Vila Maria Formation (Silurian, Paraná Basin, Brazil): integrated radiometric and palynological age determinations

ANA M. P. Mizusaki*, JOSÉ HENRIQUE G. MELO†, MARIA L. VIGNOL-LELARGE* & PHILIPPE STEEMANS‡

*Geoscience Institute, Rio Grande do Sul Federal University, Porto Alegre (RS), Brazil
†PETROBRAS Research & Development Centre – CENPES/PDEP/BPA, Rio de Janeiro (RJ), Brazil
‡NFSR research associate, Paleobotany, Paleopalynology & Micropaleontology, University of Liège, Liège, Belgium

Abstract – Fresh shale samples taken from a well-known outcrop section of the Silurian Vila Maria Formation, located on the northeastern margin of the Paraná Basin (Três Barras Farm, Goiás State, central-western Brazil), have been analysed for both palynological and radiometric age determinations. The rocks yielded a fairly diverse, age-definitive cryptospore assemblage, and the same samples proved suitable for Rb–Sr analysis, despite Silurian sedimentary rocks being rarely suited to radiometric dating techniques. This study thus introduces an alternative, independent method for estimating the minimum depositional age of the Vila Maria Formation. The Rb–Sr age value has been calculated via an isochron diagram that yields 435.9 ± 7.8 Ma. Accordingly, the latter value is interpreted as the minimum depositional age of the analysed Vila Maria strata, implying their deposition during Llandovery times. This concurs with the palynological results, which indicate an age no older than Early Silurian and, more particularly, favour an Early to Middle Llandovery (Rhuddanian–Early Aeronian) attribution.

Keywords: Silurian, absolute age, palynology, biostratigraphy, Paraná Basin.

1. Introduction and material

The Ordovician–Silurian sedimentary sequence of the vast Paraná Basin of South America includes a number of siliciclastic rock units that are developed extensively in the subsurface (Milani et al. 1995; Pereira, Bergamaschi & Rodrigues, 1998; Moreira & Borghi, 1999; Assine, 2001, and references therein). Fossiliferous strata of this sequence are best exposed in eastern Paraguay, on the west flank of the basin, where the Itacurubí Group (particularity the Vargas Peña Formation) contains fairly rich marine invertebrate faunas and palynomorph assemblages of Early Silurian age (Harrington, 1950, 1972; Wolfart, 1961; Ciguel, Rösler & Clérice, 1987; Ciguel, 1988; Wood et al. 1989; Babcock et al. 1990; Melo & Boucot, 1990; Gray, 1991; Boucot et al. 1991; Wood & Miller, 1991; Gray et al. 1992; Milani & Daemon, unpub. report, 1992; Milani et al. 1995; Y. Grahn, unpub. report, 1998; Grahn, Pereira & Bergamaschi, 2000). Towards the east, in south and central-western Brazil, fossiliferous Silurian strata are less well developed and mostly restricted to the Vila Maria Formation, both in the subsurface and in discontinuous outcrops along the northwestern and northeastern margins of the basin (Burjack & Popp, 1981; Popp, Burjack & Esteves, 1981; Faria, 1982; Gray et al. 1985; Boucot et al. 1986; Grahn, 1992; Y. Grahn, unpub. report, 1997; Milani & Daemon, unpub. report, 1993; Milani et al. 1995; Moreira & Borghi, 1999; Grahn, Pereira & Bergamaschi, 2000; Assine, 2001).

The palynological part of our study involves a biostratigraphic reassessment of the Vila Maria Formation at its well-known Três Barras Farm outcrop section in Goiás State, on the northeastern margin of the Paraná Basin in central-western Brazil (Fig. 1). That section was also investigated by Gray et al. (1985), who first documented the occurrence of palynomorphs. The location of this fossil site, as well as the regional stratigraphy and lithological characterization of the Vila Maria Formation in the study area, has already been described in sufficient detail by those authors and also by Faria (1982). Our six samples, collected by A. J. Boucot, A. Faria and PETROBRAS (Brazilian state-owned oil company) geologists in 1986, are well representative of a 3.5 m thick section within Faria’s (1982) ‘middle sequence’ (Fig. 2), that is, the dark shale interval that has also yielded all of the palynomorphs recorded by Gray et al. (1985).

The samples from the Vila Maria Formation have been utilized concurrently for radiometric Rb–Sr analyses. The purpose of this was to provide an alternative, independent basis for estimating the minimum depositional age of the formation and to compare this with palynological data obtained from the same samples.

