RESEARCH ARTICLE

Zoonotic multidrug-resistant microorganisms among small companion animals in Germany

Ursula Kaspar¹, Alexa von Lützau¹, Andreas Schlattmann¹, Uwe Roesler², Robin Köck¹*, Karsten Becker¹

¹ Institute of Medical Microbiology, University Hospital Münster, Münster, Germany, ² Institute for Animal Hygiene and Environmental Health, FU Berlin, Department of Veterinary Medicine, Berlin, Germany

* Current address: Institute of Hygiene, DRK Kliniken Berlin, Berlin, Germany

kbecker@uni-muenster.de

Abstract

Antimicrobial multidrug-resistant microorganisms (MDRO) can be transmitted between companion animals and their human owners. Aim of this study was to determine the prevalence of extended spectrum beta-lactamase-producing Enterobacteriaceae (ESBL-E) and Staphylococcus aureus including methicillin-resistant S. aureus (MRSA) in different companion animal species. Dogs (n = 192), cats (n = 74), and rabbits (n = 17), treated in a veterinary practice and hospital or living in an animal shelter and private households, were sampled. All facilities were located in a region characterized by a high density of pig production. Nasal, buccal and perianal swabs were enriched and cultured on solid chromogenic selective media. A subgroup of 20 animals (13 dogs, 3 cats, 4 rabbits) was analyzed for the presence of staphylococci other than S. aureus. Amongst all animals (n = 283), twenty dogs (10.4%) and six cats (8.1%) carried S. aureus. MRSA was found in five dogs (2.6%) and two cats (2.7%). Isolates were of spa types t011, t034, t108 (all meca-positive, ST398), and t843 (mecC-positive, ST130), typical for livestock-associated (LA)-MRSA. Except for one dog, MRSA-positive animals did not have direct contact to husbandry. ESBL-Escherichia coli (blaCTX-M/blaTEM/blaSHV genes) were present in seven dogs (3.6%), one cat (1.4%) possessed a cefotaxime-resistant Citrobacter freundii isolate (blaTEM/blaCMY-2 genes). MDRO carriage was associated with animals from veterinary medical settings (p < 0.05). One dog and one rabbit carried methicillin-resistant coagulase-negative staphylococci. The exclusive occurrence of MRSA lineages typically described for livestock stresses the impact of MDRO strain dissemination across species barriers in regional settings. Presence of ESBL-E and LA-MRSA among pets and probable dissemination in clinical settings support the necessity of a “One Health” approach to address the potential threats due to MDRO-carrying companion animals.

Introduction

Today, companion animals such as cats and dogs are often considered family members and close proximity or direct animal contact are given on a daily basis in many households. This
causes the potential risk of transmission of a multitude of pathogenic microorganisms, including multidrug-resistant bacteria, between pets and their human owners [1–3]. Coagulase-positive staphylococci, such as methicillin-resistant (MR) *Staphylococcus aureus* (MRSA), *Staphylococcus pseudintermedius* (MRSP) and *Staphylococcus intermedius* (MRSI), as well as MR coagulase-negative staphylococci (MR-CoNS) and extended-spectrum beta-lactamase (ESBL) producing *Enterobacteriaceae* (ESBL-E) have been shown to colonize companion animals and cause infections in both pets and humans [4–9].

The ability of bacteria to inhabit different hosts poses the additional threat of resistance gene transfer, resulting in decreased susceptibility against antimicrobials in increasing numbers of bacteria [4,10]. Resistance genes of particular interest comprise the *mec* genes (*mecA*, *mecB*, *mecC*, and *mecd*) causing methicillin resistance in members of the genera *Staphylococcus* and *Macrococcus*, and the *bla* genes (*bla*CMY-2, *bla*SHV, *bla*TEM, *blaCTX-M*) encoding beta-lactamases (especially ESBL) in *Enterobacteriales* comprising *Enterobacteriaceae* and related families [11–16].

The aim of this study was to assess carriage and antimicrobial resistance of opportunistic animal and human pathogens in companion animals in North-West Germany by means of culture-based phenotypic and molecular methods.

Materials and methods

Sample collection

Bacterial isolates were obtained from dogs (n = 192), cats (n = 74), and rabbits (n = 17) either healthy or undergoing veterinary examination between May 2015 and March 2016. Animals treated in a private veterinary practice and a veterinary hospital or living in an animal shelter and private households were included. Swab samples (Transwab Amies MW 172P, Medical Wire & Equipment, Corsham Wiltshire, England) were collected from each animal’s nasal vestibules (both sides using one swab), oral mucosa and perianal area. Samples from animals in the hospital were taken prior to treatment. In the veterinary practice, animals were treated as outpatients. In order to participate in the study, pet owners had to answer a full consent form and a questionnaire. Samples were stored for a maximum of three days at room temperature before further processing.

Cultivation

For isolation of *S. aureus*, nasal and buccal swabs were streaked onto selective chromogenic medium (chromID *S. aureus*, bioMérieux, Marcy l’Étoile, France), then suspended in 5 ml of tryptic soy broth (TSB, Becton Dickinson, Franklin Lakes, NJ, USA) supplemented with 6.5% NaCl. Solid and liquid cultures were incubated at 37˚C for 24 h. Subsequently, chromID *S. aureus* agar was inoculated with 10 μl of the enriched liquid culture. Furthermore, 1 ml of the culture was used on chromogenic medium selective for MRSA (chromID MRSA, bioMérieux) and 1 ml was suspended in 9 ml phenolred mannitol broth supplemented with ceftriaxone/aztreonam (PHMB+C/AZ, Mediaproducts BV, Groningen, Netherlands). Cultures were grown at 37˚C for either 24 h (chromID *S. aureus*, bioMérieux and PHMB+C/AZ, Mediaproducts BV) or 48 h (chromID MRSA, bioMérieux). From the PHMB+C/AZ (Mediaproducts BV) culture, 1 ml was used for further incubation on chromID MRSA (bioMérieux) at 37˚C for 48 h.

For a subset of samples from 20 animals (13 dogs, 3 cats and 4 rabbits), which were the first animals included in the study, swabs were additionally streaked onto 5% sheep blood agar supplemented with aztreonam and colistin (CAP) (Oxoid, Wesel, Germany) and incubated at 37˚C for 24 h for the detection of staphylococcal species apart from *S. aureus*.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have declared that no competing interests exist.
In order to detect ESBL-E, swab samples from the perianal area were suspended in TSB and incubated at 37°C for 24 h. Chromogenic selective medium (chromID ESBL, bioMérieux) was inoculated with 10 μl of the liquid culture and further incubated at 37°C for 24 h.

