On vertex Ramsey graphs with forbidden subgraphs

Sahar Diskin Ilay Hoshen
Michael Krivelevich* Maksim Zhukovskii†
School of Mathematical Sciences, Tel Aviv University

Abstract

A classical vertex Ramsey result due to Nešetřil and Rödl states that given a finite family of graphs F, a graph A and a positive integer r, if every graph $B \in F$ has a 2-vertex-connected subgraph which is not a subgraph of A, then there exists an F-free graph which is vertex r-Ramsey with respect to A. We prove that this sufficient condition for the existence of an F-free graph which is vertex r-Ramsey with respect to A is also necessary for large enough number of colours r.

We further show a generalisation of the result to a family of graphs and the typical existence of such a subgraph in a dense binomial random graph.

1 Introduction

Let A be a graph and let r be a positive integer. We say that a graph G is (vertex) r-Ramsey with respect to A if in every colouring of the vertices of G in r colours there exists a monochromatic copy of A. The existence of r-Ramsey graphs is straightforward: the complete graph K_n is r-Ramsey with respect to A for every $n \geq r(|V(A)| - 1) + 1$. It is thus natural to ask about the existence of sparse Ramsey graphs. One of the ways to define sparseness is to avoid copies of a given graph B (or more generally of any graph from a given finite graph family F) in G. Let us call a graph G F-free if it does not contain a subgraph isomorphic to B for every $B \in F$.

Perhaps the most studied case is when both A and B are complete graphs on s and t vertices, respectively, where $t > s \geq 2$. Denote by $f_{s,t}(n)$ the minimum over all K_t-free graphs G on $[n] := \{1, \ldots, n\}$ of the maximum number of vertices in an induced K_s-free subgraph of G. Erdős and Rogers [5] proved that, for a certain $\varepsilon = \varepsilon(s) > 0$, $f_{s,s+1}(n) \leq n^{1-\varepsilon}$ (note that this implies that for every $s \geq 2$ and $r \geq 2$, there exists a K_{s+1}-free graph G which is r-Ramsey with respect to K_s). The result of Erdős and Rogers was subsequently refined by Bollobás and Hind [1] and Krivelevich [6]. Let us also mention that subsequent works by Dudek, Retter and Rödl [3] and by Dudek and Rödl [4] determined $f_{s,s+1}(n)$ up to a power of $\log n$ factor.

*Research supported in part by USA-Israel BSF grant 2018267.
†Research supported in part by Israel ISF grant 2110/22.
strengthened the known bounds for $f_{s,s+2}(n)$, and further improved the bounds for $f_{s,s+k}(n)$ when s,k are large enough.

Considering general graphs A and B (and in fact, a family of graphs B), Nešetřil and Rödl [7] proved the following (see also [2]):

Theorem 1.1 ([7]). Let F be a finite family of graphs and let A be a graph. Let $r \geq 2$ be an integer. If every graph from F has a 2-vertex-connected subgraph which is not a subgraph of A, then there exists an F-free graph which is vertex r-Ramsey with respect to A.

See [9, 10, 11] for additional results on vertex-Ramsey graphs with forbidden subgraphs.

Our main result shows that the above sufficient condition is also necessary for large enough number of colours r. We say that B is an A-forest of size ℓ if $B = \bigcup_{i=1}^{\ell} B_i$, where for every $1 \leq i \leq \ell$, B_i is isomorphic to a subgraph of A, and for every $i \geq 2$, $|V(B_i) \cap V \left(\bigcup_{j=1}^{i-1} B_j \right) | \leq 1$.

Theorem 1. Let $\ell > 0$ be an integer. Let B be an A-forest of size ℓ. Let $r > 0$ be an integer such that $r \geq \ell \left(2(|V(A)| - 1)(|V(B)| - 2) + 1 \right)$, and let G be an r-Ramsey graph with respect to A. Then G contains a copy of B.

Let us first note that since $\ell \leq |V(B)|$, it suffices to take $r = O(|V(A)||V(B)|^2)$. Furthermore, observe that the above implies the necessity of the condition in Theorem 1.1, for r large enough. Indeed, let us say that a graph B is A-degenerate, if every 2-vertex-connected subgraph of it is a subgraph of A. Note that any A-degenerate graph can be constructed recursively: (1) any subgraph of A is A-degenerate; (2) if B is an A-degenerate graph, then a union of B with a subgraph of A that shares with B at most 1 vertex is A-degenerate as well. Theorems 1.1 and 1 can be formulated in terms of A-degenerate graphs: there exists an F-free graph which is r-Ramsey with respect to A for all large enough r if and only if every graph from F is not A-degenerate.

