Out-of-hospital cardiac arrest in the Algarve region of Portugal: a retrospective registry trial with outcome data

Nuno Mourão Carvalhoa,b,c,d,*, Cláudia Martinsd,*, Vera Cartaxoc,
Ana Marreirosd, Emilia Justob, Carlos Raposoa,b,e and Alexandra Binniea,c,d,f

\textbf{Background and importance} Out-of-hospital cardiac arrest is a leading cause of death in Europe. An understanding of region-specific factors is essential for informing strategies to improve survival.

\textbf{Design} This retrospective observational study included all out-of-hospital cardiac arrest patients attended by the Emergency Medical Service of the Algarve in 2019. Outcome data were derived from hospital records.

\textbf{Main results} In 2019, there were 850 out-of-hospital cardiac arrests treated with cardiopulmonary resuscitation in the Algarve, representing a population incidence of 189/100 000. Return of spontaneous circulation occurred in 83 patients (9.8%), of whom 17 (2.0%) had survival to hospital discharge and 15 (1.8%) had survival with good neurologic outcome. Among patients in the Utstein comparator group, survival to hospital discharge was 21.4%. Predictors of return of spontaneous circulation were age, witnessed arrest, initial shockable rhythm, time of year, time to cardiopulmonary resuscitation, and time to advanced life support. Predictors of survival to hospital discharge were age, initial shockable rhythm, time to rhythm analysis, and time to advanced life support. Predictors of survival with good neurologic outcome were age, initial shockable rhythm, and time to return of spontaneous circulation.

\textbf{Conclusions} The incidence of out-of-hospital cardiac arrest with cardiopulmonary resuscitation in the Algarve was higher than in other jurisdictions while return of spontaneous circulation, survival to hospital discharge, and survival with good neurologic outcome were comparatively low. An aging population, a geographically diverse region, and a low incidence of bystander cardiopulmonary resuscitation may have contributed to these outcomes. These results confirm the importance of early cardiopulmonary resuscitation, early rhythm assessment, and early advanced life support, all of which are potentially modifiable through public education, broadening of the defibrillator network and increased availability of advanced life support teams.

European Journal of Emergency Medicine 2022, 29:134–139 Copyright © 2021 The Author(s). Published by Wolters Kluwer Health, Inc.

European Journal of Emergency Medicine 2022, 29:134–139

Keywords: advanced life support, automatic external defibrillator, basic life support, bystander, cardiopulmonary resuscitation, Emergency Medical Service, out-of-hospital cardiac arrest

*Department of Intensive Care Medicine, Centro Hospitalar Universitário do Algarve, bInstituto Nacional de Emergência Médica, cAlgarve Biomedical Centre Research Institute, dFaculty of Medicine and Biomedical Sciences, University of Algarve, eDepartment of Surgery, Centro Hospitalar Universitário do Algarve, fCritical Care Department, William Osler Health System, Etobicoke, Ontario, Canada

Correspondence to Nuno Mourão Carvalho, Faculty of Medicine and Biomedical Sciences, University of Algarve, Edifício 2 – Ala Norte, 8005-139, Faro, Portugal Tel: +351 914433232; e-mail nfcarvalho@ualg.pt

*Nuno Mourão Carvalho and Cláudia Martins contributed equally to the writing of this article.

Received 19 February 2021 Accepted 19 July 2021

\textbf{Introduction} Out-of-hospital cardiac arrest (OHCA) is a worldwide public health problem due to its unpredictability and low survival [1–3]. In Europe and the USA, the incidence of OHCA with cardiopulmonary resuscitation (OHCA-CPR) was estimated as 56/100 000 and 76/100 000 inhabitants per year, respectively [4–6]. There is considerable variation between jurisdictions, however, ranging from 27 to 91 per 100 000 in the EuReCa Two study of European countries [5]. This is due, at least in part, to varying definitions of OHCA and policies surrounding which patients should receive resuscitation [7].

