Evaluation of Road Performance Based on International Roughness Index and Falling Weight Deflectometer

Hasanuddin¹, A Setyawan² and B Yulianto¹
¹ Master program of Civil Engineering, Sebelas Maret University, Surakarta
² Roadmate Research Group Civil Engineering Department, Sebelas Maret University, Surakarta

E-mail: wonghasan80@gmail.com

Abstract. Assessment to the performance of road pavement is deemed necessary to improve the management quality of road maintenance and rehabilitation. This research to evaluate the road base on functional and structural and recommendations handling done. Assessing the pavement performance is conducted with functional and structural evaluation. Functional evaluation of pavement is based on the value of IRI (International Roughness Index) which among others is derived from reading NAASRA for analysis and recommended road handling. Meanwhile, structural evaluation of pavement is done by analyzing deflection value based on FWD (Falling Weight Deflectometer) data resulting in SN (Structural Number) value. The analysis will result in SNₘ (Structural Number Effective) and SNₖ (Structural Number Future) value obtained from comparing SNₘ to SNₖ value that leads to SCI (Structural Condition Index) value. SCI value implies the possible recommendation for handling pavement. The study done to Simpang Tuan-Batas Kota Jambi road segment was based on functional analysis. The study indicated that the road segment split into 12 segments in which segment 1, 3, 5, 7, 9, and 11 were of regular maintenance, segment 2, 4, 8, 10, 12 belonged to periodic maintenance, and segment 6 was of rehabilitation. The structural analysis resulted in 8 segments consisting of segment 1 and 2 recommended for regular maintenance, segment 3, 4, 5, and 7 for functional overlay, and 6 and 8 were of structural overlay.

1. Introduction
Evaluation of pavement performance is crucial for improved quality of road handling to materialize more efficient, reliable, and effective and accurately-targeted handling so as to facilitate sustainable monitoring and evaluation of road performance.

This study was aimed at investigating the functional and structural conditions of Simpang Tuan-Batas Kota Jambi road segment based on the International Roughness Index Method with NAASRA (SNI 03-3426-1994) and Non-destructive Method (NDT) with Falling Weight Deflectometer (FWD) and seeking for possible handling recommendations.

Functional evaluation comprises information concerning the characteristics of pavement that directly affect the safety and comfort of road users and road services. The Survey targeted skid resistance, surface texture, and road roughness and serviceability [4]. Simulated prediction of IRI value determines the plan for the functional road rehabilitation and maintenance [3].

International Roughness Index (IRI) serves as one of the parameters to determine the serviceability level of road segments that may affect the riding quality. Good roads should be strong, flat, watertight, durable and economical throughout the planned lifetime. Therefore, roads should be
regularly/periodically monitored and evaluated for correct method of rehabilitation. Determining road roughness index can be done with NAASRA [7], a method that Bina Marga and AASHTO widely recommend.

Evaluation comprises information about the performance of pavement structure on traffic load and environmental condition. To this extent, surveys on road characteristics help obtain information on the pavement structure performance, pavement damage and road mechanical/structural properties [4]. Road structural capacity indicates the capability of road pavement to support the traffic load. It is commonly resulted from evaluating the mechanical properties of each pavement structure layer such as elastic modulus, fatigue properties, and deflection condition, measured by laboratory studies or on-site non-destructive (NDT) tests. One of the NDT methods is Falling Weight Deflectometer (FWD) [4]. The dynamic analysis done with Falling Weight deflectometer (FWD) test aims to predict the strength characteristics of flexible pavement and the contributing factors [4], one of which is overloaded vehicle axles that affect the service life of pavement [5].

2. Experimental

2.1. Functional Evaluation Analysis

Functional evaluation was done along with collecting NAASRA-based data of International Roughness Index (IRI) in a 100-meter range of halda setting. Segmentation was subsequently made based on uniformity of IRI value along 28,892 meters of road segment to facilitate grouping and deciding the recommended handling.

