Determination of the Λ^+_c spin via the reaction $e^+ e^- \to \Lambda^+_c \bar{\Lambda}^-_c$
35 Nanjing University, Nanjing 210093, People's Republic of China
36 Nankai University, Tianjin 300071, People's Republic of China
37 North China Electric Power University, Beijing 102206, People's Republic of China
38 Peking University, Beijing 100871, People's Republic of China
39 Qufu Normal University, Qufu 273165, People's Republic of China
40 Shandong Normal University, Jinan 250014, People's Republic of China
41 Shandong University, Jinan 250100, People's Republic of China
42 Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
43 Shanxi Normal University, Linfen 041004, People's Republic of China
44 Shanxi University, Taiyuan 030006, People's Republic of China
45 Sichuan University, Chengdu 610064, People's Republic of China
46 Soochow University, Suzhou 215006, People's Republic of China
47 South China Normal University, Guangzhou 510006, People's Republic of China
48 Southeast University, Nanjing 211100, People's Republic of China
49 State Key Laboratory of Particle Detection and Electronics, Beijing 100049, People's Republic of China
50 Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
51 Suranaree University of Technology, University Avenue 111, Nakhon Ratchasima 30000, Thailand
52 Tsinghua University, Beijing 100084, People's Republic of China
53 Turkish Accelerator Center Particle Factory Group, (A)Istanbul Bilgi University, 34060 Eyup, Istanbul, Turkey; (B)Near East University, Nicosia, North Cyprus, Mersin 10, Turkey
54 University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
55 University of Groningen, NL-9747 AA Groningen, The Netherlands
56 University of Hawaii, Honolulu, Hawaii 96822, USA
57 University of Jinan, Jinan 250022, People's Republic of China
58 University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
59 University of Minnesota, Minneapolis, Minnesota 55455, USA
60 University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster, Germany
61 University of Oxford, Keble Rd, Oxford, UK OX13RH
62 University of Science and Technology Liaoning, Anshan 114051, People's Republic of China
63 University of Science and Technology of China, Hefei 230026, People's Republic of China
64 University of South China, Hengyang 421001, People's Republic of China
65 University of the Punjab, Lahore-54590, Pakistan
66 University of Turin and INFN, (A)University of Turin, I-10125, Turin, Italy; (B)University of Eastern Piedmont, I-15121, Alessandria, Italy; (C)INFN, I-10125, Turin, Italy
67 Uppsala University, Box 516, SE-75120 Uppsala, Sweden
68 Wuhan University, Wuhan 430072, People's Republic of China
69 Xinyang Normal University, Xinyang 464000, People's Republic of China
70 Zhejiang University, Hangzhou 310027, People's Republic of China
71 Zhengzhou University, Zhengzhou 450001, People's Republic of China

a Also at Bogazici University, 34342 Istanbul, Turkey
b Also at the Moscow Institute of Physics and Technology, Moscow 144170, Russia
c Also at the Novosibirsk State University, Novosibirsk, 630090, Russia
d Also at the NRC "Kurchatov Institute", PNPI, 188300, Gatchina, Russia
e Also at Istanbul Arel University, 34295 Istanbul, Turkey
f Also at Goethe University Frankfurt, 60325 Frankfurt am Main, Germany

Also at Key Laboratory for Particle Physics, Astrophysics and Cosmology, Ministry of Education; Shanghai Key Laboratory for Particle Physics and Cosmology; Institute of Nuclear and Particle Physics, Shanghai 200240, People's Republic of China

Also at Key Laboratory of Nuclear Physics and Ion-beam Application (MOE) and Institute of Modern Physics, Fudan University, Shanghai 200443, People's Republic of China

Also at Harvard University, Department of Physics, Cambridge, MA, 02138, USA

j Currently at: Institute of Physics and Technology, Peace Ave.54,B, Ulaanbaatar 13330, Mongolia
We report on a comparison of two possible \(\Lambda_c^+ \) spin hypotheses, \(J = \frac{1}{2} \) and \(\frac{3}{2} \), via the process \(e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- \), using the angular distributions of \(\Lambda_c^+ \) decays into \(pK^0_s, \Lambda^+, \Sigma^0\pi^+, \) and \(\Sigma^+\pi^0 \). The data were recorded at \(\sqrt{s} = 4.6 \text{ GeV} \) with the BESIII detector and correspond to an integrated luminosity of 587 pb\(^{-1}\). The \(\Lambda_c^+ \) spin is determined to be \(J = \frac{1}{2} \), with this value favored over the \(\frac{3}{2} \) hypothesis with a significance corresponding to more than 6 Gaussian standard deviations.

