Concavity of the collective excitation branch of a Fermi gas in the BEC-BCS crossover

H. Kurkjian, Y. Castin, A. Sinatra
Laboratoire Kastler Brossel, ENS, PSL, CNRS, UPMC-Sorbonne Universités and Collège de France, Paris, France

We study the concavity of the dispersion relation \(q \rightarrow \omega_q \) of the bosonic excitations of a three-dimensional spin-1/2 unpolarized Fermi gas in the Random Phase Approximation (RPA). In the limit of small wave numbers \(q \) we obtain analytically the spectrum up to order 5 in \(q \). In the neighborhood of \(q = 0 \), a change in concavity between the convex Bose-Einstein condensation (BEC) limit and the concave BCS limit takes place at \(\Delta/\mu \simeq 0.869 \) \([1/(k_F a) \simeq -0.144]\), where \(a \) is the scattering length between opposite spin fermions, \(k_F \) is the Fermi wave number and \(\Delta \) the gap according to BCS theory, and \(\mu \) is the chemical potential. At that point the branch is concave due to a negative fifth order term. Our results are supplemented by a numerical study that shows the border between the zone of the \((q, \Delta)\) plane where \(q \rightarrow \omega_q \) is concave and the zone where it is convex.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.+q

I. INTRODUCTION

Cold atomic gases offer a broad flexibility of the microscopic parameters in exploring the many-body problem. In particular, in spin-1/2 Fermi gases, the interaction strength can be adjusted experimentally using Feshbach resonances without inducing strong three-body losses. This degree of freedom, unique among Fermi systems, allowed cold-atom experiments \([1–9]\) to study the crossover between a superfluid of Cooper pairs in the so-called Bardeen-Cooper-Schrieffer (BCS) regime of interaction and a superfluid of tightly bound, almost bosonic, dimers in the Bose-Einstein Condensation (BEC) regime. Another advantage of cold atomic gases is the simple theoretical description of the interactions that the cold and dilute regime in which they occur allows for. For a Fermi gas in two spin states \(\uparrow \) and \(\downarrow \), one can show that the only significant interactions at low temperature and weak density occur between opposite spins fermions in the \(s \) wave and can be fully characterized by a single parameter called the scattering length and denoted by \(a \). In this propitious theoretical framework, entirely analytical studies of experimentally accessible properties of the gas are possible. This article is one of those.

At zero temperature, the three-dimensional spatially homogeneous unpolarized Fermi gas is fully paired and its excitation spectrum consists of two branches: a fermionic branch of excitation of the internal degrees of freedom of the \(\uparrow \downarrow \) pairs of fermions and a bosonic branch of excitation of their center-of-mass motion, which has a phononic behavior in the long wavelength limit. The latter branch is sometimes said to be collective since it involves a large number of the fermionic modes of internal excitations of the pairs. The fermionic branch is described to lowest order by the BCS theory. To tackle the bosonic branch several approaches have been proposed: The Random Phase Approximation (RPA) of Anderson \([10]\), a Gaussian approximation of the action in a path integral framework \([11, 12]\), a Green’s function approach associated with a diagrammatic approximation \([13]\), and a linearization of the time dependent BCS variational equations \([14]\). Remarkably, those theories all lead to the same approximate spectrum of bosonic excitations, which they describe by the same implicit equation.

The concavity of this spectrum has been studied in the weak-coupling BCS limit \([11]\) and, in a qualitative way, in the rest of the BEC-BCS crossover \([12, 13, 14]\). A complete quantitative study is thus missing, a gap that this article intends to bridge. In particular, we obtain the spectrum analytically up to order 5 in the wave number \(q \) of the center of mass of the pairs. This allows us to conclude on the concavity of the branch of excitation in a neighborhood of \(q = 0 \) over the whole BEC-BCS crossover.

Several physically relevant problems can be addressed after our study. First, the processes that dominate the collective mode damping at low temperature can be identified. If the branch is convex over a neighborhood of \(q = 0 \) then the Landau-Beliaev 2 phonons \(\leftrightarrow \) 1 phonon interaction processes \([17, 18]\) dominate while if it is concave, those processes are forbidden by momentum and energy conservation and the Landau-Khalatnikov 2 phonons \(\leftrightarrow \) 2 phonons processes \([19]\) take over. At low temperature the contribution of the gapped fermionic branch to the collective mode damping is exponentially small \([20]\). Second, the quantitative knowledge of the concavity parameter \(\gamma \) is required in order to predict the phonon damping rate due to the 2 phonons \(\leftrightarrow \) 1 phonon processes in the convex case beyond the quantum hydrodynamics approximation \([18]\), or due to the 2 phonons \(\leftrightarrow \) 2 phonons processes in the concave case where the effective interaction predicted by quantum hydrodynamics involves virtual 2 phonons \(\leftrightarrow \) 1 phonon processes and depends on \(\gamma \). Finally, the knowledge of \(\gamma \) gives access to the phase diffusion coefficient of the condensate of pairs, a quantity responsible for an intrinsic and fundamental limit to the coherence time of the gas \([14]\).
II. THE RPA EQUATION ON THE EXCITATION SPECTRUM

The RPA equation yielding implicitly the energy $\hbar \omega_q$ of the collective excitations as a function of their wave vector q is

$$I_{++}(\omega_q, q)I_{--}(\omega_q, q) = \hbar^2 \omega_q^2 [I_{+-}(\omega_q, q)]^2. \quad (1)$$

We have introduced the amplitudes U_k and V_k and the eigenenergies ϵ_k of the fermionic eigenmodes of the BCS theory [21]:

$$\epsilon_k = \sqrt{\frac{\hbar^2 k^2}{2m} - \mu}^2 + \Delta^2, \quad (5)$$

$$U_k = \frac{1}{2} \left(\frac{\hbar^2 k^2}{2m} - \frac{\mu}{\epsilon_k} \right), \quad (6)$$

$$V_k = \frac{1}{2} \left(1 - \frac{\hbar^2 k^2}{2m} - \frac{\mu}{\epsilon_k} \right), \quad (7)$$

where m is the mass of a fermion. The two natural parameters of the BCS theory, with which we express the energy $\hbar \omega_q$, are the chemical potential μ, identical for the two spin states, and Δ, the gap in the BCS spectrum of the fermionic excitations when μ is positive. If needed, they can be replaced by the scattering length a and the total density ρ of the gas by inverting the two following relations [22, 23]:

$$\frac{m}{4\pi \hbar^2 a} = \frac{\int d^3k (\frac{m}{\hbar^2 k^2} - \frac{1}{2\epsilon_k})}{(2\pi)^3}, \quad (8)$$

$$\rho = \frac{\int d^3k \frac{1}{2}|V_k|^2}{(2\pi)^3}. \quad (9)$$

In practice, the Fermi wave number k_F defined by $\rho = k_F^3/(6\pi^2)$ is often used instead of the density.

III. GLOBAL NUMERICAL STUDY OF THE CONCAVITY

From a numerical solution of the dispersion equation [1] we obtain the dispersion relation $q \mapsto \omega_q$ over its existence domain. We show an example in Figure 1 in the unitary limit $1/(k_F a) = 0$, where $\Delta/\mu \simeq 1.162$ according to the BCS theory. Rather than $q \mapsto \omega_q$ itself, we plot as a black solid line the function $q \mapsto \omega_q - c q$, where c is the speed of sound and $q \mapsto c q$ is the linear part of the spectrum. The concavity properties of this function are the same as those of $q \mapsto \omega_q$, but they are more visible graphically at low q, because they are not masked by the dominant linear part, which anyway plays no role in the selection of the damping processes mentioned at the end of the Introduction. In the figure, it is apparent that the dispersion relation exhibits an inflection point at $q/k_\mu \simeq 0.795$, where $k_\mu = (2m\mu)^{1/2}/\hbar$, separating a low-$q$ interval over which the dispersion relation is convex and a high-q interval over which it is concave. As a consequence, according to the RPA, the leading damping processes of the collective excitations of the unitary gas at low temperature are the Beliaev-Landau 2 phonons $\leftrightarrow 1$ phonon processes.

Figure 2 synthesizes our numerical results on the concavity of the bosonic branch for all values of Δ/μ and q/k_μ. Several domains can be identified depending on the values of Δ/μ, or equivalently $1/(k_F a)$. (i) When the scattering length is negative $a < 0$, that is for $\Delta/\mu < 1.162$ (lower dotted line), the existence domain of the solution to Eq. (1) splits up into two connected components [13], hence of the form $[0, g_{\text{up}}]$. The dispersion relation is entirely concave for $\Delta/\mu < 0.869$ while for $0.869 < \Delta/\mu < 1.162$ it is first convex at small q and then concave. Between those two zones it goes through an inflection point, whose position $g_{\text{up}}(\Delta/\mu)$ we compute analytically in the small q limit [see the black dashed line and Eq. (29) of section IV]. (ii) On the other side of the resonance ($a > 0$) and up to $\Delta/\mu = 1.729$ (upper dotted line), the existence domain of the solution to Eq. (1) splits up into two connected components...
excitations is plotted as a black solid line after subtraction of its phononic part cq to better reveal its concavity properties. The wave number q is in units of $k_{\mu} = (2\mu m)^{1/2}/\hbar$. The linear part $q \to cq$ is shown for comparison (steep violet dashed straight line), as well as the cubic (blue dashed lower line) and the quintic (blue dashed upper line) approximations of $\omega_q - cq$, see Eq. (10). The second order derivative $d^2\omega_q/dq^2$, plotted as a gray solid line, vanishes at the inflection point $q_{\text{inf}} \approx 0.795k_{\mu}$, marked by the vertical dotted line. To the left (right) of this point the dispersion relation $q \to \omega_q$ is convex (concave).

The wave number cq its phononic part ω_q straight line), as well as the cubic (red dashed upper line) and the quintic (blue dashed lower line) approximations of $\omega_q - cq$, see Eq. (10). The second order derivative $d^2\omega_q/dq^2$, plotted as a gray solid line, vanishes at the inflection point $q_{\text{inf}} \approx 0.795k_{\mu}$, marked by the vertical dotted line. To the left (right) of this point the dispersion relation $q \to \omega_q$ is convex (concave).

