Probing the gluonic structure of the deuteron with J/ψ photoproduction in d+Au ultra-peripheral collisions

M. S. Abdallah, B. E. Aboona, J. Adam, L. Adamczyk, J. R. Adams, J. K. Adkins, G. Agakishiev, I. Aggarwal, M. M. Aggarwal, Z. Ahammed, A. Aitbaev, I. Alekseev, D. M. Anderson, A. Aparin, E. C. Aschenauer, M. U. Ashraf, F. G. Atetalla, A. Attri, G. S. Averichev, V. Bairathi, W. Baker, J. G. Ball Cap, K. Barish, A. Behera, R. Bellwied, P. Bhagat, A. Bhasin, J. Bielcik, J. Bielcikova, I. G. Borduzhin, J. D. Brandenburg, A. V. Brandin, I. Bunzarov, X. Cai, H. Caines, M. Calderón de la Barca Sánchez, D. Cebra, I. Chakaberia, P. Chaloupka, B. K. Chan, F. H. Chang, Z. Chang, N. Chankova-Bunzarova, A. Chatterjee, S. Chattopadhyay, D. Chen, J. Chen, J. H. Chen, X. Chen, Z. Chen, J. Cheng, S. Choudhury, W. Christie, X. Chu, H. J. Crawford, M. Csanád, Ma. Daugherity, T. G. Dedovich, I. M. Deppe, A. A. Derevschikov, D. Dhamija, L. Di Carlo, L. Didenko, P. Dixit, D. J. Drabdenberg, E. Duckworth, J. C. Dunlop, J. Engel, G. Eppley, S. Esmini, O. Evdokimov, A. Ewigleben, O. Eyser, R. Fatemi, F. M. Fawzi, S. Fazio, P. Federic, C. J. Feng, J. Feordis, Y. Feng, E. Finch, Y. Fisyak, A. Francisco, C. Fu, C. A. Gagliardi, T. Galatyuk, F. Geurts, N. Ghimire, A. Gibson, K. Gopal, X. Gou, D. Gosnick, A. Gupta, W. Guryi, A. Hamed, Y. Han, S. Harabasz, M. D. Harasty, J. W. Harris, H. Harrison, S. He, W. He, X. H. He, Y. He, S. Heppelmann, N. Herrmann, E. Hoffman, L. Holub, C. Hu, Q. Hu, Y. Hu, H. Huang, H. Z. Huang, S. L. Huang, T. Huang, X. Huang, Y. Huang, T. J. Humanic, D. Isenhower, M. Ishikii, W. W. Jacobs, C. Jena, A. Jentsch, Y. Ji, J. Jia, K. Jiang, X. Ju, E. G. Judd, S. Kabana, M. L. Kabir, S. Kaganmaster, D. Calkin, K. Kang, D. Kapukchyan, K. Kauder, H. W. Ke, D. Keane, A. Kechechian, M. Kelsey, D. P. Kikola, B. Kimelman, D. Kincses, I. Kisel, A. Kiselev, A. G. Knospe, H. S. Ko, L. Kochenda, A. Korobitsin, L. K. Kozarszewski, L. Kramarik, P. Kravtsov, L. Kumar, S. Kumar, R. Kunnawalkam Elayavalli, J. H. Kwasiuz, R. Lacey, S. Lan, J. M. Landgraf, J. Lauret, A. Lebedev, R. Lednicky, J. H. Lee, Y. H. Leung, N. Lewis, C. Li, C. Li, W. Li, X. Li, Y. Li, X. Liang, Y. Liang, R. Licenik, T. Lin, Y. Lin, M. A. Lisa, F. Liu, H. Liu, H. Liu, P. Liu, T. Liu, X. Liu, Y. Liu, M. D. Harasty, J. A. Mazer, N. G. Minea, S. Mioduszewski, B. Mohanty, M. M. Mondal, I. O. Mooney, D. A. Morozov, A. Mukherjee, M. Nagy, J. D. Nam, M. Nasim, K. Nayak, D. Neff, J. M. Nelson, D. B. Nemes, M. Nie, G. Nigmatkulov, T. Niida, R. Nishitani, L. V. Nogach, T. Nonaka, A. S. Nunes, G. Odyniec, A. Ogawa, S. Oh, V. A. Okorokov, K. Okubo, B. S. Page, R. Pak, J. Pan, A. Pandav, A. K. Pandey, Y. Panebratsev, P. Parfenov, A. Paul, B. Pawlik, D. Pawlowska, C. Perkins, J. Pluta, B. R. Pokhrel, J. Porter, G. Ponomatin, M. Posik, V. Prozorova, K. Pruthi, M. Przybycien, J. Putscheke, H. Qiu, A. Quintero, C. Racz, S. K. Radhakrishnan, N. Raha, R. L. Ray, R. Reed, H. G. Ritter, M. Robotkova, L. J. Romero, D. Roy, L. Ruan, A. K. Sahoo, N. R. Sahoo, H. Sako, S. Sahur, E. Samigullin, J. Sandweiss, S. Sato, W. B. Schmidke, N. Schmitz, B. R. Schweid, F. Seck, J. Seger, R. Seto, P. Seyboth, N. Shah, E. Shahaliev, P. V. Shannunganathan, M. Shao, T. Shao, R. Sharma, A. I. Sheikh, D. Y. Shen, S. S. Shi, Y. Shi, Q. Y. Shou, E. P. Sichtermann, S. R. Sikora, J. Singh, M. Simko, S. Singha, P. Sinha, J. Skoby, M. Smirnov, Y. Söding, W. Solystr, Y. Song, H. M. Spinka, B. Srivastava, T. D. S. Stanislaus, M. Stefaniak, D. J. Stewart, M. Strikhanov, B. Stringfellow, A. P. Suadea, M. Sumbera, X. M. Sun, X. Sun, Y. Sun, Y. Sun, B. Surrow, D. N. Svirida, Z. W. Sweger, P. Szynkiewski, A. H. Tang, Z. Tang, A. Taranenko, T. Tarnowsky, J. Thomas, A. R. Timmins, D. Thusty, T. Todoroki, M. Tokarev, C. A. Tomkiel, S. Trentalange, R. E. Trible, P. Tribedy, S. K. Tripathi, T. Truhlár, B. A. Trzebiaci, O. D. Tsai, Z. Tu, T. Ullrich, D. G. Underwood, I. Upsal, G. Van Buren, J. Vanek, N. Vasiliev, I. Vassiliev, V. Verkest, F. Videbaek, S. Vokal, S. A. Voloshin, F. Wang, G. Wang, J. S. Wang, P. Wang, X. Wang, Y. Wang, Y. Wang, Z. Wang, J. C. Webb, P. C. Weidenkaff, D. G. Westfall, H. Wieman, W. Wissink, R. Witt, J. Wu, J. Wu, Y. Wu, B. Xi, Z. G. Xiao, G. Xie, W. Xie, H. Xu, X. Xu, Y. Xu, Z. Xu, Y. Yan, C. Yang, Q. Yang, S. Yang, Y. Yang, Z. Ye, Z. Ye, L. Yi, K. Yip, Y. Yu, H. Zbroszczyk, W. Zha, C. Zhang, D. Zhang, J. Zhang, S. Zhang, Y. Zhang, Y. Zhang, Z. J. Zhang, Z. Zhang.
Z. Zhang, F. Zhao, J. Zhao, M. Zhao, C. Zhou, Y. Zhou, X. Zhu, M. Zurek, and M. Zyzak (STAR Collaboration)