Identification of isolates
Colonies grown on chromID MRSA (bioMérieux), chromID S. aureus (bioMérieux), and CAP agar (Oxoid) were isolated based on conventional phenotypic characteristics, such as colony morphology, pigmentation, Gram staining and production of clumping factor (Pastorex Staph Plus; bioMérieux). Colonies grown on chromID ESBL medium (bioMérieux) were selected according to their colony morphology and pigmentation. Single colonies were inoculated onto Columbia blood agar (Becton Dickinson) and further cultivated at 37°C for 24 h.

Identification of pure cultures down to the species level was accomplished via matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS, Bruker Daltonics, Billerica, MA) as described elsewhere [17,18]. In brief, cells from freshly grown single colonies were smeared on a ground steel target plate (Bruker Daltonics) and covered with 1 μl of alpha-cyano-4-hydroxycinnamic acid (HCCA) dissolved in 50.0% acetonitrile and 2.5% trifluoroacetic acid. Analysis of co-crystallized samples was performed with flexControl 3.3 (Bruker Daltonics). Spectra were evaluated with the MALDI Biotyper 4.0 (Bruker Daltonics) considering an m/z range of 4,000–10,000 Da. The score threshold for explicit determination on species level was set to ≥ 2.0.

Bacterial isolates yielding scores ≤ 2.0 in MALDI-TOF MS analysis were subjected to biochemical identification in the VITEK 2 automated system (bioMérieux) using VITEK 2 GP ID cards for nasal and buccal samples or VITEK 2 GN ID cards (bioMérieux) for perianal samples, respectively.

If identification results via MALDI-TOF MS and VITEK 2 were ambiguous, the 16S rRNA gene was sequenced. For this, total genomic DNA was extracted using the QIAamp DNA MiniKit following the manufacturer’s instructions (Qiagen, Venlo, Netherlands). Primers 27f and 907r(m) were used to target the V1-V4 hypervariable regions of the 16S rRNA gene [19,20]. Purification of PCR products was achieved using the MinElute Kit (Qiagen) according to manufacturer’s instructions. Sequencing was performed on an ABI 3730XL sequencing machine using the cycle sequencing technology (Eurofins Genomics, Ebersberg, Germany). For sequence analysis, comparison against sequences obtained from validly described type strains and isolates was carried out using the Seqmatch function of the RDP-II database [21]. Sequences yielding a similarity score of ≥ 98% were assigned at species level.

Characterization of isolates
Antimicrobial susceptibility testing (AST) of isolates identified as staphylococci or Enterobacteriaceae was carried out with the VITEK 2 system (bioMérieux) according to the manufacturer’s instructions using the test cards AST-P632 for staphylococci and AST-N214 for Enterobacteriaceae. AST results were interpreted according to The European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints [22].

S. pseudintermedius and S. intermedius isolates were further characterized regarding their phenotypic resistance by disk diffusion using oxacillin (1 μg) as recommended by EUCAST [22]. The presence of the methicillin resistance determinants mecA, mecB and mecC in staphylococci was tested by PCR as previously described [11,23]. S. aureus isolates were genotyped by means of their spa gene and multilocus sequence typing (MLST) was performed on MRSA isolates as described elsewhere [24,25].
In *Enterobacteriaceae*, ESBL-production was confirmed using the MASTDISCS ID Extended-Spektrum-β-Laktamaset (ESβL)-Set (CPD10) D67C (MAST Diagnostica, Reinfeld, Germany) according to the manufacturer’s instruction. Resistance was further classified by detection of *bla*_{SHV}, *bla*_{TEM} and *bla*_{CTX-M} genes by multiplex PCR as introduced by Monstein et al. [26]. The gene *bla*_{CMY-2} was tested as described by Souna et al. [27]. Additionally, the easyplex SuperBug assay (AmplexDiagnostics GmbH, Gars am Inn, Germany) to detect carbapenemase-producing *Enterobacteriaceae* (CRE) was applied following the manufacturer’s instructions.

Association of ESBL-E/cefotaxime-resistant *Enterobacteriaceae* and MRSA carriage with potential risk factors was assessed separately for cats, dogs and rabbits applying Fisher’s exact test in GraphPad Prism v.5.00 (GraphPad Software, La Jolla, CA, USA); p < 0.05 was considered significant.

Results

Sample group

A total of 283 animals was sampled including 192 dogs, 74 cats and 17 rabbits. The mean age of the dogs was 5.6 years (range: 0.1–16 years) with 85 animals being male and 107 being female. Among the male dogs, 37.6% (n = 32) were castrated, 39.2% (n = 42) of female dogs were neutered. The group of cats had a mean age of 4.2 years (range: 0.1–17 years), the group of rabbits a mean age of 2.4 years (range 0.3–10 years). Among cats, 63.8% (23/36) of male cats were castrated and 55.3% (21/38) female cats were neutered. The gender distribution in the group of rabbits was nine male and eight female animals. Among these, 33.3% (3/9) of male and 25% (2/8) of female rabbits were neutered.

Across the complete group of animals, 31.4% (89/283) were healthy whereas 68.6% (194/283) were sampled before undergoing veterinary examinations. Altogether, antibiotics had been administered to 27.9% of animals (79/283) within six months prior to sampling. More details about the sample groups are provided in Table 1.

Colonization with beta-lactam-resistant *Enterobacteriaceae*

Among all animals (n = 283), seven (2.5%) were found to carry ESBL-*Escherichia coli*; one sample was positive for cefotaxime-resistant *Citrobacter freundii* (Table 2). Whereas all *E. coli* isolates originated from the perianal area of dogs (7/192, 3.6%), the *C. freundii* isolate was detected in the perianal sample of a cat (1/74, 1.4%). All ESBL-E/cefotaxime-resistant *Enterobacteriaceae* isolates were susceptible to ertapenem, imipenem, meropenem and tigecycline. The assay for the detection of CRE remained negative. Four *E. coli* isolates harbored single *bla* genes (*bla_{TEM}; n = 1; *bla_{CTX-M}; n = 3), while four isolates carried combinations of *bla* genes (*C. freundii*: *bla_{TEM}* and *bla_{CMY-2}*: n = 1; *E. coli*: *bla_{TEM}* and *bla_{SHV}*: n = 1, *bla_{TEM}* and *bla_{CTX-M}*: n = 2) (Table 2).

The dogs colonized with ESBL-producing *E. coli* were 2–12 years old (mean: 7.7 years). Five dogs were male, the other two were female, all of which were neutered except for one male dog. All seven animals were undergoing veterinary examination either in a private veterinary practice (2/7) or a veterinary clinic (5/7). Reasons for the examination were internal diseases (4/7), orthopedics (2/7), or surgical interventions (1/7). Antibiotics had been administered to 4/7 dogs within six months before sampling. One dog had regular contact with livestock and other companion animals, three had contact with horses and companion animals, two had contact with other companion animals and one was not kept together with any other animals. Positive ESBL-*E. coli* samples from dogs admitted to the veterinary clinic (5/7) were detected within a short time interval between 01/2016 and 03/2016.
The cat carrying cefotaxime-resistant *C. freundii* was 0.5 years old, male and not neutered. It was brought into the private veterinary practice for surgical intervention and had not received any antibiotics prior to sampling. It was reported to live together with another cat and a dog.

