Using Fuzzy-ARFIMA Models to Predict Births in Basra Governorate

Dr. Raissan Abdulimam Zalan* and Zainab sami yaseen*
Statistics Department, College of Administration and Economics, University of Basra, Iraq

1 ressan.zalan@uobasrah.edu.iq
2 zaisam858@gmail.com

Abstract: Today's time series analysis is one of the most important statistical methods in forecasting, and it has been used in many economic, industrial, commercial and science fields, by representing time series characterized by long-term memory that helps predict future predictions and make appropriate and accurate decisions. In this research, we study prediction by relying on time series data for births in Basra Governorate. Using fuzzy-ARFIMA models and comparing them with each other using evaluation criteria (AIC & BIC) and (Adjust R-squared) for prediction, which are calculated using Eviews version (10), and Fuzzy-ARFIMA (12,0,104,12) was found. It is the best because it has the lowest values for (AIC & BIC) and the highest value for (Adjust R-squared), and also the highest forecasting efficiency because it has the lowest values for prediction accuracy scales (MAE & RMSE) and was chosen as the best model for predicting the future of monthly births in Basra.

1. Introduction
The importance of time series stems in future predictions for all areas that serve societies and humanity. Scientific developments no longer stop at presenting problems and studying their causes, but today they study the interactions between different sciences, analyze them and predict what will be the results of the studied phenomenon in the future. The interest in time series and its models is increasing day by day, and among the most important of these models is the autoregressive and differential fractional averages model which ARFIMA developed by (Granger and Joyeux, 1980) (Hosking, 1981)The Fuzzy Time Series model has a high capacity for solving various problems.
The number of births in Iraq in general, and in Basra in particular, is characterized by being inaccurate and the reason for this is the variation in the sources of the number of births in hospitals on the one hand, and the cases that come from outside, and this in turn makes the estimation of the number of births in an uncertain way, in addition to the cases that are not already registered from the above.
In our study, we will use Fuzzy-ARFIMA models to predict the number of births and to address the uncertainties about the number of births, thus predicting more accurately, And choose the best prediction model.
2. Previous studies
The current study was distinguished from previous studies in that it used the Fuzzy-ARFIMA model, and it proved its efficiency in predicting. Either the previous studies used the normal ARFIMA model only or the ARFIMA-ANN hybrid model. Among the most prominent of these research are:

2.1. A comparative study between the ARFIMA and ANN models in forecasting crude oil prices . (Al-Mabhouh, 2018). The study aimed to use the ARFIMA long-memory models and the ANN artificial neural network method to study crude oil price predictions. The importance of the research is due to the importance of oil prices in the economy of the exporting and importing countries. The study was conducted from 30/09/2013 to 09/03/2018 on crude oil price data in the state of Texas, USA. It concluded that the best model for representing the time series and predicting oil prices was ARFIMA. (1.0.375.1), followed by the MLP Artificial Neural Networks Model (2-25-1).

2.2. The optimal strategy for managing foggy stocks - Applied research in Baghdad Soft Drinks Company (Jassim, 2015). The study aimed to apply the fuzzy time series method to determine the economic quantities of production and demand for a can of Pepsi in the Baghdad Soft Drinks Company and to get rid of the fluctuations and oscillations associated with medicine.

2.3. Modeling the gold prices in Indonesia using the ARFIMA(Safitri et al., 2019). The importance of the study comes along because investing in gold is the best option to control financing, and it is easy to resell gold if there is a financial need at an unpredictable moment in time. The study aimed to predict the price of gold in Indonesia, and concluded that the efficiency of the ARFIMA method was ARFIMA (1.1.05716, 3).

2.4. Using ARFIMA-ANN Hybrid Models in Predicting Global Wheat Prices (Al-Taweel, 2019). The study aimed to use ARFIMA-ANN hybrid models in predicting global wheat prices. The importance of research is due to the global importance of wheat for all countries, and the study was conducted over ten years 1997 through 2017, and it came to the ideal model for time series representation and prediction Wheat price was the ARFIMA-ANN model, and the predictive values were consistent with the original values.

