Length-dependent energetics of (CTG)$_n$ and (CAG)$_n$ trinucleotide repeats

Samir Amrane, Barbara Saccà, Martin Mills1, Madhu Chauhan1, Horst H. Klump1 and Jean-Louis Mergny*

Laboratoire de Biophysique, Muséum National d’Histoire Naturelle USM 503, INSERM UR 565, CNRS UMR 8646, 43 rue Cuvier, 75231 Paris cedex 05, France and 1Department of Molecular and Cell Biology, University of Cape Town, P.B. Rondebosh 7701, Republic of South Africa

Received February 28, 2005; Revised and Accepted June 30, 2005

ABSTRACT

Trinucleotide repeats are involved in a number of debilitating diseases such as myotonic dystrophy. Twelve to seventy-five base-long (CTG)$_n$ oligodeoxy-nucleotides were analysed using a combination of biophysical [UV-absorbance, circular dichroism and differential scanning calorimetry (DSC)] and biochemical methods (non-denaturing gel electrophoresis and enzymatic footprinting). All oligomers formed stable intramolecular structures under near physiological conditions with a melting temperature that was only weakly dependent on oligomer length. Thermodynamic analysis of the denaturation process by UV-melting and calorimetric experiments revealed an unprecedented length-dependent discrepancy between the enthalpy values deduced from model-dependent (UV-melting) and model-independent (calorimetry) experiments. Evidence for non-zero molar heat capacity changes was also derived from the analysis of the Arrhenius plots and DSC profiles. Such behaviour is analysed in the framework of an intramolecular ‘branching-hairpin’ model, in which long CTG oligomers do not fold into a simple long hairpin–stem intramolecular structure, but allow the formation of several independent folding units of unequal stability. We demonstrate that, for sequences ranging from 12 to 25 CTG repeats, an intramolecular structure with two loops is formed which we will call ‘bis-hairpin’. Similar results were also found for CAG oligomers, suggesting that this observation may be extended to various trinucleotide repeats-containing sequences.

INTRODUCTION

Recent molecular genetic studies have revealed a correlation between spontaneous expansion of several DNA trinucleotide repeats and a variety of debilitating human diseases [for reviews see (1–4)]. This class of diseases was first characterized in Fragile-X syndrome (5) and later in myotonic dystrophy and other disorders. Myotonic dystrophy type 1 (DM1) is caused by the expansion of a (CTG)–(CAG) repeat in the DMPK gene (6). To date, at least nine distinct loci show instability with the same (CAG)–(CTG) repeat. These diseases increase in severity with earlier onset in successive generations and have no cure. Although the pathological states show different characteristics, one common feature among them is that the affected repetitive DNA unit has expanded beyond the number of repeats found in the healthy population. Therefore, the expansion of triplet repeats represents a novel mutational mechanism. More recently, other disorders have been associated with the expansion of non-trinucleotide motifs, such as the CCTG tetranucleotide in myotonic dystrophy type 2 (7).

DNA secondary structures may be considered as a common and causative factor for triplet expansion (8–10) but the molecular mechanisms causing the instability are unknown and remain a subject of intensive study. Even if no therapeutic approach is currently available to prevent or revert repeat expansion, in vitro studies suggest that repeat deletion could be induced by various chemotherapeutic agents (11,12); thus, opening a new field of study aimed at the design of trinucleotide repeat-specific ligands. Preliminary results suggest that selective recognition of trinucleotide repeat structures is possible (S. Amrane, unpublished data), but the rational design of such ligands should be facilitated by knowledge of the structure and energetics of their nucleic acid target.

Repetitive CNG sequences are susceptible to the formation of duplexes by self-folding, forming two Watson–Crick G–C pairs and one mismatch pair (13–16). Long hairpins have long
lifetimes and inhibit duplex reannealing (17, 18). A controversy remains on how different are these structures from classical B-DNA. Besides forming ‘slipped duplexes’ (19), CGG repeats have been reported to form quadruplexes (20–23). However, a recent study demonstrated that CGG repeats are reluctant to form tetraplexes under physiological conditions and this structure is unlikely to be involved in the disease (24): these sequences preferentially fold into antiparallel homoduplexes or hairpins in a length-dependent manner.

Concerning the structure of the bimolecular (CTG–CAG)$_n$ duplex, several results revealed a ‘polyhairpin concept’. Studies on (CAG–CTG)$_{30,50}$ showed that these duplexes formed alternative DNA duplex structures named SDNA and SiDNA (9, 19, 25–27). This conclusion was reached using atomic force microscopy, electron microscopy, native gel electrophoresis, Mung Bean (MB) and T7 endonuclease cleavage assays. SDNA is a well-described bimolecular polyhairpin structure composed of multiple short (CTG)$_n$ and (CAG)$_n$ ($n = 1–10$) slipped-out structures with a hairpin-like single-stranded character. SDNA is formed in the absence of replication when the two complementary strands have the same length. Instead, SiDNA is formed during replication between two complementary strands with a different number of repetitions and results in repeat expansion or deletion. SiDNA is composed of one major slipped-out structure containing 20–30 repeats of the longest (CTG)$_n$ or (CAG)$_n$ strand.

To date, only the short hairpin structures (containing <10 repeats) involved in the formation of SDNA have been clearly established (15, 28) revealing an intramolecular stem with several repetitions of a T·T or A·A mismatch sandwiched between 2 G–C base pairs. In contrast, the nature of the structures observed for longer repeats involved in the formation of SiDNA is still unclear. Even if several studies have previously demonstrated that long trinucleotide repeats adopt more compact structures than the short ones, suggesting the hypothesis of a multi-folded structure (16, 29), but little is known about their exact conformation. The elucidation of this point is the purpose of our study; i.e. the analysis of the conformational properties of individual (CTG)$_n$ or (CAG)$_n$ strands, which may constitute the single slipped-out structures of particular DNA regions.

