Martingales in Homogeneous spaces

Simão N. Stelmastchuk
Departamento de Matemática, Universidade Estadual do Paraná,
84600-000 - União da Vitória - PR, Brazil. e-mail: simnaos@gmail.com

Abstract
Let \(G/H \) be a reductive homogeneous space and \(\nabla_{G/H} \) a \(G \)-invariant connection. Our interesse is to study \(\nabla_{G/H} \)-martingales in \(G/H \). In fact, we yields a correspondence between \(\nabla_{G/H} \)-martingales and local martingales \(m \), where \(m \) is the subspace of Lie algebra \(g \) such that \(g = h \oplus m \) such that \(Ad(H)(m) \subset m \). Here \(h \) is the Lie subalgebra of \(H \). As application we show that martingales in the sphere \(S^n \) are in 1-1 correspondence with local martingales in \(\mathbb{R}^n \).

Key words: Homogeneous space; martingales; stochastic analysis on manifolds

MSC2010 subject classification: 22F30, 58J65, 60H30, 60G48

1 Introduction
Let \(G \) be a Lie Group and \(H \) closed Lie subgroup. In this work we consider the reductive homogeneous spaces. It means that \(g, h \) are Lie algebras of \(G \) and \(H \), respectively, and there exists a subspace \(m \) of \(g \) such that \(g = h \oplus m \) and \(Ad(H)(m) \subset m \). Our intention is to study the martingales in \(G/H \) with respect to \(G \)-invariant connections. A first study in this direction was done by M. Arnaudon in [3], where he characterized the martingales with respect the canonical connection in \(G/H \) in function of local martingales in \(m \). The reader can see that his strategy was used the stochastic exponential in the sense of Stratonovich (see for example [8]) to show this.

In our paper, being natural to see \(\pi: G \to G/H \) as submersion, furthermore, as principal fiber bundle, our idea is given a \(G \)-invariant connection \(\nabla_{G/H} \) on \(G/H \) and to construct a desirable connection \(\nabla^G \) on \(G \) such that \(\pi: G \to G/H \) is an affine submersion with horizontal distribution. It means that \(\pi \ast (\nabla^G_{A^h}B^h) = \nabla_{G/H}^X B \), where \(X, Y \) are vector fields on \(G/H \) and \(A^h, B^h \) are their lifts to \(G \), respectively. The last definition was introduced by N. Abe and K. Hasewaga in [1].

Take the connections \(\nabla_{G/H} \) and \(\nabla^G \) as above. Following the natural idea of projecting the horizontal geodesics of \(G \) in geodesics of \(G/H \) we wish to project horizontal \(\nabla^G \)-martingales in \(\nabla_{G/H} \)-martingales. To make the role of geodesics in \(G \) we will use the Itô exponential on \(G \), which was introduced by author in [15]. Given a local martingale \(M \) in \(g \) the Itô exponential \(X = e^G(M) \) with respect to \(\nabla^G \) is the solution of the stochastic differential equation in Itô sense:

\[
d^{\nabla^G} X_t = L_{(X_t)}(e) dM, \quad X_0 = e.
\]

In context proposed until here, our main Theorem says:
Theorem: Let G/H a reductive homogeneous space G/H. Let $\nabla^{G/H}$ and ∇^G connections on G/H and G, respectively, such that π is an affine submersion with horizontal distribution. If X_t is a $\nabla^{G/H}$-martingale in G/H, then it is written as $\pi \circ e^G(M)$, where M is a local martingale in \mathfrak{m}.

The hypothesis of Theorem is satisfied in many examples of homogeneous spaces, which we give in this work. However, a special application is the sphere. Viewing the sphere S^n as homogeneous space we show that the martingales in sphere are in 1-1 correspondence with local martingales in \mathbb{R}^n.

2 Stochastic calculus

In this work we use freely the concepts and notations of P. Protter [12], P. Meyer [10], M. Emery [6] and [7], S. Kobayashi and N. Nomizu [9] and J. Cheeger and D.G. Ebin [5]. We suggest the reading of [4] for a complete survey about the objects of this section. From now on the adjective smooth means C^∞.

