Comparison of Proseal Laryngeal Mask Airway with the I-Gel Supraglottic Airway During the Bailey Manoeuvre in Adult Patients Undergoing Elective Surgery

Nishant Kalra, Akhilesh Gupta, Rajesh Sood, Mohandeep Kaur
Department of Anaesthesiology and Critical Care, Dr. Ram Manohar Lohia Hospital and Post Graduate Institute of Medical Education and Research, New Delhi, India

Abstract

Objective: Since the inception of Bailey manoeuvre, various authors have advocated for the substitution of endotracheal tube (ETT) with a supraglottic airway device (SAD) before the emergence from anaesthesia. There is scant information about the ideal supraglottic device in the literature. The present study compared the Proseal laryngeal mask airway (LMA) with the I-gel SAD during the Bailey manoeuvre. The primary objective was to compare these for ease of insertion and adequate placement of supraglottic airway, whereas the secondary objective was comparison of haemodynamics following the Bailey manoeuvre.

Methods: A total of 100 patients aged 18–60 years who were scheduled for elective surgery under general anaesthesia were randomised into 2 groups: group I (Bailey manoeuvre using Proseal LMA) and group II (Bailey manoeuvre using I-gel). The Bailey manoeuvre was performed 15 min before the end of surgery using the chosen supraglottic airway as per randomisation. We measured the ease of insertion (number of attempts required for insertion) and adequate placement (Brimacombe scoring) of SADs (fibre-optic bronchoscopy). Haemodynamic parameters were recorded until 10 min after the Bailey manoeuvre.

Results: The groups were comparable in terms of demographic parameters. Both the devices were comparable in terms of ease of insertion (p > 0.05). Significantly higher (p < 0.05) Brimacombe scores were seen with the I-gel. Significant (p < 0.05) rise in systolic blood pressure, diastolic blood pressure, and mean arterial pressure was observed at the insertion of SAD, removal of ETT, and at 1 min after the Bailey manoeuvre in Proseal LMA in contrast to the I-gel.

Conclusion: This study showed that the I-gel provides a better glottic visualisation and haemodynamically superior profile compared with the Proseal LMA during the Bailey manoeuvre.

Keywords: Bailey manoeuvre, I-gel, Proseal LMA

Introduction

A smooth endotracheal tube (ETT) extubation without coughing, bucking, or haemodynamic changes is one of the most important anaesthetic goals during general anaesthesia. The adverse effects are more common during endotracheal extubation in contrast to the intubation. There are transient increases in the arterial blood pressure and heart rate (HR) in the range of 10% to 30% lasting from 5 to 15 min, which may lead to unfavourable sequelae, such as myocardial ischaemia, left ventricular failure, cerebrovascular accident, and detrimental increase in intracranial or intraocular pressures (1-3). There are various pharmacological and non-pharmacological techniques that have been employed to attenuate the stress response at extubation (4, 5).

Supraglottic airway devices (SADs) have gained immense popularity not only for their use in airway management but also for causing fewer cardiovascular responses at removal than the extubation of tracheal tube (6, 7). The inser-
Various supraglottic devices such as the Classic laryngeal mask airway (LMA) and the Ambu laryngeal mask have been referred to in the literature with respect to their use during the Bailey manoeuvre (16). Although I-gel supraglottic airway has been used widely to decrease the sympathetic response during extubation (17), there is paucity of information in the literature about its use during the Bailey manoeuvre. In this study, we compared the Proseal LMA with the I-gel supraglottic airway for the ease of insertion, adequate placement, and haemodynamic responses during the Bailey manoeuvre. Our primary objective was comparison for the ease of insertion (number of attempts required for insertion) and adequate placement (Brimacombe scoring) of SADs using fibre-optic bronchoscopy; whereas the secondary objective was to compare haemodynamic parameters until 10 min after the Bailey manoeuvre.

