ROLE OF HERBAL ANTIFUNGAL AGENTS FOR THE MANAGEMENT OF FUNGAL DISEASES: A SYSTEMATIC REVIEW

KUSUM KAUSHIK*, SHWETA AGARWAL

Department of Pharmaceutics, LR Institute of Pharmacy, Solan, Himachal Pradesh, India. Email: kaushikkusum081994@gmail.com

Received: 29 April 2019, Revised and Accepted: 28 May 2019

INTRODUCTION

The humans live in peaceful coexistence with the surrounding microorganisms but an infection may emerge from the surrounding microorganisms when the defense system is damaged or the concentration of pathogens reach an exceptionally high density whereas infectious disease is a condition in which the infecting agents do elicit a response of the body, which leads to clinically manifest signs and symptoms. Bacteria, viruses, parasites, fungi, prions, worms, and helminths have all been involved in causing infectious diseases. A few decades ago, an infection caused by bacteria was the most feared and as the strategies to control bacterial infections in patients improved, but nowadays, fungi are the most hazardous pathogens [1].

Fungi exist in two basic forms: Yeasts and molds. Yeasts are typically single, small, and oval cells, whereas mold colonies consist of filamentous strands called hyphae. Some fungi are dimorphic, exists either as yeasts or molds depending on the external environment such as temperature [2,3]. Fungi are ubiquitous within the environment; however, only a few species are routinely found associated with humans who are capable of causing disease. A handful of fungi that is responsible for causing disease in healthy individuals are considered as true pathogens, (Histoplasma and Paracoccidioides), while the majority of fungi causing disease primarily in immuno-suppressed individuals are often classified as opportunistic pathogens (Candida and Cryptococcus) [4]. However, it is obvious that some opportunistic fungal pathogens also cause disease in otherwise healthy individuals (Candida vaginitis or Cryptococcus gattii outbreaks) [5,6]. Invasive fungal infections are characterized by high morbidity and mortality, although these infections are now more frequent they are still difficult to diagnose, prevent, and treat [7].

For a systemic effect, the intravenous or oral route is mainly used to treat topical fungal infection. However, it causes many side effects, including gastric irritation, diarrhea, nausea, vomiting and stomach pain, headache, fever, renal impairment, and anemia. Hence, the topical drug delivery is the most suitable routes for the administration of drugs that undergo first-pass metabolism. It is generally effective against fungal infections [8]. By spreading and rubbing ointments, creams, and gels applied directly to an external body surface for topical administration of drugs to the skin. For the therapeutic effect, the drug must permeate and diffuse across the skin [9,10]. The rate and extent of transport depend on the drug molecular properties and the characteristic of the biologic tissue. Advantages of the topical treatment of fungal infections include targeting the site of infection; increase the efficacy of treatment, reduction in the risk of systemic side effects, and to increase the patient compliance [11].

There are numerous antifungal agents used clinically to treat fungal infections and can be broadly classified into five major classes, i.e., azoles, allylamines, echinocandins, griseofulvin, and fluconazole [12]. Although the course to modern treatment has not been without its problems and complications, particularly the drug resistances. Phytochemistry of various plant species has indicated that the phytochemicals could be a better source of medicine as compared to synthetically produced drugs. Natural medicines from a plant origin are still used as therapeutic agents, especially for treating bacterial, fungal, viral, protozoal, helminthic infections, etc. This review focuses on the use of plant constituents to prevent fungal infections caused by various pathogens. Hence, it will be proved beneficial for the drug industries.

Keywords: Fungal infection, Dermatophyte, Pityriasis versicolor, Pathogens, Endemic, Natural medicines.

Fungal infection, Dermatophyte, Pityriasis versicolor, Pathogens, Endemic, Natural medicines.

© 2019 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). DOI: http://dx.doi.org/10.22159/ajpcr.2019.v12i7.33831
Dermatophytosis
Dermatophyte fungi are organisms that digest keratin [19]. Dermatophytes infect the stratum corneum of the epidermis and keratinized tissues derived from it, such as hair or nail. *Trichophyton* spp., *Microsporum* spp., and *Epidermophyton* spp. are responsible for most of the superficial fungal infections, although the causative agents can be some yeast and some non dermatophyte molds [20].

