Inhibition of CPT1a as a Prognostic Marker can Synergistically Enhance the Antileukemic Activity of ABT199

Shihui Mao
Zhejiang University School of Medicine First Affiliated Hospital https://orcid.org/0000-0001-6282-4652

Qing Ling
Zhejiang University School of Medicine First Affiliated Hospital

Jiajia Pan
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Fenglin Li
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Shujuan Huang
First Affiliated Hospital of Anhui Medical University

Wenle Ye
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Wenwen Wei
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Xiangjie Lin
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Yu Qian
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Yungui Wang
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Xin Huang
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Jiansong Huang
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Jinghan Wang
First Hospital of Zhejiang Province: Zhejiang University School of Medicine First Affiliated Hospital

Jie Jin (✉jie0503@zju.edu.cn)
The First Affiliated Hospital, Zhejiang University College of Medicine https://orcid.org/0000-0002-8166-9915

Primary research
Abstract

Background: Fatty acid oxidation (FAO) provides an important source of energy to promote the growth of leukemia cells. Carnitine palmitoyltransferase 1a (CPT1a), a rate-limiting enzyme of the essential step of FAO, can facilitate cancer metabolic adaptation. Previous reports demonstrated that CPT1a acts as a potential molecular target in solid tumors and hematologic disease. However, no systematic study was conducted to explore the its prognostic value and possible treatment strategies on acute myeloid leukemia (AML).

Methods: The expression of CPT1a in 325 cytogenetically normal AML (CN-AML) cases was evaluated using RT-PCR. The combination effects of ST1326 and ABT199 were studied in AML cells and primary patients. MTS was used to measure the cell proliferation rate. Annexin V/propidium iodide staining and flow cytometry analysis was used to measure the apoptosis rate. Western blot were used to measure the expression of Mcl-1.

Results: In this study, we found AML patients with high CPT1a expression (n = 245) had a relatively short overall survival (P = 0.01) and event free survival (P=0.032) compared to patients in low expression group (n = 80). In parallel, downregulation of CPT1a inhibits proliferation of AML cells. We also performed a metabolomic analysis and observed a decrease of fatty acid in CPT1a high expression group comparing to low expression group, which confirms that CPT1a can facilitate FAO to provide energy fueling tumor growth. Moreover, we found downregulation of CPT1a sensitizes BCL-2 inhibitor ABT199 and CPT1a-selective inhibitor ST1326 combined with ABT199 has a strong synergistic effect to induce apoptosis in AML cells and primary patient blasts for the first time. The underlying synergistic mechanism might be that ST1326 inhibits pGSK3β and pERK expression, leading to downregulation of Mcl-1.

Conclusion: Our study indicates that overexpression of CPT1a predicts poor clinical outcome in AML. CPT1a-selective inhibitor ST1326 combined with Bcl-2 inhibitor ABT199 showed strong synergistic inhibitory effects on AML.

Introduction

Acute myeloid leukemia (AML) is a group of the heterogeneous disease characterized by the clonal proliferation of immature myeloid cells(1). For young patients, a combination of cytarabine and anthracycline has been used as the standard induction regimen over the last four decades (2,3). While, recently some novel drugs like Bcl-2 inhibitor are proved to be effective for old AML patients. Although the advances in the new drugs for AML treatment are impressive, the 5-year overall survival rate is frustratingly low for adults (25%) and elderly patients(10%) (4). Thus, research on novel drugs and rational combination therapies is imperative.

Fatty acid oxidation (FAO) is an important source of NADH, FADH2, NADPH and ATP fueling tumor growth in conditions of metabolic stress(5). Carnitine palmitoyltransferase 1 (CPT1) is a protein that catalyzes the rate-limiting step of FAO, controlling FAO directly(6). Among CPT1 family, CPT1a is the most
prevailing enzyme because of its wider distribution and better sensibility to their inhibitor malonyl-CoA(7). Targeting CPT1a has shown remarkable anti-leukemia activity: A novel CPT1a inhibitor ST1326 has been proved effective on leukemia cell lines and primary cells obtained from patients with hematologic malignancies(8). However, its prognostic value and possible treatment strategies are still unclear in AML.

