Table S1: De novo whole genome sequencing results of 25 B. cereus sensu lato strains.

Sequencing statistics and results of read quality filtering/trimming and contig assembly are reported.

Strain	MiSeq® reagent Kit	Quality filtering	Raw read length [bp]	# Raw reads	# Filtered & trimmed reads	Trimmmed read length [bp]	Genome coverage trimmed reads (x-fold)	K-mer size [bp]	N50	# Contigs >500 bp	Assembly size [bp]	NCBI GenBank accession number
B. cereus F4430/73	Version 1, 300 cycles, paired end	Length ≥ 70%, Q ≥ 20	2,008,054	1,483,038	113	32	47	25,336	447	5,577,793	JYPK000000000	
B. cereus HW2 274-2	Version 2, 500 cycles, paired end	Length ≥ 70%, Q ≥ 20	2,996,320	1,247,284	169	38	75	52,377	184	5,619,577	JYPL000000000	
B. cereus WSBC 10035	Version 2, 500 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,129,982	1,491,644	169	45	67	91,497	115	5,284,967	JYPR000000000	
B. cereus F4429/71	Version 2, 500 cycles, paired end	Length ≥ 70%, Q ≥ 20	5,225,132	4,625,090	189	165	99	875,707	25	5,523,305	JYPR000000000	
B. cereus 14294-3 (M6)	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	13,534,264	7,187,650	239	213	173	348,619	38	5,596,453	LABH000000000	
B. cereus INRA A3	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	9,841,330	4,702,936	239	213	173	348,619	38	5,596,453	LABH000000000	
B. cereus INRA C3	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	10,029,356	6,521,168	295	203	62,879	207	6,840,916	LABP000000000		
B. cereus RIVM BC 934	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	9,914,386	5,338,252	192	194	43	136,264	78	5,815,402	LABQ000000000	
B. cereus RIVM BC 964	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	9,276,110	5,007,666	192	182	101	237,244	45	5,852,222	JYFW000000000	
B. cereus IP5832	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	15,632,892	9,878,046	196	366	117	470,309	28	5,592,318	LABR000000000	
B. weihenstephanensis WSBC 10204	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	10,434,454	6,063,602	191	219	85	296,898	43	5,655,039	Complete genome available	
B. cereus RIVM BC 126	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,742,980	2,960,928	230	129	183	340,103	47	5,417,487	LABO000000000	
B. cereus NVH 0075-95	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	4,453,098	3,407,364	220	142	177	72,877	92	6,112,682	LABM000000000	
B. cereus MHI 226	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	2,800,238	2,248,024	230	98	113	180,772	60	6,233,017	LABL000000000	
B. cereus RIVM BC 90	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	4,690,328	3,816,892	230	166	183	166,503	68	5,559,670	LABN000000000	
B. cereus 627/S	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,507,602	2,686,982	220	112	115	67,058	176	6,771,128	LABV000000000	
B. cereus SDA KA 96	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	4,266,240	3,498,326	220	146	167	402,005	34	5,335,844	LABR000000000	
B. cereus 727/S	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,604,194	2,965,452	225	126	153	259,768	48	5,479,572	LABW000000000	
B. cereus MHI 86	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,970,862	3,038,394	220	126	63	192,413	54	5,551,873	LABW000000000	
B. cereus F3175/03	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	2,913,134	2,235,522	220	93	73	204,296	64	5,733,808	JYPK000000000	
B. cereus F3162/04	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,033,036	2,338,464	220	97	43	170,740	77	5,591,156	JZBQ000000000	
B. cytotoxicus CVUAS 2833	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	3,185,212	2,298,738	210	91	177	318,402	36	4,127,075	JYPQ000000000	
B. cereus F528/94	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	7,027,494	5,982,372	219	248	167	355,056	49	5,935,300	JYPH000000000	
B. mycoides WSBC 10969	Version 3, 600 cycles, paired end	Length ≥ 70%, Q ≥ 20	6,040,358	4,819,360	210	192	167	270,494	54	6,101,972	LABT000000000	

Reference genome: B. cereus F8377/76 (5,288,498 bp)
Table S2: List of 218 *B. cereus* sensu lato strains investigated in this study.

142 strains listed in the first part of the table were included in the final set and are listed according to their cluster affiliation (C1 – C7) derived from concatenated housekeeping gene species tree (Fig. 1). Presence (x) or absence (-) of toxin and regulator genes is indicated. For 76 strains listed in the second part of the table, one or more housekeeping gene(s) or plcR could not be identified from the genome sequence. These strains were excluded from further analyses. Type strains are highlighted in bold, strains sequenced in this study are marked by an asterisk.

Ba: *Bacillus anthracis*, Bb: *Bacillus bombysepticus*, Bcyt: *Bacillus cytotoxicus*, Bm: *Bacillus mycoides*, Bpm: *Bacillus pseudomycoides*, Bt: *Bacillus thuringiensis*, Btoy: *Bacillus toyonensis*, Bw: *Bacillus weihenstephanensis*, not specified name: *Bacillus cereus*.

