I. INTRODUCTION

Heavy flavored exotic hadrons discovered by experiments are sharply growing in recent two decades [1, 2]. They comprise not only multidimensional hidden heavy flavored exotics, but also ample open heavy flavored exotics. For instance, the heavy quarkonium-like $T_\psi/T_{\psi'}$ states, the hidden charmed pentaquark P_{n}/P_{g} states, the open charmed tetraquark T_{cc}/T_{cs} states, and so forth. What’s more, the theoretical interpretations on the internal structure of heavy flavored exotics are also multifarious [3–12], including compact multiquarks, loose hadronic molecules, hadro-quarkonia, hybrid hadrons, kinematical effects, etc. Nonetheless, the elucidation on the configurations of a portion of exotic states is in a dilemma due to the deficiency of experimental and theoretical smoking gun. Concretely, the conventional hadronic assignments for certain heavy flavored exotics cannot be ruled out, e.g., the $\chi_{cc}(3872)$ state. As a neutral state, it is capable of being regarded as the charmonium, the charmonium-like exotic, the mixing among them, or others. It demonstrates that the endeavor on shedding light on the nature of heavy flavored exotic hadrons is still herculean, despite progress.

Members of the $T_{\psi'}$ family are overtly exotic states beyond the conventional quark model, composed of four charm quarks (cc$\bar{c}c$). The first observation on them was announced by the LHCb collaboration in 2020 [13], with a narrow structure around 6.9 GeV in the J/ψ-pair (di-J/ψ) invariant mass spectrum, i.e., the $T_{\psi'}(6900)$ state. The corresponding detection was implemented by utilizing proton-proton collision at centre-of-mass energies of $\sqrt{s} = 7$, 8, and 13 TeV, obtaining two sorts of possible alternatives for the mass and natural width of the $T_{\psi'}(6900)$ structure, enumerated in Table I. Whereafter, the presence of the $T_{\psi'}(6900)$ state was separately confirmed by the ATLAS and CMS collaborations in 2022 [14, 15]. Furthermore, a few else members of the $T_{\psi'}$ family, including the $T_{\psi'}(6200)$, $T_{\psi'}(6600)$, and $T_{\psi'}(7300)$ states, were not only recorded by the ATLAS collaboration in an excess of the di-J/ψ and J/ψ+$(\phi)(2S)$ events in the four-muon final state [14], but also observed by the CMS collaboration in the di-J/ψ invariant mass spectrum produced by proton-proton collision data at $\sqrt{s} = 13$ TeV [15]. A series of discoveries of the $T_{\psi'}$ family members offered tremendous opportunities for the studies on the spectroscopic properties of heavy flavored exotic hadrons.

From the viewpoints of theoretical approaches, the existence of multiquark states is feasible, having been come up with by the pioneering works of the quark model [16, 17]. In terms of the T_{ψ} family, the earliest theoretical inquiry was conducted by Ref. [18] in 1975, predicting a sharp $cc\bar{c}c$ resonance whose mass lay around 6.2 GeV. Over the ensuing decades, mass spectra, decay properties, and production mechanisms of the $cc\bar{c}c$ states were systematically investigated by Refs. [19–110], in virtue of miscellaneous phenomenological recipes, containing the quark bag model [19–21], the quark potential model [22–24, 26, 30–34, 36, 37, 39, 42–47, 49, 50, 52, 58, 63, 67, 68, 72, 74, 79, 80, 82–84, 88, 95, 96, 100, 101, 103, 105, 106, 108, 110], the Bethe-Salpeter (BS) equation [27, 66, 73, 81, 93], the lattice QCD [25], the QCD sum rules [28, 29, 35, 41, 51, 54, 59, 62, 76, 77, 90, 92, 98], the adiabatic (Born-Oppenheimer) approximation [48], the nonrelativistic QCD (NRQCD) effective field theory [56, 57, 61, 70], the holography inspired stringy hadron (HISH) model [60], the dynamical rescattering mechanism [64, 87, 94], the coupled-channel final state interaction (FSI) [69, 71, 78, 84–86, 95, 97, 99, 104, 109], the basis light front quantization (BLFQ) [89], the bosonic algebraic approach [91], etc. Since the $T_{\psi}(6900)$ state was discovered by the LHCb collaboration [13], numerous theoretical arguments on its inner composition were proposed, including the (diquark-antidiquark) tetraquark configuration [38, 39, 41–46, 48, 49, 51–55, 58–60, 66–68, 72–74, 76, 79, 81, 83, 88, 90, 92, 96, 100, 103–106, 109, 110], the (meson-meson) molecule configuration [41, 63, 93, 96], the (mixing among diquark-antidiquark and meson-meson) tetraquark-molecule mixing configuration [50, 82, 93, 101], the (hidden color-octet) molecule-like configuration [62, 77],

1 Corresponding author
2 Electronic address: wen-chao.dong@qq.com
3 Electronic address: zgwang@aliyun.com
the (coupled-channel) dynamically generated resonance pole structure \[69, 71, 97, 99\], the (cusp) kinematical effect \[95\], the light Higgs-like boson \[111\], the gluonic tetracharm configuration \[112\], and so on. Moreover, a vague structure around 7.2 GeV appeared in the di-\(J/\psi\) invariant mass spectrum from the observation of the LHCb collaboration \[13\] could be construed as the \(\Xi_c\Xi_c^*\) molecular state with \(J^{PC} = 0^{-+}\) \[113\] or the mixing among the (diquark-antidiquark) tetraquark state and the \(\Xi_c\Xi_c^*\) molecular state with \(J^{PC} = 0^{-+}\) \[114\]. On account of the paucity of adequate experimental evidence, the nature of the \(T_{\phi\phi}(6200), T_{\phi\phi}(6600), T_{\phi\phi}(6900)\), and \(T_{\phi\phi}(7300)\) states has all been intangible so far.

