The canary *Serinus canaria* (Passeriformes: Fringillidae) as a new host for *Isospora bioccai* in Mexico

L.P. Luna-Castrejóna, L. Ravines-Carrascob, C. Salgado-Mirandaa, E. Soriano-Vargasb,∗

a Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico

b P’isqu. Medicina Especializada en Aves de Compañía y Silvestres. Toluca, 50000, Mexico

ARTICLE INFO

Keywords:
Isospora bioccai
Coccidia
Passeriformes
Fringillidae
Serinus canaria
México

ABSTRACT

Isospora bioccai (Cringoli and Quesada 1991) (Protozoa, Apicomplexa, Eimeriidae) is reported and described from captive canaries *Serinus canaria* forma *domestica* (Linnaeus 1758) in Mexico. The oöcysts are subspherical, 25.5 × 23.5 μm, with smooth, bilayered wall, ∼1.3 μm thick. Micropyle absent, oöcyst residuum absent, and polar granule present, 4–8 rice-grain-shaped. Sporocysts are ovoidal, 16.7 × 10.5 μm. Stieda body knob-like and substieda body trapezoidal of irregular base. Sporocyst residuum is composed of granules of different sizes. Sporozoites are vermiform with one refractile body and a nucleus. Gamogony was seen in the duodenum. In addition to new locality, this is the first description of *I. bioccai* from *S. canaria*.

1. Introduction

Serinus (canaries) is a genus of finches belonging to the Fringillidae family of birds, mostly confined to Africa and the Mediterranean Basin (Arnaiz-Villena et al., 1999). Particularly, *S. canaria* (Linnaeus 1758) is native from the Canary Island and now is widely kept in captivity in most areas of the world (IUCN, 2017). In Mexico, canaries *S. canaria* are available at pet shops and through bird traders, called pajarreros, which is a local name given to the trade (derived from pájaro, the Spanish word for bird) (Roldán-Clará et al., 2017). The aim of this study was the description of *I. bioccai* from *S. canaria* in Mexico.

![Oöcyst of Isospora bioccai. A & B. Photomicrographs. Scale-bar: 10 μm.](https://doi.org/10.1016/j.ijppaw.2018.11.004)
Table 1
Comparative morphology of *Isospora* sp. recorded from Fringillidae.

