5-HT Receptors and the Development of New Antidepressants

Grzegorz Śliflirski, Marek Król * and Jadwiga Turło

Department of Drug Technology and Pharmaceutical Biotechnology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland; gslifirski@wum.edu.pl (G.Ś.); jturlo@wum.edu.pl (J.T.)

* Correspondence: mkrol@wum.edu.pl

Abstract: Serotonin modulates several physiological and cognitive pathways throughout the human body that affect emotions, memory, sleep, and thermal regulation. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of depression may be mediated by various pathomechanisms, the common denominator of which is undoubtedly the disturbed transmission in central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the most appropriate strategies for the search for new antidepressants. As discussed in this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activity towards the 5-HT system. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.

Keywords: antidepressants; drug design; dual 5-HT1A/SERT activity; multimodal activity

1. Introduction

Depression is a mental illness that affects over 250 million people worldwide [1]. Emotional (depressed mood, irritability, anhedonia), somatic (sleep, appetite, libido), and functional disorders (suicidal thoughts, slowed speech and movement, learning, memory and attention deficits) [2] make this disease the main cause of disabilities in the general population [3,4].

An important step in the treatment of depressive disorders is the introduction of SSRIs (serotonin reuptake inhibitors), which are currently first-line antidepressants (e.g., fluoxetine, sertraline, escitalopram). Their mechanism of action is based on the serotonergic system, and the molecular target is the serotonin transporter protein (SERT). The effectiveness of these therapeutics, unfortunately, leaves much to be desired; 60–70% of patients do not experience a remission of symptoms, and 30–40% do not respond to the treatment at all [5]. A serious drawback of selective serotonin reuptake inhibitors is their latency period, i.e., a delay in the therapeutic response by 2–6 weeks. Common side effects for SSRIs are sexual dysfunction, anxiety, and food intolerances.

Apart from SSRIs, other selective monoamine reuptake inhibitors are also used in pharmacotherapy. Reboxetine, a selective norepinephrine reuptake inhibitor, appears to be less effective than the SSRIs. These observations may however, result from its relatively low tolerance [6]. Bupropion, on the other hand, is a norepinephrine and dopamine reuptake inhibitor and, therefore, has a more activating profile than SSRI drugs. Two drugs, venlafaxine and duloxetine, are classified as dual serotonin-norepinephrine reuptake inhibitors (SNRIs). However, the efficacy of the norepinephrine reuptake blocking at clinical doses of duloxetine is unclear [7]. Clinical guidelines often recommend the use of SNRIs in patients who do not respond to SSRIs [8–10].

There is a need for the further exploration of the neurochemical causes of depression. Recent studies report the influence of many various types of neurosignaling on...
the mechanism of depression [11–14]. The search for new generations of antidepressants using the triple reuptake inhibition mechanism (SSRI/SNRI/SDARI), or the combination of serotonin reuptake inhibition with affinities for various 5-hydroxytryptamine (5-HT) receptor subtypes, broadens the knowledge in this field [15–17].

A significant part of recent studies proves that serotonergic dysfunction, especially related to the postsynaptic 5-HT$_{1A}$ receptor, plays an important role in the pathomechanism of Major Depressive Disorder (MDD) [18–24]. Clinical trials show that the combination of SSRIs with both partial agonism and antagonism of the 5-HT$_{1A}$ receptor may result in an improvement in the speed and efficacy of the antidepressant effect [23,25,26]. This can be confirmed by the drugs recently introduced into the pharmacotherapy of depression—vilazodone and vortioxetine (Figure 1). Vilazodone exhibits partial agonist activity at the 5-HT$_{1A}$ receptor, while vortioxetine binds to several 5-HT receptor subtypes (5-HT$_{1A}$, 5-HT$_{1B}$, 5-HT$_{1D}$, 5-HT$_{3}$, and 5-HT$_{7}$). For example, the degree of sexual dysfunction associated with the use of vilazodone has been found to be relatively low [27]. Vortioxetine, on the other hand, positively influences cognitive impairment related to depression [10,28].

Figure 1. Novel antidepressants: vilazodone and vortioxetine.

The targeted pharmacological modulation of serotonergic transmission in the brain continues to be a leading strategy in the search for new antidepressants. The careful selection of molecular targets for the proper use of the mechanisms of serotonergic modulation, which influences other neurotransmission systems, seems to be the most effective strategy for supplementing the activity of “serotonin-enhancing” drugs in the near future. A better understanding of the receptors and receptor signaling responsible for the effects of serotonin on neurogenesis can also help in the development of new and more effective drugs. The aim of this article is to summarize the search for new antidepressants in recent years, focusing primarily on the possibility of benefiting from interactions with various 5-HT receptors in the pharmacotherapy of depression.

2. The Serotonergic System and Depression

Serotonin, or 5-hydroxytryptamine (5-HT), is a monoamine neurotransmitter found throughout the human body [19,29]. Serotonin is synthesized in the midbrain in a small population of raphe nucleus neurons where tryptophan hydroxylase is expressed [30]. However, serotonin synthesis is not limited to the central nervous system (CNS), as tryptophan hydroxylase is also found in enterochromaffin cells in the gastrointestinal tract [31]. In fact, it should be noted that most of the serotonin in the human body is produced by this cell type [32]. Serotonin binds to more than 14 receptor proteins, most of which are G-protein coupled receptors [30,33]. This molecule mediates the transmission of several physiological and cognitive systems throughout the body that affect emotions, memory, sleep, and thermal regulation [34].

Serotonin is synthesized in the body from an essential amino acid—L-tryptophan. Ingested with food, L-tryptophan is converted into serotonin through a series of reactions. The first step, which simultaneously limits the rate of serotonin synthesis, is the hydroxylation of L-tryptophan to 5-hydroxy-L-tryptophan (5-HTP) by tryptophan hydroxylase
(TPH) using oxygen and tetrahydropteridine as co-factors. There are two isoforms of TPH that can participate in this reaction: TPH1, expressed predominantly peripherally; and TPH2, expressed only in the brain. L-aromatic amino acid decarboxylase (AADC) then converts 5-HTP to serotonin [19,31].

The crossing of the blood–brain barrier (BBB) by serotonin is impossible due to its acid dissociation [35]; therefore, the amount of serotonin present in the CNS depends on the amount of centrally present L-tryptophan. The L-tryptophan present in the systemic circulation is actively transported by the BBB to the CNS using a carrier protein, where it is then converted into serotonin. Serotonin synthesized in the central nervous system is stored in secretory vesicles, where it remains until neuronal depolarization triggers its release into the synaptic cleft, allowing postsynaptic binding. Once released into the synapse, the serotonin molecules are eventually taken up by the serotonin transporter (5-HTT), which is located on the presynaptic axonal membrane. After the above-mentioned reuptake occurs, serotonin molecules are metabolized by monoamine oxidase (MAO) to 5-hydroxyindole acetic acid (5-HIAA) [29]. There are two isoforms of MAO (MAO-A and MAO-B), and both break down serotonin into neurons through oxidative deamination. The serotonin metabolite (5-HIAA) is actively transported from the CNS to the periphery and then excreted in the urine [19].

Already by the 1950s, it was noted that several mental illnesses showed abnormalities in the serotonergic system. The relationship between the serotonergic system and depression has been confirmed in clinical trials. They showed that an acute, transient relapse of depressive symptoms can be produced in subjects in remission using p-chlorophenylalanine (an irreversible inhibitor of serotonin synthesis). L-tryptophan depletion, causing a temporary reduction in central serotonin levels, had similar consequences. These findings have shown that the clinical efficacy of antidepressants depends on the presynaptic serotonergic function. Other studies have demonstrated a reduced concentration of the major metabolite of serotonin (5-HIAA) in the cerebrospinal fluid of untreated depressed patients and a reduced concentration of 5-HT and its major metabolite (5-HIAA) in the postmortem brain tissue of depressed and/or suicidal patients [20].

The serotonergic neurons of the mammalian brain constitute the most extensive and complex neurochemical network in the CNS after the glutamatergic system, which is the brain’s primary transmission network. It has been estimated that the human brain contains approximately 250,000 5-HT neurons. For comparison, the total number of all neurons is around \(10^{11}\) [36]. While serotonergic neurons originate mainly in the brainstem dorsal and median raphe nuclei, they arborise over large areas such that they innervate almost every area of the brain with high densities of axonal varicosities. Some serotonergic projections create classical chemical synapses, but many release 5-HT in a paracrine manner (sometimes referred to as “volumetric transmission”). In addition, serotonin neurons exhibit slow (~1 Hz) and regular tonic activity that ceases during the rapid eye movement sleep phase (REM-off neurons). This activity is parallel to the noradrenergic neurons of the locus coeruleus [34]. Under normal conditions, the activity of serotonergic neurons is tightly controlled by a number of mechanisms, including: (i.) glutamatergic inputs from the forebrain (mainly the prefrontal cortex) [37], (ii.) the tonic noradrenergic input from the pontine nuclei [38], (iii.) inhibitory GABAergic signals from local interneurons [39], and (iv.) dopamine signals from the dopaminergic nuclei of the midbrain [40]. Moreover, the serotonin system is, in a way, self-regulating. The key control mechanism of 5-HT neurons is negative feedback through the 5-HT_{1A} autoreceptors [20]. This mechanism is currently being studied in great detail in the context of the treatment of CNS diseases.

The aforementioned anatomical and electrophysiological picture shows that changes in the activity of serotonergic neurons affect a large population of target neurons in the forebrain. The complex nature of the serotonergic system and interactions with other neurochemical systems indicate that the development of MDD may be mediated by various pathomechanisms. Currently suggested mechanisms include: (i.) low neuronal production of serotonin or of postsynaptic receptors, (ii.) decreased excitatory inputs or excessive
system self-control, and (iii.) decreased 5-HT synthesis and/or tryptophan deficiency. The common denominator of these phenomena in depression is undoubtedly the disturbed transmission in the central 5-HT synapses. Therefore, the deliberate pharmacological modulation of serotonergic transmission in the brain seems to be one of the appropriate strategies for the search for new antidepressants.

3. The 5-HT Receptors

The serotonergic system affects various physiological functions, including psychomotional expression, sensorimotor integration, and the regulation of the autonomic, cardiovascular, respiratory, and digestive systems. Within the CNS, 5-HT is involved in the regulation of higher mental functions and emotions, extrapyramidal motor functions, and cognitive functions (e.g., learning and memory).

At least 14 different serotonin receptors have been identified. These receptors can be divided into distinct families, which are labelled 1, 2, 3, 4, 5, 6, and 7, and the subtypes in each family are labelled with letters (e.g., a, b, c). Many of these receptors are thought to be involved in the pathogenesis of various CNS disorders [41].

3.1. The 5-HT₁A Receptors

The 5-HT₁A receptors are located primarily in the following populations: (i.) presynaptic neurons of the raphe nuclei of the midbrain and (ii.) postsynaptic neurons, mainly in the hippocampus, septum, amygdala, and corticolimbic regions [42]. Autoreceptors are located within the bodies and dendrites of serotonin neurons. Their activation inhibits neuronal discharges and reduces the release of serotonin [43]. Thus, 5-HT₁A autoreceptors play an important role in the self-regulation of the serotonergic system; they partially inhibit the activity of adenylate cyclase [44] and activate G protein-dependent rectifying potassium channels (GIRK) with the use of the βγ subunit of G protein [45]. This causes membrane hyperpolarization, a reduction in neuronal excitability, and the inhibition of potential-dependent calcium channels, reducing the influx of calcium ions. The consequence is a reduction in the neuronal discharge rate. Given the significant influence of these neuronal discharges on the overall activity of the entire serotonergic system, it can be concluded that the reduction in the firing rate evoked by serotonin and other 5-HT₁A agonists immediately translates into an overall reduction in 5-HT release in most areas of the brain, particularly in regions innervated by the dorsal raphe [20].

The activation of 5-HT₁A autoreceptors by endogenous serotonin, therefore, plays an essential role in the physiological control of the activity of the 5-HT ascending neurons. The 5-HT neurons during waking periods show a slow and regular rate of discharge [36]. Under conditions of excessive excitatory input (e.g., stress), there is an increased release of serotonin in the vicinity of neuronal bodies. It activates 5-HT₁A autoreceptors, which allows low and regular neuronal activity to be maintained [40]. Thus, 5-HT₁A autoreceptors act as negative feedback physiological “safety valves” to maintain homeostasis.

The expression of 5-HT₁A heteroreceptors, in turn, takes place in populations of non-serotonin receptors, mainly in the limbic system within: (i.) bodies and dendrites of glutamatergic neurons [43] or (ii.) axons of GABA-ergic [46], and (iii.) cholinergic neurons [47]. These receptors are involved in regulating the release of various neurotransmitters: acetylcholine in the medial septum [48], glutamate in the prefrontal cortex [49], and dopamine in the ventral tegmental area [50]. In most regions of the brain, the inhibition of adenylate cyclase occurs due to the activation of the Gαi protein. The GIRK channels in the hippocampus are activated by the βγ subunits of the Gαo isoform [51]. The 5-HT₁A receptors in the cortex and hypothalamus bind to both the Gαi and Gαo subunits, while their preferential binding to the Gαi3 protein occurs within the raphe nucleus.

The differences in the properties of 5-HT₁A auto- and hetero-receptors are manifested in their different functional selectivity [52]: 5-HT₁A heteroreceptors stimulate [53], while 5-HT₁A autoreceptors inhibit ERK1/2 transmission [54]. The 5-HT₁A-biased agonism appears to result in the preferential activation of a specific signaling pathway without
affecting or even blocking other pathways associated with this receptor subtype [55]. It has also been shown that there is an agonist-dependent modulation of G-protein coupling and a transduction of 5-HT1A receptors in rat dorsal raphe nucleus. Moreover, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, a full 5-HT1A receptor agonist) compared with buspirone (a partial 5-HT1A receptor agonist) fails to modify forskolin-stimulated cAMP accumulation [56].

In general, 5-HT1A Receptor-deficient mice show a shorter immobility time in the forced swim test than wild-type control animals [57]. The lack of functional 5-HT1A autoreceptors may, therefore, favor a less-depressed phenotype. The whole-life suppression of 5-HT1A heteroreceptor expression in adolescence results in a broad depression-like phenotype. In addition, the group showed physiological and cellular changes within medial prefrontal cortex–dorsal raphe proper circuitry: (i.) increased basal serotonin levels in the medial prefrontal cortex, which is hyporeactive to stress and (ii.) decreased basal serotonin levels and firing rates in a dorsal raphe hyperactivated by the same stressor [57].

Animal studies show that both the stimulation and blockade of 5-HT1A receptors can cause or accelerate the antidepressant effect [17]. It is difficult not to associate this with the above-described functional differences of 5-HT1A auto- and hetero-receptors and the phenomenon of the biased 5-HT1A agonism. Many studies have demonstrated the antidepressant effect of 8-OH-DPAT reversed by 5-HT1A receptor antagonists [58]. Moreover, 5-HT1A receptor-deficient mice showed no increase in adult neurogenesis in the hippocampus after chronic treatment with fluoxetine (SSRI) and not with imipramine (TCA) [59]. The preferential activation of postsynaptic 5-HT1A receptors by F15599 (Figure 2), a biased 5-HT1A agonist, resulted in an antidepressant-like effect [60]. Similar activity was shown by F13714, a non-selective agonist of 5-HT1A receptors, but it induced a deeper “serotonin syndrome”, hypothermia, and corticosterone release in rats. Elevated corticosterone levels accompany chronic stress in animals, leading to depression [61]. Moreover, the activation of 5-HT1A receptors in the prefrontal cortex (PFC) by F15599 produces strong antidepressant-like effects in the forced swim test (FST) in rats, with a distinctive bimodal dose–response pattern. These data suggest that F15599 may target specific 5-HT1A receptor subpopulations in the PFC, possibly located on the GABAergic and/or glutaminergic neurons [62].

