Genome sequencing and phylogenetic analysis of Banna virus (genus Seadornavirus, family Reoviridae) isolated from Culicoides

Song Song1,2, 3†, Yuanyuan Li2,3†, Shihong Fu2,3†, Wenwen Lei2,3, Xiaofang Guo4, Yun Feng5, Xiaoyan Gao2,3, Xiaolong Li2,3, Zhonghua Yang4, Ziqian Xu2,3, Ying He2,3, Huayu Wang2,3, Hongning Zhou1, Bin Wang1, Xiaqing Lu1* & Guodong Liang2,3†

1School of Public Health, Qingdao University, Qingdao 266071, China; 2State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; 3Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou 310058, China; 4Yunnan Institute of Parasitic Diseases, Pu’er 665000, China; 5Yunnan Institute of Endemic Disease Control and Prevention, Dali 671000, China

Received July 22, 2017; accepted September 16, 2017; published online October 26, 2017

In an investigation of blood-sucking insects and arboviruses, a virus (YN12243) was isolated from Culicoides samples collected in the Sino-Burmese border region of Yunnan Province, China. The virus caused cytopathic effect (CPE) in C6/36 cells and passaged stably. Polyacrylamide gel analysis showed that the genome of YN12243 was composed of 12 segments of double-stranded RNA (dsRNA), with a distribution pattern of 6-6. The nucleotide and amino acid sequences of the coding region (1-12 segments) were 17,803 bp and 5,925 amino acids in length, respectively. The phylogenetic analysis of VP1 protein (RdRp) revealed that YN12243 belonged to genus Seadornavirus of family Reoviridae, and further analysis indicated that YN12243 belong to the Banna virus (BAV) genotype A2. Additionally, YN12243 was located in the same evolutionary cluster as BAV strains isolated from different mosquito species, suggesting that the BAV isolated from Culicoides does not have species barriers. These results indicate that Culicoides can also be a vector for BAV. In view of the hematophagous habits of Culicoides on cattle, horses, deer, and other large animals, as well as the possibility of spreading and causing a variety of animal arboviral diseases, it is important to improve infection detection and monitor the BAV in large livestock.

Banna virus, Seadornavirus, Reoviridae, mosquito, Culicoides

INTRODUCTION

BAV was first isolated from the cerebrospinal fluid of viral cerebrospinal encephalitis patients, and from serum samples of fever patients collected from Xishuangbanna, Yunnan Province, China (Xu et al., 1990a; Xu et al., 1990b) and was named after the location in which it was first isolated. Since then, BAV has been isolated from various mosquito specimens (Liu et al., 2010), suggesting that mosquitoes are the natural vector for BAV. To date, BAV has been isolated from mosquito specimens collected in Indonesia (Brown et
al., 1993), Vietnam (Nabeshima et al., 2008), South Korea (Kim et al., 2016), as well as from many subtropical or temperate provinces of China (Gansu, Shanxi, Inner Mongolia, Liaoning, Beijing, and Yunnan) (Liu et al., 2010a; Liu et al., 2010b; Liu et al., 2011). Moreover, it was recently reported that BAV has been isolated in Hungary, which is in the northern, more temperate zone of Europe (Reuter et al., 2013). Because BAV has been isolated from a patient, and can be carried or transmitted by a variety of hematophagous vectors and vertebrates, it is considered as a “newly discovered virus” with considerable public health significance (Liu et al., 2010a; Attoui et al., 2005a).

A new virus genus, Seadornavirus genus (Attoui et al., 2005b), was established in the Reoviridae, as published in Virus Classification-International Virus Classification Committee, 8th report (issued in September 2005). The group contains three members: BAV, Liaoning virus (LNV), and Kadipiro virus (KDV). Among them, BAV can be taken as the representative virus of the group (Attoui et al., 2005b; Mohd Jaafar et al., 2005). The BAV genome is composed of 12 segments of dsRNA. Virus RNA can be isolated into 1–12 bands with different molecular weights on polyacrylamide gel electrophoresis (PAGE). BAV segment 1 encodes the virus RNA-dependent RNA polymerase (RdRp). The VP1 is a highly conserved and an important marker for species identification within the family Reoviridae. Segment 2 encodes the T2 protein, forming the innermost nucleus layer. The segment 12 is conserved and abundant sequences of it can be used to analyze (39 sequences registered in GenBank). Besides, the length of segment 12 is relatively short (670 bp), which makes it easy to obtain a full length sequence by PCR. Due to these factors mentioned above, segment 12 is commonly used for identification and evolutionary analysis of BAV (Attoui et al., 2005b; Mohd Jaafar et al., 2005).

Although BAV has been isolated from various mosquito specimens and is widely distributed in a number of countries, there has been no detailed report on the isolation of BAV from Culicoides. In this study, a virus strain (YN12243) was isolated from Culicoides samples collected in the Sino-Burmese border region of Yunnan Province, China, in 2012, and was identified as BAV according to genome sequencing and a phylogenetic analysis. The article was focused on the analysis of the biological phenotype and viral genomic characteristics of BAV isolated from Culicoides.

