Topical Review

Friction behaviors in the metal cutting process: state of the art and future perspectives

Xiaoliang Liang¹,²,³, Zhanqiang Liu¹,²,*, Bing Wang¹,², Chunjin Wang³ and Chi Fai Cheung¹,²,∗

¹ Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, People’s Republic of China
² Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, People’s Republic of China
³ State Key Laboratory of Ultra-Precision Machining Technology, Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, People’s Republic of China

E-mail: melius@sdu.edu.cn and benny.cheung@polyu.edu.hk

Received 8 May 2022, revised 16 August 2022
Accepted for publication 27 October 2022
Published 24 November 2022

Abstract

Material removal in the cutting process is regarded as a friction system with multiple input and output variables. The complexity of the cutting friction system is caused by the extreme conditions existing on the tool–chip and tool–workpiece interfaces. The critical issue is significant to use knowledge of cutting friction behaviors to guide researchers and industrial manufacturing engineers in designing rational cutting processes to reduce tool wear and improve surface quality. This review focuses on the state of the art of research on friction behaviors in cutting procedures as well as future perspectives. First, the cutting friction phenomena under extreme conditions, such as high temperature, large strain/strain rates, sticking–sliding contact states, and diverse cutting conditions are analyzed. Second, the theoretical models of cutting friction behaviors and the application of simulation technology are discussed. Third, the factors that affect friction behaviors are analyzed, including material matching, cutting parameters, lubrication/cooling conditions, micro/nano surface textures, and tool coatings. Then, the consequences of the cutting friction phenomena, including tool wear patterns, tool life, chip formation, and the machined surface are analyzed. Finally, the research limitations and future work for cutting friction behaviors are discussed. This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.

Keywords: cutting process, friction behaviors, material removal process, contact condition

* Authors to whom any correspondence should be addressed.

Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
1. Introduction

Cutting processes play a central role in industrial fields, where more than 15% of all mechanical components are manufactured through cutting operations [1, 2]. As shown in figure 1, achieving high-efficiency machining on difficult-to-cut materials is directly related to the overall level of critical industrial sectors, such as aviation, aerospace, and automobiles [3, 4]. The critical distinction between cutting and other metal-forming processes is the fracture process of material separation into the workpiece and chip, where the contact interface is accompanied by intense friction resulting from shear, extrusion, and deformation [5]. During metal cutting, more than 20% of the total energy is used to overcome the friction at the tool–chip and tool–workpiece contact interfaces, and the cutting friction behaviors have essential influences on the cutting process [6, 7]. With the rapid development of manufacturing technology in the direction of ‘high precision, high efficiency, intelligence, compound, and green,’ the basic theory and application technology of cutting friction have advanced significantly.

From the perspective of tribology, friction behaviors in metal cutting are unique and challenging. As shown in figure 2, friction in cutting processes is distinct from other manufacturing processes. The material removal through the cutting process is regarded as the friction system with multiple input and output variables. In this system, the complexity stems from the extreme conditions, such as high temperature (>1000 °C) [8, 9], large strain (1–10) [10, 11], high strain rate (up to 10^6 s^{-1}) [12], the sticking–sliding contact mode, and diverse cutting conditions at the tool–chip and tool–workpiece interfaces [13]. As a result, friction behaviors depend highly on the cutting process [14]. As shown in figure 3, the cutting process involves complex thermo-mechanical loads caused by shear deformation and friction [15]. Furthermore, friction behaviors vary locally because the contact loads are concentrated in a limited region. The friction stress exceeds the shear flow stress of the workpiece, especially during the transition from a sliding state to a sticking state [16, 17]. In addition, friction behaviors are dynamic due to the interfacial chemical reaction, newly generated surface, and progressive tool wear [18]. Therefore, identifying the thermo-mechanical loads and contact boundary conditions is extremely important for controlling the cutting friction behaviors.

In the cutting process analysis, developing friction behavior models has been challenging. The descriptions of contact conditions based on Coulomb’s law friction coefficient are unrealistic. The friction coefficient of the cutting contact interface should not be taken as a constant state but rather as a cutting friction system with variables interacting with the material characteristics and thermo-mechanical loads [19]. Based on the complex friction interaction’s limited understanding, the cutting process is difficult to distinguish from the piecewise friction coefficient of the contact region, and the overall friction data are only obtained through limited experimental methods. Since the cutting process involves a variety of complex physical phenomena, it is difficult to establish a mathematical description of the friction characteristics using quantitative models [20]. Moreover, friction types can change under diverse cutting conditions, which are difficult to distinguish from the interface boundary conditions. To reduce cost, appropriate friction models, such as numerical and empirical models, are needed to optimize cutting processes [21]. Therefore, establishing a cutting friction model that considers multiple factors is necessary, especially for embedding into simulation applications.

Friction behaviors during the cutting process are affected by a variety of factors, including the material matching for the workpiece and cutting tool, the cooling medium and lubrication mode, the optimization of cutting parameters, the modification of the tool contact surface through micro/nano texture surface technology and tool coating technology [22–25]. These factors, directly and indirectly, affect the friction coefficient by changing the cutting friction behaviors and the study of a comprehensive relationship is urgently necessary. The critical problem is determining how to use theoretical knowledge to control friction behaviors in the high-efficiency cutting process.

Cutting friction behaviors inevitably occur, affecting tool wear, life, chip formation, and surface integrity. The harsh cutting conditions generate local thermo-mechanical gradients at the contact interface, resulting in changes to the thermophysical properties of tool materials [26]. As a result, tool wear occurs because of physical processes, chemical reactions, and thermo-mechanical phenomena. Moreover, tool life reduction leads to an increase in manufacturing costs. As shown in figure 4, tool wear changes the interface contact mode and increases the additional thermo-mechanical loads. The cutting friction at the tool–chip interface forms the secondary shear deformation zone, which directly impacts chip formation. The thermo-mechanical loads of friction intensification at the tool–workpiece interface have become a pivotal factor affecting surface integrity, resulting in gradient changes in the surface topography, microstructure, and mechanical properties [27, 28].
Although the cutting process has been studied extensively, a comprehensive understanding of friction behaviors is needed. Therefore, in this article, the state-of-the-art and future perspectives on friction behaviors in cutting processes are reviewed and analyzed. Figure 5 illustrates the framework of this review as follows. Section 2 analyzes the phenomena of cutting friction under extreme conditions, such as elevated temperature, large strain, high strain rate, the sticking–sliding contact mode, and diverse cutting conditions. In sections 3 and 4, the theoretical models of cutting friction behaviors and the application of simulation technology are reviewed. The factors that affect friction behaviors, including material matching, cutting parameters, lubrication/cooling environment, micro/nano surface texture, and tool coatings,
are analyzed in section 5. Section 6 discusses the consequences of friction behaviors, including tool wear, tool life, chip formation, and the machined surface. The conclusions are given in section 7, and the research limitations and directions for future work are described in section 8. This review contributes to the understanding of cutting friction behaviors and the development of high-quality cutting technology.

2. Friction behaviors under extreme contact conditions

2.1. Elevated cutting temperature

Friction behaviors are affected by heat generation during the cutting process. More than 90% of the mechanical and deformation energy is converted into heat flux, significantly increasing the cutting temperature. The process by which the cutting temperature affects the friction behaviors in the cutting of metals is complex. The cutting temperature depends on the generation and dissipation of cutting heat. As a result, the friction heat was generated at the contact interface, causing severe high-temperature friction behaviors. The regions involved the secondary shear region at the tool–chip interface and the third deformation region at the tool–workpiece interface [41]. From the perspective of internal factors, increased frictional heat led to increased cutting temperature. Among the external factors, the lubricants, coatings, and micro texturing could reduce friction and improve heat dissipation, reducing the adverse effects of the high cutting temperature on tools and machined surfaces. Moreover, increased cutting temperature caused rapid tool wear, worsening the friction conditions.

Understanding the friction behaviors requires precise measurement of the cutting temperature at the friction interface. Selecting reliable temperature measurement technology is challenging owing to the limitation of the cutting contact interface. Several researchers used infrared thermal imaging and thin-film thermocouples to create a customized gadget for high-resolution temperature measurement [8, 42]. In addition, simulation technology has been used to study the interface friction temperature. Figure 6 displays the cutting temperature distribution at the friction interface using experimental and simulation methods during the cutting process. These findings indicated that the maximum value of the cutting temperature (as much as 1000 °C) appeared at the tool–chip contact...
interface. The location of the high-temperature interface was sufficient to prove the importance of the cutting friction process. In addition, the flank wear length effect on the cutting temperature distribution was studied, indicating that the additional cutting friction enhanced the temperature at the tool–workpiece interface with the progress of tool wear [35].

2.2. Large strain, high strain rate, and extreme deformation

The material removal process generally involves severe plastic deformation, accompanied by the shear yield behavior under a large strain and high strain rate. Strain and strain rate research has mainly focused on numerical calculation and simulation model analysis based on the material constitutive law. Several studies were also supplemented by advanced observation experiments, such as in-situ particle imaging velocimetry and photo-elastic experiments [10, 43]. Figure 7 presents the strain and strain rate distribution in the cutting friction interface using experimental and simulation methods. The strain/strain rate distribution in the cutting region is complex, especially with a strain up to 10 and a strain rate close to 5×10^4 s$^{-1}$. Moreover, large local plastic strain and high strain rate caused by increased friction contact stress were quantitatively characterized in terms of the deformation behaviors of the superficial microstructure by image-based processing [44].

2.3. Sticking–sliding contact state

Friction behavior analysis involves a critical understanding of the cutting contact mode. Because plastic volumetric deformation altered the development of the contact condition, the cutting friction could not be regarded as a pure surface effect [46]. Moreover, the interface friction in the cutting process was not a simple sliding friction process but involved the complex sticking contact state [47]. The balance between sticking and sliding forms could change with the dynamic cutting friction conditions. As illustrated in figure 8, the contact condition of the tool–chip interface is altered with the increase in distance from the cutting edge, which is divided into three zones: sticking, adhesion, and sliding [48]. The effects of pure sliding friction were challenging to identify while simultaneously considering the ‘viscous’ effect in the various contact states. In addition, the existence of two different friction contact states on the tool wear surface was confirmed, and the sticking and sliding regions were separated by a clear boundary [49]. Several researchers also measured the velocity field of the chip flow at the cutting contact region to determine the nature of the stagnant material at the front of the cutting edge [29]. Investigating such a phenomenon further enhanced the understanding of the sticking–sliding contact condition [50].

The cutting process involved three friction locations: the tool–chip, cutting–edge arc, and tool–workpiece interfaces. Because the friction region was extremely small, the contact states at different locations on the cutting tool were diverse with a mixture of sticking and sliding states. The sticking, sliding, and stagnant contact regions around the cutting tool edge are shown in figure 9 [51]. The cutting edge is not sharp, which
would plough the local machined surface rather than remove any material. As a result, friction behaviors are generated by the arc extrusion of the cutting edge and material deformation. In addition, the stress distribution of the contact interface further proved that distinct types of friction behaviors manifested themselves on the tool rake face, edge position, and tool flank face [52].

2.4. Diverse cutting conditions

Advanced manufacturing technology is developing in the direction of ultra-high speed, high flexibility, ultra-precision, and green processing. The diverse cutting processes mainly include ultra-high speed machining, heavy-duty cutting, laser-assisted machining, precision, and ultra-precision cutting [53, 54]. As shown in figure 10, the cutting mechanism of ultra-high speed machining also undergoes substantial alterations concerning traditional cutting when the cutting speed exceeds 1000 m min\(^{-1}\). Ultra-high speed machining involves severe thermo-mechanical loads and material deformation, further complicating the cutting friction behaviors [55]. Under extreme heavy-duty cutting conditions, severe tool wear is induced by impact damage and interface friction [26]. Moreover, the friction issues in precision and ultra-precision manufacturing are especially pronounced because of the size effect [40, 56]. As the depth of cut approaches the tool edge radius, the cutting-dominant pattern gradually transforms into cutting shear, ploughing, and adhesive friction [57, 58]. The material plastic flow at the tool/workpiece interface elucidates the shear-dominated chip formation in conventional cutting and extrusion-dominated piled-up material in micro/nano cutting. The ploughing contact area near the cutting edge leads to retardation of material deformation, which is also accompanied by severe friction behaviors [59]. The tool wear mechanism is also gradually transformed from the rake face of tool–chip interface friction to the flank face of tool–workpiece.
interface friction. In addition, atomic and close-to-atomic scale cutting is characterized by the occurrence of shear stress-driven dislocation motion and elastic deformation of the machined surface [60, 61]. Although research on the wear mechanism during atomic sliding remains insufficient, its frictional behavior correlates with the actual atomic contact area during cutting [62]. Simultaneously, the cutting friction behaviors are also affected by a wide range of possible external conditions. When the tool coatings, micro/nano textures, and lubrication/cooling are introduced at the contact interface, the friction mechanics inevitably increase in complexity.

3. Theoretical models of friction behavior

Theoretical models are necessary to analyze the cutting friction behaviors and gain a better knowledge of the cutting process because of many potential influencing factors. Various friction models have been proposed by researchers to analyze friction behaviors based on an in-depth understanding of the cutting contact state. Although these models are useful for forecasting cutting friction, none of them can be considered entirely adequate. Table 1 summarizes and discusses the critical research on friction models using tribometers and cutting experiments.

