The Ricci flow in a class of solvmanifolds

Romina M. Arroyo
FaMAF and CIEM, Córdoba, Argentina

Encuentro de Geometría Diferencial
Rosario
August 2012
Contents

1 Preliminaries
Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds
Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow
Contents

1 Preliminaries

2 The bracket flow in a class of solvmanifolds

3 The normalized bracket flow

4 Negative curvature
The Ricci flow

\[\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \] (1)

\(g \) is a Ricci soliton if:

\[\text{Rc}(g) = c g + L_X g, \quad c \in \mathbb{R}, \quad X \in \chi(M) \]

\(g \) Ricci soliton \(\iff \) \(g(t) = (-2ct + 1) \phi^* g \) is a solution of the Ricci flow.
The Ricci flow

\((M, g)\),
The Ricci flow

\((M, g)\), the **Ricci flow** is:

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)),
\]

\(g(0) = g\).
The Ricci flow

\((M, g)\), the **Ricci flow** is:

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \tag{1}
\]
(M, g), the **Ricci flow** is:

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \tag{1}
\]

M,
The Ricci flow

\[(M, g), \text{ the Ricci flow is:}\]

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \tag{1}
\]

\(M, \) a complete \(g\) is a Ricci soliton if:
The Ricci flow

\((M, g)\), the **Ricci flow** is:

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g.
\]

(1)

\(M\), a complete \(g\) is a **Ricci soliton** if:

\[
\text{Rc}(g) = cg + L_X g, \quad c \in \mathbb{R}, \quad X \in \chi(M) \text{ complete}.
\]
The Ricci flow

(M, g), the **Ricci flow** is:

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \tag{1}
\]

\(M\), a complete \(g\) is a **Ricci soliton** if:

\[
\text{Rc}(g) = cg + L_X g, \quad c \in \mathbb{R}, \ X \in \chi(M) \text{ complete.}
\]

g Ricci soliton
The Ricci flow

(M, g), the **Ricci flow** is:

$$\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \quad (1)$$

M, a complete g is a **Ricci soliton** if:

$$\text{Rc}(g) = cg + L_X g, \quad c \in \mathbb{R}, \quad X \in \chi(M) \text{ complete.}$$

g **Ricci soliton** \iff
(\(M, g\)), the \textbf{Ricci flow} is:

\[
\frac{\partial}{\partial t} g(t) = -2 \text{Rc}(g(t)), \quad g(0) = g. \tag{1}
\]

\(M\), a complete \(g\) is a \textbf{Ricci soliton} if:

\[
\text{Rc}(g) = cg + L_X g, \quad c \in \mathbb{R}, \quad X \in \chi(M) \text{ complete}.
\]

\(g\) \textbf{Ricci soliton} \iff \(g(t) = (-2ct+1)\phi_t^*g\) is a solution of the Ricci flow.
Varying Lie brackets
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathcal{L}_n = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \} . \]
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathcal{L}_n = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \}. \]

\(\text{GL}_n(\mathbb{R}) \) acts on \(\mathcal{L}_n \):

\[g \in \text{GL}_n(\mathbb{R}) \mapsto (Gg \mu, \langle \cdot, \cdot \rangle) \to (Gg \mu, \langle g \cdot, g \cdot \rangle) \text{ isometry}. \]
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathcal{L}_n = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \} . \]

\(\text{GL}_n(\mathbb{R}) \) acts on \(\mathcal{L}_n \): \(X, Y \in \mathbb{R}^n, g \in \text{GL}_n(\mathbb{R}), \mu \in \mathcal{L}_n \).
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathfrak{L}_n = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \} \].

\(\text{GL}_n(\mathbb{R})\) acts on \(\mathfrak{L}_n\): \(X, Y \in \mathbb{R}^n, g \in \text{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n. \)

\[g \cdot \mu(X, Y) = g \mu(g^{-1}X, g^{-1}Y) \tag{2} \]
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathfrak{L}_n = \{ \mu: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \} . \]

\(\text{GL}_n(\mathbb{R}) \) acts on \(\mathfrak{L}_n \): \(X, Y \in \mathbb{R}^n, g \in \text{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n. \)

\[g \cdot \mu(X, Y) = g \mu(g^{-1}X, g^{-1}Y) . \] (2)

\[\mu \in \mathfrak{L}_n \iff (G_\mu, \langle \cdot, \cdot \rangle) = (G_\mu, g_\mu) \]
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathfrak{L}_n = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \}. \]

\(\text{GL}_n(\mathbb{R})\) acts on \(\mathfrak{L}_n\):

\[X, Y \in \mathbb{R}^n, g \in \text{GL}_n(\mathbb{R}), \mu \in \mathfrak{L}_n. \]

\[g \cdot \mu (X, Y) = g \mu (g^{-1} X, g^{-1} Y). \quad (2) \]

\[\mu \in \mathfrak{L}_n \iff (G_\mu, \langle \cdot, \cdot \rangle) = (G_\mu, g_\mu) \]

\[g \in \text{GL}_n(\mathbb{R}) \mapsto (G_{g \cdot \mu}, \langle \cdot, \cdot \rangle) \to (G_\mu, \langle g \cdot, g \cdot \rangle) \text{ isometry.} \]
Varying Lie brackets

We fix \((\mathbb{R}^n, \langle \cdot, \cdot \rangle)\),

\[\mathcal{L}_n = \{ \mu : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n : \mu \text{ bilinear, skew-symmetric and Jacobi} \}. \]

\(\text{GL}_n(\mathbb{R})\) acts on \(\mathcal{L}_n\):

\[X, Y \in \mathbb{R}^n, g \in \text{GL}_n(\mathbb{R}), \mu \in \mathcal{L}_n. \]

\[g \cdot \mu (X, Y) = g \mu (g^{-1} X, g^{-1} Y). \] \hspace{1cm} (2)

\[\mu \in \mathcal{L}_n \leftrightarrow (G_{\mu}, \langle \cdot, \cdot \rangle) = (G_{\mu}, g_{\mu}) \]

\[g \in \text{GL}_n(\mathbb{R}) \rightsquigarrow (G_{g \cdot \mu}, \langle \cdot, \cdot \rangle) \to (G_{\mu}, \langle g \cdot , g \cdot \rangle) \text{ isometry.} \]

vary Lie brackets \(\leftrightarrow\) vary inner products.
Ricci flow on Lie groups: The bracket flow
Ricci flow on Lie groups: The bracket flow

G,

Theorem (\[L3\], 2012) There exist time-dependent diffeomorphisms

$\phi(t): G \rightarrow G_{\mu}(t)$ such that $g(t) = \phi(t)^* g(\mu)(t)$, $\forall t \in (a, b)$.

