Molecular detection of *Leishmania infantum*, Babesia vogeli, and Rangelia vitalii in dogs from the Embu-Guaçú municipality around the Guarapiranga Reservoir, São Paulo

Detecção molecular de *Leishmania infantum*, Babesia vogeli e Rangelia vitalii em cães do município de Embú-Guaçú no entorno da represa Guarapiranga, São Paulo

DOI:10.34117/bjdv6n6-191

Recebimento dos originais: 01/05/2020
Aceitação para publicação: 08/06/2020

Giovanna Stefani Nosberto Castelli
Graduada em Medicina Veterinária pela Universidade Santo Amaro
Instituição: Universidade Santo Amaro
Endereço: Prof. Eneas de Siqueira Neto, 380, Jardim das Imbuias, São Paulo – SP, Brasil.
E-mail: giovanna.nosberto@gmail.com

Roberta Carvalho de Freitas e Azevedo
Mestre em Medicina e bem estar animal pela Universidade Santo Amaro
Instituição: Universidade Santo Amaro
Endereço: Prof. Eneas de Siqueira Neto, 380, Jardim das Imbuias, São Paulo – SP, Brasil.
E-mail: robertacfazevedo@gmail.com

Ryan Emiliano da Silva
Mestre em Ciências pela Universidade de São Paulo
Instituição: Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo
Endereço: Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo – SP, Brasil.
E-mail: ryanemiliano@usp.br

Jaciara de Oliveira Jorge Costa
Mestranda em Ciências pela Universidade de São Paulo
Instituição: Faculdade de Medicina Veterinária e Zootecnia da Universidade de São Paulo
Endereço: Prof. Dr. Orlando Marques de Paiva, 87, Cidade Universitária, São Paulo – SP, Brasil.
E-mail: jaciara.jorge@usp.br

Renata Tonhosolo
Doutora em Ciências pela Universidade de São Paulo
Instituição: Universidade Santo Amaro
Endereço: Prof. Eneas de Siqueira Neto, 380, Jardim das Imbuias, São Paulo – SP, Brasil.
E-mail: rtonhosolo@prof.unisa.br

Jonas Moraes Filho
Doutor em Ciências pela Universidade de São Paulo
Instituição: Universidade Santo Amaro
Endereço: Prof. Eneas de Siqueira Neto, 380, Jardim das Imbuias, São Paulo – SP, Brasil.
E-mail: jmfilho@prof.unisa.br
ABSTRACT
Vector-borne diseases are of great importance worldwide in human and veterinary medicine, as several parasites can cause disease in multiple different hosts. In this work, we investigated the prevalence of some vector-borne parasitic diseases in dogs in Embu-Guaçu, São Paulo, Brazil. Molecular diagnosis was performed by PCR using oligonucleotide markers specific for protozoans with significance in both animal and human health, such as *Leishmania infantum*, *Rangelia vitalii*, and *Babesia vogeli*. Molecular diagnostic results showed a high occurrence (16.25%, 13/80) of *Babesia vogeli*, but negative results for *Leishmania infantum* and *Rangelia vitalii*. Further studies should be conducted with a larger number of dogs, and vector control and educational measures should be implemented within the population to minimize the impact of vector-borne diseases on animal health.

Keywords: Sandfly; Tick; Zoonosis; Atlantic Rainforest, Vectors

RESUMO
As doenças transmitidas por vetores são de grande importância em todo o mundo na medicina humana e veterinária, pois vários parasitas podem causar doenças em vários hospedeiros diferentes. Neste trabalho, investigou-se a prevalência de algumas doenças parasitárias vetoriais em cães em Embu-Guaçu, São Paulo, Brasil. O diagnóstico molecular foi realizado por PCR utilizando marcadores oligonucleotídeos específicos para protozoários com significância tanto na saúde animal quanto na humana, como *Leishmania infantum*, *Rangelia vitalii* e *Babesia vogeli*. Os resultados diagnósticos moleculares mostraram alta ocorrência (16,25%, 13/80) de *Babesia vogeli*, mas resultados negativos para *Leishmania infantum* e *Rangelia vitalii*. Outros estudos devem ser realizados com um maior número de cães, e o controle de vetores e medidas educativas devem ser implementadas dentro da população para minimizar o impacto das doenças transmitidas por vetores na saúde animal.

