Green Function Monte Carlo with Stochastic Reconfiguration: an effective remedy for the sign problem disease

Sandro Sorella and Luca Capriotti

Istituto Nazionale di Fisica della Materia and International School for Advanced Studies, Via Beirut 4, 34013 Trieste, Italy

(December 28, 2013)

Abstract

A recent technique, proposed to alleviate the “sign problem disease”, is discussed in details. As well known the ground state of a given Hamiltonian H can be obtained by applying the imaginary time propagator $e^{-H\tau}$ to a given trial state ψ_T for large imaginary time τ and sampling statistically the propagated state $\psi_\tau = e^{-H\tau} \psi_T$. However the so called “sign problem” may appear in the simulation and such statistical propagation would be practically impossible without employing some approximation such as the well known “fixed node” approximation (FN). This method allows to improve the FN dynamic with a systematic correction scheme. This is possible by the simple requirement that, after a short imaginary time propagation via the FN dynamic, a number p of correlation functions can be further constrained to be exact by small perturbation of the FN propagated state, which is free of the sign problem. By iterating this scheme the Monte Carlo average sign, which is almost zero when there is sign problem, remains stable and finite even for large τ. The proposed algorithm is tested against the exact diagonalization results available on finite lattice. It is also shown in few test cases that the dependence of the results upon the few parameters entering the stochastic
technique can be very easily controlled, unless for exceptional cases.

75.10.Jm,02.70.Lq,75.40.Mg
I. INTRODUCTION

In the last few years an enormous progress in the computational techniques has also been accompanied by better and better performances of modern computers. All these developments have certainly contributed to determine a “feeling” that the many body problem of solving a strongly correlated Hamiltonian, with many electrons on a reasonably large system size, is becoming possible with some computational effort.

The various numerical methods, like e.g. to find the ground state of a physically interesting Hamiltonian, can be classified in two main branches developing from two root methods: the exact diagonalization technique (ED) and the variational Monte Carlo method (VMC).

The first technique is a brute force diagonalization of the Hamiltonian matrix, which represents a prohibitive task for large number of electrons as the linear dimension of this matrix grows exponentially with the number of electrons and the system size. The use of spatial symmetries and the very efficient Lanczos technique have made recently possible the exact ground state evaluation of up to ~ 30 electrons on simple lattice Hamiltonians like: the Heisenberg model \cite{1}, the $t - J$ model \cite{2}, the Hubbard model and similar ones \cite{3}. However this system size is far from being enough for the determination of the physical thermodynamic properties of the various models.

A remarkable development of the ED like methods, is certainly the so called density matrix renormalization group technique (DMRG). In this case the ground state of a huge Hilbert space Hamiltonian is sampled by a small basis set that is iteratively improved by using the renormalization group idea. In one dimension this technique allows to have for instance the numerically exact solution of the Heisenberg spin $S = 1$ model for the infinite size \cite{4}. Recently DMRG has also been extended for high accuracy calculations on simple molecules \cite{3}.

The second root of development starts from the VMC technique \cite{6}. The VMC allows to sample statistically a variational wavefunction $\psi_G(x)$, defined on a given basis set, whose elements $\{x\}$ are represented by simple configurations defined typically by the electron
positions and spins. In the most simple formulation the VMC sampling can be obtained by accepting a new configuration \(x_{n+1} \) from a given one \(x_n \) if a random number \(\xi \) between zero and one satisfies \(\xi < \left| \psi_G(x_{n+1})/\psi_G(x_n) \right|^2 \), otherwise \(x_{n+1} = x_n \). This simple Metropolis algorithm generates states \(x_n \) that, after some equilibration, are distributed statistically according to the square of the variational wavefunction. Then physical expectation values of operators \(O^k \) – such as pair correlations, electron number, total spin square, energy etc. – can be easily obtained on the given variational wavefunction, provided the local estimator \(O^k_x = \frac{\langle \psi_G^*|O^k|x \rangle}{\langle \psi_G|x \rangle} \) of the correlation function \(O^k \) can be computed in an efficient way. This is typically the case since the configuration basis is particularly simple so that \(\langle \psi_G|x \rangle \) can be easily computed, and also \(O^k|x \) can be expanded in a few (less than the square electron number) configurations, for one and two body correlations.

The iterative rule determining a new configuration \(x_{n+1} \) starting from a previous one \(x_n \), and depending also on a random number, defines a Markov chain which allows to obtain statistical estimates of the above expectation values. This is possible even if the dimension of the Hilbert space is very large, such property representing the most important advantage of the statistical methods.

From this point of view the Green function Monte Carlo (GFMC) technique \([\text{7}]\) can be considered a development of the VMC because it allows to sample statistically the exact ground state of a many body Hamiltonian \(H \), instead of being restricted to the variational wavefunction. In the GFMC the ground state is statistically sampled by a set of \(M \) walkers \((w_i, x_i), i = 1, \ldots, M \), i.e., at each configuration \(x_i \) is associated a weight \(w_i \) in order to represent a simple element \(w_i x_i \) of the large (or even infinite) Hilbert space. In this case a Markov chain, which is slightly more complicated than the variational one, can be easily defined. As it will be shown later the new configurations and weights \((w_i, x_i)_{n+1} \) depend only on the previous weights and configurations \((w_i, x_i)_n \) and \(M \) random numbers \(\xi_i \). This
iteration is equivalent statistically to a matrix-vector product

\[\psi_{n+1}(x') = \sum_x G_{x',x} \psi_n(x) \]

(2)

where \(G_{x',x} \) is the lattice Green function simply related to the Hamiltonian matrix elements in the given basis

\[G_{x',x} = \Lambda \delta_{x',x} - H_{x',x} \]

(3)

and \(\Lambda \) is a suitable constant, allowing the convergence of (2) to the ground state of \(H \) for large \(n \). At each Markov iteration \(n \) the state \(\psi_n(x) \) is sampled statistically by the walkers, which may be even a large number, but typically a negligible fraction of the total Hilbert space dimension.

In the statistical iteration the weights \(w_i \) of the walkers increase or decrease exponentially so that after a few iterations most of the walkers have an irrelevant weight \(w \) and some kind of reconfiguration becomes necessary to avoid large statistical errors. The process to eliminate the irrelevant walkers from the statistical sampling is called “branching”. This amounts for instance to duplicate a walker with large \(w_i \) in two walkers with half the weights \(w_i/2 \) acting on the same configuration, or drop the walkers with too small weights. If properly done this kind of process does not introduce any bias but the number of walkers is not constant during the corresponding Markov chain. For practical purposes it is necessary therefore to control the walker population number otherwise the simulation exceeds the maximum available memory or terminates for lack of walkers. This statistical reconfiguration instead introduces some amount of bias. Recently a rigorous and simple way to work at finite number of walkers has been proposed, which simplifies the GFMC technique by controlling and eventually eliminating the bias due to the finite number of walkers \[8\].

With a slight generalization of the previous simple technique it is also possible \[10\] to alleviate the “unfamous sign problem”, which occurs when the matrix elements of the lattice Green function \(G_{x',x} \) are not always positive definite. In this case the iteration (2) can still have a statistical meaning at the price that the weights \(w_i \) of the walkers are no longer
restricted to be positive. It then happens that the average sign \(\langle s \rangle_n = \frac{\sum_{i=1}^{M} w_i}{\sum_{i=1}^{M} |w_i|} \) at a Markov iteration \(n \) is exponentially decreasing with \(n \), implying a dramatic decrease of the signal to noise ratio for all correlation functions. A remarkable improvement of the GFMC on a lattice was the extension of the fixed nodes (FN) approximation to lattice Hamiltonians \[9\]. In this case the “dangerous” negative off-diagonal elements of the Green function are neglected and stable simulations with always positive walker weights \(w_i \) can be performed at the price of obtaining an approximate solution of the ground state wavefunction.

The Green function Monte Carlo with Stochastic Reconfiguration (GFMCSSR) \[10\] represents a successful attempt to improve the FN, with a stable simulation without any sign problem instability. In this scheme, better and better approximations of the ground state correlation functions may be obtained, by performing controlled Markov chain simulations with average walker sign \(\langle s \rangle_n \) very close to 1 for each iteration \(n \). For the sake of simplicity we restrict the forthcoming derivation to lattice Hamiltonians but the basic ideas can be straightforwardly extended to the continuous case. This method is based upon the simple requirement that after a few iterations of (2) via the approximate FN dynamic, a number \(p \) of correlation functions can be further constrained to be exact by properly small perturbations of the propagated FN state \(\psi_{eff}^n \), which is free of the sign problem. By iterating this process the average sign remains stable even for large \(n \) and, in this limit, the method has the important property to be in principle exact if all possible correlation functions are included in this correction scheme of the FN.

In the first five sections we review the basic steps of the GFMC for the general case when the sign problem affects the practical implementation of the algorithm. In Sec. \ref{sec:fn} we introduce the Stochastic Reconfiguration (SR) idea and in Sec. \ref{sec:sr} we prove the fundamental theorem, which justify the approximations used to get rid of the sign problem. In the remaining sections we present the details of the algorithm and some test results, useful to understand how to implement the numerical algorithm, for an efficient and controlled
improvement of the FN, even for large system sizes.

II. THE GFMC TECHNIQUE

From a general point of view the ground state ψ_0 of a lattice Hamiltonian H can be obtained by iterating the well known power method (2) so that $\psi_n \rightarrow \psi_0$ for large n, provided the initial state ψ_T at the first iteration of Eq. (2) ($\psi_n = \psi_T$ for $n = 1$) is a trial state non-orthogonal to the ground state ψ_0.

A stochastic approach is possible if one can sample statistically the matrix-vector iterations (2). This is particularly important since for large systems only few power iterations can be applied exactly in the most fortunate cases. The important property that allows a statistical approach is that physical lattice Hamiltonians are represented by very sparse matrices. Though the total number of non-zero elements of $G_{x',x}$ is prohibitive, the number of non-vanishing entries in each column is a neglectable fraction – of the order of the electron number – of the total Hilbert space dimension. Thus all the non-zero $G_{x',x}$ for fixed column index x can be computed even for large size.

It is therefore natural to define a basic element of the stochastic approach: the so called walker. A walker is determined by an index x corresponding to a given element $|x\rangle$ of the chosen basis and a weight w. With a stochastic approach the walker “walks” in the Hilbert space of the matrix H and assumes a configuration wx according to a given probability distribution $P(w,x)$.