Several studies used the constant friction coefficient based on the Coulomb friction model. As shown in figure 11, the Merchant model and its improvement were used to estimate the friction coefficient [63]. This method aimed to determine the average friction coefficient of the tool rake face following the cutting force components. A modified method of calculating the friction coefficient was also proposed considering the ploughing force [64]. However, these methods only determined the overall friction coefficient, which cannot reflect the diversity of the friction conditions among the tool, chip, and workpiece. Furthermore, the improved model proposed replacing the cutting force components with the corresponding contact area and stress distribution. The final model used the stress ratio to calculate the average friction coefficient [65]. The dynamic friction coefficient model was further developed according to the stress components at the ploughing region [34]. Several researchers relied on only the geometric model during the cutting process to evaluate the friction coefficient. The analytical formula for the friction coefficient was derived considering the actual tool angle, edge radius, and tool wear state and resulted without the necessity for stress or cutting force measurements [66]. The maximum friction coefficient was also evaluated by considering the tool rake angle [67]. Moreover, the wave contact model, wave removal model, and chip formation model were also established to calculate the relevant friction coefficient according to the slip line theory [68].

The cutting friction conditions were distinct from simple sliding friction, which was not explained by the classic Coulomb model because of the high friction stress. A model was established considering Coulomb friction in the sliding region and constant shear friction in the sticking region along the entire tool–chip interface [69]. A modified friction model was further proposed, replacing the constant friction coefficient with the influential plastic strain variables. In several studies, the apparent friction coefficient composed of an adhesive and a mechanical friction coefficient was also considered, which was calculated with the limited shear stress and shear angle [70]. Moreover, the friction coefficient at the tool–chip
Table 1. Friction models by analysis of tribometers and cutting experiments.

References	Experimental conditions	Friction models	Remarks
Merchant [63]	Orthogonal turning	$\mu = \frac{F_s}{F_N} = \frac{F_s \sin \gamma + F_t \cos \gamma}{F_s \cos \gamma + F_t \sin \gamma}$	Only the overall friction coefficient was calculated by measuring cutting force components, but local friction behavior could not be reflected.
Abrecht [64]	Orthogonal turning 45 steel with round tool edge radius under various depths of cut	$\mu = \frac{(F_y - F_r) + (F_x - F_r) \tan \gamma}{(F_y - F_r) + (F_x - F_r) \tan \gamma}$	The consideration of ploughing force was added in the modified model.
Mackaw [65]	Separation tool method in tuning steels	$\mu = \frac{\tau_{BA}}{\tau_{AE}} = \frac{\tau}{\tau_{AE}}$	Replaced the cutting force with the actual contact area and stress distribution.
Chen et al [34]	Ultrasonic vibration-assisted turn Ti-6Al-4V with tungsten carbide tools	$\mu = A_0/P_a \left[\tau_{11} + \tau_{12} \cdot f(\tau_{11} H_1/\tau_{12} H_2) \right]$	Dynamic friction coefficient model considering stress distribution of ploughing region.
Du et al [66]	Orthogonal turning Ti-6Al-4V with the uncoated carbide tool	$\mu = \tan \left(\frac{1}{2} + \gamma + \alpha \cdot \arccos \left(1 - \frac{1}{2} \sin \alpha \right) \sin \alpha \right)$	Considering the actual tool angle, edge radius, and tool wear state without needing stress measurements.
Grzesik [67]	Turning steels with tungsten carbide tools	$\mu_{\max} = \frac{1}{2} (1.3 \pm \gamma_0)$	Maximum friction coefficient model considering the tool rake angle.
Kopalinsky and Oxley [68]	Orthogonal turning 5083-H32 aluminum magnesium alloy	$\mu = \frac{1 - 2 \sin \beta + (1 - f^2)^{1/2}}{1 - 2 \sin \beta + (1 - f^2)^{1/2}} \sin \alpha + f \cos \alpha$	Explaining the mechanics of sliding friction according to slip line theory.
Filice et al [69]	Orthogonal turning AISI 1045 steel with an uncoated carbide tool	$\tau = mk$	Considering constant shear friction in the sticking region and Coulomb friction in the sliding region.
Grzesik [70]	Turning carbon steel and stainless steel with uncoated carbides	$\mu = \mu_a + \mu_m = \frac{2}{\pi} + \arctan \left(\frac{2}{\pi} - \phi + \gamma \right)$	Considering the apparent friction coefficient composed of adhesive and mechanical friction coefficients.
Tabor [71]	Orthogonal turning	$\mu \propto \frac{1}{r}$	Considering the relationship between the friction coefficient and normal stress.
Ozlu et al [72]	Turning AISI 1050 and Ti-6Al-4V with CBN tools	$\mu_s = \tan \left(\lambda_s \right) = \frac{2}{\pi} \left[1 + \phi \left(1 - \left(\frac{1}{\pi} \right)^{1/1} \right) \right]$	Apparent friction considering the sticking phenomenon on the rake face.
Zorev [73]	Orthogonal turning	$\tau = \left\{ \begin{array}{ll} \mu \sigma_a & \tau < \tau_{\max} \\ \tau_{\max} & \tau \geq \tau_{\max} \end{array} \right.$	Dual-contact theory is based on normal and shear stress variations defined as sticking and sliding regions.
Calamaz et al [74]	Orthogonal turning Ti-6Al-4V with carbide tools	$\tau = \left\{ \begin{array}{ll} \mu \sigma_a & \mu \sigma_a = m \sigma_0 / \sqrt{3} \\ \mu \sigma_a > m \sigma_0 / \sqrt{3} & \mu \sigma_a \geq m \sigma_0 / \sqrt{3} \end{array} \right.$	Considering the Coulomb limited Tresca law at the tool–chip interface.
Shirakashi and Usui [75]	Separation tool method in tuning brass	$\tau = k \left(1 - e^{-m \sigma / k} \right)$	Considering the exponential relationship among shear stress, normal stress and friction coefficient.
Childs [76]	Separation tool method in tuning steels	$\tau_f = \frac{\sigma}{\gamma} \left(1 - e^{-m \sigma \sqrt{3} / \gamma} \right)$	Considering limited friction stress and equivalent effective flow stress.
Bahi et al [77]	Turning 42CrMo4 steel under various temperatures	$\mu_s = \bar{\mu} / \left\{ \left(1 - a / L_a \right)^{\zeta} \left[1 + \zeta \right] \frac{\rho_{\sigma}^{\zeta}}{\zeta} + \left(1 - a / L_a \right) \right\}$	Hybrid analytical approach identifying the sticking zone and associated friction parameters.

(Continued.)
flow stress according to the plastic flow criterion, the friction tool–chip interface. Because the shear stress did not exceed the contact based on normal and shear stress variations along the established a dual-contact zone theory defining sticking and sliding interface was also established based on the interfacial sticking theory [71, 72]. As shown in figure 12, Zorev [73] established a dual-contact zone theory defining sticking and sliding contact based on normal and shear stress variations along the tool–chip interface. Because the shear stress did not exceed the flow stress according to the plastic flow criterion, the friction stress in the sticking region was a function of the equivalent flow stress which decreased linearly to zero based on the Coulomb law in the sliding region. The friction coefficient of the tool–chip interface was also calculated by the Coulomb limited Tresca law [74]. Another research established an exponential relationship between the friction coefficient, shear

References	Experimental conditions	Friction models	Remarks
Zhang et al [78]	Orthogonal turning AISI 1050 steel with TiAlN coating tool	$\mu(x) = \begin{cases} \mu_{a,c} \sigma_{d,2} & (0 \leq x \leq l_p) \\ \mu_{a,2} \sigma_{d,2} & (l_p \leq x \leq L) \end{cases}$	Contact normal stress and relative slipping rate are based on the sticking friction theory.
Zhou [79]	Orthogonal turning 42CrMo4 steel with uncoated carbide tools	$\mu = \frac{C}{\mu_{c} + \mu_{s} / (1 - \frac{l_p}{L})^{p_{c}+1}}$	Considering the thickness of the material transport layer and the nonlinear increase of chip flow velocity.
Moufki and Molinari [80]	Turning 42CrMo4 steel under various cutting parameters	$\mu = \mu_{0} \left(1 - \left(\frac{T}{T_{r}}\right)^{d}\right)$	Temperature-dependent friction coefficient model as a function of the average temperature of the rake face.
Klocke et al [81]	Vertical broaching direct aged alloy 718 with uncoated carbide H13A	$\mu = \begin{cases} \mu_{0} & T < T_{0} \\ \mu_{0} \left(1 - \left(\frac{T_{r}}{T_{r}}\right)^{d}\right) & T \geq T_{0} \end{cases}$	Temperature-dependent friction model taking into account the softening effect.
Zemzemi et al [82]	Open tribo-system measurement of AISI 4142 steel with TiN coated carbide pin	$\mu = A(V_{s})^{-B}$	Apparent friction coefficient considering sliding velocity.
Outeiro et al [83]	Orthogonal turning OFHC copper	$\mu = C_{l} + \frac{C_{l} V_{k}}{1 + [(V_{k} - C_{l})/C_{l}]^{p_{l}}}$	Apparent friction coefficient considering sliding velocity.
Abouridouane et al [84]	Turning AISI 1045 steel with an uncoated carbide tool	$\mu = C_{1} \cdot \exp(-\frac{1}{C_{1}}) + C_{2} \cdot \exp\left(-\frac{\alpha}{C_{2}}\right)$	Apparent friction coefficient as the function of cutting speed and uncut chip thickness.
Chen et al [85]	Orthogonal turning Ti-6Al-4V with an uncoated carbide tool	$\mu = C_{1} \cdot 3.3V^{-0.474} \times 0.04f^{-0.0435} \times 0.04d^{-0.4034}$	Regression data considered cutting speed, feed rate, and depth of cut.
Hao et al [88]	Turning cupronickel B10 with uncoated cemented carbide YG6	$\mu = C_{1} \left(1 - [T - T_{C}]/(T_{m} - T_{C})\right)^{C_{1}} e^{(\alpha)} \times \left[C_{3} - C_{4} \ln(V + C_{5})\right]$	Considering temperature, normal loads and cutting speeds simultaneously.
Peng et al [89]	Vertical broaching steel AISI 1045 and direct aged alloy 718 with uncoated carbide tools	$\mu = C_{1} \cdot V^{C_{1}} \times T^{C_{1}} \times \sigma^{C_{1}}$	Apparent friction coefficient based on relative sliding velocity, contact pressure and contact temperature.

Table 1. (Continued.)

Figure 11. Cutting force components, (a) Merchant shear model, (b) ploughing force at cutting edge. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Arch. Civ. Mech. Eng [34], © 2021.
stress, and normal stress [75]. These relationships were further modified using the limited friction stress and equivalent effective flow stress [76]. Several hybrid analytical approaches were proposed to identify the sticking region. As illustrated in figure 13, the empirical models of the local friction coefficient were established between the normal stress and relative slipping rate based on sticking theory, which also considered the thickness of the stagnant and shear flow layers in the transition regions [77–79].

In several studies, the influence of the cutting temperature in the friction model was considered. A temperature-dependent friction coefficient model was established in which the friction coefficient was regarded as a function of the rake face’s average cutting temperature [80]. The modified model further considered the softening effect resulting from the increase in cutting temperature [81]. The statistical fitting method was also adopted to establish the change law of the friction coefficient with various cutting parameters. In other research, the relationship between the apparent friction coefficient and sliding velocity was established [82, 83]. The evident friction coefficient as a function of cutting speed, depth of cut, and feed rate was also predicted based on cutting experiments and the classic Oxley parallel shear band model [84, 85]. Several researchers have also developed an empirical friction coefficient model considering the effects of cutting parameters and lubrication conditions [86, 87]. Moreover, a friction coefficient model was established considering cutting temperature, normal loads, and cutting speeds simultaneously during the turning process [88]. The apparent friction coefficient based on the relative sliding velocity, contact pressure, and contact temperature was also determined through the tribometer test [89].
4. Application of simulation for friction characteristics

Finite element simulation has been widely used to investigate cutting processes. Compared with traditional cutting experiments, simulation technology can save time, reduce material consumption, and obtain detailed process feature information that is difficult or impossible to measure through cutting experiments. The reliability of finite element simulation depends on the accuracy of the input parameters, and a suitable friction model is crucial for obtaining reliable results that are close to the actual cutting process. Therefore, researchers have used various friction models in the finite element simulation of the cutting process, which mainly included the constant Coulomb friction model, constant shear friction model, sticking–sliding friction model, temperature-dependent friction model and speed-dependent friction model. Table 2 lists a summary of critical research about the use of simulation for friction characteristics.

The friction behaviors in the simulation method significantly impact the cutting process. As shown in figure 14, the variations of the multiphysics distribution (cutting temperature, strain, and strain rate), cutting forces and chip formation are all affected by the input parameters of the friction model. The approach of altering the friction coefficient at the tool–chip interface was proposed to investigate the built-up edge, where a sudden increase in the local friction coefficient led to an adhesion region [36]. Similarly, the formation mechanism of a dead metal zone (DMZ) was also investigated, indicating that the size of the DMZ increased with an increase in the friction coefficient [90]. Moreover, the cutting process was simulated according to a three-phase friction model to understand the machining of Al/SiCp composites, which indicated that two-body sliding, three-body rolling, and matrix adhesion were critical factors of frictional contact interfaces [91]. Several studies also emphasized such aspects as fragment morphology and the deformation of friction conditions on chip formation during the cutting process [92, 93]. In addition, the friction law at the tool–chip interface was modified, indicating that the contact length, shear angle, cutting temperature, and cutting forces depended on the friction coefficient [94].

The various friction models had different simulation results, especially the variable friction coefficient, which reduced the error between the simulation and experimental results [95]. Figure 15 shows the simulation results of various friction models concerning the Coulomb friction model. The different friction conditions were defined at the tool–chip interface with the shear friction model and the tool–workpiece interface with the Coulomb friction model. The cutting forces and chip morphology were predicted accurately [96]. Moreover, the simulation process variables were also closest to the experimental results when variable shear friction was used in the sticking region and variable friction coefficient in the sliding region over the entire tool–chip interface [12, 97]. Several studies focused on improving the simulation accuracy using the sticking–sliding friction model. The predicted results for tool wear profiles, the relative velocity field, the cutting temperature, and the cutting forces were all close to the experiment values [29, 98]. In addition, the simulation accuracy could also be improved by incorporating the cutting process parameter variables in the friction models, including the velocity-dependent friction coefficient [30, 99], the normal force-dependent friction coefficient, the temperature-dependent friction coefficient, and various combinations of dependencies [100], which eliminated the proportional relationship between the frictional stress and normal stress allowing for more accurate prediction results [101]. Furthermore, the pressure-dependent shear friction model provided more consistent results concerning the velocity-dependent friction model for precise prediction of chip formation, contact length, and mechanical forces [102].

