Lack of CD151/integrin α3β1 complex is predictive of poor outcome in node-negative lobular breast carcinoma: opposing roles of CD151 in invasive lobular and ductal breast cancers

Hanna M Romanska*1, Piotr Potemski2, Magdalena Krakowska2, Magdalena Mieszkowska3, Shalini Chaudhri4, Radzisław Kordek1, Robert Kubiak1, Valerie Speirs5, Andrew M Hanby5, Rafał Sadej*2,3 and Fedor Berditchevski6

1Department of Pathology, Medical University of Łódź, ul. Pomorska 251, 92-213 Łódź, Poland; 2Department of Chemotherapy, Medical University of Łódź and M. Kopernik Memorial Hospital, ul. Paderewskiego 4, 93-509 Łódź, Poland; 3Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, ul. Dębinki 1, 80-210 Gdańsk, Poland; 4Department of Cellular Pathology, University of Birmingham, Birmingham, UK; 5Leeds Institute of Cancer and Pathology, University of Leeds, Leeds LS9 7TF, UK and 6School of Cancer Sciences of the University of Birmingham, Birmingham B15 2TT, UK

Background: The proposed involvement of CD151 in breast cancer (BCa) progression is based on findings from studies in invasive ductal carcinoma (IDC). The IDC and invasive lobular carcinoma (ILC) represent distinct disease entities. Here we evaluated clinical significance of CD151 alone and in association with integrin α3β1 in patients with ILC in context of the data of our recent IDC study.

Methods: Expression of CD151 and/or integrin α3β1 was evaluated in ILC samples (N = 117) using immunohistochemistry. The findings were analysed in relation to our results from an IDC cohort (N = 182) demonstrating a prognostic value of an expression of CD151/integrin α3β1 complex in patients with HER2-negative tumours.

Results: Unlike in the IDCs, neither CD151 nor CD151/α3β1 complex showed any correlation with any of the ILC characteristics. Lack of both CD151 and α3β1 was significantly correlated with poor survival (P = 0.034) in lymph node-negative ILC N(−) cases. The CD151−/α3β1− patients had 3.12-fold higher risk of death from BCa in comparison with the rest of the ILC N(−) patients.

Conclusions: Biological role of CD151/α3β1 varies between ILC and IDC. Assessment of CD151/α3β1 might help to identify ILC N(−) patients with increased risk of distant metastases.

The tetraspanin protein CD151 (Tspan24) has recently emerged as a new candidate indicator of tumour cell invasiveness (Boucheix and Rubinstein, 2001; Hemler, 2005; Zoller, 2009). Elevated expression of CD151 protein and its involvement in tumour progression have been observed in various human malignancies (Romanska and Berditchevski, 2011). In breast cancer (BCa), in particular, high expression of tetraspanin CD151 was shown to correlate with axillary lymph node involvement and patient poor overall survival (Sadej et al, 2009; Kwon et al, 2012; Novitskaya et al, 2014). The role of CD151 in tumour invasive and metastatic progression is thought to be relying on its ability to form complexes with laminin-binding integrin receptors (i.e., α6β1, α3β1, α6β4) (Sadej et al, 2014) and its involvement in the regulation of cell-cell and cell–matrix interactions (Johnson et al, 2009).
The underlying signalling pathways are likely to depend on adhesion-dependent and coordinated activation of small Rho and Ras GTPases, c-Akt and p38 (Novitskaya et al., 2014). It was also proposed that the CD151/z3/b1 complex is directly linked to caderhin and catenin thus regulating E-cadherin-mediated cell–cell adhesion (Chattopadhyay et al., 2003). A suppressive role of the CD151/z3/b1 complex, recently demonstrated in ovarian cancer, has been linked to stabilisation of integrin z3/b1- and E-cadherin-mediated cell–cell contacts (Baldwin et al., 2014). In addition to its role in regulation of adhesion-dependent outside-in signalling pathways, CD151 might contribute to mammmary tumourigenesis via ErbB2/HER2 (Deng et al., 2012; Novitskaya et al., 2014). Interestingly, clinical analyses of BCA patients showed that the elevated expression of CD151 correlated with poor overall survival in patients only with HER2-negative (luminal A and quintuple-negative) tumours (Kwon et al., 2012). Moreover, an impact of CD151/z3/b1 on invasive ductal carcinoma (IDC) patient survival was shown to be inversely correlated with the level of HER2 expression (Novitskaya et al., 2014).

Existing knowledge of CD151 involvement in mammmary tumourigenesis is almost exclusively based on clinical and in vitro studies of the IDC. However, it is becoming increasingly apparent that CD151 might have diverse, even opposing roles, in different biological contexts and its clinical significance should be investigated in relation to the phenotypical and histological variants of the tumour (Voss et al., 2011).

