Ectopic adrenocortical adenoma in the renal hilum: a case report and literature review

Yang Liu¹,²*, Yue-Feng Jiang¹,², Ye-Lin Wang¹,², Hong-Yi Cao¹,², Liang Wang¹,², Hong-Tao Xu¹,², Qing-Chang Li¹,², Xue-shan Qiu¹,² and En-Hua Wang¹,²

Abstract

Background: Ectopic (accessory) adrenocortical tissue, also known as adrenal rests, is a developmental abnormality of the adrenal gland. The most common ectopic site is in close proximity to the adrenal glands and along the path of descent or migration of the gonads because of the close spatial relationship between the adrenocortical primordium and gonadal blastema during embryogenesis. Ectopic rests may undergo marked hyperplasia, and occasionally induce ectopic adrenocortical adenomas or carcinomas.

Case presentation: A 27-year-old Chinese female patient who presented with amenorrhea of 3 months duration underwent computed tomography urography after ultrasound revealed a solitary mass in the left renal hilum. Histologically, the prominent eosinophilic tumor cells formed an alveolar- or acinar-like configuration. The immunohistochemical profile (alpha-inhibin+, Melan-A+, synaptophysin+) indicated the adrenocortical origin of the tumor, diagnosed as ectopic adrenocortical adenoma. The patient was alive with no tumor recurrence or metastasis at the 3-month follow-up examination.

Conclusions: The unusual histological appearance of ectopic adrenocortical adenoma may result in its misdiagnosis as oncocytoma or clear cell renal cell carcinoma, especially if the specimen is limited. This case provides a reminder to pathologists to be aware of atypical cases of this benign tumor. Although uncommon, an ectopic adrenal lesion should be included in the differential diagnosis of tumors involving the renal hilum. A misdiagnosis of this benign condition as a malignant renal tumor may have severe consequences for the patient, including unnecessary radical nephrectomy. Preoperative biopsy and appropriate immunohistochemical staining will assist in determining the origin and nature of the tumor and in avoiding intraoperative uncertainty.

Keywords: Ectopic adrenocortical adenoma, Ectopic adrenal gland, Ectopic oncocytic adrenocortical neoplasm, Renal hilum, Oncocytes

Background

Ectopic adrenal rests have been reported from a variety of anatomic sites, including the celiac plexus, kidney, testis, epididymis, broad ligament, the canal of Nuck, hernial and hydrocele sacs, the mesoappendix, liver, lung, intradural space and brain [1–7]. Cortical tissue seems to be the sole component of ectopic adrenal rests, as there have been no reports of accompanying medullary tissue. Occasionally, ectopic rests undergo marked hyperplasia and develop into ectopic adrenocortical adenomas and carcinomas [7]. Because the clinical features of ectopic adrenocortical neoplasms depend on their hormone secretion status, these tumors may be functional or non-functional. However, in contrast to their functional counterparts, non-functional ectopic adrenocortical neoplasms may go undetected because these patients are mostly asymptomatic. Here, we report a case of ectopic adrenocortical adenoma located in the renal hilum, a rare site for the occurrence of this tumor and one that may have easily led to its misdiagnosis as
renal cancer and therefore to radical nephrectomy. This case provides a reminder to pathologists to be aware of ectopic adrenocortical adenoma, as these patients can be treated with nephron-sparing surgery. Preoperative biopsy will aid in the correct diagnosis.

Case presentation
Clinical history
A 27-year-old Chinese female complained of amenorrhea of 3 months duration. Her medical history and that of her family was unremarkable. Her body mass index (BMI) and blood pressure (BP) were within the normal range (BMI: 19, height 165 cm, body weight: 62 kg, BP: 120/85 mmHg). Virilization and other clinical hormonal abnormalities were not noted, except for a borderline elevation of testosterone. Multislice spiral computed tomography (CT) urography revealed a well-circumscribed, round, soft-tissue mass with a maximum diameter of 2.7 cm in the left renal hilum, near the renal pelvis and atrophic bilateral adrenals. The CT value for the unenhanced mass was 35 HU; following contrast agent administration, it increased to 161 HU. Multislice spiral CT urography showed no abnormalities in kidney blood flow or renal perfusion. Renal function was normal, except for a slight delay in renal excretion (Fig. 1). The tumor was clinically diagnosed as an angiomylipoma and was excised in urinary surgery. During the operation, the mass in the left renal hilum was fully resected, sparing the kidney and was sent for pathology examination. Rapid intraoperative pathological diagnosis suggested oncocytoma, but paraganglioma and renal cell carcinoma could not be excluded. Based on the postoperative pathology results, the diagnosis was ectopic adrenocortical adenoma. The patient is alive with no tumor recurrence or metastasis after 3 months of follow-up.

