HOMOLOGICAL SELECTIONS AND FIXED-POINT THEOREMS

V. VALOV

Abstract. A homological selection theorem for \(C \)-spaces, as well as a finite-dimensional homological selection theorem is established. We apply the finite-dimensional homological selection theorem to obtain fixed-point theorems for usco homologically \(UV^n \) set-valued maps.

1. Introduction

Banakh and Cauty [1, Theorem 8] provided a selection theorem for \(C \)-spaces, which is a homological version of the Uspenskij’s selection theorem [10, Theorem 1.3]. The aim of this paper was to establish a finite-dimensional form of Banach-Cauty theorem, which is the main tool in proving homological analogues of fixed-point theorems for usco maps established in [2], [4] and [7].

All spaces are assumed to be completely regular. Singular homology \(H_n(X; G) \), reduced in dimension 0, with a coefficient group \(G \) is considered everywhere below. By default, if not explicitly stated otherwise, \(G \) is a ring with unit \(e \). Following the notations from [1], for any space \(X \) let \(S_k(X; G) \) be the group of all singular chains with coefficients from \(G \) consisting of singular \(k \)-simplexes and \(S(X; G) \) denote the singular complex of \(X \), so \(S(X; G) \) is the direct sum \(\bigoplus_{k=0}^{\infty} S_k(X; G) \). The groups \(S_k(X; G) \) are linked via the boundary homomorphisms \(\partial : S_k(X; G) \to S_{k-1}(X; G) \).

If \(\sigma : \triangle^k \to X \) is a singular \(k \)-simplex (\(\triangle^k \) is the standard \(k \)-simplex), we denote by \(||\sigma|| \) the carrier \(\sigma(\triangle^k) \) of \(\sigma \). Similarly, we put \(||c|| = \bigcup_i ||\sigma_i|| \) for any chain \(c \in S_k(X; G) \), where \(c = \sum_i g_i\sigma_i \) is the irreducible representation of \(c \).

For an open cover \(U \) of \(X \) let \(S(X; U; G) \) stand for the subgroup of \(S(X; G) \) generated by singular simplexes \(\sigma \) with \(||\sigma|| \subseteq U \) for some

2010 Mathematics Subject Classification. Primary 54H25, 55M20; Secondary 55M10, 55M15.

Key words and phrases. fixed points, homological \(UV^n \) sets, homological selections.

The author was partially supported by NSERC Grant 261914-13.
Let $A \subset B$ be two subsets of a space X. We write $A \overset{H_m}{\hookrightarrow} B$ if the embedding $A \hookrightarrow B$ induces a trivial homomorphism $H_m(A; G) \to H_m(B; G)$.

A set-valued map $\Phi : X \to 2^Y$ is called strongly lower semi-continuous (br., strongly lsc) if for each compact subset $K \subset Y$ the set $\{x \in X : K \subset \Phi(x)\}$ is open in X. For example, every open-graph set-valued map $\Phi : X \to 2^Y$ is strongly lsc, see [5, Proposition 3.2].

Here is our first homological selection theorem.

Theorem 1.1. Let X be a paracompact C-space, Y be an arbitrary space and $\Phi_k : X \to 2^Y$, $m = 0, 1, \ldots, n$, be a finite sequence of strongly lsc maps satisfying the following conditions, where G is a fixed ring with unit:

(i) $\Phi_m(x) \overset{H_m}{\hookrightarrow} \Phi_{m+1}(x)$ for every $m = 0, \ldots, n - 1$ and every $x \in X$;
(ii) $H_m(\Phi_n(x); G) = 0$ for all $m \geq n$ and all $x \in X$.

Then there exists an open cover U of X and a chain morphism $\varphi : S(X, U; G) \to S(Y; G)$ such that $\varphi(S(U; G)) \subset S(\Phi_n(x); G)$ for every $U \in \mathcal{U}$ and every $x \in U$.

Let us mention that the Banakh-Cauty result [1, Theorem 8] is a particular case of Theorem 1.1 with $\Phi_m = \Phi_n$ for all m. There is also a finite-dimensional analogue of the above theorem.

Theorem 1.2. Let X, Y and G be as in Theorem 1.1. The same conclusion holds if $\dim X \leq n$ and the sequence of strongly lsc maps $\Phi_m : X \to 2^Y$ satisfies only condition (i).

Theorem 1.2 and [1, Theorem 7] imply the following fixed point theorem for usco (upper semi-continuous and compact-valued) maps:

Theorem 1.3. Let X be a paracompact space with $\dim X \leq n$, Y a compact metric AR, G a field and $\Phi : X \to 2^Y$ be a homologically $UV^{n-1}(G)$ usco map. Then for every continuous map $g : Y \to X$ there exists a point $y_0 \in Y$ with $y_0 \in \Phi(g(y_0))$.

The particular case of Theorem 1.3 with $X = Y$ and $g = \text{id}_X$ is also interesting.