Let $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \geq 0}, \mathbb{P})$ be a probability space which satisfies the usual hypotheses (see for example [6]). Our basic assumption is that every stochastic process is continuous.

Let M be a smooth manifold and X_t a continuous stochastic process with values in M. We call X_t a semimartingale if, for all f smooth function, $f(X_t)$ is a real semimartingale.

Let M be a smooth manifold with connection ∇^M. Let X be a continuous semimartingale with values in M, θ a section of T^*M and b a section of $T^{(2,0)}M$. We denote by $\int_0^t \theta d\nabla^M X$ the Itô integral of θ along X and by $\int_0^t b d(X,X)$ the quadratic integral of b along X. We recall that X is a ∇-martingale if and only if $\int_0^t \theta d\nabla^M X$ is a local martingale for any $\theta \in \Gamma(T^*M)$.

Let M and N be smooth manifolds endowed with connections ∇^M and ∇^N, respectively, and $F : M \rightarrow N$ a smooth map. P. Catuogno in [4] shows the following version for Itô formula in smooth manifolds, which will be said geometric Itô formula:

$$\int_0^t \theta dN(F(X)) = \int_0^t F^*\theta dM X + \frac{1}{2} \int_0^t \beta^*_F \theta (dX, dX), \quad (1)$$

where β_F is the second fundamental form of F and $\theta \in \Gamma(T^*N)$.

From the above formula, it follows that F is an affine map if it and only if sends ∇^M-martingales to ∇^N-martingales.

3 Connections on homogeneous spaces

Let H be a closed Lie subgroup of G. Let \mathfrak{g} and \mathfrak{h} denote the Lie algebras of G and H, respectively. We assume that the homogeneous space G/H is reductive, that is, there is a subspace \mathfrak{m} of \mathfrak{g} such that $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{m}$ and $\text{Ad}(H)(\mathfrak{m}) \subset \mathfrak{m}$. Let π be the natural mapping of G onto the space G/H of the cosets gH, $g \in G$. Also, for each $a \in G$ we define $\tau_a : G/H \rightarrow G/H$ by $\tau_a(gH) = agH$, the left translation. If $a \in G$ and L_a are the left translation on G, then $\pi \circ L_a = \tau_a \circ \pi$.

2
The differential of \(\pi \) at \(e \) shows that \(\ker(d\pi)_e = \mathfrak{h} \). Since \(d\pi \) is onto we get the canonical isomorphism \(m \cong T_e(G/H) \).

As the left translation \(L_g \) is a diffeomorphism, for every \(g \in G \), we have

\[
T_g G = (L_g)_e \mathfrak{h} \oplus (L_g)_e m.
\]

Thus, writing

\[
TG_h := \{(L_g)_e \mathfrak{h}; \forall g \in G\} \text{ and } TG_m := \{(L_g)_e m; \forall g \in G\}
\]

follows that \(TG = TG_h \oplus TG_m \).

Let us denote the Maurer-Cartan form on \(G \) as \(\omega \). Theorem 11.1 in [9] shows that the principal fiber bundle \(G(G/H, H) \) has the vertical part of the Maurer-Cartan as a connection form with respect to decomposition \(\mathfrak{g} = \mathfrak{h} \oplus m \). In other words, \(TG_m \) is a connection in \(G(G/H, H) \). The horizontal lift from \(G/H \) to \(G \) is denoted by \(\mathcal{H} \) and the horizontal projection of \(TG \) into \(TG_m \) is written as \(\mathfrak{h} \).

Let \(A \in m \). The left invariant vector field \(\tilde{A} \) on \(G \) is denoted by \(\tilde{A}(g) = L_g A \) and the \(G \)-invariant vector field \(\pi_* A \) on \(G/H \) is defined by \(\pi_* A = \pi g_* A \). It is clear that \(\tilde{A} \) is a horizontal vector field on \(G \).