A majority of leukemia cells have a survival advantage over normal cells because they fail to undergo apoptosis(9). Anti-apoptotic Bcl-2 protein is one such protein that is overexpressed in many cancers, which makes it an ideal target for cancer therapy(9). Venetoclax (ABT199) is an oral and highly selective bioavailable inhibitor targeting the BH3 domain of Bcl-2 specifically(10). Compared to other drugs in its class, venetoclax has lower hematological toxicity(11). To date, it has been approved for the treatment of first-line and relapsed/refractory chronic lymphocytic leukemia (CLL) and AML(12). Unfortunately, despite its promising results in hematologic malignancies, intrinsic resistance is still a big problem(13). Previous study show that ABT199 (Venetoclax) has promising antileukaemic activity in AML therapy but increasing Mcl-1 limits its effect(14).

In this study, we found higher CPT1a levels are associated with poor prognosis and downregulation of it inhibits proliferation of AML cells, providing direct evidence for CPT1a as a prognostic biomarker for AML. The metabolic patterns identified its role of adverse prognostic biomarker. Moreover, our group combined ST1326 with ABT199 in AML cell lines and primary AML cells to identify the synergistic effect through downregulation of Mcl-1. We found ST1326 can inhibit pGSK3β and pERK to prevents up-regulation of Mcl-1 induced by ABT199 effectively. Here, we provide a proper combinational therapy strategy to remedy the limited effect of CPT1a selective inhibitor, in the meanwhile, also solve the problem of resistance of ABT199.

Materials And Methods

Drugs

MG132 were purchased from Selleck Chemicals(Houston, Texas, USA). ST1326 and ABT199 was purchased from Sigma-Aldrich (St Louis, MO, USA)

Cell culture

HL-60, THP-1, OCI-AML2 and OCI-AML3 cell lines were purchased from Shanghai Cell Bank of the Chinese Academy of Sciences. KASUMI-1 cell line was gifted by Professor Chen Saijuan (Shanghai Institute of Hematology, Shanghai, China). These cells were cultured in RPMI 1640 medium supplemented with 10% fetal bovine serum(FBS)(Gibco) at 37°C in a humidified incubator containing 5% CO2. MV4-11 and MOLM-13 cell lines were a kind gift from Professor Ravi Bhatia (City of Hope National Medical Center, Duarte, CA, USA). These two cell lines were cultured in Iscove's Modified Dulbecco's Medium (IMDM) supplemented with 10% (FBS).
Diagnostic AML patient samples were purified by standard Ficoll-Hypaque (Sigma-Aldrich) density centrifugation, then cultured in RPMI 1640 with 10% FBS.

Clinical samples

Clinical data were collected from Zhejiang Institute of Hematology, China. Informed consent was provided from all patients according to institutional guidelines. This study was approved by the Ethics Committee of the First Affiliated Hospital of Zhejiang University. From July 2010 to July 2016, 325 patients were included in this study with detailed diagnostic and treatment information. Cytogenetically normal acute myeloid leukemia (CN-AML) was defined as AML with the karyotype 46 XY [20] or 46 XX [20] in all 20 metaphase cells analyzed. Gene mutations were analyzed by whole gene sequencing. Use descriptive statistics to summarize patient characteristics, including frequency counts, medians, and ranges.

Cell viability assay

AML Cells were seeded in 96-well plates at 1–2×10^4 (AML cell lines) or 1×10^5 (primary AML cells) per well. Then cells were treated with variable concentrations of ST1326 and/or ABT199 for 48 hours. Next, 10 µl MTS solution (Promega, Madison, WI) was added to each well. Cells were incubated for 4 hours at 37°C in a humidified incubator containing 5% CO₂. Finally, cells at plates were assessed at a wavelength of 490 nm. For the AML cell lines, experiments were performed 3 independent times in triplicate, while primary patient sample experiments were performed once in triplicate due to limited sample.

RNA knockdown in human leukemia cell lines

To knock down CPT1a in human leukemia cell lines, short hairpin RNAs (shRNAs) were designed and cloned into a modified psi-LVRU6GP-shRNA plasmid. The sequences of sh1 was GCTCTTAGACAAATCTATCTC. The sequence of sh2 was GCCTTTGGTAAAGGAATCATC. The sequences of NC shRNA were ACAGAAGCGATTGTTGATC. These vectors were then packaged with human embryonic kidney 293T cells for the infection of leukemic cells. Then virus supernatant was collected at 48h and 72h. AML cell lines were transfected with the shRNA or control lentiviruses and incubated for 72 h. Next, cells were continuously cultured in the medium containing 1.0 µg/mL puromycin.