![Figure 2. 5-HT1A receptor agonists: 8-OH-DPAT, F15599, and F13714.](image)

The previously described physiological function of 5-HT1A autoreceptors and their regulation of depressive behavior seem to be unfavorable in the context of the mechanism of action of antidepressants [20,63]. The negative feedback pathway through 5-HT1A autoreceptors may decrease the efficacy of the SSRI as the dose increases, thus creating a second, anomalous part of the dose–response curve. This effect may also be responsible for the so-called therapeutic window for such antidepressants [64]. The prolonged use of SSRIs translates into significantly higher levels of extracellular 5-HT than after a single administration [65]. The negative feedback loop is believed to be the cause of the slow and delayed clinical efficacy of antidepressant drugs [66]. Administration of antidepressants (tricyclic drugs, monoamine oxidase inhibitors, and SSRIs) significantly increases the level of extracellular 5-HT in the midbrain raphe [67]. This leads to: (i.) the activation of 5-HT1A receptors, (ii.) the reduction in 5-HT cell firing [68], and (iii.) the terminal release of
The inhibition of SSRIs in the negative feedback pathway clearly decreases with the duration of treatment. This is most likely due to the serotonin-induced desensitization of raphe 5-HT\textsubscript{1A} autoreceptors discussed earlier [70]. Thus, the desensitization of 5-HT\textsubscript{1A} autoreceptors may accelerate the onset and/or enhance the antidepressant effect [71]. Mice with higher levels of 5-HT\textsubscript{1A} autoreceptors showed a blunted physiological response to acute stress, increased behavioral despair, and no behavioral response to fluoxetine [72]. Moreover, mice with lower autoreceptor levels showed a strong behavioral response to fluoxetine after both chronic and subchronic administration [72]. Thus, lowering the level of 5-HT\textsubscript{1A} autoreceptors prior to antidepressant treatment may accelerate and increase the effectiveness of antidepressant therapy. Combining SSRI treatment with the 5-HT\textsubscript{1A} receptor antagonist pindolol significantly reduces the latency of the antidepressant response and improves the clinical response in previously untreated MDD patients (Table 1) [20,21,73]. The above data indicate that the stimulation of postsynaptic 5-HT\textsubscript{1A} receptors or the blockade of presynaptic 5-HT\textsubscript{1A} receptors results in antidepressant-like activity. (-)-pindolol may also stimulate somatodendritic 5-HT\textsubscript{1A} receptors. Then, its accelerating antidepressant effect might stem from the accelerated adaptive changes like autoreceptor desensitization in response to both serotonin and pindolol. This mechanism can also be achieved by initiating the treatment with high-dose SSRI when a patient is suicidal. The antidepressant action of pindolol may also be related to its agonistic activity at the β\textsubscript{1}-adrenoreceptor as this drug possesses the strongest intrinsic sympathicomimetic activity among other β-blockers [74].

| Clinical Intervention | Mechanism of Action | Effect | References |
|-----------------------|---------------------|--------|------------|
| SSRI + pindolol       | SERT inhibition + 5-HT\textsubscript{1A} agonism | Reduced latency of the antidepressant response and improved the clinical response in previously untreated MDD patients | [21] |
| SSRI + buspirone      | SERT inhibition + 5-HT\textsubscript{1A} partial agonism | Symptom remission in patients unsuccessfully treated with SSRIs | [75] |
| SSRI + mirtazapine    | SERT inhibition + 5-HT\textsubscript{2A} antagonism | Augmentation of the clinical response to SSRIs in treatment-resistant patients | [76] |
| Vilazodone            | SERT inhibition + 5-HT\textsubscript{1A} partial agonism | In contrast to prototypical SSRIs, vilazodone has not been associated with treatment-emergent sexual difficulties or dysfunction | [27] |
| Vortioxetine          | SERT, 5-HT\textsubscript{3} and 5-HT\textsubscript{7} receptors inhibition, 5-HT\textsubscript{1A} agonism | Potential rapid onset of action | [77] |

According to the neurotrophic hypothesis of depression, decreased neurotrophic support causes neuronal atrophy, which in turn reduces hippocampal neurogenesis and leads to depression. Clinical data support this theory: postmortem analysis has shown reduced volumes of the hippocampus and prefrontal cortex in depressed patients [78,79]. Persons diagnosed with MDD showed decreased levels of BDNF (brain-derived neurotrophic factor) and NGF (nerve growth factor) in the hippocampus. A deficit of these neurotrophins may promote neuronal loss [80,81]. This phenomenon was confirmed by in vivo studies [82–85], which showed that antidepressants reversed these changes [86]. Chronic treatment with 8-OH-DPAT, in turn reduced the feeding delay in the novelty-suppressed feeding test and increased adult hippocampal neurogenesis in wild-type mice, but showed no effect in the 5-HT\textsubscript{1A} receptor knockout group [59]. Thus, 5-HT\textsubscript{1A} receptors mediate the action of 8-OH-DPAT, from which it can be concluded that the postsynaptic 5-HT\textsubscript{1A} receptors mediate the antidepressant-like action of 8-OH-DPAT [87]. The specific deletion of the 5-HT\textsubscript{1A} heteroreceptors from mature granular cells in the dentate gyrus of
the hippocampus has also been found to abolish the effects of SSRIs in various behavioral tests [88]. It also attenuated the effects of SSRIs on adult neurogenesis and the expression of hippocampal neurotrophic factors: BDNF and VEGF (vascular endothelial growth factor). Whole-life 5-HT$_{1A}$ heteroreceptor-knockout (but not autoreceptor-knockout) mice showed decreased mobility in the forced swim test [89]. Such a depression-like phenotype was not observed when the suppression of heteroreceptors was initiated in adulthood. Therefore, serotonergic signaling in the forebrain during development may stably influence the circuits underlying the behavioral response to the FST [89].

The STAR*D clinical trial shows that in patients unsuccessfully treated with SSRIs, the augmentation with buspirone resulted in symptom remission [75]. Buspirone (a partial agonist of the 5-HT$_{1A}$ receptor) enhances the desensitization of 5-HT$_{1A}$ autoreceptors, increasing the effectiveness of the SSRI treatment. Recently, a single transcription factor, Freud-1, has been found to be crucial for the expression of the 5-HT$_{1A}$ autoreceptor [90]. Mice with a conditional knockout of Freud-1 in serotonin neurons were shown to have elevated levels of 5-HT$_{1A}$ autoreceptors and exhibited the enhanced anxiety and depressive behavior in adulthood that was refractory to chronic SSRI treatment [90]. Interestingly, the double knockout of the Freud-1/5-HT$_{1A}$ gene did not produce such effects. In this case, the depressive-like behavior was even reduced [90]. The study suggests that targeting specific transcription factors may increase the response to antidepressant treatment. These reports indicated the need to search for compounds targeting only the population of 5-HT$_{1A}$ autoreceptors.

The results of postmortem and neuroimaging studies suggest an increased density of 5-HT$_{1A}$ autoreceptors in patients with MDD compared to the control group [91–93]. Genetic studies have shown that individuals with an increased density or activity of 5-HT$_{1A}$ autoreceptors are more prone to mood disorders and respond poorly to antidepressant treatment [94,95]. However, the number and density of postsynaptic 5-HT$_{1A}$ receptors have been shown to be unaltered or reduced in depressed patients, and this alteration is not sensitive to antidepressant treatment [96]. Long-term antidepressant therapy causes the tonic activation of 5-HT$_{1A}$ receptors in the dorsal hippocampus [97], and activation of 5-HT$_{1A}$ receptors in the dentate gyrus increases hippocampal neurogenesis [98]. In light of the cited reports, the use of 5-HT$_{1A}$ agonists as antidepressants seems natural [99]. Some agents possessing such activity (e.g., buspirone and gepirone) show antidepressant efficacy in placebo-controlled trials, but their potency is lower than that of SSRIs. Most 5-HT$_{1A}$ agonists (especially azapirones, Figure 3) show the preferential activation of presynaptic 5-HT$_{1A}$ receptors. Moreover, these agents tend to have a reduced efficacy at postsynaptic 5-HT$_{1A}$ receptors. Thus, endogenous serotonin competes in the postsynaptic sites with an exogenous substance (with lower agonism), which causes a paradoxical reduction in the tone at the postsynaptic 5-HT$_{1A}$ receptors. Higher doses of 5-HT$_{1A}$ agonists (such as those used in experimental animals) are likely to result in the greater activation of postsynaptic 5-HT$_{1A}$ receptors, which may explain the positive results of efficacy studies in animal models. Conversely, the administration of the selective 5-HT$_{1A}$ receptor antagonist DU125530 with fluoxetine did not accelerate or increase the efficacy of fluoxetine in a double-blind, randomized, placebo-controlled clinical trial. DU125530 had similar binding to pre- and postsynaptic 5-HT$_{1A}$ receptors [100], and the blockade of postsynaptic 5-HT$_{1A}$ receptors likely offset the benefits of enhancing presynaptic serotonergic function [101]. This may show the importance of the activation of postsynaptic 5-HT$_{1A}$ receptors in the mechanism of antidepressant action.
Observations on the 5-HT$_{1A}$ receptor population contributed to a fruitful search for potential multimodal antidepressants that incorporate 5-HT$_{1A}$ receptor activity into their mechanism of action [102]. Recently developed compounds seem to overcome the aforementioned therapeutic problems of azapirones and other first-generation 5-HT$_{1A}$ agonists. Two new antidepressants, vilazodone [27,103] and vortioxetine [104,105], inhibit 5-HT reuptake and show the partial agonism at 5-HT$_{1A}$ receptors.

The 5-HT$_{1A}$ receptor ligands also possess their own potentially therapeutic activity. The 5-HT$_{1A}$ partial agonists show antianxiety [106,107], antidepressant [108], antiaggressive [109], anticraving [110], and anticataleptic properties [111]:

- Animal studies show that both the stimulation and blockade of 5-HT$_{1A}$ receptors can cause or accelerate the antidepressant effect. It is difficult not to associate this with the functional differences of 5-HT$_{1A}$ auto- and hetero-receptors and the phenomenon of a biased 5-HT$_{1A}$ agonism;
- A single transcription factor, Freud-1, has been found to be crucial for the expression of the 5-HT$_{1A}$ autoreceptor. Targeting it may increase the response to antidepressant treatment;
- Observations on the 5-HT$_{1A}$ receptor population contributed to a fruitful search for potential multimodal antidepressants (vilazodone and vortioxetine) that incorporate 5-HT$_{1A}$ receptor activity into their mechanism of action.

3.2. The 5-HT$_{1B}$ Receptors

The 5-HT$_{1B}$ receptors, like 5-HT$_{1A}$ receptors, are located pre- and post-synaptically and are also negatively coupled to adenylate cyclase. Their highest densities are in the striatum, pallidum, nucleus accumbens, substantia nigra, and ventral tegmental area. Lower levels of 5-HT$_{1B}$ receptors are found in the hippocampus, amygdala, and cingulate cortex [112].

Unlike somatodendritic 5-HT$_{1A}$ autoreceptors, 5-HT$_{1B}$ autoreceptors are located on serotonergic axons, where they regulate the synthesis and release of 5-HT locally. The 5-HT$_{1B}$ postsynaptic receptors are located mainly in the centers of motor control (such as the basal ganglia), where they control the synaptic transmission of other neurotransmitters [112]. Studies have shown that 5-HT$_{1B}$ receptors play a role in depression, anxiety, migraines, locomotor activity, aggressive behavior, and the potentiation of the action of other drugs [112–114].

Animal studies show that the involvement of 5-HT$_{1B}$ receptors in the pathophysiology of depression is partly related to their responsiveness to environmental stress as well as their exposure to antidepressants [115]. The 5-HT$_{1B}$ heteroreceptors are involved in hippocampal neurogenesis, which may explain their importance for the antidepressant-like effect [116]. Mice lacking 5-HT$_{1B}$ autoreceptors showed an increased mobility in the FST as well as an increased preference for lower-sucrose concentrations in the sucrose preference test compared to the control group. After SSRI administration, elevated levels of serotonin in the hippocampus were observed [117]. Moreover, two common genetic polymorphisms of 5-HT$_{1B}$ receptors, G861C [118] and C129T [119], were associated with MDD and affective disorders. The 5-HT$_{1B}$ receptor gene knockout mice showed increased aggression [120].

The p11 protein, which colocalizes with 5-HT$_{1B}$ and 5-HT$_{4}$ receptors [121], plays a key role in modulating the function of the 5-HT$_{1B}$ receptor. Its dysregulation has been reported...
in preclinical models of depression and in postmortem samples from MDD patients [122]. The p11 protein improves 5-HT1B receptor function in various regions of the brain and contributes to an antidepressant-like effect in animal behavioral tests [123]. P11 knockout mice showed depression-like behavior and demonstrated a reduced responsiveness to 5-HT1B Receptor agonists and tricyclic antidepressants [123].

Studies in the learned helplessness model showed that 5-HT1B receptors were upregulated in various regions of the brain following stress exposure. A reduced 5-HT1B autoreceptor function and, thus, increased serotonin release, has also been demonstrated after chronic antidepressant treatment [124]. Moreover, chronic treatment with SSRIs induced a negative regulation and/or desensitization of 5-HT1B autoreceptors [125] and facilitated the effect of SSRIs in serotonin neurotransmission [126]. Compounds exhibiting 5-HT1B antagonist, administered alone or with antidepressants, have been shown to be effective in preclinical models of depression [127]. The pretreatment with 5-HT1B receptor antagonists [128] or the genetic inactivation of the 5-HT1B receptor [129] increased the SSRI-induced effect in mice. Therefore, the blockade of 5-HT1B autoreceptors may promote the antidepressant effect. It has been suggested that the 5-HT1B receptor antagonists themselves may be attributed to an antidepressant-like effect. SB-616234-A, a 5-HT1B Receptor antagonist, decreased immobility in a forced swim test in mice (Figure 4) [130]. The selective 5-HT1B receptor inverse agonist, SB236057A, increased, in turn, the extracellular concentration of serotonin in the dentate gyrus of a guinea pig. This effect was comparable to that of 14 days of paroxetine therapy [131]. The acute blockade of the 5-HT1B receptor might cause a rapid antidepressant effect [131]. It appears that the agonist activation of 5-HT1B heteroreceptors may also induce antidepressant-like effects [132]. CP94253, a selective 5-HT1B receptor agonist, showed an antidepressant-like activity in a forced swimming test in mice [133]. Anpirtoline, as a selective 5-HT1B receptor agonist, also reduced immobility in control mice but had no effect in 5-HT1B knockout mice [132]. The effect of this compound in the FST was, therefore, due to the activation of the 5-HT1B Receptor. The above studies suggest that 5-HT1B receptors play a role in antidepressant-like activity. Ther stimulation of postsynaptic receptors and the inhibition of presynaptic 5-HT1B receptors may be beneficial in the treatment of depression [134].

As with 5-HT1A receptors, acute SSRI therapy activates terminally localized 5-HT1B receptors, thus reducing 5-HT synthesis and release. The long-term administration of SSRIs desensitizes terminal 5-HT1B autoreceptors [135], suggesting that the plasticity of the autoregulatory function of both 5-HT1A and 5-HT1B receptors may be important with respect to the therapeutic profile of SSRIs. Again, as with 5-HT1A receptor antagonists, the administration of 5-HT1B receptor antagonists increases the neurochemical and behavioral effects of SSRIs [128,136]. Interestingly, the co-administration of the selective 5-HT1A antagonist WAY-100635 and the 5-HT1B receptor antagonist SB-224289 has an additive effect, enhancing the neurochemical effects of fluoxetine. This has led to the suggestion that the combination of the 5-HT1A and 5-HT1B receptor antagonism may increase CNS serotonin levels and, therefore, potentially be an effective treatment strategy for depression [20]:

![Figure 4. 5-HT1B Receptor ligands: anpirtoline, SB-616234-A, and SB236057A.](image-url)
- Animal studies show that the involvement of 5-HT₁B receptors in the pathophysiology of depression is partly related to their responsiveness to environmental stress as well as an exposure to antidepressants;
- The p11 protein improves 5-HT₁B receptor function in various regions of the brain and contributes to an antidepressant-like effect in animal behavioral tests;
- The 5-HT₁B heteroreceptors are involved in hippocampal neurogenesis, which may explain their importance for the antidepressant-like effect. The stimulation of postsynaptic receptors and the inhibition of presynaptic 5-HT₁B receptors may be beneficial in the treatment of depression.

