THE DISTRIBUTION OF POINTS ON CURVES OVER FINITE FIELDS IN SOME SMALL RECTANGLES

KIT-HO MAK

ABSTRACT. Let p be a prime. We study the distribution of points on a class of curves C over \mathbb{F}_p inside very small rectangles B for which the Weil bound fails to give nontrivial information. In particular, we show that the distribution of points on C over some long rectangles is Gaussian.

1. Introduction and statements of results

Let p be a large prime, and let $C \subseteq \mathbb{A}^2 := \mathbb{A}^2(\mathbb{F}_p)$ be an absolutely irreducible affine plane curve over \mathbb{F}_p of degree $d > 1$. We identify the affine plane with the set of points with integer coordinates in the square $[0, p - 1]^2$. For a rectangle $B = I \times J \subseteq [0, p - 1]^2$, we define $N_B(C)$ to be the number of (rational) points on C inside B. When $B = [0, p - 1]^2$, we will write $N(C) = N_{[0, p - 1]^2}(C)$ for the number of points on C. It is widely believed that the points on C are uniformly distributed in the plane. That is,

(1) \[N_B(C) \sim N(C) \cdot \frac{\text{vol}(B)}{p^2}. \]

In fact, using some standard techniques involving exponential sums, one can show that the classical Weil bound \cite{11} together with the Bombieri estimate \cite{1} imply

(2) \[N_B(C) = N(C) \cdot \frac{\text{vol}(B)}{p^2} + O(d^2 \sqrt{p} \log^2 p), \]

where the implied constant is absolute. If f and g are two functions of p, we write

(3) \[f = \Omega(g) \]

to denote the function f/g tends to infinity as p tends to infinity. In other words, \cite{3} is equivalent to $g = o(f)$. The main term of \cite{2} dominates the error term when

(4) \[\text{vol}(B) \gg p^{3/2} \log^{2+\epsilon} p. \]

In those cases \cite{1} holds. A natural and intriguing question that arises is whether \cite{1} continues to hold for smaller boxes B. However, very few is known for the number of points $N_B(C)$ in a small B. Indeed, given a particular small B that do not satisfy \cite{3}, we do not even know if B contains a point or not.

One way to study $N_B(C)$ for small B is to consider results on average. For instance, Chan \cite{2} considered the number of points on average on the modular hyperbola $xy \equiv c$ modulo an odd number q, and showed that almost all (here “almost all” means with probability one) boxes satisfying

\[\text{vol}(B) \gg O(q^{1/4+\epsilon}) \]
have the expected number of points. Recently, Zaharescu and the author [11] generalizes the result of Chan to all curves over \(\overline{\mathbb{F}}_p \).

Another result of similar sort with only one moving side for \(C \) being the modular hyperbola was obtained by Gonek, Krishnaswami and Sondhi [4]. In our language, they showed that if \(B = (x, x + H) \times \mathcal{J} \) with \(H \) very small and \(\mathcal{J} \) of size comparable to \(p \), then the numbers of points inside \(B \) exhibit a Gaussian distribution when we move the box \(B \) horizontally. A Gaussian distribution is also obtained by Zaharescu and the author [8] in a similar situation. More precisely, we show that under some natural conditions, for \(C, B \) as above, and if at least one of the character \(\chi, \psi \) is nontrivial, the projections of the values of the hybrid exponential sum

\[
S = \sum_{P_i \in C \cap B} \chi(g(P_i)) \psi(f(P_i))
\]

to any straight lines passing through the origin exhibit a Gaussian distribution when we move \(B \) horizontally. We note that when \(C \) is the affine line, a two-dimensional distribution of \(S \) is obtained by Lamzouri [5].

The aim of this paper is continue the study of \(N_B(C) \) for small rectangle \(B \). In particular, we show that for a large class of curves \(C \), the distribution of \(N_B(C) \) for the \(B \) above is Gaussian. Our first step is to study the patterns of points on curves, which is crucial for our study of \(N_B(C) \) and may be of independent interest.

