Chemical polarization effects of electromagnetic field radiation from the novel 5G network deployment at ultra high frequency

Ugochukwu O. Matthew · Jazuli S. Kazaure

Received: 8 June 2020 / Accepted: 26 October 2020 / Published online: 27 January 2021
© IUPESM and Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
The wide-spectrum of non-ionizing, non-visible radiation emitted from the novel 5G network deployment was investigated and found liable to produce effects capable of heating up and altering human body nomenclature. The Ultra-high frequency magnetic fields, induced circulation of currents in the surrounding human body when potentially exposed. The quantum of these electromagnetic charges is influenced by the magnitude of the external magnetic field. The Magnetic fields warming is the major organic consequence of the electromagnetic fields radiofrequency radiation emitted from 5G network installation especially at a very high frequencies. From the current research, the levels of electromagnetic fields to which individuals are naturally unmasked under 4G network and 5G network technology in SCENARIO1, SCENARIO 2 and SCENARIO 3 are very negligible to alter human body dipolar chemistry. On the several findings of the research, deploying 5G network technology under the ultra-high frequency above 20 GHz will produce effect that will heat up the human body tissues due to electromagnetic field inducement since human body is dipolar in nature. The research established that while the current digital society will continue investment into 5G network technology, caution must be applied not to deploy 5G network under ultra-high frequency above 20 GHz due to its adverse health effects.

Keywords Electromagnetic fields · Wireless radiation · Non-ionizing radiation · Mobile networking technology · 5G network adverse health effects · Toxic dipolar stimulus combinations · Healthcare

1 Introduction
In realizing the set objectives in the agenda for the novel 5G network technology requirements, the current twenty first century digital society requires extreme changes in network architecture including core and radio access network (RAN) for achieving end-to-end connection and security optimization. The high broadband spectrum specifies the quantum leap for performance optimization already guaranteed in the novel 5G network technology framework. The emerging broadband spectrum are characteristically in the range of 24–40 GHz, with bandwidths in 120 MHz (or higher) frequency. The enormous bandwidth enables ultra-high capacity networks (16–32 times higher than the previous 4G network) having latency as low as 1 ms. The initial 5G network technology deployments will assume non-standalone (NSA) in the mid broad bands, although the approach has been normalized to supports operators to reuse the existing 4G Evolved Packet Core (EPC) networks, [1], providing software upgrade requirements for NSA maintenance. The Standalone (SA) 5G network technology is estimated to succeed first in low/mid broad bands, offering enormous coverage extensions and exceeding interior penetration more than the high broad bands, performing exceedingly well from both marketing and business ecosystem while enabling the end-to-end (e2e) 5G Systems and 5G network Core to be established. All the subsisting spectrum that consolidated on 4G network technology will be migrated efficiently to 5G network technology framework as time progresses, minimizing the prevalence of 4G as 5G technology have encapsulated the same band. The spectrum migration and combinations for both broad bands and technologies (4G and 5G) are fundamental for the planned

* Ugochukwu O. Matthew
macdon4ru2003@yahoo.com

Jazuli S. Kazaure
sakjazuli@gmail.com

1 Computer Science Department, Hussaini Adamu Federal Polytechnic, Jigawa State, P.M.B, Kazaure 5004, Nigeria

2 Electrical & Electronics Department, Computer Science Department, Hussaini Adamu Federal Polytechnic, Jigawa State, P.M.B, Kazaure 5004, Nigeria
progression of the novel 5G network technology. There exist several possibilities for encapsulation and combinations of broad bands plus technological innovations for 4G and 5G dual connectivity for non-standalone 5G network presently taking effect as more devices are connected and traffic keep multiplying and market too keep saturating. The Internet of Things will permit several devices to be connected to both 4G network and 5G network technology at the same time, [2]. This current research classified the harmful influences of non-ionizing, non-visible radiation from the wireless transmission of the novel 5G network technology already reported in several biomedical literature and pointed when and how the effects are produced, the condition upon which the adverse effects are felt and procedure to curtail it. The research discovered that most of the clinical experimentation handled to the present time are not essentially conceived to classify the scenarios for the undesirable health effects of the wireless radiation from the novel 5G network technology on the real-life operating environmental ecosystem. Several researches and laboratory experimentations do not take into account of pulsing and modulation of the novel 5G network carrier signal while reporting the health hazard of the wireless radio frequency radiation. While the immeasurable majorities do not interpret the synergistic harmful consequences of other toxic inducements such as dipolar chemical urtication and biological immunotoxicity caused by the ultra-high emission of wireless radiation produced by 5G network technology at the frequency beyond 20 Ghz. This research presented an evidence prove that the novel 5G mobile networking technology at ultra-high frequency above 20 GHz will produce wireless radiation that will produce dangerous health condition such as discomforting symptoms, cancer, sensory disorder, sleeping disorder, congenital abnormality, infertility, immunotoxicity etc., [3]. However, the society extreme automaton with respect to ultra-high frequency above 40 GHz will favour 5G Robotic technology and Industrial Internet of Things (IIoTs) where only robots can operate but not human beings. The findings of the current research showed that subjecting human to frequency beyond 40 GHz is a deliberate use of Chemical weapon. Chemical weapon is any device that utilizes chemical constituents to impose death or wounds on plants and animals while biological weapons adopts diseases causing agents called pathogens to attack the environmental ecosystem.

