SUPPLEMENTARY INFORMATION

TOPOISOMERASE IIα MEDIATES TCF-DEPENDENT EPITHELIAL-MESENCHYMAL TRANSITION IN COLON CANCER

Qiong Zhou¹, Adedoyin D. Abraham¹, Linfeng Li¹, Ahsun Babalmorad¹, Stacey Bagby³, John J. Arcaroli³,⁴, Ryan J. Hansen⁴,⁵, Frederick A. Valeriote⁶, Daniel L. Gustafson⁴,⁵, Jerome Schaack²,⁴, Wells A. Messersmith³,⁴ and Daniel V. LaBarbera¹,⁴,*

¹Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences; ²Department of Immunology and Microbiology and ³Division of Medical Oncology, School of Medicine, ⁴University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA. ⁵Colorado State University, Flint Animal Cancer Center, Fort Collins, Colorado, USA. ⁶Josephine Ford Cancer Center, Henry Ford Health Systems, Detroit, Michigan, USA.

*To whom correspondence may be addressed: Daniel.LaBarbera@ucdenver.edu

TABLE OF CONTENTS

SI Materials and Methods ...pg S2–S4
The synthesis of BAP-1..pg S4–S5
BAP-1 analytical analysis: ¹H and ¹³C NMR, and HRMS spectra................pg S6–S10
Figure S1: BAP-1 3D MCTS mesenchymal Western blot analysis..........pg S11
Figure S2: Neo KinaseSeeker™ Screen..pg S12
Figure S3: STR profiling for DLD1, HCT116, SW480, and SW620........pg S13
Figure S4: Neo cytotoxicity using in 32 CRC cell lines cultured in 2D........pg S14
Figure S5: Neo Co-IP studies using DLD1 and HCT116 cells...............pg S15
Figure S6: Neo in vitro metabolic stability and in vivo PK studies........pg S16
Supplementary Information References...pg S17

S1
SI MATERIALS AND METHODS

Antibodies: Monoclonal mouse anti-TCF4 antibody was purchased from EMD Millipore (catalog# 05-511), a 1:1000 dilution was used for Western blot and 2 µg antibody per 300 µg of protein was used for IP. Polyclonal rabbit anti-c-Myc (catalog# sc-788) and goat anti-zeb1 (catalog# sc-10572) antibodies were purchased from Santa Cruz and a 1:500 dilution was used for Western blot. Monoclonal rabbit anti-Vimentin (catalog# 5741), anti-slug (catalog# 9585), anti-E-cadherin (catalog# 3195), anti-ZO-1 (catalog# 8193) and mouse anti-β-actin (catalog# 3700) were purchased from Cell Signaling and a 1:1000 dilution was used for Western blot. Monoclonal rabbit anti-β-catenin (catalog# 9582), polyclonal rabbit anti-TopoIIα (catalog# 4733) were purchased from Cell Signaling, a 1:1000 dilution was used for Western blot and 2 µg antibody per 300 µg of protein was used for IP. Monoclonal rabbit anti-TCF4 (catalog# 2569) and anti-Histone H3 (catalog# 4620) were purchased from Cell Signaling and 2 µg antibody per 1 mg of protein was used for ChIP. Anti-rabbit IgG HRP-linked secondary antibody (catalog#7074) was purchased from Cell Signaling and a 1:3000 dilution was used for Western blot. Anti-goat and anti-mouse IgG HRP-linked secondary antibodies (catalog# 805-035-180 and 115-035-003) were purchased from Jackson ImmunoResearch and a 1:10,000 dilution was used for Western blot. FITC conjugated polyclonal goat anti-rabbit IgG secondary antibody (catalog# PI31573) was purchased from ThermoScientific and a 1:1000 dilution was used in spheroid staining.