Growth curve assay

Cells were seeded in 96-well plates (1.0 × 10^4 cells per well), blank medium as a control, 10 µL of MTS solution (Promega CellTitre96) (5mg/mL) were added to each well at 0h, 24h, 48h and 72h, and the cells were incubated for an additional 4h at 37°C, the absorbance was measured at 490 nm.

Annexin V/propidium iodide staining and flow cytometry analysis
AML cells were treated with ST1326 or ABT199, alone or in combination for 48 hours. Then cells were co-stained with Annexin V FITC and Propidium Iodide (PI) for 15 min using an apoptosis detection kit (Beckman Coulter, Brea, CA, USA) in the dark. Apoptotic cells were analyzed by flow cytometry using FACScan™ flow cytometer (Becton Dickinson, San Diego, CA, USA). Results are expressed as percent annexin V + cells.

Western blot analysis

Cells were lysed in radioimmunoprecipitation (RIPA) buffer (Cell Signaling Technology) on ice for 30 min. After centrifugation of the cell lysate at 12000 ×g for 15 min at 4°C, Protein concentration of the cellular supernatant was determined using BCA reagent (BBI life science, Shanghai, China). Cell lysates were then loaded onto 10% SDS-PAGE (Life Technologies, Carlsbad, CA, USA). After electrophoresis, proteins were transferred to PVDF membrane (Millipore, Billerica, MA, USA). Then, the membranes were blocked with 5% non-fat milk for 1 h and incubated with primary antibodies overnight at 4°C. Membranes were incubated with secondary antibodies (Cell Signaling Technology) for 1 h at room after washing three times with TBST buffer temperature. The target proteins were visualized using an ECL detection kit (Amersham, Little Chalfont, UK) and analyzed using Image Lab™ software (Bio-Rad Laboratories, Hercules, CA, USA).

Primary antibodies for immunoblotting were purchased from the following sources: caspase3, cleaved caspase3, PARP, Bad, Bax, BCL-2, MCL-1, BCL-xL, BIM, p-ERK, ERK, p-AKT, AKT, pGSK3β, GSK3β, p-Mcl1Thr163, GAPDH, β-tubulin and β-actin antibodies were purchased from Cell Signaling Technology (Beverly, MA, USA).

Real-time RT-PCR

Total RNA was isolated from the AML cells using TRIzol reagent according to the manufacturer’s instructions. Reverse transcription was performed using the RNAPCR core kit (Life Technologies, Paisley, UK). Real-time quantitative PCR was performed on iQ5 System (Bio-Rad, Hercules, CA) using a SYBR Green qPCR master mix with GAPDH as an internal control. Primer sequences used are listed in following:

Mcl-1, 5′-AAGAGGCTGGGATGTTTTGTG-3′ (forward), 5′-TTGTTGTTGGTGTTGTTG-3′ (reverse);
CPT1a, 5′-ATCAATCGGACTCTGGAAACGG-3′ (forward), 5′-TCAGGGAGTAGCGCATGGT-3′ (reverse);
GAPDH, 5′-GGAGCGAGATCCCTCCAAAAT-3′ (forward), 5′-GGCTGTTGTCACTTCTCATGG-3′ (reverse).

Sample Preparation and GC-TOFMS Analysis

12 bone marrow samples with aberrant CPT1a expression collected at disease diagnosis were stored frozen at −80°C until use. Each 10⁷ of bone marrow blasts was added into a 1.5 mL of tube followed by the addition of 400 μL of acetone for protein precipitation. The mixture was stirred by vortex for 30 s and centrifuged at 10000 rpm for 10 min. A 400-μL supernatant was transferred to a 500 μL of glass tube and dried under vacuum. The dried analytes were dissolved in 80 μL of methoxylamine hydrochloride (15 mg/mL, dissolved in pyridine) for 90 min at 30°C and then silylated with 80 μL N,O-bis-trimethylsilyl-
trifluoroacetamide and Trimethylchlorosilane (in a ratio of 99:1) (Supelco) for 2 h at 70°C. Each 70-µL aliquot of hexane was added to the derivatization bottles. After the sample was stirred for 1 min and kept at room temperature for an hour, 1-µL aliquot of the solution was injected into a PerkinElmer gas chromatography coupled with a TurboMass-Autosystem XL mass spectrometer (PerkinElmer, Inc.) in the splitless mode. A DB-5MS capillary column coated with 5% Diphenyl cross-linked 95% dimethylpolysiloxane (30 m × 250 µm i.d., 0.25-µm film thickness; Agilent J&W Scientific, Folsom, CA) was used for separation. Both the injection temperature and the interface temperature were set to 260°C, and the ion source temperature was adjusted to 200°C. Initial GC oven temperature was set at 80°C for 2 min after injection, and was raised up to 285°C with 5°C/min and maintained at 285°C for 7 min. Helium at a flow rate of 1 mL/min was used as the carrier gas. The measurements were made with electron impact ionization (70 eV) in the full scan mode (m/z 30 – 550). A total of 71 metabolites were identified by the comparison with the internal library built with the standard reference compounds.