3. Definition of long memory
Time series is characterized by either the long-term process or the short-term; the long-term series is characterized by the continuity of its observations, and this makes the autocorrelation coefficients not exponentially decreasing towards zero when the displacement increases, and this is what the short-term time series means. The autocorrelation function behaves the hyperbolic behavior and decreases slowly at the polynomial rate. Upon this behavior the process is referred to as Long Memory Time Series (Tsay, 2005). There has been an increase in global interest in the study of time series known as Long Memory Dependence models, which have become an alternative to ARIMA models since they achieve stability by taking d fractions within the closed period [-0.5,0.5].

(Robinson, 2003) defines long-term time series based on the spectrum density function as follows:

\[y_t \] is a stable process within the iteration field
\[f(\lambda) \] - A spectrum density function that exhibits a long memory if it was \(f(0) = \infty \) which \(f(\lambda) \) have a fixed point at zero iteration
if \(f(0) = 0 \Rightarrow \lambda = 0 \) then \(y_t \) is a moderately, non-permanent, or negative memory process.
\(y_t \) is a short-memory method if \(f(0) = \sum_{k=-\infty}^{\infty} \gamma(k) \Rightarrow 0 < f(0) < \infty \)
4. Features of long memory models (ARFIMA)

The properties of ARFIMA (p, d, q) are defined by the different values of the fractional differentiation d has four cases (Tariq, 2014):

A. The string y_t accepts inversion and is infinite: in the case of $(d > -1/2)$ the values of $\theta_q(L)$ fall outside the unit root.

B. The series y_t is stable: in the case of $(d > -1/2)$ the values of $\phi_p(L)$ are outside the unit root.

C. The y_t string accepts reflection with short and non-permanent memory: in the case of $(-1/2 < d < 0)$.

D. The y_t series is stable with a long and continuous memory: in the case of $(0 < d < 1/2)$, here the values of the positive autocorrelation function slowly decrease towards zero in the form of a hyperbola, especially when the gap counter increases K. If the values of the fractional differentiation coefficient are within the closed interval $d \in [-0.5, 0.5]$ then ARFIMA $(0, d, 0)$ are models with long stable long memory accepting reflection. (John & Victoria, 2001)

5. Confirm and verify the long memory feature

Several graphs and statistical tests are used to confirm and verify the long memory characteristics, including:

5.1. Use of info graphics

Several graphs give a quick and clear indication of the existence of long memory. Among these fees:

- Autocorrelation function
- R / S diagram
- Higuchi method
- Variogram method
- Spectral density function

- R / S diagram

The R / S chart is an abbreviation for the Rescaled range, and also called the Hurst coefficient for testing the long memory of the time series (Hurst, 1951). It is calculated according to the following equations:

$$\ln[Q(t, k)] = \ln \left[\frac{R(t, k)}{S(t, k)} \right] = \sum_{i=1}^{j} X_i$$

whereas:

$$R(t, k) = \max_{0 \leq i \leq k} \left[\gamma_{t+i} - \gamma_t \frac{i}{k} \left(\gamma_{t+k} - \gamma_t \right) \right] - \min_{0 \leq i \leq k} \left[\gamma_{t+i} - \gamma_t \frac{i}{k} \left(\gamma_{t+k} - \gamma_t \right) \right]$$

$$\bar{X}_{t,k} = \frac{\Sigma_{i=t+1}^{t+k} X_i}{k} S(t, k) = \sqrt{\frac{\Sigma_{i=t+1}^{t+k} (X_i - \bar{X}_{t,k})^2}{k}}$$

Let’s plot an R / S diagram. The two axes must be drawn $\ln[Q(t, k)]$, $\ln[k]$ whereas:

R: Range S: Standard Deviation k: Lags.

The straight line (y-axis) is estimated using the Ordinary Least Squares (OLS) method, which determines the relationship between $\ln[Q(t, k)]$, $\ln[k]$ (Beran, 1994).

