The Kind of Conception Affects the Kind of Cesarean Delivery in Primiparous Women

Evangelia Antoniou, Eirini Orovou, Maria Iliadou, Angeliki Sarella, Ermioni Palaska, Nikolaos Rigas, Georgios Iatrakis, Maria Dagla

ABSTRACT

Background: So far, multiple factors have been found to be related to the IVF procedure, the most prevalent being extremes of maternal age, infections, previous gynecological history, infertility and others. Although women achieve the coveted pregnancy with the development of IVF technology, the rapid increase contributes to the increase of primary cesarean sections rates. Objective: The aim of the study was to identify if the kind of conception affects the kind of cesarean delivery among primiparous women in Greece. Methods: This cross-sectional observational study took place from September 2019 to February 2020 at the University Hospital of Larisa in Greece. One hundred and sixty-two primiparous women who underwent a cesarean section (c-section) after IVF (n=27) and natural conception (n=135) participated in the study. Results: The mean age of the IVF and natural conception groups were 36.22 and 31.08 years, respectively. Nineteen (70.4%) women of the IVF group had a previous medical or gynecological history in contrast to 48 (35.6%) women of the natural conception group. Only 55.6% of the IVF group had a full-term pregnancy unlike 88.1% of women in the natural conception group. An elective c-section was performed in 18 (66.7%) of the women who conceived after IVF, as opposed to 45 (33.3%) of the women who conceived naturally. Conclusion: This cross-sectional study showed that IVF conception was associated with high rates of elective cesarean section as opposed to women with natural conception. The causes of c-sections must be evidence based because the primary cesarean delivery is a major factor contributing to increased c-section rates.

Keywords: natural conception, c-section, in vitro fertilization, IVF conception, elective cesarean section, emergency cesarean section.

1. BACKGROUND

Techniques that involve the manipulation of oocytes outside the body are called assisted reproductive technology, with in vitro fertilization (IVF) as the most common form (1). Since the first (IVF) baby was born in 1978, IVF methods have increased dramatically and now account for 1.6% and 4.5% of all live births in the United States and Europe respectively (2). Originally yielding single-digit success rates, IVF nowadays is successful in nearly 50% of the cases in women younger than 35 years old (3).

Approximately 25% to 35% of infertile women are found to have previous gynecological history such as infection or endometriosis (4) and the rehabilitation of the problem with laparoscopic surgery shows the importance of a healthy pelvic system in female fertility (1). When intrauterine fertilization fails, IVF can also increase pregnancy rates in couples where the male partner has a low number of motile sperm. Furthermore, women with a reduced number of oocytes or without oocytes can also get pregnant with donor oocytes or donor embryos after IVF procedure (5).

Women after IVF conception are a special population of pregnant women. Most of the time, these women are older than women conceiving naturally, due to many years of infertility. Actually, advanced age is a risk factor for female infertility as well as, pregnancy loss, fetal anomalies, stillbirth, and obstetric complications (6). The intentional delay in pregnancy facilitated by the availability of effective contraception, can be attributed to increasing...
The Kind of Conception Affects the Kind of Cesarean Delivery in Primiparous Women

2. OBJECTIVE

The aim of the study was to identify if the kind of conception affects the kind of cesarean delivery among primiparous women in Greece.

3. MATERIAL AND METHODS

Participants

This cross-sectional study took place from July 2019 to February 2020 at the Obstetrics Clinic of the University Hospital of Larisa in Greece. It was approved by the University Hospital Ethics Committee. Approval Number: 18838/08-05-2019.

During the research period 633 births took place. Of these, 268 (42%) involved vaginal deliveries and 365 (58%) c-sections. The c-sections consisted of 203 (64%) women with previous c-section and 162 (44.4%), who underwent a primary cesarean delivery (Figure 1). In order to have a sample that would allow us to fulfill the aim of this study, we selected women with primary c-section. This sample was divided into two different groups; one group of 135 women with natural conception and one group of 27 women after IVF conception (Figure 2). All women had a medical surveillance dossier from which the demographics and medical data were obtained.

