Efficient l_α Distance Approximation for High Dimensional Data Using α-Stable Projection

Peter Clifford and Ioana Ada Cosma

Department of Statistics, University of Oxford
1 South Parks Road, Oxford OX1 3TG, United Kingdom
{clifford,cosma}@stats.ox.ac.uk

Abstract. In recent years, large high-dimensional data sets have become commonplace in a wide range of applications in science and commerce. Techniques for dimension reduction are of primary concern in statistical analysis. Projection methods play an important role. We investigate the use of projection algorithms that exploit properties of the α-stable distributions. We show that l_α distances and quasi-distances can be recovered from random projections with full statistical efficiency by L-estimation. The computational requirements of our algorithm are modest; after a once-and-for-all calculation to determine an array of length k, the algorithm runs in $O(k)$ time for each distance, where k is the reduced dimension of the projection.

Keywords: random projections, stable distribution, L-estimation

1 Introduction

Let V be a collection of n points in m-dimensional Euclidean space, \mathbb{R}^m, where the dimension m is large, of the order of hundreds or thousands. We are interested in distance-preserving dimension reduction via random projections, where the points in V are randomly projected onto a lower k-dimensional space such that pairwise distances between original points are well preserved with high accuracy. Statistical analyses based on pairwise distances between points in V can be performed on the set of projected points, thus reducing the computational cost of computing all pairwise distances from $O(n^2m)$ to $O(nmk + n^2k)$. Important applications of distance-preserving dimension reduction are approximate clustering in high dimensional spaces and computations over streaming data, for example Hamming distance approximations.

We consider the problem of preserving l_α distances (quasi-distances) defined by $d_\alpha(u, v) = \sum_{i=1}^{m} |u_i - v_i|^\alpha$, for (u_1, \ldots, u_m) and $(v_1, \ldots, v_m) \in \mathbb{R}^m$, for $\alpha \in (0, 2]$. We remark that $[d_\alpha(u, v)]^{1/\alpha}$ is a distance measure for $\alpha \geq 1$, but not for $\alpha < 1$, and that the Hamming distance is obtained as $\lim_{\alpha \to 0} d_\alpha(u, v)$.

In the case $\alpha = 2$, the lemma of Johnson and Lindenstrauss (1984) demonstrates the existence of a projection map $p_\alpha : \mathbb{R}^m \mapsto \mathbb{R}^k$ such that

$$(1 - \epsilon)d_\alpha(u, v) \leq d_\alpha(p_\alpha(u), p_\alpha(v)) \leq (1 + \epsilon)d_\alpha(u, v) \forall u, v \in V; \quad (1)$$
provided that \(k \geq k_0 = O(\log n/\epsilon^2) \).

We are interested in dimension reduction in \(l_\alpha \), for general \(\alpha \in (0, 2] \), using stable random projections. See Indyk (2006) for an introduction to this technique. The goal will be to satisfy the inequality in (1) with high probability. In Section 2 we define stable random projections, and show that distance preserving dimension reduction in \(l_\alpha \) reduces to estimation of the scale parameter of the symmetric, strictly stable law, where the latter is discussed in Section 3. In Section 4 we present an asymptotically efficient estimator of the scale parameter, followed by numerical results in Section 5.

2 Random projections

A random variable \(X \) with distribution \(F \) is said to be strictly stable if for every \(n > 0 \), and independent variables \(X_1, \ldots, X_n \sim F \), there exist constants \(a_n > 0 \) such that \(X_1 + \ldots + X_n \overset{\mathcal{D}}{=} a_n X \), where \(\mathcal{D} \) denotes equality in distribution. The only possible norming constants are \(a_n = n^{1/\alpha} \), where \(0 < \alpha \leq 2 \); the parameter \(\alpha \) is known as the index of stability (Feller, 1971). The densities of stable distributions are not available in closed form, except in a few cases: Cauchy \((\alpha = 1)\), Normal \((\alpha = 2)\) and Lévy \((\alpha = 0.5)\).