5. Factors affecting friction behaviors

5.1. Matching the workpiece and tool materials

Matching the workpiece and tool materials affects friction behaviors at the contact interfaces. As illustrated in figure 16, different friction behaviors were investigated by matching AISI 1046 ferrite pearlite, Ti-6Al-4V, Inconel 718, CFRP, AISI 4142 martensitic and tool materials, indicating that the apparent friction coefficient of different materials varied widely from 0.1 to 0.7 [103]. For low cutting speeds, the differences were more significant. Moreover, Inconel 718 and Ti-6Al-4V resulted in a lower friction coefficient than any steel under a dry environment [104]. The ferrite-pearlitic and austenitic steels had a more significant friction coefficient than martensitic steels. The friction coefficients of all types of steels were approximately 0.2 at a high cutting speed of 300 m min$^{-1}$ [105]. The friction behaviors during the machining of cast aluminum were also investigated with high-speed steel (HSS), cemented carbide and polycrystalline diamond (PCD) tools. The HSS and cemented carbide tools generated a high friction coefficient, whereas PCD tools appeared to have self-lubricating contacts, thereby reducing the friction coefficient [106]. The friction coefficient of PCD tools was close to a constant value compared with cemented carbide tools [107].

The cutting friction behaviors varied owing to the different physical-mechanical properties and the material microstructure of the workpiece. The friction coefficients in the machining processes of three types of high-strength compacted graphite cast iron were investigated, and the friction coefficient was inversely proportional to the hardness of the workpiece [108]. The increase in graphite refinement and spheroidization also reduced the friction coefficient. Moreover, the friction behavior depended on the microstructure of the workpiece, and the friction coefficient of Ti-6Al-4V was smaller than that of Ti-555 [109].

5.2. Cutting parameters and tool wear

The friction conditions during the cutting process are affected by cutting speed, feed rate, tool angle, and tool wear state. As shown in figure 17, the tool rake angle alters the friction conditions by controlling the contact area and the plastic
References	Models	Conditions	Remarks
Atlati et al [36]	Modified Coulomb friction model	Changing local contact conditions by modifying the friction coefficient.	The sudden increase in local friction coefficient promoted built-up edge.
Wan et al [90]	Sticking–sliding friction model	Considering the effects of friction coefficient on DMZ.	The size of DMZ increased with the friction coefficient increasing.
Duan et al [91]	Coulomb friction model	Improving the Coulomb friction model based on a three-phase friction mechanism.	Two-body sliding, three-body rolling, and matrix adhesion were critical reasons for the frictional contact interface.
Menezes et al [92]	Coulomb friction model	Considering various friction coefficient constant.	The number of rock fragments decreased with the friction coefficient increasing.
Leopold and Wohlgemuth [93]	Coulomb friction model	Considering various friction coefficient constant.	Emphasized the effect of friction coefficient on chip formation.
Shi et al [94]	Modified Coulomb friction model	Considering critical friction stress.	Reduced errors of prediction and experiment in contact length, shear angle, cutting temperature and forces.
Arrazola et al [95]	Variable friction coefficient model	Considering variable friction coefficient at different contact regions.	Reduced the errors between experimental and simulated results by close to 10%.
Oliaei et al [96]	Coulomb friction model and shear friction model	Considering the tool–chip interface with shear friction model and tool–workpiece interface with Coulomb friction model.	Cutting forces and chip morphology were predicted accurately.
Özel [12]	Variable shear friction	Considering variable shear friction in the sticking region and variable friction coefficient in the sliding region.	Simulated process variables were closest to the experimental results.
Arrazola and Özel [97]	Coulomb friction model and sticking–sliding friction model	Comparing the effects of the friction model on forces, stresses and temperatures.	The major shortcoming of the sticking–sliding friction model was limiting shear stress value.
Liu et al [29]	Coulomb friction model and sticking–sliding friction model	Comparing various friction models on the velocity field.	The velocity field of the friction interface was close to the experimental results of the improved sticking–sliding friction model. Sticking–sliding friction model outperformed Coulomb friction and shear friction in predicting tool wear profiles by affecting the relative velocity, temperature and pressure. The error of cutting temperature was reduced compared to the constant friction coefficient. The error of residual stress was reduced compared to the constant friction coefficient. Eliminated the proportional relationship between frictional and normal stress allowing for accurate heat sources.
Lorentzon et al [98]	Shear friction model and sticking–sliding friction model	Comparing the effects of the friction model on tool wear.	
Mane et al [30]	Velocity-dependent friction model	Considering the effect of relative cutting speed.	
Denguir et al [99]	Velocity-dependent friction model	Considering the effect of relative cutting speed.	
Schulze et al [100]	Variable friction coefficient model	Considering mechanical and thermal loads in the friction properties of components.	
Zanger et al [101]	Friction coefficient dependent variable parameters	Comparing different friction coefficient models on cutting temperature.	Cutting temperature prediction was enhanced by the combination model of normal force and relative velocity. Pressure-dependent shear friction model and sticking–sliding friction model provided more consistent results with experimental results.
Malakizadi et al [102]	Shear friction model, sticking–sliding friction model, and friction-dependent variable cutting parameters	Comparing different friction models on prediction accuracy of chip formation, contact length, and mechanical forces.	
Figure 14. Simulation of friction behaviors. (a) built-up edge. Reprinted from [36], Copyright (2015), with permission from Elsevier. (b) Three-phase friction of Al/SiCp composites. Reprinted from [91], Copyright (2018), with permission from Elsevier. (c) Rock fragment morphology. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature, Int. J. Adv. Manuf. Tech [92], © 2017. (d) Chip morphology. Reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature [93], © 2010.

deformation at the tool–chip interface. In one study, the apparent friction coefficient increased by approximately 42% when the rake angle changed from 0 to 20° [110]. Similar findings were obtained in which the interfacial friction force with a rake angle of 0° was less than that with a rake angle of 20° [109]. In addition, the critical negative rake angle was associated with the adhesive friction coefficient at the tool–workpiece interface [111]. The average friction coefficient increased and remained constant as the critical negative rake angle increased. These results are related to the change in the plastic flow characteristics.

The relative sliding velocity and contact pressure directly affect the friction state as described by the Striebeck curve. These influential parameters are embodied in the change of the relevant cutting parameters. As illustrated in figure 18, the apparent friction coefficient decreases with increased cutting speed. The friction coefficient tended to be 0.2–0.3 under high speed, and the chip bottoms generated a thin layer of softened metal to reduce friction [72, 112]. The underlying mechanism also might be that the elevated cutting speed increased the cutting temperature, which reduced the friction inside the microstructure [66]. The variation of the friction...
Figure 16. Friction coefficient vs. material matching, (a) AISI 1046 Ferrite pearlite, Ti6Al4V, Inconel 718, CFRP, AISI 4142 martensitic. Reprinted from [103], Copyright (2013), with permission from Elsevier. (b) Ti-6Al-4V and Ti-555. Reprinted from [109], Copyright (2013), with permission from Elsevier.

Figure 17. Friction coefficient vs. tool rake angle. [110] 2022, reprinted by permission of the publisher (Taylor & Francis Ltd, www.tandfonline.com).

Figure 18. Friction coefficient vs. relative velocity, (a) friction coefficient vs. cutting speed. Reprinted from [72]. Copyright (2009), with permission from Elsevier. (b) Friction coefficient as the function of sliding velocity. Reprinted from [113], Copyright (2021), with permission from Elsevier.
coefficient decreased from 0.72 to 0.35 with an increase in the sliding velocity, which resulted from the molten material at the contact interface forming a semi-solid friction state [113]. Moreover, the friction coefficient of the rake face also decreased sharply compared with that of the flank face and increased cutting speed. Such was related to the sufficient friction heat at the rake face [114].

The impact of the cutting parameters on the changing friction conditions has drawn the attention of researchers. As shown in figure 19, the cutting thickness changes the friction behaviors by affecting the specific gravity of the sticking and sliding friction, and the friction coefficient decreases at higher thicknesses [115]. The friction coefficient variations with the feed rate, tool nose radius, and depth of cut were investigated [116]. The friction coefficient increased with a larger nose radius and higher feed rates while decreasing with the increase in the depth of cut. Many researchers have also investigated the progress of tool wear under friction conditions. As shown in figure 20, the friction coefficient was divided into three characteristic cycles, increasing as the tool wear progressed [117]. The entire cycle of the friction coefficient was divided into a low friction state, plough friction state and a coating failure state during machining with coated tools [118]. Conversely, the friction coefficient decreased with an increase in tool wear, which could be related to thermal effects caused by friction behaviors [119].

5.3. Lubrication/cooling conditions

Since the application of cutting fluid is applied to avoid direct friction during solid contact, thereby reducing the friction coefficient during the cutting process [120]. Recently, high-pressure cooling (HPC) assisted machining technology has emerged for difficult-to-cut materials, improving the cutting fluid’s penetration ability into the cutting region and enhancing the lubrication effect [121]. Several studies have indicated that an HPC strategy reduced friction forces, and the friction coefficient also decreased with the increase in fluid pressure [23, 122]. However, a large amount of cutting fluid harms worker health, pollutes the environment, and has high disposal costs.
Several novel lubrication/cooling methods for sustainable machining technologies have been developed to eliminate the adverse effects associated with the cutting fluid. Minimum quantity lubrication (MQL) technology has been used widely. As shown in figure 21, the MQL method reduced the friction coefficient compared with dry cutting because the tool–chip contact length was shortened [123]. Comparative experiments for different cooling conditions (dry, MQL, and high-pressure air) were conducted, indicating that MQL was more beneficial for friction reduction at lower cutting speeds [124, 125]. However, the friction behaviors were highly dependent on the lubrication types. The application of MQL + EP/AW resulted in the formation of a thin friction film on the tool surface, reducing the friction coefficient of the rake face by 6.2%–15.4% compared with only MQL [126]. Several studies also found that using MQL with various lubricating oils resulted in different reduction effects [127]. The vegetable oils with various physicochemical properties were also analyzed, and palm oil had the lowest friction coefficient with a reduction of 17.76%–78% [128].

In addition, the combination of MQL and nanofluids further improved the load-bearing capacity of the lubricating film and reduced the friction coefficient. As shown in figure 22, the nanoparticles in the cutting fluid generate a ball-bearing effect between the contact surfaces. The lubricating ability of the mixed fluid was significantly improved when graphene oxide nanoparticles were added, which reduced the cutting friction force [129]. As illustrated in figure 23, the friction coefficient was further reduced by 51.7% when 1.5 wt.% nanographene was added to the base oil when drilling AISI 321 stainless steel as compared with only MQL [130]. In several studies, the effects of various nano-additives on lubrication were compared. The calcium fluoride (CaF₂) and molybdenum disulfide (MoS₂) solid lubricants were mixed to prepare the hybrid cutting nanofluids HN-GCF-0.3M, which reduced the friction coefficient by 11% [131]. The results of several studies also indicated that the friction film formed by Al₂O₃ nanofluids reduced the sliding friction coefficient compared with Ag nanofluids, and the mixing of multi-walled carbon nanotubes with Al₂O₃ nanoparticles further enhanced the friction reduction effects [132]. Moreover, graphene nanosheets (GPL) used as an additive reduced the friction coefficient under the electrostatic MQL technique. This was associated with the enhancement of the penetration and deposition of GPL droplets at the interfacial friction area [133].

Many scholars have provided quantitative data on the friction coefficient under cryogenic cooling conditions. Cryogenic liquid nitrogen jet cooling suppresses strong adhesion at the tool–chip interface and reduces the friction coefficient [134, 135]. As shown in figure 24, cryogenic liquid nitrogen cooling during turning Ti-6Al-4V could reduce the friction coefficient compared with dry cutting [136]. Conversely, cryogenic cooling did not diminish but increased the friction coefficient in some instances, and cryogenic cooling decreased the thermal softening of the material interface and increased the friction force [137]. Several studies also provided new lubrication
methods. When water vapor as a high-speed jet entered the cutting region to form the boundary lubrication layer, it inhibited the adhesion between the tool and chip, effectively reducing the average friction coefficient [138]. The friction coefficients under cold air cooling were 44.8% and 11.3% lower in turning stainless steel than in dry and MQL conditions, respectively [139]. Moreover, the water vapor with air cooling lubrication further reduced the friction coefficient of the tool–chip interface during the machining of Inconel 718 in contrast to dry cutting [37].

