FAST TRACK COMMUNICATION

Macroscopic coherent rectification in Andreev interferometers

Jonathan Meair\(^1\) and Philippe Jacquod\(^1,2,3\)

\(^1\) Physics Department, University of Arizona, Tucson, AZ 85721, USA
\(^2\) College of Optical Sciences, University of Arizona, Tucson, AZ 85721, USA
\(^3\) Département de Physique Théorique, Université de Genève, CH-1211 Genève 4, Switzerland

E-mail: pjacquod@physics.arizona.edu

Received 14 May 2012
Published 20 June 2012
Online at stacks.iop.org/JPhysCM/24/272201

Abstract
We investigate nonlinear transport through quantum coherent metallic conductors contacted to superconducting components. We find that in certain geometries, the presence of superconductivity generates a large, finite-average rectification effect. Specializing to Andreev interferometers, we show that the direction and magnitude of rectification can be controlled by a magnetic flux tuning the superconducting phase difference at two contacts. In particular, this results in the breakdown of an Onsager reciprocity relation at finite bias. The rectification current is macroscopic in that it scales with the linear conductance, and we find that it exceeds 5% of the linear current at sub-gap biases of a few tens of microelectronvolts.

(The some figures may appear in colour only in the online journal)

The presence of superconductivity often magnifies quantum coherent effects in transport. Examples include Aharonov–Bohm oscillations in the conductance [1–3] and the thermopower [4–9], coherent backscattering [10, 11] and resonant tunneling [12]. The mechanism behind this enhancement can be traced back to Andreev reflection [13] which generates new (diffuson-like) contributions to the transmission that are sensitive to different phases in the superconducting order parameter or to external magnetic fluxes [3, 6–9, 14]. These contributions are proportional to the number \(N\) of transmission channels. In purely metallic systems, quantum coherent effects are of order one or smaller, they are therefore negligible in the limit \(N \gg 1\) of large linear conductances [15].

Novel quantum coherent effects in transport have recently been uncovered in the form of nonlinear contributions to the current–voltage characteristics. Of particular interest are contributions that are odd in a magnetic field \(B\), \(I_{nl} = \mathcal{G}^{(2)}(B) V^2\) with \(\mathcal{G}^{(2)}(-B) = -\mathcal{G}^{(2)}(B)\) [16–21]. They originate from electronic interactions which, under finite applied biases, modify the local potential landscape inside the conductor. The associated rectification coefficient \(\mathcal{G}^{(2)} \propto \partial E T_{ij}\) has been found to be proportional to the energy derivative of a transmission coefficient \(T_{ij}\), and in metallic quantum dots it is accordingly sample-dependent, with a vanishing average and fluctuations decreasing with \(N\), \(\text{var}(\mathcal{G}^{(2)}) \propto N^{-2}\) [16, 17]. Because \(\mathcal{G}^{(2)}\) is odd in \(B\), its presence results in the breakdown of an Onsager reciprocity relation [22] at finite bias, \(I(B, V) \neq I(-B, V)\). According to Mott’s law, at low temperature the thermopower is also proportional to the energy derivative of the transmission [23]. Therefore, the question that naturally arises is whether the enhancement of the thermopower observed in mesoscopic systems contacted to superconducting islands [4–9] translates into a similar magnification of nonlinear rectifying contributions to the conductance. This is the problem we focus on in this manuscript.

We investigate weakly nonlinear transport in coherent metals connected to superconducting contacts. We find that the presence of superconductivity renders the rectification current finite on average and macroscopically large—in the sense that it scales with the linear conductance \(\langle \mathcal{G}^{(2)} \rangle = \mathcal{O}(N)\). The emergence of a finite \(\langle \mathcal{G}^{(2)} \rangle\) does not require breaking of the time-reversal symmetry in the metallic part of the system. It takes place, for instance, for two superconducting contacts with phase difference \(\phi \neq 0, \pi\), \(\langle \mathcal{G}^{(2)} \rangle \propto \sin \phi\). The
Figure 1. Sketch of the two Andreev interferometers we consider: (a) asymmetric single-cavity, and (b) double-cavity interferometer. The red half circles represent the contacts to superconductors, whose pair potentials are indicated.

