THE TOPOLOGICAL TYPE OF SPACES CONSISTING OF CERTAIN METRICS ON LOCALLY COMPACT METRIZABLE SPACES WITH THE COMPACT-OPEN TOPOLOGY

KATSUHISA KOSHINO

Abstract. For a separable locally compact but not compact metrizable space X, let $\alpha X = X \cup \{x_\infty\}$ be the one-point compactification with the point at infinity x_∞. We denote by $EM(X)$ the space consisting of admissible metrics on X, which can be extended to an admissible metric on αX, endowed with the compact-open topology. Let $c_0 \subset (0, 1)^\mathbb{N}$ be the space of sequences converging to 0. In this paper, we shall show that if X is separable, locally connected and locally compact but not compact, and there exists a sequence $\{C_i\}$ of connected sets in X such that for all positive integers $i, j \in \mathbb{N}$ with $|i - j| \leq 1$, $C_i \cap C_j \neq \emptyset$, and for each compact set $K \subset X$, there is a positive integer $i(K) \in \mathbb{N}$ such that for any $i \geq i(K), C_i \subset X \setminus K$, then $EM(X)$ is homeomorphic to c_0.

1. Introduction

Throughout this paper, spaces are separable metrizable, maps are continuous, but functions are not necessarily continuous. Let \mathbb{R} be the space of real numbers with the usual metric, \mathbb{N} be the set of positive integers, and X be a locally compact space. We denote by $C(X^2)$ the space of continuous real-valued functions on X^2 equipped with the compact-open topology. In the case that X is locally connected, $C(X^2)$ is a Fréchet space. Let $PM(X), M(X)$ and $AM(X)$ be the spaces of continuous pseudometrics, continuous metrics and admissible metrics on X with the relative topology of $C(X^2)$, respectively. As is easily observed, $PM(X)$ is a convex non-negative cone, and $M(X)$ and $AM(X)$ are convex positive cones in $C(X^2)$. Recall that $M(X) = AM(X)$ when X is compact. However, they are not necessarily coincident in general.

Example 1. On the half open interval $[0, 1)$ topologized by the usual metric, define a continuous metric d as follows:

$$d(x, y) = \min\{|x - y|, 1 + x - y, 1 - x + y\}$$

for all $x, y \in [0, 1)$. Then d is not admissible.

If X is not compact, then it has the one-point compactification $\alpha X = X \cup \{x_\infty\}$ with the point at infinity x_∞ topologized by the following collection

$$\{U, (X \setminus K) \cup \{x_\infty\} \mid U \text{ is open in } X, K \text{ is compact in } X\}.$$

In the paper, we shall investigate the topological type of the following subspace of $AM(X)$:

$$EM(X) = \{d \in AM(X) \mid d \text{ can be extended to an admissible metric on } \alpha X\}.$$
Topologies of function spaces have been studied in the theory of infinite-dimensional topology. We denote the Hilbert cube by Q^2.

Let
\[
c_0 = \left\{ (x(n))_{n \in \mathbb{N}} \in s \mid \lim_{n \to \infty} x(n) = 0 \right\},
\]
that is homeomorphic to several function spaces, refer to [13, 5, 15, 14, 8]. We will establish the following:

Main Theorem. Let X be a locally connected but not compact space. If there is a sequence $\{C_i\}$ consisting of connected sets in X such that for all $i, j \in \mathbb{N}$ with $|i - j| \leq 1$, $C_i \cap C_j \neq \emptyset$, and for each compact subset K of X, there exists $i(K) \in \mathbb{N}$ such that for every $i \geq i(K)$, $C_i \subset X \setminus K$, then $EM(X)$ is homeomorphic to c_0.

2. Preliminaries

Given spaces $A \subset Y$, denote the interior of A by $\text{int} A$ and the closure of A by $\text{cl} A$. For functions $f : Z \to Y$ and $g : Z \to Y$, and for an open cover U of Y, f is said to be U-close to g if for every $z \in Z$, there is $U \in U$ containing $f(z)$ and $g(z)$. A closed set $A \subset Y$ is a Z-set if for each open cover U of Y, there exists a map $f : Y \to Y$ such that f is U-close to the identity map and $f(Y) \cap A = \emptyset$. A Z_{σ}-set is a countable union of Z-sets. A Z-embedding is an embedding whose image is a Z-set. Given a class \mathcal{C} of spaces, we call Y to be strongly \mathcal{C}-universal if the following condition holds.

- Let A be a space in \mathcal{C} and $f : A \to Y$ be a map. Assume that B is a closed set in A and the restriction $f|_B$ is a Z-embedding. Then for each open cover U of Y, there exists a Z-embedding $g : A \to Y$ such that g is U-close to f and $g|_B = f|_B$.

Let \mathcal{C}_{σ} denote the class of spaces that are countable unions of closed subspaces belonging to \mathcal{C}. For spaces $Y \subset M$, Y is homotopy dense in M provided that M has a homotopy $h : M \times [0, 1] \to M$ such that $h(M \times (0, 1]) \subset Y$ and $h(y, 0) = y$ for any $y \in M$. A space Y is said to be a \mathcal{C}-absorbing set in M if it satisfies the following conditions.

1. $Y \in \mathcal{C}_{\sigma}$ and is homotopy dense in M.
2. Y is strongly \mathcal{C}-universal.
3. Y is contained in some Z_{σ}-set in M.

The symbol \mathcal{M}_2 stands for the class of absolute $F_{\sigma\delta}$-spaces, that is, $Y \in \mathcal{M}_2$ if Y is an $F_{\sigma\delta}$-set in any space M which contains Y. It is known that c_0 is an \mathcal{M}_2-absorbing set in s. Theorem 3.1 of [4] shows the topological uniqueness of absorbing sets in s.

Theorem 2.1. For subspaces $Y, Z \subset s$, if the both Y and Z are \mathcal{M}_2-absorbing sets in s, then Y and Z are homeomorphic.

In the paper [10], the author investigates the topological types of $PM(X)$ and $M(X)$, which are endowed with the uniform convergence topology. By the same argument as it, we can establish the following theorem.

Theorem 2.2. Let X be a locally connected space. If X is not discrete, then both $PM(X)$ and $M(X)$ are homeomorphic to s.

A sequence $\{C_i\}$ of subsets in a space Y is a simple chain if for any $i, j \in \mathbb{N}$ with $|i - j| \leq 1$, $C_i \cap C_j \neq \emptyset$. It is said that Y is chain-connected to infinity if there exists a simple chain $\{C_i\}$ of connected subsets in Y such that for every compact set $K \subset Y$, there is $i(K) \in \mathbb{N}$ such that for any $i \geq i(K)$, $C_i \subset Y \setminus K$.
For a metric space $Y = (Y, d_Y)$, a subset $A \subset Y$ and a positive number $\delta > 0$, put
\[B_{d_Y}(A, \delta) = \{ y \in Y \mid d_Y(y, A) < \delta \} \quad \text{and} \quad \overline{B}_{d_Y}(A, \delta) = \{ y \in Y \mid d_Y(y, A) \leq \delta \} . \]

When $A = \{ a \}$, we write $B_{d_Y}(a, \delta) = B_{d_Y}(\{ a \}, \delta)$ and $\overline{B}_{d_Y}(a, \delta) = \overline{B}_{d_Y}(\{ a \}, \delta)$ for simplicity. Moreover, diamY_A denotes the diameter of A. For metric spaces $Y_i = (Y_i, d_{Y_i})$, $i = 1, \cdots, n$, we will use an admissible metric $d_{\prod_{i=1}^n Y_i}$ on $\prod_{i=1}^n Y_i$ defined by
\[d_{\prod_{i=1}^n Y_i}(y_1, \cdots, y_n, z_1, \cdots, z_n) = \max_{1 \leq i \leq n} d_{Y_i}(y_i, z_i) \]
for any $(y_1, \cdots, y_n, z_1, \cdots, z_n) \in \prod_{i=1}^n Y_i$. We denote by Comp($Y$) the hyperspace consisting of non-empty compact sets in Y endowed with the Vietoris topology. Note that the topology of Comp(Y) is induced by the Hausdorff metric $\left(d_{Y} \right)_H$, that is defined as follows:
\[\left(d_{Y} \right)_H(A, B) = \inf \{ r > 0 \mid A \subset B_{d_Y}(B, r), B \subset B_{d_Y}(A, r) \} \]
for all $A, B \in \text{Comp}(Y)$, see [13 Proposition 5.12.4]. Under our assumption, we have the following proposition, refer to [13 Corollary 1.11.4 and Proposition 1.11.13]:

Proposition 2.3. If Y is a connected, locally connected and locally compact space, then so is Comp(Y).

