Jointly Learning to Align and Convert Graphemes to Phonemes with Neural Attention Models
Shubham Toshniwal, Karen Livescu
Toyota Technological Institute at Chicago (TTIC)

Abstract
• Most prior work on grapheme-to-phoneme (G2P) conversion requires explicit alignments for training [1, 2].
• Recent work using recurrent neural network (RNN) in an encoder-decoder fashion, requiring no alignment, has shown potential [3, 4].
• However, to date the best performing models still use explicit alignment [3, 4].
• We use the attention enabled encoder-decoder model and achieve state-of-the-art results on three standard data sets (CMUDict, Pronlex, and NetTalk).

Grapheme to Phoneme Conversion
• Problem: Convert a word, a sequence of characters/graphemes, to its pronunciation, a sequence of phonemes. For example, knife \(\rightarrow \text{[N AY F]}\), exit \(\rightarrow \text{[EH K S IH T]}\).
• Motivation: Essential component of text-to-speech (TTS) and automatic speech recognition (ASR) systems for augmenting static pronouncing dictionaries.
• Challenges:
 – Output sequence can be shorter/longer than input sequence.
 – Grapheme pronunciation depends on its context.
 – Word pronunciation depends on its etymology.
• Performance metrics:
 – Word Error Rate (WER): \(\frac{1}{y} \neq y_{\text{pred}}\)
 – Phoneme Error Rate (PER): Edit distance \((y, y_{\text{pred}})\) \(|y|\)

Models
Global Attention
Uses the attention mechanism of [5], shown in Figure 1.

Local Attention
• Context vector \(c_t\), used by attention, is calculated using a localized context window \([p_t-D, p_t+W]\) centered at alignment position \(p_t\).
• We consider 2 such variants proposed by [6]:
 – Monotonic Alignment (local-m):
 \(p_t = T_s \cdot \sigma(\psi_t \cdot \text{tanh}(W_p d_t))\)
 – Predictive Alignment (local-p):
 \(p_t = T_s \cdot \sigma(\psi_p \cdot \text{tanh}(W_p d_t))\)

Error Analysis

Foreign Origin Names	Abbreviations
Word QUIXOTE (Spanish)	BLVD
Ground Truth	K IY HH OW T IY
Prediction	K W IH K S OW T
Word MACIOCE (Italian)	JNA
Ground Truth	M AA CH OW CH IY
Prediction	M AH S IY OW S

Wrong Ground Truth Under/Over Conversion
Word COMMERICAL	LASTS
Ground Truth	K AH M ER SH AH L
Prediction	K AH M EH R AH K AH L

Phoneme Embedding Visualization

References
[1] Stanley F. Chen. Conditional and joint models for grapheme-to-phoneme conversion. 2003.
[2] Maximilian Bisani and Hermann Ney. Joint-sequence models for grapheme-to-phoneme conversion. 2008.
[3] Kanishka Rao et al. Grapheme-to-phoneme conversion using long short-term memory recurrent neural networks. 2015.
[4] Kaisheng Yao and Geoffrey Zweig. Sequence-to-sequence neural net models for grapheme-to-phoneme conversion. 2015.
[5] Oriol Vinyals et al. Grammar as a foreign language. 2015.
[6] Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches to attention-based neural machine translation. 2015.