Methods

Study design and participants
Based on the available previous literature (16), the study’s sample size was a total of 100 cases. With an α of 0.05, power of study of 80%, and a confidence level of 95%, a minimum number of 50 subjects under each group satisfying the inclusion and exclusion criteria were selected. After approval from the Hospital Ethics Committee, 100 American Society of Anesthesiologists (ASA) grade I and II patients between the age range of 18–60 years, undergoing elective surgery, and who gave written informed consent for participating in this study were selected. Patients with predicted difficult intubation, high risk of aspiration, and who had undergone surgery involving oral or nasal cavity were excluded from the study. The patients were randomly divided into 2 groups of 50 each, using randomised computer tables. The 2 groups were as follows:

- Group PLMA: Proseal LMA was used for the Bailey manoeuvre.
- Group I-Gel: I-gel supraglottic airway was used for the Bailey manoeuvre.

Study protocol
All patients were kept nil per oral overnight and received alprazolam 0.25 mg and ranitidine 150 mg orally, the night before surgery and in the morning of surgery. In the operation theatre, HR, systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP), electrocardiogram (ECG), oxygen saturation (SPO₂), and Bispectral Index (BIS) monitoring was performed, and baseline values were recorded. The anaesthetic induction was performed as per institutional protocol, and endotracheal intubation was performed with cuffed ETT of appropriate size. Intra-operatively, neuromuscular blockade and analgesia was achieved with intermittent boluses of inj. vecuronium 0.02 mg.kg⁻¹ intravenous and injection fentanyl 0.05ug.kg⁻¹ intravenous, respectively. Sevoflurane was used to maintain a minimum alveolar concentration (MAC) of 1 and a BIS value of 45–60. Mechanical ventilation was done using oxygen and nitrous oxide in ratio of 33:67 with a total flow of 3 L.min⁻¹. The ventilation was adjusted to maintain an end-tidal carbon dioxide at 35–40 mm Hg.

About 15 min before the end of surgery, patient was ventilated with 100% oxygen and sevoflurane concentration adjusted to maintain a MAC at 1 and BIS value between 45 and 60. HR, SBP, DBP, MAP, SPO₂, ECG, and BIS values were recorded.

Based on the group chosen, an appropriate-sized SAD as per the body weight was inserted, after performing gentle oropharyngeal suction (Figure 1).

Main Points:

- Bailey manoeuver (ETT/LMA exchange technique) helps in attenuation of haemodynamic stress response at extubation.
- Igel supraglottic airway provides significantly better ease of insertion and supraglottic views as compared to the Proseal LMA.
- Igel Supraglottic airway device provides superior hemodynamic profile during Bailey manoeuvre as compared to the Proseal LMA.
Turk J Anaesthesiol Reanim
Kalra et al. Comparing Supraglottic Devices During the Bailey Manoeuvre

• **G_PLMa**: Deflated Proseal LMA inserted behind the ETT and inflated with air as per the recommended volume.
• **G_I-Gel**: I-gel supraglottic airway inserted behind the ETT.

The ease of insertion and number of attempts during Proseal LMA and I-gel supraglottic airway insertion were noted. The ease of insertion was graded as Easy, if SAD placement was successful in the first attempt without resistance, and Difficult, if more than 1 attempt was required to place it, or resistance was encountered while placing the device (18).

Lubricated gastric tube was inserted through the gastric channel so as to ensure correct placement of SAD and also prevent aspiration. Tracheal tube cuff was deflated, and ETT was removed while maintaining positive pressure (Figure 2). After confirmation of adequate placement of SAD clinically with adequate chest rise and via capnography, the ventilation was continued. HR, SBP, DBP, MAP, ECG, SPO2, and BIS values were recorded immediately after SAD insertion; after the removal of ETT and at 1, 2, 3, 5, and 10 min afterward. A fibre-optic bronchoscope was inserted via the airway tube of Proseal LMA/I-gel supraglottic airway to grade the adequate placement of the device using Brimacombe (19) score (Figure 3).

The Brimacombe score was classified as follows: 4=only vocal cords visible, 3=vocal cords plus posterior epiglottis visible, 2=vocal cords plus anterior epiglottis visible, and 1=vocal cords not seen.

Figure 2. ETT removed after deflating the cuff
ETT: endotracheal tube

Figure 3. Left: FOB inserted via the airway tube of the SAD; Right: A Brimacombe score of 3 (vocal cords plus posterior epiglottis visible) is observed with the I-gel airway
FOB: fibre-optic bronchoscope
All the procedures performed during the study were carried out by a single skilled anaesthesiologist.