We are interested in symmetric, strictly stable random variables of index \(\alpha \) and parameter \(\theta > 0 \), with characteristic function \(\mathbb{E} \exp(itX) = e^{-\theta |t|^\alpha} \), defined for \(t \) real. Let \(f(x; \alpha, \theta) \) and \(F(x; \alpha, \theta) \) be the density and distribution function of \(X \). Of particular interest is the following property. Suppose that \(X_1, \ldots, X_m \) are independent variables with distribution function \(F(x; \alpha, 1) \) and that \(u_1, \ldots, u_m \) are real constants, then \(\sum_{i=1}^{m} u_i X_i \sim F(x; \alpha, \theta) \) where \(\theta = \sum_{i=1}^{d} |u_i|^\alpha \). If \(v_1, \ldots, v_m \) is another sequence of real constants, then it follows that \(\sum_{i=1}^{m} (u_i - v_i) X_i \sim F(x; \alpha, \theta) \) with \(\theta = d_\alpha(u, v) \).

We assume that the data \(V \) is arranged into a matrix \(V \) with \(n \) rows and \(m \) columns, i.e. one row for each of the \(n \) data points. Let \(X \in \mathbb{R}^{m \times k} \) be a matrix whose entries are independent symmetric, strictly stable random variables with index \(\alpha \), and \(\theta = 1 \) for fixed \(0 < \alpha \leq 2 \). We term \(X \) a random projection matrix mapping from \(\mathbb{R}^m \) to \(\mathbb{R}^k \) via the map \(V \mapsto VX \).

Let \(B = VX \) and consider \(u \) and \(v \), the \(i \)th and \(j \)th rows of \(V \), \(i \neq j \), corresponding to the \(i \)th and \(j \)th data points in \(V \). Let \(a \) and \(b \) be the corresponding rows of \(B \). Then, for \(z = 1, \ldots, k \), we have

\[
a_z - b_z = \sum_{i=1}^{m} (u_i - v_i) X_{iz} \sim F(x; \alpha, d_{ij}),
\]

independently for \(z = 1, \ldots, k \), where \(d_{ij} = d_\alpha(u, v) \). Our aim is to recover \(d_\alpha(u, v) \) from \((a, b)\). Since \(\{a_z - b_z : z = 1, \ldots, k\} \) provides a sample of values from a distribution with parameter \(d_\alpha(u, v) \) we are in a position to apply the usual repertoire of statistical estimation techniques to obtain estimators with specified accuracy. This is of particular relevance in the context of streaming data, where \(d_\alpha \), for \(\alpha \leq 1 \),
is a meaningful measure of the pairwise distance between streams; in the
extreme case of \(\alpha \to 0 \), \(d_\alpha \) tends to the Hamming distance, the number of
mismatches between two sequences. When \(\alpha \in [1, 2] \), the \(l_\alpha \) distance is given
by \(d^{1/\alpha} \) with potential interest for clustering in high dimensional spaces. In
the case \(\alpha \in [1, 2] \) the statistical problem reduces to estimating the standard
scale parameter of the symmetric, strictly stable law.

3 Estimation of the scale parameter

The problem of parameter estimation of the stable law is particularly chal-
lenging due to the fact that the density function does not exist in closed form
for most values of \(\alpha \in (0, 2] \). The cases \(\alpha = 1 \) and \(\alpha = 2 \) have been exten-
tively studied. See for example (Li et al., 2007) for references. Maximum
likelihood estimation of the parameters was first attempted in DuMouchel
(1973) who showed that the MLE’s are both consistent and asymptotically
normal, and computed estimates of the asymptotic standard deviations and
correlations. Matsui and Takemura (2006) improved upon these estimates by
providing accurate approximations to the first and second derivatives of the
stable densities. Nolan (2001) proposes an iterative approach to maximum
likelihood estimation of the parameters, implemented in his software package
STABLE, available at http://www.robustanalysis.com/.

We compute approximations to the second derivative of the stable density
and the logarithm of a transformed density by a second order finite difference
scheme with grid width \(h = 0.01 \) using the integral form of the density func-
tion given in Nolan (2007), as implemented in the contributed package fBasics
to R; Figure 1 displays the approximations. We obtained similar estimates
using the expressions in Matsui and Takemura (2006).

