To scale or not to scale
a perspective on describing fish energy budgeting
Svendsen, Morten Bo Søndergaard; Christensen, Emil Aputsiaq Flindt; Steffensen, John Fleng

Published in:
Conservation Physiology

DOI:
10.1093/conphys/cox056

Publication date:
2017

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Svendsen, M. B. S., Christensen, E. A. F., & Steffensen, J. F. (2017). To scale or not to scale: a perspective on describing fish energy budgeting. Conservation Physiology, 5(1), [cox056]. https://doi.org/10.1093/conphys/cox056
To scale or not to scale: a perspective on describing fish energy budgeting

Morten Bo S. Svendsen*, Emil A. F. Christensen and John F. Steffensen

Department of Biology, University of Copenhagen, Helsingør DK 3000, Denmark

*Corresponding author: Tel: +45 23235265; Email: mortenbosvendsen@gmail.com

Conventionally, dynamic energy budget (DEB) models operate with animals that have maintenance rates scaling with their body volume, and assimilation rates scaling with body surface area. However, when applying such criteria for the individual in a population level model, the emergent behaviour of the conventional model apparently only reflects juveniles and not adult animals. This paper discusses the relevance of what level assumptions are made on, and the subsequent impact on interpreting the animal (top-down or bottom-up). The alternative DEB model has maintenance scaling with body area, and assimilation with body volume— the opposite of the conventional energy budget animal. Likewise, scaling of organism function to body mass is emphasized to take into account the different challenges organisms face when growing in size. It is emphasized that homoeostasis and its challenges are continuously changing, and cannot be assumed constant. The perspective is finalized by a discussion on perceiving animals as machines, and how it can maybe serve as a *lingua franca* for physiologists and modellers alike.

Key words: Aerobic scope, dynamic energy budgetting, efficiency, fishes, gills, homoeostasis

Editor: Steven Cooke

Received 16 December 2016; Revised 22 August 2017; Editorial Decision 27 August 2017; accepted 11 September 2017

Cite as: Svendsen MBS, Christensen EAF, Steffensen JF (2017) To scale or not to scale: a perspective on describing fish energy budgeting. *Conserv Physiol* 5(1): cox056; doi:10.1093/conphys/cox056.

Introduction

Assessing effects of perturbations (e.g. fisheries) on ecosystems requires a mechanistic approach in determining cause and effect relationships (Horodysky et al., 2015; McKenzie et al., 2016). For this purpose, organismal physiology has been suggested as a viable tool, as the environment, and the physiology of organisms continually interact (Clarke, 1993). Furthermore, since the dawn of physiology as a research topic, the field has expanded widely, leading Wieser (1973) to formulate a need for analytical approaches for the progression of the area.

‘Since the purely descriptive phases in the former sciences [biochemistry and physiology] have largely passed it is the application of strictly analytical methods that will lead to the formulation of the questions that are to occupy biochemists and physiologists of the future.’—W. Wieser, 1973

When an analytical model of any system is being coined, it is of importance how the system is perceived. In trying to describe an animal as a system, in words or via a mathematical model, from which perspective one perceives the animal will affect how one describes it. One fundamental difference in describing complex systems is whether one attempts to describe the system from a bottom-up or a top-down point of view (Pezzulo and Levin, 2016) (Fig. 1). A Bottom-up approach tries to describe the animal by its specific components and their responses, and as components are added complexity ensues. On the other hand, in a top-down approach, all the individual processes integrated as one, yielding a generalized response. Some 90 years ago, Krogh (1929) described that the physiology as ‘growing unwieldy,’ making it impossible for one person to be familiar with all branches, illustrating the complexity of physiology already at that time. When trying to
Figure 1: Perception of the animal. This diagram seeks to visualize organizational level of an organism in nature, as well as describing the relative complexity observed at different levels of life. Bottom left is the complexity scale, with colour codes signifying inner and outer environments. Bottom right is the organizational scale, based on degrees of freedom, i.e. how many things can vary, dependent on what scale a researcher observes life. ‘Internal’: Starting from the ‘individual organism’ and down the triangle, a top-down approach i.e. integrative physiology tries to describe the status of the animal looking at whole animal activity and its physiological status, (Fry, 1971). A bottom-up approach would be a reductionist method, seeking to describe the organism starting at a regulatory or gen’omic’ level, moving up. The latter can prove difficult, if not impossible (Pezzulo and Levin, 2016), as the integrated complexity would increase closer to the bottom of the internal triangle. ‘External’: Group, Group behaviour, population and ecosystem are at a higher organizational level that the individual, as there logically fewer populations of fish than individual fish, as individuals make up the populations—likewise for populations vs. ecosystems. As more and more individuals are included going up the outside environment organization, more and more degrees of freedoms are added.

describe a system bottom-up, one has to make assumptions, in a way that sets the rules of life for the given description or model. The set of assumptions of a model defines the scope of application of the model and increasing the number of assumptions limits the applicability of the model. In the paper, ‘A paradox in individual-based models of populations’ by van der Meer (2016), the author highlights a paradox in the application of assumptions in conventional dynamic energy budget (DEB) models. The paradox is that in contrast to conventional DEB models, the desired behaviour of an alternative DEB model, created by van der Meer (2016) requires the creation of a ‘weird animal’ where maintenance scales with body area and assimilation rate scales with body volume.

