Screening and evaluation of the strong endogenous promoters in *Pichia pastoris*

Weiwang Dou†, Quanchao Zhu†, Meihua Zhang, Zuyuan Jia and Wenjun Guan*

Abstract

Background: Due to its ability to perform fast and high-density fermentation, *Pichia pastoris* is not only used as an excellent host for heterologous protein expression but also exhibits good potential for efficient biosynthesis of small-molecule compounds. However, basic research on *P. pastoris* lags far behind *Saccharomyces cerevisiae*, resulting in a lack of available biological elements. Especially, fewer strong endogenous promoter elements available for foreign protein expression or construction of biosynthetic pathways were carefully evaluated in *P. pastoris*. Thus, it will be necessary to identify more available endogenous promoters from *P. pastoris*.

Results: Based on RNA-seq and LacZ reporter system, eight strong endogenous promoters contributing to higher transcriptional expression levels and β-galactosidase activities in three frequently-used media were screened out. Among them, the transcriptional expression level contributed by P0019, P0107, P0230, P0392, or P0785 was basically unchanged during the logarithmic phase and stationary phase of growth. And the transcriptional level contributed by P0208 or P0627 exhibited a growth-dependent characteristic (a lower expression level during the logarithmic phase and a higher expression level during the stationary phase). After 60 h growth, the β-galactosidase activity contributed by P0208, P0627, P0019, P0407, P0392, P0230, P0785, or P0107 was relatively lower than PGAP but higher than PACT1. To evaluate the availability of these promoters, several of them were randomly applied to a heterogenous β-carotene biosynthetic pathway in *P. pastoris*, and the highest yield of β-carotene from these mutants was up to 1.07 mg/g. In addition, simultaneously using the same promoter multiple times could result in a notable competitive effect, which might significantly lower the transcriptional expression level of the target gene.

Conclusions: The novel strong endogenous promoter identified in this study adds to the number of promoter elements available in *P. pastoris*. And the competitive effect observed here suggests that a careful pre-evaluation is needed when simultaneously and multiply using the same promoter in one yeast strain. This work also provides an effective strategy to identify more novel biological elements for engineering applications in *P. pastoris*.

Keywords: *Pichia pastoris*, Endogenous promoter, RNA-seq, β-Galactosidase, Biosynthetic pathway

Background

As one of the typical methylotrophic yeasts, *Pichia pastoris* (also known as *Komagataea phaffii*) is not only widely used as an excellent host for heterologous protein expression [1] but also exhibits good potential for efficient biosynthesis of economic compounds such as nootkatone [2], carotenoids [3, 4], xanthophylls [5], ricinoleic acid [6], hyaluronic acid [7] and dammarenediol II [8]. Although a lot of work had been carried out in *P. pastoris*, compared with *Saccharomyces cerevisiae*, fewer strong endogenous promoter elements available for foreign protein expression or construction of biosynthetic pathways were carefully investigated in *P. pastoris* [9].
Using methanol as a carbon source is one of the most favorable properties of P. pastoris. Several promoters from the methanol utilization (MUT) pathway were identified as the methanol-dependent strong promoters [10], such as P_{AOX1} (the promoter of alcohol oxidase 1) [11], P_{LID} (the promoter of formaldehyde dehydrogenase 1) [12], and P_{GAP} (the promoter of dihydroxyacetone synthase) [13]. On the contrary, P_{PEX8} (the promoter of peroxisomal matrix protein) [14] or P_{AOX2} (the promoter of alcohol oxidase 2) [15] was classified as a weak promoter. Considering that these promoters are tightly regulated by methanol, making them useful for the efficient production of foreign proteins when using methanol as a carbon source and inducer [16].

P_{GAP} is the most frequently used constitutive promoter that drives the expression of glyceraldehyde-3-phosphate dehydrogenase at a high level in the medium with glucose or glycerol but at a moderate level in the medium with methanol as a carbon source. Although in many cases, P_{AOX1} works more efficiently than P_{GAP} for heterologous protein production [17, 18]. Some cases also gave the opposite results. Waterham HR et al. proved the expression level of β-lactamase contributed by P_{GAP} in the medium containing glucose was even higher than P_{AOX1} in the medium containing methanol [19]. Similar result was obtained with the P_{GAP} regulated mammalian peptide transporters rPEPT2 by Doring F et al. [20]. A promoter library of mutated P_{GAP} was generated, and it spanned an activity range between 0.6% and 19.6-fold of the wild-type P_{GAP} activity [21]. As another well-known constitutive and strong promoter, the transcriptional activity of P_{TEF1}, which controls the expression of translation elongation factor 1 alpha [22], was also found to be similar to or higher than that of P_{GAP} in batch cultures or fed-batch cultures (glucose or glycerol was used as carbon source). P_{GCW14} is a strong constitutive promoter discovered recently [23]. It exhibited stronger promoter activity than P_{TEF1} or P_{GAP} under different carbon sources (glucose, glycerol, or methanol) when an enhanced green fluorescent protein (EGFP) was used as the reporter. Moreover, some other constitutive promoters, P_{END1}, P_{GPM1}, P_{HSP92}, P_{KAB2}, P_{PGK1}, P_{SSA4}, and P_{TP1} [24], were also reported with little attention paid. The expression levels of EGFP contributed by these promoters were showed to be 10–80% of that of P_{GAP}.