Plasmid construction: TOPflash-luc plasmids (Millipore, Billerica, MA, USA) were digested with *Pvu*II to create a blunt 5’ end and *Not*I to create sticky 3’ end. pCDH-CMV-MCS-EF1-puro was digested with *BspDI* upstream of the CMV promoter, blunt ended, then digested with *Not*I to remove the MCS. TOPflash-luc segment was ligated to the backbone to create pCDH-TOPflash-luc-EF1-puro plasmids. The pCDH-VimPro-Fluc-EF1-puro plasmid was previously reported (see reference 25 in the main article). The firefly luciferase ORF was replaced with GFP flanked by *BamHI* and *NotI* sites to generate the pCDH-VimPro-GFP-EF1-puro plasmid.

shRNA Topollα knockdown: Mission shRNA (scrambled) and TRCN00000492-78/79 (sh78 and sh79) specific for Topollα were purchased from Sigma-Aldrich. Virus was produced in HEK293T cells using TransIT®-293 reagent (Mirus, Madison, WI, USA), the plasmids delta 8.9, and pVSVG. CRC cells were transduced and selected with 4 µg/ml puromycin for 7 days.

Detailed Chromatin Immunoprecipitation (ChIP): Cells were treated with DMSO or 10 µM neo for 6 h followed by cross-linking with 1.42% formaldehyde for 15 min and quenching with 125 mM glycine for 5 min. Cells were lysed with Szak’s RIPA buffer and sonicated using a Brandson Sonifier. The IP steps were conducted at 4 °C as follows: 50 µl of protein A/G aragose beads were prewashed with cold Szak’s RIPA buffer and incubated with 1 mg of lysate for 2 h. 0.3 mg/ml of salmon sperm DNA was added and incubated for 2 h. 100 µl of the lysate was set aside as the input control. 2 µg of anti-Topollα or anti-TCF4 antibody was added to the remainder and incubated overnight. An
unconjugated normal rabbit IgG polyclonal antibody was used as a negative control and anti-Histone H3 rabbit monoclonal antibody formulated for ChIP was used as a positive control. Beads were washed 2 × with Szak’s RIPA buffer, 4 × with Szak’s IP wash buffer, 2 × with Szak’s RIPA buffer, and 2 × with 1X-Tris EDTA. The supernatant was aspirated down to 100 µl and 200 µl of 1.5X-Talianidis elution buffer was added to both the input and IP samples. To elute immunocomplexes and reverse crosslink, 12 µl of 5M NaCl was added and the mixture was incubated at 65 °C for 16 h. The supernatant was mixed with 20 µg of proteinase K and incubated for 30 min at 37 °C. DNA were extracted with phenol/chloroform and precipitated with ethanol. The IP product was amplified with the All-in-One™ qPCR Mix (GeneCopoeia™, Rockville, MD, USA) using known primers as follows:

- **c-Myc WRE:** sense: 5’-AAATCAAGGGCAGGGACCACAG-3’
 antisense: 5’-CAGAATGGCAGAGTGAAGACAT-3’
- **Axin2 WRE:** sense: 5’-CTGGAGCCGGCTGCGCTTTGATAA-3’
 antisense: 5’-CGGCCGAAATCCATCGC-TCTGA-3’
- **LEF1 WRE:** sense: 5’-TCGACCCGGGAACAAAGAGG-3’
 antisense: 5’-GCCGAGGAGGGGAAGAG-3’
- **Vim Promoter:** sense: 5’-CTGAAGTAACGGGACCATGC-3’
 antisense: 5’-CTCGAGCTACCTCCACAT-3’
- **N-cad Promoter:** sense: 5’-ACCAGGATCAAGGACGTG-3’
 antisense: 5’-CTCCACTTACCCTCCACAT-3’
- **GAPDH (Control):** sense: 5’-CGACCACCTT-GTCAAGCTCA-3’
 antisense: 5’-AGGGTCTACATGGCAACTG-3’

In vitro metabolic stability and in vivo pharmacokinetic studies with of neo

Neo (1 µM) was tested for metabolic stability in human and various animal liver microsomes and hepatocytes as well as for its ability to inhibit cytochrome P450 enzymes (Figures S6a-c), using previously reported methodologies.

