Temporal analysis for multi-hazard risk assessment of rice cultivation in coastal areas: a case study of Soc Trang, Vietnam

Vo Quoc Thanh¹, Nguyen Hieu Trung²*, Vo Thi Phuong Linh¹

¹ College of Environment and Natural Resources, Can Tho University, Vietnam
² Research Institute for Climate Change, Can Tho University, Vietnam

*Correspondence: nhtrung@ctu.edu.vn

Abstract

Rice is an important human crop and rice cultivation is threatened due to natural disasters, leading to negative effects on national and global food security. The natural disasters, such as tropical cyclones and saline intrusion, have dramatic influences in coastal regions. To investigate possible impacts of these disasters on rice cultivation, it needs an efficient tool to assess potential disasters impacts and a risk index is highly applicable. Therefore, this study aims at establishing a risk assessment of rice production in coastal areas under effects of tropical cyclones and saline intrusion. We adopted risk definition introduced by IPCC (2014) in which risk is a function of hazard, exposure and vulnerability. Multiple hazards of tropical cyclones and saline intrusion were indicated by their frequency and severity at some critical levels of 25%, 50% and >50% rice yield reduction. Each hazard was weighted by its damage on rice yield. Exposure and vulnerability of rice crops are evaluated at different growing phases. Tropical cyclone hazard index was ranked high and very high in the wet season while salinity hazard index was ranked very high in the dry season. Due to the combined effects of tropical cyclones and salinity, rice crop is highly susceptible during the reproduction phase and at the panicle initiation stage particularly. Based on the cropping calendar of My Xuyen, the period of October-November was the very high vulnerability period since it had the largest rice cultivable area and rice crops were at the reproduction phase. This result shows that rice crops are at high risk in October and November. Noticeably, saline intrusion reaches the highest level in April and May, but no risk is at this period because of no rice crop cultivated. This can reflect a measure to reduce risk by adjusting the cropping calendar.
Keywords: risk assessment, tropical cyclones, salinity, Mekong Delta, rice cultivation.

1. Introduction

According to FAO (2017) natural disasters caused damages of agricultural productions, including crops and livestock, about USD 93 billion in developing countries in a decade (2005-2014). Among these natural disasters, tropical cyclones are one of the main disastrous phenomena causing considerable damages around the world which cause a damage of USD 26 billion annually (Mendelsohn et al. 2012). In addition, there is an annual loss of approximately USD 12 billion due to saline-affected land (Qadir et al. 2008). The mentioned damaged phenomena are the major factors affecting coastal areas.

The Vietnamese Mekong Delta (VMD) is located at the downstream of the Mekong River which is one of the largest rivers in the world (MRC 2010). The VMD is a crucial economic region in Vietnam. Moreover, it plays an important role in ensuring food security not only for Vietnam, but also for the world since the VMD contributes up to 90% to the annual rice export of Vietnam (GSOVN 2010). With the land resources of approximately 4 million ha, three-quarters of this area is used for agricultural production (Kakonen 2008). Therefore, rice production in the coastal VMD is facing challenges of tropical cyclones and saline intrusion. For example, Soc Trang is a coastal province, dealing with these challenges. Although Soc Trang is a coastal province, rice is the major agricultural products. Consequences, rice cultivation in Soc Trang is at risk of tropical cyclones and saline intrusion effects. Generally, to reduce risk of these events, it needs to conduct a risk assessment to evaluate how rice crops can be damaged. Risk is resulted from interaction of hazard and vulnerability (Merz et al. 2010). In order to assess risk, it requires hazard and vulnerability assessment. The outputs of these assessment support decision making.
There are some methods to assess hazard and vulnerability using indicators, field or lab experiments and numerical models (Buan et al. 1996; Zeng and Shannon 2000; Zeng et al. 2001; Hakim et al. 2010; Bauder et al. 2011; Kunitsugu 2012; Lee et al. 2012; Masutomi et al. 2012; Tri et al. 2013; Bates et al. 2014; Esteban et al. 2014; IRRI 2015; Kakar et al. 2019). In comparison, using indicators is a rapid and simple method compared to the others mentioned. For instance, Balica et al. (2012) developed a coastal city flood vulnerability index which is able to assess vulnerability to flood and evaluate adaptation options. Tri, Trung, and Thanh (2013) applied this index to evaluate impacts of the projected climate change and sea level rise on flood vulnerability in the VMD. It is determined that vulnerability index is an effective and rapid tool to assist managers and decision-makers in assessing impacts of predicted scenarios and improving decision-making procedure. The outputs resulted in applying this index enhance mitigation and adaptation strategies. Therefore, this study is conducted to establish a risk assessment of rice production due to effects of tropical cyclones and saline intrusion. We assessed impacts of tropical cyclones and saline intrusion on rice production in a coastal area (My Xuyen district, Soc Trang province, Vietnam, presented in Figure 1) by using the risk definition of IPCC (2014). Based on this definition, risk includes hazard, exposure and vulnerability components. Rice is an important food crop and is grown seasonally, so rice crops are not always available on the field. This suggests that a temporal analysis should be taken into account for the risk assessment. The outputs of the risk assessment helps to mitigate and reduce impacts of tropical cyclones and saline intrusion on rice cultivation.
2. Methods

