Supplementary Materials

Addressing the dichotomy of fishing and climate in fishery management with the FishClim model

Grégory Beaugrand1*, Alexis Balembois1, Loïck Kléparski1,3, Richard R Kirby4,5

1 Univ. Littoral Côte d’Opale, CNRS, Univ. Lille, UMR 8187 LOG, F-62930 Wimereux, France
3 Marine Biological Association, Citadel Hill, Plymouth PL1 2PB, United Kingdom
4 The Secchi Disk Foundation, Kiln Cottage, Gnaton, Yealmpton, Devon PL8 2HU, United Kingdom
5 Ronin Institute, Montclair, NJ 07043, USA
*Corresponding author: gregory.beaugrand@univ-lille.fr

Supplementary Text 1. Climate projection data

CNRM-ESM2-1:
Seferian, Roland (2018). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 CMIP historical. Version 2018-07-14. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4068

Voldoire, Aurore (2019). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP ssp245. Version 2018-10-26. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4191

Voldoire, Aurore (2019). CNRM-CERFACS CNRM-ESM2-1 model output prepared for CMIP6 ScenarioMIP ssp585. Version 2019-09-24. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.4226

GFDL-ESM4:
Krasting, John P.; John, Jasmin G; Blanton, Chris; McHugh, Colleen; Nikonov, Serguei; Radhakrishnan, Aparna; Rand, Kristopher; Zadeh, Niki T.; Balaji, V; Durachta, Jeff; Dupuis, Christopher; Menzel, Raymond; Robinson, Thomas; Underwood, Seth; Vahlenkamp, Hans; Dunne, Krista A.; Gauthier, Paul PG; Ginoux, Paul; Griffies, Stephen M.; Hallberg, Robert; Harrison, Matthew; Hurlin, William; Malysh, Sergey; Naik, Vaishali; Paulot, Fabien; Paynter, David J; Ploshay, Jeffrey; Reichl, Brandon G; Schwarzkopf, Daniel M; Seman, Charles J; Silvers, Levi; Wyman, Bruce; Zeng, Yujin; Adcroft, Alistair; Dunne, John P.; Dussin, Raphael; Guo, Huan; He, Jian; Held, Isaac M; Horowitz, Larry W.; Lin, Pu; Milly, P.C.D; Shevliakova, Elena; Stock, Charles; Winton, Michael; Wittenberg, Andrew T.; Xie, Yuanyu; Zhao,
Ming (2018). *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 CMIP historical*. Version 2019-08-03. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8597

John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshov, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin (2018). *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp245*. Version 2019-06-17. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8686

John, Jasmin G; Blanton, Chris; McHugh, Colleen; Radhakrishnan, Aparna; Rand, Kristopher; Vahlenkamp, Hans; Wilson, Chandin; Zadeh, Niki T.; Dunne, John P.; Dussin, Raphael; Horowitz, Larry W.; Krasting, John P.; Lin, Pu; Malyshov, Sergey; Naik, Vaishali; Ploshay, Jeffrey; Shevliakova, Elena; Silvers, Levi; Stock, Charles; Winton, Michael; Zeng, Yujin (2018). *NOAA-GFDL GFDL-ESM4 model output prepared for CMIP6 ScenarioMIP ssp585*. Version 2019-06-18. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.8706

IPSL-CM6A-LR:

Boucher, Olivier; Denvil, Sébastien; Levasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Ghil, Josephine; Lebas, Nicolas; Lurton, Thibaut; Mellul, Lidia; Musat, Ionela; Mignot, Juliette; Cheruy, Frédérique (2018). *IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP historical*. Version 2018-07-11. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5195

Boucher, Olivier; Denvil, Sébastien; Levasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Dupont, Eliott; Lurton, Thibaut (2019). *IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp245*. Version 2018-12-05. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5264

Boucher, Olivier; Denvil, Sébastien; Levasseur, Guillaume; Cozic, Anne; Caubel, Arnaud; Foujols, Marie-Alice; Meurdesoif, Yann; Cadule, Patricia; Devilliers, Marion; Dupont, Eliott; Lurton, Thibaut (2019). *IPSL IPSL-CM6A-LR model output prepared for CMIP6 ScenarioMIP ssp585*. Version 2018-12-18. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.5271

UKESM1-0-LL:

Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Mulcahy, Jane; Sellar, Alistair; Walton, Jeremy; Jones, Colin (2019). *MOHC UKESM1.0-LL model output prepared for CMIP6 CMIP historical*. Version 2019-11-04. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6113

Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till (2019). *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp245*. Version 2019-11-04. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6339

Good, Peter; Sellar, Alistair; Tang, Yongming; Rumbold, Steve; Ellis, Rich; Kelley, Douglas; Kuhlbrodt, Till (2019). *MOHC UKESM1.0-LL model output prepared for CMIP6 ScenarioMIP ssp585*. Version 2019-11-04. Earth System Grid Federation. https://doi.org/10.22033/ESGF/CMIP6.6405
Supplementary Figures

Supplementary Figure 1. Shape of the different types of niches used in our model to assess maximum standardised SSB (i.e. K).

- **a.** Gaussian asymmetrical thermal niche.
- **b.** Trapezoidal asymmetrical bathymetric niche.
- **c.** Rectangular trophic niche with a threshold of chlorophyll higher or equal to 0.05 mg.m$^{-3}$. Then an average of the number of days above the threshold was calculated 15 days prior to the target day for each day of the period 1850-2100, or 1850-2300 in the case of the IPSL ESM for scenario SSP 585. The three niches were then combined together by multiplying them at a daily scale. Then an annual average was calculated by using the time period March to October, which is a key period for marine production in the North Sea.

Supplementary Figure 2. Histogram of the number of geographical cells with a cod occurrence as a function of sea surface temperature (blue bar) from Beaugrand and colleagues and the thermal response curve chosen in this study (red).

Supplementary Figure 3. Procedure used to determine the standardisation of ICES SSB. Standardisation of ICES Spawning Stock Biomass (SSB) should be at or below any point of the maximum dSSB (blue line). A number of standardisations was attempted (black thin curves) and we retained the one (red thick curve) that maximised correlation between fishing intensity α and ICES fishing effort F (see Fig 1.e).
Supplementary Figure 1

(a) Thermal niche

(b) Bathymetric niche

(c) Trophic niche

- Blue line: [Chlorophyll] >= 0.05 mg/m³
- Red line: [Chlorophyll] < 0.05 mg/m³
Supplementary Figure 3