Incidence and general hospital costs of self-harm across England: estimates based on the multicentre study of self-harm

Apostolos Tsiachristas1, Galit Geulayov2, Deborah Casey2, Jennifer Ness3, Keith Waters3, Caroline Clements4, Nav Kapur4,5, David McDaid6, Fiona Brand2,7 and Keith Hawton2,7

1Health Economics Research Centre, Nuffield Department of Population Health, University of Oxford, Oxford, UK; 2Centre for Suicide Research, Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK; 3Centre for Self-harm and Suicide Prevention Research, Derbyshire Healthcare NHS Foundation Trust, Derby, UK; 4Centre for Suicide Prevention, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK; 5Greater Manchester Mental Health NHS Foundation Trust, Manchester, UK; 6Department of Health Policy, Personal Social Services Research Unit, The London School of Economics and Political Science, London, UK and 7Oxford Health NHS Foundation Trust, Oxford, UK

Abstract
Aims. The aim of this study was to estimate incidence of self-harm presentations to hospitals and their associated hospital costs across England.

Methods. We used individual patient data from the Multicentre Study of Self-harm in England of all self-harm presentations to the emergency departments of five general hospitals in Oxford, Manchester and Derby in 2013. We also obtained cost data for each self-harm presentation from the hospitals in Oxford and Derby, as well as population and geographical estimates from the Office for National Statistics. First, we estimated the rate of self-harm presentations by age and gender in the Multicentre Study and multiplied this with the respective populations to estimate the number of self-harm presentations by age and gender for each local Clinical Commissioning Group (CCG) area in England. Second, we performed a regression analysis on the cost data from Oxford and Derby to predict the hospital costs of self-harm in Manchester by age, gender, receipt of psychosocial assessment, hospital admission and type of self-harm. Third, the mean hospital cost per age year and gender were combined with the respective number of self-harm presentations to estimate the total hospital costs for each CCG in England. Sensitivity analysis was performed to address uncertainty in the results due to the extrapolation of self-harm incidence and cost from the Multicentre Study to England.

Results. There were 228,075 estimated self-harm presentations (61% were female) by 159,857 patients in 2013 in England. The largest proportions of self-harm presentations were in the age group 40–49 years (30%) for men and 19–29 years (28%) for women. Associated hospital costs were approximately £128.6 (95% CI 117.8–140.9) million in 2013. The estimated incidence of self-harm and associated hospital costs were lower in the majority of English coastal areas compared to inland regions but the highest costs were in Greater London. Costs were also higher in more socio-economically deprived areas of the country compared with areas that are more affluent. The sensitivity analyses provided similar results.

Conclusions. The results of this study highlight the extent, hospital costs and distribution of self-harm presentations to hospitals in England and identify potential sub-populations that might benefit from targeted actions to help prevent self-harm and assist those who have self-harmed. They can support national as well as local health stakeholders in allocating funds and prioritising interventions in areas with the greatest need for preventing and managing self-harm.

Introduction
Self-harm, increasingly acknowledged as a major public health concern (Borschmann et al., 2018; Pilling et al., 2018; The Lancet Public, 2018; Ayre et al., 2019), is a key area in the national suicide prevention strategies of many countries and is a priority area in the Mental Health Gap Action Programme produced by the World Health Organization (World Health Organization, 2008). People who self-harm are at elevated risk of premature death (Hawton et al., 2006; Bergen et al., 2012; Carr et al., 2017), especially by suicide (i.e. death by intentional self-harm) (Bergen et al., 2012; Carroll et al., 2014; Olfson et al., 2018), and poor mental health, including depression and substance abuse (Da Cruz et al., 2011; Mars et al., 2014; Borschmann et al., 2017).
In England, prevention of self-harm and suicide is a priority area in public health policy, being the focus of national strategy and clinical guidelines (NICE, 2011; UK Government, 2012, 2019). It was highlighted as a key issue in its own right when the national suicide prevention strategy in England was updated in 2017 and its prevention was recognised as fundamental priority for all organisations involved in delivering the strategy (HM Government, 2019). Furthermore, the first ever Minister of Mental Health, Inequalities and Suicide Prevention was appointed in 2018 along with increased funding for suicide prevention (GOV.UK, 2018). In a series of policy initiatives, local NHS organisations and local government have been asked to draw up joint plans, according to guidelines from Public Health England, to reduce suicide by 10% in 2020 (Appleby et al., 2017; NHS England, 2018). Although suicide rates are strongly related to self-harm rates (Geulayov et al., 2018), hospital management of self-harm remains variable across the country and there has until recently been little sign of service improvement over time (Cooper et al., 2013).

Although the overall incidence of self-harm in England has been estimated previously (Hawton et al., 2007; Geulayov et al., 2016), little is known about its distribution across England. The only available nationwide estimates of self-harm incidence at local level are reported by Public Health England based on hospital admissions, which underestimate the scale of the problem (Clements et al., 2016; Public Health England, date accessed 27/02/2018). Besides the impact on population health, self-harm has considerable implications for healthcare costs, including costs of medical, psychiatric and social care (Sinclair et al., 2011a). A recent UK study based on a single centre estimated hospital costs to be on average £809 per self-harm presentation, with an approximate extrapolation to England of an impact on the NHS budget of approximately £162 million each year (Tsiachristas et al., 2017). This is a concerning figure for local health service commissioners, which increasingly face budget constraints and pressure to improve efficiency in healthcare organisation and delivery.

Estimating the incidence of self-harm presentations to hospitals and the associated hospital costs at a local level is key for designing services for individuals who self-harm and in planning hospital budgets. The aim of this study was to estimate the incidence of self-harm presentations to hospitals at both local and national levels and the associated hospital costs across England.

Methods

Study setting and primary data

The data were collected as part of the Multicentre Study of Self-harm in England. The three centres in the study have been collecting comprehensive data on hospital presentations for self-harm for many years, using similar methodology. The Multicentre Study of Self-harm in England was established early this century in order to provide more representative data on self-harm than each individual centre could provide. In this respect the three cities have a broad geographical distribution, with Oxford in South-East England, Derby in the East-Midlands and Manchester in North-West England. Oxford, Manchester and Derby also have distinctly different profiles in terms of the extent of socio-economic deprivation of their individual catchment areas. Based on the 2015 ratings of the Index of Multiple Deprivation scores for England, which range from 1 (worst) to 209 (best) across England, Manchester was ranked 5 (worst), Derby 55 and Oxford 166 (Department for Communities and Local Government, 2015). While this does not entirely ensure that the study is fully representative of England as a whole, it means that the data on self-harm are far more representative than those from single centres.

The provision of mental health care in general hospitals in England is mainly limited to that focussed on general medical patients with mental health problems and patients who present following self-harm. This includes both care while patients are in hospital and coordinating care after hospital discharge, such as psychological support (e.g. for cancer patients). The overall provision of mental health-related care is funded through general government funds allocated to NHS England. With regards to self-harm, the National Institute for Health and Care Excellence (NICE) recommends provision of a psycho-social assessment for all patients who present with self-harm to the emergency departments of general hospitals (NICE, 2011). This assessment is conducted by a member of the hospital mental health team and is focussed on assessing patients’ problems, needs and risks to determine their subsequent care after leaving hospital. As other specialised mental health care is generally provided by separate community and other mental health teams and is therefore not part of our study. Since there are virtually no emergency departments in private hospitals in England, the cost of self-harm in private hospitals was not included in our study.

Adopting the working definition of the Multicentre Study of Self-harm in England, which is used nationally in England (NICE, 2011), self-harm was defined as intentional self-injury or self-poisoning, irrespective of type of motivation or degree of suicidal intent. Self-poisoning was defined as the intentional self-administration of more than the prescribed or recommended dose of any drug (e.g. analgesics, antidepressants), and includes poisoning with non-ingestible substances (e.g. household bleach), overdoses of ‘recreational drugs’ and severe alcohol intoxication where clinical staff consider such cases to be acts of self-harm. Self-injury was defined as any injury that has been deliberately self-inflicted (e.g. self-cutting, jumping from height). Identification of cases was determined by clinical and research staff using these criteria.

The data included individual patient level data for all self-harm presentations to the emergency departments of five general hospitals (one in Oxford, three in Manchester and one in Derby) between 1 April 2013 and 31 March 2014. The information collected included: overall self-harm method (i.e. self-poisoning, self-injury, both), specific self-harm method (e.g. cutting, poisoning by specific drugs), hospital admission and patient socio-demographic characteristics (i.e. age, gender and ethnicity). It also included the provision of psychosocial assessment. We also obtained the actual hospital cost (i.e. direct and indirect costs of all hospital services) of each self-harm presentation in our dataset (i.e. in 2013/14 fiscal year) from the finance departments of the hospitals in Oxford and Derby. Mid-year 2013 population estimates for the study catchment areas by single year of age and gender, as well as suicide rates and proportion of the catchment area populations living in rural areas were retrieved at Clinical Commissioning Group level from the Office for National Statistics (ONS). Data on the Market Forces Factor (an index that adjusts price differences across the country) in Oxford, Manchester and Derby were retrieved from NHS England.
Approximating the incidence of self-harm presentations to hospitals across England

The number of self-harm presentations was divided by the total population in the catchment area of the three centres of the Multicentre Study for single age years and gender to estimate the rate of self-harm presentation to hospital by age and gender in 2013. This rate was multiplied by the population per age year and gender in each local health service commissioning area (known as Clinical Commissioning Groups – CCGs) in England to estimate the number of self-harm presentations in each CCG nationally by age and gender. The total number of self-harm presentations per CCG area in England was calculated by summing all self-harm presentations by age and gender.

