GLE and Sub-GLE Redefinition in the Light of High-Altitude Polar Neutron Monitors

S.V. Poluianov1,2 · I.G. Usoskin1,2 · A.L. Mishev1,2 · M.A. Shea3 · D.F. Smart3

Abstract. The conventional definition of ground level enhancement (GLE) events requires detection of solar energetic particles (SEP) by at least two differently located neutron monitors. Some places are exceptionally suitable for ground-based detection of SEP – high-elevation polar regions with negligible geomagnetic and reduced atmospheric energy/rigidity cutoffs. At present, there are two neutron-monitor stations in such locations on the Antarctic plateau: SOPO/SOPB (at Amundsen–Scott station, 2835 m elevation) and DOMC/DOMB (at Concordia station, 3233 m elevation). Since 2015, when the DOMC/DOMB station started continuous operation, a relatively weak SEP event, not detected by sea-level neutron-monitor stations, was registered by both SOPO/SOPB and DOMC/DOMB and accordingly classified as a GLE. This would lead to a distortion of the homogeneity of the historic GLE list and the corresponding statistics. To address this issue, we propose to modify the GLE definition so that it keeps the homogeneity: A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s). Relatively weak SEP events registered only by high-altitude polar neutron monitors, but with no response from cosmic-ray stations at sea level, can be classified as sub-GLEs.

Keywords: Energetic Particles

1 Space Climate Research Unit, University of Oulu, Finland
2 Sodankylä Geophysical Observatory, University of Oulu, Finland
3 SSSRC, 100 Tennyson Avenue, Nashua, NH 03062, USA
1. Introduction

A nearly simultaneous enhancement of the count rates of several ground-based cosmic-ray detectors, neutron monitors (NM), or ionization chambers (e.g. Forbush, 1946; Simpson, 1990), caused by solar energetic particles (SEP) is known as a ground-level enhancement (GLE) event. Observations of GLEs provide key information about the high-energy portion (above several hundred MeV nucleons) of strong SEP events, which cannot be continuously monitored by spaceborne instruments (Tylka and Dietrich, 2004). We note that the modern spaceborne particle spectrometers such as the alpha magnetic spectrometer AMS-02 (Aguilar et al., 2015) and payload for antimatter matter exploration and light-nuclei astrophysics (PAMELA, Picozza et al., 2007) are not well suited to study SEP events because in low orbits they spend most of the time in regions with high geomagnetic cutoff.

The GLE dataset spans high-energy SEP events over almost seven solar cycles providing sufficient basis for statistical studies (e.g. Gopalswamy et al., 2014; Raukunen et al., 2013; Vainio et al., 2017). Since the beginning of systematic ground-based measurements of cosmic rays, over 70 GLEs have been “officially” registered so far (see the International GLE Database [gle.oulu.fi]). However, in 2015 there was a SEP event that was clearly observed by the South Pole (SOPO/SOPB) and Dome C (DOMC/DOMB) stations, but it was hardly distinguishable in the count rates of other NMs. Based on the current GLE definition, it would have been identified as a GLE, but on the other hand, it would not, if the DOMC/DOMB station had not been operational. Accordingly, this can compromise the homogeneity of the GLE dataset and introduce a bias in the statistics. Here we propose a revision of the GLE definition to keep the GLE dataset homogeneous.

2. The Present GLE Definition and its Limitation

The definition of a GLE was proposed by the cosmic-ray community in the 1970s and is commonly understood as the following:

A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located NMs.

We note that previously there was only one high-latitude high-altitude NM station, the South Pole, and a SEP event must have been recorded at the sea-level to be identified as a GLE. However, with the installation of DOMC/DOMB, the situation has changed significantly. The sensitivity of a NM to cosmic rays depends on the rigidity/energy threshold of detectable particles, defined by the geomagnetic- and atmospheric-shielding effects. The geomagnetic shielding is quantified in terms of the geomagnetic cutoff rigidity, which varies from almost zero in the polar region to 15–17 GV at the geomagnetic Equator (e.g. Smart and Shea, 2004; Nevalainen, Usoskin, and Mishev, 2013). In addition, there is the atmospheric cutoff, implying that a primary particle must possess some minimal energy to be able to initiate the atmospheric cascade and be registered.
on the ground. It depends on the thickness of the atmosphere above the location, being greatest (≈ 430 MeV nuc$^{-1}$, see Grieder, 2001; Dorman, 2004) at sea level and decreasing with altitude. The atmospheric cutoff dominates shielding in the polar regions, and elevation of a cosmic-ray detector above sea level reduces the atmospheric attenuation of cosmic-ray cascades significantly. Accordingly, cosmic-ray detectors located at high altitude in the polar region possess higher sensitivity to low-energy cosmic rays relative to ones at near-sea-level and/or non-polar locations.

