Total Betti numbers of modules of finite projective dimension

By Mark E. Walker

Abstract

The Buchsbaum-Eisenbud-Horrocks Conjecture predicts that the i^{th} Betti number $\beta_i(M)$ of a nonzero module M of finite length and finite projective dimension over a local ring R of dimension d should be at least $\binom{d}{i}$. It would follow from the validity of this conjecture that $\sum_i \beta_i(M) \geq 2^d$. We prove the latter inequality holds in a large number of cases and that, when R is a complete intersection in which 2 is invertible, equality holds if and only if M is isomorphic to the quotient of R by a regular sequence of elements.

1. Introduction

We recall a long-standing conjecture (see [3, 1.4] and [6, Prob. 24]):

Conjecture (Buchsbaum-Eisenbud-Horrocks Conjecture). Let R be a commutative Noetherian ring such that $\text{Spec}(R)$ is connected, and let M be a nonzero, finitely generated R-module of finite projective dimension. For any finite projective resolution $0 \rightarrow P_d \rightarrow \cdots \rightarrow P_1 \rightarrow P_0 \rightarrow M \rightarrow 0$ of M, we have

$$\text{rank}_R(P_i) \geq \binom{c}{i},$$

where $c = \text{height}_R(\text{ann}_R(M))$, the height of the annihilator ideal of M.

The validity of the Buchsbaum-Eisenbud-Horrocks Conjecture would imply that the “total rank” of any projective resolution of M is at least 2^c. In this paper, we prove this latter inequality holds in a large number of cases:

Theorem 1. Assume R, M, and P are as in the Buchsbaum-Eisenbud-Horrocks Conjecture and, in addition, that

Keywords: Betti numbers, Buchsbaum-Eisenbud-Horrocks Conjecture
AMS Classification: Primary: 13D02.
This work was partially supported by grant #318705 from the Simons Foundation.
© 2017 Department of Mathematics, Princeton University.
(1) \(R \) is locally a complete intersection and \(M \) is 2-torsion free, or
(2) \(R \) contains \(\mathbb{Z}/p \) as a subring for an odd prime \(p \).

Then \(\sum_i \text{rank}_R(P_i) \geq 2^c \), where \(c = \text{height}_R(\text{ann}_R(M)) \).

Theorem 2 below is the special case of Theorem 1 in which we assume \(R \) is a local ring and \(M \) has finite length. We record it as a separate theorem since Theorem 1 follows immediately from it and also because in the local situation we can say a bit more.

For a local ring \(R \) and a finitely generated \(R \)-module \(M \), let \(\beta_i(M) \) be the \(i \)th Betti number of \(R \), defined to be the rank of the \(i \)th free module in the minimal free resolution of \(M \).

Theorem 2. Assume \((R, \mathfrak{m}, k)\) is a local (Noetherian, commutative) ring of Krull dimension \(d \) and that \(M \) is a nonzero \(R \)-module of finite length and finite projective dimension. If either
(1) \(R \) is the quotient of a regular local ring by a regular sequence of elements and 2 is invertible in \(R \), or
(2) \(R \) contains \(\mathbb{Z}/p \) as a subring for an odd prime \(p \),
then \(\sum_i \beta_i(M) \geq 2^d \).

Moreover, if the assumptions in (1) hold and \(\sum_i \beta_i(M) = 2^d \), then \(M \) is isomorphic to the quotient of \(R \) by a regular sequence of \(d \) elements.

To see that Theorem 1 follows from Theorem 2, with the notation of the first theorem, let \(\mathfrak{p} \) be a minimal prime containing \(\text{ann}_R(M) \) of height \(c \). Then \(\dim(R_\mathfrak{p}) = c, M_\mathfrak{p} \) has finite length, and \(\beta_i(M_\mathfrak{p}) \leq \text{rank}_R(P_i) \) for all \(i \). Moreover, if \(M \) is 2-torsion free, then 2 \(\not\in \mathfrak{p} \) and hence is invertible in \(R_\mathfrak{p} \).

I thank Seth Lindokken, Michael Brown, Claudia Miller, Peder Thompson and Luchezar Avramov for useful conversations about this paper.

