Effects of Scalar Leptoquarks at HERA with Polarized Protons

P. Taxil\textsuperscript{a}, E. Tuğcu\textsuperscript{a,b}, J.-M. Virey\textsuperscript{c} and A. De Roeck\textsuperscript{d}.

\textsuperscript{a}Centre de Physique Théorique, CNRS-Luminy, Case 907, F-13288 Marseille Cedex 9, France and Université de Provence, 3 Place V. Hugo, F-13331 Marseille cedex 3, France
\textsuperscript{b}Galatasaray University, Çirağan Cad. 102, Ortaköy 80840-İstanbul, Turkey
\textsuperscript{c}Institut für Physik, Universität Dortmund, D-44221 Dortmund, Germany
\textsuperscript{d}Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany

Abstract: The search and the identification of Scalar Leptoquarks are analyzed for the HERA collider. We emphasize the relevance of having polarized beams and we make some remarks on the usefulness of en collisions.

1 Introduction

We present the effects of Scalar LQ in the Neutral Current (NC) and Charged Current (CC) channels at HERA, with high integrated luminosities and also at an eventual new ep collider running at higher energies. We estimate the constraints that can be reached using those facilities for several Leptoquark scenarios. We emphasize the relevance of having polarized lepton and proton beams as well as also having neutron beams (through polarized $He^3$ nuclei), in order to disentangle the chiral structure of these various models.

We adopt the “model independent” approach of Buchmüller-Rückl-Wyler \cite{1} (BRW) where the LQ are classified according to their quantum numbers and have to fulfill several assumptions like $B$ and $L$ conservation, $SU(3)xSU(2)xU(1)$ invariance (see \cite{1} for more details). The interaction lagrangian is given by :

$$\mathcal{L} = (g_{1L} \bar{q}_L \tau_2 \ell_L + g_{1R} \bar{u}_R e_R) \cdot S_1 + \bar{q}_{1R} \bar{d}_R \tau_2 \ell_L \tilde{S}_1 + g_{3L} \bar{q}_L \tau_2 \ell_L \cdot S_3 + (h_{2L} \bar{u}_R \ell_L + h_{2R} \bar{q}_L \tau_2 \ell_L) \cdot \tilde{R}_2 + \bar{h}_{2L} \bar{d}_R \ell_L \tilde{R}_2,$$

where the LQ $S_1, \tilde{S}_1$ are singlets, $R_2, \tilde{R}_2$ are doublets and $S_3$ is a triplet. $\ell_L, q_L (e_R, d_R, u_R)$ are the usual lepton and quark doublets (singlets). In the following we denote by $\lambda$ generically the LQ coupling and by $M$ the associated mass.

These LQ are severely constrained by several different experiments, and we refer to \cite{2} for some detailed discussions. However we will give below (Fig.1) the existing limits for two specific models.

Now, in order to simplify the analysis, we make the following assumptions : i) the LQ couple to the first generation only, ii) one LQ multiplet is present at a time, iii) the different

\footnotetext[1]{Fellow of the “Alexander von Humboldt” Foundation, present address : a, email: virey@cpt.univ-mrs.fr}
LQ components within one LQ multiplet are degenerate in mass, iv) there is no mixing among LQ’s. From these assumptions and from eq.1, it is possible to deduce some of the coupling properties of the LQ, which are summarized in the table 1 of [3]. From this table we stress that the LQ couplings are flavour dependent and chiral.

## 2 Future Constraints

We consider the HERA collider with $e^-$ or $e^+$ beams but with some high integrated luminosities, namely $L_{e^-} = L_{e^+} = 500 \, pb^{-1}$. The other parameters for the analysis being : $\sqrt{s} = 300 \, GeV$, $0.01 < y < 0.9$, $(\Delta \sigma/\sigma)_{\text{syst}} \sim 3\%$ and the GRV pdf set [4]. We have considered also the impact on the constraints of higher energies by considering, in the one hand, an energy $\sqrt{s} = 380 \, GeV$ which is closed to the maximal reach of HERA, and in the other hand, an energy $\sqrt{s} = 1 \, TeV$ which could be obtained at the distant projects TESLAXHERA and/or LEPxLHC [5]. Limits at 95% CL for the various LQ models have been obtained from a $\chi^2$ analysis performed on the unpolarized NC cross sections. In figure 1 we compare the sensitivities of various present and future experiments for $R_{2L}$ and $S_{1L}$ as examples (extreme cases).

![Figure 1: Constraints at 95% CL from various present and future experiments for $R_{2L}$ and $S_{1L}$](image)

We can remark the followings : 1) LEP limits are already covered by present HERA data for $R$-type LQ. The opposite is realised for $S$-type LQ. 2) For virtual exchange ($M > 300 \, GeV$), the LENC constraints (in particular APV experiments) are stronger than what could be obtained at HERA even with higher integrated luminosities and energies. 3) For real exchange ($M < 300 \, GeV$), Tevatron data cover an important part of the parameter space. However, the bounds obtained from LQ pair production at Tevatron are strongly sensitive to $BR(LQ \rightarrow eq)$ [2]. Hence there is still an important window for discovery at HERA in the real domain, especially for more exotic models like R-parity violating squarks in SUSY models [3]. 4) To increase this window of sensitivity (for real exchange), it is more important to increase the energy than the integrated luminosity. 5) A 1 $TeV$ ep collider will give access to a domain (both real and virtual) which is unconstrained presently.
We have also computed the constraints that can be reached by studying some Parity Violating spin asymmetries (definitions below), assuming \( P = 70\% \) (degree of polarization) and using the GRSV polarized pdf set \([4]\). It appears that when both lepton and proton beams are polarized, the limits are close to the unpolarized case for virtual exchange, and a bit lower for real exchange. Finally, we find that the bounds obtained from CC processes (unpolarized or polarized) are well below the ones from NC channels.