In this perspective, the importance whole organism function and homoeostasis are emphasized when analytically describing physiology. Exemplified by highlighting what the authors perceive as an oddity in the assigning of functional scaling to a specific organismal dimension, rather than to assign it to a specific need or challenge. Finalized by a discussion on the usefulness as perceiving organisms as machines.

Different perceptions of fish energy budgeting

The cornerstone of physiology, both in the field and in the laboratory, is the concept of homoeostasis; that animals maintain an inner environment optimal for processes of life (Cannon, 1935; Costa and Sinervo, 2004; Cooper, 2008). The concept of homoeostasis is a general top-down perception in physiology, with the only rule being the active maintenance of organismal homoeostasis to ensure organismal function. A bottom-up approach to how the ‘environment’ affects behaviour and distribution of animals is whole animal physiology and behaviour. Fry (1947, 1971) proposed a framework that relates environmental effects on whole animal metabolism to animal activities, such as growth and habitat selection, both of which will have a consequence for lifetime fitness. The determinant of habitat choice and growth potential have often, due to the works by Fry, been interpreted as the aerobic scope (AS), that is, the capacity of the animal to increase its oxygen consumption from resting level (Fry, 1971). As of present, however, there is an ongoing discussion of the practical applicability of the AS as a bottom-up approach to higher order analyses (Pörtner and Knust, 2007; Pörtner and Farrell, 2008; Clark et al., 2013; Gräns et al., 2014; Norin et al., 2014; Brijs et al. 2015; Farrell, 2016).

Dynamic energy budget model theory: A potential gathering theory is the maximum power principle described by Lotka (1922a, 1922b) which suggests that natural selection acts on maximum available energy (Sciubba, 2011). In this context, it makes sense that animals can balance the different costs and gains attributable to an environment via metabolic resource allocation (Priede, 1985; Korsmeyer et al., 1996; Holt and Jørgensen, 2015; Sandblom et al. 2016). This sub-organismal level of allocating energy (Kooijman, 1986) is closely related to the theory of DEB (Kooijman, 1986; van der Meer, 2006; 2016; Sousa et al., 2008), and can at the same time explain the physical theory that underlies the Fry paradigm.

Homoeostasis

A general top-down perception in physiology is the centring on homoeostasis, with the only rule being that organismal homoeostasis is maintained for organismal function. However, investigating parts of organisms and focusing on those parts’ responses to challenges has been a general practice and is, in essence, a bottom-up approach: homoeostasis is about keeping the mitochondria well-functioning. Simplified, this allows
thinking of animals open systems (Fig. 2), where different transport phenomena interact in maintaining homeostasis. Transport phenomena have been argued to be the cause of allometric scaling in biology (West et al., 1997; Savage et al., 2007). Oxidative phosphorylation that forms the core reactions of metabolism requires both substrate (food) and oxygen to take place. Respiration:

\[
\text{Food + oxygen} \rightarrow \text{carbon dioxide + water + energy + heat}
\]

Oxygen is not a substrate that can be converted to a reserve; it needs to be taken up and utilized directly in metabolism. Therefore, oxygen homeostasis should be regarded as a primary organismal function; insufficient oxygen uptake will lead to anaerobiosis that in turn will be detrimental to all other homeostatic functions (Pörtner and Grieshaber, 1993). As a result, it seems fair to assume that the first costs to pay would be the most immediate for whole organism function, the ones associated with oxygen uptake, which is ventilation and cardiac oxygen transport (external and internal oxygen transport, respectively).

Any energetic part of organismal homeostasis would be included in what is known as the standard oxygen consumption (Beamish, 1964) often described as Standard Metabolic Rate, SMR, as oxygen consumption is a proxy for metabolic rate when studying fishes (Fry, 1971; Nelson, 2016). The standard metabolic rate would be the average maintenance cost of living for a resting fish (Beamish and Mookherjii, 1964; Beamish, 1964), and both energetic cost of ventilation and osmoregulation, therefore, are examples of homeostatic processes that must be considered a part of SMR (Fry, 1971). The metabolic cost of ventilation varies from 4 to 43% but is most likely in the vicinity of 10% in normoxia (Jones et al., 1970; Jones, 1971; Jones and Schwarzfeld, 1974; Kramer, 1983; Steffensen and Lomholt, 1983). The cost of internal (cardiac) oxygen transport (Hughes, 1973), has as such not been assessed but suggested to equal that of ventilation (Jones, 1971; Farrell and Steffensen, 1987). However, considering the volumes of internal and external oxygen medium needing transport to maintain a fixed oxygen consumption, ventilation of water requires much larger volumes be moved compared to that of blood (Piiper et al., 1971; Piiper and Scheid, 1984), why it logically could be assigned as the most costly.