Since the discovery of the \(\Lambda_c^+ \) particle more than 30 years ago [1], many other charmed baryons have been found and studied by experiments [2]. However, the \(\Lambda_c^+ \) spin quantum number has not been determined conclusively until now. Unlike stable particles, whose spin can be measured with a dedicated detector, e.g. Stern-Gerlach setup, the spin of short-lived \(\Lambda_c^+ \) can be only studied via its decays. Although the spin quantum number can be inferred from the phenomenological Regge trajectory [3–8], the establishment of the \(\Lambda_c^+ \) spin needs a direct experimental measurement, making use of information on the angular distribution for the decayed particles. Thus a large size and clean data events are needed in the analysis. The only previous investigation of this property was performed by the NA32 fixed-target experiment [9]. The charmed baryon \(\Lambda_c^+ \) was produced in the process \(\pi^- \text{Cu} \rightarrow \Lambda_c^+\bar{D}X \), where \(X \) indicates the other particles produced from the interaction, and the decay \(\Lambda_c^+ \rightarrow pK^0_s\pi^+ \) was used to reconstruct the charmed baryon with 160 selected candidate events. The result was compatible with a spin-1/2 assignment, but was not conclusive due to the small sample size.

Currently, the spin of the \(\Lambda_c^+ \) is inferred to be \(\frac{1}{2} \) from the naive quark model [10], in which charmed baryons are built from \(udc \) quarks, and \(\Lambda_c^+ \) is classified into the mixed-symmetric 20 multiplet with spin-1/2 assignment. Theoretically, the \(\Lambda_c^+ \) system is suggested as a unique and excellent laboratory to study heavy quark symmetry and chiral symmetry of the \(u, d \) light quarks [4–6]. A large number of theoretical predictions on the \(\Lambda_c^+ \) properties and decays are made based on the spin-1/2 assumption [4–6]. Although the quark model works well for the ground states [2], experimental confirmation of the \(\Lambda_c^+ \) spin is essential for testing the quark model spin assignment and theoretical predictions. Knowledge of the \(\Lambda_c^+ \) spin is also important for measurement of its intrinsic properties, such as its anomalous magnetic moment [11], magnetic dipole moments [12] and electromagnetic dipole moments [13,14]. Moreover, its decays can be used as a spin polarimeter [15] to determine the c-quark polarization at the Large Hadron Collider. Furthermore the \(\Lambda_c^+ \) spin and polarization are intimately related to the understanding of other charmed baryon properties, e.g. the newly observed \(\Xi^{++} \) [16], which decays into final states with \(\Lambda_c^+ \).

In this Letter, an analysis of the \(\Lambda_c^+ \) spin is performed via the process \(e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- \) at the center-of-mass (CM) energy \(\sqrt{s} = 4.6 \text{ GeV} \). The data accumulated with the BESIII detector corresponds to an integrated luminosity of 587 pb\(^{-1}\). We test the spin-1/2 and 3/2 hypotheses based on the angular distributions of the \(\Lambda_c^+ \) decays into \(pK^0_s, \Lambda^+, \Sigma^0\pi^+ \) and \(\Sigma^+\pi^0 \). The decays are studied by the single-tag method, i.e. either the \(\Lambda_c^+ \) or \(\Lambda_c^- \) from \(e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- \) is reconstructed while the presence of its recoiled \(\Lambda_c^+ \) or \(\Lambda_c^- \) is inferred from kinematics. Throughout the Letter, the charged-conjugation modes are always implied, unless explicitly stated.