Among the first estimators of the scale parameter are those of Fama and
Roll (1968) based on sample quantiles, for \(\alpha > 1 \). The known form of the
characteristic function of the stable law has proved to be a useful tool for
parameter estimation (Kogon and Williams, 1998). More recently, Li (2008)
proposes the harmonic mean estimator for \(\alpha \leq 0.344 \) and the geometric mean
estimator for \(0.344 < \alpha < 2 \) to estimate \(\theta \); combined, these estimators have
an asymptotic relative efficiency exceeding 70\% and increasing to 100\% as
\(\alpha \to 0 \). Furthermore, Li and Hastie (2008) propose a unified estimator based
on fractional powers with ARE no smaller than 75\%, out-performing the
combined harmonic and geometric mean estimators, and with good small
sample performance for values of \(k \) as small as 10; we point out that the
fractional power estimator has been proposed previously in Nikias and Shao
(1995). Our approach is to use L-estimation to estimate the logarithm of
the scale parameter. We will show that the method is simple and practical,
involving only a precalculated table and then a subsequent sum of products
to achieve asymptotic efficiency of 100\%.
4 The approach of L-estimation

Consider a random sample \(x_1, \ldots, x_k \sim f(x; \alpha, \theta)\) and let \(\gamma = \theta^{1/\alpha}\). Define

\[y_i := \log |x_i| \overset{D}{=} \mu + z_i, \quad i = 1, \ldots, k, \]

where \(z_i\) is distributed as the logarithm of the absolute value of a symmetric, strictly stable random variable of index \(\alpha\) and \(\theta = 1\), and \(\mu = \log \gamma\). Let \(f_0(z)\) and \(F_0(z)\) denote the p.d.f. and distribution function of \(z_i\), respectively. So, \((y_1, \ldots, y_k)\) is a random sample of variables with p.d.f. \(f_0(y - \mu)\), where

\[f_0(z) = 2e^z f(e^z; \alpha, \theta), \quad -\infty < z < \infty. \]

The problem reduces to that of estimating the location parameter \(\mu\) for the family of distributions \(\{f_0(y - \mu)\, | \, \mu \in \mathbb{R}\}\), based on a random sample \((y_1, \ldots, y_k)\) from \(f_0(y - \mu)\).

The method of L-estimation defines the estimate \(\hat{\mu}\) as a weighted linear combination of order statistics \(y_{(1)}, \ldots, y_{(k)}\). Chernoff et al. (1967) prove that when the weights are suitably chosen, \(\sqrt{k} (\hat{\mu} - \mathbb{E}(\hat{\mu}))\) is asymptotically normal with mean 0 and variance \(I^{-1}\). Consequently the estimator \(\hat{\mu}\) is asymptotically efficient.
In large samples, the weights can be approximated by

$$w_{ik} = -\frac{1}{kI_\mu} \ell''(F_0^{-1}\left(\frac{i}{k+1}\right)),$$

where $\ell(y) = \log f_0(y)$. Furthermore, the systematic bias-correction term is given by

$$BC = \mathbb{E}(\hat{\mu}) - \hat{\mu} = -\frac{1}{I_\mu} \int_{-\infty}^{\infty} z\ell''(z)f_0(z)dz,$$

so, the corresponding bias-corrected estimator is $\hat{\mu}_{BC} = \sum_{i=1}^{k} w_{ik}y_{(i)} - BC$.

Table 1 gives the Fisher information and the bias for various values of α, obtained numerically by making use of approximations to the stable densities and quantiles in the R package fBasics. The values of Fisher information agree with those presented by Matsui and Takemura (2006) to within 3-4 significant digits for $\alpha \in (0, 1.8)$, but appear to be slightly different for α outside this range; for example, for $\alpha = 1.8$, our estimate is 1.3920, whereas that of Matsui and Takemura (2006) is 1.3898.

