Safety and efficacy of convalescent plasma as a therapy for SARS-CoV-2: A systematic review and meta-analysis

Anirban Hom Choudhuri, Sakshi Duggal, Jotika Singh, Partha Sarathi Biswas
Departments of Anaesthesiology and Intensive Care and 1Psychiatry, GIPMER, New Delhi, India

Abstract
Background and Aims: The safety and efficacy of convalescent plasma therapy (CPT) in SARS-CoV-2 is promising but intriguing due to heterogeneity of published studies. We conducted this systematic review and meta-analysis of convalescent plasma use in COVID-19 to identify its safety and efficacy.

Material and Methods: We comprehensively searched the databases - PubMed, Web of Science, Embase, and the Cochrane Library for journal papers published between December 2019 and January 2021 about the use of CPT in SARS-CoV-2, and performed a meta-analysis using random effects models and assessed the quality of evidence using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach.

Results: Of 1529 records, 11 studies were eligible (five RCTs, two nonrandomized intervention trials, three prospective observational, and one retrospective), and all were conducted in confirmed patients of SARS-CoV-2. Out of the 11 studies, four investigated the effect of CPT on mortality, three on symptom alleviation, five on duration of hospital stay, four on time to discharge, three on the effect on viral clearance, three on the improvement in antibody titers, two on oxygen requirement, and two on adverse events. The pooled estimate for relative risk of death from SARS-CoV-2 was no different after CPT than control (RR: 0.87, 95% CI: 0.69, 1.10), (p = 0.426) but the relative risk of clinical improvement of symptoms was better after CPT (RR: 1.61, 95% CI: 0.97, 2.70). There was earlier hospital discharge after CPT over control (RR: 1.49, 95% CI: 0.79, 2.80), improved viral clearance (RR: 1.95; 95% CI: 1.07, 3.53), and quicker detection of antibody titer (RR: 1.95; 95% CI: 1.07, 3.53). No difference was observed for adverse effects between CPT and control (RR: 0.92; 95% CI: 0.63 1.35).

Conclusion: CPT appears to be a safe and promising treatment in moderate to severe SARS-CoV-2 leading to faster clinical improvement, reduced oxygen requirement, early hospital discharge, and quicker emergence of protective antibodies despite having no mortality benefit.

Keywords: SARS-CoV-2, convalescent plasma, meta-analyses

Introduction
The outbreak of SARS-CoV-2 has inflicted a heavy casualty worldwide and the end doesn’t seem anywhere near. Till date nearly 123 million patients are affected and 2.7 million deaths have been reported worldwide. Many old and new drugs have been tried so far with variable success, although any definitive cure is still elusive.[1,2]

Convalescent plasma therapy (CPT) involves collection of antibody-rich blood from SARS-CoV-2 recovered patients and its transfusion to affected patients. The neutralizing antibodies present in the blood bind to the viruses and prevent their entry into the host cell. They stimulate immune phagocytosis by the...
host cells leading to the killing of viruses. This therapy has been used earlier during Spanish flu pandemic of 1918 and thereafter during the outbreaks of SARS, MERS, and Ebola viruses. Three systematic reviews consisting of 13 studies (both observational and clinical trials) have so far reported its benefit in SARS-CoV-2, whereas two meta-analyses have found no advantages.\(^\text{[3-5]}\) Although FDA has approved its use for SARS-CoV-2, the specific treatment criteria are unknown. Most studies included in the earlier systematic reviews and meta-analyses possessed more weaknesses than strengths. The main weakness of the studies were in the lack of uniformity in CPT, inclusion of more patients with severe disease, wide variability in the dosing and timing of CPT, dearth of information about the viral load prior to CPT, and limited data about the neutralizing antibody titers following CPT.

This systematic review and meta-analyses were conducted to emendate the previous deficiencies and investigate the effects of CPT in SARS-CoV-2, and also unearth the key determinants of this treatment.