5.2. The use of statistical tests

There are several statistical tests that are used to detect time series with long memory, including R / S analysis (Hurst, 1951), and Lo analysis (Lo-Andrews, 1991):
Lo analysis

It takes on the analysis of R/S its sensitivity about short-term correlations and thus its bias for short-term correlations, in addition to its inability to correctly represent the tests because it is a semi-parametric statistic and its distribution is unknown. Based on this, (Lo-Andrews, 1991) proposed a modified R/S statistic known by the following equations:

\[
\begin{align*}
Q_{mT} &= \frac{R}{S_T(q)} = \frac{1}{S_T(q)} \times \left[\max_{1 \leq k \leq T} \sum_{j=1}^{k} (X_j - X_T) - \min_{1 \leq k \leq T} \sum_{j=1}^{k} (X_j - X_T) \right] \\
S_T^2(q) &= \frac{1}{T} \sum_{j=1}^{T} (X_j - X_n)^2 + 2 \sum_{j=1}^{q} \omega(q) \left[\sum_{i=j}^{n} (X_j - X_T)(X_i-j - X_T) \right] \\
\omega_j(q) &= 1 - \frac{j}{q + 1}, \quad q < T
\end{align*}
\]

The modified R/S statistic is also subject to a known statistical distribution, which is calculated according to the following equation:

\[
v = \frac{Q_{mT}}{(T)^{1/2}}
\]

This is done by measuring the significance of the Horst factor through a comparison between the tabular value and the estimated (Lo; 1991)

It also allows testing the null hypothesis: H_0 the short-memory time series, Alternative hypothesis H_1 time series with long memory (Muhammad, 2012)

6. Fuzzy prediction for time series

Fuzzy logic or fuzzy prediction has recently been widely used in various scientific fields, especially all that are characterized by uncertainty, suspicion, or ambiguity.

The number of births may contribute to facilitating the development of the necessary future plans. The theory of fuzzy series is the origin of the term fuzzy logic, which is based on assigning degrees of affiliation to each of the elements of the actual groups Crisp within the fuzzy group. The main reason for the emergence of fuzzy logic is dealing with data that fall into the circle of doubt and uncertainty, so that traditional methods are no longer able to develop appropriate solutions

7. Fuzzy logic groups

Fuzzy logic has two types of groups:

7.1. Actual Crisp Set

\[\text{define(Klij & Yuna,1995) it as a group that includes elements with distinct qualities, which may or may not be specific, belong or not. These elements have two values, either (1) when belonging to the group, or (0) when not belonging to the group, and they were called the actual or traditional group to distinguish them in terms of definition from the fuzzy group.}\]

7.2. The Fuzzy Set

\[\text{describes (Zadeh,1965) it as a group that includes several types (classes) of elements that are characterized by a function of belonging that ranges between (0,1). Element (0) indicates that the element does not belong to the group, or the grades are between (0,1), so it is defined as follows (Muhammad,2007) :}\]

A. Affiliation score of 0.5 : the element belongs and does not belong to the fuzzy group of 0.5
B. Affiliation degree 0.7, 0.8, 0.9 : the element belongs to the fuzzy group with a high degree
C. The degree of affiliation 0.1, 0.2, 0.3 : the element belongs to the fuzzy group with a weak degree

8. Qualities of Fuzzy Logic:
Fuzzy logic has qualities that encourage its use in many scientific fields (Abdullah, 2012), including:

A. High flexibility.
B. Corresponds to any type or group of input or output data.
C. Ease of understanding and conclusion.
D. It is based on natural language without any complication.
E. The possibility of merging it with traditional technologies, without the need to delete or replace them.

9. Advantages of fuzzy group theory:
The fuzzy group theory is characterized by a set of characteristics, the most important of which are (Al-Tai, 2007; Darwish, 2012)

A. The possibility of its application in the absence of sufficient information and clearly, and this is in contrast to the usual group theory, which requires the availability of all the information for its elements.
B. The fuzzy group allows all objects to belong to it.
C. The belonging function that characterizes the fuzzy group reflects the arrangement of the elements within the global total.
D. Fuzzy logic integrates with any logic system.
E. Fuzzy logic reflects things as a set of variables.

