Research Article

The “Oblique Popliteal Ligament”: A Macro- and Microanalysis to Determine If It Is a Ligament or a Tendon

Brion Benninger¹,²,³,⁴,⁵,⁶,⁷ and Taylor Delamarter¹

¹ Department of Medical Anatomical Sciences, Western University of Health Sciences, COMP-Northwest, 200 Mullins Way, Lebanon, OR 97355, USA
² Department of Family Practice, Western University of Health Sciences, COMP-Northwest, 200 Mullins Way, Lebanon, OR 97355, USA
³ Samaritan Health Services Orthopaedics, Residency Faculty, Corvallis, OR 97330, USA
⁴ Samaritan Health Services General Surgery, Residency Faculty, Corvallis, OR 97330, USA
⁵ Department of Oral Maxillofacial Surgery, Oregon Health & Science University, 611 SW Campus Drive, Portland, OR 97239, USA
⁶ Department of Surgery, Oregon Health & Science University, 611 SW Campus Drive, Portland, OR 97239, USA
⁷ Department of Orthopaedics & Rehabilitation, Oregon Health & Science University, 611 SW Campus Drive, Portland, OR 97239, USA

Correspondence should be addressed to Brion Benninger, benninge@ohsu.edu

Received 18 January 2012; Revised 7 March 2012; Accepted 7 March 2012

Academic Editor: Konstantinos Natsis

Copyright © 2012 B. Benninger and T. Delamarter. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction. This study investigated the importance of the “oblique popliteal ligament” (OPL), and challenges its alleged ligament status. The currently named OPL is indigenous to the distal semimembranosus (SMT); therefore, by definition is not a ligament inserting from bone to bone. Clinically, a muscle-tendon unit is different than a ligament regarding proprioception and surgery.

Methods. Literature search was conducted on texts, journals and websites regarding the formation of the OPL. Dissection of 70 knees included macro analysis, harvesting OPL, distal SMT and LCL samples and performing immunohistochemistry to 16 knees with antibody staining to the OPL, distal SMT and LCL.

Results. All but one text claimed the OPL receives fibers from SMT. Macro dissection of 70 knees revealed the OPL forming from the distal SMT (100%). Microanalysis of OPL, distal SMT and LCL samples from 16 knees demonstrated expression of nervous tissue within selected samples.

Discussion. No journals or texts have hypothesized that the OPL is a tendon. Clinically it is important we know the type of tissue for purposes of maximizing rehabilitation and surgical techniques. Conclusion. This study suggests the OPL be considered the oblique popliteal tendon as a result of the macro and micro evidence revealed.

1. Introduction

The posterior aspect of the knee has been increasingly studied because of its clinical relevance. Surgeons, biomechanists, physical therapists, all health care providers dealing with the musculoskeletal system, and anatomists need to have a definitive and precise understanding of the structures of the posteromedial knee. A previous study conducted by the authors identified the clinical importance, morphology, and accurate terminology of the distal semimembranosus muscle tendon unit (SMTU) [1]. This study also revealed that the currently named oblique popliteal ligament (OPL) was indigenous to the SMTU and, therefore, by definition is not a ligament inserting from bone to bone. This is clinically important because of the proprioception of a tendon versus a ligament, which may suggest a greater role by the distal semimembranosus tendon in posterior knee stability.

With regard to the literature regarding the oblique popliteal ligament, Woodburne’s Essentials of Human Anatomy states that it is formed from the fibers of the distal semimembranosus tendon [2]. All other anatomical texts and atlases that consider or depict the OPL state that the distal
semimembranosus tendon contributes fibers to the OPL [2–20]. Though the majority of the texts and journal papers describe the SMTU contributing to the OPL [21–32], none have hypothesized that this ligament is indigenous to the SMTU, therefore, a tendon by the true sense of the definition.

In order to provide further evidence towards this hypothesis, histological studies of the SMTU, OPL, and a well-defined ligament of the knee were needed. There have been previous histological studies completed on the various structures of the knee, the majority of which have primarily focused on the specific type of nerve ending present within these deep structures, particularly the cruciate ligaments and the menisci [33–41]. None have specifically looked at the histology of the OPL, and immunohistochemistry staining specific to the neuronal axons has not been conducted on any deep structures of the knee. Therefore, the authors conducted immunohistochemistry staining with antibodies specific to neuronal axons on the SMT, OPL, and the lateral collateral ligament (LCL) of the knee. The staining conducted allowed the author to compare the histology and neuronal components of the SMTU with the OPL and a well-defined ligament of the knee, such as the LCL. The objective of this study was to conduct a macro- and microanalysis investigation of the OPL and challenge its alleged ligament status.

