Comparative transcriptomics reveals domestication-associated features of Atlantic salmon lipid metabolism

Yang Jin1 | Rolf Erik Olsen1 | Thomas Nelson Harvey2 | Mari-Ann Østensen1 | Keshuai Li3 | Nina Santi4 | Olav Vadstein5 | Atle Magnar Bones1 | Jon Olav Vik2 | Simen Rød Sandve2 | Yngvar Olsen1

1Department of Biology, NTNU Norwegian University of Science and Technology, Trondheim, Norway
2Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway
3BioMar AS, Trondheim, Norway
4AquaGen AS, Trondheim, Norway
5Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway

Correspondence
Yang Jin and Simen Rød Sandve, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, NO-1432 Ås, Norway.
Emails: jinyangye119@hotmail.com; simen.sandve@nmbu.no
Yngvar Olsen, Department of Biology, NTNU Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
Email: yngvar.olsen@ntnu.no

Present address
Yang Jin, Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, Ås, Norway

Funding information
Norges Forskningsråd, Grant/Award Number: 244164 and 248792; Norwegian University of Science and Technology (NTNU)

Abstract
Domestication of animals imposes strong targeted selection for desired traits but can also result in unintended selection due to new domestic environments. Atlantic salmon (Salmo salmar) was domesticated in the 1970s and has subsequently been selected for faster growth in systematic breeding programmes. More recently, salmon aquaculture has replaced fish oils (FOs) with vegetable oils (VOs) in feed, radically changing the levels of essential long-chain polyunsaturated fatty acids (LC-PUFAs). Our aim here was to study the impact of domestication on metabolism and explore the hypothesis that the shift to VO diets has unintentionally selected for a domestication-specific lipid metabolism. We conducted a 96-day feeding trial of domesticated and wild salmon fed diets based on FOs, VOls or phospholipids, and compared transcriptomes and fatty acids in tissues involved in lipid absorption (pyloric caeca) and lipid turnover and synthesis (liver). Domesticated salmon had faster growth and higher gene expression in glucose and lipid metabolism compared to wild fish, possibly linked to differences in regulation of circadian rhythm pathways. Only the domesticated salmon increased expression of LC-PUFA synthesis genes when given VOls. This transcriptome response difference was mirrored at the physiological level, with domesticated salmon having higher LC-PUFA levels but lower 18:3n-3 and 18:2n-6 levels. In line with this, the VO diet decreased growth rate in wild but not domesticated salmon. Our study revealed a clear impact of domestication on transcriptomic regulation linked to metabolism and suggests that unintentional selection in the domestic environment has resulted in evolution of stronger compensatory mechanisms to a diet low in LC-PUFAs.

KEYWORDS
circadian regulation, domestication, long-chain polyunsaturated fatty acids, transcriptomics, vegetable oil, wild salmon
INTRODUCTION

The genetics and physiology of domesticated animals are heavily influenced by the initial domestication process, the captive environment, followed by persistent targeted selection for desirable animal production traits such as faster growth and delayed sexual maturation (Mueller & Diamond, 2001; Zeder, 2015). In addition, domesticated animals evolve “domestication syndromes” linked to unintended selection due to the new domestic environments (Zeder, 2015). One such collateral variable that changes dramatically with domestication is food and feeding regimes. Unlike wild animals which rely on opportunistic hunting and foraging for different foods, domesticated animals often receive standardized artificial diets with balanced nutritional levels and regular feeding intervals. This dietary change has probably influenced standard metabolism in domesticated animals (Bicskei, Bron, Glover, & Taggart, 2014; López et al., 2019).

Atlantic salmon (Salmo salar) was domesticated in 1971 and is considered a pioneer aquaculture species (Harache, 2002). Since its initial domestication, selective breeding programs have aimed to improve traits such as faster growth, delayed sex maturation, higher feed conversion rate, as well as many other traits important for animal production (Gjedrem, Gjøen, & Gjerde, 1991; Powell, White, Guy, & Brotherstone, 2008; Quinton, McMillan, & Glebe, 2005). And as with most domesticated animals, unintentional selection is hypothesized to have shaped the physiology of domesticated salmon, especially related to adaptations to new feed composition and feeding regimes.

In the wild, salmon is an opportunistic predator and its diet consists mostly of invertebrates in rivers, and crustaceans and small fish after they migrate to the sea (Hansen & Quinn, 1998; Renkawitz & Sheehan, 2011). Their natural prey, in both freshwater and seawater, often contain substantial amounts of long-chain polyunsaturated fatty acids (LC-PUFAs) including docosahexaenoic acid (DHA, 22:6n-3), eicosapentaenoic acid (EPA, 20:5n-3) or arachidonic acid (ARA, 20:4n-6) (Bell, Ghioni, & Sargent, 1994). Domesticated salmon on the other hand have “unlimited” access to food and their diet is composed of proteins from fish and plant meal, as well as a lipid source. Until the late 1990s this lipid source was mainly fish oils (FOs) from wild fisheries, which contained high levels of LC-PUFAs. However, in the last two decades the FOs have gradually been substituted with vegetable oils (VOs) naturally devoid of LC-PUFAs. The LC-PUFAs are important for fish because they are key components of cell membranes, they regulate cell membrane fluidity, function as precursors for eicosanoid production and are important components of neural tissues (Sargent, Tocher, & Bell, 2002; Tocher & Glencross, 2015). This is also reflected in the ability of domesticated salmon to increase endogenous synthesis of LC-PUFAs when given VO-rich diets (Datsomor et al., 2019; Stubhaug, Tocher, Bell, Dick, & Torstensen, 2005; Zheng, Tocher, Dickson, Bell, & Teale, 2004). Another major difference between wild and domesticated diets is the levels of dietary phospholipids (PLs). PLs are important for growth and development of salmon especially for early developmental stages (Poston, 1990; Taylor et al., 2015), and dietary PLs are more efficient at delivering LC-PUFAs into the circulatory system and ultimately the cells compared to neutral lipids such as triacylglycerols (Cahu et al., 2009; Olsen et al., 2014). The efficiency of utilizing dietary PLs could therefore also be different between wild and domesticated fish, although this has not previously been investigated.

In this study we use a comparative approach to study domestication-associated evolution of transcriptomic and lipid metabolism phenotypes in salmon. Specifically, we hypothesized that the shift to VO diets has selected for a domestication-specific lipid metabolism phenotype to compensate for dietary shortage of LC-PUFAs. We approach this question by feeding domesticated and wild salmon contrasting diets either rich in FOs, VOs or PLs, and then perform comparative analyses of transcriptomes and fatty acids in tissues involved in lipid uptake (pyloric caeca) and endogenous synthesis (liver). This experiment allows us to identify metabolic pathways that respond differently in domesticated compared to wild salmon and reveal novel lipid metabolism features in domesticated salmon putatively linked to unintentional selection and adaptation to a typical domestic VO diet with low LC-PUFA levels.