RESULTS

CPE

C6/36 cells were inoculated with YN12243 virus and CPE were evaluated daily. The results showed that, at 48 h after inoculation, CPE occurred, manifesting as cell aggregation and shedding. The lesion reached to 75% of CPE at 72 h (Figure 1). The YN12243 virus could be stably transferred into C6/36 cells.

Molecular identification

RNA-PAGE results indicated that YN12243 had 12 segments with a distribution pattern of 6-6. However, compared with the BAV positive control, the 5th and 6th bands of YN12243 were further apart, whereas the 7th and 8th bands were closer to the 9th band (Figure 2).

Figure 1 (Color online) Cytopathic effect of YN12243 on C6/36 (>200). A–C, Uninfected C6/36 control cells 24, 48 and 72 h, respectively. D, Infected C6/36 cells, 24 hours post-infection. E, Infected C6/36 cells, 48 hours post-infection, showing cell aggregation. F, Infected C6/36 cells, 72 hours post-infection, showing cell aggregation and detachment of infected cells.
that indicated the sequence of the whole analysis of acid amplification of BAVs (Figure B). Figure virus obtained redesigned products amplification (B). The results showed that the homology values of the YN12243 and SC043 strains were from 82.5% to 99.7% and from 91.3% to 99.7%, respectively. The homology values of the nucleotide and amino acid sequences of the YN12243 strain with multiple isolates from mosquitoes (including A1, A2, and B genotypes) were from 80.2% to 97.6% (with type A2 being the highest) and from 87.5% to 97.7% (with type B being the highest), respectively. Additionally, the homology of the genome nucleotide and amino acid sequences of YN12243 and BAVs isolated from Odonata (QTM104536) were from 67.4% to 84.3% and from 65.4% to 92.0%, respectively.

Phylogenetic analysis

To clarify the taxonomic status of YN12243, the VP1 protein (RdRp) amino acid sequences of YN12243 and 14 other viruses of the family Reoviridae were subjected to a phylogenetic analysis. The results show that YN12243 was located in the same evolutionary branch as the previously isolated BAVs, belonging to the genus Seadornavirus within the family Reoviridae, along with the Liaoan virus and the Kadipiro virus (KDV virus), thereby confirming that YN12243 was a BAV (Figure 4A). Further analysis of the molecular genetic evolution of YN12243 showed that YN12243 was an A2 genotype BAV (Figure 4B). The viruses used to construct the phylogenetic tree are shown in Tables 3 and 4.

DISCUSSION

Since the first isolation in the 1980s, BAV has been isolated from 10 mosquito species among three genera: Culex (Culex tritaeniorhynchus, Cx. pipiens pallens, Cx. modestus, Cx. annulus, and Cx. pseudovishnui), Aedes (Aedes albopictus, Ae. vexans, and Ae. dorsalis), and Anoph eles (Anopheles sinensis and An. vagus) (Liu et al., 2010a). Additionally, BAV has been isolated from mosquitoes collected in Indonesia (Brown et al., 1993), Vietnam (Nabeshima et al., 2008), and many provinces of China (from the southern Yunnan
Segment	Number	Primer	Sequence (5’→3’)	Size (bp)	Ta (annealing temperature)
Seg-1	1.1*	BAV1.1F(13-1155)	AATCACAAGGAATGGACGGTTCAG	1,142	50°C
	1.2*	BAV1.2F(876-1857)	TATGTAAGACCTCTGGTGAAG	981	50°C
	1.3*	BAV1.3R(1712-2736)	CGGTAATGTTACTACATC	1,024	52°C
	1.4*	BAV1.4R(2478-3750)	CTATCCAGGCTTTCAAGGACGT	1,272	52°C
	2.4	BAV2.4F(1849-2998)	TCCTGAATGTCAGGTCGTAAC	1,149	49°C
	2.1*	BAV2.1F(41-1176)	GCACAGTGCTAGTTCTTAA	1,135	50°C
	2.2*	BAV2.2F(1050-2020)	TAACACCATGCTATATCACC	970	49°C
	2.3*	BAV2.3F(2370-2996)	AATATATCAATAGTGTAGC	626	49°C
		BAV2.3R(2370-2996)	AGATATATGCACACTGACCATTCACA		
Seg-2	3.3	BAV3.3F(1564-2227)	AATAGGGCGGCGGTGTCGAG	663	52°C
	3.1*	BAV3.1F(39-840)	AGCACAAGTCACACCGAG	801	52°C
	3.2*	BAV3.2F(763-1638)	TCCTGTTGAATCTTCAAGGACGT	875	49°C
		BAV3.2R(763-1638)	CGTGCATGACCATATGCGCAT		
Seg-3	4.1	BAV4.1F(13-1121)	TTTTGCATACGCGCCGTGGT	1,108	52°C
	4.3	BAV4.3F(1104-1773)	TTCTTCAAGCCATGTCAGC	669	49°C
	4.1*	BAV4.1R(15-264)	AGCCTACAGGTGTTTAAAG	249	50°C
	4.2*	BAV4.2F(762-1334)	TTGACAGGCAATATATAGTGACGC	572	50°C
	4.3*	BAV4.3R(1438-1782)	ATGCAGTCAAATTGAATTACATGACG	344	50°C
Seg-4	5.2	BAV5.2F(116-1484)	TTGGTGACGTCTCCGACT	1,368	49°C
	5.1*	BAV5.1F(11-843)	ATGCCATCTCAACACCG	832	50°C
	5.2*	BAV5.2F(690-1494)	CAAATTCTAGGAAAGACCTGACA	804	52°C
		BAV5.2R(690-1494)	ACAATGAGGATATAACCTGAGC		
Seg-5	6.1	BAV6.1F(41-1644)	CTCCTGCTGTTTGTTGGAG	1,603	55°C
		BAV6.1R(41-1644)	CATTCCCCGCTTACCCCA		
Seg-6	7.1*	BAV7.1F(59-956)	GTCTAAAGCTAATTAGACG	897	52°C
	7.2*	BAV7.2F(870-1023)	AAGGCGCCGATGCTTCAAC	153	55°C
Seg-7	8.2	BAV8.2F(23-979)	CCAACAATGGCAATTAGAG	956	50°C
	8.1	BAV8.1R(39-1011)	ACCGATggCACTCGATTAC	972	50°C
		BAV8.1R(39-1011)	AAATGGGAGCACCCTCCTGAC		
Seg-8	9	BAV9F(167-1081)	GATGGTTATTGACATGGG	914	49°C
	9.1*	BAV9R(167-1081)	TCACTTCTCAAGGAGCGG	861	55°C
	10	BAV10F(31-944)	GGAGTGACTCGTTCCGACT	913	53°C
	11	BAV11F(77-619)	ATGGACCCGCTTACCCGATAC	542	53°C
	12	BAV12-854-S	AAATGGGAGCACCCTCCTGAC	850	53°C
		BAV12-854-R	TCACTTCTCAAGGAGCGG		