2. Materials and Methods

A literature search was conducted on anatomical and specialty texts, atlases, journals, and websites regarding the morphology of the distal semimembranosus muscle tendon unit and oblique popliteal ligament. Deep dissections were performed on 43 embalmed human cadavers (23 M and 20 F, age: 55–89, average: 79.6 yrs), 70 knees in total (39 Rt and 41 Lt), to reveal the SMTU and its final attachments. Exclusion criteria are amputation, knee replacement, or any gross damage to the knee joint. The most distal portion of the SMTU was reflected medial to lateral in order to analyze whether or not the alleged oblique popliteal ligament is a continuation of the distal SMTU, or if it was a structure attaching from bone to bone. The OPL’s distal (medial) and proximal (lateral) attachments were analyzed. Immunohistochemistry staining was performed on the SMTU, OPL, and LCL using the following protocols: PGP9.5 staining of human tendon/ligament sections with rabbit anti-PGP9.5 (Accurate Chemical)/goat anti-rabbit biotinylated (Vector), neuronal class III β-tubulin (NCT), and staining of human tendon/ligament sections with rabbit anti-NCT (Covance)/goat anti-rabbit biotinylated (Vector).

3. Results

Literature search revealed that 11 of the 19 anatomical texts and atlases that consider or depict the OPL state that the distal semimembranosus tendon contributes fibers to the OPL [2–20]. A much higher percentage was found in orthopedic or radiologic specialty articles (11 of 12 stated that the distal semimembranosus tendon contributes fibers to the OPL) [21–32] (see Table 1). Deep dissections revealed that the alleged oblique popliteal ligament’s distal (medial) attachment originated from the SMTU in 100% of 70 knees. Its proximal (lateral) attachment was inserted into the joint capsule in 39/70, bone in 11/70, and both joint capsule and bone in 20/70 knees (see Figures 1(a), 1(b), 2, 3, and 4). Immunohistochemistry staining using rabbit anti-PGP9.5/goat anti-rabbit biotinylated revealed a positive stain for neuronal axons in both the SMT and the OPL and a negative stain in the LCL. Immunohistochemistry staining
Figures 5(a), 5(b), 5(c), 6(a), 6(b), 6(c) and 7).

axons in each of three tissue types, OPL, SMT, and LCL (see tendon/ligament sections with rabbit anti-NCT/goat anti-
esized that this structure is itself a tendon [1–31]. A macro-
fibers to the oblique popliteal ligament; none have hypoth-
state that the distal semimembranosus tendon contributes
atlases as well as over 90 percent of specialty journal articles

Despite the fact that nearly 60 percent of anatomical texts and
atlas as well as over 90 percent of specialty journal articles
state that the distal semimembranosus tendon contributes
fibers to the oblique popliteal ligament; none have hypothe-
sized that this structure is itself a tendon [1–31]. A macro-
analysis using deep dissection of the posterior knee revealed
that the OPL’s distal (medial) attachment originated from
the SMTU in 100% of the knees. This provided evidence in
support of the author’s hypothesis; however, a microanalysis
using deep dissection of the posterior knee revealed
striking similarities in the histology of both the SMTU and
OPL. Furthermore, the positive stain for neuronal axons provides grounds that Golgi tendon
organs, nervous tissue specific to tendons, may be located in
the OPL. These facts confirm the author’s hypothesis that this
structure is a tendon.

The authors are not aware of a stain specific to Golgi
tendon organs. However, in pursuit of providing increased
evidential proof for a change in terminology, the authors
conducted a different, more definitive immunohistochem-
istry stain for neuronal axons using neuronal class III
β-tubulin (NCT) with rabbit anti-NCT/goat anti-rabbit
biotinylated. Though the histology of both the SMTU and
the OPL was once again quite similar and vastly different
from that of the LCL, the stain revealed a positive stain for
nerve endings in these tissues. This was the first known study
to use immunohistochemistry staining with an antibody
specific to neuronal axons in the deep tissue of the knee. This
was also the first study to utilize any staining protocol on the
OPL.