2 Literature review

The novel 5G network technology present several opportunities for the delivery of electronic Healthcare in current digital electronic society. The concept of Internet of Medical Things (IoMTs) had emerged as the key component of the Internet of Things (IoTs) promised hope for innovative Healthcare computing in the twenty first century digital extreme automation. The development in the enterprise 5G network infrastructures have necessitated billions of low-bit rate and low-energy connected health monitoring devices, remote sensors and clinical wearables relying on the 5G network backbone infrastructure and IoMTs enterprise framework, [4]. The Doctors, Physicians and Healthcare service provider will essentially depend on the connected devices to collect, analyse and digitally transmit the patients’ data among the parties that will effect decision making process. Under this situation, data will be retrieved and processed in real time synchronism permitting the Healthcare givers to cost-effectively examine all collected electronic information, derive insights and administer or adjust treatments options [5]. Moreover, the electronic synchronous data transmission will enable the clinicians, diagnostics, physicians and doctors authenticate the accuracy of every diagnosis carried out which will enhance the effectiveness of treatments performed on the patients, [6]. The novel 5G network infrastructures and Internet of Medical Things will grow in quantum for assisting patients who often does not like or is limited to bodily consultations with the Healthcare provider on a frequent schedules. The limiting considerations may arise from the cost of the consultations, time of the consultations, stigma, immobility and geographical location. The Healthcare giver can intelligently examine, consider, scrutinize and analyse the medical history of a patient and offer exceedingly customizable, individualized and personalized treatment package for the patient via a virtual environment, [7]. The 5G technology infrastructures will enable the doctors to obtain updates on the patient’s medical situation in real time and deliver helpful healthcare services remotely. The swift coming of 5G network technology contained opportunities and potentials to revolutionize Healthcare delivery, advancing speed and capacity while reducing latency, [8]. However, the 5G network technology adoption in electronic Healthcare computing is at infancy, the essentiality of the new network has superlative potential to the twenty first century E-Healthcare service delivery and Health Grid Computing. Several opportunities abound for transmitting large medical images, expediting Tele-Health options and sustaining remote patient monitoring efficiency. Moreover, empowering further complex utilization of artificial intelligence (AI) and augmented virtual reality environment (AVRE) also enhances the sustainability of electronic Healthcare adoption. The 5G network utilization will accelerate speedy transfers and communication on mobile devices use for e-Healthcare, [9]. While the 5G network technology projects key infrastructure that energizes smart devices, smart city and resolves around the core to the edge, creating secured, smarter data streams and enabling greater personalization, [10]. However, the Healthcare industries should comprehend the evolving 5G network innovative landscape and related challenges before massive adoption. The Healthcare organizations are currently
Health and Technology and offering high-quality video augmented reality (AR) 5G technology could benefit patients and Healthcare providers realize quicker and efficient connection. [11]. The novel 5G network coverage of 10 to 100 times faster than a conventional 4G cellular network connection accessible on both the remote location and around the spot of care delivery is an added advantage to the current digital society automation. The 5G network technology is designed to advantage the growing network of Internet of Medical Things devices and several other enterprise-able Wearable Sensors available for remote patient monitoring, [12], allowing Clinicians, doctors, physicians keep in touch with very important signs, medication schedules and other data from the remote to personalize care. The business requirements for 5G network technology will permit several consistent connections to expedite data transfer option for Healthcare workers to quickly arrive at the decision for remotely located patients. To that effect, 5G network technology will be exceptionally significant in transferring arrays of images and that could pave ways for optical imaging tools like X-rays, magnetic Resonance Imaging (MRI) to be managed wirelessly. By extension, 5G network technology will be instrumental in championing emerging augmented and virtual reality tools for training and response feed loop in complex medical circumstances, [13]. Fundamentally, enthusiasm exist for 5G’s network technology potentials to power Robotic Surgery tools that had eliminated proximity barrier and technical lag time between doctors and patients, [14]. The sudden escalation of COVID-19 pandemic exerted human bodily and human inventiveness, resourcefulness, imagination, creativity and skills beyond its limits leading to development of several 5G networked technology empowered robots to respond to healthcare challenges, [15]. While the patients flood emergency departments in all the Hospitals, Rehabilitation centres and Healthcare facilities around the world, the Healthcare experts are struggling to respond to the escalating situations globally. The International Group on Robotic Experts have made advancements on some electronic Inventions, Intervention and Techno-innovative Mobilization in response to COVID-19. Experts in the field of Artificial Intelligence Robotics have argued that COVID-19 may perhaps drive new developments in Robotics Technologies which could pave way for more effective Diagnosis, Screening and Patient care. However, Healthcare Robotic Machines could take over hospital disinfection entirely, providing continuous sterilization of high-touch areas with Ultra-Violet(UV) light, [16]. The scientists believed that the activities of COVID-19 will catalyse Robotics Inventions for Public Healthcare adoption and digital society automation. As part of its effort to contain the spread of COVID-19 global pandemic, China used 5G Patrol Robots developed by Guangzhou Gosuncn Robot Co., Ltd using Advantech technology to monitor mask wearing and body temperatures in public places. In the wake of the outburst of COVID-19, providers of Smart City Internet of Things (IoTs) products and services Guangzhou Gosuncn Robot Co. upgraded its 5G powered Police Patrol Robot with new capabilities to assist Front-Line Police officers in conducting Disease Prevention Inspections. The manual measurement of body temperature exposes public safety personnel to potential Health Risks at this consequential time, these 5G network Robots were equipped with High-Resolution Cameras and Infrared Thermometers capable of scanning the temperature of 10 people simultaneously within a radius of 5 m apart, [17].