Statistical analysis

AML patient characteristics were summarized using descriptive statistics, which included frequency counts, median and interquartile range. Categorical variables were compared using Fisher's exact test, and continuous variables were analyzed using a nonparameter T-test. OS was defined as time from the date of diagnosis until death due to any cause or the last follow-up. Univariate and multivariate analyses with a Cox proportional hazards models were performed to assess significant predictors. The proportional-hazards assumption was checked for each variable before fitting Cox models. Data were analyzed using GraphPad Prism 8.0 software. CalcuSyn software (Biosoft, Cambridge, UK) was used to calculate the combination index (CI).

Results

Overexpression of CPT1a predicts poor clinical outcome in Chinese AML patients.

First, we measured CPT1a mRNA expression of 325 AML patients and 8 normal people by real-time PCR. CPT1a mRNA expression was similar between primary AML samples (n = 325) and normal BM cells from healthy donors (n = 8) (Fig. 1A). According to the mRNA expression level of CPT1a, patients were classified into high expression group (n = 245, 75%) and low expression group (n = 80, 25%). We found that there was no statistical correlation between CPT1a expression and variables of gender, age, BM blasts, WBC levels, hemoglobin levels, platelet counts, FAB classifications and genes mutations (Table 1). In survival analyses, high CPT1a expression (n = 245) had a relatively short overall survival (OS) (P = 0.01, log-rank test) and event free survival (EFS) (P = 0.032, log-rank test) compared to patients in low expression group (n = 80) (Fig. 1B and C). And in the multivariable analysis, high CPT1a expression is associated with poor survival after adjusting age, WBC, ENL classification, DMNT3a and IDH1, IDH2 mutations regardless of OS [HR (95% CI), 1.674(1.097,2.557); P = 0.017, Table 2] or EFS [HR (95% CI), 1.412(0.965,2.066); P = 0.076 Table S1]. To further investigate the biological role of CPT1a in AML, we classify 12 patients (Table S2) into high expression group (n = 6, 50%) and low expression group (n = 6,
50%) according to the mRNA expression level of CPT1a and then performed a metabolomic analysis (Fig. 1D). As expected, we observed a decrease of fatty acid like tetracosanoic acid in CPT1a high expression group comparing to low expression group, which confirms that CPT1a can facilitate FAO to provide energy fueling tumor growth. Additionally, amino acid levels and urea cycle intermediates were decreased accompanied by increases in nucleotide synthesis, suggesting the utilization of more glucose and amino acids for the purpose of nucleotide synthesis and cellular proliferation.
Table 1
Characteristics of CN-AML patients by high and low CPT1a expression

CPT1a expression	LOW expression (N = 80)	High expression (N = 245)	P-value
Number(%)	80(25%)	245(75%)	
Male, n(%)	53 (67.1)	137 (56.6)	0.13
Age, median(IQR), years	49.00 (36.00, 61.00)	56.00 (39.75, 65.00)	0.054
BM blast, median(IQR), %	60.00 (29.00, 81.00)	68.00 (43.00, 81.00)	0.179
WBC, median(IQR), 10^9/L	14.70 (3.65, 64.68)	10.50 (2.38, 45.98)	0.336
HB, median(IQR), g/L	89.90 (67.75, 105.75)	84.00 (67.75, 102.25)	0.360
PLT, median(IQR), 10^9/L	45.00 (22.75, 78.00)	49.00 (26.00, 94.75)	0.199
FAB classification, n(%)			0.996
M0	8 (10.0)	22 (9.0)	
M1	7 (8.8)	19 (7.8)	
M2	39 (48.8)	122 (49.8)	
M3	1 (1.2)	3 (1.2)	
M4	3 (3.8)	10 (4.1)	
M5	20 (25.0)	63 (25.7)	
M6	2 (2.5)	4 (1.6)	
Genes mutations, n(%)			
FLT3ITD	11(14.1)	49(20.9)	0.190
CEBPA^{DM6}	10 (13.9)	30 (13.8)	1
NPM1	19 (25.0)	63 (28.0)	0.657