Exploring heterogeneity in hospital costs in the multicentre study

Heterogeneity in costs among hospitals may be explained by patient case-mix (i.e. hospitals provide medical services to patients of different severity and medical needs), mix and quality of services provided (i.e. hospitals may provide services differently for the same need for care and their quality may vary) and production constraints (i.e. hospitals may have different prices for capital and labour inputs) (Street et al., 2010). We explored differences in patient case-mix between the three centres in terms of patient socio-demographic characteristics, overall and specific methods of self-harm and number of self-harm presentations during the study period. For this purpose, descriptive statistical analysis (i.e. frequencies, measures of central tendency and variability) was performed and differences between the three centres were tested with ANOVA and Kruskal–Wallis for continuous variables and chi-squares for categorical variables. In a subgroup descriptive analysis, we additionally compared the occupational status of those patients who had received psychosocial assessment between the three centres. Furthermore, we explored the variation in provided services (i.e. hospital admission and provision of psychosocial assessment) across the three centres using a descriptive statistical analysis. Mixed-Effects Generalised Linear Models were specified to estimate odds ratios for hospital admission and provision of psychosocial assessment adjusted for patient case-mix in order to explore differences in quality of care for self-harm between the three centres. Production constraints were accounted in our study by using the Market Forces Factor to adjust for unavoidable and location-specific cost differences (e.g. differences in land, buildings and staff costs) between the hospitals included in the Multicentre Study.

Estimating hospital costs of self-harm across England

Hospital cost data from Derby did not include the costs of psychosocial assessment. Therefore, we added £392 for patients younger than 18 years and £228 for adult patients to the hospital costs of those patients who had received psychosocial assessment in Derby. These unit costs were published recently and were close to the national average costs of psychosocial assessment reported by the National Institute for Health and Care Excellence (NICE) (Tsiachristas et al., 2017). Furthermore, hospital cost data for each self-harm presentation in Oxford and Derby were regressed by gender, age, receipt of psychosocial assessment, hospital admission and general type of self-harm using a generalised linear model with Gamma distribution, log link and standard errors adjusted for clustering of episodes in patients. The coefficients of this regression analysis were fitted to the data from Manchester to estimate the hospital costs of self-harm presentations in Manchester after adjusting further for the Market Forces Factors. Using the hospital cost of all self-harm presentations in the dataset, we then calculated the mean hospital costs per self-harm presentation by age year and gender. The total costs of self-harm in each CCG area in England were then estimated by multiplying the estimated mean hospital costs per self-harm episode by age and gender with the estimated number of self-harm episodes in each CCG by gender and age.

Sensitivity analysis

Monte-Carlo simulation with 10,000 iterations was performed using the regression coefficients and standard errors from the generalised linear model to address the uncertainty in the results caused by predicting the hospital costs of self-harm presentations in Manchester. The uncertainty based on the simulation was displayed as 95% confidence intervals of the estimated hospitals costs across England. Furthermore, two univariate sensitivity analyses were performed to address the uncertainty in the national estimates of self-harm incidence and related hospital costs from the extrapolation of the Multicentre study. In the first, we used gender-specific and age standardised rates of suicide in each CCG between 2012 and 2014 to adjust the estimated number of self-harm presentations. To do this, we multiplied the estimated number of self-harm presentations by an adjustment factor. The suicide adjustment factor (by gender) was calculated by dividing the age standardised suicide rate in each CCG area by the average age standardised suicide rate in the three centres of the Multicentre Study. The underlying assumption for performing this sensitivity analysis was that suicide (i.e. death by intentional self-harm) and self-harm have common risk factors (Hawton et al., 2012) and there is evidence showing a strong positive relationship between rates of self-harm and suicide (Geulayov et al., 2018). Given that the method used to estimate the incidence of self-harm in the present study was based on data from largely urban areas in the Multicentre Study, a second univariate sensitivity analysis was performed by adjusting the estimated number of self-harm presentations in each CCG based on the rural/urban classification. For this, we used a rurality adjustment factor (by gender) for each CCG to account for approximately 31% lower self-harm presentations in males and 26% in females in rural areas compared with urban areas in England (Harriss and Hawton, 2011).

Role of the funding source

The funder of the study reviewed the study proposal, awarded funding and monitored the conduct of the study. The funders had no role in study design, data collection, data analysis, data interpretation or writing of the manuscript. The corresponding author had full access to all the data in the study and had final responsibility for the decision to submit for publication.

Results

The results in panel A of Table 1 show that the sample in Manchester included proportionally fewer patients younger than 20 years (2 percentage points) and less females (5 percentage points) compared to the other two settings, while there were
Table 1. Variation in patients and self-harm episodes across the three centres of the multicentre study

Variable	Oxford	Manchester	Derby
Panel A: Patient characteristics at first self-harm episode			
n (% of 1150)	171 (15)	381 (13)	216 (14)
Age (years)***			
<18	80 (7)	196 (7)	116 (8)
18–19	335 (29)	946 (31)	416 (27)
20–29	190 (17)	615 (20)	273 (18)
30–39	188 (16)	499 (17)	312 (20)
40–49	111 (10)	265 (9)	131 (9)
50–59	47 (4)	65 (2)	54 (3)
60–69	27 (2)	45 (2)	30 (2)
70 and older	1 (0)	6 (0)	0 (0)
Sex ***			
Male	446 (39)	1326 (44)	606 (39)
Female	704 (61)	1692 (56)	942 (61)
Ethnicity***			
White	1006 (87)	2313 (77)	1196 (77)
Black	19 (2)	69 (2)	14 (1)
Asian	33 (3)	134 (4)	30 (2)
Other	52 (5)	216 (7)	49 (3)
Missing	40 (3)	286 (10)	259 (17)
Number of self-harm repetitions*			
0	944 (82)	2500 (83)	1240 (80)
1	123 (11)	327 (11)	175 (11)
2	33 (3)	91 (3)	73 (5)
>2	50 (4)	100 (3)	60 (4)
Panel B: Type of self-harm and services provided at all self-harm episodes			
Type of self-harm***	n = 1664	n = 4078	n = 2208
Self-poisoning alone	1155 (69)	2573 (63)	1673 (76)
Self-injury alone	395 (24)	1266 (31)	433 (20)
Both self-poisoning & self-injury	114 (7)	239 (6)	102 (4)
Self-injury method***	n = 508	n = 1505	n = 524
Cutting/stabbing	332 (65)	1024 (68)	422 (80)
Jump from height	11 (2)	33 (2)	8 (2)
Hanging/asphyxiation	45 (9)	162 (11)	45 (9)
Traffic related	5 (1)	47 (3)	3 (1)
Other method#	115 (23)	239 (16)	46 (9)
Self-poisoning	n = 963	n = 2029	n = 226
Paracetamol	214 (22)	431 (21)	376 (27)
Paracetamol compound	57 (6)	124 (6)	76 (6)
Antidepressants	139 (14)	249 (12)	149 (11)
Benzodiazepines	46 (5)	87 (4)	68 (3)
Major tranquilisers	26 (3)	65 (3)	46 (3)

(Continued)
proportionally more patients of White ethnicity in Oxford (10 percentage points) compared to Manchester and Derby. The percentage of people having two or more self-harm repetitions in 2013 was higher in Derby (9%) followed by Oxford (7%) and Manchester (6%). Among the three centres, the proportion of episodes of self-harm involving self-poisoning alone ranged from 63% in Manchester to 76% in Derby, the proportion in which cutting was the method of self-injury ranged from 65% in Oxford to 80% in Derby, the proportion of self-poisoning episodes involving paracetamol or paracetamol-containing compounds ranged from 27% in Manchester to 33% in Derby (panel B of Table 1). The proportion of self-harm episodes in which a psychosocial assessment was conducted ranged from 50% in Manchester to 73% in Oxford, while admissions to hospitals ranged from 37% of episodes in Manchester to 78% in Oxford. The rate of self-harm presentations per 1000 population was highest in Manchester, except for the age groups 19–29 years, 30–39 years and 60–69 years where it was highest in Derby (panel C of Table 1). More detailed information about the variation in patient case-mix, service provision, self-harm rates and Market Force Factors between the three centres is provided in Appendices 1–5.

As Table 2 shows, there were an estimated 228 075 self-harm presentations (39% males and 61% females) by 159 857 patients in 2013 in England. The highest proportion of self-harm presentations among males was in the 40–49 year age group (30%), while for females the 19–29 year age group had the highest percentage of presentations (28%). Based on the two univariate sensitivity analyses, estimated self-harm presentations in England were 215 588 after adjusting for suicide rates and 225 172 after adjusting for rurality.

The estimated hospital cost of self-harm in England in 2013 was approximately £128.6 (95% CI 117.8–140.9) million. In absolute terms, the majority of costs were for episodes involving women and were greatest in the Midlands and East regions (Table 3). The total hospital costs of self-harm reduced to £121.6 (95% CI 111.6–133.4) million after independently adjusting for suicide rates and rurality, respectively, and assuming that the representativeness of the patients recorded in the Multicentre Study of Self-harm to all patients who self-harmed in England in the same period was not perfect.

Figure 1 presents the distribution of estimated self-harm presentations and associated hospital costs per 1000 population across local health authorities in England. As shown in the figure, the incidence of self-harm and associated hospital costs was relatively lower in the majority of coastal areas, higher in inland areas and highest in the greater London area. The estimated hospital costs by CCG in England are presented in Appendix 6.