Neo’s pharmacokinetics were assessed using Sprague-Dawley rats after i.v. administration (1.4 mg/kg). Rat plasma samples (50 µL) were prepared via protein precipitation with acetonitrile (50 µL) and supernatants were analyzed via LC/MS/MS analysis. Positive ion electrospray ionization (ESI) mass spectra were obtained with a MDS Sciex 3200 Q-TRAP triple quadrupole mass spectrometer (Applied Biosystems, Inc., Foster City, CA, USA) with a turbo ionspray source interfaced to a Shimadzu LC-20AD HPLC system (Shimadzu Corporation, Kyoto, Japan). Samples were quantified in the MRM mode monitoring ion transitions m/z 314.0 → 229.2, 285.2, and 296.2 for neo with unknown samples quantified from linear standard curves (2.5–1,000 ng/mL). Pharmacokinetic parameters were calculated from plasma concentration data over time with standard noncompartmental methods using Phoenix® WinNonlin® software, version 1.3 (Pharsight Corp., Sunnyvale, CA, USA) (see Figure S6d and e).
Chemical reagents and general procedures for the synthesis of BAP-1 and neo

All reagents were purchased from commercial sources and used as received, unless otherwise indicated. All solvents were dried and distilled using standard protocols. All reactions were carried out under a nitrogen atmosphere unless otherwise noted. All organic extracts were dried over sodium sulfate. Thin layer chromatography (TLC) was performed using aluminum-backed plates coated with 60Å Silica gel F254 (Sorbent Technologies). Plates were visualized using a UV lamp ($\lambda_{max} = 254\text{ nm}$) and/or by staining with phosphomolybdic acid solution (20 wt% in ethanol). Column chromatography was carried out using 230-400 mesh 60Å silica Gel (Silycyle). Proton (δ_H) and carbon (δ_C) nuclear magnetic resonances were recorded on a Varian INOVA 500 MHz spectrometer (500 MHz proton, 125.7 MHz carbon). High-resolution mass spectra (HRMS) were recorded on a Bruker Q-TOF-2 Micromass spectrometer equipped with lock spray, using ESI with methanol as the carrier solvent. Accurate mass measurements were performed using leucine enkephalin as a lock mass and the data were processed using MassLynx 4.1. Exact m/z values are reported in Daltons. Infrared (IR) spectra were recorded on a Bruker ALPHA FT-IR fitted with a Platium ATR diamond sampler (oils and solids were examined neat). Absorption maxima (ν_{max}) are recorded in wavenumbers (cm$^{-1}$).

The synthesis of neo was done exactly as previously described (See reference 30 in the main article).

The Synthesis of BAP-1

BAP-1 was previously published (see reference 31 and 32 in the main article), however, the synthetic details were not available. Thus, we have synthesized BAP-1 as follows:

\[\text{N}^6-\text{6-benzothiazolyl-}N^\beta\text{-tert-butyl-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-2,6-diamine (2).} \]

