Electromagnetic sensing and infiltration measurements to evaluate turfgrass salinity and reclamation

Gülüzar Duygu Semiz, Donald L. Suarez & Scott M. Lesch

Scarcely freshwater resources in arid and semi-arid regions mean that recreational landscapes should use recycled or low-quality waters for irrigation, increasing the risk of salinity and infiltration problems. We map salinity distribution within turf fields using electromagnetic sensing, evaluate need for leaching and evaluate post leaching results for subsequent management decisions.

Electromagnetic measurements were made with two EM38 instruments positioned vertically and horizontally in order to determine salinity distribution. Sensor readings were coupled to GPS data to create spatial salinity maps. Next, optimal calibration point coordinates were determined via Electrical Conductivity Sampling Assessment and Prediction (ESAP) software. Soil samples from 0–15 and 15–30 cm depths were used for each calibration point. Laboratory soil saturation percentage, moisture content, electrical conductivity (EC$_s$) and pH$_e$ of saturation extracts were determined for calibration to convert resistivity measurements to EC$_e$. Next, EC$_e$ maps were created using ESAP software. Leaching for reclamation was performed by means of sprinkling. Treated municipal wastewater was utilized both for irrigation and for reclamation leaching. Low water content and high spatial variability of soil texture adversely affected the accuracy of the readings. Pre and post leaching surveys indicate that in one fairway there was only a 43% and 58% decrease in soil salinity at 0–15 and 15–30 cm depths, respectively which is very low relative to expected results considering the amount of water applied. This relatively low reduction in salinity and the lack of runoff during irrigation combined with infiltration measurements suggests that aeration techniques for healthier grasses led to water bypassing small pores thus limiting leaching efficiency. In this instance practices to improve infiltration lead paradoxically to less salinity reclamation than expected.

Scarce freshwater supplies in arid and semi-arid regions means that whenever possible more saline lower quality waters should be used in agriculture, saving fresh water for municipal use. This substitution of lower quality water is especially feasible when biomass yield is not important, such as with recreational turfgrass. Use of these waters requires careful monitoring of salinity. Assessment of soil salinity has been determined in a number of ways: (i) plant observations, (ii) the electrical conductance of soil solution extracted via soil water extractors (iii) the electrical conductivity (EC) of water obtained by collecting soil samples, adding varying amounts of water to each sample and then extracting, (iv) in situ measurement of electrical resistivity (ER), (v) non-invasive determination of EC with electromagnetic induction (EMI), and most recently (vi) in situ determination of EC with time domain reflectometry (TDR). The techniques of ER, EMI, and TDR measure bulk soil (combined solid and liquid phase) electrical conductance, termed EC$_a$.

Compared to other methods, EMI measurements generate both spatially and temporally highly efficient data. However, in contrast to the other methods EMI and ER have the disadvantage of requiring calibration to convert the soil EC$_a$ data to soil water or saturation extract EC (EC$_e$).

In the last 20 years, scientists have made advances to better understand the best application procedure for measuring soil salinity, water in soil pores, soil texture and depth etc. By identifying the complexities of EC$_a$ measurement and how to deal with them, Corwin and Lesch provided guidelines for the use of EC$_a$ in agriculture. EM38 is a tool that measures EC$_a$ value to a depth of approximately 0.75–1.5 m depth of the soil profile.
Table 1. Soil salinity at the sampling points for pre and post leaching for fairway 16. Sites 110 and 217 could not be analyzed (no-pre leaching samples), due to insufficient residual soil volumes (for analysis).

Sample point	Depth (cm)	Pre leaching ECe (dS m\(^{-1}\))	Post leaching ECe (dS m\(^{-1}\))
18	0–15	5.68	7.28
	15–30	10.90	2.39
57	0–15	20.5	5.11
	15–30	10.3	11.57
87	0–15	6.7	1.93
	15–30	2.5	1.36
155	0–15	13.2	8.84
	15–30	9.4	1.26
164	0–15	18.8	9.35
	15–30	9.9	2.66
263	0–15	10.43	6.44
	15–30	8.55	7.19
268	0–15	6.27	3.34
	15–30	6.96	2.05
350	0–15	16.58	13.53
	15–30	36.10	11.32

Soil salinity varies from ECe 5.68 to 20.5 dS m\(^{-1}\) in the 0–15 cm depth and from ECe 2.5 to 36.1 dS m\(^{-1}\) in the 15–30 cm samples. The reference crop evapotranspiration (ET\(_0\)) during July was 5.55 mm day\(^{-1}\) (CMIS station 75) with regular irrigation application averaging 3.9 mm day\(^{-1}\). Water application was thus 70% of potential ET. Under irrigation would result in slower growth and reduced plant density but by itself does not explain the poor turf status observed at the start of the study.

