Chiral excitonic order from twofold van Hove singularities in kagome metals

Recent experiments on kagome metals AV₃Sb₅ (A=K,Rb,Cs) identify twofold van Hove singularities (TvHS) with opposite concavity near the Fermi energy, generating two approximately hexagonal Fermi surfaces – one electron-like and the other hole-like. Here we propose that a TvHS generates a novel time-reversal symmetry breaking excitonic order – arising due to bound pairs of electrons and holes located at opposite concavity van Hove singularities. We introduce a minimal model for the TvHS and investigate interaction induced many-body instabilities via the perturbative renormalisation group technique and a free energy analysis. Specialising to parameters appropriate for the kagome metals AV₃Sb₅, we construct a phase diagram comprising chiral excitons, charge density wave and a region of coexistence. We propose this as an explanation of a diverse range of experimental observations in AV₃Sb₅. Notably, the chiral excitonic state gives rise to a quantum anomalous Hall conductance, providing an appealing interpretation of the observed anomalous Hall effect in kagome metals. Possible alternative realisations of the TvHS mechanism in bilayer materials are also discussed. We suggest that TvHS open up interesting possibilities for correlated phases, enriching the set of competing ground states to include excitonic order.

Kagome systems have been a major focus of theoretical and experimental investigation; due to their ability to realise Dirac points, flat bands and van Hove singularities, they have been predicted to host a range of novel correlated phases of matter. Recently, a new class of materials AV₃Sb₅ (A=K,Rb,Cs) have attracted a great deal of attention due to their demonstration of unconventional superconductivity alongside competing density wave order, spatially modulated superconducting order and possible signatures of Majorana states in superconducting vortices. Unusually, the materials exhibit time-reversal symmetry breaking with an anomalous Hall conductivity in the electronic dispersion, have been predicted to give rise to chiral superconductivity and competing density wave order, due to the effects of Fermi surface nesting. However, ARPES and DFT results reveal that the hexagonal Fermi surfaces in the vanadium metals exhibit an unusual feature – twofold van Hove singularities (TvHS), for which the saddle-points at each Fermi surface possess opposite concavity, resulting in one electron-like Fermi surface and one hole-like Fermi surface.
We argue that doping a system to a TvHS has an ineluctable influence on the low-energy physics. A single vHS results in a tendency towards density wave ordering and superconductivity. The appearance of TvHS introduces an additional tendency towards excitonic order—corresponding to a condensation of electron-hole pairs—owing to the coupling between an electron-like and hole-like Fermi surface. We introduce a low-energy model, which incorporates the TvHS—featuring an electron-like and hole-like Fermi surface, each doped near their respective vHS. To understand the interplay and competition between the various many-body instabilities, we employ the perturbative renormalisation group (RG) method to determine the dominant ground state order, complemented by a Landau-Ginzburg free energy analysis of competing ground states. A chiral excitonic order naturally emerges, which breaks time-reversal symmetry and exhibits a van Hove singularity near the Fermi level. Bands arising from different orbitals and contributions from each respective vHS.

Results

Tight-binding Hamiltonians with TvHS

A TvHS consists of two Fermi surfaces with opposite concavity vHS so that one surface is electron-like and the other hole-like, e.g., arising from doping near the M-point of a 2D hexagonal Brillouin zone as shown in Fig 1a. The opposing concavities of the respective saddle-points can be seen from the colour plot in Figs. 1c; going from outside to inside the hexagonal Fermi surface, the energy changes sign, but the sign change is opposite for the two Fermi surfaces. The two Fermi surfaces may arise due to two hexagonal (honeycomb or kagome) surfaces may arise due to two hexagonal (honeycomb or kagome) bilayers, or a single layer with two sets of orbitals—the latter case is the origin of the TvHS in vanadium metals AV$_3$Sb$_5$.

To be explicit, we will introduce a particular lattice model realisation of a TvHS. A tight-binding model of a kagome monolayer with two sets of orbitals that has been used to describe AV$_3$Sb$_5$ is given by

$$H_{tb} = -\sum_{\nu, \nu'} c^\dagger_{\nu, \nu'} a^\dagger_{\nu, \nu'} c_{\nu, \nu'} + \sum_{\nu} c^\dagger_{\nu} a^\dagger_{\nu} c_{\nu},$$

where a_{ν} creates fermions on site i and in orbital $\nu=c, d$. The differing orbital potentials, $c^\nu = c^\nu + t^\nu$ shift the energies of the two bands, aligning their valence and conduction bands and resulting in a TvHS.

The bandstructure of a TvHS can be realised in both honeycomb and kagome systems (we discuss alternative tight-binding models in the Supplementary Material). However, the orbital content of the wavefunction at the M-points is qualitatively different in these two cases. For honeycomb, with two sublattices, the wavefunction at the M-points has equal support on both sublattices. Meanwhile, in kagome systems the wavefunction near the M-points exhibits the so-called ‘sublattice interference effect’; at a given M-point, the conduction band wavefunctions have support only on one sublattice and are referred to as p-type (owing to their ‘pure’ sublattice composition) while the valence band wavefunctions have support on the other two sublattices and are referred to as m-type (due to their ‘mixed’ sublattice composition). The sublattice structure has important consequences when considering interaction effects, as we discuss below.