Invasive lobular carcinoma (ILC) accounts for ~10% to 15% of newly diagnosed breast carcinomas. Classical ILCs are characterised by an outgrowth of small, uniform discohesive neoplastic cells that invade the stroma in a single-file pattern (Sikora et al., 2014). The majority of ILC tumours are of low histological grade and preferentially display a luminal A phenotype (ER+/PR+/HER2−) (Weigelt et al., 2010). Classical ILCs lack E-cadherin expression that is considered a defining feature of this BCA type (Sikora et al., 2014). Recent studies demonstrated that ILCs differ from grade- and molecular subtype-matched IDCs in the transcriptomic profiles related to cell adhesion, cell–cell signalling and metastatic pattern, indicating that IDCs and ILCs represent distinct disease entities (Weigelt et al., 2010; Sikora et al., 2014).

Because of the relatively low incidence of ILC as well as the paucity of available research models (Sikora et al., 2014), the mechanisms underlying its pathophysiology are poorly understood. It is likely that the role of CD151 in progression of E-cadherin-inactivated ILCs, and hence its impact on patient outcome, differs from those documented in the more common IDCs. To date, CD151 expression has been studied only in a few ILC cases, a small part (2.9%; 25 out of 886) of a large cohort of IDCs. To date, CD151 expression has been studied only in a few studies of the IDC. However, it is becoming increasingly apparent that CD151 might have diverse, even opposing roles, in different biological contexts and its clinical significance should be investigated in relation to the phenotypical and histological variants of the tumour.

Materials and Methods

Patient selection and samples. The study included radical surgery specimens of primary ILC from 117 patients treated between 2000 and 2008 at three sites: (1) the Oncology Department of Copernicus Memorial Hospital in Łódź, Poland, (2) the UHB NHSFT, Birmingham, UK and (3) the Leeds Teaching Hospitals NHS Trust, Leeds, UK. All samples were obtained according to the local ethical regulations (project ethics licence: RNN/174/11/KE). The characteristics of the study population are summarised in Table 1. Follow-up period was defined as the time from surgery to the last observation for censored cases or death for complete observations.

Immunohistochemistry. Serial 5 μm paraffin sections of formalin-fixed blocks were processed for immunohistochemistry for CD151 (mouse anti-human; 1:100; Novoceastra, Newcastle upon Tyne, UK) and z3/b1 (INTA3) (goat anti-human; 1:200, Santa Cruz, Wembley, UK) using protocols described previously (Novitskaya et al., 2014). Immunostaining for E-cadherin (mouse anti-human; 1:50; Novoceastra) was used to confirm the initial pathological diagnosis of ILC (E-cadherin-positive samples were excluded from the study). As a negative control for the immunostaining, primary antibodies were replaced by non-immune sera.

Scoring of immunostaining for CD151 was based on Hofmann’s method for membranous reactivity of ErbB2 (Hofmann et al., 2008) and modified as follows: (1) 0/negative: no reactivity or only partially membranous reactivity in ≤10% of tumour cells; (2) 1 + /negative: faint membranous or partially membranous in >10% of tumour cells; (3) 2 + /positive: weak to moderate complete membranous in >10% of tumour cells; and (4) 3 + /positive: strong complete membranous in ≥10% of the tumour cells. Immunoreactivity for z3/b1 was scored as follows: (1) 0/negative:

Table 1. Patient characteristics

Feature	ILC	IDC
Number of patients	117	182
Age (years)		
<50	21	56
≥50	96	127
Disease stage		
I	34	44
II	60	93
III	13	45
T status		
T1	52	61
T2	48	112
T3	15	1
T4	1	8
Grade		
1	21	105
2–3	94	77
Nodal status		
Negative	64	92
Positive	44	90
Steroid receptor status		
Negative	11	79
Positive	102	103
HER2 status		
Negative	102	151
Positive	4	31

Abbreviations: IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma. In the ILC group, data are available for *107 patients, *116 patients, *115 patients, *108 patients, *113 patients and *106 patients.
no reactivity; (2) 1+/−positive: faint membranous and/or cytoplasmic staining in ≥10% of tumour cells; (3) 2+/−positive: weak to moderate membranous and/or cytoplasmic staining in >10% of tumour cells; and (4) 3+/−positive: strong membranous and/or cytoplasmic staining in >10% of the tumour cells. Immunohistochemical staining was evaluated and scored independently by two observers (HMR and R Korddek or HMR and SC). The agreement on staining intensity was >90%. Where there was disagreement, intensity was determined by consensus. Dichotomisation of the final scores into: (1) ‘negative’ and (2) ‘positive’ for CD151/0–2; INTA3/0 and CD151/3 and INTA3/1–3, respectively, was guided by intensity of immunostaining in positive controls recommended by the manufacturer.