The helicity formalism [18,19] is applied in order to examine the implications of the \(\Lambda_c^+ \) spin hypotheses for the joint angular distribution of the charmed baryon and its daughter particles. Figure 1 shows the helicity frame for the \(e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- \) process. The helicity angle, \(\theta_0 \), is defined as the polar angle of the \(\Lambda_c^+ \) in the \(e^+e^- \) CM system, with the \(z \) axis pointing along the positron beam direction. For the \(\Lambda_c^+ \) decay into a spin-\(\frac{1}{2} \) baryon (\(B \)) and a pseudoscalar meson (\(P \)), the \(z' \) axis is defined along the direction of the \(\Lambda_c^+ \) and \(y' \) axis along \(\hat{z} \times \hat{z}' \), and the \(x' \) axis is determined by \(\hat{y}' \times \hat{z}' \). The helicity angle \(\phi_1 \) is defined as the angle between the \(\Lambda_c^+ \) production and decay planes and the helicity angle \(\theta_1 \) is the angle between the \(B \) momentum in the \(\Lambda_c^+ \) rest frame and the \(z' \) axis. The helicity angles for the subsequent baryon \(B \) decays, \(\theta_i, \phi_i \) with \(i > 2 \), can be defined following the same procedure.

The two \(\Lambda_c^+ \) spin hypotheses, \(J = \frac{1}{2} \) or \(\frac{3}{2} \), are tested using \(W^d \), which is the trace of the product of three matrices describing the joint angular distribution of the sequential decays:

\[
W^d = \text{Tr}[\rho_J \cdot T_J \cdot T_B]. \tag{1}
\]

Here \(\rho_J \) is the spin density matrix for a \(\Lambda_c^+ \) baryon produced in the process \(e^+e^- \rightarrow \Lambda_c^+\Lambda_c^- \), \(T_J \) is a matrix describing the \(\Lambda_c^+ \) decay to a baryon \(B \) and a pseudoscalar meson \(P \), and the baryon \(B \) sequentially decaying to the final states is described with a matrix \(T_B \). The full formulas can be found in Refs [20–22]. As an example, the
\(\Lambda_+^+ \to pK_0^0 \), decay matrix, \(T_B \), reduces to the identity matrix, and the joint angular distribution is given by

\[
W^{J=\frac{1}{2}}(\theta_0, \theta_1, \phi_1) \propto 1 + \alpha \cos^2 \theta_0 + P_T \sin \theta_1 \sin \phi_1,
\]

where \(\alpha \) is the angular-distribution parameter of the \(\Lambda_+^+ \), \(\alpha_{pK_0^0} \) the asymmetry parameter for the \(\Lambda_+^+ \to pK_0^0 \) weak decay and \(\xi \) the relative phase between the two independent helicity amplitudes of the produced \(\Lambda_+^+ \).

The joint angular distribution derived for the spin-\(\frac{3}{2} \) hypothesis for \(\Lambda_+^+ \to pK_0^0 \) is [21]

\[
W^{J=\frac{3}{2}}(\theta_0, \theta_1, \phi_1) \propto 40r_0^0 - 10\sqrt{3}r_0^2(3\cos 2\theta_1 + 1) - 60[r_1^2 \sin 2\theta_1 \cos \phi_1 + r_2^2 \sin^2 \theta_1 \cos 2\phi_1] + \sin \theta_1 \alpha_{pK_0^0} 8\sqrt{15}r_1^2 \sin \phi_1 + 90r_1^2 \sin 2\theta_1 \sin 2\phi_1 - 9\sqrt{10}r_1^3(5 \cos 2\theta_1 + 3) \sin \phi_1,
\]

where the real multipole parameters, \(r_{ij} \), are defined in terms of the helicity amplitudes for charmed baryon pair production [21].

The BESIII detector is an approximately cylindrically symmetric detector with 93% coverage of the solid angle around the \(e^+e^- \) interaction point (IP). The components of the apparatus are a helium-based main drift chamber (MDC), a plastic time-of-flight (TOF) system, a 6240-cell CsI(Tl) crystal electromagnetic calorimeter (EMC), a superconducting solenoid providing a 1.0 T magnetic field aligned with the beam axis, and a muon counter with resistive plate chambers as the active element. The momentum resolution for charged tracks in the MDC is 0.5% for a transverse momentum of 1 GeV/c. The photon energy resolution in the EMC is 2.5% in the barrel region and 5.0% in the end-cap region for 1 GeV photons. The combined information of the energy deposit in the MDC and the flight time measured by the TOF is used for particle identification (PID) of charged tracks. More details about the design and performance of the BESIII detector are given in Ref. [23].

