Comment on “A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation” by Magdy, Nie, Ma, and Lacey

Yicheng Feng,1 Fuqiang Wang,1 and Jie Zhao1

1Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA

(Dated: September 22, 2020)

This note points out an apparent error in the publication Phys. Lett. B 809 (2020) 135771 by Magdy, Nie, Ma, and Lacey.

This note concerns an apparent error in the statistical uncertainties in “A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation” by Magdy, Nie, Ma, and Lacey, published in Phys. Lett. B 809 (2020) 135771 (MNML).

Table I lists the data points read off from Fig. 2 ($\Delta\gamma(\Psi_{SP})$, $\Delta\gamma(\Psi_{PP})$) and Fig. 3 (f_1, f_2, f_{CME}) of MNML by a digital ruler [https://apps.automeris.io/wpd/]. The quantities $\Delta\gamma(\Psi_{SP})$ and $\Delta\gamma(\Psi_{PP})$ are the charge-dependent azimuthal correlators θ with respect to the spectator plane (SP) and the participant plane (PP), respectively, in 10-50% centrality Au+Au collisions simulated by the AMPT (A Multi-Phase Transport) model in MNML. Using conventions in MNML, $r_1 = \Delta\gamma(\Psi_{SP})/\Delta\gamma(\Psi_{PP})$, $r_2 = v_2(\Psi_{SP})/v_2(\Psi_{PP})$ (where $v_2(\Psi_{SP})$ and $v_2(\Psi_{PP})$ are the elliptic flow parameters with respect to SP and PP, respectively), $f_1 = r_1/r_2 - 1$, and $f_2 = 1/r_2^2 - 1$, the chiral magnetic effect (CME) signal fraction in the $\Delta\gamma(\Psi_{PP})$ measurement is given by $f_{CME} = f_1/f_2$ [2]. The SP and RP (reaction plane) were interchangeable in those formulas, and SP was used in the calculations as stated in MNML. From the read-out data points, we compute r_1, assuming uncorrelated $\Delta\gamma(\Psi_{SP})$ and $\Delta\gamma(\Psi_{PP})$ errors; since r_2 is not readily accessible from MNML, we compute it by $r_2 = 1/\sqrt{r_1^2 + 1}$; from r_1 and r_2 we compute f_1, and then f_{CME} using our computed f_1. These quantities are also listed in Table I.

Our computed errors on f_1 and f_{CME} are many times larger than those in MNML, depending on the values of f_1. The absolute error on f_1 is of course equal to the absolute error on r_1/r_2. Since f_1 can be zero, the relative error on f_1 can blow up (cf. Table I). It appears, however, that the relative error on f_1 in MNML equals approximately to the relative error on r_1 in Table I (Note that the digital ruler could introduce some imprecision in the read-out numbers. Also note that the error on r_2 is negligible compared to that on r_1; whether or not the r_2 error was properly propagated to f_2 in MNML, which in turn affects our calculated r_2, is of no significance.) If the relative error on r_1/r_2 was mistaken as the f_1 relative error in MNML, then the f_1 absolute error could be very small when $f_1 \sim 0$; our digital ruler failed to read the errors of the two $f_1 \sim 0$ data points in MNML.

This issue of the apparent incorrect errors was pointed out by us to two of the authors of MNML (Magdy, Lacey) at an internal physics discussion meeting in STAR [https://www.star.bnl.gov/] when the preprint version (arXiv:2002.07934v1) of MNML appeared. It was also pointed out at the meeting, by examining the relevant analysis code, that there was a double counting of particle pairs, artificially reducing the statistical errors by a factor of $\sqrt{2}$; this was acknowledged by the authors at the STAR discussion meeting. Since this cannot be verified with the information available in MNML, we do not consider it here; considering it would increase all the errors by factor $\sqrt{2}$. When a newer preprint (Lacey and Magdy, arXiv:2006.04132v2) later appeared, which had the same f_{CME} data points, we pointed out the issue to the authors again, also at a STAR meeting. Despite of the multiple remonstrations, the issue was not fixed; the data points published in MNML are identical to those in the arXiv preprints.