Discussion

This study provides the first detailed estimates of self-harm presentations to hospitals and their associated hospital costs across England. The results of this study may assist national and local health decision makers in planning the distribution of funds for self-harm and prioritising interventions in areas with the highest

Variable	Oxford	Manchester	Derby
Other	338 (35)	741 (37)	440 (32)
Multiple drug groups	143 (15)	332 (16)	226 (16)
Received psychosocial assessment***	n = 1664	n = 4078	n = 2208
No	443 (27)	2026 (50)	731 (33)
Yes	1221 (73)	2052 (50)	1475 (67)
Missing	0 (0)	0 (0)	2 (0)
Admitted to hospital***	n = 1664	n = 4078	n = 2208
No	360 (22)	2352 (58)	921 (42)
Yes	1300 (78)	1489 (37)	1211 (55)
Missing	4 (0)	237 (6)	76 (3)

| Panel C: Self-harm rate per 1000 population |
Age	Oxford	Manchester	Derby
10–18	4.97	7.98	7.00
19–29	6.27	7.02	10.70
30–39	3.81	6.82	6.89
40–49	4.25	9.15	7.26
50–59	2.22	5.04	4.02
60–69	0.98	1.28	1.87
70+	0.61	0.88	0.50
Total	3.61	6.29	5.98

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.0001; # other methods include: drowning, gunshot, gas, head banging.
Table 2. Estimated incidence of self-harm in England in 2013 by gender and age group

Age	10–18	19–29	30–39	40–49	50–59	60–69	70+	Total
Episodes								
Males	8911 (10%)	19 950 (23%)	16 782 (19%)	26 218 (30%)	10 654 (12%)	3878 (4%)	1644 (2%)	88 038 (100%)
Females	30 040 (21%)	38 805 (28%)	24 460 (17%)	26 904 (19%)	13 951 (10%)	3602 (3%)	2274 (2%)	140 037 (100%)
Total	38 951 (17%)	58 756 (26%)	41 242 (18%)	53 123 (23%)	26 218 (30%)	7480 (3%)	3918 (2%)	228 075 (100%)
Patients								
Males	7487 (12%)	15 629 (25%)	12 491 (20%)	14 978 (24%)	7663 (12%)	3180 (5%)	1586 (3%)	63 014 (100%)
Females	22 418 (23%)	23 929 (25%)	16 210 (17%)	18 553 (19%)	10 343 (11%)	3291 (3%)	2099 (2%)	96 843 (100%)
Total	29 905 (17%)	39 559 (25%)	28 701 (18%)	33 531 (21%)	28 820 (17%)	6470 (4%)	3685 (2%)	159 857 (100%)
Episodes (sensitivity analysis-suicide rate adjustment)								
Males	9233 (10%)	20 670 (23%)	17 387 (19%)	27 164 (30%)	11 038 (12%)	4018 (4%)	1703 (2%)	91 213 (100%)
Females	26 681 (21%)	34 465 (28%)	21 724 (17%)	23 895 (19%)	12 391 (10%)	3199 (3%)	2020 (2%)	124 375 (100%)
Total	35 913 (17%)	55 135 (26%)	39 111 (18%)	51 059 (24%)	33 429 (11%)	7217 (3%)	3723 (2%)	215 588 (100%)
Episodes (sensitivity analysis-rural area adjustment)								
Males	8749 (10%)	19 817 (23%)	16 685 (19%)	25 755 (30%)	10 415 (12%)	3762 (4%)	1592 (2%)	86 775 (100%)
Females	29 575 (21%)	38 633 (28%)	24 302 (17%)	26 474 (19%)	13 687 (10%)	3511 (3%)	2218 (2%)	138 397 (100%)
Total	38 324 (17%)	58 450 (26%)	40 987 (18%)	52 229 (23%)	24 099 (11%)	7273 (3%)	3810 (2%)	225 172 (100%)
	Males	Females	Total					
------------------------	------------------------------------	------------------------------------	--------------------------------------					
	Mean (95% CI)	Mean (95% CI)	Mean (95% CI)					
Main analysis								
England	49,559,150 (43,896,127 to 56,429,207)	79,046,705 (70,310,153 to 89,561,701)	128,605,855 (117,835,026 to 140,934,979)					
North of England	13,887,113 (12,303,350 to 15,805,226)	22,301,908 (19,843,575 to 25,260,926)	36,189,021 (33,162,982 to 39,653,206)					
Midlands and East of England	14,893,788 (13,193,223 to 16,957,069)	23,776,299 (21,161,598 to 26,925,731)	38,670,087 (35,442,360 to 42,360,185)					
London	8,189,719 (7,251,950 to 9,326,903)	12,933,335 (11,470,902 to 14,688,055)	21,123,054 (19,331,828 to 23,179,317)					
South of England	12,588,530 (11,149,072 to 14,336,034)	20,035,163 (17,831,861 to 22,684,533)	32,623,693 (29,894,968 to 35,745,008)					
Sensitivity analysis								
England	51,388,469 (45,485,739 to 58,231,335)	70,237,351 (62,504,833 to 79,979,099)	121,625,820 (111,606,263 to 133,361,503)					
North of England	16,404,748 (14,524,117 to 18,586,623)	20,697,182 (18,424,508 to 23,477,638)	37,101,930 (34,065,729 to 40,658,786)					
Midlands and East of England	15,052,615 (13,327,277 to 17,055,894)	19,248,590 (17,140,557 to 21,828,818)	34,301,205 (31,492,938 to 37,593,516)					
London	8,196,243 (7,256,170 to 9,285,758)	12,939,213 (11,486,205 to 14,715,577)	21,135,456 (19,358,303 to 23,219,012)					
South of England	13,383,772 (11,848,737 to 15,170,634)	20,571,587 (18,318,112 to 23,333,386)	33,955,359 (31,155,554 to 37,244,280)					
Sensitivity analysis-rural area adjustment								
England	49,040,989 (43,497,765 to 55,798,083)	78,221,350 (69,455,479 to 88,833,311)	127,262,339 (116,429,823 to 139,715,863)					
North of England	13,933,703 (12,359,729 to 15,851,916)	22,331,294 (19,836,612 to 25,351,426)	36,264,997 (33,188,797 to 39,811,304)					
Midlands and East of England	14,390,659 (12,763,144 to 16,373,060)	23,087,662 (20,516,168 to 26,206,271)	37,478,321 (34,304,814 to 41,130,411)					
London	8,721,310 (7,731,182 to 9,910,935)	13,595,724 (12,037,830 to 15,485,045)	22,317,035 (20,397,794 to 24,524,751)					
South of England	11,995,316 (10,636,940 to 13,652,368)	19,206,671 (17,064,371 to 21,806,693)	31,201,987 (28,557,106 to 34,245,763)					
need for tackling self-harm. Providing the incidence of self-harm presentations in each CCG by gender and age highlights sub-populations potentially where additional resources might be targeted to interventions that may prevent self-harm and assist those who have self-harmed, reducing therefore suicide deaths.

Using our incidence estimates and considering that there were 4727 (3688 male and 1039 female) deaths by suicide in England in 2013 (Statistics, 2016), our results indicate that there were 48 (24 male and 135 female) self-harm presentations to hospitals per suicide and 34 (17 male and 93 female) patients presenting with self-harm per suicide. While these ratios may seem quite large, self-harm is the strongest factor associated with subsequent suicide (Hawton et al., 2015). Risk is also particularly high in the period shortly after self-harm (Hawton et al., 2019). Therefore, primary and secondary prevention interventions that focus on reducing self-harm presentations and on provision of effective aftercare for those who do self-harm may prevent subsequent deaths by suicide (Hawton et al., 2013; Carroll et al., 2016; Guleayov et al., 2018). This is in line with economic evidence that supports the provision of public health interventions (including psychological therapies) for self-harm and suicide prevention (McDaid et al., 2017; Campion and Knapp, 2018). However, effective implementation of self-harm and suicide prevention strategies at local level is challenging in terms of both deciding what initiatives may be effective and how to evaluate these (Saunders and Smith, 2016; Hawton and Pirkis, 2017). In England, Public Health England and CCGs also have to contend with many competing health issues. Moreover, strategies need to be implemented in partnership with multiple local health service providers, as well as the local government public health services. Compliance with national guidance is another challenge for policy makers and service commissioners. Most public health and healthcare decision making in England is made at a local level, leading to substantive variation in service delivery so that many patients still do not receive psychosocial assessment when presenting at hospital for self-harm (Guleayov et al., 2016).

Our estimated incidence of self-harm presentations in England (i.e. 228 075) is close to previously reported more crude estimates of 200 000 episodes per year (Guleayov et al., 2016). This can be contrasted with much lower rates seen in Public Health England’s ‘Fingertips’ database suggesting that this underestimates overall rates of self-harm by approximately 60% compared with rates based on the Multicentre Study (Clements et al., 2016). This is because Fingertips only includes self-harm episodes resulting in hospital admission based on Hospital Episodes Statistics data. It should be noted that our study has estimated only the incidence of self-harm presentations to hospitals; it is well recognised that much self-harm occurs in the community without presentation to hospital, especially among adolescents (Guleayov et al., 2018).

We estimated the hospital cost of self-harm in England in 2013 to be approximately £128.6 million (£133.8 million in 2017 prices using an inflation rate of 1.04062 based on the Hospital and Community Health Services inflation index) (Curtis and Burns, 2017). This figure is lower than the roughly estimated £161.8 million per year cost of self-harm to NHS hospitals reported recently (Tsiachristas et al., 2017). This figure is lower than the roughly estimated £161.8 million per year cost of self-harm to NHS hospitals reported recently (Tsiachristas et al., 2017). It also seemed robust after performing two sensitivity analyses that accounted for the association of self-harm rates with suicide rates (Guleayov et al., 2016) and rural areas (Harriss and Hawton, 2011). The estimated costs in the Oxford CCG area in the present study was £1 565 464 and the total hospital cost of self-harm presentations to the John Radcliffe Hospital in Oxford was actually £1 280 394. These figures therefore provide us with confidence about the internal validity of our cost estimates considering that the difference is likely to be due to the costs of self-harm presentations to the Horton General Hospital, a much smaller hospital than the John Radcliffe, which is also contracted by the Oxfordshire CCG. An additional reassurance for the robustness of our

Fig. 1. Map of England with the estimated self-harm episodes and associated hospital cost per 1000 population in 2013.
estimated incidence and costs is that the five hospitals included in the Multicentre Study cover populations with a wide range of socio-economic deprivation e.g. 5 in Manchester, 55 in Derby and 166 in Oxford (IMD score range: 1 most deprived to 209 most affluent) (Department for Communities and Local Government, 2015). This variation is reassuring considering that socio-economic deprivation is associated with self-harm and suicide (Hawton et al., 2001).

While detailed estimates of the costs of all cases of self-harm have been made for a single hospital (Tsiachristas et al., 2017), this study is to our knowledge the only detailed analysis, applying a consistent methodology to estimate national self-harm costs by documenting care trajectories and measuring actual resource utilisation for all self-harm treatment costs, broken down by age, gender and means of self-harm, across multiple general hospital sites in different areas of England. A recent evaluation of the extension of hours of a liaison psychiatry service in a hospital in the south-west of England reported mean costs per emergency department self-harm attendance, including liaison psychiatry service use and inpatient care were reduced from £784 to £700 (£777–£694 in 2013/14 prices), but unlike our analysis NHS reference costs rather than a detailed resource and costing exercise were used to estimate costs (Opmeer et al., 2017). No attempt was made to estimate costs at a wider geographical level.