Abilene Christian University, Abilene, Texas 79699

AGH University of Science and Technology, FACS, Cracow 30-059, Poland

Alikhanov Institute for Theoretical and Experimental Physics NRC "Kurchatov Institute", Moscow 117218, Russia

Argonne National Laboratory, Argonne, Illinois 60439

American University of Cairo, New Cairo 11835, New Cairo, Egypt

Ball State University, Muncie, Indiana, 47306

Brookhaven National Laboratory, Upton, New York 11973

University of Calabria & INFN-Cosenza, Italy

University of California, Berkeley, California 94720

University of California, Davis, California 95616

University of California, Los Angeles, California 90095

University of California, Riverside, California 92521

Central China Normal University, Wuhan, Hubei 430079

University of Illinois at Chicago, Chicago, Illinois 60607

Creighton University, Omaha, Nebraska 68178

Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic

Technische Universität Darmstadt, Darmstadt 64289, Germany

Frankfurt Institute for Advanced Studies FIAS, Frankfurt 60438, Germany

Fudan University, Shanghai, 200433

University of Heidelberg, Heidelberg 69120, Germany

University of Houston, Houston, Texas 77204

Huzhou University, Huzhou, Zhejiang 313000

Indian Institute of Science Education and Research (IISER), Berhampur 760010, India

Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India

Indian Institute of Science Education and Research, HBNI, Jatni 752050, India

National Institute of Science Education and Research, HBNI, Jatni 752050, India

National Cheng Kung University, Tainan 70101

Nuclear Physics Institute of the CAS, Rez 250 68, Czech Republic

Ohio State University, Columbus, Ohio 43210

Institute of Nuclear Physics PAN, Cracow 31-342, Poland

Panjab University, Chandigarh 160014, India

Institute of High Energy Physics, Protvino 142281, Russia

Purdue University, West Lafayette, Indiana 47907

Rice University, Houston, Texas 77251

Rutgers University, Piscataway, New Jersey 08854

Universidade de São Paulo, São Paulo, Brazil 05514-970

University of Science and Technology of China, Hefei, Anhui 230026

South China Normal University, Guangzhou, Guangdong 510631

Shandong University, Qingdao, Shandong 266237

Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800

Southern Connecticut State University, New Haven, Connecticut 06515

State University of New York, Stony Brook, New York 11794

Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile

Temple University, Philadelphia, Pennsylvania 19122

Texas A&M University, College Station, Texas 77843

University of Texas, Austin, Texas 78712

Tsinghua University, Beijing 100084

University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan

United States Naval Academy, Annapolis, Maryland 21402
Understanding gluon density distributions and how they are modified in nuclei are among the most important goals in nuclear physics. In recent years, diffractive vector meson production measured in ultra-peripheral collisions (UPCs) at heavy-ion colliders has provided a new tool for probing the gluon density. In this Letter, we report the first measurement of J/ψ photoproduction off the deuteron in UPCs at the center-of-mass energy $\sqrt{s_{NN}} = 200$ GeV in d+Au collisions. The differential cross section as a function of momentum transfer $-t$ is measured. In addition, data with a neutron tagged in the deuteron-going Zero-Degree Calorimeter is investigated for the first time, which is found to be consistent with the expectation of incoherent diffractive scattering at low momentum transfer. Theoretical predictions based on the Color Glass Condensate saturation model and the Leading Twist Approximation nuclear shadowing model are compared with the data quantitatively. A better agreement with the saturation model has been observed. With the current measurement, the results are found to be directly sensitive to the gluon density distribution of the deuteron and the deuteron breakup process, which provides insights into the nuclear gluonic structure.

