Systematic Review

A systematic review on the prevalence of endometriosis in women

Yousef Moradi1, Mehran Shams-Beyranvand2, Sorour Khateri3, Saeedeh Gharahjej4, Shahrzad Tehrani5, Fatemeh Varse6, Amir Tiyuri6 & Zahra Najmi7

1Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, 2Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 3Resident of Physical Medicine and Rehabilitation, Hamedan University of Medical Sciences, Hamedan, 4Department of Infertility, Tehran University of Medical Sciences, Tehran, 5Department of Gynecology and Obstetrics, Qom University of Medical Sciences, Qom, 6Department of Epidemiology, School of Public Health, Iran University of Medical Sciences, Tehran, 7Fellowship of Minimally Invasive Gynecology Surgery, Zanjan University of Medical Sciences, Zanjan, Iran

Received April 28, 2018

Background & objectives: Endometriosis is one of the causes of female infertility, but the prevalence of endometriosis is not exactly known. We conducted a systematic review and meta-analysis to provide an estimate of the prevalence of endometriosis in women considering the stage of disease, diagnostic method, geographical distribution, clinical symptoms and sample size.

Methods: MEDLINE, Web of Science, Google Scholar, Scopus and Cumulative Index of Nursing and Allied Health were searched to identify peer-reviewed studies published from January 1990 to December 2018 reporting the prevalence of endometriosis. Relevant additional articles were identified from the lists of the retrieved articles. Studies with cross-sectional design were included in the meta-analysis.

Results: The overall prevalence of endometriosis was 18 per cent [95% confidence interval (CI): 16-20] and the prevalence of endometriosis by stage ranged from two per cent (95% CI: 1-4) for stage 4 to 20 per cent (95% CI: 11-28) for stage 1. The prevalence levels of endometriosis in women with infertility, chronic pelvic pain and asymptomatic were 31 (95% CI: 15-48), 42 (95% CI: 25-58) and 23 per cent (95% CI: 19-26), respectively.

Interpretation & conclusions: The results of this study showed that the prevalence of endometriosis in developing countries was high. Future studies are needed to explore other factors affecting the prevalence of endometriosis worldwide, which may help develop future prevention programmes.

Key words Endometriosis - prevalence - quality assessment - women

Endometriosis affects about 6-10 per cent of women worldwide1. In Canada and the United States, the incidence of endometriosis ranges from 5 to 15 per cent in the women of reproductive age and from 2 to
5 per cent in postmenopausal women\textsuperscript{2-5}. The majority of patients with endometriosis are asymptomatic, and only 6-10 per cent of them suffer from pelvic pain\textsuperscript{6}. This chronic gynaecological disease is accompanied with different symptoms such as chronic pelvic pain, dyschezia, lower back pain, dyspareunia, infertility and dysmenorrhoea\textsuperscript{7}. Epidemiological indicators such as prevalence can be useful for healthcare managers and policymakers. Thus, a systematic review and meta-analysis was undertaken to provide an estimation of the prevalence of endometriosis in women.

**Material & Methods**

*Search strategy*: All international databases including MEDLINE, Web of Science, Google scholar, Scopus and Cumulative Index to Nursing and Allied Health Literature were searched for the original articles without language and time limitation, written from January 1990 to December 2018. Keywords were searched electronically by two independent Boolean operators using a specified search strategy. The protocol of this study was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42017075275)\textsuperscript{8}.

*Inclusion/exclusion criteria*: Two reviewers independently carried out the literature search and evaluation of the searched articles based on the inclusion and exclusion criteria. The structures of the searched articles were appraised by the reconstructed PRISMA checklist\textsuperscript{9}. All the articles with full text in English conducted as a cross-sectional design reporting the prevalence of endometriosis in any stage of the disease in women aged 15-60 yr old, were include.

