FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

V. Sai Sri Krishna, Yogesh Misra, G. Anantha Rao

Abstract: Fuzzy logic which is one of methodology of soft computing has provided to be brilliant choice for the many control system application. Fuzzy logic is practical to numerous fields. One of the uses of fuzzy logic is in sugar mill. It is very important to produce sugar at low cost. Irregular supply of cane is inputs fuzzy controller sustains the cane height at desired level inside Donnelly chute. A methodology to develop a variable feed rate algorithm for three inputs fuzzy controller sustains the cane height at desired level and was developed with fuzzy logic tool box of MATLAB software. The developed fuzzy controller can be implemented by using HDL language and Xilinx Vivado 2016.2.

Index Terms: fuzzy logic, fuzzy controller, HDL language

I. INTRODUCTION

Sugar producing from sugar cane happens in a specific period of year. India was second biggest maker of sugar on the planet after Brazil. It is a test to create sugar of good quality at lower cost which requires improvement in sugar making process. Over 60% of the globe sugar is generated as of sugar cane along with the parity is from sugar beet [1]. In India 60 million farmers depends on cane cultivation [2].

The flow of sugar making Process is described below. Cane billets were transformed into cane fiber during sugar making process. Cane billets are placed on cane carrier. The cane is passed through rotating knives, by which cane is cut into little fibers about 1-2 cm. Cane juice is obtained through crushing fiber [2, 3, 4]. A schematic for juice extraction of cane is given in Figure 1. Arrangement of a mill is given in Figure 2. Various important mill parameters such as mean diameter of roll, work opening [5] and contact angle [6] are useful for finding the required parameters. The length of the roll (Lc) is 183 cm, width of the roll (Bc) is 43.5 cm, optimum angle (α) is 61° and roll speed (S) is in (m/s). Erscribed volume of cane (m³/s) is given by [7].

\[V_c = L_c \times B_c \times S \cos \alpha \]

(1)

If \(q_e \) is the bulk density of cane at entry plane (350 kg/m³) then the crushing rate or mass flow rate (Kg/s) is given by

\[Q_c = q_e \times V_c \]

(2)

The carrier speed (cm/s) [8] is given by

\[\text{Carrier Speed (cm/s)} = \frac{\text{(Feed Rate)}}{\text{(Mass of cane in 1cm of Carrier)}} \]

(3)

The motor speed (rpm) [8] is given by

\[\text{Motor Speed} = (1.91 \times S_{\text{rake}}) \text{ rpm} \]

(4)

Where \(S_{\text{rake}} \) = rake carrier speed cm/s

II. THREE INPUTS FUZZY CONTROLLER DESIGN AND VARIABLE FEED RATE ALGORITHM

The three inputs fuzzy controller [9] to sustain cane height is given in Figure 3. Rake carrier prepared cane weight, Donnelly chute level of cane and the roll rotational speed are three variables used for extraction of cane juice. The Donnelly chute height, speed of rake carrier motor and the variation in prepared cane on the carrier are 180 cm, 17 rpm to 116 rpm and 500 kg to 1000 kg respectively. The length, width and depth of chute are 180 cm, 43.5 cm and 183 cm. The length, width and weight of rake carrier are 800 cm, 150 cm and 500 kg. The Endeavour of this algorithm depends on three variables values to vary rake carrier speed such that cane level in the Donnelly chute remains constant. The input parameters weight, height and roll speed are given in Figure 5, Figure 6 and Figure 7. The output parameter speed is given in Figure 8.

Three inputs development algorithm [10] is given in Figure 4. The rules for roll speed for 12 cm/s, 14.3 cm/s, 16.6 cm/s are given in Table I, Table II and Table III. The flow rate (\(Q_c \)) when roll speed is 12.0 cm/s, 14.3 cm/s and 16.6 cm/s from (2) is 19.3 kg/s, 22.8 kg/s and 26.6 kg/s.

The cane weight on rake carrier, cane level and roll rotational speed are the three inputs to fuzzy controller. Three sensors are required to sense the cane in the rake carrier, cane height in chute and rotational speed of rolls are load cell, light sensor and tacho generator sensor. Amount of cane present on rake carrier is given by load cell. A load cell signal conditioning system [8] is explained. Level of cane in chute is determined by using height sensor. A signal conditioning system for height sensing [8] is explained.

Rotational speed of roll is measured using tacho generator. A signal conditioning system for tacho generator [8] is explained. The digital values obtained from analog digital converter by using the output of signal conditioning system for cane weight, cane level and roll speed are given in Figure 6, Figure 7 and Figure 8.
III. IMPLEMENTATION OF ALGORITHM OF FUZZY CONTROLLER USING VHDL

The fuzzification in terms of VHDL code is done as follows. Triangular membership function is given in Figure 9. It contains three points namely point-1, point-2 and point-3. The slopes of membership graph are represented by slope-1 and slope-2 and they are calculated from (5) and (6).