Other UK studies have concentrated on the costs of deliberate self-poisoning alone. In 2006/07 one-year costs, not including psychosocial assessment, of 1598 deliberate self-poisonings (aged >16 years) presenting to a general hospital in Nottingham were estimated using NHS reference costs to be £1.64 million or £1026 per poisoning; the authors noted that if repeated across England costs per annum would be much higher than our estimate for all self-harm costs at approximately £170 million (£192 million at 2013/14 prices) (Prescott et al., 2009). UK-wide costs for emergency department presenting paracetamol poisonings following the impact of a change in national guidelines on presentations at three hospitals in Edinburgh, Newcastle and London were estimated to be £48.3 million (£49.7 at 2013/14 prices), again using English NHS tariffs rather than measuring costs (Bateman et al., 2014). Some much older English studies also compared the costs of treating self-poisoning, including psychosocial assessment, across multiple general hospitals over periods of up to five months in the late 1990s; they highlighted substantive variations in costs in part due to type of poisoning as well as differences in care pathways (Kapur et al., 1999a, 1999b, 2002), estimating England wide costs of £56 million (£90 million at 2013/14 prices) (Kapur et al., 2003).

Information making use of the total costs of hospital presenting self-harm to estimate national costs in other high-income countries has also been limited, although access to administrative datasets linked to health insurance records in some countries potentially would allow for more detailed estimates to be produced. Data from the 2006 US Nationwide Emergency Data Sample was used to identify presentations by individuals aged 65 years and over to emergency departments, as well as hospitalisations and hospital charges (Carter and Reymann, 2014). This resulted in an estimate of almost 22 500 presentations per annum nationwide with total charges of $354 million. Other US studies have also estimated the costs of self-harm for specific population groups or for specific types of self-harm at state or national levels make use of various administrative/billing datasets. None looked at costs for all intentional self-harm (White et al., 2013; Ballard et al., 2015; Jiang et al., 2017). Similarly, in Australia, cost estimates have only been made for young people, with costs between 2002 and 2012 for all children aged ≤16 years identified through the National Hospital Morbidity Database as being hospitalised for intentional self-harm estimated to be A$64 million (£34.5 million in 2013/14 prices). In this case neither annual costs nor detailed data for different injuries were reported (Mitchell et al., 2018). In Japan standard healthcare tariffs were combined with nationwide acute hospital discharge data to estimate costs of 7.7 billion Yen (£39.8 million in 2013/24 prices) for all drug-poisonings in people aged over 12 years in 2008 (Okumura et al., 2012). This estimate did not distinguish between intentional and unintentional poisonings, nor did it include costs for patients who were not hospitalised. An in-depth analysis of costs for all patients presenting with intentional self-harm at two hospitals in Basel, Switzerland in 2003 generated mean cost of CHF 19 165; the authors also assumed nationwide costs of CHF 191 million (£112 million in 2013/24 prices), using a national conservative estimate of 10 000 hospital presenting self-harm events per annum, but noting the very limited information on self-harm rates in the country (Czernin et al., 2012).

The strengths of this study include the precision of identification of self-harm presentations to general hospitals through the Multicentre Study, the use of hospital cost data for all episodes in Oxford and Derby, the advanced analytical approach to extrapolate self-harm incidence and hospital costs from the Multicentre Study to England, and the extensive sensitivity analyses to address the uncertainty in the results. The main study limitations are related to the available data and include: (a) the lack of hospital cost data in Manchester, (b) cost data being limited only to care received in general hospitals, which is only a part of the overall long-term costs of self-harm (Sinclair et al., 2011b) and (c) that estimated self-harm incidence and hospital cost may have changed since 2013 due to changes in the incidence patterns (e.g. increase in incidence among young females) and services provision (e.g. there has recently been a considerable increase in provision of hospital services for self-harm patients on a 24 h seven day a week basis in England).

Our analysis can help to identify specific population groups to support within localities and also draw more attention directly to self-harm when developing local suicide and self-harm prevention and reduction strategies. A key element of our approach has been to measure resource use and costs rather than simply use published health system charges, which usually do not reflect actual costs. This will also help in more accurate evaluation of the cost-effectiveness of any interventions that may reduce self-harm events.

There is certainly a need to build on recent albeit relatively small-sized economic evaluations of actions to increase the use of psychosocial assessments (Opmeer et al., 2017) to help improve referral to appropriate care pathways, as well as economic evaluations of psychological and other follow-up care (O’Connor et al., 2017; Haga et al., 2018; Park et al., 2018). The potential economic benefits of effective interventions may also be greater than shown in these analyses, as there will be additional costs to the health sector, local government and other public agencies which may be averted by any reduction in future risk of both non-fatal and fatal self-harm events (Hawton et al., 2015). Although our analysis has focused on England we believe our approach could also in principle be adapted for use in the development of self-harm prevention strategies in other country contexts, particularly those where national administrative datasets that record hospital presenting self-harm are not available.
Data
Due to constraints on the data sharing permissions of the data in the Multicentre Study of Self-harm in England, we are not allowed to share the data for public use.

Acknowledgements. We thank the NIHR Oxford-Collaboration for Leadership in Applied Health Research and Care, and in particular Professor Belinda Lennox, for their support. Our special thanks to A-La Park at the London School of Economics and Political Science for contributing to the literature review. We also thank members of the finance departments of Oxford University Hospital NHS Foundation Trust, Oxford Health NHS Foundation Trust and the University Hospitals of Derby and Burton NHS Foundation Trust, for providing data and advice. The authors from Derby would also like to thank Callum Burgess, Information Analyst, University Hospitals of Derby and Burton NHS Foundation Trust, as well as Abigail Marron and Anita Patel (Research Assistants at Derbyshire Healthcare NHS Foundation Trust). KH was supported by Oxford Health NHS Foundation Trust. AT acknowledges financial support by the NIHR Oxford Biomedical Research Centre and the NIHR Applied Research Collaboration Oxford and Thames Valley. KH is a National Institute for Health Research (NIHR) Senior Investigator (Emeritus). The Multicentre Study of Self-harm in England is funded by the Department of Health and Social Care. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR, or the Department of Health and Social Care.

Author contributions. AT, KH and DM conceived the idea of the study. All authors developed the study protocol. AT drafted the manuscript, led the analyses and interpreted the results alongside DMcD, GG, DC and KH. GG, DC, FB, JN, KW, CC, NK, collected, managed and provided data from the Multicentre Study of Self-harm. KH was principal investigator. All authors made substantial revisions to earlier drafts and approved the final manuscript.

Financial support. Department of Health and Social Care and National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) at Oxford Health NHS Foundation Trust.

Conflict of interest. We declare no competing interests.

Ethical standards. The three research sites involved in the Multicentre Study of self-harm have approvals to collect data on self-harm for their local monitoring systems of self-harm and for multicentre projects. The monitoring systems in Oxford and Derby have received their approval from national health research ethics committees while self-harm monitoring in Manchester is part of a local clinical audit system ratified by the local research ethics committee. The three monitoring systems are fully compliant with the Data Protection Act (1998) and have approval under Section 251 of the National Health Service (NHS) Act (2006) to collect patient-identifiable data without explicit patient consent.

