IL-6 gene rs1800795 polymorphism and diabetes mellitus: a comprehensive analysis involving 42,150 participants from a meta-analysis

Zhiying Cheng¹, Chunmin Zhang²* and Yuanyuan Mi³*

Abstract

Background: Over the past two decades, several studies have focused on the association between a common polymorphism (rs1800795) from interleukin-6 (IL-6) gene and Diabetes Mellitus (DM) risk. However, the results remain ambiguous and indefinite.

Methods: A comprehensive analysis was performed to explore this relationship. A search was conducted in the PubMed, Embase, Chinese (CNKI and Wanfang), and GWAS Catalog databases, covering all publications until February 10, 2022. Odds ratios (OR) with 95% confidence intervals (CI) were used to evaluate the strength of the association. Publication bias was assessed using both Begg and Egger tests.

Results: Overall, 34 case–control studies with 7257 T2DM patients and 15,598 controls, and 12 case–control studies (10,264 T1DM patients and 9031 health controls) were included in the analysis. A significantly lower association was observed between the rs1800795 polymorphism and T2DM risk in Asians, mixed population, and hospital-based (HB) subgroups (C-allele vs. G-allele: OR = 0.76, 95% CI 0.58–0.99, P = 0.039 for Asians; CG vs. GG: OR = 0.74, 95% CI 0.58–0.94, P = 0.014 for mixed population; CC vs. GG: OR = 0.61, 95% CI 0.41–0.90, P = 0.014 for HB). However, increased associations were found from total, mixed population, and HB subgroups between rs1800795 polymorphism and T1DM susceptibility (CG vs. GG: OR = 1.32, 95% CI 1.01–1.74, P = 0.043 for total population, CC vs. GG: OR = 2.45, 95% CI 1.18–5.07, P = 0.016 for mixed individuals; C-allele vs. G-allele: OR = 1.29, 95% CI 1.07–1.56, P = 0.0009 for HB subgroup).

Conclusions: In summary, there is definite evidence to confirm that IL-6 rs1800795 polymorphism is associated with susceptibility to decreased T2DM and increased T1DM.

Keywords: Interleukin-6, Type 2 diabetes mellitus, Type 1 diabetes mellitus, Polymorphism, Risk, Meta-analysis

Background

Diabetes mellitus (DM) is a chronic medical condition in which the body either produces too little insulin from pancreatic islets or lacks effective access to insulin [1]. Type 1 DM (T1DM) is most often diagnosed in children and adolescents with respect to islet function development. Type 2 DM (T2DM) is caused by insulin resistance, and the body cannot use insulin effectively...
and may gradually lose its production capacity [2–4]. To the best of our knowledge, age, obesity, and family history are the major risk factors of developing DM [5]. However, the exact pathogenesis of DM is not fully understood. Past genome-wide association studies (GWAS) have identified over 100 genetic sites, which suggests that there are significant associations between different sites and susceptibility to DM, indicating that genetic factors may be crucial for its occurrence and development [6, 7].

Interleukin-6 (IL-6), a classic proinflammatory cytokine, plays a prominent role in the inflammatory response and is associated with insulin resistance and T2DM [8]. In addition, chronic low-grade inflammation and activation of the innate immune system are closely associated with the pathogenesis of T1DM and its complications. Inflammatory cytokines such as IL-6 are determinants of these pathogenic processes [9, 10].

The IL-6 gene is located on chromosome 7p21. The gene, which includes seven exons, covers approximately 12.8 kb of genomic DNA [11]. A common single nucleotide polymorphism (SNP) in the IL-6 promoter in T2DM has been named rs1800795 (also named –174G/C) [12]. The rs1800795 polymorphism functionally affects IL-6 promoter activity, indicating that the carried CC genotype individual is associated with lower plasma levels of IL-6 compared with individuals with the GG genotype [13]. In addition, the G-allele in homozygotes (GG genotype) was associated with higher concentrations of IL-6, increasing the immune response [14, 15], demonstrating

