On the physical limitations for radio frequency absorption in gold nanoparticle suspensions

Sven Nordebo1,4, Mariana Dalarsson1, Yevhen Ivanenko1, Daniel Sjöberg2 and Richard Bayford3

1 Department of Physics and Electrical Engineering, Linnaeus University, 351 95 Växjö, Sweden
2 Department of Electrical and Information Technology, Lund University, Box 118, 221 00 Lund, Sweden
3 The Department of Natural Sciences, Middlesex University, Hendon campus, The Burroughs, London, NW4 4BT, United Kingdom

E-mail: sven.nordebo@lnu.se, mariana.dalarsson@lnu.se, yevhen.ivanenko@lnu.se, daniel.sjoberg@eit.lth.se and R.Bayford@mdx.ac.uk

Received 21 August 2016, revised 5 December 2016
Accepted for publication 19 January 2017
Published 9 March 2017

Abstract
This paper presents a study of the physical limitations for radio frequency absorption in gold nanoparticle (GNP) suspensions. A spherical geometry is considered consisting of a spherical suspension of colloidal GNPs characterized as an arbitrary passive dielectric material which is immersed in an arbitrary lossy medium. A relative heating coefficient and a corresponding optimal near field excitation are defined, taking the skin effect of the surrounding medium into account. The classical Mie theory for lossy media is also revisited, and it is shown that the optimal permittivity function yielding a maximal absorption inside the spherical suspension is a conjugate match with respect to the surrounding lossy material. A convex optimization approach is used to investigate the broadband realizability of an arbitrary passive material to approximate the desired conjugate match over a finite bandwidth, similar to the approximation of a metamaterial. A narrowband realizability study shows that for a surrounding medium consisting of a weak electrolyte solution, the electromagnetic heating, due to the electrophoretic (plasmonic) resonance phenomena inside the spherical GNP suspension, can be significant in the microwave regime, provided that the related Drude parameters can be tuned into (or near to) resonance. As a demonstration, some realistic Drude parameters are investigated concerning the volume fraction, mass, and friction constant of the GNPs. The amount of charge that can be accommodated by the GNPs is identified as one of the most important design parameters. However, the problem of reliably modelling, measuring and controlling the charge number of coated GNPs is not yet fully understood, and is still an open research issue in this field. The presented theory and related physical limitations provide a useful framework for further research in this direction. Future research is also aimed at an expansion towards arbitrary suspension geometries and the inclusion of thermodynamical analysis.

Keywords: optimal absorption, gold nanoparticles, Mie theory

(Some figures may appear in colour only in the online journal)
1. Introduction

A number of publications have proposed that biological tissue can be heated quickly and selectively by the use of gold nanoparticles (GNPs) that are subjected to a strong time-harmonic electromagnetic field, e.g. at 13.56 MHz or in the microwave regime, where the band is chosen due to regulations, see e.g. [1–7]. The aim is to develop a method with the potential to treat cancer. The GNPs can also be used as a contrast agent for electrical impedance tomography, particularly when combined with tumour targeting [8]. The fundamental idea relies on the fact that ligands can be attached to the GNPs to target cancer cells. The rapid rate of growth of the cancer cells causes them to intake an abnormal amount of nutrients and the GNPs can hence be coated with folic acid to target the bio-markers or antigens that are highly specific to the cancer cells, see e.g. [9]. The aim of the radio frequency (RF) or microwave treatment is then to promote local hyperthermia and cell death only in the cancer (cellular necrosis and apoptosis), in addition to increasing the pore size to improve delivery of large-molecule chemotherapeutic and immunotherapeutic agents [7]. The sensitivity of the cancer cells to elevated temperatures enables the tumor growth to be slowed or stopped by transient heating to 40–46 °C for periods of 30 min or more, whilst also increasing the tumor sensitivity to chemotherapy and radiotherapy [7, 10]. What is also important is the fact that normal cells typically recover faster than cancer cells when exposed to either heat or the combination of heat and radiation, and hyperthermia does not damage, and may actually enhance, the immune system [7]. Hyperthermia based on targeted heating may therefore be the most promising radio- or chemotherapeutic sensitizer known to date [7, 9, 10].

The physical explanation to the RF-heating of GNPs is not fully understood and there are many phenomenological hypotheses proposed to explain the electromagnetic heating of colloidal gold particles [1–5, 11]. Recently, it has also been questioned as to whether metal nanoparticles can be heated in radio frequency at all, and several authors have been unable to find neither theoretical nor experimental results to support the hypothesis, see e.g. [1, 12–15]. As e.g. in [15], Mie scattering theory in the Rayleigh limit of small particles is used as an argument to support the (negative) experimental conclusions made in [14].

In this paper, we investigate the physical realizability of achieving a RF-heating in a colloidal GNP suspension, similar as in [2]. However, in the present analysis we are adding the presence of a specific (spherical) structure of the GNP suspension, and investigate the hypothesis that it is the related electrophoretic (plasmonic) resonance phenomena that may cause the heating. To this end, we study the optimal absorption that can be achieved by a physically realizable passive material immersed inside any lossy medium. Previously, optimal absorption has been studied mainly for a lossless exterior domain, such as in [16] giving geometry independent absorption bounds for the plasmonic resonances in metals. In this paper, we prove that the optimal permittivity function yielding a maximal absorption inside a spherical suspension is a conjugate match with respect to the surrounding lossy material. Our formulation also takes the skin effect inside the surrounding lossy material into account and we show that it is the skin effect that ultimately limits the usefulness of the local heating. The analysis is based on a spherical geometry giving explicit quantitative answers that can be used as an indication towards the physical realizability of the heating. The analysis can also be used as a framework to study and evaluate any particular phenomenological parameter models such as the Drude model, etc, see e.g. [2, 11]. Numerical examples are included to demonstrate the feasibility of achieving electrophoretic (plasmonic) resonances in the microwave regime in a case when the nanoparticle suspension is immersed in a weak electrolyte solution imitating a typical biological tissue. Here, the frequency band has been chosen around 2.6 GHz constituting a realistic example based on recently proposed hyperthermia measurement devices and nanoparticle setups, see e.g. [6]. It should also be noted that, in practice, the adequate frequency range will be linked to the size and concentration of the nanoparticles, where 5 nm is the maximum size of the GNPs to allow the particles to pass out of the kidney [8].

Realistic Drude parameters are also investigated such as the volume fraction, mass, and friction constant of the GNPs, as described in e.g. [1, 2, 11]. Based on the presented theoretical framework, it is found that the amount of charge that can be accommodated by the GNPs is one of the most important design parameters in order to achieve a useful resonance and heating. However, even though the net charge of the GNPs has been identified as an important parameter in electrophoretic heating [1, 2, 11], it is not yet fully understood how to model, measure or control it, see e.g. [17].

Based on the provided theoretical arguments and numerical examples, we hypothesize that a plausible physical mechanism for achieving an efficient and useful electromagnetic heating of a GNP suspension (structure) is the related electrophoretic (plasmonic) resonance phenomena. We are stressing, however, that further investigations and experiments are needed to support this hypothesis, including in particular the question about GNP net charge, but also thermodynamical considerations such as thermal conductivity and heat transfer, see e.g. [15].

2. Optimal absorption in gold nanoparticle suspensions

2.1. Notation and conventions

The following notation and conventions will be used below. The Maxwell’s equations [18] for the electric and magnetic fields \mathbf{E} and \mathbf{H} are considered based on SI-units and with time convention $e^{-i\omega t}$ for time harmonic fields. Let μ_0, ε_0, τ_0 and c_0 denote the permeability, the permittivity, the wave impedance and the speed of light in vacuum, respectively, and where $\tau_0 = \sqrt{\mu_0/\varepsilon_0}$ and $c_0 = 1/\sqrt{\mu_0\varepsilon_0}$. The wavenumber of vacuum is given by $k_0 = \omega/\sqrt{\mu_0\varepsilon_0}$, where $\omega = 2\pi f$ is the angular frequency and f the frequency. The spherical coordinates are denoted by (r, θ, ϕ), the corresponding unit vectors $(\hat{r}, \hat{\theta}, \hat{\phi})$.

