Panoramic Image Communication for Mobile Application using Content-Aware Image Resizing Method
Jaejoon Kim
pages: 338-344 DOI:10.18517/ijaseit.7.2.1751

Pseudo-Elliptic Bandpass Filters Using Closed-Loop Resonator
Norfishah Ab. Wahab, I. Pasya, M. F. Abdul Khalid, I. M. Yassin, S. H. Herman, Z. Awang
pages: 345-351 DOI:10.18517/ijaseit.7.2.1362

Development of Electronic Nose with High Stable Sample Heater to Classify Quality Levels of Local Black Tea
Danang Lelono, Kuwat Triyana, Sri Hartali, Jazi Eko Istiyanto
pages: 352-358 DOI:10.18517/ijaseit.7.2.1659

Modelling Effect of Aggregate Gradation and Bitumen Content on Marshall Properties of Asphalt Concrete
Arief Setiawan, Latif Budi Suparma, Agus Taufik Mulyono
pages: 359-365 DOI:10.18517/ijaseit.7.2.2084

IoT and Public Weather Data Based Monitoring & Control Software Development for Variable Color Temperature LED Street Lights
Gandeva Bayu Satrya, Haftu Tasew Reda, Kim Jin Woo, Philipp Tobianto Daely, Soo Young Shin, Seog Chae
pages: 366-372 DOI:10.18517/ijaseit.7.2.1387

The Performance of Binary Artificial Bee Colony (BABC) in Structure Selection of Polynomial NARX and NARMAX Models
Azlee Zabidi, Nooritawati Md Tahir, Ihsan Mohd Yassin, Zaini Ismael Rozman
pages: 373-379 DOI:10.18517/ijaseit.7.2.1015

Evaluation of the Pre-Cracked RC Beams Repaired with Sealant Injection Method
- Zaidir, Rendy Thanmjin, Erick Dalmantas
pages: 380-386 DOI:10.18517/ijaseit.7.2.2065

A Survey on Building Safety after Completing the Construction Process in Malaysia Using Statistical Approach
Nurulash Zamri, Fadhilah Ahmad, Amira Husni Talib, Mohamad Shafiq Mohd Ibrahim
pages: 387-398 DOI:10.18517/ijaseit.7.2.1450

Role of Corridor in Territorial Meaning Formation in “Owned Low-cost Apartments” (‘Rusunami’) Bidara Cina, Jakarta, Indonesia
Fernando Lanto, Lilian Sigit Arifin, Y. Basuki Dwisusanto
pages: 399-405 DOI:10.18517/ijaseit.7.2.2095

The Function of Religious Language in the Media: A Comparative Analysis of the Japanese, German and American Newspaper Coverage about the 2011 Great East Japan Earthquake and Tsunami
Yukiko Sato, Ikumi Waragai
pages: 406-417 DOI:10.18517/ijaseit.7.2.2172

The Investigation of 1997 and 2015 El Nino Events in West Sumatera, Indonesia
Revalin Herdianto, Elvi Roza Syofyan, Suhendrik Hanwar, Bambang Istijono, - Dalrino
pages: 418-423 DOI:10.18517/ijaseit.7.2.1594
Splitting Tensile Strength of Lightweight Foamed Concrete with Polypropylene Fiber
Freccy Raupit, Anis Saggafi, Cher Siang Tan, Yee Ling Lee, Mahmood Md Tahir
pages: 424-430 DOI:10.18517/ijaseit.7.2.2096

Sample Biochemical Methane Potential from the Digestion of Domestic Mixed Sewage Sludge in Batch Tests
Roslinda Seswoya, Ahmad Tarmizi Abdul Karim
pages: 431-437 DOI:10.18517/ijaseit.7.2.2094

Improving the Performance Of Single Cells In The Design Of Proton Exchange Membrane Fuel Cell (PEMFC) When Using Hydrogen
- Mulyazmi, Maria Ulfah, Silvi Octavita
pages: 438-445 DOI:10.18517/ijaseit.7.2.1256

Risk Management Framework in Oil Field Development Project by Enclosing Fishbone Analysis
Abdul Hamid, Ishak Baba, Winardi Sani
pages: 446-452 DOI:10.18517/ijaseit.7.2.1499