The bracket flow in a class of solvmanifolds The normalized bracket flow Negative curvature
Ricci flow on Lie groups: The bracket flow

$G, (G, g)$ is isometric to (G_μ, g_μ), with $\mu \in \mathcal{L}_n$.
Ricci flow on Lie groups: The bracket flow

$G, (G, g)$ is isometric to (G_μ, g_μ), with $\mu \in \mathcal{L}_n$. The Ricci flow equation (1) is equivalent to:
Ricci flow on Lie groups: The bracket flow

\(G, (G, g) \) is isometric to \((G_\mu, g_\mu)\), with \(\mu \in \mathcal{L}_n \). The Ricci flow equation (1) is equivalent to:

\[
\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle,
\]

\(\mu \in \mathbb{L}_n \), the bracket flow starting at \(\mu \) is:

\[
\frac{d}{dt} \mu(t) = \delta \mu(t)(\text{Ric}_\mu(t)), \quad \mu(0) = \mu,
\]

Theorem ([L3], 2012) There exist time-dependent diffeomorphisms \(\phi(t): G \rightarrow G_\mu(t) \) such that \(g(t) = \phi(t)^* g_\mu(t) \), \(\forall t \in (a, b) \).
Ricci flow on Lie groups: The bracket flow

$G, (G, g)$ is isometric to (G_μ, g_μ), with $\mu \in \mathcal{L}_n$. The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle,$$

(3)

$\mu \in \mathcal{L}_n,$
Ricci flow on Lie groups: The bracket flow

\(G, (G, g) \) is isometric to \((G_\mu, g_\mu)\), with \(\mu \in \mathcal{L}_n \). The Ricci flow equation (1) is equivalent to:

\[
\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle, \tag{3}
\]

\(\mu \in \mathcal{L}_n \), the bracket flow starting at \(\mu \) is:
Ricci flow on Lie groups: The bracket flow

$G, (G, g)$ is isometric to (G_μ, g_μ), with $\mu \in \mathcal{L}_n$. The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle, \quad (3)$$

$\mu \in \mathcal{L}_n$, the bracket flow starting at μ is:

$$\frac{d}{dt} \mu(t) = \delta_{\mu(t)}(\text{Ric}_{\mu(t)}), \quad \mu(0) = \mu, \quad (4)$$
Ricci flow on Lie groups: The bracket flow

G, (G, g) is isometric to (G_μ, g_μ), with $\mu \in \mathcal{L}_n$. The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \operatorname{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle,$$

(3)

$\mu \in \mathcal{L}_n$, the bracket flow starting at μ is:

$$\frac{d}{dt} \mu(t) = \delta_\mu(t)(\operatorname{Ric}_\mu(t)), \quad \mu(0) = \mu,$$

(4)

where $\delta_\mu(A) = \mu(A \cdot, \cdot) + \mu(\cdot, A \cdot) - A\mu(\cdot, \cdot)$, $A \in \text{GL}_n(\mathbb{R})$, $\mu \in \mathcal{V}_n$.
Ricci flow on Lie groups: The bracket flow

$G, (G,g)$ is isometric to (G_{μ}, g_{μ}), with $\mu \in \mathcal{L}_n$. The Ricci flow equation (1) is equivalent to:

$$\frac{d}{dt} \langle \cdot, \cdot \rangle_t = -2 \text{Rc}(\langle \cdot, \cdot \rangle_t), \quad \langle \cdot, \cdot \rangle_0 = \langle \cdot, \cdot \rangle,$$

(3)

$\mu \in \mathcal{L}_n$, the bracket flow starting at μ is:

$$\frac{d}{dt} \mu(t) = \delta_{\mu}(t)(\text{Ric}_{\mu}(t)), \quad \mu(0) = \mu,$$

(4)

where $\delta_{\mu}(A) = \mu(A\cdot, \cdot) + \mu(\cdot, A\cdot) - A\mu(\cdot, \cdot)$, $A \in \text{GL}_n(\mathbb{R})$, $\mu \in V_n$.

Theorem ([L3], 2012)

There exist time-dependent diffeomorphisms $\varphi(t) : G \to G_{\mu}(t)$ such that $g(t) = \varphi(t)^* g_{\mu}(t)$, $\forall t \in (a, b)$.
The bracket flow in a class of solvmanifolds

A solvmanifold is a simply connected solvable Lie group endowed with a left invariant Riemannian metric, denoted as $(G, \langle \cdot, \cdot \rangle)$. The purpose of studying the Ricci flow is achieved by employing the bracket flow. This approach is particularly useful for solvmanifolds whose Lie algebras contain an abelian ideal of codimension 1.
The bracket flow in a class of solvmanifolds

Solvmanifold:

Simply connected solvable Lie group endowed with a left invariant Riemannian metric. $(S, \langle \cdot, \cdot \rangle)$

Purpose:
To study the Ricci flow.

How?:
Using the bracket flow.

In which solvmanifolds?:
Solvmanifolds whose Lie algebras have an abelian ideal of codimension 1.
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric.
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)

Purpose:
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)

- **Purpose:** To study the Ricci flow.
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)

- **Purpose**: To study the Ricci flow.
- **How?**:
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)

- **Purpose**: To study the Ricci flow.
- **How?**: Using the bracket flow.
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)

- **Purpose**: To study the Ricci flow.
- **How?**: Using the bracket flow.
- **In which solvmanifolds?**:
The bracket flow in a class of solvmanifolds

Solvmanifold: simply connected solvable Lie group endowed with a left invariant Riemannian metric. \((S, \langle \cdot, \cdot \rangle)\)

- **Purpose**: To study the Ricci flow.
- **How?**: Using the bracket flow.
- **In which solvmanifolds?**: Solvmanifolds whose Lie algebras have an abelian ideal of codimension 1.
The bracket flow in a class of solvmanifolds