A second abiotic factor affecting maintenance costs via the gills would be the cost of osmoregulation. Osmoregulation has been reported from in the order of a few percent, over 12–16% (Febry and Lutz, 1987) to as high as 50% (Febry and Lutz, 1987; Boeuf and Payan, 2001). However, the cost of osmoregulation seems to interact with temperature (Christensen et al., 2017), why it is difficult to assign a single percentage. Summing up these two factors directly attributable to surface area, expected maintenance cost of the fish would range from a minimum of 20–30% to at least 60% of measurable maintenance metabolism (SMR). Both oxygen uptake and osmoregulation are challenges included in the whole organism homeostasis, and the gills are the major functional organ for both (Evans et al., 2005).

Scaling

In the contemporary paper by Lefèvre et al. (2017), gill surface-to-volume is argued to scale with an exponent of 1 with body mass. The arguments in Lefèvre et al. (2017) claims against the gill scaling assumptions of Pauly et al., yet in predictions of future size ranges of fishes, however, Lefèvre et al. (2017) do not deny the many functions occurring in connection with the gills. Figure 3 illustrates that scaling of physiological entities with body size is largely dependent on the unit used to quantify them. The two top panels show SMR values from the dataset in Lefèvre et al. (2017), as a function of body mass. Whole animal oxygen consumption, \(\text{MO}_2 \), (\(\text{mg} \cdot \text{min}^{-1} \)) scales with an exponent of \(-1.2\), indicating that it increases faster than body mass alone. However, using mass-specific oxygen uptake (\(\text{mg} \cdot \text{min}^{-1} \cdot \text{kg}^{-1} \)) to remove the effect of mass, then the scaling exponent becomes negative (\(\approx -0.13 \)), indicating fewer costs per unit of mass for larger animals. Lastly, when correcting for temperature (\(Q_{10} = 2, 20^\circ\text{C} \)) the effect of body mass on oxygen consumption decrease to \(\approx -0.042 \) (Table 1). Just as well as oxygen uptake is an approximation on metabolism (Fry, 1971; Nelson, 2016), one could argue that ventilation is a
and that of Conservation Physiology Schmidt-Nielsen, 1984

Thus, instead of considering whether maintenance costs scale to the metabolic rate and physical size of the organism. Scaling of maintenance via ventilatory volume sets the working surface of the gills (surface) and heart (ventricular mass) as the largest working surface of the fish (Evans et al., 2005). Suggesting that the body surface that relates to maintenance cost in fishes is the gill surface, as also stated by Pauly (1981). That the gill surface also represents the largest working surface of the fish is additional support for this (Byczkowska-Smyk, 1957). Due to the large water transport in connection with oxygen uptake occurring over the gills, the gill surface inflicts homeostatic challenges on fishes (Evans et al., 2005). As a consequence, maintenance costs scale to the metabolic rate and physical size of the organism. Scaling of maintenance via ventilatory volume sets an environmental dependency of homeostasis via the gills.

Figure 3: Top left: Oxygen consumption (MO2) at standard metabolic rate of different fishes and conditions (n = 218) vs body mass in kg on the x-axis (data from Lefevre et al. (2017)). Demonstrates different scaling of MO2 vs the mass of the animals, using either mass-specific [mg · min⁻¹ · kg⁻¹] (b = −0.154) or whole animal oxygen consumption rates [mg · min⁻¹] (b = 1.196), the dashed line represent a temperature correction of mass-specific scaling (b = −0.042). Top right: pane is similar to the top left, except oxygen consumption has been converted to ventilation [lH2O · min⁻¹ · kg⁻¹] (b = −0.125; temperature corrected b = −0.009) and [lH2O · min⁻¹] (b = 1.172). Bottom left: panel depict calculations of oxygen transport limitation of size in organisms relying on aquatic respiration, as per Krogh (1941). The x-axis with the units the units of mass in gram, assuming a sphere shape organism with mass scaling with b = 1 to volume. The intersection of the coloured lines with the horizontal black line, signifies where metabolism starts being limited by oxygen transport (0.21 atm) (red: diffusion only, blue: with convection/ventilation) (Krogh, 1941). Bottom right: depicts the fitted equation of metabolic rate reported in Lefevre et al. (2017), converted to whole animal oxygen consumption(—). The magenta graph represents a fixed metabolic rate (maintenance at body mass approximating 0 g) the difference between the two lines (•) and a vertical line (•) highlighting where the difference between fixed maintenance (magenta) and scaled maintenance (—) are the largest (M₆~0.32 g). The dotted line in the bottom left represents the same point, e.g. maximum difference between the fitted equation from Lefevre et al. (2017) and that of fixed maintenance. For a body mass larger than the found M₆~0.32 g, respiration of an aquatic organism requires further measures than convective oxygen transport only, e.g. haemoglobin, to increase the gradient across the gas exchanger (Krogh, 1941; Schmidt-Nielsen, 1984).
Table 1: Scaling exponents of fishes and the effects of unit conversion and transformation