Amongst the samples obtained from rabbits, no ESBL-E were detected.

Colonization with *S. aureus*

Twenty of 192 dogs (10.4%) carried *S. aureus*. Colonizing strains (n = 26) belonged to *spa* types t008, t034 (each n = 4), t091 (n = 3), t605, t786, t3750 (each n = 2), t002, t011, t019, t108, t275, t620, t630, t16020, and t16021 (each n = 1). In 11/20 animals, *S. aureus* was exclusively detected in the nose (55%). five animals (25%) were tested positive only in their mouth. The remaining four animals carried *S. aureus* in both habitats. In these four animals, isolates from nasal and buccal samples always belonged to the same *spa* type (t034, t605, t786 and t3750). In the nose of one dog, isolates associated with three different *S. aureus* *spa* types (t008, t091 and...
Methicillin resistance conferred by the gene mecA was found in six S. aureus isolates colonizing 5/192 dogs (2.6%). These isolates belonged to spa types t034 (n = 4), t011 and t108 (each n = 1), all associated with sequence type (ST) 398. All canine MRSA isolates (6/6) showed resistance against tetracycline (Table 3). MRSA positive animals were of variable age (0.2–7 years, mean 3.6 years) and gender (3 female, 2 male) and were either admitted to the private practice (n = 4) or the clinic (n = 1). One of the dogs was a healthy animal, accompanying another animal treated by the veterinarian. The other dogs were admitted to the veterinarian for standard examination (2/5) or surgical intervention (2/5). Among the the MRSA positive dogs, 1/5 were reported to have contact with livestock, 1/5 had contact with other companion animals, such as other dogs, cats, or rabbits, and 3/5 had contact with both horses and companion animals. Systemic antibiotics had been administered to 2/5 dogs.

In the group of 74 cats, six (8.1%) were characterized as S. aureus carriers. Isolates (n = 9) were assigned to spa types t843 (n = 3), t011 and t11232 (each n = 2), and t015 and t1736 (each n = 1). In two of these cats, S. aureus was found only in the nose, in another two only in the mouth and in the remaining two in both habitats. Isolates colonizing different habitats in the same animal were shown to be of the same spa types (t843 and t11232). Three S. aureus isolates colonizing 2/74 animals (2.7%) were MR. Of these, one isolate (spa type t011, ST398) carried mecA, whereas the other two isolates, both spa type t843 and ST130 obtained from mouth and nose of the same animal, carried mecC. The mecA-carrying isolate showed further resistances against clindamycin, levofloxacin and tetracycline (Table 3). The two cats carrying MRSA were eight and ten years old, both female and neutered and both brought to the veterinarian practice because of internal diseases. Neither of them was reported having contact to livestock or horses, but both were kept together with other pets, such as dogs and other cats. The cat carrying the mecA-positive MRSA had received systemic and local antibiosis within six months prior to sampling. The animal carrying the mecC-positive t843 isolates in mouth and nose also carried another nasal t843 S. aureus strain which was methicillin-susceptible according to phenotypic and molecular tests.

Amongst the rabbits, no S. aureus/MRSA isolates were found.

Association of risk factors with MDRO carriage

In the group of dogs, a linkage between neutered animals and ESBL- E. coli carriage was shown (6/68 vs. 1/117; p = 0.0138). None of the other assessed risk factors was associated with...
ESBL-E/cefotaxime-resistant Enterobacteriaceae or MRSA carriage in the three groups of animals (p > 0.05 for all variables). However, when analyzing ESBL-E/cefotaxime-resistant Enterobacteriaceae and MRSA (i.e. MDRO) together and carriage among all tested animals (not separately for different species), we found that animals sampled in practices and hospitals carried MDRO more frequently than animals sampled in shelters and households (17/181 vs. 0/85; p = 0.0023). Moreover, veterinary treatment (16/178 vs. 1/88; p = 0.0161), castration (12/111 vs. 5/155; p = 0.0238) and contact to other pets (15/163 vs. 2/103; p = 0.0355), were associated with MDRO carriage.

Colonization with staphylococci other than S. aureus

A subgroup of animals (n = 20), consisting of 13 dogs, three cats and four rabbits was further analyzed for staphylococcal species other than S. aureus. Altogether, 14 different staphylococcal species were detected across this subgroup (Fig 1).

In the group of dogs, eleven different species were detected with the coagulase-positive species S. intermedius (in 4/13 dogs; 30.8%) and S. pseudintermedius (in 3/13 dogs; 23.1%) and the CoNS Staphylococcus equorum and Staphylococcus xylosus (both in 3/13 dogs; 23.1%) being most prevalent. Amongst the cats, four different staphylococcal species were detected. In this group, Staphylococcus felis was found in 3/3 of cats whereas the remaining three species were found in 1/3 cats each. Throughout the group of rabbits, nine different staphylococcal species were detected, with S. equorum and S. xylosus both being detected in 4/4 of the rabbits. Other prevalent species were Staphylococcus vitulinus (in 3/4 rabbits), Staphylococcus pettenkoferi and Staphylococcus saprophyticus (each in 2/4 rabbits) (Fig 1).

Table 3. Resistance profiles of (i) methicillin-resistant Staphylococcus aureus (MRSA) from 283 companion animals and (ii) methicillin-resistant coagulase-negative staphylococci from 20 companion animals.

Species	Animal host	Sampling site	spa type	Resistance genes	Phenotypic antimicrobial susceptibility test profile	FOX screening	Other resistances
Staphylococcus aureus	Dog (#12)	Nasal	t108	mecA	POS PEN, OXA, TET		
	Dog (#16)	Nasal	t034	mecA	POS PEN, OXA, CLI, ERY, TET		
	Dog (#89)	Buccal	t111	mecA	POS PEN, OXA, LVX, TET		
	Dog (#103)	Nasal	t034	mecA	POS PEN, CLI, TET		
	Dog (#171)	Buccal	t034	mecA	POS PEN, OXA, LVX, TET, SXT		
	Dog (#171)	Nasal	t034	mecA	POS PEN, OXA, LVX, TET, SXT		
	Cat (#44)	Buccal	t843	mecC	POS PEN, OXA		
	Cat (#44)	Nasal	t843	mecC	POS PEN		
	Cat (#47)	Buccal	t011	mecA	POS PEN, OXA, LVX, TET		
Staphylococcus cohnii subsp. cohnii	Dog (#2)	Buccal	mecA		POS PEN, OXA, FO		
Staphylococcus cohnii subsp. urealyticus	Rabbit (#3)	Nasal	-		POS OXA, FOF		
Staphylococcus pettenkoferi	Rabbit (#1)	Buccal	-		POS OXA, FOF		
Staphylococcus saprophyticus subsp. saprophyticus	Rabbit (#3)	Nasal	mecA		POS OXA, FOF		

a Individual running numbers of animals are given in brackets.
b as determined by VITEK 2 automated system (bioMérieux).
c MICs were detected with VITEK 2 (bioMérieux) and evaluated using breakpoints provided by EUCAST [22].
POS, positive; CLI, clindamycin; ERY, erythromycin; FOF, fosfomycin; FA, fusidic acid; LVX, levofloxacin; OXA, oxacillin; PEN, penicillin; TET, tetracycline; SXT, trimethoprim-sulfamethoxazol.

