Lymphomas involving the eye and the ocular adnexa
Sarah E. Couplanda and Bertil Damatob

Purpose of review
To describe recent advances in the understanding of the pathogenesis of the most common malignant lymphomas that occur as primary and secondary tumors in ocular tissues.

Recent findings
Advances have been made in the understanding of the genetic alterations in mucosa-associated lymphoid tissue lymphomas, including various chromosomal translocations, such as the most recently described t(3;14)(p14.1;q32) involving the FOXP1 gene. Further, the development of ocular adenexal mucosa-associated lymphoid tissue lymphomas has been associated with Chlamydia psittaci in some geographic areas. Subdivision of diffuse large B-cell lymphoma into clinically prognostic groups had been achieved on the basis of gene expression profiles using complementary DNA microarrays. Tumor-infiltrating cells, such as macrophages, have been demonstrated to be of prognostic significance in follicular lymphoma.

Summary
Understanding of the ocular adnexal and intraocular lymphomas has advanced with progress in lymphoma classification systems, namely the World Health Organization lymphoma classification. This knowledge is being fine tuned with advances in technology, such as complementary DNA microarrays. The clinical significance of this scientific progress has yet to be determined.

Keywords
diffuse large B-cell lymphoma, follicular lymphoma, intraocular lymphoma, mucosa-associated lymphoid tissue lymphoma, non-Hodgkin lymphoma, ocular adnexal lymphoma

Introduction
The lymphomas are malignant neoplasms derived from a clonal proliferation of B or T lymphocytes. They can be divided into two major groups: Hodgkin lymphoma and non-Hodgkin lymphoma (NHL) [1]. The NHLs are a large heterogeneous group of neoplasms that can be further subdivided according to the cell of origin. About 80% of NHLs arise from B lymphocytes or their precursors, 14% develop from T cells, and 6% from natural killer cells [1].

For many years, the Working Formulation [2] and the Kiel lymphoma classification [3] were used predominantly in America and Europe, respectively. In 1994, the International Lymphoma Study Group [4] established the Revised European American Lymphoma (REAL) classification, which incorporated elements of both classification systems and was based on the morphologic, immunophenotypic and genetic, and clinical features of the various lymphoma entities. It was the first lymphoma classification that included both nodal and extranodal tumors. Owing to its high degree of reproducibility, the REAL classification has now been updated under the auspices of the World Health Organization (WHO) and is called the WHO Lymphoma Classification [1].

Lymphomas of the eye and its adnexa are relatively uncommon, accounting for approximately 10% of all extranodal malignant lymphomas [5]. Most are primary tumors and are usually NHLs of B-cell type: the most common primary lymphoma subtype occurring in the ocular adnexa is the low-grade malignant extranodal marginal zone B-cell lymphoma of MALT type (mucosa-associated lymphoid tissue) [6–8]. The most common lymphoma arising from ocular tissues is the so-called primary intraocular lymphoma, which is a diffuse large B-cell lymphoma (DLBCL) of high-grade malignancy arising in the retina [9]. Secondary ophthalmic
lymphoma, which arises from systemic disease, can occur both in the ocular adnexa and intraocularly [10]. The most common secondary lymphoma subtype occurring in the ocular adnexa is follicular lymphoma, and that most frequently occurring in tissues within the eye is DLBCL.

In this review, we briefly describe the most recent advances in the understanding of the most common and important types of B-NHL occurring in ophthalmic tissues, i.e. the MALT lymphomas, the DLBCL, and follicular lymphomas. Additional varied secondary ophthalmic manifestations of lymphomas are also summarized.

Extraocular lymphomas: primary tumors

The three most frequent primary B-NHLs of the ocular adnexa are briefly discussed in order of frequency.

Mucosa-associated lymphoid tissue lymphomas

The MALT lymphomas are low-grade B-cell lymphomas that occur mostly in the gastrointestinal tract, particularly in the stomach. Since their first description by Isaacson and Wright [11] in 1983, it has become apparent that MALT lymphomas arise in a variety of extranodal sites, such as the salivary glands, thyroid, skin, ocular adnexa, lung and urogenital tract. Regardless of the site of origin, MALT lymphomas have similar clinical, pathologic, and molecular features (Table 1) [12].

Recently, several cytogenetic alterations have been demonstrated in MALT lymphomas, including those occurring as either primary or secondary tumors in the ocular adnexa (Table 1) [12,13**]. Most affect a common signaling pathway and, thus, share a common pathogenesis. The common karyotypic alterations that characterize MALT lymphomas include trisomies 3 and 18 as well as the translocations t(11;18)(q21;q21), t(14;18)(q32;q21), t(1;14)(p22;q32), and the newly discovered t(5;14)(p14.1;q32) involving the FOXP1 gene [12,13**]. The frequency of these translocations in MALT lymphoma is summarized in Table 1. These chromosomal alterations have proven to be of prognostic significance, particularly in gastric MALT lymphomas. It remains to be determined whether particular chromosomal abnormalities occur in primary ocular adnexal MALT lymphomas, and others in secondary ones. In addition, the chromosomal translocations are yet to be correlated with location (e.g. conjunctiva versus orbit), and their prognostic value in ocular adnexal lymphoma (OAL) is still to be determined.