α	I_μ	BC									
0.14	0.0183	-1.5253	0.1	0.2325	-0.4380	1.11	0.5774	0.0762	1.6	1.0780	0.4183
0.15	0.0210	-1.3522	0.65	0.2626	-0.3658	1.15	0.6182	0.1119	1.65	1.1459	0.4497
0.2	0.0363	-1.1956	0.7	0.2937	-0.2995	1.2	0.6604	0.1466	1.7	1.2198	0.4741
0.25	0.0547	-1.2	1	0.3256	-0.2388	1.25	0.7042	0.1804	1.75	1.3011	0.4874
0.3	0.0736	-0.9331	0.8	0.3585	-0.1834	1.3	0.7499	0.2138	1.8	1.3920	0.4875
0.35	0.0982	-0.8483	0.85	0.3924	-0.1324	1.35	0.7976	0.2470	1.85	1.4968	0.4743
0.4	0.1226	-0.6711	0.9	0.4272	-0.0852	1.4	0.8476	0.2761	1.9	1.6270	0.4480
0.45	0.1483	-0.6790	0.95	0.4631	-0.0412	1.45	0.9002	0.3142	1.95	1.7882	0.4122
0.5	0.1753	-0.5965	1	0.5	0	1.5	0.9555	0.3487	1.99	1.8861	0.3912
0.55	0.2034	-0.5154	1.05	0.5379	0.0390	1.55	1.0148	0.3838	2.0	2.0	0.3687

Table 1. Fisher information I_μ for the parameter μ and the systematic bias (BC) in estimating μ by efficient L-estimation, tabulated for values of $\alpha \in [0.14, 2]$.

In the case $\alpha > 1$ we will be interested in estimating $\gamma = e^\mu$, corresponding to the l_α norm. We propose the estimator $\hat{\gamma} = \exp(\hat{\mu}_{BC})$. It follows that $\sqrt{k}(\hat{\gamma} - \gamma)$ is asymptotically normal with mean 0 and variance $1/I_\gamma$, where I_γ is the Fisher information about the scale parameter γ contained in (x_1, \ldots, x_k), or equivalently (y_1, \ldots, y_k). By second order Taylor expansion, we show that the bias incurred by exponentiating is approximately

$$\mathbb{E}(\hat{\gamma}) \approx \gamma + \frac{1}{2} \gamma \mathbb{E}(\hat{\mu}_{BC} - \mu)^2 = \gamma \left(1 + \frac{1}{2kI_\mu}\right),$$

so the bias-corrected estimator $\hat{\gamma}_{BC} = \hat{\gamma}\left(1 - \frac{1}{2kI_\mu}\right)$ is unbiased up to terms of order $O(1/k^2)$.
Fig. 2. This plot displays approximate weights \(w_{ik} \) for \(t := \frac{i}{k+1} \in (0.01, 0.99) \) and, starting from the left, following the peaks, \(\alpha = 0.15, 0.3, 0.5, 0.8, 1.0, 1.2, 1.5, 1.8, 2.0 \).

In practice, we use the following approximation for the weights in (2)

\[
w_{ik} \approx \frac{\ell''(F^{-1}_0(\frac{i}{k+1}))}{\sum_{j=1}^{k} \ell''(F^{-1}_0(\frac{j}{k+1}))},
\]

normalized to sum to 1; Figure 2 displays the weights for various values of \(\alpha \). For \(\alpha \) small, the weighted sum in the formulation of the L-estimator places significant weight on the small order statistics, and negligible weight on the large order statistics, gradually shifting the weight balance towards large order statistics as \(\alpha \to 2 \). The bias-corrected estimator of \(\gamma \) is computed as follows:

\[
\hat{\gamma}_{BC} = \exp \left\{ \sum_{i=1}^{k} w_{ik} [y(i) - F^{-1}_0 \left(\frac{i}{k+1} \right)] \right\} \left[1 + \frac{1}{2} \sum_{j=1}^{k} \ell''(F^{-1}_0(\frac{j}{k+1})) \right].
\]

Similar calculations provide an asymptotically efficient estimator for \(\theta \); a more relevant parameter for values of \(\alpha \) less than 1.
Fig. 3. Comparison in terms of mean square error (m.s.e.) of the L-estimator of θ with the fractional power estimator of Li and Hastie (2008) (10^5 replicates). The Cramér-Rao lower bound is plotted for comparison. The equivalent plot for estimators of $\gamma = \theta^{1/\alpha}$ shows a similar pattern. The perturbation in the m.s.e. for the L-estimator at $\alpha = 1.9$ is caused by an oscillation in the weight function; it can be minimised by selective trimming.

