Electrostatic Formation of Coupled Si/SiO₂ Quantum Dot Systems

PER HYLDGAARD*, HENRY K. HARBURY and WOLFGANG POROD

Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN 46556

We present three-dimensional numerical modeling results for gated Si/SiO₂ quantum dot systems in the few-electron regime. In our simulations, the electrostatic confining potential results from the Poisson equation assuming a self-consistent Thomas-Fermi charge model. We find that a very thin SiO₂ top insulating layer allows an effective control with single-electron confinement in quantum dots with radius less than 10 nm and investigate the detailed potential and resulting charge densities. Our three-dimensional finite-element modeling tool allows future investigations of the charge coupling in gated few-electron quantum-dot cellular automata.

Keywords: 3D simulation and modeling, finite element method, silicon/silicon-dioxide quantum dots, quantum-dot cellular automata

We present numerical simulations for electrostatically confined few-electron quantum dot systems in the technologically important Si/SiO₂ material system. Our emphasis is modeling a possible so-called Quantum-dot cellular automata (QCA) structure [1] in which a bi-stable occupation by two excess electrons in a small and strongly charge-coupled quantum-dot system defines logic 0/1.

The bottom panel of Figure 1 shows a schematic of the Si/SiO₂ material system: a thin silicon-dioxide layer serves as excellent insulation of the bottom silicon slab from the set of top gates. Applying finite biases at these gates allows the formation of electrostatically confined quantum dots just below the heterostructure interface (at \( z = z_0 \)). Mesoscopic transport investigations in gate-induced quantum-dot arrays [2] documents the feasibility of fabricating few-electron quantum-dot systems in the Si/SiO₂ material system. This development has in turn resulted in a proposal for room-temperature single-electron Si/SiO₂ memory cells [3].

Previous (two-dimensional) modeling results [4, 5] of few-electron Si/SiO₂ quantum dot systems exploited an axial symmetry to investigate the electrostatic confinement within an individual dot. Encouraged by recent three-dimensional modeling of larger quantum-dot systems [6] we investigate...
here a possible realization of a Si/SiO$_2$ quantum-dot cellular automata.

The upper panel of Figure 1 shows schematics of the small but experimentally accessible top-gate geometry assumed for our model Si/SiO$_2$ QCA system. A negative depletion gates (shaded) surrounds a group of four positive attractor gates (shaded circles) with a $r = 10$ nm radius and mutual separation of 30 nm. The attractor gates are biased to about 1 V to ensure a single-electron equilibrium occupation in each of the four electrostatically confined quantum dots. For the top silicon dioxide layer we assume a 5 nm thickness.

In our $T=100$ K simulations, the confining potential is obtained from the Poisson equation within a self-consistent Thomas-Fermi charge model. The silicon is assumed to have a small unintended but fully ionized doping, $p = 10^{15}$ cm$^{-3}$ and to ensure convergence we investigate a 1.5 nm thick bottom slab with in-plane extension of approximately 300 nm by 300 nm. The top metal depletion and attractor gates are described by Dirichlet boundary conditions. For the exposed SiO$_2$ surface we assume for simplicity a potential fixed at the mid-gap SiO$_2$ value, that is, again a Dirichlet boundary condition.

Our finite-element calculation uses a 129 by 129 nonuniform grid to allow a 1 nm resolution from the surface and well below the Si/SiO$_2$ interface, that is, around the quantum dot system. The top panel of Figure 2 shows how most nodal layers (at constant $z$) are connected in a mesh with alternating tetrahedron orientation to eliminate a geometrical bias. The bottom panel of Figure 2 illustrates the repeated thinning of our finite-element mesh undertaken deep below the interfaces where a high in-plane resolution is no longer needed. However, our numerical simulation still involves $6 \times 10^5$ nodal points for which we determine the electrostatic potential within the self-consistent Thomas Fermi screening model. Using the Newton-Raphson procedure we solve in each iteration the resulting huge linear system using a quasi-minimal residual implementation [7].

Figure 3 shows our finite-element determination of the electron potential and charge distribution along the interface ($z = z_0$) for our possible QCA realization. The electron confinement potential (top panel) is calculated relative to the Fermi energy with negative values corresponding to a strongly enhanced electron concentration $n_{el}$ (bottom panel). Note how the thin silicon-dioxide top layer allows a very well-defined set of quantum dots with a finite inter-dot potential barriers. The total equilibrium occupation is set to exactly four electrons and the strong Coulomb blockade effect will prevent multiple occupation of the individual quantum dots.
Figure 2 shows our modeling results for the simpler double-quantum-dot system in which we are preparing to investigate the mutual charge coupling between the quantum dots. We assume again \( r = 10 \text{ nm} \) attractor gates with a mutual separation of 30 nm and adjust the positive bias to achieve a single-electron equilibrium occupation of each of the quantum dots. The upper panel shows the variation of the confinement potential both along the axes (x) connecting the two quantum dots and in the growth direction (z). The heterostructure-cut panel illustrates the excellent top-gate control of the electrostatic potential into the Si/SiO\(_2\) slab well below the heterostructure interface, \( z = z_0 \).