MATERIALS AND METHODS

The domesticated salmon used in this study was a fast-growing strain (AquaGen AS) which have been selected for faster growth and delayed sexual maturation for 11 generations since 1971. The selective breeding of domesticated salmon has doubled the growth rate and reduced the production cycle for the fish by ~1.5 years compared with the wild origin fish (Thodesen, Grisdale-Helland, Helland, & Gjerde, 1999). The previous generations of domesticated salmon were always fed standard commercial diets available at the time. This means that the fish were given a freshwater diet with only marine ingredients at early developmental stages but have experienced a gradual switch in seawater diet from FOs to VOs since the 1990s. The wild salmon strain was purchased from Haukvik Smolt AS, a wild salmon bank used for the preservation of wild Norwegian Atlantic salmon located in Trødelag, Norway. Wild salmon were originally sourced from five independent lines caught in Lærdal river in Norway in 2011 and 2012. Eggs from these fish were grown in the hatchery facility for one or two generations. During this time the wild fish were kept in outdoor tanks with a transparent roof and water that had the same temperature as the river. The wild fish were fed a standard “Nutra Sprint” diet (Skretting AS) at fry and early juvenile stages (https://www.skretting.com/en/feeds-services/nutra-sprint/1585246) which satisfied their nutritional requirements. The juvenile the fish were then given a “Vitalis Røye” diet from Skretting AS which has an EPA + DHA content of 19%–20% of the fat, and 70% of the ingredients are of marine origin. Approximately 1,300 newly fertilized eggs of domesticated (AquaGen) and 1,300 of wild salmon (a mixture of the 2nd and 3rd generation from the hatchery) were cultured in 1,300 newly fertilized eggs of domesticated (AquaGen) and 1,300 of wild salmon (a mixture of the 2nd and 3rd generation from the hatchery) were cultured in...
five independent lines) were transported to hatching tanks in Ervik hatchery (Frøya, Norway). The water temperature of hatching tanks for domesticated and wild eggs was slightly different to ensure that both strains hatched and start to feed at the same time.

When the yolk sac was depleted, the wild and domestic salmon strains were separated into 12 tanks (2 fish strains × 3 diet treatments × 2 replicate tanks) with 100 L water and 200 fish per tank. Feeding was initiated from the next day. The experimental tanks were randomly distributed in the hatchery and the fish of each tank were reared under the same temperature, continuous light and received 24 hr continuous feed every day. The fish were given three contrasting diets, either an FO diet high in LC-PUFAs, or a plant and VO-enriched diet low in LC-PUFAs, or a marine PL-enriched diet with medium level of LC-PUFAs but rich in PsL (Table 1). All three diets were given to the fish from the start of feeding up to 94 days. To ensure sufficient DHA and EPA levels the PL used to prepare the PL diet was a 50:50 mixture of krill oil (Aker BioMarine AS) and herring roe oil (kindly provided by Erik Løvaas from Marine BioExploitation AS). The diets were produced by Sparos AS. The composition of the diets is shown in Table S1. The FO diet had higher DHA and ARA than the PL diet, while the EPA composition was similar between the two diets (Table 1). The VO diet contains higher 18:3n-3 and 18:2n-6 but lower DHA, EPA and ARA compared to the other two diets. Other components except the lipid source were identical between the three diets (Table S1).

Fish weight (n ≥ 20 from each group) was measured at 0, 48, 65, 78 and 94 days post-initial feeding (dpf). The fish were killed by exposure to 200 mg ml⁻¹ Benzoak vet. (ACD Pharmaceuticals AS) before measurement of all samples. Read sequences were quality trimmed using cutadapt (version 1.8.1) before being aligned to the salmon genome (csasg_version 2). Raw gene counts were generated using HTseq-counts (version 0.6.1pl) and the NCBI salmon genome annotation (http://salmonbase.org/Downloads/Salmo_salar-annotation.gff3).

2.2 RNA isolation and transcriptomic sequencing

Four individuals per group (n = 4, 2 fish per tank × 2 replicate tanks) were used for RNA isolation. The RNA extraction was performed with the RNAPrep Universal Kit (Qiagen), according to the manufacturer’s instructions. The concentration and integrity of RNA were determined by using a Nanodrop 8000 (Thermo Fisher Scientific) and a 2100 Bioanalyzer (Agilent Technologies), respectively. All RNA samples had RNA integrity (RIN) values >8, which is sufficient for RNA sequencing. Sequencing libraries were prepared with a TruSeq Stranded mRNA Library Prep Kit (Illumina) according to the manufacturer’s protocol. Libraries were sequenced using 100-bp single-end mRNA sequencing (RNA-seq) on an Illumina Hiseq 2500 (Illumina) at the Norwegian Sequencing Centre (Oslo, Norway).

The method for handling RNA-seq data has been described in detail in previous studies (Jin et al., 2018; Gillard et al., 2018). In brief, read sequences were quality trimmed using cutadapt (version 1.8.1) before being aligned to the salmon genome (csasg_version 2). Raw gene counts were generated using HTseq-counts (version 0.6.1pl) and the NCBI salmon genome annotation (http://salmonbase.org/Downloads/Salmo_salar-annotation.gff3).

2.3 Lipid class separation and fatty acid analysis

Total lipid was extracted from two individual fish from each tank by using the method of Folch, Lees, and Stanley (1957). Extracted total lipid was then applied onto 10 × 10-cm silica plates (Merck) and separated by using methyl acetate/isopropanol/chloroform/methanol/0.25% KCl (25:25:25:10:9, by vol.) for polar lipids and hexane/diethyl ether/glacial acetic acid (80:20:2, by vol.) for neutral lipids (Olsen & Henderson, 1989). To avoid the oxidation of fatty acids, the plates were exposed to iodine vapour to visualize the lipid class for fatty acid analysis (Li & Olsen, 2017). Lipid bands of phosphatidylcholine (PtdCho), phosphatidylethanolamine (PtdEtn) and triacylglycerol (TAG) were separately scraped out into 10-ml glass tubes. Fatty acid methyl esters (FAMEs) of each lipid class were prepared by acid-catalysed transesterification at 50°C for 16 hr (Christie, 1973) before being quantified by an Agilent 7890B gas chromatograph with flame ionization detector (Agilent Technologies).