Corollary 1.4. Let X be a compact metric AR with $\dim X \leq n$, G a field and $\Phi : X \to 2^X$ be a homologically $UV^{n-1}(G)$ usco map. Then there exists a point $x_0 \in X$ with $x_0 \in \Phi(x_0)$.
Recall that a closed subset A of a metric space X is called UV^n in X if every neighborhood U of A in X contains another neighborhood V such that the inclusion $V \hookrightarrow U$ generates trivial homomorphisms $\pi_k(V) \to \pi_k(U)$ between the homotopy groups for all $k = 0, \ldots, n$. If considering the homology groups $H_k(\cdot; G)$ instead of the homotopy groups $\pi_k(\cdot)$ (i.e. requiring $V \xrightarrow{H_m} U$ for all $m = 0, 1, \ldots, n$), then A is said to be homologically $UV^n(G)$ in X. It follows from the universal formula coefficients that every UV^n-subset of X is homologically $UV^n(G)$ in X for all groups G. Moreover, following the proof of Proposition 7.1.3 from [8], one can show that A is homologically $UV^n(G)$ in a given metric ANR-space X if and only if it is homologically $UV^n(G)$ in any metric ANR-space that contains A as a closed set. We say that A is homotopically UV^n in X instead of A being UV^n in X. We also say that a set-valued map $\Phi : X \to 2^Y$ is homologically $UV^n(G)$ if all values $\Phi(x)$ are homologically $UV^n(G)$-subsets of Y.

Theorem 1.5. Let X be a compact metric AR-space, G a field and $\Phi : X \to 2^X$ be a homologically $UV^n(G)$ usco map. Then there exists a point $x_0 \in Y$ with $x_0 \in \Phi(x_0)$.

Theorem 1.3 was established by Gutev [7] for usco maps with homotopically UV^n values. A homotopical version of Theorem 1.5 is also known, see Corollaries 3.6 and 5.14 from [4], or Theorem 1.3 from [7]. One can also show that if X is a compact metric AR and $\Phi : X \to 2^X$ is a homologically $UV^n(G)$ usco map, then each value $\Phi(x)$ has trivial Čech homology groups with coefficients in G. So, in the particular case when G is the group \mathbb{Q} of the rationals, Theorem 1.5 follows from the more general [3, Theorem 7] treating the so-called algebraic AR’s. However, in the framework of usual AR’s Theorem 1.5 provides a very simple proof.

2. Homological selection theorems

In this section we prove Theorems 1.1 - 1.2. For any simplicial complex K and an integer $m \geq 0$ let $K^{(m)}$ and $C_m(K; G)$ denote, respectively, the m-skeleton of K and the group generated by the oriented m-simplexes of K with coefficients in G.

We say that a chain morphism $\mu : C(K; G) \to S(A; G)$ (resp., $\mu : S(A; G) \to C(K; G)$), where K is a simplicial complex and A a topological space, is *correct* provided $\mu(v)$ is a singular 0-simplex in
\[S(A; G) \] for every vertex \(v \in K^{(0)} \) (resp., \(\mu(\sigma) \) is a vertex of \(K \) for every singular 0-simplex \(\sigma \in S_0(A; G) \)).

Lemma 2.1. Suppose \(\{A\}_{k=0}^{m+1} \) is a sequence of subsets of \(Y \) with \(A_k \xrightarrow{H_k} A_{k+1}, k = 0, 1, \ldots, m \). Let \(L \) be a simplicial complex of dimension \(m \) and \(K \) be the cone of \(L \). Then every correct chain morphism \(\mu_m : C(L; G) \to S_m(A_m; G) \) such that \(\mu_m(C(L^0); G) \subset S_k(A_k; G) \) for all \(k \leq m \) can be extended to a correct chain morphism \(\mu_{m+1} : C(K; G) \to S_{m+1}(A_{m+1}; G) \) satisfying the following conditions:

- \(\mu_{m+1}(C(K^0); G) \subset S_k(A_k; G) \) for all \(k = 0, 1, \ldots, m+1; \)
- \(\mu_m \circ \partial_{m+1} = \partial_{m+1} \circ \mu_{m+1} \), where \(\mu_m = \mu_{m+1}|(C(K^m); G) \).

Proof. We first extend each morphism \(\mu_k = \mu_m|(C(L^k); G) \) to a morphism \(\tilde{\mu}_k : C(K^k); G) \to S_k(A_k; G) \) such that \(\tilde{\mu}_k \circ \partial_{k+1} = \partial_{k+1} \circ \tilde{\mu}_{k+1} \), \(k = 0, 1, \ldots, m-1 \). To this end, denote by \(v_0 \) the vertex of \(K \) and consider the augmentation \(\epsilon : S_0(A_0; G) \to G \) defined by \(\epsilon(\sigma) = e \) for all singular 0-simplexes \(\sigma \in S_0(A_0; G) \). Define \(\tilde{\mu}_0(\{v_0\}) \) to be a fixed singular simplex \(\sigma_0 \in S_0(A_0; G) \) and \(\tilde{\mu}_0(\{v\}) = \epsilon(\{v\}) \) for any \(v \in L^0 \). Then extend \(\mu_0 \) to a homomorphism \(\tilde{\mu}_0 : C(K^0; G) \to S_0(A_0; G) \) by linearity.

If \(\sigma = (v_1, v_2) \) is an 1-dimensional simplex in \(K \), then

\[\tilde{\mu}_0(\partial_1(\sigma)) = \tilde{\mu}_0(v_2) - \tilde{\mu}_0(v_1). \]

Hence, \(\epsilon(\tilde{\mu}_0(\partial_1(\sigma))) = 0 \). Since \(A_0 \xrightarrow{H_0} A_1 \), there is a singular chain \(\tau_\sigma \in S_1(A_1; G) \) such that \(\tilde{\mu}_0(\partial_1(\sigma)) = \partial_1(\tau_\sigma) \). Letting \(\tilde{\mu}_1(\sigma) = \tau_\sigma \) if \(\sigma \in K^1 \setminus L^1 \) and \(\tilde{\mu}_1(\sigma) = \mu_1(\sigma) \) if \(\sigma \in L^1 \), we define the homomorphism \(\tilde{\mu}_1 \) on every simplex of \(K^{(1)} \). Then extend this homomorphism to \(\tilde{\mu}_1 : C(K^{(1)}; G) \to S_1(A_1; G) \) by linearity.