a) Genomic amplification of the YNI2243 virus was carried out using the published BAV genome sequence primers. The table shows 12 pairs of published primers which gains positive amplification products and 17 pairs of new primers (plus*) which designed for amplifying and sequencing the genome of YNI2243 virus.
	Culicoides													
	YN12243(BAV A2)	SC043(BAV A2)	02VN078b(BAV A1)	02VN018b(BAV A2)	JKT-6423(BAV-B)	QTM104536								
	bp (%)	aa (%)	bp (%)	aa (%)	bp (%)	aa (%)	bp (%)	aa (%)	bp (%)	aa (%)	bp (%)	aa (%)	bp (%)	aa (%)
Seg-1	3,660 (84.2%)	1,219 (94.8%)	3,660 (83.5%)	1,219 (95.32%)	3,660 (82.3%)	1,219 (95.5%)	3,660 (76.4%)	1,219 (89.8%)						
Seg-2	2,865 (82.8%)	955 (93.4%)	2,865 (81.1%)	955 (90.5%)	2,865 (80.9%)	955 (92.2%)	2,865 (77.0%)	955 (87.6%)						
Seg-3	2,163 (81.3%)	720 (90.7%)	2,163 (80.2%)	720 (88.9%)	2,163 (80.1%)	720 (87.5%)	2,163 (72.8%)	720 (77.9%)						
Seg-4	1,731 (85.2%)	577 (93.9%)	1,731 (86.2%)	577 (95.7%)	1,731 (83.5%)	577 (95.5%)	1,731 (77.6%)	629 (86.7%)						
Seg-5	1,506 (83.3%)	501 (93.1%)	1,506 (83.0%)	501 (92.4%)	1,506 (81.9%)	501 (90.8%)	1,506 (72.7%)	482 (82.0%)						
Seg-6	1,278 (84.7%)	425 (93.9%)	1,278 (82.8%)	425 (93.0%)	1,278 (83.3%)	425 (92.7%)	1,278 (75.6%)	425 (83.8%)						
Seg-7	921 (85.6%)	306 (86.9%)	921 (83.9%)	306 (89.2%)	921 (83.9%)	306 (89.9%)	921 (74.9%)	306 (74.2%)						
Seg-8	909 (83.2%)	302 (87.8%)	909 (89.4%)	302 (89.2%)	909 (88.9%)	302 (97.7%)	909 (80.1%)	302 (88.4%)						
Seg-9	852 (81.0%)	283 (84.2%)	852 (81.7%)	283 (87.0%)	852 (83.0%)	283 (88.0%)	852 (67.4%)	283 (65.4%)						
Seg-10	750 (83.1%)	249 (85.6%)	750 (84.4%)	249 (90.0%)	750 (80.9%)	249 (87.2%)	387 (68.4%)	129 (68.9%)						
Seg-11	543 (87.7%)	180 (92.8%)	543 (93.6%)	180 (96.1%)	543 (89.9%)	180 (95.0%)	543 (84.3%)	180 (92%)						
Seg-12	624 (90.7%)	207 (91.8%)	624 (97.6%)	207 (97.1%)	624 (88.1%)	207 (88.0%)	624 (80.3%)	207 (82.2%)						
Total length of genome	17,803 (82.5%–99.7%)	5,925 (91.3%–99.7%)	17,803 (81.0%–98.0%)	5,925 (80.7%–97.6%)	17,803 (80.1%–99.1%)	5,925 (87.5%–97.7%)	17,535 (67.4%–84.3%)	5,837 (65.4%–92%)						
Average	94.5%	97.3%	84.4%/ (83.9%)	90.7/ (89.5%)	85.7%	92.1%	83.9%	92.5%	75.6%	81.6%				
Figure 3 Genomic amplification of the YN12243 virus. A, PCR identification of YN12243 virus in the culture supernatant of C6/36 cells using published primers for amplifying and sequencing the whole genome of Banna virus by 1% agarose gel electrophoresis (AGE). The primer number of 2.4, 3.3, 4.1, 4.3, 5.2, 6.1, 8.2, 8.1, 9, 10, 11, 12 gain positive amplification products. B, PCR identification of YN12243 virus in the culture supernatant of C6/36 cells using 17 new pairs of primers (Table 1 plus*) which designed for amplifying and sequencing the genome of Banna virus by 1% agarose gel electrophoresis (AGE).