S Nordebo et al

J. Phys. D: Appl. Phys. 50 (2017) 155401
and the radius vector \(r = \mathbf{r} \). The cartesian unit vectors are denoted \(\hat{x}, \hat{y}, \hat{z} \). Finally, the real and imaginary part and the complex conjugate of a complex number \(\zeta \) are denoted \(\mathfrak{R}(\zeta) \) and \(\mathfrak{I}(\zeta) \), respectively.

2.2. Problem setup

A simple problem setup based on spherical geometry is considered as depicted in figure 1. Here, \(r_1 \) is the radius of the spherical suspension of gold nanoparticles and \(r \) the radius of a reference surface inside the surrounding medium where the skin effect will be defined. The spherical suspension as well as the surrounding medium are assumed to be non-magnetic, homogeneous and isotropic media with relative permittivity \(\varepsilon_1 \) and \(\varepsilon \) and wavenumbers \(k_1 = k_0\sqrt{\varepsilon_1} \) and \(k = k_0\sqrt{\varepsilon} \), respectively.

The following examples of approximative dispersion models will be considered here. The surrounding medium is assumed to consist of a weak electrolyte solution with relative permittivity

\[
\varepsilon(\omega) = \varepsilon_\infty + \frac{\varepsilon - \varepsilon_\infty}{1 - i\omega\tau} + i\frac{\sigma}{\omega\varepsilon_0},
\]

(1)

where \(\varepsilon_\infty \), \(\varepsilon \) and \(\tau \) are the high frequency permittivity, the static permittivity and the dipole relaxation time in the corresponding Debye model for water, respectively, and \(\sigma \) the conductivity of the saline solution. The suspension of gold nanoparticles is furthermore assumed to consist of a homogeneous solution of charged nanoparticles where the electric current is governed by an electrophoretic particle acceleration mechanism [1, 2]. Hence, the effective permittivity of the nanoparticle suspension is modeled here as

\[
\varepsilon_1(\omega) = \varepsilon(\omega) + i\frac{\sigma_1}{\omega\varepsilon_0} \frac{1}{1 - i\omega\tau_1},
\]

(2)

where \(\sigma_1 \) is the static conductivity and \(\tau_1 \) the relaxation time in the corresponding Drude model. In an approximate phenomenological description of the electrophoretic mechanism these parameters can be interpreted as \(\sigma_1 = Nq^2/eta \) and \(\tau_1 = ml/\beta \), where \(N \) is the number of particles per unit volume, \(q \) the particle charge, \(\beta \) the friction constant of the host medium and \(m \) the particle mass, see [2].

2.3. Optimal near field and the skin effect

Consider an expansion of the electromagnetic field in terms of vector spherical waves as outlined in appendix A.1. It is assumed that all sources are placed outside the surface of radius \(r \) as depicted in figure 1. It is furthermore assumed that the scattering from the nanoparticle suspension is weak and does not interact with any of the possible material obstacles outside the radius \(r \). Hence, the incident and the scattered fields for \(r > r_1 \) can be represented by regular and outgoing waves with multipole coefficients \(a_{rm} \) and \(b_{rm} \), respectively, and the interior field for \(r < r_1 \) by regular waves with multipole coefficients \(d_{rm}^{(1)} \). The transition matrices give the scattering \(b_{rm} = t_{rm}a_{rm} \) and the absorption \(e_{rm}^{(1)} = r_{rm}a_{rm} \), where \(t_{rm} \) and \(r_{rm} \) are defined in (A.8) and (A.9) in appendix A.2.

The mean local heating (in W m\(^{-3}\)) generated inside the nanoparticle suspension of radius \(r_1 \) is given by Poynting’s theorem as

\[
P_{loc}(r_1) = \frac{3}{4\pi r_1^2} \int_{V_1} \frac{1}{2} \varepsilon_0 \mathcal{J}(\varepsilon) |\mathbf{E}(r)|^2 \, d\mathbf{v}
\]

\[
= \frac{3\varepsilon_0 \mathcal{J}(\varepsilon)}{8\pi r_1^2} \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \sum_{l'=1}^{2} \sum_{l''=-l'}^{l'} W_{l,l'}(k_1, r_1) |d_{rm}^{(1)}|^2
\]

\[
= \frac{3\varepsilon_0 \mathcal{J}(\varepsilon)}{8\pi r_1^2} \sum_{l=1}^{\infty} \sum_{m=-l}^{l} \sum_{l'=1}^{2} \sum_{l''=-l'}^{l'} W_{l,l'}(k_1, r_1) |r_{l''}|^2 |d_{l''m}^{(1)}|^2,
\]

(3)

where the orthogonality of the regular vector spherical waves \(\mathbf{v}_{l''m}(k\mathbf{r}) \) have been used, \(V_1 \) denotes the spherical volume of radius \(r_1 \) and where \(W_{l,l'}(k_1, r_1) = \int_{V_1} |\mathbf{v}_{l''m}(k\mathbf{r})|^2 \, d\mathbf{v} \), see (A.18) and (A.19). In (3), the relation \(d_{rm}^{(1)} = r_{rm}a_{rm} \) has also been inserted. It is shown in appendices A.3 and A.4 that

\[
W_{l}(k_1, r_1) = \frac{r_1^2 j_{l}\left(k_1 r_1\right) j_{l'}(k r_1)}{\mathcal{J}(k_1^2)}.
\]

(4)

\[
W_{l'}(k_1, r_1) = \frac{1}{2l + 1} \left((l + 1)W_{l-1,l}(k_1, r_1) + iW_{l,l+1}(k_1, r_1)\right),
\]

(5)

where \(j_{l'}(\cdot) \) are the spherical Bessel functions of order \(l \), see (A.19)-(A.21).

As a quantitative measure of the skin effect, the mean background heating (in W m\(^{-3}\)) at radius \(r \) in the surrounding medium is defined by

\[
P_b(r) = \frac{1}{4\pi r^2} \int_{S_0} \frac{1}{2} \varepsilon_0 \mathcal{J}(\varepsilon) |\mathbf{E}(r)|^2 \, d\mathbf{s}
\]

\[
= \frac{1}{8\pi} \varepsilon_0 \mathcal{J}(\varepsilon) \int_{S_0} |\mathbf{E}(r)|^2 \, d\Omega,
\]

(6)

(7)

where \(S_0 \) denotes the spherical boundary of radius \(r \), \(\Omega_0 \) the unit sphere and \(d\Omega = r^2 \, d\Omega \) with \(d\Omega \) the differential solid angle.
By exploiting the orthogonality of the vector spherical waves (A.16), the mean background loss can now be expressed as

\[P_b(r) = \frac{1}{8\pi} \omega \varepsilon_0 \mathcal{J}_2 \left(\sum_{l=1}^{\infty} \sum_{m=-l}^{l} \sum_{r=1}^{2} S_m(k, r) |a_{m|l}|^2 \right), \tag{8} \]

where \(S_m(k, r) = \int_{\Omega \mu} |v_{m|l}(kr)|^2 d\Omega \), see also (A.17).

The optimal near field is now defined by the maximum of the relative heating coefficient \(F = P_{\text{inc}}(r)/P_b(r) \) at some radius \(r \). This power ratio is a generalized Rayleigh quotient and hence the problem is equivalent to finding the maximum eigenvalue in the corresponding (diagonal) generalized eigenvalue problem as follows

\[\max_{|r|=1} \frac{P_{\text{inc}}(r)}{P_b(r)} = \frac{3}{r_1} \frac{\mathcal{J}_2(\epsilon_1)}{\mathcal{J}_2(\epsilon_1)} \max_{|r_1|=1} \frac{W_2(k_1, r_1) |r_{1|l}|^2}{S_2(k, r)} \tag{9} \]

With the relatively low frequencies and small geometrical dimensions of interest in this paper, the optimal near field excitation is generally obtained with an electric dipole field \(\tau = 2 \) and \(l = 1 \) in (9)) yielding the relative heating coefficient

\[F(\epsilon_1) = \frac{3}{r_1} \frac{\mathcal{J}_2(\epsilon_1)}{\mathcal{J}_2(\epsilon_1)} \frac{W_2(k_1, r_1) |r_{1|l}|^2}{S_2(k, r)} \tag{10} \]

where \(F(\epsilon_1) \) is considered to be a function of the complex-valued permittivity \(\epsilon_1 \) (or frequency \(\omega \)) when all other parameters are fixed.