3 Research design/methodology

The current universal spectrum requirements personified network Operators in additional spectrum for the novel 5G network technology, not in minimum demand for the reason that its profits are absolutely accomplished in the new millimetre wave frequencies, with tremendously wide-ranging broad bands. At this point, the ultra-high frequencies and minimal latency are features required by the operators to enhance new levels of capability and throughput for improved Mobile extensive bandwidth data transmission, specifically as a means to offloading the overcrowded 4G networks. Nevertheless, there exist much interest in implementing the novel 5G network technology in new mid bands (3.5 GHz–6 GHz) and prevailing legacy mid bands (1,800 MHz–2,600 MHz) as the means for accomplishing nation-wide 5G network coverage as speedily as conceived, refer to Fig.1. The Network Operators such as China Mobile Communications Corporation, Bharti Airtel Limited, MTN Group Limited, China Unicom Limited, AT&T Inc., Vodafone Group plc, Verizon Wireless etc., will essentially invent their spectrum policies pursuant to their own peculiar business applications and the baseband accessible to their commercial requirements now and in the future. Consuming legacy spectrum in permutation of the new bands empowers operators to deliver several larger categories of use cases more professionally and superior in performance than the sum of the individual parts. The Fig.1 conveys the conventional suggestions of the available spectrum across all Radio Access Network (RAN) inventions over time. The spectrum accessibility option for the novel 5G network technology occasionally varied across market segments, focussing on whether it had previously existed or currently in use based on the timing and authorizing progressions.

From Fig. 2, numerous broad bands are obtainable on the novel 5G New Radio in various regions of the global world. In 2019, the World Radio Communication Conference (WRC) declined vetting for unification of spectrum, nevertheless there exist expansive harmonism and convergence on mid-bands adoption, particularly 3.5 GHz, [19]. The deployment of the
novel 5G network technology in Europe and Asia presumably will adopt mid-bands, whereas the United States of America operators will potentially adopt the high bands for the 5G network deployment and recycled some selected 4G low bands. The Individual spectrum band had peculiar instinctive properties, implying that there are trade-offs concerning capability, coverage and latency, together with dependability and effectiveness, as exemplified in Fig. 3. Uncertainty exist when the network is enhanced for a single metric, there is possibility for mortification of an alternative metric. The trade-offs borderlines required special contemplation when deploying 5G network particularly for the operator’s service requirement, if the anticipated installation actually improved the Mobile broadband, considerable IoTs connectivity and Fixed Wireless Access (FWA) for connecting businesses and home together. The Low-band spectrum are traditionally utilized to connect 2G, 3G and 4G networks for voice and mobile broadband services together with TV transmission.

![Spectrum allocation over time](image1)

**Fig. 1** Spectrum allocation over time

![5G spectrum Distribution across the Countries /Regions](image2)

**Fig. 2** 5G spectrum Distribution across the Countries /Regions
The permissible bandwidth is usually in the range of 10 MHz and 30 MHz enabling the spectrum to be utilized for wide-area and overspread coverage through the macro base stations. In the standard 5G mobile network broadband use case, capability and latency are very much alike with 4G network technology on the uniform band. [20]. Legacy mid-band spectrum is presently utilized in favour of 2G, 3G and 4G connectivity. The New mid-band spectrum had 3.5 GHz allocation spectrum within the new higher spectrum bands which will push for sizeable bandwidths in the range of (50 MHz–100 MHz). This will permit high-capacity, lower-latency network performance to be utilized with the novel 5G network use cases, out-performing the higher-band spectrum in the wide-area and indoor coverage. The high-band spectrum affords the quantum leap in operation envisaged by the novel 5G network technology. The new spectrum bands characteristically maintained dominance in the range of 24 GHz–40 GHz with bandwidths of 100 MHz or more. The availability of the enormous bandwidth will allow ultra-high dimensions networks (10 times superior to what is presently available) with latency lower than 1.5 ms. On the other hand, the existence of higher frequencies occurred with a coverage degradation when measured with lower bands. It is expected that the preliminary 5G network will be deployed as Non-standalone (NSA) in mid bands on the account that the framework had been harmonized to permit operators to recycled the subsisting 4G Evolved Packet Core (EPC) networks including the software advancement for Non-standalone provision. The Standalone (SA) 5G network is projected to succeed primarily in low/mid bands, offering considerably higher coverage area and superior indoor diffusion better than high bands. The Subsisting spectrum utilized for 4G network will be advanced efficiently to 5G network substantially as time progresses, reducing the influence of 4G network on the premise that 5G network had consolidated the same band. Numerous permutations exist for bands and technologies for 4G network and 5G network dual connectivity for non-standalone (NSA) 5G network in the future time as traffic multiplies and markets get saturated. The dual connectivity option will permit gadgets to be linked up to both 4G network and 5G network simultaneously as shown in Fig. 4. The 5G network infrastructures, the fifth generation of cellular wireless technology, innovation and development will proffer enormous connection power and fastest speeds that will assist in transforming how Healthcare services will be delivered now and in future. The 5G radio access networks, according to the New Radio (NR) standard, will drive novel approaches to capability, Volume of data rates and low point latency with the capacity of providing data rates of several 10 s’ of megabits per second to 10 s’ of thousands of consumers concurrently. The 5G network technology will empower mobile broadband services to generate enormous possibility for innovative value-added wireless services for several wide range network penetrations, [21]. The emerging network scenarios will include fiber-equivalent Fixed Wireless Access (FWA) services, substantial Internet of Things (IOTs) connectivity services and analytical IOTs applications for automotive innovations, manufacturing & transport logistics, energy & utilities management and electronic healthcare service delivery among others, [22]. Starting from the early network generations of Radio Access Network (RAN) standards, that were originally deployed as stand-alone networks, the 5G network radio (NR) is planned from the initial stage to interwork compatibly with the subsisting 4G LTE networks, [18]. While the 5G innovations are suitable for high degree of steadiness and flawless occurrences for consumers, it becomes very expedient also for conscientious planning to reduce hazards to the existing services. To guarantee the smooth deployment of 5G network technology, operators and consumer communities are expected to envisioned the deployment approaches, mechanics and set of operational dynamics which makes best use of existing investments and best promote, revolutionize and support their investment.
climate and business strategies. Notwithstanding, the consumers who are already utilizing the busiest aspect of 4G network infrastructures or are yet to deploy 4G technology and whether or not it already have access to the brand spectrum for 5G network technology. The opportunities for automation and development of new marketing strategy, enterprise business models and business intelligence ecosystem is now as operators prepare the current networks for 5G deployment.

