ON THE ODLYZKO-STANLEY ENUMERATION PROBLEM AND WARRING’S PROBLEM OVER FINITE FIELDS

JIYOU LI

Abstract. We obtain an asymptotic formula on the Odlyzko-Stanley enumeration problem. Let \(N_m^*(k, b) \) be the number of \(k \)-subsets \(S \subseteq F_p^* \) such that \(\sum_{x \in S} x^m = b \). If \(m < p^{1-\delta} \), then there is a constant \(\epsilon = \epsilon(\delta) > 0 \) such that

\[
|N_m^*(k, b) - p^{-1} \binom{p-1}{k}| \leq \left(\frac{p^{1-\epsilon} + mk - m}{k} \right).
\]

In addition, let \(\gamma'(m, p) \) denote the distinct Waring’s number (mod \(p \)), the smallest positive integer \(k \) such that every integer is a sum of \(m \)-th powers of \(k \)-distinct elements (mod \(p \)). The above bound implies that there is a constant \(\epsilon(\delta) > 0 \) such for any prime \(p \) and any \(m < p^{1-\delta} \), if \(\epsilon - 1 < (e-1)p^{\delta-\epsilon} \), then

\[
\gamma'(m, p) \leq \epsilon^{-1}.
\]

1. Introduction

Let \(p \) be an odd prime, and let \(F_p^* \) be the prime field of order \(p \). Let \(m \) be a positive integer and \(b \) be an element in \(F_p^* \). Let \(N_m^*(b) \) be the number of subsets \(S \subseteq F_p^* \) with the property that \(\sum_{x \in S} x^m = b \). If \(S \) is the empty set, we set \(\sum_{x \in \emptyset} x^m = 0 \). For details of this problem we refer to [23]. It was shown by Odlyzko-Stanley [22] that

\[
|N_m^*(b) - 2p^{-1}p^{-1}| \leq e^{O(m\sqrt{p}\log p)}.
\]

This bound can be improved to a sharper bound

\[
|N_m^*(b) - 2p^{-1}p^{-1}| \leq \frac{4}{\sqrt{2\pi}} e^{m\sqrt{p}\log p}.
\]

Moreover, if \(F_p^* \) is replaced by \(F_q^* \), the multiplication group of a finite field of order \(q \) and of characteristic \(p \), then

\[
|N_m^*(b) - 2q^{-1}q^{-1}| \leq \frac{4p}{\sqrt{2\pi q}} e^{(m\sqrt{q} + q/p)\log q}.
\]

These bounds follow directly from several counting formulas obtained by Zhu-Wan [25]. Their proof combines the techniques of Gauss sums, Jacobi sums and a new sieving argument. More precisely, let \(N_m^*(k, b) \) be the number of \(k \)-subsets \(S \subseteq F_q^* \) such that \(\sum_{x \in S} x^m = b \). They proved that

\[
|N_m^*(k, b) - q^{-1} \binom{q-1}{k}| \leq 2q^{-1/2} \binom{m\sqrt{q} + q/p + k}{k}.
\]
Note that \(N_m^*(b) = \sum_{k=0}^N N_m^*(k,b) \) and it is sufficient to consider the case \(|S| \leq (q-1)/2\) by symmetry. Hence (12) and (13) follow from (14) directly.

Note that all above bounds are nontrivial only when \(n < p^{1/2-\epsilon} \). Heath-Brown, Konyagin and Shparlinski [16, 19] improved this restriction to \(n < p^{2/3-\epsilon} \). Precisely, they obtain

\[
|N_m^*(b) - 2^{p-1}p^{-1}| \leq \begin{cases}
O(m^{p^{1/2} \log p}), & m \leq p^{1/3}; \\
O(m^{5/8}p^{5/8} \log p), & p^{1/3} \leq m \leq p^{1/2}; \\
O(m^{3/8}p^{3/4} \log p), & p^{1/2} \leq m \leq p^{2/3}.
\end{cases}
\]

