NON ABELIAN TENSOR SQUARE OF NON ABELIAN PRIME POWER GROUPS

PEYMAN NIROOMAND

Abstract. For every p-group of order p^n with the derived subgroup of order p^m, Rocco in [7] has shown that the order of tensor square of G is at most $p^{n(m-1)+2}$. In the present paper not only we improve his bound for non-abelian p-groups but also we describe the structure of all non-abelian p-groups when the bound is attained for a special case. Moreover, our results give as well an upper bound for the order of $\pi_3(SK(G,1))$.

1. Introduction and Preliminaries

The tensor square $G \otimes G$ of a group G is a group generated by the symbols $g \otimes h$ subject to the relations

$$gg' \otimes h = (g' \otimes g)(g \otimes h)$$

and

$$g \otimes hh' = (g \otimes h)(h \otimes g')$$

for all $g, g', h, h' \in G$, where $g' = g^{-1}$. The non abelian tensor square is a special case of non abelian tensor product, which was introduced by R. Brown and J.-L. Loday in [3].

There exists a homomorphism of groups $\kappa : G \otimes G \to G'$ sending $g \otimes h$ to $[g, h] = ghg^{-1}h^{-1}$. The kernel of κ is denoted by $J_2(G)$; its topological interest is in the formula $\pi_3(SK(G,1)) = J_2(G)$ (see [3]).

According to the formula $\pi_3(SK(G,1)) = J_2(G)$ computing the order of $G \otimes G$ has interests in topology in addition to its interpretation as a problem in the group theory.

Rocco in [7] and later Ellis in [4] have shown that the order of tensor square of G is at most $p^{n(m-1)+2}$ for every p-group of order p^n with the derived subgroup of order p^m.

The purpose of this paper is a further investigation on the order of tensor square of non abelian p-groups. We focus on non abelian p-groups because in abelian case the non abelian tensor square coincides with the usual abelian tensor square of abelian groups. To be precise, for a non abelian p-group of order p^n and the derived subgroup of order p^m, we prove that $|G \otimes G| \leq p^{n(n-1)+2}$ and also we obtain the explicit structure of G when $|G \otimes G| = p^{n(n-1)+2}$. It easily seen that the bound is less than of Rocco’s bound, unless that $G \cong Q_8$ or $G \cong E_1$, which causes two bounds to be equal. As a corollary by using the fact $\pi_3(SK(G,1)) = \text{Ker}(G \otimes G \to G')$, we can see that $|\pi_3(SK(G,1))| = |J_2(G)| \leq p^{n(n-1)+2}$.

Thorough the paper, D_8, Q_8 denote the dihedral and quaternion group of order 8, E_1 and E_2 denote the extra-special p-groups of order p^3 of exponent p and p^2.

Key words and phrases. Tensor square, non abelian p-groups.
Mathematics Subject Classification 2010. 20D15.
respectively. Also \(C_{p^k} \) and \(\nabla(G) \) denote the direct product of \(k \) copies of the cyclic group of order \(p^k \) and the subgroup generated by \(g \otimes g \) for all \(g \) in \(G \), respectively.

2. Main Results

The aim of this section is finding an upper bound for the order tensor square of non abelian \(p \)-groups of order \(p^n \) in terms of the order of \(G' \). Also in the case for which \(|G'| = p \), the structure of groups is obtained when \(|G \otimes G| \) reaches the upper bound.

Proposition 2.1. [2, Proposition 9]. Given a central extension

\[
1 \rightarrow Z \rightarrow H \rightarrow G \rightarrow 1
\]

there is an exact sequence

\[
(Z \otimes H) \times (H \otimes Z) \xrightarrow{L} H \otimes H \rightarrow G \otimes G \rightarrow 1
\]

in which \(\text{Im} \ l \) is central.

Proposition 2.2. [2, Proposition 13, 14] The tensor square of \(D_8 \) and \(Q_8 \) is isomorphic to

\[
C_2^{(3)} \times C_4 \text{ and } C_2^{(2)} \times C_4^{(2)},
\]

respectively.

Recall that [2, 3] the order of tensor square of \(G \) is equal to \(|\nabla(G)||\mathcal{M}(G)||G'| \), where \(\mathcal{M}(G) \) is the Schur multiplier of \(G \).

Put \(G^{ab} = G/G' \). In analogy with the above proposition the following lemma is characterized the tensor square of extra-special \(p \)-groups of order \(p^3 \) \((p \neq 2) \).

