Computers for Lattice QCD
Norman H. Christ

Department of Physics, Columbia University, New York, NY 10027 USA

The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed.

1. INTRODUCTION

The overriding objective of present work in lattice QCD is to achieve an accurate representation of continuum QCD and to use this ability to study physically important properties of the underlying theory. This research demands a combination of efficient numerical algorithms, physical quantities appropriately represented for numerical study and fast computers to carry out the needed calculations. While the development of algorithms and inventions of methods to tackle new problems are natural tasks for theoretical or computational physics, it is most often the large machines that produce the actual numerical results of importance to physics. Thus, the development, characteristics and availability of large scale computer resources are necessarily central topics in lattice QCD.

Fortunately there is much progress to report since this topic was last addressed in a plenary talk at a lattice meeting[1]. In particular, since that review the 300 Flops PC-PACES in Tsukuba and 120 and 180 Gflops QCDSP machines at Columbia and the RIKEN Brookhaven Research Center have come into operation. In addition construction is beginning on the next APE machine, APEmille. These large machines offer critical opportunities for progress on the most demanding calculations at the frontier of lattice QCD, especially exploration beyond the quenched approximation in which the full effects of dynamical fermions are incorporated.

While a survey of present computer resources (see below) shows a marked decline in the importance of large-scale commercial supercomputers (only the Hitachi machine in Tsukuba belongs to this category), there is a promising appearance of a new class of machines: workstation farms. While also commercial machines, workstation farms are often assembled by the group wishing to use them and are built from cost effective PC’s or workstations connected with a commercial network. While present workstation farms cannot deliver the high performance offered by the large projects mentioned above, they are easily assembled and can quickly exploit advances in PC technology.

In Table 1 we follow Sexton’s example and attempt to give a picture of the computer resources presently available for lattice QCD research.

2. THREE LARGE PROJECTS

The PC-PACES, QCDSP and APEmille machines represent somewhat varied examples of how large-scale computer resources can be provided for lattice QCD studies.

2.1. PC-PACES

The first of this generation of machine to be completed was PC-PACES[2] which has been working since the middle of 1996. It contains 2048 independent processors connected by a 3-dimensional hyper-crossbar switch joining processors and I/O nodes into a $17 \times 16 \times 8$ grid. All nodes with two out of three identical Cartesian coordinates are connected by their own 300 MB/sec crossbar switch.

The processor is an enhanced version of a stan-
Table 1
A summary of computer resource presently available for lattice QCD. These are rough estimates which attempt to quantify available computer resources in average, sustained Gigaflops.

Country	Group	Lattice '95 Machine	Lattice '95 Power	Lattice '99 Machine	Lattice '99 Power
Germany	various	3QH2	21	QH4+QH2	21
Italy:	RomaI	4QH4	55	4QH1+2QH2	28
	RomaII	QH4	14	1QH1	3
	Pisa	QH4+2QH1	21	2QH1	7
	Other	2QH1	7	NQH1	16
Japan:	Tsukuba	various	10	PC-PACES	300
	JLQCD	VPP500(80)	50	VPP500(80)	50
	RIKEN	VPP500(30)	10	VPP800E	30
UK:	UKQCD	various	2.5	T3E/152	41
US:	Columbia	256-node	7	QCDSP	120
	RIKEN/BNL	—	—	QCDSP	180
	Fermilab	ACPMAPS	5	—	—
	IBM	GF11	5	—	—
	LANL	various	5	Origin2000	3.6
	MILC	various	5	various	6

standard Hewlett Packard reduced instruction set computer and carries out 64-bit floating point arithmetic. The processor enhancement involves the addition of extra floating point registers allowing the efficient transfer of long vectors into the processor. The peak speed of each processor is 300 Mflops so the peak speed of the 2048-node machine is 0.6 Teraflops.