References
Appleby L, Hunt IM and Kapur N (2017) New policy and evidence on suicide prevention. The Lancet. Psychiatry 4, 658–660.
Ayre K, Dutta R and Howard LM (2019) Perinatal self-harm: an overlooked public health issue. The Lancet. Public Health 4, e125.
Ballard ED, Kalb LG, Vasa RA, Goldstein M and Wilcox HC (2015) Self-harm, assault, and undetermined intent injuries among pediatric emergency department visits. Pediatric Emergency Care 31, 813–818.
Bateman DN, Carroll R, Pettie J, Yamamoto T, Elamin MEMO, Peart L, Dow M, Coyle J, Cranfield KR, Hook C, Sandilands EA, Veiraiah A, Webb D, Gray A, Dorgan PI, Wood DM, Thomas SHL, Deere JW and Eddleston M (2014) Effect of the UK’s revised paracetamol poisoning management guidelines on admissions, adverse reactions and costs of treatment. British Journal of Clinical Pharmacology 78, 610–618.
Bergen H, Hawton K, Waters K, Ness J, Cooper J, Steeg S and Kapur N (2012) Premature death after self-harm: a multicentre cohort study. Lancet 380, 1568–1574.
Borschmann R, Becker D, Coffey C, Spry E, Moreno-Betancur M, Moran P and Patton GC (2017) 20-year outcomes in adolescents who self-harm: a population-based cohort study. Lancet Child & Adolescent Health 1, 195–202.
Borschmann R, Young JT, Moran PA, Spittal MJ and Kinner SA (2018) Self-harm in the criminal justice system: a public health opportunity. Lancet Public Health 3, e10–e11.
Campion J and Knapp M (2018) The economic case for improved coverage of public mental health interventions. The Lancet. Psychiatry 5, 103–105.
Carr MJ, Ashcroft DM, Kontopantelis E, While D, Awenat Y, Cooper J, Chew-Graham C, Kapur N and Webb RT (2017) Premature death among primary care patients with a history of self-harm. Annals of Family Medicine 15, 246–254.
Carroll R, Metcalfe C and Gunnell D (2014) Hospital presenting self-harm and risk of fatal and non-fatal repetition: systematic review and meta-analysis. PLoS ONE 9, e89944.
Carroll R, Metcalfe C, Steeg S, Davies NM, Cooper J, Kapur N and Gunnell D (2016) Psychosocial assessment of self-harm Patients and risk of repeat presentation: an instrumental variable analysis using time of hospital presentation. PLoS ONE 11, e0149713.
Carter MW and Reymann MR (2014) ED use by older adults attempting suicide. The American Journal of Emergency Medicine 32, 535–540.
Clements C, Turnbull P, Hawton K, Geulayov G, Waters K, Ness J, Townsend E, Khudakar K and Kapur N (2016) Rates of self-harm presenting to general hospitals: a comparison of data from the multicentre study of self-harm in England and hospital episode statistics. BMJ Open 6, e009749.
Cooper J, Steeg S, Bennewith O, Lowe M, Gunnell D, House A, Hawton K and Kapur N (2013) Are hospital services for self-harm getting better? An observational study examining management, service provision and temporal trends in England. BMJ Open 3, e003444.
Curtis L and Burns A (2017) Unit Costs of Health and Social Care 2017. Canterbury: Personal Social Services Research Unit: University of Kent.
Czernin S, Vogel M, Flückiger M, Muheim F, Bourgonn J-C, Reichelt M, Eichhorn M, Riecher-Rossler A and Stoppe G (2012) Cost of attempted suicide: a retrospective study of extent and associated factors. Swiss Medical Weekly 142, w13648–w13648.
Da Cruz D, Pearson A, Saini P, Miles C, While D, Swinson N, Williams A, Shaw J, Appleby L and Kapur N (2011) Emergency Department contact prior to suicide in mental health patients. Emergency Medicine Journal 28, 467–471.
Department for Communities and Local Government (2015) The English Indices of Deprivation 2015 (ed. GOV.UK), London: GOV.UK.
Geulayov G, Kapur N, Turnbull P, Clements C, Waters K, Ness J, Townsend E and Hawton K (2016) Epidemiology and trends in non-fatal self-harm in three centres in England, 2000–2012: findings from the multicentre study of self-harm in England. BMJ Open 6, e010538.
Geulayov G, Casey D, McDonald KC, Foster P, Pritchard K, Wells C, Clements C, Kapur N, Ness J, Waters K and Hawton K (2018) Incidence of suicide, hospital-presenting non-fatal self-harm, and community-occurring non-fatal self-harm in adolescents in England (the iceberg model of self-harm): a retrospective study. The Lancet. Psychiatry 5, 167–174.
GOV.UK (2018) PM pledges action on suicide to mark World Mental Health Day. GOV.UK. Available at https://www.gov.uk.gov.uk/news/pm-pledges-action-on-suicide-to-mark-world-mental-health-day.
Haga E, Aas E, Groholt B, Tormoen AJ and Melhum L (2018) Cost-effectiveness of dialectical behaviour therapy v. enhanced usual care in the treatment of adolescents with self-harm. Child and Adolescent Psychiatry and Mental Health 12, 22–22.
Harriss L and Hawton K (2011) Deliberate self-harm in rural and urban regions: a comparative study of prevalence and patient characteristics. Social Science & Medicine 73, 274–281.
Hawton K and Pirkis J (2017) Suicide is a complex problem that requires a range of prevention initiatives and methods of evaluation. British Journal of Psychiatry 210, 381–383.
Hawton K, Harriss L, Hodder K, Simkin S and Gunnell D (2001) The influence of the economic and social environment on deliberate self-harm and suicide prevention. The Lancet. Psychiatry 4, 658–660.
suicide: an ecological and person-based study. Psychological Medicine 31, 827–836.

Hawton K, Harriss L and Zahl D (2006) Deaths from all causes in a long-term follow-up study of 11 583 deliberate self-harm patients. Psychological Medicine 36, 397–405.

Hawton K, Bergen H, Casey D, Simkin S, Palmer B, Cooper J, Kapur N, Horrocks J, House A, Lilley R, Noble R and Owens D (2007) Self-harm in England: a tale of three cities. Multicentre study of self-harm. Social Psychiatry and Psychiatric Epidemiology 42, 513–521.

Hawton K, Saunders KE and O’Connor RC (2012) Self-harm and suicide in adolescents. Lancet 379, 2373–2382.

Hawton K, Casanas ICC, Haw C and Saunders K (2013) Risk factors for suicide in individuals with depression: a systematic review. Journal of Affective Disorders 147, 17–28.

Hawton K, Bergen H, Cooper J, Turnbull P, Waters K, Ness J and Kapur N (2015) Suicide following self-harm: findings from the multicentre study of self-harm in England, 2000–2012. Journal of Affective Disorders 175, 147–151.

Hawton K, Ferrey A, Casey D, Wells C, Fuller A, Bankhead C, Clements C, Ness J, Gunnell D, Kapur N and Geulayov G (2019) Relative toxicity of analgesics commonly used for intentional self-poisoning: a study of case fatality based on fatal and non-fatal overdoses. Journal of Affective Disorders 246, 814–819.

HM Government (2019) Cross-government suicide prevention workplan. Available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/772210/national-suicide-prevention-strategy-workplan.pdf. Gov.uk: London.

Jiang Y, McDonald JV, Koziol J, McCormick M, Viner-Brown S and Alexander-Scott N (2017) Can emergency department, hospital discharge, and death data be used to monitor burden of drug overdose in Rhode Island? Journal of Public Health Management and Practice: JPHMP 23, 499–506.

Kapur N, House A, Creed F, Feldman E, Friedman T and Guthrie E (1999a) Costs of antidepressant overdose: a preliminary study. The British Journal of General Practice: The Journal of the Royal College of General Practitioners 49, 733–734.

Kapur N, House A, Creed F, Feldman E, Friedman T and Guthrie E (1999b) General hospital services for deliberate self-poisoning: an expensive road to nowhere? Postgraduate Medical Journal 75, 599–602.

Kapur N, House A, Dodgson K, May C, Marshall S, Tomenson B and Creed F (2002) Management and costs of deliberate self-poisoning in the general hospital: a multi-centre study. Journal of Mental Health 11, 223–230.

Kapur N, House A, May C and Creed F (2003) Service provision and outcome for deliberate self-poisoning in adults – results from a six centre descriptive study. Social Psychiatry and Psychiatric Epidemiology 38, 390–395.

Mars B, Heron J, Crane C, Hawton K, Lewis G, Macleod J, Tilting K and Gunnell D (2014) Clinical and social outcomes of adolescent self-harm: population based cohort study. BMJ 349, g5954.

McDaid D, Park A and Knapp M (2017) Commissioning Cost-effective Services for Promotion of Mental Health and Wellbeing and Prevention of Mental Ill-Health. London: Public Health England.

Mitchell RJ, Seah R, Ting HP, Curtis K and Foster K (2018) Intentional self-harm and assault hospitalisations and treatment cost of children in Australia over a 10-year period. Australian and New Zealand Journal of Public Health 42, 240–246.

NHS England (2018) News Suicide Prevention and Reduction. London: NHS England. Available at https://www.england.nhs.uk/2018/05/suicide-prevention-and-reduction/.

Nice (2011) Self-harm: Longer-term management. In National Collaborating Centre for Mental Health (ed.), NICE Clinical Guideline 133. Manchester: National Institute for Health and Clinical Excellence, pp. 1–414.

O’Connor RC, Ferguson E, Scott F, Smyth R, McDaid D, Park AL, Beautrais A and Armitage CJ (2017) A brief psychological intervention to reduce repetition of self-harm in patients admitted to hospital following a suicide attempt: a randomised controlled trial. The Lancet. Psychiatry 4, 451–460.

Okumura Y, Shimizu S, Ishikawa KB, Matsuda S, Fushimi K and Ito H (2012) Characteristics, procedural differences, and costs of inpatients with drug poisoning in acute care hospitals in Japan. General Hospital Psychiatry 34, 681–685.

Olsson M, Wall M, Wang S, Crystal S, Bridge JA, Liu SM and Blanco C (2018) Suicide after deliberate self-harm in adolescents and young adults. Pediatrics 141, e20173517. doi: 10.1542/peds.2017-3517.

Opmeer BC, Hollingsworth W, Marques EMR, Margelyte R and Gunnell D (2017) Extending the liaison psychiatry service in a large hospital in the UK: a before and after evaluation of the economic impact and patient care following ED attendances for self-harm. BMJ Open 7, e016906.

Park AL, Gysin-Maillart A, Müller TJ, Exadaktylos A and Michel K (2018) Cost-effectiveness of a brief structured intervention program aimed at preventing repeat suicide attempts among those who previously attempted suicide: a secondary analysis of the ASSIP randomized clinical trial. JAMA Network Open 1, e183680–e183680.

Pilling S, Smith S, Roth A, Sherrat K, Monnery C, Boland J, Lawes A and Furmaniak K (2018) Self-harm and Suicide Prevention Competence Framework: Community and Public Health. London: NHS Health Education England and National Collaborating Centre for Mental Health.

Prescott K, Stratton R, Freyer A, Hall I and Le Jeune I (2009) Detailed analyses of self-poisoning episodes presenting to a large regional teaching hospital in the UK. British Journal of Clinical Pharmacology 68, 260–268.

Public Health England (date accessed 27/02/2018) Public Health Profiles. Public Health England. Available at https://fingertips.phe.org.uk/.

Saunders KE and Smith KA (2016) Interventions to prevent self-harm: what does the evidence say? Evidence-Based Mental Health 19, 69–72.

Sinclair JM, Gray A, Rivero-Arias O, Saunders KE and Hawton K (2011a) Healthcare and social services resource use and costs of self-harm patients. Social Psychiatry & Psychiatric Epidemiology 46, 263–271.

Sinclair JMA, Gray A, Rivero-Arias O, Saunders KEA and Hawton K (2011b) Healthcare and social services resource use and costs of self-harm patients. Social Psychiatry and Psychiatric Epidemiology 46, 263–271.

Statistics ON (2016) Suicides in England and Wales by local authority, 2002 to 2015. Mortality team, Life Events and Population Sources Division, Office for National Statistics: Gwent.

Street A, Scheller-Kreinsen D, Geissler A and Busse R (2010) Determinants of Hospital Covariables for the EuroDRG Project. Berlin: Working Papers in Health Policy and Management.

The Lancet Public H (2018) Suicide in the USA: a public health emergency. Lancet Public Health 3, e304.

