Calpain system and its involvement in myocardial ischemia and reperfusion injury

Christiane Neuhof, Heinz Neuhof

Calpains are ubiquitous non-lysosomal Ca\(^{2+}\)-dependent cysteine proteases also present in myocardial cytosol and mitochondria. Numerous experimental studies reveal an essential role of the calpain system in myocardial injury during ischemia, reperfusion and postischemic structural remodelling. The increasing Ca\(^{2+}\)-content and Ca\(^{2+}\)-overload in myocardial cytosol and mitochondria during ischemia and reperfusion causes an activation of calpains. Upon activation they are able to injure the contractile apparatus and impair the energy production by cleaving structural and functional proteins of myocytes and mitochondria. Besides their causal involvement in acute myocardial dysfunction they are also involved in structural remodelling after myocardial infarction by the generation and release of proapoptotic factors from mitochondria. Calpain inhibition can prevent or attenuate myocardial injury during ischemia, reperfusion, and in later stages of myocardial infarction.

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Calpain; Calpain inhibition; Calcium overload; Myocardial injury; Ischemia; Reperfusion; Myocardial infarction; Remodelling
Neuhof C et al. Calpains in myocardial ischemia and reperfusion

The following review will give an overview of the physiological and pathophysiological basis of the calpain system and finally focus on its role in myocardial ischemia, infarction and reperfusion and the effectiveness of calpain inhibition based on experimental studies.

BASICS OF THE CALPAIN SYSTEM

Nomenclature

The terms μ-calpain and m-calpain were first used by Cong et al. in 1989. They indicate the micromolar (μ-calpain) respectively millimolar (m-calpain) Ca²⁺-concentrations required for their activation. Thus, μ-calpain is activated in the presence of 3-50 μmol/L Ca²⁺ and m-calpain in the presence of 400-800 μmol/L Ca²⁺[17,19]. Meanwhile, more than 25 proteins with structural similarities were identified as calpains or calpain-like molecules. The genes assigned to 15 of these proteins are composed of four protease core regions PC1 and PC2; and (3) a C2-like Ca²⁺-regulated phospholipid-binding domain, and IV a Ca²⁺-binding penta-EF-hand domain[28-31].

Domain I contains an amphipathic alpha-helix in the N-terminus of μ-calpain which was shown to be important in targeting and migrating of μ-calpain into the intermembrane space of mitochondria. Domain I of m-calpain, however, does not contain a similar N-terminal component[32].

Domain II represents the catalytic CysPc protease domain. It consists of two separate protease core domains PC1 with a cysteine (Cys) residue and PC2 with a histidine (His) residue and an asparagine (Asn) residue. These residues form a catalytic triade as known from cysteine proteases such as papain or cathepsin (Figure 2). Both core domains PC1 and PC2 have Ca²⁺-binding sites for a single Ca²⁺ by each[33].

Domain III is structurally related to C2 domains and can bind phospholipids in a Ca²⁺-dependent manner. It links the Ca²⁺-binding domains with the catalytic domain II and is supposed to be involved in the adjustment of the calpain activity via electrostatic interactions[33].

Domain IV shows a slight sequence homology to calmodulin (51%-54%) and has five Ca²⁺-binding CooOH-terminal EF-hand motifs. The fifth motif binds to the corresponding EF-hand sequences of domain VI of the smaller 30 kDa subunit and, thus, contributes to the dimer formation of both calpain subunits[34].

The smaller regulatory 30 kDa subunit, responsible for the stability of the larger catalytic subunit, consists of the N-terminal Gly-rich domain V and the Ca²⁺-binding calmodulin-like penta-EF-hand domain VI. The long stretches of Gly residues and an unordered structure of

Figure 1 Domain structure of the catalytic 80-kDa and the regulatory 30-kDa subunits of the μ- and m-calpain dimers.

Figure 2 Crystallographic structure of human m-calpain by Suzuki et al.[33].

the amino acid sequence in domain V are supposed to bind to other molecules and structures.

The “calmodulin-like” domain VI is involved in Ca$^{2+}$-binding and dimerization by their penta-EF-hand motifs, as also known from domain V of the 80-KDa subunit.$^{[31,37,38]}$

Activation of \(\mu \)- and m-calpain

Increase of the intracellular Ca$^{2+}$-concentration is the decisive trigger for calpain activation. The Ca$^{2+}$-binding core domains PC1 and PC2 of domain II and the terminal EF-hand motifs of domain V and VI cause electrostatic conformational changes in these domains. By this electrostatic switch mechanism the PC1 and PC2 core domains approaches each other. Thus the distance of the Cys-residue from the αHis- and Asn-residues of the initially inactive catalytic triade shrinks from 10 to approximately 3.7 Å to form the proteolytic active centre.$^{[30,39]}$ Simultaneously, the change of conformation intensifies the affinity of calpain to membrane phospholipids and thus induces its translocation to the cell membranes (Figure 3)$^{[40,41]}$.

Immediately with the binding of Ca$^{2+}$ the autolysis of both subunits of the calpain dimers happens by splitting off the NH2-terminal amino acids. The 80-kDa subunits of \(\mu \)- and m-calpain are reduced by this process to active fragments of 76-kDa and 78-kDa, respectively, and both 30-kDa subunits are reduced to fragments of 18-kDa each.$^{[30,44]}$ The autolysis facilitates the dissociation and re-association of the calpain dimers, but is not necessary for their activation, as the dissociated 80-kDa subunits are enzymatically full active.$^{[49]}$

Confusion still exists with regard to the Ca$^{2+}$-concentration required for calpain activation. The *in vitro* concentrations for \(\mu \)-calpain (3-50 µmol/L) and m-calpain (200-1000 µmol/L) to cause a half-maximal calpain activity are far above the physiological concentrations of 100-300 nmol/L necessary in living cells.$^{[46-48]}$ Additional mechanisms and factors are therefore supposed to contribute to the activation and activity in a physiological environment. Autolysis is known to increase the Ca$^{2+}$-sensitivity of \(\mu \)- and m-calpain for activation$^{[39,49]}$, however, the problem remains, that far higher Ca$^{2+}$-concentrations are required to initiate autolysis as they occur in a physiological environment$^{[50]}$. Autolysis normally happens in contact with biological membranes in presence of phospholipids such as PIP$_2$ which considerably reduces the Ca$^{2+}$-concentration necessary for autolysis$^{[50,51]}$. Thus, in presence of PIP$_2$ autolysis of \(\mu \)-calpain already happens with $10^{-5} - 10^{-7}$ mol Ca$^{2+}$.

In addition, activator proteins from rat brain lower the Ca$^{2+}$-concentrations necessary for autolysis of \(\mu \)-calpain to a tenth$^{[52]}$ and from rat skeletal muscle for autolysis of m-calpain from 400 µmol/L to 15 µmol/L$^{[53]}$. Both activators are Ca$^{2+}$-binding proteins combining with calpains and becoming effective upon contact with cell membranes. Further activator proteins are known which increase the catalytic activity of calpains against particular substrates twice$^{[64]}$, ten times$^{[55]}$ or twenty-five times$^{[56]}$ without influencing the required Ca$^{2+}$-concentration.

Regulation of calpain activity

Calpastatin is the only known specific endogenous inhibitor and regulator of \(\mu \)- and m-calpain. In addition also H-kininogen and α2-macroglobulin are inhibiting calpain besides other proteases$^{[57]}$. Human calpastatin is encoded by a single gene on chromosome 5$^{[58]}$ and expressed in several isoforms from 17.5 to 107 kDa$^{[59-61]}$.

Figure 3 Mechanisms and consequences of calpain activation at biological membranes. Modified from Suzuki et al.$^{[62]}$.

www.wjgnet.com
July 26, 2014 | Volume 6 | Issue 7
It consists of four inhibitory domains I, II, III and IV, and one N-terminal domain L without inhibitory capability[62,63]. Each inhibitory unit inhibits one calpain molecule competitively by blocking the substrate access to the catalytic centre[64,65]. Calpastatin inhibits exclusively calpain and not other proteases[67]. Binding of calpastatin to calpain and its inhibition is Ca²⁺-dependent. The Ca²⁺-concentrations for this are lower as needed for the half-maximal proteolytic activity of μ- and m-calpain[66]. Calpains and calpastatin are found in physical proximity within the cells[67,68]. Therefore, mechanisms are necessary to enable calpain to perform its biological purpose, since calpastatin already binds to calpain with increasing Ca²⁺-concentrations. Thus, the translocation of calpain to the membranes could cause a spatial distance to calpastatin. Furthermore, special mechanisms/factors could lower the threshold for Ca²⁺ to activate calpain without influencing the binding of calpastatin[9]. With regard to activation and deactivation of calpain many questions are still open concerning a regulating, respectively, modifying role of substrate phosphorylation.