Another area that has received particular interest recently is the possible role of exogenous antigens, such as *Chlamydia psittaci*, in the pathogenesis of ocular adnexal MALT lymphomas. A possible association of both primary and secondary MALT lymphomas of the ocular adnexa with *C. psittaci* created much excitement initially [14]; however, other studies could not demonstrate this microorganism in relatively large cohorts [15,16]. Chanudet *et al.* [17**] suggest that there may be geographic variation in the distribution of this microorganism, and, consequently, possibly differences in its significance in the lymphomagenesis in ocular adnexal MALT lymphomas. The clinical relevance of this finding is considerable, as antimicrobials could be included in the armamentarium for treatment of these tumors.

Diffuse large B-cell lymphoma

Depending on which series is evaluated, DLBCLs represent either the second or third most frequent primary B-NHL subtype occurring in the ocular adnexa [7,18,19]. In addition they are the major subtype of primary intraocular lymphomas, but the most common subgroup of systemic lymphomas that secondarily infiltrate the eye (see below). The latter fact is not surprising considering that systemic DLBCL is one of the most common types of lymphoma in adults, accounting for approximately 30–40% of cases of NHL [1]. These tumors are heterogeneous in their morphology, antigenic profile and molecular genetic features (Table 1).

Recently, Alizadeh and associates [20] investigated the gene expression signatures of systemic DLBCLs using lymphochip complementary DNA microarrays and showed that overall survival after chemotherapy was significantly greater in patients with high gene expression levels, which are characteristic of normal germinal centre B cells. These results were confirmed by other groups [21,22] using both unsupervised and supervised statistical methods. Three biologically and clinically distinct subgroups of DLBCL have been identified, each with a specific gene expression signature: type 1 DLBCLs resemble germinal centre B cells (approximately 50% of cases); type 2 share features with activated B cells (approximately 30% of cases); and the third group is termed type 3 [20,21]. These findings suggest that the subgroups of DLBCL arise from different stages of normal B-cell development, perhaps representing distinct entities. To date, no expression profiling studies on ocular DLBCLs have been reported, and, therefore, it remains to be determined whether the ocular adnexal DLBCLs, as well as the primary or secondary intraocular DLBCLs, can be subdivided into one or more of the above-mentioned prognostic groups on the basis of their gene expression profile.

Follicular lymphoma

Follicular lymphoma is a neoplasm of follicle centre cells (centrocytes and centroblasts) that has at least a partially follicular pattern [1]. Areas of diffuse or even pure diffuse growth patterns can, however, occur (Table 1). In European studies, follicular lymphoma is the third most commonly occurring primary B-NHL in the ocular adnexa [7,18] but is the most common secondary lymphoid tumor of the ocular adnexa (see below).
Table 1 Morphologic, immunophenotypic, molecular biologic, and clinical characteristics of the three lymphoma subtypes presented

Lymphoma subtype	Morphology	Tumor cell immune profile	Molecular biologic changes	Cell of origin	Clinical characteristics
MALT lymphoma	Expansive growth in the marginal zone	CD79a⁺, CD20⁺, CD43⁻/⁺, BCL-2⁻/⁺, IgM⁺, IgD⁻, CD10⁻, CD23⁻, CD5⁻, cyclin D₁⁻	Clonal IgH and IgL rearrangements	'Memory' B cell	8% of all NHLs
	Heterogeneous cell population: centrocyte-like cells, monocytoid B cells, plasmacytoid cells, occasional blasts	Presence of FDCs in reactive secondary follicles	Mutations in V region of IgH gene		Peak age, 65 years
	Possibly follicular colonization	Monotypic cytoplasmic Ig in 10%	t(11;18)(q21;q21) in 15–40%		F > M
	Possibly lymphoepithelial lesions		t(14;18)(q32;q21) in 10%		Most common primary ocular adenalex lymphoma, but occurs less frequently as a secondary tumor
	Often multifocal growth		t(1;14)(p22;q32) in 5%		Tendency to recur; possible concurrent or subsequent involvement of other extranodal sites
DLBCL	Diffuse growth pattern	CD79a⁺, CD20⁺, BCL-6⁻ (70% of cases), CD10⁻ (25–50%), IgM > IgG > IgA	Clonal IgH and IgL rearrangements	Mature germinal centre B cell or post-germinal centre B cell	40% of extranodal NHLs
Morphologic variants:		50–75% of cases	Numerous mutations in V region of IgH gene		Average age: 60–70 years
centroblastic, immunoblastic, centroimmunoblastic, anaplastic, T-cell rich	CD30⁻ in lymphoma with anaplastic morphology	Bcl-2 gene rearrangements	M:F = 1:1		Second most primary ocular adnexal lymphoma, but most common intraocular lymphoma (both primary and secondary tumors)
	Rarely CD5⁺ or CD23⁺	No FDC-MW	C-myc gene rearrangements in 20–30% of cases		Rapidly growing tumor
	Ki-67 nearly always >40%		Extremely rare		Aggressive clinical course
Follicular lymphoma	Usually follicular growth pattern with occasional diffuse areas; rarely purely diffuse	CD20⁺, CD10⁻, BCL-2⁻ (90%), BCL-6⁻, IgM (50%), IgG (50%)	Clonal IgH and IgL rearrangements	Germinal centre B cell	40% of all NHLs in the US, 20–30% in Europe
	Mixture of centrocytes and centroblasts with dominance of former	CD43⁺ (95%), CD23⁺, CD5⁻	Numerous mutations in V region of IgH gene		5th–6th decades of life
	Monomorphic GCs with loss of zonation	Dense follicular FDC-MW	of IgH gene with ongoing mutations (intrachromosomal diversity) and resulting in the expression of BCL-2 in neoplastic germinal centres		M:F = 1:1
	Minimal or no apoptosis in GC	Reduction in growth fraction in neoplastic GCs versus reactive GCs, particularly in BCL-2² cases	t(14;18)(q32;q21) in 70–95%,		Most common secondary ocular adenalex lymphoma
	Usually no macrophages with tingible bodies	Often CD10⁻ B cells in the interfollicular region	p53 gene mutations and c-myc rearrangement in high-grade cases		Lymph nodes mainly infiltrated, but also spleen, bone marrow, and skin
	Thin or even absence of the follicle mantle	Dense, well-defined FDC meshworks in neoplastic germinal centres (demonstrated with CD21)	Transformation to DLBCL in 30% of cases		Often advanced disease at the time of diagnosis