The task of the GFMC approach is to define a Markov chain, yielding a probability distribution $P_n(w,x)$ for the walker which determines the iterated wavefunction ψ_n:

$$\psi_n(x) = \langle x|\psi_n \rangle = \int dw wP_n(w,x) .$$

(4)
III. IMPORTANCE SAMPLING

One of the most important advantages of the GFMC technique is the possibility to reduce the variance of the energy by exploiting some information of the ground state wavefunction, known a priori on physical grounds. In order to understand how, we simply note that the power method is not restricted to symmetric matrices. Following Ceperley and Kalos [11] one can consider in the iteration (2) not the original matrix G, but the slightly more involved non-symmetric one

$$\tilde{G}_{x',x} = \psi_G(x')G_{x',x}/\psi_G(x),$$

where ψ_G is the so called guiding wavefunction, that has to be as simple as possible to be efficiently implemented in the calculation of the matrix elements and, as we will see, as close as possible to the ground state of H. Here and in the following we assume that the guiding wavefunction is always non-vanishing for all x. It is obvious that \tilde{G}, though being a non-symmetric matrix, has the same spectrum of G as to any eigenvector $\psi_k(x)$ of G with energy $\Lambda - E_k$ corresponds a right eigenvector of \tilde{G} equal to $\psi_G(x)\psi_k(x)$ with the same eigenvalue.

As shown later on, by sampling statistically the iteration (2) with \tilde{G} instead of G the walkers (w,x) will be distributed for large n according to $\psi_0(x)\psi_G(x)$, namely $\psi_n(x) \propto \psi_0(x)\psi_G(x)$ in Eq. (4). In order to evaluate the ground state energy, it is then enough to average the so called local energy,

$$E_x = \frac{\langle \psi_G | H | x \rangle}{\langle \psi_G | x \rangle} = \sum_{x'} \psi_G(x')H_{x',x}/\psi_G(x),$$

over the statistically sampled walkers, because obviously:

$$\langle E_x \rangle_{\psi_0\psi_G} = \frac{\sum_x E_x \psi_0(x)\psi_G(x)}{\sum_x \psi_0(x)\psi_G(x)} = \frac{\langle \psi_0 | H | \psi_G \rangle}{\langle \psi_0 | \psi_G \rangle} = E_0.$$

Thus if ψ_G is exactly equal to the ground state of H, by definition $E_x = E_0$, independent of x, as $\langle \psi_G | H = E_0 \langle \psi_G |$ in (3). This is the so called zero variance property satisfied
by the method. Namely if the guiding wavefunction approaches an exact eigenstate of H, the method is free of statistical fluctuations. Of course such a fortunate situation is not common at all, but by simply improving the guiding wavefunction the statistical fluctuations of the energy are much reduced, leading to more efficient simulations. This property, rather obvious, is very important and non-trivial. Many methods, in fact, such as the path integral Monte Carlo, suffer of statistical fluctuations even if an exact information of the desired eigenstate is known. For Hamiltonians affected by the sign problem it is particularly important to work with a method which depends strongly on the quality of the initial guess of the ground state represented in the GFMC by the guiding wavefunction. This helps a lot because by the simple and successful “trial and error” strategy one can systematically improve the guiding wavefunction and gain information about the ground state.

In general after the transformation (5) all mixed average correlation functions defined by linear operators O^k

$$\frac{\langle \psi_G|O^k|\psi_0\rangle}{\langle \psi_G|\psi_0\rangle}$$

are easily accessible by GFMC. The local estimator corresponding to Eq. (7) is, analogously to (8), given by

$$O^k_x = \sum_{x'} \psi_G(x') O^k_{x',x} / \psi_G(x) ,$$

exactly as in the variational approach (1). This expression represents just the sum over all the possible matrix elements connected to x of the transformed operators \tilde{O}^k with matrix elements

$$\tilde{O}^k_{x',x} = \psi_G(x') O^k_{x',x} / \psi_G(x) ,$$

namely $O^k_x = \sum_{x'} \tilde{O}^k_{x',x}$. In order to implement the “importance sampling” strategy it is sufficient therefore to replace all the matrices involved $O^k_{x',x}$ including the Green function G with the transformed ones \tilde{O}^k and \tilde{G} (5), and in all previous expressions the guiding wavefunction disappears. Thus the method can be considered a general method to find the maximum eigenvalue and eigenvector of a generic (non-symmetric) matrix \tilde{G}. 9
In the following, for simplicity of notations, we put a bar over the symbols corresponding to all the transformed matrices (5) and (9).

IV. SINGLE WALKER FORMULATION

In general the distribution \(P_n(w, x) \) is sampled by a finite number \(M \) of walkers. Let us first consider the simpler case \(M = 1 \). In order to define a statistical implementation of the matrix multiplication (2), the standard approach is first to determine the Green function matrix elements \(\mathcal{G}_{x', x} \) connected to \(x \) which are different from zero. These matrix elements can be generally written in terms of three factors

\[
\mathcal{G}_{x', x} = s_{x', x} p_{x', x} b_x
\]

(10)

where \(b_x \) is a positive normalization factor, \(s_{x', x} \) takes into account the signs of the Green function and \(p_{x', x} \) is a stochastic matrix. All these terms will be defined explicitly below.

The basic step of the GFMC method on a lattice is to define properly the matrix \(p_{x', x} \), because it represents the only term in the decomposition (10) that allows to select statistically only one configuration among all the possible ones \(x' \) connected to the single configuration \(x \) of the walker by the Green function application (2). Therefore \(p_{x', x} \) has to represent a probability and is restricted to be i) normalized \(\sum_{x'} p_{x', x} = 1 \) and ii) with all positive matrix elements \(p_{x', x} \geq 0 \). This is just the definition of a stochastic matrix (see Appendix A). Since the matrix elements of \(\mathcal{G} \) are not restricted to be positive (sign problem) \(p_{x', x} \) is more clearly defined in terms of an appropriate Green function \(\mathcal{G}^{eff} \) with all positive matrix elements. Even if the latter restriction may appear rather strong, it is however possible that for large \(n \) the approximate propagation of the state \(\psi_n^{eff} \) by the Green function \(\mathcal{G}^{eff} \) is not far from the true propagation of \(\psi_n \) by the exact Green function \(\mathcal{G} \) in Eq. (2). \(\mathcal{G}^{eff} \) needs not to be normalized, as its normalization can be included in the definition of the positive constant

\[
b_x = \sum_{x'} \mathcal{G}^{eff}_{x', x}
\]

(11)

so that
The typical choice for \bar{G}^{eff} is given by the absolute value of the matrix elements of \bar{G}, $\bar{G}^{\text{eff}}_{x',x} = |\bar{G}_{x',x}|$, but this is not the optimal choice as it will be discussed below.

Since the most stable right eigenvector $\psi_0^{\text{eff}}(x)$ of a positive definite Green function \(-\bar{G}^{\text{eff}}\) – can be chosen positive $\psi_0^{\text{eff}}(x) > 0$, it is important to implement importance sampling by the transformation (5) with a guiding wavefunction with signs as similar as possible to the ones of the ground state of H, so that the Green function \bar{G} has its most stable right eigenvector $\psi_G(x)\psi_0(x) > 0$ for most configurations x. In this case there are good chances that the latter state is well approximated by the positive vector $\psi_n^{\text{eff}}(x) > 0$, generated by \bar{G}^{eff} for large n. In order to fulfill better the latter requirement, here we follow a recent development of the FN on a lattice, and we choose for \bar{G}^{eff} the FN Green function (with importance sampling):

$$\bar{G}^{\text{eff}}_{x',x} = \Lambda \delta_{x',x} - \bar{H}^{\text{eff}}_{x',x}. \quad (13)$$

The constant shift Λ has to be large enough that all the diagonal elements of \bar{G}^{eff} are strictly positive. This is possible in general for the diagonal elements. The full Green function \bar{G}^{eff} is defined in a way that the ground state of the Hamiltonian H^{eff}, is a variational state of H with an energy better than the guiding wavefunction one [12]. Contrary to the standard FN method, that neglects all the matrix elements of H that cross the nodes of the guiding wavefunction, namely the ones with $\bar{H}_{x',x} > 0$, we adopt here a slight modification of \bar{H}^{eff} defined with non-zero matrix elements (but with opposite sign) when \bar{H} has the positive ones. The generalization of the above “FN theorem” to this case is straightforward and is reported in the Appendix [3].

The appropriate matrix elements of \bar{H}^{eff} are obtained by reversing the sign of the positive off-diagonal matrix elements of \bar{H} and by multiplying them by a constant $\gamma > 0$

$$\bar{H}^{\text{eff}}_{x',x} = \begin{cases} \bar{H}_{x',x} & \text{if } \bar{H}_{x',x} \leq 0 \\ -\gamma \bar{H}_{x',x} & \text{if } \bar{H}_{x',x} > 0 \end{cases}. \quad (14)$$
and the diagonal ones are
\[H_{x,x}^{\text{eff}} = H_{x,x} + (1 + \gamma)V_{\text{sf}}(x) , \] (15)
where the diagonal sign-flip contribution is given by [12]:
\[V_{\text{sf}}(x) = \sum_{\bar{H}_{x',x} > 0 \text{ and } x' \neq x} \bar{H}_{x',x} . \] (16)
Notice that there is no difference between the diagonal elements of the Hamiltonian \(H^{\text{eff}} \) (\(H \)) and the ones of the transformed matrix \(\bar{H}^{\text{eff}} \) (\(\bar{H} \)), as defined by Eq. (9).

The equality (10) holds if the factor \(s_{x',x} \) is given by:
\[s_{x',x} = \begin{cases} 1 & \text{if } \bar{G}_{x',x} \geq 0 \\ -1/\gamma & \text{if } \bar{G}_{x',x} < 0 \\ \frac{\Lambda - H_{x,x}}{\Lambda - H_{x',x}} & \text{if } x' = x \end{cases} . \] (17)

The appropriate stochastic process relative to the Hamiltonian \(H \) can be defined in the following three steps, simply by allowing the weight \(w \) of the walker to be also negative:

1. Given the walker \((w, x)\), change the weight by scaling it with \(b_x \):
 \[w \rightarrow b_x w . \]

2. Generate randomly a new configuration \(x' \) according to the stochastic matrix \(p_{x',x} \).

3. Finally multiply the weight of the walker by \(s_{x',x} \):
 \[w' \rightarrow ws_{x',x} . \]

Without the latter step, one is actually sampling the Hamiltonian \(H^{\text{eff}} \), which we expect (or assume) to have a ground state close to the one of \(H \), for suitably chosen guiding wavefunction. During the Markov iteration (MI) it is straightforward therefore to update both the weight \(w \) associated to the true Hamiltonian and the one \(w^{\text{eff}} \) associated to the approximate one \(H^{\text{eff}} \). From now on the walker will be therefore characterized by the triad:
\[(w, w^{\text{eff}}, x) .\]
The previous MI allows to define the evolution of the probability density to have the walker with weights \(w \) and \(w^\text{eff} > 0 \) in the configuration \(x \), namely:

\[
P_{n+1}(w', w^\text{eff}', x') = \sum_x \frac{P_{x', x}}{b_x^{|s_x', x|}} P_n\left(\frac{w'}{b_x s_x', x}, \frac{w^\text{eff}'}{b_x}, x\right).
\] (18)

The first momentum of the distribution \(P \) over \(w \) gives information about the state \(\psi_n(x) \) propagated with the exact Green function \(\tilde{G} \) and the state \(\psi_n^\text{eff}(x) \) propagated with the FN Green function \(\tilde{G}^\text{eff} \), namely:

\[
\psi_n(x) = \int dw^\text{eff} \int dw P_n(w, w^\text{eff}, x),
\] (19)

\[
\psi_n^\text{eff}(x) = \int dw^\text{eff} \int dw w^\text{eff} P_n(w, w^\text{eff}, x).
\] (20)

In fact it can be readily verified using (18) that the above expressions for \(\psi_n \) and \(\psi_n^\text{eff} \), satisfy the iteration condition (2) with \(\tilde{G} \) and \(\tilde{G}^\text{eff} \) respectively.