Host	*Carduelis atrata* (La Fresnaye & D'Orbigny)	*Carduelis carduelis* (L.)	*Carduelis tristis* (L.)	*Carduelis chloris* (L.)		
Species	*I. atrata* Rossiet al. (1996)	*I. carduelis* Gottschalk (1969)	*I. lacazei* Labbé (1893)	*I. gryphoni* Olson et al. (1998)	*I. chloris* Anwar (1966)	*I. daszaki* Ball et al. (2012)
Locality	Italy (imported from Peru, Bolivia, and Argentina)	Germany	England, Spain	Canada	England, Spain	England
Reference	Rossiet al. (1996)	Gottschalk (1969)	Anwar (1966); Romero-Rodriguez (1973)	Olson et al. (1998)	Anwar (1966)	Ball et al. (2012)
Oöcyst						
Shape	spherical or sub spherical	sub spherical	sub spherical	spherical to sub spherical	ellipsoidal	spherical to sub spherical
Wall	bi-layered	bi-layered	one-layered	bi-layered	bi-layered	bi-layered
Length	19.4–23.5 (21.0)	24.69–30.94 (28.19)	20.30–34.0 (26.8)	28.0–34.0 (30.7)	17.3–33.2 (25.4)	16.8–25.2 (20.3)
Width	18.5–22.0 (20.3)	20.94–26.25 (23.88)	18.0–30.0 (24.5)	25.0–33.0 (29.2)	16.6–30.0 (22.3)	16.8–22.4 (18.8)
Length/Width ratio	1.0–1.06 (1.03)	1.0–1.5 (1.1)	1.05	1.08	1.07–1.1 (1.08)	
Polar granule	+, (rarely 2), oval	+	+, 1 to 3 splinter-like	2–4 rice-grain-shaped	+, 2 or more ovoidal	–
Oöcyst residuum	–	–	–	–	–	–
Sporocyst						
Shape	ovoid	ellipsoidal	ovoid	pyriform	pyriform	
Length	17.5–18.94 (18.8)	17.34	15.0–19.0	15.0–23.0 (22.2)	13.5–18.5 (15.3)	12.6–18.2 (14.8)
Width	9.5–11.0 (10.3)	11.15	9.0–12.0	12.0–14.5 (13.4)	8.3–12.2 (9.4)	8.4–11.2 (9.4)
Length/Width ratio	1.76–1.88 (1.82)	1.7	1.6	1.7	1.6	
Stieda body	flattened	present	present	small	present	opaque
Sub-Stieda body	rounded	present	compact	indistinct	present	opaque
Residuum	compact/diffuse	diffuse or compact		cluster of scattered granules	diffuse	
Chloris (Carduelis) sinica						
Prunella v. (L.)						
Linaria (Carduelis) cannabina (L.)						
Looops visetans (Gmelin)						
I. mcquistioni Cringoli and Quesada (1991)	*I. biocca* Cringoli and Quesada (1991)	*I. fringillae* Yakimoff and Gousseff (1938)	*I. atrata* Quesada and Cringoli (1990)	*I. cannabina* Quesada and Cringoli (1990)	*I. loxops* Levine et al. (1980)	
Italy	Azerbaijan	Italy	Germany	Italy	Hawaii	
Cringoli and Quesada (1991)	Cringoli and Quesada (1991)	Cringoli and Quesada (1991)			Levine et al. (1980)	
Oöcyst						
Shape	spherical to sub spherical	spherical	sub spherical	sub spherical	spherical or sub spherical	
Wall	bi-layered	bi-layered	one-layered	bi-layered	bi-layered	
Length	24.0–28.5 (26.0)	22.0–26.0 (24.0)	16.0–24.0 (21.2)	20.8–29.0 (25.1)	22.19–29.69 (26.13)	243–26.24 (26.3)
Width	20.0–23.6 (22.6)	21.0–25.8 (23.6)	1.02	18.5–22.0 (21.5)	20.94–26.56 (23.88)	232–24.3 (24.1)
Length/Width ratio	+, 1 (rarely 2 or 3)	+, 4 to 10 elongated	+	+, 1 (rarely 2) elongated	+	2.4–5 elongated
Polar granule	–	–	–	–	–	–
Sporocyst						
Shape	ellipsoidal	ovoid	ellipsoidal	ellipsoidal	ovoid	
Length	16.0–19.8 (18.1)	18.6–20.0 (19.5)	17.4–22.0 (20.9)	17.4–20.0 (19.1)	16.0–17.0 (16.0)	
Width	11.0–12.0 (11.4)	10.0–12.4 (11.6)	10.4–11.6 (10.8)	10.4–11.6 (10.8)	10.4–11.6 (11.5)	12.0–13.0 (13.0)
Length	1.59	1.68	1.93	1.66	1.66	
bottlecap-shaped	niple-like	knob-like	knob-like	knob-like	knob-like	
slightly convex base	trapezoidal	rounded	trapezoidal, irregular base			
compact	diffuse	compact			diffuse	

(continued on next page)
Host	Pyrrhula pyrrhula (L.)	Serinus canaria (L.)^b	Serinus canaria (L.)^e	Serinus serinus (L.)	Spinus thybetus (Hume)
Species	I. perronciti Carpano (1937)	I bioccai Cringoli and Quesada (1991)	I. canaria Box (1975)	I. serini Angao (1932)	I. noronti Papparella and Cringoli (1991)
Locality	Egypt	Mexico	USA, Brazil	USA	Australia
Reference	Carpano (1937)	Present study	Box (1975); Berto et al. (2013)	Box (1975); Box (1977)	Yang et al. (2015)
					Papparella and Cringoli (1991)
					Perrucci et al. (1998)
Oöcyst	sub-spherical	sub-spherical	spherical or sub-spherical	spherical to sub-spherical	spherical or sub-spherical
Shape					
Wall	bi-layered	bi-layered	one-layered	bi-layered	bi-layered
Length	15.0–25.0	24.0–27.0 (25.5)	21.0–27.0 (24.4)	13.0–23.0 (20.1)	19.7–23.2 (21.9)
Width	22.0–25.0	19.0–25.0 (23.5)	13.0–23.0 (19.2)	22.0–24.8 (23.5)	18.5–22.0 (20.0)
Length/Width ratio	1.0–1.1 (1.1)	1.0–1.2 (1.1)	1.09	1.07	1.00–1.14 (1.007)
Polar granule	–, +, 2–8 rice-grain-shaped	+, broadly bar shaped	+	+	+, 1 oval
Oöcyst residuum	–	–	–	–	–
Sporocyst					
Shape	ovoid	ellipsoidal	lemon-shaped	ellipsoidal	ellipsoidal
Width	16.0–20.0 (17.6)	13.0–16.0 (15.2)	17.8–20.2 (18.9)	ellipsoidal	ellipsoidal
Length/Width ratio	1.6–1.8 (1.7)	10.0–12.0 (10.6)	8.0–11.0 (9.4)	8.1–10.4 (9.4)	15.0–18.5 (16.1)
Stieda body	TRAPEZOIDAL, IRREGULAR BASE	PROMINENT	BARELY DISCERNIBLE	CRESCENT-SHAPED	TRAPEZOIDAL, UNDULATED LOWER PROFILE
Residuum	diffuse	CLUSTER OF SCATTERED GRANULES	DIFFUSE OR COMPACT GRANULES	LIGHT AND DARK SCATTERED GRANULES	CLUSTER OF SCATTERED GRANULES