Results

Leaching. The reference crop evapotranspiration (ET\(_0\)) during July was 5.55 mm day\(^{-1}\) (CMIS station 75) with regular irrigation application averaging 3.9 mm day\(^{-1}\). Water application was thus 70% of potential ET. Under irrigation would result in slower growth and reduced plant density but by itself does not explain the poor turf status observed at the start of the study.

Soil samples, fairway 16. The salinity values for the soil cores taken in fairway 16 (Table 1) show a wide range in EC, varying from ECe 5.68 to 20.5 dS m\(^{-1}\) in the 0–15 cm depth and from ECe 2.5 to 36.1 dS m\(^{-1}\) in the 15–30 cm samples. Mean salinity level for the soil samples collected from fairway 16 before leaching was ECe 12.27 and 11.83 dS m\(^{-1}\) for 0–15 and 15–30 cm depth respectively. These samples can be considered biased in that the sample locations were not random but rather selected by the ESAP software to capture the variability observed in the EMa maps.
After leaching the mean salinity level for fairway 16 was 6.98 and 4.98 dS m\(^{-1}\) for 0–15 and 15–30 cm respectively (based on data in Table 1). The reduction in average soil salinity is statistically significant \(p < 0.05\). The salinity based on soil cores decreased by 43% for the 0–15 cm depth and by 58% for the 15–30 cm depth after application of 153 mm of water.

Field survey and salinity mapping. The \(EC_e\) results of the soil samples for both pre- and post-leaching of fairway 16, given in Table 1 and the results from fairway 12 in Table 2 were used to calibrate the EM-38 data (\(EC_a\) readings) for conversion into \(EC_e\) maps. We used a standard multiple linear regression (MLR) model defined as below.

\[
\ln(\text{EC}_e) = \beta_0 + \beta_1 \ln(\text{EM}_v) + \beta_2 \ln(\text{EM}_h),
\]

where \(\text{EC}_e\) is the soil salinity, \(\text{EM}_v\) and \(\text{EM}_h\) are the vertical and horizontal reading respectively, and \(\beta_0, \beta_1, \) and \(\beta_2\) are model parameters. Data were further corrected for variations in water content based on water content of the soil samples via ESAP.

Fairway 16 pre and post leaching EM38 data exhibit very high spatial consistency. Post leaching average EM levels increase slightly relative to pre leaching values (\(\text{EM}_v\): 77.5 to 80.0 mS m\(^{-1}\); \(\text{EM}_h\): 62.6 to 72.3 mS m\(^{-1}\)). Both apparent reductions in EM readings are statistically significant (\(p < 0.05\)). The 15–30 cm salinity appears lower than the 0–15 cm salinity levels.

As shown in Fig. 1a in the salinity map for fairway 16, there was considerable variation in salinity in the 0–15 cm depth with about 50% of the fairway above \(\text{EC}_e = 5\) dS m\(^{-1}\) and an extensive area above \(\text{EC}_e = 18\) dS m\(^{-1}\) a value where the turf would be severely impacted. The salinity map for 15–30 cm depth (Fig. 1b) shows reduced salinity relative to the soil surface, suggesting a lack of sufficient leaching with current irrigation regime, consistent with the measured water applications being below ET. At both depths the salinity is greater in the lower (southern) portion of the fairway suggesting the potential for differential leaching in these two regions.

Based on the \(EC_e\) map generated for fairway 12, we calculate that 10% of the fairway had an \(EC_e\) greater than 6.9 dS m\(^{-1}\) at 15–30 cm depth thus less than 10% had salinity levels that would cause either significant reduction in growth or unacceptable turf appearance. In this fairway most of the poor turf condition is attributed to shallow soil with insufficient water holding capacity, resulting in likely water stress between irrigations. The detailed \(EC_e\) map based on the EM survey is shown in Fig. 2a,b for 0–15 and 15–30 cm depth, respectively, providing information on the spatial distribution of the salinity.

