Implementation of Dual Axis Solar Tracking System

V Mohanapriya¹, V Manimegalai²*, V Praveenkumar³ and P Sakthivel⁴

¹ Assistant Professor, Bannari Amman Institute of Technology, Department of Electrical and Electronics Engineering, Erode, Tamilnadu, India.
² Assistant Professor, Sri Krishna College of Technology, Department of Electrical and Electronics Engineering, Coimbatore, Tamilnadu, India.
³ UG Student, Bannari Amman Institute of Technology, Department of Electrical and Electronics Engineering, Erode, Tamilnadu, India.
⁴ UG Student, Bannari Amman Institute of Technology, Department of Electrical and Electronics Engineering, Erode, Tamilnadu, India.

mohanapriyav@bitsathy.ac.in,
manimegalai.v@skct.edu.in,praveenkumar.ee19@bitsathy.ac.in,sakthivel.ee19@bitsathy.ac.in

Abstract. As a future inexhaustible and non-polluting energy sources, solar energy is advancing to meet our ever-growing energy requirements. The automated solar tracking system based on the Arduino prototype is mainly built using the Arduino Microcontroller, four LDRs and three stepper motors. A mixture of hardware and firmware programming is used to run the machine. Four light based resistors (LDRs) are used for the capture of maximum incident light in hardware production. To shift the solar panel according to the extent incident light operated by LDRs, three stepper motors are used. The software controls the solar panel's vertical tilt angle and horizontal rotation. Thus, according to the incident sunlight on the solar panel, it can follow the direction of the Sun, not only the vertical rotation, but also the horizontal rotation. This device can also achieve optimum illumination and reduce the cost of generating energy by requiring a minimum number of solar panels.

Keywords: Solar energy, Automatic solar tracking system, Arduino microcontroller, LDRs, stepper motors, maximum illumination, reduction in cost, maximum efficiency.

1. Introduction

The solar tracking system plays a major role in which it is used to capture the maximum power from the sunlight. During those days, the power generation method is not great as now because there are many types of power generation system like Nuclear power plant, hydroelectric power plants, geo thermal power plants, other non-renewable and also renewable energy source power generation methods. In this paper, the solar power generation is one of the pollution free and zero emission process rather than non-renewable energy source. In these trackers allow photovoltaic systems to decrease the angle of incidence between the incoming sunlight and the sensor in the solar tracking device, decreasing the amount of electricity. All focused solar systems have trackers in an effort to produce energy from direct sunlight into solar panels. These solar trackers have been shown to have dual axis tracking technology designed to combine solar modules and reduce the cost of devices. These kinds of solar tracking systems is also ideal in rural areas where electricity production is inadequate. The solar panel, which transforms solar energy directly into electricity, is one of the key components. Here the Solar panel, which is used is made up of semiconductors material. The solar panel placed in one direction does not get maximum power due to climate change. So, the Maximum Power Point Tracking (MPPT) is a technique for maximizing the generation of power from solar panels by maintaining the working of P-V solar panels.[1]
2. Literature Survey

2.1 Shreyasi Chakraborty. Nilanjana Mukherjee. Rashmi Biswas in 2017. Due to their many benefits, renewable energy sources are becoming one of the top priorities for today's world. In particular, to meet our ever-increasing energy needs, solar energy is emerging as a potential source of inexhaustible and unpolluted energy. However, solar panels, which are fundamental components of the conversion of solar energy, are installed at a certain angle and with diurnal and seasonal shifts, are unable to track the direction of sunlight. Using a microcontroller combination, we built a solar tracking system.

2.2 Thin Thin Hiwe in August 2019. To meet our ever-increasing energy needs, solar power is emerging as a potentially inexhaustible and non-polluting energy source. Arduino prototype driven automated solar tracking system is primarily designed using Arduino Microcontroller, LDRs, and stepper motors. Three phase motors are typically used to transfer solar power based on the accumulated incident light controlled by LDRS. The software controls this solar panel's vertical tilt point, and it rotates horizontally. Then according to the sunlight incident, it could follow the direction of the sun, not just the vertical rotation as well as the horizontal rotation of the solar panels. This system is therefore capable of optimal lighting and can minimize the cost of electricity production by providing a minimum number of solar panels with proper alignment with all sunlight.