The initial goal of resuscitation is return of spontaneous circulation (ROSC). Multiple factors influence the likelihood of ROSC including age, whether the OHCA was witnessed, the provision of bystander CPR, and the presence of an initial shockable rhythm [8]. Rates of ROSC vary widely, ranging from 8 to 42% in the EuReCa Two study [6]. However, survival to hospital discharge (SHD) and survival with good neurologic outcome (SGNO) are generally low, ranging from 0 to 18% [9]. Factors associated with SHD include: early CPR, an initial shockable rhythm, and increased use of automated external defibrillators (AEDs) [10].
To date, there have been no published data on incidence and outcomes of OHCA-CPR in continental Portugal. In this context, we aimed to analyze all OHCA-CPR in the Algarve region of Portugal in 2019. The Algarve is the southern-most region of mainland Portugal, with 450,000 inhabitants [11] spread across 5000 km². It comprises a heavily populated coastal zone and a sparsely populated interior. The population is relatively elderly, with 22% of the population over age 65. EMS services are provided by the National Institute of Emergency Medicine (INEM). For high-acuity calls, doctor- or nurse-lead advanced life support (ALS) teams are dispatched along with ambulance crews. For low-acuity calls, only ambulance crews are dispatched. National legislation requires that resuscitation attempts be made in virtually all pulseless patients unless a physician is present and deems the attempt futile [12]. In the present study, we report the characteristics and outcomes of all OHCA-CPR in the Algarve in 2019.

Methods
Study design
The study is a retrospective observational cohort study of all OHCA attended by INEM or its supervised teams in the Algarve between 1 January and 31 December, 2019. The dataset included all of the Utstein elements [13]. INEM records were cross-referenced with hospital records from the University Hospital Centre of the Algarve to determine patient survival and neurologic outcomes [14].

Data collection
Variables analyzed included demographic characteristics (sex and age) and characteristics of the OHCA [probable etiology, location, month, time, presence of a witness, bystander CPR, bystander defibrillation, initial cardiac rhythm, time to EMS arrival, and outcome after OHCA (ROSC or death)]. Outcome variables were derived from hospital and national records and included: 30-d survival, SHD, and neurological outcome at hospital discharge according to the modified Rankin Scale (mRS) [14].

Statistical analysis
Descriptive analyses were performed using frequencies, mean and SD or median and interquartile range (IQR). Comparisons were made using the Student’s t-test and Kruskal–Wallis tests for continuous variables and the χ² test for categorical variables. All tests were 2-tailed with \(P < 0.05 \) considered statistically significant. In univariate and multivariate terms, a logistic regression model was applied in which ROSC, SHD, and SGNO were considered dependent variables. Variables that were significant \((P < 0.05) \) in univariate regression were included in multivariate regression. Colinear variables \((r > 0.8) \) were excluded. The final multivariate model was selected through stepwise (backwards and forwards) regression using the Akaike Information Criterion to identify the best-fit model. Statistical analysis was performed in SPSS and R 4.0.3 [15].

Ethics approval
The study was approved by the ethics committees of the National Institute of Medicine (INEM) and the University Hospital Centre of the Algarve.

Results
Incidence of out-of-hospital cardiac arrest
In 2019, 1184 patients with OHCA were attended by EMS in the Algarve. Of these, 850 underwent CPR (OHCA-CPR). With a resident population of 450,000 inhabitants, the incidence of OHCA in the Algarve was, therefore, 258/100,000 inhabitants, and of OHCA-CPR was 189/100,000 inhabitants. For the purposes of this study, only 850 patients with OHCA-CPR were included for further analysis (Fig. 1).

Patient and out-of-hospital cardiac arrest characteristics
The mean age of OHCA-CPR patients was 74.5 (±17.0) years, with a median of 79 years (IQR 67–87), and a minority were female (38.5%) (Table 1). Most OHCA-CPRs occurred at home (68.1%) and during daytime hours of 8 am–8 pm (62.2%) (Supplementary Table S1, Supplemental digital content 1, http://links.lww.com/EJEM/A323). Most cases were attributed to a medical etiology (92.7%) while 4.6% were attributed to trauma, 1.2% to asphyxia, 1.2% to drowning, and 0.4% to drug overdose. Witnesses were present at 446 (52.5%) OHCA-CPR, with 345 (40.6%) witnessed by a bystander and 101 (11.9%) witnessed by EMS (Table 1). Bystander CPR was provided to 198 patients (23.3%) and 23 patients (2.7%) had an AED applied prior to ALS team arrival (Table 1).