All these numerical values are predicted by the RPA or the BCS theory. They are therefore approximate. Up to now the only value that can be compared to experiments is that of Δ/μ at the unitary limit: From the measured values $\Delta \approx 0.44\hbar^2k_F^2/(2m)$ [24] and $\mu \approx 0.376\hbar^2k_F^2/(2m)$ [3] we get $\Delta/\mu \approx 1.17$, which is remarkably close to the BCS-theory prediction $\Delta/\mu \approx 1.162$. One must also keep in mind that the RPA spectrum results from a linearized treatment of the pair-field quantum fluctuations, which neglects the interactions among the bosonic quasiparticles. In reality, these interactions will shift the eigenenergies $\hbar\omega_q$. They will also give rise, even at zero temperature, to an imaginary part in ω_q, corresponding to a finite lifetime of the excitations, provided that the concavity of the dispersion relation allows for resonant 1 phonon \to 2 phonons Beliaev processes [12].

![Graph showing concavity in dispersion relation](image)

FIG. 1: (Color online) At unitarity $(k_Fa)^{-1} = 0$, which is here $\Delta/\mu = 1.162$, the dispersion relation of the collective excitations is plotted as a black solid line after subtraction of its phononic part cq to better reveal its concavity properties. The wave number q is in units of $k_{\mu} = (2\mu m)^{1/2}/\hbar$. The linear part $q \to cq$ is shown for comparison (steep violet dashed straight line), as well as the cubic (red dashed upper line) and the quintic (blue dashed lower line) approximations of $\omega_q - cq$, see Eq. (10). The second order derivative $d^2\omega_q/dq^2$, plotted as a gray solid line, vanishes at the inflection point $q_{\text{inf}} \approx 0.795k_{\mu}$, marked by the vertical dotted line. To the left (right) of this point the dispersion relation $q \to \omega_q$ is convex (concave).

![Graph showing local concavity](image)

FIG. 2: (Color online) Local concavity of the bosonic branch $q \to \omega_q$ depending on Δ/μ and on the wave number q in units of $k_{\mu} = (2\mu m)^{1/2}/\hbar$. The values of $1/(k_Fa)$ corresponding to those of Δ/μ are given on the right vertical axis. Red points show that the branch is locally concave and orange points that the branch is locally convex. The thick solid line is the border of the existence domain of the solutions of the dispersion equation (1). The black dashed line is the low-q analytical prediction (29) of the boundary between the red zone and the orange zone, that is of the locus of the inflection points of the curve $q \to \omega_q$, indicated by a thin solid line. The ordinate $\Delta/\mu = 0.869$ of the point where this line meets the $q = 0$ axis, and the ordinate $\Delta/\mu = 1.710$ above which the concavity zone disappears are indicated by arrows. For the values of Δ/μ or $1/(k_Fa)$ in between the two dotted lines indicated by arrows, the q-existence domain of the solution of equation (1) is not simply connected. The lower dotted line indicates the unitary limit, where the scattering length diverges $|a| \to +\infty$.

IV. ANALYTICAL STUDY OF THE CONCAVITY IN THE LONG WAVELENGTH LIMIT

The dispersion relation can be obtained analytically in the long wavelength limit $q \to 0$. To this end we expand the eigenenergy of the collective mode up to order 5 in q:

$$\hbar\omega_q = \hbar cq \left[1 + \frac{\gamma}{8} \left(\frac{\hbar q}{m\rho} \right)^2 + \frac{\eta}{16} \left(\frac{\hbar q}{m\rho} \right)^4 + O \left(\frac{\hbar q}{m\rho} \right)^6 \right].$$

(10)

To lowest order, as for any superfluid system, the energy is phononic with a sound velocity given by the hydrodynamic expression

$$mc^2 = \rho \left(\frac{\partial\mu}{\partial\rho} \right)_a,$$

(11)

where the derivative is taken for a fixed scattering length a, as indicated by the notation. When applied to the approximate equation of state (10), the hydrodynamic expression (11) gives the RPA sound velocity, as shown in reference [13] by an expansion of the solution ω_q of equation (10) up to first order in q. We give here an explicit
expression in the form of a rational fraction
\[\frac{mc^2}{\mu} = \frac{2(xy + 1)}{3(y^2 + 1)}, \quad (12) \]
in terms of the variables
\[x = \frac{\Delta}{\mu} \quad \text{and} \quad y = \left(\frac{\partial \Delta}{\partial \mu} \right)_a. \quad (13) \]
In turn, the \(y \) variable is written as a function of \(x \),
\[y = \frac{\int d^3k \frac{k^2/(2m) - \mu}{\epsilon_k}}{\int d^3k \frac{\Delta}{\epsilon_k}} = \frac{\int_0^{\infty} du \frac{u^2(u^2 - x^{-1})}{(u^2 - x^{-1})^2 + 1}^{3/2}}{\int_0^{\infty} du \frac{u^2}{(u^2 - x^{-1})^2 + 1}^{3/2}}, \quad (14) \]
by taking the derivative of equation (8) with respect to \(\mu \) at fixed scattering length \(a \) and by expressing the wave vectors in units of \(k_\Delta = (2m\Delta)^{1/2}/\hbar \) to form the dimensionless integration variable \(u \). The integrals over \(u \) in the numerator and in the denominator of the right-hand side of equation (14) may be expressed in terms of complete elliptic integrals of the first and second kinds [11]. At the unitary limit one has \(y = x \), since \(\Delta \) and \(\mu \) are proportional due to scale invariance.

To obtain the expression (12) of the reduced sound velocity, we take the derivative of the equation of state \(P \) with respect to \(\mu \) at fixed \(a \) and we express all resulting integrals as functions of \(x \) and \(y \) using (14) and the relation
\[\int_0^{\infty} du \frac{u^2}{(u^2 - x^{-1})^2 + 1}^{3/2} = \frac{3x/2}{1 + xy}, \quad (15) \]
and by
\[Q_0(y) = 16 \left(7745y^8 + 19528y^6 + 20304y^4 + 8384y^2 + 1088 \right), \]
\[Q_1(y) = 32y \left(2857y^8 + 67y^6 - 3186y^4 - 7920y^2 + 2624 \right), \]
\[Q_2(y) = -8 \left(12882y^{10} + 28061y^8 - 26936y^6 + 7221y^4 - 24496y^2 - 5232 \right), \]
\[Q_3(y) = -8y \left(8456y^{10} + 9859y^8 + 9977y^6 + 415295y^4 + 3523y^2 + 23720 \right), \]
\[Q_4(y) = -17500y^{12} - 247996y^{10} - 1249743y^8 - 1341332y^6 + 337202y^4 - 694392y^2 + 18321, \quad (19) \]
\[Q_5(y) = -4y \left(25564y^{10} + 36027y^8 - 66984y^6 + 92206y^4 + 387932y^2 - 56121 \right), \]
\[Q_6(y) = -2 \left(12250y^{12} + 115637y^{10} + 558246y^8 + 1071518y^6 + 589478y^4 - 248499y^2 + 53082 \right), \]
\[Q_7(y) = -4y \left(12957y^{10} + 33764y^8 - 41904y^6 - 173106y^4 - 96189y^2 + 53406 \right), \]
\[Q_8(y) = -8575y^{12} - 44544y^{10} - 149742y^8 - 360644y^6 - 477615y^4 - 270756y^2 - 20412. \]

Our analytical expressions (16) and (17) result from a Taylor expansion of the integrals \(I_{++}(\omega_q, q) \), \(I_{+-}(\omega_q, q) \) and \(I_{-+}(\omega_q, q) \) after replacement of \(\hbar \omega_q \) with the expansion (10). At each order, we reuse the results of the lower orders, that is the value (12) of \(c \) to obtain \(\gamma \), and then those of \(c \) and \(\gamma \) (16) to obtain \(\eta \). We encounter integrals involving in the denominator high powers of \(\epsilon_k \) (or of \((u^2 - x^{-1})^2 + 1)^{1/2} \) after the \(k \)-to-\(u \) change of variable. They can be evaluated by repeated integration by parts, as explained in Appendix A.
We have plotted in Figure 3 the coefficients γ and η as functions of the parameter $1/(k_F a)$ (which we have preferred here to Δ/μ). Let us briefly review their asymptotic behaviors in the BEC $1/(k_F a) \to +\infty$ and BCS $1/(k_F a) \to -\infty$ limits, and their values in some specific relevant regimes.

1. BEC limit

In the BEC limit $k_F a \to 0^-$, the system is equivalent to a weakly interacting gas of bosons of mass $2m$, with a chemical potential

$$\mu_B = 2\mu - E_{\text{dim}}, \quad (20)$$

where $E_{\text{dim}} = -\hbar^2 (m a^2)$ is the internal energy of a dimer [23, 26]. The dispersion relation of the bosonic excitations is then known to be convex and to take the Bogoliubov form at chemical potential μ_B when $q = a(1/a)$ [12]:

$$\hbar\omega_{q}^{\text{Bog}} = \left[\frac{\hbar^2 q^2}{4m} \left(\frac{\hbar^2 q^2}{4m} + 2\mu_B \right) \right]^{1/2}, \quad (21)$$

in which case the sound velocity is given by $2mc^2 = \mu_B$. The coefficients γ and η are thus expected to have the following limits:

$$\gamma \to -\frac{1}{4} \quad \text{and} \quad \eta \to -\frac{1}{128}. \quad (22)$$

This is confirmed by equations (16) and (17) taken at the BEC limit, that is for $x = O(k_F a)^{3/2} \to 0^-$ [22] and, as shown by equation (15) after the change of variable $u = u'\sqrt{|x|}$, for $y \sim -4/x$.

2. BCS limit

When $k_F a \to 0^-$, the lower border of the two-fermion-excitation continuum (at fixed total wave number $q < q_{\text{abp}}$) becomes exponentially weak and forces the bosonic excitation branch, which cannot enter into this continuum, to bend downward [12, 15]. This bending takes place over a wave number range q_c such that $\hbar c q_c = \Delta$, that is such that the leading term in the expansion (10) is of the order of Δ. This means that the collective modes are affected by the pairs internal structure when the mode wavelength becomes comparable to the pairs size in real space $\approx \hbar^2 k_F/(m\Delta)$ [11], a quantity that is indeed of order $1/q_c$ since $c \propto \hbar k_F/m$ in the BCS limit. This qualitatively explains why the dispersion relation is a concave function of q for low q and low Δ/μ in Figure 2 and why $\gamma < 0$ in the BCS limit.