Statistical analysis
Quantitative variables were compared using unpaired t-test between the 2 groups and paired t-test within the group. Qualitative variables were compared using the chi-square test. A p value of <0.05 was considered statistically significant. The data were entered in Microsoft Excel spreadsheet, and analysis was performed using the IBM Statistical Package for Social Sciences (IBM SPSS Corp.; Armonk, NY, USA) version 21.0.

Results
Both the groups were comparable in terms of their demographic characteristics (age, weight, and gender) (Table 1).

The ease of insertion (Table 2) was more with the I-gel (41/50 patients required single attempt with no resistance at insertion) than with the Proseal LMA (39/50 patients required single attempt with no resistance at insertion), which was statistically comparable.

The I-gel provided a better view of the glottis (Table 3) than the Proseal LMA (92% in group II and 66% in group I had Brimacombe scores of III or IV), which was statistically significant (p<0.05).

We observed a significant (p<0.05) rise in HR, SBP, DBP, and MAP (Tables 4, 5, 6, and 7) above the baseline values in group PLMA, which started immediately after insertion of the SAD, maximum being immediately after removal of the ETT and continued until 1 min after the Bailey manoeuvre. Thereafter, there was a fall towards the baseline values by 5–10 min following the manoeuvre. A similar trend was observed in group I-Gel; however, the rise in the haemodynamic parameters was statistically insignificant (p>0.05) at all the measured intervals in group I-Gel. BIS was comparable (p>0.05) in both

Table 1. Demography and patient characteristics

Age and weight distribution	Group I (n=50)	Group II (n=50)	p
Age (y)	34.28±11.45	37.82±13.19	0.155*
Weight (kg)	58.64±6.11	56.42±7.97	0.121*
Sex (male/female)	21/29	30/20	0.072*

a Unpaired t-test. *b* Chi-square test. SD: standard deviation.

Table 2. Comparison for ease of insertion

Ease of insertion	Group I (n=50)	Group II (n=50)	p
Frequency %	%	%	
Difficult	11	9	0.617*
Easy	39	41	
Total	50	50	

*Chi-square test.

Table 3. Comparison for adequate placement of SAD

Adequate placement (Brimacombe scores)	Group I (n=50)	Group II (n=50)	p
Frequency %	%	%	
I	6	1	<0.001*
II	11	3	
III	12	6	
IV	21	40	
Total	50	50	

*Unpaired t-test. SAD: supraglottic airway device.

Table 4. Changes in heart rate during periextubation period

HR	Group I (n=50), HR/min	Group II (n=50), HR/min
	Mean±SD	Mean±SD
Baseline before induction	75.5±5.14	76.32±5.1
Before Bailey manoeuvre	74.96±5.22	75.72±6.13
After supraglottic insertion	76.54±5.39	76.98±5.02
Immediate post extubation	78.38±5.63	77.1±5.97
1 min post extubation	76.96±6.17	77.04±4.98
2 min post extubation	75.7±5.89	77.1±4.96
3 min post extubation	76.3±5.09	75.8±4.6
5 min post extubation	75.1±4.54	75.72±5.11
10 min post extubation	74.76±4.64	75.8±5.9

*p<0.05 as compared with the baseline value. HR: heart rate; SD: standard deviation.

Table 5. Changes in systolic blood pressure during periextubation period

Systolic blood pressure	Group I (n=50), mm Hg	Group II (n=50), mm Hg
Baseline	129.18±5.17	129.92±5.55
Before Bailey manoeuvre	128.9±5.27	128.8±6.13
After supraglottic insertion	132.66±5.17	130±6.98
Immediate post extubation	139.74±4.75	130.4±5.87
1 min post extubation	133.76±5.24	130.1±5.35
2 min post extubation	129.7±5.31	129.8±5.28
3 min post extubation	130.4±5.35	129.4±5.27
5 min post extubation	129.64±5.19	129.2±4.96
10 min post extubation	129.1±3.57	129.56±5.26

*p<0.05 as compared with the baseline value. SD: standard deviation.
the groups. There was no significant change in the BIS value during the Bailey manoeuvre from before the Bailey manoeuvre in both the groups (Table 8).

