Effects of patient factors on inpatient mortality after complex liver, pancreatic and gastric resections

V. M. Zaydfudim¹,³ and G. J. Stukenborg²,³

Departments of ¹Surgery and ²Public Health Sciences, and ³Surgical Outcomes Research Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA

Correspondence to: Dr V. M. Zaydfudim, Department of Surgery, University of Virginia, PO Box 800709, Charlottesville, Virginia 22908-0709, USA (e-mail: vz8h@virginia.edu)

Background: There is mixed evidence that patients who receive care in hospitals with a low case volume for complex gastrointestinal and hepatobiliary operations have an increased risk of inpatient death.

Methods: A retrospective cohort study was performed of patients who had complex gastrointestinal and hepatobiliary operations in the Healthcare Cost and Utilization Project 2012 National Inpatient Sample. Multivariable weighted hierarchical generalized linear models were used to test the relationship between hospital case volume and probability of inpatient death, with detailed adjustments for the concurrent effects of differences in associated patient co-morbidities.

Results: A total of 8260 pancreaticoduodenectomies, 2750 major hepatectomies and 3250 total gastrectomies were identified. Inpatient death occurred in 3.6% per cent of patients after pancreaticoduodenectomy, 4.9% per cent after major hepatectomy and 4.6% per cent after total gastrectomy. Mean hospital case volume was 50.6 (median 40) for pancreaticoduodenectomy, 23.6 (median 15) for major hepatectomy, 15.1 (median 10) for total gastrectomy and 70.2 (median 50) for any of the three operations. Hospital case volume was not a statistically significant predictor of mortality after any operation (all \(P \geq 0.188 \)). Patient characteristics including age and co-morbidity were highly significant predictors of mortality (\(P < 0.001 \)). No significant improvements in model performance were obtained by adding hospital case volume to any model that already included adjustments for patient-level differences in age and co-morbid disease, for any functional format (\(P \geq 0.146 \) for all C statistic differences from baseline).

Conclusion: Patient co-morbidity, not hospital case volume, was associated with significant differences in inpatient mortality following complex gastric, pancreatic and hepatobiliary resections.

Funding information:
No funding information has been provided

Paper accepted 31 October 2017
Published online 11 January 2018 in Wiley Online Library (www.bjsopen.com). DOI: 10.1002/bjs5.33

Introduction

The relationship between hospital case volume for complex operations and the risk of inpatient death has been a topic of research interest and healthcare policy debate for decades. A landmark 2002 study¹ found that low hospital case volume for pancreatic resection was associated with a significantly increased risk of 30-day mortality. Other studies²–⁴ have demonstrated significant associations between volume and mortality among patients selected for complex gastrointestinal (GI) and hepatopancreatico-biliary (HPB) resections. Although other studies⁵,⁶ have indicated that the relationship between case volume and mortality risk is not significant, there is substantial variation in the statistical methods used to assess the relationship between hospital volume and outcomes⁷,⁸. Many studies have used statistical methods that do not account for the hierarchical structure of the data when analysing differences in outcomes among patients clustered within hospitals⁹–¹². Studies also vary in how they account for baseline differences between patients when determining the independent effect of hospital case volume¹³.

Meaningful reductions in mortality and changes in standards of practice have occurred over recent decades. Perioperative mortality for major cancer resections has declined significantly¹⁴. Provider, institutional and organizational quality improvement efforts have altered
the patient care paradigm, with more patients receiving complex cancer surgical care at specialist centres. Healthcare delivery system consolidation has reduced the number of hospitals offering complex GI and HPB resections. The use of heterogeneous statistical methods, differences in study populations, changes in practice and the overall reduction in short-term mortality limit the applicability of evidence from older studies to the present era. This study examined the relationship between hospital case volume and inpatient mortality for patients after three specific complex gastrointestinal and hepatobiliary operations using updated statistical methods and population data, with detailed adjustment for the confounding effects of patient-level differences in co-morbid disease.