Their proof relies on the monomial exponential sum bound

\[
\left| \sum_{x \in \mathbb{F}_p} e_p(ax^m) \right| \ll \begin{cases}
m^{p^{1/2}}, & m \leq p^{1/3}; \\
mp^{5/8}p^{5/8}, & p^{1/3} \leq m \leq p^{1/2}; \\
m^{3/8}p^{3/4}, & p^{1/2} \leq m \leq p^{2/3};
\end{cases}
\]

for any integer \(a \) with \(p \nmid a \), where \(e_p(x) = e^{2\pi ix/p} \) is the additive character on \(\mathbb{F}_p \).

Cochrane and Pinner [10] made explicit this bound to that

\[
\left| \sum_{x \in \mathbb{F}_p} e_p(ax^m) \right| \leq \begin{cases}
m^{p^{1/2}}, & m \leq 3p^{1/3}; \\
mp^{3/8}p^{5/4}, & p^{1/3} \leq m < p^{1/2}; \\
mp^{3/8}p^{5/4}, & p^{1/2} \leq m < \frac{1}{3}p^{2/3};
\end{cases}
\]

where \(\lambda \) can be chosen to be \(2/\sqrt{3} \approx 1.51967 \).

When \(m \) is large, Bourgain and Konyagin [2, 4] obtained a celebrated nontrivial bound for a large kind of subgroups. Let \(H \) be a subgroup of \(\mathbb{F}_p^* \). Suppose \(|H| > p^\delta\), then there exits a constant \(\delta' > 0 \) such that for any integer \(a \) with \(p \nmid a \),

\[
\left| \sum_{x \in H} e_p(ax) \right| < |H|^{1-\delta'}.
\]

For instance, Bourgain and Garaev proved in [13] that if \(\delta > 1/4 \), then one can take \(\delta' = 0.000015927 + o(1) \). Taking \(H = \{x^m, x \in \mathbb{F}_p^*\} \) and following the same argument of Konyagin and Shparlinski [19], the above bound immediately implies that if \(m < p^{1-\delta} \), then

\[
N_m^*(b) = 2^{p-1}p^{-1} + O(p^{1-\delta}),
\]

where \(\epsilon = \epsilon(\delta) \) is a positive constant. This is a significant improvement of (14).

In this paper, by using the above bound and a distinct coordinate sieve argument, we first consider the subset sum problem over \(H \subseteq \mathbb{F}_p^* \) and thus obtain a new counting formula via a combinatorial argument. It gives a more precise bound on the number \(N_m^*(k,b) \) for \(m < p^{1-\delta} \) and suitable \(k \). It is proved in this paper that

Theorem 1.1. Let \(N_m^*(k,b) \) be the number of \(k \)-subsets \(S \subseteq \mathbb{F}_p^* \) such that \(\sum_{x \in S} x^m = b \). If \(m < p^{1-\delta} \), then there is a constant \(0 < \epsilon = \epsilon(\delta) < \delta \) such that

\[
\left| N_m^*(k,b) - p^{-1} \binom{p-1}{k} \right| \leq \binom{p^{1-\epsilon} + mk - m}{k}.
\]

Corollary 1.2. Suppose that \(p, m, s, \delta, \epsilon \) are as in Theorem 1.1. If there is a constant \(0 < c < 1 \) such that \(-\frac{1}{\log c} \log p < k < cp^{\delta} - p^{\delta-\epsilon} \), then the equation

\[
x_1^m + x_2^m + \cdots + x_k^m = b, \ x_i \in \mathbb{F}_p^* \quad x_i \neq x_j, \ i \neq j
\]
has at least a solution. In particular, if \(\epsilon^{-1} < k < (e - 1)p^{\delta - \epsilon} \), then the above equation has a solution.