Table 2. Soil salinity at the sampling points for pre and post leaching for fairway 12.

Sample point	Depth (cm)	Pre-leaching \(\text{EC}_e\) (dS m\(^{-1}\))	Post-leaching \(\text{EC}_e\) (dS m\(^{-1}\))
11	0–15	10.47	13.90
	15–30	8.66	9.22
47	0–15	19.52	4.81
	15–30	4.90	4.78
94	0–15	6.62	2.50
	15–30	15.13	5.65
168	0–15	9.54	2.66
	15–30	9.07	2.27
188	0–15	2.94	5.33
	15–30	1.22	5.9
214	0–15	13.27	8.88
	15–30	6.28	2.93
218	0–15	2.37	3.93
	15–30	2.35	2.43
279	0–15	13.82	2.13
	15–30	10.98	1.32
303	0–15	2.7	5.59
	15–30	2.4	2.26
345	0–15	3.32	3.21
	15–30	2.22	3.18
The measured infiltration rate based on the Guelph permeameters varied between 3.5 to 264 mm h\(^{-1}\) with a mean value of 76 mm h\(^{-1}\) at the soil surface and between 1.5 and 0.3 with a mean value of 1.11 mm h\(^{-1}\). Most of the field is estimated to have an infiltration rate lower than the sprinkler application rate 17 mm h\(^{-1}\). There was no evidence of surface runoff during irrigation.

Discussion

The 15–30 cm salinity on Fairway 16 before reclamation was lower than the 0–15 cm salinity levels based on both the salinity survey and the soil cores. This suggests either preferential flow/by pass in the near surface environment and or under irrigation. The pre-leaching salinity levels in fairway 16 are high enough to cause a decrease in visual quality of Bermuda grass hence the decision to attempt reclamation by leaching the soil. Bermuda grass has a salinity threshold level of EC\(_e\) 6.9 dS m\(^{-1}\) above which there is loss of vegetative growth\(^2\) but not until EC\(_e\) 15 dS m\(^{-1}\) does the grass drop below a rating of 6 for visual quality\(^2\) and growth is reduced by 50%\(^2\). Xiang et al.\(^2\), documented a drop in live green cover for several Bermuda grasses from greater than 80% cover at EC below 15 dS m\(^{-1}\) to less than 50% cover at EC above 15 dS m\(^{-1}\)\(^2\).

The soil salinity in fairway 16 after reclamation leaching with 153 mm of water decreased by 43% for the 0–15 cm depth and by 58% for the 15–30 cm depth after application. This suggests inefficient leaching because the expected decrease in salinity would be predicted to be much greater than observed, especially for the 0–15 cm depth. We used the relations given by Keren and Miyamoto\(^2\) for intermittent ponding but added correction for the EC of the irrigation water. The calculated depth of leaching water divided by soil depth, 2.28 dS m\(^{-1}\) for 0–15 cm and 2.88 for 15–30 cm depth, after correction for EC of irrigation water, should have resulted in salinity level decreases of 81% and 76% respectively or mean EC\(_e\) values of 2.28 and 2.88 dS m\(^{-1}\), respectively.

The limited effect of water application on soil salinity is attributed to water bypass. Macropore flows of leaching water result in water and solute bypass in the saline soil matrix, resulting in reduced leaching efficiency\(^2\). This hypothesis is reinforced by the relatively poor leaching in the 0–15 cm depth as compared to leaching in the 15–30 cm depth, as well as the use of mechanical aeration paradoxically utilized to improve water penetration. Macropores lead to increase preferential flow, infiltration rates and to decrease surface runoff\(^2\). Mechanical aeration creates large macropores that restrict surface leaching as a result of lower contact time in the root zone.

Post leaching, the mean salinity level of the fairway was well below the threshold level at which Bermuda grass would be affected\(^2\). However, the limitation of using mean values is indicated by the EC\(_e\) maps for fairway...
as many regions of the fairway were still adversely affected by salinity at both 0–15 and 15–30 cm depth. The salinity maps were generated by dividing the calculated ECe values into quartile salinity distributions. Comparing Fig. 1a, (pre-leaching) and Fig. 1c (post leaching) for the 0–15 cm depths, we note the striking similarity of the spatial distribution or salinity patterns. The salinity levels were reduced in all areas, but the higher salinity areas remained higher after leaching. In this instance we see the potential benefit of site-specific management (leaching) but unfortunately the current irrigation system could not be easily modified to use the leaching water more effectively.