Part 1: Final strainset

Cluster	Strain	Original name	nhe	hbl	cytK	plcR	2. hbl	2. nhe	ces	Source	Reference
Cluster 1 (C1)											
C1_S1	282	Bpm DSM 12442	x	-	x	-	-	-	-	Soil	[1]
C1_S2	152	Bm Rock3-17	x	-	x	x	-	-	-	Soil, Maryland	[2]
Cluster 2 (C2)											
C2_S1	47	BAG2X1-2	x	-	x	x	-	-	-	Soil, Massachusetts	[3]
C2_S2	56	BAG6X1-1	x	x	-	x	-	-	-	Soil, Massachusetts	[3]
C2_S3	106	MM3	x	x	-	x	-	-	-	Food	[2]
C2_S4	140	MHI 226 *	x	-	x	x	x	-	-	Milk and milk products, Germany	1)
C2_S5	144	14294-3 (M6) *	x	x	x	x	x	-	-	Ice cream, Germany, 2004	3) WSBC 10904
C2_S6	156	BAG5X2-1	x	x	x	x	x	-	-	Soil, Massachusetts	[3]
C2_S7	211	BAG2O-3	x	-	-	x	x	-	-	Soil, Massachusetts	[3]
C2_S8	243	RIVM BC 126 *	x	x	-	x	x	-	-	Patients faeces, Netherlands, 1999	2)
Cluster 3 (C3)											
C3_S1	28	Ba str. Ames Ancestor	x	-	-	x	-	-	-	Dead heifer, Texas	[4]
C3_S2	29	Ba str. Ames	x	-	-	x	-	-	-	Laboratory strain	[5]
C3_S3	21	Ba str. A0248	x	-	-	x	-	-	-	Human, USAMRIID, Ohio sequenced by J. Craig Venter Institute	[6]
C3_S4	35	Ba str. H9401	x	-	-	x	-	-	-	Clinical, cutaneous anthrax, Korea	[4]
C3_S5	38	Ba str. Sterne	x	-	-	x	-	-	-	Laboratory strain	[4]
C3_S6	1	03BB102	x	-	-	x	-	-	-	Dust, fatal pneumonia, Texas Sequenced by TIGR	[2]
C3_S7	2	95/0201	x	x	x	-	-	-	-	Endocarditis, UK 1995	[2]
Code	Sample Source	Isolation	Reference								
------	---------------	-----------	-------------								
C3_S8	3	NVH 0075-95	x - - x - -	Stew with vegetables, food poisoning, Norway, 1995 [7]							
C3_S9	5	HWW 274-2	x - x x - -	Milk powder, Germany, 2004 Lang-Halter, unpublished [8]							
C3_S10	8	AH187	x - - x - -	Vomit, cooked rice, London 1972 [9]							
C3_S11	12	AH820	x x x x - -	Periodontosis, Norway 1995 [10]							
C3_S12	17	ATCC 10987	x - x x - -	Cheese spoilage, Canada 1930 [2]							
C3_S13	60	BDRD-ST26	x - - x - -	BDRD stock strain [11]							
C3_S14	62	biovar anthracis str. Cl	x - - x - -	Chimpanzee, fatal anthrax, Cote d'Ivoire (CI) 2001 [12]							
C3_S15	70	Bt serovar andalusiensis	x - x x - -	Spain [13]							
C3_S16	73	Bt serovar finitimus YBT-020	x x - - x - -	Soil, China (Huazhong Agricultural University) [14]							
C3_S17	75	Bt serovar konkukian str. 97-27	x x x x - -	Wound infection, french soldier in Yugoslavia [15]							
C3_S18	77	Bt serovar monterrey	x x x x - -	Mexico [16]							
C3_S19	80	Bt serovar pulsiensis	x - x x - -	Grazn field, Pakistan [17]							
C3_S20	83	Bt serovar tochigiensis	x x x x - -	Soil, Japan [18]							
C3_S21	84	Bt str. Al Hakam	x x - x - -	Suspected bioweapon facility, Iraq [19]							
C3_S22	90	E33L	x - x x - -	Zebra carcass, Namibia, 1996 [20]							
C3_S23	91	F837/76	x x - x - -	Human, wound, postoperative infection [21]							
C3_S24	93	FRI-35	x - x x - -	Sequenced by Los Alamos National [22]							
C3_S25	102	ISP3191	x - - x - -	Spice, Belgium [23]							
C3_S26	104	m1293	x - - x - -	Cream cheese [24]							
C3_S27	109	MSX-D12	x - x x - -	Antarctic concordia station and ISS [25]							
C3_S28	110	NC7401	x - - x - -	Food poisoning, chow mein, Japan [26]							
C3_S29	113	Q1	x - - x - -	Deep surface oil reservoir, China [27]							
C3_S30	119	Rock3-42	x - x x - -	Soil, Rockville in Maryland [28]							
C3_S31	139	MHI 86	x - x x - -	Infant food, Germany [29]							
C3_S32	141	SDA KA 96	x x x x - -	Raw milk, Sweden, 1997 [30]							
C3_S33	142	WSCB 10035	x - - x - -	Pasteurized milk, Germany, 1993 [31]							
C3_S34	143	F4429/71	x - x x - -	Vanilla pudding, Netherlands, 1971 1) MHI 1543 [32]							
C3_S35	148	ATCC 4342	x x - x - -	? [33]							
C3_S36	161	BGSC 6E1	x x - x - -	? [34]							
C3_S37	205	IS195	x - - x - -	Intestine of bank vole, Poland [35]							
C3_S38	206	IS845/00	x - - x - -	Intestine of bank vole, Poland [36]							
C3_S39	212	F	x - - x - -	Permafrost sample, 3 mio. years old Institute of chemical biology and fundamental [37]							
C3_S40	242	F528/94	x x - x - -	Beef chow mein & rice, food poisoning, UK [38]							
C3_S41	244	RIVM BC 90	x - - x - -	Human faeces, Netherlands, 1999 [39]							
C3_S42	246	7/27/S	x - - x - -	Human faeces 1) MHI 3185 [40]							
Cluster 4 (C4)