§ Author for correspondence: ana.mizusaki@ufrgs.br
2. Palynological results

Miospores from a single sample of the Vila Maria Formation at the Três Barras Farm section were investigated by Gray et al. (1985), who described only unenlosed tetrads and dyads associated with rare possibly tritele spores (probably dissociated from tetrads). One of the six samples analysed herein (our Sample I, from the base of a waterfall) was collected from that same horizon, and the others (Samples II–IV, VI and VIII) are from somewhat higher stratigraphic levels. They contain a much richer miospore assemblage than was selectively reported by Gray et al. (1985). They also include abundant microphytoplankton (mainly leiospheres, with less common acritarchs), a few scolecodonts, and rare, doubtful graptolite remains (that are so poorly preserved and comminuted as to be unidentifiable). Chitinozoans were not observed in any of the samples. The palynomorphs are, in general, poorly preserved, moderately carbonized, brown to dark brown, and often pyrite-impregnated. In
addition, unstructured films and clumps of amorphous organic matter make up a considerable proportion of the total organic residue in these samples.

Our biostratigraphic analysis of the palynoflora concerns the miospore components only. The associated microphytoplankton include no age-diagnostic forms. They constitute a very low-diversity acritarch–prasinophyte assemblage dominated by leiospheres and *Dixallophasis* sp.; minor constituents include *Eupoikilosphaera* sp. (one fragment found), *Multiplicisphaeridium*? sp., indeterminate acanthomorphs, and very rare *Dictyoitium*? sp. and *Pterospermella*? sp. This taxonomically restricted association, together with the overwhelming representation of leiospheres and presumably land-derived miospores, and the apparent absence of chitinozoans, indicates a very shallow marine, near-shore depositional environment for the Vila Maria Formation in the study area, as suggested by previous palynological studies (Gray et al. 1985; J. Melo, unpub. report, 1997; Laranjeira, Melo & Pereira, 1997). Moreover, this inferred setting is also consistent with the occurrence of *Arthrophycus alleghaniensis* in nearby outcrops (Burjack & Popp, 1981) and, more particularly, with the low diversity molluscan fauna reported from the same level as Sample I at the Três Barras Farm section (Popp, Burjack & Esteves, 1981; Faria, 1982; Boucot et al. 1986).

The miospore assemblage is similar in all six samples and consists of cryptospores only. These include rare monads and much more abundant dyads and tetrads which are either unenclosed or envelope-enclosed. Envelopes are smooth or variably ornamented with a reticulate pattern, small convolute ridges, or rarely small granae. No true trilete spores have been observed. The few specimens that bear an incipient trilete mark are artifacts and belong to the cryptospore genus *Imperfectotriletes* (Steemans, 2000; Steemans, Higgs & Wellman, 2000). These probably correspond to the ‘possible trilete spores’ recorded by Gray et al. (1985, p. 523).

The following species have been identified in the samples of this study: *Abditusdyadus laevigatus* Wellman & Richardson, 1996; *Dyadospora murusatetena*ta Strother & Traverse, 1979; *D. musrudens*a Strother & Traverse, 1979; *Imperfectotriletes patinatus* Steemans, Higgs & Wellman, 2000; *L. vavrdovae* (Richardson) Steemans, Higgs & Wellman, 2000; *Laevolancis divellomedia* (Chibrikova) Burgess & Richardson, 1991; *Nodospora rugosa* sensu Richardson, 1988; *Pseudodyadospora laevigata* Johnson, 1985; *P. petasus* Wellman & Richardson, 1993; *Rimosotetras problematica* Burgess, 1991; *Segestrespora membranifera* (Johnson) Burgess, 1991; *S. rugosa* (Johnson) Burgess, 1991; *S. laevigata* Burgess, 1991; *Sphaerasaccus glabellus* Steemans, Higgs & Wellman, 2000; *Tetrahedraletes medinensis* Strother & Traverse, 1979; *Velatitettetra anatoliensis* Steemans, LeHérissé & Bozdogan, 1996; *V. retinembrana* (Miller & Eames) Steemans, LeHérissé & Bozdogan, 1996; *V. rugosa* Steemans, LeHérissé & Bozdogan, 1996; and *V. laevigata* Burgess, 1991 (Figs 3, 4).