Tinea pedis
Tinea pedis is a dermatophyte infection of the foot, affecting particularly the toes and sole caused mainly by *Trichophyton rubrum*, *Trichophyton mentagrophytes*, and *Epidermophyton floccosum* pathogens. This infection affects 15–30% of the population [21] and is the most common dermatophyte fungal disease that occurs in man [22]. Individuals with tinea pedis may be susceptible to secondary bacterial infection with, for example, *Group A streptococcus* [23].

Tinea corporis
Two major causative organisms causing tinea corporis are *T. rubrum*, *T. mentagrophytes* affecting neck, trunk, and the extremities. The classic tinea corporis lesion is a sharply defined circular lesion with erythema, scaling, and small blisters or pustules at the border. The lesion is usually <5 cm in diameter. The fungus is often transmitted from domestic animals, such as cats, dogs, hamsters, and guinea pigs to humans [21].

Tinea capitis
The predominant causative agent of this infection is *Trichophyton tonsurans* and mainly causes disease in childhood, presenting with alopecia and scaling on the scalp [24,25].

Tinea unguium or onychomycosis (nails) *T. rubrum* and *T. mentagrophytes* dermatophytes are the principal causes of onychomycosis, accounting approximately for 90% of toenail infections and 50% of fingernail infections [26-28].

Superficial candidiasis
Superficial candidiasis infections are usually caused by *Candida albicans*, which is a common commensal in the mouth, vagina, and gastrointestinal tract in healthy individuals. The prevalence of carriage is greater in hospitalized patients and those who are immunocompromised.

Oropharyngeal candidiasis (oral thrush)
It has typical symptoms and signs of soreness and white patches on an erythematous background (plaque type). An erythematous variety exists; this does not have plaques, but sore areas of erythema are typical. Acute or chronic infection can occur in immuno-compromised individuals. Other predisposing factors include antibiotic therapy and dentures.

Vaginal candidiasis (vaginal thrush)
Vaginal candidiasis is a common infection, with clinical appearances similar to those of oropharyngeal disease, plus vaginal discharge. Pruritus can also occur, and recurrent episodes are common. Women with vaginal thrush seldom have underlying predisposing factors.

Candidiasis of the skin
Candidiasis of the skin is often confined to body folds, including the inter-digital spaces of the hands or feet. Typically, small satellite pustules lie distal to the periphery of the rim of the rash. Chronic paronychia (nail fold infections) can be caused by *Candida*.

Malassezia infection
Malassezia spp. are common surface commensals of greasy skin includes scalp, chest, and they are associated with pityriasis versicolor, seborrheic dermatitis, and folliculitis [29].

Pityriasis versicolor
Pityriasis versicolor is a scaly, hypo- or hyper-pigmented rash on the trunk which is found common in tropical regions and the patches can resemble vitiligo, but the presence of scaling is typical.

Seborrheic dermatitis
Seborrheic dermatitis is a common scaly condition affecting the face, the front of the chest, and the scalp. Severe seborrheic dermatitis is particularly common in patients with AIDS or chronic neurological Parkinson's disease.

Malassezia folliculitis
Malassezia folliculitis is an itchy, follicular rash on the upper back and shoulders that can resemble acne [30].

Subcutaneous infection
Although subcutaneous mycoses can disseminate, they are usually limited to the dermis and subcutaneous tissues.

Sporotrichosis
Sporotrichosis is caused by the dimorphic fungus *Sporothrix schenckii* and is the most prevalent subcutaneous infection [31]. The fungus is found in soil, vegetation and usually causes disease in farmers or gardeners, especially those who tend roses. It is a localized cutaneous or subcutaneous lesion, which may spread via the lymphatic system and form further lesions. Lymphocutaneous sporotrichosis is a non-life-threatening disease [32].