3.3. The 5-HT₁D, 5-HT₁E, and 5-HT₁F Receptors

The clinical significance of the remaining 5-HT₁ receptors (5-HT₁D, 5-HT₁E, 5-HT₁F) is less clear. There is limited preclinical evidence linking some of the receptors with depressive states. The sensitivity of postsynaptic 5-HT₁D receptors in patients after treatment with SSRIs has been found to be impaired [137]. On the other hand, a postmortem study of untreated suicidal victims with a confirmed history of depression showed a much higher density of 5-HT₁D receptors in the globus pallidus [138]. The observed high expression of the 5-HT₁E receptor in the frontal cortex and hippocampus may indicate the relationship between 5-HT₁E receptors and cognitive functions and memory [20,139].

3.4. The 5-HT₂A Receptors

The 5-HT₂A receptors, like the others of the 5-HT₂ family, are preferentially coupled to the G protein of the Gq/11 type, so their activation increases the cellular level of inositol phosphate and, consequently, the cytosolic concentration of calcium ions. The 5-HT₂A receptors are distributed postsynaptically and presynaptically throughout the brain at serotonergic terminals, with the greatest concentration in the neocortex [140–142]. Recent anatomical and functional studies suggest that 5-HT₂A receptors are also present presynaptically as heteroreceptors, where they may enhance glutamatergic neurotransmission and participate in memory processes [143]. It has also been demonstrated that the 5-HT₂A receptors of the cerebral cortex are located on GABAergic interneurons as well as glutamatergic projection neurons in the brains of humans and rodents [42,144].

Many antidepressants and antipsychotic drugs possess a relatively high binding to 5-HT₂A receptors [145]. Although there is no direct correlation between the affinity of these drugs for 5-HT₂A receptors and clinically effective doses, there is ample evidence that the 5-HT₂A receptor plays a role in the pathomechanism of depression [20,146]. Some antidepressants mediate their action partly via the antagonism of 5-HT₂A receptors [147]. In addition, chronic treatment with antidepressants, such as tricyclic antidepressants, monoamine oxidase inhibitors, mianserin, mirtazapine, or sertraline, decreased the number of 5-HT₂A receptors in rodents [148]. Chronic electroconvulsive shock treatment resulted in the upregulation of cortical 5-HT₂A receptors in rodents [149].

Several clinical trials have shown that atypical antipsychotics [150] and the antidepressant mirtazapine with an affinity for α₂-adrenoceptors and 5-HT₂A receptors [151] augment the clinical response to SSRIs in treatment-resistant patients [76]. A common feature of these substances is their ability, at clinical doses, to block responses to signals mediated by 5-HT₂A receptors [152]. Such downregulation could, inter alia, explain why the side effects of SSRIs diminish after 2 or 3 weeks. The high co-expression of 5-HT₁A and 5-HT₂A receptors in the neocortex [153] may indicate that the blockade of 5-HT₂A receptors enhances 5-HT₁A receptor-mediated neurotransmission in the cortical and limbic regions, an activity associated with antidepressant efficacy. The chronic administration of 5-HT₂A Receptor antagonists has been shown to result in a paradoxically negative regulation of 5-HT₂A receptors [154,155], which may be beneficial in the treatment of depression. Moreover, preclinical studies indicate that 5-HT₂A antagonists have anxiolytic properties, as demonstrated by ritanserin, a 5-HT₂A antagonist with anxiolytic effects in humans [156].
Another issue is the relationship between the 5-HT₂A receptor and the noradrenergic system in relation to depression [157]. Studies have shown that the activation of 5-HT₂A receptors as a result of treatment with SSRIs causes an increase in serotonin levels in GABA neurons. This inhibits the neuronal activity of norepinephrine through the prolonged release of GABA [158–160]. In turn, citalopram, in addition to reducing norepinephrine firing, also has the effect of lowering basal and evoked extracellular norepinephrine levels in the amygdala [161]. This may underlie SSRI ineffectiveness in resistant depression. The co-administration of an SSRI and a 5-HT₂A receptor antagonist trazodone (as well as atypical antipsychotics, such as quetiapine, risperidone, olanzapine, and aripiprazole) reversed this inhibitory effect in noradrenergic neurons in rats and might be beneficial in the treatment of resistant depression [160,162–164]. Increasing evidence shows that 5-HT₂A receptor antagonists display antidepressant effects. EMD 281014 (Figure 5), a 5-HT₂A receptor antagonist, showed significant activity in the FST in congenital learned helpless rats [165]. A similar effect was shown by another 5-HT₂A receptor antagonist, FG5893, which significantly shortened the immobility time in the FST [166]. The selective 5-HT₂A receptor antagonist, M100907, enhanced the antidepressant-like behavioral effects of fluoxetine [167], suggesting that a selective 5-HT₂A receptor blockade may complement the behavioral effects of serotonin transporter inhibition. In contrast, recent studies in rats have shown that the functional disturbance of the 5-HT₂A receptor in the medial prefrontal cortex may contribute to postpartum mental disorders, including depression and psychosis [168]. In addition, prefrontal 5-HT₂A receptors may both have beneficial and negative effects on cognition, which might explain the aggravation of cognitive deficits after the onset of SSRI treatment in depressed patients, as well as the limited efficacy of second-generation antipsychotics that act as 5-HT₂A receptor antagonists against the strongly debilitating cognitive symptoms of schizophrenia and other psychiatric disorders [169]. A deficiency in 5-HT₂A receptors has also been shown to alter the metabolic and transcriptional, but not behavioral, consequences of chronic unpredictable stress in mice [170]. The 5-HT₂A blockade or SSRI-induced downregulation of 5-HT₂A may lead to emotional blunting in patients. It is, therefore, very likely that 5-HT₂A receptors may have different functions depending on the region of the brain:

![Figure 5. 5-HT₂A receptor antagonists: EMD 281014, FG5893 and M100907.](image)

- Many antidepressants and antipsychotic drugs have relatively high binding to 5-HT₂A receptors;
- The high co-expression of 5-HT₁A and 5-HT₂A receptors in the neocortex may indicate that the blockade of 5-HT₂A receptors enhances 5-HT₁A receptor-mediated neurotransmission in the cortical and limbic regions, an activity associated with antidepressant efficacy;
- Increasing evidence shows that 5-HT₂A receptor antagonists display antidepressant effects. A selective 5-HT₂A receptor blockade may complement the behavioral effects of serotonin transporter inhibition.
3.5. The 5-HT$_{2B}$ Receptors

The 5-HT$_{2B}$ receptor is expressed mainly in peripheral tissues, especially in the liver, kidneys, and heart, and its distribution in the brain is low [171]. In the central nervous system, the 5-HT$_{2B}$ receptor is present in septal nuclei, the dorsal hypothalamus, and the medial amygdala at levels similar to those found in the stomach [171]. The 5-HT$_{2B}$ receptor, mRNA, is found in the dorsal raphe nucleus, suggesting a potential autoreceptor role [172]. The 5-HT$_{2B}$ receptors are coupled to the Gq protein, which activates PLC (phospholipase C)/PKC (protein kinase C) and increases the concentration of calcium ions in the cytosol.

The knowledge about the function of the 5-HT$_{2B}$ receptor in the CNS is limited; however, there are reports of the antidepressant properties of selective 5-HT$_{2B}$ receptor agonists [173]. The presence of 5-HT$_{2B}$ receptors in the dorsal raphe and their stimulatory role in 5-HT release has been demonstrated [173]. The pharmacological or genetic inactivation of the 5-HT$_{2B}$ receptor abolished the effects of chronic treatment with SSRIs, and the stimulation of 5-HT$_{2B}$ receptors induced an SSRI-like response in behavioral and neurogenic tests. In turn, the genetic inactivation of 5-HT$_{2B}$ receptors in serotonergic neurons eliminated the neurogenic effects of fluoxetine [173]. It has recently been confirmed that 5-HT$_{2B}$ receptors directly and positively regulated the activity of serotonin neurons [174]. In addition, the stimulation of the 5-HT$_{2B}$ receptor via fluoxetine in astrocyte cell cultures resulted in the phosphorylation of extracellular signal-regulated kinases and the transactivation of the EGF (epidermal growth factor) receptor [175]. A reduced level of astroglial (but not neuronal) 5-HT$_{2B}$ receptors in a mouse model of Parkinson’s disease was also reported, which paralleled the development of the depression-like phenotype [176]. The stimulation of astroglial 5-HT$_{2B}$ receptors may, therefore, be beneficial in treating depressive disorders [177].

Considering the role of peripherally located 5-HT$_{2B}$ receptors, potential new antidepressants acting on 5-HT$_{2B}$ receptors may adversely affect the function of the respiratory and circulatory systems [17,20]:

- 5-HT$_{2B}$ receptors directly and positively regulate the activity of serotonin neurons;
- There are reports of the antidepressant properties of selective 5-HT$_{2B}$ receptor agonists;
- Potential new antidepressants acting on 5-HT$_{2B}$ receptors may adversely affect the function of the respiratory and circulatory systems.

3.6. The 5-HT$_{2C}$ Receptors

The 5-HT$_{2C}$ receptors are mainly located in the choroid plexuses, cerebral cortex, hippocampus, substantia nigra, and cerebellum. They bind preferentially with Gq/11 and increase the concentrations of inositol phosphates and cytosolic Ca$^{2+}$. Like 5-HT$_{2A}$ receptors, they are involved in the regulation of mood, motor behavior, and appetite [178].

Several classes of antidepressants have an affinity for 5-HT$_{2C}$ receptors. Although these receptors are usually somatodendritic, in some regions they are also present on axon terminals [179]. The location of 5-HT$_{2C}$ receptors in relation to serotonergic and GABAergic neurons in the anterior raphe nuclei demonstrates complex systemic relationships in the brain. It has been shown that 5-HT$_{2C}$ receptors are preferentially located on GABAergic interneurons (and not on serotonergic neurons). This suggests that the stimulation of GABAergic interneurons by 5-HT$_{2C}$ receptors plays an important role in the suppression of serotonergic cell firing in the dorsal raphe and surrounding areas [180]. The immunoreactivity of the 5-HT$_{2C}$ receptor has also been described in GABAergic cells in the PFC [181] and in the dopaminergic and GABAergic neurons of the mesolimbic pathway [182].

A potent 5-HT$_{2C}$ receptor antagonist, S32006 (Figure 6), showed antidepressant activity in rodent behavioral tests and increased dopamine and norepinephrine levels in the frontal cortex [183]. This compound reduced immobility in the FST in mice, suppressed anhedonia in a chronic mild stress model, and increased cell proliferation and BDNF expression in the dentate gyri of rats [183]. In contrast, the inverse agonist of the 5-HT$_{2C}$ receptor,
S32212, showed an antidepressant effect in the FST in rats after both acute and chronic treatment [184].

On the other hand, some studies report that 5-HT\(_{2C}\) agonists have been shown to be active in animal models of depression, suggesting an antidepressant-like effect [185,186]. WAY-163909, a selective 5-HT\(_{2C}\) receptor agonist, elicited a rapid antidepressant effect in a rat FST that was blocked by the 5-HT\(_{2C}/2B\) receptor antagonist, SB206553 [186]. Moreover, after chronic treatment, WAY163909 reduced the hyperactivity associated with olfactory bulbectomy in rats [186,187]. It is possible that the mediated antidepressant effects of these compounds were due to the stimulation of 5-HT\(_{2C}\) receptors and the resulting activation of postsynaptic serotonin receptors [188]. Other selective 5-HT\(_{2C}\) receptor agonists have also been effective in animal models of depression and obsessive–compulsive disorder [189].

Preclinical data show that the antagonism of 5-HT\(_{2C}\) receptors increases the neurochemical and behavioral effects of SSRIs. Examples include: the increase in the effect of SSRIs on extracellular 5-HT concentrations in the hippocampus and cortex [190,191], or a significant increase in the effect of SSRIs in behavioral models of depression by selective and non-selective 5-HT\(_{2C}\) antagonists [190].

Additionally, 5-HT\(_{2C}\) receptors have been shown to be involved in the anti-immobility effect of antidepressants in the FST, increasing the serotonin level in the synapse [192]. Few studies suggest that 5-HT\(_{2C}\) receptor antagonists alone may also exhibit antidepressant-like properties. The inactivation of 5-HT\(_{2C}\) receptors has been shown to potentiate SSRI-induced serotonin release in rodents [190]. However, 5-HT\(_{2C}\) receptor antagonists administered separately had no effect on serotonin levels [191].

An altered editing of the mRNA-encoding 5-HT\(_{2C}\) receptors has been reported in the PFC of depressed suicide victims [193]. The desensitization of these receptors has been observed in patients after chronic treatment with SSRIs [194].

The 5-HT\(_{2C}\) receptors are also involved in the tonic modulation of dopaminergic activity [195]. The role of the dopaminergic system in schizophrenia, along with the antagonism of atypical antipsychotics towards the 5-HT\(_{2C}\) receptors, has aroused interest in this receptor for the treatment of schizophrenia [196]. Conversely, the ineffectiveness of SSRIs in some patients may be due to the serotonin-related inhibition of the neuronal activity of dopamine in the ventral capping region via 5-HT\(_{2C}\) receptors [157]. Escitalopram has been shown to reduce the stimulation of dopamine neurons by activating 5-HT\(_{2C}\) receptors located on GABA neurons. Some studies indicate that the co-administration of SSRIs with 5-HT\(_{2C}\) receptor antagonists (including atypical antipsychotics, such as aripiprazole) may eliminate the inhibitory effects on dopaminergic neurons in rat brains and restore the effect of the SSRI [163]. The aforementioned 5-HT\(_{2C}\) receptor antagonist S32006, with a potential antidepressant- and anxiolytic-like effect, increased dopamine levels in the frontal cortex of rats and enhanced dopaminergic neuron firing [183]. The modulation of dopaminergic activity may, therefore, be beneficial in the development of antidepressants due to the above-mentioned activity of 5-HT\(_{2C}\) receptor ligands. Recent studies demonstrate the contradictory effect of 5-HT\(_{2C}\) receptors on the effects of SSRIs on motor function and affective behavior, highlighting the potential benefits of 5-HT\(_{2C}\) receptor antagonists both for reducing SSRI motor side effects and enhancing the therapeutic antidepressant and anxiolytic effects [197].

![5-HT\(_{2C}\) receptor ligands: S32006, S32212, WAY-163909 and SB206553.](image-url)
Both 5-HT₂C receptor agonists and antagonists exhibit antidepressant-like activity, and there is still a need to further define the role of this receptor subtype in depression:

- Several classes of antidepressants have an affinity for 5-HT₂C receptors. Alterations in their functional status have been observed in depressive and anxiety states;
- Both 5-HT₂C agonists and antagonists have been shown to be active in animal models of depression. Preclinical data show that the antagonism of 5-HT₂C receptors increases the neurochemical and behavioral effects of SSRIs;
- There is still a need to further define the role of 5-HT₂C receptor subtype in depression.

### 3.7. The 5-HT₃ Receptors

The activation of the 5-HT₃ receptor leads to a rapid opening of the transmembrane channel, resulting in an increase in the conductivity of Na⁺/K⁺ ions and an immediate influx of extracellular Ca²⁺ ions. This, in turn, triggers the release of neurotransmitters and/or peptides. The 5-HT₃ receptors are found throughout the brain and CNS and the highest density of 5-HT₃ receptors was found in the spinal cord and brainstem. The 5-HT₃ receptors present in the dorsal vagal complex are involved in the control of the emetic mechanism [142]. Many 5-HT₃ receptor antagonists have been developed as antiemetics for use in cancer chemotherapy. In the 1990s, lithoxetine, an antidepressant combining serotonin reuptake and 5-HT₃ receptor antagonism, was developed to prevent SSRI-induced gastrointestinal side effects [198]. In the forebrain, on the other hand, 5-HT₃ receptors were present mainly in structures of the limbic system, such as the hippocampus, amygdala, and entorhinal cortex [199].

The 5-HT₃ receptors are involved in the control of dopamine and acetylcholine release. They also control the functioning of the GABAergic system. Activity towards other neurotransmission systems is the main mechanism of action for 5-HT₃ receptor ligands. The 5-HT₃ receptors are expressed on different types of GABAergic interneurons in the forebrain [200,201]. The physiological stimulation of serotonergic neurons stimulates cortical (and possibly hippocampal) GABAergic neurons. This likely results in the inhibition of neighboring excitatory neurons by GABA[A] and GABA[B] receptors [201].