It is well-known, see Theorem 8.1 in [11], that for each \(G \)-invariant connection \(\nabla^{G/H} \) is associated to a unique \(Ad(H) \)-invariant bilinear map \(\beta : m \times m \rightarrow m \), that is,

\[
\beta(Ad(H)(A), Ad(H)(B)) = Ad(H)\beta(A, B), \quad A, B \in m.
\]

This correspondence is given by

\[
(\nabla^{G/H}_{A} B)_{\circ} = \beta(A, B), \quad A, B \in m.
\]

Since we are interested on martingales in \(G/H \), our idea is choose a good connection \(\nabla^{G} \) such that it is horizontally projected over \(\nabla^{G/H} \). In other words, we choose \(\nabla^{G} \) in the way that \(\pi : G \rightarrow G/H \) is an affine submersion with horizontal distribution. This definition was given by N. Abe and H. Hasegawa in [11] and it means the following. Taking \(A, B \in m \) we yields the left invariant vectors fields \(A, B \) on \(G \) and the \(G \)-invariant vector fields \(\pi_* A, \pi_* B \) on \(G/H \). It is clear that \(\tilde{A} \), \(\tilde{B} \) are horizontal and \(\pi_*(\tilde{A}) = \pi_* A \) and \(\pi_*(\tilde{B}) = \pi_* B \). In other words, \(\tilde{A}, \tilde{B} \) are horizontal lift of \(A, B \), respectively. Therefore \(\pi \) is an affine submersion with horizontal distribution if

\[
\mathfrak{h}(\nabla^{G}_{A} \tilde{B}) = \mathcal{H}(\nabla^{G/H}_{\pi_* A} B_*).
\]

A natural way to construct a connection \(\nabla^{G} \) from \(\nabla^{G/H} \) such that \(\pi \) is affine submersion with horizontal distribution is to extend \(\beta \) to a bilinear map \(\alpha \) to \(\mathfrak{g} \times \mathfrak{g} \) into \(\mathfrak{g} \) such that \(\alpha(A, B) = \beta(A, B) \) for \(A, B \in m \). Thus, there exists a left invariant connection \(\nabla^{G} \) on \(G \) such that

\[
(\nabla^{G}_{A} \tilde{B})(e) = \alpha(A, B), \quad X, Y \in \mathfrak{g}.
\]

We prove some geometric necessary facts.

Proposition 3.1 Let \(\nabla^{G/H}, \nabla^{G} \) be connections such that \(\pi \) is an affine submersion with horizontal distribution.
1. If $f \in C^\infty(G/K)$ then
\[
Hess^G(f \circ \pi)(\tilde{A}, \tilde{B}) = Hess^{G/H}(f)(\pi(g))(A_\ast, B_\ast),
\]
for $A, B \in \mathfrak{m}$.

2. If $A, B \in \mathfrak{m}$ then
\[
\beta_\pi(\tilde{A}, \tilde{B}) = 0,
\]
where β_π is the second fundamental form of π.

Proof: 1. For $A, B \in \mathfrak{m}$, $\pi_\ast(g)(\tilde{A}(g)) = A_\ast(\pi(g))$ and $\pi_\ast(g)(\tilde{B}(g)) = B_\ast(\pi(g))$ for all $g \in G$. By definition of hessiano, for every $f \in C^\infty(G/K)$,
\[
Hess^{G/H}(f(\pi(g)))(A_\ast, B_\ast) = A_\ast(\pi(g))(B_\ast f) - df(\nabla^G_H A_\ast B_\ast)(\pi(g))
\]
\[= \tilde{A}(g)B(f \circ \pi) - (f \circ \pi)(\nabla^G_H \tilde{A} \tilde{B})(g)
\]
\[= Hess^G(f \circ \pi)(\tilde{A}, \tilde{B}).
\]

2. Given $A, B \in \mathfrak{m}$ we have, by definition of the second fundamental form,
\[
\beta_\pi(\tilde{A}, \tilde{B}) = \nabla^G_{\pi, \tilde{A}} \pi_\ast \tilde{B} - \pi_\ast \nabla^G_{\tilde{A}} \tilde{B}.
\]
Being π an affine submersion with horizontal distribution, we obtain
\[
\beta_\pi(\tilde{A}, \tilde{B}) = \nabla^G_{A_\ast} B_\ast - \nabla^G_{A_\ast} B_\ast = 0.
\]

