Olfactory experience shapes the evaluation of odour similarity in ants - a behavioural and computational analysis

Article (Accepted Version)

Perez, Margot, Nowotny, Thomas, d'Ettore, Patrizia and Giurfa, Martin (2016) Olfactory experience shapes the evaluation of odour similarity in ants - a behavioural and computational analysis. Proceedings of the Royal Society of London. Series B, Containing papers of a Biological character. Royal Society (Great Britain), 283 (1837). p. 20160551. ISSN 0950-1193

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/62380/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Olfactory experience shapes the evaluation of odour similarity in ants – a behavioural and computational analysis
Olfactory experience shapes the evaluation of odour similarity in ants – a behavioural and computational analysis

Margot Perez¹,²,³, Thomas Nowotny⁴, Patrizia d’Ettorre¹,²,³,*, and Martin Giurfa²,³,*,†

¹ Laboratory of Experimental and Comparative Ethology (LEEC), University Paris 13, Sorbonne Paris Cité, Villetaneuse, France
² Centre National de la Recherche Scientifique (CNRS), Research Centre on Animal Cognition (UMR5169), Toulouse, France
³ University Paul-Sabatier, Research Centre on Animal Cognition (UMR5169), Toulouse, France
⁴ Centre for Computational Neuroscience and Robotics, School of Engineering and Informatics, University of Sussex, Brighton, UK

* These authors share senior authorship
† Corresponding author: martin.giurfa@univ-tlse3.fr

Keywords: olfactory learning, olfactory perception, generalisation, generalisation gradient, perceptual modelling, ant.

Running Head: Odour learning and similarity in ants

Perceptual similarity between stimuli is often assessed via generalisation, the response to stimuli that are similar to the one which was previously conditioned. Although conditioning procedures are variable, studies on how this variation may affect perceptual similarity remain scarce. Here, we use a combination of behavioural and computational analyses to investigate the influence of olfactory conditioning procedures on odour generalisation in ants. Insects were trained following either absolute conditioning, in which a single odour (an aldehyde) was rewarded with sucrose, or differential conditioning, in which one odour (the same aldehyde) was similarly rewarded and another odour (an aldehyde differing in carbon-chain length) was punished with quinine. The response to the trained odours and generalisation to other aldehydes were assessed. We show that olfactory similarity, rather than being immutable, varies with the conditioning procedure. Compared to absolute conditioning, differential conditioning enhances olfactory discrimination. This improvement is best described by a multiplicative interaction between two independent processes, the excitatory and inhibitory generalisation gradients induced by the rewarded and the punished odour, respectively. We show that olfactory similarity is dramatically shaped by an individual’s perceptual experience and suggest a new hypothesis for the nature of stimulus interactions underlying experience-dependent changes in perceptual similarity.

http://mc.manuscriptcentral.com/prsb
1. Introduction

The capacity to associate stimuli with different outcomes and to differentiate these stimuli from similar but irrelevant ones is essential for many behaviours such as feeding, mating, or communicating. Discrimination abilities (i.e. treating different stimuli as distinct) displayed by most living animals are therefore critical for their survival and reproductive success. However, in an environment that is continuously changing, responding differently to stimuli that differ only slightly is not necessarily advantageous. For instance, the quantity or quality of volatiles emitted by a flower can vary in time and space (1) without necessarily signifying a difference in nectar quality. As similar stimuli often share comparable outcomes, most living animals display the capacity to generalise, i.e. to treat different but similar stimuli as equivalent (2–4), an efficient strategy to cope with stimulus variations or stimulus novelty.

The degree of generalisation across stimuli is determined by their degree of similarity along a given perceptual dimension (3,4). A generalisation gradient can be drawn by training animals to a particular stimulus and then testing their responses to other stimuli varying along a chosen dimension. Generalisation gradients typically show stronger responses to stimuli that are similar to the trained one and a progressive decrease in responses with decreased similarity (4,5). For instance, in the olfactory modality, carbon-chain length of odours sharing the same functional group is a relevant dimension for graded odorant similarity in many taxa (vertebrates: (6–10); invertebrates: (11–14)); i.e. the smaller the difference in carbon-chain length between odours, the stronger the generalisation.

Perceptual similarity may also be influenced by the perceiver’s experience. Indeed, discrimination abilities between similar stimuli can be improved by differential learning, which consists in the parallel association of one stimulus with a reward and of another stimulus with an absence of reward or a punishment. The effect of conditioning procedures on the ability to shift from generalisation to discrimination between similar stimuli has been shown in some species and sensory modalities such as vision and olfaction (10,15–23) but low numbers of stimuli used or a lack of systematic analyses along perceptual dimensions sometimes make it difficult to assess how exactly experience modulates perceptual similarity.

Despite the extensive use of insects as behavioural and neurophysiological models for the study of olfactory perception and learning (24,25), the influence of experience on odour perception has been poorly investigated [but see 13,23]. Ants highly rely on olfactory cues in their natural environment and in social interactions (26), and represent, therefore, a suitable model for the study of olfactory perception and learning (27–32). As such, they increase the diversity of studies on insect olfaction, which have mostly focused on bees, moths and fruit flies. Controlled olfactory conditioning protocols have been established for ants, which allow training them under absolute or differential conditioning, i.e. with a single stimulus rewarded (the conditioned stimulus, CS+), or with one stimulus rewarded (CS+) and another stimulus non-rewarded or punished (CS-)(27–30,33–35).
Both protocols have been used to investigate olfactory learning and generalisation in ants, but no comparative study has been undertaken to determine the specific influence of experimental procedures on these abilities. Here, we compared generalisation gradients after either absolute or differential conditioning in the ant *Camponotus aethiops*. We show that discriminatory abilities improve after differential training, thus demonstrating that olfactory similarity relationships are not immutable but vary with experience. Computational analysis of our behavioural data indicates that the observed differences in generalisation performance can be well explained by differences in the generalisation gradients induced by our conditioning protocols. Our study allows, therefore, a better understanding of how an individual’s experience shapes similarity relationships between stimuli.