Initial thermodynamic studies showed the stabilities of CAG and CTG hairpins to be nearly identical under physiological salt concentrations in vitro (17). In contrast, Völker et al. (30) showed that, within a conformationally confined system, (CAG)$_n$ and (CTG)$_n$ form stable, ordered structures with the former triplet less stable than the latter, as also recently confirmed by another group (31). In this study, we analysed the folding of (CTG)$_n$ and (CAG)$_n$ individual sequences by using biophysical [UV-absorbance, circular dichroism (CD) and microcalorimetry] and biochemical techniques (native gel electrophoresis and enzymatic footprinting). In agreement with the previous results, we found that the folding of these sequences is intramolecular rather than bimolecular and that these structures are stable in physiological conditions. The study of the thermodynamic data obtained by thermal denaturation and microcalorimetry led us to propose an intramolecular ‘bis-hairpin’ like model for (CTG)$_n$ and (CAG)$_n$ individual strands ($n = 12–25$), with longer strands possibly giving rise to the formation of multi-branched hairpins. These structures are actually distinct from the multiple hairpins found in SDNA and SiDNA, in which several short hairpins protrude from a DNA duplex at different positions. Our model suggests that each slipped-out single-stranded region found in SDNA and SiDNA can actually fold into structures more complex than previously thought, as soon as 10–12 repeats are present in a single protruding loop. Similar results were also found for (CAG)$_n$ repeats.

MATERIALS AND METHODS

Oligodeoxynucleotides

Oligodeoxynucleotide probes were synthesized by Eurogentec (Belgium) on the 0.2 or 1 μmol scale. As all oligomers studied here correspond to DNA, the ‘d’ prefix was omitted from most sequences. Purity was checked by gel electrophoresis. All concentrations were expressed in strand molarity using a nearest-neighbour approximation for the absorption coefficients of the unfolded species (32).

Thermal difference spectra for CTG and CAG trinucleotide repeats

The thermal difference spectrum (TDS) of a nucleic acid is obtained by simply recording the UV-absorbance spectra of the unfolded and the folded states at temperatures, respectively, above and below its melting temperature (T_m). The difference between these two spectra is defined as the TDS. The TDS has a specific shape that is unique for most structures (33, 34) (J.L. Mergny et al., manuscript in preparation); thus, providing a simple, inexpensive and rapid method to gain structural insight into nucleic acid structures, both DNA and RNA, ranging from short oligomers to polynucleotides. Spectra were recorded between 220 and 335 nm with a Kontron Uvikon 940 UV/Vis spectrophotometer using quartz cuvettes with an optical pathlength of 0.2 or 1 cm. The differential spectrum of a CTG repeat structure gives a maximum differential absorbance at an unusually high wavelength (∼277 nm) (34).

UV-melting experiments

The thermal stability of the different trinucleotide repeat structures was estimated by heating/cooling experiments, recording the UV-absorbance at several wavelengths as a function of temperature using a Kontron Uvikon 940 spectrophotometer thermostated with an external ThermoNeslab RTE111 or ThermoHaake Phoenix C25P1 waterbath. The temperature of the bath was typically increased or decreased at a rate of 0.2°C/min, using 0.2 or 1 cm pathlength quartz cuvettes. All experiments were carried out in 10 mM sodium cacodylate buffer (pH 7.0) containing 30–500 mM KCl. Taking into consideration the TDSs and the high strand concentrations used for some UV-melting experiments, we chose to record the denaturation process at 290 nm (using cuvettes of 0.2 cm optical pathlength for the highest concentrations) in order to obtain an absorbance between 0.1 and 1.5. On the contrary, for the thermodynamic analysis (see below), lower strand concentrations were used and the denaturation process was followed at 275 nm where the signal is maximal. However, the observed melting temperatures were in excellent agreement (usually within 0.5°C, data not shown) with the ones determined at other wavelengths (e.g. 260 nm). All melting profiles were...
perfectly reversible at the chosen temperature gradient, demonstrating that these curves correspond to true equilibrium curves (35).

Thermodynamic analysis

For all parameters listed below, the assumed direction of the thermal process is the single-strand-to-hairpin transition. The thermal reversibility and the known molecularity of the process allow one to calculate the value of the equilibrium constant (K_e) assuming a simple two-state transition model. One must first convert absorbance measurements into folded fraction by manually selecting two baselines corresponding to the completely folded and unfolded form. An uncertainty may therefore arise because of the subjectivity in baseline determination. Starting from the classical Gibbs enthalpy equation,

$$\Delta G^o = \Delta H^o - T\Delta S^o$$

one can write, for a reversible reaction [in which $\Delta G^o = -RT \ln(K_e)$], the following van’t Hoff equation:

$$\ln(K_e) = -\frac{\Delta H_{VH}^{o}}{R}(1/T) + \frac{\Delta S_{VH}^{o}}{R},$$

where T is the temperature in Kelvin, while ΔH_{VH}^{o} and ΔS_{VH}^{o} are, respectively, the standard enthalpy and entropy change of the reaction. In other words, provided that ΔH_{VH}^{o} and ΔS_{VH}^{o} are temperature-independent (see below), the so-called van’t Hoff representation or Arrhenius plot [ln(K_e) versus 1/T] should give a straight line, with a slope of $-\Delta H_{VH}^{o}/R$ and a y-axis intercept of $\Delta S_{VH}^{o}/R$. The ΔH_{VH}^{o} of this reversible reaction is called the van’t Hoff enthalpy and is defined by

$$\Delta H_{VH}^{o} = \frac{R \ln(K_e)}{d(T^{-1})}.$$

In the case of temperature-dependent enthalpies and entropies, one will obtain a significant deviation from linearity. Nevertheless, the above equation is still valid, but the slope at each point may be different, leading to temperature-dependent ΔH_{VH}^{o} and ΔS_{VH}^{o} values. van’t Hoff enthalpies and entropies are said to be ‘model-dependent’: they rely on a two-state equilibrium hypothesis. They are, therefore, less robust than the ‘model-independent’ thermodynamic values provided by calorimetry (see below).