Table 1 (continued)

- **A** Also recorded I. chloridis and I. lacazei.
- **B** Also recorded in *Passer domesticus* (L.).
- **C** Polar granule: +, present; -, absent.
- **D** Oöcyst residuum: +, present; -, absent.
- **E** Also recorded I. chloridis and I. lacazei.
2. Materials and methods

2.1. Bird sampling

Twelve captive canary *Serinus canaria* were investigated as part of a routine parasitology study in a pet shop at Toluca Valley (19°17′32″N; 99°39′14″W), Mexico. Fecals samples were placed in a plastic vial containing 2.5% potassium dichromate solution (K₂Cr₂O₇ 1:6 (v/v)) and observed in a light microscope (Duszynski and Wilber, 1997).

2.2. Microscopic analysis

To investigate the site of infection, one canary was euthanized (AVMA, 2013; NOM-033-SAG/ZOO-2014), and the following organs and tissues were collected from the bird: trachea, lungs, liver, stomach and intestines. These viscera samples were placed in a plastic vial containing 2.5% potassium dichromate solution (K₂Cr₂O₇) 1:6 (v/v) and observed in a light microscope (Duszynski and Wilber, 1997).

3. Results

Four canaries (33.3%) shed oocysts in the faeces. Initially, the oocysts were non-sporulated, but approximately 70% of the oocysts were sporulated at day two (under the conditions used in this study).

Oocyst (n = 35) were subspherical, 24.1 – 27.2 × 22.0–25.1 (25.5 × 23.5); length/width (L/W) ratio 1.0 – 1.1 (1.1). Wall bi-layered, 1.0–1.1 (1.1) thick, outer layer smooth, c. 1/3 of total thickness. Micropyle absent, oocyst residuum absent and polar granule present, 4–8 rice-grain-shaped (Fig. 1A). Sporocysts (n = 35) 2, ellipsoidal, 9.2 – 11.2 × 15.6–17.4 (10.5 × 16.7); L/W ratio 1.6 – 1.8 (1.7). Stieda body present, nipple-like, 1.1 high × 2.4 wide; sub-Stieda present, trapezoidal, irregular base, 1.8 high × 4.5 wide; para-Stieda body absent; sporocyst residuum present, consisting of scattered spherules of different sizes (Fig. 1B; Table 1). Sporozoites 4, vermiform, with single posterior refractile body and centrally located nucleus. Phototypes and line drawings of sporulated oocysts are deposited and available in the Collection of the Avian Microbiology Laboratory, Centro de Investigación y Estudios Avanzados en Salud Animal. The repository number is ESV-23/2017.

Histological examination of tissues helped detect endogenous stages in the epithelial cells of duodenum (Fig. 2). Endogenous stages develop extranuclearly in the cytoplasm of duodenal epithelial cells. Most of the endogenous stages were observed mainly into epithelial cells along the length of the villi. Meronts were surrounded by a parasitophorous vacuole (Fig. 2) (see Fig. 3).

4. Discussion

Up to now, the concept of intra-familial specificity of *Isospora* spp. of passerine birds has been maintained (Berto et al., 2011). The sporulated oocysts obtained in this study were compared in detail with coccidian parasites from other birds that belong to the same host family (Duszynski and Wilber, 1997). The morphology and morphometry of the *I. bioccai* oocysts allow differentiating it from other *Isospora* species passerines from the same family (Table 1).

