Periodical solutions of Poisson-gradient dynamical systems with periodical potential

Constantin Udriște, Iulian Duca

Abstract

The main purpose of this paper is the study of the action that produces Poisson-gradient systems and their multiple periodical solutions. The Section 1 establishes the basic tools.

The section 2 underlines conditions in which the action \(\varphi(u) = \int_{T_0} \left[\frac{1}{2} \left| \frac{\partial u}{\partial t} \right|^2 + F(t, u(t)) \right] dt^1 \wedge ... \wedge dt^p \), that produces the Poisson-gradient systems, is continuous, and some conditions in which the general action \(\varphi(u) = \int_{T_0} L \left(t, u(t), \frac{\partial u}{\partial t}(t) \right) dt^1 \wedge ... \wedge dt^p \) is continuously differentiable.

The Section 3 studies the multiple periodical solutions of a Poisson-gradient system in the case when the potential function \(F \) has a spatial periodicity.

Mathematics Subject Classification: 35J50, 35J55.

Key words: variational methods, elliptic systems, multi-periodic solutions.

1 Introduction

In this paper we will note by \(W_{T}^{1,2} \) the Sobolev spaces of the \(u \in L^2 [T_0, R^n] \) functions, which have the weak derivative \(\frac{\partial u}{\partial t} \in L^2 [T_0, R^n] \), \(T_0 = [0, T^1] \times ... \times [0, T^p] \subset R^p \). The weak derivatives are defined using the space \(C_T^\infty \) of all
indefinitely differentiable multiple T-periodic function from \mathbb{R}^p into \mathbb{R}^n. We consider H^1_T, the Hilbert space of the $W^{1,2}_T$. The geometry on H^1_T is realized by the scalar product

$$\langle u, v \rangle = \int_{T_0} \left(\delta_{ij} u^i(t) v^j(t) + \delta_{ij} \delta^{\alpha\beta} \frac{\partial u^i}{\partial t^\alpha}(t) \frac{\partial v^j}{\partial t^\beta}(t) \right) dt^1 \wedge \ldots \wedge dt^p,$$

and the associated Euclidean norm $\| \cdot \|$. These are induced by the scalar product (Riemannian metric)

$$G = \begin{pmatrix} \delta_{ij} & 0 \\ 0 & \delta^{\alpha\beta} \delta_{ij} \end{pmatrix}$$

on \mathbb{R}^{n+np} (see the jet space $J^1(T_0, \mathbb{R}^n)$).

Let $t = (t^1, \ldots, t^p)$ be a generic point in \mathbb{R}^p. Then the opposite faces of the parallelepiped T_0 can be described by the equations

$$S^+_i : t^i = 0, S^-_i : t^i = T^i$$

for each $i = 1, \ldots, p$. We denote

$$\| u \|_{L^2} = \int_{T_0} \delta_{ij} u^i(t) v^j(t) dt^1 \wedge \ldots \wedge dt^p,$$

$$\left\| \frac{\partial u}{\partial t} \right\|_{L^2} = \int_{T_0} \delta_{ij} \delta^{\alpha\beta} \frac{\partial u^i}{\partial t^\alpha}(t) \frac{\partial v^j}{\partial t^\beta}(t) dt^1 \wedge \ldots \wedge dt^p,$$

$$(u, v) = \delta_{ij} u^i v^j, \quad |u| = \sqrt{\delta_{ij} u^i u^j}.$$

We study the extremals of the action

$$\varphi(u) = \int_{T_0} \left[\frac{1}{2} \left\| \frac{\partial u}{\partial t} \right\|^2 + F(t, u(t)) \right] dt^1 \wedge \ldots \wedge dt^p$$

on H^1_T in the case when the potential F function has spatial periodicity. So, we consider that there exist $P_1, \ldots, P_n \in \mathbb{R}$ so that $F(t, x + P_i e_i) = F(t, x)$, for any $t \in T_0$, $x \in \mathbb{R}^n$ and any $i \in \{1, \ldots, n\}$. The vectors e_1, \ldots, e_n create a canonical base in the Euclidian space \mathbb{R}^n. The extremals of the action φ are being determined with the minimizing sequences method. For the existence
of the minimizing bounded sequence we need to introduce the spatial periodicity condition of the potential function F. The function that realizes the minimum of the action φ verifies the Euler-Lagrange equations, which in the case of the Lagrangian

$$L \left(t, u(t), \frac{\partial u}{\partial t} \right) = \frac{1}{2} \left| \frac{\partial u}{\partial t} \right|^2 + F(t, u(t))$$

defined on H^1_T, reduces to a Poisson-gradient PDEs, $\Delta u(t) = \nabla F(t, u(t))$,

$$u|_{s^-_i} = u|_{s^+_i}, \frac{\partial u}{\partial t}|_{s^-_i} = \frac{\partial u}{\partial t}|_{s^+_i}, i = 1, ..., p.$$