Table 3 Details of Reoviridaeaviruses strains used in this study

Genus	Species	Strain/Serotype	GenBank accession No.(VP1)
Orbivirus	African horsesickness virus	HS29-62/serotype1	FJ183364
Orbivirus	Bluetongue virus	BTV-21T/serotype2	JN255862
Orbivirus	Epizootic hemorrhagic disease virus	Ibaraki/serotype2	AM745077
Phytoreovirus	Rice dwarf virus	Chinese	AAB18743
Rotavirus	Rotavirus (Bovine rotavirus A)	Simian	AAC58864
Seadornavirus	Banna virus	YN12243	
Seadornavirus	Banna virus	SC043	AIF50195
Seadornavirus	Banna virus	02VN078	ACA50122
Seadornavirus	Banna virus	02VN018	ACA50110
Seadornavirus	Banna virus	JKT-6423	AAF78849
Seadornavirus	Banna virus	QTM104536	AFG79118
Seadornavirus	Kadipiro virus	JKT-7075	AAF78848
Seadornavirus	Liaoning virus	LNSV-NE9731	AAF83562
Cardoreovirus	Eriocheir sinensis reovirus	905	AAT11887
Mimoreovirus	Micromonas pusilla reovirus	MPRV	AAZ49041
Aquareovirus	Aquareovirus A (Chum salmon reovirus)	CSRV	AAL31497
Cypovirus	Dendrlymus punctatus cytoplas-mic polyhedrosis virus-1	DsCPV-1	AAAN46860
Coltivirus	Colorado tick fever virus	Florio	AAK00595
Dinovernavirus	Aedes pseudocutellaris reovirus	APRV	AAZ49068
Fijivirus	Nilaparvata lugens reovirus	Izumo	BAA08542
Mycoreovirus	Mycoroovirus1 (Cryphonectria parasitica reovirus)	9B21	AAP45577
Orthoreovirus	Mammalian orthoreovirus 1	Lang	AAA47234
Oryzavirus	Rice ragged stunt virus	Thai	AAC36456

Province to the northern Inner Mongolia Autonomous Region) (Liu et al., 2010a; Liu et al., 2011; Liu et al., 2010b). The BAVs isolated from different genera and different species of mosquitoes can apparently be clustered together, with no species barrier being apparent (Liu et al., 2010a; Liu et al., 2016b) between mosquitoes. In this paper, evolutionary
Figure 4 Phylogenetic analysis of YN12243. A, Phylogenetic tree constructed using VP1 amino acid sequences of YN12243 and other Reoviridae virus strains. B, Phylogenetic tree constructed using 12th segment coding region nucleotide sequence of YN12243 and that of other Seadornavirus strains.
Table 4 Details of Seadornavirus strains used in this study