Keywords: ultra-peripheral collision, vector meson production, deuteron, gluon density distributions

One of the most outstanding problems in modern nuclear physics is the partonic structure of nucleons (protons and neutrons) and nuclei. Specially, the origin of modified partonic structure of nucleons bounded in nuclei has been of extreme interest, with its first discovery on the valance quarks by the European Muon Collaboration (EMC) almost 40 years ago, known as the EMC effect [1–7]. However, this modification was not only found in valance quarks but also in gluons [8], where gluons start to dominate in parton densities at high energies [9] and become more relevant in considering the parton hard scattering processes. See Ref. [10] for a review.

Coherent diffractive Vector-Meson (VM) production off nuclei has been considered as one of the golden measurements to study the gluon density and its spatial distributions [10–24]. In recent analyses carried out by the Large Hadron Collider (LHC) collaborations [16, 17, 19–24], photoproduction of the J/ψ meson has been measured in ultra-peripheral collisions (UPCs) of heavy ions - a photon-ion interaction at large impact parameter arising from extreme electromagnetic fields [25]. The resulting cross sections were found to be significantly suppressed with respect to that of a free proton [16, 17, 22, 23]. Leading Twist Approximation (LTA) calculations strongly suggest that the suppression is caused by the nuclear shadowing effect [26–28], while other models, e.g., the Color Dipole Model with gluon saturation and nucleon shape fluctuations [29], can also describe the UPC data qualitatively. As of today, neither the gluonic structure of heavy nuclei nor the modification of their partonic structure is fully understood.

An interesting experimental approach to reveal the gluonic structure of nuclei is to study the deuteron - the simplest nuclear bound state of one proton and one neutron. While neither gluon saturation nor the nuclear shadowing effect is expected to be significant in such a loosely bound system, the deuteron may provide unique physics insights to phenomena that are poorly understood from data of heavy nuclei, e.g., the interplay between coherent and incoherent VM production, nuclear breakup, single and double nucleon scattering, and short-range nuclear correlations. For example, recent studies have shown potential connections between (gluon) EMC effects and short-range nuclear correlations in light nuclei [30, 32]. This is a subject of interest for a wide range of physics communities, from nuclear and particle physics to high-density neutron stars in astrophysics.

In this Letter, we investigate the differential cross section of J/ψ photoproduction as a function of momentum transfer, $-t$, in d+Au UPC events at $\sqrt{s_{NN}} = 200$ GeV. The J/ψ photoproduction process in d+Au UPCs is illustrated in Fig. 1. In the photoproduction limit, the momentum transfer variable $-t$ can be approximated by the

* Deceased

FIG. 1. Photoproduction of J/ψ in d+Au UPCs, where X represents the deuteron (coherent) or deuteron-dissociative (incoherent) system.
transverse momentum squared of \(J/\psi \) particles, \(p_{T,J/\psi}^2 \).

The approximate photon-nucleon center-of-mass energy is
\[W = \sqrt{2(E_N)M_{J/\psi}e^{-y}} \approx 25 \text{ GeV}, \]
where \(E_N \) is the average beam energy per nucleon, \(M_{J/\psi} \) is the mass of the \(J/\psi \) particle, and \(y \) is the \(J/\psi \) rapidity. In addition, the differential \(J/\psi \) cross section with single neutron tagged events is reported. The data are compared with two theoretical models: i) Color Glass Condense (CGC) saturation model and ii) LTA nuclear shadowing model. These model predictions are based on an extension from the average beam energy per nucleon, \(M \) is [33], arbitrary units) distribution for both Au- and deuteron-going

Right: Zero-Degree Calorimeter (ZDC) energy deposition (arbitrary units) distribution for both Au- and deuteron-going

FIG. 2. Left: invariant mass distribution and corresponding fits of \(J/\psi \) candidates reconstructed via the electron decays. Right: Zero-Degree Calorimeter (ZDC) energy deposition (arbitrary units) distribution for both Au- and deuteron-going directions.

