Two-dimensional speckle tracking of the left ventricle in patients with systemic sclerosis for an early detection of myocardial involvement

Sebastian Spethmann1,2, Henryk Dreger1, Sebastian Schattke1, Gabriela Riemekasten2,3, Adrian C. Borges4, Gert Baumann1, and Fabian Knebel1

Aims
Myocardial involvement is associated with poor prognosis in patients with systemic sclerosis (SSc). Two-dimensional speckle-tracking echocardiography (STE) is a powerful novel modality for the assessment of subclinical cardiac left ventricular (LV) dysfunction that, so far, has not been investigated in SSc patients. The aim of this study was to evaluate deformation analyses derived from STE for early detection of LV systolic dysfunction in patients with SSc having preserved left ventricular ejection fraction (LVEF).

Methods and results
Twenty-two patients with SSc (57.1 ± 13.3 years, LVEF 64 ± 3.1%, mean time of 5.4 ± 4.6 years from diagnosis) and 22 gender- and age-matched healthy subjects (57.4 ± 14.0 years, LVEF 65 ± 2.7%) underwent echocardiography with STE to assess global and regional LV function. The global longitudinal 2D peak systolic strain (PSS) of the left ventricle was significantly lower in the SSc group compared with controls: −19.0 ± 2.4 vs. −21.1 ± 2.5% (P = 0.008). This was mainly driven by a reduced strain in the basal segments. Strain in the medial segments and in the apex did not differ significantly. In addition, there was a significant difference between both groups regarding the global longitudinal PSS rate of the left ventricle (−1.19 ± 0.18 vs. −1.43 ± 0.26 s⁻¹, P = 0.001).

Conclusion
LV deformation analysis by STE is a sensitive method to detect early LV systolic impairment primarily in the basal segments in patients with SSc having preserved LVEF.

Keywords
Systemic sclerosis • Speckle tracking • 2D strain • 2D strain rate • Myocardial involvement

Introduction
Systemic sclerosis (SSc) is a chronic, multi-system disease characterized by extensive fibrosis and vascular damage1 which, over time, can result in severe dysfunction of almost any internal organ. Cardiopulmonary involvement is frequently observed1 and associated with a poor prognosis.2 Histological studies detected myocardial involvement in up to 80% of patients with SSc,3,4 but clinical evidence of myocardial dysfunction is only recognized in 15–25%.2,5,6 Accordingly, cardiac manifestation in SSc is likely to be underdiagnosed.7 But even clinically evident cardiac involvement may often be underestimated due to an attribution of non-specific symptoms to non-cardiac causes like pulmonary fibrosis or pulmonary arterial hypertension. This could be fatal because the mortality rate of SSc is high8 and cardiac involvement is one of the leading causes of disease-related deaths (accountable for 20–26%), mainly due to heart failure and arrhythmias.2,9 Fortunately, significant advances in symptomatic organ-specific therapy have been made during recent years.9–12 Consequently, preclinical identification of myocardial manifestation is highly encouraged and a sensitive and specific non-invasive diagnostic approach is needed to identify patients who would benefit from early medical intervention. Echocardiography is a widely available, safe, and rapidly evolving technique that has already demonstrated the capability to diagnose preclinical cardiac manifestation of SSc: the left ventricular (LV) myocardial long-axis excursion measured by

* Corresponding author. Tel: +49 30 450 613 216; Fax: +4930 450 513 905, Email: sebastian.spethmann@charite.de
Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2012. For permissions please email: journals.permissions@oup.com

Received 5 October 2011; accepted after revision 9 February 2012; online publish-ahead-of-print 16 March 2012
M-mode echocardiography is reduced in patients with SSc having normal left ventricular ejection fraction (LVEF).13 Newer echocardiographic methods, such as tissue Doppler imaging (TDI), allow assessment of myocardial deformation as a sensitive marker for regional and global LV systolic function14 and have already been established also in SSc patients.15–18 Similar to pulsed-wave Doppler blood flow velocity measurements, there are relevant restrictions to the use of TDI (e.g. relevant angle dependence and reliance on the positioning of the sample volume). In contrast, two-dimensional (2D) speckle-tracking echocardiography (STE) is a relatively new echocardiographic technique for obtaining Doppler-independent strain and strain rate (SR) analyses that may overcome some limitations of TDI. This modality has already shown a great clinical relevance and advantages in many clinical and subclinical diseases such as arterial hypertension, diabetes, ischaemic cardiomyopathy, or the assessment of the right heart function in SSc.19–22 Until now, however, no study has investigated the role of STE in detection of subclinical cardiac involvement of the left ventricle in patients with SSc.