Physics behind this effect is that, in Andreev systems, finite biases not only modify the local potential landscape in the metal [24, 25], but also affect the electrochemical potential μ_{sc} of the superconductor. In the case of a superconducting island, μ_{sc} adjusts itself to ensure current conservation, and therefore the transmission coefficients $T_{ij}(E, eU(r), \mu_{sc})$ now depend on the absolute energy E of the charge carriers, the local potential landscape $U(r)$ in the metal and additionally on μ_{sc}. Our key observation is that rather generic hybrid systems can be devised where Andreev reflection results in a large, finite-average derivative of μ_{sc}. We consider two models of Andreev interferometers [9, 14].

We are about to present predictions maximal average rectification currents amounting to 5–10% of the linear current at still moderate, sub-gap biases of 10–30 μV, and for which superconducting correlations persist over distances of several microns. In purely metallic systems, fluctuating rectification effects of the order of 2% typically occur for biases in the range 0.1–1 mV [19–21].

We consider two models of Andreev interferometers, where two metallic terminals indexed $i = L, R$ are connected to mesoscopic (either chaotic ballistic or disordered diffusive) quantum dots via leads carrying $N_i \gg 1$ transmission channels. The dots have no particular spatial symmetry and are ideally connected to two s-wave superconducting contacts with pair potentials Δe^{ϕ_i}, each carrying N_{ij} channels. As physical properties depend only on phase differences, we set $\phi_L = -\phi/2$ and $\phi_R = \phi/2$ with $\Delta \in \mathbb{R}$. We consider a single superconducting island with two contacts into which no current flows on time average in steady-state. The models are sketched in figure 1. We consider the regime where the temperature is much smaller than the pair potential, the latter being in its turn much smaller than the Fermi energy, $T \ll T \ll E_F$. At low bias, $eV \ll \Delta$, the quasiparticle excitation energy is then always much smaller than Δ. Accordingly, we assume perfect Andreev reflection at the superconducting contacts.

Both our models are specifically devised to correlate the average time an electron takes on its way from one lead to a superconducting contact with the phase at that contact. This is achieved by the introduction of ballistic necks, which quasiparticles at the Fermi level cross in a time $\delta \tau$. These necks are indicated by dashed lines in figure 1. The way in which the action and Andreev reflection phases are correlated is easy to see by considering electrons at an excitation energy ε, injected from the left terminal and Andreev reflected back to it. From figure 1 we see that, if Andreev reflection occurs at the right superconducting contact, these electrons acquire a total phase that is larger by an amount $2\varepsilon \delta \tau - \phi$ than if they hit the left superconducting contact. Such correlations were shown in [9] to generate a large, finite-average contribution to the thermopower for finite ϕ. We show below that they also result in a finite-average rectification.

The starting point of our analysis is the scattering theory formula for the electric current in terminal i [26] (we set $\hbar, k_B = 1$ and express electric currents in units of $2e^2/h$)

$$I_i = \int_0^\infty \frac{d\varepsilon}{e} \sum_{j} \sum_{\alpha, \beta} \alpha(N_i \delta_{ij} \delta_{\alpha \beta} - T_{ij}^{\beta \alpha}) f^{\beta}_{ij}(\varepsilon),$$

(1)

with quasiparticle indices $\alpha, \beta = e, +1$ for electrons and $h, -1$ for holes, the Fermi function for a β-quasiparticle $f^{\beta}_{ij}(\varepsilon) = (\exp(\varepsilon - \beta e(V_j - V_{sc})) / T) + 1)^{-1}$ and the positive-defined quasiparticle excitation energy $\varepsilon = |E - eV_{sc}| = |E - \mu_{sc}|$. We introduced transmission coefficients $T_{ij}^{\beta \alpha}$ for a β-quasiparticle injected from lead j to an α-quasiparticle exiting in lead i. In the presence of superconductivity, transmissions will depend on (i) the energy E of the injected quasiparticle, (ii) the local potential landscape $U(r)$ on the quantum dot, and (iii) the electrochemical potential $\mu_{sc} = eV_{sc}$ on the superconductor. We take μ_{sc} as our reference energy and express the transmission probabilities in terms of two energy differences, $T_{ij}^{\beta \alpha}(eU(r) - \mu_{sc}, \varepsilon)$, which describe how transmission is affected by the local potential landscape and the quasiparticle’s excitation energy.