At this stage the algorithm is exact and the MI allows to sample the ground state of \(H \) (with sign problem) and \(H^\text{eff} \) (with no sign problem) within statistical errors, that unfortunately may be very large, and increasing with the iteration number \(n \), especially when there is sign problem.

In order to have an idea on the origin of the sign problem let us discuss the following example. Suppose that \(\tilde{H}^\text{eff}_{x', x} = -|\tilde{H}|_{x', x} \) for the off-diagonal elements and \(H^\text{eff} = H \) otherwise. The only information of the difference between the matrix \(H \) with respect to \(H^\text{eff} \) is given by the sampling of the sign. In particular it is easy to realize that in this case \(w^\text{eff} = |w| \) at each Markov iteration \(n \). Then at a given iteration \(n \) we get

\[
\frac{\int dw^\text{eff} \int dw w^\text{eff} P_n(w, w^\text{eff}, x)}{\int dw^\text{eff} \int dw |w| P_n(w, w^\text{eff}, x)} = (\Lambda - E_0^\text{eff})^n,
\]

where \(E_0^\text{eff} \) is the ground state energy of \(H^\text{eff} \) which is obviously below the ground state energy \(E_0 \) of \(H \). We obtain therefore the basic instability related to this Markov process, known as the sign problem, which, as well known, is particularly difficult for fermion systems:

\[
\langle s_n \rangle = \frac{\sum_x \int dw^\text{eff} \int dw w P_n(w, w^\text{eff}, x)}{\sum_x \int dw^\text{eff} \int dw |w| P_n(w, w^\text{eff}, x)} \sim (\Lambda - E_0)^n.
\] (21)

The latter relation shows that, for large \(n \), walkers with positive weight \(w > 0 \) cancel almost exactly the contribution of the walkers with negative weight \(w < 0 \) leaving an exponentially
smaller quantity which is obviously difficult to sample. In this case only few power iterations $n \sim 10$ are possible \[13\] and for large system size this is by far not sufficient even for a minor improvement of the initial guess ψ_G. It is important to emphasize that this instability does not even depend on the guiding wavefunction because the latter cannot change the spectrum of H and H^{eff} defined above.

By iterating several times the MI even for a single walker, the resulting configuration (w, x) will be distributed according to the ground state of H and by sampling a large number of independent configurations we can evaluate for instance the ground state energy

$$E_0 = \frac{\langle w E_x \rangle}{\langle w \rangle}, \quad (22)$$

where the brackets $\langle .. \rangle$ indicate the usual stochastic average, namely averaging over the independent configurations.

The configurations x_n that are generated in the Markov process are distributed after many iterations according to the maximum right eigenstate of the matrix $p_{x', x}$ (as, if we neglect the weights of the walkers, only the matrix p is effective in the matrix product (2)). This state is in general different from the state $\psi_G(x)\psi_0(x)$ we are interested in. So after many iterations the sampled configurations x_n are distributed according to an approximate state and we can consider this state as a trial state ψ_T for the initial iteration $n = 1$ in the power method (3). At any MI n we can compute the weight of the walker assuming that L iterations before its value was simply $w = 1$. In this way it is simple to compute the resulting weight of the walker with L power Green function \bar{G} applications:

$$G_n^{L} = \prod_{j=1}^{L} b_{x_{n-j}} s_{x_{n-j+1}, x_{n-j}}. \quad (23)$$

Therefore for instance, in order to compute the energy with a single Markov chain of many iterations, the following quantity is usually sampled

$$E_0 = \frac{\sum_n E_{x_n} G_n^L}{\sum_n G_n^L}, \quad (24)$$

with L fixed \[14\].
This would conclude the GFMC scheme, if averages over the weight variable \(G_n^L \) were possible in a stable and controlled manner. However there are two important drawbacks for the single walker formulation. The first one arises because the weight \(G_n^L \) of the walker grows exponentially with \(L \) – simply as a result of the \(L \) independent products in Eq. (23) – and can assume very large values, implying diverging variances in the above averages. This problem has a very well established solution by generalizing the GFMC to many walkers and introducing a scheme that enables to carry out walkers with reasonable values of the weights, by dropping the irrelevant walkers with small weights and splitting the ones with large weights. Recently a simple formulation of this scheme was defined at fixed number of walkers [8] in a way that allows to control efficiently the residual bias related to the finite walker population, as discussed in the introduction. The second drawback is the more difficult one and is due to the unfamous sign problem. The average sign \(\langle s_L \rangle = \sum_n G_n^L / \sum_n |G_n^L| \) vanishes exponentially with \(L \) as in Eq. (21). In the formulation of Ref. [8] this problem looks quite similar to the first simple one. As we will see later on, some kind of remedy can be defined by a simple generalization of the SR which is useful in the case with no sign problem.

V. CARRYING MANY CONFIGURATIONS SIMULTANEOUSLY

Given \(M \) walkers we indicate the corresponding configurations and weights with a couple of vectors \((\mathbf{w}, \mathbf{x})\), with each vector component \((w_i, w_{eff}^i, x_i)\) \(i = 1, \cdots, M\), corresponding to the \(i \)th walker. Following [8] it is then easy to generalize Eq. (18) to many walkers by the corresponding probability \(P_n(\mathbf{w}, \mathbf{x}) \) of having the \(M \) walkers with weights and configurations \((\mathbf{w}, \mathbf{x})\) at the iteration \(n \). Similarly to the single walker formulation the propagated wavefunctions \(\psi_n(x) \) and \(\psi_{eff}^n(x) \) with the true Green function \(\bar{G} \) and the approximate one \(\bar{G}_{eff} \) read

\[
\psi_n(x) = \int [d\mathbf{w}] \sum_x \frac{\sum_j w_j \delta_{x,x_j}}{M} P_n(\mathbf{w}, \mathbf{x})
\]

\[
\psi_{eff}^n(x) = \int [d\mathbf{w}] \sum_x \frac{w_{eff}^j \delta_{x,x_j}}{M} P_n(\mathbf{w}, \mathbf{x}),
\]

(25)
where the symbol $\int [d\mathbf{w}]$ indicates the $2M$ multidimensional integral over the (w_i, w_{i}^{eff}) variables $i = 1, \ldots, M$ ranging from $-\infty$ to ∞. Equations (25) are very important because they show that the propagated quantum mechanical states ψ_n and ψ_{n}^{eff}, which are sampled statistically, do not uniquely determine the walker probability function $P_n(\mathbf{w}, \mathbf{x})$. In particular, it is perfectly possible to define a statistical process, the SR, which changes the probability distribution P_n without changing the exact information content, i.e., the mentioned propagated states ψ_n and ψ_n^{eff}. In this way a linear transformation of P_n, described by a simple kernel function $X(\mathbf{w}', \mathbf{x}'; \mathbf{w}, \mathbf{x})$, will be explicitly given:

$$P_n'(\mathbf{w}', \mathbf{x}') = \int [d\mathbf{w}] \sum_\mathbf{x} X(\mathbf{w}', \mathbf{x}'; \mathbf{w}, \mathbf{x}) P_n(\mathbf{w}, \mathbf{x}).$$ (26)

When there is no sign problem it is possible to define the function X in a simple way by requiring that the weights $w'_j = w_{j}^{eff'}$ are all equal to $\sum_j w_j / M$ after the SR. In this case the algorithm is exact, and allows to perform stable simulations by applying the SR each few k_p iterations. Further, by increasing the number of walkers M, the exponential growth in the variance of the weights w_j can be always reduced and systematically controlled. In fact for large enough M it is possible to work with L sufficiently large ($L \propto M$) and obtain results already converged in the power method iteration (3) and with small error bars.

VI. STOCHASTIC RECONFIGURATION, STABILIZATION OF THE SIGN PROBLEM

In order to avoid the sign problem instability, at least in an approximate way, we can follow the previous scheme as before by using the following function X that defines the SR (26)

$$X(\mathbf{w}', \mathbf{x}'; \mathbf{w}, \mathbf{x}) = \prod_{i=1}^{M} \left(\frac{\sum_j |p_{x_j}| \delta_{x'_i, x_i}}{\sum_j |p_{x_j}|} \right) \delta(w'_i - \beta^{-1} \sum_j w_j / M \sgn p_{x'_j}) \delta(w^{eff'}_i - |w'_i|),$$ (27)

where $\beta = \frac{\sum_j p_{x_j}}{\sum_j |p_{x_j}|}$ is the average sign after the reconfiguration which is supposed to be much higher to stabilize the process. The kernel (27) has a particularly simple form since the
outcome variables x'_j and w'_j are completely independent for different j values. In particular it is possible to integrate easily each of the M factors of the kernel in the variables w'_j, $w'_{j_{eff}}$ and to sum over the configuration x'_j, the result being one, as it is required by the normalization condition for P' in (26).

After the SR the exact information sampled is obtained by using Eq. (25) with P' instead of P. We define the corresponding quantum states $\psi'_n(x)$ and $\psi'_{eff}(x)$, the SR being exact whenever

$$\psi'_n(x) = \psi_n(x). \quad \text{(28)}$$

After the SR the new configurations x'_i are taken randomly among the old ones $\{x_j\}$, according to the probability $\frac{|p_{x_i}|}{\sum_j |p_{x_j}|}$, defined below in terms of the given weights $\{w_j\}$, $\{w'_{j_{eff}}\}$ and configurations $\{x_j\}$. After that the weights w'_i are changed consistently to (27) in $w'_i = \beta^{-1} \sum_j w_j \text{sgn} p_{x_i}$ and the FN weights, since are restricted to be positive, are defined by taking the absolute value of the previous ones $w'_{i_{eff}} = |w'_i|$. The coefficient $\beta \sum_j w_j$ guarantees the normalization of the two quantum states after and before the reconfiguration, namely $\sum_x \psi'_n(x) = \sum_x \psi_n(x)$. This coefficient β represents also the expected average walker sign $\langle s \rangle' = \sum_j \frac{w'_j}{|w'_j|}$ after the reconfiguration. It is supposed to be much higher than the average sign before the reconfiguration $\langle s \rangle = \sum_j \frac{w_j}{|w_j|}$, so that a stable simulation with approximately constant average sign $\langle s \rangle'$ can be obtained by iteratively applying the SR each few k_p steps of the power method iteration (2).