2.1. Risk definition

To identify the natural hazard risk, we used the definition of IPCC (2014) in which risk is defined as a function of hazards and consequences which present the impacts of the hazardous events. In a hazardous event, its impacts are highly depended on vulnerability and exposure. Therefore, risk is defined by the three components of hazard, exposure and vulnerability.

\[\text{risk} = f(\text{hazard}, \text{exposure}, \text{vulnerability}) \] (1)

Hazard describes probability of occurrence and intensity of natural or human-induced events such as storms, floods and saline intrusion. Exposure shows the presence of people,
infrastructure, livelihoods, environmental functions, services, etc. in the region that could be affected by the events. Vulnerability is identified as the extent of harm, including sensitivity/susceptibility and resilience. There is a broad set of elements of an system which is suffering from the natural disasters. This set can be characterized by hydrogeological, social and economic components (Tri et al. 2013; Balica et al. 2014).

2.2. Multiple natural hazard assessment

In order to assess natural hazards, the main hazardous events which cause considerable damages on agricultural production are selected for the assessment. Identifying and assessing hazardous events help to understand their nature and behaviour, suggesting awareness and planning for disaster mitigation strategies. The natural hazards was assessed in terms of frequency, affected areas and degree of severity. In reality, a number of natural events threaten the agricultural production in the coastal area, such as saline intrusion, tropical cyclones, tornadoes, etc. These threats were selected for multi-hazards assessment based on their damages on agricultural crops in the study area and this was observed by the Department of Agriculture and Rural Development of My Xuyen district. We assessed the impacts of multi-hazards on agricultural crops, focusing on rice crops. The agricultural crops are only influenced by the natural hazards during their cultivated durations which are represented by their cropping calendars. The major land-use types in My Xuyen district are agriculture and aquaculture, consisting of intensive rice farming, intensive shrimp farming and rice-shrimp farming (Thào et al. 2017). Therefore, a temporal analysis is important for the hazard assessment and its temporal resolution should be fine enough to present seasonal variations of the cropping systems. In this study, the monthly interval are reasonable for presenting the cropping calendar of each farming system.
According to the recent reports on natural disaster prevention and control of My Xuyen district, saline intrusion and tropical cyclones are the most dangerous phenomena. These phenomena cause substantial damages to agricultural cultivation recently. Therefore, these two events are considered for multiple hazards assessment. Hazard indexes are calculated by the below equation.

\[HI = \sum_{i=1}^{n} w_i HI_i \] (2)

where \(HI \) is multiple hazard index; \(HI_i \) is the hazard index of phenomenon \(i \); \(w_i \) is the weight of phenomenon \(i \). The \(HI_i \) of each phenomenon is computed based on its frequency and intensity. The hazard index of each phenomenon should be normalized due to different range of the hazard index. We used the weights in calculation of hazard index because this help to prioritize the importance of each phenomenon. The weight of a phenomenon is simply identified as damage percentage caused by that phenomenon of the total damage.