2. Complete intersections of residual characteristic not 2

In this section we prove part (1) of Theorem 2 and the assertion concerning when the equation \(\sum_i \beta_i(M) = 2^d \) holds; see Theorem 2.4 below.

For any local ring \((R, \mathfrak{m}, k)\), let \(\text{Perf}^{\mathfrak{fl}}(R) \) be the category of bounded complexes of finite rank free \(R \)-modules \(F \) such that \(H_i(F) \) has finite length for all \(i \), and define \(K^{\mathfrak{fl}}_0(R) \) to be the Grothendieck group of \(\text{Perf}^{\mathfrak{fl}}(R) \). Recall that \(K^{\mathfrak{fl}}_0(R) \) is generated by isomorphism classes of objects of \(\text{Perf}^{\mathfrak{fl}}(R) \), modulo relations coming from short exact sequences and quasi-isomorphisms.

Let \(\psi^2 : K^{\mathfrak{fl}}_0(R) \to K^{\mathfrak{fl}}_0(R) \) be the 2nd Adams operation, as defined by Gillet-Soulé [4]. Gillet-Soulé’s definition involves the Dold-Kan correspondence between complexes and simplicial modules, but if 2 is invertible in \(R \), then \(\psi^2 \) admits a simpler description: For \(F \in \text{Perf}^{\mathfrak{fl}}(R) \), let \(T^2(F) \) denote its second tensor power \(F \otimes_R F \) endowed with the action of the symmetric group \(\Sigma_2 = \langle \tau \rangle \).
TOTAL BETTI NUMBERS OF MODULES OF FINITE PROJECTIVE DIMENSION 643

given by
\[\tau \cdot (x \otimes y) = (-1)^{|x||y|} y \otimes x. \]
Since \(\frac{1}{2} \in R \), we have a direct sum decomposition \(T^2(F) = S^2(F) \oplus \Lambda^2(F) \),
where \(S^2(F) := \ker(\tau - \text{id}) \) and \(\Lambda^2(F) := \ker(\tau + \text{id}) \). By [1, 6.14] we have
\[(2.1) \quad \psi^2[F] = [S^2(F)] - [\Lambda^2(F)] \in K^0(R). \]

Let \(\ell_R \) denote the length of an \(R \)-module, and write \(\chi : K^0(R) \to \mathbb{Z} \) for the Euler characteristic map: \(\chi([F]) = \sum_i (-1)^i \ell_R H_i(F) \).

Proposition 2.2 (Gillet-Soulé; see [4, 7.1]). If \(R \) is a local complete intersection of dimension \(d \), then \(\chi \circ \psi^2 = 2^d \cdot \chi \).

Definition 2.3. A local ring \((R, m, k) \) of dimension \(d \) such that 2 is invertible in \(R \) will be called a quasi-Roberts ring if there we have an equality of maps \(\chi \circ \psi^2 = 2^d \cdot \chi \).

Theorem 2.4. Let \((R, m, k) \) be a local ring of dimension \(d \) such that 2 is invertible in \(R \). If \(R \) is a quasi-Roberts ring, then for any nonzero \(R \)-module \(M \) of finite length and finite projective dimension, we have \(\sum_i \beta_i(M) \geq 2^d \).

Moreover, if \(\sum_i \beta_i(M) = 2^d \), then \(M \cong R/(y_1, \ldots, y_d) \) for some regular sequence of elements \(y_1, \ldots, y_d \in m \).

Proof. Let \(F \) be the minimal free resolution of \(M \), so that \(\chi(F) = \ell_R(M) \) and \(\text{rank}_R(F_i) = \beta_i(M) \). Using (2.1) we get
\[(2.5) \quad 2^d \cdot \ell_R(M) = \chi(\psi^2(F)) = \sum_i (-1)^i \ell_R H_i(S^2(F)) - \sum_j (-1)^j \ell_R H_j(\Lambda^2(F)) \]
\[\leq \sum_{i \text{ even}} \ell_R H_i(S^2(F)) + \sum_{i \text{ odd}} \ell_R H_i(\Lambda^2(F)). \]