The resulting architecture achieves remarkable efficiencies for QCD code (above 50%[3]) and appears to be useful to other applications as well. Perhaps equally impressive is the fact that FORTRAN, C and C++ compilers are available which support the high performance features of the machine. While much of the lattice QCD code is written in these high level languages, careful assembly language programming is used for the critical inner loops.

The machine consumes 275 KWatts and was built within a $22M budget giving a cost performance figure of $73/Mflops. The machine can be partitioned into a number of disjoint units, each with its own queue. Typically the queues are reconfigured about once per month. During their large quenched hadron mass calculation the machine was configured as a single partition about one third of the time.

2.2. QCDSP

The next machines of this present generation to be finished are the QCDSP machines at Columbia and the RIKEN Brookhaven Research Center[4]. These machines are based on a very simple node made up of a commercial, 50 Mflops, 32-bit digital signal processor chip (DSP), a custom gate-array (NGA) and 2 MB of memory. These are mounted on a single 4.5×7.5cm SIMM card as shown in the picture in Figure 1. The NGA enhances DSP performance by providing a 32-word buffer between the DSP and memory. This buffer acts in different ways depending on which of nine images of memory the DSP addresses, varying from normal memory access (with a minimum of 2 wait-states) to a fetch ahead mode which permits 25 Mword/sec data motion from memory and 0 wait-state random access by the DSP to a portion of the 32-word buffer.

The NGA also provides inter-processor communication, supporting simultaneous ≈40Mb/sec serial communication between the node and each of its eight nearest neighbors in four dimensions.
Figure 1. Picture of a single QCDSP node. The gate array chip is on the left and the DSP on the right. The five memory chips are on the back side.

This net 40 MB/sec bandwidth per node is sufficient for efficient execution of lattice QCD code even when there are as few as 2^4 sites per node. In addition, the NGA implements pass-through or "worm-hole" operations that allow efficient global floating point sums and broadcasts.

Most of the code for these QCDSP machines is written in C++ with the critical low level routines written in DSP assembly language. The fastest code for Wilson or domain wall fermions achieves 30% of peak performance or 15 Mflops on a single node. Thus the 8,192 node machine at Columbia and the 12,288 node machine at the RBRC at Brookhaven can achieve 0.12 and 0.18 Teraflops respectively. The RBRC machine was the final machine constructed and, including Brookhaven assembly labor, cost $1.85M giving a cost performance figure of $5/Mflops. This machine has a peak speed of 1 Teraflops and is expected to sustain at least 50%, or 0.5 Teraflops. At a cost of $2.5M this will yield a machine with a cost performance of $5/Mflops. One large machine can be subdivided in software into a number of independent SIMD units.

The machine will be programmed in two languages C++ and TAO, with the later language providing backward compatability with APE100 TAO code. A 2048-node machine is expected to consume 20 KWatts. Such a machine would have a peak speed of 1 Teraflops and is expected to sustain at least 50%, or 0.5 Teraflops. At a cost of $2.5M this will yield a machine with a cost performance of $5/Mflops. There is a 32-processor unit working now. Two 250 Gflops and two 128 Gflops units are planned for INFN and at least one 250 Gflops unit for DESY, all by next summer.

2.3. APEmille

APEmille is the next in a series of QCD machines built by the Italian and now DESY groups[5]. This machine is constructed of custom floating point processors, with a peak, single-precision speed of 538 Mflops. Each processor has 32 Mbytes of memory and is connected to its six nearest neighbors in a 3-dimensional mesh. The total off-node bandwidth provided to a single processor is 132 MB/sec. The processors are organized into clusters of eight with each such cluster fed instructions SIMD-style by a single controller. Four of these eight-node clusters are then controlled by a built-in Linux "workstation" with I/O capability. One large machine can be subdivided in software into a number of independent SIMD units.