10. Practical application

10.1. Data
In this study, the number of births in Basra Governorate will be predicted using the original data for years from January 2011 to December 2019 that were obtained from the Basra Health Department, using Fuzzy-ARFIMA models.

Table No. (1) of births in the Basra from (2011-2019)

month	2011	2012	2013	2014	2015	2016	2017	2018	2019
1	9043	9823	9489	9894	9409	9059	9122	8859	8577
2	7645	8339	7775	8128	7538	7711	7265	6837	6366
3	7801	7860	8226	8866	7986	7426	7275	7104	7567
4	7032	7313	6918	7448	7328	7429	7455	7390	7205
5	6988	7168	7568	8517	7868	7966	7762	7382	7811
6	7813	8009	8079	8777	7833	7858	7853	7633	7842
7	8797	8834	9199	9147	9154	8996	9258	8581	7888
8	9179	8866	9361	9776	9334	9110	8881	8436	8003
9	9327	8866	8998	8942	8639	8302	8314	8465	8154
10	8954	8782	9012	9283	8962	8890	9408	8559	8274
11	8837	8535	8740	8934	8846	8761	8662	8501	8032
12	9211	8943	8986	9067	8738	8753	9266	8479	8426

*Table No. (1) shows the number of monthly deliveries for the years 2011-2019 that were obtained from the Basra Health Department / Planning Division

- For the purpose of obtaining data for a Fuzzy-ARFIMA, the following must be done:

10.2. Check long memory
The long memory is verified by calculating the Hurst parameter (H), and the time series has a long memory if the Hurst parameter is between (0.5 < H < 1).

Table (2) shows the values of the Hurst parameter.

Table No. (2) the values of the Horst parameter for the studied data series
is evident from the data in Table (2) that all the values of the Horst factor (H) were greater than 0.5, and this confirms the presence of the long memory characteristic of the series of births in Basra city. It turns out that the value of (H = 0.6441), which represents the slope of the straight line, which is a measure of the difference between short and long memory. In short time series the value of H is less than (0.5), and for time series with long memory, the value of H is greater than (0.5). As for time series with long memory, the value of H is greater than 0.5. This confirms that the data series births in the Basra city has a long memory, Figure (1).

![R/S Analysis](image)

Figure No.(1) diagram R/S the series births in the Basra city

- After making sure that the data has a long memory now, the data will be fogged using fuzzy analysis

10.3. Time series analysis using fuzzy prediction

The Chen Work FTS fog time-series model algorithm was used as a statistical method to address the uncertainty of births and predict them for the next period, the data may include (108) months Table (1)

- After processing the data with fuzziness, we will get fuzzy data, as shown in Table(3)

Table No. (3) the results of the fog processing process for all time series data Studied.

years	months	Original births	Births after treatment for fuzzy
2011	1	9043	8400
	2	7645	8200
	3	7801	8364
	4	7032	6950
	5	6988	7700
	6	7813	8364
	7	8797	8710
	8	9179	8675
	9	9327	8800
	10	8954	9400
	11	8837	8130
	12	9211	9217
2012	1	9823	8250
	2	8339	8717
	3	7860	8364
	4	7313	7550
Year	Month	YYYMMDD	YYYMMDD
------	-------	----------	----------
2013	1	9489	7983
	2	7775	7850
	3	8226	7500
	4	6918	7700
	5	7568	8350
	6	8079	8650
	7	9199	8675
	8	9361	8800
	9	8998	9400
	10	9012	8400
	11	8740	8710
	12	8986	9400
2014	1	9894	8250
	2	8128	8550
	3	8866	8130
	4	7448	8083
	5	8517	8125
	6	8777	8710
	7	9147	8675
	8	9776	8950
	9	8942	9400
	10	9283	9217
	11	8934	9400
	12	9067	8400
2015	1	9409	7983
	2	7538	8350
	3	7986	7600
	4	7328	7550
	5	7868	8364
	6	7833	8364
	7	9154	8675
	8	9334	8800
	9	8639	9100
	10	8962	9400
	11	8846	8130
	12	8738	8710
2016	1	9059	8400
	2	7711	7850
	3	7426	8083
	4	7429	8083
	5	7966	7600
	6	7858	8364
	7	8996	9400
	8	9110	8675
	9	8302	8717
10 8890 8130
11 8761 8710
12 8753 8364

