Extensively Drug-Resistant \textit{Escherichia coli} Sequence Type 1642 Carrying an IncX3 Plasmid Containing the \textit{bla}_{KPC-2} Gene Associated with Transposon Tn4401a

Seri Jeong, M.D., Jung Ok Kim, B.S., Eun-Jeong Yoon, Ph.D., Il Kwon Bae, Ph.D., Woonhyoung Lee, M.D., Hyukmin Lee, M.D., Yongju Park, M.D., Kyungwon Lee, M.D., and Seok Hoon Jeong, M.D.

Department of Laboratory Medicine, Kosin University College of Medicine, Busan; Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul; Department of Dental Hygiene, College of Medical and Life Science, Shilla University, Busan; Department of Laboratory Medicine, National Health Insurance Service Ilsan Hospital, Ilsan, Korea

Background: Extensively drug-resistant (XDR) \textit{Enterobacteriaceae} carrying the \textit{bla}_{KPC} gene have emerged as a major global therapeutic concern. The purpose of this study was to analyze the complete sequences of plasmids from KPC-2 carbapenemase-producing XDR \textit{Escherichia coli} sequence type (ST) 1642 isolates.

Methods: We performed antimicrobial susceptibility testing, PCR, multilocus sequence typing (MLST), and whole-genome sequencing to characterize the plasmid-mediated KPC-2-producing \textit{E. coli} clinical isolates.

Results: The isolates were resistant to most available antibiotics, including meropenem, ampicillin, ceftriaxone, gentamicin, and ciprofloxacin, but susceptible to tigecycline and colistin. The isolates were identified as the rare ST1642 by MLST. The isolates carried four plasmids: the first 69-kb conjugative IncX3 plasmid harbors \textit{bla}_{KPC-2} within a truncated Tn4401a transposon and \textit{bla}_{SHV-11} with duplicated conjugative elements. The second 142-kb plasmid with a multireplicon consisting of IncQ, IncFIA, and IncIB carries \textit{bla}_{TEM-1b} and two class 1 integrons. This plasmid also harbors a wide variety of additional antimicrobial resistance genes including \textit{aadA5}, \textit{dfrA17}, \textit{mph(A)}, \textit{sul1}, \textit{tet(B)}, \textit{aac(3')-IId}, \textit{strA}, \textit{strB}, and \textit{sul2}.

Conclusions: The complete sequence analysis of plasmids from an XDR \textit{E. coli} strain related to persistent infection showed the coexistence of a \textit{bla}_{KPC-2}–carrying IncX3-type plasmid and a class 1 integron-harboring multireplicon, suggesting its potential to cause outbreaks. Of additional clinical significance, the rare ST1642, identified in a cat, could constitute the source of human infection.

Key Words: \textit{Escherichia coli}, ST1642, \textit{bla}_{KPC}, Tn4401a, IncX3

INTRODUCTION

\textit{Klebsiella pneumoniae} carbapenemase (KPC) is the most common class A carbapenemase in the world; the extensive spread of KPC-producing \textit{Enterobacteriaceae} has become a major therapeutic concern in clinical settings [1]. To date, a total of 21 KPC variants (KPC-2 to KPC-22) have been identified; of these, KPC-2 and KPC-3 are the most prevalent [1]. KPCs are found predominately in \textit{K. pneumoniae} and less frequently in \textit{Escherichia coli} [1, 2]. Similar to other acquired antimicrobial resistance determinants, the \textit{bla}_{KPC} gene is disseminated by two means: 1) clonal spread of bacteria carrying the gene, and 2) horizontal transfer of the gene carried on mobile elements such as plasmids and transposons [1, 2].
Molecular epidemiological studies on KPC-producing *E. coli* by multilocus sequence typing (MLST) have revealed that sequence type (ST) 131 strains are the most pervasive, followed by ST410, and less frequently ST69, ST93, ST167, ST354, and ST3948 strains [3-6]. In *E. coli* isolates, both *bla*KPC-2 and *bla*KPC-3 genes are prevalent, while *bla*KPC-4 is rarely identified [4]. The *bla*KPC-3 gene is carried by IncFIA-, IncFIIk-, IncN-, and IncA/C-type plasmids in the USA; IncN-, IncA/C- and IncF-type plasmids in China; an IncFIIA-type plasmid in France; an IncFIIk-type plasmid in Greece; and IncFIIks-, IncN-, and IncHI2- plasmids in Israel; while the *bla*KPC-3 gene is associated with IncFIA-, IncFIIk-, IncN-, and IncA/C-type plasmids in the USA; an IncFIIk-type plasmid in Italy; IncFIIk-, IncA/C-, and ColE-type plasmids in Spain; and IncFIIks-, IncN-, and IncHI2-plasmids in Israel [4, 6]. Although an IncX3-type plasmid is prevalent in *K. pneumoniae* carrying the *bla*KPC gene [7], it has rarely been reported in *E. coli*.

