Physical Properties of Juvenile Wood of Two Paulownia Hybrids

Fizička svojstva juvenilnog drva dvaju hibrida paulovnije

ABSTRACT • There is a growing trend in the world of planting fast growing species (rotations 5 to 10 years). Their primary purpose is the production of wood fibers and biomass, but they certainly represent the potential in making solid wood products as well. One of the fast-growing species is Paulownia sp., a species of extremely fast growing wood. Plantation breeding of Paulownia sp. in Croatia is increasing, although there is a little knowledge about the technical properties of Paulownia wood and its end use is questionable. This paper presents preliminary results of some physical properties of juvenile wood of two Paulownia hybrids planted in the area near the town of Glina in the Republic of Croatia. One hybrid is 9501 ((Paulownia fortunei × Paulownia elongata) × (Paulownia fortunei × Paulownia tomentosa)) and the other hybrid is Shan Tong (Paulownia fortunei × Paulownia tomentosa). The aim of this study was to investigate physical properties of juvenile wood of two Paulownia hybrids from one site in Croatia, to determine differences in physical properties of wood between two hybrids and to evaluate the correlation between density and shrinkages of each hybrid. Significant differences in oven dry density, basic density and density at maximum MC, between the two hybrids were determined. There is no statistically significant difference in longitudinal, radial, tangential and volumetric shrinkages between the two hybrids.

Keywords: hybrid 9501; hybrid Shan Tong; juvenile wood; Paulownia wood; physical properties

SAŽETAK • U današnje je vrijeme zamjetan svečešći trend sadnje brzorastućih vrsta drveća (ophodnje od 5 do 10 godina). Te su vrste primarno namijenjene proizvodnji drvnih vlakana i biomase, ali svakako je vidljiv i njihov potencijal u proizvodnji cjelovitih drvenih proizvoda. Jedna od brzorastućih vrsta je Paulownia sp., a vrsta je jedna od vrsta na kojoj se u Hrvatskoj vrlo često uzgaja i sadnja. Plantacija Paulownia sp. u Hrvatskoj je u porastu, a ovo preduvjeti primjerak znanstvenih istraživanja svečešću trend sadnje novih vrsta drveća (ophodnje od 5 do 10 godina). Te su vrste primarno namijenjene proizvodnji drvnih vlakana i biomase, ali svakako je vidljiv i njihov potencijal u proizvodnji cjelovitih drvenih proizvoda. Jedna od brzorastućih vrsta je Paulownia sp., a vrsta je jedna od vrsta na kojoj se u Hrvatskoj vrlo često uzgaja i sadnja. Plantacija Paulownia sp. u Hrvatskoj je u porastu, a ovo preduvjeti primjerak znanstvenih istraživanja svečešću trend sadnje novih vrsta drveća (ophodnje od 5 do 10 godina). Te su vrste primarno namijenjene proizvodnji drvnih vlakana i biomase, ali svakako je vidljiv i njihov potencijal u proizvodnji cjelovitih drvenih proizvoda. Jedna od brzorastućih vrsta je Paulownia sp., a vrsta je jedna od vrsta na kojoj se u Hrvatskoj vrlo često uzgaja i sadnja. Plantacija Paulownia sp. u Hrvatskoj je u porastu, a ovo preduvjeti primjerak znanstvenih istraživanja svečešću trend sadnje novih vrsta drveća (ophodnje od 5 do 10 godina). Te su vrste primarno namijenjene proizvodnji drvnih vlakana i biomase, ali svakako je vidljiv i njihov potencijal u proizvodnji cjelovitih drvenih proizvoda. Jedna od brzorastućih vrsta je Paulownia sp., a vrsta je jedna od vrsta na kojoj se u Hrvatskoj vrlo često uzgaja i sadnja. Plantacija Paulownia sp. u Hrvatskoj je u porastu, a ovo preduvjeti primjerak znanstvenih istraživanja svečešću trend sadnje novih vrsta drveća (ophodnje od 5 do 10 godina). Te su vrste primarno namijenjene proizvodnji drvnih vlakana i biomase, ali svakako je vidljiv i njihov potencijal u proizvodnji cjelovitih drvenih proizvoda. Jedna od brzorastućih vrsta je Paulownia sp., a vrsta je jedna od vrsta na kojoj se u Hrvatskoj vrlo često uzgaja i sadnja. Plantacija Paulownia sp. u Hrvatskoj je u porastu, a ovo preduvjeti primjerak znanstvenih istraživanja svečešću trend sadnje novih vrsta drveća (ophodnje od 5 do 10 godina). Te su vrste primarno namijenjene proizvodnji drvnih vlakana i biomase, ali svakako je vidljiv i njihov potencijal u proizvodnji cjelovitih drvenih proizvoda. Jedna od brzorastućih vrsta je Paulownia sp., a vrsta je jedna od vrsta na kojoj se u Hrvatskoj vrlo často u...
1 INTRODUCTION

