Evaluation of robot-guided minimally invasive implantation of 2067 pedicle screws

Naureen Keric, MD, Christian Doenitz, MD, Amer Haj, MD, Izabela Rachwal-Czyzewicz, MD, Mirjam Renovanz, MD, Dominik M. A. Wesp, MD, Stephan Boor, MD, Jens Conrad, MD, Alexander Brawanski, MD, Alf Giese, MD, and Sven R. Kantelhardt, MD

Department of Neurosurgery and Institute of Neuroradiology, University Medical Centre, Johannes-Gutenberg University Mainz; and Department of Neurosurgery, University Hospital Regensburg, University of Regensburg, Germany

OBJECTIVE Recent studies have investigated the role of spinal image guidance for pedicle screw placement. Many authors have observed an elevated placement accuracy and overall improvement of outcome measures. This study assessed a bi-institutional experience following introduction of the Renaissance miniature robot for spinal image guidance in Europe.

METHODS The medical records and radiographs of all patients who underwent robot-guided implantation of spinal instrumentation using the novel system (between October 2011 and March 2015 in Mainz and February 2014 and February 2016 in Regensburg) were reviewed to determine the efficacy and safety of the newly introduced robotic system. Screw position accuracy, complications, exposure durations to intraoperative radiation, and reoperation rate were assessed.

RESULTS Of the 413 surgeries that used robotic guidance, 406 were via a minimally invasive approach. In 7 cases the surgeon switched to conventional screw placement, using a midline approach, due to referencing problems. A total of 2067 screws were implanted using robotic guidance, and 1857 screws were evaluated by postoperative CT. Of the 1857 screws, 1799 (96.9%) were classified as having an acceptable or good position, whereas 38 screws (2%) showed deviations of 3–6 mm and 20 screws (1.1%) had deviations > 6 mm. Nine misplaced screws, implanted in 7 patients, required revision surgery, yielding a screw revision rate of 0.48% of the screws and 7 of 406 (1.7%) of the patients. The mean ± SD per-patient intraoperative fluoroscopy exposure was 114.4 (± 72.5) seconds for 5.1 screws on average and any further procedure required. Perioperative and direct postoperative complications included hemorrhage (2 patients, 0.49%) and wound infections necessitating surgical revision (20 patients, 4.9%).

CONCLUSIONS The hexapod miniature robotic device proved to be a safe and robust instrument in all situations, including those in which patients were treated on an emergency basis. Placement accuracy was high; peri- and early postoperative complication rates were found to be lower than rates published in other series of percutaneous screw placement techniques. Intraoperative radiation exposure was found to be comparable to published values for other minimally invasive and conventional approaches.

https://thejns.org/doi/abs/10.3171/2017.2.FOCUS16552

KEY WORDS robot-guided instrumentation; percutaneous; pedicle screw
Surgical Technique

A preoperative CT scan (1-mm slice thickness) of the patient’s spine was used to create a customized surgical plan, including optimization of trajectories and implant sizes. In the operating room, the guidance component was mounted on a specialized clamp, which was rigidly attached to the patient’s spinous process. The CT-based blueprint was then matched to the patient’s spine via 2 acquired fluoroscopic images (anteroposterior and oblique views) of the reference marker array and the spine. Following this matching process, the robot was guided to a target vertebral trajectory. Depending on the necessary work volume, 1 of 3 specialized arms was connected to the top of the robotic guidance unit. A cannula was placed through the arm, into which surgical tools and drills were inserted, guiding the surgeon to the planned trajectory. Posterior lumbar interbody fusion (PLIF)/transforaminal lumbar interbody fusion (TLIF) cages and decompression were performed when clinically indicated.

Statistical Analysis

All data are presented as ordinal and nominal. Analyses are only presented for descriptive reasons and were regarded as explorative. Values are expressed as the mean ± SD.