Note that this is a constant lower bound. This corollary has direct application to the subset version of Waring’s number mod \(p \). We first recall the definition of ordinary Waring’s number. Let \(\gamma(m, p) \) denote Waring’s number \(\mod p \), the smallest positive integer \(k \) such that every integer is a sum of \(m \)-th power \(\mod p \). This number has been thoroughly studied. Note that we can always assume that \(m < (p - 1)/2 \). The first bound

\[
\gamma(m, p) \leq m
\]

for any prime \(p \) was proved by Cauchy in 1813, as reported in [1]. Dozens of papers, for instance, [11, 12, 13, 14, 15, 17, 18, 6, 24], studied Waring’s number mod a prime number, and generally, Waring’s number mod an integer, Waring’s number over finite fields, \(p \)-adic integers and a general commutative ring. We refer to [7] for the previous results of this problem.

The recent progress obtained by Ciper, Cocharane and Pinner [7] states that for any \(\epsilon > 0 \) there is a constant \(c(\epsilon) \) such that if \(\phi(s) \geq 1/\epsilon \) then

\[
\gamma(m, p) \leq c(\epsilon)m^\epsilon,
\]

where \(s = (p-1)/m \) and \(\phi \) is the Euler’s totient function. By the bound of Bourgain and Konyagin, and by a similar argument of Konyagin and Shparlinski [19], one can easily get

Corollary 1.3. There is an absolute constant \(C > 0 \) such that for \(m < p^{1-\delta} \),

\[
\gamma(m, p) \leq C^{1/\delta}.
\]

Cochrane and Cipra [8] showed that \(C \) can be chosen to be 4 and \(\gamma(m, p) \ll 4^{1/\delta} \).

We now consider a stronger version of Waring’s number, namely, the distinct or subset version of Waring’s number. Let \(\gamma'(m, p) \) denote the distinct Waring’s number \(\mod p \), the smallest positive integer \(k \) such that every integer is a sum of \(m \)-th power of \(k \) distinct elements \(\mod p \). Note that there are big differences between the two Waring’s numbers \(\gamma(m, p) \) and \(\gamma'(m, p) \). For example, \(\gamma'(m, p) \) does not exist if \(k \) is too large.

Corollary 1.4. There is a constant \(\epsilon(\delta) > 0 \) such that for any prime \(p \) and any \(m < p^{1-\delta} \), if \(\epsilon^{-1} < (e - 1)p^{\delta - \epsilon} \), then we have

\[
\gamma'(m, p) < \epsilon^{-1}.
\]

Obviously \(\gamma(m, p) \leq \gamma'(m, p) \) and thus this bound implies Corollary 1.3, the known constant bound for ordinary Waring’s number.

Now we turn to the case for finite fields. Let \(\mathbb{F}_q \) be the finite field of order \(q \) and of characteristic \(p \). Let \(\gamma(m, q) \) denote the Waring’s number in \(\mathbb{F}_q \), the smallest positive integer \(k \) such that every element in \(\mathbb{F}_q^* \) is a sum of \(m \)-th power in \(\mathbb{F}_q \). The work of A. Winterhof [24] shows that

\[
\gamma(m, q) \ll \frac{\log q}{\log p} m^{\log p/\log q} \log m
\]

and J. Cipra [6] improved this bound to

\[
\gamma(m, q) \ll \frac{\log q}{\log p} m^{\log p/\log q}.
\]
Recently, Cochrane and Cipra [8] proved that
\[\gamma(m, q) \leq 633(2m)^{\log_{q} \frac{\log 4}{m}}, \]
provided \(m < p \) and \(\gamma(m, q) \) exists.

Similarly let \(\gamma'(m, q) \) denote the distinct Waring’s number over \(\mathbb{F}_q \), the smallest positive integer \(k \) such that every element in \(\mathbb{F}_q \) is a sum of \(m \)-th power of distinct elements in \(\mathbb{F}_q^* \). Clearly \(\gamma(m, q) \leq \gamma'(m, q) \). The bound (1.4) given by Zhu-Wan can improve the above bound for Waring’s number over finite fields. Using (1.4), Zhu and Wan obtained:

Corollary 1.5. [25] There is an effectively computable absolute constant \(0 < c < 1 \) such that if \(m < c\sqrt{q} \) and \(6\ln q < k < (q-1)/2 \) then \(N_{m}^*(k, b) > 0 \) for all \(b \in \mathbb{F}_q \).

