Streptomyces sp. J46의 세균성구멍병원균 Xanthomonas arboricola pv. pruni에 대한 항균 활성

이정은, 임다정, 김인선*
전남대학교 농화학과

Antibacterial Activity of Streptomyces sp. J46 against Bacterial Shot Hole Disease Pathogen Xanthomonas arboricola pv. pruni

Jeong Eun Lee, Da Jung Lim and In Seon Kim (Department of Agricultural Chemistry, Chonnam National University, Gwangju 61186, Korea)

Received: 2 March 2021/ Revised: 8 March 2021/ Accepted: 12 March 2021

Copyright © 2021 The Korean Society of Environmental Agriculture

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

BACKGROUND: Bacterial shot hole of stone fruits is a serious plant disease caused by *Xanthomonas arboricola pv. pruni* (Xap). Techniques to control the disease are required. In this study, microorganisms with antibacterial activity were isolated to develop as a microbial agent against the bacterial shot hole.

METHODS AND RESULTS: An isolate with the strongest activity among the isolates was identified as *Streptomyces avidinii* based on 16S rRNA gene sequence analysis and designated *Streptomyces sp. J46*. J46 showed suppression of bacterial leaf spot with a control value of 90% at 10 times-diluted cell free supernatant. To investigate antibacterial metabolites produced by J46, the supernatant of J46 was extracted with organic solvents, and the extracts were subjected to chromatography works. Antibacterial metabolites were not extractable with organic solvents. Both reverse and normal phase techniques were not successful because the metabolites were extremely water soluble. The antibacterial metabolites were not volatiles but protein compounds based on hydrolysis enzyme treatment.

CONCLUSION: Our study suggests that *Streptomyces* sp. J46 may be a potential as an microbial agent against bacterial shot hole. Further study to identify the metabolites is required in more detail.

Key words: Bacterial Shot Hole, Biocontrol, *Streptomyces*, *Xanthomonas arboricola pv. pruni*, Plant Pathogen

서 론

세균성구멍병은 복숭아, 자두 등의 핵과류를 대상으로 고온 다습한 지역에서 발생하는 식물병으로서 4월부터 발생하여 장마기인 7월에 발병의 최성기에 이른다. 세균성구멍병은 병든 식물조직에서 겨울을 지낸 병원균이 봄에 적절한 온도와 습도 조건에서 분출되어 바람이나 빗물에 의해 전염된다. 이는 잎, 과실, 가지에 발생하는 반으로 특히 과실에 발생하면 작은 반점으로 시작하여 갈색으로 변하고 불규칙한 모양으로 갈라지게 되어 상품가치가 저하되고 경제적 피해가 크다[1].

세균성구멍병을 일으키는 병원균으로는 *Xanthomonas arboricola pv. pruni*, *Pseudomonas syringae*, *Erwinia nigrifluens* 등이 있다. 특히 *Xanthomonas arboricola pv. pruni* (이하 ‘Xap’)는 잎의 기공을 통해 들어가 높은 습도가 24-48시간 동안 유지되면 잎의 감염이 10-14일 이내에 유도된다[2, 3]. Xap은 1903년에 미국에서 최초로 보고되었으며
최근에는 아시아, 아프리카, 유럽 등 전역에 퍼져있다[4]. 우리나라에서 세균성 getConnection에서의 발병기록은 1988년에 처음 보고되었으며 2005년대 Xap과 함께 Erwinia nigrifluens가 원인 세균이라고 규정되었다[5]. 최근 들어 우리나라에서 Xap에 의한 병소와 세균성getConnection으로 인한 작물의 피해 보고되고 있으며 이를 제거하기 위한 Xap에 대한 연구가 이루어지고 있다.

세균성getConnection의 방제를 위한 방법으로는 감염된 작물의 제거와 물로 흙과 나비로 바갈이 이동을 방지할 수 있으므로 방충구를 설정하는 것이 있다[6]. 화학적 방제법은 dithionan, oxytetracycline, validamycin, streptomycin, oxolinic acid 등의 살균제를 사용하거나 6-6식 보도액 혹은 4-8식의 보도액을 살포한다. 하지만, 살균제의 사용효과가 증가함에 따라 몇몇 작물은 특히 침투가행성 성균에 대한 저항성이 발생하고 이로 인해 약효가 감소하고 있다[7]. 살균제 중 보도액은 병소와 배지에 걸림제방에 사용되고 있으나 시기별로 사용효도가 달라 약효를 응하는 재료가 발생하고 있다[8]. 또한, 최근 기후변화로 인한 환경적 요인으로 세균성getConnection병원균의 피해가 지속적으로 증가한 것으로 예측되고 있다[9]. 따라서 세균성getConnection을 효율적으로 방제하기 위한 다양한 제제 개발이 필요하다.

방선균은 2차 대사산물의 다양한 기능으로 인하여 산업적으로 가치 있는 미생물로 인식되고 있다. 역학분석으로 서식지 측으로 사용되고 있는 항생물질의 75%는 대규모로 사용되고 있는 항생물질 중 50%가 방선균에서 유래한 물질로 생산되고 있다[10]. 대표적인 예로서 Streptomyces kasugaensis로부터 분리된 항생제 kasugamycin은 역 대용역제로서 개발되었으며 인체 및 이동성이 낮아 다양한 제품으로 개발되어 사용되고 있다[11]. 또한, Streptomyces griseochromogenes에서 분리된 blasticidin-S는 역 대용역제로 현재가치 사용되고 있으며 항암 및 항바이러스 효과도 보고되었다[12, 13]. Polyoxin은 Streptomyces caecoi var. aseorues로서 분리된 물질로 병균의 세포벽 키틴질의 합성을 저해한다고 알려져 있으며 식물성 항생물질에서 얻어진 것으로 보고되고 있다[14, 15]. 이러한 연구는 방선균이 유래한 대용역제의 탐색과 관련 연구는 잠재적 가치가 매우 높다는 것을 의미한다.

