TOEPLITZ OPERATORS AND CARLESON MEASURE BETWEEN WEIGHTED BERGMAN SPACES INDUCED BY REGULAR WEIGHTS

JUNTAO DU, SONGXIAO LI† AND HASI WULAN

ABSTRACT. In this paper, we give a universal description of the boundedness and compactness of Toeplitz operator T_μ^ω between Bergman spaces A_p^η and A_q^υ when μ is a positive Borel measure, $1 < p, q < \infty$ and ω, η, υ are regular weights. By using Khinchin’s inequality and Kahane’s inequality, we get a new characterization of the Carleson measure for Bergman spaces induced by regular weights.

Keywords: Bergman space, Carleson measure, Toeplitz operator, regular weight.

1. INTRODUCTION

Suppose ω is a radial weight (i.e., ω is a positive, measurable and integrable function on $[0, 1)$ and $\omega(z) = \omega(|z|)$ for all $z \in \mathbb{D}$, the open unit disc in the complex plane). We say that ω is a doubling weight, denoted by $\omega \in \hat{\mathcal{D}}$, if

$$\hat{\omega}(r) \lesssim \hat{\omega}(r + \frac{1}{2})$$

for all $r \in (0, 1)$, where $\hat{\omega}(r) = \int_r^1 \omega(t)dt$. ω is a regular weight, denoted by $\omega \in \mathcal{R}$, if

$$\frac{\hat{\omega}(r)}{(1 - r)\omega(r)} \approx 1$$

for all $r \in (0, 1)$. Obviously, if $\omega \in \mathcal{R}, \omega \in \hat{\mathcal{D}}$ and $\omega(t) \approx \omega(s)$ whenever $s, t \in (0, 1)$ satisfying $1 - t \approx 1 - s$. See [10, 11, 15, 17] for more information about doubling weights and related topics.

For $z \in \mathbb{D}$, the Carleson square S_z is defined by

$$S_z = \left\{ \xi = re^{i\theta} \in \mathbb{D} : |\xi| \leq 1; |\theta - \arg z| < \frac{1 - |z|}{2\pi} \right\}.$$

As usual, let $\beta(a, z) = \frac{1}{2} \log \frac{1 + |\varphi_a(z)|}{1 - |\varphi_a(z)|}$ denote the Bergman metric for $a, z \in \mathbb{D}$ and

$$D(z, r) = \{ a \in \mathbb{D} : \beta(z, a) < r \}$$

be the Bergman disk with radius r and center z. Here $\varphi_a(z) = \frac{a - z}{1 - \overline{a}z}$. It is easy to check that, for any given $\omega \in \mathcal{R}$ and $r \in (0, \infty)$,

$$\omega(D(z, r)) \approx \omega(S_z) \approx (1 - |z|)^2 \omega(z), \quad z \in \mathbb{D}.$$

2010 Mathematics Subject Classification. 30H20, 47B35.

† Corresponding author.

The first author is supported by NSF of Guangdong Province (No. 2022A1515012117) and the corresponding author is supported by NSF of Guangdong Province (No. 2022A1515010317).
For $0 < s < \infty$, a sequence $\{a_j\}_{j=1}^{\infty} \subset \mathbb{D}$ is called s-separated (or separated, for brief) if $\beta(a_i, a_j) \geq s$ for all $i \neq j$. A sequence $\{a_j\}_{j=1}^{\infty} \subset \mathbb{D}$ is called r-covering if

$$
\mathbb{D} = \cup_{j=1}^{\infty} D(a_j, r)
$$

for some $r \in (0, \infty)$.

Let $0 < p < \infty$ and μ be a positive Borel measure on \mathbb{D}. The Lebesgue space L_{μ}^p consists of all measurable functions f on \mathbb{D} such that

$$
\|f\|_{L_{\mu}^p} = \int_{\mathbb{D}} |f(z)|^p d\mu(z) < \infty.
$$

In particular, when $d\mu(z) = \omega(z)dA(z)$, we denote L_{μ}^p by L_{ω}^p. Here dA is the normalized area measure on \mathbb{D}.

Let $0 < p < \infty$ and ω be a radial weight. Let $H(\mathbb{D})$ denote the space of all analytic functions in \mathbb{D}. The weighted Bergman space A_{ω}^p consists of all $f \in H(\mathbb{D})$ such that

$$
\|f\|_{A_{\omega}^p} = \int_{\mathbb{D}} |f(z)|^p \omega(z)dA(z) < \infty.
$$

Throughout this paper, we assume that $\omega(z) > 0$ for all $z \in \mathbb{D}$. For otherwise $A_{\omega}^p = H(\mathbb{D})$. As usual, we write A_{ω}^p for the standard weighted Bergman space induced by $\omega(z) = (\alpha + 1)(1 - |z|^2)^p$ with $-1 < \alpha < \infty$. For convenience, the weight $(\alpha + 1)(1 - |z|^2)^p(-1 < \alpha < \infty)$ will be called standard weight.

Let $\omega \in \hat{\mathbb{D}}$. It is easy to see that A_{ω}^2 is a closed subspace of L_{ω}^2 and the orthogonal Bergman projection P_{ω} from L_{ω}^2 to A_{ω}^2 is given by

$$
P_{\omega}f(z) = \int_{\mathbb{D}} f(\xi)\overline{B_{\omega}(\xi)}\omega(\xi)dA(\xi),
$$

where B_{ω} is the reproducing kernel of A_{ω}^2. For more results about the Bergman projection P_{ω}, see [13][15]. For a positive Borel measure μ on \mathbb{D}, the Toeplitz operator associated with μ, a natural extension of P_{ω}, is defined by

$$
T_{\mu}^\omega f(z) = \int_{\mathbb{D}} f(\xi)\overline{B_{\omega}(\xi)}d\mu(\xi).
$$

For the standard weight, we will write P_{ω} and T_{μ}^ω as P_ω and T_{μ}^ω, respectively.

Toeplitz operators on Bergman spaces attract a lot of attentions in the past decades. See [24] Chapter 7 and the references therein for the theory of Toeplitz operators on standard weighted Bergman spaces A_{ω}^p. In [13], Peláez and Rättyä characterized the Schatten class Toeplitz operators $T_{\mu}^\omega(\omega \in \hat{\mathbb{D}})$ on A_{ω}^2. Peláez, Rättyä and Sierra [17] gave several characterizations of bounded and compact Toeplitz operators $T_{\mu}^\omega : A_{\omega}^p \rightarrow A_{\omega}^q$, when $\omega \in \mathcal{R}$ and $1 < p, q < \infty$. Recently, Duan, Guo, Wang and Wang [21] extended these results to $0 < p \leq 1$ and $q = 1$. See [3][6][8][21] for more discussions on this topic.

It is interesting to study the boundedness and compactness of $T_{\mu}^\omega : A_{\eta}^p \rightarrow A_{\nu}^q$ when ω, η, ν are different weights. When ω, η, ν are all standard weights, this problem was studied by Pau and Zhao in [9] in the case of the unit ball. Motivated by [9], we study the boundedness and compactness of $T_{\mu}^\omega : A_{\eta}^p \rightarrow A_{\nu}^q$ when $1 <
$p, q < \infty$ and ω, η, υ are regular weights. Set

$$\sigma_{p,q}(r) = \left(\frac{\omega(r)}{\eta(r)} \right)^{p'} \quad \text{and} \quad A(p, \eta) = \sup_{0 \leq r < 1} \frac{\eta(r)^{\frac{1}{p}} \sigma_{p,q}(r)^{\frac{1}{p'}}}{\omega(r)}.$$ \hfill (2)

Here $p' = \frac{p}{p-1}$ is the conjugate number of p. The first result of this paper is stated as follows.