Note that the case that B consists of ℓ vertex-disjoint components, each isomorphic to a subgraph of A, is easy since if G is r-Ramsey with respect to A then it contains a large enough family of vertex-disjoint copies of A. On the other hand, if the components of B are not disjoint, we can proceed by induction, deleting a component B_i intersecting other components, finding a copy of $B - B_i$ using inductive hypothesis and then adjoining to it a correctly placed copy of B_i, see details in Section 2.

In the next section, we provide a short proof of Theorem 1.1 for the sake of completeness, followed by the proof of Theorem 1. In Section 3, we discuss generalisations of Theorem 1.1 to a family of graphs (instead of A), and the existence of an F-free graph which is r-Ramsey with respect to A in a dense enough binomial random graph.

2. Proofs of Theorems 1.1 and 1

We say that a graph G is ε-dense with respect to a graph A if every induced subgraph of G on $\lfloor \varepsilon |V(G)| \rfloor$ vertices contains a copy of A. Clearly, if G is $1/r$-dense with respect to A, then it is also r-Ramsey with respect to A. Theorem 1.1 follows immediately from Theorem 2.1.
Theorem 2.1. Let \mathcal{F} be a finite family of graphs. If there are no A-degenerate graphs in \mathcal{F}, then there exists a $\delta = \delta(A, \mathcal{F}) > 0$ such that for all large enough n, there exists an \mathcal{F}-free $n^{-\delta}$-dense graph on $[n]$ with respect to A.

Proof. Let $a := |V(A)|$. Let $\epsilon > 0$ be small enough and set $p = n^{1-a+\epsilon}$. Consider a hypergraph with vertex set $\binom{[n]}{2}$ whose edge set consists of all possible copies of A on $[n]$. Let $H_A(n, p)$ be its binomial subhypergraph where each copy of A is chosen independently and with probability p, and let $G_A(n, p)$ be the random graph constructed as follows: an edge belongs to $G_A(n, p)$ if and only if this edge belongs to a copy of A in $H_A(n, p)$. We shall prove that it suffices to remove $O(\sqrt{n})$ vertices of $G_A(n, p)$ to get the desired graph whp.

Let $\delta_0 = \frac{\epsilon}{2(\alpha-1)}$. Let us show that whp $G_A(n, p)$ is $n^{-\delta_0}$-dense with respect to A. Set $N = \lceil n^{1-\delta_0} \rceil$. Then the expected number of N-sets containing no copy of A in $G_A(n, p)$ is at most the expected number of N-subsets $U \subseteq [n]$ such that $\binom{U}{2}$ does not contain any copy of A in $H_A(n, p)$ that equals to

$$\binom{n}{N}(1-p)^{\binom{N}{2} \frac{n}{\text{aut}(A)}} \leq \exp \left[N \left(\delta_0 \ln n + 1 - p \frac{N^{a-1}}{\text{aut}(A)} \right) (1 + o(1)) \right]$$

$$\leq \exp \left[N \left(\delta_0 \ln n - \frac{n^{1-a+\epsilon}(a-1)(1-\delta_0)}{\text{aut}(A)} \right) (1 + o(1)) \right]$$

$$\leq \exp \left[-Nn^{\epsilon/2} \left(\frac{1}{\text{aut}(A)} - o(1) \right) \right] \to 0.$$

By the union bound, whp every N-set contains at least one copy of A in $G_A(n, p)$, that is, whp $G_A(n, p)$ is $n^{-\delta_0}$-dense.

Let $\delta = \delta_0/2$ and let $C > 0$. Note that whp the deletion of any $C\sqrt{n}$ vertices from $G_A(n, p)$ leads to an $\tilde{n}^{-\delta}$-dense graph on \tilde{n} vertices. Indeed, if $G_A(n, p)$ is $n^{-\delta_0}$-dense, then, since $\tilde{n}^{1-\delta} = (n - C\sqrt{n})^{1-0.5\delta_0} \geq n^{1-\delta_0}$, every set of $\tilde{n}^{1-\delta}$ vertices in the new graph has at least $n^{1-\delta}$ vertices and thus contains a copy of A. Therefore, it suffices to prove that whp we can remove $O(\sqrt{n})$ vertices from $G_A(n, p)$ and get an \mathcal{F}-free graph.