Results

Patient Characteristics

A total of 406 patients were included in this study. Detailed patient characteristics are displayed in Table 1. At Site 1, between October 2011 and March 2015, 318 patients underwent instrumentation of the thoracolumbar region. Nine patients were operated on using a freehand technique based on the surgeon’s preoperative decision. Of the remaining 309 cases, 6 operations (1.9%) were performed freehand due to failed registration of the robot, whereas 303 of those cases were performed under robotic guidance. The failed registration resulted from poor radiograph quality due to obesity (body mass index [BMI] > 35–40 mg/kg²) and/or severe osteopenia. Examples of intraoperative fluoroscopic images and correlating CT scans are shown in Fig. 1.

A postoperative CT scan of the operated spinal region was obtained in 259 of the 303 cases for assessment of implant position accuracy, according to the clinical standard protocol. In 44 patients, surgeons evaluated the screw position by an intraoperative C-OnSite scan, a technique for intraoperative 3D evaluation of pedicle screw positions using a conventional C-arm and novel software (Mazor Robotics). At Site 2, between February 2014 and February 2016, 104 patients underwent robot-assisted thoracolumbar instrumentation including PLIF procedures. Registration failure occurred in 1 patient due to obesity (BMI 40 mg/kg²). A postoperative CT scan was obtained in 100 patients for screw position accuracy assessment.

The mean age of all patients (Sites 1 and 2) was 65.8 years (range 20–89 years) and 221 of 406 patients were women (Table 1). The cohort presented with a spectrum of indications, including degenerative disease (47.5%), infection (21.7%), spondylolisthesis (11.3%), trauma (7.9%), osteoporotic fractures (6.2%), and tumor (5.4%).
Radiation Exposure and Screw Positions

A total of 2067 screws were implanted spanning the T2–S2 region, averaging 5.1 screws per case. The mean operation time was 258.7 minutes per case (± 105.6 minutes) including decompression, PLIF, or TLIF procedures. The study involved a total mean per-patient intraoperative radiation exposure duration of 114.4 seconds (± 72.5 seconds), including the radiation associated with decompression, cage placement, and intraoperative evaluation of screw placement by C-OnSite scan (in 44 cases at Site 1; C-OnSite was not available at Site 2). Of special note is that 27 of the procedures were performed outside of nor-

TABLE 1. Clinical characteristics of the study sample
Characteristic
Age in yrs, mean (range)
No. of pts <45 yrs
No. of pts 45 to <65 yrs
No. of pts ≥65 yrs
Sex, no. of pts
F
M
No. of pts w/ indication/mean age in yrs (range)
Degenerative
Infection
Spondyloysis
Osteoporotic fractures
Tumor
Trauma
No. of spinal instrumentations
Total thoracolumbar instrumentations
Robot-guided instrumentations
Primary conventional instrumentations
Switch to conventional instrumentation
Emergency cases
Localization of robot-guided instrumentation, no. of pts
Thoracic
Thoracolumbar
Lumbar/lumbosacral
Lumbosacral
No. of instrumented levels
1
2
3
4
5
Comorbidity (cardiovascular risk factors), no. of pts
Diabetes
Coronary heart disease/heart insufficiency
Pulmonary
Indication ASA score, mean ± SD
Degenerative
Infection
Spondyloysis
Osteoporotic fractures
Tumor
Trauma

ASA = American Society of Anesthesiologists; COPD = chronic obstructive pulmonary disease; pts = patients.
mal working hours on an emergency basis. These cases included 15 patients with lumbar spondylodiscitis, 7 with tumors, and 5 with trauma. The indication for an emergency surgery was mainly based on manifestation of a neurological deficit. This was caused by intraspinal empyema and fractured vertebra leading to spinal canal stenosis and paraparesis.