Abbreviations: 1WBC, white blood cell; 2HB, hemoglobin; 3PLT, platelet counts; 4BM, bone marrow; 5FAB, French–American–British classification systems; 6DM: Double-allele. The protocols used for induction therapy in different groups including HAA, homoharringtonine-based treatment (homoharringtonine 2 mg/m2/day for 3 days, cytarabine 75 mg/m2 twice daily for 7 days, aclarnubicin 12 mg/m2 daily for 7 days) regimen; DA, daunorubicin 45 mg/m2 daily for 3 days and cytarabine 100 mg/m2 daily for 7 days; IA, idarubicin 6–8 mg/m2 daily for 7 days and aclarnubicin 20 mg/m2 daily for 5 days. IQR, interquantile. BMT, bone marrow transplantation. ELN (European leukemia Net) favorable genotype represents NPM1 mutant and FLT3-ITD negative or double allele CEBPA mutations.
Table 2
Univariate and multivariate overall survival analyses in CN-AML.

Variables	Univariate analysis	Multivariate analysis		
	P-value	HR(95%CI)	P-value	HR(95%CI)
CPT1A expression	0.005	1.693(1.167,2.454)	0.017	1.674(1.097,2.557)
age	< 0.001	1.034(1.024,1.044)	< 0.001	1.04(1.028,1.052)
WBC	< 0.001	1.004(1.002,1.006)	< 0.001	1.006(1.003,1.008)
ENL favorable group	< 0.001	0.499(0.339,0.734)	< 0.001	0.319(0.202,0.505)
DNMT3a	0.002	1.971(1.282,3.03)	0.204	1.341(0.853,2.11)
IDH1	0.084	1.386(0.957,2.007)	0.037	1.626(1.032,2.567)
IDH2	0.736	1.081(0.686,1.703)	0.73	0.92(0.574,1.476)

HR hazard ratio; CI confidence interval

Downregulation of CPT1a inhibits proliferation of AML cells.

We performed qPCR and Western blotting assay to examine the mRNA and protein levels of CPT1a in a panel of human AML cell lines. We found all leukemia cell lines constitutively expressed CPT1a and the expression of CPT1a in AML cell lines was different, among which THP-1 had the highest mRNA level.
and OCI-AML3 had the lowest mRNA level. Consistently, the expression level of CPT1a protein was similarly higher in THP-1, HL-60, KASUMI-1, AML-OCI2, and the lowest in OCI-AML3(Fig. 2A) We silenced the expression of CPT1a by introducing lentivirus-encoded shRNAs into THP-1 and HL-60 cell lines. ShRNAs can efficiently decrease the expression of CPT1a(Fig. 2B) and cause a significant reduction in proliferation of both THP-1 and HL-60 cell lines (Fig. 2C).

Inhibition of CPT1a can Synergistically Enhance the Antileukemic Activity of ABT199

Previous study demonstrates that CPT1 can interact with Bcl-2(15) and the truncated form of the proapoptotic Bcl-2 family member Bid (tBid) decreases CPT1 activity, which will be antagonized by Bcl-2 overexpression(16). So we assume that inhibiton of CPT1a have a combinational effect with ABT199. We silenced the expression of CPT1a and found the knockdown of CPT1a made THP-1 and HL-60 cell lines more sensitive to ABT199(Fig. 3A). A novel CPT1a inhibitor ST1326 has been proved effective on leukemia cell lines and primary cells obtained from patients with hematologic malignancies(8). In order to better connect to clinical application, THP-1, HL-60, Kasumi-1, MV4-11 and OCI-AML2 cell lines were used to evaluate the combinatorial effect of ST1326 and ABT199. The results showed that exposure to both ST1326 and ABT199 single treatment could inhibit AML cell proliferation in a dose-dependent manner, and what’s more, co-administration of ST1326 and ABT199 resulted in a further increased inhibition of cell proliferation (Fig. 3B). Synergy(CI<1.0) was also observed in both ABT199-sensitive primary cells and ABT199-resistent primary cells(Fig. 3C). The characteristics of the patient samples were presented in Table 3. The dose-effect curves were determined by CalcuSyn analyses (Fig. 3B and C, down panel). The CI values were presented in Table 4. We demonstrated that ST1326 combined with ABT199 had a strong synergistic effect (CI<1.0) in AML cell lines and primary AML cells in vitro.

