Analysis of individual-level and community-level effects on advanced maternal age pregnancy in Nigeria

Lukman Bola Solanke (✉ modebolasolanke@gmail.com)
Obafemi Awolowo University https://orcid.org/0000-0001-5723-1174

Olumuyiwa Adebisi Oduoye
Obafemi Awolowo University

Tosin Olajide Oni
Obafemi Awolowo University

Research article

Keywords: Advanced maternal age, AMA pregnancy, individual and community characteristics, Women, safe motherhood

DOI: https://doi.org/10.21203/rs.3.rs-32023/v1

License: ☒ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Advanced Maternal Age (AMA) pregnancy refers to pregnancy in women aged 35 years or older at the time of delivery. Existing studies have been more concerned with the obstetrics implication of AMA pregnancy. The associated social factors such as the individual and community level factors have remained largely unexplored particularly in population-based studies. This study examines the individual and community level factors associated with AMA pregnancy in Nigeria.

Methods: Data were extracted from the 2018 Nigeria Demographic and Health Survey. A weighted sample of 13,105 women was analysed. The outcome variable was AMA pregnancy. The explanatory variables were individual characteristics (age, marital status, media exposure, current contraceptive use, period spent schooling, female autonomy, remarriage and income group) and community characteristics (proportion who delayed marriage in community, community level of female higher education, proportion of female in professional occupation in community, proportion of divorced or separated women in community, proportion of women in commuter marriage, type of community and geo-political zone of residence). Three mixed-effects multilevel logistic regression models were estimated.

Results: Findings reveal 10.9% prevalence of AMA pregnancy in Nigeria. While the odds of AMA pregnancy were lower among women in very advanced (AOR=0.592, p<0.001; 95% CI: 0.509-0.688) and extremely advanced (AOR=0.290, p<0.001; 95% CI: 0.239-0.353) (AOR=1.794, p<0.001; 95% CI: 1.580-2.008) age groups, the odds were higher among women who had high exposure to mass media (AOR=1.794, p<0.001; 95% CI: 1.580-2.008), long schooling period (AOR=2.680, p<0.001; 95% CI: 2.058-3.488), remarried (AOR=2.269, p<0.001; 95% CI: 1.915-2.688) and from richest households (AOR=1.271, p<0.05; 95% CI: 1.098-1.472). The values of the Intra-Class Correlation (ICC) across the three fitted models reveal significant effects of the community characteristics on the odds of AMA pregnancy.

Conclusion: Individual and community characteristics have important effects on AMA pregnancy. Health planners and authorities in the country should include AMA pregnancy as one of the priority areas of women's health and safe motherhood strategies in addition to raising awareness of the obstetrics implication of AMA pregnancy through community-based public health education programme.

Background

Advanced maternal age (AMA) pregnancy refers to pregnancy in women aged 35 years or older at the time of delivery [1-3]. AMA pregnancy is already a public health issue in more developed countries of Europe and North America due to steady and increasing rise in age at first marriage, divorce, cohabitation, and non-marital fertility, and the increasing levels of female education, female career progression, gender equity, efficient contraception and other features of the Second Demographic Transition [4-5] which has translated into increasing postponement of parenthood particularly among women [6-8]. For example, in the United States of America (USA), women's average age at first birth has steadily risen in the last forty years due to substantial increase in the proportion of women having their first childbirth at age 35 years.
or older ages [9]. Similarly, a recent study [1] observed that in Western European countries, there has been a sharp rise in the frequency of childbearing at age 35 years and above due to women's career goals.

Also, the widespread availability of assisted reproduction technology in more developed countries has also enhanced the high prevalence of AMA pregnancy across Europe and North America [1, 10-11]. In sub-Saharan Africa particularly in Nigeria, the rising profile of AMA pregnancy may be linked to two developments. One, the persistence of high parity births among women [12-14]. Two, the proportion of women delaying motherhood for the purpose of achieving education and career enhancement is steadily increasing in the country [15]. Irrespective of the reasons for AMA pregnancy across the world, AMA pregnancy is a safe motherhood issue worthy of further investigation because evidence abounds that AMA pregnancy elevates the risks of maternal, neonatal and child mortality [16-20]. In a number of countries, numerous studies have examined different aspects of AMA pregnancy [21-26]. For example, a multi-country study examined association between AMA pregnancy and adverse pregnancy outcomes [2]. The study covered 29 countries in Africa, Asia, Latin America, and the Middle-East. Though, the study was based on records obtained from 359 health facility records, it not only estimated 12.3% AMA pregnancy across the countries, it also revealed that AMA pregnancy increased the risk of maternal adverse outcomes such as maternal near miss, maternal death, and severe maternal outcome, and risk of stillbirths and perinatal mortalities.

However, virtually all existing studies [24-27, 2, 19-20] focused on the obstetric risks associated with AMA pregnancy without giving prominence to the individual-level and community-level factors associated with AMA pregnancy. In Nigeria, studies [28-30] have also been more concerned with the obstetric implications of AMA pregnancy particularly among women nursing their first pregnancy. The associated social factors such as the individual and community level factors have remained largely unexplored particularly in population-based studies. These factors may have both independent and joint effects on AMA pregnancy. Hence, the paucity of information on the factors may have limited the understanding of the underlying factors to target in the development of specific strategy to curtail AMA pregnancy in the country. The objective of the study was thus to examine the individual and community level factors associated with AMA pregnancy in Nigeria. The study was guided by the question: what are the individual and community characteristics associated with AMA pregnancy in Nigeria? Answer to this question may provide fresh impetus for strengthening existing population and health programmes particularly women's health and safe motherhood services bearing in mind that existing policy and strategy [31-32] did not give specific prominence to AMA pregnancy in the country.

Methods

Data and Sample

This study analysed data extracted from the 2018 Nigeria Demographic and Health Survey (NDHS). The data were collected in the survey through a two-staged selection process across the 36 administrative units and the Federal Capital Territory. Samples were randomly selected from clusters which represented
the primary sampling unit of the survey. The questionnaires used to collect information in the survey were adapted to the Nigerian population and health situation and pretested before the fieldwork. Total eligible women in the survey were 42,121 women. However, 41,821 women were interviewed which results in a 99.3% response rate. Other methodological steps of the survey have been published [33]. Out of the 41,821 women covered in the survey, this study target women in advanced reproductive age of 35-49 in line with literature description of the age group in which AMA pregnancy occurs [12-13, 34]. All women less than 35 years were excluded from the analysis. This yielded a weighted sample of 13,105 women.