Strain/Serotype	Year	Country	Host	GenBank accession No. (Seg-12)
SC043	2012	Yunnan, China	Culicoides sp.	KC954622
02VN180b	2002	Vietnam	Culex triaeniorhynchus	EU265727
02VN178b	2002	Vietnam	Culex triaeniorhynchus	EU265715
02VN099b	2002	Vietnam	Culex annulus	EU265682
02VN078b	2002	Vietnam	Culex triaeniorhynchus	EU265705
02VN018b	2002	Vietnam	Culex annulus	EU265694
JKT-7043	1981	Java, Indonesia	Anopheles subpictus Grassia	AF052024
JKT-6969	1981	Java, Indonesia	Culex Vagus Doenitz	AF052008
JKT-6423	1980	Java, Indonesia	Culex pseudovishnui Colless	AF019908
QTM104536	2013	China	Odonata	KX884648
LNV-NE9712	1997	Liaoning, China	Mosquitoes	NC_007747
LNV-NE97-31	1997	Liaoning, China	Mosquitoes	YJ317110
KDV-JKT-7075	NA	Java, Indonesia	Mosquitoes	AF019909
QTM-27331	2013	China	Odonata	KX884661
SX0794	2007	China	Aedes dorsalis	GQ331970
SX0765	2007	China	Culex pipiens pallens	GQ331963
SX0766	2007	China	Culex pipiens pallens	GQ331964
SX0767	2007	China	Aedes vexans	GQ331965
SX0771	2007	Shanxi, China	Culex pipiens pallens	GQ331966
SX0789	2007	Shanxi, China	Aedes dorsalis	GQ331967
SX0795	2007	Shanxi, China	Culex pipiens pallens	GQ331971
SX0796	2007	Shanxi, China	Culex pipiens pallens	GQ331972
GS42-2	2006	Gansu, China	Culex tritaeniorhynchus Giles	FJ160414
GS07-KD27	2007	China	Culex tritaeniorhynchus	GQ331958
GS07-KD29	2007	China	Aedes albopictus	GQ331959
GS07-KD30	2007	Gansu, China	Culex pipiens pallens	GQ331960
LN0684	2006	Liaoning, China	Anopheles sp.	FJ217989
LN0688	2006	Liaoning, China	Anopheles sp.	FJ217990
LN0689	2006	Liaoning, China	Anopheles sp.	FJ217991
YN0659	2006	Yunnan, China	Anopheles sinensis	FJ161965
YN0556	2005	Yunnan, China	Culex tritaeniorhynchus Giles	FJ161966
YN0558	2005	Yunnan, China	Culex tritaeniorhynchus Giles	FJ161964
YN-6	2000	Yunnan, China	Mosquitoes	AY568290
YN12243	2012	Yunnan, China	Culicoides sp.	MF141023
NM0706	2007	Inner Mongolia, China	Culex modestus	GQ331973
BJ95-75	1995	Beijing, China	Mosquitoes	AY568289
DH13M041	2013	Yunnan, China	Culex triaeniorhynchus	KR349198.1
Balaton/2010/HUN	2010	Hungary	Cyprinaceps (freshwater carp)	JX947850.1

Phylogenetic analyses of the BAV genome isolated from Culicoides (YN12243) and other mosquito samples were performed for the first time. It was found that the virus was an A2 genotype BAV. Furthermore, the genome sequence of the BAV isolated from Culicoides (SC043), which was previously registered in GenBank, was in the same evolutionary branch as the BAVs isolated from various mosquitoes. The YN12243 and SC043 viruses which belonged to A2 genotype BAV constituted a cluster based on their evolutionary characteristics (Figure 4B). However, The YN12243 and SC043 viruses were located in the different branch on the phylogenetic tree. Whether a species barrier between Culicoides and
various mosquitoes existed is difficult to determine at this stage. More samplings of BAV from Culicoides and in vivo experiments are needed.

The BAV genome (Shi et al., 2016) found in Odonata not only had different nucleotide and amino acid sequence lengths from those of the strains isolated from Culicoides and mosquitoes (Table 2), but also had different molecular genetic evolution characteristics that were intermediate between those of the Culicoides and mosquito viruses. QTM104536 occupies an independent evolutionary branch between BAVs and Banna-like viruses. Whether these results indicate that BAV isolated from Odonata is a new type of BAV or a unique genus needs further study.

Despite the common evolutionary branch of the BAV isolated from Culicoides with that isolated from various mosquitoes, there is no species barrier with respect to the vectors. Moreover, the YN12243 isolated from Culicoides has the same nucleotide and amino acid sequence lengths as the BAVs isolated from mosquitoes, and closer nucleotide and amino acid homology (Table 2). However, we were only able to obtain 50% of the amplified products of YN12243 using the whole genome amplification primers published for BAVs isolated from mosquitoes (Liu et al., 2016a), suggesting that while the nucleotide length is the same but the sequence length differs. Additionally, PAGE results showed that the distance between the segments 5 and 6 of YN12243 was significantly greater than that for mosquito isolates (Figure 2), and the distance from segments 7 and 8 to segment 9 for YN12243 was shorter than that for HB35 isolated from mosquitoes; this indicates that compared with the mosquito isolates, the Culicoides isolate not only has a difference in terms of genomic nucleotide sequence conservation, but also a different secondary or tertiary genomic structure.