The aim of this study was to assess global and regional LV systolic function in patients with SSc having preserved LVEF using STE as a new sensitive method for the detection of LV systolic dysfunction.

Methods

Study population

Twenty-two patients with SSc according to the American College of Rheumatology classification criteria21 (17 women, 5 men, mean age 57.1 ± 13.3 years, range 42–77 years) with a mean time of 5.4 ± 4.6 years (range: 1–13 years) from diagnosis were included into the study (Table 1). According to serological antibody analysis and the modified Rodnan Skin Score (mean: 9.9 ± 13.3; range: 3–26), 11 patients had a limited form and 11 patients suffered from a diffuse form of SSc. Serological antibody analysis revealed the presence of an anti-centromere pattern in 8 patients and anti-Scl-70 in 9 patients. All patients presented with normal pulmonary artery pressure as determined by transtricuspid conventional Doppler echocardiography. In nine patients, lung fibrosis was present. Patients with depressed cardiac involvement of the left ventricle in patients with SSc.

Table 1 Baseline characteristics

	Systemic sclerosis (n = 22)	Control (n = 22)	P-value
Age (years)	57.1 ± 13.3	57.4 ± 14.0	0.93
Sex (female) [n (%)]	17 (77.3)	17 (77.3)	1.0
Systolic BP (mmHg)	138 ± 19.1	137 ± 18.8	0.95
Diastolic BP (mmHg)	79 ± 9.4	81 ± 9.4	0.78
Body mass index (kg/m²)	25.1 ± 6.0	23.4 ± 19	0.9
Diabetes mellitus [n (%)]	3 (13.6)	2 (9.1)	1.0
Arterial hypertension [n (%)]	11 (50.0)	12 (54.5)	0.97
Hypercholesterolaemia [n (%)]	7 (31.2)	5 (22.7)	0.78
LVEF (%)	64 ± 3.1	65 ± 2.7	0.31
LV end-diastolic volume (mL)	75.3 ± 31.6	66.5 ± 28.2	0.37
LV end-systolic volume (mL)	28.4 ± 13.6	23.6 ± 11.2	0.23
Heart rate (bpm)	73.3 ± 8.3	75.1 ± 12.9	0.66

Mean ± SD, except gender, hypertension, hypercholesterolaemia, and diabetes mellitus.

Conventional Doppler echocardiography

Tricuspid valve regurgitation was detected at the apical four-chamber view by colour Doppler echocardiography. Transthrucipid retrograde velocities were obtained using continuous-wave Doppler. Systolic pulmonary artery pressure was estimated from the peak pressure gradient calculated from three consecutive beats using the modified Bernoulli formula ($\Delta P = 4v^2$) and the right atrial pressure derived from the diameter of the inferior vena cava and the collapsibility index.24,25

2D speckle-tracking strain analysis

For assessment of the radial, circumferential and longitudinal speckle-tracking strain and SR of the left ventricle, standard 2D ultrasound images at the parasternal mid-ventricular short-axis view (at the level of the papillary muscles) and from the apical long-axis, and two- and four-chamber views with a frame rate between 60 and 80 fps were recorded and stored digitally for off-line analysis (EchoPac PC, GE Vingmed, Horton, Norway) as previously described.24,26,27

The timing of end-systole was defined by the aortic valve click that can be seen in Doppler flow recordings from the LV outflow tract. After manual tracing of endocardial borders, the software automatically traced the region of interest including the entire myocardial wall. In this process, every view of the left ventricle was divided into six segments. To optimize tracking, the width of the region of interest was adjusted if necessary. For each segment, the quality of speckle-tracking was analysed automatically. Segments with poor tracking were excluded from further measurements.