The Três Barras Farm cryptospore assemblage is typical of palynofloras of Caradoc–Llandovery age that are known virtually worldwide. In South America such assemblages are known from Lower Silurian rocks of the Paraná Basin in Brazil and Paraguay (J. Melo, unpub. report, 1997; Laranjeira, Melo & Pereira, 1997; Steemans & Pereira, 2000) as well as from the Amazon and Parnaiba basins of northern Brazil (J. Melo & P. Steemans, unpub. report, 1997; P. Steemans, unpub. report, 2000). Furthermore, similar palynofloras have been reported from numerous other regions, such as Belgium (Steemans, 2001), Bulgaria (Lakova, Gocev & Yanev, 1992), China (Wang, Li & Wang, 1997), the Czech Republic (Vavrdová, 1984, 1988, 1989), Libya (Richardson, 1988), Saudi Arabia (Steemans, Higgs & Wellman, 2000; Wellman, Higgs & Steemans, 2000), Turkey (Steemans, LeHérissé & Bozdogan, 1996), United Kingdom (Burgess, 1991; Wellman, 1996), and North America (Strother & Traverse, 1979; Miller & Eames, 1982; Duffield, 1985; Johnson, 1985). A more complete list of such early miospore occurrences is given in Edwards & Wellman (2001).

There is only very limited palynostratigraphic evidence to distinguish Late Ordovician from earliest Silurian miospore assemblages. The main criteria include the first occurrence of *L. divellomedia*, the appearance and proliferation of true trilete spores (*Ambitisporites avitus* morphon sensu Steemans, LeHérissé & Bozdogan, 1996), and the progressive decline of cryptospores featuring a membranous envelope. A provisional biostratigraphic scheme based on these features has been formulated by Steemans, Higgs & Wellman (2000). The Vila Maria miospore assemblage documented herein contains rare *L. divellomedia*, abundant membrane-bearing cryptospores, and some specimens of *Imperfectotriletes*, but no true trilete spores. Accordingly this assemblage can be attributed to Sub-zone α of the *L. divellomedia* Interval Biozone (Steemans, Higgs & Wellman, 2000). The possible age for this biozone ranges from Rhuddanian to Early Aeronian (cryptospores bearing an outer membrane become scarcer in the Upper Aeronian according to Steemans, Higgs & Wellman, 2000). Moreover, the stratigraphic inception of *Ambitisporites* seems to occur at a somewhat higher level in South America (upper Aeronian: see Steemans & Pereira, 2000) than elsewhere. However, the above-mentioned criterion, based on the absence or presence of trilete spores, must be accepted with caution. Indeed, there are few reported occurrences of pre-middle Aeronian trilete spores. Moreover, first occurrences of trilete spores appear to be diachronous (Steemans & Pereira, 2000).

In light of the above, and perhaps also because of
Figure 3. Cryptospores from the Silurian Vila Maria Formation at Três Barras Farm section, Goiás State, central-western Brazil. All palynological slides are from the collection of Management of Applied Biostratigraphy and Paleoecology at PETROBRAS R & D Centre (CENPES/PDEP/BPA, Rio de Janeiro, Brazil). Each palynomorph name is followed by indications of the source sample, preparation number, and England Finder coordinate. Scale bar = 10 μm. (a) Abditusdyadus laevigatus, dyad enclosed within a smooth envelope, Sample VIII, 2002978, F16/0. (b) Dyadospora murusattenuata, smooth dyad with thin wall, Sample VIII, 2002978, F21/3. (c) Dyadospora murusdensa, smooth dyad with thick wall, Sample VIII, 2002978, J20/4. (d)
the restricted sampling available to this study (restricted to the ‘middle sequence’ of the Vila Maria Formation), we were unable to confirm the younger Llandovery (later Aeronian to Telychian) sedimentation proposed by Grahn, Pereira & Bergamaschi (2000, fig. 11) for higher parts of the formation. In fact, our palynological dating is in agreement with the Early to Middle Llandovery age span proposed by Grahn (1992) on the basis of chitinozoan evidence from the Paraná Basin subsurface. In particular, our data support Gray et al.’s (1985) Early Llandovery age determination based on the size range and mean size of tetrads. However, the cryptospore size criterion is of dubious chronostratigraphic value. Indeed, the coalescence of organic matter causes a decrease in palynomorph size as do laboratory oxidation techniques (Johnson, 1985). Sedimentary processes also tend to produce pre-depositional sorting of palynomorphs. According to Gray et al. (1985), Llandovery-age tetrads of *T. medinensis* from the Três Barras Farm section display a 18–43 μm size range (mean 29 μm), from 150 measured specimens. Virtually identical values were recorded by Wellman (1996) for appreciably older (Late Ordovician, Caradoc) representatives of the same species from southern Britain, that is, 19–43 μm (mean 28 μm), based on 100 specimens. This confirms that tetrad size is unreliable biostratigraphically.

3. Rb–Sr radiometric dating of the Vila Maria Formation

The Rb–Sr isochron method has been employed in dating Palaeozoic and Early Mesozoic pelitic rocks of Brazilian sedimentary basins (A. Thomaz-Filho, unpub. Ph.D thesis, Univ. Estado de São Paulo, 1976; Cordani, Kawashita & Thomaz-Filho, 1978; Cordani et al. 1985; Mizusaki, Alves & Pedrão, 1999). In all cases the Rb–Sr results have geological significance and can be associated with the depositional age proposed for the varied formations.