Code	Accession/Source	Host/Environment	Reference						
C4_S1	ATCC 14579	Air, cow-shed	[23]						
C4_S2	Bt serovar berliner ATCC 10792	Mediterranean flour moth (Ephestia kuehniella)	[2]						
C4_S3	F4430/73 *	Pea soup, Belgium, 1973	[24]						
C4_S4	172560W	Burn wound	[2]						
C4_S5	AH676	Soil, Norway	[2]						
C4_S6	ATCC 10876	?	[2]						
C4_S7	B4264	Fatal pneumonia, blood and pleural fluid, 1969	[2]						
C4_S8	BAG3O-2	Soil, Massachusetts	[3]						
C4_S9	BAG3X2-2	Soil, Massachusetts	[3]						
C4_S10	BAG40-1	Soil, Massachusetts	[3]						
C4_S11	BAG4X12-1	Soil, Massachusetts	[3]						
C4_S12	BDRD-Cer4	BDRD stock strain	[2]						
C4_S13	BDRD-ST24	BDRD stock strain	[2]						
C4_S14	Bt BMB171	Lab strain, China	[25]						
C4_S15	Bt Bt407	? Strain isolated by O. Arantes	[26]						
C4_S16	Bt HD-771	?							
C4_S17	Bt HD-789	?							
C4_S18	Bt IBL 200	Human	[2]						
C4_S19	Bt IBL 4222	Cat	[2]						
C4_S20	Bt serovar chinensis CT-43	China	[27]						
C4_S21	Bt serovar huzhongensis BGSC 4BD1	China	[2]						
C4_S22	Bt serovar kurstaki str. T03a001	Mediterranean flour moth (Ephestia kuehniella)	[2]						
C4_S23	Bt serovar pakistani str. T13001	Lepidoptera	[2]						
C4_S24	Bt serovar thuringiensis str. T01001	Mediterranean flour moth (Ephestia kuehniella)	[2]						
C4_S25	F65185	Open fracture, New York	[2]						
C4_S26	G9842	Stool, food poisoning, Nebraska 1996	[28]						
C4_S27	m1550	Uncooked chicken, Brazil	[2]						
C4_S28	Rock1-15	Soil, Rockville in Maryland	[2]						
C4_S29	VD014	Soil, Spain	[17]						
C4_S30	VD156	Soil, Abu Dhabi, UAE	[17]						
C4_S31	VD169	Dubai, UAE	[17]						
C4_S32	VD200	Water, Scotland	[17]						
C4_S33	VD133	Soil, Martinique	[17]						
Cluster 5 (C5)									
---------------	---	---	---	---	---	---			
C5_S1	289	Btoy BCT-7112	x	x	-	-	Purified for use as probiotic, Japan 1966	[32]	
C5_S2	44	BAG1O-2	x	x	-	x	-	Soil, Massachusetts	[3]
C5_S3	52	BAG4X2-1	x	x	-	x	-	Soil, Massachusetts	[3]
C5_S4	54	BAG5O-1	x	x	-	x	-	Soil, Massachusetts	[3]
C5_S5	55	BAG6O-1	x	x	-	x	-	Soil, Massachusetts	[3]
C5_S6	69	Bt MC28	x	x	-	x	-	Forest, Sichuan China	[33]
C5_S7	99	HuB2-9	x	x	-	x	-	Environmental isolate	[17]
C5_S8	100	HuB5-5	x	x	-	x	-	Environmental isolate	[17]
C5_S9	115	Rock1-3	x	x	-	x	-	Soil, Rockville in Maryland	[2]
C5_S10	117	Rock3-28	x	x	-	x	-	Soil, Rockville in Maryland	[2]
C5_S11	118	Rock3-29	x	x	-	x	-	Soil, Rockville in Maryland	[2]
C5_S12	121	Rock4-18	x	x	-	x	-	Soil, Rockville in Maryland	[2]
C5_S13	129	VD148	x	x	-	x	-	Soil, Switzerland	[17]
C5_S14	173	HuB4-10	x	x	-	x	-	Environmental isolate	[17]
C5_S15	180	VD115	x	x	-	x	-	Soil, France	[17]
C5_S16	209	VD214	x	x	-	x	-	Water, Scotland	[17]
C5_S17	210	BAG2O-2	x	x	-	x	-	Soil, Massachusetts	[3]
C5_S18	220	HaA2-3	x	x	-	x	-	Environmental isolate	[17]
Cluster 6 (C6)

Cluster	Strain	nhe	hbl	cytK	plcR	2. hbl	2. nhe	Ces	Source	Reference
C6_S1	Bw WSBC 10204 *	x	x	x	x	x	-	-	Milk	[35]
C6_S2	Bm DSM 2048	x	x	x	x	-	-	-	Soil	[2]
C6_S3	AH621	x	x	x	x	-	-	-	Soil, Norway	[2]
C6_S4	BDRD-ST196	x	x	x	x	-	-	-	BDRD stock strain	[2]
C6_S5	Bw KBAB4	x	-	-	x	x	-	-	Soil	[4]
C6_S6	HaA2-4	x	-	x	x	-	-	-	Environmental isolate	[17]
C6_S7	VD048	x	x	x	x	-	-	-	Soil, Denmark	[17]
C6_S8	VDM022	x	x	x	x	-	-	-	Soil, Greenland	[17]
C6_S9	VDM062	x	-	x	x	-	-	-	Soil, Scotland	[17]
C6_S10	Bw BtB2-4	x	x	x	x	-	-	-	Forest soil, Belgium	[36]
C6_S11	BAG5X1-1	x	x	x	x	-	-	-	Soil, Massachusetts	[3]
C6_S12	Bw CER057	x	x	x	x	-	-	-	Parsley, Massachusetts	[36]
C6_S13	Bw CER074	x	x	x	x	-	-	-	Raw milk, Belgium	[36]
C6_S14	Bw MC67	x	x	x	x	-	-	-	Soil, Denmark	[37]
C6_S15	VD078	x	x	x	x	-	-	-	Soil, Greenland	[17]
C6_S16	VDM019	x	x	x	x	-	-	-	Soil, Greenland	[17]
C6_S17	Bw FSL H7-687	x	x	x	x	-	-	-	Pasteurized Milk	Sequenced by Cornell University
C6_S18	Bm WSBC 10969 *	x	x	x	x	-	-	-	Raw milk, Germany, 2014	This study

Cluster 7 (C7)

Cluster	Strain	nhe	hbl	cytK	plcR	2. hbl	2. nhe	Ces	Source	Reference
C7_S1	Bcyt NVH 391-98	x	-	x	x	-	-	-	Vegetable puree, food poisoning, France, 1998	[38]
C7_S2	Bcyt CVUAS2833 *	x	-	x	x	-	-	-	Potato puree, food poisoning, Germany, 2007	[39]

1) Strain collection of the Department for Hygiene and Technology of Milk (MHI), Germany
2) Strain collection of the Rijksinstituut voor Volksgezondheid en Milieu (RIVM), Netherlands
3) Weihenstephan *Bacillus cereus* group Strain Collection (WSBC), Germany