1. UVOD

The trend of increasing demand for wood raw material is becoming of great global concern. The answer to this would be to plant more fast growing trees of different species, in order to conserve native forests and to ensure adequate supplies of wood. Paulownia sp. is an example of very adaptable genus requiring minimal management after the first few years (El-Showk, 2003). It has been cultivated throughout Asia for centuries, with China having the longest history (Ates et al., 2018).

Paulownia wood is considered to be extremely fast growing, especially in the juvenile phase of growth. Under optimal conditions, Paulownia sp. trees can produce useful timber within five to six years, measuring 30-40 cm in diameter after ten years (Olson and Carpenter, 1982; Zhao-Hua et al., 1986). It is widely used for various purposes, with excellent prospects for pulp and biomass (Vilotić et al., 2015; Icka et al., 2016; Vusić et al., 2018). However, as a solid wood, it is suggested to be used in products that are not subject to great loads during exploitation (Šoškić et al., 2003) and not for structural purposes (Koman et al., 2017).

Due to its high adaptability, new markets are developing rapidly for plantation grown Paulownia sp. in many countries. In Croatia, the most commonly propagated are Paulownia hybrids Shan Tong and 9501. Currently, there are no Paulownia hybrid trees with known origin older than four years in Croatia. Drvodelić (2018) investigated their propagation by root cuttings, where the difference in rooting percentage between two hybrids depended on the cutting thickness and drying procedure. However, technical properties of hybrids 9501 and Shan Tong have not been investigated so far in Croatia. In addition, there are limited data on technical properties of wood of different Paulownia species (Ayhildiz and Kol, 2010; Ikaei, 2013; San et al., 2016; Komán et al., 2017).

Therefore, data on properties of Paulownia hybrid wood grown on the territory of the Republic of Croatia are needed. This information could determine whether Paulownia sp. is profitable for cultivation and use as a raw material for industrial purposes.

The aim of this study was to investigate physical properties of Paulownia hybrids 9501 and Shan Tong juvenile wood from one site in the Republic of Croatia, to determine differences in physical properties of wood between two hybrids and to evaluate the correlation between density and shrinkages of each hybrid.

2 MATERIALS AND METHODS

2. MATERIJALI I METODE

For the purpose of this research, two 4-year old Paulownia hybrids were taken from the area near the town of Glina in Croatia. One hybrid is 9501 ((Paulownia fortunei × Paulownia elongata) × (Paulownia fortunei × Paulownia tomentosa)) and the other hybrid is Shan Tong (Paulownia fortunei × Paulownia tomentosa). Five test trees of each hybrid were taken from the experimental stand. All trees were chosen as representative of the stand according to HRN ISO 3129:2015.

Four disks were cut at breast height (1.3 m), upwards to the crown, from each tree. Disks were approximately 5 cm thick and 10 cm in diameter. Maximum number of test samples were cut from each disk, according to HRN ISO 3129:2015.

