Mathematical modeling of gas phase and biofilm phase biofilter performance

V. Meena a, L. Rajendran b,*, Sunil Kumar c, P.G. Jansi Rani b

a Department of Mathematics, Mangayarkarasi College of Engineering, Madurai 625018, Tamil Nadu, India
b Department of Mathematics, Sethu Institute of Technology, Virudhunagar 626115, Tamil Nadu, India
c Department of Mathematics, NIT, Jamshedpur 831001, Jharkhand, India

1. Introduction

Different cleaning technologies of gaseous effluents have been developed. Among these technologies, biological methods are increasingly applied for the treatment of air polluted by a wide variety of pollutants. Biofiltration is certainly the most commonly used biological gas treatment technology. Biofiltration involves naturally occurring microorganisms immobilized in the form of biofilm on a porous medium such as peat, soil, compost, synthetic substances or their combination.

The medium provides to the microorganisms a hospitable environment in terms of oxygen, temperature, moisture, nutrients and pH. As the polluted airstream passes through the filter-bed, pollutants are transferred from the vapor phase to the biofilm developing on the packing particles [1,2].

Recently Li et al. [3] as well as other research groups [4–10] have investigated emissions of VOCs into the atmosphere. Currently, biological control processes have become an established technology for air pollution control. Biological control processes have many advantages over traditional methods such as lower operating fees and less secondary pollution, which...
is rather true for the removal of readily biodegradable VOCs at low concentrations, so these processes are investigated largely and widely. Bioreactors for VOC removal can be classified as biofilters, bio scrubbers, biotrickling filters, or rotating drum biofilters, and choice of reactors should be based on many factors including the characteristics of the target VOCs [11–15].

In order to control the emission of volatile organic compounds (VOC) like methanol, α-pinene, etc. from industries, biofilters are being used nowadays instead of chemical complex absorption method [16–20]. Biofilters offer two major advantages to an energy-starved country like India. A mathematical model is describing the dynamic physical and biological processes occurring in a packed trickle-bed air biofilters to analyze the relationship between biofilter performance and biomass accumulation in the reactor [4].

For the treatment of mixed VOCs [21–23], the presence of methanol and α-pinene in the air stream significantly influenced the removal of pollutants. The removal capacity for methanol and α-pinene per unit volume of the bed decreased linearly with increasing loading rates of methanol and α-pinene. The presence of this easily biodegradable compound suppressed the growth of the methanol and α-pinene degrading microbial community, thereby decreasing methanol and α-pinene removal capacity of the biofilters. Some researchers have studied the biofiltration of pure methanol [24–26] and pure α-pinene [27,28].

Recently, few researchers have studied the biofiltration of mixtures of pure methanol and pure α-pinene. Also a few researchers have tried to examine the treatment of mixtures of hydrophobic and hydrophilic VOCs and to understand the interactions between these compounds despite the fact that this situation exists in larger amount of air emissions. Mohseni and Allen [16] developed a mathematical model for methanol and α-pinene removal in VOC’s biofiltration. Lim et al. [29] developed the steady state solution of biofilter model only for the limiting cases (first order and zero order kinetics). Also Lim et al. [30,31] obtained the non-steady solution of biofilter model using numerical methods. Recently some authors [32,33] solved the non-linear problems using fractional reduced differential transform method (FRDTM). To the best of our knowledge, to date, a rigorous analytical expression of concentrations of substrate in the biofilm phase and air phase has been reported. The purpose of this communication is to derive approximate analytical expressions for the concentrations in both the phases using the Adomian decomposition method [34–40].

2. Mathematical modeling of the boundary value problem

The mathematical model relating the biofiltration of blends of hydrophilic and hydrophobic VOCs is based on the biophysical model proposed by Mohseni and Allen [16]. It includes two main processes of diffusion of the compounds methanol and α-pinene through the biofilm and their degradation in the biofilm. Fig. 1 illustrates a schematic diagram of a single particle, in the biofilter, covered with a uniform layer of biofilm in which the simultaneous biodegradation of methanol and α-pinene takes place. The experimental setup for the biofiltration of this organic compound is given in Fig. 2.

2.1. Mass balance in the biofilm phase

The removal of methanol and α-pinene in the biofilm at steady state is described by the following system of non-linear differential equations (Mohseni and Allen [16]):

\[\frac{dS_m}{dx} = \frac{X \mu_{max,m} S_m}{Y_m K_m + S_m} \]
(1)

\[\frac{dS_p}{dx} = \alpha \frac{X \mu_{max,p} S_p}{Y_p K_p + S_p} \]
(2)

where \(S_m \) and \(S_p \) represent the concentration of methanol and α-pinene respectively. \(\mu_{max} \), \(K \), \(Y \), \(D \), and \(x \) are maximum specific growth rate, half saturation constant, yield coefficient, effective diffusion coefficient and the distance respectively. Subscripts \(m \) and \(p \) represent methanol and α-pinene respectively.

The dry cell density in the biofilm \(X \) represents the overall population of microorganisms that consist of methanol and α-pinene degraders. The coefficient for the effect of methanol on α-pinene biodegradation is defined as follows:

\[\alpha = 1/(1 + (C_m/K_m))^2 \]
(3)

where \(K_m \) and \(C_m \) are the inhibition constant and the concentration of methanol in the air phase respectively. The boundary conditions are

\[S_m = \frac{C_m}{m_m} = S_{m0} \quad \text{and} \quad S_p = \frac{C_p}{m_p} = S_{p0} \quad \text{at} \quad x = 0 \]
(4)

\[\frac{dS_m}{dx} = \frac{dS_p}{dx} = 0 \quad \text{at} \quad x = \delta \]
(5)

2.2. Mass balance in gas phase

The concentrations of methanol and α-pinene in the air, along the biofilter column, are described by

\[U_g \frac{dC_m}{dh} = A_r D_m \left[\frac{dS_m}{dx} \right]_{x=0} \]
(6)
where C_m and C_p represent the concentration of methanol and α-pinene in the air phase. U, A, D_m, D_p and h are the superficial gas velocity, biofilm surface area, effective diffusivity of methanol, effective diffusivity of α-pinene and position along the height of the biofilters respectively. The corresponding initial conditions are

$$C_m = C_{m0} \text{ and } C_p = C_{p0} \text{ at } h = 0$$

where the subscript i represents the concentration of the VOCs at the biofilters inlet.