Scaling exponents, b	Oxygen consumption	Ventilation		
	mg · min⁻¹	mg · min⁻¹ kg⁻¹	L · min⁻¹	L min⁻¹ · kg⁻¹
SMR	1.196	-0.154	1.172	-0.125
SMR (Q10)	1.096	-0.042	1.052	-0.009
Effects on allometric scaling	Δ/‖l‖	var % ‖l‖		
Temperature	0.112	0.076		
Ventilation	0.321	0.263		
Body mass	1.212	0.111		
Effects of unit transformation on observed variance	Coefficient of variation			
mg · min⁻¹	3.88			
mg · min⁻¹ · kg⁻¹	0.96			
L · min⁻¹ · kg⁻¹	0.84			
L · min⁻¹ · kg⁻¹ (Q10)	0.65			

acclimates to the conditions (Hughes, 1966). As organismal functions scale with the challenges faced, the focus should be put on the physical environment, and the specific challenges (and equations) it brings as scaling exponents differ depending on the level of correction of the data.

Ontogenetic dependency of homoeostasis-specific thresholds

A primary assumption of DEB theory is the ‘assumption of strong homoeostasis’, meaning that homoeostasis is always maintained. Further assumptions are ontogenetic shifts in feeding and reproduction of animals (Sousa et al., 2008). Ontogenetic shifts determine preferred habitats for fish in nature (Félix-Hackradt et al., 2014); likely because the characteristic sizes of animals determine many of the challenges animals face (Andersen et al., 2016). Accordingly, assimilation and maintenance are likely to shift from being either surface or volume related, to the other, during the life history of a fish.

An example of the difficulty in assigning performance to a volume or surface could be the physical movement of the animal. Locomotion sets the scene for both assimilation (feeding) and maintenance (i.e. behavioural thermoregulation and escaping predators) in ectothermic fishes. During the growth of fish, they will experience changes in what forces (inertial or viscous) that govern their ability to move (McHenry and Lauder, 2005). In larger fishes, governed by inertial forces, sustained swimming performance is related to the oxygen uptake capability of the fish (gills) (Brett, 1965; 1972). On the other hand, it is anaerobic burst swimming that limits the fish top-speed via propulsive power (white muscle) (Wardle, 1975). In contrast, for the largest of fishes, top-speed is again limited by a surface, this time due to destructive cavitation to tissue requiring increased maintenance (Iosilevskii and Weinb, 2008). The performance of the white muscle has then been suggested to be constrained via evolution to avoid this incurrence of increased maintenance (Svendsen et al., 2016). Again, the weird animal paradox of van der Meer (2016) may not lie as much in the specific assumptions, as in the assignment of traits to specific volumes or surfaces. The swimming examples should highlight, that in doing so in modelling, one is bound to miss the exceptions; the boundary conditions.

Homoeostasis and its related maintenance costs cannot be assumed constant; a similar argument is formulated in Lefevre et al. (2017). It should be evident that homoeostasis is dependent on the oxygen supply in fishes, but onset of ontogenetic shifts are also hypothesized to be determined by oxygen supply relations (Pauly, 1984). Though the last topic is questioned by Lefevre et al. (2017), it seems to be a causality dilemma; is metabolism constrained by oxygen transport, or is oxygen transport adapting to the metabolic needs? The general need for aquatic ventilation, that is, the onset of a ventilatory requirement, occurs at a body size of 1 mm (sphere) (Krogh, 1941). Thus, if the body size of a fish, either embryo or larvae, increases above 1 mm, the homoeostatic challenge of obtaining oxygen is altered; diffusion will no longer suffice. The bottom part (left) of Fig. 3 illustrates the calculations by Krogh (1941), the lower right pane illustrates calculations of relationships between oxygen consumption and body mass. By assuming a default oxygen uptake, indicative of no constraints on metabolism, the difference to the observed average scaling can be calculated (SMR = 1.58 mg · min⁻¹ · kg⁻¹, a body mass of 1 g, using the best-fit equation from Lefevre et al. (2017): 1.58 · M⁻⁰·¹³). This difference would be above zero for body sizes where the metabolism is larger than the expected default metabolism—i.e. body sizes that allow for more than an average metabolic
...we prove that (i) the DEB theory is fully supported by empirical biological patterns and the universal laws of physics and evolution and (ii) it is a theory on metabolic organization that is as formal as physics. — Sousa et al. (2008)

