Abstract

Effect sizes are an important outcome of quantitative research, but few guidelines exist that explain how researchers can determine which effect sizes are meaningful. Psychologists often want to study effects that are large enough to make a difference to people’s subjective experience. Thus, subjective experience is one way to gauge meaningfulness of an effect. We illustrate how to quantify the minimum subjectively experienced difference—the smallest change in an outcome measure that individuals consider to be meaningful enough in their subjective experience such that they are willing to rate themselves as feeling different—using an anchor-based method with a global rating of change question applied to the positive and negative affect scale. For researchers interested in people’s subjective experiences, this anchor-based method provides one way to specify a smallest effect size of interest, which allows researchers to interpret observed results in terms of their theoretical and practical significance.

Keywords

Smallest effect size of interest, positive affect, negative affect, practical significance, minimum important difference
Using Anchor-Based Methods to Determine the Smallest Effect Size of Interest

Imagine a study that examines whether a simple manipulation will make people feel happier. The study is conducted, and the manipulation causes a statistically significant increase in self-reported positive affect of 0.3 (on a 5-point Likert scale). Is such an increase either theoretically or practically meaningful? To make this evaluation, we need methods to derive empirical benchmarks that can speak to the smallest effect size that has theoretical or practical importance. One benchmark we might be interested in is the minimum change that is needed in the outcome measure for people to subjectively notice and report a difference in how they feel.

Psychologists lack clear guidelines for how to interpret the meaningfulness of effect sizes (Fidler, 2002). Some methods exist to determine the smallest effect size that would be theoretically or practically meaningful, but these methods are relatively unknown and not widely used. In this article we first explain why being able to determine a smallest effect size of interest can help to improve the design of experiments and the interpretation of results. Subsequently, we discuss several approaches to determining which effects are deemed meaningful, with a specific focus on one anchor-based method. Applying the anchor-based method in two studies, we empirically quantify the smallest effect size that individuals subjectively deem to be a meaningful change in positive and negative affect as measured by the Positive and Negative Affect Scale (PANAS; Watson et al., 1988).

How Determining a SESOI Improves Research

By examining whether an observed effect size is not just statistically significant, but larger than the smallest effect size of interest (SESOI), researchers can draw conclusions about whether the observed effect is theoretically or practically significant. This can help to prevent the common misinterpretation of ‘statistically significant’ as ‘meaningful’, which is becoming increasingly important given the rise of big data and the uptake of large-scale collaborative
projects (e.g., Klein et al., 2014, 2018; Moshontz et al., 2018), where trivially small differences can be statistically significant.

Another important benefit of determining a SESOI is that it makes it possible to design an informative and falsifiable study. If a SESOI can be determined, it is possible to choose a sample size that provides high power for the smallest effect size that is deemed meaningful (Albers & Lakens, 2018). Furthermore, it becomes possible to test for, and demonstrate, the absence of an effect that is large enough to be deemed meaningful, by using equivalence tests. For over 60 years, researchers have pointed out the statistical benefits of specifying a range of values that are trivially small (e.g., Hodges & Lehmann, 1954; Nunnaly, 1960), and the benefits of being able to falsify predictions using equivalence tests (Rogers et al., 1993, Lakens et al., 2018). But to be able to reap those benefits, researchers need methods to determine their SESOI.

Methods to Determine a Smallest Effect Size of Interest

Specifying a SESOI is important not only in psychology, but in many other quantitative research fields, including organizational research (Cortina & Landis, 2011; Edwards & Berry, 2010), education research (Hill et al., 2008), communication research (Levine et al., 2008), and clinical psychology (Ferguson, 2009; Kazdin, 1999; King, 2011). In the past, fields have developed either empirical benchmarks for effect sizes that could be considered meaningful, or quantitative methods that can be used to determine minimum thresholds of practical importance for specific research lines.

Although researchers commonly interpret effect sizes in relation to the benchmarks for small, medium, and large effects suggested by Cohen (1988), these are “arbitrary conventions, recommended for use only when no better basis for estimating the effect size is available” (Cohen, 1988, p. 12). Researchers have attempted to provide more useful benchmarks to be used
across fields and studies, based on empirical reviews of effect sizes published in a specific literature (e.g., Ferguson, 2009; Norman et al., 2003; see Funder & Ozer, 2019, for a more detailed and nuanced approach). Although these approaches are useful to interpret the size of an effect relative to that of other effect sizes in the field, they do not quantify which effect sizes are meaningful in specific research lines and, furthermore, there will never be a single answer to the question which effect size should be considered meaningful.

One approach in applied research is to perform cost-benefit analyses and determine the size of an effect that could be considered beneficial enough to be worth the costs of an intervention. In intervention studies (e.g., health economics or education research) researchers may determine a SESOI by comparing the effect size of the intervention with (1) the change that is expected when implementing the intervention, (2) the cost of existing performance gaps (e.g., how much the intervention closes the gaps), and (3) the cost of the intervention, compared to the cost of other interventions (Hill et al., 2008; Torgerson et al., 1995). However, in more basic research in psychology, costs and benefits are not easily quantified, as the future applications of the work are less clearly delineated.