MALT, mucosa-associated lymphoid tissue lymphoma; Ig-H, immunoglobulin heavy chain; Ig-L, immunoglobulin light chain; NHL, non-Hodgkin lymphoma; F, female; M, male; FDC, follicular dendritic cell; DLBCL, diffuse large cell B-cell lymphoma; REL, reticuloendotheliosis oncogene; FDC-MW, follicular dendritic cell meshworks; GC, germinal centre.

* These results arise from investigations of NHLs in other locations.

* Rearrangements demonstrable in only 50–70% of cases due to presence of somatic mutations.
The vast majority of follicular lymphomas, including ocular adnexal follicular lymphoma, have cytogenetic abnormalities, the most common being t(14;18)(q32;q21), involving the rearrangement of the \(BCL-2 \) gene (70–95% of cases). Rare cases have a t(2;18)(p12;q21), which places the \(BCL-2 \) gene adjacent to the light chain on chromosome 2. Furthermore, most follicular lymphomas have additional breaks, most commonly involving chromosomes 1, 2, 4, 5, 13, and 17, or additions of X, 7, 12, or 18 [1]. Depending on the stage of the disease, most patients with ocular adnexal follicular lymphoma are treated using either radiotherapy (stage I and II) or chemotherapy (stage III and IV; secondary ocular adnexal follicular lymphoma). The latter, which encompasses a vast range of regimens, has been combined with radiotherapy and with anti-CD20 antibody therapy. The prognosis of follicular lymphoma has recently been demonstrated to be dependent on the tumor-infiltrating immune cells, such as macrophages [26]. To date, there is no curative treatment for advanced follicular lymphoma.

Extraocular lymphomas: secondary tumors

Secondary ocular adnexal lymphomas (S-OALs) develop in only a small proportion of patients with systemic lymphoma. Lazzarino et al. [27] reported that 2.4% of 325 patients with systemic NHL presented with orbital tumors, whereas Bairey et al. [28] found that 5.3% of 187 such patients had orbital or ocular adnexal involvement. Between 10 and 32% of all OALs are secondary [6,24,25,29].

The symptoms and signs of S-OALs are quite variable but are not significantly different from those of patients presenting with primary ocular adnexal lymphomas (P-OALs). It is, therefore, essential to determine disease stage in all patients with OAL prior to starting therapy, so that systemic disease is detected.

Interestingly, the prevalence of the lymphoma subtypes in S-OAL is quite different from that of the P-OALs. As mentioned above, most P-OALs are MALT lymphomas; these seldom develop as a secondary tumor [6,24]. In contrast, most secondary tumors are follicular lymphomas, which account for between 33 and 66% of all S-OALs in Western studies (Table 1) [6,23,24,25]. This is followed by (in approximate decreasing frequency) multiple myeloma/plasmacytoma [30–33]; lymphoplasmocytic lymphoma/immunocytoma (including Waldenström’s macroglobulinemia) [34,35]; mantle cell lymphoma, DLBCL, Burkitt lymphoma [36–38,39*], MALT lymphoma; and chronic lymphocytic leukemia [6,23,24,40*] (Fig. 1). Hodgkin’s lymphoma does not involve the ocular adnexa, except in advanced systemic disease [23*,41]. Initial presentation of Hodgkin’s lymphoma with ocular adnexal disease is extremely rare [42].

Intraocular lymphoma

Lymphomas occurring in intraocular structures can be divided into three main groups: primary intraocular lymphoma; primary uveal lymphoma; and secondary intraocular (uveal) lymphoma. The first two entities are mentioned very briefly before the secondary tumors are discussed. For detailed accounts of these tumors, the reader is referred to the respective articles on clinical, histopathological and treatment aspects of intraocular lymphoma.

Primary retinal lymphoma

Primary retinal lymphoma is generally referred to, imprecisely, as primary intraocular lymphoma. Briefly, this is a high-grade malignant B-cell lymphoma that affects the retinal pigment epithelium, sensory retina, vitreous, and optic nerve, usually sparing the uveal tract. Typically, it occurs in patients in the 6th or 7th decade of life (median age, 64 years) [43] with a female to male ratio of approximately 1:2:1. The ocular disease usually presents in isolation, but central nervous system (CNS) disease often develops before or subsequent to the ocular manifestations [9,44–47]. The combined manifestation of lymphoma in cerebral and ocular sites is referred to as oculocerebral lymphoma. Systemic dissemination of primary intraocular lymphoma is rare. Despite improvements in therapy [48,49], the prognosis in primary intraocular lymphoma is generally still poor.

