Primary dysmenorrhea is painful menstruation without pelvic abnormalities and it usually occurs among adolescents and female adults. Primary dysmenorrhea processing the increasing of lipid peroxide (oxidative stress) and decreasing of antioxidant level. The aim of this study to identified the differences of Superoxide Dismutase and Malondialdehyde levels among adolescents with primary dysmenorrhea. The research design used Case Control. The population of this study were all female students at Health Science Faculty of Unipdu Jombang who got menstruation, the sample of this study were 24 respondents who met the inclusion and exclusion criteria. Sampling method in this study used Purposive Sampling technique. NBT method was to measured SOD levels, Thioharbituric Acid (TBA) test used to measured MDA levels, and the measurement in this study used Spectrophotometer. The data analysed by using Independent Sample T-Test with α ≤ 0.05. Independent Sample T-Test results showed that there were significant differences between SOD and MDA levels in both of case group and control group (p<0.05). In primary dysmenorrhea there is an increasing of Malondialdehyde (MDA) levels and a decrease of superoxide dismutase (SOD) levels, so the requiring efforts to balance the condition and reduce symptoms of primary dysmenorrhea are needed.

Keywords: Superoxide Dismutase, Malondialdehyde Levels, Adolescents, Primary Dysmenorrhea

©2020 by Advance Scientific Research. This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.31838/jcr.07.14.16

INTRODUCTION
Dysmenorrhea describes a sensation of cramps, severe pain at the lower abdomen and half of it followed by systemic symptoms including sweating, headaches, nausea, vomiting, diarrhea, fatigue and irritability [1-2]. These symptoms occur at few hours before menstruation and continue until 48-72 hours of menstruation [3]. Primary dysmenorrhea is painful menstruation without caused by pelvic abnormalities and commonly it occurs among adolescents and young adults [4-6]. Dysmenorrhea has a negative impact to quality of life of women or teenagers such as the relationships with family and school friends, work performance and recreational activities and absence from their school [7-8].

The incident of primary dysmenorrhea ranged 34% - 95% occurred among women worldwide who experienced menstruation [8-9]. The incidence of dysmenorrhea in Mexico was 48.4% - 64% [10-11], 85.4% was in Ethiopia [12], 85.6% occurred among high-school students in Kuwait [13], 87.7% of Turkish University students [7], 88% of Australian Teenager [14], 89.9% of students in Iran [15].

The pathogenesis of dysmenorrhea associated with serious inflammatory and the release of large volume of free radical oxygen in typical tissue and endothelial injuries with dysmenorrhea [16-18]. Primary dysmenorrhea occurs an increasing of prostaglandin levels, so it also induces uterine contractions and reduce blood flow to the myometrium (ischemia) and it do an increase the sensitivity of peripheral nervus [19-22]. Ischemia in uterine muscle and endometrial cells are the condition of reperfusion ischemia so it produces free radicals of oxygen and takes antioxidant superoxide dismutase (SOD) [23]. The increasing of free radical activity can identify by using high levels of MDA in the body [24]. In primary dysmenorrhea occurs an increasing of lipid peroxidation (oxidative stress) and a decrease of antioxidants levels [25].

Pharmacological therapy to primary dysmenorrhea can use NSAIDs and contraceptives pills, but NSAIDs and contraceptives pills consumption have causes side effects such as discomfort of gastrointestinal, abnormal kidney and liver function [25-26], alternative interventions are needed, and the interventions does not have cause side effects. The interventions can be use β-carotene and Vitamin E β-carotene, because it can clean up free radicals and stop the process of lipid peroxidation [27-29]. Moreover, Vitamin E can inhibit arachidonic acid oxidation and prostaglandin production, so it can reduce the severity and duration of primary dysmenorrhea [30-31]. Based on this description, the researchers are interest to conduct this research. The objective of this research was to found the differences of the Superoxide Dismutase and Malondialdehyde levels among adolescents who have primary dysmenorrhea and without primary dysmenorrhea.

RESEARCH METHODOLOGY
Design
The research design in this study used Case Control. Cases group in this research is the female student who got menstruation with dysmenorrhea and control group was female student who got menstruation without dysmenorrhea.