However promising, it remains unclear to the authors of present paper, being physiologists, how the DEB theory accounts for maintaining homeostasis (van der Meer, 2006; 2006; Sousa et al., 2008). In our opinion, homeostasis and related costs must be the maintenance costs related to living. The introductory DEB literature does not seem fully supported by empirical biological patterns; however applicable DEB models might be in different settings. Does the word maintenance represent the same meaning to a modeller as it does to a physiologist? The most apparent DEB paradox from a physiological point of view is that homeostasis is assumed, and not maintained, a semantic difference that could prove to be of large impact. Environmental tolerances of animals are, in one way or the other, determined by a failure of homeostasis (Fry, 1971). If the mentioned progression should be successful, it should be of importance that a common language is agreed upon. Can the measurements physiologists carry out be utilized directly in a model, or does one part need to adapt?

The animal as a machine

Having stated a range of concerns, it is appropriate to suggest a possible solution as well. In the literature, organisms are often described theoretically as engines, that is, thermodynamic systems (Lotka, 1922a, 1922b; Fry, 1947; Von Bertalanffy, 1950). Figure 4 illustrates that for fish, as for engines, there is more to function than power output. In this experiment of thought, the idling of the engine would for fishes be the standard metabolic rate and the maximum turn-around is the maximum metabolic rate, the resulting power output is in this case then the AS (Fry, 1947; 1971). The underlying assumption is that the initial decreasing of maximum metabolic rate at higher temperatures arises from one (Pörtner and Knust, 2007; Farrell, 2016) or a range of homeostatic imbalances (Wang and Overgaard, 2007; Clark et al., 2013; Brijs et al., 2015; Sandblom et al., 2016), leading to inherent inefficiency of the organismal system. The efficiency of a system, in this case across temperature, is by convention described as its power output (AS), divided by its power input (maximum oxygen uptake).

\[
\varepsilon = \frac{AS}{MMR}
\]

Given the efficiency is inherent to the system then an Effective-SMR (output from idling) can be found by multiplication of SMR and the efficiency.

\[
SMR_e = \varepsilon \cdot SMR
\]

An upper ‘turning point’ (pejus) for idling happens when the efficiency drops below 0.5 (Odum and Pinkerton, 1953; Odum, 1983). When transitioning into environments where the efficiency drops below 0.5, an environmental threshold, much like an ontogenetic limit, is encountered. Beyond this point, maintenance will increase dramatically (Figure 4), progressing further into such environments is unfruitful for the organism. Beyond \(\varepsilon\) 0.5, maintenance allocation increases faster, as whole animal efficiency approaches 0. Thinking in the lines of whole animal efficacy, explains why Frisk et al. (2012) suggest their fish to be at a critical acclimation temperature at 28°C (Figure 4), even though the best-fit AS (power output) is at 76% of its maximum (An efficiency of 0.5 is also signified by AS equalling SMR, and thus factorial AS being 2). Similar results of animal functioning deteriorating at high percentages of remaining AS are not uncommon. For six species of animals relying on aquatic respiration, the average AS at maximum acclimation temperature is (\(\mu \pm sd\) 78% ± 16% with efficiencies of 0.48 ± 0.08 (Frisk \etal, 2012; Ern \etal, 2014; 2015; Claissen \etal, 2016; Jensen \etal, 2017).
Likewise, challenging fish by increasing salinity, projecting data from Behrens et al. (2017) indicates a 0% survival at efficiency of 0.55. Thus instead of breaking apart the animal into what specific parts are failing (Brijs et al., 2015; Ern et al., 2015), this simple efficacy analysis of whole animal function, explains, in part or completely, some discrepancies among fish physiologists (Ern et al., 2014, 2015; Clæsson et al., 2016; Jensen et al., 2017). Further, whole animal efficiency provides reasoning for why maximum power output, as per absolute AS (Fry, 1971), is not always the determining factor (Norin et al., 2014; Clæsson et al., 2016; Raby et al., 2016). Thus impaired performance (Gräns et al., 2014) and change in preference (Norin et al., 2014) is likely due to increased energy allocation to the maintenance of homeostasis. Perceiving fishes in a top-down fashion, in this case, as machines, could provide simpler mechanistic models and serve as a starting point for creating a lingua franca for fish physiologists; most of the references in this section are studies that criticize the oxygen carrying capacity for thermal tolerance theory (Pörtner and Knust, 2007) and Fry paradigm, in aquatic breathers. As these differences amongst physiologists can be explained by thinking in terms of efficiency, maybe a bridge between physiologists and modellers is found in using the same terms. Hopefully creating a basis for determining the reaction norm of the effects of the environment on fishes.