EMS times were recorded. The median response time, the time from calling the emergency number until EMS arrival, was 10 (IQR 6–16) min. The time from OHCA identification to CPR was 13 (IQR 3–23) min. The time to rhythm analysis was 16 (IQR 9–26) min and the time to first shock was 17 (IQR 9–29) min. The median time from OHCA to hospital arrival was 63 (IQR 44–85) min (Table 1).

Likelihood of return of spontaneous circulation
A total of 83 (9.8%) OHCA-CPR patients achieved ROSC. Patients who achieved ROSC were younger (64.9 ± 17.6 years) than those who did not (75.6 ± 16.6 years) [odds ratio (OR) 0.97, 95% confidence interval (CI) 0.96–0.98, \(P < 0.001 \)], but there was no difference between males and females (Supplementary Table S1, Supplemental digital content 1, http://links.lww.com/EJEM/A323). The location of OHCA-CPR was significant, with a higher likelihood of ROSC at work (OR 23.7, 95% CI 5.61–119), in the street (OR 3.00, 95% CI 1.36–5.56) or in a public building (OR 5.42, 95% CI 2.14–12.7), relative to at home or in long-term care. The likelihood of ROSC did not vary by time of day but did vary by time of year, with a higher likelihood
in the spring (OR 3.90, 95% CI 1.94–8.40), summer
(OR 2.33, 95% CI 1.11–5.15) or fall (OR 2.54, 95% CI
1.24–5.52), relative to winter (Supplementary Table
S2, Supplemental digital content 1, http://links.lww.
com/EJEM/A323). ROSC was significantly more likely
when the OHCA-CPR was witnessed (OR 5.6, 95%
CI 3.15–10.7, P < 0.001), when the patient received
immediate CPR (OR 5.60, 95% CI 2.15–10.7) and
when there was an initial shockable rhythm (OR 5.07,
95% CI 3.05–10.7, P < 0.001) (Supplementary Table
S2, Supplemental digital content 1, http://links.lww.com/
EJEM/A323).

Shorter time intervals to care were universally associ-
ated with a higher likelihood of ROSC (Supplementary
Table S2, Supplemental digital content 1, http://links.lww.
com/EJEM/A323). These included time from OHCA to
EMS call, time from EMS call to EMS arrival, time from
OHCA to initiation of CPR, time from OHCA to rhythm
analysis, time from OHCA to first shock, and time from
OHCA to ALS team arrival (Supplementary Table S2,
Supplemental digital content 1, http://links.lww.com/
EJEM/A323).

In multivariate analysis (Table 2), the strongest predic-
tors of ROSC were younger age, witnessed OHCA, time
of year, shorter time to CPR, and shorter time to ALS
team arrival.

Likelihood of survival to hospital discharge
After cross-referencing EMS data with hospital records, it
was determined that 42/83 of patients with ROSC were
transitioned to a palliative plan of care in the emergency
department. Of the 41 (4.8%) patients who received
ongoing aggressive care, 17 (2.0% of all OHCA-CPR)
survived to 30 days and 17 (2.0%) survived to hospital
discharge (n.b.16 patients survived to both 30 days and
discharge while one patient survived to 30 days
but not hospital discharge and one patient survived to
hospital discharge but not 30 days).

Patients who achieved SHD were younger (51.6 ± 16.3)
than those who did not (75.0 ± 16.7 years; P < 0.001)
(Supplementary Table S3, Supplemental digital content
1, http://links.lww.com/EJEM/A323), were more likely to
have received immediate CPR (OR 8.97, 95% CI 2.90–
39.2, P < 0.001), and were more likely to have an initial
shockable rhythm (OR 35.0, 95% CI 11.2–154, P < 0.001)
(Supplementary Table S4, Supplemental digital content
1, http://links.lww.com/EJEM/A323). The likelihood of SHD
did not differ according to time of day or time of year but
did differ by location, with those occurring in a public
building having a higher likelihood of SHD (OR 8.24, 95%
CI 1.73–30.4) than those at home or in long-term care facility
(P = 0.005). Shorter time intervals to care were strongly
associated with SHD; these included time from EMS call
to arrival at the victim, time from OHCA to CPR, time from