We use a large Monte Carlo (MC) simulated sample of \(e^+e^- \) annihilations to understand background and to estimate the detection efficiencies. The event generation is performed by the KKMC generator [24], taking the beam-energy spread and initial-state radiation (ISR) into account. Inclusive MC samples, consisting of generic \(\Lambda_+^+ \Lambda_-^- \) events, \(D_s^+ \bar{D}_s^- + X \) production [25]. ISR production of lower-lying charmonium(-like) \(\psi \) states as well as continuum processes \(e^+e^- \to q\bar{q} (q = u, d, s) \) are generated for a complete description of the background. The decays are generated using EVTGEN [26] with the decay fractions from Ref. [2] as input. The propagation through the detector and material interactions are simulated by using GEANT4 [27].

The \(\Lambda_+^+ \) candidates are reconstructed from the \(pK_0^0 \), \(\Lambda \pi^+, \Sigma^+ \pi^0 \), and \(\Sigma^0 \pi^+ \) final states as done in Refs. [22], [28]. The intermediate states, \(K_0^0 \), \(\Lambda \), \(\Sigma^+ \), \(\Sigma^0 \), and \(\pi^0 \), are reconstructed from the \(\pi^+\pi^- \), \(p\pi^- \), \(p\pi^0 \), \(\gamma\Lambda \) and \(\gamma\gamma \) decays, respectively.

Charged tracks are required to originate from the interaction region, defined by a cylinder with a radius of 1 cm and a distance from the IP along the beam direction of \(\pm10 \) cm, except for those charged tracks coming from \(\Lambda \) and \(K_0^0 \) decays. The polar angle \(\theta \) of each track with respect to the beam direction is required to fulfill \(|\cos \theta| < 0.93 \). Protons are identified by requiring the PID likelihood \(\mathcal{L} \) to satisfy \(\mathcal{L}(p) > \mathcal{L}(K) \) and \(\mathcal{L}(p) > \mathcal{L}(\pi) \), while charged pions are identified using \(\mathcal{L}(\pi) > \mathcal{L}(K) \), except for those from \(\Lambda \) and \(K_0^0 \) decays.

Clusters in the EMC with no associated charged tracks are identified as photon candidates if the energy deposit in the barrel region (\(|\cos \theta| < 0.80 \)) is larger than 25 MeV, or if in the endcap region (0.86 < \(|\cos \theta| < 0.92 \)) it is larger than 50 MeV. To suppress background from electronic noise and coincidental EMC showers, the difference between the event start time and EMC signal is required to be smaller than 700 ns. The \(\pi^0 \) candidates are reconstructed from photon pairs with an invariant mass, \(M(\gamma\gamma) \), which satisfies 115 < \(M(\gamma\gamma) \) < 150 MeV/c\(^2\). To improve the momentum resolution, a mass-constrained fit to the \(\pi^0 \) nominal mass is applied to the photon pairs and the resulting \(\pi^0 \) energy and momentum is used for the further analysis.

The \(\Lambda(K_0^0) \) candidates are formed by combining the final states \(p\pi^- (\pi^+\pi^-) \) with a displacement less than 20 cm from the IP along the electron beam direction. The \(\chi^2 \) of the vertex fit is required to be smaller than 100 and the distance from the IP must be larger than twice the vertex resolution. The momenta of the daughter particles obtained from the fit are used in the further analysis. The charged pions associated with the \(\Lambda \) and \(K_0^0 \) candidates are not subjected to any PID requirement, while proton PID is applied in order to improve the signal significance. To select \(K_0^0 \), \(\Lambda \), \(\Sigma^0 \), and \(\Sigma^+ \) candidates, we require 487 < \(M(\pi^+\pi^-) \) < 511 MeV/c\(^2\), 1111 < \(M(p\pi^-) \) < 1121 MeV/c\(^2\), 1179 < \(M(\Lambda\gamma) \) < 1203 MeV/c\(^2\), and 1176 < \(M(p\pi^0) \) < 1200 MeV/c\(^2\) respectively. These requirements correspond to windows of approximately \(\pm3 \) standard deviations around the nominal masses. In order to remove \(pK_0^0 \), \(K_0^0 \to \pi^0 \pi^0 \) background in the \(\Sigma^+ \pi^0 \) sample, the mass of the \(\pi^0 \pi^0 \) pair is...
required to lie outside the range (400, 550) MeV/c².