Determination of ΔC_{p}^{o}

The linear fit of an Arrhenius plot assumes that ΔH^o is temperature-independent, which in turn means that $\Delta C_{p}^{o} = 0$. ΔC_{p}^{o} is the heat capacity change at constant pressure which is occurring during the thermal process (considered in the single-strand-to-hairpin direction). ΔH_{VH}^{o} and ΔS_{VH}^{o} are linked to ΔC_{p}^{o} by the following relations:

$$\frac{d(\Delta H_{VH}^{o})}{d(T)} = \Delta C_{p}^{o},$$

$$\frac{d(\Delta S_{VH}^{o})}{d(ln(T))} = \Delta C_{p}^{o}.$$
DSC and UV-melting analysis were in good agreement. The systematic small ($\pm 2^\circ$C) difference in favour of the DSC T_m is the result of the calorimetric definition of the melting temperature, which corresponds to the temperature of maximum heat release/uptake rather than to the temperature of half association/dissociation. The real T_m (half association/dissociation temperature) is therefore $\pm 2^\circ$C below the DSC T_m, referred to in the text as ‘T_m^{cal}’. The calorimetric enthalpy (ΔH^{cal}_{cal}) and entropy (ΔS^{cal}_{cal}) for the transition process were determined in a model-independent way from the DSC curve. Comparison of the ΔH^{cal}_{cal} with the van’t Hoff value obtained by the UV-thermal curve (ΔH^{cal}_{th}) allowed us to confirm or inform the correctness of the previously assumed two-state model used to describe the entire thermal process ($\kappa = \Delta H^{cal}_{th}/\Delta H^{cal}_{cal} = 1$). Additional fitting of the experimental DSC curve with a more general model equation (provided by the CpCalc software) and its resolution by deconvolution analysis allowed us to obtain the value of ΔS^{cal}_{cal} for the whole process, as well as the thermal profile of the ‘daughter’ subcurves corresponding to the intermediate transitions. Deconvolution of the DSC curves represents one of the major advantages of the calorimetric analysis over the spectroscopic one. In fact, while by UV analysis small differences in melting temperature between independent subunits may be masked by an even smaller conformational change in the overall structure (giving rise to an apparent two-state transition profile of the UV-thermal curve), deconvolution of the calorimetric curve into its components can allow for unravelling intermediate states.

RESULTS

Confirmation of the folded form and intramolecular folding of CTG repeats

Several groups have previously demonstrated that repeats adopt an intramolecular duplex structure [for a recent example see (31)]. For this reason, we will very briefly describe the experiments that were carried out to confirm this model in our system. As shown in Supplementary Figures S1A and S1B, DNA composed of pure (CTG)$_n$ repeats ($n = 4$–10) exhibit fast, strand concentration-independent, mobility on polyacrylamide gels (29,43–45) in good agreement with an intramolecular structure. This increased mobility is almost completely lost under denaturing conditions (Supplementary Figures S1C and S1D). CD spectra of CTG oligomers are similar to the CD spectral signature of B-DNA with a negative peak ~ 255 nm and a positive peak ~ 285 nm (Supplementary Figure S2) (31).

Thermal absorbance difference spectra

Another method, we recently proposed, to study the conformation of a nucleic acid is to record the ‘thermal absorbance difference spectrum’ between its high and low temperature UV-absorbance spectrum (33,34). The normalized TDS has a shape which is specific for each nucleic acid conformation studied so far, ranging from duplexes to quadruplexes: as shown in Figure 2A, the shapes of TDS for (CTG)$_n$ ($n = 8$–20) were all very close (red curves) suggesting that these oligomers adopt a similar folded conformation. Furthermore, these spectra with two maxima ~ 275 and 235 nm are highly reminiscent of pure GC-rich B-DNA TDS [blue curve and (34)]. A similar analysis was performed for CAG repeats (Figure 2B); although the TDS were not superimposable (compare panels A and B), these spectra were also reminiscent of GC-rich B-DNA TDS, but completely different from the ones of other structures such as quadruplexes (33). It is interesting to note that the CTG spectra are very close to the 100% GC spectra (47) (Figure 2A, in blue; these duplexes correspond to sequences where only GC base pairs are formed), whereas CAG repeats resemble mixed duplexes (Figure 2B, in black; these duplexes involve 67% GC/33% TA base pairs).

Analysis of the melting profiles

Careful analysis of the UV-melting profiles revealed several observations. First, the melting temperature of (CTG)$_n$ and (CAG)$_n$ was weakly dependent on oligonucleotide length (example provided in Supplementary Figure S3; see also Figure 1B). For the CTG oligomers tested here, the T_ms varied between 54 ($n = 6$) and 58.7°C ($n = 25$) (Table 1), while for (CAG)$_n$ the T_ms varied between 51.6 ($n = 6$) and 54°C ($n = 25$) (Supplementary Table S1).
Second, the Arrhenius representation of the melting curves also revealed a more complex behaviour (35). Determination of the folded fraction for the two samples analysed in Supplementary Figure S3 led to the Arrhenius plots are shown in Figure 3. A significant and reproducible deviation from linearity is seen in both cases. As described previously (Materials and Methods), it is possible to fit these curves to obtain the $D_{C_{ph}}/C_{14}$ values (Table 1). Assuming a reaction in the single-strand-to-hairpin direction, these values were found to be always negative, in agreement with the studies on different DNA structures but with surprisingly high absolute values for long sequences [e.g. (CTG)$_{20}$, (CTG)$_{25}$ and (CAG)$_{25}$]. Additionally, even if some discrepancies may be found, the $D_{C_{ph}}$ values deduced from van’t Hoff plots ($D_{C_{ph}}$) were generally in good agreement with those deduced from calorimetry ($D_{C_{ph}}$; Tables 1 and S1).

Third, the thermal stability of these trinucleotide repeats was analysed as a function of KCl concentration. As expected, the T_m values for the (CTG)$_8$ oligomer were found to be indeed dependent on KCl concentration (Supplementary Figure S4): a 10-fold increase in potassium concentration led to a 7°C increase in T_m (from 50°C at 10 mM KCl to 57°C at 100 mM KCl). This ionic strength dependence is somewhat lower than previously reported (16) and lower than expected for regular double-stranded hairpins.

Calorimetric analysis of (CTG)$_n$

The calorimetric values of the enthalpy (ΔH_{cal}) and entropy (ΔS_{cal}) of renaturation for the CTG oligomers are reported in Table 1 and an example of a DSC denaturation run of (CTG)$_{25}$ is provided in Figure 4A. As in the UV-thermal analysis,
the $T_{\text{max}}^\text{cal}$ determined by DSC was almost sequence-length independent (Figure 4B). Next, the van’t Hoff enthalpy determined by the analysis of the UV-thermal transition curve ($\Delta H_{\text{VH}}^\circ$) was compared to the calorimetric value obtained by DSC ($\Delta H_{\text{cal}}^\circ$) (Figure 4C and D). For relatively short sequences ($n = 4–12$) the ratio $x = \Delta H_{\text{VH}}^\circ / \Delta H_{\text{cal}}^\circ$ was close to 1 (1.08 ± 0.13; Table 1). The similarity of the two values validated the hypothesis of the two-state model used in the van’t Hoff analysis to describe the thermal transition of the intramolecular trinucleotide repeat. However, in the case of longer sequences, the $\Delta H_{\text{VH}}^\circ / \Delta H_{\text{cal}}^\circ$ ratio dramatically dropped to values ~0.4 (Figure 4D). The $\Delta H_{\text{VH}}^\circ$ failed to become more negative with increased repeat number, whereas $\Delta H_{\text{cal}}^\circ$ continued to increase (in absolute terms) explaining why the agreement was lost (Figure 4C and Table 1). The difference was highly significant as the errors bars (Figure 4C) on $\Delta H_{\text{VH}}^\circ$ and $\Delta H_{\text{cal}}^\circ$ were 6% or lower.