![Flow diagram of all patients in the study. CPR, cardiopulmonary resuscitation; OHCA, out-of-hospital cardiac arrest; ROSC, return of sponta-
eous circulation; SHA, survival at hospital admission; SHD, survival at hospital discharge. Adapted from [9] with permission.](image-url)
In 2019, 1189 OHCA were recorded in the Algarve, of which 850 received resuscitative interventions including CPR. This represents a population incidence of 244/100,000 for OHCA-CPR. When compared with the EuReCa Two data, the incidence of OHCA in the Algarve is higher than in any Utstein comparator group criteria: witnessed cardiac arrest, immediate CPR, initial shockable rhythm, and presumed cardiac cause. In this select subgroup, ROSC was achieved in 21 patients (37.5%), SHD was achieved in 12 patients (21.4%), and SGNO (mRS of 0–3) was achieved in 10 patients (17.9%).

Outcomes within the utstein comparator group
Among the 850 OHCA-CPR patients, 56 met the four Utstein comparator group criteria: witnessed cardiac arrest, immediately CPR, initial shockable rhythm, and presumed cardiac cause. In this select subgroup, ROSC was achieved in 21 patients (37.5%), SHD was achieved in 12 patients (21.4%), and SGNO (mRS of 0–3) was achieved in 10 patients (17.9%).

Discussion
In 2019, 1189 OHCA were recorded in the Algarve, of which 850 received resuscitative interventions including CPR. This represents a population incidence of 258/100,000 inhabitants for OHCA and 189/100,000 for OHCA-CPR. When compared with the EuReCa Two data, the incidence of OHCA in the Algarve is higher than in any jurisdiction in that registry (range 28–244) [4]. Similarly, the rate of OHCA-CPR was higher than in any jurisdiction in EuReCa One (range 19–104) [4].

The reasons for the high incidence of OHCA-CPR in the Algarve are unclear. Tourism may be a contributing factor since EMS records do not distinguish between residents

OHCA to rhythm analysis, time from OHCA to first shock, time from OHCA to arrival of the ALS team, and time to ROSC (Supplementary Table S4, Supplemental digital content 1, http://links.lww.com/EJEM/A323).

In multivariate analysis (Table 3), the best predictors of SHD were younger age, an initial shockable rhythm, shorter time to rhythm analysis, and shorter time to ALS team arrival.

Likelihood of survival with good neurologic outcome
Neurologic outcomes at hospital discharge were assessed using hospital records (Supplementary Figure S1, Supplemental digital content 1, http://links.lww.com/EJEM/A323). Excellent neurologic outcome, corresponding to a score of 0 on the mRS, was observed in 13 patients. Two patients showed good neurologic outcome, represented by an mRS of 1–3. Finally, 2 patients showed poor neurologic outcome, represented by an mRS of 4–5 (Table 1). Patients with SGNO were younger (53.2 ± 15.2 versus 74.9 ± 16.8 years; P < 0.001) (Supplementary Table S5, Supplemental digital content 1, http://links.lww.com/EJEM/A323), were more likely to have witnessed collapse (OR 13.1, 95% CI 2.61–237, P < 0.001), and were more likely to have received immediate CPR (OR 7.64, 95% CI 2.40–33.7, P < 0.001) (Supplementary Table S6, Supplemental digital content 1, http://links.lww.com/EJEM/A323). They were also more likely to have an initial shockable rhythm (OR 29.4, 95% CI 9.15–131, P < 0.001). The likelihood of SGNO did not differ by time of day or time of year but was more likely when the OHCA occurred in a sports facility (OR 35.7, 95% CI 1.57–412) versus at home or in long-term care (P < 0.001). Shorter intervals to care were strongly associated with SGNO: these included time from EMS call to arrival at the victim, time from OHCA to CPR initiation, time from OHCA to rhythm analysis, time from OHCA to first shock, time from OHCA to arrival of an ALS team, and time to ROSC (Supplementary Table S6, Supplemental digital content 1, http://links.lww.com/EJEM/A323). In multivariate analysis (Table 4), the strongest predictors of SGNO were younger age, an initial shockable rhythm, and shorter time to ROSC.