Method

Search strategy

This systematic review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The review was registered in PROSPERO database (CRD 42021274135). The following databases - PubMed, Web of Science, Embase, and the Cochrane Library were comprehensively searched for journal papers published between December 2019 and January 2021, using the keywords “convalescent plasma,” “SARS-CoV-2,” “COVID-19,” “plasma,” “serum,” “immune,” and the related words for publications. Articles published in English language only were searched for analysis. Additionally, the references for selected studies were searched to identify other studies. Following the removal of duplicate entries, a three-stage screening process was adopted to identify eligible studies through the detailed examination of each title, abstract, and full text. Two reviewers independently screened the titles and abstracts of the retrieved citations and then assessed the full-text manuscripts that were considered potentially eligible. In case of disagreement between the two reviews with respect to fulfilment of inclusion criteria, the third reviewer acted as arbitrator.

Study selection

All studies fulfilled the following criteria: i) the population of interest was patients with confirmed diagnosis of SARS-CoV-2 for any age or sex, ii) randomized controlled trials (RCTs), non-randomized single-arm intervention studies, prospective observational studies, retrospective studies were eligible, iii) the intervention measure was CPT therapy, iv) there was reporting of at least two outcomes of interest (mortality, symptom alleviation, hospital length of stay, antibody levels, viral load, effect on oxygen requirement, and v) reporting of adverse events. Only studies in English language were chosen.

The exclusion criteria were: i) reviews, case series, case reports, clinical guidelines, and expert consensus, ii) animal or *in vitro* studies, (iii) studies for which the full text was not available, and iv) studies with insufficient data on clinical information.

Data extraction

The studies retrieved during the searches were screened against the eligibility criteria and those meeting the criteria were included. Data was extracted from the eligible studies using a template by two independent authors and validated by a third. The following information was extracted: authors and country of the study, study design, number of participants, patients condition, time of administration, titers and dosages of CP, concomitant therapy, conclusion of authors, adverse events (AEs), and other results.

Risk of bias assessment

Two researchers independently assessed the potential bias for each selected study. The third researcher was consulted for resolving any difference of opinion. The ‘Risk of Bias’ 2.0 tool was used to assess the randomized clinical trials, which includes five domains: ‘randomization process,’ ‘deviations from intended interventions,’ ‘missing outcome data,’ ‘measurement of the outcome,’ and ‘selection of the reported results.’ The ‘Risk of Bias in Nonrandomized studies (ROBINS-I)’ was applied to assess the risk of bias in nonrandomized studies of interventions. It comprised seven domains: ‘bias due to confounding,’ ‘selection of participants,’ ‘classification of intervention,’ ‘deviations from intended interventions,’ ‘missing data,’ ‘measurement of outcomes’ and ‘selection of the reported results.’ The NIH quality assessment toll was used to assess the risk of bias in observational studies. Each domain was judged as ‘low,’ ‘moderate,’ ‘serious,’ and ‘critical.’ For every criterion, risk of bias was classified as ‘high,’ ‘unclear,’ or ‘low.’

Quality of the evidence

Two researchers independently assessed the quality of evidence by using the ‘Grading of Recommendations Assessment, Development and Evaluation (GRADE)’ tool. The GRADE was used to create a ‘Summary of findings’ table. The quality of evidence of each outcome is classified as ‘high,’ ‘moderate,’ ‘low,’ or ‘very low.’

Statistical analysis

The statistical software of SPSS was used for analyses. One researcher entered the data, and two researchers checked their accuracy. For dichotomous outcomes, the number of events
and total number of participants in two groups were recorded. Fixed-effects model was used if the result of the Q test was not significant ($p > 0.1$). The odds ratio (OR) and the RR with 95% confidence intervals (CIs) were assessed for all studies. A Chi-square test with a significance level at $P \leq 0.05$ was used to assess heterogeneity of treatment effects between trials. The I² statistic was used to quantify possible heterogeneity (I² statistic: 30–60% represented moderate heterogeneity, 75–100% considerable heterogeneity). If heterogeneity was above 80%, the potential causes were explored through sensitivity and subgroup analyses. If no reason for heterogeneity could be found, meta-analysis was not conducted. Subgroup analyses were performed if appropriate based on the data retrieved.

Result

Using the predefined key words, the initial literature search revealed 1529 studies from various databases. After pruning the results as per the inclusion and exclusion criteria, a total of 11 studies were selected for analysis as is shown in the PRISMA chart [Figure 1]. The studies included five randomized control studies, two nonrandomized interventional studies, three prospective observational studies, and one retrospective observational study. The study characteristics are displayed under relevant headings [Table 1]. A “Summary of findings” table was also created using the GRADE tool, which was used to assess the quality of evidence [Table 2].