Outcome Variable

Though, some researchers [35-36] advocated 40 years as a better cut off point for advanced maternal age, however, the dominant cut off point for AMA in literature is 35 years [21, 1, 16-17, 19-20]. In line with the dominant description of AMA, in this study, advanced reproductive age range from 35 to 49 years, thus, the outcome variable of study (AMA pregnancy) was conceptualised as either being currently pregnant or being age 35 or older at the time of child delivery. The two possibilities are measured in the 2018 NDHS. On the one hand, women were asked if they were pregnant as at the time of the survey for which the response was either yes or no. On the other hand, women were asked their age at births for which they responded in exact age at birth. If a woman falls in any of the above-stated category, she is grouped as ‘yes’ and coded ‘1’. Women who fall outside the category are grouped as ‘no’ and coded ‘0’. The study focused on the ‘yes’ category as the outcome of interest.

Explanatory Variables

Two sets of explanatory variables were examined in the study. The first sets were the individual characteristics of the respondents. These are age, marital status, media exposure, current contraceptive use, period spent schooling, remarriage, female autonomy and income group. These variables were selected based on literature either suggesting that the variables may shape the incidence of AMA pregnancy or confirming the variables as a covariate [37-38, 5, 7, 39-42]. The second sets were the community characteristics. These are proportion who delayed marriage in community, community level of female higher education, proportion of female in professional occupation in community, proportion of divorced or separated women in community, proportion of women in commuter marriage, type of community and geo-political zone of residence. The community characteristics were not derived directly from the respondents but derived by aggregating relevant individual response at the cluster level and dividing the resulting distribution into two or three equal parts. This method has been widely used in deriving community characteristics from the Demographic and Health Survey (DHS) data [43-44]. Table 1 provides more information on the research variables.

Data Analysis

Data were analysed at the univariate, bivariate and multivariate levels. At the univariate level, frequency distribution and percentages were used to present respondents’ individual and community characteristics as well as the prevalence of AMA pregnancy. At the bivariate level, the research variables were cross-
tabulated to show variation in AMA pregnancy due to changes in the values of the explanatory variables. The unadjusted binary logistic regression coefficient was used to examine the nature (positive or negative) of the associations between AMA pregnancy and the explanatory variables. The Variance Inflation Factor (VIF) was performed to detect and eliminate multi-collinear variables. This was done by examining the VIF for each variable. Though, there is rarely consensus on the appropriate cut off point for the value of the VIF [47], the study adopted the rule of 10 [48] which is dominant in literature. Any variable with a VIF score of 10 or higher score was dropped from further analysis due to statistical assertion that variables with such score may bias the estimation of the regression coefficients. At the multivariate level, three mixed-effects multilevel logistic regression models were estimated to examine the hierarchies of factors (individual and community) influencing AMA pregnancy.

The mixed-effects multilevel model was fitted by the `xtmelogit` command using Stata 14 [49]. Model 1 included only the individual characteristics while controlling for the community characteristics. Model 2 included only the community characteristics while controlling for the individual characteristics. Model 3 included both the individual and community characteristics. This model informs the study discussion. The effects of the multilevel model were estimated in two ways. One, the fixed effects were estimated using Adjusted Odds Ratio (AOR) of binary logistic regression. Two, the random effects were estimated using the Intra-Class Correlation (ICC). The ICC was manually calculated using the formula:

\[
\rho = \frac{\sigma_v^2}{\sigma_u^2 + \pi^2/3}
\]

where \(\sigma_v^2 \) refers to the variance at the community level and \(\sigma_u^2 \) simplified to 3.29. The ICC was expected to range between 0 and 1 but could be expressed in percentage with a closer value to 1 or 100 indicating stronger effects of the community characteristics. The goodness-of-fit of the multilevel models were examined through the Log-likelihood. This parameter is expected to reduce in values as more variables are been added to the model to confirm its adequacy. Statistical significance was set at \(p<0.05 \).

Ethical Review

Ethical considerations were examined in the conduct of the 2018 NDHS. The survey protocol was approved in the USA by ICF Institutional Review Board (ICF IRB FWA00000845). The conduct of the survey was also approved in Nigeria by National Health Research Ethics Committee of Nigeria (NHREC/01/01/2007). Participants in the survey provided both verbal and written consent during the fieldwork. Access to the data was requested and granted by MEASURE DHS. The analyses are anonymous with no link to any individual or community. The data analysed may be accessed via https://dhsprogram.com/data/.

Results

Univariate Result
Table 2 presents the socio-demographic profile of the respondents. Slightly more than one-tenth (10.9%) of the respondents had AMA pregnancy. Slightly more than two-fifths (41.7%) of the respondents were in the AMA age group compared to the 30.1% in the VAMA group and the 28.2% in the EAMA group. The majority of respondents were currently married. Less than one-third of the women (31.0%) had low exposure to mass media compared to proportions that had moderate (46.0%) or high (23.0%) exposure. The majority of the respondents were not currently using any method of contraception. Nearly two-thirds (61.8%) of the women either did not have formal education or spent not more than six years schooling compared to the slightly more than one-tenth (11.4%) who spent between 14 to 20 years schooling. The majority of the respondents were married only once. Nearly two-fifths of the women had low autonomy on household decisions while nearly half of them had moderate autonomy. The proportion of respondents who had high autonomy was slightly more than one-tenth (13.6%). There are more respondents in the richer and richest income groups compared to the poorest and poorer income groups.

Nearly half of the respondents (48.1%) live in communities with low proportion of women who delayed first marriage compared to those who live in communities with high proportion (31.5%) of those that delayed first marriage. More than half of the women (53.6%) live in communities with low level of female higher education. However, about one-third of the women (33.2%) live in communities with high level of female higher education. Likewise, more than half (53.1%) of the respondents live in communities with low level of females in professional occupation but a substantial proportion (35.4%) live in communities with high level of females in professional occupation. The majority of the women live in communities with low level of commuter marriage, though more than a quarter of them (30.4%) live in communities with high level of commuter marriage. The majority of the respondents live in communities with low proportion of divorced or separated women. More than half of the respondents reside in rural communities compared to the 47.0% who were urban dwellers. The distribution of respondents by geopolitical zone of residence was nearly equal except for respondents from the North-west and South-west zones.