There are two regions with these properties in the world: the top of the Greenland ice sheet (3205 m above the sea level (asl)) and the Antarctic plateau (average elevation of about 3000 m asl). Although there is no high-altitude cosmic-ray station in Greenland, two NMs are located on the Antarctic plateau: at South Pole and at Dome C (Figure 1).

The Amundsen–Scott US research station at the geographical South Pole (90°S, elevation of 2835 m asl, the nominal barometric pressure 690 hPa) had a neutron monitor in operation since 1964 (Evenson et al., 2011, http://nmdb.eu). The setup consists of two types of cosmic-ray detectors: a standard NM-64 instrument with a lead layer for multiplication of neutrons, and a so-called “bare” or lead-free NM without the lead layer (e.g. Vashenyuk, Balabin, and Stoker, 2007). The South Pole standard and “bare” NMs are denoted as SOPO and SOPB, respectively.

A more recent neutron monitor, called “Dome C”, is located at the Franco–Italian research station Concordia ($75^\circ06'$S, $123^\circ23'$E, 3233 m asl, 650 hPa). It is
also equipped with the two types of neutron monitors denoted as DOMC (standard) and DOMB (“bare”). The Dome C cosmic-ray station started operation in early 2015 \cite{Poluianov2015}.

Before 2015 the global NM network had only one high-altitude polar station (SOPO/SOPB). All GLEs were registered by instruments including at least one located near the sea level, implying that SEP events causing GLEs had sufficiently large flux of particles with energy above the full atmospheric cutoff of ≈ 1 GV (≈ 430 MeV nuc$^{-1}$). The installation of the DOMC/DOMB detector in 2015 has lead to a situation when a SEP event with much lower flux of energetic particles can be formally classified as a GLE. There have already been several SEP events that have been registered by only those instruments and confirmed by data from spacecrafts, but these events have not been detected by other NMs at near sea-level elevations. One example is an event of 29 October 2015 that took place around 02:40 UT, as shown in Figure 2. A distinguishable signal was recorded only by SOPO/SOPB and DOMC/DOMB (left panel), while other polar sea-level NMs did not register any significant response. Thus, if applying the commonly used GLE definition, this event might have been considered as a GLE, while it is obvious that it would not have been counted earlier, without DOMC/DOMB data. The SEP event on 29 October 2015 is different from other GLE events because of its lower intensity and much softer spectrum compared with a weak “official” GLE \cite{Mishev2017}. The ratio of SEP peak fluxes, computed based on five-minute NM data during the maximum phase of the event using spectrum reconstructions by Mishev, Kocharov, and Usoskin \cite{Mishev2014,Mishev2016}, for this event relative to the weak GLE on 17 May 2012 is 0.25, 0.13, and 0.05 for the energy ranges > 200, > 300, and > 500 MeV, respectively. One can see that the event of 29 October 2015 was not only weaker, but also much softer than the GLE on 17 May 2012. It was also under the alert threshold of the GLE alert system \cite{Souvatzoglou2009}. This introduces a bias to the definition of GLE, since the NM network is more sensitive to GLE now than ever before, and therefore, some of the events observed nowadays would not have been recorded if they had occurred in the past. Accordingly, we believe that applying the “classical” GLE definition now can significantly distort the homogeneity of the existing list.

When a small increase is measured in a high-altitude polar NM, it is normal to look for a corresponding increase in sea-level NMs; however, when investigating what might initially appear to be a small increase in the counting rate of a sea level NM, care must be taken to differentiate between the normal daily variation, random fluctuation, and increase from solar particles. In addition, we acknowledge the uncertainty in exact timing of GLE detection caused by different magnetic connection of NM stations during the initial highly anisotropic phase of a particle event.

3. Proposed Definitions of GLE and Sub-GLE

To address the issue described above, we suggest modifying the GLE definition, namely, to fix the condition that the event should be detected near sea level,
implying that the corresponding SEP event has sufficient flux of particles with the energy exceeding the full atmospheric cutoff.