16 (Fig. 1c,d), as many regions of the fairway were still adversely affected by salinity at both 0–15 and 15–30 cm depth. The salinity maps were generated by dividing the calculated ECe values into quartile salinity distributions. Comparing Fig. 1a, (pre-leaching) and Fig. 1c (post leaching) for the 0–15 cm depths, we note the striking similarity of the spatial distribution or salinity patterns. The salinity levels were reduced in all areas, but the higher salinity areas remained higher after leaching. In this instance we see the potential benefit of site-specific management (leaching) but unfortunately the current irrigation system could not be easily modified to use the leaching water more effectively.

Fairway 12 demonstrated a similar response to leaching as fairway 16 did to leaching. The 37.5% and 36.9% reduction in average salinity for the 0–15 cm and 15–30 cm soil depths, respectively were again much less than expected (82% and 73%) based on applied water26, suggesting as was the case in fairway 16, that water bypass limited salinity leaching27, 28, especially in the 0–15 cm depth. Fairway 12 received more leaching water than
fairway 16 and thus should have been more extensively leached. The mean salinity levels are below the threshold level at which Bermuda grass would be affected by salinity. There was no evidence of surface runoff during irrigation. It seems reasonable that some water redistribution might occur during irrigation, but this is not sufficient to explain the lack of complete leaching that would be expected for the 0–15 cm depth after 264 mm of leaching water according to relations given by Keren and Miyamoto26, corrected for irrigation water salinity. The expected salinity of EC_s = 1.51 dS m⁻¹ would be in equilibrium with the irrigation water salinity. We did not observe surface runoff despite the water application rate exceeding the permeameter measured infiltration rates. Also, there was no evidence of surface erosion despite slopes exceeding 5% in some areas. All permeameter values were below the irrigation rate at the 15–30 cm depth. As with fairway 16, we can only consider that concurrent aeration practices resulted in large macropore flow. The poor turf quality in this fairway is likely the result of water bypass at the surface resulting in intermittent water stress between irrigation events rather than elevated salinity.

Conclusion
Soil salinity is temporally variable and exhibits a complex pattern in the field that cannot be easily captured by conventional soil sampling. Traditional assessment of soil salinity in the field scale is very time consuming and labor dependent on both laboratory and field studies. The sensing equipment is demonstrated to provide detailed and relatively rapid mapping, but accurate calibration is not always simple. Accurate mapping requires site specific calibration and may still fail to provide a good calibration between soil samples and sensor readings. In this study, we briefly describe the current best approaches for calibration and evaluate the methodology for a field study with EM survey and data actuation for grass landscapes. In regions with water shortages, such as Southern California, USA, the spatial distribution of salinity is extremely important for reducing the amount of leaching water where reclamation is needed. In these areas water is scarce and leaching water expensive. Site-specific leaching on landscapes can reduce irrigation and leaching costs but is limited as most current irrigation systems do not have the flexibility to preferentially leach portions of a field or golf fairway. This study focused on creating and interpreting salinity maps before and after leaching in a landscape vegetation (golf course) that was considered to have salinity problems with different water applications on two different fairways. Efficacy of leaching was evaluated and likely factors impeding salinity reduction identified, specifically aeration. Aeration improved water penetration but ironically impeded salt leaching as it caused water to bypass the shallow soil depths. The analysis enables management changes to improve turfgrass quality. In one instance the likely cause of poor turf quality is attributed to low water holding capacity of a shallow soil and insufficient irrigation frequency. In future reclamation studies, the impact of soil disturbance (tillage and aeration) on salinity leaching should be further examined especially in light of the need to limit quantities of water used for leaching. Increasing water infiltration may not efficiently reduce soil salinity.

Materials and methods
Site description and irrigation water quality. This study was carried out in Dove Canyon Golf Course in Trabuco Canyon, California, US.