The UPC data were collected by the STAR experiment [23, 24, 35].

d+Au UPC data at RHIC, where Ref. [35] is an extension of Ref. [25] from heavy nuclei at the LHC to the deuteron at RHIC.

during the 2016 d+Au run, corresponding to an integrated luminosity of 93 nb \(^{-1}\) and approximately \(2 \times 10^6 \) UPC \(J/\psi \) -triggered events. The \(J/\psi \) candidates are reconstructed via the electron decay channel, \(J/\psi \rightarrow e^+e^- \), which has a branching ratio of 5.93\% [22]. Based on this channel, the UPC \(J/\psi \) trigger is defined by no signal in either BBC East or West, Time-Of-Flight (TOF) track multiplicity between 2 and 6, and a topological selection of back-to-back clusters in the BEMC. In the offline analysis, the events are required to have a valid vertex that is reconstructed within 100 cm of the center of the STAR detector. In addition, a valid event is required to have at least two TPC tracks associated with the primary vertex with transverse momentum \(p_T > 0.5 \text{ GeV/c} \) and \(|y| < 1.0 \). Single electron candidates are selected from charged tracks reconstructed in the TPC, which are required to have at least 25 space points (out of a maximum of 45) to ensure sufficient momentum resolution, contain no fewer than 15 points for the ionization energy loss \((dE/dx) \) determination to ensure good \(dE/dx \) resolution, and to be matched to a BEMC cluster. Furthermore, these tracks are required to have a distance of closest approach less than 3 cm from the primary vertex. To further enhance the purity of electron candidates for the \(J/\psi \) reconstructions, an unlike-sign electron pair selection is performed based on the \(dE/dx \) of charged tracks. The variable \(n_{e,e} (n_{\pi,\pi}) \) is the difference between the measured \(dE/dx \) value compared to an electron (\(\pi \)) hypothesis of the predicted \(dE/dx \) value. It is calculated in terms of number of standard deviations from the predicted mean. The pair selection variable \(\chi^2_{e^+e^-} \) is defined as \(n_{\pi,\pi}^2 + n_{e,e}^2 \) (similar for \(\pi \)). For the region of \(\chi^2_{e^+e^-} < 30 \), the ratio \(\chi^2_{e^+e^-}/\chi^2_{\pi^+\pi^-} \) is required to be less than 1/3, while for \(\chi^2_{\pi^+\pi^-} > 30 \), \(\chi^2_{e^+e^-} \) must be less than 10. This pair selection ensures the purity of electrons is higher than 95\%, which is determined by a data-driven approach using photonic electrons [37].

The unlike-sign electron candidates are paired to reconstruct an invariant mass distribution of \(J/\psi \) candidates, while the like-sign pairs are also investigated to indicate the contribution from the combinatorial background. The resulting \(J/\psi \) candidates are required to have a rapidity \(|y| < 1.0 \). In Fig. 2 (left), the invariant mass distribution is shown with a template fit to extract the raw yield of \(J/\psi \) particles. The signal template is taken from the STARlight [34] Monte Carlo program that was run through the STAR detector GEANT3 simulation [41] for its detector response, indicated by the shaded histogram. Motivated by similar studies in Refs. [17, 45, 46], the background function is taken to be of the form, \((m - A)e^{B(m - A)(m - C)} + C m^2 \), which can describe both the combinatorial and the two-photon interaction \((\gamma\gamma \rightarrow e^+e^-) \) backgrounds. The fitted result is shown as the dotted line, where \(m_{e^+e^-} \) is the invariant mass of two oppositely charged electrons, and \(A, B, \) and \(C \) are free parameters [33]. The raw yield of the entire analyzed sample after full event selections and background subtraction is 359 ± 22. For measure-
ment of the differential cross section, raw yields of each \(p^2_{T,J/\psi} \) interval are determined based on the same fitting procedure. In Fig. 2 (right), the ZDC energy depositions in terms of Analog-to-Digital Converter (ADC) count are shown for both Au- and deuteron-going directions. For the deuteron-going direction, an ADC count larger than 40 is required for events associated with single neutron emission. Note that after extracting the \(J/\psi \) signal, no significant background (pedestal) has been found under the neutron peak for the ADC count larger than 40.

The differential cross section of \(J/\psi \) photoproduction as a function of \(-t\) is measured in the \(d+Au \) UPCs, which can be related to the photon-deuteron cross section based on the following relation,

\[
\frac{d^2\sigma^{(d+Au\rightarrow J/\psi+X)}}{dtdy} = \Phi_{T,\gamma} \frac{d^2\sigma^{(\gamma^*+d\rightarrow J/\psi+X)}}{dtdy},
\]

where \(\Phi_{T,\gamma} \) is the average transversely polarized photon flux emitted from the Au nucleus with \(J/\psi \) rapidity \(|y| < 1.0\), and \(X \) represents the deuteron (coherent) or the deuteron-dissociative (incoherent) system. Therefore, the full differential cross section in the photon-deuteron system can be written as,

\[
\frac{d^2\sigma^{(\gamma^*+d\rightarrow J/\psi+X)}}{dtdy} = \frac{1}{\Phi_{T,\gamma}} \frac{N_{\text{obs}}}{\Delta t \times \Delta y \times (A \times \epsilon) \times \epsilon_{\text{trig}}} \times \frac{1}{L_{\text{int}} \times BR(e^+e^-)}.
\]

Here \(\Phi_{T,\gamma} = 11.78 \) is based on the STARlight MC generator, where the photon flux is calculated based on the Au nucleus thickness function and the photon number density determined from the Weizsacker-Williams method [35]. The \(N_{\text{obs}} \) is the raw \(J/\psi \) yield, \(L_{\text{int}} \) is the integrated luminosity, \(BR(e^+e^-) = 5.93\% \) is the branching ratio of \(J/\psi \) decaying into an electron pair, \(\Delta t \) is the bin width of \(p^2_{T,J/\psi} \), \(\Delta y = 2.0 \) is the rapidity range, \(A \times \epsilon \) is the \(J/\psi \) reconstruction acceptance and efficiency corrections, and \(\epsilon_{\text{trig}} \) is the trigger efficiency correction. The \(J/\psi \) reconstruction efficiency and trigger efficiency corrections are based on the STARlight MC events embedded into STAR zero-bias events, where an unfolding technique is employed in the correction procedure. The default unfolding algorithm is based on the Bayesian method from the RooUnfold software package [47].