이에 본 연구에서는 세균성getConnection방제를 위한 미생물제제를 개발하기 위해 항세균 활성화 우선 방선균을 분리하고, 분리된 군주가 보유한 항세균 활성화의 특성을 시험하였다. 또한, 분리된 미생물의 방제액을 이용하여 세균성getConnection에 대한 방제로서 가능성을 시험하였다.

재료 및 방법

방선균의 분리 및 동정
방선균을 분리하기 위해 전남대학교 수목원에서 길이 30 cm 이내의 토양을 체취하여 음식환을 추가하여 토양 시료 1.0 g의 분리된 증류수 50 mL에 첨가하여 흙탕시킨 후 흙탕액 100 μL를 cycloheximide (50 mg/L)와 nalixinic (10 mg/L)가 포함된 humic acid vitamin (HV) agar 배지에 완전도록한 다음 30℃에서 48시간 동안 배양하였다. 방선균의 분리는 사용된 HV agar는 humic acid 1 g/L, KCl 1.7 g/L, NaHPO4 0.5 g/L, MgSO4 0.5 g/L, CaCO3 0.02 g/L, FeSO4 0.01 g/L, VB stock solution 1 mL/L (Vb1, Vb2, Vb3, niacin, D-calcium pantothenate, inositol, 4-aminoisoic acid 50 mg, biotin 25 mg, 100 mL distilled water)와 agar 15 g/L로 구성하였다. 배양 후 용산상 형태적으로 선반된 각 각의 분리굴을 Bennett 배지(D-glucose 10 g/L, yeast extract 2 g/L, peptone 2 g/L, beef extract 1 g/L)에서 28℃와 200 rpm 조건에서 96시간 동안 진행배양하였다. 항세균 활성은 방제액을 이용하여 Xanthomomas arboricola pv. pruni (이하 'Xap')에 대해 조사하였다. 항세균 활성시험에서 우수한 활성을 보인 균주를 선발한 다음 16S-rDNA 염기서열 분석을 통하여 동정하였다[16].

항세균 활성 시험
항세균 활성 시험은 paper disc 환경법으로 수행하였다[17]. Xap을 tryptic soy broth (TSB)에서 30℃와 180 rpm 조건으로 24시간 동안 진행배양한 다음 배양액을 일부를 면역으로 회색하여 OD600 0.1이 되게 막힌 후 TSA 에 1.0% (v/v) 수분 이상하게 접종하였다. 상기에서 분리된 각 균주의 방제액을 면역 paper disc (Advantec, Japan)에 30 μL씩 분무한 후 TSA에 배치하였다. 배치 후 30℃에서 48시간 동안 배양시킨 다음 paper disc를 중심으로 형성된 Xap의 생장임계권의 반경을 측정하였다.

항세균 물질의 물리화학적 안정성 시험
분리된 균주가 생산하는 항세균 물질의 pH에 대한 영향을 알아보기 위하여 배양액의 상징성액을 6N HCl 또는 6N NaOH를 사용하여 pH를 2.0, 4.0, 6.0, 9.0, 11.0로 조정한 후 24시간 동안 식물성 배지에서 방제하였다. 방치 후 배양액의 pH를 7.0으로 중화시킨 후 항세균 활성을 조사하였다. 이때 대조군은 배양 후 pH를 조정하지 않은 배양액의 상징성액이었다. 균주가 생성하는 항세균 물질의 온도에 대한 영향을 조사하기 위하여 배양액의 상징성액을 0, 20, 40, 60, 80℃에서 24시간 동안, 100℃에서 2시간 동안, 그리고 120℃에서 15분 동안 방치 후 실험적으로 식별된 상징성액의 항세균 활성을 조사하였다. 이때 대조군은 상기와 같이 얻은 배양액의 상징성액이었다.

배양배지에 따른 항세균 활성 시험
균주의 배양배지에 따른 항세균 활성을 조사하기 위해 Table 1에서 보이던 바와 같이 기존에 알려진 방선균 배지의 조성을 변경하여 배양하였다. 배양 후 군의 상징성액을 이용하여 상기와 같이 항세균 활성을 조사하였다. 대조군은 Bennett 배지에 배양한 균주의 상징성액이었다.
세균성 구멍병에 대한 방제효능 시험

Xap이 없이기는 세균성 구멍병에 대한 균주의 방제효능시험은 detached leaf assay 방법으로 수행하였다[18]. 복숭아 나무의 신초(6-9 cm)를 체취하여 습도가 유지되는 플라스틱 상자에 넣고 신초를 면이수로 3회 표면 세척하였다. 세척 후 잔액을 식초로 간조시간 다음 상기에서 얻은 균주의 성장액에 5초 동안 접촉제하였다. 접촉 후 한편배지에 1시간 동안 반응한 다음 면을 위에 적용해 잔은 표면에 씌어 구획하였다. 상기에서 얻은 병원균 Xap의 최적 접촉시를 측정하기 위해 다른 후온도 28°C와 장기기 16L:8D에서 5일 동안 배양하였다. 대조군은 유효성분인 oxytetracycline과 streptomycin인 산균계 아그리바이식(생화학)를 사용하였다. 발병률과 방제효능은 다음과 같은 (식1)과 (식2)로 산출하였다.

\[
\text{발병률(%)=100} \times \left(\frac{\text{병기 수}}{\text{처리구의 백분율}}\right)\quad \text{(식1)}
\]

\[
\text{방제기(%)=100} - \left(\frac{\text{방제구의 백분율}}{\text{무처리구의 발병률}}\right)\quad \text{(식2)}
\]

식물병원균에 대한 스펙트럼 활성 조사

식물병원균인 세균 13종과 진균 6종을 대상으로 균주의 스펙트럼 활성을 시행하였다. 식물병원균 세균은 Acidovorax avenae subsp. cattleyae (갈반병), Acidovorax korjacii (연어반병), Agrobacterium tumefaciens (근두암), Burkholderia glumae (이어서무병균), Clavibacter michiganensis subsp. michiganensis (야드음병), Pectobacterium carotovora subsp. carotovora (무리_STATE), Pectobacterium chrysanthemi (무리병), Pseudomonas syringae pv. actinidiae (궤근두암), Pseudomonas syringae pv. lachrymans(갈반병), Xanthomonas euvesicatoria (접무병), Xanthomonas axonopodis pv. citri 24-20 (감귤궤근두암), Xanthomonas oryzae pv. oryzae(이어서무병균), Ralstonia solanacearum(시들음병)이었으며 균체에 따라 TSA와 MAC에서 배양하였다.