Slope-1 = (y2 – y1) / (Point-2 – Point-1) (5)
Slope-2 = (y2 – y1) / (Point-3 – Point-2) (6)

Where y2 is 1 (FFH) maximum value of a membership function and y1 is 0 (00H) minimum value of a membership function. The degree of membership of any value on x-axis less than or equal to the value of point-1 and greater than or equal to the value of point-3 is always 0. The degree of membership of any value on x-axis greater than the value of Point-1 and less than Point-2 is calculated from (7) and (8).

\[
\mu = \frac{\text{Input Value} - \text{Point-1}}{\text{Slope-1}} \times \text{Slope-1} \quad (7)
\]

\[
\mu = \frac{\text{Input Value} - \text{Point-2}}{\text{Slope-2}} \times \text{Slope-2} \quad (8)
\]

The notations used in representing a point in a membership function are as follows:

P represents the point, 1st digit represents number of point (i.e. Point-1, Point-2 or Point-3) of membership function graph and 2nd digit represents the number of linguistic variable.

A. Fuzzification of Weight

The linguistic variables of weight are given in Figure 6. The digital values obtained from analog to digital converter by using signal conditioning system of cane weight are the values given to linguistic variables. For instance Point-3 of linguistic variable SL is represented by P31, Point-2 of linguistic variable UH is represented by P210 and Point-1 of linguistic variable SH is represented by P111. The x-axis represents variation of cane weight from 500Kg to 1000Kg.

B. Slope Calculation of Weight

(i) Calculation of slopes of Linguistic Variable SL

Point-2 and Point-3 of SL is represented by P21 and P31 and its Slope-2SL is calculated from (6)

Slope-2SL = [(FFH – 00H) / (P31 – P21)]
= [FFH / (4DH – 34H)] = 0AH

(ii) Calculation of slopes of Linguistic Variable UL

(a) Calculation of points of Linguistic Variable UL

Point-2 and Point-3 of UL is calculated from (5)

Slope-1UL = [(FFH – 00H) / (P22 – P12)]
= [FFH / (1BH – 00H)] = 09H

(b) Calculation of points of Linguistic Variable UL

Point-3 of UL is represented by P32 and its Slope-2UL is calculated from (6)

Slope-2UL = [(FFH – 00H) / (P32 – P22)]
= [FFH / (34H – 1BH)] = 04H

(iii) Calculation of slopes of Linguistic Variable EL

(a) Calculation of points of Linguistic Variable EL

Point-1 and Point-2 of EL is represented by P13 and P23 respectively and its Slope-1EL is calculated from (5)

Slope-1EL = [(FFH – 00H) / (P23 – P13)]
= [FFH / (34H – 1BH)] = 0AH

(b) Calculation of points of Linguistic Variable EL

Point-3 of EL is represented by P33 and its Slope-2EL is calculated from (6)

Slope-2EL = [(FFH – 00H) / (P33 – P23)]
= [FFH / (4DH – 34H)] = 0AH

Similarly for all the Linguistic variables of input parameter WEIGHT slopes are calculated and are given in Table IV.

C. Fuzzification of Height

The linguistic variables of height are given in Figure 7. The digital values obtained from analog to digital converter by using signal conditioning system of cane level are the values given to linguistic variables. The x-axis represents variation of cane level from 0cm to 180cm.

D. Slope Calculation of Height

(i) Calculation of slopes of Linguistic Variable EL

Point-2 and Point-3 of EL is represented by P21 and P31 and its Slope-2EL is calculated from (6)

Slope-2EL = [(FFH – 00H) / (P31 – P21)]
= [FFH / (47H – 32H)] = 0CH

(ii) Calculation of slopes of Linguistic Variable VL

Point-1 and Point-2 of VL is represented by P12 and P22 respectively and its Slope-1VL is calculated from (5)

Slope-1VL = [(FFH – 00H) / (P22 – P12)]
= [FFH / (47H – 32H)] = 0CH

(b) Calculation of slopes of Linguistic Variable VL

Point-3 of VL is represented by P32 and its Slope-2VL is calculated from (6)

Slope-2VL = [(FFH – 00H) / (P32 – P22)]
= [FFH / (5BH – 47H)] = 0CH

(iii) Calculation of slopes of Linguistic Variable L

Point-1 and Point-2 of L is represented by P13 and P23 respectively and its Slope-1L is calculated from (5)

Slope-1L = [(FFH – 00H) / (P23 – P13)]
= [FFH / (70H – 5BH)] = 0CH

Similarly for all the Linguistic variables of input parameter HEIGHT slopes are calculated and are given in Table V.

E. Fuzzification of Roll Speed

The linguistic variables of roll speed are given in Figure 8. The digital values obtained from analog to digital converter by using signal conditioning system of roll speed are the values given to linguistic variables. The x-axis represents variation of roll speed from 12.0cm/s to 16.6cm/s.

F. Slope Calculation of Roll Speed

(i) Calculation of slopes of Linguistic Variable RL
Point-2 and Point-3 of RL is represented by P21 and P31 and its Slope-2EL is calculated from (6)
Slope-2RL = [(FFH – 00H) / (P31 – P21)]
= [FFH / (E6H – D5H)] = 0FH
(ii) Calculation of slopes of Linguistic Variable RM
(a) Point-1 and point-2 of RM is represented by P12 and P22 respectively and its Slope-1RM is calculated from (5)
Slope-1RM = [(FFH – 00H) / (P22 – P12)]
= [FFH / (E6H – D5H)] = 0FH
(b) Point-3 of RM is represented by P32 and its Slope-2RM is calculated from (6)
Slope 2RM = [(FFH – 00H) / (P32 – P22)]
= [FFH / (F6H – E6H)] = 0FH
(iii) Calculation of slopes of Linguistic Variable RR
Point-1 and Point-2 of RR is represented by P13 and P23 and its Slope-1RR is calculated from (5)
Slope-1RR = [(FFH – 00H) / (P23 – P13)]
= [FFH / (F6H – E6H)] = 0FH
Slopes for all the Linguistic variables of input parameter ROLL SPEED slopes are calculated and are given in Table VI.
Example-I:
Let the values of cane weight, cane height and roll speed at some instant is 720Kg, 80cm and 14.6cm/s.