To a stirred solution of N-(tert-butyl)-2-chloro-8-ethyl-9H-purin-6-amine (1) (182.0 mg, 0.588 mmol) (see reference 31 in the main article), 6-aminobenzothazole (97.2 mg, 0.647 mmol), and Cs$_2$CO$_3$ (957.9 mg, 2.94 mmol) in 1,4-dioxane (6 mL) were added Pd(OAc)$_2$ (13.2 mg, 58.8 mol) and 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP, 73.2 mg, 118 μmol). The reaction mixture was heated to reflux for 2 h. After cooling to room temperature, reaction mixture was filtered through celite and concentrated, followed by purification on silica gel (80% ethyl acetate in hexane) provided 2 (228.2 mg, 0.540 mmol, 92%) as light yellow oil; IR (neat) ν_{max} 3282, 2960, 2858, 1600, 1472, 1379, 1210 cm$^{-1}$; TLC (ethyl acetate) $R_f = 0.50$; 1H NMR (500 MHz, CDCl$_3$) d 8.83 (s, 1H), 8.73 (d, J = 1.5 Hz, 1H), 8.01 (d, J = 9.0 Hz, 1H), 7.74 (s, 1H), 7.48-7.46 (dd, J =
2.0, 9.0 Hz, 1H), 7.25 (s, 1H), 5.65 (s, 1H), 5.58-5.55 (dd, J = 2.0, 10.0 Hz, 1H), 4.18-4.15 (m, 1H), 3.76 (d, J = 12.0 Hz, 1H), 2.15-2.04 (m, 3H), 1.77-1.74 (m, 2H), 1.67-1.63 (m, 1H), 1.55 (s, 9H); 13C NMR (125.7 MHz, CDCl$_3$) δ 156.0, 154.8, 151.4, 149.3, 148.3, 138.8, 135.3, 134.9, 123.2, 119.0, 115.9, 110.6, 81.9, 68.7, 52.1, 31.4, 29.3, 25.1, 23.1; ESI-HRMS calcd. for C$_{21}$H$_{26}$N$_7$OS [M + H]$^+$ 424.1914, found 424.1908.

N^2-6-benzothiazolyl-N^6-tert-butyl-9H-purine-2,6-diamine (BAP-1). A solution of 2 (115.2 mg, 0.272 mmol) in TFA/MeOH (1 ml TFA, 3 ml MeOH) was stirred at room temperature for 2 h and concentrated. The residue was diluted with ethyl acetate and washed with 2N NaOH. The organic extracts were dried over Na$_2$SO$_4$, filtered and concentrated in vacuo. Chromatographic purification on silica gel (80% acetone in hexane) provided BAP-1 (74.2 mg, 0.219 mmol, 80%) as yellow oil. IR (neat) ν_{max} 3307, 2961, 2928, 2859, 1601, 1520, 1387, 1200 cm$^{-1}$; TLC (ethyl acetate) R$_f$ = 0.15; 1H NMR (500 MHz, acetone-d_6) δ 8.97 (s, 1H), 8.91 (d, J = 2.0 Hz, 1H), 8.66 (s, 1H), 7.91 (d, J = 9.0 Hz, 1H), 7.81 (s, 1H), 7.73-7.70 (dd, J = 2.0, 9.0 Hz, 1H), 6.04 (s, 1H), 1.50 (s, 9H); 13C NMR (125.7 MHz, acetone-d_6) δ 157.0, 155.4, 152.3, 151.9, 148.7, 140.7, 136.8, 135.5, 123.5, 119.4, 110.7, 110.3, 52.2, 29.3; ESI-HRMS calcd. for C$_{16}$H$_{18}$N$_7$S [M + H]$^+$ 340.1339, found 340.1333.
N²-6-benzothiazolyl-N⁶-tert-butyl-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-2,6-diamine (2)

¹H NMR
N^2-6-benzothiazolyl-N^6-tert-butyl-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-2,6-diamine (2)

13C NMR

$\text{13C NMR, } 125 \text{ MHz, CDCl}_3$

δ_{ppm}

- 23.08
- 25.12
- 29.28
- 31.43

- 52.08

- 68.72
- 76.91 cdcd
- 77.16 cdcd
- 77.41 cdcd
- 81.93

- 110.55
- 115.95
- 119.01
- 122.37

- 134.77
- 135.32
- 138.85
- 148.22
- 149.29
- 154.43
- 154.76
- 155.99
N^2-6-benzothiazolyl-N^6-tert-butyl-9H-purin-2,6-diamine (BAP-1)

1H NMR

1H NMR, 500 MHz, Acetone-d6

8.98
8.49
8.44
8.39
8.34
8.08
7.94
7.87
7.82
7.77
7.72
7.39
6.98
5.06
4.24
3.61
3.22
2.01
1.20
0.81
0.54
0.43
0.34
0.25
N^2-6-benzothiazolyl-N^6-tert-butyl-9H-purin-2,6-diamine (BAP-1)