Fig. 1 A flowchart illustrating the search strategy used to identify association studies for IL-6 rs1800795 polymorphism and DM risk
Author	Year	Country	Ethnicity	Type	Cases	Controls	SOC	Genotype	NOS						
Campos	2019	Brasil	Mixed	T1DM	141	150	HB	9	69	63	7	68	75	0.084 PCR–RFLP	6
Mysliwiec	2008	Poland	Caucasian	T1DM	200	172	HB	59	105	36	43	75	54	0.103 PCR–RFLP	8
Siekiera	2002	Poland	Caucasian	T1DM	36	36	HB	5	24	7	12	18	6	0.684 PCR–SSP	6
Ururahy	2015	Brazil	Mixed	T1DM	120	152	HB	9	41	70	4	45	103	0.727 TaqMan	8
Settin	2009	Egypt	African	T1DM	50	98	PB	9	38	3	6	87	5	<0.05 PCR–SSP	7
Javor	2010	Slovakia	Caucasian	T1DM	151	140	PB	31	85	35	21	66	53	0.951 PCR–SSP	7
Cooper	2007	USA	Caucasian	T1DM	8852	7785	PB	1612	4312	2928	1515	3814	2456	0.0619 MALDI-TOF	9
Jahromi	2000	England	Caucasian	T1DM	257	120	PB	32	95	130	29	51	40	0.118 sequence	7
Tsavou	2004	Greece	Caucasian	T1DM	31	39	PB	3	11	17	3	11	25	0.281 PCR–SSP	8
Mysliwska	2009	Poland	Caucasian	T1DM	210	170	PB	69	110	31	51	68	51	<0.05 PCR–RFLP	8
Perez-Bravo	2011	Chile	Mixed	T1DM	145	103	PB	6	49	90	1	27	75	0.396 PCR–RFLP	7
Mukhopadhyaya	2010	India	Asian	T2DM	40	40	PB	6	11	23	15	13	12	0.029 PCR–RFLP	8
Hamid	2005	Denmark	Caucasian	T2DM	1389	4401	PB	328	659	402	1022	2133	1246	0.062 MALDI-TOF	9
Plataski	2018	Greece	Caucasian	T2DM	144	180	HB	12	64	68	12	54	114	0.119 PCR–RFLP	6
Vozarova	2003	Spain	Caucasian	T2DM	211	118	PB	17	110	84	19	65	34	0.193 PCR–RFLP	8
Buraczynska	2016	Poland	Caucasian	T2DM	1090	612	PB	240	534	316	129	288	195	0.237 sequence	9
Chen	2002	China	Asian	T2DM	196	130	PB	40	84	72	42	58	30	0.254 PCR–RFLP	7
Tsavou	2004	Greece	Caucasian	T2DM	31	39	HB	3	11	17	3	11	25	0.281 PCR–SSP	6
Eze	2016	Switzerland	Caucasian	T2DM	286	5560	PB	40	135	111	865	2614	2081	0.352 TaqMan	7
Bouhaha	2010	Tunisia	African	T2DM	169	281	PB	4	40	125	7	64	210	0.428 Sequencing	8
Ghavimi	2016	Iran	Asian	T2DM	120	120	HB	18	62	40	27	64	29	0.463 PCR–RFLP	7
Fathy	2018	Kuwait	Asian	T2DM	50	42	HB	1	13	36	2	11	29	0.487 TaqMan	8
Lara-Gómez	2019	Mexico	Mixed	T2DM	31	30	HB	1	11	19	0	5	25	0.618 Sequencing	7
Dhamodharan	2015	India	Asian	T2DM	139	106	HB	1	46	92	12	44	50	0.626 PCR–RFLP	7
Danielsson	2005	Sweden	Caucasian	T2DM	20	20	HB	6	12	2	6	9	5	0.662 Sequencing	7
Vozarova	2003	Spain	Caucasian	T2DM	143	145	PB	0	1	142	0	9	136	0.699 PCR–RFLP	9
Neelofar	2017	India	Asian	T2DM	50	50	HB	3	19	28	3	20	27	0.78 sequence	7
Kavitha	2016	India	Asian	T2DM	30	30	HB	0	0	30	0	1	29	0.926 PCR–RFLP	6
Kong	2010	China	Asian	T2DM	107	121	PB	0	2	105	0	2	119	0.927 PCR–SSP	6
Zhang	2011	China	Asian	T2DM	512	483	HB	0	2	510	0	1	482	0.982 PCR–RFLP	7
Saxena	2014	India	Asian	T2DM	213	145	HB	4	46	163	19	21	105	<0.05 PCR–RFLP	6
Xiao	2009	China	Asian	T2DM	85	132	HB	0	0	85	0	0	132	<0.05 PCR–RFLP	7
Nadeem	2017	Pakistan	Asian	T2DM	539	250	HB	37	267	235	48	74	128	<0.05 PCR–RFLP	6
Karadeniz	2014	Turkey	Caucasian	T2DM	86	340	HB	6	27	53	26	171	143	<0.05 PCR–RFLP	6
Table 1 (continued)

Author	Year	Country	Ethnicity	Type	Case	Control	SOC	Cases	Controls	HWE	Genotype	NOS	
Erdogan	2017	Turkey	Caucasian	T2DM	35	119	HB	1	16	18	<0.05	PCR–RFLP	8
Helaly	2013	Egypt	African	T2DM	69	98	PB	18	49	2	<0.05	an allele–specific PCR	8
Mohlig	2004	Germany	Caucasian	T2DM	188	376	PB	32	103	53	<0.05	SNuPE	8

HB hospital-based; *PB* population-based; *SOC* source of control; *PCR–RFLP* polymerase chain reaction followed by restriction fragment length polymorphism; *PCR–SSP* polymerase chain reaction followed with sequence specific primers; *MALDI-TOF* a chip-based matrix-assisted laser-desorption/ionization time-of-flight; *HWE* Hardy-Weinberg equilibrium of control group; *NOS* Newcastle–Ottawa Scale
that this polymorphism is functional, or that it defined a difference in IL-6 expression levels according to the genotype of the polymorphism.

Several epidemiological studies have observed associations between genetic variants of IL-6 and the risk of DM. For instance, Saxena et al. observed that the rs1800795 polymorphism showed a highly significant association with T2DM [16]. In contrast, Dhamodharan et al. determined that the C allele conferred significant protection against T2DM [17]. In addition, Fathy et al. [18] demonstrated a lack of significant association between rs1800795 polymorphism and T2DM. For T1DM, an increased association was observed between T1DM and the polymorphism by Cooper et al. [19]. However, Tsiavou et al. observed no significant differences [20]. Two meta-analyses (Yin and Xu et al.) showed that rs1800795 is not associated with T1DM risk [21, 22]. On the other hand, Huth and Xia et al. performed a meta-analysis and concluded that this polymorphism could be associated with a decreased risk of T2DM [23, 24]. In the last 10 years, some larger and more comprehensive studies have been conducted on this association. Therefore, it is

![Fig. 2](image)

Fig. 2
A The MAF of minor-allele (mutant-allele) for IL-6 rs1800795 polymorphism from the 1000 Genomes online database.
B The frequency about C-allele or G-allele both in case and control groups.
C The risk frequency of rs1800795 polymorphism to several disease from TCGA database

Study	Population	Group	Sample size	Ref. allele (C)	Alt. allele (G)
1000Genomes	African	Sub	1322	0.0182	0.9818
1000Genomes	East Asian	Sub	1008	0.0010	0.9990
1000Genomes	European	Sub	1006	0.4155	0.5845
1000Genomes	South Asian	Sub	978	0.139	0.861
1000Genomes	American	Sub	694	0.184	0.816
Current study	Total	Case	17,520	0.3817	0.6183
Current study	Total	Control	24,629	0.394	0.606
Table 3 Stratified analyses of IL-6 rs1800795 polymorphism and T2DM and T1DM risk