3. The Borel complexity of $EM(X)$ in $PM(X)$

In this section, it will be shown that $EM(X) \in \mathcal{M}_2$. Since X is a separable locally compact metrizable space, we can write $X = \bigcup_{n \in \mathbb{N}} X_n$, where each X_n is compact and $X_n \subset \text{int} X_{n+1}$. For positive integers $n, m \in \mathbb{N}$, set
\[A(n, m) = \{ d \in PM(X) \mid d(X_n, X \setminus X_{n+1}) \geq 1/m \}, \]
which is closed in $PM(X)$. We shall prove the following:

Proposition 3.1. The subset $AM(X)$ is an $F_{\sigma\delta}$-set in $PM(X)$.

Proof. We can write
\[AM(X) = M(X) \cap \left(\bigcap_{n \in \mathbb{N}} \bigcup_{m \in \mathbb{N}} A(n, m) \right) . \]
Remark that $M(X)$ is G_δ in $PM(X)$, refer to the proof of [7 Lemma 5.1], and therefore $AM(X)$ is $F_{\sigma\delta}$ in $PM(X)$. \(\square \)

Since X is separable locally compact, $C(X^2)$ is completely metrizable. Hence the both closed subset $PM(X)$ and G_δ subset $M(X)$ of $C(X^2)$ are Baire spaces. Furthermore, the following holds:

Proposition 3.2. The following are equivalent:

1. X is compact;
2. $AM(X)$ is a Baire space.

Proof. If X is compact, $AM(X)$ coincides with the Baire space $M(X)$. We will prove the implication (2) \(\Rightarrow \) (1). Suppose that X is not compact. Observe that $AM(X) \subset \bigcup_{m \in \mathbb{N}} A(1, m)$. To show that every $A(1, m) \cap AM(X)$ is nowhere dense, take any admissible metric $d \in A(1, m) \cap AM(X)$ and any neighborhood U of d. We can choose $k \geq m$ so that if for any $(x, y) \in X^2_k$, $d(x, y) = \rho(x, y)$, then $\rho \in U$. Since X is not compact, we may assume that $X_k \neq \emptyset$. Moreover, $X \setminus X_{k+1}$ is not empty.
Fixing points $w \in X_k$ and $z \in X \setminus X_{k+1}$, define an admissible metric $\rho : (X_k \cup \{z\})^2 \to [0, \infty)$ on $X_k \cup \{z\}$ as follows:

$$
\rho(x, y) = \begin{cases}
 d(x, y) & \text{if } (x, y) \in X_k^2, \\
 d(x, w) + 1/(m + 1) & \text{if } x \in X_k \text{ and } y = z, \\
 d(y, w) + 1/(m + 1) & \text{if } x = z \text{ and } y \in X_k, \\
 0 & \text{if } x = y = z.
\end{cases}
$$

Due to Hausdorff’s metric extension theorem [6], ρ can be extended to an admissible metric $\tilde{\rho} \in AM(X)$. Note that for each $(x, y) \in X_k^2$, $\tilde{\rho}(x, y) = \rho(x, y) = d(x, y)$, so $\tilde{\rho} \in U$. Moreover, we have

$$
\tilde{\rho}(X_k, X \setminus X_{k+1}) \leq \tilde{\rho}(w, z) = \rho(w, z) = 1/(m + 1) < 1/m,
$$

which implies that $\tilde{\rho} \notin A(1, m) \cap AM(X)$. Therefore $A(1, m) \cap AM(X)$ is nowhere dense, and hence $AM(X)$ is not a Baire space. This is a contradiction. Consequently, $(2) \Rightarrow (1)$ holds. □

When X is not compact, the family $\{\alpha X \setminus X_n \mid n \in \mathbb{N}\}$ is an open neighborhood basis of the point x_∞ in αX and x_∞ is not isolated. The space $EM(X)$ can be represented as follows:

Lemma 3.3. If X is not compact, then

$$
EM(X) = \left\{ d \in AM(X) \mid \lim_{n \to \infty} \text{diam}_d(X \setminus X_n) = 0 \right\}.
$$

Proof. It is easy to show that

$$
EM(X) \subset \left\{ d \in AM(X) \mid \lim_{n \to \infty} \text{diam}_d(X \setminus X_n) = 0 \right\}.
$$

Conversely, we will verify that the left hand side contains the right one. Fix any $d \in \{d \in AM(X) \mid \lim_{n \to \infty} \text{diam}_d(X \setminus X_n) = 0\}$. Taking $x_n \in X \setminus X_n$, we can obtain a Cauchy sequence $\{d(x, x_n)\} \subset \mathbb{R}$ for each $x \in X$ because $\lim_{n \to \infty} \text{diam}_d(X \setminus X_n) = 0$. Let $\overline{d} : (\alpha X)^2 \to [0, \infty)$ be a function defined by

$$
\overline{d}(x, y) = \begin{cases}
 d(x, y) & \text{if } x, y \in X, \\
 \lim_{n \to \infty} d(x, x_n) & \text{if } x \in X \text{ and } y = x_\infty, \\
 \lim_{n \to \infty} d(y, x_n) & \text{if } x = x_\infty \text{ and } y \in X, \\
 0 & \text{if } x = y = x_\infty.
\end{cases}
$$

Observe that for any $x \in X$, $\overline{d}(x, x_\infty) > 0$. Indeed, $x \in X_m$ for some $m \in \mathbb{N}$. Since $d \in AM(X)$, for every $n \geq m + 1$,

$$
d(x, x_n) \geq d(X_m, X \setminus X_{m+1}) > 0,
$$

and hence

$$
\overline{d}(x, x_\infty) = \lim_{n \to \infty} d(x, x_n) \geq d(X_m, X \setminus X_{m+1}) > 0.
$$

As is easily observed, \overline{d} is a metric on αX. We show that $\overline{d} \in M(\alpha X)$, that is, \overline{d} is continuous. Let any $(x, y) \in (\alpha X)^2$. When $(x, y) \in X^2$, the continuity of \overline{d} at (x, y) follows from the one of d. When $x \in X$ and $y = x_\infty$, for each $\epsilon > 0$, there exist a neighborhood $U \subset X$ of x and a positive integer $m \in \mathbb{N}$ such that for any $z \in U$, $d(x, z) \leq \epsilon/2$, and $\text{diam}_d(X \setminus X_m) \leq \epsilon/4$. Verify that $\text{diam}_d(\alpha X \setminus X_m) = \text{diam}_d(X \setminus X_m)$. For every point $(z, w) \in U \times (\alpha X \setminus X_m)$, that is a neighborhood
of \((x, y)\) in \((\alpha X)^2\), we have that for each \(n \geq m\),
\[
|\overline{d}(z, w) - \overline{d}(x, y)| \leq |\overline{d}(z, w) - \overline{d}(z, x_n)| + |\overline{d}(z, x_n) - \overline{d}(x, x_n)| + |\overline{d}(x, x_n) - \overline{d}(x, y)|
\]
\[
\leq \overline{d}(w, x_n) + \overline{d}(z, x) + \overline{d}(y, x_n)
\]
\[
\leq \text{diam}_d(X \setminus X_m) + d(x, z) + \text{diam}_\overline{d}(\alpha X \setminus X_m)
\]
\[
= 2 \text{diam}_d(X \setminus X_m) + d(x, z) \leq \epsilon/2 + \epsilon/2 = \epsilon.
\]
Hence \(\overline{d}\) is continuous at \((x, y)\). Similarly, the continuity of \(\overline{d}\) at \((x, y)\), where \(x = x_\infty\) and \(y \in X\), is valid. When \(x = x_\infty\) and \(y = x_\infty\), for each \(\epsilon > 0\), there is \(m \in \mathbb{N}\) such that \(\text{diam}_d(X \setminus X_m) \leq \epsilon\). Then \((\alpha X \setminus X_m)^2\) is a neighborhood of \((x, y)\) and for each \((z, w)\) in \((\alpha X \setminus X_m)^2\),
\[
|\overline{d}(z, w) - \overline{d}(x, y)| = \overline{d}(z, w) \leq \text{diam}_\overline{d}(\alpha X \setminus X_m) = \text{diam}_d(X \setminus X_m) \leq \epsilon,
\]
which implies the continuity of \(\overline{d}\) at \((x, y)\). Thus \(\overline{d}\) is continuous. It follows from the compactness of \(\alpha X\) that \(\overline{d} \in AM(\alpha X)\). As a consequence, \(d\) is extended to the admissible metric \(\overline{d}\), so \(d \in EM(X)\).
The proof is completed. \(\square\)

It is known that a space \(Y \in \mathcal{M}_2\) if and only if there exists an embedding from \(Y\) into a completely metrizable space as an \(F_{\sigma\delta}\)-set, refer to [11] Theorem 9.6.

Proposition 3.4. Suppose that \(X\) is not a compact space. Then the subset \(EM(X)\) is \(F_{\sigma\delta}\) in \(PM(X)\), and hence it is in \(\mathcal{M}_2\).