Palavras-chave: Flebotomíneos; Carrapatos; Zoonose; Mata Atlântica; Vetores

1 INTRODUCTION
Vector-borne diseases are of great importance worldwide in human and veterinary medicine, as several parasites can cause disease in multiple different hosts (Massard and Fonseca, 2004). Due to the close contact between animals and humans, some of these diseases are considered public health problems with zoonotic potential because the animal reservoir of the disease may be kept in the home environment, which in many cases compromises animal welfare (Braga and Silva, 2013).

Included among the diseases of veterinary interest transmitted by arthropods are hemoparasitic diseases such as babesiosis and canine rangeliosis, transmitted by the ticks *Rhipicephalus sanguineus* and *Amblyomma aureolatum*, respectively (Costa-Junior et al., 2012; Araujo et al., 2015; Soares et al., 2015; Mongruel et al., 2018). Visceral leishmaniasis (VL), an important zoonosis, is transmitted by the sandfly *Lutzomyia longipalpis* and is considered a neglected
tropical disease, showing a clear and non-random distribution in Brazil (Lainson and Rangel, 2005; Lindoso and Lindoso, 2009; Azevedo et al., 2019).

The species *Leishmania infantum* is the causative agent of VL in the Americas (Silva, 2007; Marcili et al., 2014; Ribeiro et al., 2019). Dogs (*Canis familiaris*) are among the main vertebrate hosts in the urban environment, which in the wild include Canidae, rodents, and marsupials (Gontijo and Melo, 2004). This disease is a major public health concern due to its expansion, urbanization, and the severity of its different clinical forms (Figueiredo et al., 2012; Cardim et al., 2015).

Canine babesiosis is a disease caused by members of the *Babesia* genus (Baneth, 2018), which are erythrocyte parasites (Carret et al., 1999; Hunfeld et al., 2008). *Babesia vogeli* is the subspecies most commonly diagnosed in dogs in Brazil (Gottlieb et al., 2016). The causative agent of rangeliosis is *Rangelia vitalii*, a protozoan belonging to the order Piroplasmida that is an erythrocyte, leukocyte, and endothelial cell parasite (Lemos et al., 2012). Both diseases have similar symptoms such as fever, apathy, anemia, and jaundice (da Silva et al., 2011; Spolidorio et al., 2011; Quadros et al., 2015), but cutaneous hemorrhages are evident only in rangeliosis (Loretti and Barros, 2004; Lemos et al., 2017).

The aim of the present study was to detect infection by the hemoprotozoan parasites *Babesia vogeli*, *Rangelia vitalii*, and *Leishmania infantum* in dogs from a residential condominium in the Embu-Guaçú municipality, part of the Guarapiranga Reservoir, which has had a confirmed case of canine VL.

2 MATERIALS AND METHODS

This study was conducted in a residential condominium in the city of Embu-Guaçú-SP. This municipality has an area of 463 ha, bordering over 400 ha of native Atlantic Forest vegetation (23° 49' 04.9" S 46° 47' 13.0" W) (Figure 1). This site was chosen based on the notification of a case of canine VL through serological diagnosis.

A total of 80 animals were restrained for physical examination and collection of biological material. Approximately 0.5 mL of blood from the cephalic vein or, if this was not possible, jugular vein was collected from each animal and stored in microtubes containing absolute ethanol (da Costa et al., 2015). All dogs were inspected for the presence of ticks. All procedures were performed in accordance with the Ethics Committee on Animal Use (nº 22/2018 CEUA UNISA).

For DNA extraction, the PureLink Genomic DNA Mini Kit (Invitrogen) was used according to the manufacturer's instructions. For the specific molecular diagnosis of *Leishmania infantum*, PCR was performed using the cathepsin L-like gene (Silva et al., 2019) and ribosomal internal transcribed spacer (ITS SSUrDNA) (Schonian et al., 2003) as targets. For *Babesia vogeli* and *Rangelia vitalli*,
real-time PCR was performed using the sense Hsp70 gene (Peleg et al., 2010), and sense Rv751-770 and antisense Rv930-911 primers (Soares et al., 2018), respectively.