G. Calculation of Degree of Membership of WEIGHT
The load cell generates 16.26mV for 720Kg cane weight. The output of signal conditioning system of load cell for 16.26mV is 1.100V is given in Figure 10. The output of ADC when it receives 1.100V analog voltage is (1011 0000) and it is represented as 70H in hexadecimal. The 70H value will intersect linguistic variables L and JR of cane WEIGHT is given in Figure 7.
The degree of membership of input value for linguistic variable L is calculated from (8)
µL = 1 - (Input Value – P23) × Slope-2L
= FFH – (69H – 5BH) × 0CH
= 57H = 87D
The degree of membership of this input value for linguistic variable JR is calculated from (7)
µJR = (Input Value – P14) × Slope-1JR
= (69H – 5BH) × 0CH
= A8H = 168D
The degree of membership of 80cm cane from the base of Donnelly Chute in five linguistic variables is zero and it is given below for all seven linguistic variables of input parameter WEIGHT.
µL = 57H, µJR = A8H, µEL = µVL = µH = µVH = µEH = 0
The simulation result showing the membership of linguistic variable L and JR when cane height is 80cm is given in Figure 13.

I. Calculation of Degree of Membership of ROLL SPEED
Tacho generator gives output of 185µV for roll speed 14.6cm/s. Signal conditioning system for tacho generator gives output of 2177mV for 185µV is depicted in Figure 14. ADC gives analog voltage is (1110 0000) and E8H in hexadecimal for input 2177mV. The E8H value will intersect linguistic variables RM and RR of ROLL SPEED is given in Figure 8
The degree of membership of this input value for linguistic variable RM is calculated from (8)
µRM = 1 – (Input Value – P22) × Slope-1RM
= FFH – (E8H – E6H) × 0FH
= E1H = 225D
The degree of membership function of this input value for linguistic variable RR is calculated from (7)
µRR = (Input Value – P13) × Slope-1RR
= (E8H – E6H) × 0FH
= 1EH = 30D
The degree of membership of roll speed 14.6cm/s in one linguistic variable is zero and it is given below for all three linguistic variables of input parameter ROLL SPEED.
µRL = 0, µRM = E1H, µRR = 1EH
The simulation result showing the membership of linguistic variable RL, RM and RR when roll speed is 14.6cm/s is depicted in Figure 15.

J. Implementation of Rule Inference Algorithm
In continuation with Example-I, the cane weight of 720Kg has degree of membership in L and JR linguistic variables of input parameter WEIGHT, the cane height of 80cm has degree of membership in L and JR linguistic variables in input parameter HEIGHT and the roll speed 14.6cm/s has degree of membership in RM and RR linguistic variables in input parameter ROLL SPEED. Total 186 rules having L and JR linguistic variables in both WEIGHT, HEIGHT and RM and RR linguistic variables in ROLL SPEED.
The fired rules are represented in Table I, Table II and Table III in bold and italic manner. The part of VHDL code for finding minimum degree of membership value of each rule is given in Figure 16. The minimum degree of membership among the three antecedents of all fired rules is

\[
\text{MinR (103)} = 57H, \text{MinR (104)} = 57H, \text{MinR (114)} = A5H, \\
\text{MinR (115)} = 5AH, \text{MinR (180)} = 1EH, \text{MinR (181)} = 1EH, \\
\text{MinR (191)} = 1EH, \text{MinR (192)} = 1EH \quad \text{and minimum value of all remaining fired rules is 00H.}
\]

The minimum degree of membership value results are given in Figure 17 and Figure 18.

The maximum value of consequents among all the fired rules having same output linguistic variable is chosen as the final fuzzy value of corresponding linguistic variable. The final value of EL is represented by MaxR (0), VL by MaxR (1), L by MaxR (2), JR by MaxR (3), H by MaxR (4), VH by MaxR (5), EH by MaxR (6), UH by MaxR(7) and SH by MaxR (8).

The part of VHDL code for finding the maximum value of all rules having same consequent is given in Figure 19. The maximum value of consequents among all the fired rules of Example-I are

\[
\text{MaxR (0)} = 00H, \text{MaxR (1)} = 00H, \text{MaxR (2)} = 5AH, \text{MaxR (3)} = A5H, \text{MaxR (4)} = 1EH, \text{MaxR (5)} = 00H, \text{MaxR (6)} = 00H, \text{MaxR (7)} = 00H, \text{MaxR (8)} = 00H.
\]

The maximum values of consequents obtained are shown in Figure 20.

K. Implementation of Defuzzification Algorithm

Defuzzification changes fuzzy output into crisp output. The Sugeno style of fuzzy logic is used as it requires only singleton value. The singleton values of all linguistic variables of output parameter SPEED (Figure 9) are given below.