Primary uveal lymphoma

Primary uveal lymphoma is a low-grade B-cell neoplasm of MALT type (see above), occurring usually unilaterally in men in the 5th or to 6th decades of life [50,51,52]. The prognosis for primary choroidal lymphoma is very good, with only exceptional cases of systemic dissemination or of CNS involvement [53,54].

Secondary intraocular lymphoma

Secondary intraocular lymphoma usually arises in the uvea, without involvement of the neurosensory retina [47,55,56]. Predominantly retinal disease without uveal infiltration has been reported but is exceptional [37,38*]. Rarely, systemic lymphoma can present with anterior segment disease such as pseudohypopyon or iridal infiltration [59–61]. Other unusual manifestations of secondary intraocular lymphoma include optic disk swelling [62], serous macular detachments [63*], and a lymphoma-associated retinopathy [64]. The exact incidence of secondary intraocular lymphoma is uncertain and probably will remain so as the number of autopsies performed decreases worldwide.

The most common systemic lymphoma subtype involving the eye is DLBCL (Table 1) [55,58*,59,65]. This is followed by multiple myeloma [66,67], lymphoplasmocytic lymphoma/immunocytoma (including Waldenström’s macroglobulinemia) [62,63*,64,67] (Fig. 2), marginal zone B-cell lymphoma [54], and chronic lymphatic leukemia.
Exceptionally rare but fascinating cases are those of intravascular lymphoma with secondary involvement of the eye [70,71*] (Fig. 3). Treatment is very much dependent on the extent of the disease, the type of malignant lymphoma, and comorbidities.

Morphologically, it may be difficult to determine whether an ocular DLBCL is a primary or secondary tumor. Retinal infiltration usually indicates primary intraocular lymphoma whereas uveal involvement suggests secondary disease; however, there are always exceptions to any rule [57,58*]. Coupland et al. [72*] have recently found that the expression of various immunoglobulin transcription factors in systemic DLBCL is very different from that of primary retinal and CNS lymphomas. Clonal analysis studies [73*,74,75*] with sequencing of the polymerase chain reaction products may indicate whether clonal proliferations have originated from the same tumor or from two distinct primary lymphomas.

T or T/natural killer cell lymphoma

Ocular lymphomas of non–B-cell type are rare and represent approximately 1–3% of all lymphoproliferative lesions in these sites [7,76*,77]. Most non–B-cell lymphomas are an extension of the tumor stage of mycosis fungoides or secondary manifestations of a systemic T-cell lymphoma [78*,79–92]. Primary T-cell lymphomas of the ocular adnexa are very rare, with less than 10 presumed cases being reported in the literature to date [77,93–97]. Similarly, primary intraocular lymphomas of T-cell type without involvement by mycosis fungoides are exceptional [98*,99–101].
Recent ophthalmic literature has described the rare primary and secondary involvement of the ocular tissues by T/natural killer cell lymphoma [93,102], adult T-cell lymphoma in conjunction with systemic leukemia, and associated with human T-cell lymphotropic virus type I infection [78,103–105]. All of these lymphoma entities are very aggressive, and patients usually die soon after initial diagnosis.

Conclusion

Much progress has been made in the understanding of malignant lymphomas in general. The WHO lymphoma classification has improved our ability to subtype the malignant lymphomas into particular entities, which are characterized by particular morphologic, immunophenotypical, and molecular biologic features. Further fine tuning of this comprehension of lymphomagenesis has been recently achieved with the application of the new technologies, e.g. complementary DNA microarrays. Much remains to be learned about the pathogenesis of the lymphomas affecting ocular and ocular adnexal tissues. The new methods must be applied in these tumors with the hope of optimizing patient treatment.

References and recommended reading

Papers of particular interest, published within the annual period of review, have been highlighted as:

- of special interest
- of outstanding interest

Additional references related to this topic can also be found in the Current World Literature section in this issue (p. 577).

1. Jaffe ES, Harris NL, Stein H, Vardiman JW. World Health Organization classification of tumours of haematopoietic and lymphoid tissues: pathology and genetics. Lyon: IARC Press; 2001.

Figure 2 Intraocular manifestation of Waldenström’s macroglobulinemia

(a) Minuscule biopsy material of an intraocular lymphomatous manifestation with positivity for (b) CD20 and (c) IgM.

Figure 3 High-grade intravascular lymphoma

Histologic section demonstrating a rare case of a high-grade intravascular lymphoma, which on immunophenotyping was demonstrated to be of B-cell origin. Courtesy of Dr H. Mudhar, Ophthalmic Pathology, Sheffield, Manchester, UK.
Lymphoma and the eye

Coupland and Danato

529

2 Project NHeLP/PC: National Cancer Institute sponsored study of classification of non-Hodgkin’s lymphomas: summary and description of a Working Formulation for clinical usage. Cancer 1982; 49:2112–2135.