2.4. Asymptotic analysis

Based on the asymptotic expansions of the spherical Bessel and Hankel functions for small arguments [19] \(j_0(x) \sim 1, j_1(x) \sim \frac{1}{2} x, j_2(x) \sim \frac{1}{15} x^2, j_3(x) \sim \frac{1}{105} x^3, h_1^{(1)}(x) \sim -\frac{1}{x^2} \) and \(h_1^{(2)}(x) \sim -\frac{2}{x^2} \), it is found that

\[W_2 \sim \frac{2}{9} r^3, \tag{11} \]

\[r_{1|l} \sim \frac{3\epsilon}{\epsilon_1 + 2\epsilon}, \tag{12} \]

in the asymptotic limit of small \(r_1 \). Hence, for small \(r_1 \) the asymptotic relative heating coefficient can be expressed as

\[F^a(\epsilon_1) = \frac{F_{\text{num}}(\epsilon_1)}{S_2(k, r)} \tag{13} \]

where the numerator is given by

\[F_{\text{num}}(\epsilon_1) = 6 \frac{\mathcal{J}_2(\epsilon_1)}{\mathcal{J}_2(\epsilon_1)} \left| \epsilon_1 - \epsilon_1^0 \right|^2 \tag{14} \]

and where the quantity \(\epsilon_1^0 \) is defined by \(\epsilon_1^0 = -2\epsilon \). Note that \(F^a(\epsilon_1) \) is independent of the radius \(r_1 \).

2.5. Optimal absorption and the conjugate match

Although, in general, it is not easy to prove that \(F(\epsilon_1) \) defined in (10) is a concave function of \(\epsilon_1 \) for \(\Im \epsilon_1 > 0 \), it is straightforward to show that \(\epsilon_1^0 = -2\epsilon \) is a local maximum of \(F_{\text{num}}(\epsilon_1) \) defined in (14). Hence, let \(F_0(\epsilon_1, \epsilon_1^0) = \frac{2\epsilon_1}{|\epsilon_1 - \epsilon_1^0|} \) and consider the following Taylor expansion in a neighbourhood of \(\epsilon_1^0 \)

\[F_0(\epsilon_1, \epsilon_1^0) = -\frac{1}{2} \frac{\epsilon_1 - \epsilon_1^0}{\epsilon_1 - \epsilon_1^0} \frac{1}{\epsilon_1 - \epsilon_1^0} \tag{15} \]

where the complex derivatives \(\frac{\partial}{\partial \epsilon_1} \) and \(\frac{\partial}{\partial \epsilon_1^0} \) are defined as in [20]. It is straightforward to show that

\[\frac{\partial F_0}{\partial \epsilon_1} = \frac{\partial F_0}{\partial \epsilon_1^0} = \frac{\partial^2 F_0}{\partial \epsilon_1^2} = \frac{\partial^2 F_0}{\partial \epsilon_1^0} = 0 \tag{16} \]

at \(\epsilon_1 = \epsilon_1^0 \) and

\[\frac{\partial^2 F_0}{\partial \epsilon_1 \partial \epsilon_1^0} = -\frac{3}{2} \frac{\mathcal{J}_2(\epsilon_1)}{|\epsilon_1 - \epsilon_1^0|^4}, \tag{17} \]

which is negative definite when \(\mathcal{J}_2(\epsilon_1^0) > 0 \). It is noted that the passivity of the external material with \(\mathcal{J}_2(\epsilon) > 0 \) guarantees that \(\epsilon_1 = -2\epsilon \) has a positive imaginary part. Hence, the conjugate match \(\epsilon_1^0 = -2\epsilon \) yields a maximum of the relative heating function \(F^a(\epsilon_1) \) in (13) and an optimal absorption inside the suspension domain with radius \(r_1 \).

2.6. Relation to general Mie theory

The expression for the absorption cross section \(C_{\text{abs}} \) of a small homogeneous dielectric sphere in a lossy medium is obtained from general Mie theory as

\[C_{\text{abs}} = C_{\text{inc}} - C_{\text{sca}} + C_{\text{ext}}, \tag{18} \]

where the scattering cross section \(C_{\text{sca}} \), the extinction cross \(C_{\text{ext}} \) and the compensation term \(C_{\text{inc}} \) (power absorbed from the incident plane wave in the surrounding medium) are given by

\[C_{\text{sca}} = \frac{16\pi}{3} k_0 r_1^3 \mathcal{J}_2(\sqrt{\epsilon}) \left| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right|^2 \tag{19} \]

\[C_{\text{ext}} = 6\pi k_0 r_1^3 \left[\frac{4}{9} \mathcal{J}_2(\epsilon_1) \left| \frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right|^2 \mathcal{J}_2(\sqrt{\epsilon}) \right] + \frac{2}{3} \left(\frac{\epsilon_1 - \epsilon}{\epsilon_1 + 2\epsilon} \right) \left(\mathcal{J}_2(\sqrt{\epsilon}) \right)^2 \tag{20} \]

\[C_{\text{inc}} = \frac{8\pi}{3} k_0 r_1^3 \mathcal{J}_2(\sqrt{\epsilon}), \tag{21} \]

Note that the factor 2 in \(\epsilon_1^0 = -2\epsilon \) is a form factor associated with the spherical geometry, see for instance [21, p 145].
see e.g. [2, 21–23]. By algebraic manipulation of (18) through (21) (or by performing the derivation from first principles), it can be shown that the absorption cross section is given by

$$C_{abs} = 12\pi k_0 r^3 \frac{\left| \frac{\partial \chi}{\partial \sigma} \right|}{\left| \chi + 2 \sigma \right|},$$

(22)

which has a striking resemblance to the heating coefficient given by (14). Hence, the resulting expression (22) immediately verifies that the conjugate match \(\epsilon_{10} = -2\epsilon^*\) is also optimal with respect to the absorption cross section associated with a small dielectric sphere in a lossy medium in accordance with the Mie theory.

2.7 Narrowband realizability of the conjugate match: tuning the Drude model

Now that we have shown that the conjugate match \(\epsilon_{10} = -2\epsilon^*\) yields the optimal absorption at any given frequency \(\omega\), the next step is to consider the realizability of an interior permittivity function \(\epsilon(\omega)\) that can achieve this property. With a ‘normal’ surrounding medium having a permittivity function \(\epsilon\) with \(\Re(\epsilon) > 0\), this requires a permittivity function for the interior region with a negative real part \(\Re(\epsilon) < 0\), a material property that sometimes is associated with a metamaterial and which may have severe limitations on the bandwidth capabilities, see [24].

Given that the approximate electrophotonic particle acceleration mechanism described above is valid, it is straightforward to ‘tune’ the corresponding Drude model in (2) to resonate at the desired frequency \(\omega_d\) by solving the equation

$$\epsilon_1(\omega_d) = \epsilon(\omega_d) + \frac{1}{\omega_d\epsilon_0} \frac{1}{1 - i\omega_d \eta} = \epsilon_{10}(\omega_d),$$

(23)

yielding the following tuned parameters

$$\eta = \frac{1}{\omega_d} \frac{\Re(\epsilon(\omega_d)) - \Re(\epsilon_{10}(\omega_d))}{\Im(\epsilon_{10}(\omega_d))},$$

(24)

$$\sigma = \frac{\epsilon_0(\Re(\epsilon(\omega_d)) - \Re(\epsilon_{10}(\omega_d)))}{\eta} (\omega_d^2 + 1).$$

(25)

It should be noted that the inclusion of the term \(\epsilon(\omega)\) in (2) and (23) above is ‘ad hoc’, and can be replaced for any other model as long as the term \(\Im(\epsilon_{10}(\omega_d))\) is large (such as in the GHz range), it is usually necessary to employ scaled dimensionless variables \(x_0/\omega_d\) for \(n = 1, \ldots, N\) and \(\omega_\infty\) to maintain numerical stability.