But even in basic research, a clear goal can be identified, and it is possible to examine at which effect sizes this goal is met. For example, one question in perception research focusses on the just noticeable difference, or the smallest increase in stimulus intensity that can be reliably noticed by participants. A conceptually related interest in clinical and health research has been the estimation of a minimum threshold of importance for self-reported patient outcomes. The goal is to determine the smallest increase in a relevant outcome measure that is subjectively deemed to be large enough to matter. In the clinical literature the term ‘minimal clinically important difference’ is often used (e.g., Chatham et al., 2018) or ‘minimally detectable difference’
difference’ (Norman et al., 2003), but we will use the umbrella term, minimal important difference (King, 2011).

Several approaches exist that attempt to estimate a minimal important difference (MID). One approach for estimating the MID is to use a clinical anchor (Lydick & Epstein, 1993), which functions as a reference to interpret the size of an effect. A common clinical anchor relies on clinician reports, or global ratings, about the extent to which a patient has changed following treatment. For example, clinicians rate whether patients have deteriorated, remained stable, or improved on the domain of interest after treatment. For each group of patients (i.e., those rated as either having deteriorated, remained the same, or improved), the researcher calculates the mean change in the measure of interest that was administered to patients before and after treatment (e.g., Health Related Quality of Life Questionnaire; HRQoLQ). By referencing the change score (i.e., the difference on HRQoLQ before and after treatment) to the anchor (i.e., whether the clinician believes patients have improved or worsened) researchers can derive an estimate of the MID—the minimum change in scores on the HRQoLQ that corresponds with what clinicians consider to be a clinically meaningful difference. However, psychologists are more commonly interested in the subjective experiences of people directly, and not in observers’ perceptions.

A more patient-centered anchor-based approach to estimate the MID also uses a global rating about whether patients have improved or worsened, but asks the patients themselves to provide a subjective global rating of change, which is then used as an anchor (Cuijpers et al., 2014; Dworkin et al., 2008; Ebrahim et al., 2017; Fleischmann & Vaughan, 2019; Guyatt et al., 2002; Jaeschke et al., 1989; King, 2011; Lydick & Epstein, 1993). In this approach, the construct of interest is also measured at two time-points (T1 and T2), for example before and after an intervention or manipulation. At T2, a global rating of change question asks the extent to which
individuals subjectively feel that there has been an increase or decrease since T1 on the construct of interest. For example, at T1 and T2 participants complete the Health Related Quality of Life Questionnaire (HRQoLQ), and at T2 they answer the global rating of change question concerning the extent to which since T1 their quality of life has improved or worsened.

Researchers typically use the global rating of change (GRoC) to categorize individuals into those who perceive no change, those who perceive a little change (i.e., a little worse or a little better), and those who perceive substantial change (i.e., much worse or much better). The GRoC item usually has 5 ordinal response options, which is recommended because it reduces the potential for cutoffs to be subjectively and arbitrarily selected by the researchers (King, 2011). The mean change in scores on the outcome measure of interest (i.e., the HRQoLQ in the example) from T1 to T2 for the individuals who self-report feeling a little worse or a little better is used as the estimate of the MID. (For clinical/health research using this approach, see Angst et al., 2001; Button et al., 2015; Jaeschke et al., 1989; Walters & Brazier, 2005.)

We believe that the GRoC method can be applied in psychology more generally to determine the SESOI, whenever researchers are interested in changes or differences in people’s subjective experiences. In what follows, we outline why and how this approach may be useful for basic research in psychology, and then provide a full demonstration of how the method can be used to estimate the SESOI for the Positive and Negative Affect Scale (PANAS; Watson et al., 1988).

Estimating the Minimum Subjectively Experienced Difference and SESOI

Psychologists are often interested in effects that are large enough to be subjectively experienced and deemed meaningful by individuals. For example, many emotion researchers are interested in the subjective experience of emotions (e.g., Campbell-Sills et al., 2006; Coutinho &
Cangelosi, 2011; Gross, 1999; Kuppens, 2019; LeDoux, 2014; LeDoux & Hofmann, 2018; Reisenzein, 2009; Troy et al., 2018). By extension, researchers are likely to be interested in effects (e.g., changes or differences in emotion) that are large enough to be subjectively experienced as meaningful. For research questions that center on people’s subjective experiences and perceptions, the GRoC method is one approach that can be used to quantify what people, on average, consider to be a small but subjectively meaningful difference.

Because the GRoC approach can be used to estimate the smallest difference individuals subjectively perceive as a meaningful change (comparable to, but not to be confused with, the idea of just noticeable difference in psychophysics which was introduced to personality psychology by Ozer, 1993), we refer to this specific estimate of a minimally important difference as the minimum subjectively experienced difference. The minimum subjectively experienced difference is the smallest change in an outcome measure that individuals consider to be meaningful enough to rate themselves as feeling different. The more general description of 'smallest effect size of interest' refers to the smallest effect size that is predicted by theoretical models, considered relevant in daily life, or that is feasible to study empirically (Lakens, 2014). Thus, researchers can use the GRoC approach to estimate the minimum subjectively experienced difference and, subsequently, use this effect size as a justification for the SESOI for relevant research questions.