References

Andersen KH, Berge T, Gonçalves RJ, Hartvig M, Heuschele J, Hylander S, Jacobsen NS, Lindemann C, Martens EA, Neuheimer AB, et al. (2016) Characteristic sizes of life in the oceans, from bacteria to whales. *Ann Rev Mar Sci* 8:217–241. DOI:10.1146/annurev-marine-122414-034144.

Beamish FWH (1964) Respiration of fishes with special emphasis on standard oxygen consumption: II. Influence of weight and
temperature on respiration of several species. Can J Zool 42: 177–188. doi:10.1139/z64-016.

Beamish FWH, Mookherjii PS (1964) Respiration of fishes with special emphasis on standard oxygen consumption: I. Influence of weight and temperature on respiration of goldfish. Carassius Auratus L Can J Zool 42:161–175. doi:10.1139/z64-015.

Behrens JW, van Deurs M, Christensen EAF (2017) Evaluating dispersal potential of an invasive fish by the use of aerobic scope and osmoregulation capacity. PLOS ONE 12:e0176038.

Brett JR (1965) The relation of size to rate of oxygen consumption and sustained swimming speed of Sockeye Salmon (Oncorhynchus nerka). J Fish Res Bd Can 22:1491–1501.

Brett JR (1972) The metabolic demand for oxygen in fish, particularly salmonids, and a comparison with other vertebrates. Respir Physiol 14:151–170.

Brijs J, Jutfelt F, Clark TD, Gräns A, Ekström A, Sandblom E (2015) Experimental manipulations of tissue oxygen supply do not affect warming tolerance of European perch. J Exp Biol. DOI:10.1242/jeb.121889.

Byczkowska-Smyk W (1957) The respiratory surface of the gills in tele-osts. Zool Pol 8:91–111.

Boeuf G, Payan P (2001) How should salinity influence fish growth? Comp Biochem Physiol C Toxicol Pharmacol 130:411–423. doi:10.1016/S1532-0456(01)00268-X.

Farrell AP, Steffensen JF (1987) An analysis of the energetic cost of the branchial and cardiac pumps during sustained swimming in trout. Fish Physiol Biochem 4:73–79. doi:10.1007/BF02044316.

Cannon WB (1935) Stresses and strains of homeostasis. Am J Med Sci 189:1:13–14.

Christensen EAF, Svendsen MBS, Steffensen JF (2017) Plasma osmolality and oxygen consumption of perch Perca fluviatilis in response to different salinities and temperatures. J Fish Biol 90:819–833. doi:10.1111/jfb.13200.

Claësson D, Wang T, Malte H (2016) Maximal oxygen consumption increases with temperature in the European eel (Anguilla anguilla) through increased heart rate and arteriovenous extraction. Conserv Physiol 4:cow027.

Clark TD, Sandblom E, Jutfelt F (2013) Aerobic scope measurements of fishes in an era of climate change: respirometry, relevance and recommendations. J Exp Biol 216:2771–2782.

Clarke A (1993) Temperature and extinction in the sea: a physiologist’s view. Paleobiology 19:499–518.

Cooper SJ (2008) From Claude Bernard to Walter Cannon. Emergence of the concept of homeostasis. Appetite 51:419–427. DOI:10.1016/j.appet.2008.06.005.

Costa DP, Sinervo B (2004) Field physiology: physiological insights from animals in nature. Annu Rev Physiol 66:209–238. DOI:10.1146/annurev.physiol.66.052102.114245.

Ern R, Huong DTT, Phuong NT, Wang T, Bayley M (2014) Oxygen delivery does not limit thermal tolerance in a tropical eurythermal crustacean. J Exp Biol 217:809–814. doi:10.1242/jeb.094169.

Ern R, Huong DTT, Phuong NT, Madsen PT, Wang T, Bayley M (2015) Some like it hot: Thermal tolerance and oxygen supply capacity in two eurythermal crustaceans. Sci Rep 5, DOI:10.1038/srep10743.

Evans DH, Piermarini PM, Choe KP (2005) The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev 85:97–177. doi:10.1152/physrev.00050.2003.

Febry R, Lutz P (1987) Energy partitioning in fish: the activity related cost of osmoregulation in a Euryhaline Cichlid. J Exp Biol 128:63–85.