*Data extraction*: Using a uniform excel sheet, two reviewers independently extracted the required data from the data contained in the identified articles. Discrepancies in the extracted data were resolved through consensus, and if agreement could not be reached, they resolved it by referral to a third investigator. The STROBE checklist\textsuperscript{10} was used as a standard checklist for reporting the results of the included studies.

*Quality assessment and risk of bias*: The quality of each study was assessed according to the Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies\textsuperscript{11} which included the quality of research question, study population, sampling strategy, groups recruited from the same population and uniform eligibility criteria, sample size justification, exposure assessed before outcome measurement, sufficient timeframe to observe an effect, different levels of the exposure of interest, exposure measurement and assessment, repeated exposure assessment, outcome measurement, blinding of outcome assessors, follow up rate and statistical analyses. This tool measures 14 different criteria which are used to give each study an overall quality rating of good, fair or poor.

*Statistical analysis*: Random effects models were used based on the presence of heterogeneity. Heterogeneity was assessed using Q Cochran’s test and $F$ index\textsuperscript{12}. The forest plot was implemented for showing the results of the individual and pooled effects of all the studies. The Egger’s test was also used to evaluate the presence of publication bias\textsuperscript{12}. In addition, a subgroup analysis was done (by sample size, stages of endometriosis, diagnostic method, continent and clinical symptoms) to identify different sources of heterogeneity. A $P<0.05$ was considered significant for all statistical tests, except for Q Cochran’s, meta-regression and Egger’s test ($<0.1$). All statistical analyses were performed through STATA version 12.0 (STATA Corp., College Station, TX, USA).

**Results**

A total of 2433 articles were extracted for this study. Finally, 17 studies\textsuperscript{13-29} with 127,476 women suffering from endometriosis were included for estimating the prevalence of endometriosis (Fig. 1). The characteristics of the included studies are described in Table I. The quality assessment details for the included studies are shown in Table II.

A meta-analysis was conducted regarding the stage of the disease, diagnostic method, continent and clinical symptoms to estimate the prevalence of endometriosis. The pooled prevalence estimate of endometriosis regardless of the stage of disease, diagnostic method, continent and clinical symptoms was 18 per cent [95% confidence interval (CI): 16-20; Fig. 2]. The prevalence of endometriosis based on the stage of the disease ranged from two per cent (95% CI: 1-4) for stage 4 to 20 per cent (95% CI: 11-28) for stage 1 (Table III).
The prevalence of endometriosis by the diagnostic method ranged from 12 per cent (95% CI: 3-21) for endometriosis diagnosed with other diagnostic methods to 20 per cent (95% CI: 17-22) for endometriosis diagnosed with laparoscopic method (Table III). The CI of Egger’s test did not include zero, showing significant publication bias (Fig. 3). Furthermore, high statistical heterogeneity ($I^2 > 99\%$, $P < 0.001$) was identified in total analyses (Table III).

The prevalence of endometriosis by the continent ranged from 17 per cent (95% CI: 12-21) for Europe to 36 per cent (95% CI: 5-69) for Asia, and by the sample size ranged from 28 per cent (95% CI: 19-37) for studies with less than of 1000 individuals to seven per cent (95% CI: 3-11) for studies with more than of 1000 individuals (Table III). The results of subgroup analysis indicated that the prevalence rates of endometriosis in women with infertility, chronic pelvic pain and asymptomatic women were 31 (95% CI: 15-48), 42 (95% CI: 25-58) and 23 per cent (95% CI: 19-26), respectively (Table III).

Meta-regression was used to explore the sources of between-study heterogeneity including age and diagnostic method. According to the results, the prevalence of endometriosis did not show a relationship with age ($P > 0.10$) and diagnostic method ($P > 0.10$).

**Discussion**

Regarding the stage of endometriosis, the results of this study showed that the prevalence of minimal endometriosis (stage 1) was higher than other stages of endometriosis. Considering the diagnostic method, the prevalence of endometriosis diagnosed with laparoscopy, ultrasound and magnetic resonance imaging (MRI) methods was higher than endometriosis diagnosed with other diagnostic methods in the world. Another study showed the same results.