2.3. Dimensionless mass balance equation in the biofilm phase

The non-linear differential Eqs. (1) and (2) are made dimensionless by defining the following dimensionless parameters:

$$\beta = \frac{S_m}{K_m} = \frac{X}{Y_m} \frac{\delta^2}{D_m K_m}, \quad \frac{S_m}{S_m^*} = \frac{S_m}{S_m^*}$$

$$\beta_i = \frac{S_p}{K_p} = \frac{X}{Y_p} \frac{\delta^2}{D_p K_p}, \quad \frac{S_p}{S_p^*} = \frac{S_p}{S_p^*}$$

Using the above dimensionless variables, Eqs. (1) and (2) reduce to the following dimensionless form:

$$\frac{dS_m}{dX^*} = -A \left(\frac{dS_m^*}{dX^*} \right)_{X^*=0}$$

$$\frac{dS_p}{dX^*} = -\alpha A \left(\frac{dS_p^*}{dX^*} \right)_{X^*=0}$$

The corresponding boundary conditions for the above Eqs. (11) and (12) can be expressed as

$$S_m^* = 1, S_p^* = 1 \text{ at } X^* = 0$$

$$\frac{dS_m^*}{dX^*} = \frac{dS_p^*}{dX^*} = 0 \text{ at } X^* = 1$$

2.4. Dimensionless mass balance in the gas phase

The differential Eqs. (6) and (7) are made dimensionless by defining the following parameters:

$$A = \frac{HA_i D_m S_m}{U_p \delta C_{mi}}, \quad A_i = \frac{HA_i D_p S_p}{U_p \delta C_{pi}}, \quad \frac{h}{H}, \quad \frac{C_m}{C_{m0}}, \quad \frac{C_p}{C_{p0}}$$

Using Eq. (15), Eqs. (6) and (7) can be expressed in the dimensionless form as follows:

$$\frac{dC_m}{dh^*} = -A \left(\frac{dS_m}{dX^*} \right)$$

$$\frac{dC_p}{dh^*} = -\alpha A \left(\frac{dS_p}{dX^*} \right)$$

The corresponding initial conditions for the above Eqs. (16) and (17) can be expressed as

$$C_m^* = \frac{C_m}{C_{m0}} \text{ and } C_p^* = \frac{C_p}{C_{p0}} \text{ at } h^* = 0$$

3. Analytical expression for the concentration of methanol and α-pinene using the Adomian decomposition method (ADM)

In recent years, many authors have applied the ADM [35-40] to various problems and demonstrated the efficiency of the ADM for handling non-linear and solving various chemistry
and engineering problems. Using ADM (refer to Appendix A), we can obtain the concentration of methanol and \(\alpha\)-pinene in the biofilm phase (see Appendix B) as follows:

\[
S_m^* (X^*) = \frac{S_m (x)}{S_m} = 1 + \frac{X\mu_{\text{max}(m)}\delta^2}{Y_nD_m (K_m + S_m)} \left(\frac{x^2 - x}{2\delta^2 - \delta} \right)
\]

\[
= 1 + \frac{\phi}{(1 + \beta)} \left(X^* - X^* \right) \tag{19}
\]

\[
S_p^* (X^*) = \frac{S_p (x)}{S_p} = 1 + \frac{X\mu_{\text{max}(p)}\delta^2}{Y_pD_p (K_p + S_p)} \left(\frac{x^2 - x}{2\delta^2 - \delta} \right)
\]

\[
= 1 + \frac{\alpha\phi}{(1 + \beta)} \left(X^* - X^* \right) \tag{20}
\]

Also solving Eqs. (6–7) and (16–17) using the analytical method, we can obtain the concentration of methanol and \(\alpha\)-pinene in the air phase.

\[
C_m^* (h^*) = \frac{C_m (h)}{C_m} = 1 - \frac{A\alpha\mu_{\text{max}(m)}}{Y_nU_n K_m (1 + (S_m/K_m))} h = 1 - \frac{A\phi}{(1 + \beta)} h^* \tag{21}
\]

\[
C_p^* (h^*) = \frac{C_p (h)}{C_p} = 1 - \alpha\frac{A\alpha\mu_{\text{max}(p)}}{Y_pU_p K_p (1 + (S_p/K_p))} h = 1 - \frac{\alpha\phi}{(1 + \beta)} h^* \tag{22}
\]

4. Analytical expression for the concentrations of methanol and \(\alpha\)-pinene for unsaturated (first order) kinetics

Now we consider the limiting case where the substrate concentrations of methanol and \(\alpha\)-pinene in biofilm phase are relatively low. In this case \(S_m \leq K_m\) and \(S_p \leq K_p\). Eqs. (1) and (2) now reduce to the following form.

\[
D_m \frac{d^2S_m}{dx^2} = \frac{X\mu_{\text{max}(m)}}{Y_nK_m} S_m \tag{23}
\]

\[
D_p \frac{d^2S_p}{dx^2} = \frac{X\mu_{\text{max}(p)}}{Y_pK_p} S_p \tag{24}
\]