Bivariate Result

Table 3 presents the bivariate relationships. Reproductive age and AMA pregnancy reveal significant negative association with consistent decline in the level of AMA pregnancy as reproductive age increases. Similarly, current marital status and AMA pregnancy shows significant negative association (β=-0.622, p<0.001; 95% CI: -0.706, -1.433) with higher prevalence among not currently married women. The association between mass media exposure and AMA pregnancy was positive. As media exposure improved, the level of AMA pregnancy also increases. Current contraceptive use relates negatively with AMA pregnancy with higher level of AMA pregnancy among non-users of contraceptives. Period spent schooling was positively associated with AMA pregnancy. As period spent schooling increases, the level of AMA pregnancy also increases. Current contraceptive use relates negatively with AMA pregnancy with higher level of AMA pregnancy among non-users of contraceptives. Period spent schooling was positively associated with AMA pregnancy. As period spent schooling increases, the level of AMA pregnancy also increases among the women. Women who remarried had higher level of AMA pregnancy compared to those that married once (18.8% vs. 9.3%) showing a significant positive relationship (β=0.813, p<0.001; 95% CI: 0.657-0.970). As female autonomy improves among the women, the levels of AMA pregnancy also decline consistently among the women revealing a significant negative
association. Income group and AMA pregnancy had mixed relationship with positive relationship
($\beta=0.214, p<0.05; 95\% \text{ CI}: 0.021-0.407$) at the richest income group and negative relationship at other
income levels. Also, AMA pregnancy was higher among women in the richest income group.

The associations between AMA pregnancy and most of the community characteristics were mixed. For
example, the association between delayed marriage in the community and AMA pregnancy was negative
at moderate level of delayed marriage and positive at high level of delayed marriage ($\beta=0.713, p<0.001;
95\% \text{ CI}: 0.579-0.847$). Similar patterns were reveal in the relationships between community level of female
higher education and AMA pregnancy as well as in the relationship between female professional
occupation in the community and AMA pregnancy with negative associations at moderate levels of
female higher education and female professional occupation and positive associations at high level of
community female higher education ($\beta=0.354, p<0.001; 95\% \text{ CI}: 0.210-0.499$) and high level of female
professional occupation ($\beta=0.286, p<0.001; 95\% \text{ CI}: 0.136-0.436$). Proportion in commuter marriage in
community was positively associated with AMA pregnancy at both moderate level of commuter marriage
($\beta=0.845, p<0.001; 95\% \text{ CI}: 0.678-1.013$) and high level of commuter marriage ($\beta=1.247, p<0.001; 95\% \text{ CI}:
1.121-1.374$) and also with higher prevalence at high level of commuter marriage in the community.
Proportion divorced or separated in community was significantly negatively associated with AMA
pregnancy, while type of community shows positive association with AMA pregnancy. The association
between geo-political zone of residence and AMA pregnancy was mixed with higher level of AMA
pregnancy among women in South-east Nigeria. The associations were further examined at the
multivariate level. All the variables were included in the multivariate models because all the variables had
a VIF score of less than 10.

Multivariate Result

Table 4 presents the fixed effects of the multilevel model. With the exception of current contraceptive use
in Model 1, all the selected individual characteristics were significantly associated with AMA pregnancy.
While the odds of AMA pregnancy was lower among women in the VAMA and EAMA groups, as well as
currently married women, the odds were higher among women who had high media exposure, spent long
period schooling, remarried and those who had high autonomy on household decisions and belong to the
richest households. In Model 2, only the proportion of divorced or separated women in community did not
reveal statistical significance. With the exclusion of type of community and geo-political zone of
residence, other community characteristics showed similar pattern. The odds of AMA pregnancy were
higher and significant only when the community characteristics were at high levels.

In Model 3, four individual characteristics, namely, reproductive age, exposure to mass media, period
spent schooling and remarriage reveal significant effects on the likelihood of AMA pregnancy. While
women in the VAMA age group were 40.8% less likely to have AMA pregnancy (AOR=0.592, $p<0.001; 95\% \text{ CI}:
0.509-0.688$), women in the EAMA age group were 71.0% less likely to have AMA pregnancy
(AOR=0.290, $p<0.001; 95\% \text{ CI}: 0.239-0.353$) compared to women in the reference category. In contrast,
women who had high exposure to mass media were 79.4% more likely to have AMA pregnancy compared
to women who had low exposure (AOR=1.794, p<0.001; 95% CI: 1.580-2.008). Likewise, women who spent long period schooling were more than twice likely to have AMA pregnancy compared to women who spent short period schooling (AOR=2.680, p<0.001; 95% CI: 2.058-3.488). Remarried women had higher odds of AMA pregnancy compared to those who married once (AOR=2.269, p<0.001; 95% CI: 1.915-2.688). Also, women in the richest households had higher likelihood of AMA pregnancy compared to women in poorest households (AOR=1.271, p<0.05; 95% CI: 1.098-1.472).

Model 3 further reveal that all the community characteristics with the exemption of the proportion of divorced or separated women in community had significant effects on the odds of AMA pregnancy. However, statistical significance was shown mostly when the community characteristics were at high levels. Women who live in communities with high level of delayed marriage were more than twice likely to have AMA pregnancy compared to those in communities with low level (AOR=2.173, p<0.001; 95% CI: 1.777-2.658). In similar vein, women who lives in communities with high levels of female higher education (AOR=1.247, p<0.001; 95% CI: 1.158-1.609), female professional occupation (AOR=1.981, p<0.001; 95% CI: 1.791-2.172), and commuter marriage (AOR=1.952, p<0.001; 95% CI: 1.505-2.533) had higher odds of AMA pregnancy compared to women who live in communities with low level of the attributes. Rural women were 15.2% less likely to have AMA pregnancy compared to urban women (AOR=0.848, p<0.001; 95% CI: 0.677-1.019). Only women in the South-east geo-political zone had higher odds of AMA pregnancy (AOR=1.538, p<0.001; 95% CI: 1.210-1.953).

Table 5 presents the random effects on AMA pregnancy. From the empty model through Model 3, the values of the log likelihood decline steadily indicating adequate goodness-of-fit of the fitted models. The model adequacy was further confirmed by the LR test which reveals statistical significance. The ICC expressed in percentages shows that the level of variation in AMA pregnancy across the communities was 33.4% in the absence of both the individual and community characteristics. In Model 1 which was based only on the individual characteristics, 32.2% of variations in AMA pregnancy across the community were due to community characteristics. In Model 2, the effects of the community characteristics reduced to 31.2% and further reduced to 28.0% in Model 3. The values of the ICC across the fitted models indicate significant effects of community factors on AMA pregnancy.

