Effect of Nimesulide on proliferation and apoptosis of human hepatoma SMMC-7721 cells

Geng Tian, Jie-Ping Yu, He-Sheng Luo, Bao-Ping Yu, Hui Yue, Jian-Ying Li, Qiao Mei

Geng Tian, Jie-Ping Yu, He-Sheng Luo, Bao-Ping Yu, Hui Yue, Jian-Ying Li, Qiao Mei, Gastroenterology department, Renmin hospital of Wuhan university, Wuhan 430060, Hubei Province, China

Correspondence to: Jie-Ping Yu, Gastroenterology department. Renmin hospital of Wuhan university, 238 Jie-fang Road, Wuhan 430060, Hubei Province, China. tg3030330@sina.com

Telephone: +86-27-88077184

Received 2001-11-15 Accepted 2002-01-15

Abstract

AIM: Cyclooxygenase-2 (COX-2) has been suggested to be associated with carcinogenesis. We sought to investigate the effect of the selective COX-2 inhibitor, Nimesulide on proliferation and apoptosis of SMMC-7721 human hepatoma cells.

METHODS: This study was carried out on the culture of hepatic carcinoma SMMC-7721 cell line. Various concentrations of Nimesulide (0, 200μmol/L, 300μmol/L, 400μmol/L) were added and incubated. Cell proliferation was detected with MTT colorimetric assay, cell apoptosis by electron microscopy, flow cytometry and TUNEL.

RESULTS: Nimesulide could significantly inhibit SMMC-7721 cells proliferation dose-dependent and in a dependent manner compared with that of the control group. The duration lowest inhibition rate produced by Nimesulide in SMMC-7721 cells was 19.06%, the highest inhibition rate was 58.49%. After incubation with Nimesulide for 72h, the most highest apoptosis rate and apoptosis index of SMMC-7721 cells comparing with those of the control were 21.20%±1.62% vs 2.24%±0.26% and 21.23±1.78 vs 2.01±0.23 (P<0.05).

CONCLUSION: The selective COX-2 inhibitor, Nimesulide can inhibit the proliferation of SMMC-7721 cells and increase apoptosis rate and apoptosis index of SMMC-7721 cells. The apoptosis rate and the apoptosis index are dose-dependent. Under electron microscope SMMC-7721 cells incubated with 300μmol and 400μmol Nimesulide show apoptotic characteristics. With the clarification of the mechanism of selective COX-2 inhibitors, these COX-2 selective inhibitors can become the choice of prevention and treatment of cancers.

Tian G, Yu JP, Luo HS, Yu BP, Yue H, Li JY, Mei Q. Effect of Nimesulide on proliferation and apoptosis of human hepatoma SMMC-7721 cells. World J Gastroenterol 2002;8(3):483-487

INTRODUCTION

Hepatic carcinoma was one of most common malignant tumors in China. Its death rate was the third among all cancers, second to gastric carcinoma and lung carcinoma. Although there is a progress in diagnosis and treatment of hepatic carcinoma, its prognosis is still poor. Investigating its pathogenesis and finding new diagnostic and treatment methods is important. Recent epidemiological studies indicate an inverse relationship between the risk of colorectal cancer and intake of NSAIDs. NSAIDs could reduce the incidence of gastric carcinoma and pancreatic carcinoma. It could inhibit tumor cells proliferation and induce apoptosis. Cyclooxygenases (COXs) are key enzymes in the conversion of arachidonic acid to prostaglandins and other eicosanoids. Recently two isoforms of the enzyme have been identified. COX-1 is constitutively expressed in a number of cell types, whereas the isoform designated COX-2 is inducible by a variety of factors, as cytokines, growth factors, and tumor promoters. Some studies have suggested that COX-2, but not COX-1, was involved in colon carcinogenesis and might thus be the target of chemopreventive effect by the COX inhibitor, nonsteroidal anti-inflammatory drugs. The effects of COX-2 on inflammation, procuranocarous conditions and cancers have been delineated. To date the effects of Nimesulide on the growth and apoptosis of human hepatoma cell line SMMC-7721 in vitro have not been analyzed, and that is the aim of this study.

