 Charge asymmetry dependency of π^+/π^- elliptic flow in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV

Hongwei Ke1,2 (for the STAR Collaboration)

1. Institute of Particle Physics, Central China Normal University, Wuhan 430079, China
2. Brookhaven National Laboratory, Upton, NY 11973, USA

E-mail: kehw@rcf.rhic.bnl.gov

Abstract. In this proceedings, we present STAR’s measurement of v_2 difference between positively charged pions and negatively charged pions at low transverse momentum for Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV. The integrated v_2 of $\pi^+ (\pi^-)$, $0.15 < p_T < 0.5$ GeV/c, decreases (increases) linearly with the increasing charge asymmetry A_{\pm}. The v_2 difference between π^+ and π^- is proportional to A_{\pm} and the slope parameters have their order of magnitude of about 0.01. All of these observed features are consistent with the prediction based on Chiral Magnetic Wave. The centrality dependence of the v_2 difference is different than that was predicted.

1. Introduction
In relativistic heavy ion collisions, a significant fraction of incident energy is deposited in the collision region. Due to the existence of the large energy density, a phase of extremely hot and dense matter consisting of quarks and gluons, the Quark Gluon Plasma (QGP) [1, 2, 3, 4], is expected to be created. On the other hand, in non-central collisions, spectators keep moving along the incident directions. Since spectators are charged objects, moving spectators will generate electric current which induces a magnetic field perpendicular to the reaction plane (defined by the line connecting the colliding nuclei and the incident direction). It has been estimated that the magnetic field created in heavy ion collisions can be as strong as up to $\sim 10^{15}$ Tesla at the beginning of collisions while it decreases rapidly with time [5]. With QGP under a such strong magnetic field, it is pointed out that the chiral magnetic effect (CME) [5, 6, 7, 8, 9] and the chiral separation effect (CSE) [10, 11] are expected to exist. The CME in Quantum Chromodynamics (QCD) is that the external magnetic field induces a vector current with a finite axial chemical potential μ_A, which describes the asymmetry between the densities of left- and right-handed quarks.

$$j_V = \frac{Ne}{2\pi^2} \mu_A B.$$

If there exist meta-stable P and CP odd domains, space-time regions occupied by a classical field with a nonzero topological charge, under CME it would lead to the asymmetry in the emission of positively and negatively charged particles perpendicular to the reaction plane in non-central collisions. Such effect has been intensively studied by several experiments [12, 13, 14, 15]. The other effect in the discussion, CSE, is the separation of chiral charge along the axis of the external...
magnetic field at finite density of vector charge. The resulting axial current is given by

\[j_A = \frac{N_c e}{2\pi^2} \mu V B. \]

The local fluctuation of axial current from Eq. (2) will induce a local fluctuation of the axial chemical potential, and thus according to Eq. (1) a fluctuation of electric current. The resulting fluctuation of electric charge density will then in turn, again, induce an axial current according to Eq. (2). With alternating CME and CSE this cycle continues, and it gives rise to a gapless excitation regarded as Chiral Magnetic Wave (CMW). Please note that the CMW does not require the local parity violation although one of its ingredients, namely the CME, is responsible for making the local parity violation signal visible in relativistic heavy ion collisions.

The CMW has a consequence that also could be observed in experiments. As pointed out in a recent theoretical work [16], a CMW in QGP will form a electrical quadrupole moment which can lead to more positive charge near the poles of the created fireball and more negative charge near the equator. That means, this configuration will cause a difference in elliptic flow, \(v_2 \) [17], between positively and negatively charged particles. Taking into account the quadrupole moment, the azimuthal angle distribution of positive and negative particles is given by Eq. (3),

\[\frac{dN_\pm}{d\phi} = N_\pm [1 + 2v_2 \cos(2\phi)] \approx \tilde{N}_\pm [1 + 2v_2 \cos(2\phi) \mp A_\pm r \cos(2\phi)] \]

Here \(\tilde{N}_+ \) (\(\tilde{N}_- \)) is number of positive (negative) particles, \(A_\pm \equiv (\tilde{N}_+ - \tilde{N}_-)/(\tilde{N}_+ + \tilde{N}_-) \) is the net charge asymmetry and \(r = 2q_e/\bar{\rho}_e \), while \(q_e \) represents the electrical quadrupole and \(\bar{\rho}_e \) is charge density. Authors in [16] also pointed out this difference in elliptic flow should be see via \(\pi^+ \) and \(\pi^- \) due to their similar absorption cross sections in hadronic matter at finite baryon density. The elliptic flow difference between \(\pi^+ \) and \(\pi^- \) is expected to be proportional to the net charge asymmetry as described in Eq. (4).

\[\Delta v_2^{CMW} = v_2(\pi^-) - v_2(\pi^+) \approx r A_\pm \]

There are other models that also predicted different elliptic flow between particles and anti-particles. Quark transport model predicted \(v_2 \) order of particles and anti-particles according to their quark components [18]. This model is base on quark coalesce and assumes transported quarks have lager \(v_2 \) than produced quarks. AMPT model with hadronic potential also predicts different \(v_2 \) of particles and anti-particles [19]. However, as currently implemented the two models mentioned above did not provide a net charge asymmetry dependency of the \(v_2 \) difference.

