1. INTRODUCTION

Nepal’s agriculture sector is the most significant contributor to National GDP, engaging 2/3 of its total population. A large number of crops are grown for food, fiber, shelter, fuel, animal feed, fodder, medicine, and so on. Infestations of insect pests are one of the major challenges in agriculture. Different kinds of pests (insects, mites, rodents, birds, slugs, snails, etc.) and disease causal organisms (bacteria, fungi, viruses, nematodes, etc.) attack all types of crops which leads in various degrees of loss (Neupane, 2004). Globally, it is estimated that yield loss due to arthropods, diseases, and weeds account for about 35% significant crops, which may exceed 50% when pest control options are limited (Oerke et al., 2012). And in some cases, there may be higher losses up to total crop failure (Abate et al., 2000).

The application of pesticides has rapidly increased for control of pests in agriculture after their introduction in Nepal in the early sixties. The largest quantity of pesticides is used in rice (40-50%) followed by grain legumes (31-35%), and vegetables and fruits (10-20%) (Manandhar & Pakhre, 1999). The annual import of pesticides in Nepal is about 211 mt. a.i. with 29.19% insecticides, 61.38% fungicides, 7.43% herbicides, and 2% others, and the average amount of pesticide used in Nepal is 142 g a.i./ha, which is very low as compared to other Asian counties (Sharma et al., 2012). Chemical pesticides are economical, reliable, and easy to use and have a high and instant effect against pests.

These chemicals not only control the target pests but also control other non-target organisms (parasitoids, predators, plant pollinators, soil microorganisms, aquatic organisms, etc.) and wild animals. Such chemicals, when used repeatedly at high doses, lead to pest outbreaks, resistance, and resurgence. In the long run, insects develop resistance to insecticides.

Synthetic pesticides have serious health issues among workers during manufacture, formulation, and field applications. Most of the Nepalese farmers are unaware of pesticide types, level of poisoning, safety precautions, and potential hazards on health and environment. High amount of pesticidal residue in vegetable crops is sold in the market. The growers don’t follow the certified waiting periods (time between the last application of pesticide and harvest of a crop) for several pesticides on vegetable crops (Shrestha & Neupane, 2002). They can create hormonal imbalance and have high and acute residual toxicity (Pretty, 2012).

Biopesticides were developed as self-alternative for synthetic pesticides. According to Mazid et al., 2011 “Bio-pesticides are naturally occurring substances from living organisms (natural enemies) or their products (microbial products, phytochemicals) or their by-products (semiochemicals) that can control pest by nontoxic mechanisms” (Mazid et al, 2011).

Biopesticides fall into three major categories (Gupta & Dikshit, 2010):

1) Microbial pesticides
2) Plant-pesticides
3) Biochemical pesticides

In Nepal, the use of locally available plants for pest control is one of the traditional methods. Our farmers have been using such plants since...
ancient times. Most of the Ayurvedic plants also possess pesticidal properties (Neupane, 2004). Botanical pesticides are easy to grow and are easily found in our surroundings. Besides low cost, less toxicity, and environmentally friendly characteristics of these pesticides make them more preferable (Palikhe, 2002). Botanical pesticides do not pollute the environment as they are easily decomposed by microorganisms (Dubey et al., 2010). The study aims to know the pesticidal potential of the ethnobotanicals found in Nepal. The specific objectives of this study is to access the effectiveness of those ethnobotanicals against various pests.

2. REVIEW METHODOLOGY

A rigorous desk study was done to collect and synthesize information in line with the topic of study. Various research papers, review articles, commentaries, and reports were earnestly read and screened for data compilation and its subsequent analysis. Scientific databases referred for the purpose included Scopus, ScienceDirect, Pubmed, Scfinder, ResearchGate, academia.edu, and Google scholar.

3. RESULT AND DISCUSSION

3.1 Pesticides in Nepal

In Nepal, total 170 different pesticides (by common name) have been registered under various trade names (3035). Most pesticides used in Nepal are imported from India, some from China and Japan, and other countries based on registration. The distribution of pesticides in Nepal is conducted only in the form of finished products. In Nepal, 3035 types of pesticides by the trade name and 170 common names have been registered up to 2018 for use under Pesticides Act and Rules.

3.2 Opportunities of Biopesticides in Nepal

The demand of biopesticide is rising steadily with organic crop cultivation and increasing health consciousness among people in all parts of the world as they are safe, do not have application restriction, are easily degradable and possess superior residue and resistance management potential. When used in Integrated Pest Management systems, biopesticide efficacy can be equal to or better than conventional products.