In the actual implementation of this algorithm (see Sec. VIII for the details) the weights are reset to unit values after the SR: $w'_i = \text{sgn} p_{x'_i}$ and $w'_{i_{eff}} = 1$, whereas only the overall constant $\beta^{-1} \sum_j w_j$, common to all the different walkers, is stored in a sequential file. Then, as in the single walker formulation, at any given iteration n, we can assume that L iterations before the trial state ψ_T is given by the equilibrium distribution of walkers with unit weights $w_j = \text{sgn} p_{x_j}$. Therefore in order to obtain the weights predicted by the Eq. (27) for L power method iterations starting from ψ_T it is enough to multiply the previous L/k_p saved factors $f_n = \beta^{-1} \sum_j w_j$. This yields a natural extension of the factors G^L_n (23) to the many walker
G\textsubscript{L} = \prod_{k=1}^{L/k_p} f_{n-k\times k_p}
and the corresponding mixed average correlation functions are obtained by averaging the local estimators over all the iterations \(n \) just before the SR (i.e. \(n \) is a multiple of \(k_p \))

\[\langle O^k \rangle = \frac{\sum_n G^L_n \sum_j w_j O^k_{x_j}}{\sum_n G^L_n \sum_j w_j}, \]

where, in the above equation, the weights \(w_j \) and the local estimators \(O^k_{x_j} \) are evaluated only before the SR.

The only left quantity to define properly the whole algorithm consistently with Eq. (27) are the important coefficients \(p_{x_j} \) which have not to be assumed positive. These coefficients may depend on all the weights \(w_j \), the configurations \(x_j \) and the FN weights \(w_{eff}^j \).

The choice \(p_{x_j} = w_j \) is exact in the sense that \(\psi'_n(x) = \psi_n(x) \), and coincides with the one for the case with no sign problem [8]. However this choice is obviously not convenient, because this reconfiguration will not improve the sign, which will decay exponentially in the same way.

Instead, in the case with sign problem, we can parameterize the coefficients \(p_{x_j} \) by assuming they are close enough to the positive definite weights \(\{ w_{eff}^j \} \), the ones obtained with the FN Green function \(G_{eff} \). The rational of this choice is that, though the weights \(w_{eff}^j \) may be occasionally very different from the exact weights \(w_j \) – namely the sign can be wrong – they sample a state \(\psi_{eff}^n(x) \) which is supposed to be quite close to the exact propagated state \(\psi_n(x) \). This condition is clearly verified for an appropriate choice of the guiding wavefunction \(\psi_G \), which makes the FN accurate. Then we assume that small perturbations over the state \(\psi_{eff}^n(x) \) may lead to fulfill the equality (28) with an arbitrary small error. In the case with sign problem in fact, we release the exact SR condition (28) to be satisfied within some error. This error will affect the equilibrium walker distribution \(P_n \) for large \(n \), but there will be no problem if this error i) is small and ii) can be reduced within the desired accuracy.
In the most simple and practical formulation we require that the average energy before and after the SR coincide

\[\sum_{x',x} H_{x',x} \psi_n(x) = \sum_{x',x} H_{x',x} \psi'_n(x) \]

(31)

(the denominators in the mixed averages (7) are already equal by definition as \(\sum_x \psi_n(x) = \sum_x \psi'_n(x) \) for the chosen \(\beta \) in (27)). Then we define

\[p_{x_j} = w_{j}^{eff}(1 + \alpha(E_{x_j} - \bar{E}_{eff})) \]

and

\[\bar{E}_{eff} = \frac{\sum_j w_{j}^{eff} E_{x_j}}{\sum_j w_{j}^{eff}}, \]

\[\bar{E} = \frac{\sum_j w_{j} E_{x_j}}{\sum_j w_{j}}, \]

(32)

where \(E_{x_j} \) is the local energy (3) associated to the configuration \(x_j \). Thus \(\bar{E} \) represents the estimate of the average energy correctly sampled with the sign, whereas \(\bar{E}_{eff} \) is the one with no sign problem. In order to satisfy the requirement (31) we just determine \(\alpha \) by

\[\alpha = \frac{\bar{E} - \bar{E}_{eff}}{\bar{E}_{eff}^2 - (\bar{E}_{eff})^2} \]

(33)

where \(\bar{E}_{eff}^2 = \frac{\sum_j w_{j}^{eff} E_{x_j}^2}{\sum_j w_{j}^{eff}} \) is the average square energy over the positive distribution \(w_{j}^{eff} \).

A simple calculation shows that with this reconfiguration, that clearly improves the sign, the value of the energy (the mixed average energy) remains statistically the same before and after the SR (see next Section and Appendix [3]). It is clear however that this is not enough to guarantee convergence to the exact ground state, because fulfillment of (31) does not imply the exact equality (28). We can improve the definition of the constants \(p_{x_j} \) by including an arbitrary number \(p \) of parameters with \(p << M \)

\[p_{x_j} = w_{j}^{eff}(1 + \alpha_1(O_{x_j}^1 - \bar{O}_{eff}^1) + \cdots + \alpha_p(O_{x_j}^p - \bar{O}_{eff}^p)) \]

(34)

proportional to the fluctuations \(O_{x_j}^k - \bar{O}_{eff}^k \) of \(p \) different operators \(O^k \) with corresponding local estimators \(O_{x_j}^k = \langle \psi_G | O^k | x_j \rangle / \langle \psi_G | x_j \rangle \) for \(k = 1, \cdots, p \), and average value over the positive weights:

\[\tilde{O}_j^k = \sum_j \frac{w_j \tilde{O}_j^k}{\sum_j w_j \tilde{O}_j^k}. \]

With the more general form \((34)\) for the coefficients \(p_{x_j}\) it is possible to fulfill that all the mixed averages for the chosen \(p\) operators – not only the energy – have the same value before and after the SR:

\[\sum_{x',x} \tilde{O}_j^k x',x \psi_n(x') = \sum_{x',x} \tilde{O}_j^k x',x \psi'_n(x). \]

In general the reference weights \(w_j^{\text{eff}}\) in Eq. \((34)\) may be also different from the ones generated by the FN Green function, the only restriction is that \(w_j^{\text{eff}} > 0\) for each walker \(j\) (see Appendix \(C\)).

It is proven in the next Section that in order to fulfill exactly the SR conditions \((35)\) it is sufficient that the coefficients \(p_{x_j}\) are chosen in a way that

\[\frac{\sum_j p_{x_j} O_j x_j}{\sum_j p_{x_j}} = \frac{\sum_j w_j \tilde{O}_j x_j}{\sum_j w_j}, \]

which can be fulfilled with a solution of a simple linear system for the unknown variables \(\alpha_k\), for \(k = 1, \cdots, p\), as described in the Appendix \(C\). The conditions \((36)\) are much simpler because they can be satisfied at a given iteration of the Markov process. The theorem, proven in the next section, guarantees that the exact \((35)\) are implied by the constraints \((36)\) after the complete statistical average over the probability walker distribution \(P_n\).

Thus, asymptotically, by adding more and more parameters \(\{\alpha_j\}\), we can achieve \(\psi'_n(x) = \psi_n(x)\) strictly, since the distribution \(\psi_n(x)\) is completely determined by its correlation functions. The proof of this important statement is very simple. Consider first the diagonal operators. All these operators may be written as linear combinations of the “elementary” ones \(O_{x',x}^{x_0} = \delta_{x',x} \delta_{x,x_0}\) acting on a single configuration \(x_0\), plus at most some constants. If conditions \((35)\) are satisfied for all the elementary operators it immediately follows that \(\psi'_n(x_0) = \psi_n(x_0)\) for all \(x_0\), which is the exact SR condition \((28)\).

Then it is simple to show that the coefficients \(p_{x_j}\), determining \(P'_n\) and \(\psi'_n\), are invariant for any constant shift of the operators \(O^k\). Further with a little algebra it turns out that these coefficients \(p_{x_j}\) do not change for any arbitrary linear transformation of the chosen
operator set: $O^{k'} = \sum_k L^{k', k} O^k$ (with real L and det $L \neq 0$) (see Appendix C 1). Thus the proven convergence of the GFMCSR is obtained for any sequence of diagonal operators, that, with increasing p, becomes complete. For non-diagonal operators $O_{x', x}$ note simply that they assume the same mixed average values of the equivalent diagonal ones $O^{\text{diag}}_{x', x} = \delta_{x', x} \sum_{x'} O_{x', x}$. Thus the proof that GFMCSR converges in principle to the exact solution is valid in general even when non-diagonal operators, such as the Hamiltonian itself for the energy, are included in the conditions (33) \Box.

VII. FORMAL PROOF OF THE GFMCSR CONDITIONS

As stated before the SR conditions (35) read

$$\sum_{x', x} \bar{O}^k_{x', x} \psi'_n(x) = \sum_{x', x} \bar{O}^k_{x', x} \psi_n(x) , \quad \text{(37)}$$

for $k = 1, \cdots, p$, with the normalization one $\sum_x \psi'_n(x) = \sum_x \psi_n(x)$.