Table 3

Diagnose	Gender	Age(year)	FAB type	Cytogenetics	Molecular	
AML#1	refractory	female	30	M2a	46, XX	NARAS
AML#2	de novo	female	40	NA	46, XX	BCR/ABL BCORL1 KMT2C
AML#3	refractory	male	63	M2	46, XY	RUNX1
AML#4	de novo	female	64	M2	46, XX	SH2B3
AML#5	refractory	female	67	M4	46, XX	FLT3-ITD NPM1
AML#6	refractory	female	33	M5	46, XX	WT1 MLL-AF9
AML#7	de novo	female	33	M4	46, XX	CBFB-MYH11 WT1
AML#8	refractory	female	73	M0	46, XX	
Combination of ST1326 and ABT199 results in synergistic induction of apoptosis and ST1326 prevents up-regulation of Mcl-1 induced by ABT199

To explore the mechanism of synergistic effect, we treated THP-1 and HL-60 cells with ST1326 and ABT199 at low and high concentrations separately or synergistically for 24 h and then measured cell death by Annexin V/DAPI dual staining. Compared with single agents, combination of ST1326 and ABT199 resulted in a significant increase in apoptosis (Fig. 4A). Moreover, expression of cleaved caspase-3 and cleaved PARP was higher in cells cultured with combinational agents compared with that observed for ST1326 and ABT199 (Fig. 4B). Next, we analyzed the key signaling molecules of relevant Bcl-2 family proteins, which has great relevant with apoptosis pathway. The levels of Bcl-2, Bax, Bad, Bim and Bcl-xl remained relatively unchanged (Fig. 4C). ST1326 treatment decreased Mcl-1 levels and prevented up-regulation of Mcl-1 induced by ABT199(Fig. 4C). Mcl-1 was further up-regulated after short-term exposure to ABT199(Fig. 4D), which further enhance their resistance to ABT199.
ST1326 inhibits pGSK3β and pERK to downregulate Mcl-1.

To find how ST1326 treatment reduces Mcl-1 protein level, we first performed RT-PCR. Interestingly, Mcl-1 transcript levels were not decreased in THP-1 and HL-60 cells treated with ST1326 and ABT199, alone or combined for 24 hour, indicating a post-transcriptional mechanism (Fig. 5A). Then, a proteasome inhibitor MG132 was used to examine Mcl-1 protein stability. THP-1 and HL-60 cells were treated with ST1326 or MG132 alone or in combination. MG132 pretreatment could suppress ST1326-induced MCL1 down-regulation in THP-1 cells and HL-60 cells (Fig. 5B). These results indicate that the reduction of the Mcl-1 protein levels in AML cells treated with ST1326 might be mediated through proteasome degradation. Previous studies have shown that AKT-mediated GSK3β phosphorylation and MAPK-mediated Mcl-1 phosphorylation are involved in Mcl-1 degradation (17,18,19,20,21,22,23). Therefore, we evaluated the effect of ST1326 on MAPK and AKT activation. ST1326 treatment decreased the phosphorylation of GSK3β at Ser9 and p-AKT (Fig. 5C) and decreased pERK along with pMcl-1Thr163 (Fig. 5D). To further examine the role ERK played in Thr163 phosphorylation, we tested whether ERK inhibition would lead to reduced levels of pMcl-1Thr163. Consistently, inactivation of ERK by PD98059 (ERK/MAPK inhibitor) decreased Mcl-1 expression and its phosphorylation at Thr163 (Fig. 5E).

Discussion

Warburg effect proposed the idea that cancer cells provide energy through increased glycolysis in the presence of oxygen because of respiratory defect (24). In addition to changes in glucose metabolism, there is convincing evidence that cancer cells have specific changes in lipid metabolism. Fatty acid oxidation (FAO) is a way to produce adenosine triphosphate, reduced nicotinamide adenine dinucleotide phosphate and acetyl-cobenzyme A in cancer cells (5). As an enzyme of the rate-limiting step of FAO, carnitine palmitoyl transferase1a (CPT1a) plays an important role in cancer metabolic adaptation. Previous study found overexpression of CPT1a was shown in AML than normal BM and PB and high expression of CPT1a is associated with adverse outcomes in AML using public microarray datasets with bioinformatics method (25). In this study, we validated that opinion CPT1a is a high risk prognostic factor for AML again with our data of 325 Chinese patients. In parallel, downregulated expression of CPT1a using shRNAs inhibits proliferation of AML cells. However, we found CPT1a mRNA expression was similar between primary AML samples (n = 325) and healthy donors (n = 8). What’s more, we explore the distinctive metabolic patterns associated with CPT1a expression in AML. In high expression of CPT1a group, the decreased expression of the fatty acid, amino acid levels and increasing expression of nucleotide synthesis imply CPT1a expression acts on an oncogene by facilitation of FAO and the utilization of more glucose and amino acids.