2.2. Traffic Volume Analysis

Traffic volume analysis was based on factual surveys. To support design, traffic volume was obtained from actual traffic surveys corresponding to the Traffic Enrollment Survey Manual by exercising Pd T-19-2004-B Manual or using equipment with the same approach to the results of previous traffic survey results, which incorporated traffic growth (R) factor based on historical growth data or correlation formulations with other valid growth factors, lane distribution factors and lane capacity referring to Ministry of Public Works Decree No.19/PRT/M/2011 and MKJI, Vehicle Damage Factor (VDF). The data were gained from static weighbridges and regional WIM data that the Directorate of Engineering issued, current Cumulative ESAL (Np), Cumulative ESAL at end of design life (Nf), calculated the remaining life that indicated gradual, repeated fatigue damage due to vehicle load by the percentage of traffic load in the pavement damage.

2.3. Structural Evaluation Analysis

Analysis of structural evaluation suggests that collecting data of deflection value derived from Falling Weight Deflectometer (FWD) shall consider parameters such as Resilient Modulus (Mr) of each pavement material both asphalt mix and subgrade with the stiffness value or resilient modulus. The study employed Subgrade Resilient Modulus (Mr), Effective Elastic Modulus (Ep) calculated on the basis of the deflection under the center plate load adjusted to the standard temperature of 68°F which was trial and error. The value of Structural Number Effective (SNeff) was obtained based on the analysis of road segment deflection value obtained from FWD. Further, analysis of deflection value of segmented road was carried out adhering to the uniformity of deflection value. The analysis resulted in SNeff value which refers to the value of pavement structural capacity currently suffering from structural deterioration. Structural Number Future (SNf) refers to the value of pavement structural capacity for serving future/estimated traffic load (cumulative traffic load for the next 5 or 10 years).
2.4. Structural Condition Index (SCI) Calculation

The value of Structural Condition Index (SCI) serves as a parameter for determining road handling. SCI was obtained by comparing SN_eff to SN_f ratio resulting in classification value of segmented road handling. SCI value indicates the category of road handling in which SCI > 1 was categorized into maintenance type, SCI = 0.7-1 was categorized into functional overlay, SCI = 0.5-0.7 belonged to structural overlay, and SCI <0.5 was categorized into reconstruction.

3. Results and Discussion

3.1. Road Functional Evaluation Analysis

Evaluation of road pavement condition to Simpang Tuan-Batas Kota Jambi road segment split into 12 segments adhering to the uniformity of IRI value and handling recommendation which refers to the Minister of Public Works Regulation as shown in Figure 1 and Table 1 below.

Segment No.	Segment of STA	Length (m)	IRI	Condition	Recommendation
1	Km 0 + 000 up to 02 + 674	2,674	IRI ≥ 3.5	Good	Routine Maintenance
2	Km 02 + 674 up to 03 + 174	500	3.5 < IRI ≤ 5.8	Fair	Periodic Maintenance
3	Km 03 + 174 up to 04 + 274	1,100	IRI ≥ 3.5	Good	Routine Maintenance
4	Km 04 + 274 up to 04 + 674	400	3.5 < IRI ≤ 5.8	Fair	Periodic Maintenance
5	Km 04 + 674 up to 07 + 120	2,446	IRI ≥ 3.5	Good	Routine Maintenance
6	Km 07 + 120 up to 07 + 520	400	5.8 < IRI ≤ 9.0	Damaged	Reconstruction
7	Km 07 + 520 up to 10 + 077	2,557	IRI ≥ 3.5	Good	Routine Maintenance
8	Km 10 + 077 up to 11 + 677	1,600	3.5 < IRI ≤ 5.8	Fair	Periodic Maintenance
9	Km 11 + 677 up to 16 + 543	4,866	IRI ≥ 3.5	Good	Routine Maintenance
10	Km 16 + 543 up to 19 + 311	2,768	3.5 < IRI ≤ 5.8	Fair	Periodic Maintenance
11	Km 19 + 311 up to 27 + 630	8,319	IRI ≥ 3.5	Good	Routine Maintenance
12	Km 27 + 630 up to 28 + 892	1,262	3.5 < IRI ≤ 5.8	Fair	Periodic Maintenance

3.2. Traffic Volume Analysis

The analysis was based on secondary data of Routine Traffic Counting conducted by the National Road Planning and Implementation Agency of IV Jambi Region in May 2016. The analysis indicated that the growth value of traffic (R) at Simpang Tuan-Batas Kota Jambi road segment corresponded to five and ten years of design life, traffic growth factor (i) for Primary Arterial Road so that the
percentage of traffic factor (i)=5%, Lane Distribution Factor by 80% for 2-way lane distribution.