We fix $(\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)$.
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1,
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[\mu(e_0, e_i) = Ae_i, \quad i = 1, \ldots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}),\]
\[\mu(e_i, e_j) = 0, \quad \forall i, j \geq 1.\]
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[
\mu(e_0, e_i) = Ae_i, \quad i = 1, \ldots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}),
\]

\[
\mu(e_i, e_j) = 0, \quad \forall i, j \geq 1.
\]

From now on,
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[
\mu(e_0, e_i) = Ae_i, \quad i = 1, \ldots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}),
\]
\[
\mu(e_i, e_j) = 0, \quad \forall i, j \geq 1.
\]

From now on, \((\mathbb{R}^{n+1}, \mu_A)\) or \(\mu_A\),
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[
\mu(e_0, e_i) = Ae_i, \quad i = 1, \ldots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}),
\]
\[
\mu(e_i, e_j) = 0, \quad \forall i, j \geq 1.
\]

From now on, \((\mathbb{R}^{n+1}, \mu_A)\) or \(\mu_A\), and \((G_{\mu_A}, \langle \cdot, \cdot \rangle)\), or \((G_{\mu_A}, g_{\mu_A})\).
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[
\begin{align*}
\mu(e_0, e_i) &= Ae_i, \quad i = 1, \ldots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}), \\
\mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1.
\end{align*}
\]

From now on, \((\mathbb{R}^{n+1}, \mu_A)\) or \(\mu_A\), and \((G_{\mu_A}, \langle \cdot, \cdot \rangle)\), or \((G_{\mu_A}, g_{\mu_A})\).

The Ricci operator of \((G_{\mu_A}, g_{\mu_A})\) w. r. t. \(\{e_0, e_1, \ldots, e_n\}\) is:

\[
\text{Ric}_{\mu_A} = \begin{pmatrix}
- \text{tr}(S(A)^2) & 0 \\
0 & \frac{1}{2}[A, A^t] - \text{tr}(A)S(A)
\end{pmatrix}.
\] (5)
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[
\mu(e_0, e_i) = Ae_i, \quad i = 1, \ldots, n, \quad A \in \mathfrak{gl}_n(\mathbb{R}),
\]
\[
\mu(e_i, e_j) = 0, \quad \forall i, j \geq 1.
\]

From now on, \((\mathbb{R}^{n+1}, \mu_A)\) or \(\mu_A\), and \((G_{\mu_A}, \langle \cdot, \cdot \rangle)\), or \((G_{\mu_A}, g_{\mu_A})\).

The Ricci operator of \((G_{\mu_A}, g_{\mu_A})\) w. r. t. \(\{e_0, e_1, \ldots, e_n\}\) is:

\[
Ric_{\mu_A} = \begin{pmatrix}
- \text{tr}(S(A)^2) & 0 \\
0 & \frac{1}{2}[A, A^t] - \text{tr}(A)S(A)
\end{pmatrix}.
\] (5)

Then, using \(\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\text{Ric}_{\mu(t)})\) and proposing \(\mu_A(t)\) as a solution, we obtain that \(\mu(t) = \mu_A(t)\), with \(A(t)\) that satisfies:
The bracket flow in a class of solvmanifolds

We fix \((\mathbb{R}^{n+1}, \langle \cdot, \cdot \rangle)\). If \((\mathbb{R}^{n+1}, \mu)\) is a Lie algebra with an abelian ideal of codimension 1, then there exists an orthonormal basis \(\{e_0, e_1, \ldots, e_n\}\) such that:

\[
\begin{align*}
\mu(e_0, e_i) &= Ae_i, \quad i = 1, \ldots, n, \quad A \in gl_n(\mathbb{R}), \\
\mu(e_i, e_j) &= 0, \quad \forall i, j \geq 1.
\end{align*}
\]

From now on, \((\mathbb{R}^{n+1}, \mu_A)\) or \(\mu_A\), and \((G_{\mu_A}, \langle \cdot, \cdot \rangle)\), or \((G_{\mu_A}, g_{\mu_A})\).

The Ricci operator of \((G_{\mu_A}, g_{\mu_A})\) w. r. t. \(\{e_0, e_1, \ldots, e_n\}\) is:

\[
\text{Ric}_{\mu_A} = \begin{pmatrix}
-\text{tr}(S(A)^2) & 0 \\
0 & \frac{1}{2}[A, A^t] - \text{tr}(A)S(A)
\end{pmatrix}.
\] (5)

Then, using \(\frac{d}{dt}\mu(t) = \delta_{\mu(t)}(\text{Ric}_{\mu(t)})\) and proposing \(\mu_A(t)\) as a solution, we obtain that \(\mu(t) = \mu_A(t)\), with \(A(t)\) that satisfies:

\[
\frac{d}{dt}A = -\text{tr}(S(A)^2)A + \frac{1}{2}[A, [A, A^t]] - \frac{1}{2} \text{tr}(A)[A, A^t].
\] (6)
The bracket flow in a class of solvmanifolds

Let $A := \begin{pmatrix} 0 & x_0 \\ y_0 & 0 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R})$, with $x_0y_0 < 0$.

Then, $\mu(t) = \mu(A(t))$ with $A(t) = \begin{pmatrix} 0 & x(t) \\ y(t) & 0 \end{pmatrix}$ and $x(t) = x_0$, $y(t) = y_0$ satisfy:

$x' = x(x + y)(-\frac{3}{2}x + \frac{1}{2}y)$,

$y' = y(x + y)(-\frac{3}{2}y + \frac{1}{2}x)$.

(7)
The bracket flow in a class of solvmanifolds

Let \(A := \begin{pmatrix} 0 & x_0 \\ y_0 & 0 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R}) \), with \(x_0 y_0 < 0 \). Then, \(\mu(t) = \mu_{A(t)} \) with \(A(t) = \begin{pmatrix} 0 & x(t) \\ y(t) & 0 \end{pmatrix} \) and \(x(t) = x, y(t) = y \) satisfy:

\[
\begin{align*}
x' &= x(x + y)(-\frac{3}{2}x + \frac{1}{2}y), \quad x(0) = x_0, \\
y' &= y(x + y)(-\frac{3}{2}y + \frac{1}{2}x), \quad y(0) = y_0.
\end{align*}
\]

(7)
The bracket flow in a class of solvmanifolds

Let $A := \begin{pmatrix} 0 & x_0 \\ y_0 & 0 \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{R})$, with $x_0y_0 < 0$. Then, $\mu(t) = \mu_{A(t)}$

with $A(t) = \begin{pmatrix} 0 & x(t) \\ y(t) & 0 \end{pmatrix}$ and $x(t) = x, y(t) = y$ satisfy:

$$
\begin{align*}
x' &= x(x + y)(-\frac{3}{2}x + \frac{1}{2}y), \quad x(0) = x_0, \\
y' &= y(x + y)(-\frac{3}{2}y + \frac{1}{2}x), \quad y(0) = y_0.
\end{align*}
$$

(7)

Flujo de corchetas de μ_A con $A = \begin{bmatrix} 0 & x \\ y & 0 \end{bmatrix}$, con $xy < 0$.
The bracket flow in a class of solvmanifolds

Question:
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} A(t) \parallel A(t) = A_\infty$.
- If $\text{tr}(A) \neq 0$, then $A(t) \to 0$.