Different sources of systematic uncertainty on the differential cross section were investigated, which were quantitatively motivated by previous STAR publications on VM and di-lepton measurements [19, 37, 48]. Variations of the fit functions, signal templates, yield extraction methods (bin counting vs fit parameter), and momentum resolution of tracks yield a combined systematic uncertainty of 7.3%. Track selections with more than 20 or 30 space points in TPC hits, with more than 10 or 20 space points of \(dE/dx \) determination, and less than 2 cm in a distance of closest approach with respect to the primary vertex were investigated and found to lead to a systematic uncertainty of 4%. Variation of the electron identification selection criteria yields a systematic uncertainty of 2%. The systematic uncertainty associated with the unfolding technique, e.g., regularization parameter (4 vs 10 iterations), unfolding algorithm (RooUnfold Bayesian vs TUnfold [49]), and modified underlying truth distributions (exponential vs flat), is found to be 3%. The trigger efficiency associated with the trigger simulation of the BEMC is found to have an uncertainty of 8%. The systematic uncertainty on the integrated luminosity determined by the STAR experiment during this \(d+Au \) run

The probability of a photon emitted by the deuteron is ~ 4 orders of magnitude smaller, therefore negligible in this analysis.
is 10% [50, 51]. Finally, the systematic uncertainty on modeling the transversely polarized photon flux is found to be 2% by varying the Au radius by ±0.5 fm, where a similar study has been done in Ref. [53] at the LHC. The different sources of uncertainty are added in quadrature for the total systematic uncertainty, which is found to be 15.8%. The systematic uncertainty is largely independent of \(-t \), which is expected given that the daughter electrons in the studied kinematic region are within a range of momentum with good detector resolutions.

In Fig. 3 the fully corrected differential cross section of \(J/\psi \) photoproduction in d+Au UPCs at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) is shown. The total diffractive \(J/\psi \) cross section is labelled “Total data”. Figure 3 also shows the \(n \)-tagged data, which requires that a neutron be detected in the deuteron-going ZDC from deuteron breakup. There are three distinct physics processes that contribute to the “Total data”: i) coherent diffraction, \(X = \text{deuteron} \); ii) incoherent diffraction with elastic nucleon, \(X = \text{proton} + \text{neutron} \); iii) incoherent diffraction with nucleon dissociation, \(X = \text{proton} (\text{neutron}) + \text{fragments} \). For i), it is possible that the deuteron can be broken up by a secondary soft photon, although with small probability, on the order of 0.1% estimated in the measured kinematic region [52, 53].

Although separating the three physics processes experimentally is difficult, the STAR ZDC with approximately \(±2.5–3 \text{ mrad} \) of angular acceptance [54] can capture almost 100% of the neutron spectators. For the case when the neutron is the leading nucleon, the acceptance is nearly 100% for \(p_{T,J/\psi}^2 \approx p_{T,\text{neutron}}^2 < 0.1 \text{ GeV}^2 \). Therefore, in the very low \(-t \) region, the \(n \)-tagged events are expected to be dominated by the incoherent scattering process [52, 53]. In addition, there is the possibility of more complicated incoherent scattering processes, e.g., the photon interacts with both nucleons simultaneously [55, 56], where the data with neutron tagging reported in this measurement will be extremely helpful in constraining these scenarios.

To further understand the structure of gluons in the deuteron, we compare our data quantitatively with aforementioned theoretical models - CGC [54] and LTA [55]. It is important to note that for STAR kinematics, where Bjorken-\(x \) \(\approx 0.01 \), a very small gluon saturation or the nuclear shadowing effect is expected. Without these effects, however, the data and model comparisons (and comparison between models) will be more sensitive to the underlying gluon density distributions, deuteron breakup processes, etc. There are a few model variations available for comparison with the STAR data, while only one variation from each model is presented in Fig. 3. The presented CGC and LTA predictions use the AV18 deuteron wavefunction [55] with effects of nucleon shape and cross section fluctuations, respectively [54, 56]. Other model variations and their comparisons to the data are available in the Supplementary Material, which includes Refs. [54, 55, 56, 59]. In Fig. 3 the sum of all diffractive processes (coherent and incoherent) are presented for both models, and denoted by lines. The ratios between the total data and the two models are shown in the lower panel. Note that the theoretical uncertainties related to these two models are significantly less than those of the data in the measured \(-t \) range, and therefore are not shown.