At low but finite bias we expand equation (1) to quadratic order in $V_j - V_{sc}$ and write the current as

$$I_i = \sum_j G^{(1)}_{ij} (V_j - V_{sc}) + \sum_{j,k} G^{(2)}_{jk} (V_j - V_{sc})(V_k - V_{sc}).$$

(2)

The linear, $G^{(1)}_{ij}$, and quadratic, $G^{(2)}_{jk}$, conductances are given by

$$G^{(1)}_{ij} = \int_0^\infty d\varepsilon (-\partial_\varepsilon f) g_{ij},$$

(3a)

$$G^{(2)}_{jk} = \frac{1}{2} \int_0^\infty d\varepsilon (-\partial_\varepsilon f) \left(e\partial_\varepsilon g_{ij} + 2\partial_\varepsilon g_{ij} \right).$$

(3b)
with
\[g_{ij} = \sum_{\alpha, \beta} \alpha \beta (N_{ij} \delta_{\alpha \beta} - T_{ij}^{\alpha \beta}), \] (4a)
\[b_{ij} = \sum_{\alpha, \beta} \alpha (N_{ij} \delta_{\alpha \beta} - T_{ij}^{\alpha \beta}). \] (4b)

The linear conductance has been calculated earlier (see e.g. [9, 14]), and we focus our attention on the nonlinear term. The second term in the parentheses in equation (3) reproduces the interferometer of figure 1(a), we find, to leading order in \(N_{\text{L,R}} \), (a) Contribution to \((T_{ij}^{\alpha \beta}) \), and ((b)–(d)) contributions to \((T_{ij}^{\alpha \beta}) \). The blue (red) lines indicate electron (hole) trajectories, while the dashed lines indicate complex-conjugated amplitudes. Normal leads are labeled \(i, j \) while superconductors are labeled \(S\alpha, S\beta \). Contributions to \((T_{ij}^{\alpha \beta}) \) are obtained from (a) ((b)–(d)) by substituting \(e \leftrightarrow h \) everywhere.

For metallic mesoscopic cavities the derivative of the transmission with respect to the local potential is random from the quasiparticle excitation energy \(\epsilon \) counted from the chemical potential of the superconductor. Below we find that \(\mu_{\text{sc}} \) is not correlated to the local potential fluctuations [16].

\[\langle \delta V_{ij} \rangle = \int dr \frac{\delta g_{ij}}{\delta(U(r) - V_{\text{sc}})} \left(\frac{\partial (U(r) - V_{\text{sc}})}{\partial V_k} \right). \] (5)

Equation (6) expresses the electric currents through the normal leads as a function of the superconducting chemical potential \(\mu_{\text{sc}} \). In steady-state, the latter is self-consistently determined by current conservation \(I_\text{L} = -I_\text{R} \) at the normal leads. The next step is thus to determine \(\mu_{\text{sc}} \) and insert its value into equation (6). One gets an explicitly gauge invariant expression

\[I_i = \sum_j G_{ij}^{(1)} (V_j - V_{\text{sc}}) + \sum_j G_{ij}^{(2)} (V_j - V_{\text{sc}})^2, \] (6)

with

\[G_{ij}^{(2)} = \frac{\epsilon}{2} \int_0^\infty d\epsilon (-\partial f) \partial_\epsilon b_{ij}. \] (7)