Patch model

The problem of interaction driven instabilities on a single hexagonal Fermi surface (i.e., single vHS) has been previously studied using a three patch model, whereby the full Brillouin zone is restricted to three momentum space patches near the vHS at the M-points, since they dominate the density of states. Following this approach, we define a three patch model and further introduce a flavour degree of freedom...
to account for the two opposite concavity Fermi surfaces—fermions of one flavour (created by \(c \)) are electron-like, while fermions of the other flavour (created by \(d \)) are hole-like,

\[
H_0 = \sum_{\mathbf{k},\alpha} \left(\epsilon_{\mathbf{k},\alpha} - \mu \right) c_{\mathbf{k},\alpha}^\dagger c_{\mathbf{k},\alpha} - \sum_{\mathbf{k},\alpha} \epsilon_{\mathbf{k},\alpha} c_{\mathbf{k},\alpha}^\dagger c_{\mathbf{k},\alpha}.
\] (2)

The patch index \(\alpha = 1,2,3 \) indicates a fermionic excitation within a cutoff \(\Lambda \) of the momentum \(\mathbf{M}_\alpha \). Setting \(\mu = 0 \) corresponds to doping exactly to the TVHS. The opposite concavity is encoded by the relative minus sign between the \(c \) and \(d \) dispersions. The TVHS should be contrasted with the problem of fixed concavity vHs with multiple flavours—\(\partial \) the opposite concavity of the two vHs plays a fundamental role in the interaction physics. The patch dispersion take the saddle point form

\[
\epsilon_{\mathbf{k},\alpha} = \frac{1}{2} \tau^t \left(k_x^2 + 3 k_y^2 \right), \quad \epsilon_{\mathbf{k},\alpha} = \frac{1}{2} \tau^t \left(-k_x^2 + 3 k_y^2 \right), \quad \epsilon_{\mathbf{k},\alpha} = \frac{1}{2} \tau^t (k^2 - \sqrt{3} k_x k_y),
\]

where \(\tau \) is a characteristic energy scale, and equals the nearest neighbouring hopping of the v-fermions (\(v = c,d \)) in the simple tight-binding model. Fermions at patches \(\alpha \neq \beta \) are connected by the nesting vector \(\mathbf{Q}_{\alpha\beta} = \mathbf{M}_\alpha - \mathbf{M}_\beta \) for which \(\epsilon_{\mathbf{Q}_{\alpha\beta}} = \epsilon_{\mathbf{k},\alpha} - \epsilon_{\mathbf{k},\beta} \).

Making contact with ab initio results for AV\(_3 \)Sb\(_5 \), the \(c \)- (p-type) and \(d \) - (n-type) fermions arise from the vanadium \(d_{xy} \) and \(d_{xz/yz} \) orbitals respectively, and have \(\tau = 0.5 \) eV, \(\tau^t = 1 \) eV\(^2\). In the patch model, this sets \(\tau^t/\tau = 2 \). For completeness we will analyse both \(\kappa = 1 \) and \(\kappa = 2 \). It is known from ARPES that the \(c \)-band vHS is near-perfectly nested, while the \(d \)-band vHS exhibits quartic corrections\(^3\). Close to the M-point these corrections are subdominant to the quadratic part of the dispersion, and hence only influence the ultraviolet behaviour of the theory, near the cutoff \(\Lambda = 0.5 \) eV. Since our analysis probes infrared scales far below \(\Lambda \), it is well-justified to ignore the quartic corrections.

Below we will analyse three distinct cases: (i) honeycomb systems, for which the sublattice support on the two-flavour vHS is the same, in the particle-hole symmetric limit \(\kappa = 1 \); (ii) kagome systems, in which the two-flavour vHS have different sublattice support, i.e., \(m \) - and \(p \)-type, with \(\kappa = 1 \); (iii) kagome systems with \(\kappa = 2 \), which we have argued to describe kagome metals AV\(_3 \)Sb\(_5 \).

Interactions

We now consider the possible couplings between the fermions. Owing to the large density of states near the TVHS the Coulomb repulsion is expected to be strongly screened and we therefore model the interactions as short-ranged. The most general set of interactions between patches/flavours allowed by momentum conservation are

\[
V = \frac{1}{2} \sum_{\alpha,\beta} \left(V_{c,c} + V_{h,h} + V_{f,f} + V_{t,t} \right)
\]

where \(V_{c,c} \) are intraflavour couplings, \(V_{h,h} \) are interflavour density-density couplings, \(V_f \) are flavour pair hopping, and \(V_t \) are flavour exchange couplings, resulting in 20 independent interactions. A schematic illustration of the \(g,h,j,l \) couplings, as well as their representation in terms of Feynman diagrams, is shown in Fig. 1c, d. Additional details are found in the Supplemental Material.

In the kagome case, projecting the sublattice wavefunctions onto the Coulomb interaction results in different intraflavour couplings depending on whether the flavour has pure or mixed sublattice structure, a manifestation of the sublattice interference effect in kagome patch models. We have therefore allowed for different couplings \(V_{c,c} \) on each flavour. Performing this projection explicitly and using the calculations of ref.\(^3\) gives the estimates of the bare coupling values shown in Table 1. The values taken from ref.\(^3\) are defined at the lattice scale; using these as input to our effective theory neglects the renormalisation flow between the lattice scale and \(\Lambda \). The sublattice interference effect has crucial consequences for the bare couplings: for instance, on a \(p \)-type vHS, the wavefunctions at different patches are orthogonal, and so the interpatch Coulomb repulsion is suppressed, resulting in \(g_{c,c} - g_{d,d} < 0 \). Thus, any attractive interactions present in the system, for e.g., due to phonons, immediately result in attractive couplings.

In the honeycomb case, the orbital form factors are the same for both flavour and so we expect \(V_{c,c} = V_{d,d} \). This reduces the number of independent coupling constants from 20 to 16. We shall present results for both models below.

Instabilities

Considering the interacting Hamiltonian,

\[
H = H_0 + V,
\]

we determine which instabilities arise within the framework of RG. The instability of the metallic phase and onset of an ordered ground state is signalled by the susceptibility of the associated order parameter: the strongest ordering tendencies are those with most divergent susceptibility. In the case of a nested Fermi surface, a density wave instability arises because the nesting condition \(\epsilon_{\mathbf{k},\alpha} + \epsilon_{\mathbf{Q}_{\alpha\beta}} = \epsilon_{\mathbf{k},\beta} \) implies the total energy of a particle with momentum \(\mathbf{p} \) and hole with momentum \(\mathbf{p} + \mathbf{Q} \) is approximately zero. Similarly, the energy of an electron and a hole at the TVHS is \(\epsilon_{\mathbf{k},\alpha} + \epsilon_{\mathbf{Q}_{\alpha\beta}} < 0 \). Without including interactions, it costs zero energy to create either of these particle-hole states, and hence, for an arbitrarily small attraction between particles and holes the system becomes unstable to lowering its energy by spontaneously creating many such pairs, analogous to the usual superconducting instability. The RG method provides an unbiased approach to studying competing orders on an equal footing, by resumming the logarithmically divergent corrections to the bare couplings and determining which ordering tendency dominates\(^4\).