The wavefunction $\psi'_n(x)$ after the SR conditions defined by (27) can be explicitly written in terms of the original walker probability distribution. To this purpose we single out in the definition of $\psi'_n(x)$

$$\psi'_n(x) = \int [dw'] \sum_{x'} P'_n(w', x') \frac{\sum_j \delta_{x, x'} w'_j}{M} , \quad \text{(38)}$$

a term k in the above summation over j which gives an additive contribution to ψ'_n, namely

$$\psi'_n = \frac{1}{M} \sum_k \{ \psi'_n \}_k$$

with

$$\{ \psi'_n(x) \}_k = \int [dw'] \int [dw] \sum_{x'} X(w', w'; x, x) P_n(w, x) \delta_{x, x'} w'_k , \quad \text{(39)}$$

where in the above equation we have substituted the definition of P' in terms of P given by Eqs. (26) and (27). In the latter equation it is easy to integrate over all variables w'_j, w'_j, x'_j for $j \neq k$ using that the kernel X is particularly simple as previously discussed. Then, the remaining three integrals and summations over w'_k, w'_k, x'_k can be easily performed using the simple δ functions which appear in the kernel X and the definition of $\beta = \frac{\sum_j p_{x_j}}{\sum_j |p_{x_j}|}$, so that one easily obtains
\[
\{\psi_n'(x)\}_k = \int [dw] \sum_x P_n(w, x) \frac{\sum_j w_j}{M} \sgn p_x \frac{\sum_j |p_{x_j}| \delta_{x, x_j}}{\sum_j p_{x_j}}.
\] (40)

It is important to remark that, in the above equation, the sign of \(p_x\) (\(\sgn p_x\)) depends only on the configuration \(x\) chosen among the old configurations \(x_j\), determining the vector \(x\) in \(P_n(w, x)\). In particular if there are more walkers acting on the same configuration \((x_j = x)\) for more than one \(j\) \(\sgn p_x\) is the same for all the corresponding indices, as implied by the definition (34) of \(p_{x_j}\) and the condition \(w_j^{\text{eff}} > 0\) valid for all \(j\). We can therefore replace in general \(\sgn p_x \sum_j |p_{x_j}| \delta_{x, x_j} = \frac{\sum_j p_{x_j} \delta_{x, x_j}}{\sum_j p_{x_j}}\) and obtain the closed expression for \(\psi_n'(x)\) after the simple summation on the index \(k\):

\[
\psi_n'(x) = \int [dw] \sum_x P_n(w, x) \left(\frac{\sum_j w_j}{M}\right) \frac{\sum_j p_{x_j} \delta_{x, x_j}}{\sum_j p_{x_j}}.
\] (41)

Then the normalization condition \(\sum_x \psi_n'(x) = \int [dw] \sum_x P_n(w, x) \left(\frac{\sum_j w_j}{M}\right) = \sum_x \psi_n(x)\) easily follows. On the other hand the left hand side of Eqs. (35) can be also computed easily, yielding

\[
\sum_{x', x} \bar{O}_{x', x} \psi_n'(x) = \int [dw] \sum_x P_n(w, x) \left(\frac{\sum_j w_j}{M}\right) \frac{\sum_j p_{x_j} O_{x_j}^k}{\sum_j p_{x_j}} ,
\] (42)

where \(O_{x_j}^k = \sum_{x'} \bar{O}_{x', x_j}\) is the mixed estimator of the operator \(O^k\).

Finally, by substituting the conditions (36) into the previous equation, one obtains

\[
\sum_{x', x} \bar{O}_{x', x} \psi_n'(x) = \int [dw] \sum_x P_n(w, x) \frac{\sum_j w_j O_{x_j}^k}{M} = \sum_{x', x} \bar{O}_{x', x} \psi_n(x) ,
\] (43)

which proves the statement at the beginning of this section.

A. Optimization of the weights

The definition of the weights \(p_{x_j}\) that satisfies the SR conditions (33) is highly arbitrary because as we have mentioned before the probabilities \(P_n\) and \(P_n'\) do not uniquely determine the quantum states \(\psi_n\) and \(\psi_n'\) that are subject to the conditions (33). In this sense there may be different definitions of the weights \(p_{x_j}\) that may behave differently at finite \(p\) with
less or more accuracy. Though Eqs. (35) are equally satisfied for different choices of the coefficients p_{xj} the two states ψ_n and ψ'_n may be much closer (less bias) for an optimal choice.

The optimal choice that minimizes the distance $|\psi_n - \psi'_n|$, at fixed number p of correlation functions included in the SR, has not probably been found yet. We have attempted several choices for the reference weights w_{j}^{eff} of Eq. (C2) (with $w_{j}^{f} = w_{j}^{\text{eff}}$) but until now no significant improvement of the simplest FN ones [10] has been obtained.

VIII. DETAILS OF THE ALGORITHM

In this section the flow chart of the GFMCSR algorithm is briefly sketched. As described in the Appendix D it is possible to work without the extra constant shift Λ and apply directly $e^{-H\tau}$, the usual imaginary time propagator, to filter out the ground state from the chosen trial wavefunction ψ_T.

For practical purposes, the algorithm can be divided into three steps, 1) the Green function (GF) evolution, 2) the SR and 3) the measurements of physical mixed average correlation functions. These three steps are iterated until a satisfactory statistical accuracy is obtained for the latter quantities.

The algorithm works with a finite number M of walkers. Starting from the first walker, corresponding conventionally to the index $j = 1$, the basic steps of the algorithm are described below:

1. In the GF evolution, the exact propagator $e^{-H\Delta\tau}$ and the FN one $e^{-H^{\text{eff}}\Delta\tau}$ are applied statistically for a given imaginary time interval $\Delta\tau$. In practice this can be done by setting initially $\Delta\tau_l = \Delta\tau$ and repeating the following steps until $\Delta\tau_l > 0$:

 (a) Given the configuration of the walker, x_j, the quantities E_{x_j}, $V_{sd}(x_j)$ and H_{x_j,x_j}^{eff} Eqs. (14,16,15) are evaluated. Then the interval $\Delta\tau_d$ during which the walker is expected to perform only diagonal moves (see Appendix D) is computed using the relation $\Delta\tau_d = \min(\Delta\tau_l, \ln \xi/\pi_d)$, where ξ is a random number between 0 and
1 and \(\pi_d = \lim_{\Lambda \to \infty} \Lambda \ln p_d = E_{x_j} - H_{x_j, x_j}^{\text{eff}} \) according to Eq. (D1).

(b) \(\Delta \tau_1 \) is updated \(\Delta \tau_1 \to \Delta \tau_1 - \Delta \tau_d \) and the walker weights \((w_j, w_j^{\text{eff}})\) are multiplied respectively by \(e^{(-E_{x_j}-(1+\gamma)V_{x_j}(x_j))\Delta \tau_d} \) and \(e^{-E_{x_j} \Delta \tau_d} \). Then if \(\Delta \tau_1 > 0 \) a new configuration \(x'_j \neq x_j \) is chosen according to the probability table defined only by the normalized off-diagonal matrix elements of \(p_{x', x_j} \),

\[
\frac{p_{x', x_j}}{\sum_{x' \neq x_j} p_{x', x_j}} ,
\]

and the weight \(w_j \) is multiplied by \(s_{x'_j, x_j} \) (L). The GF evolution then restarts from (a). Otherwise, if \(\Delta \tau_1 = 0 \) the GF evolution for the walker \(j \) terminates and the algorithm proceeds for the next walker starting from (1).

2. After that all the walkers \((w_j, w_j^{\text{eff}}, x_j)\) have been propagated for the total imaginary time interval \(\Delta \tau \) the SR can be applied. The mixed averages \(O_{x_j}^k = \langle \psi_G | O | x_j \rangle / \langle \psi_G | x_j \rangle \) are computed at the end of such propagation for the chosen set of operators \(O^k \). With these quantities both \(\hat{O}_{\text{eff}}^k = \sum_j w_j^{\text{eff}} O_{x_j}^k / \sum_j w_j^{\text{eff}} \) and the covariance matrix \(s_{k, k'} \) in Eq. (C4) are evaluated. By using the latter quantities in the linear system (C3), the coefficients \(\alpha_k \) are easily computed and the table \(p_{x_j} \) is determined according to Eq. (C2). At this stage the reconfiguration procedure of the walkers can be eventually performed, i.e., the new \(M \) configurations of the walkers are chosen among the old ones according to the probability \(|p_{x_j}| / \sum_k |p_{x_k}| \).

3. The mixed averages of the physical observables \(O_j^k \) and the quantity

\[
\frac{\sum_k w_k \sum_k |p_{x_k}|}{M \sum_k p_{x_k}} ,
\]

needed for the calculation of the statistical averages, are stored. The walker weights are set to \(w_j = \text{sgn} \ p_{x_j} \) and \(w_j^{\text{eff}} = 1 \), and the GF evolution can continue from step (1), starting again from the first walker.

In the practical implementation of the algorithm the FN dynamic can be worked out at fixed \(\gamma \), where \(\gamma \) has to be a non-zero number otherwise the exact GF could not be sampled.
(see Eqs. (14,15)). On the other hand for $\gamma = 0$ the FN is more accurate. A compromise is to work with $\gamma = 0.5$ fixed. Another choice is to implement few runs with different non-zero γ and try to extrapolate the results for $\gamma = 0$, which should represent the most accurate calculation. Typically this extra effort is not necessary because there is a very weak dependence of the results upon γ. However the extrapolation to $\gamma \to 0$ is an interesting possibility for the extension of the method to continuous models, since, in this case, there is no practical way to cross the nodes with a variational FN approach (as shown in Appendix C for the lattice case).

IX. THE LIMIT OF SMALL $\Delta \tau$ AND LARGE NUMBER OF WALKERS

In this section some general properties of the GFMCSR technique are discussed and explicitly tested on the J_1-J_2 Heisenberg model

$$\hat{H} = J_1 \sum_{\langle i,j \rangle} \hat{S}_i \cdot \hat{S}_j + J_2 \sum_{\langle\langle i,j \rangle\rangle} \hat{S}_i \cdot \hat{S}_j , \quad (44)$$

where \hat{S}_i are the s-1/2 operators sitting on the sites of a square lattice. J_1 and J_2 are the (positive) antiferromagnetic superexchange couplings between nearest and next-nearest-neighbors pairs of spins respectively. In the following we will consider finite square clusters of N sites with periodic boundary conditions. We use the same guiding wavefunction of Ref. [10] and report here some test results useful to understand the crucial dependence of GFMCSR on the number of walkers M and the frequency of the SR $\Delta \tau$ (the distance in imaginary time between two consecutive SR). In fact, after the selection of a given number p of correlation functions in Eqs. (35), the results depend only on the number of walkers M and the frequency of reconfiguration $\Delta \tau$. In the limit of large number of walkers, at fixed p, the algorithm has the important property that the fluctuations of the coefficients α_k and \bar{O}_k in Eq. (34) are obviously vanishing, because they depend on “averages” of a very large number of samples of many different walkers, implying that these fluctuations are decreasing with $1/\sqrt{M}$. In this limit it is possible to recover an important property of the FN: if the
guiding wavefunction is exact, the FN averages \bar{O}_k are also exact. In fact suppose we begin to apply the propagator $e^{-\hat{H}\tau}$ starting at $\tau = 0$ from the exact sampling of the ground state ψ_0 determined by FN with the exact guiding wavefunction $\psi_G = \psi_0$. Then at any Markov iteration n, before the SR is applied, both the mixed average correlation functions calculated with the FN weights w_{eff} ($\langle O_k \rangle = \sum_j w_{\text{eff}}^j O_k x_j / \sum_j w_{\text{eff}}^j$) and the weights with arbitrary signs w ($\langle O_k \rangle = \sum_j w_j O_k x_j / \sum_j w_j$) sample statistically the true quantum average $\langle \psi_0 | O_k | \psi_0 \rangle$. If, for large M, we can neglect statistical fluctuations of these averages, then by Eq. (36) $\alpha_k = 0$ and the SR algorithm just replace the weights w_j (with sign problem) with the FN weights w_{eff}^j, which also sample ψ_0 exactly if $\psi_G = \psi_0$. This means that the SR approach does not affect this important property of the FN, at least in the limit $M \to \infty$.