Implementing the GRoC Method in Practice

We demonstrate how to implement the GRoC approach in practice, with the goal of illustrating its usefulness for basic psychological research. We believe the GRoC approach has considerable potential, but we also reflect on important questions that should be examined in future research if such anchor-based methods become more widely used to determine a SESOI.
We use the GRoC method to determine the minimum subjectively experienced difference and SESOI for positive and negative affect, as measured by the PANAS. The PANAS is a widely used measure of positive and negative affect for which researchers have reported difficulty in interpreting how much difference on the scale reflects a meaningful change in affect (e.g., von Leupoldt et al., 2007).

We performed two largely identical studies, both consisting of two independent samples. Because our goal is to illustrate how the GRoC approach can be used to derive precise estimates of the minimum subjectively experienced difference, we present the results of the combined datasets after detailing the methods for each study. The point estimates and confidence intervals for the “little change” groups across both studies were very consistent, and results for each study and each subsample are presented in the Supplemental Materials. The data and code for both studies can be found on the Open Science Framework (https://osf.io/89pcf/?view_only=ba6c62c915a94873b03295892959d197).

Study 1

Method

The sampling procedure, methods, and analysis plan for the 2018 cohort of Study 1 were pre-registered on the Open Science Framework (https://osf.io/b3z65/?view_only=dbb79ddde5954f1699cf3ace7724f2bd).

Participants. As part of an assignment related to a psychology lecture on emotions, students completed the PANAS items for course requirements using SurveyMonkey at Time 1 (T1) on Wednesday September 5th (2018 cohort, n = 193) or Wednesday September 4th (2019 cohort, n = 184). At Time 2 (T2), the same students completed the PANAS items on Friday
September 7th (2018 cohort; n = 186) or Friday September 6th (2019 cohort; n = 155). The sample size for each cohort was based on the number of students enrolled in the course. We did not include demographic questions for either cohort, but the course from which we drew the 2018 sample had 57% female (43% male) students, mean age 19.4 years (SD = 1.8), and the 2019 course had 54% female (46% male) students, mean age 19.2 years (SD = 2.1). We included only participants with complete responses on all T1 and T2 items. During data cleaning we noticed some students completed the PANAS twice in a row (most likely because of uncertainty about whether answers were submitted correctly), but we only used the first response for each unique student number (N = 316).

Procedure and Measures. At both T1 and T2, participants read that “This scale consists of a number of words that describe different feelings and emotions. Read each item and then indicate to what extent you have felt this way today”. Participants rated each item (presented in random order) on 5-point Likert scales (from 1 = *very slightly or not at all*, to 5 = *extremely*). Ten items measured positive affect (attentive, interested, alert, excited, enthusiastic, inspired, proud, determined, strong, and active) and ten items measured negative affect (distressed, upset, hostile, irritable, scared, afraid, ashamed, guilty, nervous, jittery). At T2, participants also responded to two GRoC questions, one each for positive and negative emotions. We asked: “Compared to Wednesday, how would you rate the extent of your positive/negative emotions today?”. The two GRoC questions each had 5 response options: much less positive/negative, a little less positive/negative, the same, a little more positive/negative, and much more positive/negative.

1 Some participants completed the survey one or two days late.
Study 2

Method

The sampling procedure, methods, and analysis plan for Study 2 were pre-registered on the Open Science Framework (https://osf.io/a5pze/?view_only=670167b9b3204318b5e2a50c6a63b61f). The study was identical to Study 1, with the exception that to examine the generalizability of our estimates, the time between T1 and T2 was either 2 days (as in Study 2) or 5 days.

Participants. We used the MBESS package in R (Kelley, 2019) to calculate the sample size required for a 95% confidence interval with 0.25 width and an expected estimate of 0.35. This produced a sample size requirement of 500—in the “little change” groups (“little less” and “little more”). After collecting the data from Study 1 approximately 200 participants fell in the “little change” groups based on their response on the anchor question. Because we planned to report the combined results of all samples, we needed a further 300 participants in the “little change” groups after collecting data in Study 2. With this aim, we recruited a total of 550 participants at Time 1, using Prolific (www.prolific.co), requiring participants to be fluent in English and have U.K. nationality. We invited all participants to take part at T2 either 2 days later ($n = 275$) or 5 days later ($n = 275$). Excluding participants with incomplete responses and using only the first response for each unique Prolific ID (4 duplicates were removed), we obtained a total of 459 participants at T2 ($n_{2\text{days}} = 231$ and $n_{5\text{days}} = 228$; 74% female, 26% male; age: $M = 37.8$ years, $SD = 12.4$, range =18 to 76 years).