More quantitatively, we expect that the normalized energy $\hbar\omega_q/\Delta$ becomes a universal function of $q/q_c = \hbar c q/\Delta$ when $k_F a \to 0^-$, in which case all the terms in square brackets in equation (10) are of the same order of magnitude for $q = q_c$, that is $|\gamma(\hbar c/m\Delta)^2| \approx 1$, $|\eta(\hbar c/m\Delta)^4| \approx 1$. This is indeed what we find by taking the limits $x \to 0$ and $y \to 0$ in equations (16) and (17):

$$\gamma \sim -\frac{8}{15} \left(\frac{m c^2}{\Delta} \right)^2 \quad \text{and} \quad \eta \sim \frac{136}{1575} \left(\frac{m c^2}{\Delta} \right)^4, \quad (23)$$

the first result reproducing that of reference [11].

![Figure 3](image-url)
3. Crossover region

In the crossover region between BEC and BCS, γ is an increasing function of $1/(k_F a)$. It vanishes and changes sign for the value x_0 of $x = \Delta/\mu$ given by

$$x_0 \simeq 0.868567.$$ \hfill (24)

This value corresponds to $1/(k_F a) \simeq -0.144292$, in agreement with the numerical result of Figure 2 and with reference [16]. The RPA prediction is then that the dispersion relation of a unitary gas is convex close to $q = 0$:

$$\gamma(\mu) \simeq 0.083769.$$ \hfill (25)

The coefficient η changes sign for a value x_1 of Δ/μ given by

$$x_1 \simeq 0.566411$$ \hfill (26)

corresponding to $1/(k_F a) \simeq -0.389027$. It is negative both at unitarity

$$\eta(\mu) \simeq -0.035416,$$ \hfill (27)

and at the point x_0 where $\gamma = 0$:

$$\eta(x_0) \simeq -0.042794.$$ \hfill (28)

At that very point the sign of η is important as it determines the concavity of the dispersion relation close to $q = 0$.

4. Locus of the inflection points

The coefficients γ and η allow us to find analytically the border between the orange and the red zones of Figure 2 for small q, that is the ensemble of points with coordinates $(q_{\text{inf}}/k_F, \Delta/\mu)$ such that the second derivative $d^2\omega_q/dq^2$ is zero. Using the expansion (10) for ω_q and expanding the coefficients $\gamma(x)$ and $\eta(x)$ around $x = x_0$, to order one and order zero in $x - x_0$ respectively, one obtains the equation

$$\frac{q_{\text{inf}}}{k_F} \sim \frac{3\gamma'(x_0) mc^2}{10\eta(x_0)} \mu \simeq 2.015858(x - x_0)$$ \hfill (29)

plotted as a black dashed curve in Figure 2 which reaches the axis $q = 0$ with a horizontal tangent.

In contrast, the border between the red and orange zones in Figure 2 reaches the border of the existence domain of the collective excitation branch with an oblique tangent. This is due to the fact that the third derivative of $q \rightarrow \omega_q$ is nonzero at the contact point $q = q_{\text{sup}}$ contrarily to what happens at $q = 0$.

V. CONCLUSION

We have considered a spatially homogeneous unpolarized gas of spin-1/2 fermions at zero temperature, and we have obtained analytically the spectrum $\hbar \omega_q$ of the bosonic excitation branch predicted by the RPA up to order 5 included in the wave vector q close to $q = 0$. The coefficients of the obtained expansion are rational fractions of two variables Δ/μ and $(\partial \Delta/\partial \mu)_x$, where the second variable can be analytically related to the first one using the BCS equation of state. This allows us to show analytically that the dispersion relation $q \rightarrow \omega_q$ is concave close to $q = 0$ when $1/(k_F a)$ is between $-\infty$ and a value close to -0.144, a point where the first correction to the linear dispersion relation is of order q^5 with a slightly negative coefficient. For $-0.144 < 1/(k_F a) < 0.157$ the branch is convex close to $q = 0$ but becomes concave when q increases, and it remains so for q increasing up to the maximal possible value q_{sup} if $1/(k_F a) < 0.222$, while it becomes convex again in the opposite case $0.022 < 1/(k_F a) < 0.157$. Beyond $1/(k_F a) = 0.157$ the bosonic branch is convex over its whole existence domain.

A straightforward application of our quintic approximation (14) for the spectrum is to determine if a low-q collective excitation of the Fermi gas can decay via a Beliaev process, that is into two collective excitations of wave vectors q_1 and $q_2 = q - q_1$. Energy conservation allows such a process if $\omega_q > \Omega_{q_1}^{\text{inf}}$ where $\Omega_{q_1}^{\text{inf}} = \text{inf}_{q_1}(\omega_q, \omega_q - q_1)$ is the lower border of the two-excitation continuum at fixed total wave vector q. If Δ/μ is away from the critical value $x_0 \simeq 0.869$ where the coefficient γ of q^3 vanishes, the dispersion relation is either entirely convex or entirely concave at low q, and the Beliaev decay is respectively allowed or forbidden. If Δ/μ is close to the critical value x_0, the dispersion relation has an inflection point at low q. We then apply the analysis of reference [15] to Eq. (10) and we find $\Omega_{q_1}^{\text{inf}} = \text{min}(2\omega_q/2, \omega_q)$ [32]. The Beliaev decay is thus allowed if

$$\left(\frac{\hbar q}{mc}\right)^2 < \frac{8\gamma}{5|\eta|},$$ \hfill (30)

to leading order in γ, that is in $\Delta/\mu - x_0$. At low but nonzero temperature, there exist additional decay mechanisms: (i) The Landau mechanism $q_1 + q_2 \rightarrow q_1$ is forbidden whenever the Beliaev one is since it can be viewed as an inverse Beliaev mechanism with an initial wave vector q_2 of modulus $> q$; (ii) the higher-order Landau-Khalatnikov decay process $q + q_1 \rightarrow q_2 + q_3$ is always allowed, but it is subleading when the Beliaev or Landau processes are present.

Our results on the concavity of the dispersion relation close to $q = 0$ can be tested experimentally in a gas of cold atoms trapped in a flat bottom potential [22]. This can be done either (i) indirectly by measuring dissipative effects such as the damping of collective excitations at low
temperature, or dispersive effects such as the spreading of a wave packet of sound waves created by a laser pulse [28], or (ii) directly by accessing the dispersion relation at low temperature via the dynamic structure factor of the Fermi gas through Bragg excitation at a selected wave vector \(\mathbf{q} \) [24, 31, 33]. Supplemented by kinetic equations for the collective mode occupation numbers, our results open the way to an analytical determination of the phase diffusion coefficient at low temperature, hence to the intrinsic limit to the coherence time of the condensate of pairs in a finite-size Fermi gas [14].

Appendix A: Expressing integrals in terms of the variables \(x \) and \(y \)

In the expansion of \(I_{++}(\omega_q,q) \), \(I_{--}(\omega_q,q) \) and \(I_{+-}(\omega_q,q) \) at low \(q \), and after a rescaling of the wave vectors by \(k_\Delta \) as in equation (14), \(k = u k_\Delta \), we encounter integrals of the form

\[
I_{n,p} = \frac{k_\Delta^3}{2\pi^2 \rho} \int_0^{+\infty} \frac{du}{\epsilon_u^{n-p+2}}, \quad (A1)
\]

\[
J_{n,p} = \frac{k_\Delta^3}{2\pi^2 \rho} \int_0^{+\infty} \frac{du}{\epsilon_u^{n+2} \epsilon_u^{2}}, \quad (A2)
\]

with \(n \in 2\mathbb{N}^*, p \in \mathbb{N} \),

\[
\xi_u = u^2 - 1, \quad (A3)
\]

\[
\epsilon_u = \sqrt{\xi_u^2 + 1}, \quad (A4)
\]

and the total density \(\rho \) is given by equation (1). The integrals giving \(I_{n,p} \) and \(J_{n,p} \) are convergent for \(n-p \geq 2 \) and for \(n-p \geq 3 \), respectively. Integrals that depend on the direction of \(k \) can be expressed in the forms (A1) and (A2) after angular integration:

\[
\int d^3k f(k) \left(\frac{h^2 \mathbf{k} \cdot \mathbf{q}}{m} \right)^{2p} = \frac{4\pi}{1+2p} \left(\frac{h^2 \mathbf{q}}{m} \right)^p \int_0^{+\infty} dk k^2 f(k) \left(\frac{h^2 k^2}{m} \right)^p \quad (A5)
\]

where \(f(k) \) is an arbitrary function of the modulus of \(k \).

Let us first establish the four recurrence relations

\[
I_{n,p} = \frac{n-3}{n-2} I_{n-2,p} - \frac{2p+1}{2(n-2)} J_{n-2,p-1}, \quad (A6)
\]

\[
J_{n,p} = \frac{2p+1}{2(n-2)} I_{n-2,p-1}, \quad (A7)
\]

\[
I_{n,p} = J_{n,p-1} + \frac{I_{n-1,p}}{x}, \quad (A8)
\]

\[
J_{n,p} = \frac{J_{n,p-1}}{x} + I_{n-2,p-1} - I_{n,p-1}, \quad (A9)
\]

holding under the conditions \(1 \leq p \leq n-4 \) for the first relation, \(1 \leq p \leq n-3 \) for the second one, \(1 \leq p \leq n-2 \) for the third one and \(1 \leq p \leq n-3 \) for the last one. In order to derive the relation (A8), we integrate by parts the integral

\[
\frac{k_\Delta^3}{2\pi^2 \rho} \int_0^{+\infty} \frac{du}{\epsilon_u^{n-p+2} \epsilon_u^{2}} = I_{n-2,p} - I_{n,p}, \quad (A10)
\]

selecting \(u \mapsto u^{2p+1} \xi_u \) as the function to be differentiated. In order to derive the relation (A7), we integrate by parts the integral defining \(J_{n,p} \) in equation (A2), selecting \(u \mapsto u^{2p+1} \) as the function to be differentiated. In both cases, we note that the function \(u \mapsto \xi_u/\epsilon_u \) admits the primitive \(u \mapsto -[2(n-2)\epsilon_u^{-2}]-1 \). Finally, we simply write \(u^{2p+2} = u^{2p}(\xi_u + x^{-1}) \) in the integrand of (A11) in order to obtain (A8), and we write \(u^{2p+2} \xi_u = u^{2p}(\epsilon_u^2 - 1 + x^{-1} \xi_u) \) in the integrand of (A2) in order to obtain (A9). This procedure generalizes that of reference [11].