Table 1 | Estimates of the bare coupling values in AV\(_3 \)Sb\(_5 \)

\(i \)	\(j \)	\(h_j \)	\(l_j \)
1	0	1	0
2	0	0	1
3	0	1	0
4	1	0	0

Projecting the pure and mixed sublattice form factors onto the cRPA results of ref.\(^3\) results in the below values, where the intra-orbital, inter-orbital, Hund’s, pair hopping, and nearest neighbour repulsions are \(U = 1-3 \) eV, with \(U = 0 \) for in-plane hopping and \(V = 0.3 \) eV.

RG analysis

We turn to the RG treatment which identifies the leading instabilities, i.e., the dominant ground states in Table 2. Firstly, we compute the leading log\(^2\) corrections to the bare couplings defined in (3). The equations define how the couplings evolve with the RG time \(t \), which is a proxy for the energy scale; here \(t \rightarrow \infty \) corresponds to taking \(T \rightarrow 0 \). The full RG equations for our model are lengthy, since they involve twenty independent interaction constants (Fig. 1d), so we state their general form here and reserve explicit expressions for the Supplemental Material. The RG equations describing the flow of the couplings \(g_i \), \(h_j \), \(l_j \) (where \(i = 1,2,3,4 \)) take the form

\[
\frac{\partial}{\partial t} g_i = \beta_{g_i} (g_i, j, h, l), \quad \frac{\partial}{\partial t} h_i = \beta_{h_i} (g_i, j, h, l), \quad \frac{\partial}{\partial t} l_i = \beta_{l_i} (g_i, j, h, l),
\]

where...
where $\beta_{\alpha}, \beta_{\beta}, \beta_{\gamma}$ are functions of all twenty couplings. Secondly, we compute the leading log t corrections to the order parameters, which generates the linear set of gap equations,

$$\frac{\partial}{\partial t} \mathcal{O}_i = \sum_j V_j(g, j, h, t) \mathcal{O}_j$$

where $\mathcal{O}_j = (S_{\alpha\beta}, C_{\alpha\beta}, \Delta_{\alpha}, \Phi_{\alpha\beta}, \Phi_{\alpha\beta}^C, \Phi_{\alpha\beta}^D)$. Diagonalising the gap equation matrix V_j and integrating over the RG time t, one identifies the leading eigenvalue $\mathcal{J}(0)$, which diverges fastest with t. The associated eigenvector is the order parameter with the largest critical exponent, which generates the linear set of gap equations, $\mathcal{O}_i = \mathcal{J}(0) \mathcal{O}_j$, and is therefore the dominant order at $T \ll T_c$. Multiple orders of comparable T_c may arise, in which case one must compute the Landau-Ginzburg free energy to ascertain whether such phases compete or coexist.

Dominant instabilities

A subset of the couplings diverge with increasing RG time $t \to \infty$. In this limit, the diverging couplings tend towards fixed constant ratios of each other referred to as fixed rays. The relative magnitudes of the couplings determine which ground state dominates. All possible choices of bare initial coupling values flow to one of these possible sets of ratios in the deep infrared, which therefore represent universal properties of the model. We now present the set of fixed rays possible in our TVHS patch model (for a derivation see the Supplementary Material). Despite the large number of interaction terms there turn out to be only a small set of fixed rays, shown in Fig. 2, which exhaustively characterise the possible ground states in the weak coupling regime.

We summarise for three different cases:

1. **Honeycomb systems with** $\kappa = 1$ **have three fixed rays:** comprising chiral superconductivity Δ_a, chiral d-wave excitons Φ_d^C, and s-wave excitons Φ_s^C.

2. **Kagome systems with** $\kappa = 1$ **have seven fixed rays:** comprising chiral superconductivity Δ_a, chiral d-wave excitons Φ_d^C, and s-wave excitons.

3. **Kagome systems with** $\kappa = 2$ **have eight fixed rays:** comprising chiral superconductivity Δ_a, chiral d-wave excitons Φ_d^C, and s-wave excitons Φ_s^C.

Crucially, in all cases d-wave excitons emerge at a fixed trajectory, demonstrating the naturalness of excitonic order. As in the case of single vHS, we find that d-wave superconductivity is also a natural instability of the TVHS model.

For arbitrarily small initial couplings, the fixed rays are reached at long RG times, which corresponds to the deep infrared. However, the initial couplings could be sufficiently large that an instability occurs before the fixed ray is reached. In such a case it is appropriate to instead explicitly compute the flow from a specific set of initial conditions, and examine when an instability is reached. Given the significant magnitude of the bare values of the couplings in AV$_3$Sb$_5$, (Table 1), we believe that such an analysis is more appropriate when comparing with experiment, and is presented below.

Properties of the chiral excitonic condensate

We focus attention on some key properties of the excitonic phases which appear. The two d-wave excitonic order parameter structures which appear are

$$\Phi_{d,\alpha} = \Phi_0 e^{i\theta_\alpha} \frac{1}{\sqrt{6}} (1, -2, 1),$$

$$\Phi_{s,\alpha} = \Phi_0 e^{i\theta_\alpha} \frac{1}{\sqrt{2}} (1, 0, 1).$$

Here, $\Phi_0 \Phi_0$ are real scalars, $\theta_\alpha, \theta_\beta$ are distinct $U(1)$ phases, and the row vectors enumerate patch indices, therefore encoding the spatial structure of the two order parameters. Continuing to the full Fermi surface, the spatial vectors schematically behave as $\sim \cos(2\theta_\alpha)$, $\sin(2\theta_\alpha)$, with θ_α the momentum angle. Similar d-wave eigenvectors appear for the superconducting states Δ, which are the two-flavour analogues of the superconducting states found in AV$_3$Sb$_5$.