Although most studies have focused on strong promoters, it is worth noting that strong promoters are not suitable in some applications. For example, promoters with moderate expression levels are sometimes more desirable for transporter or chaperone expression. Thus, the studies on various promoters with different transcriptional activities should also be emphasized. In this study, based on the RNA-seq data and LacZ reporter system, eight novel endogenous promoters that exhibited strong transcriptional activities in three frequently-used media were screened out. A heterogenous β-carotene biosynthetic pathway was chosen to further evaluate the availability of these promoters. It was also found that simultaneously using the same promoter multiple times could result in a notable competitive effect, which might significantly lower the transcriptional expression level of the target gene.

Results
Screening the potential strong promoters independent of carbon sources based on RNA-seq
In order to screen out strong promoter candidates from P. pastoris, the assessment of cell growth status was firstly carried out. As shown in Fig. 1A, the yeast cells gradually entered the stationary phase after 36 h growth in YPD, YPG, or YPM broth. Considering that the accumulation of protein expression or small-molecule compound has occurred chiefly during the stationary phase of yeast growth, total RNA isolation and subsequent RNA-seq were performed after 36 h growth.

As shown in Fig. 1B, the distribution of FPKM (referred to fragments per kilobase of transcript per million base pairs sequenced) values of genes was similar when the GS115 WT strain was cultured in three broths, and the FPKM values of most genes fall in the range of 10–50. The FPKM value of ACT1 (PAS_chr3_1169), which is usually used as an endogenous reference gene (housekeeping gene) in yeast [25, 26], was 624 in YPD, 858 in YPG, and 315 in YPM, respectively. It ranked 245th out of 4764 (YPD), 185th out of 4897 (YPG), and 473th out of 4410 (YPM) expressed genes (FPKM<10 was defined as not expressed in the corresponding medium), indicating that P_{ACT1} could be considered as a strong promoter. To explore the potential strong promoters in all the above media, the genes with FPKM values five times higher than that of ACT1 were selected as the candidate genes. Finally, the promoters of PAS_chr1-4_0586 (GCW14), PAS_chr4_0627, PAS_chr2-2_0019, PAS_chr2-1_0437 (GAP), PAS_chr1-1_0407, PAS_chr2-2_0392, PAS_chr3_0230, PAS_chr2-2_0208, PAS_chr4_0785, and PAS_chr1-1_0107 were screened out (Additional file 1). For the subsequent description’s convenience, the above genes were represented by GCW14, 0627, 0019, GAP, 0407, 0392, 0230, 0208, 0785, and 0107, respectively. In addition, the expression levels of these candidate genes were also confirmed by real-time quantitative PCR (RT-qPCR). As shown in Fig. 1C, all the RT-qPCR results were consistent with the RNA-seq data, suggesting these promoters could be used for further evaluation.
Comparing the transcriptional activities of promoter candidates

In order to compare the transcriptional activities of above-selected promoters, the β-galactosidase activities of transformants harboring vector pZeocin/\(P_{XXX}\)-lacZ\(_\)TADH1 (\(P_{XXX}\) indicates the name of candidate promoter) were measured after 60 h growth. The transcriptional levels of \(\text{lacZ}\) in all transformants were also tested by RT-qPCR. All experimental data was obtained from three independently screened colonies. As shown in Fig. 2, the β-galactosidase activity contributed by each selected promoter was higher than that by \(P_{\text{ACT1}}\) when the transformant was cultured in three mentioned broths, except \(P_{0107}\) which exhibited a lower β-galactosidase activity compared to \(P_{\text{ACT1}}\) in YPM broth. In YPD or YPG broth, the activity of \(P_{\text{GAP}}\) or \(P_{\text{GCW14}}\) was significantly higher than those of the rest promoters. In YPM broth, \(P_{\text{GCW14}}\) contributed the highest β-galactosidase activity among the all-selected promoters, and \(P_{\text{GAP}}\), \(P_{0208}\), \(P_{0019}\), \(P_{0392}\), \(P_{0230}\), or \(P_{0627}\) contributed a similar β-galactosidase activity.

In summary, among the ten selected promoters, the previously reported \(P_{\text{GAP}}\) and \(P_{\text{GCW14}}\) showed strong transcriptional activities. The transcriptional activity of \(P_{0019}\), \(P_{0107}\), \(P_{0208}\), \(P_{0230}\), \(P_{0392}\), \(P_{0407}\), \(P_{0627}\), or \(P_{0785}\) was between that of strong promoters \(P_{\text{GAP}}\) and \(P_{\text{ACT1}}\). It indicates that these promoter candidates could be recognized as strong endogenous promoters in \(P.\) pastoris.

Although the transcriptional activities of most selected promoters corresponded with the β-galactosidase activities at 60 h, there were still few exceptions, such as \(P_{0407}\) and \(P_{0230}\). For example, the transcriptional level of \(P_{0407}\)-lacZ was much higher than that of \(P_{\text{GAP}}\)-lacZ when the relative transformants were cultured in YPG or YPM broth. However, the β-galactosidase activities controlled by \(P_{0407}\) were less than half of that by \(P_{\text{GAP}}\). So was \(P_{0230}\)-lacZ. We evaluated the copy number of lacZ controlled by each promoter, the results proved all clones harboring only one lacZ, eliminating the influence of transcriptional level by copy number (data not shown). It indicated that the transcriptional and protein level were not coordinated in some genes. The reason was not clear.
P₀₂₀₈ and P₀₆₂₇ are novel growth-dependent promoters

To evaluate whether the above promoters are constitutive, the β-galactosidase activities of different transformants at 16 h (exponential phase) and 60 h (stationary phase) were measured. In view of PGAP being identified as a recognized constitutive promoter, it was chosen as a control in this study. As shown in Table 1, most promoter candidates, except P₀₄₀₇, P₀₆₂₇, and P₀₂₀₈, could be defined as constitutive promoters due to their relatively stable β-galactosidase activities at 16 and 60 h. The relative β-galactosidase activity driven by P₀₂₀₈, P₀₄₀₇, or P₀₆₂₇ at 16 h was at least 16.5, 2.5 or 7.5 times lower than that at 60 h in three media, reminding us that these promoters might be associated with cell growth.

