Dataset on ten-years monitoring of MSWI bottom ashes in six MSWI plants in the Canton of Zürich, Switzerland

Andreas Glausera,*, Leo S. Morfb, Gisela Weibela,c, Urs Eggenbergera

a Institut für Geologie, Universität Bern, Switzerland
b Baudirektion Kanton Zürich, Amt für Abfall, Wasser, Energie und Luft, Zürich, Switzerland
c Zentrum für nachhaltige Abfall- und Ressourcennutzung ZAR, Hinwil, Switzerland

\textbf{Article history:}
Received 10 August 2020
Accepted 27 August 2020
Available online 4 September 2020

\textbf{Keywords:}
Municipal solid waste incineration
Bottom ash
Monitoring
Chemical analysis
Batch leaching test

\textbf{Abstract}

The dataset presented in this article is the supplementary data for the research article “Ten-years monitoring of MSWI bottom ashes with focus on TOC development and leaching behaviour” (https://doi.org/10.1016/j.wasman.2020.07.038) by Glauser et al. (2020) \cite{Glauser2020}. From 2008–2018 bottom ashes have been monitored in six MSWI plants in the Canton of Zürich with regular sampling campaigns and analysis of important species defined in the Swiss Waste Legislation \cite{SwissWasteLegislation}. Both the size of the dataset and the long period of consistent and representative monitoring are unique for Switzerland. Relevant aspects of the monitoring data are discussed and interpreted in the above mentioned research article and complemented by simple emission forecast modelling. While only selected species were discussed in the research article, this data article covers all the monitoring data. The focus of the monitoring was laid on carbon-species with the analysis of total carbon (TC), total organic carbon (TOC), total inorganic carbon (TIC), degradable organic carbon (OC) and elemental carbon (EC). Total contents of nitrogen (N), sulphur (S), phosphorus (P), selected heavy metals (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) and loss on ignition (LOI) complete the solid chemi
Specifications Table

Subject	Waste Management and Disposal
Specific subject area	MSWI bottom ash, representative sampling, chemical analysis, batch eluate tests
Type of data	Table
How data were acquired	Solid chemical analysis:
	• Cr, Cu, Ni, P, Pb and Zn with ICP-OES (ISO 11885, 2007) [4]
	• As, Cd and Sb with ICP-MS (EN ISO 17294-2, 2016) [5]
	• TC, TOC, TIC, N and 5 with CHNS-analysis (EN 15936, 2012) [6]
	• OC and EC with temperature-dependent combustion of carbon (DIN 19539, 2016) [7]
	• Loss on ignition (LOI) at 550°C for 2 h in muffle furnace
	• Fe- and NE-metal content and unburnt material by manual magnetic and optical separation

Analysis of eluate behaviour:

• Cr(IV), Cu (aq) and Zn (aq) with ICP-MS (EN ISO 17294-2, 2016) [5]
• DOC with thermal oxidation (EN 1484, 1997) [8]
• NH4⁺ and NO2⁻ with photometry (DIN 38406-5, 1983) [9]
• SO2²⁻ and S2⁻ with polarography (Metrohm Appl. 99/1) [10]
• F⁻ with ion-sensitive electrode in water samples and digestions (DIN 38405-1, 1985 and ISO 10304-1, 2007) [10, 11]
• BOD 5 days respirometric measurement (Oxitop-system)
• Electrical conductivity (El. Cond) with a 5-ring conductivity measuring cell (c = 1.0 cm⁻¹)
• pH with an Aquatorde plus

Data format Raw

Parameters for data collection Bottom ash was sampled regularly for monthly periods in six MSWI plants. Subsequently the monthly composite samples were homogenised, and crushed in order to reduce the amount of material and to acquire the grain size needed for analysis.

Description of data collection For solid chemical analysis, bottom ash was dried at 105°C, crushed to <1 mm and milled to <0.1 mm. Total digestion was performed for analysis with ICP-OES and MS. For CHNS-analysis, the material <0.1 mm was combusted. Batch elute tests were performed on bottom ash in its original condition, crushed to <5 mm. The test consists of two parts, each with a liquid to solid (L/S) ratio of 10 and a duration of 24 h. One part (Test 1) is performed with CO₂-saturated water for the analysis of heavy metals. The other part (Test 2) is performed with deionised water, for the analysis of all other constituents (incl. Cr(IV)).