BAV was first isolated from patients with fever and viral encephalitis, suggesting that it is associated with a human disease (Xu et al., 1990a; Xu et al., 1990a; Attoui et al., 2005a). Subsequent monitoring showed that serum samples of suspected Japanese encephalitis virus encephalitis cases collected from hospitals were BAV immunoglobulin M (IgM) antibody-positive at a rate of 11.4% (130/1141) (Tao and Chen, 2005). Another study showed that of 63 serum samples of patients diagnosed with viral encephalitis in the acute phase, 11 cases were positive for BAV IgM antibody and 37 cases were positive for Japanese encephalitis virus (JEV) IgM antibody; seven patients were simultaneously positive for both of the IgM antibodies (Yang et al., 1996). These findings further suggest that BAV may be associated with infection in patients with viral encephalitis. Recently, a microneutralization test was used to detect BAV-neutralizing antibody in 200 bovine serum samples and 535 pig serum samples collected from Yunnan Province, which was the initial BAV discovery site (Kou et al., 2016). The results showed that 10 pig serum samples were positive for BAV-neutralizing antibody, with antibody titers of 1:20–1:320, and 1 bovine serum sample was positive (with an antibody titer of 1:160). This was the first time that neutralization test methods were used to test animal serum samples for BAV-neutralizing antibodies (Kou et al., 2016). The results suggest that BAV not only affects humans, but can also infect pigs and cattle. Previous studies involving surveillance of insect-borne viruses in the Sino-Burmese border area over a period of more than 10 years suggested that BAV was only isolated from mosquito specimens (Wang et al., 2011; Sun et al., 2009) and not from Culicoides, it was thought that Culicoides might not carry BAV. However, BAV was isolated from Culicoides in the present study, suggesting the possibility that Culicoides carry BAV. However, whether the ability of Culicoides to carry BAV is innate, or represents a new cross-transfer ability, needs further research.

Molecular genetic evolution analysis identified BAV as a new base virus in the 1900s, with a mean nucleotide substitution rate of 2.467×10^{-4} substitutions per site per year (s/s/y); the rate was significantly higher in higher-versus lower-latitude BAV populations (Liu et al., 2016b). The results also suggested that although BAV is widely distributed in the tropics, it has evolved such that it can now survive not only in different regions of the tropics, but also in temperate regions and at higher latitudes (Liu et al., 2016b). The isolation of BAV from Culicoides indicates that Culicoides can be a vector for BAV, thereby expanding the vector range of BAV. Culicoides are blood-sucking insects distributed widely in temperate regions that have hematophagous feeding habits (on cattle, horses, deer, and other large animals). In addition, they can spread various insect-borne viruses, such as blue tongue virus and hemorrhagic fever virus, which caused an epidemic in deer. Thus, it is of great importance to improve the detection and monitoring of animal diseases caused by the spread of BAVs by Culicoides.

MATERIALS AND METHODS

Cell culture

C6/36 *Aedes albopictus* cells were stored in our laboratory. The cells were cultured in complete medium composed of 45% RMPI 1640 (Invitrogen, USA), 45% Dulbecco’s modified Eagle’s medium (DMEM), 10% fetal bovine serum (FBS; Invitrogen) and 100 U mL$^{-1}$ of penicillin and streptomycin. They were propagated and maintained at 28°C (Wang et al., 2015).

Virus

YN12243 (GenBank accession No:MF124330, MF134894, MF134895, MF141015-MF141023) was isolated from Culicoides samples collected in the Sino-Burmese border region
of Yunnan Province, China in 2012. The C6/36 cells were inoculated with YN12243 virus and cultured at 28°C. The cytopathic effect (CPE) was evaluated daily.

Virus RNA extraction and viral genomic cDNA preparation

Total RNA was extracted from 140 μL virus-infected C6/36 cell supernatant using the QIAamp Viral RNA Mini Kit (Qiagen Inc., USA) according to the manufacturer’s protocol. 32 μL RNA was added to the first-strand reaction tube provided in the Ready-To-Go You-Prime First Strand Beads kit (GE Healthcare, UK). Then, 1 μL of the random primer pd(N)6 (50 g μL−1) (TaKaRa, Japan) was added into the tube with a final volume of 33 μL. cDNA was synthesized (Wang et al., 2015; Sun et al., 2009).

dsRNA-PAGE

A 10% acrylamide (acrylamide/bisacrylamide 29:1; Bio-Rad Laboratories, USA) slab gel (Hoefer Pharmacia Biotech Inc., USA) was prepared together with a 3.5% acrylamide stacking gel (25 mmol L−1 Tris, 192 mmol L−1 glycine, pH 8.3) (Bio-Rad Laboratories). RNA was electrophoresed at room temperature and the viral dsRNA stained with silver nitrate. Virus RNA extracted as described above was subjected to dsRNA-PAGE (Wang et al., 2015).