Although there is no evidence that the high c-section rates reduced maternal-child perinatal morbidity and mortality, c-sections have been increasing both in high and low income countries (35). An overall of 29.7 (21.1%) million deliveries by c-section were performed in 2015, almost doubling the rate of 2000 (12.1%), while it is estimated that 6.2 million c-sections were performed without medical reason each year worldwide (36). The primary c-section is a major factor of increasing c-section rates since it carries a risk of repeating this kind of delivery in future pregnancies due to the fear of uterine scar (37, 38), justifying the Gragin’s dictum “once a cesarean always a cesarean” (39).

2. OBJECTIVE

The aim of the study was to identify if the kind of conception affects the kind of cesarean delivery among primiparous women in Greece.

3. MATERIAL AND METHODS

Participants

This cross-sectional study took place from July 2019 to February 2020 at the Obstetrics Clinic of the University Hospital of Larisa in Greece. It was approved by the University Hospital Ethics Committee. Approval Number: 18838/08-05-2019.

During the research period 633 births took place. Of these, 268 (42%) involved vaginal deliveries and 365 (58%) c-sections. The c-sections consisted of 203 (64%) women with previous c-section and 162 (44.4%), who underwent a primary cesarean delivery (Figure 1). In order to have a sample that would allow us to fulfill the aim of this study, we selected women with primary c-section. This sample was divided into two different groups; one group of 135 women with natural conception and one group of 27 women after IVF conception (Figure 2). All women had a medical surveillance dossier from which the demographics and medical data were obtained.

Although there is no evidence that the high c-section rates reduced maternal-child perinatal morbidity and mortality, c-sections have been increasing both in high and low income countries (35). An overall of 29.7 (21.1%) million deliveries by c-section were performed in 2015, almost doubling the rate of 2000 (12.1%), while it is estimated that 6.2 million c-sections were performed without medical reason each year worldwide (36). The primary c-section is a major factor of increasing c-section rates since it carries a risk of repeating this kind of delivery in future pregnancies due to the fear of uterine scar (37, 38), justifying the Gragin’s dictum “once a cesarean always a cesarean” (39).

2. OBJECTIVE

The aim of the study was to identify if the kind of conception affects the kind of cesarean delivery among primiparous women in Greece.

3. MATERIAL AND METHODS

Participants

This cross-sectional study took place from July 2019 to February 2020 at the Obstetrics Clinic of the University Hospital of Larisa in Greece. It was approved by the University Hospital Ethics Committee. Approval Number: 18838/08-05-2019.

During the research period 633 births took place. Of these, 268 (42%) involved vaginal deliveries and 365 (58%) c-sections. The c-sections consisted of 203 (64%) women with previous c-section and 162 (44.4%), who underwent a primary cesarean delivery (Figure 1). In order to have a sample that would allow us to fulfill the aim of this study, we selected women with primary c-section. This sample was divided into two different groups; one group of 135 women with natural conception and one group of 27 women after IVF conception (Figure 2). All women had a medical surveillance dossier from which the demographics and medical data were obtained.

Although there is no evidence that the high c-section rates reduced maternal-child perinatal morbidity and mortality, c-sections have been increasing both in high and low income countries (35). An overall of 29.7 (21.1%) million deliveries by c-section were performed in 2015, almost doubling the rate of 2000 (12.1%), while it is estimated that 6.2 million c-sections were performed without medical reason each year worldwide (36). The primary c-section is a major factor of increasing c-section rates since it carries a risk of repeating this kind of delivery in future pregnancies due to the fear of uterine scar (37, 38), justifying the Gragin’s dictum “once a cesarean always a cesarean” (39).
The medical and demographic data were collected in the 2nd day after childbirth, which coincides with the recovery of the women after surgery.

Socio-Demographic Questionnaire

The research-made screening form included items on demographic, social, medical (obstetric neonatal) and mental characteristics of the participants.

Medical Records

Data were collected from the women’s medical records (which are paper-based in Greece), including information about the mothers’ health before, during, and after the surgery. More specifically, the medical, gynecological and mental history and the pathology of gestation were recorded, as well as the type of conception, the causes that led to EMCS or ELCS and any postoperative complications. The combination of questionnaire and medical record was used to better detect information about the women’s socioeconomic status and health level.