Statistical analysis. Overall survival was calculated from the date of surgery to the date of death or the last follow-up, as recommended by the Kaplan–Meier method. Differences in survival distributions were compared using log-rank test. Data for patients who died from other causes than BCa were censored at the time of death. Univariate analysis of overall survival was performed using the Cox proportional hazards regression model. Parameters showing a significant correlation (P < 0.05) were included in the multivariate logistic regression analysis. Pearson’s χ2 test or Fisher’s exact test were used to assess the associations between expression of CD151 and z3/1 alone and their coexpression and clinicopathological variables. The results were considered statistically significant when two-sided P-value was <0.05. The analyses were performed using the Statistica 9.1 and Statistica 10 (StatSoft Inc., Tulsa, OK, USA) softwares.

Data on cancer recurrence were available in only four cases that precluded the DFS analysis.

RESULTS

An impact of CD151/z3/1 on tumour biology differs between ILC and IDC. In normal gland, both CD151 and z3/1 showed moderate to strong, predominantly membranous immunoreactivity, confined to the basal and lateral surfaces of the myoepithelial cells, with no or very weak staining in luminal epithelial cells (Figure 1A). Similarly, in ILCs, CD151 and z3/1 were localised mainly to the membrane of tumour cells and there was a significant correlation (P = 0.012) between levels of their expression (Table 2A). We observed four distinct patterns of immunoreactivity for CD151/z3/1: (1) CD151+/z3/1+ in 55 out of 117 (23.94%) cases; (2) CD151 + /z3/1− in 28 out of 117 (23.94%) cases; (3) CD151−/z3/1− in 20 out of 117 (17.09%) cases and (4) CD151−/z3/1+ in 14 out of 117 (11.96%) cases (Figure 1B–E). Interestingly, the level of CD151 expression (but not expression of z3/1) on cancer cells was similar to that observed on endothelial cells of intratumoural vessels (Figure 2).

There was no significant correlation between the level of z3/1 expression and any of tumour characteristics (Table 2A). On the other hand, expression of CD151 assessed alone was inversely associated with tumour size (P = 0.047) and stage (P = 0.019), thus indicating that CD151 might have an ability to suppress proliferation of cells and progression of disease. Interestingly, positivity for both CD151 and z3/1 (CD151+ /z3/1+) was significantly associated only with grade (P = 0.019). These results suggest that phenotypic dedifferentiation and adopting of anaplastic features by epithelial cells in ILC are associated with CD151 acting in a complex with z3/1.

We have previously reported that in IDC, in contrast to ILC, CD151 expression showed a positive association with stage (P = 0.030) and inverse with tumour grade (P = 0.041). We have also demonstrated that, when assessed in combination, positivity for CD151 and/or z3/1 correlated closer than CD151 alone with stage of disease (P < 0.001 vs P = 0.03 for CD151/z3/1 vs CD151, respectively) (Novitskaya et al., 2014). Here we have expanded our previous analyses and evaluated coexpression of CD151 and z3/1 in the context of histopathological and clinical characteristics of the IDC cohort. The results showed that in contrast to ILCs, combined positivity for both CD151 and z3/1 showed no correlation with any of the clinicopathological features in IDCs (Table 2B). Taken together, these results suggest that the involvement of CD151 and its principal transmembrane partner, the integrin z3/1, in tumour development and progression is likely to differ between histological subtypes of BCa.

In ILC, in contrast to IDC, neither CD151 nor z3/1 hold prognostic value. Neither CD151 nor z3/1 analysed alone were of any prognostic value in ILCs (Table 3A). In contrast, in IDC, as shown previously, CD151-positive patients had 1.88-fold higher risk of death from BCa in comparison with CD151-negative
Table 2. Association between CD151 and z3β1 expression and clinicopathological features

Feature	ILC	CD151 (high: n = 83)	CD151/z3β1 (high: n = 55)
z3β1 (high: n = 69)	CD151 (high: n = 83)	CD151/z3β1 (high: n = 55)	
x3	0.012	0.012	0.381
CD151	0.574	0.047	0.101
Nodes	0.464	0.277	0.387
Stage	0.656	0.019	0.019
Grade	0.093	0.343	0.019
ErbB2	0.902	0.881	0.425
ER/PR	0.694	0.471	0.425

Feature	IDC	CD151 (high: n = 87)	CD151/z3β1 (high: n = 26)
z3β1	CD151	CD151/z3β1 (high: n = 26)	
x3β1 (high: n = 32)	CD151 (high: n = 87)	CD151/z3β1 (high: n = 26)	
CD151	<0.001	<0.001	0.499
Size	0.599	0.497	0.499
Nodes	0.271	0.076	0.413
Stage	0.545	0.030	0.174
Grade	0.163	0.041	0.162
ErbB2	>0.999	0.015	0.995
ER/PR	0.663	0.819	0.797

Abbreviations: ER/PR = oestrogen receptor/progesterone receptor; IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma. The bold values are statistically significant.

patients. Moreover, a multivariate statistical analysis identified CD151 as an independent marker ($P = 0.0172$) of poor prognosis in IDC (Table 4). In neither ILC nor IDC, coexpression was significantly associated with patient survival. Furthermore, although in the IDC cohort, clinicopathological characteristics commonly recognised as independent prognostic factors (tumour size, lymph node status, stage) were significantly associated with poor survival, none of them held any prognostic value in our ILC study population (Table 3A and B).