Proof. As is easily observed,
\[
\left\{ d \in AM(X) \middle| \lim_{n \to \infty} \text{diam}_d(X \setminus X_n) = 0 \right\} = \bigcap_{m \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \left\{ d \in AM(X) \mid \text{diam}_d(X \setminus X_n) \leq 1/m \right\},
\]
and for any \(m, n \in \mathbb{N}\), \(\{ d \in AM(X) \mid \text{diam}_d(X \setminus X_n) \leq 1/m \}\) is closed. According to Lemma 3.3 \(EM(X)\) is an \(F_{\sigma\delta}\)-set in \(AM(X)\). Combining it with Proposition 3.1 we have that \(EM(X)\) is \(F_{\sigma\delta}\) in \(PM(X)\). \(\square\)

4. **THE HOMOTOPIETY DENSITY OF \(EM(X)\) IN \(PM(X)\)**

In this section, we shall prove that \(EM(X)\) is homotopy dense in \(PM(X)\).

Proposition 4.1. Suppose that \(X\) is not a compact space. Then \(EM(X)\) is dense in \(PM(X)\).

Proof. According to the same argument as Proposition 1 of [10], \(AM(X)\) is dense in \(PM(X)\). It remains to show that \(EM(X)\) is dense in \(AM(X)\). For each \(d \in AM(X)\) and each neighborhood \(U\) of \(d\), we shall construct a metric \(\rho \in EM(X)\) such that \(\rho \in U\). There is a compact subset \(K \subset X\) such that if \(d|_{K^2} = \rho|_{K^2}\), then \(\rho \in U\). Define an admissible metric \(\rho|_{(K \cup \{x_\infty\})^2}\) on \(K \cup \{x_\infty\}\) as follows:
\[
\rho(x, y) = \begin{cases}
 d(x, y) & \text{if } x, y \in K, \\
 d(x, x_\infty) + 1 & \text{if } x \in K \text{ and } y = x_\infty, \\
 d(y, x_\infty) + 1 & \text{if } x = x_\infty \text{ and } y \in K, \\
 0 & \text{if } x = y = x_\infty.
\end{cases}
\]
Due to Hausdorff’s metric extension theorem [6], the above metric can be extended to an admissible metric \(\rho\) on \(\alpha X\). The restriction \(\rho|_{X^2} \in EM(X)\) is the desired admissible metric such that \(\rho|_{X^2} \in U\). The proof is complete. \(\square\)

Applying Lemma 3.3 we will verify the convexity of \(EM(X)\).
Proposition 4.2. If X is not a compact space, then $EM(X)$ is a convex subset of $C(X^2)$. Moreover, if X is locally connected, then it is an AR.

Proof. To prove that $EM(X)$ is convex in $AM(X)$, take any $d, \rho \in EM(X)$ and any $t \in [0, 1]$. By the convexity of $AM(X)$, $(1-t)d + t\rho \in AM(X)$. Then for every $n \in \mathbb{N}$,

$$\text{diam}_{(1-t)d + t\rho}(X \setminus X_n) = \sup_{(x,y) \in (X \setminus X_n)^2} ((1-t)d(x, y) + t\rho(x, y))$$

$$\leq (1-t)\text{diam}_d(X \setminus X_n) + t \text{diam}_\rho(X \setminus X_n).$$

Due to Lemma 3.3, $\text{diam}_d(X \setminus X_n) \to 0$ and $\text{diam}_\rho(X \setminus X_n) \to 0$ as $n \to \infty$, and hence $\text{diam}_{(1-t)d + t\rho}(X \setminus X_n)$ is also converging to 0. Using Lemma 3.3 again, we get that $(1-t)d + t\rho \in EM(X)$. Therefore $EM(X)$ is convex in $AM(X)$, and hence so is in $C(X^2)$. When X is locally connected, $C(X^2)$ is a Fréchet space. Then the latter part holds. □

We can show the following proposition.

Proposition 4.3. Let X be a locally connected but not compact space. Then $EM(X)$ is homotopy dense in $PM(X)$.

Proof. The convex subset $PM(X) \subset C(X^2)$ contains $EM(X)$ as a dense convex subset by Propositions 4.1 and 4.2. Combining Theorem 6.8.9 with Corollary 6.8.5 of [11], we have that $EM(X)$ is homotopy dense in $PM(X)$. □

5. The Z_σ-set property of $EM(X)$ in $PM(X)$

This section is devoted to proving that $EM(X)$ is contained in some Z_σ-set in $PM(X)$. For a compact metric space $Y = (Y, d_Y)$, we shall consider the set of partial pseudometrics on compact sets in Y. Let

$$PPM(Y) = \bigcup \{PM(A) \mid A \in \text{Comp}(Y)\}$$

whose topology is defined as follows: Identifying each partial pseudometrics $d \in PPM(Y)$ with its graph

$$\{(x, y, d(x, y)) \mid x, y \in \text{dom } d \} \in \text{Comp}(Y \times Y \times \mathbb{R}),$$

where the symbol $\text{dom } d \in \text{Comp}(Y)$ stands for the domain of d, we can regard $PPM(Y)$ as a subspace of $\text{Comp}(Y \times Y \times \mathbb{R})$. Note that the Hausdorff metric $(d_{Y \times Y \times \mathbb{R}})_H$ is admissible on $PPM(Y)$. Here set

$$PAM(Y) = \bigcup \{AM(A) \mid A \in \text{Comp}(Y) \text{ and } A \text{ is non-degenerate} \} \subset PPM(Y).$$

Lemma 5.1. Let $Y = (Y, d_Y)$ be a compact metric space, U be an open subset of Y, K be a closed subset of Y, and $y_0 \in U$ and $y_\infty \in K$ be distinct points. Suppose that Z is a space, and $f : Z \to \text{Comp}(Y)$, $g : Z \to \text{Comp}(Y)$ and $h : Z \to [0, \infty)$ are maps such that $y_0 \in f(z) \subset U$, $y_\infty \in g(z) \subset K$ and $f(z) \cap g(z) = \emptyset$ for every $z \in Z$. Moreover, let $d_0 : Z \to PM(U)$ and $d_\infty : Z \to PM(K)$ be maps. Then the function $\Phi : Z \to PPM(Y)$ is continuous, which is defined by

$$\text{dom } \Phi(z) = f(z) \cup g(z);$$

$$\Phi(z)(x, y) = \begin{cases} d_0(z)(x, y) & \text{if } x, y \in f(z), \\ d_\infty(z)(x, y) & \text{if } x, y \in g(z), \\ d_0(z)(x, y_0) + d_\infty(z)(y, y_\infty) + h(z) & \text{if } x \in f(z) \text{ and } y \in g(z), \\ d_0(z)(y, y_0) + d_\infty(z)(x, y_\infty) + h(z) & \text{if } x \in g(z) \text{ and } y \in f(z). \end{cases}$$
Proof. As is easily observed, \(\Phi(z) \in PPM(Y) \) for any \(z \in Z \). To verify the continuity of \(\Phi \), take any \(z \in Z \) and \(\epsilon > 0 \). Since \(f(z) \) is compact, there is \(\delta \in (0, \epsilon) \) such that \(\overline{B}_{d_Y}(f(z), \delta) \subset U \). Combining the continuity of \(d_0(z) \) and \(d_\infty(z) \) with the compactness of \(f(z) \) and \(g(z) \), we can assume that for each \((x, y) \in f(z)^2 \) and each \((x', y') \in \overline{B}_{d_Y}(x, \delta) \times \overline{B}_{d_Y}(y, \delta) \), \(|d_0(z)(x, y) - d_0(z)(x', y')| < \epsilon/6 \), and for each \((x, y) \in g(z)^2 \) and each \((x', y') \in \overline{B}_{d_Y}(x, \delta) \cap K \times \overline{B}_{d_Y}(y, \delta) \cap K \), \(|d_\infty(z)(x, y) - d_\infty(z)(x', y')| < \epsilon/6 \). Since \(f, g \) and \(h \) are continuous, we can choose a neighborhood \(V \subset Z \) of \(z \) so that if \(w \in V \), then \((d_Y)_H(f(z), f(w)) \leq \delta \), \((d_Y)_H(g(z), g(w)) \leq \delta \) and \(|h(z) - h(w)| < \epsilon/3 \). Moreover, take a neighborhood \(W \subset V \) of \(z \) such that for any \(w \in W \), if \((x, y) \in \overline{B}_{d_Y}(f(z), \delta)^2 \), then \(|d_0(z)(x, y) - d_0(w)(x, y)| < \epsilon/6 \), and if \((x, y) \in K^2 \), then \(|d_\infty(z)(x, y) - d_\infty(w)(x, y)| < \epsilon/6 \). Observe that for each \(w \in W \), \((d_Y \times Y \times R)(\Phi(z), \Phi(w)) < \epsilon \). Indeed, let any \((x, y, \Phi(z)(x, y)) \in \Phi(z) \). When \((x, y) \in f(z)^2 \), there exists a point \((x', y') \in f(w)^2 \) such that

\[
d_Y^2((x, y), (x', y')) = \max\{d_Y(x, x'), d_Y(y, y')\} \leq \delta < \epsilon
\]

because \((d_Y)_H(f(z), f(w)) \leq \delta \). Note that \(|d_0(z)(x, y) - d_0(z)(x', y')| < \epsilon/6 \). Moreover, \((x', y') \in \overline{B}_{d_Y}(f(z), \delta)^2 \), and hence \(|d_0(z)(x', y') - d_0(w)(x', y')| < \epsilon/6 \). Observe that

\[
|\Phi(z)(x, y) - \Phi(w)(x', y')| = |d_0(z)(x, y) - d_0(w)(x', y')| \\
\leq |d_0(z)(x, y) - d_0(z)(x', y')| + |d_0(z)(x', y') - d_0(w)(x', y')| < \epsilon/6 + \epsilon/6 < \epsilon.
\]