Statistical Analysis

For the comparison of proportions, Mann–Whitney U test and chi-square and Fisher’s exact tests were used. A logistic regression analysis was not applied since IVF group was only 27 women. All statistic tests were two-tailed, with a significant set at p<0.05. All statistical analyses were performed with SPSS 22.0 for Windows (SPSS; Chicago, IL, USA).

4. RESULTS

A cross-sectional observation study was conducted with a sample of 162 primiparous women after c-section, who were divided into a group of a) 135 women who conceived through a natural process (83.4%); and b) 27 women who conceived through an IVF process (16.6%) (Figure 2). A chi-square test and Fischer’s exact test were used to compare proportions of normal conception and IVF conception with other variables on a nominal and ordinal scale. The influence of maternal age to the type of conception was examined via a Mann–Whitney U test (Table 1). Differences were considered to be statistically significant at a p-value of 0.05. The analysis shows that the mean age (36.22) of the mothers after IVF conception was statistically significantly higher than the mean age (31.80) of the mothers after natural conception (p<0.001) (Table 1).

The socio-demographic, pregnancy and delivery characteristics are shown in Table 2. The analysis showed that variables such as family status (p=0.324), financial status (p=0.809), educational level (p=0.563), occupation (p=0.425), nationality (p=0.802) and minority (p=0.842) do not appear to be statistically significant between the two groups. On the contrary, statistically significant differences were found between the two groups concerning the pathological health history (p=0.001), the duration of pregnancy (the weeks of gestation age) (p=0.001), the type of c-section (p=0.001), the causes of c-section (p=0.001), and the admission of a neonate in NICU (p=0.001). More specifically, women with pathological health history (diabetes, autoimmune and gynecological problems), prematurity (gestation age <37 weeks), elective c-section, the use of IVF procedure as a cause of c-section and admission in NICU due to prematurity seem to have a higher proportion in the group of women after IVF conception in relation to the group of women who conceived through a natural process (Table 2).

5. DISCUSSION

This is the first time that maternal and perinatal variables are researched relating to the kind of conception (natural conception or after IVF procedures) in the case of primiparous women who had given birth with c-section. According to Table 2, apart from the maternal age, there are no statistically significant differences in the demographic characteristics between the 2 groups of women. The above findings show that in public Greek hospitals, the socio-economic advantage does not apply to infertile couples who choose the IVF procedure as in other European countries (40).

It has long been clear that the maternal age has been associated with pathology of gestation such as diabetes, preeclampsia, infections, hormonal disorder, placental and myometrial vascular lesions, but also with burdened pathological situations during pregnancy (17, 41). Our results show that women who had conceived with IVF procedures are of a higher mean age than the women who conceived naturally (p<0.001). In the female fetus, the proliferation of germ cells stops at about 20 weeks, resulting in women being born with a defined number of primordial follicles. At birth, the female neonate has approximately 5 million primordial follicles that are reduced to about 500.000 during menstruation. With each menstrual cycle, follicular depletion continues, with a decline to approximately 25.000 at the age of 37 and 1000 near menopause. The decline usually begins at age 52 with a dramatic drop after age 57 (7). So, increased maternal age is related to conception with IVF procedures, a result that has been identified in other studies (41, 42, 8). This finding is useful for the development of reproductive policies as we know that the mean age of women in Europe giving birth to their first child has gradually increased from 28.7 in 2013 to 29.1 in 2017. Also, Greece is one of the countries with the highest mean age at birth of first child in Europe (45).

Our findings showed that only 55.6% of IVF women had a full-term pregnancy, as opposed to 88.1% of women of the natural conception group. Due to the effects of this phenomenon, 22.2% of the neonates of IVF mothers were...
The Kind of Conception Affects the Kind of Cesarean Delivery in Primiparous Women

women after IVF conception in relation to the group of women who conceived through a natural process (Table 2).