The analytical expression for concentrations of methanol and \(\alpha\)-pinene in the biofilm phase becomes

\[
S_m^* (X^*) = \frac{S_m (x)}{S_m} = \frac{\cosh \left(\frac{X\mu_{\text{max}(m)}}{Y_nD_m K_m} (x - \delta) \right)}{\cosh \left(\frac{X\mu_{\text{max}(m)}}{Y_nD_m K_m} \right)} = \frac{\cosh \sqrt{\phi} \left(X^* - 1 \right)}{\cosh \sqrt{\phi}} \tag{25}
\]

\[
S_p^* (X^*) = \frac{S_p (x)}{S_p} = \frac{\cosh \left(\frac{\alpha X\mu_{\text{max}(p)}}{Y_pD_p K_p} (x - \delta) \right)}{\cosh \left(\frac{\alpha X\mu_{\text{max}(p)}}{Y_pD_p K_p} \right)} = \frac{\cosh \sqrt{\alpha\phi} \left(X^* - 1 \right)}{\cosh \sqrt{\alpha\phi}} \tag{26}
\]

Using Eqs. (6–7) and (25–26) we obtain the analytical expression of the concentrations of methanol and \(\alpha\)-pinene in the air phase.

\[
C_m^* (h^*) = \frac{C_m (h)}{C_m} = 1 - \frac{A\alpha\mu_{\text{max}(m)}}{Y_nU_n \sqrt{Y_nD_m K_m}} \frac{X\mu_{\text{max}(m)}}{\sqrt{Y_nD_m K_m}} \tanh \sqrt{X\mu_{\text{max}(m)}} \delta = 1 - (A\sqrt{\phi} \tanh \sqrt{\phi}) h^* \tag{27}
\]

\[
C_p^* (h^*) = \frac{C_p (h)}{C_p} = 1 - \frac{A\alpha\mu_{\text{max}(p)}}{Y_pU_p \sqrt{Y_pD_p K_p}} \frac{\alpha X\mu_{\text{max}(p)}}{\sqrt{Y_pD_p K_p}} \tanh \sqrt{\alpha X\mu_{\text{max}(p)}} \delta = 1 - (A\sqrt{\alpha\phi} \tanh \sqrt{\alpha\phi}) h^* \tag{28}
\]

5. Analytical solutions for the concentrations of methanol and \(\alpha\)-pinene for saturated (zero order) kinetics

Next we consider the limiting case where the substrate concentrations of methanol and \(\alpha\)-pinene in biofilm phase is relatively high. In this case \(S_m \geq K_m\) and \(S_p \geq K_p\). Eqs. (1) and (2) reduce to the following form.

\[
D_m \frac{d^2S_m}{dx^2} = \frac{X}{Y_n} \mu_{\text{max}(m)} \tag{29}
\]

\[
D_p \frac{d^2S_p}{dx^2} = \frac{X}{Y_p} \mu_{\text{max}(p)} \tag{30}
\]

Then the analytical expressions for concentration of methanol and \(\alpha\)-pinene in the biofilm phase are as follows:

\[
S_m^* (X^*) = \frac{S_m (x)}{S_m} = 1 - \frac{2X\mu_{\text{max}(m)}}{Y_nD_m S_m} \frac{X\mu_{\text{max}(m)}}{Y_nD_m S_m} x^2 = 1 + \frac{\alpha\phi}{\beta} (X^* - 2X^*) \tag{31}
\]

\[
S_p^* (X^*) = \frac{S_p (x)}{S_p} = 1 - \frac{2X\mu_{\text{max}(p)}}{Y_pD_p S_p} \frac{X\mu_{\text{max}(p)}}{Y_pD_p S_p} x^2 = 1 + \frac{\alpha\phi}{\beta} (X^* - 2X^*) \tag{32}
\]

Using Eqs. (6–7) and (31–32), we obtain the analytical expression of the concentrations of methanol and \(\alpha\)-pinene in the air phase.

\[
C_m^* (h^*) = \frac{C_m (h)}{C_m} = 1 - \frac{2X\mu_{\text{max}(m)}A_m \delta h}{Y_nU_n} = 1 - \frac{2A\phi}{\beta} h^* \tag{33}
\]

\[
C_p^* (h^*) = \frac{C_p (h)}{C_p} = 1 - \frac{2\alpha X\mu_{\text{max}(p)}A_m \delta h}{Y_pU_p} = 1 - \frac{2\alpha A\phi}{\beta} h^* \tag{34}
\]

6. Removal ratio of methanol and \(\alpha\)-pinene

The percentage of the methanol removal ratio is

\[
\text{methanol}_k = \frac{C_m^* - C_m^*}{C_m} \times 100 \tag{35}
\]

where \(C_m^*\) and \(C_m^*\) are the initial (before treatment) and the final (after treatment) concentrations of methanol in the air phase, respectively. The percentage of the \(\alpha\)-pinene removal ratio is
\[\alpha - \text{pinene}_* = \frac{C^*_\alpha - C^*_\alpha}{C^*_\alpha} \times 100 \]

where \(C^*_\alpha \) and \(C^*_\alpha \) are the initial (before treatment) and the final (after treatment) concentrations of \(\alpha \)-pinene in the air phase respectively.

7. Numerical simulation

In order to investigate the accuracy of the ADM solution with a finite number of terms, the system of differential equations was solved numerically. To show the efficiency of the present method, our analytical results are compared with numerical results graphically. The analytical solution of the concentrations of methanol and \(\alpha \)-pinene in air phase and biofilm phase are compared with simulation results in Figs. 3–6. Upon comparison, it gives a satisfactory agreement for all values of the dimensionless parameters \(S_\alpha^* \), \(S_\beta^* \), \(C_\alpha \) and \(C_\beta \). The detailed Matlab program for numerical simulation is provided in Appendices C and D.