Since \(S^2(F) \) and \(\Lambda^2(F) \) are direct summands of \(F \otimes_R F \),
\[(2.6) \quad \sum_{i \text{ even}} \ell_R H_i(S^2(F)) + \sum_{i \text{ odd}} \ell_R H_i(\Lambda^2(F)) \leq \sum_i \ell_R H_i(F \otimes_R F). \]

For each \(i \), \(H_i(F \otimes_R F) \cong H_i(F \otimes_R M) \) is a subquotient of \(F_i \otimes_R M \) and thus
\[(2.7) \quad \ell_R H_i(F \otimes_R M) \leq \ell_R H_i(F \otimes_R F) = \text{rank}(F_i) \cdot \ell_R(M) = \beta_i(M) \cdot \ell_R(M). \]
Putting the inequalities (2.5), (2.6), and (2.7) together yields
\[2^d \cdot \ell_R(M) \leq \ell_R(M) \cdot \sum_i \beta_i(M), \]
and since \(\ell_R(M) > 0 \), we conclude \(\sum_i \beta_i(M) \geq 2^d \).

Now suppose \(\sum_i \beta_i(M) = 2^d \). Then the inequalities (2.5), (2.6), and (2.7) must actually be equalities, which means that \(H_i(S^2(F)) = 0 \) for all odd \(i \), \(H_j(\Lambda^2(F)) = 0 \) for all even \(j \), and \(F \otimes_R M \) has trivial differential. Since
$H_0(\Lambda^2(F)) \cong \Lambda^2(M)$ is the classical second exterior power, M must be cyclic, i.e., of the form R/I for some ideal I. Since $F \otimes_R R/I$ has trivial differential, $I/I^2 \cong \text{Tor}^1_R(R/I, R/I)$ is free as an R/I-module, and thus a result of Ferrand and Vasconcelos (see [2, 2.2.8]) gives that I is generated by a regular sequence of elements. □

3. Rings of odd characteristic

In this section we prove part (2) of Theorem 2. The main idea is to replace the Euler characteristic χ occurring in the proof of part (1) with the Dutta multiplicity.

Definition 3.1. Assume (R, m, k) is a complete local ring of dimension d that contains \mathbb{Z}/p as a subring for some prime p and that k is a perfect field. For $F \cdot \in \text{Perf}^{fl}(R)$, define

$$\chi_{\infty}(F) = \lim_{e \to \infty} \frac{\chi(\varphi^e F)}{p^d e},$$

where φ^e denotes extension of scalars along the e^{th} iterate of the Frobenius endomorphism of R. The limit is known to exist by, e.g., [9, 7.3.3].

Proof of Theorem 2 part (2). There is a faithfully flat map $(R, m, k) \to (R', m', k')$ of local rings such that $m \cdot R' = m'$, R' is complete and k' is algebraically closed; see [5, 0.10.3.1]. Letting $M' := M \otimes_R R'$, we have that M' is a nonzero R'-module of finite length and finite projective dimension, $\beta^R_i(M') = \beta^R_i(M)$ for all i, and $\dim(R') = \dim(R)$. We may therefore assume R is complete with algebraically closed residue field.

Let F be the minimal free resolution of M. Since R is complete with perfect residue field, a result of Roberts [9, 7.3.5] gives

$$\chi_{\infty}(F) > 0$$

and a result of Kurano-Roberts [7, 3.1] gives (using (2.1))

$$\chi_{\infty}(S^2(F)) - \chi_{\infty}(\Lambda^2(F)) = \chi_{\infty}(\psi^2(F)) = 2^d \cdot \chi_{\infty}(F).$$

For each $e \geq 0$, we have $\varphi^e S^2(F) \cong S^2(\varphi^e F)$ and $\varphi^e \Lambda^2(F) \cong \Lambda^2(\varphi^e F)$, and thus

$$\chi_{\infty}(S^2(F)) = \lim_{e \to \infty} \frac{1}{p^d e} \sum_i (-1)^i \ell_R H_i(S^2(\varphi^e F)),$$

$$\chi_{\infty}(\Lambda^2(F)) = \lim_{e \to \infty} \frac{1}{p^d e} \sum_i (-1)^i \ell_R H_i(\Lambda^2(\varphi^e F)).$$
As in the proof of Theorem 2.4, for a fixed e, we have
\[
\frac{1}{p^{de}} \sum_i (-1)^i \ell_R H_i(S^2(\varphi^e F)) - \frac{1}{p^{de}} \sum_i (-1)^i \ell_R H_i(A^2(\varphi^e F)) \\
\leq \sum_j \ell_R H_j(T^2(\varphi^e F)).
\]