4 Martingales in homogeneous space

We endow G with a left invariant connection ∇^G and \mathfrak{g} with a flat connection $\nabla^\mathfrak{g}$. In [15], the author defines the Itô stochastic exponential with respect to ∇^G and $\nabla^\mathfrak{g}$ as the solution of the Itô stochastic differential equation
\[
d\nabla^G X_t = L(\nabla^G)\theta_X dM, \quad X_0 = e,
\]
where M is a semimartingale in \mathfrak{g}. For simplicity, we call $e^G(M)$ of Itô exponential. In [15], we have the following results about Itô exponential

Theorem 4.1 Given a semimartingale X in G, there exists a unique semimartingale M in \mathfrak{g} such that $X = e^G(M)$.

Theorem 4.2 Let ∇^G be a connection on G. The ∇^G-martingale in G are exactly the process $e^G(M)$ where M is a local martingale on \mathfrak{g}.

Before we work with martingales in G/H it is necessary to develop a result in the Lie group G. It is related with the left translate of semimartingales by a random variable with values in G. In consequence, we see that the set of martingales in G with respect to a left invariant connection do not change if we translate it to left by a random variable with values in G.

Proposition 4.3 Let G be a Lie group and ∇^G a left-invariant connection on G. If Y_t is a semimartingale on G and ξ is a random variable with values in G, then, for θ 1-form on G,
\[
\int \theta d\nabla^G \xi Y_t = \int (L_\xi^\theta) d\nabla^G Y_t.
\]
Proof: We begin denoting the product on Lie group G by m. Let θ be a 1-form on G. As a function to m, the Itô integral along ξY_t is writing as

$$\int \theta d^{\nabla^G} \xi Y_t = \int \theta d^{\nabla^G} m(\xi, Y_t).$$

The geometric Itô formula \[1\] gives

$$\int \theta d^{\nabla^G} \xi Y_t = \int \theta d^{\nabla^G} \pi Y_t + \int \theta d^{\nabla G}(\xi, Y_t) + 1/2 \int \beta_m^* \theta(d(\xi, Y_t), d(\xi, Y_t)).$$

From Proposition 3.15 in \[7\] we see that

$$\int \theta d^{\nabla^G} \xi Y_t = \int (R^*_t \theta) d^{\nabla^G} \xi + \int (L^*_t \theta) d^{\nabla^G} Y_t + 1/2 \int \beta_m^* \theta(d(\xi, Y_t), d(\xi, Y_t)).$$

Then

$$\beta_m(0, Y) = \nabla_{m_*(0, Y)} m_* (0, Y) - m_*(\nabla^{G \times G}(0, Y))$$

where in forth equality we use the fact that ∇^G is a left invariant connection.

Thus we get

$$\int \theta d^{\nabla^G} \xi Y_t = \int (L^*_t \theta) d^{\nabla^G} Y_t + 1/2 \int \beta_m^* \theta(d(\xi, Y_t), d(\xi, Y_t)).$$

We claim that the $\beta_m(d(\xi, Y_t), d(\xi, Y_t))$ is null. In fact, let $0 \in T_0 G$ and Y_a a left invariant vector field on G. Here, 0 is the vector associated to the constant process ξ. Then

$$\beta_m(0, Y) = \nabla_{m_*(0, Y)} m_* (0, Y) - m_*(\nabla^{G \times G}(0, Y))$$

$$= \nabla_{m_*(0, Y)} m_* (0, Y) - m_*(\nabla^{G \times G}(0, Y))$$

$$= \nabla_{m_*(0, Y)} m_* (0, Y) - m_*(\nabla^{G \times G}(0, Y))$$

$$= 0,$$

where in forth equality we use the fact that ∇^G is a left invariant connection.