Cordani, Kawashita & Thomaz-Filho (1978) and Cordani et al. (1985), using whole rock samples from argillaceous sedimentary formations, have presented radiometric Rb–Sr ages compatible with the sedimentation processes. According to these authors, the fundamental condition that must be satisfied is the isotopic homogenization of the initial ratio \(^{87}\text{Sr}/^{86}\text{Sr} \). We prefer to use the alternative expression ‘isotopic uniformizing’ when describing the characteristics of these sedimentary rocks (A. M. Mizusaki, unpub. Ph.D. thesis, Univ. Estado de São Paulo, 1992).

Several other authors (A. Thomaz-Filho, unpub. Ph.D thesis, Univ. Estado de São Paulo, 1976; Bonhomme, 1982; J. Morton, unpub. Ph.D thesis, Univ. Texas, 1983; Morton, 1985) have enumerated the essential conditions for the application of the Rb–Sr methodology to pelitic rocks and consequently to the homogenization process of initial values of the ratio \(^{87}\text{Sr}/^{86}\text{Sr} \). We believe that the isotopic homogenization in cogenetic sedimentary rock samples is a process that must occur during or immediately after sedimentation. In order to verify this hypothesis, Mizusaki, Kawashita & Thomaz-Filho (1998), working with Recent sediments, described the conditions necessary for the homogenization process to occur in sedimentary rocks, and consequently for the calculated isochron age to be considered representative of the depositional time. These conditions include: closely spaced samples, control of the associated detrital material, clay fraction enriched in expandable minerals, and deposition preferably in saline (but not necessarily marine) waters. Accordingly, the Vila Maria Formation samples have been carefully examined in order to verify whether or not they were suitable for application of the methodology proposed by Mizusaki, Kawashita & Thomaz-Filho (1998).

Initially, all six samples were described macroscopically, highlighting such parameters as colour, biogenic textural patterns, presence of salts, carbonates, feldspars, micas, oxidation products and organic matter. The samples were found to be pelitic, argillaceous, homogeneous, grey to brown, and to show some features probably associated with biogenic textural patterns. Locally minor open fractures and rare millimetric veins of white calcite were observed. The samples include small amounts of potassium feldspar and micas, and show little evidence of oxidation. The opposite condition would be regarded as problematic because potassium minerals usually contain some Rb that could adversely affect the analytical results.

Thereafter, clay minerals present in the fine fractions of the samples were identified. All samples were analysed with X-ray diffraction techniques (XRD) in whole rock and fine fraction (<2 μm) preparations. They were found to be very similar and homogeneous in whole rock mineralogy: quartz, micas (rare), iron oxides and clay fraction. The latter (<2 μm) includes interstratified illite–smectite, illite and rare kaolinite.

Imperfectotriletes patinatus, thick-walled monad with a pseudo-trilete mark and attached tetrad remains, Sample VIII, 2002978, O203. (e) *Imperfectotriletes varvordae*, thin-walled monad with a pseudo-trilete mark, Sample VIII, 2002978, P193/3. (f, g) *Laevolancis divellomedium*, smooth monads, Sample VIII, 2002978; (f) N52/3; (g) X220. (h) *Nodospora rugosa sensu* Richardson 1988, tetrad ornamented with convolute muri, enclosed within a smooth envelope. Sample VIII, 2002978, K280/1. (i) *Pseudodyadospora laevigata*, smooth pseudo-dyad, Sample VIII, 2002978, P193/3. (j) *Pseudodyadospora petasus*, smooth pseudodyad, Sample VIII, 2002978, U221/1. (k) *Rimosotetras problematica*, smooth tetrad with loosely attached spore-like cells, Sample VIII, 2002978, D40/0. (l) *Segestrespora membranifera*, smooth dyad enclosed within an envelope ornamented with a reticulate pattern.
Figure 4. Cryptospores and other organic-walled microfossils from the Silurian Vila Maria Formation at Três Barras Farm section, Goiás State, central-western Brazil. All palynological slides are from the collection of Management of Applied Biostratigraphy and Paleocology at PETROBRAS R & D Centre (CENPES/PDEP/BPA, Rio de Janeiro, Brazil). Each palynomorph name is followed by indications of the source sample, preparation number, and England Finder coordinate. Scale bar in (a–j) is 10 μm. Scale bar in (k, l) is 50 μm. Items (a–g) are cryptospores; (h–j) are acritarchs; (k, l) are other marine
Regarding the depositional environment, the palynological analysis suggests shallow marine settings with likely significant input of continental organic debris. These mineralogical and paleoenvironmental circumstances are appropriate for the application of Rb–Sr methodology.

