Docking Study on Anti-HIV-1 Activity of Secondary Metabolites from Zingiberaceae Plants

Muhammad Sulaiman Zubair1, Saipul Maulana1, Agustinus Widodo1, Alwiya Mukaddas1, Ramadanil Pitopang2

1Department of Pharmacy, Science Faculty, Tadulako University, Palu 94118, Indonesia, 2Department of Biology, Science Faculty, Tadulako University, Palu 94118, Indonesia

INTRODUCTION

Human immunodeficiency virus type-1 (HIV-1) is a kind of retrovirus family that causes acquired immunodeficiency syndrome (AIDS), which creates health crisis worldwide today. Many researchers have extensively studied for discovering new anti-HIV-1 agents. However, effective agents with less side effect and high inhibition potency are still in demand. Recently, approximately 30 anti-HIV-1 drugs have been licensed for the treatment of AIDS therapy. The mechanism of these
Docking was conducted by some researchers. The chloroform extract of *Boesenbergia pandurata* rhizome and methanol extract of *Alpinia galanga* rhizome, showed potent inhibitory activity on HIV-1 PR. 5-Hydroxy-7-methoxyflavone and 5,7-dimethoxyflavone, isolated from *Kaempferia parviflora*, were reported to inhibit HIV-1 PR with half maximal inhibitory concentration \(IC_{50} \) values of 19.04 and 19.54 \(\mu M \), respectively. Zerumbone, the main compound from *Zingiber zerumbet* and *Zingiber aromaticum*, was reported to inhibit HIV with \(IC_{50} \) of 0.04 \(\mu g/mL \). \(19S-19\)-acetoxychavicol acetate, isolated from *A. galanga*, was reported to block Rev transport that inhibits the replication of HIV type 1.\(^{[13]}\) A new diarylheptanoid; (3S,5S)-3,5-diacetoxy-1,7-bis(3,4,5-trimethoxyphenyl) heptanes, 5\(\alpha \)H-eudesmane-4\(\alpha \),11-diol, 5\(\alpha \)H-eudesmane-4\(\beta \),11-diol, 4\(\alpha \),10\(\beta \)-dihydroxy-1\(\beta \)H, 5\(\alpha \)-guai-6-ene (guaiamediol), and (+)-galanolactone from the rhizomes of *Zingiber mekongense* also showed anti-HIV activities.\(^{[14]}\) Although, the study of Zingiberaceae on anti-HIV-1 activity has been performed well, the comprehensive study of Zingiberaceae metabolite compounds against three HIV protein enzymes (PR, IN, and RT) by using docking molecular approach is still not reported yet. Therefore, in this study, the secondary metabolites of Zingiberaceae plants from the complete genera—*Alpinia, Curcuma, Etingeria, Hedychium, Boesenbergia*, and *Zingiber*—were docked into the three HIV-1 protein enzymes; protease, integrase, and reverse transcriptase.

Materials and Methods

Hardware and software

Docking molecular simulation was performed on Dell PC with Linux Fedora 3.6.11-4.fc16 i686 operating system, Intel® i5 CPU T5800 @ 2 GHz processor, and 4 GB of RAM. The software used for docking preparation was Chem3D Ultra 8.0, Ligprep, and AutoDock Tools (ADT) 1.4.5. Meanwhile, AutoDock 4.2.6 was used for running the docking simulation, and ADT 1.4.5 was used for analyzing the docking results.