Solid lubricants are also attractive in dry cutting conditions. These lubricants commonly have a layered structure for application at the contact interface and improved friction properties. The friction coefficient of the tool–chip interface was reduced when the tools were embedded with the solid lubricant MoS$_2$ when compared with conventional tools [140]. This phenomenon is related to reducing contact length owing to self-lubricating film formation. As shown in figure 25, the self-lubrication in ceramic tools could provide a new solution to improve anti-friction properties by forming a lubrication film. The composition of the ceramic tools was optimized, where the prepared Al$_2$O$_3$/Ti(C,N)/CaF$_2$ self-lubricating ceramic tool effectively reduced the friction coefficient of the contact interface and improved the cutting performance [141]. Moreover, Al$_2$O$_3$ ceramic tools with differing TiB$_2$ contents were prepared using the hot press method, indicating that the friction coefficient of Al$_2$O$_3$/TiB$_2$ ceramic tools decreased during the dry turning of hardened steels [142]. Al$_2$O$_3$/TiC/CaF$_2$ self-lubricating tools using solid lubricant technology were also developed [143]. Several researchers reported that the functional graded self-lubricating ceramic tools had great potential for composition optimization to obtain the desired tool properties [144]. WC–TiC–Ni$_3$Al–CaF$_2$ graded self-lubricating tools appeared to have a lower friction coefficient than uniform cutting tools [145].
5.4. Micro/nano texture on the tool surface

Surface texturing on the cutting tools is a viable solution to change friction behaviors during cutting. The fabrication of micro/nano textures on the tool rake and flank faces can improve the cutting performance by reducing the contact area, trapping wear debris, reducing material adhesion, and promoting lubrication at the cutting friction interface [31, 146]. Figure 26 shows the various surface textures of the cutting tools in the application of turning, drilling, and milling processes. The textured tools reduce the friction coefficient by 14% compared with non-textured tools in orthogonal turning [147]. The milling tools with a regular array of micro-grooves improve the tool–chip interface’s tribological properties, reducing the friction coefficient and material adhesion [148]. Moreover, the micro-textured circular dimples forming on the edge side of the drilling tools reduce the friction coefficient of the contact surface by 14.29% during the drilling of Ti-6Al-4V [149].

In addition, the effectiveness of micro/nano textures on the tool surface strongly depends on the texture geometry. As shown in figure 27, four types of micro textures were fabricated on the diamond tool rake face, including straight groove arrays, concentric circles, annular sequences, and grid textures, indicating that the friction coefficients of the micro-textured tools were reduced, except for the concentric circle texture [150]. The symmetrical tapered micro groove texture showed more obvious advantages in reducing the friction coefficient at the tool–chip interface than the parallel micro grooves [151]. Xing et al [152] also compared the tool performances of different surface textures, indicating that the effect of friction reduction of the wavy texture was better than that of the linear texture perpendicular or parallel to the cutting edges. Jiang et al [153] indicated that the square pits of micro-texture had a better friction reduction effect than grooves and rectangular pits during the turning of titanium alloys with PCD tools. In addition, the friction reduction effect of the wire texture was better than the hexagonal texture under a high load,
while the opposite result was obtained with a load greater than 15 N [154].

The texture orientation also had critical effects on friction behaviors. The micro-grooves on the tool surface were fabricated with different orientations (parallel, perpendicular, or inclined) relative to the cutting edge. Using textured cutting tools reduced the friction coefficient and adhesion area. The parallel directional texture achieved the best friction reduction [148, 155]. Conversely, Gajrani et al. [156] found that the friction reduction of vertical micro-texture to cutting edges was better than that of parallel micro-textured tools. In other studies, the texture density was explored for reducing the friction coefficient, and the tool performance was improved as the density of the micro pits or grooves increased [157, 158]. As shown in figure 28, the designed isotropic areal texture was more effective in reducing friction than the discrete linear texture [159]. The nano-scale texture on the rake face was more effective than the micro-scale texture in reducing friction and adhesion [160]. Moreover, the correct placement of the texture relative to the cutting edge determined the cutting performance, and placing the texture 100 µm from the cutting edge to reduce friction was the most effective [161].

The hybrid texture was also effective in reducing the friction coefficient. As illustrated in figure 29, the friction coefficient of a hybrid textured tool with the combination of circular dimpled holes and linear grooves was smaller than that of a single textured tool [162, 163]. The friction coefficient of the hybrid textured tool was approximately 16% lower than that of the conventional tool. Such results indicated that the hybrid texture facilitated the formation of a complete lubricating film at the tool–chip interface [164]. Moreover, the friction performance of the hybrid textured tool was better than those of variable density texture and variable shape texture [165].

The synergistic mechanism combining the surface texture and lubrication strategy further improved friction behaviors. As shown in figure 30, applying a micro surface texture resulted in better infiltration of the cutting fluid at the tool–chip interface, which fortified the lubrication film and increased the cooling effectiveness [166]. As shown in figure 31, MQL combined with micro-textured tools could improve the anti-wear performance and the oil film load carrying capacity, further reducing the friction coefficient. The friction reduction of the micro-texture tool with sufficient lubrication was more significant than that of one with insufficient lubrication [167]. Adhesive wear and the friction coefficient were reduced at the tool–chip interface when a lubrication pad was formed with interconnected macro channels and micro-texture [168]. Moreover, the friction coefficients were reduced by 11.5% and 10.9% when applied to the textured surface with composite lyophilic/lyophobic wettability compared to a conventional tool [169].

Several researchers combined micro surface textures with the solid lubrication strategy to improve tool performance during dry cutting. As shown in figure 32, the chip flow over the MoS2-coated micro-textured tools and the solid lubricant releases them, forming a tribofilm with low shear strength. The contact length and friction coefficient were reduced at the tool–chip interface [156]. Moreover, the hybrid textured tool with CaF2 solid lubricant was fabricated and presented lower friction reduction during the machining of 4340 hardened steel [170]. In addition, combining a WS2/Zr soft coating and nano texture on the tool surface further reduced the friction coefficient and improved the cutting performance [171].

5.5. Tool coatings

Various coatings are frequently deposited on cutting tools in manufacturing due to their superior wear resistance. The tool coatings prevent direct contact between the workpiece and tool substrate, making friction behaviors different from uncoated tools [172]. Research on tool coatings has mainly focused on chemical components, the preparation process and structure design. Physical vapor deposition (PVD) and chemical vapor deposition (CVD) coating techniques are widely applied to improve tool performance.
Several studies evaluated the effects of tool coatings on the interfacial friction coefficient using tribometers and cutting experiments. The tribological response originated from the substrate/coated system interaction, where the coatings controlled the contact length and reduced friction [173]. As shown in figure 33, tool coatings reduced the friction coefficient during the sliding process [174]. The application of TiAlCrN coating reduced the friction coefficient by 10%–16% under different cutting speeds during the dry turning of AISI 1045 [175]. Bar-Hen and Etsion [176] also investigated the turning performance of TiAlN coatings with various thicknesses, indicating that the optimal coating thickness of 3.5 µm maximized the wear resistance. Furthermore, friction behaviors were significantly influenced by the tool coatings’ surface integrity. The smooth surface of Al2O3 coating reduced the sliding friction coefficient relative to the rough surface [177]. Chang et al [178] also evaluated TiAlN coated tools with various surface integrities using micro-blasting, indicating that coatings with low surface roughness, medium surface hardness, and compressive residual stresses effectively reduced the friction coefficient.

The properties of tool coatings are primarily determined by their chemical compositions. As shown in figure 34, the different friction behaviors of AlCrN and AlTiN coatings mainly resulted from the other debris removal behaviors [179]. The co-doping of carbon (C) and boron (B) improved the friction resistance for AlTiN coatings compared with doping alone, so that AlTiBCN > AlTiCN > AlTiBN > AlTiN [180]. AlTiN and AlCrN coatings with high Al content exhibited better friction resistance than TiN and TiAlN coatings [181]. The friction coefficient of AlCrN coating against Ti-6Al-4V under low load conditions was lower than that of AlTiN coating, while the friction properties were similar under high load conditions [182]. In addition, the coating peeling was suppressed by...
designing a Si-containing gradient structure, indicating that an AlCrSiN–C coating with a smoother Si content gradient had the lowest friction coefficient [25].

Since the multi-layer coating structure helps improve tool wear resistance, tool coating technology has evolved from the early single-layer coating to multi-layer versions incorporating thin films [183]. As shown in figure 35, the friction coefficient of the silicon-containing multi-layer coatingAITiN + AITiSiN + AITiSiN/TiSiN + TiSiN was lower than those of AITiN and AITiN + AITiSiN coatings [38]. Several researchers suggested the use of nano-structured coatings. The friction properties of high-quality multi-layer nano diamond gradient microcrystalline diamond/ nanocrystalline diamond/ ultrananocrystalline diamond (MCD/NCD/UNCD) coated end mills exceeded those of single-layer coatings [184]. In addition, the effects of the nanolayer thickness in Ti–TiN–(Ti,Al,Cr)N coatings on the friction properties were also evaluated, indicating that the friction coefficient appeared as a non-monotonic variation and a nanolayer thickness of 16 nm provided the lowest friction coefficient [185].

Studies have indicated that tools with hard coatings have the advantage of high wear resistance, while tools with soft coatings have the advantage of a low friction coefficient. The hard/soft composite coating tools might combine both advantages. As shown in figure 36, the CrCN–WS₂ hard/soft composite coating deposited on the cemented carbide tool surface had better friction performance than the CrCN-only and WS₂-only coatings [186]. In addition, the TiAlN/WS bilayer thickness was designed for forming coatings with a self-lubricating effect and high wear resistance [187].

6. Consequences of friction behaviors

6.1. Tool wear patterns

Tool wear is inevitable in industrial manufacturing, strongly controlled by local interfacial friction phenomena. Since severe friction generates high thermo-mechanical load gradients, the thermo-physical properties of the tool materials near the contact interface would be destroyed [188]. Due to the prevalence of tool wear, several researchers have studied the tool wear mechanisms during various cutting processes.
Figure 37 shows the wear topographies of different cutting tools after machining, indicating that the rake face and the flank face had severe friction marks. A large amount of material adhesion and partially exposed substrate appeared on the tool surface [189]. The tool wear patterns mainly included crater, flank, and cutting edge wear. The tool wear characteristics of different wear regions appeared diversity because of the various friction conditions. Several studies also have demonstrated that tool wear was associated with critical factors, including physical processes, chemical reactions, and thermo-mechanical phenomena caused by local cutting friction behaviors [32]. In addition, the tool wear mechanisms at low cutting speed were mainly mechanical and adhesive wear caused by friction. In contrast, diffusion wear and oxidative wear were dominant owing to different levels of heat generation by the cutting friction [190].

In addition, the progressive tool wear caused changes in tool geometry morphology, as shown in figure 38. The rake face was mainly crater wear, while the flank face was mostly flat wear [191]. The crater wear was also exacerbated by the gradient thermo-mechanical loads generated by the cutting friction [192, 193]. The evolution of crater wear was also non-linear [194]. Because of the cumulative effect of frictional heat sources at the tool–chip interface, the maximum crater wear depth was situated at a certain distance from the cutting edge.

Moreover, the plastic deformation of the tool coating is caused by friction between the physically or mechanically related adhesive material and coatings. As shown in figure 39, friction behaviors at the tool–chip interface resulted in the plastic deformation of the tool coatings in the direction of the chip flow [195, 196]. The mechanical damage to the cutting tools indicated that friction behaviors led to tearing and micro-cracks of WC–Co particles, as well as creep deformation [191]. Such results were related to the rearrangement between the substrate WC and the binder Co. Several researchers have used lubrication/cooling, surface texture, and tool coatings to reduce the friction coefficient. As shown in figure 40, the cross-sectional profiles of the cutting tools indicated that the crater wear with the micro-textured tool was much lower than that with the conventional tool [197].
6.2. Tool life

Cutting friction behaviors result in high temperature, strong adhesion, and high wear rates, directly reducing tool life. Specifically, tool life at a high cutting speed is shortened by many times compared with a low cutting speed [198]. This further limits the application of high-speed machining technology. Since the tool wear rate depends mainly on the friction conditions, tool life can be improved by reducing the friction coefficient during the cutting process. In some studies, an adjustment strategy for the staged cutting speed was adopted to control the generation of interfacial nano-scale tribofilms, which prolonged the tool life by 90% during the turning process [199]. As illustrated in figure 41, the effects of dry cutting, cryogenic cooling, high-pressure cooling, MQL, nanofluid lubrication, air cooling, and oil mist lubrication on the tool wear have been investigated, indicating that the cooling strategy could properly prolong tool life [200–205].
Moreover, tool life was further prolonged by more than 80% by optimizing the position of the high-pressure coolant nozzles [206].

The application of advanced tool coatings also prolongs tool life, and different types of coating have various effects. As illustrated in figure 42, the tool life of PVD AlTiN coated inserts was almost twice that of CVD TiCN + Al2O3 coating during the machining of super duplex stainless steels [207]. Adding Si element to TiAlN coating improved the tool life. In particular, the gradient TiAlSiN coating increased it by 75.4% [208]. Moreover, double-layer and multi-layer diamond films have longer tool life than single-layer diamond films. In particular, the tool life of the multi-layer film (MCD/NCD/MCD/NCD) was increased by 7.5 times [209]. Fox-Rabinovich et al [210] also found that ceramic inserts (Al2O3 + TiC) and coated carbide tools with an intermediate ceramic (Al2O3) layer presented better tool life than polycrystalline cubic boron nitride (PCBN) tools. Hao et al [211] investigated which tool life lasted the longest for a Cr/W-DLC/DLC composite coating compared with cutting Al–Si alloys. The results were 1.06, 1.15, and 1.35 times those of Cr/CrN/DLC, DLC single-layer, and uncoated tools.
Hybrid enhancement methods can further suppress the tool wear rate. As shown in figure 43, the combination of cryogenic cooling, PVD coatings and suitable cutting parameters provides a tool life that is as much as 6 times longer [212]. The mixed conditions of MQL and nanocomposite coatings can further prolong the tool life [213]. In addition, tool wear is also suppressed by the combined effects of cooling lubrication and micro textures. The method of combining high-pressure cooling with micro textures was adopted to improve tool life by more than 57.1% [214]. The self-lubricating molybdenum disulfide (MoS₂) tool with an oval groove texture on the rake face prolonged the tool life by more than 40% [215].