The study of patterns was first introduced by Cobeli, Gonek and Zaharescu [3], where they get results for the distribution of patterns of multiplicative inverses modulo \(p \). We generalize their definition of patterns to curves by viewing the patterns in [3] as patterns on the two coordinates for the curve \(xy = 1 \). For any positive integer \(s \), let \(a = (a_1, \ldots, a_s), b = (b_1, \ldots, b_s) \) be two vectors so that all \(a_i \)'s are coprime to \(p \), and all \(a_i^{-1}b_1, \ldots, a_i^{-1}b_s \) are distinct modulo \(p \). Define an \((a, b)\)-pattern to be an \(s \)-tuple of points \((P_1, \ldots, P_s) \), where each \(P_i \) is of the form \((a_i x + b_i, y_i)\) for some \(x \). As in [3], we may further restrict all the \(y_i \) to lie in a specific interval \(\mathcal{J} \) as we see fit.

In the case of the modular hyperbola in [3], if \(\mathcal{J} = [0, p-1] \) the number of patterns is just \(p - 1 \), since each \(x \) corresponds to exactly one \(y \) on the curve. However, for a general curve \(C \) and any vector \(a, b \), we do not know a priori that even one pattern exists, since the two coordinates will not in general correspond bijectively. Nevertheless, we are able to estimate the number of patterns for a large class of curves. Let \(P(I, \mathcal{J}) := P_{a, b}(C; I, \mathcal{J}) \) be the number of patterns with \(x \in I \) and all \(y \)-coordinates lie in \(\mathcal{J} \), then we have the following.

Theorem 1. Let \(C \) be a plane curve given by the equation \(f(x, y) = 0 \). Let

\[
\pi : C \to \mathbb{A}^1, \ (x, y) \mapsto x
\]

be the projection of \(C \) to the first coordinates over \(\overline{\mathbb{F}}_p \). Suppose there is an \(x \in \overline{\mathbb{F}}_p \) so that \(\pi \) ramifies completely, and let \(a = (a_1, \ldots, a_s), b = (b_1, \ldots, b_s) \) be two vectors so that all \(a_i \)'s are coprime to \(p \), and all \(a_i^{-1}b_1, \ldots, a_i^{-1}b_s \) are distinct modulo \(p \), then

\[
P(I, \mathcal{J}) = |I| \left(\left\lfloor \frac{|\mathcal{J}|}{p} \right\rfloor \right)^s + O(d^{2s} \sqrt{p} \log^{s+1} p).
\]

In the case \(I = [0, p-1] \), the error term can be slightly improved.

\[
P([0, p-1], \mathcal{J}) = p \left(\left\lfloor \frac{|\mathcal{J}|}{p} \right\rfloor \right)^s + O(d^{2s} \sqrt{p} \log^s p).
\]
Note that our estimation for the number of patterns is independent of \(a\) and \(b\).

We are now ready for the study of distribution of \(N_B(C)\) for small \(B\). We fix an interval \(J \subseteq [0, p - 1]\), and let \(N = |J|\). For any \(H > 0\) (which may depends on \(p\)), let \(B_x = (x, x + H] \times J\). From now on, we will assume the following condition.

\[
\text{(7) For any given } x, \text{ there is at most one } y \text{ so that } (x, y) \in C \cap J.
\]

This is the same condition we imposed in [8] when Zaharescu and the author study the distribution of hybrid exponential sums over curves.

Define

\[
M_k(H) = \sum_{x=0}^{p-1} \left(N_{B_x}(C) - \frac{HN}{p} \right)^k
\]

to be the \(k\)-th moment of the number of points in \(C \cap B_x\) about its mean. We also define \(\mu_k(H, P)\) to be the \(k\)-th moment of a binomial random variable \(X\) with parameter \(H\) and \(P\), i.e.

\[
\mu_k(H, P) := E((X - HP)^k) = \sum_{h=1}^{H} \binom{H}{h} P^h (1 - P)^{H-h} (h - HP)^k.
\]

We estimate the moment \(M_k(H)\) using the binomial model with parameter \(H\) and \(N/p\).