3 RESULTS

Molecular tests for the genus *Leishmania* (ITS1 SSUrDNA) and species *L. infantum* (cathepsin L-like gene) were negative for all samples. The molecular diagnosis of *Rangelia vitalli* was also negative for all samples tested.

A total of 16.25% (13/80) of the samples were positive for the molecular diagnosis of *Babesia vogeli*. No ticks were found on the examined dogs.

4 DISCUSSION

Vector-borne diseases are significant in both veterinary medicine and public health. Veterinarians, in collaboration with medical doctors, play a fundamental role in the prevention and treatment of vector-borne diseases (Savic et al., 2014).

Rangeliosis is generally a rural or peri-urban hemoparasitosis due to the vector habitats being associated with forest and rural environments (Labruna et al., 2005). There is also a positive relationship between altitude and the presence of *A. aureolatum*, which is confirmed in Southeast Brazil, as most reports of rangeliosis are related to the mountainous Atlantic Forest region (Pinter et al., 2016).

The municipality of Embu-Guaçú chosen for this study contains Atlantic Forest fragments. Despite favorable conditions for the *A. aureolatum* vector, *Rangelia vitalli* infection was not found in any of the sampled dogs; however, 13 animals were found to be infected with *Babesia vogeli*.

B. vogeli is the most commonly diagnosed subspecies of *Babesia* in dogs in Brazil (Lemos et al., 2012; Oliveira et al., 2009). It is transmitted by the tick *Rhipicephalus sanguineus*, the primary host of which is dogs, that is considered one of the main ectoparasites of dogs in Brazil (Labruna, 2004). *R. sanguineus* is the most widespread tick in the world, is well adapted to its environment, and can be found parasitizing dogs in both rural and urban areas (Moraes-Filho et al., 2011), leading to the transmission of pathogens such as *B. vogeli* in many different environments. A total of 16.25% of the dogs in this study were positive for *B. vogeli*, which is much higher than that found in other studies conducted in the Southeast region of Brazil, including São Paulo (O’Dwyer et al., 2009).

Despite the implementation of the Ministry of Health’s Surveillance and Control Program, VL is booming in Brazil’s large urban centers (Cardim et al., 2013; Von Zuben and Donalisio, 2016). Data from 1999 to 2017 showed that 7,328 cases of VL were reported in the state of São Paulo, and 2,858 were confirmed as autochthonous (Hiramoto et al., 2019).
The metropolitan region of São Paulo was investigated in 2007 after notification of a human case of VL, but the transmission mechanism is poorly understood (Camargo-Neves, 2008). The unregulated transportation of small animals is a risk factor, as it allows the migration of parasitized animals to non-endemic areas.

Epidemiological and entomological surveillance are of great importance to prevent the spread of parasitic diseases; much of the control of VL is concentrated on the vector *Lu. longipalpis*; however, the possibility of other sandflies acting as vectors cannot be disregarded (Galvis-Ovallos et al., 2017).

The metropolitan region of São Paulo is extremely heterogeneous in environmental, social, and economic aspects, and several significant diseases in veterinary and human medicine are neglected. Thus, further studies should be conducted with a larger number of dogs sampled from distinct areas, and vector control and educational measures put in place within the population.

ACKNOWLEDGMENTS

The authors would like to thank all dog owners that consented to participate in this study.

CONFLICT OF INTEREST

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

FINANCIAL SUPPORT

Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq [grant numbers 303288/2015-9 and 302145/2018-4], Fundação de Amparo à Pesquisa do Estado de São Paulo [grant number 2015/25592-3], and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

REFERENCES

ARAUJO AC, SILVEIRA JAG, AZEVEDO SS, NIERI-BASTOS FA, RIBEIRO MFB, LABRUNA MB, HORTA MC. *Babesia canis vogeli* infection in dogs and ticks in the semiarid region of Pernambuco, Brazil. *Pesq Vet Bras*, v. 35, p. 346-461, 2015.

AZEVEDO TS, LORENZ C, CHIARAVALLOTI-NETO F. Risk mapping of visceral leishmaniasis in Brazil. Rev Soc Bras Med Trop, v. 52, 2019.

