Applications of magnetic resonance spectroscopy for noninvasive assessment of hepatic steatosis

van Werven, J.R.

Citation for published version (APA):
van Werven, J. R. (2011). Applications of magnetic resonance spectroscopy for noninvasive assessment of hepatic steatosis. Amsterdam.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.
SAMENVATTING EN IMPLICATIES
SAMENVATTING

In dit proefschrift worden verschillende aspecten van de toepassing van 1H-MRS (voornamelijk op 3 Tesla) voor non-invasieve bepaling van leversteatose onderzocht.

In hoofdstuk 1 werd een algemene introductie en overzicht van de inhoud van dit proefschrift gegeven.

In hoofdstuk 2 werd de beschikbare literatuur die ingaat op de diagnostische nauwkeurigheid van echo, CT, MRI en 1H-MRS voor de bepaling van leversteatose samengevat. 46 artikelen werden geïncludeerd. De gemiddelde sensitiviteit was 73,3-90,5% voor echo, 46,1-72,0% voor CT, 82,0-97,4% voor MRI en 72,7-88,5% voor 1H-MRS. De gemiddelde specificiteit was 69,6-85,2% voor echo, 88,1-94,6% voor CT, 76,1-95,3% voor MRI en 92,0-95,7% voor 1H-MRS. De resultaten laten zien dat MRI en 1H-MRS een betere diagnostische nauwkeurigheid hebben over het gehele spectrum van afkapwaarden die werden geanalyseerd.

Wanneer een nieuwe techniek voor het bepalen van leversteatose wordt onderzocht voor klinisch gebruik dan is de reproduceerbaarheid van die techniek zeer belangrijk.

In hoofdstuk 3 werd de reproduceerbaarheid van 1H-MRS voor het meten van de hoeveelheid vet in de lever onderzocht. 1H-MRS bleek zeer reproduceerbaar. Voor de reproduceerbaarheid van 1H-MRS over een aantal weken rapporteerden wij een variatiecoëfficiënt van 9,5% en een intraclass correlatie coëfficiënt van 0,998. De variatiecoëfficiënt in steatotische levers was 4,1% met een intraclass correlatie coëfficiënt van 0,997. De variatiecoëfficiënt van 1H-MRS in de lever op 1 dag was 4,5% met een intraclass correlatie coëfficiënt van 0,999. De variatiecoëfficiënt binnen 2 verschillende plekken in de lever was 14,5%.

In hoofdstuk 4 werden vier verschillende radiologische modaliteiten om leversteatose te meten onderzocht in patiënten die een leverresectie moesten ondergaan. De resultaten werden vergeleken met gouden standaard histopathologie. MRI en 1H-MRS correleerden sterker ($r=0,85, p<0,001$ voor MRI en $r=0,86, p<0,001$ voor 1H-MRS) met de referentie standaard dan echo ($r=0,66, p<0,001$) en CT ($r=-0,55, p<0,001$) en hadden een duidelijk betere diagnostische nauwkeurigheid dan echo en CT. Zowel MRI als 1H-MRS lieten een goede sensitiviteit (90% voor MRI en 91% voor 1H-MRS) als specificiteit (91% voor MRI en 87% 1H-MRS) zien voor de bepaling van leversteatose. Echo en CT bleken minder geschikt voor de kwantitatieve bepaling van leversteatose; sensitiviteit, specificiteit en likelihood ratio’s toonden onvoldoende diagnostische nauwkeurigheid. MRI en 1H-MRS correleerden met histopathologische steatose gradaties:
Geen versus milde ($p=0,001$, $p=0,001$), milde versus matige ($p=0,001$, $p=0,001$) en matige versus ernstige ($p=0,04$, $p=0,01$) steatose. Zodoende concluderen wij dat MRI en 1H-MRS nauwkeuriger zijn voor de diagnose en bepaling van de ernst van de leversteatose dan echo en CT in patiënten die een leverresectie moeten ondergaan.

