (47)	0.001
Age, y	69 ± 12	70 ± 13	0.76
Hypertension	76 (68)	54 (61)	0.29
Diabetes	11 (10)	6 (7)	0.44
Smoke habit	40 (36)	22 (25)	0.09
Clinical presentation			
Chest pain	72 (64)	46 (52)	0.07
Back pain	53 (47)	27 (30)	0.015
Abdominal pain	25 (22)	25 (28)	0.35
Syncope	14 (13)	16 (18)	0.28
Perfusion deficit	48 (43)	46 (52)	0.21
Systolic blood pressure, mm Hg	136 ± 38	125 ± 35	0.038
Diastolic blood pressure, mm Hg	79 ± 19	73 ± 22	0.043
Heart rate, bpm	77 ± 19	79 ± 20	0.45

Values are reported as mean ± standard deviation for continuous variables, or as absolute number and percent value (in brackets) for dichotomic variables. For continuous variables, P value was obtained by Student t test. For dichotomic variable, P value was obtained by Fisher exact test. Perfusion deficit was defined as presence of ≥1 of the following findings: pulse deficit, systolic blood pressure differential (>20 mm Hg), neurological deficit, hypotension, or shock state. LDH = lactate dehydrogenase.
with in-hospital death ($P < 0.20$) were further analyzed in stepwise logistic regression analysis. Only LDH ≥ 450 U/L, age ≥ 70 years, and hypotension were identified as independent predictors of in-hospital mortality in AAS. The Hosmer–Lemeshow statistic was not statistically significant for departure of observed mortality from predicted mortality ($\chi^2 = 5.78; df = 8; P = 0.45$). When data analysis was restricted to 154 of 193 patients with also D-dimer available, also D-dimer $> 5.0 \mu g/mL$ was found associated with in-hospital death (OR 2.42, 95% CI 1.10–5.38; $P = 0.03$) in univariate analysis. However, D-dimer was not identified as an independent predictor of in-hospital mortality in stepwise logistic regression analysis, while LDH ≥ 450 U/L, age ≥ 70 years and hypotension remained significant also in this subgroup of patients.

The association of LDH levels with in-hospital mortality was next evaluated in different patient subgroups (Figure 4). Excess mortality was found in association with LDH ≥ 450 U/L in elder patients ($n = 107$, mortality 49.0% with LDH ≥ 450 U/L and 20.7% with LDH < 450 U/L; OR 3.68, 95% CI 1.58–8.58; $P = 0.004$), hemodynamically stable patients ($n = 146$, mortality 28.3% with LDH ≥ 450 U/L and 12.8% with LDH < 450 U/L; OR 2.70, 95% CI 1.16–6.28; $P = 0.031$), and in nonsurgically treated patients ($n = 80$, mortality 36.4% with LDH ≥ 450 U/L and 12.8% with LDH < 450 U/L; OR 3.91, 95% CI 1.28–11.88; $P = 0.016$).

DISCUSSION

This is the first study to specifically evaluate the performance of plasma LDH for diagnosis and for prognostic stratification of AAS. Plasma LDH levels were indeed significantly elevated in patients with AAS, but the diagnostic sensitivity of LDH using the standard cutoff of 450 U/L was negligible (44%). The specificity was higher (73%), but also appears hardly suitable for meaningful diagnostic use. A key positive finding of the present study is that LDH levels were positively associated with in-hospital mortality in AAS. Regression analysis identified LDH elevation as an independent predictor of death in addition to well-established variables such as advanced age and hypotension.28,29 In univariate analysis, also female gender was associated with in-hospital death in AAS. In univariate analysis, also age ≥ 70 years, back pain, and hypotension were identified as independent predictors of in-hospital mortality in AAS. Regression analysis identified LDH elevation as an independent predictor of death in addition to well-established variables such as advanced age and hypotension.28,29

TABLE 4. Univariate and Stepwise Logistic Regression Analysis of In-Hospital Death in 193 Patients With Acute Aortic Syndrome