To test this possibility, the transcriptional levels of P₀₄₀₇, P₀₆₂₇, and P₀₂₀₈ genes in the GS115 WT strain were detected at the different growth stages. As shown in Additional file 2, the transcriptional levels of P₀₄₀₇, P₀₆₂₇, and P₀₂₀₈ genes increased along with the growth time of GS115 WT strain in YPD and YPG media.

Table 1 The relative β-galactosidase activities driven by the selected promoters compared with P₀ GAP

Promoters	YPD 16 h (%)	YPD 60 h (%)	YPG 16 h (%)	YPG 60 h (%)	YPM 16 h (%)	YPM 60 h (%)
P₀ GAP	100.00	100.00	100.00	100.00	100.00	100.00
P₀ ACT1	17.48	11.25	18.78	15.77	30.43	15.48
P₀ GCW14	88.74	74.51	131.99	132.30	162.67	165.46
P₀₀₉₀₇	27.51	28.25	36.94	51.98	88.92	83.48
P₀₁₀₇	30.57	21.95	32.84	44.90	6.76	7.59
P₀₂₃₀	30.15	29.49	42.96	75.11	54.56	59.04
P₀₇₈₂	13.39	21.47	23.55	44.67	59.76	74.83
P₀₇₈₅	19.09	18.23	19.52	28.66	34.18	19.71
P₀₂₀₈	0.53	22.52	1.14	18.76	0.60	55.25
P₀₄₀₇	7.92	23.23	19.13	52.61	8.26	61.18
P₀₆₂₇	6.29	49.65	5.99	45.05	7.87	91.24
media, indicating P_{0407}, P_{0208} and P_{0627} could be considered as growth-dependent promoters. In YPM broth, they behaved not growth-dependent at 60 h. We suspect that it may be related to the depletion of carbon source (methanol). In our study, YPD (2%), YPG (2%) or YPM (1%) has 32.58, 33.36 and 12.26 mmol carbon atoms, respectively. At 60 h, the methanol had been depleted which may affect the cell metabolism, so the relative transcriptional level of 0627, 0407 and 0208 at 60 h was lower than that at 36 h, showing non-growth-dependent characteristic. From 16 to 36 h, the relative transcriptional level was increased. Throughout the performance of 0208 and 0627 in three media for three time points, it demonstrates that they are growth-dependent. In addition, the transcriptional level of 0407 was higher than that of $ACT1$ at 16 h in YPD, YPG and YPM (Additional file 2), indicating P_{0407} was not a strictly growth-dependent promoter.

To further investigate the transcriptional properties of P_{0208} and P_{0627}, the GS115/P_{0208}-lacZ-TADH1 and GS115/P_{0627}-lacZ-TADH1 strains were cultured in YPD broth and sampled every 12 h from 12 h to 60 h. It was found that the relative transcriptional level of P_{0208} was increased from 0.002 to 16 h to 26 at 60 h, while that of P_{0627} was increased from 0.005 to 16 h to 40 at 60 h (Fig. 3A). Although the growth status of GS115/P_{0208}-lacZ-TADH1 or GS115/P_{0627}-lacZ-TADH1 strain was similar, the β-galactosidase activity of GS115/P_{0208}-lacZ-TADH1 strain was lower than that of GS115/P_{0627}-lacZ-TADH1 strain at each sampling point (Fig. 3B), suggesting that P_{0627} has good potential to be used in expressing the toxic proteins independent of methanol induction.

Evaluation of the promoter candidates through the heterogenous β-carotene biosynthetic pathway

According to the previous report, the optimized β-carotene biosynthetic pathway always includes four genes, $crtE$/$tHMG1$/$crtYB$/$crtI$ [27]. In this study, six promoter candidates (P_{GAP}, P_{GCW14}, P_{0208}, P_{0019}, P_{0230} and P_{0107}) with different transcriptional activities were randomly selected and applied to the β-carotene biosynthetic pathway to further evaluate the availability of promoters. As shown in Fig. 4, a promoter library was first constructed by random linkage of two reverse-aligned promoters (Step 1). Then two vectors (pZeocin/P_{XXX}-$crtE$-P_{YYY}-$tHMG1$ and pG418/P_{XXX}-$crtYB$-P_{YYY}-$crtI$, P_{XXX} and P_{YYY} indicate the name of candidate promoters) containing the above four genes were constructed (Step 2) and transformed into the GS115 WT strain in turn (Step 3). The promoter activities were qualitatively observed by the color of the transformants on plates (Step 4) and then quantitively determined by liquid fermentation (Step 5).