Sketch of proof.

If $\text{tr}(A) = 0$, we consider $F(A) = \parallel [A, A(t)] \parallel^2 \parallel A \parallel^4$ for $A = A(t)$, and the negative gradient flow of F, $\bar{A}(t)$. Then if A is not nilpotent, $\lim_{t \to \infty} \bar{A}(t) \parallel \bar{A}(t) = \lim_{t \to \infty} A(t) \parallel A(t)$.

If $\text{tr}(A) \neq 0$, it is easy to see that $A(t) \to 0$ using the spectra of A and $A(t)$.
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let \(A \in \text{gl}_n(\mathbb{R}) \) and consider the bracket flow \(\mu_{A(t)} \) starting at \(\mu_A \). Then:

- If \(\text{tr}(A) = 0 \), then \(\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_1^\infty \)

Sketch of proof.

If \(\text{tr}(A) = 0 \), we consider

\[
F(A) = \| [A, A(t)] \|_2 \|A\|_4
\]

for \(A = A(t) \), and the negative gradient flow of \(F \), \(\bar{A}(t) \).

Then if \(A \) is not nilpotent \(\lim_{t \to \infty} \bar{A}(t) \parallel \bar{A}(t)\parallel = \lim_{t \to \infty} A(t) \parallel A(t)\parallel \).

If \(\text{tr}(A) \neq 0 \), it is easy to see that \(A(t) \to 0 \) using the spectra of \(A \) and \(A(t) \).
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_A(t)$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_\infty^1 (\rightsquigarrow A(t) \to A_\infty)$,
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_\infty(\sim A(t) \to A_\infty)$,
- If $\text{tr}(A) \neq 0$, then $A(t) \to 0$.

Sketch of proof.

If $\text{tr}(A) = 0$, we consider $F(A) = \| [A, A(t)] \|^2 \|A\|^4$ for $A = A(t)$, and the negative gradient flow of F, $\bar{A}(t)$.

Then if A is not nilpotent $\lim_{t \to \infty} \|\bar{A}(t)\| = \lim_{t \to \infty} \|A(t)\|$.

If $\text{tr}(A) \neq 0$, it is easy to see that $A(t) \to 0$ using the spectra of A and $A(t)$.

The normalized bracket flow

Negative curvature
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{g}l_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_\infty^1 (\leadsto A(t) \to A_\infty)$,
- If $\text{tr}(A) \neq 0$, then $A(t) \to 0$.

Sketch of proof.
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let \(A \in \mathfrak{gl}_n(\mathbb{R}) \) and consider the bracket flow \(\mu_A(t) \) starting at \(\mu_A \). Then:

- If \(\text{tr}(A) = 0 \), then \(\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A^1_\infty (\sim A(t) \to A_\infty) \),
- If \(\text{tr}(A) \neq 0 \), then \(A(t) \to 0 \).

Sketch of proof.

- If \(\text{tr}(A) = 0 \),
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in gl_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_1^\infty (\sim \to A(t) \to A_\infty)$,
- If $\text{tr}(A) \neq 0$, then $A(t) \to 0$.

Sketch of proof.

- If $\text{tr}(A) = 0$, we consider $F(A) = \frac{\|[A,A^t]\|^2}{\|A\|^4}$ for $A = A(t)$, and the negative gradient flow of F, $\bar{A}(t)$.

The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_\infty^1 (\rightsquigarrow A(t) \to A_\infty)$,
- If $\text{tr}(A) \neq 0$, then $A(t) \to 0$.

Sketch of proof.

- If $\text{tr}(A) = 0$, we consider $F(A) = \frac{\|[A,A^t]\|^2}{\|A\|^4}$ for $A = A(t)$, and the negative gradient flow of F, $\bar{A}(t)$. Then if A is not nilpotent $\lim_{t \to \infty} \frac{\bar{A}(t)}{\|\bar{A}(t)\|} = \lim_{t \to \infty} \frac{A(t)}{\|A(t)\|}$.
The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_1^\infty (\sim \to A(t) \to A_\infty)$,
- If $\text{tr}(A) \neq 0$, then $A(t) \to 0$.

Sketch of proof.

- If $\text{tr}(A) = 0$, we consider $F(A) = \frac{\|[A,A^t]\|^2}{\|A\|^4}$ for $A = A(t)$, and the negative gradient flow of F, $\tilde{A}(t)$. Then if A is not nilpotent $\lim_{t \to \infty} \frac{\tilde{A}(t)}{\|\tilde{A}(t)\|} = \lim_{t \to \infty} \frac{A(t)}{\|A(t)\|}$.
- If $\text{tr}(A) \neq 0$,

The bracket flow in a class of solvmanifolds

Question: Limits of solutions?

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- If $\text{tr}(A) = 0$, then $\lim_{t \to \infty} \frac{A(t)}{\|A(t)\|} = A_1^\infty (\sim \rightarrow A(t) \rightarrow A_\infty)$,
- If $\text{tr}(A) \neq 0$, then $A(t) \rightarrow 0$.

Sketch of proof.

- If $\text{tr}(A) = 0$, we consider $F(A) = \frac{\|[A,A^t]\|}{\|A\|^4}$ for $A = A(t)$, and the negative gradient flow of F, $\bar{A}(t)$. Then if A is not nilpotent $\lim_{t \to \infty} \frac{\bar{A}(t)}{\|\bar{A}(t)\|} = \lim_{t \to \infty} \frac{A(t)}{\|A(t)\|}$.
- If $\text{tr}(A) \neq 0$, it is easy to see that $A(t) \rightarrow 0$ using the spectra of A and $A(t)$.

