Erratum: Kinematics of the Atomic ISM in M33 on 80 pc scales

by Eric W. Koch,1,* Erik W. Rosolowsky,1,* Felix J. Lockman,2 Amanda A. Kepley,3 Adam Leroy,4 Andreas Schruba,5 Jonathan Braine,6 Julianne Dalcanton,7 Megan C. Johnson8 and Snežana Stanimirović9

1University of Alberta, Department of Physics, 4-183 CCIS, Edmonton AB T6G 2E1, Canada
2Green Bank Observatory, PO Box 2, Green Bank, WV 24944, USA
3National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA
4The Ohio State University, Department of Astronomy, 140 West 18th Avenue, Columbus, OH 43210, USA
5Max-Planck-Institut für extraterrestrische Physik, Giessenbachstraße 1, D-85748 Garching, Germany
6Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
7Department of Astronomy, Box 351580 University of Washington, Seattle, WA 98195
8United States Naval Observatory, 3450 Massachusetts Ave NW, Washington, D.C., 20392, USA
9University of Wisconsin, Department of Astronomy, 475 N Charter St., Madison, WI 53706, USA

Key words: ISM: kinematics and dynamics – radio lines: ISM – galaxies: ISM – galaxies: individual: M33 – erratum.

The paper ‘Kinematics of the Atomic ISM ifigun M33 on 80 pc scales’ was published in Mon. Not. R. Astron. Soc. 479, 2505–2533 (2018). During the editorial process, a typo was introduced into the title of the paper. The correct title is ‘Kinematics of the Atomic ISM in M33 on 80 pc scales.’

Table C1 also contained incorrect radial bin values for the reported units. We present the corrected values here in Table 1. This error only occurred in the table and has no effect on the results.

* E-mail: koch.eric.w@gmail.com (EWK); rosolowsky@ualberta.ca (EWR)

© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
Table 1. Corrected version of Table C1. Circular rotation velocities were derived by N\textsc{expr} (Sellwood & Spekkens 2015). The rotation model is fit to the peak velocity (v_{peak}) surface of the VLA+GBT data.

Radius (")	Circ. Velocity (km s$^{-1}$)
9	1.58 ± 6.24
27	11.88 ± 5.26
45	22.71 ± 5.25
63	30.53 ± 5.12
81	29.95 ± 4.47
99	34.20 ± 4.03
117	36.76 ± 3.99
135	44.61 ± 3.79
153	47.80 ± 3.49
171	51.67 ± 3.08
189	52.73 ± 2.96
207	53.24 ± 3.06
225	55.30 ± 3.22
243	57.58 ± 3.30
261	58.70 ± 3.42
279	59.47 ± 3.50
297	60.30 ± 3.59
315	64.32 ± 3.78
333	67.66 ± 3.75
351	69.07 ± 4.03
369	72.05 ± 4.49
387	75.89 ± 4.82
405	74.09 ± 4.91
423	73.44 ± 3.29
441	77.06 ± 2.76
459	77.06 ± 2.80
477	77.82 ± 2.60
495	79.01 ± 2.48
513	80.96 ± 2.59
531	80.34 ± 2.50
549	80.35 ± 2.65
567	82.90 ± 2.66
585	86.23 ± 2.66
603	86.92 ± 2.59
621	86.13 ± 2.63
639	87.43 ± 2.57
657	87.89 ± 2.63
675	87.82 ± 2.35
693	91.08 ± 2.44
711	90.37 ± 2.25
722	88.22 ± 2.09
474	90.67 ± 2.36
765	92.32 ± 2.48
783	93.31 ± 2.26
801	94.15 ± 2.15
819	93.40 ± 2.37
837	94.02 ± 2.44
855	94.91 ± 2.50
873	95.57 ± 2.48
891	95.15 ± 2.22
909	93.19 ± 2.46
927	94.52 ± 2.63
945	95.00 ± 2.77
963	95.72 ± 2.90
981	96.89 ± 2.81
999	98.58 ± 2.73
1017	98.09 ± 2.61
1035	99.87 ± 2.53
1053	99.10 ± 2.41
1071	99.01 ± 2.40
1089	97.58 ± 2.21
1107	98.60 ± 2.26
1125	99.61 ± 2.22

Radius (")	Circ. Velocity (km s$^{-1}$)
1143	99.61 ± 2.49
1161	100.2 ± 2.40
1179	101.84 ± 2.52
1197	102.76 ± 2.38
1215	102.66 ± 2.62
1233	102.51 ± 2.68
1251	104.08 ± 2.58
1269	103.24 ± 2.39
1287	103.17 ± 2.42
1305	103.33 ± 2.50
1323	103.41 ± 2.64
1341	103.91 ± 2.56
1359	102.91 ± 2.63
1377	105.50 ± 2.47
1395	104.05 ± 2.47
1413	106.03 ± 2.47
1431	104.89 ± 2.57
1449	106.68 ± 2.48
1467	105.53 ± 2.36
1485	105.80 ± 2.33
1503	104.03 ± 2.23
1521	105.58 ± 2.23
1539	105.69 ± 2.26
1557	106.32 ± 2.17
1575	105.97 ± 2.32
1593	105.58 ± 2.20
1611	106.18 ± 2.26
1629	106.08 ± 2.28
1647	106.24 ± 2.36
1665	106.39 ± 2.37
1683	106.47 ± 2.43
1701	107.19 ± 2.44
1719	105.88 ± 2.58
1737	106.58 ± 2.52
1755	106.69 ± 2.56
1773	106.30 ± 2.35
1791	107.23 ± 2.61
1809	104.01 ± 2.82
1827	104.50 ± 2.59

REFERENCE

Sellwood J. A., Spekkens K., 2015, preprint (arXiv:e-prints)

This paper has been typeset from a \TeX/\LaTeX file prepared by the author.