Hit and go CAS9 delivered through a lentiviral based self-limiting circuit

Gianluca Petris1,*, Antonio Casini1,*, Claudia Montagna1, Francesca Lorenzin2, Davide Prandi2, Alessandro Romanel2, Jacopo Zasso3, Luciano Conti3, Francesca Demichelis2 & Anna Cereseto1

In vivo application of the CRISPR-Cas9 technology is still limited by unwanted Cas9 genomic cleavages. Long-term expression of Cas9 increases the number of genomic loci non-specifically cleaved by the nuclease. Here we develop a Self-Limiting Cas9 circuit for Enhanced Safety and specificity (SLiCES) which consists of an expression unit for Streptococcus pyogenes Cas9 (SpCas9), a self-targeting sgRNA and a second sgRNA targeting a chosen genomic locus. The self-limiting circuit results in increased genome editing specificity by controlling Cas9 levels. For its in vivo utilization, we next integrate SLiCES into a lentiviral delivery system (lentiSLiCES) via circuit inhibition to achieve viral particle production. Upon delivery into target cells, the lentiSLiCES circuit switches on to edit the intended genomic locus while simultaneously stepping up its own neutralization through SpCas9 inactivation. By preserving target cells from residual nuclease activity, our hit and go system increases safety margins for genome editing.
Genome editing through the CRISPR-Cas9 technology has tremendous potential for both basic and clinical applications due to its simplicity, target design plasticity and multiplex targeting capacity. The main limit in CRISPR-Cas9 utilization is the mutations induced at sites that differ from the intended target which have been detected both in vitro as well as in animal models. This is critical for in vivo applications as unwanted alterations could lead to unfavourable clinical outcomes.

An important factor influencing the number of off-target modifications is the amount and persistence of Streptococcus pyogenes Cas9 (SpCas9) expression in target cells: high concentrations of the nuclease are reported to increase off-site cleavage, whereas lower amounts of SpCas9 improve the specificity. Moreover, it is likely that any Cas9 protein present after the target locus has been edited has a substantial probability to modify additional sites. Accordingly, transient SpCas9 expression, obtained through direct delivery of recombinant RNA-guided endonucleases (RGENs) complexes SpCas9 expression, obtained through direct delivery of recombinant RNA-guided endonucleases (RGENs) complexes into target cells or by using a SpCas9 variant activated by recombinant RNA-guided endonucleases (RGENs) complexes. SpCas9 expression, obtained through direct delivery of recombinant RNA-guided endonucleases (RGENs) complexes into target cells or by using a SpCas9 variant activated by recombinant RNA-guided endonucleases (RGENs) complexes, is sufficient to permanently modify the genome with decreased off-target activity. However, the delivery of RGENs is highly inefficient and unsuitable for in vivo approaches. Although viral vectors are optimal delivery tools, they generate transient expression of the transferred factors which is not necessarily beneficial for CRISPR-Cas9 applications.

Here, we report the development of a self-limiting SpCas9 circuit designed to remove the nuclease from the edited cells. Through an unbiased genome-wide analysis, we demonstrated the complete absence of off-target activity produced by the self-limiting sgRNAs driving the kill-switch. By integrating the Self-Limiting Cas9 circuit for Enhanced Safety and specificity within a lentiviral delivery vector, we generated an efficient ‘hit and go’ SpCas9 delivery system which prevents the accumulation of off-targets resulting in more specific and safer genome editing.

**Results**

The SLiCES circuit. To evaluate the off-target activity produced by long-term expression of SpCas9, we transduced 293-iEGFP cells carrying a single chromosomal copy of enhanced green fluorescent protein (EGFP) with a lentiviral vector expressing SpCas9 together with sgRNAs that can fully (sgGFP-W) or partially (sgGFP-M or sgGFP-MM) anneal to EGFP. The tolerance of SpCas9 for single (sgGFP-M) or double (sgGFP-MM) mismatches in cleaving EGFP allows for the quantification of the editing specificity. While the percentage of EGFP negative cells obtained with the on-target sgRNA quickly reached a plateau at 10 days post infection, the two mismatched sgRNAs generated unspecific EGFP knock-outs which accumulated over time (Supplementary Fig. 1a). The delivery of the recently developed more specific sSpCas9(1.1) variant guided by the same sgRNAs only partially reversed the time dependent accumulation of off-target cleavages (Supplementary Fig. 1b). Consistently, the analysis of two genomic loci (ZSCAN and VEGFA) and related off-target sites indicated that the on/off ratios decreased over time, thus confirming increased off-target cleavages (Supplementary Fig. 1c,d). These results clearly show that the delivery of SpCas9 through a conventional lentiviral system correlates with increased off-target activity and this is particularly evident over time due to prolonged SpCas9 expression.