Virus gene amplification and sequencing

Firstly, 24 pairs of primers (Liu et al., 2016) was used to amplify each segment of YN12243 virus genome. Only 12 pairs of primers gain positive amplification products. Then, the amplified sequence (YN12243) was used for primer design by the “Bridging” method, done with Primer Premier 5.0 software (Premier Biosoft International, USA), which followed the principle of primer design (The content of G+C is about 50%). The annealing temperature is about 55°C. Considering the fragment length and annealing temperature of the primer, the optimum reaction conditions for the primer were explored (Table 1) (Wang et al., 2015; Liu et al., 2016).

A 25-μL reaction was prepared using cDNA as a template, upstream and downstream primers (Tsingke, Beijing), GoTaq® Green Master Mix, 2× (Promega, USA). Reverse transcription polymerase chain reaction (RT-PCR) was performed using a Mastercycler instrument (Eppendorf, Germany). The amplification conditions were as follows: 95°C pre-denaturation for 5 min, and 35 cycles of 94°C for 30 s, the annealing temperature (Table 1) for 30 s, and 72°C for 60 s, followed by a final extension at 72°C for 10 min. After the PCR reaction was complete, 5 μL of the PCR products was used to detect the amplification products by 1% agarose gel electrophoresis. Products were purified using the QIAquick Gel Extraction Kit (Qiagen, Germany) and sub-cloned into the pGEM-Teasy vector (Promega) for sequencing analysis. The sequence was checked by BLAST search against the National Center for Biotechnology Information (NCBI) database and virus genes were identified (Wang et al., 2015; Liu et al., 2016a).

Sequence analysis

The nucleotide sequences of the BAV genome-protein-encoding regions in GenBank, which were isolated from different countries, vectors and host animals, and the nucleotide sequence information (Table 2) of the BAV (YN12243) obtained in this study were used for a phylogenetic analysis of the BAV genome. The SeqMan software (DNASTar, USA) was used for assembly and quality analysis of the sequencing results of the YN12243 virus strain. BioEdit (ver. 7.0.5.3; http://www.mbio.ncsu.edu/BioEdit/bioedit.html) was used for multiple sequence alignment. The MEGA 6.0 was used to perform a system evolution analysis, based on the neighbor-joining (NJ) method and with the bootstrap value set to 1,000 (Li et al., 2015). Differential alignment and homology analyses of nucleotide and amino acid sequences were done using GeneDoc and MegAlign software (DNAStar) (Liu et al., 2016a; Attoui et al., 2000; Lu et al., 2016; Deng et al., 2016).

Compliance and ethics The author(s) declare that they have no conflict of interest.

Acknowledgements This work was supported by the National Natural Science Foundation of China (81203042, 81501757), the Special National Project on Research and Development of Key Biosafety Technologies (2016YFC1201904), the National Key Plan for Scientific Research and Development of China (2016YFD0500300) and the development grants of State Key Laboratory of Infectious Disease Prevention and Control (2014 SKLDJ103, 2015SKLDJ050).

Attoui, H., Billoir, F., Biagini, P., de Micco, P., and de Lamballerie, X. (2000). Complete sequence determination and genetic analysis of Banna virus and Kadipiro virus: proposal for assignment to a new genus (Seadornavirus) within the family Reoviridae. J Gen Virol 81, 1507–1515.

Attoui, H., Mohd Jaafar, F., de Micco, P., and de Lamballerie, X. (2005a). Coltiviruses and Seadornaviruses in North America, Europe, and Asia. Emerg Infect Dis 11, 1673–1679.

Attoui, H., Mohd Jaafar, F., de Lamballerie, X., and Mertens, P.P. (2005b). Seadornavirus, Reoviridae. In: Eighth Report of the International Committee on Taxonomy of Viruses, C.M., Fauquet, M.A., Mayo, J., Maniloff, U., Desselberger, and L.A., Ball, eds. (London: Elsevier Academic Press), pp. 504–510.

Brown, S.E., Gorman, B.M., Tesh, R.B., and Knudson, D.L. (1993). Coltiviruses isolated from mosquitoes collected in Indonesia. Virology 196, 363–367.

Kim, H.K., Yoon, S.W., Kim, D.J., Koo, B.S., Noh, J.Y., Kim, J.H., Choi, Y.G., Na, W., Chang, K.T., Song, D., and Jeong, D.G. (2016). Detection of severe acute respiratory syndrome-like, middle east respiratory syndrome-like bat coronaviruses and group H rotaviruses in faeces of Korean Bats. Transbound Emerg Dis 63, 365–372.

Deng, Y.Q., Zhao, H., Li, X.F., Zhang, N.N., Liu, Z.Y., Jiang, T., Gu, D.Y., Shi, L., He, J.A., Wang, H.J., Sun, Z.Z., Ye, Q., Xie, D.Y., Cao, W.C., and Qin, C.F. (2016). Isolation, identification and genomic characterization of the Asian lineage Zika virus imported to China. Sci China Life Sci 59,
Kou, M., Zhu, J., Yang, H., Xiao, L., Wang, J., Miao, H., Wang, J., and Li, H. (2016). First isolation and identification of Banna virus from Culicoides pools in Yunnan (in Chinese). Chin J Exp Clin Virol 30, 1–4.

