Exosomes and Stem Cells in Degenerative Disease Diagnosis and Therapy

Yu-Hsun Chang1,2, Kung-Chi Wu3, Horng-Jyh Harn4, Shinn-Zong Lin5, and Dah-Ching Ding2,6

Abstract
Stroke can cause death and disability, resulting in a huge burden on society. Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized by motor dysfunction. Osteoarthritis (OA) is a progressive degenerative joint disease characterized by cartilage destruction and osteophyte formation in the joints. Stem cell therapy may provide a biological treatment alternative to traditional pharmacological therapy. Mesenchymal stem cells (MSCs) are preferred because of their differentiation ability and possible derivation from many adult tissues. In addition, the paracrine effects of MSCs play crucial anti-inflammatory and immunosuppressive roles in immune cells. Extracellular vesicles (EVs) are vital mediators of cell-to-cell communication. Exosomes contain various molecules such as microRNA (miRNA), which mediates biological functions through gene regulation. Therefore, exosomes carrying miRNA or other molecules can enhance the therapeutic effects of MSC transplantation. MSC-derived exosomes have been investigated in various animal models representing stroke, PD, and OA. Exosomes are a subtype of EVs. This review article focuses on the mechanism and therapeutic potential of MSC-derived exosomes in stroke, PD, and OA in basic and clinical aspects.

Keywords: stroke, Parkinson’s disease, osteoarthritis, mesenchymal stem cells, exosomes, miRNA

Introduction
Stroke, Parkinson’s disease (PD), and osteoarthritis (OA) are degenerative diseases associated with aging. Stroke is the leading cause of death and disability worldwide1. The standard treatment for stroke is tissue plasminogen activator (tPA) infusion within 4.5 h of onset2–4. Treatment with endovascular thrombectomy could extend the therapeutic window to 12 h after a stroke5–8. However, patients with stroke can develop long-term disability if cerebral blood flow is not recovered at a critical time point8. Therefore, the development of a novel therapy to restore brain function after an acute stroke is urgently necessary.

PD is the second most common neurodegenerative disease, with a prevalence of 1% to 2% among aging people9. The cause of PD is unknown but may involve genetic and environmental factors. Patients with PD have clinical features with progressive deterioration of motor functions, including bradykinesia, rigidity, resting tremors, and unstable gait. PD is associated with a pathological decrease in dopamine concentration, neuronal cell loss in the substantia nigra (SN), and Lewy body accumulation in other brain tissues10,11. A specific diagnostic test for PD is not available, and therefore its diagnosis mainly depends on clinical judgment. Functional connectivity measured through Positron emission tomography (PET) scan and functional MRI is helpful for making a clinical judgment9.

Pharmacological agents for dopamine replacement include L-3,4-dihydroxyphenylalanine (L-DOPA), carbidopa,
and monoamine oxidase-B inhibitors. These agents are useful in the early stages of PD; however, their long-term use may reduce efficacy and cause side effects involving involuntary motor action that may have an impact on patients’ quality of life. Deep brain stimulation of the globus pallidus and subthalamic nuclei is another therapeutic modality. Although PD has several therapeutic modalities, no complete treatment can stop its degenerative process.

OA is a chronic degenerative joint disease occurring in older adults that is becoming a crucial health concern worldwide. OA involves not only the knees but also the hands, hips, and spine and is characterized by the degeneration and destruction of the articular cartilage and changes in the subchondral bone with osteophyte formation. Patients experience increasing pain and disability, resulting in decreased quality of life and a high economic burden. OA is a multifactorial disease. Its progression involves the interaction of personal factors (old age, female sex, obesity, genetics, and diet) and common factors (injury, misalignment, and abnormal loading of the joints), which increases the risk of comorbidity and mortality. Current medical treatments for OA involve pain relief and joint mobility improvement. Acetaminophen, nonsteroidal anti-inflammatory drugs (NSAIDs), opioids, topical analgesics, corticosteroid injections, and hyaluronic acid injections are commonly prescribed pharmacological treatments. Physical therapy also results in functional improvement. However, these treatments cannot restore articular cartilage regeneration or modify degenerative processes. By contrast, surgical arthroplasty is an optimal treatment for patients with symptomatic OA whose condition is not controlled by conservative therapies. Surgical arthroplasty results in long-term functional improvement and improves quality of life. However, instability and infection are the most common limitations, necessitating further joint revision surgery, particularly in overweight patients.

Stem cell therapy has been rapidly advancing in research and regenerative medicine for OA in recent years. Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) can differentiate into chondrocytes. However, the clinical applications of ESCs or iPSCs have raised considerable concerns about the tumorigenicity, low efficiency, and genomic insertion of transgenic sequences. By contrast, mesenchymal stem cells (MSCs) can be isolated from various adult tissues, including the bone marrow and adipose tissues, which can provide abundant stem cells for regenerative therapy. In addition to the ability to differentiate into chondrocytes, MSCs can modulate immune responses with immunosuppressive and anti-inflammatory properties through their paracrine effects. However, MSC therapy has a dose-dependent effect that requires many cells.

Emerging evidence in recent years has shown that the paracrine effects of MSCs are mediated by the secretion of extracellular vesicles (EVs). Exosomes are a subtype of EVs, approximately 30 to 100 nm in diameter, and are released by cells in all living systems. Exosomes are present in body fluids such as blood and cerebrospinal fluid and harbor proteins, lipids, microRNA (miRNA), and RNA. Intercellular communication has been observed in exosomes under various physiological and pathological conditions. MSC exosomes have been studied in various disease models and have shown therapeutic potential in managing stroke, PD, and OA. This review article focuses on the therapeutic potential of MSC exosomes and future directions for their use in research on these degenerative diseases.

Pathophysiology of Stroke, PD, and OA

Pathophysiology of Stroke

A thromboembolic event of a major artery that supplies the brain causes ischemic stroke. Platelets combined with fibrin and thrombin cause thrombus formation at the site of the occluded artery. The occlusion of the main artery results in the obstruction of downstream small vessels and subsequently leads to the disruption of the blood–brain barrier (BBB) as a result of the dysfunction of endothelial cells, pericytes, and astrocytes. The progression of ischemic neuronal death can be observed hours after the occlusion of an artery. Therefore, thrombolytic treatment using tPA infusion for stroke involves the rapid recanalization of occluded blood vessels and minimization of neuronal death. After a stroke, the ischemic brain proceeds with a series of remodeling events to enable limited spontaneous functional recovery. According to past studies in experimental models and the human ischemic brain, endothelial cells residing in preexisting brain vessels are then activated and angiogenesis begins. However, endothelial cells in the brain, which circulate endothelial progenitor cells, are also partially involved in angiogenesis. Newly formed vessels are permeable in the early stages of recovery but become less leaky when they mature.