Lemma 2.3. The tensor square of \(E_1 \) and \(E_2 \) are isomorphic to \(C_p^{(6)} \) and \(C_p^{(4)} \), respectively.

Proof. It can be proved from [3, Theorem 2] that \(E_1 \otimes E_1 \) is elementary abelian. Now, by invoking [1, Proposition 2.2 (iii)], \(\nabla(E_1) \cong \nabla(E_1^{ab}) \) and hence \(|\nabla(E_1)| = p^3 \). On the other hand, [3, Theorem 3.3.6] implies that the Schur multiplier of \(E_1 \) is of order \(p^2 \), and so \(|E_1 \otimes E_1| = p^5 \).

In the case \(G = E_2 \) in a similar fashion, we can prove that \(E_2 \otimes E_2 \cong E_2^{ab} \).

Lemma 2.4. [6, Corollary 2.3] The tensor square of an extra-special \(p \)-group \(H \) of order \(p^{2m+1} \) is elementary abelian of order \(p^{4m^2} \), for \(m \geq 2 \).

Proposition 2.5. Let \(G \) be a \(p \)-group of order \(p^n \) and \(|G'| = p \). If one of the following conditions holds, then the order of tensor square is less than \(p^{(n-1)^2+2} \).

(i) \(G^{ab} \) is not elementary abelian;

(ii) \(G^{ab} \) is elementary abelian and \(Z(G) \) is not elementary abelian.

Proof (i). The proof is an upstanding result of Proposition [2, 2] while \(Z = G' \). Let \(G^{ab} = C_{p^{m_1}} \times C_{p^{m_2}} \times \ldots \times C_{p^{m_k}} \) where \(\sum_{i=1}^{k} m_i = n - 1 \) and \(m_i \leq m_{i+1} \) for all \(i \).
1 \leq i \leq k - 1. Then
\[|G \otimes G| \leq |G' \otimes G^{ab}\|G^{ab} \otimes G^{ab}| \]
\[= \left| C_p \otimes C_{p^{m_1}} \times C_{p^{m_2}} \times \ldots \times C_{p^{m_k}} \right| \times \left| C_{p^{m_1}} \times C_{p^{m_2}} \times \ldots \times C_{p^{m_k}} \right| \]
\[= \left(p^{m_k + \ldots + m_1 + 2(m_{k-1} + \ldots + m_1 + m_{k-2} + \ldots + m_1 + \ldots + m_1)} + k \right) \]
\[\leq p^{n-1+2(n-3+n-4+\ldots+n-2k+3)+k} \]
\[< p^{(n-1)^2+2}, \]
as required.

(ii). Since G^{ab} is a vector space on C_p, let H/G' be the complement of $Z(G)/G'$ in G^{ab}. Moreover H is extra-special and $G = HZ(G)$. There is an epimorphism $H \times Z(G) \otimes H \times Z(G) \twoheadrightarrow G \otimes G$, so
\[|G \otimes G| \leq |H \times Z(G) \otimes H \times Z(G)|. \]
Let $|Z(G)| = p^k$ and $|H| = p^{2m+1}$, we can suppose that $k \geq 2$ by using Proposition 2.12. Now the following two cases can be considered.
Case (i). First suppose that $m \geq 2$.
Let $Z(G) \cong C_{p^{k_1}} \times \ldots \times C_{p^{k_t}}$ and $\sum_{i=1}^t k_i = n - 2m$. Applying Lemma 2.13 and Proposition 11, we have
\[|G \otimes G| \leq |H \otimes Z(G)|^2 |Z(G) \otimes Z(G)| \]
\[= p^{4m^2} (C_p^{(m)} \otimes C_{p^{k_1}} \times \ldots \times C_{p^{k_t}}) \times (C_{p^{k_1}} \times \ldots \times C_{p^{k_t}}) \]
\[= p^{4m^2} p^{2m} (2t-1)k_1 + (2t-3)k_2 + \ldots + k_t \]
\[\leq p^{4m^2} p^{2mt} p^{n-2m+2(n-2m-2+\ldots+n-2m-t)} \]
\[< p^{(n-1)^2+2}, \]
as required.