Because \(A_{k-1} \xrightarrow{H_{k-1}} A_k \), we can repeat the above construction to obtain the homomorphisms \(\tilde{\mu}_k \) for any \(k \leq m \). Then \(\tilde{\mu}_m : C(K^m; G) \to S_m(A_m; G) \). Since \(A_m \xrightarrow{H_m} A_{m+1} \), we can use once more the above arguments to obtain the chain morphism \(\mu_{m+1} : C(K; G) \to S_{m+1}(A_{m+1}; G) \) satisfying the required conditions. \(\square \)

Lemma 2.2. Let \(L \) be a simplicial complex with trivial homology groups and \(A \subset B \) be a pair of spaces. Then every correct chain morphism \(\nu : S(A; G) \to C(L; G) \) can be extended to a correct chain morphism \(\tilde{\nu} : S(B; G) \to C(L; G) \).

Proof. We are going to define by induction for each \(k \geq 0 \) a homomorphism \(\tilde{\nu}_k : S_k(B; G) \to C_k(L; G) \) extending \(\nu_k : S_k(A; G) \to C_k(L; G) \) such that \(\tilde{\nu}_k(\partial_{k+1}(c)) = \partial_{k+1}(\tilde{\nu}_{k+1}(c)) \) for every singular chain \(c \in S_{k+1}(B; G) \) and \(k \geq 0 \). For every singular 0-simplex \(\sigma \in S_0(B; G) \) we define \(\tilde{\nu}_0(\sigma) = \nu_0(\sigma) \) if \(\sigma \in S_0(A; G) \) and \(\tilde{\nu}_0(\sigma) = v_0 \) if \(\sigma \notin S_0(A; G) \),
where \(v_0 \) is a fixed vertex of \(L \). Then extend this homomorphism over \(S_0(B; G) \) by linearity. Because \(v \) is correct, \(\tilde{\nu}_0(\sigma) \) is a vertex of \(L \) for all singular 0-simplexes \(\sigma \in S(B; G) \).

To define \(\tilde{\nu}_1 \) we consider the augmentation \(\epsilon : C_0(L; G) \to G \) defined by \(\epsilon(v) = e \) for all vertexes of \(L \), see [9]. Thus, \(\epsilon(\tilde{\nu}_0(\partial_1(\sigma))) = 0 \) for every singular 1-simplex \(\sigma \in S_1(B; G) \). Because \(H_0(L; G) = 0 \), \(\partial_1(C_1(L; G)) = \epsilon^{-1}(0) \). Therefore, for every singular simplex \(\sigma \in S_1(B; G) \backslash S_1(A; G) \) there exists a chain \(c_\sigma \in C_1(L; G) \) such that \(\partial_1(c_\sigma) = \tilde{\nu}_0(\partial_1(\sigma)) \). We define \(\tilde{\nu}_1(\sigma) = \nu_1(\sigma) \) if \(\sigma \in S_1(A; G) \) and \(\tilde{\nu}_1(\sigma) = c_\sigma \) if \(\sigma \in S_1(B; G) \backslash S_1(A; G) \), and extend \(\tilde{\nu}_1 \) over \(S_1(B; G) \) by linearity.

Suppose the homomorphism \(\tilde{\nu}_k : S_k(B; G) \to C_k(L; G) \) was already constructed. Then, using that the kernel of the boundary homomorphism \(\partial_k : C_k(L; G) \to C_{k-1}(L; G) \) coincides with the image \(\partial_{k+1}(C_{k+1}(L; G)) \), we can define \(\tilde{\nu}_{k+1} \) extending \(\tilde{\nu}_k \) and satisfying the equality \(\tilde{\nu}_k \circ \partial_{k+1} = \partial_{k+1} \circ \tilde{\nu}_{k+1} \). □

Proof of Theorem 1.1. We modify the proof of [1, Theorem 8]. By induction we are going to construct two sequences of locally finite open covers of \(X \), \(\mathcal{V}_m = \{ \mathcal{V}_\alpha : \alpha \in \Gamma_m \} \) and \(\mathcal{W}_m = \{ \mathcal{W}_\alpha : \alpha \in \Gamma_m \} \), \(m \geq 0 \), an increasing sequence \(K_0 \subset K_1 \subset \ldots \) of simplicial complexes and correct chain morphisms \(\mu_m : C(K_m; G) \to S_m(Y; G) \) such that

(1) \(\mathcal{W}_\alpha \subset \mathcal{V}_\alpha \) for all \(\alpha \in \Gamma_m \), \(m \geq 0 \);
(2) \(\dim \mathcal{V}_m = m \);
(3) \(\mu_{m+1} \circ C(K_m; G) = \mu_m \) and \(\partial_{m+1} \circ \mu_{m+1} = \tilde{\mu}_m \circ \partial_{m+1} \), where \(\tilde{\mu}_m = \mu_{m+1} \circ C(K^{(m)}_m; G) \).