In de studie uit hoofdstuk 5, onderzochten wij de bepaling van lever steatose in morbide obese patiënten voor en na laparoscopische Roux-en-Y gastric bypass chirurgie met behulp van een open klinische 1 Tesla MR scanner. De bevindingen werden vergeleken met de histopathologische resultaten van intra-operatieve laparoscopische leverbiopten. Wij toonden aan dat het mogelijk was om met 1H-MRS in een open klinische 1 Tesla MR scanner nauwkeurig leversteatose te bepalen in morbide obese patiënten. De nauwkeurigheid van 1H-MRS was 89,0%, met een sensitiviteit van 85% en een specificiteit van 94%. 1H-MRS was significant gecorreleerd aan de histopathologische bepaling van leversteatose ($r=0,85$, $p<0,001$). Na laparoscopische Roux-en-Y gastric bypass chirurgie nam de leversteatose significant af. Drie maanden na de operatie daalde de mediane leversteatose van 5,8% naar 3,1% ($p<0,001$). De prevalentie van leversteatose gemeten met 1H-MRS daalde van 53% naar 32%. Patiënten vertoonden verbetering in relevante klinische parameters die geassocieerd zijn met lever steatose. Bovendien was 1H-MRS op 1 Tesla in staat om onderscheid te maken tussen geen en milde steatose ($p=0,011$), milde van matige steatose ($p<0,001$) en matige van ernstige steatose ($p=0,021$).

In hoofdstuk 6 werd in een ratten model de bepaling van leversteatose met 1H-MRS op een klinische 3.0 Tesla MR scanner onderzocht. Er werd een significante correlatie gevonden tussen 1H-MRS en histopathologische macrovesiculaire steatose ($r=0,93$, $p<0,001$) en tussen 1H-MRS en de biochemisch geanalyseerde (gas chromatografie) totale hoeveelheid vetzuren in de lever ($r=0,94$, $p<0,001$). Er werd verder aangetoond dat 1H-MRS in staat was onderscheid te maken tussen klinisch relevante gradaties van leversteatose (mild, matig en ernstig). Ook werd aangetoond dat de ontwikkeling van leversteatose in ratten levers ten koste gaat van de hoeveelheid water in de lever. Dit heeft als gevolg dat de meest gebruikte 1H-MRS methode om de hoeveelheid vet in de lever te berekenen hergeëvalueerd dient te worden.

In hoofdstuk 7 wordt beschreven dat 3.0 Tesla 1H-MRS in ratten in staat is om non-invasief de totale hoeveelheid onverzadigde en meervoudig onverzadigde vetzuren te detecteren, onafhankelijk van de totale hoeveelheid vet in de lever. Dit correleert sterk met biochemische data afkomstig van gas chromatografie. Gedurende de dieet periodes werd een significante stijging gezien van leversteatose ($p<0,001$).
De totaal onverzadigde vetzuren gemeten met 1H-MRS correleerden met biochemisch bepaalde onverzadigde vetzuren ($r=0.90$, $p<0.001$). De meervoudig onverzadigde vetzuren gemeten met 1H-MRS correleerde sterk met biochemisch bepaalde meervoudig onverzadigde vetzuren ($r=0.91$, $p<0.001$). Het aandel totaal onverzadigde vetzuren ten opzichte van de totale hoeveelheid vetzuren (r_{TUFA}) gemeten met 1H-MRS correlerde sterk met de biochemische hoeveelheid onverzadigde vetzuren ten opzichte van de totale hoeveelheid vetzuren ($r=0.81$, $p<0.001$). Het aandeel meervoudig onverzadigde vetzuren ten opzichte van de totale hoeveelheid vetzuren (r_{PUFA}) gemeten met 1H-MRS correleerde met de biochemische hoeveelheid meervoudig onverzadigde vetzuren ten opzichte van de totale hoeveelheid vetzuren ($r=0.59$, $p=0.005$) en met de biochemische hoeveelheid omega-6 meervoudig onverzadigde vetzuren ten opzichte van de totale hoeveelheid vetzuren ($r=0.73$, $p<0.001$). Verder correleerde de meervoudig onverzadigde vetzuren gemeten met 1H-MRS met histopathologische mate van lobulaire ontsteking in de lever ($r=0.57$, $p=0.001$).