Li, Z., Qi, X.L., Ren, X.G., Cui, L., Wang, X.M., and Zhu, P. (2015). Molecular characteristics and evolutionary analysis of a very virulent infectious bursal disease virus. Sci China Life Sci 58, 731–738.

Liu, H., and Liang, G. (2010a). Banna virus and its infection (in Chinese). Chin J Vector Biol Control 21, 500–502.

Liu, H., Li, M.H., Zhao, Y.G., Meng, W.S., Sun, X.H., Cao, Y.X., Fu, S.H., Wang, H.Y., Xu, L.H., Tang, Q., and Liang, G.D. (2010b). Banna virus, China, 1987–2007. Emerg Infect Dis 16, 514–517.

Liu, H., Gao, X., and Liang, G. (2011). Newly recognized mosquito-associated viruses in mainland China, in the last two decades. Virol J 8, 68.

Liu, H., and Liang, G.D. (2016a). The genotype A specific primers for amplifying and sequencing the whole genome of Banna virus (in Chinese). Chin J Vector Biol Control 27, 533–538.

Liu, H., Gao, X.Y., Fu, S.H., Li, M.H., Zhao, Y.G., Meng, W.S., Sun, X.H., Lv, Z., Wang, H.Y., Shen, X.X., Cao, Y.X., He, Y., and Liang, G.D. (2016b). Molecular evolution of emerging Banna virus. Infect Genet Evol 45, 250–255.

Lu, S., Zhang, D., Zhou, J., Xia, Z., Lin, D., Lou, Y., Tan, W., and Qin, K. (2016). Prevalence and phylogenetic characterization of canine coronavirus from diseased pet dogs in Beijing, China. Sci China Life Sci 59, 860–862.

Mohd Jaafer, F., Attoui, H., Mertens, P.P.C., de Micco, P., and de Lamballerie, X. (2005). Structural organization of an encephalitic human isolate of Banna virus (genus Seadornavirus, family Reoviridae). J General Virol 86, 1147–1157.

Nabeshima, T., Thi Nga, P., Guillermo, P., Parquet, M.C., Yu, F., Thanh Thuy, N., Minh Trang, B., Tran Hien, N., Sinh Nam, V., Inoue, S., Hasebe, F., and Morita, K. (2008). Isolation and molecular characterization of Banna virus from mosquitoes, Vietnam. Emerg Infect Dis 14, 1276–1279.

Reuter, G., Boros, A., Delwart, E., and Pankovics, P. (2013). Novel Seadornavirus (family Reoviridae) related to Banna virus in Europe. Arch Virol 158, 2163–2167.

Shi, M., Lin, X.D., Tian, J.H., Chen, L.J., Chen, X., Li, C.X., Qin, X.C., Li, J., Cao, J.P., Eden, J.S., Buchmann, J., Wang, W., Xu, J., Holmes, E.C., and Zhang, Y.Z. (2016). Redefining the invertebrate RNA virophage. Nature 540, 539–543.

Sun, S., Yu, S., Song, Z., Ge, J., Meng, W., Feng, Y., Wang, J., Zhai, Y., Wang, H., Nasci, R., Wang, H., Tang, Q., and Liang, G. (2009). Distribution of arboviruses and mosquitoes in northwestern Yunnan Province, China. Vector-Borne Zoonotic Dis 9, 623–630.

Tao, S.J., and Chen, B.Q. (2005). Studies of Coltivirus in China. Chin Med J (Engl) 118, 581–586.

Wang, J., Zhang, H., Sun, X., Fu, S., Wang, H., Feng, Y., Wang, H., and Liang G.D. (2011). Distribution of mosquitoes and mosquito-borne arboviruses in Yunnan Province near the China-Myanmar-Laos border. Am J Trop Med Hyg 84, 738–746.

Wang, J., Li, H., He, Y., Zhou, Y., Meng, J., Zhu, W., Chen, H., Liao, D., and Man, Y. (2015). Isolation and genetic characterization of Mangshi virus: a newly discovered Seadornavirus of the Reoviridae family found in Yunnan Province, China. PLoS ONE 10, e0143601.

Xu, P., Wang, Y., Zuo, J., Lin, J., and Xu, P. (1990a). New orbiviruses isolated from patients with unknown fever and encephalitis in Yunnan province (in Chinese). Chin J Virol 6, 27–33.

Xu, P., Wang, Y., Zuo, J., Che, Y., Peng, H., Huang, Z., Tang, G., and Xu, P. (1990b). Recovery of the same type of virus as human new orbivirus (in Chinese). Chin J Virol 6, 328–332.

Yang, J.M., Yin, G.Q., Feng, Y.H., Luo, Z.Y., and Jiao, J.F. (1996). Co-infection of Coltivirus and Japanese encephalitis virus (in Chinese). J Nanjing Railway Med College 15, 169.