Equation (6) expresses the electric currents through the normal leads as a function of the superconducting chemical potential \(\mu_{\text{sc}} \). In steady-state, the latter is self-consistently determined by current conservation \(I_\text{L} = -I_\text{R} \) at the normal leads. The next step is thus to determine \(\mu_{\text{sc}} \) and insert its value into equation (6). One gets an explicitly gauge invariant expression

\[I_\text{L} = G^{(1)} V + G^{(2)} V^2, \] (8)

with the bias voltage \(V = V_L - V_R \) and

\[G^{(1)} = (G_{1L}^{(1)} G_{RR}^{(1)} - G_{LR}^{(1)} G_{RL}^{(1)}) \sum_k G_{kl}^{(1)}; \] (9a)
\[G^{(2)} = \sum_l (G_{1L}^{(2)} G_{RL}^{(1)} - G_{LR}^{(2)} G_{1R}^{(1)}) \times \sum_k (G_{kl}^{(1)} - G_{kl}^{(2)}) \left(\sum_l G_{kl}^{(1)} \right)^2. \] (9b)

It is easily checked that the expression for \(G^{(1)} \) reproduces the result of [26]. To calculate the rectification coefficient \(G^{(2)} \) we follow the trajectory-based semiclassical approach of [9, 27] and compute the dominant contributions to leading order in \(N_{\text{L,R}} \), \(N_{\text{SR},\text{SL},\text{SR}} \) and \(N_{\text{SL}}/N_{\text{L,R}} \). The values of the integral \(I_a \) decreases with the temperature, \(T \), and the dwell time, \(\tau_D \), through the cavity. When \(T \ll \tau_D^{-1} \), one has \(I_a = 2\pi T \delta \tau^2 \text{csch}(2\pi T \delta \tau) \). For a given temperature, it is largest when \(\delta \tau \approx 0, 3/T \) (when \(\pi \delta T \text{coth}(2\pi T \delta T) = 1 \)).

\[I_a = \int_0^\infty d\epsilon (-\partial f) \partial_\epsilon \left[\frac{\sin(2\epsilon \delta \tau)}{1 + (2\epsilon \tau_D^2)} \right]. \] (9)

Figure 2. Semiclassical diagrams that give the dominant phase-sensitive contributions to the rectification coefficient \(G^{(2)} \) to leading order in \(N_{\text{L,R}}/N_{\text{L,R}} \), (a) Contribution to \((T_{ij}^{\alpha \beta}) \), and ((b)–(d)) contributions to \((T_{ij}^{\alpha \beta}) \). The blue (red) lines indicate electron (hole) trajectories, while the dashed lines indicate complex-conjugated amplitudes. Normal leads are labeled \(i, j \) while superconductors are labeled \(S\alpha, S\beta \). Contributions to \((T_{ij}^{\alpha \beta}) \) are obtained from (a) ((b)–(d)) by substituting \(e \leftrightarrow h \) everywhere.

The value of the integral \(I_a \) decreases with the temperature, \(T \), and the dwell time, \(\tau_D \), through the cavity. When \(T \ll \tau_D^{-1} \), one has \(I_a = 2\pi T \delta \tau^2 \text{csch}(2\pi T \delta \tau) \). For a given temperature, it is largest when \(\delta \tau \approx 0, 3/T \) (when \(\pi \delta T \text{coth}(2\pi T \delta T) = 1 \)).

We see from equation (10) that, when \(\delta \tau \) is nonzero, a finite-averaging rectification current flows. This current is odd in \(\phi \). Both finite \(\phi \) and \(\delta \tau \) are required for this current to occur, because they both are necessary to correlate the action and Andreev phases. This correlation is key to obtaining a finite-averaging \(\delta \tau b_{ij} \) in equation (8). Equation (10b) further shows that when \(N_{\text{L}} - N_{\text{R}} \gg 1 \), \(i, j = \text{L}, \text{R}, \text{S}, \text{L}, \text{R} \), and for sufficiently asymmetric normal terminals, \(|N_{\text{L}} - N_{\text{R}}| \gg 1 \), the rectification current is macroscopically large, \(G^{(2)} = O(N) \).
We next present our results for the double-cavity interferometer. We find, again to leading order,