P. syringae pv. actinidiae와 Xanthomonas 속은 28°C에 배양하였으며 나머지 세균은 30°C에서 배양하였다. 항산균 활성은 상기와 같은 방법으로 수행하였다. 식물병원균 공공인Rhizoctonia solani(양반무병균), Phytophthora capsici(고추병균), Fusarium oxysporum(시들음병), Glomerella cingulata(단백병), Alternaria brassicola(검은무병균), Botrytis cinerea(검은불곰팡이병)이였으며, potato dextrose agar(PDA)에서 배양하였다. 항산균 활성 조사는 균주의 처리에 따른 군사의 성장억제를 관찰하여 수행하였다. 군사는 군 사제로부터 2 cm 멀어진 PDA 위에 방란균의 성장영 30 µL를 포함한 paper disc를 올려 놓은 후 배양한 다음 균주의 성장저해를 관찰하여 수행하였다.

항산균 물질의 추출 및 정제

상기에서 분리한 균주가 생산하는 항산균 물질의 유기율에 추출성을 시험하기 위해 배양액을 8000 rpm으로 15분 동안 원심분리하여 균주를 제거하였다. 원심분리 후 얻어진 상장액은 동일한 부피의 ethyl acetate(EtOAc)로 2회 분배추출하였고, 추출 후 얻어진 수용액을 pH 2.0 조건에서 EtOAc로 추출하였으며, 얻어진 수용액을 다시 butanol로 추출하였다. 각각 얻어진 용액을 수용액을 이용하여 항산균 활성 조사하였다.

군주가 생산하는 항산균 물질을 분구하기 위해 배양액을 칼럼 크로마토그래피법으로 정제하였다. 본질 재배배양액의 색소를 제거하기 위해 활성탄 교반을 수행하였다. 이를 위해 균주의 배양액을 원심분리 후 균주를 제거하여 얻은 상장액에 6N HCl를 가하여 pH 2.0로 조정하였다. 상장액에 화학반응률 10% (w/v) 수준으로 참가하여 20분 동안 교반한 다음 액염과를 통해 pH 2.0 조건의 캐노미, pH 9.0 조건의 acetone 및 methanol(MeOH) 순으로 용출하였다.

C18 칼럼 정제를 위해 상기와 같이 활성탄 교반으로 얻어진 활성분을 C18 SPE 카트리지에서 용출시켰다. 용출시용액은 H2O와 MeOH의 혼합용액로서 10.0 → 8.2 → 6.4 → 4.6 → 2.8 → 0.3 (v/v, H2O:MeOH) 순으로 용출하였다. 각각의 용출액들은 항산균 활성의 시험에 이용하였다. 또한, 상기와 같이 활성탄 교반으로 얻어진 활성분을 coconut charcoal SPE를 이용하여 용출시킨 다음 pH 2.0 조건의 캐노미, pH 9.0 조건의 acetone 및 MeOH 순으로 용출시켜 항산균 활성을 조사하였다.

ODS 칼럼 정제를 위해 상기와 같이 활성탄 교반으로 얻어진 활성분을 C18 SPE 칼럼에 등가시킨 후 100 g ODS (6mm S-75 µm, YMC GEL, Japan)에서 정제하였다. 용출시용액은 100% (v/v) H2O로 이와 용액을 동결건조 후 항산균 활성 조사와 LC/MS (Shimadzu 10AD HPLC/AP1 2000) 분석을 수행하였다.

Thin layer chromatography (TLC) 분석을 위해 상기에서 얻은 C18 SPE 칼럼의 용출물을 순상 TLC (Silica gel 60 F254, 20 × 20 cm, Merck)로 분석하였다. 전게용에는

Table 1. Growth medium composition of the isolate J46
Medium
M1
M2
M3
M4
CHCl₃-MeOH-H₂O (55:36.9: v/v/v)이었으며 0.5% (v/v) 수준의 ρ-аниз알데히드를 분자하여 120℃ 조건의 오븐에서 발색시켰다. 또한 역상 TLC (PLC Silica gel 60 RP-18 F₂₅₄, 20 × 20 cm, Merck) 분석에 사용한 전용액은 MeOH-H₂O (30:70, v/v)이었으며 전제 후 ρ-аниз알데히드를 분자하여 발색시켰다. 발색 후 용액으로 관찰된 spot을 금어 모든 다음 50% (v/v) MeOH 수용액으로 추출한 후 항세균 활성을 조사하였다. 식 McGuinness (2008) (Supelco, USA)로서 100 μL를 분사하여 발색시켰다.

한편, HPLC을 이용한 항세균활성질의 정제를 위해 상기에서 얻은 C18 SPE 컬럼의 용용액을 HPLC (Dionex P680, Germoering, Germany) 분석을 통해 단처리하였다. 칼럼은 Kinetex C18 column (100 × 4.6 mm, 2.6 μm, 100 Å)와 Asahipak NH2P-50 4E column (250 × 4.6 mm, 5 μm, 100 Å)를 사용하였고 이온성은 acetoniitrile (ACN)과 유속수성으로서 ACN의 비율은 50% (v/v)이었으며 유속은 0.2 mL/min 이었다. 검출기는 photodiode array (PDA)이었으며 파장은 210, 240, 270, 310 nm였다. 활성물질의 단백질성 조사

균주가 생산하는 항세균 물질이 Xap의 생장에 미치는 영향을 알아보기 위하여 I-plate petri-dish (SPL Life Science, Korea)을 사용하여 Xap의 생장에 미치는 항세균 물질을 조사하였다. I-plate petri-dish 한쪽에는 Bennett agar를 접종하여 주된 1% (v/v) 수준으로 접종하였다. 다른 한쪽에는 TSA를 접종한 다음 상기에서 얻은 병균주 Xap 중 희석하여 1:20, 1:240, 1:270, 1:310 비율로 희석한 후 1% (v/v) 수준으로 접종하였다. 접종 후 28℃에서 48시간 동안 배양하여 대조군과 배양액을 접종하지 않은 Bennett 배지에 형성하였다.