Table 2. Relation between the kind of conceptions and the socio-demographic pregnancy and delivery characteristics
The Kind of Conception
Family status
Single
In relationship
Married
Divorced
Engaged
Educational level
Primary school
Junior/High school
Senior High school
University
Msc
PhD
Occupation
Public/private sector
Freelance
Health care professional
Educators
Household
Unemployed
Financial status
Low
Middle
High
Nationality
Greek
Other
Minority
No
Yes
Pathological health history
No
Yes
Complications during pregnancy
No
Placenta location problems
Placenta insufficiency
Infection
Diabetes
Cervical insufficiency/Premature contractions
Duration of pregnancy (the gestation weeks)
37 + (Fullterm).
32-36+6 (late preterm)
22-27.6 (extreme preterm)
Type of c-section
Emergency
Elective
Causes of c-section
IVF
Twins gestation
IVF and twin's gestation
Abnormal fetal position
Placenta location problems/ Bleeding
Abnormal heart rate/ abnormal NST
Failure of labor to progress
Mothers desire
Medical history
Preeclampsia
Complications after c-section
No
Yes
Admission in NICU
No
Yes
Perinatal stress. Breathing disorder
No
Yes
Prematurity
No
Yes

*Fisher’s exact test; p<0.05.

Discussion

This is the first time that maternal and perinatal variables are researched relating to the kind of conception (natural conception or after IVF procedures) in the case of primiparous women who had given birth with c-section. According to Table 2, apart from the maternal age, there are no statistically significant differences in the demographic characteristics between the 2 groups of women. The above findings show that in public Greek hospitals, the socio-economic advantage does not apply to infertile couples who choose the IVF procedure as in other European countries [40].

It has long been clear that the maternal age has been associated with pathology of gestation such as diabetes, preeclampsia, infections, hormonal disorder, placental and myometrial vascular lesions, but also with burdened pathological situations during pregnancy [17, 41]. Our results show that women who had conceived with IVF procedures are of a higher mean age than the women who conceived naturally (p<0.001). In the female fetus, the proliferation of germ cells stops at about 20 weeks, resulting in women being born with a defined number of primordial follicles.
admitted to the NICU, as a result of prematurity, while only 3% of neonates after natural conception were born prematurely and admitted to the NICU. A meta-analysis published by Cavoretto, P et al., in 2017 (44), showed an increased risk of preterm birth, by approximately 80%. One of the main causes reported in this study is the type of infertility treatment and based on this finding; the authors suggest that infertility itself is a risk factor for preterm birth.

In this study, the pathological health history was more common in the IVF group (70.4%) compared to the natural conception group (55.6%) (p=0.001). This is a result that has also been recognized in other studies (45-48). Pathological conditions, such as polycystic ovary syndrome, which represents 80% of anovulatory infertility cases, are associated with the IVF procedure (49, 50).

Traditionally, IVF has involved the transfer of multiple embryos in order to maximize the possibility of a live birth; however, as IVF rates increase over time, the possibilities of multiple pregnancies increase respectively (25). Nevertheless, in our results twin gestations were more common among women with IVF conception and constitute one of the most important causes of c-section in Greece. Furthermore, the option of c-section for the group of IVF, and specifically of a scheduled one, reveals that both women and their gynecologists are reluctant to accept the risk of vaginal delivery (51, 52).

Another finding of our study is that women after IVF conception were more likely to undergo an ELCS, in contrast to women with natural conception who undergo more often an EMCS. This phenomenon explains the probability of the fear of the obstetricians about the outcome of an IVF pregnancy (53), as well as the view of some women who may perceive cesarean delivery to be safer for their babies than vaginal birth (54). It seems that IVF procedure is a stressful event for the affected women who may become pregnant after several failed attempts, they are older, and they are more at risk for complications during pregnancy. However, every painful IVF procedure entails daily injections of hormones and great expenditure in time, energy, and money. All these stressful factors could play a role in the decision of mothers and doctors to plan an ELCS at a time convenient for both of them.