Part 2: Additional Strains

Cluster	Strain	Original name	nhe	hbl	cytK	plcR	2. hbl	2. nhe	Ces	Source	Reference
9	AH603		x	x	-	-	-	-	-	Dairy	[2]
13	AH1134		x	x	x	-	-	-	-	Pediatric endophthalmitis, Oklahoma City, Dean Blackcurrant	Sequenced by TIGR [36]
14	AND1407		x	-	-	-	-	x	-	Blackcurrant	[36]
19	Ba str. A0174		x	-	-	-	-	-	-	Canada	Sequenced by Los Alamos National Laboratory
20	Ba str. A0193		x	-	-	-	-	-	-	Bovine isolate, South Dakota	Sequenced by Los Alamos National Laboratory
22	Ba str. A0389		x	-	-	-	-	-	-	Bekasi, Indonesia	Sequenced by Los Alamos National Laboratory
23	Ba str. A0442		x	-	-	-	-	-	-	Kudu (Antelope), Kruger National Park, South Africa	Sequenced by Los Alamos National Laboratory
No.	Isolate Code	Location/Source	Description/Comments								
-----	--------------	-----------------	----------------------								
24	Ba str. A0465	x - - - - - -	Bovine isolate, France								
25	Ba str. A0488	x - - - - - -	Infected cattle, UK 1935								
26	Ba str. A1055	x - - - - - -	From Paul Keim’s laboratory								
27	Ba str. A2012	x - - - - - -	Clinical, inhalational anthrax, West Palm Beach, FL, 1987								
30	Ba str. Australia 94	x - - - - - -	Australia 1987								
31	Ba str. BF1	x - - - - - -	Cow carcass, Bavaria, Germany								
32	Ba str. CDC 684	x - - x - - -	?								
33	Ba str. CNEVA-9066	x - - - - - -	France								
34	Ba str. Carbosap	x - - - - - -	Italy								
36	Ba str. Heroin Ba4599	x - - - - - -	Clinical, first case of anthrax outbreak, Scotland, UK 1987								
37	Ba str. Kruger B	x - - - - - -	Kruger National Park, South Africa								
39	Ba str. Tsiankovskii-1	x - - - - - -	Soviet Union								
40	Ba str. UR-1	x - - - - - -	Clinical, inhalational anthrax in a German military laboratory								
41	Ba str. Vollum	x - - - - - -	Occurs in the UK, Spain, Zimbabwe								
42	Ba str. Western North America USA6153	x - - - - - -	?								
45	BAG1X1-2	x x x - - - -	Soil, Massachusetts								
46	BAG1X1-3	x x - x - - -	Soil, Massachusetts								
49	BAG3X2-1	x x - x - - -	Soil, Massachusetts								
79	Bt serovar pondicerrensis BGSC	x x x x - - -	Soil, India								
81	Bt serovar sotto str. T04001	x x - x x - -	Canada								
94	G9241	x x x - - -	Pneumonia, 1987								
96	Bt s. kurstaki str. HD73	x x x x x - -	?								
98	HuB1-1	x x x x - - -	Environmental isolate								
101	IS075	x - - - - - x	Intestine of bank vole, Poland								
103	LCT-BC244	x - - - - - -	China General Microbiological Culture Collection								
107	MSX-A1	x x x - - - -	Antarctic concordia station and ISS								
108	MSX-A12	x - x - - - -	Antarctic concordia station and ISS								
111	NVH0597-99	x - x - - -	Soil, Jamaica, Jamaica								
114	R3098/03	x - x - - - -	Septicemia, UK								
120	Rock4-2	x x x x - - -	Soil, Rockville in Maryland								
122	SJ1	x - x - - - -	?								
124	VD022	x x - - - - -	Water, Belgium								
125	VD045	x x x - - - -	Soil, Denmark								
127	VD102	x - x - - - -	Soil, Guadeloupe								
128	VD142	x x - - - - -	Soil, Scotland								
#	Sample ID	Description	Location								
----	-----------	-------------	----------								
130	VD154	Soil, Abu Dhabi, UAE	[17]								
132	VD166	Soil, UAE	[17]								
136	VDM034	Soil, Spain	[17]								
138	W	Soil	[17]								
146	AH1272	Amniotic fluid, Iceland	[2]								
147	AH1273	Human blood, Iceland	[2]								
151	Bm Rock1-4	Soil, Maryland	[2]								
153	BAG2X1-1	Soil, Massachusetts	[3]								
158	BAG6O-2	Soil, Massachusetts	[3]								
160	BAG6X1-2	Soil, Massachusetts	[3]								
171	HuA2-1	Environmental isolate	[17]								
172	HuA4-10	Environmental isolate	[17]								
179	VD107	Soil, Guadeloupe	[17]								
188	VD118	Soil, Guadeloupe	[17]								
196	BAG2X1-3	Soil, Massachusetts	[3]								
200	BAG1X2-3	Soil, Massachusetts	[3]								
203	BAG1X1-1	Soil, Massachusetts	[3]								
204	K-5975c	Pasta salad, fatal food poisoning, 2003, Belgium	[47]								
207	VD140	Soil, Scotland	[17]								
216	BS-2	Soil, China	[17]								
217	BAG1O-1	Soil, Massachusetts	[3]								
218	BAG3O-1	Soil, Massachusetts	[3]								
219	BAG5X12-1	Soil, Massachusetts	[3]								
221	HuA2-9	Environmental isolate	[17]								
222	HuA3-9	Environmental isolate	[17]								
223	HuB4-4	Environmental isolate	[17]								
224	ISP2954	Food (durum wheat), Belgium	[17]								
226	Schrouff	Milk, Belgium	[17]								
227	TIAC219	Spaghetti and tomato sauce, lethal intoxication, Belgium	[48]								
231	VD146	Soil, Scotland	[17]								
233	VDM053	Water, Belgium	[17]								
234	BAG1O-3	Soil, Massachusetts	[3]								
290	H3081.97	Environmental isolate, USA, CDC	Sequenced by J. Craig Venter Institute								
Primer	Target	Sequence [5’ – 3’]	Source								
--------------	-------------------------	--------------------	-------------								
16Sf	Inner fragment of 16S rRNA gene *rrn*	GAC GTC AAA TCA TCA TGC C	This work								
16Sr		GAT TCC AGC TTC ATG TAG G									
nheA af	Inner fragment of *nheA*	CTA GTA AAG TTA GCA GAG CG	This work								
nheA ar		TTT CTT TTG GTA GAG CTA GAA G									
nheB af	Inner fragment of *nheB*	TTA TAT TGC ATC GTC GGT TG	This work								
nheB ar		TTA TCT GCT GCT GCG ATG									
nheC af	Inner fragment of *nheC*	CTA GAT AAC GTG GTG GC	This work								
nheC ar		TTC CGT TTT ATT TTT GGC ATC									
nheA qRT for	Inner fragment of *nheA*	AAG TAC AAA GCA TCC AAG AGA	This work								
nheA qRT rev		ACA ATA TCT CCA CTT GAT CCT T									
nheB qRT for	Inner fragment of *nheB*	GTG AAA CAA GCT CCA GTT C	[49]								
nheB qRT rev		AAA GCG TAC AGA TCC ATT ACT									
nheC qRT for	Inner fragment of *nheC*	GCA AAT GCA GAA A/C/AG A GAA AT	This work								
nheC qRT rev		CCT ACT GTA TAC CAT TGA TTT GA									
Table S4: Intra-operon recombination analysis of enterotoxin operons.