Thus we get

$$\int \theta d^{\nabla^G} \xi Y_t = \int (L^*_t \theta) d^{\nabla^G} Y_t.$$
Proof: Let \(X_t \) be a \(\nabla^{G/H} \)-martingale and \(Y_t \) its horizontal lift to \(G \). Taking a 1-form \(\theta \) on \(G/H \) follows

\[
\int \theta d^{G/H} Z_t = \int \theta d^{G/H} \tau_{Y_0^{-1}} X_t = \int \theta d^{G/H} \tau_{Y_0^{-1}} \pi(Y_t) = \int \theta d^{G/H} \pi(L_{Y_0^{-1}} Y_t).
\]

From the geometric Itô formula (1) and Proposition 3.1 we see that

\[
\int \theta d^{G/H} Z_t = \int \pi^* \theta d^{G/H} (L_{Y_0^{-1}} Y_t) + \int \pi_* \hat{\theta} \pi (d(L_{Y_0^{-1}} Y_t), d(L_{Y_0^{-1}} Y_t)) = \int \pi^* \theta d^G (L_{Y_0^{-1}} Y_t).
\]

Proposition 4.3 now assures that

\[
\int \theta d^{G/H} Z_t = \int \theta \pi^* \pi_* (L_{Y_0^{-1}} Y_t) = \int \theta \tau_{Y_0^{-1}} \pi^* d^G X_t.
\]

Again, from geometric Itô formula (1) and Proposition 3.1 we conclude that

\[
\int \theta d^{G/H} Z_t = \int \theta \tau_{Y_0^{-1}} d^{G/H} \pi(Y_t) = \int \theta \tau_{Y_0^{-1}} d^{G/H} X_t.
\]

Since \(X_t \) is \(\nabla^{G/H} \)-martingale, it follows that \(Z_t \) is a \(\nabla^{G/H} \)-martingale.

Proposition above allows considering \(\nabla^{G/H} \)-martingales with initial condition \(o \), that is, we can consider only the \(\nabla^{G/H} \)-martingales \(X_t \) with \(X_0 = o \), where \(o = H \) is the origin in \(G/H \).

Lemma 4.6 Let \(G/H \) a reductive homogeneous space \(G/H \). Let \(\nabla^{G/H} \) and \(\nabla^G \) connections on \(G/H \) and \(G \), respectively, such that \(\pi \) is an affine submersion with horizontal distribution. If \(U_t \) is a horizontal parallel stochastic transport along \(X_t \), then \(\pi_*(U_t) \) is a parallel stochastic transport along the semimartingale \(\pi(X_t) \) in \(G/K \).

Proof: It is sufficient to show that \(\pi_*(U_t) \) satisfies the formula of the parallel stochastic transport, see for instance (8.11) in [6]. Consider \(f \in C^\infty(G/K) \). Applying this formula we obtain that

\[
(\pi_* U_t) f + (\pi_* U_0) f = U_t (f \circ \pi) + U_0 (f \circ \pi) = \int Hess(f \circ \pi)(U_t, \delta X_t) = \int Hess(f)(\pi_* U_t, \delta \pi(X_t)),
\]

where we used the Proposition 3.1 in the later equality. It follows immediately that \(\pi_*(U_t) \) is parallel stochastic transport along \(\pi(X_t) \).

Theorem 4.7 Let \(G/H \) a reductive homogeneous space \(G/H \). Let \(\nabla^{G/H} \) and \(\nabla^G \) connections on \(G/H \) and \(G \), respectively, such that \(\pi \) is an affine submersion with horizontal distribution. If \(X_t \) is a \(\nabla^{G/H} \)-martingale in \(G/H \), then it is written as \(\pi \circ e^G(M) \), where \(M \) is a local martingale in \(m \).
Proof: Let X_t be a $\nabla^{G/H}$-martingale in G/H and Y_t its horizontal lift in G. Consider a 1-form θ in $T^*(G/K)$. Since π is an affine submersion with horizontal distribution, from Proposition 2.1 and the geometric Itô formula (11) we obtain

$$\int \theta d^{G/H}X_t = \int \theta d^{G/H}(\pi(Y_t)) = \int (\pi^*\theta)d^{G}Y_t = \int \theta \pi_*d^{G}Y_t,$$