According to, [18], the fifth generation (5G) wireless network technology will be harmonised, homogenized, standardized and finally regimented across platform in 2020, in which the substantial objectives to improve capacity, reliability, and energy efficiency and reducing latency and massively increasing connection density will be consummated. The fundamental aspect of the 5G network technology is the capacity for communication, transfer and transmission of touch perception type real-time exchanges permitted by applicable of robotic technologies and haptics equipment at the network edge, [18]. In realizing the set objectives in the agenda for 5G network requirements, the current twenty first century digital society requires extreme changes in network architecture including core and radio access network (RAN) for achieving end-to-end connection and security optimization. With respect to Fig. 3, the high broadband spectrum specifies the quantum leap for performance optimization already guaranteed in 5G technology framework. The emerging broadband spectrum are characteristically in the range of 24–40 GHz, with bandwidths in 120 MHz (or higher) frequency. The enormous bandwidth enables ultra-high capacity networks (10–20 times higher than the previous 4G network) having latency as low as 1 ms. The initial 5G network technology deployments will assume non-standalone (NSA) in the mid broad bands, although the approach has been normalized to supports operators to reuse the existing 4G Evolved Packet Core (EPC) networks, [1], providing software upgrade required for NSA maintenance. The Standalone (SA) 5G network technology is estimated to succeed first in low/mid broad bands, offering enormous coverage extensions and exceeding interior penetration more than the high broad bands, performing exceedingly well from both a marketing and business ecosystem while enabling the e2e 5G System and 5G Core. All the subsisting spectrum that consolidated on 4G network technology will be migrated efficiently to 5G network technology framework as time progresses, minimizing the prevalence of 4G as 5G technology has encapsulated the same band. The spectrum migration and combinations for both broad bands and technologies (4G and 5G) are fundamental for the planned progression of the newest 5G network technology. There exist several possibilities for encapsulation and combinations of broad bands plus technological innovations for 4G and 5G dual connectivity for non-standalone 5G network in the near future as more devices are connected and traffic congestion multiplies and markets keep saturating. The Internet of Things will permit several devices to be connected to both 4G network and 5G network technology at the same time, [2], refer to Fig. 4.

From the above diagram, refer to Fig. 4, the 5G network deployment considerations, three typical deployment scenarios for 5G network technology were envisioned in the near-term. Technology insinuations have been that 5G network may be complicated to be deployed across platforms. Though, there exist limitation in 5G NSA when connected with a 4G network but that does not in itself connote considerable technical challenges in the actual implementation.

Scenario 1-The Non-standalone (NSA) 5G alongside 4G in similar mid/low bands. In Scenario1, both 4G and NSA 5G radios are deployed in similar mid/low-band frequencies which implies that both 4G and 5G network technology have very similar coverage areas, as illustrated in Fig. 4. The impressive capability and advanced speeds
Health and Technology (2021) 11:305–317

(peak rates) empowered by 5G New Radio(NR) spectrum implied that operators are most likely to implement it in high-traffic areas, naturally in the big cities, urban areas and metropolitan. The main scenarios include superior Mobile broadband (MBB) and Fixed Wireless Access (FWA) in wide areas while all radios frequencies can be substantially connected to the existing core network infrastructure. The Radio System has no requirement to undergo any changes because the existing radio equipment can potentially be recycled, together with baseband units (provided the capacities are strong enough) and radios (supposed 4G and 5G are on the same baseline frequency). Assume 5G radio access network (RAN) transports substantially additional traffic flow, operators may require to augment baseband capability to deliver the extra processing power requirement.

Scenario 2 – The Non-standalone (NSA) 5G alongside 4G in low/mid bands and 5G in high bands. In Scenario 2, the 4G is deployed in low frequencies, whereas NSA 5G is deployed in high frequencies, which implies that 5G network cell coverage areas will be lesser compared to 4G, particularly for the uplink transmission. Several telecom operators will prefer to deploy 5G network in this manner to take advantage of substantial innovative capability and exceedingly high-ranking throughput (a limited Gbps) that the broader spectrum in higher-frequency bands affords. The 5G network technology radios are still built upon 4G network technology framework and subsisting core and transport network assets are recycled, [23]. The actual scenario involve improved Mobile broadband (MBB) and Fixed Wireless Access (FWA) in the preferred areas. While these locations are entirely new sites, all hardware utilization are particularly for 5G network. Usually, when a 5G network connection has been authenticated, the Client device will link up with both the 4G network to switch on the control signalling that will assist the 5G network to deliver the fast data connectivity even to the existing 4G network technology capability, [24]. Where there is limited 5G coverage, the data is carried on the 4G network providing the continuous connection. Essentially with this design, the 5G network is complementing the existing 4G network.

Scenario 3 – The Stand-alone (SA) 5G in low, mid or high bands. In scenario 3, SA 5G is implemented in an arrangement with low, mid and conceivably high bands. The 5G network radios will be implemented as standalone units with highly reliable connectivity to a core network accomplishing the newest 5G Core requirements which implies that development and performance will far exceed the NSA 5G network. It is expected that telecom operators will implement SA 5G network at the start in low bands as well as mid and possibly high bands in order to deliver superior coverage areas, [25]. In accordance with provision of improved Mobile broadband (MBB) and Fixed Wireless Access (FWA), the Standalone 5G network implementation favour private enterprise networks and industrial internet of things (IOTs) business ecosystem.