Preclinical studies suggest that the 5-HT₃ receptor plays a role in mental disorders [17]. The 5-HT₃ antagonists show antidepressant-like activity in various animal models [202]. The systemic administration of tropisetron (a 5-HT₃ receptor antagonist) prevented restraint stress-induced dopamine release in the nucleus accumbens and prefrontal cortex in rats. This suggested that 5-HT₃ receptors mediated the stress-dependent activation of dopaminergic neurotransmission [203]. Tropisetron additionally exerted an antidepressant-like effect in FST in rats. This effect was abolished after a pretreatment with mCPGB (1-(m-chlorophenyl)-biguanide), a potent 5-HT₃ receptor agonist (Figure 7) [204].

![Figure 7. 5-HT₃ receptor ligands: tropisetron and mCPGB.](image)

Some antidepressants with different mechanisms of action exhibit functional 5-HT₃ receptor antagonism [205]. Chronic treatment with fluoxetine desensitizes 5-HT₃ receptors [206], and SERT knockout mice show increased 5-HT₃ receptor density compared to wild-type mice [207]. It has been suggested that the antidepressant effect of SSRIs is partially dependent on the blockade of 5-HT₃ receptors [208]. The relatively new multimodal antidepressant drug vortioxetine [209,210] displays nanomolar binding affinities to the SERT (Kᵢ = 1.6 nM) and other serotonin receptors, including 5-HT₃, 5-HT₁₇, 5-HT₇,
5-HT1B and 5-HT1D, with Ki values of 3.7 nM, 15 nM, 19 nM, 33 nM and 54 nM, respectively [102]. Vortioxetine antagonism at the 5-HT3 receptor [211] may underlie its faster onset of action [212]. Rodent experiments show that the antidepressant-like effect should be attributed to postsynaptic, rather than presynaptic, 5-HT3 antagonism, since the presynaptic and somatodendritic 5-HT3 receptor blockade reduces serotonin levels [203]. The antidepressant and/or anxiolytic effects recently demonstrated by some 5-HT3 receptor antagonists in animal models of depression may result from the modulation of the hypothalamic–pituitary-adrenal axis, interaction with the serotonergic system, or antioxidant properties [213–218].

The agonism of the 5-HT3 receptor reduces the antidepressant effect in the FST in rats [219], while the antagonism of the 5-HT3 receptor reduces the immobility time in the FST [220]. Ondansetron, a 5-HT3 receptor antagonist, confirms these observations; it exhibits antidepressant properties in the TST (tail suspension test) and FST, also enhancing the effect of fluoxetine [220]. In a model of chronic unpredictable stress in mice, the administration of ondansetron reversed depressive behavior affecting the hypothalamic-pituitary-adrenal axis [221]. Moreover, in mice with streptozotocin-induced diabetes, the drug displayed antidepressant and anxiolytic properties, possibly through the antagonism of the 5-HT3 receptor [222]. Behavioral studies with ondansetron (and tropisetron) also suggested an interaction of 5-HT3 and NMDA receptors, as well as an involvement of the nitric oxide-cyclic guanosine monophosphate pathway inhibition in the observed antidepressant-like effects [223,224]. Studies on genetically modified animals confirm the role of 5-HT3 receptors in the antidepressant effect. The 5-HT3 receptor knockout mice were reported to display an antidepressant-like phenotype [225].

In vitro electrophysiology studies showed that low-dose citalopram treatment desensitized the 5-HT1A receptor only in the dorsal raphe nucleus of 5-HT3 knockout mice, while high dose treatment caused similar 5-HT1A autoreceptor desensitization in 5-HT3 knockout and wild types [225]. Hence, lower doses of citalopram may be effective when 5-HT3 receptors are deactivitated. It has also been shown that the blockade of the 5-HT3 receptor by ondansetron enhances the effect of citalopram on extracellular serotonin levels in the rat forebrain [102]. The use of combined SSRIs and 5HT3 receptor antagonists is proposed as an improvement strategy to be tested in the treatment of depressive disorders [226]. The neurochemical, electrophysiological, and behavioral consequences of the repeated administration of this drug combination will need to be assessed.

The properties of 5-HT3 receptor antagonists have also been used to alleviate substance abuse, which is often associated with most psychiatric disorders, including MDD [227]. The 5-HT3 receptor antagonists have been reported to be effective in reducing ethanol and morphine intake [228]. It is worth noting that various antipsychotics are non-competitive 5-HT3 receptor antagonists, and this may contribute to their efficacy [229]. There is likely to be an association between 5-HT3 receptors and anxiety behavior [230]. The 5-HT3 antagonists reverse helpless behavior in rats [231] and abolish the emotion-potentiated startle effect in humans [232]:

- Activity towards other neurotransmission systems is the main mechanism of action for 5-HT3 receptor ligands;
- Rodent experiments show that the antidepressant-like effect should be attributed to postsynaptic rather than presynaptic 5-HT3 antagonism, since the presynaptic and somatodendritic 5-HT3 receptor blockade reduces serotonin levels;
- Some antidepressants with different mechanisms of action exhibit functional 5-HT3 receptor antagonism. The vortioxetine antagonism at the 5-HT3 receptor may underlie its faster onset of action.

3.8. The 5-HT4 Receptors

The 5-HT4 receptors in the CNS are mainly located in the putamen, caudate nucleus, hippocampus, nucleus accumbens, globus pallidus, and substantia nigra. To a lesser extent, these receptors are present in the neocortex, raphe and pontine nuclei, and thalamus [233].
Studies using positron emission tomography show a slightly more limited regional distribution of 5-HT4 receptors in the human brain, showing a high density of this receptor in the caudate–putamen and much lower densities in the frontal cortex and hippocampus [234]. The 5-HT4 receptors are coupled to the Gs protein, which activates adenylate cyclase/PKC and increases the intracellular level of cAMP. Regarding peripheral tissues, these receptors play an important role in the heart, gastrointestinal tract, adrenal glands, and urinary bladder [235].

There are reports linking the 5-HT4 receptor with depressive disorders [236]. Preclinical models of depression, such as the olfactory bulbectomized and glucocorticoid heterozygous receptor mice, show that the expression of 5-HT4 receptors increased in the ventral hippocampus or striatum, respectively [237], while in the Flinders-sensitive line rat model of depression, the downregulation of 5-HT4 receptors was observed in the ventral and dorsal hippocampus [238].

The 5-HT4 receptor subtype is involved in the modulation of synaptic plasticity [239], which is influenced by antidepressants [240]. The signaling of the 5-HT4 receptor may modulate the function of the dentate gyrus of the hippocampus by increasing the neurogenesis and expression of neurotrophic factors, which may contribute to the antidepressant effects of drugs that enhance serotonergic transmission [241]. The 5-HT4 receptor interacts with the p11 protein, which determines the antidepressant activity mediated by 5-HT1B and 5-HT4 receptors [242].

In addition, 5-HT4 knockout mice show an enhanced response of serotonergic neurons to citalopram [243]. Thus, 5-HT4 receptors are possibly involved in the activation of 5-HT neurons during SERT inhibition. As observed for 5-HT1A and 5-HT2A receptors [37,40], 5-HT4 receptors in the PFC control the firing rate of midbrain serotonergic neurons via descending inputs [244]. In addition, 5-HT4 receptors mediate synaptic transmission between the dentate gyrus and the CA3 field of the hippocampus. Fluoxetine was observed to normalize the mossy fiber pathway by activating 5-HT4 receptors [245]. Chronic treatment with fluoxetine and venlafaxine (but not reboxetine) decreased the 5-HT4 receptor density in rat brain [246]. Although the 5-HT4 receptor antagonist, SB 204070A, showed no independent effect and did not reduce the immobility time in the FST in naive rats [247], another receptor antagonist, GR 125487, blocked fluoxetine activity in a mouse corticosterone-induced depression model [248]. Therefore, this study suggests that the activation of 5-HT4 receptors mediates the antidepressant-like effects of fluoxetine. It has been shown that a knockout of the 5-HT4 receptor can induce some adaptive changes in mice, leading to depression and anxiety-like behavior. Moreover, 5-HT4 receptor knockout mice do not respond to fluoxetine in the olfactory bulbectomized model of depression and anxiety [249]. On the other hand, some studies suggest that the behavioral effects of fluoxetine in the corticosterone-induced model of depression and anxiety do not appear to be dependent on 5-HT4 receptors [250].

Preclinical studies show that the administration of the 5-HT4 agonists, RS67333 and prucalopride (Figure 8), reduces the immobility time in the FST, thus demonstrating the potential of the 5-HT4 receptor as a molecular target of a potential new generation of antidepressants [251]. The agonism of the 5-HT4 receptor may also play a role in the cognitive deficits associated with MDD. The use of RS67333 in chronic neuroendocrine animal models of depression/anxiety resulted in the restoration of induced learning and memory disorders [252]. Moreover, the studies show that administration of RS67333 and prucalopride causes 5-HT1A autoreceptor desensitization, increased the tonic on hippocampal postsynaptic 5-HT1A receptors, and increased CREB phosphorylation and neurogenesis in the hippocampus [251]. These parameters, which characterize the functioning of the brain, are used in antidepressant therapies. Importantly, these effects are noticeable after 3 days of treatment [251], while they are usually only seen after 2–3 weeks of treatment with SSRIs due to the latency phenomenon. The faster response to 5-HT4 agonism has been suggested to be a result of the parallel rapid and sustained activation of 5-HT neuronal firing in the dorsal raphe nucleus [253]. Increased serotonergic neuronal firing may also
underlie the apparently superior efficacy of 5-HT\textsubscript{4} agonists over SSRIs because the reuptake inhibitory effect depends on the basal rates of 5-HT cell firing. Since the 5-HT\textsubscript{4} receptor is not expressed in the raphe nuclei, the ability of 5-HT\textsubscript{4} receptors to stimulate the firing of 5-HT neurons appears to involve the activation of receptors located on neurons in the PFC [244]. The identity of the cells expressing 5-HT\textsubscript{4} receptors and their connections to the serotonergic neurons of the dorsal raphe nucleus are not yet well understood. It is possible that they project to other regions, contributing to the antidepressant effect of 5-HT\textsubscript{4} agonists [253].

![Figure 8. 5-HT\textsubscript{4} receptor agonists: RS67333 and prucalopride.](image)

The activation of the 5-HT\textsubscript{4} receptor may be a useful adjunct to antidepressant therapy, both to accelerate the onset of clinical antidepressant effects and to target cognitive symptoms that are not effectively treated with current therapies [254]:

- There are reports linking the 5-HT\textsubscript{4} receptor with depressive disorders. The 5-HT\textsubscript{4} receptor interacts with the p11 protein, which determines the antidepressant activity mediated by 5-HT\textsubscript{1B} and 5-HT\textsubscript{4} receptors;
- 5-HT\textsubscript{4} receptor signaling may modulate the function of the dentate gyrus of the hippocampus by increasing the neurogenesis and expression of neurotrophic factors, which may contribute to the antidepressant effects of drugs that enhance serotonergic transmission.
- The activation of the 5-HT\textsubscript{4} receptor may be a useful adjunct to antidepressant therapy, both to accelerate the onset of clinical antidepressant effects and to target cognitive symptoms that are not effectively treated with current therapies.

3.9. The 5-HT\textsubscript{6} Receptors

The 5-HT\textsubscript{6} receptors are the postsynaptic receptors most expressed in the striatum, nucleus accumbens, olfactory tubercle, and cortex. They are also moderately dense in the amygdala, hippocampus, hypothalamus, thalamus, and cerebellum [255].

This serotonin receptor subtype has been found to play a role in learning and memory [256] as well as in the central regulation of hunger and satiety behavior [257]. The 5-HT\textsubscript{6} receptors may, therefore, serve as a novel molecular target for the improvement of cognitive functions [258]. Several of the tricyclic antidepressants (e.g., amitriptyline) and atypical antidepressants (e.g., mianserin) exhibit nanomolar 5-HT\textsubscript{6} binding and antagonistic activity [259]. This fact, as well as the distribution of the 5-HT\textsubscript{6} receptor in the limbic and cortical regions of the brain, may suggest that 5-HT\textsubscript{6} receptors play an important role in the pathogenesis and/or treatment of depression [259]. The 5-HT\textsubscript{6} antagonists (SB-399885, Figure 9) show antidepressant activity in the FST and in the TST in rodents (rats and mice) [260]. In addition, the combination of an ineffective dose of SB-399885 with ineffective doses of imipramine, desipramine, bupropion, or moclobemide has been shown to exert antidepressant effects in the rat FST [261]. This suggests that the inhibition of the 5-HT\textsubscript{6} receptor potentiates the effects of clinically used antidepressants. This synergistic effect is interesting in the search for a multimodal antidepressant therapy with minimized side effects or a faster onset of action. Other preclinical studies show that 5-HT\textsubscript{6} agonism can be used in the treatment of depression. The reduction in the immobility
of mice in the FST after the administration of WAY208466, a selective potent agonist of the 5-HT6 receptor, has been demonstrated [262]. The 5-HT6 receptor partial agonist, EMD386088, caused antidepressant- and anxiolytic-like effects after intrahippocampal administration [263]. This also occurred after acute and chronic treatment in rats [264], possibly because it directly stimulated the receptor. The stimulation of the 5-HT6 receptor may initiate the biochemical and behavioral effects induced by SSRIs (fluoxetine) [122]. On the other hand, the 5-HT6 receptor agonist LY-586713 increases the expression of BDNF (a marker of cellular antidepressant activity) in the hippocampus after just a single administration [265]. In comparison, SSRIs require multiple applications to produce the same effect [240]. Therefore, it is unclear what functional 5-HT6 receptor ligand profile (antagonism or agonism) will be more beneficial in the treatment of depression. Moreover, the exact mechanism by which 5-HT6 ligands induce antidepressant effects is unknown and may include effects on other neurotransmission systems [260,266]:

- The distribution of the 5-HT6 receptor in the limbic and cortical regions of the brain may suggest that 5-HT6 receptors play an important role in the pathogenesis and/or treatment of depression;
- Several tricyclic and atypical antidepressants exhibit nanomolar 5-HT6 receptor binding. The inhibition of the 5-HT6 receptor potentiates the effects of clinically used antidepressants. This synergistic effect is interesting in the search for a multimodal antidepressant therapy with minimized side effects or a faster onset of action;
- It is not exactly clear what functional 5-HT6 receptor ligand profile (agonism or antagonism) will be more beneficial in the treatment of depression. Moreover, the exact mechanism by which 5-HT6 ligands induce antidepressant effects is unknown and may include effects on other neurotransmission systems.

3.10. The 5-HT7 Receptors

The 5-HT7 receptor is highly expressed in the thalamus, hypothalamus, hippocampus, and cortex [267]. The results of immunolocation and autoradiography studies are generally consistent with the pattern of mRNA distribution [268,269], suggesting a dominant somatodendritic localization. The physiological role of 5-HT7 receptors is to regulate circadian rhythm, sleep, and mood [270].

As with the 5-HT6 receptors, several antidepressants [271] and antipsychotics [272] have been found to have a high affinity for the 5-HT7 receptor, leading to much further research into its antidepressant activity. One preclinical study in rats showed that several antidepressants, both tricyclic and SSRIs, induce c-fos expression in a manner consistent with 5-HT7 receptor activation within the suprachiasmatic nucleus, and that chronic treatment with antidepressant drugs downregulates 5-HT7 receptor binding [271].