고성미세 추출법(Solid Phase Microextraction, SPME)

세균에 유리함(150 mL)에 시료에서 얻은 균주의 배양액 (20 mL)을 넣은 다음 homosexual로 원하자게 밀봉하였다. 밀봉 후 50℃ 조건의 오븐에서 음용한 다음 PS/DVD fiber (Supelco, USA)가 장착된 미세추출 주기를 배양액 바로 윗부분에 배치하였다. 미세추출 주기를 1시간 동안 배치한 후 항성충분물을 원자분계 다음 희석된 물질을 MeOH로 추출하여 항세균 활성을 조사하였다.

활성물질의 단백질성 조사

균주가 생산하는 항세균 물질이 단백질성 물질인지 시험하기 위해 상기에서 얻은 추출물을 화학적 방법으로 첨전 후 가수분해 하였다. 유기용액을 이용한 단백질의 첨전은 -20℃에 보관한 acetone 1.0 mL를 균주의 상장액(200 μL)에 넣고 혼합한 후 -20℃에 10분 동안 방치시킨 다음 8000 rpm과 4℃에서 10분 동안 원심분리하여 수확하였다. 원심분리 후 상장액을 제거한 다음 젤보성을 10 mM phosphate buffer에 재용해시킨 후 항세균 활성을 조사하였다. Ammonium sulfate를 이용한 단백질의 첨전을 얻기 위하여 균주의 생장한 상장액 4℃에 보관한 후 ammonium sulfate를 조림적 첨전의 수준으로 얻어 두었다. 단백질농성 물질의 효소적 가수분해를 위해 상기에서 얻은 균주의 상장액에 pepsin, RNase, DNase를 총을 분리한 후 1,000 mg/L수준이 되도록 처리하였다. 처리한 후 실험에 12시간 동안 가수분해 시킨 다음 반응액을 이용하여 항세균 활성을 조사하였다.

통계처리

병균군 Xap에 대한 항세균 활성은 IBM SPSS 프로그램 (version 23.0, USA)의 One-way ANOVA와 Tukey 사후 검증방법을 이용하여 분석하였다.

결과 및 고찰

방산균의 분리 및 동정

토양시료를 방산균 선판 배지인 humic acid agar에 도달하여 배양한 후 방산균의 특성을 보이는 64개 균을 분리하였다 (Table 2). 분리된 균 중에서 Xanthomonas arboricola pv. pruni (Xap)에 대해 항균활성이 가장 우수한 균주를 선발하여 16S rRNA로 염기서열 분석을 수행한 결과 Streptomyces avidinii와 94%수준의 상동성을 보였다 (Fig. 1). 이에 상분리된 균주 Streptomyces sp. J46 (J46)으로 명명하였다. J46는 단수원 이산성으로 기초한 생화학적 특성을 조사한 결과 L-arginine, L-phenylalanine, Tween 80, 4-hydroxy benzoic acid, L-serine, N-acetyl-D-glucosamine, L-threonine, glycogen, glycy-L-glutamic acid에 대한 이산성이 높았다 (Table 3). 한편, J46은 pyruvic acid methyl ester, L-asparagine, Tween 40, D-cellobiose, α-ketobutyric acid 등을 탄소원으로 이용할 수 있었다. J46과 상동성이 가장 높은 S. avidinii는 단백질 streptavidin을 생산한다고 알려져 있으며 streptavidin은 박테릴바이러스나 바이러스에 대한 상충활성을 보고되었으며(19, 20), 본 연구에서 분리한 J46은 때에 제한에 대한 상충 활성을 보유하고 있음을 확인하였다. 이러한 결과는 J46에 S. avidinii와 16S rRNA 유전자 시험상 상동성이 높지만 서로 상이한 균주라는 것을 의미하였다.

J46의 배양시간에 따른 항균활성

방산균의 배양시간에 따른 항균활성

배양시간에 따른 J46의 생장기 paper disk 확산법에 기반한 항균활성을 조사한 결과 Fig. 2와 같았다. 배양 후 24시간 간격으로 항균활성이 관찰되지 않았으며 균주가 성장하면서 36
Table 2. Antibacterial activity of the isolates against *Xanthomonas arboricola pv. pruni*

Isolate	Activity¹⁾	Isolate	Activity¹⁾
1	-	33	-
2	-	34	-
3	-	35	-
4	+	36	+
5	+	37	+
6	+	38	+
7	+	39	+
8	+	40	++
9	-	41	+
10	-	42	-
11	+	43	++
12	-	44	-
13	+	45	+
14	-	46	+++
15	+	47	-
16	-	48	-
17	-	49	-
18	+	50	-
19	-	51	-
20	-	52	-
21	-	53	-
22	-	54	-
23	-	55	-
24	-	56	-
25	-	57	-
26	-	58	-
27	+	59	-
28	-	60	-
29	-	61	-
30	+	62	-
31	+	63	-
32	+	64	-

¹⁾ Inhibition zone (mm): +(0.10~0.20), ++(0.21~0.50), +++(0.51~0.80), ++++(>0.81).