The bracket flow in a class of solvmanifolds

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_A(t)$ starting at μ_A. Then:

\[A(t) = a(t) \phi_t A \phi_t^{-1}, \]

$a(t)$ is a real valued function, and $\phi_t \in \text{GL}_n(\mathbb{R})$.

As $t \to \infty$, $\text{tr}(S(A(t)))^2 \to 0$. Moreover, $\text{tr}(S(A(t)))^2$ is strictly decreasing if A is not skew-symmetric.
Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- $A(t) = a(t)\varphi_t A \varphi_t^{-1}$, $a(t)$ is a real valued function, and $\varphi_t \in \text{GL}_n(\mathbb{R})$.

\Rightarrow Spec(A^∞) = Spec(A^∞).

$A(t)$ is defined $\forall t \in [0, \infty)$.

$\text{tr}(\mathcal{S}(A(t)))$ is strictly decreasing if A is not skew-symmetric. Moreover, $\text{tr}(\mathcal{S}(A(t))) \to 0$ as $t \to \infty$.
Lemma

Let \(A \in \mathfrak{gl}_n(\mathbb{R}) \) and consider the bracket flow \(\mu_{A(t)} \) starting at \(\mu_A \). Then:

\[A(t) = a(t)\phi_t A \phi_t^{-1}, \text{ } a(t) \text{ is a real valued function, and } \phi_t \in GL_n(\mathbb{R}). (\sim \text{ Spec}(A_\infty) = a_\infty \text{ Spec}(A).) \]
The bracket flow in a class of solvmanifolds

Lemma

Let $A \in \mathfrak{gl}_n(\mathbb{R})$ and consider the bracket flow $\mu_{A(t)}$ starting at μ_A. Then:

- $A(t) = a(t)\varphi_t A \varphi_t^{-1}$, $a(t)$ is a real valued function, and $\varphi_t \in \text{GL}_n(\mathbb{R})$. ($\sim \text{Spec}(A_\infty) = a_\infty \text{Spec}(A).$)
- $A(t)$ is defined $\forall t \in [0, \infty).$
The bracket flow in a class of solvmanifolds

Lemma

Let \(A \in \mathfrak{gl}_n(\mathbb{R}) \) and consider the bracket flow \(\mu_A(t) \) starting at \(\mu_A \). Then:

- \(A(t) = a(t)\varphi_t A \varphi_t^{-1} \), \(a(t) \) is a real valued function, and \(\varphi_t \in GL_n(\mathbb{R}). \) (\(\sim \) \(\text{Spec}(A_\infty) = a_\infty \text{Spec}(A).)\)
- \(A(t) \) is defined \(\forall t \in [0, \infty) \).
- \(\text{tr}(S(A(t))^2) \) is strictly decreasing if \(A \) is not skew-symmetric. Moreover, \(\text{tr}(S(A(t))^2) \rightarrow 0 \) as \(t \rightarrow \infty \).
The bracket flow in a class of solvmanifolds

Corollary

There exists a sequence \((G_{\mu A(t_k)}, g_{\mu A(t_k)}) \) which converges in the pointed (Cheeger - Gromov) sense to a manifold locally isometric to \((G_{\mu A_{\infty}}, g_{\mu A_{\infty}}) \), which is flat.
The bracket flow in a class of solvmanifolds

Corollary

There exists a sequence \((G_{\mu_A(t_k)}, g_{\mu_A(t_k)})\) which converges in the pointed (Cheeger - Gromov) sense to a manifold locally isometric to \((G_{\mu_A\infty}, g_{\mu_A\infty})\), which is flat.

Proposition

If \(\text{Spec}(A) \not\subseteq i\mathbb{R}\) then \(g_{\mu_A(t)} \rightarrow g_{\mu_A\infty}\) smoothly on \(\mathbb{R}^n\).
The bracket flow in a class of solvmanifolds

Proposition

For every μ_A with $\text{tr}(A^2) \geq 0$, the Ricci flow $g(t)$ with $g(0) = g_{\mu_A}$ is a Type - III solution
Proposition

For every μ_A with $\text{tr}(A^2) \geq 0$, the Ricci flow $g(t)$ with $g(0) = g_{\mu_A}$ is a Type - III solution (it is defined $\forall t \in [0, \infty)$ and there exists $C \in \mathbb{R}$ such that $\|\text{Rm}(g(t))\| \leq \frac{C}{t}$, $\forall t \in (0, \infty)$),
The bracket flow in a class of solvmanifolds

Proposition

For every μ_A with $\text{tr}(A^2) \geq 0$, the Ricci flow $g(t)$ with $g(0) = g_{\mu_A}$ is a Type - III solution (it is defined $\forall t \in [0, \infty)$ and there exists $C \in \mathbb{R}$ such that $\| \text{Rm}(g(t)) \| \leq \frac{C}{t}$, $\forall t \in (0, \infty)$), for some constant C_n that only depends on the dimension n.
The bracket flow in a class of solvmanifolds

Theorem

Let $A \in \mathfrak{gl}_n(\mathbb{R})$. Consider $\mu_A(t)$ the bracket flow starting at μ_A and $g(t)$ the Ricci flow starting at g_{μ_A}. Then:

(i) $g(t)$ is defined $\forall t \in [0, \infty)$.

(ii) $A(t) \to A_\infty$.

(iii) There exists a sequence $(G_{\mu_A(t_k)}, g_{\mu_A(t_k)})$ which converges in the pointed sense to a manifold locally isometric to $(G_{\mu_A_\infty}, g_{\mu_A_\infty})$, which is flat.

(iv) If $\text{Spec}(A) \not\subset i\mathbb{R}$, then $g_{\mu_A(t)} \to g_{\mu_A_\infty}$ smoothly on \mathbb{R}^n.

(v) If $\text{tr}(A^2) \geq 0$, then $g(t)$ is a type - III solution for some constant C_n that only depends on the dimension of V_n.
Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton.

(algebraic soliton: $\text{Ric} \mu_A = cI + D$, $c \in \mathbb{R}, D \in \text{Der}(\mu_A)$)

(ii) $d\|\left[A, A_t\right]\|^2 < 0$.