The main grass species in the fairways at the golf course is bermuda grass (Cynodon dactylon L.). Treated municipal wastewater has been used as irrigation water source. As analyzed, the water has an ECₜ of 1.32 dS m⁻¹ and a SAR (sodium adsorption ratio defined as Na⁺[(Ca²⁺ + Mg²⁺)/2] where units are mmol, L⁻¹) of 4.2 with cation composition of Na⁺ = 7.65, Ca²⁺ = 3.79, and Mg²⁺ = 4.51, where units are mmol, L⁻¹. This salinity level is acceptable for bermuda grass irrigation under good salinity management practices. Salinity tolerance of bermuda grass (Cynodon spp.) can vary greatly among different bermudagrass cultivars or phenotypes27. Bermuda grass is reported to be moderately salt sensitive (ECₜ, 3–6 dS m⁻¹) or moderately tolerant (6–10 dS m⁻¹) depending on the cultivar examined28. Grieve et al.21, list the threshold EC at which growth decreases as 6.9 dS m⁻¹.

Fairways 12 and 16 were evaluated for salinity effects as both had visible signs of stress and reduced vegetative cover. Sprinklers used for irrigation at the golf course had a theoretical application rate of 19.1 mm h⁻¹. Based on catch-can tests, the measured application rate was 17.2 mm h⁻¹, hence all water applications based on irrigation time were corrected by a factor of 0.90.

Salinity survey and sampling design. Salinity assessment was carried out by means of a mobile unit (Fig. 3a) with an EM38 instrument positioned vertically and horizontally in order to read both conductivity data at the same time (Fig. 3b). The EM, (vertical) reading penetrates to a depth of approximately 1.2–1.5 m, while the EMₜ (horizontal) reading penetrates to approximately 0.60–0.75 m30. The ESAP-95 program18–20 was used to process the EM38 survey data and generate sampling plans for calibration using saturation extracts from soil cores. The algorithm in this program selects a limited set of calibration sites with desirable spatial and statistical characteristics based on analysis of ECₜ values and survey site location information using response surface design techniques30. Critical evaluation of response surface design and a unified sampling and modeling strategy for predicting soil property information from spatially referenced sensor data has been presented in detail by Lesch31. Thus, after collection and preliminary analysis of the electromagnetic induction signal data we collected sample soil cores from various locations within the field as indicated by the ESAP software. The accuracy of the salinity survey thus depends on the accuracy and precision used in both the survey and profile data acquisition processes, in addition to the correlation between these two data sets.

Soil sampling and mapping. The ESAP software package identifies the optimal locations for soil sample sites from the ECₜ survey data. These sites are selected based on spatial statistics to reflect the observed spatial variability in ECₜ survey measurements. Generally, 6 to 20 sites are selected depending on the level of variability of the ECₜ measurements for a site. The optimal locations of a minimal subset of ECₜ survey sites are identified to
obtain soil samples. According to the EM38 readings and ESAP program outputs, 60 cm deep column samples, or until bedrock was reached) were taken from the 10 calibration points per fairway (Fig. 4). The columns were divided into 0–15, 15–30, 30–45 and 45–60 cm depths and then analyzed for water content, saturation percentage, ECe and pH, and major cation composition according to standard methods and cations by PerkinElmer Optima 3300DV.

ICP OES (inductively coupled plasma optical emission spectroscopy-PerkinElmer Corp, Waltham, MA, USA). Salinity maps were created with the ESAP-SaltMapper program using output prediction data files created via the ESAP-Calibrate module. Utilizing ESAP-SaltMapper Raster Image Map main menu, data interpolation was performed using on-screen interpolation controls. This step includes specifying map variable (color), kernel size, cut-off levels, and scale factor. Inverse distance weighting (IDW) was used as interpolation method. This procedure was repeated at the same sites for post-leaching salinity analysis. A paired t-test was applied to statistically assess the changes between the pre-versus post-leaching salinity levels. At selected sites in each fairway, we utilized Guelph permeameters to measure hydraulic conductivity using the site irrigation water.

The soil sampling design shown in Fig. 4a,b for fairway 16 and 12 respectively were generated by ESAP based on the initial EM-38 survey.