Theorem 1. Suppose $1 < p, q < \infty$, μ is a positive Borel measure on \mathbb{D} and $\omega, \eta, \upsilon \in \mathcal{R}$ such that

$$A(p, \eta) < \infty, \quad A(q, \upsilon) < \infty.$$

Let

$$W(z) = \eta(z)^{\frac{q}{\nu + q-p}} \sigma_{q,\omega}(z)^{\frac{q-p}{\nu + q-p}}.$$

Then, $T_{\mu}^\omega : A_\eta^p \to A_\upsilon^q$ is bounded (compact) if and only if μ is a 1-Carleson measure (vanishing 1-Carleson measure) for $A_\omega^{\nu+a}$. Moreover,

$$\|T_{\mu}^\omega\|_{A_\eta^p \to A_\upsilon^q} \approx \|I_d\|_{A_\omega^{\nu+a} \to L_p^\upsilon}.$$

For a function space X and $0 < q < \infty$, a positive measure μ on \mathbb{D} is called a q-Carleson measure (vanishing q-Carleson measure) for X if the identity operator $I_d : X \to L_p^{\omega} \mu$ is bounded (compact). When $0 < p, q < \infty$, the q-Carleson measure for A_ω^q was characterized by many authors, we refer to \cite{21, 22} and the references therein. When $\omega \in \hat{\mathcal{D}}$, the problem was completely solved by Peláez and Rättyä in \cite{11, 12}. See \cite{11, 18, 16, 17} for more study of Carleson measure for Bergman spaces induced by various weights.

In \cite{9}, Pau and Zhao gave a new characterization of Carleson measures for standard weighted Bergman spaces in the unit ball by using the technique of sublinear operator and the characterizations of the boundedness and compactness of $T_{\mu}^\omega : A_\eta^p \to A_\upsilon^q$. Here, we extend their result (i.e., \cite{9} Theorem 1.1) to Bergman spaces induced by regular weights in a more direct way, without the using of Theorem 1. We state it as follows.

Theorem 2. Suppose $0 < p_i, q_i < \infty$, $\omega_i \in \mathcal{R}$, $i = 1, 2, \cdots, n$ and μ is a positive Borel measure on \mathbb{D}. Let

$$\lambda = \sum_{i=1}^{n} \frac{q_i}{p_i}, \quad \omega(z) = \prod_{i=1}^{n} \omega_i(z)^{\frac{q_i}{p_i}}.$$

Then μ is a λ-Carleson measure for A_ω^1 if and only if

$$M_n = \sup_{f_i \in A_{\omega_i}^{q_i}, i=1, \cdots, n} \left(\frac{\int_{\mathbb{D}} \prod_{i=1}^{n} |f_i(z)|^{q_i} d\mu(z)}{\prod_{i=1}^{n} \|f_i\|_{A_{\omega_i}^{q_i}}} \right) < \infty.$$ \hfill (3)

Moreover, $M_n \approx \|I_d\|_{A_\omega^{1/q} \to L_p^1}.$

The analogous characterizations of vanishing λ-Carleson measures for $A_{\omega}^1(\omega \in \mathcal{R})$ can be state as follows.
Theorem 3. Suppose \(0 < p_i, q_i < \infty, \omega_i \in \mathcal{R}, i = 1, 2, \ldots, n \) and \(\mu \) is a positive Borel measure on \(\mathbb{D} \). Let
\[
\lambda = \sum_{i=1}^{n} \frac{q_i}{p_i}, \quad \omega(z) = \prod_{i=1}^{n} \omega_i(z)^{\frac{q_i}{p_i}}.
\]
Then the following statements are equivalent.

(i) \(\mu \) is a vanishing \(\lambda \)-Carleson measure for \(A^1_{\omega} \);
(ii) If \(\{f_{1,k}\}_{k=1}^{\infty} \) is bounded in \(A^{p_1}_{\omega_1} \) and converges to 0 uniformly on compact subsets of \(\mathbb{D} \),
\[
\lim_{k \to \infty} F(k) = 0,
\]
where
\[
F(k) = \sup \left\{ \int_{\mathbb{D}} |f_{1,k}(z)|^q \prod_{i=2}^{n} |f_i(z)|^q d\mu(z) : \|f_i\|_{A^{p_i}_{\omega_i}} \leq 1, i = 2, \ldots, n \right\};
\]
(iii) For any bounded sequences \(\{f_{1,k}\}_{k=1}^{\infty}, \ldots, \{f_{n,k}\}_{k=1}^{\infty} \) in \(A^{p_1}_{\omega_1}, \ldots, A^{p_n}_{\omega_n} \) respectively, all of which converge to 0 uniformly on compact subsets of \(\mathbb{D} \),
\[
\lim_{k \to \infty} \int_{\mathbb{D}} \prod_{i=1}^{n} |f_{i,k}(z)|^q d\mu(z) = 0.
\]

The paper is organized as follows. In Section 2, we state some preliminary results and lemmas, which will be used later. Section 3 is devoted to the proof of main results in this paper.

Throughout this paper, the letter \(C \) will denote constants and may differ from one occurrence to the other. For two real valued functions \(f \) and \(g \), we write \(f \lesssim g \) if there is a positive constant \(C \), independent of argument, such that \(f \leq Cg \). \(f \approx g \) means that \(f \lesssim g \) and \(g \lesssim f \).

2. Preliminaries

To prove our main results in this paper, we need some lemmas. First, we collect some characterizations of \(q \)-Carleson measure for \(A^{p}_{\omega} \) (\(\omega \in \mathcal{R} \)) from \([1,16,17]\) as follows.

Theorem A. Let \(0 < p, q < \infty, \omega \in \mathcal{R} \) and \(\mu \) be a positive Borel measure on \(\mathbb{D} \). Then, the following statements hold.

(i) When \(p \leq q \), the following statements are equivalent:
 (ia) \(\mu \) is a \(q \)-Carleson measure for \(A^{p}_{\omega} \);
 (ib) \(\sup_{z \in \mathbb{D}} \frac{\mu(S_z)}{\omega(S_z)^{\frac{p}{q}}} < \infty \);
 (ic) \(\sup_{z \in \mathbb{D}} \frac{\mu(D(z,r))}{\omega(D(z,r))^{\frac{p}{q}}} < \infty \) for some (equivalently, for all) \(r \in (0, \infty) \).

Moreover,
\[
\|I_{\omega}\|_{A^{p}_{\omega} \to L^{q}_{\omega}} \approx \sup_{z \in \mathbb{D}} \frac{\mu(S_z)}{\omega(S_z)^{\frac{p}{q}}} \approx \sup_{z \in \mathbb{D}} \frac{\mu(D(z,r))}{\omega(D(z,r))^{\frac{p}{q}}}.
\]
(ii) When \(p \leq q \), the following statements are equivalent:
(iia) \(\mu \) is a vanishing \(q \)-Carleson measure for \(A^p_\omega \);
(iib) \(\lim_{|z| \to 1} \frac{\mu(S(z))}{\omega(S(z))} = 0 \);
(iic) \(\lim_{|z| \to 1} \frac{\mu(D(z,r))}{\omega(D(z,r))} = 0 \) for some (equivalently, for all) \(r \in (0, \infty) \).

(iii) When \(q < p \), the following statements are equivalent:

(iiiia) \(\mu \) is a \(q \)-Carleson measure for \(A^p_\omega \);
(iiiib) \(\mu \) is a vanishing \(q \)-Carleson measure for \(A^p_\omega \);
(iiiic) for any given \(r \in (0, \infty) \), \(\Phi(z) = \frac{\mu(D(z,r))}{\omega(D(z,r))} \in L^{p-q}_{\omega} \);
(iiiid) for each sufficiently large \(\gamma > 1 \), the function

\[
\Psi(z) = \int_D \left(\frac{1 - |\xi|}{1 - z \overline{\xi}} \right)^{\gamma} \frac{d\mu(\xi)}{\omega(S_\xi)}, \quad z \in \mathbb{D},
\]

belongs to \(L^{p-q}_{\omega} \).

Moreover,

\[
\|I_d\|_{A^p_{\sigma}} \to L^p_{\omega} \approx \|\Phi\|_{L^{p-q}_{\omega}} \approx \|\Psi\|_{L^{p-q}_{\omega}}.
\]

The duality relation between weighted Bergman space via \(A^2_\omega \)-pairing plays a very important role in the proof of our main results in this paper. See \([22]\) and \([23, \text{Theorem 2.11}]\) for related results for standard weighted Bergman spaces. For Bergman spaces induced by radial weights, we refer to \([15, 18, 19]\). The following theorem comes from \([15, \text{Theorem 13}]\) and \([19, \text{Theorem 3}]\).