Chromoblastomycosis
Chromoblastomycosis is a chronic cutaneous or subcutaneous fungal infection caused by members of the Dematiaceae family including *Fonsecaea pedrosoi*, *Cladosporium carrionii*, *Fonsecaea compacta*, *Phialophora verrucosa*, and *Rhinoilocadiella aquaspersa* and found in wood, vegetable debris, and soil [33]. Symptoms are raised, crusted lesions of the skin.

Chronic mucocutaneous candidiasis
Chronic mucocutaneous candidiasis is a rare syndrome consisting of chronic infection of mucous membranes usually by *C. albicans*, which may extend to the skin and nails. The condition is associated with impaired cell-mediated responses to *Candida*, although the underlying defect remains poorly understood [34,35]. Various manifestations including white fissured lesions; hyperkeratotic, granulomatous and vegetating lesions, autosomal recessive trait associated with endocrine disorders, for example, hypoparathyroidism.

Systemic fungal infections
Systemic fungal infections can be divided into two distinct groups: The endemic or dimorphic mycoses. These infections are caused by true pathogenic fungi as compared with the opportunistic mold and yeast infections that are saprophytes, which only will invade an immuno-compromised host [36,37]. Such infections are life-threatening and are associated with high rates of death. Solid organ transplant recipients who take immunosuppressive medications to limit the risk of rejection also have an increased susceptibility to systemic fungal infections [2,3].

Opportunistic pathogens
Invasive candidiasis
At present, *Candida* spp. rank as the fourth most frequent cause of nosocomial bloodstream infections [38,39]. Nosocomial candidiasis may be either endogenous which is acquired through previous colonization of the mouth, gastrointestinal tract, vagina or skin or by exogenous which is acquired by cross-infection from another patient or healthcare worker [40]. *C. albicans* is the most frequently isolated species, causing 48–60% of bloodstream fungal infections [38,41,42]. However, a change in the pattern of *Candida*-related disease has been resulting in the emergence of a number of important non-*albicans* *Candida* spp., such as *Candida krusei*, *Candida parapsilosis*, *Candida tropicalis*, and *Candida glabrata* [38,41,43]. This epidemiological change has major clinical implications by some non-*albicans* *Candida* spp. and has higher complication and death rates than *C. albicans* infections, and some species are resistant to antifungal agents [44,45].
Table 1: Classification of medicinal plants according to the bioactive compounds present in the plant for antifungal activity