MATERIALS AND METHODS

RPMI 1640 medium is a product of CIBCO; Nimesulide and MTT were from Sigma. In situ cell death detection kit was from Boehringer Mannheim, Germany; 96-well plates were from Costar.

Cell lines and culture

Human hepatoma SMMC-7721 cells were obtained from the Wuhan University Center for type culture collection. The cells were grown as monolayers in RPMI1640 medium supplemented with 10% fetal calf serum (FCS, Gibco) and incubated at 37°C in the humidified incubator with 5% CO2 in air.

Assay of cell proliferation

The SMMC-7721 cells were seeded at 5x104/ml density in 96-well plates 200μl cell suspension per well. Each group had four wells with a non-treated group as control. When the cells anchored to the plates, various concentrations (0, 200μmol/L, 300μmol/L, 400μmol/L) of Nimesulide were added and the slides were incubated at 37°C, 5% CO2 for 5 days. In order to maintain Nimesulide concentrations, we changed the culture medium (included various concentrations of Nimesulide) every day. When the cells described above were cultured for 48h, 72h, 96h, 120h, 0.5% MTT 20μl was added to each well and cultured for another 4h. The supernatant was discarded and dimethyl sulfoxide (DMSO) 200μl added. When the crystals were dissolved, the optical density (OD) value of the slides was read on an enzyme-labeled Minireader II at 492nm. Cellular proliferation inhibition rate (CPIR) was calculated using the following equation: CPIR=(1-average OD value of experimental group/average OD value of control group)×100%

Electron microscopic observation

The SMMC-7721 cells were seeded in culture flasks. Four culture bottles were divided into normal group and control group. When the cells were anchored to the plates, various concentrations (0, 200μmol/L, 300μmol/L, 400μmol/L) of Nimesulide were added and the cells incubated at 37°C, 5% CO2 for 3 days. Then hepatoma cells were...
digested by 0.25% trypsinase and collected. After rinsing with PBS, the cells were fixed with 2.5% glutaraldehyde for 30 min and washed with PBS. After routine embedding and sectioning, the cells were observed by Hitachi H-600 electronic microscope.

Flow cytometric analysis
The SMMC-7721 cells were seeded in culture flasks. The culture bottles were divided into normal and three control groups. Each group had three culture bottles. When the cells were anchored to the plates, various concentrations (0, 200 μmol/L, 300 μmol/L, 400 μmol/L) of Nimesulide were added and the cells incubated at 37°C, 5% CO₂ for 3 days. Then each group of cells was washed with PBS, trypsinized and fixed with 70% ethanol at -20°C for 30 minutes. Fixed cells were incubated with IP/Rnase solution for 15 minutes and 10^6 cells of each culture bottle were harvested and analyzed with FACScan Becton Dickeson Flow Cytometer.

In situ apoptotic cell death detection by TUNEL
A TUNEL kit (Boehringer Mannhein, IN) was used to detect DNA fragmentation, the characteristic of apoptotic cell death. The SMMC-7721 cells were seeded in culture flasks. Culture bottles were divided into normal and three control groups. Each group had three culture bottles. When the cells were anchored to the plates, various concentrations (0, 200 μmol/L, 300 μmol/L, 400 μmol/L) of Nimesulide were added and the cells incubated at 37°C, 5% CO₂ for 3 days. In order to maintain Nimesulide concentrations, we changed the culture medium (including various concentrations of Nimesulide) every day. After having been cultured for 3 days, each culture bottle cells were scraped and centrifuged 800 r/min for 5 minutes. Then the deposited cells were smeared and air-dried. Following the manufacturer’s directions, smears were incubated with the TUNEL reaction mixture for 60 min at 37°C and then with converter-POD for 30 min. The DAB-substrate solution was added to the smears and kept at room temperature until positive signal appeared. Then they were dried and analyzed under light microscope.

Under light microscope, the TUNEL positive nuclei were stained brown. Selecting 5 fields randomly (the number of cells in each field >1000).

Apoptosis index (AI) = (number of apoptotic cells/ the number of cells in each field) × 100%

Statistical analysis
Statistical analysis was performed using the student’s t test and analysis of variance. *P* < 0.05 was considered significant.