6.3. Chip formation

The friction behaviors at the tool–chip interface induce the gradient distribution of thermo-mechanical loads, which directly affect the chip formation process. Research has indicated that the thermo-mechanical loads induced by the cutting friction in the secondary shear region were the main driving factors for the evolution of the plastic behaviors of the chip bottom [216]. Figure 44 presents the friction patterns of the chip bottom under different cutting conditions. The elongated dimples along the chip flow direction appeared on the chip bottom after cutting [15, 217]. Such topography was mainly
related to plastic deformation resulting from the cutting friction of the tool–chip interface. It was also observed that the plastic deformation dimples were periodic regions, considered periodic fractures due to the sticking–sliding of chip movement on the tool rake face. Moreover, the chip bottom contact mode changed from steady sliding to sticking–sliding with elevated cutting speeds. The sticking–sliding phenomenon on the chip bottom was associated with thermodynamic instability and dynamic interaction caused by nonlinear friction and shear dissipation [39, 218].

The thermal-mechanical coupling effects of the cutting friction cause the gradient change in the microstructure of the chip bottom. Figure 45 displays various microstructure characteristics of the chip bottom under different cutting conditions. The grain boundaries of the chip bottom disappeared within a large number of refined and elongated microstructures parallel to the cutting speed direction. Such fibrous features occupying the second shear region were attributed to the strong frictional heat generation, leading to softening chip bottom material [15, 219]. Several studies also found that the microstructure of the frictional shear zone exhibited extremely refined dynamic recrystallized grains with sizes of 80–300 nm, which increased in density closer to the chip bottoms [220]. The secondary shear bands, in particular, were characterized...
Figure 45. Microstructure characteristics of the chip, (a) fibrous features occupying the second shear region. Reprinted by permission from Springer Nature Customer Service Centre GmbH: J. Mater. Res. Tech [15]. © 2020. (b) Refined dynamic recrystallized grains. Reprinted from [220], Copyright (2016), with permission from Elsevier. (c) Twins deformation with progressive tool wear. Reprinted from [33], Copyright (2018), with permission from Elsevier.

by localized white layers with thicknesses ranging from 10 µm to 30 µm in the microstructure of the AISI 1045 continuous chip [221]. The thickness of the plastic deformation layer at the chip bottom can be reduced by using the cooling/lubrication method because of the weakening of the friction effects [168]. Moreover, the chip grains were highly refined with CVD coating, whereas PVD coating produced more uniform plastic deformation. This was caused by the lower friction angle and more significant chip compression under the condition of CVD coating [222]. It also was found that the deformation mechanism of the chip changed with the degree of tool wear, where severe friction at the end of the tool life resulted in an increasing number of twins through tension and compression [33].

6.4. Machined surface

The thermo-mechanical loads resulting from the cutting friction of the tool–workpiece interface are a decisive factor affecting surface integrity. In particular, the tool wear state directly changes the tool geometry and strengthens the friction effect. As a result, the interfacial friction changes the stress state and heat distribution, which affects the surface topography, microstructure of the subsurface layer, and mechanical properties [223]. The friction effects on the surface integrity characteristics were analyzed to provide references for surface quality controlling in actual production.

The cutting friction state has a decisive influence on the surface topography. The tool wear significantly impacts the surface roughness concerning the cutting parameters (cutting speed, depth of cut and feed rate) and lubrication method. Several studies found that the friction effect induced by tool wear increased surface roughness, especially with uncoated cemented carbide tools [224]. In addition, surface roughness declined and then increased as the tool wear progressed [225]. Conversely, several researchers investigated that the machined surface roughness showed a downward trend when the tool approached the failure standard condition. The friction of the worn flank surface played a ‘wipe’ effect on the surface topography by removing the feed trace’s peaks, which led to surface roughness reduction [226]. Based on the microscale observation, the surface topography was uneven with complex defect characteristics. In particular, the frequency of surface defects increased significantly when tool wear exceeded 0.15 mm [227]. As shown in figure 46, the probability of surface defects, such as surface tearing, material smearing, grain pulling, and surface burning, increased because of the enhanced thermo-mechanical loads of the friction effects [228–230].

The cutting friction of the tool–workpiece interface generates the gradient distribution of thermo-mechanical loads, which causes plastic deformation with the difference from the substrate [231, 232]. As shown in figure 47, the surface and
subsurface materials underwent plastic deflection in the cutting direction during the cutting processes (such as turning, milling, and drilling), indicating that the thermo-mechanical loads induced by the friction effect were critical factors for local plastic behaviors [233, 234]. In particular, severe thermo-mechanical loads under tool wear conditions resulted in more profound plastic deformation [15]. Several researchers also investigated the microstructures while applying different cooling methods, such as drying, air cooling, and high-pressure cooling, indicating that a lubrication/cooling strategy could reduce plastic deformation [204, 235]. In addition, the thermo-mechanical loads caused by the cutting friction changed the
grain size, and the local deformation layer created a nanocrystalline structure [236, 237]. Additional thermo-mechanical loads resulting from tool wear further promoted the generation of white layers, as shown in figure 48 [238, 239]. The white layers consisted of numerous nano-scale equiaxed grains, which resulted from the melting and rapid cooling during the cutting process [240]. At the same time, the effect of cutting friction on the surface texture orientation was reported by some studies [241]. As illustrated in figure 49, the surfaces produced a shear texture because of the thermo-mechanical friction loads, and the texture intensity revealed the gradient change along the depth direction.

The combined effects of hardening induced by mechanical loads and softening induced by thermal loads ultimately determine the surface microhardness. As shown in figure 50, the mechanical loads caused by the cutting friction effect played a dominant role, while the increased plastic deformation and dislocation density resulted in enhanced microhardness [242, 243]. In addition, several researchers indicated that the thermal softening effect of high cutting temperature exceeded the mechanical loads-induced hardening effect in the tool wear state. The microhardness of the local surface was smaller than that of the substrate. In particular, when machining titanium alloys with low thermal conductivity, the cutting heat from the friction effect quickly accumulates on the machined surface resulting in a severe thermal softening effect [244].

The residual stress of the machined surface is mainly related to the inhomogeneous plastic deformation caused by the mechanical loads, thermal gradient, and phase transformation during the cutting process. The final residual stress state depended on the thermo-mechanical loads resulting from the cutting friction, where the thermal loads tended to produce residual tensile stresses. Still, the mechanical loads contributed to the formation of residual compressive stresses [223]. Especially under tool wear state, the machined surface was subjected to more thermo-mechanical loads, directly affecting the generation of residual stresses. On the one hand, the residual compressive stress increased when the mechanical effects exceeded the thermal effects with the progress of tool wear [243, 245]. On the other hand, the thermal effects caused by the elevated cutting temperature were more significant than the mechanical effects, which caused the residual stress state to tend toward tensile stress [233].

7. Conclusions

(a) The cutting friction behaviors depended on the thermo-mechanical loads and intense deformation during the cutting process, which was regarded as the output response variable under extreme conditions such as elevated temperature, large strain, high strain rate, shear deformation, the sticking–sliding contact state, and diverse cutting conditions. The friction heat of the cutting process resulted in severe high-temperature conditions at the contact interface. The materials near the friction interface were in an unsteady plastic flow, which was characterized by large local plastic strain and strain rate. The contact conditions changed with increased distance from the cutting edge, where the balance between sticking and sliding was destroyed by the diverse friction conditions.

(b) The critical goal is to describe the friction behaviors at the complex cutting contact interface, specifically an accurate friction model that can be embedded in finite element analysis. Various friction models were proposed by researchers to analyze the friction behaviors based on an in-depth understanding of the cutting contact state, mainly including the constant friction coefficient model, constant shear friction model, sticking–sliding friction model, temperature-dependent friction model and cutting parameters-dependent friction model. The friction behaviors in the simulation had an impact on the multiphysics distribution (cutting temperature, strain and strain rate), cutting forces, and chip formation, demonstrating that different friction models could directly provide diverse results.

(c) Many factors affected the cutting friction behaviors by directly or indirectly changing the interface contact conditions, which included material matching for the workpiece and cutting tool, the cooling medium and lubrication method in the cutting contact region, the optimization...
of the cutting parameters, and modification of the contact interface through micro/nano texture surface technology and tool coating technology.

(d) The harsh friction behaviors in the cutting process resulted in localized thermo-mechanical loads at the contact interface, inevitably causing tool wear processes and shortened tool life. Moreover, the friction conditions at the tool–chip interface were the main driving factors for the evolution of the friction patterns and microstructure of the chip bottom. In contrast, the friction conditions at the tool–workpiece interface affected the surface topography, surface microstructure, and mechanical properties. Specifically, the tool wear states changed the tool geometry and strengthened the friction effect.

8. Research limitations and future work

Currently, there are many unsolved issues and considerable potential for improvement. Industry needs for process indicators will primarily drive future research on cutting friction behaviors. The research limitations and potential future work are as follows:

(a) Since most of the current friction models depend on the friction force or a single friction coefficient, future friction models must consider comprehensive factors, such as interface geometry, material properties, lubrication conditions, and thermo-mechanical loads. The simulation accuracy also must be evaluated. The cutting friction database should be established with connections between the friction behaviors and cutting requirements. This should help guide tool selection and cutting process optimization based on friction theory.

(b) Most friction data acquisition equipment is designed to focus on a specific aspect of the friction problem, which has many unsolved problems, such as loading control or sample preparation. Advanced friction acquisition equipment is necessary for the design and the conversion of the input of traditional friction parameters to realistic cutting conditions. Such equipment would evaluate various cutting speeds, pressures, temperatures, lubrication states, and materials/coatings. In addition, advanced technologies must be developed to capture the cutting friction behaviors, especially the experimental methods that can separate the mechanical, adhesion and ploughing components under diverse friction conditions.

(c) Researchers currently use multiple cutting experiments to determine the optimal parameters to reduce friction under various machining conditions. Further understanding of the influences of tool coatings, cutting fluid, and tool wear on friction behaviors is needed, and the friction behaviors should be analyzed while considering multiple factors.

(d) Based on studying the friction characteristics during machining difficult-to-cut material, it is necessary to analyze the tool wear processes under the influence of thermo-mechanical coupling fields. This should enable high-speed cutting technology to advance by increasing the predictability of tool wear states and tool life.

(e) Further research should focus on the effects of friction behaviors on surface integrity, especially with progressive tool wear. Using single surface integrity parameters to judge tool life should be avoided because the need to establish the tool life criteria is based on multi-objective optimization of surface integrity. Moreover, the relationship between material processing-surface integrity-service performance associated with metal cutting should be considered.

(f) Future work should focus on cutting friction mechanisms under extreme machining methods, such as ultra-high speed cutting, ultra-precision cutting, heavy-duty cutting, ultra-low temperature liquid nitrogen cooling-assisted cutting, etc.

Acknowledgments

The authors would like to acknowledge the financial support from the National Key Research and Development Program of China (2019YFB2005401), National Natural Science Foundation of China (Nos. 91860207 and 52175420), Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project) (No. 2020CXGC010204), Shandong Provincial Natural Science Foundation of China (2021JMRH0301 and 2021JMRH0304), Taishan Scholar Foundation, International Partnership Scheme of the Bureau of the International Scientific Cooperation of the Chinese Academy of Sciences (No. 181722KYSB20180015), and Research and Innovation Office of The Hong Kong Polytechnic University (BBX5 and BBX7). The authors would like to express their sincere thanks for the funding support to the State Key Laboratories in Hong Kong.

Conflict of interest

There are no conflicts of interest for any authors.

ORCID iDs

Zhanqiang Liu https://orcid.org/0000-0002-4790-0052
Chi Fai Cheung https://orcid.org/0000-0002-6066-7419

References

[1] Klocke F 2011 Manufacturing Processes (Berlin: Springer) (https://doi.org/10.1016/j.jmapro.2011.11.001)
[2] Jawahir I S, Brinksmeier E, M’saoubi R, Aspinwall D K, Outeiro J C, Meyer D, Umbrello D and Jayal A D 2011 Surface integrity in material removal processes: recent advances CIRP Ann. 60 603–26
[3] M’Saoubi R, Axinte D, Soo S L, Nobel C, Attia H, Kappmeyer G, Engin S and Sim W M 2015 High performance cutting of advanced aerospace alloys and composite materials CIRP Ann. 64 557–80
[4] Kumar S, Tong Z and Jiang X 2022 Advances in the design and manufacturing of novel freeform optics Int. J. Extreme Manuf. 5 032004

[5] Melkote S N, Grzesik W, Outeiro J, Rech J, Schulze V, Attia H, Arrazola P J, M’saouib R and Saldana C 2017 Advances in material and friction data for modelling of metal machining CIRP Ann. 66 731–54

[6] Zhang Y B et al 2022 Nano-enhanced biolubricant in sustainable manufacturing: from processability to mechanisms Friction 10 803–41

[7] Jawahir I S, Kaynak Y and Lu T 2014 The impact of novel material processing methods on component quality, life and performance Proc. CIRP 22 33–44

[8] Cakir E, Ozlu E, Bakkal M and Budak E 2018 Investigation of temperature distribution in orthogonal cutting through dual-zone contact model on the rake face Int. J. Adv. Manuf. Technol. 96 81–89

[9] Arrazola P J, Arriola I, Davies M A, Cooke A L and Dutterer B S 2008 The effect of machinability on thermal fields in orthogonal cutting of AISI 4140 steel CIRP Ann. 57 65–68

[10] Vandana A S and Sundaram N K 2018 Simulation of sinuous flow in metal cutting Tribol. Lett. 66 94

[11] Mahato A, Yeung H, Guo Y, Viswanathan K, Sundaram N K, Udupa A, Mann J B and Chandrasekar S 2017 Sinuous flow and folding in metals: implications for delamination wear and surface phenomena in sliding and cutting Wear 376–377 1534–41

[12] Özel T 2006 The influence of friction models on finite element simulations of machining Int. J. Mach. Tool Manuf. 46 318–30

[13] Davim J P 2013 Tribology in Manufacturing Technology (Berlin: Springer)

[14] Wang B, Liu Z Q, Cai Y K, Luo X C, Ma H F, Song Q H and Xiong Z H 2021 Advancements in material removal mechanism and surface integrity of high speed metal cutting: a review Int. J. Mach. Tools Manuf. 166 103744