Given a graph B and graphs A_1, \ldots, A_m isomorphic to A, we say that $A_1 \cup \ldots \cup A_m$ is an inclusion-minimal cover of the edges of B if $E(B) \subseteq E(A_1 \cup \ldots \cup A_m)$ but $E(B) \not\subseteq E(A_1 \cup \ldots \cup A_{i-1} \cup A_{i+1} \cup \ldots \cup A_m)$ for every $i \in [m]$. For every $B \in \mathcal{F}$, consider $B' \subset B$ such that every inclusion-minimal cover $A_1 \cup \ldots \cup A_m$ of the edges of B' satisfies $|(A_i \cap \cup_{j \neq i} A_j) \cap B'| \geq 2$ for every $i \in [m]$. By Claim 2.2 (stated below), whp the number of copies of B' in $G_A(n, p)$ is at most \sqrt{n}. We can now delete a single vertex from each such copy, and obtain a set of $\tilde{n} \geq n - |\mathcal{F}|\sqrt{n}$ vertices that induces an \mathcal{F}-free graph, as required. \qed

We note that a slight adjustment of the proof of Theorem 2.1 allows one to argue for the existence of \mathcal{F}-free ϵ-dense graph for induced copies of A.

Claim 2.2. Whp the number of copies of B' in $G_A(n, p)$ is at most \sqrt{n}.

Proof. Let $b := |V(B')|$ and let $k := |E(B')|$. Let $X_{B'}$ be the number of copies of B' in $G_A(n, p)$. We shall bound $\mathbb{E}X_{B'}$ from above.

A copy of B' may appear in $G_A(n, p)$ only through hyperedges $A_1, \ldots, A_{\ell} \in E(H_A(n, p))$ such that $B' \subset A_1 \cup \ldots \cup A_{\ell}$. For any possible inclusion-minimal cover of edges of B' by
copies A_1, \ldots, A_ℓ of A, let us denote by v_i the number of vertices in the intersection of A_i and B'. Then, each A_i in this cover contributes a factor of $O(n^{a-v_i} p)$ to $EX_{B'}$. More formally, if $B' = B_1 \cup \ldots \cup B_\ell$, where each B_i is a subgraph of a copy of A, then, for every i,

$$\mathbb{P}(\exists A' \in H_A(n, p): A' \supset B_i) = O(n^{a-v_i} p).$$

Since there are $O(n^{b})$ choices of B' in K_n, we get that

$$EX_{B'} = O \left(n^b \max_{A_1 \cup \ldots \cup A_\ell \supset B'} n^{a-b-\ldots-v_i} p^\ell \right) = O \left(n^{b+\max_{A_1 \cup \ldots \cup A_\ell} (\ell(1+\varepsilon)-v_1-\ldots-v_\ell)} \right),$$

where the maximum and minimum are taken over all inclusion-minimal covers $A_1 \cup \ldots \cup A_\ell$ of edges of B' by copies of A.

Let $A_1 \cup \ldots \cup A_\ell$ be an inclusion-minimal cover of the edges of B' by copies of A, and let V_i be the set of vertices in the intersection of A_i with B' (as above, we let $v_i = |V_i|$). Since each V_i has at least two common vertices with $\cup_{j \neq i} V_j$ and $\ell \geq 2$, we get

$$\sum_{i=1}^\ell v_i \geq |V_1 \cup \ldots \cup V_\ell| + \ell = b + \ell,$$

that is $\sum_{i=1}^\ell v_i \geq b + \ell$. Indeed, for every i, let $S_i = V_i \cap (\cup_{j \neq i} V_j)$, $s_i = |S_i| \geq 2$. Then $V_1 \cup \ldots \cup V_\ell = S_1 \cup \ldots \cup S_\ell \cup \Sigma$, where Σ is the set of vertices that are covered once. Then $|\Sigma| = \sum_{i=1}^\ell (v_i - s_i)$, and $|S_1 \cup \ldots \cup S_\ell| \leq \frac{1}{2} \sum_{i=1}^\ell s_i$, since each vertex in this union is covered at least twice. We thus obtain,

$$|V_1 \cup \ldots \cup V_\ell| = |\Sigma| + |S_1 \cup \ldots \cup S_\ell| \leq \sum_{i=1}^\ell v_i - \frac{1}{2} \sum_{i=1}^\ell s_i \leq \sum_{i=1}^\ell v_i - \ell,$$

where the last inequality follows since each s_i is at least 2.