Variable	Univariate OR	95% CI	P Value	Stepwise Logistic Regression OR	95% CI	P Value
Female gender	2.01	1.02–3.96	0.041	4.05	1.82–8.99	0.001
Age ≥ 70 y	3.85	1.78–8.34	<0.001			
Smoke	0.56	0.25–1.21	0.136			
Chest pain	0.63	0.33–1.23	0.178			
Back pain	0.37	0.17–0.77	0.007			
Syncope	2.12	0.92–4.86	0.073			
Severe pain	0.63	0.32–1.24	0.178			
Hypotension	2.62	1.28–5.37	0.007			
Endovascular intervention	0.37	0.08–1.68	0.183			
LDH ≥ 450 U/L	2.39	1.21–4.70	0.011			

The following variables were evaluated for association with in-hospital mortality: female gender, age ≥ 70 y, female gender, hypertension, diabetes, smoke, chest pain, back pain, abdominal pain, syncope, Marfan syndrome, family history of acute aortic syndrome, aortic valve disease, recent aortic manipulation, known thoracic aortic aneurysm, severe pain, abrupt pain, tearing pain, pulse deficit, neurologic deficit, new diastolic murmur, hypotension, surgical intervention, endovascular intervention, and LDH ≥ 450 U/L. Only variables showing marginal association ($P < 0.20$) with in-hospital death are shown herein (see the “Methods” section).

95% CI = 95% confidence interval of OR, LDH = lactate dehydrogenase, OR = odds ratio.
associated with mortality, which was also reported previously and associated with delayed recognition of AD.29,30 Taken together, our results define LDH as suitable prognostic but not diagnostic biomarker for AAS.

Our finding that increased LDH is associated with poor outcome in AAS is novel, while previous studies have reported an association between LDH and outcome in other acute conditions such as pneumonia, pancreatitis, hemolysis, thrombosis, and bowel ischemia.14–19 Of note, subgroup analysis indicated that high LDH was associated with increased mortality specifically in patient categories where risk stratification and therapeutic decisions are more controversial, such as patients with AAS other than Stanford type A AD, elderly patients and hemodynamically stable patients. This is relevant, as younger patients with classic type A AD, elderly patients and hemodynamically stable patients. Thus, our results indicate that LDH as an outcome biomarker would essentially apply to patients without clear-cut surgical indications such as elderly and comorbid patients, which constitute increasingly prevalent challenges for clinicians. In hemodynamically stable and in medically treated patients, for instance, increased LDH could usefully identify individuals with subclinical organ damage at increased risk of complications and death, where advanced treatment options may be beneficial beyond the tube graft.4

Previous studies have shown that outcomes for acute AD are highly influenced by the presence of organ ischemia and shock.5,29,31 Other studies have further reported on the correlation between biomarkers and in-hospital mortality in AAS. In particular, increased mortality has been found in patients presenting with high levels of D-dimer and C-reactive protein (CRP), and with low levels of platelets.6–9 We also found increased D-dimer and lower platelet levels in patients with LDH ≥ 450 U/L, while CRP was not statistically different. Although the present study was not powered to compare the accuracy of different biomarkers for prognostic stratification, in the subgroup of patients with AAS where both D-dimer and LDH were available, LDH ≥ 450 U/L and not D-dimer > 5.0 μg/mL was found as an independent predictor of mortality.

While the present findings identify increased LDH as a potential biomarker of organ malperfusion-related outcome, the actual organ/tissue source of LDH in AAS remains uncertain. The best known tissue sources of LDH are myocardium, skeletal muscle, liver, red blood cells, and bowel. Based on routine biochemical data available only in a minority of study patients, plasma LDH ≥ 450 U/L was indeed associated with significantly higher levels of troponin T, creatine kinase, and liver enzymes, while hemoglobin was unchanged. Therefore, myocardial, skeletal muscle, and liver damage/ischemia all appear as potential sources of plasma LDH rise in AAS, while hemolysis does not appear as quantitatively relevant. Nonetheless, median levels of troponin T, creatine kinase, and liver enzymes fell within normal reference limits in AAS patients with LDH ≥ 450 U/L. The degree of bowel ischemia could not be directly evaluated in our study due to lack of relevant endpoints.