Peak systolic longitudinal strain and SR of the apical two-, four-chamber, and long-axis views were calculated averaging the peak systolic strain (PSS) and SR values of the six segments of the corresponding views. Finally, the global longitudinal PSS and global longitudinal peak systolic strain rate (PSSR) of the left ventricle were generated averaging peak systolic values of the three apical views. Peak systolic radial and circumferential strain and the SR were

Echocardiography and Doppler measurements

Standard echocardiography was performed in the left decubitus position using an ultrasound system (Vivid 7, GE Medical Systems, Horton, Norway) with a 3.4-MHz multi-frequency transducer. The LVEF was calculated according to the modified Simpson’s rule using the apical four- and two-chamber views.25 The diameter of the inferior vena cava and the collapsibility index was measured from the subcostal view.
2D speckle tracking of the left ventricle

Table 2 Speckle-tracking strain and strain rate data

	SSC (n = 22)	Control (n = 22)	P-value
Radial strain (%)	38.7 ± 21.3	48.3 ± 21.8	0.138
Radial strain rate (s⁻¹)	2.28 ± 0.86	2.54 ± 0.62	0.139
Circumferential strain (%)	−20.4 ± 5.2	−21.0 ± 7.6	0.893
Circumferential strain rate (s⁻¹)	−1.81 ± 0.49	−1.75 ± 0.40	0.776
Global longitudinal PSS (%)	−19.0 ± 2.4	−21.1 ± 2.5	0.008
Global longitudinal PSSR (s⁻¹)	−1.19 ± 0.18	−1.43 ± 0.26	0.001
Longitudinal PSS—APLAX (%)	−18.7 ± 2.2	−20.7 ± 3.3	0.02
Longitudinal PSSR—APLAX (s⁻¹)	−1.16 ± 0.20	−1.43 ± 0.35	0.003
Longitudinal PSS—4CH (%)	−18.2 ± 2.8	−20.8 ± 3.5	0.007
Longitudinal PSSR—4CH (s⁻¹)	−1.14 ± 0.20	−1.4 ± 0.35	0.001
Longitudinal PSS—2CH (%)	−20.1 ± 3.9	−22.1 ± 2.6	0.03
Longitudinal PSSR—2CH (s⁻¹)	−1.28 ± 0.25	−1.48 ± 0.31	0.043

PSS, peak systolic strain; PS, peak systolic; SR, strain rate; APLAX, apical long-axis view; 4CH, apical four-chamber view; 2CH, apical two-chamber view. Data are expressed as mean ± SD.

Inter- and intra-observer variability analysis

Three echocardiographers, blinded to clinical data, independently measured the strain and SR of 10 randomized patients for inter-observer variability analysis. One experienced observer calculated the strain and the SR twice on two consecutive days for analysis of the intra-observer variability.

Statistics and figures

Statistics were calculated with software (SPSS, Version 18.0, SPSS, Inc., Chicago, IL, USA). All results are presented as mean ± SD. The Mann–Whitney non-parametric test was used to compare echocardiographic data from patients and control subjects. Differences were considered statistically significant if the P-value was <0.05. The interclass correlation coefficient by Kolmogorov–Smirnov was used to calculate inter- and intra-observer variability.

Results

Clinical characteristics

Age, gender, LV end-diastolic volume and end-systolic volume, body mass index, systolic, and diastolic blood pressure as well as the incidence of cardiovascular risk factors such as hypertension, hypercholesterolaemia, and diabetes mellitus did not differ significantly between patients and the control group (Table 1).

Table 3 Regional longitudinal speckle-tracking strain data

	SSC (n = 22)	Control (n = 22)	P-value
Basal segments (%)	−17.5 ± 3.0	−20.2 ± 2.9	0.004
APLAX (%)	−18.0 ± 3.2	−19.8 ± 4.1	0.21
4CH (%)	−16.2 ± 3.7	−19.9 ± 4.6	0.018
2CH (%)	−19.3 ± 3.9	−22.0 ± 3.2	0.039
Medial segments (%)	−18.4 ± 2.8	−20.1 ± 3.2	0.065
APLAX (%)	−18.5 ± 2.2	−19.4 ± 4.5	0.175
4CH (%)	−17.7 ± 3.4	−19.6 ± 3.6	0.173
2CH (%)	−18.8 ± 4.7	−22.0 ± 3.6	0.023
Apical segments (%)	−20.9 ± 4.6	−23.0 ± 4.2	0.155
APLAX (%)	−19.7 ± 5.3	−22.8 ± 5.2	0.054
4CH (%)	−21.6 ± 5.3	−23.8 ± 5.9	0.446
2CH (%)	−21.7 ± 6.5	−23.0 ± 4.2	0.318