Variables	N0.	Case/Control	C-allele vs. G-allele	CG vs. GG				
			OR (95% CI)	Ph	P	OR (95% CI)	Ph	P
T2DM			Ph			Ph		
Total	34	7257/15598	0.88 (0.76–1.01)	0.000	0.075	0.91 (0.77–1.08)	0.000	0.281
HWE	25	5927/14023	0.98 (0.84–1.15)	0.000	0.832	0.97 (0.83–1.13)	0.000	0.687
Ethnicity			Ph			Ph		
Asian	14	2595/2208	0.76 (0.58–0.99)	0.000	0.039	0.99 (0.73–1.32)	0.002	0.925
Caucasian	12	3767/12090	0.96 (0.81–1.12)	0.000	0.579	0.95 (0.73–1.22)	0.000	0.683
Mixed	5	582/846	1.09 (0.55–2.19)	0.000	0.804	0.74 (0.58–0.94)	0.154	0.014
African	3	313/454	0.83 (0.37–1.89)	0.000	0.665	0.91 (0.77–1.08)	0.041	0.486
SOC			Ph			Ph		
HB	23	3546/9186	0.83 (0.68–1.01)	0.000	0.059	0.95 (0.73–1.23)	0.000	0.706
PB	11	3711/6412	0.98 (0.79–1.22)	0.000	0.874	0.89 (0.75–1.05)	0.100	0.166
T1DM			Ph			Ph		
Total	12	10,264/9031	1.17 (0.96–1.42)	0.000	0.120	1.32 (1.01–1.74)	0.000	0.043
HWE	10	10,004/8763	1.13 (0.91–1.41)	0.000	0.268	1.24 (0.96–1.61)	0.002	0.100
Ethnicity			Ph			Ph		
Caucasian	7	9737/8462	1.06 (0.81–1.38)	0.000	0.682	1.37 (0.90–2.11)	0.000	0.146
Mixed	3	406/405	1.39 (1.10–1.77)	0.497	0.006	1.33 (0.99–1.79)	0.835	0.059
SOC			Ph			Ph		
HB	4	497/510	1.29 (1.07–1.56)	0.122	0.009	1.47 (1.11–1.94)	0.428	0.008
PB	8	9767/8521	1.15 (0.89–1.48)	0.000	0.276	1.27 (0.88–1.82)	0.000	0.195
Ethnicity (with HWE)			Ph			Ph		
Caucasian	6	9527/8292	0.99 (0.74–1.34)	0.000	0.971	1.21 (0.80–1.82)	0.001	0.368
Mixed	3	406/405	1.39 (1.10–1.77)	0.497	0.006	1.33 (0.99–1.79)	0.835	0.059
SOC (with HWE)			Ph			Ph		
HB	4	497/510	1.29 (1.07–1.56)	0.122	0.009	1.47 (1.11–1.94)	0.428	0.008
PB	6	9507/8253	1.09 (0.80–1.49)	0.000	0.578	1.13 (0.81–1.58)	0.010	0.460

Variables: CC vs. GG, CC vs. GG, CC vs. CG + GG

Variables	CC vs. GG	CC vs. GG	CC vs. CG + GG						
	OR (95% CI)	Ph	P	OR (95% CI)	Ph	P	OR (95% CI)	Ph	P
T2DM									
Total	0.87 (0.73–1.03)	0.000	0.039	0.76 (0.57–1.02)	0.000	0.039	0.82 (0.63–1.07)	0.000	0.039
HWE	0.98 (0.82–1.16)	0.000	0.786	0.98 (0.72–1.33)	0.000	0.905	0.99 (0.76–1.29)	0.000	0.962
Ethnicity									
Asian	0.82 (0.61–1.11)	0.000	0.208	0.45 (0.24–0.85)	0.000	0.014	0.48 (0.27–0.86)	0.000	0.014
Caucasian	0.93 (0.72–1.20)	0.000	0.569	0.94 (0.74–1.19)	0.043	0.595	0.98 (0.89–1.10)	0.513	0.778
Mixed	0.94 (0.53–1.67)	0.000	0.833	1.25 (0.30–5.19)	0.000	0.759	1.38 (0.35–5.64)	0.000	0.645
African	0.71 (0.23–2.13)	0.003	0.536	0.99 (0.15–6.34)	0.002	0.991	1.22 (0.22–6.67)	0.000	0.818
SOC									
HB	0.85 (0.66–1.10)	0.000	0.227	0.61 (0.41–0.90)	0.000	0.014	0.64 (0.46–0.90)	0.000	0.011
PB	0.92 (0.73–1.14)	0.001	0.430	1.08 (0.68–1.71)	0.000	0.751	1.21 (0.79–1.85)	0.000	0.373
Ethnicity (with HWE)									
Table 3 (continued)

Variables	CC vs. CG vs. GG	Ph	P	CC vs. GG	Ph	P	CC vs. CG + GG	Ph	P
Asian									
CO	0.82 (0.56–1.20)	0.002	0.303	0.62 (0.28–1.38)	0.000	0.241	0.72 (0.38–1.35)	0.004	0.305
Caucasian	1.13 (0.89–1.44)	0.000	0.316	1.01 (0.80–1.28)	0.098	0.918	1.00 (0.90–1.12)	0.495	0.979
Mixed	0.94 (0.53–1.67)	0.000	0.833	1.25 (0.30–5.19)	0.000	0.759	1.38 (0.35–5.54)	0.000	0.645
SOC (with HWE)									
HB	1.01 (0.75–1.37)	0.000	0.932	0.85 (0.53–1.36)	0.000	0.493	0.85 (0.60–1.21)	0.026	0.369
PB	0.96 (0.77–1.18)	0.003	0.677	1.13 (0.72–1.79)	0.000	0.590	0.99 (0.78–1.30)	0.000	0.426
T1DM									
Total	1.32 (0.99–1.76)	0.000	0.060	1.40 (0.90–2.18)	0.000	0.134	1.12 (0.83–1.50)	0.005	0.463
HWE	1.25 (0.94–1.67)	0.000	0.131	1.27 (0.78–2.05)	0.000	0.331	1.04 (0.74–1.45)	0.014	0.839
Ethnicity									
Caucasian	1.30 (0.83–2.01)	0.000	0.249	1.31 (0.67–2.92)	0.000	0.645	0.93 (0.69–1.23)	0.024	0.598
Mixed	1.43 (1.07–1.90)	0.724	0.015	2.45 (1.18–5.07)	0.486	0.016	2.20 (1.08–4.48)	0.487	0.031
SOC									
HB	1.51 (1.15–1.98)	0.337	0.003	1.77 (1.14–2.74)	0.128	0.010	1.16 (0.57–2.35)	0.066	
PB	1.27 (0.86–1.86)	0.000	0.229	1.33 (0.77–2.32)	0.000	0.312	1.10 (0.77–1.57)	0.013	0.611
Ethnicity (with HWE)									
Caucasian	1.15 (0.74–1.78)	0.00	0.540	0.99 (0.56–1.75)	0.000	0.968	0.88 (0.61–1.25)	0.018	0.465
Mixed	1.43 (1.07–1.90)	0.724	0.015	2.45 (1.18–5.07)	0.486	0.016	2.20 (1.08–4.48)	0.487	0.031
SOC (with HWE)									
HB	1.51 (1.15–1.98)	0.337	0.003	1.77 (1.14–2.74)	0.128	0.010	1.16 (0.57–2.35)	0.066	0.680
PB	1.14 (0.78–1.68)	0.000	0.494	1.11 (0.59–2.10)	0.001	0.746	0.97 (0.62–1.50)	0.041	0.887