Singleton value of linguistic variable EL = SEL = 17H
Singleton value of linguistic variable VL = SVL = 1DH
Singleton value of linguistic variable L = SL = 2AH
Singleton value of linguistic variable JR = SIR = 36H
Singleton value of linguistic variable H = SH = 43H
Singleton value of linguistic variable VH = SVH = 4FH
Singleton value of linguistic variable EH = SEH = 5CH
Singleton value of linguistic variable UH = SUH = 68H
Singleton value of linguistic variable SH = SSH = 6EH

The crisp (defuzzified) output is obtained from (9)

\[
\text{Crisp Output} = \frac{\text{Numerator}}{\text{Denominator}}
\]

Here,

\[
\text{Numerator} = \{\text{MaxR (0) × SEL} + \text{MaxR (1) × SVL} + \text{MaxR (2) × SL} + \text{MaxR (3) × SIR} + \text{MaxR (4) × SH} + \text{MaxR (5) × SVH} + \text{MaxR (6) × SEH} + \text{MaxR (7) × SUH} + \text{MaxR (8) × SSH}\}
\]

\[
\text{Denominator} = \text{MaxR (0)} + \text{MaxR (1)} + \text{MaxR (2)} + \text{MaxR (3)} + \text{MaxR (4)} + \text{MaxR (5)} + \text{MaxR (6)} + \text{MaxR (7)} + \text{MaxR (8)}
\]

(10) (11)

From Example-I results are obtained as Numerator = 396CH (001111001101110100) is obtained from (10) and Denominator = 011DH (00000001000111101) is obtained from (11) and Crisp output = 33H = 51D (rpm) is obtained from (9). The crisp output result is depicted in Figure 21.

IV. RESULTS AND DISCUSSION

Three inputs fuzzy controller developed using algorithm is implemented using VHDL by using Xilinx Vivado 2016.2 software. Cane weight, cane level and the roll speed during each sampling is kept same as the corresponding cases of Algorithm of MATLAB design [10]. The results obtained for algorithm using VHDL by using Xilinx Vivado are compared with Algorithm of MATLAB design. In case-I and case-II the cane weight and cane level values for the first simulation are 750Kg and 90cm correspondingly. In case-I, case-III and case-V roll speed for the first simulation is 15cm/s. In case-II, case-IV and case-VI roll speed for the first simulation is 15.4cm/s. The cane level values obtained by using Xilinx Vivado compared with Matlab for case-I and case-II is depicted in Table VII and Table VIII. In case-III and case-IV the cane weight and cane level for the first simulation are 750Kg and 0cm correspondingly. The cane level values obtained by using Xilinx Vivado compared with Matlab for case-III and case-IV is given by Table IX and Table X. In Case-V and Case-VI the cane weight and cane level for the first simulation are 750Kg and 180cm correspondingly. The cane level values obtained by using Xilinx Vivado compared with Matlab for case-V and case-VI is given by Table XI and Table XII. Comparison between Matlab and Xilinx results of case-I is depicted in Figure 22 and Table XIII. Comparison between Matlab and Xilinx results of case-II is given in Figure 23 and Table XIV. Comparison between Matlab and Xilinx results of case-III is depicted in Figure 24 and Table XV. Comparison between Matlab and Xilinx results of case-IV is given in Figure 25 and Table XVI. Comparison between Matlab and Xilinx results of case-V is given in Figure 26 and Table XVII. Comparison between Matlab and Xilinx results of case-VI are given in Figure 27 and Table XVIII. Comparison between all six cases of Matlab and Xilinx results is given in Figure 28 and Table XIX.

V. CONCLUSION

The fuzzy controller maintains cane level in the range 85cm to 95cm for an average 69.75% of simulation duration. Time required for reaching cane level at 90cm for case-III, case-IV, case-V and case-VI are 57.8 seconds, 79.4 seconds, 109.5 seconds and 49.2 seconds respectively. Lowest level of cane in chute for case-I, case-II, case-V and case-VI are 78.7cm, 79.1cm, 78.7cm and 80.5cm respectively. Highest level of cane in chute for case-I, case-II, case-III and case-IV are 97.1cm, 93.9cm, 97.6cm and 94.6cm respectively. Percentage of time cane level is in between 85cm to 95cm for case-I, case-II, case-III, case-IV, case-V and case-VI are 84.8%, 76.2%, 60.0%, 62.2%, 62.7% and 72.6% respectively.

ACKNOWLEDGEMENT

The authors are thankful to the Principal, Vice-Principal of GMR Institute of Technology, Rajam, Andhra Pradesh (India) and the Head of the department of Electronics and Communication Engineering for their continuous encouragement to carry out this project.
FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

Figure 5: Fuzzified Input Parameter WEIGHT with Point Representation

Figure 6: Fuzzified Input Parameter HEIGHT with Point Representation

Figure 7: Fuzzified Input Parameter ROLL SPEED with Point Representation

Figure 8: Output Parameter SPEED

Figure 9: Triangular Membership Function

Figure 10: Output of Load Signal Conditioning System When Rake Carrier has 720Kg Cane
Figure 11: Degree of Membership when Cane Weight is 720Kg
\[\mu_L = \text{dmf}_w[4] = A5H, \mu_JR = \text{dmf}_w[5] = 5AH \]

Figure 12: Output of Cane Level Sensing Signal Conditioning when Cane is at 80cm in Chute