Calorimetric analysis of (CAG)$_n$

The thermal behaviour observed for the CTG repeats was compared with that obtained from CAG repeats of identical length under the same experimental conditions. An example of a DSC denaturation run for a (CAG)$_n$ oligo is provided in Figure 5A. Again, we observed that, for all sequences tested, the T_{max} and the T_{m} values found by DSC and UV-melting analysis were in good agreement and almost independent on sequence-length (Figure 5B). As shown in Figure 5C and D, the values of $\Delta H_{\text{VH}}^\circ$ and $\Delta H_{\text{cal}}^\circ$ for the (CAG)$_n$ thermal denaturations were compared and plotted against the number of triplet repeats, leading to the same conclusions drawn for the (CTG)$_n$ analogs (see also Supplementary Table S1).

Enzymatic probing of long CTG repeats

Nuclease sensitivity studies were performed with S1 and MB nucleases that are two single-strand specific endonucleases. The bases contained in the single-stranded regions of the structures adopted by long CTG repeats are preferentially cleaved with respect to the ones contained in the double-stranded regions. The cleavage sites for the two nucleases were determined by comparison with size markers (Materials and Methods). The enhanced MB digestion of (CTG)$_{15}$ occurred at three main regions (Figure 6A): (i) two sites at the 3’ end, G13 and G14; (ii) five sequence-centred sites around the (CTG)$_7$ (T4) marker, i.e. C7, T7, G7, C8 and T8 resulting from a TGCT-loop; and (iii) two sites around the 5’ end region identified as G1 and C2 representing a CTG-loop. S1 digestion of (CTG)$_{15}$ presents only two sites around the same 5’ end region cleaved by the MB nuclease: G1 and C2 (Figure 6B). Similarly, two loops were characterized for (CAG)$_{15}$: one central loop composed of two repeats

Table 1. Thermodynamic parameters for (CTG)$_n$ repeats

n	T_{VH}° (°C)a	$T_{\text{cal}}^\text{max}$ (°C)b	$\Delta H_{\text{VH}}^\circ$ (kcal/mol)d	$\Delta H_{\text{cal}}^\circ$ (kcal/mol)b	$x = \Delta H_{\text{VH}}^\circ / \Delta H_{\text{cal}}^\circ$	$\Delta S_{\text{VH}}^\circ$ (cal/mol/K)e	$\Delta S_{\text{cal}}^\circ$ (cal/mol/K)f	$\Delta C_{\text{VH}}^\circ$ (cal/mol/K)g	$\Delta C_{\text{cal}}^\circ$ (cal/mol/K)h
6	54	55.1	−33.0	−22.6	1.28	−101	−69	−450	nd
8	56.8	58.1	−44.0	−40.5	1.09	−133	−122	−1030	−380
10	57	60.1	−51.0	−45.9	1.11	−155	−138	−710	−720
11	57.1	59.4	−53.9	−51.0	1.06	−165	−153	−1360	−1040
12	57.8	60.0	−56.6	−62.8	0.90	−171	−188	−1410	−1210
13	57.7	60.1	−52.7	−62.6	0.77	−159	−188	−1700	nd
14	57.6	60.8	−52.6	−78.7	0.67	−159	−235	−1510	nd
15	57.7	59.6	−51.9	−82.1	0.63	−156	−293	−1500	nd
16	57.7	61.4	−51.5	−95.2	0.54	−156	−296	−1500	nd
20	57	59.3	−56.5	−125.7	0.45	−171	−385	−2060	−1260
25	58.7	61.3	−61.7	−147.2	0.42	−186	−440	−2120	−1880

For all parameters listed, the assumed direction is the single-strand-to-hairpin transition. nd, not determined.

aNumber of (CTG) repeats.

bMelting temperature deduced from the UV-melting curve.

cMelting temperature deduced from the DSC profile.

dThermodynamic parameters deduced from the UV-melting curves, using a non-linear fit of the Arrhenius plots, where the $\Delta H_{\text{VH}}^\circ$ is close to the ΔH° determined at the $T_{\text{cal}}^\text{max}$.

eThermodynamic parameters deduced from the DSC profiles. (Error bars for ΔT° values are shown in Figure 4C; highest relative error of 6.4%).

fThermodynamic parameters deduced from the DSC profiles. (Error bars for ΔT° values are shown in Figure 4C; highest relative error of 5.1%).

gHeat capacity change deduced from general model fitting of the DSC profiles.

hHeat capacity change deduced from non-linear fitting of the Arrhenius plots.

iHeat capacity change deduced from general model fitting of the DSC profiles.
(CAGCAG) and one CAG loop at the 5' end (Supplementary Figure S5).

The enhanced digestion of (CTG)₁₅ occurred at three main regions (Figure 7A): (i) two sites at the 3' end: G14 and G15; (ii) two sequence-centred sites around the (CTG)₈ (T₃) marker: T₈ and G₈ resulting from a CTG-loop; and (iii) two sites around the 5' end region identified as G₁ and C₂, indicating a CTG-loop. These two CTG-loops are conserved in (CTG)₂₀ (Figure 6A and B) with the following digestion sites: (i) two sequence-centred sites around the (CTG)₁₀ (T₂) marker: T₁₀ and G₁₀ and (ii) two sites around the 5' end region identified as G₁ and C₂.