Procedure and Measures. The remaining procedures and measures were the same as for Study 1. (The results for the 2- and 5-day delays are presented separately in the Supplemental Materials, with very similar estimates.)
Results of Combined Dataset

The minimum subjectively experienced difference can be presented as a raw score, expressed on the scale that was used to measure it (e.g., 0.3 points on a 5-point scale), or as a standardized effect size (e.g., Cohen's d of 0.3). Raw scores have the advantage that they do not depend on the standard deviation of the measurements and are recommended for validated scales when researchers always use the same outcome measure and response options (e.g., a 5-point Likert scale). Standardized effect sizes have the advantage that they can be compared across instruments and scales. Standardized effect sizes for paired observations can either take the correlation between observations into account (Cohen's d_z) or not (Cohen's d_{av}). Cohen's d_z is used in power analyses and in equivalence tests if the equivalence bounds are set in terms of a standardized effect size. Cohen's d_{av} can in theory be more easily compared across within- and between-subjects designs, although future research should examine whether subjectively experienced differences in different outcome measures can be assumed to be constant across within and between designs. We recommend reporting both raw differences and standardized effect sizes.

Figure 1 shows the distribution of change scores, in positive and negative affect, as a function of participants’ responses on the global rating of change (GRoC). Table 1 presents the mean change in positive and negative affect from T1 to T2 (i.e., mean score at T2 minus mean score at T1), as well as standardized effect sizes and their 95% confidence intervals, subcategorizing participants based on their responses to the GRoC.
Figure 1. Distribution and individual datapoints of the differences in positive and negative affect as a function of the answer on the global rating of change (GRoC) question. Key for the global rating of change: 1 = much less; 2 = a little less; 3 = the same; 4 = a little more; 5 = much more.
Table 1

Combined Dataset: Mean difference [and 95% Confidence Intervals] in PANAS scores from T1 to T2, with participants subcategorized based on their responses to the global rating of change question.

	N	Mean Difference	Cohen’s d_z	Cohen’s d_{av}
Positive:				
MUCH LESS	23	-0.71[-1.05;-0.37]	-0.90[-1.38;-0.41]	-0.94[-1.45;-0.43]
A LITTLE LESS	160	-0.58[-0.67;-0.49]	-0.99[-1.18;-0.80]	-0.82[-0.98;-0.67]
THE SAME	264	-0.18[-0.25;-0.11]	-0.32[-0.44;-0.19]	-0.22[-0.30;-0.13]
A LITTLE MORE	281	0.08[0.02;0.14]	0.15[0.03;0.26]	0.11[0.02;0.19]
MUCH MORE	47	0.55[0.37;0.72]	0.91[0.57;1.25]	0.74[0.46;1.01]
Negative:				
MUCH LESS	64	-0.48[-0.67;-0.29]	-0.63[-0.89;-0.36]	-0.73[-1.04;-0.42]
A LITTLE LESS	263	-0.32[-0.39;-0.25]	-0.56[-0.69;-0.43]	-0.47[-0.58;-0.36]
THE SAME	270	-0.11[-0.16;-0.05]	-0.24[-0.36;-0.12]	-0.15[-0.23;-0.08]
A LITTLE MORE	160	0.22[0.13;0.31]	0.38[0.22;0.54]	0.34[0.20;0.48]
MUCH MORE	18	0.88[0.53;1.24]	1.24[0.61;1.85]	1.03[0.51;1.54]

Note. Total $N = 775.$
First, we see that, somewhat surprisingly, participants who reported feeling ‘the same’ on the GRoC actually showed a small decrease in both positive \((M = -0.18, SD = 0.57)\) and negative \((M = -0.11, SD = 0.45)\) PANAS scores. Because the decrease occurs for both positive and negative affect, and we see the expected shifts upward and downward in the ‘a little more/less’ groups for positive and negative affect, relative to the ‘same’ group, this seems to indicate a general decrease with repeated assessment. Such shifts are observed quite consistently and are referred to as the initial elevation bias in subjective reports (Shrout et al., 2018), although the underlying mechanism is not fully understood. Since the minimum subjectively experienced difference can be calculated relative to the ‘no change’ or ‘same’ group (see below) and the initial elevation bias impacts all PANAS scores over the two time points, the relative differences between the ‘little change’ groups and the ‘no change’ group should yield informative estimates.

Some researchers have highlighted the importance of examining whether the little changed groups differ from the unchanged (or same) group, as the absence of a difference casts doubts on the estimated minimum subjectively experienced difference (Hays et al., 2005). As can be inferred from the 95% confidence intervals in Table 1 for both positive and negative affect, the difference scores for people who felt ‘the same’ were statistically different from those who reported feeling a little more or less positive or negative.

Given the shift in evaluations in the ‘no change’ group, possibly due to a general initial elevation bias, it is important calculate the differences between the ‘no change’ and the ‘little more/less’ groups and use this difference as the estimate of how much change is needed, on average, for people to rate themselves as ‘a little more’ or ‘a little less’ positive/negative as opposed to ‘the same’ (Redelmeier et al., 1993, 1997). In our study, for positive affect, those who said they felt ‘the same’ had change scores that differed from those who said they felt ‘a
little more positive’ by an average of 0.26 (CI95% [0.17, 0.36]) scale points, and from those who said they felt ‘a little less positive’ by -0.39 (CI95% [-0.28, -0.51]) scale points. For negative affect, those who said they felt ‘the same’ had change scores that differed from those who said that they felt ‘a little more negative’ by an average of 0.33 (CI95% [0.23, 0.43]) scale points, and from those who felt ‘a little less negative’ by an average of -0.21 (CI95% [-0.12, -0.30]) scale points.