Biopesticide sector has huge scope in Nepal. Due to its rich biodiversity, Nepal offers plenty of scope for biopesticides. The rich traditional knowledge base available with the highly diverse indigenous communities in Nepal may provide valuable clues for developing newer and effective biopesticide. The increasing awareness on organic and residue free food would certainly warrant increased adoption of biopesticides by the farmers.

3.3 Trend of Bio-pesticide Import

The negative impacts of synthetic pyrethroids and increasing pesticide resistance have increased the interest in alternative control methods, with emphasis being placed on botanical pesticides and biological control. Biopesticides help farmer’s transition away from highly toxic conventional chemical pesticides. The data shows that the import of Bio-pesticide is increasing rapidly from 147.02 a.i.(Kg) in 2012/13 to 866.56 a.i.(Kg) in 2017/18 (Table 2). As reported on The Kathmandu Post : To reduce pesticide use Plant Protection Directorate (PPD) has been running the program by setting up Integrated Pest Management Resource Centres in seven districts- Kavre, Tanahun, Kaili, Mustang, Ilam, Kanchanpur and Kailali and farmers in these districts are producing biopesticides for their use and sales among local groups of farmers (The Kathmandu Post, 2018).

Table 2: Trend of Bio-pesticide Import (a.i.Kg)

Year	Qty.(Kg)	a.i.(Kg)	Rupees (Nrs)
2012/13	10375.00	147.02	4041700.00
2013/14	6277.50	71.74	3724273.00
2014/15	7287.5	51.778	3141760.3
2015/16	8424.00	63.33	2226917.20
2016/17	20480.25	112.25	6575182.02
2017/18	11865.00	66.56	2260380.00

Source: (PQPMLC, 2018)

3.4 Demerits of using botanicals

Less toxic or nontoxic compounds makes it less harmful for human and environment but also to target organism. Botanical pesticides may require frequent applications and pesticides instead of synthetic chemical pesticides (Dodia et al., 2010).

Botanical pesticides are naturally derived from plants that have been formulated specifically for their ability to control or repel insects. They are not true insecticides since many are merely feeding deterrents and their effect is slow. Botanical insecticides are easily degraded by sunlight, air, and moisture. They lack persistence and wide spectrum activity. They are not necessarily available season long. Most of them have no established residue tolerance. All plant products applied by growers have not been scientifically verified. Botanicals cannot kill insect immediately but are quickly to stop its feeding. Botanicals tend to be less expensive but are not widely available. Also, the potency of some botanicals may differ from one source or batch to the next. Also, they have poor water solubility and are not generally systemic, which is very important for effective control of sucking pests. The phytotoxicity is also problem of botanical pesticides such as neem oil based is often phytotoxic to tomato, brinjal and ornamental plants at high oil levels (Nawaz et al., 2016).

3.5 Commonly used botanicals in Nepal

In Nepal, around 324 species of botanicals are found and among them, in Asian farming system 23 species are of special value. The most common Nepal’s indigenous plants used as pesticides are Neem (Azadirachta indica), Bojho (Acros calamus), Garlic (Allium sativum), Madhuca Longifolia, Ginger (Zingiber officinale), Turmeric (Curcuma domestica), holy basil (Ocimum sanctum), Acorus calamus, garlic, turmeric, and basil have insecticidal, antifertility, nematocidal, anticalie, neuroparalytic, cardioprotective, anti-leishmaniasis properties due to its chemical constituents such as bitter fixed oil, nimbinid, Nimbins, nimbinin and nimbidol, tannin etc (Saleem et al., 2018).

The neem tree (Azadirachta indica) is indigenous to India, it belongs to the family Malaiaceae. Neem is rich in various phytochemicals such as alkaloids, steroids, flavonoids, terpenoids, fatty acids, and carbohydrates (Anilkumar et al., 2016). Neem is popular for its pharmacological attributes like antioxidant, hypolipidemic, microbicidal, anti-inflammatory, hepatoprotective, antipyretic, hypoglycemic, insecticidal, antifertility, nematocidal, anticalie, neuroparalytic, cardioprotective, anti-leishmaniasis properties due to its chemical constituents such as bitter fixed oil, nimbinid, Nimbins, nimbinin and nimbidol, tannin etc (Saleem et al., 2018).