Case (ii). Without loss of generality, we can suppose that $Z(G) \cong C_{p^2}$. Now the result is obtained by using Proposition 2.14 and the fact that $|Iml| \geq p$.

\[\square \]

Theorem 2.6. Let G be a non abelian p-group of order p^n. If $|G'| = p$, then
\[|G \otimes G| \leq p^{(n-1)^2+2}, \]
and the equality holds if and only if G is isomorphic to $H \times E$, where $H \cong E_1$ or $H \cong Q_8$ and E is an elementary abelian p-group.

Proof. One can assume that G^{ab} and $Z(G)$ are elementary abelian and $|Z(G)| \geq p^2$ by Proposition 2.14. Let E be the complement of G' in $Z(G)$. Thus there exists an extra-special p-group H of order p^{2m+1} such that $G \cong H \times E$.

In the case $m \geq 2$, it is easily seen that $|G \otimes G| < p^{(n-1)^2+2}$. For $m = 1$,
\[|G \otimes G| = |H \otimes H||E \otimes E||E \otimes H|^2 \]
where $|E \otimes E||E \otimes H|^2 = p^{(n-1)(n-3)}$.

\[\square \]
Now Proposition 2.2 and Lemma 2.3 imply that \(|G \otimes G| = p^{(n-1)^2+2}\) when \(H \cong Q_8\) or \(H\) has exponent \(p\).

Theorem 2.7. Let \(G\) be a non abelian \(p\)-group of order \(p^n\). If \(|G'| = p^m\), then

\[|G \otimes G| \leq p^{(n-1)(n-m)+2} .\]

Proof. We prove theorem by induction on \(m\). For \(m = 1\) the result is obtained by Theorem 2.6.

Let \(m \geq 2\) and \(K\) be a central subgroup of order \(p^m\) contained in \(G'\). Induction hypothesis and Proposition 2.2 yield

\[|G \otimes G| \leq |K \otimes G^{ab}| |G/K \otimes G/K| \leq p^{n-m}p(n-m)(n-2)+2 = p^{(n-1)(n-m)+2} .\]

Corollary 2.8. Let \(G\) be a non abelian \(p\)-group of order \(p^n\). If \(|G'| = p^m\), then

\[|\pi_3SK(G, 1)| \leq p^{n(n-m-1)+2} .\]

In particular when \(m = 1\), then

\[|\pi_3SK(G, 1)| \leq p^{n(n-2)+2} ,\]

and the equality holds if and only if \(G\) is isomorphic to \(H \times E\), in which \(H\) is extra-special of order \(p^3\) of exponent \(p\) or \(H \cong Q_8\) and \(E\) is an elementary abelian \(p\)-group.

Corollary 2.9. If the order of tensor square of \(G\) is equal to \(p^{(n-1)^2+2}\), then \(G \otimes G \cong C_p^{((n-1)^2+2)} (p \neq 2)\) or \(G \otimes G \cong C_4(2)^2 \times C_2^{((n-1)^2-2)}\).

REFERENCES

[1] R.D. Blyth, F. Fumagalli and M. Morigi. Some structural results on the non-abelian tensor square of groups. \textit{J. Group Theory.} \textbf{13}(1) (2010), 83–94.

[2] R. Brown, D.L. Johnson and E.F. Robertson. Some Computations of non Abelian tensor products of groups. \textit{J. Algebra.} \textbf{111} (1987), 177-202.

[3] R. Brown and J.-L Loday. Van Kampen theorems for diagrams of spaces. With an appendix by M. Zisman, \textit{Topology} \textbf{26} (1987), 311-335.

[4] G. Ellis. On the tensor square of a prime power group. \textit{Arch. Math.} \textbf{66} (1996), 467-469.

[5] G. Karpilovsky. \textit{The Schur multiplier} (London Math. Soc. Monogr. (N.S.) \textbf{2} 1987).

[6] P. Niroomand, M. R. Moghadam. Some properties on the specific subgroup of tensor square, to appear in \textit{Comm. Algebra.}

[7] N. R. Rocco. On a construction related to the nonabelian tensor square of a group. \textit{Bol. Soc. Brasil. Mat.} \textbf{22}(1) (1991), 63-79.

[8] N. R. Rocco. A presentation for crossed embeding of finite solvable groups. \textit{Comm. Algebra.} \textbf{22}(6) (1994), 1975-1998.

School of Mathematics and Computer Science, Damghan University, Damghan, Iran
E-mail address: niroomand@du.ac.ir, P. niroomand@yahoo.com