Discussion

This study examined individual and community effects on advanced maternal age pregnancy, a growing phenomenon with serious implications for maternal, neonatal and child morbidity and mortality [30, 16-20]. The study improved upon previous studies by examining the individual and contextual effects on AMA pregnancy which were largely ignored in most existing hospital-based studies [21-23, 25, 2, 26]. This was made possible by the use of internationally comparable DHS data which also enhance the prospect of replicating the study in other climes. The study ascertained 10.9% prevalence of AMA pregnancy in Nigeria. The prevalence observed is comparable to the 12.3% reported in a multi-country study conducted across Africa, Asia, Latin America and the Middle East [2] though the earlier study was based on records of health facilities. The prevalence of 10.9% AMA pregnancy in Nigeria should be worrisome given the
poor state of health delivery system in the country. At present, the country is still one of the countries having higher numbers of maternal and neonatal deaths across the world [32-33]. Increasing prevalence of AMA pregnancy in the country may thus further aggravate the state of maternal and child health by increasing the numbers of pregnant women or newborns in need of effective obstetrics counselling or management. Furthermore, the lack of widespread availability of assisted reproductive technology in the country unlike what obtained in more developed countries [10-11] may further increase demand for obstetric management of complications arising from AMA pregnancy in the country.

Though, assisted reproductive technology does not necessarily guaranteed the absence of complications in pregnancy and delivery, it however offers much assistance to women in advanced reproductive age who still desire to conceive from their own ovary. This finding suggests need for dual attention on women with AMA pregnancy in the country. One, universal coverage of the focused antenatal programme [32] must be driven with more vigour to ensure that all women with AMA pregnancy are enrolled for proper monitoring and to ensure that there are no drop out after enrolment. Two, the health education strategy of existing antenatal programme should be expanded to raise awareness of the possible dangers of AMA pregnancy with a view to curtailing further prevalence of AMA pregnancy.

As evident in the study, AMA pregnancy is more pronounced among women characterised by higher levels of modernisation and empowerment such as long period of schooling, high income level and high mass media exposure. This finding provides support for the description of the characteristics of women pregnant with their first child at advanced reproductive age [39]. A number of studies [6-8] have also linked these features to postponement of parenthood which further gave credence to the postulation of the second demographic transition [4-5] that these features may give rise to delayed childbearing which is a major cause of AMA pregnancy. While it is not plausible to attenuate women’s advancement (such as female attainment of higher education and professional career progression) because of childbearing, it is important that health planners and authorities in the country should include AMA pregnancy as one of the priority areas of women’s health and safe motherhood strategies. The current programmes [31-32] are concerned with promoting safe motherhood through effective antenatal, delivery, and postnatal care services without recognising the special case of AMA pregnancy. There is a likelihood that attention to high parity pregnancies which is more dominant in Nigeria and other sub-Saharan African countries [12-14] may over shadow AMA pregnancy in safe motherhood programming if AMA pregnancy is not specifically set as a priority in future women’s health and safe motherhood programmes.

Though, the existing programmes aim to develop measures for the detection, prevention and management of high-risk pregnancies such as pregnancies that are too closely spaced, after the fourth delivery and after age 35 but no specific initiative has been widely implemented to actualise the objective. It is imperative that such initiative be develop for implementation across the country particularly in the urban areas and using the mass media that are easily accessible to women with improved socio-demographic condition as reveal in the study. Based on the study evidence that the contextual factors exert important influence on the odds of AMA pregnancy, it is expected that future initiatives should pay attention to more community-based strategies. For example, a community-based public education
programme not only to raise awareness about the obstetric implications of AMA pregnancy but also to provide the explanatory mechanism of how specific community characteristics may cause AMA pregnancy is required to discourage increasing trend of the practice. Governments at all tiers in the country need to recognise the fact that the increasing trend of female higher education enrolment, career progression as well as the emerging norm of commuter marriage will have diverse effects on childbearing in the future. It is thus important that social policies and programmes take cognisance of the evolving phenomenon with a view to providing adequate counselling and information to women involved. Governments in South-east Nigeria particularly need to pay attention to cultural or marital practices that enhance fertility postponement in the region with a view to addressing same through social and behaviour change communication programme.

The inability of the study to identify and exclude women who had involuntary delay of first pregnancy till advanced reproductive age due to fertility challenges represent a drawback to the analysis carried out. However, this non-exclusion which was due to lack of data is not likely to distort the study findings because in the general population of women in Nigeria, the prevalence of primary infertility is very low. Hence, the non-exclusion of such women may not be sufficient to override the findings.

Conclusion

This study seeks to identify the individual and community characteristics that are associated with AMA pregnancy in Nigeria. Using nationally representative data from the 2018 NDHS, age, media exposure, period of schooling, remarriage and income are important individual factors that may shape the incidence of AMA pregnancy while the proportions of women who delayed first marriage, attained higher education or high professional levels and those in commuter marriage particularly in the urban areas are important contextual factors that characterised women with AMA pregnancy in the country. These findings suggest that health planners and authorities in the country should include AMA pregnancy as one of the priority areas of women's health and safe motherhood strategies in addition to developing community-based public education programme to raise awareness of the obstetric implications of AMA pregnancy given the poor state of health delivery in the country.

Abbreviations

DHS Demographic and Health Survey

FMoH Federal Ministry of Health

NDHS Nigeria Demographic and Health Survey

SDT Second Demographic Transition

Declarations
Ethics approval and consent to participate

This study was based on the analysis of secondary data. Authorisation was requested and granted by MEASURE DHS.

Consent to publish

Not Applicable

Availability of data and materials

The dataset supporting conclusions reached in this article is widely available online via https://dhsprogram.com/data/.

Competing Interests

The authors declare no competing interests

Funding

Not Applicable

Authors Contribution

BLS developed the concept, carried out the statistical analyses, and interpreted the results. OAO and TOO reviewed literature. All authors discussed the results, read through the manuscript and approve it for submission.

Author Information

BLS has a PhD in Demography and Social Statistics from Obafemi Awolowo University, Ile-Ife, Nigeria. His research interests are fertility, contraception, and women’s health issues. OAO and TOO are graduate students in the Department.