The machine will be programmed in two languages C++ and TAO, with the later language providing backward compatability with APE100 TAO code. A 2048-node machine is expected to consume 20 KWatts. Such a machine would have a peak speed of 1 Teraflops and is expected to sustain at least 50%, or 0.5 Teraflops. At a cost of $2.5M this will yield a machine with a cost performance of $5/Mflops. There is a 32-processor unit working now. Two 250 Gflops and two 128 Gflops units are planned for INFN and at least one 250 Gflops unit for DESY, all by next summer.

3. SMALLER MACHINES

In addition to the three large projects described above, there are a number of smaller machines that provide important resources for lattice QCD calculations. The UKQCD collaboration has the use of a 152-node T3E. With 64 Mbyte, 0.9 Gflops nodes, this machine has a peak performance of 137 Gflops and sustains 41 Gflops on QCD code. Usually there is a large, 128-node partition devoted to production running. There is a 128-node Fujitsu VPP700E with 2 Gbyte, 2.4 Gflops nodes at RIKEN. This machine sustains 150 Gflops and is perhaps 20% available for lattice calculations. An 80-node, 80 Gflops VPP500 is installed at KEK with an upgrade to a 550 Gflops sustained machine expected early next year. In the U.S.,
Fermilab continues to use its ACP-MAPS machine which sustains 5 Gflops. The LANL group has access to a 64-node 32 Gflops Origin2000 which sustains 3.6 Gflops for QCD. Finally the MILC group has access to a variety of machines include an Origin2000, a T3E and an SP-2, yielding a total sustained performance of 5.8 Gflops.

4. WORKSTATION FARMS

An important recent development is the appearance of clusters of workstations, networked together to tackle a single problem. This approach to parallel computing has the strong advantage that it can be pursued with commodity components that are easily assembled and uses standard, platform-independent software, e.g. Linux and MPI. We consider four examples:

Indiana University Physics Cluster. Each node in this 32-node cluster is a 350MHz Pentium II with 64 MB of memory, joined through a switch using 100MB/sec Fast Ethernet. Running a straight port of MPI MILC code, S. Gottlieb reports the following benchmarks. A staggered inverter applied to a 44 lattice on a single node, yields 118 Mflops while for a 144 lattice the performance falls to 70 Mflops (presumably due to less efficient cache usage). Identical code run on the entire 32-node machine achieves 0.288 Gflops on a 83 × 16 lattice (44 sites per node). This number increases to 1.4 Gflops for a 283 × 56 lattice (144 sites per node). Thus, the effects of the somewhat slow network are to decrease the single node 118 Mflops to 70 Mflops. While the Fast Ethernet is too slow to allow maximum efficiency, it is very inexpensive, allowing a total machine cost of $25K in Fall of '98 and impressive cost performance numbers of $87 and $18/Mflops for the two cases.

Roadrunner Cluster. This is 64-node machine at the University of New Mexico with each node made up of two Pentium II, 450 MHz, 128 MB processors for a cost of approximately $400K. S. Gottlieb's benchmarks (using only one of the two processors) show single-node performance of 127 and 71 Mflops for the 44 and 144 cases. On a 32-node partition, he finds 1.25 and 2.0 Gflops for the 83 × 16 and 283 × 56 examples. This cluster has a much faster network using Myrinet (1.28 Gb/sec) and a much better 39 Mflops performance per node on the small lattice with the greatest communication demands. The higher performance is balanced by the higher cost of this commercial machine. Arbitrarily discounting the $400K by 1/3 since only one of two processors was used, we obtain $106/Mflops and $67/Mflops for these two different sized lattices.

ALICE. This is an 128-node, Alpha-based machine with a Myrinet multistage crossbar network being assembled in Wuppertal. Each node is a 466 MHz 21264 Alpha processor with single-node performance for QCD code of 175 Mflops (double precision). The full system is expected achieve 20 Gflops (double) and >30 Gflops (single precision). Based on a list price of about $0.9M, this machine provides $45/Mflops, a number sure to be lower when the actual price is determined.