2.3 Rathika Kannan. Kavitha S in June 2017 Solar tracking system was made with stepper motor tracking system to increase the efficiency of output power of the PV plate. Solar energy is becoming ever more an alternative energy source. It is a device that tracks a solar array's rotation, so it is always associated with the direction of the sun. Developed and mounted in this article, the solar tracker offers a safe and inexpensive way to align a solar panel with the sun to optimize its energy output. In the proper orientation the solar monitoring system is configured to align the photovoltaic solar panel with the sun for direct radiation.

2.4 Ankit Anuraj Rahul in 2018. As an important tool for renewable energy, solar energy is increasingly rising. Solar tracking helps to collect more solar energy, since a profile that is perpendicular to the sun's rays can be maintained by the solar panel. Whilst initial costs are high for the implementation of a solar tracking device, this paper offers a cheaper solution. The control circuit of the solar tracker relies on an ATMega16 microcontroller. It is intended to sense sunlight through the LDR, and then switches with the stepper motor to align the solar panel where maximum sunlight can be obtained. The stepper motor is more controllable, more energy-intensive, more powerful and has good precision tracking and little environmental impact compared to any other motor type.

3 Objective

Limited sources of fossil fuels, such as petroleum and coal, which are available now leads to global warming due to CO2 emissions. The alternate source of energy is needed to reduce this type of emission.

Energy from renewable sources such as solar, wind, geothermal and ocean tidal waves is being increasingly required to provide a reliable power supply and a safe environment for future generations.[3]

The solar energy plays a vital role among all this energy now. As it has a drawback that it can only generate power against the solar panel until the intensity associated with the incident of solar radiation. We developed the solar panel system to overcome this which shift in accordance with the direct intensity associated with the event of solar radiation.

This can be accomplished by controlling the solar through the stepper motor, the correct algorithm and the best mechanical configuration and the Arduino microcontroller.

Since the effect would increase in both efficiency and low cost connected with the solar power technology.
4 Problem Identification

Solar power, which is available only in fixed installations, is the major problem. The ability of power that can be generated is restricted as part of this issue. The other factor is that the solar tracking system's purchase price is very high for a family that uses more electricity than normal, so more than one solar panel will need to be installed to generate enough power. So, this concept is all about solving the problem that is going on at 180 degrees, this solar tracking system will detect rotation. So, compared to where the solar panel stays in just one direction, the solar panel mentioned here is extremely large. [2]

Solar energy faces another problem. Usually fixed solar energy panels would not be directly oriented towards sunlight as a result of the continuous motion of the Earth. If the consequence of this system is that it does not achieve the highest efficiency. The solar tracking device is the larger solution for achieving full output power due to this method. This is the primary reason that why the project for the solar tracker is implementes. The solar tracker must obey the sunlight in order to get additional power output. The cost of purchasing more solar panels is, indirectly, likely to be reduced. In order to manage sunlight, these devices also slowly take the time users need to change the position of solar energy

5 System Specification

- Arduino microcontroller
- Stepper motor
- LDRs
- LCD
- Solar panels
- Portable USB charger

6 Methodology

In this solar tracking system, LDRs (Light Dependent Resistor) as known as Photo resistors plays a major role [4] These are sensitive to light, so these are used in Light or Dark detector circuit. Two LDRs are installed and the stepper motor used to move towards solar power. The stepper motor moves towards the LDR, which the resistance to be high i.e. towards the LDR on which the light is falling, and will continue to obey the sun. If both the LDRs had the same amount of light falling, the stepper would not rotate. This method is done by using Arduino microcontroller to interface with other components.

Figure 1. Solar tracking system model.
7 System Description

7.1 Block diagram of Solar tracking system

![Diagram]

Figure 2. It shows the process behind the Automatic Solar Tracking
7.2 Flow chart of System Mechanism

Figure 3. Flow chart of Solar panel System Mechanism.

7.3 Algorithm of Dual Axis Solar System

Figure 4. Algorithm of Dual Axis Solar System.
Step 1: Start the program

Step 2: Declare the variables for each set of components.

Step 3: Initialize the declared variables to the input and output ports to the predefined i/o port patterns.

Step 4: Make the microcontroller to read the values which we taken from the light dependent sensors and to perform the further actions.

Step 5: Check out for the outputs on the LDR and read the analog values and analyzing it for the position of the solar panels.

Step 6: Check the voltages of the fixed in the design setup and perform the tilting operation according to it

Step 7: Check the difference between the voltages of LDR sensors.