S. No.	Bioactive compounds	Plant	The chemical constituent for antifungal activity
1	Polyphenols	Baseonema acuminate	Three phenolic compounds, 1-galloyl-β-D-gluco-pyranosyl-(1->4)-β-D galactopyranoside, 2-methoxy-5-(1',2',3',4'-tetrhydroxypyrrol) phenyl-1-O-(6'-galloyl)-β-D-gluco-pyranoside and 2-methoxy-5-hydroxyethyl-phenyl-1- O-(6'-galloyl)-β-D-gluco-pyranoside together were reported for antifungal activity against Candida albicans [82]
1.1		Caban propolis	A novel polyisoprenylated benzophenone showed significant antimicrobial and antifungal activities against a variety of bacteria and yeasts [83]
1.2		Garcinia mangostana	Geranylated biphenyl derivative 3-hydroxy-4-geranyl-5-methoxybiphenyl has strong antifungal and a number of other biological activities [84]
1.3		Isolona cauliflora and Monodora angolenis	Some of the prenylindoles had antifungal and antimalarial activities [85]
1.4		Lycium chinese	Dihydro-N-caffeoyltyramine, trans-N-feruloyloctopamine, trans-N-caffeoyltyramine, and cис-N-caffeoyltyramine reported to have anti-fungal activity [86]
1.5		Toronia toru	4-Hydroxyphenyl-6-O-[(3R)-3,4-dihydroxy-2-methylebutanoyl]-D-gluco-pyranoside has the main antimicrobial component of the crude extract [87]
2	Flavonoids	Artemisia giralldi	The flavones hspidulin and belamcanidin were shown to inhibit the growth of the broad range of human pathogenic fungi [88]
2.1		Aquilegia vulgaris	4-methoxy-5,7-dihydroxyflavone 6-Glucoside, (isoxytiside) showed activity against the mold Aspergillus niger [89]
2.2		Adina cordifolia	A flavon 3,4',5,7-tetraacetyl quercetin exhibited moderate antifungal activity against Aspergillus fumi-gatus and Cryptococcus neoformans [90]
2.3		Hildegardia barteri	An isoflavone, 2-hydroxy maackian was observed to have antifungal activity [91]
2.4		Malus sylvestris	Flavonoid derivative phloretin has antifungal properties [92]
2.5		Piper solmsianum	The four compounds eupomatone-3, eupomatone-5, conocarpan, and orientin exhibited antifungal action against all the dermatophytes tested [93]
2.6		Selaginella tamaricinsis	Amentoflavone exhibited potent antifungal activity [94]
3	Coumarins	Clausena excavaete	Clausenindin, dentatin, nor-dentatin, and carbazole derivatives, and clausvaline showed antimycotic activity [95]
3.1		Melia azedarach	Hydroxycoumarin scopoleti reported to be antifungal against Fusarium verticillioides [96]
3.2		Senecio poepigii	A bioactive eremophilenolide, 1-tigloyloxy-8βH,10βH-eremophil-7(11)-en-8α,12-olide showed antifungal properties [97]
3.3		Tordylium apulum	An antifungal dihydrofurano-coumarin, 20(S),30(R)-20-acetoxyspropyl-30-acetoxy-20,30-dihydroangelicin, were reported [98]
4	Quinones	Annona squamosa	A compound, 11-hydroxy-16-hentriacontanone was reported for its antifungal potential [99]
4.1		Kigelia pinnata	The naphthoquinones kigelinone, isopinnatone, dihydro-a-lapachone were reported for antifungal activity [100]
4.2		Rubia tinctorum and Rhamnus frangula	Alizarin and emodin are the major anthraquinone aglycones for antifungal activity [101]
5	Saponins	Phytolacca tetramerata	Phytolaccosides B and showed antifungal activities against a panel of human pathogenic opportunistic fungi [102]
5.1		Sansevieria ehrenbergii	Three spirostanol saponins designated sansevierin A, sansevierotatin 1, and sansevistatin 2 and 3 steroid exhibited antimicrobial activities, particularly against the pathogenic fungi Candida albicans and Candida neoformans [103]
5.2		Smilax medica	Spirostanol steroid saponins together with the smlagenin 3-O-b-Dglucopyranoside and diperoside A exhibited antifungal activity against the human pathogenic yeasts Candida albicans, Candida glabrata, and Candida tropicalis [104]
5.3		Ypsilandra thebectica	Recently, stemidal saponins ypsilonoside B, ypsilonoside A, isopysilanoside A, isopysilanoside B, and isopysilangelone were reported for antimicrobial activities [105]
6	Xanthones	Calophyllum caledonicum	Caledonin xanthone E was reported for strong antifungal activity [106]
6.1		Cudrania fruticosa	Isoprenylated xanthone, cudrafrutixanthone which showed antifungal activity against Candida albicans [107]
6.2		Monnina obtusifolia	1,3,6-Trichydroxy-2,5 dimethoxyxanthone was reported to have the antifungal potential [108]
6.3		Securidaca longepedunculata	The dichloromethane yielded 1,7-dihydroxy-4-methoxyxanthone, which exhibited antibacterial activity against Staphyloccocus aureus and antifungal activity against Aspergillus niger, Aspergillus fumigatus, and a Penicillium species [109]
Invasive aspergillosis
Aspergillus spp. is ubiquitous, occurring most frequently in soil, water, and decaying vegetation. Most Aspergillus infections are acquired through the respiratory tract inhalation and are associated with hospital construction work or contaminated ventilations systems. Infections may also be acquired from plants or certain foods such as pepper. Sgn and symptoms include: Unremitting fever and pulmonary infiltrates during antibiotic therapy, chest pain, pleural rub, pleural effusion, and hemoptysis. Computed tomography scan shows characteristic halo and air crescent signs while radiography reveals single or multifocal lesions [46].