Howbeit, the (diquark-antidiquark) tetraquark configurations are deemed as the quite probable interpretations for the \(T_{\phi\phi}\) structures which have been reported by experiments, owing to the absence of the light quark degree of freedom, which plays an imperative role in the formation of (meson-meson) molecular states \[53, 55\]. Consequently, a few diquark-antidiquark scenarios are employed to delve into the spectroscopic properties of the \(cc\bar{c}\bar{c}\) states in this work, covering the Godfrey-Isgur (GI) relativized diquark model, the modified Godfrey-Isgur (MGI) relativized diquark model (incorporating the color screening effects), and the nonrelativistic (NR) diquark model. The specifics of this treatise is recapitulated as \(H_{GI} = H_{GI}^0 + V_{GI}^{\text{conf}} + V_{GI}^{\text{tren}} + V_{GI}^{\text{co}}\) \[2.1\].

II. FORMALISM

This section mainly delineates the Godfrey-Isgur (GI) relativized diquark model, the modified Godfrey-Isgur (MGI) relativized diquark model with the color screening effects, the nonrelativistic (NR) diquark model, and their applications on the inquiries on the spectroscopic properties of quadruply charmed (diquark-antidiquark) tetraquarks.

A. Godfrey-Isgur (GI) relativized diquark model

The Godfrey-Isgur relativized quark model (GI model) was proposed by S. Godfrey and N. Isgur in 1985 \[115\], studying the spectroscopic properties of all sorts of mesons with a set of universal parameters of the one-gluon-exchange-plus-linear-confinement potential incited by QCD. The pivotal feature of the GI model is, as Ref. \[115\] narrates, “all mesons—from the pion to the upsilon—can be described in a unified framework”. Thus far, the GI model has been successfully employed to probe the mass spectra of light mesons \[115\], heavy-light mesons \[115\], fully heavy mesons \[115, 118\], light baryons \[121\], singly heavy baryons \[121, 122\], doubly heavy baryons \[123\], fully heavy baryons \[49\], light tetraquarks \[124\], heavy tetraquarks \[125, 126\], and diquarks \[32, 49, 122, 124\]. The specific details and explicit expressions of the GI model may be found in Ref. \[115\]. As far as meson is concerned, the Hamiltonian of the GI model is:

\[
H_{GI} = H_{GI}^0 + V_{GI}^{\text{conf}} + V_{GI}^{\text{tren}} + V_{GI}^{\text{co}}.
\]

where \(H_{GI}^0\) is the relativistic energy of total (anti)quarks, \(V_{GI}^{\text{conf}}, V_{GI}^{\text{tren}}, \text{ and } V_{GI}^{\text{co}}\) denote the effective confinement, contact,
tensor, and spin-orbit potentials between the quark 1 and antiquark 2 in the meson, respectively. Among them, V_{GI}^{0} and $V_{\text{GI}}^{\text{so}}$ are capable of being decomposed into the diagonal terms (V_{GI}^{0} and $V_{\text{GI}}^{\text{so}}$) and off-diagonal terms ($V_{\text{GI}}^{\text{off}}$ and $V_{\text{GI}}^{\text{so}}$). In this work, both off-diagonal terms ($V_{\text{GI}}^{\text{off}}$ and $V_{\text{GI}}^{\text{so}}$) are omitted for convenience. As a matter of fact, the spin-orbit off-diagonal term $V_{\text{GI}}^{\text{so}}$ is going to vanish automatically when the mass of quark 1 is equivalent to the mass of antiquark 2 [115]. The forms of H_{GI}^{0}, $V_{\text{GI}}^{\text{conf}}$, $V_{\text{GI}}^{\text{ten}}$, and $V_{\text{GI}}^{\text{so}}$ are

$$H_{\text{GI}}^{0} = \sum_{i=1}^{2} E_{i}(p),$$

$$V_{\text{GI}}^{\text{conf}} = G_{\text{GI}}^{\text{conf}}(p, r) + S_{12}(r),$$

$$V_{\text{GI}}^{\text{ten}} = \frac{2}{3m_{1}m_{2}r^{2}} \frac{\partial}{\partial r} \left[r \left(\frac{\partial G_{\text{GI}}^{\text{ten}}(p, r)}{\partial r} \right) \right] S_{1} \cdot S_{2},$$

$$V_{\text{GI}}^{\text{so}} = \frac{1}{r} \left[\frac{1}{4m_{1}^{2}} \frac{\partial \tilde{G}_{\text{GI}}^{\text{so}}(p, r)}{\partial r} - \frac{1}{4m_{2}^{2}} \frac{\partial \tilde{S}_{\text{GI}}^{\text{so}}(p, r)}{\partial r} \right] - \frac{1}{m_{1}m_{2}} \frac{\partial \tilde{G}_{\text{GI}}^{\text{so}}(p, r)}{\partial r} \cdot L \cdot S,$$

with

$$E_{i}(p) = \left(p^{2} + m_{i}^{2} \right)^{\frac{1}{2}},$$

$$G_{\text{GI}}^{\text{conf}}(p, r) = \left[1 + \frac{p^{2}}{E_{i}(p)E_{j}(p)} \right]^{\frac{1}{2}} \tilde{G}_{ij}(r) \left[1 + \frac{p^{2}}{E_{i}(p)E_{j}(p)} \right]^{\frac{1}{2}},$$

$$G_{\text{GI}}^{\text{ten/so}}(p, r) = \left[\frac{m_{m_{j}}}{E_{i}(p)E_{j}(p)} \right]^{\frac{1}{2}} \tilde{G}_{ij}(r) \left[\frac{m_{m_{j}}}{E_{i}(p)E_{j}(p)} \right]^{\frac{1}{2}}.$$