13C NMR
HIGH RESOLUTION MASS SPECTROMETRY (HRMS) ANALYSIS OF COMPOUND 2 AND BAP-1

Compound 2

- Calculated Mass: 424.1914
- Observed Mass: 424.1908
- Error: 0.14 ppm

BAP-1

- Calculated Mass: 340.1339
- Observed Mass: 340.1333
- Error: 0.17 ppm
Supplementary Figure S1. (a) the chemical structure of BAP-1. (b) 3D Western blot analysis using SW620 MCTS treated with 20 μM BAP-1 or vehicle control (DMSO) for 72 h. BAP-1 treatment induced the downregulation of key mesenchymal genes, including vimentin, Slug, ZEB1, and c-Myc. β-Actin was used as a loading control.
Supplementary Figure S2. KinaseSeeker™ Screen. Neo was screened against 156 kinases implicated in cancer. The results are tabulated as a heat map and indicate that neo is not a potent protein kinase inhibitor. None of the 156 kinases tested showed greater than 30% inhibition when treated with 10 µM neo.
Supplementary Figure S3. Human cell line STR profiling. Fifteen short tandem repeat (STR) loci plus the gender determining locus, Amelogenin, were amplified using the AmpFLSTR® Identifiler® PCR Amplification Kit (Applied Biosystems). Samples were processed using the ABI Prism® 3100-Avant Genetic Analyzer. Data were analyzed using GeneMapper® v3.5 Software (Applied Biosystems).

Sample Name	Marker	Allele 1	Allele 2	Additional Allele	Additional Allele
DLD1	Amel	X	Y		
	CSF1PO	11	12		
	D13S317	8	11		
	D16S539	12	13		
	D18S51	11	17		
	D19S433	14	16		
	D21S11	29	32.2		
	D2S1338	17	25		
	D3S1358	17	17		
	D5S818	13	13		
	D7S820	10	12		
	D6S1179	15	15		
	FGA	22	22		
	THO1	7	9.3		
	TPOX	8	11		
	vWA	18	19		
HCT116	Amel	X	Y		
	CSF1PO	7	10		
	D13S317	10	12		
	D16S539	11	13		
	D18S51	16	17		
	D19S433	12	?		
	D21S11	29	30		
	D2S1338	16	16		
	D3S1358	12	18		
	D5S818	10	11		
	D7S820	11	12		
	D6S1179	10	11	12	14
	FGA	18	23		
	THO1	8	9		
	TPOX	8	9		
	vWA	17	22	23	
SW480	Amel	R	X		
	CSF1PO	B	13	14	
	D13S317	G	12		
	D16S539	G	13		
	D18S51	Y	13		
	D19S433	Y	13		
	D21S11	B	30	30.2	
	D2S1338	G	17	24	
	D3S1358	G	15		
	D5S818	R	13		
	D7S820	B	8		
	D6S1179	B	13		
	FGA	R	24		
	THO1	G	8		
	TPOX	Y	11		
	vWA	Y	16		
SW620	Amel	R	X		
	CSF1PO	B	13	14	
	D13S317	G	12		
	D16S539	G	9	13	
	D18S51	Y	13		
	D19S433	Y	13		
	D21S11	B	30	30.2	
	D2S1338	G	17	24	
	D3S1358	G	16		
	D5S818	R	13		
	D7S820	B	8	9	
	D6S1179	B	13		
	FGA	R	24		
	THO1	G	8		
	TPOX	Y	11		
	vWA	Y	16		
Supplementary Figure S4. The SRB cytotoxicity results of 32 different colorectal cancer cell lines after 72 h treatment with neo, tabulated with mutation status (MUT). Neo displays nM IC\(_{50}\) values for all cell lines tested. In particular, SW48, SKCO1, and SW620 cell lines (highlighted in red) were the most sensitive to neo.