Localisation of μ- and m-calpain in cell and tissue

In all examined cells of vertebrates μ-calpain, m-calpain and calpastatin are found at least as the only constituents of the calpain system or they exist in various combinations with great varying patterns of distribution. Thus, human erythrocytes and platelets only contain μ-calpain, and smooth muscles of vessels and stomach predominantly contain m-calpain, whereas, in skeletal muscles and kidneys of the most representatives of vertebrates nearly equal amounts of μ- and m-calpain are found[67,68,69]. Both calpains as well as calpastatin are exclusively localized intracellular and apparently associated with subcellular structures. Thus, 93% of the μ-calpain are found in human red blood cells within the cytosol and 79% membrane associated[70]. Most of the μ-calpain, m-calpain and calpastatin is localized close to the Z-disc in the myofibrils of skeletal and cardiac muscle, smaller amounts are found in the I- and A-bands. In mitochondria and nuclei only a tenth, respectively, a fifth of calpains and calpastatin was identified compared to their concentration in the Z-disc region[67,72,73]. Calpain and calpastatin are normally localized with a close spatial proximity.

Substrates for calpain

Normally, calpains have only access to intracellular substrates, whereby their cleavage decisively depends on the local activity of calpain and its inhibitor calpastatin. Many proteins are cleaved by calpains in vitro, but there is no conclusive evidence that they cannot also be splitted by calpain in vivo.

Calpain cleaves the cytoskeleton and membrane-associated proteins: adducin[74], ankyrin[75], caldesmon[9], cadherin[67,76], C-protein[77], desmin[78], dystrophin[79], the filamin/actin-binding proteins MAP1 and MAP2[81], myosin[82], the neurofilament-proteins NFH, NFM and NFL[83], NR2-subunit[84], the anchoring protein PSD-95 of NMDA-receptors[85], α II-spectrin[86], β-spectrin[86], talin[87,88], titin[89], tropomyosin and troponin I[90], troponin T[90], vimentin[91], and vinculin[92].

Furthermore, kininas, phosphatases and transcription factors are cleaved, such as: EGF-rezeptor-kinase[93], myosin light-chain kinase[94], protein-kinase C[95], calcineurin[96], inositol-polyposphat-4-phosphatase[97], proteintyrosin-phosphatase-1B[98], the transcription factors c-Jun, c-Fos[99,100], and p53[101,102].

PHYSIOLOGICAL FUNCTIONS AND PATHOPHYSIOLOGICAL IMPLICATIONS OF THE CALPAIN SYSTEM

Physiological function of μ- and m-calpain

Calpains are not seen to play an essential role in the intracellular protein digestion. In contrast to lysosomal proteases and the proteasome calpains split proteins by a limited proteolysis into large fragments with potential regulatory and signalling functions[6]. Many studies including experiments with transgenic mice indicate, that calpains are involved in the embryonic development and cell function[103-105], cytoskeletal/membrane attachments/cell motility[79,81,88,106], intracellular signal transduction[95,107-109], cell cycle[100,110], regulation of gene expression[99,101], apoptosis[111-113], and in the long-term potentiation of synaptic transmission[84,85,114].

Involvement of calpains in inherited and acquired diseases

A lacking synthesis of calpains or the dysregulation of the calpain activity disturbing the proteolysis of structural and regulatory proteins is found in a series of genetic and acquired diseases, such as: limb girdle muscular dystrophy (LGMD2-A)[117,118], muscular dystrophy (type Duchenne and Becker)[119], diabetes mellitus (type 2)[120], gastric cancer[121], Alzheimer’s disease[122-124], multiple sclerosis[125,126], and cataract formation[127].

THE KEY ROLE OF CALCIUM HOMEOSTASIS WITHIN THE CALPAIN SYSTEM

Regulation of Ca²⁺-homeostasis

Many vital cell functions are regulated by the concentration of intracellular available Ca²⁺, such as muscle contraction, neurotransmitter release, glandular secretion, and intercellular communication[128,129]. And last but not least, calpains are Ca²⁺-activated proteases. Because of its key role, normally the Ca²⁺-concentration is controlled at different cellular levels via mitochondria, plasmalemma/sarclemma and endoplasmatic reticulum. The transmembrane transport of ions is regulated actively, selectively and directionally-oriented by voltage gated ion channels, by ATP-consuming ion pumps (Na⁺/K⁺-ATPases, Ca²⁺-ATPases, proton-ATPases) and by the concentration gradient due to carrier proteins (Na⁺/H⁺-exchanger,
Na+/HCO₃⁻-symporter, Na⁺/Ca²⁺-exchanger. Failing of this control mechanisms may result in an excessive intracellular accumulation of Ca²⁺ (Ca²⁺-overload) with severe cellular dysfunction up to cell death.

Events with increasing myocardial Ca²⁺ concentration
Studies with isolated perfused mammalian hearts have shown an increasing cytosolic Ca²⁺ concentration during hypoxia in hearts of rabbits and ferrets, during ischemia in hearts of rabbits and rats, and during post-ischemic reperfusion in hearts of rats and ferrets. Severe burn trauma also augments the Ca²⁺ content in myocytes and mitochondria of rat hearts. The same effect can be observed upon exposure of isolated perfused rabbit hearts and isolated rat cardiomyocytes to hydroxyl free radicals. In analogy to the heart, a Ca²⁺-overload was also observed in rat brains during hypoxia/ischemia and in the spinal cord after traumatisation.

Disturbance of Ca²⁺ homeostasis in the heart: Pathomechanisms and consequences
The underlying mechanisms and consequences of an imbalance in Ca²⁺ homeostasis are documented the most extensively in heart during hypoxia, ischemia and post-ischemic reperfusion. They are initiated by the decreasing ATP generation and developing acidosis resulting from oxygen deficiency. The activation of the Na⁺/H⁺-exchanger (NHE-1), which causes the influx of Na⁺ into the cell for exchange with H⁺ in order to regulate pH, and the simultaneous inhibition of the Na⁺/K⁺-ATPase, due to lack of ATP, plays a key role in the intracellular Ca²⁺-overload. Thus, Na⁺ accumulates intracellular and lowers the transmembranous Na⁺ gradient, which is the driving force behind the Na⁺/Ca²⁺-exchanger by transporting Ca²⁺ out of the cell, resulting in Ca²⁺-accumulation. The Na⁺/Ca²⁺-exchanger which represents a bidirectional transport system is also able to transport Ca²⁺ in exchange with Na⁺ in a reverse mode into the cell. Driving forces for this are the increasing intracellular Na⁺ concentration and depolarisation of the sarcolemma.

Today, disturbance of Ca²⁺-homeostasis is seen as the main triggering factor of cardiac dysfunction and myocardial injury during ischemia and reperfusion, such as the myocardial stunning, a long-lasting reversible reduction of heart contraction after ischemia, or like the Ca²⁺-overload induced hypercontracture during reperfusion/reoxygenation or the incidence of arrhythmias during reperfusion. Other factors, such as reactive oxygen species or inflammation seem to play a minor role in these situations.

Many studies demonstrate as a consequence of an increasing intracellular Ca²⁺-concentration the activation of calpains, which cleave numerous functional and structural proteins, and thereby decisively contribute to ischemic and postischemic injury. Thus, the activation of the calpain system during hypoxia or ischemia is well documented in the myocardium of rats and humans, as well as in the brain of rats. In rat renal proximal tubules hypoxia induces the increase of μ-calpain activity, whereas calpain inhibition reduces the renal functional and structural damage following ischemia and reperfusion. Hypoxia was also found to up-regulate the activity and gene expression of calpains in endothelial cells of the pulmonary artery.

ROLE OF CALPAINS IN MYOCARDIAL ISCHEMIA/REPERFUSION INJURY
Global ischemia
Most studies on the implication of calpains for myocardial dysfunction and failure are based on experiments in isolated perfused mammalian hearts, in which the duration of perfusion stop (global ischemia) is restricted to enable at least a recovery with reperfusion.

Global ischemia in isolated perfused rat hearts was found to induce a time-dependent translocation of m-calpain to the membrane initially not associated with calpain activation which occurred only during reperfusion and intracellular pH normalization. Under comparable conditions, a loss of myofibrillar desmin, α-actinin, and spectrin was observed in guinea pig hearts, which was reduced by calpain inhibitor I. Immunohistochemical studies revealed the proteolysis of calspectin and α-fodrin at the intercalated discs and the sarcolemma after postischemic reperfusion in rat hearts. Degradation of both proteins could be suppressed and myocardial function improved by calpain inhibitor I. The inhibition of α-fodrin degradation associated with the attenuation of myocardial dysfunction could also be observed after diaclopic cardiac arrest in rat hearts in the presence of calpain inhibitor SNJ-1945. As a result of calpain activation, the essential Ca²⁺-handling proteins Ca²⁺-ATPase (SERCA2a) and the SERCA regulatory protein PLB were degraded upon global ischemia and reperfusion in a working rat heart preparation. Their degradation, the depression of cardiac performance and the release of lactate dehydrogenase, indicating the myocardial damage, could be significantly attenuated by calpain inhibition with calpain inhibitor III (MDL28170). As an indicator of myocardial tissue damage creatine phosphokinase and lactate dehydrogenase are released from myocytes into the perfusion fluid during reperfusion in concentrations dependent on the duration of ischemia (Figure 4).

Calpains seem to be responsible or to contribute to these effects, as calpain inhibition with A-705239 significantly reduces the enzyme release.

