Compound heterozygous variations in \textit{IARS1} cause recurrent liver failure and growth retardation in a Chinese patient: a case report

Ting-Ting Zou1,2, Hua-Qin Sun2,3, Yu Zhu1,2, Tian-Tian He2,4, Wen-Wu Ling5, Hong-Mei Zhu2,4, Zi-Yuan Lin2,3, Yan-Yan Liu2,4, Shan-Ling Liu2,4, He Wang2,3 and Xue-Mei Zhang2,3*

Abstract

Background: Aminoacyl-tRNA synthetases (ARSs) are enzymes responsible for attaching amino acids to tRNA, which enables protein synthesis. Mutations in isoleucyl-tRNA synthetase (\textit{IARS1}) have recently been reported to be a genetic cause for growth retardation, intellectual disability, muscular hypotonia, and infantile hepatopathy (GRIDHH).

Case presentation: In this study, we reported an additional case of compound heterozygous missense variations c.701 T > C (p.L234P) and c.1555C > T (p.R519C) in \textit{IARS1}, which were identified using medical exome sequencing; c.701 T > C (p.L234P) was a novel variant, and c.1555C > T (p.R519C) was found in GnomAD. Unlike other reported patients, this individual presented prominently with recurrent liver failure, which led to her death at an early age of 19 months. She also had significant growth retardation, muscular hypotonia, chubby and flabby face, recurrent loose stools, and abnormal brain computed tomography (CT), while zinc deficiency and hearing loss were not present. Studies in zebrafish embryo modeling recapitulated some of the key phenotypic traits in embryo development, neurodevelopment, liver development, and myogenesis, demonstrating that these variations caused a loss of gene function in \textit{IARS1}.

Conclusions: We have found a novel mutation point c.701 T > C (p.L234P) in \textit{IARS1}. Compound heterozygous mutations of c.701 T > C (p.L234P) and c.1555C > T (p.R519C) in \textit{IARS1} are pathogenic, which can cause GRIDHH in child.

Keywords: Variations, \textit{IARS1}, Recurrent liver failure, Growth retardation, Case report

Background

Aminoacyl-tRNA synthetases (ARSs) are enzymes responsible for attaching the correct amino acid to tRNA, which allows protein synthesis; tRNA synthetase deficiencies are a growing group of genetic diseases associated with tissue-specific, mostly neurological, phenotypes \cite{1, 2}. \textit{IARS1} is located on chromosome 9q22.31 and consists of 34 exons. Mutations in isoleucyl-tRNA synthetase (\textit{IARS1} OMIM # 600709) have been linked to growth retardation, intellectual disability, muscular hypotonia, and infantile hepatopathy (GRIDHH, OMIM 617093), which was first reported by Kopajtich et al. in 2016 \cite{3}. It is a rare autosomal recessive multisystem disorder, with major phenotypic characteristics including overall growth retardation in prenatal and postnatal, impaired intellectual development, hypotonia, and variable hepatopathy. Other individual features including recurrent infections, zinc deficiency, diabetes mellitus, hydrenephrosis, esophagitis were also reported in previous
studies. The treatment was mainly based on symptomatic and supportive therapy like antibiotics for infections, zinc supplementation for zinc deficiency, insulin for diabetes mellitus, fresh frozen plasma and vitamin K for coagulopathy. To date, there have only been some reports on patients with variable-severity phenotypes [2–7].

Here, we described total clinical characteristics of the case of a Chinese patient with compound heterozygous variations in IARS1. Studies in zebrafish embryo models showed the pathogenicity of these two variations.

Case presentation

Clinical presentation

The proband was the first baby of non-consanguineous Chinese parents. The parents were healthy without any notable medical conditions, and there was no known history of familial liver or neurological disorders. The pregnancy was complicated by threatened miscarriage in the early stage and abnormal second-trimester screening with a high risk of 1/16 for Down syndrome, but amniocentesis revealed a normal karyotype of 46, XX. Routine ultrasound examination during the second trimester was normal, but during the third trimester (about 30 gestational weeks), there was remarkable growth delay and oligohydramnios. She was delivered via spontaneous term delivery at one, nine, and 19-month-old, respectively.