Physical properties determined in this study were density in absolutely dry condition, basic density and density at maximum moisture content (HRN ISO 13061-2:2015); longitudinal, radial and tangential shrinkage (ISO 13061-13:2016); volumetric shrinkage (ISO 13061-14:2016) and maximum moisture content (HRN ISO 13061-1:2015).

Statistical analysis of data and their comparison were carried out in Statistica 8. Data were analyzed and presented as the minimum, mean and maximum values, as well as standard deviation. The analysis of variance (ANOVA) was used to determine whether there are any statistically significant differences between the means of investigated wood properties of two Paulownia hybrids. Duncan’s multiple range test (DMRT) was applied to test statistical significance at α = 0.05 level. The simple linear regression model was used to analyze the relationship between density and shrinkage.

3 RESULTS AND DISCUSSION

3. REZULTATI I RASPRAVA

Statistical values of Paulownia hybrids 9501 and Shan Tong juvenile wood, as well as the summary of analysis of variance (ANOVA) for oven dry density, basic density, density at maximum moisture content (MC), longitudinal, radial, tangential, and volumetric shrinkage are shown in Table 1, Table 3, Figure 1 and Figure 2.

Physical properties of wood, especially wood density and dimensional stability, are important factors affecting wood quality (Ištok et al., 2016). Mean oven dry density of hybrid 9501 is 249 kg/m³ and of hybrid Shan Tong is 237 kg/m³ (Table 1). The analysis of variance (ANOVA) indicated that there is significant difference in oven dry density between the two hybrids (Table 3). However, these differences in mean values amounted only to about 6%. The values are similar to the findings on Paulownia elongata, 240 kg/m³ (Šoškić et al., 2003), Paulownia tomentosa, 276 kg/m³ (Komán et al., 2017), Paulownia fortunei, 274 kg/m³ (Šoškić et al., 2017) and 261 kg/m³ (Ikaei, 2013).

For hybrid 9501, the mean value of longitudinal shrinkage is 0.30 %, radial shrinkage 2.35 %, tangential shrinkage 4.95 % and volumetric shrinkage 7.62 % (Table 1). For hybrid Shan Tong, the mean value of longitudinal shrinkage is 0.35 %, radial shrinkage 2.47 %, tangential shrinkage 5.30 % and volumetric shrinkage 7.81 % (Table 1). The analysis of variance (ANOVA) indicated that there is no significant difference in shrinkages between the two hybrids (Table 3). Very high variability of longitudinal shrinkage is present. This could be explained by low age of investigated trees, closely to juvenile age between two hybrids. This information could determine differences in physical properties of wood of different hybrids. The aim of this study was to investigate physical properties of wood, especially wood density, density at maximum moisture content (MC), longitudinal, radial, tangential, and volumetric shrinkage.
Table 1 Descriptive statistical analysis of physical properties between Paulownia hybrids 9501 and Shan Tong

Property	Hybrid 9501	Number of samples	Mean ± Standard deviation	Min	Max
Oven dry density	9501	34	0.249 ± 0.016	0.221	0.295
	Shan Tong	34	0.237 ± 0.019	0.201	0.277
Basic density / nominalna gustoča	Shan Tong	34	0.220 ± 0.017	0.187	0.252
Density at maximum MC	Shan Tong	34	0.669 ± 0.063	0.562	0.850
Longitudinal shrinkage	Shan Tong	34	0.35 ± 0.032	0.332	0.412
Radial shrinkage / radijalno utezanje	Shan Tong	34	2.47 ± 0.631	1.67	4.69
Tangential shrinkage / tangentno utezanje	Shan Tong	34	5.30 ± 0.966	3.80	8.02
Volumetric shrinkage / volumno utezanje	Shan Tong	34	7.81 ± 1.409	5.13	11.21
Maximum MC / maksimalni sadržaj vode	Shan Tong	34	208 ± 19.432	172	253

*Results with different letters have a significant difference with the Duncan’s test. / Rezultati s različitim slovima statistički se značajno razlikuju prema Duncanovu testu.