Methods

Data were obtained from the Healthcare Cost and Utilization Project (HCUP) 2012 National Inpatient Sample (NIS). The HCUP 2012 NIS approximates a 20 per cent stratified sample of hospital discharges, drawn from a sampling frame that covers 95 per cent of the population discharged from non-federal hospitals in the USA. The ICD-9-CM code reported as the principal operation per patient was used to identify all reported patients in the HCUP 2012 NIS data for radical pancreatectoduodenectomy (53-7), major hepatic lobectomy (50-3) and total gastrectomy (43-9, 43-91, or 43-99). Each case in the data set was weighted to reflect the hospital discharge sampling frame. Weighted cases were used for all analyses performed in this study.

Hospital case volume was measured as the total number of weighted cases reported by hospitals for each procedure, and for the collective total of all three procedures. Items recorded for each patient included the occurrence of inpatient death, type of healthcare insurance (Medicare, Medicaid, private, self-pay, indigent, other payer) and age. Dichotomous indicators for 29 categories of co-morbid disease were defined for each patient, based on ICD-9-CM diagnostic codes, reported as secondary diagnoses using classification software available from the US Agency for Healthcare Research and Quality. Weighted cases with missing data among the pertinent co-variable or outcome measures were excluded. The overall missing value rates for most variables in HCUP 2012 NIS are less than 1 per cent.

Statistical analysis

Multivariable weighted hierarchical generalized linear models (HGLMs) were used to estimate the magnitude and statistical significance of the effect of hospital case volume on the probability of inpatient death, adjusted for the concurrent effects of selected patient-level co-variables. The study data set included both hospital- and patient-level measures, and was thus hierarchically structured, with records for individual patients stratified within hospitals. Within the data set, records for patients associated with the same hospital had identical hospital volume measures for each of the three procedures and for the collective total. Statistical models that incorporated predictive effects for both hospital- and patient-level co-variables had variance components and model error terms that were estimated appropriately within the context of HGLM formulation. Multivariable weighted HGLMs were estimated separately for each of the three procedure-defined study populations, and for the combined population. All models were formulated with a priori selection of model co-variables.

The effect of hospital volume on patient mortality risk was assessed using linear, dichotomous and polynomial functional formats. A linear function was assessed using hospital case volume as a continuous variable. A dichotomous function was assessed using a categorical variable that grouped patients into hospitals with volumes either below or at or above the median volume. A non-linear function was estimated using restricted cubic spline polynomials. Although segmenting continuous variables into categories is a common method for assessing non-linearity, this practice eliminates much of the information available from the case volume measure. Restricted cubic splines are piecewise polynomial functions that are fitted to the relationship between case volume and the estimated probability of mortality, with the ends of the functions restricted to be linear. The cubic spline functions were estimated with knots set at the fifth, 50th and 95th percentiles, with the spline function tails restricted to be linear at the fifth and 95th percentiles of the volume distributions, for each measure.

The multivariable weighted HGLMs included separate intercept terms for each hospital. The effect of hospital case volume on the probability of inpatient death was adjusted for the concurrent effects of patient age and for categories of co-morbid disease that occurred in 5 per cent or more of the study population. Rarely occurring categories of co-morbid disease were excluded from the models to reduce the number parameter estimates needed for model convergence.

The statistical significance of each model co-variable was assessed using type III tests of fixed effects (F test statistics), which reflect the proportion of the total model log-likelihood independently explained by each model co-variable. The statistical significance of the F test
statistics obtained for each model co-variable was assessed at the $P < 0.001$ threshold.

Nested models were used to assess the relative contribution of hospital case volume to the estimation of patient mortality risk, compared with the contribution made by patient-level differences in age and co-morbid disease burden. Each HGLM was compared with an otherwise identical model that excluded the hospital volume co-variable. Nested model pairs were assessed for each of the three procedures and for the combined population, for each of the three functions representing the effect of volume on the probability of inpatient death.

The capacity of each model to discriminate between patients discharged alive or dead was measured using the C statistic27,28. A C statistic of 0.5 indicates that the model provided no predictive discrimination, whereas a value of 1.0 indicates perfect discrimination. The statistical significance of the difference between the C statistic for each nested model pair was assessed at the $P < 0.001$ threshold29.