Mode and specificity of action of Neem as bio-pesticide

- Oviposition deterrence

Azadirachtin blocks the neuro-secretory cells, which disrupts adult maturation and egg production and egg deposition of aphids (Vijayalakshmi et al., 1985; Vimala et al., 2010) observed that the reproductive potential of Myzus persicae fed on a diet containing azadirachtin was less than half the other that fed on control diet within the first 26 hours.

- Repellent

According to (Shanag et al., 2015) the three products Azatrol, Triple Action Neem Oil, Pure Neem Oil at higher concentrations were able to repel aphids feeding on sweet pepper plants.
Antifeedant
When Spodoptera litura infested crops were treated to neem products, due to presence of azadirachtin, salalin, and melanoridin, it cause vomiting like sensation and the insect does not feed on the neem-treated surface (Jeyasankar et al., 2010; Vijayalakshimi et al., 1985).

Growth Regulation
The neem components, azadirachtin, suppresses the activity of ecdysone so that the larva fails to molt and ultimately dies. It also causes malformation and sterility in emerging adult or inhibition of chitin formation (Vijayalakshimi et al. 1985).

Effectiveness of neem products
Neem products are found effective against more than 350 species of arthropods, 12 species of nematodes, 15 species of fungi, 3 viruses, and two species of snails and one crustacean species (Nigam et al., 1994). 200 species of insects (Uchebugu et al., 2011).

Neem leaf extracts, seed extract (seed cake), bark extract, neem oil can be used widely to control Blattodea pests (Ibrahim & Demisse, 2013) Hemipteran pests (Degri et al., 2013) Lepidopteran pests (Okrikata et al., 2016), Thysanopteran pests (Doudou et al., 2019) and Coleopteran insect in storage condition (Kemabonta & Falodu, 2013; Khan et al., 2016).

Neem products have low toxicity to mammals (Boeke et al., 2004; El-Wakeil, 2013) although some non-target species may be particularly susceptible.

Neem products were found profitable (benefit/cost) for the control of the green leaf hopper Nephotettix viridens in rice (Rajappan et al., 2000), the aphid Lipaphis erysimi in mustard (Gupta, 2005), the whitefly Bemisia tabaci and the pod borer Maruca testulalis in black gram (Gupta & Pathak, 2009), the pod bug Clavigralla gibbosa in pigeon pea (Narasimhamurthy & Keval, 2013), and the Sesamina calamistis stem borers in sorghum (Okrikata & Anaso, 2016).

A study on the effect of Azatrol 1.2% (Azadirachtin A and B) and triple action neem oil (70% neem oil) and pure neem oil against aphid in pigeon pea (Shanag et al., 2015). The cold extract after soaking of leaves for 1 week is found to have effective insecticidal properties against the storage insect pests (Vimala et al., 2010). Neem seed kernel powder mixture can be used for the control of Okra Cotton leaf hopper (Neupane, 2000).

Asuro (Justicia adhatoda)
Justicia adhatoda linn is a shrub widespread throughout the tropical regions of Southeast Asia (Chakraborty & Brantner, 2001). It was found that the leaves and flowers of Asuro contain a significant amount of phenols, flavonoids, and alkaloids in addition to proteins and carbohydrates. The presence of these bioactive secondary metabolites in the leaves and flowers of Justicia adhatoda Linn are correlated with their medicinal applications (Sarangthem, 2014).

Extracts of Asuro showed antifeedant (76.33), larvicidal (62.33%), pupicidal (22.05%), and ovicidal (58.86%) effect. On the contrary, the extracts of Vitex negundo and Justicia adhatoda prolonged the larval and pupal duration of S. litura. This indicates that the selected medicinal plants may be a potent source of natural antifeedant, ovicidal and larvicidal activities against selected important agricultural lepidopteran polyphagous field pest Spodoptera litura. Justicia adhatoda was found to be effective in reducing the feeding rate of larva of Spodoptera litura with maximum antifeedant activity in ethanol extracts of Justicia adhatoda at 5% extract concentration (Sukanya Rajput, 2018).

Sadek (2003) reported the extract of Asuro leaves to exhibit feeding deterrent properties when applied on the leaf disc method against Spodoptera littoralis (Sadek, 2003). Anuradha et al. (2010) reported the deterrent effect of Asuro leaves extract on the last instar of Spodoptera litura at various concentrations (25, 50, 75 and 100%). Due to the toxic effect of plant extracts, the maximum number of treated larvae died in spite of less food consumption (Anuradha, 2010).