Finally, fourteen transformants with significant color differences were screened out for further liquid fermentation (Fig. 5A). The result indicates that the darker the color of transformant, the higher the yield of β-carotene (Fig. 5B). And the yield of β-carotene from these yeast mutants was from 0.0123 mg/g DCW (Caro-1 strain) up to 1.07 mg/g DCW (Caro-14 strain).
The promoters of four genes (crtE, tHMG1, crtYB, and crtI) in each strain were verified by PCR and the primers were shown in Additional file 3. The relationship between the transcriptional activity of each gene and the β-carotene production of the engineering strain was then analyzed. As shown in Fig. 5C, when both crtYB and crtI had a stronger promoter (similar to P_{GAP}), the β-carotene production of engineered strain was generally higher, and when crtYB had a relatively weaker promoter compared to P_{GAP}, the β-carotene production of engineered strain was decreased. This result was consistent with the previous report that CrtYBp was the rate-limiting enzyme in β-carotene production [28]. Compared to the promoter combinations in the β-carotene biosynthetic pathway of Caro-13 and Caro-14 strain, all corresponding genes used the same promoter except crtE. The promoter of crtE was P_{GAP} in the Caro-13 strain and P_{0230} in the Caro-14 strain. Although the transcriptional activity of P_{0230} was lower than that of P_{GAP} at 60 h, the β-carotene production of the Caro-14 strain was much higher than that of the Caro-13 strain. This result suggested that not all genes should have stronger transcriptional levels to achieve higher β-carotene production. Balancing the expression level of each gene in the biosynthetic pathway could be a better choice.
The existence of a significant competitive effect when one promoter was used multiple times in a yeast strain

In the Caro-9 strain, the combination of exogenous genes and promoters was P_{GCW14}\text{-thMG1}/P_{GAP}\text{-crtE}/P_{GCW14}\text{-crtYB}/P_{GAP}\text{-crtI}. In the Caro-13 strain, that was P_{GCW14}\text{-thMG1}/P_{GAP}\text{-crtE}/P_{GCW14}\text{-crtI}/P_{GAP}\text{-crtYB}. Although both P_{GAP} and P_{GCW14} were strong promoters, and their related β-galactosidase activities were similar (Table 1), the β-carotene production of Caro-9 strain was over 3-fold lower than that of Caro-13 strain (Fig. 6A, B). The RT-qPCR result at 16 h also showed that the transcriptional level of crtYB in the Caro-13 strain was over 3-fold higher than that in the Caro-9 strain (Fig. 6C). To figure out the reason, the transcriptional levels of four genes in the Caro-9 or Caro-13 strain were measured, respectively. Accidentally,
the transcriptional levels of two exogenous genes controlled by the same promoter behaved differently. As shown in Fig. 6C, although an endogenous gene (GAP) and two exogenous genes (crtE and crtI) were all driven by P\textsubscript{GAP} in the Caro-9 strain, the transcriptional levels of both exogenous genes were much lower than that of GAP, presenting a significant “competitive effect”. In addition, the transcriptional levels of \textit{crtE} and \textit{crtI} were also different. So were \textit{GCW14}, \textit{crtYB}, and \textit{tHMG-1} controlled by P\textsubscript{GCW14}. A similar phenomenon was also observed in the Caro-13 strain (Fig. 6D). Such a “competitive effect” when the same promoter was used multiple times in one yeast strain resulted in a lower expression level of the related gene than expected. It might be an important factor limiting the β-carotene yields of engineering strains constructed in this study.

Discussion

The strong promoter is an indispensable element in the engineering retrofit and application of yeast. Due to the lack of basic research compared with \textit{S. cerevisiae}, the availability of strong promoter is scarce in \textit{P. pastoris}, which seriously restricts the subsequent application.

In this study, by analyzing the RNA-seq data of GS115 WT strain in the stationary phase under different media (YPD, YPG, and YPM), ten strong endogenous promoters (P\textsubscript{GCW14}, P\textsubscript{0627}, P\textsubscript{0019}, P\textsubscript{GAP}, P\textsubscript{0407}, P\textsubscript{0392}, P\textsubscript{0230}, P\textsubscript{0208}, P\textsubscript{0785}, and P\textsubscript{0107}) which were not affected by carbon sources were screened out. Except for P\textsubscript{GCW14} and P\textsubscript{GAP}, eight of them were first reported here. Five (P\textsubscript{0019}, P\textsubscript{0392}, P\textsubscript{0230}, P\textsubscript{0785}, and P\textsubscript{0107}) were identified as strong constitutive promoters, and two (P\textsubscript{0627} and P\textsubscript{0208}) as growth-dependent strong promoters. The growth-dependent
transcriptional behavior of \(P_{0627} \) or \(P_{0208} \) makes it a good selection for the expression of toxic foreign proteins in \(P. \) pastoris. \(P_{0407} \) showed a similar trend as \(P_{0627} \) and \(P_{0208} \) in \(\beta \)-galactosidase activity. However, the transcriptional level of \(P_{0407}^{-\lacZ} \) was higher than that of \(ACT1 \) at 16 h, indicating this promoter was not a strictly growth-dependent promoter. In addition, in our study, the activity of \(P_{GCW14} \) was lower than that of \(P_{GAP} \) in YPD broth and similar to that of \(P_{GAP} \) in YPG broth when measured with the \(\beta \)-galactosidase activity assay. These results were not consistent with the previous report that \(P_{GCW14} \) activity was much higher than \(P_{GAP} \) by EGFP reporter in YPD or YPD broth [23].

However, the results of RT-qPCR and the \(\beta \)-galactosidase activity did not agree in all cases. For example, the transcriptional level of \(P_{0407}^{-\lacZ} \) was much higher than that of \(P_{GAP}^{-\lacZ} \) when the relative transformants were cultured in YPG or YPM broth. However, its related \(\beta \)-galactosidase activity was much lower than \(P_{GAP} \). \(P_{0107} \) presented the lowest transcriptional level at 60 h, but its corresponding \(\beta \)-galactosidase activity was not the lowest (Fig. 2). These results agree with the suggestion of previous reports that it was not that the higher of transcriptional level, the higher of protein expression level [29, 30].

