Autochthonous Ratborne Seoul Virus Infection in Woman with Acute Kidney Injury

Jörg Hofmann,1 Elisa Heuser,1 Sabrina Weiss,2 Beate Tenner, Konrad Schoppmeyer, Jutta Esser, Christiane Klier, Stephan Drewes, Rainer G. Ulrich, Detlev H. Krüger

Author affiliations: Charité–Universitätsmedizin Berlin, Berlin, Germany (J. Hofmann, S. Weiss, B. Tenner, D.H. Krüger); Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany (E. Heuser, S. Drewes, R.G. Ulrich); Euregio-Klinik, Medizinische Klinik II, Nordhorn, Germany (K. Schoppmeyer); Laborarztpraxis Osnabrück, Georgsmarienhütte, Germany (J. Esser); German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Germany (E. Heuser, R.G. Ulrich); Public Health Agency of Lower Saxony, Hannover, Germany (C. Klier)

DOI: https://doi.org/10.3201/eid2612.200708

Hantavirus infections cause febrile and often life-threatening zoonoses known as hemorrhagic fever with renal syndrome and hantavirus cardiopulmonary syndrome. Human pathogenic hantavirus species usually are carried by specific rodent reservoirs, which shed infectious virus in their excreta (1).

Seoul virus (SEOV), a species within the genus Orthohantavirus, is hosted by Norway or brown rats (Rattus norvegicus) and other Rattus species as main reservoir. SEOV-associated hantavirus disease has not been unequivocally diagnosed. We found clinical and molecular evidence for SEOV infection in a young woman; her pet rat was the source of infection.

Address for correspondence: Dong-Hun Lee, Department of Pathobiology & Veterinary Science, University of Connecticut, 61 N Eagleville Rd, Unit-3089, Storrs, CT 06269, USA; email: dong-hun.lee@uconn.edu

1These authors contributed equally to this article.
2Current affiliation: Robert Koch Institute, Berlin, Germany.
often misdiagnosed, perhaps because of its sometimes mild/atypical clinical presentation and healthcare providers’ low clinical awareness (2,3). A lack of appropriate routine diagnostic tools also complicate the correct diagnosis. SEOV nucleocapsid protein shares a high antigenic similarity to related orthohantavi-
ruses, such as Hantaan virus (HTNV) and Dobrava-
Belgrade virus (DOBV), and is not always included in commercial assays (1,7).

Therefore, the use of molecular methods is the best way to unequivocally prove SEOV infections in Europe. Molecular evidence for SEOV infection has been found in patients from France and the Netherlands (6,8). Molecularly proven SEOV hantavirus disease in a German patient was reported in 2018, but the infection probably was acquired in Indonesia (7). Except for this travel-associated infection, neither SEOV-specific antibodies nor SEOV RNA had been detected in humans in Germany.

In October 2019, an 18-year-old woman was admitted to the intensive care unit of a hospital in Nordhorn in northwestern Germany with high fever and in critical condition. During the clinical course of her illness, acute kidney injury, gastroenteritis, and hepatopathy developed. Thrombocytes were lowest at day 3 and normal from day 6 on. Leukocytosis was evident during days 6–8, C-reactive protein as an inflammation parameter was above normal, peaked on day 2, and then decreased continuously until day 12. Serum creatinine and urea were elevated, and glomerular filtration rate was reduced with most critical values of all 3 parameters on day 8. We also detected proteinuria. The >3-fold increase in serum creatinine concentration from day 1 to day 8 is consistent with an acute kidney injury severity level 3 in the 3-stage KDIGO (Kidney Disease: Improving Global Outcomes) classification (9). These parameters of kidney function reached normal or nearly normal levels on day 12. Liver enzymes were elevated during the entire period and peaked on day 3 (Table). After receiving antimicrobial treatment and treatment for her symptoms, the patient was discharged from the hospital on day 13 in largely normal condition.

Serologic diagnostic approaches were based on recomLine HantaPlus IgG and IgM immunoblot assays (Mikrogen GmbH, https://www.mikrogen.de). The recomLine IgM blot showed strong reactivity to DOBV, HTNV, and SEOV nucleocapsid antigens, and in the IgG blot, we found a single weak reactivity to HTNV. A follow-up sample drawn 2 months after discharge revealed comparable band intensities in the IgM blot. The IgG blot showed a strong HTNV band but no DOBV or SEOV reactivities. However, neither DOBV nor HTNV are prevalent in the patient’s residential area, and she reported not traveling.

We conducted molecular virus typing. A serum sample collected on day 5 of hospitalization was tested by the pan-hanta reverse transcription PCR (RT-PCR) addressing a 412-nt region of the viral large (L) segment (10). The identified nucleotide sequence demonstrated SEOV infection.