2 The action that produces Poisson-gradient systems

2.1 Multi-time Euler-Lagrange equations

We consider the multi-time variable $t = (t^1, ..., t^p) \in \mathbb{R}^p$, the functions $x^i : \mathbb{R}^p \to \mathbb{R}, (t^1, ..., t^p) \to x^i(t^1, ..., t^p), i = 1, ..., n,$ and we denote $x^i_\alpha = \frac{\partial x^i}{\partial t^\alpha}, \alpha = 1, ..., p$. The Lagrange function

$$L : \mathbb{R}^{p+n+np} \to \mathbb{R}, \left(t^\alpha, x^i, x^i_\alpha \right) \to L \left(t^\alpha, x^i, x^i_\alpha \right)$$

gives the Euler-Lagrange equations

$$\frac{\partial}{\partial t^\alpha} \frac{\partial L}{\partial x^i_\alpha} = \frac{\partial L}{\partial x^i}, i = 1, ..., n, \alpha = 1, ..., p$$

(second order PDEs system on the n-dimensional space).

The multi-time Lagrangian and Hamiltonian dynamics is based on the concept of multisymplecticity (polysymplecticity) [3], [5]-[12]. Our task is to develop some ideas from [1]-[2], [12]-[14] having in mind the single-time theory in [4].
2.2 Continuous action

We consider the Lagrange function $L : T_0 \times \mathbb{R}^n \times \mathbb{R}^{np} \to \mathbb{R}, (t^\alpha, u^i, u^i_\alpha) \to L(t^\alpha, u^i, u^i_\alpha)$, $u^i_\alpha = \frac{\partial u^i}{\partial t^\alpha}, \alpha = 1, \ldots, p, i = 1, \ldots, n, u^i : T_0 \to \mathbb{R}, (t^1, \ldots, t^p) \to u^i(t^1, \ldots, t^p),$ $L(t^\alpha, u^i, u^i_\alpha) = \frac{1}{2} \left| \frac{\partial u^i}{\partial t} \right|^2 + F(t, u(t)).$

In the following result we will establish the conditions in which the action $\varphi(u) = \int_{T_0} L(t, u(t), \frac{\partial u}{\partial t}(t)) dt^1 \wedge \ldots \wedge dt^p$ is continuous.

Theorem 1. Let $F : T_0 \times \mathbb{R}^n \to \mathbb{R}, (t, u) \to F(t, u)$ be a measurable function in t for any $u \in \mathbb{R}^n$ and continuously differentiable in u for any $t \in T_0$, $T_0 = [0, T^1] \times \ldots \times [0, T^p] \subset \mathbb{R}^p$. If exists $M \geq 0$ and $g \in C(T_0, \mathbb{R})$ such that $|\nabla_u F(t, u)| \leq M |u| + g(t)$ for any $t \in T_0$ and any $u \in \mathbb{R}$, then $\varphi(u) = \int_{T_0} \left[\frac{1}{2} \left| \frac{\partial u}{\partial t} \right|^2 + F(t, u(t)) \right] dt^1 \wedge \ldots \wedge dt^p$ is continuous in H^1_T.

Proof. We consider the $(u_k)_{k \in \mathbb{N}}$ sequence which is convergent in H^1_T and we will note by u his limit. This leads us to the fact that

$$\|u_k - u\|^2 = \int_{T_0} \left[|u_k(t) - u(t)|^2 + \left| \frac{\partial u_k}{\partial t}(t) - \frac{\partial u}{\partial t}(t) \right|^2 \right] dt^1 \wedge \ldots \wedge dt^p$$

$$= \|u_k - u\|^2_{L^2} + \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|^2_{L^2} \to 0$$