Cryptococcus
Cryptococcal infection usually results from the inhalation of Cryptococcus neoformans, which is found primarily in soil contaminated by pigeon or chicken excreta. Cryptococcus has a particular affinity for the central nervous system, resulting in Cryptococcal meningitis, and is one of the most significant life-threatening fungal infections associated with HIV [47]. Cryptococcal infection may also be seen in non-immuno-compromised individuals [48] and patients with impaired cell-mediated immunity, for example, that undergoing solid organ transplantation [49].

Zygomycosis
Fungal infections from the class Mucorales (Mucor, Absidia, and Rhizopus) are seen increasingly in immune-compromised hosts [50]. Mucorales infections are typically an airborne disease, initiated in the upper or lower airways and have clinical symptoms similar to those of aspergillosis [51-53].

Other invasive infections
Rarer opportunistic pathogens that have emerged during recent years include Penicillium marneffei, Fusarium spp., Malassezia spp., Trichosporon spp., Saccharomyces cerevisiae, and Blastoschizomyces capitatus [54-57]. Invasive infection by Malassezia furfur, a commensal yeast normally associated with the superficial fungal infection. Tinea versicolor has also increased in frequency in recent years and is associated with parenteral nutrition [58].

Endemic pathogens
Systemic endemic mycoses include a group of dimorphic fungi that are found in distinct geographical regions [59].

Blastomycosis
Blastomycosis is the dimorphic fungi caused by the pathogens Blastomyces dermatitidis and Blastomyces gilchristii, which are found in humid soil containing decaying vegetation or decomposed wood and are associated with freshwater drainage basins [60]. It is reported mainly in North America and in Africa but occasionally has also been reported in Central and South America, Mexico, India, and the Middle East [61].

Histoplasmosis
Histoplasmosis caused by the dimorphic fungus Histoplasma capsulatum is found worldwide, but particularly in North, Central, and South America. Depending on the immune status of the host and the infectious dose, the clinical manifestations vary. In immunocompetent persons, the disease is usually asymptomatic or manifests as an acute respiratory illness that is self-limiting, whereas in immunocompromised persons, it can result in severe illness with progressive pulmonary disease or disseminated infection. Symptoms are usually mild, but due to heavy exposure of fungus in individuals may cause fever, chills, headache, myalgia, anorexia, cough, and chest pain [62-64].

Table 1: (Continued)

S. No.	Bioactive compounds	Plant	The chemical constituent for antifungal activity
7	Alkaloids		
7.1	Aniba panurensis	Delphinium denudatum	6,8-didec-(12)-enyl-5,7-dimethyl-2,3-dihydro-1H-indolizinium from Aniba panurensis demonstrated the activity against drug-resistant strains of Candida albicans [110]
7.2	Corydalis longipes	Litsea cubeba	Corydalis longipes showed high efficacy individually [111]
7.3	Datura metel	Polyalthia longifolia	Recently, an alkaloid, 2-(3,4-dimethyl-2,5-dihydro-1H-pyrrol-2-yl)-1-methylethyl pentanoate, has been isolated from the plant Datura metel and showed in vitro as well as in vivo activities against Aspergillus and Candida species [112]
7.4	Epinetrum villosum	Melochia odorata	Epinetrum villosum exhibited antifungal activity against Candida albicans, Aspergillus fumigatus and Trichophyton mentagrophytes [115]
7.5	Zanthoxylum chiloperone var. angustifolium	Zanthoxylum chiloperone var. chiloperone	Canthin-6-one and 5-methoxy-canthin-6-one of Zanthoxylum chiloperone var. angustifolium exhibited antifungal activity against Candida albicans, Aspergillus fumigatus and Trichophyton mentagrophytes [115]
8	Terpenoids		
8.1	Delphinium tweediaea	16-oxo-cleroda-3,13 (14)-Z-diene-15,16-olide and 6-cinnamoyloxy-1-hydroxyeudesm-4-en-3-one [119] demonstrated significant antifungal activity [118]	
8.2	Litsea cubeba	16-oxo-cleroda-3,13 (14)-Z-diene-15,16-slide and 3-hydroxy-2-methyl-4H-pyran-4-one	The afforded one antifungal active sesquiterpene, demonstrated significant antifungal activity [118]
8.3	Polyalthia longifolia	16-oxo-cleroda-3,13 (14)-Z-diene-15,16-slide	The afforded one antifungal active sesquiterpene, demonstrated significant antifungal activity [118]
8.4	Vernonia longipes	16-oxo-cleroda-3,13 (14)-Z-diene-15,16-slide	The afforded one antifungal active sesquiterpene, demonstrated significant antifungal activity [118]
9	Polypeptides		
9.1	Cicer arietinum	6-cinnamoyloxy-1-hydroxyeudesm-4-en-3-one [119]	A peptide designated cicerarin showed antifungal activity [120]
9.2	Black pumpkin	Malassezia furfur	A novel antifungal peptide, cucurmoschin, inhibited mycelial growth in the fungi [121]
9.3	Basella rubra	Malassezia furfur	A novel antifungal peptide, cucurmoschin, inhibited mycelial growth in the fungi [121]
Coccidioidomycosis