This certainly implies a sharper bound at some cases:

Corollary 1.6. There is a constant \(c > 0 \) such that if \(m < c\sqrt{q} \)
\[\gamma(m, q) \leq \gamma'(m, q) < [6\ln q] + 1. \]

This paper is organized as follows. Proof of the main result will be given in Section 3 and a distinct coordinate sieving method will be introduced briefly in Section 2.

Notations. For \(x \in \mathbb{R} \), let \((x)_0 = 1 \) and \((x)_k = x(x - 1) \cdots (x - k + 1) \) for \(k \in \mathbb{Z}^+ \). For \(k \in \mathbb{N} \), \(\binom{x}{k} \) is the binomial coefficient defined by \(\binom{x}{k} = \frac{(x)_k}{k!} \).

2. A DISTINCT COORDINATE SIEVING FORMULA

In this section we introduce a sieving formula discovered by Li-Wan [20], which significantly improves the classical inclusion-exclusion sieve in many interesting cases. We cite it here without any proof. For details and related applications please refer to [20] [21].

Let \(D \) be a finite set, and let \(D^k \) be the Cartesian product of \(k \) copies of \(D \). Let \(X \) be a subset of \(D^k \). Define \(X = \{ (x_1, x_2, \ldots, x_k) \in X \mid x_i \neq x_j, \forall i \neq j \} \). Let \(f(x_1, x_2, \ldots, x_k) \) be a complex valued function defined over \(X \) and
\[F = \sum_{x \in X} f(x_1, x_2, \ldots, x_k). \]

Let \(S_k \) be the symmetric group on \(\{1, 2, \cdots, k\} \). Each permutation \(\tau \in S_k \) factorizes uniquely as a product of disjoint cycles and each fixed point is viewed as a trivial cycle of length 1. Two permutations in \(S_k \) are conjugate if and only if they have the same type of cycle structure (up to the order). For \(\tau \in S_k \), define the sign of \(\tau \) to sign(\(\tau \)) = \((-1)^{l(\tau)} \), where \(l(\tau) \) is the number of cycles of \(\tau \) including the trivial cycles. For a permutation \(\tau = (i_1i_2 \cdots i_{a_1}j_1j_2 \cdots j_{a_2} \cdots l_1l_2 \cdots l_s) \) with \(1 \leq a_i, 1 \leq i \leq s \), define
\[X_\tau = \{ (x_1, \ldots, x_k) \in X, x_{i_1} = \cdots = x_{a_1}, \ldots, x_{l_1} = \cdots = x_{a_x} \}. \]

Similarly, for \(\tau \in S_k \), define \(F_\tau = \sum_{x \in X_\tau} f(x_1, x_2, \ldots, x_k) \). Now we can state our sieve formula. We remark that there are many other interesting corollaries of this formula. For interested reader we refer to [20].

Theorem 2.1. Let \(F \) and \(F_\tau \) be defined as above. Then
\[F = \sum_{\tau \in S_k} \text{sign}(\tau)F_\tau. \]
Note that the symmetric group S_k acts on D^k naturally by permuting coordinates. That is, for $\tau \in S_k$ and $x = (x_1, x_2, \ldots, x_k) \in D^k$, $\tau \circ x = (x_{\tau(1)}, x_{\tau(2)}, \ldots, x_{\tau(k)})$.

A subset X in D^k is said to be symmetric if for any $x \in X$ and any $\tau \in S_k$, $\tau \circ x \in X$. For $\tau \in S_k$, denote by τ the conjugacy class determined by τ and it can also be viewed as the set of permutations conjugate to τ. Conversely, for given conjugacy class $\tau \in C_k$, denote by τ a representative permutation of this class. For convenience we usually identify these two symbols.