https://doi.org/10.1371/journal.pone.0208364.1003
Screenings for methicillin resistance among staphylococcal isolates revealed one *Staphylococcus cohnii* subsp. *cohnii*, two *Staphylococcus cohnii* subsp. *urealyticus*, one *S. pettenkoferi*, and one *Staphylococcus saprophyticus* subsp. *saprophyticus* isolate showing phenotypic resistance according to VITEK 2 testing. Presence of the gene *mecA* was verified for one MR-*S. cohnii* subsp. *cohnii* isolate in a dog and one MR-*S. saprophyticus* subsp. *saprophyticus* in a rabbit (Table 3). The animals carrying these two strains had not been in direct contact with livestock or horses but were both in contact with other companion animals. Moreover, the dog carrying MR-*S. cohnii* subsp. *cohnii* had received topical antibiotics before sampling and was at the veterinary practice for a surgical intervention. The rabbit carrying MR-*S. saprophyticus* subsp. *saprophyticus* had been brought to the veterinarian practice for a standard examination.

Discussion

The risk of zoonotic transmission of bacteria between animals and humans is a global problem challenging human and veterinary medicine and beyond, such as food industry and wildlife, which necessitates inter- and transdisciplinary linking within a One Health concept [1,5,28,29]. However, most studies focus on the analysis of zoonotic agents in livestock whereas comprehensive data on the colonization of companion animals are limited. In contrast to livestock, companion animals are often considered as family members living in very close contact with their owners. Thus, transmission between humans and animals in both
directions is very likely [3]. This study gives an overview of the prevalence of ESBL-E and MRSA in companion animals. Moreover, it provides insights into the occurrence of other staphylococcal species constituting potential reservoirs for methicillin resistance determinants.

In this point-prevalence assessment, we found that the proportion of animals colonized with ESBL-\textit{E. coli} (2.5\% of all animals or 3.6\% of the dogs) was comparable to other studies investigating the perianal/rectal carriage of companion animals [30–32]. On the other hand, consecutive screenings of feline and canine fecal samples revealed considerably higher abundances of ESBL-E [33,34], showing the different outputs generated by the two approaches. Naturally, perianal swab samples only yield small amounts of fecal material, resulting in the recovery of only a fraction of bacterial isolates when compared to the corresponding fecal sample. Nevertheless, we deliberately chose this approach in order to efficiently collect and maximize the number of samples. Moreover, a swab sample of the perianal area provides valuable information about the risk of ESBL-E transmission from pet to owner, as the animals tested positive in this habitat present a permanent risk factor for the people in close contact.

The prevalence of MRSA among cats and dogs was generally lower than described for livestock [35,36]. However, it corresponded with carriage rates reported for humans in the general German population [37–39]. Previous studies found similar data in companion animals (0.1–5.7\%) [40–43]. Interestingly, all MRSA isolates found were linked to spa types belonging to the livestock-associated ST398 (t011, t034, t108) and ST130 (t843), respectively. This is particularly interesting, as the majority of these animals (6/7) did not live in direct contact with livestock. However, the samples of this study were obtained from animals living in rural districts in North-West Germany, an area well known for its high density of husbandry, in particular pig farming. In this area, a significant increase of LA-MRSA, particularly CC398, into human healthcare facilities has been observed over the last decades [44,45]. Accordingly, the high colonization rate of this clonal lineage in companion animals could reflect the occurrence of LA-MRSA in the general and hospitalized human population of this area [37,45,46]. Moreover, Bierowiec et al. (2016) demonstrated that the prevalence of \textit{S. aureus} is significantly higher in domestic cats than in feral cats [47]. This underpins previous assumptions of a bacterial ‘spill over’ from owners to their pets, thus creating a reservoir for (re-)colonization and infection [5,48–50]. The findings of this study are also in line with data about epidemic extended-host spectrum MRSA lineages, which instead of showing host specificity can rather be assigned to a specific geographic origin [10,51]. Moreover, it has been shown, that especially MRSA show a high potential to spread via dust and air into the closer farm environment [52, 53]. Apart from this, the fact that all MDROs were either obtained from one veterinary practice or one veterinary clinic, strongly suggest a nosocomial spread of these strains. A significant association of these factors could be demonstrated (Fisher’s exact test; \(p < 0.05\)). This finding is further substantiated by the close relation of LA-MRSA spa types found and the very short time interval where ESBL-\textit{E. coli} were detected particularly in animals treated ambulatory in the veterinary clinic. A general rise in veterinary nosocomial outbreaks for different MDROs has been well-documented in recent years [5,54,55]. Again, the ‘spill over’ from veterinary personnel, other animal patients and their human owners, and the distinct geographic origin would be key factors for such an outbreak.

Other coagulase-positive staphylococcal species, also often described as the \textit{S. aureus} counterparts in veterinary medicine, are \textit{S. intermedius} and \textit{S. pseudintermedius}. Both species are well-known for causing different types of pyogenic and skin infections, such as pyoderma, dermatitis and otitis in small companion animals, particularly in dogs [56–61]. Moreover, the prevalence of MR strains has been increasing rapidly, leading to significant health problems in animals, particularly in veterinary hospital settings [62–65]. In the subgroup of 20 animals analyzed for the colonization of different staphylococcal species, \textit{S. pseudintermedius} was found in
dogs (3/13) and rabbits (1/4), but not in cats. *S. intermedius* was found only in dogs (4/13). However, none of these strains showed resistance against methicillin.