Lack of CD151/z3β1 expression is associated with poor survival in node-negative ILC. As CD151, acting in partnership with z3β1, is thought to affect invasive spread of tumour cells, we analysed prognostic values of CD151 and/or z3β1 in the ILC cohort in relation to the lymph node status. The results presented in Table 5 demonstrate that neither CD151 nor z3β1 assessed alone or in combination had any significant prognostic value in any of the subgroups. Only a trend towards statistical significance ($P = 0.082$) was seen for CD151 in node-negative patients (ILC N(−)). Furthermore, in the ILC N(−) subgroup, the data were suggestive that the presence of either CD151 or z3β1 could be favourable to the prognosis but their coexpression had no additive effect on patient survival. Thus, we next looked at the relationships between CD151 and/or z3β1 and tumour characteristics in the lymph node-negative subgroup (characteristics of the group are summarised in Table 6A). Table 6B demonstrates that, as in the whole group, significant correlations between (1) expression of CD151 and z3β1 ($P = 0.018$); (2) CD151 and tumour size ($P = 0.035$); and (3) CD151/z3β1 and grade ($P = 0.029$) were maintained. Univariate analysis in ILC N(−) cases showed that lack of combined expression of CD151 and z3β1 was significantly correlated with poor patient survival ($P = 0.034$) and was the only prognostic factor in this group (Table 6C). The CD151/z3β1 negative patients had 3.12-fold higher risk of death from BCa in comparison with the rest of the patients with no lymph node involvement and the 5-year estimated survival rates were 64% vs 91%, respectively (Figure 3).

DISCUSSION

An overexpression of CD151/Tspan24 has been repeatedly reported as a negative predictor of overall survival in patients with invasive ductal breast carcinoma (Yang et al, 2008; Sadej et al, 2009; Kwon et al, 2012; Novitskaya et al, 2014) but nothing is known about its clinical significance in invasive lobular BCa. Here we demonstrate that, in contrast to IDC, loss of CD151 expression in complex with that of its principal molecular partner, the integrin z3β1, is significantly associated with poor survival in patients with lymph node-negative ILC. There have been a few attempts to establish an expression signature of a risk of distant metastasis in primary lymph node-negative IDC (Mirza et al, 2002; Wang et al, 2007; Tutt et al, 2008). To the best of our knowledge, this is the first study providing information on prognostic factors in a subgroup of lymph node-negative ILC patients.

The results of our study provide support for the notion of biological diversity of CD151 in human cancer. Acting alone and/or in complex with laminin-binding integrins, CD151 has been linked with various aspects of carcinogenesis (Palmer et al, 2014; Sadej et al, 2014). Although its pro-migratory and pro-invasive functions are well established, it was also reported that in certain cell types the presence of CD151 is associated with suppression of motility. For example, its downregulation induced by hypoxic stress at the primary site in colon cancer was shown to
decrease adhesion of cells to the extracellular matrix and enhance cell motility (Chien et al., 2008). Similarly, both up- and downregulation of integrin α3β1 expression have been correlated with tumour invasion and poor prognosis (Adachi et al., 1998; Fukushima et al., 1998; Gustafson-Wagner and Stipp, 2013). Furthermore, the CD151/α3β1 complex has been recently shown to suppress ovarian tumour growth (Baldwin et al., 2014). Although in our study no prognostic value could be ascribed to either CD151 or α3β1 assessed alone, their independent suppressor-like functions cannot be excluded. Further mechanistic investigation would be required to evaluate an actual impact of a loss of the CD151/α3β1 complex on ILC tumour behaviour.

Increasing evidence suggests that ILCs and IDCs are biologically different. This is reflected in disparities in morphological and phenotypic characteristics, transcriptomic profiles related particularly to cell–cell and cell–matrix interactions (Weigelt et al., 2010), as well as responsiveness to neoadjuvant therapy (Korkola et al., 2003). As demonstrated by several genomic studies, the only consistent finding characterising ILC tumours is inactivation of CDH1 (E-cadherin, cadherin-1) (Bertucci et al., 2008; Weigelt et al., 2008, 2010; Sikora et al., 2013) and, indeed, lack of E-cadherin expression is considered a hallmark of ILC. Although the role of E-cadherin in tumour onset and progression is still largely unknown, its inactivation alone is clearly not sufficient to induce

Table 3. Univariate analysis of prognostic factors

Factor	HR	95% CI	P-value
α3β1	0.72	0.35–1.49	0.380
CD151	0.56	0.28–1.14	0.109
CD151/α3β1	0.72	0.35–1.49	0.380
(T1 vs T2–4)	1.78	0.84–3.78	0.165
Nodal status	1.61	0.78–3.31	0.195
Stage (I vs II vs III)	2.08	0.85–5.11	0.111
ER/PR	0.46	0.17–1.19	0.110
HER2	NA*	NA*	NA*
Grade (G1–2 vs G3)	1.46	0.55–3.87	0.441

Abbreviations: CI = confidence interval; ER/PR = oestrogen receptor/progesterone receptor; HR = hazards ratio; IDC = invasive ductal carcinoma; ILC = invasive lobular carcinoma; NA = not analysed.