Another reason to work in the limit $M \to \infty$ is the following. In this limit it is not necessary to put in the SR conditions (34) operators O_k that vanish for some symmetry that is satisfied both by the Hamiltonians \hat{H} and the FN one $\bar{\hat{H}}_{\text{eff}}$. In fact if the coefficients p_{x_j} are defined in terms of operators O_k that conserve the mentioned symmetries (e.g. translation invariance, rotation by 90° degree of the lattice etc.) by definition Eqs. (35) are satisfied for all the remaining non-symmetric operators which have vanishing expectation value due to symmetry constraints (such as e.g. an operator that changes sign for a rotation operation which is a symmetry of the Hamiltonians \hat{H} and $\bar{\hat{H}}_{\text{eff}}$). In this case both sides of Eqs. (35) are zero by such symmetry constraints. Moreover for $M \to \infty$ the statistical fluctuations are neglectable and for the same reason also Eqs. (36) are automatically satisfied with vanishing α_k for the above mentioned non-symmetric operators. In this limit it is therefore useless to include non-symmetric operators in the SR (36).

Finally it is interesting that in this important limit $M \to \infty$, within the assumption that we can neglect the fluctuations of α_k and \bar{O}_{eff}^k, the SR depends only on the propagated states $\psi_{\text{eff}}^n(x)$ and $\psi_n(x)$. In fact given the state $\psi_n(x)$ and the FN one $\psi_{\text{eff}}^n(x)$, then the state $\psi'_n(x)$ after the SR will be
\[
\psi'_n(x) = C(1 + \sum_k \alpha_k (O^k_x - \bar{O}^k_{eff}))\psi^{eff}_n(x),
\]
\[
\psi^{eff'}_n(x) = |\psi'_n(x)|
\]

where now the \(\alpha_k\) are uniquely determined by the conditions (43), whereas the normalization constant \(C = \frac{\sum_x \psi_n(x)}{\sum_x \psi^{eff}_n(x)}\) and, finally, \(\psi^{eff'}_n\) replace the FN propagated state \(\psi^{eff}_n\) after the SR (due to the condition \(w^{eff'}_j = |w'_j|\)). In this limit the dynamic described by the SR constraints is therefore perfectly defined and has a meaning, which can be computed even in an exact calculation without the Monte Carlo sampling.

The way the computed results depend on the number of walkers is shown in Fig. 1, as a function of the number of correcting factors. As it is evident for large number of walkers \((M \to \infty)\) the correcting factors do not play any role and the estimate with minimum statistical error is obtained by simply ignoring the correcting factors. This is actually a common approach in GFMC, to consider a large number of walkers so that the bias of the finite walker population becomes neglectable, and typically decreasing as \(1/M\) (see e.g. Fig. 2). However from the picture it is also evident that for large enough \(M\) the predicted results obtained by including or by neglecting the correcting factors are both consistent. The convergence to the \(M \to \infty\) limit is however faster for the first method. Thus the inclusion of the correcting factors \(G^L_n\) in Eq. (30), though increasing the error bars, may be useful to reach the \(M \to \infty\) limit with a smaller number of walkers. The fact that the two types of extrapolation to infinite \(M\) – the one including the correcting factors and the one neglecting them – converge to the same value (see Fig. 2) shows that the theoretical limit when (45) holds can be reached with a reasonable number of walkers, much smaller than the dimension of the Hilbert space.

The other parameter that affects the accuracy of the SR approach is the imaginary time distance \(\Delta \tau\) between two consecutive SR. It is then natural to ask whether by increasing the frequency of the reconfigurations, one reaches a well defined dynamical limit for \(\Delta \tau \to 0\). This is important since, due to the sign problem for large size the time interval \(\Delta \tau\) has to be decreased at least by a factor inversely proportional to the system size, because the average
walker sign vanishes exponentially $\sim e^{-\Delta s \tau}$ with an exponent Δs which diverges with the system size. Different calculations, performed for different sizes can be compared only when the finite $\Delta \tau$ error (the difference between $\Delta \tau \rightarrow 0$ and finite $\Delta \tau$) is neglectable.

As shown in Fig. 3, whenever the simulation is stable for $\Delta \tau \rightarrow 0$ the limit $\Delta \tau \rightarrow 0$ can be reached with a linear extrapolation. This property can be easily understood since in the limit of large number of walkers the variation of the average correlation functions Eq.(30) both for the FN dynamic and the exact dynamic in a time interval between two consecutive SR differ clearly by $O(\Delta \tau)$.

In order to show more clearly how the method is working and systematically correcting the FN we have implemented a slightly different but more straightforward “Release Nodes technique” [15]. We first apply the standard FN (with $\gamma = 0$, see Eq. (14)) for a given number of walkers M and for long simulation time. We store the M-walkers configurations, after some equilibration at time interval large enough to allow uncorrelated and independent samples of the FN ground state. In the second step we recover each of these M-walker configurations and apply GFMCSR for a fixed imaginary time τ, so that we can see how the energy expectation value evolves from the FN to a more accurate determination. Typically one obtains a reasonable behavior for these curves that always coincides with the exact dynamic in the initial part where an exact sampling of the sign is possible. However for large imaginary time, and exceedingly small $\Delta \tau$ and large number of walkers, some instability may occur leading to results clearly off, as shown in Fig. 4. In this case the reason of the instability is due to the fact that the correlation functions $S^z(q) = \frac{1}{N^2} \sum_{i,j} S_i^z S_j^z e^{i q (i-j)}$ which we have used in the SR ($p = 9$) [10], introduce some uncontrolled fluctuations for the momentum $Q = (\pi, \pi)$ relevant for the antiferromagnetic order parameter. If we include in the SR technique also the spin isotropic operator corresponding to the order parameter $m^{12} = \frac{1}{N^2} \sum_{i,j} \vec{S}_i \cdot \vec{S}_j e^{i Q (i-j)}$ and the total spin square ($p = 11$) this instability disappears (see Fig.4, stable results, not shown in the picture, are obtained even without the total spin square, i.e. with $p = 10$). This is a reasonable effect since the order parameter has important fluctuations in all spin directions.
X. CONCLUSIONS

In this paper we have tried to describe in detail a recently proposed technique GFMCSR, that allows to work within a controlled accuracy with the ground state energy and with related mixed average correlation functions even for models where the conventional Quantum Monte Carlo technique cannot be used for the well known sign problem.

This method is rather general, in principle convergence is achieved within an arbitrary accuracy if a sufficiently large number p of correlation functions is constraint to be equal before and after the SR, the basic statistical step used to stabilize the sign problem instability. In order to minimize the number p of correlation functions used in the SR, one is limited to use an empirical approach, based on physical intuition, and/or by comparison with exact results obtained at finite size with the exact diagonalization technique. Typically the fundamental ingredient that we have found important for strongly correlated Hamiltonians is the “locality”. The most useful correlation functions are the short range ones contained in the Hamiltonian H. A more successful example is the application of the method to the Heisenberg model on the triangular lattice \cite{[16]} where a remarkable accuracy is obtained by including also the short range correlation functions generated by the application of the square Hamiltonian. Here we report a table (see Table I) with all the values of the ground state energy per site, the total spin square and the antiferromagnetic order parameter m^2 obtained with VMC, FN and GFMCSR (for two different p), up to $N = 108$. This method to increase systematically p, by including in the SR the short range correlation functions generated by $H, H^2 \cdots$, does not seem general enough. For instance it does not work for the $J_1 - J_2$ Heisenberg model where the inclusion of long range operators in the SR Eqs. \cite{[B5]} such as the spin-spin correlation function $S_i^z S_j^z$ at large distance $|i - j|$ is crucial to improve the accuracy of the method, whereas the short range ones generated by H^2 do not give any significant improvement.

Similarly to FN the GFMCSR is size-consistent (see Fig. \cite{[G]}). At fixed p a given accuracy is expected in the average correlation functions, accuracy which looks weakly dependent on
the system size and different from the variational guess even in the thermodynamic limit. This is a very important property of the present algorithm because the stability of the average sign at fixed p allows a polynomial complexity of the algorithm as a function of the system size. The algorithm, however, is typically a large factor ($\simeq 100$) more expensive than the standard FN as far as the computational time is concerned, for a given statistical error on correlation functions.

Until now the method has been extended rather successfully to several models: the mentioned J_1-J_2 and triangular lattice Heisenberg models, the $t-J$ model [17] and preliminary results show that similar improvement of the standard FN can be obtained also for the Hubbard model [18]. In the latter case it is worth to mention that a different approach, the Constrained Path Monte Carlo [19] (CPMC) represents also a very good remedy for the sign problem disease at least for intermediate coupling ($U/t \leq 8$). On the other hand different schemes to get rid of the ”sign problem” for continuous systems were previously proposed and successfully applied to small electron systems. [20]

Although the GFMCSR is far from being the definite solution of the sign problem in the Monte Carlo simulation, it certainly represents an interesting possibility to alleviate this instability even for large system sizes. Its extension to continuous systems and also to CPMC is indeed straightforward, even though, in these cases, the possibility to cross the nodal surface in a variational way (see Appendix B) is not possible at present.

ACKNOWLEDGMENTS

We acknowledge useful discussions with M. Calandra, F. Becca, G. Bachelet and J. Carlson. This work was partially supported by INFM (PRA HTSC and LOTUS) and by “MURST-Progetti di ricerca di rilevante interesse nazionale”.

30
APPENDIX A: PROPERTY OF A STOCHASTIC MATRIX

In this appendix we remind some properties of a stochastic matrix $p_{x',x}$. The stochastic matrices are square matrices that have all non-negative matrix elements $p_{x',x}$ and satisfy the normalization condition

$$\sum_{x'} p_{x',x} = 1, \quad (A1)$$

for each column matrix index x. We assume also that the number of row and column indices are finite and that each index x is connected to any other x' by at least one sequence $p_{x',x_1}p_{x_1,x_2}\cdots p_{x_N,x}$ of non-zero matrix elements of p.

The stochastic matrices are generally non-symmetric and their eigenvalues may be also complex. For each eigenvalue there exist a left $\sum_{x'} \psi_L(x') p_{x',x} = \lambda \psi_L(x)$ and a corresponding right eigenvector $\sum_x p_{x',x} \psi_R(x) = \lambda \psi_R(x')$. A very simple left eigenvector is the constant one $\psi_L(x) = 1$, that by property (A1) has eigenvalue $\lambda = 1$. We will show in the following that this is actually the maximum eigenvalue because: i) to each right eigenvector $\psi_R(x)$ of p corresponds an eigenvalue λ, which is bounded by one $|\lambda| < 1$.