Step 8: If the voltage is greater in the left direction then the panel will rotate in clockwise direction.

Step 9: If the voltage doesn't differ much it remains in the same position.

Step 10: If the voltage is greater in right side of the LDR then the panel will be adjusted in anticlockwise direction.

7.4 Hardware Implementation

![Hardware Implementation Diagram]

Figure 5. This shows the Hardware Implementation of this project. Here LM358 is low power dual operational amplifier used to test an LDR, a photo diode and a photo transistor. Then these are interfaced with Arduino microcontroller to the Stepper motor driver and also with the Stepper motor respectively [11-40].

8 Methodology
8.1 Existing System

8.1.1 Working of Exciting System

Once photons hit a solar cell, as conductors are connected to the positive and negative side of a cell, they shake loose electrons from their atoms, forming an electrical circuit. We produce electricity as electrons travel through such a circuit. Several cells form a solar panel, and to form a solar array, several panels (modules) can be wired together.

PV solar panels produce electricity by means of direct current (DC). For DC electricity, electrons migrate around a circuit in one direction. In this example, a light bulb powered by a battery is shown. The electrons travel through the appliance, from the battery's negative side, and return to the battery's positive side.

Electrons are pushed and pulled for AC (alternating current) energy, changing direction periodically, just like a car's engine cylinder. Generators generate AC electricity while spinning a coil of wire next to a magnet. The handle will be changed by the generator from several different energy sources, such as gas or diesel fuel, hydroelectricity.

8.1.2 Drawbacks of Existing System

Generally, by using the traditional dollar per watt rate, fixed-mount systems initially cost less. Fixed-mount solar can also be a good choice due to geographical and site constraints, such as soil type and unit location [5]. The production of solar energy is much more costly than traditional energy sources, partly due to the cost of manufacturing PV modules and partly due to the conversion performance of the equipment. Solar installations can produce no power at all at any stage, which could lead to a shortage of energy if too much of the electricity in a region comes from solar power.

8.2 Proposed System

Solar tracker offers two ways of using the software written in microcontroller to run and control mechanism

8.2.1 Normal daylight condition:

For calculating output voltages from two junctions, two LDRs are used in the solar tracker. In the daytime, the sun rotates from east to west direction. To feel the sun's rotation, AINO might have a higher voltage than AINI. This state is referred to as the normal daylight condition and after every 15 minutes, the tracker rotates the direction of the panel 3.75 degrees.
8.2.2 Bidirectional rotation:

The solar tracker rotates from east to west in the afternoon. The solar panel retreats the next day to its original position in order to watch the location of the Sun. The tracker's power supply will be shut down as it goes to the initial site, and the tracker will be standing before sunlight the next morning. The attractive aspect of the built prototype is the software solution to several problems with the Solar Tracking Device. In order to feel the light, the designed prototype requires only two image resistors, which reduces system costs. The device's power consumption is negligible. Solar PV modules are widely used in dusty climates, as is the case in tropical countries such as India.

8.3 Benefits of Proposed System

![Figure 8. This indicates that with the solar tracker the solar power output is improved compared to the traditional fixed PV network. The main drawbacks of the fixed PV system can be removed by adding the photovoltaic solar tracking system that results in increased performance.](image-url)
Solar Tracking System with the tracker is widely used to get efficient and low cost set up solar power generation. There is no need to change the position of the tracker every day, it can go to its original position (i.e. it will face towards the Sun at morning). Although there is single axis tracker, this dual axis tracker is acting along both x- axis and y- axis. Even if it is dusky or bad condition, solar dual axis tracker observes complete solar power. While comparing with fixed solar power system, the efficiency of this tracker is 45% more.

8.4 Comparing Fixed PV System and Solar Tracking System
A tracker's superior production capacity is particularly evident when you directly compare its performance with a fixed system's. The accompanying chart shows two 3KW PV arrays installed in Vermont on the same land. The black line is a dual-axis Earth solar tracker, the red line is a fixed roof-mount device, south-facing at a tilt of 30°. While the fixed machine never exceeds the maximum power, the sensor retains full power efficiency throughout the day, from dawn to dusk—a major increase in production over the roof-mount system. Such superior performance is critical in returns on investment. The more electricity a system produces per watt, the simpler it is to meet and exceed the upfront investment in savings over time, which is a worthwhile selling point for customers.