Figure 1 depicts our computed f_1 and f_{CME} in solid markers, compared to those from MNML in hollow markers. With our correctly propagated errors, the data points (solid markers) appear to be too smooth, relative to the error bars. Fitting a quadratic function to our computed f_1 gives a χ^2/NDF = 0.074/3 and a p-value of 0.995 (i.e. the probability for a lower χ^2/NDF value is 0.5% if the errors were already artificially reduced by factor $\sqrt{2}$ because of a double counting in MNML, then the likelihood would be even smaller). Fitting f_{CME} gives similar result, as expected, because f_{CME} is f_1 scaled by the essentially error-free f_2. (Incidentally, a quadratic fit to the f_1 from MNML, with the incorrect errors, gives a numerically reasonable χ^2/NDF and p-value.) The error we computed for f_1 is predominately determined by the error on r_1. As expected, a quadratic fit to r_1 gives a χ^2/NDF = 0.109/3 and p-value of 0.991, similar to those for our computed f_1. However, quadratic fits to the individual $\Delta\gamma(\Psi_{SP})$ and $\Delta\gamma(\Psi_{PP})$ give reasonable χ^2/NDF (p-value) of 5.22/3 (0.157) and 0.90/3 (0.825), respectively. Since r_1 is the ratio of $\Delta\gamma(\Psi_{SP})$ over $\Delta\gamma(\Psi_{PP})$, one is forced to conclude that either the two $\Delta\gamma$ quantities are strongly correlated so standard error propagation does not apply or something is unnatural with the AMPT $\Delta\gamma$ data points in MNML. For the former, in order for the r_1 error to be inflated by a factor of ~ 5 (so that the fit χ^2/NDF ~ 1) from simple error propagation, the $\Delta\gamma(\Psi_{SP})$ and $\Delta\gamma(\Psi_{PP})$ need to be $\sqrt{1-(1/5)^2} = 98\%$ correlated if they have the same relative errors; since the error on $\Delta\gamma(\Psi_{PP})$ is significantly larger than that.
on $\Delta \gamma (\Psi_{SP})$, even if they were 100% correlated, the r_1 error would not be factor 5 smaller than that from simple error propagation. Therefore, we conclude that the AMPT $\Delta \gamma$ data points in MNML are unnatural.

A few remarks are in order:

- The authors of MNML make the point of a turn-on threshold effect in f_{CME}, obtained from the method utilizing the SP and PP first proposed in Ref. [2]. With the correctly propagated errors, this point becomes moot.

- Fig.4(a) of MNML shows a convex R_{Ψ_2} distribution from AMPT with no input CME signal ($a_1 = 0$). This is contrary to other background studies using hydrodynamics [3], toy model resonance simulations [4], and AMPT of multiple versions [5].

- A non-flat R_{Ψ_2} distribution, either convex or concave, means that R_{Ψ_2} is sensitive to background. The convexity of the AMPT result with $a_1 = 0$ is comparable to the concavity of the $a_1 = 2\%$ result in MNML. Omitting the $a_1 = 0$ point from MNML Fig.4(f), extrapolating only the $a_1 > 0$ points to a seeming zero intercept, hence claiming little background contamination in R_{Ψ_2}, is improper.

In conclusion, there is an apparent error in the statistical uncertainties in “A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation” by Magdy, Nie, Ma, and Lacey, published in Phys. Lett. B 809 (2020) 135771. This was pointed out by us to Magdy and Lacey, two of the authors, at an internal STAR meeting when the preprint version (arXiv:2002.07934v1) of the said publication appeared, and also later when another preprint (arXiv:2006.04132v2) using the same data points was posted. The apparent error was not fixed—the relevant data points published in MNML are identical to those in the arXiv preprints. Tracing this error reveals that the AMPT data points in MNML are statistically unnatural.