The isotopic analysis enables determination of the Rb and Sr contents and the $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{87}\text{Rb}/^{86}\text{Sr}$ ratios. The appropriate procedures, as adopted by K. Kawashita (unpub. Ph.D thesis, Univ. Estado de São Paulo, 1972) and A. M. Mizusaki (unpub. Ph.D thesis, Univ. Estado de São Paulo, 1992), were performed at the Geochronology and Isotope Geology Research Centre of the Geosciences Institute of São Paulo University (USP). First, whole rock samples were dried in a special oven with controlled temperature not exceeding 70 °C, thus preventing thermal disturbances in the clay mineral structure, and carbonates were removed with HCl (0.1 N).

Following brief treatment with H$_2$O$_2$ (to remove possible organic matter), specific isotopic analyses were conducted. These included: semi-quantitative and qualitative determination of Rb and Sr (using X-ray fluorescence); chemical digestion (HF + HClO$_4$); separation of the Sr by exchange with cationic resin (AG-50; W-X8; Biorad 200 to 400 mesh) and determination of the Sr isotopic compositions by means of a mass spectometer VG-354 with simple collector.

These determinations were made during the year 1999 when (according to the international standard NBS-987) the average value obtained with 34 determinations was 0.71025 ± 0.00002 (1σ). The calculated average error with $^{87}\text{Sr}/^{86}\text{Sr}$ is 0.0131 %. The values obtained from isotopic analyses of the six samples are presented in Table 1. Initially we made a selection of the available isotopic results as the samples have similar values (Table 1). We chose four points that present a good dispersion of isotopic ratio $^{87}\text{Rb}/^{86}\text{Sr}$ (calculated by X-ray fluorescence technique) and are considered representative of the sampled interval of Vila Maria Formation. These points (samples I, II, III and IV) were plotted on an isochron diagram (Fig. 5) using a regression program (modified from Williamson, 1968). The result obtained is 435.9 ± 7.8 Ma, with correlation 1.00 and initial ratio $^{87}\text{Sr}/^{86}\text{Sr}_{\text{i}}$ of 0.71384 ± 0.00012.

Table 1. Rb (ppm), Sr (ppm), $^{87}\text{Sr}/^{86}\text{Sr}$ and $^{87}\text{Rb}/^{86}\text{Sr}$ ratios in pelitic samples of the Vila Maria Formation, Paraná Basin, Brazil

Sample	Rb (ppm)	Sr (ppm)	$^{87}\text{Sr}/^{86}\text{Sr}$	Error	$^{87}\text{Rb}/^{86}\text{Sr}$	Error
I	13.15	483.81	0.71433	0.00012	0.079	0.001
II	186.50	151.60	0.73593	0.00011	3.570	0.101
III	186.70	156.20	0.73549	0.00012	3.464	0.098
IV	187.50	129.30	0.73900	0.00015	4.210	0.119
VI	184.20	156.20	0.73503	0.00007	3.422	0.097
VIII	14.93	440.63	0.71463	0.00007	0.098	0.0008

Figure 5. Rb/Sr isochron diagram for pelitic samples representative of the Vila Maria Formation, Paraná Basin, Brazil (modified after Williamson, 1968)

4. Discussion of results

The isochron age obtained from pelitic samples of the Vila Maria Formation (435.9 ± 7.8 Ma) is considered representative of the depositional age because...
the Sr isotopic homogenization was evidently pene-
contemporaneous with sedimentation. The reduced
statistical error (1.7%) recorded for the analysed
samples is coherent with the application of the Rb/Sr
method to sedimentary rocks (A. M. Mizusaki,
unpub. Ph.D thesis, Univ. Estado de São Paulo, 1992).
The lack of significant diagenetic alteration of the
original mineralogy adds to the reliability of our
dating.

Comparison of the present result with some nu-
merical values in published geological time-scales
(International Union of Geological Sciences, 1989;
Geological Society of America, 1989; Harland
et al. 1982, 1989) indicates Early Silurian (Llandovery)
as the possible minimum age for the investigated Vila
Maria interval. However, taking into account the
statistical error (± 7.8 Ma), the value ranges from
428.1 to 443.7 Ma, and is consistent with any dating
within the Caradoc–Llandovery age span (Gale, 1985;
Odin, 1985).