Finally, (CTG)₂₅ presents the same kind of loops as (CTG)₁₅ (Supplementary Figure S6): (i) four sequence-centred sites around the (CTG)₁₂ (T₁) marker: T₁₂, G₁₂, C₁₃ and T₁₃ resulting from a 4 nt loop; and (ii) two sites around the 5' end region identified as G₁ and C₂, representing a CTG-loop. Thus, our data show that all these sequences present one centred loop of 3 or 4 nt and one loop at the 5' end containing 3 nt (Figures 6C and 7B). In theory, this terminal loop could also correspond to DNA end fraying, but in this case we would have obtained four cleavage sites: C₁, T₁, G₁ and C₂ at the 5' end region instead of the only two sites G₁ and C₂.

Furthermore, two NMR studies on short CTG repeat sequences have demonstrated that the T–T mismatches, all over the stem of the hairpin, are very well stacked between the two adjacent CpG base pairs and are bound to each other by two hydrogen bonds (35). The DNA end fraying hypothesis is therefore unlikely, as will be confirmed in the following part.

CTG)₁₅ variant sequences

In order to confirm these results and to ensure that the proximal cuts of the 5' end nucleotides do not represent DNA end fraying, the C and G bases of the single-strand regions of (CTG)₁₅ previously defined by footprinting experiments...
were replaced by T bases. The ΔT_{cal} and renaturation enthalpy of the modified oligonucleotide sequences were then measured by DSC and compared to the ones of the unmodified analog (Table 2). Replacement of C2 and G2 (as well as of G7 and C8) by two T bases did not influence the renaturation enthalpy. In fact, despite a little decrease in the ΔT_{cal} ($-2.5^\circ C$) of the modified sequences, their enthalpy remained around -80 kcal/mol as for the unmodified (CTG)$_{15}$. This suggests that these four bases, i.e. C2, G2, G7 and C8, do not belong to the stem region of the hairpin but to unpaired regions of the structure. The small difference in ΔT_{cal} could be the result of little variations in the ionic conditions between the modified and the unmodified samples or errors in data acquisition/baseline determination. More importantly, this ΔT_{cal} is defined as the maximum of the DSC curve (Materials and Methods) and does not necessarily correspond to the real T_m (half association/dissociation temperature): it is therefore not the best parameter to assess the stability of a structure. At this purpose, the model-independent $\Delta H^\circ_{\text{cal}}$ of the renaturation process is a more suitable parameter, directly related to the number of base pairs involved in the molecule. Thus, the constancy of this value for T-replacement of C2, G2, G7 and C8, undoubtedly indicates that these four bases do not belong to the stem region of the hairpin but to unpaired regions of the structure. In contrast, we obtained a dramatic decrease, in absolute value, of the renaturation enthalpy (from -80 till -54.8, -51.8 and -51.4 kcal/mol) by replacing C3, C7 and G8 by a T base, thus showing that these three bases belong instead to the stem region of the structure.

DISCUSSION

The goal of this study was to analyse the assumption of a quasi ‘normal’ hairpin duplex for trinucleotide repeats, namely the CTG and CAG repeat motifs. Little is known about the exact conformation of long trinucleotide repeats. Several studies have previously demonstrated that long trinucleotide repeats adopt more compact structures than the short ones, suggesting the hypothesis of a multi-folded structure rather
than a single-hairpin (16,29). Few NMR or crystallographic studies have actually analysed 'pure' CNG repeats, as they are usually embedded into different sequence motifs [e.g. GCGGTTTGCGG in (48) and TGGCGGC in (49); for a review see (50)]. Disease-related CNG repeats exhibit a propensity for folding at chain lengths as short as 12 residues (14). CTG-containing sequences have been studied with a variety of other techniques, including PAGE, KMnO₄ modification, P1 nuclease digestion, UV-absorbance and molecular dynamic simulations [reviewed in (51)]. To date, the hairpin structure of sequences shorter than 10 repeats has been clearly established (15,28), but the nature of the compact structures observed for longer repeats is still unclear.

In this paper, CD, electrophoresis, UV and DSC data revealed sharp structural transitions, in agreement with the formation of a rather simple canonical B-DNA hairpin, with a stem length growing with the repeat number. However, independent results indicate that the energetics and/or structure of these intramolecular trinucleotide repeats were significantly altered when compared with the canonical B-DNA, especially for (relatively) long (CTG)ₙ sequences. Qualitatively similar results were obtained for (CAG)ₙ repeats, suggesting that this behaviour may be a general phenomenon for (CNG)ₙ oligonucleotides.

First, the thermal stability of this structure (its Tₘ) was very weakly dependent on the oligonucleotide length (Figures 4B and 5B and Supplementary Figure S3). The weak sequence-length dependence of the Tₘ of these repeats was previously observed for (CTG)₁₀ and (CTG)₂₅ (16); (CTG)₁₀ and (CTG)₂₅ (17); (CTG)₁₀ and (CTG)₁₅ (31) as well, but has never been systematically studied [with a notable exception for (CUG)ₙ RNAs; n = 5–69 (52)]. In our experience, the thermal stability of DNA hairpins increases rapidly with the stem length, in complete opposition to what is observed here. This behaviour...
is therefore highly irregular for a simple hairpin system. Second, the analysis of the melting curves did not lead to simple Arrhenius plots, as significant and reproducible curvatures were observed. We actually had to manually select an unlikely lower baseline in order to ‘linearize’ the Arrhenius representations (Supplementary Figure S7). At least three non-exclusive reasons may be proposed to explain this non-linear behaviour: (i) a non-two-state transition (partially melted structures are significantly populated), (ii) two (or more) intermingled transitions occur or (iii) a single two-state transition occurs with a highly negative $\Delta C_{\text{VH}}/C_14$ (i.e. a temperature-dependent $\Delta H_{\text{VH}}/C_14$). This last possibility which was, until recently (53,54), overlooked for nucleic acids transitions, should be seriously considered here. The comparison of the model-dependent and model-independent $\Delta H_{\text{VH}}/C_14$ values provides interesting clues.

