Multimodal treatments of right gastroepiploic arterial leiomyosarcoma with hepatic metastasis: A case report and review of the literature

Hyung-Il Seo, Dong-Il Kim, Youngsoo Chung, Chang In Choi, Minjoo Kim, Sungpil Yun, Suk Kim, Do Youn Park

Hyung-Il Seo, Youngsoo Chung, Chang In Choi, Minjoo Kim, Department of Surgery, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, South Korea

Dong-Il Kim, Department of Surgery, Pusan National University Yangsan Hospital, Yangsan 50612, South Korea

Sungpil Yun, Department of Surgery, On Hospital, Busan 49241, South Korea

Suk Kim, Department of Radiology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, South Korea

Do Youn Park, Department of Pathology, Biomedical Research Institute, Pusan National University Hospital, Busan 49241, South Korea

ORCID number: Hyung-Il Seo (0000-0001-6007-6988); Dong-Il Kim (0000-0001-9874-1322); Youngsoo Chung (0000-0003-4695-9965); Chang In Choi (0000-0002-1920-1879); Minjoo Kim (0000-0001-8487-4669); Sungpil Yun (0000-0002-8910-4249); Suk Kim (0000-0003-3268-1763); Do Youn Park (0000-0001-7641-1509).

Author contributions: Seo HI is the first author; Kim DI is the corresponding author of the manuscript; Chung Y and Choi CI analyzed and interpreted the patient data; Kim S reviewed radiologic findings; Park DY did the pathology reading of the slides; Yun S and Kim M were involved in drafting and revising the manuscript; all authors read and approved the final manuscript.

Informed consent statement: Patient records and information were anonymized to protect the personal information.

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

CARE Checklist (2013) statement: The authors have read the CARE Checklist (2013), and the manuscript was prepared and revised according to the CARE Checklist (2013).

Open-Access: This article is an open-access article, which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Dong-Il Kim, MD, Assistant Professor, Department of Surgery, Pusan National University Yangsan Hospital, 20, Geumo-ro, Mulgeum-eup, Yangsan 50612, Gyeongsangnam-do, South Korea. led117@naver.com

Received: June 27, 2018

Peer-review started: July 11, 2018

First decision: July 11, 2018

Revised: July 24, 2018

Accepted: August 1, 2018

Article in press: August 1, 2018

Published online: August 16, 2018

Abstract

Leiomyosarcoma of an artery is very rare, and cases with hepatic metastasis are even rarer. We describe a case of a 70-year-old man who after follow up due to rectal cancer, presented with an intra-abdominal hypervascular mass and a hepatic mass. After surgical resection, it was diagnosed as a leiomyosarcoma of the right gastroepiploic artery with hepatic metastasis. Multiple metastases had recurred at the liver. He has survived more than 53 mo through multimodal treatments (three surgical resections, radiofrequency ablation, transarterial chemoembolization, chemotherapies, and targeted therapy). Multimodal treatments, including active surgical resection, may be
helpful in the treatment of aggressive diseases such as arterial leiomyosarcoma with metastasis.

Key words: Multimodal treatments; Intra-abdominal arterial leiomyosarcoma; Hepatic metastasis; Arterial leiomyosarcoma; Surgical resection

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: An arterial leiomyosarcoma (aLMS) is a very rare and aggressive disease. The prognosis is also very poor. A 70-year-old man presented with an intra-abdominal aLMS with hepatic metastasis. He was treated with multimodal treatments that consisted of three surgeries, radiofrequency ablation, transarterial chemoembolization, and targeted therapy. He has survived for 53 mo after these treatments. Multimodal treatments could be helpful treating this kind of disease.