Thus we have that \((x', y', \Phi(w)(x', y')) \in \Phi(w) \) and

\[
d_Y^2((x, y, \Phi(z)(x, y)), (x', y', \Phi(w)(x', y'))) = \max\{d_Y^2((x, y), (x', y')), |\Phi(z)(x, y) - \Phi(w)(x', y')|\} < \epsilon.
\]

Similarly, when \((x, y) \in g(z)^2 \), there exists a point \((x', y') \in g(w)^2 \) such that \((x', y', \Phi(w)(x', y')) \in \Phi(w) \) and

\[
d_Y^2((x, y, \Phi(z)(x, y)), (x', y', \Phi(w)(x', y'))) < \epsilon.
\]

When \(x \in f(z) \) and \(y \in g(z) \), we can find points \(x' \in f(w) \) and \(y' \in g(w) \) so that \(d_Y(x, x') \leq \delta < \epsilon \) and \(d_Y(y, y') \leq \delta < \epsilon \) since \((d_Y)_H(f(z), f(w)) \leq \delta \) and \((d_Y)_H(g(z), g(w)) \leq \delta \). Recall that \(|d_0(z)(x, y_0) - d_0(z)(x', y_0)| < \epsilon/6 \) and \(|d_\infty(z)(y, y_\infty) - d_\infty(z)(y', y_\infty)| < \epsilon/6 \). Furthermore, \(|d_\infty(z)(x', y_0) - d_\infty(w)(x', y_0)| < \epsilon/6 \) and \(|d_\infty(z)(y', y_\infty) - d_\infty(w)(y', y_\infty)| < \epsilon/6 \) because \((x', y_0) \in \overline{B}_Y(f(z), \delta)^2 \) and \((y', y_\infty) \in K^2 \). Then

\[
|\Phi(z)(x, y) - \Phi(w)(x', y')| \\
= |\left(|d_0(z)(x, y_0) + d_\infty(z)(y, y_\infty) + h(z)\right) - \left(|d_0(w)(x', y_0) + d_\infty(w)(y', y_\infty) + h(w)\right)| \\
\leq |d_0(z)(x, y_0) - d_0(z)(x', y_0)| + |d_0(z)(x', y_0) - d_0(w)(x', y_0)| \\
+ |d_\infty(z)(y, y_\infty) - d_\infty(z)(y', y_\infty)| + |d_\infty(z)(y', y_\infty) - d_\infty(w)(y', y_\infty)| + |h(z) - h(w)| \\
< \epsilon/6 + \epsilon/6 + \epsilon/6 + \epsilon/6 + \epsilon/3 = \epsilon.
\]

Therefore we have

\[
d_Y^2((x, y, \Phi(z)(x, y)), (x', y', \Phi(w)(x', y'))) = \max\{d_Y^2((x, y), (x', y')), |\Phi(z)(x, y) - \Phi(w)(x', y')|\} < \epsilon.
\]

Similarly, when \(x \in g(z) \) and \(y \in f(z) \), there are points \(x' \in g(w) \) and \(y' \in f(w) \) such that \((x', y', \Phi(w)(x', y')) \in \Phi(w) \) and

\[
d_Y^2((x, y, \Phi(z)(x, y)), (x', y', \Phi(w)(x', y'))) < \epsilon.
\]
It follows that \(\Phi(z) \subset B_{d_{Y \times X \times \mathbb{R}}}(\Phi(w), \epsilon) \). By the same argument as the above, we can see that \(\Phi(w) \subset B_{d_{Y \times X \times \mathbb{R}}}(\Phi(z), \epsilon) \). Consequently, \((d_{Y \times X \times \mathbb{R}})_{H}(\Phi(z), \Phi(w)) < \epsilon\), which implies that \(\Phi \) is continuous.

Remark 1. In the above lemma, for each \(z \in Z \), if \(d_{0}(z) \) and \(d_{\infty}(z) \) are admissible on \(f(z) \) and \(g(z) \) respectively, and \(h(z) > 0 \), then \(\Phi(z) \in PAM(Y) \).

We will give a useful path on \(\text{Comp}(X) \) for the latter argument.

Lemma 5.2. Let \(X \) be connected and locally connected. Then there exists a map \(\xi : [0, \infty) \to \text{Comp}(X) \) satisfying the following conditions:

1. \(X = \bigcup \xi([0, \infty)) \);
2. For any \(0 \leq s \leq t < \infty \), \(\xi(s) \subset \xi(t) \);
3. For each \(n \in \mathbb{N} \), \(\xi(n) \subset \text{int} \xi(n + 1) \).

Proof. We will prove this lemma in the case where \(X \neq \emptyset \). Write \(X = \bigcup_{n \in \mathbb{N}} X_{n} \), where each \(X_{n} \) is compact and \(X_{n} \subset \text{int} X_{n+1} \). We may assume that \(X_{1} \neq \emptyset \), so choose any point \(x_{0} \in X_{1} \). According to Proposition 2.3, the hyperspace \(\text{Comp}(X) \) is connected, locally connected and locally compact metric, and hence it is path-connected by Theorem 5.14.5 of [11]. Now we shall inductively construct a map \(\xi : [0, \infty) \to \text{Comp}(X) \) so that \(X_{n} \subset \xi(n) \) for each \(n \in \mathbb{N} \).

1. Firstly, since \(\text{Comp}(X) \) is path-connected, there is a path \(\xi_{1} : [0, 1] \to \text{Comp}(X) \) such that \(\xi_{1}(0) = \{x_{0}\} \) and \(\xi_{1}(1) = X_{1} \).
2. Then we can define a map \(\xi_{1}^{1} : [0, 1] \to \text{Comp}(X) \) by \(\xi_{1}^{1}(t) = \xi_{1}([0, t]) \) for all \(t \in [0, 1] \).
3. Moreover, by virtue of [13] Lemma 1.11.6 and Proposition 1.11.7, we can obtain a map \(\xi_{1}^{\prime} : [0, 1] \to \text{Comp}(X) \) defined by \(\xi_{1}^{\prime}(t) = \bigcup \xi^{1}(t) \) for each \(t \in [0, 1] \). As is easily observed, for any \(0 \leq s \leq t \leq 1 \), \(\xi_{1}^{\prime}(s) \subset \xi_{1}^{1}(t) \) and \(X_{1} \subset \xi_{1}^{1}(1) \).
4. Then let \(\xi_{[0,1]} = \xi_{1}^{\prime} \).
5. Secondly, assume that \(\xi_{[0,n]} \) is obtained for some \(n \in \mathbb{N} \). Because \(\xi(n) \) is compact, there exists \(m \geq n + 1 \) such that \(\xi(n) \subset \text{int} X_{m} \). Due to the same argument as the above, extend \(\xi_{[0,n]} \) over \([0, n + 1] \) so that \(X_{m} \subset \xi(n + 1) \).

By the inductive construction, we can get the desired map \(\xi \).

From now on, the map \(\xi \) is as the above lemma and let \(X_{n} = \xi(n) \) for each \(n \in \mathbb{N} \). Moreover, if \(X \) is not empty, then fix a point \(x_{0} \in X_{1} \). We shall define a distance \(D \) between real-valued functions on \(X^{2} \) as follows:

\[
D(f, g) = \sup_{n \in \mathbb{N}} \min \left\{ \sup_{(x, y) \in X_{n}^{2}} |f(x, y) - g(x, y)|, 1/n \right\}
\]

for any \(f, g : X^{2} \to \mathbb{R} \). Note that \(D \) is an admissible metric on \(C(X^{2}) \), refer to [11] 1.1.3(7). We can see the following:

Lemma 5.3. Suppose that \(X \) is connected and locally connected, and that \(\epsilon > 0 \). For any \(f, g \in C(X^{2}) \), if \(f|_{\xi(1/\epsilon)^{2}} = g|_{\xi(1/\epsilon)^{2}} \), then \(D(f, g) \leq \epsilon \).