[15] Liang X L, Liu Z Q, Chen L X, Hao G C, Wang B, Cai Y K and Song Q H 2020 Tool wear induced modifications of plastic flow and deformed material depth in new generated surfaces during turning Ti-6Al-4V J. Mater. Res. Technol. 9 10782–95

[16] Sagapuram D, Yeung H, Guo Y, Mahato A, M’Saouib R, Compton W D, Troumble K P and Chandrasekar S 2015 On control of flow instabilities in cutting of metals CIRP Ann. 64 49–52

[17] Yang X, Zhang Q, Zheng Y, Liu X, Politis D, Fakir O E and Wang L 2021 Investigation of the friction coefficient evolution and lubricant breakdown behaviour of AA7075 aluminium alloy forming processes at elevated temperatures Int. J. Extreme Manuf. 3 025002

[18] Fu X L, Pan Y A, Wang Y and Qiao Y 2016 Experimental and simulation study on friction condition of the tool-chip interface during cutting process Key Eng. Mater. 693 747–54

[19] Ulutan D and Özel T 2012 Methodology to determine friction in orthogonal cutting with application to machining titanium and nickel based alloys Proc. ASME 2012 Int. Manufacturing Science and Engineering Conf. (Notre Dame: ASME) pp 327–34

[20] Arrazola P J, Özel T, Umbrello D, Davies M and Jawahir I S 2013 Recent advances in modelling of metal machining processes CIRP Ann. 62 695–718

[21] Lotfi M, Amini S and Ashrafi H 2019 Theoretical and numerical modeling of tool-chip friction in ultrasonic-assisted turning Proc. Inst. Mech. Eng. E 233 824–38

[22] Smolenicki D, Boos J, Kuster F, Roelofs H and Wyen C F 2014 In-process measurement of friction coefficient in orthogonal cutting CIRP Ann. 63 97–100

[23] Polvorosa R, Suárez A, De La Calle L N L, Cerrillo I, Wretland A and Veiga F 2017 Tool wear on nickel alloys with different coolant pressures: comparison of alloy 718 data and Waspaly and J. Manuf. Process. 26 44–56

[24] Pang M H, Liu X J and Liu K 2019 Effect of conical micro-grooved texture on tool-chip friction property and cutting performance of WC-TiC/Co cemented carbide tools Proc. Inst. Mech. Eng. J 233 791–804

[25] Cai F, Gao Y, Zhang S H, Zhang L and Wang Q M 2019 Gradient architecture of Si containing layer and improved cutting performance of AlCrSiN coated tools Wear 424–425 193–202

[26] He G H, Liu X L and Yan F G 2012 Research on the dynamic mechanical characteristics and turning tool life under the conditions of excessively heavy-duty turning Front. Mech. Eng. 7 329–34

[27] Liang X L, Liu Z Q and Wang B 2019 State-of-the-art of surface integrity induced by tool wear effects in machining process of titanium and nickel alloys: a review Measurement 132 150–81

[28] Liang X L, Liu Z Q, Wang B and Hou X 2018 Modeling of plastic deformation induced by thermo-mechanical stresses considering tool flank wear in high-speed machining Ti-6Al-4V Int. J. Mech. Sci. 140 1–12

[29] Liu S Q, Zhang H J, Zhao L, Li G, Zhang C Y, Zhang J J and Sun T 2021 Coupled thermo-mechanical sticking-slip friction model along tool-chip interface in diamond cutting of copper J. Manuf. Process. 70 578–92

[30] Manz S, Joshii S S, Karagudde S and Kapoor S G 2020 Modeling of variable friction and heat partition ratio at the chip-tool interface during orthogonal cutting of Ti-6Al-4V J. Manuf. Process. 55 254–67

[31] Enomoto T and Sugihara T 2010 Improving anti-adhesive properties of cutting tool surfaces by Nano-/micro-textures CIRP Ann. 59 597–600

[32] Dang J Q, Zhang H, Ming W W, An Q L and Chen M 2020 New observations on wear characteristics of solid Al2O3/Si3N4 ceramic tool in high speed milling of additive manufactured Ti6Al4V Ceram. Int. 46 5876–86

[33] Dargusch M S, Sun S J, Kim J W, Li T, Trimbly P and Cairney J 2018 Effect of tool wear evolution on chip formation during dry machining of Ti-6Al-4V alloy Int. J. Mach. Tools Manuf. 126 13–17

[34] Chen F Y, Wang D Z and Wu S J 2021 Influence of ultrasonic vibration-assisted cutting on ploughing effect in cutting Ti6Al4V Arch. Civ. Mech. Eng. 21 42

[35] Yan L, Yang W Y and Jin H P 2010 A new experimental approach for determination of the effect of tool flank wear length on cutting temperature distributions Adv. Mater. Res. 156–157 64–67

[36] Atlawi S, Haddad B, Nouari M and Mouftki A 2015 Effect of the local friction and contact nature on the built-up edge formation process in machining ductile metals Tribol. Int. 90 217–27

[37] Fan Y H, Hao Z P, Lin J Q and Yu Z X 2015 New observations on tool wear mechanism in machining Inconel 718 under water vapor + air cooling lubrication cutting conditions J. Clean. Prod. 90 381–7

[38] Zhang H D, Mei F S, Yu Y, Lin X L and Gao J X 2021 Improvement on the mechanical, tribological properties and cutting performance of AlTiN-based coatings by compositional and structural design Surf. Coat. Technol. 422 127503

[39] Barry J, Byrne G and Lennon D 2001 Observations on chip formation and acoustic emission in machining Ti-6Al-4V alloy Int. J. Mach. Tools Manuf. 41 1055–70
[40] Hou X, Li J Y, Li Y Z and Tian Y 2022 Intermolecular and surface forces in atomic-scale manufacturing Int. J. Extreme Manuf. 4 022002

[41] Abukhshim N A, Mativenga P T and Sheikh M A 2006 Heat generation and temperature prediction in metal cutting: a review and implications for high speed machining Int. J. Mach. Tools Manuf. 46 782–800

[42] Li T X, Shi T L, Tang Z R, Liao G L, Han J H and Duan J 2020 Temperature monitoring of the tool-chip interface for PCBN tools using built-in thin-film thermocouples in turning of titanium alloy J. Mater. Process. Technol. 275 116376

[43] Ramalingam S and Lehn L L 1971 A photoelastic study of stress distribution during orthogonal cutting-part I: workpiece stress distribution J. Manuf. Sci. Eng. 93 527–37

[44] Dang J Q, Zhang H, An Q L, Ming W W and Chen M 2021 On the microstructural evolution pattern of 300 M steel subjected to surface cryogenic grinding treatment J. Manuf. Process. 68 169–85

[45] Zhang D, Zhang X M, Nie G C, Yang Z Y and Ding H 2021 In situ imaging based thermo-mechanical analysis of built-up edge in cutting process J. Manuf. Process. 71 450–60

[46] Ackroyd B, Chandrasekar S and Compton W D 2003 A model for the contact conditions at the chip-tool interface in machining J. Tribol. 125 649–60

[47] Segebade E, Schneider J and Schulze V 2018 Tribological effects in and by metal cutting Key Eng. Mater. 767 3–24

[48] Schultheiss F, Fallqvist M, M’Saoubi R, Olsson M and Stähle J E 2013 Influence of the tool surface micro topography on the tribological characteristics in metal cutting—Part II. Theoretical calculations of contact conditions Wear 298–299 23–31

[49] Gajrani K K, Ram D and Sankar M R 2017 Biodegradation and hard machining performance comparison of eco-friendly cutting fluid and mineral oil using flood cooling and minimum quantity cutting fluid techniques J. Clean. Prod. 165 1420–35

[50] Hwang J and Chandrasekar S 2011 Contact conditions at the chip-tool interface in machining Int. J. Precis. Eng. Manuf. 12 183–93

[51] Woon K S, Rahman M, Neo K S and Liu K 2008 The effect of tool edge radius on the contact phenomenon of tool-based micromachining Int. J. Mach. Tools Manuf. 48 1395–407

[52] Ulatan D and Özeli T 2013 Determination of tool friction in presence of flank wear and stress distribution based validation using finite element simulations in machining of titanium and nickel based alloys J. Mater. Process. Technol. 213 2217–37

[53] Dargusch M S, Sivarupan T, Berringham M, Rashid R A R, Palanisamy S and Sun S 2020 Challenges in laser-assisted milling of titanium alloys Int. J. Extreme Manuf. 3 015001

[54] Sato Y and Yan J 2022 Tool path generation and optimization for freeform surface diamond turning based on an independently controlled fast tool servo Int. J. Extreme Manuf. 4 025102

[55] Wang B, Liu Z Q, Hou X and Zhao J F 2018 Influences of cutting speed and material mechanical properties on chip deformation and fracture during high-speed cutting of Inconel 718 Materials 11 461

[56] Wang J J, Wang Y K, Zhang J F, Yang Y and Guo P 2021 Structural coloration of non-metallic surfaces using ductile-regime vibration-assisted ultraprecision texturing Light Adv. Manuf. 2 434–45

[57] Lai X M, Li H T, Li C F, Lin Z Q and Ni J 2008 Modelling and analysis of micro scale milling considering size effect, micro cutter edge radius and minimum chip thickness Int. J. Mach. Tools Manuf. 48 1–14

[58] Kim C J, Mayor R and Ni J 2012 Molecular dynamics simulations of plastic material deformation in machining with a round cutting edge Int. J. Precis. Eng. Manuf. 13 1303–9

[59] Liu H, Guo Y B, Li D and Wang J Q 2021 Material removal mechanism of FCC single-crystalline materials at nano-scales: chip removal & ploughing J. Mater. Process. Technol. 294 117106

[60] Xie W K and Fang F Z 2020 Mechanism of atomic and close-to-atomic scale cutting of monocrystalline copper Appl. Surf. Sci. 503 144239

[61] Gao J, Luo X, Fang F and Sun J 2022 Fundamentals of atomic and close-to-atomic scale manufacturing: a review Int. J. Extreme Manuf. 4 012001

[62] Zhang T, Jiang F, Huang H, Lu J, Wu Y, Jiang Z and Xu X 2021 Towards understanding the brittle–ductile transition in the extreme manufacturing Int. J. Extreme Manuf. 3 022001

[63] Merchant M E 1945 Mechanics of the metal cutting process. II. Plasticity conditions in orthogonal cutting J. Appl. Phys. 16 318–24

[64] Albrecht P 1960 New developments in the theory of the metal-cutting process: part I. The ploughing process in metal cutting J. Manuf. Sci. Eng. 82 348–57

[65] Maekawa K, Kitagawa T and Childs T H C 1997 Friction characteristics at tool-chip interface in steel machining Tribol. Ser. 32 559–67

[66] Du M H, Cheng Z and Wang S S 2019 Finite element modeling of friction at the tool-chip-workpiece interface in high speed machining of Ti6Al4V Int. J. Mech. Sci. 163 105100

[67] Grzesik W 2008 Advanced Machining Processes of Metallic Materials (Amsterdam: Elsevier)

[68] Kopalinsky E M and Oxley P L B 1995 Explaining the friction and hard machining performance comparison of tool-based micromachining Int. J. Manuf. Process. Technol. 3 221–47

[69] Filice L, Micari F, Rizzuti S and Umbrello D 2007 A critical analysis on the friction modelling in orthogonal machining Int. J. Mach. Tools Manuf. 47 709–14

[70] Grzesik W 1999 Experimental investigation of the influence of adhesion on the frictional conditions in the cutting process Tribol. Int. 32 15–23

[71] Bowden F P and Tabor D 2001 The Friction and Lubrication of Solids (Oxford: Oxford University Press)

[72] Ozturk E, Budak E and Molinari A 2009 Analytical and experimental investigation of rake contact and friction behavior in metal cutting Int. J. Mach. Tools Manuf. 49 865–75

[73] Zorev N N 1963 Inter-relation between shear processes occurring along tool face and shear plane in metal cutting Proc. Int. Research in Production Engineering Conf. (New York: ASME) pp 42–49

[74] Calamaz M, Coupar D and Girot F 2008 A new material model for 2D numerical simulation of serrated chip formation when machining titanium alloy Ti-6Al-4V Int. J. Mach. Tools Manuf. 48 275–88

[75] Shirakashi T and Usui E 1973 Friction characteristics on tool face in metal machining J. Japan Soc. Precis. Eng. 39 966–72

[76] Childs T H C 2006 Friction modelling in metal cutting Wear 260 310–8

[77] Bai B, Moufti A, Nouari M, El Mansori M and Molinari A 2009 Analysis of tribological parameters during machining Int. J. Mater. Form. 2 221–4