Several papers have been published recently that
present Early Silurian isotopic ages, derived from
many geological sources and based on a variety of
isotopic systems, especially U/Pb in zircons (Harland
et al. 1989; Hughes, 1995; Fordham, 1992; McKerrow
& Van Staal, 2000). Unfortunately, as discussed by
Hughes (1995), there is considerable variation in
numerical values given in the literature.

Johnson & McKerrow (1991) used 430 Ma for a
‘mid Aeronian’ position and 432 and 435 Ma for the
top and base of the Rhuddanian, respectively. On the
other hand, these values would appear too young for
such authors as Tucker et al. (1990) and Fordham
(1992), who placed the base of Rhuddanian respect-
ively at 441 and 443 Ma.

McKerrow & Van Staal (2000) have proposed a
revised time-scale based on a compilation of U/Pb
ages on zircons from tuffs interbedded or associated
with zonal fossils, and, to a lesser extent, based also on
more precise palaeontological correlations. These

Figure 6. Graphical representation of the Rb–Sr isochron age and referenced time-scales (modified after Tucker et al. 1990),
(1) GSA, Geological Society of America, 1989; (2) IUGS, International Union of Geological Sciences, 1989.
authors settle an absolute age of 443 Ma for the base of Silurian. This value is consistent with our Rb/Sr lower age (443.7 Ma), if one takes into account the 2σ error.

In order better to visualize this problem, the interval of the Rb–Sr isochron age (428.1 to 443.7 Ma) and the average age obtained from pelitic samples of the Vila Maria Formation are plotted graphically against some published time-scales (Fig. 6). The ages do not conform completely to any single time-scale although they do agree with parts of each of them when the uncertainty (2σ) is considered. Our radiometric Rb–Sr isochron age indicates Llandovery (columns 1 to 8 in Fig. 6) as the main Vila Maria depositional interval. However, the radiometric age is most compatible with that presented by McKerrow & Van Staal (2000) (see Fig. 6). These authors proposed 443 Ma as the Llandovery base, thus conforming with our older Rb–Sr age limit and with our palynological data. A significant finding of our study is that the palynological dating indicates Early to Middle Llandovery, excluding pre-Silurian ages or ages younger than Aeronian.

Current understanding of the applicability of the Rb–Sr isochron method to sedimentary rocks is insufficient for precise interpretation of the radiometric data. However, when such data can be associated with palynology it is clear that meaningful results are obtainable.

5. Conclusions

(1) Pelitic samples from the Silurian Vila Maria Formation (Paraná Basin, Brazil) present a special case because they are suitable to both palynological analysis and the Rb–Sr methodology. This is the first time that radiometric dating techniques have been successfully applied to Silurian sedimentary rocks and integrated with biostratigraphic age determinations in the Paraná Basin. Results obtained from both methodologies (Radiometry and Palynology) show excellent coherence.

(2) The Rb–Sr isochron age obtained from the shale samples (435.9 ± 7.8 Ma) is considered as the depositional age of the Vila Maria strata. Comparison of the Rb–Sr data with numerical values in the literature indicates Early Silurian (Llandovery) as the possible minimum age for the investigated interval.

(3) Considering the statistical error of our Rb–Sr dating, the value ranges from 428.1 to 443.7 Ma, which is consistent with the proposition of McKerrow & Van Staal (2000) for the Llandovery base (443 Ma). This is also in agreement with the Early to Middle Llandovery palynological dating of the Vila Maria samples. This information restricts the Rb–Sr age span and suggests that the most reliable results are obtained when different methodologies are combined.

(4) The shaly interval investigated herein (the ‘middle sequence’ of the Vila Maria Formation) documents the maximum Early Silurian marine transgression over the Brazilian part of the Paraná Basin, encroaching upon diamictites and dropstones related to a glacial episode near the Ordovician/Silurian boundary (Grahn & Caputo, 1992; Assine & Soares, 1993; Assine, 2001).

(5) At least three such transgressional peaks are recorded on a global scale during Llandovery time. They can be recognized over much of Gondwana (Johnson & McKerrow, 1991; Johnson, Rong & Yang, 1984), and are also notable in Baltica (Johnson et al. 1991) and Laurentia (Johnson, 1987). These Llandovery floodings alternated with, and were probably controlled by, four short-lived successive glacial events in northwest Gondwana. The latter are dated: early latest Ashgill to earliest Rhuddanian; Early Aeronian (gregarius graptolite Zone); latest Aeronian to Early Telychian, and latest Telychian to earliest Wenlock (Grahn & Caputo, 1992; Caputo, 1998).