3 Gerard-Marchant R, Hamlin L, Lennert K, et al. Classification of non-Hodgkin’s lymphoma. Lancet 1974; ii:1140–408.

4 Harris NL, Jaffe ES, Stein H, et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 1994; 84:1361–1392.

5 Freeman C, Freeman LN, Berg JW, Cutler SJ. Occurrence and prognosis of extranodal lymphomas. Cancer 1972; 28:252–260.

6 White WA, Ferry JA, Harris NL, Grove AS. Ocular adenoidal lymphoma: a clinicopathologic study with identification of lymphomas of mucosa-associated lymphoid tissue type. Ophthalmology 1995; 102:1994–2006.

7 Coupland SE, Krause L, Delecluse HJ, et al. Lymphoproliferative lesions of the ocular adnexa: analysis of 112 cases. Ophthalmology 1998; 105:1430–1441.

8 Whitcup SM, de Smet MD, Rubin BL, et al. Intraocular lymphoma: clinical and histopathologic diagnosis. Ophthalmology 1993; 100:1399–1406.

9 Coupland SE, Heimann H, Bechrakis NE. Primary intraocular lymphoma: a review of the clinical, histopathologic and molecular biological features. Graefes Arch Clin Exp Ophthalmol 2004; 242:901–919.

10 Feinstein AR, Krause AC. Ocular involvement in lymphomatous disease. Am Arch Ophthalmol 1962; 48:328–337.

11 Isaacson P, Wright DH. Malignant lymphoma of mucosa-associated lymphoid tissue: a distinctive type of B-cell lymphoma. Cancer 1983; 52:1410–1416.

12 Isaacson PG, Cu MG. MALT lymphoma: from morphology to molecules. Nat Rev Cancer 2004; 4:444–453.

13 Farinha P, Gascoyne RD. Molecular pathogenesis of mucosa-associated lymphoid tissue lymphoma. J Clin Pathol 2005; 58:630–6378.

14 Very comprehensive and informative review of the advances in our understanding of the pathogenesis of MALT lymphomas.

15 Ferring AJ, Guidoboni M, Ponzioli M, et al. Evidence for an association between Chlamydia psittaci and ocular adnexal lymphomas. J Natl Cancer Inst 2004; 96:586–594.

16 Mulder MMS, Heddema ER, Pannekoek Y, et al. No evidence for an association of ocular adnexal lymphoma with Chlamydia psittaci in a cohort of patients from the Netherlands. Leuk Res 2006; 30:1305–1307. [Epub ahead of print]

17 Vargas RL, Fallone E, Felgar RE, et al. Is there an association between ocular adnexal lymphoma and infection with Chlamydia psittaci? The University of Rochester experience. Leuk Res 2008; 30:547–551.

18 Chanudet E, Zhou Y, Bacon C, et al. Chlamydia psittaci is variably associated with ocular adnexal MALT lymphoma in different geographical regions. Invest Ophthalmol 2008; 209:344–351.

19 An important large multicentre study evaluating the role of various Chlamydia species, herpes viruses, and adenoviruses in lymphoproliferative diseases of the ocular adnexa. The study demonstrated marked variation in Chlamydia infection in ocular adnexal MALT lymphomas between centres and concludes that the role of Chlamydia in the lymphogenesis of these tumors is variable depending on geographic regions.

20 Auw-Haerdich C, Coupland SE, Kapp A, et al. Long term outcome of ocular adnexal lymphoma subtype according to the REAL classification. Br J Ophthalmol 2001; 85:63–69.

21 Jenkins C, Rose GE, Bunce C, et al. Histological features of ocular adnexal lymphoma (REAL classification) and their association with patient morbidity and survival. Br J Ophthalmol 2000; 84:907–913.

22 Alizadeh AA, Eisen MB, Davis RE, et al. Distinct types of diffuse large cell B-cell lymphoma identified by gene expression profiling. Nature 2000; 403:503–511.

23 Rosenwald A, Wright G, Chan WC, et al. The bioologic features of 14 cases. J Clin Pathol 2005; 27:1382–1391.

24 Fung C, Tarbell NJ, Lucarelli MJ, et al. Ocular adenoidal lymphomas: clinical behavior of distinct World Health Organization Classification subtypes. Int J Radiat Oncol Biol Phys 2003; 57:1382–1391.

25 Alizadeh AA, Eisen MB, Davis RE, et al. A molecular分类 of diffuse large B-cell lymphoma: a large single centre study of initial characteristics, natural history and prognostic factors. Hematol Oncol 2001; 22:143–158.

26 Verbraken HE, Hanssens M, Pren H, et al. Ocular non-Hodgkin’s lymphoma: a clinical study of nine cases. Br J Ophthalmol 1997; 81:31–36.

27 Very interesting and well performed analysis of the role of tumor-infiltrating cells, particularly macrophages, in a well defined cohort of patients with follicular lymphoma, demonstrating the importance of nonneoplastic cells in these tumors.

28 Zucker DL, Eillmann M, Sohn R, et al. Clinicopathologic and immunologic characteristics of non-Hodgkin’s lymphomas presenting in the orbit: a report of eight cases. Cancer 1985; 55:1907–1912.

29 Bairney O, Kremer I, Rakowsky E, et al. Orbital and adnexal involvement in systemic non-Hodgkin’s lymphoma. Cancer 1994; 73:2395–2399.