The microanalysis of the tendon properties using rab-
bit anti-PGP9.5/goat anti-rabbit biotinylated immunohis-
tochemistry staining revealed neuronal axons in both the
SMTU and the OPL and displayed similar histological pat-
terns in both structures [33]. The LCL did not display a
positive result for this stain and had a markedly different his-
tology to both the OPL and SMT. Furthermore, the positive
stain for neuronal axons provides grounds that Golgi tendon
organs, nervous tissue specific to tendons, may be located in
the OPL. These facts confirm the author’s hypothesis that this
structure is a tendon.

The authors are not aware of a stain specific to Golgi
tendon organs. However, in pursuit of providing increased
evidential proof for a change in terminology, the authors
conducted a different, more definitive immunohistochem-
istry stain for neuronal axons using neuronal class III
β-tubulin (NCT) with rabbit anti-NCT/goat anti-rabbit
biotinylated. Though the histology of both the SMTU and
the OPL was once again quite similar and vastly different
from that of the LCL, the stain revealed a positive stain for
nerve endings in these tissues. This was the first known study
to use immunohistochemistry staining with an antibody
specific to neuronal axons in the deep tissue of the knee. This
was also the first study to utilize any staining protocol on the
OPL.

The microanalysis of the OPL revealed unequivocally it is
indigenous to the distal SMTU. The immunohistochemistry used in this study is proven to
provide definitive results for neuronal axons within tissue
samples [42] and was the first to demonstrate that there
is nervous tissue within the OPL. Despite the inconclusive
results of the final immunohistochemistry stains, the macro-
and microevidence that the oblique popliteal ligament is not
a ligament at all is overwhelming. This evidence has led the
authors to propose a nomenclature change for this structure,
naming it the oblique popliteal tendon.

5. Conclusion

The macroanalysis of the OPL revealed unequivocally it is
indigenous to the distal SMTU. The microanalysis using an
immunohistochemistry stain with PGP9.5 revealed a positive
result for neuronal axons within both the SMT and OPL.
Further microanalysis using an immunohistochemistry stain
with β-tubulin revealed a positive stain for neuronal axons
in the SMT, OPL, and LCL. Though the latter result leads
the authors to question the validity of differentiating tendon
from ligament using this particular immunohistochemistry
stain, the macroanalysis results are overwhelming, and the
microanalysis reveals striking similarities in the histology of
Figure 5: Light microscope view (20x) of PGP9.5 stain revealing neuronal axon (arrow). (a) Distal semimembranosus muscle tendon unit (SMTU). (b) Oblique popliteal ligament (OPL). (c) Lateral collateral ligament of the knee (LCL).

Figure 6: Light microscope view (20x) of β-tubulin stain revealing neuronal axon (arrow). (a) Distal semimembranosus muscle tendon unit (SMTU). (b) Oblique popliteal ligament (OPL). (c) Lateral collateral ligament of the knee (LCL).
Anatomical Texts and Atlases	Semimembranosus contributes fibers to the oblique popliteal ligament (OPL)	Speciality journals	Semimembranosus contributes fibers to the oblique popliteal ligament (OPL)
Anatomy as a Basis for Clinical Medicine [11]	X	Some Aspects of Functional Anatomy of The Knee Joint [12]	
Atlas of Human Anatomy [13]		The Supporting Structures and Layers on The Medial Side of The Knee [31]	X (OPL)
Anatomy for Surgeons [43]	X	Anatomy of The Medial Part of The Knee [26]	
BRS Gross Anatomy [5]	X	Anatomy of The Posterior Aspect of The Knee [27]	X (OPL)
Clemente Anatomy [6]		Distal Semimembranosus Complex: The Normal MR Anatomy, Variants, Biomechanics and Pathology [21]	X (OPL)
Clinical Anatomy [9]	X	Tendinous Insertion of Semimembranosus Into The Lateral Meniscus [24]	X (OPL)
Clinical Anatomy by Systems [18] Atlas	X	Posteromedial Corner of The Knee: MR Imaging with Gross Anatomic Correlation [28]	X (OPL)
Clinical Orthopaedic Rehabilitation [4]		Avulsion of The Posteromedial Tibial Plateau by The Semimembranosus Tendon: Diagnosis with MR Imaging [32]	X (contribution to OPL)
Color Atlas and Textbook of Human Anatomy [10]	X	The Posteromedial Corner of The Knee: Medial Injury Patterns Revisited [30]	X (OPL)
Essential Clinical Anatomy [15]	X	Hamstring Muscle Complex: An Imaging Review [25]	X (OPL/arcuate)
Essentials of Human Anatomy [2]	X	A Note on The Semimembranosus Muscle [22]	X (OPL)
Grant’s Atlas of Anatomy [3]	X	Semimembranosus Tendon Viewed through an Isolated Medial Meniscus Capsular Avulsion: A Case Report [29]	X (OPL/ligament of Winslow)
Gray’s Anatomy 40th ed	X		
Gray’s Anatomy for Students [8]			
Gray’s Atlas of anatomy [7]			
Gross Anatomy in the practice of medicine [17]			
Lippincott Williams & Wilkins Atlas of Anatomy [20]			
Sports Injury Assessment and Rehabilitation [16]			
Surgical Atlas of Sports Medicine [14]	X		
Immunohistochemistry results

