Neutrino Mixing and CP Phase Correlations

Ernest Ma, Alexander Natale, and Oleg Popov

Department of Physics and Astronomy,
University of California, Riverside, California 92521, USA

Abstract

A special form of the 3×3 Majorana neutrino mass matrix derivable from $\mu - \tau$ interchange symmetry accompanied by a generalized CP transformation was obtained many years ago. It predicts $\theta_{23} = \pi/4$ as well as $\delta_{CP} = \pm \pi/2$, with $\theta_{13} \neq 0$. Whereas this is consistent with present data, we explore a deviation of this result which occurs naturally in a recent proposed model of radiative inverse seesaw neutrino mass.
A special form of the 3×3 Majorana neutrino mass matrix first appeared in 2002 \cite{1,2}, i.e.

$$
\mathcal{M}_\nu = \begin{pmatrix} A & C & C^* \\ C & D^* & B \\ C^* & B & D \end{pmatrix},
$$

where A, B are real. It was shown that $\theta_{13} \neq 0$ and yet both θ_{23} and the CP nonconserving phase δ_{CP} are maximal, i.e. $\theta_{23} = \pi/4$ and $\delta_{CP} = \pm \pi/2$. Subsequently, this pattern was shown \cite{3} to be protected by a symmetry, i.e. $e \leftrightarrow e$ and $\mu \leftrightarrow \tau$ exchange with CP conjugation. All three predictions are consistent with present experimental data. Recently, a radiative (scotogenic) model of inverse seesaw neutrino mass has been proposed \cite{4} which naturally obtains

$$
\mathcal{M}_\nu^\lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \mathcal{M}_\nu \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix},
$$

where $\lambda = f_\tau/f_\mu$ is the ratio of two real Yukawa couplings.

This model has three real singlet scalars $s_{1,2,3}$ and one Dirac fermion doublet (E^0, E^-) and one Dirac fermion singlet N, all of which are odd under an exactly conserved (dark) Z_2 symmetry. As a result, the third one-loop radiative mechanism proposed in 1998 \cite{5} for generating neutrino mass is realized, as shown below.

![Figure 1: One-loop generation of inverse seesaw neutrino mass.](image)

The mass matrix linking (\bar{N}_L, \bar{E}_L^0) to (N_R, E_R^0) is given by

$$
\mathcal{M}_{N,E} = \begin{pmatrix} m_N & m_D \\ m_F & m_E \end{pmatrix},
$$
where m_N, m_E are invariant mass terms, and m_D, m_F come from the Higgs vacuum expectation value $\langle \phi^0 \rangle = v/\sqrt{2}$. As a result, N and E^0 mix to form two Dirac fermions of masses $m_{1,2}$, with mixing angles

$$m_Dm_E + m_Fm_N = \sin \theta_L \cos \theta_L (m_1^2 - m_2^2), \quad (4)$$

$$m_Dm_N + m_Fm_E = \sin \theta_R \cos \theta_R (m_1^2 - m_2^2). \quad (5)$$

To connect the loop, Majorana mass terms $(m_L/2)N_LN_L$ and $(m_R/2)N_RN_R$ are assumed. Since both E and N may be defined to carry lepton number, these new terms violate lepton number softly and may be naturally small, thus realizing the mechanism of inverse seesaw [6, 7, 8] as explained in Ref. [4]. Using the Yukawa interaction $fsE^0_R\nu_L$, the one-loop Majorana neutrino mass is given by

$$m_\nu = f^2m_R \sin^2 \theta_R \cos^2 \theta_R (m_1^2 - m_2^2) \int \frac{d^4k}{(2\pi)^4 (k^2 - m_s^2) (k^2 - m_1^2)} \frac{1}{(k^2 - m_2^2)} \frac{1}{(k^2 - m_2^2)}$$

$$+ f^2m_Lm_1^2 \sin^2 \theta_L \cos^2 \theta_R \int \frac{d^4k}{(2\pi)^4 (k^2 - m_s^2) (k^2 - m_1^2)^2}$$

$$+ f^2m_Lm_2^2 \sin^2 \theta_R \cos^2 \theta_L \int \frac{d^4k}{(2\pi)^4 (k^2 - m_s^2) (k^2 - m_2^2)^2}$$

$$- 2f^2m_Lm_1m_2 \sin \theta_L \sin \theta_R \cos \theta_L \cos \theta_R \int \frac{d^4k}{(2\pi)^4 (k^2 - m_s^2) (k^2 - m_1^2)} \frac{1}{(k^2 - m_2^2)} \frac{1}{(k^2 - m_2^2)}. \quad (6)$$

It was also shown in Ref. [4] that the implementation of a discrete flavor Z_3 symmetry, which is softly broken by the 3×3 real scalar mass matrix spanning $s_{1,2,3}$, leads to $M_\nu^λ$ of Eq. (2).