Leaching. The initial extra water event for soil reclamation was initiated on 7/16–7/19 (4 nights and 3 days). Sprinklers were run on 20 min cycles, with at least a 20-min period in between each cycle. The calculated applied water for the 7/16–7/19 leaching event was 152.8 mm. In addition, 11.7 mm of water were applied during this period to compensate for ET. Leaching water was the same source as irrigation water; municipal treated wastewater. In addition to these EM 38 measurements, we also collected soil samples and infiltration data for fairway 12 after leaching with an additional 101 mm of water.

Field survey and salinity mapping. The salinity survey was divided into two parts, pre-leaching, and post-leaching surveys. In the pre-leaching survey, EM38 readings (both EMv and EMh data) were saved simultaneously with GPS data on a data logger mounted on the vehicle (Fig. 3a), thus each reading was associated with spatial data. After the transect readings and GPS data were collected, The ESAP RSSD module was run to develop the sampling design. The program determined 10 sampling points as shown in Fig. 4 for fairway 16 with GPS coordinates. We navigated to each sampling coordinates and collected soil cores by means of a hydraulic soil corer attached to the vehicle (Fig. 3b). The system had a metallic column to break down the soil's mechanic resistance and a plastic column sleeve inside to take the soil samples. Totally, 10 plastic columns with a height of up to 60 cm were taken to the lab from each fairway.

The results of the soil analyses and the EM data were run on ESAP module CALIBRATE and then the program generated outputs via ESAP SALTMAPPER module as ECe salinity maps and ASCII data. We utilized only the 0–15 and 15–30 cm soil data for analysis and interpretation. At many locations soil depth was less than 45 cm thus comprehensive data on the spatial distribution of salinity at 30–45 and 45–60 cm depth could not be obtained. Restriction of the analysis to the 0–30 cm depth is not a problem because turfgrass roots are concentrated in the 0–30 cm depth. These same processes including EM38 transect readings and use of ESAP- SALTMAPPER were carried out after leaching (post-leaching).

Received: 19 April 2021; Accepted: 25 February 2022
Published online: 24 March 2022