P_h value of Q-test for heterogeneity test; P_Z value for the statistical significance of the OR; SOC source of control, HB hospital-based, PB population-based

Table 4

Publication bias tests (Begg’s funnel plot and Egger’s test for publication bias test) for IL-6 rs1800795 polymorphism and T2DM and T1DM risk

Egger’s test

Genetic type	Coefficient	Standard error	t	P value	95% CI of intercept	z	P value
T2DM							
C-allele vs. G-allele	−0.842	0.636	−1.32	0.195	(−2.139–0.555)	1.02	0.306
CG vs. GG	−0.688	0.469	−1.47	0.152	(−1.645–0.268)	1.18	0.239
CC + CG vs. GG	−0.756	0.511	−1.48	0.149	(−1.799–0.278)	1.05	0.292
CC vs. GG	−0.318	0.301	−1.06	0.301	(−0.636–0.005)	0.34	0.736
CC vs. CG + GG	−0.304	0.32	−0.95	0.351	(−0.961–0.303)	0.45	0.653
T1DM							
C-allele vs. G-allele	1.268	0.697	1.82	0.099	(−0.286–2.235)	1.17	0.244
CG vs. GG	0.858	0.454	1.89	0.088	(−0.152–1.869)	0.07	1
CC + CG vs. GG	0.894	0.481	1.86	0.093	(−0.178–1.967)	0.21	0.837
CC vs. GG	0.455	0.323	1.41	0.189	(−0.265–1.174)	0.75	0.451
CC vs. CG + GG	0.523	0.384	1.36	0.202	(−0.331–1.379)	0.34	0.732
necessary to perform an updated meta-analysis to understand the associations between rs1800795 polymorphism and T1DM/T2DM [12, 15–20, 25–60].

Materials and methods
Document retrieval and data extraction
We used online databases, including PubMed, Embase, CNKI, Wanfang, and GWAS Catalog (https://www.ebi.ac.uk/gwas/) until on Feb 10, 2022, with keywords including ‘Interleukin-6/IL-6’, ‘polymorphism/variant’, and ‘Diabetes Mellitus/DM/T1DM/T2DM’. Two researchers (Zhiying Cheng, Chunmin Zhang) evaluated the articles to identify the stages through the abstract and then the full article. Systematic analysis/meta-analysis, case studies, other polymorphisms, insufficient data for each genotype, and duplications were identified and removed from further analysis. In addition, our meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) (Additional file 1: Table S1) and Meta-analysis of Observational Studies in Epidemiology. This study was registered at PROSPERO (number 329822; https://www.crd.york.ac.uk/prospero/). Eligible studies were selected based on the following criteria: @) studies assessing the
association between TIDM or T2DM. Additional file: As per journal requirements, every additional file must have a corresponding caption. In this regard, please be informed that the caption was taken from the Additional file 1 itself. Please advise if action taken appropriate and amend if necessary, and rs1800795 variants; @) case/control studies; and @) age-and sex-matched control subjects. The exclusion criteria were: @) not case/control studies; @) insufficient genotype frequency; @) duplicate studies; and @) significantly biased articles. Information including the name of the first author, year of publication, origin, race, DM type, genotype methods, and Hardy–Weinberg equilibrium (HWE) was collected.

Quality assessment
Quality was assessed using the Newcastle–Ottawa Scale (NOS) for cross-sectional study quality assessment. The methodological quality of each study (sampling strategy, response rate, and representativeness), comparability, and outcomes were assessed using the NOS tool. Studies with a score of more than 7 out of 10 were considered suitable. This cutoff point was determined after reviewing relevant meta-analyses from the literature [61–63].

Statistical analyses
The correlation between IL-6 rs1800795 polymorphism and the risk of TIDM/T2DM was measured using 95%

Fig. 4 Forest plot of T2DM risk associated with IL-6 rs1800795 polymorphism (CG vs. GG) in the subgroup of Mixed subgroup
confidence interval (CI) and odds-ratio (OR) according to the genotype frequencies of the case and control groups. Ethnic groups were divided into African, mixed, Caucasian, and Asian groups. Population-based (PB) and hospital-based (HB) control subgroups were also identified.

The statistical significance of the results was calculated using the Z-test. In these studies, the heterogeneity hypothesis was assessed using the Q-test based on the chi-squared test [64]. If significant heterogeneity (<0.1) was detected, the random effects model was used, else the fixed effects model was selected [65, 66]. For IL-6 rs1800795, we studied the relationship between variation and the risk of T2DM in the C-allele vs. G-allele, CG vs. GG, and CC + CG vs. GG models; and C-allele vs. G-allele, CC vs. GG, CC vs. CG + GG, CG vs. GG, and CC + CG vs. GG models for T1DM risk. The asymmetry of the funnel plot was evaluated using Begg’s test, and publication bias was evaluated using Egger’s test. Statistical significance was set at $P<0.05$ [67]. Pearson’s chi-squared test was used in the control group (P<0.05), and the χ^2 test was used to evaluate the deviation of rs1800795 polymorphism from the expected frequency of HWE [68]. All statistical tests were conducted using Stata (version 11.0; StataCorp LP, College Station, Texas, USA). The power of our meta-analysis was calculated online using the website http://www.power-analysis.com/.