[78] Zhang C Y, Lu J P, Zhang F P and Butt S I 2017 Identification of a new friction model at tool-chip interface
in dry orthogonal cutting Int. J. Adv. Manuf. Technol. 89 921–32
[97] Arrazola P J and Özlük T 2010 Investigations on the effects of friction modeling in finite element simulation of machining Int. J. Mech. Sci. 52 31–42
[98] Lorentzon J and Järvström N 2008 Modelling tool wear in cemented-carbide machining alloy 718 Int. J. Mach. Tools Manuf. 48 1072–80
[99] Denguir L A, Outeiro J C, Rech J, Fromentin G, Vignal V and Bensard R 2017 Friction model for tool/work material contact applied to surface integrity prediction in orthogonal cutting simulation Proc. CIRP 58 578–83
[100] Schulze V, Michna J, Zanger F, Faltin C, Maas U and Schneider J 2013 Influence of cutting parameters, tool coatings and friction on the process heat in cutting processes and phase transformations in workpiece surface layers HTM J. Heat Treat. Mater. 68 22–31
[101] Zanger F, Bollig P and Schulze V 2017 Simulative investigations on different friction coefficient models Proc. CIRP 58 140–5
[102] Malakizadi A, Hosseinikhani K, Mariano E, Ng E, Del Prete A and Nyborg L 2017 Influence of friction models on FE simulation results of orthogonal cutting process Int. J. Adv. Manuf. Technol. 88 3217–32
[103] Rech J, Arrazola P J, Claudin C, Courbon C, Pusavec F and Kopac J 2013 Characterisation of friction and heat partition coefficients at the tool-work material interface in cutting CIRP Ann. 62 79–82
[104] Puls H, Klocke F and Lung D 2014 Experimental investigation on friction under metal cutting conditions Wear 310 63–71
[105] Chowdhury M A, Das S and Deb Nath U K 2018 Estimation of cutting force in MQL machining environment considering chip tool contact friction Tribol. Int. 117 283–95
[106] Banerjee N and Sharma A 2016 Development of a friction model and its application in finite element analysis of minimum quantity lubrication machining of Ti-6Al-4 V J. Mater. Process. Technol. 238 181–94
[107] Chardon G, Klinkova O, Rech J, Drapier S and Bergheau J M 2022 Effect of friction conditions on finite element simulation of microweave machining with the presence of built-up edge Int. J. Adv. Manuf. Technol. 90 819–29
[108] Zhou F J 2014 A new analytical tool-chip friction model in dry cutting Int. J. Adv. Manuf. Technol. 70 1139–19
[114] Grzesik W, Rech J and Zak K 2014 Determination of friction in metal cutting with tool wear and flank face effects Wear 317 8–16

[115] Abouridouane M, Kloccke F, Lung D and Veselovac D 2015 The mechanics of cutting: in-situ measurement and modelling Proc. CIRP 31 246–51

[116] Grzesik W, Denkena B, Zak K, Grove T and Bergmann B 2016 Correlation between friction and wear of Cubic Boron Nitride cutting tools in precision hard machining J. Manuf. Sci. Eng. 138 031010

[117] Grzesik W, Niesłony P, Habrat W, Sieniawski J and Laskowski P 2018 Investigation of tool wear in the turning of Inconel 718 superalloy in terms of process performance and productivity enhancement Tribol. Int. 118 337–46

[118] Ma G J, Wang L L, Gao H X, Zhang J and Reddyhoff T 2015 The friction coefficient evolution of a TiN coated contact during sliding wear Appl. Surf. Sci. 345 109–15

[119] Grzesik W and Zak K 2013 Friction quantification in the oblique cutting with CBN chamfered tools Wear 304 36–42

[120] Sen B, Mia M, Krolczyk G M, Mandal U K and Mondal S P 2021 Eco-friendly cutting fluids in minimum quantity lubrication assisted machining: a review on the perception of sustainable manufacturing Int. J. Precis. Eng. Manuf. Green Technol. 8 249–80

[121] Liu W T and Liu Z Q 2018 High-pressure coolant effect on the surface integrity of machining titanium alloy Ti-6Al-4 V: a review Mater. Res. Express 5 032001

[122] Braham-Bouchnak T, Germain G, Morel A and Furet B 2015 Influence of high-pressure coolant assistance on the machinability of the titanium alloy Ti-6Al-4V Tribol. Int. 134 3–11

[123] Gajrani K K, Suvini P S, Kailas S V and Sankar M R 2019 Hard machining performance of indigenously developed green cutting fluid using flood cooling and minimum quantity cutting fluid J. Clean Prod. 206 108–23

[124] Banerjee N and Sharma A 2014 Identification of a friction model for minimum quantity lubrication machining J. Clean Prod. 83 437–43

[125] Liu Z Q, Chen M and An Q L 2015 Investigation of friction in end-milling of Ti-6Al-4 V under different green cutting conditions Int. J. Adv. Manuf. Technol. 78 1181–92

[126] Maruda R W, Krolczyk G M, Niesłony P, Wojciechowski S, Michalski M and Legutko S 2016 The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism J. Manuf. Process. 24 107–15

[127] Cabanettes F, Rolland J, Dumont F, Rech J and Dimkovski Z 2016 Influence of minimum quantity lubrication on friction characterizing tool-aluminum alloy contact J. Tribol. 138 021107

[128] Yin Q G, Li C H, Dong L, Bai X F, Zhang Y B, Yang M, Jia D Z, Li R Z and Liu Z Q 2021 Effects of physicochemical properties of different base oils on friction coefficient and surface roughness in MQL milling AISI 1045 Int. J. Precis. Eng. Manuf. Green Technol. 8 1629–47

[129] Sharma A K, Katiyar J K, Bhaumik S and Roy S 2019 Influence of alumina/MWCNT hybrid nanoparticle additives on tribological properties of lubricants in turning operations Friction 7 153–68

[130] Pal A, Chatha S S and Sidhu H S 2020 Experimental investigation on the performance of MQL drilling of AISI 321 stainless steel using nano-graphene enhanced vegetable-oil-based cutting fluid Tribol. Int. 151 106508

[131] Gajrani K K, Suvini P S, Kailas S V and Mamilla R S 2019 Thermal, rheological, wettability and hard machining performance of MoS2 and CaF2 based minimum quantity hybrid nano-green cutting fluids J. Mater. Process. Technol. 266 125–39

[132] Faizal M, Saidur R, Mekhilef S and Faizal M 2014 Potential of size reduction of flat-plate solar collectors when applying Al2O3 nanofluid Adv. Mater. Res. 832 149–53

[133] Lv T, Huang S Q, Liu E T, Ma Y L and Xu X F 2018 Tribological and machining characteristics of an electrostatic minimum quantity lubrication (EMQL) technology using graphene nano-lubricants as cutting fluids J. Manuf. Process. 34 225–37

[134] Hong S Y, Ding Y C and Jeong W C 2001 Friction and cutting forces in cryogenic machining of Ti-6Al-4 V Int. J. Mach. Tools Manuf. 41 2271–85

[135] Bourbon C, Pusavec F, Dumont F, Rech J and Kopac J 2013 Tribological behaviour of Ti6Al4V and Inconel 718 under dry and cryogenic conditions—Application to the context of machining with carbide tools Tribol. Int. 66 72–82

[136] Bruschi S, Bertolini R, Bordin A, Medea F and Ghiotti A 2016 Influence of the machining parameters and cooling strategies on the wear behavior of wrought and additive manufactured Ti6Al4V for biomedical applications Tribol. Int. 102 133–42

[137] Bermingham M J, Kirsch J, Sun S, Palanisamy S and Dargusch M S 2011 New observations on tool life, cutting forces and chip morphology in cryogenic machining Ti-6Al-4 V Int. J. Mach. Tools Manuf. 51 500–11

[138] Liu J Y, Han R D and Sun Y F 2005 Research on experiments and action mechanism with water vapor as coolant and lubricant in Green cutting Int. J. Mach. Tool. Manuf. 45 687–94

[139] Xu C W, Xu Y, Li H Y, Shi Z C, Jing H B and Liu M D 2017 Friction, wear, and cutting tests on 022Cr17Ni12Mo2 stainless steel under minimum quantity lubrication conditions Int. J. Adv. Manuf. Technol. 90 677–89

[140] Deng J X, Song W L, Zhang H, Yan P and Liu A H 2011 Friction and wear behaviors of the carbide tools embedded with solid lubricants in sliding wear tests and in dry cutting processes Wear 270 666–74

[141] Zhang S, Xiao G C, Chen Z Q, Xu C H, Yi M D, Li Q and Zhang J J 2020 Influence of CaF2@Al2O3 on cutting performance and wear mechanism of Al2O3/TiC/CN/ CaF2@Al2O3 self-lubricating ceramic tools in turning Materials 13 2922

[142] Deng J X, Cao T K and Liu L L 2005 Self-lubricating behaviors of Al2O3/TiB2 ceramic tools in dry high-speed machining of hardened steel J. Eur. Ceram. Soc. 25 1073–9

[143] Cao T K, Liu Y J and Xu Y T 2020 Cutting performance of tool with continuous lubrication at tool-chip interface Int. J. Precis. Eng. Manuf. Green Technol. 7 347–59

[144] Yi M D, Wang J P, Xiao G C, Chen Z Q, Zhang J J, Chen H, Wang L and Xu C H 2022 Effect of gradient design on the mechanical property and friction performance of nano self-lubricating ceramic cutting tool material Ceram. Int. 48 7045–55

[145] Tang S W, Wang R, Liu P F, Niu Q L, Yang G Q, Liu W H and Liu D S 2020 Preparation of WC-TiC-Ni-Al2CaF2 functionally graded self-lubricating tool material by microwave sintering and its cutting performance High Temp. Mater. Process. 39 45–53

[146] Rosenkranz A, Costa H L, Baykara M Z and Martini A 2021 Synergetic effects of surface texturing and solid lubricants to tailor friction and wear—a review Tribol. Int. 155 106792

[147] Fatima A and Matvenga P T 2015 A comparative study on cutting performance of rake-flank face structured cutting tool in orthogonal cutting in AISI/SAE 4140 Int. J. Adv. Manuf. Technol. 78 2097–106

[148] Chang W L, Sun J N, Luo X C, Ritchie J M and Mack C 2011 Investigation of microstructured machining tool for deferring tool wear Wear 271 2433–7
[149] Niketh S and Samuel G L 2017 Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy J. Clean. Prod. 167 253–70

[150] Wang Q W, Yang Y, Yao P, Zhang Z Y, Yu S M, Zhu H T and Huang C Z 2021 Friction and cutting characteristics of micro-textured diamond tools lubricated with femtosecond laser Tribol. Int. 154 106720

[151] Pang M H, Nie Y F and Ma L J 2018 Effect of symmetrical conical micro-grooved texture on tool-chip friction property of WC-TiC/Co cemented carbide tools Int. J. Adv. Manuf. Technol. 99 737–46

[152] Xing Y Q, Deng J X, Wu Z, Liu L, Huang P and Jiao A Q 2018 Analysis of tool-chip interface characteristics of self-lubricating tools with nanotextures and WS$_2$/Zr coatings in dry cutting Int. J. Adv. Manuf. Technol. 97 1637–47

[153] Jiang K, Wu X Y, Lei J G, Xu B, Zhu L K, Cao Y X, Li K S, Guo D J and Zhao Y H 2020 Cutting force and tool wear in cutting Ti-6Al-4 V using microstructure-based PCD turning tools Proc. CIRP 95 572–7

[154] Zheng K R, Yang Y Z, Pan M Z, Zhao G D and Bian D C 2021 Effect of surface line/regular hexagonal texture on tribological performance of cemented carbide tool for machining Ti-6Al-4 V alloys Int. J. Adv. Manuf. Technol. 116 3149–62

[155] Enomoto T, Watanabe T, Aoki Y and Ohtake N 2007 Development of a cutting tool with micro structured surface Trans. Japan Soc. Mech. Eng. Ser. C 73 1560–5

[156] Gajrani K K, Suresh S and Sankar M R 2018 Environmental friendly hard machining of uncoated and MoS$_2$ coated mechanical micro-textured tungsten carbide cutting tools Tribol. Int. 125 141–55

[157] Mishra S K, Ghosh S and Aravindan S 2018 3D finite element investigations on textured tools with different geometrical shapes for dry machining of titanium alloys Int. J. Mech. Sci. 141 424–49

[158] Shimizu J, Nakayama T, Watanabe K, Yamamoto T, Onuki T, Ojima H and Zhou L B 2020 Friction characteristics of mechanically microtextured metal surface in dry sliding Tribol. Int. 149 105634

[159] Koshy P and Tovey J 2011 Performance of electrical discharge textured cutting tools CIRP Ann. 60 153–6

[160] Kawasegi N, Sugimori H, Morimoto H, Morita N and Hori I 2009 Development of cutting tools with microscale and nanoscale textures to improve frictional behavior Precis. Eng. 33 348–54

[161] Kim D M, Bajpai V, Kim B H and Park H W 2015 Finite element modeling of hard turning process via a micro-textured tool Int. J. Adv. Manuf. Technol. 78 1393–405

[162] Sun J L, Zhou Y H, Deng J X and Zhao J 2016 Effect of hybrid texture combining micro-pits and micro-grooves on cutting performance of WC-Co-based tools Int. J. Adv. Manuf. Technol. 86 3383–94

[163] Siju A S, Gajrani K K and Joshi S S 2021 Dual textured carbide tools for dry machining of titanium alloys Int. J. Refract. Met. Hard Mater. 94 105403

[164] Sivaiah P, Ajay Kumar G V, Singh M M and Kumar H 2020 Effect of novel hybrid texture tool on turning process performance in MQL machining of Inconel 718 superalloy Mater. Manuf. Process. 35 61–71

[165] Hao X Q, Chen X W, Xiao S N, Li L and He N 2018 Cutting performance of carbide tools with hybrid texture Int. J. Adv. Manuf. Technol. 97 3547–56

[166] Gajrani K K, Suvin P S, Kailas S V, Rajurkar K P and Sankar M R 2021 Machining of hard materials using textured tool with minimum quantity nano-green cutting fluid CIRP J. Manuf. Sci. Technol. 35 410–21

[167] Zhang K D, Deng J X, Xing Y Q, Li S P and Gao H H 2015 Effect of microscale texture on cutting performance of WC/Co-based TiAlN coated tools under different lubrication conditions Appl. Surf. Sci. 26 107–18

[168] Liao Z R, Xu D D, Axinte D, M’Saoubi R, Thelin J and Wretland A 2020 Novel cutting inserts with multi-channel irrigation at the chip-tool interface: modelling, design and experiments CIRP Ann. 69 65–68

[169] Hao X Q, Cui W, Li L, Li H L, Khan A M and He N 2018 Cutting performance of textured polycrystalline diamond tools with composite lyophilic/lyophobic wettability J. Mater. Process. Technol. 260 1–8