PSS, peak systolic strain; PSSR, peak systolic strain rate; APLAX, apical long-axis view; 4CH, apical four-chamber view; 2CH, apical two-chamber view. Data are expressed as mean ± SD.

Standard echocardiographic measures

The mean systolic pulmonary artery pressure derived from the transtricuspid pressure gradient was 23 ± 4 mmHg in the SSC group. The LVEF was similar in both groups (64.3 ± 3.1 vs. 65 ± 2.7%, P = 0.31) (Table 1).

Left ventricular longitudinal strain and strain rate

Out of 396 analysed segments per group, 322 (81%) and 301 (76%) were acceptable for strain analysis in the SSC and control groups, respectively. The data of strain and SR analysis are shown in Tables 2 and 3.

The longitudinal PSS in the four-chamber view and two-chamber view as well as the global longitudinal PSS value was significantly different between both groups (−18.2 ± 2.8 vs. −20.8 ± 3.5%, P = 0.007; −20.1 ± 3.9 vs. −22.1 ± 2.6%, P = 0.03; −19.0 ± 2.4 vs. −21.1 ± 2.5%, P = 0.008) (Table 2 and Figure 1). This was mainly influenced by lower strain in the basal segments, while the strain in the medial segments and in the apex did not differ
significantly (-17.5 ± 3.0 vs. $-20.2 \pm 2.9\%$, $P = 0.004$; -18.4 ± 2.8 vs. $-20.1 \pm 3.2\%$, $P = 0.065$; -20.9 ± 4.6 vs. $-23.0 \pm 4.2\%$, $P = 0.155$) (Table 3).

In addition, the longitudinal PSSR differed significantly between both groups in the four-chamber view, the two-chamber view, and the long-axis view as well as the global longitudinal PSSR (-1.14 ± 0.20 vs. $-1.4 \pm 0.35 \text{s}^{-1}$, $P = 0.001$; -1.28 ± 0.25 vs. $-1.48 \pm 0.31 \text{s}^{-1}$, $P = 0.043$; -1.16 ± 0.2 vs. $-1.43 \pm 0.35 \text{s}^{-1}$, $P = 0.003$; -1.19 ± 0.18 vs. $-1.43 \pm 0.26 \text{s}^{-1}$, $P = 0.001$) (Table 2 and Figure 2). This was driven by a lower SR in the basal and medial segments while the SR in the apex did not differ significantly (-1.19 ± 0.21 vs. $-1.45 \pm 0.29 \text{s}^{-1}$, $P = 0.003$; -1.10 ± 0.14 vs. $-1.27 \pm 0.21 \text{s}^{-1}$, $P = 0.003$; -1.51 ± 0.50 vs. $-1.73 \pm 0.52 \text{s}^{-1}$, $P = 0.132$) (Table 3).

Significantly more patients had a pathologically reduced global longitudinal PSS (cut-off -18%) and global longitudinal PSSR (cut-off -1.1s^{-1}) value compared with the controls [9 (40.9) vs. 2 (9.1\%), $P = 0.037$; and 8 (36.4) vs. 1 (4.5\%), $P = 0.025$, respectively].

Left ventricular radial and circumferential strain and strain rate

In the parasternal mid-ventricular short-axis view, 107 segments (81.1\%) out of a total of 132 segments from the SSc group and 85 segments (64.4\%) out of a total of 132 segments from the control group showed sufficient image quality for radial and circumferential strain analysis (Figure 1). The data of strain and SR analysis are given in Table 2. Radial and circumferential strain and SR did not differ significantly between the SSc and the control groups (Table 2 and Figure 2).
Table 4 Comparison between scleroderma subtypes, data are expressed as mean ± SD