Results from the paired models were also compared using the integrated discrimination improvement (IDI) statistic to measure the effect of each volume measure on model reclassification30. Reclassification addresses the extent to
which a model including hospital case volume correctly (or incorrectly) reclassifies patients as having died or survived compared with classification of the same patient using an otherwise identical model without the hospital volume co-variable. The IDI statistic obtains a value of −100 per cent for the maximum possible decline in the overall sensitivity and specificity, 0 per cent for no difference, and 100 per cent for the maximum possible improvement. The significance of the difference between the IDI statistics for each nested model pair was also assessed at the $P < 0.001$ threshold.

Statistical significance was assessed at the a priori threshold value of $P < 0.001$ for each comparison made in order to account for the large size of the weighted sample data set and for the potential for multiple comparisons bias. In total, 16 multivariable weighted HGLMs were developed in the available data. Data management and weighted HGLM analysis was conducted using SAS® version 9.4.
Table 2 Statistical significance of hospital case volume, odds of inpatient death, and effect of hospital case volume on model performance

Case volume	F test statistic	P value for F test statistic	Odds ratio	Model C statistic	P value for C statistic difference from baseline	IDI statistic	P value for IDI statistic difference from baseline
Pancreateicoduodenectomy							
Baseline: excludes case volume	n.a.	n.a.	n.a.	0.80	n.a.	n.a.	n.a.
Linear: volume continuous	0.03	0.858					
Unit increase of 5 cases	0.98 (0.83, 1.17)						
Unit increase of 10 cases	0.97 (0.69, 1.36)						
Unit increase of 50 cases	0.85 (0.16, 4.66)						
Dichotomous: volume split at median < median volume	0.05	0.815					
≥ median volume							
Non-linear: volume spline function							
Linear only	0.65	0.419					
Non-linear part 1	0.33	0.567					
Non-linear part 2	0.24	0.622					
Dichotomous: volume split at median < median volume	0.09	0.765					
≥ median volume							
Major hepatectomy							
Baseline: excludes case volume	n.a.	n.a.	n.a.	0.78	n.a.	n.a.	n.a.
Linear: volume continuous	0.05	0.828					
Unit increase of 5 cases	0.86 (0.22, 3.41)						
Unit increase of 10 cases	0.81 (0.05, 12.87)						
Unit increase of 20 cases	0.54 (<0.01, 135.29)						
Dichotomous: volume split at median < median volume	0.09	0.765					
≥ median volume							
Non-linear: volume spline function							
Linear only	<0.01	0.988					
Non-linear part 1	0.06	0.772					
Non-linear part 2	0.10	0.747					
Total gastrectomy							
Baseline: excludes case volume	n.a.	n.a.	n.a.	0.79	n.a.	n.a.	n.a.
Linear: volume continuous	0.54	0.464					
Unit increase of 5 cases	0.49 (0.07, 3.32)						
Unit increase of 10 cases	0.24 (<0.01, 11.04)						
Unit increase of 20 cases	0.06 (<0.01, 121.34)						
Dichotomous: volume split at median < median volume	1.74	0.188					
≥ median volume							
Non-linear: volume spline function							
Linear only	1.35	0.247					
Non-linear part 1	<0.01	0.999					
Non-linear part 2	<0.01	0.999					
Combined cases							
Baseline: excludes case volume	n.a.	n.a.	n.a.	0.80	n.a.	n.a.	n.a.
Linear: volume continuous	0.09	0.769					
Unit increase of 5 cases	0.98 (0.89, 1.08)						
Unit increase of 10 cases	0.97 (0.80, 1.17)						
Unit increase of 50 cases	0.86 (0.33, 2.23)						
Dichotomous: volume split at median < median volume	0.20	0.658					
≥ median volume							
Non-linear: volume spline function							
Linear only	2.80	0.094					
Non-linear part 1	1.38	0.240					
Non-linear part 2	1.04	0.307					

Values in parentheses are 95 per cent confidence intervals. n.a., not applicable.
Fig. 2 Restricted cubic spline functions and their associated 95 per cent confidence intervals for the relationship between probability of death and hospital case volume for (a) radical pancreaticoduodenectomy, (b) major hepatic lobectomy, (c) total gastrectomy and (d) the combined population.