Seo HI, Kim DI, Chung Y, Choi CI, Kim M, Yun S, Kim S, Park DY. Multimodal treatments of right gastroepiploic arterial leiomyosarcoma with hepatic metastasis: A case report and review of the literature. World J Clin Cases 2018; 6(8): 219-223 Available from: URL: http://www.wjgnet.com/2307-8960/full/v6/i8/219.htm DOI: http://dx.doi.org/10.12998/wjcc.v6.i8.219

INTRODUCTION

The leiomyosarcoma (LMS) is very rare malignant tumor. They usually originate in the smooth muscle of the soft tissues and uterus[1]. About 2% of LMS cases occur in the smooth muscle of the vessel wall and 60% occur in the inferior vena cava. The occurrence of LMS involving the veins is about five times higher than that of the arteries[1]. The most common site of arterial LMS (aLMS) is the peripheral artery, and the intra-abdominal artery is a rare location for aLMS to occur[1]. To the best of our knowledge, this is the first presentation of intra-abdominal aLMS with distant single liver metastasis. We report the clinical course of an aLMS that originated from the right gastroepiploic artery with hepatic metastasis during multimodal treatments [three surgical resections, radiofrequency ablation (RFA), transarterial chemoembolization (TACE), chemotherapy, and targeted therapy] and review the literature regarding aLMS.

CASE REPORT

This case involves a 70-year-old man who had a previous operation history due to renal cell carcinoma and rectal cancer (pT2N0M0, stage IIA), ten years and six months ago. Abdominal computed tomography (CT) and magnetic resonance imaging (MRI) performed six months after the low anterior resection revealed a new 47 mm hypodense hepatic mass and a 23 mm hypervascular mass at the great curvature side of stomach (Figure 1A and 1B). It was highly suspected to be a malignant gastrointestinal stromal tumor (GIST) with hepatic metastasis. Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) demonstrated a hypermetabolic low-density lesion in S8 of the liver and the greater curvature of the stomach with a maximum standardized uptake value (SUVmax) of 3.4 and 2.3, respectively (Figure 1C). For confirmation of the diagnosis, we planned to perform an ultrasonography-guided core needle biopsy. The core needle biopsy specimen of the liver mass showed malignant spindle cell with increased mitosis (7/10 HPFs). Immunohistochemistry results were positive for desmin and smooth muscle actin (SMA) and negative for CD34, c-kit, DOG-1, S-100, and HMB45. These findings suggest that aLMS was the proper diagnosis, not GIST. The mass in the greater curvature of the stomach showed high vascularity upon endoscopic ultrasonography. Therefore, a fine needle aspiration biopsy was not performed because of a bleeding risk. Laparotomy was performed with a diagnosis of the omental GIST and primary hepatic LMS. The omental mass resection and S8 segmentectomy were performed. The omental mass originated from the right gastroepiploic artery on surgical and microscopic field. This mass was a 3.0 cm × 2.7 cm sized aLMS (Figure 2A and 2B). Histopathology showed moderate cellular atypia, high mitotic rate (10/10 HPFs), and 2/3 histologic grade according to the FNCLCC grading system. Ki-67 proliferation index was 4.1% (Figure 2C). Immunohistochemistry results were positive for CD34, CD31, desmin, and SMA and negative for c-kit, DOG-1, and S-100. The liver mass was a 5.0 cm × 3.0 cm × 1.5 cm sized metastatic aLMS with a clear resection margin (free margin: 0.3 cm). Ki-67 proliferation index was 9.3%. The patient was discharged on the nine days after the operation without any complications. It was planned that four cycles of adriamycin monochemotherapy would be administered as an adjuvant treatment. However, treatment was stopped after the third treatment because of neutropenic fever.

Abdominal CT was performed every three months after the operation to check for recurrence. At fourteen months after the first operation, CT and MRI revealed a 2.7 cm, a 5 mm, and an 8 mm sized metastatic masses on of the liver. No extrahepatic metastasis was noted on FDG PET/CT. Right anterior sectionectomy was performed fifteen months after the first operation. There were a 3.0 cm × 2.7 cm and a 1.0 cm × 1.0 cm sized metastatic vascular LMSs. Histopathology and immunohistochemistry showed a high mitotic rate (22/10 HPFs) and a Ki-67 proliferation index of 4.1%. The resection margin was very close to the mass (< 1 mm). Ifosfamide monochemotherapy was administered after the surgery for four cycles.