2.8. Broadband realizability of the conjugate match: optimal dispersion modeling

To study the optimal capabilities of a passive material with permittivity \(\epsilon_1(\omega)\) to approximate the desired conjugate match \(\epsilon_{10}(\omega) = -2\epsilon^*(\omega)\) over a given bandwidth, a convex optimization approach is employed as follows, see also [25]. The permittivity function of any passive material \(\epsilon_1(\omega)\) corresponds to a symmetric Herglotz function \(h_1(\omega) = \omega \epsilon_1(\omega)\), where \(\omega \in C = (\omega \in C \mid \Im(\omega) > 0)\), see e.g. [24, 26–30]. Symmetric Herglotz functions are analytic functions with symmetry \(h_1(\omega) = -h_1^*(-\omega^*)\) mapping the upper half-plane into itself and which allow for an integral representation based on positive measures. On the real line this integral representation becomes a Cauchy-principal value integral (Hilbert transform) acting on the regular part of the measure plus the contribution from possible point masses. Here, the limiting Herglotz function for \(\omega \in \Re\) is represented by

$$h_1(\omega) = \omega \epsilon_{1\infty} + \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi - \omega} \hat{h}_1(\xi)d\xi + x_0 \frac{1}{-\omega} + i(\hat{h}_1(\omega) + x_0 \delta(\omega)),$$

(26)

where \(\epsilon_{1\infty}\) is the high frequency permittivity, \(\hat{h}_1(\xi)\) the regular part of the positive symmetric measure and where a point mass with amplitude \(x_0 \geq 0\) at \(\omega = 0\) has been included. Obviously, the point mass at \(\omega = 0\) will be very efficient in generating a negative real part of \(h_1(\omega)\) at any particular desired frequency \(\omega_d\).

Next, a finite optimization domain \(\Omega\) (support of the regular measure) is defined with \(0 \not\in \Omega\) and where the positive symmetric measure is approximated by using

$$\hat{\mathcal{H}}_{\Omega}(\omega) = \sum_{n=1}^{N} x_n [\hat{p}_n(\omega) + \hat{p}_n(-\omega)],$$

(27)

where \(\hat{p}_n(\omega)\) are triangular basis functions defined on \(\Omega\) and \(x_0 \geq 0\) the corresponding optimization variables for \(n = 1, \ldots, N\). Further, a finite approximation domain \(\Omega \subset \Omega\) is defined and the corresponding real part \(\mathcal{H}_{\Omega}(\omega)\) on \(\Omega\) is given by

$$\mathcal{H}_{\Omega}(\omega) = \sum_{n=1}^{N} x_n [\hat{p}_n(\omega) - \hat{p}_n(-\omega)],$$

(28)

where \(\hat{p}_n(\omega) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{\xi - \omega} \delta(\xi)d\xi\) is the (negative) Hilbert transform of the triangular pulse function \(p_n(\omega)\), see [31]. The discrete representation (26) through (28) can now be used to formulate the following convex optimization problem

$$\text{minimize} \quad ||h_1(\omega) - f(\omega)||_{\Omega}$$

subject to \(x_0 \geq 0\)

$$\epsilon_{1\infty} \geq 1,$$

(29)

where the target function is \(f(\omega) = \omega \epsilon_{1\infty}(\omega)\) and \(||\cdot||_{\Omega}\) a suitable norm defined on \(\Omega\), see also [25]. Here, \(x_0\) with \(n = 0, 1, \ldots, N\) and \(\epsilon_{1\infty}\) are the positive optimization variables. The optimization problem (29) can be solved efficiently using the CVX Matlab software for disciplined convex programming [32]. Typically, \(\Omega\) consists of a set of frequency points sampled around the desired center frequency \(\omega_d\). If \(\omega_d\) is large (such as in the GHz range), it is usually necessary to employ scaled dimensionless variables \(x_0/\omega_d^2\) for \(n = 1, \ldots, N\) and \(x_0\) to maintain numerical stability.

3. Numerical examples

To illustrate the theory above, the following numerical example is considered. The surrounding medium is assumed to consist of a weak electrolyte solution with relative permittivity given by (1) and where \(\epsilon_{1\infty} = 5.27\), \(\epsilon_\infty = 80\) and \(\tau = 10^{-11}\).
s are the Debye parameters for water and $\sigma \in \{0.1, 1, 10\} \text{ S m}^{-1}$ the conductivity parameters of the saline solution. The radii of the reference surface and the spherical suspension are $r = 5 \text{ cm}$ and $r_1 = 1 \mu\text{m}$, respectively. In all of the numerical results below, the optimality of using electric dipole excitation ($\tau = 2, l = 1$) has been verified by evaluating (9) with $\tau = 1, 2$ and $l = 1, 2, 3, \ldots$, etc.

In figure 2 is shown a contour plot of the relative heating coefficient $F(\epsilon_1)$ given by the rigorous expression (10). The surrounding medium is a saline solution with conductivity $\sigma = 1 \text{ S m}^{-1}$ and the desired center frequency is $f_0 = 2.6 \text{ GHz}$. The plot clearly illustrates the concavity of the target function $F(\epsilon_1)$ in the upper half-plane $3\epsilon_1 > 0$. Here, ϵ_1^{opt} is obtained from a numerical residue calculation in the lower half-plane as $\epsilon_1^{\text{opt}} = (\oint_{c_{\text{num}}} a^{-1}(\epsilon_1) \text{d}\epsilon_1)/(\oint_{c} a^{-1}(\epsilon_1) \text{d}\epsilon_1)$, where $a(\epsilon_1)$ is the analytic denominator (determinant) associated with ϵ_1 defined in (A.9) and c_{num} an arbitrary contour circumscribing the pole (zero) location of ϵ_1. Further, ϵ_{10} denotes the conjugate match $\epsilon_{10} = -2\epsilon^*$ which is the asymptotic solution that yields a maximal absorption for small r_1. In this numerical example $\epsilon_1^{\text{opt}} = -156.12 + i37.609$ and $\epsilon_{10} = -156.11 + i37.609$, demonstrating the high accuracy of the asymptotic solution.

3.1. Tuning the Drude model

Figure 3 shows the constituents of $F^a = F_{\text{num}}^a/S_{21}$ given by (13) and (14) plotted as functions of frequency and where $\epsilon(\omega)$ is given by the Drude model (2) tuned to resonance at $f_0 = 2.6 \text{ GHz}$ by using (24) and (25). Here, $\sigma = 0.1 \text{ S m}^{-1}$ and the maximum relative heating is $F^a = 1614$ close to the center frequency at $f_0 = 2.6 \text{ GHz}$.

The oscillations seen at lower frequencies are merely ‘resonances’ associated with the reference surface at $r = 5 \text{ cm}$ and are visible in the function S_{21} also. The increase in S_{21} at higher frequencies is a manifestation of the skin effect in the surrounding medium which will ultimately limit the potential of relative heating.

![Figure 2](image1.png)
Figure 2. Contour plot of the relative heating $F(\epsilon_1)$ as a function of the complex permittivity ϵ_1 at frequency $f_0 = 2.6 \text{ GHz}$. The surrounding medium is a saline solution with conductivity $\sigma = 1 \text{ S m}^{-1}$.

![Figure 3](image2.png)
Figure 3. Relative heating $F^a = F_{\text{num}}^a/S_{21}$ and its constituents F_{num}^a and S_{21} plotted as functions of frequency. Here, $\epsilon(\omega)$ is given by the Drude model tuned to resonance at $f_0 = 2.6 \text{ GHz}$ and the surrounding medium is a saline solution with conductivity $\sigma = 0.1 \text{ S m}^{-1}$.

![Figure 4](image3.png)
Figure 4. Relative heating F^a as a function of frequency. Here, $\epsilon(\omega)$ is given by the Drude model tuned to resonance at $f_0 = 2.6 \text{ GHz}$ and the surrounding medium is a saline solution with conductivity $\sigma \in \{0.1, 1, 10\} \text{ S m}^{-1}$.

![Figure 5](image4.png)
Figure 5. Numerator F_{num}^a as a function of frequency. Here, $\epsilon(\omega)$ is given by the Drude model tuned to resonance at $f_0 = 2.6 \text{ GHz}$ and the surrounding medium is a saline solution with conductivity $\sigma \in \{0.1, 1, 10\} \text{ S m}^{-1}$.