Results

The NIS 2012 HCUP database contained 7296 968 hospital discharge records, selected from a weighted national sample of the total population of 146 million hospital discharges reported during 2012 for all US non-federal short-term general and other specialty hospitals. A total of 8260 pancreaticoduodenectomies, 2750 major hepatectomies and 3250 total gastrectomies were identified. Pancreaticoduodenectomy was reported by 432 hospitals, major hepatectomy by 253 and total gastrectomy by 381; 653 hospitals reported at least one patient for any of the three operations.

Weighted frequency distributions of hospital case volume for the three operations, individually and in combination are shown in Fig. 1. Mean hospital case volume was 50.6 (median 40; weighted range 5–150) for pancreaticoduodenectomy, 23.6 (15; 5–900) for major hepatectomy, 15.1 (10; 5–65) for total gastrectomy and 70.2 (50; 5–275) for any of the three operations. Case volumes greater than five were reported by 88.7 per cent of hospitals.
Table 3: Statistical significance of patient-level co-variables and odds of inpatient death

	F test statistic	P value for F test statistic	Odds ratio
Pancreaticoduodenectomy			
Hospital case volume (unit increase of 50 cases)	0.03	0.858	0.85 (0.16, 4.66)
Age (unit increase of 10 years)	79.63	< 0.001	3.09 (2.41, 3.96)
Fluid and electrolyte disorders	79.28	< 0.001	12.39 (7.12, 21.57)
Coagulopathy	75.81	< 0.001	12.90 (7.25, 22.94)
Deficiency anaemia	32.20	< 0.001	0.13 (0.07, 0.26)
Peripheral vascular disorder	24.01	< 0.001	6.61 (3.10, 14.07)
Diabetes, uncomplicated	20.63	< 0.001	0.29 (0.17, 0.50)
Depression	14.96	0.001	3.31 (1.79, 6.11)
Obesity	11.38	0.001	3.22 (1.63, 6.38)
Hypertension	6.85	0.009	0.57 (0.38, 0.87)
Chronic pulmonary disease	6.73	0.009	0.40 (0.20, 0.80)
Weight loss	5.66	0.017	0.54 (0.32, 0.90)
Hypothyroidism	4.54	0.033	0.51 (0.27, 0.95)
Metastatic cancer	0.67	0.413	0.81 (0.48, 1.36)
Major hepatectomy			
Hospital case volume (unit increase of 50 cases)	0.05	0.828	0.54 (0.01, 135.29)
Age (unit increase of 10 years)	20.60	< 0.001	9.30 (3.54, 24.46)
Diabetes, uncomplicated	25.97	< 0.001	< 0.01 (< 0.01, < 0.01)
Coagulopathy	23.74	< 0.001	79.31 (13.55, 464.11)
Hypertension	19.12	< 0.001	0.01 (0.00, 0.09)
Solid tumour without metastasis	18.30	< 0.001	264.50 (20.32, > 999.99)
Liver disease	17.84	< 0.001	201.84 (17.02, > 999.99)
Fluid and electrolyte disorders	14.29	< 0.001	21.95 (4.39, 109.66)
Chronic pulmonary disease	2.36	0.125	< 0.01 (< 0.01, 8.73)
Metastatic cancer	1.24	0.266	0.21 (0.01, 12.89)
Deficiency anaemia	0.87	0.353	0.20 (0.01, 5.97)
Total gastrectomy			
Hospital case volume (unit increase of 50 cases)	0.54	0.464	0.06 (< 0.01, 121.34)
Age (unit increase of 10 years)	16.49	< 0.001	4.43 (2.15, 9.11)
Hypothyroidism	25.19	< 0.001	384.40 (37.20, > 999.99)
Fluid and electrolyte disorders	17.04	< 0.001	29.43 (5.63, 147.74)
Deficiency anaemia	6.78	0.009	0.05 (0.01, 0.49)
Weight loss	6.58	0.011	21.17 (2.03, 220.72)
Hypertension	5.06	0.025	0.25 (0.07, 0.84)
Diabetes, uncomplicated	4.70	0.031	4.28 (1.14, 16.04)
Obesity	3.48	0.063	7.21 (0.90, 57.97)
Chronic pulmonary disease	3.09	0.079	5.51 (0.82, 37.30)
Metastatic cancer	0.87	0.351	0.06 (< 0.01, 23.83)
Combined cases			
Hospital case volume (unit increase of 50 cases)	0.09	0.769	0.86 (0.33, 2.23)
Procedure group	5.10	0.006	1.65 (1.14, 2.38)
Pancreaticoduodenectomy			
Major hepatectomy			
Total gastrectomy	0.81	0.657	0.05 (0.55, 1.20)
Age (unit increase of 10 years)	119.42	< 0.001	2.23 (1.93, 2.57)
Coagulopathy	194.26	< 0.001	11.30 (8.03, 15.90)
Fluid and electrolyte disorders	86.16	< 0.001	4.01 (2.99, 5.38)
Deficiency anaemia	28.91	< 0.001	0.28 (0.18, 0.46)
Liver disease	23.77	< 0.001	3.23 (2.01, 5.19)
Hypertension	18.98	< 0.001	0.53 (0.40, 0.71)
Diabetes	13.00	0.002	0.57 (0.40, 0.80)
Chronic pulmonary disease	7.20	0.009	0.55 (0.36, 0.85)
Depression, uncomplicated	6.84	0.009	1.83 (1.16, 2.88)
Metastatic cancer	4.65	0.031	0.67 (0.47, 0.98)
Weight loss	2.98	0.084	0.72 (0.50, 1.04)
Solid tumour without metastasis	2.23	0.135	1.50 (0.88, 2.56)
Hypothyroidism	0.70	0.404	1.21 (0.76, 1.92)
Renal failure	0.68	0.410	1.23 (0.75, 2.02)
Obesity	0.37	0.544	1.15 (0.72, 1.82)