Study inclusion and characteristics

Out of the 11 studies, four studies investigated the effect of CPT on mortality after both moderate and severe COVID. A total of three studies investigated the effect of CPT on symptom alleviation, five studies investigated the effect on duration of hospital stay, four studies on time to discharge after COVID admission, three studies on the effect on viral clearance, three studies on the improvement in antibody titers, two studies on oxygen requirement, and two studies on adverse events.

Risk of bias within the studies

The risk of bias was low in two studies (two randomized controlled studies), moderate in six studies (three randomized controlled studies, two nonrandomized interventional studies, one prospective observational study), and high in three studies (two prospective observational studies, one retrospective observational study)[Table 3].
Authors and country	Design	Number of participants (n)	Criteria for enrolment	Time of CPT	Dosage and titers of CPT	Concomitant therapy	Conclusion	Adverse events (AEs) and other remarks
Duan K et al. China	Multi-center pilot observational study	20	Adults>18 years with severe COVID-19 infection, Respiratory distress (RR ≥30 beats/min, SpO₂ <93% at rest, PaO₂/FiO₂ ≤300 mmHg)	Mean time from disease onset to CP transfusion=16.5 days	200 ml with the neutralizing antibody titers above 1:640 and transfused within 4 hours	Antiviral, Steroids, Antibiotics, Antifungal, anticoagulants	Potential benefit reduced viral load, better clinical outcomes	No serious adverse reactions
Abdolghasemi H et al. Iran	Nonrandomized multi-center RCT	189	Confirmed COVID-19 with lung involvement on imaging with symptoms viz. dyspnea, respiratory rate ≥20/min, fever and cough, SpO₂ ≥93% on room air, ≤7 days since disease onset	Within 3 days of hospital admission.	500 ml, repeat transfusion if no improvement occurs after 24 hours.	Antivirals, hydroxychloroquine, antiinflammatory agents	CPT is safe and effective for COVID-19 with improved patient survival & significantly reduced hospitalization and need for intubation	No serious adverse events
Ling Li et al. China	Open-label, multi-center, randomized clinical trial	103	Severe COVID-19 infection with respiratory distress and/or hypoxemia or life-threatening (shock, organ failure, or requiring mechanical ventilation).	17.4 days (Median)	4 to 13 ml/kg of body weight: 10 ml for the first 15 minutes, then increased to 100 ml/hour	Antiviral, Antibacterial, steroids, human immunoglobulin, Chinese herbal medicines	No significant improvement in time to clinical improvement after 28 days, Early termination of trial	2 patients developed adverse reactions. One case of definite nonsevere allergic transfusion reaction or a probable nonsevere febrile nonhemolytic transfusion. The second patient had severe transfusion associated dyspnea
4. Rasheed et al. Iraq	Randomized controlled trial	49	Critically ill COVID-19 patients, (adults ≥18 year, SpO₂ <90% in resting state, on O₂ or mechanical ventilation)	Within first 3 days of ICU admission	400 ml single dose	Hydroxychloroquine, Azithromycin, Oxygen therapy, Methylprednisolone, Antibiotics, Anticoagulants	CPT is effective when donors with high level of SARS-CoV2 antibodies are selected and when recipients are in the early stage of disease illness	No serious adverse reaction. Single case of mild allergic reaction
5. Simonovich et al., Argentina	Double-blind, placebo-controlled, multicenter trial	333	Severe Covid-19 (radiological confirmed pneumonia, plus one of the following SaO₂, <at rest and ambient air, PaO₂/FiO₂ <300, SOFA or modified SOFA score of two or more points above baseline	Symptom onset to enrolment=8 days (IQR=5-10 days)	Median dose - 500 ml (IQR: 415-600) Median titer=1:3200 (IQR: 1:800-1:3200)	CPT is effective when donors with high level of SARS-CoV2 antibodies are selected and when recipients are in the early stage of disease illness	No differences observed in clinical status or overall mortality between patients treated with convalescent plasma and those who received placebo.	No significant differences in incidence or severity of adverse events. Five patients in test group developed non-hemolytic febrile reactions