when $k \to \infty$. The convergence of u_k to u in H^1_T is equivalent to the convergence of u_k to u and to the convergence of $\frac{\partial u_k}{\partial t}$ to $\frac{\partial u}{\partial t}$ in L^2. By consequence $\|u_k\|_{L^2}$ and $\left\| \frac{\partial u_k}{\partial t} \right\|_{L^2}$ are bounded in \mathbb{R}. In order to show the continuity of φ, we will prove that $|\varphi(u_k) - \varphi(u)| \to 0$ when $u_k \to u$ in H^1_T. In the evaluations that we will do for $|\varphi(u_k) - \varphi(u)|$ we will utilize the following
inequality $\|u\|^2 - \|v\|^2 \leq \|u\| \|u - v\| + \|v\| \|u - v\|$ which is true in any vectorial space with an scalar product. So, we obtain:

$$\left| \varphi (u_k) - \varphi (u) \right| \leq \frac{1}{2} \left(\int_{T_0} \| \frac{\partial u_k}{\partial t} \|_2^2 \ dt \right)^{1} \wedge \ldots \wedge dt^p - \int_{T_0} \left| \frac{\partial u}{\partial t} \right|_2^2 \ dt^1 \wedge \ldots \wedge dt^p$$

$$+ \int_{T_0} \left(\int_0^1 \left(\left(F(t, u_k(t)) - F(t, u(t)) \right) \ dt \right)^{1} \wedge \ldots \wedge dt^p \right)$$

$$\leq \frac{1}{2} \left[\left\| \frac{\partial u_k}{\partial t} \right\|_2 \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_2 + \left\| \frac{\partial u}{\partial t} \right\|_2 \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_2 \right]$$

$$+ \int_{T_0} \left(\left(\int_0^1 \left(\left| \left(M |u_k(t) + s (u (t) - u_k (t)) | + g (t) \right) | u (t) - u_k (t) | \right) \right) \ dt \right)^{1} \wedge \ldots \wedge dt^p$$

$$\leq \frac{1}{2} \left[\left\| \frac{\partial u_k}{\partial t} \right\|_2 \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_2 + \left\| \frac{\partial u}{\partial t} \right\|_2 \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_2 \right]$$

$$+ \int_{T_0} \left(\left(\int_0^1 \left(\left| \left(M |u_k (t) + (1 - s) (u_k (t) - u (t)) | + g (t) \right) u (t) - u_k (t) | \right) \right) \ dt \right)^{1} \wedge \ldots \wedge dt^p$$

Because the sequence $\left\| \frac{\partial u_k}{\partial t} \right\|_2$ is bounded, it exists C_1 such that $\left\| \frac{\partial u_k}{\partial t} \right\|_2 \leq C_1$ for any $k \in N$. In the following, we will note by $C_2 = \max_{t \in T_0} g (t)$ and we have

$$\left| \varphi (u_k) - \varphi (u) \right| \leq \frac{1}{2} C_1 \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_2 + \frac{1}{2} \left\| \frac{\partial u}{\partial t} \right\|_2 \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_2$$

$$+ M \left\| u \right\|_2 \left(\int_{T_0} \left| u (t) - u_k (t) \right|^2 \ dt \wedge \ldots \wedge dt^p \right) \frac{1}{2}$$
\[+ M \int_{T_0} |u_k(t) - u(t)|^2 \, dt^1 \wedge ... \wedge dt^p + C_2 \int_{T_0} |u(t) - u_k(t)| \, dt^1 \wedge ... \wedge dt^p \]
\[
\leq \frac{1}{2} \left(C_1 + \left\| \frac{\partial u}{\partial t} \right\|_{L^2} \right) \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_{L^2} \\
+ \left(M \|u\|_{L^2} + C_2 (T^1 \cdot \cdot \cdot T^p)^{\frac{1}{2}} \right) \left(\int_{T_0} |u(t) - u_k(t)|^2 \, dt^1 \wedge ... \wedge dt^p \right)^{\frac{1}{2}} \\
+ M \int_{T_0} |u_k(t) - u(t)|^2 \, dt^1 \wedge ... \wedge dt^p = \frac{1}{2} \left(C_1 + \left\| \frac{\partial u}{\partial t} \right\|_{L^2} \right) \left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_{L^2} \\
+ \left(M \|u\|_{L^2} + C_2 (T^1 \cdot \cdot \cdot T^p)^{\frac{1}{2}} \right) \|u - u_k\|_{L^2} + M \|u_k - u\|^2_{L^2}.
\]

Because \(\left\| \frac{\partial u_k}{\partial t} - \frac{\partial u}{\partial t} \right\|_{L^2} \rightarrow 0 \) and \(\|u_k - u\|_{L^2} \rightarrow 0 \), when \(k \rightarrow \infty \) it results that \(\varphi(u_k) \rightarrow \varphi(u) \); from here we obtain the continuity of \(\varphi \) in \(H^1_T \).