At eight months after the second operation, CT, MRI and FDG PET/CT revealed a 1.6 cm and a 1.4 cm sized seeding metastatic nodules on the diaphragm and the liver. Diaphragm partial resection and intra-operative
Figure 1 Diagnosis imaging of the patient. A: Computed tomography showed a 43 mm hypodense mass at S8 of the liver (red arrow) and a 23 mm sized hypervascular mass at the great curvature side of stomach (yellow arrow). B: Magnetic resonance imaging showed a well-defined encapsulated lesion (red arrow) in S8 of the liver, which showed a strong enhancement during the arterial dominant phase, with wash out during the delayed phase. The mass (red arrow) in the greater curvature of the stomach was accompanied by engorgement of the gastroepiploic vein. C: Fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography images showed a hyper-vascular mass at the great curvature side of stomach (yellow arrow) and a hypervascular metastatic mass at S8 of liver (red arrow).

Figure 2 The gross find of arterial leiomyosarcoma and pathological diagnosis. The omental mass and A: Gross finding of arterial leiomyosarcoma. A white colored expanding nodular mass was present on soft tissue. A medium sized artery was present on adjacent connective tissue. B: Tumor consisted of spindle cells and adjacent to medium sized vessels (H and E staining, × 40). C: Tumor cells showed spindle shaped nucleus with rounded end and eosinophilic cytoplasm (H and E staining, × 200). They formed fascicular pattern and frequently made stage horn shaped vascular spaces.
RFA was performed nine months after the second operation (twenty-four months after the first operation). The diaphragm mass was also diagnosed as a metastatic vascular LMS. Etoposide-cisplatin chemotherapy was administered after the surgery for six cycles.

At eleven months after the third operation, there were multiple recurrences in the remnant liver as shown by MRI and TACE (2 mL lipiodol and 10 mg adriamycin). Palliative pazopanib was also started. The patient has been followed for twenty-eight months after the third operation (fifty-three months after the first operation). He is surviving with stable hepatic metastasis controlled by chemotherapy. Treatment modalities are summarized in Figure 3.

DISCUSSION

Over half of aLMS cases originate from the pulmonary artery, followed by the extra-abdominal peripheral artery. Including this case, only nine cases of aLMS originating from the intra-abdominal arteries, excluding the aorta, have been reported (Table 1)\(^2,9\).

Compared to the other origin of LMS, the case of vascular LMS has a worse prognosis. In the case of LMS with metastasis, metastatic vascular LMS shows similar results as metastatic LMS of other origins\(^11\). However, the prognosis is not well-known owing to the low number of cases in aLMS. It is presumed that aLMS may be more aggressive than LMS, and hence, the prognosis is expected to be about the same or worse\(^1\). Because aLMS is more aggressive than LMS, and directly seeder to artery, it has a higher possibility of metastasis\(^10\).

Clinical signs of aLMS are diverse depending on the area of origin and most of them are due to the mass effect\(^9,10\). In this case, the 3 cm primary mass was located in the intra-peritoneal region and shows hypervascularity, bleeding could occur after the core needle biopsy. Moreover, bleeding control could be difficult in this location. PET-CT showed SUVmax values of 3.4 and 2.3 each, which had relatively low uptake at first, and uptake was not noted at the lesion recurrence. More precise imaging studies are needed to overcome this limitation.

There are reports of treating LMS cases with surgical
resection, radiotherapy, and chemotherapy. Chemotherapy or chemoembolization has been the main treatment of LMS with hepatic metastasis. Recently, RFA also shows a good result for metastatic LMS. However, recently, just like in other cases of metastatic cancer, liver resection shows better results. If a resection of metastasis is possible, surgical treatment and additional treatment including chemotherapy can lead to a good response.

Although aLMS showed aggressive clinical features, multimodal treatment (resection, chemotherapy, RFA, chemoembolization, and targeted therapy) might be helpful to manage this kind of disease.

ARTICLE HIGHLIGHTS

Case characteristics
A 70-year-old man presented with an intra-abdominal mass and a hepatic mass during a follow visit for rectal cancer surgery.

Clinical diagnosis
After CT and magnetic resonance imaging (MRI), it was diagnosed as a malignant gastrointestinal stromal tumor (GIST) with hepatic metastasis.