Figure 1 Statistical analyses of longitudinal, radial, tangential and volume shrinkage, between two paulownia hybrids

Table 2 Comparison of shrinkage values with references

Property	Hybrid 9501 (our research)	Hybrid Shan Tong (our research)	P. elongata (Šoškić et al., 2003)	P. fortunei (Šoškić et al., 2003)	P. tomentosa (Kiacci, 2013)	P. fortunei (Komán et al., 2017)
Radial shrinkage / radijalno utezanje	2.35	2.47	2.49	2.54	-	2.20
Tangential shrinkage / tangentno utezanje	4.95	5.30	4.74	4.79	-	3.89
Volumetric shrinkage / volumno utezanje	7.62	7.81	8.31	8.35	7.54	6.94
Table 3: Analysis of variance (ANOVA) results for physical properties between Paulownia hybrids 9051 and Shan Tong juvenile wood

Property	Effect	Sum of squares	Degree of freedom	Mean square	F	p
Oven dry density	Between Groups / između grupa	0.003	1	0.003	8.41	0.005
	Within Groups / unutar grupa	0.020	66	0.000		
	Total / ukupno	0.023	67			
Basic density	Between Groups / između grupa	0.003	1	0.003	12.67	0.000
nominalna gustoća	Within Groups / unutar grupa	0.015	66	0.000		
	Total / ukupno	0.018	67			
Density at maximum MC	Between Groups / između grupa	0.043	1	0.043	8.649	0.005
gustoća pri maksimalnom sadržaju vode	Within Groups / unutar grupa	0.329	66	0.005		
	Total / ukupno	0.372	67			
Longitudinal shrinkage	Between Groups / između grupa	0.513	1	0.513	0.678	0.413
longitudinal utezanje	Within Groups / unutar grupa	4.990	66	0.076		
	Total / ukupno	5.503	67			
Radial shrinkage	Between Groups / između grupa	0.262	1	0.262	0.822	0.368
radijalno utezanje	Within Groups / unutar grupa	21.028	66	0.319		
	Total / ukupno	21.290	67			
Tangential shrinkage	Between Groups / između grupa	2.038	1	2.038	3.014	0.087
tangento utezanje	Within Groups / unutar grupa	44.634	66	0.676		
	Total / ukupno	46.672	67			
Volumetric shrinkage	Between Groups / između grupa	4.244	1	4.244	2.722	0.103
volumno utezanje	Within Groups / unutar grupa	102.903	66	1.559		
	Total / ukupno	107.147	67			
Maximum MC	Between Groups / između grupa	233.0	1	233.0	0.628	0.430
maksimalni sadržaj vode	Within Groups / unutar grupa	24491.0	66	0.781		
	Total / ukupno	24724.0	67			

Figure 2: Statistical analyses of oven dry density, basic density and density at maximum MC, between two paulownia hybrids

Slika 2: Statistička analiza gustoće u apsolutnom suhom stanju, nominalne gustoće i gustoće pri maksimalnom sadržaju vode, dvaju hibrida paulovnije
nility of wood. Irregularity and large variations in longitudinal shrinkage were reported by many authors (Welch, 1932 and 1934; Kelsey, 1963; Hann, 1969; Skaar, 1988). Based on the work of Harris and Meylan (1932 and 1934; Kelsey, 1963; Hann, 1969; Welch, 1932 and 1934; Kelsey, 1963; Hann, 1969; Skaar, 1988), the major cause of the variation in longitudinal shrinkage were reported by many authors when they reach larger diameters.