RESULTS

Effect of Nimesulide in various concentrations on the growth of SMMC-7721
We analyzed the effects of Nimesulide on cell proliferation in cultured human hepatoma cell line SMMC-7721 after 5 days of treatment. Nimesulide, a selective COX inhibitor, produced a dose-dependent inhibition of cells growth (Table 1 and Figure 1). The lowest inhibition rate produced by Nimesulide in SMMC-7721 cells was 19.06%, the highest being 58.49%.

Morphology observation
Under the electron microscope, SMMC-7721 cells exhibited characteristics of apoptosis including plasma membrane blebbing, cytoplasmic condensation, pyknotic nuclei, condensed chromatin and apoptotic bodies. Compared with control groups, 300 μmol/L and 400 μmol/L groups cells had many more cells with apoptotic characteristics (Figure 2).

Statistical analysis
Statistical analysis was performed using the student’s t test and analysis of variance.

Flow-cytometry analysis of cell apoptosis
The peak value appearing before the G1 peak is called apoptotic peak. As shown in Figure 3 and Table 2, the apoptotic peak and rate increased with increasing concentrations of Nimesulide. Furthermore, Nimesulide induced cells apoptosis in a dose and time-dependent manner (*P* < 0.01).

Analysis of apoptosis by TUNEL
As shown in Figure 4 and Table 3, the apoptotic index increased with increase of Nimesulide concentrations which what appeared to be dose-dependent relationship in the alone groups (*P* < 0.05).

Tables

Table 1 Inhibition effect of Nimesulide on proliferation and growth in hepatic carcinoma cell line SMMC-7721

Nimesulide Concentrations (μmol/L)	OD Value			
	the 2^nd^ day	the 3^rd^ day	the 4^th^ day	the 5^th^ day
0	1.039±0.066	1.516±0.117	2.142±0.072	2.467±0.080
200	0.841±0.027^a	1.109±0.231^a	1.416±0.080^a	1.341±0.021^a
300	0.796±0.019^a	1.002±0.274^a	1.101±0.028^a	1.243±0.168^a
400	0.581±0.164^a	0.825±0.016^a	0.943±0.032^a	1.024±0.026^a

^P<0.05 vs control group

Table 2 Apoptosis rate of SMMC-7721 cells induced by Nimesulide

Nimesulide concentration (μmol/L)	Apoptosis rate (%)
0	2.24±0.26
200	7.42±0.43^a
300	9.84±1.54^a
400	21.20±1.62^a

^P<0.01 vs control group
Figure 3 Cell apoptosis was determined by flow-cytometry. SMMC-7721 cells were treated with Nimesulide at various concentrations (0, 200, 300, 400 µmol/L respectively A to D).

Table 3 Apoptosis index of SMMC-7721 cells induced by Nimesulide

Nimesulide concentration (µmol/L)	Apoptosis index (%)
0	2.016±0.23
200	7.64±0.34*
300	10.14±1.42*
400	21.23±1.78*

*P<0.05 vs control group

DISCUSSION

It had been shown that selective COX-2 inhibitors inhibited tumor cells proliferation and induced tumor cells apoptosis, in colon and prostate carcinoma cell lines[48,49]. To date, their effects on human hepatoma SMMC-7721 cell lines have not yet been studied. The aim of this study was to investigate the effect of Nimesulide, a selective COX inhibitor, on the proliferation and apoptosis of SMMC-7721 cell lines. The results indicated that various concentrations of Nimesulide could change the morphology of SMMC-7721 cells and inhibit SMMC-7721 cells proliferation obviously in a dose and time-dependent manner. Nimesulide could induce SMMC-7721 cells apoptosis and cause death in a dose-dependent manner. The precise mechanism by which selective COX-2 inhibitors inhibit tumor cells growth and induce tumor cells apoptosis was not been clearfield. The available data supported the two hypotheses.