Near the critical temperature, the Landau-Ginzburg free energy is found to be

$$F_\Phi = F_0 + \left(\frac{1}{2L^3} - a_{\Phi_0} |\Phi_{a,\alpha}|^2 + |\Phi_{b,\alpha}|^2 \right)$$

$$+ c_\Phi \left(\Phi_{d,\alpha} + \Phi_{d,\beta}^* + \frac{4}{3} \Phi_{s,\alpha} + \frac{2}{3} \Phi_{s,\beta}^* \cos(2(\theta_\alpha - \theta_\beta)) \right)$$

where F_0 is the free energy of the free fermions, with expansion coefficients $a_0, c_0 > 0$. The free energy is minimised by coexisting order parameters, with $\Phi_{d,\alpha} - \Phi_{a,\alpha} = 0$ and $\Phi_{s,\beta} - \Phi_{b,\beta} = 0$ (mod π). The coexisting states form a single order parameter of the form $\Phi = \Phi_0 e^{i\theta_\alpha}$, $\theta_\alpha = a, b, c$. Continuing around the Fermi surface, the combined order parameter becomes $\Phi = \Phi_0 e^{i\theta_\alpha} (\cos(2\theta_\alpha) \pm i \sin(2\theta_\alpha))$, which is a chiral $d \pm i d$ order. The chirality is spontaneously selected by the ground state, which therefore breaks time-reversal symmetry.

In addition to broken TRS, the chiral order parameter winds twice along the Fermi surface and vanishes away from it, thereby exhibiting a non-trivial topology with Chern number $|C| = 2$. In order to illustrate this, we diagonalise a mean-field Hamiltonian (Methods III) defined on a lattice—we consider a two-orbital kagome lattice model in an infinite ribbon geometry with zigzag edges. The 1D dispersion of the ribbon is plotted in Fig. 3 for the $d + id$ phase, which exhibits two chiral edge modes, with the left/right-movers propagating along the top/bottom of the ribbon. Full details of the lattice model are provided in the Supplementary Material. The non-trivial topological invariant implies a quantised anomalous Hall conductivity $\sigma_{xy} = C e^2/(2n)$, which is carried by two chiral edge modes. We note that this value of $\sigma_{xy} = C e^2/(2n)$ accurately accounts for the intrinsic contribution to the anomalous Hall effect seen in AV$_3$Sb$_5$.

Structure	vHS	TVHS	
CDW	Φ_0^C	✔	✔
SDW	Φ_0^C	✔	✔
SC	Φ_0^C	✔	✔
Singlet exciton	Φ_0^C	✔	✔
Triplet exciton	Φ_0^C	✔	✔
PDW	Φ_0^C	✔	✔

Table 2 | The leading ordered states
Coexistence of chiral excitons and charge order

The RG procedure determines which phases are dominant, but is not sufficient to determine the actual ground state when two phases have comparable Γ_c. Motivated by experiments on AV$_3$Sb$_5$, we examine the ground state when CDW and chiral excitons are proximate instabilities. To carry out the analysis, we consider the Landau-Ginzburg free energy for chiral excitons and CDW, written as $F = F_C + F_P$, with F_C from Eq. (6) and

$$F_C = \sum_{\alpha \beta \nu \rho \cdot \cdot \cdot \cdot} \left\{ a_{\alpha \beta \nu \rho} \right\} C_{\alpha \beta \nu \rho} \left[C_{\alpha \beta \nu \rho}^* + \frac{1}{2} c_{\nu \rho} |C_{\alpha \beta \nu \rho}|^2 \right\}
+ \sum_{\alpha \beta \nu \rho} \left\{ b_{\alpha \beta \nu \rho} \right\} C_{\alpha \beta \nu \rho} \left(C_{\alpha \beta \nu \rho} + c.c. \right) + \sum_{\alpha \beta \nu \rho} c_{\nu \rho} |C_{\alpha \beta \nu \rho}|^2 |C_{\alpha \beta \nu \rho}|^2$$

$$F_P = \sum_{\alpha \beta \nu \rho} c_{\nu \rho} |C_{\alpha \beta \nu \rho}|^2 \left(|C_{\alpha \beta \nu \rho}|^2 + |C_{\alpha \beta \nu \rho}|^2 \right).$$

The expansion coefficients $a_{\alpha \beta \nu \rho}, b_{\alpha \beta \nu \rho}, c_{\nu \rho}$ depend on temperature and are computed in the Supplementary Material. Here $V_{\alpha \beta}$ is the CDW gap equation matrix (6). Henceforth, we denote the largest eigenvalue of $V_{\alpha \beta}$ by λ_{CDW}.

In the free energy (9), there are six complex numbers, $C_{\alpha \beta \nu \rho}$, describing CDW order. Physically the $C_{\alpha \beta}$ correspond to the magnitude of the order for the three distinct vectors $C_{\alpha \beta} \in \{Q_{12}, Q_{23}, Q_{31}\}$, on the two distinct Fermi surface lobes. From the gap equation (6) we find that the leading CDW order has $C_{\alpha \beta} = \rho C_{\alpha \beta}$, where ρ is a real number. In particular, $|\rho| = 1$ in the particle-hole symmetric limit of $\kappa = 1$. Moreover, the gap equation distinguishes real charge density order (rCDW) whereby $C_{\alpha \beta}^* = C_{\alpha \beta}$, and purely imaginary order (iCDW) whereby $C_{\alpha \beta}^* = -C_{\alpha \beta}$. We separately considered parameter regimes in which rCDW and iCDW were the leading CDW phase.