It is endemic in the southwestern parts of the USA (California, Arizona, New Mexico, Utah, and Nevada) and parts of Central and South America (Mexico, Brazil, and Argentina) and caused by the dimorphic fungi Coccidioides immitis and Coccidioides posadasi. The most common clinical manifestations are chest pain, cough, fever, weight loss, and fatigue, often associated with dermatological manifestations including erythema nodosum or erythema multiforme and rheumatological manifestations including myalgia and arthralgia. The disease can also spread from the lungs hematogenously to bones, joints, skin, and the central nervous system [65-71].

Paraococcioldiomycosis

Paraococcioldiomycosis is caused by the dimorphic fungi Paracoccidioides brasiliensis and Paracoccidioides lutzii. These are found in certain parts of South America, especially not only Brazil but also in Argentina, Colombia, Ecuador, Peru, and Venezuela [72,73].

Penicilliosis

In Southeast Asia, penicilliosis is now the third most frequently occurring opportunistic infection in HIV-infected patients. Isolated cases have also been reported in western countries caused by P. marneffei [54].

HERBAL ANTIFUNGAL AGENTS

Medicinal plants are of great importance to the health of individuals and communities, and their importance lies in the chemical substances that produce a definite physiological action on the human body. Many of the pharmaceuticals currently available have a long history of use as herbal remedies including opium, aspirin, digitals, and quinine while their purification and quantification makes them more predictable and chemical processing can sometimes modify their effects in desirable ways. Herbal remedies tend to have a more complex and subtle mix of chemicals and can sometimes offer access to drugs or combinations of drugs that the pharmaceutical industry has not yet exploited. These natural compounds formed the basis of discovering modern drugs [74-76]. Some of the antifungal drugs most recently introduced in clinical practice are echinocandines and sordarines derived from natural products [77,78]. Therefore, there is a need to develop new antifungal agents providing new mechanisms of action, with a broad spectrum of antifungal activity, fewer dose-limiting side effects, and economic [79,80]. Some of the plants having wide fungal activity are listed in Table 1. Which will be proved beneficial for the pharmaceutical industry when formulated. Herbal formulations always have attracted considerable attention due to their good activity and comparatively lesser side effects when compared to synthetic drugs [81].

MARKETED PREPARATIONS

Himalaya V-gel

Himalaya V-gel consists of persian rose, triphala, and cardamom. Himalaya V-gel is indicated for vaginal candidiasis (fungal yeast infection), vaginal trichomoniasis (parasitic vaginal infection), and non-specific bacterial vaginitis.

Himalaya hiora mouth wash

Himalaya hiora mouthwash kills germs, tones gums and refreshes mouth. It contains Meswak, Betel and Bibhitaki. Meswak and (Salvadora persica) tree twigs are popular teeth-cleaning agents, prevent tooth decay, and eliminates toothache and bad breath. Betel (Nagawali) leaf effectively tackles halitosis, and its mild stimulating properties are beneficial for toothaches. Belleric myrobalan (Bibhitaki) is an antimicrobial and antifungal agent that keeps infections at bay.