Figure 7: Immunohistochemistry results of PGP9.5 staining of human tendon/ligament sections with rabbit anti-PGP9.5 (Accurate Chemical)/goat anti-rabbit biotinylated (Vector) and neuronal class III β-tubulin (NCT), staining of human tendon/ligament sections with rabbit anti-NCT (Covance)/goat anti-rabbit biotinylated (Vector).

both the OPL and SMT. The authors strongly suggest that the oblique popliteal ligament be renamed the oblique popliteal tendon (O) due this macro- and microanalysis study. Clinically, this study improves terminology accuracy and medical international language, allowing for better understanding of successful rehabilitation methods and rationale for current and future surgical procedures.

Acknowledgment

The authors would like to acknowledge Agnieszka Balcowiec, MD, PhD, for immunohistochemistry support. Lastly, the authors would like to express their sincere appreciation to those that so generously donated their bodies to further medical education and research.

References

[1] B. Benninger and T. Delamarter, “Distal semimembranosus muscle-tendon-unit review: morphology, accurate terminology and clinical relevance,” Folia Morphologica. In press.
[2] R.T. Woodburne, Essentials of Human Anatomy, University Press, 1978.
[3] A. M. R. Agur and A. F. Dalley, Grant’s Atlas of Anatomy, 12th edition, 2008.
[4] S. B. Brotzman and K. E. Wilk, Clinical Orthopaedic Rehabilitation, 2003.
[5] K. W. Chung and H. M. Chunch, BRS Gross Anatomy, 2008.
[6] C. D. Clemente, Clemente Anatomy, 1996.
[7] R. L. Drake and A. W. Vogl, Gray’s Atlas of Anatomy, 2008.
[8] R. L. Drake and A. W. Vogl, Gray’s Anatomy for Students, 2nd edition, 2010.
[9] H. Ellis, Clinical Anatomy, 2006.
[10] J. A. Gosling and P. F. Harris, Harris, Color Atlas and Textbook of Human Anatomy, 2008.
[11] E. Hall-Craggs, Anatomy as a Basis for Clinical Medicine, 1990.
[12] W. H. Hollinshead, Anatomy for Surgeons, Volume 3: The Back and Limbs, Hoeber-Harper, New York, NY, USA, 1961.
[13] S. Jacob, Atlas of Human Anatomy, 2002.
[14] M. D. Miller, R. F. Howard et al., Surgical Atlas of Sports Medicine, 2003.
[15] K. L. Moore and A. M. R. Agur, Essential Clinical Anatomy, 2007.
[16] Reid, Sports Injury Assessment and Rehabilitation, 2004.
[17] F. J. Slaby, S. K. McCune et al., Gross Anatomy in the Practice of Medicine, 1994.
[18] R. S. Snell, Clinical Anatomy by Systems, 2007.
[19] S. Standring, Grays Anatomy, The Anatomical Basis of Clinical Practice, 2010.
[20] P. W. Tank and T. R. Gest, Lippincott Williams and Wilkins Atlas of Anatomy, 2009.
[21] J. Beltran and A. Matityahu, “The distal semimembranosus complex: normal MR anatomy, variants, biomechanics and pathology,” Skeletal Radiology, vol. 32, no. 8, pp. 435–445, 2003.
[22] A. J. Cave and C. J. Porteous, “A note on the semimembranosus muscle,” Annals of the Royal College of Surgeons of England, vol. 24, no. 4, pp. 251–256, 1959.
[23] J. Hughston and A. Eilers, “The role of the posterior oblique ligament in repairs of acute medial (collateral) ligament tears of the knee,” The Journal of Bone and Joint Surgery A, vol. 55, no. 5, pp. 923–940, 1973.
[24] Y. C. Kim, W. K. Yoo, I. H. Chung, J. S. Seo, and S. Tanaka, “Tendinous insertion of semimembranosus muscle into the lateral meniscus,” Surgical and Radiologic Anatomy, vol. 19, no. 6, pp. 365–369, 1997.
[25] G. Koulouris and D. Connell, “Hamstring muscle complex: an imaging review,” Radiographics, vol. 25, no. 3, pp. 571–586, 2005.
[26] R. F. LaPrade, A. H. Engerbretsen et al., “The anatomy of the semimembranosus tendon viewed through an isolated medial meniscus capsular avulsion: a case report,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 6, pp. 760–762, 2010.
[27] R. F. LaPrade, P. M. Morgan, F. A. Wentorf, S. Johansen, and L. Engerbretsen, “The anatomy of the posterior aspect of the knee: an anatomic study,” The Journal of Bone and Joint Surgery A, vol. 89, no. 4, pp. 758–764, 2007.
[28] R. Loredo, J. Hoipler, R. Pedowitz, L. R. Yeh, D. Trudell, and D. Resnick, “Posteromedial corner of the knee: MR imaging with gross anatomic correlation,” Skeletal Radiology, vol. 28, no. 6, pp. 305–311, 1999.
[29] K. A. Turman, C. D. Miller, and M. D. Miller, “Semimembranosus muscle-tendon viewed through an isolated medial meniscus capsular avulsion: an isolated case report,” Knee Surgery, Sports Traumatology, Arthroscopy, vol. 18, no. 6, pp. 760–762, 2010.
[30] W. E. Sims and K. E. Jacobson, “The posteromedial corner of the knee: medial-sided injury patterns revisited,” The American Journal of Sports Medicine, vol. 32, no. 2, pp. 337–345, 2004.
[33] D. Amiel, C. Frank, and F. Harwood, “Tendons and ligaments: a morphological and biochemical comparison,” *Journal of Orthopaedic Research*, vol. 1, no. 3, pp. 257–265, 1984.