(6) Based on our radiometric dating (435.9 ± 7.8 Ma) and the postulated attribution of the Vila Maria samples to Sub-zone α of the L. divellomedia Interval Biozone (Rhuddanian to Early Aeronian age, after Steemans, Higgs & Wellman, 2000), a correlation of the Vila Maria ‘middle sequence’ shales with the oldest of the three global Llandovery marine transgressions seems most likely, as proposed in some previous works (Grahn & Caputo, 1992; Caputo, 1998).

Acknowledgements. The financial support by the Brazilian National Research Council (CNPq grant 300256/96-5) is gratefully acknowledged. We also thank PETROBRAS (Brazilian state-owned oil company) for providing the outcrop samples investigated in this study. Thoughtful reviews by Charles Wellman, Yngve Grahn, Mike Bickle and Geoffrey Playford led to a much improved manuscript.

References

Assine, M. L. 2001. O ciclo Ordoviciano/Siluriano na Bacia do Paraná e correlação em outras bacias gondwânicas. In Correlação de Seqüências Paleozóicas Sul-Americanas (eds J. H. G. Melo and G. J. S. Terra), pp. 9–17. Ciência-Técnica-Petrolêo. Seção: Exploração de Petróleo 20.

Assine, M. L. & Soares, P. C. 1993. Glaciação neo-ordovicana na Bacia do Paraná. In 1ª Simpósio sobre Cronoestratigrafia da Bacia do Paraná, Rio Claro, Brazil, UNESP, 1993, Boletim de Resumos, pp. 8–9.

Babcok, L. E., Gray, J., Boucot, A. J., Himes, G. T. & Siegelle, P. K. 1990. First Silurian conulariids from Paraguay. Journal of Paleontology 64, 897–902.

Bonhomme, M. 1982. The use of Rb–Sr and K–Ar dating methods as a stratigraphic tool applied to sedimentary rocks and minerals. Precambrian Research 18, 5–25.

Boucot, A. J., Melo, J. H. G., Santos Neto, E. V. & Wolff, S. 1991. First Clarkeia and Heterorrhella (Brachiopoda; Lower Silurian) occurrence from the Paraná Basin, in eastern Paraguay. Journal of Paleontology 65, 512–14.

Boucot, A. J., Rohr, D. M., Gray, J., Faria, A. & Colbath, G. K. 1986. Plectonotus and Plectonotoideis, new subgenus of Plectonotus (Bellerophontacea:
Integrated radiometric and palynological dating

463

cation and modelling in the Variscan Belt (eds W. Franke, V. Haak, O. Oncken and D. Tanner), pp. 5–8. Geological Society of London, Special Publication no. 179.

Melo, J. H. G. & Boucot, A. J. 1990. Harringtonina is Anabaia (Brachiopoda, Silurian, Malvinokaffric Realm). Journal of Paleontology 64, 363–6.

Milani, E. J., Assine, M. J., Soares, P. C. & Daemon, R. F. 1995. A Sequência Orдовício–Silúrico da Bacia do Paraná. Boletim de Geociências da Petrobras 9, 301–20.

Miller, M. A. & Eames, L. E. 1982. Palynomorphs from the Silurian Medina Group (Lower Llandovery) of the Niagara Gorge, Lewiston, New York, U. S. A. Palynology 6, 221–54.

Mizusaki, A. M. P., Kawashita, K. & Tomas-Filho, A. 1999. Novos dados radiométricos da Formação Bequimão (Cambriano), Bacia de São Luís, Brasil. Anais da Academia Brasileira de Ciências, 71(3-1), 385–97.

Mizusaki, A. M. P., Kawasumi, K. & Thomaz-Filho, A. 1998. Razão isotópica 87Rb/86Sr em sedimentos recentes – implicações na datação radiométrica de rochas sedimentares. Pesquisas 25(1), 75–88.

Moreira, M. I. C. & Borgli, L. 1999. Revisão estratigráfica do intervalo Orдовiciano-Silúrico da Bacia do Paraná. Anais da Academia Brasileira de Ciências 71(4-1), 743–86.

Morton, J. P. 1985. Rb–Sr evidence for punctuated illite-smectite diagenesis in the Oligocene Frio Formation, Texas Gulf Coast. Geological Society of America Bulletin 96, 114–22.

Odin, G. S. 1985. Remarks on the numerical scale of Orдовicarian to Devonian times. In The Chronology of the Geological Record (ed. N. J. Snelling), pp. 93–8. British Geological Survey Memoir no. 10.

Pereira, E., Bergamaschi, S. & Rodrigues, M. A. 1998. Sedimentary evolution of the Orдовico, Silurian and Devonian sequences of Paraná Basin in Brazil. Zentralblatt für Geologie und Paläontologie Teil 1 1997(3–6), 779–92.