Table 3. Biochemical characteristics of the isolate J46 based on carbon utilization

Carbon source	Carbon utilization¹⁾
β-Methyl-D-Glucoside	-
D-Galactonic acid	-
L-Arginine	++
Pyruvic acid methyl ester	+
D-Xylose	-
D-Galacturonic acid	-
L-Asparagine	+
Tween 40	+
Erythritol	-
2-Hydroxy benzoic acid	-
L-Phenylalanine	++
Tween 80	+
D-Mannitol	-
4-Hydroxy benzoic acid	++
L-Serine	++
α-Cyclodextrin	-
N-Acetyl-D-glucosamine	++
γ-Hydroxybutyric acid	-
L-Threonine	++
Glycogen	++
D-Gulcosamine acid	-
Itaconic acid	-
Glycyl-L-Glutamic acid	++
D-Cellobiose	+
Glucose-1-Phosphate	-
α-Ketobutyric acid	+
Phenylethyl-amine	-
α-D-Lactose	-
D,L-a-Glycerol phosphate	-
D-Malic acid	-
Putrescine	-

¹⁾ ++: >OD₆₉₀ 0.7, +: OD₆₉₀ 0.4~0.7, -: <OD₆₉₀ 0.4.

Fig. 1. Phylogenetic tree of the isolate J46 based on 16S rRNA gene sequences analyses. The numbers on the tree represent similarities between the strains.
Antibacterial Activity of Streptomyces sp. J46 against X. arboricola pv. pruni

Fig. 2. Growth (●) and inhibition activity (○) of the isolate J46 against Xanthomonas arboricola pv. pruni. The values indicate means ± SD of triplicates.

Fig. 3. Antibacterial activity of cell free supernatant of the isolate J46. The data means average values of triplicates. The different letters over the columns are significantly different each other by Duncan's multiple range test ($P < 0.05$).

시간 이후부터 항균활성이 현저하게 증가하였다. 또한, J46 상징액의 희석배수별 항균활동을 조사한 결과 10배 희석하였을 때 inhibition zone이 8.33 mm수준의 활성이 관찰되었 다(Fig. 3). 이는 J46이 생성하면서 Xap에 대한 항균물질을 생산함을 의미하였다. 현재까지 Xap의 생성을 억제하며 세균성구멍 병을 방해한다고 알려진 미생물은 Pseudomonas aeruginosa strain LV와 비병원성 Xanthomonas campestris strain AZ98101과 AZ98106이 보고되어 왔으며[21, 22] Xap에 대한 Streptomyces 속 방선균의 항균활성은 본 연구에서 최초로 보고한다.

J46이 생성하는 항균물질의 물리화학적 안정성

J46이 생성하는 항균물질의 물리화학적 안정성을 조사하기 위하여 pH와 온도 변화에 따른 항균활성을 조사하였다. J46의 상징액을 pH 2.0에서 11.0까지 조정한 후 항세균 활성을 조사한 결과 모든 pH 조건에서 활성이 유사하였다(Table 4). 이러한 결과는 균주가 생성하는 항세균 활성물질이 pH 변화에도 안정하다는 것을 의미하였다.

J46의 상징액을 서로 다른 온도조건에 방치한 후 항균활동을 조사한 결과 0℃와 40℃에서 활성이 유사하였으며 60℃에서 활성이 감소하였고 80℃이상에서는 활성이 관찰되지
Table 4. Effects of changes in pH on the antibacterial activity of the isolate J46 against Xanthomonas arboricola pv. pruni

pH	Inhibition zone diameter (mm)	(1,2)
2.0	16.00 ± 0.82a	
4.0	14.67 ± 0.47ab	
6.0	13.43 ± 1.25ab	
9.0	13.00 ± 0.82b	
11.0	15.33 ± 0.47ab	

1) The values are means ± SD of triplicate.
2) The data with the same letter in are not significantly different (P<0.05).

Table 5. Effects of changes in temperature on the antibacterial activity of the isolate J46 against Xanthomonas arboricola pv. pruni

Temperature (℃)	Inhibition zone diameter (mm)	(1,2)
0	12.67 ± 0.58a	
20	12.33 ± 0.58a	
40	12.00 ± 0.00a	
60	9.00 ± 0.00b	
80	-	(3)
100	-	
120	-	

1) The values are means ± SD of triplicate.
2) The data with the same letter are not significantly different (P<0.05).
3) Inhibition zone was not observed.

J46의 식물병에 대한 방해효능

J46의 세균성구명재에 대한 방해효능을 시험하기 위해 병소에 묻어진 병원균 Xap의 발병에 대한 J46의 역할효과를 조사하였다. J46의 성장액을 병원균에 묻어진 병소에 약 10배 황색하여 처리한 결과 약 90% 수준의 발병억제 효과가 관찰되었다(Fig. 5). J46의 병원균에 대한 역할효과는 대조군으로 사용된 황색능타 아그레마이치의 전이능도로 처리한 결과와 매우 유사하였다. 이러한 결과는 J46이 Xap에 대한 미생물제제로 활용될 수 있을 것으로 의미하였다.

또한, J46의 항세균 및 항진균 성분을 나타내는데 활성치를 나타내었다(Table 6). J46의 항세균 활성은 상생의 항세균에 비해 미약하였으며, X. axonopodis pv. citri에 대한 항진균성이 세균성구명재 Xap에 대한 항균 활성을 높게 관찰되었다(Fig. 6). 이러한 결과를 통해 J46은 세균성구명재와 감귤레생병의 방제에 효과적으로 적용될 수 있을 것으로 기대되었다.

배지조성물이 J46의 항균활성을 미치는 영향

J46의 배지조성물을 조사하기 위해 배지조성물 Xap에 대한 항균활성에 영향을 미치는지를 시험하였다. 배지조성물 배지로 알려진 M1, M2, M3, M4배지(Table 1)는 항균활성을 조사한 결과 M4 배지와 Bennett 배지에서 항균성이 관찰되었으며 M1, M2, M3배지에서는 항균성이 관찰되지 않았다(Fig. 4). 이러한 결과를 통해 균주 J46의 최적 배지조성물을 M4 배지와 Bennett 배지가 확인할 수 있었다. 미생물제제 개발에 직접적일 경우 최적 배지조성물은 매우 중요하다. 본 연구에서는 J46의 최적 배지로 가격이 비교적 저렴한 M4를 제안할 수 있었다.