Moreover, for every \(m \) and \(\alpha \in \Gamma_m \) we shall assign a finite sub-complex \(L_\alpha \) of \(K_m \) and a set \(\Omega_\alpha = \bigcup_{\sigma \in L_\alpha} ||\mu_m(\sigma)|| \) satisfying the following conditions:

(4) \(\dim L_\alpha = m \) and \(L_\alpha \) is a cone whose base is a sub-complex \(M_\alpha \subset K_{m-1} \) and having a vertex \(\alpha \);
(5) If \(m \leq n \) and \(\alpha \in \Gamma_m \), then \(\Omega_\alpha \subset \Phi_m(x) \) and \(\Omega^{(k)}_\alpha \subset \Phi_k(x) \) for all \(k \leq m-1 \) and all \(x \in \mathcal{V}_\alpha \), where \(\Omega^{(k)}_\alpha = \bigcup_{\sigma \in L_\alpha} ||\mu_m(\sigma^{(k)})|| \);
(6) If \(m > n \) and \(\alpha \in \Gamma_m \), then \(\Omega_\alpha \subset \Phi_n(x) \) for all \(x \in \mathcal{V}_\alpha \).

To start our construction, for every \(x \in X \) we fix a point \(y_x \in \Phi_0(x) \) and consider the set \(O_x = \{ x' \in X : y_x \in \Phi_0(x') \} \). Since \(\Phi_0 \) is strongly lsc, \(O_x \) is open in \(X \). Let \(\mathcal{V}_0 = \{ \mathcal{V}_\alpha : \alpha \in \Gamma_0 \} \) be a locally finite open cover of \(X \) refining the cover \(\{ O_x : x \in X \} \), and choose \(\mathcal{W}_0 = \{ \mathcal{W}_\alpha : \alpha \in \Gamma_0 \} \) to be a locally finite open cover of \(X \) with \(\mathcal{W}_\alpha \subset \mathcal{V}_\alpha \) for all \(\alpha \in \Gamma_0 \). Let the complex \(K_0 \) be the zero-dimensional complex whose set of vertices is \(\Gamma_0 \). For every \(\alpha \in \Gamma_0 \) we set \(L_\alpha = \{ \alpha \} \) and choose \(x_\alpha \in X \) such that \(\mathcal{V}_\alpha \subset O_{x_\alpha} \). Define \(\mu_0 : C(K_0; G) \to S_0(Y; G) \) to be
the homomorphism assigning to each generator corresponding to \(\alpha \) the singular 0-simplex \(y_{x_\alpha} \), and let \(\Omega_\alpha = \{ y_{x_\alpha} \} \). Obviously, \(\mu_0 \) is correct.

Suppose for some \(m < n - 1 \) and all \(k \leq m \) we already performed the construction satisfying conditions (1) – (5). Then for every \(x \in X \) choose an open neighborhood \(G_x \) of \(x \) meeting only finitely many elements of the cover \(\bigcup_{k \leq m} V_k \) such that \(G_x \subset V_\alpha \) for all \(\alpha \in \bigcup_{k=0}^m \Gamma_k \) with \(G_x \cap W_\alpha \neq \emptyset \). Let \(J(x) = \{ \alpha \in \bigcup_{k=0}^m \Gamma_k : G_x \subset V_\alpha \} \) and \(D_x^{(k)} = \bigcup \{ \Omega_\alpha^{(k)} : \alpha \in J(x) \} \), \(k \leq m \). Since \(J(x) \) is finite, all \(D_x^{(k)} \) are compact subsets of \(Y \) with \(D_x^{(k)} \subset D_x^{(m)} = D_x \). Moreover, condition (5) implies \(D_x \subset \Phi_m(x) \). Consider the finite sub-complex \(M_x = \bigcup \{ L_\alpha : \alpha \in J(x) \} \) of \(K_m \) and the cone \(L_x \) with a vertex \(v_x \notin K_m \) and a base \(M_x \). Then, according to the definition of \(\Omega_\alpha \) and condition (5), we have \(\mu_m(C(M_x^{(k)}; G)) \subset S_k(D_x^{(k)}; G) \subset S_k(\Phi_k(x); G) \), \(k \leq m \). Therefore, we can apply Lemma 2.1 to find a correct chain morphism

\[
\mu_x : C(L_x; G) \rightarrow S_{m+1}(\Phi_{m+1}(x); G)
\]

extending \(\mu_m(C(M_x; G)) \) such that \(\mu_x(C(L_x^{(k)}; G)) \rightarrow S_k(\Phi_k(x); G) \) and \(\partial_{m+1} \circ \mu_x = (\mu_x|C(L_x^{(m)}; G)) \circ \partial_x \), where \(\partial_x : C(L_x; G) \rightarrow C(L_x^{(m)}; G) \) is the boundary homomorphism. Then \(\Omega_x = \bigcup_{\sigma \in L_x} \{ \mu_x(\sigma) \} \) is a compact subset of \(\Phi_{m+1}(x) \) containing \(D_x \). The strong lower semi-continuity of \(\Phi_{m+1} \) yields that \(O_x^m = \{ x' \in G_x : \Omega_x \subset \Phi_m(x') \} \) is an open neighborhood of \(x \). So, there exists a locally finite open cover \(M_{m+1} = \{ V_\alpha : \alpha \in \Gamma_{m+1} \} \) of \(X \) refining the cover \(\{ O_x^m : x \in X \} \), and take a locally finite open cover \(\mathcal{W}_{m+1} = \{ W_\alpha : \alpha \in \Gamma_{m+1} \} \) satisfying condition (1). Now, for every \(\alpha \in \Gamma_{m+1} \) choose \(x_\alpha \in X \) with \(V_\alpha \subset O_x^m \) and let \(L_\alpha \) be the cone with base \(M_{x_\alpha} \) and vertex \(\alpha \). Define \(K_{m+1} \) to be the union \(K_m \cup \bigcup_{\alpha \in \Gamma_{m+1}} L_\alpha \). Identifying the cones \(L_\alpha \) and \(L_{x_\alpha} \), we define the correct morphism