Postoperative CT imaging was performed in 359 patients, covering 1857 implanted screws. Image analysis demonstrated that 96.9% (1799) of the screw positions were classified as Grades 0, 1, or 2 (Grade 0: 83% [1541]; Grade 1: 9% [167]; and Grade 2: 4.9% [91]), whereas 2% (38) and 1.1% (20) were Grades 3 and 4, respectively. One hundred thirty-eight screws were implanted in 27 emergency procedures (135 screws were Grades 0, 1, and 2; 2 screws were Grade 3; and 1 screw was Grade 4). Clinically significant screw deviations were mostly observed among patients who presented because of tumor disease (7 of 128 screws; 5.5%), infection (22 of 431 screws; 5.1%), and osteoporotic fractures (8 of 176 screws; 4.5%) (Table 2). A by-level analysis of the screw position accuracy measures demonstrated that 13.2% of the screws placed in the upper thoracic spine (T1–6) were misplaced (Grades 3 or 4), 5.3% of the screws in the lower thoracic spine (T7–12) were misplaced, and 3.2% in the lumbosacral area were misplaced. In 26 patients, a single screw was misplaced; in 10 patients, 2 screws each were misplaced; and in 4 patients, 3 screws each were misplaced. The majority of the misplaced screws (38 of 58) showed a lateral deviation.

A detailed analysis of screw misplacement under robotic guidance revealed 3 main mechanisms. The most common misplacement typically resulted from so-called skiving (probably 28 screws; Fig. 2A). In 7 of 10 patients with 2 or 3 misaligned screws (total of 24 screws), CT analysis suggested an intraoperative platform dislocation (mechanisms shown in Fig. 2B and 2C). For the remaining 6 screw misplacements, the underlying mechanism was unclear.

We found no obvious correlation between the rate of misplaced screws and the operating surgeons’ experience with the system.

Clinical Course, Follow-Up, and Complications

The mean follow-up at Site 1 was 75.5 days (± 86.9 days, in 303 patients), whereas we have only the data acquired during hospitalization for Site 2 (12.1 ± 6.5 days, 103 patients). Within this period, 2 cases of hemorrhage were reported. Five patients (1.24%) with 7 Grade 4 screws (0.38%) and 2 patients (0.49%) with an anterior vertebral perforation by 1 screw each (0.1%) and contact with the abdominal aorta later required revision surgery, yielding a screw revision rate of 0.48% and an overall case revision rate due to misplaced screws of 1.7%.

During the follow-up period, revision surgery was necessary in 7 cases (1.7%) due to loosening and in 6 cases (1.5%) due to dislocation (posthospitalization data from Site 1 only). The mean hospital stay was 13.7 days (± 9.1 days). Problems with wound healing were seen in 27 patients (6.7%), and 20 of those patients needed revision surgery (4.9%). In 26 cases (6.4%), dural tears were seen, which all occurred during decompression/cage implantation. In 2 of these patients (0.49%), a postoperative CSF-fistula and wound-healing problem led to revision surgery. In 4

| TABLE 2. Indication versus incidence of Grade 3 and 4 screw positioning |
|--------------------------|--------------------------|--------------------------|--------------------------|
Indication	Total (No. of Grade 3/4 Screws (%)	Site 1 (No. of Grade 3/4 Screws) (%)	Site 2 (No. of Grade 3/4 Screws) (%)
Degenerative	13/738 (1.7)	11/484 (2.3)	2/254 (0.8)
Infection	22/431 (5.1)	20/336 (6.0)	2/95 (2.1)
Osteoporotic fractures	8/176 (4.5)	8/176 (4.5)	0/0 (0)
Spondylolisthesis	1/166 (0.6)	1/92 (1.1)	0/74 (0)
Trauma	7/218 (3.2)	7/210 (3.3)	0/8 (0)
Tumor	7/128 (5.5)	7/112 (6.3)	0/16 (0)
Total	58/1857 (3.1)	54/1410 (3.8)	4/447 (0.9)

FIG. 1. Intraoperative fluoroscopic (A and B) and postoperative CT (C and D) images of a young woman with an L-4 fracture, illustrating good radiograph quality. Intraoperative fluoroscopic (E and F) and postoperative CT (G and H) images of an obese patient with loosened implants in a degenerative spondylolisthesis, illustrating poor radiograph quality.
cases (0.98%), new neurological deficits were postoperatively assessed. However, only 2 patients (0.49%) required revision surgery: in 1 case of paraplegia due to an epidural thoracic hematoma and in 1 case of a nerve root injury due to a misplaced screw. Both patients immediately underwent reoperation and recovered incompletely. During the postoperative course, 4 patients suffered from pneumonia and 2 from pulmonary embolism. One patient had a myocardial infarction and died after a few days of intensive care therapy (Table 3).