2. Materials and methods

(a) Individual handling

Medium sized foragers were collected and anaesthetised on ice for harnessing in individual holders as previously described (14,35). Fixed ants could only move their antennae and mouthparts. They were then left in a quiet and humid place during 3 h to recover from anaesthesia and accustom to harnessing conditions (more Information in electronic supplementary material).

(b) Stimuli

Four aldehydes that varied in carbon-chain length from 6 to 9 carbons (i.e. hexanal, heptanal, octanal and nonanal; Sigma Aldrich, France) were used as conditioned and test stimuli. Before each training phase, two microliters of pure odorant were applied onto a 1 cm² piece of filter paper, which was then inserted in a plastic 10 ml syringe. The rewarded odour CS+ was paired with an appetitive 50% sucrose solution (w/w); when ants were trained in differential conditioning, besides the CS+, a punished odour CS- was paired with an aversive 1% quinine solution (w/w) (purity 90%, Sigma Aldrich, France).

(c) Conditioning and test procedures

To test whether olfactory generalisation gradients are influenced by olfactory experience, ants were subjected to either absolute or differential conditioning of the *maxilla-labium* extension response (MaLER), an appetitive reaction to sucrose stimulation (34).

Four aldehydes were trained in *absolute conditioning*: hexanal+; heptanal+; octanal+; nonanal+, were “+” indicates the presence of reward. In *differential conditioning*, four odorant combinations, each one presenting two odours differing in two carbons, were trained: hexanal+/octanal-; heptanal+/nonanal-; octanal+/hexanal-; nonanal+/heptanal-, where “-” indicates the presence of punishment. Training consisted of 12 trials. For absolute conditioning, 6 CS+ and 6 blank trials (see supplementary material); for differential conditioning 6 CS+ and 6
CS+ trials. Trials were performed in pseudo-random order, e.g. ABBABAABABBA. In both cases, ants were tested with the four aldehydes in a randomized order fifteen minutes after the last conditioning trial (more details on conditioning and test procedures and statistical analyses in the electronic supplementary material).

(d) Generalisation-gradient modelling

We analysed the behavioural responses by fitting a simple model of Gaussian excitatory and inhibitory generalisation gradients for the CS+ and the CS-, respectively. To this end, we fitted for each experiment a Gaussian function G_σ with maximal amplitude 100, standard deviation σ, and centred on the CS+, to the response percentages obtained after absolute conditioning. Simultaneously, we fitted the product $G_\sigma \times (1- G_{\sigma'})$ to the data obtained after differential conditioning, with $G_{\sigma'}$ being centred on the CS-. This constituted a two-parameter fit (of σ and σ') to 8 data points (4 from absolute conditioning and 4 from differential conditioning). The fit was performed as a least-mean-squares fit with the *lsqnonlin* function in Matlab (Natick, MA).

G_σ and $G_{\sigma'}$ can be interpreted as probabilities (expressed in %) of response and of inhibition of response, respectively. The overall probability of responding after differential conditioning is thus the probability to respond and to not be inhibited to respond, i.e. $G_\sigma \times (1- G_{\sigma'})$. Here, the term $(1- G_{\sigma'})$ corresponds to logical negation, i.e. the event of “not being inhibited to respond”; the multiplication of G_σ and $(1- G_{\sigma'})$ corresponds to the logical “and” operation (assuming that responding and not being inhibited to respond are statistically independent). More details about the choice of the model in the electronic supplementary material.

3. Results

(a) Olfactory learning

Ants trained following an absolute conditioning protocol (green curves in figure 1) learnt successfully all four odours, as revealed by a significant effect of conditioning trials on the level of conditioned responses $(22.50<\chi^2<37.29; p<0.001$ for all odours), which reached approximately 100% in the last trial. All trained odours were well retained 15 min after training as shown by the test responses (green dots in figure 1), which did not differ from those recorded in the last conditioning trial (for all odours, $\chi^2= 0; p=1$).

Ants trained following a differential conditioning protocol (blue curves in figure 1) learnt to differentiate the CS+ from the CS- in all odour combinations tested, as indicated by a significant interaction between trials and CSs $(39.49<\chi^2<57.19; p<0.001$ in all cases) and by the high level of conditioned responses to the CS+ (approximately 74%) and the low level of response to the CS- (approximately 3%) reached in the last trial. A significant effect of trial was found for the responses to the CS+, thus indicating that ants increased their response to the rewarded odour along successive trials $(51.80<\chi^2<65.59; p<0.001$ for all combinations). Post-hoc analyses
revealed also a significant effect of trials on the CS+ responses for the octanal+/hexanal- and heptanal+/nonanal-
combinations (7.08<χ²<9.55; p<0.01 in both cases), indicating that, in these cases, ants learnt to stop responding
to the CS- although the level of responses to this stimulus was relatively high in the first trials. For the other two
combinations (hexanal+/octanal- and nonanal+/heptanal), the level of responses to the CS- did not change along
trials (χ²=0; p=0.95 and χ²=2.45; p=0.10, respectively), and remained low.