(continued on next page)
Value of the Data

- The data derive from a systematic and representative monitoring over ten years of bottom ashes identically applied in six Swiss MSWI plants. The extent of the dataset and the systematic of sampling are unique for bottom ash.
- Beneficiaries of these data include researchers, authorities, MSWI plant operators and others involved in waste management.
- The data is of value for the ongoing political discussion in Switzerland regarding legislation of bottom ash quality requirements. The dataset further serves as a basis for comparison with other bottom ashes worldwide and helps to estimate potential for bottom ash quality improvements.
- Thanks to the long sampling period at six different MSWI plants temporal trends and correlations between parameters can be derived from these data. In addition, the data serve as a basis for further studies such as the investigation of long-term behaviour using geochemical modelling.

1. Data Description

In Switzerland, bottom ash has to be deposited on landfills due to elevated total contents of pollutants, such as heavy metals and TOC. With the periodic measurements presented in this dataset, the Canton of Zürich monitors the development of bottom ash quality of all six MSWI plants. For technical details of the concerning MSWI plants in the Canton of Zürich refer to [1].

The results of the monitoring of each plant are presented in Table 1–6 as well as in a supplementary excel file and are structured as follows:

- Results of the solid chemical analysis
- Results of the batch eluate tests

The results are listed in Table 1–6, in the following order: Table 1: Plant A, Table 2: Plant B, Table 3: Plant C, Table 4: Plant D, Table 5: Plant E, Table 6: Plant F. Parameters that have not been analysed in one of the measurement campaigns are indicated with “not sampled” (n.s.).

2. Experimental Design, Materials, and Methods

Sampling campaigns were performed from 2008–2018 generally on a four month interval at all six MSWI plants with identical sampling procedure. During selected months, at least 20 subsamples of ~12 kg of untreated bottom ash have been sampled on working days over all furnace lines. Samples were collected on the conveyor belt directly after wet or dry discharge and stored in an air-tight container. At the end of the month, this composite sample has been homogenised and split into two representative samples of ~12 kg. One composite-sample was retained, while the other was split in two parts, which were used for (1) solid chemical analysis and (2) batch eluate tests. The preparation of the material for these two purposes was performed differently: (1) the material was dried at 105°C and subsequently crushed to a grain size <1 mm, while metals and unburnt material were manually separated. In an additional step the material was milled to <0.1 mm using a planetary ball mills. (2) The material was sieved at 5 mm in its
Table 1

Dataset on ten-years monitoring of MSWI bottom ashes in MSWI Plant A in the Canton of Zürich, Switzerland.

| Parameter | Unit | Jan 2008 | June 2008 | Dec 2008 | Mar 2009 | Jun 2009 | Nov 2009 | Feb 2010 | Jun 2010 | Nov 2010 | Feb 2011 | Jun 2011 | Sep 2011 | Jan 2012 | May 2012 | Oct 2012 | Mar 2013 | Dec 2013 |
|---------------------------|------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Dry substance (105°C) wt-%| | | | | | | | | | | | | | | | | |
| LDI (200°C) wt-% | | | | | | | | | | | | | | | | | |
| Fe-Metal | | | | | | | | | | | | | | | | | |
| NF-Metal | | | | | | | | | | | | | | | | | |
| pH (Test 2) - | | | | | | | | | | | | | | | | | |
| EC | µS/cm| | | | | | | | | | | | | | | | |
| Sulfite (SO3²⁻) mg/l | | | | | | | | | | | | | | | | | |
| Sulfide (S2⁻) mg/l | | | | | | | | | | | | | | | | | |
| BOD 5 days mg O₂/l | | | | | | | | | | | | | | | | | |
| Chelated Cu (aq + CO₂) mg/l | | | | | | | | | | | | | | | | | |
| Chelated Zn (aq + CO₂) mg/l | | | | | | | | | | | | | | | | | |
| As mg/kg | | | | | | | | | | | | | | | | | |
| Pb mg/kg | | | | | | | | | | | | | | | | | |
| Cd mg/kg | | | | | | | | | | | | | | | | | |
| Cr mg/kg | | | | | | | | | | | | | | | | | |
| TOC wt.-% | | | | | | | | | | | | | | | | | |
| TC wt.-% | | | | | | | | | | | | | | | | | |
| Dry substance (105°C) wt-%| | | | | | | | | | | | | | | | | |
| LDI (200°C) wt-% | | | | | | | | | | | | | | | | | |
| Fe-Metal | | | | | | | | | | | | | | | | | |
| NF-Metal | | | | | | | | | | | | | | | | | |
| pH (Test 2) - | | | | | | | | | | | | | | | | | |
| EC | µS/cm| | | | | | | | | | | | | | | | | |
| Sulfite (SO3²⁻) mg/l | | | | | | | | | | | | | | | | | | |
| Sulfide (S2⁻) mg/l | | | | | | | | | | | | | | | | | | |
| BOD 5 days mg O₂/l | | | | | | | | | | | | | | | | | | |
| Chelated Cu (aq + CO₂) mg/l | | | | | | | | | | | | | | | | | | |
| Chelated Zn (aq + CO₂) mg/l | | | | | | | | | | | | | | | | | | |
| As mg/kg | | | | | | | | | | | | | | | | | | |
| Pb mg/kg | | | | | | | | | | | | | | | | | | |
| Cd mg/kg | | | | | | | | | | | | | | | | | | |
| Cr mg/kg | | | | | | | | | | | | | | | | | | |
| TOC wt.-% | | | | | | | | | | | | | | | | | | |
| TC wt.-% | | | | | | | | | | | | | | | | | | |