The \(\Lambda_c^+ \) candidates in each decay mode are selected by requiring the beam-constrained mass \(M_{BC} \equiv \sqrt{E_{\text{beam}}^2 - p_{\Lambda_c^+}^2} \) to be within the range (2.278, 2.294) GeV/c², where \(E_{\text{beam}} \) is the beam energy and \(p_{\Lambda_c^+} \) is the measured \(\Lambda_c^+ \) momentum in the CM system of the \(e^+e^- \) collision. The numbers of reconstructed \(\Lambda_c^+ \) candidates are 1227, 696, 614 and 412 for the \(pK^0_S, \Lambda\pi^+, \Sigma^0\pi^+ \) and \(\Sigma^+\pi^0 \) modes, respectively. If multiple candidates are found in a single event, we keep the one with the smallest energy difference \(|\Delta E| \), where \(\Delta E \equiv E_{\Lambda_c^+} - E_{\text{beam}} \) and \(E_{\Lambda_c^+} \) is the total measured energy of the \(\Lambda_c^+ \) candidate. To improve the signal purity, \(\Delta E \) is required to be smaller than three times the resolution of energy difference distribution. The \(M_{BC} \) distributions of the different \(\Lambda_c^+ \) decay modes are shown in Fig. 2. The \(\Lambda_c^+ \) candidates appear as a peak at the nominal \(\Lambda_c^+ \) mass whereas the backgrounds, studied in inclusive MC samples, have smooth \(M_{BC} \) distributions that are modeled with an Argus function [29]. The background level in the signal region can be estimated from sidebands, defined by \(M_{BC} \) values within the range (2.250, 2.270) GeV/c². Table I lists the numbers of observed \((N^{\text{obs}}) \) and normalized background events \((N^{\text{bg}}) \) in the \(\Lambda_c^+ \) signal region, where \(N^{\text{bg}} \) is estimated from the sideband.

The \(\Lambda_c^+ \) spin-\(J \) hypotheses are tested using a likelihood function, which is defined for a given process \(i \) as

\[
L_i(N^i) = \prod_{k=1}^{N^i} \frac{1}{C_i} W^i(\theta_0^k, \phi_0^k, \theta_1^k, \phi_1^k, ..., \theta_n^k, \phi_n^k),
\]

where \(N^i \) is the number of events of ith decay mode defined in Table I, \((\theta_0^k, \theta_1^k, \phi_0^k, \phi_1^k, ..., \phi_n^k) \) are the helicity angles for the \(k \)-th event with \(n \)-step \(\Lambda_c^+ \) decays, and \(C_i = \int W^i(\theta_0, \phi_0, \theta_1, \phi_1, ..., \theta_n, \phi_n)d\theta_0 d\phi_0 d\theta_1 d\phi_1 ... d\theta_n d\phi_n \) is a normalization factor, calculated using a large phase-space MC sample.

The physics parameters are obtained by applying a simultaneous fit to the joint angular distribution of the selected events in the signal region. The background contributions are subtracted from the log-likelihood values using the weighted sideband events. The net log-likelihood for a given process \(i \) is defined by

\[
\ln L_i = \ln L_i^0 + \omega \ln L_i^{BC},
\]

where \(L_i^0 \) is the number of selected data (background) events. The background weight, \(\omega \), is the ratio between the number of background events in the signal region, and the number of sideband events. In estimating the background weight, its line shape in the fit is taken as an Argus function.