In fact, an IVF pregnancy is no different from a natural one. However, the above factors, appear to be causes for c-section worldwide (28) and contributes to the increase of c-section rates globally. C-section can have immediate and long-term complications for the mother and the child (55). Nevertheless, the indications for c-section should be evidence-based only. That way, vaginal delivery will be supported.

Strengths and limitations

The present study has some limitations. One of them is the small sample size that prevented us from using logistic regression for the statistical analysis. Moreover, the IVF factor as a cause for c-section was so strong that overshadowed other factors that could lead to a c-section.

This is the first time, that a study researched mothers’ characteristics, pregnancy and delivery variables in relation with the kind of conception (natural conception or after IVF procedures) in the case of primiparous women who had given birth with c-section. Another strong points of the article is that the study was conducted at a university hospital that covers a large health district and provides IVF services.

6. CONCLUSION

This study documented that the type of conception is related to the kind of c-section. As we showed, women with IVF were more likely to have an ELCS compared to those who conceived naturally. Furthermore, the IVF group is of a higher mean age than the natural conception group, more burdensome health history and less likely to have a full-term pregnancy. This research confirms findings which suggest that the population of women who conceive after an IVF is different from the population of women who conceive naturally, and so, the IVF population deserves a closer dedicated midwifery and obstetrician care and follow-up. However, considering the short-term and long-term effects of c-section on the mother’s and child’s health, health policies related to the reduction of primary c-sections should be implemented.

- Patient Consent Form: All participants were informed about subject of the study.
- Authors contribution: E.A; E.O; M.I.; A.S; E.P.; N.R.; G.I., and M.D contributed to the design and methodology and data analysis of the research. E.A conceived and designed the study and prepared the manuscript. All authors equally contributed to this manuscript. All authors have read and agreed to the published version of the manuscript.
- Conflict of interest: There are no conflicts of interest.
- Financial support and sponsorship: Nil.

REFERENCES

1. Choe, J.; Archer, J. S.; Shanks, A. L. In Vitro Fertilization. In StatPearls; StatPearls Publishing: Treasure Island (FL), 2020.
2. Sunderam, S.; Kissin, D. M.; Crawford, S. B.; Folger, S. G.; Boulet, S. L.; Warner, L.; Barfield, W. D. Assisted Reproductive Technology Surveillance – United States, 2015. Morb. Mortal. Wkly. Rep. Surv. Summ. Wash. DC 2002 2018, 67 (5), 1–28. https://doi.org/10.15585/mmwr.ssw6705a1.
3. Eskew, A. M.; Jungheim, E. S. A History of Developments to Improve in Vitro Fertilization. Mo. Med. 2017, 114 (5), 156–159.
4. Ahmad, G.; Watson, A.; Vandekerkhove, P.; Lilford, R. Techniques for Pelvic Surgery in Subfertility. Cochrane Database Syst. Rev. 2006, No. 2, CD000221. https://doi.org/10.1002/14651858.CD000221.pub3.
5. O’Connor, K. A.; Holman, D. J.; Wood, J. W. Declining Fecundity and Ovarian Ageing in Natural Fertility Populations. Maturitas 1998, 30 (2), 127–136. https://doi.org/10.1016/s0378-5122(98)00068-1.
6. Sauer, M. V. Reproduction at an Advanced Maternal Age and Maternal Health. Fertil. Steril. 2015, 103 (5), 1156–1143. https://doi.org/10.1016/j.fertnstert.2015.03.004.
7. George, K.; Kamath, M. S. Fertility and Age. J. Hum. Reprod. Sci. 2010, 3 (3), 121–123. https://doi.org/10.4103/0974-1208.74152.
8. Seshadri, S.; Morris, G.; Serhal, P.; Saab, W. Assisted Conception in Women of Advanced Maternal Age. Best Pract. Res. Clin. Obstet. Gynaecol. 2020. https://doi.org/10.1016/j.bpo.2020.06.001.
bipoor, A.; Maroufizadeh, S.; Hosseini, R.; Baradaran, H. R. Obstetric and Perinatal Outcomes of Singleton Pregnancies Conceived via Assisted Reproductive Technology Complicated by Gestational Diabetes Mellitus: A Prospective Cohort Study. BMC Pregnancy Childbirth 2018, 18 (1), 495. https://doi.org/10.1186/s12884-018-2115-4.