	Diffuse-type SSc (n = 11)	Limited-type SSc (n = 11)	P-value
LVEF (%)	63.2 ± 2.8	64.9 ± 3.3	0.233
Heart rate (bpm)	74.2 ± 7.6	72.5 ± 9.3	0.550
Radial strain (%)	36.4 ± 16.6	40.9 ± 25.5	0.973
Radial strain rate (s⁻¹)	2.3 ± 0.5	2.21 ± 1.11	0.290
Circumferential strain (%)	−21.5 ± 5.1	−19.3 ± 5.3	0.282
Circumferential strain rate (s⁻¹)	−1.85 ± 0.33	−1.77 ± 0.60	0.616
Global longitudinal PSS (%)	−18.5 ± 2.4	−19.6 ± 2.4	0.308
Global longitudinal strain rate (s⁻¹)	−1.2 ± 0.2	−1.19 ± 0.18	0.962
Longitudinal PSS—APLAX (%)	−18.6 ± 1.7	−18.8 ± 2.7	0.756
Longitudinal PSS—4CH (%)	−17.2 ± 3.1	−19.1 ± 2.3	0.151
Longitudinal PSS—2CH (%)	−19.6 ± 4.3	−20.6 ± 3.5	0.438
Longitudinal PSSR—APLAX (s⁻¹)	−1.13 ± 0.21	−1.19 ± 0.21	0.517
Longitudinal PSSR—4CH (s⁻¹)	−1.16 ± 0.18	−1.12 ± 0.22	0.572
Longitudinal PSSR—2CH (s⁻¹)	−1.13 ± 0.21	−1.28 ± 0.22	1.0

LVEF, left ventricular ejection fraction; PSS, peak systolic strain; PSSR, peak systolic strain rate; APLAX, apical long-axis view; 4CH, apical four-chamber view; 2CH, apical two-chamber view.
Data are expressed as mean ± SD.

Table 5 Regional longitudinal speckle-tracking strain data between scleroderma subtypes, data are expressed as mean ± SD

	Diffuse-type SSc (n = 11)	Limited-type SSc (n = 11)	P-value
Longitudinal PSS (%)			
Basal segments	−17.7 ± 2.8	−17.4 ± 3.4	0.784
APLAX	−18.5 ± 3.6	−17.5 ± 2.8	0.570
4CH	−16.8 ± 3.5	−15.7 ± 4.0	0.719
2CH	−18.5 ± 4.4	−20.1 ± 3.4	0.400
Medial segments	−17.4 ± 2.5	−19.4 ± 2.8	0.133
APLAX	−17.9 ± 1.0	−19.1 ± 3.1	0.349
4CH	−16.6 ± 4.2	−18.8 ± 2.2	0.332
2CH	−17.4 ± 5.0	−20.2 ± 4.2	0.133
Apical segments	−20.0 ± 5.5	−21.8 ± 3.6	0.300
APLAX	−19.2 ± 4.9	−20.1 ± 5.8	0.605
4CH	−19.8 ± 5.6	−23.3 ± 4.6	0.132
2CH	−22.2 ± 7.6	−21.2 ± 5.4	0.973
Longitudinal PSSR (s⁻¹)			
Basal segments	−1.18 ± 0.20	−1.21 ± 0.23	0.936
Medial segments	−1.10 ± 0.15	−1.10 ± 1.15	0.508
Apical segments	−1.42 ± 0.52	−1.61 ± 0.49	0.411

PSS, peak systolic strain; PSSR, peak systolic strain rate; APLAX, apical long-axis view; 4CH, apical four-chamber view; 2CH, apical two-chamber view.
Data are expressed as mean ± SD.

Figure 3 Colour coding of the average regional longitudinal PSS in the four-chamber view (A), two-chamber view (B), and the apical long-axis view (C) in patients with SSc (left panel) and controls (right panel). The echo templates were originally created by Patrick J. Lynch and C. Carl Jaffe, MD and used with permission under the Creative Commons Attribution 2.5 License 2006.
Comparison between diffuse and limited type of SSc

There were no significant differences among the echocardiographic parameters in patients with diffuse and limited type of SSc (Tables 4 and 5).