Cell Line	Neo IC\(_{50}\) (µM)	KRAS	NRAS	BRAF	PIK3CA	APC	β-Catenin	p53
SW48	0.007							
SKCO1	0.013	MUT						MUT
SW620	0.059	MUT	MUT					MUT
LS180	0.093	MUT	MUT					MUT
RKO	0.118		MUT					
CL34	0.195		MUT					
MIP101	0.199	MUT						
HT15	0.204	MUT						
SW1463	0.204	MUT						MUT
HCT116	0.229	MUT						MUT
HT55	0.257							MUT
GP2D	0.282	MUT						
LS123	0.301	MUT						MUT
HCT8	0.302	MUT						
DLD1	0.307	MUT						
LS513	0.324	MUT						MUT
HT29	0.327	MUT	MUT	MUT				MUT
LS174T	0.339	MUT	MUT					MUT
GEO	0.350	MUT						
Colo320	0.360	MUT						MUT
LOVO	0.365	MUT						MUT
SW480	0.383	MUT						
GP5D	0.388	MUT						
COLO678	0.428	MUT						
WiDr	0.435							MUT
SNU1684	0.478	MUT						
HCA24	0.549							
COLO201	0.643	MUT						MUT
NCIH747	0.684	MUT						
KM20	0.687							
LS1034	0.695		MUT					MUT
MDST8	0.733							MUT
HCA7	0.746							MUT
Supplementary Figure S5. Co-immunoprecipitation Western blot analysis using DLD1 and HCT116 cells treated with 10 µM neo for 6 h or vehicle control (DMSO). Topollα immuno-precipitated with β-catenin and TCF4 in the nuclear lysate. Neo does not prevent any protein-protein interactions observed.
Supplementary Figure S6. (a) Neo was exposed to liver microsomes indicating that it is only stable in human liver microsomes. (b) Neo displayed stability in rat and human hepatocytes. (c) Neo inhibited CYP1A2 but was not a potent pan cytochrome P450 inhibitor. (d) and (e) Pharmacokinetics of Neo in rats following 1.4 mg/kg i.v. administration. Plasma levels were measured by LC/MS/MS and PK parameters were calculated using sparse sampling by non-compartmental modeling (Phoenix WinNonlin (v6.3)). Three samples were collected at each time point from six rats.
SUPPLEMENTARY INFORMATION REFERENCES

1 Yochum GS. Multiple Wnt/ss-catenin responsive enhancers align with the MYC promoter through long-range chromatin loops. *PLoS One* 2011; 6: e18966.

2 Wu B, Piloto S, Zeng W, Hoverter NP, Schilling TF, Waterman ML. Ring Finger Protein 14 is a new regulator of TCF/beta-catenin-mediated transcription and colon cancer cell survival. *EMBO Rep* 2013; 14: 347-355.

3 Nam EH, Lee Y, Park YK, Lee JW, Kim S. ZEB2 upregulates integrin alpha5 expression through cooperation with Sp1 to induce invasion during epithelial-mesenchymal transition of human cancer cells. *Carcinogenesis* 2012; 33: 563-571.

4 Lodhi N, Tulin AV. PARP1 genomics: chromatin immunoprecipitation approach using anti-PARP1 antibody (ChIP and ChIP-seq). *Methods Mol Biol* 2011; 780: 191-208.

5 Masia A, Almazan-Moga A, Velasco P, Reventos J, Toran N, Sanchez de Toledo J et al. Notch-mediated induction of N-cadherin and alpha9-integrin confers higher invasive phenotype on rhabdomyosarcoma cells. *Br J Cancer* 2012; 107: 1374-1383.

6 Halladay JS, Wong S, Jaffer SM, Sinhababu AK, Khojasteh-Bakht SC. Metabolic stability screen for drug discovery using cassette analysis and column switching. *Drug Metab Lett* 2007; 1: 67-72.

7 Kenny JR, Mukadam S, Zhang C, Tay S, Collins C, Galetin A et al. Drug-drug interaction potential of marketed oncology drugs: in vitro assessment of time-dependent cytochrome P450 inhibition, reactive metabolite formation and drug-drug interaction prediction. *Pharm Res* 2012; 29: 1960-1976.