Values in parentheses are 95 per cent confidence intervals. Note: Co-variable effects listed in the table were estimated using separate multivariable weighted hierarchical generalized linear models for each study population. Results from each model are adjusted for patient age, for categories of co-morbid disease that occurred in 5 per cent or more of the patient population and for the linear effect of hospital case volume.
hepatectomy and 4⋅6 per cent for total gastrectomy by 80, indicating that the model adequately discriminated between surviving and deceased cases. Adding the effect of hospital case volume measured as a linear function improved the C statistic to 0.81, a slight improvement that was not statistically significant (P = 0.684). The IDI statistic obtained for this nested model comparison indicated that a less than 0.001 per cent increase in overall sensitivity and specificity was obtained by adding hospital case volume to the patient-level co-variables. This increase was not statistically significant (P = 0.769). Each of the nested model comparisons demonstrated that no significant improvement in model discrimination was obtained by adding hospital case volume to a baseline model adjusting for patient age and co-morbidity.

In contrast to hospital case volume, many patient-level characteristics were highly significant predictors of mortality (P < 0.001). The statistical significance and adjusted odds of inpatient death associated with each patient-level co-variable included in the multivariable weighted HGLMs with a linear effect for hospital volume are shown in Table 3. For example, in patients with pancreaticoduodenectomy, age (P < 0.001) was associated with a threefold increase in the odds of death per 10-year increase in age (OR 3.09, 95 per cent c.i. 2.41 to 3.96). Patients with fluid and electrolyte disorders as defined by appropriate ICD-9-CM codes had a 12-fold increased risk of death (OR 12.39, 7.12 to 21.57). Approximately equivalent test statistics and estimated ORs were obtained for each of the patient-level co-variables in the models where the effect of hospital case volume was represented using dichotomous or spline function formats.

Discussion

This analysis of US hospital discharge data for procedures performed in 2012 indicates that hospital case volumes for pancreaticoduodenectomy, major hepatectomy and total gastrectomy were not statistically significant predictors of inpatient mortality, unlike patient age and co-morbidity, which were highly significant predictors, for each of the assessed study populations.