The MINUIT [30] package is used to minimize the objective function, \(S = -\sum_i \ln L_i \), in the simultaneous fit to the \(pK^0_S, \Lambda\pi^+, \Sigma^0\pi^+ \), and \(\Sigma^+\pi^0 \) decay modes. The decay asymmetry parameters for the spin-\(\frac{1}{2} \) hypothesis, e.g. \(\alpha(pK^0_S) \) in Eq. (5) are constrained to the range \([-1, 1]\) in the simultaneous fit. For the spin-\(\frac{1}{2} \) hypothesis, the asymmetry parameters in the fit are constrained to be in the physical region \([\frac{1}{2}, \frac{3}{2}]\) for each mode, i.e. \(-\frac{1}{2} \leq |\alpha(pK^0_S)| \leq \frac{3}{2} \). The relative phase between the helicity amplitudes are fixed to the expected values near threshold [21], whereas the moduli of the helicity amplitudes in \(r_{[M]} \) are obtained from the fit. The minimum log-likelihood, given by \(-\sum_i \ln L_i \), is determined to be \(-45.18\) for the spin-\(\frac{1}{2} \) hypothesis and \(-21.50\) for the spin-\(\frac{3}{2} \) hypothesis. Hence, our data favors the spin-\(\frac{1}{2} \) hypothesis.

The distribution of estimates of the expectation value \(\langle \sin 2\theta_1 \cos \phi_1 \rangle \) moment, an average observed in each bin, is a useful observable to illustrate the different behaviour expected for the two hypotheses. Figure 3 shows the first moment of the \(\sin 2\theta_1 \cos \phi_1 \) distribution under the two spin hypotheses for the all-mode-combined events, and the projections of the two fits suggest that the data favors the spin-\(\frac{1}{2} \) to the spin-\(\frac{3}{2} \) hypothesis.

In order to quantify the discriminating power of the test, we study the likelihood ratio distribution, \(t = \frac{L_i^0}{L_i^{BC}} \).
The significance to accept the spin-$\frac{1}{2}$ hypothesis can be affected by the systematic uncertainties. Hence, our data favor the spin-$\frac{3}{2}$ hypothesis.

The efficiencies of the tracking and PID for charged tracks and their dependence on transverse momentum are performed under the spin-$\frac{3}{2}$ (right peak) and spin-$\frac{1}{2}$ (left peak) hypotheses. The curve is the Gaussian-fitted distribution to the left peak. The t value obtained from experimental data is indicated by the vertical bar.

The significance of spin-$\frac{1}{2}$ versus the spin-$\frac{3}{2}$ hypothesis determined with the toy MC method is 6.07σ.

Table II. Systematic uncertainties for estimating the significance of spin-$\frac{1}{2}$ versus the spin-$\frac{3}{2}$ hypothesis determined with the toy MC method

Source	Significance
Nominal fit	6.07σ
Tracks and PID Photon	6.16σ
π^0 (combined)	6.07σ
Λ	6.37σ
Sideband window	6.26σ
Signal window	5.92σ
$\omega_{\gamma\gamma}$	5.77σ
$M_{\omega\omega}$ veto	6.37σ

and polar angle are measured using a control data sample $J/\psi \to p\bar{p}\pi^+\pi^-$ decays. The uncertainties associated with the detection efficiency of the radiative photon in $\Sigma^0 \to \gamma \Lambda$ decays are assessed with a control sample of $J/\psi \to \pi^+\pi^-\pi^0, \pi^0 \to \gamma\gamma$ decays. The efficiency differences between data and MC simulations are determined to be 0.5% and 1.5% in the barrel and endcap region, respectively.

The difference between data and MC simulation of the π^0 reconstruction efficiency in the $\Lambda^+ \to \Sigma^+\pi^0$ decay, and its dependence on momentum, is studied using the processes $\psi(3686) \to \pi^0\pi^0 J/\psi$ and $e^+e^- \to \pi^0\omega$ at $\sqrt{s} = 3773$ MeV. The Λ reconstruction efficiency is studied as a function of momentum and polar angle in the reaction $\Lambda^+ \to \Lambda + X$. To take into account the correlations between the different sources of correction and uncertainty, we perform an overall weighting of MC events in the fit according to these efficiency criteria as applied to the data events. Each MC subset has the same size as the data sample and is assumed to have the same amount of background. The test statistic t distributions are shown in Fig. 1 for about 20,000 MC simulations. The simulations for the right peak ($t > 0$) are performed under the $J = \frac{3}{2}$ hypothesis, while those in the left peak ($t < 0$) correspond to the $J = \frac{1}{2}$ hypothesis. It is clear that the t-distributions of the two hypotheses are well separated, and can be discriminated between by setting an acceptance criterion of $t \geq 0$ for $J = \frac{3}{2}$ and $t < 0$ for $J = \frac{1}{2}$. Since the t-value from the data fulfills $t \geq 0$, as shown in Fig. 1, it is inconsistent with the spin-$\frac{3}{2}$ hypothesis. Hence, our data favor the spin-$\frac{1}{2}$ assignment. The statistical significance for the spin-$\frac{3}{2}$ over spin-$\frac{1}{2}$ hypothesis is estimated approximately with $(t_{\text{data}} - t) / \sigma(t)$, where t and $\sigma(t)$ are the mean and standard deviation for the ensemble of MC simulations under the spin-$\frac{3}{2}$ hypothesis with $t < 0$. We find that the spin-$\frac{3}{2}$ hypothesis can be rejected with a significance of 6.07σ in favor of the spin-$\frac{1}{2}$ hypothesis.