Participants
All female students in Faculty of Health Science of Unipdu Jombang who got menstruation were the population in this study, 24 respondents (case group n = 12 and control group n = 12) were taken as the sample by using inclusion and exclusion criteria. The inclusion criteria in this study are: 1) Case group: Students experienced primary dysmenorrhea; Has not received anti-pain therapy; Cooperative students; 2) Control group: Students who got menstruation without pain. Female students who experienced secondary dysmenorrhea was being exclusion criteria. Sampling method used Purposive Sampling technique.

Procedure of Data Collections
After getting permission from the head of the research institute and Ethical Clearance from the Ethics Commission of the Nursing Faculty, Airlangga University, Surabaya, the researchers approached the students who experienced menstrual pain (dysmenorrhea) and the student who didn't have menstrual pain.
to get approval from them to being sample in this study. After that the researchers taken whole blood samples (3 mL) at peripheral vein. The blood sample of case group was taken at the first dysmenorrhea and blood sample was taken at the first menstruation for control group.

Measurement of SOD Level and MDA Levels
The measurement tool used a Spectrophotometer. NBT (Nitro Blue Tetrzolium) method used to measure SOD levels and the Thiobarbituric Acid (TBA) method used to measure MDA levels.

Statistical Analysis
Statistical Package for Social Sciences (SPSS) version 16 used to

Characteristics	Case group	Control group	P value
N (%)			
1. Age (year)			
< 20	3 (25)	4 (33.3)	0.399
20 - 25	9 (75)	8 (66.7)	
2. Age of Menarche (year)			
9 – 11	2 (16.7)	1 (8.3)	0.881
12 – 14	8 (69.6)	9 (75)	
15 – 17	2 (16.7)	2 (16.7)	
3. Duration of menstruation (days)			
5 – 6	0 (0)	3 (25)	0.000
≥ 7	12 (100)	9 (75)	

To find the differences between SOD and MDA levels in case group Test statistical test, as shown in Table 2. and control group the researcher used the Independent Sample T-

Variable	Case group (Mean ± SD) (pg/ml)	Control group (Mean ± SD) (pg/ml)	Beda Mean (95% CI)	p
SOD level	1024.17 ± 68.57	1093.75 ± 20.72	-69.58 (-114.26 – -24.91)	0.005
MDA level	290.00 ± 31.21	76.83 ± 16.33	213.17 (192.08 – 234.26)	0.000

This research found that the mean of SOD levels in case group was 1024.17 pg/ml and in control group was 1093.75 pg/ml, this showed that the SOD level among case group was lower than control group. The mean of MDA levels in case group was 290 pg/ml and in control group was 76.83 pg/ml, this means that the mean of MDA level in case group was higher than control group. The result of Independent Sample T-Test statistic showed that there were statistically significant differences between SOD and MDA levels in both of case and control groups (p<0.05).

Primary dysmenorrhea is pelvic pain that occurs during menstruation without pathological abnormalities [32]. Dysmenorrhea occurs because of the increasing production of prostaglandins in uterine endometrium. Endometrial secretion contain arachidonic acid and it become prostaglandin F2α and prostaglandin E2 during menstruation. The release of prostaglandin during menstruation occurred along 48 hours [33]. The increasing of prostaglandins leads uterine contractions, decrease blood flow to the myometrium and the end of process is ischemic and increase peripheral nerve sensitivity [20-21]. Hypoxemia-ischemia occurs during uterine contractions by use activates phospholipase A2, hydrolyses aschherolipoids and produces fatty acids, especially arachidonic acid. When the perfusion is maintained during myometrial relaxation and maximum of oxygen supply, arachidonic acid metabolized by three enzymes, it is cytooxygenase, lipooxygenase, and cyctochrome P450 which is they lead to formation process of eicosanoids and the release of Reactive Oxygen Species (ROS) [19] [22]. The release of Reactive Oxygen Species (ROS) are causes by lipid peroxidation and protein.