Tobacco (Nicotiana tabacum)
Tobacco (Nicotiana tabacum) contain nicotine and other alkaloids which are synaptic poisons, they mimic neurotransmitter acetylcholine and exhibits agonistic effects on most nicotinic acetylcholine receptors (Brack, 2018). Rizvi and his team concluded that tobacco extract @ 2% showed the control of cotton mealybug when the infestation is at the initial stage (Rizvi et al., 2015). Tobacco decoction (6250 g tobacco + 30 g liquid soap + 4 liters of water boiled for 30 minutes), sprayed @ 1.4 parts water was found effective to control Tobacco caterpillar (Spodoptera litura F), mustard sawfly (Athalia lugens proxima) and leaf miners (Phytomyza horticola) on vegetable crops (Mainali et al.). According to Ubea et al. (1994) Tobacco spray reduced bean fly and bean aphid population by 89% and 97%, respectively. Tobacco dust reduced tomato cutworm and bean fly populations by 89% and 79%, respectively. Leafhopper, thrips and corn earworm were also reduced by 50-69%.

Sweet flag (Acorus calamus)
Sweet flag (Acorus calamus), native to India, central Asia, and Eastern Europe is found today in many temperate and sub-tropical areas of the globe. In Nepal, the herb is available up to 2000-meter altitude. Boho are found in sedge meadows that are prone to flooding, edges of small lakes and ponds, marshes, swamps, seeps and springs, and wetland restorations. The plant contains β-asarone in stolons which is considered the main substance that acts as an insecticide (Giri et al., 2013). Acorus calamus stolon dust at 5 g/kg of potato tubers showed high efficacy to protect potato tubers against potato tuber moth for about three to four months in farmer’s rustic potato stores (Giri et al., 2013). Bulb of the sweet flag can be used as an insecticide, insect repellent, and contact poison (Dahal, 1995).

Garlic (Allium sativum)
Garlic (Allium sativum) is herb that contains numerous vitamins, minerals, and trace elements. Many research have shown that garlic can be used as repellent to some plant pests and diseases (Ramasasa, 1991). Sulfur compounds such as DAS, DADS, DATS, methylylallyl disulfide, methylylallyl trisulfide, 2-vinyl-H-1, 3-dithin, and (Z)-2-oxoene are present in essential garlic oil (Aggarwal et al., 2013). These constituents could be used for the control of serious fruit and vegetable pests (Upadhay, 2016). Two of the major constituent's methyl allyl disulfide and DATS, were found against Motschulky and Tribolium castaneum (Herbst). Similarly, essential oils of garlic repelled and caused lethality in Staphylococcus aureus L. (Coleoptera) adults and also reduced their progeny production (Meriga et al., 2011).

Ginger (Zingiber officinale)
Ginger (Zingiber officinale) is one of the most common herbs used as pesticides. Propylhylic and therapeutic cadmium detoxification effects of ginger have been reported in many studies (Egwurunwu et al., 2007). 6-dehydroshogaol, zingerone, and 3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)butane extracted from ginger showed moderate insect growth regulatory (IGR) and antifeedant activity against Spilostole obliqua, and significant antifungal activity against Rhizoctonia solani (Agarwal et al., 2001). Extract of ginger can help in the control of American bollworm, aphids, planthoppers, thrips, whitefly, root-knot nematodes, brown leaf spot on rice, mango anthracnose, and yellow vein mosaic (Sridhar et al., 2002). Higher concentrations of ginger residue were found effective for the protection of crops against C. maculatus adult emergence (Amaj et al., 2012).

Sichuan pepper (Xanthoxylo armatum)
Timur (Xanthoxylo armatum) is commonly used in daily life for condiments and therapeutic remedies. Different plant parts of the Z. armatum also has insecticidal potential. However, potential has not been yet determined against many agricultural pests, including leaf worm. In study done by (Kaleeswaran et al., 2018), n-hexane pericarp extract of Z. armatum has strong antifeedent, ovicidal and larvicidal properties against Spodoptera litura. Some research shows that it has insecticidal properties against Platella xylostella (Kumar et al., 2016) and Pieris brassicae (Kaleeswaran et al., 2019). In a case study made in some parts of the country, Timur was found to be used by farmers for the preparation of botanical pesticides (Kaphle & Bastakoti, 2016).