Limitations

A major limitation of study enrolment criteria is that patients where AAS was not suspected by treating physicians were not included, as in previous studies by this and other groups.22–24 This approach is expected to bias against atypical and mild presentations, at low pretest probability of AAS, where nonetheless rule-in and rule-out biomarkers of AAS may be desirable.1,2 Second, the present study was performed on a convenience and not on a random sample of 999 patients with suspected AAS, representing 63% of 1578 clinically eligible patients, and attending physicians were not blinded to LDH levels. Although the demographic and clinical characteristics of study patients are in line with the cohorts of previous studies, some degree of selection bias in the present cohort cannot be ruled out.23,24 Third, the absolute LDH levels found in this study were obtained using a pyruvate-lactate assay, which is different from, albeit calibrated on, the lactate-pyruvate method recommended by the IFCC. Based on available data, in centers using an IFCC method for plasma LDH, 220 U/L may be considered as high-normality cutoff indicating increased mortality risk in AAS.25 In addition, plasma LDH kinetics may provide more relevant information rather than a single-point estimate. Indeed, repeated measures of biomarkers appear desirable particularly in patients not undergoing urgent intervention, such as in patients with Stanford type B AD. Finally, as the study was performed in 2 large hospitals functioning as regional hub centers, outcome data might not be generalized to different clinical settings.

CONCLUSIONS

In summary, the results of the present study, performed in a relatively large patient cohort, question the utility of plasma LDH as a diagnostic assay in patients with suspected AAS. Instead, they indicate plasma LDH as a biomarker allowing improved prognostic stratification of patients with AAS, especially if elderly, hemodynamically stable or not surgically treated. In clinical practice, results might implicate that special attention and individualized treatment should be warranted to patients...
with AAS presenting with elevated LDH, due to their increased risk of in-hospital death.

ACKNOWLEDGMENT

The authors are thankful to all physicians and nurses of the participating centers for their precious help.

REFERENCES

1. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/ACR/ASA/SCA/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation. 2010;121:e266–e369.

2. Erbel R, Aboyans V, Boileau C, et al. 2014 ESC guidelines on the diagnosis and treatment of aortic diseases: document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2873–2926.

3. Hansen MS, Nogareda GJ, Hutchison SJ. Frequency of and inappropriate treatment of misdiagnosis of acute aortic dissection. Am J Cardiol. 2007;99:852–856.

4. Stewart A, Chikwe J. Thinking beyond the tube graft: using aortic plaque imaging to improve outcome. Eur Heart J. 2014;35:2628–2635.

5. Czerny M, Schoenhoff F, Etz C, et al. The impact of pre-operative malperfusion on outcome in acute type A aortic dissection: results from the GERAADA registry. J Am Coll Cardiol. 2015;65:2626–2637.

6. Ohlmann P, Faure A, Morel O, et al. Diagnostic and prognostic value of circulating D-dimers in patients with acute aortic dissection. Crit Care Med. 2006;34:1358–1364.

7. Wen D, Du X, Dong J-Z, et al. Value of D-dimer and C reactive protein in predicting inhospital death in acute aortic dissection. Heart. 2013;99:1192–1197.

8. Huang B, Tian L, Fan X, et al. Low admission platelet counts predict increased risk of in-hospital mortality in patients with type A acute aortic dissection. Int J Cardiol. 2014;172:e484–e486.

9. Huang B, Yang Y, Lu H, et al. Impact of D-dimer levels on admission in inhospital and long-term outcome in patients with type A acute aortic dissection. Am J Cardiol. 2015;115:1595–1600.

10. Pentiila I, Pentiila K, Rantanen T. Laboratory diagnosis of patients with acute chest pain. Clin Chem Lab Med. 2000;38:187–197.

11. Erbel R, Alfonso F, Boileau C, et al. Diagnosis and management of aortic dissection: Task Force on Aortic Dissection, European Society of Cardiology. Eur Heart J. 2001;22:1642–1681.

12. Association ACC. Acute Cardiovascular Care Association Clinical Decision-Making Toolkit. 2013; http://www.escardio.org/Guidelines+%26-Education/Practice-tools/ACCA-Toolkit/Download-the-Toolkit-application. Accessed February 1, 2016

13. Giachino F, Loiacono M, Lucchiari M, et al. Rule out of acute aortic dissection with plasma matrix metalloproteinase 8 in the Emergency Department. Crit Care. 2013;17:R33.