2.3 Continuously differentiable action

In order to obtain a more general result than the one found in the previous theorem, we define the action

\[\varphi : W^{1,2}_T \rightarrow R, \varphi(u) = \int_{T_0} L \left(t, u(t), \frac{\partial u}{\partial t}(t) \right) \, dt^1 \wedge ... \wedge dt^p, \]

\[T_0 = [0, T^1] \times ... \times [0, T^p] \subset R^p. \]

Concerning this action we have the following Theorem which extends the particular case \(p = 1 \) from [4].

Theorem 2. We consider \(L : T_0 \times R^n \times R^{np} \rightarrow R, (t, x, y) \rightarrow L(t, x, y), \)
a measurable function in \(t \) for any \((x, y) \in R^n \times R^{np} \) and with the continuous partial derivatives in \(x \) and \(y \) for any \(t \in T_0 \). If here exist \(a \in C^1(R^+, R^+) \)
with the derivative a' bounded from above, $b \in C(T_0, \mathbb{R}^n)$ such that for any $t \in T_0$ and any $(x, y) \in \mathbb{R}^n \times \mathbb{R}^{np}$ to have

$$
\begin{align*}
|L(t, x, y)| & \leq a (|x| + |y|^2) b(t), \\
|\nabla_x L(t, x, y)| & \leq a |x| b(t), \\
|\nabla_y L(t, x, y)| & \leq a |y| b(t), \\
\end{align*}
$$

(1)

then, the functional φ has continuous partial derivatives in $W^{1,2}_T$ and his gradient derives from the formula

$$
(\nabla \varphi (u), v) = \int_{T_0} \left[\left(\nabla_x L \left(t, u(t) + \frac{\partial u}{\partial t} (t) \right), v(t) \right) \\
+ \left(\nabla_y L \left(t, u(t) + \frac{\partial u}{\partial t} (t) \right), \frac{\partial v}{\partial t} (t) \right) \right] dt^1 \wedge ... \wedge dt^p.
$$

(2)

Proof. It is enough to prove that φ has the derivative $\varphi'(u) \in \left(W^{1,2}_T \right)^*$ given by the relation (2) and the function $\varphi' : W^{1,2}_T \to \left(W^{1,2}_T \right)^*$, $u \to \varphi'(u)$ is continuous. We consider $u, v \in W^{1,2}_T$, $t \in T_0$, $\lambda \in [-1, 1]$. We build the functions

$$
F (\lambda, t) = L \left(t, u(t) + \lambda v(t), \frac{\partial u}{\partial t} (t) + \lambda \frac{\partial v}{\partial t} (t) \right)
$$

and

$$
\Psi (\lambda) = \int_{T_0} F (\lambda, t) dt^1 \wedge ... \wedge dt^p.
$$

Because the derivative a' is bounded from above, exist $M > 0$ such that

$$
\frac{a'(|u|) - a(0)}{|u|} = a'(c) \leq M. \text{ This means that } a(|u|) \leq M |u| + a(0).
$$

On the other side

$$
\frac{\partial F}{\partial \lambda} (\lambda, t) = \left(\nabla_x L \left(t, u(t) + \lambda v(t), \frac{\partial u}{\partial t} (t) + \lambda \frac{\partial v}{\partial t} (t) \right), v(t) \right)
$$

$$
+ \left(\nabla_y L \left(t, u(t) + \lambda v(t), \frac{\partial u}{\partial t} (t) + \lambda \frac{\partial v}{\partial t} (t) \right), \frac{\partial v}{\partial t} (t) \right) \leq a (|u(t) + \lambda v(t)|)
$$

$$
b(t) |v(t)| + a \left(\left| \frac{\partial u}{\partial t} (t) + \lambda \frac{\partial v}{\partial t} (t) \right| \right) b(t) \left| \frac{\partial v}{\partial t} (t) \right|.
$$
\[\leq b_0 \left(M \left(|u(t)| + |v(t)| \right) + a(0) \right) |v(t)| \\
+ b_0 \left(M \left(\left| \frac{\partial u}{\partial t} (t) \right| + \left| \frac{\partial v}{\partial t} (t) \right| \right) + a(0) \right) \left| \frac{\partial v}{\partial t} (t) \right| , \]

where

\[b_0 = \max_{t \in T_0} b(t). \]