Identification of two missense variants

Medical exome sequencing was performed on the proband’s DNA sample at Beijing Mygenostics Inc. (Beijing, P.R. China) using the GenCap Exome Capture Kit
The sequenced sample was 200× coverage. Sequencing data were aligned to the human reference genome using BWA software (http://bio-bwa.sourceforge.net/). Variations were identified using GATK software (https://software.broadinstitute.org/gatk/). Detected variants were annotated and filtered using ANNOVAR software (http://annovar.openbioninformatics.org/en/latest/), and associated with multiple databases, such as 1000 genome, ESP6500, dbSNP, GenomAD, Inhouse (MyGenostics), HGMD. Pathogenicity was predicted using SIFT, PolyPhen-2, MutationTaster, and GERP. The detected variants were confirmed by bidirectional Sanger sequencing on an ABI 3130 Genetic Analyzer (Applied Biosystems, Waltham, MA, USA) and verified in the parents.

We identified two missense variants, c.701 T > C (p.Leu234Pro) (Hg19 chr9–95,043,072) and c.1555C > T (p.Arg519Cys) (Hg19 chr9–95,027,355), in the IARS1 gene (NM_002161, NP_002152). These results were confirmed using Sanger sequencing, and showed that the parents each carried one of the variants; c.701 T > C (p.Leu234Pro) in the mother, and c.1555C > T (p.Arg519Cys) in the father.

Table 1 Biochemical change of the patient in different ages

Biochemical item	9 months old	19 months old	Normal range
ALT	745	231	<49U/L
AST	4372	1172	<40U/L
TBIL	36.9	23.8	5~21μmol/L
DBIL	31.6	21.8	<6.8μmol/L
TBA	254.8	254.8	0~10μmol/L
ALB	21.0	24.8	38.0~54.0g/L
PT	29.6	25.2	8.7~14.7sec
APTT	123.6	212.0	17.5~37.5sec
INR	2.47	2.09	0.8~1.5
Fg	102	<50	200~400mg/dl
VitD³	23.4	21.90	30~100ng/ml
Zn²	-	54.62	43.55~95.63μmol/L
NH₃	40.0	76.0	9~30μmol/L

Abbreviation: ALT Alanine aminotransferase, AST Aspartate Aminotransferase, TBIL Total bilirubin, DBIL Direct bilirubin, TBA Total bile acid, ALB Albumin, PT Prothrombin time, APTT Activated partial thromboplastin time, INR International Normalized Ratio, Fg Fibrogen, VitD Vitamin D, Zn Zinc

* The patient received Vitamin AD drops and Calcium Zinc Gluconate Oral Solution daily based on the advice of pediatrician of child health care department.
| No. | Ethnic | Sex | ALV | AO | IARS1 mutations cDNA;protein | Clinical features | Other features | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | | | | | | Growth Retardation | Intellectual Disability | Muscular Hypotonia | Infantile Hepatopathy | |
| P1 | German | M | 18.7y | Prenatal (IUGR) | c.1252C>T, c.321T>A; p.[Arg418*], [Le117Asn] | + | + | + | + | zinc deficiency, recurrent infections, esophagitis, microcephaly. |
| P2 | Japanese | F | 19y | Prenatal (IUGR) | c.760C>T, c.1310C>T; p.[Arg254*], [Pro437Leu] | + | + | - | + | zinc deficiency, diabetes mellitus, sensorineural hearing loss, epilepsy. |
| P3 | Austrian | M | 3y | Prenatal (IUGR) | c.1109T>G, c.2974A>G; p.[Val370Gly], [Asn992Asp] | + | + | + | + | zinc deficiency, recurrent infections, recurrent liver crises triggered by infections, chubby cheeks, microcephaly. |
| P4 | Israeli Arab | M | 4y | Prenatal (IUGR) | c.2215C>T, c.1667T>C; p.[Arg739Cys], [Phe556Ser] | + | + | - | + | zinc normal, hydronephrosis, joint hyperlaxity, hyperelastic, doughy-like and transparent skin, microcephaly. |
| P5 | Polish | M | 7y | Prenatal (IUGR) | c.2011delC, c.206C>T; p.[Gln67Tfs], [Thr69Ile] | + | + | + | + | zinc deficiency, recurrent infections, drumstick fingers |
| P6a | Chinese | F | 1.58y | Prenatal (IUGR) | c.701T>C, c.1553C>T; p.[L234P], p.[R519C] | + | + | + | + | zinc normal, recurrent infections, recurrent liver failure triggered by infections, microcephaly, chubby cheeks, hyperelastic skin, vitamin D deficiency |