Table 4. Multivariate analysis of prognostic factors

Factor	HR	95% CI	P-value
CD151	1.88	1.15–3.08	0.012
CD151/α3β1	0.98	0.48–1.98	0.952
(T1 vs T2–4)	1.77	1.30–2.40	<0.001
Nodal status	3.01	1.78–5.10	<0.001
Stage (I vs II vs III)	1.81	1.27–2.57	<0.001
ER/PR	0.53	0.33–0.87	0.011
HER2	2.07	1.18–3.64	0.012
Grade (G1–2 vs G3)	1.24	0.76–2.01	0.383

Abbreviations: CI = confidence interval; ER/PR = oestrogen receptor/progesterone receptor; HR = hazards ratio; IDC = invasive ductal carcinoma. The bold values are statistically significant.

Table 5. Univariate analysis of prognostic value of CD151 and/or α3β1 in relation to lymph node status

Factor	HR	95% CI	P-value
α3β1	1.28	0.45–3.60	0.641
CD151	0.64	0.22–1.87	0.412
CD151/α3β1	1.02	0.35–3.00	0.970

Abbreviations: CI = confidence interval; HR = hazards ratio; ILC = invasive lobular carcinoma.
neoplastic growth. It has been shown that combined loss of E-cadherin and p53, but not E-cadherin alone, in murine mammary epithelial cells induces metastatic carcinomas that resemble human ILC (Derksen et al, 2006).

There are several reports suggesting that an association of CD151 with integrin α3β1 might be important for regulation of E-cadherin-dependent cell–cell interactions. In mouse kidney, the CD151/integrin α3β1, acting as both an organiser and a component of a large multimolecular complex containing E-cadherin–β-catenin, promoted its association with the actin cytoskeleton and cadherin-mediated cell–cell adhesion. Deletion of integrin α3β1 in this system was found to disturb E-cadherin localisation and function (Chattopadhyay et al, 2003). In highly expressing E-cadherin human keratinocytes (HaCat cell line), blocking of CD151 supported cell dispersal (Chometon et al, 2006), whereas CD151 overexpression enhanced carcinoma cell–cell association (Shigeta et al, 2003). Similarly, in A431 epithelial carcinoma cells, near total silencing of CD151 destabilised E-cadherin-dependent cell–cell junctions. However, it was not the disruption of the E-cadherin regulatory complex but an excessive RhoA activation and disorganisation of actin fibres at the cell–cell junctions, induced by loss of CD151, that led to the enhancement of cell migration (Johnson et al, 2009). Through stabilisation of E-cadherin based cell–cell interactions, CD151 was suggested to counteract the metastatic progression of endometrial cancer (Voss et al, 2011). Activation of Rho/ROCK signalling axis triggered by loss of E-cadherin was recently demonstrated to be responsible for induction of anoikis resistance and invasive phenotype in a mouse model of human ILC (Schackmann et al, 2011).

Interestingly, results of our own study have shown that in IDC cells, depletion of CD151 and α3β1 caused increase of active RhoA (Novitskaya et al, 2014). Taken together, these findings seem to suggest that although loss of E-cadherin is a prerequisite of the lobular phenotype, other factors, including, perhaps, the CD151–α3β1 partnership, also contribute to invasive behaviour of cancer cells.

The results of our study demonstrated that unlike IDC, lack of both CD151 and integrin α3β1 correlated with decreased survival of patients with lymph node-negative ILCs. Unlike IDC, ILC tumour cells are deprived of E-cadherin expression and the function and significance of the CD151/α3β1 complex in biology of E-cadherin-negative cells are poorly characterised. However, it is conceivable that in this particular biological context, as in the settings described above, the CD151/α3β1 complex is controlling cell–cell adhesion and loss of E-cadherin contributes but is not decisive in destabilisation of cell–cell contacts and enhancement of cell migration.

The pathogenesis of IDC and ILC seems indeed to be governed by distinct mechanisms. Not only the high expression of CD151, but also the lymph node status, one of the most clinically important indicators of poor prognosis in IDC, was not correlated

CD151/α3β1 in lobular breast carcinoma

Table 6A. Lymph node-negative subgroup. Patient characteristics

Feature	ILC
Number of patients	64
Age (years)	
<50	10
≥50	54
Disease stagea	
I	34
II	28
III	1
T statusa	
T1	34
T2–T4	29
Gradeb	
1	13
2–3	49
Steroid receptor statusc	
Negative	5
Positive	58
HER2 status	
Negative	64

Abbreviations: ILC – invasive lobular carcinoma. Data available for 63 patients, 62 patients and 63 patients.