Discussion
Visualization, planning, and placement of screws are indispensable when aiming to achieve optimal results in spine surgery. Recent studies have consistently shown the advantage of image guidance (e.g., robotic systems such as the Renaissance system) for the placement of pedicle screws with regard to accuracy.

In this study, we assessed the implications and applicability in clinical practice, as well as the clinical results and safety, of a miniature robotic system by analyzing the data obtained in patients who underwent elective and emergency procedures at 2 neurosurgical sites.

Screw Placement
Safety concerns related to pedicle screw placement have always been an issue, especially during the establishment of novel devices. When filtering screw placement accuracy by spine level, a clear advantage in accuracy has been achieved by using navigation deployment. In a systematic meta-analysis of pedicle screw instrumentation studies, pooling 37,337 screw placements, Kosmopoulos and Schizas reported consistently higher weighted mean screw placement accuracy for navigation-assisted screw placement compared with the unassisted procedures. More specifically, overall accuracy rates of 99.2%, 85.1%, and 92.1% in the cervical, thoracic, and lumbar levels, respectively, were reported for navigation-assisted procedures versus 91.3%, 56.0%, and 87.3%, respectively, for non-navigated surgeries.

The complexity of thoracic screw placement has also been expressed in a retrospective, observational study of thoracic screw placements (n = 279) in 40 consecutive patients, in which 43% of the screws demonstrated some degree of deviation. In this article, T1–4 screws were less likely to be fully confined within the pedicle/vertebral body than T9–12 screws. In his assessment of thoracic screw placement under 3D fluoroscopic guidance in cadavers, Holly also reported lower accuracy for thoracic screws (92%; n = 59) compared with lumbar screws (100%), where the mean pedicle diameter in which wall violations occurred was 4.6 mm compared with the mean 6-mm diameter of all operated thoracic pedicles. The smaller pedicle
Technical difficulties, no. 7 of 413 6 of 309 1 of 104 Registration failure due to obesity (BMI >35–40 mg/kg²) & poor radiograph quality

Mean operation time per case, mins (± SD) 258.7 (± 105.6) 267.5 (± 111.3) 232.2 (± 76.8) Including registration for robot, screw implantation, decompression, PLIF & TLIF procedures (& C-OnSite scan in 44 cases)

Mean radiograph time per case, secs (± SD) 114.4 (± 72.5) 123.6 (± 70.1) 56.2 (± 55.1) Including registration, screw implantation, PLIF & TLIF procedures (& C-OnSite scan)

Dural tears, no. (%) 26 (6.4) 19 (6.3) 7 (6.8) At decompression/cage implantation, 2 pts (0.5%) required revision surgery

Wound healing abnormality, no. (%) 27 (6.7) 25 (8.3) 2 (1.9) 20 (19 pts at Site 1 & 1 pt at Site 2 needed wound revision [4.9%])

Hemorrhage, no. (%) 2 (0.5) 1 (0.3) 1 (1) 1 pt (0.24%) required revision surgery

Revision op due to screw misplacement, no. (%) 7 (1.7) 5 (1.7) 2 (1.9) 5 pts (1.2%) w/ 7 Grade 4 screws, 2 pts (0.5%) w/ anterior vertebral perforation & contact w/ abdominal aorta

Revision op due to screw loosening/dislocation, no. (%) 7 (2.3)/6 (2.0)