Abbreviation: M Male, F female, ALV Age at last visit, AO Age of onset, IUGR Intrauterine growth retardation. aP6 is the present patient
The c.701 T > C variant is located in exon 7, which is close to the IleRS core domain, resulting in a Leu234Pro substitution. The other variation c.1555C > T is located in exon 16 of the IleRS core domain, resulting in an Arg519Cys substitution. These two missense variations change evolutionarily highly conserved amino acid residues.

The c.701 T > C variant had not been previously reported, while the variants c.1555C > T (p.Arg519Cys) was found in GnomAD (rs147238476). Both were predicted to be probably damaging and deleterious using the protein function prediction software Polyphen2, SIFT, and Mutation Taster. There were no other plausible candidate variants consistent with the patient's clinical phenotype and recessive (autosomal or X-linked) inheritance.

Blood samples were obtained from the patient and her parents, and genomic DNA was isolated from peripheral blood according to manufacturer instructions (CWBIO, Beijing).
RS19C and L234P variants lead to loss of function of IARS1 gene in zebrafish model

These two variants change evolutionarily highly conserved amino acid residues in more than one species (Fig. 2c). To determine whether the IARS1 RS19C and L234P mutations led to loss of function in vivo, we constructed a human IARS1 gene and its mutation using the pcDNA3.1+ vector. After mRNA synthesis, embryos were injected. When zebrafish embryos were injected with high doses of mRNAs (~60 pg), IARS1 mRNAs produced a high rate of embryo death at 24h post fertilization (hpf), whereas the mutant mRNAs induced severe embryonic deformities (Fig. 3a). However, when we decreased the mRNA injection doses to ~20 pg, embryos injected with IARS1 mRNAs showed an opposite phenotype of shorter body axis in 70% of embryos, but mutant mRNA injection did not generate severe embryonic deformities. Especially, injection of IARS1 RS19C and L234P double mutation mRNAs just induced abnormality in 12% of embryos, and 88% of embryos showed normal phenotype (Fig. 3b). These results suggested that the IARS1 RS19C and L234P mutations in the human IARS1 gene caused loss of function.

Based on the clinical multisystem symptoms of this patient, we investigated liver, brain, and muscle development during embryogenesis using whole-mount in situ hybridization (WISH) for marker analyses. Results showed that the staining of myogenic marker myod, central neuron system marker sox3, and hepatocyte marker fabp1a decreased significantly in embryos injected with ~20 pg IARS1 mRNAs. In detail, 75% of embryos showed decreased expression of myod when injected with IARS1 mRNAs, 68% of embryos showed decreased expression of sox3, and 80% of embryos showed decreased expression of fabp1a. Meanwhile, embryos injected with the same doses of single IARS1 mutation mRNAs (RS19C or L234P) showed weak staining of the three detected marker genes. Importantly, injection with the same doses of IARS1 RS19C and L234P double mutation mRNAs showed little effect on the staining of these marker genes. Detaiuly, just 18% of embryos (82% normal) showed decreased expression of myod when injected with double mutation mRNAs, 12% of embryos (88% normal) showed decreased expression of sox3, and 18% of embryos (82% normal) showed decreased expression of fabp1a (Fig. 3c). Taken together, these results demonstrated that IARS1 RS19C and L234P mutations caused a loss of gene function in IARS1.

All animals were handled in accordance with the Guide for the Care and Use of Laboratory Animals, and the study was approved by the Institutional Animal Care and Use Committee of Sichuan University. The human IARS1 coding region sequence was obtained from Dharmacon (Catalog Number OHS5893–202499238, Lafayette, CO, USA). Zebrafish embryo microinjection, whole-mount in situ hybridization, grayscale measurement, point mutation expression plasmid construction, and statistical analyses were performed as previously described [8].

Discussion and conclusions

Mutations in isoleucyl-tRNA synthetase (IARS1 OMIM # 600709) have been linked to GRIDHH (OMIM 617093) with an autosomal recessive inheritance pattern in five patients [3–6] (Table 2), described as a rare multisystem disorder reported first by Kopajtich et al. in 2016. Another case was reported in a patient who was suspected to have mitochondrial disease, along with the phenotype of GRIDHH, including growth retardation, hepatopathy, muscle weakness, and failure to thrive [7].