Figure 13: Degree of membership when Cane Height is 80cm
\[\mu_L = \text{dmf}_h[1] = 57H, \mu_JR = \text{dmf}_h[2] = A8H \]

Figure 14: Output of Roll Speed Signal Conditioning System when its Speed is 14.6cm/s

Figure 15: Degree of membership when Roll Speed is 14.6 cm/s
\[\mu_RL = \text{dmf}_r[0] = 00H, \mu_RM = \text{dmf}_r[1] = E1H, \mu_RR = \text{dmf}_r[2] = 1EH \]

PROCESS (DMF_R_F, DMF_H_F, DMF_W_F)
BEGIN
minR(0) <= \text{min}(DMF_R_F(0), DMF_H_F(0), DMF_W_F(0));
minR(1) <= \text{min}(DMF_R_F(0), DMF_H_F(0), DMF_W_F(1));
minR(2) <= \text{min}(DMF_R_F(0), DMF_H_F(0), DMF_W_F(2));
minR(3) <= \text{min}(DMF_R_F(0), DMF_H_F(0), DMF_W_F(3));

Figure 16: Part of VHDL code for finding the minimum degree of Membership Value of Each Rule
FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

Figure 17: VHDL Simulation Showing MinR (103), MinR (104), MinR (114) and MinR (115)

Figure 18: VHDL Simulation Showing MinR (180), MinR (181), MinR (191), MinR (192)

MaxR(5) <= max5(minR(79), minR(80), minR(89), minR(90), minR(99), minR(100), minR(110), minR(158), minR(159), minR(168), minR(169), minR(178), minR(188));
MaxR(6) <= max6(minR(78), minR(88), minR(156), minR(157), minR(166), minR(167), minR(176), minR(177), minR(187));
MaxR(7) <= max7 (minR(77), minR(155), minR(165));
MaxR(8) <= max8 (minR(154));

Figure 19: Part of VHDL code for finding the maximum value of all rules having same consequent

Figure 20: VHDL Simulation Showing the values of Linguistic Variables of Output Parameter SPEED

Figure 21: VHDL Simulation Showing “MOTOR_SPEED of Example-I"
Figure 22: Comparison between Matlab and Xilinx Implementation of case-I of Algorithm

Figure 23: Comparison between Matlab and Xilinx Implementation of case-II of Algorithm

Figure 24: Comparison between Matlab and Xilinx Implementation of case-III of Algorithm

Figure 25: Comparison between Matlab and Xilinx Implementation of case-IV of Algorithm

Figure 26: Comparison between Matlab and Xilinx Implementation of case-V of Algorithm

Figure 27: Comparison between Matlab and Xilinx Implementation of case-VI of Algorithm
FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

Table I: Rule Matrix of Algorithm “If ROLL SPEED is RL”[11]

H E I G H T	W	E	I	G	H	T
EL	VL	L	JR	H	VH	EH
SL	VH	VH	H	JR	H	L
UL	VH	H	H	JR	L	L
EL	VH	VH	H	JR	L	L
VL	VH	H	H	JR	L	L
JR	H	JR	JR	L	L	VL
VH	JR	JR	JR	L	L	VL
EH	JR	L	L	L	L	VL
SH	L	L	L	L	L	EL

Table II: Rule Matrix of Algorithm “If ROLL SPEED is RM”[11]

H E I G H T	W	E	I	G	H	T
EL	VL	L	JR	H	VH	EH
SL	VH	VH	H	JR	H	L
UL	VH	H	H	JR	L	L
EL	VH	VH	H	JR	L	L
VL	VH	H	H	JR	L	L
JR	H	JR	JR	L	L	VL
VH	JR	JR	JR	L	L	VL
EH	JR	L	L	L	L	VL
SH	L	L	L	L	L	EL

Table III: Rule Matrix of Algorithm “If ROLL SPEED is RR”[11]

H E I G H T	W	E	I	G	H	T
EL	VL	L	JR	H	VH	EH
SL	VH	VH	H	JR	H	L
UL	VH	H	H	JR	L	L
EL	VH	VH	H	JR	L	L
VL	VH	H	H	JR	L	L
JR	H	JR	JR	L	L	VL
VH	JR	JR	JR	L	L	VL
EH	JR	L	L	L	L	VL
SH	L	L	L	L	L	EL

Table IV: Slopes of Input Parameter WEIGHT

Linguistic Variable	Slope-1	Slope-2
SL	-	09H
UL	09H	0AH
EL	0AH	0AH
VL	0AH	0AH
L	0AH	09H
JR	09H	0AH
H	0AH	09H
VH	09H	0BH
EH	0BH	0AH
UH	0AH	0AH
SH	0AH	-

Table V: Slopes of Input Parameter HEIGHT

Linguistic Variable	Slope-1	Slope-2
EL	-	0CH
VL	0CH	0CH
L	0CH	0CH
JR	0CH	0CH
H	0CH	0CH
VH	0CH	0CH
EH	0CH	0CH
Table VI: Slopes of Input Parameter ROLL SPEED