Here, T denotes the operator of the tensor coupling interaction, whose diagonal matrix elements are able to be evaluated by dint of the identity from Landau and Lifshitz [128, 129] or the Wigner-Eckart theorem [130]. E_{i} and m_{i} are the relativistic energy and mass of the (anti)quark i, respectively. In consideration of the various types of potentials’ dependence on the center-of-mass momentum of the interacting (anti)quarks, the momentum-dependent factors are introduced into the smeared Coulomb and linear potentials (\tilde{G}_{ij} and \tilde{S}_{ij}), to acquire the corresponding momentum-dependent Coulomb, contact, tensor, vector spin-orbit, and scalar spin-orbit potentials ($\tilde{G}_{ij}^{\text{cond}}$, $\tilde{G}_{ij}^{\text{ten(0)}}$, $\tilde{G}_{ij}^{\text{so(v)}}$, and $\tilde{S}_{ij}^{\text{so(v)}}$), with the universal parameters (ϵ_{cont}, ϵ_{ten}, $\epsilon_{\text{so(v)}}$, and $\epsilon_{\text{so(v)}}$) [115]. The smearing prescription of the certain potential $f_{ij}(r)$ is defined as [115]

$$f_{ij}(r) = \int d^{3}r' \rho_{ij}(\mathbf{r} - \mathbf{r}') f(r'),$$

with

$$\rho_{ij}(\mathbf{r} - \mathbf{r}') = \frac{\sigma_{r}^{2}}{\pi^{2}} e^{-\sigma_{r}^{2}(\mathbf{r} - \mathbf{r}')^{2}},$$

$$\sigma_{ij} = \sqrt{\sigma_{0}^{2} + \frac{1}{2} \left(\frac{4m_{m_{i}m_{j}}}{(m_{i} + m_{j})^{2}} \right)^{2} + \frac{1}{2} \left(\frac{2m_{m_{i}m_{j}}}{m_{i} + m_{j}} \right)^{2}}.$$

Here, $\rho_{ij}(\mathbf{r} - \mathbf{r}')$ is the smearing function, with the universal parameters (σ_{0} and σ) [115]. By taking advantage of Eq. (2.7), the short-range $\gamma^{\mu} \otimes \gamma_{\mu}$ Coulomb potential $G(r)$ and long-range $1 \otimes 1$ linear potential $S(r)$ are capable of being smeared into the smeared Coulomb potential $G_{ij}(r)$ and smeared linear potential $S_{ij}(r)$, respectively. The forms of $G(r)$ and $S(r)$ are

$$G(r) = \frac{\alpha_{r}(r)}{4r} \lambda_{1} \cdot \lambda_{2},$$

$$S(r) = -\frac{3}{16} (br + c) \lambda_{1} \cdot \lambda_{2},$$

with

$$\alpha_{r}(r) = \sum_{k=1}^{3} \alpha_{k} \text{erf}(\gamma_{r} r),$$

$$\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^{2}} dt.$$

Here, λ_{i} and λ_{j} denote the Gell-Mann matrices of the color SU(3) group, which act on the (anti)quark i. The matrix elements of $\lambda_{i} \cdot \lambda_{j}$ are able to be evaluated in virtue of the eigenvalue of the quadratic Casimir operator [131]. erf(x) and aforementioned constants ($\alpha_{k}=1, 2, 3$, $\gamma_{r}=1, 2, 3$, b, and c) are the error function and GI model universal parameters [115], respectively.

As the hypothetical substructure of the baryon and multiquark state, composed of two quarks, the diquark plays a crucial role in perceiving the various properties of hadrons [132–134], including but not limited to the spectroscopy, structure, form factors, magnetic moments, production, and decay properties of hadrons. The representation of the color SU(3) group of the diquark is antitriplet or sextet inasmuch as the quark possesses the color triplet representation, i.e.,

$$3_{q} \otimes 3_{q} = 3_{qq} \oplus 6_{qq},$$

$$3_{q} \otimes 3_{q} = 3_{qq} \oplus 6_{qq}.$$
work only adopt the color antitriplet diquark (triplet antidiquark) as the practically effective (anti)diquark to investigate spectroscopy of fully charmed tetraquarks. Manifestly, the color antitriplet diquark (triplet antidiquark) is able to be approximately deemed as the antiquark (quark), since it possesses the color representation in common with the antiquark (quark). The GI relativized diquark model is carried out in two steps. First of all, the mass of the ground state doubly charmed diquark is garnered. Next up, the spectroscopic properties of quadruply charmed tetraquarks are surveyed via looking upon the diquark (antidiquark) as the antiquark (quark). All the corresponding results are laid out in Section III.

B. Modified Godfrey-Isgur (MGI) relativized diquark model with the color screening effects

Admittedly, the linear potential $S(r)$ is quite successful for depicting the long-range interaction between (anti)quarks [115]. However, the color flux tube between (anti)quarks may break up at large distances due to the vacuum polarization effects of dynamical fermions, which gives rise to the color screening effects [135]. The color screened nonrelativistic quark potential models have been successfully employed to study the mass spectrum of heavy quarkonium [136], by means of superseding the linear potential $S(r)$ with the screened linear potential $S_{sc}(r)$, which is

$$S_{sc}(r) = \frac{3}{16} \left(b \frac{1 - e^{-br}}{\mu} + c \right) \lambda_1 \cdot \lambda_2. \quad (2.16)$$

Here, μ is the color screening factor. It is straightforward to be aware of

$$S_{sc}(r) = \begin{cases} S(r) = \frac{3}{16} (br + c) \lambda_1 \cdot \lambda_2, & r \to 0, \\ c_{\mu} = -\frac{3}{16} \left(b \frac{1 - e^{-br}}{\mu} + c \right) \lambda_1 \cdot \lambda_2, & r \to \infty, \end{cases} \quad (2.17)$$

which indicates that the screened linear potential $S_{sc}(r)$ inclines to the linear potential $S(r)$ when the interaction range r verges on zero, and inclines to the constant c_{μ} when the interaction range r verges on infinity.