Differential diagnosis
After the core needle biopsy of the liver, it was diagnosed as a leiomyosarcoma (LMS). Before the surgery, these were omental GIST and hepatic LMS.

Imaging diagnosis
At first, it was diagnosed a omental GIST and hepatic metastasis in CT and MRI.

Pathological diagnosis
The surgical specimen diagnosed as an aLMS with hepatic metastasis.

Treatment
Multimodal treatments were done (three surgeries, chemotherapy, transarterial chemoembolization, radiofrequency, and targeted therapy).

Related reports
There were only nine reports about intra-abdominal arterial leiomyosarcoma (aLMS). This is the first report of intra-abdominal aLMS with hepatic metastasis.

Term explanation
aLMS is a very rare and aggressive disease. The prognosis is very poor. There were few reports of this disease. So the treatment is also not established.

Experiences and lessons
Active treatments using multiple modalities may be helpful for these kinds of patients.

REFERENCES

1. **Italiano A**, Toulmonde M, Stoeckle E, Kind M, Kantor G, Coindre JM, Bui B. Clinical outcome of leiomyosarcomas of vascular origin: comparison with leiomyosarcomas of other origin. Ann Oncol 2010; 21: 1915-1921 [PMID: 2067595 DOI: 10.1093/annonc/mdq039]
2. **Hopkins GB**. Leriche syndrome associated with leiomyosarcoma of the right common iliac artery. JAMA 1968; 206: 1789-1790 [PMID: 5754833 DOI: 10.1001/jama.1968.03150080090020]
3. **Birkenstock WE**, Lipper S. Leiomyosarcoma of the right common iliac artery: a case report. Br J Surg 1976; 63: 81-82 [PMID: 1267882 DOI: 10.1002/bjs.1800630119]
4. **Stringer BD**. Leiomyosarcoma of artery and vein. Am J Surg 1977; 134: 90-94 [PMID: 879414 DOI: 10.1016/0002-9610(77)90289-6]
5. **Gutman H**, Haddad M, Zelikovski A, Mor C, Reiss R. Primary leiomyosarcoma of the right common iliac artery—a rare finding and a cause of occlusive vascular disorder. J Surg Oncol 1986; 32: 193-195 [PMID: 3736059 DOI: 10.1002/jso.2930320136]
6. **Delia A**, Johansson G, Silfverswärd C. Vascular tumours in occlusive disease of the iliac-femoral vessels. Eur J Vasc Surg 1999; 4: 539-542 [PMID: 2226888 DOI: 10.1016/S0950-821X(05)80799-6]
7. **Gill IS**, Hobart MG, Kaouk JH, Abramovich CM, Budd GT, Faiman C. Leiomyosarcoma of the main renal artery treated by laparoscopic radical nephrectomy. Urology 2000; 56: 669 [PMID: 11018633 DOI: 10.1016/S0090-4295(00)00728-7]
8. **Rohde HT**, Riesener KP, Büttner R, Schumpelick V. [Leiomyosarcoma of the splenic artery]. Chirurg 2001; 72: 844-846 [PMID: 11490765 DOI: 10.1007/s001040107115]
9. **Blansfield JA**, Chung H, Sullivan TR Jr, Pezzi CM. Leiomyosarcoma of the major peripheral arteries: case report and review of the literature. Ann Vasc Surg 2003; 17: 565-570 [PMID: 14738087 DOI: 10.1016/s1001063-003-0036-8]
10. **Gravel G**, Yевич S, Tsilikas L, Mir O, Teritichau C, De Baere T, Deschamps F. Percutaneous thermal ablation: A new treatment line in the multidisciplinary management of metastatic leiomyosarcoma? Eur J Surg Oncol 2017; 43: 181-187 [PMID: 27371999 DOI: 10.1016/j.ejso.2016.05.031]
11. **Lang H**, Nussbaum KT, Kauld P, Frühau F, Flemming P, Raab JM, Bui B. Clinical outcome of leiomyosarcomas of vascular origin: comparison with leiomyosarcomas of other origin. Ann Oncol 2010; 21: 1915-1921 [PMID: 2067595 DOI: 10.1093/annonc/mdq039]