In this study, a heterogenous biosynthetic pathway of \(\beta \)-carotene containing four genes was used to further evaluate the properties of six strong endogenous promoters (\(P_{GAP} \), \(P_{GCW14} \), \(P_{0208} \), \(P_{0019} \), \(P_{0230} \), and \(P_{0107} \)). The Caro-14 strain contributed the highest yield of \(\beta \)-carotene (1.07 mg/g DCW). It is higher than the yield in \(S. \) cerevisiae containing integrated carotenogenic gene cassettes \(crtYB/l/E/thMG1 \) (501 µg/g DCW) [31], suggesting that \(P. \) pastoris might have the advantages to be engineered as a carotene producer.

In addition, the competitive effect was first evaluated in this study. It was found that using the same promoter multiple times in one strain could lead to a significant decrease of the expression level of the target gene, reminding a careful evaluation is required before using a promoter in this way.

Some reports considered a 500 bp upstream sequence covering the whole promoter region of most genes in \(S. \) cerevisiae [32, 33]. As the most known strong constitutive promoter \(P_{GAP} \) in \(P. \) pastoris, its’ sequence length is 477 bp. It should be noted that the intergenic region between \(GAP \) and its neighbor gene was 1576 bp. On the contrary, the sequence length of another well-known strong inducible promoter, \(P_{AOX1} \), is 939 bp in the commercial vector pPICZaC, mainly covering the intergenic region between \(AOX1 \) and its neighbor gene (998 bp). The study of \(P_{AOX1} \) showed that the region −1055 to −809 and −653 to −514 significantly affects the promoter activity [34]. In our study, the 500 bp upstream sequence of candidate gene was amplified to act as a promoter. However, the lengths of the intergenic region of some genes are more than 500 bp, which might cause incomplete promoter elements like \(P_{AOX1} \), thereby affecting their normal functions. The corresponding intergenic regions of six selected promoters are over 500 bp except \(P_{0208} \), reminding the possibility that several key regulatory elements might not be included in the 500 bp sequence (Additional file 4). The promoter length would be appropriately extended in the follow-up study to explore whether it will significantly impact promoter activity.

Method and materials

Strains, vectors, and media
All strains used in this study are listed in Additional file 5. *Escherichia coli* TG1 was used to amplify plasmids in LB medium (0.5% yeast extract, 1% tryptone, 1% sodium chloride) containing 100 µg/mL ampicillin, zeocin, or 50 µg/mL kanamycin sulfate, and incubated at 37 °C. The yeast mutants were derived from the *P. pastoris* GS115 wild-type strain. All yeast strains, unless otherwise specified, were grown in YPD medium (1% yeast extract, 2% peptone, 2% glucose) at 30 °C.

Measurement of the yeast growth curves in different carbon source broths
The GS115 WT strain was pre-cultured in 5 mL YPD broth at 30 °C, 220 rpm for 24 h and followed by inoculating to an initial \(OD_{600} \) of 0.1 in 250 mL shaking flasks containing 50 mL YPD (2% glucose), YPG (2% glycerol), or YPM (1% methanol) for 72 h. The optical absorbance \((OD_{600}) \) of the culture was detected by an Evolution™220 spectrophotometer (Thermo Fisher Scientific Inc., USA), and each medium had three replicates.

RNA-seq analysis
Three independent clones of the GS115 WT strain were incubated in 5 mL YPD broth for 24 h. The pre-cultured pellet was washed with presterilized water and transferred into YPD, YPG, or YPM broth for incubating. The yeast cells (total \(OD_{600} \) of 16) were harvested by centrifugation (5000 g for 5 min, 4 °C) at 36 h when they entered the stationary phase. Total RNA was isolated using a Yeast RNA kit (Omega Bio-Tek Inc., USA) through the operation manual. The residuary genomic DNA was eliminated using a DNase I treatment (Takara Bio Inc., Japan). The qualified RNA samples determined with Bioanalyzer 2100 (Agilent Technologies, USA) were used for library construction with the sequencing platform BGISEQ-500 (BGI Shenzhen, China). Compared to the genome, the average comparison rate of the sample is 97.13%, and
the average comparison rate of the compared gene set is 82.58%. All the generated raw sequencing reads were filtered to remove reads with adaptors, reads with more than 10% unknown bases, and low-quality reads. Clean reads were then obtained and stored in FASTQ format. The clean reads were mapped to the genome of GS115 by HISAT [35]. The software package RSEM [36] was used to quantify the gene expression level. The ratio of FPKM for candidate genes to that for ACT1 was used as the relative fold change for RNA-seq data treatment.

Real-time quantitative PCR (RT-qPCR) analysis
The methods for obtaining pure total RNA were mentioned above. After DNase I treatment, the absence of DNA contamination was confirmed by PCR using a pair of genomic primers, and the genome of the GS115 WT strain was used as a positive control. 800 ng of total RNA was used to reverse transcription to generate cDNA with HiScript II Reverse Transcriptase (Vazyme Biotech Co., Ltd., China). RT-qPCR was carried out on a Mastercycler ep gradient S instrument (Eppendorf, Hamburg, Germany) with 2 × ChemQ SYBR qPCR Mester Mix (Vazyme Biotech Co., Ltd., China). The ACT1 gene was chosen as an internal control to normalize the relative expression levels of target genes. All reactions were performed in three replicates. A ΔΔCt method was used for the relative fold change analysis [37].