2017
1 9122 8675
2 7265 7650
3 7275 7650
4 7455 8083
5 7762 7850
6 7853 8364
7 9258 9217
8 8881 8130
9 8314 8717
10 9408 7983
11 8662 9100
12 9266 9217

2018
1 8859 8130
2 6837 7150
3 7104 7700
4 7390 7550
5 7382 7550
6 7633 8200
7 8581 8125
8 8436 8550
9 8465 8550
10 8559 8125
11 8501 8125
12 8479 8550

2019
1 8577 8125
2 6366 7550
3 7567 8350
4 7205 7650
5 7811 8364
6 7842 8364
7 7888 8364
8 8003 8650
9 8154 8550
10 8274 7500
11 8032 8650
12 8426 8550

* In Table No. (3) Some numbers have been rounded off to be whole numbers, as they represent births

- In order to predict the births, the fuzzy data will be worked on according to the ARFIMA model, by following the following steps:

10.4. Descriptive analysis of fuzzy data

Figure (1) shows some statistical measures that give a general idea of fuzzy data.
Figure No.(2). Some statistical measures of fuzzy data.

The data of Figure (2) show that the highest fuzzy value for births was (9400) births per month, while the lowest value for births per month was (6950). The numerical mean of births per month was (8361.918) births per month with a standard deviation of (537.393). The was greater than the arithmetic mean and reached (8364.286) births per month. This indicates the lack of moderation in the distribution of the data, as the curve tilts the data to the right, this is confirmed by the positive skewness coefficient (0.05), and the coefficient of kurtosis reached (2.763), which is a value smaller than (3). This indicates that the data distribution curve is oblate.

10.5. Stages of applying the Fuzzy-ARFIMA methodology

10.5.1. Dormancy test

Figure (3) shows the curve of the fuzzy monthly births in Basra city in terms of the arithmetic mean and the fuzzy variance.

Figure No.(3) Curve of fuzzy monthly births.

It is evident from Figure (3) that the time series of fuzzy births in the city of Basra is the subject of the study, and is static. This is confirmed by drawing the ACF function and the partial correlation function PACF Figure (4). It appears that the fuzzy data is decreasing in waves that simulate the sinusoidal function to zero, and this indicates that the chain is static and has a long memory.

Figure No.(4) The autocorrelation and partial autocorrelation functions of fuzzy data.
10.5.2. Definition and Assessment:

From Figure (3) it was shown that the ACF autocorrelation function decreases in waves simulating the sinusoidal function to zero, and to determine the three ranks of the Fuzzy-ARFIMA model (p, d, q), the partial autocorrelation function PACF is used, which shows us that the two periods, lag (1) and lag (12), were the largest significant (high top), and therefore may be the most representative of the data. To confirm this, the value of the fractional difference d at the periods lag (1) and lag (12) is calculated using Eviews version (10). Table (4) shows the values of the fractional difference and the candidate ARFIMA models for the fractional difference.

Fractional Difference	ARFIMA Model	BIC	AIC	Adjusted R-squared	d
0.133	(1,d,0)	15.338	15.437		0.367
0.134	(1,d,1)	15.354	15.478		0.289
0.283	(1,d,12)	15.186	15.311		0.568
0.313	(12,d,0)	15.137	15.237		0.125
0.316	(12,d,1)	15.149	15.273		0.037
0.363	**(12,d,12)**	**15.104**	**15.228**		**0.104**

It is noted from the data in Table (4) that:
- It excludes Fuzzy-ARFIMA (1, d, 12) because the fractional difference value was greater than the range [0.5, -0.5]
- It is evident from the remaining models that the best model is Fuzzy-ARFIMA (12,0.104,12), as it has the lowest BIC and AIC values and the highest Adjust R-squared value.

