Solving Marginal MAP Exactly by Probabilistic Circuit Transformations

YooJung Choi
Joint work with Tal Friedman and Guy Van den Broeck
Marginal MAP (MMAP)

Given a set of query variables $Q \subset X$ and evidence e,

$$\arg\max_{q \in \text{val}(Q)} p(q, e) = \arg\max_{q \in \text{val}(Q)} \sum_{h \in \text{val}(H)} p(q, h, e)$$

\Rightarrow i.e. MAP of a marginal distribution on Q

\Rightarrow in general, $\mathsf{NP}^{\mathsf{PP}}$-hard
MMAP on PCs

\[
\arg \max_{q \in \text{val}(Q)} p(q, e) = \arg \max_{q \in \text{val}(Q)} \sum_{h \in \text{val}(H)} p(q, h, e)
\]

- Smooth + decomposable ⇒ tractable marginal
 - e.g. \(p(X_1 = 1, X_2 = 0) \)

- + deterministic ⇒ tractable MAP
 - e.g. \(\max_{X_1X_2X_3} p(X_1, X_2, X_3) \)

- MMAP: **NP-hard** even for PCs that are tractable for marginals & MAP
 - Intuition: need the PC \(p(Q) \) to be deterministic
MMAP on PCs

\[
\text{arg max } p(q, e) = \text{arg max } \sum_{q \in \text{val}(Q)} p(q, h, e)
\]

- Smooth + decomposable \Rightarrow tractable marginal
 - e.g. $p(X_1 = 1, X_2 = 0)$

- + deterministic \Rightarrow tractable MAP
 - e.g. $\max_{X_1 X_2 X_3} p(X_1, X_2, X_3)$

- MMAP: \textbf{NP-hard} even for PCs that are tractable for marginals & MAP
 - Intuition: need the PC $p(Q)$ to be deterministic

$Q = \{X_1, X_2\}$
MMAP on PCs

• Enforce circuit constraints to get linear-time MMAP
 • E.g. constrained pseudo-tree (AND/OR search) [Marinescu, Dechter & Ihler ‘14], constrained vtree ((P)SDD) [Oztok, Choi & Darwiche ‘16]
 • Marginal determinism (aka Q-determinism)
 • Circuit size may blow up
 • Need to change the circuit for a different query variable set \(Q \)
• Branch-and-bound search [Huang, Chavira & Darwiche ‘06; Mei, Jiang & Tu ‘18]

Our approach: iterative circuit transformations
Bounds on MMAP

Upper bound through a single feedforward pass [Huang et al. '06]

Lower bound: $p(q)$ for any $q \in val(Q)$ works

Q: can we tighten these bounds further?

⇒ transform the PC to get better bounds
Circuit pruning for MMAP

Some parts of the circuit may be irrelevant for the MMAP solution

- Example: computing $p(X_1 = 1, X_2 = 0)$
 - Only the highlighted edges are used
 - Remaining edges propagate zero

- $X_1 = 1, X_2 = 0$ is the MMAP solution for $Q = \{X_1, X_2\}$
 - Pruning any black edge does not affect the MMAP solution

Q: can we efficiently identify which edges can be safely pruned?
Edge bounds for MMAP

For every edge, what is the maximum marginal probability $p(q)$ that uses/activates that edge?

\[\forall (n, c): \text{define } \text{EB}(n, c) \geq \max_{q \in C_{n,c}} p(q) \]

\[C_{n,c} = \{ q \in \text{val}(Q): p(q) \text{ "activates" edge } (n, c) \} \]

\[(X_1 = 1, X_2 = 0) \in C_{n,c}, \quad (X_1 = 1, X_2 = 0) \notin C_{n,c} \]

\[C_{r,1} = \{(X_1 = 1, X_2 = 0), (X_1 = 1, X_2 = 1)\} \]
Edge bounds for MMAP

For every edge, what is the maximum marginal probability \(p(q) \) that uses/activates that edge?

\[\forall (n, c): \text{define } EB(n, c) \geq \max_{q \in C_{n,c}} p(q) \]

\(C_{n,c} = \{ q \in \text{val}(Q): p(q) \text{ "activates" edge (n, c)} \} \)

Given a lower bound \(l \) on MMAP, we can safely prune any edge \((n, c)\) if \(EB(n, c) < l \).

For a smooth and decomposable PC, all edge bounds can be computed with a single feedforward & backward pass through the circuit.
Feedforward pass: upper-bound on MMAP [Huang et al. ’06]

Q-deterministic sum => max
Feedforward pass: upper-bound on MMAP [Huang et al. ’06]

Backward pass: tighten $\text{EB}(n, c)$ at every Q-deterministic sum n
Feedforward pass: upper-bound on MMAP [Huang et al. ’06]

Backward pass: tighten $\text{EB}(n, c)$ at every Q-deterministic sum n
Feedforward pass: upper-bound on MMAP [Huang et al. ’06]

Backward pass: tighten $\text{EB}(n, c)$ at every Q-deterministic sum n
Feedforward pass: upper-bound on MMAP [Huang et al. '06]

Backward pass: tighten $EB(n,c)$ at every Q-deterministic sum n
Feedforward pass: upper-bound on MMAP [Huang et al. ’06]

Backward pass: tighten $\text{EB}(n,c)$ at every \mathbf{Q}-deterministic sum n

e.g. using $p(X_1 = 0, X_2 = 1) = 0.256$ as lower bound
Feedforward pass: upper-bound on MMAP [Huang et al. ’06]

Backward pass: tighten $\mathbb{EB}(n, c)$ at every Q-deterministic sum n

e.g. using $p(X_1 = 0, X_2 = 1) = 0.256$ as lower bound
Iterative MMAP solver

- Prune edges
- Split on a query variable

Each split tightens the bound

After splitting on Q_1, \ldots, Q_n

\Rightarrow linear-time MMAP for $Q = \{Q_1, \ldots, Q_n\}$
Empirical evaluation

Example run

Average run time in seconds (# instances solved)

Dataset	(30%, 30%, 40%)	(50%, 20%, 30%)
	MaxSPN (ours)	MaxSPN (ours)
NLTCS	0.004 (10)	0.01 (10)
MSNBC	0.01 (10)	0.03 (10)
KDD	0.02 (10)	0.04 (10)
Plants	0.27 (10)	2.95 (10)
Audio	188.59 (10)	2041.33 (6)
Jester	265.50 (10)	2913.04 (2)
Netflix	344.71 (10)	- (0)
Accidents	0.54 (10)	109.56 (10)
Retail	0.03 (10)	0.06 (10)
Pumsb-star	273.70 (10)	2208.27 (7)
DNA	2809.44 (4)	505.75 (9)
Kosarek	1.60 (10)	48.74 (10)
MSWeb	25.70 (10)	1543.49 (10)
Book	- (0)	7.25 (10)
EachMovie	- (0)	93.66 (10)
WebKB	- (0)	102.37 (10)
Reuters-52	- (0)	22.91 (10)
20 NewsGrp.	- (0)	88.13 (10)
BBC	- (0)	766.93 (9)
Ad	- (0)	344.81 (10)

Total Solved | 124 | 199 | 105 | 187
Conclusion

• Iterative pruning and splitting to tighten MMAP bounds
 • Each split may (worst-case) double the circuit size, but pruning can be effective *in practice*

• Also an iterative MPE solver for non-deterministic PCs

• Can we generalize the bounds to other queries that require determinism for tractability?