[34] P. Katonis, A. P. Assimakopoulos, M. V. Agapitos, and E. I. Exarchou, “Mechanoreceptors in the posterior cruciate ligament: histologic study on cadaver knees,” *Acta Orthopaedica Scandinavica*, vol. 62, no. 3, pp. 276–278, 1991.

[35] R. Schultz, D. C. Miller, C. S. Kerr, and L. Micheli, “Mechanoreceptors in human cruciate ligaments: a histological study,” *The Journal of Bone and Joint Surgery A*, vol. 66, no. 7, pp. 1072–1076, 1984.

[36] M. Schutte, E. J. Dabezies, M. L. Zimny, and L. T. Happel, “Neural anatomy of the human anterior cruciate ligament,” *The Journal of Bone and Joint Surgery A*, vol. 69, no. 2, pp. 243–247, 1987.

[37] E. Wojtys et al., “Innervation of the human knee joint by substance-P fibers,” *The Journal of Arthroscopic and Related Surgery*, vol. 6, no. 4, pp. 254–263, 1990.

[38] M. Zimny, M. Onge, and D. Albright, “The use of agents which improve staining of fresh human fibrocartilage,” *Stain Technology*, vol. 62, no. 5, pp. 341–348, 1987.

[39] M. Zimny, M. Onge, and M. Schutte, “A modified gold chloride method for the demonstration of nerve endings in frozen sections,” *Stain Technology*, vol. 60, no. 5, pp. 305–306, 1985.

[40] M. Zimny and C. Wink, “Neuroreceptors in the tissues of the knee joint,” *Journal of Electromyography and Kinesiology*, vol. 1, no. 3, pp. 148–157, 1991.

[41] G. Paraskevas, “Human ligaments classification: a new proposal,” *Folia Morphologica*, vol. 70, no. 2, pp. 61–67, 2011.

[42] A. Balkowiec, K. Kukula, and P. Szulczyk, “Functional classification of afferent phrenic nerve fibres and diaphragmatic receptors in cats,” *Journal of Physiology*, vol. 483, no. 3, pp. 759–768, 1995.

[43] E. B. Kaplan, “Some aspects of functional anatomy of the human knee joint,” *Clinical Orthopedics*, vol. 23, pp. 18–29, 1961.