In particular, if X is symmetric and f is a symmetric function under the action of S_k, we then have the following simpler formula than (2.2).

Corollary 2.2. Let C_k be the set of conjugacy classes of S_k. If X is symmetric and f is symmetric, then

$$F = \sum_{\tau \in C_k} \text{sign}(\tau)C(\tau)F_\tau,$$

where $C(\tau)$ is the number of permutations conjugate to τ.

For the purpose of our proof, we will also need a combinatorial formula. A permutation $\tau \in S_k$ is said to be of type (c_1, c_2, \ldots, c_k) if τ has exactly c_i cycles of length i. Note that $\sum_{i=1}^k ic_i = k$. Let $N(c_1, c_2, \ldots, c_k)$ be the number of permutations in S_k of type (c_1, c_2, \ldots, c_k) and it is well-known that

$$N(c_1, c_2, \ldots, c_k) = \frac{k!}{1^{c_1}1!2^{c_2}2! \cdots k^{c_k}k!}.$$

Lemma 2.3. Define the generating function

$$C_k(t_1, t_2, \ldots, t_k) = \sum_{\sum i c_i = k} N(c_1, c_2, \ldots, c_k)t_1^{c_1}t_2^{c_2} \cdots t_k^{c_k}.$$

If $t_1 = t_2 = \cdots = t_k = q$, then we have

$$C_k(q, q, \ldots, q) = \sum_{\sum i c_i = k} N(c_1, c_2, \ldots, c_k)q^{c_1}q^{c_2} \cdots q^{c_k} = (q + k - 1)k.$$

3. Proof of Theorem 1.1

Let $D \subseteq \mathbb{F}_p^*$ be a nonempty subset of cardinality n. Let $\chi_a = e_p(ax) = e^{2\pi iax/p}$ be an additive character over \mathbb{F}_p and χ_0 be the principal character sending each element in \mathbb{F}_p to 1. Denote by \mathbb{F}_p^* the group of additive characters of \mathbb{F}_p. Define $\Phi(D) = \max_{\chi \in \mathbb{F}_p^* \chi \neq \chi_0} |\sum_{a \in D} \chi(a)|$. Let $N(k, b, D)$ be the number of k-subsets $S \subseteq D$ such that $\sum_{x \in S} x = b$. In the following lemma we will give an asymptotic bound on $N(k, b, D)$ when $\Phi(D)$ is small compared to $n = |D|$.

Lemma 3.1. Let $N(k, b, D)$ be defined as above. Then

$$\left| N(k, b, D) - p^{-1} \binom{n}{k} \right| \leq \binom{\Phi(D) + k - 1}{k}.$$

Proof. Let $X = D^k = D \times D \times \cdots \times D$ be the Cartesian product of k copies of D. Let $\mathcal{X} = \{ (x_1, x_2, \ldots, x_k) \in D^k | x_i \neq x_j, \forall i \neq j \}$. It is clear that $|X| = n^k$ and $|\mathcal{X}| = (n)_k$. Then
\[k!N(k, b, D) = p^{-1} \sum_{x_1, x_2, \ldots, x_k} \chi(x_1 + x_2 + \cdots + x_k - b) \]
\[= p^{-1}(n)_k + p^{-1} \sum_{\chi \neq \chi_0} \sum_{x_1, x_2, \ldots, x_k} \chi(x_1)\chi(x_2)\cdots\chi(x_k)\chi^{-1}(b) \]
\[= p^{-1}(n)_k + p^{-1} \sum_{\chi \neq \chi_0} \chi^{-1}(b) \sum_{(x_1, x_2, \ldots, x_k) \in X} \prod_{i=1}^{k} \chi(x_i). \]