Table 1 Characteristics of all patients with out-of-hospital cardiac arrest who received resuscitation attempts in the Algarve in 2019

Characteristic	Total (n = 850)
Age (y), mean (SD)	74.5(±17.0)
Median (IQR)	79 (67–87)
Female, n (%)	325 (38.5)
Location, n (%)	
Residence	579 (68.1)
Street	92 (10.8)
Long-term care	114 (13.4)
Public building	29 (3.4)
Work/office	8 (0.9)
Sports	3 (0.4)
Other	25 (2.9)
Etiology, n (%)	
Medical	788 (92.7)
Traumatic	39 (4.6)
Asphyxia	10 (1.2)
Drug overdose	3 (0.4)
Drowning	10 (1.2)
Collapse witnessed by a bystander, n (%)	345 (40.6)
Collapse witnessed by EMS, n (%)	101 (11.9)
Immediate CPR by a bystander, n (%)	198 (23.3)
Immediate CPR by EMS, n (%)	101 (11.9)
Telephone CPR, n (%)	13 (1.5)
Initial shockable rhythm, n (%)	109 (13.2)
EMS time interval, median (IQR)	
From OHCA to EMS call	2 (1–8)
From EMS call to the victim	10 (6–16)
From OHCA to CPR	13 (3–23)
From OHCA to rhythm analysis	16 (9–26)
From OHCA to first shock	17 (9–29)
From OHCA to ALS team arrival	22 (14–35)
From OHCA to hospital	63 (44–85)
Outcome, n (%)	
Return of spontaneous circulation	83 (9.8)
Survival to hospital discharge	17 (2.0)
Survival to 30 d	17 (2.0)
Neurologic condition mRS = 0	13 (1.5)
Neurologic condition mRS = 1	1 (0.1)
Neurologic condition mRS = 2	1 (0.1)
Neurologic condition mRS = 3	0 (0)
Neurologic condition mRS = 4	1 (0.1)
Neurologic condition mRS = 5	1 (0.1)
Neurologic condition mRS = 6	833 (98.0)

ALS, advanced life support; CPR, cardiopulmonary resuscitation; EMS, Emergency Medical Services; IQR, interquartile range; mRS, modified Rankin Score; OHCA, out-of-hospital cardiac arrest.

Table 2 Multivariate analysis of variables associated with return of spontaneous circulation

Characteristic	OR	95% CI	P value
Age (y)	0.98	0.97–1.00	0.016
Witnessed OHCA	3.92	2.07–7.97	<0.001
Initial shockable rhythm	3.01	1.69–5.32	<0.001
Time of year			0.002
January to March			
April to June	3.95	1.81–9.12	
July to September	1.95	0.86–4.62	
October to December	3.42	1.57–7.92	
Time to ALS team arrival (min)	0.98	0.94–0.98	<0.001

ALS, advanced life support; CI, confidence interval; OR, odds ratio. P-values in bold are those below the pre-determined significance threshold of 0.05.
and non-residents. However, rates of OHCA were highest in the winter months, when tourist numbers are lower. Population aging may be another contributing factor. The population of the Algarve is elderly [16] and the median age of OHCA-CPR patients in this cohort was 79 years, older than any other cohort in EuReCa One or Two [4,9]. The likelihood of cardiac arrest increases with age, so an aging population would be expected to have a higher incidence of OHCA [17]. Finally, Portuguese legislation requires that resuscitation be initiated in virtually all pulseless patients, unless a physician is present and deems it futile [12]. Thus, in the absence of a physician, EMS crews almost always initiate CPR, even when the likelihood of survival is low.