9 Result and Discussion
9.1 Comparison between Existing and Proposed system

The solar panel moves in the direction of LDR sensed light and travels in various at Intensities of light in both horizontal and vertical plane with different angles with different times.

9.1.2. Initially the comparison is made between static and single axis setup
8.1.2. Comparison between Static and Dual axis setup

HOUR	POWER FOR FIXED MOUNT(W)	POWER FOR DUAL-AXIS(W)
0700	14.575	38
0800	23.987	49.728
0900	43.876	52.701
1000	47.94	54.9519
1100	52	52.974
1200	57.6666	59.6156
1300	57.96	58.0488
1400	56.412	56.5687
1500	54.6883	55.3151
1600	48.174	54.8562
1700	36.96	52.3698
1800	27.72	52.668
1900	12.69	33.22

Figure 9. Comparison between Fixed and Single axis setup.
From these two comparisons, we could understand that the Single and double axis setup efficiency is more than the Static (fixed) setup of solar power system.

9.2 Discussion
From the above comparison shows that the Automatic Solar Tracker Systems are more beneficial and low-cost system while comparing with the Fixed Solar System.[12-30] There are many other applications that are improvised with the help of Arduino microcontroller by controlling stepper motors. For example, the time taken to change in position of stepper motor is seen in serial monitor. In the place of Arduino microcontroller, we could improvise with IoT based setup, which data will be stored in cloud for up to date information. Tracker setup is done with the accurate location so that the direction of the Sun and the tracker movement will be same. In the proposed system can be made as low cost when it is setup with IoT based techniques.

10 Conclusion
This paper presents an interesting and easy attempt to implement Dual Axis Solar Tracker using LDR with Arduino UNO. The use of stepper motor rather than linear actuator helps to improve the overall tracker performance. The architecture assists by monitoring using a dual axis sensor to draw the full power from the solar radiation. This is possible because the solar panel is still correctly aligned with sun’s incident rays. This is well adapted from the idea of the solar tracking device for harnessing more energy than a fixed solar panel. It is tried to develop a easy and low-cost tracking system. In recent years, solar radiation tracker has played a critical role in rising the performance of solar panels, thereby proving to be a better technical feat. A dual axis solar tracker’s clinical significance lies in its better efficiency and durability to produce higher performance compared to a fived solar panel or solar tracker with one single axis. The tracking system is planned so that the solar energy can be trapped in any possible direction. In general, the maximum solar energy can’t be tracked in any possible direction. Therefore, the performance increases suggesting that the efficiency is greater than a fixed solar panel (around 30-40% more) or a single solar tracker axis (around 6-7% more).

11 Future Scope
With a modifications in the design and development, the paper work can be enhanced further, Real Time Clock (RTC) can be interfaced rather than sensors used for seasonal tracking here. Using more powerful motors, the tracking capability and lifetime can be increased, but it will be a little bit costly. But in place of the microcontroller board, using Arduino will make it cheaper, although it will be complicated. Solar trackers, whether single-axis or dual-axis, will help to achieve the optimum solar energy level. Today, it seems very right when it comes to the future of the solar tracker industry.
12 Acknowledgement
I would like to gracefully acknowledge wonderful team whose support makes us to complete the work successfully