Inter- and intra-observer variability

The inter- and intra-observer variability for the longitudinal 2D strain was 5.0 and 10.3%, respectively. The inter- and intra-observer variability for the radial 2D strain was 8.4 and 16.3%, respectively.

Discussion

Myocardial damage is more frequent in SSc patients than clinically suspected. Since cardiac involvement is associated with a poor prognosis, the need for an early detection is evident. We could demonstrate that in patients with SSc having preserved LVEF global longitudinal PSS and SR of the left ventricle derived from 2D speckle-tracking analysis were impaired compared with a matched control group (Figures 1–3). Furthermore, significantly more patients had pathologically reduced global longitudinal PSS and global longitudinal PSSR values compared with the controls. Although it has been shown that STE-derived strain and SR are a sensitive marker for the detection of clinical and subclinical myocardial left heart dysfunction in a variety of pathologies, to our knowledge the present study is the first to describe such abnormalities in patients with SSc. STE is a relatively new technique with many advantages compared with TDI: e.g. lack of angle dependence since it can measure the myocardial motion in any direction within the image plane and capability of direct measurements of strain. In addition, speckle tracking can be performed off-line from recorded examinations using only standard 2D images. Furthermore, assessment of 2D strain is a semi-automatic method that is only minimally affected by inter- and intra-observer variability.

In the clinical routine, assessment of global systolic function is usually based on the LVEF. This parameter, however, is insufficient in describing the complex myocardial motion which is characterized by multiple three-dimensional movements: longitudinal shortening, radial thickening, and circumferential shortening, as well as a twist motion due to the helical nature of the heart muscle.

The longitudinal function is predominantly influenced by subendocardial fibres that are most susceptible to myocardial damage. In contrast, the mid-myocardial and epicardial fibres that are mostly responsible for the circumferential motion and twist remain relatively unaffected. Since the LVEF is mainly dependent on the radial and the circumferential deformation, the LVEF may remain normal despite relevant myocardial damage. Histological studies diagnosed myocardial fibrosis in up to 80% of patients with SSc. While autopsy studies are likely to represent patients with more advanced disease, the reduced regional and global longitudinal deformation detected in our study may also be caused by myocardial fibrosis. But as a limitation of our study, neither cardiac magnetic resonance imaging (MRI) nor a myocardial biopsy was performed to confirm this hypothesis.
In our patients, each LV segment had lower longitudinal strain and SR but not all segments were significantly divergent compared with the controls. The reduced global longitudinal strain was mainly caused by a reduced longitudinal strain in the basal segments (Figures 3–5). In contrast, the strain in the medial and apical segments did not differ significantly between both groups. Our results are in agreement with previously published data using TDI, which show reduced peak systolic longitudinal strain and SR of the LV lateral-free wall in 23 patients with SSC, despite normal LVEF and normal pulsed-wave Doppler tissue velocities. In addition, Kepez et al. reported a reduction in the strain in 6 out of 12 LV segments and of the SR in 2 out of 12 LV segments, which did not match any particular coronary artery distribution. In our patients, we found a significantly reduced longitudinal peak systolic SR in every apical view—mainly in the basal and medial segments but not in the apex. In conclusion, our results confirmed a heterogeneous distribution of segmental systolic dysfunction. Therefore, we agree with Kepez et al. to emphasize the use of global indices for the assessment of systolic function. Interestingly, these findings were independent from the disease subtype.

No patients had to be excluded due to poor image quality. This indicates an acceptable feasibility of echocardiographic assessment of LV function by speckle tracking in SSC patients. In contrast, for patients with SSC and advanced pulmonary involvement it could be demanding to tolerate an ultrasound examination lying mainly in a steep left lateral decubitus position. Furthermore, respiratory diseases often lead to a significant impairment of the echocardiographic acoustic window due to air trapping or due to pulmonary fibrosis, but the free right ventricular wall should be more susceptible to this limitation than the left ventricle.

Limitations

As a limitation of our study, no coronary angiography was performed to rule out coronary artery disease as a reason for reduced longitudinal function. However, all patients were asymptomatic in this regard and the pre-test probability was low based on clinical atherosclerotic risk factors, and no significant difference compared with the control could be found (Table 1). In addition, as mentioned myocardial fibrosis was not assessed by cardiac MRI or myocardial biopsies.