To generate a transient SpCas9 activity peak in target cells, we developed SLiCES consisting in a SpCas9-sgRNA targeting a specific genomic locus combined with a self-limiting sgRNA to switch off the nuclease activity (schematized in Fig. 1a). The self-limiting sgRNAs were designed by in silico analysis to target the SpCas9 coding sequence (sgCas-a, -c) and the amino-terminus 3xFLAG tag fused to SpCas9 (sgCas-b). The SpCas9 coding sequence, after human codon optimization and further modifications (nuclear localization signals and FLAG-tag), is suitable for the design of a variety of non-repetitive sgRNAs with very few predicted off-targets in the human genome (Supplementary Table 1 and Supplementary Data 1). The potential off-target sites generated by sgCas-a, -b and -c were experimentally evaluated in HEK 293T cells stably expressing SpCas9 through GUIDE-seq analysis, a genome-wide unbiased approach. Both sgCas-a and -c did not generate detectable off-target sites while retaining the ability to efficiently cleave the on-target, while sgCas-b produced at least six off-targets (Fig. 1b and Supplementary Data 2).

The sgCas-a, -b and -c were then evaluated for their SpCas9 self-limiting properties in cells expressing EGFP showing efficient downregulation of SpCas9 when co-expressed with SpCas9 (Fig. 1c, upper panel). Moreover, co-expression of any of the three self-limiting sgRNAs (sgCas-a, -b or -c) together with a sgRNA that fully base pairs with the EGFP target sequence (sgGFP-W) reduced EGFP (4–10% of residual protein) to similar levels as those obtained with sgGFP-W combined with a control sgRNA (sgCtr) (Fig. 1c). These results demonstrate that DNA editing activity is not impaired when SpCas9 is inactivated through the SLiCES circuit. A similar experiment performed using a sgRNA targeting EGFP with a single mismatch within the seed region immediately upstream of the PAM sequence (sgGFP-M) showed non-specific EGFP downregulation, with almost 60% decrease of EGFP intracellular levels. This effect was less pronounced (~25–40% reduction) in cells where SpCas9 expression was downregulated through the self-limiting Cas9 circuit driven by sgCas-a and -b, while no improvement was observed with sgCas-c (Fig. 1c). The different levels of non-specific EGFP downregulation closely reflected the ability of individual sgRNAs to decrease the intracellular levels of SpCas9: sgCas-a which generated the lowest non-specific EGFP downregulation (73% residual EGFP, Fig. 1c) showed the highest SpCas9 disruption activity (Fig. 1c, upper panel). Similar results were obtained with a reciprocal experiment where cells were transiently transfected with a mutated EGFP target characterized by a single nucleotide substitution (EGFP-Y66S) that fully matched the sgGFP-M sequence (Supplementary Fig. 2).

The improved target specificity of about 2–3 fold (Fig. 1c and Supplementary Fig. 2, lower panel), as defined by the ratio between SpCas9 activity in cells targeted by the perfectly matched sgRNA over the mismatched sgRNA, was also confirmed in 293-iEGFP cells carrying a single chromosomal copy of the EGFP gene (sixfold improvement) (Fig. 1d and Supplementary Fig. 3). To test whether the optimization of the sgRNAs may further improve the on-target specificity, the sgRNAs were structurally modified to increase their transcription and interaction with SpCas9 (ref. 21). Optimization of sgCas-a showed a slight decrease of SpCas9 intracellular levels with respect to the non-optimized version, paralleled by improved specificity of the relative SLiCES circuit (about ninefolds) (Fig. 1d and Supplementary Fig. 4). Conversely, the optimization of the sgRNAs towards the target sequence (sgGFP-W/M-opt) did not show improved specificity (Supplementary Fig. 4). Remarkably, while the SLiCES circuit containing sgCas-c did not improve the editing specificity, moderate improvement could be obtained through further downregulation of SpCas9 expression by sgRNA optimization (sgCas-c-opt) (Supplementary Fig. 4). A parallel experiment aimed at validating the on-target specificity of the SpCas9 self-limiting circuit was performed in cells carrying a single chromosomal copy of a non-fluorescent EGFP (Y66S).
Figure 1 | The SLiCES circuit. (a) Scheme of the SLiCES circuit. (b) GUIDE-seq analysis performed in HEK293T cells stably expressing SpCas9 and transfected with sgCas-a, -b and -c individually. Genomic DNAs obtained from three independent experiments were pooled prior to library preparation. (*) The on-target site was not detected in sgCas-b samples since this guide targets the 3×FLAG tag fused to SpCas9 which was absent from SpCas9 expressed in 293T-SpCas9 cells. (c) Western blot analysis of HEK 293T cells co-transfected with plasmids expressing EGFP, SpCas9 and sgRNAs fully (sgGFP-W) or partially matching (sgGFP-M) the EGFP coding sequence in combination with three sgRNAs targeting the SpCas9 ORF (sgCas-a, -b, -c) or a control sgRNA (sgCtr), as indicated. Lane (–) corresponds to a reference sample containing the non-targeting sgCtr only. Transfection efficiency was normalized using roTag tagged MHC-Ia expression plasmid (Transf-ctr). Lower graph reports the ratio of the percentages of decreased EGFP levels obtained using sgGFP-W (on-target) over the percentages obtained with sgGFP-M (off-target) in the presence of sgCas-a, -b, -c as indicated. (d) Target specificity of SpCas9 activity using different SLiCES circuits. On/off ratios were obtained from the percentage of EGFP negative cells after targeting a single chromosomal EGFP gene copy (293-iEGFP cells) with sgGFP-W (on-target) relative to sgGFP-M (off-target) in combination with different SLiCES circuits (sgCas) or a non-targeting (sgCtr) sgRNA, as indicated in the graph. (e) Target specificity of SpCas9 activity (on/off ratios) using different self-limiting circuits applied to a gene substitution model (293-iY66S). On/off ratios were obtained from the percentage of EGFP positive cells generated by SpCas9-induced homology-directed repair of the EGFP-Y66S mutation with the sgGFP-M (on-target) relative to the sgGFP-W (off-target) sgRNAs in combination with a DNA donor plasmid (carrying a truncated wild-type EGFP sequence) and the indicated self-targeting sgRNAs. (f) Indels formation induced by the SLiCES circuit (sgCas-a-opt) targeting the VEGFA, ZSCAN, EMX loci and their respective validated off-target sites. Fold increase (F.I.) of the on/off ratio with the sgCas-a-opt relative to the sgCtr is reported below the graphs for each off-target. Per cent modification was quantified by TIDE analysis. In d-f data presented as mean ± s.e.m. for n≥2 independent experiments.
In these cells, 293-iY66S, SpCas9 activity was measured by the recovery of EGFP fluorescence following the substitution of the mutated gene with a wild-type allele through SpCas9 mediated homology-directed repair in the presence of a co-transfected donor plasmid carrying a non-fluorescent fragment of wild-type EGFP. Compared to the conventional SpCas9 approach (sgCtr), the target specificity for EGFP homology-directed repair was improved by using the SLiCES circuit (sgCas-a) by fourfold (Fig. 1e and Supplementary Fig. 5). Further improvement (7.5-fold) was obtained with the optimized version of sgCas-a (sgCas-a-opt) (Fig. 1e and Supplementary Fig. 5), as previously observed in knock-out experiments.