Length-dependent discrepancy between van’t Hoff and calorimetry enthalpy

Several groups have reported important discrepancies between the van’t Hoff enthalpy (ΔH_{VH}) and the calorimetry enthalpy (ΔH_{cal}) for various nucleic acids structures (55), although not for trinucleotides. For (CTG)$_n$ and (CAG)$_n$ repeats, we observed that the melting temperatures found by DSC and van’t Hoff analysis of the UV-melting curves were always in reasonable agreement; however, the model-dependent and the model-independent enthalpies were not always identical (Figures 4C and 5C and Tables 1 and S1). For relatively short (CTG)$_n$ or (CAG)$_n$ sequences ($n = 4–12$) the $\Delta H_{\text{VH}}/\Delta H_{\text{cal}}$ ratio was close to 1, validating the hypothesis of the two-state model used in the van’t Hoff analysis. In the
case of longer sequences, the $\Delta H_{\text{cal}}/\Delta H_{\text{cal}}^\text{VH}$ ratio dramatically dropped (Figures 4D and 5D) to values ~ 0.4 (for CTG repeats) or 0.5 (for CAG repeats). This length-dependent difference between the two enthalpy values suggests the hypothesis of a non-two-state transition model for longer sequences. That is, above a critical threshold number of trinucleotide repetitions ($n = 10–12$), a change in the structural organization of the oligonucleotides occurs, going from a simple hairpin–stem model to a structure of higher complexity, composed of different independent units. Therefore,

(i) Below 12 repeats, no significant difference between the two ΔH values was observed, leading to their similar increase with sequence-length. For these relatively short sequences the two-state transition model was confirmed by deconvolution of the DSC profiles (Figure 8A) into a single transition, indicating their folding into a simple hairpin structure.

(ii) Beyond 12 repeats, instead, an increasing discrepancy between the ΔH values appeared, with the model-independent ΔH_{cal} still increasing in a length-dependent manner, whereas the two-state model-dependent ΔH_{VH} remained quasi-constant. In contrast with a previous report (31), no plateau was observed in ΔH_{cal} for sequences longer than 15 trinucleotide repeats (Figures 4C and 5C). For long oligomers, the two-state hypothesis was no longer valid, suggesting the formation of a more complex structure with at least two independent units. This observation was confirmed by deconvolution of the DSC profiles into a three-state equilibrium with two intermediate transitions (Figure 8B).

In other words, for short sequences, folding into a single-hairpin structure is relatively simple, leading to a good concordance between ΔH_{cal} and ΔH_{VH}. For long sequences (at least 12), rather than adopting a regular long stem, the oligonucleotide seems to maintain a relatively short and constant length of the stem region while the remaining part fold into several (at least two) independent folding units, of not necessarily the same length, which melt in an independent fashion. In that case, a multi-branched hairpin should have a relatively apparent constant van’t Hoff enthalpy, as seen by UV-melting analysis, but an increased calorimetric enthalpy, as observed by DSC. This different folding trend for longer sequences may be explained in terms of a favourable enthalpy–entropy compensation. In fact, although a long single-hairpin structure should indeed have a more favourable renaturation enthalpy (owing to maximization of the number of base pairs), it has not necessarily the most favourable free energy. On the contrary, branched hairpin structures may offer additional degrees of freedom, possibly lowering the unfavourable entropic term and thus explaining their preferential formation for longer sequences.

Nuclease assays

The enzymatic assays on long sequences (Figures 6 and 7 and Supplementary Figures S5 and S6), additionally confirmed by the DSC analysis of the (CTG)$_n$-modified sequences (Table 2), suggested that a simple hairpin was not necessarily the chosen structure, as other bases close to the 5’ end of the sequence were cleaved by single-strand specific nucleases.
3 nt CTG-loop hairpin. It is interesting to note that, in our study, this tendency is reversed for longer sequences: (CTG)_15 and (CTG)_25 present a centred 4 nt TGCT-loop, while (CTG)_16 and (CTG)_20 present a centred 3 nt CTG-loop. Thus, this inversion confirms the presence of a second loop composed of an odd number of CTG repeats at the 5′ end of the sequence.

CONCLUSIONS

Above a critical threshold number of trinucleotide repetitions (n = 12–15), a change in the structural organization of the oligonucleotides occurs going from a simple hairpin–stem model to a structure of higher complexity composed of different independent units such as a bis- (or multi-branched) hairpin-like structure. In contrast with a recent report (31), our calorimetric data suggest that the enthalpic stability of this structure is not compromised as the length of the hairpin overcomes 15 repeats. The possible intramolecular bis-hairpin model could be generalized as an intramolecular ‘multi-branched’ hairpin model for pathological sequences as long as 3000 repetitions. The 3 or 4 nt bulges disseminated all over the repeated sequence could be involved in the instability process during DNA replication through the formation of slipped-out DNA structures, but may also represent an important feature to discriminate trinucleotide repeats against canonical B-DNA for targeting by small repeat-specific bulge-ligands. This instability has been ascribed to the energy of the structure but in our case it could be explained in terms of number of hairpin loops that introduce an additional steric parameter to the energetic one. These results have encouraged us to carry on further investigations for a better understanding of the thermodynamics of these repetitions, and stimulating additional studies directed to the structural elucidation of long trinucleotide repeat models. We will now pursue similar studies on other DNA and RNA trinucleotides [(CGG)_n, (CCG)_n and (CUG)_n (58,59)] to see whether these observations may be extended to other CNG repeats.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.

ACKNOWLEDGEMENTS

We thank T. Garestier, J. Pylouster, A. De Cian, L. Guittat and L. Lacroix (MNHN, Paris, France) for helpful discussions. S.A. is the recipient of a ‘Fondation Jérôme Lejeune’ PhD fellowship. This work was supported by an ARC grant (no. 3365), an INSERM ‘Equipement Mi-Lourd’ grant (to J.L.M.) and a French–South African exchange grant (to J.L.M. and M.M.). Funding to pay the Open Access publication charges for this article was provided by INSERM.

Conflict of interest statement. None declared.