Gene interaction network analysis of the IL-6 gene
To fully understand the role of IL-6 and its potential functional partners in DM, we used the STRING online server (http://string-db.org/) to construct an IL-6 gene–gene interaction network.
Results

Study selection and characteristics

A total of 1356 articles were identified from the four main databases (PubMed, Embase, CNKI, and Wanfang). 1260 papers were excluded after reading the abstract, and 96 articles were used for a complete evaluation. Among them, 50 articles were excluded for the following reasons: systematic analysis/meta-analysis (10), only case studies (9), other polymorphisms in the IL-6 gene (15), insufficient data for each genotype (8), and duplication (8) (Fig. 1). Thus, 46 papers [13–18] accounting for a total of 17,521 DM patients and 24,629 healthy controls were included in our meta-analysis (34 case–control studies including 7257 T2DM patients and 15,598 controls, and 12 case–control studies including 17,521 T1DM and 9031 controls) [12, 15–20, 25–60] (Table 1). We checked the minor allele frequency (MAF) reported for the five main populations worldwide in the 1000 Genomes Browser (https://www.ncbi.nlm.nih.gov/snp/rs1800795#frequency_tab) (Fig. 2A). In addition, the C-allele frequency was significantly lower in both cases and controls (Fig. 2B) (Table 2). The relationship between this polymorphism and several organs is shown in Fig. 2C (https://www.gtexportal.org/home/). The distribution of genotypes in controls was not consistent with the HWE in T2DM (9 case–control studies) [15, 26, 32, 38, 41, 42, 51, 53, 60] and T1DM (2 case–control studies) [44, 48] (Table 1). Genotyping of the SNPs of IL-6 gene rs1800795 polymorphism was conducted using the genotyping methods listed in Table 1.

IL-6 rs1800795 polymorphism and T2DM risk

The results of the meta-analysis suggested no associations between IL-6 rs1800795 polymorphism and T2DM risk (Table 3). If studies that were not consistent with HWE were excluded, no significant results were detected in any of the three models. Analysis of ethnicity subgroups showed a statistically significant association in Asians (OR_C-allele vs. G-allele = 0.76, 95% CI 0.58–0.99, \(P = 0.039\), random effect model; OR_CC vs. GG = 0.45, 95% CI 0.24–0.85, \(P = 0.014\), random effect model, OR_CC vs. CG+GG = 0.48, 95% CI 0.27–0.86, \(P = 0.014\), random effect model, Fig. 3) and mixed populations (OR_CC vs. GG = 0.74, 95% CI 0.58–0.94, \(P = 0.014\), fixed effect model, Fig. 4). Surprisingly, a marginal and poorly significant difference was found in the HB sources of the control subgroup (OR_CC vs. GG = 0.61, 95% CI 0.41–0.90, \(P < 0.011\), random
effect model, \(OR_{CC \text{ vs. } CG+GG} = 0.64, 95\% \ CI 0.46–0.90, \ P=0.011, \) random effect model, Fig. 5). Furthermore, if studies that were not consistent with HWE were included, no significant association was found between Asians and HB subgroups (Table 3).

IL-6 rs1800795 polymorphism and T1DM risk.

There was a significant positive association between rs1800795 polymorphism and T1DM susceptibility in the total analysis (\(OR_{CC \text{ vs. } GG} = 1.32, 95\% \ CI 1.01–1.74, \ P=0.043, \) random effect model, Fig. 6) (Table 3). Additionally, a risk association was observed between this polymorphism in the mixed population (\(OR_{C\text{-alle} \text{ vs. } G\text{-alle}} = 1.39, 95\% \ CI 1.10–1.77, \ P=0.006, \) fixed effect model, \(OR_{CC \text{ vs. } GG} = 2.45, 95\% \ CI 1.18–5.07, \ P=0.016, \) fixed effect model, \(OR_{CC+CG \text{ vs. } GG} = 1.43, 95\% \ CI 1.07–1.90, \ P=0.015, \) fixed effect model, \(OR_{CC \text{ vs. } GG+GG} = 2.20, 95\% \ CI 1.08–4.48, \ P=0.031, \) fixed effect model, Fig. 7). Similar relationships were observed for the sources of the HB subgroup (\(OR_{C\text{-alle} \text{ vs. } G\text{-alle}} = 1.29, 95\% \ CI 1.07–1.56, \ P=0.009, \) fixed effect model, \(OR_{CG \text{ vs. } GG} = 1.47, 95\% \ CI 1.11–1.94, \ P=0.008, \) fixed effect model, Fig. 8). Furthermore, when we excluded studies that were not consistent with HWE, the results remain the same as above (Table 3).

Publication bias and sensitive analysis

Begg’s and Egger’s tests were performed to assess publication bias, which was not found for T2DM or T1DM analyses (T2DM: \(t_{C\text{-alle} \text{ vs. } G\text{-alle}} = −1.32, \ P=0.195 \) for Egger’s test, \(z=1.02, \ P=0.306 \) for Begg’s test, Fig. 9a, b; T1DM: \(t_{C\text{-alle} \text{ vs. } G\text{-alle}} = 1.82, \ P=0.099 \) for Egger’s test, \(z=1.17, \ P=0.244 \) for Begg’s test, Fig. 10a,b, Table 4). To delete studies that may influence the power and stability of the whole study, we applied a sensitivity analysis, and no sensitive case–control studies were found (Figs. 9c, 10c, Table 4).
Gene–gene network diagram and interactions

Our analysis using the STRING online server indicated that IL-6 interacts with several genes. The ten most significant genes from the network of gene–gene interactions are shown in Fig. 11. These ten genes are: interleukin-6 receptor (IL6R); interleukin-6 receptor subunit beta (IL6ST); interleukin-1 beta (IL1B); interleukin-8 (CXCL8); growth-regulated alpha protein (CXCL1); C-X-C motif chemokine 2 (CXCL2); C–C motif chemokine 2 (CCL2); interleukin-17A (IL17A); tumor necrosis factor (TNF); and interleukin-1 alpha (IL1A).

Discussion

Diabetes has reached pandemic dimensions, and is becoming relevant in both developed and developing countries, affecting over 400 million people worldwide [69]. To date, several studies have focused on the relationship between IL-6 rs1800795 polymorphism and DM risk [26, 29, 30, 38]. A few meta-analysis-based studies have also indicated similar associations [21–24]. However, there is a lack of robust conclusions. Therefore, it is necessary to recombine previously published studies to perform a comprehensive meta-analysis to understand the above-mentioned association in further detail. To the best of our knowledge, meta-analysis is a powerful method when the results are based on a large number of samples and are inconsistent, including different ethnicities or countries [24]. The conclusion obtained from the meta-analysis is more robust than that of a single study [24]. To investigate the association between IL-6 rs1800795 and DM, our comprehensive study included 42,150 individuals. Our results indicate that IL-6 rs1800795 acts as a protective factor in T2DM. In other words, individuals carrying the C-allele may have a decreased association with T2DM, particularly among Asians, mixed populations, and HB source studies. However, IL-6 rs1800795 was found to be a risk factor for T1DM, and there was a significantly increased association between this polymorphism and T1DM risk in four genetic models in mixed-population and HB source studies.