Table 4 Relationship between oven dry density and shrinkage of Paulownia hybrids 9051 and Shan Tong juvenile wood

Relationship between oven dry density and shrinkage (9501)	R	Equation / Jednadžba	F*	p
Longitudinal shrinkage / longitudinal utezanje	0.02	0.113 NS	0.916	
Radial shrinkage / radialno utezanje	0.4635	8.751 *	0.006	
Tangential shrinkage / tangentno utezanje	0.3073	3.334 NS	0.077	
Volumetric shrinkage / volumno utezanje	0.5014	10.745 *	0.003	

Relationship between oven dry density and shrinkage (Shan Tong)	R	Equation / Jednadžba	F*	p
Longitudinal shrinkage / longitudinal utezanje	0.0980	0.311 NS	0.581	
Radial shrinkage / radialno utezanje	0.3468	4.375 *	0.045	
Tangential shrinkage / tangentno utezanje	0.3045	3.268 NS	0.080	
Volumetric shrinkage / volumno utezanje	0.3183	3.609 NS	0.067	

*significant at level = 0.05 / značajno pri < 0.05
NSnot significant / nije značajno

4 CONCLUSIONS
4. ZAKLJUČAK

Preliminary result of juvenile wood of two Paulownia hybrids showed statistically significant differences between mean values of some investigated physical properties.

Significant differences in oven dry density, basic density and density at maximum MC, between hybrid 9051 and hybrid Shan Tong were determined. However, these differences in mean values of densities amounted only to about 6 %.

There is no statistically significant difference in longitudinal, radial, tangential and volumetric shrinkages between the two hybrids.

Radial, tangential and volumetric shrinkage values of both investigated hybrids are similar to references for some Paulownia wood species.

Both hybrids should be investigated after five to ten years when they reach larger diameters.

Acknowledgements – Zahvala

The examined issues constitute a part of the project: Kratkoročna financijska potpora istraživanju 2018; Istraživanje strukturalnih, fizičkih svojstava i biološke otpornosti drva klonova paulovnije (Short-term financial support for research 2018; Investigation of structural and physical properties and biological resistance of Paulownia hybrids) (Paulownia Siebold et Zucc.). This work was financed by the University of Zagreb, Croatia.