In STAR experiment, the difference in integrated \(v_2 \) between particles and anti-particles has been observed. In this paper, we aim to study such difference differentially as a function of net charge asymmetry, and compare that to features predicted by the CMW.

2. Data Analysis and Results

STAR detector complex [20] has large acceptance and full azimuthal coverage, which is ideal for studying elliptic flow. In this analysis, we used ~ 238M minimum-bias \(Au + Au \) events at \(\sqrt{s_{NN}} = 200 \) GeV taken by STAR during year 2010. STAR Time Projection Chamber (TPC) [21] is used to reconstruct tracks and identify particles. All particles used in this analysis are required to be in the middle rapidity range \(|\eta| < 1.0 \). For flow analysis, pions are identified by ionization energy loss in TPC and required to have \(0.15 < p_T < 0.5 \) GeV/c. All charged particles within \(0.15 < p_T < 12 \) GeV/c are used to calculate net charge asymmetry except low \(p_T \) protons, \(p_T < 0.4 \) GeV/c. Those protons are dominated by protons produced from knockout/nuclear
interactions of pions with inner detector material, and thus rejected. Antiprotons within the same p_T range are also excluded from the net charge asymmetry calculation in order to balance the cut on protons.

To estimate the elliptic flow of π^+ and π^-, we use Q-cumulants method, which is also called direct cumulants method [22]. Q-cumulants method estimates different order of harmonics via multi-particle correlations. This relatively new method needs only on pass over tracks and has comprehensive detector inefficiency corrections. In practice of this analysis, two-particle correlation is used to estimate $v_2\{2\}$ of pions and an η-gap of 0.3 pseudo-rapidity unit on each side is applied to suppress the short-range correlation.

With in a certain centrality bin, we calculate the net charge asymmetry A_{\pm} event by event and divide the sample into five sub-groups so that each sub-group has roughly the same number of events. Considering finite detector acceptance and tracking inefficiency, A_{\pm} obtained directly from final state hadrons is different than the true A_{\pm}, thus it needs to be corrected. In discussion below, we call the A_{\pm} before the correction the observed A_{\pm}, and otherwise, the true A_{\pm}. The correction procedure on the observed A_{\pm} will be discussed later. Fig. 1 shows the observed A_{\pm} distribution of 30-40% most central Au + Au events at $\sqrt{s_{NN}} = 200$ GeV, in which red lines divide the statistics equally into five bins.

We measured the integrated $v_2\{2\}$ of π^+ and π^- with $0.15 < p_T < 0.5$ GeV/c and present it as a function of observed A_{\pm}. In Fig. 2(a), v_2 of π^+ and π^- both show a linear relationship with respect to the observed A_{\pm}. With the increasing observed A_{\pm}, v_2 of π^- increases and v_2 of π^+ decreases. As a consequence, the v_2 difference between π^+ and π^-, $\Delta v_2 = v_2(\pi^-) - v_2(\pi^+)$, increases linearly with the increase of the observed A_{\pm}. All of the features mentioned here are consistent with the prediction made in [16].

The slope of the linear relationship between Δv_2 and A_{\pm} is of special interest because it has a connection to the electrical quadrupole induced by a CMW in QGP. However, one needs to correct the observed A_{\pm} before a meaningful slope can be extracted. Applying the correction on observed A_{\pm} is conducted in two steps. First, we measure the tracking efficiency of charged pions in embedding data and use it as the tracking efficiency of all charged hadrons. This efficiency reflects the combined effect of detector and track reconstruction inefficiency. Secondly, we generated some Monte-Carlo events by using the event generator Hijing [23]. Net charge asymmetry in Hijing events is measured before and after applying the tracking efficiency and all

![Figure 1](image-url). Observed net charge asymmetry A_{\pm} distribution of 30-40% most central Au + Au events at $\sqrt{s_{NN}} = 200$ GeV. The vertical dashed red lines show the sub-groups of events.
of track selection cuts as applied on real data. The relationship between the two measurements of net charge asymmetry is used to map the observed A_{\pm} to the true A_{\pm}. Roughly, the corrected charge asymmetry A_{\pm} is a half of its corresponding observed A_{\pm}.