8. Results and discussion

Eqs. (19–22) represent the simple and analytical expressions of the concentrations of methanol and \(\alpha \)-pinene in biofilm phase \(S_\alpha^* \) and \(S_\beta^* \) and in the air phase \(C_\alpha^* \) and \(C_\beta^* \) respectively. The concentrations of methanol and \(\alpha \)-pinene in the biofilm phase and the air phase depend upon the parameters \(\varphi \) and \(\beta \). The variation in the dimensionless variable \(\varphi \) can be achieved by varying either the thickness or dry cell density of the biofilm. The parameter \(\beta \) depends upon the initial concentration and half saturation constant.

Fig. 3 represents the concentration of methanol \(S_\alpha^* \) in the biofilm phase versus dimensionless distance \(X \) for different values of \(\varphi \) and \(\beta \). From Fig. 3a, b, it is inferred that the concentration of methanol increases when the initial concentration of methanol \(\beta \) increases for the fixed value of \(\varphi \). For large value of dimensionless parameter \(\beta \), the concentration of methanol remains constant. In Fig. 3c, d, we present the concentration of methanol in the biofilm phase for various values of \(\varphi \) and for some fixed values of \(\beta \). Maximum specific growth rate of methanol biodegradation \(\varphi \) decreases the concentration of methanol slowly and reaches the constant level. The minimum value of \(S_\alpha^* \) and \(S_\beta^* \) are \(1 - (\varphi/2(1 + \beta)) \) and \(1 - (\varphi/2(1 + \beta)) \) respectively.

Fig. 4 exhibits the concentration of \(\alpha \)-pinene \(S_\beta^* \) in the biofilm phase versus dimensionless distance \(X \) for different values of \(\alpha \), \(\varphi \), and \(\beta \). From Fig. 4a, b, it is inferred that the concentration of \(\alpha \)-pinene increases when the initial concentration of \(\alpha \)-pinene \((\beta_i) \) increases for the fixed values of dry cell density \(\varphi_i \). For large value of \(\beta_i \), the concentration of \(\alpha \)-pinene is uniform. In Fig. 4c, d, we show that the concentration of \(\alpha \)-pinene in the biofilm phase for various values of cell density \(\varphi_0 \) and for some fixed values of dimensionless parameter \(\beta \). From this figure, we conclude that the concentration of \(\alpha \)-pinene \(S_\beta^* \) increases when thickness of the film decreases. The concentration of \(\alpha \)-pinene is equal to one \((S_\beta^* = 1) \) when \((\varphi/2(1 + \beta)) < 2 \).

Fig. 5a, b shows the dimensionless concentration of methanol \(C_\alpha^* \) versus dimensionless height \(h^* \). From Fig. 5a, it is described that the concentration of methanol slowly reaches the constant when the biofilm thickness or \(\varphi \) increases. In Fig. 5b, it is labeled that the concentration of methanol decreases when half saturation constant of methanol \(\beta \) decreases for the fixed value of other parameter.

Fig. 6a, b demonstrates the concentration of \(\alpha \)-pinene \(C_\beta^* \) in the air phase versus dimensionless height \(h^* \). From Fig. 6a, it is inferred that the concentration of \(\alpha \)-pinene slowly reaches a constant level when the diffusion coefficient \(\varphi \) increases for the fixed value of other parameter. In Fig. 6b, it is labeled that the concentration of \(\alpha \)-pinene attains the steady state values when the initial concentration of \(\alpha \)-pinene \((\beta_i) \) increases.

Fig. 7 shows the profile of dimension concentration of methanol and \(\alpha \)-pinene in the air phase versus dimensionless height \(h^* \) for some fixed value of the parameters. From these figures it is inferred that the concentration is linearly proportional to the height of the biofilter. And also the concentration of \(C_\alpha^* \) and \(C_\beta^* \) decrease when the height of the biofilter increases. Fig. 8a, b illustrates the removal ratio of methanol and \(\alpha \)-pinene in the air phase. From this figure it is observed that the removal ratio is directly proportional to the inlet loading. Our analytical results are compared with the experimental result and excellent agreement is noted.

9. Conclusion

In this paper, the non-linear differential equations in biofiltration model have been solved analytically. Approximate analytical expressions pertaining to the concentrations of methanol and \(\alpha \)-pinene in the biofilm phase for all the values of parameters are obtained using the Adomian decomposition method. This solution of the concentrations of methanol and \(\alpha \)-pinene in the biofilm phase and air phase are compared with the numerical simulation results. This model is also validated using experimental results. These analytical results provide a good understanding of the system and the optimization of the parameters in biofiltration model.

Acknowledgements

This work was supported by the Department of Science and Technology (DST) (No. SB/S1/PC-50/2012). The authors are thankful to The Principal, The Madura College, Madurai and The Secretary, Madura College Board, Madurai for their encouragement.