Theorem B. Suppose \(1 < p < \infty \) and \(\omega, \eta \in \mathcal{R} \). Then the following statements are equivalent:

(i) \(A(p, \eta) < \infty \);
(ii) \(P_\omega : L^p_\eta \to L^p_\eta \) is bounded;
(iii) \((A^p_{\sigma_{p,\eta}})^* \simeq A^p_\eta \) via \(A^2_\omega \)-pairing

\[
\langle f, g \rangle_{A^p_\sigma} = \int_D f(z) \overline{g(z)} \omega(z) dA(z), \quad \forall f \in A^p_{\sigma_{p,\eta}}, \ g \in A^p_{\eta},
\]

with equivalent norms. Here \(\sigma_{p,\eta} \) and \(A(p, \eta) \) are defined as in \([2]\).

The following lemma can be proved by a standard technique. We omit the details of the proof.

Lemma 1. Suppose \(\eta, \nu \in \hat{D} \) and \(0 < p, q < \infty \). If \(T : A^p_\eta \to A^q_\nu \) is bounded and linear, then \(T \) is compact if and only if \(\lim_{j \to \infty} \|T f_j\|_{A^q_\nu} = 0 \) whenever \(\{f_j\} \) is bounded in \(A^p_\eta \) and converges to 0 uniformly on compact subsets of \(\mathbb{D} \).

Lemma 2. Let \(1 < p < \infty \) and \(\omega, \eta \in \mathcal{R} \). Then, \(A(p, \eta) < \infty \) if and only if \(\sigma_{p,\eta} \in \mathcal{R} \).

Proof. If \(\sigma_{p,\eta} \in \mathcal{R} \), from the fact that

\[
\overline{\sigma_{p,\eta}}(r) \approx (1 - r) \sigma_{p,\eta}(r),
\]

we have \(A(p, \eta) < \infty \).
Conversely, assume \(A(p, \eta) < \infty \). After a calculation,

\[
\sigma_{p,\eta}(r) \leq \sigma_{p,\eta}(r) \left(1 - \frac{\eta(r)}{\eta(r)_{p,p'}} \right) \approx \sigma_{p,\eta}(r)(1 - r)\sigma_{p,\eta}(r)
\]

and

\[
\sigma_{p,\eta}(r) \geq \int_r^1 \sigma_{p,\eta}(t)dt \approx (1 - r)\sigma_{p,\eta}(r),
\]

which implies that \(\sigma_{p,\eta} \in \mathcal{R} \).

\[\□\]

Lemma 3. Let \(1 < p < \infty \) and \(\omega, \eta \in \mathcal{R} \) such that \(A(p, \eta) < \infty \). If \(\{z_j\}_{j=1}^{\infty} \subseteq \mathbb{D} \) is separated, then, for any \(c = \{c_j\}_{j=1}^{\infty} \),

\[||F||_{A_p^\omega} \lesssim ||c||_{p'}.
\]

Here

\[F(z) = \sum_{j=1}^{\infty} \frac{c_j B_{z_j}^\omega}{||B_{z_j}^\omega||_{A_p^\omega}}.
\]

Proof. Since \(A(p, \eta) < \infty \), by *Theorem 3* \((A_{p,\eta}^{p,p'})^* \approx A_{\eta}^p \) via \(A_{\omega}^{1,p} \)-pairing with equivalent norms. By Lemma 2 \(\sigma_{p,\eta} \in \mathcal{R} \). Then Lemma 2.4 in [11] implies that, if \(\gamma \) is large enough,

\[F_a(z) = \left(\frac{1 - |a|^2}{1 - \overline{a}z} \right)^\gamma \in A_{p,\eta}^{p,p'} \text{ and } ||F_a||_{A_{p,\eta}^{p,p'}} \approx \sigma_{p,\eta}(S_a).
\]

Then,

\[||B_z^\omega||_{A_p^\omega} \approx \sup_{||h||_{A_{p,\eta}^{p,p'}} \leq 1} |\langle h, B_z^\omega \rangle_{A_p^\omega}| \geq \frac{1}{\sigma_{p,\eta}(S_z)^{1/p'}} |\langle F_z, B_z^\omega \rangle_{A_p^\omega}| = \frac{1}{\sigma_{p,\eta}(S_z)^{1/p'}}
\]

and

\[||B_z^\omega||_{A_p^\omega} \approx \sup_{||h||_{A_{p,\eta}^{p,p'}} \leq 1} |\langle h, B_z^\omega \rangle_{A_p^\omega}| = \sup_{||h||_{A_{p,\eta}^{p,p'}} \leq 1} |h(z)| \leq \frac{1}{\sigma_{p,\eta}(S_z)^{1/p'}}.
\]

In the last estimate, we used the fact that \(\sigma_{p,\eta} \in \mathcal{R} \), and the subharmonicity of \(|h|_{p'} \), i.e., for any given \(0 < r < \infty \),

\[|h(z)|_{p'} \leq \frac{1}{\sigma_{p,\eta}(D(z, r))} \int_{D(z,r)} |h(\xi)|_{p'} \sigma_{p,\eta}(\xi)dA(\xi)
\]

\[\leq \frac{1}{\sigma_{p,\eta}(S_z)} ||h||_{A_{p,\eta}^{p,p'}}., \quad z \in \mathbb{D}.
\]

Thus, by the fact that \(\sigma_{p,\eta} \in \mathcal{R} \) we have

\[||B_z^\omega||_{A_p^\omega} \approx \frac{1}{\sigma_{p,\eta}(S_z)^{1/p'}} \approx \frac{\eta(S_z)^{1/p}}{\omega(S_z)}. \quad (4)
\]
So, if \(\{z_j\} \) is 2r-separated, for any \(g \in A_{\sigma,r}^p \), by Hölder’s inequality, (1) and (4), we have

\[
\| g \|_{A_{\sigma,r}^p} \leq \left(\sum_{j=1}^{\infty} \frac{c_j \| g \|_{A_{\sigma,r}^p}}{\| B_{\eta_j} \|_{A_{\sigma,r}^p}} \right)^{\frac{1}{p'}} \leq \left(\sum_{j=1}^{\infty} \frac{\| g \|_{A_{\sigma,r}^p}}{\| B_{\eta_j} \|_{A_{\sigma,r}^p}} \right)^{\frac{1}{p'}} \leq \left(\sum_{j=1}^{\infty} \int_{D(z_j,r)} |g(z)|^{p'} \sigma(D(z_j,r)) dA(z) \right)^{\frac{1}{p'}} \leq \left(\sum_{j=1}^{\infty} \int_{D(z_j,r)} |g(z)|^{p'} \sigma_D(z) dA(z) \right)^{\frac{1}{p'}}.
\]

Therefore, \(\| F \|_{A_{\sigma,r}^p} \leq \| F \|_{A_{\sigma,r}^p} \). The proof is complete. \(\Box \)

Remark. It should be point out that, when \(\eta, \omega \in \hat{D} \) and \(p > 0 \), \(\| B_{\omega} \|_{A_{\sigma,r}^p} \) was estimated for the first time in [14, Theorem 1]. Here, for the benefit of readers, under some more assumptions, we estimate it in a simple way.

To prove our main results, we will use the classical Khinchin’s inequality and Kahane’s inequality, which can be found in [2, Chapters 1 and 11] for example. For \(k \in \mathbb{N} \) and \(t \in (0, 1) \), let \(r_k(t) = \text{sign}(\sin(2^k \pi t)) \) be a sequence of Rademacher functions.

Khinchin’s inequality: Let \(0 < p < \infty \). Then for any sequence \(\{c_k\} \) of complex numbers,

\[
\left(\sum_{k=1}^{\infty} |c_k|^2 \right)^{\frac{1}{p}} \approx \left(\int_0^1 \left(\sum_{k=1}^{\infty} |c_k r_k(t)|^p \right)^{\frac{1}{p}} dt \right)^{\frac{1}{p}}.
\]

Kahane’s inequality: Let \(X \) be a quasi-Banach space, and \(0 < p, q < \infty \). For any sequence \(\{x_k\} \subset X \),

\[
\left(\int_0^1 \left(\sum_{k=1}^{\infty} r_k(t) x_k \right)^p X dt \right)^{\frac{1}{p}} \approx \left(\int_0^1 \left(\sum_{k=1}^{\infty} r_k(t) x_k \right)^q X dt \right)^{\frac{1}{q}}.
\]

Moreover, the implicit constants can be chosen to depend only on \(p \) and \(q \), and independent of the space \(X \).