The Evaluation of Heavy Metals Concentrations in Cempaka Lake, Bangi, Selangor, Malaysia
Mohd. Barzani Gasim, Mohd. Ekhwam Toriman, Amal Barggig, Soaad Mutfah, Norsyuhada Hairoma, Azizah Endut
pages: 453-459 DOI:10.18517/ijaseit.7.2.1004

White-box Implementation to Advantage DRM
Antonius Cahya Prihandoko, Hossein Ghodosi, Bruce Litow
pages: 460-467 DOI:10.18517/ijaseit.7.2.1445

Speed Effect to a Quarter Car ARX Model Based on System Identification
Dirman Hanafi, Mohd Syafiq Suid, Mohamed Najib Ribuan, Rosli Omar, M Nor M. Than, M. Fuad Rahmat
pages: 468-474 DOI:10.18517/ijaseit.7.2.1500

Speaker Independent Speech Recognition of Isolated Words in Room Environment
M. Tabassum, M. A. Azit Jahan, M. M. Rahman, S. B. Mohamed, M. A. Rashid
pages: 475-481 DOI:10.18517/ijaseit.7.2.1465

Validation on an Enhanced Dendrite Cell Algorithm using Statistical Analysis
Mohamad Farhan Mohamed Mohain, Abdul Razak Hamdan, Azuraliza Abu Bakar, Mohd Helmy Abd Wahab
pages: 482-488 DOI:10.18517/ijaseit.7.2.1743

Rapid Simulation Model Building in Cellular Manufacturing using Cladistics Technique
Zainal Rasyid Mahayuddin, Nur Afiqah Khairuddin
pages: 489-495 DOI:10.18517/ijaseit.7.2.2136

An Efficient Cloud based Image Target Recognition SDK for Mobile Applications
Haslina Arshad, Meng Chun Lam, Waqas Khalid Obiedy, Siock Yee Tan
pages: 496-502 DOI:10.18517/ijaseit.7.2.1744

Assessing the Determinants of Cloud Computing Services for Utilizing Health Information Systems: A Case Study
Ahmed Meri Kadhum, Mohamad Khatim Hasan
pages: 503-510 DOI:10.18517/ijaseit.7.2.1814

A Comparative Review of Machine Learning for Arabic Named Entity Recognition
Ramzi Esmail Salah, Lailatul Qadri binti Zakaria
pages: 511-518 DOI:10.18517/ijaseit.7.2.1810

Interaction in Online System is A Favor Key for Learners’ Success
Imane Kamsa, Rachid Elouahbi, Fatima El Khouchi
pages: 519-525 DOI:10.18517/ijaseit.7.2.1475

Key Factors for Selecting an Agile Method: A Systematic Literature Review
Mashal Kasem Alqudah, Rozailawati Razali
pages: 526-537 DOI:10.18517/ijaseit.7.2.1830
Factors Affecting The Success of Incubators and The Moderating Role of Information and Communication Technologies
Qadri Kamal Alzaghal, Muriati Mukhtar
pages: 538-545 DOI:10.18517/ijaseit.7.2.1678

An Automatic Updating Process to Control The E-learning Courseware
Fatih Elghibari, Rechid Elouahbi, Fatima El Khoukhi
pages: 546-551 DOI:10.18517/ijaseit.7.2.1871

Finding an Optimum Period of Oxidative Heat Treatment on SS 316 Catalyst for Nanocarbon Production from LDPE Plastic Waste
Praswasti P.D.K. Wulan, Satrio Bimo Wijardono
pages: 552-558 DOI:10.18517/ijaseit.7.2.2097

Identification of Nutrient Contents in Six Potential Green Biomasses for Developing Liquid Organic Fertilizer in Closed Agricultural Production System
- Fahrurrozi, Yenny Sariasih, Zainal Muktamar, Nanik Setyowati, Mohammad Choizin, Sigit Sudjatmiko
pages: 559-565 DOI:10.18517/ijaseit.7.2.1889

Treatment of Wastewater Containing Hexavalent Chromium Using Zeolite Ceramic Adsorbent in Adsorption Column
Tuty Emilia Agustina, Tine Aprianti, Siti Miskah
pages: 566-572 DOI:10.18517/ijaseit.7.2.2035

Identification of Plant Morphology of Taro as a Potential Source of Carbohydrates
Zulfadly Syarif, Nasrez Akhir, Benni Satria
pages: 573-579 DOI:10.18517/ijaseit.7.2.1323