Theorem 2. Fix a positive integer \(k\). Let \(C\) be a curve satisfying the assumptions in Theorem 1 and the additional condition (7). Set \(B_x, H, N\) as above, we have

\[M_k(H) = p \nu_k(N/p) + O_k(d^2H^k \sqrt{p \log k}).\]

For a fixed \(k\), it is well-known (see Montgomery and Vaughan [10], Lemma 11) that

\[\mu_k(H, P) \ll (HP)^{k/2} + HP\]

uniformly for \(0 \leq P \leq 1\) and \(H = 1, 2, 3, \ldots\). Therefore, Theorem 2 immediately implies the following.

Corollary 3. Assumptions as in Theorem 2. For any fixed \(k\), we have

\[M_k(H) \ll_k p(HN/p)^{k/2} + HN/p + d^2H^k \sqrt{p \log k}.\]

Remark 1.1. For the case of curves, [8, Theorem 2] gives an upper bound for the second moment of \(N_B(C)\) when \(B\) is allowed to move freely on the plane. That theorem implies \(M_2(H) \ll p \mu_2(H, N/p)\). Since \(\mu_2(H, P) = HP(1 - P)\), Theorem 2 shows that [8, Theorem 2] has the correct main term, and therefore is best possible for the case of curves (with suitable \(H\) and \(N\)).

Let

\[\nu_k = \begin{cases} 1 \cdot 3 \cdot \ldots \cdot (k - 1) & \text{if } k \text{ even,} \\ 0 & \text{if } k \text{ odd,} \end{cases}\]

then (see [10, Lemma 10])

\[\mu_k(H, P) = (\nu_k + o(1))(HP(1 - P))^{k/2}\]

as \(HP(1 - P)\) tends to infinity. From this and Theorem 2 we obtain the following.
Corollary 4. For any fixed \(k \), if \(H = o\left(\frac{d^{3/2k}}{d^2 \log p}\right) \) and \((HN/p)(1 - N/p) \to \infty\) as \(p \) tends to infinity, then

\[M_k(H) = p(\nu_k + o(1)) \left(\frac{HN}{p} \left(1 - \frac{N}{p} \right) \right)^{k/2}. \]

In particular, when \(N \sim cp \), \(0 < c < 1 \) and \(\log H/\log p \to 0 \) as \(p \) tends to infinity, the distribution of \(N_{B_x}(C) \) tends to a Gaussian distribution with mean \(HN/p \) and variance \((HN/p)(1 - N/p)\).

Remark 1.2. If condition (7) does not hold, we may still have Gaussian distribution for the \(N_{B_x}(C) \). For example, if \(C \) is a hyperelliptic curve, and choose \(J \) to be the interval \((-\alpha p, \alpha p]\) for some \(0 < \alpha < 1/2 \), then generically one \(x \)-coordinate on the curve corresponds to two \(y \)-coordinates. From Corollary 4, we have Gaussian distribution for \(J_1 = [0, \alpha p] \), and also for \(J_2 = [-\alpha p, 0] \), with the same mean and variance. After combining the two of them we will have Gaussian distribution for the whole interval \(J \).

2. Preliminary lemmas

In this section we collect all the preliminary lemmas that will be used in the subsequent sections. The first lemma is the Weil bound for space curves. For a proof, see [9, Theorem 2.1].

Lemma 2.1. Let \(C \) be an absolutely irreducible curve in the affine \(r \)-space \(\mathbb{A}^r_{\mathbb{F}_p} \) of degree \(d > 1 \), which is not contained in any hyperplane. Let \(B = I_1 \times \ldots \times I_r \) be a box, then

\[N_B(C) = p \cdot \frac{\text{vol}(B)}{p^r} + O(d^2 \sqrt{p} \log^4 p), \]

where \(t \) is the number of intervals \(I_i \) that are not the full interval \([0, p-1]\).

The next lemma states that if we translate a set in \(\mathbb{F}_p \) a small number of times, it will always reach a new element. This lemma allows us to show later that some curves are absolutely irreducible.