To demonstrate that the SLiCES methodology is readily transferrable to other RNA-guided nucleases, SLiCES was adapted to Cas9 from *Streptococcus thermophilus* (St1Cas9) by using specific sgRNAs (sgCas-St1-1, -2 and -3) to induce St1Cas9 downregulation (Supplementary Fig. 6). The SLiCES circuits carrying sgCas-St1-1 and -3 resulted in an improved St1Cas9 cleavage specificity by, respectively, 3.4- and 1.9-folds (Supplementary Fig. 6). These results indicate the versatility of the SLiCES circuit towards nucleases other than SpCas9 including nuclease other than SpCas9 including

Lentiviral delivery of the SLiCES circuit. The self-limiting SpCas9-sgRNA circuit with the best performing self-limiting sgRNA (sgCas-a-opt) was then transferred to a lentiviral system (Fig. 2) to generate lentSiLICES. To avoid the leaky expression of SpCas9, and the consequent degradation of DNA during plasmid preparation in bacteria, an intron was introduced into the SpCas9 open reading frame to form an expression cassette divided in two exons (exon 1 and 2, schematized in Fig. 2). As splicing does not occur in bacteria, the transcripts produced are translated in these cells as a catalytically inactive SpCas9 fragment. Next, to circumvent the self-cleavage activity during lentiviral vector production, Tetacycline inducible (TetO) promoters were introduced to regulate both SpCas9 and self-limiting sgRNA expression. The TetO promoter is negatively regulated by a specific repressor, Tet repressor (TetR), which is expressed in producing cells, and in the absence of doxycycline, inhibits transcription through its binding to tetracycline operator sequences located within the promoter region (schematized in Fig. 2b). The drop in SpCas9 intracellular levels in producing cells observed with the activation of the self-limiting circuit with doxycycline demonstrates the strict requirement of the repressible promoters at viral production steps in order to obtain un-altered lentSiLICES particles (Supplementary Fig. 7a). Furthermore, the relevance of the TetR-mediated repressible conditions during vector production was clear from the analysis of the SpCas9 transgene sequence which was highly modified in lentSiLICES particles produced in the absence of TetR-mediated repression; these particles showed poor editing capacity (Supplementary Fig. 7b). To evaluate the on-/off-target activity of the lentSiLICES, the percentage of EGFP negative 293-multiEGFP cells was followed at different time points after transduction with self-limiting lentiviral vectors either carrying the specific sgRNA sgGFP-W (lentiSiLICES-W) or the mismatched sgGFP-M (lentiSiLICES-M) and compared with the effect obtained with non-self-limiting lentiviral vectors carrying the same sgRNAs (lentiCtr-W or -M). Both lentiCtr-W and lentiSiLICES-W showed similarly stable on-target activity at all the time points within a 3 weeks period (Fig. 3a). Conversely, the percentage of EGFP cells unspecifically targeted by the sgGFP-M increased over time with the lentiCtr delivery system; this effect was not observed with the same sgRNA delivered through lentiSiLICES throughout the 3 weeks period (Fig. 3a). Therefore, lentiSiLICES generated no off-target accumulation over time (compare day 7 and day 21, Fig. 3b). Consistently, at the end-