Linguistic Variable	Slope-1	Slope-2
RL	-	0FH
RM	0FH	0FH
RR	0FH	-

Table VII. VHDL Implementation of Case-I of Algorithm

Parameters	Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling	Cane Level (cm)		
Time (s)	Roll Speed (cm/s)									
0	15	90	750	45.0	23.6	0.938	22.1	-19	68.32	84.6
10		83.2	729	51.0	26.7	0.911	24.3	+3	84.3	84.2
20		84.3	792	49.0	25.7	0.990	25.4	+14	89.3	88.8
30		89.3	908	41.0	21.5	1.135	24.4	+4	90.7	87.4
40		90.7	965	29.0	15.2	1.206	18.3	-19	83.9	85.3
50		83.9	720	46.0	24.1	0.900	21.7	+15	89.3	90.3
60		89.3	760	43.0	22.5	0.950	21.4	+12	93.6	92.1
70		93.6	790	40.0	20.9	0.988	20.6	+4	95.0	94.6
80		95.0	820	37.0	19.4	1.025	19.9	-3	93.9	92.8
90		93.9	555	74.0	38.7	0.694	26.9	+9	97.1	97.1
100		97.1	609	60.0	31.4	0.761	23.9	-21	89.6	90.2
110		89.6	578	70.0	36.6	0.723	26.5	+5	91.4	92.3
120		91.4	598	64.0	33.5	0.748	25.1	-9	88.2	90.5
130		88.2	700	55.0	28.8	0.875	25.2	-8	85.3	86.9
140		85.3	679	59.0	30.9	0.849	26.2	+2	86.0	89.8
150		86.0	800	47.0	24.6	1.000	24.6	-1	85.6	91.9
160		85.6	845	45.0	23.6	1.056	24.9	+2	86.3	89.0
170		86.3	835	47.0	24.6	1.044	25.7	+10	89.9	92.9
180		89.9	874	43.0	22.5	1.093	24.6	-1	89.5	86.8
190		89.5	900	43.0	22.5	1.125	25.3	+6	91.6	92.2
200		91.6	924	35.0	18.3	1.155	21.1	-36	78.7	82.6

Table VIII. VHDL Implementation of Case-II of Algorithm

Parameters	Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling	Cane Level (cm)

Retrieval Number J99080881019/19EIEESP
DOI: 10.35940/IJITEE.9908.0881019
Published By: Blue Eyes Intelligence Engineering & Sciences Publication
FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

Time (s)	Roll Speed (cm/s)	Kg	Cm	Vhdl	Matlab
0	15.4	23.1	-16	84.3	85.7
10	15.8	24.8	-5	82.5	84.3
20	15.0	25.4	+14	87.5	89.7
30	16.2	24.4	-16	81.8	79.0
40	16.6	26.5	-1	81.4	78.6
50	13.4	23.1	+16	87.1	84.7
60	13.8	21.4	-7	84.6	85.1
70	13.4	22.7	+12	88.9	91.2
80	15.4	25.2	+5	90.7	93.7
90	16.2	26.9	+9	93.9	96.9
100	13.0	20.3	-5	92.1	94.8
110	14.3	22.7	-2	91.4	94.4
120	14.6	21.9	-15	86.0	91.5
130	12.3	20.1	+4	87.4	93.3
140	12.6	24.6	-1	90.9	95.8
150	15.4	24.6	-1	93.4	96.2
160	12.0	25.4	+12	89.5	90.5
170	14.3	24.6	+4	93.8	91.9
180	14.6	24.6	+4	92.0	92.3
190	15.0	23.5	-5	79.1	81.9

Table IX. VHDL Implementation of Case-III of Algorithm

Parameters	Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling Kg	Kg	Cm	Vhdl	Matlab
Time (s)	Roll Speed (cm/s)	Kg	Cm	Vhdl	Matlab						
0	15	70.0	36.6	0.938	34.3	+103	+36.8	36.8	35.4		
10	36.8	33.5	0.911	30.5	+65	+23.2	60.0	59.7			
20	60.0	29.3	0.990	29.0	+50	+17.9	77.9	79.7			
30	77.9	23.0	1.135	26.1	+21	+7.5	85.4	86.8			
40	85.4	16.8	1.206	20.3	+1	+0.4	85.8	85.4			
50	85.8	24.1	0.900	21.7	+15	+5.4	91.2	90.8			
60	91.2	22.0	0.950	20.9	+7	+2.5	93.7	92.2			
70	93.7	21.0	0.988	20.7	+5	+1.8	95.5	95.1			
80	95.5	19.4	1.025	19.9	-3	-1.1	94.4	93.7			
90	94.4	37.0	0.694	26.9	+9	+3.2	97.6	96.9			
100	97.6	38.7	0.761	23.9	-21	-7.5	90.1	89.8			
110	90.1	31.4	0.723	26.5	+5	+1.8	91.9	91.6			
120	91.9	66.0	0.748	35.1	-9	-3.2	88.7	89.5			
130	88.7	28.3	0.875	24.8	-12	-4.3	84.4	86.3			
140	84.4	30.9	0.849	26.2	+2	+0.7	85.1	83.8			
150	85.1	47.0	1.000	24.6	-1	-0.4	84.7	85.2			
160	84.7	45.0	1.056	24.9	+2	+0.7	85.4	85.9			
170	85.4	47.0	1.044	25.7	+10	+3.6	89.0	89.1			
180	89.0	22.5	1.093	24.6	-1	-0.4	88.6	88.4			
190	88.6	23.0	1.125	25.9	+12	+4.3	92.9	90.9			
200	92.9	18.3	1.155	21.1	-36	-12.9	80.0	80.2			