Appendix A: Basic concepts of the Adomian decomposition method (ADM)

Consider the non-linear differential equation

\[y' + N(y) = g(x) \]

(A.1)
Fig. 3 – Dimensionless methanol concentration S_m^* in the biofilm phase versus dimensionless distance X^* for the various values of the parameters β and ϕ. When (a) $\phi = 10$, (b) $\phi = 100$ for various values of the parameter β and (c) $\beta = 10$, (b) $\beta = 100$ for various values of the parameter ϕ. The key to the graph: solid line represents Eq. (19) and the dotted line represents the numerical simulation.
Fig. 4 – Dimensionless α-pinene concentration S^* in the biofilm phase versus dimensionless distance X^* for the parameters α, β_1, and ϕ_1. The parameter $\alpha = 1$ is fixed, when (a) $\phi_1 = 1$, (b) $\phi_1 = 10$ for various values of the parameter β_1, and (c) $\beta_1 = 10$, (b) $\beta_1 = 100$ for various values of the parameter ϕ_1. The key to the graph: solid line represents Eq. (20) and the dotted line represents the numerical simulation.
with boundary conditions

\[y(0) = A, \quad y(b) = B \]

(A.2)

where \(N(y) \) is a non-linear function, \(g(x) \) is the given function and \(A, B \) and \(b \) are given constants. We propose the new differential operator, as below

\[L = \frac{d^2}{dx^2} \]

(A.3)

So, Eq. (A.1) can be written as

\[y(x) = L^{-1}(g(x)) - N(y) \]

(A.4)

The inverse operator \(L^{-1} \) is therefore considered as a two-fold integral operator (Duan and Rach [37]), as below

\[L^{-1}(.) = \int \int_{[0,b]} . \, dx \, dx \]

(A.5)

Applying the inverse operator \(L^{-1} \) on both sides of Eq. (A.4) yields

\[y(x) = L^{-1}(g(x)) - L^{-1}(N(y)) + y'(b)(x - 0) + y(0), \]

(A.6)

Fig. 5 – Dimensionless methanol concentration \(C_m^* \) in the air phase versus dimensionless height \(h^* \) for some fixed values of the parameters \(A = 70 \) and \(C_{m0} = 1 \). When (a) \(\beta = 100 \) for various values of the parameter \(\varphi \) and (b) \(\varphi = 1 \) for various values of the parameter \(\beta \). The key to the graph: solid line represents Eq. (21) and the dotted line represents the numerical simulation.

Fig. 6 – Dimensionless \(\alpha \)-pinene concentration \(C_p^* \) in the air phase versus dimensionless height \(h^* \) for some fixed values of the parameters \(\alpha = 1, A_1 = 70, \) and \(C_{pi0} = 0.27 \). When (a) \(\beta_1 = 100 \) for various values of the parameter \(\varphi_1 \) and (b) \(\varphi_1 = 0.1 \) for various values of the parameter \(\beta_1 \). The key to the graph: solid line represents Eq. (22) and the dotted line represents the numerical simulation.
Using the boundary conditions Eq. (A.2), Eq. (A.6) becomes
\begin{equation}
\frac{\partial^2 y}{\partial x^2} = -L + A x + B_x + A \sum_{n=0}^{\infty} A_n
\end{equation}

The Adomian decomposition method introduces the solution \(y(x) \) and the non-linear function \(N(y) \) by infinite series
\begin{equation}
y(x) = \sum_{n=0}^{\infty} y_n(x)
\end{equation}
and
\begin{equation}
N(y) = \sum_{n=0}^{\infty} A_n
\end{equation}

where the components \(y_n(x) \) of the solution \(y(x) \) will be determined recurrently and the Adomian polynomials \(A_n \) of \(N(y) \) are evaluated using the formula
\begin{equation}
A_n(x) = \frac{1}{n!} \frac{d^n}{dx^n} N \left(\sum_{k=0}^{n} A_k \right)_{x=0}
\end{equation}
which gives
\begin{align*}
A_0 &= N(y_0), \\
A_1 &= N'(y_0) y_1, \\
A_2 &= N'(y_0) y_2 + \frac{1}{2} N''(y_0) y_1^2, \\
A_3 &= N'(y_0) y_3 + N''(y_0) y_2 y_1 + \frac{1}{3!} N'''(y_0) y_1^3.
\end{align*}

By substituting Eqs. (A.8) and (A.9) in Eq. (A.7) gives
\begin{equation}
\sum_{n=0}^{\infty} y_n(x) = L^{-1}(g(x)) - L^{-1}(\sum_{n=0}^{\infty} A_n) + Ax + B
\end{equation}
Then equating the terms in the linear system of Eq. (A.11) gives the recurrent relation
\begin{equation}
y_0 = L^{-1}(g(x)) + Ax + B, \\
y_1 = -L^{-1}(A_n), \\
y_2 = -L^{-1}(A_k), \\
y_3 = -L^{-1}(A_k)
\end{equation}
From Eqs. (A.11) and (A.14), we can determine the components \(y_n(x) \), and hence the series solution of \(y_n(x) \) in Eq. (A.7) can be immediately obtained.

Using the boundary conditions Eq. (A.2), Eq. (A.6) becomes
\begin{equation}
y(x) = L^{-1}(g(x)) - L^{-1}(N(y)) + Bx + A
\end{equation}

The Adomian decomposition method introduces the solution \(y(x) \) and the non-linear function \(N(y) \) by infinite series
\begin{equation}
y(x) = \sum_{n=0}^{\infty} y_n(x)
\end{equation}
and
\begin{equation}
N(y) = \sum_{n=0}^{\infty} A_n
\end{equation}

where the components \(y_n(x) \) of the solution \(y(x) \) will be determined recurrently and the Adomian polynomials \(A_n \) of \(N(y) \) are evaluated using the formula
\begin{equation}
A_n(x) = \frac{1}{n!} \frac{d^n}{dx^n} N \left(\sum_{k=0}^{n} A_k \right)_{x=0}
\end{equation}
which gives
\begin{align*}
A_0 &= N(y_0), \\
A_1 &= N'(y_0) y_1, \\
A_2 &= N'(y_0) y_2 + \frac{1}{2} N''(y_0) y_1^2, \\
A_3 &= N'(y_0) y_3 + N''(y_0) y_2 y_1 + \frac{1}{3!} N'''(y_0) y_1^3.
\end{align*}

By substituting Eqs. (A.8) and (A.9) in Eq. (A.7) gives
\begin{equation}
\sum_{n=0}^{\infty} y_n(x) = L^{-1}(g(x)) - L^{-1}(\sum_{n=0}^{\infty} A_n) + Ax + B
\end{equation}
Then equating the terms in the linear system of Eq. (A.11) gives the recurrent relation
\begin{equation}
y_0 = L^{-1}(g(x)) + Ax + B, \\
y_1 = -L^{-1}(A_n), \\
y_2 = -L^{-1}(A_k), \\
y_3 = -L^{-1}(A_k)
\end{equation}
From Eqs. (A.11) and (A.14), we can determine the components \(y_n(x) \), and hence the series solution of \(y_n(x) \) in Eq. (A.7) can be immediately obtained.