A past study found that improved neurological outcomes also accompanied increased angiogenesis. Neural stem cells (NSCs) are harbored in the subventricular zone (SVZ) and subgranular zone of the brain. These NSCs can generate new neurons throughout their lives. Neurogenesis increased after stroke in experimental animals and has been found to couple with angiogenesis after stroke onset. The newly generated neuroblasts in the SVZ migrate to the peri-infarct region along cerebral blood vessels. Thus, neuroblasts have a vital functional role in brain repair after stroke. NSC-derived oligodendrocyte progenitor cells (OPCs) can differentiate into mature oligodendrocytes through myelination. Mature oligodendrocytes are vulnerable to cerebral ischemia. Therefore, OPCs generate new oligodendrocytes during brain repair processes, forming myelin sheaths around the newly generated axons in peri-infarct brain tissues. After stroke, endothelial cells in the brain interact actively and mutually with oligodendrocytes to promote the growth of vessels and oligodendrocytes.
Pathophysiology of PD

PD is a degenerative disease characterized by the progressive deterioration of motor function, affecting 0.3% of the entire population. Abnormal accumulation of misfolded proteins in the brain, such as α-synuclein, causes PD. PD dementia, dementia with Lewy bodies, and multiple system atrophy. Progressive degeneration and loss of dopamine neurons in the SN and nerve terminals in the striatum are the pathological mechanisms of PD. α-synuclein acts in synaptic transmission and vesicle release. Lewy bodies are the pathological aggregates of α-synuclein within neurons and glial cells. The toxic conformations of α-synuclein, oligomers and protofibrils, can propagate from cell to cell in a prion-like pattern. This explains the progression of PD and its spread from the basal brain to neocortical areas. In addition to the accumulation of α-synuclein, a co-aggregate of α-synuclein with amyloid β and τ has been found. Furthermore, genome-wide association studies have found mitochondrial and lysosomal components including leucine-rich repeat kinase 2 (LRRK2), Parkinson disease protein 7 (DJ-1/PARK7) in PD and Coenzyme Q2 (COQ2) in MSA. Cell metabolism and protein clearance together play a role in PD pathophysiology. Locus coeruleus noradrenergic neuron degeneration may result in dementia and depression. Degeneration of serotonergic neurons in the raphe obscurus and medial raphe may likewise cause depression. However, the cause of selective degeneration and the loss of specific neurons in PD remain elusive. Infectious agents, pesticides, heavy metals, and living in rural environments have been identified as risk factors for PD.

Pathophysiology of OA

Inflammation plays a substantial role in the progression of OA. Advanced OA has shown considerable synovial histological reactions (proliferation or inflammation) and roentgenographic evidence of calcification. Arthroscopy revealed changes in the cartilage with superficial fibrillation, deep fissures, erosions, and synovial inflammation. Histologically, B lymphocytes, T lymphocytes, plasma cells, T-helper cells, and Human Leukocyte Antigen - antigen D Related (HLA-DR)-positive dendritic-like cell infiltrations can be found in the intensely inflamed synovium. However, the severity of cartilage lesions is unrelated to the severity of synovitis in early OA. Recent studies have reported that low-grade inflammatory processes can not only promote disease symptoms but also accelerate disease progression. Activated macrophages and other innate immune cells release inflammatory cytokines, which promote cartilage damage. The synovial tissue obtained from a patient with OA showed an increased number of immune cells associated with pro-inflammatory cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and IL-22. Matrix metalloproteinase (MMP) 1, 3, and 13 are directly responsible for extracellular matrix remodeling.

Stem Cell Therapy in Stroke, PD, and OA

In our previous article, we comprehensively reviewed the characteristics of MSCs. In brief, stem cells can differentiate along different lineages and are capable of self-renewal. Adult MSCs are less problematic than ESCs in terms of tumorigenesis and ethical concerns. MSCs are stromal cells that can self-renew and exhibit multilineage differentiation. MSCs can be isolated from various tissues, such as the umbilical cord, endometrial polyps, menstrual blood, bone marrow, and adipose tissue. The ease of harvesting and the quantity of MSCs that can be obtained make them most practical for experimental and possible clinical applications. Other sources of MSCs may be discovered in the future. A major challenge is to elucidate the highly sophisticated mechanisms of differentiation, mobilization, and homing in MSCs. The multipotent properties of these cells make them an attractive choice for the development of clinical applications.

Stem Cell Therapy in Stroke

The aim of cell therapy is to replace, repair, or enhance the biological function of damaged cells and thereby restore brain integrity. Differentiated neuronal progenitors from stem cells can restore functional neuronal circuitry. We have previously reported that stem cell transplantation can repair the damage in animal stroke models. Moreover, stem cell therapy may secrete paracrine factors to promote the survival, migration, and differentiation of the endogenous precursor cells of the penumbra. The clinical trials on stroke referred to in this study are drawn from 11 MSC records (searched on November 11, 2016, in clinicaltrials.gov, Table 1). Most relevant studies have used cultured and expanded autologous MSCs from bone marrow, adipose tissue, and umbilical cord. Technical
approaches generally use an intravenous injection to deliver the cells directly into the vein without using a scaffold. Most studies are in stage I or II and have worldwide testing area distributions. Currently, the most common approach is intravenous (IV) injection, which is simpler than multicomponent interventions in terms of technical delivery and regulatory approval.

Stem Cell Therapy in PD

Bone marrow-derived MSCs (BM-MSCs) have been examined for their therapeutic effect in a PD model; these studies have demonstrated the survival of grafted cells, tyrosine hydroxylase (TH) expression, and behavioral improvement. Other stem cells, such as adipose-derived and umbilical cord-derived (ADSCs and UC-MSCs, respectively) MSCs, also improve PD symptoms. Moreover, genetically modified MSCs with neurotrophic proteins, such as glial cell line-derived neurotrophic factor (GDNF), vascular endothelial growth factor (VEGF), or neurturin, have been indicated to have therapeutic potential in PD treatment. In patients with PD, proliferation of activated microglia was noted in the SN, and TNF-α, IL-1β, and interferon-γ were elevated in the brains of patients with PD. Immunosuppression therapy slowed PD progression. Additionally, MSCs exhibited crucial anti-inflammatory and immunomodulatory effects on PD pathology. Only 3 clinical trials to date have adopted MSCs for PD therapy (Table 2). One trial is active but not yet recruiting, whereas the status of two other trials is unknown.