Isospora bioccai was first described from Chloris [Carduelis] sinica in Italy (Cringoli and Quesada, 1991). Phylogenetic analysis of the Fringillidae, showed *C. sinica* cluster separately from congeneric species and form a distinct lineage in the *Serinus-Chloris* complex (Zuccon et al., 2012). Further morphometric and phylogenetic analysis of coccidia from Fringillidae are need (Ogedengbe et al., 2016; Yang et al., 2017). In the canary *S. canaria* have been identified following *Isospora* species: *I. canaria* in USA and Brazil (Box, 1975; Berto et al., 2013), *I. chloridis* in England and Spain (Anwar, 1966; Romero Rodriguez, 1973), *I. lacazei* in England and Spain (Anwar, 1966; Romero Rodriguez, 1973), *I. serini* and *Wilber (1997)* and *Berto et al. (2014)*, were made using a Nikon Eclipse 80i microscope coupled to a digital camera Nikon DS-Fi2.
in USA (Box, 1975, 1977), and I. serinuse in Australia (Yang et al., 2015). Unidentified species of coccidia have been reported in captive canary S. canaria in Brazil, (de Freitas et al., 2003; Lima et al., 2017). Similarly, unidentified species of coccidia have been identified in other Fringillidae (Svobodová, 1994; Brown et al., 2010). In addition to new locality, this is the first description of I. bioccai from S. canaria. Fringillidae birds were one of the most common avian families in reported international trade (Bush et al., 2013). In the State of Mexico where Toluca Valley is located, Fringillidae (C. notata, C. psaltria and S. canaria) were one of the most frequent birds reported in bird markets (Álvarez et al., 2005). We speculate bird trade as the origin of I. bioccai infection in S. canaria.

Declarations of interests

None.

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable national and international guidelines for the care and use of animals were followed (NOM-033-SAG/ZO0-2014; AVMA, 2013).

Funding information

This study was supported by Universidad Autónoma del Estado de México, project UAEM 4328/2017/Ci.

Acknowledgements

We gratefully acknowledge the critical reading of this manuscript by Dr. Giuseppe Cringoli, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Italy.

References

Álvarez, G.G., Solano, C.T., Gómez, S.R.R., Arúa, R.V., 2005. Pájaros y otras aves utilizados como animales de ornato y compañía. AMMVEPE 16, 129–139.

Anwar, M., 1966. Isospora lacazei (Labbé, 1893) and I. chloridis sp. n. (Protozoa: Eimeriidae) from the English sparrows (Passer domesticus), greenfinch (Chloris chloris) and chiffinch (Fringilla coelebs). J. Protozool. 13, 84–96.

Arnáiz-Villena, A., Álvarez-Tejado, M., Ruiz-del-Valle, V., García-de-la-Torre, C., Varela, P., Recio, M.J., Ferre, S., Martínez-Laso, J., 1999. Rapid radiation of canaries (genus Serinus). Mol. Biol. Evol. 16, 2–11.

AVMA (American Veterinary Medical Association), 2013. AVMA Guidelines for the Euthanasia of Animals. Cited 11 April, 2018. https://www.avma.org/KB/Policies/Documents/euthanasia.pdf.

Ball, S.J., Brown, M.A., Snow, K.R., 2012. A new species of Isospora (Apicomplexa: Eimeriidae) from the greenfinch Carduelis chloris (Passeriformes: Fringillidae). Parasitol. Res. 111, 1463–1466.

Berto, B.P., Ferreira, I., Fausino, W., Teixeira-Filho, W.L., Lopes, C.W.G., 2013. Isospora canaria Box, 1975 (Apicomplexa: Eimeriidae) from canaries Serinus canaria Linnaeus (Passeriformes: Fringillidae) in Brazil. Syst. Parasitol. 85, 49–53.

Berto, B.P., Fausino, W., McIntosh, D., Lopes, C.W.G., 2011. Coccidia of new world passerine birds (aves: Passeriformes): a review of Eimeria Schneider, 1875 and Isospora Schneider, 1881 (Apicomplexa: Eimeriidae). Syst. Parasitol. 80, 159–204.