The precise prevalence of endometriosis in female adult population is not known. The prevalence in fertile women undergoing sterilization is four per cent (1.5-
| Authors                  | Publication year | Data collection year | Country                  | Age (yr) | Sample size | Study population                                      | Diagnostic method | Prevalence (%) |
|-------------------------|------------------|----------------------|--------------------------|----------|-------------|-------------------------------------------------------|-------------------|----------------|
| Moen and Muus           | 1991             | 1986-1989            | Norway                   | 20-50    | 208         | Asymptomatic women                                    | Laparoscopic      | 19.23          |
| Waller et al            | 1993             | 1990-1992            | United Kingdom           | 21-45    | 174         | Asymptomatic women                                    | Laparoscopic      | 32.2           |
| Melis et al             | 1994             | 1991-1993            | Italy                    | 15-57    | 305         | Asymptomatic women                                    | Laparoscopic      | 24.9           |
| Chu et al               | 1995             | 1993                 | Taiwan                   | -        | 752         | Asymptomatic women                                    | Laparoscopic      | 32.5           |
| Laufer et al            | 1997             | 1990-1994            | USA                      | 13-21    | 46          | Women with chronic pelvic pain                        | Laparoscopic      | 69.6           |
| Oral et al              | 2003             | 1995-2001            | Turkey                   | 26-70    | 183         | Malignant epithelial ovarian tumours                  | Histopathological criteria Laparoscopic | 7.65           |
| Darwish et al           | 2006             | 1998-2005            | Egypt                    | -        | 2493        | Women with chronic pelvic pain                        | Laparoscopic      | 18.8           |
| Zacharia and O’Neill    | 2006             | 2000-2003            | USA                      | 32-54    | 59          | Asymptomatic women                                    | MRI               | 34             |
| Ferrero et al           | 2010             | 2007-2009            | Italy                    | <50      | 1291        | Infertile women                                        | Ultrasound        | 3.6            |
| Camilleri et al         | 2011             | 2003-2008            | Malta                    | -        | 437         | Infertile women                                        | Laparoscopic      | 16.9           |
| Abbas et al             | 2012             | 2007                 | Germany                  | 15-54    | 62323       | Infertile women (in women with chronic pelvic pain=55.8%) | Laparoscopic      | 0.81           |
| Fawole et al            | 2015             | 2008-1010            | Nigeria                  | 18-45    | 245         | Asymptomatic women                                    | Laparoscopic      | 48.1           |
| Ragab et al             | 2015             | 2012-2014            | Egypt                    | -        | 654         | Girls with severe dysmenorrhoea                       | Ultrasonography/ laparoscopy/MRI Laparoscopic | 12.3           |
| Umelo and Manchanda      | 2015             | 2012-2014            | Indian                   | 15-49    | 440         | Asymptomatic women (infertile women=87.3% and in women with chronic pelvic pain=56.4%) | Laparoscopic      | 25             |
| Fuldeore and Soliman    | 2016             | 2012                 | USA                      | 18-49    | 48020       | Asymptomatic women                                    | Laparoscopic      | 6.1            |
| Boujenah et al          | 2017             | 2007-2015            | France                   | -        | 52          | Infertile women                                        | Ultrasonography/ laparoscopy/MRI Laparoscopic | 50             |
| Eisenberg et al         | 2017             | 1998-2015            | Israel                   | 15-55    | 6146        | Asymptomatic women                                    | Laparoscopic      | 1.1            |