Based on the above, the model that can be used in forecasting is Fuzzy-ARFIMA (12,0.104,12), and estimates of the model parameters are as follows Table (5):

p-value	standard error	estimation	parameter	Sample
0.000	0.088	0.866	φ	AR(12)
0.002	0.16	-0.51	θ	MA(12)

10.5.3. Test of Fuzzy-ARFIMA parameters (12,0.104,12)

From Figure (5), we find that the congruence between the original and estimated data series curves was high, and this it gives an indication of the importance of the Fuzzy-ARFIMA (12,0.104,12) model in representing birth data in the city of Basra.

![Figure No.(5)Series of original and estimated data and the Residuals foggy of births in Basra of city](image-url)
And based on previous tests and examinations of residues resulting from a sample Fuzzy-ARFIMA (12,0.104,12) was relatively consistent with the theoretical assumptions on which the model relies, which increases the efficiency of this model in analyzing the data under study, and thus its use in prediction.

10.5.4. Forecasting the Fuzzy-ARFIMA (12,0.104,12) model

Table (6) shows the forecast by applying the Fuzzy-ARFIMA (12,0.104,12) model for the year 2019 from January to December and comparing it with the fuzzy data.

Date	Fuzzy values y_t	Predicted values \hat{y}_t	Residuals $e_t = y_t - \hat{y}_t$
01/2019	8125	8303.737	-178.737
02/2019	7550	7743.164	-193.164
03/2019	8350	7908.232	441.768
04/2019	7650	7918.274	-268.274
05/2019	8364.285714	7884.706	479.580
06/2019	8364.285714	8309.808	54.477
07/2019	8364.285714	8546.527	-182.242
08/2019	8650	8447.027	202.973
09/2019	8550	8591.385	-41.385
10/2019	7500	8257.050	-757.050
11/2019	8650	8450.155	199.845
12/2019	8550	8618.532	-68.532

Table (7) shows the predictive accuracy indicators of Fuzzy-ARFIMA (12,0.104,12).

Fuzzy-ARFIMA (12,0.104,12)	RMSE	MAE
	324.45	255.67

The researcher made a five-year prediction (2020-2024), and it was explained in the following table:

year / Month	Fuzzy-ARFIMA(12,0.104,12)	year / Month	Fuzzy-ARFIMA(12,0.104,12)
01/2020	8053.039	07/2022	8420.025
02/2020	7800.138	08 / 2022	8352.167
03/2020	7788.989	09 / 2022	8574.760
04/2020	7508.193	10 / 2022	8297.145
05/2020	7776.366	11 / 2022	8320.996
06/2020	8269.149	12 / 2022	8624.063
07/2020	8485.247	01 / 2023	7965.402
08/2020	8417.817	02 / 2023	7707.131
09/2020	8640.755	03 / 2023	7693.550
10/2020	8363.425	04 / 2023	7411.281
11/2020	8387.515	05 / 2023	7678.449
12/2020	8690.784	06 / 2023	8170.496
01/2021	8032.298	07/2023	8386.032
02/2021	7774.177	08 / 2023	8318.155
03/2021	7760.729	09 / 2023	8540.731
In order to study the prediction for a period of five years from 2020 to 2024, apply this via Eviews v.10. Figure (6) indicates the forecast curve based on the Fuzzy-ARFIMA model.