By incorporating the color screening effects, the modified Godfrey-Isgur relativized quark model (MGI model) is attained [137], having been successfully employed to investigate the spectroscopic properties of light mesons [138], heavy-light mesons [137, 139], fully heavy mesons [140], light tetraquarks [124], heavy tetraquarks [126], and diquarks [124, 126]. In the MGI model, the smeared screened linear potential $S_{sc}(r)$ is procured in virtue of interpolating the screened linear potential $S_{sc}(r)$ into Eq. (2.7). Besides, the other particulars of the MGI model are in concordance with the GI model. The specific details and explicit expressions of the MGI model may be found in Ref. [137]. Whereafter, the MGI relativized diquark model is performed in two aforementioned steps, which garners the masses of the doubly charmed diquark and fully charmed tetraquarks displayed in Section III.

C. Nonrelativistic (NR) diquark model

As one of the potent phenomenological approaches, the Cornell potential model is an eminent exemplar of the nonrelativistic quark potential models, limning the mass spectrum of quarkonium successfully [141]. It is composed of the Cornell Coulomb potential $G_{\text{Corn}}(r)$ and Cornell linear potential $S_{\text{Corn}}(r)$, i.e.,

$$G_{\text{Corn}}(r) = \frac{\alpha_e}{4r} \lambda_1 \cdot \lambda_2, \quad (2.18)$$
$$S_{\text{Corn}}(r) = \frac{-3}{10} \beta r \lambda_1 \cdot \lambda_2. \quad (2.19)$$

The nonrelativistic quark model (NR model) employed in this work stems from Ref. [119], having successfully inquired into the spectroscopy of the charmonium system. Its Hamiltonian is

$$H_{\text{NR}} = H_{\text{NR}}^0 + V_{\text{conf}}^\text{NR} + V_{\text{cont}}^\text{NR} + V_{\text{ten}}^\text{NR} + V_{\text{so}}^\text{NR}, \quad (2.20)$$

where the tensor and spin-orbit off-diagonal terms (V_{ten}^NR and V_{so}^NR) are omitted as mentioned previously. Concretely, all the relevant terms of H_{NR} are

$$H_{\text{NR}}^0 = \sum_{i=1}^{2} \mathcal{E}_i(p), \quad (2.21)$$
$$V_{\text{conf}}^\text{NR} = G_{\text{Corn}}(r) + S_{\text{Corn}}(r), \quad (2.22)$$
$$V_{\text{cont}}^\text{NR} = \frac{2}{3m_1m_2r^2} \left[\int \frac{dG_{\text{Corn}}(r)}{dr} \right] S_1 \cdot S_2, \quad (2.23)$$
$$V_{\text{ten}}^\text{NR} = \frac{1}{m_1m_2} \left(\frac{1}{r} \int \frac{dG_{\text{Corn}}(r)}{dr} \right) \mathbf{S}_{\text{diag}}, \quad (2.24)$$
$$V_{\text{so}}^\text{NR} = \frac{1}{r} \left(\frac{1}{4m_1^2} + \frac{1}{4m_2^2} + \frac{1}{m_1m_2} \right) \int \frac{dG_{\text{Corn}}(r)}{dr} L \cdot \mathbf{S}, \quad (2.25)$$

with

$$\mathcal{E}_i(p) = m_i + \frac{p^2}{2m_i}, \quad (2.26)$$
$$G_{\text{conf}}(r) = \frac{\alpha_e(r)}{4r} \lambda_1 \cdot \lambda_2, \quad (2.27)$$
$$\alpha_e(r) = \alpha_e(\text{erf}(r)). \quad (2.28)$$

Here, \mathcal{E}_i and aforementioned constants (α_e, γ_e, and β) are the nonrelativistic energy of the (anti)quark i and NR model parameters determined by fitting the mass spectrum of the charmonium states [119], respectively. In the NR model, the form of $\alpha_e(r)$ in $G_{\text{conf}}(r)$ employs a approximate form of $\alpha_i(r)$ in $G(r)$. Following Ref. [119], the tensor and spin-orbit terms (V_{ten}^NR and V_{so}^NR) are deemed as mass shifts in virtue of leading-order perturbation theory. The specific details and explicit expressions of the NR model may be found in Ref. [119]. Subsequently, the NR diquark model is implemented by adopting the (diquark-antidiquark) tetraquark configuration, whose results on the axial-vector doubly charmed diquark and fully charmed tetraquark system are enumerated in Section III.
III. RESULTS

The particular results on the spectroscopic properties of the ground state axial-vector doubly charmed diquark and entire fully charmed tetraquark family are unveiled by three sorts of aforementioned diquark-antidiquark scenarios (GI relativized diquark model, MGI relativized diquark model, and NR diquark model) in this section.

A. Parameters

In the calculations on the mass spectra of doubly charmed diquark and fully charmed tetraquark states, fulfilled by the GI (MGI) relativized diquark model and NR diquark model, it’s worth noting that the values of all the corresponding parameters are identical with the counterparts of Refs. [115, 119], as enumerated in Table II.