In figures 4 and 5 the corresponding optimal relative heating F^a and numerator F_{num}^a for $\sigma \in \{0.1, 1, 10\} \text{ S m}^{-1}$ are shown. The corresponding optimally tuned Drude parameters are $\eta \in \{11.4, 7.6, 1.8\} \cdot 10^{-10} \text{ s}$ and $\eta_1 \in \{632, 425, 110\} \text{ S m}^{-1}$. The corresponding maximal relative heating at $f_0 = 2.6 \text{ GHz}$ is obtained as $F^a = \{1614, 126, 10^{-6}\}$ illustrating in this example a great potential of local heating when $\sigma \in \{0.1, 1\} \text{ S m}^{-1}$. However, the result for $\sigma = 10 \text{ S m}^{-1}$ implies that the surrounding medium is too lossy and the resulting skin effect will render the local heating useless.
The skin effect is further illustrated in figure 6 with $\ln \sqrt{S_{21}}$ plotted as a function of radius r at $f_d = 2.6$ GHz and where $\sigma \in \{0.1, 1, 10\}$ S m$^{-1}$. The skin depth can be interpreted here as the radial distance through which the amplitude has decreased by a factor of e^{-1}. Hence, the skin depth in the example case with $\sigma = 10$ S m$^{-1}$ is seen to be less than 1 cm.

3.2. Parameter studies

A simple parameter study is presented below to illustrate how the derived optimal bound and the tuned Drude model can be employed in a comparison and an evaluation of some realistic parameter choices regarding the electrophoretic particle acceleration mechanism as described in [1, 2]. Here, the surrounding medium is assumed to have a permittivity ε given by (1) with salinity $\sigma = 0.1$ S m$^{-1}$ and all other Debye parameters are fixed as above. The spherical suspension of GNPs has a radius $r_1 = 1$ μm with permittivity ε_1 and the optimal conjugate match is given by $\Omega = -2 \varepsilon \sigma$. The tuned Drude model ε_{1D} is defined by (24) and (25) and is tuned to resonance at $f_d = 2.6$ GHz.

The theoretical bounds and the hypothetical tuned Drude model defined above are now compared to a realistic Drude model (2) where the GNPs consist of a gold core coated with a shell of electrically charged ligands. The radius of the GNP is modeled as $a = 2.5$ nm and the radius of the gold core is $a_{Au} = 0.75$ nm, see figure 1. The mass of the GNP with ligands is $m = ((4 \pi a_{Au}^3/3) \rho_{Au} + (4 \pi a^3/3 - (4 \pi a_{Au}^3/3)) \rho_L$ where $\rho_{Au} = 19300$ kg m$^{-3}$ and $\rho_L = 1000$ kg m$^{-3}$ are the assumed mass densities of gold and ligands, respectively. The net charge of the GNP is modeled as $q = (3a_{Au} + 0.5a_{Au}^2) e_0 + m e_0$ whereas the charge of the gold core is modeled as in [2], n_1 is the assumed net electron count in the ligand shell and e_0 denotes the electron charge. $e_0 = 1.6 \cdot 10^{-19}$ C. The friction constant β is modelled as $\beta = 6 \pi \mu_L a$ where $\mu_L = 10^{-3}$ Ns m$^{-2}$ is the dynamic shear viscosity of the host medium (water at room temperature) as in [2]. Let ϕ denote the volume fraction of GNPs in the spherical suspension. The number of particles per unit volume is then given by $N = \phi/(4 \pi a^3/3)$. In the numerical example below, we have chosen $\phi = 2 \cdot 10^{-3}$ as in [2]. Now, the corresponding parameters of a realistic Drude model can be calculated as $n_1 = N q^2/3$ and $\eta = m/\beta$.

Figures 7 and 8 show the relative heating F^* given by (13), and the absorption cross section C_{abs} given by (22), respectively, in a comparison based on the optimal, the tuned and the realistic Drude parameter models as explained above. In this numerical study we found that the resulting heating curves did not change notably when imposing significant changes in the volume fraction ϕ, the ligand mass density ρ_L nor in the viscosity parameter μ_L above. With the present parameter setting, the most sensitive parameter issue appeared to be the necessity of having a sufficiently large net charge of ligands, $q_L = m_1 e_0$, to obtain significant heating. For this reason, we have plotted in figures 7 and 8 the heating corresponding to the realistic Drude models based on ligand charges with $q_L \in \{10, 10^2, 10^3\} e_0$. Since the ratio between the local heating and the skin heating, F^*, in these examples are in the order of 100–1000, it is concluded that the potential of electromagnetic heating of a GNP suspension based on electrophoretic resonances in the microwave regime is very promising and is a topic that should be investigated further.

3.3. Optimal dispersion modeling

The convex optimization formulation (29) is employed here to study the optimal capabilities of a passive material with permittivity $\varepsilon_1(\omega)$ to approximate the desired conjugate match $\varepsilon_{opt}(\omega)$ over a given bandwidth. The norm is defined by $\|b_h(\omega) - f(\omega)\|_1 = \sup_{|\omega|} |b_h(\omega) - f(\omega)\| / |\omega| = \sup_{|\omega|} |\varepsilon(\omega) - \varepsilon_{opt}(\omega)|$. Here, the target function is the conjugate match $\varepsilon_{opt}(\omega) = -2 \varepsilon(\omega)$, where $\varepsilon(\omega)$ is the permittivity function of the surrounding medium given by (1) with Debye parameters $\varepsilon_\infty = 5.27, e_0 = 80$ and $\tau = 10^{-11}$ s as above and $\sigma = 1$ S m$^{-1}$. The optimization domain for dispersion modeling (support of the regular measure) is $\Omega = [2.4, 2.8]$ GHz with $N = 300$ triangular basis functions and corresponding optimization variables x_n for $n = 1, \ldots, N$. Further optimization variables are the high frequency permittivity ε_∞ and the amplitude x_0 of the point mass at $\omega = 0$. The finite approximation domain Ω (support of the norm) is defined by the nodal points of

![Figure 6](image-url) Illustration of skin effect S_{21} plotted as a function of radius r at $f_d = 2.6$ GHz and where $\sigma \in \{0.1, 1, 10\}$ S m$^{-1}$.

![Figure 7](image-url) Relative heating F^* as a function of frequency. Here, the optimal bound corresponds to the conjugate match $\varepsilon_{opt}(\omega)$. The Drude model tuned to resonance at $f_d = 2.6$ GHz, and finally three realistic cases of Drude models where $q_L \in \{10, 10^2, 10^3\} e_0$ are the corresponding charges of the GNP ligands. The radius of the spherical suspension is $r_1 = 1$ μm and the surrounding medium is a saline solution with the conductivity $\sigma = 0.1$ S m$^{-1}$.
Here, the optimal bound corresponds to the conjugate match \(\epsilon_{1o}(\omega) \), \(\epsilon_{1p}(\omega) \) the Drude model tuned to resonance at \(f_0 = 2.6 \) GHz, and finally three realistic cases of Drude models where \(q_i \in \{10, 10^2, 10^3\} \) are the corresponding charges of the GNP ligands. The radius of the spherical suspension is \(r_l = 1 \) μm and the surrounding medium is a saline solution with the conductivity \(\sigma = 0.1 \) S m\(^{-1}\).

In figure 9 the target permittivity \(\epsilon_{1o}(\omega) \) is shown. The tuned Drude model \(\epsilon_{1D}(\omega) \) according to section 3.1 above and the approximating triangular basis functions sampled in the interval \([2.5, 2.7]\) GHz, which is centered at the desired frequency \(f_0 = 2.6 \) GHz.

In figure 9 the target permittivity \(\epsilon_{1o}(\omega) \) is shown. The tuned Drude model \(\epsilon_{1D}(\omega) \) consists of a high frequency permittivity \(\epsilon_{1\infty} = 1 \), a point mass at \(\omega = 0 \) with amplitude \(x_0 = 160.5 \) and a regular measure \(\mathcal{M}_{1p}(\omega) \) yielding an impulsive response just outside, and close to, the approximation domain and finally a response that closely matches the target permittivity \(\epsilon_{1p}(\omega) \) inside the approximation domain. Aside from the support of these responses, \(\mathcal{M}_{1p}(\omega) \) is essentially zero elsewhere and the solution is hence independent of an increase of the optimization domain \(\Omega \).