Lemma 2.2. Let \(r \geq 2 \), \(x_1, \ldots, x_r \in \mathbb{F}_p \) be \(r \) distinct elements. Suppose \(\mathcal{M} \) is a nonempty finite subset of the algebraic closure \(\overline{\mathbb{F}}_p \) with \(4|\mathcal{M}| < p^{7/5} \). Then there exists a \(j \in \{1, \ldots, r\} \) such that the translate \(\mathcal{M} + x_j \) is not contained in \(\cup_{i \neq j}(\mathcal{M} + x_i) \).

Proof. Suppose \((x_1, \ldots, x_r, \mathcal{M})\) provides a counterexample to the statement of the lemma. Then it is clear that for any nonzero \(t \in \mathbb{F}_p \), the tuple \((tx_1, \ldots, tx_r, t\mathcal{M})\) is another counterexample.

By Minkowski’s theorem on lattice points in a convex symmetric body, there exists a nonzero integer \(t \) such that

\[
\begin{aligned}
\|t\| &\leq p - 1 \\
\left\|\frac{tx_1}{p}\right\| &\leq (p - 1)^{-\frac{1}{5}} \\
&\vdots \\
\left\|\frac{tx_r}{p}\right\| &\leq (p - 1)^{-\frac{1}{5}}.
\end{aligned}
\]
Thus there are integers y_j such that

$$
\begin{aligned}
|y_j| &\leq p(p-1)^{-\frac{1}{p}} \\
y_j &\equiv tx_j \pmod{p}
\end{aligned}
$$

(10)

for any $j \in \{1, \ldots, r\}$, and $(y_1, \ldots, y_r, t\mathcal{M})$ provides a counterexample. Now let j_0 be such that $|y_{j_0}| = \max_{1 \leq j \leq r} |y_j|$. Choose $\alpha \in t\mathcal{M}$ and consider the set $\mathcal{M} = t\mathcal{M} \cap (\alpha + \mathbb{F}_p)$. Then $(y_1, \ldots, y_r, \mathcal{M})$ will also be a counterexample.

Note that $\alpha + \mathbb{F}_p$ can be written as a union of at most $|\mathcal{M}|$ intervals (i.e. subsets of \mathbb{F}_p consisting of consecutive integers or its translate in \mathbb{F}_p) whose endpoints are in \mathcal{M}. Let $\{a + \alpha, a + a + 1, \ldots, a + b\}$ be the longest of these intervals. Then

$$
|b - a| \geq \frac{p}{|\mathcal{M}|} \geq \frac{p}{|\mathcal{M}|}.
$$

By this, (10) and the hypothesis $4|\mathcal{M}| < p^\frac{4}{3}$, we have

$$
|b - a| > 4p^{1-\frac{4}{3}} > 2|y_{j_0}|.
$$

Now if $y_{j_0} > 0$, then $\alpha + a + y_{j_0}$ belongs to $\mathcal{M} + y_{j_0}$ but does not belong to $\cup_{i \neq j_0} (\mathcal{M} + y_i)$, while if $y_{j_0} < 0$, then $\alpha + b + y_{j_0}$ belongs to $\mathcal{M} + y_{j_0}$ but does not belong to $\cup_{i \neq j_0} (\mathcal{M} + y_i)$. This contradicts the fact that $(y_1, \ldots, y_r, \mathcal{M})$ is a counterexample, and completes our proof. \square

Recall that the Stirling number of second kind, $S(r, t)$, is by definition the number of partition of a set of cardinality r into exactly t nonempty subsets. The proof of the following lemma can be found in [10].