Theorem

Assume that $A(t_k) \to A_\infty$. Then, A_∞ is an algebraic soliton. Moreover, the following are equivalent:

(i) $\text{Spec}(A) \subseteq i\mathbb{R}$.

(ii) (G_{μ_A}, g_{μ_A}) is flat.
Lemma

Let A be with $\|A\| = 1$ and consider $\mu_{A(t)}$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:
Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton.
Norm-normalized bracket flow

Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton: $\text{Ric}_\mu = cl + D, \ c \in \mathbb{R}, \ D \in \text{Der}(\mu)$)

Theorem

Assume that $A(t) \to A_\infty$.

Then, A_∞ is an algebraic soliton. Moreover, the following are equivalent:

(i) $\text{Spec}(A) \subseteq i\mathbb{R}$.

(ii) (G_{μ_A}, g_{μ_A}) is flat.
Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton: $\text{Ric}_\mu = cl + D, \ c \in \mathbb{R}, \ D \in \text{Der}(\mu)$)

(ii) $\frac{d}{dt} \|[A, A^t]\|^2 < 0$.
Norm-normalized bracket flow

Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton: $\text{Ric}_\mu = cl + D, \quad c \in \mathbb{R}, \quad D \in \text{Der}(\mu)$)

(ii) $\frac{d}{dt}\| [A, A^t] \|^2 < 0$.

Theorem

Assume that $A(t_k) \to A_\infty$.
Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton: $\text{Ric}_\mu = cl + D$, $c \in \mathbb{R}$, $D \in \text{Der}(\mu)$)

(ii) $\frac{d}{dt}\| [A, A^t] \|^2 < 0$.

Theorem

Assume that $A(t_k) \to A_\infty$. Then, A_∞ is an algebraic soliton.
Norm-normalized bracket flow

Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton:\n$\text{Ric}_\mu = cl + D, \ c \in \mathbb{R}, \ D \in \text{Der}(\mu)$)

(ii) $\frac{d}{dt}\|[A, A^t]\|^2 < 0$.

Theorem

Assume that $A(t_k) \to A_\infty$. Then, A_∞ is an algebraic soliton. Moreover, the following are equivalent:
Norm-normalized bracket flow

Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton: $\text{Ric}_\mu = cl + D$, $c \in \mathbb{R}$, $D \in \text{Der}(\mu)$)

(ii) $\frac{d}{dt} \|[A, A^t]\|^2 < 0$.

Theorem

Assume that $A(t_k) \to A_\infty$. Then, A_∞ is an algebraic soliton. Moreover, the following are equivalent:

(i) $\text{Spec}(A) \subseteq i\mathbb{R}$.
Norm-normalized bracket flow

Lemma

Let A be with $\|A\| = 1$ and consider $\mu_A(t)$ the norm-normalized bracket flow starting at μ_A. Then the following are equivalent:

(i) μ_A is not an algebraic soliton. (algebraic soliton: $\text{Ric}_\mu = cI + D$, $c \in \mathbb{R}$, $D \in \text{Der}(\mu)$)

(ii) $\frac{d}{dt}\|[A, A^t]\|^2 < 0$.

Theorem

Assume that $A(t_k) \to A_\infty$. Then, A_∞ is an algebraic soliton. Moreover, the following are equivalent:

(i) $\text{Spec}(A) \subseteq i\mathbb{R}$.

(ii) $(G_{\mu_{A_\infty}}, g_{\mu_{A_\infty}})$ is flat.
Negative curvature

If \((M, g)\) we will say that it has negative curvature, and denote it by \(K < 0\), if all sectional curvatures are strictly negative.

If \((g, \langle \cdot, \cdot \rangle)\) is a Lie algebra with an inner product, we will think about sectional curvatures of \((G, g)\).

In the case of \(\mu_A\), we will denote it by \(K_A\).
Question:
Negative curvature

Question: How does the curvature evolve along the Ricci flow?
Negative curvature

Question: How does the curvature evolve along the Ricci flow?

\((M, g)\),
Question: How does the curvature evolve along the Ricci flow?

(M, g), we will say that it has negative curvature,
Question: How does the curvature evolve along the Ricci flow?

(M, g), we will say that it has **negative curvature**, and denote it by $K < 0$,.
Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M,g), we will say that it has negative curvature, and denote it by $K < 0$, if all sectional curvatures are strictly negative.
Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M, g), we will say that it has negative curvature, and denote it by $K < 0$, if all sectional curvatures are strictly negative.

If $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is a Lie algebra with an inner product, we will think about sectional curvatures of (G, g).
Negative curvature

Question: How does the curvature evolve along the Ricci flow?

(M, g), we will say that it has **negative curvature**, and denote it by $K < 0$, if all sectional curvatures are strictly negative.

If $(\mathfrak{g}, \langle \cdot, \cdot \rangle)$ is a Lie algebra with an inner product, we will think about sectional curvatures of (G, g). In the case of μ_A, we will denote it by K_A.
Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature.
Negative curvature

Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{A(t)} < 0, \forall t \geq S$.
Negative curvature

Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{\mu_A(t)} < 0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
Negative curvature

Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{A(t)} < 0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A(t_k) \rightarrow A_{\infty}$, then $\text{Spec}(A_{\infty}) = \alpha_{\infty} \text{Spec}(A)$, $\alpha_{\infty} > 0$.

Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{\mu_A(t)} < 0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A(t_k) \to A_\infty$, then $\text{Spec}(A_\infty) = \alpha_\infty \text{Spec}(A)$, con $\alpha_\infty > 0$.
- As μ_A admits an inner product with $K < 0$, the $\text{Re}(\text{Spec}(A)) > 0$ or $\text{Re}(\text{Spec}(A)) < 0$ ([H]).
Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{\mu_A(t)} < 0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A(t_k) \to A_\infty$, then $\text{Spec}(A_\infty) = \alpha_\infty \text{Spec}(A)$, con $\alpha_\infty > 0$.
- As μ_A admits an inner product with $K < 0$, the $\text{Re}(\text{Spec}(A)) > 0$ or $\text{Re}(\text{Spec}(A)) < 0$ ([H]).
- Then $\text{Re}(\text{Spec}(A_\infty)) > 0$ or $\text{Re}(\text{Spec}(A_\infty)) < 0$, and A_∞ is normal because it is an algebraic soliton.
Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{A(t)} < 0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A(t_k) \to A_\infty$, then $\text{Spec}(A_\infty) = \alpha_\infty \text{Spec}(A)$, con $\alpha_\infty > 0$.
- As μ_A admits an inner product with $K < 0$, the $\text{Re}(\text{Spec}(A)) > 0$ or $\text{Re}(\text{Spec}(A)) < 0$ ([H]).
- Then $\text{Re}(\text{Spec}(A_\infty)) > 0$ or $\text{Re}(\text{Spec}(A_\infty)) < 0$, and A_∞ is normal because it is an algebraic soliton. Then $K_{A_\infty} < 0$.