MRI, magnetic resonance imaging
| Authors                  | Q1 | Q2 | Q3 | Q4 | Q5 | Q6 | Q7 | Q8 | Q9 | Q10 | Q11 | Q12 | Q13 | Q14 | Quality rating | STROBE score |
|-------------------------|----|----|----|----|----|----|----|----|----|-----|-----|-----|-----|-----|----------------|--------------|
| Moen and Muus\(^1^2\) | Yes| Yes| Yes| NR | NR | NR | Yes| NA | Yes| No  | Yes | No  | No  | No  | No  | Fair           | 16           |
| Waller et al\(^1^3\)   | Yes| Yes| NR | Yes| No | No | NA | NA | Yes| No  | Yes | NR  | NR  | NA  | Fair           | 18           |
| Melis et al\(^1^4\)    | Yes| Yes| Yes| NR | NA | NR | NR | NR | NA | NR  | NA  | NR  | NR  | NR  | Poor           | 4            |
| Chu et al\(^1^5\)      | Yes| Yes| Yes| NR | NA | NR | NR | NR | NA | Yes | NR  | NR  | NR  | NR  | Fair           | 13           |
| Laufer et al\(^1^6\)   | Yes| Yes| Yes| Yes| Yes| No | Yes| Yes| Yes| Yes | Yes | Yes | NR  | NR  | Good          | 20           |
| Oral et al\(^1^7\)     | Yes| Yes| Yes| Yes| NA | NR | NR | NA | NR | NR  | Yes | NR  | NR  | NR  | Fair           | 2            |
| Darwish et al\(^1^8\)  | Yes| Yes| Yes| NR | NR | No | NR | NR | No | Yes | NR  | NR  | No  | Poor          | 17           |
| Zacharia and O’Neill\(^1^9\) | Yes| No | NR | Yes| NR | NA | NA | NA | NA | NA  | Yes | NR  | NR  | No  | Poor          | 22           |
| Ferrero et al\(^2^0\)  | Yes| Yes| Yes| Yes| NR | NR | NR | NR | NR | Yes | NR  | NR  | NR  | NR  | Fair           | 22           |
| Camilleri et al\(^2^1\) | Yes| Yes| NA | NR | No | NA | NR | NA | NA | NR  | No  | NA  | NA  | NA  | Poor           | 12           |
| Abbas et al\(^2^2\)    | Yes| Yes| Yes| Yes| NA | NR | NR | NR | NR | NA  | Yes | NA  | NA  | NA  | Fair           | 21           |
| Fawole et al\(^2^3\)   | Yes| Yes| NR | Yes| No | NR | NR | NR | NR | Yes | NR  | NA  | NA  | Poor          | 20           |
| Ragab et al\(^2^4\)    | Yes| Yes| NA | NR | NA | NA | NA | NA | NA | NA  | Yes | NA  | NR  | NA  | Poor           | 18           |
| Umelo and Manchanda\(^2^5\) | Yes| Yes| Yes| NR | NR | NA | NR | NR | NA | Yes | NR  | NR  | NR  | NR  | Poor          | 16           |
| Fuldeore and Soliman\(^2^6\) | Yes| No | Yes| No | NR | NA | NR | NR | NR | No  | NA  | NA  | NA  | NA  | Poor          | 25           |
| Boujenah et al\(^2^7\) | Yes| Yes| NA | Yes| No | NA | NA | NA | Yes| No  | Yes | NA  | NA  | NA  | Fair           | 18           |
| Eisenberg et al\(^2^8\) | Yes| No | NR | NA | NA | NA | NR | NR | NR | Yes | NA  | NA  | NR  | Poor          | 21           |