Parameter	GI (MGI) [115]	NR [119]	
Parameter	Value	Parameter	Value
m_c (GeV)	1.628	m_c (GeV)	1.4794
b (GeV2)	0.18 c (GeV)	a_1	0.25
γ_1 (GeV2)	$\sqrt{1/4}$	α_1	0.25
γ_2 (GeV2)	$\sqrt{1/4}$	α_2	0.15
γ_3 (GeV2)	$\sqrt{1000/4}$	a_3	0.20
σ_0 (GeV)	1.80 s	1.55	
ϵ_{cont}	-0.168	ϵ_{d}	-0.035
ϵ_{em}	0.025	ϵ_{e}	0.055

B. Doubly charmed diquark

According to the Pauli exclusion principle, the total wave function of the (anti)diquark, made up of the color, flavor, spin, and spatial wave functions, is sure to be antisymmetric [142]. Ergo, in terms of the color antitriplet (triplet) ground state doubly charmed diquark (antidiquark), the spin wave function is symmetric, i.e., the spin quantum number has to be 1. Thereby the color antitriplet (triplet) ground state doubly charmed diquark (antidiquark) must be an axial-vector (anti)diquark owing to the fact that the S-wave (anti)diquark possesses a positive internal parity [142]. Whereafter, the masses of the ground state axial-vector doubly charmed diquark, garnered by aforementioned diquark-antidiquark scenarios, are distinctly laid out in Table III. In this work, the values of diquark masses, obtained by the GI, MGI $(\mu = 50)$, MGI $(\mu = 100)$, and NR models, are 3329, 3314, 3300, and 3152 MeV, respectively.

Scenario	Mass	Scenario	Mass
GI	3329	MGI $(\mu = 50)$	3314
NR	3152	MGI $(\mu = 100)$	3300

C. Fully charmed tetraquark

In terms of the diquark-antidiquark configuration, the total angular momentum J of the fully charmed tetraquark $cc\bar{c}\bar{c}$ is obtained by coupling the total angular momentum J_{cc} of the doubly charmed diquark cc, the total angular momentum $J_{\bar{c}\bar{c}}$ of the doubly charmed antidiquark $\bar{c}\bar{c}$, and the relative orbital angular momentum L_t between the diquark cc and antidiquark $\bar{c}\bar{c}$, i.e.,

$$J = J_{cc} \otimes J_{\bar{c}\bar{c}} \otimes L_t,$$

(3.1)

with

$$J_{cc} = L_{cc} \otimes S_{cc},$$

(3.2)

$$J_{\bar{c}\bar{c}} = L_{\bar{c}\bar{c}} \otimes S_{\bar{c}\bar{c}},$$

(3.3)

$$S_{cc} = S_c \otimes S_{\bar{c}},$$

(3.4)

$$S_{\bar{c}\bar{c}} = S_{\bar{c}} \otimes S_{\bar{c}}.$$

(3.5)

Here, S_c, $S_{\bar{c}}$, and L_{cc} (S_{cc}, $S_{\bar{c}\bar{c}}$, and $L_{\bar{c}\bar{c}}$) denote the spin quantum number of the charm (anti)quark, the spin quantum number of the doubly charmed (anti)diquark, and the relative orbital angular momentum between the two charm (anti)quarks in the doubly charmed (anti)diquark, respectively. As mentioned previously, the spin quantum number of the color antitriplet (triplet) orbitally ground state doubly charmed diquark (antidiquark) must be 1 due to the Pauli exclusion principle. In this work, the orbital excitations between the two (anti)quarks inside (anti)diquarks are omitted. Thereupon, the total angular momentum of the doubly charmed (anti)diquark is determined as 1, i.e.,

$$L_{cc} = L_{\bar{c}\bar{c}} = 0,$$

(3.6)

$$J_{cc} = S_{cc} = 1,$$

(3.7)

$$J_{\bar{c}\bar{c}} = S_{\bar{c}\bar{c}} = 1.$$

(3.8)

The conventional mesonic notation $n^{2n+1}L_J$ is employed to denote the fully charmed tetraquark states predicted by theories in Tables IV-V. Thereinto, the principal quantum number n, the orbital angular momentum L, and the spin quantum number S of the fully charmed tetraquark $cc\bar{c}\bar{c}$ are

$$n = n_{cc} + n_{\bar{c}\bar{c}} + n_4 + 1,$$

(3.9)

$$L = L_{cc} + L_{\bar{c}\bar{c}} + L_t,$$

(3.10)

$$S = S_{cc} \otimes S_{\bar{c}\bar{c}}.$$

(3.11)

Here, n_{cc}, $n_{\bar{c}\bar{c}}$, and n_4 denote the radial quantum numbers between the two charm quarks in the diquark cc, between the
two charm antiquarks in the antidiquark $\bar{c}c$, and between the diquark cc and antidiquark $\bar{c}c$ in the fully charmed tetraquark $c\bar{c}c\bar{c}$, respectively. In this work, the radial excitations between the two (anti)quarks inside (anti)diquarks are omitted, thereby

$$n = n_A + 1.$$

Moreover, it is facile to espy that the total angular momentum J of the fully charmed tetraquark $c\bar{c}c\bar{c}$ is capable of being rewritten into the form of spin-orbit coupling [130], i.e.,

$$J = \sum_{J_0} \sum_{J_0} \sum_{J_0} (-1)^{I_J+S+L_{z}+I_p} \sqrt{(2J_0 + 1)(2J_p + 1)} \times \sqrt{(2L_{z} + 1)(2S + 1)(2J_{cc} + 1)(2J_{\bar{c}\bar{c}} + 1)}$$

$$\times \left\{ \begin{array}{c}
L_A & L_p & L_t \\
S & J & J_p \\
J_{cc} & J_{\bar{c}\bar{c}} & J_p
\end{array} \right\} \times \left\{ \begin{array}{c}
L_{cc} & L_{\bar{c}\bar{c}} & L_p \\
S_{cc} & S_{\bar{c}\bar{c}} & S
\end{array} \right\}.$$

(3.13)
TABLE V: The mass spectrum of the 3S-, 1F-, 2D-, 3P-, and 4S-wave fully charmed tetraquark states reaped by this work (in unit of MeV).