Some studies indicate that COX-2 is a key enzyme in the conversion of arachidonic acid to prostaglandins. Selective COX-2 inhibitors can decrease prostaglandins biosynthesis, and prostaglandins can inhibit cell-mediated immunity, which enables the tumor cells escaping the host-immunity[50-52]. PGs also can conjugate with PPARα and activate cell proliferation passage of signal conduction, promote cells proliferation[50]. PGs can also inhibit cells apoptosis and cause cells division uncontrollable, thus accelerating tumor genesis[52,53]; the effects of COX-2 inhibitors might involve prostaglandin biosynthesis. Some studies indicated that the effects of COX-2 were not related to COX-2 expression and PGs. Hanif et al[55] verified that NASIDS (nonselective COX inhibitors) could induce apoptosis of colon carcinoma cell line HCT-15. HCT-15 cells have no COX gene transcription, and does not produce PGs. When adding exogenous PGs to the HCT-15 cells, it could not reverse the induction of HCT-15 cells apoptosis by NASIDS.

On the whole, Nimesulide, a selective COX-2 inhibitor, can inhibit the growth of hepatoma cells and induce tumor cells apoptosis. With the clarification of the mechanism of selective COX-2 inhibitors, These COX-2 selective inhibitors can become the choice of prevention and treatment of cancers.
ACKNOWLEDGMENT

I would like to thank my wife and all those who provided assistance for this study.

REFERENCES

1. Gao HJ, Yu LZ, Sun G, Miou K, Bai JF, Zhang XY, Lu ZX, Zhao ZQ. The expression of COX-2 in gastric carcinoma and paracarcinomatous tissues. Shi jie Huan chu Xia zha Zhai 2000; 5:780-784.

2. Wu HP, Wu KCH, Li L, Yao LP, Lan M, Wang X, Fan DM. Cloning of human cyclooxygenases-2 (Hcox-2) encoded gene and the study of gastric cancer cell transfected with its antisense vector. Shi jie Huan chu Xia zha Zhai 2001; 5:1211-1217.

3. Gao HJ, Yu LZ, Bai JF, Peng YS, Sun G, Zhao HL, Miou K, Lu ZX, Zhang XY, Zhou ZQ. Multiple genetic alterations and behavior of cellular biology in gastric cancer and other gastric mucosal lesions: H. pylori infection, histological types and staging. World J Gastroenterol 2000;6:846-854.

4. Wu QM, Li SB, Wang Q, Wang DH, Li XB, Liu CZ. The expression of COX-2 in esophageal carcinoma and its relationship to clinicopathological characteristic. Shi jie Huan chu Xia zha Zhai 2001; 9: 11-14.

5. Sun B, Wu YL, Zhang XJ, Wang SN, He HY, Qiao MM, Zhang YP, Zhong J. Effects of Sulindac on growth inhibition and apoptosis induction in human gastric cancer cells. Shi jie Huan chu Xia zha Zhai 2001; 9:997-1002.

6. Zhuang ZH, Wang LD. Non-steroidal anti-inflammatory drug and gastric damage in rats: requirement for inhibition of both cyclooxygenase and lipoxygenase activities. J Gastroenterol Hepatol 2001; 16:824-830.

7. Shen ZX, Cao G, Sun J. The effect of COX-2 mRNA expression in colorectal cancer tissues. Cancer Res 2000; 60:1082-1084.

8. DuBois RN. Targeting cyclooxygenase 2 and HER-2/ neu pathways inhibit colorectal cancer growth. Gastroenterology 2001; 120: 1713-1739.

9. Glinghammer B, Rafter J. Colonic luminal contents induce cyclooxygenase 2 transcription in human colon carcinoma cells. Gastroenterology 2001; 120: 401-410.

10. Wallace JL, Mcgawt W, Reuter BK, Vergnolle N. NSAID-induced suppression of intestinal polyps in Msh2-deficient and non-Msh2-deficient multiple intestinal neoplasia mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 2001; 61: 1451-1457.

11. Boudreau MD, Sohn KH, Rhee SH, Lee SW, Hunt JD, Hwang DH. Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res 2001; 61: 1386-1391.

12. Denkert C, Kohbel M, Berthelot A, Ajr S, Sun M, Leclere A, Trefzer U, Hauptmann S. Expression of cyclooxygenase 2 in human malignant melanoma. Cancer Res 2001; 61: 303-308.

13. Taylor MT, Lawson KF, Ingatenko NA, Marek SE, Stringer DE, Skovban VA, Gennaro RW. Sulindac sulfone inhibits K-ras-dependent cyclooxygenase-2 expression in human colon cancer cells. Cancer Res 2000; 60: 6607-6610.