We may assume that $\varepsilon < \frac{1}{2k}$. Due to (1) and (2), we get

$$EX_{B'} = O(n^{k\varepsilon}) = o(\sqrt{n}).$$

By Markov’s inequality, whp we have less than \sqrt{n} copies of B' in $G_A(n, p)$. □

We now turn to the proof of our main theorem.

Proof of Theorem 1. Let $a := |V(A)|$ and $b := |V(B)|$. If $a = 1$, that is, $A = K_1$, then note that B is the empty graph on b vertices and thus every graph on at least b vertices contains a copy of B. If $a = b = 2$, then we have $B \subseteq A$ and thus every graph which is r-Ramsey with respect to A contains a copy of B.

We assume that $a \geq 2, b \geq 3$. We enumerate the vertices of A: $V(A) = \{v_1, \ldots, v_a\}$. Given a graph G, and a copy A' of A in G, we define a mapping $\phi_{A'}: V(A) \rightarrow V(G)$ such that for every $v_i \in V(A)$, we set $\phi_{A'}(v_i)$ to be the vertex $v \in V(G)$ which is in the role of v_i in the copy A' of A. Given $v \in V(G)$, we denote by $A_i(v)$ the set of copies A' of A in G for which
\(\phi_A(v_i) = v \). Furthermore, we denote by \(s_i(v) \) the maximal size of a subset of \(\mathcal{A}_i(v) \), in which every two copies of \(A \) in \(G \) intersect only at \(v \).

We prove by induction on \(\ell \), the minimum size of an \(A \)-forest of \(B \), where the base case \(\ell = 1 \) is trivial.

We now consider two cases separately. First, assume that in an \(A \)-forest of \(B \) of size \(\ell \) all components \(B_i \) are disjoint. Let \(M \) be the maximum size of a family of vertex disjoint copies of \(A \) in \(G \). Then, we can colour each copy in a maximum family of vertex disjoint copies of \(A \) in two separate colours, and colour all the other vertices in \((2M + 1)\)-th colour, without producing a monochromatic copy \(A \). As \(G \) is \(r \)-Ramsey with respect to \(A \), we conclude that \(r < 2M + 1 \). Since \(r \geq 2\ell \), we find \(\ell \) disjoint copies of \(A \) in \(G \), and therefore a copy of \(B \) in \(G \).

We now turn to the case where, without loss of generality, \(B_\ell \) intersects \(\cup_{i=1}^{\ell-1} B_i \) in an \(A \)-forest of \(B \). Let \(\tilde{B} := \cup_{i=1}^{\ell-1} B_i \), and let \(\{x\} := V(\tilde{B}) \cap V(B_\ell) \). We may further assume that for \(A \supseteq B_\ell \), \(x \) corresponds to \(v_k \) in \(A \), for some \(1 \leq k \leq a \).

Let \(U = \{v \in V(G) : s_k(v) \leq b - 2\} \). We require the following claim.

Claim 2.3. \(G[U] \) can be coloured in \(2(a - 1)(b - 2) + 1 \) colours, without a monochromatic copy of \(A \).

Proof. For every \(v \in U \), let \(S_k(v) \) be a maximal by inclusion subfamily of \(\mathcal{A}_k(v) \) composed of copies of \(A \) in \(G[U] \), where every two copies of \(A \) in the subfamily intersect only at \(v \), and let \(S_k(v) = \cup_{A' \in S_k(v)} V(A') \). By definition of \(U \), \(|S_k(v)| \leq b - 2 \) and \(|S_k(v)| \leq (a - 1)(b - 2) + 1 \).