Contd...
Authors and country	Design	Number of participants (n)	Criteria for enrolment	Time of CPT	Dosage and titters of CPT	Conclusion	Concomitant therapy
Gharbharan et al.	Multicenter open-label randomized clinical trial	86	Adults >18 years with positive RT-PCR test within 96 hours	300 ml, neutralizing titers of at least 1:80.	Two doses of 200 ml convalescent plasma, transfused 24 hours apart, levels of neutralizing antibodies not measured	Conclusion: A priori measurement of neutralizing antibody titres in donors and participant might further clarify the role of convalescent plasma in the management of COVID-19. Convalescent plasma was not associated with progression to severe COVID-19 or all cause mortality.	Chloroquine, Azithromycin, Antimicrobials, supplemental oxygen
Liu et al.	Retrospective, propensity-score matched case-control study	39	Severe or life-threatening COVID-19 within 0-7 days	Median time from admission to transfusion=4 days (range 0-7 days)	4 to 13 mL/kg Antiviral, Antibacterial, Steroids, Human immunoglobulin, Chinese herbal medicines	Conclusion: Convalescent plasma is potentially effective against COVID-19, but adequately powered, randomized controlled trials are needed.	Corticosteroids, Azithromycin, Intervenional Antimicrobials, IL-6 inhibitors
Agarwal et al.	Open-label, parallel arm, phase II, multicenter randomized controlled trial	464	Total=255 vs. Total=229	Not mentioned	Not mentioned	Conclusion: Two participants reported severe or life-threatening adverse events following convalescent plasma transfusion. One patient in the severe COVID-19 group nonsevere allergic.	Not mentioned
Mortality outcomes
The pooled estimate for relative risk of death from COVID was not statistically different after CPT than control (RR: 0.87, 95% CI: 0.69, 1.10, \(p = 0.426 \)). The mortality outcomes were influenced by the studies of Zeng et al.\(^6\) (RR: 0.89, 95% CI: 0.61, 1.31, 38.04%) and Abolghasemi et al.\(^7\) (RR: 0.61; 95% CI: 0.34, 1.10; 15.72%) for severely ill COVID patients. However, Duan et al.\(^8\) found mortality benefit with CPT (RR: 0.65; 95% CI: 0.29, 1.46; 8.59%) in patients having moderate to severe disease. All the studies had low risk of bias. Additionally, Abolghasemi et al. found the risk of endotracheal intubation to be 7% in CPT as against 20% in the control group, although the study was not powered to detect such difference.\(^7\) CPT was found to be cost effective as well. [Figure 2] Among others, Li et al. and Agarwal et al.\(^9\) failed to observe any difference in the 28-day mortality after CPT.\(^10\)

Clinical improvement
The pooled estimate for relative risk of clinical improvement of symptoms was better after CPT than control (RR: 1.61, 95% CI: 0.97, 2.70). Some studies considered both clinical and microbiological recovery. All the studies investigating symptomatic improvement with CPT showed a positive association. Li et al. (RR: 1.85; 95% CI: 0.91, 3.77; 22.92%) and Simonovich et al. (RR: 2.10; 95% CI: 1.66, 2.66; 37.47%) showed improvement in both moderately and severely ill patients whereas Agarwal et al. (RR: 1.16; 95% CI: 1.02, 1.33; 39.61%) found benefit in moderately ill patients.\(^9\)\(^11\) However, there was significant heterogeneity between the studies (I\(^2\) = 90.9%, \(P < 0.0001 \)) [Figure 3]. Rasheed et al.\(^12\) demonstrated a decreased recovery time for the critically ill COVID-19 patients who received CP.

Discharge from hospital
The pooled estimate showed a relative risk for earlier discharge after CPT over control (RR: 1.49, 95% CI: 0.79, 2.80). This was most notable in the studies by Zeng et al.\(^6\) (RR: 2.50; 95% CI: 0.18, 33.83; 5.14%) and Abolghasemi et al.\(^7\) (RR: 3.47; 95% CI: 1.40, 8.62; 22.04%) where early discharge was noted in severely ill patients after CPT. It was also observed by Li et al.\(^10\) (RR: 1.42; 95% CI: 0.90, 2.24; 33.41%) in severely ill patients. However, the same was not reported by Simonovich et al. (RR: 0.90; 95% CI: 0.76, 1.06; 39.41%). There were significant heterogeneity among the four studies (I\(^2\) = 78.1% \(P = 0.003 \)) [Figure 4].\(^11\)