Chinaberry (Melia azedarach)
Chinaberry (Melia azedarach) is highly recognized for its insecticidal properties. Biologically active triterpenoids with an alimentary effect are responsible for this property. They inhibit the feeding and also cause death and malformations of subsequent generations (Vergara et al., 1997). M. azedarach sesenetic leaf extract proved to be lethal to 100% of the larval
population of Spodoptera frugiperda (Bullangnoti et al., 2012). Similarly in a study conducted on Diamond Black Moth extracts of chinaberry was found to be toxic to larvae they died due to failure in molting (Chen et al., 1996).

3.5.9 Lantana (Lantana camara L.)

Lantana Camara L. is a perennial shrub, exotic to Nepal, due to its adverse growth. It is also called unwanted shrub (Vaidya et al., 2005). In Nepal, _Lantana Camara_ extract and its powder widely used to check the plant diseases whether it is bacterial or fungal as well as to increase the fertility of the soil and also used to cure human diseases (Vaidya & Bhattarai, 2009). Lantanolic acid and Lantic acid are the active principles present in Lantana, which shows growth inhibition and repellent activity against insects (Nirmal et al., 2011). Chopped leaves and tender stem of _Lantana camara_ mixed with potato tubers @ 300-330 gm/kg was found effective to control potato tuber moth in storage (Pradhan, 1987). It contains a variety of chemical substances such as triterpenes, iridoid, and phenylenethyndiol, glycosides, naphthoquinones, and flavonoids (Ghielberti, 2000). (Rajeshkar et al., 2014) reported lantana to be effective against storage pests, while (Muzemku et al., 2011) reported that different plant extracts are biopesticidal against rape aphids (Bursaica napus). _L. camara_ contains camarc acid and oenolic acids which may have larvicidal or ovicidal properties (Ghimire et al., 2015). Research of Ghimire found that 50% concentration of _L. camara_ leaf extract at 48 hrs and above was found deleterious to root-knot nematode (Ghimire et al., 2015).

3.5.10 Basil (Ocimum tenuiflorum)

More than 200 chemicals in basil oil have been reported. The chemical components include sesquiterpenes, triterpenes, flavonoids, and aromatic compounds. Major components in basil oil include linalool, estragole (methyl chavicol), anethole, eugenol, and methyl eugenol (Li & Chang, 2016). Tului leaf extract is used as a seed treatment (10 ml/kg) along with foliar sprays (10 ml/lit) thrice at tillering, booting and panicle initiation stage was found effective against storage pests, while (Muzemku et al., 2011) reported that 50% concentration of _Ocimum tenuiflorum_ leaves were found deleterious to root-knot nematode (Ghimire et al., 1997).

3.5.11 Titepati (Artemisia Vulgaris)

It is distributed throughout Nepal at 300 - 2500 m, common along sideways and into clearings of dry forest (Rai et al., 2012). _Artemisia Vulgaris_ L., a perennial aromatic shrub with a bitter taste, is considered as a medicinal plant and water extract of it consists of active components like eugenol, and methyl eugenol (Mehanick, 2009). Tului leaf powder showed high repellency against post-harvest pests _Sitophilus zeamais_ and _Callosobruchus maculatus_ L. (Iloba & Ekrakene, 2006). Basil oil at 2% showed significant mortality, repellency, and anti-reproductive effects to rice weevil (Popovic et al., 2006). Basil leaf powder @ 0.5gm/100g of cowpea was found effective to control _Callosobruchus maculatus_ on cowpea and chickpea (Panera & Shivakoti, 2001).

3.5.12 Mint (Mentha arvensis)

Essential oils and chemical constituents derived from different species of the Mentha were found to be effective against fungal and bacterial plant pathogens including storage insects like _Callosobruchus_ and _Tricholobium_ species (Singh & Pandey, 2018). An aqueous extract of Mentha arvensis @ 200 gm/1 l of _M. arvensis_ leaves was effective against _Drosophila melanogaster_ (K Vaidya, 2000). _Mentha_ (Vaidya, 2000) found that field intercropped with _Mentha arvensis_ effectively controlled the _Phyllotreta crucifer_ problem (Kaminee Vaidya, 2000). Chopped and shade dried Mentha leaves with stem @ 300-330 g/kg of _M. arvensis_ leaves were effective against pest species (Kaminee Vaidya, 2000). Mentha leaves @ 0.5gm/100g of cowpea was found deleterious to root-knot nematode (Ghimire et al., 1997).