Previous study demonstrates that CPT1 can interact with Bcl-2 (14) and the truncated form of the proapoptotic Bcl-2 family member Bid (tBid) decreases CPT1 activity, which will be antagonized by Bcl-2 over-expression (15). Taken together, we hypothesized that down-regulation of CPT1a sensitizes ABT199 to AML cells. The results verified our thoughts. What’ more, we discovered for the first time that co-administration of ST1326 and ABT199 resulted in a further increased inhibition of proliferation in AML.
cell lines and primary patients. Combination of ST1326 and ABT199 results in synergistic induction of apoptosis.

Previous study demonstrated that the IC50 of venetoclax was inversely correlated with Bcl-2/Mcl-1 transcript ratio, and over-expression of Bcl-xl or Mcl-1 conferred resistance to venetoclax-induced apoptosis in AML cell lines(26). In our study, we observed that ST1326 could prevent up-regulation of Mcl-1 induced by ABT199 through proteasome degradation. Previous studies have shown that AKT-mediated GSK3β phosphorylation and MAPK-mediated MCL1 phosphorylation are involved in MCL1 degradation(17,18,19,20,21,22,23). In our study, ST1326 treatment decreased the phosphorylation of GSK3β at Ser9 and p-AKT and decreased pERK along with pMcl-1Thr163.

Previous study show AML is rarely cured by a single enzyme or pathway, so it is likely that drugs targeting CPT1a will need to be combined with chemotherapy or other targeted drugs to succeed(5). Meanwhile, in the case of AML, venetoclax is best combined with another agent because resistance seems to develop rather quickly with venetoclax monotherapy(26). Our study may provide a proper scheme for this dilemma.

Conclusion

In conclusion, our study indicates that overexpression of CPT1a predicts poor clinical outcome in AML. CPT1a-selective inhibitor ST1326 combined with Bcl-2 inhibitor ABT199 showed strong synergistic inhibitory effects on AML.

Abbreviations

Fatty acid oxidation (FAO)

Carnitine palmitoyltransferase 1a(CPT1a)

Acute myeloid leukemia (AML)

Declarations

Ethics approval and consent to participate: human data have been performed in accordance with the Declaration of Helsinki and have been approved by Clinical Research Ethics Committee of the First Affiliated Hospital, College of Medicine, Zhejiang University(IIT20200A).

Consent for publication: Not applicable

Availability of data and materials: The data that support the findings of this study are available from Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly
available. Data are however available from the authors upon reasonable request and with permission of Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment.

Competing interests: The authors declare that they have no conflict of interest.

Funding: This work is supported by Key international cooperation projects of the National Natural Science Foundation of China (81820108004), Zhejiang Provincial Natural Science Foundation of China (LY19H080009), National Natural Science Foundation of China grants (81470305-H0812, U1404806), University Science and Technology Innovation Talent Support Program of Henan Province (17HASTIT046) and the Natural Science Foundation of Zhejiang Province (LY20H080008).

Authors’ contributions: Sh M and QL performed the research. JJ and Jh W designed the research study. Ygi W, XH and Js H contributed essential reagents and tools. Jj P, Fl L, Sj H, WI Y, Ww W, Xj L and Y Q collected clinical samples and analysed the data. Sh M and Jh W wrote the paper.

Acknowledgements: Not applicable

References

1. Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nature medicine. 1997;3(7):730–7.

2. Yates JW, Wallace HJ Jr, Ellison RR, Holland JF. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer chemotherapy reports. 1973;57(4):485–8.

3. Yates J, Glidewell O, Wiernik P, Cooper MR, Steinberg D, Dosik H, et al. Cytosine arabinoside with daunorubicin or adriamycin for therapy of acute myelocytic leukemia: a CALGB study. Blood. 1982;60(2):454–62.