Stem Cell Therapy in OA

MSC therapy for OA may be a permanent biological treatment. Stem cells from all sources, such as embryonic,
induced pluripotent, fetal, and adult stem cells, can be used in this therapy. Among these, MSCs are the first choice because they can not only differentiate into a chondrogenic lineage under defined culture conditions but also modulate the immune responses of individuals through anti-inflammatory effects108,109. In addition to direct chondrocyte differentiation that repairs damaged OA joints, the paracrine effect of MSCs plays a crucial immunosuppressive and anti-inflammatory role in immune cells110. MSCs can inhibit the proliferation and differentiation of naive T lymphocytes into the T-helper type 1 (Th1) or IL-17-producing effector T (Th17) phenotype111. Increasing evidence has indicated that MSCs participate in tissue repair and regeneration through their secretome, which includes exosomes. The downregulation of inflammatory cytokines and the induction of chondrocyte regeneration are essential for repairing diseased joints112. Both soluble and contact-dependent signals from the environment trigger the therapeutic effect of MSCs. Therefore, various mediators and EVs secreted from MSCs in the surrounding extracellular environment play vital roles in achieving the therapeutic effect of MSCs for OA.

Exosome Introduction

In past decades, transplanted stem cells were believed to heal damaged tissue by directly differentiating into cells at the damaged site. However, recent evidence has attributed the beneficial effects of stem cell transplantation not to their direct differentiation abilities, but rather their ability to secrete bioactive molecules, which provide a regenerative microenvironment for various injured tissues to limit the area of damage and mount a self-regulated regenerative response113,114. EVs are crucial mediators of cell-to-cell communication, which is involved in normal physiological processes and additionally plays a role in the development and progression of diseases. Therefore, current studies are increasingly focusing on the role of EVs in MSC transplantation and their therapeutic potential (Fig. 1). The major subtypes of EVs are exosomes, microvesicles, and apoptotic bodies115. Exosomes are 40 to 100 nm in diameter and can be isolated from all bodily fluids including blood, urine, bronchoalveolar lavage fluid, breast milk, amniotic fluid, synovial fluid, pleural effusions, and ascites through centrifugation116. Exosomes are endocytic materials that contain a particular set of protein families from intracellular compartments including the plasma membrane, endocytic pathway, and cytosol117. Exosomes contain CD63 and CD81 (tetraspanin proteins), Alix (the regulator of endosomal trafficking), and HSP70 (the chaperone protein)113,118. Exosomes also include messenger RNA (mRNA) and miRNA, which can transfer genetic information to target cells119. These exosomes, which contain proteins, mRNA, and miRNA, function as messengers from donor cells to recipient cells and induce physiological changes in recipient cells. The mRNA packed within exosomes can be translated after entering into the recipient cells. By contrast, miRNA is involved in RNA silencing and posttranscriptional regulation of gene expression in recipient cells119.

Stem Cells Actively Secrete Exosomes

MSC-derived exosomes can be steadily isolated from the MSC-conditioned medium. They are as effective as direct MSC transplantation, and their beneficial therapeutic effects have been demonstrated in various models, including those for cardiovascular disease, acute kidney injury, liver injury,
lungs, and cutaneous wound healing. The protective effects are specific to MSC-derived exosomes and are not exhibited by fibroblast-derived exosomes. MSCs can secrete a higher amount of exosomes than other types of cells. The morphology, isolation, and storage conditions of MSC-derived exosomes are the same as those of exosomes derived from other cells. MSCs can produce many more exosomes than other cells can. In a myocardial infarction model, the use of exosomes derived from myc-transformed MSCs was found to reduce the infarction size. The proposed mechanism was that the myc transformation of MSCs caused them to infinitely produce a large amount of exosomes, which would exert therapeutic effects. Moreover, the myc transformation of MSCs increased the proliferation rate, which reduced the time required for cell production. Thus, this method can effectively enable MSCs to produce a substantial amount of exosomes.

Role of Exosomes in Immune Responses

Exosomes are considered carriers of immune responses. Immunomodulation mediated by exosomes remains controversial. The promotion or suppression of immune responses depends on the characteristics of the parent cell. Presenting cells (APCs), including dendritic cells (DCs) and B lymphocytes, secrete exosomes that carry immunostimulatory molecules. These molecules, which participate in the development of antigen-specific immune responses, include MHC-I, MHC-II, and CD80/CD86 DC exosomes—activated T cells. In addition, B lymphocyte-derived exosomes can facilitate antigen presentation and stimulate T cells in vitro. These actions indicate a role in T cell memory and tolerance.

Moreover, exosomes derived from B lymphocytes could be delivered to follicular DCs in vitro, suggesting that follicular DCs might passively obtain peptide-loaded major histocompatibility complex II (MHC-II) molecules for stimulating CD4 T cells. miRNA is involved in immune regulation and can be transferred by exosomes and affect immune activities. Exosomes can be unidirectionally transferred between T cells and APCs. Inhibition of exosome formation impaired APC exosome and miRNA transfer in T cells. However, the contribution of exosomes is difficult to determine because almost all cells can secrete exosomes, only one cell type can be studied in vitro, the in vivo setting is much more complicated, and exosome exchange may be bidirectional. Different organs may have different vesicle transfer mechanisms. Therefore, exosomes can either activate or suppress the immune response depending on the donor cell type. Exogenous miRNA delivery to target cells appears to be facilitated by exosomes. However, recipient uptake mechanisms should be explored further.

Effect of Exosomes on the Brain

The regulation of immune function by exosomes has been reported for microglia or macrophages in the brain. The proteomics of exosomes secreted from microglia has identified several known vesicle proteins already present in B cells and DC-secreting exosomes; microglia-secreted exosomes also express MHC-II molecules. Upon activation, the microglia release both membrane vesicles and soluble inflammatory cytokines including IL-1β, IL-6, and TNF-α. During central nervous system (CNS) inflammation, the number of microglia-secreted exosomes increases, and they enter into cerebral spinal fluid (CSF) circulation. Therefore, circulating exosomes can be regarded as the markers of inflammation that locally or systemically affect the CNS. Endothelial cells in the brain can also release small membrane vesicles—endothelial microparticles (EMPs)—which are considered useful indicators of the status of the disordered endothelium. After stroke, EMPs released from the injured endothelium are linked with microcirculatory injuries, capillary blockage, inflammatory processes, and BBB disruption. The amount of circulating EMPs has been correlated with the severity of stroke, volume of brain lesions, and outcome. When inflammatory cytokines (IFN-γ and TNF-α) are stimulated, endothelial cells secrete EMPs.

