CACNA1S gene
calcium voltage-gated channel subunit alpha1 S

Normal Function

The CACNA1S gene provides instructions for making the main piece (subunit) of a structure called a calcium channel. Channels containing the CACNA1S protein are found in muscles used for movement (skeletal muscles). These skeletal muscle calcium channels play a key role in a process called excitation-contraction coupling, by which electrical signals (excitation) trigger muscle tensing (contraction).

Calcium channels made with the CACNA1S subunit are located in the outer membrane of muscle cells, so they can transmit electrical signals from the cell surface to inside the cell. The channels interact with another type of calcium channel called ryanodine receptor 1 (RYR1) channels (produced from the RYR1 gene). RYR1 channels are located in the membrane of a structure inside the cell that stores calcium ions. Signals transmitted by CACNA1S-containing channels turn on (activate) RYR1 channels, which then release calcium ions inside the cells. The resulting increase in calcium ion concentration within muscle cells stimulates muscles to contract, allowing the body to move.

Health Conditions Related to Genetic Changes

Hypokalemic periodic paralysis

At least 11 mutations in the CACNA1S gene have been identified in people with hypokalemic periodic paralysis, a condition that causes episodes of extreme muscle weakness, usually in the arms and legs. CACNA1S gene mutations cause up to 70 percent of all cases of this disorder.

Mutations in the CACNA1S gene change single protein building blocks (amino acids) used to make the CACNA1S protein, which alters the structure and function of calcium channels in skeletal muscle cells. The altered channels open more slowly than usual, reducing the flow of calcium ions into these cells. This disruption in calcium ion transport prevents muscles from contracting normally. It is unclear precisely how these changes lead to episodes of muscle weakness in people with hypokalemic periodic paralysis.

Malignant hyperthermia

CACNA1S gene mutations account for a very small percentage of all cases of malignant hyperthermia. Malignant hyperthermia is a severe reaction to particular anesthetic drugs that are often used during surgery and other invasive procedures. The reaction involves a high fever (hyperthermia), a rapid heart rate, muscle rigidity,
breakdown of muscle fibers (rhabdomyolysis), and increased acid levels in the blood and other tissues (acidosis). Complications can be life-threatening without prompt treatment. Researchers have identified several mutations in the CACNA1S gene that are associated with an increased risk of this condition. These mutations replace single amino acids in the CACNA1S protein.

Channels made with the altered CACNA1S proteins likely activate the RYR1 channel improperly in response to certain drugs (particularly some anesthetics and a type of muscle relaxant used during surgery). As a result, large amounts of calcium ions are released from storage within muscle cells. An overabundance of calcium ions activates processes that generate heat (leading to increased body temperature) and produce excess acid (leading to acidosis). An increase in calcium ion concentration also causes skeletal muscles to contract abnormally, which leads to muscle rigidity.

Chromosomal Location

Cytogenetic Location: 1q32.1, which is the long (q) arm of chromosome 1 at position 32.1

Molecular Location: base pairs 201,039,509 to 201,112,453 on chromosome 1 (Homo sapiens Updated Annotation Release 109.20200522, GRCh38.p13) (NCBI)

![Chromosomal location diagram](Image)

Credit: Genome Decoration Page/NCBI

Other Names for This Gene

- CAC1S_HUMAN
- CACH1
- CACN1
- CACNL1A3
- calcium channel, voltage-dependent, L type, alpha 1S subunit
- Cav1.1
- CCHL1A3
- DHPR
- dihydropyridine receptor
• dihydropyridine-sensitive L-type calcium channel alpha-1 subunit
• HOKPP
• HypoKPP
• hypoPP
• MHS5
• Voltage-dependent L-type calcium channel subunit alpha-1S
• voltage-gated calcium channel subunit alpha Cav1.1

Additional Information & Resources

Educational Resources
• Basic Neurochemistry (sixth edition, 1999): Ca2+ channel mutations produce hypokalemic periodic paralysis
 https://www.ncbi.nlm.nih.gov/books/NBK28162/#A3041
• Eurekah Bioscience Collection: High Voltage-Activated Ca2+ Channels
 https://www.ncbi.nlm.nih.gov/books/NBK6181/#A30865
• Molecular Cell Biology (fourth edition, 2000): Muscle: A Specialized Contractile Machine
 https://www.ncbi.nlm.nih.gov/books/NBK21670/
• National Human Genome Research Institute: The Genomic Services Research Program (GSRP): Study of People with Unexpected Genetic Results
 https://www.genome.gov/Current-NHGRI-Clinical-Studies/Genomic-Services-Research-Program
• Neuromuscular Disease Center, Washington University
 https://neuromuscular.wustl.edu/mother/chan.html#ca

Clinical Information from GeneReviews
• Hypokalemic Periodic Paralysis
 https://www.ncbi.nlm.nih.gov/books/NBK1338
• Malignant Hyperthermia Susceptibility
 https://www.ncbi.nlm.nih.gov/books/NBK1146