Preclinical studies also indicate the antidepressant and anxiolytic effects of the selective 5-HT7 receptor antagonist, SB-269970, in rodents [273], as well as a synergistic interaction between subeffective doses of this agent and antidepressants, leading to a reduction in immobility in both the FST and the TST [274,275]. The intrahippocampal administra-
tion of SB-269970 (Figure 10) induced an antidepressant effect in the FST in rats [276]. The co-administration of citalopram and SB-269970 increased the activity of serotonin neurons in rats and improved the antidepressant effect in the TST [274]. SB-269970 enhanced the antidepressant effect of antidepressants (citalopram, imipramine, desipramine, and moclubemide) in the FST in mice [275]. It was also shown that the administration of SB-269970 for only one week caused the behavioral, electrophysiological, and neuroanatomical changes that usually occur after a long-term treatment with SSRIs. Therefore, 5-HT$_7$ receptor antagonists might represent a new class of antidepressants with a faster therapeutic effect. JNJ-18038683, another 5-HT$_7$ receptor antagonist, was also effective in mice TST [277]. Moreover, the compound potentiated serotonin transmission, REM suppression, and antidepressant-like behaviour induced by citalopram in rodents [277]. The above studies indicate that the participation of the 5-HT$_7$ receptor in the antidepressant-like action, and blockade of the 5-HT$_7$ receptor may not only induce but accelerate this action.

![Figure 10. 5-HT$_7$ receptor antagonists: SB-269970 and JNJ-18038683.](image)

In addition, the genetic and pharmacological inactivation of 5-HT$_7$ receptors partially reversed phencyclidine-induced deficits of pre-pulse inhibition, an animal model for antipsychotic activity [278]. Similarly, it should also be noted that the atypical antipsychotic aripiprazole, which has a high affinity for the 5-HT$_7$ receptor, is sometimes used to enhance the effects of traditional antidepressants [279]. Similarly, there are reports that the antidepressant effect of amisulpride is mediated by its action on 5-HT$_7$ receptors [280].

Vortioxetine is a high affinity inhibitor of the human 5-HT transporter, 5-HT$_3$ and 5-HT$_7$ receptors, and a 5-HT$_{1A}$ agonist [281]. Although the affinity of vortioxetine for the rat 5-HT$_7$ receptor is lower compared to the human receptor [282], subacute administration (within 3 days) of an effective dose of vortioxetine rapidly lowers rat 5-HT$_7$ receptor levels [283]. This preclinical evidence suggests that vortioxetine has a relatively low affinity for the 5-HT$_7$ receptor compared to other 5-HT receptor subtypes but inhibits its action with a rapid 5-HT$_7$ receptor downregulation as an inverse agonist, similar to other 5-HT$_7$ receptor-inhibiting mood-stabilizing atypical antipsychotics: clozapine, lurasidone, and olanzapine [283,284]. In other words, the rapid-acting antidepressant and anxiolytic actions of 5-HT$_7$ receptor antagonism are worth reassessing in the context of drug development after future clinical data have been accumulated. Overall, the 5-HT$_7$ receptor is currently considered a promising target for the development of antidepressants [285]. Recent clinical studies have shown that both the intravenous and oral administration of vortioxetine resulted in a significant improvement in depression (Montgomery Åsberg Depression Rating Scale and Hospital Depression Scale) and anxiety (Hospital Anxiety Scale) after 3 days [77]:

- Several antidepressants have been found to have a high affinity for the 5-HT$_7$ receptor, leading to much further research into its antidepressant activity;
- The antagonists of the 5-HT$_7$ receptor might represent a new class of antidepressants with a faster therapeutic effect.
- Preclinical evidence suggests that vortioxetine has a relatively low affinity for the 5-HT$_7$ receptor compared to other 5-HT receptor subtypes but inhibits its action with a rapid 5-HT$_7$ receptor downregulation as an inverse agonist. Both the intravenous and
oral administration of vortioxetine resulted in a significant improvement in depression and anxiety after 3 days.

4. Conclusions

The development of new antidepressants is based on monoamine systems. The targeted pharmacological modulation of serotonergic transmission in the brain continues to be a leading strategy in the search for new antidepressants. As can be seen from this review, the serotonergic system offers great potential for the development of new antidepressant therapies based on the combination of SERT inhibition with different pharmacological activities towards the 5-HT system. The careful selection of molecular targets for the proper use of the mechanisms of serotonergic autoregulation and selective/biased activation or the blockade of relevant receptors (e.g., stimulation of postsynaptic 5-HT$_{1A}$, postsynaptic 5-HT$_{1B}$, 5-HT$_{2B}$ and 5-HT$_{4}$ receptors; or the blockade of presynaptic 5-HT$_{1A}$, presynaptic 5-HT$_{1B}$, 5-HT$_{2A}$, 5-HT$_{3}$, and 5-HT$_{7}$), which also influences other neurotransmission systems, seems to be the most effective strategy for supplementing the activity of “serotonin-enhancing” drugs in the near future. A better understanding of receptors and the receptor signaling responsible for the effects of serotonin on neurogenesis could also help in the development of new and more effective drugs.

Author Contributions: Conceptualization, G.S.; writing—original draft preparation, G.S.; writing—review and editing, M.K. and J.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Medical University of Warsaw. This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1838. [CrossRef]

2. Ögren, S.O.; Eriksson, T.M.; Elvander-Tottie, E.; D’Addario, C.; Ekström, J.C.; Svenningsson, P.; Meister, B.; Kehr, J.; Stiedl, O. The role of 5-HT$_{1A}$ receptors in learning and memory. Behav. Brain Res. 2008, 195, 54–77. [CrossRef]

3. Day, J.J.; Sweatt, J.D. Epigenetic Treatments for Cognitive Impairments. Neuropsychopharmacology 2012, 37, 247–260. [CrossRef]

4. Sheehan, D.V.; Nakagome, K.; Asami, Y.; Pappadopulos, E.A.; Boucher, M. Restoring function in major depressive disorder: A systematic review. J. Affect. Disord. 2017, 215, 299–313. [CrossRef]

5. Sharp, T.; Cowen, P.J. 5-HT and depression: Is the glass half-full? Curr. Opin. Pharmacol. 2011, 11, 45–51. [CrossRef]

6. Wiles, N.J.; Fischer, K.; Cowen, P.; Nutt, D.; Peters, T.J.; Lewis, G.; White, I.R. Allowing for non-adherence to treatment in a randomized controlled trial of two antidepressants (citalopram versus reboxetine): An example from the GENPOD trial. Psychol. Med. 2014, 44, 2855–2866. [CrossRef]

7. Turcotte, J.E.; Debonnel, G.; De Montigny, C.; Hébert, C.; Blier, P. Assessment of the serotonin and norepinephrine reuptake blocking properties of duloxetine in healthy subjects. Neuropsychopharmacology 2001, 24, 511–521. [CrossRef]

8. Cleare, A.; Pariente, C.; Young, A.; Anderson, I.; Christmas, D.; Cowen, P.; Dickens, C.; Ferrier, I.; Geldes, J.; Gilbody, S.; et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J. Psychopharmacol. 2015, 29, 459–525. [CrossRef]

9. Bauer, M.; Bschor, T.; Pfennig, A.; Whybrow, P.C.; Angst, J.; Versiani, M.; Möller, H.-J. World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders in Primary Care. World J. Biol. Psychiatry 2007, 8, 67–104. [CrossRef]

10. Harmer, C.J.; Duman, R.S.; Cowen, P.J. How do antidepressants work? New perspectives for refining future treatment approaches. Lancet Psychiatry 2017, 4, 409–418. [CrossRef]

11. Rana, T.; Behl, T.; Sehgal, A.; Mehta, V.; Singh, S.; Kumar, R.; Bungau, S. Integrating Endocannabinoid Signalling In Depression. J. Mol. Neurosci. 2021. [CrossRef]
12. Rana, T.; Behl, T.; Sehgal, A.; Mehta, V.; Singh, S.; Sharma, N.; Bungau, S. Elucidating the Possible Role of FoxO in Depression. Neurochem. Res. 2021. [CrossRef] [PubMed]

13. Rana, T.; Behl, T.; Sehgal, A.; Sachdeva, M.; Mehta, V.; Sharma, N.; Singh, S.; Bungau, S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem. Res. 2021, 46, 1589–1602. [CrossRef] [PubMed]

14. Rana, T.; Behl, T.; Sehgal, A.; Srivastava, P.; Bungau, S. Unfolding the Role of BDNF as a Biomarker for Treatment of Depression. J. Mol. Neurosci. 2020. [CrossRef]

15. Millan, M.J. On “polypharmacy” and multi-target agents, complementary strategies for improving the treatment of depression: A comparative appraisal. Int. J. Neuropsychopharmacol. 2014, 17, 1009–1037. [CrossRef]

16. Duhr, F.; Délérès, P.; Raynaud, F.; Séveno, M.; Morisset-Lopez, S.; Mannoury la Cour, C.; Millan, M.J.; Bockaert, J.; Marin, P.; Chaumont-Dubel, S. Cdk5 induces constitutive activation of 5-HT6 receptors to promote neurite growth. Nat. Chem. Biol. 2014, 10, 590–597. [CrossRef]

17. ˙Zmudzka, E.; Sałaciak, K.; Sapa, J.; Pytka, K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci. 2018, 210, 106–124. [CrossRef]

18. Miller, J.M.; Hesselgrave, N.; Ogden, R.T.; Zanderigo, F.; Oquendo, M.A.; Mann, J.J.; Parsey, R.V. Brain Serotonin 1A Receptor Binding as a Predictor of Treatment Outcome in Major Depressive Disorder. Biol. Psychiatry 2013, 74, 760–767. [CrossRef]

19. Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in Major Depressive Disorder. Eur. Neuropsychopharmacol. 2016, 26, 397–410. [PubMed]

20. Artigas, F. Serotonin receptors involved in antidepressant effects. Pharmacol. Ther. 2013, 137, 119–131. [CrossRef]

21. Artigas, F. Developments in the field of antidepressants, where do we go now? Eur. Neuropsychopharmacol. 2015, 25, 657–670. [CrossRef]

22. Perez-Caballero, L.; Torres-Sanchez, S.; Romero-López-Alberca, C.; González-Saiz, F.; Mico, J.A.; Berrocoso, E. Monoamineergic system and depression. Cell Tissue Res. 2019, 377, 107–113. [CrossRef]

23. Albert, P.R.; Vahid-Ansari, F. The 5-HT1A receptor: Signaling to behavior. Biochimie 2018, 161, 34–45. [CrossRef]

24. Haleem, D.J. Targeting Serotonin1A Receptors for Treating Chronic Pain and Depression. Curr. Neuropsychopharmacol. 2019, 17, 1098–1108. [CrossRef]

25. Artigas, F.; Bortolozzi, A.; Celada, P. Can we increase speed and efficacy of antidepressant treatments? Part I: General aspects and monoamine-based strategies. Eur. Neuropsychopharmacol. 2018, 28, 445–456. [CrossRef]

26. Kishi, T.; Meltzer, H.Y.; Matsuda, Y.; Iwata, N. Azapirone 5-HT1A receptor partial agonist treatment for major depressive disorder: Systematic review and meta-analysis. Psychol. Med. 2014, 44, 2255–2269. [CrossRef]

27. Sahli, Z.T.; Banerjee, P.; Tarazi, F.I. The Preclinical and Clinical Effects of Vilazodone for the Treatment of Major Depressive Disorder. Expert Opin. Drug Discov. 2016, 11, 515–523. [CrossRef]

28. James Deardorff, W.; Grossberg, G.T. A review of the clinical efficacy, safety and tolerability of the antidepressants vilazodone, vortioxetine, and reboxetine. Expert Opin. Pharmacother. 2014, 15, 2525–2542. [CrossRef]

29. Jonnakuty, C.; Gragnoli, C. What do we know about serotonin? J. Cell. Physiol. 2008, 217, 301–306. [CrossRef]

30. Banerjee, P.; Mehta, M.; Kanjilal, B. The 5-HT1A Receptor: A Signaling Hub Linked to Emotional Balance; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2007; Chapter 7; ISBN 0849339774.

31. Hasegawa, H.; Nakamura, K. Kryptophan Hydrolyase and Serotonin Synthesis Regulation. In Handbook of Behavioral Neuroscience; Elsevier B.V.: Amsterdam, The Netherlands, 2010; Volume 21, pp. 183–202. ISBN 9780123746344.

32. Hasegawa, H.; Nakamura, K. Kryptophan Hydrolyase and Serotonin Synthesis Regulation. In Handbook of Behavioral Neuroscience; Elsevier B.V.: Amsterdam, The Netherlands, 2010; Volume 21, pp. 183–202. ISBN 9780123746344.

33. Manocha, M.; Khan, W.I. Serotonin and GI Disorders: An Update on Clinical and Experimental Studies. Clin. Transl. Gastroenterol. 2012, 3, e13. [CrossRef]

34. Savitz, J.; Lucki, I.; Drevets, W.C. 5-HT1A receptor function in major depressive disorder. Prog. Neurobiol. 2009, 88, 17–31. [CrossRef]

35. Smythies, J. Section V. Serotonin System. Int. Rev. Neurobiol. 2005, 64, 217–268. [CrossRef]

36. Diksic, M.; Young, S.N. Study of the brain serotonergic system with labeled α-methyl-l-tryptophan. J. Neurochem. 2001, 78, 1185–1200. [CrossRef] [PubMed]

37. Jacobs, B.L.; Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992, 72, 165–229. [CrossRef]

38. Celada, P.; Puig, M.V.; Casanovas, J.M.; Guillazo, G.; Artigas, F. Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J. Neurosci. 2001, 21, 9917–9929. [CrossRef]

39. O’Leary, O.F.; Bechtholt, A.J.; Crowley, J.J.; Valentino, R.J.; Lucki, I. The role of noradrenergic tone in the dorsal raphe nucleus of the mouse in the acute behavioral effects of antidepressant drugs. Eur. Neuropsychopharmacol. 2007, 17, 215–226. [CrossRef]

40. Varga, V.; Székely, A.D.; Csillag, A.; Sharp, T.; Hajós, M. Evidence for a role of GABA interneurons in the cortical modulation of midbrain 5-hydroxytryptamine neurons. Neuroscience 2001, 106, 783–792. [CrossRef]

41. Martin-Ruiz, R.; Úbedo, L.; Honrubia, M.A.; Mengod, G.; Artigas, F. Control of serotonergic neurons in rat brain by dopaminergic receptors outside the dorsal raphe nucleus. J. Neurochem. 2001, 77, 762–775. [CrossRef]

42. Ohno, Y. Serotonin Receptors as the Therapeutic Target for Central Nervous System Disorders; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128000502.