Tropical cyclones

Tropical cyclones are of the most destructive natural hazards not only in Vietnam but also over the world. They affect large areas depending on their intensity and track of the tropical cyclones. Wang et al. (2020) defined the warning area due to the tropical cyclones within an 800 km radius. Therefore, we analysed the tropical cyclones occurred within a circle whose radius is 800 km from My Xuyen district. The tropical cyclones mentioned in this study are tropical storms or greater events (e.g. severe tropical storms, typhoons, or hurricanes). Data of tropical cyclones, which were recorded for the period of 1951 to 2019 by the Japan Meteorological Agency, were used for the hazard assessment. The data contain characteristic features of tropical cyclone tracks for every six hours. First, the eye’s locations of tropical cyclones within the 800 km circle were
selected. To assess tropical cyclone impact, we used and modified the Tropical Cyclone Potential Index (TCI) which was introduced by (Xiao et al. 2011). Then monthly TCI was computed as follows:

\[TCI = \sum_{i=1}^{n} w_i v_i^2 \] (3)

\[w_i = 1 - \frac{d_i}{800} \] (4)

where \(n \) is the number of points of 6-hour tropical cyclones in the circle; \(v_i \) is the maximum wind speed near the tropical cyclone center \(i \); \(w_i \) is the weight of the tropical cyclone center \(i \) which was calculated by its inverse distance to the study area; and \(d_i \) is the distance between the tropical cyclone center and the study area centroid (km).

Saline intrusion

Saline intrusion is the most influential factor that impacts agricultural production in My Xuyen district. Saltwater intrudes into My Xuyen district through the My Thanh River which are directly connected to the East Sea (Bé et al. 2017). Salinity data from 2016 to 2019 at Nga Ba Vam Leo (located in Hoa Tu 2,
was collected by the Irrigation Management Station of My Xuyen district. These data of salinity were analysed monthly frequency of salt stress. The levels of salt stress are identified based on the cultivated crops and their stages. Generally, salinity levels of higher than 2 dS/m can reduce rice yield regarding to timing of salt stress and rice variety (Asch and Wopereis 2001).

According to Ayers and Westcot (1985), the agricultural crops are not affected by the electrical conductivity (EC) of irrigation water which is lower than 0.7 dS/m. When the EC is higher than 0.7 dS/m, the agricultural crops begin to be damaged slightly. The crops are severely affected by the EC of higher than 3.0 dS/m. This is a common classification for salt stress of irrigation water for agriculture and this highly agrees with salinity hazard of irrigation water defined by Bauder et al. (2011); Follett and Soltanpour (1914). Specifically, each agricultural crop has different capacity to adapt to saline water. For instance, effects of saline water on rice yield were
evaluated by Ayers and Westcot (1985) and is presented in Error! Reference source not found.. Total dissolved solids (TDS) are the common data of water salinity and they were estimated by using its relationship with EC. The average ratio of total dissolved solids and EC is 0.64 (Ali et al. 2012).

Table 1. Salinity hazard categories of irrigation water for rice crops (Ayers and Westcot 1985).

EC (dS/m)	TDS (g/l)	Category	Effects on rice crops
EC < 2.0	TDS < 1.3	None	Rare effect on rice yield
2.0 ≤ EC < 3.4	1.3 ≤ TDS < 2.2	Slight	Reduction of 25% rice yield
3.4 ≤ EC ≤ 4.8	2.2 ≤ TDS ≤ 3.1	Moderate	Reduction of 50% rice yield
EC > 4.8	TDS > 3.1	Severe	Reduction of over 50% rice yield or destruction of rice crops

The salinity data collected were used to analyse the monthly frequency of the selected salinity levels. To assess effects of saline water on rice crops, we defined the Salinity Potential Index (SPI) based on salinity levels and their frequency, presented as follows.

\[SPI = \sum_{i=1}^{3} n_i w_i \]

where \(i \) is the number of salinity hazard categories, \(n_i \) is the number of salinity occurrence of the category \(i \), \(w_i \) is the category weights which are equal to 0.25, 0.5, and 1 for slight, moderate and severe categories respectively.
2.3. Susceptibility of rice crops in the rice-based cropping system

Rice is the major agricultural crops in My Xuyen district and the rice-based farming systems are double rice crops and shrimp-rice crops. Rice crops are highly susceptible to the effects of tropical cyclones and salinity in irrigation water. Each type of these hazardous events has a different way to influence the rice crops.