where we used that Y_t is a horizontal semimartingale in G. Hence

$$d^{G/H}X_t = \pi_*d^{G}Y_t.$$

Let $\{H_1, \ldots, H_n\}$ be a basis on \mathfrak{g}. Choose $\{H_\kappa, \kappa = 1, \ldots, r\}$ such that it is a basis of \mathfrak{m}. By Theorem 4.1, there is a unique semimartingale N in \mathfrak{g} such that $d^G Y_t = L_{Y_t} dN$. If we write $N = \sum_{\kappa=1}^r N^\kappa H_\kappa + \sum_{j=r+1}^n N^j H_j$, then $d^G Y_t = dN^\kappa U_t^\kappa + dN^j U_t^j$, where $U_t^i = L_{Y_t} H_i, i = 1, \ldots, n$. It is obvious that $\sum_{\kappa=1}^r N^\kappa H_\kappa$ is a semimartingale in \mathfrak{m} and that

$$d^{G/H}X_t = \pi_* (dN^\kappa U_t^\kappa) = dN^\kappa \pi_*(U_t^\kappa). \quad (3)$$

The set $\{U^1, \ldots, U^n\}$ is a moving frame along Y_t (see [6] for the definition of moving frame). Hence $\{\pi_*(U^1), \ldots, \pi_*(U^n)\}$ is a moving frame along X_t, by Lemma above. Let us denote by $\{\eta_1, \ldots, \eta_r\}$ the dual basis of $\{\pi_*(U^\kappa), \kappa = 1, \ldots, r\}$ along X_t. Define $M_t = \sum_{l=1}^r M_t^l H_l$ a semimartingale in \mathfrak{m}, where $M_t^l = \int \eta_l d^{G/H}X_t$. For every $l = 1, \ldots, r$, we claim that $M_t^l = N_t^l$. In fact,

$$M_t^l = \int \eta_l d^{G/H}X_t = \int \eta_l dN_t^\kappa \pi_*(U_t^\kappa) = \int dN_t^\kappa \eta_l \pi^* U_t^\kappa = \int dN_t^l = N_t^l.$$

It follows that $N_t = M_t + \sum_{l=r+1}^n N_t^l H_l$. From this and (3) we conclude that $d^{G/H}X_t = \pi_* (L_{Y_t} dM_t)$, and also that

$$d^{G/H}X_t = \pi_{Y_t} dM_t.$$ \quad (4)

The semimartingale M_t above is called the lifting of X_t in \mathfrak{m} (see [6] for this definition). From the stochastic differential equation (11) we conclude directly that X_t is a $\nabla^{G/H}$-martingale if, and only if, M_t is a local martingale in \mathfrak{m}. Theorem is proved if we see that $Y_t = e^G(M_t)$.

Remark 1 In the proof of the Theorem above, we founded a semimartingale $Y_t = e^G(M_t)$. Since M is a local martingale in \mathfrak{m}, we can consider M as local martingale in \mathfrak{g}. Therefore Y_t is a ∇^G-martingale, which follows from Theorem 1.2 Furthermore, in terms of theory of connections, Y_t can be consider as a horizontal martingale in G.

Remark 2 From the proof of Theorem 1.2 we have that a semimartingale X_t in G/H satisfies the Itô stochastic differential equation

$$d^{G/H}X_t = \pi_{Y_t} dM_t, \quad X_0 = 0,$$ \quad (5)

where M_t is a semimartingale in \mathfrak{m} and $o = H$.

7
Example 4.1 K. Nomizu in [11] defined by canonical affine connection of the second kind the connection $\nabla^{G/H}$ which has the connection function $\beta : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ given by $\beta(A, B) = 0$, for $A, B \in \mathfrak{m}$. We extend β for a connection function $\alpha(A, B) = 0$, for $A, B \in \mathfrak{g}$. Then, the connection ∇^G is given by $\nabla^G_A B = 0$. With these connections, it is clear that $\pi : G \to G/H$ is an affine submersion with horizontal distribution. Theorem 4.4 assures that for each $\nabla^{G/H}$-martingale X there exists a local martingale in \mathfrak{m} such that $X_t = \pi \circ e^G(M_t)$. This result was first proved by M. Arnaudon in [3]. As a particular case of this example we have the Symmetric Spaces which admits a G-invariant metrics (see Theorem 3.3, chapter XI, in [12]).