Berto, B.P., McIntosh, D., Lopes, C.W.G., 2014. Studies on coccidian oocysts (Apicomplexa: Eucoccidioridae). Rev. Bras. Parasitol. Vet. 23, 1–15.

Box, E.D., 1975. Exogenous stages of Isospora serinuse (Aragois) and Isospora canaria sp. n. in the canary (Serinus canaria Linnaeus). J. Protozool. 22, 165–169.

Box, E.D., 1977. Life cycles of two Isospora species in the canary Serinus canaria Linnaeus. J. Protozool. 24, 57–67.

Brown, M.A., Ball, S.J., Snow, K.R., 2010. Coccidian parasites of British wild birds. J. Nat. Hist. 44, 2669–2691.

Bush, E.R., Baker, S.E., Macdonald, D.W., 2013. Global trade in exotic pets 2006-2012. Conserv. Biol. 28, 663–676.

Carpano, M., 1937. Sui coccidi degli uccelli e su di una particolare Isospora osservata nelle pitture (Isospora peruccii n. sp.). Riv. Parasitol. 1, 259–269.

Crilmig, G., Quesada, A., 1990. Sudenu nuovo specie di Isospora sp. (Apicomplexa, Eimeriidae) da Serinus canarius (Linnaeus). Riv. Parasitol. 8, 65–68.

de Freitas, M.F.L., de Oliveira, J.B., de Brito Cavalcanti, M., de Freitas, D.A., 2003. Occurrence of coccidiosis in canaries (Serinus canarius) being kept in private captivity in the state of Pernambuco. Brazil. Parasitol. Latinoam. 58, 86–88.

Duignan, D.W., Wilber, P., 1997. A guideline for the preparation of species descriptions in the Eimeriidae. J. Parasitol. 83, 333–336.

Gottschalk, V.C., 1969. Kokzidien aus Thüringen und der Oberlausitz. Angew. Parasitol. 10, 229–233.

Gottschalk, V.C., 1972. Beitrag zur Faunistik der Vogelkokzidien Thürings und Sachsens. Beitr. Vogelkd. 18, 61–69.

IUCN (International Union for Conservation of Nature), 2017. International Union for Conservation of Nature and Natural Resources. http://www.iucnredlist.org.

Levine, N.D., van Riper, S., van Riper III, C., 1980. Five new species of Isospora from Hawaiian birds. J. Protozool. 27, 258–259.

Lima, V.F.S., Bezerra, T.L., de Andrade, A.F., Ramos, R.A.N., Faustino, M.A.G., Alves, L.C., Meira-Santos, P.O., 2017. Gastrointestinal parasites of exotic birds living in captivity in the state of Sergipe, Northeastern Brazil. Braz. J. Vet. Parasitol. 26, 96–99.

Lima et al., 2017. Occurrence of coccidiosis in serinus (Canaries) being kept in private captivity in the state of Pernambuco, Brazil. Parasitol. Latinoam. 58, 86–88.

Ogedengbe, M.E., Brash, M., Barta, J.R., 2016. The complete mitochondrial genome sequence of an Isospora sp. (Eimeriidae, Eucoccidioridae, Coccidiasina, Apicomplexa) causing systemic coccidiosis in domestic Canaries (Serinus canarius Linnaeus.). Mitochondrial DNA 27, 3315–3317.

Olson, V.A., Gissing, G.J., Barta, J.R., Millett, A.L.A., 1998. A new Isospora sp. from Carduelis tristis (aves: Fringillidae) from Ontario, Canada. J. Parasitol. 84, 153–156.

Papparella, V., Grinol, G., 1991. Isospora norini sp. n. (Apicomplexa: Eimeriidae) in Serina (Serina serina) (Passeriformes: Fringillidae). Riv. Parasitol. 8, 65–68.

Berti, B.P., Ferreira, I., Fausino, W., Teixeira-Filho, W.L., Lopes, C.W.G., 2013. Isospora canaria Box, 1975 (Apicomplexa: Eimeriidae) from canaries Serinus canaria Linnaeus (Passeriformes: Fringillidae) in Brazil. Syst. Parasitol. 85, 49–53.

Berto, B.P., Fausino, W., McIntosh, D., Lopes, C.W.G., 2011. Coccidia of new world passerine birds (aves: Passeriformes): a review of Eimeria Schneider, 1875 and Isospora Schneider, 1881 (Apicomplexa: Eimeriidae). Syst. Parasitol. 80, 159–204.