Apart from the coagulase-positive species *S. intermedius* and *S. pseudintermedius*, another twelve different coagulase-negative staphylococcal species were shown to be present in the subset of 20 animals. Amongst these, one canine *S. cohnii* subsp. *cohnii* isolate and one *S. saprophyticus* subsp. *saprophyticus* isolate in a rabbit were shown to be phenotypically MR and to harbor the *mecA* gene. In humans, *S. saprophyticus* subsp. *saprophyticus* is well known as a frequent cause for urinary tract infections in young women [66–71]. In animals, *S. saprophyticus* has been described as a colonizer of the gastrointestinal tract of cattle and pigs, a causative agent for subclinical mastitis in cows, and as a contaminant of animal food products [72–74]. Less data are available on *S. cohnii* subsp. *cohnii*, which is described as a colonizer of dogs, goats and poultry, but has also been detected in the hospital environment and in clinical samples of humans suffering from a variety of infectious diseases [66,75–77]. In the past decades, the prevalence of MR-CoNS is rapidly increasing, reaching levels of up to over 80% within clinical samples of human patients [66,78–80]. In the animal cohort investigated here, at least 10.0% of animals (2/20) were colonized with MR-CoNS. Another two animals were colonized with other phenotypically resistant staphylococcal strains. These strains might either serve as a reservoir of methicillin resistance genes for other zoonotic pathogens or could be transferred directly to humans, such as pet owners or veterinary personnel.

Conclusion

Data of this study prove that resistances against beta-lactams and other antibiotic classes are ubiquitously present in medically significant pathogens colonizing companion animals. This situation constitutes a high risk of transmission of MDROs or resistance-encoding mobile elements to humans being in close contact to those animals and their microbiota. The exclusive occurrence of only those MRSA belonging to livestock-associated clonal lineages in companion animals without direct contact to livestock emphasizes the adverse effects of MDRO dissemination across species barriers in regions with high density of livestock husbandry. The findings underline the need for the consequent implementation of the One Health concept considering all interconnections between human and animal populations where pathogens and their resistance mechanisms can be transmitted.

Acknowledgments

We thank Melanie Bach, Damayanti Kaiser and Martina Schulte for excellent technical assistance.

Author Contributions

Conceptualization: Uwe Roesler, Robin Köck, Karsten Becker.

Data curation: Ursula Kaspar, Alexa von Lützau.

Formal analysis: Ursula Kaspar.

Funding acquisition: Uwe Roesler, Robin Köck, Karsten Becker.

Investigation: Alexa von Lützau, Andreas Schlattmann.

Methodology: Ursula Kaspar, Alexa von Lützau, Andreas Schlattmann.

Project administration: Karsten Becker.

Resources: Karsten Becker.
References

1. Wieler LH, Ewers C, Guenther S, Walther B, Lübke-Becker A. Methicillin-resistant staphylococci (MRS) and extended-spectrum beta-lactamases (ESBL)-producing Enterobacteriaceae in companion animals: Nosocomial infections as one reason for the rising prevalence of these potential zoonotic pathogens in clinics. Int J Med Microbiol. Elsevier GmbH.; 2011; 301: 635–641. https://doi.org/10.1016/j.ijmm.2011.09.009 PMID: 22000738

2. Weese JS, Fulford MB. Companion Animal Zoonoses. 1st ed. Oxford, UK: Wiley-Blackwell; 2011. https://doi.org/10.1002/9780470958957

3. Walther B, Hermes J, Cuny C, Wieler LH, Vincze S, Elnaga YA, et al. Sharing more than friendship—nasal colonization with coagulase-positive staphylococci (CPS) and co-habitation aspects of dogs and their owners. PLoS One. 2012; 7: e35197. https://doi.org/10.1371/journal.pone.0035197 PMID: 22529990

4. Pomba C, Rantala M, Greko C, Baptiste KE, Catry B, van Duijkeren E, et al. Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. Oxford University Press; 2017; 72: 957–968. https://doi.org/10.1093/jac/dkw481 PMID: 27999066

5. Walther B, Tedin K, Lübke-Becker A. Multidrug-resistant opportunistic pathogens challenging veterinary infection control. Vet Microbiol. Elsevier; 2017; 200: 71–78. https://doi.org/10.1016/J.VETMIC.2016.05.017 PMID: 27291944

6. Vincze S, Stamm I, Kopp PA, Hermes J, Adlhoch C, Semmler T, et al. Alarming proportions of methicillin-resistant Staphylococcus aureus (MRSA) in wound samples from companion animals, Germany 2010–2012. PLoS One. 2014; 9: e85656. https://doi.org/10.1371/journal.pone.0085656 PMID: 24465637

7. Misic AM, Davis MF, Tyldesley AS, Hodkinson BP, Tolomeo P, Hu B, et al. The shared microbiota of humans and companion animals as evaluated from Staphylococcus carriage sites. Microbiome. 2015; 3: 1–19. https://doi.org/10.1186/s40168-014-0066-1

8. Mani I, Maguire JH. Small Animal Zoonoses and Immunocompromised Pet Owners. Top Companion Anim Med. 2009; 24: 164–174. https://doi.org/10.1053/j.tcam.2009.07.002 PMID: 19945084

9. Schmiede J, Falgenhauer L, Domann E, Bauerfeind R, Prenger-Berriogho E, Imirzalioglu C, et al. Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany 2010–2012. PLoS One. 2014; 9: e85656. https://doi.org/10.1371/journal.pone.0085656 PMID: 24465637

10. Vincze S, Stamm I, Monecke S, Kopp PA, Semmler T, Wieler LH, et al. Molecular analysis of human and canine Staphylococcus aureus strains reveals distinct extended-host-spectrum genotypes independent of their methicillin resistance. Appl Environ Microbiol. 2013; 79: 655–662. https://doi.org/10.1128/AEM.02704-12 PMID: 23160118

11. Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewi ß J, Mellmann A, et al. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg Infect Dis. 2018; 24: 242–248. https://doi.org/10.3201/eid2402.171074 PMID: 29301535

12. Becker K, Ballhausen B, Köck R, Kriegeskorte A. Methicillin resistance in Staphylococcus isolates: The “mec alphabet” with specific consideration of mecC, a mec homolog associated with zoonotic S. aureus lineages. Int J Med Microbiol. 2014; 304: 794–804. https://doi.org/10.1016/j.ijmm.2014.06.007 PMID: 24034857

13. Schwendener S, Cotting K, Perreten V. Novel methicillin resistance gene mecDin clinical Macroccocus caseolyticus strains from bovine and canine sources. Sci Rep. 2017; 7: 1–11. https://doi.org/10.1038/s41598-016-0028-x

14. Ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. Biomed Res Int. 2018; 2018: 9519718. https://doi.org/10.1155/2018/9519718 PMID: 2978033

15. Bush K, Jacoby GA. Updated functional classification of beta-lactamases. Antimicrob Agents Chemother. 2010; 54: 969–76. https://doi.org/10.1128/AAC.01009-09 PMID: 19995920
16. Cantón R, González-Alba JM, Galán JC. CTX-M enzymes: Origin and diffusion. Front Microbiol. 2012; 3. https://doi.org/10.3389/fmicb.2012.00110 PMID: 22485109