The third exosome effect on the brain is derived from brain tumors. Tumor-derived exosomes can act like cancer vaccines due to their tumor-specific antigenicity and hereditary spastic paraplegia (HSP) that favor the activation of APCs. Human gliomas can express a mutation of the epidermal growth factor receptor variant III (EGFRvIII). This variant can define clinically distinct glioblastoma subtypes and serve as a biomarker. Glioma-secreted exosomes can also promote the oncogenic transformation of neighboring cells through the transfer of EGFRvIII. Tumor-derived exosomes can additionally intervene in immune suppression by augmenting the activities of regulatory T cells and myeloid-derived suppressor cells; they suppress activated T cells and natural killer (NK) cells by inhibiting DC maturation. Therefore, tumor-derived exosomes appear to harbor both immune-promoting and immune-suppressing functions.

Potential of Stem Cell-Derived Exosomes in Stroke, PD, and OA Treatment

Exosome Therapy in Stroke

Neurons, astrocytes, and glia can release various membranous vesicles into the extracellular space. These EVs may act as carriers of proteins associated with neurodegenerative diseases. EVs may be involved in the spreading of these misfolded proteins in the brain. Therefore, only exosomes can be adopted as a treatment modality. Intravenous injection of exosomes has been demonstrated to be more efficient than the use of cells in treating stroke. Exosomes can transfer their cargo miRNA to recipient cells. More than 700 miRNAs are bound to argonaute2, a component of the RNA-induced silencing complex in MSC-derived exosomes.
Engineered exosomes with elevated miRNA levels have a beneficial effect on brain remodeling after stroke163,164. Immunosuppression induced by stroke in peripheral blood can exacerbate stroke outcomes165,166. MSC-derived exosomes can communicate with NK cells and lymphocytes to attenuate postischemic immunosuppression167. Exosomes of miR133b-overexpressed MSCs have recently been reported to improve neural plasticity and functional recovery in a stroke model164,168. miR133b was downregulated in the rat brain after cerebral artery occlusion; however, the miR133b level increased after MSC administration164,168. The transfer of miR33b from MSCs to astrocytes through exosome-downregulated connected tissue growth factor expression can reduce glial scarring and promote neurite growth169. In a stroke model, miR-133b also inhibited Ras homolog gene family, member A (RhoA) expression in neurons, which promoted the regrowth of the corticospinal tract170. Exosomes of hASCs-mediated PKC\small{δ} splicing and increased neuronal survival171. Intravenous injection of Adipose derived stem cells (ADSCs)-derived exosomes could reduce the brain infarct zone and improve neurological function in a stroke model172. BM-MSCs derived from diabetic mice reduced miR-145 expression and aided recovery from stroke173. Intravenous injection of MSC-derived exosomes could improve functional recovery and neurite remodeling, neurogenesis, and angiogenesis163. Exosome miR-9 and miR-124, brain-specific miRNA, are promising biomarkers for diagnosing stroke severity and as alternatives to therapy174. The direct use of exosomes from specific cell sources has considerable potential in stroke treatment.

Potential Benefits of Exosomes in PD

No reliable diagnostic tool is currently available for PD. Exosomes have two roles in PD: as a diagnostic biomarker and for therapy. For diagnosis, increased mutation in LRRK2 in urine was recently reported to be associated with idiopathic PD and the severity of cognitive impairment175–177. Another study found that the Neural cell adhesion molecule L1 (L1-CAM) exosome \(\tau\) level was significantly higher in patients with PD than in controls and was correlated with the CSF tau levels178. The level of \(\alpha\)-synuclein was also higher in L1-CAM-positive EV isolated from the plasma of patients with PD than in control patients179–181. The expression profiles of miRNA and mRNA in exosomes of PD also served as diagnostic tools for PD. Neurotrophin signaling, mechanistic target of rapamycin (mTOR), ubiquitin-mediated proteolysis, and dopaminergic and glutamatergic synapse were the most significant pathways in PD miRNA patterns182. For therapy, exosomes derived from human dental pulp have recently been found to reduce 80\% of 6-hydroxydopamine (OHDA)-induced dopamine neuron apoptosis183. Exosomes carrying catalase exerted substantial neuroprotective effects on in vitro and in vivo models of PD184. In summary, the use of exosomes to treat PD is in its early stages, being mostly incorporated in diagnosis and rarely in treatment.

Potential Benefits of Stem Cell–Derived Exosomes in OA

Inflammation plays a vital role in the pathogenesis of OA. Catabolic factors, such as IL-1\(\beta\) or TNF-\(\alpha\), present in OA joints inhibit the differentiation of stem cells that impair chondrogenesis185. MSC-derived exosomes can suppress the secretion of the pro-inflammatory cytokines TNF-\(\alpha\) and IL-1\(\beta\) and can also increase the secretion of anti-inflammatory cytokines, thus increasing the level of transformation growth factor-\(\beta\). Exosomes may induce the conversion of Th1 cells into Th2 cells and reduce the differentiation of T cells into Th17 cells186. Therefore, MSC-derived exosomes can suppress the inflammation of OA joints and introduce a trophic effect that stimulates tissue-intrinsic stem cells to repair damaged tissues, similar to MSCs113. Although MSC-derived exosomes have exhibited considerable advances in many disease models, they have only now been incorporated into OA therapy. Zhang et al. reported that exosomes derived from human embryonic MSCs promoted osteochondral regeneration in a surgical rat model of osteochondral defects187. The model showed complete restoration of the cartilage and subchondral bone 12 wks after a single intra-articular exosome injection. By contrast, the contralateral phosphate buffered saline (PBS)-treated defects only formed fibrous repair tissues. miRNAs are also involved in chondrogenic differentiation and cartilage degeneration in OA188. For instance, miR-140 is related to chondrocyte differentiation189. miR-320 directly targets MMP-13 and produces the IL-1\(\beta\)-stimulated catabolic effect190. Both miR-140 and miR-320 are significantly decreased in OA cartilage. By contrast, miR-455 overexpression during the aging process exacerbates OA progression191. MiR-181b is significantly downregulated during chondrogenic differentiation and significantly overexpressed in OA cartilage192. Therefore, MSC-derived exosomes likely attenuate OA progression through the delivery of miRNA. Various MSC-origins exosomes may function differently in OA. Clinical trials have demonstrated the therapeutic effects of BM-MSCs, adipose-derived MSCs (ADSCs), and human UC-MSCs in OA. Some clinical trials are ongoing22. However, the low RNA content in exosomes appears to be considerably influenced by donors, cell types, environments, and cell differentiation status. Baglio et al. concluded that adipose and bone marrow MSC subtypes secrete different transfer RNA species that may have clinical applications193. Furthermore, Salomon et al. demonstrated that under hypoxic conditions, placental MSCs released exosomes in a dose-dependent manner that stimulated placental microvascular endothelial cell migration and tube formation194.