Increased centralization of complex patient care has been an objective of both academic surgery and health policy initiatives for several decades. The present finding that there is no statistically significant relationship between

© 2018 The Authors.
BJS Open published by John Wiley & Sons Ltd on behalf of BJS Society Ltd
hospital case volume and mortality risk in the current era may indicate that these efforts have been successful. Recent investigations8,13 suggest that observed improvements over time in patient-specific outcomes after pancreatic resection are associated with both patient migration to higher-volume centres and reduced overall morbidity and mortality in lower-volume centres.

Another explanation for these findings is that they reflect differences in the methods used to assess the effect of case volume. Many studies assessing the effect of hospital volume on mortality have used statistical methods that do not correct for clustering9–12.

These findings may also be attributable in part to differences in the number and type of concurrent adjustments made for patient-level co-variables that contribute to mortality risk. Previous studies vary meaningfully in the adjustments made for patient co-morbidity and other specific factors known to be associated with short-term mortality risk13. The representation of the effect of volume also varies across studies. Where to set the thresholds for defining low volume is unclear. In the landmark 2002 study1, volume was categorized in quintiles. For example, annual pancreatectomy case volume was classified as very low volume (fewer than 1), low volume (1 or 2), medium volume (3–5), high volume (6–16) and very high volume (more than 16). Subsequent volume standards for pancreatic resection suggested by the Leapfrog group were set at 11 per year36. In the present study, 21–1 per cent of hospitals performed fewer than 11 pancreaticoduodenectomies per year.

A systematic review7 demonstrated wide variation in the terms used to define categories of hospital case volume for pancreaticoduodenectomy, with definitions of low volume ranging from fewer than one to fewer than 21 patients. Another systematic review37 described the same problem with liver resection volume levels, with low hospital case volume definitions ranging between fewer than two and fewer than 33 cases. Nearly 50 per cent of hospitals in the present study performed fewer than 11 major hepatectomies per year.

Study population definitions also vary across studies. Approximately one-third of pancreaticoduodenectomies in the USA comprises patients who have distal pancreatectomy rather than pancreaticoduodenectomy, and these patients have a significantly lower risk of morbidity and mortality38. The present analysis was limited to patients with highest expected perioperative mortality rate, including only patients with complex HPB resections and total gastrectomy.

Relationships between hospital volume and cost of care have been under scrutiny recently. Some studies39 suggest higher case mix-adjusted Medicare episode payments for selected complex cardiovascular operations performed at low-volume centres, whereas others40,41 have failed to identify any meaningful associations between risk-adjusted payments and hospital volume in patients after cancer resections or liver surgery. Of interest, in both studies40,41 postoperative complications were not associated with patient volume, but were associated with higher costs.

The present study has several important limitations. It assessed only one patient outcome, inpatient mortality. Results for this outcome are potentially biased by unmeasured differences among hospital discharge practices or other characteristics. Hospital case volume for complex HPB and upper GI resections may be related significantly to patient outcomes not assessed in the study, including 30- or 90-day mortality, operative complications, duration of hospital stay, discharge to nursing facility, longer-term survival and measures of oncological efficacy. Study populations were defined exclusively using the principal operation performed. Important differences may occur among hospitals with regard to other patient selection criteria, including features of the preoperative diagnosis and technical complexity. This study did not include many patient factors that are important in practice when considering outcomes for complex intra-abdominal operations. These include the identification of aborted resections after initial exploration due to real or perceived technical unresectability, factors considered during preoperative consultation, and decision-making criteria used to pursue surgery as a treatment option.

In this study, available population data and updated statistical methods were used to assess the effect of hospital case volume for GI and hepatobiliary operations on in-hospital mortality, accounting for the confounding effects of patient-level differences in co-morbid disease. The effect of hospital case volume was evaluated as a linear function, as dichotomous categories above or below the median, and as a non-linear continuous function, in three separate study populations. The results were the same for each assessment made. Patient co-morbidity and not hospital case volume was a statistically significant predictor of inpatient mortality, for any study population, for any functional format used to represent the effect of hospital case volume on patient-level mortality risk.

Acknowledgements

Professor George Stukenborg died suddenly and unexpectedly on 21 July 2017 during review of this manuscript.
V.M.Z. is grateful to T. L. McMurry for his assistance during the peer review process of manuscript revision.