We propose to formulate the revised GLE definition as follows:

A GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located neutron monitors including at least one neutron monitor near sea level and a corresponding enhancement in the proton flux measured by a space-borne instrument(s).

By the term “near the sea level”, we mean altitude not higher than approximately a quarter of the mean attenuation length of the nucleonic component of the cosmic-ray cascade (e.g. Grieder, 2001; Dorman, 2004) above the sea level, viz.
≈ 30 g cm$^{-2}$. This corresponds to ≈ 1000 g cm$^{-2}$ in total atmospheric depth or ≈ 300 m asl in altitude. NMs located at higher altitudes possess a notably different response function due to the cascade attenuation effects (Clem and Dorman, 2000; Flückiger et al., 2008). It is important to note that the proposed definition does not affect the existing list of “classic” GLEs, because all of them have been detected by at least one sea-level NM (or ionization chambers for the four events before 1950, Forbush, Stinchcomb, and Schein, 1950).

However, it would be incorrect to ignore completely SEP events registered by only high-altitude polar NMs, without a significant response from the near sea-level NMs. Such events (as the one of 29 October 2015 discussed above) can be called sub-GLEs. Although this term is not very precise, it is already used in the literature (e.g. Atwell et al., 2013; Vainio et al., 2017) to classify events with a reduced, opposed to a “classic” GLE, proton energy range. For sub-GLE, we propose the following definition:

A sub-GLE event is registered when there are near-time coincident and statistically significant enhancements of the count rates of at least two differently located high-elevation neutron monitors and a corresponding enhancement in the proton flux measured by a space-borne instrument(s), but no statistically significant enhancement in the count rates of neutron monitors near sea level.

We note that this definition does not contradict the one proposed by Atwell et al. (2013).

4. Summary

The installation of the second high-altitude polar cosmic-ray station DOMC/DOMB, in addition to the long-existing South Pole SOPO/SOPB station, has improved the sensitivity of the global NM network, so now it can detect SEP events below the full atmospheric cutoff, which would not been recorded previously and classified as GLEs. This distorts the homogeneity of the list of GLE and may affect studies based on the GLE long-term occurrence rate. In order to address this issue, we have suggested modifying the GLE definition by requiring that at least one of the NMs recording the event should be located near sea level. The new definition does not affect the list of already registered events, but rejects some weaker SEP events of Cycle 24 as being GLEs. SEP events detected by only high-altitude polar NMs, with no significant response of NMs near sea level, can be called sub-GLEs. The corresponding formal definition of such events is proposed.

Acknowledgments The work was supported by the projects of the Academy of Finland Centre of Excellence ReSoLVE (No. 272157), CRIPA and CRIPA-X (No. 304435), and Finnish Antarctic Research Program (FINNARP). Operation of the DOMC/DOMB NMs was possible due to support of the French-Italian Concordia Station. French financial support and field logistic supplies for the year-round campaigns at Dome C were provided by the Institut Polaire Français-Paul Emile Victor (IPEV) through program n903. We acknowledge Askar Ibragimov for the support of the International GLE database (gle.oslu.fi) and are thankful to the worldwide neutron-monitor database (nmdb.eu), which is a product of an EU Project. We thank Marc Duldig, Erwin Flückiger, John Humble, and Roger Pyle for valuable discussions.
Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

Aguilar, M., Aisa, D., Alpat, B., Alvino, A., Ambrosi, G., Andeen, K., et al.: 2015, Precision Measurement of the Proton Flux in Primary Cosmic Rays from Rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station. Phys. Rev. Lett. 114, 171103. [DOI]

Atwell, W., Tylka, A.J., Dietrich, W., Rojdev, K., Matzkind, C.: 2015, Sub-GLE Solar Particle Events and the Implications for Lightly-Shielded Systems Flown During an Era of Low Solar Activity. In: Int. Conf. Environ. Sys., Lunar Planet. Sci. Conf. Proc. ntrs.nasa.gov/search.jsp?R=20150009484.

Clem, J.M., Dorman, L.I.: 2000, Neutron monitor response functions. Space Sci. Rev. 93, 335. [DOI] [ADS]

Dorman, L.: 2004, Cosmic rays in the earth’s atmosphere and underground, Kluwer, Dordrecht. ISBN 1-4020-2071-6.