Félix-Hackradt FC, Hackradt CW, Treviño-Otón J, Pérez-Ruaza F, García-Charton JA (2014) Habitat use and ontogenetic shifts of fish life stages at rocky reefs in South-western Mediterranean Sea. J Sea Res 88:67–77. doi:10.1016/j.seares.2013.12.018.

Farrell AP (2016) Pragmatic perspective on aerobic scope: peaking, plummeting, pejus and apportioning. J Fish Biol 88:322–343. doi:10.1111/jfb.12789.

Fry FEJ (1947). Effects of the environment on animal activity. In University of Toronto Studies, (The University of Toronto Press)

Fry FEJ (1971) The effect of environmental factors on the physiology of fish. In Hoar WSH, Randall DJ (eds). Fish Physiology. Academic Press, 1–98.

Frisk M, Skov PV, Steffensen JF (2012) Thermal optimum for pikeperch (Sander lucioperca) and the use of ventilation frequency as a predictor of metabolic rate. Aquaculture 324–325:151–157. doi:10.1016/j.aquaculture.2011.10.024.

Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL (2001) Effects of size and temperature on metabolic rate. Science 293:2248–2251. doi:10.1126/science.1061967.

Gräns A, Jutfelt F, Sandblom E, Jönsson E, Wiklander K, Seth H, Olsson C, Dupont S, Ortega-Martinez O, Einarsdottir I, et al. (2014) Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J Exp Biol 217: 711–717. doi:10.1242/jeb.096743.

Holt RE, Jørgensen C (2015) Climate change in fish: effects of respiratory constraints on optimal life history and behaviour. Biol Lett 11, DOI:10.1098/rsbl.2014.1032.

Horodyszky AZ, Cooke SJ, Brill RW (2015) Physiology in the service of fisheries science: why thinking mechanistically matters. Rev Fish Biol Fisheries 25:425–447. doi:10.1007/s11160-015-9393-y.

Hughes GM (1973) Respiratory responses to hypoxia in fish. Amer Zool 13:475–489.

Hughes GM (1966) The dimensions of fish gills in relation to their function. J Exp Biol 45:177–195.

Iosilevskii G, Weih D (2008) Speed limits on swimming of fishes and cetaceans. J R Soc Interface 5:329–338. DOI:10.1098/rsif.2007.1073.
Jensen DL, Overgaard J, Wang T, Gesser H, Malte H (2017) Temperature effects on aerobic scope and cardiac performance of European perch (Perca fluviatilis). J Therm Biol 68:162–169. doi: 10.1016/j.jtherbio.2017.04.006.

Jones DR (1971) Theoretical analysis of factors which may limit the maximum oxygen uptake of fish: The oxygen cost of the cardiac and branchial pumps. J Theor Biol 32:341–349. doi:10.1016/0022-5193(71)90171-8.

Jones DR, Schwarzfeld T (1974) The oxygen cost to the metabolism and efficiency of breathing in trout (Salmo gairdneri). Respir Physiol 21:241–254. doi:10.1016/0034-9867(74)90097-8.

Jones DR, Randall DJ, Jarman GM (1970) A graphical analysis of oxygen transfer in fish. Respir Physiol 10:285–298. doi:10.1016/0034-9867(70)90049-6.

Kooijman SALM (1986) Energy budgets can explain body size relations. J Theor Biol 121:269–282. doi:10.1016/S0022-5193(86)80107-2.

Korsmeyer KE, Dewar H, Lai NC, Graham JB (1996) The aerobic capacity of tunas: adaptation for multiple metabolic demands. Comp Biochem Physiol A Mol Integr Physiol 113:17–24. doi:10.1016/0300-9629(95)00206-1.

Kramer DL (1983) The evolutionary ecology of respiratory mode in fishes: an analysis based on the costs of breathing. Environ Biol Fish 9:145–158. doi:10.1007/BF00690659.

Krogh A (1929) The progress of physiology. Science 70:200–204.

Krogh A (1941) The Comparative Physiology of Respiratory Mechanisms. University of Pennsylvania press.

Lefèvre S, McKenzie DJ, Nilsson GE (2017) Models projecting the fate of fish populations under climate change need to be based on valid physiological mechanisms. Global Change Biol. DOI:10.1111/gcb.13652.

Lotka AJ (1922a) Contribution to the energetics of evolution. PNAS 8:147.

Lotka AJ (1922b) Natural selection as a physical principle. PNAS 8:151–154.

McHenry M, Lauder G (2005) The mechanical scaling of coasting in zebrafish (Danio rerio). J Exp Biol 208:2289–2301. doi:10.1242/jeb.01642.

McKenzie DJ, Axelsson M, Chabot D, Claireaux G, Cooke SJ, Corner RA, Boeck GD, Domenici P, Guerrero PM, Hamer B, et al. (2016) Conservation physiology of marine fishes: state of the art and prospects for policy. Conserv Physiol 4:cow046. doi:10.1093/conphys/cow046.