It is common to combine data from the ‘a little less’ and ‘a little more’ groups into a single estimate of the minimum subjectively experienced difference (after reverse scoring the ‘a little less’ group’s change score by multiplying with -1). This assumes that effects in the positive and negative directions are homogeneous (e.g., have the same size and variance), which is an empirical question for each measurement instrument that the GRoC method is applied to. We can see from the 95% CI around the change scores reported in the preceding paragraph that the effects are asymmetrical—that is, the CIs of the ‘a little more’ positive/negative groups do not contain the point estimates of the ‘a little less’ positive/negative groups (after reverse scoring the latter), and vice versa. Although the estimates for the ‘a little less’ and ‘a little more’ groups can be combined to produce a single estimate of the minimum subjectively experienced difference for positive ($M = 0.31$, CI95% [0.26; 0.36], $SD = 0.57$) and negative ($M = 0.25$, CI95% [0.20; 0.31], $SD = 0.57$) affect, which can then be used as the smallest effect size of interest for between-groups comparisons in which no baseline control group is available, we believe the observed asymmetry should probably be taken into account when using a minimum subjectively experienced difference in research designs with a baseline control. The extent to which such asymmetries occur in other psychological measures is a topic for future research. On a related note, one could consider combining the ‘a little more positive’ and ‘a little less negative’
estimates from positive and negative affect, respectively; although these estimates are very similar, we hesitate to do so because, theoretically, positive and negative affect are seen as at least partially independent constructs. Therefore, we believe the four estimates presented in the preceding paragraph might be the best level of description for researchers who want to specify a SESOI based on the minimum subjectively experienced difference in the PANAS.

The estimate for the minimum subjectively experienced difference is based on the group average. We can therefore expect variability within each group (as visualized in Figure 2), as not every individual will have a change score at or above the group mean, and some people’s change score may contradict their response on the GRoC (e.g., an individual who reports feeling a little more positive at T2 can have a negative change score).
Discussion

The global rating of change (GRoC) approach is an anchor-based method that can be used to determine the minimum subjectively experienced difference for various outcome measures in psychology. We provided an illustrative example by estimating the minimum subjectively experienced difference for positive and negative affect as measured by the PANAS. We calculated estimates for the relative change, compared to those participants who report feeling ‘the same’, that led participants to report feeling ‘a little more’ positive ($M = 0.26$) and ‘a little more’ negative ($M = 0.33$), as well as the relative change that led participants to report feeling ‘a little less’ positive ($M = -0.39$) and ‘a little less’ negative ($M = -0.20$). These estimates can be used as the smallest effect size of interest (SESOI) in a-priori power analyses, or as the boundaries for an equivalence range when performing an equivalence or minimal effect tests (Lakens, 2014, 2017), for studies that use the PANAS in the population our samples were drawn from (i.e., Dutch university students, and UK participants from Prolific). Our primary recommendation is to not adopt these specific estimates as a smallest effect size of interest, but to use the GRoC method to determine the smallest effect size of interest for the measure you use in the populations you study.

Since the GRoC method only requires adding a single anchor-item (for each domain of interest) to longitudinal designs, collecting such data should be feasible and easily implemented in existing research designs, such as when researchers examine test-retest reliability. By combining datasets, fields can establish precise estimates of the minimum subjectively
experienced difference, examine their variability, and continue to develop best practices when implementing anchor-based methods. Although we observed no substantial differences (based on the overlap between point estimates and their confidence intervals) between samples drawn from Dutch university students and U.K. Prolific samples, nor between 2 or 5 days’ delay between T1 and T2, it is important not just to improve the precision of estimates, but also to examine their generalizability (King, 2011). Because high-precision estimates require large sample sizes (Maxwell et al., 2008) establishing minimum subjectively experienced differences in specific research fields in psychology would benefit from a coordinated approach to data collection.

The GRoC method is only one anchor-based approach. Alternative anchor-based approaches exist, such as asking a second individual (e.g., a therapist or close other) to rate the change between T1 and T2 or having people discuss their condition on the domain of interest in pairs before giving global ratings on, for example, how much more or less positive they feel than their partner. This between-person approach has been used in past research to estimate the minimum subjectively perceived difference in walking ability (Redelmeier et al., 1997). Such alternative paradigms might be worthwhile to examine in the future.