Docking preparation

The secondary metabolites of Zingiberaceae plants were obtained from the KnapSack website (www.ka.naist.jp/knapsack_jsp/top.html) and literature.\(^{[9,14-17]}\) There are 1070 chemical structures comprising 165 compounds from *Zingiber*, 79 compounds from *Hedychium*, 7 compounds from *Etingeria*, 91 compounds from *Curcuma*, 251 compounds from *Boesenbergia* (*Kaempferia*), and 477 compounds from *Alpinia*. The structures were modeled with Chem3D Ultra 8.0 (ACD labs) and optimized by Ligprep using OPLS 2005 force field. The optimized structure was assigned by using Epik at the target pH value of 7.0 ± 2.0. These conformations were used as starting conformations to perform docking. All HIV-1 protein enzyme structures were obtained from the X-ray crystal on Brookhaven Protein Data Bank (http://www.rcsb.org/pdb). Receptors were prepared for docking by AutoDock Tools (ADT). All heteroatom nonreceptor atoms in protein such as water and ions were removed. Kollman charges and solvation parameters were assigned to the protein atoms. Grid boxes, which comprised 40 × 40 × 40 points (\(x = 16.751, y = 23.353, z = 17.611 \) spaced 0.375 Å apart, were used for PR enzymes; grid boxes, which comprised 28 × 42 × 28 points (\(x = -39.014, y = 31.127, z = -19.842 \) spaced 0.375 Å apart, were used for IN enzymes; and grid box, which comprised...
50 × 50 × 50 points (x = 10.35, y = 14.076, z = 18.252) spaced 0.375 Å apart, was used for RT enzymes.

Docking calculation and validation

Docking of each ligand was run by AutoDock 4.2.6 with a Lamarckian genetic algorithm. The parameters were as follows: population size of 150, 250,000 energy evaluations, a mutation rate of 0.02, crossover rate of 0.80, and 100 independent docking runs. A cluster tolerance of 2.0 Å in positional root-mean-square deviation (RMSD) was used to cluster the docking result. The ligand with the lowest free energy of binding was chosen as the best ligand conformation. Redocking and cross-docking experiments were used for validation of docking methods and parameter used. The redocking protocols are valid if the RMSD value is less than 2 Å. The docking energy of ligands was then compared to native ligands.

Results

The RMSD values obtained from cross-docking validation of HIV PR, HIV IN, and HIV RT are shown in Table 1. These RMSD values were from the best cluster conformations. Table 2 showed the top 10 docking results of the metabolite compounds from Zingiberaceae plants on HIV PR, IN, and RT enzymes.

Discussion

Current challenges on HIV-1 therapy have attracted many researchers to search for novel drugs from natural products. The available anti-HIV-1 drugs in the market now have limitations as they showed more side effects, poor drug–drug interactions, and were resistant against HIV-1. Although there are many studies regarding the HIV-1 inhibitory profiles of secondary metabolites from various plant species, it was reported that Zingiberaceae plants have less secondary metabolites for anti-HIV-1 activity compared to other plant species of different genera and family. Therefore, the Zingiberaceae plant secondary metabolites have more opportunity to be further studied by applying the molecular docking to predict the potency of the metabolites on inhibiting the HIV-1 protein enzymes.

In this study, the docking simulation was performed on 1070 chemical compounds of Zingiberaceae plants on PR, IN, and RT protein enzymes using AutoDock 4.2.6.[19] The docking validation was based on RMSD value on cross-docking methods by redocking the native ligand of each receptors on three different targets. The crystal structure with the lowest RMSD value was selected for further study. PDB code 3NU3 for PR enzymes with amprenavir as native ligand, 3OYA for IN protein with raltegravir as native ligands, and 3LP1 for RT with nevirapine as native ligand was chosen with the lowest value of RMSD as 1.403, 1.926, and 0.401 Å, respectively. Meanwhile, the docking energy of native ligands of amprenavir, raltegravir, and nevirapine were -18.02, -10.50, and -9.01 kcal/mol, respectively [Table 1].

On the basis of docking results [Table 2], plants of Hedychium coronarium, Zingiber officinale, Z. aromaticum, B. pandurata Roxb., Alpinia kathumadai, and Alpinia blepharocalyx were the potential plants in which their metabolite compounds could inhibit the PR enzyme. Noralpindenoside B and alpindenoside A, a norditerpene and labdane glycosides from A. densispica, were best docked on PR enzymes with docking energy of -18.02 and -17.9 kcal/mol, respectively, comparing native ligand amprenavir. These two compounds were reported to have NO inhibitory activity and no cytotoxic activity on four different cancer cell lines of HeLa, KB, Daoy, and WiDr.[20] Alpindenoside A was found to interact with ARG-8, GLY-127, ASP-125, ASP-130, ASP-30, ASP-29, and ARG-108. Meanwhile, noralpindenoside B was found to interact with ASP-130, ASP-129, ARG-8, GLY-148, VAL-82, THR-80, GLY-27, ASP-29, and ARG-108.