The results of this study showed that the average SOD level in group with primary dysmenorrhea was lower than group without primary dysmenorrhea and the average MDA level in group with primary dysmenorrhea was higher than group without primary dysmenorrhea. The results of examination of SOD and MDA levels in this study were taken on the first day of menstruation, where at 48 hours most of prostaglandins were released so this impacted on ischemia and pain. The decreasing of SOD levels in primary dysmenorrhea group because of the increasing of free radical activity, this can be seen from the decreasing of MDA levels of respondents. SOD is one of the types of antioxidant and has a function to protects cells against oxidant disorders (free radicals), which is it can cause several diseases by preventing the formation of new free radical or changing free radicals to become less reactive molecules. SOD converts superoxide anions to be hydrogen peroxide and oxygen, and it called the primary defence against oxidative stress because superoxide is a strong initiator of chain reactions [34-35]. Free radicals in the body can cause lipid oxidation. Lipid peroxidation is an oxidative destruction of long-chain unsaturated fatty acids (Polysaturated Fatty Acid) that produce malondialdehyde (MDA) compounds. MDA is an index indicator to measure free radical activity. The increasing of free radical activity can be seen by the high levels of MDA in the body [24]. The increasing of oxidative stress and decreasing of antioxidants are important pathogenesis factors in primary dysmenorrhea [16] [36]. The decreasing of antioxidants caused by an increase consumption of antioxidants to detoxify the increasing of oxidants or free radicals in primary dysmenorrhea [23]. Oxidative stress occurred when the balance of antioxidants and reactive oxygen species (ROS)
SUPEROXIDE DISMUTASE AND MALONDIALDEHYDE LEVELS IN ADOLESCENTS WITH PRIMARY DYSMENORRHEA

were disrupted due to depletion of antioxidants or increasing of ROS formation [22] [37].

Some results from previous studies showed that MDA levels were higher among women with dysmenorrhea compared to women without dysmenorrhea [16] [18] [38-40]. This mean that dysmenorrhea there is an increase in lipid peroxidation, an oxidative stress index and it characterized by an increasing of plasma malondialdehyde (MDA) levels.

The results of the study by Rao et al [23], found had a decreasing of antioxidant levels (SOD) among women with primary dysmenorrhea compared with healthy women. The measure method to measure SOD in that study use the Beacham and Friderovich methods, while in this study using the NBT method. Although the methods used to measure SOD levels are different with this study but the results on both studies were same. This mean that in primary dysmenorrhea occurred the decrease of antioxidant levels (SOD), and this is needed to detoxify an increase of oxidants.

CONCLUSION
In primary dysmenorrhea there is an increasing of Malondialdehyde (MDA) levels and a decrease of superoxide dismutase (SOD) levels, so the requiring efforts to balance the condition and reduce symptoms of primary dysmenorrhea are needed.

ACKNOWLEDGEMENT
The successful completed of this research was supported and given encouragement either directly or indirectly. Therefore, my express gratitude to the Rector of University of Pesantren Tinggi Darul Ulum (Unipdu) Jombang who motivated to conduct this research; second, Directorate of Research and Community Service, Directorate General of Research and Development Strengthening, the Ministry of Research Technology and Higher Education (Kemristekdikti) of the Republic of Indonesia which provided funding to researcher to carry out this research; and for Drs. Moh. Yahya Ashari, M.Pd, as Head of Research and Development Department of Unipdu Jombang who facilitated the research process until finish.

