Corynebacterium pseudogenitalium Urinary Tract Infection

To the Editor: A 64-year-old man was admitted to the urology department of Cochin Hospital in Paris, France, for acute urinary retention. He had a history of recurrent urolithiasis and undocumented urinary tract symptoms. At admission, a urethral catheter was inserted, and a plain radiograph showed 2 bladder stones and milk of calcium calcifications. Three days later, he underwent extracorporeal shock wave lithotripsy treatment, and empirical antimicrobial drug therapy included a pathogen, in contrast to C. genitale. However, these 2 species were not included in the official list of recognized species.

C. pseudogenitalium was divided into 5 types based on biochemical patterns, and strains of the type C-5 were differentiated from other types on the basis of urease production. The biochemical and physiologic characteristics of this C-5 type were similar to those of the coryneform group F-1 described by the Centers for Disease Control and Prevention (CDC). In 1995, a comprehensive study on lipophilic corynebacteria demonstrated by DNA-DNA hybridization the similarity between a reference strain of C. pseudogenitalium type C-5 and reference strains of the CDC coryneform group F-1 (1). The CDC group F-1 make up 2 genomic groups at the species level. As shown by 16S rRNA gene comparisons, isolate CCH052683 belongs to the genomic group, including a reference strain of C. pseudogenitalium type C-5 ATCC 33039/NCTC11860 (European Molecular Biology Laboratory accession no. X81872).

The strain was sensitive to penicillin, ampicillin, gentamicin, rifampin, vancomycin, teicoplanin, tetracycline, sulfamethoxazole, trimethoprim, fusidic acid, ciprofloxacin, and norfloxacin and resistant to erythromycin, lincomycin, and nitrofurantoin. Ceftriaxone was replaced by norfloxacin (400 mg twice a day) for 1 month. The patient improved and remained healthy 6 months after therapy.

Nondiphtheric corynebacteria are of increasing importance. They have been observed in human specimens, and many new taxa of coryneform bacteria have been described (3). Interest in their taxonomy is increasing, and molecular, phenotypic, and biochemical analyses have resulted in the reclassification of this genus (3). C. pseudogenitalium was described in 1979 by Furness et al. (4) for lipophilic corynebacteria isolated from urinary tract and was not considered a pathogen, in contrast to C. genitale. However, these 2 species were not included in the official list of recognized species.

C. pseudogenitalium was divided into 5 types based on biochemical patterns, and strains of the type C-5 were differentiated from other types on the basis of urease production. The biochemical and physiologic characteristics of this C-5 type were similar to those of the coryneform group F-1 described by the Centers for Disease Control and Prevention (CDC). In 1995, a comprehensive study on lipophilic corynebacteria demonstrated by DNA-DNA hybridization the similarity between a reference strain of C. pseudogenitalium type C-5 and reference strains of the CDC coryneform group F-1 (1). The CDC group F-1 make up 2 genomic groups at the species level. As shown by 16S rRNA gene comparisons, isolate CCH052683 belongs to the genomic group, including a reference strain of C. pseudogenitalium type C-5 ATCC 33039/NCTC11860 (European Molecular Biology Laboratory accession no. X81872).
isolate was sensitive to most antimicrobial drugs, particularly β-lactams, aminoglycosides, and quinolones. Thus, urinary tract infections caused by this species of bacteria respond more readily to treatment than those caused by multidrug-resistant \textit{C. urealyticum} (3).

In conclusion, we show that \textit{C. pseudogenitalium} (CDC coryneform group F-1) can cause urinary tract infection (7) and produce urease, and like \textit{C. urealyticum}, cause stone formation in humans. Thus, urease-positive microorganisms isolated by urinalysis that shows urinary alkalization and struvite and pyuria crystallization should be considered pathogenic. Our results also confirm the difficulty in phenotypic identification of these strains and the need to use a molecular approach to identify coryneform bacteria with clinical relevance.