In Fig. 2(b), the Δv_2 is plotted a function of A_{\pm}. A clearly linear relationship is observed. Fitting the data points to a straight line, the slope parameter can be extracted. This procedure is repeated for all centrality classes.

The slope parameters measured for events in the nine centrality bins are shown in Fig. 3(a). Here only statistical uncertainties are shown. It can be seen that slopes have the order of magnitude of about 0.01, which is consistent with the theoretical prediction based on CMW. The slopes are relatively large in mid-centrality and relatively small in peripheral and central collisions. In order to quantitatively compare to the prediction made in [16], we map out our centrality definition to impact parameter b according to a previous STAR study based on Monte-Carlo simulation [24]. The comparison is shown in Fig. 3(b). It can be seen that, although the
magnitude of slopes in general agree with the prediction, the centrality dependency is a little different - the data is peaked at a larger b than the prediction. As the strong correlation exists between b and the magnetic field, this observation calls for a more advanced calculation on the magnetic field that is used to calculate the Δv_2.

3. Summary
We measured the v_2 of π^+ and π^- of Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV in different centrality and different net charge asymmetry A_{\pm} bins. The integrated v_2 of π^+ (π^-), $0.15 < p_T < 0.5$ GeV/c, decreases (increases) linearly with the increasing A_{\pm}. The v_2 difference between π^+ and π^- is proportional to A_{\pm} and the slope parameters have their order of magnitude of about 0.01. All of these observed features are consistent with the prediction based on CMW in [16]. However, the predicted trend of the slope with respect to impact parameter is different than the measurement.

Acknowledgments
This work is supported in part by National Natural Science Foundation of China under Grants 11075060, 11135011 and 11105060.

References
[1] Arsene I and et al (BRAHMS Collaboration) 2005 Nuclear Physics A 757 1 – 27
[2] Back B and et al (PHOBOS Collaboration) 2005 Nuclear Physics A 757 28 – 101
[3] Adams J and et al (STAR Collaboration) 2005 Nuclear Physics A 757 102 – 183
[4] Adcox K and et al (PHENIX Collaboration) 2005 Nuclear Physics A 757 184 – 283
[5] Kharzeev D, McLerran L D and Warringa H J 2008 Nuclear Physics A 803 227 – 253
[6] Dmitri and Kharzeev 2006 Physics Letters B 633 260 – 264
[7] Kharzeev D and Zhitnitsky A 2007 Nuclear Physics A 797 67 – 79
[8] Fukushima K, Kharzeev D E and Warringa H J 2008 Phys. Rev. D 78(7) 074033
[9] Kharzeev D E 2010 Annals of Physics 325 205 – 218
[10] Son D T and Zhitnitsky A R 2004 Phys. Rev. D 70(7) 074018
[11] Metlitski M A and Zhitnitsky A R 2005 Phys. Rev. D 72(4) 045011
[12] Abelev B I and et al (STAR Collaboration) 2009 Phys. Rev. Lett. 103(25) 251601
[13] Abelev B I and et al (STAR Collaboration) 2010 Phys. Rev. C 81(5) 054908
[14] Ajitanand N N, Esumi S and Lacey R A (PHENIX Collaboration) 2010 In Proc. of the RBRC Workshops (Brookhaven National Laboratory, Upton, NY, 2010), Vol. 96.
[15] Selyuzhenkov I and Collaboration A 2012 (Preprint arXiv:1203.5230v1)
[16] Burnier Y, Kharzeev D E, Liao J and Yee H U 2011 Phys. Rev. Lett. 107 052303
[17] Poskanzer A M and Voloshin S A 1998 Phys. Rev. C 58 1671–1678
[18] Dunlop J C, Lisa M A and Sorensen P 2011 Phys. Rev. C 84(4) 044914
[19] Xu J, Chen L W, Ko C M and Lin Z W 2012 Phys. Rev. C 85(4) 041901
[20] Ackermann K H and et al (STAR Collaboration) 2003 Nucl. Instrum. Methods A 499 624 – 632
[21] Anderson M and et al (STAR Collaboration) 2003 Nucl. Instrum. Methods A 499 659 – 678
[22] Bilandzic A, Snellings R and Voloshin S 2011 Phys. Rev. C 83 044913
[23] Gyulassy M and Wang X N 1994 Computer Physics Communications 83 307 – 331
[24] Abelev B I and et al (STAR Collaboration) 2009 Phys. Rev. C 79 034909