2.4 Data analysis

The analysis of RNA-seq data was performed in R (version 3.4.1) (Team, 2013). Only genes with a minimum count level of at least 1

TABLE 1 Percentage of fatty acids in total fatty acids of three diets rich in fish oil (FO), vegetable and plant oil (VO), or vegetable and marine phospholipid oil (PL)

Fatty acid	FO	VO	PL
14:0	3.6±0.0	0.9±0.0	3.7±0.0
16:0	18±0.2	20±0.2	16±0.2
16:1n-7	4.3±0.0	0.8±0.0	3.1±0.0
18:0	4.4±0.1	3.7±0.1	3.5±0.5
18:1n-9	14±0.1	26±0.3	22±0.1
18:1n-7	2.5±0.0	7.1±0.2	3.2±0.0
18:2n-6	6.8±0.0	15±0.2	11±0.1
18:3n-3	1.2±0.0	11±0.2	3.1±0.0
20:1n-9	2.5±0.0	1.7±0.0	2.4±0.0
20:4n-6	1.3±0.0	0.3±0.0	0.7±0.0
20:5n-3	7.7±0.0	1.7±0.0	7.3±0.1
22:1n-9	2.2±0.0	1.2±0.0	1.8±0.0
22:6n-3	17±0.0	3.7±0.1	11±0.1

Note: Data are shown in mean ± SD (n = 2).
count per million (CPM) in more than 25% of samples from each tissue were kept for differential expression analysis. Differential expression was tested separately on pyloric caeca and liver using R package edger (Robinson, McCarthy, & Smyth, 2010). A full interaction model described in the edger manual (Diet + Strain + Diet × Strain) was used in each tissue separately to find differentially expressed genes (DEGs) between wild and domesticated salmon under any dietary treatments. DEGs were determined if a gene had a q value (false discovery rate-adjusted p value) < .05 and absolute log fold change (|Log2FC|) > 1 between wild and domesticated salmon. KEGG ontology enrichment analysis (KOEA) was conducted using edger. Significant values (p < .05) were generated based on a hypergeometric test where the number of DEGs was compared to total genes annotated to each KO term. A test for enrichments of transcription factor binding site (TFBS) motifs in the promoter regions (between −1,000 and 100 bp from the transcription start site) of salmon genes was done by using a hypergeometric test in the R package salmotifdb, which interacts with a database of TFBSs for salmonids (https://salmobase.org/apps/SalMotifDB) (Mulugeta et al., 2019).

To further investigate diet-specific effects on gene expression between wild and domesticated salmon, samples of different diet were separated to be used for testing differential expression of genes between wild and domesticated salmon under each diet. The same cut-off was used (q < 0.05 and |Log2FC| > 1) to identify DEGs. To visualize expression levels between different genes and tissues, normalized counts in the form of transcripts per million (TPM) values were generated. Raw gene counts were first divided by their mRNA length in kilobases to normalize for transcript length, and then divided by the total number of counts from each library to normalize for sequencing depth (Jin et al., 2018).

Statistical analysis of fish weight and fatty acid composition was also performed in R. Two-way ANOVA with Tukey’s HSD post-hoc test was used to test the effect of strain and diet on fish weight and fatty acid composition. Samples of different lipid class, tissue or sampling date were analysed separately. Differences were considered significant at p < .05.

2.5 | Ethical statement

All welfare and use of experimental animals was in accordance with the Norwegian Animal Welfare Act 2010. In addition, all personnel involved in rearing, handling and sampling the fish had undergone training approved by the Norwegian Food Safety Authority.

3 | RESULTS

3.1 | Growth and development

The domesticated salmon were significantly larger than wild salmon at all sampling times (Figure 1; Table S2). At the end of the trial (94 days), domesticated salmon reached an average weight of 4.5 g, while wild salmon had a mean weight of 2.6 g. There were no significant differences in weight between domesticated salmon fed FO-, VO- and PL-enriched diets. The growth of wild fish appeared more sensitive to different diets, with VO-fed fish being smaller than PL-fed fish at day 65 (p = .03) and day 94 (p = .02). FO-fed wild salmon showed intermediate weights, but their weights were not significantly different from fish fed either FO or PL diets.

3.2 | Transcriptomic differences between domesticated and wild salmon

On average 20 million reads were generated from each sample (min.: 12 million reads, max.: 32 million reads), with ~85% of the reads mapping to the salmon genome. Out of 81,597 annotated loci, 28,980 and 24,119 genes passed this filtering criterion in pyloric caeca and liver, respectively. Principal components analysis (PCA) on log2 CPM of the top 1,000 most variable genes revealed a clear separation of domesticated and wild salmon in both pyloric caeca and liver (Figure 2).

Differential expression analysis revealed 187 DEGs in pyloric caeca and 379 DEGs in liver between wild and domesticated salmon (Table S3). By mapping DEGs to the KEGG database of metabolic pathways, we identified 17 pathways that were significantly enriched (p < .05) in pyloric caeca, while 11 pathways were enriched in liver (Figure 3a). The DEGs in pyloric caeca were enriched in pathways for glycerophospholipid, glycosphingolipid and glycosaminoglycan metabolism, compounds that are known to be major components of the cell membrane (Figure 3a). A number of cell-signalling pathways were also enriched, including the phosphatidylinositol signalling, calcium signalling, apelin signalling, C-type lectin receptor signalling and GnRH signalling pathways. In liver, the
DEGs were enriched in metabolic pathways including the linoleic acid, glycolysis and gluconeogenesis, fructose and mannose, cysteine and methionine, and retinol metabolism pathways (Figure 3a).

TFBS motif enrichment analysis on promoters (-1,000 to 200 bp from the transcription start site) of DEGs for each tissue resulted in 16 significantly (p < .005) enriched motifs in pyloric caeca and 128 enriched motifs in liver (Table S4). The most enriched motif in pyloric caeca was BHLHB2, which is known to be involved in circadian regulation (Figure 3b) (Dunlap, 1999). Several other enriched motifs are associated with intestinal development and cell differentiation, including ETV2 (Jedlicka & Gutierrez-Hartmann, 2008), ATOH1 (Shroyer et al., 2007), GR (Lebenthal & Lebenthal, 1999) and GATA-1 (Kanki et al., 2017). The most enriched TFBS motif in liver was a CLOCK motif, which is a predicted binding motif for the master regulator of the circadian clock (Dunlap, 1999). Similar to pyloric caeca, the BHLHB2 motif was also identified in the top 10 most enriched TFBS motifs in liver. In addition, three lipid metabolism-related motifs (RXRA, PPARG, PLAGL2) populated the top-10 enriched TFBS list (Tontonoz, Hu, & Spiegelman, 1994; Van Dyck et al., 2007).

To further investigate differences in expression of genes linked to circadian rhythm between wild and domesticated salmon, we compared the expression of key genes encoding circadian clock-related transcription factors, clock, nr1d1, bmal1, bhlhb2, per and cry (Figure 3c; Figure S1). A systematic difference in circadian clock gene expression was observed between livers of wild and domesticated salmon (Figure 3c; Figure S1), although not all genes were significantly regulated at q < 0.05. Nevertheless, the regulators (cry2-c, nr1d1-a, per1-a, bhlhb2-d and nr1d1-a genes) acting as suppressors of the master regulators of circadian rhythm (CLOCK/BMAL) were consistently expressed at lower levels in domesticated salmon compared to wild salmon (Figure 3c). However, similar expression levels of clock (logFC = 0.2, q = 0.7) and bmal1 (logFC = -0.1, q = 0.8) genes, which encode master regulators, were found between domesticated and wild salmon (Figure 3c; Figure S1). No difference in circadian clock gene expression was observed between pyloric caeca of wild and domesticated salmon.