17. Idelevich EA, Schüle I, Grünastel B, Wüllenweber J, Peters G, Becker K. Rapid identification of microorganisms from positive blood cultures by MALDI-TOF mass spectrometry subsequent to very short-term incubation on solid medium. Clin Microbiol Infect. 2014; 20: 1001–1006. https://doi.org/10.1111/1469-0691.12640 PMID: 24698361

18. Kaspar U, Kriegeskorte A, Schubert T, Peters G, Rudack C, Pieper DH, et al. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ Microbiol. 2016; 18: 2130–2142. https://doi.org/10.1111/1462-2920.12891 PMID: 25923378

19. Breitkopf C, Hammel D, Scheld HH, Peters G, Becker K. Impact of a molecular approach to improve the microbiological diagnosis of infective heart valve endocarditis. Circulation. 2005; 111: 1415–1421. https://doi.org/10.1161/01.CIR.0000158481.07569.8D PMID: 15753218

20. Lane DJ. 16S/23S rRNA Sequencing. In: Stackebrandt E, Goodfellow M, editors. Nucleic acid techniques in bacterial systematics. Chichester, United Kingdom: John Wiley & Sons; 1991. pp. 115–175. https://doi.org/10.1007/s00227-012-1233-0

21. Wang Q, Garrity GM, Tiedje JM, Peters G, Becker K. Rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007; 73: 5261–7. https://doi.org/10.1128/AEM.00620-07 PMID: 17586664

22. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretations of MICs and zones diameters. Version 8.0; 2018 [Internet]. Available from: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_8.0_Breakpoint_Tables.pdf

23. Kriegeskorte A, Ballhausen B, Idelevich EA, Köck R, Friedrich AW, Karch H, et al. Human MRSA isolates with novel genetic homolog, Germany. Emerg Infect Dis. 2012; 18: 1016–1018. https://doi.org/10.3201/eid1806.110910 PMID: 22602812

24. Mellmann A, Friedrich AW, Rosenkötter N, Rothgänger J, Karch H, Reintjes R, et al. Automated DNA Sequence-Based Early Warning System for the Detection of Methicillin-Resistant *Staphylococcus aureus* Outbreaks. PLoS Med. 2006; 3: e33. https://doi.org/10.1371/journal.pmed.0030033 PMID: 16396609

25. Enright MC, Day NPJ, Davies CE, Peacock SJ, Spratt BG. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of *Staphylococcus aureus*. J Clin Microbiol. 2000; 38: 1008–1015 PMID: 10698988

26. Monstein HJ, Östholm-Balkhed Å, Nilsson M V., Nilsson M, Dornbusch K, Nilsson LE. Multiplex PCR amplification assay for the detection of *bla*SHV, *bla*TEM and *bla*CTX-M genes in *Enterobacteriaceae*. Apmis. 2007; 115: 1400–1408. https://doi.org/10.1111/j.1600-0463.2007.00722.x PMID: 18184411

27. Souza D, Amir AS, Bekhoucha SN, Berrazeg M, Drissi M. Molecular typing and characterization of TEM, SHV, CTX-M, and CMY-2 β-lactamases in *Enterobacter cloacae* strains isolated in patients and their hospital environment in the west of Algeria. Médecine Mal Infect. 2014; 44: 146–152. https://doi.org/10.1016/j.medmal.2014.01.008 PMID: 24731757

28. Zinsstag J, Schelling E, Wältner-Toews D, Tanner M. From “one medicine”; to “one health” and systemic approaches to health and well-being. Prev Vet Med. 2011; 101: 148–56. https://doi.org/10.1016/j.prevvetmed.2010.07.003 PMID: 20832879

29. Schaumburg F, Mugisha L, Peck B, Becker K, Gillespie TR, Peters G, et al. Drug-Resistant Human *Staphylococcus aureus* in Sanctuary Apes Pose a Threat to Endangered Wild Ape Populations. Am J Primatol. 2012; 74: 1071–1075. https://doi.org/10.1002/ajp.22067 PMID: 22907634

30. Harada K, Morimoto E, Kataoka Y, Takahashi T. Clonal spread of antimicrobial-resistant *Escherichia coli* isolates among pups in two kennels. Acta Vet Scand. 2011; 53: 11. https://doi.org/10.1186/1751-0147-53-11 PMID: 21324209

31. Gandolfi-Decristophoris P, Petrini O, Ruggeri-Bernardi N, Schelling E. Extended-spectrum β-lactamase-producing *Enterobacteriaceae* in healthy companion animals living in nursing homes and in the community. Am J Infect Control. 2013; 41: 831–835. https://doi.org/10.1016/j.ajic.2012.11.013 PMID: 23422230

32. Murphy C, Reid-Smith RJ, Prescott JF, Bonnett BN, Poppe C, Boerlin P, et al. Occurrence of antimicrobial-resistant bacteria in healthy dogs and cats presented to private veterinary hospitals in southern Ontario: A preliminary study. Can Vet J = La Rev Vet Can. 2009; 50: 1047–53

33. Baede VO, Wagenaar JA, Broens EM, Duijn B, Dohmen W, Nijssen R, et al. Longitudinal study of extended-spectrum β-lactamase- and AmpC-producing *Enterobacteriaceae* in household dogs. Antimicrob Agents Chemother. 2015; 59: 3117–24. https://doi.org/10.1128/AAC.04576-14 PMID: 25779568

34. Hordijk J, Schoormanns M, Kwakemaak M, Duijn B, Broens E, Dierikx C, et al. High prevalence of fecal carriage of extended spectrum β-lactamase/AmpC-producing *Enterobacteriaceae* in cats and dogs. Front Microbiol. Frontiers; 2013; 4: 242. https://doi.org/10.3389/fmicb.2013.00242 PMID: 23966992
35. Graveland H, Duim B, van Duijkeren E, Heederik D, Wagenaar JA. Livestock-associated methicillin-resistant *Staphylococcus aureus* in animals and humans. Int J Med Microbiol. 2011; 301: 630–634. https://doi.org/10.1016/j.ijmm.2011.09.004 PMID: 21983338

36. Becker K, Ballhausen B, Kahl BC, Köck R. The clinical impact of livestock-associated methicillin-resistant *Staphylococcus aureus* of the clonal complex 398 for humans. Vet Microbiol. 2017; 200: 33–38. https://doi.org/10.1016/j.vetmic.2015.11.013 PMID: 26644311

37. Becker K, Schaumburg F, Fegeler C, Friedrich AW, Köck R. Prevalence of Multiresistant Microorganisms PMM Study. *Staphylococcus aureus* from the German general population is highly diverse. Int J Med Microbiol. 2017; 307: 21–27. https://doi.org/10.1016/j.ijmm.2016.11.007 PMID: 28071539