Conclusion and Prospects

Stem cell–derived exosomes carried and transferred their cargo (similar to miRNA) to parenchymal cells in the brain
or cartilage. Thus, exosomes mediate plasticity and functional recovery from stroke or OA. Because of the requirements of complex paracrine factors, exosomes may be used as a treatment modality for complicated diseases such as stroke and OA. Different miRNA contents of stem cell–derived exosomes can be used to modulate the therapeutic response to stroke and may increase their therapeutic potential. Moreover, exosomes can be used as a diagnostic marker for PD.

Exosomes have many benefits aside from the cell-based therapy reported in clinical trials for stroke. In contrast to injecting cells into the vein systemically, exosomes, which have diameters measured in nanometers, may easily enter the brain by passing through the BBB. Direct injection of MSCs may result in the obstruction of small vessels in organs. Because of their small size, exosomes have no apparent obstructive effect on small vessels.

Research is ongoing on the benefits of the stem cell–derived exosome therapy for degenerative diseases such as stroke, PD, and OA. Stem cell–derived exosomes, whether naturally occurring or engineered, can provide therapeutic benefits. Although exosome therapies have shown positive results, most studies have focused on acute injury disease models. Stroke, PD, and OA are multifactorial chronic degenerative diseases with chronic inflammation. Additional studies are required to elucidate the pathogenesis of these degenerative diseases and the potential benefits of exosomes derived from different MSC sources, preconditioning statuses, doses, and therapeutic regimens.

The purity of exosomes should be further examined. Differential centrifugation and a sucrose gradient can yield a mixed gradient product. Mass exosome production is expensive and time consuming. Thus, future studies should focus on reducing the cost and time required for exosome production. Regarding the modification of exosomes for therapy, exosome products should be thoroughly characterized to prevent adverse events.

Authors’ Note
This article was edited by Wallace Academic Editing.

Declaration of Conflicting Interests
The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Paul R. Sanberg (PRS) is the coeditor in chief of Cell Transplantation. Neither PRS nor any of his colleagues were involved in the peer-review process or decision for this manuscript.

Funding
The author(s) disclosed receipt of the following financial support for the research and/or authorship of this article: The authors were supported by the following intramural grants from Buddhist Tzu Chi General Hospital: TCRD 104-07 (to Chang Y. H.) and TCRDI-104-01-03 (to Ding D. C.).

References
1. Lackland DT, Roccella EJ, Deutsch AF, Fornage M, George MG, Howard G, Kissela BM, Kittner SJ, Lichtman JH, Lisabeth LD, et al. Factors influencing the decline in stroke mortality: a statement from the American heart association/American stroke association. Stroke. 2014;45(1):315–353.
2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnik T, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–1329.
3. Adeoye O, Hornung R, Khatri P, Kleindorfer D. Recombinant tissue-type plasminogen activator use for ischemic stroke in the United States: a doubling of treatment rates over the course of 5 years. Stroke. 2011;42(7):1952–1955.
4. Zivin JA. Acute stroke therapy with tissue plasminogen activator (tPA) since it was approved by the U.S. Food and Drug Administration (FDA). Ann Neurol. 2009;66(1):6–10.
5. Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med. 2015;372(11):1019–1030.
6. Campbell BC, Mitchell PJ, Kleing J, Dewey HM, Churilov L, Yassi N, Yan B, Dowling RJ, Parsons MW, Oxley TJ, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. N Engl J Med. 2015;372(11):1009–1018.
7. Berkhemer OA, Fransen PS, Beumer D, van den Berg LA, Lingsma HF, Yoo AJ, Schonewille WJ, Vos JA, Nederkoorn PJ, Werner MJ, et al. A randomized trial of intraarterial treatment for acute ischemic stroke. N Engl J Med. 2015;372(1):11–20.
8. Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke. Nat Rev Neurosci. 2003;4(5):399–415.
9. Gao LL, Wu T. The study of brain functional connectivity in Parkinson’s disease. Transl Neurodegener. 2016;5:18.
10. Pagonabarraga J, Kulisevsky J, Strafella AP, Krak P. Apathy in Parkinson’s disease: clinical features, neural substrates, diagnosis, and treatment. Lancet Neurol. 2015;14(5):518–531.
11. Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373(9680):2055–2066.
12. Murphy L, Helmick CG. The impact of osteoarthritis in the United States: a population-health perspective. Am J Nurs. 2012;112(3 suppl 1):S13–S19.
13. Yoshimura N, Muraki S, Nakamura K, Tanaka S. Epidemiology of the locomotive syndrome: the research on osteoarthritis/osteoarthritis against disability study 2005–2015. Mod Rheumatol. 2017;27(1):1–7.
14. Poulet B, Staines KA. New developments in osteoarthritis and cartilage biology. Curr Opin Pharmacol. 2016;28:8–13.
15. Xie F, Kovic B, Jin X, He X, Wang M, Silvestre C. Economic and humanistic burden of osteoarthritis: a systematic review of large sample studies. Pharmacoeconomics. 2016;34(11):1087–1100.
16. Felson DT, Lawrence RC, Dieppe PA, Hirsch R, Helmick CG, Jordan JM, Kington RS, Lane NE, Nevitt MC, Zhang Y, et al. Osteoarthritis: new insights. part 1: the disease and its risk factors. Ann Intern Med. 2000;133(8):635–646.
17. Palazzo C, Nguyen C, Lefevre-Colom MM, Rannou F, Poiraud-Deau S. Risk factors and burden of osteoarthritis. Ann Phys Rehabil Med. 2016;59(3):134–138.
18. Sinusas K. Osteoarthritis: diagnosis and treatment. Am Fam Physician. 2012;85(1):49–56.
19. Vissers MM, Busmann JB, Verhaar JA, Arends LR, Furlan AD, Reijman M. Recovery of physical functioning after total hip arthroplasty: systematic review and meta-analysis of the literature. Phys Ther. 2011;91(5):615–629.
20. Liu XW, Zi Y, Xiang LB, Wang Y. Total hip arthroplasty: a review of advances, advantages and limitations. Int J Clin Exp Med. 2015;8(1):27–36.
21. Stiehler M, Goronzy J, Gunther KP. Total hip arthroplasty in overweight osteoarthritis patients. Orthopade. 2015;44(7):523–530.
22. Chang YH, Liu HW, Wu KC, Ding DC. Mesenchymal stem cells and their clinical applications in osteoarthritis. Cell Transplant. 2016;25(5):937–950.
23. Khillan JS. Generation of chondrocytes from embryonic stem cells. Methods Mol Biol. 2006;330:161–170.
24. Singh Khillan J. Differentiation of embryonic stem cells into cartilage cells. Curr Protoc Stem Cell Biol. 2007;Chapter 1: Unit 1F.1.
25. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–676.
26. Illich DJ, Demir N, Stojkovic M, Scheer M, Rothamel D, Neugebauer J, Hescheler J, Zoller JE. Concise review: induced pluripotent stem cells and lineage reprogramming: prospects for bone regeneration. Stem Cells. 2011;29(4):555–563.
27. Inui A, Iwakura T, Reddi AH. Human stem cells and articular cartilage regeneration. Cells. 2012;1(4):994–1009.
28. Jo CH, Lee YG, Shin WH, Kim H, Choi JW, Jeong EC, Kim JE, Shin H, Shin JS, Shin IS, et al. Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells. 2014;32(5):1254–1266.
29. Baglio SR, Pegtel DM, Baldini N. Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front Physiol. 2012;3:359.
30. Lai CP, Breakfield XO. Role of exosomes/microvesicles in the nervous system and use in emerging therapies. Front Physiol. 2012;3:228.
31. Gyorgy B, Hung ME, Breakfield XO, Leonard JN. Therapeutic applications of extracellular vesicles: clinical promise and open questions. Annu Rev Pharmacol Toxicol. 2015;55:439–464.
32. Zhang ZG, Zhang L, Tsang W, Goussev A, Powers C, Ho KL, Morris D, Smyth SS, Coller BS, Chopp M. Dynamic platelet accumulation at the site of the occluded middle cerebral artery and in downstream microvessels is associated with loss of microvascular integrity after embolic middle cerebral artery occlusion. Brain Res. 2001;912(2):181–194.
33. Furie B, Furie BC. Mechanisms of thrombus formation. N Engl J Med. 2008;359(9):938–949.
52. Zhang RL, Chopp M, Roberts C, Wei M, Wang X, Liu X, Lu M, Zhang ZG. Sildenafil enhances neurogenesis and oligodendrogenesis in ischemic brain of middle-aged mouse. PLoS One. 2012;7(10):e48141.