Vehicle Damage Factor (VDF) were used in reference to the Road Pavement Design Manual.

Current cumulative ESAL (Np or W18), cumulative ESAL at design life (Nf) and service life were derived from daily traffic volume (LHR). Np, Nf and service life can be seen in Table 2 and 3.

Table 2. Current cumulative ESAL (Np) or (W18)

Classification	Type of Vehicle	UNIT	LHR in 2016	VDF	DD	DL	R	DAYS IN A YEAR	W 18
2	PASSENGER CAR	VEHICLE	923	0.0005	0.5	0.8	1	365	67
3	COMBI VAN, MINIBUS (UTILITY 1)	VEHICLE	1,116	0.035	0.5	0.8	1	365	5,703
4	PICK UP, SHUTTLE CAR (UTILITY 2)	VEHICLE	758	0.035	0.5	0.8	1	365	3,873
5a	SMALL BUS	VEHICLE	132	0.3	0.5	0.8	1	365	5,782
5b	BIG BUS	VEHICLE	233	1	0.5	0.8	1	365	34,018
6a	2-AXLE LIGHT TRUCK	VEHICLE	590	0.8	0.5	0.8	1	365	68,912
6b	2-AXLE HEAVY TRUCK	VEHICLE	216	7.3	0.5	0.8	1	365	230,213
7a	3-AXLE HEAVY TRUCK	VEHICLE	221	28.9	0.5	0.8	1	365	932,487
7b	4-AXLE TOW TRUCK	VEHICLE	47	36.9	0.5	0.8	1	365	253,208
7c	SEMI TRAILER TRUCK	VEHICLE	258	13.6	0.5	0.8	1	365	512,285

VEHICLE 4,494 TOTAL (Nf) or W18 2,046,548

Table 3. Cumulative ESAL at Design Life (Nf)

NO	YEAR	W18	R	ESAL ke-n	Umur layan
1	2015	2,046,548	1.0000	2,046,548	98,18454
2	2016	2,046,548	2.0005	4,094,119	94,55272
3	2017	2,046,548	3.0015	6,142,714	89,10363
4	2018	2,046,548	4.0030	8,192,333	81,83636
5	2019	2,046,548	5.0050	10,242,977	72,75000
6	2020	2,046,548	6.0075	12,294,647	61,84364
7	2021	2,046,548	7.0105	14,347,342	49,11637
8	2022	2,046,548	8.0140	16,401,064	34,56728
9	2023	2,046,548	9.0180	18,455,812	18,19546
10	2024	2,046,548	10.0225	20,511,588	-

Nf 20,511,588

3.3. Structural Evaluation
The analysis consists of traffic analysis, structural condition analysis, setting structural condition index (SCI), and recommendation for segmented road handling. Data comprising deflection curve and pavement temperature were obtained from the Falling Weight Deflectometer, the tool that has a 300 mm diameter load plate, a 200 kg weight load and a 315 mm falling height. The distance between the deflectometers was set between 0, 200, 300, 450, 600, 00, 1200 and 1500 mm from the load center to fit the total pavement thickness which was 300-700 mm (normal). Data of deflection curve (FWD) were projected for structural analysis with AASHTO 1993 along with the data of traffic analysis and pavement thickness. Therefore, segmentation should be grouped based on the uniformity level of deflection value as seen in Table 4.

Table 4. Segmentation of Road Based on Uniformity of Deflection (D1)