original condition, while particles >5 mm were crushed and metals and unburnt material were manually separated. Subsequently the crushed bottom ash was mixed with the material portion <5 mm.

Analysis of the bottom ash was based on the criteria of the Swiss Waste Ordinance according to certified procedures [12]. Only TOC, being the parameter of main interest, was monitored during the entire period from 2008–2018. The other C-constituents, N, S, P, heavy metals (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) and the eluate composition were only measured in the period 2008–2015, OC and EC only from 2011–2013.

For solid chemical analysis tests portion of 0.5 g bottom ash <0.1 mm were digested with a mixture of 3 ml hydrochloric acid, 8 ml nitric acid and 3 ml hydrofluoric acid. Free hydrofluoric
ammonium using the high-pressure microwave system. In this total digest, Cr, Cu, Ni, P, Pb, and Zn were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES) (ISO 11885, 2007) [4] using a Thermo Fisher Scientific iCap 7400 Duo Full MFC (Dual View). The heavy metals As, Cd, and Sb were determined by inductively coupled plasma mass spectrometry (ICP-MS) (EN ISO 17294-2, 2016) [5] using a Agilent Technologies 7900. Total contents of C, N, and S were determined using a EuroEA3000 CHNS-analysers by Hekatech with the software Calidus in 2012 [6]. The composition of C was additionally characterised by TOC and TIC with the same method as used for TOC. Further, applying another method based on temperature-dependent combustion of carbon (DIN 19539, 2016) [7] using a Primacs SCN-100 analyser, the
Table 3
Dataset on ten-years monitoring of MSWI bottom ashes in MSWI Plant C in the Canton of Zürich, Switzerland.