Lemma 2.3. Let $\mu_k(H, P)$ be defined by (9), then

$$
\mu_k(H, P) = \sum_{r=0}^{k} \binom{k}{r} (-HP)^{k-r} \left(\sum_{t=0}^{r} \binom{H}{t} S(r, t)! P^t \right).
$$

3. Patterns of curves: Proof of Theorem 1

Let C be a plane curve given by the equation $f(x, y) = 0$ and two vectors $a = (a_1, \ldots, a_s), b = (b_1, \ldots, b_s)$ so that $p \nmid a_i$ and $a_1^{-1}b_1, \ldots, a_s^{-1}b_s$ are all distinct modulo p, we define the x-shifted curve $C_{a, b}$ to be the space curve in the affine $(s+1)$-space with variables x, y_1, \ldots, y_r and equations

$$
f(a_i x + b_i, y_i) = 0, \forall 1 \leq i \leq s.
$$

(11)

It is not difficult to see that $C_{a, b}$ is indeed a curve, and its degree is less than or equal to d^s. Note that similar constructions appeared in [7, 8, 9].

It is clear from the defining equations (11) that a point on $C_{a, b}$ corresponds to an (a, b)-pattern on C, i.e.

$$
P_{a, b}(C, \mathcal{I}, \mathcal{J}) = N_B(C_{a, b}),
$$

where $B = \mathcal{I} \times (\mathcal{J})^s$. We want to show that $C_{a, b}$ is absolutely irreducible. Currently we are not able to prove this for all curves C, but we are able to show the irreducibility for the class of curves so that the projection π defined by (6) has a completely ramified point.

Proposition 3.1. If C satisfies the assumptions in Theorem 1, then $C_{a, b}$ is absolutely irreducible.
Proof. For $1 \leq j \leq s$ we define C_j to be the curve given by the first j equations in (11), i.e.

$$f(a_i x + b_i, y_i) = 0, \ \forall 1 \leq i \leq j.$$

We have a chain of coverings of curves,

$$C_{a,b} = C_s \to C_{s-1} \to \ldots \to C_1 \cong C,$$

where each arrow represent a projection π.

Let $S \subseteq \mathbb{P}_p$ be the set of completely ramified points for the map $\pi : C \to A^1$. Since all the $x_i = b_i a_i^{-1}$ are distinct, we can apply Lemma 2.2 with $x_i = b_i a_i^{-1}$ to conclude that there are new completely ramified points in each level of the above chain of coverings. Since C is absolutely irreducible, this shows that $C_{a,b}$ is also absolutely irreducible.

We are now ready to prove Theorem 1. By Proposition 2.1 if C satisfies the assumptions in the theorem, then $C_{a,b}$ is absolutely irreducible in A^{s+1}. Theorem 1 now follows easily from Lemma 2.4.

4. Estimation of $M_k(H)$: Proof of Theorem 2

Using the binomial theorem to expand the right hand side of (8), we obtain

$$M_k(H) = \sum_{x=0}^{p-1} \sum_{r=0}^{k} \binom{k}{r} N_{B_x}(C)^r \left(-\frac{HN}{p} \right)^{k-r} \sum_{x=0}^{p-1} N_{B_x}(C)^r.$$

Here we make the convention that if $r = 0$, $N_{B_x}(C)^r = 1$ even when $N_{B_x}(C) = 0$. Define

$$S_r(H) = \sum_{x=0}^{p-1} N_{B_x}(C)^r.$$

Clearly $S_0(H) = p$ (by our convention). For $r \geq 1$, we have

$$S_r(H) = \sum_{x=0}^{p-1} \sum_{(x_1, y_1) \in C \cap B_x} \cdots \sum_{(x_r, y_r) \in C \cap B_x} 1 = \sum_{x=0}^{p-1} \sum_{(x, y_1) \in C, y_i \in J, \{x_1, \ldots, x_r\} \subseteq (x, x+H)} 1.$$

For each $1 \leq i \leq r$, let $x_i = x + a_i$, and let A be the set of distinct a_i’s. Set $|A| = t$. We have $A \subseteq \{1, 2, \ldots, H\}$. From the definition of the Stirling number of second kind, we see that for any given A, the number of sets with $\{x_1, \ldots, x_r\} = A$ is $S(r, t)!$. Grouping the terms in (12) according to different values of t, we obtain

$$S_r(H) = \sum_{t=1}^{r} S(r, t)! \sum_{|A|=t, A \subseteq [1, H]} \sum_{x=0}^{p-1} \sum_{(x + b_i, y_i) \in C, 1 \leq i \leq r} 1.$$