TABLE 3. Outcome measures

Table 3: Outcome measures

Outcome	Total	Site 1	Site 2	Details of the Whole Series
Technical difficulties, no.	7/413	6/309	1/104	Registration failure due to obesity (BMI >35–40 mg/kg²) & poor radiograph quality
Mean operation time per case, mins	258.7 ± 105.6	267.5 ± 111.3	232.2 ± 76.8	Including registration for robot, screw implantation, decompression, PLIF & TLIF procedures (& C-OnSite scan in 44 cases)
Mean radiograph time per case, secs	114.4 ± 72.5	123.6 ± 70.1	56.2 ± 55.1	Including registration, screw implantation, PLIF & TLIF procedures (& C-OnSite scan)
Dural tears, no. (%)	26 (6.4)	19 (6.3)	7 (6.8)	At decompression/cage implantation, 2 pts (0.5%) required revision surgery
Wound healing abnormality, no. (%)	27 (6.7)	25 (8.3)	2 (1.9)	20 (19 pts at Site 1 & 1 pt at Site 2 needed wound revision [4.9%])
Hemorrhage, no. (%)	2 (0.5)	1 (0.3)	1 (1)	1 pt (0.24%) required revision surgery
Revision op due to screw misplacement, no. (%)	7 (1.7)	5 (1.7)	2 (1.9)	5 pts (1.2%) w/ 7 Grade 4 screws, 2 pts (0.5%) w/ anterior vertebral perforation & contact w/ abdominal aorta
Revision op due to screw loosening/dislocation, no. (%)	7 (2.3)/6 (2.0)			
Robot-guided pedicle screw implantation (open vs percutaneous) constitutes another important factor. Thus, despite the presented indications and advanced patient age in the present study, complication rates were comparably low, even when compared with other minimally invasive spine surgery cohorts. However, the mean operation time of 258.7 minutes (± 105.6 minutes) seems long for a spinal instrumentation procedure with a mean of 5.1 screws per case.

The time periods for registration, screw placement, and PLIF/TLIF procedures were not assessed in detail in both centers during this case-collection study. Nevertheless, the registration process, which began after skin incision, was highly variable and could be very long compared with other fast and straightforward screw implantation after this step. This issue depended on different aspects, such as experience of staff handling the C-arm, patient’s spinal anatomy, obesity, bone quality, and vertebral level.

Radiation Exposure and Feasibility in Clinical Practice

Although attempts have been made to intraoperatively assess pedicle screw positions without the application of radiation, the vast majority of centers use some type of fluoroscopic guidance or control. When considering the radiation associated with fluoroscopically-assisted pedicle screw placement procedures in cadavers, Rampersaud et al. reported an average of 8.5 fluoroscopic images required per screw, which was coupled with a mean exposure time of 9.3 seconds per screw. The highest dosimetry readings were detected by the unprotected waist badge and were similar to hand doses.

In a later clinical case series of computer-assisted 2D fluoroscopy in 161 percutaneous lumbosacral pedicle screw implantations, Ravi et al. reported an overall fluoroscopy time of 11–312 seconds (median 72 seconds) per case (mean 4 screws per patient). These data correlate rather well with the overall series; both centers involved noted a significant reduction of fluoroscopy times following introduction of the robotic system (as previously reported). However, the mean radiation times differed in both centers (Site 1, 123.6 ± 70.1 seconds; Site 2, 56.2 ± 55.1 seconds).

We found a correlation of surgical experience in spinal instrumentation with general and radiation times. At Site 1, 10 different neurosurgeons contributed to this case series, but only 3 surgeons were experienced in conventional spinal instrumentation procedures. The other 7 neurosurgeons had no or minimal experience in conventional spinal instrumentation procedures. They primarily learned the robot-guided spinal instrumentation and needed a certain learning curve for interpretation of fluoroscopic images and the procedure itself, which consequently afforded longer radiation and operating times.

Two neurosurgeons were involved at Site 2. Again, the more experienced neurosurgeon used less radiation.

Conclusions

Robot-guided pedicle screw implantation using the hexapod miniature robot device is a safe and straightforward procedure. The system was successfully applied in 406 cases, whereas in 7 cases (1.7%), the operating neurosurgeons switched to a conventional procedure. Lessons learned from 5.5 years of experience in using this guidance system in 2 neurosurgical departments are that meticulous preoperative planning and careful handling of the hardware are required to achieve highly accurate screw positioning.