REFERENCES

1. Timchenko,L.T. and Caskey,C.T. (1999) Triplet repeat disorders: discussion of molecular mechanisms. Cell. Mol. Life Sci., 55, 1432–1447.
2. Cummings,C.J. and Zoghbi,H.Y. (2000) Trinucleotide repeats: mechanisms and pathophysiology. Annu. Rev. Genomics Hum. Genet., 1, 281–328.
3. Bowater,R.P. and Wells,R.D. (2001) The intrinsically unstable life of DNA triplet repeats associated with human hereditary disorders. In Moldave,K. (ed.), Progress in Nucleic Acid Research. Academic Press Inc., San Diego, CA, Vol. 66, pp. 159–202.
4. Everett,C.M. and Wood,N.W. (2004) Trinucleotide repeats and neurodegenerative disease. Brain, 127, 2385–2405.
5. Oberle,L., Rousseau,F., Heitz,D., Kreutz,C., Devys,D., Hanauer,A., Boue,J., Bertheas,M. and Mandel,J. (1991) Instability of a 500-base pair DNA segment and abnormal methylation in fragile X syndrome. Science, 252, 1097–1102.
6. Brook,J.D., McCurrach,M.E. and Harley,H.G. (1992) Molecular basis of myotonic dystrophy expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family number. Cell, 68, 799–808.
7. Liquori,C.L., Ricker,K., Moseley,M.L., Jacobsen,J.F., Kress,W., Naylor,S.L., Day,J.W. and Ranum,L.P.W. (2001) Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science, 293, 864–867.
8. McMurray,C.T. (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc. Natl Acad. Sci. USA, 96, 1823–1825.
9. Sinden,R.R. (1999) Biological implications of the DNA structures associated with disease causing triplet repeats. Am. J. Hum. Genet, 64, 346–353.
10. Cleary,J.D. and Pearson,C.E. (2005) Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet., 21, 272–280.
11. Hashem,V.I. and Sinden,R.R. (2002) Chemotherapeutic induced deletion of expanded triplet repeats. Mutat. Res., 508, 107–119.
12. Hashem,V.I., Pytlos,M.J., Klyzik,E.A., Tsujii,K., Khajav,M., Ashizawa,T. and Sinden,R.R. (2004) Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res., 32, 6334–6346.
13. Chen,X., Mariappan,S.V.S., Catasti,P., Ratliff,R., Moyzis,R.K., Laayoun,A., Smith,S.S., Bradbury,E.M. and Gupta,G. (1995) Hairpins are formed by the same DNA strands of the fragile X triplet repeats: structure and biological implications. Proc. Natl Acad. Sci. USA, 92, 5199–5203.
14. Zheng,M.X., Huang,X.N., Smith,G.K., Yang,X.Y. and Gao,X.L. (1996) Genetically unstable CXT repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. J. Mol. Biol., 264, 323–336.
15. Mariappan,S.V.S., Garcia,A.E. and Gupta,G. (1996) Structure and dynamics of the DNA hairpins formed by tandemly repeated CTG triplets associated with myotonic dystrophy. Nucleic Acids Res., 24, 775–783.
16. Petruska,J., Arheim,N. and Goodman,M.F. (1996) Stability of intrastrand hairpin structures formed by the CAG/CTG class of DNA triplet repeats associated with neurological diseases. Nucleic Acids Res., 24, 1992–1998.
17. Gacy,A.M. and McMurray,C.T. (1998) Influence of hairpins on template reannealing at trinucleotide repeat duplexes: a model for slipped DNA. Biochemistry, 37, 9426–9434.
18. Paiva,A.M. and Sheardy,R.D. (2005) The influence of sequence context and length on the kinetics of DNA duplex formation from complementary hairpins possessing (CNG) repeats. J. Am. Chem. Soc., 127, 5581–5585.
19. Pearson,C.E. and Sinden,R.R. (1996) Alternative structures in duplex DNA formed within the trinucleotide repeats of the myotonic dystrophy and fragile X loci. Biochemistry, 35, 5041–5053.
20. Fry,M. and Loeb,L.A. (1994) The fragile X syndrome d(CGG)_n nucleotide repeats form a stable tetrahedral structure. Proc. Natl Acad. Sci. USA, 91, 4950–4954.
21. Chen,F.M. (1995) Acid-facilitated supramolecular assembly of G-quadruplexes in d(CGG)_n. J. Biol. Chem., 270, 23900–23906.
22. Darlow,J.M. and Leach,D.R.F. (1998) Secondary structures in d(CGG) and d(CCG) repeat tracts. J. Mol. Biol., 275, 3–16.
23. Weisman-Shomer,P., Naot,Y. and Fry,M. (2000) Tetrahedral forms of the fragile X syndrome expanded sequence d(CGG)_n are destabilized by two heterogeneous nuclear ribonucleoprotein-related telomeric DNA-binding proteins. J. Biol. Chem., 275, 2231–2238.
24. Fojtík,P., Kejnovská,I. and Vorlicková,M. (2004) The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes. Nucleic Acids Res., 32, 296–306.
25. Pearson,C.E., Wang,Y.H., Griffith,J.D. and Sinden,R.R. (1998) Structural analysis of slipped-strand DNA (SDNA) formed in
(CTG)n-(CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res., 26, 816–823.
26. Tam,M., Montgomery,S.E., Kekis,M., Stollar,B.D., Price,G.B. and Pearson,C.E. (2003) Slipped (CTG)\n(CAG) repeats of the myotonic dystrophy locus: surface probing with anti-DNA antibodies. J. Mol. Biol., 332, 585–600.
27. Pearson,C.E., Tam,M., Wang,Y.H., Montgomery,S.E., Dar,A.C., Cleary,J.D. and Nichol,K. (2002) Slipped-strand DNAs formed by long (CTG)\n(CAG) repeats: slipped-out repeats and slip-out junctions. Nucleic Acids Res., 30, 4534–4547.
28. Chi,L.M. and Lam,S.L. (2005) Structural roles of CTG repeats in slippage expansion during DNA replication. Nucleic Acids Res., 33, 1604–1617.
29. Mitchell,J.E., Newbury,S.F. and McClellan,J.A. (1995) Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to fragile X and related human genetic diseases. Nucleic Acids Res., 23, 1876–1881.
30. Völker,J., Makube,N., Plum,G.E., Klump,H.H. and Breslauer,K.J. (2002) Conformational energies of stable and metastable states formed by DNA triplet repeat oligonucleotides: implications for triplet expansion diseases. Proc. Natl Acad. Sci. USA, 99, 14700–14705.
31. Paiva,A.M. and Sheardy,R.D. (2004) Influence of sequence context and length on the structure and stability of triplet repeat DNA oligomers. Biochemistry, 43, 14218–14227.