Acknowledgements

The authors are grateful to National Population Commission (NPC) [Nigeria], ICF International and MEASURE DHS Project providing access to 2018 NDHS datasets.

Endnote

Not Applicable

References
[1] Kahveci B, Melekoglu R, Evruke IC, Cetin C. The effect of advanced maternal age on perinatal outcomes in nulliparous singleton pregnancies. BMC Pregnancy and Childbirth. 2018;18:343, https://doi.org/10.1186/s12884-018-1984-x

[2] Laopaiboon M, Lumbiganon P, Intarut N, Mori R, Ganchimeg T, Vogel JP, et al. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG. 2014;121 (Suppl. 1): 49–56, doi: 10.1111/1471-0528.12659

[3] Lean SC, Derricott H, Jones RL, Heazell AEP. Advanced maternal age and adverse pregnancy outcomes: A systematic review and meta-analysis. Plos One. 2017; 12(10):e0186287, https://doi.org/10.1371/journal.pone.0186287

[4] Lesthaeghe RJ, Neidert L. The second demographic transition in the United States: Exception or textbook example. Population and Development Review. 2006;32(4): 669-698.

[5] Lesthaeghe RJ. The Unfolding Story of the Second Demographic Transition. Paper presented at the conference on “Fertility in the History of the 20th Century-Trends, Theories, Public Discourses, and Policies,” Akademia Leopoldina & Berlin- Brandenburgische Akademie;2010.

[6] Schmidt L, Sobotka T, Bentzen JG, Andersen AN et al. Demographic and medical consequences of the postponement of parenthood. Human Reproduction Update. 2012;18(1): 29–43, doi:10.1093/humupd/dmr040

[7] Bhrolchain MN, Beaujouan E. Fertility postponement is largely due to rising educational enrolment. Population Studies, 2012;66(3): 311-327, doi: 10.1080/00324728.2012.697569

[8] Pablos-Mendez A, Radloff SR, Khajavi K, Dunst SA. The demographic stretch of the arc of life: social and cultural changes that follow the demographic transition. Glob Health Sci Pract. 2015;3(3):341-351, http://dx.doi.org/10.9745/GHSP-D-14-00175

[9] Mathews TJ, Hamilton BE. First Births to Older Women Continue to Rise. NCHS Data Brief, No. 152. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics;2014

[10] Harrison BJ, Hilton TN, Rivière RN, Ferraro ZM, Deonandan R, Walker MC. Advanced maternal age: ethical and medical considerations for assisted reproductive technology. International Journal of Women's Health. 2017;9 561–570, http://dx.doi.org/10.2147/IJWH.S139578

[11] Nagata C, Yang L, Yamamoto-Hanada K, Mezawa H, Ayabe T, Ishizuka K, et al. Complications and adverse outcomes in pregnancy and childbirth among women who conceived by assisted reproductive technologies: a nationwide birth cohort study of Japan environment and children's study. BMC Pregnancy and Childbirth. 2019; 19:77, https://doi.org/10.1186/s12884-019-2213-y
[12] Health Communication Capacity Collaborative. Engaging Families for Healthy Pregnancies - A Focused Desk Review of Knowledge, Attitudes and Behaviors Related to Pregnancies in Three High-Risk Situations: Advanced Maternal Age; High Parity; and Rapid Repeat Pregnancies After Abortion or Miscarriage. Baltimore, USA: Health Communication Capacity Collaborative Johns Hopkins Center for Communication Programs;2014

[13] Health Communication Capacity Collaborative [HC3] (2016). Qualitative Research on Advanced Maternal Age and High Parity Pregnancies in West Africa. Baltimore, USA: Health Communication Capacity Collaborative Johns Hopkins Center for Communication Programs;2016

[14] Solanke BL. Maternal socio-demographic factors associated with low parity and grand multiparity in Nigeria, Women & Health. 2019;59(7):730-747, doi: 10.1080/03630242.2018.1553815

[15] Solanke BL, Salau OR, Popoola OE, Adebayi MO, Ajao OO. Socio-demographic factors associated with delayed childbearing in Nigeria. BMC Res Notes. 2019; 12:374, https://doi.org/10.1186/s13104-019-4414-x

[16] Ogawa K, Urayama KY, Tanigaki S, Sago H, Sato S, Saito S, et al. Association between very advanced maternal age and adverse pregnancy outcomes: a cross sectional Japanese study. BMC Pregnancy and Childbirth. 2017;17:349, doi: 10.1186/s12884-017-1540-0

[17] Gravio CD, Lawande A, Potdar RD, Sahariah SA, Gandhi M, Brown N, et al. The Association of Maternal Age With Fetal Growth and Newborn Measures: The Mumbai Maternal Nutrition Project (MMNP). Reproductive Sciences. 2018; doi: 10.1177/1933719118799202

[18] Londero AP, Rossetti E, Pittini C, Cagnacci A, Driul L. Maternal age and the risk of adverse pregnancy outcomes: a retrospective cohort study. BMC Pregnancy and Childbirth. 2019; 19:261, https://doi.org/10.1186/s12884-019-2400-x

[19] Nieto MC, Barrabes EM, Martínez SG, Prat MG, Zantop BS. Impact of aging on obstetric outcomes: defining advanced maternal age in Barcelona. BMC Pregnancy and Childbirth. 2019;19:342, https://doi.org/10.1186/s12884-019-2415-3

[20] Mehari M, Maeruf H, Robles CC, Woldemariam S, Adhena T, Mulugeta M, et al. Advanced maternal age pregnancy and its adverse obstetrical and perinatal outcomes in Ayder comprehensive specialized hospital, Northern Ethiopia, 2017: a comparative cross-sectional study. BMC Pregnancy and Childbirth. 2020; 20:60, https://doi.org/10.1186/s12884-020-2740-6

[21] Yogev Y, Melamed N, Tenenbaum-Gavish K, Ben-Shitrit G, Ben-Haroush A. Pregnancy outcome at extremely advanced maternal age. American Journal of Obstetrics and Gynecology. 2010; 203(558), e1-7, doi: 10.1016/j.ajog.2010.07.039
[22] Goker Tamay A, Guvenal T, Ozgur N, Oruç Koltan S, Koyuncu FM. Retrospective Analysis of Advanced Maternal Age Pregnancies. Gynecology Obstetrics & Reproductive Medicine. 2011;17: 83-86