By condition (7), the inner sum

$$\sum_{x=0}^{p-1} \sum_{(x + b_i, y_i) \in C, 1 \leq i \leq r} 1.$$
is the number of \((a, b)\)-pattern of \(C\) with \(a = (1, 1, \ldots, 1)\), \(b\) is any \(t\)-tuple ordering of the set \(A\), and all \(y\) coordinates lie in \(J\). By Theorem [1] this sum is
\[
\sum_{x=0}^{p-1} \sum_{(x+b,y) \in C, 1 \leq i \leq r} 1 = p \cdot \frac{N^t}{p^t} + O(d^{2t} \sqrt{p} \log^t p).
\]

Put this into (13) yields
\[
S_r(H) = \sum_{t=1}^{r} S(r, t)! \sum_{|A|=t, A \subseteq [1.H]} \left(p \cdot \frac{N^t}{p^t} + O(d^{2t} \sqrt{p} \log^t p) \right)
= p \sum_{t=1}^{r} S(r, t)! \left(\frac{H}{t} \right) \left(\frac{N}{p} \right)^t + O \left(\sum_{t=1}^{r} S(r, t)! \left(\frac{H}{t} \right) d^{2t} \sqrt{p} \log^t p \right).
\]

Therefore,
\[
M_k(H) = p \sum_{r=0}^{k} \binom{k}{r} \left(-\frac{HN}{p} \right)^{k-r} \sum_{t=1}^{r} S(r, t)! \left(\frac{H}{t} \right) \left(\frac{N}{p} \right)^t + O_k(d^{2k} H^k \sqrt{p} \log^k p).
\]

We can insert the terms with \(t = 0\) without altering the sum since \(S(r, 0) = 0\) for any \(r \geq 1\) (and for \(r = 0\) the inner sum is understood to be zero), thus we may apply Lemma [2] with \(P = N/p\) to conclude that
\[
M_k(H) = p^\nu(H, N/p) + O_k(d^{2k} H^k \sqrt{p} \log^k p).
\]

This completes the proof of Theorem [2].

References

[1] E. Bombieri, On exponential sums in finite fields, Amer. J. Math. 88 (1966), no. 1, 71–105.
[2] T. H. Chan, An almost all result on \(q_1q_2 \equiv c \pmod{q}\), Monatsh. Math. 162 (2011), no. 1, 29–39.
[3] C. I. Cobeli, S. M. Gonek, and A. Zaharescu, The distribution of patterns of inverses modulo a prime, J. Number Theory 101 (2003), no. 2, 209–222.
[4] S. M. Gonek, G. S. Krishnaswami, and V. L. Sondhi, The distribution of inverses modulo a prime in short intervals, Acta Arith. 102 (2002), no. 4, 315–322.
[5] Y. Lamzouri, The distribution of short character sums, arXiv:1108.6072 [math.NT].
[6] K.-H. Mak and A. Zaharescu, The distribution of rational points and polynomial maps on an affine variety over a finite field on average, arXiv:1301.1359 [math.NT].
[7] , On the distribution of the number of points on a family of curves over finite fields, arXiv:1110.4693 [math.NT].
[8] , The distribution of values of short hybrid exponential sums on curves over finite fields, Math. Res. Lett. 18 (2011), no. 1, 155–174.
[9] , Poisson type phenomena for points on hyperelliptic curves modulo \(p\), Funct. Approx. Comment. Math. 47 (2012), no. 1, 65–78.
[10] H. L. Montgomery and R. C. Vaughan, On the distribution of reduced residues, Ann. of Math. (2) 123 (1986), no. 2, 311–333.
[11] André Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Actualités Sci. Ind., no. 1041 = Publ. Inst. Math. Univ. Strasbourg 7 (1945), Hermann et Cie., Paris, 1948.