Therefore, IL-6 rs1800795 polymorphism may have different effects in different types of DM, and also have different influences on different ethnicities, such as Asians and mixed populations. This could be due to the
following: the pathogenic mechanisms of T2DM and T1DM are different, with differences in several significantly expressed genes. Further studies should focus on the functions and mechanisms of mutation or wild-type IL-6 rs1800795 polymorphism to define the dissimilarity between T2DM and T1DM. On the other hand, the same gene may have different effects, even opposite, and the IL-6 gene may behave differently for T2DM and T1DM. Therefore, rs1800795 polymorphism affecting the expression of IL-6 may also differ in its roles in T2DM and T1DM. Different races have heterogeneity, and the same gene may also have different roles in different ethnicities [70, 71]. Third, heterogeneity in the selection strategy may exist, which may have affected our results. To evaluate the stability and validity of the current study, we performed a power analysis. The power in T2DM was 1 and that in T1DM was 0.166, indicating that the conclusions from T2DM were more powerful and persuasive than those for T1DM. This suggests that more studies on rs1800795 and T1DM risk should be conducted in future to obtain a robust conclusion.

The development and outcome of DM are complex and multifactorial. Focusing only on each gene or polymorphism provides a limited understanding of the same. Hence, we attempted to detect other potential genes related to DM using the online STRING server. The other ten most probable genes were obtained from the network. Among them, six genes belonged to the interleukin family and three were in the front. Four genes were related to the chemokine (C–X–C motif) ligand family. For example, the first related gene is IL-6R, which is the receptor of the IL-6 gene. Qi et al. reported that the IL6R rs8192284 variant was significantly associated with plasma CRP level and could predict diabetes risk [72]. Jiao et al. performed a meta-analysis and suggested that the IL-1B (-511) T-allele polymorphism is associated with a decreased T2DM
risk in East Asians [73]. Silva et al. concluded that functional CXCL8 rs4073, rs2227307, and rs2227306 SNPs are relevant genetic factors for T2DM [74]. Trapali et al. indicated that the TNF-α308G/A polymorphism is significantly associated with T2DM susceptibility [75]. In summary, there is a need to explore these partners of the IL-6 gene and gene–gene interactions in the development and treatment of DM.

Although we performed a comprehensive meta-analysis, this study has several limitations. First, studies from mixed populations and Africans are limited, which leads to missing or insufficient results and may influence the conclusion. Second, one single gene or one polymorphism may not have the power to result in the development of DM, which is a complex process including gene–gene or gene–environment interactions, and further studies should pay close attention to the same. Third, four databases were included, and some valuable studies from other databases or languages could not be identified, which should have an impact on the current conclusions. Finally, most of the studies were selected using the PCR–RFLP technique in current publications, and the authors may apply to duplicate selected samples for the second time at least 10% of the total samples to confirm the genotypes detected by PCR–RFLP, as real-time PCR is a reference method which can verify the genotyping in PCR–RFLP technique to avoid false positives.

Conclusions

In summary, our meta-analysis provided evidence that the IL-6 rs1800795 polymorphism was associated with significantly increased T1DM risk in a mixed population. In contrast, a decreased association was found in T2DM susceptibility in Asians. Consequently, further well-designed large-scale studies, particularly those related to gene–gene and gene–environment interactions, are warranted.
Abbreviations
DM: Diabetes mellitus; GWAS: Genome-wide association studies; IL-6: Interleukin-6; SNP: Single nucleotide polymorphism; HB: Hospital-based; PB: Population-based; SOC: Source of control; PCR–RFLP: Polymerase chain reaction followed by restriction fragment length polymorphism; PCR-SSP: Polymerase chain reaction followed with sequence specific primers; MALDI-TOF: A chip-based matrix-assisted laser-desorption/ionization time-of-flight.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13098-022-00851-8.

Acknowledgements
Not applicable.

Author contributions
CZ conceived of the study, CZ prepared the data, ZC were involved in the data analyses, ZC and MY prepared the figures. All the authors agreed to the submission of the present work. All the authors read and approved the final manuscript.

Funding
None.

Availability of data and materials
All data generated or analyzed in this study are included in this published article.

Additional file 1: PRISMA 2019 checklist.

Fig. 11 Human IL-6 interactions network with other genes obtained from String server. At least 10 genes have been indicated to correlate with IL-6 gene. A the gene–gene interaction, B the detail of relative ten core genes.
Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors proclaims that they have no competing interests.

Author details
1 General Practice, Delta Health Hospital, Shanghai, China. 2 Xinqiao Town Community Health Service Center, Songjiang District, Shanghai, China. 3 Department of Urology, Affiliated Hospital of Jangnan University, Wuxi, China.