Fig. 7 – Dimension methanol and \(\alpha \)-pinene concentrations \(C_m \) and \(C_p \) in the air phase versus the height \(h \) using the values of the parameters \(S_m, S_p = 1, D_m, D_p = 0.004, K_m, K_p = 10 \), respectively. The solid line represents Eqs. (21–22).

Fig. 8 – (a) The methanol removal ratio \(R_{\text{methanol}} \) versus inlet load \(C_{mi} \) for some fixed values of the parameters \(A_1 = 70, D_m = 0.04, S_m = 1, H = 0.1, \varphi = 1, \beta = 10, U_e = 1, \delta = 1, h = 1 \). The graph is plotted using Eq. (35). (b) The \(\alpha \)-pinene removal ratio \(R_{\alpha-pinene} \) versus inlet load \(C_{pi} \) for some fixed values of the parameters \(A_1 = 70, D_m = 0.04, S_m = 1, H = 0.1, \varphi = 1, \beta = 10, U_e = 1, \delta = 1, h = 1 \). The graph is plotted using Eqn. (36).
Appendix B: Analytical solution of Eqs. (11) and (12)

In this appendix, we have derived the solution of Eqs. (11) and (12) using the Adomian decomposition method. Eq. (11) can be written with the operator form

\[L(S_n) = \varphi N(S_n) \quad (B.1) \]

where the differential operator \(L = \frac{d^2}{dx^2} \) and \(N(S_n) = \frac{S_n}{1 + \beta S_n} \) (B.2).

Applying the inverse operator \(L^{-1}() = \int_{0}^{x} \int_{0}^{y} dx dy \) on both sides of Eq. (B.1) yields

\[S_n(X^*) = AX^* + B + \varphi L^{-1} \left[\frac{S_n}{1 + \beta S_n} \right] \quad (B.3) \]

Where \(A = S_n'(1) \) and \(B = S_n'(0) \). We let,

\[S_n(X^*) = \sum_{n=0}^{\infty} S_n(X^*) \sum_{n=0}^{\infty} A_n \quad (B.4) \]

In view of Eqs. (B.4) and (B.5), Eq. (B.3) gives

\[\sum_{n=0}^{\infty} S_n(X^*) = AX^* + B + \varphi L^{-1} \sum_{n=0}^{\infty} A_n \quad (B.6) \]

We identify the zeroth component as

\[S_n'(x^*) = AX^* + B \quad (B.7) \]

and the remaining components as the recurrence relation

\[S_n'(X^*) = \varphi L^{-1} A_n, n \geq 0 \quad (B.8) \]

where \(A_n \) are the Adomian polynomials of \(S_n, S_{n+1}, \ldots, S_{m}. \) We can find the first few \(A_n \) as follows:

\[A_0 = N(S_n(0)) = \frac{S_n(0)}{1 + \beta S_n(0)} \quad (B.9) \]

\[A_1 = \frac{d}{dx} \left[N(S_{n+1} + \lambda S_n) \right] \bigg|_{x=0} = \frac{S_n}{1 + \beta} \quad (B.10) \]

The remaining polynomials can be generated easily, and so,

\[S_n(0) = 1 \quad (B.11) \]

\[S_n(x^*) = \frac{\varphi}{(1 + \beta)} \left(\frac{X^2}{2} - X^* \right) \quad (B.12) \]

Adding (B.11) and (B.12), we get Eq. (19) in the text. Similarly, we can apply the above method to find the solution of Eq. (12). Higher order iteration will be considered to improve the accuracy of the results.

Appendix C: Matlab program for the numerical solution of Eqs. (11) and (12)

```matlab
function pdex4
m=0;
x=linspace(0,1);
t = linspace(0,10000000);
sol = pdepe(m,@pde4pde,@pde4ic,0,pde4bc,x,t);
ul = sol(:,:,1);
figure
plot(x,ul(end,:))
title(‘ul(x,t)’)
xlabel(‘Distance x’) ylabel(‘ul(x,1)’)
function [c,f,s] = pde4pde(x,t,u,DuDx);
c = 1;
f = 1.*DuDx;
a=0.01;B=0.5;
P = -(B*A*u(1)) / (u(1)*a));
s = F;

function [pl,ql,pr,qr] = pde4bc(xl,ul,xr,ur,t);
pl = [ul(1)-1];
ql = [0];
pr = [ur(1)-1];
qr = [1];
```

Appendix D: Matlab program for the numerical solution of Eqs. (16) and (17)

```matlab
function mat
options= odeset(‘RelTol’,1e-6,‘Stats’,‘on’);
%initial conditions
X0 = 1;
ts = linspace([0 1]);
 tic
[t,X]=ode45(@TestFunction,tspan,X0,options);
toc
figure
hold on
plot(t, X(:,1),’-’) t=0;
%plot(n,100-100*X(:,1),’-‘);
legend(‘x1’) ylabel(‘x’)
xlabel(‘t’)
return
function [dx_dt]= TestFunction(t, x);
A=70; a=1.4; B=100;
dx_dt(1) = (-A*a)/(1+B);
dx_dt = dx_dt’;
return
```
Appendix E: Nomenclature