142 concatenated nheABC genes, 94 concatenated hblCDAB genes and 46 concatenated hblCDAa genes were investigated. Statistically proven recombination events detected by RDP3 (see Material and Methods). Strains containing two recombinations are highlighted in bold, strains containing three recombinations are additionally underlined. * breakpoint unclear. All breakpoints of recombination events were independent of gene boundaries.

Thirteen nhe intra-operon recombinations involved cluster III strains and all strains containing two recombinations are also found in cluster III. In cluster VI a group of closely related strains (#61, #85, #87, #97 and #137) contains three recombinations.

Recombinant sequence(s) nheABC	Breakpoints [bp]	Cluster	Minor parent	Major parent	#programs	Max. average p-value
212, 113, 104, 109, 139, 143, 246	64 – 2256	III & II	140	73	7	1.00E-07
117, 129, 44, 100, 115, 210, 237, 289, 52, 99, 118, 209, 54, 55, 173, 220	1325 – 2202	IV & V	213	180	7	2.30E-02
62, 102	18 – 2371	III & IV	119	16	7	4.56E-03
70, 75, 90, 119, 1	1113 – 2424	III	84	91	7	9.30E-03
113	65* – 515	III	83	246	5	3.51E-04
211, 144, 256	985 – 2446	II	140	56	7	2.89E-04
280, 15, 58, 59, 63, 4, 11, 64, 71, 72, 82, 214, 116	1995 – 3031	IV	199	240	5	7.62E-03
69, 121, 52, 99, 118, 209, 54, 55, 173, 220	87 – 1317*	V & III	117	91	5	1.52E-03
93	38 – 1954	III	148	83	7	1.07E-03
85, 97, 61, 87, 137	188 – 1294	V & III	177	93	7	1.78E-02
235, 78, 134, 133	1581 – 2212	IV	238	236	4	8.16E04
56, 47	1059 – 2791	II & III	140	242	6	2.29E-03
83	995 – 1582	III	148	206	6	2.59E-02
174	2355 – 3030	VI	155	126	4	2.18E-03
1, 91	386 – 819	III	242	5	5	4.56E-02
Recombinant sequence(s)	Breakpoints [bp]	Cluster	Minor parent	Major parent	# programs	Max. average p-value
-------------------------	-------------------	---------	--------------	--------------	------------	---------------------
hblCDAB						
126, 61, 87, 10	2041 – 4892	VI	166	155	7	1.04E-18
174	3681 – 4863*	VI	61	10	7	6.82E-04
229, 69, 54	674 – 1685	V	55	180	4	2.44E-03
280	2867 – 4962	IV	59	241	3	2.58E-03
236, 65, 95, 213	2138 – 3421	IV	116	16	3	3.14E-02
hblCDA_a						
144	1325 – 2475	II & VI	232	140	6	8.27E-04
10, 126, 85, 97	2173 – 2362	II & V	180	140	3	1.47E-02
135, 177, 137, 232, 283, 61, 87, 149, 166, 168	2180 – 2362	II & V	180	140	3	1.47E-02
Presence of second \textit{nhe}_a operon in newly sequenced strains

To confirm the presence of the second \textit{nhe}_a operon in some of the newly sequenced strains trimmed and quality filtered read data was aligned separately against each of the suspicious \textit{nhe} operons as well as the contigs on which the operons are located on. Read alignment was performed using BWA v.0.7.12 [50]. Subsequently, the resulting SAM files were converted into BAM format, whereby reads not mapping to the reference or not being part of a primary alignment to the reference were discarded. SAM file conversion and filtering was carried out using the 'view' utility of the SAMtools package v.0.1.18 [51]. Filtered BAM files served as input for the 'genomeCoverageBed' utility of the BEDTools suite v.2.17.0 [52] to obtain per-base sequencing depths of respective references in BED files. Sequencing depth histograms (BED files) were used to calculate each reference's median coverage.

Table S5 summarizes the median coverage information obtained for each operon (cov\textsubscript{operon}) and the contig (cov\textsubscript{contig}) it belongs to. Taking the ratio of cov\textsubscript{operon} to cov\textsubscript{contig} shows that all operons fit very well to their genomic backgrounds (contigs), since respective values are close to 1. Significant read pile-up beyond genomic backgrounds of individual operons is not observable, since \textit{nhe}_a diverged from \textit{nhe} to a point that its reads do not align to \textit{nhe} anymore (and vice versa). Examination of read sets mapping to \textit{nhe}_a and \textit{nhe} indeed shows that most reads either map to \textit{nhe}_a or \textit{nhe} (# unique reads) with only a small number of reads mapping to both copies (# combined reads).
Table S5: Confirmation of presence of second nhe\textsubscript{a} operons.

Three of the *de novo* assembled strains were found to contain nhe\textsubscript{a}, which is discerned from nhe by its uniquely mapping reads.

* The nhe operon maybe be located within the wrong contig due to an unexpected high ratio \((\text{cov}_{\text{operon}}/\text{cov}_{\text{contig}}) \) of 1.44. However, examination of read sets mapping uniquely either to nhe or nhe\textsubscript{a} unambiguously show that both versions are present within the genome of strain #87.