3. Proof of main results

By Theorem 1, Theorem 2 can be stated in a more direct way as follows. Hence, to prove Theorem 2, we only need to prove the following theorem.

Theorem 1. Suppose \(1 < p, q < \infty \), \(\mu \) is a positive Borel measure on \(\mathbb{D} \) and \(\omega, \eta, \nu \in \mathcal{R} \) such that

\[
A(p, \eta) < \infty, \quad A(q, \nu) < \infty.
\]

Then, the following statements hold.
(i) When $1 < p \leq q < \infty$, $\mathcal{T}_\mu^\omega : A^p_\eta \to A^q_\nu$ is bounded if and only if for some (equivalently, for all) $r \in (0, \infty)$,

$$M_0 = \sup_{z \in \mathbb{D}} \frac{\mu(D(z, r))}{\omega((D(z, r)))} \frac{\nu(D(z, r))^{\frac{1}{q}}}{\eta(D(z, r))^{\frac{p}{q}}} < \infty.$$

Moreover, $\|\mathcal{T}_\mu^\omega\|_{A^p_\eta \to A^q_\nu} \approx M_0$.

(ii) When $1 < p \leq q < \infty$, $\mathcal{T}_\mu^\omega : A^p_\eta \to A^q_\nu$ is compact if and only if for some (equivalently, for all) $r \in (0, \infty)$,

$$\lim_{|z| \to 1} \frac{\mu(D(z, r))}{\omega((D(z, r)))} \frac{\nu(D(z, r))^{\frac{1}{q}}}{\eta(D(z, r))^{\frac{p}{q}}} = 0.$$

(iii) When $1 < q < p < \infty$, the following statements are equivalent:

(iiiia) $\mathcal{T}_\mu^\omega : A^p_\eta \to A^q_\nu$ is compact;

(iiib) $\mathcal{T}_\mu^\omega : A^p_\eta \to A^q_\nu$ is bounded;

(iiiic) for some (equivalently, for all) separated and r-covering $(0 < r < \infty)$ sequence $\{z_j\}_{j=1}^\infty$,

$$\lambda_j = \frac{\mu(D(z_j, r))}{\omega(D(z_j, r))} \frac{\nu(D(z_j, r))^{\frac{1}{q}}}{\eta(D(z_j, r))^{\frac{p}{q}}}, \quad j = 1, 2, \ldots ,$$

is a sequence in $l^\frac{p}{q}$;

(iiiid) for some (equivalently, for all) $r \in (0, \infty)$, $\widehat{\mu}_r \in L^{\frac{p}{q}}_{\omega^{\frac{1}{q}}}$, where

$$\widehat{\mu}_r(z) = \frac{\mu(D(z, r))}{\omega(D(z, r))} \frac{\nu(D(z, r))^{\frac{1}{q}}}{\eta(D(z, r))^{\frac{p}{q}}}.$$

Moreover,

$$\|\mathcal{T}_\mu^\omega\|_{A^p_\eta \to A^q_\nu} \approx \|\{\lambda_j\}_{j=1}^\infty\|_{l^\frac{p}{q}} \approx \|\widehat{\mu}_r\|_{L^{\frac{p}{q}}_{\omega^{\frac{1}{q}}}}.$$

Proof. For convenience, write $\|\mathcal{T}_\mu^\omega\| = \|\mathcal{T}_\mu^\omega\|_{A^p_\eta \to A^q_\nu}$. Since (5) holds, by Lemma 2 and Theorem 3 we have that $\sigma_{p, \eta} \in \mathcal{R}$, $\sigma_{q, \nu} \in \mathcal{R}$ and

$$(A^p_{\sigma_{p, \eta}})^* \approx A^p_\eta, \quad (A^q_{\sigma_{q, \nu}})^* \approx A^q_\nu$$

(8) via A^2_ω-pairing with equivalent norms.

(i). Suppose $1 < p \leq q < \infty$ and $\mathcal{T}_\mu^\omega : A^p_\eta \to A^q_\nu$ is bounded. By (4), we have

$$|\mathcal{T}_\mu^\omega B^\omega_{\epsilon}(z)| = \left|\langle \mathcal{T}_\mu^\omega B^\omega_{\epsilon}, B^\omega_{\epsilon}\rangle_{A^q_\nu} \right| \leq \|\mathcal{T}_\mu^\omega B^\omega_{\epsilon}\|_{A^q_\nu}\|B^\omega_{\epsilon}\|_{A^q_\nu} \leq \|\mathcal{T}_\mu^\omega\结构调整 \cdot \|B^\omega_{\epsilon}\|_{A^q_\nu}\|B^\omega_{\epsilon}\|_{A^q_\nu} \approx \|\mathcal{T}_\mu^\omega\|\eta(S)^{\frac{1}{p}} \frac{1}{\omega(S)^{\frac{1}{q}}}. $$

Meanwhile, by [17, Lemma 8], there exists a real number $r > 0$ such that

$$|B^\omega_{\epsilon}(\xi)| \approx B^\omega_{\epsilon}(z) \quad \text{for all} \quad \xi \in D(z, r) \quad \text{and} \quad z \in \mathbb{D}. $$

(9)
Then, (4) implies
\[|B^ω_z(z)| = (B^ω_z, B^ω_z)_{A^ω_0} = \|B^ω_z\|_{A^ω_0}^2 \approx \frac{1}{\omega(S_z)}. \]
Thus,
\[(T^ω_\mu B^ω_z)(z) = \int_D |B^ω_z(\xi)|^2 d\mu(\xi) \geq \frac{\mu(D(z,r))}{\omega(S_z)^2}. \] (10)
Therefore, using (1),
\[D \approx \frac{\mu(D(z,r))}{\omega(S_z)^2}. \]

Conversely, suppose (6) holds. Let
\[W(z) = \eta(z) \frac{\omega(S_z)^{-\frac{1}{2}}}{\xi} \sigma_{q,v}(z)^{\frac{1}{2}}. \] (11)
By Hölder’s inequality and \(\sigma_{q,v} \in \mathcal{R} \),
\[\hat{W}(t) \leq \hat{\eta}(t) \frac{\omega(S_z)^{-\frac{1}{2}}}{\xi} \sigma_{q,v}(t)^{\frac{1}{2}} \approx (1-t)W(t), \]
and
\[\hat{W}(t) \geq \int_t^{t+1} W(r)dr \approx (1-t)W(t). \]
Therefore, \(W \in \mathcal{R} \) and
\[W(S_z) \approx \omega(S_z) \eta(S_z)^{\frac{1}{2}}. \]
So, for any \(f \in A_\eta^p \) and \(h \in A_{q,v}^q \), by (6), (11), Theorem A and H"older’s inequality,
\[\int_D |h(z)f(z)|d\mu(z) \leq M_0 \left(\int_D |f(z)|^{\frac{p^*}{q^*}} |h(z)|^{\frac{q^*}{q}} W(z)dA(z) \right)^{\frac{q}{q^*}} \leq M_0 \|f\|_{A^p_\eta} \|h\|_{A^q_{q,v}}. \]
By Fubini’s theorem and \((A_{q,v}^q)^* \approx A^q_0 \) via \(A^q_0 \)-pairing, we have
\[\|T^\omega_\mu f\|_{A^q_0} \approx \sup_{h \in A_{q,v}^q} \frac{|(h, T^\omega_\mu f)_{A^q_0}|}{\|h\|_{A_{q,v}^q}} = \sup_{h \in A_{q,v}^q} \frac{|\int_D h(z)f(z)d\mu(z)|}{\|h\|_{A_{q,v}^q}} \leq M_0 \|f\|_{A^q_0}, \]
i.e., \(\|T^\omega_\mu\| \leq M_0. \)

(ii) Suppose \(1 < p \leq q < \infty \) and \(T^\omega_\mu : A_\eta^p \rightarrow A^q_0 \) is compact. Let
\[b_\eta(w) = \frac{B^\omega_z(w)}{\|B^\omega_z\|_{A^q_0}}. \]
By (4) and \(\sigma_{p,q} \in \mathcal{R} \), \(\{b_\eta\} \) is bounded in \(A^q_0 \) and converges to 0 uniformly on compact subsets of \(D \) as \(|z| \rightarrow 1 \). By Lemma \[\lim_{|z| \rightarrow 1} \|T^\omega_\mu b_\eta\|_{A^q_0} = 0. \] Then, (7) is obtained from (11), (4),
\[|T^\omega_\mu b_\eta(z)| = \left| (T^\omega_\mu b_\eta, B^\omega_z)_{A^q_0} \right| \leq \|T^\omega_\mu b_\eta\|_{A^q_0} \|B^\omega_z\|_{A^q_0} \approx \|T^\omega_\mu b_\eta\|_{A^q_0} \frac{1}{\omega(S_z)^{\frac{1}{2}}}. \]
By Khinchin’s inequality, we have
\[|T_\mu^\omega b_k(z)| = \frac{1}{\|B_z\|_{A^\mu_0}} \int_{\mathbb{D}} |B_z^\omega(\xi)|^2 d\mu(\xi) \gtrsim \frac{\omega(D(z, r)) \mu(D(z, r))}{\eta(D(z, r))^{\frac{1}{p}}} \omega(D(z, r))^2. \]

Here, \(r \) is that in (9).