The highly mobile Tn3-based transposon Tn4401 facilitates dissemination of the *bla*KPC gene [8]. Tn4401 is comprised of *tnpA* (transposase), *tnpR* (resolvase), and two insertion sequences (ISs), ISKpn7 and ISKpn6, as well as the *bla*KPC gene. The 10-kb transposon has 39-bp imperfect left- and right-inverted repeats and is flanked by 5-bp direct repeats [9]. Seven Tn4401 iso-forms, Tn4401a to Tn4401g, have been identified; these are differentiated based on the size (68- to 255-bp) of the deletion between ISKpn7 and *bla*KPC compared with the prototype Tn4401b [10].

Here, we investigated the plasmids present in KPC-producing *E. coli* clinical isolates to elucidate the mechanisms underlying the acquisition of multi-drug resistance, including resistance to carbapenems.

METHODS

1. Patient description

An 85-year-old woman with a history of hypertension was transferred from Hyemin general hospital (Seoul, Korea) to Gangnam Severance hospital (Seoul, Korea) in January 2014 for the management of her cerebral hemorrhage. Brain computed tomography and magnetic resonance imaging revealed a subacute intracerebral hemorrhage in the right thalamus. The patient complained of urinary frequency and retention, and a fever of over 38.6°C developed on the 8th day post admission. An *E. coli* isolate (EcU443) was recovered from a urinary specimen on the 8th day, and subsequent *E. coli* isolates (EcU213 on the 18th day and EcU120 on the 42nd day) were serially recovered from urinary specimens.

2. Bacterial isolates and antimicrobial susceptibility testing

This study involved two *E. coli* clinical isolates, EcU443 and EcU120, serially recovered from urinary specimens of a patient with a 34-day interval. The isolates were identified as *E. coli* by matrix-assisted laser desorption ionization-time of flight mass spectrometry (Bruker Daltonics GmbH, Leipzig, Germany). Antimicrobial susceptibilities were determined using VITEK 2 AST N211 cards (bioMérieux Vitex Inc., Hazelwood, MO, USA) and disk diffusion tests on Mueller-Hinton agar (Oxoid Ltd., Basingstoke, UK) according to the CLSI guidelines [11]. Carbapenemase production was confirmed using the KPC+MBL Confirm ID Kit (Rosco Diagnostica, Taastrup, Denmark) with tablets containing meropenem (10 μg) alone or supplemented with dipicolinic acid (1,000 μg), phenylboronic acid (400 μg), and cloxacillin (750 μg) [12].

3. Genotyping of β-lactamas

The genomic DNA of each isolate was extracted by the boiling lysis method [13]. PCR was performed to detect genes encoding extended-spectrum β-lactamas (CTX-M-1, CTX-M-9, TEM-, and SHV-type) and carbapenemases (IMP-1-type, VIM-2-type, NDM, KPC, GES, and OXA-48-like), as previously described [14]. Both strands of the amplicons were sequenced using an automatic sequencer (model 3730x; Applied Biosystems, Weyersstake, UK) according to the CLSI guidelines. Both the MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) to identify allelic types and STs.

4. Multilocus sequence typing

MLST was carried out using partial sequences of seven *E. coli* housekeeping genes, including *adk*, *fumC*, *gyrB*, *icd*, *mdh*, *purA*, and *recA*. Nucleotide sequences were compared with those in the MLST database (http://mlst.warwick.ac.uk/mlst/dbs/Ecoli) to identify allelic types and STs.

5. Bacterial conjugation

E. coli strain EcU443 was used as the donor and sodium azide-resistant *E. coli* J53 was used as the recipient for the standard agar mating method [15]. Following overnight mating at 37°C on brain-heart infusion (BHI; MB cell, Los Angeles, CA, USA) agar, transconjugants were selected on BHI supplemented with 100 μg/mL sodium azide and 0.5 μg/mL imipenem.
6. Whole genome sequencing
The complete DNA sequences of the plasmids present in EcU443 were obtained via Single-Molecule Real-Time sequencing on a PacBio RSII instrument (Pacific Biosciences, Menlo Park, CA, USA), according to the manufacturer's instructions. The sequences were annotated using Prokka 1.11 (http://www.vicbioinformatics.com/software.prokka.shtml). Resistance genes, IS elements, replication origins, virulent elements, and toxins and anti-toxin systems were identified using ResFinder (https://cge.cbs.dtu.dk/services/ResFinder/), IS-finder (https://www-is.biotoul.fr/), the Virulence Factor Database (http://www.mgc.ac.cn/VFs/), and TA Finder 1.0 (http://202.120.12.133/TAFinder/index.php), respectively.