14. Shinzeki M, Ueda T, Takeyama Y, et al. Prediction of early death in severe acute pancreatitis. J Gastroenterol. 2008;43:152–158.

15. Rios FG, Estensoro E, Villarejo F, et al. Lung function and organ dysfunctions in 178 patients requiring mechanical ventilation during the 2009 influenza A (H1N1) pandemic. Crit Care. 2011;15:R201.

16. Cilloniz C, Torres A, Polverino E, et al. Community-acquired lung respiratory infections in HIV-infected patients: microbial aetiology and outcome. Eur Respir J. 2014;43:1698–1708.

17. Starling RC, Moazami N, Silvestry SC, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370:33–40.

18. Castelli R, Bucciarelli P, Porro F, et al. Pulmonary embolism in elderly patients: prognostic impact of the Cumulative Illness Rating Scale (CIRS) on short-term mortality. Thromb Res. 2014;134:326–330.

19. Paladino NC, Inviati A, Di Paola V, et al. Predictive factors of mortality in patients with acute mesenteric ischemia. A retrospective study. Ann Ital Chir. 2014;85:265–270.

20. Bossuyt PM, Reitsma JB, Bruns DE, et al. The STARD statement for reporting studies of diagnostic accuracy: explanation and elaboration. Ann Intern Med. 2003;138:W1–W12.

21. Vandenbroucke JP, von Elm E, Altman DG, et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. Ann Intern Med. 2007;147:W163–W194.

22. Suzuki T, Distante A, Zizza A, et al. Diagnosis of acute aortic dissection by D-dimer: the International Registry of Acute Aortic Dissection Substudy on Biomarkers (IRAD-Bio) experience. Circulation. 2009;119:2702–2707.

23. Nazerian P, Morello F, Vanni S, et al. Combined use of aortic dissection detection risk score and D-dimer in the diagnostic workup of suspected acute aortic dissection. Int J Cardiol. 2014;175:78–82.

24. Nazerian P, Giachino F, Vanni S, et al. Diagnostic performance of the aortic dissection detection risk score in patients with suspected acute aortic dissection. Eur Heart J Acute Cardiovasc Care. 2014;3:373–381.

25. Empfehlungen der Deutschen Gesellschaft für Klinische Chemie. Z Klin Chem Klin Biochem. 1972;10:182–190.

26. Weißhaar D, Gossrau E, Faderl B. Normalbereiche von α-HBDH, LDH, AP und LAP bei Messung mit substrat-optimierten Testansätzen. Med Welt. 1975;26:387–390.

27. Pagani F, Bonora R, Panteghini M. Reference interval for lactate dehydrogenase catalytic activity in serum measured according to the new IFCC recommendations. Clin Chem Lab Med. 2003;41:970–971.

28. Tolenaar JL, Froehlich W, Jonker FH, et al. Predicting in-hospital mortality in acute type B aortic dissection: evidence from International Registry of Acute Aortic Dissection. Circulation. 2014;130(Suppl 1):S45–S50.

29. Mehta RH, Suzuki T, Hagan PG, et al. Predicting death in patients with acute type a aortic dissection. Circulation. 2002;105:200–206.

30. Harris KM, Strauss CE, Eagle KA, et al. Correlates of delayed recognition and treatment of acute type A aortic dissection: the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2011;124:1911–1918.

31. Kimura N, Ohnuma T, Itoh S, et al. Utility of the Penn classification of acute aortic syndromes. J Gastroenterol. 2011;46:969–971.

32. Mehta RH, Suzuki T, Hagan PG, et al. Predicting death in patients with acute type a aortic dissection. Circulation. 2002;105:200–206.

33. Harris KM, Strauss CE, Eagle KA, et al. Correlates of delayed recognition and treatment of acute type A aortic dissection: the International Registry of Acute Aortic Dissection (IRAD). Circulation. 2011;124:1911–1918.

34. Kimura N, Ohnuma T, Itoh S, et al. Utility of the Penn classification of acute aortic syndromes. J Gastroenterol. 2011;46:969–971.