Cardiac muscle contraction is initiated by Ca²⁺ via troponin/tropomyosin which are known as substrates of calpain. Therefore, their cleavage is supposed to be jointly responsible for myocardial dysfunction in ischemia/reperfusion injury. With regard to this, degradation of troponin T (TnT) was observed during ischemia/reperfusion of isolated perfused rat hearts and was reduced by calpain inhibition with PD150606 and PD151746. In addition, “overexpression of calpastatin by gene trans-
fer prevents troponin I (TnI) degradation and ameliorates contractile dysfunction in rat hearts subjected to global ischemia followed by reperfusion[19,20].

Mitochondrial function impairment

Damage of mitochondria plays a central role in the pathophysiology of reperfusion injury via the impairment of oxidative metabolism, respectively, energy production and the generation and accumulation of metabolic products toxic to the myocytes. Cardiac mitochondria are located subsarcolemmally beneath the plasma membrane and interstitial between the myofilaments[183-185]. In animal and human hearts µ-calpain, m-calpain and calpain 10 are present in cytosol and in the intermembrane space of mitochondria [87,186-189]. Cytosolic calcium content is found to increase in hearts of rats and rabbits during myocardial ischemia and reperfusion and is made responsible for the subsequent activation of calpain[190,191]. The damage of Ca²⁺-handling proteins by direct cleaving or detaching the Na⁺/K⁺-ATPase and the Na⁺/Ca²⁺-exchanger from their binding ankyrin[174,192], and by proteolysis of sarcoplasmic reticulum Ca²⁺-ATPase (SERCA)[175,193] and Ryanodine receptor RyR)[194], sustains Ca²⁺-influx and calpain activation and aggravates myocardial injury. Thus, SERCA2a and the SERCA regulatory protein PLB were found to be degraded upon global ischemia and reperfusion in a working rat heart preparation. Their degradation, the depression of cardiac performance and the release of lactate dehydrogenase, indicating the myocardial damage, could be significantly attenuated by calpain inhibition with calpain inhibitor II (MDL28170)[179].

One of the most serious consequences of mitochondrial damage by calpains is the impairment of oxidative phosphorylation with loss of ATP generation. Damage to mitochondrial oxidative metabolism can be caused on various levels of the electron transport chain (ETC). In isolated renal cortical mitochondria from rats and rabbits calpain 10 was shown to cleave complex I subunits of the ETC, which could be prevented by pretreatment with calpeptin[195]. The impairment of mitochondrial respiration is documented in isolated perfused rabbit hearts[196,197,198]. State 3 respiration decreased significantly during 45 min of global ischemia and further decreased during 60 min of reperfusion, and this reaction could be significantly attenuated by addition of calpain inhibitor A-705239 to the perfusion fluid (Table 1).

Calpain inhibitor A-705239 administered before ischemia and reperfusion also attenuated the increase in permeability of the inner mitochondrial membrane (mitochondrial permeability transition), as reflected by the reduced state 4 respiration and leak-respiration[180].

Besides their deleterious effect on mitochondrial oxidative metabolism, calpains are also recognized to cause the generation and release of substances toxic to myocytes.

During reperfusion, mitochondria generate reactive oxygen species that lead to additional mitochondrial and myocyte injury[197,200].

Dependent on the degree of oxidative damage in concert with mitochondrial calcium overload and calpain activation, mitochondrial permeability transition can occur by formation of inner membrane pores[199,202]. Mitochondrial permeability transition can result in disruption of the outer mitochondrial membrane and the release of cytochrome c, a key step inducing apoptosis[203]. Cytochrome c is detectable in the cytosol of rabbit myocardium at 30 min of ischemia[204], whereas cytochrome c content decreases in subsarcolemmal mitochondria[205]. Mitochondrial calpain plays an important role in programmed cell death by generation or release of apoptotic factors in mitochondria during ischemia and reperfusion. Thus, the cleavage of Bid, a pro-apoptotic BH3-only Bel-2 family member, is documented in isolated perfused adult rabbit hearts during ischemia/reperfusion, and in secondary in vitro studies recombinant Bid was cleaved by calpain to an active fragment that was able to mediate cytochrome c release[206]. It was also shown, that activated mitochondrial µ-calpain, mostly located in the intermembrane space, cleaves and releases apoptosis inducing factor (AIF) from isolated mouse heart mitochondria. Besides, mitochondrial µ-calpain activity increased in buffer perfused mouse hearts during ischemia/reperfusion whereas the mitochondrial AIF content decreased. Inhibition of mitochondrial µ-calpain using MDL-28170 preserved the AIF content within the mitochondria and significantly attenuated apoptosis[207].

![Figure 4 Release of creatine phosphokinase into the perfusion fluid of isolated rabbit hearts subjected to ischemia and reperfusion](image-url)

Control experiments without inhibitor are represented by black-coloured columns and inhibitor (A-705239 10²⁷ mol/L) treated hearts by grey-coloured columns. Data are expressed as means ± SE of n = 10 experiments each. Both groups differ significantly (P < 0.05) at the end of reperfusion.
reduced cardiac injury.[180]

Partial ischemia and myocardial infarction

In contrast to models of global ischemia, in the experimental setting of partial ischemia by temporary occlusion of coronary arteries the duration of ischemia can be extended in time to enable irreversible myocardial damage to a restricted area with myocardial infarction without the risk of early global heart failure with reperfusion. In isolated perfused rat hearts it was shown, that during a 30 min occlusion of the left anterior descending coronary artery calpain translocates to the cell membranes without being activated initially. Calpain activation, as indicated by the hydrolysis of α-fodrin, only started with the onset of reperfusion and could be prevented by calpain inhibition with MDL-28170, just as the infarct size could be reduced by 32%.[175]

Inhibition of α-fodrin degradation and improvement of left ventricular function by calpain inhibitor SNJ-1945, administered 30 min before a gradual and partial coronary occlusion, was also found after mild ischemic-reperfusion in another study in rat hearts.[207] Protecting effects of calpain inhibition on myocardial injury could also be demonstrated by own experiments with inhibitory administration both before and during reperfusion. “Two novel calpain inhibitors (A-705239 and A-705253) were studied in isolated perfused rabbit hearts subjected to a 60 min occlusion of the ramus interventricularis of the left coronary artery (below the origin of the first diagonal branch), followed by 120 min of reperfusion.[208,209] The inhibitors were added to the perfusion fluid in various final concentrations from the beginning of the experiments before the coronary artery was blocked. The infarct size was significantly reduced in presence of both calpain inhibitors. The best effect was achieved with 10⁻⁶ mol/L A-705253 which reduced the infarcted area by 33.6%. Cariporide® (10⁻⁶ mol/L) reduced the infarct size in the same extent. The combination of both inhibitors, however, didn't further improve cardioprotection. Thus, the protective effect can be attributed exclusively to its influence on the calpain system, since the combination of both inhibitors didn't augment the protective effect of sole calpain inhibition. The calpain inhibitor A-705253 is known to directly block the catalytic centre of activated calpains, whereas the Na⁺/H⁺-exchange inhibitor cariporide® prevents or reduces the ischemic intracellular Ca²⁺ overload and thus prevents or reduces the following calpain activation”. This is shown in posts ischemic perfused rat and rabbit hearts where reduced calpain activation and calcium overload were observed upon inhibition of Na⁺/H⁺-exchange. Even in patients undergoing coronary bypass surgery pretreatment with cariporide® reduced mortality and the risk of myocardial infarction, however, cerebrovascular events increased.[214] In accordance with the findings in rabbit hearts, also in pigs undergoing occlusion of the left anterior descending coronary artery for 45 min followed by 6 h of reperfusion infarct size was reduced by 35% and hemodynamic alterations attenuated using calpain inhibitor A-705253.[215] In experiments with isolated mouse hearts undergoing ischemia and reperfusion infarct size was decreased and ventricular function improved in calpain-1 knockout mice, whereas myocardial injury was greatly increased in transgenic mice hearts with calpain-1 overexpression.[216]

No sufficient information is available to what extent polymorphonuclear leukocytes (PMN) contribute to ischemic/reperfusion injury. In one study in isolated rat hearts perfused with PMNs, exposed to 20 min of ischemia and followed by 45 min of reperfusion, calpain inhibition with Z-Leu-Leu-CHO reduced the adherence of PMNs to the vascular endothelium and improved ventricular function, however, controls without PMNs are missing.[217] Thus, with regard to the numerous experiments discussed in this review, which were all performed without PMNs in the perfusion fluid, polymorphonuclear leukocytes appear not to be essential for reperfusion.