Symbols	Definitions	Units
A_s	Biofilm surface area per unit volume of the biofilters	m^2/m^3
C_m	Concentration of methanol in the air stream	g/m^3
C_m^i	Concentration of methanol in the inlet air stream	g/m^3
C_p	Concentration of α-pinene in the air stream	g/m^3
C_p^i	Concentration of α-pinene in the inlet air stream	g/m^3
D_m	Effective diffusivity of methanol in the biofilm	m^2/h
D_p	Effective diffusivity of α-pinene in the biofilm	m^2/h
h	Dimension along the height of the biofilters	m
H	Total height of the biofilters	m
K_i	Inhibition constant for α-pinene in the presence of methanol	g/m^3
K_m	Half saturation constant of methanol in Monod kinetics obtained from differential biofilters experiments	g/m^3
D_m	Air/biofilm partition coefficient for methanol, dimensionless	–
D_p	Air/biofilm partition coefficient for α-pinene, dimensionless	–
S_m	Concentration of methanol in the biofilm	g/m^3
S_p	Concentration of α-pinene in the biofilm	g/m^3
U_g	Superficial velocity of air through the biofilters	m/s
X	Dry cell density of the biofilm	kg/m3
Y	Organic carbon content of the biofilm	g/g
Y_m	Biomass yield coefficient for methanol	kg/cell/kg methanol
Y_p	Biomass yield coefficient for α-pinene	kg/cell/kg α-pinene
S_m^0	Initial concentration of methanol in the biofilm	g/m^3
S_p^0	Initial concentration of α-pinene in the biofilm	g/m^3
L	Linear operator	–
A_n	Adomian polynomial	–

Greek letters

- α: Coefficient for the effect of methanol on α-pinene biodegradation, dimensionless
- δ: Biofilm thickness, m
- $\mu_{max,m}$: Maximum specific growth rate for methanol biodegradation, h$^{-1}$
- $\mu_{max,p}$: Maximum specific growth rate for α-pinene biodegradation, h$^{-1}$
- ρ_b: Density of the biofilm, kg/m3

Dimensionless parameters:

- $\beta = \frac{S_m}{K_m}$: Dimensionless constant of methanol in Monod kinetics obtained from differential biofilters experiments
- $\phi = \frac{\alpha\mu_{max,m}}{Y_m K_m} \delta^2$: Dimensionless parameter
- $X^* = \frac{x}{\delta}$: Dimensionless coordinate in dry cell density of the biofilm
- $S_m^* = \frac{S_m}{S_m^0}$: Dimensionless concentration of methanol in the biofilm
- $S_p^* = \frac{S_p}{S_p^0}$: Dimensionless concentration of α-pinene in the biofilm
- $S_{m,p}^* = \frac{\alpha X^*}{D_{m,p} \delta^2} \frac{S_m}{S_m^0}$: Dimensionless parameter
- $S_p^* = \frac{S_p}{S_p^0}$: Dimensionless concentration of α-pinene in the biofilm
- $A_n = \frac{H A_D S_m}{U_g C_m}$: Dimensionless parameter
- $A_p = \frac{H A_D S_p}{U_g C_p}$: Dimensionless parameter
- C_m^*: Dimensionless concentration of methanol in the air stream
- C_p^*: Dimensionless concentration of α-pinene in the air stream
- C_m^i: Initial (before treatment) concentration of methanol
- C_p^i: Initial (before treatment) concentration of α-pinene
- $h^* = \frac{h}{H}$: Dimensionless along the height of the biofilters
REFERENCES