38. Köck R, Meilmann A, Schaumburg F, Friedrich AW, Kipp F, Becker K. The epidemiology of methicillin-resistant *Staphylococcus aureus* (MRSA) in Germany. Dtsch Arztebl Int. 2011; 108: 761–7. https://doi.org/10.3238/artzebtl.2011.0761 PMID: 22163252

39. Köck R, Werner P, Friedrich AW, Fegeler C, Becker K, Bindewald O, et al. Persistence of nasal colonization with human pathogenic bacteria and associated antimicrobial resistance in the German general population. New Microbes New Infect. 2016; 9: 24–34. https://doi.org/10.1016/j.nmni.2015.11.004 PMID: 26862431

40. Hoet AE, van Balen J, Nava-Hoet RC, Bateman S, Hillier A, Dyce J, et al. Epidemiological Profiling of Methicillin-Resistant *Staphylococcus aureus* -Positive Dogs Arriving at a Veterinary Teaching Hospital. Vector-Borne Zoonotic Dis. 2013; 13: 385–393. https://doi.org/10.1089/vbz.2012.1089 PMID: 23473222

41. Wedley AL, Dawson S, Maddox TW, Coyne KP, Pinchbeck GL, Clegg P, et al. Carriage of *Staphylococcus* species in the veterinary visiting dog population in mainland UK: Molecular characterisation of resistance and virulence. Vet Microbiol. 2014; 170: 81–88. https://doi.org/10.1016/j.vetmic.2014.01.015 PMID: 24612909

42. Ruzauskas M, Couto N, Kerziene S, Siuzdziene R, Klimiene I, Virgailis M, et al. Prevalence, species distribution and antimicrobial resistance patterns of methicillin-resistant staphylococci in Lithuanian pet animals. Acta Vet Scand. 2015; 57: 27. https://doi.org/10.1186/s13028-015-0117-z PMID: 26032539

43. Davis JA, Jackson CR, Fedorka-Cray PJ, Barrett JB, Brousse JH, Gustafson J, et al. Carriage of methicillin-resistant staphylococci by healthy companion animals in the US. Lett Appl Microbiol. 2014; 59: 1–8. https://doi.org/10.1111/llm.12254 PMID: 24730724

44. van Allen S, Ballhausen B, Peters G, Friedrich AW, Meilmann A, Köck R, et al. In the centre of an epidemic: Fifteen years of LA-MRSA CC398 at the University Hospital Münster. Vet Microbiol. 2017; 200: 19–24. https://doi.org/10.1016/j.vetmic.2016.01.021 PMID: 28878970

45. Köck R, Harlizius J, Bressan N, Laerberg R, Wieler LH, Witte W, et al. Prevalence and molecular characteristics of methicillin-resistant *Staphylococcus aureus* from pigs on German farms and import of livestock-related MRSA into hospitals. Eur J Clin Microbiol Infect Dis. 2009; 28: 1375–1382. https://doi.org/10.1007/s10096-009-0795-4 PMID: 19701815

46. Köck R, Siam K, Al-Malat S, Christmann J, Schaumburg F, Becker K, et al. Characteristics of hospital patients colonized with livestock-associated meticillin-resistant *Staphylococcus aureus* (MRSA) CC398 versus other MRSA clones. J Hosp Infect. Elsevier; 2011; 79: 292–296. https://doi.org/10.1016/j.jhin.2011.08.011 PMID: 22042921

47. Bierowicz K, Płoneczka-Janeczko K, Rypuła K. Prevalence and Risk Factors of Colonization with *Staphylococcus aureus* in Healthy Pet Cats Kept in the City Households. Biomed Res Int. 2016; 2016: 3070524. https://doi.org/10.1155/2016/3070524 PMID: 27766257

48. Morgan M. Methicillin-resistant *Staphylococcus aureus* and animals: zoonosis or humanosis? J Antimicrob Chemother. Oxford University Press; 2008; 62: 1181–1187. https://doi.org/10.1093/jac/dkn405 PMID: 18819971

49. Guardabassi L, Schwarz S, Lloyd DH. Pet animals as reservoirs of antimicrobial-resistant bacteria. J Antimicrob Chemother. 2004; 54: 321–332. https://doi.org/10.1093/jac/dkh332 PMID: 15254022

50. Strommenger B, Kehrenberg C, Kettlitz C, Cuny C, Verspohl J, Witte W, et al. Molecular characterization of methicillin-resistant *Staphylococcus aureus* strains from pet animals and their relationship to human isolates. J Antimicrob Chemother. 2006; 57: 461–465. https://doi.org/10.1093/jac/dki471 PMID: 16387748

51. Harrison EM, Weinert LA, Holden MTG, Welch JJ, Wilson K, Morgan FJE, et al. A shared population of epidemic meticillin-resistant *Staphylococcus aureus* 15 circulating in humans and companion animals. MBio. 2014; 5: e00985–13. https://doi.org/10.1128/mBio.00985-13 PMID: 24825010

52. Feld L, Bay H, Angen Ø, Larsen AR, Madsen AM. Survival of LA-MRSA in dust from swine farms. Ann Work Expo Heal. 2018; 62: 147–156. https://doi.org/10.1093/annweh/wxx108 PMID: 29365048
53. Bos MEH, Verstappen KM, Van Cleef BAGL, Dohme W, Dorado-Garcia A, Graveland H, et al. Transmission through air as a possible route of exposure for MRSA. J Expo Sci Environ Epidemiol. 2016; 26: 263–269. https://doi.org/10.1038/jes.2014.85 PMID: 25515375

54. van Duijkeren E, Moleman M, Sloop van Oldruitenborgh-Oosterbaan MM, Mullem J, Troelstra A, Fluit AC, et al. Methicillin-resistant *Staphylococcus aureus* in horses and horse personnel: An investigation of several outbreaks. Vet Microbiol. 2010; 141: 96–102. https://doi.org/10.1016/j.vetmic.2009.08.009 PMID: 19740613

55. Cury C, Witte W. MRSA in equine hospitals and its significance for infections in humans. Vet Microbiol. 2017; 200: 59–64. https://doi.org/10.1016/j.vetmic.2016.01.013 PMID: 26869097

56. Ganiere J-P, Medaille C, Mangion C. Antimicrobial Drug Susceptibility of *Staphylococcus intermedius* Clinical Isolates from Canine Pyoderma. J Vet Med Ser B. 2005; 52: 25–31. https://doi.org/10.1111/j.1439-0450.2004.00816.x PMID: 15702997

57. Fazakerley J, Williams N, Carter S, McEwan N, Nuttall T. Heterogeneity of *Staphylococcus pseudintermedius* isolates from atopic and healthy dogs. Vet Dermatol. 2010; 21: 578–585. https://doi.org/10.1111/j.1365-3164.2010.00894.x PMID: 20456718