Received: 23 March 2022 Accepted: 29 May 2022
Published online: 15 July 2022

References
1. Edgerton DS, Kraft G, Smith M, Farmer B, Williams PE, Coate KC, Printz RL, O’Brien RM, Cherrington AD. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI insight. 2017;2(6):e91863.
2. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes care. 2010;33(1):S62-69.
3. Diamant AL, Babey SH, Haster TA, Brown ER. Diabetes: the growing epidemic. Policy Brief. 2007;9:1–12.
4. Marciano L, Camerini AL, Schulz PJ. The role of health literacy in diabetes knowledge, self-care, and glycemic control: a meta-analysis. J Gen Intern Med. 2019;34(6):1007–17.
5. Khan RWM, Chua ZJY, Tan JC, Yang Y, Liao Z, Zhao Y. From pre-diabetes to diabetes: diagnosis, treatments and translational research. Medicina (Kaunas, Lithuania). 2019;55(9):546.
6. Gaulton KJ. Mechanisms of type 2 diabetes risk loci. Curr DiabRep. 2017;17(9):72.
7. Papazafropoulou AK, Papanas N, Melidonis A, Maltezos E. Family history of type 2 diabetes: does having a diabetic parent increase the risk? Curr Diabetes Rev. 2017;13(1):19–25.
8. Pickup JC, Mattock MB, Chusney GD, Burt D. NIDDM as a disease of the innate immune system: association of acute-phase reactants and interleukin-6 with metabolic syndrome X. Diabetologia. 1997;40(11):1286–92.
9. Campbell IL, Kay TW, Omodei L, Harrison LC. Essential role for interferon-gamma and interleukin-6 in autoimmune insulin-dependent diabetes in NOD/Wehi mice. J Clin Investig. 1991;87(2):739–42.
10. Foulis AK, Mattock MB, Chusney GD, O’Brien RM, Cherrington AD. Insulin’s direct hepatic effect explains the inhibition of glucose production caused by insulin secretion. JCI insight. 2017;2(6):e91863.
11. Urban RJ, Shaw LC. Association between interleukin-6 rs1800795 polymorphism and the decreased risk of type 2 diabetes mellitus: a meta-analysis. Int J Clin Exp Med. 2019;12(1):86–97.
12. Campos LP, Gracilio V, Sousa MM, Martins BR, Souza SW, Albertson D, Pichetti G, Rigo FGM. Polymorphisms rs1800795 of interleukin-6 and rs2228145 of interleukin-6 receptor genes in Euro-Brazilians with adult-onset type 1 diabetes mellitus. Genet Mol Res. 2019;18(3):gmr18260.
13. Helaly MA, Hatata EZ, Elmaga MA, Ibrahim EF, Alsaja A, El-Aal IA, Settin A. Association of IL-10 and IL-6 gene polymorphisms with type 2 diabetes mellitus among Egyptian patients. Eur J Gen Med. 2013;10(3):158–62.
14. Chen XQ, Xu YC. Interleukin-6 gene polymorphism and its expression related to the susceptibility of type two Diabetes. Master's Degree Thesis. 2002.
15. Kong JH, Yu M. Study of association of interleukin-6 gene polymorphism with type 2 diabetes mellitus. Master's Degree Thesis. 2010.
16. Boubaha R, Baroudi T, Ennafaa H, Vaillant E, Abid H, Sassi R, Vatin V, Froguel P, Gaedee AB, Meyer D, et al. Study of TNFalpha -308G/A and IL6 -174G/C polymorphisms in type 2 diabetes and obesity risk in the Tunisian population. Clin Biochem. 2010;43(6):549–52.
17. Base MW, Kunzli N, Turk A, Schindler C, et al. Lack of association between interleukin-6 -174 G/C promoter polymorphism and susceptibility to type 2 diabetes mellitus. J Clin Immunol. 2006;26(10):915–21.
18. Xia WD, Zhou M, Peng H, Pan HF, Ye DQ. Lack of association of IL-6 polymorphism with rheumatoid arthritis/type 1 diabetes: a meta-analysis. Joint Bone Spine. 2013;80(5):477–81.
19. Xin YX, Sun QQ, Zhang BB, Hu AM, Wang Q, Liu HL, Hou ZZ, Zeng YH, Xu RJ, Shi LB. The lack of association between interleukin-6 gene -174 G/C polymorphism and the risk of type 1 diabetes mellitus: a meta-analysis of 18,152 subjects. Gene. 2013;515(2):461–5.
20. Huth C, Heid IM, Vollmert C, Gieger C, Grollert H, Wolford JK, Langer B, Thorand B, Klopp N, Hamid YH, et al. IL6 gene promoter polymorphisms and type 2 diabetes: joint analysis of individual participants’ data from 21 studies. Diabetes. 2006,55(10):1925–21.
21. Xu WD, Zhou M, Peng H, Pan HF, Ye DQ. Lack of association of IL-6 polymorphism with rheumatoid arthritis/type 1 diabetes: a meta-analysis. Joint Bone Spine. 2013;80(5):477–81.
22. Rezaei H. Lack of association between rs1800795 (-174 G/C) polymorphism and the decreased risk of type 2 diabetes mellitus: an updated meta-analysis. Int J Clin Exp Med. 2019;12(1):86–97.
23. Degiannis D, Raptis SA. TNF-alpha, TGF-beta1, IL-10, IL-6, gene polymorphisms in latent autoimmune diabetes of adults (LADA) and type 2 diabetes. J Clin Immunol. 2004,24(6):591–9.
24. Xia JD, Sun YY, Li Y, Hua Z, Qi Z, Pan J, Li J, Zhou C, et al. Lack of association of interleukin-6 (rs1800795) polymorphism with type 2 diabetes mellitus. J Diabetes. 2006,8(3):199–203.
25. Basma EA, Martin BD, Nickerson PW. Functional gene polymorphisms in the IL-6 gene and their association with type-2 diabetes mellitus among Egyptian patients. Eur J Gen Med. 2013,10(4):158–62.
26. Nadeem A, Mumtaz S, Naveed AK, Mansoor Q, Aslam M, Siddiqui A, Ismail M. Association of IL-6 C-174G (rs1800795) single nucleotide polymorphism with type 2 diabetes mellitus in Pakistani population. J Pak Med Assoc. 2017,67(3):428–33.
27. Saxena M, Agrawal CG, Srivastava N, Banerjee M. Interleukin-6 (IL-6)-597 A/G (rs1800797) & -174 G/C (rs1800795) gene polymorphisms in type 2 diabetes. Indian J Med Res. 2014;140(1):60–8.
28. Dhamodharan U, Viswanathan V, Krishnamoorthy E, Raja R, Aravindan V. Genetic association of IL-6, TNF-alpha and SDF-1 polymorphisms with serum cytokine levels in diabetic foot ulcer. Gene. 2015,565(1):62–7.
29. Fathy SA, Mohamed MR, Ali EMM, El-Helaly AE, Alattar AT. Influence of IL-6, IL-10, IFN-gamma and TNF-alpha genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers. 2019,24(1):43–55.
30. Cooper JD, Smyth DJ, Bailey R, Payne F, Downes K, Godfrey LM, Masters J, Zeitzels LR, Vella A, Walker WM, et al. The candidate genes TAF5L, TCFT7, PDCD1, IL6 and ICAM1 cannot be excluded from having effects in type 1 diabetes. BMC Med Genet. 2007,8:71.
31. Tsivou A, Hatzigelaki E, Chaidaroglou A, Manginas A, Koniaiotou K, DeGiannis D, Raptis SA. TNF-alpha, TGF-beta1, IL-10, IL-6, gene polymorphisms in latent autoimmune diabetes of adults (LADA) and type 2 diabetes. J Clin Immunol. 2004,24(6):591–9.
Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Diabetics. Diabetologia. 2003;48(2):251–60.