3 Chiral structure analysis

3.1 Unpolarized case

An effect in NC allows the separation of two classes of models. A deviation for \( \sigma^\text{NC}_{e^p} \) indicates the class \((S_{1L},S_{1R}, \tilde{S}_1,S_3)\), whereas for \( \sigma^\text{NC}_{e^-p} \) it corresponds to \((R_{2L}, R_{2R}, \tilde{R}_2)\) \([4]\). For CC events, only \( S_{1L} \) and \( S_3 \) can induce a deviation from SM expectations (if we do not assume LQ mixing). This means that the analysis of \( \sigma^\text{CC}_{e^p} \) can separate the former class into \((S_{1L},S_3)\) and \((S_{1R},\tilde{S}_1)\).

If we want to go further into the identification of the LQ we need to separate \( "eu" \) from \( "ed" \) interactions, which seems to be impossible with \( ep \) collisions except if the number of anomalous events is huge. So, in order to get a better separation of the LQ species we need to consider \( ep \) and \( en \) collisions as well, where some observables like the ratios of cross sections \( R = \sigma_{ep}^\text{NC}/\sigma_{en}^\text{NC} \) could be defined. However, as soon as we relax one of our working assumptions (\( i-iv \)) some ambiguities will remain. The situation will be better with polarized collisions.

3.2 Polarized case

According to our previous experience \([7]\) we know that in general the Parity Violating (PV) two spin asymmetries exhibit stronger sensitivities to new chiral effects than the single spin asymmetries. Then we consider the case where the \( e \) and \( p \) (or neutrons) beams are both polarized. The PV asymmetries are defined by

\[
A_{LL}^{PV} = (\sigma_{NC} - \sigma_{NC}^+)/(\sigma_{NC} + \sigma_{NC}^+),
\]

where \( \sigma_{NC}^{\lambda\lambda'} \equiv (d\sigma_{NC}/dQ^2)^{\lambda\lambda'} \), and \( \lambda_e, \lambda_p \) are the helicities of the lepton and the proton, respectively. A LQ will induce some effects in these asymmetries, and the directions of the deviations from SM expectations allow the distinction between several classes of models. For instance, a positive deviation for \( A_{LL}^{PV}(e^-p) \) pins down the class \((S_{1L},S_3)\) and, a negative one, the class \((S_{1R},\tilde{S}_1)\).

Similarly, an effect for \( A_{LL}^{PV}(e^+p) \) makes a distinction between the model \( R_{2R} \) and the class \((R_{2L}, \tilde{R}_2)\). These facts can be seen in figure 2 which represents \( A_{LL}^{PV} \) for \( e^-p \) and \( e^+p \) collisions at HERA energies with a LQ of mass 250 GeV and coupling \( \lambda = 0.1 \), the large (small) bars corresponding to \( L = 50(500) pb^{-1} \) (a global systematic error of \((\Delta A/A)_{\text{syst}} = 10\% \) has been added in quadrature).

Some other observables, defined in \([7]\), can be used to go further into the separation of the models. However the sensitivities of most of these asymmetries are rather weak, and they can be useful only for some particularly favorable values of the parameters \((M,\lambda)\). Consequently, polarized \( \vec{e}\vec{n} \) collisions are necessary to perform the distinction between the LQ models. For instance, the ratio of asymmetries \( R = A_{LL}^{PV}(ep)/A_{LL}^{PV}(en) \), for an \( e^+ \) beam, distinguishes the models \( R_{2L} \) (positive deviation) and \( \tilde{R}_2 \) (negative one). Similarly, for an \( e^- \) beam, a positive (negative) deviation in \( R(e^-) \) indicates the class \((S_{1R},S_3)\) \((S_{1L},\tilde{S}_1)\). Since these classes are
complementary to the ones obtained from $A_{LL}^{PV}(e^-p)$, it indicates a non-ambiguous separation of the LQ models \[8\].

Finally, if we relax the working assumptions i-iv, the LQ can have some more complex structures, and some ambiguities can remain. Nevertheless, the use of additional asymmetries, like the huge number of charge and PC spin asymmetries that one can define with lepton plus nucleon polarizations \[7\], should be very useful for the determination of the chiral structure of the new interaction.

References

[1] W. Buchm"uller, R. R"uckl and D. Wyler, Phys. Lett. B191 (1987) 442 .

[2] J. Hewett and T. Rizzo, Phys. Rev. D56 (1997) 5709, Phys. Rev. D58 (1998) 055005; A. Deandrea, Phys. Lett. B409 (1997) 277 .

[3] J. Kalinowski et al., Z. Phys. C74 (1997) 595.

[4] M. Gl"uck et al., Z. Phys. C67 (1995) 433.

[5] A. De Roeck, proc. of the 6th Workshop on “Deep Inelastic Scattering and QCD”, Brussels, Belgium, April 1998.

Y. Sirois, to appear in proc. of the 7th Workshop on “Deep Inelastic Scattering and QCD”, DESY-Zeuthen, Germany, April 1999.

[6] M. Gl"uck, E. Reya, M. Stratmann and W. Vogelsang., Phys. Rev. D53 (1996) 4775.

[7] J.-M. Virey, Eur. Phys. J. C8 (1999) 283.

[8] P. Taxil, E. Tuğcu and J.-M. Virey, in preparation.