Effects of tropical cyclones

The tropical cyclones damage the rice crops due to high wind velocities which leads to injury of plant organs. Masutomi et al. (2012) found that the highest rice vulnerability to tropical cyclones is the heading stage and assumed that the fragility curve of rice plants can be formulated by the Weibull distribution. Therefore, rice vulnerability to tropical cyclones was computed from the damage ratios introduced by Masutomi et al. (2012).

Effects of saline intrusion

The rice crops are highly vulnerable to salt stress and the damages are corresponded to their growth stages. The rice crops are really sensitive to salinity, particularly at the seedling stage (Grattan et al. 2002; Kakar et al. 2019). By another way, saline irrigation water increases salt accumulation in the crop root zone and this causes that the rice crops are not able to sufficient water. Moreover, the saline irrigation water can slow growth rate of rice plants, leading to a reduction or a loss of rice yield. Salinity in irrigation water differently influences rice growth and yield during the growing stages. Thus we used the cropping calendar of the farming systems in order to analyse susceptibility of the rice crops. During the seedling stage, effects of saline water on rice growth at different timing during the vegetative stage are relatively similar. These effects
in the reproductive phase are slightly higher in the vegetative phase (Zeng et al. 2001). In this study, the susceptibility of rice was indicated by reduction of rice yields. The reduction of rice yields at different timing of salinity was computed based on experimental data of Rad et al. (2011). These reductions are considerably changed under different salinity levels, illustrated in Table 2. Rice growth has similar patterns of responses to the different salinity levels during growing phases (Figure 2). The panicle initiation is the most susceptible stage in which rice yield can be reduced by a half due to effects of 4 dS/m salinity. We used average reduction of rice yield due to 2 and 4 dS/m salinity for indicating rice sensitivity during growing phases. At the seedling stage, rice survival is about 70.2% because of impacts of 3.3 dS/m salinity (Zeng et al. 2003). Response of the rice crops to salinity is highly various because of rice varieties. We assumed that the rice varieties cultivated in My Xuyen district has similar capacity to response to salinity and tropical cyclones to those in experiments of Masutomi et al. (2012) and Rad et al. (2011).

Figure 2. The growth stages of rice (IRRI 2015).

Table 2. Reduction of rice yield at different timing of salinity (Rad et al. 2011).
EC (dS/m)	Tillering	Panicle initiation	Heading	Ripening
2	26%	43%	9%	4%
4	33%	50%	13%	3%
Average	30%	46%	11%	4%

The decreased percentages of rice yields were normalized. Values of the vulnerability index were normalized on a scale from 0 to 1 where vulnerability is lowest or highest respectively. These vulnerability are grouped into five categories, presented in Table 3.

Table 3. Categories of vulnerability.

Category	Hazard and vulnerability	Risk
Very low	0 – 0.2	0 – 0.04
Low	0.2 – 0.4	0.04 – 0.16
Moderate	0.4 – 0.6	0.16 – 0.36
High	0.6 – 0.8	0.36 – 0.64
Very high	0.8 – 1	0.64 – 1

3. Results and discussion

Many regions are exposed to a number of natural hazards depending on their spatial
characteristics. There are several specializing hazards in coastal areas such as tropical cyclones and saline intrusion. It is evident that these natural hazards cause huge damage to agricultural production in the coastal areas. Therefore, the outputs of the hazard and vulnerability assessment assist to deal with risks of these phenomenon. In this section, we present results of hazard, vulnerability and risk assessment of the mentioned hazardous events, influencing the rice crops in My Xuyen district.

3.1. Temporal hazard assessment

Figure 3 shows the tropical cyclone tracks within the region of potential effects from 1951 to 2019. There are 136 tropical cyclones occurred in the region. The tropical cyclones originate from the eastern-oriented directions, developing in the Pacific Ocean. Generally, the tropical cyclones occur during the southwest monsoon season. The monthly numbers of tropical cyclones are presented Figure 4. My Xuyen has high potential effects of tropical cyclones from September to December, particularly in October and November which contribute to over a half of the total tropical cyclone number. The tropical cyclones are rarely approach the southern coast (My Xuyen district) while they hit the central and northern parts of Vietnam (Takagi et al. 2014). It is obviously evident that the tropical cyclones move to the south from November to February. This is indicated by the low latitudes of tropical cyclones.
Figure 3. Tropical cyclone tracks (1951-2019) within the region in which they can affect My Xuyen.
Figure 4. Monthly numbers and mean latitude of tropical cyclones from 1951 to 2019.

