Query and Keyframe Representations for Ad-hoc Video Search

Foteini Markatopoulou1,2, Damianos Galanopoulos3, Vasilieos Mezaris1, Ioannis Patras2

1Information Technologies Institute (ITI), CERTH, Thessaloniki, Greece 2Queen Mary University of London, London, UK

Problem and motivation

- **Ad-hoc video search**: retrieving, from a large video collection, video fragments (keyframes) that are related to a given query
- **Typical solution**: treat the query as a set of simple terms
- **Motivation**:
 - Detecting the most useful parts of the query, e.g., subsequences that contain the main content that the user asks for retrieval
 - Combining two different measures for the distance between the video shots and the target query, calculated on concept-based and semantic embedding representations

Background

- Each concept is enriched with additional information captured by Google or Wikipedia \cite{20}
- An inverted index structure is used in order to associate the query with the concepts \cite{4}
- A semi-automatic system \cite{21}, where the user is asked to choose keywords given a test query

Proposed Method

Method outline

- (a) Concept-based keyframe representation: apply a DCNN in every keyframe
- (c) Concept-based query representation: translate the query in a set of related concepts using NLP
- (b) Semantic embeddings for concept-based query and keyframe representations: project both into a given semantic embedding space

Proposed solution

- Two different distances are combined in terms of arithmetic mean

Experimental results

- **Datasets**: TRECVID AVS 2016, TRECVID Video Search 2008
 - Test set: 600 and 100 hours, respectively
 - Evaluated queries: 30 and 48, respectively

Evaluation measure: MXInfAP (%)

Steps	All	Excluding one step				
	step 1	step 2	step 3	step 4	step 5	
(a) Concept-based representation	5.94	5.92	5.74	3.96	5.95	4.53
(b) Semantic embeddings	3.77	3.86	2.98	3.22	3.75	2.80
(c) Combination	6.35	6.51	5.77	4.37	6.27	4.99

- **Semantic embeddings**: pre-trained Google News Corpus word2vec model
- **Keyframe representation**: 1346 concepts
- 1000 Imagenet concepts extracted using 5 pre-trained ImageNet DCNNs; fused in terms of arithmetic mean
- 346 TRECVID SIN concepts extracted using 2 fine-tuned DCNNs, again fused

Comparisons

Methods	AVS16	V508
(a) Literature methods		
Tzelepis et al. \cite{20}	4.16	8.27
Ueki et al. \cite{21}	5.65	7.24
Norouzi et al. \cite{15}	3.14	7.30
(b) Top-4 TRECVID finalists		
Top-1 Le et al. \cite{4}	5.4	6.7
Top-2 Markat. et al. \cite{13}	5.1	5.4
Top-3 Liang et al. \cite{6}	4.0	4.2
Top-4 Zhangy et al. \cite{23}	3.8	4.1
Proposed	6.35	9.11

Supported by: MOVING InVID