\textbf{Gérard Vedel,*† Gaëlle Toussaint,*† Philippe Riegel,‡ Jean-Luc Fouilladieu,*† Annick Billöet,*† and Claire Poyart*‡}

*Groupe Hospitalier Cochin Saint-Vincent-de-Paul La Roche-Guyn, Paris, France; †Université Paris René Descartes, Paris, France; and ‡Université Louis-Pasteur, Strasbourg, France

\textbf{References}

1. Riegel P, Ruimy R, de Briel D, Prevost G, Jehl F, Christen R, et al. Genomic diversity and phenotypic relationships among lipid-requiring diphtheroids from humans and characterization of \textit{Corynebacterium macginleyi} sp. nov. Int J Syst Bacteriol. 1995;45:128–33.
2. Tang, YW, von Graevenitz A, Waddington MG, Hopkins MK, Smith DH, Li H, et al. Identification of coryneform bacterial isolates by ribosomal DNA sequence analysis. J Clin Microbiol. 2000;38:1676–8.
3. Funke G, von Graevenitz A, Claridge JE III, Bernard KA. Clinical microbiology of coryneform bacteria. Clin Microbiol Rev. 1997;10:125–59.
4. Furness G, Sambury S, Evangelista AT. \textit{Corynebacterium pseudogenitalium} sp. nov. Commensals of the human male and female urogenital tracts. Invest Urol. 1979;16:292–5.
5. Digenis G, Dombros N, Devlin R, Rosa SD, Pierrotos A. Struvite stone formation by \textit{Corynebacterium} group F1: a case report. J Urol. 1992;147:169–70.
6. Soriano F, Ponte C, Santamaría M, Castilla C, Fernandez Roblas R. In vitro and in vivo study of stone formation by \textit{Corynebacterium} group D2 (\textit{Corynebacterium urealyticum}). J Clin Microbiol. 1986;23:691–4.
7. Soriano F, Ponte C. A case of urinary tract infection caused by \textit{Corynebacterium urealyticum} and coryneform group F1. Eur J Clin Microbiol Infect Dis. 1992;11:626–8.

\textbf{Address for correspondence:} Gérard Vedel, Service de Bactériologie, Groupe Hospitalier Cochin Saint-Vincent-de-Paul La Roche-Guyn, 75679 Paris, France; fax: 33-1-56-41-15-48; email: gerard.vedel@cch.aphp.fr

\textbf{Puumala Virus RNA in Patient with Multiorgan Failure}

To the Editor: The hantaviruses (genus \textit{Hantavirus}, family \textit{Bunyaviridae}) include human pathogens and occur worldwide (1). In Western and Central Europe, the predominant serotype is Puumala virus (PUUV), which causes epidemic nephropathy. We report the first Austrian patient with reverse transcription–polymerase chain reaction (RT-PCR)–confirmed PUUV infection and, to our knowledge, the first detection of PUUV-specific RNA in bone marrow.

On April 27, 2004, a previously healthy 52-year-old bus driver stopped his bus because of visual disturbance, dizziness, headache, and weakness in his legs; he then lost consciousness for a few minutes. He was seen at the neurology emergency service and subsequently admitted to the university hospital in Graz. He smoked tobacco, drank beer on the weekends, and cleaned his bus in the garage daily. The patient showed slight paresis of the right leg, nystagmus, cognitive deficit, and retrograde amnesia. Laboratory tests showed increases in (normal values are shown in parentheses) C-reactive protein (CRP) 40 mg/L (<9), creatine kinase (CK) 224 U/L (<170), lactate dehydrogenase (LDH) 244 U/L (<240), and myoglobin 416 ng/mL (<90). Cerebrospinal fluid showed elevated protein of 60 mg/dL (<45) but no other abnormalities. Results of computed tomographic scan of the brain and chest radiograph were normal. Because of increasing CRP (115 mg/L), empiric antimicrobial therapy with pipera-cillin/tazobactam was started. During an electroencephalogram on April 29, the patient deteriorated and was admitted to the intensive care unit for respiratory failure with a partial oxygen pressure of 40 mm Hg; he required intubation and