4 Discussion of findings

This research recognized the novel 5G network technology potentials in healthcare industry, industrial automation, innovative sectors and mobile technology together with the effects of non-ionizing, non-visible radiation regarded as wireless radiation previously documented in several literature. This current paper observed that very significant laboratory experimentations performed to date with respect to 5G wireless transmission are not planned to identify the more severe effects on the real-life health issues and operating environment in which the radio network wireless radiation systems operate. Although, numerous experimentations do not conceive pulsing and modulation of the wireless radio carrier signals. Substantial number of researches do not explain some effects of toxic stimulus such as chemical and biological effects accompanying the ultra-high frequency wireless radiation/transmission of the novel 5G network installation. This current paper offered evidence that the novel 5G mobile network technology have capability to destroy body cells under certain unmodulated high broadband deployment. In the current research, the novel 5G network technology was tested and deployed under three scenarios (SCENARIO 1, SCENARIO 2 & SCENARIO 3). With respect to “Scenario 1-The Non-standalone (NSA) 5G alongside 4G in similar mid/low bands”. In this Scenario, both 4G and NSA 5G radios are deployed in similar mid/low-band frequencies which implies that both 4G and 5G network technology have very similar coverage areas, as illustrated in Fig. 4. Scenario 2 – The Non-standalone (NSA) 5G alongside 4G in low/mid bands and 5G in high bands. In this Scenario, the 4G is deployed in low frequencies, whereas NSA 5G is deployed in high frequencies, which implies that 5G network cell coverage areas will be lesser compared to 4G, particularly for the uplink transmission. Several telecom operators will prefer to deploy 5G network in this manner to take advantage of substantial innovative capability and exceedingly high-ranking throughput that the broader spectrum in higher-frequency bands affords. The 5G network technology radios are still built upon 4G network technology framework and subsisting core and transport network assets are recycled. Whenever a 5G network connection has been authenticated, the Client device will link up with both the 4G network to switch on the control signalling that will assist the 5G network to deliver the fast data connectivity even to the existing 4G network technology capability, making 5G network act in complement with the existing 4G network. Scenario 3 – The Stand-alone (SA) 5G in low, mid or high bands. In this scenario, SA 5G is implemented in an arrangement with low, mid and conceivably high bands. The 5G network radios will be implemented as standalone units with highly reliable connectivity to a core network.
accomplishing the newest 5G Core requirements which implies that development and performance will far exceed the NSA 5G network. It is expected that telecom operators will implement SA 5G network at the start in low bands as well as mid and possibly high bands in order to deliver superior coverage areas. The major argument is whether 5G network technology does affect human body cells? The answer is yes but the condition upon which such effects can occur is when SA 5G network is deployed on high bands (Frequencies above 20Ghz). The Ultra-High Frequency (UHF) electric fields affects the human cells in a similar manner other material made up of charged particles are induced. Whenever electric fields induced a conductible particles, they prompt transmission of electromagnetic charges on the body of the conductible material. They will permit electric charges to flow through the body to the ground (earth). Ultra-high frequency magnetic fields induced circulation of currents in the surrounding human body causing the body to produce heating effect in a similar manner a microwave ovum can operate. The quantum of these electromagnetic charges are influenced by the magnitude of the external magnetic field. Magnetic fields warming is the major organic consequence of the electromagnetic fields of radiofrequency emitted from 5G network installation especially at a very high baseband frequencies. In microwave ovens for instance, the concept is utilized to warm up food at varied frequencies. From the current research, the levels of electromagnetic fields to which individuals are naturally unmasked under 4G network and 5G network technology in SCENARIO 1, SCENARIO 2 and SCENARIO 3 are very negligible to alter human body dipolar chemistry. The heating consequences of the radio electromagnetic waves from 5G network technology deployment has formed the fundamental basis for the current research. On the several findings of the research, deploying 5G network technology under the ultra-high baseband above 20Ghz will produce effect similar to Fig. 5, heating up of the 5G network technology under the ultra-high baseband above research. On the several findings of the research, deploying has formed the fundamental basis for the current radio electromagnetic waves from 5G network technology.

The effect of electromagnetic field on dielectric produces heating occurred when ultra-high radio frequency (RF) electric field or radio wave or microwave electromagnetic radiation heats a dielectric material. [26]. Scientifically, on the higher frequencies or Ultra-high Frequency, the electromagnetic field inducement will produce heating effects triggered by molecular dipole rotation inside the dielectric refer to Fig. 6. Dielectric material is an electrical insulator or semiconductor material that can easily be polarized through the application of electric field. Usually, if dielectric material is positioned along electric field, the electric charges may not necessarily flow within the material as they conventionally happened within the electrical conductor, except for marginal adjustment from their average symmetry locations triggering dielectric polarization. Due to dielectric polarization, positively charged (+) particles are transferred in the path of the electromagnetic field and negatively charged (-) particles swing in the path parallel to the electromagnetic field. The dielectric heating are produced naturally whenever high-frequency electromagnetic radiation arouses the alternating dipolar particles in the neighbouring medium possessing a considerable speed, in this manner. The electromagnetic energy is transformed into kinetic energy forcing electric field distortion causing the negatively charged (-) cloud of electrons in the vicinity of the positively charged(+) atomic nuclei to migrate in the path opposite to the applied electromagnetic field. The time current flows through the dielectric (non-conductor) material, the dielectric material swing to the charge supply having the positively charged (+) particles associating with the electric field and the negatively charged(-) particles associating in the opposite direction as depicted in Fig. 6. In this scenario, a key circuit elements such as capacitors can be produced. The electric constituent of the electromagnetic field produces warming or heating sensation in two principal approaches; (i.) dipolar polarization and (ii.) ionic conduction. Dielectric polarization happens whenever a dipole moment is created in an insulating material on the account that the external electric field is applied. The charges in the particles will correspond to the electric field produced by the plates. In Fig. 6, the bound charges are produced by the formation of electric charges in contact with the capacitor plates, meanwhile the free charged particles typically hover close to the material by lining up with the bound charges.