**Figure 2 | The lentSiLICES system.** (a) Graphical representation of lentSiLICES viral vector. (b) Steps required for the production of the lentSiLICES viral vectors. SpCas9 expression is prevented in bacterial cells to allow plasmid amplification through the introduction of a mammalian intron within the SpCas9 open reading frame. Production of lentSiLICES viral particles is obtained in cells stably expressing the Tetacycline Repressor (TetR) to prevent SpCas9 and sgCas self-limiting sgRNA expression driven by Tet repressible promoters. In target cells the absence of the TetR allows the expression of the lentSiLICES circuit leading to target genome editing and simultaneous SpCas9 downregulation.
point we observed the largest difference between the ratios of the EGFP negative 293-multiEGFP cells, following transduction with lentiviral vectors carrying self-targeting (lentiSLiCES) or non-self-targeting (lentiCtr) sgRNAs in combination with either sgGFP-W (on-target) or sgGFP-M (off-target) sgRNAs, as indicated in the graph. Data presented as mean ± s.e.m. for n = 2 independent experiments. (b) Target specificity of SpCas9 delivered through the lentiSLiCES. On/off ratios were calculated from the percentages of EGFP negative cells reported in a. The F.I. of specificity calculated from the on/off ratios at each time point is reported below the graphs. Data presented as mean ± s.e.m. for n = 2 independent experiments. (c) Indels formation induced by lentiSLiCES vectors at the ZSCAN and VEGFA loci and at their previously validated off-target sites. Per cent modification was quantified by TIDE analysis on genomic DNA collected 20 days post transduction and selection with blasticidin. Values indicate the on/off ratios calculated from indels obtained with each off target. Data presented as mean ± s.e.m. for n = 2 independent experiments. (d) Target specificity of lentiSLiCES in primary human fibroblasts. Targeted deep-sequencing analysis of indel formation at the on-target site and at previously validated off-targets of the VEGFA, ZSCAN and EMX-k genomic loci induced by SpCas9 delivered through lentiSLiCES or lentiCtr. Genomic DNAs were extracted at 20 days post transduction and selection with blasticidin. NT indicates the background level of indels measured in non-edited cells. Genomic DNAs obtained from two independent experiments were pooled prior to amplicon preparation. (e) Specificity F.I. of lentiSLiCES obtained by dividing the on/off ratios of lentiSLiCES and lentiCtr (see Supplementary Data 3) calculated for each locus from d. The median and interquartile range are shown. More than 100,000 sequences were analysed per on-target sample and an average of 143,000 sequences were analysed per off-target sample (Supplementary Data 3). The observed values equal to 0 were approximated to 1e-05. The green-shaded area indicates a ratio above one, which corresponds to an increase in the on/off ratio.

Hit and Go Cas9 delivered through lentiSLiCES. To directly prove the transient nature of SpCas9 expression induced by lentiSLiCES, we measured the SpCas9 intracellular levels obtained following transduction. SpCas9 delivered through a non-self-limiting lentiviral system (lentiCtr) was detected as early as 2 days post transduction and further increased at subsequent time points (Fig. 4a). Conversely, in cells transduced with lentiSLiCES low levels of Cas9 were detected only at 2 days post transduction and decreased below the detection limit at subsequent time points (Fig. 4a). Finally, to functionally assess the level of SpCas9 activity delivered through the lentiSLiCES, a non-homologous end joining (NHEJ) reporter plasmid (NHEJ-Rep.W) expressing the simian virus-5 tag fused with EGFP (SV5-EGFP) upon targeted nuclease activity (schematized...
in Supplementary Fig. 6a) was employed. The NHEJ-Rep.W vectors reported to efficiently deliver small Cas9 variants (such as SaCas9)\(^{31}\), that can be potentially adapted to an ‘all-in-one’ AAV-SLiCES vector. Alternatively, AAV-mediated SLiCES delivery for large size nucleases, such as SpCas9 used in this study or AsCpf1, can be obtained through a co-infection strategy\(^{32}\), where the nucleases are separated from the sgRNAs transfer vector. The use of episomal viral delivery systems (AAV or IDLV) may improve the SLiCES approach by circumventing potential cleavages of the integrated SpCas9 sequence by residual non-edited nuclease. In fact, SpCas9 sequence harbouring in episomes could in principle prevent possible genomic damages which may lead to chromosomal rearrangement\(^{33}\). A variety of Cas9 applications, such as the regulation of gene expression obtained by the combination with transcriptional activation domains\(^{34–36}\) might be significantly improved through their adaptation to lentiSLiCES. In fact, these approaches as well as the refined modulation of gene expression obtained with a genetic kill-switch circuit\(^{37,38}\) could be potentiated by a tunable self-limiting approach to restrict in time Cas9-mediated induction of the targeted cellular promoters. Finally, SLiCES may significantly improve some recently developed Cas9 genome engineering procedures that are susceptible to continuous nuclease activity. For instance, current techniques to efficiently substitute genomic sequences use Cas9 to increase the rate of homology-directed repair\(^1\); nevertheless, these techniques are often limited by the continuous re-cleavage of the newly substituted genomic sequence by Cas9 (ref. 39), which could be easily overcome by nuclease inactivation.