3.3 Differential regulation of lipid metabolism genes between domesticated and wild salmon

To better understand the effect of diets on gene expression differences between domesticated and wild salmon, we compared gene expression separately between domesticated and wild salmon under each diet. In pyloric caeca, a total of 230 DEGs were identified between domesticated and wild salmon under each diet. In pyloric caeca, a total of 230 DEGs were identified between domesticated and wild salmon with the FO diet, 164 DEGs were found with the VO diet and 689 DEGs were found with the PL diet (Table S5). Of these DEGs, only eight genes were involved in lipid metabolism pathways. This includes the ptdss2 gene of phosphatidylycerine synthesis, which was significantly (q < 0.05 and |Log2FC| > 1) more highly expressed in domesticated salmon regardless of the dietary treatment (Figure 4). Two phosphatidylethanolamine synthesis genes, pcyt1c2-a and pcyt1c2-b, were both expressed at higher levels in domesticated than wild salmon when fed the FO or VO diet, while no difference in gene expression was found when the fish were given the PL diet. On the other hand, the etnk2-a gene involved in phosphatidylethanolamine synthesis was significantly more highly expressed in domesticated compared to wild salmon only when the fish were given the PL diet. Feeding with VOs induced key genes in the LC-PUFA synthesis pathway (fads2d5 and fads2d6a, see Figure 4) in both domesticated and wild salmon. However, no expression difference was observed for these two genes, or any other LC-PUFA synthesis genes, between domesticated and wild salmon for any dietary treatment (Figure 4; Table S5).

The number of DEGs between liver of domesticated and wild salmon under each diet was 591 (FO), 179 (VO) and 243 (PL) (Table S5). Liver had more DEGs involved in lipid metabolism (28) compared to pyloric caeca (eight). Four DEGs in liver had significantly (q < 0.05 and |Log2FC| > 1) higher expression in domesticated compared to wild salmon under the VO diet, but not under the FO or PL diet (Figure 5b). This includes genes with key functions in LC-PUFA synthesis (fads2d5, Log2FC = 1 and q = 0.02), in acyl-CoA synthesis (acsbg2b-b, Log2FC = 1.4 and q = 0.03) and fatty acid transport (fabp7b, Log2FC = 3.6 and q = 0.02). Although not significant, domesticated salmon fed the VO diet also had higher expression of fads2d6a (Log2FC = 0.7 and q = 0.2) and srebp1d (Log2FC = 0.8 and q = 0.2) compared to wild salmon fed the same diet, while the difference in expression of the two genes was negligible when the fish were given the FO or PL diet (Figure 5a,b). A key gene involved in conversion of lipids to energy, cpt1aa, was expressed at lower levels (Log2FC = -1.2 and q = 0.01) in domesticated salmon when fed the VO diet. The regulator of fatty acid metabolism pparg-b was consistently more highly expressed in domesticated compared to wild salmon under all diets, but this was only significantly different for salmon fed the FO diet (Figure 5a).
In addition to the DEGs of fatty acid metabolism, five DEGs involved in phospholipid, cholesterol and triacylglycerol metabolism were found between domesticated and wild salmon (Figure 5c). This included the apoA1-b gene involved in lipoprotein synthesis and lipid transport, which was strongly more highly expressed in domesticated salmon than wild salmon, regardless of dietary treatment.
(Log2FC > 3 and q < 0.001, see Figure 5c; Table S5). A key gene involved in the synthesis of bile acid (cyp7a1-a), which is responsible for removal of cholesterol in liver, was highly expressed in domesticated salmon when given the PL diet. The gene ptdss2 involved in the synthesis of phosphatidylserine, which is a major phospholipid in salmon, was more highly expressed in domesticated salmon than wild salmon fed the VO diet (Log2FC = 1.9, q = 0.0008), although a similar trend was also found when the fish were given the FO (Log2FC = 1, q = 0.09) or PL diet (Log2FC = 0.9, q = 0.2). Expression of the hsl gene involved in hydrolysing triacylglycerol (stored fat) to diacylglycerol, and diacylglycerol to monoacylglycerol was generally expressed at higher levels in domesticated salmon than wild salmon. On the other hand, the expression of mgll involved in hydrolysing monoacylglycerol into free fatty acids was lower in domesticated salmon (Figure 5c).

In conclusion, direct comparison of the transcriptomes of domesticated and wild salmon suggests that domestic salmon have boosted expression of genes involved in many aspects of lipid metabolism such as transport, endogenous synthesis and conversion of lipids and fatty acids in both gut and liver (Table S5).

To further investigate differences in the plasticity of fatty acid metabolism between domesticated and wild salmon, we analysed differences in putative compensatory shifts in gene regulation under diets with low (VO) vs. high (FO) levels of LC-PUFAs for wild and domesticated salmon separately. These analyses identified 38 DEGs in domesticated and two DEGs in wild salmon (Table S5). However, only DEGs in domesticated salmon (nine genes) were linked to lipid metabolism, specifically involved in fatty acyl-CoA synthesis (two genes), LC-PUFA synthesis (two genes), lipogenesis (two genes) and transcriptional regulation of lipid metabolism (two genes) (Table 2).

3.4 | Comparison of fatty acid composition between domesticated and wild salmon

The variation in fatty acid composition was generally more driven by diet than by strain. About 85% of the fatty acid content in liver and pyloric caeca differed between diets, but only 32% of the fatty acids differed in levels between wild and domesticated salmon (p < .05; Table S6). Both wild and domesticated salmon given the VO diet showed higher levels of 18:3n-3 and 18:2n-6 in both liver and pyloric caeca but lower contents of the longer chain fatty acids (ARA, EPA and DHA) compared to both fish given the FO and PL diets (Figure 6). This pattern was consistent for all three lipid classes analysed (PtdCho, PtdEtN and TAG). Although the differences in fatty acid content were generally small between wild and domesticated salmon fed the same diet, wild fish contained higher contents of 18:2n6 (9.1% in wild vs. 7.3% in domesticated fish, p = .06) and 18:3n3 (2.3% vs. 1.8%, p = .006) in PtdEtN of liver when fed the VO diet. Wild salmon also had higher contents of 18:3n3 (2.1% vs. 1.8%, p = .04) in PtdCho of liver when fed the VO diet. Wild salmon also contained lower levels of 18:4n-3, 18:3n-6 and 18:4n-6, but higher 20:3n-3 levels when fed the VO diet (Table S6). No significant differences in DHA and EPA contents were found between domesticated and wild salmon fed the same diets.