It is found that the prediction based on the CGC model describes the data better quantitatively, where the \(\chi^2 \) per degree of freedom is found to be 3.38. On the other hand, the LTA overpredicts the data over most of the measured \(-t \) range except for the first bin, resulting in a \(\chi^2 \) per degree of freedom of 13.41. In these analyses, no model parameters are allowed to vary, thus the absolute differential cross sections from the models are directly compared with the data. Although the small number of degrees of freedom might make the absolute \(\chi^2 \) values suspect, their relative sizes for the two models is still highly relevant.

In Fig. 4 our total and \(n \)-tagged data are compared with the same model predictions from Fig. 3, but decomposed into coherent and incoherent contributions. For the coherent process, the LTA predicts a similar \(-t \) distribution as that of the CGC, where the slope of the coherent \(-t \) distribution is generally a measure of the target size [60]. In contrast, the incoherent contributions are found to be significantly different, especially at low \(-t \), which is in a regime that is sensitive to the deuteron breakup. No experimental data were available in this kinematic region prior to this measurement. Therefore, by using the forward neutron tagging in the ZDC, the \(n \)-tagged data in this Letter provide the first direct measurement of incoherent diffractive \(J/\psi \) production at low \(-t \). The result is found to be in better agreement with the incoherent prediction based on the CGC model. A quantitative comparison between the \(n \)-tagged data and incoherent contributions from the two models can be found in the Supplementary Material.

In conclusion, the differential cross section of \(J/\psi \) photoproduction has been measured as a function of momentum transfer \(-t \) in d+Au ultra-peripheral collisions at \(\sqrt{s_{NN}} = 200 \text{ GeV} \) using the STAR detector. The data are corrected to the photon-deuteron center-of-mass system, where all final-state particles from deuteron breakup are included. In addition, the differential cross section with a single neutron detected in the deuteron-going Zero-Degree Calorimeter is reported. The data are compared with theoretical predictions based on the Color Glass Condensate saturation model and the Leading Twist Approximation nuclear shadowing model. Both models use the same paradigm to describe the coherent and incoherent photoproduction of \(J/\psi \) in ultra-peripheral collisions. The saturation model approaches

\(^3 \text{The Good-Walker paradigm: the coherent production probes the average nuclear distribution, while the incoherent production is sensitive to event-by-event changes in the nuclear configuration. [61]} \)
the problem with dynamical modeling of the gluon density and its fluctuation of the target, while the nuclear shadowing model emphasizes the importance of a shadowing correction from multi-nucleon interaction in nuclei and the fluctuation of the dipole cross section. The data are found to be in better agreement with the saturation model for incoherent production, where the disagreement between the two models has provided important insights into our theoretical understanding of the nuclear breakup processes.

Understanding these processes in a simple nuclear environment will be indispensable to further understanding the nuclear effect in heavy nuclei. The data and model comparisons reported in this Letter place significant experimental constraints on the deuteron gluon density distributions and the deuteron breakup process. The results reported here of J/ψ photoproduction will serve as an essential experimental baseline for a high precision measurement of diffractive J/ψ production at the upcoming Electron-Ion Collider.

We thank the RHIC Operations Group and RCF at BNL, the NERSC Center at LBNL, and the Open Science Grid consortium for providing resources and support. This work was supported in part by the Office of Nuclear Physics within the U.S. DOE Office of Science, the U.S. National Science Foundation, the Ministry of Education and Science of the Russian Federation, National Natural Science Foundation of China, Chinese Academy of Science, the Ministry of Science and Technology of China and the Chinese Ministry of Education, the Higher Education Sprout Project by Ministry of Education at NCKU, the National Research Foundation of Korea, Czech Science Foundation and Ministry of Education, Youth and Sports of the Czech Republic, Hungarian National Research, Development and Innovation Office, New National Excellency Programme of the Hungarian Ministry of Human Capacities, Department of Atomic Energy and Department of Science and Technology of the Government of India, the National Science Centre of Poland, the Ministry of Science, Education and Sports of the Republic of Croatia, RosAtom of Russia and German Bundesministerium für Bildung, Wissenschaft, Forschung and Technologie (BMBF), Helmholtz Association, Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS).

[1] J. Aubert et al. (European Muon), The ratio of the nucleon structure functions F_{2n} for iron and deuterium, Phys. Lett. B 123, 275 (1983).
[2] J. Ashman et al. (European Muon), Measurement of the Ratios of Deep Inelastic Muon - Nucleus Cross-Sections on Various Nuclei Compared to Deuterium, Phys. Lett. B 202, 603 (1988).
[3] J. Gomez et al., Measurement of the A-dependence of deep inelastic electron scattering, Phys. Rev. D 49, 4348 (1994).
[4] M. Arneodo et al. (European Muon), Shadowing in Deep Inelastic Muon Scattering from Nuclear Targets, Phys. Lett. B 211, 493 (1988).
[5] M. Arneodo et al. (European Muon), Measurements of the nucleon structure function in the range $0.002 – 0.17 – GeV^2$ and $0.2 – GeV^2 < q^2 < 8 – GeV^2$ in deuterium, carbon and calcium, Nucl. Phys. B 333, 1 (1990).
[6] D. Allasia et al. (New Muon (NMC)), Measurement of the neutron and the proton F2 structure function ratio,
[7] J. Seely et al., New measurements of the EMC effect in very light nuclei, Phys. Rev. Lett. 103, 202301 (2009), arXiv:0904.4448 [nucl-ex]