| Parameter | Unit | Jan 2006 | May 2006 | Sep 2006 | Dec 2006 | Apr 2007 | Aug 2007 | Dec 2007 | Apr 2008 | Aug 2008 | Dec 2008 | Apr 2009 | Aug 2009 | Dec 2009 | Apr 2010 | Aug 2010 | Dec 2010 | Apr 2011 | Aug 2011 | Dec 2011 | Apr 2012 | Aug 2012 | Dec 2012 | Apr 2013 | Aug 2013 | Dec 2013 | Apr 2014 | Aug 2014 | Dec 2014 | Apr 2015 | Aug 2015 | Dec 2015 |
|--------------------|-------|----------|
| Dry substance | wt.-% | 38.6 | 42.2 | 45.1 | 47.9 | 49.1 | 50.8 | 52.3 | 53.4 | 53.1 | 53.5 | 53.7 | 54.0 | 54.2 | 54.5 | 54.7 | 54.9 | 55.1 | 55.4 | 55.6 | 55.8 | 56.0 | 56.2 | 56.4 | 56.6 | 56.8 | 57.0 | 57.2 |
| CO (in eluate) | mg/l | 0.07 | 0.07 | 0.07 | 0.09 | 0.11 | 0.13 | 0.16 | 0.19 | 0.21 | 0.23 | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 | 0.43 | 0.46 | 0.49 | 0.52 | 0.55 | 0.58 | 0.61 | 0.64 | 0.67 | 0.70 | 0.73 |
| pH (pH 10) | - | 6.86 | 6.89 | 6.77 | 6.87 | 7.40 | 7.25 | 7.39 | 7.15 | 7.42 | 6.40 | 7.04 | 6.80 | 6.92 | 6.89 | 6.86 | 7.04 | 7.15 | 7.42 | 6.40 | 7.04 | 6.80 | 6.92 | 6.86 | 7.04 | 7.15 | 7.42 | 6.40 |
| pH (pH 3) | - | 12.4 | 13.1 | 12.3 | 12.0 | 12.4 | 12.5 | 12.4 | 12.3 | 12.4 | 12.3 | 12.5 | 12.4 | 12.3 | 12.4 | 12.3 | 12.3 | 12.5 | 12.3 | 12.4 | 12.3 | 12.5 | 12.3 | 12.4 | 12.4 | 12.3 | 12.5 | 12.3 |
| Dry substance (w.t.) | % | 37 |
| CO (in eluate) | mg/l | 0.07 | 0.07 | 0.07 | 0.09 | 0.11 | 0.13 | 0.16 | 0.19 | 0.21 | 0.23 | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 | 0.43 | 0.46 | 0.49 | 0.52 | 0.55 | 0.58 | 0.61 | 0.64 | 0.67 | 0.70 | 0.73 |
| pH (pH 10) | - | 6.86 | 6.89 | 6.77 | 6.87 | 7.40 | 7.25 | 7.39 | 7.15 | 7.42 | 6.40 | 7.04 | 6.80 | 6.92 | 6.89 | 6.86 | 7.04 | 7.15 | 7.42 | 6.40 | 7.04 | 6.80 | 6.92 | 6.86 | 7.04 | 7.15 | 7.42 | 6.40 |
| pH (pH 3) | - | 12.4 | 13.1 | 12.3 | 12.0 | 12.4 | 12.5 | 12.4 | 12.3 | 12.4 | 12.3 | 12.5 | 12.4 | 12.3 | 12.4 | 12.3 | 12.3 | 12.5 | 12.3 | 12.4 | 12.3 | 12.5 | 12.3 | 12.4 | 12.4 | 12.3 | 12.5 | 12.3 |
| Dry substance (w.t.) | % | 37 |
| CO (in eluate) | mg/l | 0.07 | 0.07 | 0.07 | 0.09 | 0.11 | 0.13 | 0.16 | 0.19 | 0.21 | 0.23 | 0.25 | 0.28 | 0.31 | 0.34 | 0.37 | 0.40 | 0.43 | 0.46 | 0.49 | 0.52 | 0.55 | 0.58 | 0.61 | 0.64 | 0.67 | 0.70 | 0.73 |

For the analysis of the eluate behaviour, batch tests have been performed with a liquid to solid (L/S) ratio of 10 during 24 h according to the Swiss Waste Legislation [3]. To meet the legal requirements, batch test have to be performed in two parts: Test 1 - Mixing of bottom ash <5 mm in its original condition with CO₂-saturated water for the determination of Cu (aq + CO₂) and Zn (aq + CO₂) in order to simulate acid rain conditions. Test 2 - Mixing of bottom ash <5 mm in its original condition with CO₂-saturated water for the determination of Cu (aq + CO₂) and Zn (aq + CO₂) in order to simulate acid rain conditions.
Table 4: Dataset on ten-years monitoring of MSWI bottom ashes in MSWI Plant D in the Canton of Zürich, Switzerland.