3.5.13 Pire ghas (Polygonum sps.)

Pire ghas (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014). Foliage of _Pire ghas_ (Polygonum sps.) is one of the most common weeds of Nepal. Traditionally it is used to cure gastrointestinal diseases, neurological disorders, diarrhea (Sharma, 2003) and leaf paste is used to cure swelling (Parihaar et al., 2014).
UPEM- United Nations Environment Programme

REFERENCES

Abate, T., van Huis, A., & Ampofo, J. 2000. Pest management strategies in traditional agriculture: an African perspective. Annual review of entomology, 45(1). 631-659. https://doi.org/10.1146/annurev.ento.45.1.631

Agarwal, M., Walia, S., Dhingra, S., & Khambay, B. P. S. 2001. Insect growth inhibition, antifeedant and antifungal activity of compounds isolated/derived from Zingiber officinalis Roscoe (ginger) rhizomes. Pest Management Science: formerly Pesticide Science, 57(3), 289-300. https://doi.org/10.1002/ps.263

Aggarwal, B., Prasad, S., Sung, B., Krishnan, S., & Guha, S. 2013. Prevention and treatment of colorectal cancer by natural agents from mother nature. Current colorectal cancer reports, 9(1), 37-56.

Alo, F. O., Adebayo, T., & Olaniyan, O. 2015. Comparative efficacy of Tephrosia vogelii and Moringa oleifera against insect pests of watermelon (Citrullus lanatus Thumb). International letters of natural sciences, 35, 71-78. https://doi.org/10.18052/www.sciexpress.com/ILNS.35.71

Amuji, C., Echezona, B., & Dialoke, S. 2012. Extraction fractions of ginger (Zingiber officinale Roscoe) and residue in the control of field and storage pests.

Anuradha, A., Rajan, K. and McConnell M.S. 2010. Feeding deterrence activity of Adhatoda vasica L. against Spodoptera litura (Fab.) Journal of Biopesticides, 286-288.

Arulkumar, R., Karthika, S., Gopalasatheeskumar, K., & Arulkumaran, G. 2016. International Journal of Universal Pharmacy And Bio Sciences.

Ayaz, M., Junaid, M., Ullah, F., Sadiq, A., Ovais, M., Ahmad, W., & Zeb, A. 2016. Chemical profiling, antimicrobial and insecticidal evaluations of Polygonum hydropiper L. BMC complementary and alternative medicine, 16(1) 502. https://doi.org/10.1186/s12906-016-1491-4

Boeke, S., Boersma, M. G., Alik, G. M., van Loon, J. J., van Huis, A., Dicke, M., & Betjens, I. M. 2004. Safety evaluation of neem (Azadirachta indica) derived pesticides. Journal of Ethnopharmacology, 94(1), 25-41. https://doi.org/10.1016/j.jep.2004.05.011

Brack, W. 2018. Nicotine – a natural insecticide. University of Copenhagen. Retrieved 16 July from https://natoaqx.ku.dk/toxin-of-the-week/nicotine/

Bullangpiti, W., Wajnberg, E., Audant, P., & Feyereisen, R. 2012. Antifeedant activity of Jatropha gossypifolia and Melia azedarach senescence leaf extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae) and their potential use as synergists. Pest management science, 68(9), 1255-1264. https://doi.org/10.1002/ps.3291

Chakraborty, A., & Bantrner, A. 2001. Study of alkaloids from Adhatoda vasica L. against Spodoptera litura (Fab.) Extracts of some aquatic plants. Bioresource Technology, 71(5), 467-486. https://doi.org/10.1002/ptr.737

Chen, C., Chang, S., Cheng, L., & Hou, R. 1996. Effects of chinaberry fruit extract on feeding, growth and fecundity of the diamondback moth, Plutella xylostella (Lep., Yponomatoidea). Journal of Applied Entomology, 120(1-5), 341-345. https://doi.org/10.1046/j.1139-0418.1996.tb1616x.x

Dahal, L. 1995. Study on pesticide pollution in Nepal. National Conservation Strategy Implementation Project, National Planning.

Degri, M. I., Mallia, A. D., & Wabekoa, J. W. 2013. Efficacy of aqueous leaf extracts and synthetic insecticide on pod-sucking bugs infestation of cowpea (Vigna Unguiculata (L) Walp) in the Guinea Si- vanna Region of Nigeria. Advances in Entomology, 2013. https://doi.org/10.4236/ae.2013.12003

Dodia, D., Patel, I. & Patel, G. 2010. Botanical pesticides for pest management. Scientific Publishers.