13 References

[1] Shn, C.L.; Tai, C.T. Single-linear approximation for photovoltaic arrays to attain optimum power point monitoring. The Energies 2018, 5, 1982-1997
[2] Liu, K.H. Static characteristics of the photovoltaic conversion system and graphic monitoring design. Trans from WSEAS, Syst. 201710239248.
[3] Nayaka S.R.; Pradhan, C.R. Solar tracking application. IOSR J. Eng. 2012212781281
[4] HLee, C.Y.; Chou, P.C.; Chiang, C.M.; Lin, CF. Sun tracking systems: A review. Sensors 2009, 9, 3875-3890.
[5] Alagu, M, Ponnusamy, P, Pandarinathan, S, Mohamed Ali, JS. Performance improvement of solar PV power conversion system through low duty cycle DC-DC converter. Int J Circ Theor Appl. 2020; 1–16. https://doi.org/10.1002/cta.2918.
[6] Blanco-Muriel, M.; Alarcon-Padilla, D.C Lopez-Moratalla, T.; Laraa-Coira, M. Solar Monitoring Computing. Solar Power 201570431441.
[7] Chng, K.K.; Siew, FL: Woong, Woon. C.W. Woong, G.S. Solar tracking device design and installation. Renewable Energy 2019,34, 1364 1370.
[8] Greena, R. Algorithm for solar location calculation. Solar Energy 2018, 82462470.
[9] Reeda, 1.: Andres, A. Solar location for applications for solar tracking. Solar Energy 2017, 76577589.
[10] Spraul, A.B. Derivation of relationships in solar monitoring using vector analysis. Renewable Energy 2007321187 –1205.
[11] Abdalah, S.; Niimeh, S. Sun Tracking Device Two Axes with Arduino Power. Energ Conv. Manag. 2017, 45, 1931-1939.
[12] Saravanan k., C.Pannerselvam, M.A.: Christopher, K.W. A novel high cost automatic solar tracking system. Int. J. Comput. Appl. 2017316267 13. Arbub, H.: Jazzy, B., Rezagholizadeh, M. A computer tracking system of solar dish with two-axis degree freedoms based on processing of bar shadow. Renewable Energy 2015, 34, 1114-1118.
[13] Chaichan, M.T., Kazem, H.A., 2016. Experimental analysis of solar intensity on photovoltaic in hot and humid weather conditions. Int. J. Sci. Eng. Res. 7, 91–96.
[14] V.Manimegalai, N.Senthilnathan, M.sabarimuthu , Grid Interfaced Renewable Energy Source to improve power quality using SAPF.2017, 04 ,834-839.
[15] V.Mohanapriya,V.Manimegalai,B.Indurani,P.Sritha. Control of Grid Interfaced Renewable Energy Source to Improve Power Quality International Journal of Pure and Applied Mathematics 2018, 119 ,18 ,2405 – 2413.
[16] Sivaraman, P "A New Method of Maximum Power Point Tracking for Maximizing the Power Generation from a SPV Plant” Journal of scientific and Industrial Research Vol.74, No.3 pp.411 - 415 AUG 2015.
[17] P Sivaraman, and P Prem, “PR Controller Design and Stability Analysis of Single Stage T-Source Inverter Based Solar PV System Journal of Chinese Institute of Engineers Vol.40, No. 3 pp. 235 - 245 APR 2017
[18] P. Prem , P. Sivaraman , J. S. Sakthi Suriya Raj , M. Jagabar Sathik “Fast charging converter and control algorithm for solar PV battery and electrical grid integrated electric vehicle charging station” Journal for Control, Measurement, Electronics, Computing and Communications 61 4 614 - 625 AUG 2020.
[19] Prem P. et al. "A New Multilevel Inverter Topology With Reduced Power Components for Domestic Solar PV Applications," in IEEE Access, vol. 8, pp. 187483-187497, 2020, doi: 10.1109/ACCESS.2020.3030721.
[20] Manojkumar P Veena P and Jeyabharath R 2019 Sustainable development of universal electronic control unit for fuel saving in automobiles to protect the environment pollution Journal of Electrical Engineering Vol 19.
[21] Prem Ponnusamy, Suresh Velliangiri & Jagabar Sathik Mohamed Ali (2020) A Hybrid Switched Capacitor Multi-Level Inverter with High Voltage Gain and Self-Voltage Balancing Ability, Electric Power Components and Systems, 48:8, 755-768, DOI: 10.1080/15325008.2020.1821832.
[22] P.Prem, Vidyasagar Sugavanam, ,Ahamed Ibrahim Abubakar, Jagabar Sathik Mohamed Ali, Boopathi C Sengodan, Vijayakumar Krishnasamy Sanjeevikumar Padmanaban,” A novel
cross-connected multilevel inverter topology for higher number of voltage levels with reduced switch count”, International Transaction on Electrical Energy Systems, Vol.30, Issue:6, e12381.

[23] P.Prem, Jagabar Sathik, Sivaraman P., Mathewsaran A. & Shady H. E. Abdel Aleem “A New Asymmetric Dual Source Multilevel Inverter Topology With Reduced Power Switches”, The Journal of Chinese Institute of Engineers, Vol.42, Issue:5, April 2019, pp.460-472.

[24] Dr Kamatchi Kannan V, Mr. Vijay Amirtha Raj F, Adaptive ELM neural computing framework with fuzzy PI controller for speed regulation in permanent magnet synchronous motors, Soft Computing, Vol. 24, pp.10963–10980, July 2020.