4. Siegel RL, Miller KD, Jemal A. Cancer statistics. 2018. CA: a cancer journal for clinicians. 2018;68(1):7–30.

5. Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nature reviews Cancer. 2013;13(4):227–32.

6. Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25(5–6):495–520.

7. Qu Q, Zeng F, Liu X, Wang QJ, Deng F. Fatty acid oxidation and carnitine palmitoyltransferase I: emerging therapeutic targets in cancer. Cell death disease. 2016;7(5):e2226.

8. Ricciardi MR, Mirabili S, Allegratti M, Licchetta R, Calarco A, Torrisi MR, et al. Targeting the leukemia cell metabolism by the CPT1a inhibition: functional preclinical effects in leukemias. Blood. 2015;126(16):1925–9.

9. Radha G, Raghavan SC. Bcl-2: A promising cancer therapeutic target. Biochimica et biophysica acta Reviews on cancer. 2017;1868(1):309–14.
10. Souers AJ, Leerson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nature medicine. 2013;19(2):202–8.

11. Juárez-Salcedo LM, Desai V, Dalia S. Venetoclax: evidence to date and clinical potential. Drugs in context. 2019;8:212574.

12. Deeks ED. Venetoclax. First Global Approval Drugs. 2016;76(9):979–87.

13. Campos EDV, Pinto R. Targeted therapy with a selective BCL-2 inhibitor in older patients with acute myeloid leukemia. Hematology transfusion cell therapy. 2019;41(2):169–77.

14. Niu X, Zhao J, Ma J, Xie C, Edwards H, Wang G, et al. Binding of Released Bim to Mcl-1 is a Mechanism of Intrinsic Resistance to ABT-199 which can be Overcome by Combination with Daunorubicin or Cytarabine in AML Cells. Clinical cancer research: an official journal of the American Association for Cancer Research. 2016;22(17):4440–51.

15. Giordano A, Calvani M, Petillo O, Grippo P, Tuccillo F, Melone MA, et al. tBid induces alterations of mitochondrial fatty acid oxidation flux by malonyl-CoA-independent inhibition of carnitine palmitoyltransferase-1. Cell death differentiation. 2005;12(6):603–13.

16. Paumen MB, Ishida Y, Han H, Muramatsu M, Eguchi Y, Tsujimoto Y, et al. Direct interaction of the mitochondrial membrane protein carnitine palmitoyltransferase I with Bcl-2. Biochem Biophys Res Commun. 1997;231(3):523–5.

17. Opferman JT. Unraveling MCL-1 degradation. Cell death differentiation. 2006;13(8):1260–2.

18. Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Molecular cell. 2006;21(6):749–60.

19. Cohen P, Frame S. The renaissance of GSK3. Nature reviews Molecular cell biology. 2001;2(10):769–76.

20. Niu X, Wang G, Wang Y, Caldwell JT, Edwards H, Xie C, et al. Acute myeloid leukemia cells harboring MLL fusion genes or with the acute promyelocytic leukemia phenotype are sensitive to the Bcl-2-selective inhibitor ABT-199. Leukemia. 2014;28(7):1557–60.

21. Ding Q, He X, Hsu JM, Xia W, Chen CT, Li LY, et al. Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Molecular cellular biology. 2007;27(11):4006–17.

22. Nifoussi SK, Vrana JA, Domina AM, De Biasio A, Gui J, Gregory MA, et al. Thr 163 phosphorylation causes Mcl-1 stabilization when degradation is independent of the adjacent GSK3-targeted phosphodegron, promoting drug resistance in cancer. PloS one. 2012;7(10):e47060.

23. Domina AM, Vrana JA, Gregory MA, Hann SR, Craig RW. MCL1 is phosphorylated in the PEST region and stabilized upon ERK activation in viable cells, and at additional sites with cytotoxic okadaic acid or taxol. Oncogene. 2004;23(31):5301–15.

24. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.
25. Shi J, Fu H, Jia Z, He K, Fu L, Wang W. High Expression of CPT1a Predicts Adverse Outcomes: A Potential Therapeutic Target for Acute Myeloid Leukemia. EBioMedicine. 2016;14:55–64.

26. Pullarkat VA, Newman EM. Bcl-2 Inhibition by Venetoclax: Targeting the Achilles' Heel of the Acute Myeloid Leukemia Stem Cell? Cancer discovery. 2016;6(10):1082–3.