Conversely, suppose (7) holds. For any \(s \in (0, 1) \), let
\[d\mu_s = \chi_s(z) d\mu(z), \quad d\mu_s = d\mu - d\mu_s \]
and
\[M_s = \sup_{z \in \mathbb{D}} \frac{\mu_s(D(z, r))}{\omega(D(z, r))^{\frac{1}{p}}} \nu(D(z, r))^{\frac{1}{q}}. \]

Here, \(\chi_s(z) \) is the characteristic function of \(\{ z \in \mathbb{D} : |z| \geq s \} \). Then, \(\lim_{s \to 1} M_s = 0 \).

Let \(\{ f_n \} \) be bounded in \(A^\mu_q \) and converge to 0 uniformly on compact subsets of \(\mathbb{D} \) as \(n \to \infty \). Then, by statement (i), we have
\[\lim_{n \to \infty} \| T_\mu^\omega f_n \|_{A^\mu_q} \leq \lim_{n \to \infty} \| T_{\mu_s}^\omega f_n \|_{A^\mu_q} + \lim_{n \to \infty} \| T_{\mu_{s_0}}^\omega f_n \|_{A^\mu_q} \leq C(s) \limsup_{n \to \infty} |f_n(z)| + M_s \| f_n \|_{A^\mu_q} = M_s \| f_n \|_{A^\mu_q}. \]

Letting \(s \to 1 \), \(\lim_{n \to \infty} \| T_\mu^\omega f_n \|_{A^\mu_q} = 0 \). By Lemma 1, \(T_\mu^\omega : A^\mu_q \to A^\mu_q \) is compact.

(iii), (iiia) \(\Rightarrow \) (iiib). It is obvious.

(iiib) \(\Rightarrow \) (iiic). Suppose \(T_\mu^\omega : A^\mu_q \to A^\mu_q \) is bounded. Let \(\{ z_j \}_{j=1}^{\infty} \subset \mathbb{D} \) be separated and \(r \)-covering. Firstly, we choose \(r \in (0, \infty) \) as that in (9). For any \(c = \{ c_j \}_{j=1}^{\infty} \in l^p \) and \(r_j(t) = \text{sign} \left(\sin \left(\frac{2}{t} \right) \right) \), let
\[F_i(z) = \sum_{j=1}^{\infty} c_j r_j(t) \frac{B_z^\omega}{\| B_z^\omega \|_{A^\mu_q}}. \]

Then, Lemma 5 implies
\[\| T_\mu^\omega F_i \|^q_{A^\mu_q} \leq \| T_\mu^\omega \|^q \| c \|^q_{l^p}. \]

By Khinchin’s inequality, we have
\[
\int_0^1 \| T_\mu^\omega F_i \|^q_{A^\mu_q} dt = \int_{\mathbb{D}} \left(\int_0^1 \left| \sum_{j=1}^{\infty} c_j r_j(t) \frac{\| T_\mu^\omega B_z^\omega(z) \|^q}{\| B_z^\omega \|_{A^\mu_q}} \right| dt \right) \nu(z) dA(z)
\geq \int_{\mathbb{D}} \left(\sum_{j=1}^{\infty} \frac{|c_j|^q \| T_\mu^\omega B_z^\omega(z) \|^q}{\| B_z^\omega \|_{A^\mu_q}^q} \right)^{\frac{q}{2}} \nu(z) dA(z)
\geq \sum_{j=1}^{\infty} \frac{|c_j|^q}{\| B_z^\omega \|_{A^\mu_q}^q} \int_{D(z, r)} |T_\mu^\omega B_z^\omega(z)|^q \nu(z) dA(z).
\]
Then, by (1), (4), (10) and subharmonicity of $|T_\mu B_c(z_j)|$, we have

$$\int_0^1 ||T_\mu F_i||_{A_0^q}^q \, dt \geq \sum_{j=1}^{\infty} |c_j|^q \left(\frac{\mu(D(z_j, r)) \nu(D(z_j, r))^{\frac{1}{p}}}{\eta(D(z_j, r))^{\frac{1}{p}}} |T_\mu B_c(z_j)| \right)^q$$

$$\geq \sum_{j=1}^{\infty} |c_j|^q \left(\frac{\mu(D(z_j, r)) \nu(D(z_j, r))^{\frac{1}{p}}}{\eta(D(z_j, r))^{\frac{1}{p}}} \right)^q.$$

So, for all $c = \{c_j\}_{j=1}^{\infty} \in l^p$, we have

$$\sum_{j=1}^{\infty} |c_j|^q \leq ||T_\mu||^q ||c||_p^q.$$

The classical duality relation $(l^p)^* \simeq l^{\frac{p}{p-q}}$ implies that $||\lambda_j|| \in l^{\frac{p}{p-q}}$ and

$$||\lambda_j||_{l^{\frac{p}{p-q}}} \leq ||T_\mu||.$$

Suppose $r_0 > r$ and $\{z_j\}_{j=1}^{\infty}$ is separated and r_0-covering. Let $\chi(j, i) = 1$ when $D(z_j, r_0) \cap D(z_i, r) \neq \emptyset$ and $\chi(i, j) = 0$ otherwise. It is easy to check that there exists a natural number K such that

$$1 \leq \sum_{j=1}^{\infty} \chi(j, i) \leq K, \quad 1 \leq \sum_{i=1}^{\infty} \chi(j, i) \leq K.$$

Then

$$\sum_{j=1}^{\infty} \left| \frac{\mu(D(z_j, r_0)) \nu(D(z_j, r_0))^{\frac{1}{p}}}{\omega(D(z_j, r_0)) \eta(D(z_j, r_0))^{\frac{1}{p}}} \chi(j, i) \right| \leq \sum_{j=1}^{\infty} \left| \frac{\mu(D(z_i, r)) \nu(D(z_i, r))^{\frac{1}{p}}}{\omega(D(z_i, r)) \eta(D(z_i, r))^{\frac{1}{p}}} \chi(j, i) \right|$$

$$\geq \sum_{i=1}^{\infty} \left| \frac{\mu(D(z_i, r)) \nu(D(z_i, r))^{\frac{1}{p}}}{\omega(D(z_i, r)) \eta(D(z_i, r))^{\frac{1}{p}}} \chi(j, i) \right|$$

$$\geq \sum_{i=1}^{\infty} \left| \frac{\mu(D(z_i, r)) \nu(D(z_i, r))^{\frac{1}{p}}}{\omega(D(z_i, r)) \eta(D(z_i, r))^{\frac{1}{p}}} \chi(j, i) \right|.$$

Therefore, (iiiic) holds and $||\lambda_j||_{l^{\frac{p}{p-q}}} \leq ||T_\mu||$ for all $0 < r < \infty$.