This work was supported by the U.S. Department of Energy under Grant No. DE-SC0012910.

* All correspondence should be addressed to F.W. <fqwang@purdue.edu>.

[1] Sergei A. Voloshin, Phys. Rev. C 70 (2004) 057901, arXiv:hep-ph/0406311 [hep-ph].
[2] Hao-jie Xu, Jie Zhao, Xiaobao Wang, Hanlin Li, Zi-Wei Lin, Caiwan Shen, and Fuqiang Wang, Chin. Phys. C 42 (2018) 084103, arXiv:1710.07265 [nucl-th].
[3] Piotr Bożek, Phys. Rev. C 97 (2018) 034907, arXiv:1711.02563 [nucl-th].
[4] Yicheng Feng, Jie Zhao, and Fuqiang Wang, Phys. Rev. C 98 (2018) 034904, arXiv:1803.02563 [nucl-th].
[5] Yicheng Feng, Jie Zhao, and Fuqiang Wang, AMPT simulation results, in preparation. Those AMPT simulation results have been extensively discussed in internal STAR meetings.
TABLE I. The a_1 values plotted in MNML Figs. 2 and 3 are slightly offset compared to the texts written in MNML Fig. 4, except one plotted at $a_1 = 2.35\%$. The $\Delta \gamma(\Psi_{SP})$, $\Delta \gamma(\Psi_{PP})$, f_1, f_2, and f_{CME} values (middle black) are read from MNML Figs. 2 and 3 by a digital ruler [https://apps.automeris.io/wpd/]. The r_1, r_2, f_1, and f_{CME} (lower block) are computed by us with proper error propagation. The numbers in parentheses are relative errors for easy comparison.

a_1	0%	1%	2%	2.35%	3%	4%
$\Delta \gamma(\Psi_{SP}) \times 10^5$	5.43 ± 0.33(6.1%)	5.86 ± 0.32(5.5%)	7.91 ± 0.32(4.0%)	9.30 ± 0.47(5.1%)	10.05 ± 0.37(3.7%)	14.80 ± 0.27(1.8%)
$\Delta \gamma(\Psi_{PP}) \times 10^5$	8.91 ± 0.74(8.3%)	8.50 ± 0.75(8.8%)	9.90 ± 0.75(7.6%)	11.0 ± 1.1(10%)	11.17 ± 0.79(7.1%)	13.73 ± 0.69(5.0%)
f_1 (MNML)	$-0.240 \pm 0.029(12\%)$	$-0.141 \pm 0.014(9.9\%)$	-0.007 (error unreadable)	0.046 (error unreadable)	0.117 ± 0.011(9.4%)	0.323 ± 0.021(6.5%)
f_2	0.557 ± 0.007(1.3%)	0.552 ± 0.007(1.3%)	0.540 ± 0.007(1.3%)	0.536 ± 0.007(1.3%)	0.546 ± 0.007(1.3%)	0.519 ± 0.004(0.8%)
f_{CME} (MNML)	$-0.425 \pm 0.046(11\%)$	$-0.248 \pm 0.028(11\%)$	-0.017 (error unreadable)	0.079 ± 0.011(14%)	0.217 ± 0.018(8.3%)	0.623 ± 0.039(6.3%)

Computed by us:

$r_1 = \Delta \gamma(\Psi_{SP}) / \Delta \gamma(\Psi_{PP})$

$0.61 \pm 0.06(9.8\%)$

$r_2 = 1 / \sqrt{f_2 + 1}$

$0.801 \pm 0.002(0.25\%)$

$f_1 = r_1 / r_2 - 1$

$-0.24 \pm 0.08(33\%)$

$f_{CME} = f_1 / f_2$

$-0.43 \pm 0.14(33\%)$

$0.33 \pm 0.07(21\%)$