Discussion

Haemodynamic disturbances and respiratory complications are some of the chief concerns during ETT extubation. Extubation of trachea is traditionally performed when the patient is either fully “awake” or “deeply anaesthetised”. Awake extubation is generally considered safer as the return of airway tone, reflexes, and respiratory drive allows the patient to maintain their own airway (20). But it may be associated with significant haemodynamic stimulation, which may lead to bleeding from the surgical wound site and an increase in intracranial and intraocular pressures (21, 22).

Exubation of trachea in deep anaesthesia is a common method to avoid this stress response. This can be achieved by the use of inhalational agents or opioids, but they may cause loss of the airway with aspiration risk and prolonged sedation (23).

Pharmacological agents such as lidocaine, beta blockers, calcium channel blockers, and dexmedetomidine are also partially effective in controlling the haemodynamic response during extubation (5, 24).

One of the non-pharmacological technique to attenuate the stress response at extubation is the Bailey manoeuvre (ETT/LMA exchange technique) described in 1995 by Dr. P.M. Bailey (10). This method involves placing the LMA before the removal of ETT while patient is in a deep plane of anaesthesia, enough for the patient to tolerate smooth LMA insertion and endotracheal extubation. The advantage of in situ ETT during LMA insertion is that it splints the epiglottis, and the LMA easily slides behind it without the problem of occlusion of airway by epiglottis. This technique also ensures that there is no risk of losing the airway, during difficult or failed LMA insertion (20).

Various SADs such as the Classic LMA (10-14), Proseal LMA (25, 26), and Ambu laryngeal mask (16) airway have been used for the Bailey manoeuvre, but the literature is limited in comparison of SADs for the Bailey manoeuvre.

We found that the ease of insertion was more with the I-gel supraglottic airway compared with Proseal LMA, though statistically insignificant. In a study done by Singh et al. (18) in 2009, it was observed that the I-gel supraglottic airway had a significantly higher ease of insertion than the Proseal LMA. Insertion of an LMA with a bulky inflatable cuff, like the Pro-

Table 6. Changes in diastolic blood pressure during periextubation period

Diastolic blood pressure	Group I (n=50), mm Hg	Group II (n=50), mm Hg
Baseline	75.7±4.08	77.22±3.81
Before Bailey manoeuvre	75.08±5.08	76.42±5.59
After supraglottic insertion	79.92±4.59	77.5±4.59
Immediate post extubation	81.22±4.02 *	77.8±4.58
1 min post extubation	78.52±3.86 *	77.3±4.51
2 min post extubation	76.08±3.66	76.9±4.84
3 min post extubation	75.4±4.07	76.5±4.55
5 min post extubation	75.1±4.97	76.38±4.52
10 min post extubation	74.7±3.35	76.48±4.22

*p<0.05 as compared with the baseline value. SD: standard deviation.

Table 7. Changes in mean blood pressure during periextubation period

Mean blood pressure	Group I (n=50), mm Hg	Group II (n=50), mm Hg
Baseline	93.5±4.04	94.79±3.82
Before Bailey manoeuvre	93.02±4.53	93.89±4.98
After supraglottic insertion	97.5±4.13 *	95.4±4.61
Immediate post extubation	100.73±3.68*	95.33±4.1
1 min post extubation	96.93±2.98 *	94.9±4.03
2 min post extubation	93.95±3.54	94.53±4.02
3 min post extubation	93.73±3.91	94.15±3.99
5 min post extubation	93.28±4.27	93.99±4.38
10 min post extubation	92.97±3.19	94.17±3.81

*p<0.05 as compared with the baseline value. SD: standard deviation.

Table 8. Changes in BIS during periextubation period

BIS	Group I (n=50), mm Hg	Group II (n=50), mm Hg
Baseline	97.02±2.12	96.88±2.27
Before Bailey manoeuvre	50.56±2.76	50.62±2.69
After supraglottic insertion	52.44±2.39	52.42±2.56
Immediate post extubation	55.12±1.97	55.16±2.00
1 min post extubation	62.24±2.31	62.46±2.38
2 min post extubation	66.84±2.04	66.74±2.36
3 min post extubation	73.40±2.32	73.86±2.47
5 min post extubation	80.78±3.54	80.10±3.14
10 min post extubation	87.72±2.35	87.82±2.41

BIS scores comparable between the two groups at all measured intervals (p>0.05)
The authors declared that this study has no conflicts of interest to declare in our study, which may have a bearing on post-operative sore throat. Moreover, we did not evaluate the incidence of sore throat and trauma to the airway following the Bailey manoeuvre, which can further have an impact on the use of these devices for this manoeuvre.