We calculated the monthly TCI of all tropical cyclones from 1951 to 2019 (Table 4) in order to identify stress timing due to tropical cyclones. The results clearly show that November has the highest TCI value, followed by October since these two months have the greatest occurrence of tropical cyclones. Although September and December have similar numbers of tropical cyclones, the TCI value of December is considerably higher than that of September. This happens because tropical cyclones in December tends to get closer to My Xuyen. Consequently, October and November are the most hazardous period, which are categorized as high and very high respectively.

Table 4. Hazard indexes of tropical cyclones and salinity.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Saltwater intrudes into My Xuyen district through the My Thanh River.

The My Thanh River is strongly dominated by the coastal processes and marginally controlled.
by the fluvial process. Thus surface water resources become saline due to effects of the coastal processes. Figure 5 presents variations of daily maximum salinity at Nga Ba Vam Leo station from 2016 to 2019. It obviously depicts that saline intrusion are varied seasonally. Specifically, salinity reaches the highest level in April or May when river flows are low in the dry season; in contrast, salinity becomes lowest in September coinciding with high river flows in the rainy season in the Mekong Delta. However, salinity at Nga Ba Vam Leo is generally higher than the S1 level in which rice yield can be reduced by 25%. Therefore, surface water resources at Nga Ba Vam Leo need to be noticed to use for rice irrigation. This results in high values of salinity hazard index over the year. The salinity hazard indexes are usually categorized as moderate, high and very high (Table 4).

Based on the rates of saline intrusion and tropical cyclones influencing agricultural cropping systems in My Xuyen, saline intrusion is the main phenomenon damaging rice crops while tropical cyclones has much less impact. The ratio of saline intrusion to tropical cyclones impacts is approximately 85:15. This ratio is relatively reasonable because probability of tropical cyclones is low while saline intrusion frequently happens in My Xuyen. The multiple hazard index (illustrated in Table 4) indicates that May-June is the most hazardous period for rice production. This calculation agrees with the cropping calendar of the double rice cropping system in My Xuyen. This period is free in the cropping calendar (Nguyen et al. 2019) due to very high hazard index. The lowest hazard appears in August, followed by a moderate hazard period. Thus rice is cultivated during this period even in the rice-shrimp cropping system.
Figure 5. Daily maximum salinity at Nga Ba Vam Leo. S1, S2 and S3 are critical levels that reduce rice yields of 25%, 50% and 75% respectively.

3.2. Vulnerability

Table 5 shows temporal variations of vulnerability index of a rice crop which indicates potential effects of tropical cyclones and salinity, damaging at different growth phases. We found that rice crops response to tropical cyclones and salinity differently. Rice is most vulnerable to tropical cyclones at the heading stage and to salinity at the panicle initiation phase. Noticeably, the first half of rice crop is highly vulnerable to salinity while the second half is considerably damaged due to tropical cyclones. The combined vulnerability index is averaged and normalized. It shows that the panicle initiation stage has the highest value of the combined vulnerability index, followed by the heading stage with an index of 0.66.
Rice cultivated in My Xuyen are usually short-duration varieties which mature in a range of 105-120 days. This is coincided with surveyed data in My Xuyen district recently (Nguyen et al. 2019). Table 6 presents cropping calendar or the double rice and rice-shrimp cropping system in My Xuyen. The double rice cropping system includes Summer-Autumn (from June to September) and Winter-Spring (October to January) crops. The rice crop in the rice-shrimp cropping system is cultivated from September to December. The cropping calendar of each system was used for computing vulnerability index which is depicted in Table 6. My Xuyen district has highly potential damage to rice in October and November because it has the largest area of rice production at the reproductive phase in the both cropping systems. In contrast, there are no damage of rice crops from February to May because of no rice grown during this period. This period was obviously coincided with the highest salinity in My Xuyen. It can be explained that the local community and farmers may have a measure to adapt to saline intrusion by adjusting the cropping calendar. Consequently, saline intrusion is the most hazardous events in
Table 6. Cropping calendar of rice-based farming systems in My Xuyen (after Nguyen et al., 2019) and rice vulnerability index.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Double rice												
Rice-Shrimp												
Vulnerability	0.17	0.00	0.00	0.00	0.25	0.55	0.44	0.43	0.81	1.00	0.64	