We now show by induction using the relations (A6,A7,A8,A9) that \(I_{n,p} \) and \(J_{n,p} \) can be expressed as functions of \(I_{3,0} \) and \(J_{3,0} \), for all odd \(n \geq 3 \) and for all positive \(p \) within the existence domain of the integrals. Let \(n \) be odd and \(\geq 3 \) and assume that we know all the \(I_{n,p} \) for \(0 \leq p \leq n-2 \), and all the \(J_{n,p} \) for \(0 \leq p \leq n-3 \). Then (i) \(I_{n+2,1} \) and \(J_{n+2,1} \) can be deduced using (A8) and (A7), (ii) using (A9) and (A8) we obtain a Cramer system for \(I_{n+2,0} \) and \(J_{n+2,0} \):

\[
x^{-1} J_{n+2,0} - I_{n+2,0} = J_{n+2,1} - I_{n,0}, \quad (A11)
\]

\[
J_{n+2,0} + x^{-1} I_{n+2,0} = I_{n+2,1}, \quad (A12)
\]

which we solve, (iii) we use (A8) and (A9) to access the values of \(I_{n+2,p} \) and \(J_{n+2,p} \) for \(p \geq 2 \). We set the induction basis at \(n = 3 \), by expressing \(I_{3,1} \) as a function of \(I_{3,0} \) and \(J_{3,0} \) due to (A8).

Finally we relate \(I_{3,0} \) and \(J_{3,0} \) to \(x \) and \(y \) thanks to the relations (14) and (15) of the main text, which take the form \(y = J_{3,0}/I_{3,0} \) and \(I_{3,0} = 3x/[2(1+xy)] \) with the notation of this appendix.
[1] K. M. O’Hara, S. L. Hemmer, M. E. Gehm, S. R. Granade, and J. E. Thomas, Science 298, 2179 (2002).
[2] T. Bourdel, J. Cubizolles, L. Khaykovich, K. M. F. Magalhães, S. J. M. F. Kokkelmans, G. V. Shlyapnikov, and C. Salomon, Phys. Rev. Lett. 91, 020402 (2003).
[3] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 120401 (2004).
[4] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. Hecker Denschlag, and R. Grimm, Phys. Rev. Lett. 92, 203201 (2004).
[5] M. W. Zwierlein, C. A. Stan, C. H. Schunck, Z. M. Raupach, A. J. Kerman, and W. Ketterle, Phys. Rev. Lett. 92, 120403 (2004).
[6] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H. Schunck, and W. Ketterle, Nature 435, 1047 (2005).
[7] S. Nascimbene, N. Navon, K. J. Jiang, F. Chevy, and C. Salomon, Nature 463, 1057 (2010).
[8] M. J. H. Ku, A. T. Sommer, L. W. Cheuk, and M. W. Zwierlein, Science 335, 563 (2012).
[9] L. A. Sidorenkov, M. K. Tey, R. Grimm, Y.-H. Hou, L. Pitaevskii, and S. Stringari, Nature 498, 78 (2013).
[10] P. Anderson, Phys. Rev. 112, 1900 (1958).
[11] M. Marini, F. Pistolesi, and G. Strinati, Eur. Phys. J. B 1, 151 (1998).
[12] M. Randeria and E. Taylor, Annu. Rev. Condens. Matter Phys. 5, 209 (2014).
[13] R. Combescot, M. Y. Kagan, and S. Stringari, Phys. Rev. A 74, 042717 (2006).
[14] H. Kurkjian, Y. Castin, and A. Sinatra, arXiv:1502.05644 & hal-01118346 (2015).
[15] Y. Castin, I. Ferrier-Barbut, and C. Salomon, C. R. Physique 16, 241 (2015).
[16] G. Bighin, L. Salasnich, P. A. Marchetti, and F. Toigo, Phys. Rev. A 92, 023638 (2015).
[17] S. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958).
[18] P. O. Fedichev and G. V. Shlyapnikov, Phys. Rev. A 58, 3146 (1998).
[19] L. Landau and I. Khalatnikov, Zh. Eksp. Teor. Fiz. 19, 637 (1949).
[20] Z. Zhang and W. V. Liu, Phys. Rev. A 83, 023617 (2011).
[21] J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175 (1957).
[22] Y. Castin, in Ultra-cold Fermi Gases, edited by M. Inguscio, W. Ketterle, and C. Salomon (Società italiana di fisica, Bologna, Italia, 2007).
[23] H. Kurkjian, Y. Castin, and A. Sinatra, Phys. Rev. A 88, 063623 (2013).
[24] A. Schirotzek, Yong-il Shin, C. H. Schunck, and W. Ketterle, Phys. Rev. Lett. 101, 140403 (2008).
[25] X. Leyronas and R. Combescot, Phys. Rev. Lett. 99, 170402 (2007).
[26] R. Combescot and X. Leyronas, Phys. Rev. A 78, 053621 (2008).
[27] A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadzibabic, Phys. Rev. Lett. 110, 200406 (2013).
[28] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye, and W. Ketterle, Phys. Rev. Lett. 79, 553 (1997).
[29] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard, and W. Ketterle, Phys. Rev. Lett. 82, 4569 (1999).
[30] J. Steinhauer, R. Ozeri, N. Katz, and N. Davidson, Phys. Rev. Lett. 88, 120407 (2002).
[31] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D. Drummond, P. Hannaford, and C. J. Vale, Phys. Rev. Lett. 105, 070402 (2010).
[32] Since the dispersion relation $q \rightarrow \omega_q$ is here an increasing function, only the cases (i) and (ii) of Eq. (12) in reference [13], where q_1 and $q - q_1$ have the same direction at the minimum of $\omega_{q_1} + \omega_{q-q_1}$, need to be considered. It remains to minimize the function $f(q_1) = \omega(q_1) + \omega(q-q_1)$ over the interval $[0,q/2]$, where $\omega(q) = \omega_q$ is given by Eq. (10). Using the parametrization $q_1 = (1-t)q/2$, with $t \in [0,1]$, we find that $f(q_1)$ is a concave parabolic function of t^2. The minimum of $f(q_1)$ is thus reached at the border of the interval and is either $f(0) = \omega_q$ or $f(q/2) = 2\omega_q/2$.
[33] In reference [30] the spectrum is measured with an uncertainty ± 18Hz at low q. For the typical Fermi temperature $T_F = 1\mu K$, this corresponds to an uncertainty $\pm 2 \times 10^{-3}$ on $\hbar \omega_q/\mu$ that is on the vertical axis of Figure [1] indicating that the convexity of $q \rightarrow \omega_q$ is experimentally determinable for the unitary Fermi gas.
Concavité de la branche d’excitation collective d’un gaz de fermions dans la zone de raccordement CBE-BCS

H. Kurkjian, Y. Castin, A. Sinatra
Laboratoire Kastler Brossel, ENS-PSL, CNRS, UPMC-Sorbonne Universités et Collège de France, Paris, France

Nous étudions la concavité de la relation de dispersion $q \mapsto \omega_q$ des excitations bosoniques d’un gaz tridimensionnel non polarisé de fermions de spin 1/2 telle que décrite par l’Approximation de la Phase Aléatoire (RPA). Dans la limite des faibles nombres d’onde q nous obtenons le spectre analytiquement jusqu’à l’ordre 5 en q. Au voisinage de $q = 0$, un changement de concavité entre une branche concave dans la limite BCS et convexe dans la limite CBE se produit en $\Delta/\mu \simeq 0.869$ $(1/(k_Fa) \simeq -0.144)$, où a est la longueur de diffusion entre fermions de spins opposés, k_F le nombre d’onde de Fermi et Δ le gap d’après la théorie BCS, et μ le potentiel chimique. En ce point, la branche est concave du fait d’un terme d’ordre 5 négatif. Ces résultats sont complétés par une étude numérique qui montre l’évolution dans tout le plan (q, Δ) de la frontière entre la zone où $q \mapsto \omega_q$ est concave et celle où $q \mapsto \omega_q$ est convexe.

PACS numbers: 03.75.Kk, 67.85.Lm, 47.37.+q

I. INTRODUCTION

Les gaz d’atomes froids permettent d’explorer le problème à N corps avec une grande flexibilité dans le choix de ses paramètres microscopiques. En particulier, dans les gaz de fermions de spin 1/2, on peut ajuster expérimentalement la force des interactions entre les particules grâce à des résonances de Feshbach sans induire de fortes pertes de particules à trois corps. Cette liberté, unique dans les systèmes fermioniques, a permis aux expériences d’atomes froids [1–3] d’étudier comment l’on passe continûment d’un superfluide de paires de Cooper dans le régime dit de Bardeen-Cooper-Schrieffer (BCS) à un superfluide de dimères quasi-bosoniques dans le régime de Condensation de Bose-Einstein (CBE). L’autre avantage des gaz d’atomes froids est de permettre une description théorique simple des interactions, qui ont lieu dans un régime dilué et de basse énergie. Pour un gaz de fermions dans deux états de spin \uparrow et \downarrow, on montre ainsi que les seules interactions significatives à basse température et faible densité ont lieu dans l’onde s, entre fermions de spins opposés, et se caractérisent par un unique paramètre appelé longueur de diffusion et noté a. Ce cadre théorique avantageux autorise des études entièrement analytiques de propriétés expérimentalement accessibles du gaz en interaction, dans lesquelles cet article s’inscrit.