The rate of ROSC in the Algarve in 2019 was 9.8%. In the EuReCa Two study, only Greece (8.0%) and Iran (8.3%) reported comparable results [3,9]. Rates of SHD (2.0%) and SGNO (1.8%) were also comparatively low. A number of factors may have contributed to these outcomes. First, the patients in this cohort were elderly, with a median age of 79 years. Age was a strong negative predictor of ROSC, SHD, SGNO, as in other cohorts [18]. Second, the percentage of patients with an initial shockable rhythm was only 13.2%. A shockable rhythm was strongly associated with ROSC, SHD, and SGNO, as in previous studies [19]. However, the presence of a shockable rhythm is influenced by time to rhythm analysis [20]. Thus, limited AED availability or delayed EMS arrival may have decreased the likelihood of a shockable rhythm. Finally, rates of bystander CPR were low, at only 23.3% of OHCA-CPR. Provision of immediate CPR was strongly associated with ROSC, SHD, and SGNO. Studies have demonstrated that early CPR can double or triple survival after OHCA [21–23]. In this regard, programs that offer basic life support training to the general population would be effective in improving survival [3]. Such programs have shown benefit in other countries but are not widely implemented in Portugal [10,24]. Provision of telephone CPR could also increase the likelihood and quality of bystander CPR [25].

Amongst patients meeting criteria for the Utstein comparator group, SHD was significantly higher at 21.4%. In EuReCa One, average survival for these patients was 29.7% (range 5.3–57.9%), with 7/21 jurisdictions reporting survival below 20%. Thus, outcomes in this selected group were relatively similar to those in other European jurisdictions.

Multiple regression analysis indicated that successful ROSC was predicted by younger age, an initial shockable rhythm, shorter time to CPR, and shorter time to ALS team arrival. A small seasonal effect was also noted, with ROSC being more likely in the spring, summer and fall, relative to winter. To our knowledge, this effect has not been reported in other studies and requires confirmation.

Factors predictive of SHD included younger age, an initial shockable rhythm, time to rhythm analysis, and time to ALS team arrival.

Finally, factors predictive of SGNO were younger age, an initial shockable rhythm, and shorter time to ROSC. Duration of cardiac arrest is a known predictor of neurologic outcome, as prolonged brain ischemia increases the probability of brain injury [26].

Previous studies have shown that increased EMS response times are associated with decreased survival [16,20]. In the present study, the median time from EMS call to arrival at the victim was 10 min. This was longer than reported in the USA and Canada (4–7 min) [27] or Australia (7–10 min) [28] and may reflect the challenges of serving the heavily populated coastal region of the Algarve and the sparsely populated interior with a limited number of EMS crews.

Our results suggest several avenues by which OHCA outcomes could be improved in the Algarve. Increased bystander CPR as well as increased AED availability, including a phone-based AED program [29], could improve ROSC, SHD, and SGNO. These are areas in which public education may be beneficial. In addition, shorter time intervals to ALS team arrival could improve ROSC and SHD. In this respect, it would be helpful to examine geographic variations in outcomes that might be remedied by repositioning of EMS services.

Limitations
The OHCA data used in this study were obtained through EMS registries, which were completed manually and may be subject to recall bias. Automation of data collection would improve dataset quality [30]. In addition, the present study did not consider ALS procedures (e.g. adrenaline administration) and post-CPR care, which may have also impacted survival and neurologic outcomes.

Conclusion
The incidence of reported OHCA, and OHCA with CPR, in the Algarve in 2019 were higher than in other European jurisdictions, while ROSC and SHD were comparatively low. An aging population, a geographically diverse region and national legislation that mandates resuscitation attempts in virtually all cases unless a physician is present and deems it futile may have contributed to these findings. The results of this study confirm the importance of (1) early initiation of CPR, (2) early rhythm assessment, and (3) early ALS team arrival. These risk factors are potentially modifiable through

Table 3 Multivariate analysis of variables associated with survival to hospital discharge

Characteristic	OR	95% CI	P value
Age (y)	0.96	0.93–0.99	0.006
Initial shockable rhythm	25.4	7.31–124	<0.001
Time to rhythm analysis (min)	0.89	0.79–1.01	0.080
Time to ALS team arrival (min)	0.96	0.86–1.01	0.13

ALS, advanced life support; CI, confidence interval; OR, odds ratio.
P-values in bold are those below the pre-determined significance threshold of 0.05.
Table 4 Multivariate analysis of factors associated with survival with good neurologic outcome

Characteristic	OR	95% CI	P value
Age (y)	0.93	0.87–0.98	0.004
Initial shockable rhythm	12.0	2.27–87.3	<0.001
Time to ROSC (min)	0.89	0.80–0.95	<0.001

CI, confidence interval; OR, odds ratio; ROSC, return of spontaneous circulation. P-values in bold are those below the pre-determined significance threshold of 0.05.