For \(\chi \neq \chi_0 \), let \(f_\chi(x) = f_\chi(x_1, x_2, \ldots, x_k) = \prod_{i=1}^{k} \chi(x_i) \), and for \(\tau \in S_k \) let
\[F_\tau(\chi) = \sum_{x \in X_\tau} f_\chi(x) = \sum_{x \in X_\tau} \prod_{i=1}^{k} \chi(x_i), \]
where \(X_\tau \) is defined as in (2.1). Obviously \(X \) is symmetric and \(f_\chi(x_1, x_2, \ldots, x_k) \) is normal on \(X \). Applying (2.2) in Corollary (2.2),
\[k!N(k, b, D) = p^{-1}(n)_k + p^{-1} \sum_{\chi \neq \chi_0} \chi^{-1}(b) \sum_{\tau \in C_k} \text{sign}(\tau)C(\tau)F_\tau(\chi), \]
where \(C_k \) is the set of conjugacy classes of \(S_k \), \(C(\tau) \) is the number of permutations conjugate to \(\tau \), and
\[F_\tau(\chi) = \prod_{x \in X_\tau} \prod_{i=1}^{k} \chi(x_i) \]
\[= \prod_{x \in X_\tau} \prod_{i=1}^{c_1} \chi(x_i) \prod_{i=1}^{c_2} \chi^2(x_{c_1+c_2}) \cdots \prod_{i=1}^{c_k} \chi^k(x_{c_1+c_2+\cdots+c_k}) \]
\[= \prod_{i=1}^{k} (\sum_{a \in D} \chi^i(a))^c_i. \]

By the definition of \(\Phi(D) \), \(F_\tau(\chi) \leq (\Phi(D))^\sum_{i=1}^{k} c_i \) and hence
\[k!N(k, b, D) \geq p^{-1}(n)_k - p^{-1} \sum_{\chi \neq \chi_0} C(\tau)(\Phi(D))^\sum_{i=1}^{k} c_i \]
\[= p^{-1}(n)_k - p^{-1}(p - 1) \sum_{\sum_{i=1}^{k} c_i} \frac{k!}{c_1!c_2! \cdots c_k!} (\Phi(D))^\sum_{i=1}^{k} c_i \]
\[= p^{-1}(n)_k - (\Phi(D) + k - 1)_k. \]

The last equality is from Lemma 2.3 and the proof is complete.

This lemma together with the bound (1.5) given by Bourgain and Konyagin gives the following lemma.

Lemma 3.2. Choose \(H = \{x^m, x \in F_p^n\} \). Suppose that \(|H| = s > p^\delta \). Let \(M(k, b) = M(k, b, H) \) be the number of \(k \)-subsets \(S \subseteq H \) such that \(\sum_{x \in S} x = b \). Then we have
\[\left| M(k, b) - p^{-1}\binom{s}{k} \right| \leq \binom{s^{1-\delta} + k - 1}{k}. \]
Next lemma is a counting formula, which allows us to "lift" the solution of the subset sum problem in the subgroup to the Odlyzko-Stanley enumeration problem.

Lemma 3.3. Suppose $n | p - 1$ and denote $s = (p - 1)/n$. Then

$$
\binom{p - 1}{k} = \binom{s}{k} \binom{n}{1}^k + \binom{s}{k - 1} \binom{n}{1}^{k-2} \binom{n}{2} + \cdots + \binom{s}{j} \sum_{i_1 > 0, i_2 > 0, \cdots, i_j > 0, \sum_{i=1}^{j} i_i = k} \binom{n}{i_1} \binom{n}{i_2} \cdots \binom{n}{i_j} + \cdots + \binom{s}{1} \binom{n}{1}^k.
$$

Proof. It is direct by a double counting argument. The left side counts the number of k-subsets of $p - 1$ balls. Divide $p - 1$ balls into s equal boxes with each of size n and count the same number by two steps. Choose boxes first and then choose the balls in the chosen boxes. The number is exactly the right side. □