Nevertheless, the system proved to be extremely reliable in all circumstances, including emergency cases. Screw deviations most frequently resulted from intraoperative problems with handling of the system, which led to the perpetuation of mistakes from skin incision to screw implantation. Limitations were observed in registration failure due to obesity (BMI > 35–40 mg/kg²), osteoporosis, and consecutive poor radiograph quality (1.7% of cases, as mentioned above).

Overall, this study demonstrated the notable accuracy of robot-guided, minimally invasive spinal instrumentation procedures. In addition, it documents the high reliability of the system in the daily surgical routine beyond initial studies.

Acknowledgments

We thank Prof. Florian Ringel for his help in revising the manuscript.
References

1. Amr AN, Giese A, Kantelhardt SR: Navigation and robot-assisted surgery in the spine: historical review and state of the art. Robot Surg Res Rev 1:19–26, 2014
2. Barzilay Y, Schroeder JE, Hiller N, Singer G, Hasharomi A, Safran O, et al: Robot-assisted vertebral body augmentation: a radiation reduction tool. Spine (Phila Pa 1976) 39:153–157, 2014
3. Belmont PJ Jr, Klemme WR, Dhawan A, Polly DW Jr: In vivo accuracy of thoracic pedicle screws. Spine (Phila Pa 1976) 26:2340–2346, 2001
4. Devito DP, Kaplan L, Dietl R, Pfeiffer M, Horne D, Silberstein B, et al: Clinical acceptance and accuracy assessment of spinal implants guided with SpineAssist surgical robot: retrospective study. Spine (Phila Pa 1976) 35:2109–2115, 2010 [Erratum in Spine (Phila Pa 1976) 36:91, 2011]
5. Gelalis ID, Paschos NK, Pakos EE, Politis AN, Arnaoutoglou CM, Karageorgos AC, et al: Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21:247–255, 2012
6. Holly LT: Image-guided spinal surgery. Int J Med Robot 27:15, 2006
7. Hu X, Scharschmidt TJ, Ohmeiss DD, Lieberman IH: Robotic assisted surgeries for the treatment of spine tumors. Int J Spine Surg 9:1, 2015
8. Hu X, Siemionow KB, Lieberman ICH: Thoracic and lumbar vertebrae morphology in Lenke type 1 female adolescent idiopathic scoliosis patients. Int J Spine Surg 8:30, 2014
9. Kantelhardt SR, Bock CH, Larsen J, Bockermann V, Schilling W, Rohde V, et al: Intraosseous ultrasound in the placement of pedicle screws in the lumbar spine. Spine (Phila Pa 1976) 34:400–407, 2009
10. Kantelhardt SR, Keric N, Conrad J, Nimer A, Woo R, Varich L, et al: C-OnSite® for intraoperative 3D control of pedicular screw positions. Acta Neurochir (Wien) 156:1799–1805, 2014
11. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V: Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20:560–868, 2011
12. Kim YJ, Lenke LG, Bridwell KH, Cho YS, Riew KD: Free hand pedicle screw placement in the thoracic spine: is it safe? Spine (Phila Pa 1976) 29:333–342, 2004
13. Kosmopoulos V, Schizas C: Pedicle screw placement accuracy: a meta-analysis. Spine (Phila Pa 1976) 32:E111–E120, 2007
14. Kotani Y, Abumi K, Ito M, Takahata M, Sudo H, Ohshima S, et al: Accuracy analysis of pedicle screw placement in posterior scoliosis surgery: comparison between conventional fluoroscopic and computer-assisted technique. Spine (Phila Pa 1976) 32:1543–1550, 2007
15. Kuo KL, Su YF, Wu CH, Tsai CY, Chang CH, Lin CL, et al: Assessing the intraoperative accuracy of pedicle screw placement by using a bone-mounted miniaturized robot system through secondary registration. PLoS One 7 11:e0153235, 2016