[8] J. J. Ethier and E. R. Nocera, Parton Distributions in Nucleons and Nuclei, Ann. Rev. Nucl. Part. Sci. 70, 43 (2020), arXiv:2001.07722 [hep-ph]

[9] H. Abramowicz et al. (HI, ZEUS), Combination of measurements of inclusive deep inelastic e+e− scattering cross sections and QCD analysis of HERA data, Eur. Phys. J. C75, 580 (2015), arXiv:1506.06042 [hep-ex]

[10] A. Accardi et al., Electron Ion Collider: The Next QCD Frontier, Eur. Phys. J. A52, 268 (2016), arXiv:1212.1701 [nucl-ex]

[11] T. Nash, A. Belousov, B. Govorkov, D. O. Caldwell, J. P. Cumalat, A. M. Eisner, R. J. Morrison, F. V. Murphy, S. J. Yellin, P. J. Davis, R. M. Egloff, G. Luste, and J. D. Prentice, Measurement of \sqrt{s} (3100) production in ultraperipheral collisions at a mean energy of 55 GeV, Phys. Rev. Lett. 36, 1233 (1976).

[12] M. Binkley, C. Bohler, J. Butler, J. Cumalat, I. Gaines, M. Gormley, D. Harding, R. L. Loveless, J. Peoples, P. Callahan, G. Gladding, C. Olszewski, and A. Wartenberg, ρ production from 60 to 300 GeV/e, Phys. Rev. Lett. 48, 73 (1982).

[13] M. Arneodo et al. (New Muon), Quasielastic J/ψ production from hydrogen, deuterium, carbon and tin, Phys. Lett. B 332, 195 (1994).

[14] C. Adler et al. (STAR), Coherent rho0 production in ultraperipheral heavy ion collisions, Phys. Rev. Lett. 89, 272302 (2002), arXiv:nucl-ex/0206004.

[15] S. L. Timoshenko (STAR), rho meson production in ultraperipheral dAu collision, in 17th International Baldian Seminar on High Energy Physics Problems: Relativistic Nuclear Physics and Quantum Chromodynamics, Vol. V1 (2005) pp. 292–295, arXiv:nucl-ex/0501010.

[16] V. Khachatryan et al. (CMS), Coherent J/ψ production in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV with the CMS experiment, Phys. Lett. B 772, 489 (2017), arXiv:1605.09666 [nucl-ex]

[17] B. Abelev et al. (ALICE), Coherent J/ψ production in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Lett. B 718, 1273 (2013), arXiv:1209.3715 [nucl-ex]

[18] J. Adam et al. (ALICE), Coherent ρ^0 production in ultraperipheral PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, JHEP 09, 095 (2015), arXiv:1503.09177 [nucl-ex]

[19] L. Adamczyk et al. (STAR), Coherent diffractive production of ρ^0 mesons on gold nuclei at 200 GeV/nucleon-pair at the Relativistic Heavy Ion Collider, Phys. Rev. C 97, 035209 (2018), arXiv:1706.02244 [hep-ph]

[20] V. Guzey, M. Strikman, and J. Ulrick, Saturation effects in ultraperipheral collisions at the LHC with the color dipole model, Phys. Lett. B 803, 135277 (2020), arXiv:1910.02899 [hep-ph]

[21] Z. Tu, R. J. Morrison, F. V. Murphy, T. Toll, and T. Ullrich, Probing short-range correlations in the deuteron via incoherent diffractive J/ψ production with spectator tagging at the EIC, Phys. Lett. B 811, 135877 (2020), arXiv:2005.14706 [nucl-ex]

[22] V. Guzey, M. Strikman, and M. Zhalov, Nucleon dissociation and incoherent J/ψ photoproduction on nuclei in ion ultraperipheral collisions at the Large Hadron Collider, Phys. Rev. C 99, 015201 (2019), arXiv:1808.00740 [hep-ph]

[23] M. Strikman and C. Weiss, Electron-deuteron deep-inelastic scattering with spectator nucleon tagging, Phys. Rev. C 102, 065204 (2020), arXiv:2006.03033 [hep-ph]

[24] M. Strikman and C. Weiss, Electron-deuteron deep-inelastic scattering with spectator nucleon tagging and final-state interactions at intermediate x, Phys. Rev. C 97, 035209 (2018), arXiv:1706.02244 [hep-ph]

[25] B. Abelev et al. (ALICE), Exclusive J/ψ production off protons in ultra-peripheral p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 113, 232504 (2014), arXiv:1406.7819 [nucl-ex]

[26] H. Mäntysaari and B. Schenke, Accessing the gluonic structure of light nuclei at a future electron-ion collider, Phys. Rev. C 101, 015203 (2020), arXiv:1910.03297 [hep-ph]

[27] V. Guzey, M. Strikman, E. Kryshen, and M. Zhalov, LTA predictions for J/ψ photoproduction in d+Au UPCs at RHIC (2021).

[28] K. H. Ackermann et al. (STAR), STAR detector overview, Nucl. Instrum. Meth. A 499, 624 (2003).