CD, cannot determine; NA, not applicable; NR, not reported
Table III. Pooled prevalence estimates along with 95% confidence intervals of endometriosis by stage of disease, diagnostic method and continent

| Subgroups                  | Number of studies | Prevalence estimate (%) (95% CI) | Between subgroups | Between groups |
|----------------------------|------------------|----------------------------------|-------------------|---------------|
| **Stages**                 |                  |                                  |                   |               |
| 1                          | 9                | 20 (11-28)                       | 99.10             | 0.001         |
| 2                          | 8                | 13 (7-18)                        | 99.60             | 0.001         |
| 3                          | 7                | 5 (2-8)                          | 97.00             | 0.001         |
| 4                          | 5                | 2 (1-4)                          | 84.30             | 0.001         |
| **Clinical symptoms**      |                  |                                  |                   |               |
| Infertility                | 5                | 31 (15-48)                       | 99.10             | 0.001         |
| Chronic pelvic pain        | 4                | 42 (25-58)                       | 99.20             | 0.001         |
| Asymptomatic women         | 9                | 23 (19-26)                       | 99.00             | 0.001         |
| Ovarian malignancy         | 1                | -                                | -                 | -             |
| **Diagnostic method**      |                  |                                  |                   |               |
| Laparoscopy                | 12               | 20 (17-22)                       | 99.70             | 0.001         |
| Other (ultrasound or MRI or histopathology) | 3 | 12 (3-21) | 92.80 | 0.001 |
| Laparoscopy, ultrasound and MRI | 2 | 31 (25-37) | 96.50 | 0.001 |
| Total                      | 17               | 18 (16-20)                       | 99.60             | 0.001         |
| **Continent**              |                  |                                  |                   |               |
| Europe                     | 8                | 17 (12-21)                       | 98.20             | 0.001         |
| Americas                   | 3                | 19 (3-36)                        | 99.60             | 0.001         |
| Asia                       | 3                | 36 (5-69)                        | 96.10             | 0.001         |
| Africa                     | 3                | 26 (14-38)                       | 98.20             | 0.001         |
| Total                      | 17               | 18 (16-20)                       | 99.60             | 0.001         |
| **Sample size**            |                  |                                  |                   |               |
| <1000                      | 13               | 28 (19-37)                       | 99.00             | 0.001         |
| >1000                      | 4                | 7 (3-11)                         | 99.90             | 0.001         |
| Total                      | 17               | 18 (16-20)                       | 99.60             | 0.001         |

*P<0.05. MRI, magnetic resonance imaging; CI, confidence interval.
Fig. 3. Funnel plot for pooled prevalence estimate by different stages of endometriosis.

5%), whereas it is 13.5 per cent (2-68%) in infertile women. The reported prevalence of this disease in women undergoing laparoscopy for chronic pelvic pain ranged from 15 to 75 per cent. A study conducted in north India in 2015 showed that the precise prevalence of endometriosis was not known; however, it was estimated to be 2-10 per cent in the general population, but up to 50 per cent in infertile women.

Endometriosis affects approximately 70 per cent of women with dysmenorrhoea and dyspareunia. Adolescents may have more severe symptoms. Reports from Germany showed that 0.05, 1.93 and 6.1 per cent of the patients were in the age groups of 10-14, 15-19 and 20-24 yr, respectively. A review of previous studies indicated that global estimates varied significantly and ranged from approximately 2-45 per cent based on the diagnostic criteria and the study population. The world statistics suggest that 10-15 per cent of women in the world are affected by endometriosis, which is consistent with the results of our study, as the overall prevalence was estimated to be 18 per cent. According to our analysis, the prevalence of endometriosis in developing countries was higher than in developed countries as also shown by another study.

The present study had several limitations. First, the number of studies in some subgroups was small and did not provide sufficient statistical power to assess the source of heterogeneity. Second, there were some other factors (such as diagnostic accuracy, quality of detective equipment and physicians’ skills in detecting endometriosis) that might be important sources of heterogeneity, but we could not evaluate their role in heterogeneity due to the lack of information. Third, some of the included studies did not measure the variables such as age or prevalence of endometriosis by the stage of the disease.

Despite the high heterogeneity of the studies, this systematic review and meta-analysis showed a high prevalence of endometriosis in developing countries. The prevalence of endometriosis in women with chronic pelvic pain was higher than those with infertility. Future studies are needed to explore factors affecting endometriosis prevalence worldwide, which may help develop future prevention programmes.