Our study supported the association between recessive mutations in the IARS1 gene and the clinical characteristics of GRIDHH. However, there were some variations in the clinical phenotype in this subject. Unlike other patients who could live longer until teenage years, this patient had severe and recurrent liver failure triggered by recurrent infections, and these prominent problems led to her early death at 19-month-old. She also had significant overall growth retardation with prenatal onset, impaired intellectual development, muscular hypotonia, and chubby and flabby face, similar to most previously reported patients. However, several other individual features were distinct in this case, including oligohydramnios and hepatosplenomegaly which were only seen in an Israeli Arab boy and one Polish boy, respectively [4, 5]. Interestingly, loose stools were present in this girl at an early age (3-month-old), which was just reported in a recent case [6]. The patient also had obvious abnormalities on CT with no clear boundary between the gray matter and white matter, the sulci and cistern were slightly widened and deepened, and mild left ventriculomegaly, which has seldom been reported.

Low zinc levels have been reported in some previous cases as a significant clinical feature. However, the zinc level was normal in this case, although the patient had severe liver dysfunction. In Orenstein’s case [4], the zinc level was normal and the boy also had severe liver dysfunction but did not have recurrent infections, whereas in Fagbemi’s case [6], both plasma zinc concentration and liver function were normal. In a study by Kopajtich [3], zinc supplementation had no direct effect on IARS1 activity; hence, reduced zinc levels were not directly related to IARS1 mutations. Based on this information, it is likely that low zinc levels may not be the phenotype of IARS1, but a secondary manifestation.
In the case presented in this study, both variants were missense mutations. One was close to the IleRS core domain, and the other was in the IleRS core domain, and both variants change evolutionarily highly conserved amino acid residues in more than one species. To evaluate the functional consequences of these IARS1 variants identified in this patient, morphological studies in zebrafish were performed. When zebrafish

Fig. 3 R519C and L234P variants lead to loss of function of the IARS1 gene in the zebrafish model. **a** High doses of IARS1 and its variant mRNAs (60 pg) produced a high rate of embryonic death and severe embryonic deformities. **b, c** IARS1 R519C and L234P caused a loss of gene function of IARS1 during zebrafish embryogenesis. IARS1 variations in mRNA failed to impair embryo development (**b**), myogenesis, neurodevelopment, and liver development (**c**). Live embryos and fabp1a expression at 3 dpf; sox3 and myod expression at 24 hpf stage, all embryos shown are lateral views anterior to the left. The percentages and numbers indicated in each picture are the ratio of the number (left in bracket) of affected embryos with phenotypes similar to what is shown in the picture and the total number (right in bracket) of observed embryos.
embryos were injected with high doses of mRNAs, they showed delay in embryonic development with shorter body axis, and multisystem markers demonstrated that the two mutations R519C and L234P caused a loss of a gene function of IARS1, which successfully revealed the functional consequences of disease-associated for these two novel IARS1 mutations. Meanwhile, WISH studies for multisystem development during embryogenesis with hepatocyte marker fabp1a, central neuron system marker sox3, and myogenic marker myod, indicated IARS1 R519C and L234P mutations caused a loss of gene function of IARS1, which resulted in multisystem dysfunction in line with the clinical observations in this patient.

In conclusion, GRIDHH is a rare genetic disorder caused by IARS1 mutations in autosomal recessive. We have found a novel mutation point c.701 T > C (p.L234P) in IARS1. Compound heterozygous mutations of c.701 T > C (p.L234P) and c.1555C > T (p.R519C) in IARS1 are pathogenic, which can cause GRIDHH in child. Our study provided further insights into the new evidence on the phenotype and genotype spectrum of IARS1 mutations.

Abbreviations
ARSs: Aminoacyl-tRNA synthetases; IARS1: Isoleucyl-tRNA synthetase; GRIDHH: Growth retardation, intellectual disability, muscular hypotonia, and infantile hepatopathy; GnomAD: Genome Aggregation Database; CT: Computed tomography; OMIM: Online Mendelian Inheritance in Man; GATK: The Genome Analysis Toolkit; HGMD: Human Gene Mutation Database; SD: Standard Deviation; AST: Aspartate aminotransferase; GGT: Gamma-glutamyl transpeptidase; IgM: Immunoglobulin M; AFP: Alpha-fetoprotein; CMV: Cytomegalovirus; EBV: Epstein-Barr virus; WISH: Whole-mount in situ hybridization.