We turn now to the phase diagram predicted by (9). To construct the phase diagram of Fig. 4(a) and 4(b) we allow the eigenvalues λ_{CDW} and λ_P to be free variables. To illustrate the property of coexistence and our phenomenological proposal for these AV$_3$Sb$_5$, we take a realistic range of coupling eigenvalues, consistent with DFT calculations, and fix $T = 80$ K (which enters via the coefficients $a_{\alpha \beta \nu \rho}, b_{\alpha \beta \nu \rho}, c_{\nu \rho}$). We find three distinct phases: (i) chiral excitons, (ii) CDW, and (iii) coexistence of chiral excitons and CDW. In the rCDW/iCDW phases, the $3Q\bar{Q}$ state is favoured, i.e., CDW order is nonzero for all three nesting vectors $Q_{\alpha \beta}$, and corresponds to $C_{12} = C_{23} = C_{31} = 0$. In the excitonic phases, the chiral (TRS breaking) $d\cdot id$ state is favoured. In the region of coexistence, chiral excitons and the $3Q\bar{Q}$ CDW are favoured. We point out that $d\cdot id$ excitons coupled to a nematic CDW (e.g., $C_{12} > C_{23} = C_{31}$) was observed as a local minima, but did not appear as the global minimum over the parameter range searched.

Experiment indicates that TRS breaking and CDW coexist in AV$_3$Sb$_5$, and set in at $T = 100$ K. We propose that the coexistence phase demonstrated by our Landau-Ginzburg analysis provides a phenomenological explanation of the physics of kagome metals at $T \lesssim T_c$.

Truncated RG flow and phase diagram for AV$_3$Sb$_5$

To complement the analysis leading to Fig. 4(a) and 4(b), we now directly compute the eigenvalues λ_{CDW} and λ_P from the RG procedure. Unlike for the fixed ray analysis, here we must provide initial conditions for the RG flow. Once initialised, we perform the RG flow down from a UV scale of $\Lambda = 0.5$ eV to an infrared scale set by T. We use the resulting renormalised couplings as input to the free energy, minimising to obtain the resulting ground state. This procedure generates the phase diagrams of Fig. 4(aiii) and (bii).

We discuss now the choice of initial couplings that lead to Fig. 4(aii) and (biii). Given that several of the couplings in Table 1 vanish, we allow for the situation where these couplings take negative values. By inspection of the gap equation (6), we see that an initial value of $g_{\alpha \beta} = 0$ promotes CDW (this was first noted in 52 for the problem of a single vHS), while $h_2 < 0$ promotes chiral excitons. To this end, we first allow for both $g_{\alpha \beta}, h_2 < 0$, and subsequently arrive at the phase diagram of Fig. 4(aii). In addition, we allow for $g_{\alpha \beta}, h_2 = 0$, and arrive at Fig. 4(bii). The phase diagram is qualitatively the same for $g_{\alpha \beta}, h_2 < 0$. Next we mention that the magnitudes and ratios have been estimated from ab initio calculations (Table 1). A more accurate treatment would account for the renormalisation of the couplings in going from lattice to the patch UV cutoff Λ. We have not included these effects in our analysis. We stress that our use of the values in Table 1 is to illustrate that there exist physically reasonable bare couplings, which produce the desired phenomenology.

Discussion

We introduced and analysed a minimal model to describe interacting fermions near a twofold van Hove singularity (TvHS)—two opposite concavity vHS near the Fermi level. We found the opposite concavities of the two vHS crucially affect the possible many-body instabilities, relative to the single vHS case. In particular, excitonic order contends as a possible instability and generically results in a chiral $d\cdot id$ excitonic phase in hexagonal systems such as honeycomb and kagome lattices. We contrast our scenario with topological excitonic states, which have been previously explored theoretically $54,59$; in our case, the topology of the $d\cdot id$ condensate is not inherited from the Berry curvature at the K-points or from spin–orbit coupling, but appears at the M-point intrinsically due to interaction driven, spontaneous time-reversal symmetry breaking. These findings suggest a new class of candidate materials for topological excitonic ground states.

TvHs were recently seen experimentally in AV$_3$Sb$_5$. We now discuss key features of experiment and the extent to which the TvHS minimal model explains them: First, signatures of time-reversal symmetry breaking, including a significant anomalous Hall effect, are observed at temperatures near to T_c despite the lack of magnetic ordering $19,41$. The presence of chiral excitonic order would offer an appealing interpretation of the broken time-reversal symmetry and anomalous Hall effect. Second, experiments also report the breaking of threefold rotational symmetry and onset of nematic order around $T_c \approx 50$ K. Coupling between excitons and CDW naturally results in a phase consisting of nodal $d\cdot id$ excitons and a nematic CDW, however, our analysis of the free energy found this phase was only ever a local minimum in our model. Coupling to phonons may promote this phase to the dominant ground state, and we leave further examination of this scenario to future work. Third, superconductivity emerges generically as an instability of the TvHS minimal model. However, superconductivity is seen at a much lower temperature scale ($T_c = 3.5$ K) $34,35,34$ than CDW ($T_c = 100$ K). At these temperatures the
valley polarisation is observed in twisted layered systems64 for topological excitonic condensation is to engineer TvHS in van der
E.g., through methods discussed in refs67,68. In the context of layered
could also be exploited to align the valence and conduction bands,
enhanced tunnelling between layers induced by excitons, E.g.,
opposite concavity Fermi surfaces closer or further away from the
the application of strain and pressure can selectively move the two
that chiral excitons break TRS but not translational symmetry, allowing
layer61,62, the effect of which can be tuned via twist angle63. Finally,
be further aligned through spin splitting the bands via a TMDC
meters. In
interband tunnelling, an effect which has been used to probe excitonic
the existence of an exciton condensate should lead to Andreev-like
order, while retaining the tendency to excitonic order. Experimental
that keeps the Fermi surface areas roughly equal disfavours charge
Nature Communications| (2023) 14:605

Leading instabilities

Our discussion of the leading ordered states follows from the solution of the gap equations for the order parameter vertices with indices as defined previously: \(c, d, \pm\) referring to flavour, \(\alpha\) to patch, and \(d\) denoting the patch connected to \(\alpha\) by a nesting vector. To make the equations compact, we have introduced \(\nu = [c, d]\) with \(c, d\). The \(d\) factors are nesting coefficients that characterise the relative strength of the particle-particle and particle-hole divergences, and are defined in the Supplementary Material—\(w\) we have used notation so that \(d_{\nu\nu} = 1, d_{\nu d} = d_{\nu c} = d_{\nu c} = d_{\nu d} = 0\). The couplings entering the gap equations are understood to inherit scale-dependence from the RG equations for the couplings (5). The eigenvectors for this linear system of gap equations give the possible order parameter structures, and those with the largest eigenvalue are the leading instabilities. The set of Feynman diagrams which generate these flow equations are given in the Supplementary Material.