Scientific Articles on PubMed
• PubMed
 https://www.ncbi.nlm.nih.gov/pubmed?term=%28CACNA1S%5BTIAB%5D%29+OR+%28%28CACNL1A3%5BTIAB%5D%29+OR+%28CCHL1A3%5BTIAB%5D%29+OR+%28dihydropyridine+receptor%5BTIAB%5D%29+OR+%28HOKPP%5BTIAB%5D%29+OR+%28CACH1%5BTIAB%5D%29%29+AND+english%5Bla%5D+AND+human%5Bmh%5D+AND+%22last+1800+days%22+AND+%5Bbp%5D
Catalog of Genes and Diseases from OMIM

- CALCIUM CHANNEL, VOLTAGE-DEPENDENT, L TYPE, ALPHA-1S SUBUNIT
 http://omim.org/entry/114208

Research Resources

- Atlas of Genetics and Cytogenetics in Oncology and Haematology
 http://atlasgeneticsoncology.org/Genes/GC_CACNA1S.html

- ClinVar
 https://www.ncbi.nlm.nih.gov/clinvar?term=CACNA1S%5Bgene%5D

- HGNC Gene Symbol Report
 https://www.genenames.org/data/gene-symbol-report/#!/hgnc_id/HGNC:1397

- Monarch Initiative
 https://monarchinitiative.org/gene/NCBIGene:779

- NCBI Gene
 https://www.ncbi.nlm.nih.gov/gene/779

- UniProt
 https://www.uniprot.org/uniprot/Q13698

Sources for This Summary

- Fouad G, Dalakas M, Servidei S, Mendell JR, Van den Bergh P, Angelini C, Alderson K, Griggs RC, Tawil R, Gregg R, Hogan K, Powers PA, Weinberg N, Malonee W, Ptácek LJ. Genotype-phenotype correlations of DHP receptor alpha 1-subunit gene mutations causing hypokalemic periodic paralysis. Neuromuscul Disord. 1997 Jan;7(1):33-8. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9132138

- Lehmann-Horn F, Jurkat-Rott K, Rüdel R. Periodic paralysis: understanding channelopathies. Curr Neurol Neurosci Rep. 2002 Jan;2(1):61-9. Review. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11898585

- Miller TM, Dias da Silva MR, Miller HA, Kwiecinski H, Mendell JR, Tawil R, McManis P, Griggs RC, Angelini C, Servidei S, Petajan J, Dalakas MC, Ranum LP, Fu YH, Ptácek LJ. Correlating phenotype and genotype in the periodic paralyses. Neurology. 2004 Nov 9;63(9):1647-55. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15534250

- Monnier N, Procaccio V, Stieglitz P, Lunardi J. Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet. 1997 Jun;60(6):1316-25. Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/9199552 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716149/

- Rosenberg H, Sambuughin N, Riazi S, Dirksen R. Malignant Hyperthermia Susceptibility. 2003 Dec 19 [updated 2013 Jan 31]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. Available from http://www.ncbi.nlm.nih.gov/books/NBK1146/ Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301325
• Stewart SL, Hogan K, Rosenberg H, Fletcher JE. Identification of the Arg1086His mutation in the alpha subunit of the voltage-dependent calcium channel (CACNA1S) in a North American family with malignant hyperthermia. Clin Genet. 2001 Mar;59(3):178-84.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11260227

• Venance SL, Cannon SC, Fialho D, Fontaine B, Hanna MG, Ptacek LJ, Tristani-Firouzi M, Tawil R, Griggs RC; CINCH investigators. The primary periodic paralyses: diagnosis, pathogenesis and treatment. Brain. 2006 Jan;129(Pt 1):8-17. Epub 2005 Sep 29. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/16195244

• Vicart S, Sternberg D, Arzel-Hézode M, Franques J, Bendahhou S, Lory P, Hainque B, Fournier E, Nicole S, Fontaine B. Hypokalemic Periodic Paralysis. 2002 Apr 30 [updated 2014 Jul 31]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, Stephens K, editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2017. Available from http://www.ncbi.nlm.nih.gov/books/NBK1338/
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/20301512

• Wang Q, Liu M, Xu C, Tang Z, Liao Y, Du R, Li W, Wu X, Wang X, Liu P, Zhang X, Zhu J, Ren X, Ke T, Wang Q, Yang J. Novel CACNA1S mutation causes autosomal dominant hypokalemic periodic paralysis in a Chinese family. J Mol Med (Berl). 2005 Mar;83(3):203-8. Epub 2005 Feb 22.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/15726306
 Free article on PubMed Central: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1579762/

• Yamakage M, Namiki A. Calcium channels--basic aspects of their structure, function and gene encoding; anesthetic action on the channels--a review. Can J Anaesth. 2002 Feb;49(2):151-64. Review.
 Citation on PubMed: https://www.ncbi.nlm.nih.gov/pubmed/11823393

Reprinted from Genetics Home Reference:
https://ghr.nlm.nih.gov/gene/CACNA1S

Reviewed: March 2020
Published: August 17, 2020

Lister Hill National Center for Biomedical Communications
U.S. National Library of Medicine
National Institutes of Health
Department of Health & Human Services