Then, we have

\[\left| \frac{\partial F}{\partial \lambda} (\lambda, t) \right| \leq d(t) \in L^1 (T_0, R^+). \]

Then Leibniz formula of differentiation under integral sign is applicable and

\[\frac{\partial \Psi}{\partial \lambda} (0) = \int_{T_0} \frac{\partial F}{\partial \lambda} (0, t) \, dt^1 \wedge \ldots \wedge dt^p = \int_{T_0} \left[\left(\nabla_x L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right), v(t) \right) \\
+ \left(\nabla_y L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right), \frac{\partial v}{\partial t} (t) \right) \right] dt^1 \wedge \ldots \wedge dt^p. \]

Moreover,

\[\left| \nabla_x L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right) \right| \leq b_0 \left(M |u(t)| + |a(0)| \right) \in L^1 \left(T_0, R^+ \right) \]

and

\[\left| \nabla_y L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right) \right| \leq b_0 \left(M \left| \frac{\partial u}{\partial t} (t) \right| + |a(0)| \right) \in L^2 \left(T_0, R^+ \right). \]

That is why

\[\int_{T_0} \left[\left(\nabla_x L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right), v(t) \right) \\
+ \left(\nabla_y L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right), \frac{\partial v}{\partial t} (t) \right) \right] dt^1 \wedge \ldots \wedge dt^p \]
\[\leq \int_{T_0} \left| \nabla_x L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right) \right| |v(t)| \, dt^1 \wedge \ldots \wedge dt^p \]
\[+ \int_{T_0} \left| \nabla_y L \left(t, u(t), \frac{\partial u}{\partial t} (t) \right) \right| \left| \frac{\partial v}{\partial t} (t) \right| \, dt^1 \wedge \ldots \wedge dt^p \]
\[
\leq b_0 \int_{T_0} (M |u(t)| + |a(0)|)|v(t)|\,dt^1 \wedge \ldots \wedge dt^p \\
+b_0 \int_{T_0} \left(M \left| \frac{\partial u}{\partial t}(t) \right| + |a(0)| \right) \left| \frac{\partial v}{\partial t}(t) \right|\,dt^1 \wedge \ldots \wedge dt^p
\]

By using the inequality Cauchy-Schwartz we find
\[
\left| \frac{\partial \Psi}{\partial \lambda}(0) \right| \leq b_0 \left(\int_{T_0} (M |u(t)| + |a(0)|)^2 \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} \\
\cdot \left(\int_{T_0} |v(t)|^2 \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} \\
+b_0 \left(\int_{T_0} \left(M \left| \frac{\partial u}{\partial t}(t) \right| + |a(0)| \right)^2 \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} \left(\int_{T_0} \left| \frac{\partial v}{\partial t}(t) \right|^2 \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} \\
\leq C_1 \left(\int_{T_0} |v(t)|^2 \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} + C_2 \left(\int_{T_0} \left| \frac{\partial v}{\partial t}(t) \right|^2 \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} \\
\leq \max \{ C_1, C_2 \} \, 2^{\frac{p}{2}} \left(\int_{T_0} \left(|v(t)|^2 + \left| \frac{\partial v}{\partial t}(t) \right|^2 \right) \,dt^1 \wedge \ldots \wedge dt^p \right)^{\frac{1}{2}} = C \|v\|.
\]

By consequence, the action \(\varphi \) has the derivative \(\varphi' \in (W^{1,2}_T)^* \) given by (2). The Krasnoselski theorem and the hypothesis (1) imply the fact that the application \(u \rightarrow \left(\nabla_xL \left(\cdot, u, \frac{\partial u}{\partial t} \right), \nabla_yL \left(\cdot, u, \frac{\partial u}{\partial t} \right) \right) \), from \(W^{1,2}_T \) to \(L^1 \times L^2 \), is continuous, so \(\varphi' \) is continuous from \(W^{1,2}_T \) to \((W^{1,2}_T)^* \) and the proof is complete.