\[
\mu_{m+1} : C(K_{m+1}; G) \rightarrow S_{m+1}(Y; G)
\]

by \(\mu_{m+1}|C(K_{m}; G) = \mu_m \) and \(\mu_{m+1}|C(L_\alpha; G) = \mu_{x_\alpha} \). Finally, let \(\Omega_\alpha = \Omega_{x_\alpha} \). It is easily seen that conditions (1) – (5) are satisfied. Moreover, the definition of \(G_x \) and the inclusion \(O_x^m \subset G_x \) yield that

\[
(7) \quad \text{For every } \beta \in \bigcup_{k=0}^m \Gamma_k \text{ and } \alpha \in \Gamma_{m+1} \text{ with } W_\alpha \cap W_\beta \neq \emptyset \text{ we have } W_\alpha \subset V_\beta, \text{ and thus } L_\beta \subset L_\alpha.
\]

In this way we can perform our construction for all \(m \leq n \). If we substitute \(\Phi_m = \Phi_n \) for all \(m \geq n \), we have also \(\Phi_m(x) \rightarrow \Phi_{m+1}(x) \) because \(H_m(\Phi_n(x); G) = 0 \) for all \(x \in X \). Therefore, following the above arguments, we can perform for all \(m \) the steps from \(m \) to \(m + 1 \) satisfying conditions (1) – (7).

Let \(K = \bigcup_{m=0}^{\infty} K_m \). Then the morphisms \(\mu_m \) define a correct chain morphism \(\mu : C(K; G) \rightarrow S(Y; G) \). Because \(X \) is a \(C \)-space, there
exists a sequence of disjoint open families \(\mathcal{U}_m = \{ U_\lambda : \lambda \in \Lambda_m \} \), \(m \geq 0 \), such that each \(\mathcal{U}_m \) refines \(\mathcal{W}_m \) and the family \(\mathcal{U} = \bigcup_{m=0}^{\infty} \mathcal{U}_m \) covers \(X \).

The final step of the proof is to construct a chain morphism from \(S(X, \mathcal{U}; G) \) into \(C(K; G) \). To this end, let \(\Lambda = \bigcup_{k=0}^{\infty} \Lambda_k \) and \(\Lambda(m) = \bigcup_{k=0}^{m} \Lambda_k \). Consider also the sub-complexes \(S_m = \sum_{\lambda \in \Lambda(m)} S(U_\lambda; G) \) of \(S(X; G) \), \(m \geq 0 \), whose union is \(S(X, \mathcal{U}; G) \). For every \(\lambda \in \Lambda_m \) select an \(\alpha_\lambda \in \Gamma_m \) with \(U_\lambda \subset W_{\alpha_\lambda} \). We are going to construct a correct chain morphism \(\nu : S(X, \mathcal{U}; G) \to C(K; G) \) such that

\[
(8) \quad \nu(S(U_\lambda; G)) \subset C(L_{\alpha_\lambda}; G) \quad \text{for all } \lambda \in \Lambda.
\]

For any \(\lambda \in \Lambda_0 \) the complex \(L_{\alpha_\lambda} \) is a single point. So, we can find a chain morphism \(\nu_\lambda : S(U_\lambda; G) \to C(L_{\alpha_\lambda}; G) \). Since the family \(\mathcal{U}_0 \) is disjoint, \(S_0 \) is the direct sum of all \(S(U_\lambda; G) \), \(\lambda \in \Lambda_0 \). Hence, the chain morphism \(\nu_0 : S_0 \to C(K; G) \) with \(\nu_0|S(U_\lambda; G) = \nu_\lambda \) for all \(\lambda \in \Lambda_0 \) is well defined and \(\nu_0(S(U_\lambda; G)) \subset C(L_{\alpha_\lambda}; G) \).

Suppose that for some \(m \) we have constructed correct chain morphisms \(\nu_k : S_k \to C(K; G) \), \(k \leq m \), such that \(\nu_k \) extends \(\nu_{k-1} \) and \(\nu_k(S(U_\lambda; G)) \subset C(L_{\alpha_\lambda}; G) \) for all \(\lambda \in \Lambda(k) \). Because \(\mathcal{U}_{m+1} \) is a disjoint family, so is the family \(\{ S(U_\lambda; G) : \lambda \in \Lambda_{m+1} \} \). Therefore, to extend \(\nu_m \) over \(S_{m+1} \), it suffices for every \(\lambda \in \Lambda_{m+1} \) to extend \(\nu_m|S(U_\lambda; G) \cap S_m \) over \(S(U_\lambda; G) \). To this end, observe that if \(\lambda \in \Lambda_{m+1} \) and \(\lambda' \in \Lambda(m) \) with \(U_\lambda \cap U_{\lambda'} \neq \emptyset \), then \(W_{\alpha_\lambda} \cap W_{\alpha_{\lambda'}} \neq \emptyset \). Thus, according to condition (7), \(L_{\alpha_{\lambda'}} \subset L_{\alpha_\lambda} \). Consequently, by (8), \(\nu_m(S(U_\lambda; G) \cap S_m) \subset C(L_{\alpha_\lambda}; G) \) for any \(\lambda \in \Lambda_{m+1} \). Since \(L_{\alpha_\lambda} \) is contractible and \(\nu_m \) is correct, we can apply Lemma 2.2 (with \(A = U_\lambda \cap \bigcup_{\lambda' \in \Lambda(m)} U_{\lambda'} \) and \(B = U_\lambda \)) to find a correct chain morphism \(\nu_\lambda : S(U_\lambda; G) \to C(L_{\alpha_\lambda}; G) \) extending \(\nu_m(S(U_\lambda; G) \cap S_m) \). This completes the induction, so the construction of the required chain morphism \(\nu : S(X, \mathcal{U}; G) \to C(K; G) \) is done.