Fig. 4 | Phase diagrams. Everywhere we have taken \(\kappa = 2\) \(i\tanh (\Phi_{d+1})\) represents
coexistence, and FL the Fermi liquid metallic state. \(a\)(i) The iCDW + \(\Phi_{d+1}\) phase diagrams, using the eigenvalues \(\lambda_{CP}, \lambda_{CP}\) as free parameters. In \(a\)(ii) and \(b\)(ii) the eigenvalues \(\lambda_{CP}, \lambda_{CP}\) are computed explicitly by
freedom, arriving at the free energy

$$\mathcal{F} = \frac{1}{2} \sum_{\mathbf{q}} |\Phi|^2 + \frac{1}{2} \sum_{\mathbf{q} \neq \mathbf{q}'} V_{\mathbf{q} \mathbf{q}'} C_{\mathbf{q} a} C_{\mathbf{q} a'} - \text{Tr} \log G^{-1}. \quad (11)$$

Here the full Green’s function

$$G^{-1}(i\omega_n, \mathbf{q}) = \mathcal{G}_0^{-1}(i\omega_n, \mathbf{q}) + M,$$

comprises the order parameter matrix $M = M_\phi + M_c$.

$$M_\phi = \begin{pmatrix} \Phi_1 & 0 & 0 \\ 0 & \Phi_2 & 0 \\ 0 & 0 & \Phi_3 \end{pmatrix} \otimes \sigma_+ + \begin{pmatrix} \Phi_1^* & 0 & 0 \\ 0 & \Phi_2^* & 0 \\ 0 & 0 & \Phi_3^* \end{pmatrix} \otimes \sigma_- \quad (13)$$

$$M_c = \begin{pmatrix} 0 & C_{12c} & C_{3c}^* \\ C_{12c} & 0 & C_{2c} \\ C_{3c} & C_{2c} & 0 \end{pmatrix} \otimes \sigma_c + \begin{pmatrix} 0 & C_{12d} & C_{3d}^* \\ C_{12d} & 0 & C_{2d} \\ C_{3d} & C_{2d} & 0 \end{pmatrix} \otimes \sigma_d \quad (14)$$

and the bare Green’s function

$$\mathcal{G}_0^{-1}(i\omega_n, \mathbf{q}) = \begin{pmatrix} i\omega_n - \varepsilon_1(\mathbf{q}) & 0 & 0 \\ 0 & i\omega_n - \varepsilon_2(\mathbf{q}) & 0 \\ 0 & 0 & i\omega_n - \varepsilon_3(\mathbf{q}) \end{pmatrix} \otimes \sigma_c + \begin{pmatrix} 0 & i\omega_n + \varepsilon_1(\mathbf{q}) & 0 \\ 0 & 0 & i\omega_n + \varepsilon_2(\mathbf{q}) \\ 0 & 0 & 0 \end{pmatrix} \otimes \sigma_d. \quad (15)$$

The dispersion at each patch is $\varepsilon_1(\mathbf{q}) = \frac{1}{2} q_x q_x + \sqrt{3} q_y$, $\varepsilon_2(\mathbf{q}) = \frac{1}{2}(-q_x^2 + q_y^2)$ and $\varepsilon_3(\mathbf{q}) = \frac{1}{2} q_x(q_x + \sqrt{3} q_y)$. For the two degenerate d-wave excitons, parameterised by Φ_a and Φ_b, we have

$$\Phi_1 = -\frac{1}{\sqrt{2}} \Phi_a - \frac{1}{\sqrt{6}} \Phi_b, \quad \Phi_2 = \frac{1}{\sqrt{2}} \Phi_a, \quad \Phi_3 = \frac{1}{\sqrt{2}} \Phi_a - \frac{1}{\sqrt{6}} \Phi_b. \quad (16)$$

Rewriting

$$\text{Tr} \log G^{-1} = -\mathcal{F}_0 + \text{Tr} \log(1 + \mathcal{G}_0 M) \quad (17)$$

where \mathcal{F}_0 is the free energy of a free Fermi gas, and using the expansion

$$\text{Tr} \log(1 + \mathcal{G}_0 M) = \sum_{n=0}^\infty \frac{(-1)^n}{n} \text{Tr}(\mathcal{G}_0 M)^n \quad (18)$$

we evaluate the trace of the first four terms in the expansion, resulting in the free energy stated in the main text. Determining whether the minimum of the free energy can include coexisting $C_{\alpha \beta}$ and Φ_a, Φ_b requires knowledge of the coefficients in this expansion; their calculation is detailed in the Supplementary Material.