In fact, be $\psi_R(x)$ a generic (complex or real) right eigenvector of p

$$\lambda \psi_R(x') = \sum_x p_{x',x} \psi_R(x),$$

by taking the complex modulus of both sides of the previous equation and summing over x' we obtain

$$|\lambda| \sum_{x'} |\psi_R(x')| = \sum_{x'} |\sum_x p_{x',x} \psi_R(x)| \leq \sum_x \sum_{x'} p_{x',x} |\psi_R(x)| = \sum_x |\psi_R(x)|,$$

where in the above inequality we have interchanged the summation indices and used the elementary bound for the complex modulus $|\sum_x z_x| \leq \sum_x |z_x|$ for arbitrary numbers $z_x = p_{x',x} \psi_R(x)$. This immediately gives:

$$|\lambda| \leq 1 .$$

Obviously the equality sign holds if, for each x, $|\sum_x z_x| = \sum_x |z_x|$, which implies that given a right eigenvector with maximum eigenvalue $\lambda = 1$, the real positive definite vector $|\psi_R(x)|$ is also a right eigenvector with maximum eigenvalue.
Now we will show that: \(ii \) \textit{the maximum right eigenvector is unique}. In fact suppose that there are two right eigenvectors \(\psi_1 \) and \(\psi_2 \) with \(\lambda = 1 \), then by linearity also \(\psi_1 - \alpha \psi_2 \) is a right eigenvector with \(\lambda = 1 \) and the complex constant \(\alpha \) can be chosen to give \(\psi_1 - \alpha \psi_2 = 0 \) for a given index \(x_0 \). On the other hand using the property derived previously also \(|\psi_1(x) - \alpha \psi_2(x)| \) is a right maximum eigenvector that vanishes for \(x = x_0 \). Using iteratively the definition of a right eigenvector

\[
\sum_x p_{x',x} |\psi_1(x) - \alpha \psi_2(x)| = |\psi_1(x') - \alpha \psi_2(x')|,
\]

starting from \(x' = x_0 \), we arrive easily to derive that for all the index \(x \) connected to \(x_0 \) by non-zero sequence of matrix elements \(p_{x_0,x_1} p_{x_1,x_2} \cdots p_{x_N,x} \)

\[
|\psi_1(x) - \alpha \psi_2(x)| = 0.
\]

Since by hypothesis all the possible indices are connected to \(x_0 \) by at least one such a sequence, we derive \(\psi_1 = \alpha \psi_2 \), which means that \(\psi_1 \) and \(\psi_2 \) are the same eigenvector, which contradicts the initial hypothesis. Thus the maximum right eigenvector is unique.

Collecting the above properties, the maximum right eigenvector \(\psi_R(x) \) of a stochastic matrix can be chosen real and positive. Then it is simple to show that the iteration of the stochastic matrix

\[p^n \psi_T \]

converges for large \(n \) to this maximum right eigenvector with an exponentially decreasing error \(\propto \gamma^n \), with \(\gamma < 1 \) being the modulus of largest eigenvalue of \(p \), different from the maximum one.

APPENDIX B: PROOF OF THE UPPER BOUND

Here we follow the paper [12] to prove rigorously the upper bound property of the ground state energy for \(H^{eff} \). We want to show that the prescription given in Eqs. (14,15) for \(H^{eff} \) leads to an upper bound for the ground state energy of \(H \). When importance sampling is used it is important to change slightly the definition of the sign-flip term as in (16):
\begin{align}
V_{sf}(x) &= \sum_{\psi_G(x')H_{x',x}/\psi_G(x)>0 \text{ and } x' \neq x} \psi_G(x') \frac{H_{x',x}}{\psi_G(x)} \psi_G(x). \tag{B1}
\end{align}

We now take any state

\[|\psi\rangle = \sum_x |x\rangle \psi(x), \tag{B2} \]

and we compare its energy with respect to \(H \) and to \(H^{eff} \):

\[\Delta E = \langle \psi | (H^{eff} - H) | \psi \rangle. \tag{B3} \]

\(\Delta E \) can be written explicitly in terms of the matrix elements of \(H \), using the definitions given in Eqs. (14,15,B1)

\[\Delta E = (1 + \gamma) \sum_x \psi(x)^* \left[\sum_{x'} H_{x,x'} \frac{\psi_G(x')}{\psi_G(x)} \psi(x) - \sum_{x'} H_{x,x'} \psi(x') \right], \tag{B4} \]

where the notation \(sf \) indicates conventionally the summation over the off-diagonal elements such that \(\psi_G(x')H_{x,x'}/\psi_G(x') > 0 \). In this double summation each pair of configurations \(x \) and \(x' \) occurs twice. We combine these terms and rewrite (B4) as a summation over pairs:

\[\Delta E = (1 + \gamma) \sum_{(x,x')} H_{x,x'} \psi(x')^* \left[|\psi(x)|^2 \frac{\psi_G(x')}{\psi_G(x)} + |\psi(x')|^2 \frac{\psi_G(x)}{\psi_G(x')} - \psi(x)^* \psi(x') - \psi(x')^* \psi(x) \right]. \tag{B5} \]

Denoting by \(sH(x,x') \) the sign of the matrix element \(H_{x,x'} \), and using the fact that for all terms in this summation the condition \(\psi_G(x')H_{x,x'}\psi_G(x) > 0 \) is satisfied, we can finally write \(\Delta E \) as

\[\Delta E = (1 + \gamma) \sum_{(x,x')} |H_{x,x'}| \psi(x) \left[\frac{\psi_G(x')}{\psi_G(x)} - sH(x,x') \psi(x') \right] \left[\frac{\psi_G(x)}{\psi_G(x')} \right]^2. \tag{B6} \]

Obviously, \(\Delta E \) is positive for any wavefunction \(\psi \). Thus the ground state energy of \(H^{eff} \) is an upper bound for the ground state energy of the original Hamiltonian \(H \).

Now the GFMC method can calculate the exact ground state energy \(E_0^{eff} \) and wavefunction \(\psi^{eff} \) of \(H^{eff} \), without any sign problem. Hence: \(E_0^{eff} \geq \langle \psi^{eff} | H | \psi^{eff} \rangle \geq E_0 \), where the second inequality follows from the usual variational principle. We conclude therefore that
the FN energy is an upper bound to the true ground state energy. One can easily verify that
\[\langle \psi_G | H | \psi_G \rangle = \langle \psi_G | H^{\text{eff}} | \psi_G \rangle, \]
and thus one can be sure that the GFMC procedure improves on the energy of the guiding wavefunction:
\[E_0^{\text{eff}} \leq \langle \psi_G | H^{\text{eff}} | \psi_G \rangle = \langle \psi_G | H | \psi_G \rangle. \]

Note that the standard “lattice FN” approach [12] is obtained for the particular parameter \(\gamma = 0 \).

APPENDIX C: PROOF OF EXISTENCE AND UNICITY OF SOLUTION FOR THE RECONFIGURATION

In this appendix we prove that given the \(p + 1 \) SR conditions (36) the elements of the table \(p_{x_j} \) are uniquely determined for each walker configuration \((w, x) \).

We define here the quantity
\[v^k_j = (O^k_{x_j} - \bar{O}^k_j), \]
for each configuration \(j \), where \(\bar{O}^k_j = \frac{\sum_j w^f_j O^k_{x_j}}{\sum_j w^f_j} \) is the average value over the reference weights, \(w^f_j \), of the operator considered, labeled by the number \(k \). The reference weights \(w^f_j \) are restricted to be strictly positive but arbitrary functions of all the FN weights \(\{ w^e_j \} \) the exact weights \(\{ w_j \} \) and the configurations \(\{ x_j \} \). It is easy to show that, in order that
\[p_{x_j} = w^f_j (1 + \sum_k \alpha_k v^k_j) \]
allows to satisfy the SR conditions (35), it is sufficient that \(\alpha_k \) are determined by the simple linear equation
\[\sum_{k'} s_{k,k'} \alpha_{k'} = \frac{\sum_j w_j v^k_j}{\sum_j w^f_j}, \]
where
\[s_{k,k'} = \frac{\sum_j w^f_j v^k_j v^{k'}_j}{\sum_j w^f_j} \]
is the covariance matrix of the operators \(O^k \) over the reference weights \(w^f_j \). The solution to (C3) is possible if the determinant of \(s_{k,k'} \) is non-vanishing. Since \(s \) represents an overlap...
matrix defined with a non-singular scalar product $\langle v^k | v^{k'} \rangle = \frac{\sum_j w^f_j v^k_j v^{k'}_j}{\sum_j w^f_j}$ as w^f_j are positive, its determinant is always non-zero provided the vectors v^k are linearly independent. Thus, in the latter case, the solution to $(C3)$ exists and is unique.

On the other hand suppose that among the p vectors v^k only $p' < p$ are linearly independent. Thus the remaining $p - p'$ vectors can be written as linear combination of p' linearly independent ones (henceforth we assume that these linearly independent vectors are labeled by the consecutive indices $k = 1, \ldots, p'$)

$$v^{k'}_j = \sum_{k=1}^{p'} x^k_j v^k_j,$$

for $k' > p'$, where x^k_j are suitable coefficients. The same previous considerations allow to satisfy the first p' SR conditions as for Eq. $(C3)$ a unique solution exists if we restrict all the sums for $k, k \leq p'$, and p_{x_j} is determined only by the first p' linearly independent vectors in $(C2)$. With the determined p_{x_j} it is obvious that

$$\frac{\sum_j p_{x_j} v^k_j}{\sum_j p_{x_j}} = \frac{\sum_j w^f_j v^k_j}{\sum_j w^f_j}$$

is verified for $k = 1, \ldots, p'$.

On the other hand we can easily show that all the remaining SR conditions $(C6)$ for $k' > p'$ are identically satisfied. In fact, in this case the LHS of Eq. $(C7)$ can be manipulated as follows, using definition $(C5)$

$$\frac{\sum_j p_{x_j} v^{k'}_j}{\sum_j p_{x_j}} = \sum_k x^k_j \left(\frac{\sum_j v^k_j p_{x_j}}{\sum_j p_{x_j}} \right) = \sum_k x^k_j \left(\frac{\sum_j v^k_j w^f_j}{\sum_j w^f_j} \right) = \frac{\sum_j v^{k'}_j w^f_j}{\sum_j w^f_j},$$

where in the intermediate steps we have used that

$$\left(\frac{\sum_j v^k_j p_{x_j}}{\sum_j p_{x_j}} \right) = \left(\frac{\sum_j v^k_j w^f_j}{\sum_j w^f_j} \right),$$

for the first $k \leq p'$ conditions. Thus the SR conditions determine uniquely p_{x_j} in any case and this conclude the important statement of this Appendix.
1. Remark

With the above definitions it is also possible to show that \(p_{xj} \) remains unchanged for any linear transformation of the operator set. Namely, suppose we consider the new operators

\[
\tilde{O}^{k'} = \sum_k L_{k',k}O^k + \beta_{k'}
\]

in the SR conditions, where the real matrix \(L \) is assumed to have non-vanishing determinant. Within this assumption it is simple to show that \(p_{xj} \) will remain unchanged.