Very low Low Moderate High Very high

3.3. Multi-hazard risk

Based on the hazard and vulnerability identification, monthly risk indexes indicate possibility of rice damage or loss due to effects of tropical cyclones and saline intrusion, are presented in Table 7. October and November belong to the high category while February-May have no risk. The rice crop is at no risk from February to May and this is resulted from no rice crop cultivated during this period. The high risk of rice production in October and November is occurred because of very high vulnerability and high hazard. Results of the temporal analysis have a reasonable agreement with Wassmann et al. (2019) outputs of risk analysis for the coastal VMD in general.

Table 7. Monthly risk of rice to multiple hazards.
The nature of risks is considerably useful for assessing potential impacts of tropical cyclones and saltwater intrusion on rice production. It is noticed that the damages of agricultural crops vary with timing of the hazards and crop growth stages. Therefore, to reduce the risks, it needs to reduce hazards or/and vulnerability. First, the hazards can be reduced by improving early warning system. The hazardous phenomenon are tropical cyclones and salinity which are possibly predicted by their dominated factors. For example, tropical cyclones are predicted by several predominant factors (Safaripour et al. 2012; Camargo et al. 2019). The salinity is usually projected by the El Niño–Southern Oscillation indexes (Apel et al. 2020) or water discharge of the Mekong River (Dat et al. 2011). In addition, a structure such as sluice gates is a common measure to prevent saline intrusion in coastal areas. Second, there are some solutions to reduce vulnerability of rice-based cropping systems, including using salt-tolerant varieties, adjusting cropping calendar and changing to other agricultural crops (Renaud et al. 2015; Thảo et al. 2017). The results of risk assessment can help the local community become more resilient in rice cultivation to the natural hazardous events.

4. Conclusions

We assessed multiple natural hazards of tropical cyclones and saline intrusion. These hazardous events are the major factors, causing significant damages on rice crops in My Xuyen district. To assess risk of the multiple natural hazards, we used a framework of risk on rice crops in a coastal
area (My Xuyen, Soc Trang). The study primarily focused on evaluation of potential impacts of
the mentioned hazards on rice crops. A temporal analysis was embedded in risk assessment
because rice crops vary seasonally.

The study have shown that rice crop may face extreme salinity from March to June while it deals
with tropical cyclones in October and November. These hazards have various effects on rice
crops. Rice crops are considerably susceptible to salinity during the first half of the growing
period and to tropical cyclones during the other half. In general, therefore, the results show that
rice crops are sharply susceptible in the reproduction phase to the combination of salinity and
tropical cyclones. For rice cultivation in My Xuyen, it is considerably vulnerable to these hazards
in October and November based on the cropping calendar. We found that the rice crops are at
high risk in October and November. Our findings are that saline intrusion reaches the highest
level in April and May, but the rice crop was at no risk because of no rice crop cultivated during
this period.

The multiple hazard assessment provides essential information for the case study in order to
create an awareness for natural disaster mitigation. In addition, the integrated result of multiple
hazards is much more simply than these of each hazard in providing information to planners and
decision-makers because many numbers and scales can be confusing and cumbersome to them. If
the results of multi-hazards and risk assessment are used efficiently, it can reduce damage or loss
of rice crops/yield. However, this needs an effort of users who convey the information to the
natural disaster mitigation procedure. An implication of these findings is to assist decision-
makers, planners and managers in mitigation and adaptation strategies.
List of abbreviations
VMD: the Vietnamese Mekong Delta; TCI: Tropical Cyclone Potential Index; EC: Electrical conductivity; SPI: Salinity Potential Index.

Availability of data and materials
The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Competing interests
The authors declare that they have no competing interests.

Funding
This study was funded in part by the Can Tho University Improvement Project VN14-P6, supported by a Japanese ODA loan.

Authors' contributions
VQT and NHT were responsible for conceptualizing this study and formal analysis. VTPL was responsible for data curation. VQT wrote the initial draft and all authors contributed to the manuscript by providing comments and suggestions.