Edge states

To demonstrate the presence of edge states in the excitonic phase, we employ a simplified model for numerical diagonalisation, describing a kagome lattice with two-orbital states $v = \pm$,

$$H = -\sum_{\mathbf{r}, \mathbf{r}', \alpha} t_{\mathbf{r} \mathbf{r}' \alpha} c_{\mathbf{r} \alpha}^\dagger c_{\mathbf{r}' \alpha} + \sum_{\mathbf{r}} \gamma_0 c_{\mathbf{r} 1}^\dagger c_{\mathbf{r} 1} + \sum_{\mathbf{r}} \Delta(\mathbf{r}, \mathbf{r}') c_{\mathbf{r} 1}^\dagger c_{\mathbf{r}' 1} + \text{h.c.} \quad (19)$$

in which only coupling between nearest neighbours is taken into account. We choose the excitonic pairing function $\Delta(\mathbf{r}, \mathbf{r}')$ so that the lattice theory possesses an equivalent continuum limit to our field theory description of the three patches surrounding the M points. The gap function is

$$\Delta(\mathbf{r}, \mathbf{r} \in \sigma) = \frac{1}{\sqrt{6}} \Delta_0 e^{i\theta_{\mathbf{r} \mathbf{r}'}} e^{i\theta_{\mathbf{r} \mathbf{r}'}} \quad (20)$$

with $\ell = \pm 2$ equal to the phase winding of the excitonic order around the Fermi surface. The results for $\ell = -2$ are plotted in Fig. 3 in the main text with $\gamma_0 = 2R, \Delta_0 = 0.5\Gamma$, for a ribbon geometry with 60 unit cells.

Data availability

The data produced in this study are available upon reasonable request.

