Correction: Sitagliptin Reduces Cardiac Apoptosis, Hypertrophy and Fibrosis Primarily by Insulin-Dependent Mechanisms in Experimental type-II Diabetes. Potential Roles of GLP-1 Isoforms

The PLOS ONE Staff

There was an error in affiliation number 1 for the first, second, fourth, fifth, sixth, seventh and last authors. The correct affiliation is: IIS-Fundación Jiménez Díaz, Autónoma University, Madrid.

In addition, an affiliation for the last author was incorrectly omitted from the byline. In addition to institution number 1, Oscar Lorenzo is also affiliated with the following institution: Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM).

Reference

1. Picatoste B, Ramírez E, Caro-Vadillo A, Iborra C, Egido J, et al. (2013) Sitagliptin Reduces Cardiac Apoptosis, Hypertrophy and Fibrosis Primarily by Insulin-Dependent Mechanisms in Experimental type-II Diabetes. Potential Roles of GLP-1 Isoforms. PLoS ONE 8(10): e78330. doi:10.1371/journal.pone.0078330

Citation: The PLOS ONE Staff (2014) Correction: Sitagliptin Reduces Cardiac Apoptosis, Hypertrophy and Fibrosis Primarily by Insulin-Dependent Mechanisms in Experimental type-II Diabetes. Potential Roles of GLP-1 Isoforms. PLoS ONE 9(2): e91601. doi:10.1371/journal.pone.0091601
Published February 28, 2014
Copyright: © 2014 The PLOS ONE Staff. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.