30 Coupland SE, Hellmich M, Auw-Haerdich C, et al. Plasmacellular differentiation in extranodal marginal zone B-cell lymphomas of the ocular adnexa. Br J Ophthalmol 2005; 89:352–359.

31 Aboud N, Sullivan T, Whitehead K. Primary extramammary plasmacytoma of the orbit. Aust N Z J Ophthalmol 1995; 23:235–239.

32 de Smet MD, Rootman J. Orbital manifestations of plasmacytic lymphoproliferative disorder. Ophthalmology 1987; 94:995–1003.

33 Khali MK, Huang S, Viora J, Duguid WP. Extramammary plasmacytoma of the orbit: case report with results of immunochemical studies. Can J Ophthalmol 1981; 16:39–42.

34 Pradhan S, Custer PL. Multiple myeloma presenting in the lacrimal sac. Am J Ophthalmol 2006; 141:563–564.

35 Ettl AR, Birbamer GG, Philipp W. Orbital involvement in Waldenström’s macroglobulinaemia: ultrasound, computed tomography and magnetic resonance findings. Ophthalmologica 1992; 205:40–45.

36 Terasaki H, Kikuchi S, Hoshi S. Ophthalmic tumor formation in Waldenström’s macroglobulinaemia. Jpn J Ophthalmol 1996; 40:385–389.

37 Edelstein C, Shields JA, Shields CL, et al. Non-African Burkitt lymphoma presenting with oral thrush and an orbital mass in a child. Am J Ophthalmol 1997; 124:859–861.

38 Weisenthal RW, Streiten WE, Dubansky AS, et al. Burkitt lymphoma presenting as a conjunctival mass. Ophthalmology 1995; 102:129–134.

39 Wegner A, Schmidt T, Felbaum C. Primary manifestation of Burkitt’s lymphoma of the non-African type in the orbit [in German]. Klin Monatsbl Augenheilkd 1993; 203:128–131.

40 Levy J, Kratz A, Lushitz. Burkitt’s lymphoma presenting as oculomotor palsy in an HIV-positive patient. Eur J Ophthalmol 2006; 16:186–189.

41 An interesting and unusual case of Burkitt lymphoma presenting as oculomotor palsy in a young male patient with AIDS.

42 Burton BJL, Cunningham ETJ, Cree IA, Pavesio CE. Eye involvement mimicking scleritis in a patient with chronic lymphocytic leukaemia. Br J Ophthalmol 2005; 89:775–776.

43 A short case report of an elderly man with a history of B-cell chronic lymphocytic leukemia presenting with symptoms similar to those of scleritis.

44 Jakobiec FA. Orbital Hodgkin’s disease: clinicopathologic conference. N Engl J Med 1989; 320:447–457.

45 Very comprehensive and informative review of the advances in our understanding of the pathogenesis of MALT lymphomas.

46 Coupland SE, Hummel M, Stein H. Ocular adnexal lymphomas: five case presentations and a review of the literature. Surv Ophthalmol 2002; 47:470–490.

47 Jakobiec FA, Orbital Hodgkin’s disease: clinicopathologic conference. Arch Ophthalmol 2001; 85:63–69.

48 A very well conceived study concentrating on the lymphomas arising in the lacrimal gland only. The authors present the clinical, immunohistochemical, and molecular biologic features of 14 cases.
Ocular manifestations of systemic disease

530

49 Valuri S, Moorthy RS, Khan A, Rao NA. Combination treatment of intraocular lymphoma. Retina 1995; 15:125–129.

50 Ben-Ezra D, Sahel JA, Haris NL, et al. Uveal lymphoid infiltrates: immunohistochemical evidence for a lymphoid neoplasia. Br J Ophthalmol 1989; 73:846–851.

51 Cockerham GC, Hidayat AA, Bijwaard KE, Sheng ZM. Re-evaluation of “reactive lymphoid hyperplasia of the uvea”: an immunohistochemical and molecular analysis of 10 cases. Ophthalmology 2000; 107:151–158.

52 Coupland SE, Jousen A, Anastassiou G, Stein H. Diagnosis of a primary uveal extranodal marginal zone B-cell lymphoma by choriotral biopsy: case report. Graefes Arch Clin Exp Ophthalmol 2005; 243:482–486.

Describes one of the few cases of these rare low-grade intraocular lymphomas diagnosed on the basis of a choriotral biopsy. A review of the literature is also provided.

53 Barbon Garcia JJ, Vina Escalar C, Menendez Fernandez CL, et al. Uveal lymphoid infiltration with systemic extension. Arch Soc Esp Oftalmol 2003; 78:173–178.

54 Coupland SE, Foss HD, Hidayat AA, et al. Extranodal marginal zone B-cell lymphomas of the uvea: an analysis of 13 cases. J Pathol 2002; 197:335–340.

55 Fredrick DR, Char DH, Ljung BM, Brinton DA. Solitary intraocular lymphoma as an initial presentation of widespread disease. Arch Ophthalmol 1989; 107:395–397.

56 Gönzález K, Shields JA, Shields CL, et al. Transcleral choroidal biopsy in the diagnosis of choroidal lymphoma. Surv Ophthalmol 1999; 43:551–555.