Proof. Let \(f, g \in C(X^{2}) \) with \(f|_{\xi(1/\epsilon)^{2}} = g|_{\xi(1/\epsilon)^{2}} \). In the case that \(n \leq 1/\epsilon \), \(X_{n} = \xi(n) \subset \xi(1/\epsilon) \), so

\[
\min \left\{ \sup_{(x, y) \in X_{n}^{2}} |f(x, y) - g(x, y)|, 1/n \right\} \leq \sup_{(x, y) \in X_{n}^{2}} |f(x, y) - g(x, y)| = \sup_{(x, y) \in X_{n}^{2}} |f(x, y) - f(x, y)| = 0.
\]

In the case that \(n > 1/\epsilon \),

\[
\min \left\{ \sup_{(x, y) \in X_{n}^{2}} |f(x, y) - g(x, y)|, 1/n \right\} \leq 1/n < \epsilon.
\]
Therefore we have
\[D(f, g) = \sup_{n \in \mathbb{N}} \min \left\{ \sup_{(x,y) \in X_n^2} |f(x, y) - g(x, y)|, 1/n \right\} \leq \epsilon. \]

The proof is complete. □

We shall use the following extension theorem of partial metrics with various domains according to [3, Theorem 2.1].

Theorem 5.4. Let \(Y \) be compact. There exists a map \(e : PPM(Y) \to PM(Y) \) such that \(PAM(Y) \subseteq AM(Y) \).

For spaces \(Y \subseteq M \), the restriction \(r : PM(M) \to PM(Y) \) is continuous, which is defined by \(r(d) = d|_{Y^2} \) for all \(d \in PM(M) \). Note that \(r(AM(M)) \subseteq AM(Y) \). From now on, let \(e : e : PPM(\alpha X) \to PM(\alpha X) \) be the extension as in Theorem 5.4 and let \(r : PM(\alpha X) \to PM(X) \) be the restriction as the above.

Proposition 5.5. Let \(X \) be connected and locally connected, but not compact. The space \(AM(X) \) is contained in some \(Z_\sigma \)-set in \(PM(X) \), and hence so is \(EM(X) \).

Proof. Notice that \(AM(X) \subseteq \bigcup_{m \in \mathbb{N}} A(1, m) \). To show that \(A(1, m) \) is a \(Z_\sigma \)-set in \(PM(X) \) for every \(m \in \mathbb{N} \), fix any map \(\epsilon : PM(X) \to (0, 1) \). We will construct a map \(\Psi : PM(X) \to PM(X) \) so that \(\Psi(PM(X)) \cap A(1, m) = \emptyset \) and \(D(d, \Psi(d)) \leq \epsilon(d) \) for each \(d \in PM(X) \). Define a function \(\Phi : PM(X) \to PPM(\alpha X) \) satisfying the following conditions:

1. \(\text{dom} \Phi(d) = \xi(1/\epsilon(d)) \cup \{x_\infty\} \);
2. \(\Phi(d)(x, y) = \begin{cases}
 d(x, y) & \text{if } x, y \in \xi(1/\epsilon(d)), \\
 d(x, x_0) + 1/(m + 1) & \text{if } x \in \xi(1/\epsilon(d)) \text{ and } y = x_\infty, \\
 d(y, x_0) + 1/(m + 1) & \text{if } x = x_\infty \text{ and } y \in \xi(1/\epsilon(d)), \\
 0 & \text{if } x = y = x_\infty.
\end{cases} \)

It follows from Lemma 5.1 that \(\Phi \) is continuous. Let \(\Psi = e\Phi \), that is a desired map. To verify it, take any \(d \in PM(X) \). Firstly, we shall show that \(\Psi(d) \not\in A(1, m) \). Since \(e\Phi(d) \) is a continuous pseudometric on \(\alpha X \) and \(x_\infty \) is not an isolated point, we can obtain \(x \in X \setminus X_2 \) so that \(e\Phi(d)(x, x_\infty) < 1/m - 1/(m + 1) \). Then
\[
\inf \{ \Psi(d)(y, z) \mid y \in X_1, z \in X \setminus X_2 \} \leq \Psi(d)(x_0, x) = e\Phi(d)(x_0, x) = e\Phi(d)(x_0, x) \\
\leq e\Phi(d)(x_0, x_\infty) + e\Phi(d)(x_\infty, x) \\
< 1/(m + 1) + 1/m - 1/(m + 1) = 1/m,
\]
which means that \(\Psi(d) \not\in A(1, m) \). Secondly, prove that \(D(d, \Psi(d)) \leq \epsilon(d) \). Remark that
\[
\Psi(d)(x, y) = e\Phi(d)(x, y) = e\Phi(d)(x, y) = \Phi(d)(x, y) = d(x, y)
\]
for any \(x, y \in \xi(1/\epsilon(d)) \). It follows from Lemma 5.3 that \(D(d, \Psi(d)) \leq \epsilon(d) \). We conclude that \(A(1, m) \) is a \(Z_\sigma \)-set in \(PM(X) \), so \(AM(X) \) is contained in the \(Z_\sigma \)-set \(\bigcup_{m \in \mathbb{N}} A(1, m) \). □

6. The strong \(\mathfrak{M}_2 \)-universality of \(EM(X) \)

In this section, we will verify the strong \(\mathfrak{M}_2 \)-universality of \(EM(X) \). For any \(c > 0 \), let
\[
Z(c) = \left\{ d \in PM(X) \mid \lim_{n \to \infty} \inf d(x_0, X \setminus X_n) \leq c \right\}.
\]

We have the following lemma.
Lemma 6.1. Let X be connected and locally connected, but not compact. Suppose that A is a closed set and B is a Z-set in $PM(X)$, respectively. If $A \subset Z(c) \cup B$ for some $c > 0$, then A is a Z-set.

Proof. For each map $\epsilon : PM(X) \to (0,1)$, we shall construct a map $\Psi : PM(X) \to PM(X)$ such that $\Psi(PM(X)) \cap (Z(c) \cup B) = \emptyset$ and $D(d, \Psi(d)) \leq \epsilon(d)$ for any $d \in PM(X)$. Since B is a Z-set, there exists a map $\Phi_1 : PM(X) \to PM(X)$ such that $\Phi_1(PM(X)) \cap B = \emptyset$ and $D(d, \Phi_1(d)) \leq \epsilon(d)/2$. Letting

$$\delta(d) = \min\{\epsilon(d), D(\Phi_1(d), B)\}/2,$$

we define a function $\Phi_2 : PM(X) \to PPM(\alpha X)$ as follows:

1. $\text{dom } \Phi_2(d) = \xi(1/\delta(d)) \cup \{x_{\infty}\}$;
2. $\Phi_2(d)(x, y) = \begin{cases} d(x, y) & \text{if } x, y \in \xi(1/\delta(d)), \\ d(x, x_0) + c + 1 & \text{if } x \in \xi(1/\delta(d)) \text{ and } y = x_{\infty}, \\ d(y, x_0) + c + 1 & \text{if } x = x_{\infty} \text{ and } y \in \xi(1/\delta(d)), \\ 0 & \text{if } x = y = x_{\infty}. \end{cases}$

Due to Lemma 5.1, Φ_2 is continuous. Then we can obtain the desired map $\Psi = r\epsilon\Phi_2\Phi_1$. By the same argument as Proposition 5.5, $D(\Phi_1(d), \Psi(d)) \leq \delta(d) = \min\{\epsilon(d), D(\Phi_1(d), B)\}/2$.

for each $d \in PM(X)$. Therefore

$$D(d, \Psi(d)) \leq D(d, \Phi_1(d)) + D(\Phi_1(d), \Psi(d)) \leq \epsilon(d)/2 + \delta(d) \leq \epsilon(d),$$

and $\Psi(PM(X)) \cap B = \emptyset$. It remains to prove that $\Psi(PM(X)) \cap Z(c) = \emptyset$. For each $d \in PM(X)$, there exists $m \in \mathbb{N}$ such that $x \in X \setminus X_m$, then $\epsilon\Phi_2\Phi_1(d)(x_{\infty}, x) < 1/2$. It follows that

$$\Psi(d)(x_0, x) = r\epsilon\Phi_2\Phi_1(d)(x_0, x) = \epsilon\Phi_2\Phi_1(d)(x_0, x) \geq \epsilon\Phi_2\Phi_1(d)(x_0, x_{\infty}) - \epsilon\Phi_2\Phi_1(d)(x_{\infty}, x) > c + 1 - 1/2 = c + 1/2$$

for any $k \geq m$ and any $x \in X \setminus X_k$. Hence $\liminf_{n \to \infty} \Psi(d)(x_0, X \setminus X_n) > c$, which means that $\Psi(PM(X)) \cap Z(c) = \emptyset$. As a result, A is a Z-set. \square

We show the following:

Lemma 6.2. Let X be a locally connected but not compact space. Then X is chain-connected to infinity if and only if there is an arc $\sigma : [0,1] \to \alpha X$ such that $\sigma(0) = x_{\infty}$ and $\sigma((0,1]) \subset X$.

Proof. Firstly, we shall prove the “if” part. Taking an arc $\sigma : [0,1] \to \alpha X$ so that $\sigma(0) = x_{\infty}$ and $\sigma((0,1]) \subset X$, we can find $t_n \in (0,1]$ for each $n \in \mathbb{N}$ such that $\sigma([0,t_n]) \subset X \setminus X_n$ and $t_{n+1} < t_n$.