Panduratin E, a cyclonexenyl chalcone from B. pandurata Roxb., and 5α,8α-epidioxyergosta-6,22-dien-3β-ol, a steroid compound from Etlingera elatior, were found to have the lowest docking energy on IN enzyme (-11.97 and -11.41 kcal/mol, respectively) and also better interaction than raltegravir. Panduratin E showed interaction with

| Table 1: Root-mean square deviation value after redocking and cross-docking of three different ligands on HIV-1 protease, integrase, and reverse transcriptase enzymes |
|---------------------------------|----------|----------|---------------|-------------------------------|
| **Protein target** | **PDB code** | **RMSD (Å)** | **Native ligand** | **Docking energy (kcal/mol)** | **Interaction with amino acids** |
| HIV-1 protease | 3NU3 | 1.403 | Amprenavir | -14.61 | ASP-25, ASP-125, GLY-127, ARG-8, ASP-129, ASP-130 |
| HIV-1 integrase | 3OYA | 1.926 | Raltegravir | -10.50 | TYR-212, ASP-185, ASP-128, GLU-221 |
| HIV-1 reverse transcriptase | 3LP1 | 0.401 | Nevirapine | -9.01 | - |

Table 2: Top 10 docking result of Zingiberaceae plants metabolite compounds on HIV-protease, integrase, and reverse transcriptase enzymes

No.	Metabolite compounds	Docking energy (kcal/mol)	Interaction with amino acids	Plant source
HIV-1 protease enzyme				
1	Noralpindenoside B	-18.02	ASP-130, ARG-8, GLY-148,	Alpinia densespicata
			GLY-27, ASP-29, ARG-108	
2	Alpindenoside A	-17.90	ARG-8, GLY-127, ASP-129,	A. densespicata
			ASP-130, ASP-30, ASP-29,	
			ARG-108	
3	Stigmasterol	-17.48	ASP-30	Hedychium coronarium
4	β-Sitosterol	-17.30	ASP-30	Zingiber officinale
5	Panduratin G	-17.09	-	Boesenbergia pandurata Roxb.
6	Panduratin F	-17.07	ASP-25	B. pandurata Roxb.
7	Katsumadain A	-17.04	ASP-129, VAL-82, THR-80	Alpinia katsumadai
8	Blepharocalyxin D	-16.87	ARG-108, GLY-48, ASP-129	Alpinia blepharocalyx
9	Epicalyxin G	-16.87	ARG-108, ASP-130, ARG-8	A. blepharocalyx
10	Calyxin L	-16.86	ARG-108, GLY-127, ASP-30,	A. blepharocalyx
			ARG-8	
HIV-1 Integrase enzyme				
1	Panduratin E	-11.97	GLU-221, ASP-128, Mg^{2+}	B. pandurata Roxb.
2	5α,8α-Epidioxyergosta-6,22-dien-3β-ol	-11.41	TYR-212, GLN-186	Etinglera elatior
3	Rubraine	-11.22	DA-17, Mg^{2+}	A. katsumadai
4	Panduratin B1	-10.77	Mg^{2+}	B. pandurata Roxb.
5	(-)-Krachainz A	-10.75	TYR-212, ASP-185, Mg^{2+}	B. pandurata Roxb.
6	Boesenbergin B	-10.74	GLU-221, ASP-128, Mg^{2+}	B. pandurata Roxb.
7	Isorubraine	-10.69	DA-17, Mg^{2+}	A. katsumadai
8	3-O-B-D-Glucopyranosil sitosterol	-10.65	-	Alpinia pinnanensis
				A. blepharocalyx
9	Panduratin D	-10.57	Mg^{2+}	B. pandurata Roxb.
10	(2S)-7,8-dihydro-5-hydroxy-2-methyl-2-(4”-methyl-3”-pentenyl)-8-phenyl-2H,6H-benzo[1,2-b:5,4b’] dipyran-6-one	-10.56	DA-17, Mg^{2+}	B. pandurata Roxb.