57 Lewis RA, Clark RB. Infiltrate retinopathy in systemic lymphoma. Am J Ophthalmol 1975; 79:48–52.

58 Parikh AH, Sameer HK, Wright JD Jr, Kean TO. Systemic non-Hodgkin’s lymphoma simulating primary intraocular lymphoma. Am J Ophthalmol 2005; 139:573–574.

A report exemplifying the need to be aware of the unusual presentations of secondary intraocular lymphoma and demonstrating the necessity for thorough staging examinations to exclude systemic lymphoma in patients with ocular lymphoma.

59 Duker JS, Shields JA, Ross M. Intraocular large cell lymphoma presenting as massive thickening of the uveal tract. Retina 1987; 7:41–45.

60 Shakin EP, Augsburger JJ, Eagle RC, et al. Multiple myeloma involving the iris. Arch Ophthalmol 1988; 106:524–526.

61 Tranos PG, Andreou PG, Wickremasinghe SS, Brazier JD. Pseudo-hypopyon as a feature of multiple myeloma. Arch Ophthalmol 2002; 120; 87–89.

62 Pinna A, Dore S, Dore F, et al. Bilateral optic disc swelling as the presenting sign of Waldenström macroglobulinemia. Acta Ophthalmol Scand 2003; 81:413–415.

63 Plon AF, Rhee P, Messner LV. Bilateral, persistent serous macular detachments with Waldenström’s macroglobulinemia. Optom Vis Sci 2005; 82:573–578.

A beautifully illustrated case report of usual ocular involvement in Waldenström macroglobulinemia.

64 Sen NH, Chan CC, Caruso RC, et al. Waldenström’s macroglobulinemia-associated retinopathy. Ophthalmology 2004; 111:535–539.

65 Hattenhauer MG, Pach JM. Ocular lymphoma in a patient with chronic lymphocytic leukemia. Am J Ophthalmol 1996; 122:268–268a.

66 Knapp AJ, Gartner S, Henkind P. Multiple myeloma and its ocular manifestations. Surv Ophthalmol 1987; 31:343–351.

67 Orellana J, Friedman AH. Ocular manifestations of multiple myeloma: Waldenström’s macroglobulinemia and benign monoclonal gammapathy. Surv Ophthalmol 1981; 26:157–169.

68 Coupland SE, Foss HD, Bechraees NE, et al. Secondary ocular involvement in systemic “memory” B-cell lymphocytic leukemia. Ophthalmology 2001; 108:1289–1295.

69 Kincaid ME, Green WR. Ocular and orbital involvement in leukemia. Surv Ophthalmol 1983; 27:211–232.

70 Elner VM, Hidayat AA, Charles NC, et al. Neoplastic angioendotheliomatosis: a variant of malignant lymphoma: immunohistochemical and ultrastructural observations of three cases. Ophthalmology 1986; 93:1237–1245.

71 Mudhar H, Sethuraman C, Khan DM, Jan SU. Intraocular, pan-ocular intraocular large B-cell lymphoma: choroidal infarction, and choroidal tri-lineage extramullerly haematoepoiesis. Histopathology, In press.

A fascinating case of intraocular lymphoma presenting in an elderly woman as the initial manifestation of the systemic disease.

72 Coupland SE, Lodenkemper K, Smith JR, et al. Expression of immunoglobulin membrane transduction factors in primary intraocular lymphoma and primary central nervous system lymphoma. Invest Ophthalmol Vis Sci 2005; 46:3957–3964.

Provides further information on the immunophenotype of the neoplastic cells in primary retinal lymphomas and compares this with that of primary CNS lymphomas and systemic DLBCLs.

73 Coupland SE, Willerding G, Jahnke K, et al. Demonstration of identical clonal involvement in a case of oculolencebral lymphoma. Br J Ophthalmol 2005; 89:238–239.

Represents the first case in which molecular evidence is provided to demonstrate that cerebral and ocular lymphomas in patients with ocular lymphomas are derived from the same neoplastic clone of B cells.

74 Coupland SE, Hummel M, Stein H. Molecular analysis of immunoglobulin genes in primary intraocular lymphoma. Invest Ophthalmol Vis Sci 2005; 46:3507–3514.

75 Sibezy ZH, Coupland SE, Loeffler K. High-grade malignant B-cell lymphoma of the retina in a patient with concomitant gastric MALT lymphoma. Graefes Arch Clin Exp Ophthalmol 2006; [Epub ahead of print].

An interesting case report describing the clinicopathologic and molecular biologic features of a primary intraocular lymphoma occurring in an elderly patient with known gastric MALT lymphoma.

76 Al-Muannar A, Hodge WG, Farmer JP. Conjunctival T-cell lymphoma: a clinicopathologic case report. Ophthalmology 2006; 113:459–461.

The clinical, histomorphologic, immunohistochecical, and molecular biologic features of a very rare primary conjunctival T-cell lymphoma are presented.

77 Henderson JW, Banks PM, Yeatts RP. T-cell lymphoma of the orbit. Mayo Clin Proc 1989; 64:940–944.

78 Davis JL, Miller DM, Ruiz P. Diagnostic testing of vincristine specimens. Am J Ophthalmol 2005; 140:829–899.

The authors audited the results of cytofluorographic testing of 84 consecutive vincristine specimens and conclude that cytofluorography is a useful and effective adjunctive investigation in the diagnosis of intraocular lymphoma.