Finally, it is easy to see that the theorem is true for the norm-normalized bracket flow and then for the bracket flow.
Theorem

Let μ_A be a solvable Lie algebra that admits an inner product with negative curvature. If $\mu_A(t)$ is the bracket flow starting at μ_A, then there exists $S \in \mathbb{N}$ such that $K_{A(t)} < 0, \forall t \geq S$.

Sketch of proof.

- We consider the norm-normalized bracket flow.
- If $A(t_k) \to A_\infty$, then $\text{Spec}(A_\infty) = \alpha_\infty \text{Spec}(A)$, con $\alpha_\infty > 0$.
- As μ_A admits an inner product with $K < 0$, the $\text{Re}(\text{Spec}(A)) > 0$ or $\text{Re}(\text{Spec}(A)) < 0$ ([H]).
- Then $\text{Re}(\text{Spec}(A_\infty)) > 0$ or $\text{Re}(\text{Spec}(A_\infty)) < 0$, and A_∞ is normal because it is an algebraic soliton. Then $K_{A_\infty} < 0$.
- Finally, it is easy to see that the theorem is true for the norm-normalized bracket flow and then for the bracket flow.
Negative curvature

Question:

We consider \((\mu, \lambda, \alpha, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda, \alpha}(e_0, e_i) = \alpha \left(\lambda^{-1} - \lambda \right) e_i, \quad \mu_{\lambda, \alpha}(e_1, e_2) = e_3.
\]

\((\mu, \lambda, \alpha, \langle \cdot, \cdot \rangle)\) is an algebraic soliton \(\iff\)

\[
\alpha = \sqrt{3} \sqrt{2(\lambda^2 + (1 - \lambda)^2 + 1)}.
\]

\[
K(e_1, e_3) = \frac{1}{4} - \frac{3}{2} \lambda \lambda^2 + (1 - \lambda)^2 + 1.
\]

\[
K(e_1, e_3) \geq 0 \iff \lambda \leq 2 - \sqrt{3} \text{ or } \lambda \geq 2 + \sqrt{3}.
\]

If \(0 < \lambda \leq 2 - \sqrt{3}\), then \(0 < 1 - \lambda\) and so

\[
\text{Re}(\text{Spec}(\text{ad}(e_0))) > 0.
\]

Then \(\mu_{\lambda, \alpha}\) admits an inner product with negative curvature (\([H]\)).

Hence, as \((\mu, \lambda, \alpha, \langle \cdot, \cdot \rangle)\) is an algebraic soliton, if \(\mu(t)\) is the bracket flow starting at \(\mu_{\lambda, \alpha}\) then \((G \mu(t), g \mu(t))\) has planes with curvature bigger than or equal to zero.
Negative curvature

Question: Is the same true in the general case?
Negative curvature

Question: Is the same true in the general case?

We consider \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:
Negative curvature

Question: Is the same true in the general case?

We consider \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda,\alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda \\ 1 - \lambda & 1 \end{pmatrix} e_i, \quad \mu_{\lambda,\alpha}(e_1, e_2) = e_3.
\]
Negative curvature

Question: Is the same true in the general case?

We consider \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda,\alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda \\ 1 & 1 \end{pmatrix} e_i, \quad \mu_{\lambda,\alpha}(e_1, e_2) = e_3.
\]

\((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) is an algebraic soliton \(\Leftrightarrow\) \(\alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2+(1-\lambda)^2+1)}}\).
Negative curvature

Question: Is the same true in the general case?

We consider \((\mu_{\lambda, \alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda, \alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda \end{pmatrix} e_i, \quad \mu_{\lambda, \alpha}(e_1, e_2) = e_3.
\]

\((\mu_{\lambda, \alpha}, \langle \cdot, \cdot \rangle)\) is an algebraic soliton \(\iff\) \(\alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2+(1-\lambda)^2+1)}}\).

\[
K(e_1, e_3) = \frac{1}{4} - \frac{3\lambda}{\lambda^2+(1-\lambda)^2+1}.
\]
Negative curvature

Question: Is the same true in the general case?

We consider $(\mu, \alpha, \langle \cdot, \cdot \rangle)$ defined as follows:

$$
\mu_{\lambda, \alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda & \frac{1}{1} \\
1 & 1 & 1
\end{pmatrix} e_i, \quad \mu_{\lambda, \alpha}(e_1, e_2) = e_3.
$$

$(\mu_{\lambda, \alpha}, \langle \cdot, \cdot \rangle)$ is an algebraic soliton $\iff \alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1-\lambda)^2 + 1)}}$.

$$
K(e_1, e_3) = \frac{1}{4} - \frac{3\lambda}{\lambda^2 + (1-\lambda)^2 + 1}.
$$

$$
K(e_1, e_3) \geq 0 \iff \lambda \leq 2 - \sqrt{3} \quad \text{or} \quad \lambda \geq 2 + \sqrt{3}.
$$
Negative curvature

Question: Is the same true in the general case?