Table 1 Effect of calpain inhibitor A-705239 on impairment of mitochondrial function following myocardial ischemia and reperfusion[180]

	n	State 3 respiration (nmol O₂/min per milligram)	State 4 respiration (nmol O₂/min per milligram)	RCI (state 3 rate): (state 4 rate)	Leak respiration(nmol O₂/min per milligram)	Stimulation by cytchrome c %
Control		6.4 ± 1.1	0.5 ± 0.1	12.5 ± 2.7	0.15 ± 0.07	6.0 ± 10.0
Before ischemia	4	6.4 ± 1.1	0.5 ± 0.1	12.5 ± 2.7	0.15 ± 0.07	6.0 ± 10.0
Ischemia 45 min	8	3.5 ± 1.4a	0.9 ± 0.3a	4.4 ± 2.5a	0.32 ± 0.14a	10.0 ± 6.0
Reperfusion 60 min	4	2.6 ± 1.3a	0.9 ± 0.3a	3.2 ± 2.1a	0.43 ± 0.29a	28.0 ± 16.0
A-705239 treated hearts						
Before ischemia	4	6.8 ± 1.3	0.6 ± 0.1	12.4 ± 1.1	0.12 ± 0.06	16.0 ± 9.0
Ischemia 45 min	9	5.0 ± 0.8a	0.6 ± 0.2	8.2 ± 2.3a	0.20 ± 0.14a	15.0 ± 13.0
Reperfusion 60 min	5	4.2 ± 1.2a	0.7 ± 0.2	6.4 ± 2.7a	0.26 ± 0.24a	

Data are presented as means of 4 to 9 experiments mean ± SD measured as duplicates or triplicates. A significant difference from baseline before ischemia is represented by ‘P < 0.05, and between both groups by ‘P < 0.05.
injury.

Remodelling after myocardial infarction

Myocardial infarction is followed by a progressive structural remodelling of the heart, replacing and reconstructing the irreversibly damaged myocardium[212,213]. After the early phase of ischemia-induced myocyte necrosis a longer lasting myocyte death by apoptosis can be observed. Proapoptotic factors are generated and released from myocardial mitochondria already during ischemia and reperfusion which are considered to be essentially involved in remodelling after myocardial infarction[106,200,204]. Characteristics of apoptosis, DNA fragmentation and chromatin condensation, could be detected in isolated perfused rabbit hearts subjected to 30 min ischemia and 4 h reperfusion[220]. In ischemic/reperfused rat hearts undergoing 30 min coronary occlusion followed by 6 h reperfusion the administration of calpain inhibitor I (CAI) 10 min before reperfusion significantly reduced DNA fragmentation and infarct size[221]. Comparable results were achieved in mouse hearts with persistent coronary artery ligation for 4 d. Calpain inhibition with calpeptin was started 15 min before artery occlusion and continued during the observation time. Calpeptin administration reduced apoptotic cell death, as detected by TUNEL staining, and reduced infarct size and myocardial dysfunction[222]. The important contribution of calpains to the process of myocardial remodelling is also documented by a transgenic mouse model with cardiomyocyte-specific deletion of gene Capn4 (Capn4-ko) which is indispensable for μ- and m-calpain stability and activity. Mice were subjected to persistent left coronary artery ligation and followed up for 30 d. Deletion of Capn4 reduced infarct expansion, apoptosis, myocardial remodelling and dysfunction[223].

CONCLUSION

Numerous studies have shown an essential contribution of calpains in myocardial injury following ischemia and reperfusion. Proven prevention or attenuation of postischemic heart damage by calpain inhibition with various tested inhibitors could offer a novel prophylactic or therapeutic approach for patients with myocardial infarction, revascularisation and coronary surgery.

REFERENCES

1. Ohno S, Emori Y, Imajoh S, Kawasaki H, Kisaragi M, Suzuki K. Evolutionary origin of a calcium-dependent protease by fusion of genes for a thiol protease and a calcium-binding protein? Nature 1984; 312: 566-570 [PMID: 6095110 DOI: 10.1038/312566a0]
2. Guffo G. A neutral, calcium-activated protease from the soluble fraction of rat brain. J Biol Chem 1964; 239: 149-155 [PMID: 14114836]
3. Melgren RL. Canine cardiac calcium-dependent proteases: Resolution of two forms with different requirements for calcium. FEBS Lett 1980; 109: 129-133 [PMID: 6766404 DOI: 10.1016/0014-5793(80)81326-3]
4. Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83: 731-801 [PMID: 12843408]
5. Dayton WR, Goll DE, Zeece MG, Robson RM, Reville WJ. A Ca2+-activated protease possibly involved in myofibrillar protein turnover. Purification from porcine muscle. Biochemistry 1976; 15: 2150-2158 [PMID: 1276130 DOI: 10.1021/bi00655a019]
6. Beyette JR, Ma JS, Mykles DL. Purification and autolytic degradation of a calpain-like calcium-dependent protease from lobster (Homarus americanus) striated muscles. Comp Biochem Physiol B Biochem 1993; 104: 95-99 [DOI: 10.1016/0305-0491(93)90343-4]
7. Pinter M, Friedrich P. The calcium-dependent proteolytic system calpain-calpastatin in Drosophila melanogaster. Biochem J 1998; 253: 467-473 [PMID: 9649208]
8. Ojha MA, Wallace CJ. Novel Ca2+-activated neutral protease from an aquatic fungus, Allomyces arbuscula. J Bacteriol 1988; 170: 1254-1260 [PMID: 2830232]
9. Croall DE, DeMartino GN. Calcium-activated neutral protease (calpain) system: structure, function, and regulation. Physiol Rev 1991; 71: 813-847 [PMID: 2057527]
10. Saito TC, Sorimachi H, Suzuki K. Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J 1994; 8: 814-822 [PMID: 8070680]

Figure 5 Development of myocardial infarction in isolated perfused rabbit hearts after occlusion of ramus interventricularis of left coronary artery for 60 min, followed by 120 min of reperfusion[222]. A: The inhibitors were added to the perfusion fluid before ischemia. B: With reperfusion. Infarct size is expressed in percentage of the area at risk (the transiently not perfused myocardium). Control experiments without inhibitor are represented by a red-coloured column and inhibitor treated hearts by blue-coloured columns. Data are presented as means ± SE. Infarct size is significantly reduced by calpain inhibition in all treated hearts compared to untreated controls.
11 Carafoli E, Molinari M. Calpain: a protease in search of a function? Biochim Biophys Acta 1998; 1400: 45-56 [PMID: 9708398 DOI: 10.1016/S0005-2760(98)00016-3]

12 Sorimachi H, Ono Y. Regulation and physiological roles of the calpain system in muscular disorders. Cardiovasc Res 2012; 96: 11-22 [PMID: 22542715 DOI: 10.1093/cvr/cvs157]

13 Insete J, Hernandez V, Garcia-Dorado D. Contribution of calpains to myocardial ischemia/reperfusion injury. Cardiovasc Res 2012; 96: 23-31 [PMID: 22787134 DOI: 10.1093/cvr/cvs232]

14 Garcia-Dorado D, Ruiz-Meana M, Insete J, Rodriguez-Sinovas A, Piper HM. Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 2012; 94: 168-180 [PMID: 22997728 DOI: 10.1093/cvr/cvs116]

15 Papp Z, van der Velden J, Stienen GJ. Calpain-I induced alterations in the cytoskeletal structure and impaired mechanical properties of single myocytes of rat heart. Cardiovasc Res 2000; 45: 981-993 [PMID: 10728424 DOI: 10.1016/S0005-2760(00)00374-0]

16 Yoshida K, Inui M, Harada K, Saito TC, Sorimachi Y, Ishihara T, Kawashima S, Sobue K. Reperfusion of rat heart after brief ischemia induces proteolysis of calpspectin (nonerythroid spectrin or fodrin) by calpain. Circ Res 1995; 77: 603-610 [PMID: 7643330 DOI: 10.1161/01..RES.77.7.3603]

17 Cong J, Golli DE, Peterson AM, Kapprell E. phenotype of cardiovascular disease. J Biol Chem 2009; 284: 10096-10103 [PMID: 25242320]

18 Suzuki K. Nomenclature of calcium dependent proteinases. Biomed Biochim Acta 1991; 50: 483-484 [PMID: 10817153]

19 Suzuki K, Sorimachi H, Yoshizawa T, Kinbara K, Ishiura S. Calpain: novel family members, activation, and physiologic function. Biochim Biophys Acta 1995; 576: 523-529 [PMID: 8569190]

20 Sorimachi H, Imajoh-Ohmi S, Emori Y, Kawasaki H, Ohno S, Minami Y, Suzuki K. Molecular cloning of a novel mammalian calcium-dependent protease distinct from both m- and mu-types. Specific expression of the mRNA in skeletal muscle. J Biol Chem 1989; 264: 20106-20111 [PMID: 2555341]

21 Dear N, Matena K, Vingron M, Boehm T. A new subfamily of vertebrate calpains lacking a calmodulin-like domain: implications for calpain regulation and evolution. Genomics 1997; 45: 175-184 [PMID: 9393974 DOI: 10.1006/geno.1997.4870]

22 Sorimachi H, Ishiura S, Suzuki K. A novel tissue-specific calpain species expressed predominantly in the stomach comprised of a cDNA coding for the small subunit of human calcium-dependent protease. Nucleic Acids Res 1986; 14: 5559 [PMID: 3016651]

23 Xie X, Dwyer MD, Swenson L, Parker MH, Botfield MC. Crystal structure of calcium-free human sarcin: a member of the met-enkephalin family. Protein Sci 1994; 10: 2419-2425 [PMID: 10714099 DOI: 10.1101/ps.36701]

24 Lin GD, Chattopadhyay D, Maki M, Wang KK, Carson M, Lin L, Yuen PW, Takano E, Hatanaka M, DeLucas LJ, Nara- rayana SV. Crystal structure of calcium-bound domain VI of calpain at 1.9 A resolution and its role in enzyme assembly, regulation, and inhibitor binding. Nat Struct Biol 1997; 4: 539-547 [PMID: 9228946 DOI: 10.1038/nb0797-539]