Mixed Cooked Rice with Purple Sweet Potato is Potentially to be The Low Glycemic Index Food
Evawany Arionang, Albiner Siagian, Fannisa Izzati
pages: 580-586 DOI:10.18517/ijaseit.7.2.1033

A Review of Minimum Quantity Lubrication Technique with Nanofluids Application in Metal Cutting Operations
Safian Sharif, Ibrahim Ogu Sadiq, Noordin Mohd Yusof, Amrifan Saladin Mohruni
pages: 587-593 DOI:10.18517/ijaseit.7.2.2141

Susceptible Phase of Chili Pepper Due to Yellow Leaf Curl Begomovirus Infection
Dei Wahyuni Ganefianti, Sri Hendrastuti Hidayat, Muhamad Syukur
pages: 594-601 DOI:10.18517/ijaseit.7.2.1872

Sweet Corn Performance and its Major Nutrient Uptake Following Application of Vermicompost Supplemented with Liquid Organic Fertilizer
Zainal Muktamar, Sigit Sudjatmiko, Mohammad Choizin, Nanik Setyowati, - Fahrurrozi
pages: 602-608 DOI:10.18517/ijaseit.7.2.1112

Secure Data Sensor In Environmental Monitoring System Using Attribute-Based Encryption With Revocation
- Munsyi, Amang Sudarsono, M. Udin Harun Al Rasyid
pages: 609-624 DOI:10.18517/ijaseit.7.2.2175

A Novel Method to Detect Segmentation points of Arabic Words using Peaks and Neural Network
Jabril Ramdan, Khairuldin Omar, Mohammad Faidzul
pages: 625-631 DOI:10.18517/ijaseit.7.2.1824

Investigation of Home Agent Load Balancing, Failure Detection and Recovery in IPv6 Network-based Mobility
Anshu Khatri, Mathi Senthilkumar
pages: 632-641 DOI:10.18517/ijaseit.7.2.1787

Feature Selection for Multi-label Document Based on Wrapper Approach through Class Association Rules
Roiss Alhutaish, Nazlia Omar
pages: 642-649 DOI:10.18517/ijaseit.7.2.1040

Local Color Voxel and Spatial Pattern for 3D Textured Recognition
Molecularly Imprinted Polymers (MIP) Based Electrochemical Sensor for Detection of Endosulfan Pesticide

Yohandri Bow, Edy Sutriyono, Subriyer Nasir, Iskhaq Iskandar

Water Flow-Like Algorithm with Simulated Annealing for Travelling Salesman Problems

Zulaiha Ali Othman, Nasser Hamed Al-Dhwai, Ayman Srour, Wudi Yi

An Automatic Feature Extraction Method of Satellite Multispectral Images for Interpreting Deforestation Effects in Soil Degradation

Irene Erlyn Wina Rachmawan, Yasushi Kiyoki, Shiori Sasaki

Influence of Partial Solar Eclipse on the Radio Signal during 9 March 2016

Nur Zulaikha Mohd Afandi, Rostan Umar, Zainol Abidin Ibrahim, Nor Hazmin Sabri, Marhamah Mohd Shafie

Dual-Band Bandpass Filter with Dumbbell Shaped Defective Ground Structure

M. F. Abdul Khalid, Z. Ismail Khan, Z. Awang, I. Pasya, N. Ab Wahab, I. M. Yassin

Acrylic Acid Neutralization for Enhancing the Production of Grafted Chitosan Superabsorbent Hydrogel

Dhena Ria Barleany, Retno Sulistyowati, Lestari, Meri Yulvianti, Taufik Rachman Susanto, - Shalina, - Erizal

Physicochemical and Fatty Acid Profile of Fish Oil from Head of Tuna (Thunnus albacares) Extracted from Various Extraction Method

Novizar Nazir, Ayu Diana, Kesuma Sayuti

Structural Behaviour of Steel Building with Diagonal and Chevron Braced CBF (Concentrically Braced Frames) by Pushover Analysis

- Saloma, Yakni Idris, - Hanafiah, Nico Octavianus

Cost and Performance-Based Resource Selection Scheme for Asynchronous Replicated System in Utility-Based Computing Environment

Wan Nor Shuhadah Wan Nik, Bing Bing Zhou, Jemal H. Abawajy, Albert Y. Zomaya
The Behaviour Study of Shear Wall on Concrete Structure by Pushover Analysis