À température nulle, notre gaz tridimensionnel de fermions spatialement homogène non polarisé est entièrement apparié, et son spectre d’excitation se compose de deux branches : une branche fermionique d’excitation des degrés de liberté internes des paires de fermions $\uparrow\downarrow$ et une branche bosonique d’excitation de leur centre de masse, branche qui devient phononique dans la limite des grandes longueurs d’onde. Cette dernière branche est aussi dite collective car elle met en jeu un grand nombre de modes fermioniques d’excitation interne des paires. La branche fermionique est décrite à l’ordre le plus bas par la théorie BCS ; la branche bosonique, elle, est abordée par différentes approches : l’Approximation de la Phase Aléatoire (Random Phase Approximation, RPA) d’Anderson [10], une approximation gaussienne de l’action dans un cadre d’intégrale de chemin [11, 12], une approche par les fonctions de Green associées à une approximation diagrammatique [13], et une linéarisation des équations variationnelles BCS dépendant du temps [14]. Ces différentes théories, toutes approchées, convergent pour donner le même spectre d’excitation bosonique, décrit par la même équation implicite.

La concavité de ce spectre a été étudiée dans la limite BCS [11] et de manière qualitative dans la zone de raccordement CBE-BCS [13, 15, 16]. Il manque donc une étude quantitative exhaustive, et c’est ce qui fait l’objet de cet article. En particulier, nous obtenons analytiquement le spectre jusqu’à l’ordre 5 en le nombre d’onde q en utilisant la branche d’excitation sur un voisinage de $q = 0$ dans toute la zone de raccordement CBE-BCS. L’intérêt physique de notre étude est de déterminer quels processus d’amortissement des modes collectifs dominent à basse température. Si la branche est convexe sur un voisinage de $q = 0$ alors ce sont les processus d’interaction entre phonons $2 \leftrightarrow 1$ phonon de Beliaev-Landau [17, 18] qui dominent, tandis que si elle est concave ce sont les processus $2 \leftrightarrow 2$ phonons de Landau-Khalatnikov [19]. En effet, on montre à partir de la conservation de l’énergie et de la quantité de mouvement des trois excitations mises en jeu que les processus Beliaev-Landau sont interdits pour une branche d’excitation concave. À basse température, la branche fermionique, dont le spectre possède une bande interdite, ne participe pas à l’amortissement des modes collectifs, sa contribution étant exponentiellement réduite [20]. En outre, la connaissance quantitative du paramètre de concavité γ permet de prédire le taux d’amortissement des phonons par les processus $2 \leftrightarrow 1$ phonon dans le cas convexe au-delà de l’hydrodynamique quantitative [16], ou 2 phonons $\leftrightarrow 2$ phonons dans le cas concave.
où l’interaction effective prédite par l’hydrodynamique quantique fait intervenir des processus 2 phonons ↔ 1 phonon virtuels et dépend de γ [10]. La connaissance de γ donne enfin accès au coefficient de diffusion de la phase du condensat de paires, processus fondamental qui limite le temps de cohérence intrinsèque du gaz [14].

II. ÉQUATION DE LA RPA SUR LE SPECTRE D’EXCITATION

L’équation de la RPA donnant implicitement l’énergie $\hbar \omega_q$ des excitations collectives en fonction du vecteur d’onde q s’écrit :

$$I_{++}(\omega_q, q)I_{--}(\omega_q, q) = \hbar^2 \omega_q^2 [I_{+-}(\omega_q, q)]^2. \quad (1)$$

Les quantités $I_{\sigma\sigma'}$ traduisent le caractère collectif des modes bosoniques : ce sont des intégrales sur le vecteur d’onde relatif k des paires, fonctions de ω_q^2 via le dénominateur de leur intégrande $I_{\sigma\sigma'}$.

II. ÉQUATION DE LA RPA SUR LE SPECTRE D’EXCITATION

L’équation de la RPA donnant implicitement l’énergie $\hbar \omega_q$ des excitations collectives en fonction du vecteur d’onde q s’écrit :

$$I_{++}(\omega, q) = \int d^3k \left[\frac{(\epsilon_{k+q/2} + \epsilon_{k-q/2})(U_{k+q/2}V_{k-q/2} + V_{k+q/2}U_{k-q/2})^2}{\hbar^2 \omega^2 - (\epsilon_{k+q/2} + \epsilon_{k-q/2})^2} + \frac{1}{2\epsilon_k} \right] \quad (2)$$

$$I_{--}(\omega, q) = \int d^3k \left[\frac{(\epsilon_{k+q/2} + \epsilon_{k-q/2})(U_{k+q/2}V_{k-q/2} - V_{k+q/2}U_{k-q/2})^2}{\hbar^2 \omega^2 - (\epsilon_{k+q/2} + \epsilon_{k-q/2})^2} + \frac{1}{2\epsilon_k} \right] \quad (3)$$

$$I_{+-}(\omega, q) = \int d^3k \left(U_{k+q/2}V_{k-q/2} + V_{k+q/2}U_{k-q/2} \frac{1}{\hbar^2 \omega^2 - (\epsilon_{k+q/2} + \epsilon_{k-q/2})^2} \right) \quad (4)$$

Nous avons introduit ici les amplitudes U_k et V_k et les énergies propres ϵ_k des modes propres de la théorie BCS [21] :

$$\epsilon_k = \sqrt{\left(\frac{\hbar^2 k^2}{2m} - \mu \right)^2 + \Delta^2} \quad (5)$$

$$U_k = \frac{1}{2} \left(1 + \frac{\hbar^2 k^2}{2m} - \mu \right) \quad (6)$$

$$V_k = \frac{1}{2} \left(1 - \frac{\hbar^2 k^2}{2m} - \mu \right) \quad (7)$$

où m est la masse d’un fermion. Les deux paramètres naturels de la théorie BCS, qui nous serviront aussi à exprimer l’énergie $\hbar \omega_q$, sont le potentiel chimique μ du gaz, commun aux deux états de spin, et le gap Δ, largeur de la bande interdite dans le spectre BCS des excitations fermioniques lorsque μ est positif. Ils peuvent à loisir être échangés avec la longueur de diffusion a et la densité totale du gaz ρ en inversant les deux relations [22, 23] :

$$\frac{m}{4\pi \hbar^2 a} = \int \frac{d^3k}{(2\pi)^3} \left(\frac{m}{\hbar^2 k^2} - \frac{1}{2\epsilon_k} \right) \quad (8)$$

$$\rho = \int \frac{d^3k}{(2\pi)^3} 2|V_k|^2. \quad (9)$$

En pratique, plutôt que la densité, on utilise souvent le nombre d’onde de Fermi k_F défini par $\rho = k_F^2/(6\pi^2)$.

III. ÉTUDE NUMÉRIQUE GLOBALE DE LA CONCAVITÉ

En résolvant numériquement l’équation de dispersion [11] nous obtenons la relation de dispersion $q \mapsto \omega_q$ sur tout son domaine d’existence. Nous donnons sur la figure l’exemple de la limite unitaire $1/(k_F a) = 0$, où $\Delta/\mu = 1, 162$ d’après la théorie BCS. Plutôt que la fonction $q \mapsto \omega_q$ elle-même, nous traçons en trait noir plein la fonction $q \mapsto \omega_q - cq$, où c est la vitesse du son et $q \mapsto cq$ la partie linéaire du spectre. Les propriétés de concavité de cette fonction sont les mêmes que celles de $q \mapsto \omega_q$ mais se voient mieux graphiquement aux faibles q car elles ne sont pas masquées par la partie linéaire. Cette dernière, bien que dominante, ne joue aucun rôle dans la détermination des processus d’amortissement décrits dans l’introduction. Sur la figure, on distingue nettement le point d’inflexion de la dispersion de relation à $q/k_\mu \approx 0, 795$, où $k_\mu = (2m\mu)^{1/2}/\hbar$; il sépare un intervalle aux faibles q où la relation de dispersion est convexe d’un intervalle aux grands q où elle est concave. Par conséquent, d’après la RPA, les processus d’amortissement des excitations collectives du gaz dominants à basse température sont les processus 2 phonons $\leftrightarrow 1$ phonon de Beliaev-Landau.

La figure synthétise les résultats sur la concavité de la branche bosonique que nous avons obtenus par résolution numérique de l’équation de dispersion [11]. Plusieurs domaines se dégagent en fonction de la valeur de Δ/μ, ou s’il on préfère, de $1/(k_F a)$. (i) Lorsque la longueur de diffusion est négative $a < 0$, autrement dit pour
Figure 1: À l’unitarité $(k_F a)^{-1} = 0$, c’est-à-dire pour $\Delta/\mu = 1,162$, nous représentons en trait noir plein la relation de dispersion des excitations collectives après soustraction de sa partie phononique $c q$ afin de mettre en évidence ses propriétés de concavité. Le nombre d’onde q en est un unité de $k_p = (2m \mu)^{1/2}/\hbar$. La partie linéaire $q \mapsto c q$ (tireté violet) est représentée à titre de comparaison, de même que l’approximation cubique (tireté rouge supérieur) et quintique (tireté bleu inférieur) de $\omega_q - c q$ (voir plus loin l’équation (10)). La dérivée seconde $d^2 \omega_q/dq^2$, représentée en trait gris plein, s’annule au point d’inflexion $q_{\text{inf}} \approx 0,795 k_p$, marqué d’une ligne pointillée verticale. À gauche (respectivement à droite) de ce point, la relation de dispersion est convexe (respectivement concave).

$\Delta/\mu < 1,162$ (pointillé inférieur), le domaine d’existence des solutions de l’équation (1) en fonction de q est compact et simplement connexe [13], de la forme $[0, q_{\text{sup}}]$. La relation de dispersion est entièrement concave pour $\Delta/\mu < 0,869$, puis, lorsque $0,869 < \Delta/\mu < 1,162$, elle est d’abord convexe aux faibles q puis concave. Entre ces deux zones elle présente donc un point d’inflexion dont nous calculons analytiquement la position $q_{\text{inf}}(\Delta/\mu)$ aux faibles q (voir le tireté et l’équation (2) de la section IV). (ii) De l’autre côté de la résonance ($a > 0$), et jusqu’à $\Delta/\mu = 1,729$ (pointillé supérieur), le domaine d’existence des solutions de l’équation (1) se sépare en deux composantes connexes $[0, q_{\text{sup}}]$ et $[q_{\text{inf}}, +\infty]$ [13]. Tandis que la branche est toujours convexe dans la seconde composante $[q_{\text{inf}}, +\infty[$, d’intéressantes variations apparaissent dans la première composante $[0, q_{\text{sup}}]$: dans le sens des q croissants, la branche est convexe puis concave pour $1,162 < \Delta/\mu < 1,22$, convexe puis concave puis à nouveau convexe pour $1,22 < \Delta/\mu < 1,710$ et enfin entièrement convexe pour $1,710 < \Delta/\mu < 1,729$. (iii) Lorsque Δ/μ est supérieur à 1,729, ou est négatif, les deux composantes du domaine d’existence se rejoignent, si bien qu’une solution à l’équation (1) existe pour tout q [13]. La branche est alors entièrement convexe.