Ants remembered well the rewarded and punished odours 15 min after differential conditioning as they
showed, respectively, high (around 76%) and low (around 3%) levels of conditioned responses in the test to these
stimuli (24.038<McNemar’s χ²<30.031, p<0.001 in all cases; full vs. empty blue dots in figure 1). For all four
odour combinations, test responses were similar to those recorded in the last conditioning trial for both CSs (CS+:
0.17<McNemar’s χ²<0.44; 0.51<p<0.68 and CS−: 0<McNemar’s χ²<0.5; 0.47<p<1).

(b) Comparing CS+ learning between conditioning protocols

A comparative analysis between absolute and differential conditioning is possible by focusing on how the same
CS+ odour is learnt and memorized depending on the absence/presence of a CS- odour. Figure 1 shows that the
conditioning procedure affected the acquisition rate of the CS+ as a significant interaction between trials and
conditioning procedure was found in all cases (comparison of blue and green full dotted curves; 6.32<χ²<13.75;
p<0.05). Consequently, the level of CS+ responses in the test was significantly lower for ants trained with
differential conditioning, except in the case of hexanal+ vs. hexanal+/octanal- (see figure 1a) where it was
borderline significant (Fisher’s Exact Test, 0.001<p<0.06). The better learning performances obtained with
absolute rather than with differential conditioning indicate that the introduction of a CS- differing in 2 carbons
from the CS+ reduced significantly the learning success of the CS+; i.e. learning to discriminate similar odours is
more difficult than learning the absolute properties of a single rewarded odour.

(c) Olfactory generalisation

After absolute conditioning, ants showed not only a high level of responses to their conditioning odour but also to
the other test odours (green bars in figure 2), i.e. ants highly generalised among aldehydes. Generalisation levels
were inversely related to the difference in the carbon-chain length between the conditioning and the test odour:
the lower the difference in the number of carbon atoms, the higher the level of generalisation. For instance, after
hexanal+ training (green bars in figure 2a), ants responded similarly to heptanal (differing in 1 carbon from
hexanal), less to octanal (differing in 2 carbons from hexanal) and even less to nonanal (differing in 3 carbons
from hexanal). The shape of the generalisation gradients obtained after absolute conditioning shows, therefore,
that carbon-chain length is a relevant dimension for graded olfactory similarity in ants.

Olfactory similarity was affected by the training procedure as revealed by differences in generalisation
gradients after absolute and differential conditioning (comparison of green vs. blue bars in figure 2). Indeed, after
differential conditioning, generalisation levels were lower for odours that had a carbon-chain length relation to the
CS+ similar to that of the CS-. In other words, if the CS- had a shorter carbon-chain length than that of the CS+,
discrimination was improved only for odours having a shorter carbon-chain length than that of the CS+.
Reciprocally, if the CS- had a longer carbon-chain length than that of the CS+, discrimination was improved for
odours having a longer carbon-chain length than that of the CS+. For instance, after octanal+/hexanal- training
(i.e. CS- with shorter carbon-chain length than CS+), the level of responses to heptanal, which has a shorter
carbon-chain length than octanal, is significantly lower than the level of response to octanal (blue bars in figure
2c) whereas these levels were similar after absolute conditioning (green bars in figure 2c). On the other hand, the
level of responses to nonanal, which has a longer carbon-chain length than octanal, was similar to that of octanal
(blue bars in figure 2c), as found after absolute conditioning (green bars in figure 2c). In the case of
nonanal+/heptanal- (figure 2d), the difference in response between nonanal and octanal was almost significant
\(p_{corr}=0.05 \), thus indicating that even after differential conditioning, high levels of generalisation can still be
observed. In general, however, differential learning improved ants’ discrimination abilities but only for odours
that had a carbon-chain length relation to the CS+ similar to that of the CS-. Consequently, generalisation
gradients after differential conditioning were asymmetric around the CS+, with higher levels of response for
odours away from the CS+ in the direction opposite to the CS-; a phenomenon called area shift (36).

The enhanced perceptual discrimination resulting from differential learning and the area shift effect are
commonly accounted by the assumption that generalisation performances result from an interaction between
excitatory and inhibitory generalisation gradients mediated by the CS+ and the CS-, respectively (4,15,37). We
thus aimed at modelling excitatory and inhibitory generalisation gradients in order to better explain the
improvement of ants’ discrimination abilities.

(d) Generalisation-gradient modelling

Excitatory generalisation gradients (green lines in figure 3) were obtained by fitting a Gaussian function to the
data obtained after absolute conditioning. This function was characterized by one free parameter: the standard
deviation \(\sigma \) (table 1). Hypothesized inhibitory generalisation gradients (red lines in figure 3), characterized by the
standard deviation \(\sigma' \) (table 1), were obtained from the combination of excitatory generalisation gradients and the
level of response to the four odours after differential conditioning (blue lines in figure 3). Both excitatory and
inhibitory generalisation gradients were assumed to have a fixed amplitude of 100%. For excitatory generalisation
gradients, this assumption mirrors the experimental data obtained after absolute conditioning where all ants
responded to their trained odour in the test (figure 1-2). The peaks of the excitatory (green dashed vertical lines)
and inhibitory generalisation gradients were centred on the CS+ and the CS- respectively, as we assumed that the
maximum of excitation and inhibition were provided by these stimuli. Generalisation gradients after differential
conditioning were only partially accounted by additive fits of excitatory and inhibitory generalisation gradients as
shown by high residual errors (see electronic supplementary material), despite the fact that this kind of interaction
is assumed in generalization theories (15,37,38). However, the most convincing fits were obtained with a multiplicative fit of excitatory and inhibitory generalisation gradients, as shown by the low residual error across all experiments (RE=21.29, i.e. the typical deviation of the fit from the data is RE/8=2.66) and by the visual inspection of the fits (see figures S1-S3 and table S1 for a full comparison). The success of the multiplicative fit suggests that an interpretation of excitation and inhibition as two interacting, independent probabilistic events may be more appropriate than a view of super-imposed excitatory and inhibitory “potentials”.