Conclusion

We conclude that the I-gel supraglottic airway provides a significantly superior profile in terms of ease of insertion, adequacy of placement, and haemodynamics and can be used as a safe and suitable alternative to the Proseal LMA during the Bailey manoeuvre.

Ethics Committee Approval: Ethics committee approval was received for this study from the ethics committee of Institutional Ethics Committee, Dr. Ram Manohar Lohia Hospital (Approval No.-1-40/3/2014/IEC/Thesis/PGIMER-RMLH/-1444).

Informed Consent: Written informed consent was obtained from patients who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – N.K., A.G., R.S., M.K.; Design – N.K., A.G., R.S., M.K.; Supervision – N.K., A.G., R.S., M.K.; Resources – N.K., A.G., R.S., M.K.; Materials – N.K., A.G., R.S., M.K.; Data Collection and/or Processing – N.K., A.G., R.S., M.K.; Analysis and/or Interpretation – N.K., A.G., R.S., M.K.; Literature Search – N.K., A.G., R.S., M.K.; Writing Manuscript – N.K., A.G., R.S., M.K.; Critical Review – N.K., A.G., R.S., M.K.

Conflict of Interest: The authors have no conflicts of interest to declare.

Financial Disclosure: The authors declared that this study has received no financial support.

References

1. Miller KA, Harkins CP, Bailey PL. Postoperative tracheal extubation. Anaesth Analg 1995; 80: 149-72. [CrossRef]
2. Bidwai AV, Bidwai VA, Rogers CR, Stanley TH. Blood-pressure and pulse-rate responses to endotracheal extubation with and without prior injection of lidocaine. Anaesthesiology 1979; 51: 171-3. [CrossRef]
3. Hartely M, Vaughan RS. Problems associated with tracheal extubation. Br J Anaesth 1993; 71: 561-8. [CrossRef]
4. Nishina K, Mikawa K, Mackawa N, Obara H. Attenuation of cardiovascular responses to tracheal extubation with diltiazem. Anaesth Analg 1996; 82: 1205-10. [CrossRef]
5. Mikawa K, Nishina K, Mackawa N, Obara H. Attenuation of cardiovascular responses to tracheal extubation: Verapamil Vs diltiazem. Anaesth Analg 1995; 80: 1217-22. [CrossRef]
6. Fujii Y, Toyooka H, Tanaka H. Cardiovascular responses to tracheal extubation or LMA removal in normotensive and hypertensive patients. Can J Anaesth 1997; 44: 1082-6. [CrossRef]
7. Mushtaq R, Zahoor SA, Naqash I, Mahraj-u-din. Cardiovascular response to tracheal extubation in normotensive patients: A comparison with LMA removal. JK Practitioner 2003; 10: 22-4.

8. Sahin A, Tufek A, Cingi AK, Caca I, Tokgo O, Balsak S. The effect of I-gel airway on intraocular pressure in pediatric patients who received sevoflurane or desflurane during strabismus surgery. Paediatr Anaesth 2012; 22: 722-5. [CrossRef]

9. Karabiyik L, Oncu LS, Emmez G. The effects of the cobra perilaryngeal airway on intraocular pressure. Turk J Med Sci 2012; 42: 667-73.

10. Nair I, Bailey PM. Use of laryngeal mask for airway maintenance following tracheal extubation. Anaesthesia 1995; 50: 174-5. [CrossRef]

11. Cooper RM. Extubation and Changing Endotracheal Tubes. In: Hagberg CA, 2nd ed. Benumof’s Airway Management: Principles and Practice. Philadelphia: Mosby, 2007.p.1163-4. [CrossRef]

12. Costa e Silva L, Brimacombe JR. Tracheal tube/laryngeal mask exchange for emergence. Anaesthesiology 1996; 85: 218. [CrossRef]

13. Stix MS, Borromeo CJ, Sciortino GJ, Teague PD. Learning to exchange an endotracheal tube for a laryngeal mask prior to emergence. Can J Anaesth 2001; 48: 795-9. [CrossRef]

14. Sasano H, Sasano N, Hattori T, Tsuouchi H, Tsuda T, Katsuya H. Tracheal tube/laryngeal mask exchange to prevent coughing in lung volume reduction surgery. Masui 2000; 49: 278-81.