Proof of Theorem 1.1 Choose $H = \{x^m, x \in F_p^*\}$. We suppose that $m | p - 1$ without loss of generality, otherwise we can replace m by $(m, p - 1)$. Note that $|H| = s = (p - 1)/m > p^\delta$. Let $M(k, b) = M(k, b, H)$ be the number of unordered solutions of the equation

$$x_1 + x_2 + \cdots + x_k = b, \ x_i \in H, \ x_i \neq x_j, \ i \neq j. \quad (3.1)$$

By Lemma 3.2 we have

$$\left| M(k, b) - p^{-1} \binom{s}{k} \right| \leq \binom{s^{1-\delta'}}{k}.$$

Recall $N_m^*(k, b)$ is also the number of unordered solutions of the diagonal equation

$$x_1^m + x_2^m + \cdots + x_k^m = b, \ x_i \in F_p^*, \ x_i \neq x_j, \ i \neq j. \quad (3.2)$$

Similar to the proof of Lemma 3.3 any solution of (3.1) can be lifted to solutions of (3.2). This counting argument between (3.1) and (3.2) gives

$$N_m^*(k, b) = M(k, b) \binom{m}{1}^k + M(k - 1, b)(k - 1) \binom{m}{1}^{k-2} \binom{m}{2} + \cdots + M(j, b) \sum_{i_1 > 0, i_2 > 0, \cdots, i_j > 0, \sum_{i=1}^{j} i_i = k} \binom{m}{i_1} \binom{m}{i_2} \cdots \binom{m}{i_j} + \cdots M(1, b) \binom{m}{k}. $$

By Lemma 3.3 this implies

$$\left| N_m^*(k, b) - p^{-1} \binom{p - 1}{k} \right| \leq \binom{ps^{1-\delta'} + mk - m}{k} \leq \binom{p^{1-\epsilon} + mk - m}{k},$$

where $\epsilon = \delta\delta'$ and the proof is complete. □

Corollary 3.4. Suppose that $p, m, s, \delta, \epsilon$ are as in Theorem 1.1. If there is a constant $0 < c < 1$ such that $\frac{1}{\log p} \log p < k < cp^\delta - p^{\delta - \epsilon}$, then the equation

$$x_1^m + x_2^m + \cdots + x_k^m = b, \ x_i \in F_p^*, \ x_i \neq x_j, \ i \neq j.$$

has at least a solution. In particular, if we choose $c = ep^{-\epsilon}$, we then have a simpler condition $\epsilon^{-1} < k < (e - 1)p^{\delta - \epsilon}$, which has a constant lower bound.
Proof. By Theorem 1.1, to ensure $N_m^*(k, b) > 0$ it is sufficient to have

$$p^{-1} \binom{p-1}{k} \geq \binom{p^{1-\varepsilon} + mk - m}{k},$$

that is,

$$\frac{(p-1)_k}{(p^{1-\varepsilon} + mk - m)_k} > p.$$

This leads to the following inequality

$$\frac{p}{p^{1-\varepsilon} + mk} > p^{1/k}.$$

Take $0 < c < 1$ such that $p^{1-\varepsilon} + mk < p^{1-\varepsilon} + p^{1-\delta}k < cp$ and we have $c^{-1} > p^{1/k}$ and then $k > -\frac{1}{\log c} \log p$. Solve the first inequality we get that $k < cp^{1-\varepsilon}$. If $c = ep^{-\varepsilon}$, then the condition becomes $k > \frac{\log p}{\varepsilon \log p - 1} > \varepsilon^{-1}$. □

Open Question 3.5. Is it true that the bound

$$\left| N_m^*(k, b) - p^{-1} \binom{p-1}{k} \right| \leq \binom{p^{1-\varepsilon} + k - 1}{k}$$

holds as \[1.5\] for any $m < p^{1-\delta}$?

If this bound is true, then the bound \[1.6\] will be strengthened by a significantly large error term and the bound in Corollary 3.4 will be improved.