Theorem 3. If the action
\[
\varphi(u) = \int_{T_0} \left[\frac{1}{2} \left| \frac{\partial u}{\partial t} \right|^2 + F(t, u(t)) \right] \,dt^1 \wedge \ldots \wedge dt^p
\]
is continuously differentiable on \(H^1_T \) and \(u \in H^1_T \) is a solution of the equation \(\varphi'(u) = 0 \) (critical point), then the function \(u \) has a weak Laplacian \(\Delta u \) (or the Jacobian matrix \(\frac{\partial u}{\partial t} \) has a weak divergence) and
\[
\Delta u = \nabla F(t, u(t))
\]
a.e. on T_0 and
\[u \big|_{s_t^-} = u \big|_{s_t^+}, \quad \frac{\partial u}{\partial t} \big|_{s_t^-} = \frac{\partial u}{\partial t} \big|_{s_t^+}. \]

\textbf{Proof.} We build the function
\[\Phi : [-1, 1] \to \mathbb{R}, \]
\[\Phi (\lambda) = \varphi (u + \lambda v) = \int_{T_0} \left[\frac{1}{2} \left| \frac{\partial}{\partial t} (u(t) + \lambda v(t)) \right|^2 + F(t, u(t) + \lambda v(t)) \right] \, dt^1 \wedge \ldots \wedge dt^p, \]
where $v \in C^\infty_T (T_0, \mathbb{R}^n)$. The point $\lambda = 0$ is a critical point of Φ if and only if the point u is a critical point of φ. Consequently
\[0 = \langle \varphi' (u), v \rangle = \int_{T_0} \left[\delta^\alpha\delta^\beta \delta_{ij} \frac{\partial u^i}{\partial t^\alpha} \frac{\partial v^j}{\partial t^\beta} + \delta_{ij} \nabla^i F(t, u(t)) v^j(t) \right] \, dt^1 \wedge \ldots \wedge dt^p, \]
for all $v \in H^1_T$ and hence for all $v \in C^\infty_T$. The definition of the weak divergence,
\[\int_{T_0} \delta^\alpha\delta^\beta \delta_{ij} \frac{\partial u^i}{\partial t^\alpha} \frac{\partial v^j}{\partial t^\beta} \, dt^1 \wedge \ldots \wedge dt^p = - \int_{T_0} \delta^\alpha\delta^\beta \delta_{ij} \frac{\partial^2 u^i}{\partial t^\alpha \partial t^\beta} v^j \, dt^1 \wedge \ldots \wedge dt^p, \]
shows that the Jacobian matrix $\frac{\partial u}{\partial t}$ has weak divergence (the function u has a weak Laplacian) and
\[\Delta u (t) = \nabla F(t, u(t)) \]
a.e. on T_0. Also, the existence of weak derivatives $\frac{\partial u}{\partial t}$ and weak divergence Δu implies that
\[u \big|_{s_t^-} = u \big|_{s_t^+}, \quad \frac{\partial u}{\partial t} \big|_{s_t^-} = \frac{\partial u}{\partial t} \big|_{s_t^+}. \]
3 Poisson-gradient dynamical systems with periodical potential

Theorem 4. If \(F : T_0 \times \mathbb{R}^n \to \mathbb{R}, (t,x) \to F(t,x) \) functions have the properties:

1) \(F(t,x) \) is measurable in \(t \) for any \(x \in \mathbb{R}^n \) and continuously differentiable in \(x \) for any \(t \in T_0 \), and there exist the functions \(a \in C^1(\mathbb{R}^+, \mathbb{R}^+) \) with the derivative \(a' \) bounded from above and \(b \in C(T_0, \mathbb{R}^+) \) such that for any \(t \in T_0 \) and any \(u \in \mathbb{R}^n \) to have \(|F(t,u)| \leq a(|u|) b(t) \) and \(|\nabla_u F(t,u)| \leq a(|u|) b(t) \),

2) \(F(t,x) > 0 \), for any \(t \in T_0 \) and any \(x \in \mathbb{R}^n \),

3) For any \(i \in \{1, \ldots, n\} \) it exists \(P_i \in \mathbb{R} \) such that \(F(t,x + P_i e_i) = F(t,x) \), for any \(t \in T_0 \) and any \(x \in \mathbb{R}^n \),

4) The action \(\varphi_1(u) = \int_{T_0} F(t,u(t)) dt^1 \wedge \ldots \wedge dt^p \) is weakly lower semi-continuous on \(H_1^T \).