BANETH G. Antiprotozoal treatment of canine babesiosis. Vet Parasitol, v. 254, p. 58-63, 2018.
BRAGA JFV, SILVA SMMS. Babesiose canina: uma visão geral da doença. Rev Ciênc Agrovet, v. 12, p 204-213, 2013.

CAMARGO-NEVES V. A Leishmaniose Visceral Americana no Estado de São Paulo: situação atual. São Paulo: Secretaria de Estado da Saúde de São Paulo. Bepa, v. 4, p. 12-14, 2008.

CARDIM MFM, RODAS LAC, DIBO MR, GUIRADO MM, OLIVEIRA AM, CHIARAVALLOTI-NETO F. Introdução e expansão da Leishmaniose visceral americana em humanos no estado de São Paulo. Rev Saúde Pública, v. 47, p. 691-700, 2013.

CARDIM MFM, GUIRADO MM, DIBO MR, CHIARAVALLOTI-NETO F. Visceral leishmaniasis in the state of Sao Paulo, Brazil: spatial and space-time analysis. Rev Saúde Pública, v. 50, 2016.

CARRET C, WALAS F, CARCY B, GRANDE N, PRÉCIGOUT E, MOUBRI K, SCHETTERS TP, GORENFLOTET A. *Babesia canis canis, Babesia canis vogeli, Babesia canis rossi*: Differentiation of the Three Subspecies by a Restriction Fragment Length Polymorphism Analysis on Amplified Small Subunit Ribosomal RNA Genes. J Eukaryot Microbiol, v. 46, p. 298-303, 1999.

COSTA-JUNIOR LM, ZAHLER-RINDER M, RIBEIRO MFB, REMBECK K, RABELO EML, PFISTER K, PASSOS LMF. Use of a Real Time PCR for detecting subspecies of *Babesia canis*. Vet Parasitol, v. 188, p. 160-163, 2012.

DA SILVA AS, FRANÇA RT, COSTA MM, PAIM CB, PAIM FC, DORNELLES GL, Soares JF, Labruna MB, Mazzanti CM, Monteiro SG, Lopes STA. Experimental infection with *Rangelia vitalii* in dogs: Acute phase, parasitemia, biological cycle, clinical-pathological aspects and treatment. Ex Parasitol, v. 128, p. 347-352, 2011.

DA COSTA AP, COSTA FB, SOARES HS, RAMIREZ DG, MESQUITA ETKC, GENNARI SM, MARCILI A. *Trypanosoma cruzi* and *Leishmania infantum chagasi* Infection in Wild Mammals from Maranhão State, Brazil. Vector Borne Zoonotic Dis, v. 15, p. 656-666, 2015.

FIGUEIREDO FB, LIMA-JÚNIOR FEF, TOMIO JE, INDÁ FMC, CORRÊA GLB, MADEIRA MF. Leishmaniose Visceral Canina: Dois casos autóctones no município de Florianópolis, estado de Santa Catarina. Acta Sci Vet, v. 40, p. 1-4, 2012.

GALVIS-OVALLOS F, DA SILVA MD, BISPO GBDS, DE OLIVEIRA AG, NETO JRG, MALAFRONTE RS, GALATI EAB. Canine visceral leishmaniasis in the metropolitan area of São Paulo: *Pintomyia fischeri* as potential vector of *Leishmania infantum*. Parasite, v. 24, 2017.
GONTIJO CMF, MELO MN. Leishmaniose Visceral no Brasil: quadro atual, desafios e perspectivas. Rev Bras Epidemiol, v. 7, p. 228-349, 2004.

GOTTLIEB J, ANDRÉ MR, SOARES JF, GONÇALVES LR, OLIVEIRA MT, COSTA MM, Labruna MB, Bortolini CE, Machado RZ, Vieira MIB. *Rangelia vitalii, Babesia spp.* and *Ehrlichia spp.* in dogs in Passo Fundo, state of Rio Grande do Sul, Brazil. Rev Bras Parasitol Vet, v. 25, p. 172-178, 2016.