References

[1] A. Alnaser and T. Cochrane, Waring’s number mod m, J. Number Theory 128 (2008), 2582-2590.
[2] J. Bourgain, Estimates on exponential sums related to the Diffie-Hellman distributions, Geom. Funct. Anal. 15 (2005) 1-34.
[3] J. Bourgain and M.Z. Garaev, On a variant of sum-product estimates and explicit exponential sum bounds in prime fields, Math. Proc. Camb. Phil. Soc. (2008).
[4] J. Bourgain, A. Glibichuk and S. Konyagin, Estimates for the number of sums and products and for exponential sums in fields of prime order, J. London Math. Soc. (2) 73 (2006) 380-398.
[5] J. Bourgain and S. Konyagin, Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order, C. R. Math. Acad. Sci. Paris 337 (2003) 75-80.
[6] J. Cipra, Waring’s number in a finite field, Integers 9 (2009), A34, 435-440.
[7] J. Cipra, T. Cochrane and C. Pinner, Heilbronn’s conjecture on Waring’s number (mod p), J. Number Theory 125 (2007), 289-297.
[8] T. Cochrane and J. Cipra, Sum-product estimates applied to Waring’s problem over finite fields, preprint, 2010.
[9] T. Cochrane and C. Pinner, Sum-product estimates applied to Waring’s problem mod p, Integers 8 (2008), A46, 18 pp.
[10] T. Cochrane and C. Pinner, Explicit bounds on monomial and binomial exponential sums, Q. J. Math. 62 (2011) 323-349.
[11] I. Chowla, On Waring’s problem (mod p), Proc. Indian Nat. Sci. Acad. Part A 13 (1943) 195-220.
[12] S. Chowla, H.B. Mann and E.G. Straus, Some applications of the Cauchy-Davenport theorem, Norske Vid. Selsk. Forh. Trondheim 32 1959 74-80.
[13] M.M. Dodson, On Waring’s problem in $GF[p]$, Acta Arith. 19 (1971) 147-173.
[14] M.M. Dodson, On Waring’s problem in p-adic fields, Acta Arith. 22 (1973) 315-327.
[15] M.M. Dodson and A. Tietäväinen, A note on Waring’s number in $GF[p]$, Acta Arith. 30 (1976) 159-167.
[16] D.R. Heath-Brown and S.V. Konyagin, *New bounds for Gauss sums derived from kth powers, and for Heilbronn’s exponential sum*, Q. J. Math. 51 (2000) 221-235.

[17] H. Heilbronn, *Lecture Notes on Additive Number Theory mod p*, California Institute of Technology (1964).

[18] S. Konyagin, *Estimates for Gaussian sums and Waring’s problem modulo a prime*, (Russian) Trudy Mat. Inst. Steklov. 198 (1992), 111-124; translation in Proc. Steklov Inst. Math. 1994, (198), 105-117.

[19] S. Konyagin and I. E. Shparlinski, *Character sums with exponential functions and their applications*, Cambridge Tracts in Mathematics, 136. Cambridge University Press, Cambridge, 1999.

[20] J. Li and D. Wan, *A new sieve for distinct coordinate counting*, Science in China Series A 53 (2010) 2351-2362.

[21] J. Li and D. Wan, *Counting subsets of finite Abelian groups*, J. Combin. Theory Ser. A 19 (2012) 170-182.

[22] A.M. Odlyzko and R.P. Stanley, *Enumeration of power sums modulo a prime*, J. Number Theory 10 (1978) 263-272.

[23] R.P. Stanley, *Enumerative combinatorics. Vol. 1*, Cambridge University Press, Cambridge, 1997. Winterhof, Winterhof, Winterhof.

[24] A. Winterhof and C. van de Woestijne, *Exact solutions to Waring’s problem for finite fields*, Acta Arith. 141 (2010) 171-190.

[25] G. Zhu and D. Wan, *An asymptotic formula for counting subset sums over subgroups of finite fields*, Finite Fields and Their Applications 18 (2012) 192-209.

Department of Mathematics, Shanghai Jiao Tong University, Shanghai, P.R. China

E-mail address: lijiyou@sjtu.edu.cn