J46이 생산하는 항균물을 추출 및 정제

J46이 생성하는 항균물을 구명하기 위해 배양액을 원심 분리한 후 수분액을 유기용매로 추출하였다. 추출 결과 ethyl acetate, pH 2.0 조건에서 ethyl acetate 및 n-butanol로 추출하였을 경우 모두 추출물을 항균 활성이 관찰되지 않았다(Table 7). 이에 반해 유기용액 추출 후 남은 수분액에서 22.33 mm 수준의 병원균 생장의 억제가 관찰되었다. 이러한 결과는 J46이 생산하는 항균물질은 유기용매 추출보다 수 풍이 매우 강하다는 것을 의미하였다.

J46이 생성하는 항균물을 정제하기 위해 탄크로마토 그래프 과정을 수행하였다. 탄크로마토그래프를 수행한 결과 주석질을 이용하여 항균 효소를 제거하기 위해 J46의 상생액을 pH 2.0으로 조작한 다음 확산율 10% (w/v) 수분으로 정제한 후 20분 동안 공반하였다. 공반 후 상생액을 pH 2.0 조건의 진주, pH 9.0 조건의 acetone 및 methanol (MeOH) 순으로 이어한 후 항균활성을 조사하였다. 조사결과 80%수증물을 이용한 진주액에서는 항균활성이 관찰되지 않았으며 acetone과 MeOH를 이용한 이화액에서는 항균활성이 관찰되지 않았다(Table 8). 항균활동은 보인 이후액의 색은 무색이었고 acetone 이화액에서 배지의 색이 관찰되었다. 이러한 결과는 항균이 유기물의 흡착을 통해 항균활성을 높이기 위해 배지조성물은 매우 중요하다. 본 연구에서는 J46의 최적 배지로 가격이 비교적 저렴한 C18을 제안할 수 있었다. 또한, J46의 상생액은 C18 SPE 칼럼에서 정제한 결과 서류로 칼럼에 남자와 용접되었다 며 MeOH의 농도로 증가시키는 등에서는 항균활성이 관찰되지 않았다(Table 9). 이러한 결과는 J46이 생산하는 항균물질은 C18
Antibacterial Activity of Streptomyces sp. J46 against *X. arboricola* pv. *pruni*

![Graph showing growth time vs. inhibition zone diameter](image)

Fig. 4. Antibacterial activity of supernatant of the isolate J46 cultivated on M1 (◊), M2 (×), M3 (△), M4 (○), and Bennett (□) medium. The values indicate means ± SD of triplicate.

![Images of peach leaves](image)

Fig. 5. Symptoms of bacterial leaf spot on detached peach leaves treated with water (A), a commercial fungicide at a recommendation dose (B), and 10 times-diluted J46 supernatant (C) at 5 days after inoculation of *Xanthomonas arboricola* pv. *pruni*.

Table 6. Antibacterial activity of the isolate J46 supernatant against plant pathogens

Plant pathogens	Inhibition activity\(^3\)
Acidovorax avenae subsp. *cattlyae*	-
Acidovorax konjac	-
Agrobacterium tumefaciens	-
Burkholderia glumae	-
Clavibacter michiganensis supsp. *michiganensis*	-
Pectobacterium carotovara supsp. *carotovora*	-
Pectobacterium chrysanthemi	-
Pseudomonas syringae pv. *actinidiae*	-
Pseudomonas syringae pv. *lachrymans*	-
Xanthomonas euvesicatoria	+++
Xanthomonas axonopodis pv. *citri*	+++
Xanthomonas oryzae pv. *oryzae*	-
Ralstonia solanacearum	-

\(^3\) Relative inhibition rates (%): +(31~50), ++(51~70), +++(≧71).
Fig. 6. Antibacterial activity of cell free supernatant of the isolate J46 against plant pathogenic bacteria. The values indicate means ± SD of triplicate. Different letters indicates different mean value significantly by Duncan’s multiple range test (P<0.05).

Table 7. Antibacterial activity of the organic extracts of cell free supernatant of the isolate J46 against Xanthomonas arboricola pv. pruni

Organic extract	Inhibition zone diameter (mm)
Control	20.00 ± 0.82
Ethyl acetate	-
Ethyl acetate (pH 2.0)	-
n-Butanol	-
Aqueous	22.33 ± 0.47

1) The values are means ± SD of triplicate.
2) Inhibition zone was not observed.

Table 8. Antibacterial activity of the fractions of the isolate J46 supernatant filtered through activated charcoal adsorbent

Solvent	Inhibition zone diameter (mm)
H₂O (pH 2.0)	21.00 ± 0.82
Acetone (pH 9.0)	-
MeOH	-

1) The values are means ± SD of triplicate.
2) Inhibition zone was not observed.

Table 9. Antibacterial activity of the fractions of the isolate J46 supernatant eluted from SPE C18 cartridge column

Fraction No.	Elution solvent	Inhibition zone diameter (mm)
1	H₂O:MeOH (10:0, v/v)	16.00 ± 0.82
2	H₂O:MeOH (8:2, v/v)	-
3	H₂O:MeOH (6:4, v/v)	-
4	H₂O:MeOH (4:6, v/v)	-
5	H₂O:MeOH (2:8, v/v)	-
6	H₂O:MeOH (0:10, v/v)	-

1) The values are means ± SD of triplicate.
2) Inhibition zone was not observed.
결 압 커터리지 칼럼에서 분배 및 흡착되지 않고 그대로 용출될 수 있는 수용성 물질이라는 것을 의미하였다.

상기에서처럼 활성탄을 이용하여 얻은 항균물질 시료를 coconut charcoal SPE 커터리지 칼럼에서 다시 정제를 시도하였다. 시료를 칼럼에 넣고 pH 2.0 조건의 물, pH 9.0 조건의 acetone 및 MeOH 순으로 용출시켜 항균활성을 조사한 결과 pH 9.0 조건의 acetone 및 MeOH 분획에서 항균 활성을 관찰되었다. 하지만 칼럼에서 용출된 과정에서 항균 활성이 매우 감소하였으며 이는 coconut charcol SPE 카

드릴 경유로는 적절한 정제방법이 아니다는 것을 알 수 있었다(Table 10). 한편, silica gel 칼럼을 이용한 항균물질의 정제는 항균물질이 유기용매에 전혀 추출되지 않고 문제없이 용해되는 수용성기 때문에 수용성이 불가능하였다.