In fact the new set of operators will define a new covariance matrix between the new vectors

\[
\tilde{v}^k_j = \sum_k L_{k',k}v^k_j,
\]

i.e., \(\tilde{v} = Lv, \tilde{s} = LsL^T \), where \(L^T \) is the transposed of \(L \) and the set of new equations

\[
\sum_{k'} \tilde{s}_{k,k'} \tilde{\alpha}_{k'} = \sum_j w_j \tilde{v}^k_j
\]

is obviously satisfied by

\[
\tilde{\alpha} = (L^{-1})^T \alpha,
\]

where \(\alpha \) is the solution of the SR conditions before the transformation (C8). Whenever the number \(p' \) of linearly independent \(v^k \) is less than \(p \), also the number of linearly independent \(\tilde{v}^k \) will be \(p' \) as \(L \) is non-singular. The solutions \(\alpha \) and \(\tilde{\alpha} \), as described previously, refer therefore to the first \(p' \) components, and all the matrix involved, such as \(\tilde{L} \) and \(\tilde{s} \) are in this case restricted to this subspace.

Then, by Eq. (C10) and Eq. (C9), it easily follows that the new coefficients \(\tilde{p}_{xj} = w^f_j(1 + \sum_k \tilde{\alpha}_k \tilde{v}^k_j) = w^f_j(1 + \sum_k \alpha_k v^k_j) = p_{xj} \), which finally proves the statement of this remark.

APPENDIX D: THE LIMIT \(\Lambda \rightarrow \infty \) FOR THE POWER METHOD

The constant \(\Lambda \), which defines the the Green function \(G_{x',x} = \Lambda \delta_{x',x} - H_{x',x} \) and the FN one \(G^{eff} \) (13) has to be taken large enough to determine that all the diagonal elements of
G^eff are non-negative (by definition the off-diagonal ones of G^eff are always non-negative). This requirement often determines a very large constant shift which increases with larger size and is not known a priori. The trouble in the simulation may be quite tedious, as if for the chosen Λ a negative diagonal element is found for G^eff, one needs to increase Λ and start again with a completely new simulation. The way out is to work with exceedingly large Λ, but this may slow down the efficiency of the algorithm as in the stochastic matrix $p_{x',x}$ the probability to remain in the same configuration p_d may become very close to one

$$p_d = \frac{\Lambda - H_{x,x} - (1 + \gamma)\mathcal{V}_{\text{sf}}(x)}{\Lambda - E_x}$$

(D1)

where \mathcal{V}_{sf} is given in Eq. (16) and E_x is the local energy Eq. (6) that do not depend on Λ given the configuration x.

Following Ref. [7] the problem of working with large Λ can be easily solved with no loss of efficiency. We report this simple idea applied to our particular algorithm at fixed number of walkers. If Λ is large it is possible to take a large value of k_p (of order Λ) iterations between two consecutive reconfigurations, because in most iterations the configuration x is not changed. The idea is that one can determine a priori, given p_d what is the probability $t(k)$ to make k diagonal moves before the first acceptance of a new configuration with $x' \neq x$. This is given by $t(k) = p_d^k(1-p_d)$ for $k = 0, \ldots, n_t-1$ and $t(n_t) = p_d^{n_t}$ if no off-diagonal moves are accepted during the n_t trials that are left to complete the loop without reconfigurations.

It is a simple exercise to show that, in order to sample $t(k)$ one needs one random number $0 < \xi < 1$, so that the stochastic integer number k can be computed by the simple formula

$$k = \min(n_t, \left\lfloor \frac{\ln \xi}{\ln p_d} \right\rfloor),$$

(D2)

where the brackets indicate the integer part. During the k_p iterations one can iteratively apply this formula by bookkeeping the number of iterations n_t that are left to complete the loop without reconfigurations. At the first iteration $n_t = k_p$, then k is extracted using (D2), and the weights (w, w^eff) of the walker are updated according to k diagonal moves and if $k < n_t$ a new configuration is extracted randomly according to the off-diagonal matrix
elements of $p_{x',x}$. The weights are correspondingly updated for this off-diagonal move, and finally, if $k < n_l$, n_l is changed to $n_l - k - 1$, so that one can continue to use Eq. (D2) until all the k_p steps are executed for each walker.

The interesting thing of this method is that it can be readily generalized for $\Lambda \to \infty$ by increasing k_p with Λ, namely $k_p = [\Lambda \Delta \tau]$, where $\Delta \tau$ represents now exactly the imaginary time difference between two consecutive reconfigurations where the exact propagator $e^{-H\Delta \tau}$ or $e^{-H_{\text{eff}} \Delta \tau}$ is applied statistically.
TABLE I. Variational estimate (VMC) and mixed averages (FN, SR and Exact) of the ground energy per site, the total spin square and the order parameter for the triangular Heisenberg antiferromagnet for various system sizes. SR data are obtained using the short range correlation functions generated by $H(p = 2)$ and $H^2(p = 7)$ reported in Ref. [16]. All the values reported in this table are obtained with large enough M and $1/\Delta \tau$, practically converged in the limit of $\Delta \tau \to 0$ and $M \to \infty$.

	N	VMC	FN	SR($p = 2$)	SR($p = 7$)	Exact
e_0	12	-0.5981	-0.6083(1)	-0.6085(1)	-0.6105(1)	-0.6103
	36	-0.5396	-0.5469(1)	-0.5534(1)	-0.5581(1)	-0.5604
	48	-0.5366(1)	-0.5426(1)	-0.5495(1)	-0.5541(1)	
	108	-0.5333(1)	-0.5387(1)	-0.5453(1)	-0.5482(1)	
S_{tot}^2	12	0.235	0.0111(2)	0.006(4)	-0.002(4)	0.00
	36	1.71	1.20(1)	0.65(1)	0.02(1)	0.00
	48	2.55(1)	2.12(2)	1.44(1)	0.23(3)	0.00
	108	6.36(4)	5.66(3)	4.35(4)	2.7(1)	0.00
m^{12}	12	0.9241	0.9286(1)	0.9210(2)	0.9132(6)	0.9109
	36	0.7791	0.7701(4)	0.7659(2)	0.7512(3)	0.7394
	48	0.7496(3)	0.7243(5)	0.7177(2)	0.7080(5)	
	108	0.6338(7)	0.6182(4)	0.6040(3)	0.5836(5)	
FIGURE 1. Dependence on the number \(L \) of correcting factors of the estimated ground state energy per site for \(N = 64 \) and \(J_2 = 0.5 \) obtained with the GFMCSR technique (\(\Delta \tau = 0.01 \)) with \(M = 200 \) (triangles), 1500 (squares) and 10000 (circles).

FIGURE 2. Ground state energy per site for \(J_2 = 0.5 \) obtained for different clusters and different number of walkers. Empty dots are data obtained with zero correcting factors while full dots refer to converged values in \(L \).
FIG. 3. Dependence of the ground state energy per site on the imaginary time step $\Delta \tau$ obtained for $J_2=0.5$ and $N = 36$ with the GFMCSR technique by using in the SR the energy (full dots), all $S^2(q)$, the spin square and the order parameter m^{12} (empty dots). The number of walkers was fixed to $M = 10000$, so that the finite-M bias can be neglected on this scale. The lower horizontal axis coincides with the exact diagonalization result.

FIG. 4. Stable (upper curve) and unstable (lower curve) imaginary time evolution of the GFMCSR estimates of the ground energy per site for $J_2 = 0.5$ and the $N = 36$ cluster. The horizontal line indicates the exact result.
FIG. 5. Finite size scaling of the GS energy per site for $J_2 = 0.5$ obtained with the FN and GFMCSR technique applied reconfiguring the Hamiltonian (SRe).
REFERENCES

[1] H. J. Schulz, T. A. L. Ziman and D. Poilblanc, J. Phys. I (France) 6, 675 (1996); B. Bernu, P. Lecheminant, C. Lhuillier, L. Pierre, Phys. Rev. B 50, 10048 (1994).

[2] D. Poilblanc Phys. Rev. B 52, 9201 (1995), K. J. Szczepanski, P. Horsch, W. Stephan, and M. Ziegler, Phys. Rev. B 41, 2017 (1990); P. Prelovsek, I. Sega and J. Bonca Phys. Rev. B 42, 10706 (1990); B. Eder and Y. Ohta Phys. Rev. B 50, 10143 (1994).

[3] Overviews of exact diagonalization studies can be found in E. Dagotto Rev. Mod. Phys. 66, 763 (1994) and E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc and J. Riera, Phys. Rev. B 45, 10741 (1992).

[4] S. R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993).

[5] S. R. White and R. L. Martin, preprint cond-mat/9808118.

[6] C. Gros, Phys. Rev. B 38, 931 (1988); H. Yokoyama and H. Shiba, J. Phys. Soc. Jpn. 57, 2482 (1988), T. Giamarchi and C. Lhuillier, Phys. Rev. B 42, 10641 (1990) and 43, 12943 (1991).

[7] N. Trivedi and D. M. Ceperley, Phys. Rev. B 41, 4552 (1990).

[8] M. Calandra and S. Sorella, Phys. Rev. B 57, 11446 (1998).

[9] H. J. M. van Bemmel, D. F. B. ten Haaf, W. van Saarlos, J. M.J. van Leeuwen, and G. An, Phys. Rev. Lett. 72, 2442 (1994).

[10] S. Sorella, Phys. Rev. Lett. 80, 4558 (1998).

[11] D. M. Ceperley and M. H. Kalos, in Monte Carlo Method in Statistical Physics, edited by K. Binder (Springer-Verlag, Heidelberg, 1992).

[12] D. F. B. ten Haaf, H. J. M. van Bemmel, D. F. B. ten Haaf, J. M.J. van Leeuwen, W. van Saarlos, and D. M. Ceperley, Phys. Rev. B 51, 13039 (1995).
[13] C. T. Shih, Y. L. Chen and T. K. Lee, Phys. Rev. B 57, 627 (1998).

[14] J. H. Hetherington, Phys. Rev. A 30, 2713 (1984).

[15] D. M. Ceperley and B. J. Alder, J. Chem. Phys. 81, 5833 (1984).

[16] L. Capriotti, A. E. Trumper and S. Sorella, preprint cond-mat/9901068.

[17] M. Calandra, F. Becca and S. Sorella, Phys. Rev. Lett. 81, 5185 (1998).

[18] F. Becca, M. Capone and S. Sorella, in preparation.

[19] S. Zhang, J. Carlson and J. E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995), Phys. Rev. B 55, 7464 (1997).

[20] S. Zhang and M. H. Kalos Phys. Rev. Lett. 67, 3074 (1991).