Hanafiaha, Salomaa, Yakni Idrisa, Julius Yahyaa

aCivil Engineering Department, Faculty of Engineering, Sriwijaya University, Jl.Raya Palembang-Inderalaya KM.32 Inderalaya, Ogan Ilir, Sumatera Selatan, 30662, Indonesia
E-mail: saloma\textunderscore 571@yahoo.co.id, hanafiah\textunderscore dr@yahoo.com.sg

Abstract— Shear wall is applied to counter the effects of lateral load acting on a structure. Wind and seismic loads are the most common loads that shear walls are designed to carry in high rise building. This paper used four models of 10 floors building with three variations of shear wall position. The dimension of each floor is 18 m x 18 m. The building is located in Palembang with the soft soil condition and has a function as an office building. The purpose of this study is to analyze building performance, curve capacity and plastic hinge distribution from pushover analysis. The result of the study was obtained that model 4 is most effective in terms of ductility and strength building. Model 4 is able to reduce deviation 61.43% and reduce drift ratio 69.50%. Model 4 is also reduced deflection at the point of pushover analysis performance 72.64%. Model 3 has the smallest number of plastic hinges. The result of pushover analysis shows that the building performance of all model is immediate occupancy.

Keywords— shear wall; pushover analysis; drift ratio; base shear; plastic hinge

I. INTRODUCTION

The shear wall was designed to detain lateral force caused by the earthquake. Shear wall gave lateral strength which was needed to carry horizontal force from the earthquake. When shear wall received a seismic load, the shear wall will transfer lateral force to the foundation. Shear wall gave lateral ductility to prevent high rise building deformed excessively \cite{1}, \cite{2}, \cite{3}. The different shear wall position will reduce different lateral force, a shear position that approached core position, more effective to withstand base shear than other positions \cite{4}, \cite{5}, \cite{6}.

In this study, reinforced concrete building structures with different positions of shear walls were analyzed with pushover method based on ATC-40. The building was ten floors located in Palembang. Each floor has 4 m high. There are four models of the building, i.e. the building with no shear wall and three variations of shear wall different positions.

The objective of this study is to analyze structural response caused by an earthquake on the building with shear wall position variation, to determine performance point performance level of building structure during plastic condition, to determine plastic hinge position on building structure, and to determine most effective shear wall position based on pushover analysis.

Pushover analysis is a static nonlinear analysis where earthquake influence to the building is regarded as static load, and the values were increased gradually beyond the imposition caused plastic hinge.

The objectives of pushover analysis were to predict the maximum load and maximum deformation occurred, and position a critical part of a building. Some studies show that pushover static analysis gave accurate result than nonlinear dynamic analysis \cite{7}, \cite{8}, \cite{9}, \cite{10}. Pushover analysis produced curve capacity which described the correlation between base shear and deformation on the roof D. The graph relationship between base shear and roof deformation can be seen in Fig. 1.

IO area (Immediate Occupancy) is an area where the structure did not experience meaningful damage and has similar strength and ductility with the condition before the earthquake. LS (Life Safety) is where collapse on the component structure occurred, but the building did not collapse, and CP (Collapse Prevention) is a condition where component structure and non-structure were collapses, and structural strength was reduced drastically. Based on ATC-40, Building performance can be seen from maximum total drift \cite{11}.

1127
II. MATERIAL AND METHOD

Model of building in this study was reinforced concrete building structure with three position variation of shear wall and one building without using the shear wall. Model of the building was presented in Fig. 2. Beam and column sections used in this study are shown in Table 1. The mechanical properties of concrete sections are Elastic Modulus, $E = 20,000$ MPa and $f'_c = 50$ MPa.

Building plans used is shown in Fig. 2, where red line shows that there is a shear wall in that position. Each beam span is 6 m, and each column height is 4 m. Structural frames used in this study is ten floors made in four structural model based on shear wall configuration, as shown in Fig. 2.