State	GI (n=3+1 L_i)	j^PC	MGI (μ = 50)	MGI (μ = 100)	NR	
T_{ψ0} (3S0)	T_{ψ0} (3S0)	0^+	7152	7064	6979	2031
T_{ψ0} (3S1)	7180	1^-	7089	7001	7038	
T_{ψ0} (3S2)	7230 T_{ψ0} (7300)_{ λ'}	2^-	7134	7040	7054	
T_{ψ0} (3S3)	7197	1^-	7115	7035	7046	
T_{ψ0} (3P2)	7203 T_{ψ0} (7300)_{ λ'}	2^-	7121	7040	7051	
T_{ψ0} (3P3)	7202	2^-	7120	7039	7050	
T_{ψ0} (3P4)	7210 T_{ψ0} (7300)_{ λ'}	3^-	7128	7047	7057	
T_{ψ0} (3P5)	7209	3^-	7127	7046	7056	
T_{ψ0} (3P6)	7208	3^-	7126	7045	7055	
T_{ψ0} (3P7)	7212 T_{ψ0} (7300)_{ λ'}	4^-	7130	7049	7059	
T_{ψ0} (3P8)	7213	4^-	7131	7050	7060	
T_{ψ0} (3P9)	7216	5^-	7133	7052	7061	
T_{ψ0} (3P10)	7225	5^-	7133	7052	7061	
T_{ψ0} (3P11)	7228	5^-	7133	7052	7061	
T_{ψ0} (3P12)	7232	5^-	7133	7052	7061	
T_{ψ0} (3P13)	7234	5^-	7133	7052	7061	

with

\[L_i = L_ρ \otimes L_{λ'} \] \hspace{1cm} (3.14)
\[J = J_ρ \otimes L_{λ} = S \otimes L_{λ} = S \otimes L_i. \] \hspace{1cm} (3.17)

As far as the tetraquark system is concerned, the internal parity \(P \) is determined by the relative orbital angular momentum \(L_i \) between the diquark and antidiquark, the internal parity \(P_{cc} \) of the diquark, and the internal parity \(P_{c\bar{c}} \) of the antidi-
quark [142], i.e.,
\[P = (-1)^I P_{cc} P_{\bar{c}\bar{c}} = (-1)^J, \] (3.18)
with
\[P_{cc} = (-1)^{L_{cc}}, \quad P_{\bar{c}\bar{c}} = (-1)^{L_{\bar{c}\bar{c}}}. \] (3.19)
Additionally, with regard to the electrically neutral flavorless self-conjugated tetraquark system with
\[n_{cc} = n_{\bar{c}\bar{c}}, \quad L_{cc} = L_{\bar{c}\bar{c}}, \quad S_{cc} = S_{\bar{c}\bar{c}}, \quad J_{cc} = J_{\bar{c}\bar{c}}, \] (3.20)
the charge conjugation \(C \) is determined by the relative orbital angular momentum \(L \) between the diquark and antidiquark and the total angular momentum \(J \) of the diquark-antidiquark pair without interdiquark excitations [142], i.e.,
\[C = (-1)^{L+S}. \] (3.21)
Whereafter, the charge conjugation \(C \) of the self-conjugated tetraquark conforming to Eq. (3.20) is capable of being expressed as
\[C = (-1)^{L+S} = (-1)^{J+S}, \] (3.22)
after omitting the orbital excitations in (anti)diquarks. Subsequently, both the masses of the \(cc\bar{c}\bar{c} \) states procured by the GI, MGI \((\mu = 50)\), MGI \((\mu = 100)\), and NR models, and the potential candidates of the newly observed \(T_{\psi\psi} \) states which abide by the \(J^{PC} \) constraints are enumerated in Tables IV-V.
On the basis of Bose-Einstein symmetry, a pair of electrically neutral flavorless self-conjugated identical bosons, e.g., the di-photon system, are definitely the eigenstate of the charge conjugation \(C \), possessing a positive charge conjugation \(C \)-parity [142]. Accordingly, in terms of the final state di- \(J/\psi \) system, the sum of the relative orbital angular momentum \(L_{\psi\psi} \) between two \(J/\psi \) mesons and the spin quantum number \(S_{\psi\psi} \) of two \(J/\psi \) mesons must be even [104, 109], i.e.,
\[L_{\psi\psi} + S_{\psi\psi} = \text{even}, \] (3.23)
with
\[S_{\psi\psi} = J_{\psi} \otimes J_{\psi}. \] (3.24)
Here, \(J_{\psi} \) is the total angular momentum of the \(J/\psi \) meson. Albeit the \(J/\psi + \psi(2S) \) system is not a pair of identical bosons, the charge conjugation \(C \)-parity is also positive for the reason that both two mesons possess the negative \(C \)-parities. Then, the \(J^{PC} \) constraints of the fully charmed tetraquark states which are capable of decaying into the di- \(J/\psi \) and \(J/\psi + \psi(2S) \) channels are illustrated in Table VI.