79 Zucker JL, Doyle MF. Mycosis fungoides metastatic to the orbit. Arch Ophthalmol 1991; 109:688–691.

80 Whittebeck EG, Spiers AS, Hussain M. Mycosis fungoides: subcutaneous and visceral tumors, orbital involvement, and ophthalmoplegia. J Clin Oncol 1983; 1:270–279.

81 Stenson S, Ramsay DL. Ocular findings in mycosis fungoides. Arch Ophthalmol 1981; 99:272–277.

82 Pau H, Tillmann W, Goerz G. Mycosis fungoides affecting the eye and internal organs (author’s transil)[in German]. Klin Monatsbl Augenheilk 1976; 168:706–715.

83 Pariser DM. Mycosis fungoides involving the brain and optic nerves. Arch Dermatol 1978; 114:397–399.

84 Leib ML, Lester H, Braunstein RE, Edelson RL. Ocular findings in cutaneous T-cell lymphoma. Ann Ophthalmol 1991; 23:182–186.

85 Leitch RJ, Rennie IG, Parsons MA. Ocular involvement in mycosis fungoides. Br J Ophthalmol 1993; 77:126–127.

86 Keltnor JL, Fritsch E, Ckyyert RC, Albert DM. Mycosis fungoides: intraocular and central nervous system involvement. Arch Ophthalmol 1977; 95:645–650.

87 Haye C, Saragoussi JJ, Dhermy P. Mycosis fungoides: apropos of a case of eyelid localization, impact the principal ocular manifestations of the disease [in French]. Bull Soc Ophthalmol Fr 1981; 81:277–279.

88 Fradkin AH, Ruiz RS, Sloane JA. Mycosis fungoides involving the caruncle. Am J Ophthalmol 1996; 69:719–722.

89 Erny BC, Egbert PR, Pear IM, et al. Intraocular involvement with subretinal pigment epithelium infiltrates by mycosis fungoides. Br J Ophthalmol 1991; 75:698–701.

90 Deutsch AR, Duckworth JK. Mycosis fungoides of upper lid. Am J Ophthalmol 1968; 65:884–889.

91 Chan GC, Ho JW, Chiang AK, Sriwastava G. Phenotypic and cytotoxic characteristics of peripheral T-cell and NK-cell lymphomas in relation to Epstein-Barr virus association. Histopathology 1999; 34:16–24.

92 Brewe H, Hartung J, Hoffmann K. Lid and orbital involvement in mycosis fungoides (author’s transil)[in German]. Klin Monatsbl Augenheilk 1974; 164:345–349.

93 Coupland SE, Foss HD, Assaf C, et al. T-cell and T/natural killer-cell lymphomas involving ocular and ocular adnexal tissues: a clinicopathologic, immunohistochemical, and molecular study of seven cases. Ophthalmology 1999; 106:2109–2120.
Lymphoma and the eye Coupland and Damato 531

94 Kirsch LS, Brownstein S, Codere F. Immunoblastic T-cell lymphoma presenting as an eyelid tumor. Ophthalmology 1990; 97:1352–1357.

95 Laroche L, Laroche L, Pavlakis E, Saraux H. Immunological characterization of an ocular adnexal lymphoid T tumor by monoclonal antibodies. Ophthalmologica 1983; 187:43–49.

96 Leidenix MJ, Mamalis N, Olson RJ, et al. Primary T-cell immunoblastic lymphoma of the orbit in a pediatric patient. Ophthalmology 1993; 100:998–1002.

97 Shields CL, Shields JA, Eagle RC. Rapidly progressive T-cell lymphoma of the conjunctiva. Arch Ophthalmol 2002; 120:508–509.

98 Coupland SE, Anastassiou G, Hummel M, Stein H. Primary intraocular lymphoma of T-cell type: report of a case and review of the literature. Graefes Arch Clin Exp Ophthalmol 2005; 243:189–197.

99 Goldey SH, Stern GA, Oblon DJ, et al. Immunophenotypic characterization of an unusual T-cell lymphoma presenting as anterior uveitis: a clinicopathologic case report. Arch Ophthalmol 1986; 104:1349–1353.

100 Jensen OA, Johansen S, Kiss K. Intraocular T-cell lymphoma mimicking a ring melanoma: first manifestation of systemic disease. Report of a case and survey of the literature. Graefes Arch Clin Exp Ophthalmol 1994; 232:148–152.

101 Lobo A, Larkin G, Clark BJ, et al. Pseudo-hypopyon as the presenting feature in B-cell and T-cell intraocular lymphoma. Clin Experiment Ophthalmol 2003; 31:155–158.

102 Woog JJ, Kim YD, Yeatts RP, et al. Natural killer/T-cell lymphoma with ocular and adenal involvement. Ophthalmology 2006; 113:140–147.

103 Kohno T, Uchida H, Inomata H, et al. Ocular manifestations of adult T-cell leukemia/lymphoma: a clinicopathologic study. Ophthalmology 1993; 100:1794–1799.

104 Kumar SR, Gill FS, Wagner DG, et al. Human T-cell lymphotropic virus type I-associated retinal lymphoma: a clinicopathologic report. Arch Ophthalmol 1994; 112:954–959.

105 Ohba N, Matsumoto M, Sameshima M, et al. Ocular manifestations in patients infected with human T-lymphotropic virus type I. Jpn J Ophthalmol 1989; 33:1–12.