Figure 3 shows that differential conditioning induced a peak shift in generalisation gradient. Indeed, in all cases, the position of the peak (blue dashed vertical line) was not centred on the CS+ contrary to the peak obtained after absolute conditioning, which was centred on the CS+ (green dashed vertical line). The peak of the generalisation gradient after differential conditioning was shifted away from the CS+ in the direction opposite to the CS-. This peak-shift mirrors the area shift found in our behavioural experiments. Moreover, excitatory and inhibitory generalisation gradients differed consistently in their shapes. In all experiments, the standard deviation (σ') of the inhibitory generalisation gradient was lower than the standard deviation (σ) of the excitatory generalisation gradient (table 1). Thus, the inhibitory generalisation gradient was narrower than the excitatory one, indicating that the inhibitory effect of the CS- is more specific than the excitatory effect of the CS+.

4. Discussion

We investigated olfactory generalisation in ants to determine how olfactory experience shapes their evaluation of odour similarity. We compared olfactory absolute and differential conditioning with a systematic analysis involving several odour combinations and showed for the first time that odour similarity depends on the way ants learned odorants. Compared to absolute conditioning, differential conditioning improved odour discrimination. Olfactory similarity relationships are therefore not immutable but vary with the conditioning procedure, i.e. how animals learn about the relationship between stimuli. Moreover, our modelling of behavioural performances indicates that the enhanced olfactory discrimination after differential learning relies on the interaction between excitatory and inhibitory generalization gradients mediated by the rewarded (CS+) and the punished odour (CS-), respectively.

Olfactory generalisation in ants depended on structural similarity between aldehydes as shown by the response obtained after absolute conditioning: in this case, generalisation was inversely related to the difference in the number of carbon atoms between the conditioned and the test odour, a phenomenon previously observed both in vertebrates (7,8,39) and invertebrates (11,12,40), including Camponotus aethiops (14). However, odour generalization (i.e. odour similarity) depended also on the procedure used to train the ants. After absolute conditioning, the ants’ response was similar for the conditioning odour and for odours differing in one carbon atom; yet behavioural discrimination between these same odours was improved after differential conditioning.
This result questions the absolute nature of olfactory perception as different similarity relationships between odours can be found depending on the conditioning procedure. Thus, studies on olfactory perception should carefully consider that the way a subject perceives odour similarity relationships depends on the way it learnt to respond to odours. Comparable conclusions have been reached for colour similarity relationships in bees, where absolute and differential conditioning yield different discrimination and generalisation performances for the same colour stimuli (16,17,41). It thus seems that perceptual performances, irrespectively of the modality considered, are significantly modulated by the kind of experience gathered by an animal.

In the insect brain, odours are first processed in the antennal lobes (AL), where olfactory receptor neurons located on the antennae synapse with local interneurons and projection neurons. The latter convey information to the Kenyon cells (KCs) of the mushroom bodies (MB), a structure involved in learning and memory (42) and to the lateral horn (LH) (43). Extrinsic neurons (ENs) of the MBs (receiving input from KCs), and probably of the LH, provide output to premotor regions and are thought to be important for driving and organizing behavioural responses (44–47). Electrophysiological and imaging studies have shown that similarity in neural activity patterns in the AL correlates with chemical similarity in terms of carbon-chain length (e.g. for aldehydes, (12,32,48,49) and with behavioural odour similarity (12,23,49). Besides, changes in the neural signatures of odours as a result of olfactory learning have been found both in the AL and the MB (50–52). For instance, differential conditioning decorrelates the neural representation of odours in both structures (23,50,53,54), thus facilitating response-pattern differentiation with training. Therefore, we expect that the experience-dependent changes in behavioural generalisation and/or discrimination observed in our study translate into increased or decreased similarity in the ant’s neural representation of odours.

In our study, the improved discrimination abilities displayed by the ants trained with differential conditioning were, however, not extended to all tested odours but were observed for odours that had a carbon-chain length relation to the CS+ similar to that of the CS-. Generalisation gradients obtained after differential conditioning were asymmetric around the CS+; i.e. the level of response was maximal for the CS+ and higher levels of generalisation were recorded for novel stimuli away from the CS+ in the direction opposite to the CS-; a phenomenon called “area shift” (36), a less extreme version of the “peak shift effect” (4,15,36,38). Area shift (or peak shift) in olfactory generalisation has already been observed in moths trained to discriminate alcohols differing in 2 carbons or alcohols and ketones differing in 2 carbons (13), and in honeybees trained to distinguish binary odour mixtures varying in the proportion of mixture components (53,55). Therefore, this effect appears to be consistent in insects learning to discriminate similar odours.