Materials and methods
The tumor tissues were fixed in 10 % formalin and embedded in paraffin. Four-micrometer sections were cut from each paraffin block. One section was stained with hematoxylin-eosin (H&E); the others were stained for immunohistochemistry using the streptavidin-peroxidase system (Ultrasensitive; Mai Xin Inc., Fuzhou, China) according to the manufacturer’s instruction. Commercially available, prediluted monoclonal antibodies against the following antigens were used to evaluate the specimen: pan-cytokeratin (AE1/AE3), vimentin, synaptophysin, CD56, neuron specific enolase (NSE), alpha-inhibin, Melan-A, CD34, S100, PAX8, chromogranin A, Ki-67 and anti-mitochondrial antibody (AMA; Millipore, Darmstadt, Germany). For the negative controls, the primary antibody was replaced with PBS.

Gross features
Grossly, the mass was solid, round and well circumscribed; its cut surface was yellow and brown. The mass measured 2.5 cm at its largest diameter and weighed 8 g. Neither necrosis nor hemorrhage was identified.

Microscopic features
Histologically, the tumor was well circumscribed and composed of cells mainly arranged in nests forming an alveolar- or acinar-like configuration (Fig. 2a–c) and surrounded by an open vascular network. Foci of edematous stroma within the tumor (Fig. 2d) and oncocyes with a diffuse growth pattern along its periphery were observed. Focal infiltrations of mature lymphocytes were especially prominent in areas undergoing lipomatous or myelolipomatous metaplasia (Fig. 2e). The tumor was mainly composed of cells with an abundant eosinophilic cytoplasm. Focal areas of pale-staining clear cells with a lipid-filled cytoplasm were identified but were rare. Bizarre nuclear forms were occasionally seen in areas with

Fig. 1 Imaging examination results of the patient. a Computed tomography (CT) urography and three dimensional reconstruction show the ureters bilaterally, without any obvious expansion. Enhanced CT and coronal reconstruction showing b a soft-tissue mass with a maximum diameter of 2.7 cm in the left renal hilum, near the renal pelvis and c an atrophic bilateral adrenals in sagittal view.
Fig. 2 (See legend on next page.)
diffuse tumor cells (Fig. 2f). Eosinophilic nuclear pseudoinclusion bodies and lipofuscin pigmentation were also detected (Fig. 2g). However, mitoses were exceptionally rare or absent. The peripheral adipose tissue contained foci of ectopic adrenal rests (Fig. 2h).

**Immunohistochemistry**

The tumor cells were markedly and diffusely positive for vimentin, alpha-inhibin (Fig. 3a), Melan-A (Fig. 3b), synaptophysin (Fig. 3c), NSE and CD56, and focally positive for pan-cytokeratin (AE1/AE3), but negative for PAX8, S100 and chromogranin A. The sustentacular pattern of S100 staining, typical in paraganglioma, was not observed in this case. Rather, the immunohistochemical profile was consistent with an adrenocortical origin of this tumor. In addition, a fine granular AMA immunoreactivity was detected in diffusely arranged eosinophilic cells located in peripheral regions of the tumor (Fig. 3d). The Ki-67 labeling index was < 1 %.

**Discussion**

Adrenocortical primordium (seen as a thickening of the coelomic mesothelium) is formed by the invagination of the coelomic epithelium, adjacent to the region where
the gonadal blastema arises, on approximately day 30 of gestation. During gonadal migration, fragments of adrenergic cortical tissue may be scattered along the descending path and form ectopic adrenal glands [5, 8]. Although most of these fragments settle in the vicinity of the adrenal gland or along its migratory course, in rare cases, ectopic adrenal tissue is found at distant sites, such as the lung and even the intradural space and brain [1–7]. Ectopic adrenocortical neoplasms can arise from these ectopic adrenal rests, albeit very rarely [7]. Our Discussion includes a literature review of the rare cases of ectopic adrenocortical adenoma involving the renal hilum. The reported cases [5, 9, 10] published in the English-language literature are summarized in Table 1.