Construction of the vectors containing P_{XXX}-lacZ and yeast transformation
The genomic DNA of E. coli BL21 (DE3) was used as a template to amplify the open reading frame (ORF) of lacZ. DNA fragments of the integration site (AOX1 promoter, which helped the plasmid integrated into the chromosome) were amplified from GS115. ADH1 terminator (T_{ADH1}) was amplified from the genomic DNA of S. cerevisiae BY4741. The fragment of ori and zeocin-resistant marker came from the commercial plasmid pPICZαC (Invitrogen Corporation, USA). All the fragments were amplified with Hieff Canace™ high-fidelity DNA Polymerase (Yeasen, China) and then be linked by the homologous arm with pEASY®-Basic Seamless Cloning and Assembly Kit (TransGen Biotech Co., Ltd, China) to construct a vector pZeocin/lacZ-T_{ADH1}.

The promoter fragments of candidates were amplified from the genomic DNA of P. pastoris GS115 by PCR and then inserted into the HindIII site of pZeocin/lacZ-T_{ADH1} with seamless cloning to yield vector pZeocin/P_{XXX}-lacZ-T_{ADH1} (P_{XXX} indicates the name of candidate promoters). The linearized vector pZeocin/P_{XXX}-lacZ-T_{ADH1} with Pmel (located in the middle of AOX1 promoter locus) digested were transferred into the GS115 cells by electro-transformation and integrated into the genome by homologous recombination [38]. The strains containing P_{XXX}-lacZ were selected from the agar plates containing zeocin (0.1 mg/mL) and verified by PCR. The template came from colony or genomic DNA. The colony was boiled in water for 5 min before PCR and the genomic DNA was extracted as the previous report [39].

β-Galactosidase activity assay
The β-galactosidase activity was assayed according to the previous report with slight modification [40]. Briefly, the yeast cells (total OD_{600} of 3) were collected. The supernatant was discarded by centrifuge, and the pellet was resuspended in 1 mL Z buffer (60 mM Na_{2}HPO_{4}, 40 mM NaH_{2}PO_{4}, 10 mM KCl, and 1 mM MgSO_{4}) and diluted to make the final OD_{600} of 0.2–0.6. Take suitable volumes of the above cells into a 2 mL Eppendorf tube, and make up to 1 mL with Z Buffer. Add 25 µL 0.1% SDS and 50 µL chloroform, vortex for 30 s, and incubate at 30 °C for 15 min. The reaction was started through the addition of 200 µL of 4 mg/mL onitrophenyl-β-D-galactopyranoside (ONPG) solution at 30 °C and stopped by the addition of 500 µL of 1 M Na_{2}CO_{3}. After removal of cell debris by centrifugation, the OD_{120} and OD_{550} of the reaction solution were detected by Evolution™ 220 spectrophotometer, and the relative activity of β-galactosidase was calculated using the following formula:

\[
\text{Miller units} = \frac{1000 \times (\text{OD}_{120} - 1.75 \times \text{OD}_{550})}{V \times \text{OD}_{600} \times t}
\]

T is the reaction time (min) and V is the volume (mL) of culture used for the assay.

Construction of promoter library in the β-carotene biosynthetic pathway
The vector pMRI-34-crtE-tHMG1 and vector pMRI-35-crtYB-crtI were the kind gifts from Hongwei Yu’s lab [41]. The two gene cassettes with opposite directions of tHMG1/crtE or crtI/crtYB containing the promoter, ORF, and terminator were amplified from the above vectors. The AOX1 promoter (located in GS115 chromosome 4) and ENO2 promoter (located in GS115 chromosome 3) were chosen as the integration site. The ble (coding zeocin-resistant protein in E. coli and yeast) and kan (coding kanamycin-resistant protein in E. coli and G418-resistant protein in yeast, respectively) were chosen as screening markers. All those fragments were linked with the homologous arm by seamless cloning to yield vector pZeocin/crtE-tHMG1 and vector pG418/crtYB-crtI.

The candidate promoters (P_{0107}, P_{GCW14}, P_{0019}, P_{GAP}, P_{0208}, and P_{0230}) were amplified from the genomic DNA of GS115 by PCR. Two promoters in opposite directions were co-amplified by fusion PCR. Then a pool of
combinations with two reversed promoters was obtained. Those promoters were inserted into BamHI/NotI sites of vector pZeocin/crtE-tHMGI and vector pG418/crtYB-crtI with seamless cloning to yield vector pZeocin/PXXX-crtE-PYYY-tHMGI and vector pG418/PXXX-crtYB-PYYY-crtI (PXXX and PYYY indicate the name of candidate promoters). The vector pZeocin/PXXX-crtE-PYYY-tHMGI was linearized with Pmel and then transferred into the GS115 cell by electro-transformation. All the transformants grown on the agar plates containing zeocin were selected and co-cultured for the first round of electro-transformation with linearized pG418/PXXX-crtYB-PYYY-crtI by ScaI in ENO2 promoter. The transformants with different colors on the agar plates containing G418 (0.25 mg/mL) were picked out. The promoter combinations were verified by PCR.

Measurement of the β-carotene production
The extraction and analysis of β-carotene were performed according to a previous report [41]. Briefly, the β-carotene engineering strains were pre-cultured in 5 mL YPD broth at 30 °C, 220 rpm for 24 h. Precultures were inoculated to an initial OD600 of 0.05 in 20 mL of YPD broth with 100 mL flasks and grown under the same condition for 120 h. Samples were taken every 24 h to determine the DCW and β-carotene yield. The carotenoids were co-extracted using hot HCl-acetone. The analyses of β-carotene were performed on an HPLC system (LC 20AT) equipped with a Supersil ODS2 C18 column (4.6mm × 250mm). The mobile phase is composed of acetonitrile, methanol, and isopropanol with a volume ratio of 5:3:2, followed by a flow rate of 1 mL/min at 40 °C. The UV/VIS signals were detected at 450 nm, and the analysis time of each sample is 40 min. The standard product of β-carotene was prepared using hot HCl-acetone. The standard curve of concentration is linear. The standard product of β-carotene was prepared using a Supersil ODS2 C18 column (4.6mm × 250mm). The mobile phase is composed of acetonitrile, methanol, and isopropanol with a volume ratio of 5:3:2, followed by a flow rate of 1 mL/min at 40 °C. The UV/VIS signals were detected at 450 nm, and the analysis time of each sample is 40 min. The standard product of β-carotene was prepared using hot HCl-acetone. The standard curve of concentration is linear.