53. Miyamoto N, Pham LD, Seo JH, Kim KW, Lo EH, Araiz K. Crosstalk between cerebral endothelium and oligodendrocyte. Cell Mol Life Sci. 2014;71(6):1055–1066.

54. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–535.

55. Goedert M, Jakob R, Anthony Crowther R, Grazia Spillantini M. Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy as alpha-Synucleinopathies. Methods Mol Biol. 2001;62:33–59.

56. Hirsch E, Graybiel AM, Agid YA. Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature. 1988;334(680):345–348.

57. Fortin DL, Nemani VM, Voglmaier SM, Anthony MD, Ryan TA, Edwards RH. Neural activity controls the synaptic accumulation of alpha-synuclein. J Neurosci. 2005;25(47):10913–10921.

58. Lashuel HA, Overk CR, Oueslati A, Masliah E. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci. 2013;14(1):38–48.

59. Prusiner SB, Wermer AL, Mordes DA, Watts JC, Ramperos R, Berry DB, Patel S, Oehler A, Lowe JK, Kravitz SN, et al. Evidence for alpha-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc Natl Acad Sci U S A. 2015;112(38):E5308–E5317.

60. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging. 2003;24(2):197–211.

61. Masliah E, Rockenstein E, Veinberg I, Sagara Y, Mallory M, Jakes R, Anthony Crowther R, Grazia Spillantini M. Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy as alpha-Synucleinopathies. Methods Mol Biol. 2001;62:33–59.

62. Ishizawa T, Moriguchi Y, Fujimoto N, Obata K, Clou tier JM, Pelletier JP. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in synovial membranes of patients with rheumatoid arthritis—a possible role of influenza A virus infection. Jpn J Infect Dis. 1999;52(3):89–98.

63. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 2002;22(16):7006–7015.

64. Mizuno Y, Hattori T, Kitada T, Matsumine H, Mori H, Shimura H, Kubo S, Kobayashi H, Akasaka S, Minoshima S, et al. Familial Parkinson’s disease. Alpha-synuclein and parkin. Adv Neurol. 2001;86:13–21.

65. Sibinga E, Krueger E, Dekker MC, Siquitier F, Ibanez P, Jolles M, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256–259.

66. Multiple-System Atrophy Research C. Mutations in COQ2 in familial and sporadic multiple-system atrophy. N Engl J Med. 2013;369(3):233–244.

67. Bonifati V, Rizzu P, van Baren MJ, Saap O, Breedveld GJ, Krieger E, Dekker MC, Siquitier F, Ibanez P, Jolles M, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256–259.

68. German DC, Manaye KF, White CL III, Woodward DJ, McIntire DD, Smith WK, Kalaria RN, Mann DM. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol. 1992;32(5):667–676.

69. Jellinger KA. Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol. 1991;14(3):153–197.

70. Takahashi M, Yamada T. Viral etiology for Parkinson’s disease—a possible role of influenza A virus infection. Jpn J Infect Dis. 1999;52(3):89–98.

71. Takahashi M, Yamada T. Viral etiology for Parkinson’s disease—a possible role of influenza A virus infection. Jpn J Infect Dis. 1999;52(3):89–98.

72. Sherer TB, Betarbet R, Stout AK, Lund S, Baptista M, Panov AV, Cookson MR, Greenamyre JT. An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci. 2002;22(16):7006–7015.

73. Mizuno Y, Hattori T, Kitada T, Matsumine H, Mori H, Shimura H, Kubo S, Kobayashi H, Akasaka S, Minoshima S, et al. Familial Parkinson’s disease. Alpha-synuclein and parkin. Adv Neurol. 2001;86:13–21.

74. Priyadarshy A, Khuder SA, Schaub EA, Priyadarshy SS. Environmental risk factors and Parkinson’s disease: a metaanalysis. Environ Res. 2001;86(2):122–127.

75. Gordon GV, Villanueva T, Schumacher HG, Gohel V. Autopsy study correlating degree of osteoarthritis, synovitis and evidence of articular calcification. J Rheumatol. 1984;11(5):681–686.