REFERENCES
1. Speroff L, and Fritz MA 2005 Clinical Gynecologic Endocrinology and Infertility (7th edition) (Philadelphia: Lippincott Williams and Wilkins, Menstrual disorders) pp 401–464
2. Lobo RA, Gershenson DM, Lentz GM, and Yake FA 2016 Comprehensive Gynecology (E-book: Elsevier Health Sciences)
3. Jun EM, Chang S, Kang DH, and Kim S 2007 Effects of acupuncture on dysmenorrhea and skin temperature changes in college students: a non-randomized controlled trial. Int J Nurs Stud. 44(6) 973–981.
4. Berek JS 2011 Berek and Novak’s Gynecology, 15th edn (Lippincott: New York)
5. Nevatte T, O’Brien PM, Ba’ckström T, Brown C, Dennerstein L, Endicott J, Epperson CN, Eriksson E, Freeman EW, Halbreich U, and Ismail K 2013 ISPMID consensus on the management of premenstrual disorders. Arch Women’s Mental Health. 16(4) 279–291
6. Pu BC, Fang L, Gao LN, Liu R, and Li AZ 2015 Animal study on primary dysmenorrhea treatment at different administration times. Evid Based Complement Alternat Med. 2015 367379 PMID: 26086463
7. Midilli TS, Yasar E, and Bayal E 2015 Dysmenorrhea characteristics of female students of health school and affecting factors and their knowledge and use of complementary and alternative medicine methods. Holist Nurs Pract. 29 194–204. https://doi.org/10.1097/HNP.0000000000000091
8. Iacovides S, Avidon I, and Baker FC 2015 What we know about primary dysmenorrhea today: a critical review. Hum Reprod Update. 21(6) 762–78.
9. De Sanctis V, Soliman AT, Elseidy H, Soliman NA, Soliman R, and El Kholy M 2017 Dysmenorrhea in adolescents and young adults: a review in different country. Acta Biomed. 87(3) 233–46.
10. Ortiz MI, Rangel-Flores E, Carrillo-Alarcón LC, and Verastegoy HA 2009 Prevalence and impact of primary dysmenorrhea among Mexican high school students. Int J Gynecol Obstet. 107(3) 240–3
11. Ortiz MI 2010 Primary dysmenorrhea among Mexican university students: Prevalence, impact and treatment. Eur J Obstet Gynecol Reprod Biol. Elsevier Ireland Ltd 152 73–77. https://doi.org/10.1016/j.ejogrb.2010.04.015 PMID: 20478651
12. Hailemeskel S, Demissie A, and Assefa N 2016 primary dysmenorrhea magnitude, associated risk factors, and its effect on academic performance: evidence from female University Students in Ethiopia. Int J Womens Health. Dove Press 8 489–496. https://doi.org/10.2147/IJWH.S12768 PMID: 2760536
13. Al-Matoq S, Al-Mutairi H, Al-mutairi O, Abdulaziz F, Al-Basri D, Al-Enzi M and Al-Taiar A 2019 Dysmenorrhea among high-school students and its associated factors in Kuwait. BMC Pediatrics. 19(80) 1-12.
14. Gidado, A, Boonpisuttinant, K., Kanjanawongwich, SAnti-cancer and Anti-Oxidative Activities of Nigerian Traditional Medicinal Plants/Recipes (2019) Journal of Complementary Medicine Research, 10, pp. 200-211.
15. Habibi N, Huang MSL, Gan WY, Zulida R, and Safavi SM 2015 Prevalence of primary dysmenorrhea and factors associated with its intensity among undergraduate students: a cross-sectional study. Pain Manag Nurs. 16 855–861. https://doi.org/10.1016/j.pmn.2015.07.001 PMID: 26328887
16. Turhan N, Celik H, Duvan C!, Onaran Y, Aydin M, and Armutcu F 2012 Investigation of oxidative balance in patients with dysmenorrhea by multiple serum markers. J Turk Ger Gynecol Assoc. 13 233 6
17. Yeh ML, Chen HH, So EG, and Liu CF 2004 A Study of serum malondialdehyde and interleukin 6 levels in young women with dysmenorrhea in Taiwan. Life Sci. 75 669 73
18. Dikensoy E, Balat O, Pence S, Balat A, Cekmen M, and Yurekli M 2008 Malondialdehyde, nitric oxide and adrenomedullin levels in patients with dysmenorrhea by multiple serum markers. J Obstet Gynecol Res. 34 1049 53
19. Hailemeskel S, Demissie A, and Assefa N 2016 primary dysmenorrhea magnitude, associated risk factors, and its effect on academic performance: evidence from female University Students in Ethiopia. Int J Womens Health. Dove Press 8 489–496. https://doi.org/10.2147/IJWH.S12768 PMID: 2760536
20. Basu S 2010 Bioactive Eicosanoids: Role of prostaglandin F(2alpha) and F(2) Isoprostanes in inflammation and oxidative stress related pathology. Mol Cells. 30 383 91.
21. Haidari F, Akrami A, Sarhadi M, and Mohammad Shahi M 2011 Prevalence and severity of primary dysmenorrhea and its relation to anthropometric parameters. Tums Hayat. 17 70–77.
22. Jonatan S, and Berek J 2012 Novak’s Gynecology: 14th (New York: Lippincott Williams and Wilkins Publishers).