Both the enhanced perceptual discrimination induced by discrimination learning and area shift (or peak shift) are commonly accounted for by assuming an additive interaction between excitatory and inhibitory generalisation gradients mediated by the positively (CS+) and negatively (CS-) reinforced stimuli, respectively.
(4,15,38). Learning to discriminate similar stimuli that differ along the same perceptual dimension induces excitatory and inhibitory generalisation gradients, which overlap along this dimension, thus determining higher discrimination for stimuli lying between the CS+ and the CS-. For these stimuli, the algebraic sum of gradients results in near-to-zero response levels, which makes them well differentiable from the CS+. Our results show that area shifts in generalisation gradients after differential conditioning were better accounted for by a multiplicative rather than by an additive interaction between excitatory and inhibitory generalisation gradients. This can be understood if we interpret the excitatory and inhibitory generalisation gradients as probability distributions of two interacting, independent processes. In this interpretation, the excitatory generalisation gradient would represent the probability to be excited to respond to a stimulus (based on its similarity to a CS+) and the inhibitory generalisation gradient would represent the probability to be inhibited from responding (based on the similarity to a CS-). The event of an animal responding is then the combination of the two events of being excited to respond and not being inhibited to respond, i.e. the probability to respond is the product of the probability to be excited multiplied by one minus the probability to be inhibited. A familiar example for this type of model, albeit from a different domain, is the phenomenological description of the opening of ion channels by Hodgkin and Huxley (56).

Our proposal converges with recent neuro-computational models proposed for honeybees to account for olfactory differential conditioning or peak-shift (47,57,58). These models assume that the population of ENs is divided into neurons inducing proboscis extension response (similar to MaLER) and neurons inducing proboscis retraction. The behavioural outcome is determined by mutual inhibition in the EN population that implements a “winner-takes-all” mechanism between extension and retraction ENs. Learning occurs as a result of an alteration of the synaptic connections between KCs and ENs. Training with the CS+ increases the number or strength of excitatory connections between KCs that are active in response to the CS+ and ENs that activate proboscis extension, and decreases the connections with ENs that activate proboscis retraction. Conversely, training with the CS- increases connections with ENs that activate proboscis retraction and decreases connections with ENs that activate proboscis extension. As similar odours would activate similar KC populations (47), they would activate overlapping ENs populations. In these models, the probability of response to an odour relies on two independent probabilistic processes: the probability that extension ENs are excited to fire and the probability that retraction ENs are excited to fire. The overall behavioural outcome is determined by the competition, in the form of mutual inhibition, between extension and retraction ENs. These processes could relate with our findings: the excitatory and inhibitory generalisation gradients would reflect the probability of response of extension and retraction ENs after conditioning, according to the olfactory similarity with the CS+ and with the CS-, respectively. The multiplicative interaction between the gradients would correspond to the competition between extension and retraction ENs. The finding that the multiplicative interaction of gradients provides a better account of the data lends some support to the idea of competing extension and retraction ENs over a model where excitatory and inhibitory inputs superimpose linearly onto premotor neurons for responding.
We found that inhibitory generalisation gradients were narrower than excitatory ones, meaning that the inhibitory effect of the CS- is more specific than the excitatory effect of the CS+. This higher specificity would be suitable for learning the discrimination of the CS+ from the CS-. Indeed, an excessive overlap of excitatory and inhibitory generalisation gradients would decrease considerably the ants’ response to the CS+. The fact that the inhibitory generalisation gradient affects all tested odours (including the CS+) despite its higher specificity, would explain why it was more difficult for ants to learn to discriminate similar stimuli than learning the absolute properties of the CS+ or why it is generally more difficult to learn to discriminate similar odours than dissimilar odours (10,28,59). This hypothesis is supported by our results showing that learning to discriminate the odours was more difficult when the standard deviation of the inhibitory generalisation gradient was high (i.e. heptanal+/nonanal- and octanal+/hexanal-) than when it was low (i.e. hexanal+/octanal- and nonanal+/heptanal-) (table 1 and figure 1). Studies in bees have shown that the shape of the generalisation gradient obtained after differential conditioning (and in these cases, the magnitude of the peak-shift) could vary according to some stimulus characteristics, such as the relative difference between the positive and the negative reinforcements or the relative frequency of CS+ and CS- trials (55,60). This indicates that the width of excitatory and inhibitory gradients depends on these and probably other parameters. For instance, in our case, a reinforcement more aversive than quinine or an increase of the number of CS- trials could have enlarged the width of the inhibitory generalisation gradients, making them likely larger than the excitatory generalisation gradients. Thus, different individual experiences could induce high or low levels of generalisation to novel but similar stimuli, depending on the salience and abundance of the reinforced stimuli, and on the payoffs of responding to or ignoring them.

Our work indicates that a multiplicative interaction between two independent processes: the conditioned excitation and the conditioned inhibition mediated by the CS+ and the CS-, respectively, accounts for the improvement of olfactory discrimination in ants. Further experiments should investigate whether our model provide a better prediction of the generalisation gradients obtained after differential conditioning in other taxa. Electrophysiological and optophysiological measurements of neural responses in the ants’ olfactory circuit (31,32,61,62) may help understanding the neural basis of these processes and how and where along this circuit such interaction occurs.

Author contribution. M.P. participated in the conception and the design of the experiments, performed the behavioural experiments, analysed the data, and wrote the manuscript; T.N. performed the computational analysis and helped writing the manuscript; P.d.E and M.G. participated in the conception and the design of the experiments and wrote the manuscript. All authors gave final approval for publication.

Competing interest. We have no competing interests.