\[
\langle G^{(1)} \rangle = N_C + \frac{2N_{SL}N_{SR}}{N_{SL} + N_{SR}}, \quad \text{(12a)}
\]

\[
\langle G^{(2)} \rangle = 2e\sin\phi \left(\frac{N_{SL} - N_{SR}}{N_{SL} + N_{SR}} \right)^2 N_{SL}N_{SR}N_C I_b, \quad \text{(12b)}
\]

where \(N_C \ll N_{L,R}\) is the number of channels in the neck connecting the two cavities and the thermal damping integral is given this time by

\[
I_b = \int_0^\infty d\tau (-\partial_\tau) \partial_\tau \left[\Im \left\{ \frac{\exp(2ie\delta\tau)}{1 + 2ie\tau_D^2} \right\} \right]. \quad \text{(13)}
\]

Here, for simplicity, we took the same dwell time, \(\tau_D\), for both cavities. From equation (12b), we see that a macroscopic rectification effect also occurs in this geometry—under similar conditions to those above, i.e. that \(N_i = O(N) \gg 1\) for \(i = L, R, C, SL\) and \(SR\), and sufficiently asymmetric superconducting contacts, \(|N_{SL} - N_{SR}| \gg 1\)—and that when \(T \ll \tau_D^{-1}\), the rectification effects in the two geometries of figure 1 have the same thermal damping, \(I_b = I_{\text{in}}\).

We illustrate our results in figure 3 for the asymmetric single-cavity model. We first show the current as a function of \(V\) for \(\phi = 0, \pi/2\) and \(\pi\). We see that a rectification effect of more than 5% occurs at \(\phi = \pi/2\) and a bias voltage of 30 \(\mu V\). This is rendered more evident in figure 3(b), which shows the relative current asymmetry \([I(V) - I(-V)]/I_{\text{in}}(V)\), normalized by the linear current \(I_{\text{in}} = G^{(1)}V\) as a function of bias voltage. We see that at still moderate biases (well below the superconducting gap of Al, and corresponding to a coherence length \(\xi_F/eV\) ranging from tens to hundreds of micrometers for GaAs 2DEG to 3D metals), the rectification effect exceeds 5%. We next show in figure 3(c) the rectification current as a function of \(\phi\) for three different voltages \(V = 10, 20, 30 \mu V\). In contrast to the mesoscopic rectification effects in metallic quantum dots which are random in an applied magnetic field [16, 17, 19], we see that the presence of superconductivity induces a regular behavior of \(\langle G^{(2)} \rangle\) as a function of \(\phi\), with the magnitude of the effect increasing with bias. Finally, the damping of the rectification with temperature is illustrated in figure 3(d).

Our approach to weakly nonlinear transport is closely related to the one pioneered by Büttiker and Christen [24]. One important difference is that we here took advantage of the presence of superconductivity to Taylor-expand the currents in voltages measured from the superconducting potential \(V_{\text{sc}}\). This directly enforces gauge invariance at our level of approximation, where the screening term in equation (3b) is neglected. Current conservation is furthermore satisfied in our treatment by unitarity of the scattering matrix, \(\sum_{ij} T^o_{ij} = N_j\), and by the condition (self-consistently determining \(V_{\text{sc}}\)) that no current enters the superconducting island on time average in steady-state. In [24], voltages are taken from...
an arbitrary potential as there is no superconductor. In that case gauge invariance is only satisfied after a self-consistent determination of the local potential landscape \(U(\mathbf{r}) \) and of the dependence of the transmission coefficients on the external voltage biases via the latter.