BLS and AED training, broadening of the AED network, and increasing the number and locations of ALS crews.

Acknowledgements
The authors would like to thank the President and City Hall of Loulé, Portugal for their support of public education in basic life support in the Algarve.

Conflicts of interest
There are no conflicts of interest.

References
1 Jacobs I, Nadkarni V, Bahr J, Berg RA, Bill J, Bossaert L, et al.; International Liaison Committee on Resuscitation; American Heart Association; European Resuscitation Council; Australian Resuscitation Council; New Zealand Resuscitation Council; Heart and Stroke Foundation of Canada; InterAmerican Heart Foundation; Resuscitation Councils of Southern Africa; ILCOR Task Force on Cardiac Arrest and Cardiopulmonary Resuscitation Outcomes. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update and simplification of the Utstein templates for resuscitation registries: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian Resuscitation Council, New Zealand Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Councils of Southern Africa). Circulation 2004; 110:3385–3397.

2 Gränsner JT, Bossaert L. Epidemiology and management of cardiac arrest: what registries are revealing. Best Pract Res Clin Anaesthesiol 2013; 27:293–306.

3 Navab E, Esmaili M, Poorkhorsheidhi N, Salimi R, Khazaee A, Moghimbeigi A. Predictors of out of hospital cardiac arrest outcomes in pre-hospital settings; a retrospective cross-sectional study. Arch Acad Emerg Med 2019; 7:36.

4 Gränsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, Herlitz J, et al.; EuReCa ONE Collaborators. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation 2016; 105:188–195.

5 Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 2019; 139:e56–e528.

6 Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al.; American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics–2015 update: a report from the American Heart Association. Circulation 2015; 131:e29–322.

7 Berdowski J, Berg RA, Tijssen JG, Koster RW. Global incidences of out-of-hospital cardiac arrest and survival rates: systematic review of 67 prospective studies. Resuscitation 2010; 81:1479–1487.

8 Balian P, Hei B, Thangam M, Zhao Y, Mon leaked D, Arain S, et al. The cardiac arrest survival score: a predictive algorithm for in-hospital mortality after out-of-hospital cardiac arrest. Resuscitation 2019; 144:46–53.

9 Gränsner JT, Wenn J, Herlitz J, Perkins GD, Lefering R, Tjelmeland I, et al. Survival after out-of-hospital cardiac arrest in Europe - results of the EuReCa TWO study. Resuscitation 2020; 148:218–226.

10 Wissensberg M, Lippet FK, Folke F, Weeke P, Hansen CM, Christensen EF, et al. Association of national initiatives to improve cardiac arrest management with rates of bystander intervention and patient survival after out-of-hospital cardiac arrest. JAMA 2013; 310:1377–1384.

11 Instituto Nacional de Estatistica. I.P. Censos 2011: Resultados definitivos – Região Algarve. 2011. https://censos.ine.pt. [Accessed 17 February 2021]

12 Departamento de Formação em Emergência Médica, Instituto Nacional de Emergência Médica. Manual Suporte Avançado de Vida 2020. https://www.inem.pt/wp-content/uploads/2021/02/Manual-Suporte-Avançado-de-Vida-2020.pdf. [Accessed 4 May 2021]

13 Perkins GD, Jacobs IG, Nadkarni VM, Berg RA, Bhanji F, Biarent D, et al.; Utstein Collaborators. Cardiac arrest and cardiopulmonary resuscitation outcome reports: update of the Utstein Resuscitation Registry templates for out-of-hospital cardiac arrest: a statement for healthcare professionals from a task force of the International Liaison Committee on Resuscitation (American Heart Association, European Resuscitation Council, Australian and New Zealand Council on Resuscitation, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Southern Africa, Resuscitation Council of Asia); and the American Heart Association Emergency Cardiovascular Care Committee and the Council on Cardiopulmonary, Critical Care, Perioperative and Resuscitation. Circulation 2015; 132:1286–1300.