J46의 성장액에 존재하는 항균물질의 추가적인 정제를 C18 SPE 커터리지 칼럼보다 일반적인 유리갈름을 이용하여 수행하였다. 이를 위해 상기와 같이 활성탄을 이용한 교반과 C18 SPE에서 얻은 활성물질을 ODS 유리칼럼에서 정제한 다음 항균활성이 관찰된 용출액을 동결건조하였다. 동결 건조 후 이를 증류수에 재용해하였을 때 항균효성이 관찰되었다. 한편, 항균물질이 함유된 J46의 성장액을 ODS 칼럼에서 정제할 때에도 칼럼에 널마지거나 활성분획물이 굴로 용출 되었으며 이는 C18 SPE를 이용한 정제과정에서 보였던 결과와 동일하였다. 이러한 결과는 억제 크로마토그래피를 활용한 정제방법이 효율적이지 않음을 의미하였다.

J46의 성장액을 상기에서와 같이 SPE 칼럼에서 용출시킨 후 수용성 용출액을 실온에서 젤소가스로 농축한 다음 TLC 및 HPLC 분석을 통해 항균 물질의 정제를 시도하였다. J46의 용출액은 TLC 분석에서 방출된 활성분획 부분과 더불어 TLC plate를 일정한 간격을 두고 급어서 Moeh를 함유한 수용액으로 추출된 후 추출액의 항균효성을 조사한 결과 활성이 관찰되지 않았다(Fig. 7). 또한, HPLC 분석에서 시료 용액이 겉출되는 시간대와 유사한 매우 짧은 미세 부위를 시간에 겉출되었으며 매 1분마다 용출액을 받아 항균효성을 조사한 결과 활성이 전혀 관찰되지 않았다(Fig. 8). 이러한 결과는 J46의 성장액에 존재하는 항균물질의 정제를 위해 억제 및 순상 크로마토그래피법이 효율적이지 않다는 것을 다시 확인해 주었다.

Table 10. Antibacterial activity of the fractions of the isolate J46 supernatant eluted from SPE coconut charcoal cartridge column

Solvent	Inhibition zone diameter^{1,2}
H2O (pH 2.0)	19.33 ± 1.23a
Acetone (pH 9.0)	6.67 ± 1.25b
MeOH	7.00 ± 0.82b

1) The values are means ± SD of triplicate.
2) The data with the same letter are not significantly different (P<0.05).

Inhibition zone was not observed.

J46이 생산하는 항균물질의 태생성

J46의 배양액이 온도변화 조건에서 항균활성이 감소하는 결과(Table 5)를 통해 항균활성이 휴소성성이 다르다고 판단하고 이를 알아보기 위해 J46의 항균활성을 생산하는지 조사하였다. 대처배양법을 통해 균주가 생산하는 휴소성 물질의 항균효성을 조사한 결과 대조군에 유사하였다(Fig. 9). 또한, J46이 생산하는 항균효성을 막기 위해 세균배양액으로 추출한 다음 추출액의 항균효성을 조사한 결과 항균효성이 관찰되지 않았다(Fig. 10). 이러한 결과를 통해 J46이 생산하는 항균효성을 화학적으로 분리하고 연구하기에는 적절한 것을 알 수 있었다.

J46이 생산하는 항균활성물질의 단백질성

상기에서 서술한 바와 같이 J46이 생성하는 항균효성이 유기용매 추출성이 아님을 알았으며 균주가 생산하는 효소가 병균의 생장을 저해하였음을 것으로 추측되었다. 이에, J46이 생성하는 항균효성이 단백질성인지 조사하기 위해 단백질의 절편 및 가수분해 과정을 거친 후 항균효성을 조사하였다. J46의 배양액을 원심분리한 후 상백액에 acetone를 식용하여 첨가물 을 얻었다. 첨가물을 10 mM phosphate buffer로 재용한 다음 항균효성을 조사한 결과 Table 10에서 보여준 바와 같이 항균효성이 관찰되지 않았다. 또한, ammonium sulfate를 이용하여 신청시킬 경우 시험용 농도에 상관없이 첨가물이 관찰되지 않았다. 이러한 결과를 통해 항균효성이 단백질성이 아닌 것을 간접적으로 알 수 있었으며 추가적으로 단백질 거주부분에 효소를 상백액에 처리한 다음 단백질의 항균효성을 조사하였다. 단백질 가수분해효소인 pepsin, RNase, DNase를 J46 상백액에 처리한 후 항균효성을 조사한 결과 가수분해효소 처리에 관계없이 항균효성이 유사하였다(Fig. 11). 이와 같이 단백질에 의한 항균효성과 단백질 가수분해효소 처리에 의한 항균효성을 사용하는 결과를 통해 J46이 생산하는 항균효성은 단백질성이 아니라라는 것을 간접적으로 확인할 수 있었다.

이상의 결과에서 보듯이 다양한 추출과 정제과정을 통해 J46이 생성하는 항균효성이 무엇인지는 구명할 수 없었지만 J46은 세균성구멍병 뿐만 아니라 다른 식물 병원균을 방해할 수 있는 미생물체로서 사용될 수 있을 것으로 기대되었다. J46이 생성하는 항균효성의 화학적인 구조를 구명하기 위해 항균효성의 추가적인 연구가 필요하다.
Fig. 7. Antibacterial activity of J46 samples obtained from SPE column (A), cell free supernatant of the isolate J46 (B) and TLC plate (C).

Fig. 8. Typical HPLC chromatogram of J46 supernatant eluted from C18 SPE cartridge column.

