BRCA1 epigenetic inactivation predicts sensitivity to platinum-based chemotherapy in breast and ovarian cancer

Olafur A. Stefansson,1 Alberto Villanueva,2 August Vidal,3 Lola Martí4 and Manel Esteller1,5,6,*

1Cancer Epigenetics and Biology Program; Bellvitge Biomedical Research Institute; Barcelona, Catalonia Spain; 2Translational Research Laboratory; Catalan Institute of Oncology; Bellvitge Biomedical Research Institute; Barcelona, Catalonia Spain; 3Pathology Department; University Hospital of Bellvitge; Bellvitge Biomedical Research Institute; Barcelona, Catalonia Spain; 4Department of Physiological Sciences II; School of Medicine; University of Barcelona; Barcelona, Catalonia Spain; 5Institucio Catalana de Recerca i Estudis Avançats; Barcelona, Catalonia Spain

Keywords: BRCA1, DNA methylation, epigenetics, breast cancer, ovarian cancer, cisplatin, carboplatin

Introduction

Female **BRCA1** and **BRCA2** mutation carriers have a significantly higher lifetime risk of breast and ovarian cancer.1 **BRCA1** and **BRCA2** proteins play major roles in DNA double-strand-break repair through homologous recombination,2 so their deficiencies can impair the capacity of cancer cells to repair DNA cross-links caused by chemotherapy drugs such as platinum-derivatives.3-7 Ovarian cancer accounts for more deaths than any other tumor of the female reproductive system, so there is great interest in identifying biomarkers for therapy prediction. Two independent studies reported significantly greater primary chemotherapy sensitivity to platinum-based chemotherapy agents in patients with ovarian cancer who were carriers of **BRCA1** or **BRCA2** mutations, few patients are likely to benefit from these pharmacogenetic biomarkers. Herein, we show that, in cancer cell lines and xenografted tumors, **BRCA1** CpG island promoter hypermethylation-associated silencing also predicts enhanced sensitivity to platinum-derived drugs to the same extent as **BRCA1** mutations. Most importantly, **BRCA1** hypermethylation proves to be a predictor of longer time to relapse and improved overall survival in ovarian cancer patients undergoing chemotherapy with cisplatin.

In the search for new potential biomarkers of sensitivity differences of human cancer to chemotherapeutic agents, the existence of aberrations in the DNA methylation patterns of cancer cells is turning out to be the most important, particularly those involving hypermethylation of the sequences called CpG islands, which are located in the promoter regions of tumor suppressor genes.13 One of the most successful discoveries in this area, made by our group14 and others,15 and subsequently validated worldwide,16 is that hypermethylation of the DNA repair enzyme MGMT is associated with a good response to nitrosurea alkylating agents in glioma. For **BRCA1**, there is clear evidence that the **BRCA1** gene can also undergo epigenetic inactivation in sporadic breast tumors17-22 and ovarian tumors20,23-25 by the gain of DNA methylation in its promoter-associated CpG island. That this aberration produces a tumor with a **BRCA1** phenotype was further demonstrated by showing that it gives rise to the same pattern of gene expression as seen in inherited **BRCA1** mutations.26 Strikingly, we and others have recently found that **BRCA1** CpG island hypermethylation also predicts sensitivity to PARPis.27,28

We examined whether the enhanced platinum-based sensitivity observed in **BRCA1**/**BRCA2** familial tumors is also present in sporadic **BRCA1** hypermethylated tumors.
between this epigenetic aberration and the putative transcriptional inactivation of the \textit{BRCA1} gene at the RNA and protein levels. The cancer cell lines UACC3199 and HCC-38 hypermethylated at the \textit{BRCA1} CpG island had minimal expression of the \textit{BRCA1} RNA transcript, as determined by quantitative RT-PCR (Fig. 1), and \textit{BRCA1} protein, as determined by western blot (Anti-\textit{BRCA1} Ab-1, Calbiotech, Clone# MS110) (Fig. 1). The \textit{BRCA1} mutant breast cancer cell line MDA-MB-436 cell, which carries a genetic deletion, was used as a control for the lack of expression of the \textit{BRCA1} protein. MDA-MB-231 (wild-type) and MDA-MB-436 (mutant) are shown as positive and negative controls for \textit{BRCA1} expression.

Results and Discussion

\textit{BRCA1} and \textit{BRCA2} are candidate genes for hypermethylation-associated inactivation in human cancer because a 5′-CpG island is located around the corresponding transcription start sites. To analyze the methylation status of the promoter-associated CpG islands, we screened 15 human cancer cell lines from breast (HCC-1143, MDA-MB-468, MDA-MB-468-PT, MDA-MB-468LN, MCF7, SK-BR-3, T47D, Hs578T, UACC3199, MDA-MB-231 and MDA-MB-436) and ovarian (SK-OV-3, IGR-OV1, OVCAR-3 and OVCAR-5) tumor types, using bisulfite genomic sequencing, methylation-specific PCR and pyrosequencing. \textit{BRCA2} promoter CpG island methylation was not found in any of the cases, but the breast cancer cell lines UACC3199 and HCC-38 exhibited \textit{BRCA1} CpG island promoter hypermethylation (Fig. 1). All normal breast tissues analyzed were completely unmethylated at the \textit{BRCA1} promoter CpG island (Fig. 1).