By [8, 1.7], the complex $\varphi^e(F)$ is the minimal free resolution of the finite length module $\varphi^e(M)$ for each $e \geq 0$. As in the proof of Theorem 2.4, for each i, we have
\[
\ell_R H_i(T^2(\varphi^e F)) \leq \text{rank}(\varphi^e F_i) \cdot \ell_R(\varphi^e M) = \beta_i(M) \cdot \chi(\varphi^e F).
\]

We have proven that
\[
\frac{1}{p^{de}} \sum_i (-1)^i \ell_R H_i(\varphi^e S^2(F)) - \frac{1}{p^{de}} \sum_i (-1)^i \ell_R H_i(\varphi^e A^2(F)) \\
\leq \frac{1}{p^{de}} \chi(\varphi^e F) \cdot \sum_i \beta_i(M)
\]
holds for each $e \geq 0$. Taking limits and using (3.3) gives
\[
2^d \cdot \chi_\infty(F) \leq \chi_\infty(F) \cdot \sum \beta_i(M).
\]
Since $\chi_\infty(F) > 0$ by (3.2), we conclude $\sum \beta_i(M) \geq 2^d$. \qed

References

[1] M. K. Brown, C. Miller, P. Thompson, and M. E. Walker, Cyclic Adams operations, *J. Pure Appl. Algebra* 221 no. 7 (2017), 1589–1613. MR 3614968. Zbl 1360.19006. https://doi.org/10.1016/j.jpaa.2016.12.018.

[2] W. Bruns and J. Herzog, *Cohen-Macaulay Rings*, Cambridge Stud. Adv. Math. 39, Cambridge University Press, Cambridge, 1993. MR 1251956. Zbl 0788.13005.

[3] D. A. Buchsbaum and D. Eisenbud, Algebra structures for finite free resolutions, and some structure theorems for ideals of codimension 3, *Amer. J. Math.* 99 no. 3 (1977), 447–485. MR 0453723. Zbl 0373.13006. https://doi.org/10.2307/2373926.

[4] H. Gillet and C. Soulé, Intersection theory using Adams operations, *Invent. Math.* 90 no. 2 (1987), 243–277. MR 0910201. Zbl 0632.14009. https://doi.org/10.1007/BF01388705.

[5] A. Grothendieck, *Éléments de Géométrie Algébrique. I. Le Langage des Schémas*, Inst. Hautes Études Sci. Publ. Math. 4, 1960. MR 0163908. Zbl 0118.36206. Available at http://www.numdam.org/item?id=PMIHES_1960__4__5_0.

[6] R. Hartshorne, Algebraic vector bundles on projective spaces: a problem list, *Topology* 18 no. 2 (1979), 117–128. MR 0544153. Zbl 0417.14011. https://doi.org/10.1016/0040-9383(79)90030-2.
[7] K. Kurano and P. C. Roberts, Adams operations, localized Chern characters, and the positivity of Dutta multiplicity in characteristic 0, *Trans. Amer. Math. Soc.* **352** no. 7 (2000), 3103–3116. MR 1707198. Zbl 0959.13004. https://doi.org/10.1090/S0002-9947-00-02589-7.

[8] C. Peskine and L. Szpiro, Dimension projective finie et cohomologie locale. Applications à la démonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck, *Inst. Hautes Études Sci. Publ. Math.* no. 42 (1973), 47–119. MR 0374130. Zbl 0268.13008. Available at http://www.numdam.org/item?id=PMIHES_1973__42__47_0.

[9] P. C. Roberts, *Multiplicities and Chern Classes in Local Algebra*, *Cambridge Tracts in Math.* **133**, Cambridge Univ. Press, Cambridge, 1998. MR 1686450. Zbl 0917.13007. https://doi.org/10.1017/CBO9780511529986.

(Received: April 7, 2017)
(Revised: May 22, 2017)

University of Nebraska, Lincoln, NE

E-mail: mark.walker@unl.edu