HIRAMOTO RM, OLIVEIRA SS, RANGEL O, HENRIQUES LF, TANIGUCHI HH, BARBOSA JER, CASANOVA C, VIVIANI JUNIOR A, SAMPAIO SMP, SPINOLA R, REHDER S, LINDOSO JAL, TOLEZANO JE. Classificação epidemiológica dos municípios do Estado de São Paulo segundo o Programa de Vigilância e Controle da Leishmaniose Visceral, 2017. Bepa, v. 16, p. 11-35, 2019.

HUNFELD K, HILDEBRANDT A, GRAY J. Babesiosis: Recent insights into an ancient disease. Ínt J Parasitol, v. 38, p. 1219-1237, 2008.

LABRUNA MB. Biologica-ecologia de *Rhipicephalus sanguineus* (Acari: Ixodidae). Rev Bras Parasitol Vet, v. 13, p. 123-124, 2004.

LABRUNA MB, JORGE RSP, SANA DA, JÁCOMO ATA, KASHIVAKURA CK, FURTADO MM, FERRO C, PEREZ SA, SILVEIRA L, SANTOS JÚNIOR TS, MARQUES SR, MORATO RG, NAVA A, ADANIA CH, TEIXEIRA RHF, GOMES AAB, CONFORTI VA, AZEVEDO FCC, PRADA CS, SILVA JCR, BATISTA AF, MARVULO MFV, MORATO RLG, ALHO CJR, PINTER A, FERREIRA PM, FERREIRA F, BARROS-BATTESTI, DM. Ticks (Acari: Ixodida) on wild carnivores in Brazil. Exp Appl Acarol, v. 36, p. 149-163, 2005.

LAINSON R, RANGEL EF. *Lutzomyia longipalpis* e a eco-epidemiologia da leishmaniose visceral americana, com particular referência ao Brasil: uma revisão. Mem Inst Oswaldo Cruz, v. 100, p. 811-827, 2005.

LEMOS TD, TOMA HK, ASSAD RQ, DA SILVA AV, CORRÊA RGB, ALMOSNY NRP. Clinical and hematological evaluation of *Rangelia vitalii*-naturally infected dogs in southeastern Brazil. Rev Bras Parasitol Vet, v. 26, p. 307-313.

LEMOS TD, CERQUEIRA AMF, TOMA HK, SILVA AV, CORRÊA RGB, PALUDO GR, MASSARD CL, ALMOSNY NRP. Detecção e caracterização molecular de piroplasmas em cães naturalmente infectados no Sudeste do Brasil. Rev Bras Parasitol Vet, v. 21, p. 137-142, 2012.
LINDOSO JAL, LINDOSO AA. Neglected tropical diseases in Brazil. Rev Inst Med Trop, v. 51, p. 247-253, 2009.

LORETTI AP, BARROS SS. Infecção por Rangelia vitalli (“nambiuva”, “peste de sangue”) em caninos: revisão. MEDVEP, v. 2, p. 128-144, 2004.

MARCILI A, SPERANÇA MA, COSTA AP, MADEIRA MF, SOARES HS, SANCHES COCC, ACOSTA ICL, GIROTTO A, MINERVINO AHH, HORTA MC, SHAW JJ, GENNARI SM. Phylogenetic relationships of Leishmania species based on trypanosomatid barcode (SSU rDNA) and gGAPDH genes: Taxonomic revision of Leishmania (L.) infantum chagasi in South America. Infect Genet Evol, v. 25, p. 44-51, 2014.

MASSARD CL, FONSECA AH. Carrapatos e doenças transmitidas comuns ao homem e aos animais. AHV, v. 135, p. 15-23, 2004.

MONGRUEL ACB, IKEDA P, SOUSA KCM, BENEVENUTE JL, FALBO MK, MACHADO RZ, CARRASCO AOT, ANDRÉ MR, SEKI MC. Molecular detection of vector borne pathogens in anemic and thrombocytopenic dogs in southern Brazil. Ver, v. 27, p. 505-513, 2018.

MORAES-FILHO J, MARCILI A, NIERI-BASTOS FA, RICHTZENHAIN LJ, LABRUNA MB. Genetic analysis of ticks belonging to the Rhipicephalus sanguineus group in Latin America. Acta Tropica, v. 117, p. 51-55, 2011.