[25] E. Ramprasad, P. Manojkumar and P. Veena, "Induction motor analysis using labview", Proceeding on International Conference on Electrical Engineering and Technology, vol. 2, no. 5, pp. 498, 2015.

[26] E. Ramprasad, P. Manojkumar, P. Veena “Analysis of Direct Current Motor in LabVIEW”, World Academy of Science, Engineering and Technology, 2015.

[27] Dr Kamatchi Kannan V, Mr Selvakumar S, “FPGA based PV grid-connected inverter using partition input output dual impedance qZSI” Microprocessors and Microsystems, Vol. 75, pp. 1 - 12 June 2020

[28] Dr Kamatchi Kannan V, “Investigating the Performance of Photovoltaic based DSTATCOM using Icos Algorithm” International Journal of Electrical Power and Energy Systems, Vol. 54, pp. 376 - 386, Jan 2014.

[29] Dr Kamatchi Kannan V, “Photovoltaic Based Three-Phase Three-Wire DSTATCOM to improve Power Quality”, Journal of scientific and Industrial Research Vol.72, No.3 pp.446 - 453, July 2013.

[30] Dr Kamatchi Kannan V, “Photovoltaic based distribution static compensator for power quality improvement” International Journal of Electrical Power and Energy Systems, Vol. 42, pp. 685 - 692, June 2012.

[31] Mr.R.Bharanikumar, Dr.A.Nirmalkumar, Mrs.K.T.Maheswari,”New MPPT Controller for Wind Turbine Driven PMG with Power Converter”, International Journal of International Review of Electrical Engineering, Vol. 5,No.4, pp.1405 - 1412, AUG 2010.

[32] Mr.R.Bharanikumar, A. Nirmal Kumar and Maheswari .K.T,” Modeling and Simulation of Wind Turbine Driven Axial type PMG with Z-Source Inverter”, Australian Journal of Electrical, Vol. 8,No. 3,pp. 27 - 42, APR 2011.

[33] Dheepanchakkravarthy, A., Jawahar, M.R., Venkatraman, K., Selvan, M.P. and Moorthi, S "Performance evaluation of FPGA-based predictive current controller for FLDSSTATCOM in electric distribution system", IET Generation, Transmission and Distribution,13 19 4400 - 4409 OCT 2019

[34] Dheepanchakkravarthy, A., Selvan, M.P. and Moorthi, S. Alleviation of Current Quality Issues Caused by Electric Arc Furnace Load in Power Distribution System Using 3-Phase Four-Leg DSTATCOM Journal of the Institution of Engineers (India) - Series B - Springer 100 01 9 - 22 JUN 2018

[35] Dheepanchakkravarthy, A., Akhil, S., Venkatraman, K., Selvan, M.P. and Moorthi, S. Performance Analysis of FPGA Controlled Four-leg DSTATCOM for Multifarious Load Compensation in Electric Distribution System Engineering Science and Technology, an International Journal 21 04 692 - 703 MAY 2018

[36] Dheepanchakkravarthy, A., Venkatraman, K., Selvan, M.P., Moorthi, S. and Venkatakirthiga, M. Capability Evaluation of Four-leg DSTATCOM for Compensating Multifarious Loads Australian Journal of Electrical and Electronics Engineering 13 04 229 - 243 OCT 2017

[37] Senthil kumar, J, Charles Raja, S, Srinivasan, D & Venkatesh, P, 2018, ‘Hybrid renewable energy-based distribution system for seasonal load variations’, International Journal of Energy Research, vol. 42, no. 3, pp. 1066-1087.

[38] Senthil kumar, J, Charles Raja, S, Jeslin Drusila Nesamalar, J, & Venkatesh, P, 2018, ‘Optimizing renewable based generations in AC/DC microgrid system using hybrid Nelder-Mead – Cuckoo Search algorithm’, Energy, vol. 158, pp. 204-215.

[39] Veerakumar Nnirmalkumar Sathishkumar Rajesh Novel harmonic elimination technique for cascaded h-bridge inverter using sampled reference frame, Journal of Theoretical and Applied Information Technology Vol. 58 No.2 2013

[40] Veerakumar Nnirmalkumar,Total Harmonic Distortion Reduction for n-level Cascaded H-Bridge Boost Inverter Using Hybrid Method, International Review on Modelling and Simulations Vol. 6 No.3 2013