Our study included only long-term scleroderma patients with a mean time of 5.4 ± 4.6 years from diagnosis. Therefore, 5 (22.7%) of the included patients had already received potentially cardiotoxic disease-modifying agents (azathioprine, methotrexate, or cyclosporine A). Accordingly, we cannot rule out that the reduced longitudinal strain in SSC patients was, at least in part, due to side effects of the medical therapy.

Conclusion

In summary, global longitudinal strain and SR derived from STE are reduced in asymptomatic patients with SSC having preserved LVEF compared with matched controls. Since cardiac involvement is common, our results may be explained by a subclinical myocardial fibrosis. In addition to analysing previously published studies using TDI, 2D speckle tracking can also be practically used to assess global and regional deformation parameters in SSC.
Acknowledgments

We thank Mrs. Christine Scholz for excellent technical assistance.

Conflict of interest: none declared.

References

1. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009;360:1989–2003.
2. Steen VD, Medsger TA Jr. Severe organ involvement in systemic sclerosis with diffuse scleroderma. Arthritis Rheum 2000;43:2437–44.
3. D’Angelo WA, Fries JF, Masi AT, Shulman LE. Pathologic observations in systemic sclerosis (scleroderma). A study of fifty-eight autopsy cases and fifty-eight matched controls. Am J Med 1969;46:428–40.
4. Follansbee WP, Miller TR, Curtiss EL, Orte JE, Bernstein RL, Krieman JM et al. A controlled clinico pathologic study of myocardial fibrosis in systemic sclerosis (scleroderma). J Rheumatol 1990;17:630–62.
5. Deswal A, Follansbee WP. Cardiac involvement in scleroderma. Rheum Dis Clin North Am 1996;22:841–60.
6. Follansbee WP. The cardiovascular manifestations of systemic sclerosis (scleroderma). Curr Probl Cardiol 1986;11:241–98.
7. Champion HC. The heart in scleroderma. Rheum Dis Clin North Am 2008;34:181–92.
8. Ioamindis JP, Vazhoyannopoulos PG, Haidich AB, Medsger TA Jr., Lucas M, Michet CJ et al. Mortality in systemic sclerosis: an international meta-analysis of individual patient data. Am J Med 2005;118:2–10.
9. Tyndall AJ, Bannert B, Vonk A, Airo P, Cozzi F, Carreira PE et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010;69:1809–15.
10. Dentan CP, Black CM. Scleroderma—clinical and pathological advances. Best Pract Res Clin Rheumatol 2004;18:271–90.
11. Aveuac J, Kowal-Bielecka O. Landewe R, Czvikosz S, Minniti I, Czirjak L et al. European League Against Rheumatism (EULAR) Scleroderma Trial and Research group (EUSTAR) recommendations for the treatment of systemic sclerosis: methods of elaboration and results of systematic literature research. Ann Rheum Dis 2009;68:629–34.
12. Kowal-Bielecka O. Landewe R, Aveuac J, Czvikosz S, Minniti I, Czirjak L et al. EULAR recommendations for the treatment of systemic sclerosis: a report from the EULAR Scleroderma Trials and Research group (EUSTAR). Ann Rheum Dis 2009;68:620–8.
13. Henein MY, Cailes J, O’Sullivan C, de Bois RM, Gibson DG. Abnormal ventricular long-axis function in systemic sclerosis. Chest 1995;108:1533–40.
14. Urheim S, Edvardsen T, Torp H, Angelseth B, Smeeth OA. Myocardial strain during routine care: a controlled study of 100 consecutive patients. Arthritis Rheum 2008;59:1823–9.
15. D’Andrea A, Stari S, Bellissimo S, Vignolet F, Scattone di Uccio F, Tozza N et al. Early impairment of myocardial function in systemic sclerosis: non-invasive assessment by Doppler myocardial strain rate imaging. Eur J Echocardiogr 2005;6:407–18.
16. Kapez A, Akgogan A, Sade LE, Deniz A, Kalyoncu U, Karadag O et al. Detection of subclinical cardiac involvement in systemic sclerosis by echocardiographic strain imaging. J Soc Echocardiogr 2008;25:191–7.
17. Mele D, Cenisi S, La Corte R, Merli E, Lo Monaco A, Locaturo A et al. Abnormalities of left ventricular function in asymptomatic patients with systemic sclerosis using Doppler measures of myocardial strain. J Am Soc Echocardiogr 2008;21:1257–64.