In figure 9 it is further noted that \(\epsilon_{1D}(\omega) \) is almost constant over the bandwidth of interest, and it was found that the optimized result \(\epsilon_{1p}(\omega) \) does not change notably if the target function is chosen according to the constant value \(-156.1 + 137.61 \approx \epsilon_{1o}(\omega) \) for \(\omega \in \Omega \). In figure 10 is plotted in the corresponding relative heating \(F^a \) according to the target conjugate match \(\epsilon_{1o}(\omega) \), the tuned Drude model \(\epsilon_{1D}(\omega) \) and the optimized model \(\epsilon_{1p}(\omega) \), respectively are plotted as functions of frequency between 2.4 and 2.8 GHz. Note that the optimal heating capability increases at lower frequencies and that the Drude model is tuned here to the desired center frequency \(f_0 = 2.6 \) GHz. It is seen that the optimized passive model \(\epsilon_{1p}(\omega) \) closely matches the heating obtained from the target conjugate match \(\epsilon_{1o}(\omega) \) when evaluated inside the approximation domain between 2.5 and 2.7 GHz. However, there is in fact a remaining approximation error between \(\epsilon_{1p}(\omega) \) and \(\epsilon_{1o}(\omega) \), even though it is so small that it is not visible in figures 9 and 10. Hence, figure 11 shows the approximation error \(E = \| \epsilon_{1p}(\omega) - \epsilon_{1o}(\omega) \|_{\infty} \) plotted as a function of the number of basis functions used \(N \). It is seen that the remaining error converges to a small non-zero value for large \(N \).

3.4. A comment on metamaterials

When applying the conjugate match for a lossless background, the result is \(\epsilon_{1o} = -2\epsilon_r \), which is a negative real number. A material with a negative real permittivity over a specified bandwidth is sometimes regarded a metamaterial. In [24] is shown that a metamaterial with a constant real-valued and negative target permittivity \(\epsilon_1 < 0 \) over a finite frequency band \(\Omega \) can only be approximated by a passive permittivity function \(\epsilon(\omega) \) within the following lower bound
The following interesting features are observed regarding the approximation of metamaterials in this particular numerical example.

- The problem to approximate the conjugate match ε_{10} over a finite frequency band Ω as in section 3.3 is essentially the same as to approximate a metamaterial with a constant complex value $\varepsilon_l = -156.1 + i37.61 \approx \varepsilon_{10}(\omega)$ for $\omega \in \Omega$. This is a situation in which the result (30) cannot be straightforwardly extended, but convex optimization (29) can be used to study the realizability and the bandwidth capabilities of such a hypothetical passive material.

- Whereas the approximation of a metamaterial with a constant real negative permittivity over a finite bandwidth implies severe bandwidth limitations, the presence of an additional constant imaginary part in the target permittivity implies that the bandwidth limitation is no longer severe, and there exist a hypothetical passive (realizable) permittivity function that can approximate the metamaterial (the conjugate match) with a very small approximation error over the whole approximation domain Ω, as illustrated in figure 9 through 11.

4. Summary

In this paper, a study of the physical limitations for radio frequency absorption in gold nanoparticle (GNP) suspensions is presented. The analysis is based on classical electromagnetic theory regarding the energy absorption in small spherical particles in a lossy medium (see general Mie theory) and is extended here to take the skin effect of the surrounding medium into account. The main theoretical result is the derivation of an optimal conjugate match with respect to the surrounding medium giving a physical limitation for the maximal absorption inside a spherical suspension of GPNs. As such, the theoretical result defines an optimum plasmonic resonance inside a lossy environment, and which can furthermore be put into the framework of approximating a metamaterial over a given bandwidth. The heating is quantified by a relative heating coefficient, and it is demonstrated that for a surrounding medium consisting of a weak electrolyte solution, a significant RF-heating can be achieved inside the GNP suspension, provided that an electrophoretic particle acceleration mechanism described by the Drude model is physically valid, and can be tuned into resonance at the desired frequency. The optimally tuned Drude model can furthermore be used as a benchmark in a comparison based on realistic parameter choices regarding the volume fraction, mass, charge, and friction constant of the GPNs. The most uncertain parameter that seems to be difficult to model, measure and control is the charge number of the coated gold nanoparticles. Interestingly enough, our study shows that this parameter is also one of the most sensitive and important when determining the achievable heating.

Acknowledgments

This work was supported by the Swedish Foundation for Strategic Research (SSF).
Appendix. Vector spherical waves

The definition of the vector spherical waves together with some important results that are not readily available in the literature are presented in this appendix. In particular, we supply explicit formulas for the transition matrices \(t_{ij} \) and \(r_{ij} \) defined in (A.8) and (A.9) below, as well as the energies (as squared integrals) of the spherical Bessel functions (A.15) and the regular vector waves (A.20) and (A.21) in the case with lossy materials. The squared integrals are based on the first Lommel integral in the case when the wavenumber \(k \) is complex valued.

A.1. Definition of vector spherical waves

In a source-free region the electromagnetic field can be expanded in vector spherical waves as

\[
\begin{align*}
E(\mathbf{r}) &= \sum_{l,m,\tau} a_{ml} \mathbf{v}_{ml}(kr) + b_{ml} \mathbf{u}_{ml}(kr), \\
H(\mathbf{r}) &= \frac{1}{i\eta} \sum_{l,m,\tau} a_{ml} \mathbf{v}_{ml}(kr) + b_{ml} \mathbf{u}_{ml}(kr),
\end{align*}
\]

where \(\mathbf{v}_{ml}(kr) \) and \(\mathbf{u}_{ml}(kr) \) are the regular and the outgoing vector spherical waves, respectively, and \(a_{ml} \) and \(b_{ml} \) the corresponding multipole coefficients, see e.g. [18, 33–35]. Here, \(l = 1, \ldots, \infty, m = -l, \ldots, l \) and \(\tau = 1, 2 \), where \(\tau = 1 \) indicates a transverse electric (TE) magnetic multipole and \(\tau = 2 \) a transverse magnetic (TM) electric multipole, and \(\bar{r} \) denotes the complement of \(r \), i.e. \(1 = 2 \) and \(2 = 1 \).

The solenoidal (source-free) regular vector spherical waves are defined here by

\[
\mathbf{v}_{1ml}(kr) = \frac{1}{\sqrt{l(l+1)}} \nabla \times (r j_l(kr) Y_{ml}(\mathbf{\hat{r}})),
\]

\[
\mathbf{v}_{2ml}(kr) = \frac{kr j_l(kr)}{kr} \mathbf{A}_{2ml}(\mathbf{\hat{r}}) + \sqrt{l(l+1)} \frac{j_l(kr)}{kr} \mathbf{A}_{1ml}(\mathbf{\hat{r}}),
\]

where \(Y_{ml}(\mathbf{\hat{r}}) \) are the spherical harmonics, \(\mathbf{A}_{ml}(\mathbf{\hat{r}}) \) the vector spherical functions and \(j_l(x) \) the spherical Bessel functions of order \(l \), see [18, 19, 33–35]. Here, \((\cdot)' \) denotes a differentiation with respect to the argument of the spherical Bessel function. The outgoing (radiating) vector spherical waves \(\mathbf{u}_{ml}(kr) \) are obtained by replacing the regular spherical Bessel functions \(j_l(x) \) above for the spherical Hankel functions of the first kind, \(h_l'(x) \), see [18, 19, 33].

The vector spherical harmonics \(\mathbf{A}_{ilm}(\mathbf{\hat{r}}) \) are given by

\[
\begin{align*}
\mathbf{A}_{1lm}(\mathbf{\hat{r}}) &= \frac{1}{\sqrt{l+1}} \nabla \times (r Y_{lm}(\mathbf{\hat{r}})), \\
\mathbf{A}_{2lm}(\mathbf{\hat{r}}) &= \mathbf{\hat{r}} \times \mathbf{A}_{1lm}(\mathbf{\hat{r}}), \\
\mathbf{A}_{3lm}(\mathbf{\hat{r}}) &= \mathbf{\hat{r}} \times \mathbf{A}_{2lm}(\mathbf{\hat{r}}).
\end{align*}
\]

where \(v = 1, 2, 3 \), and where the spherical harmonics \(Y_{ml}(\mathbf{\hat{r}}) \) are given by

\[
Y_{ml}(\mathbf{\hat{r}}) = (-1)^m \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}} P^m_l(\cos \theta) e^{im\phi},
\]

and where \(P^m_l(\theta) \) are the associated Legendre functions [18, 19, 34]. The vector spherical harmonics are orthonormal on the unit sphere, and hence

\[
\int_{0}^{\Omega_0} \mathbf{A}_{ilm}^*(\mathbf{\hat{r}}) \cdot \mathbf{A}_{ilm}(\mathbf{\hat{r}}) d\Omega = \delta_{l\ell_1} \delta_{m m_1} \delta_{l_1 l},
\]

where \(\Omega_0 \) denotes the unit sphere and \(d\Omega = \sin \theta d\theta d\phi \).