15. Koga K, Asai T, Vaughan RS, Latto IP. Respiratory complications associated with tracheal extubation. Timing of tracheal extubation and use of the laryngeal mask during emergence from anaesthesia. Anesthesia 1998; 53: 540-4. [CrossRef]

16. Jain S, Khan RM, Ahmed SM, Singh M. Comparison of classic Laryngeal mask airway with Ambu laryngeal mask for tracheal tube exchange: A prospective randomized controlled study. Indian J Anaesth 2013; 57: 259-64. [CrossRef]

17. Jindal P, Rizvi A, Sharma JP. Is I-gel a new revolution among supraglottic airway devices? A comparative evaluation. Middle East J Anaesthesiol 2009; 20: 53-8.

18. Singh I, Gupta M, Tandon M. Comparison of Clinical Performance of I-GeTM with LMA-ProSealTM in Elective Surgeries. Indian J Anaesth 2009; 53: 302-5.

19. Keller C, Brimacombe J, Pühringer F. A fibreoptic Scoring System to assess the position of laryngeal mask airway devices. Interobserver variability and a comparison between the standard, flexible and intubating laryngeal mask airway. Anesthesiol Intensivmed Notfallmed Schmerzther 2000; 35: 692-4. [CrossRef]

20. Popat M, Mitchell V, Dravid R, Patel A, Swapmipilai C, Higgs A, et al. Difficult airway society guidelines for management of tracheal extubation. Anaesthesia 2012; 67: 326-7. [CrossRef]

21. Leech P, Barker J, Fitch W. Changes in intracranial pressure and systemic arterial pressure during termination of anaesthesia. Br J Anaesth 1974; 46: 315-6. [CrossRef]

22. Barclay K, Wall T, Wareham K, Asai T. Intracocular pressure changes in patients with glaucoma. Comparison between the laryngeal mask airway and tracheal tube. Anaesthesia 1994; 49: 159-62. [CrossRef]

23. Mendel P, Fredman B, White PF. Alfentanil suppresses coughing and agitation during emergence from isoflurane anesthesia. J Clin Anesth 1995; 7: 114-8. [CrossRef]

24. Mikawa K, Nishina K, Takao Y, Shiga M, Maekawa N, Obara H. Attenuation of cardiovascular responses to tracheal extubation: Comparison of verapamil, lidocaine, and verapamil-lidocaine combination. Anesth Analg 1997; 85: 1005-10. [CrossRef]

25. Brouillette G, Drolet P, Donati F. Deep extubation and insertion of laryngeal mask airway reduces coughing at emergence. Can J Anaesth 2008; 55: 4721391-2. [CrossRef]

26. Ajappa AK, Kaul N, Sumant A, Khan RM. Proseal LMA - tracheal tube exchange technique during extubation in refractory bronchospasm: A safe strategy. J Anaesth Clin Pharmacol 2009; 25: 85-6.

27. Brimacombe J, Keller C. The Proseal Laryngeal mask airway: A randomized, cross over study with the standard Laryngeal mask airway in paralyzed, anesthetized patients. Anaesthesiology 2000; 93: 104-9. [CrossRef]

28. Levitan RM, Kinkle WC. Initial anatomic investigations of the I-gel airway: a novel supraglottic airway without inflatable cuff. Anaesthesiology 2005; 102: 85-6. [CrossRef]

29. Chauhan G, Nayar P, Seth A, Gupta K, Panwar M, Agrawal N. Comparison of clinical performance of the I-gel with LMA proseal. J Anaesthesiol Clin Pharmacol 2013; 29: 56-60. [CrossRef]

30. Das A, Majumdar S, Mukherjee A, Mitra T, Kundu R, Hajar BK, et al. I-gel in Ambulatory Surgery: A Comparison with LMA-ProSeal in Paralyzed Anaesthetized Patients. JCDR 2014; 8: 80. [CrossRef]

31. Phaughat P, Kiran S, Khurana A, Hooda S. Effect of LMA-Classic and LMA-Proseal Insertion on Intraocular Pressure in Adult Patients. Internet J Anaesthesiol 2012; 30: 2. [CrossRef]