Storey	Beam sections	Column sections
10	500 x 300	700 x 700
9	500 x 300	700 x 700
8	500 x 300	700 x 700
7	500 x 300	700 x 700
6	500 x 300	700 x 700
5	500 x 300	700 x 700
4	500 x 300	700 x 700
3	500 x 300	700 x 700
2	500 x 300	700 x 700
1	500 x 300	700 x 700
The steps of pushover analysis in designing the structure of an earthquake resistant construction are [11], [12], [13]:
- Determining the control point to monitor the amount of displacement on the structure.
- Making the capacity curve based on various patterns of lateral force.
- Estimating the amount of lateral displacement during earthquake plan or displacement target.
- Evaluating the level of structure performance when the control point is located exactly on the target of displacement while using ATC 40.

III. RESULTS AND DISCUSSION

Based on the result of the analysis was obtained floor lateral displacement, drift ratio and the result of analysis pushover in the form of calculation of building performance based on the performance point and plastic hinge distribution.

A. Building’s Mass

The comparison of building’s mass of each model is Fig. 3.

![Fig. 3 Building’s mass](image)

B. Base Shear

The comparison of base shear of each model is shown in Fig. 4 dan Table 2.

![Fig. 4 Base shear](image)

Model	\(V_{RX} \) (ton)	\(V_{RSY} \) (ton)
Model 1	71.582	71.582
Model 2	241.580	241.580
Model 3	247.440	247.441
Model 4	289.687	289.687

C. Lateral Displacement

Lateral displacement of the floor (storey level) in x and y direction in each model have the same value because the building has symmetrical dimension. The comparison of maximum floor lateral displacement in each model can be seen in Fig. 5 and Table 3.

![Fig. 5 Lateral displacements](image)

Floor	\(\delta_{max} \) (mm)			
Model 1	Model 2	Model 3	Model 4	
10	29.445	24.249	14.905	11.357
9	28.394	21.301	13.091	9.950
8	26.774	18.276	11.227	8.514
7	24.507	15.213	9.344	7.069
6	21.622	12.164	7.479	5.641
5	18.181	9.211	5.681	4.269
4	14.271	6.452	4.008	2.996
3	10.027	4.009	2.527	1.874
2	5.712	2.015	1.311	0.958
1	1.904	0.619	0.435	0.308
Model 4 is the most effective model to reduce floor lateral displacement. That is, 61.432% compared to model 1. On the other hand, model 2 and 3 each reduced floor lateral displacement 17.647% and 50.618% compared to Model 1.

D. Drift Ratio

Fig. 6 and Table 4 shows drift ratio in each model with shear wall and without a shear wall. Model 1 is building without shear wall has most maximum drift ratio. Meanwhile, another three models used shear wall has lower drift ratio compared to model 1. The maximum point of drift ratio in the model which used shear wall is on floor 8. It indicated that shear wall caused drift ratio is on the higher floor. Therefore, the collapse of the base floor can be avoided.

Model 2 has maximum drift ratio 35.48% more effective than model 1. Model 3 has maximum drift ratio 60.35% more effective than model 1. Model 4 is most effective with drift ratio 69.50% compared to model 1.

Floor	Drift ratio Model 1	Drift ratio Model 2	Drift ratio Model 3	Drift ratio Model 4
10	0.00145	0.00368	0.00227	0.00176
9	0.00223	0.00378	0.00233	0.00179
8	0.00312	0.00383	0.00235	0.00181
7	0.00397	0.00383	0.00233	0.00178
6	0.00473	0.00369	0.00225	0.00172
5	0.00538	0.00345	0.00209	0.00159
4	0.00584	0.00305	0.00185	0.00140
3	0.00593	0.00249	0.00152	0.00115
2	0.00523	0.00174	0.00109	0.00081
1	0.00262	0.00077	0.00054	0.00038

E. Pushover Analysis

Fig. 7, Table 5, and Table 6 shows curve capacity, the relationship between base shear and displacement occurred in each model gradually when there was a static nonlinear pushover. Performance point model 1 the greatest deflection than other models. It shows that building without a shear wall is more susceptible to failure.

Based on the capacity to carry the lateral load, model 1 is the lowest. On the other hand, model 4 has the greatest capacity to carry the lateral load. Performance point model 4 is 72.64% more effective compared to model 1. Performance point model 2 is 55.97% more effective compared to model 1. Meanwhile, performance point model 3 is 68.25% more effective compared to model 1.