In hoofdstuk 8 werden onverzadigde vetzuren in de lever onderzocht met 3.0 Tesla 1H-MRS in NAFLD patiënten met en zonder diabetes, en de correlatie van de metingen met klinische en metabole parameters. In deze patiënten correleerden onverzadigde vetzuren in de lever met de ASAT/ALAT ratio ($r=-0.46$, $p=0.02$), bloed glucose ($r=0.46$, $p=0.018$), insuline resistentie (HOMA-IR) ($r=0.59$, $p=0.004$) en de hoeveelheid vet in de lever ($r=0.81$, $p<0.001$). In patiënten met diabetes (n=12) correleerden de onverzadigde vetzuren in de lever gemeten met 1H-MRS met alkalische fosfatase ($r=0.72$, $p=0.01$), insuline resistentie (HOMA-IR) ($r=0.73$, $p=0.01$) en met de totale hoeveelheid vet in de lever ($r=0.83$, $p=0.002$). Vergeleken met NAFLD patiënten zonder diabetes, was de hoeveelheid met 1H-MRS gemeten onverzadigde vetzuren in de lever verhoogd in patiënten met diabetes en NAFLD ($p=0.03$).

IMPLICATIES EN TOEKOMSTIG ONDERZOEK:

Onze resultaten laten zien dat MRI en 1H-MRS diagnostisch beter presteren dan echo en CT voor het bepalen van leversteatose over de totale bereik van afkapwaarden die geanalyseerd werden. De bevindingen laten ook zien dat MRI en 1H-MRS beter presteren dan echo en CT voor de detectie van afzonderlijke steatose gradaties, voornamelijk voor milde steatose ($<30\%$ steatose). Dit is relevant voor de klinische praktijk als een nauwkeurige schatting van de hoeveelheid leversteatose nodig is, bijvoorbeeld bij
patiënten die een leverresectie moeten ondergaan of bij het bepalen van de geschiktheid van de lever van potentiële leverdonoren. In (levende donor) lever transplantaties wordt matige en ernstige macrovesiculaire leversteatose als een exclusie criterium beschouwd. Gezien de relatie tussen de groeiende obesitas epidemie en de prevalentie van NAFLD/NASH in zowel volwassenen als kinderen is er een toegenomen behoefte aan non-invasieve monitoring van patiënten die een risico lopen. Het viel ons op dat 1H-MRS in toenemende mate gebruikt word als referentie standaard in plaats van een lever biopsie en dat de gebruikte sequenties erg variabel waren. Daarom adviseren wij dat de rol van 1H-MRS als referentie standaard voor de kwantificatie van leversteatose verder verhelderd dient te worden. Ook bevelen wij standaardisatie aan voor onderzoek naar het gebruik van MRI en 1H-MRS voor leversteatose, inclusief sequenties en histopathologische classificatie.

Bepaling van de reproduceerbaarheid over de tijd is belangrijk om abnormale variaties in longitudinale studies te bepalen. 3.0 Tesla 1H-MRS voor het meten van de hoeveelheid vet in de lever is zeer reproduceerbaar in een spectrum variërend van weinig to veel leversteatose. Dit is vergelijkbaar met reproduceerbaarheid van 1H-MRS op 1.5 Tesla. Onze data kan gebruikt worden leversteatose te monitoren in individuele patiënten of om de grootte van de steekproef te berekenen in interventie studies. Verder zou het interessant zijn om in toekomstig onderzoek te kijken hoe snel de hoeveelheid leversteatose reageert om veranderingen in dieet. Vanwege de heterogeniteit van levervet is de positie van voxels belangrijk bij de uitvoering van 1H-MRS. Onze resultaten laten een verschil zien in de hoeveelheid vet in verschillende delen van de lever (variatie coëfficiënt van 14,5%). Bij herhaalde 1H-MRS metingen van de hoeveelheid vet dient men hiervan bewust te zijn en zou men metingen moeten verrichten in dezelfde voxel posities in de lever.