Table X. VHDL Implementation of Case-IV of Algorithm

Parameters	Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling Kg	Kg	Cm	Vhdl	Matlab
Time (s)	Roll Speed (cm/s)	Kg	Cm	Vhdl	Matlab						

Retrieved Number J99080881019/196/IEEESP
DOI: 10.35940/jitie.J9908.0881019

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication

3911
Table XI. VHDL Implementation of Case-V of Algorithm

Parameters	Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling	Vhdl	Matlab
Time (s)	Roll Speed (cms)								
	15	180	750	29.0	15.2	0.938	14.3	-97	34.6
0	10	145.4	729	38.0	19.9	0.911	18.1	-59	21.1
20		124.3	792	39.0	20.4	0.990	20.2	-38	13.6
30	30	110.7	904	36.0	16.1	1.18	21.3	-16	4.9
40	40	97.1	965	29.0	15.2	1.206	18.3	-19	6.8
50	50	90.3	720	40.0	24.1	0.900	21.7	+15	5.4
60	60	95.7	760	39.0	20.4	0.950	19.4	-8	2.9
70	70	92.8	790	41.0	21.5	0.988	21.2	+10	3.6
80	80	96.4	820	37.0	19.4	1.025	19.9	-3	1.1
90	90	95.3	555	73.0	38.2	0.694	26.5	+5	1.8
100	100	97.1	609	60.0	31.4	0.761	23.9	-21	7.5
110	110	89.6	578	70.0	36.6	0.723	26.5	+5	1.8
120	120	91.4	598	64.0	33.5	0.748	25.1	-9	3.2
130	130	88.2	700	55.0	28.8	0.875	25.2	-8	2.9
140	140	85.3	679	59.0	26.2	0.849	26.2	+2	0.7
150	150	86.0	800	47.0	24.6	1.000	24.6	-1	0.4
160	160	85.6	845	45.0	23.6	1.056	24.9	+2	0.7
170	170	86.3	835	47.0	24.6	1.044	25.7	+10	3.6
180	180	89.9	874	43.0	22.5	1.093	24.6	-1	0.4
190	190	89.5	900	43.0	22.5	1.125	25.3	+6	2.1
200	200	91.6	924	35.0	18.3	1.155	21.1	-36	12.9

Table XII. VHDL Implementation of Case-VI of Algorithm

Parameters	Cane Level (cm)	Cane Weight (Kg)	Motor Speed (rpm)	Carrier Speed (cm/s)	Cane In Carrier (Kg/cm)	Feed Rate (Kg/s)	Data for next sampling	Vhdl	Matlab
Time (s)	Roll Speed (cms)								
	15.4	180	750	29.0	15.2	0.938	14.3	-104	-37.1

International Journal of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075, Volume-8 Issue-10, August 2019
FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

Parameter	Matlab Implementation of Algorithm	Xilinx Implementation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	89.1%	84.8%
Lowest Level of Cane in the Chute (cm)	82.6	78.7
Highest Level of Cane in the Chute (cm)	97.1	97.1
Slowest Speed of Carrier Motor (rpm)	31.1	29.0
Fastest Speed of Carrier Motor (rpm)	74.6	74.0
Slowest Speed of Cane Carrier (cm/s)	16.3	15.2
Fastest Speed of Cane Carrier (cm/s)	39.1	38.7
Mean Cane Level (cm)	89.6	88.7
Standard Deviation (cm)	3.5	4.2

Table XIII: Comparison between MATLAB and XILINX Implementation of Case-I of Algorithm

Parameter	Matlab Implementation of Algorithm	Xilinx Implementation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	89.1%	84.8%
Lowest Level of Cane in the Chute (cm)	82.6	78.7
Highest Level of Cane in the Chute (cm)	97.1	97.1
Slowest Speed of Carrier Motor (rpm)	31.1	29.0
Fastest Speed of Carrier Motor (rpm)	74.6	74.0
Slowest Speed of Cane Carrier (cm/s)	16.3	15.2
Fastest Speed of Cane Carrier (cm/s)	39.1	38.7
Mean Cane Level (cm)	89.6	88.7
Standard Deviation (cm)	3.5	4.2

Table XV: Comparison between MATLAB and XILINX Implementation of Case-III of Algorithm

Parameter	Matlab Implementation of Algorithm	Xilinx Implementation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	69.1%	60.0%
Time required to reach cane level at 90 cm (sec)	58.5	57.8
Highest Level of Cane in the Chute (cm)	96.9	97.6
Slowest Speed of Carrier Motor (rpm)	31.4	32.0
Fastest Speed of Carrier Motor (rpm)	74.1	74.0
Slowest Speed of Cane Carrier (cm/s)	16.4	16.8
Fastest Speed of Cane Carrier (cm/s)

MATLAB	XILINX
38.8	38.7

Table XVI: Comparison between MATLAB and XILINX Implementation of Case-IV of Algorithm

Parameter	MATLAB Implementation of Algorithm	XILINX Implementation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	70.2%	62.2%
Time required to reach cane level at 90 cm (sec)	78.1	79.4
Highest Level of Cane in the Chute (cm)	93.6	94.6
Slowest Speed of Carrier Motor (rpm)	31.2	31.0
Fastest Speed of Carrier Motor (rpm)	75.4	74.0
Slowest Speed of Cane Carrier (cm/s)	16.3	16.2
Fastest Speed of Cane Carrier (cm/s)	39.5	38.7