The significance to accept the spin-$\frac{3}{2}$ hypothesis over the spin-$\frac{1}{2}$ hypothesis can be affected by the systematic sources listed in Table I. We estimate these systematic variations with the same MC method that was used for the likelihood ratio. The results are listed in Table I.
corrections. We determine the significance of spin-$\frac{1}{2}$ hypothesis to be 6.16\sigma with this approach.

The systematic uncertainties due to the event selection criteria of the ΔE, signal and sideband events are estimated by varying their requirements by 1 MeV. The uncertainty due to the $M_{\text{c}+\pi^0}$ rejection criterion in the $\Lambda_c^+ \rightarrow \Sigma^+ \pi^0$ channel is checked with a tight and loose requirement, i.e., $M_{\text{c}+\pi^0} \in [0.42, 0.53]\text{GeV}/c^2$ and [0.38, 0.57]\text{GeV}/c^2. The potential bias due to the sideband scale factor, ω^{hs}, is evaluated through varying the parameters by σ for the Argus fit function. The ranges of significance estimation are given in Table I. The resulting significance comparing the two hypothesis tests are found to be 6.07\sigma with a systematic boundary (5.77 \sim 6.45)\sigma, where the uncertainties correspond to the smallest and largest values listed in Table [I].

In conclusion, we have compared the two spin hypotheses $\frac{1}{2}$ and $\frac{3}{2}$ for the Λ_c^+ baryon by studying the process $e^+e^- \rightarrow \Lambda_c^+ \Lambda_c^-$, using 587 pb$^{-1}$ of BESIII data collected at $\sqrt{s} = 4.6$ GeV. The analysis considered the joint angular distribution of the production and decay modes $\Lambda_c^+ \rightarrow pK_S^0$, $\Lambda_c^+ \pi^-$, $\Sigma^0 \pi^+$ and $\Sigma^+ \pi^0$. We found that the spin of $\frac{1}{2}$ hypothesis is preferred over the $\frac{3}{2}$ with a significance of about 6\sigma. Hence, we conclude the spin of the Λ_c^+ baryon to be $\frac{1}{2}$, consistent with the expectation of the naive quark model. Since the Λ_c^+ is the lightest charmed baryon, this experimental determination of its spin is also a cornerstone in the extraction of the properties of heavier charmed and beauty baryons whose decay chains include this particle.

The BESIII collaboration thanks the staff of BEPCII and the IHEP computing center for their strong support. This work is supported in part by National Key Basic Research Program of China under Contract No. 2015CB857600, 2020YFA0406300, 2020YFA0406400; National Natural Science Foundation of China (NSFC) under Contracts Nos. 11875262, 11835012, 11625523, 11635010, 11735014, 11822506, 11835012, 11935015, 11935016, 11935018, 11961141012; the Chinese Academy of Sciences (CAS) Large-Scale Scientific Facility Program; Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contracts Nos. U2032110, U1732263, U1832207, U1832107; CAS Key Research Program of Frontier Sciences under Contracts Nos. QYZDJ-SSW-SLH003, QYZDJ-SSW-SLH040; 100 Talents Program of CAS; Fundamental Research Funds for the Central Universities; INPAC and Shanghai Key Laboratory for Particle Physics and Cosmology; ERC under Contract No. 758462; German Research Foundation (DFG) under Contracts Nos. Collaborative Research Center CRC 1044, FOR 2359; Istituto Nazionale di Fisica Nucleare, Italy; Ministry of Development of Turkey under Contract No. DPT2006K-120470; National Science and Technology fund; STFC (United Kingdom); The Knut and Alice Wallenberg Foundation (Sweden) under Contract No. 2016.0157; The Royal Society, UK under Contracts Nos. DH140054, DH160214; The Swedish Research Council; U. S. Department of Energy under Contracts Nos. DE-FG02-05ER41374, DE-SC-0012069; Olle Engkvist Foundation under Contract No. 200-0605.