References

1. Corwin, D. L. & Lesch, S. M. Apparent soil electrical conductivity measurements in agriculture. *Comput. Electron. Agric.* **46**, 11–43 (2005).
2. Akrakhanov, A., Lamers, J. P. A. & Martius, C. Conversion factors to estimate soil salinity based on electrical conductivity for soils in Khorezm region, Uzbekistan. In Sustainable Management of Saline Waters and Salt-Affected Soils for Agriculture (ed. Qadir, S. et al.) 19–25 (Syria, 2009).
3. Boettinger, J. L., Doolittle, J. A., West, N. E., Bork, E. W. & Schupp, E. W. Nondestructive assessment of rangeland soil depth to petrocalcic horizon using electromagnetic induction. *Arid. Land Res. Manag.* 11, 372–390 (1997).
4. Herrera, J., Ba, A. A. & Aragües, R. Soil salinity and its distribution determined by soil sampling and electromagnetic techniques. *Soil Use Manag.* 19, 119–126 (2003).
5. Corwin, D. L. Past, present, and future trends in soil electrical conductivity measurements using geophysical methods. In *Handbook of Agricultural Geophysics* (eds. Allred, B. J., Daniels, J. J. & Ehsani, M. R.) 17–44 (Boca Raton, 2008).
6. Triantafillou, J., Lesch, S. M., La Lau, K. & Buchanan, S. M. Field level digital mapping of cation exchange capacity using electromagnetic induction and a hierarchical spatial regression model. *Aust. J. Soil Res.* 47, 651–663 (2009).
7. Lardo, E., Arous, A., Palese, A. M., Nuzzo, V. & Celano, G. Electromagnetic induction: A support tool for the evaluation of soil CO₂ emissions and soil organic carbon content in olive orchards under semi-arid conditions. *Geoderma* 264, 188–194 (2016).
8. Yao, R. J. et al. Geostatistical monitoring of soil carbon content for precision management using proximally sensed electromagnetic induction (EMI) method. *Environ. Earth Sci.* 75(20), 1362. https://doi.org/10.1007/s12665-016-6179-2 (2016).
9. Corwin, D. L. & Lesch, S. M. Protocols and guidelines for field-scale measurement of soil salinity distribution with ECa-directed soil sampling. *J. Environ. Eng. Geophys.* 18(1), 1–25 (2013).
10. Heil, K. & Schmidhalter, U. The application of EM38: Determination of soil parameters, selection of soil sampling points and use in agriculture and archaeology. *Sensors.* 17, 2540 (2017).
11. Rhoades, J. D., Corwin, D. L. & Lesch, S. M. Geospatial measurements of soil electrical conductivity to assess soil salinity and diffuse salt loading from irrigation. In *Assessment of Non-point Source Pollution in the Vadose Zone* (eds. Corwin, D. L., Loague, K. & Ellsworth, T. R.) 197–215 (Geophysical Monograph, 1999).
12. Sadler, E. J., Camp, C. R. & Evans, R. G. New and future technology. In *Precision turfgrass management: Challenges and field application for mapping turfgrass soil and stress.* *Precis. Agric.* 11, 115–134 (2010).
13. Devitt, D. A., Lockett, M. & Bird, B. M. Spatial and temporal distribution of salts on fairways and greens irrigated with reuse water. *Agronomy* 99, 692–700 (2007).
14. Corwin D.L., Lesch S.M. & Lobel D.B. Laboratory and field measurements. In *Agricultural Salinity Assessment and Management* (eds. Wallender, W. W. & Tanji, K. K.) (2012).
15. Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-RSSD version 2.30R. User manual and tutorial guide. Res. Report 148 in USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).
16. Lesch, S. M., Rhoades, J. D., Corwin, D. L., Robinson, D. A. & Suárez, D. L. ESAP-SaltMapper version 2.30R. User manual and tutorial guide. Res. Report 149 in USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2002).
17. Lesch, S. M., Rhoades, J. D. & Corwin, D. L. ESAP-95 Version 2.01R: User manual and tutorial guide. Res. Report 149 USDA-ARS. George E. Brown, Jr., Salinity Laboratory, Riverside, California. (2000).
18. Lesch, S. M., Strauss, D. J. & Rhoades, J. D. Spatial prediction of soil salinity using electromagnetic induction techniques: 1. Statistical prediction models: A comparison of multiple linear regression and cokriging. *Water Resour. Res.* 31, 373–386 (1995).
19. Amezketa, E. Soil salinity assessment using directed soil sampling from a geophysical survey with electromagnetic technology: A case study. *Span. J. Agric. Res.* 5(1), 91–101 (2007).
20. Grieve C. M., Grattan, S. R. & Mass, E. V. Plant salt tolerance. In *Agricultural Salinity Assessment and Management* (eds. Walender W. W. & Tanji K. K.) (ASCE, 2012).
21. Shaibha, M. Interaction effects of salinity and mowing on performance and physiology of bermudagrass cultivars. *Crop Sci.* 50, 2620–2631 (2010).
22. Marcum, K. B. & Pessarakli, M. Salinity tolerance and salt gland excretion efficiency of bermudagrass turf cultivars. *Crop Sci.* 46, 2571–2574 (2006).
23. Xiang, M., Moss, I. Q., Martin, D. L., Su, K. & Dunn, B. L. Evaluating the salinity tolerance of clonal-type bermudagrass cultivars and an experimental selection. *Hortic. Sci.* 51(1), 185–191 (2017).
24. Ganjegunte, G. K. et al. Soil salinity of an urban park after long term irrigation with saline groundwater. *Agronomy* 109, 3011–3018 (2017).
25. Keren, R. & Miyamoto, S. Reclamation of saline, sodic and boron affected soils. In *Agricultural Salinity Assessment and Management* (eds. Wallender W. W. & Tanji K. K.) (ASCE, 2012).
26. Thomas, G. W. & Phillips, R. E. Consequences of water-movement in macro pores. *J. Environ. Qual.* 7(6), 1939–1948 (1979).
27. Huang, B., Duncan, R. R. & Carrow, R. N. Drought-resistance mechanisms of seven warm-season turfgrasses under surface soil drying: II. Root aspects. *Crop Sci.* 17(5), 863–869 (1977).
28. Liu, X. H. & Huang, B. R. Cytokinin effects on creeping bentgrass response to heat stress: II. Leaf senescence and antioxidant metabolism. *Crop Sci.* 42, 466–472 (2002).

Author contributions

D.I.S., S.M.L. and G.D.S. conducted field survey. G.D.S. done the laboratory analyses. S.M.L. done statistical analyses and created salinity maps. G.D.S. and D.I.S. wrote the main manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to G.D.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