CD151 and/or α3β1 and tumour characteristics

Feature	α3β1 (high: n = 38)	CD151 (high: n = 47)	CD151/α3β1 (high: n = 32)
α3β1	0.018		
CD151	0.018		
Tumour size (T1 vs T2–4)	0.312	0.035	0.892
Grade	0.079	0.034	0.029
HER2	NA	NA	NA
ER	0.377	0.999	0.192
PR	NA	NA	NA

Abbreviations: ER/PR = oestrogen receptor/progesterone receptor; NA = not analysed.

a All tumours were HER2 negative.

b Lack of data for 45 cases. The bold values are statistically significant.

6B. Association of CD151 and/or α3β1 and tumour characteristics

6C. Univariate analysis of prognostic factors

Factor	HR	95% CI	P-value
α3β1	0.462	0.16–1.31	0.146
CD151	0.402	0.14–1.22	0.082
CD151/α3β1	0.724	0.35–1.49	0.187
Tumour size (T1 vs T2–4)	3.125	1.09–8.99	0.034
Grade	1.361	0.36–5.14	0.650
ER	0.372	0.08–1.72	0.206

Abbreviations: CI = confidence interval; ER = oestrogen receptor; HR = hazards ratio; ILC = invasive lobular carcinoma. The bold values are statistically significant.
with survival of patients in our ILC study population. Instead, our results showed that the combined absence of CD151 and α3β1 was a negative prognostic factor in patients with no lymph node involvement. This unexpected finding gives a new insight into the biology of ILC and possible contribution of CD151 and α3β1 to disease progression. CD151 is highly expressed in endothelial cells and is thought to regulate pathologic angiogenesis. It has also been demonstrated that CD151 plays an important role in maintaining integrity of endothelial layer (Zhang et al., 2011). Our immunohistochemical analysis showed that the level of CD151 expression on endothelial cells was correlated with that seen on tumour-associated endothelium. Although the mechanisms underlying this ‘phenotypic unity’ remains unknown, it is possible that the compromised integrity of CD151-negative endothelium would facilitate extravasation of CD151-negative cells. Whatever the underlying mechanisms, the results of our study indicate that loss of CD151-α3β1 may serve as a potential prognostic marker of poor survival in a subgroup of patients deemed to carry a low risk of cancer-related death (ie, lymph node negative). This could have important clinical implications by helping to identify patients likely to benefit from adjuvant therapy.

In summary, the results of our comparative analysis of clinical significance of CD151/αintegrin α3β1 in ILC and IDC highlight considerable differences in biology between these two BCa types. Furthermore, the study suggests that evaluation of the level of CD151/α3β1 expression might provide important information on behaviour of ILC tumours and identify patients with increased risk of distant metastases, commonly considered ineligible for routine adjuvant therapy.

ACKNOWLEDGEMENTS

This work was supported by the National Science Centre (Grant No. UMO-2013/09/B/NZ4/02512 to HMR and UMO-2012/06/M/ NZ3/00023 to RS).

CONFLICT OF INTEREST

The authors declare no conflict of interest.

REFERENCES

Adachi M, Taki T, Huang C, Higashiyama M, Doi O, Tsuji T, Miyake M (1998) Reduced integrin α3β1 expression as a factor of poor prognosis of patients with adenocarcinoma of the lung. J Clin Oncol 16(3): 1060–1067.

Baldwin LA, Hoff JT, Lefringhouse J, Zhang M, Jia C, Liu Z, Erfani S, Zhou P, Rabinovitz I, Sonnenberg A, Yi Y, Zhou P, Stipp CS, Kaelzal DM, Hemler ME, Yang X, Zhou P, Stipp CS, Kaetzel DM, Luo J, Lu M, West D, Liu C, Ueland FR, Drapkin R, Zhou BP, Yang XH (2014) CD151/α3β1 integrin complexes suppress ovarian tumor growth by repressing slug-mediated EMT and canonical Wnt signaling. Oncotarget 5(23): 12203–12217.

Bertucci F, Onetshi B, Negre V, Finetti P, Rouge C, Ahmadiane JC, Bibeau F, Mathieu MC, Treilleux I, Jacquemier J, Ursule L, Martinez A, Wang Q, Benard J, Puisieux A, Birnbaum D, Theillet C (2008) Lobular and ductal carcinomas of the breast have distinct genomic and expression profiles. Oncogene 27(40): 5359–5372.

Boucheix C, Rubinstein E (2001) Tetraspanins. Cell Mol Life Sci 58(9): 1189–1205.

Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kredigbrand IA (2003) α3β1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. J Cell Biol 163(6): 1351–1362.

Chien CW, Lin SC, Lai YY, Lin BW, Lin SC, Lee JC, Tsai SJ (2008) Regulation of CD151 by hypoxia controls cell adhesion and metastasis in colorectal cancer. Clin Cancer Res 14(24): 8043–8051.

Chometon G, Zhang ZG, Rubinstein E, Boucheix C, Mauch C, Aumailley M (2006) Dissociation of the complex between CD151 and laminin-binding integrins permits migration of epithelial cells. Exp Cell Res 322(7): 983–995.

Deng X, Li Q, Hoff J, Novak M, Yang H, Jin H, Erfani SF, Sharma C, Zhou P, Rabinovitz I, Sonnenberg A, Yi Y, Zhou P, Stipp CS, Kaelzal DM, Hemler ME, Yang XH (2012) Integrin-associated CD151 drives ErbB2-evoked mammary tumor onset and metastasis. Neoplasia 14(8): 678–689.

Derksen PW, Liu X, Saradin F, van der Gulden H, Zevenhoven J, Evers B, van Beijnum JR, Griffioen AW, Vink J, Kruijenport P, Peterse JL, Cardiff RD, Berns A, Jonkers J (2006) Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10(5): 437–449.

Fukushima Y, Ohnishi T, Arita N, Hayakawa T, Sekiguchi K (1998) Integrin α3β1eta3β1-mediated interaction with laminin-5 stimulates adhesion, invasion and migration of malignant glioma cells. Int J Cancer 76(1): 63–72.

Gonzalez MA, Pinder SE, Wencyk PM, Bell JA, Elston CW, Nicholson RI, Robertson JF, Blamey RW, Ellis IO (1999) An immunohistochemical examination of the expression of E-cadherin, alpha- and beta/gamma-catenins, and alpha-2 and beta-1-integrins in invasive breast cancer. J Pathol 187(5): 523–529.

Gonzalez-Angulo AM, Sahin A, Krishnamurthy S, Yang Y, Kau SW, Hortobagyi GN, Cristofanilli M (2006) Biologic markers in axillary node-negative breast cancer: differential expression in invasive ductal carcinoma versus invasive lobular carcinoma. Clin Breast Cancer 7(5): 396–400.

Gui GP, Wells CA, Browne PD, Yeomans P, Jordan S, Puddefoot JR, Vinson GP, Carpenter R (1995) Integrin expression in primary breast cancer and its relation to axillary nodal status. Surgery 117(1): 102–108.

Gustafson-Wagner E, Stipp CS (2013) The CD9/CD81 tetraspanin complex and tetraspanin CD151 regulate alpha3beta1 integrin-dependent tumor cell behaviors by overlapping but distinct mechanisms. PLoS One 8(4): e61834.

Hemler ME (2005) Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol 6(10): 801–811.

Hofmann M, Stoss O, Shi D, Buttner R, van d V, Kim W, Ochiai A, Ruschhoff J, Henkel T (2008) Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology 52(7): 797–805.

Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122(Pt 13): 2263–2273.

Kazakov AR, Yang X, Stipp CS, Sehgal B, Hemler ME (2002) An extracellular site on tetraspanin CD151 determines alpha 3 alpha 3 and alpha 6 integrin-dependent cellular morphology. J Cell Biol 158(7): 1299–1309.

Korkola JE, DeVries S, Fridlyand J, Hwang ES, Estep AL, Ruschhoff J, Henkel T (2008) Assessment of a HER2 scoring system for gastric cancer: results from a validation study. Histopathology 52(7): 797–805.

Kwon MJ, Park S, Choi YY, Oh E, Kim YJ, Park YH, Cho EY, Kwon MJ, Nam SI, Im YH, Shin YK, Choi YL (2012) Clinical significance of CD151 overexpression in subtypes of invasive breast cancer. Br J Cancer 106(5): 923–930.

Lanzafame S, Emmanuelle C, Torrisi A (1996) Correlation of alpha 3 beta 1 expression with histologic type of breast carcinomas. Pathol Res Pract 192(10): 1031–1038.

Mirza AN, Mirza NQ, Vlastos G, Singley SE (2002) Prognostic factors in node-negative breast cancer: a review of studies with sample size more than 200 and follow-up more than 5 years. Ann Surg 235(1): 10–26.

Nishiyama K, Romanoska H, Kordic R, Potekhin P, Kusinska R, Parsons M, Olszewska E, Berdichevski F (2014) Integrin alpha3beta1 CD151 complex regulates dimerization of ErbB2 via RhoA. Oncogene 33(21): 2779–2789.