4 | DISCUSSION

Atlantic salmon provides a unique opportunity to study domestication-related evolution because the wild populations that gave
rise to domesticated salmon are well preserved and also accessible in live gene banks in Norway (O’Reilly & Doyle, 2007). Here we took advantage of this and performed a comparative study of domesticated and wild salmon metabolism to test for signatures of unintended selection on lipid metabolism traits in domesticated salmon.

4.1 Linking evolution of the domesticated metabolic syndrome with the circadian clock pathway

As demonstrated in other studies, we found that domesticated salmon grew faster than wild salmon (Bicskei et al., 2014; Reid, Armstrong, & Metcalfe, 2012). This reflects 50 years of targeted breeding for fast growth, which has resulted in higher standard metabolic rate, higher feed intake and improved feed conversion (Thodesen et al., 1999), referred to as the “domesticated metabolic syndrome” (Bicskei et al., 2014; Tymchuk, Sakhani, & Devlin, 2009). In line with this, gene expression differences in liver suggest that energy assimilation and expenditure is higher in domesticated salmon (Figure 3a), similar to what is found in domesticated pigs (Li et al., 2013), chicken (Jackson & Diamond, 1996) and rat (Zeng et al., 2017). The differences in pyloric caeca gene expression between domesticated and wild salmon were associated with regulatory networks controlling intestinal development and cell differentiation (Jedlicka & Gutierrez-Hartmann, 2008; Kanki et al., 2017; Lebenthal & Lebenthal, 1999) (Figure 3b), which could be linked to higher growth rates and/or feed intake in domesticated fish (Thodesen et al., 1999).

Our results strongly suggest a functional link between evolution of the domesticated metabolic syndrome (i.e., faster growth and
higher energy turnover) and regulation of genes through the circadian clock pathway (Figure 3). This is interesting as top regulators (CLOCK/BMAL) are known to impact (directly or indirectly) a multitude of downstream processes including metabolism (Lowrey & Takahashi, 2000; Preitner et al., 2002; Takahashi, 2015). Moreover, the CLOCK gene has also been under selection during domestication of rats (Zeng et al., 2017) and is associated with key features of the domestic metabolic syndrome, such as regulation of food intake, metabolic rates, and glucose and lipid metabolism in both mammals and fish (Esther, Nuria, Ana, Ángel, & María, 2017; Paschos, 2015; Rudic et al., 2004). Finally, we found that predicted TFBSs of the PPAR-RXR heterodimer, a key regulator of glucose (Jones et al., 2005) and lipid (Kliewer et al., 1997) homeostasis, were enriched in promoters of DEGs between wild and domesticated salmon (Figure 3b), and that the pparg gene was consistently more highly expressed in domesticated salmon (Figure 5). This also links to the circadian clock as the pparg gene is known to be under circadian rhythmicity in salmon (Betancor et al., 2014).

Unfortunately, our study was not designed to investigate the connection between differences in circadian oscillations between wild and domestic salmon. However, we are confident that sampling bias related to daily rhythms has not impacted our results. First, all samples used for the gene expression were sampled between morning and noon over a 2 hr time period. Second, all fish were raised under constant light and continuous feeding in this study. Such rearing conditions are known to abolish daily rhythmicity for both nr1d1 (Betancor et al., 2014) and cry-2 (Huang, Ruoff, & Fjellidal, 2010), but nevertheless these genes were still expressed at lower level in domesticated salmon regardless of fish size and age (Figure S1).

In conclusion, our results support strong links between the salmon “domestic metabolic syndrome” and evolution of novel

TABLE 2 Log₂ fold change and adjusted p value (q) of lipid gene expression in liver of domesticated/wild salmon fed vegetable oil (VO) diet compared to fish oil (FO)

Gene name	Farm VO vs. FO logFC	Farm VO vs. FO q	Wild VO vs. FO logFC	Wild VO vs. FO q
acsbg2b-b	1.7	0.01	1.0	0.64
acsl1a-a	1.6	0.02	1.0	0.64
agpat3a-b	1.4	0.002	1.2	0.09
agpat3b-a	1.1	0.01	0.5	0.72
fabp7b	6.0	0.001	4.2	0.13
fads2d6a	1.3	0.008	0.8	0.54
fads2d5	1.2	0.01	0.2	1.00
srebplc	1.4	0.03	0.9	0.62
srebp1d	1.6	0.003	0.5	0.88

FIGURE 6 Percentage of liver fatty acid composition in triacylglycerol (TAG), phosphatidylcholine (PtdCho) and phosphatidylethanolamine (PtdEtn) of wild and domesticated salmon fed either fish oil- (FO), vegetable oil- (VO) or phospholipid- (PL) rich diets at day 94. A two-way ANOVA was applied to test the fatty acid differences between fish strains and dietary treatment (strain x diet) separately in each lipid class. Tukey’s HSD post-hoc test was then applied to test the fatty acid difference between each group. *Significant (p < .05) difference in fatty acid content between domesticated and wild salmon for a certain day and dietary treatment. The composition of other fatty acids and their ANOVA test are shown in Supporting Information 7 [Colour figure can be viewed at wileyonlinelibrary.com]
regulation of the circadian clock pathway. We therefore hypothesize that the strong selection on “fast growers” with high energy metabolism and high nutrient requirements target genetic variation linked to regulation of the circadian clock pathway.

4.2 Lipid metabolism in domesticated salmon show signatures of unintended selection in the domestic environment

A main aim of this study was to explore the hypothesis that domesticated salmon had undergone unintended selection on lipid metabolism as a response to low levels of LC-PUFAs in the domesticated environment. In line with this, we showed that the growth of wild but not domesticated salmon was affected by low LC-PUFA availability in the feed. This suggests that domesticated salmon have evolved more effective lipid absorption and lipid transport, and/or better ability for compensatory endogenous conversion and synthesis of lipids under shortage of essential fatty acids.

In-depth analyses of both transcriptomic and lipid composition data support the notion that all these processes differ between wild and domesticated salmon. First, domesticated fish display higher apoa1_2 gene transcription, encoding a major component of high-density lipoprotein (HDL) which plays a key role in lipid transport and regulation of cellular cholesterol levels (Otis et al., 2015; Toth et al., 2013). Second, the hormone-sensitive lipase gene (hsl) was also expressed at higher levels in liver of domesticated salmon compared to wild salmon. This suggests that domesticated salmon had greater ability to hydrolyze triacylglycerol, diacylglycerol and cholesterol ester into monoaacglycerol and free fatty acids (Kraemer & Shen, 2002; Quiroga & Lehner, 2012) which is used for energy production or lipid synthesis. The fact that genes responsible for hydrolysing monoaacglycerol (mgl) and transporting fatty acids into the mitochondria for β-oxidation (cpt) were expressed at lower levels in domesticated salmon compared to wild salmon supports the latter.