Abbreviations
- MUT: The methanol utilization; AOX1: Alcohol oxidase 1; FLD1: Formaldehyde dehydrogenase 1; DAS: Dihydroxyacetone synthase; PEX8: Peroxisomal matrix protein; AOX2: Alcohol oxidase 2; FPKM: Fragments per kilobase of transcript per million base pairs sequenced; RT-qPCR: Real-time quantitative PCR; GPI: Glycosylphosphatidylinositol; GS: Glutamine synthetase; DCW: Dry cell weight; ORF: Open reading frame; TADH1: AOX1 terminator; ONPG: O-nitrophenyl-β-D-galactopyranoside.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s12934-021-01648-6.

Additional file 1. Identified promoter candidates in P. pastoris GS115.
Additional file 2. Evaluation of the growth-dependent strong promoter PXXX and PYYY. (A) The relative transcriptional levels of 0627, 0208, and 0407 in YPD broth. (B) The relative transcriptional levels of 0627, 0208, and 0407 in YPD broth.

Acknowledgements
Not applicable.

Authors’ contributions
WWD, QCZ, and WJG conceived the original research idea. WWD, QCZ, MHZ, and ZYJ carried out all the experiments. WWD and QCZ drafted the initial manuscript. WJG reviewed and revised the manuscript. WWD and QCZ contributed equally to this article. All authors read and approved the final manuscript.

Funding
This work was supported by the National Key R&D Program of China (2019YFA0905400, 2018YFA0903200).

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations
- Ethics approval and consent to participate: Not applicable.
- Consent for publication: Not applicable.
- Competing interests: The authors declare that they have no competing interests.

Author details
1 Institute of Pharmaceutical Biotechnology and The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China. 2 Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou 310003, China.

Received: 16 April 2021 Accepted: 31 July 2021
Published online: 09 August 2021

References
1. Parashar D, Satyanarayana T. Enhancing the production of recombinant acidic alpha-amylase and phytase in Pichia pastoris under dual promoters [constitutive (CAP) and inducible (AOX1)] in mixed fed batch high cell density cultivation. Process Biochem. 2016;51:1315–22.
2. Wriessnegger T, Augustin P, Engleder M, Leitner E, Muller M, Kaluzna I, Schurmann M, Mink D, Zelting G, Schwab H, Pichler H. Production of the sesquiterpene (4E)-nootkatone by metabolic engineering of Pichia pastoris. Metab Eng. 2014;24:18–29.
3. Araya-Garay JM, Feijoo-Siota L, Rosa-dos-Santos F, Veiga-Crespo P, Villa TG. Construction of new Pichia pastoris X-33 strains for production of lyco-pene and beta-carotene. Appl Microbiol Biotechnol. 2012;93:2483–92.
4. Bhatya A, Schmidt-Dannert C, Lee PC. Metabolic engineering of Pichia pastoris X-33 for lycopene production. Process Biochem. in 2009;44:1095–102.
5. Araya-Garay JM, Ageitos JM, Vallesio JA, Veiga-Crespo P, Sanchez-Perez A, Villa TG. Construction of a novel Pichia pastoris strain for production of xanthophylls. AMB Exp. 2012;2:1–8.
6. Meesapodyotsuk D, Chen Y, Ng SH, Chen JN, Qiu X. Metabolic engineering of Pichia pastoris to produce nimolic acid, a hydroxy fatty acid of industrial importance. J Lipid Res. 2015;56:2102–9.
7. Jeong E, Shim WY, Kim JH. Metabolic engineering of Pichia pastoris for production of hyaluronic acid with high molecular weight. J Biotechnol. 2014;185:28–36.
8. Liu XB, Liu M, Tao XY, Zhang ZX, Wang FQ, Wei DZ. Metabolic engineering of *Pichia pastoris* for the production of dammarenediol-II. J Biotechnol. 2015;216:47–55.

9. Xu N, Zhu JX, Zhu QY, Li X, Chen XQ, Chen WQ, Zhou M, Zhang YX. Identification and characterization of novel promoters for recombinant protein production in yeast *Pichia pastoris*. Yeast. 2018;35:379–85.

10. Vogl T, Glieder A. Regulation of *Pichia pastoris* promoters and its consequences for protein production. N Biotechnol. 2013;30:385–404.

11. Portela RMC, Vogl T, Ebner K, Oliveira R, Glieder A. *Pichia pastoris* Alcohol Oxidase 1 (AOX1) Core promoter engineering by high resolution systematic mutagenesis. Biotechnol. J. 2018;13:1700340.

12. Resina D, Cos O, Pera F, Valero F. Developing high cell density fed-batch cultivation strategies for heterologous protein production in *Pichia pastoris* using the nitrogen source-regulated FLD1 promoter. Biotechnol. Bioeng. 2005;91:760–7.

13. Tschopp JF, Brust PF, Cregg JM, Stillman CA. Functional characterization of the lacZ gene from two methanol-regulated promoters in *Pichia pastoris*. Nucleic Acids Res. 1987;15:3859–76.