[1] Ottengraf SPP. Biological system for waste gas elimination. Tbittech 1987;5:132-6.
[2] Wani AH, Bhrion RM, Lau AK. Biofiltration: a promising and cost effective control technology for odours VOC's and air toxic. J Environ Sci Health A 1997;32:2027-55.
[3] Li GW, Hu HY, Hao JM, Zhang HQ. Use of biological activated carbon to degrade benzene and toluene in a biofilter. Environ Sci 2002;23(5):13-18.
[4] Sun YM, Quan X, Yang FL, Chen JW, Lin QY. Effect of organic gas components on biofiltration and microbial density in biofilter. J Appl Environ Biol 2005;11(1):82-5.
[5] Yang CP, Suidan MT, Zhu XQ, Kim BJ. Comparison of single-layer and multi-layer rotating drum biofilters for VOC removal. Environ Prog 2003;22(2):87-94.
[6] Yang CP, Suidan MT, Zhu XQ, Kim BJ. Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters. Wat Sci Technol 2003;48(8):89-96.
[7] Yang CP, Suidan MT, Zhu XQ, Kim BJ. Removal of a volatile organic compound in a hybrid rotating drum biofilter. J Environ Eng 2004;130(5):282-91.
[8] Yang CP, Chen H, Zeng G, Yu G, Luo S. Biomass accumulation and control strategies in gas biofiltration. Biotechnol Adv 2010;28:531-40.
[9] Tonekaboni MM. Biofiltration of hydrophilic and hydrophobic volatile organic compounds using wood-based media. Toronto: University of Toronto; 1998.
[10] Kumar TP, Rahul, Kumar MA, Chandrajit B. Biofiltration of volatile organic compounds (VOCs) – an overview. Res J Chem Sci 2011;18(8):83-92.
[11] Yang CP. Rotating drum biofiltration. Cincinnati, OH: Department of Civil and Environmental Engineering, University of Cincinnati; 2004.
[12] Yang CP, Chen H, Zeng GM, Qu W, Zhong YY, Zhu XQ, et al. Modeling biodegradation of toluene in rotating drum biofilters. Water Sci Technol 2006;54(9):137-44.
[13] Yang CP, Chen H, Zeng GM, Zhu XQ, Suidan MT. Performances of rotating drum biofilter for VOC removal at high organic loadings. J Environ Sci 2008;20(3):285-90.
[14] Yang CP, Suidan MT, Zhu XQ, Kim BJ, Zeng GM. Effect of gas empty bed contact time on performances of various types of rotating drum biofilters for removal of VOCs. Water Res 2008;42(14):3641-50.
[15] Zhu XQ, Suidan MT, Pruden AJ, Yang C, Alonso C, Kim BJ, et al. The effect of substrate Henry's constant on biofilters performance. J Air Waste Manage Assoc 2004;54(4):409-18.
[16] Mohseni M, Allen DG. Biofiltration of mixtures of hydrophilic and hydrophobic volatile organic compounds. Chem Eng Sci 2000;55(9):1545-58.
[17] Ramírez-Lopez EM, Corona-Hernandez J, Avelar-Gonzalez FJ, Omil F, Thalasso F. Biofiltration of methanol in an organic biofilter using peanut shells as medium. Bioresour Technol 2010;101:87-91.
[18] Rene ER, Lopez ME, Veiga MC, Kennes DC. Steady- and transient-state operation of a two-stage bioreactor for the treatment of a gaseous mixture of hydrogen sulphide, methanol and α-pinene. J Chem Technol Biotechnol 2010;85(3):336-48.
[19] Dharmwichukorn S, Klein Heinz GT, Bagley ST. Thermophilic biofiltration of methanol and α-pinene. J Ind Microbiol Biotechnol 2001;26(3):127-33.
[20] Siddiqui AM, Hameed M, Siddiqui BM, Ghori QK. Use of Adomian decomposition method in the study of parallel plate flow of a third grade fluid. Commun Nonlinear Sci Numer Simul 2010;15:2388-99.
[21] Rene ER, Jin Y, Veiga MC, Kennes C. Two-stage gas-phase bioreactor for the combined removal of hydrogen sulphide, methanol and α-pinene. Environ Technol 2009;30(12):1261-72.
[22] Mohseni M, Allen DG. Transient performance of biofilters treating mixtures of hydrophilic and hydrophobic volatile organic compounds. J Air Waste Manag Assoc 2011;49(12):1434-41.
[23] Berenjian A, Chan N, Malmiri HJ. Volatile organic compounds removal methods: a review. Am J Biochem Biotechnol 2012;8(4):220-9.
[24] Shareefdeen Z, Baltzis BC, Oh YS, Bartha R. Biofiltration of methanol vapor. Biotechnol Bioeng 1993;41:512-24.
[25] Premkumar R, Krishnamohan N. Removal of methanol from waste gas using biofiltration. J Appl Sci Res 2010;6(11):1898-907.
[26] Arriaga S, Serrano MA, Barba de la Rosa AP. Methanol vapor biofiltration coupled with continuous production of recombinant endochitinase Ech42 by Pichia Pastoris. Process Biochem 2012;47(12):2311-16.
[27] Mohseni M. Biofiltration of alpha-pinene and its application to the treatment of pulp and paper air emissions. Tappi J 1998;81(8):205-11.
[28] Cabeza IO, Lopez R, Giraldez I, Stuetz RM, Díaz MJ. Biofiltration of α-pinene vapours using municipal solid waste (MSW) – pruning residues (P) composts as packing materials. Chem Eng J 2013;233:149-58.
[29] Lim KH. Waste air treatment with a biofilter for the case of excess adsorption capacity. J Chem Eng Jpn 2001;34(6):766-75.
[30] Lim KH, Lee EJ. Biofilter modeling for waste air treatment: comparisons of inherent characteristics of biofilter models. Korean J Chem Eng 2003;20(2):315-27.
[31] Lee EJ, Lim KH. A dynamic adsorption model for the gas-phase biofilters treating ethanol: prediction and validation. Korean J Chem Eng 2012;29(10):1373-81.
[32] Srivastava VK, Kumar S, Awasthi MK, Singh BK. Two-dimensional fractional-order biological population model and its analytical solution. Egypt J Basic Appl Sci 2014;1:71-6.
[33] Srivastava VK, Awasthi MK, Kumar S. Analytical approximations of two and three dimensional time fractional telegraphic equation by reduced differential transform method. Egypt J Basic Appl Sci 2014;1(1):60-66.
[34] Biazar J, Babolian E, Islam R. Solution of the system of ordinary differential equations by Adomian decomposition method. Appl Math Comput 2004;147:713-19.
[35] Amani AR, Sadeghi J. Adomian decomposition method and two coupled scalar fields. The International Conference Differential Geometry – Dynamical Systems Bucharest-Romania 2008; 11–18. Balkan Society of Geometers, Geometry Balkan Press 2008.
[36] Adomian G, Rach R. Analytic solution of non-linear boundary-value problems in several dimensions by decomposition. J Math Anal Appl 1993;174:118-37.
[37] Duan JS, Rach R. A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations. Appl Math Comput 2011;218:4090-118.
[38] Muthuramalingam R, Kumar S, Lakshmanan R. Analytical expressions for the concentration of nitric oxide removal in the gas and biofilm phase in a biotrickling filter. J Assoc Arab Univ Basic Appl Sci 2015;18:19-29.
[39] Rajendran L, Sivasankari M. Analytical expression of concentration of VOC and oxygen in steady state in biofiltration model. Appl Math 2012;4(1):12.
[40] Muthukaruppan S, Senthamaral R, Rajendran L. Modeling of immobilized glycolyamine kinetics by flow calorimetry. Int J Electrochem Sci 2012;7:9122-37.