We consider \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda,\alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda \\ 1 - \lambda & 1 \end{pmatrix} e_i, \quad \mu_{\lambda,\alpha}(e_1, e_2) = e_3.
\]

\((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) is an algebraic soliton \(\iff\) \(\alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2 + (1 - \lambda)^2 + 1)}}\).

\[
K(e_1, e_3) = \frac{1}{4} - \frac{3\lambda}{\lambda^2 + (1 - \lambda)^2 + 1}.
\]

\[K(e_1, e_3) \geq 0 \iff \lambda \leq 2 - \sqrt{3} \text{ \ or \ } \lambda \geq 2 + \sqrt{3}.
\]

If \(0 < \lambda \leq 2 - \sqrt{3}\), then \(0 < 1 - \lambda\) and so \(\text{Re}(\text{Spec}(\text{ad}(e_0)))) > 0\).
Negative curvature

Question: Is the same true in the general case?
We consider \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda,\alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda \\ 1 & 1 \end{pmatrix} e_i, \quad \mu_{\lambda,\alpha}(e_1, e_2) = e_3.
\]

\((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) is an algebraic soliton \(\iff\) \(\alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2+(1-\lambda)^2+1)}}\).

\[
K(e_1, e_3) = \frac{1}{4} - \frac{3\lambda}{\lambda^2+(1-\lambda)^2+1}.
\]

\[
K(e_1, e_3) \geq 0 \iff \lambda \leq 2 - \sqrt{3} \quad \text{or} \quad \lambda \geq 2 + \sqrt{3}.
\]

If \(0 < \lambda \leq 2 - \sqrt{3}\), then \(0 < 1 - \lambda\) and so \(\text{Re}(\text{Spec}(\text{ad}(e_0)))) > 0\). Then \(\mu_{\lambda,\alpha}\) admits an inner product with negative curvature ([H]).
Negative curvature

Question: Is the same true in the general case?

We consider \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) defined as follows:

\[
\mu_{\lambda,\alpha}(e_0, e_i) = \alpha \begin{pmatrix} \lambda & 1 - \lambda \\ 1 & 1 \end{pmatrix} e_i, \quad \mu_{\lambda,\alpha}(e_1, e_2) = e_3.
\]

\((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) is an algebraic soliton \(\iff\) \(\alpha = \frac{\sqrt{3}}{\sqrt{2(\lambda^2+(1-\lambda)^2+1)}}\).

\[
K(e_1, e_3) = \frac{1}{4} - \frac{3\lambda}{\lambda^2+(1-\lambda)^2+1}.
\]

\[
K(e_1, e_3) \geq 0 \iff \lambda \leq 2 - \sqrt{3} \quad \text{or} \quad \lambda \geq 2 + \sqrt{3}.
\]

If \(0 < \lambda \leq 2 - \sqrt{3}\), then \(0 < 1 - \lambda\) and so \(\text{Re}(\text{Spec}(\text{ad}(e_0))) > 0\). Then \(\mu_{\lambda,\alpha}\) admits an inner product with negative curvature ([H]). Hence, as \((\mu_{\lambda,\alpha}, \langle \cdot, \cdot \rangle)\) is an algebraic soliton, if \(\mu(t)\) is the bracket flow starting at \(\mu_{\lambda,\alpha}\) then \((G_{\mu(t)}, g_{\mu(t)})\) has planes with curvature bigger than or equal to zero.
Question:
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative?
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed...
Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha,\lambda}$.

Negative curvature
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha,\lambda}$.

\[
\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & 1 - \lambda \\ 1 & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,
\]
Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha,\lambda}$.

$$
\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix}
\lambda \\
1 - \lambda \\
1
\end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,
$$

with $\alpha(t) = \frac{1}{\sqrt{2c_\lambda t + \alpha^{-2}}}$ and $h(t) = \frac{1}{\sqrt{3t+1}}$.
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha,\lambda}$.

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & 1 - \lambda \\ 0 & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with $\alpha(t) = \frac{1}{\sqrt{2c_\lambda t+\alpha^{-2}}}$ and $h(t) = \frac{1}{\sqrt{3t+1}}$. For each t, we have that

$$K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_\lambda t+\alpha_0^{-2}}$$
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha,\lambda}$.

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & 1 - \lambda \\ 1 & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t) e_3,$$

with $\alpha(t) = \frac{1}{\sqrt{2c_\lambda t + \alpha_0^{-2}}}$ and $h(t) = \frac{1}{\sqrt{3t + 1}}$. For each t, we have that

$$K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t + 1)} - \frac{\lambda}{2c_\lambda t + \alpha_0^{-2}}$$

$$K(e_1, e_3) \geq 0 \iff (2c_\lambda - 12\lambda)t \geq 4\lambda - \alpha_0^{-2}.$$
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha,\lambda}$.

$$
\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & 1 - \lambda \\ 1 - \lambda & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,
$$

with $\alpha(t) = \frac{1}{\sqrt{2c_\lambda t + \alpha^{-2}}}$ and $h(t) = \frac{1}{\sqrt{3t+1}}$. For each t, we have that

$$
K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_\lambda t + \alpha_0^{-2}}
$$

$$
K(e_1, e_3) \geq 0 \iff (2c_\lambda - 12\lambda)t \geq 4\lambda - \alpha_0^{-2}.
$$
For sufficiently large α, $\mu_{\alpha,\lambda}$ has a negative curvature ([H])
Negative curvature

Question: What happens with the Ricci flow when we start with a metric whose sectional curvatures are all negative? Let λ be fixed and we consider $\mu(t)$ starting at $\mu_{\alpha, \lambda}$.

$$\mu(t)(e_0, e_i) = \alpha(t) \begin{pmatrix} \lambda & 1 - \lambda \\ 1 - \lambda & 1 \end{pmatrix} e_i, \quad \mu(t) = h(t)e_3,$$

with $\alpha(t) = \frac{1}{\sqrt{2c_\lambda t + \alpha^2}}$ and $h(t) = \frac{1}{\sqrt{3t+1}}$. For each t, we have that

$$K(e_1, e_3) = \frac{h^2}{4} - \lambda \alpha^2 = \frac{1}{4(3t+1)} - \frac{\lambda}{2c_\lambda t + \alpha_0^{-2}}$$

$$K(e_1, e_3) \geq 0 \iff (2c_\lambda - 12\lambda)t \geq 4\lambda - \alpha_0^{-2}.$$

For sufficiently large α, $\mu_{\alpha, \lambda}$ has a negative curvature ([H]) but if $0 < \lambda \leq 2 - \sqrt{3}$ then from some t_0, $K(e_1, e_3) \geq 0, \forall t \geq t_0$.

¡Thank you for your attention!
E. Heintze, On homogeneous manifolds of negative curvature, *Math. Ann.* **211**, (1974), 23-34.

J. Lauret, Ricci soliton solvmanifolds, *J. reine angew. Math.* **650**, (2011), 1 - 21.

J. Lauret, Convergence of homogeneous manifolds, *J. London Math. Soc.*, en prensa (arXiv:1105.2082).

J. Lauret, Ricci flow of homogeneous manifolds, arXiv:1112.5900 v2.