[29] J. Adam et al. (STAR), Low-pT $e^+e^−$ pair production in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV at STAR, Phys. Rev. Lett. 121, 132301 (2018), arXiv:1806.02295 [hep-ex]

[30] J. Adam et al. (STAR), Measurements of W and Z/γ* cross sections and their ratios in p+p collisions at RHIC, Phys. Rev. D 103, 012001 (2021), arXiv:2011.04708 [nucl-ex]

[31] M. Anderson et al., The Star time projection chamber: A Unique tool for studying high multiplicity events at RHIC, Nucl. Instrum. Meth. A 499, 659 (2003).
[40] M. Beddo et al. (STAR), The STAR barrel electromagnetic calorimeter, Nucl. Instrum. Meth. A 499, 725 (2003).

[41] C. A. Whitten (STAR), The beam-beam counter: A local polarimeter at STAR, AIP Conf. Proc. 980, 390 (2008).

[42] Review of Particle Physics, Progress of Theoretical and Experimental Physics 2020, 083C01, https://academic.oup.com/ptep/article-pdf/2020/8/083C01/34673722/ptepa104.pdf (2020).

[43] S. R. Klein, J. Nystrand, J. Seger, Y. Gorbunov, and J. Butterworth, STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions, Comput. Phys. Commun. 212, 258 (2017), arXiv:1607.03838 [hep-ph].

[44] R. Brun, F. Bruyant, M. Maire, A. C. McPherson, and P. Zanarini, GEANT3, https://cds.cern.ch/record/1119728 (1987).

[45] J. Adam et al. (STAR), Measurement of e^+e^- Momentum and Angular Distributions from Linearly Polarized Photon Collisions, Phys. Rev. Lett. 127, 052302 (2021), arXiv:1910.12400 [nucl-ex].

[46] E. Abbas et al. (ALICE), Charmonium and e^+e^- pair photoproduction at mid-rapidity in ultra-peripheral Pb-Pb collisions at $\sqrt{s_{\text{NN}}}=2.76$ TeV, Eur. Phys. J. C 73, 2617 (2013), arXiv:1305.1467 [nucl-ex].

[47] H. B. Prosper and L. Lyons, eds., Proceedings, PHYSTAT 2011 Workshop on Statistical Issues Related to Discovery Claims in Search Experiments and Unfolding, CERN, Geneva, Switzerland 17-20 January 2011, CERN Yellow Reports: Conference Proceedings (CERN, Geneva, 2011).

[48] J. Adam et al. (STAR), Observation of excess J/ψ yield at very low transverse momenta in Au+Au collisions at $\sqrt{s_{\text{NN}}}=200$ GeV and U+U collisions at $\sqrt{s_{\text{NN}}}=193$ GeV, Phys. Rev. Lett. 123, 132302 (2019), arXiv:1904.11658 [hep-ex].

[49] S. Schmitt, TUnfold: an algorithm for correcting migration effects in high energy physics, JINST 7, T10003, arXiv:1205.6201 [physics.data-an].

[50] B. I. Abelev et al. (STAR), Rapidity and species dependence of particle production at large transverse momenta for d+Au collisions at $s(\text{NN})^{*}(1/2)=200$-GeV, Phys. Rev. C 76, 054903 (2007), arXiv:nucl-ex/0609021.

[51] J. Adams et al. (STAR), Evidence from d + Au measurements for final state suppression of high p(T) hadrons in Au+Au collisions at RHIC, Phys. Rev. Lett. 91, 072304 (2003), arXiv:nucl-ex/0306024.

[52] S. Klein and R. Vogt, Deuteron photodisintegration in ultraperipheral relativistic heavy ion on deuteron collisions, Phys. Rev. C 68, 017902 (2003), arXiv:nucl-ex/0303013.

[53] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, The hadronic properties of the photon in high-energy interactions, Rev. Mod. Phys. 50, 261 (1978).

[54] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, Erratum: The hadronic properties of the photon in high-energy interactions, Rev. Mod. Phys. 51, 407 (1979).

[55] T. C. Rogers, M. M. Sargsian, and M. I. Strikman, Coherent vector meson photoproduction from deuterium at intermediate energies, Phys. Rev. C 73, 045202 (2006), arXiv:hep-ph/0509101.

[56] R. B. Wiringa, S. V. Stoks, and R. Schiavilla, An accurate nucleon-nucleon potential with charge independence breaking, Phys. Rev. C 51, 38 (1995), arXiv:nucl-th/9408016.

[57] T. H. Bauer, R. D. Spital, D. R. Yennie, and F. M. Pipkin, Coherent vector meson photoproduction from deuterium at intermediate energies, Phys. Rev. C 73, 045202 (2006), arXiv:hep-ph/0509101.

[58] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg, Glauber modeling in high energy nuclear collisions, Ann. Rev. Nucl. Part. Sci. 57, 205 (2007), arXiv:nucl-ex/0701025.

[59] T. Toll and T. Ullrich, Exclusive diffractive processes in electron-ion collisions, Phys. Rev. C 87, 024913 (2013), arXiv:1211.3048 [hep-ph].

[60] M. L. Good and W. D. Walker, Diffraction dissociation of beam particles, Phys. Rev. 120, 1857 (1960).