The lower panel of Figure 4 shows the corresponding equilibrium charge distribution, \( n_{eq} \).

Note that this electron distribution, i.e., the equilibrium quantum dot, is confined within 1 nm of the interface and about 5 nm of the attractor-gate center. Future modeling will investigate the charge coupling of such quantum-dot disks in the presence of the attractor and depletion gates.

In summary, we have presented three-dimensional finite-element calculations for gate-confined few-electron Si/SiO\(_2\) quantum-dot systems. We have documented the feasibility of crisp electrostatic gate control for also few-electron quantum-dot systems and have investigated the detailed charge distribution and confinement potentials. Our modeling tool allows future investigations of charge coupling in few-electron quantum-dot cellular automata structures.
FIGURE 4 Growth direction (z) variation of confinement potential (upper panel) and corresponding (equilibrium) charge distribution (lower panel) in simpler double-dot model system. This system is defined by two \( r = 10 \) nm attractor dots also with a mutual separation of 30 nm. All z-positions are given relative to the interface \( z = z_0 \). Note that the equilibrium electron distribution \( n_{eq} \) is confined within 1 nm of the interface and about 5 nm of the attractor-gate center.

Acknowledgements
This work has been supported by the Advanced Research Projects Agency through the Office of Naval Research.

References

[1] Lent, C. S., Tougaw, P. D., Porod, W. and Bernstein, G. H. (1993). “Quantum cellular automata”, Nanotechnology, 4, 49; Lent, C. S., Tougaw, P. D. and Porod, W. (1993). “Bistable saturation in coupled quantum dots for quantum cellular automata”, Appl. Phys. Lett., 62, 714; Tougaw, P. D., Lent, C. S. and Porod, W. (1993). “Bistable saturation in coupled quantum-dot cells”, J. Appl. Phys., 74, 3558.

[2] Matsuoka, H., Ichiguchi, T., Yoshimura, T. and Takeda, E. (1994). “Coulomb blockade in the inversion layer of a Si metal-oxide-semiconductor field-effect transistor with a dual-gate structure”, Appl. Phys. Lett., 64, 586; and Matsuoka, H., Ichiguchi, T., Yoshimura, T. and Takeda, E. (1994). “Mesoscopic transport in Si metal-oxide-semiconductor field-effect transistor with a dual-gate structure”, J. Appl. Phys., 76, 5561.

[3] Yano, K., Ishii, T., Hashimoto, T., Kobayashi, T., Murai, F. and Seki, K. (1994). “Room-Temperature Single-Electron Memory”, IEEE Trans. Electron Dev., 41, 1628.

[4] Chen, M., Porod, W. and Kirkner, D. J. (1994). “Coupled finite element/boundary element method for semiconductor quantum devices with exposed surfaces”, J. Appl. Phys., 75, 2545; Chen, M. and Porod, W. (1995). “Design of gate-confined quantum-dot structures in the few-electron regime”, J. Appl. Phys., 78, 1050.

[5] Chen, M. and Porod, W., “Simulation of Quantum-Dot Structures in Si/SiO₂”, VLSI Design, in press.

[6] Udipi, S., Vasileska, D. and Ferry, D. K. (1996), “Numerical Modeling of Silicon Quantum Dots”, Superlat. and Microstruct, 20, 343.

[7] Freund, R. W. and Nachtigal, N. M. (1991). “QMR: a Quasi-Minimal Residual Method for Non-Hermitian Linear System”, Numerische Mathematik, 60, 315; Lanczos, C. (1952). “Solution of Systems of Linear Equations by Minimized Iterations”, J. Research Nat. Bur. of Standards, 49, 33; see also C. Lanczos (1950). “An Iteration Method for the Solution of the Eigenvalue Problem of Linear Differential and Integral Operators”, J. Research Nat. Bur. of Standards, 45, 255.

Authors’ Biographies
Per Hyldgaard is a postdoctoral research associate in the Department of Electrical Engineering at the University of Notre Dame. His research interests include computational and theoretical modeling of Coulomb blockade systems. He is a member of the APS and of the Danish and European Physical Societies.

Henry K. Harbury is Director of the computational facilities of the College of Science at the University of Notre Dame. His interests are computational modeling of solid state electronic devices.

Wolfgang Porod is Professor of Engineering at the University of Notre Dame. His research interests include computational solid state electronics and the physics of computation. He is a member of the APS and a senior member of the IEEE.
Submit your manuscripts at http://www.hindawi.com