32. Cantor,C.R., Warshaw,M.M. and Shapiro,H. (1970) Oligonucleotide formation by UV-spectroscopy. FASEB J., 33, 74–78.
33. Albert,P., Hoarau,M., Guitard,L., Takasugi,M., Arimondo,P.B., Lacroix,L., Mills,M., Teulade-Fichou,M.P., Vigneron,J.P., Loh,J.M. et al. (2002) Triplex vs. quadruplex specific ligands and telomerase inhibition. In Bailly,C., Demeunynck,M. and Wilson,D. (eds), Triplex vs. Quadruplex Specific Ligands and Telomerase in the Study of High-Order DNA–Drug Interactions. In Chaires,J.B. and Thornton,C.A. (eds), Oxford Handbook of Nucleic Acid Structure. Oxford University Press, Oxford, pp. 389–454.
34. Mergny,J.L. and Lacroix,L. (2003) Analysis of thermal melting curves. In Duchesne,J. (ed.), Thermo-chemical Properties of Nucleic Acids. Academic Press, NY, Vol. 2, pp. 277–318.
35. Kettani,A., Kumar,R.A. and Patel,D.J. (1995) Solution structure of a DNA quadruplex containing the fragile X syndrome triplet repeat. J. Mol. Biol., 254, 638–656.
36. Patel,P.K., Bhavsar,N.S. and Hosur,R.V. (2000) Cation-dependent conformational switches in d-TGGGCGG containing two triplet repeats of Fragile X Syndrome: NMR observations. Biochem. Biophys. Res. Commun., 278, 833–838.
37. Patel,D., Bouaziz,S., Kettani,A. and Wang,Y. (1999) Structures of guanine-rich and cytosine-rich quadruplexes formed in vitro by telomeric, centromeric, and triplet repeat disease DNA sequence. In Neidle,S. (ed.), Oxford Handbook of Nucleic Acid Structure, Oxford University Press, Oxford, pp. 398–454.
38. Mitas,M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res., 25, 2245–2253.
39. Tian,B., White,R.J., Xia,T.B., Welle,S., Turner,D.H., Mathews,M.B. and Mikulecky,P.J. (2004) Heat capacity changes in RNA activate the double-stranded RNA-dependent protein kinase PKR. RNA, 6, 79–87.
40. Mikulecky,P.J. and Feig,A.L. (2004) Heat capacity changes in RNA folding: application of perturbation theory to hammerhead ribozyme cold denaturation. Nucleic Acids Res., 32, 3967–3976.
41. Tikkhomirova,A., Taulier,N. and Chalikian,T.V. (2004) Energetics of nucleic acid stability: the effect of delta C, J. Am. Chem. Soc., 126, 16387–16394.
42. Haq,J., Chowdhury,B.Z. and Jenkins,T.C. (2001) Calorimetric techniques in the study of high-order DNA–drug interactions. In Chaires,J.B. and Waring,M.J. (eds), Drug Nucleic Acid Interaction. Academic Press Inc., San Diego, CA, Vol. 340, pp. 109–149.
43. Yu,A., Dill,J., Wirth,S.S., Huang,G., Lee,V.H., Haworth,I.S. and Mitas,M. (1995) The trinucleotide repeat sequence d(GTC)\n15 adopts a hairpin conformation. Nucleic Acids Res., 23, 2706–2714.
44. Hartenstein,M.J., Goodman,M.F. and Petraska,J. (2000) Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J. Biol. Chem., 275, 18382–18390.
45. Napierska,M., Michalowski,D., de Mezer,M.P., Vigneron,J.P. and Lehn,J.M. (2003) Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes. Wiley VCH, Weinheim, pp. 315–336.
46. Mergny,J.L. and Lacroix,L. (2003) Analysis of thermal melting curves. Oligonucleotides, 13, 515–537.
47. Holbrook,J.A., Capp,M.W., Saecker,R.M. and Record,M.T. (1999) Enthalpy and heat capacity changes for formation of an oligomeric DNA duplex: interpretation in terms of coupled processes of formation and association of single-stranded helices. Biochemistry, 38, 8409–8422.
48. Chalikian,T.V., Volker,J., Plum,G.E. and Breslauer,K.J. (1999) A more unified picture for the thermodynamics of nucleic acid duplex melting: a characterization by calorimetric and volumetric techniques. Proc. Natl Acad. Sci. USA, 96, 7853–7858.
49. Rozoula,N. and Bloomfield,V.A. (1999) Heat capacity effects on the melting of DNA. 1. General aspects. Biophys. J., 77, 3242–3251.
50. Rozoula,N. and Bloomfield,V.A. (1999) Heat capacity effects on the melting of DNA. 2. Analysis of nearest-neighbor base pair effects. Biophys. J., 77, 3252–3255.
51. Jelesarov,Y., Crane-Robinson,C. and Privalov,P.L. (1999) The energetics of HMG box interactions with DNA: thermodynamic description of the target DNA duplexes. J. Mol. Biol., 294, 981–995.
52. Shindo,H., Torjoe,H. and Sarai,A. (1993) Thermodynamic and kinetic studies of DNA triplex formation of an oligohomopyrimidineline and a matched duplex by filter binding assay. Biochemistry, 32, 8963–8969.
53. Chaires,J.B. (1997) Possible origin of differences between van’t Hoff and calorimetric enthalpy estimates. Biophys. Chem., 64, 15–23.
54. Mitias,M., Yu,A., Dill,J., Kamp,T.J., Chambers,E.J. and Haworth,I.S. (1995) Hairpin properties of single-stranded DNA containing a GC-rich triplet repeat: (CTG)\n3, Nucleic Acids Res., 23, 1050–1059.
55. Chastain,P.D.,II, Eichler,E.E., Kang,S., Nelson,D.L., Levene,S.D. and Sinden,R.R. (1995) Anomalous rapid electrophoretic mobility of DNA containing triplet repeats associated with human disease genes. Biochemistry, 34, 16125–16131.
56. Chastain,P.D. and Sinden,R.R. (1998) CTG repeats associated with human genetic disease are inherently flexible. J. Mol. Biol., 275, 405–411.
57. Gacy,A.M., Goellner,G., Jurancic,N., Macura,S. and McMurray,C.T. (1995) Trinucleotide repeats that expand in human disease form hairpin structures in vitro. Cell, 81, 533–540.
58. Riesner,D. and Roemer,R. (1973) Differential melting techniques and typical melting curves. In Duchesne,J. (ed.), Physico-Chemical Properties of Nucleic Acids. Academic Press, NY, Vol. 2, pp. 277–318.
59. Patle,P.K., Bhavsar,N.S. and Hosur,R.V. (2000) Cation-dependent conformational switches in d-TGGCCGG containing two triplet repeats of Fragile X Syndrome: NMR observations. Biochem. Biophys. Res. Commun., 278, 833–838.