14 Bonita R, Beaglehole R. Modified scale (mRS): recovery of motor function after stroke. Stroke 1988; 19:1497–1500.

15 European Environment Agency. R core team. 2020. http://www.project.r-project.org/index.html. [Accessed 4 May 2021].

16 Instituto Nacional de Estatistica. As Pessoas 2019. https://www.ine.pt/xportal/xmain?xpid=N&xpgdid=ine_publicacoes&PUBLICACOESpbuluim=436832477&PUBLICACOESmod=2. [Accessed 4 May 2021].

17 Winters-Jensen M, Christiansen MN, Hassager C, Keber L, Tønnes-Pedersen C, Hansen SM, et al. Age-specific trends in incidence and survival of out-of-hospital cardiac arrest from presumed cardiac cause in Denmark 2002–2014. Resuscitation 2020; 152:77–85.

18 Sasson C, Rogers MA, Dahi J, Kellermann AL. Predictors of survival from out-of-hospital cardiac arrest: a systematic review and meta-analysis. Circ Cardiovasc Qual Outcomes 2010; 3:63–81.

19 Oving J, de Graaf C, Karlsson L, Jonsson M, Kramer-Johansen J, Berglund E, et al. Occurrence of shockable rhythm in out-of-hospital cardiac arrest over time: a report from the COSTA group. Resuscitation 2020; 151:67–74.

20 Renkiewicz GK, Hubble MW, Wesley DR, Dorian PA, Losh MJ, Swain R, Taylor SE. Probability of a shockable presenting rhythm as a function of EMS response time. Prehosp Emerg Care 2014; 18:224–230.

21 Lai C-Y, Lin F-H, Chu H, Ku C-H, Tsai S-H, Chung C-H, et al. Survival factors of hospitalized out-of-hospital cardiac arrest patients in Taiwan: a retrospective study. PloS One 2018; 13:e0191954.

22 Vellano K, Crouch A, Rajdev M, McNally B. Cardiac Arrest Registry to Enhance Survival (CARES) report on the public health burden of out-of-hospital cardiac arrest. Prepared for Institute of Medicine. 2015. https://mycares.net/sitepages/uploads/2015/CARES%20OM%20Formatted.pdf. [Accessed 4 May 2021]

23 Hollenberg J, Herlitz J, Lindqvist J, Riva G, Bohm K, Rosenqvist M, Svensson L. Improved survival after out-of-hospital cardiac arrest is associated with an increase in proportion of emergency crew–witnessed cases and bystander cardiopulmonary resuscitation. Circulation 2008; 118:389–396.

24 Okubo M, Koyohara K, Iwami T, Callaway CW, Kitamura T. Nationwide and regional trends in survival from out-of-hospital cardiac arrest in Japan: a 10-year cohort study from 2005 to 2014. Resuscitation 2017; 115:120–128.

25 Eisenhower M. Improving telephone CPR - the devil is in the details. Resuscitation 2017; 118:A2–A3.

26 Sandroni C, D’Arrigo S, Cacciola S, Hoedemaekers CWE, Kamps MJA, Oddo M, et al. Prediction of poor neurologic outcome in comatose survivors of cardiac arrest: a systematic review. Intensive Care Med 2020; 46:1803–1851.

27 Brooks SC, Schmicker RH, Cheskes S, Christenson J, Craig A, Daya M, et al.; Resuscitation Outcomes Consortium Investigators. Variability in the initiation of resuscitation attempts by emergency medical services personnel during out-of-hospital cardiac arrest. Resuscitation 2017; 117:102–108.

28 Beck B, Bray J, Cameron P, Smith K, Walker T, Grantham H, et al.; Aus-ROC Steering Committee. Regional variation in the characteristics, incidence and outcomes of out-of-hospital cardiac arrest in Australia and New Zealand: results from the Aus-ROC Episty. Resuscitation 2018; 126:49–57.

29 Nichol G, Sayre MR, Guerra F, Poole J. Defibrillation for ventricular fibrillation: a shocking update. J Am Coll Cardiol 2017; 70:1496–1509.

30 Koguchi T, Okubo M, Nishiyama Y, Macchiocchi I, Ong MEH, Kern KB, et al. Out-of-hospital cardiac arrest across the World: first report from the International Liaison Committee on Resuscitation (ILCOR). Resuscitation 2020; 152:39–49.