** Unusually high read number is caused by a ~ 40x higher coverage over the intergenic region (2474 – 2634 bp) between nhe\textsubscript{B} and nhe\textsubscript{C}, which may be due to a duplication of this region into a plasmid with high copy numbers.

Strain	Operon	Median operon coverage (\text{cov}_{\text{operon}})	Median contig coverage (\text{cov}_{\text{contig}})	Ratio \(\text{cov}_{\text{operon}}/\text{cov}_{\text{contig}} \)	# Unique reads	# Combined reads
#87	nhe	155	108	1.44*	2,996	40
	nhe\textsubscript{a}	153	144	1.06	3,183	
#144	nhe	123	127	0.97	9,893**	4
	nhe\textsubscript{a}	235	231	1.02	4,800	
#140	nhe	59	62	0.95	950	8
	nhe\textsubscript{a}	66	66	1.00	1,106	
Presence of second \textit{hbl\textsubscript{a}} operon in newly sequenced strains

To confirm the presence of the second \textit{hbl\textsubscript{a}} operon in some of the newly sequenced strains the same approach of read remapping and filtering as for the \textit{nhe} operons was applied. In addition to mapping reads to \textit{hbl}, \textit{hbl\textsubscript{a}} and the contigs the operons are located on, reads were also mapped to an artificial sequence construct separating each strain's version of \textit{hbl} and \textit{hbl\textsubscript{a}} by a sequence of 5,000 'N' characters.

Table S6 summarizes the median coverage information obtained for each operon (\textit{cov\textsubscript{operon}}) and the contig (\textit{cov\textsubscript{contig}}) it belongs to as well as the median coverages of \textit{hbl} and \textit{hbl\textsubscript{a}} within artificial sequence constructs (\textit{cov\textsubscript{construct}}). Taking the ratio of \textit{cov\textsubscript{construct}} to \textit{cov\textsubscript{contig}} shows that all operons fit very well to their genomic backgrounds (contigs), since respective values are close to 1. Taking the ratio of \textit{cov\textsubscript{operon}} to \textit{cov\textsubscript{construct}} for each individual operon shows that median coverages obtained after remapping against operon sequences alone are higher than compared to the ones after remapping against corresponding artificial constructs, since respective ratio values are greater than 1. This can be explained by the fact that within each artificial construct reads are preferentially forming primary alignments (best hits) to the operon (\textit{hbl} or \textit{hbl\textsubscript{a}}) where they naturally are originating from. In contrast, when mapping against individual operon sequences alone (no construct!), a substantial fraction of reads originating from \textit{hbl\textsubscript{a}} are aligning to \textit{hbl} as well, but only due to the missing possibility of forming a better alignment with \textit{hbl\textsubscript{a}} (since it is not present). This observation accounts also in vice versa direction.

The third copy of \textit{hbl} in strain #245 is due to an assembly error. On the one hand, an extremely low ratio (\textit{cov\textsubscript{construct}}/\textit{cov\textsubscript{contig}}) of 0.04 was found. On the other hand, there are almost no reads mapping uniquely to the third \textit{hbl} copy, revealing it as a mis-assembled second copy of \textit{hbl\textsubscript{a}}.
Table S6: Confirmation of presence of second hbl_a operons.

Five of the *de novo* assembled strains were found to contain two versions of hbl, which could be discerned by ratios of cov_{operon} to $cov_{construct}$ being greater than 1.

* Reads that map uniquely to hbl_a contain reads of hbl_a and $hblCD$. Therefore, coverage is increased in comparison to cov_{contig}.

** Extremely high coverage over the contig (length 4105 bp) suggests that it might be (part of) a plasmid.

*** In a construct containing hbl_a and $hblCD$ few reads map uniquely against $hblCD$.

Strain	Operon	Median construct coverage (cov_{construct})	Median contig coverage (cov_{contig})	Ratio (cov_{construct}/cov_{contig})	Median operon coverage (cov_{operon})	Ratio (cov_{operon}/cov_{construct})
#245	hbl	51	50	1.02	68	1.33
	hbl_a	180	157	1.15	210	1.17
#245	hbl	58	50	1.16	68	1.17
	$hblCD$	202	1,587**	0.13	222	1.10
#245	hbl_a	196	157	1.25*	210	1.07
	$hblCD$	60	1,587**	0.04***	222	3.70***
#243	hbl	79	83	0.95	93	1.18
	hbl_a	76	74	1.03	126	1.66
#283	hbl	103	104	0.99	116	1.13
	hbl_a	108	109	0.99	156	1.44
#87	hbl	102	108	0.94	132	1.29
	hbl_a	95	108	0.88	169	1.78
#144	hbl	101	101	1.00	123	1.22
	hbl_a	102	101	1.01	157	1.54
References

1. Nakamura KJ, M. A.: Clarification of the Taxonomy of Bacillus mycoides. International journal of systematic bacteriology 1995, 45(1):4.

2. Zwick ME, Joseph SJ, Didelot X, Chen PE, Bishop-Lilly KA, Stewart AC, Willner K, Nolan N, Lentz S, Thomason MK et al: Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome research 2012, 22(8):1512-1524.

3. Van der Auwera GA, Feldgarden M, Kolter R, Mahillon J: Whole-Genome Sequences of 94 Environmental Isolates of Bacillus cereus Sensu Lato. Genome announcements 2013, 1(5).

4. Rasko DA, Altherr MR, Han CS, Ravel J: Genomics of the Bacillus cereus group of organisms. FEMS microbiology reviews 2005, 29(2):303-329.

5. Keim P, Price LB, Klevetska AM, Smith KL, Schupp JM, Okinaka R, Jackson PJ, Hugh-Jones ME: Multiple-locus variable-number tandem repeat analysis reveals genetic relationships within Bacillus anthracis. Journal of bacteriology 2000, 182(10):2928-2936.

6. Chun JH, Hong KJ, Cha SH, Cho MH, Lee KJ, Jeong DH, Yoo CK, Rhie GE: Complete genome sequence of Bacillus anthracis H9401, an isolate from a Korean patient with anthrax. Journal of bacteriology 2012, 194(15):4116-4117.