Disclosure: The authors declare no conflict of interest.

References

1 Birkmeyer JD, Siewers AE, Finlayson EV, Stukel TA, Lucas FL, Batista I et al. Hospital volume and surgical mortality in the United States. N Engl J Med 2002; 346: 1128–1137.
2 Begg CB, Cramer LD, Hoskins WJ, Brennan MF. Impact of hospital volume on operative mortality for major cancer surgery. JAMA 1998; 280: 1747–1751.
3 Birkmeyer JD, Finlayson SR, Tosteson AN, Sharp SM, Warshaw AL, Fisher ES. Effect of hospital volume on in-hospital mortality with pancreaticoduodenectomy. Surgery 1999; 125: 250–256.
4 Dimick JB, Pronovost PJ, Cowan JA Jr, Lipsett PA. Postoperative complication rates after hepatic resection in Maryland hospitals. Arch Surg 2003; 138: 41–46.
5 Murata A, Muramatsu K, Ichimiya Y, Kubo T, Fujino Y, Matsuda S. Influence of hospital volume on outcomes of laparoscopic gastrectomy for gastric cancer in patients with comorbidity in Japan. Asian J Surg 2015; 38: 33–39.
6 LaPar DJ, Kron IL, Jones DR, Stukenborg GJ, Kozower BD. Hospital procedure volume should not be used as a measure of surgical quality. Ann Surg 2012; 256: 606–615.
7 Chowdhury MM, Dagash H, Pierro A. A systematic review of the impact of volume of surgery and specialization on patient outcome. Br J Surg 2007; 94: 145–161.
8 Hogan AM, Winter DC. Does practice make perfect? Ann Surg Oncol 2008; 15: 1267–1270.
9 Panageas KS, Schrag D, Riedel E, Bach PB, Begg CB. The effect of clustering of outcomes on the association of procedure volume and surgical outcomes. Ann Intern Med 2003; 139: 658–665.
10 Panageas KS, Schrag D, Russell Localio A, Venkatraman ES, Begg CB. Properties of analysis methods that account for clustering in volume–outcome studies when the primary predictor is cluster size. Stat Med 2007; 26: 2017–2035.
11 Urbach DR, Austin PC. Conventional models overestimate the statistical significance of volume–outcome associations, compared with multilevel models. J Clin Epidemiol 2005; 58: 391–400.
12 Kim W, Wolff S, Ho V. Measuring the volume–outcome relation for complex hospital surgery. Appl Health Econ Health Policy 2016; 14: 453–464.
13 Halm EA, Lee C, Chassin MR. Is volume related to outcome in health care? A systematic review and methodologic critique of the literature. Ann Intern Med 2002; 137: 511–520.
14 Finks JF, Osborne NH, Birkmeyer JD. Trends in hospital volume and operative mortality for high-risk surgery. N Engl J Med 2011; 364: 2128–2137.
15 Stitzenberg KB, Meropol NJ. Trends in centralization of cancer surgery. Ann Surg Oncol 2010; 17: 2824–2831.
16 de Wilde RF, Besselink MG, van der Tweel I, de Hingh IH, van Eijck CH, Dejong CH et al. Impact of nationwide centralization of pancreaticoduodenectomy on hospital mortality. Br J Surg 2012; 99: 404–410.
17 Colavita PD, Tsirline VB, Belyansky I, Swan RZ, Walters AL, Lincourt AE et al. Regionalization and outcomes of hepatopancreato-biliary cancer surgery in USA. J Gastrointest Surg 2014; 18: 532–541.
18 Healthcare Cost and Utilization Project (HCUP). HCUP Databases. Agency for Healthcare Research and Quality, Rockville; 2015. https://www.hcup-us.ahrq.gov/nisoverview.jsp [accessed 1 February 2017].
19 Healthcare Cost and Utilization Project (HCUP). HCUP Elixhauser Comorbidity Software. Agency for Healthcare Research and Quality, Rockville; 2015. https://www.hcup-us.ahrq.gov/toolsoftware/comorbidity/comorbidity.jsp [accessed 1 February 2017].
20 Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care 1998; 36: 8–27.
21 Houchens R. HCUP Methods Series: Missing Data Methods for the NIS and SID Report # 2015-01. US Agency for HealthCare Research and Quality; 2015. https://www.hcup-us.ahrq.gov/reports/methods/2015_01.pdf [accessed 1 October 2017].
22 Lee Y, Nelder JA. Hierarchical generalized linear models. J R Stat Soc 1996; 58: 619–678.
23 Royston P, Altman DG, Sauerbrei W. Dichotomizing continuous predictors in multiple regression: a bad idea. Stat Med 2006; 25: 127–141.
24 Greenland S. Dose–response and trend analysis in epidemiology: alternatives to categorical analysis. Epidemiology 1995; 6: 356–365.
25 Greenland S. Avoiding power loss associated with categorization and ordinal scores in dose–response and trend analysis. Epidemiology 1995; 6: 450–454.
26 Desquilbet L, Mariotti F. Dose–response analyses using restricted cubic spline functions in public health research. Stat Med 2010; 29: 1037–1057.
27 Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36.
28 Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical tests. JAMA 1982; 247: 2543–2546.
29 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837–845.
30 Pencina MJ, D’Agostino RB Sr, D’Agostino RB Jr, Vasan RS. Evaluating the added predictive ability of a new marker: from area under the ROC curve to reclassification and beyond. Stat Med 2008; 27: 157–172.
31 Streiner DL, Norman GR. Correction for multiple testing: is there a resolution? Chest 2011; 140: 16–18.
32 Birkmeyer JD, Finlayson EV, Birkmeyer CM. Volume standards for high-risk surgical procedures: potential benefits of the Leapfrog initiative. *Surgery* 2001; 130: 415–422.