NCSA NT Myrinet Cluster. This cluster of 96, dual 300MHz Pentium II nodes has been used by D. Toussaint and K. Orginos for MILC benchmarks and by P. Mackenzie and J. Simone for a Canopy test, each using a 123 × 24 lattice. While the performance per node decreases from 22.5 to 12.8 for the Canopy test as the number of nodes increases from 1 to 12, the MILC code runs at essentially 50 Mflops/node as the number of nodes varies between 1 and 64. Thus, a 64-node machine sustains 3.2 Gflops for the MILC code. It is impressive that the Canopy code could be ported without great difficulty and its performance is expected to increase as extensions to MPI are added which provide features needed for the efficient execution of Canopy.

5. THE FUTURE

In light of the above discussion it is interesting to discuss possible future directions for lattice QCD computing. Figure 2 shows the computing power and price performance of the various systems just discussed. That summary suggests that workstation farms will soon offer unprecedented, cost-effective, 10-50 Gflops computing. By allowing rapid upgrades to current technology and use-
ing standard software, this approach provides an easy migration path to increasingly cost effective hardware. If a relatively fast network is provided, the general interconnectivity supports a variety of communication patterns which are easily accessible from portable software. Workstation farms should provide increasingly accessible and powerful resources for lattice QCD calculations.

However, the largest size of a farm that can be efficiently devoted to evolving a single Markov stream is limited by communication technology. Commodity Ethernet is too slow and the more effective 1.28 Gb/sec Myrinet product, at $1.6K$/node, does not benefit from a mass market. In addition, the intrinsic latency of a general purpose network product, limits its applicability for lattice QCD. For a 500 Mflops processor, 10 μs is required for the application of a single staggered D operator to the even sites of a 2^4 local lattice. However, the smallest latency achieved by a Myrinet board is 5 μs and sixteen independent transfers are needed for such a D application implying a minimum $8 \times$ performance decrease for such a demanding problem.

Thus, it seems likely that high end computing, needed for example to evolve necessarily small lattices with dynamical quarks, will be done on purpose-built machines of the PC-PACES, APEmille, QCDSP variety. If fact, all three groups are already planning their next machine. While no details are available from Tsukuba, the APE machine, APEnext, aims for 3-6 Tflops peak speed with 64-bit precision, 1 Tbyte of memory and 1 Gb/sec disk I/O. The next Columbia machine, QCDSP10, is planned as an evolution of the QCDSP architecture. The new processor may be a 0.67 Gflops, C67 Texas Instruments DSP with 128 KB of on-chip memory. The chip also supports 64-bit IEEE floating point at 0.17 Gflops. We plan to begin development this Fall and hope to have a 16K node, 10 Tflops peak, 5 Tflops sustained machine in operation within three years. In addition, we would like to construct a larger, community machine supporting a more competitive scale of high end computing for the entire U.S. lattice QCD activity.

Figure 2. Total sustained performance plotted against price performance for a number of systems used for lattice QCD. The diagonal lines are lines of constant system cost.

6. ACKNOWLEDGMENTS

The author is indebted to many people for providing much of the information presented here, in particular, S. Gottlieb, R. Gupta, B. Joo, K. Kanaya, R. Kenway, T. Lippert, P. Mackenzie, R. Petronzio, S. Ohta, M. Okawa, J. Simone, D. Toussaint, R. Tripiccione, and T. Yoshie.

REFERENCES

1. J. C. Sexton, Nucl. Phys. B (Proc Suppl.) 47 (1996) 236.
2. Y. Iwasaki, Nucl. Phys. B (Proc. Suppl.) 60A (1998) 246 and http://www.rccp.tsukuba.ac.jp.
3. S. Aoki, et al., to be published in Parallel Computing, hep-lat/9903001.
4. D. Chen, et al., Nucl. Phys. B (Proc Suppl.) 73 (1999) 898 and http://phys.columbia.edu/~cqft.
5. A. Bartonoli, et al., Nucl. Phys. B (Proc. Suppl.) 60A (1998) 237 and http://chimera.roma1.infn.it/ape.html.