Segment No.	Segment of STA	Length (m)	Standard Deviation (S)	Mean of Deflection Value (D1)	Uniformity Factor (Fk) %	Uniformity
1	Km 0 + 000 up to 03 + 602	3,602	32.11	157.11	20.4368	Fairly Good
2	Km 03 + 602 up to 06 + 411	2,839	40.05	171.26	23.3886	Fairly Good
3	Km 06 + 411 up to 08 + 004	1,593	46.61	178.20	26.1549	Fairly Good
4	Km 08 + 004 up to 11 + 440	3,436	56.10	200.83	27.9326	Fairly Good
5	Km 11 + 440 up to 15 + 408	3,968	41.69	179.64	23.2096	Fairly Good
6	Km 15 + 408 up to 19 + 641	4,233	93.61	341.01	27.4502	Fairly Good
7	Km 19 + 641 up to 23 + 750	4,109	66.04	226.52	29.1527	Fairly Good
8	Km 23 + 750 up to 27 + 777	4,027	52.20	192.90	27.0623	Fairly Good
Total Road Length	27,807					
Subgrade Resilient Modulus (M_R) was calculated on the basis of per segment representative. M_R value shall meet the required distance of the farthest geophone sensor at $R=9=1500$ mm away from the load center with greater or equal to 0.7 of stress basin radius on subgrade ($R \geq 0.7$ ae). M_R for each segment can be seen in Table 5.

Table 5. Resilient Modulus (M_R) of Subgrade

SEGMENT No.	DISTANCE (m)	P (Lbs)	Psi	C (mm)	r9 (inch)	d9 (x 0.001 mm)	d9 (inch)	$M_R = C (0.24^*P/dr)$ (psi)	
1	3,602	9565.89	87.22	0.33	1,500	59.06	45.08	0.00177	7,229
2	2,839	9568.35	87.24	0.33	1,500	59.06	38.52	0.00152	8,462
3	1,593	9534.77	86.94	0.33	1,500	59.06	46.81	0.00184	6,938
4	3,436	9472.49	86.37	0.33	1,500	59.06	51.65	0.00203	6,248
5	3,968	9296.92	84.77	0.33	1,500	59.06	44.43	0.00175	7,129
6	4,233	9370.20	85.44	0.33	1,500	59.06	54.89	0.00216	5,815
7	4,109	9352.01	85.27	0.33	1,500	59.06	40.35	0.00159	7,894
8	4,027	9322.09	85.00	0.33	1,500	59.06	37.54	0.00148	8,459

Pavement Layer Modulus (E_p) was calculated as trial and error by iterating each segment as seen in Table 10. The data of pavement layer thickness at Simpang Tuan-Batas Kota Jambi road segment, which were obtained from P2JN Work Unit of Jambi, can be seen in Table 7 below. To note, overlay was done to the road segment in 2015.

Table 6. Radius of stress basin on subgrade (Ae)

Segment No.	Distance (km)	A (inch)	D (inch)	Mr (psi)	Ep (psi)	R (inch)	Ae (inch)	0.7Ae	r ≥ 0.7Ae
1	3.602	5.91	28.54	7228.91	85,328	59.06	65.26	45.68	OK
2	2.839	5.91	28.54	8461.58	76,050	59.06	59.63	41.75	OK
3	1.593	5.91	28.54	6938.28	75,732	59.06	63.59	44.51	OK
4	3.436	5.91	28.54	6247.88	65,240	59.06	62.66	43.87	OK
5	3.968	5.91	28.54	7128.72	68,946	59.06	61,099	42.77	OK
6	4.233	5.91	28.54	5814.65	34,185	59.06	51,855	36.30	OK
7	4.109	5.91	28.54	7894.37	48,548	59.06	52,626	36.84	OK
8	4.027	5.91	28.54	8458,782	57,068	59.06	54,246	37.98	OK

Table 7. Existing Pavement Layers Thickness(D)

Pavement Type	Thickness (mm)	Thickness (inch)
AC-WC	40	1.57
AC-BC	60	2.36
AC-BASE	75	2.95
LPA	300	11.81
Pavement Thickness	475	28.54

Table 8. Effective Elastic Modulus (E_p) of Pavement Layers

Seg No.	P (Lbs)	P (psi)	T (°C)	T (°F)	TAF	d1 (x 0.001 mm)	d1 (inch)	d1 x TAF (inch)	E_p (psi)
1	9565.89	87.22	34.92	93.86	0.83	221.33	44.00	0.00077	85,328
2	9568.35	87.24	35.20	95.36	0.82	251.37	40.00	0.00099	76,050
3	9534.77	86.94	37.40	99.32	0.76	271.42	42.00	0.00107	75,732
4	9472.49	86.37	37.41	99.33	0.76	313.03	49.00	0.00123	65,240
5	9296.2	84.77	33.40	92.12	0.84	263.02	41.00	0.00134	68,946
6	9370.20	85.44	32.23	90.01	0.85	528.23	42.00	0.00176	34,185
7	9352.01	85.27	29.85	85.73	0.88	358.59	45.00	0.00141	48,548
8	9322.09	85.00	28.10	82.57	0.90	297.31	49.00	0.00117	57,068