[1] J. C. Anjos, J. A. Appel, A. Bean, S. B. Bracker, T. E. Browder, L. M. Cremaldi, et al. (Tagged Photon Spectrometer Collaboration), Phys. Rev. Lett. 60, 1379 (1988).
[2] P. A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
[3] G. F. Chew and S. C. Frautschi, Phys. Rev. Lett., 8, 41 (1962).
[4] H. Y. Cheng, Front. Phys. (Beijing) 10, 101406 (2015).
[5] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, Rept. Prog. Phys. 80, 076201 (2017).
[6] E. Klempt and J. M. Richard, Rev. Mod. Phys. 82, 1095-1153 (2010).
[7] B. W. Lee and R. F. Sawyer, Phys. Rev. 127, 2266-2273 (1962).
[8] P.D.B. Collins, An Introduction to Regge Theory and High-Energy Physics, p.133.
[9] M. Jezabek, K. Rybicki and R. Rylko, Phys. Lett. B 286, 175 (1992).
[10] M. Gell-Mann, Phys. Lett. 8, 214 (1964).
[11] V. G. Baryshevsky, arXiv:1504.06702 [hep-ph].
[12] A. S. Fomin, A. Y. Korchin, A. Stocchi, O. A. Bezshyyko, L. Burnistrov, S. P. Fomin, I. V. Kirillin, L. Massacrier, A. Natochii and P. Robbe, et al. JHEP 08, 120 (2017).
[13] E. Bagli, L. Bandiera, G. Cavoto, V. Guidi, L. Henry, D. Maragotto, F. Martinez Vidal, A. Mazzolari, A. Merli and N. Neri, et al. Eur. Phys. J. C 77, 828 (2017); erratum: Eur. Phys. J. C 80, 680 (2020).
[14] V. G. Baryshevsky, Eur. Phys. J. C 79, 350 (2019).
[15] M. Galanti, A. Giammanco, Y. Grossman, Y. Kats, E. Stamou and J. Zupan, JHEP 11, 067 (2015).
[16] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 119, 112001 (2017).
[17] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 44, no.4, 040001 (2020).
[18] M. Jacob and G. C. Wick, Ann. Phys. (Paris) 7, 404 (1959).
[19] S. U. Chung, CERN Yellow Report No. CERN 71-8 (1971).
[20] Hong Chen and Rong-Gang Ping, Phys. Rev. D 99, 114027 (2019).
[21] E. Perotti, G. Fäldt, A. Kupsc, S. Leupold and J. J. Song, Phys. Rev. D 99, 056008 (2019).
[22] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 100, 072004 (2019).
[23] M. Ablikim et al., Nucl. Instrum. Meth. Phys. Res. Sect. A 614, 345 (2010).
[24] S. Jadach, B. F. L. Ward and Z. Was, Phys. Rev. D 63, 113009 (2001).
[25] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011).
[26] D. J. Lange, Nucl. Instrum. Meth. A 462, 152 (2001); R. G. Ping, Chin. Phys. C 32, 599 (2008).
[27] S. Agostinelli et al. (GEANT Collaboration), Nucl. Instrum. Meth. A 506, 250 (2003); J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).
[28] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 116, 052001 (2016).
[29] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990).
[30] F. James, CERN Program Library Long Writeup D 506 (1998).
[31] T. D. Lee and C. N. Yang, Phys. Rev. 109, 1755 (1958).
[32] R. Aaij et al. (LHCb Collaboration), Phys. Rev. D 92, 011102 (2015).
[33] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 89, 071101 (2014).
[34] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. D 92, 052003(R) (2015); 93, 039906(E) (2015).
[35] M. Ablikim et al. (BESIII Collaboration), Phys. Rev. Lett. 121, 062003 (2018).