Having noted \textit{BRCA1} promoter hypermethylation in the aforementioned cancer cell lines, we assessed the association between this epigenetic aberration and the putative transcriptional inactivation of the \textit{BRCA1} gene at the RNA and protein levels. The cancer cell lines UACC3199 and HCC-38 hypermethylated at the \textit{BRCA1} CpG island had minimal expression of the \textit{BRCA1} RNA transcript, as determined by quantitative RT-PCR (Fig. 1), and \textit{BRCA1} protein, as determined by western blot (Anti-\textit{BRCA1} Ab-1, Calbiotech, Clone# MS110) (Fig. 1). The \textit{BRCA1} mutant breast cancer cell line MDA-MB-436 cell, which carries a genetic deletion, was used as a control for the lack of expression of the \textit{BRCA1} transcript and protein (Fig. 1). In contrast, the \textit{BRCA1} unmethylated and non-mutant MDA-MB-231 cell line expressed the \textit{BRCA1} transcript and protein (Fig. 1).

An increasing number of reports suggest that tumors with genetic defects in \textit{BRCA1} are more sensitive to growth inhibition and chromosomal damage upon platinum-based chemotherapy. This makes it extremely interesting to know, for clinical translational purposes, whether cancer cells with \textit{BRCA1} methylation-associated silencing also possess these functional features. First, we studied the antiproliferation effects of cisplatin and
BRCA1 epigenetic status using UACC3199 (BRCA1 hypermethylated) and MDA-MB-231 (BRCA1 unmethylated) cancer cells xenografted in nude mice. Upon subcutaneous administration of cisplatin, significant tumor growth inhibition over time was observed in the BRCA1 hypermethylated xenografts (p = 0.025), but not in unmethylated cells (p = 0.443). The mice were sacrificed 30 d after the start of the treatment and the tumor size of the xenograft was measured. BRCA1 hypermethylated cells had significantly smaller tumors than the xenografted unmethylated cells (p = 0.033) (Fig. 2).

Given the aforementioned in vitro and in vivo findings that human cancer cells with BRCA1-methylation-associated silencing are very sensitive to platin derivatives, we wondered whether the same could be observed in clinical samples. In the clinical context, cisplatin is a chemotherapy drug widely used in the treatment of ovarian cancer, a tumor type in which a significant rate of BRCA1 CpG island hypermethylation has been described. We therefore assessed whether the presence of BRCA1 promoter CpG island hypermethylation, detected by pyrosequencing, was a predictive marker of response to cisplatin in ovarian cancer patients.

We transferred our experiments from the in vitro assays described above to an in vivo setting in a mouse model. The antitumor activity of cisplatin was evaluated with respect to BRCA1 epigenetic status using UACC3199 (BRCA1 hypermethylated) and MDA-MB-231 (BRCA1 unmethylated) cancer cells xenografted in nude mice. Upon subcutaneous administration of cisplatin, significant tumor growth inhibition over time was observed in the BRCA1 hypermethylated xenografts (p = 0.025), but not in unmethylated cells (p = 0.443). The mice were sacrificed 30 d after the start of the treatment and the tumor size of the xenograft was measured. BRCA1 hypermethylated cells had significantly smaller tumors than the xenografted unmethylated cells (p = 0.033) (Fig. 2).
patients treated with this drug. The study of a well characterized clinical cohort of serous epithelial ovarian tumors [FIGO stages: I (n = 7), II (n = 3), III (n = 18) and IV (n = 2)], all of which were treated with cisplatin, showed that BRCA1 methylation was observed in 13% (4 of 30) of the cases. The BRCA1 hypermethylated ovarian tumors corresponded to FIGO stages I (n = 2) and II (n = 2). Most importantly, BRCA1 epigenetic inactivation was associated with a significantly longer time to relapse (Cox regression, log-rank, p = 6.40E-007) and improved overall survival (Cox regression, log-rank, p = 0.009) (Fig. 3). Thus, the clinical data resemble the aforementioned cell culture and xenograft results that suggest an increased chemosensitivity of BRCA1 hypermethylated tumors to platinum-derived drugs.

One of the “holy grails” of current medical oncology is personalized cancer treatment. The oncologist would like to have information available that pinpoints a particular molecular Achilles’ heel in a given patient that indicates the usefulness of a particular drug. To date, this approach has been most successful for treating hematological malignancies, but progress with solid tumors, such as breast, colon and lung tumors has also been made. A number of studies in ovarian tumors support the hypothesis that inherited genetic defects in BRCA1/BRCA2 render these neoplasms more sensitive to platinum-based regimens. Herein, using the BRCA1 epigenetic defect, we have broadened these observations to include sporadic tumors, which make up the vast majority of cases attended by medical practitioners. Our results support the inclusion of BRCA1 promoter CpG island hypermethylation in biomarker panels assessing the clinical efficacy of platinum-based chemotherapy.

Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

Acknowledgments
Supported by Grants SAF2011-22803, Lilly Foundation, Botín Foundation, Dr. Josef Steiner Cancer Research Foundation, Fundación Sandra Ibarra de Solidaridad frente al Cáncer, Junta de Barcelona of the Asociación Española Contra el Cáncer (AECC), and the Health and Science Departments of the Catalan Government (Generalitat de Catalunya). M.E. is an ICREA Research Professor.

References
1. Roukos DH, Briasoulis E. Individualized preventive and therapeutic management of hereditary breast ovarian cancer syndrome. Nat Clin Pract Oncol 2007; 4:576-90; PMID:17898888; http://dx.doi.org/10.1038/ncone0936.
2. Roy R, Chau J, Powell SN. BRCA1 and BRCA2: different roles in a common pathway of genome protection. Nat Rev Cancer 2012; 12:68-78; PMID:22193408; http://dx.doi.org/10.1038/nrct3181.
3. Byrski T, Gronwald J, Huzarski T, Grzybowska E, Budryk M, Stawicka M, et al. Pathologic complete response rates in young women with BRCA1-positive breast cancers after neoadjuvant chemotherapy. J Clin Oncol 2010; 28:375-9; PMID:20008645; http://dx.doi.org/10.1200/JCO.2008.20.7019.
4. Silver DP, Richardson AL, Eklund AC, Wang ZC, Szallasi Z, Li Q, et al. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J Clin Oncol 2010; 28:1145-53; PMID:20100965; http://dx.doi.org/10.1200/JCO.2009.22.4725.
5. Yang D, Khan S, Sun Y, Hess K, Shmulevich I, Sood AK, et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011; 306:1557-65; PMID:21990299; http://dx.doi.org/10.1001/jama.2011.4456.
6. Bolton KL, Chenex-Vienna G, Goh C, Saderetzki S, Ramos SJ, Kurlan BY, et al; EMBRACE; kConFab Investigators. Cancer Genome Atlas Research Network. Association between BRCA1 and BRCA2 mutations and survival in women with invasive epithelial ovarian cancer. JAMA 2012; 307:362-90; PMID:22274685; http://dx.doi.org/10.1001/jama.2012.20.
7. Kang J, D’Andrea AD, Kozono D. A DNA repair pathway-focused score for prediction of outcomes in ovarian cancer treated with platinum-based chemotherapy. J Natl Cancer Inst 2012; 104:670-81; PMID:22505474; http://dx.doi.org/10.1093/jnci/djs177.
8. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med 2009; 361:123-34; PMID:19553641; http://dx.doi.org/10.1056/NEJMoa0900012.
9. Fong PC, Yap TA, Boss DS, Carden CP, Mergui-Roelvink M, Gourley C, et al. Poly(ADP-ribose) polymerase inhibition: frequent durable responses in BRCA carrier ovarian cancer correlating with platinum-free interval. J Clin Oncol 2010; 28:2512-9; PMID:20406929; http://dx.doi.org/10.1200/JCO.2009.26.9589.

Figure 3. BRCA1 hypermethylation proves to be a predictor of good response to chemotherapy with cisplatin in ovarian cancer patients. (A) BRCA1 hypermethylation in patients with ovarian cancer is associated with longer time to relapse. (B) BRCA1 hypermethylation in patients with ovarian cancer is associated with improved disease-specific survival.
23. Geisler JP, Harterman-Zogg MA, Rathe JA, Buller RE. Frequency of BRCA1 dysfunction in ovarian cancer. J Natl Cancer Inst 2002; 94:61-7; PMID:11773283; http://dx.doi.org/10.1093/jnci/94.1.61.

24. Ibanez de Caceres I, Battagli C, Esteller M, Herman JG, Dalaimi E, Edelson ML, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 2004; 64:6476-81; PMID:15374957; http://dx.doi.org/10.1158/0008-5472.CAN-04-1529.

25. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474:609-15; PMID:21720365; http://dx.doi.org/10.1038/nature10166.

26. Hedenfalk I, Duggan D, Chen Y, Radmacher M, Bittner M, Simon R, et al. Gene-expression profiles in hereditary breast cancer. N Engl J Med 2001; 344:539-48; PMID:11207349; http://dx.doi.org/10.1056/NEJM200102223440801.

27. Veeck J, Ropero S, Setien F, Gonzalez-Suarez E, Osorio A, Benitez J, et al. BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J Clin Oncol 2010; 28:e563-4, author reply e565-6; PMID:20679605; http://dx.doi.org/10.1200/JCO.2010.30.1010.

28. Drew Y, Mulligan EA, Vong WT, Thomas HD, Kohn S, Kyle S, et al. Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst 2011; 103:334-46; PMID:21183737; http://dx.doi.org/10.1093/jnci/djr569.