Fig. 9. Effects of volatiles produced by the isolate J46 against Xap. A: Bennett agar, B: J46 (right) and Xap (left).
Antibacterial Activity of Streptomyces sp. J46 against *X. arboricola* pv. *pruni*

![Antibacterial activity of J46 volatiles adsorbed on PS/DVD fiber. A: solvent, B: cell free supernatant, C: Volatile extracts adsorbed on PS/DVD fiber.](image)

Table 11. Antibacterial activity of acetone precipitates of cell free supernatant of the isolate J46 against *Xanthomonas arboricola* pv. *pruni*

Sample	Inhibition zone diameter (mm)\(^1\)
Control	14.67 ± 0.47
Acetone precipitation	14.67 ± 0.47\(^2\)

*1) The values are means ± SD of triplicate.
2) Inhibition zone was not observed.*

![Effects of protease on the antibacterial activity of cell free supernatant of the isolate J46. The different letters over the columns are significantly different each other by Duncan’s multiple range test (\(P<0.05\)).](image)

Note

The authors declare no conflict of interest.

References

1. Zotchev SB (2012) Marine actinomycetes as an emerging resource for the drug development pipelines. Journal of Biotechnology, 158, 168-175.
https://doi.org/10.1016/j.jbiotec.2011.06.002.
2. Miles WG, Daines RH and Rue JW (1977) Presymptomatic egress of *Xanthomonas pruni* from infected peach leaves. Phytopathology, 67, 895-897.
3. Rolfs FM (1915) Bacterial disease of stone fruits. Cornell University Agriculture Experimental Station Memoir, 8, 381-436.

4. Kim SY, Kwon TY, Kim IS, Choi SY, Choi CD, Em JY (2001) Protection of peach trees from bacterial shot hole with Bordeaux mixture spray during the postharvest season. Research in Plant Disease, 7, 37-41. https://doi.org/10.5423/RPD.2008.14.3.182.

5. Choi J, Lee E and Park Y (2000) Shot hole of peach and Japanese plum caused by Xanthomonas campestris pv. pruni and Erwinia nigrifluens in Korea. Research in Plant Disease, 6, 10-14.

6. EPPO/OEPP. 2006. Data sheets on quarantine pests. Xanthomonas arboricola pv. pruni. http://www.eppo.org/QUARANTINE/listA2.htm.

7. Kim CH (2000) Review of fungicide resistance problems in Korea. Korean Journal of Pesticide Science, 4, 1-10.

8. Ritchie D (2004) Copper-containing fungicides/bactericides and their use in management of bacterial spot on peaches. Southeast Regional Newsletter, 4, 1-3.

9. Atkinson NJ and Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. Journal of Experimental Botany, 63, 3523-3543. https://doi.org/10.1093/jxb/ers100.

10. Miyadoh S (1993) Research on antibiotic screening in Japan over the last decade: a producing microorganism approach. Actinomycetologica, 7, 100-106. https://doi.org/10.3209/saj.7-100.

11. Umezawa H (1965) A new antibiotic, kasugamycin. The Journal of Antibiotics, 18, 101-103.

12. Takeuchi S, Hirayama K, Ueda K, Sakai H and Yonehara H (1958) Blasticidin S, a new antibiotic. The Journal of Antibiotics, 11, 1-5.

13. Timoshchuk VA, Kulinkovich LN, Olimpieva TI, Boreko EI and Vladyko GV (1988) Synthesis of nucleosides of uronic acids V. synthesis and antivirus activity of nucleosides of D-xyluronic acid. Pharmaceutical Chemistry Journal, 22, 41-49.

14. Endo A and Misato T (1969) Polyoxin D, a competitive inhibitor of UDP-N-acetylgalactosamine: chitin N-acetylgalactosaminyltransferase in Neurospora crassa. Biochemical and Biophysical Research Communications, 37, 718-722. https://doi.org/10.1016/0006-291X(69)90870-5.

15. Isono K, Nagatsu J, Kawashima Y and Suzuki S (1965) Studies on polyoxins, antifungal antibiotics: Part I. Isolation and characterization of Polyoxins A and B. Agricultural and Biological Chemistry, 29, 848-854. https://doi.org/10.1080/00021369.1965.10858475.

16. Kim IS, Ryu JY, Hur HG, Gu MB, Kim SD, Shim JH (2004) Sphingomonas sp. strain S85 degrades carbofuran to a new metabolite by hydrolysis at the furanyl ring. Journal of Agricultural and Food Chemistry, 52, 2309-2314. https://doi.org/10.1021/jf035502l.

17. Herrmann Jr EC, Gabliks J, Engle C and Perlman PL (1960) Agar diffusion method for detection and bioassay of antiviral antibiotics. Experimental Biology and Medicine, 103, 625-628. https://doi.org/10.3181/00379727-103-25617.

18. Randhawa PS and Civerolo EL (1985) A detached-leaf bioassay for Xanthomonas campestris pv. pruni. Phytopathology, 75, 1060-1063. https://doi.org/10.1094/Phyto-75-1060.

19. Suter M, Cazin Jr J, Butler JE and Mock DM (1988) Isolation and characterization of highly purified streptavidin obtained in a two-step purification procedure from Streptomyces avidinii grown in a synthetic medium. Journal of Immunological Methods, 113, 83-91. https://doi.org/10.1016/0022-1759(88)90384-5.

20. Morgan TD, Oppert B, Zapala TH and Kramer KJ (1993) Avidin and streptavidin as insecticidal and growth inhibiting dietary proteins. Entomologia Experimentalis et Applicata, 69, 97-108. https://doi.org/10.1111/j.1570-7458.1993.tb01735.x.

21. Da Silva Vasconcellos FC, De oliveira AG, Lopes-Santos L, Cely MVT, Simionato AS, Pistori JF and Andrade G (2014) Evaluation of antibiotic activity produced by Pseudomonas aeruginosa LV strain against Xanthomonas arboricola pv. pruni. Agricultural Sciences, 5, 71-76. https://doi.org/10.4236/as.2014.51008.

22. Kawaguchi A, Inoue K and Inoue Y (2014) Biological control of bacterial spot on peach by nonpathogenic Xanthomonas campestris strains AZ98101 and AZ98106. Journal of General Plant Pathology, 80, 158-163. https://doi.org/10.1007/s10327-014-0506-6.