Tsiachristas A, McDaid D, Casey D, Brand F, Leal I, Park A-L, Geulayov G and Hawton K (2017) General hospital costs in England of medical and psychiatric care for patients who self-harm: a retrospective analysis. The Lancet Psychiatry 4, 759–767.

UK Government (2012) Preventing suicide in England: A cross-government outcomes strategy to save lives. Department of Health. Available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/430720/Preventing-Suicide-pd.f.pdf.

UK Government (2019) Preventing suicide in England: Fourth progress report of the crossgovernment outcomes strategy to save lives. Department of Health and Social Care. Available at https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/772184/national-suicide-prevention-strategy-4th-progress-report.pdf.

White AM, MacInnes E, Hingson RW and Pan JJ (2013) Hospitalizations for suicide-related drug poisonings and co-occurring alcohol overdoses in adolescents (ages 12–17) and young adults (ages 18–24) in the United States, 1999–2008: results from the nationwide inpatient sample. Suicide & Life-Threatening Behavior 43, 198–212.

World Health Organization (2008) Scaling up care for mental, neurological, and substance use disorders. In Mental Health Gap Action Programme. World Health Organization.
Appendix 1

Variation in patient characteristics and clinical care by method of self-harm in the three study sites

Variable	Oxford	Manchester	Derby		
	Self-poisoning alone	Self-injury alone	Self-poisoning alone	Self-injury alone	Both self-poisoning and self-injury
	Both self-poisoning and self-injury		Both self-poisoning and self-injury		
Age (years)					
<18	147 (13)	33 (8)	28 (25)	259 (10)	204 (16)
18–19	64 (5)	24 (6)	7 (6)	135 (5)	79 (6)
20–29	348 (30)	167 (42)	32 (28)	750 (29)	4459 (36)
30–39	190 (16)	60 (15)	23 (20)	542 (21)	246 (36)
40–49	236 (20)	51 (13)	11 (10)	531 (21)	176 (14)
50–59	106 (9)	43 (11)	9 (8)	247 (10)	75 (6)
60–69	42 (4)	11 (3)	2 (2)	68 (3)	12 (1)
70 and older	21 (2)	6 (2)	2 (2)	37 (1)	13 (1)
Missing	1 (0)	0 (0)	0 (0)	4 (0)	2 (0)
Sex					
Male	422 (37)	126 (32)	32 (28)	1095 (43)	575 (45)
Female	733 (63)	269 (68)	82 (72)	1478 (57)	691 (55)
Received psychosocial assessment					
No	225 (19)	197 (50)	21 (18)	1232 (48)	720 (57)
Yes	930 (81)	198 (50)	93 (82)	1341 (52)	546 (43)
Missing	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)
Admitted to hospital					
No	140 (12)	202 (51)	18 (16)	1171 (46)	1036 (82)
Yes	1011 (88)	193 (49)	96 (84)	1262 (49)	139 (11)
Missing	4 (0)	0 (0)	0 (0)	140 (5)	91 (7)

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.0001; # other methods include: drowning, gunshot, gas, head banging.
Appendix 2

Variation in patient characteristics of those who received psychosocial assessment by site

Variable	Oxford n (% of 894)	Manchester n (% of 1647)	Derby n (% of 1087)
Age (years)			
<18	143 (16)	128 (8)	197 (18)
18–19	65 (7)	116 (7)	70 (6)
20–29	235 (26)	556 (34)	260 (24)
30–39	141 (16)	342 (21)	193 (18)
40–49	154 (17)	294 (18)	206 (19)
50–59	92 (10)	149 (9)	95 (9)
60–69	38 (4)	36 (2)	42 (4)
70 and older	26 (2)	26 (2)	24 (2)
Missing	0 (0)	0 (0)	0 (0)
Sex			
Male	346 (39)	727 (44)	406 (37)
Female	548 (61)	920 (56)	681 (63)
Occupational status			
Unemployed/household	219 (24)	774 (47)	367 (34)
Employed	288 (32)	407 (25)	254 (23)
Disabled/retired	152 (17)	76 (5)	51 (5)
Student	188 (21)	268 (16)	227 (21)
Missing	47 (5)	122 (7)	188 (17)
Ethnicity			
White	789 (88)	1398 (85)	830 (77)
Black	14 (2)	42 (3)	10 (1)
Asian	28 (3)	80 (5)	22 (2)
Other	44 (5)	97 (6)	35 (3)
Missing	19 (2)	30 (2)	190 (17)
Number of self-harm repetitions			
0	748 (84)	1460 (83)	943 (82)
1	95 (11)	186 (10)	134 (11)
2	23 (2)	51 (3)	52 (4)
>2	28 (3)	67 (4)	40 (3)
Mean (s.d.) min–max n			
Age	34 (16) 12–97 894	33 (14) 8–931 647	33 (16) 10–931 087
IMDS***	16 (11) 1–59 838	40 (19) 2–801 574	26 (16) 1–661 036
Number of repetitions	0.33 (1.18) 0–19 894	0.36 (1.22) 0–181 647	0.36 (1.07) 0–171 087

*p-value < 0.05; **p-value < 0.01; ***p-value < 0.0001.
Appendix 3

Variation in the provision of clinical care between the three study sites

Variable	Self-harm method	Self-harm method	Self-injury method	Self-injury method	Self-poisoning method	Self-poisoning method
	Model 1	Model 2	Model 3	Model 4	Model 5	Model 6
	Dependent: Assessed					
	OR (s.e.) p-value [95% CI]					
Site (ref: Oxford)						
Manchester	0.48 (0.05) <0.001 [0.39;0.59]	0.15 (0.02) <0.001 [0.12;0.19]	0.80 (0.15) 0.231 [0.55;1.16]	0.12 (0.03) <0.001 [0.08;0.19]	0.35 (0.05) <0.001 [0.26;0.46]	0.14 (0.02) <0.001 [0.10;0.20]
Derby	0.81 (0.08) 0.043 [0.66;0.99]	0.25 (0.03) <0.001 [0.20;0.31]	1.05 (0.20) 0.791 [0.72;1.53]	0.40 (0.08) <0.001 [0.27;0.58]	0.67 (0.09) <0.003 [0.52;0.87]	0.21 (0.03) <0.001 [0.15;0.28]
Age (years)***	1.01 (0.00) 0.005 [1.00;1.01]	1.00 (0.00) 0.559 [1.00;1.01]	1.01 (0.01) 0.040 [1.00;1.02]	1.00 (0.01) 0.366 [1.00;1.03]	1.00 (0.00) 0.156 [1.00;1.01]	1.00 (0.00) 0.700 [1.00;1.01]
Female (ref: Male)	0.96 (0.07) 0.588 [0.84;1.10]	1.25 (0.09) 0.002 [1.09;1.43]	0.65 (0.08) <0.001 [0.51;0.83]	1.42 (0.2) 0.012 [1.08;1.86]	1.10 (0.10) 0.282 [0.92;1.32]	1.19 (0.11) 0.069 [0.99;1.42]
IMDS	1.00 (0.00) 0.429 [0.99;1.00]	0.99 (0.00) <0.001 [0.99;0.99]	1.00 (0.00) 0.718 [0.99;1.01]	0.99 (0.00) 0.007 [0.98;0.99]	1.00 (0.00) 0.549 [0.99;1.00]	0.99 (0.00) <0.001 [0.98;0.99]
Number of self-harm repetitions	0.92 (0.02) 0.002 [0.87;0.97]	1.00 (0.02) 0.858 [0.95;1.04]	0.88 (0.04) <0.001 [0.81;0.95]	0.96 (0.03) 0.194 [0.91;1.02]	0.94 (0.02) 0.008 [0.90;0.98]	0.99 (0.02) 0.588 [0.95;1.03]
Admitted to hospital (ref: Not-admitted)	2.97 (0.23) <0.001 [2.56;3.45]	4.16 (0.64) <0.001 [3.07;5.63]	2.44 (0.25) <0.001 [2.00;2.98]			
Received assessment (ref: Not assessed)	2.93 (0.22) <0.001 [2.53;3.39]	3.96 (0.61) <0.001 [2.93;5.35]	2.51 (0.26) <0.001 [2.06;3.07]			
Self-harm method (ref: Self-poisoning)						
Self-injury	0.79 (0.06) 0.003 [0.68;0.92]	0.13 (0.01) <0.001 [0.11;0.16]				
Both self-injury/poisoning	1.82 (0.27) <0.001 [1.36;2.42]	0.58 (0.08) <0.001 [0.44;0.77]				
Self-injury method (ref: cut/stab)						
Jump from height	1.32 (0.56) 0.517 [0.57;3.03]	1.74 (0.76) 0.206 [0.74;4.08]				
Hanging/asphyxiation	1.42 (0.28) 0.073 [0.97;2.08]	1.19 (0.24) 0.403 [0.79;1.77]				
Traffic related	1.67 (0.70) 0.218 [0.74;3.80]	2.03 (0.88) 0.102 [0.87;4.72]				
Other method	0.43 (0.07) <0.001 [0.31;0.59]	1.90 (0.33) <0.001 [1.35;2.68]				
Self-poisoning method (ref: Paracetamol)						
Paracetamol compound	1.20 (0.24) 0.377 [0.80;1.78]	0.81 (0.17) 0.311 [0.54;1.21]				
Antidepressants	1.08 (0.17) 0.618 [0.79;1.47]	0.76 (0.12) 0.081 [0.56;1.03]				
Benzodiazepines	0.46 (0.10) <0.001 [0.31;0.70]	0.43 (1.00) <0.001 [0.28;0.67]				
Major tranquillisers	0.80 (0.19) 0.356 [0.49;1.29]	0.73 (0.20) 0.255 [0.42;1.25]				
Other	0.78 (0.09) 0.035 [0.62;0.96]	0.53 (0.07) <0.001 [0.42;0.67]				
Multiple drug groups	1.10 (0.16) 0.488 [0.83;1.46]	1.29 (0.19) 0.088 [0.96;1.72]				
Constant	1.66 (0.24) <0.001 [1.25;2.21]	4.64 (0.78) <0.001 [3.46;6.23]	1.16 (0.29) 0.534 [0.72;1.87]	0.52 (0.13) 0.311 [0.31;0.86]	2.47 (0.50) <0.001 [1.67;3.67]	7.26 (1.61) <0.001 [4.70;11.22]
Variance	1.01 (0.20) [0.69;1.49]	1.00 (0.19) [0.69;1.45]	1.13 (0.34) [0.63;2.03]	1.20 (0.55) [0.48;2.97]	0.93 (0.31) [0.49;1.78]	1.14 (0.29) [0.69;1.88]
Sample size	7180 episodes 5241 patients	7180 episodes 5241 patients	2281 episodes 1696 patients	2281episodes 1696 patients	3947 episodes 3143 patients	3947 episodes 3143 patients

Ref: Reference category.
Appendix 4.