Viral clearance
CPT improved viral clearance in all studies (RR: 1.95; 95% CI: 1.07, 3.53). Zeng et al.\(^6\) demonstrated increased clearance in severely ill patients (RR: 3.30; 95% CI: 1.47, 7.42; 23.78%) whereas Li et al.\(^10\) (RR: 2.33; 95% CI: 0.02, 100.87).
Table 2: Summary of findings using the GRADE tool for quality assessment

Outcome	Illustrative comparative study	Relative effect (95% CI)	Number of participants in CP (studies)	Quality of evidence across the studies (GRADE)	Comments
Death (total all cause) after treatment	Moderate to severely ill patients	0.87 (.69-1.10)	407 (4)	Low to moderate	The end points are 28 days mostly. Studies are open level.
Improvement of symptoms (WHO 6 points ordinal scale for breathlessness) after treatment	Moderate to severe ill	1.61 (.97-2.70)	462 (3)	Moderate	No blinding in one study.
Improvement in detectable antibody titer (third day)	Moderate to severe ill	1.61 (.97-2.70)	501 (3)	Moderate to High	Wide CI. One open level study.
Improvement in requirement of O₂ support	Moderate to severe ill	1.08 (.92-1.27)	317 (2)	Low to moderate	Either open level or partial blinding.
Viral clearance after treatment	Moderate to severe ill	1.95 (1.07-3.53)	226 (2)	Low to moderate	Open level study.
Hospital stays in days after treatment	Moderate to severely ill	0.11 (-.01-.24)	591 (4)	Low to moderate	Dissociation of results between severely and moderately ill.
Early discharge (within 5-28 days of CP treatment)	Moderate to severely ill	1.49 (.89-2.80)	400 (4)	Low	Incongruence of results because of methodological difference.
Adversity in course after treatment	Moderate to severely ill	0.92 (.63-1.35)	388 (2)	High	Deterioration of symptoms.

Table 3: Risk of bias assessment

Authors	Type of study	Risk of Bias
Kai Duan et al.	Prospective, observational	High
Hassan	Nonrandomized	Moderate
Abolghasemi et al.	Intervventional	High
Ling Li et al.	Multicenter, RCT	Moderate
Rasheed et al.	Multicenter, RCT	Low
Simonovich et al.	Multicenter, RCT	Moderate
Gharbharan et al.	Multicenter, RCT	Moderate
Agarwal et al.	Multicenter, RCT	Low
Liu et al.	Retrospective, observational	High
Li et al.	Nonrandomized RCT	Moderate
Zing et al.	Prospective, observational	Moderate
Liu et al.	Prospective, observational	High

Antibody titer
The pooled estimate for relative risk of detectable antibody titer was higher after CPT than control (RR 1.44, 95% CI: 0.72, 2.88). Significant improvement in titers was seen in severely ill patients by Rasheed et al. (RR 3.33; 95% CI: 1.84, 6.03; 28.98%) and in moderate to severe patients by Simonovich et al. (RR: 1.38; 95% CI: 1.03, 1.85; 34.59%).[11,12] Study by Agarwal et al. showed no improvement in detectable antibody titers in moderately severe patients (RR 0.78; 95% CI: 0.68, 0.88; 36.43%). Significant heterogeneity was found between these studies (I² = 94% P < 0.0001) [Figure 6].[9]

Simonovich and colleagues observed higher antibody titers on day 2 of CP transfusion, but no significant difference was noted at day seven or day 14. Agarwal et al.[9] did not find any difference altogether in the level of antibody titers and suggested no benefit of CP transfusion on protective antibody levels.[11,12]

Requirement of oxygen
A decreased oxygen requirement was seen after CPT in severely ill patients by Abolghasemi et al.[7] (RR: 1.17;
Simonovich and workers showed no decrease in Oxygen requirement in moderate to severe patients (RR: 0.99; 95% CI: 0.86, 1.14, and 48.49%). The overall pooled estimate for relative risk of requirement of oxygen support showed no difference with CPT (RR: 1.08, 95% CI: 0.92, 1.27). The heterogeneity between these two studies was not significant (I² = 67.2%, P = 0.081) [Figure 7]. Agarwal et al. demonstrated no difference in the average inspired oxygen requirement between the different trial arms.\[9\]

Adverse effects

The occurrence of adverse effects following CPT transfusion was assessed in various studies [Table 4]. No difference was observed in the pooled estimate of RR for adverse effects.