Financial support & sponsorship: None.

Conflicts of Interest: None.
References

1. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril 2012; 98: 511-9.

2. Belleris P, Podgaec S. [Fatores ambientais e endometriose]. Rev Assoc Med Bras 2011; 57: 456-61.

3. Clowse ME, Chakravarty E, Costenbader KH, Chambers C, Michaud K. Effects of infertility, pregnancy loss, and patient concerns on family size of women with rheumatoid arthritis and systemic lupus erythematosus. Arthritis Care Res (Hoboken) 2012; 64: 668-74.

4. Davari-Tanha F, Askari F, Akrami M, Mohseni M, Ghajanzadeh M. Sleep quality in women with endometriosis. Acad J Surg 2015; 4: 57-9.

5. Mafra F, Catto M, Bianco B, Barbosa CP, Christofolini D. Association of WNT4 polymorphisms with endometriosis in infertile patients. J Assist Reprod Genet 2015; 32: 1359-64.

6. Santulli P, Bourdon M, Presse M, Gayet V, Marcellin L, Prunet C, et al. Endometriosis-related infertility: Assisted reproductive technology has no adverse impact on pain or quality-of-life scores. Fertil Steril 2016; 105: 978-87.

7. Ferreira ALL, Bessa MMM, Drezett J, de Abreu LC. Quality of life of the woman carrier of endometriosis: Systematized review. Reprod Climates 2016; 31: 48-54.

8. National Institute of Health Research. The prevalence of endometriosis: Systematic review and meta-analysis. Available from: http://www.crd.york.ac.uk/PROSPERO/display_record.php?ID=CRD42017075275, accessed on March 18, 2018.

9. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med 2009; 6: E1000097.

10. Knottenbus A, Tugwell P. STROBE – A checklist to strengthen the reporting of observational studies in epidemiology. J Clin Epidemiol 2008; 61: 323.

11. National Heart, Lung, and Blood Institute. Study quality assessment tools. Available from: https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools, accessed on March 18, 2018.

12. Field AP, Gillett R. How to do a meta-analysis. Br J Math Stat Psychol 2010; 63: 665-94.

13. Moen MH, Muus KM. Endometriosis in pregnant and non-pregnant women at tubal sterilization. Hum Reprod 1991; 6: 699-702.

14. Waller KG, Lindsay P, Curtis P, Shaw RW. The prevalence of endometriosis in women with infertile partners. Eur J Obstet Gynecol Reprod Biol 1993; 48: 135-9.

15. Melis GB, Ajossa S, Guerriero S, Paoletti AM, Angiolucci M, Piras B, et al. Epidemiology and diagnosis of endometriosis. Ann NY Acad Sci 1994; 734: 352-7.

16. Chu KK, Chen FP, Chang SD. Prevalence of endometriosis among women undergoing laparoscopic procedures. Diagn Ther Endosc 1995; 2: 35-7.

17. Laufer MR, Goittein L, Bush M, Cramer DW, Emans SJ. Prevalence of endometriosis in adolescent girls with chronic pelvic pain not responding to conventional therapy. J Pediatr Adolesc Gynecol 1997; 10: 199-202.

18. Oral E, Ilvan S, Tustas E, Korbeyli B, Bese T, Demirkiran F, et al. Prevalence of endometriosis in malignant epithelial ovary tumours. Eur J Obstet Gynecol Reprod Biol 2003; 109: 97-101.

19. Darwish AMM, Hassanin MS, Abou Sekkin IA. Epidemiology and risk factors associated with laparoscopically diagnosed typical and atypical endometriosis among Egyptian women. Middle East Fertil Soc J 2006; 11: 196-201.

20. Zacharia TT, O’Neill MJ. Prevalence and distribution of adnexal findings suggesting endometriosis in patients with MR diagnosis of adenomyosis. Br J Radiol 2006; 79: 303-7.