Self-harm incidence per 1000 population in the three study sites

Appendix 5

Market force factors (2013/14)

Variable	MFF	MFF indexed to Oxford
Oxford University Hospitals NHS Trust	1.100325	1.00
Central Manchester University Hospitals NHS Foundation Trust	1.056801	0.960444
Derby Hospitals NHS Foundation Trust	1.033263	0.939053
Appendix 6. Hospital cost of self-harm by local authority across England in 2013

Local Authority	Main Male Costs	Main Female Costs	Main Total Costs						
	Mean	Lower 95% CI	Higher 95% CI	Mean	Lower 95% CI	Higher 95% CI			
England	49 559 150	43 896 127	56 429 207	79 046 705	70 310 153	89 561 701	128 605 855	117 835 026	140 934 979
North of England	13 877 113	12 303 350	15 805 226	22 301 908	19 843 575	25 260 926	36 189 021	33 162 982	39 653 206
Cheshire, Wirral and Halton	1 100 384	973 900	1 253 603	1 771 073	1 576 101	2 005 890	2 871 457	2 630 219	3 148 052
North East Cheshire	122 780	102 924	142 685	203 369	176 529	230 279	343 932	313 406	352 278
NHS Vale Royal	92 285	81 705	105 095	148 347	132 079	167 953	240 632	220 491	263 736
NHS Wirral	278 311	246 445	316 953	461 980	411 123	523 196	740 292	678 246	811 878
Durham, Darlington and Tees	1 064 860	943 310	1 212 447	1 728 212	1 537 858	1 956 994	2 793 072	2 559 134	3 060 861
NHS Darlington	94 699	83 856	107 826	154 630	137 669	175 018	249 329	228 506	273 235
NHS Durham Dales, Easington and Sedgefield	244 908	216 826	278 943	391 122	348 163	442 899	636 030	582 815	697 091
NHS Hartlepool and Stockton-on-Tees	258 760	229 215	294 618	420 538	374 078	476 440	679 298	622 276	744 621
NHS North Durham	223 425	197 881	254 400	359 096	319 339	406 940	582 521	533 607	638 487
NHS South Tees	243 068	215 500	276 445	402 825	358 575	456 039	645 893	592 096	707 901
Greater Manchester	2 559 987	2 268 440	2 913 143	4 093 480	3 640 695	4 635 983	6 653 467	6 097 488	7 289 990
NHS Bolton	256 698	227 604	292 036	411 165	365 986	465 501	667 864	612 242	731 435
NHS Bury	167 910	148 714	191 226	273 731	243 554	309 996	441 641	404 593	484 124
NHS Central Manchester	184 782	164 203	209 545	300 498	267 199	340 432	485 280	445 037	531 395
NHS Heywood, Middleton and Rochdale	192 181	170 357	218 679	318 467	283 591	360 325	510 648	468 257	559 397
NHS North Manchester	172 856	153 331	196 410	259 338	230 113	294 635	432 194	395 981	473 473
NHS Oldham	204 914	181 685	233 123	335 378	298 741	379 294	540 292	495 539	591 474
NHS Salford	227 292	201 398	258 687	354 552	315 171	401 869	581 844	533 189	637 302
NHS South Manchester	154 637	137 174	175 698	253 576	225 015	288 044	408 213	373 682	447 831
NHS Stockport	256 317	226 817	292 054	410 542	365 203	465 090	666 859	610 738	731 161
NHS Tameside and Glossop	233 695	206 953	266 160	374 366	333 101	424 011	608 061	557 102	666 259
NHS Trafford	210 633	186 424	239 972	337 298	300 054	382 142	547 931	501 860	600 655
NHS Wigan Borough	298 072	263 767	339 649	464 570	413 193	526 343	762 642	698 556	835 723
Lancashire	1 329 281	1 177 491	1 513 586	2 132 058	1 898 172	2 413 714	3 461 339	3 172 633	3 791 458
NHS Blackburn with Darwen	135 463	120 112	154 066	219 743	195 785	248 494	355 206	325 879	388 795
NHS Area	Num of Dementia Deaths								
----------	------------------------								
NHS Blackpool	128 026								
NHS Chorley and South Ribble	158 216								
NHS East Lancashire	336 060								
NHS Fylde and Wyre	141 753								
NHS Greater Preston	189 700								
NHS Lancashire North	141 590								
NHS West Lancashire	98 373								
Merseyside	1 088 812								
NHS Halton	113 806								
NHS Knowsley	127 721								
NHS Liverpool	449 910								
NHS South Sefton	140 808								
NHS Southport and Formby	96 350								
NHS St Helens	160 217								
Cumbria, Northumberland, Tyne and Wear	1 751 267								
NHS Cumbria	450 027								
NHS Gateshead	182 704								
NHS Newcastle North and East	142 672								
NHS Newcastle West	132 614								
NHS North Tyneside	182 521								
NHS Northumberland	277 485								
NHS South Tyneside	133 126								
NHS Sunderland	250 117								
North Yorkshire and Humber	1 518 410								
NHS East Riding of Yorkshire	275 978								
NHS Hambleton, Richmondshire and Whitby	143 665								
NHS Harrogate and Rural District	143 092								
NHS Hull	244 974								
NHS North East Lincolnshire	143 510								
NHS North Lincolnshire	152 014								
NHS Scarborough and Ryedale	94 581								
NHS Vale of York	320 596								
South Yorkshire and Bassetlaw	1 358 698								
NHS Barnsley	217 388								

(Continued)
NHS Bassetlaw	104 426	92 459	118 927	162 850	145 060	184 258	267 275	245 101	292 731
NHS Doncaster	278 518	246 671	317 171	375 628	334 163	424 642	437 862	389 607	495 880
NHS Rotherham	234 809	207 888	267 411	352 556	464 363	595 365	851 062	757 212	963 915
West Yorkshire	2 115 414	1 874 674	2 407 489	3 432 964	3 054 606	3 886 608	5 548 379	5 086 013	6 077 627
NHS Airedale, Wharfedale and Craven	137 888	122 120	156 982	224 126	199 622	253 643	362 015	331 783	396 698
NHS Bradford City	80 385	71 481	91 123	127 329	113 540	143 885	207 715	190 799	226 969
NHS Bradford Districts	298 403	264 564	339 408	501 110	446 268	566 848	799 513	733 169	876 054
NHS Calderdale	190 630	168 751	217 116	302 095	268 897	342 005	492 725	451 506	539 784
NHS Greater Huddersfield	223 233	197 776	254 084	352 997	314 075	399 801	576 230	528 117	631 291
NHS Leeds North	178 555	158 166	203 310	291 577	259 312	330 422	470 132	430 594	515 671
NHS Leeds South and East	225 209	199 648	256 194	361 167	321 097	409 362	586 377	537 429	642 572
NHS Leeds West	305 370	270 864	347 124	513 563	456 235	582 772	818 933	750 124	898 143
NHS North Kirklees	172 257	152 675	196 037	277 105	246 887	313 320	449 362	412 153	491 920
NHS Wakefield	303 484	268 559	345 786	481 894	428 741	545 812	785 377	719 481	860 634
Midlands and East of England	14 893 788	13 193 223	16 957 069	23 776 299	21 161 598	26 925 731	38 670 087	35 442 360	42 360 185
Arden, Herefordshire and Worcestershire	1 489 935	1 319 827	1 696 517	2 349 026	2 090 771	2 659 311	3 838 961	3 518 289	4 204 805
NHS Coventry and Rugby	404 080	358 338	459 590	641 551	570 792	726 610	1 045 631	958 664	1 145 219
NHS Herefordshire	165 398	146 396	188 393	256 183	228 170	289 966	421 581	386 607	461 734
NHS Redditch and Bromsgrove	162 733	144 099	185 300	256 586	228 360	290 559	419 319	384 242	459 461
NHS South Warwickshire	236 317	209 272	269 088	366 857	326 413	415 599	603 174	552 695	660 955
NHS South Worcestershire	262 876	232 728	299 424	420 221	374 159	475 666	683 097	625 935	748 492
NHS Warwickshire North	171 223	151 568	195 030	272 640	242 724	308 645	443 863	406 769	486 263
NHS Wyre Forest	87 307	77 305	99 411	134 989	120 119	152 916	222 295	203 755	243 588
Birmingham and the Black Country	2 224 063	1 972 205	2 529 454	3 681 025	3 277 631	4 165 569	5 905 087	5 415 984	6 467 345
NHS Birmingham CrossCity	651 054	577 746	739 994	1 111 544	990 100	1 257 375	1 762 598	1 616 624	1 931 103
NHS Birmingham South and Central	182 842	162 460	207 507	319 662	284 869	361 632	502 504	461 059	550 191
NHS Dudley	283 473	250 946	322 897	452 421	402 727	512 143	735 894	674 310	806 203
NHS Sandwell and West Birmingham	446 438	396 057	507 547	723 442	643 864	819 100	1 169 880	1 072 951	1 281 204
NHS Solihull	184 239	163 169	209 780	304 408	271 157	344 414	488 648	447 920	535 496
NHS Walsall	244 332	216 460	278 128	396 287	354 752	450 529	642 619	589 198	703 747
NHS Region	231	205	263	371	330	420	602	552	660
Derbyshire and Nottinghamshire	1835	1625	2089	2197	2595	3303	4752	4355	5206
NHS Erewash	86	76	99	140	124	158	226	207	248
NHS Hardwick	99	87	113	156	139	177	256	234	280
NHS Mansfield & Ashfield	177	156	201	282	251	320	459	421	503
NHS Newark & Sherwood	103	92	118	165	147	187	269	247	295
NHS North Derbyshire	247	218	281	385	342	436	632	579	692
NHS Nottingham City	303	269	344	495	440	561	798	732	874
NHS Nottingham North & East	133	118	152	214	190	243	348	319	382
NHS Nottingham West	103	91	117	158	141	180	262	240	287
NHS Rushcliffe	102	91	117	160	142	181	263	241	288
NHS Southern Derbyshire	476	422	543	757	674	857	1234	1131	1352
East Anglia	2219	1965	2527	3477	3094	3937	5696	5220	6241
NHS Cambridgeshire and Peterborough	801	710	913	1248	1110	1414	2050	1878	2246
NHS Great Yarmouth & Waveney	183	162	208	292	260	331	476	436	521
NHS Ipswich and East Suffolk	354	314	404	554	493	627	909	833	996
NHS North Norfolk	141	124	160	222	197	251	363	332	397
NHS Norwich	181	162	207	289	257	328	471	431	517
NHS South Norfolk	208	185	237	329	293	373	538	493	590
NHS West Norfolk	146	130	167	232	206	262	378	347	415
NHS West Suffolk	200	177	228	307	273	348	508	465	556
Essex	1578	1397	1798	2535	2257	2871	4114	3770	4508
NHS Basildon and Brentwood	227	201	259	374	333	424	602	552	660
NHS Castle Point, Rayleigh and Rochford	152	135	174	243	216	275	396	363	434
NHS Mid Essex	347	307	395	548	487	620	895	820	981
NHS North East Essex	276	244	314	445	396	504	722	661	791
NHS Southend	160	141	182	254	226	287	414	379	453
NHS Thurrock	151	133	172	240	214	272	391	359	429
NHS West Essex	263	233	299	429	381	486	692	634	759
Hertfordshire and the South Midlands	2500	2273	2846	3995	3554	4527	6495	5951	7118
NHS Bedfordshire	393	348	448	622	553	704	1015	930	1113
NHS Corby	59	52	67	96	85	109	155	142	170
NHS East and North Hertfordshire	503	446	573	816	726	925	1320	1209	1447
NHS Herts Valleys	527	466	600	850	756	963	1377	1261	1501