[23] Lamminpaa R, Vehvilainen-Julkunen K, Gissler M, Heinonen S. Preeclampsia complicated by advanced maternal age: a registry-based study primiparous women in Finland 1997–2008. BMC Pregnancy and Childbirth. 2012; 12, 47, https://doi.org/10.1186/1471-2393-12-47

[24] Karabulut A, Ozkan S, Bozkurt Al, Karahan T, Kayan S. Perinatal outcomes and risk factors in adolescent and advanced age pregnancies: Comparison with normal reproductive age women. Journal of Obstetrics and Gynaecology. 2013;33(4): 346-350, doi: 10.3109/01443615.2013.767786

[25] Shufaro Y, Schenker JG. The risks and outcome of pregnancy in an advanced maternal age in oocyte donation cycles. The Journal of Maternal-Fetal and Neonatal Medicine. 2014; 27(16):1703-1709, doi: 10.3109/14767058.2013.871702

[26] Traisrisilp K, Tongsong T. Pregnancy Outcomes of Mothers with Very Advanced Maternal Age (40 Years or More). J Med Assoc Thai. 2015;98(2):117-122.

[27] Ngowa JDK, Ngassam A, Dohbit JS, Nzedjom C, Kasia JM. Pregnancy outcome at advanced maternal age in a group of African women in two teaching Hospitals in Yaounde, Cameroon. Pan African Medical Journal. 2013;14:134, doi:10.11604/pamj.2013.14.134.2315

[28] Ojule JD, Ibe VC, Fiebai PO. Pregnancy outcome in elderly primigravidae. Annals of African Medicine. 2011;10 (3): 204-208.

[29] Olusanya BO, Solanke OA. Perinatal correlates of delayed childbearing in a developing country. Archives of Gynecology and Obstetrics. 2012;285:951–957, doi 10.1007/s00404-011-2105-5

[30] Orazulike NC, Jeremiah I, Green KI, Uzoigwe SA. Effect of Age on Childbearing in Port Harcourt, Nigeria. Int J Biomed Sci. 2015; 11(2): 82-85

[31] National Population Commission. National Policy on Population for Sustainable Development. Abuja, Nigeria: NPC;2004

[32] Federal Ministry of Health. Saving newborn lives in Nigeria: Newborn health in the context of the Integrated Maternal, Newborn and Child Health Strategy (2nd edition). Abuja, Nigeria: Federal Ministry of Health, Save the Children, Jhpiego;2011

[33] National Population Commission (NPC) [Nigeria] & ICF. Nigeria Demographic and Health Survey 2018. Abuja, Nigeria, and Rockville, Maryland, USA: NPC and ICF;2019. Retrieved from http://www.dhsprogram.com/pubs/pdf/FR293/FR293.pdf

[34] Solanke BL. Advanced reproductive age and childbearing choices in Nigeria. Health Care for Women International. 2017;38(6): 640-657, doi: 10.1080/07399332.2017.1297449
[35] Delpisheh A, Brabin L, Attia E, Brabin BJ. Pregnancy Late in Life: A Hospital-Based Study of Birth Outcomes. Journal of Women's Health. 2008;17(6):965-970, doi: 10.1089/jwh.2008.0514

[36] Chan BC, Lao TT. Effect of parity and advanced maternal age on obstetric outcome. International Journal of Gynecology and Obstetrics. 2008;102: 237–241, doi:10.1016/j.ijgo.2008.05.004

[37] Gordo LR. Why are women delaying motherhood in Germany? Feminist Economics. 2009;15(4): 57–75, doi: 10.1080/13545700903153955

[38] Huber S, Bookstein FL, Fieder M. Socioeconomic Status, Education, and Reproduction in Modern Women: An Evolutionary Perspective. American Journal of Human Biology. 2010; 22:578-587, doi:10.1002/ajhb.21048

[39] Nilsen ABV, Waldenstrom U, Hjelmsted A, Rasmussen S, Schytt E. Characteristics of women who are pregnant with their first baby at an advanced age. Acta Obstet Gynecol Scand. 2012; 91:353–362, doi: 10.1111/j.1600-0412.2011.01335.x

[40] Amin V, Behrman JR. Do more-schooled women have fewer children and delay childbearing? Evidence from a sample of US twins. J Popul Econ. 2014;27:1–31, doi:10.1007/s00148-013-0470-z

[41] Bellido H, Marcen M. Divorce laws and fertility. Labour Economics. 2014;27:56-70, http://dx.doi.org/10.1016/j.labeco.2014.01.005

[42] Verma S. Examining the New Dimensions of Career Advancement of Women Employees. Global Business Review. 2018; 21(2): 1–13, doi: 10.1177/0972150918780757

[43] Ntenda PAM, Chuang Y. Analysis of individual-level and community-level effects on childhood undernutrition in Malawi. Pediatri Neonatol. 2018;59(4):380-389, doi: 10.1016/j.pedneo.2017.11.019

[44] Adedokun ST, Uthman OA. Women who have not utilized health Service for Delivery in Nigeria: who are they and where do they live? BMC Pregnancy Childbirth. 2019; 19: 93, https://doi.org/10.1186/s12884-019-2242-6

[45] Fuller TD. Relationship status, health, and health behavior: an examination of cohabiters and commuters. Sociological Perspectives. 2010;53(2): 221-245, doi: 10.1525/sop.2010.53.2.221

[46] McBride MC, Bergen KM. Voices of women in commuter marriages: A site of discursive struggle. Journal of Social and Personal Relationships. 2014;31(4):554- 572, doi: 10.1177/0265407514522890

[47] Thompson CG, Kim RS, Aloe AM, Becker BJ. Extracting the Variance Inflation Factor and Other Multicollinearity Diagnostics from Typical Regression Results. Basic and Applied Social Psychology. 2017; 39(2):81-90, doi: 10.1080/01973533.2016.1277529
Tables