Figure 2: Mortality outcome after Convalescent Plasma Therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk

Figure 3: Clinical improvement with Convalescent plasma therapy. CP = Convalescent plasma SC = Standard of care RR = Relative Risk
Choudhuri, et al.: Convalescent plasma in SARS-CoV-2

following CPT and control arm (RR: 0.92.; 95% CI: 0.63 1.35). Both Simonovich et al. (RR: 0.88, 95% CI: 0.42, 1.82; 26.81%) and Agarwal et al. (RR: 0.94; 95% CI: 0.61, 1.47; 73.19%) found insignificant difference in the incidence of adverse events in moderate to severe COVID-19 patients, respectively. No heterogeneity was observed in the studies (I² = 0.0%, P = 0.854)\(^9,11\) [Figure 8].

Discussion

Our meta-analysis did not find any evidence of mortality benefit in SARS-CoV-2 following CPT. A similar systematic review and meta-analysis on severe acute respiratory syndrome (SARS) reported high-mortality benefit (OR, 0.25; 95% CI, 0.14 to 0.45; I² = 0%) in comparison to
placebo or no therapy.[13] But, the said meta-analysis lacked information about the donor status and the severity of illness in the recipients. Another recent systematic review on CPT in SARS-CoV-2 patients reported mortality benefit with CPT, but relied heavily on case reports and case series, and not on observational studies or clinical trials. They were also unable to explain the variable efficacy of CPT in SARS-CoV-2 due to paucity of quantitative information.[3]

Most of the earlier systematic reviews were based on low quality evidence, whereas our review has moderate quality of evidence. This has been possible in our review due to assessment of bias risk for all determinants, unlike other studies. Another systematic review that failed to elicit any mortality benefit of CPT but concluded it as safe considered the increased oxygen requirement as detrimental to patient safety in the absence of pulmonary involvement. However, the studies demonstrated
significant increase in the requirement of oxygen in many patients with extrapulmonary involvement. The same effect was not weighed separately through discrimination tests. But, the most important factor was that the meta-analysis was based upon the CPT use on other severe viral respiratory infections also and the conclusions drawn about SARS-CoV-2.[14]

We were also able to gather evidence with regard to early clinical improvement and faster viral clearance after CPT unlike other reviews. Another systematic review reported a significant decrease in viral loads and improvement in clinical symptoms within three to 26 days posttransfusion. But, they included patients with very high volume of plasma transfusion. It is known that too much plasma volume can dilute the concentration of the therapeutic drugs and affect recovery, which can delay viral clearance.[15] Most of the earlier meta-analyses failed to limit the volume of plasma transfusion because of high heterogeneity. Moreover, the criteria of donor being symptom free for 14 days after recovery from SARS were not reviewed in many meta-analyses.

Our review found no difference in the oxygen requirement of patients undergoing CPT as against control, and the evidence was moderate. There was no heterogeneity among the studies. But the fact that CPT improves the host microenvironment and promote endogenous repair by inhibiting the overactive immune system can raise expectation about reduced oxygen requirement. Our review suggests the involvement of more complex mechanisms in the genesis of hypoxemia, which CPT alone may fail to redress.

The lack of adverse effects found low evidence in our meta-analysis that is similar to other reviews and meta-analyses because mild allergic reactions that are very common after CPT are excluded by majority of studies. There can be diagnostic dilemma for effects like fever, chills, circulatory overload, and so on, which are common during natural progression of SARS-CoV-2.[16,17]

Limitations

Our meta-analysis has several limitations. First, certain outcome variables like clinical improvement, duration of hospital stay, discharge from hospital, and viral clearance showed considerable heterogeneity (I^2 statistic: 75–100%). So, defining the source of heterogeneity as clinical, methodological, or statistical is important to substantiate these findings.