7. GenBank accession numbers
Nucleotide sequence data for plasmids pECSEV_01 and pECSEV_02 are available under GenBank accession numbers KX683283 and KX683284, respectively.

RESULTS
1. Antimicrobial susceptibilities and molecular typing
The antimicrobial susceptibility profiles of the clinical E. coli strains are presented in Table 1. The isolates exhibited resistance to most antibiotics tested, including meropenem, ampicillin, ceftriaxone, gentamicin, and ciprofloxacin, but were susceptible to tigecycline and colistin. Phenotypic carbapenemase differentiation tests showed positive results for KPC production in both isolates (EcU443 and EcU120; Table 2). The MLST assay

Antibiotics	MIC (mg/L)	Antibiotics	Zone diameter (mm)	Interpretation
	EcU443	EcU213	EcU120	
AMP	≥ 32	≥ 32	≥ 32	AMP 6 10 R
SAM	≥ 32	≥ 32	≥ 32	SAM 6 6 R
TAZ	≥ 128	≥ 128	≥ 128	PIP 10 10 R
ATM	≥ 64	≥ 64	≥ 64	TIC 10 10 R
CAZ	4	4	16	CR0 15 16 R
GEN	≥ 16	≥ 16	≥ 16	GEN 7 7 R
LVX	≥ 8	≥ 8	≥ 8	CIP 6 6 R
CFZ	≥ 64	≥ 64	≥ 64	IMP 20 19 I
MEM	≥ 16	≥ 16	≥ 16	MEM 20 20 I
ERM	4	4	≥ 8	ERM 17 17 R
CTR	≥ 320	≥ 320	≥ 320	CST 14 15 -
TGC	≤ 0.5	≤ 0.5	≤ 0.5	TGC 24 24 -

*The breakpoints were applied according to the Clinical and Laboratory Standards Institute (CLSI) guidelines; the resistance values are in bold; †EcU443, EcU213, and EcU120 were isolated on the 8th, 18th, and 42nd day post admission, respectively; ‡The EcU443 disk diffusion tests results were interpreted according to the CLSI guidelines; the results for colistin and tigecycline are not shown because of the lack of suggested breakpoints.

Table 2. Results of carbapenemase differentiation tests and sequence types of Escherichia coli isolates

E. coli isolates*	Carbenapenemase differentiation test	MLST					
	MEM+DPA	MEM+PBA					
	MEM+CLX	ST					
	adk	fumC	gyrB	icd	mdh	purA	recA
EcU443	19	24	20				
EcU120	20	25	21				

*EcU443 and EcU120 were isolated on the 8th and 42nd day post admission, respectively; †A difference between MEM+PBA and MEM > 5 mm indicated KPC production.

Abbreviations: CLX, claxocillin; DPA, dipicolinic acid; MEM, meropenem; MLST, Multilocus sequence typing; PBA, phenylboronic acid.
assigned both isolates as an identical ST1642 (6-4-5-18-11-8-6). PCR and sequencing for β-lactamase genes demonstrated the presence of blaKPC-2, blaSHV-11, and blaTEM-1 in both isolates.

2. Plasmids pECSEV_01 and pECSEV_02

E. coli strain EcU443 had a 4,769,071-bp chromosome and four plasmids. The chromosome did not contain any acquired antimicrobial resistance determinants. The 69,409-bp IncX3 plasmid (pECSEV_01) carried blaKPC-2 and blaSHV-11 for β-lactam resistance; the 142,708-bp multireplicon (IncFIA, IncFIB, and IncQ) plasmid (pECSEV_02) included strA, strB, aadA5, and aac(3)-IId for aminoglycoside resistance, and repB for β-lactam resistance. The repB gene belonged to the IncX3 incompatibility type. The remaining sections of pECSEV_01 consisted of duplicated type IV secretion systems and conjugative elements.