Example 4.2 K. Nomizu in [11] called the canonical affine connection of the first kind the connection ∇^G which has the connection function $\beta : \mathfrak{m} \times \mathfrak{m} \to \mathfrak{m}$ defined as $\beta(A, B) = \frac{1}{2}[A, B]_\mathfrak{m}$. The natural way to extend β to α is to take $\alpha(A, B) = \frac{1}{2}[A, B]_\mathfrak{g}$, for $A, B \in \mathfrak{g}$. In accordance to correspondence between connections on G/H and G and connections functions β and α, respectively, $\nabla^G_A B = \frac{1}{2}[A, B]_\mathfrak{m}$ and $\nabla^G B = \frac{1}{2}[A, B]_\mathfrak{g}$. It follows directly that $\pi : G \to G/H$ is an affine submersion with distribution horizontal. Therefore every $\nabla^{G/H}$-martingale X_t is written as $X_t = \pi \circ e^G(M_t)$, where M_t is a local martingale in \mathfrak{m}, which follows from Theorem 4.4.

Example 4.3 A class of homogeneous space that satisfy the Example above are the normal homogeneous spaces. Following Definition 6.60 in [13], a Riemannian homogeneous space $M = G/H$ is called normal homogeneous if there exists a bi-invariant metric on G such that $\pi_* \mathfrak{e}$ maps the orthogonal complement $\mathfrak{h}^\perp \mathfrak{g}$ isometrically to $\mathfrak{m}_{\pi(e)}$. It is know that Levi-Civita connection on G is given by $\nabla^G_A B = \frac{1}{2}[A, B]_\mathfrak{g}$, for A, B. In the other side, it is possible to show that the Levi-Civita connection on G/H is given by $\nabla^G_A B = \frac{1}{2}[A, B]_\mathfrak{m}$, for $A, B \in \mathfrak{m}$ (see proposition 6.62 in [13]). In fact, every normal homogenous space is naturally reductive (see page 220 in [15] or [2]).

Example 4.4 A example more general than above is the following. Let $M = G/H$ be a homogeneous space. We admit that M has a G-invariant metric $\langle \cdot, \cdot \rangle$. Using Theorem 3.36 in [13] we obtain a left invariant metric $\langle \cdot, \cdot \rangle$ on G such that $\pi : G \to G/H$ is a Riemannian submersion. Theorem 4.7 assures that every $\nabla^{G/H}$-martingale X_t is written as $X_t = \pi \circ e^G(M_t)$, where M_t is a local martingale in \mathfrak{m}.

5 Martingales in sphere

Let S^n be a sphere n-dimensional in \mathbb{R}^n. We can write S^n as a normal homogeneous space in the following way. In [13], we found in Example 6.61(a) that if we define a bi-invariant metric on $SO(n+1)$ by $< U, V > = \frac{1}{2} tr(U^t V) = -B(U, V)/(2n-2)$, $n \geq 2$, B is the Killing form, then $S^n = SO(n+1)/SO(n)$ is a normal homogeneous space. Furthermore, the normal homogeneous metric on $S^n = SO(n+1)/SO(n)$ is the usual metric on S^n. It directly follows that $SO(n+1)/SO(n)$ is a reductive homogeneous space. The reductive decomposition is given by $\mathfrak{o}(n+1) = \mathfrak{o}(n) + \mathfrak{m}$, where \mathfrak{m} is the subspace of all $n \times n$
matrices of the form
\[
\begin{pmatrix}
0 & -x^t \\
x & 0_n
\end{pmatrix},
\]
where \(x = (x_1, \ldots, x_n) \) is a column vector in \(\mathbb{R}^n \) and \(0_n \) the \(n \times n \) zero matrix. It is clear that \(m \) is isomorphic to \(\mathbb{R}^n \). Let us denote such isomorphism by \(\phi : m \to \mathbb{R}^n \). It is immediate that a semimartingale \(\xi \) in \(\mathbb{R}^n \) is a local martingale if and only if \(\phi(\xi) = M \) is a local martingale in \(m \).

Theorem 5.1 Let \(S^n \) be a sphere \(n \)-dimensional in \(\mathbb{R}^n \) with its usual metric induced of \(\mathbb{R}^{n+1} \). There is a 1-1 correspondence between matingales in \(S^n \) and local martingales in \(\mathbb{R}^n \).