Acknowledgements
The authors would like to thank staff at Department of Agriculture and Rural Development of My Xuyen district for their support.

References
Ali NS, Mo K, Kim M (2012) A case study on the relationship between conductivity and dissolved solids to evaluate the potential for reuse of reclaimed industrial wastewater.
Apel H, Khiem M, Hong Quan N, Quang Toan T (2020) Brief communication: Seasonal prediction of salinity intrusion in the Mekong Delta. Nat Hazards Earth Syst Sci 20:1609–1616. https://doi.org/10.5194/nhess-20-1609-2020

Asch F, Wopereis MCS (2001) Responses of field-grown irrigated rice cultivars to varying levels of floodwater salinity in a semi-arid environment. F Crop Res 70:127–137. https://doi.org/10.1016/S0378-4290(01)00128-9

Ayers RS, Westcot DW (1985) Water quality for agriculture. FAO irrigation and drainage paper 29 Rev 1, Rome, Italia

Balica S, Dinh Q, Popescu I, et al (2014) Flood impact in the Mekong Delta, Vietnam. J Maps 10:257–268. https://doi.org/10.1080/17445647.2013.859636

Balica SF, Wright NG, Meulen F (2012) A flood vulnerability index for coastal cities and its use in assessing climate change impacts

Bates PD, Pappenberger F, Romanowicz RJ (2014) Uncertainty in flood inundation modelling. In: Applied Uncertainty Analysis for Flood Risk Management. pp 232–269

Bauder TA, Waskom RM, Sutherland PL, Davis JG (2011) Irrigation water quality criteria. Colorado State University Extension Publication. Crop series: Irrigation

Bé NV, Trí VPĐ, Vũ PT, Vũ PH (2017) Challenges in agriculture in My Xuyen district, Soc Trang province in the context of saline intrusion. Can Tho Univ J Sci 2:187–196. https://doi.org/10.22144/ctu.jsi.2017.067

Buan RD, Maglinao AR, Evangelista PP, Pajuelas BG (1996) Vulnerability of rice and corn to climate change in the Philippines. Water Air Soil Pollut 92:41–51. https://doi.org/10.1007/978-94-017-1053-4_4

Camargo SJ, Camp J, Elsberry RL, et al (2019) Tropical cyclone prediction on subseasonal timescales. Trop Cyclone Res Rev 8:150–165. https://doi.org/10.1016/j.tcerr.2019.10.004

Dat TQ, Likitdecharote K, Srisatit T, Trung NH (2011) Modeling the influence of river discharge and sea level rise on salinity intrusion in the Mekong Delta. In: The 1st Environment Asia International Conference on Environmental Supporting in Food and Energy Security: Crisis
and Opportunity. Thai Society of Higher Education Institutes on Environment, pp 685–701

Esteban M, Takagi H, Thao ND (2014) Tropical Cyclone Damage to Coastal Defenses: Future Influence of Climate Change and Sea Level Rise on Shallow Coastal Areas in Southern Vietnam. Elsevier Inc.

FAO (2017) The impact of disasters on agriculture: Addressing the information gap. Rome, Italia

Follett R, Soltanpour P (1914) Irrigation water quality criteria. Colorado State University Publication No. 0.506

Grattan SR, Zeng L, Shannon MC, Roberts SR (2002) Rice is more sensitive to salinity than previously thought. Calif Agric 56:189–198

GSOVN (GENERAL STATISTICS OFFICE of VIET NAM) (2010) Statistical yearbook of Vietnam. Hanoi

Hakim MA, Juraimi AS, Begum M, et al (2010) Effect of salt stress on germination and early seedling growth of rice (Oryza sativa L.). African J Biotechnol 9:1911–1918

IPCC (2014) Summary for policy makers. In: Field CB, Barros VR, Dokken DJ, et al. (eds) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1–32

IRRI (2015) IRRI Rice Production Manual: Steps to successful rice production. International Rice Research Institute, Los Baños (Philippines)

Kakar N, Jumaa SH, Redoña ED, et al (2019) Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice 12:. https://doi.org/10.1186/s12284-019-0317-7

Kakonen M (2008) Mekong Delta at the crossroads: More control or adaptation? Ambio 37:205–212