Let $C_i = \sigma([0,t_i])$, so $\{C_i\}$ is a simple chain consisting of connected subset in X. Moreover, for every compact set $K \subset X$, there is $i(K) \in \mathbb{N}$ such that $K \subset X_{i(K)}$, and hence if $i \geq i(K)$, then $C_i \subset X \setminus X_{i(K)} \subset X \setminus K$. It follows that X is chain-connected to infinity.

Next, we show the “only if” part. Since X is chain-connected to infinity, we can obtain a simple chain $\{C_i\}$ consisting of connected sets in X so that for every $n \in \mathbb{N}$, there is $i(n) \in \mathbb{N}$ such that for any $i \geq i(n)$, $C_i \subset X \setminus X_n$. Put $D_n = \bigcup_{i \geq i(n)} C_i$ and observe that for any $n \in \mathbb{N}$, D_n is connected and $D_{n+1} \subset D_n \subset X \setminus X_n$. Then we may assume that each D_n is an open subset of X. Indeed, replace D_1 with the connected component in $X \setminus X_1$ containing D_1. Then the connected component D_1 is open because X is locally connected. Suppose that D_n is open for some $n \in \mathbb{N}$. Replacing D_{n+1} with the connected component in $D_n \cap X \setminus X_n$ containing D_{n+1}, we have that D_{n+1} is open due to the local connectedness of X. By induction, every D_n is open. Fix any point
Proposition 6.4. Let \(X \) be connected and locally connected, but not compact. Suppose that \(X \) is chain-connected to infinity, then every \(\mathcal{M}_2 \)-set in \(\mathcal{M}_2 \)-spaces of \(X \) is a strong \(Z \)-set.

The space
\[
\mathcal{C}_1 = \left\{ (x(n))_{n \in \mathbb{N}} \in \mathbb{Q} \mid \lim_{n \to \infty} x(n) = 1 \right\}
\]
is an \(\mathcal{M}_2 \)-absorbing set in \(\mathbb{Q} \), see to [13], and hence it admits closed embeddings from spaces belonging to \(\mathcal{M}_2 \). Now we show the following:

Proposition 6.5. Let \(X \) be connected and locally connected, but not compact. Suppose that \(X \) is chain-connected to infinity. Then the space \(EM(X) \) is strongly \(\mathcal{M}_2 \)-universal.

Proof. Suppose that \(A \in \mathcal{M}_2 \), \(B \) is a closed set in \(A \), and \(f : A \to EM(X) \) is a map such that \(f|_B \) is a \(Z \)-embedding. For each open cover \(\mathcal{U} \) of \(EM(X) \), let us construct a \(Z \)-embedding \(h : A \to EM(X) \) such that \(h \) is \(\mathcal{U} \)-close to \(f \) and \(h|_B = f|_B \). By Proposition 4.3, \(EM(X) \) is an AR. Remark that \(X \) is not discrete. According to Proposition 4.4, \(f(B) \) is a strong \(Z \)-set in \(EM(X) \).

By virtue of [12], Proposition 2.8.12 and Lemma 2.8.10, we can assume that \(f(A \setminus B) \cap f(B) = \emptyset \) and \(f \) satisfies the following property:

(i) For each metric \(d \in f(B) \) and each sequence \(\{a_n\} \subset A \), if \(f(a_n) \) is converging to \(d \), then \(a_n \) is converging to \(f^{-1}(d) \).

Take a map \(\epsilon : EM(X) \to [0,1) \) such that
(ii) for any map $h : A \to EM(X)$, if $D(f(a), h(a)) \leq \epsilon f(a)$ for every $a \in A$, then h is U-close to f.

(iii) for each $d \in EM(X)$, $\epsilon(d) \leq D(d, f(B))/2$, and $\epsilon(d) = 0$ if and only if $d \in f(B)$.

For each $k \in \mathbb{N}$, we put

$$A_k = \{ a \in A \mid 2^{-k} \leq \epsilon f(a) \leq 2^{-k+1} \}$$

and $\phi_k(a) = 2 - 2^k \epsilon f(a)$. Then $A \setminus B = \bigcup_{k \in \mathbb{N}} A_k$. Fixing a closed embedding $p : A \to c_1$, we can define a map $q^k : A_k \to [0, 1]$ by

$$q^k_i(a) = \begin{cases} 0 & \text{if } i = 1, \\ \epsilon f(a)(1 - \phi_k(a)) & \text{if } i = 2, \\ \epsilon f(a)(1 - \phi_k(a))p(a)(1) & \text{if } i = 3, \\ \epsilon f(a) & \text{if } i = 2j, j \geq 2, \\ \epsilon f(a)((1 - \phi_k(a))p(a)((i - 1)/2) + \phi_k(a)p(a)((i - 3)/2)) & \text{if } i = 2j + 1, j \geq 2. \end{cases}$$

For each $m \in \mathbb{N}$, let $\psi_m : \gamma([2^{-m}, 2^{-m+1}]) \to [0, 1]$ be a map defined by $\psi_m(x) = 2^m \gamma^{-1}(x) - 1$. Define a map $g_k : A_k \to PM(\{x_0\} \cup \gamma([0, 1]))$, $k \in \mathbb{N}$, as follows:

$$g_k(a)(x, x_0) = g_k(a)(x_0, x) = \begin{cases} \epsilon f(a) & \text{if } x = x_\infty, \\ \psi_{2k+i}(x)q^k(a) + (1 - \psi_{2k+i}(x))q^k_{i+1}(a) & \text{if } x \in \gamma([2^{-2k-i}, 2^{-2k-i+1}]), \\ 0 & \text{if } x = x_0 \text{ or } 2^{-2k} \leq \gamma^{-1}(x) \leq 1, \end{cases}$$

and for any $x, y \in \{x_0\} \cup \gamma([0, 1])$, $g_k(a)(x, y) = |g_k(a)(x, x_0) - g_k(a)(y, x_0)|$. Here we will observe that $g_k(a) = g_{k+1}(a)$ for all $a \in A_k \cap A_{k+1}$. Indeed, $g_k(a)(x_\infty, x_0) = \epsilon f(a) = g_{k+1}(a)(x_\infty, x_0)$, and $g_k(a)(x, x_0) = 0 = g_{k+1}(a)(x, x_0)$ for every $x \in \{x_0\} \cup \gamma([0, 1])$ with $x = x_0$ or $2^{-2k} \leq \gamma^{-1}(x) \leq 1$.

Because $\epsilon f(a) = 2^{-k}$, $q^k(a) = q^k_2(a) = q^k_3(a) = 0$. Thus for each $x \in \gamma([2^{-2k-1}, 2^{-2k-2}])$,

$$g_k(a)(x, x_0) = \psi_{2k+1}(x)q^k_2(a) + (1 - \psi_{2k+1}(x))q^k_3(a) = 0 = g_{k+1}(a)(x, x_0),$$

and for each $x \in \gamma([2^{-2k-2}, 2^{-2k-1}])$,

$$g_k(a)(x, x_0) = \psi_{2k+2}(x)q^k_2(a) + (1 - \psi_{2k+2}(x))q^k_3(a) = 0 = g_{k+1}(a)(x, x_0).$$

Furthermore, $q^k_3(a) = 0 = q^k_{2j+1}(a)$, $q^k_{2j+3}(a) = \epsilon f(a)p(a)(j) = q^k_{2j+1}(a)$ and $q^k_{2j+2}(a) = \epsilon f(a) = q^k_{2j+1}(a)$ for every $j \geq 1$, and hence for all $x \in \gamma([2^{-2k-i-2}, 2^{-2k-i-1}])$, $i \geq 1$,

$$g_k(a)(x, x_0) = \psi_{2k+i+2}(x)q^k_{i+2}(a) + (1 - \psi_{2k+i+2}(x))q^k_{i+3}(a) = \psi_{2(k+1)+i+1}(x)q^k_{i+1}(a) + (1 - \psi_{2(k+1)+i+1}(x))q^k_{i+1}(a) = g_{k+1}(a)(x, x_0).$$

It follows that $g_k(a) = g_{k+1}(a)$. Letting $g : A \setminus B \to AM(\{x_0\} \cup \gamma([0, 1]))$ be a map defined by

$$g(a)(x, y) = \begin{cases} g_k(a)(x, y) + |\gamma^{-1}(x) - \gamma^{-1}(y)| & \text{if } x, y \in \gamma([0, 1]), \\ g_k(a)(x_0, y) + \gamma^{-1}(y) + 1 & \text{if } x = x_0 \text{ and } y \in \gamma([0, 1]), \\ g_k(a)(x, x_0) + \gamma^{-1}(x) + 1 & \text{if } x \in \gamma([0, 1]) \text{ and } y = x_0, \\ g_k(a)(x, y) & \text{if } x = y = x_0, \end{cases}$$

where $a \in A_k$, we can obtain a function $g' : A \setminus B \to PAM(\alpha X)$ so that for any $a \in A \setminus B$,

(1) $\text{dom } g'(a) = \xi(1/\epsilon f(a)) \cup \eta(\epsilon f(a))$;

(2) $g'(a)(x, y) = \begin{cases} f(a)(x, y) & \text{if } x, y \in \xi(1/\epsilon f(a)), \\ g(a)(x, y) & \text{if } x, y \in \{x_0\} \cup \eta(\epsilon f(a)), \\ f(a)(x, x_0) + g(a)(y, x_0) & \text{if } x \in \xi(1/\epsilon f(a)) \text{ and } y \in \eta(\epsilon f(a)), \\ f(a)(y, x_0) + g(a)(x, x_0) & \text{if } x \in \eta(\epsilon f(a)) \text{ and } y \in \xi(1/\epsilon f(a)). \end{cases}$
The continuity of g' follows from Lemma 5.1.