Parameter	Unit	Jan 2014	May 2014	Sep 2014	Jan 2015	May 2015	Sep 2015	Dec 2015	Jun 2016	Feb 2017	May 2017	Sep 2017	Jan 2018	May 2018	Oct 2018
Nitrite (NO₂⁻)	mg/l	0.274	0.269	0.349	0.499	0.420	0.226	0.460	0.365	0.477	0.402	0.884	1.509	0.989	0.906
Zn (aq + CO₂)	mg/l	8.92	2.81	4.04	3.21	1.32	1.51	5.65	3.43	1.99	3.58	3.96	2.44	6.45	2.91
DOC	mg/l	10.5	16.5	16.0	17.0	25.0	8.90	34.0	11.0	20.0	15.0	42.0	12.0	29.0	40.0
pH (Test 1)		n.s.	6.61	6.95	6.41	6.39	7.04	7.25	8.04	7.01	6.66	6.84	6.73	6.70	6.50
pH (Test 2)		1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50	1.50
pH (DIN 3505-7)		4.90	5.40	5.20	5.90	5.20	5.90	5.90	5.90	5.90	5.90	5.90	5.90	5.90	5.90

mm in its original condition with deionised water for the determination of DOC, NH₄⁺, NO₃⁻, F⁻, SO₄²⁻, S₂⁻, Cr(IV) and Cu (aq). Saturation with CO₂ is achieved by continuous injection of ~50 mL CO₂/min through a glass tube into the elution vessel. The analyses of Cr(IV), Cu (aq), Cu (aq + CO₂) and Zn (aq + CO₂) was performed by liquid chromatography (LC) coupled with ICP-MS using an Agilent Technologies 7900 (EN ISO 17294-2, 2016) [5]. DOC was determined by thermal oxidation using a Shimadzu 5000 (EN 1484, 1997) [8], NH₄⁺ and NO₃⁻-photometric with an Aquakem 250 (DN 38406-5, 1983) [9]. Sulphite and sulphide were measured by polarography using a Metrohm 884 Professional VA according to Methylrom Appli. 99/1 and F⁻ with an ion-sensitive electrode in water samples and digestions (DN 38405-1, 1985; ISO 10304-1,
Table 5: Dataset on ten-years monitoring of MSWI bottom ashes in MSWI Plant E in the Canton of Zürich, Switzerland.

| Parameter | Unit | Jan 2008 | June 2009 | Dec 2009 | Apr 2010 | May 2010 | Aug 2010 | Jan 2011 | May 2011 | Sept 2011 | Jan 2012 | May 2012 | Oct 2012 | Jan 2013 | May 2013 | Sept 2013 |
|-----------|------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| pH (Test 1) | - | 7.06 | 7.13 | 6.83 | 6.66 | 6.94 | 6.89 | 7.22 | 7.05 | 7.23 | 7.00 | 6.52 | 6.57 | 6.36 | 6.87 | 6.77 |
| pH (Test 2) | - | 12.3 | 12.3 | 13.0 | 12.2 | 12.5 | 12.4 | 12.4 | 12.4 | 12.4 | 12.5 | 12.5 | 12.5 | 12.5 | 12.6 | 12.6 |
| pH 2 | - | 6.02 | 15.1 | 15.0 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 | 5.26 |
| NO3 | mg/l | 0.010 | 0.010 | 0.010 | 0.010 | n.s. |
| NH4 | mg/l | 0.011 | 0.011 | 0.020 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 | 0.010 |
| Sulfate (SO4) | mg/l | 0.750 | 0.600 | 0.600 | 0.700 | 1.55 | 1.00 | 0.250 | 0.800 | 0.600 | 0.750 | 1.00 | 0.700 | 0.800 | 0.750 |
| Sulfide (S2) | mg/l | 0.700 | 0.600 | 0.500 | 0.750 | 1.55 | 1.00 | 0.250 | 0.800 | 0.600 | 0.750 | 1.00 | 0.700 | 0.800 | 0.750 |
| CrO4 | mg/l | 0.011 | 0.013 | 0.024 | 0.017 | 0.007 | 0.008 | 0.008 | 0.008 | 0.007 | 0.035 | 0.005 | 0.014 | 0.019 | 0.027 | 0.038 |
| Cu (aq | mg/l | 0.071 | 0.117 | 0.210 | 0.034 | 0.112 | 0.376 | 0.139 | 0.231 | 0.330 | 0.349 | 0.359 | 0.214 | 0.039 | 0.025 | 0.280 |
| Ni (aq | mg/l | 2.82 | 2.36 | 2.29 | 2.31 | n.s. |
| Zn (aq + CO2) | mg/l | 2.82 | 2.36 | 2.29 | 2.31 | n.s. |
| Zn (aq | mg/l | 2.82 | 2.36 | 2.29 | 2.31 | n.s. |
| BOD 5 days mg O2/l | - | 19.0 | 10.5 | 14.6 | 10.5 | n.s. |
| TIC wt.-% | - | 72.6 | 73.3 | 73.0 | 72.6 | n.s. |

References:

[10, 11]. Finally, the biochemical oxygen demand (BOD) of five days has been measured respirometric using an Oxitop-system.