The effect of electromagnetic field on dielectric produces a scenario called “thermal runaway” which happened in a situation when an increase in temperature switches another situation in a way that triggers additional increase in temperature, [27], frequently leading to an injurious heating effect on the target. According to, [27], the model relied on the electric field-induced thermal runaway that intensifies the amount of mobile electromagnetic charge carriers in
the device. The consequences of the electromagnetic field disturbances on a system include an intensification of enormousness of the disturbances, [28]. To that effect, the electromagnetic field radiation from A yields considerable B effects which in performance delivers more of A effects. The utilization of directed energy weapon (DEW) as a combatant weaponry that harms its target with substantially decisive energy collision, including laser, microwaves and particle beams used as military warfare for aggression. The Active Denial System (ADS), a military defence weaponry operate in a similar way by firing a high-powered 120 kW output power beam about 95 GHz waves at a victim corresponding to a wavelength of 3.2 mm, [29]. The ADS millimetre wave energy performs in the same manner as the microwave oven, electrifying the water and fat particles in the human skins and animals, and instantaneously warming them through dielectric warming up effect, [30]. The only substantial variation is that a microwave oven utilizes lesser frequency and lengthier wavelength in the range of 2.45 GHz. The small millimetre radiation utilized in ADS merely permeate the uppermost layers of the human or animal skin, depositing most of the energy within 0.4 mm (1/64 inch), while microwaves radiation will permeate into the human or animal body tissue about 17 mm which is 0.67 inch, [31]. The ADS’s accomplishment for nauseating humans happens at marginally high-level temperature degree more than 44 °C (111 °F), however first-degree burns take effect at about 51 °C (124 °F), and second-degree burns happen at about 58 °C (136 °F), [32]. The radiation burns produced are analogous to microwave burns, although merely on the skin surface owing to the diminished invasion of smaller millimetre waves. The outward high temperature of the victim will keep on increasing in as much as the beam is active, at the rate determined by the recipient’s material and the proximity that exist between the electromagnetic field transmitter, alongside the beam’s frequency and power gauge prearranged by the operator. In ideal sense, a large amount of human experiments attained the overbearing heating threshold within few seconds (around 4 s) while nobody could withstand the heating scourge beyond 5 s, [33], see Fig. 8.

With reference to Fig. 7, the ionic polarization happens whenever there is comparatively dislocations involving positively and negatively charged particles in the ionic crystal as a result of electromagnetic inducement. On the account of this, the lattice vibrations or molecular vibrations induced slightly the dislocations of the atoms, the centres of positively (+) charged and negative (-) charged particles are as well relocated thereby shifting the position of the centres and altering the equilibrium, [34]. This manner of polarization naturally happens in ionic crystal elements such as Sodium Chloride (NaCl), Potassium Chloride (KCl), and Lithium Bromide (LiBr). Generally, there could never be any net polarization exoteric in the absence of an external electromagnetic field since the dipole moments of the negatively charged (-) ions are cancelled out with the positively charged (+) ions in the human body, [35]. On the other hand, whenever an external electromagnetic fields are introduced, the ions turn out to be relocated, creating an induced polarization. Figure 7 illustrated the dislocation of ions due to external electromagnetic field. The positively (+) charged particles will move with the field and the negatively (-) charged particles will move against the field, producing a net average dipole moment per ions, [36]. With particular emphasis to Fig. 7, the membranes in the living cells of those of human beings are categorized by a separation of charges across the membrane. For practical purposes, the membranes are charged capacitors with essential performances associated with the potential difference across the membrane permitting current to flow in and out of the body cell. Already, the chemical elements in the human bodies, like sodium, potassium, calcium, and magnesium, contained certain quantity of electrical charges called ions that enable them generate current. The external inducement caused by the electromagnetic field will disrupt and dislocate the electrical body equilibrium.

Interfacial polarization is produced whenever there is build up or accumulation of charges at the boundary connecting two electrically charged materials or border linking two electrically charged regions inside a material due to external electromagnetic field, [37]. The effect that is produced when compound dielectric or two electrodes are coupled to a dielectric material under the influence of electromagnetic field producing effect distinct
from ionic polarization and orientational polarization on the premise that instead of altering the combined positive and negative charges, interfacial polarization will equally influence unrestricted charges all together. The Fig. 9 demonstrates how free charges can be build up in a field, producing interfacial polarization due electromagnetic field. The electromagnetic field will produce some charge unevenly due to dielectric material lagging characteristics. On the other hand, the freely available charges within the dielectric will move over to preserve charge neutrality thereby producing interfacial polarization in the human body cell. (Fig. 10)

Orientational polarization is produced when the external electromagnetic field is applied on the constant dipole moment causing the electrically charged particles in the material to position themselves in the path of the external electromagnetic field. This is on the account that, the external electromagnetic field exerts a “Turning Effect” or “Rotational Force” on the constant dipole moment of individualized molecule. The development in which the permanent dipole moments along the axis are made to rotate by an external electromagnetic field is regarded as orientational polarization. Body Chemical substances like Hydrogen Chloride (HCl) and Water (H₂O) will produce net constant dipole moment on the basis that the charged allocations of these molecules are twisted. In the practical scenario, in the Hydrogen Chloride (HCl) molecule, the Chlorine molecule will be negatively charged (−) while the Hydrogen molecule will be positively charged (+) triggering the molecule of the compound into dipolar. The dipolar attributes of the Hydrogen Chloride molecule will trigger a dipole moment in the material. On the other hand, if the electromagnetic field is absent, the dipole moment is cancelled out by the electrically charged excitement resultant in a net zero dipole moment per molecule in an electrically neutrality.