Third, the growth of wild (but not domesticated) salmon was impacted positively by dietary PL supplementation, which is known to promote absorption and transport of dietary lipids, especially LC-PUFAs (Olsen, Tore Dragnes, Myklebust, & Rings, 2003; Olsen et al., 2014; Tocher, Bendiksen, Campbell, & Bell, 2008). This points towards a higher ability for LC-PUFA absorption and transport in domesticated salmon due to more effective de-novo synthesis of PLs (Figure 5).

Finally, under dietary shortage of LC-PUFAs, domesticated salmon respond with a compensatory increase in gene expression of fads2d5 and fads2d6a, which encode rate-limiting enzymes for endogenous synthesis of LC-PUFAs (Figure 5). Parallel to this finding, marine stickleback that colonize freshwater environments with lower levels of available dietary DHA evolve a greater endogenous LC-PUFA synthesis ability through increased copy number of the same gene (fads2) (Ishikawa et al., 2019). As the ability to perform endogenous synthesis of LC-PUFAs is heritable in salmon (Horn, Ruyter, Meuwissen, Hillestad, & Sonesson, 2018), it is likely that the VO-based diets in the domestic environment have unintendedly selected for improved ability of LC-PUFA synthesis in domesticated salmon. The high LC-PUFA levels in domesticated salmon ensures the essential requirement for normal growth (Bou et al., 2017), while growth of wild salmon is stunted when fed VO diets due to insufficient synthesis of LC-PUFAs. Sterol regulatory binding protein 1 (SREBP-1) transcription factor is probably the key regulator for the differential expression of the fads2 gene (Figure 5) (Datsomor et al., 2019), but other mechanisms such as epigenetic changes may also contribute to the regulation of gene expression (Clarkson et al., 2017; Vera et al., 2017).

5 CONCLUSION

The present study provides evidence for domestication-associated evolution of metabolism in Atlantic salmon, both as a consequence of targeted breeding for fast growth, and as an unintended consequence of adapting to modern aquaculture feed. To further understand causal links between genotype and regulation of metabolism in domesticated salmon, future studies should integrate analyses that shed light on the genomic signatures of domestication selection.

ACKNOWLEDGEMENTS

This study was approved by the Norwegian Food Safety Authority (Case No. 16/10070). The design and running of the experiment were supported by nonspecific grants from the Department of Biology, Norwegian University of Science and Technology (NTNU). The domesticated salmon eggs were kindly provided by AquaGen AS with assistance from Dr Maren Mommsens. The wild salmon eggs were purchased from Haukvik Smolt AS (Vinjeøra, Norway) with assistance from Bjørn Bjørø. The RNA-seq and data analysis were financed by the Research Council of Norway (GenoSysFat, grant no. 244164) and (DigiSal, grant no. 248792). The sequencing service was provided by the Norwegian Sequencing Centre, a national technology platform hosted by the University of Oslo. The herring roe used in the PL diet was kindly provided by Erik Løvaas from Marine BioExploitation AS. We would also like to thank Jostein Ervik for rearing the fish and Eleni Nikouli and Mahsa Jalili for help with sampling. Thanks to Torfinn Sparstad, Signe Dille Løvmo, Hanne Hellerud Hansen and Centre for Integrative Genetics (CIGENE) for RNA-seq sample preparation. Thanks to Dr Gareth Gillard for preprocessing the RNA-seq data, mapping reads to the salmon genome and acquiring read counts. We also thank the China Scholarship Council for providing financial support to Y.J. for his PhD study.

AUTHOR CONTRIBUTIONS

Y.J., Y.O., R.E.O., S.R.S. and O.V. designed and performed the research. Y.J. and T.N.H. performed the transcriptomic analysis. Y.J. and K.L. performed the lipid and fatty acid analysis. J.O.V. and S.R.S. guided the transcriptomic analysis and revised the manuscript. Y.O. and R.E.O. guided the lipid analysis and revised the manuscript.
M.-A.Ø. and N.S. provided input on the experimental design, carried out the experiment and sampling, and reviewed the manuscript. Y.J. drafted the manuscript which was proof-read by all co-authors. Additionally, Y.J., T.N.H. and S.R.S. worked together to revise the manuscript. All authors participated in the revision of the paper by providing comments and editing.

DATA AVAILABILITY STATEMENT
Supplementary files have been deposited at datadryad.org under accession: https://doi.org/10.5061/dryad.5qzbzkh33. Raw RNA-seq fastq files have been deposited into the ArrayExpress Archive under project accession no. E-MTAB-8306 (https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8306/) (Jin et al. 2019).

ORCID
Yang Jin https://orcid.org/0000-0001-5597-8397
Jon Olav Vik https://orcid.org/0000-0002-7778-4515
Simen Rad Sandve https://orcid.org/0000-0003-4989-5311