Popp, M. T. B., Burja, M. I. A. & Esteves, I. R. F. 1981. Estudo preliminar sobre o conteúdo paleontológico da Formação Vila Maria (pré-Orдовicion) da Bacia do Paraná. Pesquisas 14, 169–80.

Richardson, J. B. 1988. Late Orдовicarian and Early Silurian cryptospores and miospores from northeast Libya. In Subsurface palynostratigraphy of northeast Libya (eds A. El-Arnauti, B. Owens and B. Thussu), pp. 89–109. Benghazi, Libya: Garyounis University Publications.

Steemans, P. 2000. Miospore evolution from the Orдовicion to the Silurian. Review of Palaeobotany and Palynology 113, 189–96.

Steemans, P. 2001. Orдовicarian cryptospores from the Oostduinkerke borehole, Brabant Massif, Belgium. Geobios 34, 3–12.

Steemans, P., Higgs, K. T. & Wellman, C. H. 2000. Analysis of continental palynomorphs from the Llandovery in Saudi Arabia. In Stratigraphic Palynology of the Palaeozoic of Saudi Arabia (eds S. Al-Hajri and B. Owens), p. 184. GeoArabia, Bahrain.

Steemans, P., Le Hérissé, A. & Bozdogan, N. 1996. Orдовicarian and Silurian cryptospores and miospores from Southeastern Turkey. Review of Palaeobotany and Palynology 93, 35–76.

Steemans, P. & Pereira, E. 2000. Early Silurian trilete spores and cryptospores, Paraguay. In 31st International Geological Congress, Rio de Janeiro – Brazil, IUGS, August 6–17, 2000. Abstract Volume, 105.

Strother, P. K. & Travers, A. 1979. Plant microfossils from the Llandovery and Wenlockian rocks of Pennsylvania. Palynology 3, 1–21.

Tucker, R. D., Krogh, T. E., Ross, R. J. & Williams, S. H. 1990. Time-scale calibration by high-precision U–Pb zircon dating of interestratified volcanic ashes in the Orдовicarian and Lower Silurian stratotypes of Britain. Earth and Planetary Science Letters 100, 51–8.

Vavra, M. 1984. Some plant microfossils of possible terrestrial origin from the Orдовician of central Bohemia. Vestnik Ústredního ústavu geologickeho 59, 165–70.

Vavra, M. 1988. Further acritarchs and terrestrial plant remains from the Late Orдовician at Hlasna Treban (Czechoslovakia). Casopis pro mineralogii a geologii 33(1), 1–10.

Vavra, M. 1989. New acritarchs and miospores from the Late Orдовician of Hlasna Treban, Czechoslovakia. Casopis pro mineralogii a geologii 34(4), 403–20.

Wang, Y., Li, J. & Wang, R. 1997. Latest Orдовicarian cryptospores from southern Xinjiang, China. Review of Palaeobotany and Palynology 99, 61–74.

Wellman, C. H. 1996. Cryptospores from the type area for the Caradoc Series (Orдовicion) in southern Britain. Palaeontology 55, 103–36.

Wellman, C. H., Higgs, K. T. & Steemans, P. 2000. Spore assemblages from a Silurian sequence in Borehole Hawiyah-151 from Saudi Arabia. In Stratigraphic Palynology of the Palaeozoic of Saudi Arabia (eds S. Al-Hajri and B. Owens), pp. 116–33. GeoArabia, Bahrain.

Wellman, C. H. & Richardson, J. B. 1993. Terrestrial plant microfossils from Silurian inliers of the Midland Valley of Scotland. Palaeontology 36, 155–93.

Wellman, C. H. & Richardson, J. B. 1996. Sporomorph assemblages from the ‘Lower Old Red Sandstone’ of Lorne, Scotland. In Studies on early land plant spores from Britain (ed. J. C. Cleal), pp. 41–101. Special Papers in Palaeontology 55.

Williamson, J. H. 1968. Least square fitting of a straight line. Canadian Journal of Physics 46, 1845–7.

Wolfart, R. 1961. Stratigraphie und Fauna des älteren Paläozoikums (Silur, Devon) in Paraguay. Geologisches Jahrbuch 78, 29–102.

Wood, G. D. & Miller, M. A. 1991. Distinctive Silurian chitinozoans from the Itacurubi Group (Vargas Peña Shale), Chaco Basin, Paraguay. Palynology 15, 181–92.

Wood, G. D., Miller, M. A., Sawicki, D. A. & Shinneldecker, C. L. 1989. Chitinozoans and microplankton from the Silurian Vargas Peña Shale (Itacurubi Group), Chaco Basin, Paraguay. Palynology 13, 288.