Gedurende de verschillende studies in dit proefschrift steeg onze ervaring met 1H-MRS. Zodoende zouden wij enkele algemene suggesties willen geven voor toekomstig onderzoek met 1H-MRS. Onze 1H-MRS data werd gecorrigeerd voor T2 relaxatie. Dit gebeurde echter alleen in een vast aantal patiënten en proefdieren of door gebruik te maken van T2-waarden uit de literatuur. Dit negeert de variabiliteit in T2 relaxatie waarden tussen verschillende individuen of proefdieren. Omdat T2 verschillen aanwezig kunnen zijn, zouden nauwkeuriger H-MRS metingen gedaan kunnen worden als de 1H-MRS data gecorrigeerd wordt voor T2 relaxatie in iedere afzonderlijke patiënt of proefdier. Er is steeds meer bewijs dat het gebruik van een STEAM sequentie bij 1H-MRS nauwkeuriger en betrouwbareder is dan een PRESS sequentie. Dit komt voornamelijk door afgenomen T2-weighting in STEAM acquisities.
Chapter 10: Samenvatting en implicaties

We hebben gebruikt gemaakt van een PRESS sequentie die verstoord kan worden door J-coupling effecten. Voor toekomstig onderzoek wordt een STEAM sequentie aanbevolen. Verder werd in onze studies ¹H-MRS verricht zonder respiratoire triggering. Dit is een mogelijke beperking omdat het volume dat gescand wordt door ¹H-MRS vertroebeld wordt in de longitudinale richting door respiratoire excursies van de lever. Hoewel dit meer scan tijd in beslag neemt zou toekomstig onderzoek respiratoire triggering kunnen implementeren om bewegingsartefacten te minimaliseren en de kwaliteit van de ¹H-MR spectra verder te verbeteren. Om de heterogeniteit van levervet te bepalen zou men idealiter multi-voxel metingen of spectroscopische 2D imaging van de hele lever moeten verrichten. Dit zou echter veel tijd in beslag nemen en meer problemen met shimming geven zodat het onpraktisch zou zijn voor de klinische praktijk op dit moment. Voor toekomstig onderzoek zou spectroscopische 2D imaging van de hele lever van waarde kunnen zijn. Hoewel spectroscopische 2D imaging zonder twijfel voordelen heeft, moet men toch beseffen dat, in het perspectief van heterogeniteit, de hoeveelheid lever weefsel dat geanalyseerd wordt door ¹H-MRS ongeveer 400 keer groter is dan de hoeveelheid leverweefsel dat geanalyseerd wordt door een leverbiopsie.

Verder, gezien het feit dat de hoeveelheid water in de lever niet constant is en niet als enige interne referentie gebruikt kan worden, adviseren wij om deze ¹H-MRS methode om de hoeveelheid vet in de lever te berekenen niet meer te gebruiken. Voor toekomstig onderzoek bevelen wij de methode aan die alle vet pieken in de ¹H-MR spectra meeneemt in de berekening in plaats van alleen de vetpiek zichtbaar bij 1.3 ppm. Deze methode houdt rekening met mogelijke variaties in andere vetzuurresonanties in patiënten en proefdieren met een toegenomen hoeveelheid vet in de lever.

Gezien de toenemende prevalentie van obesitas met als gevolg een toenemende prevalentie van NAFLD, is het gebruik van open MR scanners om de hoeveelheid vet in de lever te meten met ¹H-MRS een aantrekkelijke oplossing voor de obese populatie. De bepaling van de hoeveelheid vet in de lever met ¹H-MRS in (mobide) obese patiënten is goed mogelijk in een open 1 Tesla MR scanner en zou overwogen moeten worden bij morbide obese patiënten die niet passen in de standaard cilindrische MR scanners.

Meervoudig onverzadigde vetzuren in de lever gedetecteerd met ¹H-MRS zijn gecorreleerd met de totale hoeveelheid biochemisch bepaalde omega-6 meervoudige onverzadigde vetzuren die geassocieerd zijn met lobulaire inflammatie van de lever. Wij toonden aan dat de bepaling van totaal onverzadigde vetzuren en meervoudig onverzadigde vetzuren met ¹H-MRS mogelijk is op een klinische 3.0T MR scanner en dat de resultaten overeenkomen met biochemische data van gas chromatografie.
De vergelijking tussen de bepaling van levervet samenstelling met 1H-MRS en biochemische controle geeft meer inzicht in de non-invasieve bepaling van de verschillende resonanties in de lever zichtbaar op 1H-MRS. Omega-6 meervoudig onverzadigde vetzuren zijn pro-inflammatory en zouden een belangrijke rol kunnen spelen in de ontwikkeling van NAFLD naar NASH en het onderscheid tussen simpele leververvetting en meer ernstige NASH. Meervoudig onverzadigde vetzuren in de lever zouden een belangrijke biomarker kunnen zijn in dit proces, omdat NASH geïnduceerd in proefdier modellen toegenomen meervoudig onverzadigde vetzuren aantoont en gecorreleerd is met de mate van histopathologische lobulaire inflammatie. Onze experimentele proefdierstudie ondersteunt het gebruik van 3.0T 1H-MRS als non-invasief diagnostisch middel voor de bepaling van levervet samenstelling. In toekomstig onderzoek zou meer kennis van levervet samenstelling verder inzicht kunnen geven in de deels onverklaarde pathofysiologie van NAFLD/NASH.