76. Lindblad S, Hedfors E. Arthroscopic and immunohistologic characterization of knee joint synovitis in osteoarthritis. Arthritis Rheum. 1987;30(10):1081–1088.

77. Myers SL, Brandt KD, Ehlich JW, Brause EM, Shelbourne KD, Heck DA, Kalasinski LA. Synovial inflammation in patients with early osteoarthritis of the knee. J Rheumatol. 1990;17(12):1662–1669.

78. Liu-Bryan R. Inflammation and intracellular metabolism: new targets in OA. Osteoarthritis Cartilage. 2015;23(11):1835–1842.

79. Farhat MN, Yanni G, Poston R, Panayi GS. Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis. 1993;52(12):870–875.

80. Martel-Pelletier J, McCollum R, Fujimoto N, Obata K, Cloutier JM, Pelletier JP. Excess of metalloproteases over tissue inhibitor of metalloprotease may contribute to cartilage degradation in osteoarthritis and rheumatoid arthritis. Lab Invest. 1994;70(6):807–815.

81. Chevalier X, Conrozier T, Gehrmann M, Kluczewski P, Mathieu P, Unger S, Vignon E. Tissue inhibitor of metalloprotease-1 (TIMP-1) serum level may predict progression of hip osteoarthritis. Osteoarthritis Cartilage. 2001;9(4):300–307.
microparticles: anti-inflammatory properties of microparticles.
Eur J Immunol. 2006;36(3):648–660.

141. Brown K, Sacks SH, Wong W. Extensive and bidirectional
transfer of major histocompatibility complex class II mole-
cules between donor and recipient cells in vivo following
solid organ transplantation. FASEB J. 2008;22(11):
3776–3784.

142. Valenti R, Huber V, Filipazzi P, Pilla L, Sovena G, Villa A,
Corbelli A, Fais S, Parmiani G, Rivoltini L. Human tumor-
released microvesicles promote the differentiation of
myeloid cells with transforming growth factor-beta-mediated suppressive
activity on T lymphocytes. Cancer Res. 2006;66(18):
9290–9298.

143. Wieckowski E, Whiteside TL. Human tumor-derived vs den-
critic cell-derived exosomes have distinct biologic roles and
molecular profiles. Immunol Res. 2006;36(1-3):247–254.

144. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC,
Ji S, Mu J, Zhang L, Steinman L, et al. Treatment of brain
inflammatory diseases by delivering exosome encapsulated
anti-inflammatory drugs from the nasal region to the brain.
Mol Ther. 2011;19(10):1769–1779.

145. Chen X, Liang H, Zhang J, Ren K, Zhang CY. Secreted
microRNAs: a new form of intercellular communication.
Trends Cell Biol. 2012;22(3):125–132.

146. Potolicchio I, Carven GJ, Xu X, Stipp C, Riese RJ, Stern LJ,
Santambrogio L. Proteomic analysis of microglia-derived exo-
somes: metabolic role of the aminopeptidase CD13 in
neuropeptide catabolism. J Immunol. 2005;175(4):2237–2243.

147. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti
L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clemen-
ti E, et al. Acid sphingomyelinase activity triggers
microparticle release from glial cells. EMBO J. 2009;
28(8):1043–1054.

148. Bianco F, Pravettoni E, Colombo A, Schenker G, Moller T,
Matteoli M, Verderio C. Astrocyte-derived ATP induces
vesicle shedding and IL-1 beta release from microglia. J
Immunol. 2005;174(11):7268–7277.

149. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North
RA, Surpenant A. Rapid secretion of interleukin-1beta by
microvessel shedding. Immunity. 2001;15(5):825–835.

150. Antonucci F, Turola E, Riganti L, Caleo M, Gabrielli M,
Perrotta C, Novellino L, Clementi E, Giussani P, Viani P,
et al. Microvesicles released from microglia stimulate synaptic
activity via enhanced sphingolipid metabolism. EMBO J.
2012;31(5):1231–1240.

151. Chironi GN, Boulander CM, Simon A, Dignat-George F,
Freysinet JM, Tedgui A. Endothelial microparticles in dis-
es. Cell Tissue Res. 2009;335(1):143–151.

152. Morel O, Morel N, Jesel L, Freysinet JM, Toti F. Micropar-
ticles: a critical component in the nexus between inflamma-
tion, immunity, and thrombosis. Semin Immunopathol. 2011;
33(5):469–486.

153. Minagar A, Jy W, Jimenez JJ, Sheremata WA, Mauro LM,
Mao WW, Horstman LL, Ahn YS. Elevated plasma endothel-
ial microparticles in multiple sclerosis. Neurology. 2001;
56(10):1319–1324.

154. Graner MW, Alzate O, Dechkovskaia AM, Keene JD, Samp-
son JH, Mitchell DA, Bigner D. Proteomic and immunolo-
gic analyses of brain tumor exosomes. FASEB J. 2009;23(5):
1541–1557.

155. Bu N, Wu H, Sun B, Zhang G, Zhan S, Zhang R, Zhou L.
Exosome-loaded dendritic cells elicit tumor-specific CD8+
cytotoxic T cells in patients with glioma. J Neurooncol. 2011;
104(3):659–667.

156. Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman
EP, Bhat K, McDonald JM, Yung WK, Colman H, et al.
Epidermal growth factor receptor variant III status defines
clinically distinct subtypes of glioblastoma. J Clin Oncol.
2007;25(16):2288–2294.

157. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L, Sena-
Esteves M, Curry WT, Jr, Carter BS, Krichevsky AM, Breake-
field XO. Glioblastoma microvesicles transport RNA and
proteins that promote tumour growth and provide diagnostic
b biomarkers. Nat Cell Biol. 2008;10(12):1470–1476.

158. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha
A, Rak J. Intercellular transfer of the oncogenic receptor
EGFRvIII by microvesicles derived from tumour cells. Nat
Cell Biol. 2008;10(5):619–624.

159. Iero M, Valenti R, Huber V, Filipazzi P, Parmiani G, Fais S,
Rivoltini L. Tumour-released exosomes and their implications
in cancer immunity. Cell Death Differ. 2008;15(1):80–88.

160. Penfornis P, Vallabhaneni KC, Whitt J, Pochampally R.
Extracellular vesicles as carriers of microRNA, proteins and
lipids in tumor microenvironment. Int J Cancer. 2016;138(1):
14–21.