Table No. (9) shows indicators of prediction accuracy for Fuzzy-ARFIMA (12,0.104,12)

Fuzzy-ARFIMA (12,0.104,12)	RMSE	MAE
	324.45	255.67

11. Conclusions

The study aimed to build the best model to predict births in Basra city on a monthly basis, using the Fuzzy-ARFIMA model. After applying the model to the studied data series, the following results were obtained:

i. The data series for monthly deliveries in Basra were static.

ii. The data series for monthly births in Basra city was characterized by the long memory feature, as indicated by the graph of the self-correlation function and statistical tests.

iii. The results of estimating the fractional differences d according to the methods used were useful in stability the series based on the results of the ADF test where the p-value was smaller than the level of significance \(a = 0.05 \).

iv. It was found that Fuzzy-ARFIMA (12,0.104,12) was better model in predicting because it had lower values of prediction accuracy criteria.

v. Births forecast results indicate that the birth rate will continue with the same pattern of increase and decrease for months in the future.
12. References

[1] Abdullah, Malik Shawky. 2012. The use of fuzzy groups in the qualitative control of some products of the State Company for Industries Sufism, Master Thesis, College of Administration and Economics, University of Baghdad.

[2] Al-Mabhouh, Mahdi Nahed Shaaban. 2018. A comparative study between ARFIMA and ANN models in forecasting crude oil prices. Master, Faculty of Economics and Administrative Sciences, Al-Azhar University, Gaza, p.: 118.

[3] Al-Tai, Fadila Ali Jigan. 2007. Fuzziness in Linear Programming with Practical Application, Master Thesis, College of Business and Economics, Mustansiriya University.

[4] Al-Taweel, Sariya Abdul Shakoor Saeed. 2019. Use of ARFIMA-ANN Hybrid Models in Predicting World Wheat Prices. Master, Faculty of Economics and Administrative Sciences, Al-Azhar University, Gaza, p. 120.

[5] Beran, J. 1994. Statistics for Long Memory Processes, New York: Chapman and Hall.

[6] Darwish, Ali Majd. 2012. Fuzzy Logic.

[7] Granger, C.W.J. and Joyeux, R. 1980. An Introduction to Long Memory Time Series Models and Fractional Differencing, Journal of Time Series Analysis, Vol. 1, pp. 15–29.

[8] Hosking, J. 1981. Fractional Differencing, Biometrika, Vol. 68.

[9] Hurst, H.R. 1951. Long-term storage in reservoirs, Trans. Am. Soc. Civil Eng., Vol. 116, pp. 770–799.

[10] Jassim, Bassem Abdullah. 2015. The optimal strategy for managing the foggy stock - an applied research in the Baghdad Company for Soft Drinks. Master, Faculty of Management and Economics, University of Baghdad., Iraq. p. 117.

[11] John, W.G., and Victoria Z. 2001. Auto regression-Based Estimators for ARFIMA models”, Cirano.

[12] Klir, G.J. & Yuan B. 1995. Fuzzy Sets and Fuzzy Logic Theory and applications, New Jersey, Prentice Hall.

[13] Lo, A.W. 1991. Long-term memory in stock market prices-Econometric, Vol. 59(5), pp.1279-1313.

[14] Muhammad, Shakuri. 2012. Abundance of Natural Resources and Economic Growth Case Study of the Algerian Economy, Ph.D. Thesis, University of Abi-Bakr Belkaid, Tlemcen, Algeria.

[15] Muhammad, Muhammad Jassim. 2007. Strong Estimates of Foggy Regression, Ph.D. Thesis, College of Administration and Economics, University of Baghdad.

[16] Safitri, D, Mustafid D, Ispriyanti and Sugito. 2019. Gold price modeling in Indonesia using ARFIMA method. J. Phys.: Conf. Ser. 1217 012087

[17] Tariq, bin Qasmi. 2014. Using Seasonal Time Series Models to Forecast Electric Power Sales Case Study of the National Company Electricity and Gas" Master's Thesis, University of Mohamed Khedir, Algeria.

[18] Tsay, R.S. 2005. Analysis of Fractional Time Series, Second Edition, John – Wiley and Sons, Inc. USA.

[19] Zadeh, L.A. 1965. Fuzzy Sets, Information and control, No.8, PP. 338-353.