Evenson, P., Bieber, J., Clem, J., Pyle, R.: 2011, South Pole Neutron Monitor Lives Again. In: Proc. Int. Cosmic Ray Conf. 11, 459. [DOI] [ADS]

Flückiger, E.O., Moser, M.R., Pirard, B., Büttikofer, R., Desorgher, L.: 2008, A parameterized neutron monitor yield function for space weather applications. In: Caballero, R., D’Olivo, J.C., Medina-Tanco, G., Nellen, L., Sanchez, F.A., Valds-Galicia, J.F. (eds.) Proc. 30th Int. Cosmic Ray Conf. 1, 289. [ADS]

Forbush, S.E.: 1946, Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun. Phys. Rev. 70, 771. [DOI] [ADS]

Forbush, S.E., Stinchcomb, T.B., Schein, M.: 1950, The Extraordinary Increase of Cosmic-Ray Intensity on November 19, 1949. Phys. Rev. 79, 501. [DOI] [ADS]

Gopalswamy, N., Xie, H., Akiyama, S., Mäkelä, P.A., Yashiro, S.: 2014, Major solar eruptions and high-energy particle events during solar cycle 24. Earth Planet. Space 66, 104. [DOI] [ADS]

Grieder, P.K.F.: 2001, Cosmic Rays at Earth, Elsevier Science, Amsterdam. [ADS]

Grierson, J.: 1990, Astrophysical Phenomena Discovered by Cosmic Ray and Solar Flare Ground Level Events: The Early Years. In: Proc. Int. Cosmic Ray Conf. 12, 187. [ADS]

Mishev, A.L., Kocharov, L.G., Usoskin, I.G.: 2014, Analysis of the ground level enhancement on 17 may 2012 using data from the global neutron monitor network. J. Geophys. Res.: Space Phys. 119(2), 670. [DOI]

Mishev, Alexander, Poluianov, Stepan, Usoskin, Ilya: 2017, Assessment of spectral and angular characteristics of sub-gle events using the global neutron monitor network. J. Space Weather Space Clim. 7, A29. [DOI]

Nevalainen, J., Usoskin, I., Mishev, A.: 2013, Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations. Adv. Space Res. 52(1), 22. [DOI]

Picozza, P., Galper, A.M., Castellini, G., Adriani, O., Altamura, G., Ambriola, M., et al.; 2007, PAMELA — A payload for antimatter matter exploration and light-nuclei astrophysics. Astropart. Phys. 27(4), 286. [DOI]

Poluianov, S., Usoskin, I., Mishev, A., Moraal, H., Kruger, H., Casasanta, G., Traversi, R., Udisti, R.: 2015, Mini Neutron Monitors at Concordia Research Station, Central Antarctica. J. Astron. Space Sci. 32, 281. [DOI] [ADS]

Raukunen, O., Vainio, R., Tylka, A.J., Dietrich, W.F., Jiggens, P., Heynderickx, D., Dierckxens, M., Crosby, N., Gane, U., Siipola, R.: 2017, Two solar proton fluence models based on ground level enhancement observations. J. Space Weather Space Clim. submitted.

Simpson, J.A.: 1990, Astrophysical Phenomena Discovered by Cosmic Ray and Solar Flare Ground Level Events: The Early Years. In: Proc. Int. Cosmic Ray Conf. 12, 187. [ADS]

Smart, D.F., Shea, M.A.: 2009, Fifty years of progress in geomagnetic cutoff rigidity determinations. Adv. Space Res. 44(10), 1107. [DOI]

Souvatzoglou, G., Movromichalaki, H., Sarlais, C., Mariatos, G., Belov, A., Eroshenko, E., Yanke, V.: 2009, Real-time GLE alert in the ANMODAP Center for December 13, 2006.
Tylka, A.J., Dietrich, W.F.: 2009, A new and comprehensive analysis of proton spectra in ground-level enhanced (gle) solar particle events. In: Proc. 31th Int. Cosmic Ray Conf., Lodz.

Vainio, R., Raukunen, O., Tylka, A.J., Dietrich, W.F., Afanasiev, A.: 2017, Why is solar cycle 24 an inefficient producer of high-energy particle events? Astron. Astrophys. 604, A47. [DOI]

Vashenyuk, E.V., Balabin, Y.V., Stoker, P.H.: 2007, Responses to solar cosmic rays of neutron monitors of a various design. Adv. Space Res. 40(3), 331. [DOI]