Finally, let \(\varphi : S(X, \mathcal{U}; G) \to S(Y; G) \) be the composition \(\varphi = \mu \circ \nu \).

Then, according to (7) and the definitions of \(\Omega_{\alpha} \), for every \(\lambda \in \Lambda \) we have

\[
\varphi(S(U_\lambda; G)) \subset \mu(C(L_{\alpha_\lambda}; G)) \subset S(\Omega_{\alpha_\lambda}; G).
\]

Since \(U_\lambda \subset W_{\alpha_\lambda} \), conditions (4) and (5) yield that \(\Omega_{\alpha_\lambda} \subset \Phi_n(x) \) for all \(x \in U_\lambda \). Therefore, \(\varphi(S(U_\lambda; G)) \) is contained in \(S(\Phi_n(x); G) \) whenever \(x \in U_\lambda \). \(\square \)

Proof of Theorem 1.2. Since the sequence \(\{ \Phi_m \}_{m=0}^{n} \) satisfies condition (i) from Theorem 1.1, we can perform the construction from the proof of Theorem 1.1 for every \(m = 0, 1, \ldots, n \). So, we construct the locally finite covers \(\mathcal{V}_m = \{ V_\alpha : \alpha \in \Gamma_m \} \) and \(\mathcal{W}_m = \{ W_\alpha : \alpha \in \Gamma_m \} \) of \(X \), the complexes \(K_0 \subset K_1 \subset \ldots \subset K_n \), the sets \(\Omega_{\alpha} \) for any \(\alpha \in \bigcup_{k=0}^{n} \Gamma_k \) and the correct chain morphisms \(\mu_m : C(K_m; G) \to S_m(Y; G) \) satisfying conditions (1) – (5) and the particular case of condition (7)
with \(m \leq n - 1 \). Since the complex \(K = \bigcup_{m=0}^n K_m \) is \(n \)-dimensional, \(K^{(m)} = \emptyset \) for all \(m > n \). So, we can suppose that \(\mu_m = \mu_n \) for \(m \geq n \).

In this way we obtains a chain morphism \(\mu : C(K; G) \to S(Y; G) \).

Because \(\dim X \leq n \), according to Corollary 5.3 from [6], for every \(m = 0, 1, \ldots, n \) there exists a disjoint family \(\mathcal{U}_m = \{ U_\lambda : \lambda \in \Lambda_m \} \) such that each \(\mathcal{U}_m \) refines \(\mathcal{W}_n \) and the family \(\mathcal{U} = \bigcup_{m=0}^n \mathcal{U}_m \) covers \(X \). Then, repeating the arguments from the final part of the proof of Theorem 1.1, we construct the required chain morphism \(\varphi : S(X, \mathcal{U}; G) \to S(Y; G) \).

\[\square \]

3. Fixed-point theorems for homologically \(UV^n(G) \) usco maps

In this section we prove Theorems 1.3 and 1.5. For a set-valued map \(\Phi : X \to 2^Y \) we denote by \(\mathcal{O}(\Phi) \) the family of the open-graph maps \(\Theta : X \to 2^Y \) such that \(\Phi(x) \subset \Theta(x) \) for all \(x \in X \). Next proposition is a homological version (and its proof is a small modification) of [3, Proposition 4.2].

Proposition 3.1. Let \(X \) be a paracompact space, \(Y \) be a space and let \(\Phi : X \to 2^Y \) be an usco map such that for every \(x \in X \) and a neighborhood \(U \) of \(\Phi(x) \) there exists a neighborhood \(V \) of \(\Phi(x) \) with \(V \xrightarrow{H_m} U \). Then for every \(\varphi \in \mathcal{O}(\Phi) \) there exists \(\Theta \in \mathcal{O}(\Phi) \) such that \(\Theta(x) \) is open in \(Y \) and \(\Theta(x) \xrightarrow{H_m} \varphi(x) \) for all \(x \in X \).

Proof. Let \(\varphi \in \mathcal{O}(\Phi) \). Then the graph \(G(\varphi) \) is open in \(X \times Y \) and contains the compact set \(\{ x \} \times \Phi(x) \) for every \(x \in X \). So, there exist neighborhoods \(W_1(x) \) and \(U(x) \) of \(x \) and \(\Phi(x) \), respectively, with \(W_1(x) \times U(x) \subset G(\varphi) \). Thus, \(\Phi(x) \subset U(x) \subset \varphi(x') \) for all \(x' \in W_1(x) \).