161. Vallabhaneni KC, Penfornis P, Dhule S, Guillonneau F,
Adams KV, Mo YY, Xu R, Liu Y, Watabe K, Vemuri MC,
et al. Extracellular vesicles from bone marrow mesenchymal
stem/stromal cells transport tumor regulatory microRNA,
proteins, and metabolites. Oncotarget. 2015;6(7):4953–4967.

162. Zhang ZG, Chopp M. Promoting brain remodeling to aid in
stroke recovery. Trends Mol Med. 2015;21(9):543–548.

163. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M. Systemic
administration of exosomes released from mesenchymal stro-
mal cells promote functional recovery and neurovascular
plasticity after stroke in rats. J Cereb Blood Flow Metab.
2013;33(11):1711–1715.

164. Xin H, Li Y, Liu Z, Wang X, Shang X, Cui Y, Zhang ZG,
Chopp M. MiR-133b promotes neural plasticity and func-
tional recovery after treatment of stroke with multipotent
mesenchymal stromal cells in rats via transfer of exosome-
enriched extracellular particles. Stem Cells. 2013;31(12):
2737–2746.

165. Wong CH, Jenne CN, Lee WY, Leger C, Kuves P. Functional
nervation of hepatic INKT cells is immunosuppressive fol-
lowing stroke. Science. 2011;334(6052):101–105.

166. Prass K, Meisel C, Hoflich C, Braun J, Halle E, Wolf T,
Ruscher K, Victorov IV, Priller J, Dimgorl U, et al. Stroke-
duced immunodeficiency promotes spontaneous bacterial
infections and is mediated by sympathetic activation reversal
by poststroke T helper cell type 1-like immunostimulation.
J Exp Med. 2003;198(5):725–736.
167. Doepnner TR, Herz J, Gorgens A, Schlechter J, Ludwig AK, Radtke S, de Miroshedji K, Horn PA, Giebel B, Hermann DM. Extracellular vesicles improve post-stroke neuroregeneration and prevent postischemic immunosuppression. Stem Cells Transl Med. 2015;4(10):1131–1143.

168. Xin H, Wang F, Li Y, Lu QE, Cheung WL, Zhang Y, Zhang ZG, Chopp M. Secondary release of exosomes from astrocytes contributes to the increase in neural plasticity and improvement of functional recovery after stroke in rats treated with exosomes harvested from microRNA 133b-overexpressed multipotent mesenchymal stromal cells. Cell Transplant. 2017;26(2):243–257.

169. Chen KH, Chen CH, Wallace CG, Yuen CM, Kao GS, Chen YL, Shao PL, Chen YL, Chai HT, Lin KC, et al. Intravenous administration of xenogenic adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes markedly reduce brain infarct volume and preserved neurological function in rats after acute ischemic stroke. Oncotarget. 2016;7(46):74537–74556.

170. Cui C, Ye X, Chopp M, Venkat P, Zacharek A, Yan T, Ning R, Yu P, Cui G, Chen J. miR-145 regulates diabetes-bone marrow stromal cell-induced neurorestorative effects in diabetes stroke rats. Stem Cells Transl Med. 2016;5(12):1656–1667.

171. Ji Q, Ji Y, Peng J, Zhou X, Chen X, Zhao H, Xu T, Chen L, Xu Y. Increased brain-specific MiR-9 and MiR-124 in the serum exosomes of acute Ischemic stroke patients. PLoS One. 2016;11(9):e0163645.

172. Fraser KB, Moehle MS, Alcalay RN, West AB, Consortium LC. Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019 S LRRK2 carriers. Neurology. 2016;86(11):994–999.

173. Fraser KB, Rawlins AB, Clark RG, Alcalay RN, Standaert DG, Liu N, Parkinson’s Disease Biomarker Program C, West AB. Ser(P)-1292 LRRK2 in urinary exosomes is elevated in idiopathic Parkinson’s disease. Mov Disord. 2016;31(10):1543–1550.

174. Ho DH, Yi S, Seo H, Son I, Seol W. Increased DJ-1 in urine exosome of Korean males with Parkinson’s disease. Biomed Res Int. 2014;2014:704678.
191. Swingler TE, Wheeler G, Carmont V, Elliott HR, Barter MJ, Abu-Elmagd M, Donell ST, Boot-Handford RP, Hajhosseini MK, Munsterberg A, et al. The expression and function of microRNAs in chondrogenesis and osteoarthritis. Arthritis Rheum. 2012;64(6):1909–1919.

192. Song J, Lee M, Kim D, Han J, Chun CH, Jin EJ. MicroRNA-181b regulates articular chondrocytes differentiation and cartilage integrity. Biochem Biophys Res Commun. 2013;431(2):210–214.

193. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Perez Lanzon M, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6:127.

194. Salomon C, Ryan J, Sobrevia L, Kobayashi M, Ashman K, Mitchell M, Rice GE. Exosomal signaling during hypoxia mediates microvascular endothelial cell migration and vasculogenesis. PLoS One. 2013;8(7):e68451.

195. Zhou Y, Xu H, Xu W, Wang B, Wu H, Tao Y, Zhang B, Wang M, Mao F, Yan Y, et al. Exosomes released by human umbilical cord mesenchymal stem cells protect against cisplatin-induced renal oxidative stress and apoptosis in vivo and in vitro. Stem Cell Res Ther. 2013;4(2):34.

196. Hess DC, Borlongan CV. Cell-based therapy in ischemic stroke. Expert Rev Neurother. 2008;8(8):1193–1201.

197. Meckes DG Jr, Gunawardena HP, Dekroon RM, Heaton PR, Edwards RH, Ozgur S, Griffith JD, Damania B, Raab-Traub N. Modulation of B-cell exosome proteins by gamma herpesvirus infection. Proc Natl Acad Sci U S A. 2013;110(31):E2925–E2933.

198. Gheldof D, Mullier F, Chatelain B, Dogne JM, Chatelain C. Inhibition of tissue factor pathway inhibitor increases the sensitivity of thrombin generation assay to procoagulant microvesicles. Blood Coagul Fibrinolysis. 2013;24(5):567–572.

199. Chen K, Page JG, Schwartz AM, Lee TN, DeWall SL, Sikkema DJ, Wang C. False-positive immunogenicity responses are caused by CD20+B cell membrane fragments in an anti-ofatumumab antibody bridging assay. J Immunol Methods. 2013;394(1-2):22–31.

200. Lai RC, Yeo RW, Tan KH, Lim SK. Exosomes for drug delivery - a novel application for the mesenchymal stem cell. Biotechnol Adv. 2013;31(5):543–551.