7. Lund T, Granum PE: Characterisation of a non-haemolytic enterotoxin complex from Bacillus cereus isolated after a foodborne outbreak. FEMS microbiology letters 1996, 141(2-3):151-156.

8. Haggblom MM, Apetroaie C, Andersson MA, Salkinoja-Salonen MS: Quantitative Analysis of Cereulide, the Emetic Toxin of Bacillus cereus, Produced under Various Conditions. Applied and Environmental Microbiology 2002, 68(5):2479-2483.

9. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I, Kolsto AB: Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis - one species on the basis of genetic evidence. Appl Environ Microbiol 2000, 66(6):2627-2630.

10. Rasko DA, Ravel J, Okstad OA, Helgason E, Cer RZ, Jiang L, Shores KA, Fouts DE, Tourasse NJ, Angiuoli SV et al: The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1. Nucleic Acids Res 2004, 32(3):977-988.

11. Klee SR, Brzuszkiewicz EB, Nattermann H, Bruggemann H, Dupke S, Wollherr A, Franz T, Pauli G, Appel B, Liebl W et al: The genome of a Bacillus isolate causing anthrax in chimpanzees combines chromosomal properties of B. cereus with B. anthracis virulence plasmids. PloS one 2010, 5(7):e10986.

12. Ji F, Zhu Y, Ju S, Zhang R, Yu Z, Sun M: Promoters of crystal protein genes do not control crystal formation inside exosporium of Bacillus thuringiensis ssp. finitimus strain YBT-020. FEMS microbiology letters 2009, 300(1):11-17.
13. Hernandez E, Ramisse F, Ducoureau JP, Cruel T, Cavallo JD: *Bacillus thuringiensis* subsp. *konkukian* (serotype H34) superinfection: case report and experimental evidence of pathogenicity in immunosuppressed mice. *Journal of clinical microbiology* 1998, 36(7):2138-2139.

14. Cachat E, Barker M, Read TD, Priest FG: A *Bacillus thuringiensis* strain producing a polyglutamate capsule resembling that of *Bacillus anthracis*. *FEMS microbiology letters* 2008, 285(2):220-226.

15. Challacombe JF, Altherr MR, Xie G, Bhotika SS, Brown N, Bruce D, Campbell CS, Campbell ML, Chen J, Chertkov O et al: The complete genome sequence of *Bacillus thuringiensis* Al Hakam. *Journal of bacteriology* 2007, 189(9):3680-3681.

16. Turnbull PC, Nottingham JF, Ghosh AC: A severe necrotic enterotoxin produced by certain food, food poisoning and other clinical isolates of *Bacillus cereus*. *British journal of experimental pathology* 1977, 58(3):273-280.

17. Hu X, Van der Auwera G, Timmery S, Zhu L, Mahillon J: Distribution, diversity, and potential mobility of extrachromosomal elements related to the *Bacillus anthracis* pXO1 and pXO2 virulence plasmids. *Applied and Environmental Microbiology* 2009, 75(10):3016-3028.

18. Agata N, Ohta M, Yokoyama K: Production of *Bacillus cereus* emetic toxin (cereulide) in various foods. *International journal of food microbiology* 2002, 73(1):23-27.

19. Xiong Z, Jiang Y, Qi D, Lu H, Yang F, Yang J, Chen L, Sun L, Xu X, Xue Y et al: Complete genome sequence of the extremophilic *Bacillus cereus* strain Q1 with industrial applications. *Journal of bacteriology* 2009, 191(3):1120-1121.

20. Jessberger N, Dietrich R, Bock S, Didier A, Martlbauer E: *Bacillus cereus* enterotoxins act as major virulence factors and exhibit distinct cytotoxicity to different human cell lines. *Toxicon: official journal of the International Society on Toxinology* 2014, 77:49-57.

21. Swiecicka I, Fiedoruk K, Bednarz G: The occurrence and properties of *Bacillus thuringiensis* isolated from free-living animals. *Letters in applied microbiology* 2002, 34(3):194-198.

22. Guinebretiere MH, Broussolle V, Nguyen-The C: Enterotoxigenic Profiles of Food-Poisoning and Food-Borne *Bacillus cereus* Strains. *Journal of clinical microbiology* 2002, 40(8):3053-3056.

23. Frankland GC, Frankland PF: Studies on Some New Micro-Organisms Obtained from Air. *Philosophical Transactions of the Royal Society B: Biological Sciences* 1887, 178(0):257-287.

24. Duport C, Thomassin S, Bourel G, Schmitt P: Anaerobiosis and low specific growth rates enhance hemolysin BL production by *Bacillus cereus* F4430/73. *Archives of microbiology* 2004, 182(1):90-95.
25. He J, Shao X, Zheng H, Li M, Wang J, Zhang Q, Li L, Liu Z, Sun M, Wang S et al: Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. Journal of bacteriology 2010, **192**(15):4074-4075.

26. Lereclus D, Arantes O, Chaufaux J, Lecadet M: Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis. FEMS microbiology letters 1989, **51**(1):211-217.

27. He J, Wang J, Yin W, Shao X, Zheng H, Li M, Zhao Y, Sun M, Wang S, Yu Z: Complete genome sequence of Bacillus thuringiensis subsp. chinensis strain CT-43. Journal of bacteriology 2011, **193**(13):3407-3408.

28. Hoffmaster AR, Novak RT, Marston CK, Gee JE, Helsel L, Pruckler JM, Wilkins PP: Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC microbiology 2008, **8**:191.

29. Wang A, Pattemore J, Ash G, Williams A, Hane J: Draft genome sequence of Bacillus thuringiensis strain DAR 81934, which exhibits molluscicidal activity. Genome announcements 2013, **1**(2):e0017512.

30. Murawska E, Fiedoruk K, Bideshi DK, Swiecicka I: Complete genome sequence of Bacillus thuringiensis subsp. thuringiensis strain IS5056, an isolate highly toxic to Trichoplusia ni. Genome announcements 2013, **1**(2):e0010813.