5 Numerical results

The L-estimator is easily computable as the weights depend only on α and k, and can be tabulated once-and-or-all for any required value of α. The calculation of these terms depends on accurate approximations to the quantiles and the density of the symmetric, strictly stable distribution. Whereas it is possible to obtain a good approximation to the MLE via an iterative procedure with a suitably large table of pre-calculated derivatives for fixed α, the L-estimation procedure has the advantage of achieving the same asymptotic performance without iteration. The L-estimator has modest computing requirements; it has $O(k)$ running time and $O(k)$ storage requirement given a table of pre-calculated weights for given α.

To confirm the superior performance of our L-estimator we have simulated its mean square error for various sample size and various values of α. Figure 3 shows that, as expected, the L-estimator has smaller mean square error than
the estimator of Li and Hastie (2008). The perturbations in the m.s.e. of the L-estimator at $\alpha = 1.9$ are caused by an oscillation of the weight function which becomes negative when $\frac{1}{\sqrt{n}}$ is close to 1 (see Figure 2). The effect can be minimised by using a trimmed version of the L-estimator. This is work in progress and will be reported elsewhere.

References

CHERNOFF, H., GASTWIRTH, J. L. and JOHNS, Jr., M. V. (1967): Asymptotic Distribution of Linear Combinations of Functions of Order Statistics with Applications to Estimation. *Ann. Math. Stat.* 38 (1), 52-72.

DUMOUCHEL, W. H. (1973): On the asymptotic normality of the maximum likelihood estimate when sampling from a stable distribution. *Ann. Stat.* 1 (5), 948-957.

FAMA, E. F. and ROLL, R. (1968): Some Properties of Symmetric Stable Distributions. *J. Am. Stat. Assoc.* 63 (323), 817-836.

FELLER, W. (1971): *An Introduction to Probability Theory and Its Applications*. John Wiley & Sons, New York.

INDYK, P. (2006): Stable distribution, pseudorandom generators, embeddings, and data stream computation. *Journal of ACM*, 53 (3), 307-323.

JOHNSON, W. B. and LINDENSTRAUSS, J. (1984): Extensions of Lipschitz mapping into Hilbert space. *Contemporary Mathematics* 26, 189-206.

KOGON, S. M. and WILLIAMS, D. B. (1998): Characteristic function based estimation of stable parameters. In: R. Adler, R. Feldman and M. Taqqu (Eds.): *A Practical Guide to Heavy Tailed Data*. Birkhäuser, Boston, MA, 311-338.

LI, P., HASTIE, T. J. and CHURCH, K. W. (2007): Nonlinear Estimators and Tail Bounds for Dimension Reduction in l_1 Using Cauchy Random Projections. In: *COLT*. San Diego, CA, 514-529.

LI, P. (2008): Estimators and Tail Bounds for Dimension Reduction in l_α ($0 < \alpha \leq 2$) Using Stable Random Variables. In: *SODA*. San Francisco, CA.

LI, P. and HASTIE, T. J. (2008): A Unified Near-Optimal Estimator for Dimension Reduction in l_α ($0 < \alpha \leq 2$) Using Stable Random Variables. In: J. C. Platt, D. Koller, Y. Singer and S. Roweis (Eds.): *Advances in Neural Information Processing Systems 20*. MIT Press, Cambridge, MA.

MATSUI, M. and TAKEMURA, A. (2006): Some Improvements in Numerical Evaluation of Symmetric Stable Density and Its Derivatives. *Communications in Statistics: Theory and Methods* 35 (1), 149-172.

NIKIAS, C. L. and SHAO, M. (1995): *Signal Processing with Alpha-Stable Distributions and Applications*. Wiley, New York.

NOLAN, J. P. (2001): Maximum likelihood estimation of stable parameters. In: O. E. Barndorff-Nielsen, T. Mikosch and S. I. Resnick (Eds.): *Lévy Processes: Theory and Applications*. Birkhäuser, Boston, MA, 379-400.

NOLAN, J. P. (2007): *Stable Distributions - Models for Heavy Tailed Data*. Birkhäuser, Boston, MA.