To explore how the predictions $θ_{23} = \pi/4$ and $δ_{CP} = ±\pi/2$ are changed for $λ ≠ 1$, consider the general diagonalization of M_ν, i.e.

$$M_\nu = E_\alpha U E_β M_d E_β U^T E_α, \quad (7)$$

where

$$E_α = \begin{pmatrix} e^{iα_1} & 0 & 0 \\ 0 & e^{iα_2} & 0 \\ 0 & 0 & e^{iα_3} \end{pmatrix}, \quad E_β = \begin{pmatrix} e^{iβ_1} & 0 & 0 \\ 0 & e^{iβ_2} & 0 \\ 0 & 0 & e^{iβ_3} \end{pmatrix}, \quad M_d = \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}. \quad (8)$$
Hence

\[M_{\nu} M_{\nu}^\dagger = E_{\alpha} U M_{d}^2 U^\dagger E_{\alpha}^\dagger. \] \hfill (9)

We then have

\[M_{\nu}^\lambda (M_{\nu}^\lambda)^\dagger = E_{\alpha} U [1 + \Delta] M_{\lambda d}^2 [1 + \Delta^\dagger] U^\dagger E_{\alpha}^\dagger, \] \hfill (10)

where

\[\Delta = U^\dagger \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & \lambda - 1 \end{pmatrix} U, \quad M_{\lambda d}^2 = \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & \lambda^2 m_3^2 \end{pmatrix}. \] \hfill (11)

We now diagonalize numerically

\[[1 + \Delta] M_{\lambda d}^2 [1 + \Delta^\dagger] = O M_{\text{new}}^2 O^T, \] \hfill (12)

where \(O \) is an orthogonal matrix, and \(M_{\text{new}}^2 \) is diagonal with mass eigenvalues equal to the squares of the physical neutrino masses. Let us define

\[A = (1 + \Delta)^{-1} O, \] \hfill (13)

then

\[A M_{\text{new}}^2 A^\dagger = M_{\lambda d}^2. \] \hfill (14)

Since \(U \) is known with \(\theta_{23} = \pi/4 \) and \(\delta = \pm \pi/2 \), we know \(\Delta \) once \(\lambda \) is chosen. The orthogonal matrix \(O \) has three angles as parameters, so \(A \) has three parameters. In Eq. (14), once the three physical neutrino mass eigenvalues of \(M_{\text{new}}^2 \) are given, the three off-diagonal entries of \(M_{\lambda d}^2 \) are constrained to be zero, thus determining the three unknown parameters of \(O \). Once \(O \) is known, \(UO \) is the new neutrino mixing matrix, from which we can extract the correlation of \(\theta_{23} \) with \(\delta_{CP} \). There is of course an ambiguity in choosing the three physical neutrino masses, since only \(\Delta m_{32}^2 \) and \(\Delta m_{21}^2 \) are known. There are also the two different choices of \(m_1 < m_2 < m_3 \) (normal ordering) and \(m_3 < m_1 < m_2 \) (inverted ordering). We consider each case, and choose a value of either \(m_1 \) or \(m_3 \) starting from zero. We then obtain numerically the values of \(\sin^2(2\theta_{23}) \) and \(\delta_{CP} \) as functions of \(\lambda \neq 1 \). We need also to
adjust the input values of θ_{12} and θ_{13}, so that their output values for $\lambda \neq 1$ are the preferred experimental values.