Betran, A.; Torloni, M.; Zhang, J.; Gülmezoglu, A.; Aleem, H.; Althabe, F.; Bergholt, T.; de Bernis, L.; Carroll, G.; Denex-Tharaux, C.; Devlieger, R.; Debonnet, S.; Duan, T.; Hanson, C.; Hofmeyr, J.; Gonzalez Pérez, R.; de Jonge, A.; Khan, K.; Lansky, S.; Lazdane, G.; Lumbiganon, P.; Mackeen, D.; Mahaini, R.; Manyame, S.; Mathai, M.; Mikolajczyk, R.; Mori, R.; De Mucio, B.; Oladapo, O.; Ortiz-Panozo, E.; Ouedraogo, L.; Parker, C.; Robson, M.; Serruya, S.; Souza, J.; Spong, C.; Stanton, C.; Stanton, M.; Sullivan, E.; Temmerman, M.; Tita, A.; Tunçalp, Ö.; Velebil, P.; Vogel, J.; Weber, M.; Woydyla, D.; Ye, J.; Yunis, K.; Zamora, J.; Zongo, A. WHO Statement on Cesarean Section Rates. Bjog 2016, 123 (5), 667–670. https://doi.org/10.1111/1471-0528.13526.

Betrán, A. P.; Merialdi, M.; Lauer, J. A.; Bing-Shun, W.; Thomas, J.; Van Look, P.; Wagner, M. Rates of Cesarean Section: Analysis of Global, Regional and National Estimates. Paediatr. Perinat. Epidemiol. 2007, 21 (2), 98–115. https://doi.org/10.1111/j.1365-3016.2007.00476.x.

Cegolon, L.; Mastrangelo, G.; Maso, G.; Dal Pozzo, G.; Ronfani, L.; Cegolon, A.; Heymann, W. C.; Barbone, F. Understanding Factors Leading to Primary Cesarean Section and Vaginal Birth After Cesarean Delivery in the Friuli-Venezia Giulia Region (North-Eastern Italy), 2005–2015. Sci. Rep. 2020, 10 (1), 1–18. https://doi.org/10.1038/s41598-019-57037-y.

Safe Prevention of the Primary Cesarean Delivery https://www.acog.org/en/Clinical/ClinicalGuidance/ObstetricCareConsensusArticles/2014/03/SafePreventionofthePrimaryCesareanDelivery (accessed Oct 18, 2020).

Barber, E. L.; Lundsberg, L. S.; Belanger, K.; Pettker, C. M.; Funai, E. F.; Illuzzi, J. L. Indications Contributing to the Increasing Cesarean Delivery Rate. Obstet. Gynecol. 2011, 118 (1), 29–38. https://doi.org/10.1097/AOG.0b013e31821e56f5.

Goisis, A.; Häberl, S. E.; Hanevik, H. I.; Magnus, M. C.; Kravdal, Ø. The Demographics of Assisted Reproductive Technology Births in a Nordic Country. Hum. Reprod. 2020, 35 (6), 1441–1450. https://doi.org/10.1093/humrep/deaa055.

Waldenström, U.; Cnattingius, S.; Vixner, L.; Norman, M. Advanced Maternal Age Increases the Risk of Very Preterm Birth, Irrespective of Parity: A Population-Based Register Study. BJOG Int. J. Obstet. Gynaecol. 2017, 124 (8), 1235–1244. https://doi.org/10.1111/1471-0528.14368.

Tan, T. Y.; Lau, M. S. K.; Loh, S. F.; Tan, H. H. Female Ageing and Reproductive Outcome in Assisted Reproduction Cycles. Singapore Med. J. 2014, 55 (6), 305–309. https://doi.org/10.11622/sm ej.2014081.

Women are having their first child at an older age https://ec.europa.eu/eurostat/web/products-eurostat-news/-/DDN-201905318-1 (accessed Nov 15, 2020).