33 Reames BN, Ghaferi AA, Birkmeyer JD, Dimick JB. Hospital volume and operative mortality in the modern era. *Ann Surg* 2014; 260: 244–251.

34 O'Mahoney PR, Yeo HL, Sedrakyan A, Trencheva K, Mao J, Isaacs AJ et al. Centralization of pancreatoduodenectomy a decade later: impact of the volume–outcome relationship. *Surgery* 2016; 159: 1528–1538.

35 Healy MA, Krell RW, Abdelsattar ZM, McCahill LE, Kwon D, Frankel TL et al. Pancreatic resection results in a statewide surgical collaborative. *Ann Surg Oncol* 2015; 22: 2468–2474.

36 Birkmeyer JD, Dimick JB. Potential benefits of the new Leapfrog standards: effect of process and outcomes measures. *Surgery* 2004; 135: 569–575.

37 Richardson AJ, Pang TC, Johnston E, Hollands MJ, Lam VW, Pleass HC. The volume effect in liver surgery – a systematic review and meta-analysis. *J Gastrointest Surg* 2013; 17: 1984–1996.

38 Parikh P, Shiloach M, Cohen ME, Bilimoria KY, Ko CY, Hall BL et al. Pancreatectomy risk calculator: an ACS-NSQIP resource. *HPB (Oxford)* 2010; 12: 488–497.

39 Regenbogen SE, Gust C, Birkmeyer JD. Hospital surgical volume and cost of inpatient surgery in the elderly. *J Am Coll Surg* 2012; 215: 758–765.

40 Nathan H, Atoria CL, Bach PB, Elkin EB. Hospital volume, complications, and cost of cancer surgery in the elderly. *J Clin Oncol* 2015; 33: 107–113.

41 Gani F, Pawlik TM. Assessing the costs associated with volume-based referral for hepatic surgery. *J Gastrointest Surg* 2016; 20: 945–952.
In this study, available population data and updated statistical methods were used to assess the effect of hospital case volume for gastrointestinal and hepatobiliary operations on in-hospital mortality, accounting for the confounding effects of patient level differences in co-morbid disease. We evaluated the effect of hospital case volume as a linear function, as dichotomous categories above or below the median, and as a non-linear continuous function, in three separate study populations. The results were the same for each assessment made. Patient co-morbidity and not hospital case volume was a statistically significant predictor of inpatient mortality, for any study population, for any functional format used to represent the effect of hospital case volume on patient-level mortality risk.