14. Williams CS, Watson AJ, Sheng H, Helou R, Shao J, DuBois RN. Cicecoxib prevents tumor growth in vivo without toxicity to normal gastrointestinal tract. Cancer Res 2001; 61: 6045-6051.

15. Souza RF, Shewmake K, Beer DG, Ciryer B, Spechler SJ. Selective inhibition of cyclooxygenase-2 suppresses growth and induces apoptosis in human esophageal adenocarcinoma cells. Cancer Res 2000; 60: 7567-7572.

16. Jacoby RF, Seibert K, Cole CE, Kelloff G, Luba RA. The cyclooxygenase-2 inhibitor celecoxib is a potent preventative and therapeutic agent in the min mouse model of adenomatous polyposis. Cancer Res 2000; 60: 5400-5404.

17. Joki T, Heese O, Nikas DC, Bello L, Zhang J, Kraeft SK, Sferby NF, Abe T, Chen LB, Carroll RS, Black PM. Expression of cyclooxygenase 2 (COX-2) in human glioma and in vivo inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 2000; 60: 4920-4923.

18. Anik FA, Fernandes AF, Bezerra AT, Manuyak MJ, Patierno SR. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res 2000; 60: 4629-4637.

19. Marrogi A, Pass HI, Khan M, Metheny-Barlow LJ, Harris CC, Gerwin BJ. Human mesothelioma samples overexpress both cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (NOS2): in vitro antiproliferative effects of a COX-2 inhibitor. Cancer Res 2000; 60: 3696-3700.

20. Cahn C, Gelin J, Delbro D, Lonnruth C, Die C, Lundholm K. Effect of cyclooxygenase and nitric oxide synthase inhibitors on tumor growth in mouse tumor models with and without cancer cachexia related to proteinosis. Cancer Res 2000; 60: 1742-1749.

21. Masferrer JL, Leahy KM, Koki AT, Zweifel BS, Settle SL, Woerner BM, Edwards DA, Flickinger AG, Moore RJ, Seibert K, Antoniak and anti-inflammatory activities of cyclooxygenase-2 inhibitors. Cancer Res 2000; 60: 1306-1311.

22. Reddy BS, Hirose Y, Luber R, Steele V, Kelloff G, Paulson S, Seibert K, Rao CV. Chemoprevention of colon cancer by specific cyclooxygenase-2 inhibitor, celecoxib, administered during different stages of carcinogenesis. Cancer Res 2000; 60: 293-297.

23. Mohammed SI, Knapp DW, Bostwick DG, Foster RS, Khan KN, Masferrer JL, Woerner BM, Snyder PW, Koki AT. Expression of cyclooxygenase-2 (COX-2) in human invasive transitional cell carcinoma (TCC) of the urinary bladder. Cancer Res 1999; 59: 5647-5650.

24. Molina MA, Sita-Arnau M, Lemoine MF, Frazier ML, Sinicrope FA. Increased cyclooxygenase-2 expression in human pancreatic carcinomas and cell lines: growth inhibition by nonsteroidal anti-inflammatory drugs. Cancer Res 1999; 59: 4356-4362.

25. Tucker ON, Dannenberg AJ, Yang EK, Zhang F, Teng L, Daly JM, Solos RA, Masferrer JL, Woerner BM, Koki AT, Fahey TJ 3rd. Cyclooxygenase-2 expression is up-regulated in human regulated tumor cancer. Cancer Res 1999; 59: 987-990.

26. Chan G, Boyle JD, Yang EK, Zhang F, Sacks PG, Shah JP, Edelstein DS, Solos RA, Koki AT, Woerner BM, Masferrer JL. Cyclooxygenase-2 expression is up-regulated in squamous cell carcinoma of the head and neck. Cancer Res 1999; 59: 991-994.

27. Zimmermann KC, Sarbia M, Weber AA, Borchard F, Gabbert HE, Schror K. Cyclooxygenase-2 expression in human esophageal squamous cell carcinoma. Cancer Res 1999; 59: 1498-1501.