(iiiic) \Rightarrow (iid). Suppose (iiiic) holds. Let $\{z_j\}_{j=1}^{\infty}$ be separated and s-covering. For convenience, let

$$W_1(z) = \frac{\omega(D(z, r))^{1+\frac{1}{q} - \frac{s}{p}} \eta(D(z, r))^{\frac{1}{q}}}{\nu(D(z, r))^{\frac{1}{q}}}.$$
Then
\[
\|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p}}} \leq \sum_{j=1}^{\infty} \int_{D(z_j, r)} \left(\frac{\mu(D(z, r))}{W_1(z)} \right)^{\frac{\mu}{p-q}} \omega(z) dA(z)
\]
\[
\leq \sum_{j=1}^{\infty} \left(\frac{\mu(D(z_j, r+s))}{W_1(z_j)} \right)^{\frac{\mu}{p-q}} \omega(D(z_j, r+s))
\]
\[
\approx \sum_{j=1}^{\infty} \left(\frac{\mu(D(z_j, r+s))}{\omega(D(z_j, r+s))} \right)^{\frac{\mu}{p-q}} \mu(D(z_j, r+s))^{\frac{\mu}{p-q}} \cdot \omega(D(z_j, r+s))^{\frac{\mu}{p-q}}
\].

Therefore, \(\hat{\mu}_r \in L_{1,\mu}^{\frac{\mu}{p}}\) and
\[
\|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p}}} \leq \|\lambda_j\|_{L_{\mu}^{\frac{\mu}{p}}}.
\]

(iii) \(\Rightarrow\) (iiib). Suppose (iiic) holds. Let \(W\) be defined as that in (11). Then we have
\[
\int_D \left(\frac{\mu(D(z, r))}{W(D(z, r))} \right)^{\frac{\mu}{p-q}} W(z) dA(z) \approx \|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p}}} < \infty.
\]

So, by Theorem [A] \(Id : A_{W}^{\frac{\mu}{p-q}, q} \rightarrow L_{\mu}^{1}\) is bounded and
\[
\|Id\|_{A_{W}^{\frac{\mu}{p-q}, q} \rightarrow L_{\mu}^{1}} \approx \|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p}}}.
\]

Therefore, for any \(f \in A_q^p\) and \(h \in A_{p-q, \mu}^q\), by Fubini’s theorem and Hölder’s inequality, we have
\[
|h, T_{\mu}^\omega f|_{A_q^p} \leq \int_D |h(z)f(z)| d\mu(z)
\]
\[
\leq \|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p-q}}} \left(\int_D |f(z)h(z)|^{\frac{\mu}{p-q}} W(z) dA(z) \right)^{\frac{p-q}{\mu}}
\]
\[
\leq \|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p-q}}} \|f\|_{A_q^p} \|h\|_{A_{p-q, \mu}^q}.
\]

Then, (13) implies \(\|T_{\mu}^\omega\| \leq \|\hat{\mu}_r\|_{L_{1,\mu}^{\frac{\mu}{p-q}}}\).

(iiib) \(\Rightarrow\) (iiia). By [20] Theorem 3.2, \(A_q^p\) and \(A_{p-q, \mu}^q\) are isomorphic to \(l^p\) and \(l^q\), respectively. Theorem 1.2.7 in [7] shows that every bounded operator from \(l^p\) to \(l^q\) is compact when \(0 \leq q < p < \infty\). Therefore, (iiib) \(\Rightarrow\) (iiia). The proof is complete.

Proof of Theorem 2. Suppose \(\mu\) is a \(\lambda\)-Carleson measure for \(A_{\omega_1}^1\) and \(n \geq 2\). Let \(h_i \in A_{\omega_i}^{p_i/q_i}(i = 1, 2, \cdots, n)\). By Hölder’s inequality,
\[
\left\| \prod_{i=1}^{n} h_i \right\|_{A_{\omega_1}^{1/\mu}} \leq \left(\int_D \prod_{i=1}^{n} \left(|h_i(z)|^{q_i} \omega_i(z)^{\frac{q_i}{p_i}} \right) dA(z) \right)^{\frac{1}{q}} \leq \prod_{i=1}^{n} \|h_i\|_{A_{\omega_i}^{p_i/q_i}}.
\]
Then, letting $C_{\mu,\omega,\lambda} = \|I_d\|_{A^{1/\gamma}_{\omega} \to L^{1}_{\mu}}$, we have
\[
\left\|\sum_{i=1}^{n} h_{i}\right\|_{p} \leq C_{\mu,\omega,\lambda} \left\|\sum_{i=1}^{n} h_{i}\right\|_{A^{1/\gamma}_{\omega}} \leq C_{\mu,\omega,\lambda} \prod_{i=1}^{n} \|h_{i}\|_{A^{p_{i}/q_{i}}_{\omega}}. \tag{12}
\]
Let
\[
d\mu_{1}(z) = \prod_{i=2}^{n} |h_{i}(z)| \ d\mu(z).
\]
Then, Theorem A and (12) imply
\[
\|I_d\|_{A^{p_{1}/q_{1}}_{\omega_{1}} \to L^{p_{1}/q_{1}}_{\mu}} \approx \|I_d\|_{A^{p_{1}/q_{1}}_{\omega_{1}} \to L^{1}_{\mu}} \leq C_{\mu,\omega,\lambda} \prod_{i=2}^{n} \|h_{i}\|_{A^{p_{i}/q_{i}}_{\omega}}. \tag{13}
\]
Therefore, for all $f_{1} \in A^{p_{1}}_{\omega}$,
\[
\int_{\mathbb{D}} |f_{1}(z)|^{q_{1}} d\mu_{1}(z) \leq \|I_d\|_{A^{p_{1}/q_{1}}_{\omega_{1}} \to L^{1}_{\mu}} \|f_{1}\|_{A^{p_{1}}_{\omega_{1}}} \leq C_{\mu,\omega,\lambda} \prod_{i=2}^{n} \|h_{i}\|_{A^{p_{i}/q_{i}}_{\omega}} \|f_{1}\|_{A^{p_{1}}_{\omega_{1}}}. \tag{13}
\]
Similarly, letting
\[
d\mu_{2}(z) = |f_{1}(z)|^{q_{1}} |h_{3}(z)h_{4}(z) \cdots h_{n}(z)| \ d\mu(z),
\]
by Theorem A and (13), we have
\[
\|I_d\|_{A^{p_{2}/q_{2}}_{\omega_{2}} \to L^{p_{2}/q_{2}}_{\mu}} \approx \|I_d\|_{A^{p_{2}/q_{2}}_{\omega_{2}} \to L^{1}_{\mu}} \leq C_{\mu,\omega,\lambda} \prod_{i=3}^{n} \|h_{i}\|_{A^{p_{i}/q_{i}}_{\omega}}.
\]
and, for all $f_{2} \in A^{p_{2}}_{\omega_{2}}$,
\[
\int_{\mathbb{D}} |f_{2}(z)|^{q_{2}} d\mu_{2}(z) \leq \|I_d\|_{A^{p_{2}/q_{2}}_{\omega_{2}} \to L^{1}_{\mu}} \|f_{2}\|_{A^{p_{2}}_{\omega_{2}}} \leq C_{\mu,\omega,\lambda} \prod_{i=3}^{n} \|h_{i}\|_{A^{p_{i}/q_{i}}_{\omega}}.
\]
Continuing this process, we get (13) and $M_{n} \approx \|I_d\|_{A^{1/\gamma}_{\omega} \to L^{1}_{\mu}}$.

Conversely, suppose (13) holds. When $\lambda \geq 1$, by Lemma 2.4 in [11], we can choose γ large enough such that
\[
\|F_{a}\|_{A^{p}_{\omega}} \approx \omega_{\lambda}(S_{a}), \quad \text{for all} \ i = 1, 2, \cdots, n \quad \text{and} \ a \in \mathbb{D},
\]
where $F_{a}(z) = \left(1 - \frac{|a|^{2}}{1 - |a|^{2}}\right)^{\gamma}$. For any $z \in S_{a}$ and $a \in \mathbb{D}$, we have $|1 - az| \approx 1 - |a|$. So, (13) implies
\[
\mu(S_{a}) \lesssim \int_{\mathbb{D}} \left(1 - \frac{|a|^{2}}{1 - |a|^{2}}\right)^{\gamma(q_{1} + q_{2} + \cdots + q_{n})} d\mu(z) \lesssim M_{n} \omega_{\lambda}(S_{a})^{\lambda}.
\]
By Theorem A, μ is a λ-Carleson measure for A^{1}_{ω} and $M_{n} \gtrsim \|I_d\|_{A^{1/\gamma}_{\omega} \to L^{1}_{\mu}}$.