21. Ferrero S, Arena E, Morando A, Remorgia V. Prevalence of newly diagnosed endometriosis in women attending the general practitioner. Int J Gynaecol Obstet 2010; 110: 203-7.

22. Camilleri L, Schembri A, Ingollt AS. Prevalence, characteristics, and management of endometriosis in an infertile Maltese population. Int J Gynaecol Obstet 2011; 115: 293-4.

23. Abbas S, Ihle P, Köster I, Schubert I. Prevalence and incidence of diagnosed endometriosis and risk of endometriosis in patients with endometriosis-related symptoms: Findings from a statutory health insurance-based cohort in Germany. Eur J Obstet Gynecol Reprod Biol 2012; 160: 79-83.

24. Fawole AO, Bello FA, Ogunbode O, Odukogbe AT, Nkwocha GC, Nnoaham KE, et al. Endometriosis and associated symptoms among Nigerian women. Int J Gynaecol Obstet 2015; 130: 190-4.

25. Ragab A, Shams M, Badawy A, Alsammani MA. Prevalence of endometriosis among adolescent school girls with severe dysmenorrhea: A cross sectional prospective study. Int J Health Sci (Qassim) 2015; 9: 273-81.

26. Umelo CC, Manchanda R. Trends in endometriosis among laparoscopic patients in multiple hospitals in Northern India: A 3-year review. J South Asian Fed Obstet Gynaecol 2015; 7: 167-70.

27. Fuldeore MJ, Soliman AM. Prevalence and symptomatic burden of diagnosed endometriosis in the United States: National estimates from a cross-sectional survey of 59,411 women. Gynecol Obstet Invest 2017; 82: 453-61.

28. Boujenah J, Salakos E, Pinto M, Shore J, Sifer C, Poncelet C, et al. Endometriosis and uterine malformations: Infertility may increase severity of endometriosis. Acta Obstet Gynecol Scand 2017; 96: 702-6.

29. Eisenberg VH, Weil C, Chadick G, Shalev V. Epidemiology of endometriosis: A large population-based database study from a healthcare provider with 2 million members. BJOG 2018; 125: 55-62.

30. Holland TK, Yazbek J, Cutner A, Saridogan E, Hoo WL, Jurkovic D. Value of transvaginal ultrasound in assessing severity of pelvic endometriosis. Ultrasound Obstet Gynecol 2010; 36: 241-8.
31. Ray A, Pant L, Magon N. Deciding the route for hysterectomy: Indian triage system. *J Obstet Gynaecol India* 2015; 65: 39-44.

32. Thomassin I, Bazot M, Detchev R, Barranger E, Cortez A, Darai E. Symptoms before and after surgical removal of colorectal endometriosis that are assessed by magnetic resonance imaging and rectal endoscopic sonography. *Am J Obstet Gynecol* 2004; 190: 1264-71.

33. Laufer M, Goitein L, Bush M, Cramer D, Emans S. Prevalence of endometriosis in adolescent girls with chronic pelvic pain not responding to conventional therapy. *J Pediatr Adolesc Gynecol* 1997; 10: 199-202.

34. Laufer MR, Sanfilippo J, Rose G. Adolescent endometriosis: Diagnosis and treatment approaches. *J Pediatr Adolesc Gynecol* 2003; 16: S3-11.

35. Reese KA, Reddy S, Rock JA. Endometriosis in an adolescent population: The Emory experience. *J Pediatr Adolesc Gynecol* 1996; 9: 125-8.

36. Mangtani P, Booth M. Epidemiology of endometriosis. *J Epidemiol Community Health* 1993; 47: 84-8.

*For correspondence:* Dr Zahra Najmi, Department of Obstetrics and Gynecology, Fellowship of Minimally Invasive Gynecology Surgery, Zanjan University of Medical Sciences, Zanjan 451 395 6111, Iran

e-mail: zahranaj@yahoo.com