Structural Capacity Analysis was done by calculating S_{Nef} based on E_p value and asphalt-layered thickness with AASHTO 1993 for the analysis, based on reliability on Simpang Tuan-Batas Kota Jambi road segment referring to Manual for Planning Bending Pavement Thickness (Pt- 01-2002-B) that was classification of inter-city arterial roads with the value of 75% -95%, 95% of the value was selected so that value of standard deviation (ZR) was -1.645. Overall standard deviation (S0) represented local condition. Among the range of S_{N} value, the highest value was 0.50. Surface index
(IP) used comprises final surface index (IPt), Initial Pavement Index (IP0), Design serviceability loss (ΔPSI=IP0-IPt) and Subgrade Resilient Modulus (Mr).

3.4. Calculation of Structural Condition Index Value (SCI)
Structural Condition Index (SCI) implies compared Effective Structural Number (SN_{eff}) to Future Structural Number (SN_f). The comparison resulted in the classification value of segmented road handling as seen in Table 9.

STA	Distance (km)	SNf 2020	SNeff	SCI	Recommendation
Km 00 + 000 up to 03 + 602	3,602	5.590	5.654544	1.012	Regular Maintenance
Km 03 + 602 up to 06 + 411	2,839	5.316	5.441688	1.024	Regular Maintenance
Km 06 + 411 up to 08 + 004	1,593	5.662	5.434092	0.960	Functional Overlay
Km 08 + 004 up to 11 + 440	3,436	5.850	5.170574	0.884	Functional Overlay
Km 11 + 440 up to 15 + 408	3,968	5.614	5.266681	0.938	Functional Overlay
Km 15 + 408 up to 19 + 641	4,233	5.982	4.168504	0.697	Structural Overlay
Km 19 + 641 up to 23 + 750	4,109	5.436	4.685525	0.862	Functional Overlay
Km 23 + 750 up to 27 + 777	4,027	5.316	4.944987	0.930	Structural Overlay

4. Conclusion
The functional analysis to the segmented road indicated that the road segment split into 12 segments in which segment 1, 3, 5, 7, 9, and 11 were of regular maintenance, segment 2, 4, 8, 10, 12 belonged to periodic maintenance, and segment 6 was of rehabilitation.

Meanwhile, the structural analysis resulted in 8 segments consisting of segment 1 and 2 recommended for regular maintenance, segment 3, 4, 5, and 7 for functional overlay, and 6 and 8 were of structural overlay.

It could be concluded that the results of Functional Evaluation and Structural evaluation do not suggest the similar recommendation for pavements treatment, the combination of both functional and structural evaluation will result in the best recommendation for pavement rehabilitation, maintenance or reconstruction.

References
[1] Care F R A M, Subagio B S, Rahman H, Kusumawati A 2012 Jurnal Teknik Sipil, Jurnal Teoritis dan Terapan Bidang Rekayasa Sipil ISSN 0853-2982.
[2] Direktorat Jenderal Bina Marga 2002 Pedoman Perencanaaan Tebal Perkerasan Lentur (Pt T-01-2002-B) (Jakarta : Dirjen Bina Marga Departemen Pekerjaan Umum Republik Indonesia)
[3] Hermawan, Suprapto M, Setyawan A 2016 IOP Conf. Series: Mat. Sci. Eng. 176 012031
[4] Herry P 2012 Penyusunan Program Pemeliharaan Jalan Berdasarkan Tinjauan Kondisi Struktural dan Fungsional Jalan Tesis Institut Teknologi Bandung
[5] Setyawan A, Nainggolan J, Budiarto A 2015 Proced. Eng. 125 417-423
[6] Nega A, Nikraz H, dan Al-Qadi I L 2016 J. Traffic Trans. Eng. 3(5) 427-437
[7] Putra M Y M, Subagio B S, dan Hariadi E S Jurnal Teoretis dan Terapan Bidang Rekayasa Sipil ISSN 0853-2982