Funding. This work was supported by a Marie Curie Reintegration Grant (Identity Code, FP7-MC-ERG-2009-256524 to P.d.E), the CNRS research network GDR 2822 Ethologie, the EPSRC (grant number EP/J019690/1) and a fellowship from the Royal Academy of Engineering and the Leverhulme Trust.
Acknowledgements. M.G. thanks the Institut Universitaire de France, the CNRS and the University of Toulouse.

Data Accessibility. The datasets supporting this article have been uploaded as part of the electronic supplementary material.
References

1. Dudareva N, Pichersky E, Gershenzon J. Biochemistry of plant volatiles. Plant Physiol. 8 janv 2004;135(4):1893-902.

2. Pavlov I. Conditioned reflexes - an investigation of the physiological activity of the cerebral cortex. London: Oxford University Press; 1927.

3. Shepard RN. Toward a universal law of generalization for psychological. Science. 9 nov 1987;237(4820):1317-23.

4. Ghirlanda S, Enquist M. A century of generalization. Anim Behav. juill 2003;66(1):15-36.

5. Guttman N, Kalish HI. Discriminability and stimulus generalization. J Exp Psychol. 1956;51(1):79-88.

6. Laska M, Teubner P. Odor structure-activity relationships of carboxylic acids correspond between squirrel monkeys and humans. Am J Physiol. juin 1998;274(6 Pt 2):R1639-1645.

7. Laska M, Teubner P. Olfactory discrimination ability for homologous series of aliphatic alcohols and aldehydes. Chem Senses. juin 1999;24(3):263-70.

8. Linster C, Hasselmo ME. Behavioral responses to aliphatic aldehydes can be predicted from known electrophysiological responses of mitral cells in the olfactory bulb. Physiol Behav. mai 1999;66(3):497-502.

9. Laska M, Hübener F. Olfactory discrimination ability for homologous series of aliphatic ketones and acetic esters. Behav Brain Res. 14 mars 2001;119(2):193-201.

10. Cleland TA, Morse A, Yue EL, Linster C. Behavioral models of odor similarity. Behav Neurosci. 2002;116(2):222-31.

11. Laska M, Galizia CG, Giurfa M, Menzel R. Olfactory discrimination ability and odor structure-activity relationships in honeybees. Chem Senses. août 1999;24(4):429-38.

12. Guerrieri F, Schubert M, Sandoz J-C, Giurfa M. Perceptual and neural olfactory similarity in honeybees. PLoS Biol. avr 2005;3(4):e60.

13. Daly KC, Chandra S, Durtschi ML, Smith BH. The generalization of an olfactory-based conditioned response reveals unique but overlapping odor representations in the moth Manduca sexta. J Exp Biol. 9 janv 2001;204(17):3085-95.

14. Perez M, Giurfa M, d’Ettorre P. The scent of mixtures: rules of odour processing in ants. Sci Rep [Internet]. 2 mars 2015 [cité 5 mai 2015]:5. Disponible sur: http://www.nature.com.gate1.inist.fr/srep/2015/150302/srep08659/full/srep08659.html?WT.ec_id=SREP-631-20150303

15. Hanson HM. Effects of discrimination training on stimulus generalization. J Exp Psychol. nov 1959;58(5):321-34.

16. Giurfa M. Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften. 1 mai 2004;91(5):228-31.
17. Dyer AG, Chittka L. Fine colour discrimination requires differential conditioning in bumblebees. Naturwissenschaften. 1 mai 2004;91(5):224-7.

18. Linster C, Johnson BA, Morse A, Yue E, Leon M. Spontaneous versus reinforced olfactory discriminations. J Neurosci. 15 août 2002;22(16):6842-5.

19. Chapuis J, Wilson DA. Bidirectional plasticity of cortical pattern recognition and behavioral sensory acuity. Nat Neurosci. janv 2012;15(1):155-61.

20. Chen C-FF, Barnes DC, Wilson DA. Generalized vs. stimulus-specific learned fear differentially modifies stimulus encoding in primary sensory cortex of awake rats. J Neurophysiol. 1 déc 2011;106(6):3136-44.

21. Li W, Howard JD, Parrish TB, Gottfried JA. Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science. 28 mars 2008;319(5871):1842-5.

22. Mishra D, Louis M, Gerber B. Adaptive adjustment of the generalization-discrimination balance in larval Drosophila. J Neurogenet. 31 août 2010;24(3):168-75.

23. Barth J, Dipt S, Pech U, Hermann M, Riemensperger T, Fiala A. Differential associative training enhances olfactory acuity in Drosophila melanogaster. J Neurosci. 29 janv 2014;34(5):1819-37.

24. Smith BH, Getz WM. Nonpheromonal Olfactory Processing in Insects. Annu Rev Entomol. 1994;39(1):351-75.

25. Martin JP, Beyerlein A, Dacks AM, Reisenman CE, Riffell JA, Lei H, et al. The neurobiology of insect olfaction: Sensory processing in a comparative context. Prog Neurobiol. nov 2011;95(3):427-47.

26. Hölldobler B, Wilson EO. The Ants. 1st edition. Cambridge, Mass: Belknap Press; 1990. 732 p.

27. Dupuy F, Sandoz J-C, Giurfa M, Josens R. Individual olfactory learning in Camponotus ants. Anim Behav. nov 2006;72(5):1081-91.

28. van Wilgenburg E, Felden A, Choe D-H, Sulc R, Luo J, Shea KJ, et al. Learning and discrimination of cuticular hydrocarbons in a social insect. Biol Lett. 23 févr 2012;8(1):17-20.