Kunitsugu M (2012) Tropical cyclone information provided by the RSMC Tokyo - Typhoon Center. Trop Cyclone Res Rev 1:51–59. https://doi.org/10.6057/2012TCRR01.06
Lee T-C, Knutson TR, Kamahori H, Ying M (2012) Impacts of climate change on tropical cyclones in the Western North Pacific Basin. Part I: Past observations. Trop Cyclone Res Rev 1:213–235. https://doi.org/10.6057/2012TCRR02.08

Masutomi Y, Izumi T, Takahashi K, Yokozawa M (2012) Estimation of the damage area due to tropical cyclones using fragility curves for paddy rice in Japan. Environ Res Lett 7:. https://doi.org/10.1088/1748-9326/7/1/014020

Mendelsohn R, Emanuel K, Chonabayashi S, Bakkensen L (2012) The impact of climate change on global tropical cyclone damage. Nat Clim Chang 2:205–209. https://doi.org/10.1038/nclimate1357

Merz B, Hall J, Disse M, Schumann A (2010) Fluvial flood risk management in a changing world. Nat Hazards Earth Syst Sci 10:509–527. https://doi.org/10.5194/nhess-10-509-2010

MRC (2010) State of the Basin Report 2010. Vientiane, Laos

Nguyen MT, Renaud FG, Sebesvari Z, Can Nguyen D (2019) Resilience of agricultural systems facing increased salinity intrusion in deltaic coastal areas of Vietnam. Ecol Soc 24:19. https://doi.org/10.5751/ES-11186-240419

Qadir M, Tubeileh A, Akhtar J, et al (2008) Productivity enhancement of salt-affected environments through crop diversification. L Degrad Dev 19:429–453. https://doi.org/10.1002/ldr

Rad HE, Aref F, Khaledian M, et al (2011) The effects of salinity at different growth stage on rice yield. In: ICID 21st International Congress on Irrigation and Drainage. Tehran, Iran, pp 155–165

Renaud FG, Le TTH, Lindener C, et al (2015) Resilience and shifts in agro-ecosystems facing increasing sea-level rise and salinity intrusion in Ben Tre Province, Mekong Delta. Clim Change 133:69–84. https://doi.org/10.1007/s10584-014-1113-4

Safaripour M, Monavari M, Zare M, et al (2012) Flood Risk Assessment Using GIS (Case Study: Golestan Province, Iran). Polish J Environ Stud 21:1817–1824

Takagi H, Thao ND, Esteban M (2014) Tropical Cyclones and Storm Surges in Southern Vietnam. In: Coastal Disasters and Climate Change in Vietnam: Engineering and Planning
Thảo NH, Trung NH, Trí LQ (2017) Establishing the model for supporting agricultural land use allocation - A case study in My Xuyen district, Soc Trang province. Can Tho Univ J Sci 2:166–177. https://doi.org/10.22144/ctu.jsi.2017.065

Tri VPD, Trung NH, Thanh VQ (2013) Vulnerability to flood in the Vietnamese Mekong Delta: mapping and uncertainty assessment. J Environ Sci Eng B 2:229–237

Wang L, Zhou Y, Lei X, et al (2020) Predominant factors of disaster caused by tropical cyclones in South China coast and implications for early warning systems. Sci Total Environ 726:138556. https://doi.org/10.1016/j.scitotenv.2020.138556

Wassmann R, Phong ND, Tho TQ, et al (2019) High-resolution mapping of flood and salinity risks for rice production in the Vietnamese Mekong Delta. F Crop Res 236:111–120. https://doi.org/10.1016/j.fcr.2019.03.007

Xiao F, Yin Y, Luo Y, et al (2011) Tropical cyclone hazards analysis based on tropical cyclone potential impact index. J Geogr Sci 21:791–800. https://doi.org/10.1007/s11442-011-0880-3

Zeng L, Lesch SM, Grieve CM (2003) Rice growth and yield respond to changes in water depth and salinity stress. Agric Water Manag 59:67–75. https://doi.org/10.1016/S0378-3774(02)00088-4

Zeng L, Shannon MC (2000) Salinity effects on seedling growth and yield components of rice. Crop Breeding, Genet Cytol 40:996–1003

Zeng L, Shannon MC, Lesch SM (2001) Timing of salinity stress affects rice growth and yield components. Agric Water Manag 48:191–206