(Continued)
Appendix 6. (Continued.)
Main male costs
Mean
NHS Luton
NHS Milton Keynes
NHS Nene
Leicestershire and Lincolnshire
NHS East Leicestershire and Rutland
NHS Leicester City
NHS Lincolnshire East
NHS Lincolnshire West
NHS South Lincolnshire
NHS South West Lincolnshire
NHS West Leicestershire
Shropshire and Staffordshire
NHS Cannock Chase
NHS East Staffordshire
NHS North Staffordshire
NHS Shropshire
NHS South East Staffs and Seisdon and Peninsular
NHS Stafford and Surrounds
NHS Stoke on Trent
NHS Telford & Wrekin
London
NHS Barking & Dagenham
NHS Barnet
NHS Camden
NHS City and Hackney
NHS Enfield
NHS Haringey
NHS Havering
NHS Islington
NHS Newham
NHS Redbridge
- Redbridge: 267 233
- Tower Hamlets: 289 871
- Waltham Forest: 260 817
- Brent: 313 060
- Central London (Westminster): 174 925
- Ealing: 337 899
- Hammersmith and Fulham: 179 844
- Harrow: 228 220
- Hillingdon: 271 188
- Hounslow: 258 975
- West London (Kensington and Chelsea, Queen’s Park and Paddington): 220 849
- Bexley: 211 470
- Bromley: 286 908
- Croydon: 342 400
- Greenwich: 256 775
- Kingston: 159 445
- Lambeth: 330 260
- Lewisham: 281 815
- Merton: 196 759
- Richmond: 179 182
- Southwark: 307 075
- Sutton: 182 502
- Wandsworth: 306 924

South of England
- Bath, Gloucestershire, Swindon and Wiltshire: 1 360 008
- Bath and North East Somerset: 164 642
- Gloucestershire: 548 929
- Swindon: 211 307
- Wiltshire: 435 130
- Bristol, North Somerset, Somerset and South Gloucestershire: 1 321 077
- Bristol: 421 650
- North Somerset: 179 247
- Somerset: 469 255

(Continued)
Appendix 6. (Continued.)

	Main male costs		Main female costs		Main total costs	
	Mean	Lower	Higher	Mean	Lower	Higher
	95% CI	95% CI	95% CI	95% CI	95% CI	95% CI
NHS South Gloucestershire	250 925	222 211	285 785	393 297	349 932	445 432
Devon, Cornwall and Isles of Scilly	1 470 888	1 302 697	1 674 709	2 370 677	2 110 650	2 684 156
NHS Kernow	466 117	412 720	530 731	759 014	675 959	859 112
NHS North, East, West Devon	771 619	683 596	878 533	1 238 119	1 102 074	1 401 742
NHS South Devon and Torbay	233 153	206 394	265 492	373 544	332 629	423 056
Kent and Medway	1 591 149	1 409 819	1 811 315	2 586 491	2 304 462	2 926 195
NHS Ashford	107 836	95 481	122 794	179 246	159 780	202 641
NHS Canterbury and Coastal	177 364	157 455	201 545	306 759	273 537	346 677
NHS Dartford, Gravesham and Swanley	231 298	204 860	263 330	371 832	330 866	421 112
NHS Medway	254 346	225 467	289 353	408 427	363 552	462 226
NHS South Kent Coast	181 252	160 530	206 371	283 859	252 958	321 039
NHS Swale	99 795	88 456	113 557	159 298	141 932	180 164
NHS Thanet	114 822	101 809	130 615	194 529	173 435	219 905
NHS West Kent	424 436	375 633	483 551	682 542	608 201	772 060
Surrey and Sussex	2 458 957	2 176 289	2 801 288	3 910 345	3 478 458	4 429 834
NHS Brighton & Hove	281 322	249 177	320 314	435 142	386 287	493 932
NHS Coastal West Sussex	405 677	358 967	462 182	653 552	581 643	740 738
NHS Crawley	103 638	91 725	118 069	160 826	142 703	182 608
NHS East Surrey	162 273	143 589	184 881	260 186	231 542	294 662
NHS Eastbourne, Hailsham and Seaford	151 984	134 592	173 030	250 615	223 223	283 676
NHS Guildford and Waverley	191 592	169 813	218 019	302 131	268 951	342 088
NHS Hastings & Rother	154 926	137 189	176 374	250 512	223 180	283 456
NHS High Weald Lewes Havens	147 565	130 527	168 136	238 262	212 312	269 596
NHS Horsham and Mid Sussex	204 605	181 100	233 058	327 619	291 826	370 788
NHS North West Surrey	313 628	277 273	357 608	486 200	431 785	551 734
NHS Surrey Downs	254 081	224 838	289 430	409 715	364 866	463 645
NHS Surrey Heath	87 667	77 529	99 836	135 585	120 544	153 728
Thames Valley	1 920 534	1 700 818	2 186 976	3 036 308	2 701 100	3 439 558
NHS Aylesbury Vale	184 797	163 568	210 488	290 629	258 621	329 144
NHS Bracknell and Ascot	127 869	113 255	145 576	205 782	183 246	232 856
NHS Chiltern	286 444	253 550	326 279	464 327	413 568	525 402

Apostolos Tsiachristas et al.

https://doi.org/10.1017/S2045796020000189

Downloaded from https://www.cambridge.org/core. IP address: 80.42.1.121, on 28 Jul 2020 at 08:57:39, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.
NHS Region	Cases	Deaths	Deaths/Age 0-4	Deaths/Age 5-14	Deaths/Age 15-24	Deaths/Age 25-34	Deaths/Age 35-44	Deaths/Age 45-54	Deaths/Age 55-64	Deaths/Age 65-74	Deaths/Age 75+	Total	Median	IQR
NHS Newbury and District	98,697	87,336	112,449	155,667	138,704	176,052	254,363	233,178	278,508					
NHS North & West Reading	91,392	80,867	104,128	144,903	128,923	164,137	236,294	216,450	258,980					
NHS Oxfordshire	607,912	538,562	692,075	957,552	851,612	1,085,016	1,565,464	1,434,527	1,715,043					
NHS Slough	135,878	120,341	154,701	214,474	190,556	243,277	350,352	320,924	384,125					
NHS South Reading	110,245	97,652	125,434	169,836	150,630	193,054	280,081	256,420	307,084					
NHS Windsor, Ascot and Maidenhead	131,015	116,075	149,121	204,191	181,515	231,505	335,206	307,121	367,355					
NHS Wokingham	146,287	129,462	166,658	228,946	203,660	259,386	375,233	343,741	411,312					
Wessex	2,465,916	2,184,181	2,808,156	3,883,868	3,456,588	4,397,809	6,349,784	5,818,949	6,956,018					
NHS Dorset	669,218	592,504	762,188	1,035,077	921,409	1,172,098	1,704,295	1,562,412	1,867,183					
NHS Fareham and Gosport	177,556	157,162	202,278	280,366	249,505	317,570	457,922	419,526	501,965					
NHS Isle of Wight	118,862	105,280	135,298	186,868	168,172	213,472	307,548	282,057	336,784					
NHS North East Hampshire and Farnham	195,183	172,781	222,377	303,489	269,979	343,796	498,672	456,820	546,413					
NHS North Hampshire	202,219	178,871	230,468	318,325	283,145	360,675	520,545	476,739	570,590					
NHS Portsmouth	202,668	179,768	230,462	313,605	278,943	355,323	516,273	473,469	565,257					
NHS South Eastern Hampshire	182,869	161,995	208,175	300,584	267,820	340,028	483,453	443,270	529,794					
NHS Southampton	237,329	210,457	269,785	368,371	327,196	418,060	605,700	555,108	663,644					
NHS West Hampshire	480,012	424,923	546,693	775,364	690,264	877,867	1,255,376	1,150,106	1,376,357					