25 Moldoveanu T, Hosfield CM, Lim D, Elce JS, Jia Z, Davies PL. A Ca(2+)-switch aligns the active site of calpain. Cell 2002; 108: 649-660 [PMID: 11893336 DOI: 10.1016/S0092-8674(02)00659-1]

26 Suzuki K, Sorimachi H. A novel aspect of calpain activation. FEBS Lett 1998; 433: 1-4 [PMID: 9738920]

27 Hazahash M, Suzuki H, Kawashima S, Saito TC, Inomata M. The behavior of calpain-generated N- and C-terminal fragments of talin in integrin-mediated signalling pathways. Arch Biochem Biophys 1999; 371: 133-141 [PMID: 10545199 DOI: 10.1006/abbi.1999.4127]

28 Mccelland P, Lash JA, Hathaway DR. Identification of major autolysive cleavage sites in the regulatory subunit of vascular calpain II. A comparison of partial amino-terminal sequences to deduced sequence from complementary DNA. J Biol Chem 1989; 264: 17428-17431 [PMID: 2551902]

29 Zimmerman UJ, Schlaeper WW. Two-stage autolysis of the catalytic subunit initiates activation of calpain I. Biochim Biophys Acta 1991; 1078: 192-198 [PMID: 2065806 DOI: 10.1016/0167-4838(91)90009-H]
Intra-cellular Calcium-Dependent Proteolysis. Boca Raton, 244-250 [PMID: 8475088 DOI: 10.1073/pnas.90.16.7908c]

Crawford C. Protein and peptide inhibitors of calpain. In: Intra-cellular Calcium-Dependent Proteolysis. Boca Raton, FL: CRC 1990: 75-89

Inazawa J, Nakagawa H, Misawa S, Abe T, Minoshima S, Fukuyama R, Maki M, Murachi T, Hatanaka M, Shimizu N. Assignment of the human calpastatin gene (CAST) to chromosome 5 at region q14—q22. *Cytogenet Cell Genet* 1990; 54: 156-158 [PMID: 2265559 DOI: 10.1159/000132982]

Takahara T, Sasaki T, Kannagi R, Murachi T. Two ankyrin isoforms and their proteolysis after ischemia and reperfusion in rat brain. *Anat Rec* 1995; 231: 371-376 [PMID: 9202331 DOI: 10.1046/j.1471-4159.1997.69010371.x]

Saccomanno S, Kunimoto M, Yoshida K. Distribution of ankyrin isoforms and their proteolysis after ischemia and reperfusion in rat brain. *J Neurochem* 1997; 69: 371-376 [PMID: 9202331 DOI: 10.1046/j.1471-4159.1997.69010371.x]

Covault J, Lui QY, Crisco J, Goll DE. Calcium-activated microelectrode localization of calpain 1 in skeletal muscle of rats. *Cell Tissue Res* 1986; 244: 265-270 [PMID: 3013409 DOI: 10.1007/BF00219201]

Scaramuzzino DA, Morrow JS. Calmodulin-binding domain of recombinant erythrocyte beta-adducin. *Proc Natl Acad Sci USA* 1993; 90: 3398-3402 [PMID: 8475088 DOI: 10.1073/pnas.90.16.7908c]

Hatada K, Fukuda S, Kunimoto M, Yoshida K. Distribution of ankyrin isoforms and their proteolysis after ischemia and reperfusion in rat brain. *J Neurochem* 1997; 69: 371-376 [PMID: 9202331 DOI: 10.1046/j.1471-4159.1997.69010371.x]

Covault J, Lui QY, El-Deeb S. Calcium-activated proteolysis of intracellular domains in the cell adhesion molecules NCAM and N-cadherin. *Brain Res Mol Brain Res* 1991; 11: 11-16 [PMID: 1662741 DOI: 10.1016/0169-328X(91)90015-F]

Sato N, Fujio Y, Yamada-Honda F, Funai H, Wada A, Kashiwase S, Awata N, Shibata N. Elevated calcium level induces calcium-dependent proteolysis of A-CAM (N-cadherin) in heart—analysis by detergent-treated model. *Biochem Biophys Res Commun* 1995; 217: 649-653 [PMID: 7503747 DOI: 10.1016/0006-291X(95)92823-2]

Dayton WR, Goll DE, Stromer MH, Reville WJ, Zeece MG, Robson M. Some properties of a Ca2+-activated protease that may be involved in myofibrillar protein turnover. In: Cold...
Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaiga M, Kuroda T, Nishizuka Y. Limited proteolysis of protein kinase C subspecies by calcium-dependent neutral protease (calpain). J Biol Chem 1989; 264: 4088-4092 [PMID: 26730331 DOI: 10.1016/0022-2837(84)90377-5]

Tallant EA, Brumley LM, Wallace RW. Activation of a calmodulin-dependent phosphatase by a Ca2+-dependent protease. Biochemistry 1988; 27: 2205-2211 [PMID: 2837285 DOI: 10.1021/bi00406a059]

Norris FA, Atkins RC, Majerus PW. Inositol polyphosphate 4-phosphatase is inactivated by calpain-mediated proteolysis in stimulated human platelets. J Biol Chem 1997; 272: 10887-10898 [PMID: 9109377 DOI: 10.1074/jbc.272.17.10887]

Frangioni JV, Oda A, Smith M, Salzman EW, Neel BG. Calpain-catalyzed cleavage and subcellular relocation of protein phosphotyrosine phosphatase 1B (PTP-1B) in human platelets. EMBO J 1993; 12: 4843-4856 [PMID: 8223493]

Hirai S, Kawasaki H, Yaniv M, Suzuki K. Degradation of transcription factors, c-Jun and c-Fos, by calpain. FEBS Lett 1991; 297: 57-61 [PMID: 10906481 DOI: 10.1016/0014-5793(91)90105-U]

Parlati M, Salvat C, Rebien M, Brockly F, Altieri E, Carillo S, Jariel-Encontre I, Plechaczek M. The sensitivity of c-Jun and c-Fos proteins to calpains depends on conformational determinants of the monomers and not on formation of dimers. Biochem J 2000; 345 Pt 1: 129-138 [PMID: 10606484]

Gonen H, Shkedy D, Barney S, Kosower NS, Ciechanover A. On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett 2000; 476: 17-22 [PMID: 9109377 DOI: 10.1016/S0014-5793(97)00225-1]

Kubbutat MH, Vosden KH. Proteolytic cleavage of human p53 by calpain: a potential regulator of protein stability. Mol Cell Biol 1997; 17: 460-468 [PMID: 9722277]

Arthur JS, Elce JS, Hegadorn C, Williams K, Greer PA. Disruption of the murine calpain small subunit gene, Capn4: calpain is essential for embryonic development but not for cell growth and division. Mol Cell Biol 2001; 21: 1083-1093 [PMID: 10825211 DOI: 10.1128/MCB.21.4.1083-1093.2001]

Gradinger A, On the involvement of calpains in the degradation of the tumor suppressor protein p53. FEBS Lett 1997; 406: 17-22 [PMID: 9109377 DOI: 10.1016/S0014-5793(97)00225-1]

Kubbutat MH. Calpain-generated cleavage products of human p53 resolve on an SDS-PAGE gel. FEBS Lett 1997; 406: 17-22 [PMID: 9109377 DOI: 10.1016/S0014-5793(97)00225-1]

Pfaff M, Du X, Ginsberg MH. Calpain cleavage of integrin beta cytoplasmic domains. FEBS Lett 1999; 460: 17-22 [PMID: 10571033 DOI: 10.1016/S0014-5793(99)00403-1]

Fox JE, Saida T. Calpain in signal transduction. In: Calpain: Pharmacology and Toxicology of Calcium-Dependent Protease, edited by Wang KKK and Yuen P-W, Philadelphia, PA: Taylor and Francis 1999: 103-126

Golding A, Chang P, Lauffenburger DA, Wells A. Epidermal growth factor receptor activation of calpain is required for fibroblast motility and occurs via an ERK/MAP kinase signaling pathway. J Biol Chem 2000; 275: 2590-2598 [PMID: 1064690 DOI: 10.1074/jbc.275.4.2590]

Watanabe N, Vande Woode GF, Ikawa Y, Sagata N. Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs. Nature 1989; 342: 505-511 [PMID: 2555717 DOI: 10.1016/S0028-0836(01)00614-0]
and proteolysis induced by calpain. Exp Cell Res 2000; 259: 117-126 [PMID: 10942584 DOI: 10.1006/excr.2000.4969]

112 Kidd VJ, Lahti JM, Teitz T. Proteolytic regulation of apoptotic processes. Semin Cell Biol 2001; 12: 191-201 [PMID: 11086276 DOI: 10.1053/scbi.2001.00165]

113 Polster BM, Basanez A, Etchebarria A, Hardwick JM, Nicholls DG. Calpain induces clevage and release of apoptotis generating factor from isolated mitochondria. J Biol Chem 2005; 280: 6447-6454 [PMID: 15590628 DOI: 10.1074/jbc.M413269200]