5 Recommendation

The implementation of the 5G New Radio and 5G Core Network (5GC) is to assure certainty that they have flexibility to maintain the multiplicity of the new use cases at the same time
making things easier for operations. Even though the strategic technology achievements are revealed as the sequence of investment opportunities, there exist no suggestion for product strategic plans that operators will adopt distinctive preliminary deployment measures. The novel 5G network technology strategy should be a flexible preparation procedure to sustain the premeditated and long investment planning, through corresponding short-term and long-term investment objectives alongside unambiguous technology resolutions across countries and regions. The fundamental philosophy is to guarantee that the forceful 5G network technology platform currently in place will be utilized to tackle and economically boost the subsisting use cases, and the foundation for reinvestment in addressing the subsequent technology waves. Improvements to Evolved Packet Core (EPC) and particularly the new 5G Core network will deliver the extent of new attributes comprising network sharing (slicing) that will be instrumental to focus the new business and investment ecosystem, providing diverse descriptions across the network slice to sustain the demands for growing market population and applications. The network operators have started progressing and pursuing new use cases nowadays using Long Term Evolution (LTE) Enhanced Gigabit LTE, in addition to considerable Multiple Input and Multiple Output (MIMO) interworking. In support for Massive IoT, LTE had offered Cat-M1 and narrowband IoT (NB-IoT) applications to be implemented on guard-band with the LTE carrier, utilizing the available spectrum economically.

![Image 9](image9.png)

**Fig. 9** The illustration of how the mobile positively charged particles within the dielectric material travels to the negatively charged particle building up on the right electrode, an effect produced by the external electromagnet field

While the novel 5G network technology implementation and new use cases take effect, possibility exist for increase in the concentration of 5G coverage to distribute essential capability. Society will witness more deployment of Standalone (SA) 5G network together with 5G Core network when devices are abundantly and increasingly accessible and the new use cases beginning to increase in quantum. In the long run, the novel 5G will developed into the major wireless cellular technology adopted to tackle manifold use cases across several industries and sectors. However, the network operator must ensure that deployment of 5G network technology and its investment are restricted to SCENARIO 1, SCENARIO 2 and SCENARIO 3 to avoid adverse effect.

This research recommended strongly biomedical adoption, biotechnology and bioinformatics utilization and expansion of this novel research on the Chemical Polarization Effects of Electromagnetic Field Radiation from the Novel 5G Network Deployment at Ultra High Frequency for wide scale societal consideration and adoption to save humanity. This research established that any attempt to deploy 5G network technology at ultra-high frequency is a deliberate use of unconventional chemical weapon.

### 6 Conclusions

From the knowledge and principle of electromagnetism, human beings are constituted of substantial amount of oriented cells with diverse electromagnetic field attributes. The Biological attributes of the human tissue under diverse electromagnetic radiative emission are studied and that had provided the basis upon which the current research on the effects of electromagnetic fields on the human body. The heating consequences of the radio electromagnetic waves from 5G network technology deployment had formed the

![Image 10](image10.png)

**Fig. 10** The demonstrations of excited molecules (left hand side) producing a net dipole moment per ion in the material when an external inducement of electromagnetic field (right hand side) is applied.
fundamental basis for current research. On the several findings of the research, deploying 5G network technology under the ultra-high baseband above 20 GHz will produce effects such as heating up of the body tissues due to electromagnetic field induction on the account that human body is dipolar in nature. The effects will extend to produce dielectric polarization, ionic polarization, interfacial polarization and orientational polarization. This is generally on the account that variations on dielectric properties of biological tissues with the frequency of the electromagnetic field induction are very dissimilar. While it is very imperative to determine the frequency distribution in deploying the novel 5G network to avoid adverse dielectric dispersion that may flow into the human body.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest

References

1. Ungureanu O. Flexible and Programmable Evolved Packet Core: A New SDN-based Model. 2014.
2. Parvez I, Rahmati A, Guvenc I, Sarwat AI, Dai H. A survey on low latency towards 5G: RAN, core network and caching solutions. IEEE Communications Surveys & Tutorials. 2018;20(4):3098–130.
3. Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett. 2020;323:35–40.
4. Mavrogiorgou A, Kiourtis A, Touloupou M, Kapassa E, Kyriazis D. Thermistocleous M. The road to the future of healthcare: Transmitting interoperable healthcare data through a 5G based communication platform. Paper presented at the European, Mediterranean, and Middle Eastern Conference on Information Systems. 2018.
5. Pramanik, P. K. D., Pal, S., & Mukhopadhyay, M. (2019). Healthcare big data: A comprehensive overview Intelligent Systems for Healthcare Management and Delivery (pp. 72–100): IGI Global.
6. Abo-Zahhad M, Ahmed SM, Elmahas O. A wireless emergency telemedicine system for patients monitoring and diagnosis. International journal of telemedicine and applications. 2014.
7. Pramanik MI, Lau RY, Demirkan H, Azad MAK. Smart health: Big data enabled health paradigm within smart cities. Expert Syst Appl. 2017;87:370–83.
8. Pramanik, P. K. D., Nayyar, A., & Pareek, G. (2019). WBAN: Driving e-healthcare Beyond Telemedicine to Remote Health Monitoring: Architecture and Protocols Telemedicine Technologies (pp. 89–119): Elsevier.
9. Porambage P, Okwuiwe J, Liyanage M, Ylianttila M, Taleb T. Survey on multi-access edge computing for internet of things realization. IEEE Communications Surveys & Tutorials. 2018;20(4):2961–91.
10. Pham QV, Fang F, Ha VN, Le M, Ding Z, Le LB, Hwang WJ. A survey of multi-access edge computing in 5G and beyond: Fundamentals, technology integration, and state-of-the-art. Preprint arXiv:1906.08452. 2019.
11. Imran MA, Sambo YA, & Abbasi QH, editors. Enabling 5G Communication Systems to Support Vertical Industries. Wiley Online Library. 2019.
12. Lema MA, Laya A, Mahmoodi T, Cuevas M, Sachs J, Markendahl J, Dohler M. Business case and technology analysis for 5G low latency applications. IEEE Access. 2017;5:5917–35.
13. Barclay ER. The nature of networks: an aesthetic model for the connected condition. 2019.
14. Latif S, Qadir J, Farooq S, Imran MA. How 5g wireless (and concomitant technologies) will revolutionize healthcare? Future Internet. 2017;9(4):93.
15. Inn TL. Smart city technologies take on COVID-19. World Health. 2020.
16. Stibich MA, Wolford JB, Garfield AN, Rathgeber M, Fryrendall EM. Mobile ultraviolet lamp apparatuses having a reflector system that redirects light to a high touch area of a room: Google Patents. 2019.
17. Rizk B, d’ Aubigny CD, Golish D, Fellows C, Merrill C, Smith P, Bailey S. OCAMS: the OSIRIS-REx camera suite. Space Sci Rev. 2018;214(1):26.
18. Gupta A, Jha RK. A survey of 5G network: Architecture and emerging technologies. IEEE Access. 2015;3:1206–32.
19. Balteanu F. RF Front End Module Architectures for 5G. Paper presented at the 2019 IEEE BiCMOS and Compound semiconductor Integrated Circuits and Technology Symposium (BCICTS). 2019.
20. Chen H, Abbas R, Cheng P, Shirvanimoghaddam M, Hardjawan W, Bao W, Vucetic B. Ultra-reliable low latency cellular networks: Use cases, challenges and approaches. IEEE Commun Mag. 2018;56(12):119–25.
21. Čolaković A, Hadžialić M. Internet of Things (IoT): A review of enabling technologies, challenges, and open research issues. Comput Netw. 2018;144:17–39.
22. Buhalis D, Foerste M. SoCoMo marketing for travel and tourism: Empowering co-creation of value. Journal of destination marketing & management. 2015;4(3):151–61.
23. Guirguis S, Chaudhuri KR, Halder A, Mullaguru N. M2M communications: Enablement in 4G LTE, deployment considerations and evolution path to 5G. Paper presented at the 2017 International Conference on Wireless Networks and Mobile Communications (WINCOM), 2017.
24. Ferrag MA, Maglaras L, Argyriou A, Kosmanos D, Janicke H. Security for 4G and 5G cellular networks: A survey of existing authentication and privacy-preserving schemes. Journal of Network and Computer Applications. 2018;101:55–82.
25. Rezaabad AL, Beyranvand H, Salehi JA, Maier M. Ultra-dense 5G small cell deployment for fiber and wireless backhaul-aware infrastructures. IEEE Trans Veh Technol. 2018;67(12):12331–43.
26. Lin JC, Michaelson SM. Biological effects and health implications of radiofrequency radiation. Springer Science & Business Media. 2013.
27. Funck C, Menzel S, Aslam N, Zhang H, Hardtdegen A, Waser R, Hoffmann-Eifert S. Multidimensional simulation of threshold switching in NbO2 based on an electric field triggered thermal runaway model. Adv Electron Mater. 2016;2(7):1600169.
28. Johansson O. Disturbance of the immune system by electromagnetic fields—A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiology. 2009;16(2–3):157–77.
29. Giri D. High-power electromagnetic radiators: non-lethal weapons and other applications. Harvard University Press. 2004.
30. Perrin A, Souques M. Electromagnetic fields, environment and health: Springer Science & Business Media. 2013.
31. Golio M. Microwave and RF product applications. CRC Press. 2003.
32. Zohuri B. Millimeter-Wave Energy as Weapon Directed-Energy Beam Weapons 2019; 377–396. Springer.
33. Funck C, Menzel S, Aslam N, Zhang H, Hardtdegen A, Waser R, Hoffmann-Eifert S. Multidimensional simulation of threshold switching in NbO2 based on an electric field triggered thermal runaway model. Adv Electron Mater. 2016;2(7):1600169.
34. Russell F. Energy gain by discrete particle non-linear lattice excitations. Localized Excitations in Nonlinear Complex Systems 2014:289–315. Springer.
35. Spaldin NA. Multiferroics beyond electric-field control of magnetism. Proceedings of the Royal Society A. 2020;476(2233):20190542.

36. Böhm KJ, Mavromatos NE, Michette A, Stracke R, Unger E. Movement and alignment of microtubules in electric fields and electric-dipole-moment estimates. Electromagn Biol Med. 2005;24(3):319–30.

37. Pagliusi P, Cipparone G. Extremely sensitive light-induced reorientation in nondoped nematic liquid crystal cells due to photoelectric activation of the interface. J Appl Phys. 2003;93(11):9116–22.

38. Zamanian A, Hardiman C. Electromagnetic radiation and human health: A review of sources and effects. High Frequency Electronics. 2005;4(3):16–26.