Purifica 1% vaginal gel

Purifica gel contains Pueraria mirifica root extract.

Himalaya wellness acne-n-pimple cream

Himalaya acne-n-pimple cream works wonders with the help of natural ingredients such as Lentil, Silk Cotton Tree, Five-leaved Chaste Tree, Barbados Aloe, and Alum. Lentil’s astrigent and anti-inflammatory properties help in reducing inflammation associated with acne.

CONCLUSION

Although wide progress has been made in recent decades in medicine, fungal infections are still an unsolved health problem. It is mainly due to the fact that some of the available antifungal drugs cause resistance. The plant kingdom is a rich source of medicinal preparations that offer a wide chemical diversity, making it of huge potential for new drug development. Phytochemistry of various plant species has indicated that the phytochemicals could be a better source of medicine as compared to synthetically produced drugs. Researchers over the last few years have developed a variety of chemical structures with antifungal activity based on natural compounds which are in the process of design and development. Thus, the plant kingdom holds a lot of potential which further needs to be explored in depth.

CONTRIBUTION OF AUTHORS

We declare that the work was done by the authors named in the article, and all the liabilities pertaining to claims relating to the content of this article will be borne by the authors. Kusum Kaushik, Shweta Agarwal conceived and designed the study, Kusum Kaushik wrote the manuscript, and all the authors read and approved the manuscript for publication.

CONFLICTS OF INTEREST

No conflicts of interest associated with this article.

REFERENCES

1. Wisplinghoff H, Seifert H, Wenzel RP, Edmond MB. Current trends in the epidemiology of nosocomial bloodstream infections in patients with hematological malignancies and solid neoplasms in the hospitals in the United States. Clin Infect Dis 2003;36:1103-10.
2. Groll AH, Shah PM, Mentzel C, Schneider M, Just-Nuebling G, Huebner K. Trends in the postmortem epidemiology of invasive fungal infections at a university hospital. J Infect 1996;33:23-32.
3. Denning DW, Evans EG, Kibbler CC, Richardson MD, Roberts MM, Rogers TR, et al. Guidelines for the investigation of invasive fungal infections in haematological malignancy and solid organ transplantation. British Society for Medical Mycology. Eur J Clin Microbiol Infect Dis 1997;16:424-36.
4. Brown GD, Deming DW, Gow NA, Levitz SM, Netes MG, White TC. Hidden killers: Human fungal infections. Sci Transl Med 2012;4:165rv13.
5. Fidel PL, Jr., Barousse M, Espinosa T, Facarra M, Sturtevant J, Martin DH, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun 2004;72:2939-46.
6. Byrnes EJ 3rd, Li W, Lewit Y, Ma H, Voelz K, Ren P, et al. Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the Northwest United States. PLoS Pathog 2010;6:e1000850.
7. Talavíy S, Majumdar F. Recent developments in antifungal agents. Int J Pharm Pharm Sci 2012;4 Suppl 4:4-10.
8. Sathyan G, Ritschel WA, Hussain AS. Transdermal delivery of tacrine: I. Identification of a suitable delivery vehicle. Int J Pharm 1995;114:75-83.
9. Magdum C, Naikwade N, Shah R. Preparation and evaluation of fluconazole topical microemulsion. J Pharm Res 2009;3:557-61.
10. Banerjee M, Ghosh A, Basak S. Comparative evaluation of efficacy and safety of topical fluconazole and clotrimazole in the treatment of tinea corporis. J Pak Assoc Dermatol 2012;22:342-9.
11. Gungor S, Erdal M, Aksu B. New formulation strategies in topical antifungal therapy. J Cosmet Dermatol Sci Appl 2013;3:56-65.
12. Chen SC, Sorrell TC. Antifungal agents. Med J Aust 2007;187:404-9.
13. Gupta AK, Saurer DN, Shear NH. Antifungal agents: An overview. Curr Opin Infect Dis 1993;6:601-5.
14. Gupta AK, Saurer DN, Shear NH. Antifungal agents: An overview. Part I. Am J Am Acad Dermatol 1994;30:677-98.
15. Crawford F, Hollis S. Topical treatments for fungal infections of the skin and nails of the foot. Cochrane Database Syst Rev 2007;3:CD001434.
16. Rotta I, Ziegelmann PK, Otuki MF, Riveros BS, Bernardo NL, Corcione E. Efficiency of topical antifungals in the treatment of
Brazilian guidelines for the clinical investigation of antifungal activity. J Nat Prod 2007;70:179-89.