114 Knepper-Nicola B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 1998; 273: 30530-30536 [PMID: 9804822 DOI: 10.1074/jbc.273.46.30530]

115 Wolf BB, Goldstein JC, Stennicke HR, Beere H, Amarante-MenDES GP, Salvesen GS, Green DR. Calpain-dependent processing in a caspase-independent manner to promote apoptosis-like events during platelet activation. Blood 1999; 94: 1633-1639 [PMID: 10477693]

116 Lynch G. Memory and the brain: unexpected chemistries and a new pharmacology. Neurobiol Learn Mem 1998; 70: 82-100 [PMID: 9753589 DOI: 10.1006/nlme.1998.3840]

117 Richard I, Broux O, Allamand V, Fougerousse F, Chian-nikulchai N, Bourg N, Brenguier L, Devaud C, Pasturaud R, Prouant C. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 1995; 81: 27-40 [PMID: 7728071]

118 Ono Y, Shimada H, Soriamaichi H, Richard I, Saida TC, Beckmann JS, Ishiura S, Suzuki K. Functional defects of a muscle-specific calpain, p94, caused by mutations associated with limb-girdle muscular dystrophy type 2A. J Biol Chem 1998; 273: 17073-17078 [PMID: 9642272 DOI: 10.1074/jbc.273.27.17073]

119 Tidball JG, Spencer M. Calpains and muscular dystrophies. Int J Biochem Cell Biol 2000; 32: 1-5 [PMID: 10661899 DOI: 10.1016/S1357-2725(99)00065-3]

120 Horikawa Y, Oda N, Cox NJ, Li X, Orho-Melander M, Hara M, Hinokyo K, Lindner TH, Mashima H, Schwarz PE, del Bosque-Plata L, Horikawa Y, Oda Y, Yoshiuchi I, Colilla S, Polonsky KS, Wei S, Conpcion P, Iwasaki N, Schulze J, Baier LJ, Bogardus C, Groop L, Boerwinkle E, Hanis CL, Bosque-Plata L, Horikawa Y, 10.1016/S1357-2725(99)00095-3 Int J Biochem Cell Biol

121 Leem CH, Lagadic-Gossman D, Vaughan-Jones RD. Characterization of intracellular pH regulation in the guinea-pig ventricular myocyte. J Physiol 1999; 517 (Pt 1): 159-180 [PMID: 10226157 DOI: 10.1111/j.1469-7793.1999.0159x.x]

122 Zucchi R, Ronca F, Ronca-Testoni S. Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol Ther 2001; 89: 47-65 [PMID: 11316513]

123 Schanne FA, Kane AB, Young EE, Farber JL. Calcium dependence of toxic cell death: a final common pathway. Science 1979; 206: 700-702 [PMID: 386513 DOI: 10.1126/science.386513]

124 Fleckenstein A, Frey M, Fleckenstein-Grin G. Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J 1989; 4 Suppl H: 43-50 [PMID: 6662132 DOI: 10.1093/eurheartj/4.suppl_H.43]

125 Lakatta EG, Naylor WG, Poole-Wilson PA. Calcium overload and mechanical function in posthypoxic myocardium: biphasic effect of pH during hypoxia. Eur J Cardiof 1979; 10: 77-87 [PMID: 38126]

126 Kihara Y, Grossman W, Morgan JP. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circ Res 1989; 65: 1029-1044 [PMID: 2791218 DOI: 10.1161/01. Res.65.4.1029]

127 Mohabir R, Lee HC, Kurw RW, Clusen WT. Effects of ischemia and hypercarbic acidosis on myocardial calcium transients, contraction, and pH in perfused rabbit hearts. Circ Res 1991; 69: 1525-1537 [PMID: 1954674 DOI: 10.1111/j.1469-7537.1991.0159z.x]

128 Steenbergen C, Murphy E, Levy L, London RE. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circ Res 1987; 60: 700-707 [PMID: 3109761 DOI: 10.1161/01. Res.65.5.700]

129 Seki S, Horikoshi K, Takeda H, Izumi T, Nagata A, Okumura H, Taniguchi M, Mochizuki S. Effects of sustained low-flow ischemia and reperfusion on Ca2+ transients and contractility in perfused rat hearts. Mol Cell Biochem 2001; 216: 111-119 [PMID: 1126885]

130 Marban E, Kitakaze M, Koresu Y, Yoe DT, Chacko VP, Pikes MM. Quantification of [Ca2+]i in perfused hearts. Critical evaluation of the 5F-BAPTA and nuclear magnetic resonance method as applied to the study of ischemia and reperfusion. Circ Res 1990; 66: 1255-1267 [PMID: 2110515 DOI: 10.1161/01. Res.66.5.1255]

131 Xia Z, Horton JW, Tang H, Yang Y. Metabolic disorder in myocardial intracellular free calcium after thermal injury. Burns 2001; 27: 453-457 [PMID: 11451597 DOI: 10.1016/S0305-4179(00)00119-4]

132 White DJ, Maas DL, Sanders B, Horton JW. Cardiomyocyte intracellular calcium and cardiac dysfunction after burn trauma. Crit Care Med 2002; 30: 14-22 [PMID: 11902254 DOI: 10.1097/00003246-200201000-00003]

133 Liang WY, Tang LX, Yang ZC, Huang YS. Calcium induced the damage of myocardial mitochondrial respiratory function in the early stage after severe burns. Burns 2002; 28;
Neuhof C et al. Calpains in myocardial ischemia and reperfusion

143-146 [PMID: 1190937]

145 Josephson RA, Silverman HS, Lakatta EG, Stern MD, Zweier JL. Study of the mechanisms of hydrogen peroxide and hydroxyl free radical-induced cellular injury and calcium overload in cardiac myocytes. J Biol Chem 1991; 266: 2354-2361 [PMID: 1846625]

146 Corretti MC, Koretsune Y, Kusuoka H, Chacko VP, Zweier JL, Marban E. Glycolytic inhibition and calcium overload as consequences of exogenously generated free radicals in rabbit hearts. J Clin Invest 1991; 88: 1014-1025 [PMID: 1653271 DOI: 10.1172/JCI15156]

147 Gen W, Tani M, Takeshita J, Ebihara Y, Tamaki K. Mechanisms of Ca2+ overload induced by extracellular H2O2 in quiescent isolated rat cardiomyocytes. Basic Res Cardiol 2001; 96: 623-629 [PMID: 11770081 DOI: 10.1007/s003950170104]

148 Semenov DG, Samoilov MO, Zelionka P, Lazarewicz JW. Responses to reversible anoxia of intracellular free and bound Ca2+ in rat cortical slices. Resuscitation 2000; 44: 207-214 [PMID: 10825622 DOI: 10.1016/S0300-9572(00)00136-2]

149 Vannucci RC, Brucklacher RM, Vannucci SJ. Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Brain Res Dev Brain Res 2001; 126: 117-120 [PMID: 11172893]

150 Zhang Y, Hou S, Wu Y. Changes of intracellular calcium and the correlation with functional damage of the spinal cord after spinal cord injury. Chin J Traumatol 2002; 5: 40-42 [PMID: 11853576]

151 Wu ML, Vaughan-Jones RD. Interaction between Na+ and H+ ions on Na+-H+ exchange in sheep cardiac Purkinje fibers. J Mol Cell Cardiol 1997; 29: 1131-1140 [PMID: 9160865 DOI: 10.1006/jmcc.1996.0338]

152 Mentzer RM, Lasley RD, Jessel A, Karmazyn M. Intracellular sodium hydrogen exchange inhibition and clinical myocardial protection. Ann Thorac Surg 2003; 75: S700-S708 [PMID: 12607715]

153 Gries M, Perltiz V, Jüngling E, Kammermeier H. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high K+ perfusion. J Mol Cell Cardiol 1988; 20: 1189-1201 [PMID: 3249307 DOI: 10.1016/0022-2828(88)90598-6]

154 Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat myocardium. Basic Res Cardiol 1991; 86: 1045-1056 [PMID: 2551525 DOI: 10.1006/jmcc.1991.0548]

155 Pierce GN, Menhen H. The role of sodium-proton exchange in ischemic/reperfusion injury in the heart. Na(+)-H+ exchange and ischemic heart disease. Am J Cardiovasc Pathol 1992; 4: 91-102 [PMID: 1326290]

156 Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Valentin SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975; 56: 978-985 [PMID: 1159098 DOI: 10.1172/JCI18178]

157 Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79: 609-634 [PMID: 10221990]

158 Kim SJ, Peppas A, Hong SK, Yang G, Huang D, Diaz G, Sadoshima J, Vanter DE, Vanter SF. Persistent stunning induces myocardial hibernation and protection: flow/function and metabolic mechanisms. Circ Res 2003; 92: 1233-1239 [PMID: 12735111 DOI: 10.1161/01.RES.0000087692.18594.86]

159 Siegmund M, Schlack W, Ladilov YV, Balser C, Piper HM. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture. Circulation 1997; 96: 4372-4379 [PMID: 9416906 DOI: 10.1161/01.CIR.96.12.4372]