HIV-1 Reverse transcriptase enzyme

No.	Metabolite compounds	Docking energy (kcal/mol)	Interaction with amino acids	Plant source
1	Pahangensin A	-13.76	LYS-101	A. pahangensis Ridley
2	(+)-Krachainz A	-12.75	LYS-101	B. pandurata Roxb.
3	Shogasulfonic acid C	-11.76	LYS-101, LYS-104, HIS-235	Z. officinale
4	Isorubraine	-11.69	-	A. katsumadai
5	Panduratin B1	-11.43	-	B. pandurata Roxb.
6	Calyxin L	-11.42	GLN-91, LYS-101, ASN-103, HIS-235	A. blepharocalyx
7	(+)-Panduratin A	-11.41	-	B. pandurata Roxb.
8	(-)-Krachainz A	-11.41	LYS-101	B. pandurata Roxb.
9	Blepharocalyxin D	-11.28	LYS-101, HIS-235, TYR-318	A. blepharocalyx
10	Boesenbergin A	-11.27	LYS-101	B. pandurata Roxb.

ASP-128, GLU-221, and Mg^{2+}. Meanwhile, 5α,8α-epidioxyergosta-6,22-dien-3β-ol interacted with TYR-212 and GLN-186 on IN enzymes. The interaction of 5α,8α-epidioxyergosta-6,22-dien-3β-ol found between its epidioxy chain and TYR-212, as well as the π-π interaction between oxadiazole ring of raltegravir and TYR-212. E. elatior was reported to posses antioxidant, antifungal, antibacterial, cytotoxic, hepatoprotective, and anti-tyrosinase properties, and still no report on HIV-1 activity is available.\[21\] Beside these plants, A. katsumadai, Alpinia pinnanensis, and A. blepharocalyx, were also the potential plants that might have potential compounds for inhibiting the HIV-1 IN enzyme.

On HIV-RT enzyme, A. pahangensis Ridley, B. pandurata Roxb., Z. officinale, A. katsumadai, and
A. blepharocalyx were plants that predicted to have potency in inhibiting HIV-1 RT enzyme. Pahangensin A, a diterpenoid isolated from A. pahangensis Ridley, showed best docked on RT enzyme with the docking energy of -13.76 kcal/mol and showed better interaction compared to nevirapine as well. It was found that the α,β-unsaturated γ-lactone ring possessed hydrogen bonding with LYS-101 at binding site of RT enzyme. Meanwhile, a part of labdanic diterpene inserted into the binding pocket of reverse transcriptase enzyme where nevirapine also interacted by hydrophobic interaction. This hydrogen bonding might contribute to the lowering score of docking energy of pahangensin A yielded for the more stable conformation than native ligand nevirapine. Pahangensin A was reported to possess antibacterial activity, and still no report on HIV-1 activity is available.22

Conclusion
Our docking study found that norditerpene and labdane glycosides, cyclohexenyl chalcone, steroid, and diterpenoids were the natural type compounds, predicted to possess inhibition activity on HIV-1 protein enzymes. Noralpindenoside B and alpindenoside A were suggested as inhibitors for HIV-1 PR enzyme, panduratin E and 5α,8α-epidioxoyergosta-6,22-dien-3β-ol as HIV-1 IN enzyme inhibitors, and pahangensin A as HIV-RT protein enzyme inhibitor.

Financial support and sponsorship
Authors acknowledge the General Directorate of Research and Development, Ministry of Research and Technology, Republic of Indonesia for the funding financial support through Basic Research Grant with the contract number of 351.t/UN28.2/PL/2019.

Conflicts of interest
There are no conflicts of interest.