Cavoretto, P.; Candiani, M.; Giorgione, V.; Inversetti, A.; Abu-Saha, M. M.; Tiberio, F.; Sigismondi, C.; Farina, A. Risk of Spontaneous Preterm Birth in Singleton Pregnancies Conceived after IVF/ICSI Treatment: Meta-Analysis of Cohort Studies. Ultrasound Obstet. Gynecol. 2018, 51 (1), 43–53. https://doi.org/10.1002/uog.18950.

Infections as a Cause of Infertility | GLOWM https://www.glowm.com/section_view/headings/infections-as-a-cause-of-infertility/item/327 (accessed Nov 27, 2020).

Geva, E.; Amit, A.; Lerner-Geva, L.; Azem, F.; Yovel, I.; Lessing, J. B. Autoimmune Disorders: Another Possible Cause for in-Vitro Fertilization and Embryo Transfer Failure. Hum. Reprod. Oxf. Engl. 1995, 10 (10), 2560–2563. https://doi.org/10.1093/oxfordjournals.humrep.a135745.

Butelli, E.; Paffoni, A.; Fedele, L.; Somigliana, E. The Impact of Thyroid Autoimmunity on IVF/ICSI Outcome: A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2016, 22 (6), 775–790. https://doi.org/10.1093/humupd/dmw019.

Lin, Y.-H.; Chen, K.-J.; Peng, Y.-S.; Chen, P.-C.; Yang, Y.-H. Type 1 Diabetes Impairs Female Fertility Even before It Is Diagnosed. Diabetes Res. Clin. Pract. 2018, 145, 151–158. https://doi.org/10.1016/j.diabres.2018.07.010.

Melo, A. S.; Ferriani, R. A.; Navarro, P. A. Treatment of Infertility in Women with Polycystic Ovary Syndrome: Approach to Clinical Practice. Clinics 2015, 70 (11), 765–769. https://doi.org/10.6061/clinics/2015(11)09.

Dennett, C. C.; Simon, J. The Role of Polycystic Ovary Syndrome in Reproductive and Metabolic Health: Overview and Approaches for Treatment. Diabetes Spectr. Publ. Am. Diabetes Assoc. 2015, 28 (2), 116–120. https://doi.org/10.2337/diaspect.28.2.116.

Sullivan, E. A.; Chapman, M. G.; Wang, Y. A.; Adamson, G. D. Population-Based Study of Cesarean Section after in Vitro Fertilization in Australia. Birth Berkeley Calif 2010, 37 (3), 184–191. https://doi.org/10.1111/j.1523-556X.2010.00405.x.

Saleh, A. M.; Dudenhausen, J. W.; Ahmed, B. Increased Rates of Cesarean Sections and Large Families: A Potentially Dangerous Combination. J. Perinat. Med. 2017, 45 (5), 517–521. https://doi.org/10.1515/jpm-2016-0242.

Bergholt, T.; Østberg, B.; Legarth, J.; Weber, T. Danish Obstetricians’ Personal Preference and General Attitude to Elective Cesarean Section on Maternal Request: A Nation-Wide Postal Study. Acta Obstet. Gynecol. Scand. 2004, 83 (3), 262–266. https://doi.org/10.1034/j.1600-0412.2004.00445.x.

Cammu, H.; Martens, G.; Keirse, M. J. N. C. Mothers’ Level of Education and Childbirth Interventions: A Population-Based Study in Flanders, Northern Belgium. Birth Berkeley Calif 2011, 38 (3), 191–199. https://doi.org/10.1111/j.1523-556X.2011.00475.x.

Sandall, J.; Tribe, R. M.; Avery, L.; Mola, G.; Visser, G. H.; Homer, C. S.; Gibbons, D.; Kelly, N. M.; Kennedy, H. P.; Kidanto, H.; Taylor, P.; Temmerman, M. Short-Term and Long-Term Effects of Cesarean Section on the Health of Women and Children. Lancet Lond. Engl. 2018, 392 (10155), 1349–1357. https://doi.org/10.1016/S0140-6736(18)31950-5.