Plasmid pECSEV_02 possessed three replication origins for the IncFIA, IncFIB, and IncQ groups (Fig. 2). The plasmid carried two identical copies of a class 1 integron, In54, containing the dfrA17-aadA5-emrE gene cassettes for trimethoprim-, aminoglycosides-, and multidrug-resistance, as well as a truncated Tn3 transposon harboring blaTEM-12. The macB, mph(A), aac(3)-IId, strA, strB, and tet(B) drug resistance genes were also identified. In addition to drug-resistance determinants, pECSEV_02 also included a virulence gene cluster containing the iucA, iucB, iucC, iucD, and iutA genes involved in hydroxamate siderophore aerobactin synthesis and two toxin/antitoxin systems, vapBC and ccdAB.
DISCUSSION

E. coli clinical isolates EcU443 and EcU120 were serially recovered from urinary specimens of a patient with a 34-day interval. Both strains belong to ST1642, exhibit resistance or intermediate resistance to all classes of antimicrobial agents tested, except for tigecycline and colistin, and possess the *bla*KPC-2, *bla*SHV-11, and *bla*TEM-1 β-lactamase genes, indicating that this clone was responsible for the persistent infection in the patient over the 34 days. To the best of our knowledge, *E. coli* ST1642, first isolated from a pet cat as an extraintestinal pathogenic strain [16], has not been previously reported as a KPC-producer. Although ST131 strains are the most frequently identified in KPC-producer *E. coli* infections [17], three cases of KPC-2-producer infections due to ST69, ST393, and a new *E. coli* ST were recently identified in Busan [18]. The three *E. coli* strains carried an IncX3 plasmid similar to that in our strains, although the *E. coli* strains were epidemiologically unrelated.

E. coli strain EcU443 possesses four plasmids. The *bla*KPC-2 gene is on IncX3 plasmid pECSEV_01 containing the *bla*SHV-11 gene. The plasmid showed 99% identity with IncX3 plasmid pKps90 from a *K. pneumoniae* ST258 strain (GenBank accession number JX461340) isolated from a blood culture during a hospital outbreak in France [19]. In pECSEV_01, the truncated Tn4401a carrying the *bla*KPC-2 gene is integrated in the opposite direction, but at the same location as in pKps90. The truncated Tn4401a has also been found in IncX3 plasmid pKPC_Kp01 from a clinical *K. pneumoniae* isolate responsible for a hospital outbreak in Busan [18].

Plasmid pECSEV_02, containing multiple replications of IncFIA, IncFIB, and IncQ, carries various genes conferring resistance to diverse classes of antimicrobial agents. Interestingly, pECSEV_02 harbors two identical copies of class 1 integron In54. An *Enterobacter cloacae* strain carrying multiple non-identical class 1 integrons in a plasmid has been identified [20]. Plasmid pECSEV_02 also carries genes for virulence factors and for toxin/antitoxin systems that can enhance bacterial fitness in a human host, thus explaining its long persistence in the patient. The third plasmid, pECSEV_03, also contributed to the extensively drug-resistant (XDR) *E. coli* via *bla*TEM-1b and qnrS1.

This study reports a persistent infection case caused by an XDR *E. coli* ST1642 strain carrying an IncX3 plasmid containing *bla*KPC-2 associated with a truncated Tn4401a transposon and a plasmid with multireplications of IncQ, IncFIA, and IncFIB, which contains genes conferring resistance to multiple classes of antimicrobial agents. Sporadic or epidemic infection cases caused by KPC-producers have been increasingly reported in Korea; the *bla*KPC genes are spreading to *K. pneumoniae* as well as other...
species in the family Enterobacteriaceae, including E. coli, via R plasmids. Further studies are needed to investigate the current status of KPC-producers in Korea.

Authors’ Disclosure of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.

Acknowledgements

This study was supported by the Research Program funded by the Korea Centers for Disease Control and Prevention (2016-ER230100).

REFERENCES

1. Lee CR, Lee JH, Park KS, Kim YB, Jeong BC, Lee SH. Global dissemination of carbapenemase-producing Klebsiella pneumoniae: epidemiology, genetic context, treatment options, and detection methods. Front Microbiol 2016;7:895.

2. Chen YT, Lin JC, Fung CP, Lu PL, Chuang YC, Wu TL, et al. KPC-2-encoding plasmids from Escherichia coli and Klebsiella pneumoniae in Taiwan. J Antimicrob Chemother 2014;69:628-31.

3. Adler A, Miller-Roll T, Assous MV, Geffen Y, Paikin S, Schwartz D, et al. A multicenter study of the clonal structure and resistance mechanism of KPC-producing Escherichia coli isolates in Israel. Clin Microbiol Infect 2015;21:230-5.