31. Cheng T, Lin P, Jin S, Wu Y, Fu B, Long R, Liu D, Guo Y, Peng L, Xia Q: Complete Genome Sequence of Bacillus bombysepticus, a Pathogen Leading to Bombyx mori Black Chest Septicemia. Genome announcements 2014, **2**(3).

32. Jimenez G, Urdiain M, Cifuentes A, Lopez-Lopez A, Blanch AR, Tamames J, Kampfer P, Kolsto AB, Ramon D, Martinez JF et al: Description of Bacillus toyonensis sp. nov., a novel species of the Bacillus cereus group, and pairwise genome comparisons of the species of the group by means of ANI calculations. Systematic and applied microbiology 2013, **36**(6):383-391.

33. Guan P, Ai P, Dai X, Zhang J, Xu L, Zhu J, Li Q, Deng Q, Li S, Wang S et al: Complete genome sequence of Bacillus thuringiensis serovar Sichuansis strain MC28. Journal of bacteriology 2012, **194**(4):6975.

34. Hoa NT, Baccigalupi L, Huxham A, Smertenko A, Van PH, Ammendola S, Ricca E, Cutting SM: Characterization of Bacillus Species Used for Oral Bacteriotherapy and Bacterioprophylaxis of Gastrointestinal Disorders. Applied and Environmental Microbiology 2000, **66**(12):5241-5247.

35. Lechner S, Mayr R, Francis KP, Pruss BM, Kaplan T, Wiessner-Gunkel E, Stewart GS, Scherer S: Bacillus weihenstephanensis sp. nov. is a new psychrotolerant species of the Bacillus cereus group. International journal of systematic bacteriology 1998, **48 Pt 4**:1373-1382.
36. Hoton FM, Fornelos N, N’Guessan E, Hu X, Swiecicka I, Dierick K, Jaaskelainen E, Salkinoja-Salonen M, Mahillon J: *Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains*. Environmental microbiology reports 2009, 1(3):177-183.

37. Thorsen L, Hansen BM, Nielsen KF, Hendriksen NB, Phipps RK, Budde BB: *Characterization of emetic Bacillus weihenstephanensis, a new cereulide-producing bacterium*. Applied and Environmental Microbiology 2006, 72(7):5118-5121.

38. Lund T, De Buyser ML, Granum PE: *A new cytotoxin from Bacillus cereus that may cause necrotic enteritis*. Molecular microbiology 2000, 38(2):254-261.

39. Guinebretiere MH, Auger S, Galleron N, Contzen M, De Sarrau B, De Buyser ML, Lamberet G, Fagerlund A, Granum PE, Lereclus D *et al*: *Bacillus cytotoxicus* sp. nov. is a novel thermotolerant species of the *Bacillus cereus* Group occasionally associated with food poisoning. International journal of systematic and evolutionary microbiology 2013, 63(Pt 1):31-40.

40. Antwerpen M, Proenca DN, Ruckert C, Licht K, Kalinowski J, Hanczaruk M, Tiemann C, Grass G: *Draft genome sequence of Bacillus anthracis BF-1, isolated from Bavarian cattle*. Journal of bacteriology 2012, 194(22):6360-6361.

41. Harrington R, Ondov BD, Radune D, Friss MB, Klubnik J, Diviak L, Hnath J, Cendrowski SR, Blank TE, Karaolis D *et al*: *Genome Sequence of the Attenuated Carbosap Vaccine Strain of Bacillus anthracis*. Genome announcements 2013, 1(1).

42. Price EP, Seymour ML, Sarovich DS, Latham J, Wolken SR, Mason J, Vincent G, Drees KP, Beckstrom-Sternberg SM, Phillippy AM *et al*: *Molecular epidemiologic investigation of an anthrax outbreak among heroin users, Europe*. Emerg Infect Dis 2012, 18(8):1307-1313.

43. Ruckert C, Licht K, Kalinowski J, Espirito Santo C, Antwerpen M, Hanczaruk M, Reischl U, Holzmann T, Gessner A, Tiemann C *et al*: *Draft genome sequence of Bacillus anthracis UR-1, isolated from a German heroin user*. Journal of bacteriology 2012, 194(21):5997-5998.

44. Miller JM, Hair JG, Hebert M, Hebert L, Roberts FJ, Jr., Weyant RS: *Fulminating bacteremia and pneumonia due to Bacillus cereus*. Journal of clinical microbiology 1997, 35(2):504-507.

45. Lereclus D, Menou G, Lecadet MM: *Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcus faecalis plasmid pAM beta 1*. Molecular & general genetics : MGG 1983, 191(2):307-313.

46. Su L, Zhou T, Zhou L, Fang X, Li T, Wang J, Guo Y, Chang D, Wang Y, Li D *et al*: *Draft genome sequence of Bacillus cereus strain LCT-BC244*. Journal of bacteriology 2012, 194(13):3549.
47. Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J: **Fatal family outbreak of Bacillus cereus-associated food poisoning.** *Journal of clinical microbiology* 2005, 43(8):4277-4279.

48. Naranjo M, Denayer S, Botteldoorn N, Delbrassinne L, Veys J, Waegenaere J, Sirtaine N, Driesen RB, Sipido KR, Mahillon J *et al:* **Sudden death of a young adult associated with Bacillus cereus food poisoning.** *Journal of clinical microbiology* 2011, 49(12):4379-4381.

49. Jeßberger N, Krey VM, Rademacher C, Böhm M-E, Mohr A-K, Ehling Schulz M, Scherer S, Märtlauer E: **From genome to toxicity: a combinatory approach highlights the complexity of enterotoxin production in Bacillus cereus.** *Front Microbiol* 2015, 6.

50. Li H, Durbin R: **Fast and accurate short read alignment with Burrows-Wheeler transform.** *Bioinformatics* 2009, 25(14):1754-1760.

51. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S: **The Sequence Alignment/Map format and SAMtools.** *Bioinformatics* 2009, 25(16):2078-2079.

52. Quinlan AR: **BEDTools: The Swiss-Army Tool for Genome Feature Analysis.** *Current protocols in bioinformatics / editorial board, Andreas D Baxevanis [et al]* 2014, 47:11 12 11-11 12 34.