Nelson JA (2016) Oxygen consumption rate v. rate of energy utilization of fishes: a comparison and brief history of the two measurements. J Fish Biol 88:10–25. doi:10.1111/jfb.12624.

Norin T, Malte H, Clark TD (2014) Aerobic scope does not predict the performance of a tropical eurythermal fish at elevated temperatures. J Exp Biol 217:244–251.

Odum HT (1983) Maximum power and efficiency: a rebuttal. Ecol Modell 20:71–82.

Odum HT, Pinkerton RC (1955) Time’s speed regulator: the optimum efficiency for maximum power output in physical and biological systems. Am Sci 43:331–343.

Pauly D (1981) The relationships between gill surface area and growth performance in fish: a generalization of von Bertalanffy’s theory of growth. Ber Deut Wiss Komm 28:251–282.

Pauly D (1984) A mechanism for the juvenile-to-adult transition in fishes. J Cons int Explor Mer 41:280–284. doi:10.1093/icesjm/41.3.280.

Pezzulo G, Levin M (2016) Top-down models in biology: explanation and control of complex living systems above the molecular level. J R Soc Interface 13, doi:10.1098/rsif.2016.0555. 2016 0555.

Piiper J, Scheid P (1984) 4 model analysis of gas transfer in fish gills. In Hoar WH, Randall DJ (eds). Fish Physiology. Academic Press, 229–262.

Piiper J, Dejours P, Haab P, Rahn H (1971) Concepts and basic quantities in gas exchange physiology. Respir Physiol 13:292–304.

Pörtner HO, Farrell AP (2008) Physiology and climate change. Science 322:690–692. DOI:10.1126/science.1163156.

Pörtner HO, Grisshaber MK (1993) Critical Po2(s) in Oxyconforming and Oxyregulating Animals: Gas Exchange, Metabolic Rate and the Mode of Energy Production. CRC Press, Boca Raton FL.

Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315: 95–97. DOI:10.1126/science.1135471.

Priede IG (1985) Metabolic scope in fishes. In Tyler P, Calow P (eds), Fish Energetics. Springer, Netherlands. 33–64.

Raby GD, Casselman MT, Cooke SJ, Hinch SG, Farrell AP, Clark TD (2016) Aerobic scope increases throughout an ecologically relevant temperature range in coho salmon. J Exp Biol x. doi:10.1242/jeb.137166.

Sandblom E, Clark TD, Gräns A, Ekström A, Brijs J, Sundström LF, Odelström A, Adill A, Aho T, Jutfelt F (2016) Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat Commun 7:11447. doi:10.1038/ncomms11447.

Savage VM, Allen AP, Brown JH, Gillooly JF, Herman AB, Woodruff WH, West GB (2007) Scaling of number, size, and metabolic rate of cells with body size in mammals. PNAS 104:4718–4723.

Sciubba E (2011) What did Lotka really say? A critical reassessment of the “maximum power principle. Ecol Model 222:1347–1353. doi:10.1016/j.ecolmodel.2011.02.002.

Schmidt-Nielsen K (1984) Scaling: Why is Animal Size So Important? Cambridge University Press.

Sousa T, Domingos T, Kooijman SAL (2008) From empirical patterns to theory: a formal metabolic theory of life. Philos Trans R Soc Lond B Biol Sci 363:2453–2464. DOI:10.1098/rstb.2007.2230.

Steffensen JF, Lomholt JP (1983) Energetic cost of active branchial ventilation in the shark sucker, Echeneis naucrates. J Exp Biol 103:185–192.
Svendsen MBS, Domenici P, Marras S, Krause J, Boswell KM, Rodriguez-Pinto I, Wilson ADM, Kurvers RHJM, Viblanc PE, Finger JS, et al. (2016) Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited. Biol Open 5, DOI:10.1242/bio.019919.

van der Meer J (2006) An introduction to Dynamic Energy Budget (DEB) models with special emphasis on parameter estimation. J Sea Res 56:85–102. Doi:10.1016/j.seares.2006.03.001.

van der Meer J (2016) A paradox in individual-based models of populations. Conserv Physiol 4:cow023. doi:10.1093/conphys/cow023.

Von Bertalanffy L (1950) The theory of open systems in physics and biology. Science 111:23–29.

Wang T, Overgaard J (2007) The heartbreak of adapting to global warming. Science 315:49–50. DOI:10.1126/science.1137359.

Wardle CS (1975) Limit of fish swimming speed. Nature 255:725–727. doi:10.1038/255725a0.

West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126.

Wieser W (1973) Temperature relations of ectotherms: a speculative review. In Wieser W (ed). Effects of Temperature on Ectothermic Organisms. Springer, Berlin Heidelberg. 1–23.