Table 1: The Research Variables
S/No.	Variable	Description/Measurere	Code/category
Outcome Variable			
1.	Advanced maternal age pregnancy	Current pregnancy or child delivery among women 35 years or older. Consistent with description in literature [2, 20].	1. Yes 0. No
Individual Characteristics			
2.	Reproductive age	The current age group of respondent categorised as advanced maternal age (AMA, 35-39 years), very advanced maternal age (VAMA, 40-44 years) and extremely advanced maternal age (EAMA, 45-49 years) based on earlier description [3, 19].	1. AMA 2. VAMA 3. EAMA
3.	Marital status	Whether respondent is not currently married (divorced, separated, widowed, single) or currently married.	1. Not currently married 2. Currently married
4.	Media exposure	Level of respondent exposure to three mass media outlets, namely, reading newspaper, listening to radio and watching television. Each outlet was assigned number 1-3 depending on respondent access per week. 1 equals less than once per week, 2 equals at least once per week, and 3 equals more than once per week. This yields a total of 9 points for the outlets. We then divide the total into	1. Low 2. Moderate 3. High
three equal parts of 1-3, 4-6 and 7-9 to indicate low, moderate and high exposure so as to locate the position of respondent on media exposure.

| 5. | Autonomy on household decision | Level of respondent autonomy on three household decisions, namely, final say on own health care, final say on purchase of large items and final say on visits to friends and relatives. Each decision was assigned number 1-3 depending on respondent participation in the decision. 1 equals male partner or others had final say, 2 equals joint say with male partner, and 3 equals sole participation by respondent. This yields a total of 9 points for the three decisions. We then divide the total score into three equal parts of 1-3, 4-6 and 7-9 to indicate low, moderate and high autonomy. | 1. Low
2. Moderate
3. High |

| 6. | Contraceptive use | Current contraceptive use of respondent. This was grouped based on whether respondent is currently using a method of contraception or the type of contraceptive being currently used by respondent. | 1. Not using
2. Using traditional
3. Using modern |
| | | Remarriage | Whether respondent was married once or more than once. Included based on evidence that remarriage among divorce or separated women affects both marital and non-marital fertility level [41]. | 1. No
2. Yes |
|---|---|---|---|---|
| 7. | | Period spent schooling | The number of years respondent spent schooling. Women who had no education were assigned code of zero. Those who had education were grouped into three, namely, short period (six years), moderate period (seven to thirteen years) and long period (fourteen to twenty years or more). However, in the analysis we merged the zero and short period group. | 1. Short period
2. Moderate period
Long period |
| 8. | | Income group | The wealth group of respondent household derived from household possession and expenditure through principal component method [33] and categorised into five groups. | 1. Poorest
2. Poorer
3. Middle
4. Richer
5. Richest |
| | Community Characteristics | | | |
| 10. | Proportion of delayed marriage in community | The proportion of women in the community whose first marriage occurred at age thirty or older years. Derived by aggregating the proportion at the cluster level and | 1. Low
2. Medium
3. High |
	Category	Description	Groups
11	Community level of female education	The proportion of women who attained higher education in the community. Derived by first identifying individual women who attained higher education, aggregating at the cluster level, and dividing into three equal groups of low, medium and high.	1. Low
			2. Medium
			3. High
12	Proportion of female in managerial occupation in community	The proportion of women who are in managerial, technical or professional occupation in the community. Derived by first identifying individual women in the occupational group, aggregating at the cluster level, and dividing into three equal groups of low, medium and high.	1. Low
			2. Medium
			3. High
13	Proportion of women in commuter marriage in community	The proportion of women in the community who are not living with their spouses. Derived by first identifying individual women with such marital living arrangement, aggregating at the cluster level, and dividing into three equal groups of low, medium and high. Included because evidence suggest that women in commuting marriage may face detrimental health situation which may cause health problems and social isolation.	1. Low
			2. Medium
			3. High
---	---	---	
14.	Proportion of divorced/separated women in community	The proportion of women in the community who are either divorced or separated. Derived by first identifying individual women in either group, aggregating at the cluster level, and dividing into two equal groups of low and high.	
		1. Low	
		2. Medium	
15.	Type of community	Whether respondent lives in urban or rural community	
		1. Urban	
		2. Rural	
16.	Geo-political zone of residence	The geo-political zone where respondent reside as at the time of the survey	
		1. North-central	
		2. North-east	
		3. North-west	
		4. Southeast	
		5. South-south	
		6. South-west	

Table 2: Socio-demographic characteristics of respondents
Characteristics	Frequency	Percentage	Characteristics	Frequency	Percentage	
Advanced maternal age pregnancy	No	11,682	Proportion who delayed marriage in community	Low	6,307	
	Yes	1,423		Medium	2,673	
Reproductive age group	35-39 years	5,463	Community level of female higher education	Low	7,029	
	40-44 years	3,940		Medium	1,732	
	45-49 years	3,702		High	4,344	
Marital status	Not currently married	1,781	13.6	Proportion of female in professional occupation in community		
	Currently married	11,324	86.4	Low	7,618	
Exposure to mass media	Low	4,061		Medium	849	
	Moderate	6,029		High	4,638	
	High	3,015		Low	6,976	
Current contraceptive use	Not using	10,669		Medium	2,144	
	Using traditional method	794	6.1	High	3,984	
	Using modern method	1,642	12.5	Low	11,100	
Period spent schooling	Short	8,104	Type of community	High	2,005	
	Moderate	3,510	Urban	6,162	47.0	
	Long	1,491	Rural	6,943	53.0	
Remarriage	No	10,973	Geo-political zone	North-central	1,748	13.3
	Yes	2,132		North-east	1,835	14.0
Female autonomy	Low	5,130		North-west	3,460	26.4
	Moderate	6,193		South-east	1,798	13.7
	High	1,782		South-south	1,665	12.7
		13,105		South-west	2,599	19.8
Income group	Poorest	2,345	Total	13,105	100.0	
	Poorer	2,428				
	Middle	2,470				
	Richer	2,767				
	Richest	3,095				