A.2. Transition matrices for a homogeneous sphere

Consider the scattering of an electromagnetic field due to a homogeneous sphere of radius \(r_1 \), permittivity \(\epsilon_1 \) and permeability \(\mu_1 \) and wavenumber \(k_1 = k_0 \sqrt{\epsilon_1 \mu_1} \). The medium surrounding the sphere is characterized by the permittivity \(\epsilon \), permeability \(\mu \) and wave number \(k = k_0 \sqrt{\epsilon \mu} \). The incident and the scattered fields for \(r > r_1 \) are expressed as in (A.1) with multipole coefficients \(a_{ml} \) and \(b_{ml} \), respectively, and the interior field is similarly expressed using regular vector spherical waves for \(r < r_1 \) with multipole coefficients \(a^{(1)}_{ml} \). By matching the tangential electric and magnetic fields at the boundary of radius \(r_1 \), it can be shown that

\[
\begin{align*}
b_{ml} &= t_{jl} a_{ml}, \quad (A.8) \\
a^{(1)}_{ml} &= r_{jl} a_{ml}, \quad (A.9)
\end{align*}
\]

where \(t_{jl} \) and \(r_{jl} \) are transition matrices for scattering and absorption given by

\[
\begin{align*}
t_{l1} &= \frac{j_l(kr_1)(kr_1 j_l(kr_1))'(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))' j_l(kr_1)(kr_1 j_l(kr_1))'}{h_l^1(k r_1)(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))' j_l(kr_1)(kr_1 j_l(kr_1))'} \\
t_{l0} &= \frac{j_l(kr_1)(kr_1 j_l(kr_1))'(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))' j_l(kr_1)(kr_1 j_l(kr_1))' j_l(kr_1)(kr_1 j_l(kr_1))'}{h_l^1(k r_1)(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))'(k r_1 j_l(kr_1))' j_l(kr_1)(kr_1 j_l(kr_1))' j_l(kr_1)(kr_1 j_l(kr_1))'} \\
r_{l1} &= \frac{j_l(k r_1)(k r_1 j_l^1(k r_1))'(k r_1 j_l^1(k r_1))'(k r_1 j_l^1(k r_1))'(k r_1 j_l^1(k r_1))'(k r_1 j_l^1(k r_1))' j_l(k r_1)(k r_1 j_l^1(k r_1))'}{h_l^1(k r_1)(k r_1 j_l^1(k r_1))'(k r_1 j_l^1(k r_1))'(k r_1 j_l^1(k r_1))' j_l(k r_1)(k r_1 j_l^1(k r_1))' j_l(k r_1)(k r_1 j_l^1(k r_1))'} \\
r_{l0} &= \frac{-j_l(k r_1)(kr_1 j_l^1(kr_1))'(k r_1 j_l^1(kr_1))'(k r_1 j_l^1(kr_1))'(k r_1 j_l^1(kr_1))'(k r_1 j_l^1(kr_1))' j_l(k r_1)(kr_1 j_l^1(kr_1))'}{h_l^1(k r_1)(kr_1 j_l^1(kr_1))'(kr_1 j_l^1(kr_1))'(kr_1 j_l^1(kr_1))' j_l(k r_1)(kr_1 j_l^1(kr_1))' j_l(k r_1)(kr_1 j_l^1(kr_1))'}
\end{align*}
\]

A.3. First Lommel integral for spherical Bessel functions with complex-valued argument

The first Lommel integral is given by

\[
\int \mathcal{C}_l(ap) D_h(bp) dp = \rho (a \mathcal{C}_{l+1}(ap) D_h(bp) - b \mathcal{C}_l(ap) D_{h+1}(bp))/a^2 - b^2,
\]

where \(a \) and \(b \) are complex-valued constants and \(\mathcal{C}_l(\cdot) \) and \(D_\nu(\cdot) \) are arbitrary cylinder functions, i.e. the Bessel function, the Neumann function, the Hankel functions of the first and second kind \(J_\nu(\cdot) \), \(Y_\nu(\cdot) \), \(H_\nu^{(1)}(\cdot) \), \(H_\nu^{(2)}(\cdot) \), respectively, or any
nontrivial linear combination of these functions, see 10.22.4 and 10.22.5 in [19], and pp 133–134 in [36].

Let \(a = \kappa \) and \(b = \kappa', \) where \(\kappa = \kappa' \), i.e. \(\kappa \) is not real valued, and consider the case

\[
C_\kappa(\kappa \rho) = A J_\kappa(\kappa \rho) + B H_\kappa^{(1)}(\kappa \rho),
\]

where \(A \) and \(B \) are complex-valued constants. Let

\[
D_\kappa(\kappa' \rho) = C_\kappa(\kappa' \rho) = A' J_\kappa(\kappa' \rho) + B' H_\kappa^{(1)}(\kappa' \rho),
\]

where the conjugate rules \(J_\kappa(\zeta) = J_\kappa(\zeta^*) \) and \(H_\kappa^{(1)}(\zeta) = H_\kappa^{(1)}(\zeta^*) \) have been used, see [19]. The first Lommel integral (A.10) now yields

\[
\int |C_\kappa(\kappa \rho)|^2 \rho \, d\rho = \frac{\rho \mathcal{K}[\rho C_{\kappa+1}(\kappa \rho) C_{\kappa}(\kappa \rho)]}{\mathcal{K}[\kappa^2]}, \tag{A.13}
\]

The spherical Bessel, Neumann and Hankel functions of the first and second kind are given by \(j_\kappa(\zeta) = \sqrt{\frac{\pi}{2 \zeta}} Y_{\kappa+1/2}(\zeta), \) \(y_\kappa(\zeta) = \sqrt{\frac{\pi}{2 \zeta}} Y_{\kappa-1/2}(\zeta), \) \(h_\kappa^{(1)}(\zeta) = \sqrt{\frac{\pi}{2 \zeta}} H_{\kappa+1/2}^{(1)}(\zeta) \) and \(h_\kappa^{(2)}(\zeta) = \sqrt{\frac{\pi}{2 \zeta}} H_{\kappa-1/2}^{(2)}(\zeta), \) respectively, see [19]. An arbitrary linear combination of spherical Bessel and Hankel functions can hence be written as

\[
s_{\kappa}(kr) = A j_{\kappa}(kr) + B h_{\kappa}^{(1)}(kr) = \frac{\pi}{2 kr} C_{\kappa+1/2}(kr),
\]

where \(C_{\kappa+1/2}(kr) \) is the corresponding cylinder function as defined in (A.11). The first Lommel integral for spherical Bessel functions with complex-valued arguments can now be derived as

\[
\int |s_{\kappa}(kr)|^2 r^2 \, dr = \frac{\pi}{2|k|} \int |C_{\kappa+1/2}(kr)|^2 r \, dr
\]

\[
= \frac{\pi}{2|k|} \left(\mathcal{K}[\mathcal{K}[\kappa^2]] \right)
\]

\[
= \frac{\pi}{2|k|} \left(\mathcal{K}[\mathcal{K}[\kappa^2]] \right)
\]

\[
= \frac{\pi}{2|k|} \left(\mathcal{K}[\mathcal{K}[\kappa^2]] \right).
\]

\[
\tag{A.15}
\]