REFERENCES
Bell, J. G., Ghioni, C., & Sargent, J. R. (1994). Fatty acid compositions of 10 freshwater invertebrates which are natural food organisms of Atlantic salmon parr (Salmo salar): A comparison with commercial diets. Aquaculture, 128(3), 301–313. https://doi.org/10.1016/0044-8486(94)90319-0
Betancor, M. B., McStay, E., Minghetti, M., Migaud, H., Tocher, D. R., & Davie, A. (2014). Daily rhythms in expression of genes of hepatic lipid metabolism in Atlantic salmon (Salmo salar L.). PLoS ONE, 9(9), e106739. https://doi.org/10.1371/journal.pone.0106739
Bicskei, B., Bron, J. E., Glover, K. A., & Taggart, J. B. (2014). A comparison of gene expression profiles of domesticated and wild Atlantic salmon (Salmo salar L.) at early life stages, reared under controlled conditions. BMC Genomics, 15(1), 884. https://doi.org/10.1186/1471-2164-15-884
Bou, M., Berge, G. M., Baeverfjord, G., Sigholt, T., Ostbye, T. K., Romarheim, O. H., ... Ruyter, B. (2017). Requirements of n-3 very long-chain PUFA in Atlantic salmon (Salmo salar L): Effects of different dietary levels of EPA and DHA on fish performance and tissue composition and integrity. British Journal of Nutrition, 117(1), 30–47. https://doi.org/10.1017/S0007114516004396
Cahu, C. L., Giribet, E., Villeneuve, L. A. N., Morais, S., Hamza, N., Wold, P. A., & Infante, J. L. Z. (2008). Influence of dietary phospholipids on early ontogeny of fish. Aquaculture Research, 40(9), 989–999. https://doi.org/10.1111/j.1365-2124.2009.02190.x
Christie, W. W. (1973). Lipid analysis (vol 87). Oxford, UK: Pergamon Press.
Clarkson, M., Migaud, H., Metochis, C., Vera, L. M., Leeming, D., Tocher, D. R., & Taylor, J. F. (2017). Early nutritional intervention can improve utilisation of vegetable-based diets in diploid and triploid Atlantic salmon (Salmo salar L). British Journal of Nutrition, 118(1), 17–29. https://doi.org/10.1017/S0007114517001842
Datsomor, A. K. Z., Zic, N., Li, K., Olsen, R. E., Jin, Y., Vik, J. O., ... Winge, P. (2019). CRISPR/Cas9-mediated ablation of elov2 in Atlantic salmon (Salmo salar L.) inhibits elongation of polyunsaturated fatty acids and induces Srebp-1 and target genes. Scientific Reports, 9(1), 7533. https://doi.org/10.1038/s41598-019-43862-8
Jackson, S., & Diamond, J. (1996). Metabolic and digestive responses to artificial selection in chickens. Evolution, 50(4), 1638–1650. https://doi.org/10.1111/j.1558-5646.1996.tb03936.x
Jedlicka, P., & Gutierrez-Hartmann, A. (2008). Ets transcription factors in intestinal morphogenesis, homeostasis and disease. Histology and Histopathology, 23(11), 1417–1424. https://doi.org/10.14670/HH-23.1417
Jin, Y., Olsen, R. E., Harvey, T. N., Østensen, M.-A., Li, K., Santi, N., ... Olsen, Y. (2019). RNAseq of farmed and wild Atlantic salmon fed vegetable oil or fish oil or phospholipid diet from first feeding; ArrayExpress; https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-8306/
Jin, Y., Olsen, R. E., Østensen, M.-A., Gillard, G. B., Korsvoll, S. A., Santi, N., ... Olsen, Y. (2018). Transcriptional development of phospholipid and lipoprotein metabolism in different intestinal regions of Atlantic salmon (Salmo salar) fry. BMC Genomics, 19(1), 253. https://doi.org/10.1186/s12864-018-4651-8
Jones, J. R., Barrick, C., Kim, K.-A., Lindner, J., Blondeau, B., Fujimoto, Y., ... Magnuson, M. A. (2005). Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 102(17), 6207–6212. https://doi.org/10.1073/pnas.0306743102
Kanki, Y., Nakaki, R., Shimamura, T., Matsunaga, T., Yamamizu, K., Katayama, S., ... Minami, T. (2017). Dynamically and epigenetically coordinated GATA/ETS/SOX transcription factor expression is dispensable for endodermal cell differentiation. Nucleic Acids Research, 45(8), 4344–4358. https://doi.org/10.1093/nar/gkx159
Kliwer, S. A., Sundseth, S. S., Jones, S. A., Brown, P. J., Wisely, G. B., Koble, C. S., ... Lehmann, J. M. (1997). Fatty acids and eicosanoids regulate gene expression through direct interactions with peroxisome proliferator-activated receptors α and γ. Proceedings of the National
Kraemer, F. B., & Shen, W. J. (2002). Hormone-sensitive lipase: Control of intracellular tri-(di-)acylglycerol and cholesterol ester hydrolysis. *Journal of Lipid Research*, 43(10), 1585–1594. https://doi.org/10.1194/jlr.R200099-JLR200

Lebenthal, A., & Lebenthal, E. (1999). The ontogeny of the small intestinal epithelium. *Journal of Parenteral and Enteral Nutrition*, 23(5S), 53–56. https://doi.org/10.1177/014860709902300502

Li, K. S., & Olsen, R. E. (2017). Metabolism of sn-1(3)-monoaaclylglycerol and sn-2-monoacylglycerol in caecal enterocytes and hepatocytes of Brown Trout (*Salmo trutta*). *Lipids*, 52(1), 61–71. https://doi.org/10.1017/s1174-0166-20-0125-0

Li, M., Tian, S., Jin, L., Zhou, G., Li, Y., Zhang, Y., ..., Li, R. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. *Nature Genetics*, 45(12), 1431-1438. https://doi.org/10.1038/ng.2811

López, M. E., Benestan, L., Moore, J.-S., Perrier, C., Gilbey, J., Di Genova, A., ..., Yáñez, J. M. (2019). Comparing genomic signatures of domestication in two Atlantic Salmon (*Salmo salar* L.), populations with different geographical origins. *Evolutionary Applications*, 12(1), 137–156. https://doi.org/10.1111/eva.12689

Lowrey, P. L., & Takahashi, J. S. (2000). Genetics of the mammalian circadian system: Photic entrainment, circadian pacemaker mechanisms, and posttranslational regulation. *Annual Review of Genetics*, 34(1), 533–562. https://doi.org/10.1146/annurev.genet.34.1.533

Mueller, P., & Diamond, J. (2001). Metabolic rate and environmental productivity: Well-provisioned animals evolved to run and idle fast. *Proceedings of the National Academy of Sciences*, 98(22), 12550–12554. https://doi.org/10.1073/pnas.221456968

Mulugeta, T. D., Nome, T., To, T.-H., Gundappa, M. K., Macqueen, D. J., Våge, D. I., ..., Hvidsten, T. R. (2019). SalMotIFDB: A tool for analyzing putative transcription factor binding sites in salmonid genomes. *BMC Genomics*, 20(1), 694. https://doi.org/10.1186/s12864-019-6051-0

Olsen, R. E., & Henderson, R. J. (1989). The rapid analysis of neutral and lipid droplet accumulation of rainbow trout, *Oncorhynchus mykiss* Walbaum. *Aquaculture*, 81, 173–184. https://doi.org/10.1016/0044-8669(89)90056-7

Olsen, R. E., Tore Dragnes, B., Myklebust, R., & Ringø, E. (2003). Effect of putative transcription factor binding sites in salmonid genomic sequences reveal a role for phospholipids in nutrition and metabolism of teleost fish. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids*, 1821(5), 762–769. https://doi.org/10.1016/j.bbalip.2005.02.030

Otis, J. P., Zeituni, E. M., Thierer, J. H., Anderson, J. L., Brown, A. C., Rudic, R. D., McNamara, P., Curtis, A.-M., Boston, R. C., Panda, S., Hogenesch, J. B., & FitzGerald, G. A. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. *PLoS Biology*, 2(11), e377. https://doi.org/10.1371/journal.pbio.0020377

Powell, J., White, I., Guy, D., & Brotherstone, S. (2008). Genetic parameters of production traits in Atlantic salmon (*Salmo salar*). *Aquaculture*, 274(2), 225–231. https://doi.org/10.1016/j.aquaculture.2007.11.036

Prenter, N., Damiola, F., Lopez, M., Zakany, J., Duboule, D., Albrecht, U., & Schibler, U. (2002). The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. *Cell*, 110(2), 251–260. https://doi.org/10.1016/S0092-8674(02)00825-5

Quinton, C. D., McMillan, I., & Glebe, B. D. (2005). Development of an Atlantic salmon (*Salmo salar*) genetic improvement program: Genetic parameters of harvest body weight and carcass quality traits estimated with animal models. *Aquaculture*, 247(1), 211–217. https://doi.org/10.1016/j.aquaculture.2005.02.030

Quir ngoại, A. D., & Lehner, R. (2012). Liver triacylglycerol lipases. *Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids*, 1821(5), 762–769. https://doi.org/10.1016/j.bbalip.2011.09.007

R Core Team (2013). *R: A language and environment for statistical computing*. Vienna, Austria: R Foundation for Statistical Computing.