[170] Sharma V and Pandey P M 2016 Comparative study of turning of 4340 hardened steel with hybrid textured self-lubricating cutting inserts Mater. Manuf. Process. 31 1904–16

[171] Xing Y Q, Deng J X, Li S P, Yue H Z, Meng R and Gao P 2014 Cutting performance and wear characteristics of Al$_2$O$_3$/TiC ceramic cutting tools with WS$_2$/Zr soft-coatings and Nano-textures in dry cutting Wear 318 12–26

[172] Hao G C and Liu Z Q 2020 The heat partition into cutting tool at tool-chip contact interface during cutting process: a review Int. J. Adv. Manuf. Technol. 108 393–411

[173] Grzesik W 2000 The influence of thin hard coatings on frictional behaviour in the orthogonal cutting process Tribol. Int. 33 131–40

[174] Talib R J, Zaharah A M, Selamat M A, Mahaidin A A and Fazira M F 2013 Friction and wear characteristics of WC and TiCN-coated insert in turning carbon steel workpiece Proc. Eng. 68 716–22

[175] Kumar C S, Zeman P and Polcar T 2020 A 2D finite element approach for predicting the machining performance of nanolayered TiAlCrN coating on WC-Co cutting tool during dry turning of AISI 1045 steel Ceram. Int. 46 25073–88

[176] Bar-Hen M and Etsion I 2017 Experimental study of the effect of coating thickness and substrate roughness on tool wear during turning Tribol. Int. 110 341–7

[177] Fallqvist M, Schultheiss F, M’Saoubi R, Olsson M and Ståhl J E 2013 Influence of the tool surface micro topography on the tribological characteristics in metal cutting: part I experimental observations of contact conditions Wear 298–299 87–98

[178] Chang K S, Dong Y J, Zheng G M, Jiang X L, Yang X H, Cheng X, Liu H B and Zhao G X 2022 Friction and wear properties of TiAlN coated tools with different levels of surface integrity Ceram. Int. 48 4433–43

[179] Mo J L and Zhu M H 2009 Tribological oxidation behaviour of PVD hard coatings Tribol. Int. 42 1758–64

[180] Mei F S, Chen Y, Zhang H D, Lin X L, Gao X J, Yuan T C and Cao X 2021 Greater improvement of carbon and boron co-doping on the mechanical properties, wear resistance and cutting performance of AlTiN coating than that of doping alone Surf. Coat. Technol. 406 126738

[181] Aihua L, Jianxin D, Haibing C, Yangyang C and Jun Z 2012 2012 Friction and wear properties of TiN, TiAlN, AlTiN and CrAIN PVD nitrde coatings Int. J. Refract. Met. Hard Mater. 31 82–88

[182] Mishra S K, Ghosh S and Aravindan S 2020 Investigations into friction and wear behavior of AlTiN and AlCrN coatings deposited on laser textured WC/Co using novel open tribometer tests Surf. Coat. Technol. 387 125513

[183] Grzesik W, Zalisz Z and Niewsiony P 2002 Friction and wear testing of multilayer coatings on carbide substrates for dry machining applications Surf. Coat. Technol. 155 37–45

[184] Wang H, Song X, Wang X C and Sun F H 2021 Fabrication, tribological properties and cutting performances of
high-quality multilayer graded MCD/NCD/UNCD coated
PCB end mills Diam. Relat. Mater. 118 108505

[185] Vereschaka A, Grigoriev S, Tabakov V, Migranov M,
Sitnikov N, Milovich F and Andreev N 2020 Influence of
the nanostructure of Ti-TiN-(Ti,Al,Cr) N multilayer
composite coating on tribological properties and cutting
tool life Tribol. Int. 150 106388

[186] Lian Y, Long Y, Zhao G L, Mu C L, Li X M, Deng J X
and Xie C P 2020 Performance of CrCN-WS 2 hard/soft
composite coated tools in dry cutting of titanium alloys J.
Manuf. Process. 54 201–9

[187] Li G J, Z L W, Liu S Y, Li C, Zhou Y and Wang Q 2021
Multilayer-growth of TiAIN/WS self-lubricating
composite coatings with high adhesion and their cutting
performance on titanium alloy Composites B
211 108620

[188] Ayed Y, Germain G, Ammar A and Furet B 2013
Degradation modes and tool wear mechanisms in
finish and rough machining of Ti17 Titanium alloy under
high-pressure water jet assistance Wear 205 228–37

[189] Dang J Q, Cai X J, An Q L, Xu J Y, Chen M and
Ming W W 2020 Effect of material microstructure on tool wear
behavior during machining additively manufactured
Ti6Al4V Arch. Civ. Mech. Eng. 20 4

[190] Ayed Y, Germain G, Melso A P, Kowalewski P and
Locufier D 2017 Impact of supply conditions of liquid
nitrogen on tool wear and surface integrity when
machining the Ti-6Al-4 V titanium alloy Int. J. Adv.
Manuf. Technol. 93 1199–206

[191] Liang X L, Liu Z Q and Wang B 2020 Multi-pattern failure
modes and wear mechanisms of WC-Co tools in dry
turning Ti-6Al-4 V Cerm. Int. 46 24512–25

[192] Odelros S, Kaplan B, Kritikos M, Johansson M and
Norgren S 2017 Experimental and theoretical study of
the microscopic crater wear mechanism in titanium machining
Wear 376–377 115–24

[193] Rahman Rashid R A, Palanisamy S, Sun S and Dargusch M S
2016 Tool wear mechanisms involved in crater formation
on uncoated carbide tool when machining Ti6Al4V alloy
Int. J. Adv. Manuf. Technol. 83 1457–65

[194] Grigoriev S, Vereschaka A, Milovich F, Migranov M,
Andreev N, Bublikov J, Sitnikov N and Oganyan G 2021
Investigation of the tribological properties of Ti-TiN-(Ti,
Al, Nb, Zr) N composite coating and its efficiency in
increasing wear resistance of metal cutting tools Tribol.
Int. 164 107230

[195] Koseki S, Inoue K, Morito S, Obha T and Usuki H 2015
Comparison of TiN-coated tools using CVD and PVD
processes during continuous cutting of Ni-based
superalloys Surf. Coat. Technol. 283 535–63

[196] Fox-Rabinovich G S, Yamamoto K, Beake B D,
Gershman I S, Kovalev A I, Veldhuis S C, Aguirre M H,
Shalaby M A, Krzanowski J E and Veldhuis S C 2014
Tribofilm formation as a result of complex interaction
at the tool/chip interface during cutting Lubricants 2 113–23

[197] Naves V T G, Da Silva M B and Da Silva F J 2013
Evaluation of the effect of application of cutting fluid at
high pressure on tool wear during turning operation of
AISI 316 austenitic stainless steel Wear 302 1201–8

[198] Kaynak Y, Karaca H E, Noebe R D and Jawahir I S 2013
Tool-wear analysis in cryogenic machining of NiTi shape
memory alloys: a comparison of tool-wear performance
with MQL machining Wear 306 51–63

[199] Maruda R W, Krolczyk G M, Feldshtein E, Nieslony P,
Tyliszczak B and Pusavec F 2017 Tool wear
characterizations in finish turning of AISI 1045 carbon
steel for MQCL conditions Wear 372–373 54–67

[200] Shokrani A, Dhoikia V and Newman S T 2016 Comparative
investigation on using cryogenic machining in CNC
millling of Ti-6Al-4V titanium alloy Mach. Sci. Techn.
20 475–94
[217] Sun S J, Brandt M and Dargusch M S 2017 Effect of tool wear on chip formation during dry machining of Ti-6Al-4 V alloy, part 1: effect of gradual tool wear evolution Proc. Inst. Mech. Eng. B 231 1559–74

[218] Wang Q, Lu C, Ye G G and Dai L H 2015 Modelling the tuned criticality in stick-slip friction during metal cutting Model. Simul. Mater. Sci. Eng. 23 055013

[219] Ming W W, Dang J Q, An Q L and Chen M 2020 Chip formation and hole quality in dry drilling additive manufactured Ti6Al4V Mater. Manuf. Process. 35 43–51

[220] Pu C L, Zhu G, Yang S B, Yue E B and Subramanian S V 2016 Effect of dynamic recrystallization at tool-chip interface on accelerating tool wear during high-speed cutting of AISI1045 steel Int. J. Mach. Tools Manuf. 100 72–80

[221] Mabrouki T, Courbon C, Zhang Y C, Rech J, Nélia D, Asad M, Hamdi H, Belhadi S and Salvatore F 2016 Some insights on the modelling of chip formation and its morphology during metal cutting operations C. R. Mécanique 344 335–54

[222] He Q, Paiva J M, Kohlscheen J, Beake B D and Veldhuis S C 2020 An integrative approach to coating/carbide substrate design of CVD and PVD coated cutting tools during the machining of austenitic stainless steel Ceram. Int. 46 5149–58

[223] Liang X L, Liu Z Q, Wang B, Song Q H, Cai Y K and Wan Y 2021 Prediction of residual stress with multi-physics model for orthogonal cutting Ti-6Al-4 V under various tool wear morphologies J. Mater. Process. Technol. 288 116908

[224] M’Saoubi R, Larsson T, Outeiro J, Guo Y, Suslov S, Saldana C and Chandrashekar S 2012 Surface integrity analysis of machined Inconel 718 over multiple length scales CIRP Ann. 61 99–102

[225] Che-Haron C H and Jawaid A 2005 The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V J. Mater. Process. Technol. 166 188–92

[226] Sharman A R C, Hughes J I and Ridgway K 2008 Surface integrity and tool life when turning Inconel 718 using ultra-high pressure and flood coolant systems Proc. Inst. Mech. Eng. B 222 653–64

[227] Arrazola P J, Garay A, Fernandez E and Ostolaza K 2014 Correlation between tool flank wear, force signals and surface integrity when turning bars of Inconel 718 in finishing conditions Int. J. Mach. Machinabil. Mater. 15 84–100

[228] Shunmugavel M, Polishetty A, Goldberg M, Singh R P and Littlefair G 2016 Tool wear and surface integrity analysis of machined heat treated selective laser melted Ti-6Al-4V Int. J. Mater. Form. Mach. Proc. 3 50–63

[229] Hughes J I, Sharman A R C and Ridgway K 2006 The effect of cutting tool material and edge geometry on tool life and workpiece surface integrity Proc. Inst. Mech. Eng. B 220 93–107

[230] Liang X L and Liu Z Q 2017 Experimental investigations on effects of tool flank wear on surface integrity during orthogonal dry cutting of Ti-6Al-4 V Int. J. Adv. Manuf. Technol. 93 1617–26

[231] Dang J Q, Zang H, An Q L, Ming W W and Chen M 2022 Feasibility study of creep feed grinding of 300M steel with zirconium corundum wheel Chin. J. Aeronaut 35 565–78

[232] Dang J Q, Zhang H, An Q L, Ming W W and Chen M 2021 Surface modification of ultrahigh strength 300M steel under supercritical carbon dioxide (scCO2)-assisted grinding process J. Manuf. Process. 61 1–14

[233] Kwong J, Axinte D A, Withers P J and Hardy M C 2009 Minor cutting edge-workpiece interactions in drilling of an advanced nickel-based superalloy Int. J. Mach. Tools Manuf. 49 645–58

[234] Miao Q, Ding W, Xu J, Cao L, Wang H, Yin Z, Dai C and Kuang W 2021 Creep feed grinding induced gradient microstructures in the superficial layer of turbine blade root of single crystal nickel-based superalloy Int. J. Extreme Manuf. 3 045102

[235] Xu W, Li C H, Zhang Y, Ali H M, Sharma S, Li R, Yang M, Gao T, Liu M and Wang X 2022 Electrostatic atomization minimum quantity lubrication machining: from mechanism to application Int. J. Extreme Manuf. 4 042003

[236] Xu X, Zhang J, Liu H G, He Y and Zhao W H 2019 Grain refinement mechanism under high strain-rate deformation in machined surface during high speed machining Ti6Al4V Mater. Sci. Eng. A 752 167–79

[237] Dang J Q, Zhang H, An Q L, Lian G H, Li Y G, Wang H W and Chen M 2021 Surface integrity and wear behavior of 300M steel subjected to ultrasonic surface rolling process Surf. Coat. Technol. 421 127380

[238] Axinte D A, Andrews P, Li W, Gindy N, Withers P J and Childs T H C 2006 Turning of advanced Ni based alloys obtained via powder metallurgy route CIRP Ann. 55 117–20

[239] Herbert C R J, Axinte D A, Hardy M C and Brown P D 2011 Investigation into the characteristics of white layers produced in a nickel-based superalloy from drilling operations Proc. Eng. 19 138–43

[240] Osterle W and Li P X 1997 Mechanical and thermal response of a nickel-base superalloy upon grinding with high removal rates Mater. Sci. Eng. A 238 357–66

[241] Liang X L, Liu Z Q, Ren X P and Wang B 2021 Tool wear induced the gradient distribution of surface integrity with process-microstructure-property characteristics after turning Ti-6Al-4 V J. Manuf. Process. 70 570–7

[242] Hood R, Soo S L, Aspinwall D K and Mantle A L 2018 Tool life and workpiece surface integrity when turning an RR1000 nickel-based superalloy Int. J. Adv. Manuf. Technol. 98 2461–8

[243] Fernández-Valdivielso A, López De Lacalle L N, Urbikain G and Rodriguez A 2016 Detecting the key geometrical features and grades of carbide inserts for the turning of nickel-based alloys concerning surface integrity Proc. Inst. Mech. Eng. C 230 3725–42

[244] Ginting A and Nouari M 2009 Surface integrity of dry machined titanium alloys Int. J. Mach. Tools Manuf. 49 325–32

[245] Mantle A L and Aspinwall D K 2001 Surface integrity of a high speed milled gamma titanium aluminide J. Mater. Process. Technol. 118 143–50