Shanker KS, Kanjilal S, Harvala C, Roussakis C, Maillard M, et al. Cytotoxic coumarins from the aerial parts of Torilis japonica and their effects on a non-small-cell bronchial carcinoma line. Planta Med 1995;61:360-2.

Kosinski C, Chinou I, Louksis A, Harvala C, Roussakis C, et al. Antifungal activity of angustifolia saponins from extracts of Annona squamosa. Phytochem Anal 2007;18:7-12.

Bhutin OA, Adesogan KE, Okogun JI. Antibacterial and antifungal compounds from Kigelia pinnata. Planta Med 1996;62:352-3.

Manovijot NT, Solucij S, Sukdolak S, Milosev M. Antifungal activity of Rubia tinctoria, Rhamnus frangula and Calopala cerina. Fitoterapia 2005;76:244-6.

Escoiante AM, Santeschi CB, Lopez SN, Gattuso MA, Gutiérez Ravelo A, Delle Monache F, et al. Isolation of antifungal saponins from Phytolacca tetramer a, an Argentinean species in critical risk. J Ethnopharmacol 2002;82:29-34.

D’Aou Z, Zhu N, Zee-Rei-Wang-Mu N, Shen Y. Two new antifungal saponins from the Tibetan herbal medicine Clematis tangutica. Planta Med 2003;69:547-51.

Sautour M, Miyamoto T, Lacaille-Dubois MA. Steroidal saponins from Smilax medica and their antifungal activity. J Nat Prod 2004;67:1489-93.

Xie BB, Liu HY, Ni W, Chen CX, Li Y, Wu L, et al. Five new steroidal saponins from Ispsilandra thibetica. Chem Biodivers 2006;3:1211-8.

Larcher G, Morel C, Tronchin G, Landreau A, Séraphin D, Richomp S, et al. Investigation of the antifungal activity of caledoni xenzone E and other xanthones against Aspergillus fumigatus. Planta Med 2004;70:569-71.

Joseph CC, Mossi MJ, Sempombe J, Nkunya MH. (4-methoxybenzyl)3,1)dioxol-5-yl)-phenylmelenone: An antibacterial biogenenone from Securidaca longepedunculata. Afr J Trad CAM 2005;6:38-60.

Pinto DC, Fuzzati N, Pavignano XC, Hostettmann K. Xanthone and other xanthones against Candida albicans. J Nat Prod 2004;67:215-20.

Klausmeyer P, Chunmy GN, McCloud TG, Tucker KD, Shoemaker RH. A novel antimicrobial indolizinium alkaloid from Aniba panurensis. J Nat Prod 2004;67:1732-5.

Singh NV, Azmi S, Murya S, Singh UP, Jha RN, Pendey VB. Two plant alkaloids isolated from Cordyds longipes as potential antifungal agents. Folia Microbiol (Praga) 2003;48:605-9.

Dharmanand HR, Piyasena KG, Tennakoon SB. A geranylated biphenyl derivative from Garga nica multiglosta. Nat Prod Res 2005;19:239-43.

Nkunya MH, Magangana J, Jonker SA. Prenylindoles from Gleditsia macrocarpa. J Nat Prod 2005;68:1578-22.

Taha KF, EL-Hawary SS, EL-Hefnawy HM, Mabrouk MI, Sanad RA, El-Gamal BS, et al. Active antifungal substances from Trionycis percarnea. Planta Med 1999;65:64-7.

De Campos MP, Cechinel Filho V, Da Silva RZ, Yunes RA, Zacchino S, et al. Isolation and structural elucidation of 3,4',5,7-tetraacetyl quercetin from Gleditsia macrocarpa. Phytochemistry 1993;34:1251-4.