We use the 2014 Particle Data Group values \cite{PDG} of neutrino parameters:

\begin{align}
\sin^2(2\theta_{12}) &= 0.846 \pm 0.021, \quad \Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2, \\
\sin^2(2\theta_{23}) &= 0.999 \begin{pmatrix} +0.001 \\ -0.018 \end{pmatrix}, \quad \Delta m^2_{32} = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2 \text{ (normal)},
\end{align}
\[
\sin^2(2\theta_{23}) = 1.000 \left(+0.000 \right. -0.017 \left. \right) , \quad \Delta m^2_{32} = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2 \text{ (inverted)}, \quad (17)
\]
\[
\sin^2(2\theta_{13}) = (9.3 \pm 0.8) \times 10^{-2} . \quad (18)
\]

We consider first normal ordering, choosing the three representative values \(m_1 = 0, 0.03, 0.06 \) eV. We then vary the value of \(\lambda > 1 \). [The case \(\lambda < 1 \) is equivalent to \(\lambda^{-1} > 1 \) with \(\mu - \tau \) exchange.] Following the algorithm already mentioned, we obtain numerically the values of \(\sin^2(2\theta_{23}) \) and \(\delta_{CP} \) as functions of \(\lambda \). Our solutions are fixed by the central values of \(\Delta m^2_{21} \), \(\Delta m^2_{32} \), \(\sin^2(2\theta_{12}) \), and \(\sin^2(2\theta_{13}) \). In Figs. 2 and 3 we plot \(\sin^2(2\theta_{23}) \) and \(\delta_{CP} \) respectively versus \(\lambda \). We see from Fig. 2 that \(\lambda < 1.15 \) is required for \(\sin^2(2\theta_{23}) > 0.98 \). We also see from Fig. 3 that \(\delta_{CP} \) is not sensitive to \(m_1 \). Note that our scheme does not distinguish \(\delta_{CP} \) from \(-\delta_{CP} \). In Fig. 4 we plot \(\sin^2(2\theta_{23}) \) versus \(\delta_{CP} \). We see that \(\delta_{CP}/(\pi/2) > 0.95 \) is required for \(\sin^2(2\theta_{23}) > 0.98 \).

![Figure 4: \(\sin^2(2\theta_{23}) \) versus \(\delta_{CP} \) in normal ordering.](image)

We then consider inverted ordering, using \(m_3 \) instead of \(m_1 \). We plot in Figs. 5, 6, and 7 the corresponding results. Note that in our scheme, the effective neutrino mass \(m_{ee} \) measured
in neutrinoless double beta decay is very close to m_1 in normal ordering and $m_3 + \sqrt{\Delta m_{32}^2}$ in inverted ordering. We see similar constraints on $\sin^2(2\theta_{23})$ and δ_{CP}. In other words, our scheme is insensitive to whether normal or inverted ordering is chosen. Finally, we have checked numerically that $\theta_{23} < \pi/4$ if $\lambda > 1$, and $\theta_{23} > \pi/4$ if $\lambda < 1$. As we already mentioned, the two solutions are related by the mapping $\lambda \rightarrow \lambda^{-1}$.

Figure 5: $\sin^2(2\theta_{23})$ versus λ in inverted ordering.

Figure 6: δ_{CP} versus λ in inverted ordering.
In conclusion, we have explored the possible deviation from the prediction of maximal θ_{23} and maximal δ_{CP} in a model of radiative inverse seesaw neutrino mass. We find that given the present 1σ bound of 0.98 on $\sin^2(2\theta_{23})$, $\delta_{CP}/(\pi/2)$ must be greater than about 0.95.

This work is supported in part by the U. S. Department of Energy under Grant No. de-sc0008541.

References

[1] E. Ma, Phys. Rev. D66, 117301 (2002).

[2] K. S. Babu, E. Ma, and J. W. F. Valle, Phys. Lett. B552, 207 (2003).

[3] W. Grimus and L. Lavoura, Phys. Lett. B579, 113 (2004).

[4] S. Fraser, E. Ma, and O. Popov, Phys. Lett. B737, 280 (2014).

[5] E. Ma, Phys. Rev. Lett. 81, 1171 (1998).
[6] D. Wyler and L. Wolfenstein, Nucl. Phys. B218, 205 (1983).

[7] R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D34, 1642 (1986).

[8] E. Ma, Phys. Lett. B191, 287 (1987).

[9] Particle Data Group, K. A. Olive et al., Chin. Phys. C38, 090001 (2014).