There are several possible limitations of the usefulness of the GRoC anchor-based method (see, King, 2011; Walters & Brazier, 2003). First, sometimes, effect sizes that are too small to be subjectively deemed meaningful by individuals may still be important, and researchers should determine the SESOI based on other criteria (such as a cost-benefit analysis, or effect sizes that are theoretically predicted). The proposed anchor-based approach is primarily suitable for researchers who are interested in effects that people subjectively experience and consider meaningful.
Second, people’s retrospective responses on the GRoC question may more strongly reflect their present state than their change over time (Norman et al., 1997), while responses on the GRoC question should correlate with their change scores (Cella et al., 2002). In our data, people’s responses on the GRoC question were more strongly correlated with change scores (PA: $r = .47$; NA: $r = .42$) than with T2 present state scores (PA: $r = .37$, $r_{\text{dif}} = 0.10$, 95% CI [0.04; 0.16], NA: $r = .27$, $r_{\text{dif}} = 0.14$, 95% CI [.07; 0.22]; Zou, 2007). According to Norman et al. (1997), responses on the GRoC should correlate equally with T1 and T2 scores—GRoC ratings which correlate more strongly with T2 scores than with T1 scores indicate that participants are basing their ratings of change more on their present state. In our data, ratings on the GRoC were far less strongly correlated with T1 scores (PA: $r = -.004$; NA: $r = -.10$) than with T2 scores.

There are interesting psychometric questions for future investigation if researchers adopt the GRoC method. One question already raised is whether the scores of those who report a little change in the positive and negative direction should be combined into a single estimate, or whether both estimates should be reported separately. We believe the assumption that change scores and standard deviations in the two directions are equivalent requires empirical support before scores can be combined. Some researchers calculate the minimum subjectively experienced difference separately for those who improve and those who worsen (e.g., Angst et al., 2001). Our results suggest that the subgroup of participants who indicated feeling a little more positive (or a little less negative) had a mean change in positive (negative) affect that was considerably lower, in absolute value, than those who said they felt a little less positive (or a little more negative). We believe taking into consideration this asymmetry is the best approach for examining changes in affect as measured by the PANAS. Additional future questions concern the reliability of the typical single item global rating of change question (versus a multiple item
anchor) and exploring context effects and individual differences in the minimum subjectively experienced difference.

To conclude, we believe that the GRoC method holds promise as one possible approach to estimate the minimum subjectively experienced difference for a variety of psychological measures. Researchers can use these estimates to justify a smallest effect size of interest and interpret the results of their studies in relation to whether observed effects are large enough to be deemed subjectively meaningful by individuals. In the end, we hope anchor-based methods will help researchers to think more carefully about which effects they consider meaningful in their research.
References

American Psychological Association [APA] (2010). *Publication Manual of the American Psychological Association*, 6th Ed. Washington, DC: American Psychological Association.

Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. *Journal of Experimental Social Psychology, 74*, 187-195. https://doi.org/10.1016/j.jesp.2017.09.004

Angst, F., Aeschlimann, A., & Stucki, G. (2001). Smallest detectable and minimal clinically important differences of rehabilitation intervention with their implications for required sample sizes using WOMAC and SF-36 quality of life measurement instruments in patients with osteoarthritis of the lower extremities. *Arthritis & Rheumatism, 45*(4), 384–391. https://doi.org/10.1002/1529-0131(200108)45:4<384::AID-ART352>3.0.CO;2-0

Button, K. S., Kounali, D., Thomas, L., Wiles, N. J., Peters, T. J., Welton, N. J., … Lewis, G. (2015). Minimal clinically important difference on the Beck Depression Inventory - II according to the patient’s perspective. *Psychological Medicine, 45*(15), 3269–3279. https://doi.org/10.1017/S0033291715001270

Campbell-Sills, L., Barlow, D. H., Brown, T. A., & Hofmann, S. G. (2006). Acceptability and suppression of negative emotion in anxiety and mood disorders. *Emotion, 6*(4), 587-595. https://doi.org/10.1037/1528-3542.6.4.587

Cella, D., Hahn, E. A., & Dineen, K. (2002). Meaningful change in cancer-specific quality of life scores: differences between improvement and worsening. *Quality of Life Research, 11*(3), 207-221. https://doi.org/10.1016/s0149-2918(02)85118-9
Chatham, C. H., Taylor, K. I., Charman, T., Liogier D’ardhuy, X., Eule, E., Fedele, A., … Bolognani, F. (2018). Adaptive behavior in autism: Minimal clinically important differences on the Vineland-II: Adaptive behavior and autism. *Autism Research, 11*(2), 270–283. https://doi.org/10.1002/aur.1874

Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed). Hillsdale, N.J: L. Erlbaum Associates.

Cortina, J. M., & Landis, R. S. (2011). The earth is not round (p=. 00). *Organizational Research Methods, 14*(2), 332-349. https://doi.org/10.1177/1094428110391542

Coutinho, E., & Cangelosi, A. (2011). Musical emotions: Predicting second-by-second subjective feelings of emotion from low-level psychoacoustic features and physiological measurements. *Emotion, 11*(4), 921-937. https://doi.org/10.1037/a0024700

Cuijpers, P., Turner, E. H., Koole, S. L., Van Dijke, A., & Smit, F. (2014). What is the threshold for a clinically relevant effect? The case of major depressive disorders. *Depression and Anxiety, 31*(5), 374-378. https://doi.org/10.1002/da.22249