43. Santana, N.; Bortolozzi, A.; Serrats, J.; Mengod, G.; Artigas, F. Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb. Cortex 2004, 14, 1100–1109. [CrossRef]
43. Riad, M.; García, S.; Watkins, K.C.; Jodoin, N.; Doucet, É.; Langlois, X.; El Mestikawy, S.; Hamon, M.; Descaries, L. Somatoden-dritic localization of 5-HT\textsubscript{1A} and preterminal axonal localization of 5-HT\textsubscript{1B} serotonin receptors in adult rat brain. J. Comp. Neurol. 2000, 417, 181–194. [CrossRef]

44. Liu, Y.F.; Ghahremani, M.H.; Rasenick, M.M.; Jakobs, K.H.; Albert, P.R. Stimulation of cAMP synthesis by G(i)-coupled receptors upon ablation of distinct Ga(i) protein expression. G(i) subtype specificity of the 5-HT\textsubscript{1A} receptor. J. Biol. Chem. 1999, 274, 16444–16450. [CrossRef]

45. Louie, C.; Bonnivion, P.J.; Macri, B.; Gomard, J.L.; Boni, C.; Melfort, M.; Leonard, G.; Lesch, K.P.; Adrien, J.; Jacquin, T.D. Gender-dependent regulation of G-protein-gated inwardly rectifying potassium current in dorsal raphe neurons in knock-out mice devoid of the 5-hydroxytryptamine transporter. J. Neurobiol. 2006, 66, 1475–1488. [CrossRef]

46. Halasy, K.; Miettenen, R.; Szabat, E.; Freund, T.F. GABAergic Interneurons are the Major Postsynaptic Targets of Median Raphe Afferents in the Rat Dentate Gyrus. Eur. J. Neurosci. 1992, 4, 144–153. [CrossRef]

47. Cassel, J.C.; Jeltsch, H. Serotonergic modulation of cholinergic function in the central nervous system: Cognitive implications. Neuropsychopharmacology 2011, 36, 1–41. [CrossRef]

48. Jeltsch-David, H.; Koenig, J.; Cassel, J.C. Modulation of cholinergic functions by serotonin and possible implications in memory: General data and focus on 5-HT\textsubscript{1A} receptors of the medial septum. Behav. Brain Res. 2008, 195, 86–97. [CrossRef]

49. Lopez-Gil, X.; Artigas, F.; Adell, A. Unraveling Monoamine Receptors Involved in the Action of Typical and Atypical Antipsychotics on Glutamatergic and Serotonergic Transmission in Prefrontal Cortex. Curr. Pharm. Des. 2010, 16, 502–515. [CrossRef]

50. Di Matteo, V.; Di Giovanni, G.; Pierucci, M.; Esposito, E. Serotonin control of central dopaminergic function: Focus on in vivo microdialysis studies. Prog. Brain Res. 2008, 172, 7–44. [CrossRef]

51. Andrade, R.; Nicoll, R.A. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J. Physiol. 1987, 394, 99–124. [CrossRef]

52. Newman-Tancredi, A. Biased agonism at serotonin 5-HT\textsubscript{1A} receptors: Preferential postsynaptic activity for improved therapy of CNS disorders. Neuropsychiatry 2011, 1, 149–164. [CrossRef]

53. Mehta, M.; Ahmed, Z.; Fernando, S.S.; Cano-Sanchez, P.; Adayev, T.; Ziemnicka, D.; Wieraszko, A.; Banerjee, P. Plasticity of 5-HT\textsubscript{1A} receptor-mediated signaling during early postnatal brain development. J. Neurochem. 2007, 101, 918–928. [CrossRef]

54. Kushwaha, N.; Albert, P.R. Coupling of 5-HT\textsubscript{1A} receptors: Preferential postsynaptic activity for improved therapy of CNS disorders. Trends Pharmacol. Sci. 2001, 22, 224–228. [CrossRef]

55. Heusler, P.; Pauwels, P.J.; Wurch, T.; Newman-Tancredi, A.; Tytgat, J.; Colpaert, F.C.; Cussac, D. Differential ion current responses in serotonin 5-HT\textsubscript{1A} receptors in Xenopus oocytes: Evidence for agonist-directed trafficking of receptor signalling. Neuropharmacology 2005, 49, 963–976. [CrossRef]

56. Validzian, E.M.; Castro, E.; Pazos, A. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT\textsubscript{1A} receptors in rat dorsal raphe nucleus. Int. J. Neuropsychopharmacol. 2011, 14, 835–843. [CrossRef]

57. Heisler, L.K.; Chu, H.-M.; Brennan, T.J.; Danao, J.A.; Bajwa, P.; Parsons, L.H.; Tecott, L.H. Elevated anxiety and antidepressant-like activity in rats via prefrontal cortex 5-HT\textsubscript{1A} receptors. J. Neurochem. 1998, 75, 15049–15054. [CrossRef]

58. Pytka, K.; Podkowa, K.; Papacz, A.; Podkowa, A.; Żmudzka, E.; Olczyk, A.; Sapa, J.; Filip, B. The role of serotoninergic, adrenergic and dopaminergic receptors in antidepressant-like effect. Pharmacol. Rep. 2016, 68, 263–274. [CrossRef]

59. Santarelli, L. Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants. Science 2003, 301, 805–809. [CrossRef]

60. Assié, M.B.; Bardin, L.; Auclair, A.L.; Carilla-Durand, E.; Depoortere, R.; Koek, W.; Kleven, M.S.; Colpaert, F.; Vacher, B.; Newman-Tancredi, A. F15599, a highly selective post-synaptic 5-HT\textsubscript{1A} receptor agonist: In-vivo profile in behavioural models of antidepressant and serotonergic activity. Int. J. Neuropsychopharmacol. 2010, 13, 1285–1298. [CrossRef]

61. Pytka, K.; Gluch-Lutwin, M.; Kołarśka, M.; Żmudzka, E.; Jakubczyk, M.; Waszkiewicz, A.; Janiszewska, P.; Walczak, M. HBK-15 protects mice from stress-induced behavioral disturbances and changes in corticosterone, BDNF, and NGF levels. Behav. Brain Res. 2017, 333, 54–66. [CrossRef]

62. Depoortere, R.; Auclair, A.L.; Newman-Tancredi, A. NLX-101, a highly selective 5-HT\textsubscript{1A} receptor biased agonist, mediates antidepressant-like activity in rats prefrontal cortex 5-HT\textsubscript{1A} receptors. Behav. Brain Res. 2021, 401, 113082. [CrossRef]

63. Albert, P.R.; Le François, B.; Millar, A.M. Transcriptional dysregulation of 5-HT\textsubscript{1A} autoreceptors in mental illness. Mol. Brain 2011, 4, 1–14. [CrossRef] [PubMed]

64. Terao, T.; Ishii, N.; Hirakawa, H.; Aoshima, E. Is the bell-shaped dose-response curve of the selective serotonin reuptake inhibitor due to 5-HT\textsubscript{1A} auto-receptors? Med. Hypotheses 2020, 140, 109681. [CrossRef]

65. Hervás, I.; Vilaró, M.T.; Romero, L.; Scorza, M.C.; Mengod, G.; Artigas, F. Desensitization of 5-HT(1A) autoreceptors by a low chronic fluoxetine dose effect of the concurrent administration of WAY-100635. Neuropsychopharmacology 2001, 24, 11–20. [CrossRef]

66. Artigas, F.; Celada, P.; Laruelle, M.; Adell, A. How does pindolol improve antidepressant action? Trends Pharmacol. Sci. 2001, 22, 224–228. [CrossRef]

67. Celada, P.; Artigas, F. Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat. Nauyn-Schmiedebergs Arch. Pharmacol. 1993, 347, 583–590. [CrossRef]

68. Blier, P.; De Montigny, C. Current advances and trends in the treatment of depression. Trends Pharmacol. Sci. 1994, 15, 220–226. [CrossRef]
69. Romero, L.; Bel, N.; Artigas, F.; De Montigny, C.; Blier, P. Effect of pindolol on the function of pre- and postsynaptic 5-HT(1A) receptors: In vivo microdialysis and electrophysiological studies in the rat brain. *Neuropsychopharmacology* 1996, 15, 349–360. [CrossRef]

70. El Mansari, M.; Sánchez, C.; Chouvet, G.; Renaud, B.; Haddjeri, N. Effects of acute and long-term administration of escitalopram and citalopram on serotonin neurotransmission: An in vivo electrophysiological study in rat brain. *Neuropsychopharmacology* 2005, 30, 1269–1277. [CrossRef]

71. Ohno, Y. New Insight into the Therapeutic Role of 5-HT1A Receptors in Central Nervous System Disorders. *Cent. Nerv. Syst. Agents Med. Chem.* 2010, 10, 148–157. [CrossRef]

72. Richardson-Jones, J.W.; Craigie, C.P.; Giuari, B.P.; Stephen, A.; Metzger, K.L.; Kung, H.F.; Gardier, A.M.; Dranovsky, A.; David, D.J.; Beck, S.G.; et al. 5-HT1A Autoreceptor Levels Determine Vulnerability to Stress and Response to Antidepressants. *Neuron* 2010, 65, 40–52. [CrossRef]

73. Whale, R.; Terao, T.; Cowen, P.; Freeman, N.; Geddes, J. Pindolol augmentation of serotonin reuptake inhibitors for the treatment of depressive disorder: A systematic review. *J. Psychopharmacol.* 2010, 24, 513–520. [CrossRef]

74. Arborelius, L.; Linner, L.; Wallsten, C.; Ahlenius, S.; Svensson, T.H. Partial 5-HT(1A) receptor agonist properties of (-)-pindolol in combination with citalopram on serotonergic dorsal raphe cell firing in vivo. *Psychopharmacology* 2000, 151, 77–84. [CrossRef]

75. Trivedi, M.H.; Fava, M.; Wisniewski, S.R.; Thase, M.E.; Quitkin, F.; Warden, D.; Ritz, L.; Nierenberg, A.A.; Lebowitz, B.D.; Biggs, M.M.; et al. Medication Augmentation after the Failure of SSRIs for Depression. *N. Engl. J. Med.* 2006, 354, 1243–1252. [CrossRef]

76. Shelton, R.C.; Tollefsen, G.D.; Tohen, M.; Stahl, S.; Gannon, K.S.; Jacobs, T.G.; Buras, W.R.; Bymaster, F.P.; Zhang, W.; Spencer, K.A.; et al. A novel augmentation strategy for treating resistant major depression. *Am. J. Psychiatry* 2001, 158, 131–134. [CrossRef]

77. Vieta, E.; Florea, I.; Schmidt, S.N.; Areberg, J.; Ettrup, A. Intravenous vortioxetine to accelerate onset of effect in major depressive disorder: A 2-week, randomized, double-blind, placebo-controlled study. *Int. Clin. Psychopharmacol.* 2019, 34, 153–160. [CrossRef]

78. MacQueen, G.M.; Yucel, K.; Taylor, V.H.; Macdonald, K.; Joffe, R. Posterior Hippocampal Volumes Are Associated with Remission Rates in Patients with Major Depressive Disorder. *Biol. Psychiatry* 2008, 64, 880–883. [CrossRef]

79. Bremner, J.D.; Narayan, M.; Anderson, E.R.; Staib, L.H.; Miller, H.L.; Charney, D.S. Hippocampal volume reduction in major depression: An analysis in human postmortem brain. *Am. J. Psychiatry* 2000, 157, 115–117. [CrossRef] [PubMed]

80. Hong, W.; Fan, J.; Yuan, C.; Zhang, C.; Hu, Y.; Peng, D.; Wang, Y.; Huang, J.; Li, Z.; Yu, S.; et al. Significantly decreased mRNA levels of BDNF and MEK1 genes in treatment-resistant depression. *Neuroreport* 2014, 25, 753–755. [CrossRef]

81. Banerjee, R.; Ghosh, A.K.; Ghosh, B.; Bhattacharyya, S.; Mondal, A.C. Decreased mRNA and protein expression of BDNF, NGF, and their receptors in the hippocampus from suicide: An analysis in human postmortem brain. *Clin. Med. Insights Pathol.* 2013, 1, 1–11. [CrossRef]

82. Filho, C.B.; Jesse, C.R.; Donato, F.; Giacomeli, R.; Del Fabbro, L.; Da Silva Antunes, M.; De Gomes, M.G.; Goes, A.T.R.; Boeira, S.P.; Prigol, M.; et al. Chronic unpredictable mild stress decreases BDNF and NGF levels and Na+,K+-ATPase activity in the hippocampus and prefrontal cortex of mice: Antidepressant effect of chrysos. *Neuroscience* 2015, 289, 367–380. [CrossRef]

83. Mao, Q.Q.; Xian, Y.F.; Ip, S.P.; Tsai, S.H.; Che, C.T. Long-term treatment with pentylenetetrazole reverses chronic unpredictable mild stress-induced depressive-like behavior via increasing expression of neurotrophins in rat brain. *Behav. Brain Res.* 2010, 210, 171–177. [CrossRef]

84. Su, G.Y.; Yang, J.Y.; Wang, F.; Ma, J.; Zhang, K.; Dong, Y.X.; Song, S.J.; Lu, X.M.; Wu, C.F. Antidepressant-like effects of Xiaochaihutang in a rat model of chronic unpredictable mild stress. *J. Ethnopharmacol.* 2014, 152, 217–226. [CrossRef]

85. Antunes, M.S.; Jesse, C.R.; Ruff, J.R.; De Oliveira Espinosa, D.; Gomes, N.S.; Altvater, E.E.T.; Donato, F.; Giacomeli, R.; Boeira, S.P. Hesperidin reverses cognitive and depressive disturbances induced by olfactory bulbectomy in mice by modulating hippocampal neurotrophins and cytokine levels and acetylcholinesterase activity. *Eur. J. Pharmacol.* 2016, 789, 411–420. [CrossRef]

86. Noroofshan, A.; Abdollahifar, M.A.; Asadi-Golshan, R.; Rashidian-Rashidabadi, A.; Karbalay-Doust, S. Curcumin and sertraline prevent the reduction of the number of neurons and glial cells and the volume of rats’ medial prefrontal cortex induced by stress. *Acta Neurol. Exp.* 2014, 74, 44–53.

87. Luscombe, G.P.; Martin, K.F.; Hutchins, L.J.; Gosden, J.; Heal, D.J. Mediation of the antidepressant-like effect of 8-OH-DPAT in mice by postsynaptic 5-HT1A receptors. *Br. J. Pharmacol.* 1993, 108, 669–677. [CrossRef]

88. Samuels, B.A.; Anacker, C.; Hu, A.; Levinstein, M.R.; Pickenhagen, A.; Teetsenis, T.; Madroñal, N.; Donaldson, Z.R.; Drew, L.J.; Dranovsky, A.; et al. 5-HT1A receptors on mature dentate gyrus granule cells are critical for the antidepressant response. *Nat. Neurosci.* 2015, 18, 1606–1616. [CrossRef]

89. Richardson-Jones, J.W.; Craigie, C.P.; Nguyen, T.H.; Kung, H.F.; Gardier, A.M.; Dranovsky, A.; David, D.J.; Giuari, B.P.; Beck, S.G.; Hen, R.; et al. Serotonin-1A autoreceptors are necessary and sufficient for the normal formation of circuits underlying innate anxiety. *J. Neurosci.* 2011, 31, 6008–6018. [CrossRef]

90. Vahid-Ansari, F.; Daigle, M.; Manzini, M.C.; Tanaka, K.F.; Hen, R.; Geddes, S.D.; Bézique, J.-C.; James, J.; Merali, Z.; Albert, P.R. Abrogated Freud-1/Cc2d1A Repression of 5-HT1A Autoreceptors Induces Fluoxetine-Resistant Anxiety/Depression-Like Behavior. *J. Neurosci.* 2017, 37, 11967–11978. [CrossRef]

91. Stockmeier, C.A.; Shapiro, L.A.; Dilley, G.E.; Kolli, T.N.; Friedman, L.; Rajkowska, G. Increase in serotonin-1A autoreceptors in the midbrain of suicide victims with major depression—Postmortem evidence for decreased serotonin activity. *J. Neurosci.* 1998, 18, 7394–7401. [CrossRef]
116. Banasr, M.; Hery, M.; Printemps, R.; Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. *Neuropsychopharmacology* 2004, 29, 450–460. [CrossRef]

117. Nautiyal, K.M.; Tritschler, L.; Ahmari, S.E.; David, D.J.; Gardier, A.M.; Hen, R. A lack of serotonin 1B autoreceptors results in decreased anxiety and depression-related behaviors. *Neuropsychopharmacology* 2016, 41, 2941–2950. [CrossRef] [PubMed]

118. Huang, Y.Y.; Oquendo, M.A.; Harkavy Friedman, J.M.; Greenhill, L.L.; Brodsky, B.; Malone, K.M.; Khait, V.; Mann, J.J. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTRIB) G86IC polymorphism. *Neuropsychopharmacology* 2003, 28, 163–169. [CrossRef]

119. Ruf, B.; Bhagwagar, Z. The 5-HT1B Receptor: A Novel Target for the Pathophysiology of Depression (Supplementary Tables). *Curr. Drug Targets* 2009, 10, 1118–1138. [CrossRef]

120. Nishiguchi, N.; Shirakawa, O.; Ono, H.; Nishimura, A.; Ueno, Y.; Maeda, K. No evidence of an association between 5HT1B receptor gene polymorphism and suicide victims in a Japanese population. *Am. J. Med. Genet. Neuropsychiatr. Genet.* 2001, 105, 343–345. [CrossRef] [PubMed]

121. Egeland, M.; Warner-Schmidt, J.; Greengard, P.; Svenningsson, P. Co-expression of serotonin 5-HT1B and 5-HT4 receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. *Neuropsychopharmacology* 2011, 61, 442–450. [PubMed]

122. Svenningsson, P.; Tzavara, E.T.; Qi, H.; Carruthers, R.; Witkin, J.M.; Nomikos, G.G.; Greengard, P. Biochemical and behavioral evidence for antidepressant-like effects of 5-HT6 receptor stimulation. *J. Neurosci.* 2007, 27, 4201–4209. [CrossRef]

123. Svenningsson, P. Alterations in 5-HT1B binding sites in depressed suicides. *Psychopharmacology* 2018, 676, 157–168. [CrossRef]