Similar approaches aimed at controlling Cas9 activity have been recently developed by exploiting various inducible systems\(^{40}\). Nevertheless, the approaches reported so far suffer of a number of limitations spanning from decreasing editing activity generated by nuclease splitting\(^{41}\) or chemical modification\(^{14}\) to background activity\(^{42}\) or extended time of required induction\(^{43}\).

Overall, the ‘hit and go’ nature of SLiCES and its adaptability to new emerging Cas9 techniques, combined with the implementation of its viral delivery, allows for more controllable genome editing procedures with limited unwanted off-target activity.

**Methods**

**Plasmids and oligonucleotides.** The 3 × FLAG-tagged SpCas9 was expressed from the pX-Cas9 plasmid, which was obtained by removal of a Ndel fragment including the sgRNA expression cassette from pX330 (a gift from Feng Zhang, Addgene # 42230) (ref. 1). The sgRNAs were transcribed from a U6 promoter driven cassette, derived from pX330 and cloned into pU6-C19. sgRNA oligos were cloned using a double Bsal site inserted before the sgRNA constant portion\(^1\). Plasmids expressing FLAG-tagged St1Cas9 (pJDS246-CMV-St1-Cas9) and St1Cas9

**Discussion**

Genome editing through CRISPR-Cas9 technology is a revolutionary approach opening new perspectives towards the development of novel therapeutic protocols\(^12\). This technology has been used with success both in vitro as well as in animal models\(^{26}\). Nevertheless, the incomplete control on CRISPR-Cas9 specificity\(^4–11\) raises significant concerns on its clinical use\(^27\). In line with these concerns our data clearly show that long-term nuclease expression delivered through lentiviral systems, used for efficient in vivo delivery, results in the accumulation of unwanted cleavages. This detrimental effect could not be overcome even with the recently developed, more specific SpCas9 variant, eSpCas9(1.1) (ref. 18). Transient SpCas9 expression for genome editing applications can be obtained by RGENs direct delivery\(^{15–17}\), however this methodology is severely limited by the low efficiency in the percentages of targeted cells. Conversely, our self-limiting circuit strategy, lentiSLiCES, exploits the efficiency of viral-based delivery and simultaneously limits the amount of SpCas9 expressed post transduction. By limiting in time and abundance the intracellular levels of Cas9, SLiCES avoids the accumulation of off-target cleavages that instead are observed with the use of conventional Cas9 delivery approaches\(^{14,15,28}\).

Beyond, limited off-target activity, the main advantage of the SLiCES approach is a nuclease-free cellular environment following genome modification which greatly improves the safety margins for this technology. The transient nature of SpCas9 may also be non trivial for applications such as genetic screening where unspecific binding of SpCas9 to non-cleaved sites may alter the final outcome of the screening\(^{28,29}\). The pre-existing immune response against SpCas9 recently proved in mice suggests that in vivo approaches will be severely limited by the immune response against this protein\(^14\), thus the transient nature of the SLiCES system may have a significant impact for the clinical use.

To further improve the SLiCES strategy, Integrase Defective Lentiviral Vectors (IDLV)\(^{30}\) could be used to maintain the viral-based efficiency in cellular delivery, while enhancing the transient peak-like nature of Cas9 expression. Other epidemic

**Figure 4 | SpCas9 expression and activity in lentiSLiCES transduced cells.** (a) Expression levels of SpCas9 at the indicated time points after transduction with lentiSLiCES or with lentiCtr. SpCas9 was detected using an anti-FLAG antibody. Western blot is representative of \(n = 2\) independent experiments. (b) SpCas9 activity monitored by SVS-EGFP protein levels produced by the NHEJ-reporter plasmid transfected in 293-multiEGFP cells before or 28 days after transduction and detected at 2 days or 30 days post transduction, as indicated, with lentiSLiCES targeting (lentiSLiCES-W) or non-targeting EGFP (lentiSLiCES-Ctr). The activity of the non-self-limiting lentiCtr-W vector targeting EGFP was monitored at the same time points for comparison. Western blot is representative of \(n = 2\) independent experiments.

**References**

1. [Citation](#)

2. [Citation](#)

3. [Citation](#)

4. [Citation](#)

5. [Citation](#)

6. [Citation](#)

7. [Citation](#)

8. [Citation](#)

9. [Citation](#)

10. [Citation](#)

11. [Citation](#)

12. [Citation](#)

13. [Citation](#)

14. [Citation](#)

15. [Citation](#)

16. [Citation](#)

17. [Citation](#)

18. [Citation](#)

19. [Citation](#)

20. [Citation](#)

21. [Citation](#)

22. [Citation](#)

23. [Citation](#)

24. [Citation](#)

25. [Citation](#)

26. [Citation](#)

27. [Citation](#)

28. [Citation](#)

29. [Citation](#)

30. [Citation](#)

31. [Citation](#)

32. [Citation](#)

33. [Citation](#)

34. [Citation](#)

35. [Citation](#)

36. [Citation](#)

37. [Citation](#)

38. [Citation](#)

39. [Citation](#)

40. [Citation](#)

41. [Citation](#)

42. [Citation](#)

43. [Citation](#)

44. [Citation](#)

45. [Citation](#)

46. [Citation](#)