The patient reported that she kept Norway rats as pets in her flat. RT-PCR investigation of lung tissue of 1 of these rats yielded an L segment sequence identical to the patient-derived sequence (Figure). A subsequent small (S) segment RT-PCR enabled amplification of a 673-nt sequence from both the patient and the pet rat. Sequence alignment showed only a single silent nucleotide exchange. The analyzed S segment sequences exhibited the highest similarity to breeder-rat derived SEOV strains from the Netherlands and United Kingdom (Figure). The identities of the patient- and pet rat-derived sequences support the zoonotic transmission of the virus to the woman.

This case illustrates the importance of clinical awareness for SEOV infection after contact with rats. Along with this human case, we report a molecularly proven SEOV infection in a pet rat in Germany. More information regarding the SEOV prevalence in domestic and wild rat populations in Germany is needed to assess the risk for infection in the general public, pet rat owners, and breeder-rat handlers.

Parameter (reference range)	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6	Day 7	Day 8	Day 9	Day 10	Day 11	Day 12
Leukocytes (4–10x10³/L)	3.4	4.7	4.4	5.5	10.4	10.8	10.1	9.1	9.4	8.6		
CRP (0–0.5 mg/dL)	4.7	12.4	11.5	7.8	6.2	4.8	4.1	3.6	1.4	0.9		
Serum creatinine (0.5–0.9 mg/dL)	0.92	1.42	1.93	1.81	2.27	2.72	2.93	2.33	1.18	1.16		
Serum urea (16.6–48.5 mg/dL)	ND	41.5	ND	55.2	63.3	67.5	67.8	53.0	17.9	17.0		
ALT (10–35 U/L)	67	202	206	172	187	177	169	141	110	156		
AST (10–35 U/L)	28	164	233	140	117	96	67	55	39	54		
GFR (>89 mL/min)	91	54	37	40	31	25	22	30	67	69		
Protein in urine (0 mg/dL)	ND	ND	75	ND	75	ND	ND	ND	ND			
γGT (6–42 U/L)	67	202	206	172	187	177	169	141	110	156		
ALT (10–35 U/L)	28	164	233	140	117	96	67	55	39	54		

*ALT, alanine aminotransferase; CRP, C-reactive protein; γGT, gamma-glutamyltransferase; GFR, glomerular filtration rate; −, negative; ND, not determined.
Acknowledgments

We thank J. Dreesman and M. Oskamp for their support in patient contact. We gratefully acknowledge the expert technical assistance of C. Stephan, S. Schwarz, and D. Kaufmann.

Work was supported by the German Federal Ministry of Public Health via Robert Koch-Institute (grant no 1369-382/435, 1362-924/980), by Deutsches Zentrum für Infektionsforschung (area "Emerging Infections"), and the Bundesministerium für Bildung und Forschung through the Research Network Zoonotic Infections (project 01KI1721A, C, D).

About the Author

Dr. Hofmann is the chair of the National Consultation Laboratory for Hantaviruses, Institute of Virology, Charité–Universitätsmedizin Berlin, Germany. His primary research interest is human infections with viral pathogens.

References

1. Kruger DH, Figueiredo LT, Song JW, Klempa B. Hantaviruses—globally emerging pathogens. J Clin Virol. 2015;64:128-36. https://doi.org/10.1016/j.jcv.2014.08.033
2. Lee HW. Hemorrhagic fever with renal syndrome in Korea. Rev Infect Dis. 1989;11(Suppl 4):S864–76. https://doi.org/10.1093/clinids/11.Supplement_4.S864
3. Clement J, LeDuc JW, Lloyd G, Reyes JM, McElhinney L, Van Ranst M, et al. Wild rats, laboratory rats, pet rats: global Seoul hantavirus disease revisited. Viruses. 2019;11:E652. https://doi.org/10.3390/v11070652
4. Childs JE, Klein SL, Glass GE. A case study of two rodent-borne viruses: not always the same old suspects. Front Ecol Evol. 2019;7:35. https://doi.org/10.3389/fevo.2019.00035
In 2015, we founded Pedi Lyme Net, a pediatric Lyme disease research network comprising 8 emergency departments in the United States. Of 2,497 children evaluated at 1 of these sites for Lyme disease, 515 (20.6%) were infected. This network is a unique resource for evaluating new approaches for diagnosing Lyme disease in children.