Dworkin, R. H., Turk, D. C., Wyrwich, K. W., Beaton, D., Cleeland, C. S., Farrar, J. T., … & Brandenburg, N. (2008). Interpreting the clinical importance of treatment outcomes in chronic pain clinical trials: IMMPACT recommendations. *The Journal of Pain, 9*(2), 105-121. https://doi.org/10.1016/j.pain.2009.08.019

Ebrahim, S., Vercammen, K., Sivanand, A., Guyatt, G. H., Carrasco-Labra, A., Fernandes, R. M., … & Johnston, B. C. (2017). Minimally important differences in patient or proxy-reported outcome studies relevant to children: a systematic review. *Pediatrics, 139*(3), e20160833, 1-16. https://doi.org/10.1542/peds.2016-0833
Edwards, J. R., & Berry, J. W. (2010). The presence of something or the absence of nothing:
Increasing theoretical precision in management research. *Organizational Research Methods, 13*(4), 668-689. https://doi.org/10.1177/1094428110380467

Ferguson, C. J. (2016). An effect size primer: a guide for clinicians and researchers. *Professional Psychology: Research and Practice 40*(5), 532-538. https://doi.org/10.1037/a0015808

Fleischmann, M., & Vaughan, B. (2019). Commentary: statistical significance and clinical significance-a call to consider patient reported outcome measures, effect size, confidence interval and minimal clinically important difference (MCID). *Journal of Bodywork and Movement Therapies.* 23(4), 690-694. https://doi.org/10.1016/j.jbmt.2019.02.009

Funder, D. C., & Ozer, D. J. (in press). Evaluating effect size in psychological research: Sense and nonsense. *Advances in Methods and Practices in Psychological Science, 2*(2), 156-168. https://doi.org/10.1177/2515245919847202

Gross, J. J. (1999). Emotion regulation: Past, present, future. *Cognition & Emotion, 13*(5), 551-573. https://doi.org/10.1080/026999399379186

Guyatt, G. H., Osoba, D., Wu, A. W., Wyrwich, K. W., Norman, G. R., & Clinical Significance Consensus Meeting Group. (2002, April). Methods to explain the clinical significance of health status measures. In *Mayo Clinic Proceedings, 77*(4), 371-383).
https://doi.org/10.4065/77.4.371

Hays, R. D., Farivar, S. S., & Liu, H. (2005). Approaches and Recommendations for Estimating Minimally Important Differences for Health-Related Quality of Life Measures. *COPD: Journal of Chronic Obstructive Pulmonary Disease, 2*(1), 63–67.
https://doi.org/10.1081/COPD-200050663
Hill, C. J., Bloom, H. S., Black, A. R., & Lipsey, M. W. (2008). Empirical benchmarks for interpreting effect sizes in research. *Child Development Perspectives, 2*(3), 172-177. https://doi.org/10.1111/j.1750-8606.2008.00061.x

Hodges Jr, J. L., & Lehmann, E. L. (1954). Testing the approximate validity of statistical hypotheses. *Journal of the Royal Statistical Society: Series B (Methodological), 16*(2), 261-268. https://doi.org/10.1111/j.2517-6161.1954.tb00169.x

Jaeschke, R., Singer, J., & Guyatt, G. H. (1989). Measurement of health status: Ascertaining the minimal clinically important difference. *Controlled Clinical Trials, 10*(4), 407-415. https://doi.org/10.1016/0197-2456(89)90005-6

Kazdin, A. E. (1999). The meanings and measurement of clinical significance. *Journal of Consulting and Clinical Psychology 67*(3), 332-339. https://doi.org/10.1037/0022-006x.67.3.332

Kelley, K. (2019). MBESS: The MBESS R Package. R package version 4.5.1. https://CRAN.R-project.org/package=MBESS

King, M. T. (2011). A point of minimal important difference (MID): a critique of terminology and methods. *Expert Review of Pharmacoeconomics & Outcomes Research, 11*(2), 171–184. https://doi.org/10.1586/erp.11.9

Kuppens, P. (2019). Improving theory, measurement, and reality to advance the future of emotion research. *Cognition and Emotion, 33*(1), 20-23. https://doi.org/10.1080/02699931.2018.1536037

Kvam, A. K., Fayers, P., & Wisloff, F. (2010). What changes in health-related quality of life matter to multiple myeloma patients? A prospective study. *European Journal of Haematology, 84*(4), 345–353. https://doi.org/10.1111/j.1600-0609.2009.01404.x
Lakens, D. (2014). Performing high-powered studies efficiently with sequential analyses. *European Journal of Social Psychology, 44*(7), 701–710. https://doi.org/10.1002/ejsp.2023

Lakens, D. (2017). Equivalence tests: a practical primer for t tests, correlations, and meta-analyses. *Social Psychological and Personality Science, 8*(4), 355-362. https://doi.org/10.1177/1948550617697177

Lakens, D. (2019, April 9). The practical alternative to the p-value is the correctly used p-value. https://doi.org/10.31234/osf.io/shm8v

Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence testing for psychological research: A tutorial. *Advances in Methods and Practices in Psychological Science, 1*(2), 259-269. https://doi.org/10.31234/osf.io/v3zkt