4. Piazza A, Callagione M, Bitar I, Nucleo E, Spalla M, Fogato E, et al. Emergence of Escherichia coli Sequence Type 131 (ST131) and ST3948 with KPC-2, KPC-3 and KPC-8 carbapenemases from a Long-Term Care and Rehabilitation Facility (LTCRF) in Northern Italy. Adv Exp Med Biol 2016;901:77-89.

5. Chavda KD, Chen L, Jacobs MR, Bonomo RA, Kreiswirth BN. Molecular diversity and plasmid analysis of KPC-producing Escherichia coli. Antimicrob Agents Chemother 2016;60:4073-81.

6. Xu G, Jiang Y, An W, Wang H, Zhang X. Emergence of KPC-2-producing Escherichia coli isolates in an urban river in Harbin, China. World J Microbiol Biotechnol 2015;31:1443-50.

7. Johnson TJ, Bielak EM, Fortini D, Hansen LH, Hasman H, Debroy C, et al. Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 2012;68:43-50.

8. He S, Chandler M, Varani AM, Hickman AB, Dekker JP, Dyda F. Mechanisms of evolution in high-consequence drug resistance plasmids. MBio 2016;7:e01987-16.

9. Naas T, Cuzon G, Villegas MV, Larigue MF, Quinn JP, Nordmann P. Genetic structures at the origin of acquisition of the β-lactamase blaKPC gene. Antimicrob Agents Chemother 2008;52:1257-63.

10. Naas T, Cuzon G, Truong HV, Nordmann P. Role of ISKpn7 and deletions in blaKPC gene expression. Antimicrob Agents Chemother 2012;56:4753-9.

11. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial susceptibility testing. Twenty-sixth informational supplement, M100-S26. Wayne, PA: National Committee for Clinical Laboratory Standards, 2016.

12. Kim MN, Yong D, An D, Chung HS, Woo JH, Lee K, et al. Nosocomial clustering of KPC producing Klebsiella pneumoniae sequence type 340 strains in four patients at a South Korean tertiary care hospital. J Clin Microbiol 2012;50:1433-6.

13. Chen L, Mediavilla JR, Endimiani A, Rosenthal ME, Zhao Y, Bonomo RA, et al. Multiplex real-time PCR assay for detection and classification of Klebsiella pneumoniae carbapenemase gene (blaKPC) variants. J Clin Microbiol 2011;49:579-85.

14. Jeong S, Kim JO, Jeong SH, Bae IK, Song W. Evaluation of peptide nucleic-acid-mediated multiplex real-time PCR kits for rapid detection of carbapenemase genes in gram-negative clinical isolates. J Microbiol Methods 2015;113:4-9.

15. Jeong SH, Lee KM, Lee J, Bae IK, Kim JS, Kim HS, et al. Clonal and horizontal spread of the blaKPC gene among Enterobacteriaceae in a Korean hospital. Diagn Microbiol Infect Dis 2015;82:70-2.

16. Harada K, Nakai Y, Kataoka Y. Mechanisms of resistance to cephalosporin and emergence of O25b-ST131 clone harboring CTX-M-27 β-lactamase in extraintestinal pathogenic Escherichia coli from dogs and cats in Japan. Microbiol Immunol 2012;56:480-5.

17. O’Hara JA, Hu F, Ahn C, Nelson J, Rivera J, Pascullle AW, et al. Molecular epidemiology of KPC-producing Enterobacteriaceae: occurrence of ST131-fimH30 subtype harboring pKpQIL-like IncFIIk plasmid. Antimicrob Agents Chemother 2014;58:4234-7.

18. Kim JO, Song SA, Yoon EJ, Shin JH, Lee H, Jeong SH, et al. Outbreak of KPC-2-producing Enterobacteriaceae caused by clonal dissemination of Klebsiella pneumoniae ST307 carrying an IncN3-type plasmid harboring a truncated Tn4401a. Diag Microbiol Infect Dis 2017;87:343-8.

19. Kassis-Chikhani N, Frangeul L, Drieux L, Sengelin C, Jarlier V, Brisse S, et al. Complete nucleotide sequence of the first KPC-2- and SHV-12-encoding IncX plasmid, pKpS90, from Klebsiella pneumoniae. Antimicrob Agents Chemother 2013;57:6151-60.

20. Plante I, Centrón D, Roy PH. Direct sequencing and PCR mapping of integrons reveals multiple class 1 integrons in the multiresistant strain Enterobacter cloacae SCH88040794. FEMS Microbiol Lett 2003;221:59-62.