Children are disproportionately affected by Lyme disease, which is diagnosed in ≈300,000 persons in the United States each year (1). Clinicians diagnose Lyme disease using a 2-tier examination of enzyme immunoassay (EIA) and immunoblot results. Current Lyme disease diagnostic tests have well-described limitations that include false negatives early in disease (3) and inability to distinguish between resolved, active, and recurrent infections (4). Clinicians must also wait several days for Lyme disease serologic results, a delay that might contribute to late or unnecessary treatment with antimicrobial drugs. The increased incidence of Lyme disease, limitations of current tests, and lack of studies in children demonstrate the need for a systematic approach to Lyme disease diagnosis in children.

Developing improved diagnostic techniques relies on biobanks of samples collected from patients with Lyme disease and clinical mimics (i.e., patients with similar signs and symptoms caused by non-Lyme illnesses). The US Centers for Disease Control and Prevention (Atlanta, GA, USA) curated the first Lyme disease biobank with samples from 86 adults with Lyme disease, 144 clinical mimics, and 203 healthy controls from 11 collection sites (5). The Study of Lyme Disease Immunology and Clinical Events (http://www.slicestudies.org) at the Johns Hopkins Lyme Disease Research Center (Baltimore, MD, USA) enrolled 40 adults with an erythema migrans (EM) lesion and followed up with patients for 1 year. The Lyme Disease Biobank, supported by the Bay Area Lyme Foundation, has enrolled 550 adults with Lyme disease evaluated at 7 primary-care collection sites (6). To date, none of these biobanks have included children or used emergency departments for enrollment.

In 2015, we founded Pedi Lyme Net, a pediatric Lyme disease research network comprising 8 emergency departments in a diverse range of areas to which Lyme disease is endemic. We conducted a prospective cohort study of children evaluated for Lyme at 1 of of these emergency departments (Appendix Figure 1, https://wwwnc.cdc.gov/EID/article/26/12/20-0920-App1.pdf). The Pediatric Lyme Disease Biobank, housed at Boston Children’s Hospital (Boston, MA, USA), stores and distributes the biosamples collected from enrolled children (7).

Pediatric Lyme Disease Biobank, United States, 2015–2020

Lise E. Nigrovic, Desire N. Neville, Fran Balamuth, Michael N. Levas, Jonathan E. Bennett, Anupam B. Kharbanda, Amy D. Thompson, John A. Branda, Aris C. Garro, the Pedi Lyme Net Working Group

Author affiliations: Boston Children's Hospital, Boston, Massachusetts, USA (L.E. Nigrovic); Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA (D.N. Neville); Milwaukee Children's Hospital, Milwaukee, Wisconsin, USA (F. Balamuth); Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA (M.N. Levas); Nemours/Alfred I. duPont Children's Hospital, Wilmington, Delaware, USA (J.E. Bennett, A.D. Thompson); Children's Minnesota, Minneapolis, Minnesota, USA (A.B. Kharbanda); Massachusetts General Hospital, Boston (J.A. Branda); Rhode Island Hospital, Providence, Rhode Island, USA (A.C. Garro)

DOI: https://doi.org/10.3201/eid2612.200920

[References cited in the text are not included here.]

5. McElhinney L, Fooks AR, Featherstone C, Smith R, Morgan D. Hantavirus (Seoul virus) in pet rats: a zoonotic viral threat. Vet Rec. 2016;178:171–2. https://doi.org/10.1136/vr.i817
6. Reynes JM, Carli D, Bour JB, Boudjeltia S, Dewilde A, Gerbier G, et al. Seoul virus infection in humans, France, 2014–2016. Emerg Infect Dis. 2017;23:973–7. https://doi.org/10.3201/eid2306.160927
7. Hofmann J, Weiss S, Kuhns M, Zinke A, Heinsberger H, Kruger DH. Importation of human Seoul virus infection to Germany from Indonesia. Emerg Infect Dis. 2018;24:1099–102. https://doi.org/10.3201/eid2406.172044
8. Swanink C, Reimerink J, Gisolf J, de Vries A, Claassen M, Martens L, et al. Autochthonous human case of Seoul virus infection, the Netherlands. Emerg Infect Dis. 2018;24:2158–63. https://doi.org/10.3201/eid2412.180229
9. Weiss R, Meersch M, Pavenstädt HJ, Zarbock A. Acute kidney injury. Dtsch Arztebl Int. 2019;116:833–42.
10. Klempa B, Fichet-Calvet E, Lecompte E, Auste H, Meisel J, Kuhns E, et al. Hantavirus in African wood mouse, Guinea. Emerg Infect Dis. 2006;12:838–40. https://doi.org/10.3201/eid1205.051487

Address for correspondence: Jörg Hofmann, Institute of Virology, Helmut-Ruska-Haus, Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin; Germany. e-mail: joerg.hofmann@charite.de