Palmer TD, Martinez CH, Vasquez C, Hebron KE, Jones-Paris C, Arnold SA, Chan SM, Chalasani V, Gomez-Lemus JA, Williams AK, Chin JL, Giannico GA, Ketova T, Lewis JD, Zijlstra A (2014) Integrin-free tetraspanin CD151 can inhibit tumor cell motility upon clustering and is a clinical indicator of prostate cancer progression. Cancer Res 74(1): 173–187.

Romanska HM, Berdichevski F (2011) Tetraspanins in human epithelial malignancies. J Pathol 223(1): 4–14.

Sadej R, Rudowksa A, Turczyk L, Kordic R, Romanska HM (2014) CD151 in cancer progression and metastasis: a complex scenario. Lab Invest 94(1): 41–51.

Sadej R, Romanska H, Baldwin G, Girkizizanaki K, Novitskaya V, Filer AD, Krcova Z, Kusinska R, Ehrmann J, Buckley CD, Kordic R, Potekhin P, Eliopoulos AG, Lalani E, Berdichevski F (2009) CD151 regulates...
tumorigenesis by modulating the communication between tumor cells and endothelium. *Mol Cancer Res* 7(6): 787–798.

Schackmann RC, van AM, Haarhuis JH, Vlug EJ, Halim VA, Roodhart JM, Vermaat JS, Voest EE, van der Groep P, van Diest PJ, Jonkers J, Derksen PW (2011) Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. *J Clin Invest* 121(8): 3176–3188.

Schackmann RC, van AM, Haarhuis JH, Vlug EJ, Halim VA, Roodhart JM, Vermaat JS, Voest EE, van der Groep P, van Diest PJ, Jonkers J, Derksen PW (2011) Cytosolic p120-catenin regulates growth of metastatic lobular carcinoma through Rock1-mediated anoikis resistance. *J Clin Invest* 121(8): 3176–3188.

Shigeta M, Sanzen N, Ozawa M, Gu J, Hasegawa H, Sekiguchi K (2003) CD151 regulates epithelial cell-cell adhesion through PKC- and Cdc42-dependent actin cytoskeletal reorganization. *J Cell Biol* 163(1): 165–176.

Sikora MJ, Cooper KL, Bahreini A, Luthra S, Wang G, Chandran UR, Davidson NE, Dabbs DJ, Welm AL, Oesterreich S (2014) Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. *Cancer Res* 74(5): 1463–1474.

Sikora MJ, Jankowitz RC, Dabbs DJ, Oesterreich S (2013) Invasive lobular carcinoma of the breast: patient response to systemic endocrine therapy and hormone response in model systems. *Stereoids* 78(6): 568–575.

Tutt A, Wang A, Rowland C, Gillett C, Lau K, Chew K, Dai H, Kwok S, Ryder K, Shu H, Springall R, Cane P, McCallie B, Kam-Morgan L, Anderson S, Buerger H, Gray J, Bennington J, Esserman L, Hastie T, Broder S, Sninsky J, Brandt B, Waldman F (2008) Risk estimation of distant metastasis in node-negative, estrogen receptor-positive breast cancer patients using an RT-PCR based prognostic expression signature. *BMCTumor Markers* 8: 339.

Voss MA, Gordon N, Maloney S, Ganesan R, Ludeman L, McCarthy K, Gornall R, Schaller G, Wei W, Berditchevski F, Sundar S (2011) Tetranspin CD151 is a novel prognostic marker in poor outcome endometrial cancer. *Br J Cancer* 104(10): 1611–1618.

Wang Y, Klijn J, Zhang Y, Atkins D, Foekens J (2007) Gene expression profiles and prognostic markers for primary breast cancer. *Methods Mol Biol* 377: 131–138.

Weigelt B, Geyer FC, Natrajan R, Lopez-Garcia MA, Ahmad AS, Savage K, Kreike B, Reis-Filho JS (2010) The molecular underpinning of lobular histological growth pattern: a genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. *J Pathol* 220(1): 45–57.

Weigelt B, Hirlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, de JD, van de Vijver MJ, Van’t Veer LJ, Peterse JL (2008) Refinement of breast cancer classification by molecular characterization of histological special types. *J Pathol* 216(2): 141–150.

Yang XH, Richardson AL, Torres-Arzayus MI, Zhou P, Sharma C, Kazarov AR, Andzelm MM, Strominger JL, Brown M, Hemler ME (2008) CD151 accelerates breast cancer by regulating alpha 6 integrin function, signaling, and molecular organization. *Cancer Res* 68(9): 3204–3213.

Zhang F, Michaelson JE, Moshiach S, Sachs N, Zhao W, Sun Y, Sonnenberg A, Lahti JM, Huang H, Zhang XA (2011) Tetraspanin CD151 maintains vascular stability by balancing the forces of cell adhesion and cytoskeletal tension. *Blood* 118(15): 4274–4284.

Zoller M (2009) Tetraspanins: push and pull in suppressing and promoting metastasis. *Nat Rev Cancer* 9(1): 40–55.

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 4.0 Unported License.