29. Bos N, Dreier S, Jørgensen CG, Nielsen J, Guerrieri FJ, d’Ettorre P. Learning and perceptual similarity among cuticular hydrocarbons in ants. J Insect Physiol. janv 2012;58(1):138-46.

30. Bos N, d’Ettorre P, Guerrieri FJ. Chemical structure of odorants and perceptual similarity in ants. J Exp Biol. 1 sept 2013;216(Pt 17):3314-20.

31. Zube C, Kleineidam CJ, Kirschner S, Neef J, Rössler W. Organization of the olfactory pathway and odor processing in the antennal lobe of the ant Camponotus floridanus. J Comp Neurol. 20 janv 2008;506(3):425-41.

32. Dupuy F, Josens R, Giurfa M, Sandoz J-C. Calcium imaging in the ant Camponotus fellah reveals a conserved odour-similarity space in insects and mammals. BMC Neurosci. 2010;11:28.

33. Josens R, Eschbach C, Giurfa M. Differential conditioning and long-term olfactory memory in individual Camponotus fellah ants. J Exp Biol. juin 2009;212(Pt 12):1904-11.
34. Guerrieri FJ, d’Ettorre P. Associative learning in ants: conditioning of the maxilla-labium extension response in *Camponotus aethiops*. J Insect Physiol. janv 2010;56(1):88-92.

35. Perez M, Rolland U, Giurfa M, d’Ettorre P. Sucrose responsiveness, learning success, and task specialization in ants. Learn Mem. 8 janv 2013;20(8):417-20.

36. ten Cate C, Rowe C. Biases in signal evolution: learning makes a difference. Trends Ecol Evol. juill 2007;22(7):380-7.

37. Spence WK. The nature of discrimination learning in animals. Psychol Rev. 1936;43(5):427-49.

38. Spence KW. The differential response in animals to stimuli varying within a single dimension. Psychol Rev. 1937;44(5):430-44.

39. Laska M, Trolp S, Teubner P. Odor structure-activity relationships compared in human and nonhuman primates. Behav Neurosci. oct 1999;113(5):998-1007.

40. Smith BH, Menzel R. The use of electromyogram recordings to quantify odourant discrimination in the honey bee, *Apis mellifera*. J Insect Physiol. 1989;35(5):369-75.

41. Avarguès-Weber A, Giurfa M. Cognitive components of color vision in honey bees: how conditioning variables modulate color learning and discrimination. J Comp Physiol A. 1 juin 2014;200(6):449-61.

42. Heisenberg M. What do the mushroom bodies do for the insect brain? an introduction. Learn Mem Cold Spring Harb N. juin 1998;5(1-2):1-10.

43. Roussel E, Carcaud J, Combe M, Giurfa M, Sandoz J-C. Olfactory coding in the honeybee lateral horn. Curr Biol. 3 mars 2014;24(5):561-7.

44. Rybak J, Menzel R. Anatomy of the mushroom bodies in the honey bee brain: The neuronal connections of the alpha-lobe. J Comp Neurol. 15 août 1993;334(3):444-65.

45. Huerta R, Nowotny T. Fast and Robust Learning by Reinforcement Signals: Explorations in the Insect Brain. Neural Comput. 1 mai 2009;21(8):2123-51.

46. Strube-Bloss MF, Nawrot MP, Menzel R. Mushroom Body Output Neurons Encode Odor–Reward Associations. J Neurosci. 23 févr 2011;31(8):3129-40.

47. Bazhenov M, Huerta R, Smith BH. A Computational Framework for Understanding Decision Making through Integration of Basic Learning Rules. J Neurosci. 27 mars 2013;33(13):5686-97.

48. Sachse S, Rappert A, Galizia CG. The spatial representation of chemical structures in the antennal lobe of honeybees: steps towards the olfactory code. Eur J Neurosci. 1 nov 1999;11(11):3970-82.

49. Daly KC, Wright GA, Smith BH. Molecular features of odorants systematically influence slow temporal responses across clusters of coordinated antennal lobe units in the moth Manduca sexta. J Neurophysiol. 1 juill 2004;92(1):236-54.

50. Faber T, Joerges J, Menzel R. Associative learning modifies neural representations of odors in the insect brain. Nat Neurosci. janv 1999;2(1):74-8.
51. Faber T, Menzel R. Visualizing mushroom body response to a conditioned odor in honeybees. Naturwissenschaften. 1 Nov 2001;88(11):472-6.

52. Yu D, Ponomarev A, Davis RL. Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron. 13 May 2004;42(3):437-49.

53. Fernandez PC, Locatelli FF, Person-Rennell N, Deleo G, Smith BH. Associative conditioning tunes transient dynamics of early olfactory processing. J Neurosci Off J Soc Neurosci. 19 Août 2009;29(33):10191-202.

54. Lin AC, Bygrave AM, de Calignon A, Lee T, Miesenböck G. Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nat Neurosci. Avr 2014;17(4):559-68.

55. Wright GA, Choudhary AF, Bentley MA. Reward quality influences the development of learned olfactory biases in honeybees. Proc Biol Sci. 22 Juin 2009;276(1667):2597-604.

56. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 28 Août 1952;117(4):500-44.

57. Perry CJ, Barron AB, Cheng K. Invertebrate learning and cognition: relating phenomena to neural substrate. Wiley Interdiscip Rev Cogn Sci. 1 Sept 2013;4(5):561-82.