Define an auxiliary directed graph \(\Gamma \) on the vertices of \(U \), where for every \(v \) and for every \(u \in S_k(v) \setminus \{v\} \), \(\Gamma \) contains a directed edge from \(v \) to \(u \). We thus have that \(\Delta^+(\Gamma) \leq (a - 1)(b - 2) \). Hence, the underlying undirected graph \(\Gamma \) is \((2(a - 1)(b - 2)) \)-degenerate. Indeed, consider \(V' \subseteq V(\Gamma) \). We will show that in the induced subgraph \(\Gamma[V'] \) there exists a vertex of degree at most \(2(a - 1)(b - 2) \). We have

\[
\sum_{v \in V'} d_\Gamma[V'](v) = 2|E(\Gamma[V'])| \leq 2 \sum_{v \in V'} d_\Gamma^+(v) \leq 2(a - 1)(b - 2)|V'|,
\]

and thus there must be at least one vertex \(v \in V' \) with \(d_\Gamma[V'](v) \leq 2(a - 1)(b - 2) \). Therefore, \(\Gamma \) is \((2(a - 1)(b - 2) + 1) \)-colourable. We colour \(G[U] \) according to this colouring.

Suppose towards contradiction that there is a monochromatic copy \(A' \) of \(A \) in \(G[U] \), and let \(w = \phi_A(v_k) \). Since \(A' \) is monochromatic, it does not have common vertices with \(S_k(w) \) other than \(w \) — however this contradicts the maximality of \(S_k(w) \).

Recalling that \(G \) is \(r \)-Ramsey with respect to \(A \), and that \(G[U] \) can be coloured in \(2(a - 1)(b - 2) + 1 \) colours without containing a monochromatic copy of \(A \), we have that \(G[V \setminus U] \) is \((r - (2(a - 1)(b - 2) + 1)) \)-Ramsey with respect to \(A \). Observing that

\[
r - (2(a - 1)(b - 2) + 1) \geq (\ell - 1)(2(a - 1)(b - 2) + 1),
\]

we have by induction that \(G[V \setminus U] \) contains a copy of \(\tilde{B} \). Let \(v \) be the vertex in this copy of \(\tilde{B} \) that corresponds to \(x \). Since \(v \notin U \) we have that \(s_k(v) \geq b - 1 \), and hence there is a subset of size at least \(b - 1 \) in \(\mathcal{A}_k(v) \) such that every two copies \(A' \) of \(A \) in this subset intersect only at
v. Noting that \(|V(\tilde{B})| \leq b - 1\), we have that at least one copy \(A'\) of \(A\) in this subset completes \(\tilde{B}\) to \(B\), that is, \(\tilde{B} \cup A'\) contains a copy of \(B\) (see Figure 1 for an illustration).

Figure 1: The subgraph \(G[V \setminus U]\) and a copy of \(\tilde{B}\) in it. A copy \(A_i\) of \(A\) together with \(\tilde{B}\) contain a copy of \(B\). Note that some of the \(A_j\)'s may have vertices outside \(V \setminus U\).

3 Remarks and observations

Let us finish with two remarks.

Remark 1. Theorems 2.1 and 1 can be generalised to families of graphs instead of a single graph \(A\). Let \(A, F\) be two finite graph families, and \(\varepsilon > 0\). The proof of Theorem 1 is quite similar. For the proof of Theorem 2.1, let us say that a graph \(G\) is an \(F\)-free \(\varepsilon\)-dense with respect to \(A\) if it is \(B\)-free for every \(B \in F\), and every induced subgraph of \(G\) on exactly \(\lfloor \varepsilon |V(G)| \rfloor\) vertices contains a copy of every \(A \in A\). A graph \(B\) is \(A\)-degenerate, if every 2-vertex-connected subgraph of it is isomorphic to a subgraph of some \(A \in A\). If every \(B \in F\) is not \(A\)-degenerate, then there exists an \(F\)-free \(\varepsilon\)-dense graph with respect to \(A\) — indeed, let \(A\) be the disjoint union of the graphs from \(A\), and apply Theorem 2.1.