O’DWYER LH, LOPES VV, RUBINI AS, PADUAN KS, RIBOLLA PEM. Babesia spp. infecção em cães de áreas rurais do estado de São Paulo, Brasil. Rev Bras Parasitol Vet, v. 18, p. 23-26, 2009.

OLIVEIRA LPI, CARDOZO GPI, SANTOS EV, MANSUR MAB, DONINI, IAN, ZISSOU VG, ROBERTO PG, MARINS M. Molecular analysis of the rRNA genes of Babesia spp and Ehrlichia canis detected in dogs from Ribeirão Preto, Brazil. Braz J Microbiol, v. 40, p. 238-240, 2009.

PELEG O, BANETH G, EYAL O, INBAR J, HARRUS SHIMON. Multiplex real-time qPCR for the detection of Ehrlichia canis and Babesia canis vogeli. Vet Parasitol, v. 173, p. 292-299, 2010.

PINTER A, COSTA CS, HOLCMAN MM, CAMARA M, LEITE RM. A Febre Maculosa Brasileira na Região Metropolitana de São Paulo. São Paulo, SP: Secretaria de Estado da Saúde de São Paulo. Bepa, v. 13, p. 3-47, 2016.
QUADROS RM, SOARES JF, XAVIER JS, PILATI C, COSTA JL, MIOTTO BA, MILETTI LC, LABRUNA MB. Natural Infection of the Wild Canid Lycalopex gymnocercus by the Protozoan Rangelia vitalii, the Agent of Canine Rangeliosis. J Wildl Dis, v. 51, p. 787-789, 2015.

RIBEIRO CR, GONÇALVES CA, CRUZ LM, GALERA PD. Prevalência da leishmaniose visceral canina e coinfecções em região periurbana no Distrito Federal – Brasil. Ciência Anim Bras, v. 20, p. 1-8, 2019.

SAVIĆ S, VIDIĆ B, GRGIĆ Z, POTKONJAK A, SPASOJEVIC L. Emerging vector-borne diseases – incidence through vectors. Front Public Health, v.2, 2014.

SCHÖNIAN G, NASEREDDIN A, DINSE N, SCHWEYNOCH C, SCHALLIG HD, PRESBER W, JAFFE CL. PCR diagnosis and characterization of Leishmania in local and imported clinical samples. Diagn Microbiol Infect Dis, v. 47, p. 349-358, 2003.

SILVA FS. Patologia e patogênese da leishmaniose visceral canina. Revista Trópica, v. 1, p. 20, 2007.

SILVA RE, SAMPAIO BM, TONHOSOLO R, DA COSTA AP, COSTA LES, NIERI-BASTOS FA, SPERANÇA MA, MARCILI A. Exploring Leishmania infantum cathepsin as a new molecular marker for phylogenetic relationships and visceral leishmaniasis diagnosis. Bmc Infect Dis, v.19, 2019.

SOARES JF, CARVALHO L, MAYA L, DUTRA F, VENZAL JM, LABRUNA MB. Molecular detection of Rangelia vitalii in domestic dogs from Uruguay. Vet Parasitol, v. 210, p. 98-101, 2015.

SOARES JF, COSTA FB, GIROTTO-SOARES A, DA SILVA AS, FRANÇA RT, TANIWAKI AS, DALL’AGNOL B, RECK J, HAGIWARA MK, LABRUNA MB. Evaluation of the vector competence of six ixodid tick species for Rangelia vitalii (Apicomplexa, Piroplasmorida), the agent of canine rangeliosis. Ticks Tick Borne Dis, v. 9, p. 1221-1234, 2018.

SPOLIDORIO MG, TORRES MM, CAMPOS WNS, MELO ALT, IGARASHI M, AMUDE AL, LABRUNA MB, AGUIAR DM. Detecção molecular de Hepatozoon canis e Babesia canis vogeli em cães domésticos de Cuiabá, Brasil. Rev Bras Parasitol Vet, v. 20, p. 253-255, 2011.

VON ZUBEN APB, DONALÍSIO MR. Dificuldades na execução das diretrizes do Programa de Vigilância e Controle da Leishmaniose Visceral em grandes municípios brasileiros. Cad Saúde Pública, v. 32, 2016.