58. Andrew SC, Perry CJ, Barron AB, Berthon K, Peralta V, Cheng K. Peak shift in honey bee olfactory learning. Anim Cogn. 21 Avr 2014;17(5):1177-86.

59. Deisig N, Lachnit H, Giurfa M. The effect of similarity between elemental stimuli and compounds in olfactory patterning discriminations. Learn Mem Cold Spring Harb N. Juin 2002;9(3):112-21.

60. Lynn SK, Cnaani J, Papaj DR, Björklund M. Peak shift discrimination learning as a mechanism of signal evolution. Evolution. 1 Juin 2005;59(6):1300-5.

61. Galizia CG, Menzel R, Hölldobler B. Optical imaging of odor-evoked glomerular activity patterns in the antennal lobes of the ant Camponotus rufipes. Naturwissenschaften. Nov 1999;86(11):533-7.

62. Yamagata N, Nishino H, Mizunami M. Pheromone-sensitive glomeruli in the primary olfactory centre of ants. Proc Biol Sci. 7 Sept 2006;273(1598):2219-25.
Table 1: Fitted parameters for excitatory and inhibitory generalisation gradients. The parameters σ and σ' denote the standard deviations of the curves corresponding to the excitatory and inhibitory generalisation gradients, respectively.

Experiment	σ (excitatory)	σ' (inhibitory)
hexanal+/octanal-	1.606	1.071
heptanal+/nonanal-	1.736	1.403
octanal+/hexanal-	1.682	1.492
nonanal+/heptanal-	1.730	0.732

Figure captions

Figure 1: Ants trained with absolute conditioning learn faster and better than ants trained with differential conditioning. The figure shows the percentage of ants responding with the maxilla-labium extension response (%MaLER) to the rewarded odour after absolute conditioning (CS+, green full dots) and to the rewarded and punished odours after differential conditioning (CS+, blue full dots; CS-, blue empty dots) along the conditioning trials. The levels of response to the trained odours in the tests are shown by single dots in the same graphs. (a) hexanal+ (n=29) vs. hexanal+/octanal- (n=38); (b) heptanal+ (n=30) vs. heptanal+/nonanal- (n=40); (c) octanal+ (n=30) vs. octanal+/hexanal- (n=41); (d) nonanal+ (n=28) vs. nonanal+/heptanal- (n=41). All odours were successfully learnt and all odour combinations were successfully differentiated.

The presence of the CS- in differential conditioning reduced the learning success of the CS+ as shown by lower rates of acquisition and lower levels of responses to the CS+ in the test, compared to ants trained with absolute conditioning.

Figure 2: Differential conditioning improves olfactory discrimination. The %MaLER to the test odours hexanal, heptanal, octanal and nonanal (bars from left to right) is represented for ants trained with absolute (green bars) and differential (blue bars) conditioning. The x-axis shows the difference in carbon-chain length between the CS+ and the test odour. Odours used as CS+ and CS- during conditioning are indicated. (a) hexanal+ vs. hexanal+/octanal-; (b) heptanal+ vs. heptanal+/nonanal-; (c) octanal+ vs. octanal+/hexanal-; (d) nonanal+ vs. nonanal+/heptanal-. The ants’ responses to the test odours were different after absolute (29.4<Coehran’s Q<61.81; p<0.001) and differential (51.78<Coehran’s Q<75; p<0.001) conditioning. Different letters indicate significant differences in the levels of responses to test odours for ants trained with absolute (lower case) and differential conditioning (capital letters; multiple McNemar’s Chi Square tests with sequential Bonferroni corrections).

Generalisation gradients obtained after absolute conditioning (green bars) show that carbon-chain length is a relevant dimension for perceptual similarity as the response levels were inversely related to the difference in the number of carbons between the CS+ and the test odours. Generalisation gradients obtained after differential conditioning (blue bars) illustrate the resulting partial improvement of discrimination as the level of response for odours differing from the CS+ in 1 (upper panels) or -1 carbon (lower panels) were significantly lower than the level of response to the CS+, whereas such difference did not exist after absolute conditioning.

Figure 3: The enhancement of olfactory discrimination after differential conditioning can be explained by the interaction between excitatory and inhibitory gradients mediated by the rewarded and the punished odours, respectively. Fits of the experimental data with combinations of “excitatory” and “inhibitory” generalisation gradients. Axis and colour code of bars as in Figure 2. Excitatory Gaussian generalisation gradients (green lines) were fitted to the test responses
after absolute conditioning (green bars). The combination (blue lines) of the excitatory gradient and a hypothesized inhibitory
generalisation gradient (red lines) was fitted to the test responses after differential conditioning (blue bars). The position of
each gradient’s peak is indicated by vertical dotted lines in their respective colours. The peak positions of excitatory and
inhibitory generalisation gradients were fixed to the CS+ and CS- respectively. (a) hexanal+ vs. hexanal+/octanal-; (b) heptanal+ vs. heptanal+/nonanal-; (c) octanal+ vs. octanal+/hexanal-; (d) nonanal+ vs. nonanal+/heptanal-. The interaction
between excitatory and inhibitory gradients in this model was multiplicative (alternative models are shown in Figures S1-S3).
The combined gradient provided a good fit to the differential-conditioning data given that there were only two free parameters
(the widths of the excitatory and inhibitory generalisation gradients) and the area shift is clearly visible.
Difference in carbon-chain length between the CS+ and the test odour

177x108mm (300 x 300 DPI)
Difference in carbon-chain length between the CS+ and the test odour

177x108mm (300 x 300 DPI)