Let $h|_{A \setminus B} : A \setminus B \to EM(X)$ be a map defined by $h(a) = reg' a$. Note that $D(f(a), h(a)) \leq \epsilon f(a)$ by Lemma 5.3. According to (iii), the map h can be extended to the desired map $h : A \to EM(X)$ by $h|_B = f|_B$, and verify that

$$h(A \setminus B) \subset EM(X) \setminus f(B) = EM(X) \setminus h(B).$$

By (ii), h is U-close to f. It is remains to show that h is a Z-embedding. To check the injectivity of h, fix any $a_1, a_2 \in A \setminus B$ with $h(a_1) = h(a_2)$, where we get some $k_1, k_2 \in \mathbb{N}$ such that $a_1 \in A_{k_1}$ and $a_2 \in A_{k_2}$ respectively. Let $k = \max\{k_i | i = 1, 2\}$. Remark that for each $i \in \mathbb{N}$ and for each $l = 1, 2,$

$$q_{2(k-k_l)+i+1}(a_l) = \psi_{2k+i}(x_{2k+i})q_{2(k-k_l)+i}(a_l) + (1 - \psi_{2k+i}(x_{2k+i}))q_{2(k-k_l)+i+1}(a_l)$$

$$= g_{k_l}(a_l)(x_{2k+i}, x_0) = g(a_l)(x_{2k+i}, x_0) - (2^{-2k-i} + 1)$$

so when $i = 3,$

$$\epsilon f(a_1) = q_{2(k-k_1)+4}(a_1) = q_{2(k-k_2)+4}(a_2) = \epsilon f(a_2).$$

Hence $a_1, a_2 \in A_k$ and $\phi_k(a_1) = \phi_k(a_2).$ In the case where $\phi_k(a_1) = 1,$

$$p(a_1)(j) = q_{2j+3}(a_1)/\epsilon f(a_1) = q_{2j+3}(a_2)/\epsilon f(a_2) = p(a_2)(j)$$

for any $j \in \mathbb{N}.$ In the case where $\phi_k(a_1) \neq 1,$

$$p(a_1)(1) = q_{2j+3}(a_1)/((1 - \phi_k(a_1)\epsilon f(a_1)) = q_{2j+3}(a_2)/((1 - \phi_k(a_2)\epsilon f(a_2))) = p(a_2)(1).$$

Assuming that $p(a_1)(j) = p(a_2)(j)$ for some $j \in \mathbb{N},$ we see that

$$p(a_1)(j+1) = (q_{2j+3}(a_1)/\epsilon f(a_1) - \phi_k(a_1)p(a_1)(j))/(1 - \phi_k(a_1))$$

$$= (q_{2j+3}(a_2)/\epsilon f(a_2) - \phi_k(a_2)p(a_2)(j))/(1 - \phi_k(a_2)) = p(a_2)(j+1).$$

By induction, $p(a_1)(j) = p(a_2)(j)$ for all $j \in \mathbb{N}.$ Consequently, $p(a_1) = p(a_2).$ The injectivity of h follows from the one of $p.$

We prove that h is a closed map. For any sequence $\{a_n\} \subset A$ and any metric $d \in EM(X)$ such that $h(a_n) \to d$ as $n \to \infty,$ we will choose a subsequence of $\{a_n\}$ converging to some point in $A.$ Notice that

$$D(f(a_n), d) \leq D(f(a_n), h(a_n)) + D(h(a_n), d) \leq \epsilon f(a_n) + D(h(a_n), d).$$

When $\epsilon f(a_n) \to 0,$ $D(f(a_n), d) \to 0.$ Due to the continuity of $\epsilon,$ $\epsilon(d) = 0,$ so $d \in f(B)$ by (iii). It follows from (i) that a_n converges to $f^{-1}(d).$ When $\epsilon f(a_n) \to 0,$ we may replace $\{a_n\}$ with a subsequence in $A_k = (\epsilon f)^{-1}(\{2^{-k}, 2^{-k+1}\})$ for some $k \in \mathbb{N}.$ By the compactness of $[2^{-k}, 2^{-k+1}],$ we can also replace $\{a_n\}$ with a subsequence such that $\epsilon f(a_n)$ converges to some number $c \in [2^{-k}, 2^{-k+1}].$ For each $j \in \mathbb{N},$

$$c = \lim_{n \to \infty} \epsilon f(a_n) = \lim_{n \to \infty} (h(a_n)(x_{2(k+j)+1}, x_0) - (2^{-2(k+j)-1} + 1))$$

$$= d(x_{2(k+j)+1}, x_0) - (2^{-2(k+j)-1} + 1).$$

The metric $d \in EM(X)$ can be extended to $\overline{d} \in AM(\alpha X).$ Therefore

$$\overline{d}(x_\infty, x_0) = \lim_{j \to \infty} d(x_{2(k+j)+1}, x_0) = \lim_{j \to \infty} (c + (2^{-2(k+j)-1} + 1)) = c + 1.$$
In the case that $c = 2^{-k}$, $\lim_{n \to \infty} \phi_k(a_n) = 1$, so we can assume that $\phi_k(a_n) > 0$. Then
\[
\lim_{n \to \infty} p(a_n)(j) = \lim_{n \to \infty} (h(a_n)(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1) - \epsilon f(a_n)(1 - \phi_k(a_n))p(a_n)(j + 1))/(\epsilon f(a_n)\phi_k(a_n))
\]
\[
= 2^k(d(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1))
\]
for every $j \in \mathbb{N}$. Note that as $j \to \infty$,
\[
2^k(d(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1)) \to 2^k(\overline{d}(x_\infty, x_0) - 1) = 2^k((2^{-k} + 1) - 1) = 1,
\]
which implies that $p(a_n)$ converges to $\{2^k(d(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1))\} \in c_1$. Since p is a closed embedding, a_n is converging to some point of A. By the same argument, a_n is converging to some point of A in the case that $c = 2^{-k+1}$. When $c \in (2^{-k}, 2^{-k+1})$, it can be assumed that $\phi_k(a_n) \in (0, 1)$, and hence as $n \to \infty$,
\[
p(a_n)(1) = (h(a_n)(x_{2(k+1)}, x_0) - (2^{-2(k+1)} + 1))/(\epsilon f(a_n)(1 - \phi_k(a_n)))
\]
\[
\to (d(x_{2(k+1)}, x_0) - (2^{-2(k+1)} + 1))/(c(2^k c - 1)).
\]
Suppose that for some $j \in \mathbb{N}$, $p(a_n)(j)$ is converging and let $p_j = \lim_{n \to \infty} p(a_n)(j)$. Then
\[
\lim_{n \to \infty} p(a_n)(j + 1) = \lim_{n \to \infty} (h(a_n)(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1) - \epsilon f(a_n)\phi_k(a_n)p(a_n)(j))/(\epsilon f(a_n)(1 - \phi_k(a_n)))
\]
\[
= (d(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1) - c(2 - 2^k) p_j)/(c(2^k c - 1)).
\]
By induction, for all $j \in \mathbb{N}$, $p(a_n)(j)$ converges and denote $p_j = \lim_{n \to \infty} p(a_n)(j)$. Recall that $\{p_j\} \in \mathbb{Q}$. We will prove that $\{p_j\} \in c_1$. Supposing that $p_j \to 1$, we can choose a positive number $\lambda \leq 2 - 2^k c$ so that for any $j \in \mathbb{N}$, there is $i(j) \geq j$ such that $p_{i(j)} < 1 - \lambda$. For every $j \in \mathbb{N}$,
\[
(2^k c - 1)p_{j+1} + (2 - 2^k c)p_j = \lim_{n \to \infty} ((1 - \phi_k(a_n))p(a_n)(j + 1) + \phi_k(a_n)p(a_n)(j))
\]
\[
= \lim_{n \to \infty} 2^k d_{2(j+1)}(a_n)/\epsilon f(a_n)
\]
\[
= \lim_{n \to \infty} (h(a_n)(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1))/c
\]
\[
= (d(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1))/c.
\]
It follows that
\[
\lim_{j \to \infty} ((2^k c - 1)p_{j+1} + (2 - 2^k c)p_j) = \lim_{j \to \infty} (d(x_{2(k+j+1)}, x_0) - (2^{-2(k+j+1)} + 1))/c
\]
\[
= (\overline{d}(x_\infty, x_0) - 1)/c = ((c + 1) - 1)/c = 1.
\]
Thus there exist $j \in \mathbb{N}$ such that if $i \geq j$, then $1 - \lambda^2 \leq (2^k c - 1)p_{i+1} + (2 - 2^k c)p_i$. Hence
\[
1 - \lambda^2 \leq (2^k c - 1)p_{i(j)+1} + (2 - 2^k c)p_{i(j)} \leq (2 - 2^k c)p_{i(j)} + 2^k c - 1.
\]
Since $\lambda \leq 2 - 2^k c$, we get that
\[
1 - \lambda \leq 1 - \lambda^2/(2 - 2^k c) \leq p_{i(j)},
\]
which is a contradiction. Thus $\{p_j\} \in c_1$. Then $p(a_n)$ converges to $\{p_j\} \in c_1$ as $n \to \infty$, so a_n is converging to some point of A because p is a closed embedding. It follows that h is a closed map.
For every \(a \in A \setminus B, \) \(a \in A_k \) for some \(k \in \mathbb{N} \), and hence for any \(i \in \mathbb{N} \), since
\[
h(a)(x_{2(k+i)+1}, x_0) = g(a)(x_{2(k+i)+1}, x_0) = g_k(a)(x_{2(k+i)+1}, x_0) + (2^{-2(k+i)} - 1 + 1)
= q_{2(i+1)}(a) + (2^{-2(k+i)} - 1 + 1) = ef(a) + (2^{-2(k+i)} - 1 + 1) < 3,
\]
we have \(\liminf_{n \to \infty} h(a)(x_n, X \setminus X_n) \leq 3 \). According to Lemma 6.1, the image \(h(A) = h(A \setminus B) \) \(h(B) \), that is contained in \(Z(3) \) \(f(B) \), is a \(Z \)-set in \(EM(X) \). We conclude that \(h \) is a \(Z \)-embedding. □