Then \(V(x) \xrightarrow{H_m} U(x) \) for some open neighborhood \(V(x) \) of \(\Phi(x) \). Since \(\Phi \) is upper semi-continuous, we can find a neighborhood \(W(x) \subset W_1(x) \) such that \(x' \in W(x) \) implies \(\Phi(x') \subset V(x) \). Hence, for all \(x' \in W(x) \) we have

\[\Phi(x') \subset \overline{V(x)} \xrightarrow{H_m} U(x) \subset \varphi(x'). \]

Next, let \(\gamma = \{ P_\alpha : \alpha \in A \} \) be a locally finite closed cover of \(X \) refining the cover \(\{ W(x) : x \in X \} \) (recall that \(X \) is paracompact), and for every \(\alpha \) fix \(x_\alpha \in X \) such that \(P_\alpha \subset W(x_\alpha) \). For every \(x \in X \) the set \(A(x) = \{ \alpha \in A : x \in P_\alpha \} \) is finite, and define \(\Theta(x) = \bigcap\{ V(x_\alpha) : \alpha \in A(x) \} \). One can show that \(\Theta \) is open-graph (see the proof of [3, Proposition 4.2]). Moreover, since \(x \in \bigcap\{ W(x_\alpha) : \alpha \in A(x) \} \), it follows from (9) that

\[\Phi(x) \subset \overline{V(x_\alpha)} \xrightarrow{H_m} U(x_\alpha) \subset \varphi(x) \]
for all \(\alpha \in A(x) \). This yields \(\Phi(x) \subset \Theta(x) \subset \Theta(x) \overset{H_m}{\hookrightarrow} \varphi(x) \).

Proof of Theorem 1.3. Let \(g : Y \to X \) be a continuous (single-valued) map. Without loss of generality, we may assume that \(g(Y) = X \). We need to show that the set-valued map \(\Phi_g = \Phi \circ g : Y \to 2^Y \) has a fixed-point. Suppose this is not true. So \(y \notin \Phi_g(y) \) for all \(y \in Y \), or equivalently \(\Phi(x) \subset Y \setminus g^{-1}(x) \) for all \(x \in X \). Consider the set-valued map \(\varphi : X \to 2^Y \), \(\varphi(x) = Y \setminus g^{-1}(x) \). Then \(\Phi \) is a selection for \(\varphi \) and it is easily seen that \(\varphi \) has an open graph. Because \(\Phi \) is homologically \(UV^{n-1}(G) \), we can apply Proposition 3.1 to find for each \(m = 0, 1, \ldots, n \) a set valued map \(\Theta_m \): \(X \to 2^X \) such that

- \(\Phi(x) \subset \Theta_0(x), x \in X \);
- \(\Theta_m(x) \overset{H_m}{\hookrightarrow} \Theta_{m+1}(x) \) for all \(x \in X \) and \(m = 0, \ldots, n - 1 \);
- Each \(\Theta_n(x) \) is open in \(Y \) and \(\Theta_n(x) \subset \varphi(x), x \in X \).

Then, according to Theorem 1.2, there exists an open cover \(\mathcal{U} \) of \(X \) and a chain morphism \(\phi : S(X, \mathcal{U}; G) \to S(Y; G) \) such that \(\phi(S(U; G)) \subset S(\Theta_n(x); G) \) for every \(U \in \mathcal{U} \) and every \(x \in U \). Consider the open cover \(\mathcal{U}_g = g^{-1}(\mathcal{U}) \) of \(Y \) and the chain morphism \(g_t : S(Y, \mathcal{U}_g; G) \to S(X, \mathcal{U}; G) \) generated by \(g \). Then \(\phi_g = \phi \circ g_t : S(Y, \mathcal{U}_g; G) \to S(Y; G) \) is a chain morphism with

\[
\text{(10) } \phi_g(S(g^{-1}(U); G)) \subset S(\Theta_n(g(y)); G) \quad \text{for all } U \in \mathcal{U} \quad \text{and } y \in g^{-1}(U).
\]

So, we can apply the homological fixed-point theorem \([1, \text{Theorem 7}]\) to conclude that the chain morphism \(\phi_0 \) has a fixed point \(y_0 \in Y \). This means that for any neighborhood \(W \subset Y \) of \(y_0 \) there is a chain \(c_W \in S(W; G) \cap S(Y, \mathcal{U}_g; G) \) such that \(||\phi_0(c_W)|| \cap W \neq \emptyset \). Choose \(U_0 \in \mathcal{U} \) with \(y_0 \in g^{-1}(U_0) \) and let \(V \subset g^{-1}(U_0) \) be a neighborhood of \(y_0 \). Then \(c_V \in S(V; G) \subset S(g^{-1}(U_0); G) \). Thus, we have

\[
\text{(11) } ||\phi_g(c_V)|| \cap V \neq \emptyset \quad \text{and, by (10), } ||\phi_g(c_V)|| \subset \Theta_n(g(y_0)).
\]

On the other hand, since \(\Theta_n(x_0) \subset \varphi(x_0) \), where \(x_0 = g(y_0) \), we can choose \(V \) to be so small that \(V \cap \Theta_n(x_0) = \emptyset \). The last relation contradicts condition (11).