References

1. Johnston, R. L. & Hoffmann, R. The kagomé net: band theoretical and topological aspects. Polyhedron 9, 1901–1911 (1990).
2. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum hall states. Phys. Rev. Lett. 106, 236802 (2011).
3. Sun, K., Gu, Z., Katsura, H. & Sarma, S. D. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).
4. Green, D., Santos, L. & Chamon, C. Isolated flat bands and spin-1 conical bands in two-dimensional lattices. Phys. Rev. B 82, 075104 (2010).
5. Yu, S.-L. & Li, J.-X. Chiral superconducting phase and chiral spin-density-wave phase in a hubbard model on the kagome lattice. Phys. Rev. B 85, 144402 (2012).
6. Kiesel, M. L., Platt, C. & Thomale, R. Unconventional fermi surface instabilities in the kagome hubbard model. Phys. Rev. Lett. 110, 126405 (2013).
7. Wen, J., Ruegg, A., Wang, C.-C. J. & Fiete, G. A. Interaction-driven topological insulators on the kagome and the decorated honeycomb lattices. Phys. Rev. B 82, 075125 (2010).
8. Kiesel, M. L. & Thomale, R. Sublattice interference in the kagome hubbard model. Phys. Rev. B 86, 121105 (2012).
9. Li, T., Geier, M., Ingham, J. & Scammell, H. D. Higher-order topological superconductivity from repulsive interactions in kagome and honeycomb systems. 2D Mater. 9, 015031 (2021).
10. Ortiz, B. R. et al. New kagome prototype materials: discovery of kv 3 sb 5, rbv 3 sb 5, and csv 3 sb 5. Phys. Rev. Mater. 3, 094407 (2019).
11. Ortiz, B. R. et al. Cs v 3 sb 5: A z 2 topological kagome metal with a superconducting ground state. Phys. Rev. Lett. 125, 247002 (2020).
12. Ortiz, B. R. et al. Superconductivity in the z 2 kagome metal kv 3 sb 5. Phys. Rev. Mater. 5, 034801 (2021).
13. Yin, Q. et al. Superconductivity and normal-state properties of kagome metal rbv3sb5 single crystals. Chin. Phys. Lett. 38, 037403 (2021).
14. Xu, H.-S. et al. Multiband superconductivity with sign-preserving order parameter in kagome superconductor cssv3sb5. Phys. Rev. Lett. 127, 187004 (2021).
15. Gupta, R. et al. Microscopic evidence for anisotropic multigap superconductivity in the cssv3b5 kagome superconductor. npj Quant. Mater. 7, 1–8 (2022).
25. Miao, H. et al. Geometry of the charge density wave in the kagome Ni, S. et al. Anisotropic superconducting properties of kagome superconductor. Nature 18, 1353–1357 (2021).
26. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor. Phys. Rev. X 11, 031050 (2021).
27. Gao, H. J. et al. Roton pair density wave and unconventional strong-ferromagnetism in the two-dimensional Hubbard model: Scaling theory. EPL (Europhys. Lett.) 4, 60 (1987).
28. Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021).
29. Du, F. et al. Evolution of superconductivity and charge order in pressure-annealed rb3Sb5. Chin. Phys. B 31, 017404 (2022).
30. Tsirlin, A. et al. Role of sb in the superconducting kagome metal CsV3Sb5. Phys. Rev. X 11, 031026 (2021).
31. Qian, T. et al. Revealing the competition between charge density-wave and superconductivity in CsV3Sb5 through uniaxial strain. Phys. Rev. B 104 (2021).
32. Liu, Y. et al. Doping evolution of superconductivity, charge order and band topology in hole-doped topological kagome superconductors CsV3-xTi0.5Sb5. https://arxiv.org/abs/2110.12651 (2021).
33. Oey, Y. M. et al. Fermi level tuning and double-dome superconductivity in the kagome metal CsV3Sb5. Phys. Rev. Mater. 6, L041801 (2022).
34. Yang, H. et al. Titanium doped kagome superconductor CsV3-xTi2Sb5 and two distinct phases. Sci. Bull. 67, 2176 (2022).
35. Kang, M. et al. Twofold van hove singularity and origin of charge order in topological kagome superconductor CsV3Sb5. Nat. Phys. 18, 301–308 (2022).
36. Lin, Y.-P. & Nandkishore, R. Complex charge density waves at van hove singularity on hexagonal lattices: Haldane-model phase diagram and potential realization in the kagome metals a v 3 sb 5 (a= k, rb, cs). Phys. Rev. Lett. 127, 217601 (2021).
37. Yang, H. et al. Titanium doped kagome superconductor CsV3-xTi0.5Sb5. Sci. Adv. 6, eabb6003 (2020).
38. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor kv3Sb5. Nat. Commun. 13, 1–7 (2022).
39. Wang, T., Bultinck, N. & Zaletel, M. P. Flat-band topology of magic-angle graphene on a transition metal dichalcogenide. Phys. Rev. B 102, 235146 (2020).
40. Oey, Y. M. et al. Fermi level tuning and double-dome superconductivity in the kagome metal CsV3Sb5. Sci. China Phys. Mech. Astronomy 64, 1–6 (2021).
41. Yang, S.-Y. et al. Giant, unconventional anomalous hall effect in the metallic frustrated magnet candidate, kv3Sb5. Sci. Adv. 6, eabb6003 (2020).
42. Jiang, Y.-X. et al. Unconventional chiral charge order in kagome superconductor kv3Sb5. Nat. Mater. 20, 1353–1357 (2021).
43. Chen, K. et al. Double superconducting dome and triple enhancement of c in the kagome superconductor kv3Sb5. Phys. Rev. Lett. 126, 247001 (2021).
44. Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal lv 3 sb 5. Phys. Rev. B 103, L220504 (2021).
45. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors a v 3 sb 5 (a= rb, cs). Phys. Rev. X 11, 031050 (2021).
46. Maiti, S. & Chubukov, A. V. Superconductivity from repulsive interaction in doped graphene. Nat. Phys. 8, 158–163 (2012).
47. Yang, S.-Y. et al. Giant, unconventional anomalous hall effect in the metallic frustrated magnet candidate, kv3Sb5. Sci. Adv. 6, eabb6003 (2020).
48. Li, H. et al. Rotation symmetry breaking in the normal state of a kagome superconductor kv3Sb5. Nat. Phys. 18, 265–270 (2022).
49. Zhao, H. et al. Cascade of correlated electron states in the kagome superconductor csV3Sb5. Nature 599, 216–221 (2021).
50. Li, H. et al. Observation of unconventional charge density wave without acoustic phonon anomaly in kagome superconductors a v 3 sb 5 (a= rb, cs). Phys. Rev. X 11, 031050 (2021).
51. Shumiya, N. et al. Intrinsic nature of chiral charge order in the kagome superconductor rb v 3 sb 5. Phys. Rev. B 104, 035131 (2021).
52. Miellek I, C. et al. Time-reversal symmetry-breaking charge order in a correlated kagome superconductor. Nature 602, 245–250 (2021).
53. Ni, S. et al. Anisotropic superconducting properties of kagome metal CsV3Sb5. Chin. Phys. Lett. 38, 057403 (2021).
54. Gao, H. J. et al. Roton pair density wave and unconventional strong-coupling superconductivity in a topological kagome metal. Nature 599, 222–228 (2021).
55. Jiang, Z. et al. Three-dimensional charge density wave and robust zero-bias conductance peak inside the superconducting vortex core of a kagome superconductor CsV3Sb5. Phys. Rev. X 11, 031026 (2021).
56. Zhu, C. et al. Double-dome superconductivity under pressure in the v-based kagome metals a v 3 sb 5 (a= rb and k). Phys. Rev. B 105, 094507 (2022).
57. Chen, K. et al. Double superconducting dome and triple enhancement of c in the kagome superconductor kv3Sb5 under high pressure. Phys. Rev. Lett. 126, 247001 (2021).
58. Du, F. et al. Pressure-induced double superconducting domes and charge instability in the kagome metal kv 3 sb 5. Phys. Rev. B 103, L220504 (2021).
59. Zhang, Z. et al. Pressure-induced reemergence of superconductivity in the topological kagome metal CsV3Sb5. Phys. Rev. B 103, 224513 (2021).
60. Du, F. et al. Evolution of superconductivity and charge order in pressure-annealed rb3Sb5. Chin. Phys. B 31, 017404 (2022).
63. David, A., Rakyta, P., Kormányos, A. & Burkard, G. Induced spin-orbit coupling in twisted graphene–transition metal dichalcogenide heterobilayers: Twistronics meets spintronics. Phys. Rev. B 100, 085412 (2019).
64. Liu, J. & Dai, X. Orbital magnetic states in moiré graphene systems. Nat. Rev. Phys. 3, 367–382 (2021).
65. Lin, J.-X. et al. Zero-field superconducting diode effect in small-twist-angle trilayer graphene. Nat. Phys. 18, 1221–1227 (2022).
66. Scammell, H. D., Li, J. & Scheurer, M. S. Theory of zero-field superconducting diode effect in twisted trilayer graphene. 2D Mater. 9, 025027 (2022).
67. Ying, X., Ye, M. & Balents, L. Current switching of valley polarization in twisted bilayer graphene. Phys. Rev. B 103, 115436 (2021).
68. Li, S.-Y., Su, Y., Ren, Y.-N. & He, L. Valley polarization and inversion in strained graphene via pseudo-landau levels, valley splitting of real landau levels, and confined states. Phys. Rev. Lett. 124, 106802 (2020).
69. Burg, G. W. et al. Strongly enhanced tunneling at total charge neutrality in double-bilayer graphene-wse 2 heterostructures. Phys. Rev. Lett. 120, 177702 (2018).
70. Efimkin, D. K., Burg, G. W., Tutuc, E. & MacDonald, A. H. Tunneling and fluctuating electron-hole cooper pairs in double bilayer graphene. Phys. Rev. B 101, 035413 (2020).

Acknowledgements
We thank Brenden Ortiz, Michael Denner, Mingu Kang, Colin Nancarrow and Dmitry Efimkin for discussions and comments. H.S. and O.P.S. acknowledge funding from ARC Centre of Excellence FLEET. T.L. acknowledges support from the Deutsche Forschungsgemeinschaft.

Author contributions
H.D.S. and J.I. conceived of the project idea, performed the RG analysis and calculated the Landau-Ginzburg free energy. T.L. performed edge state calculations. O.P.S. critically assessed the project idea and calculations. All authors discussed the details and contributed to writing.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-023-35987-2.

Correspondence and requests for materials should be addressed to Harley D. Scammell or Julian Ingham.

Peer review information Nature Communications thanks and the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023