IV. DISCUSSION

In this section, with respect to the axial-vector doubly charmed diquark and fully charmed tetraquark states, the exhaustive comparisons on the difference of the mass spectra procured by this work (GI relativized diquark model, MGI relativized diquark model, and NR diquark model) and other phenomenological approaches are revealed. What’s more, the potential interpretations for the newly observed \(T_{\psi\psi} \) states are performed as well.
A. Comparison on the \(cc\) diquark

As far as the color antitriplet ground state axial-vector doubly charmed diquark mass is concerned, there are conspicuous discrepancies among the multifarious theoretical approaches [19, 30, 33, 36, 46–48, 60, 66, 72–74, 80, 84, 100, 108, 123, 127, 143–159]. As Table VIII lays out, the multitudinous theoretical values of the doubly charmed diquark mass staggeringly lie on the extensive domain between 2770 [148] and 4015 MeV [145]. Evidently, the doubly charmed diquark mass 3329 MeV from the GI model in this work is completely coherent with the result in Ref. [127]. Additionally, the theoretical value 3329 MeV of the GI model is very close to the doubly charmed diquark mass 3328 MeV acquired by Ref. [149]. The theoretical values 3314 and 3300 MeV of the MGI model are very close to the doubly charmed diquark masses 3310, 3303, 3300, and 3294 MeV adopted by Refs. [84], [73], [152], and [123], respectively. The theoretical value 3152 MeV of the NR model is very close to the doubly charmed diquark masses 3144, 3153, and 3160 MeV procured by Refs. [154], [108], and [143], respectively.

B. Comparison on the \(c\bar{c}c\bar{c}\) tetraquark

The comparison and discussion on the difference of the fully charmed tetraquark family spectroscopy, acquired by this work (GI, MGI, and NR models) and other phenomenological approaches, are specifically exhibited as follows.

1. 1S-wave

Indeed, the ground state 1S-wave fully charmed tetraquark states have been predicted by phenomenological theories for the most times in the entire \(c\bar{c}c\bar{c}\) family, as Table VIII demonstrates. Nevertheless, the theoretical predictions of the 1S-wave \(c\bar{c}c\bar{c}\) states are tremendously discrepant, distributing throughout the gigantic interval of practically 2 GeV between 5300 [27] and 7438 MeV [89]. It embodies the existence of huge diversification in terms of the status quo of the phenomenological studies on the spectroscopic properties of the fully charmed tetraquark states. In this work, the predicted values of the 1S-wave \(c\bar{c}c\bar{c}\) states acquired by the GI, MGI, and NR models lie on the energy sector between 5944 and 6331 MeV, jibing with the corresponding results given by the earliest theoretical estimation [18], the quark bag model [20, 21], the quark potential model [24, 26, 30–33, 42, 46, 47, 49, 74, 80, 83, 84, 95, 100], the Bethe-Salpeter (BS) equation [66, 81], the QCD sum rules [28, 35, 90, 98], the adiabatic (Born-Oppenheimer) approximation [48], and the bosonic algebraic approach [91].

On the other hand, as far as the spectroscopy of the ground state \(c\bar{c}c\bar{c}\) tetraquark is concerned, verily, there is difference between this work and some phenomenological approaches. For instance, the gap between two values of the 1\(^5\)S\(_2\) \(c\bar{c}c\bar{c}\) state mass procured by the NR model of this work and complex scaling method of Ref. [101] is virtually 1 GeV, engendering that the \(T_{\psi\psi}(6200)\) and \(T_{\phi\phi}(6600)\) states are absent in the tetraquark framework of Ref. [101]. Accordingly, the enigma of the authentic 1S-wave \(c\bar{c}c\bar{c}\) energy region necessitates the further delving of experiments, which is crucial to the mass spectrum of the fully charmed tetraquark states as a whole.

2. 2S-, 3S-, and 4S-wave

The spectroscopic properties of the radially excited S-wave \(c\bar{c}c\bar{c}\) states are less investigated than the ground state 1S-wave \(c\bar{c}c\bar{c}\) states. Even so, there are still the disparities in the mass spectra of the 2S-, 3S-, and 4S-wave fully charmed tetraquark states predicted by sundry phenomenological approaches. As Table IX displays, the lowest and highest theoretical values of the 2S-wave \(c\bar{c}c\bar{c}\) states are 6480 [51] and 7281 MeV [101], respectively. This work predicts that the masses of the 2S-wave \(c\bar{c}c\bar{c}\) states are in the scope between 6644 and 6664 MeV, in good agreement with the predictions of Refs. [23, 33, 37, 42, 44, 48, 49, 74, 81, 88, 90, 100]. Furthermore, the 3S-wave \(c\bar{c}c\bar{c}\) states masses predicted by this work locate in the interval between 6979 and 7230 MeV, well conforming to the results of Refs. [37, 42, 45, 49, 51, 67, 79, 81, 90, 100]. Notwithstanding the predictions of the 4S-wave \(c\bar{c}c\bar{c}\) states are very few, the predicted results of this work, situated on the sector between 7213 and 7530 MeV, are in accordance with the most theoretical values [49, 51, 90].

3. 1P- and 2P-wave

As the first orbital excitations of the S-wave fully charmed tetraquarks, the P-wave \(c\bar{c}c\bar{c}\) states are foremost perused by Ref. [19]. As unveiled in Table X, the spectroscopic properties of the 1P-wave \(c\bar{c}c\bar{c}\) states have been surveyed by a variety of phenomenological approaches [19, 20, 22, 23, 33, 48, 49, 58, 60, 67, 83, 88, 100, 110]. Among them are the highest value 7110 MeV and lowest value 6390 MeV which are predicted by the holography inspired stringy hadron (HISH) model [60] and quark bag model [19], respectively. This work renders the spectroscopic results with the interval between 6478 and 6739 MeV as the potential masses of the 1P-wave \(c\bar{c}c\bar{c}\) states, congruent with the predictions from Refs. [19, 20, 22, 33, 48, 49, 67, 83, 88, 100].