So, we only need to prove the case of $0 < \lambda < 1$. We use induction on n. When $n = 1$, it is just the definition of Carleson measure for Bergman spaces. Now, let $n \geq 2$ and the result holds for $n - 1$ functions. Set

\[\lambda_{n-1} = \sum_{i=1}^{n-1} \frac{q_i}{p_i}, \quad \eta(z) = \prod_{i=1}^{n-1} \omega_i(z)^{\frac{q_i}{n-1}}, \quad d\mu_{f_n,q_n}(z) = |f_n(z)|^{q_n} d\mu(z), \]

and

\[M_{n-1,f_n,q_n} = \sup_{f \in A^q_{\lambda_n}} \frac{\int_{D_n} \prod_{i=1}^{n-1} |f(z)|^{q_i} d\mu_{f_n,q_n}(z)}{\prod_{i=1}^{n-1} \|f\|_{A^{q_{p_i}}}}. \]

Then, (3) and the assumption imply

\[\|I_d\|_{A^{\lambda_n}_{\lambda_n-1} \rightarrow L^{q_n}_{f_n,q_n}} \approx M_{n-1,f_n,q_n} \leq M_n \|f\|_{A^{q_n}_{\lambda_n}}. \]

Since $\lambda_{n-1} < 1$, by Theorem [A] if γ is large enough and fixed, we have

\[S(f_n) := \int_{D_n} \left(\int_{D_n} \left(\frac{1 - |\xi|^\gamma}{|1 - z\xi|^\gamma} \right)^{\frac{1}{\gamma}} |f_n(\xi)|^{q_n} d\mu(\xi) \right)^{\frac{1}{q_n}} \eta(z) dA(z) \]

\[\leq \lambda_{n-1}^{1-n} \|f\|_{A^{q_n}_{\lambda_n}}. \]

(14)

Let δ be large enough, $(a_k)_{k=1}^\infty$ be separated and r-covering,

\[dV(\xi) = \frac{(1 - |\xi|^\gamma)}{|1 - z\xi|^\gamma} \frac{d\mu(\xi)}{(1 - |\xi|^2)\eta(\xi)}, \quad b_{ak} = \frac{1}{\omega_n(S_{ak})} \left(1 - \frac{|a_k|}{1 - \overline{a}_k z} \right)^\delta. \]

Then, for any $c = \{c_k\} \in L^{p_0}_n$, from Theorem 3.2 in [20], we have

\[\|f\|_{A^{q_n}_{\lambda_n}} \leq \|c\|_{L^{p_0}_n}, \]

where $f_n(\xi) = \sum_{k=1}^\infty c_k r_k(t) b_{ak}(\xi)$. Then, by Fubini’s theorem, Kahane’s inequality and Khinchin’s inequality, we have

\[\int_0^1 S(f(t)) dt = \int_D \int_0^1 \left(\sum_{k=1}^\infty c_k r_k(t) b_{ak}(\xi) \right)^{\frac{q_n}{1 - \lambda_{n-1}}} dt \eta(z) dA(z) \]

\[\geq \int_D \left(\int_0^1 \left(\sum_{k=1}^\infty c_k r_k(t) b_{ak}(\xi) \right)^{\frac{q_n}{1 - \lambda_{n-1}}} dt \right)^{\frac{1}{1 - \lambda_{n-1}}} \eta(z) dA(z) \]

\[\geq \int_D \left(\int_0^1 \left(\sum_{k=1}^\infty |c_k|^2 b_{ak}(\xi)^2 \right)^{\frac{q_n}{2}} dV(\xi) \right)^{\frac{1}{1 - \lambda_{n-1}}} \eta(z) dA(z) \]

\[\geq \sum_{j=1}^\infty \int_{D(a_j,r)} \left(\int_{D(a_j,r)} (|c_j|^2 b_{aj}(\xi)^2)^{\frac{q_n}{2}} dV(\xi) \right)^{\frac{1}{1 - \lambda_{n-1}}} \eta(z) dA(z) \]
So, for any given \(\varepsilon > 0 \), by Theorem 2, we have
\[
\limsup_{n \to \infty} \left(\frac{\mu(D(a_j, r))}{\omega_n(S_{a_j})^{1/\alpha_n}} \right)^{1/\alpha_n} \leq \frac{1}{\varepsilon}.
\]
Set
\[
C_j = \left\{ \frac{\mu(D(a_j, r))}{\omega(D(a_j, r))^{1/\alpha}} \right\}^{1/\alpha}.
\]
From (14) and the classical duality relation
\[
\left(I^{1/\alpha_n} \right)^* \approx I^{1/\alpha_n}
\]
the duality relation of the classical form
\[
\left\{ \left(\frac{\mu(D(a_k, r))}{\omega(D(a_k, r))^{1/\alpha}} \right)^{1/\alpha} \right\}^{1/\alpha_n} \leq M_n \left(\frac{1}{\varepsilon} \right)^{1/\alpha_n}.
\]
Then, by Theorem [A] we have
\[
\lim_{n \to \infty} \left(\frac{\mu(D(a_n, r))}{\omega(D(a_n, r))^{1/\alpha}} \right)^{1/\alpha_n} \approx \left(\int_{D_n} \frac{\mu(D(z, r))}{\omega(D(z, r))^{1/\alpha}} \omega(z) dA(z) \right)^{1/\alpha_n} \approx \left(\sum_{k=1}^{\infty} \frac{\mu(D(a_k, r))}{\omega(D(a_k, r))^{1/\alpha}} \right)^{1/\alpha_n} \leq M_n.
\]
The proof is complete. \(\square \)

The proof of Theorem 3 can be deduced in a standard way, see the proof of Theorem 4.1 in [9] for example. For the benefits of readers, we prove it here.

Proof of Theorem 3. (i) \(\Rightarrow \) (ii). Suppose (i) holds, i.e., \(\mu \) is a vanishing \(\lambda \)-Carleson measure for \(A_{\lambda} \). If \(s \in (0, 1) \), let \(\chi_s(z) \) be the characteristic function of \(\{ z \in D : |z| \geq s \} \) and \(d\mu_s(z) = \chi_s(z) d\mu(z) \). By Theorem A, we have
\[
\lim_{s \to 1} \|I_d\|_{A_{\lambda}^{1/1} \to L_p^{1/1}} = \lim_{s \to 1} \|I_d\|_{A_{\lambda}^{1/1} \to L_p^{1/1}} = 0.
\]
By Theorem [2] we have
\[
\lim_{s \to 1} \sup_{f \in A_{\lambda}^{q_1}, \ldots, t, n} \frac{\|f(z)|d\mu(z)\|_{A_{\lambda}^{q_1}}}{\prod_{j=1}^{\alpha} \|f(z)|d\mu(z)\|_{A_{\lambda}^{q_1}}} = 0.
\]
So, for any given \(\varepsilon > 0 \), there exists a real number \(s_0 \in (0, 1) \) such that
\[
\sup_{f \in A_{\lambda}^{q_1}, \ldots, t, n} \frac{\|f(z)|d\mu(z)\|_{A_{\lambda}^{q_1}}}{\prod_{j=1}^{\alpha} \|f(z)|d\mu(z)\|_{A_{\lambda}^{q_1}}} < \varepsilon.
\]
Meanwhile, when \(i = 2, \ldots, n \), for any \(\|f_i\|_{A_{\lambda}^{q_1}} \leq 1 \) and \(|z| \leq s_0 \), it is easy to check that
\[
|f_i(z)| \leq \frac{\|f_i\|_{A_{\lambda}^{q_1}}}{(1 - |z|)^{\frac{1}{\alpha}} \omega_i(z)} \leq \frac{1}{(1 - s_0)^{\frac{1}{\alpha}} \omega_i(s_0)}.
\]
Since \(\{ f_{1,k} \}_{k=1}^{\infty} \) converges to 0 uniformly on \(s_0 \mathbb{D} \), there exists a natural number \(K \) such that, for all \(k > K \),
\[
\int_{s_0 \mathbb{D}} |f_{1,k}(z)|^{\nu_1} \prod_{i=2}^{n} |f_i(z)|^{\nu_i} \, d\mu(z) < \varepsilon. \tag{16}
\]
Then, (15) and (16) imply \(\lim_{k \to \infty} F(k) = 0 \), i.e., (ii) holds.