If \(\int_{T_0} F(t,u) dt^1 \wedge \ldots \wedge dt^p \to \infty \) when \(|u| \to \infty \), then, the problem \(\Delta u(t) = \nabla F(t,u(t)) \) with the boundary condition

\[
 u|_{s^-_i} = u|_{s^+_i}, \quad \frac{\partial u}{\partial t}|_{s^-_i} = \frac{\partial u}{\partial t}|_{s^+_i}
\]

has at least solution which minimizes the action

\[
 \varphi(u) = \int_{T_0} \left[\frac{1}{2} \left| \frac{\partial u}{\partial t}(t) \right|^2 + F(t,u(t)) \right] dt^1 \wedge \ldots \wedge dt^p
\]

in \(H_1^T \).

Proof. From Theorem 2, the action \(\varphi \) is continuously differentiable. From the periodicity and the continuity of \(F \), it results that exists the function \(d \in L^1(T_0, \mathbb{R}) \) such that \(F(t,x) \geq d(t) \geq 0 \), for any \(t \in T_0 \) and any \(x \in \mathbb{R}^n \). By consequence \(\int_{T_0} F(t,u(t)) dt^1 \wedge \ldots \wedge dt^p = C_1 \geq 0 \). It results the inequality

\[
 \varphi(u) \geq \int_{T_0} \frac{1}{2} \left| \frac{\partial u}{\partial t}(t) \right|^2 dt^1 \wedge \ldots \wedge dt^p - C_1 \text{ for any } u \in H_1^T. \quad \text{As result} \quad \inf_{u \in H_1^T} \varphi(u) < \infty.
\]

Because \(\varphi(u) + C_1 \geq \int_{T_0} \frac{1}{2} \left| \frac{\partial u}{\partial t} \right|^2 dt^1 \wedge \ldots \wedge dt^p \), for any \(u \in H_1^T \), we
have the same inequality and for any \(u = u_k \) where \((u_k) \) it is a minimizing sequence for \(\varphi \) in \(H^1_T \). So, we obtain

\[
\int_{T_0}^T \frac{1}{2} \left| \frac{\partial u_k}{\partial t} \right|^2 dt^1 \wedge \ldots \wedge dt^p \leq C_2, \quad \text{for any } k \in \mathbb{N}.
\]

(3)

We consider \(u_k = \overline{u}_k + \tilde{u}_k \), where \(\overline{u}_k = \frac{1}{T^1 \ldots T^p} \int_{T_0}^T u_k(t) dt^1 \wedge \ldots \wedge dt^p \). From the relation (3) and the Wirtinger inequality we have

\[
\| \tilde{u}_k \| \leq C_3, \quad k \in \mathbb{N}, \quad C_3 \geq 0.
\]

(4)

On the other side, from the periodicity of \(F \) we find that \(\varphi (u + P_i e_i) = \varphi (u) \), for any \(i \in \{1, \ldots n\} \) and any \(u \in H^1_T \). If the sequence \((u_k) \) is a minimizing one for the action \(\varphi \), then the sequence \((u^*_k) \),

\[
u^*_k = \left(\overline{u}^1_k + \tilde{u}^1_k + k_1 P_1, \ldots, \overline{u}^n_k + \tilde{u}^n_k + k_n P_n \right)
\]
is also a minimizing sequence, for any \(k_1, \ldots, k_n \in \mathbb{Z} \). Obviously, we may choose \(k_i \in \mathbb{Z}, i = 1, \ldots, n \) such that

\[
0 \leq \overline{u}^i_k + k_i P_i \leq P_i, i = 1, \ldots, n.
\]

From the relations (3) and (4) it results that the sequence \((u^*_k) \) is bounded, so the action \(\varphi \) has a minimizing bounded sequence. By eventually passing to a subsequence, we may consider that the \((u^*_k) \) sequence is weakly convergent with the limit \(u \).