References
1. Supinya T, Sanan S, Sopa K. HIV-1 protease inhibitory effects of medicinal plants used as self medication by AIDS patients. Songklanakarin J Sci Technol 2003;25:239-43.
2. Ly Z, Chu Y, Wang Y. HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 2015;7:95-104.
3. Zhan P, Pannecoque C, De Clercq E, Liu X. Anti-HIV drug discovery and development: current innovations and future trends. J Med Chem 2016;59:2849-78.
4. Kalhotra P, Chittepu VCSR, Osorio-Revilla G, Gallardo-Velázquez T. Structure-activity relationship and molecular docking of natural product library reveal chrysin as a novel dipeptidyl peptidase-4 (DPP-4) inhibitor: an integrated in silico and in vitro study. Molecules 2018;23:1-11.
5. Ikram NK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, et al. A virtual screening approach for identifying plants with anti H5N1 neuraminidase activity. J Chem Inf Model 2015;55:308-16.
6. Zubair MS, Anam S, Khumaidi A, Susanto Y, Hidayat M, Ridhay A, et al. Molecular docking approach to identify potential anticonvulsants from Begonia (Begonia sp.). 2016;1755:080005.
7. Zubair MS, Alarif WM, Ghandourah MA, Anam S, Jantin I. Cytotoxic activity of 2-O-β-glucopyranosyleucubertacin D from Benalu Batu (Begonia sp) growing in Morowali, Central Sulawesi. Ind J Chem in press. https://doi.org/10.22146/jc.43626.
8. Zubair MS, Alarif WM, Ghandourah MA, Anam S. A new steroid glycoside from Begonia sp.: cytotoxic activity and docking studies. Nat Product Res in press. http://doi.org/10.1080/14786419.2019.1669026.
9. Hartati R, Suganda AG, Fidrianny I. Botanical, phytochemical and pharmacological properties of Hedychium (Zingiberaceae)—a review. Procedia Chem 2014;13:150-63.
10. Ramadanil D, Rusdi, Hamzah B, Zubair MS. Traditional usages and phytochemical screenings of selected Zingiberaceae from central Sulawesi, Indonesia. Pharmacogn 2019;11:505-10.
11. Sookkongwaree K, Geitmann M, Roengsumran S, Petsom A, Danielson UH. Inhibition of viral proteases by Zingiberaceae extracts and flavones isolated from Kaempferia parviflora. Pharmazie 2006;61:117-21.
12. Dair JR, Cardellina JH, McMahon JB, Boyd MR. Zerumbone, an HIV-inhibitory and cytotoxic sesquiterpene of Zingerbe aromaticaum and Z. zerumbet. Nat Product Lett 1997;10:115-8.
13. Ye Y, Li B. 19S-19-Acetoxychavicol acetate isolated from Alpinia galanga inhibits human immunodeficiency virus type 1 replication by blocking Rev transport. J General Virol 2006;87:2047-53.
14. Chareonkl A, Pohmakotr M, Reutrakul V, Yootsook C, Kasitit J, Napaswad C, et al. A new diarylheptanoid from the rhizomes of Zingerbe mekongense. Fitoterapia 2011;82:534-8.
15. Atun S. Phytochemical of Kaempferia plant and bioprospecting for cancer treatment. Proc Int Confer Res Implement Educ Mathematics Sci 2014:179-86.
16. Ma X, Xie C, Mao Z, Yang X. An overview of chemical constituents from Alpinia species in the last six decades. RSC Adv 2017;7:14114-44.
17. Chahyadi A, Hartati R, Ruslan K, Elfahmi. Boesenbergia pandurata Roxb, an Indonesian medicinal plant: phytochemistry, biological activity, plant biotechnology. Procedia Chem 2014;13:13-37.
18. Kazhila CC. Chemical diversity and activity profiles of HIV-1 reverse transcriptase inhibitors from plants. Revista Brasileira de Farmacognosia 2019;29:504-28.
19. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 2009;16:2785-91.
20. Kuo YJ, Hsiao PC, Zhang LJ, Wu MD, Liang YH, Ho HO, et al. Labdane diterpenoid glycosides from Alpinia densespicata and their nitrile oxide inhibitory activities in macrophages. J Nat Prod 2009;72:1097-101.
21. Eric WCC, Lim YY, Wong SK. Phytochemistry and pharmacological properties of Ettlingera elatior: a review. Pharmacogn J 2011;3:6-10.
22. Sirivorth Th, Ibrahim H, Paliany AS, Alias SA, Awang K. Pahangensin A and B, two new antibacterial diterpenes from the rhizomes of Alpinia pahangensis Ridley. Bioorg Med Chem Lett 2013;23:6280-5.