(ii) \(\Rightarrow \) (iii). It is obvious.

(iii) \(\Rightarrow \) (i). Suppose (iii) holds. Then, \(\mu \) is a \(\lambda \)-Carleson measure for \(A_{\omega}^{1} \). Otherwise, by Theorem [2] there exist \(\{ f_{1,k} \}_{k=1}^{\infty}, \cdots, \{ f_{n,k} \}_{k=1}^{\infty} \) in the unit ball of \(A_{\nu_1}^{p_1}, \cdots, A_{\nu_2}^{p_2} \), respectively, such that
\[
\int_{\mathbb{D}} \prod_{i=1}^{n} \left| \frac{f_{i,k}(z)}{k} \right|^{\nu_i} \, d\mu(z) > 1.
\]
Meanwhile, since \(\lim_{k \to \infty} \| \frac{f_{1,k}}{k} \|_{A_{\nu_1}^{p_1}} = 0 \), by statement (iii), we have
\[
\int_{\mathbb{D}} \prod_{i=1}^{n} \left| \frac{f_{i,k}(z)}{k} \right|^{\nu_i} \, d\mu(z) = 0.
\]
This is a contradiction. So, \(\mu \) is a \(\lambda \)-Carleson measure for \(A_{\omega}^{1} \). Moreover, when \(0 < \lambda < 1 \), by Theorem [3], \(I_{\lambda} : A_{\omega}^{1} \to L_{\mu}^{\lambda} \) is compact.

Suppose \(\lambda > 1 \). By Lemma 2.4 in [11], we can choose \(\gamma \) large enough such that
\[
\| F_a \|_{A_{\nu_1}^{p_1}} \approx \omega(S_a), \quad \text{for all } i = 1, 2, \cdots, n \text{ and } a \in \mathbb{D},
\]
where \(F_a(z) = \left(\frac{1-|a|^2}{|1-\overline{a}z|} \right)^{\gamma} \). Therefore, for \(i = 1, 2, \cdots, n \), \(f_{i,a}(z) = \frac{F_a(z)}{\| F_a \|_{A_{\nu_1}^{p_1}}} \) is bounded in \(A_{\nu_i}^{p_i} \) and converges to 0 uniformly on compact subsets of \(\mathbb{D} \) as \(|a| \to 1 \). From (iii), we have
\[
\lim_{|a| \to 1} \int_{\mathbb{D}} \left(\frac{1-|a|}{|1-\overline{a}z|} \right)^{(q_1+q_2+\cdots+q_n)\gamma} \frac{d\mu(z)}{\omega(S_a)^{\lambda}} = 0. \tag{17}
\]
For brief, let \(\gamma_n = (q_1 + q_2 + \cdots + q_n)\gamma \). Then, for any fixed \(r > 0 \), by (1) we have
\[
\frac{\mu(D(a, r))}{\omega(D(a, r))^{\lambda}} \approx \int_{D(a, r)} \left(\frac{1-|a|}{|1-\overline{a}z|} \right)^{\gamma_n} \frac{d\mu(z)}{\omega(S_a)^{\lambda}} \leq \int_{\mathbb{D}} \left(\frac{1-|a|}{|1-\overline{a}z|} \right)^{\gamma_n} \frac{d\mu(z)}{\omega(S_a)^{\lambda}}.
\]
Therefore, (17) and Theorem [3] imply that \(\mu \) is a vanishing \(\lambda \)-Carleson measure for \(A_{\omega}^{1} \). The proof is complete.

\[\square\]

REFERENCES

[1] O. Constantin, Carleson embeddings and some classes of operators on weighted Bergman spaces, J. Math. Anal. Appl. 365 (2010), 668–682.
[2] J. Diestel, H. Jarchow and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
[3] L. Ding and K. Wang, The $L^p - L^q$ boundedness and compactness of Bergman type operators, *Taiwanese J. Math.* DOI: 10.11650/tjm/220101.

[4] Y. Duan, K. Guo, S. Wang and Z. Wang, Toeplitz operators on weighted Bergman spaces induced by a class of radial weights, *J. Geom Anal.* 32 (2022), Paper No. 39, 29 pp.

[5] S. Li, Bergman type operator on spaces of holomorphic functions in the unit ball of \mathbb{C}^n, *J. Math. Anal. Appl.* DOI: 10.1016/j.jmaa.2022.126088.

[6] J. Li, H. He and C. Tong, The essential norm of the Toeplitz operator on the general weighted Bergman spaces, *Ann. Funct. Anal.* 11 (2020), 956–969.

[7] J. Lindenstrauss and L. Tzafriri, *Classical Banach Spaces*, Lecture Notes in Mathematics, vol 338, Springer, Berlin, 1973.

[8] X. Lv and H. Arroussi, Toeplitz operators on Bergman spaces with exponential weights for $0 < p \leq 1$, *Bull. Sci. Math.* 173 (2021), Paper No. 103068, 19 pp.

[9] J. Pau and R. Zhao, Carleson measures and Toeplitz operators for weighted Bergman spaces on the unit ball, *Michigan Math. J.* 64 (2015), 759–796.

[10] J. Peláez, *Small Weighted Bergman Spaces*, Proceedings of the summer school in complex and harmonic analysis, and related topics, 2016.

[11] J. Peláez and J. Rättyä, Weighted Bergman spaces induced by rapidly increasing weights, *Mem. Amer. Math. Soc.* 227 (1066) (2014).

[12] J. Peláez and J. Rättyä, Embedding theorems for Bergman spaces via harmonic analysis, *Math. Ann.* 362 (2015), 205–239.

[13] J. Peláez and J. Rättyä, Trace class criteria for Toeplitz and composition operators on small Bergman space, *Adv. Math.* 293 (2016), 606–643.

[14] J. Peláez and J. Rättyä, Two weight inequality for Bergman projection, *J. Math. Pures. Appl.* 105 (2016), 102–130.

[15] J. Peláez and J. Rättyä, Bergman projection induced by radial weight, *Adv. Math.* 391 (2021), Paper No. 107950, 70 pp.

[16] J. Peláez, J. Rättyä and K. Sierra, Embedding Bergman spaces into tent spaces, *Math. Z.* 281 (2015), 1215–1237.

[17] J. Peláez, J. Rättyä and K. Sierra, Berezin transform and Toeplitz operators on Bergman spaces inducey by regular weights, *J. Geom. Anal.* 28 (2018), 656–687.

[18] A. Perälä and J. Rättyä, Duality of weighted Bergman spaces with small exponents, *Ann. Acad. Sci. Fenn. Math.* 42 (2017), 621–626.

[19] F. Reyes, P. Ortega, J. Peláez and J. Rättyä, One weight inequality for Bergman projection and Calderón operator induced by radial weight, arXiv:2105.08029v1.

[20] X. Zhang, L. Xi, H. Fan and J. Li, Atomic decomposition of μ-Bergman space in \mathbb{C}^n, *Acta Math. Scientia*, 34B (2014), 779–789.

[21] R. Zhao and K. Zhu, *Theory of Bergman Spaces in the Unit Ball of \mathbb{C}^n*, Mém. Soc. Math. Fr. (N.S.) No. 115 (2008), vi+103 pp.

[22] K. Zhu, Bergman and Hardy spaces with small exponents, *Pacific J. Math.* 162 (1994), 189–199.

[23] K. Zhu, *Spaces of Holomorphic Functions in the Unit Ball*, Springer-Verlag, New York, 2005.

[24] K. Zhu, *Operator Theory in Function Spaces (2nd Edition)*, American Mathematical Society, Providence, RI, 2007.

JUNTAO DU, DEPARTMENT OF MATHEMATICS, SHANTOU UNIVERSITY, SHANTOU, GUANGDONG, 515063, CHINA.

Email address: jtdu007@163.com

SONGXIAO LI, INSTITUTE OF FUNDAMENTAL AND FRONTIER SCIENCES, UNIVERSITY OF ELECTRONIC SCIENCE AND TECHNOLOGY OF CHINA, 610054, CHENGDU, SICHUAN, P.R. CHINA.

Email address: jyulsx@163.com
HASI WULAN, DEPARTMENT OF MATHEMATICS, SHANTOU UNIVERSITY, SHANTOU, GUANGDONG, 515063, CHINA.

Email address: wulan@stu.edu.cn