Acknowledgments
The authors are grateful to thank the patient and her parents.

Authors’ contributions
YXZ conceived and designed the study, and critically revised the manuscript. TZ, YZ, and WWL provide the clinical material and drafted the manuscript, and HQS, TTH, ZYL, and HMZ performed the the experiments, analyzed the data, and drafted the manuscript. YYL, SLL, HW participated in study design, study implementation and manuscript revision. All authors read and approved the final manuscript.

Funding
This study was supported by a grant from the Science and Technology Department of Sichuan Province of China (grant number: 2017SZ0111).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
This study was approved by the Medical Ethical Committees of West China Second University Hospital, Sichuan University. All animals were handled in accordance with the Guide for the Care and Use of Laboratory Animals approved by the Institutional Animal Care and Use Committee of Sichuan University. Informed consent to participate in the study was obtained from the patient’s parents.

Consent for publication
Written informed consent was obtained from the patients’ parents for the publication of this case report and all information contained in it.

Competing interests
The authors declare that they have no competing interest.

Author details
1 Department of Pediatric Infectious Diseases, West China Second University Hospital, Sichuan University, Chengdu 610041, China. 2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China. 3 SCU-CHUK Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu 610041, China. 4 Department of Medical Genetics & Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, No.20, South Section 3, Renmin Road, Chengdu, Sichuan, China. 5 Department of Ultrasound, West China University Hospital, Sichuan University, Chengdu 610041, China.

Received: 23 August 2021 Accepted: 18 May 2022
Published online: 07 June 2022

References
1. Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem. 1987;56(1):125–58. https://doi.org/10.1146/annurev.bi.56.070187.001013.
2. Fuchs SA, Schene IF, Kak G, Jansen JM, Nikkels PGJ, van Gassen KL, et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes. Genet Med. 2019;21(2):319–30. https://doi.org/10.1038/s41436-018-0048-y.
3. Kopajtich R, Murayama K, Janecke AR, Haack TB, Maximilian B, Knisely AS, et al. Bi-allelic IARS mutations cause growth retardation with prenatal onset, intellectual disability, muscular hypotonia, and infantile hepatopathy. Am J Hum Genet. 2016;99(2):414–22. https://doi.org/10.1016/j.ajhg.2016.05.027.
4. Orenstein N, Weiss K, Oprescu SN, et al. Bi-allelic IARS mutations in a child with intra-uterine growth retardation, neonatal cholestasis, and mild developmental delay. Clin Genet. 2017;91(6):913–7. https://doi.org/10.1111/cge.12930.
5. Smigiel R, Bela M, Biernacka A, Stembalska A, Sasiedek M, Kosinska J, et al. New evidence for association of recessive IARS gene mutations with hepatopathy, hypotonia, intellectual disability and growth retardation. Clin Genet. 2017;92(6):671–3. https://doi.org/10.1111/cge.13080.
6. Fagbemi A, Newman WG, Tangey SG, Hughes SM, Cheesman E, Arkwright PD. Refractory very early-onset inflammatory bowel disease associated with cystolic isoleucyl-tRNA synthetase deficiency: a case report. World J Gastroenterol. 21. 2020;26(15):1841–6. https://doi.org/10.3748/wjg.v26.i15.1841.
7. Theunissen TEJ, Nguyen M, Kamps R, Hendrickx AT, Salievelt SCEH, Gottschalk RWH, et al. Whole exome sequencing is the preferred strategy to identify the genetic defect in patients with a probable or possible mitochondrial cause. Front Genet. 2018;10(29):400. https://doi.org/10.3389/fgene.2018.00400.
8. Sun H, Wang Y, Zhang J, Chen Y, Liu Y, Lin Z, et al. CFTR mutation enhances Dishevelled degradation and results in impairment of Wnt-dependent hematopoiesis. Cell Death Dis. 2018;9(3):275. https://doi.org/10.1038/s41419-018-0311-9.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.