47. [Citation](#)

48. [Citation](#)

49. [Citation](#)

50. [Citation](#)

51. [Citation](#)

52. [Citation](#)

53. [Citation](#)

54. [Citation](#)

55. [Citation](#)

56. [Citation](#)

57. [Citation](#)

58. [Citation](#)

59. [Citation](#)

60. [Citation](#)

61. [Citation](#)

62. [Citation](#)

63. [Citation](#)

64. [Citation](#)

65. [Citation](#)

66. [Citation](#)

67. [Citation](#)

68. [Citation](#)

69. [Citation](#)

70. [Citation](#)

71. [Citation](#)

72. [Citation](#)

73. [Citation](#)

74. [Citation](#)

75. [Citation](#)

76. [Citation](#)

77. [Citation](#)

78. [Citation](#)

79. [Citation](#)

80. [Citation](#)

81. [Citation](#)

82. [Citation](#)

83. [Citation](#)

84. [Citation](#)

85. [Citation](#)

86. [Citation](#)

87. [Citation](#)

88. [Citation](#)

89. [Citation](#)

90. [Citation](#)

91. [Citation](#)

92. [Citation](#)

93. [Citation](#)

94. [Citation](#)

95. [Citation](#)

96. [Citation](#)

97. [Citation](#)

98. [Citation](#)

99. [Citation](#)

100. [Citation](#)
gRNA (pMML3636-U6-103gRNA_St1Cas9) was a gift of Claudio Mussolino44. St1Cas9 sgRNAs oligos were cloned into pMML3636-U6-103gRNA_St1Cas9 using BsmBI and transfected from a U6 promoter. The list of sgRNAs and target sites employed in this study is available in Supplementary Data 4. pcDNA5-FRT-TO-EGFP plasmid was obtained by subcloning EGFP from pEGFP-N1 in a previously published vector42 derived from pcDNA5-FRT-TO (Invitrogen). pcDNA5-FRT-TO-EGFP-Y66S was obtained by site directed mutagenesis of pcDNA5-FRT-TO-EGFP. A sgRNA resistant, non-fluorescent truncated EGFP fragment (1-T2030-stop), obtained by site directed mutagenesis of the pcDNA5-FRT-TO-EGFP plasmid, was amplified by PCR and inserted in place of EGFP in the pcDNA5-FRT-TO-EGFP plasmid, yielding the donor pcDNA5-FRT-TO-EGFP-Y66S (1-T2030-stop) plasmid.

The SV5-EGFP-based NHEJ reporters employed in this study (Rep. SV5, NHEJ-REP.W and NHEJ-REP.M) were generated by cloning into the NheI and BspEI sites dsDNA oligos corresponding to the complete target sequence (including PAM) recognized by a sgRNA of interest. The target is inserted between the SV5 tag and EGFP coding sequences, with the EGFP sequence positioned out of frame with respect to the starting ATG codon of the SV5 tag open reading frame (ORF). A stop codon is inserted in the SV5 frame, immediately after the target sequence. The pcDNA3 MHC-I-rolTag plasmid is described in ref. 46. Information on plasmids DNA sequences produced for this manuscript are found in Supplementary Figs 9 and 10.

Cell culture and transfections. HEK 293T/17 cells were obtained from ATCC. 293T cells, constitutively expressing the TetR, were generated by lentiviral transduction of pcDNA5-FRT-TO-pCMV-deltaR8.91 packaging vector (a gift from Eric Campeau, Addgene # 17492) (ref. 47) and were pool-selected with 5 μg/ml of blasticidin (Life Technologies). Similarly, 293T-SpCas9 cells, stably expressing SpCas9, were obtained by lentiviral transduction with the lentivSLiCES vector (a gift from Feng Deng, Addgene # 52962) (ref. 48). SpCas9-expressing clones were checked for integration specificity by loss of zeocin resistance.

Cells were cultured in DMEM supplemented with 10% FBS, 2 mM L-Gln, 10 U ml⁻¹ penicillin, 10 μg ml⁻¹ streptomycin and the appropriate antibiotics indicated above. The neural progenitor cell line AF22 cells were kindly donated by Austin Smith (University of Cambridge, UK).

The cells are maintained as previously described49. Briefly, cells were cultured in DMEM/F12 medium (Life Technologies) supplemented with 1% N2 Supplement (Life Technologies, Cat. No. 17,502,048), 0.1% B2 Supplement (Life Technologies), 10 ng ml⁻¹ EGF (PeproTech) and bFGF (PeproTech).

Infections and EGFP fluorescence detection. One day before transduction 10⁵ HEK 293T, 293-IgEFP or 293-multiEFP cells or 40,000 fibroblasts were seeded in a 24-well plate. For lentivSLiCES vectors, cells were transduced by centrifuging 2 RTU per well for 2 h at 1,600 rpm and 15 °C, and then leaving the vectors incubating with the cultures for an overnight. Starting from 24 h post transduction onwards the cultures were selected with 5 μg/ml of blasticidin, where needed. For lentivCRISPR vectors, 0.5 RTU per well were used following the same transduction protocol and cells were selected with 0.5 μg/ml of puromycin.