Reid, D., Armstrong, J. D., & Metcalfe, N. B. (2012). The performance advantage of a high resting metabolic rate in juvenile salmon is habitat dependent. *Journal of Animal Ecology*, 81(4), 868–875. https://doi.org/10.1111/j.1365-2666.2012.01969.x

Renkawitz, M. D., & Sheehan, T. F. (2011). Feeding ecology of early marine phase Atlantic salmon *Salmo salar* post-smolts. *Journal of Fish Biology*, 79(2), 356–373. https://doi.org/10.1111/j.1095-8649.2011.03020.x

Robinson, M. D., McCarthy, D. J., & Smyth, G. K. (2010). edgedR: A Biocendor package for differential expression analysis of digital gene expression data. *Bioinformatics*, 26(1), 139–140. https://doi.org/10.1093/bioinformatics/btp616

Rudic, R. D., McNamara, P., Curtis, A.-M., Boston, R. C., Panda, S., Hogenesch, J. B., & FitzGerald, G. A. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. *PLoS Biology*, 2(11), e377. https://doi.org/10.1371/journal.pbio.0020377

Sargent, J. R., Tocher, D. R., & Bell, J. G. (2002). The lipids. *Fish Nutrition*, 3, 181–271.

Shroyer, N. F., Helmrath, M. A., Wang, V. Y., Antalfy, B., Henning, S. J., & Zoghbi, H. Y. (2007). Intestine-specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. *Gastroenterology*, 132(7), 2478–2488. https://doi.org/10.1053/j.gastro.2007.03.047

Stubhaug, I., Tocher, D. R., Bell, J. G., Dick, J. R., & Torstensen, B. E. J. B. (2005). Fatty acid metabolism in Atlantic salmon (*Salmo salar*) hepatocytes and influence of dietary vegetable oil. *Biochimica et Biophysica Acta*, 1734(3), 277–288.

Takahashi, J. S. (2015). Molecular components of the circadian clock in mammals. *Diabetes, Obesity and Metabolism*, 17(Suppl 1), 6–11. https://doi.org/10.1111/dom.12514

Taylor, J. F., Martinez-Rubio, L., del Pozo, J., Walton, J. M., Tinch, A. E., Migaud, H., & Tocher, D. R. (2015). Influence of dietary phospholipid on early development and performance of Atlantic salmon (*Salmo salar*). *Aquaculture*, 448, 262–272. https://doi.org/10.1016/j.aquaculture.2015.06.012

Thodesen, J., Grisdale-Helland, B., Helland, S. J., & Gjerde, B. (1999). Feed intake, growth and feed utilization of offspring from wild and selected Atlantic salmon (*Salmo salar*). *Aquaculture*, 180(3), 237–246. https://doi.org/10.1016/S0044-8486(99)00204-5

Tocher, D. R., Bendiksen, E. A., Campbell, P. J., & Bell, J. G. (2008). The role of phospholipids in nutrition and metabolism of teleost fish. *Aquaculture*, 280(1–4), 21–34. https://doi.org/10.1016/j.aquaculture.2008.04.034

Tocher, D. R., & Glencross, B. D. (2015). Lipids and fatty acids. In C. S. Lee, C. Lim, D. M. Gatlin, & C. D. Webster (Eds.), *Dietary nutrients, additves, and fish health* (pp. 47–94). Hoboken, NJ: John Wiley & Sons.
Tontonoz, P., Hu, E., & Spiegelman, B. M. (1994). Stimulation of adipogenesis in fibroblasts by PPARγ2, a lipid-activated transcription factor. *Cell*, 79(7), 1147–1156. https://doi.org/10.1016/0092-8674(94)90006-X

Toth, P. P., Barter, P. J., Rosenson, R. S., Boden, W. E., Chapman, M. J., Cuchel, M., ... Rader, D. J. (2013). High-density lipoproteins: A consensus statement from the National Lipid Association. *Journal of Clinical Lipidology*, 7(5), 484–525. https://doi.org/10.1016/j.jacl.2013.08.001

Tymchuk, W., Sakhrani, D., & Devlin, R. (2009). Domestication causes large-scale effects on gene expression in rainbow trout: Analysis of muscle, liver and brain transcriptomes. *General and Comparative Endocrinology*, 164(2), 175–183. https://doi.org/10.1016/j.ygcen.2009.05.015

Van Dyck, F., Braem, C. V., Chen, Z., Declercq, J., Deckers, R., Kim, B.-M., ... Shivdasani, R. A. (2007). Loss of the PlagL2 transcription factor affects luteal uptake of chylomicrons. *Cell Metabolism*, 6(5), 406–413. https://doi.org/10.1016/j.cmet.2007.09.010

Vera, L. M., Metochis, C., Taylor, J. F., Clarkson, M., Skjærven, K. H., Migaud, H., & Tocher, D. R. (2017). Early nutritional programming affects liver transcriptome in diploid and triploid Atlantic salmon, *Salmo salar*. *BMC Genomics*, 18(1), 886. https://doi.org/10.1186/s12864-017-4264-7

Zeder, M. A. (2015). Core questions in domestication research. *Proceedings of the National Academy of Sciences*, 112(11), 3191–3198. https://doi.org/10.1073/pnas.1501711112

Zeng, L., Ming, C., Li, Y., Su, L.-Y., Su, Y.-H., Otecko, N. O., ... Zhang, Y.-P. (2017). Rapid evolution of genes involved in learning and energy metabolism for domestication of the laboratory rat. *Molecular Biology and Evolution*, 34(12), 3148–3153. https://doi.org/10.1093/molbev/msx238

Zheng, X., Tocher, D. R., Dickson, C. A., Bell, J. G., & Teale, A. J. J. A. (2004). Effects of diets containing vegetable oil on expression of genes involved in highly unsaturated fatty acid biosynthesis in liver of Atlantic salmon (*Salmo salar*). *Aquaculture*, 236(1-4), 467–483. https://doi.org/10.1016/j.aquaculture.2004.02.003

How to cite this article: Jin Y, Olsen RE, Harvey TN, et al. Comparative transcriptomics reveals domestication-associated features of Atlantic salmon lipid metabolism. *Mol Ecol*. 2020;29:1860–1872. https://doi.org/10.1111/mec.15446