Proof: Let \(X_t \) be a \(\nabla S^n \)-martingale in \(S^n \), where \(\nabla S^n \) is the Levi-Civita connection. Theorem 4.7 yields a unique local martingale in \(\mathbb{m} \) such that \(X_t = \pi \circ e^G(M) \), where \(\nabla^G \) is the Levi-Civita connection on \(SO(n+1) \). Using the isomorphism \(\phi : \mathbb{R}^n \to \mathbb{m} \) defined above we see that \(M = \phi(\xi) \), where \(\xi \) is the unique local martingale in \(\mathbb{R}^n \) that satisfies such relation. It follows that \(X_t \) is unique related with \(\xi \), and the proof is complete.

By Remark 2 we know that a \(\nabla S^n \)-martingale \(X_t \) satisfies the Itô stochastic differential equation
\[
d^{S^n}X_t = \tau_{Y_t}dM_t, \quad X_0 = \delta',
\]
where \(M_t \) is a local martingale in \(\mathbb{m} \) and \(\delta' = (1, 0, \ldots, 0) \). In the other hand, there exists a unique local martingale \(\xi \) such that \(M = \phi(\xi) \). So, for a 1-form \(\theta \) we can compute
\[
\int \theta d^{S^n}X_t = \int \theta \tau_{Y_t}dM_t = \int \theta \tau_{Y_t}d\phi(\xi)_t = \int \theta \tau_{Y_t} \phi_{\xi}, d\xi_t,
\]
where we used the geometric Itô formula (1) in the last equality. Thus \(X_t \) satisfies the following Itô differential equation
\[
d^{S^n}X_t = \tau_{Y_t} \phi_{\xi}d\xi_t, \quad \xi_0 = (0, 0, \ldots, 0).
\]

References

[1] Abe, N., and Hasewaga, K., *An affine submersion with horizontal distribution and applications*, Differential Geometry and its Applications, 14,(2001) 235-250.

[2] Arvanitoyeorgos, A. *An introduction to Lie groups and the geometry of homogeneous spaces*. Student Mathematical Library, 22. American Mathematical Society, Providence, RI, 2003.

[3] Arnaudon, M., *Semi-martingales dans les espaces homogènes*, Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), no. 2, 269–288.

[4] Catuogno, P., *A Geometric Itô formula*, Matemática Contemporânea, 2007, vol. 33, p. 85-99.

[5] Cheeger, J., Ebin, D.G. *Comparsion theorems in Riemannian geometry*, North- Holland Publishing Company (1975).
[6] Emery, M., *Stochastic Calculus in Manifolds*, Springer, Berlin 1989.

[7] Emery, M., *Martingales continues dans les variétés différentiables*, Lectures on probability theory and statistics (Saint-Flour, 1998), 1-84, Lecture Notes in Math., 1738, Springer, Berlin 2000.

[8] Hakim-Dowek, M., and Lépingle, D., *L’exponentielle Stochastique de Groupes de Lie*, Lectures Notes in Mathematics, 1204, 1986, p. 352-374.

[9] Kobayashi, S., and Nomizu, K., *Foundations of Differential Geometry*, vol I, Vol II, Interscience Publishers, New York, 1963, 1969.

[10] Meyer, P.A., *Géométrie stochastique sans larmes*. (French) [Stochastic geometry without tears] Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French), pp. 44–102, Lecture Notes in Math., 850, Springer, Berlin-New York, 1981.

[11] Nomizu K., Invariant affine connections on homogeneous spaces, Amer. J. Math., 76, (1954). 33–65.

[12] Protter, P., *Stochastic integration and differential equations. A new approach*. Applications of Mathematics (New York), 21. Springer-Verlag, Berlin, 1990.

[13] Poor, W.A., *Differential geometric structures*. McGraw-Hill Book Co., New York, 1981.

[14] Shigekawa, I. *On stochastic horizontal lifts*. Z. Wahrsch. Verw. Gebiete 59 (1982), no. 2, 211–221.

[15] Stelmastchuk, S. N., *Itô Exponential on Lie Groups*, http://arxiv.org/abs/1106.5637