Proof of Theorem 1.5. The arguments from the proof of \([5, \text{Theorem 1.3}]\) work in our situation. For completeness, we provide a sketch. Since \(X \) can be embedded in the Hilbert cube \(Q \) as a retract, we may suppose that \(\Phi : Q \to 2^Q \) is a homologically \(UV^\omega(G) \) usco map. Identifying \(Q \) with the product \(\prod \{ \mathbb{I}_k : k \in \mathbb{N} \} \), where \(\mathbb{I} = [0, 1] \), let \(\pi_n : Q \to \prod \{ \mathbb{I}_k : k \leq n \} \) be the projection onto the cube \(\mathbb{I}^n \) and \(h_n : \mathbb{I}^n \to Q \) be the embedding assigning to every point \(x = (x_1, \ldots, x_n) \in \mathbb{I}^n \) the point \(h(x) \) having the same first \(n \)-coordinates and all other coordinates 0.
For every n consider the homologically $UV^\omega(G)$ usco map $\Phi_n : \mathbb{I}^n \to 2^Q$ defined by $\Phi_n(x) = \Phi(h_n(x))$. Then, according to Theorem 1.3 (with $X = \mathbb{I}^n$, $Y = Q$, $g = \pi_n$ and $\Phi = \Phi_n$), there is a point $x^n \in Q$ with $x^n \in \Phi_n(\pi_n(x^n))$. If $x^0 \in Q$ is the limit point of a convergent subsequence of $\{x^n\}_{n \geq 1}$, one can see that $x^0 \in \Phi(x^0)$. □

4. Fixed point-theorems for homological $UV^n(G)$ and $UV^\omega(G)$ decompositions

In this section we provide some fixed point-theorems for homological UV^n or homological $UV^\omega(G)$ decompositions of compact metric AR’s, where G is a field. Our results are homological analogues of for homotopical UV^n and UV^ω decompositions, see [2, Theorems 3-4] and [5, Theorems 7.1-7.3]. We follow Gutev’s scheme [5] of proofs applying our Theorem 1.3, Corollary 1.4 and Theorem 1.5 instead of their homotopical versions.

By a homological $UV^n(G)$ (resp., homological $UV^\omega(G)$) decomposition of a compactum X we mean an upper semi-continuous decomposition of X into compact homologically $UV^n(G)$ (resp., homologically $UV^\omega(G)$) sets. The decomposition space is denoted by X/\sim and $\pi : X \to X/\sim$ is the quotient map.

Theorem 4.1. Let X be a compact metric AR with $\dim X \leq n$ and X/\sim be a homological $UV^{n-1}(G)$ decomposition of X. Then X/\sim has the fixed-point property.

Proof. For any map $f : X/\sim \to X/\sim$ the set-valued map $\Phi := \pi^{-1} \circ f \circ \pi : X \to 2^X$ is usc and homologically $UV^{n-1}(G)$. Then, by Corollary 1.4, $x_0 \in \Phi(x_0)$ for some $x_0 \in X$. Hence, $f(\pi(x_0)) = \pi(x_0)$. □

Theorem 4.2. Let X be a compact metric AR and X/\sim be a homological $UV^{n-1}(G)$ decomposition of X with $\dim X/\sim \leq n$. Then X/\sim has the fixed-point property.

Proof. For any map $f : X/\sim \to X/\sim$ consider the set-valued map $\Phi := \pi^{-1} \circ f \circ \pi : X/\sim \to 2^X$ and apply Theorem 1.3 to find a point $x_0 \in X$ with $x_0 \in \Phi(\pi(x_0))$. The last equality implies $f(\pi(x_0)) = \pi(x_0)$. □

Theorem 4.3. Let X be a compact metric AR and X/\sim be a homological $UV^\omega(G)$ decomposition of X. Then X/\sim has the fixed-point property.

Proof. We repeat the proof of Theorem 4.1 using now Theorem 1.5 instead of Corollary 1.4. □
Acknowledgments. The author would like to express his gratitude to P. Semenov and S. Bogatyi for their helpful comments. The author also thanks the referee for his/her careful reading and suggesting some improvements of the paper.

References

[1] T. Banakh and R. Cauty, A homological selection theorem implying a division theorem for Q-manifolds, Fixed point theory and its applications, 1122, Banach Center Publ., 77, Polish Acad. Sci. Inst. Math., Warsaw (2007).
[2] S. Bogatyi, On preserving the fixed point property by mappings, General Topology and its Relations to Modern Analysis and Algebra IV (Proc. Fourth Prague Topological Symposium, Prague (1976)), Part B, pp. 51-58.
[3] R. Cauty, Rétractes absolus de voisinage algébrique, Serdica Math. J. 31, 309-354 (2005).
[4] L. Gorniewicz, A. Granas and W. Kryszewski, On the homotopy method in the fixed point Index Theory of multi-valued mappings of compact absolute neighborhood retracts, Journ. Math. Anal. Appl. 161, 457-473 (1991).
[5] V. Gutev, Selections and approximations in finite-dimensional spaces, Topol. Appl. 146-147, 353-383 (2005).
[6] V. Gutev and V. Valov, Dense families of selections and finite-dimensional spaces, Set. Val. Anal. 11, 373-391 (2003).
[7] V. Gutev, A fixed point theorem for UV^n usco maps, Proc. Am. Math. Soc. 124(3), 945-952 (1996).
[8] K. Sakai, Geometric aspects of general topology, Springer Monographs in Mathematics. Springer, Tokyo (2013).
[9] E. Spanier, Algebraic Topology, McGraw-Hill Book Company (1966).
[10] V. Uspenskiy, A selection theorem for C-compacta, Topol. Appl. 85, 351-374 (1998).