Toutes ces valeurs numériques sont prédites par la RPA ou la théorie BCS, donc sont approchées. La valeur de Δ/μ à la limite unitaire est la seule que l’on puisse à ce jour comparer aux expériences : les résultats expérimentaux $\Delta \approx 0,44 \hbar^2 k_p^2/(2m)$ [22] et $\mu \approx 0,376 \hbar^2 k_p^2/(2m)$ [8] conduisent à $\Delta/\mu \approx 1,17$, remarque-

Figure 2: Concavité locale de la branche bosonique $q \mapsto \omega_q$ selon les valeurs de Δ/μ et du nombre d’onde q mesuré en unités de $k_p = (2m \mu)^{1/2}/\hbar$. Les valeurs de $1/(k_F a)$ correspondant à celles de Δ/μ sont indiquées sur le bord droit du graphe. Les points rouges correspondent à une branche localement concave, les points orange à une branche localement convexe. La ligne épaissie dans trait plein délimite le domaine d’existence des solutions de l’équation de dispersion (1). La ligne noire tiretée est une prédiction analytique à faible q (cf. l’équation (29) de la section IV). La frontière entre les zones rouge et orange, lieu des points d’inflexion de la courbe $q \mapsto \omega_q$ représenté par un trait fin. L’ordonnée $\Delta/\mu = 0,869$ du point où cette ligne rejoint l’axe $q = 0$ et l’ordonnée $\Delta/\mu = 1,710$ au-delà de laquelle la zone de concavité disparaît sont indiquées par des flèches. Enfin les deux lignes pointillées, dont les ordonnées sont elles aussi indiquées par des flèches, encadrent l’intervalle des valeurs de Δ/μ ou $1/(k_F a)$ sur lequel le domaine d’existence en q de la solution de l’équation (1) n’est pas simplement connexe. La ligne pointillée inférieure correspond à la limite unitaire, où la longueur de diffusion diverge $|a| \to +\infty$.

IV. ÉTUDE ANALYTIQUE DE LA CONCAVITÉ DANS LA LIMITÉ DES GRANDES LONGUEURS D’ONDE

La relation de dispersion peut être obtenue analytiquement dans la limite des grandes longueurs d’onde $q \to 0$. Pour cela nous développons l’énergie propre du mode col-
Une relation comme l’a établi la référence [13] par développement de
la dérivée est prise à longueur de diffusion
Nous en proposons ici une expression explicite sous forme
donnée par la formule hydrodynamique
donc
\[mc^2 = \rho \left(\frac{\partial \mu}{\partial \rho} \right) \text{.} \] (11)
où la dérivée est prise à longueur de diffusion \(a \) fixée comme le suggère la notation. Appliquée à l’équation
d’État approchée [9], l’expression hydrodynamique [11] permet d’obtenir la vitesse du son prédite par la RPA,
car elle a établi la référence [13] par développement de
la solution \(\omega_q \) de l’équation (10) au premier ordre en \(q \).
Nous en proposons ici une expression explicite sous forme
d’une fraction rationnelle
\[\frac{mc^2}{\mu} = \frac{2(xy + 1)}{3(y^2 + 1)} \] (12)
en les variables
x = \frac{\Delta}{\mu} \quad \text{et} \quad y = \left(\frac{\partial \Delta}{\partial \mu} \right) \text{.} \] (13)
La variable \(y \) s’exprime à son tour en fonction de \(x \) grâce à la relation
\[y = \frac{\int d^3k \frac{\xi^2 k^2 / (2m) - \mu}{q} \rho}{\int d^3k \frac{\xi^2 k^2 / (2m) - \mu}{q}} = \frac{\int_0^{+\infty} du \frac{u^2 (u^2 - x^2 - 1)^{1/2}}{(u^2 - x^2 - 1 + 1/2)^{1/2}}}{\int_0^{+\infty} du \frac{u^2}{(u^2 - x^2 + 1)^{1/2}}} \] (14)
qui s’obtient en dérivant l’équation [5] par rapport à
\(\mu \) à longueur de diffusion \(a \) fixée et en exprimant les
vecteurs d’onde en unités de \(k_\Delta = (2m \Delta)^{1/2}/h \) pour
faire apparaître la variable d’intégration \(u \) sans dimen-
sion. Les intégrales apparaissant au numérateur et au
dénominateur du troisième membre de [14] peuvent s’ex-
primer en termes d’intégrales elliptiques complètes de
première et deuxième espèce [11]. Notons qu’à la limite
unitaire \(y = x \), puisque \(\Delta \) et \(\mu \) sont proportionnels par
invariance d’échelle.
Pour obtenir l’expression [12] de la vitesse du son adi-
ensionnée, nous dérivons l’équation d’État [9] par rap-
port à \(\mu \) à \(a \) fixé et exprimons toutes les intégrales utiles
en fonction de \(x \) et \(y \) à l’aide de [14] et de la relation
\[\int \frac{d^3k}{(2\pi)^3} \frac{A^4}{k^4} \rho = \frac{\int_0^{+\infty} du \frac{\Delta^4}{u^2 (u^2 - x^2 - 1)^{1/2} + 1/2}}{\int_0^{+\infty} du \frac{\Delta^4}{u^2 + 1}} = \frac{3\pi/2}{1 + xy^2} \] (15)
qui se démontre en intégrant par parties le dénominateur
du second membre, \(u^2 \) étant la fonction à intégrer.
Pour obtenir les coefficients sans dimension \(\gamma \) et \(\eta \) des
ordres supérieurs en \(q \) de \(h \omega_q \) dans l’équation [10], on
peut s’appuyer sur des expressions thermodynamiques
connues et on n’échappe donc pas au développement la-
borieux de l’équation [11] en puissances de \(q \). Le résultat
peut s’écrire tout de même sous la forme de fractions
erationnelles en \(x \) et \(y \) :
\[\gamma = \frac{\sum_{i=0}^{4} P_i(y)x^i}{135x^2 (x^2 + 1) (y^2 + 1)^8} \] (16)
\[\eta = \frac{\sum_{i=0}^{8} Q_i(y)x^i}{1020600 (y^2 + 1)^6 x^4 (x^2 + 1)^7} \] (17)
Les polynômes \(P_i(y) \) et \(Q_i(y) \) qui apparaissent aux
numérateurs ordonnés par puissances croissantes de \(x \) des
expressions de \(\gamma \) et de \(\eta \) valent :
\[P_0(y) = -4 \left(13y^4 + 16y^2 + 8 \right) \] \[P_1(y) = 4y \left(13y^4 + 41y^2 + 8 \right) \] \[P_2(y) = 50y^6 - 21y^4 - 252y^2 - 61 \] \[P_3(y) = 2y^4 + 32y^2 + 71 \] \[P_4(y) = 35y^6 + 56y^4 - 13y^2 - 54 \] (18)

\[Q_0(y) = 16 \left(7745y^8 + 15925y^6 + 20304y^4 + 8384y^2 + 1088 \right) \] \[Q_1(y) = 32y \left(2857y^8 + 679y^6 - 3186y^4 - 7920y^2 - 2624 \right) \] \[Q_2(y) = -8 \left(12882y^{10} + 28061y^8 + 2693y^6 + 7221y^4 - 24496y^2 - 5232 \right) \] \[Q_3(y) = -8y \left(8456y^{10} + 985y^8 + 9977y^6 + 145295y^4 + 3523y^2 + 3172 \right) \] \[Q_4(y) = -17500y^{12} - 247996y^{10} - 1249743y^8 - 1341332y^6 + 337202y^4 - 694392y^2 + 18321 \] \[Q_5(y) = -4y \left(25564y^{10} + 39027y^8 - 66984y^6 + 929206y^4 + 387932y^2 - 56121 \right) \] \[Q_6(y) = -2 \left(12250y^{12} + 115637y^{10} + 558246y^8 + 1071518y^6 + 5894784y^4 - 248499y^2 + 53082 \right) \] \[Q_7(y) = -4y \left(12957y^{10} + 33764y^8 - 41904y^6 - 173106y^4 + 96189y^2 + 53406 \right) \] \[Q_8(y) = -8575y^{12} - 44544y^{10} - 149742y^8 - 360644y^6 + 477615y^4 - 270756y^2 - 20412 \]
Nous avons obtenu les expressions analytiques (16) et (17) par développement limité des intégrales $I_{++}(\omega_q, q)$, $I_{--}(\omega_q, q)$ et $I_{+-}(\omega_q, q)$ après remplacement de $\hbar \omega_q$ par le développement (10). Nous réutilisons à chaque ordre les résultats des ordres inférieurs : la valeur (12) de γ pour obtenir η. Au cours du calcul, nous rencontrons des intégrales avec des puissances élevées de ϵ_k (ou $(u^2 - x^{-1})^2 + 1)^{1/2}$ après adimensionnement) au dénominateur ; leur calcul par intégrations par partie répétées est expliqué dans l’annexe A.

Nous représentons sur la figure 3 les coefficients γ et η en fonction de $1/(k_F a)$, variable que nous avons préférée ici à Δ/μ. Commentons brièvement leurs comportements asymptotiques dans les limites CBE $1/(k_F a) \to +\infty$ et BCS $1/(k_F a) \to -\infty$ ainsi que leurs valeurs remarquables dans les régimes intermédiaires.