For infection experiments using neural progenitor cells, 40,000 cells per cm² were plated on laminin coated 24-wells the day before infection. Infection was performed by centrifuging 2 RTU per well of each vector on the cells at 500 g for 30 min RT. Medium was changed completely 16 h post infection to remove the viral particles and 48 h later the cells were treated using 20 μg/ml of blasticidin for positive selection of the transduced cells. Cells were maintained under selection for 30 days and detached from tissue culture flasks with Accutase solution (Sigma) and plated onto the confluent collagen.

When targeting genomic EGFP sequences, cells were collected and analysed using a FACSCanto flow cytometer (BD Biosciences) to quantify the percentage of EGFP loss or induction (gene substitution experiments).

Western blots. Cells were lysed in NEHE buffer (20 mM HEPES pH 7.5, 300 mM NaCl, 0.5% NP40, 1 mM EDTA, 20% glycerol supplemented with 1% protease inhibitor cocktail (Pierce). Cell extracts were separated by SDS-PAGE using the PageRuler Plus Protein Standards as the standard molecular mass markers (Thermo Fisher Scientific). After electrophoresis, samples were transferred to 0.22 μm PVDF membranes (GE Healthcare). The membranes were incubated with mouse anti-FLAG M2 (F1804, Sigma, dilution 1:10 000) for detecting SpCas9 and the appropriate antibodies indicated above. The neural progenitor cell line AF22 cells were kindly donated by Austin Smith (University of Cambridge, UK).

The cells are maintained as previously described49. Briefly, cells were cultured in DMEM/F12 medium (Life Technologies) supplemented with 1% N2 Supplement (Life Technologies, Cat. No. 17,502,048), 0.1% B2 Supplement (Life Technologies), 10 ng/ml EGF (PeproTech) and bFGF (PeproTech).

In infections and EGFP fluorescence detection. One day before transduction 10⁵ HEK 293T, 293-IgEFP or 293-multiEFP cells or 40,000 fibroblasts were seeded in a 24-well plate. For lentivSLiCES vectors, cells were transduced by centrifuging 2 RTU per well for 2 h at 1,600 rpm and 15 °C, and then leaving the vectors incubating with the cultures for an overnight. Starting from 24 h post transduction onwards the cultures were selected with 5 μg/ml of blasticidin, where needed. For lentivCRISPR vectors, 0.5 RTU per well were used following the same transduction protocol and cells were selected with 0.5 μg/ml of puromycin.

Detection of Cas9-induced genomic mutations. Genomic DNA was isolated at 72 h post transfection or as indicated for transduction experiments, using the DNeasy Blood & Tissue kit (Qiagen). PCR reactions to amplify genomic loci were performed using the PageRuler Plus Protein Standards as the standard molecular mass markers (Thermo Fisher Scientific). After electrophoresis, samples were transferred to 0.22 μm PVDF membranes (GE Healthcare). The membranes were incubated with mouse anti-FLAG M2 (F1804, Sigma, dilution 1:10 000) for detecting SpCas9 and St1Cas9, mouse anti-α-tubulin DM1A (T9026, Sigma, dilution 1:10 000), rabbit anti-g-actin IgG (sc-2030, Santa Cruz Biotechnology, 1:5,000) secondary antibody and ECL detection. The bands were quantified using the UViTecc Alliance detection system. Uncropped blots images are reported in Supplementary Fig. 12.

GUIDE-seq experiments and data analysis. GUIDE-seq was performed as previously described50 with few modifications. Briefly, HEK 293T cells stably expressing SpCas9 were transfected with 250 ng of sgRNA encoding plasmid and 10 pmol of annealed GUIDE-seq oligonucleotides (doODNs) using Lipofectamine 3000 transfection reagent (Invitrogen). Four days post-transfection guide DNA and full-length DNA was extracted using the DNeasy Blood and Tissue kit (Qiagen) following the manufacturer’s instructions and sheared to an average length of 500 bp with the
Bioruptor Pico sonication device (Diagenode). Library preparations were performed with the original adapters and primers according to previous work. Libraries were quantified with the Qubit dsDNA High Sensitivity Assay kit (Invitrogen) and pooled according to the expected ratio. Libraries were indexed by PCR using Nextera indexes (Illumina), quantified with the Qubit dsDNA High Sensitivity Assay kit (Invitrogen), pooled in near-equimolar concentrations before purification and indexing.

2. Jinek, M. et al. CRISPR-Cas9. Cold Spring Harb. Perspect. Biol. 6, a015124 (2014).

3. Cong, L. et al. Multiplex genome engineering using CRISPR-Cas9. Nat. Biotechnol. 33, 599–603 (2015).

4. Fu, Y. et al. Editing the genome using the CRISPR-Cas9 system. Nat. Protoc. 9, 422–431 (2014).

5. Hsu, P. D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 33, 823–833 (2015).

6. Pattanayak, V., Guilling, J. P. & Liu, D. R. Determining the specificities of ZFN, TALEN, and CRISPR-Cas9 DNA targeting systems. Nat. Biotechnol. 33, 827–832 (2015).