Parameter	MATLAB Implementation of Algorithm	XILINX Implementation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	72.8%	72.6%
Time required to reach cane level at 90 cm (sec)	50.0	49.2
Lowest Level of Cane in the Chute (cm)	86.5	80.5
Slowest Speed of Carrier Motor (rpm)	29.5	29.0
Fastest Speed of Carrier Motor (rpm)	74.2	74.0
Slowest Speed of Cane Carrier (cm/s)	15.4	15.2
Fastest Speed of Cane Carrier (cm/s)	38.4	38.7

Table XVII: Comparison between MATLAB and XILINX Implementation of Case-V of Algorithm

Parameter	MATLAB Implementation of Algorithm	XILINX Implementation of Algorithm
Percentage of time cane level is in between 85 cm to 95 cm	62.7%	62.7%
Time required to reach cane level at 90 cm (sec)	109.6	109.5
Lowest Level of Cane in the Chute (cm)	80.4	78.7
Slowest Speed of Carrier Motor (rpm)	29.5	29.0
Fastest Speed of Carrier Motor (rpm)	74.2	73.0
Slowest Speed of Cane Carrier (cm/s)	15.4	15.2
Fastest Speed of Cane Carrier (cm/s)	38.8	38.2

Table XIX: Comparison between all six cases of MATLAB and XILINX Implementation of Algorithm

Parameter	Case-I	Case-II	Case-III	Case-IV	Case-V	Case-VI
Percentage of time cane level is in between 85 cm to 95 cm	89.1%	69.5%	69.1%	70.2%	62.7%	72.8%
MATLAB Implementation of Algorithm						
XILINX Implementation of Algorithm	84.8%	76.2%	60.0%	62.2%	62.7%	72.6%

REFERENCES
FPGA Implementation of Variable Feed Rate Algorithm for a Three Input Fuzzy Controller to Maintain the Cane Level

1. D.P Kulkarni, Cane Sugar Manufacture, The Sugar technologists association of India, New Delhi, 2002-03.
2. A jha, “India’s sugar policy and world sugar economy” in proc. FAO International sugar conference, Fiji, August 2012.
3. Indian Sugar Mills Association (ISMA), 2010, “Important Events” (online) at: http://www.indiansugar.com/EventDetails.
4. S. Ahmed, Indian Sugar Industry, Centre for management studies, Jamia Milia Islamia, New Delhi, India, Unpublished.
5. Kent, Geoffrey A, “Increasing the capacity of Australian raw sugar factory milling units”, PhD. Dissertation, school of Engineering, Mechanical Engineering Department, James Cook University, Brisbane, 2003.
6. Seturaman, P, “Design of an experimental apparatus to analyze bagasse behaviour in a chute”, M.E Dissertation, Queensland University of Technology, Brisbane, 2012.
7. Murry, C.R, Holt, J. E and Munro, B.M “An investigation of factory feed chutes” proc. Qd. Soc. Sug. Cane Tech. 29th conf., pp. 143, 1962.
8. Yogesh Misra, H R Kamath, “Implementation and Performance Analysis of a Three Inputs Conventional Controller to Maintain the Cane Level During Cane Crushing in FPGA using VHDL” International Journal of Engineering Research & Technology (IJERT) Vol.3, Issue9, September 2014.
9. Yogesh Misra, H R Kamath, “Analysis and Design of a Three Inputs Fuzzy System for Maintaining the Cane Level during Sugar Manufacturing” journal of Automation and Control, 2014, Vol.2, No.3, pp.62-78.
10. Yogesh Misra, H R Kamath, “Development of Variable Feed Rate Algorithm for Three Inputs Fuzzy System to Maintain the Cane Level during Sugar Juice Extraction” Cooperative Sugar Journal, Vol.48, No.7, March 2015.

AUTHORS PROFILE

V. Sai Sri Krishna received his B.Tech degree in Electronics and Communication Engineering from Sri Vasavi Engineering College which is affiliated under JNTUK, Andhra Pradesh, India in 2017. He is pursuing his M.Tech degree in VLSI and Embedded Systems Design specialization in GMRIT which is affiliated under JNTUK, Andhra Pradesh, India. His areas of interest are ASIC design implementations and low power digital VLSI design.

Dr. Yogesh Misra has 24 years of industrial and teaching experience and currently working as Professor in Electronics and Communication Engineering Department of GMR Institute of Technology, Rajam, Andhra Pradesh, India. Dr. Misra has worked in U V Instruments (P) Ltd, a sugar mill automation company for many years. He has authored two books and his research interest includes VLSI and Embedded Computing. Dr. Misra is life member of ISTE.

G. Anantha Rao is completed Ph.D degree in electronics and communications engineering from K L University College of engineering in 2019. He received M.Tech from JNTU, Kakinada in the year 2011. He received B.Tech degree in electronics and communications engineering from JNTU, Hyd. in 2007. He is currently working as Sr. Assistant Professor in the Department of Electronics and Communications Engineering at GMR IT, Rajam, Andhra Pradesh. His research interests are digital signal, image and video processing, and Deep learning.