124. Tatarczynska, E.; Antkiewicz-Michaluk, L.; Klodzinska, A.; Stachowicz, K.; Chojnacka-Wikicka, E. Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. *Behav. Pharmacol.* 2004, 15, 523–534. [CrossRef]

125. Tatarczynska, E.; Gardier, A.M.; Bourin, M. Serotonin1B heteroreceptor activation induces an antidepressant-like effect in mice with an alteration of the serotonergic system. *J. Psychiatry Neurosci.* 2001, 26, 715–722. [CrossRef] [PubMed]

126. Banasr, M.; Hery, M.; Printemps, R.; Daszuta, A. Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. *Neuropsychopharmacology* 2004, 29, 450–460. [CrossRef]

127. Nautiyal, K.M.; Tritschler, L.; Ahmari, S.E.; David, D.J.; Gardier, A.M.; Hen, R. A lack of serotonin 1B autoreceptors results in decreased anxiety and depression-related behaviors. *Neuropsychopharmacology* 2016, 41, 2941–2950. [CrossRef] [PubMed]

128. Huang, Y.Y.; Oquendo, M.A.; Harkavy Friedman, J.M.; Greenhill, L.L.; Brodsky, B.; Malone, K.M.; Khait, V.; Mann, J.J. Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTRIB) G86IC polymorphism. *Neuropsychopharmacology* 2003, 28, 163–169. [CrossRef]

129. Ruf, B.; Bhagwagar, Z. The 5-HT1B Receptor: A Novel Target for the Pathophysiology of Depression (Supplementary Tables). *Curr. Drug Targets* 2009, 10, 1118–1138. [CrossRef]

130. Nishiguchi, N.; Shirakawa, O.; Ono, H.; Nishimura, A.; Ueno, Y.; Maeda, K. No evidence of an association between 5HT1B receptor gene polymorphism and suicide victims in a Japanese population. *Am. J. Med. Genet. Neuropsychiatr. Genet.* 2001, 105, 343–345. [CrossRef] [PubMed]

131. Egeland, M.; Warner-Schmidt, J.; Greengard, P.; Svenningsson, P. Co-expression of serotonin 5-HT1B and 5-HT4 receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. *Neuropsychopharmacology* 2011, 61, 442–450. [PubMed]

132. Tatarczynska, E.; Antkiewicz-Michaluk, L.; Klodzinska, A.; Stachowicz, K.; Chojnacka-Wikicka, E. Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. *Behav. Pharmacol.* 2004, 15, 523–534. [CrossRef]

133. Tatarczynska, E.; Antkiewicz-Michaluk, L.; Klodzinska, A.; Stachowicz, K.; Chojnacka-Wojcik, E. Antidepressant-like effect of the selective 5-HT1B receptor agonist CP 94253: A possible mechanism of action. *J. Neurosci.* 2006, 27, 4201–4209. [CrossRef]

134. Tiger, M.; Varnas, K.; Okubo, Y.; Lundberg, J. The 5-HT1B receptor—A potential target for antidepressant treatment. *Psychopharmacology* 2018, 235, 1317–1334. [CrossRef]

135. Neumaier, J.F.; Root, D.C.; Hamblin, M.W. Chronic fluoxetine reduces serotonin transporter mRNA and 5-HT(1B) mRNA in a sequential manner in the rat dorsal raphe nucleus. *Neuropsychopharmacology* 1996, 15, 515–522. [CrossRef]

136. Obert, A.; Dekeyne, A.; Millan, M.J. The ability of WAY100,635 to potentiate the neurochemical and functional actions of fluoxetine is enhanced by co-administration of SB224,289, but not BRL15572. *Neuropharmacology* 2000, 39, 1608–1616. [CrossRef]

137. Whale, R.; Clifford, E.M.; Bhagwagar, Z.; Cowen, P.J. Decreased sensitivity of 5-HT1D receptors in melancholic depression. *Br. J. Psychiatry* 2001, 178, 454–457. [CrossRef]

138. Lowther, S.; Katona, C.L.E.; Crompton, M.R.; Horton, R.W. 5-HT(1D) and 5-HT(1E/1F) binding sites in depressed suicides: Increased 5-HT(1D) binding in globus pallidus but not cortex. *Mol. Psychiatry* 1997, 2, 314–321. [CrossRef]

139. Klein, M.T.; Dukat, M.; Glennon, R.A.; Teitler, M. Toward Selective Drug Development for the Human 5-Hydroxytryptamine 1E Receptor: A Comparison of 5-Hydroxytryptamine 1E and 1F Receptor Structure-Affinity Relationships. *J. Pharmacol. Exp. Ther.* 2011, 337, 860–867. [CrossRef]

140. Burnet, P.W.J.; Eastwood, S.L.; Lacey, K.; Harrison, P.J. The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. *Brain Res.* 1995, 676, 157–168. [CrossRef]
170. Jaggar, M.; Weisstaub, N.; Gingrich, J.A.; Vaidya, V.A. 5-HT_{2A} receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress. *Neurobiol. Stress* 2017, 7, 89–102. [CrossRef]

171. Duxon, M.S.; Flanagan, T.P.; Reavley, T.A.C.; Baxter, T.G.S.; Blackburn, T.P.; Fone, K.C.F. 5-Hydroxytryptamine-2B receptor protein in the rat central nervous system. *Neuroscience* 1997, 76, 323–329. [CrossRef]

172. McCorry, J.D.; Roth, B.L. Structure and function of serotonin G protein-coupled receptors. *Pharmacol. Ther.* 2015, 150, 129–142. [CrossRef]

173. Diaz, S.L.; Doly, S.; Narboux-Nme, N.; Fernandez, S.; Mazot, P.; Banas, S.M.; Boutourlinsky, K.; Moutkine, I.; Belmer, A.; Roumier, A.; et al. 5-HT 2B receptors are required for serotonin-selective antidepressant actions. *Mol. Psychiatry* 2012, 17, 154–163. [CrossRef]

174. Belmer, A.; Quintin, E.; Diaz, S.L.; Guiard, B.P.; Fernandez, S.P.; Doly, S.; Banas, S.M.; Pitychoutis, P.M.; Moutkine, I.; Muzerelle, A.; et al. Positive regulation of rafpe serotonin neurons by serotonin 2B receptors. *Neuropsychopharmacology* 2018, 43, 1623–1632. [CrossRef]

175. Li, B.; Zhang, S.; Zhang, H.; Nu, W.; Cai, L.; Hertz, L.; Peng, L. Fluoxetine-mediated 5-HT_{2B} receptor stimulation in astrocytes causes EGF receptor transactivation and ERK phosphorylation. *Psychopharmacology* 2008, 201, 443–458. [CrossRef] [PubMed]

176. Diaz, S.L.; Narboux-Néme, N.; Boutourlinsky, K.; Doly, S.; Maroteaux, L. Mice lacking the serotonin 5-HT_{2B} receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants. *Eur. Neuropsychopharmacol.* 2016, 26, 265–279. [CrossRef]

177. D’Andrea, I.; Béchade, C.; Maroteaux, L. Serotonin and 5-HT_{2B} receptors in microglia control of behavior. *Handb. Behav. Neurosci.* 2020, 31, 589–599. [CrossRef]

178. Millan, M.J. Serotonin 5-HT_{2C} receptors as a target for the treatment of depressive and anxious states: Focus on novel therapeutic strategies. *Therapeutic* 2005, 60, 441–460. [CrossRef]

179. López-Giménez, J.F.; Mengod, G.; Palacios, J.M.; Vilaró, M.T. Regional distribution and cellular localization of 5-HT_{2C} receptor mRNA in monkey brain. Comparison with [3H]mesulergine binding sites and choline acetyltransferase mRNA. *Synapse* 2001, 42, 12–26. [CrossRef] [PubMed]

180. Serrats, J.; Mengod, G.; Cortés, R. Expression of serotonin 5-HT_{2C} receptors in GABAergic cells of the anterior raphé nuclei. *J. Chem. Neuroanat.* 2005, 29, 83–91. [CrossRef]

181. Liu, S.; Bubar, M.J.; Lanfranco, M.F.; Hillman, G.R.; Cunningham, K.A. Serotonin2C receptor localization in GABA neurons of the rat medial prefrontal cortex: Implications for understanding the neurobiology of addiction. *Neuroscience* 2007, 146, 1677–1688. [CrossRef] [PubMed]

182. Bubar, M.J.; Stutz, S.J.; Cunningham, K.A. 5-HT_{2C} Receptors localize to dopamine and gaba neurons in the rat mesoaccumbens pathway. *PLoS ONE* 2011, 6, e20508. [CrossRef] [PubMed]

183. Dekeyne, A.; Mannoury La Cour, C.; Gobert, A.; Brocco, M.; Lejeune, F.; Serres, F.; Sharp, T.; Daszuta, A.; Soumier, A.; Papp, M.; et al. S32006, a novel 5-HT_{2C} receptor antagonist displaying broad-based antidepressant and anxiolytic properties in rodent models. *Psychopharmacology* 2008, 199, 549–568. [CrossRef] [PubMed]

184. Dekeyne, A.; Brocco, M.; Loiseau, F.; Gobert, A.; Brocco, M.; Doly, S.; Maroteaux, L. Mice lacking the serotonin 5-HT_{2B} receptor as an animal model of resistance to selective serotonin reuptake inhibitors antidepressants. *Eur. Neuropsychopharmacol.* 2016, 26, 265–279. [CrossRef]

185. Esposito, E. Serotonin-Dopamine Interaction as a Focus of Novel Antidepressant Drugs. *Curr. Drug Targets* 2006, 7, 177–185. [CrossRef] [PubMed]

186. Rosenzweig-Lipson, S.; Sabb, A.; Stack, G.; Mitchell, P.; Lucki, I.; Malberg, J.E.; Grauer, S.; Brennan, J.; Cryan, J.F.; Sukoff Rizzo, S.J.; et al. Antidepressant-like effects of the novel, selective, 5-HT_{2C} receptor agonist WAY-163909 in rodents. *Psychopharmacology* 2007, 192, 159–170. [CrossRef] [PubMed]

187. Dunlop, J.; Marquis, K.L.; Lim, H.K.; Leung, L.; Kao, J.; Cheesman, C.; Rosenzweig-Lipson, S. Pharmacological profile of the 5-HT_{2C} receptor agonist WAY-163909; therapeutic potential in multiple indications. *CNS Drug Rev.* 2012, 18, 675–780. [CrossRef] [PubMed]

188. Esposito, E. Serotonin-Dopamine Interaction as a Focus of Novel Antidepressant Drugs. *Curr. Drug Targets* 2006, 7, 177–185. [CrossRef] [PubMed]

189. Jenck, F.; Moreau, J.; Berendsen, H.H.; Boes, M.; Broekkamp, C.L.; Martin, J.R.; Wichmann, J.; Van Delft, A.M. Antiaversive effects of 5HT_{2C} receptor agonists and fluoxetine in a model of panic-like anxiety in rats. *Eur. Neuropsychopharmacol.* 1998, 8, 161–168. [CrossRef]

190. Cremers, T.I.F.H.; Giogetti, M.; Bosker, F. J.; Hogg, S.; Arnt, J.; Mørk, A.; Honig, G.; Begesø, K.P.; Westerink, B.H.C.; Den Boer, H.; et al. Anticipation of 5-HT_{2C} receptors potentiates consequences of serotonin reuptake blockade. *Neuropsychopharmacology* 2004, 27, 1782–1789. [CrossRef]

191. Cremers, T.I.F.H.; Rea, K.; Bosker, F.J.; Wikström, H.V.; Hogg, S.; Mørk, A.; Westerink, B.H.C. Augmentation of SSRI effects on serotonin by 5-HT_{2C} antagonists: Mechanistic studies. *Neuropsychopharmacology* 2007, 32, 1550–1557. [CrossRef]

192. Clenet, F.; De Vos, A.; Bourin, M. Involvement of 5-HT_{2C} receptors in the anti-immobility effects of antidepressants in the forced swimming test in mice. *Eur. Neuropsychopharmacol.* 2001, 11, 145–152. [CrossRef] [PubMed]
193. Gurevich, I.; Tamir, H.; Arango, V.; Dwork, A.J.; Mann, J.J.; Schmauss, C. Altered editing of serotonin 2C receptor pre-mRNA in the prefrontal cortex of depressed suicide victims. Neuron 2002, 34, 349–356. [CrossRef]

194. Yamauchi, M.; Tatebayashi, T.; Nagase, K.; Kojima, M.; Imanishi, T. Chronic treatment with fluvoxamine desensitizes 5-HT2C receptor-mediated hypolocomotion in rats. Pharmacol. Biochem. Behav. 2004, 78, 683–689. [CrossRef][PubMed]

195. Invernizzi, R.W.; Pierucci, M.; Calcagno, E.; Di Giovanni, G.; Di Matteo, V.; Benigno, A.; Esposito, E. Selective activation of 5-HT2C receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: A combined in vivo electrophysiological and neurochemical study. Neurosci. 2007, 144, 1523–1535. [CrossRef]

196. Meltzer, H.Y.; Li, Z.; Kaneda, Y.; Ichikawa, J. Serotonin receptors: Their key role in drugs to treat schizophrenia. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2003, 27, 1159–1172. [CrossRef][PubMed]

197. Demireva, E.Y.; Suri, D.; Morelli, E.; Mahadevia, D.; Chuhma, N.; Teixeira, C.M.; Ziolkowski, A.; Hersh, M.; Fifer, J.; Bagchi, S.; et al. 5-HT2C receptor blockade reverses SSRI-associated basal ganglia dysfunction and potentiates therapeutic efficacy. Mol. Psychiatry 2020, 25, 3304–3321. [CrossRef]

198. Angel, I.; Schoemaker, H.; Prouteau, M.; Garreau, M.; Langer, S.Z. Litoxetine: A selective 5-HT uptake inhibitor with concomitant 5-HT2 receptor antagonist and antiemetic properties. Eur. J. Pharmacol. 1993, 239, 139–145. [CrossRef]

199. Thompson, A.; Lumnis, S.R. 5-HT1 Receptors. Curr. Pharm. Des. 2006, 12, 3615–3630. [CrossRef]

200. Morales, M.; Bloom, E.F. The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J. Neurosci. 1997, 17, 3157–3167. [CrossRef]

201. Puig, M.V.; Santana, N.; Celada, P.; Mengod, G.; Artigas, F. In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb. Cortex 2004, 14, 1365–1375. [CrossRef]

202. Gupta, D.; Prabhakar, V.; Radhakrishnan, M. 5HT3 receptors: Target for new antidepressant drugs. Neurosci. Biobehav. Rev. 2016, 64, 311–325. [CrossRef]

203. Ramamoorthy, R.; Radhakrishnan, M.; Borah, M. Antidepressant-like effects of serotonin type-3 antagonist, ondansetron: An investigation in behaviour-based rodent models. Behav. Pharmacol. 2008, 19, 29–40. [CrossRef]

204. Bravo, G.; Maswood, S. Acute treatment with 5-HT3 receptor antagonist, tropisetron, reduces immobility in intact female rats exposed to the forced swim test. Pharmacol. Biochem. Behav. 2006, 85, 362–368. [CrossRef]

205. Eisensamer, B.; Rammes, G.; Gimpl, G.; Shapa, M.; Ferrari, U.; Hapfelmeier, G.; Bondy, B.; Parsons, C.; Gilling, K.; Zieglgänsberger, W.; et al. Antidepressants are functional antagonists at the serotonin type 3 (5-HT3) receptor. Mol. Psychiatry 2003, 8, 994–1007. [CrossRef][PubMed]

206. Fan, P. Facilitation of 5-hydroxytryptamine3 receptor desensitization by fluoxetine. Neuroscience 1994, 62, 515–522. [CrossRef]

207. Mössner, R.; Schmitt, A.; Hennig, T.; Benninghoff, J.; Gerlach, M.; Riederer, P.; Deckert, J.; Lesch, K.P. Quantitation of 5HT3 receptors in forebrain of serotonin transporter deficient mice. J. Neural Transm. 2004, 111, 27–35. [CrossRef]