160 Insete J, Garcia-Dorado D, Ruiz-Meana M, Padilla F, Barрабes JA, Pina P, Aguillo L, Piper HM, Sofer-Soler J. Effect of inhibition of Na+/Ca2+ exchanger at the time of myocardial reperfusion on hypercontracture and cell death. Cardiovasc Res 2002; 55: 739-748 [PMID: 12176123]

161 Piper HM, Meuter K, Schäfer C. Cellular mechanisms of ischemia-reperfusion injury. Ann Thorac Surg 2003; 75: 5644-5648 [PMID: 12607706 DOI: 10.1016/s0003-4975(02)05646-6]

162 Lakatta EG, Guarnieri T. Spontaneous myocardial calcium oscillations: are they linked to ventricular fibrillation? J Cardiovasc Electrophysiol 1993; 4: 473-489 [PMID: 8269314 DOI: 10.1111/j.1540-8167.1993.tb01285.x]

163 Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190: 255-266 [PMID: 10685060 DOI: 10.1012/j.satc1906]

164 Iizuka K, Kawaguchi H, Yasuda H. Calpain is activated during hypoxic myocardial cell injury. Biochem Biophys Acta 1991; 46: 427-431 [PMID: 1793619 DOI: 10.1016/0885-4505(91)90091-X]

165 Iizuka K, Kawaguchi H, Yasuda H. Calpain is activated by beta-adrenergic receptor stimulation under hypoxic myocardial cell injury. Jpn Circ J 1991; 55: 1086-1093 [PMID: 1684212 DOI: 10.1255/jcj.55.1086]

166 Yoshida K, Yamasaki Y, Kawashima S. Calpain activity alters in rat myocardial subfractions after ischemia or reperfusion. Biochim Biophys Acta 1993; 1182: 215-220 [PMID: 8357852 DOI: 10.1016/0925-4399(93)90143-O]

167 Sandmann S, Prenzel F, Shaw L, Schauer R, Unger T. Activity profile of calpains I and II in chronically infarcted rat myocardium--influence of the calpain inhibitor CAL 9961. Br J Pharmacol 2002; 135: 1951-1958 [PMID: 11959798 DOI: 10.1038/sj.bjp.0704661]

168 Ostwald K, Hagberg H, Andine P, Karlsson JO. Upregulation of calpain activity in neonatal rat brain after hypoxic-ischemia. Brain Res 1993; 630: 289-294 [PMID: 8118695 DOI: 10.1016/0006-8993(93)90668-D]

169 Liebetrau M, Staufber F, Awerswald EA, Gebrijelc-Geiger D, Fritz H, Zimmermann C, Pfefferkorn T, Hamann GF. Increased intracellular calpain detection in experimental focal cerebral ischemia. Neuroreport 1999; 10: 7-15 [PMID: 10722243]

170 Chatterjee PK, Todorovic Z, Sivarajah A, Mata-Filipe H, Brown FA, Stewart KN, Mazzon E, Cuzzocrea S, Thiemann C. Inhibitors of calpain activation (PD150606 and E-64) and renal ischemia-reperfusion injury. Biochem Pharmacol 2005; 69: 1121-1131 [PMID: 15763548 DOI: 10.1016/j.bcp.2005.01.003]

171 Zhang J, Patel JM, Block ER. Hypoxia-specific upregulation of calpain activity and gene expression in pulmonary artery endothelial cells. Am J Physiol 1998; 275: L461-L468 [PMID: 9728040]

172 Hernandez V, Insete J, Sartório CL, Parra VM, Poncelas-Nozal M, Garcia-Dorado D. Calpain translocation and activation as pharmacological targets during myocardial ischemia/reperfusion. J Mol Cell Cardiol 2010; 49: 271-279 [PMID: 2021186 DOI: 10.1016/j.yjmcc.2010.02.024]

173 Matsumura Y, Saeki E, Inoue M, Mori M, Kamada T, Kusuo K. Inhomogeneous disappearance of myofilament-related cytoskeletal proteins in stunned myocardium of guinea pig. Circ Res 1996; 79: 447-454 [PMID: 8781478 DOI: 10.1161/01.01.0000061325]
Yoshikawa Y, Hagihara H, Ohga Y, Nakajima-Takenaka C, Murata KY, Taniguchi S, Takaki M. Calpain inhibitor-1 protects the rat heart from ischemia-reperfusion injury: analysis by mechanical work and energetics. *Am J Physiol Heart Circ Physiol* 2005; 288: H1690-H1698 [PMID: 15528229 DOI: 10.1152/ajpheart.00666.2004]

Yoshikawa Y, Zhang GX, Obata K, Ohga Y, Matsuyoshi H, Taniguchi S, Takaki M. Cardioprotective effects of a novel calpain inhibitor SNJ-1945 for reperfusion injury after cardioprotective cardiac arrest. *Am J Physiol Heart Circ Physiol* 2010; 298: H1643-H1651 [PMID: 19966051 DOI: 10.1152/ajpheart.00849.2009]

French JP, Quindry JC, Falk DJ, Stahl JL, Lee Y, Wang KK, Powers SK. Ischemia-reperfusion-induced calpain activation and SERCA2a degradation are attenuated by exercise training and calpain inhibition. *Am J Physiol Heart Circ Physiol* 2006; 290: H128-H136 [PMID: 16155100 DOI: 10.1152/ajpheart.00739.2005]

Neuhof C, Götte O, Trumbeckeaitė S, Attenberger M, Kuzkaya N, Gellerich F, Müller A, Lubich S, Slepet M, Tillmanns H, Neuhof H. A novel water-soluble and cell-permeable calpain inhibitor protects myocardial and mitochondrial function in posts ischemic reperfusion. *Bioit Chem* 2003; 384: 1597-1603 [PMID: 14719802 DOI: 10.1515/BC.2003.177]

Zhang Z, Biesiadecki BJ, Jin JP. Selective deletion of the NH2-terminal variable region of cardiac troponin T in ischemia reperfusion by myofibril-associated mur-calpain cleavage. *Biochemistry* 2006; 45: 11681-11694 [PMID: 16981728 DOI: 10.1021/bi060273a]

Maekawa A, Lee JK, Nagaya T, Kiami K, Yasui K, Horiba M, Miwa K, Uzzaman M, Maki M, Ueda Y, Kodama I. Overexpression of calpastatin by gene transfer prevents troponin I degradation and ameliorates contractile dysfunction in rat hearts subjected to ischemia/reperfusion. *J Mol Cell Cardiol* 2003; 35: 1277-1284 [PMID: 14519437 DOI: 10.1016/S0022-5191(03)00228-4]

Lesnefsy EJ, Moghaddas S, Tandler B, Kermer J, Hoppel CL. Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging, and heart failure. *J Mol Cell Cardiol* 2001; 33: 1065-1089 [PMID: 11444914 DOI: 10.1016/j.jmcc.2001.1378]

Palmer JW, Tandler B, Hoppel CL. Biochemical differences between subsarcolemmal and interfibrillar mitochondria from rat cardiac muscle: effects of procedural manipulations. *Arch Biochem Biophys* 1985; 236: 691-702 [PMID: 2982322 DOI: 10.1016/0003-9861(85)90675-7]

Piper HM, Sezer O, Schleyer M, Schwartz P, Hütter JF, Speckermann PG. Development of ischemia-induced damage in defined mitochondrial subpopulations. *J Mol Cell Cardiol* 1985; 17: 885-896 [PMID: 4046049 DOI: 10.1016/S0022-5191(85)80102-4]

Chen Q, Paillard M, Gomez L, Frank JS, Bennett V, Philipson KD. The cardiac Na+-Ca2+ exchanger binds to the cytoskeletal protein ankyrin. *J Biol Chem* 1993; 268: 11489-11491 [PMID: 8505285]

Singh RB, Chohan PK, Dhalli NS, Netticadan T. The sarcoplasmic reticulum proteins are targets for calpain action in the ischemic-reperfused heart. *J Mol Cell Cardiol* 2004; 37: 101-110 [PMID: 15242740 DOI: 10.1016/j.yjmcc.2004.04.009]

Pedrozo Z, Sánchez G, Torrealba N, Valenzuela R, Fernández C, Hidalgo C, Lavandero S, Donoso P. Calpains and proteasomes mediate degradation of ryanodine receptors in a model of cardiac ischemic reperfusion. *Biochem Biophys Acta* 2010; 1802: 356-362 [PMID: 20026269 DOI: 10.1016/j.bbabio.2009.12.015]

Arrington DD, Van Vleet TR, Schnellmann RG. Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. *Am J Physiol Cell Physiol* 2006; 291: C1159-C1171 [PMID: 16790502 DOI: 10.1152/ajpcell.00207.2006]

Trumbeckeaitė S, Neuhof C, Zierer S, Gellerich FN. Calpain inhibitor (BSF 409425) diminishes ischemia-reperfusion-induced damage of rabbit heart mitochondria. *Biochem Pharmacol* 2003; 65: 911-916 [PMID: 12628497 DOI: 10.1016/S0006-2952(02)01610-6]

Otna H, Tanaka H, Inoue T, Umemoto M, Omoto K, Tanaka K, Sato T, Osako T, Masuda A, Nonoyama A. In vitro study on contribution of oxidative metabolism of isolated rabbit heart mitochondria to myocardial reperfusion injury. *Circ Res* 1984; 55: 168-175 [PMID: 6086177 DOI: 10.1161/01.RES.55.2.168]