28. Koga H, Sasaki S, Ohishi M, Kawaguchi T, Taniguchi E, Sasatomi K, Harada M, Kusaba T, Tanaka M, Kimura R, Nakashima Y, Nakashima K. Antiproliferative effects of a COX-2 inhibitor in human glioma and in vivo inhibition by a specific COX-2 inhibitor, NS-398. Cancer Res 2000; 60: 4920-4923.
O, Kojiro M, Kurohiji T, Sata M. Expression of cyclooxygenase-2 in human hepatocellular carcinoma: relevance to tumor dedifferentiation. *Hepatology* 1999; 29: 688-696

42 Nanji AA, Jokelainen K, Fotouhiinia M, Rahentulla A, Thomas P, Tiperie GL, Su GL, Dannenberg AJ. Increased severity of alcoholic liver injury in female rats: role of oxidative stress, endotoxin, and chemokines. *Am J Physiol Gastrointest Liver Physiol* 2001; 281: G1348-1356

43 Ganey PE, Barton YW, Kinser S, Sneed RA, Barton CC, Roth RA. Involvement of cyclooxygenase-2 in the potentiation of allyl alcohol-induced liver injury by bacterial lipopolysaccharide. *Toxicol Appl Pharmacol* 2001; 174: 113-121

44 Miyamoto T, Ogino N, Yamamoto S, Hayashi O. Purification of prostaglandin endoperoxide synthetase from bovine vesicular gland microsomes. *J Bio Chem* 1976; 251:2629-2636

45 Simmons DL, Levy DB, Yannoni Y, Erikson RL. Identification of Phorbol ester-repressible v-src-reducible gene. *Proc Natl Acad Sci USA* 1989;86:1178-1182

46 Tian G, Yu JP, Luo HS, Yu BP, Li JY. The expression and effect of cyclooxygenase-2 in acute hepatic injury. *Shijie Huaren Xiaohua Zazhi* 2002;10:24-27

47 Tian G, Yu JP, Luo HS, Yu BP, Li JY. The effect of COX-2 and oxidant stress in acute hepatic injury. *Yixue Yanjiusheng Xuebao* 2002; 6: 165-169

48 Elder DJE, Halton DE, Hague A, Paraskeva C. Induction of apoptotic cell death in human colorectal carcinoma cell lines by a cyclooxygenase-2 (COX-2) selective nonsteroidal anti-inflammatory drug: independence from COX-2 protein expression. *Clin Cancer Res* 1997; 3:1679-1683

49 Liu X H, Yao S, Kirschenbaum A, Levine AC. NS398, a selective cyclooxygenase inhibitor induces apoptosis and downregulates bcl-2 expression in LNCap cells. *Cancer Res* 1998; 58:4245-4249

50 Yang VW, Shields JM, Hamilton SR, Spannake EW, Hubbard WC, Hynd LM, Robinson R, Giardiello FM. Size-dependent increased in prostanooid levels in adenomas of patients with familial adenomatous polyposis. *Cancer Res* 1998;58:1750-1753

51 Votila P. The role of cyclic AMP and oxygen intermediates in the inhibition of cellular immunity in cancer. *Cancer Immunol Immunother* 1996;43: 1-9

52 Parker J, Kaplon MK, Alvarez C, Krishnaswamy G. Prostaglandin H synthase expression is variable in human colorectal adenocarcinoma cell lines. *Exp Cell Res* 1997;236: 321-329

53 Sheng H, Shao JY, Morrow JD, Beauchamp RD, Dubois RN. Modulation of apoptosis and BCL-2 expression by prostaglandin E2 in human colon cancer cells. *Cancer Res* 1998;58: 362-366

54 Orlov SN, Thorin-Trescaless N, Dulin No. Activation of cAMP signaling transiently inhibits apoptosis in vascular smooth muscle cell in a site upstream of caspase-1. *Cell Death Differ* 1999;6:661-672

55 Hani R, Pittas A, Feng Y, Koutsos MI, Qiao L, Staiano-Coico L, Shift SI, Rigas B. Effects of nonsteroidal anti-inflammatory drugs on proliferation and on induction of apoptosis in colon cancer cells by prostaglandin-dependent pathway. *Biochem Pharmacol* 1996; 52:237-245

Edited by Wu XN