1. Limite CBE

Dans la limite CBE, $k_F a \to 0^+$, le système est assimilable à un gaz de bosons de masse $2m$ en interaction faible, de potentiel chimique

$$\mu_B = 2\mu - E_{\text{dim}}, \quad (20)$$

où $E_{\text{dim}} = -\hbar^2/(ma^2)$ est l’énergie interne d’un dimère [25, 26]. On sait alors que la relation de dispersion des excitations bosoniques est convexe et se réduit à celle des excitations de Bogolioubov au potentiel chimique μ_B lorsque $q = o(1/a)$ [13] :

$$\hbar \omega_q^{\text{BoB}} = \left[\hbar^2 q^2/4m + \left(\hbar^2 q^2/4m + 2\mu_B \right) \right]^{1/2}, \quad (21)$$

auquel cas la vitesse du son est telle que $2mc^2 = \mu_B$. Les coefficients γ et η devraient donc admettre les limites suivantes :

$$\gamma \to k_F a \to 0^+ \frac{1}{4} \quad \text{et} \quad \eta \to \frac{-1}{128}. \quad (22)$$

C’est bien ce que donnent les équations (16) et (17) prises à la limite CBE, c’est-à-dire avec $x = O(k_F a)^{3/2} \to 0^-$ [22] et, comme le montre l’équation (17) après le changement de variable $u = u'/|x|^{1/2}$, avec $y \sim -4/x$.

2. Limite BCS

Quand $k_F a \to 0^-$, le bord inférieur du continuum à deux excitations fermioniques (à nombre d’onde total $q < q_{\text{sup}}$ fixé) devient exponentiellement faible et contraint la branche d’excitation bosonique, qui ne peut pénétrer dans ce continuum, à se courber vers le bas [13, 15]. Cette courbe se produit sur une échelle de nombre d’onde q_c telle que $\hbar q_c = \Delta$, c’est-à-dire telle que le terme dominant dans le développement (10) soit de l’ordre de Δ. Physiquement, ceci signifie que les modes collectifs sont affectés par la structure interne des paires dès que leur longueur d’onde devient de l’ordre de la taille des paires dans l’espace réel $\approx \hbar k_F/(m\Delta)$ [11], quantité qui est effectivement d’ordre $1/q_c$ puisque $c \propto \hbar k_F/m$ dans cette limite.

Ceci explique qualitativement pourquoi la relation de dispersion est concave aux faibles valeurs de q et de Δ/μ sur la figure 2 et donc pourquoi $\gamma < 0$ dans la
limite BCS. Plus quantitativement, on s’attend à ce que l’énergie adimensionnée $\hbar \omega_q / \Delta$ devienne une fonction universelle de $q/q_c = h \omega q / \Delta$ lorsque $k_F a \to 0^-$, auquel cas tous les termes entre crochets dans l’équation (10) sont du même ordre de grandeur en $q = q_c$, c’est-à-dire $|\gamma(h \omega q/mc)^2| \approx 1$, $|\eta(h \omega q/mc)^4| \approx 1$. En prenant la limite $x \to 0$ et $y \to 0$ dans les équations (16) et (17), c’est bien ce que l’on obtient :

$$\gamma_{k_F a \to 0^-} \sim -\frac{8}{15} \left(\frac{mc^2}{\Delta}\right)^2$$ et $$\eta_{k_F a \to 0^-} \sim \frac{136}{1575} \left(\frac{mc^2}{\Delta}\right)^4,$$

le premier résultat reproduisant celui de la référence [11].

3. Régimes intermédiaires

Dans la zone de raccordement entre CBE et BCS, γ est une fonction croissante de $1/(k_F a)$ et s’annule en changeant de signe pour la valeur x_0 de $x = \Delta/\mu$ qui suit :

$$x_0 \approx 0,868567.$$

Ceci correspond à $1/(k_F a) \approx -0,144292$ et confirme le résultat numérique de la figure 2 ainsi que celui de la référence [11]. La RPA prédit donc que la limite unitaire se situe du côté où la relation de dispersion est convexe sur un voisinage de $q = 0$:

$$\gamma_{(k_F a)^{-1}=0} \approx 0,083769$$

Le coefficient η change lui aussi de signe, pour une valeur x_1 de Δ/μ donnée par

$$x_1 \approx 0,566411,$$

ce qui correspond à $1/(k_F a) \approx -0,389027$. Il est négatif tant à la limite unitaire

$$\eta_{(k_F a)^{-1}=0} \approx -0,035416,$$

qu’au point où γ s’annule :

$$\eta(x_0) \approx -0,042794.$$ En ce point, le signe de η nous importe particulièrement car il détermine la concavité de la relation de dispersion au voisinage de $q = 0$.

4. Lieu des points d’inflexion

Les coefficients γ et η permettent finalement de donner un équivalent aux faibles q de la frontière entre les zones rouge et orange de la figure 2 autrement dit de l’ensemble des points $(q_{\text{inf}}/k_F a, \Delta/\mu)$ où la dérivée seconde $d^2 \omega_q / dq^2$ s’annule. En prenant pour ω_q le développement (10) et en développant les coefficients $\gamma(x)$ et $\eta(x)$ autour de $x = x_0$ respectivement à l’ordre un et à l’ordre zéro en $x - x_0$, on obtient l’équation

$$\frac{q_{\text{inf}}^2}{k_F^2} \propto x - x_0^+ \sim \frac{3\gamma(x_0) mc^2}{10\eta(x_0)} \mu(x - x_0) \approx 2,015858(x - x_0).$$

Ceci conduit à la courbe noire tiretée de la figure 2 qui rejoint l’axe $q = 0$ avec une tangente horizontale.

En revanche, la frontière entre les zones rouge et orange de la figure 2 rejoint le bord du domaine d’existence de la branche d’excitation collective avec une tangente oblique car la dérivée troisième de $q \to \omega_q$ au point de contact (où $q = q_{\text{sup}}$) ne s’annule pas, au contraire de ce qui se passe en $q = 0$.

V. CONCLUSION

Pour un gaz spatialement homogène de fermions de spin 1/2 non polarisé et à température nulle, nous avons obtenu l’énergie propre $\hbar \omega_q$ de la branche d’excitation bosonique prédite par la RPA jusqu’à l’ordre 5 en le nombre d’onde q au voisinage de $q = 0$, avec des coefficients qui sont des fractions rationnelles en Δ/μ et $(\Delta/\partial q)_a$, la seconde variable pouvant être analytiquement reliée à la première via l’équation d’état de la théorie BCS. Ceci nous permet de montrer analytiquement que la relation de dispersion $q \mapsto \omega_q$ est concave sur un voisinage de $q = 0$ lorsque $1/(k_F a)$ est compris entre $-\infty$ et une valeur proche de $-0,144$, point où la première correction à l’énergie phononique est quintique et faiblement négative. Pour $-0,144 < 1/(k_F a) < 0,157$ la branche est convexe sur voisinage de $q = 0$ mais redé- vient concave lorsque q augmente (et le demeurant jusqu’à la valeur maximale accessible de q si $1/(k_F a) < 0,022$, sinon elle redéveu convexe). Au-delà de $1/(k_F a) = 0,157$, elle est entièrement convexe sur son domaine d’existence.

Une application directe de notre développement du spectre [11] est de déterminer si une excitation collective de faible vecteur d’onde q peut ou non décroître par un processus de Beliaev, c’est-à-dire en émettant deux excitations collectives de vecteurs d’onde q_1 et $q_2 = q - q_1$. Ce processus est autorisé par la loi de conservation de l’énergie à condition que $\omega_q > \Omega_q$ où $\Omega_q = \inf_{q_1}(\omega_{q_1} + \omega_{q-q_1})$ est le bord inférieur du continuum à deux excitations de vecteur d’onde total q fixé. Lorsque Δ/μ est loin de la valeur critique $x_0 \approx 0,869$ où le coefficient γ de q^2 s’annule, la relation de dispersion est soit entièrement convexe soit entièrement concave aux faibles q, et l’amortissement de Beliaev est respectivement permis ou interdit. En revanche, si Δ/μ est proche de la valeur critique x_0, la relation de dispersion possède un point d’inflexion aux faibles q. Dans ce cas, nous appliquons à l’équation (10) l’analyse fournie par la référence [13] et nous trouvons $\Omega_q = \min(2\omega_{q/2}, \omega_q)$ [22]. L’amor- tissement de Beliaev est donc permis à condition que

$$\frac{\hbar^2}{mc^2} < \frac{8\gamma}{5|\eta|}$$ (30)
à l’ordre dominant en γ, c’est-à-dire en Δ/μ − x₀. À température basse mais non nulle, d’autres mécanismes d’amortissement sont possibles : (i) le mécanisme de Landau q, q₁ → q₂ est interdit dès lors que celui de Beliaev l’est puisqu’il peut être vu comme l’inverse d’un processus de Beliaev avec un vecteur d’onde q₂ de module q ; (ii) le processus d’ordre supérieur de Landau-Khalatnikov q + q₁ → q₂ + q₃ est lui toujours permis, mais il est sous-dominant dès lors que les processus de Beliaev ou Landau sont présents.

Nos résultats sur la concavité au voisinage de q = 0 peuvent être testés expérimentalement dans un gaz d’atomes fermioniques froids piégé dans un potentiel à fond plat [27] en mesurant des effets dissipatifs, comme le taux d’amortissement des excitations collectives à basse température, des effets dispersifs, comme l’étalonnage au cours de sa propagation dans le gaz d’un paquet d’ondes sonores créé par une impulsion lumineuse [3, 28], ou en accédant directement à la relation de dispersion à basse température via le facteur de structure dynamique du gaz de fermions par excitation de Bragg à un vecteur d’onde q bien défini [22, 31, 32].

Couplés à des équations cinétiques sur les nombres d’occupation des modes collectifs, nos résultats ouvrent aussi la voie à une détermination analytique du coefficient de diffusion de phase à basse température, donc de la limite intrinsèque fondamentale au temps de cohérence du temps de tirons de paires dans un gaz de fermions de taille finie [14].