Table 1: Reported cases of ectopic adrenocortical adenoma in the renal hilum in English-language literatures and their prognosis

| Case | Authors | Age | Sex | Location                  | Largest diameter of the tumor (cm) | Treatment                                      | Follow-up               |
|------|---------|-----|-----|----------------------------|-----------------------------------|------------------------------------------------|------------------------|
| 1    | Ayala et al. 2000 [10] | 63  | F   | Left renal hilum            | 3.5                               | Tumor resection with intraoperative endoscopy sparing the kidney | NED, 9 months          |
| 2    | Wang et al. 2012 [9]    | 38  | M   | Anterior of left renal hilum | 5.3                               | Tumor resection sparing the kidney               | ND                     |
| 3    | Tong et al. 2014 [5]    | 53  | F   | Left renal hilum            | 3.5                               | Tumor resection sparing the kidney               | Tumor recurrence 2 years after the first surgery in 2010 |
| 4    | Current case            | 27  | F   | Left renal hilum            | 2.5                               | Tumor resection sparing the kidney               | NED, 3 months          |

M male, F female, NED no evidence of disease, ND not described
cortical adenomas usually consist of sheet-like, clear to eosinophilic, compact tumor cells, the cells in our patient’s tumor were arranged in nests with an alveolar or acinar configuration and surrounded by an open vascular network rather than a delicate capillary network. Foci of edematous stroma were also observed. These uncommon findings were initially confusing. Erickson [1] described the variable cytoplasmic clearing of tumor cells and the intermingling of cells with a more or less distinct morphology. In addition, myxoid adrenocortical tumors, while rare, can occur.

The final problem was to distinguish this tumor from oncocytic adrenocortical neoplasm and adrenocortical oncocytoma. The neoplastic cells of oncocytoma are exclusively oncocytes, with an abundant, eosinophilic and granular cytoplasm. The cells are predominantly arranged in a diffuse or solid pattern, although foci with an alveolar configuration have been described [14–17]. Oncocytic adrenocortical neoplasm may in fact be a morphological variant of adrenocortical neoplasm, regardless of its functionality, while adrenocortical oncocytoma is a purely non-functioning adrenocortical neoplasm. However, this distinction remains a matter of debate. Wong et al. [16] reported 13 cases of oncocytic adrenocortical neoplasm; seven of the respective patients had either clinical symptoms or high levels of hormone secretion. Therefore, oncocytic adrenocortical neoplasm may be a subtype of adrenocortical adenoma characterized by an oncocytic morphology. Although in the tumor from our patient a diffuse or solid pattern was seen in focal areas, it was not the main component. Accordingly, the more appropriate diagnosis was adrenocortical adenoma, and not oncocytic adrenocortical neoplasm.

Ectopic adrenal rests may undergo remarkable hyperplasia in patients with Nelson syndrome or in association with increased adreno-cortico-tropic-hormone production. However, ectopic adrenal cortical adenomas and carcinomas arising from ectopic rests are extremely rare. Some ectopic neoplasms can lead to Cushing’s syndrome, hyperaldosteronism or virilization or feminization, while others are nonfunctioning or asymptomatic, with only biochemical evidence of hormone hypersecretion [1,7,11]. Based on her medical history, our patient had no clinical symptoms suggesting Cushing’s syndrome, hyperaldosteronism or virilization, but she did have a borderline elevation of testosterone and amenorrhea of 3 months duration. The latter may have reflected hormone secretion by the ectopic adrenocortical adenoma.

**Conclusion**

This case provides a reminder to pathologists to be aware of atypical ectopic adrenocortical adenoma and to include an ectopic adrenal lesion in the differential diagnosis of tumors involving the renal hilum. The failure to distinguish this benign tumor from a malignant renal tumor may have severe consequences, including unnecessary radical nephrectomy. Preoperative biopsy and appropriate immunohistochemical staining can aid in determining the origin and nature of the tumor and thereby avoid intraoperative uncertainty.