Plastic hinge distribution also can be seen based on certain level as shown in Table 7. Plastic hinge distribution of all models in x and y direction are the same because shear wall position is symmetrical. Performance level of each model is described in Table 8.
TABLE VI
BASE SHEAR AND DISPLACEMENT FOR FIRST PLASTIC HINGE

Model	Base Shear (ton)	Displacement (m)
1	37.868	0.019
2	117.060	0.012
3	153.351	0.009
4	229.115	0.009

TABLE VII
BUILDING PERFORMANCE LEVEL

Symbol	Explanation
B	Show the linear limit followed by first melt on structure
IC	Occurred small damage on the structure, structure ductility is almost the same as before the earthquake
LS	Occurred damage from small to medium level, ductility structure was declining, but still, have big chance to collapse
CP	Occurred serious damage on structure so that strength and ductility decreased a lot
C	The maximum limit of base shear was still able to withstand building
D	Occurred very big degradation of structural strength, so that structure condition was not stable and almost collapse
E	Structure was not able to withstand base shear and wrecked

TABLE VIII
PERFORMANCE LEVEL

Model	Maximum total drift	Maximum inelastic drift	Performance level
1	0.0073	0.0068	IO
2	0.0035	0.0032	IO
3	0.0025	0.0023	IO
4	0.0022	0.0020	IO

Fig. 8 (a) shows that the first plastic hinge model 1 occurred on the beam of floor 3 and 4. It means that the building was still usable.

Fig. 9 (a) shows the maximum limit of base shear which the building was able to carry. A beam of floor 4 shows the first collapse. In the last step of pushover analysis model 1, there was a collapse on floor 3 and 4 (Fig. 10(a)), while the column indicated that there was a small damage with the performance level of immediate occupancy. Collapses on floor 3 and 4 were very dangerous because it can cause total collapse.

Fig. 8(b) shows that first plastic hinge distribution on model 2. First plastic hinge occurred on floor 7 until floor 9. It shows that the usage of the shear wall can avoid collapse on the base floor. Plastic hinges occurrence shows the safety limit. In the last step of pushover analysis model 2, beam collapse was on floor 7 until floor 10 (Fig. 10(b)). In model 1, all of the columns shows building performance immediate occupancy. While model 2, the column still showed building performance operational. The usage of shear wall increased base shear which was able to be carried by building compared to model 1 which did not use the shear wall.

First plastic hinge distribution model 3 is showed in Fig. 8(c). First plastic hinge model 3 only occurred on beam floor 8 and 9. The position of first plastic hinge occurred like model 2. That is, besides the shear wall. While in the column, plastic hinge did not occur yet. Fig. 9(c) shows the first collapse on beam floor 8 and floor 9. In the last step of pushover analysis model 3, beam collapse was occurred on floor 7 till floor 10, Fig. 10(c). The collapse of the column was in safe level with a maximum level which occurred in the column was life safety which means still far from collapse.

Fig. 8(d) is the result of pushover analysis model 4 which shows that first plastic hinge occurred on beam floor 7 and 9. Base shear which was needed to produce first plastic hinge on model 4 was greater than other models, while deflection on the first plastic hinge on model 4 was lower than other models. The first collapse condition occurred on column...
didn’t show life safety level like model 2 and 3, but only immediate occupancy level. Meanwhile, the collapse occurred on beam floor 8 and 9 has shown the maximum limit of base shear which was able to be withstood. In the last pushover analysis, the collapse occurred on beam floor 6 to 10. Plastic hinges occurred on the column was greater than other models. Plastic hinges occurred on a column still showed life safety limit. Model 4 has lower base shear than model 3. Plastic hinge collapse occurred on model 4 was greater than model 3. Based on the plastic hinge, model 3 was the most effective model in reducing plastic hinge collapse than other models.

![Model 1](image1)
![Model 2](image2)
![Model 3](image3)
![Model 4](image4)

Fig. 9 First failure

Parameter	Model 1	Model 2	Model 3	Model 4
The first plastic hinge occurs	Storey 3-4	Storey 7-9	Storey 8-9	Storey 7-9
The first collapse	Storey 4	Storey 8-9	Storey 8-9	Storey 8-9
The collapse in the last stage of analysis pushover	Storey 3-4	Storey 7-10	Storey 7-10	Storey 6-10

TABLE IX PROCESS OF PLASTIC HINGE

![Fig. 10 The plastic hinges in the last step](image5)