Second, we did not weigh the criteria for donor selection before CPT and therefore the level of protection achieved in the recipient varied with changing titers in the donor plasma during CPT. This can also influence mortality besides affecting symptomatic clinical improvement. In other words,
Conclusions

CPT appears to be a safe and promising intervention in the management of moderate to severe SARS-CoV-2 till date. Despite lacking evidence for any mortality benefit, it can result in faster clinical improvement, diminished oxygen requirement, shorter hospital stay, and earlier discharge thereby sparing resources and manpower for sick patients. Being safe and possessing high ability for viral clearance, its predictability can be used to treat SARS-CoV-2 in severe patients. However, donor selection and timing of CPT administration can be decisive.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

References

1. Saxena S, Manchanda V, Sagar T, Nazia N, Siqqi Q, Yadav A, et al. Clinical characteristics and epidemiological features of SARS-CoV2 disease patients from a COVID 19 designated hospital in New Delhi. J Med Virol 2021;93:2487-92.
2. Ortiz-Prado E, Simbaña-Rivera K, Gómez-Barreno L, Rubio-Neira M, Guaman LP, Kyriakidis NC, et al. Clinical, molecular and epidemiological characterization of the SARS-CoV2 virus and the Coronavirus disease 2019 (COVID-19), a comprehensive literature review. Diagn Microbiol Infect Dis 2020;98:115094.
3. Wang Y, Huo P, Dai R, Lv X, Yuan S, Zhang Y, et al. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Int Immunopharmacol 2020;91:107262.
4. Vegivinti C, Pederson JM, Saravu K, Gupta N, Evanson KW, Kamrowski S, et al. Convalescent plasma or hyperimmune immunoglobulin for people with COVID-19: A living systematic review. J Clin Apher 2021;1:1-13.
5. Chai KL, Valk SJ, Pichotta V, Kimber C, Monsef I, Doree C, et al. Convalescent plasma may be a possible treatment for COVID-19: A systematic review. Cochrane Database Syst Rev 2020;10:CD013600.
6. Zeng H, Wang D, Nie J, Liang H, Gu J, Zhao A, et al. The efficacy assessment of convalescent plasma therapy for COVID-19 patients: A multi-center case series. Sig Transduct Target Ther 2020;5:219.
7. Abolghasemi H, Eshghi P, Cheraghali AM, Imani Fooladi AA, Bolouki Moghaddam F, Imanizadeh S, et al. Clinical efficacy of convalescent plasma for treatment of COVID-19 infections: Results of a multicenter clinical study. Transfus Apher Sci 2020;59:102875.
8. Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, et al. Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci U S A 2020;117:9490-6.
9. Agarwal A, Mukherjee A, Kumar G, Chatterjee P, Bhatnagar T, Malhotra P, et al. Convalescent plasma in the management of moderate covid-19 in adults in India: Open label phase II multicentre randomised controlled trial (PLACID Trial). BMJ 2020;371:m3939.
10. Li L, Zhang W, Hu Y, Tong X, Zheng S, Yang J, et al. Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: A randomized clinical trial. JAMA 2020;324:460-70.
11. Simonovich VA, Burgos Pratx LD, Scibona P, Beruto MV, Vallone MG, Vazquez C, et al. A randomized trial of convalescent plasma in COVID-19 severe pneumonia. N Engl J Med 2021;384:619-29.
12. Rasheed AM, Fatak DF, Hashim HA, Maulood MF, Kabah KK, Almusawi YA, et al. The therapeutic potential of convalescent plasma therapy on treating critically ill COVID-19 patients residing in respiratory care units in hospitals in Baghdad, Iraq. Infez Med 2020;28:357-66.
13. Sarkar S, Soni KD, Khanna P. Convalescent plasma is a clutch at straws in COVID-19 management! A systematic review and meta-analysis. J Med Virol 2020;1:1-8.
14. Devasenapathy N, Ye Z, Loeb M, Fang F, Najafabadi BT, Xiao Y, et al. Efficacy and safety of convalescent plasma for severe COVID-19 based on evidence in other severe respiratory viral infections: A systematic review and meta-analysis. CMAJ 2020;192:E745-55.
15. Sun M, Xu Y, He H, Zhang L, Wang X, Qiu Q, et al. A potentially effective treatment for COVID-19: A systematic review and meta-analysis of convalescent plasma therapy in treating severe infectious disease. Int J Infect Dis 2020;98:334-46.
16. Bloch EM, Shoham S, Casadevall A, Sachs IS, Shaz B, Winters JL, et al. Deployment of convalescent plasma for the prevention and treatment of COVID-19. J Clin Invest 2020;130:2757-65.
17. Wooding DJ, Bach H. Treatment of COVID-19 with convalescent plasma: Lessons from past coronavirus outbreaks. Clin Microbiol Infect 2020;26:1436-46.