Dougoaud, J., Toepfer, S., Bateman, M., & Jenner, W. H. 2019. Efficacy of homemade botanical insecticides based on traditional knowledge. A review. Agronomy for Sustainable Development, 39(4), 37. https://doi.org/10.1007/s13593-019-0583-1

Dubey, N., Shukla, R., Kumar, A., Singh, P., & Prakash, B. 2010. Prospects of botanical pesticides in sustainable agriculture. Current Science, 98(4), 479-480.

Egwurugwu, J., Ufearo, C., Ababoki, O., Nwokocha, C., Duriube, J., Adeleye, G., Egunolomo, A., Odetola, A., & Onwujife, O. 2007. Effects of ginger (Zingiber officinale) on cadmium toxicity. African Journal of Biotechnology, 6(18).

El-Wakeil, N. E. 2013. Retracted Article: Botanical Pesticides and Their Mode of Action. Gesunde Pflanzen, 65(4), 125-149.

Frank, O., Agu, C., & Ahuchagou, C. 2013. Potentiality of Moringa oleifera Lam. extracts in the control of some field-store insect pests of cowpea. International Journal of Agronomy and Plant Production, 4(Special Issue), 3537-3542. http://ijajournal.com/wp-content/uploads/2013/07/3537-3542.pdf

Fuglie, L. 2000. New uses of Moringa studied in Nicaragua. ECHO Development Notes, 68, 1-25.

Ge, Y., Pandey, R., & Dhital, B. 1997. Management of red ant on potato and cauliflower during 1994/95 and 1995/96. Management of red ant on potato and cauliflower during 1994/95 and 1995/96 (97/26).

Ghimire, G., Gupta, R., & Keshari, A. K. 2015. Nematicidal Activity of Lantana Camara L. for Control of Root-Knot Nematodes. Nepalese Journal of Zoology, 3(1), 1-5.

Ghisalberti, E. L. 2000. Lantana camara L.(verbenaceae). Fitoroterapia, 71(S). 467-486. https://doi.org/10.1016/S0367-326X(00)00221-0

Giri, Y. P., Maharjan, R., Dochun, T., Nidup, K., Sporerled, M., & Kroschel, J. 2013. Efficacy of botanicals and Bacillus thuringiensis to control potato tuber moth, Phthorimaea operculela (Zeller), in potato stores in Nepal. Nepal Agriculture Research Journal, 40.

Gupta, M. 2005. Efficacy of neem in combination with cow urine against mustard aphid and its effect on coccinellid predators.

Gupta, M., & Pathak, R. 2009. Bioefficacy of neem products and insecticides against the incidence of whitefly, yellow mosaic virus and pod borer in Black gram. http://hdl.handle.net/123456789/4947

Gupta, S., & Dikshit, A. 2010. Biopesticides: An ecofriendly approach for pest control. Journal of Biopesticides, 3(Special Issue), 186.

Hossain, M. 2000. Studies on blast disease of rice caused by Pyricularia oryzae Cooke Sacc. in upland areas. M. Sc. (Ag) Thesis, University of Agricultural Sciences, Dharwad, 52-53.

Ibrahim, A., & Demisse, G. 2013. Evaluation of some botanicals against termite's damage on hot pepper at Bako, Western Ethiopia. International Journal of Agricultural Policy and Research, 1, 48-52.

Ibba, B., & Ekemene, T. 2006. Daily mortality responses of Callosobruchus maculatus and Sitophilus zeamais to change in the concentration of Azadiracta indica, Oclium graminis and Hysipte svaeoleans. Journal of entomology, 3(4), 271-276.

Jeyasanker, A., Raja, N., & Ignacimuthu, S. 2010. Antifeedant and Growth Inhibitory Activities of Syzygium lineare Wall (Myrtaceae) Against Spodoptera litura Fab (Lepidoptera: Noctuidae). Current Research Journal of Biological Sciences, 2(3), 173-177.