Met 1H-MRS kunnen correlaties tussen onverzadigde vetzuren in de lever en klinische en metabole parameters geassocieerd met NAFLD/NASH aangetoond worden. Bijvoorbeeld de correlatie met insulineresistentie (HOMA-IR), ASAT/ALAT ratio en de totale hoeveel lever vet. In patiënten met type 2 diabetes zijn de onverzadigde vetzuren in de lever significant hoger dan bij patiënten zonder type 2 diabetes, terwijl voor de totale hoeveelheid vet in de lever geen verschil aangetoond kon worden. Het is bekend dat NASH meer voorkomt bij patiënten met type 2 diabetes. Hypothetisch zou deze toename in onverzadigde vetzuren in de lever in patiënten met type 2 diabetes toegeschreven kunnen worden aan een afname van de omega-3/omega-6 vetzuur ratio met een aanzienlijke accumulatie van omega-6 meervoudig onverzadigde vetzuren. In de steatotische lever is de hoeveelheid levervet hoog genoeg om ook andere resonanties van bijvoorbeeld onverzadigde vetzuren op 5.4 ppm te kunnen detecteren. Onze resultaten tonen aan dat onverzadigde vetzuren ook detecteerbaar zijn in menselijke levers bij een veldsterkte van 3.0 Tesla. Onverzadigde vetzuren in de lever zouden in de toekomst wellicht een voorspellende parameter kunnen zijn om simpele steatose te onderscheiden van NASH. Zowel onze experimentele proefdierstudie als onze studie in mensen ondersteunt het gebruik van in vivo 3.0T 1H-MRS in toekomstig onderzoek als non-invasieve diagnostische techniek voor de bepaling van onverzadigde vetzuren in menselijke levers.
DIT PROEFSCHRIFT TOONT HET VOLGENDE AAN:

1) In tegenstelling tot echo en CT, correleren MRI en 1H-MRS sterk met de histopathologische bepaling van leversteatose en zijn in staat om onderscheid te maken tussen verschillende gradaties van leversteatose. MRI en 1H-MRS kunnen beschouwd worden als eerste keus voor een nauwkeurige bepaling van leversteatose.

2) De reproduceerbaarheid van 1H-MRS om lever vet te meten is hoog. Binnen de lever is er een grotere variatie omdat levervet niet homogeen over de lever verdeeld is. Bij opeenvolgende metingen zou men daarom dezelfde voxel positie moeten kiezen.

3) 1H-MRS sequenties en berekeningen moeten gestandaardiseerd worden alvorens 1H-MRS gebruikt kan worden als de standaard techniek voor de kwantificatie van leversteatose.

4) 3.0T 1H-MRS kan non-invasief (meervoudig) onverzadigde vetzuren in de lever meten en correleert sterk met de biochemische bepaling van deze vetzuren. Dit toont aan dat 1H-MRS in vivo gebruikt kan worden voor non-invasieve bepaling van (meervoudig) onverzadigde vetzuren in de lever.

5) 1H-MRS met een open 1.0T MR scanner voor de bepaling van leversteatose en veranderingen in lever steatose na gastric bypass chirurgie is mogelijk in morbide obese patiënten. 1H-MRS metingen zijn nauwkeurig en correleren met histopathologie. 1H-MRS in een open 1.0T MR scanner zou overwogen moeten worden als morbide obese patiënten niet passen in standaard cilindrische MR scanners.