A.4. Orthogonality of the regular spherical waves

Due to the orthonormality of the vector spherical harmonics (A.7), the regular spherical waves are orthogonal over the unit sphere with

\[
\int_{S_2} \mathbf{v}_m(\rho \mathbf{e}_r)(kr) \cdot \mathbf{v}_n(\rho \mathbf{e}_r)(kr) \, d\Omega = \delta_{m\tau} \delta_{\rho \rho} S_r(k, r), \tag{A.16}
\]

where

\[
S_r(k, r) = \int_{S_2} |\mathbf{v}_m(\rho \mathbf{e}_r)|^2 \, d\Omega
\]

\[
= \begin{cases}
|j_\kappa(kr)|^2 & \text{for } \tau = 1, \\
|j_\kappa(kr)|^2 + l(l+1)|j_{\kappa+1}(kr)|^2 & \text{for } \tau = 2.
\end{cases}
\]

\[
\tag{A.17}
\]

As a consequence, the regular spherical waves are also orthogonal over a spherical volume \(V_r \) with radius \(r_1 \) yielding

\[
\int_{V_r} \mathbf{v}_m(\rho \mathbf{e}_r)(kr) \cdot \mathbf{v}_{m'}(\rho \mathbf{e}_r)(kr) \, dV
\]

\[
= \delta_{m\tau} \delta_{\rho \rho} W_r(k, r_1), \tag{A.18}
\]

where

\[
W_r(k, r_1) = \int_{V_r} \left| \mathbf{v}_m(\rho \mathbf{e}_r)(kr) \right|^2 dV
\]

\[
= \int_{0}^{r_1} S_r(k, r) r^2 dr, \tag{A.19}
\]

where \(dV = r^2 \sin \theta \, d\theta \, d\phi \, dr \) and \(\tau = 1, 2, \ldots \), see [19], it can be shown that

\[
W_r(k, r_1) = \int_{0}^{r_1} \left(\frac{j_\kappa(kr_1)}{kr_1} + \frac{j_{\kappa+1}(kr_1)}{kr_1} \right)^2 + l(l+1) \left| \frac{j_{\kappa+1}(kr_1)}{kr_1} \right|^2 r^2 dr
\]

\[
= \frac{1}{2l+1} \left((l+1)W_{l-1}(k, r_1) + lW_{l+1}(k, r_1) \right). \tag{A.21}
\]

References

[1] Collins C B, McCoy R S, Ackerson B J, Collins G J and Ackerson C J 2014 Radiofrequency heating pathways for gold nanoparticles Nanoscale 6 8459–72

[2] Sassaroli E, Li K C P and O’Neill B E 2012 Radio frequency absorption in gold nanoparticle suspensions: a phenomenological study J. Phys. D: Appl. Phys. 45 1–15 075303

[3] Cardinal J, Klune J R, Chory E, Jeyabalan G, Kanzius J S, Nalesnik M and Geller D A 2008 Noninvasive radiofrequency ablation of cancer targeted by gold nanoparticles Surgery 144 125–32

[4] Gannon C J, Patra C R, Bhattacharya R, Mukherjee P and Curley S A 2008 Intracellular gold nanoparticles enhance non-invasive radiofrequency thermal destruction of human gastrointestinal cancer cells J. Nanobiotechnol. 6 2

[5] Moran C H, Wainerdi S M, Cherukuri T K, Kittrell C, Wiley B J, Nicholas N W, Curley S A, Kanzius J S and Cherukuri P 2009 Size-dependent joule heating of gold nanoparticles using capacitively coupled radiofrequency fields Nano Res. 2 400–5

[6] Marquez M A M, Garcia E G and Camacho M A F 2013 Hyperthermia devices and their uses with nanoparticles US Patent 8463397 www.google.com/patents/US8463397
[7] DeNardo G J L and DeNardo S J 2008 Turning the heat on cancer Cancer Biother. Radiopharmaceuticals 23 671–9
[8] Callaghan M F, Lund T, Hashemzadeh P, Roitt I M and Bayford R H 2010 J. Phys.: Cond. Mat. 224 012058
[9] Dedicated E C, Alkilany A M, Huang X, Murphy C J and El-Sayed M A 2012 The golden age: gold nanoparticles for biomedicine Chem. Soc. Rev. 41 2740–79
[10] Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, Felix R and Riess H 2002 The cellular and molecular basis of hyperthermia Crit. Rev. Oncol./Hematol. 43 33–56
[11] Corr S J et al 2012 Citrate-capped gold nanoparticle electrophoretic heat production in response to a time-varying radio-frequency electric field J. Phys. Chem. C 116 24380–9
[12] Gupta A, Kane R S and Borca-Tasciuc D A 2010 Local temperature measurement in the vicinity of electromagnetically heated magnetic and gold nanoparticles J. Appl. Phys. 108 064901
[13] Liu X, Chen H J, Chen X, Parinia C and Wen D 2012 Low frequency heating of gold nanoparticle dispersions for non-invasive thermal therapies Nanoscale 4 3945–53
[14] Li D, Jung Y S, Tan S, Kim H K, Chory E and Geller D A 2011 Negligible absorption of radiofrequency radiation by colloidal gold nanoparticles J. Colloid Interface Sci. 358 47–53
[15] Hanso G W, Monreal R C and Apell S P 2011 Electromagnetic absorption mechanisms in metal nanoparticles: bulk and surface effects in radiofrequency-terahertz heating of nanoparticles J. Appl. Phys. 109 124306
[16] Miller O D, Polimeridis A G, Reid M T H, Hsu C W, DeLacy B G, Ioannopoulos J D, Soljacic M and Johnson S G 2016 Fundamental limits to optical response in absorptive systems Opt. Express 24 3329–64
[17] Martin M N, Basham J I, Chando P and Eah S K 2010 Charged gold nanoparticles in non-polar solvents: 10 min synthesis and 2D self-assembly Langmuir 26 7410–7
[18] Jackson J D 1999 Classical Electrodynamics 3rd edn (New York: Wiley)
[19] Olver F W J, Lozier D W, Boisvert R F and Clark C W 2010 NIST Handbook of Mathematical Functions (Cambridge: Cambridge University Press)
[20] Greene R E and Krantz S G 1997 Function Theory of One Complex Variable (New York: Wiley)
[21] Bohren C F and Huffman D R 1983 Absorption and Scattering of Light by Small Particles (New York: Wiley)
[22] Bohren C F and Gilra D P 1979 Extinction by a spherical particle in an absorbing medium J. Colloid Interface Sci. 72 215–21
[23] Chylek P 1977 Light scattering by small particles in an absorbing medium J. Opt. Soc. Am. 67 561–3
[24] Gustafsson M and Sjöberg D 2010 Sum rules and physical bounds on passive metamaterials New J. Phys. 12 043046
[25] Nordebo S, Gustafsson M, Nilsson B and Sjöberg D 2014 Optimal realizations of passive structures IEEE Trans. Antennas Propag. 62 4686–94
[26] Zemanian A H 1965 Distribution Theory and Transform Analysis: an Introduction to Generalized Functions, with Applications (New York: McGraw-Hill)
[27] Kac I S and Krein M G 1974 R-functions—analytic functions mapping the upper halfplane into itself Am. Math. Soc. Transl. 103 1–18
[28] Akhiezer N I 1965 The Classical Moment Problem (New York: Oliver and Boyd)
[29] Nussenzveig H M 1972 Causality and Dispersion Relations (London: Academic)
[30] Bernland A, Luger A and Gustafsson M 2011 Sum rules and constraints on passive systems J. Phys. A: Math. Theor. 44 145205
[31] King F W 2009 Hilbert Transforms vol I–II (Cambridge: Cambridge University Press)
[32] Grant M and Boyd S 2012 CVX: Matlab software for disciplined convex programming, version 2.1 http://cvxr.com/cvx
[33] Boström A, Kristensson G and Ström S 1991 Transformation properties of plane, spherical and cylindrical scalar and vector wave functions Field Representations and Introduction to Scattering (Acoustic, Electromagnetic and Elastic Wave Scattering) ed V V Varadan et al (Amsterdam: Elsevier) ch 4, pp 165–210
[34] Arfken G B and Weber H J 2001 Mathematical Methods for Physicists 5th edn (New York: Academic)
[35] Newton R G 2002 Scattering Theory of Waves and Particles 2nd edn (New York: Dover)
[36] Watson G N 1995 A Treatise on the Theory of Bessel Functions 2nd edn (Cambridge: Cambridge University Press)