Annexe A: Expression d’intégrales en termes des variables x et y

Dans le développement de Iₜ₊ₙ(ω, q), Iₜ₋ₙ(ω, q) et Iₜ₊₋ₙ(ω, q) à faible q, et après adimensionnement des vecteurs d’onde par kΔ comme dans l’équation [13], à savoir k = ukΔ, nous rencontrons des intégrales de la forme

\[I_{n,p} = \int_0^{+\infty} \frac{k^3_{\Delta}}{2\pi^2} \, du \frac{u^{2p+2}}{e_{\xi_u}^n} \]

et

\[J_{n,p} = \int_0^{+\infty} \frac{k^3_{\Delta}}{2\pi^2} \, du \frac{u^{2p+2}\xi_u}{e_{\xi_u}^n} \]

avec n ∈ 2N* + 1, p ∈ N,

\[\xi_u = u^2 - \frac{1}{x} \]

et

\[e_u = \sqrt{\xi_u^2 + 1} \]

et la densité totale ρ du gaz est donnée par l’équation [9]. L’intégrale donnant Iₜ₊ₙ est convergente pour n − p ≥ 2, tandis que celle donnant Jₜ₊ₙ l’est pour n − p ≥ 3. Les intégrales que nous rencontrons dont l’intégrande n’est pas fonction uniquement du module de k se ramènent facilement à [A1] ou [A2] par intégration angulaire :

\[\int d^3k f(k) \left(\frac{h^2 k \cdot q}{m} \right)^{2p} = \frac{4\pi}{1 + 2p} \left(\frac{h^2 q^2}{m} \right)^p \int_0^{+\infty} dk k^2 f(k) \left(\frac{h^2 k^2}{m} \right)^p \]

où f(k) est une fonction arbitraire du module de k.

Établisseons d’abord les quatre relations de récurrence suivantes :

\[I_{n,p} = \frac{n - 3}{n - 2} \frac{2p + 1}{2(n - 2)} J_{n-2,p-1} \]

(A6)

\[J_{n,p} = \frac{2p + 1}{2(n - 2)} I_{n-2,p-1} \]

(A7)

\[I_{n,p} = \frac{I_{n,p-1}}{x} + J_{n-2,p-1} - I_{n-1,p-1} \]

(A8)

\[J_{n,p} = \frac{I_{n,p-1}}{x} + J_{n-2,p-1} - I_{n-1,p-1} \]

(A9)

avec la condition 1 ≤ p ≤ n − 4 dans la première relation, 1 ≤ p ≤ n − 3 dans la deuxième, 1 ≤ p ≤ n − 2 dans la troisième et 1 ≤ p ≤ n − 3 dans la dernière. Pour établir la relation [A6], on intègre par parties l’intégrale

\[\frac{k^3_{\Delta}}{2\pi^2} \int_0^{+\infty} du \frac{u^{2p+2}\xi_u}{e_{\xi_u}^n} = I_{n-2,p} - I_{n,p}, \]

(A10)

ej dérivant la fonction u ↦ u^{2p+1}ξ_u. Pour établir la relation [A7], on intègre par parties l’intégrande définissant Jₜ₊ₙ dans l’équation [A2], en dérivant la fonction u ↦ u^{2p+1}. Dans les deux cas, on note que la fonction u ↦ uξ_u/e_u admet comme primitive u ↦ −[2(n − 2)e_u^{−2}]−1. Enfin, on écrit simplement u^{2p+2} = u^{2p}(ξ_u + x^{−1}) dans l’intégrande de [A1] pour obtenir [A8], et u^{2p+2}ξ_u = u^{2p}(ξ_u^2 − 1 + x^{−1}ξ_u) dans l’intégrande de [A2] pour obtenir [A9]. Cette procédure généralise celle de la référence [11].

Montrons ensuite par récurrence que les relations [A6, A7, A8, A9] permettent d’exprimer Iₜ₊ₙ et Jₜ₊ₙ en fonction de Iₜ₊₂₁ et Jₜ₊₂₁, pour tout n impair ≥ 3 et pour tout p positif dans le domaine d’existence des intégrales. Soit un tel n. Supposons que l’on connaisse tous les Iₜ₊₂₁ et Jₜ₊₂₁, 0 ≤ p ≤ n − 3, et tous les Jₜ₊₂⁺₁, 0 ≤ p ≤ n − 3. Alors (i) Iₜ₊₂₁ et Jₜ₊₂⁺₁ s’en déduisent grâce à [A6] et [A7], (ii) on obtient grâce à [A9] et [A8] le système de Cramer sur Iₜ₊₂⁺₂ et Jₜ₊₂⁺₂ :

\[x^{-1}J_{n+2,0} - I_{n+2,0} = J_{n+2,1} - I_{n,0} \]

(A11)

\[J_{n+2,0} + x^{-1}I_{n+2,0} = I_{n+2,1} \]

(A12)

que l’on résout, (iii) on utilise [A8] et [A9] pour accéder aux valeurs de Iₜ₊₂⁺₂ et Jₜ₊₂⁺₂ pour p ≥ 2. On initialise la récurrence à n = 3, en exprimant Iₜ₊₃₁ en fonction de Jₜ₊₃₀ et Jₜ₊₃₀ grâce à [A8].

On relie enfin Iₜ₊₃₀ et Jₜ₊₃₀ à x et y grâce aux relations [13] et [15] données dans le corps de l’article, qui s’écrivent avec les notations de cette annexe sous la forme

\[y = J_{3,0}/I_{3,0} \]

et

\[I_{3,0} = 3x/[2(1 + xy)]. \]
atomic Fermi superfluids. \textit{Phys. Rev. A}, 92:023638, août 2015.

[17] S. T. Beliaev : Application of the Methods of Quantum Field Theory to a System of Bosons. \textit{Zh. Eksp. Teor. Fiz.}, 34:417, août 1958.

[18] P. O. Fedichev et G. V. Shlyapnikov : Finite-temperature perturbation theory for a spatially inhomogeneous Bose-condensed gas. \textit{Phys. Rev. A}, 58:3146–3158, octobre 1998.

[19] Lev Landau et Isaak Khalatnikov : Teoriya vyzakosti Gelya-II, \textit{Zh. Eksp. Teor. Fiz.}, 19:637, 1949.

[20] Zixu Zhang et W. Vincent Liu : Finite-temperature damping of collective modes of a BCS-BEC crossover superfluid. \textit{Phys. Rev. A}, 83:023617, février 2011.

[21] J. Bardeen, L. N. Cooper et J. R. Schrieffer : Theory of superconductivity. \textit{Phys. Rev.}, 108:1175, 1957.

[22] Yvan Castin : Basic Theory Tools for Degenerate Fermi Gases. \textit{In M. Inguscio, W. Ketterle et C. Salomon, éditeurs : Ultra-cold Fermi Gases. Société italienne de physique, Bologna, 2007.}

[23] H. Kurkjian, Y. Castin et A. Sinatra : Propagation of Sound in a Bose-Einstein Condensate. \textit{Phys. Rev. A}, 88:063623, décembre 2013.

[24] André Schrotzek, Yang-il Shin, Christian H. Schunck et Wolfgang Ketterle : Determination of the Superfluid Gap in Atomic Fermi Gases by Quasiparticle Spectroscopy. \textit{Phys. Rev. Lett.}, 101:140403, octobre 2008.

[25] X. Leyronas et R. Combescot : Superfluid Equation of State of Dilute Composite Bosons. \textit{Phys. Rev. Lett.}, 99:170402, octobre 2007.

[26] R. Combescot et X. Leyronas : Superfluid equation of state of cold fermionic gases in the Bose-Einstein regime. \textit{Phys. Rev. A}, 78:053621, novembre 2008.

[27] Alexander L. Gaunt, Tobias F. Schmidutz, Igor Gotlibovych, Robert P. Smith et Zoran Hadzibabic : Bose-Einstein Condensation of Atoms in a Uniform Potential. \textit{Phys. Rev. Lett.}, 110:200406, mai 2013.

[28] M. R. Andrews, D. M. Kurn, H.-J. Miesner, D. S. Durfee, C. G. Townsend, S. Inouye et W. Ketterle : Propagation of Sound in a Bose-Einstein Condensate. \textit{Phys. Rev. Lett.}, 79:553–556, juillet 1997.

[29] J. Stenger, S. Inouye, A. P. Chikkatur, D. M. Stamper-Kurn, D. E. Pritchard et W. Ketterle : Bragg Spectroscopy of a Bose-Einstein Condensate. \textit{Phys. Rev. Lett.}, 82:4569–4573, juin 1999.

[30] J. Steinhauer, R. Ozeri, N. Katz et N. Davidson : Excitation Spectrum of a Bose-Einstein Condensate. \textit{Phys. Rev. Lett.}, 88:120407, mars 2002.

[31] E. D. Kuhnle, H. Hu, X.-J. Liu, P. Dyke, M. Mark, P. D. Drummond, P. Hannaford et C. J. Vale : Universal Behavior of Pair Correlations in a Strongly Interacting Fermi Gas. \textit{Phys. Rev. Lett.}, 105(7):070402, août 2010.

[32] Puisque la relation de dispersion $q \rightarrow \omega_q$ est ici une fonction croissante, seuls les cas (i) et (ii) de l’équation (12) de la référence [15], où q_1 et $q - q_1$ sont de même direction et de même sens au minimum de $\omega_{q_1} + \omega_{q - q_1}$, sont à prendre en compte. Il ne reste qu’à chercher le minimum de la fonction $f(q_1) = \omega(q_1) + \omega(q - q_1)$ sur l’intervalle $[0, q/2]$, où $\omega(q) = \omega_{q_1}$ est donné par l’équation (10). En utilisant le paramétrage $q_1 = (1-t)q/2$, avec
$t \in [0, 1]$, nous trouvons que $f(q_1)$ est une fonction parabolique concave de t^2. Son minimum est donc atteint sur l’un des bords de l’intervalle et vaut soit $f(0) = \omega_q$ soit $f(q/2) = 2\omega_q/2$.

[33] Dans la référence [30] le spectre est mesuré avec une incertitude de ± 18 Hz aux faibles q. Pour une température de Fermi typique $T_F = 1 \mu K$, ceci correspond à une incertitude de $\pm 2 \times 10^{-3}$ sur $\hbar \omega_q / \mu$, c’est-à-dire sur l’axe des ordonnées de la figure [3]. Ceci indique que la convexité de $q \mapsto \omega_q$ peut être déterminée expérimentalement dans un gaz unitaire de fermions.