| Original Weiss criteria                                      | Modified Weiss criteria                                |
|--------------------------------------------------------------|--------------------------------------------------------|
| Nuclear grade III or IV based on Fuhrman criteria            | Mitotic rate >5 per 50 high-power fields                |
| >5 mitotic figures/50 HPF (40x objective), counting 10 random fields in area of greatest number of mitotic figures on 5 slides with greatest number of mitoses | Cytoplasm (clear cells comprising 25 % or less of the tumor) |
| Presence of atypical mitotic figures (abnormal distribution of chromosomes or excessive number of mitotic spindles) | Abnormal mitoses                                        |
| Clear or vacuolated cells comprising 25 % or less of tumor  | Necrosis                                                |
| Diffuse architecture (more than 1/3 of tumor forms patternless sheets of cells; trabecular, cord, columnar, alveolar or nesting pattern is not considered to be diffuse) | Capsular invasion                                      |
| Microscopic necrosis                                         |                                                        |
| Venous invasion (veins must have smooth muscle in wall; tumor cell clusters or sheets forming polypoid projections into vessel lumen or polypoid tumor thrombi covered by endothelial layer) |                                                        |
| Sinusoidal invasion (sinusoid is endothelial lined vessel in adrenal gland with little supportive tissue; consider only sinusoids within tumor) |                                                        |
| Capsular invasion (nests or cords of tumor extending into or through capsule with a stromal reaction); either incomplete or complete |                                                        |
| Calculate: score of 3 or more suggests malignancy            | Calculate: 2x mitotic rate criterion + 2x clear cytoplasm criterion + abnormal mitoses + necrosis + capsular invasion (score of 3 or more suggests malignancy) |
| Each criterion is scored 0 when absent and 1 when present in the tumor | Each criterion is scored 0 when absent and 1 when present in the tumor |
Ethical approval and consent to participate
Ethical approval for this study was obtained from the Local Trials Committee of the China Medical University.

Consent for publication
Informed consent was obtained from the patient for the publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Abbreviations
AMA: anti-mitochondrial antibody; CT: computed tomography; H&E: hematoxylin-eosin.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YL analyzed the data and wrote the manuscript as a major contributor. YJ, YW and HC performed the immunochemical staining. LW, HX, QL, XQ and EW revised the discussion section of this manuscript. All authors have read and approved the final manuscript.

Acknowledgment
We thank the patient, who requested anonymity, for agreeing to our report and for providing a detailed medical history.

Funding
This study was supported by grants from the National Natural Science Foundation of China (No. 81302312 to Yang Liu and no. 81302192 to Liang Wang), the Natural Science Foundation of Liaoning Province (No. L2013292 to Yang Liu), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars (No. 2013277 to Yang Liu).

Received: 26 December 2015 Accepted: 11 April 2016
Published online: 19 April 2016

References
1. Erickson LA. Atlas of Endocrine Pathology. New York: Springer; 2014. p. 567.
2. Ren PT, Fu H, He XW. Ectopic adrenal cortical adenoma in the gastric wall: case report. World J Gastroenterol. 2013;19(5):778–80.
3. Makino K, Kojima R, Nakamura H, Moroika M, Iyama K, Shigematsu K, et al. Ectopic adrenal cortical adenoma in the spinal region: case report and review of the literature. Brain Tumor Pathol. 2010;27(2):121–5.
4. Iyengar V, Pittman DM. Ectopic adrenal gland tissue in inguinal hernia sac. Ann Diagn Pathol. 2007;11(4):291–2.
5. Tong A, Jia A, Yan S, Zhang Y, Xie Y, Liu G. Ectopic cortisol-producing adrenocortical adenoma in the renal hilum: histopathological features and steroidogenic enzyme profile. Int J Clin Exp Pathol. 2014;7(7):4415–21.
6. Rodriguez FJ, Scheithauer BW, Erickson LA, Jenkins RB, Giannini C. Ectopic low-grade adrenocortical carcinoma in the spinal region: immunohistochemical and molecular cytogenetic study of a pediatric case. Am J Surg Pathol. 2009;33(1):142–8.
7. Rosai J, Ackerman LV. Rosai and Ackerman’s surgical pathology. 9th ed. Edinburgh, New York: Mosby; 2004.
8. Neville AM, O’Hare MJ. Origin and development of the adrenal gland. London: Springer; 1982.
9. Wang XL, Dou JT, Gao JP, Zhong WW, Jin D, Hui L, et al. Laparoscopy resection of ectopic corticosteroid-secreting adrenal adenoma. Neuro Endocrinol Lett. 2012;33(3):265–7.
10. Ayala AR, Basaria S, Udelman R, Wessman WH, Wand GS. Corticotropin-independent Cushing’s syndrome caused by an ectopic adrenal adenoma. J Clin Endocrinol Metab. 2000;85(8):2003–6.
11. Delellis RA. Pathology and genetics of tumours of endocrine organs. Lyon France: IARC Press; 2004;135–174.
12. Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol. 1984;8(3):163–9.