16. Maguire J, Wallace S, Madiga R, Leppanen R, Draper V: Evaluation of intrapedicular screw position using intraoperative evoked electromyography. Spine (Phila Pa 1976) 20:1068–1074, 1995
17. Modi H, Suh SW, Song HR, Yang JH: Accuracy of thoracic pedicle screw placement in scoliosis using the ideal pedicle entry point during the freehand technique. Int Orthop 33:469–475, 2009
18. Nasser R, Yadla S, Maltenfort MG, Campbell PG, Malone J: Complications in spine surgery. J Neurosurg Spine 14:16–22, 2011
19. O'Toole JE, Eichholz KM, Fessler RG: Surgical site infection rates after minimally invasive spinal surgery. J Neurosurg Spine 11:471–476, 2009
20. Pechlivanis I, Kiryamthan G, Engelhardt M, Scholz M, Lücke S, Harders A, et al: Percutaneous placement of pedicle screws in the lumbar spine using a bone mounted miniature robotic system: first experiences and accuracy of screw placement. Spine (Phila Pa 1976) 34:392–398, 2009
21. Rampersaud YR, Foley KT, Shen AC, Williams S, Solomito M: Radiation exposure to the spine surgeon during fluoroscopically assisted pedicle screw insertion. Spine (Phila Pa 1976) 25:2637–2645, 2000
22. Ravi B, Zahrai A, Rampersaud R: Clinical accuracy of computer-assisted two-dimensional fluoroscopy for the percutaneous placement of lumbosacral pedicle screws. Spine (Phila Pa 1976) 36:84–91, 2011
23. Ringel F, Stüer C, Reinke A, Preuss A, Behr M, Auer F, et al: Accuracy of robot-assisted placement of lumbar and sacral pedicle screws: a prospective randomized comparison to conventional freehand screw implantation. Spine (Phila Pa 1976) 37:E496–E501, 2012
24. Roser F, Tatagiba M, Maier G: Spinal robotics: current applications and future perspectives. Neurosurgery 72 (Suppl 1):12–18, 2013
25. Tian NF, Huang QS, Zhou P, Zhou Y, Wu RK, Lou Y, et al: Pedicle screw insertion accuracy with different assisted methods: a systematic review and meta-analysis of comparative studies. Eur Spine J 20:846–859, 2011
26. van Dijk JD, van den Ende RP, Stramigioli S, Köchling M, Höss N: Clinical pedicle screw accuracy and deviation from planning in robot-guided spine surgery: robot-guided pedicle screw accuracy. Spine (Phila Pa 1976) 40:E896–E915, 2015
27. Wiesner L, Kothé R, Schulitz KP, Rüther W: Clinical evaluation and computed tomography scan analysis of screw tracts after percutaneous insertion of pedicle screws in the lumbar spine. Spine (Phila Pa 1976) 25:615–621, 2000
28. Williams BJ, Sansur CA, Smith JS, Berven SH, Broadstone PA, Choma TJ, et al: Incidence of unintended durotomy in spine surgery based on 108,478 cases. Neurosurgery 68:117–124, 2011

Disclosures

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

Author Contributions

Conception and design: Keric, Doenitz, Giese, Kantelhardt. Acquisition of data: Keric, Doenitz, Haj, Rachwal-Czyzewicz, Wesp, Boor, Conrad. Analysis and interpretation of data: Keric, Doenitz, Haj, Rachwal-Czyzewicz, Renovanz, Wesp, Boor, Giese, Kantelhardt. Drafting the article: Keric, Doenitz, Renovanz, Conrad. Critical revising the article: Renovanz, Boor, Brawanski, Kantelhardt. Reviewed submitted version of manuscript: Brawanski, Giese, Kantelhardt.

Supplemental Information

Previous Presentations

Presented in part at the Annual Meeting of the German Society of Neurosurgery (DGNC), Karlsruhe, Germany, June 2015.

Correspondence

Naureen Keric, Department of Neurosurgery, University Medical Centre, Langenbeckstr. 1, Mainz 55131, Germany, email: naureen.keric@unimedizin-mainz.de.