5 REFERENCES
5. LITERATURA

1. Ates, S.; Ni, Y.; Akgul, M.; Tozluoglu, A., 2008: Characterization and evaluation of Paulownia elongata as a raw material for paper production. African Journal of Biotechnology, 7.
2. Akylidiz, M. H.; Kol, H. S., 2010: Some technological properties and uses of paulownia (Paulownia tomentosa Steud.) wood. Journal of Environmental Biology, 31 (3): 351-355.
3. Drvodelić, D., 2018: Propagation of Paulownia by root cuttings. Sumarski list, 5-6: 297-307. https://doi.org/10.31298/sl.142.5-6.2.
4. El-Showk, S., 2003: The Paulownia Tree. An Alternative for Sustainable Forestry, http://cropdevelopment.org/docs/PaulowniaBooklet.pdf (Accessed Oct 1, 2019).
5. Harris, J. M.; Meylan, B. A., 1965: The influence of microfibril angle on longitudinal and tangential shrinkage in Pinus radiata. Holzforschung, 19 (5):144-153.
6. Hann, R. A., 1969: Longitudinal shrinkage in seven species of wood. U.S.D.A. forest service research note. Madison, Wisconsin.
7. Icka, P.; Damo, R.; Icka, E., 2016: Paulownia tomentosa, a fast growing timber. The annals of Valaia. University of Targoviste, Trgoviste, Romania. https://doi.org/10.1515/agr-2016-0003.
8. Ištok, I.; Sedlar, T.; Šefc, B.; Sinković, T.; Perković, T., 2016: Physical Properties of Wood in Poplar Clones ‘I-214’ and ‘S1-8’. Drvna industrija, 67 (2), 163-170. https://doi.org/10.5552/drind.2016.1604.
9. Kelsey, K. E., 1963: The shrinkage-moisture content relationship for wood with special reference to longitudinal shrinkage. Australia. C.S.I. RO. Div. Forest Prod. Proj. T.P. 8, Prog. Rep. No. 2, 18 pp., Melbourne.
10. Kiaei, M., 2013: Technological properties of Iranian cultivated paulownia wood (Paulownia fortunei). Cellulose Chemistry and Technology, 47 (9-10): 735-743.
11. Komán, S.; Feher, S.; Vityi, A., 2017: Physical and mechanical properties of Paulownia tomentosa wood planted in Hungary. Wood Research, 62 (2): 335-340.
12. Olson, J.; Carpenter, S. B., 1982: Specific gravity, fiber length and extractive content of young paulownia. Wood and Fiber Science, 17 (4): 428-438.
13. San, H. P.; Long, L. K.; Zhang, C. Z.; Hui, T. C.; Seng, W. Y.; Lin, F. S.; Hun, A. T.; Fong, W. K., 2016: Anatomical Features, Fiber Morphological, Physical and Mechanical Properties of Three Years Old New Hybrid Paulownia: Green Paulownia. Research Journal of Forestry, 10: 30-35. https://doi.org/10.3923/rjf.2016.30.35.
14. Skaar, C., 1988: Wood-water relations. In: T. E. Timell (ed.), Springer Series in Wood Science. Springer-Verlag, Berlin, Heidelberg.
15. Šoškić, B.; Lovrić, A.; Vukovojac, B., 2003: The research of some physical properties of wood Paulownia elongata and Paulownia fortuneii. Glasnik Šumarskog fakulteta, Beograd, 87, pp. 211-221.
16. Welch, M. B., 1932: The longitudinal variation of timber during seasoning. Journal and proceedings of the Royal SOC. New South Wales, 66: 492-497.
17. Welch, M. B., 1934: The longitudinal variation of timber during seasoning. Journal and proceedings of the Royal SOC. New South Wales, 68: 249-254.
18. Vilotić, D.; Popović, J.; Mitrović, S.; Šijačić-Nikolić, M.; Ocokolić, M.; Novović, J.; Veselinović, M., 2015: Dimensions of Mechanical Fibres in Paulownia elongata S. Y. Hu Wood from Different Habitats. Drvna industrija, 66 (3): 229-234. https://doi.org/10.5552/drind.2015.1365.
19. Vusić, D.; Migalić, M.; Zečić, Z.; Trkmić, M.; Bešlić, A.; Drvodelić, D., 2018: Fuel properties of Paulownia biomass. Proceedings of Natural resources, green technology and sustainable development. Zagreb, Croatia, 5-8 6. 2018, pp. 126-130.
20. Zhao-Hua, Z.; Ching-Ju, C.; Xin-Yu, L.; Yao Gao, X., 1986: Paulownia in China: Cultivation and Utilization. Asian Network for Biological Sciences and International Development Research Centre, Beijing, China.
21. HRN ISO 3129, 2015: Drvo – Metode uzorkovanja i opći zahtjevi za ispitivanje fizikalnih i mehaničkih svojstava na manjim uzorcima masivnog drva
22. HRN ISO 13061-1, 2015: Fizikalna i mehanička svojstva drva – Metode ispitivanja za manje uzorke masivnog drva, 1. dio: Određivanje sadržaja vode za provođenje ispitivanja fizikalnih i mehaničkih svojstava.
23. HRN ISO 13061-2, 2015: Fizikalna i mehanička svojstva drva – Metode ispitivanja za manje uzorke masivnog drva, 2. dio: Određivanje gustoće za provođenje ispitivanja fizikalnih i mehaničkih svojstava.
24. ISO 13061-13, 2016: Physical and mechanical properties of wood – Test methods for small clear wood specimens, Part 13: Determination of radial and tangential shrinkage.
25. ISO 13061-14, 2016: Physical and mechanical properties of wood – Test methods for small clear wood specimens, Part 14: Determination of volumetric shrinkage.

Corresponding address:
Assoc. Prof. BOGOSLAV ŠEFC, PhD
University of Zagreb
Faculty of Forestry
Svetošimunska 25, 10000 Zagreb, CROATIA
e-mail: bsefc@sumfak.hr