Shlafer M, Gallagher KP, Adkins S. Hydrogen peroxide generation by mitochondria isolated from regionally ischemic and nonischemic dog myocardium. *Basic Res Cardiol* 1990; 85: 318-329 [PMID: 2241765 DOI: 10.1007/BF01907125]

Veitch K, Hombrockx A, Caucheteux D, Pouluer H, Hue L. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Anoxic pre-perfusion protects against ischemic damage. *Biochem J* 1992; 281 (Pt 3): 709-715 [PMID: 13469585]

Ambrosio G, Zweier JL, Duiillo C, Kuppusamy P, Santoro G, Elia PP, Tritto I, Cirillo P, Condorelli M, Chiarelli M. Evidence that mitochondrial respiration is a source of potentially toxic oxygen free radicals in intact rabbit hearts subjected to ischemia and reflow. *J Biol Chem* 1993; 268: 18532-18541 [PMID: 8395507]

Crompton M. The mitochondrial permeability transition pore and its role in cell death. *Biochem J* 1999; 341 (Pt 2): 233-249 [PMID: 10393078]

Kushnareva YE, Sokolove PM. Prooxidants open both the mitochondrial permeability transition pore and a low-conductance channel in the inner mitochondrial membrane. *Arch Biochem Biophys* 2000; 376: 377-388 [PMID: 10775426 DOI: 10.1006/abbi.2000.1730]

Green DR, Reed JC. Mitochondria and apoptosis. *Science* 1998; 281: 1309-1312 [PMID: 9721092 DOI: 10.1126/science.281.5381.1309]

72nd Scientific Sessions of the American Heart Association. Atlanta, Georgia, USA. November 7-10, 1999. Abstracts. *Circulation* 1999; 100: IA-V, 1-928 [PMID: 10566271]

Lesnefsy EJ, Chen Q, Slabe TJ, Stoll MS, Minkler PE, Hansen MO, Tandler B, Hoppel CL. Ischemia, rather than reperfusion, inhibits respiration through cytochrome oxidase in the isolated, perfused rabbit heart: role of cardiolipin. *Am J Physiol Heart Circ Physiol* 2005; 289: H1-8 [PMID: 16070635 DOI: 10.1152/ajpheart.00666.2004]
Neuhof C et al. Calpains in myocardial ischemia and reperfusion

J Physiol Heart Circ Physiol 2004; 287: H258-H267 [PMID: 14988071 DOI: 10.1152/jpheart.00348.2003]

206 Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA. Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. *J Biol Chem* 2001; 276: 30724-30728 [PMID: 11404357 DOI: 10.1074/jbc.M103701200]

207 Takeshita D, Tanaka M, Mitsuyma S, Yoshikawa Y, Zhang GX, Obata K, Ito H, Taniguchi S, Takaki M. A new calpain inhibitor protects left ventricular dysfunction induced by mild ischemia-reperfusion in in situ rat hearts. *J Physiol Sci* 2013; 63: 113-123 [PMID: 23242912]

208 Lubisch W, Beckenbach E, Bopp S, Hofmann HP, Kartal K, Lindner T, Metz-Carrerht M, Reeb J, Regner F, Vierling M, Möller A. Benzoylalanine-derived ketomides carrying vinylbenzyl amino residues: discovery of potent water-soluble calpain inhibitors with oral bioavailability. *J Med Chem* 2003; 46: 2404-2412 [PMID: 12773044 DOI: 10.1021/jm0210717]

209 Neuhof C, Fabiunke V, Deibeile K, Speth M, Moller A, Lubisch W, Fritz H, Tillmanns H, Neuhof H. Reduction of myocardial infarction by calpain inhibitors A-705239 and A-705253 in isolated perfused rabbit hearts. *Bioll Chem* 2004; 385: 1077-1082 [PMID: 15576328 DOI: 10.1015/BC.2004.139]

210 Neuhof C, Fabiunke V, Speth M, Möller A, Fritz F, Tillmanns H, Neuhof H, Erdogan A. Reduction of myocardial infarction by postischemic administration of the calpain inhibitor A-705253 in comparison to the Na(+)/H(+) exchange inhibitor Cariporide in isolated perfused rabbit hearts. *Bioll Chem* 2008; 389: 1505-1512 [PMID: 18484492 DOI: 10.1015/BC.2008.172]

211 Chen M, Won DJ, Krajewski S, Gottlieb RA. Calpain and mitochondria in isochemia/reperfusion injury. *J Biol Chem* 2002; 277: 29181-29186 [PMID: 12043254]

212 Cun L, Ronghua Z, Bin L, Jin L, Shuuy L. Preconditioning with Na(+)/H(+) exchange inhibitor HOE642 reduces calcium overload and exhibits marked protection on immature rabbit hearts. *ASAIO J* 2007; 53: 762-765 [PMID: 18043162 DOI: 10.1097/MAT.0b013e31815766e3]

213 Boyce SW, Bartels C, Bolli R, Chaitman B, Chen JC, Chi E, Jesus A, Reikeaides K, Knight J, Thulin L. Theroux P. Impact of sodium-hydrogen exchange inhibition by cariporide on cardioprotection on death or myocardial infarction in high-risk CABG surgery patients: results of the CABG surgery cohort of the GUARDIAN study. *J Thorac Cardiovasc Surg* 2003; 126: 420-427 [PMID: 12928639 DOI: 10.1016/S0022-5223(03)00905-9]

214 Mentzer RM, Bartels C, Bolli R, Boyce S, Buckberg GD, Chaitman B, Haverich A, Knight J, Menasché P, Myers ML, Nicola J, Simoons M, Thulin L, Weisel RD. Sodium-hydrogen exchange inhibition by cariporide to reduce the risk of ischemic cardiac events in patients undergoing coronary artery bypass grafting: results of the EXPEDITION study. *Ann Thorac Surg* 2008; 85: 1261-1270 [PMID: 18355507 DOI: 10.1016/j.athoracsur.2007.10.054]

215 Khalil PN, Neuhof C, Huss R, Pollhammer M, Khalil MN, Neuhof H, Fritz H, Siebeck M. Calpain inhibition reduces infarct size and improves global hemodynamics and left ventricular contractility in a porcine myocardial ischemia/reperfusion model. *Eur J Pharmacol* 2005; 528: 124-131 [PMID: 16324695 DOI: 10.1016/j.ejphar.2005.10.032]

216 Kang MY, Zhang Y, Matkovich SJ, Dwan A, Chisthi AH, Dorn GW. Receptor-independent cardiac protein kinase Calpha activation by calpain-mediated truncation of regulatory domains. *Circ Res* 2010; 107: 903-912 [PMID: 20698063 DOI: 10.1161/CIRCRESAHA.110.220772]

217 Ikeda Y, Young LH, Lefer AM. Attenuation of neutrophil-mediated myocardial ischemia-reperfusion injury by a calpain inhibitor. *Am J Physiol Heart Circ Physiol* 2002; 282: H1421-H1426 [PMID: 11893579]

218 Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: pathophysiology and therapy. *Circulation* 2000; 101: 2981-2988 [PMID: 10869273 DOI: 10.1161/01.CIR.101.25.2981]

219 Letavernier E, Zafirani L, Perez J, Letavernier B, Haymann JP, Baud L. The role of calpains in myocardial remodeling and heart failure. *Cardiovasc Res* 2012; 96: 38-45 [PMID: 22425901 DOI: 10.1093/cvr/cvs099]

220 Gottlieb RA, Burleson KO, Klomer RA, Babil BM, Engler RL. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. *J Clin Invest* 1994; 94: 1621-1628 [PMID: 7926838 DOI: 10.1172/JCI17504]

221 Ishimoto H, Miura T, Okamura T, Shirakawa K, Iwate M, Kawamura S, Tatsuno S, Ikeda Y, Matsuzaki M. Calpain inhibitor-1 reduces infarct size and DNA fragmentation of myocardium in ischemic/reperfused rat heart. *J Cardiovasc Pharmacol* 1999; 33: 580-586 [PMID: 10218728 DOI: 10.1177/10403983990330010]

222 Mani SK, Balasubramanian S, Zavadzskas JA, Jeffords LB, Rivers WT, Zile MR, Mukherjee R, Spinale FG, Kuppussamy D. Calpain inhibition preserves myocardial structure and function following myocardial infarction. *Am J Physiol Heart Circ Physiol* 2009; 297: H1744-H1751 [PMID: 19734364 DOI: 10.1152/jpheart.00358.2009]

223 Ma J, Wei M, Wang Q, Li J, Wang H, Liu W, Lancefield JC, Greer PA, Karmazyn M, Fan GC, Peng T. Deficiency of Capn4 gene inhibits nuclear factor-κB (NF-κB) protein signaling/inflammation and reduces remodeling after myocardial infarction. *J Biol Chem* 2012; 287: 27480-27489 [PMID: 22735411 DOI: 10.1074/jbc.M112.358929]

P- Reviewer: Coelho AM, Kusmic C, Tagarakis G
S- Editor: Ji FF L- Editor: A E- Editor: Wu HL