We have presented a theory for weakly nonlinear transport in hybrid metallic/superconducting systems and shown that there can be a finite-average \(O(N) \) rectification for such systems. We found that, in contrast to purely metallic mesoscopic systems, the presence of superconductivity generates potentially large, \(O(N) \), finite-average rectification effects. The latter can furthermore be tuned in magnitude and direction by an external magnetic flux. Alternatively, we note that this effect leads to the breakdown of an Onsager relation, with (still in units of \(2e^2/h \))

\[
I(\phi, V) - I(-\phi, V) = 4e \sin \phi [N_L N_R N_{SL} N_{SR} (N_R - N_L) / (N_L + N_R)^4] a L_v V^2
\]

for the asymmetric single-cavity model and

\[
I(\phi, V) - I(-\phi, V) = 4e \sin \phi [(N_{SL} - N_{SR})^2 N_{SR} N_{SR} N_{SL} - (N_{SL} + N_{SR})^2 N_L N_R a L_v V^2
\]

for the double-cavity model. We expect the rectification effect we predict to be experimentally testable in Andreev interferometers such as those of \([2, 4, 5]\).

This work was supported by the NSF under grants DMR-0706319 and PHY-1001017 and by the Swiss Center of Excellence MANEP. It is our pleasure to thank M Büttiker and P Stano for discussions.

References

[1] Petrashev V T, Antonov V N, Delsing P and Claeson T 1993
Phys. Rev. Lett. 70 347

[2] den Hartog S G, Kapteyn C M A, van Wees B J, Klapwijk T M and Borghs G 1996
Phys. Rev. Lett. 77 4954

[3] Nazarov Y V and Stoof T H 1996
Phys. Rev. Lett. 76 823

[4] Eom J, Chien C-J and Chandrasekhar V 1998
Phys. Rev. Lett. 81 437

[5] Parsons A, Sosnin I A and Petrashev V T 2003
Phys. Rev. B 67 140502

[6] Seviour R and Volkov A F 2000
Phys. Rev. B 62 R6116

[7] Virtanen P and Heikkilä T 2007
Appl. Phys. A 89 625

[8] Titov M 2008
Phys. Rev. B 78 224521

[9] Jacquod Ph and Whitney R S 2010
Europhys. Lett. 91 67009

[10] Beenakker C W J, Melsen J A and Brouwer P W 1995
Phys. Rev. B 51 13883

[11] den Hartog S G, van Wees B J, Nazarov Yu V, Klapwijk T M and Borghs G 1998
Physica B 249 467

[12] Goorden M C, Jacquod Ph and Weiss J 2008
Phys. Rev. Lett. 100 067001

Goorden M C, Jacquod Ph and Weiss J 2008
Nanotechnology 19 135401

[13] Andreev A F 1964
Sov. Phys.—JETP 19 1228

[14] Engl T, Kuipers J and Richter K 2011
Phys. Rev. B 83 205414

[15] Imry Y 2008
Introduction to Mesoscopic Physics
3rd edn (Oxford: Oxford University)

[16] Sanchez D and Büttiker M 2004
Phys. Rev. Lett. 93 106802

[17] Spivak B and Zyuzin A 2004
Phys. Rev. Lett. 93 226801

[18] Andreev A V and Glazman L I 2006
Phys. Rev. Lett. 97 266806

[19] Zumbühl D, Marcus C M, Hanson M P and Gossard A C 2006
Phys. Rev. Lett. 96 206802

[20] Leturcq R, Sanchez D, Götz G, Ihn T, Ensslin K, Driscoll D C and Gossard A C 2006
Phys. Rev. Lett. 96 126801

[21] Angers L, Zakka-Bajjani E, Debloc R, Guéron S, Bouchiat H, Cavanna A, Gensner U and Polianski M 2007
Phys. Rev. B 75 115309

[22] Onsager L 1931
Phys. Rev. 38 2265

[23] Ashcroft N W and Mermin N D 1967
Solid-State Physics
(Philadelphia: Saunders)

[24] Christen T and Büttiker M 1996
Europhys. Lett. 35 523

[25] Pilgram S, Schomerus H, Martin A M and Büttiker M 2002
Phys. Rev. B 66 045321

[26] Claughton N R and Lambert C J 1998
Phys. Rev. B 53 6605

[27] Whitney R S and Jacquod P 2009
Phys. Rev. Lett. 103 247002