58. Hájek V. *Staphylococcus intermedius*, a New Species Isolated from Animals. Int J Syst Bacteriol. 1976; 26: 401–408. https://doi.org/10.1099/00207713-26-4-401

59. Biberstein EL, Jang SS, Hirsh DC. Species distribution of coagulase-positive staphylococci in animals. J Clin Microbiol. 1984; 19: 610–5 PMID: 6429188

60. Hoekstra KA, Paulton RJL. Clinical prevalence and antimicrobial susceptibility of *Staphylococcus aureus* and *Staph. intermed* in dogs. J Appl Microbiol. 2002; 93: 406–413. https://doi.org/10.1046/j.1365-2672.2002.01708.x PMID: 12174038

61. Shin JH, Kim SH, Jeong HS, Oh SH, Kim HR, Lee JN, et al. Identification of coagulase-negative staphylococci isolated from continuous ambulatory peritoneal dialysis fluid using 16S ribosomal RNA, ruf, and SodA gene sequencing. Perit Dial Int. 2011; 31: 340–6. https://doi.org/10.3747/pdi.2010.00073 PMID: 21454395

62. Weese JS, van Duijkeren E. Methicillin-resistant *Staphylococcus aureus* and *Staphylococcus pseudintermedius* in veterinary medicine. Vet Microbiol. Elsevier; 2010; 140: 418–429. https://doi.org/10.1016/j.vetmic.2009.01.039 PMID: 19246166

63. van Duijkeren E, Catry B, Greko C, Moreno MA, Pomba MC, Pyorala S, et al. Review on methicillin-resistant *Staphylococcus pseudintermedius*. J Antimicrob Chemother. Oxford University Press; 2011; 66: 2705–2714. https://doi.org/10.1093/jac/dkr367 PMID: 21930571

64. Perreten V, Kadlec K, Schwarz S, Andersson UG, Finn M, Greko C, et al. Clonal spread of methicillin-resistant *Staphylococcus pseudintermedius* in Europe and North America: An international multicentre study. J Antimicrob Chemother. 2010; 65: 1145–1154. https://doi.org/10.1093/jac/dkq078 PMID: 20348087

65. De Lucia M, Moodley A, Latronico F, Giordano A, Caldin M, Fondati A, et al. Prevalence of canine methicillin resistant *Staphylococcus pseudintermedius* in a veterinary diagnostic laboratory in Italy. Res Vet Sci. 2011; 91: 346–348. https://doi.org/10.1016/j.rvsc.2010.09.014 PMID: 20971485

66. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014; 27: 870–926. https://doi.org/10.1128/CMR.00109-13 PMID: 25275577

67. Wallmark G, Arremark I, Telanders B. *Staphylococcus saprophyticus*: a frequent cause of acute urinary tract infection among female outpatients. J Infect Dis. 1978; 138: 791–7. PMID: 739158

68. Schneider PF, Riley T V. *Staphylococcus saprophyticus* urinary tract infections: epidemiological data from Western Australia. Eur J Epidemiol. 1996; 12: 51–54. https://doi.org/10.1007/BF00144426 PMID: 8817178

69. Raz R, Colodner R, Kunin CM. Who Are You—*Staphylococcus saprophyticus*? Clin Infect Dis. 2005; 40: 896–899. https://doi.org/10.1086/428353 PMID: 15736028

70. Nys S, van Merode T, Bartelds AIM, Stobberingh EE. Urinary tract infections in general practice patients: diagnostic tests versus bacteriological culture. J Antimicrob Chemother. 2006; 57: 955–958. https://doi.org/10.1093/jac/dkl082 PMID: 16554337

71. Eriksson A, Giske CG, Ternhag A. The relative importance of *Staphylococcus saprophyticus* as a urinary tract pathogen: distribution of bacteria among urinary samples analysed during 1 year at a major Swedish laboratory. APMIS. 2013; 121: 72–78. https://doi.org/10.1111/j.1600-0463.2012.02937.x PMID: 23030816

72. Hedman P, Ringertz O, Eriksson B, Kvarnfors P, Andersson M, Bengtsson L, et al. *Staphylococcus saprophyticus* found to be a common contaminant of food. J Infect. 1990; 21: 11–19. https://doi.org/10.1016/0163-4453(90)90554-L PMID: 2384675
73. Persson Waller K, Aspán A, Nyman A, Persson Y, Grönlund Andersson U. CNS species and antimicrobial resistance in clinical and subclinical bovine mastitis. Vet Microbiol. 2011; 152: 112–116. https://doi.org/10.1016/j.vetmic.2011.04.006 PMID: 21561725

74. Hedman P, Ringertz O, Lindström M, Olsson K. The Origin of *Staphylococcus saprophyticus* from Cattle and Pigs. Scand J Infect Dis. 1993; 25: 57–60. https://doi.org/10.1080/00365549309169670 PMID: 8460350

75. Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet Microbiol. 2009; 134: 45–54. https://doi.org/10.1016/j.vetmic.2008.09.009 PMID: 18986783

76. Szewczyk EM, Nowak T, Ciesliński T, Różalska M. Potential Role of *Staphylococcus cohnii* in a Hospital Environment. Microb Ecol Health Dis. 2003; 15: 51–56. https://doi.org/10.1080/08910600310014908

77. Koksal F, Yasar H, Samasti M. Antibiotic resistance patterns of coagulase-negative *Staphylococcus* strains isolated from blood cultures of septicemic patients in Turkey. Microbiol Res. 2009; 164: 404–10. https://doi.org/10.1016/j.micres.2007.03.004 PMID: 17475456

78. Hellmark B, Unemo M, Nilsdotter-Augustinsson Å, Söderquist B. Antibiotic susceptibility among *Staphylococcus epidermidis* isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect. 2009; 15: 238–244. https://doi.org/10.1111/j.1469-0691.2008.02663.x PMID: 19196261

79. Jones ME, Karlowsky JA, Draghi DC, Thornsberry C, Sahm DF, Nathwani D. Epidemiology and antibiotic susceptibility of bacteria causing skin and soft tissue infections in the USA and Europe: a guide to appropriate antimicrobial therapy. Int J Antimicrob Agents. 2003; 22: 406–419. https://doi.org/10.1016/S0924-8579(03)00154-7 PMID: 14522104

80. Guggenheim M, Zbinden R, Handschin AE, Gohritz A, Altintas MA, Giovanoli P. Changes in bacterial isolates from burn wounds and their antibiograms: A 20-year study (1986–2005). Burns. 2009; 35: 553–560. https://doi.org/10.1016/j.burns.2008.09.004 PMID: 19167827