7. Tsai, S. Q. et al. GUIDE-seq enables genome-wide profiling of off-target DNA cleavage by CRISPR-Cas9 nucleases. Nat. Biotechnol. 33, 187–197 (2015).

8. Kim, S. D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 1 p following 243 (2015).

9. Nelson, C. E. et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 351, 403–407 (2016).

10. Hruscha, A. et al. Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish. Dev. Camb. Eng. 140, 4982–4987 (2013).

11. Chew, W. L. et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13, 868–874 (2016).

12. Cox, D. B. T., Platt, R. J. & Zhang, F. Therapeutic genome editing: prospects and challenges. Nat. Med. 21, 121–131 (2015).

13. Pattanayak, V. et al. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclelease specificity. Nat. Biotechnol. 31, 839–843 (2013).

14. Davis, K. M., Pattanayak, V., Thompson, D. B., Zuris, J. A. & Liu, D. R. Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat. Chem. Biol. 11, 339–344 (2015).

15. Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J.-S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

16. Ramakrishna, S. et al. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24, 1020–1027 (2014).

17. Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

18. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

19. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

20. Bolukbasi, M. F. et al. DNA-binding-domain fusions enhance the targeting range and precision of Cas9. Nat. Methods 12, 1150–1156 (2015).

21. Chen, B. et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155, 1479–1491 (2013).

22. Esvelt, K. M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013).

23. Zetsche, B. et al. Cas13a is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

24. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

25. Brinkman, E. K., Chen, T., Amendola, M. & van Steensel, B. Easy quantitative assessment of genome editing by sequence trace decomposition. Nucleic Acids Res. 42, e168 (2014).

26. Sander, J. D. & Joung, J. K. CRISPR-Cas systems for editing, regulating and tagging genomes. Nat. Biotechnol. 32, 347–355 (2014).

27. Baltimore, D. et al. Biotechnology: A prudent path forward for genome engineering and germline gene modification. Science 348, 36–38 (2015).

28. Shalem, O. et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343, 84–87 (2014).

29. Singh, D., Sternberg, S. H., Fei, J., Doudna, J. A. & Ha, T. Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat. Commun. 7, 12778 (2016).

30. Chick, H. E. et al. Integrate-deficient lentiviral vectors mediate efficient gene transfer to human vascular smooth muscle cells with minimal genotoxic risk. Hum. Gene Ther. 23, 1247–1257 (2012).

31. Friedland, A. E. et al. Characterization of Staphylococcus aureus Cas9: a smaller Cas9 for all-in-one adenovirus vector delivery and paired nickase applications. Nat. Biotechnol. 31, 1277–1280 (2013).

32. Ruozi, G. et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischemia. Nat. Commun. 6, 7388 (2015).

33. Frock, R. L. et al. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat. Biotechnol. 33, 179–186 (2015).

34. Krzarmann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015).

35. Mali, P. et al. Cas9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

36. Hilton, I. B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015).

37. Moore, R. et al. CRISPR-based self-clearing mechanism for controllable gene delivery in human cells. Nucleic Acids Res. 43, 1297–1303 (2015).

38. Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051–1054 (2015).

39. Paquet, D. et al. Efficient introduction of specific homologous and heterologous mutations using CRISPR/Cas9. Nature 533, 125–129 (2015).

40. Nuñez, J. K., Harrington, L. B. & Doudna, J. A. Chemical and biophysical modulation of Cas9 for tunable genome engineering. ACS Chem. Biol. 11, 681–688 (2016).

41. Wright, A. V. et al. Rational design of a split-Cas9 enzyme complex. Proc. Natl Acad. Sci. USA 112, 2984–2989 (2015).

42. Nihongaki, Y., Kawano, F., Nakajima, T. & Sato, M. Photoactivatable Streptococcus thermophilus CRISPR-Cas9 systems enable specific editing of the human genome. Mol. Ther. J. Am. Soc. Gene Ther. 24, 636–644 (2016).
Acknowledgements

The authors wish to thank the LaBSSAH—CIBIO Next Generation Sequencing Facility of the University of Trento for sequencing samples. We are grateful to Sheref Mansy for the critical reading; to Mauro Giacca, Serena Zacchigna Lorena Zentilin and Daniele Arosio for helpful discussion throughout the development of this study. This work was supported by the intramural funding from the University of Trento and by European Research Council ERCCoG648670 (F.D.).

Author contributions

G.P. and A.Ca. designed and performed the experiments; G.P., A.Ca. and C.M. collected and analysed the data; F.L., D.P., A.R. and F.D. contributed with GUIDE-sequencing experiments and targeted deep-sequencing analysis. J.Z. and L.C. contributed to neural stem cells experiments. G.P., A.Ca. and A.C. conceived and designed the study, wrote and edited the paper; A.C. was responsible for the coordination of the study. All authors read, corrected and approved the final manuscript.

Additional information

Supplementary Information accompanies this paper at http://www.nature.com/naturecommunications

Competing interests: The authors declare competing financial interests. The technology reported in this manuscript is currently under consideration for patenting.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

How to cite this article: Petris, G. et al. Hit and go CAS9 delivered through a lentiviral based self-limiting circuit. *Nat. Commun.* 8, 15334 doi: 10.1038/ncomms15334 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017