36. Jahromi MM, Millward BA, Demaine AG. A polymorphism in the promoter region of the gene for interleukin-6 is associated with susceptibility to type 1 diabetes mellitus. J Interferon Cytokine Res. 2000;20(10):885–8.

37. Javor F, Ferencik S, Bucova M, Stuchlikova M, Martinka E, Barak L, Strobova L, Grosse-Wilde H, Buc M. Polymorphisms in the genes encoding TGF-beta1, TNF-alpha, and IL-6 show association with type 1 diabetes mellitus in the Slovak population. Arch Immunol Ther Exp. 2010;58(5):885–93.

38. Kazemian M, Ebrahimian M, Berdeli A, Yilmaz C. Association of interleukin-6 -174 G>C promoter polymorphism with increased risk of type 2 diabetes mellitus patients with diabetic nephropathy in Turkey. Genet Test Mol Biomarkers. 2014;18(1):62–5.

39. Kavitha L, Vijayshree Priyadharshini J, Sivapathasundharam B. Association among interleukin-6 gene polymorphisms, type 2 diabetes mellitus, and chronic periodontitis: a pilot study. J Invest Clin Dent. 2017;8(3): e12230.

40. Lara-Gomez RE, Moreno-Cortes ML, Munoz-Salazar R, Zenteno-Cuevas R. Association of polymorphisms at -174 in IL-6, and -308 and -238 in TNF-alpha, in the development of tuberculosis and type 2 diabetes mellitus in the Mexican population. Gene. 2019;702:1–7.

41. Mohlig M, Boeig H, Springer J, Osterhoff M, Kroke A, Fisher E, Bergmann MM, Ristow M, Hoffmann K, Pfeiffer AF. Body mass index and C-174G interleukin-1 receptor antagonist polymorphism in a Mexican Population. Biochem Genet. 2005;43(4):291–305.

42. Molkadzhabdi MN, Zervou MI, Samonis G, Daraki V, Goulielmos GN, Kofteridis DP. Association of the interleukin-6 rs1800795 polymorphism with type 2 diabetes in women with type 1 diabetes. J Cell Biochem. 2008;98(2):108–12.

43. Myśliwska J, Zorena K, Mysliwiec M, Balcerska A, Malinowska E, Raczynska K, Ganiai BA. Genetic variations in single nucleotide polymorphism of cytokine genes in healthy children. Genet Mol Res. 2010;9(4):2060–8.

44. Myśliwska J, Myśliwska J, Zorena K, Balcerska A, Malinowska E, Wiśniewski P. Interleukin-6-174GG gene polymorphism is associated with celiac disease and autoimmune thyroiditis coincidence in diabetes type 1 children. Diabetes Res Clin Pract. 2008;82(1):108–12.

45. Myśliwska J, Zorena K, Myśliwska J, Balcerska A, Malinowska E, Raczyńska K, Balcerska A. The -174GG interleukin-6 genotype is protective from retinopathy and nephropathy in juvenile onset type 1 diabetes mellitus. Pediatr Res. 2009;66(3):341–5.

46. Neelofar K, Ahmad J, Ahmad A, Alam K. Study of IL4-590C/T and IL6-174G/C gene polymorphisms in type 2 diabetic patients with chronic kidney disease in North Indian population. J Cell Biochem. 2017;118(7):1803–9.

47. Perez-Bravo F, Soto MF, Lopez AP, Eyzaguirre CF, Codner E. -174 G/C promoter polymorphism of interleukin-6 gene polymorphisms in type 2 diabetic patients with chronic kidney disease in North Indian population. J Cell Biochem. 2007;99(2):251–60.

48. Plataki MN, Zervou MI, Samonis G, Raczyńska K, Balcer ska A. The -174GG interleukin-6 genotype is protective from retinopathy and nephropathy in juvenile onset type 1 diabetes mellitus. Pediatr Res. 2008;62(1):108–12.

49. Polymorphism of interleukin 6 gene in women with type 1 diabetes mellitus and peripheral neuropathy by influencing the gene expression. Gene. 2018;661:51–9.

50. Postic C, Casas-Avila L, Portillo-Jacobo JA, Rubio J. Association of NfkB, TNFa, IL-6, IL-10, and LPL polymorphisms with type 2 diabetes mellitus and biochemistry parameters in a Mexican Population. Biochem Genet. 2005;43(4):291–305.

51. Potyrailo NT, Bocca AA, Campos FM, Sandrim VC, Gomes KB. IL-6, TNF-α, and IL-10 levels and polymorphisms and their association with type 2 diabetes mellitus and obesity in Brazilian individuals. Arch Endocrinol Metab. 2017;61(5):438–46.

52. Priyadharshini J, Sivapathasundharam B. Association of polymorphisms at -174 in IL-6, and -308 and -238 in TNF-alpha, in the development of tuberculosis and type 2 diabetes mellitus in the Mexican population. Gene. 2019;702:1–7.

53. Qi L, Rифф N, Hu FB. Interleukin-6 receptor gene, plasma C-reactive protein, and diabetes risk in women. Diabetes. 2009;58(1):725–8.

54. Silva BRD, Cirelli JA, Scarel-Caminaga RM. Genetic polymorphisms in the Interleukin8 (CXCL8) gene region with type 2 diabetes mellitus and periodONTIS in Brazilian population. Diabetes Metab Syndr. 2020;55(6):918–30.

55. Starič N, Vlahov D, Ušćumlija S, Povorznik M, Zupancič J, Pohorelec A, Juvan P, et al. Genotypic variations in key inflammatory cytokines exacerbate the risk of diabetic nephropathy by influencing the gene expression. Gene. 2018;661:51–9.

56. Stenberg M, Väänänen H, Rinne U, Koskenvuo M. Genetic variants in single nucleotide polymorphism of cytokine genes in healthy children. Genet Mol Res. 2010;9(4):2060–8.
75. Trapali M, Houhoula D, Batrinou A, Kanellou A, Strati IF, Siatelis A, Halvatsiotis P. Association of TNF-α 308G/A and LEPR Gln223Arg polymorphisms with the risk of type 2 diabetes mellitus. Genes. 2021;13(1):59.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.