7. Proof of Main Theorem

Now we shall prove Main Theorem.

Proof of Main Theorem. By Proposition 3.4, we have \(EM(X) \in \mathcal{M}_2 \subset (\mathcal{M}_2)_{\sigma}. \) Due to Propositions 4.3, \(EM(X) \) is homotopy dense in \(PM(X) \). We can decompose \(X = \bigoplus_{k \in K} Y_k \) into connected components for some \(K \in \mathbb{N} \). Since \(X \) is chain-connected to infinity, we can choose a positive integer \(k \in K \) and a path between \(x_{\infty} \) and some point of \(Y_k \) by Lemma 5.2. Hence \(Y_k \) is chain-connected to infinity and \(Y_k \cup \{ x_{\infty} \} \) is the one-point compactification of \(Y_k \). Remark that \(C(X^2) \) is homeomorphic to the product space \(\prod_{(i,j) \in K^2} C(Y_i \times Y_j) \) by virtue of the following homeomorphism:
\[
C(X^2) \ni f \mapsto (f|_{Y_i \times Y_j})_{(i,j) \in K^2} \in \prod_{(i,j) \in K^2} C(Y_i \times Y_j).
\]
Let \(PM_{(i,j)} = \{ d|_{Y_i \times Y_j} \mid d \in PM(X) \} \) and \(EM_{(i,j)} = \{ d|_{Y_i \times Y_j} \mid d \in EM(X) \} \), so \(PM(X) \) is homeomorphic to \(PM_{(k,k)} \times \prod_{(i,j) \in K^2 \setminus \{(k,k)\}} PM_{(i,j)} \) and \(EM(X) \) is homeomorphic to \(EM_{(k,k)} \times \prod_{(i,j) \in K^2 \setminus \{(k,k)\}} EM_{(i,j)} \), respectively. Note that for each \((i,j) \in K^2 \), \(PM_{(i,j)} \) and \(EM_{(i,j)} \) are convex sets in a Fréchet space \(C(Y_i \times Y_j) \), so they are ARs, and moreover the product spaces \(\prod_{(i,j) \in K^2 \setminus \{(k,k)\}} PM_{(i,j)} \) and \(\prod_{(i,j) \in K^2 \setminus \{(k,k)\}} EM_{(i,j)} \) are also ARs. Observe that \(PM(Y_k) = PM_{(k,k)} \) and \(EM(Y_k) = EM_{(k,k)} \). Here we only verify the latter equality. Clearly, \(EM(Y_k) \supset EM_{(k,k)} \). To show that \(EM(Y_k) \subset EM_{(k,k)} \), let any \(d \in EM(Y_k) \). We use the same symbol for the extension of \(d \) on \(Y_k \cup \{ x_{\infty} \} \). Fix an admissible metric \(\rho \in AM(\alpha X) \), so we can define an extension \(\tilde{d} \in AM(\alpha X) \) of \(d \) as follows:
\[
\tilde{d}(x, y) = \begin{cases}
 d(x, y) & \text{if } x, y \in Y_k \cup \{ x_{\infty} \}, \\
 \rho(x, y) & \text{if } x \in \alpha X \setminus Y_k,
 \\
 d(x, x_{\infty}) + \rho(y, x_{\infty}) & \text{if } x \in Y_k \text{ and } y \in X \setminus Y_k,
 \\
 d(y, x_{\infty}) + \rho(x, x_{\infty}) & \text{if } x \in X \setminus Y_k \text{ and } y \in Y_k.
\end{cases}
\]
Thus \(d \in EM_{(k,k)} \). By Proposition 5.5 there exists a \(Z_{\sigma} \)-set \(Z \) in \(PM(Y_k) \) that contains \(EM(Y_k) \). It follows from Proposition 3.5 that \(Z \times \prod_{(i,j) \in K^2 \setminus \{(k,k)\}} PM_{(i,j)} \) is a \(Z_{\sigma} \)-set in \(PM_{(k,k)} \times \prod_{(i,j) \in K^2 \setminus \{(k,k)\}} PM_{(i,j)} \), which means that \(EM(X) \) is contained in some \(Z_{\sigma} \)-set of \(PM(X) \). According to Proposition 6.5, \(EM(Y_k) \) is strongly \(\mathcal{M}_2 \)-universal. Combining Proposition 2.6 with Proposition 6.3 we can see that the product space \(EM_{(k,k)} \times \prod_{(i,j) \in K^2 \setminus \{(k,k)\}} EM_{(i,j)} \) is strongly \(\mathcal{M}_2 \)-universal, and therefore so is \(EM(X) \). Hence the space \(EM(X) \) is an \(\mathcal{M}_2 \)-absorbing set in \(PM(X) \). Combining this with Theorems 2.2 and 2.1 we conclude that \(EM(X) \) is homeomorphic to \(c_0 \). □

References

[1] J.M. Aarts and T. Nishiura, Dimension and extensions, North-Holland Mathematical Library, 48, North-Holland Publishing Co., Amsterdam, 1993.
T. Banakh, T. Radul and M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, Mathematical Studies Monograph Series 1, VNTL Publishers, Lviv, 1996.

T. Banakh, I. Stasyuk, E.D. Tymchatyn and M. Zarichnyi, Extension of functions and metrics with variable domains, Topology Appl. 231 (2017), 353–372.

M. Bestvina and J. Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), 291–313.

R. Cauty, Les fonctions continues et les fonctions intégrables au sens de Riemann comme sous-espaces de L^1, Fund. Math. 139 (1991), no. 1, 23–36.

F. Hausdorff, Erweiterung einer Homöomorphie, Fund. Math. 16 (1930), 353–360.

Y. Ishiki, An interpolation of metrics and spaces of metrics, arXiv: 2003.13227 [math.MG].

K. Koshino, The space consisting of uniformly continuous functions on a metric measure space with the L^p norm, Topology Appl. 282 (2020), 107303.

K. Koshino, Characterizations of manifolds modeled on absorbing sets in non-separable Hilbert spaces and the discrete cells property, Colloq. Math. 167 (2022), 127–147.

K. Koshino, The topological classification of spaces of metrics with the uniform convergence topology, arXiv: 2112.07237 [math.GN].

K. Sakai, Geometric Aspects of General Topology, Springer Monographs in Mathematics, Springer, Tokyo, 2013.

K. Sakai, Topology of Infinite-Dimensional Manifolds, Springer, SMM, Springer, Tokyo, 2020.

J. van Mill, The infinite-dimensional topology of function spaces, North-Holland Math. Library, 64, North-Holland Publishing Co., Amsterdam, 2001.

H. Yang, K. Sakai and K. Koshino, A function space from a compact metrizable space to a dendrite with the hypo-graph topology, Open Math. 13, (2015), 211-228.

Z. Yang and X. Zhou, A pair of spaces of upper semi-continuous maps and continuous maps, Topology Appl. 154, (2007), no. 8, 1737–1747.

(Katsuhisa Koshino) Faculty of Engineering, Kanagawa University, Yokohama, 221-8686, Japan

Email address: ft160229no@kanagawa-u.ac.jp