Source: Authors’ analysis based on 2018 NDHS
Table 3: Bivariate Relationship showing percentage distribution of AMA pregnancy by socio-demographic characteristics
Characteristic	Percent	Coef.	95% CI	Characteristic	Percent	Coef.	95% CI
Reproductive age group				Proportion who delayed marriage in community			
35-39 years ref	15.0	-	-	Low ref	8.6	-	-
40-44 years	9.6	0.504**	-0.656, 0.353	Medium	8.4	-0.024	-0.239, 0.192
45-49 years	6.1	1.006**	-1.188, -0.823	High	16.0	0.713**	0.579, 0.847
Marital status				Community level of female higher education			
Not currently married ref	17.0	-	-	Low ref	9.8	-	-
Currently married	9.9	0.622**	-0.796, -1.433	Medium	8.8	-0.125	-0.332, 0.083
Exposure to mass media							
Low ref	10.3	-	-	Proportion of female in professional occupation in community			
Moderate	10.6	0.178**	0-109-0.246	Low ref	9.9	-	-
High	12.2	0.250**	0.204-0.297	Medium	9.3	-0.069	-0.319, 0.182
Current contraceptive use							
Not using ref	12.8	-	-	Proportion in commuter marriage in community			
Using traditional method	1.5	-2.267**	-2.288, -1.646	Low ref	10.9	-	-
Using modern method	2.64	-1.690**	-2.068, -1.312	Medium	10.5	0.845**	0.678-1.013
Period spent schooling							
Short ref	9.1	-	-	Proportion divorced/separated in community			
Moderate	11.2	0.229*	0.081-0.377	Low ref	10.9	-	-
Long	19.6	0.886**	0.705-1.067	High	10.8	-0.416**	-0.604,-0.227
Remarriage				Type of community			
No ref	9.3	-	-	Urban ref	11.1	-	-
Yes	18.8	0.813**	0.657-0.970	Rural	10.7	0.957**	-1.049,-0.866
Female autonomy				Geo-political zone			
Low ref	12.7	-	-	North-	9.0	-	-
Income group	ref	coef.	**p**-value	ref	coef.	**p**-value	
--------------	-----	-------	-------------	-----	-------	-------------	
Moderate	10.2	-0.254*	0.109	**Northeast**	11.0	0.227	-0.002, 0.455
High	7.8	-0.540**	-0.767,-0.312	**Northwest**	10.4	0.165	-0.043, 0.374
Income group				**South-East**	15.5	0.624**	0.396-0.852
Poorest	2.3	-	-	**South-South**	12.7	0.389*	0.146-0.633
Poorer	3.1	-0.117	-0.249,0.016	**South-West**	8.2	-0.099	-0.371, 0.171
Middle	10.4	-0.073	-0.276,0.130				
Richer	9.9	-0.133	-0.355,0.090				
Richest	13.5	0.214*	0.021-0.407				

Notes: ref (Reference category), coef. (Coefficient), *p<0.05, **p<0.001

Table 4: Fixed-effects on AMA pregnancy
Characteristic predicting AMA pregnancy	Model 1	Model 2	Model 3						
	AOR	p-value	95% CI	AOR	p-value	95% CI	AOR	p-value	95% CI
Reproductive age group									
35-39 years ref	1.000	-	-	1.000	-	-			
40-44 years	0.602	p<0.00	0.519-0.699	0.592	p<0.00	0.509-0.688			
45-49 years	0.298	p<0.00	0.246-0.361	0.290	p<0.00	0.239-0.353			
Marital status									
Not currently married ref	1.000	-	-	1.000	-	-			
Currently married	0.702	p<0.00	0.591-0.833	0.828	0.087	0.667-1.028			
Exposure to mass media									
Low ref	1.000	-	-	1.000	-	-			
Moderate	0.993	0.926	0.851-1.157	1.019	0.818	0.867-1.198			
High	1.307	p<0.00	1.163-1.452	1.794	p<0.00	1.580-2.008			
Current contraceptive use									
Not using ref	1.000	-	-	1.000	-	-			
Using traditional method	0.968	0.768	0.781-1.201	0.895	0.357	0.707-1.133			
Using modern method	0.894	0.141	0.770-1.038	0.884	0.263	0.712-1.097			
Period spent schooling									
Short ref	1.000	-	-	1.000	-	-			
Moderate	1.481	p<0.00	1.256-1.747	1.347	0.002	1.118-1.622			
Long	3.107	p<0.00	2.468-3.911			2.680	p<0.00	2.058-3.488	
------	-------	--------	-------------	---	---	-----	--------	-------------	
Remarriage									
No	ref 1.000	-	-	1.000	-	-			
Yes	2.240	p<0.00	1.896-2.647	2.269	p<0.00	1.915-2.688			
Female autonomy									
Low	ref 1.000	-	-	1.000	-	-			
Moderate	0.679	p<0.00	0.438-0.919	0.971	0.718	0.825-1.142			
High	1.541	p<0.00	1.374-1.728	1.084	0.335	0.914-1.285			
Income group									
Poorer	ref 1.000	-	-	1.000	-	-			
Poorer	0.811	0.035	0.668-0.986	0.729	0.356	0.279-1.899			
Middle	0.970	0.776	0.788-1.194	0.961	0.735	0.765-1.208			
Richer	0.895	0.357	0.707-1.133	0.880	0.336	0.679-1.142			
Riches	t 1.220	0.001	1.084-1.374	1.271	0.001	1.098-1.472			
Proportion who delayed marriage in community									
Low	ref 1.000	-	-	1.000	-	-			
Medium	1.169	0.092	0.975-1.402	1.145	0.166	0.945-1.386			
High	2.430	p<0.00	2.015-2.929	2.173	p<0.00	1.777-2.658			
Community level of female higher education									
Low	ref 1.000	-	-	1.000	-	-			
Medium	0.861	0.173	0.694-1.068	0.823	0.099	0.653-1.038			
High	1.475	p<0.00	1.339-1.612	1.247	p<0.00	1.158-1.609			
Proportion of female in professional occupation in community									
Low	ref 1.000	-	-	1.000	-	-			
Medium	0.816	0.147	0.620-1.074	1.384	p<0.00	1.158-1.609			
High	1.614	p<0.00	1.500-1.778	1.981	p<0.00	1.791-2.172			
Proportion in commuter marriage in community									
Low	ref 1.000	-	-	1.000	-	-			
Medium	1.202	0.087	0.973-1.485	1.060	0.400	0.925-1.215			
High	1.515	p<0.00	1.333-1.698	1.952	p<0.00	1.505-2.533			
Proportion divorced/separated in community									
Low	ref 1.000	-	-	1.000	-	-			
Table 5: Random-effects on AMA pregnancy

Parameter	Empty Model	Model 1	Model 2	Model 3
Community level variance (SE)	1.649 (0.074)	1.563 (0.137)	1.491 (0.142)	1.281 (0.109)
Log likelihood	-4584.1	-4168.6	-4479.6	-4081.0
LR test	$\chi^2=23.8;$ p<0.001	$\chi^2=15.9;$ p<0.05	$\chi^2=17.1;$ p<0.05	$\chi^2=15.2;$ p<0.05
ICC (%)	33.4	32.2	31.2	28.0

Notes: ref (Reference category), AOR (Adjusted Odds Ratio)