LeDoux, J. E. (2014). Coming to terms with fear. *Proceedings of the National Academy of Sciences, 111*(8), 2871-2878. https://doi.org/10.1073/pnas.1400335111

LeDoux, J. E., & Hofmann, S. G. (2018). The subjective experience of emotion: a fearful view. *Current Opinion in Behavioral Sciences, 19*, 67-72. https://doi.org/10.1016/j.cobeha.2017.09.011

Levine, T. R., Weber, R., Park, H. S., & Hullett, C. R. (2008). A communication researchers’ guide to null hypothesis significance testing and alternatives. *Human Communication Research, 34*(2), 188-209. https://doi.org/10.1111/j.1468-2958.2008.00318.x

Lydick, E., & Epstein, R. S. (1993). Interpretation of quality of life changes. *Quality of life Research, 2*(3), 221-226. https://doi.org/10.1007/bf00435226
Maxwell, S. E., Kelley, K., & Rausch, J. R. (2008). Sample Size Planning for Statistical Power and Accuracy in Parameter Estimation. *Annual Review of Psychology, 59*(1), 537–563. https://doi.org/10.1146/annurev.psych.59.103006.093735

Norman, G. R., Sloan, J. A., & Wyrwich, K. W. (2003). Interpretation of Changes in Health-related Quality of Life: The Remarkable Universality of Half a Standard Deviation. *Medical Care, 41*(5), 582–592. https://doi.org/10.1097/01.MLR.000062554.74615.4C

Nunnally, J. (1960). The place of statistics in psychology. *Educational and Psychological Measurement, 20*(4), 641-650. https://doi.org/10.1177/001316446002000401

Ozer, D. J. (1993). Classical psychophysics and the assessment of agreement and accuracy in judgments of personality. *Journal of Personality, 61*(4), 739-767. https://doi.org/10.1111/j.1467-6494.1993.tb00789.x

Redelmeier, D. A. (1993). Assessing the clinical importance of symptomatic improvements. An illustration in rheumatology. *Archives of Internal Medicine, 153*(11), 1337–1342. https://doi.org/10.1001/archinte.153.11.1337

Redelmeier, D A, Bayoumi, A. M., Goldstein, R. S., & Guyatt, G. H. (1997). Interpreting small differences in functional status: The Six Minute Walk test in chronic lung disease patients. *American Journal of Respiratory and Critical Care Medicine, 155*(4), 1278-1282. https://doi.org/10.1164/ajrccm.155.4.9105067

Redelmeier, Donald A., Guyatt, G. H., & Goldstein, R. S. (1996). On the debate over methods for estimating the clinically important difference. *Journal of Clinical Epidemiology, 49*(11), 1223–1224. https://doi.org/10.1016/S0895-4356(96)00208-9

Reisenzein, R. (2009). Emotional experience in the computational belief–desire theory of emotion. *Emotion Review, 1*(3), 214-222. https://doi.org/10.1177/1754073909103589
Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate equivalence between two experimental groups. *Psychological Bulletin, 113*(3), 553-565. https://doi.org/10.1037/0033-2909.113.3.553

Shrout, P. E., Stadler, G., Lane, S. P., McClure, M. J., Jackson, G. L., Clavél, F. D., Iida, M., Gleason, M. E. J., Xu, J. H., & Bolger, N. (2018). Initial elevation bias in subjective reports. *Proceedings of the National Academy of Sciences, 115*(1), E15–E23. https://doi.org/10.1073/pnas.1712277115

Torgerson, D. J., Ryan, M., & Ratcliffe, J. (1995). Economics in sample size determination for clinical trials. *QJM: An International Journal of Medicine, 88*(7), 517-521. https://doi.org/10.1093/oxfordjournals.qimed.a069095

Troy, A. S., Shallcross, A. J., Brunner, A., Friedman, R., & Jones, M. C. (2018). Cognitive reappraisal and acceptance: Effects on emotion, physiology, and perceived cognitive costs. *Emotion, 18*(1), 58-74. https://doi.org/10.1037/emo0000371

von Leupoldt, A., Taube, K., Schubert-Heukeshoven, S., Magnussen, H., & Dahme, B. (2007). Distractive auditory stimuli reduce the unpleasantness of dyspnea during exercise in patients with COPD. *Chest, 132*(5), 1506–1512. https://doi.org/10.1378/chest.07-1245

Walters, S. J., & Brazier, J. E. (2003). What is the relationship between the minimally important difference and health state utility values? The case of the SF-6D. *Health and Quality of Life Outcomes, 1*(1), 1-8. https://doi.org/10.1186/1477-7525-1-4

Watson, D., Anna, L., & Tellegen, A. (1988). Development and Validation of Brief Measures of Positive and Negative Affect: The PANAS Scales. *Journal of Personality and Social Psychology, 54*(6), 1063-1070. https://doi.org/10.1037/0022-3514.54.6.1063
Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. *Psychological Methods, 12*(4), 399–413. https://doi.org/10/fmb3nm