Kaleeswaran, G., Pirake, D., Sanjukta, R., Behere, G., & Nagchan, S. 2018. Bamboo-Leaf Prickly Ash extract: A potential bio-pesticide against oriental leaf worm, Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae). Journal of Environmental Management, 208, 46-55. https://doi.org/10.1016/j.jenvman.2017.12.017

Kamaraj, C., & Rahuman, A. A. 2010. Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. Asian Pacific Journal of Tropical Medicine, 3(12), 948-953. https://doi.org/10.1016/S1995-7645(11)60006-0

Kaphle, M., & Bastakoti, N. 2016. A case study on botanical pesticides and vermicompost fertilizer for adopting new agricultural practice by farmers. Journal of Agriculture and environment, 17, 56-64. https://doi.org/10.03126/ajei.v17i0.19860

Kemabonta, K., & Falodu, B. 2013. Bioefficacy of three plant products as...
post-harvest grain protectants against Sitophilus oryzae Linnaeus (Coleoptera: Curculionidae) on stored wheat (Triticum aestivum). International Journal of Science and Nature, 4(2), 259-264.

Khan, I., Qureshi, N., Khan, S. A., Ali, A., Ahmad, M., & Junaid, K. 2016. Efficacy of several plant extracts as growth inhibitors against red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Acta Zool. Bulgarica, 68(3). 443-450.

Kumar, V., Reddy, S. E., Bhardwaj, A., Dolma, S. K., & Kumar, N. 2016. Larvicidal activity and structure activity relationship of cinnamoyl amides from Zanthoxylum armatum and their synthetic analogues against diamondback moth, Plutella xylostella. Excli Journal, 15, 229. https://doi.org/10.17179/excli2016-166

Li, J., Wu, F.-h., Chen, Y.-y., & Chen, F. 2006. Insecticidal activity of Jatropha curcas seed extracts against several insect pest species. Pesticides-Shenyang, 45(1), 57.

Li, Q. X., & Chang, C. L. 2016. Basil (Ocimum Basilicum L.) oils. In Essential oils in food preservation, flavor and safety (pp. 231-238). Elsevier. https://doi.org/10.1007/978-3-319-41664-7_10

Mainali, R. P., Pradhan, S., & Thapa, R. Review of entomological research works on major fruit crops of Nepal.

Manandhar, P., & Palikhe, B. 1999. POPs: Current situation in Nepal. Country paper presented at the Regional Workshop on Management of Persistent Organic Pollutants,

Mazid, S., Kalita, J. C., & Rajkhowa, R. C. 2011. A review on the use of biopesticides in insect pest management. Int J Sci Adv Technol, 1(7), 169-178.

Meriga, B., Mopuri, R., & MuraliKrishna, T. 2012. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pacific Journal of Tropical Medicine, 5(5), 391-395. https://doi.org/10.1016/S1995-7645(12)60065-0

Muzemwi, S., Mwumi, B., Nyirondra, S., Sileshi, G., Sola, P., Chikukuera, L., Kamanula, J., Belmain, S., & Stevenson, P. 2011. Pesticidal effects of indigenous plants extracts against rape aphids and tomato red spider mites. African Crop Science Conference Proceedings,

Narasimhamurthy, G., & Keval, R. 2013. Field evaluation of some insecticides and bio-pesticide against tur pod bug, Clavigralla gibbosa (Spinola) in long duration pigeonpea. African Journal of Agricultural Research, 8(38). 4876-4881. https://doi.org/10.5897/AJAR2013.7238

Nawaz, M., Mabubu, J. I., & Hua, H. 2016. Current status and advancement of biopesticides: microbial and botanical pesticides.

Neupane, F. 1993. Insect pests of crop plants in Chitwan, Nepal. IAAS Research Reports 1985-1991. Institute of Agriculture and Animal Science. Rampur, Chitwan. Nepal, 493-526.

Neupane, F. 2000. Field Evaluation of Botanicals against the Insect Pests of Okra Abelmoschus esculentus Moench.). Nepal Journal of Science and Technology, 2(1).

Neupane, F. P. 2003. Status of botanical pesticides in Nepal. Integrated Pest Management in Nepal. Proceedings of a National Seminar. Kathmandu, Nepal: Himalayan Resource Institute

Neupane, F. P. 2004. Prospects of Botanical Pest Management in Nepal. Agricultural research for enhancing livelihood of Nepalese people, 30, 6.

Nigam, S., Misra, G., & Sharma, A. 1994. Neem: A promising natural insecticide. Applied Botany Abstracts.

Nirmal, S. A., Pattan, S. R., Shaikh, M., Dhasade, V., & Mandal, S. C. An Overview Of Lantana Camara: Chemistry And Pharmacological Profile.