18. Schattke S, Knebel F, Grohmann A, Dreger H, Kneisel F, Riemelshagen G et al. Early right ventricular systolic dysfunction in patients with systemic sclerosis without pulmonary hypertension: a Doppler Tissue and Speckle Tracking echocardiography study. Cardiovasc Ultrasound 2010;8:3.
19. Imbalzano E, Zito C, Carej S, Oretto G, Mandragnolo G, Cusma-Piccione M et al. Left ventricular function in hypertension: new insight by speckle tracking echocardiography. Echocardiography 2011;28:649–57.
20. Erdane L, Rietzschel ER, Bergerot C, De Buyzere ML, Schnell F, Groisse L et al. Impaired myocardial radial function in asymptomatic patients with type 2 diabetes mellitus: a speckle-tracking imaging study. J Am Soc Echocardiogr 2010;23:1266–72.
21. Liang HY, Cauduro S, Pellika S, Wang J, Urheim S, Yang BH et al. Usefulness of two-dimensional speckle strain for evaluation of left ventricular diastolic deformation in patients with coronary artery disease. Am J Cardiol 2006;98:1581–6.
22. Preliminary criteria for the classification of systemic sclerosis (scleroderma). Subcommittee for scleroderma criteria of the American Rheumatism Association Diagnostic and Therapeutic Criteria Committee. Arthritis Rheum 1980;23:831–40.
23. Lang RM, Berg H, Devereux RB, Flachskampf FA, Foster E, Pellika et al. et al. Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E. Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 2005;18:1440–63.
24. Quinones MA, Otto CM, Stoddard M, Waggster A, Zoghbi WA, Doppler Quantification Task Force of the N, Standards Committee of the American Society of E. Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 2002;15:167–84.
25. Edwards T, Berger BL, Garofar J, Buenikke DA, Lima JA, Smeeth OA. Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 2002;106:50–6.
26. Sutherland GR, Di Salvo G, Clauss P, D’Hooge J, Bijnens B. Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 2002;17:89–90.
27. Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysarzevksy P et al. Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2009;2:80–4.
28. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/AACM consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. J Am Soc Echocardiogr 2011;24:277–313.
29. Otto CM. Textbook of Clinical Echocardiography. 4th ed. Philadelphia: Saunders Elsevier; 2009.
30. Becker M, Bilke E, Kuhl H, Kato M, Kramann R, Franke A et al. Analysis of myocardial deformation based on pixel tracking in two-dimensional echocardiographic images enables quantitative assessment of regional left ventricular function. Heart 2006;92:1102–8.
31. Sos K, Reant P, Lafitte M, Berhouet M, Le Bouflos V, Roudaut R et al. Global and regional myocardial function quantification by two-dimensional strain: application in hypertrophic cardiomyopathy. J Am Coll Cardiol 2006;47:1175–81.
32. Geyer H, Caraciglio G, Abe H, Wilansky S, Carej S, Gentile F et al. Assessment of myocardial mechanics using speckle tracking echocardiography: fundamentals and clinical applications. J Am Soc Echocardiogr 2010;23:351–69; quiz 453–355.
33. Covell JW. Tissue structure and ventricular wall mechanics. Circulation 2008;118:699–701.
34. Fernandez VR, Edvardsen T, Rosen BD, Carvalho B, Campos O, Cordeiro MA et al. The influence of left ventricular size and global function on regional myocardial contraction and relaxation in an adult population free of cardiovascular disease: a tagged CMR study of the MESA cohort. J Cardiovasc Magn Reson 2007;9:921–30.
35. Arcosil SM, Christie JD, Ferrari VA, Sutton MS, Zisman DA, Blumenthal NP et al. Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 2003;167:735–40.
36. Miyashara Y, Ikeda S, Yoshinaga T, Yamaguchi K, Nishimura-Shirono E, Yamasa T et al. Echocardiographic evaluation of right cardiac function in patients with chronic pulmonary disease. Jpn Heart J 2001;42:483–93.