Remark 2. For a non-\(A\)-degenerate family \(F\) (consisting of graphs that are not \(A\)-degenerate) and sufficiently small \(\delta > 0\), we claim the likely existence of an \(F\)-free \(n^{-\delta}\)-dense subgraph in the binomial random graph \(G(n, n^{-2/a+\delta})\), where \(a\) is the number of vertices in \(A\). Indeed, consider the hypergraph with vertex set \(\binom{n}{a}\), and edge set being all the possible cliques of size \(a\), \(K_a\), on \([n]\). Let \(\mathcal{H}_a(n, p')\) be its binomial subgraph. Let us first show that there exists a coupling between \(\mathcal{H}_a(n, p')\), and the graph considered in the proof of sufficiency of Theorem 2.1, \(\mathcal{H}_A(n, p)\), such that \(p = \Theta(p')\) and \(\mathcal{H}_A(n, p) \subseteq \mathcal{H}_a(n, p')\). Indeed, let \(p = n^{1-a+\delta(\varepsilon)}\). Consider an \(a\)-set, and let \(p'\) be the probability that at least one copy of \(A\) appears on this \(a\)-set. Clearly, \(p = \Theta(p')\). Let \(Q\) be the conditional distribution of a binomial random hypergraph of copies of \(A\) on \([a]\), under the condition that at least one such copy exists. We can now draw \(\mathcal{H}_A(n, p)\) as
follows. We first choose every \(a \)-set with probability \(p' \), and then in every set that we chose we construct a random \(A \)-hypergraph with distribution \(Q \), independently for different \(a \)-sets. We thus have that \(\mathcal{H}_A(n, p) \subseteq \mathcal{H}_a(n, p') \), and we can continue the proof in the same manner as in Theorem 2.1. Now, we take \(q \) such that \(q^{(2)} = p' \). Therefore, by the above coupling between \(\mathcal{H}_a(n, p') \) and \(\mathcal{H}_A(n, p) \) and by Theorem 3.1 stated below, \textbf{whp} \(G(n, q) \supset G_{K_a}(n, p') \supset G_A(n, p) \).

Theorem 3.1 (Riordan [8]). Let \(\varepsilon > 0 \) be small enough and \(q \leq n^{-\frac{\varepsilon}{2}} + \varepsilon \), \(p \sim q^{(2)} \). Then there exists a coupling between \(G(n, q) \) and \(\mathcal{H}_a(n, p) \) such that \textbf{whp} for every edge of \(\mathcal{H}_a(n, p) \) there exists a copy of \(K_a \) in \(G(n, q) \) with the same vertex set.

We note that Riordan in [8, Section 5] discusses a coupling between \(G(n, q) \) and \(\mathcal{H}_A(n, p) \), and provides sufficient conditions for its existence for some \(A \), however here we settle for higher values of \(q(n) \) with respect to \(p(n) \), thus making such coupling simpler.

Acknowledgement. The authors wish to thank Benny Sudakov for helpful remarks.

References

[1] B. Bollobás, H. R. Hind, *Graphs without large triangle-free subgraphs*, Discrete Mathematics, 87 (1991) 119–131.

[2] B. Bollobás, D. B. West, *A note on generalized chromatic number and generalized girth*, Discrete Mathematics, 213 (2000) 29–34.

[3] A. Dudek, T. Retter, V. Rödl, *On generalized Ramsey number of Erdős and Rogers*, Journal of Combinatorial Theory, Series B, 109 (2014) 213–227.

[4] A. Dudek, V. Rödl, *On \(K_s \)-free subgraphs in \(K_{s+k} \)-free graphs and vertex Folkman numbers*, Combinatorica, 31 (2011) 39–53.

[5] P. Erdős, C. A. Rogers, *The construction of certain graphs*, Canadian Journal of Mathematics, 14 (1962) 702–707.

[6] M. Krivelevich, *Bounding Ramsey numbers through large deviation inequalities*, Random Structures & Algorithms, 7 (1995) 145–155.

[7] J. Nešetřil, V. Rödl, *Partitions of vertices*, Commentationes Mathematicae Universitatis Carolinae, 17 (1976) 85–95.

[8] O. Riordan, *Random cliques in random graphs and sharp thresholds for \(F \)-factors*, Random Structures & Algorithms, 61 (2022) 619–637.

[9] V. Rödl, N. Sauer, *The Ramsey property for families of graphs which exclude a given graph*, Canadian Journal of Mathematics, 44 (1992) 1050–1060.

[10] V. Rödl, N. Sauer, X. Zhu, *Ramsey families which exclude a graph*, Combinatorica, 15 (1995) 589–596.

[11] N. Sauer, X. Zhu, *Ramsey families which exclude a graph*, Colloquia Mathematica Societatis János Bolyai 60, Sets, Graphs and Numbers, (1991) 631–636.