IV. CONCLUSION

The conclusions obtained in the study of structure response caused by the earthquake and pushover analysis on four models are as follows: The maximum drift ratio occurred on model 1 namely model without a shear wall. Each model has different performance point, minimum performance point occurred on level 1, while maximum performance point occurred on level 4. Performance level of all model are immediate occupancy. In the last step of pushover analysis, the collapse of model 1 occurred on the floor 3 and 4, the collapse of model 2 and 3 occurred on the floor 7 and 10, the collapse of model 4 occurred on the floor 6 and 10. The collapse of model 3 was the same as model 2, but the base shear model 3 was greater than model 2. Based on the plastic hinge distribution, model 3 was most effective to reduce the seismic effect. Plastic hinges occurred on model 3 was less than other models. In the last step, the performance level of all model was on immediate occupancy.
ACKNOWLEDGMENTS

The research presented in this paper was supported by a grant from Unggulan Kompetitif Universitas Sriwijaya, 2015.

REFERENCES

[1] P. P. Chandurkar and P. S. Pajgade, “Seismic analysis of RCC building with and without shear wall.” *Journal of IJMER*, vol. 3, pp. 1805-1810, 2013.

[2] M. D. Kevadkar and P. B. Kodag, “Lateral load analysis of RCC Building.” *Journal of IJMER*, vol. 3, pp. 1428-1434, 2013.

[3] S. G. Satpute and D. B. Kulkarni, “Comparative study of reinforced concrete shear wall analysis in multistoreyed building with openings by nonlinear methods.” *Journal of IJSCE*, vol. 2, pp. 183-193, 2013.

[4] M. Atik, M. Sadek, and I. Shahroul, “Adaptive pushover procedure for seismic assessment of shear wall structures,” in Proc. 21th Mechanical French Congress, 2013, p.1.

[5] R. S. Mishra, V. Kushwaha, and S. Kumar, “A comparative study of different configuration of shear wall location in soft story building subjected to seismic load.” *Journal of IRJET*, vol. 2, pp. 513-519, 2015.

[6] A. G. Ghalimath, Y. M. Waghmare, A. A. Zadbuke, and A. R. Chaudhari, “Seismic comparative study of multistoried r.c.c building with shear wall in bare frame and masonry infill frame for various types of soil and seismic zones.” *Journal of IRJET*, vol.2, pp. 334-341, 2015.

[7] J. Patil and D. K. Kulkarni, “Performance based evaluation of framed reinforced concrete shear walls by pushover analysis.” *Journal of IRJET*, vol. 2, pp. 416-422, 2015.

[8] P. B. Oni and S. B. Vanakudre, “Performance Based Evaluation of Shear Walled RCC Building by Pushover Analysis.” *International Journal of Modern Engineering Research (IJMER)*, vol. 3, pp 2522-2525, 2013.

[9] Q. Li and R.E. Gu, “Researches on Pushover Analysis Method of Masonry Structures with Frame-Shear Wall at the bottom,” 4th International Conference on Earthquake Engineering, Taiawan, 2006.

[10] Saloma, Y. Idris, Hanafiah, N. Setiawan, “Structural Behaviour of Steel Building with Diagonal and Chevron Braced CBF (Concentrically Braced Frames) by Pushover Analysis” International Journal on Advanced Science Engineering Information Technology (IJASEIT), vol.2, pp. 716-722, 2017.

[11] Applied Technology Council 40, Seismic Evaluation and Retrofit of Concrete Buildings, Vol 1, California.

[12] FEMA 356, *Prestandard and Commentary for the Seismic Rehabilitation of Buildings*, Federal Emergency Management Agency, Washington DC, 2000.

[13] FEMA 440, *Improvement of Nonlinear Static Seismic Analysis Procedures*, Applied Technology Council, Redwood City, California, 2005.
REGISTRASI INTERNATIONAL JOURNAL ON ADVANCED SCIENCE ENGINEERING INFORMATION TECHNOLOGY
Sesuai dengan data yang ada pada kami, maka tulisan dengan judul:

• Structural Behaviour of Steel Building with modified X-Braced EBF (Eccentrically Braced Frames) by Pushover Analysis

ISSN : 2088-5334

Penulis : Dr. Ir. Hanafiah, MS

Telah teregistrasi dengan No.

![NOMOR REGISTRASI](image)

Sumatera, 27 Juli 2018

Unit IPDN FT. UNSRI

[Signature]

Abdullah Saleh MS. M.Eng
NIP. 195304261984031001