The physical parameters pH and electrical conductivity were measured with a pH electrode (Aquatrode plus, Metrohm 6,025,760) and a 5-ring conductivity measuring cell with cell constant c = 1 cm−1 (Metrohm 6,091,150), both with integrated Pt1000 temperature sensor.

Declaration of Competing interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

8 A. Glauer, L.S. Morf and G. Weibel et al./Data in Brief 32 (2020) 106261
Table 6
Dataset on ten-years monitoring of MSWI bottom ashes in MSWI Plant F in the Canton of Zürich, Switzerland.

| Parameter | Unit | May 2008 | June 2008 | Jul 2008 | Aug 2008 | Sep 2008 | Oct 2008 | Nov 2008 | Dec 2008 | Jan 2009 | Feb 2009 | Mar 2009 | Apr 2009 | May 2009 | Jun 2009 | Jul 2009 | Aug 2009 | Sep 2009 | Oct 2009 | Nov 2009 | Dec 2009 |
|----------------------------|------|----------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| pH (Test 1) | | 7.05 | 7.05 | 7.15 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 |
| pH (Test 2) | | 7.05 | 7.05 | 7.15 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 | 7.20 |
| DOC mg/l | | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. |
| TIC wt.-% | | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
| TOC wt.-% | | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 | 0.80 |
| Unburnt material wt.-% | | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 | 0.05 |
| NF-Metals wt.-% | | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 | 2.70 |
| Dry substance (105°C) wt.-% | | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 | 82.0 |

Acknowledgments

We thank the MSWI plants of the Canton of Zürich who agreed to provide the data presented in this article.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.106261.
References

[1] A. Glauser, L.S. Morf, G. Weibel, U. Eggenberger, Ten-years monitoring of MSWI bottom ashes with focus on TOC development and leaching behaviour, Waste Manage. (Oxford) (2020).
[2] Swiss Confederation, Ordinance on the Avoidance and the Disposal of Waste, 2016.
[3] Federal Office for the Environment, Messmethoden im Abfall- und Altlastenbereich: Umwelt-Vollzug Nr. 1715, 2017.
[4] ISO 11885, Water quality – Determination of selected elements by inductively coupled plasma optical emission spectrometry (ICP-OES), Int. Organ. Stand. (2007).
[5] EN ISO 17294-2, Water quality - Application of inductively coupled plasma mass spectrometry (ICP-MS) - Part 2: Determination of selected elements including uranium isotopes, Eur. Comm. for Stand. (2016).
[6] EN 15936, Sludge, treated biowaste, soil and waste - Determination of total organic carbon (TOC) by dry combustion, Eur. Comm. Stand. (2012).
[7] DIN 19539, Untersuchung von Feststoffen – Temperaturabhängige Differenzierung des Gesamtkohlenstoffs (TOC400, ROC, TIC900), Deutsches Institut für Normung (2016).
[8] EN 1484, Water analysis - Guidelines for the determination of total organic carbon (TOC) and dissolved organic carbon (DOC), Eur. Comm. Stand. (1997).
[9] DIN 38406-5, Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Kationen (Gruppe E); Bestimmung des Ammonium-Stickstoffs (E 5), Deutsches Institut für Normung (1983).
[10] DIN 38405-1, Deutsche Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung; Anionen (Gruppe D); Bestimmung der Chlorid-Ionen (D 1), Deutsches Institut für Normung (1985).
[11] ISO 10304-1, Water quality — Determination of dissolved anions by liquid chromatography of ions — Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate, Int. Organ. Stand. (2007).
[12] A.G. Bachema, Dienstleistungsverzeichnis 17/19, 2017.