The Hilbert space \(H^1_T \) is reflexive. By consequence, the sequence \((u^*_k) \) (or one of his subsequence) is weakly convergent in \(H^1_T \) with the limit \(u \). Because

\[
\varphi_2 (u) = \int_{T_0}^T \delta_{ij} \delta^{\alpha \beta} \frac{\partial u^i}{\partial t^\alpha} (t) \frac{\partial u^j}{\partial t^\beta} (t) dt^1 \wedge \ldots \wedge dt^p
\]
is convex it results that \(\varphi_2 \) is weakly lower semi-continuous, so

\[
\varphi (u) = \varphi_1 (u) + \varphi_2 (u)
\]
is weakly lower semi-continuous and \(\varphi (u) \leq \lim \varphi (u_k) \). This means that \(u \) is minimum point of \(\varphi \). From the Theorem 3 this means that \(u \) is solution of boundary value problem

\[
\Delta u (t) = \nabla F (t, u (t)) ,
\]

12
\[u \mid_{S_i^-} = u \mid_{S_i^+}, \frac{\partial u}{\partial t} \mid_{S_i^-} = \frac{\partial u}{\partial t} \mid_{S_i^+}. \]

References

[1] I. Duca, A-M. Teleman, C. Udriște: Poisson-Gradient Dynamical Systems with Convex Potential, Proceedings of the 3-rd International Colloquium " Mathematics in Engineering and Numerical Physics ", 7-9 October, 2004, Bucharest.

[2] Iulian Duca, Constantin Udriște: Some Inequalities satisfied by Periodical Solutions of Multi-Time Hamilton Equations, The 5-th Conference of Balkan Society of Geometers, August 29-Sept 2, 2005, Mangalia, Romania.

[3] M. Forger, C. Paufler, H. Romer, The Poisson bracket for Poisson forms in multisymplectic field theory, Reviews in Mathematical Physics, 15, 7 (2003), 705-743.

[4] J. Mawhin, M. Willem: Critical Point Theory and Hamiltonian Systems, Springer-Verlag, 1989.

[5] I. V. Kanatchikov: Geometric (pre)quantization in the polysymplectic approach to field theory, arXiv: hep-th/0112263 v3, 3 Jun 2002, 1-12; Differential Geometry and Its Applications, Proc. Conf., Opava (Czech Republic), August 27-31, 2001, Silesian University Opava, 2002.

[6] C. Paufler, H. Romer: De Donder-Weyl equations and multisymplectic geometry, arXiv: math-ph/0506022 v2, 20 Jun 2005.

[7] N. Roman-Roy, Multisymplectic Lagrangian and Hamiltonian formalism of first -order classical field theories, arXiv: math-ph/0107019 v1, 20 Jul 2001, vol XX (XXXX), No. X, 1-9.

[8] C. Udriște: Nonclassical Lagrangian Dynamics and Potential Maps, Conference in Mathematics in Honour of Professor Radu Roșca on the Occasion of his Ninetieth Birthday, Katholieke University Brussel, Katholieke University Leuven, Belgium, Dec.11-16, 1999; http://xxx.lanl.gov/math.DS/0007060.

[9] C. Udriște: Solutions of DEs and PDEs as Potential Maps Using First Order Lagrangians, Centenial Vranceanu, Romanian Academy, University of Bucharest, June 30-July 4, (2000); http://xxx.lanl.gov/math.DS/0007061; Balkan Journal of Geometry and Its Applications 6, 1, 93-108, 2001.
[10] C. Udriște, M. Postolache: *Atlas of Magnetic Geometric Dynamics*, Geometry Balkan Press, Bucharest, 2001.

[11] C. Udriște: *From integral manifolds and metrics to potential maps*, Atti del Academia Peloritana dei Pericolanti, Classe 1 di Science Fis. Mat. e Nat., 81-82, A 01006 (2003-2004), 1-14.

[12] C. Udriște, A-M. Teleman: *Hamilton Approaches of Fields Theory*, IJMMS, 57 (2004), 3045-3056; ICM Satelite Conference in Algebra and Related Topics, University of Hong-Kong, 13-18.08.02.

[13] C. Udriște, I. Duca: *Periodical Solutions of Multi-Time Hamilton Equations*, Analele Universității București, 55, 1 (2005), 179-188.

[14] C. Udriște, I. Duca: *Poisson-gradient Dynamical Systems with Bounded Non-linearity*, manuscript, 2005.

University Politehnica of Bucharest
Department of Mathematics
Splaiul Independentei 313
060042 Bucharest, Romania
email: udriste@mathem.pub.ro