14. Cereghino JL, Cregg JM. Heterologous protein expression in the methylorophic yeast *Pichia pastoris*. FEMS Microbiol Rev. 2000;24:45–66.

15. Cregg JM, Madden KR, Barringer KJ, Thill GP, Stillman CA. Functional characterization of the two alcohol oxidase genes from the yeast *Pichia pastoris*. Mol Cell Biol. 1989;9:1316–23.

16. Hartner FS, Glieder A. Regulation of methanol utilisation pathway genes in yeasts. Microb Cell Fact. 2006;5:39.

17. Searls IB, O’Connor J, Rossanese OW, Glick BS. A versatile set of vectors for constitutive and regulated gene expression in *Pichia pastoris*. Yeast. 1998;14:783–90.

18. Vassileva A, Chugh DA, Swaminathan S, Khanna N. Expression of hepatitis B surface antigen in the methylorophic yeast *Pichia pastoris* using the GAP promoter. J Biotechnol. 2001;88:21–35.

19. Waterham HR, Digau ME, Koutz PJ, Lair SV, Cregg JM. Isolation of the *Pichia pastoris* glyceraldehyde-3-phosphate dehydrogenase gene and regulation and use of its promoter. Gene. 1997;186:37–44.

20. Doring F, Klapper M, Theis S, Daniel H. Use of the glyceraldehyde-3-phosphate dehydrogenase promoter for production of functional mammalian membrane transport proteins in the yeast *Pichia pastoris*. Biochem Biophys Res Commun. 1998;250:531–5.

21. Qin XL, Qian JC, Yao GF, Zhuang YP, Chu J. A GAP promoter library for fine-tuning of gene expression in *Pichia pastoris*. Appl Environ Microb. 2011;77:3600–8.

22. Ahn J, Hong J, Lee H, Park M, Lee E, Kim C, Choi E, Jung J, Lee H. Translational elongation factor 1-alpha gene from *Pichia pastoris*: molecular cloning, sequence, and use of its promoter. Appl Microbiol Biotechnol. 2007;74:601–8.

23. Liang SL, Zou CJ, Lin Y, Zhang XW, Ye YR. Identification and characterization of P-GGW14a, a novel, strong constitutive promoter of *Pichia pastoris*. Biotechnol Lett. 2013;35:1865–71.

24. Studlmayr G, Mecklenbrauker A, Rothmuller M, Maurer M, Sauer M, Mattanovich D, Gasser B. Identification and characterization of novel *Pichia pastoris* promoters for heterologous protein production. J Biotechnol. 2010;150:519–29.

25. Zhu T, Guo M, Zhuang Y, Chu J, Zhang S. Understanding the effect of foreign gene dosage on the physiology of *Pichia pastoris* by transcriptional analysis of key genes. Appl Microbiol Biotechnol. 2011;89:1127–35.

26. Schwarzhans JP, Langdon SP, Um IH, Harrison DJ, Smith VA. Relationship between differentially expressed mRNA and mRNA-protein correlations in a xenograft model system. Sci Rep UK. 2015;5:1–9.

27. Liu YS, Beyer A, Aebersold R. On the dependency of cellular protein levels on mRNA abundance. Cell. 2016;165:533–50.

28. Verwaal R, Wang J, Meijnen JP, Visser H, Sandmann G, van den Berg JA, van Ouyjen AJJ. High-level production of beta-carotene in Saccharomyces cerevisiae by successive transformation with carotenogenic genes from *Xanthophyllomyces dendrorhous*. Appl Environ Microb. 2007;73:4342–50.

29. Agmon N, Mitchell LA, Cai Y, Ikushima S, Chuang J, Zheng A, Choi WJ, Martin JA, Caravelli K, Stracquadanio G, Boeke JD. Yeast golden gate (yGG) for the efficient assembly of *S. cerevisiae* transcription units. ACS Synth Biol. 2015;4:853–9.

30. Garcia-Ruiz E, Auxillos J, Li T, Dai J, Cai Y. YeastFab: high-throughput genetic parts construction, measurement, and pathway engineering in yeast. Methods Enzymol. 2018;608:277–306.

31. Xuan YJ, Zhou XS, Zhang WW, Zhang X, Song ZW, Zhang YX. An upstream activation sequence controls the expression of *AOX1* gene in *Pichia pastoris*. FEBS Yeast Res. 2009;9:1271–82.

32. Kim D, Landmead B, Salzberg SL, HSKAT, a fast spliced aligner with low memory requirements. Nat Methods. 2015;12:357-U121.

33. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011;12:1.1–1.

34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods. 2001;25:402–8.

35. Wu SX, Latchworth GJ. High efficiency transformation by electroporation of *Pichia pastoris* pretreated with lithium acetate and dithiothreitol. Biotechniques. 2004;36:152–4.

36. Looke M, Kristjahan K, Kristjahan A. Extraction of genomic DNA from yeasts for PCR-based applications. BioTechniques. 2017;62:325–8.

37. Nambo-Nhishida Y, Sakihama Y, Ishii J, Hasunuma T, Kondo A. Selection of yeast *Saccharomyces cerevisiae* promoters available for xylose cultivation and fermentation. J Biosci Bioeng. 2018;125:76–86.

38. Xie W, Liu M, Lv X, Lu W, Gu J, Yu H. Construction of a controllable beta-carotene biosynthetic pathway by decentralized assembly strategy in *Saccharomyces cerevisiae* biotechnological pathways. Biotechnol Bioeng. 2014;111:125–33.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.