208. Redrobe, J.P.; Bourin, M. Partial role of 5-HT2 and 5-HT3 receptors in the activity of antidepressants in the mouse forced swimming test. Eur. J. Pharmacol. 1997, 325, 129–135. [CrossRef]

209. Alvarez, E.; Perez, V.; Dragheim, M.; Loft, H.; Artigas, F. A double-blind, randomized, placebo-controlled, active reference study of Lu AA21004 in patients with major depressive disorder. Int. J. Neuropsychopharmacol. 2012, 15, 589–600. [CrossRef]

210. Baldwin, D.S.; Loft, H.; Dragheim, M. A randomised, double-blind, placebo controlled, duloxetine-referenced, fixed-dose study of three dosages of Lu AA21004 in acute treatment of major depressive disorder (MDD). Eur. Neuropsychopharmacol. 2012, 22, 482–491. [CrossRef]

211. Kelliny, M.; Croarkin, P.E.; Moore, K.M.; Bobo, W.V. Profile of voroxetine in the treatment of major depressive disorder: An overview of the primary and secondary literature. Ther. Clin. Risk Manag. 2015, 11, 1193–1212. [CrossRef][PubMed]

212. Bétrly, C.; Pehrson, A.L.; Etievant, A.; Ebert, B.; Sánchez, C.; Haddjeri, N. The rapid recovery of 5-HT cell firing induced by the antidepressant voroxetine involves 5-HT3 receptor antagonism. Int. J. Neuropsychopharmacol. 2013, 16, 1115–1127. [CrossRef]

213. Gupta, D.; Radhakrishnan, M.; Thangaraj, D.; Kurhe, Y. Antidepressant and anti-anxiety like effects of 4i (N-(3-chloro-2-methylphenyl) quinoxalin-2-carboxamide), a novel 5-HT3 receptor antagonist in acute and chronic neurobehavioral rodent models. Eur. J. Pharmacol. 2014, 735, 59–67. [CrossRef]

214. Gupta, D.; Radhakrishnan, M.; Kurhe, Y. Effect of a novel 5-HT3 receptor antagonist 4i, in corticosterone-induced depression-like behavior and oxidative stress in mice. Steroids 2015, 96, 95–102. [CrossRef][PubMed]

215. Gupta, D.; Thangaraj, D.; Radhakrishnan, M. A novel 5HT3 antagonist 4i (N-(3-chloro-2-methylphenyl)quinoxalin-2-carboxamide) prevents diabetes-induced depressive phenotypes in mice: Modulation of serotoninergic system. Behav. Brain Res. 2016, 297, 41–50. [CrossRef]

216. Dhar, A.K.; Mahesh, R.; Jindal, A.; Bhatt, S. Piperazine analogs of naphthyridine-3-carboxamides and indole-2-carboxamides: Novel 5-HT3 receptor antagonists with antidepressant-like activity. Arch. Pharm. 2015, 348, 34–45. [CrossRef]

217. Kurhe, Y.; Radhakrishnan, M.; Gupta, D.; Devadoss, T. QCM-4 a novel 5-HT3 antagonist attenuates the behavioral and biochemical alterations on chronic unpredictable mild stress model of depression in Swiss albino mice. J. Pharm. Pharmacol. 2014, 66, 122–132. [CrossRef][PubMed]

218. Dukat, M.; Alik, K.; Worsham, J.; Khatri, S.; Schulte, M.K. 2-Amino-6-chloro-3,4-dihydroquinazoline: A novel 5-HT3 receptor antagonist with antidepressant character. Bioorg. Med. Chem. Lett. 2013, 23, 5945–5948. [CrossRef][PubMed]

219. Nakagawa, Y.; Ishima, T.; Takashima, T. The 5-HT3 receptor agonist attenuates the action of antidepressants in the forced swim test in rats. Brain Res. 1998, 786, 189–193. [CrossRef]
244. Lucas, G.; Compan, V.; Charnay, Y.; Neve, R.L.; Nestler, E.J.; Bockaert, J.; Barrot, M.; Debonnel, G. Frontocortical 5-HT4 receptors exert positive feedback on serotoninergic activity: Viral transfections, subacute and chronic treatments with 5-HT4 agonists. *Biol. Psychiatry* 2005, 57, 918–925. [CrossRef] [PubMed]

245. Kobayashi, K.; Ikeda, Y.; Haneda, E.; Suzuki, H. Chronic fluoxetine bidirectionally modulates potentiating effects of serotonin on the hippocampal mossy fiber synaptic transmission. *J. Neurosci.* 2008, 28, 6272–6280. [CrossRef] [PubMed]

246. Vidal, R.; Valdizan, E.M.; Vilaró, M.T.; Pazos, A.; Castro, E. Reduced signal transduction by 5-HT4 receptors after long-term venlafaxine treatment in rats. *Br. J. Pharmacol.* 2010, 161, 695–706. [CrossRef] [PubMed]

247. Cryan, J.F.; Lucki, I. 5-HT4 receptors do not mediate the antidepressant-like behavioral effects of fluoxetine in a modified forced swim test. *Eur. J. Pharmacol.* 2000, 409, 295–299. [CrossRef]

248. Mendez-David, I.; David, D.J.; Darcet, F.; Wu, M.V.; Kerdine-Römer, S.; Gardier, A.M.; Hen, R. Rapid anxiolytic effects of a 5-HT4 receptor agonist are mediated by a neurogenesis-independent mechanism. *Neuropsychopharmacology* 2014, 39, 1366–1378. [CrossRef]

249. Amigó, J.; Díaz, A.; Pilar-Cuellar, F.; Vidal, R.; Martin, A.; Compan, V.; Pazos, A.; Castro, E. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuromodulatory markers and 5-HT1A autoreceptor. *Neuropsychopharmacology* 2016, 41, 47–58. [CrossRef]

250. Amigo, J.; Garro-Martinez, E.; Vidal Casado, R.; Compan, V.; Pilar-Cuellar, F.; Pazos, A.; Díaz, A.; Castro, E. 5-HT4 Receptors Are Not Involved in the Effects of the Corticosterone Model of Depression. *ACS Chem. Neurosci.* 2021, 12, 2036–2044. [CrossRef]

251. Lucas, G.; Rymar, V.V.; Du, J.; Mnie-Filoli, O.; Bisgaard, C.; Manta, S.; Lambas-Senas, L.; Wiborg, O.; Haddjeri, N.; Piñeiro, G.; et al. Serotonin4 (5-HT4) Receptor Agonists Are Putative Antidepressants with a Rapid Onset of Action. *Neuron* 2007, 55, 712–725. [CrossRef]

252. Darcet, F.; Gardier, A.M.; David, D.J.; Guilloux, J.P. Chronic 5-HT4 receptor agonist treatment restores learning and memory deficits in a neuroendocrine mouse model of anxiety/depression. *Neurosci. Lett.* 2016, 616, 197–203. [CrossRef]

253. Duman, R.S. A Silver Bullet for the Treatment of Depression? *Neuron* 2004, 45, 55–56. [CrossRef]

254. Murphy, S.E.; De Cates, A.N.; Gillespie, A.L.; Godlewska, B.R.; Scaife, J.C.; Wright, L.C.; Cowen, P.J.; Harmer, C.J. Translating the promise of 5HT1A receptor antagonists for the treatment of depression. *Psychol. Med.* 2020, 51, 1111–1120. [CrossRef] [PubMed]

255. Branchek, T.A.; Blackburn, T.P. 5-ht 6 Receptors as Emerging Targets for Drug Discovery. *Annu. Rev. Pharmacol. Toxicol.* 2000, 40, 319–334. [CrossRef] [PubMed]

256. Rosse, G.; Schaffhauser, H. 5-HT6, Receptor Antagonists as Potential Therapeutics for Cognitive Impairment. *Curr. Top. Med. Chem.* 2010, 10, 207–221. [CrossRef]

257. Heal, D.J.; Smith, S.L.; Fisas, A.; Codony, X.; Buschmann, H. Selective 5-HT6 receptor ligands: Progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. *Pharmacol. Ther.* 2008, 117, 207–231. [CrossRef] [PubMed]

258. Mitchell, E.S.; Hoplight, B.J.; Lear, S.P.; Neumaier, J.F. BGC20-761, a novel tryptamine analog, enhances memory consolidation and reverses scopolamine-induced memory deficit in social and visuospatial memory tasks through a 5-HT6 receptor-mediated mechanism. *Neuropsychopharmacology* 2006, 31, 412–420. [CrossRef] [PubMed]

259. Monksma, F.J.; Shen, Y.; Ward, R.P.; Hamblin, M.W.; Sibley, D.R. Cloning and expression of a novel serotonin receptor with high affinity for trycyclic psychotropic drugs. *Mol. Pharmacol.* 1993, 43, 320–327.

260. Wesolowska, A.; Nikiforuk, A. Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. *Neuropharmacology* 2007, 52, 1274–1283. [CrossRef]

261. Wesolowska, A.; Nikiforuk, A. The selective 5-HT6 receptor antagonist SB-399885 enhances anti-immobility action of antidepressants in rats. *Eur. J. Pharmacol.* 2008, 582, 88–93. [CrossRef]

262. Pereira, M.; Martynychak, B.J.; Andreatini, R.; Svenningsson, P. 5-HT6 receptor agonism facilitates emotional learning. *Front. Pharmacol.* 2015, 6, 1–9. [CrossRef]

263. Nikiforuk, A.; Kos, T.; Wesolowska, A. The 5-HT6 receptor agonist EMD 386088 produces antidepressant and anxiolytic effects in rats after intrahippocampal administration. *Psychopharmacology* 2011, 217, 411–418. [CrossRef] [PubMed]

264. Jastrzębska-Wiśniew, M.; Siwek, A.; Partyka, A.; Szewczyk, B.; Sowa-Kucma, M.; Wasik, A.; Kołaczkowski, M.; Wesolowska, A. Antidepressant-like activity of EMD 386088, a 5-HT6 receptor partial agonist, following systemic acute and chronic administration to rats. *Naunyn. Schmiedebergs. Arch. Pharmacol.* 2015, 388, 1079–1088. [CrossRef]

265. De Foubert, G.; O’Neill, M.J.; Zetterström, T.S.C. Acute onset by 5-HT6-receptor activation on rat brain brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein mRNA expression. *Neuroscience* 2007, 147, 778–785. [CrossRef] [PubMed]

266. Dawson, L.A.; Li, P. Effects of 5-HT6 receptor blockade on the neurochemical outcome of antidepressant treatment in the frontal cortex of the rat. *J. Neural Transm.* 2003, 110, 577–590. [CrossRef] [PubMed]

267. Hedlund, P.B.; Sutcliffe, J.G. Functional, molecular and pharmacological advances in 5-HT7 receptor research. *Trends Pharmacol. Sci.* 2004, 25, 481–486. [CrossRef]

268. Neumaier, J.E.; Sexton, T.J.; Yracheta, J.; Diaz, A.M.; Brownfield, M. Localization of 5-HT7 receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. *J. Chem. Neuroanat.* 2001, 21, 63–73. [CrossRef]
269. Varnäs, K.; Thomas, D.R.; Tupala, E.; Tiihonen, J.; Hall, H. Distribution of 5-HT7 receptors in the human brain: A preliminary autoradiographic study using [3H]SB-269970. Neurosci. Lett. 2004, 367, 313–316. [CrossRef]

270. Hedlund, P.B. The 5-HT7 receptor and disorders of the nervous system: An overview. Psychopharmacology 2009, 206, 345–354. [CrossRef][PubMed]

271. Mullins, U.L.; Gianutsos, G.; Eison, A.S. Effects of antidepressants on 5-HT7 receptor regulation in the rat hypothalamus. Neuropharmacology 1999, 21, 352–367. [CrossRef]

272. Roth, B.L.; Craigo, S.C.; Choudhary, M.S.; Uluer, A.; Monsma, F.J.; Shen, Y.; Meltzer, H.Y.; Sibley, D.R. Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 1994, 268, 1403–1410.

273. Wesołowska, A.; Nikiforuk, A.; Stachowicz, K.; Tatarczyńska, E. Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 2006, 51, 578–586. [CrossRef]

274. Bonaventure, P.; Kelly, L.; Aluisio, L.; Shelton, J.; Lord, B.; Galici, R.; Miller, K.; Atack, J.; Lovenberg, T.W.; Dugovic, C. Selective blockade of 5-hydroxytryptamine (5-HT7) receptors enhances 5-HT transmission, antidepressant-like behavior, and rapid eye movement sleep suppression induced by citalopram in rodents. J. Pharmacol. Exp. Ther. 2007, 321, 690–698. [CrossRef][PubMed]

275. Wesołowska, A.; Tatarczyńska, E.; Nikiforuk, A.; Chojnacka-Wójcik, E. Enhancement of the anti-immobility action of antidepressants by a selective 5-HT7 receptor antagonist in the forced swimming test in mice. Eur. J. Pharmacol. 2007, 555, 43–47. [CrossRef]

276. Wesołowska, A.; Nikiforuk, A.; Stachowicz, K. Potential anxiolytic and antidepressant effects of the selective 5-HT7 receptor antagonist SB 269970 after intrahippocampal administration to rats. Eur. J. Pharmacol. 2006, 553, 185–190. [CrossRef][PubMed]

277. Bonaventure, P.; Dugovic, C.; Kramer, M.; De Boer, P.; Singh, J.; Wilson, S.; Bertelsen, K.; Di, J.; Shelton, J.; Aluisio, L.; et al. Translational evaluation of JNJ-18038683, a 5-hydroxytryptamine type 7 receptor antagonist, on rapid eye movement sleep and in major depressive disorder. J. Pharmacol. Exp. Ther. 2012, 342, 429–440. [CrossRef]

278. Semenova, S.; Geyer, M.A.; Sutcliffe, J.G.; Markou, A.; Hedlund, P.B. Inactivation of the 5-HT7 Receptor Partially Blocks Phencyclidine-Induced Disruption of Prepulse Inhibition. Biol. Psychiatry 2008, 63, 98–105. [CrossRef][PubMed]

279. Berman, R.M.; Fava, M.; Thase, M.E.; Trivedi, M.H.; Swanink, R.; McQuade, R.D.; Carson, W.H.; Adson, D.; Taylor, L.; Hazel, J.; et al. Aripiprazole augmentation in major depressive disorder: A double-blind, placebo-controlled study in patients with inadequate response to antidepressants. CNS Spectr. 2009, 14, 197–206. [CrossRef][PubMed]

280. Abbas, A.I.; Hedlund, P.B.; Huang, X.P.; Tran, T.B.; Meltzer, H.Y.; Roth, B.L. Amisulpride is a potent 5-HT7 antagonist: Relevance for antidepressant actions in vivo. Psychopharmacology 2009, 205, 119–128. [CrossRef]

281. Okubo, R.; Hasegawa, T.; Fukuyama, K.; Shiroyama, T.; Okada, M. Current Limitations and Candidate Potential of 5-HT7 Receptor Antagonism in Psychiatric Pharmacotherapy. Front. Psychiatry 2021, 12, 1–16. [CrossRef][PubMed]

282. Merk, A.; Montezinho, L.P.; Miller, S.; Trippodi-Murphy, C.; Plath, N.; Li, Y.; Gulino, M.; Sanchez, C. Vortioxetine (Lu AA21004), a novel multimodal antidepressant, enhances memory in rats. Pharmacol. Biochem. Behav. 2013, 105, 41–50. [CrossRef]

283. Okada, M.; Matsumoto, R.; Yamamoto, Y.; Fukuyama, K. Effects of subchronic administrations of vortioxetine, lurasidone, and escitalopram on thalamocortical glutamatergic transmission associated with serotonin 5-ht7 receptor. Int. J. Mol. Sci. 2021, 22, 1351. [CrossRef]

284. Andressen, K.W.; Manfra, O.; Brevik, C.H.; Ulssund, A.H.; Vanhoeacker, P.; Levy, F.O.; Krobert, K.A. The atypical antipsychotics clozapine and olanzapine promote down-regulation and display functional selectivity at human 5-HT7 receptors. Br. J. Pharmacol. 2015, 172, 3846–3860. [CrossRef][PubMed]

285. Stahl, S.M. The serotonin-7 receptor as a novel therapeutic target. J. Clin. Psychiatry 2010, 71, 1414–1415. [CrossRef][PubMed]