While not all of the formalisms accord with the results of this work well. One illustration is that the prediction on mass of the 1P-wave \(c\bar{c}c\bar{c}\) tetraquark in Ref. [60] is overtly higher than the theoretical values in this work. However, Ref. [60] accredits the possibility of not assigning the \(T_{\psi\psi}(6900)\) state as the lowest ground state of the \(c\bar{c}c\bar{c}\) tetraquark, which is capable of conducing to the 1P-wave prediction not high any more. In addition, with regard to the masses of the 2P-wave \(c\bar{c}c\bar{c}\) states, a prediction with the energy range between 6867 and 7122 MeV is offered by this work, well coincident with the results of Refs. [33, 48, 49, 88, 100].
TABLE VIII: A comparison of the 1S-wave fully charmed tetraquark masses from this work (GI, MGI, and NR models) and other phenomenological approaches (in unit of MeV).

Reference	1^3S_0	1^3S_1	1^3S_2	Reference	1^3S_0	1^3S_1	1^3S_2	Reference	1^3S_0	1^3S_1	1^3S_2
[27]	5300 ± 500	···	···	[84]	6196	···	6560	[50]	6469	6674	7026
[49]	5883	6120	6246	[47] II	6198	6246	6323	[41] VI	6470 ± 70	···	···
[100]	5942	5989	6082	[18]	6200	···	···	[43]	6476	6441	6475
NR	5944	6001	6105	[90]	6200 ± 100	6240 ± 100	6270 ± 90	[23] II	6477	6528	6573
[47] I	5960	6009	6100	[81]	6201	6396	6391	[42] II	6482	6488	6499
[26]	5966	6051	6223	[48]	6265.05 ± 1.05	···	···	[37] II	6483	6450	6479
[33]	5969.4	6020.9	6115.4	[42] V	6270	6285	6314	[34]	6487	6500	6524
[91]	5978	6155	6263	[80]	6271.3	6230.6	6287.3	[22] II	6490	···	···

MGI ($\mu = 100$)
5989 6115 6260 [20] III 6276 ··· ··· [41] II 6490 ± 70 ··· ···

[28] 5990 ± 80 ··· 6090 ± 80 [74] 6322 6354 6385 [42] I 6493 6495 6498

[35] ··· 6050 ± 80 ··· [39] 6351 6441 6471 [67] 6498 6481 6502

[31] IV 6001 6109 6166 [42] VI 6358 6375 6407 [41] IV 6500 ··· ···

[21] 6011 ··· ··· [82] 6360.2 6397.6 6410.4 [45] 6501 6515 6543

MGI ($\mu = 50$)
6020 6148 6295 [23] I 6367 6411 6459 [110] 6503 6517 6544

[31] III 6022 6126 6183 [106] 6384.4 6451.5 6482.7 [22] I 6510 ··· ···

[31] II 6035 6137 6194 [105] II 6411 6453 6475 [41] V 6510 ± 60 ··· ···

[24] II 6038 6101 6172 [105] I 6414 6414 6414 [41] I 6520 ··· ···

GI 6053 6181 6331 [73] 6419 6456 6516 [83] II 6573 6580 6607

[66] 6055^{+69}_{-74} ··· 6090^{+62}_{-66} [63] 6421 6439 6472 [98] II 6600^{+90}_{-100} ··· 6980^{+90}_{-110}

[98] I 6070^{+50}_{-70} ··· 6070^{+80}_{-100} [37] I 6425 6425 6432 [31] I 6797 6899 6956

[83] I 6109 6139 6194 [20] I 6437 ··· ··· [96] III 6821.7 6821.8 6821.8

[95] 6109.05 6137.30 6193.80 [20] II 6450 ··· ··· [96] I 6850.0 6870.4 6912.7

[24] I 6115 6176 6216 [41] III 6450 ± 80 ··· ··· [96] II 6874.2 6913.3 6989.9

[42] IV 6128 6149 6197 [83] III 6454 6463 6486 [60] 6895 ··· ···

[32] 6140 ··· ··· [29] 6460 ± 160 ··· 6510 ± 150 [36] 7000 7000 7000

[46] 6190 6271 6367 [59] 6460^{+130}_{-120} ··· ··· [101] 7035.1 7049.6 7068.5

[30] 6191.5 ± 25 ··· ··· [42] III 6466 6479 6505 [72] II ··· ··· 7295.0

[44] ··· ··· 6429 ± 25 [79] 6466 6494 6551 [89] 7438 ± 2 ··· ···

[108] ··· ··· 6520.4 [72] I ··· ··· 6888.4 ··· ··· ···

4. $3P$, $1D$, $2D$, and $1F$-wave

Compared to the other low-lying excited $cc\bar{c}\bar{c}$ states, all of the $3P$, $1D$, $2D$, and $1F$-wave $cc\bar{c}\bar{c}$ states are seldom probed by phenomenological theories, which incites the corresponding explorations of this work. It is apparent that the predictions on the mass spectra of the $3P$, $2D$, and $1F$-wave $cc\bar{c}\bar{c}$ states from the existing phenomenological theories are extremely exiguous [19, 48, 49, 60, 100]. In this work, the predicted values of the $3P$, $1D$, $2D$, and $1F$-wave $cc\bar{c}\bar{c}$ states lie on the energy intervals between 7151 and 7432 MeV, between 6826 and 7002 MeV, between 7092 and 7325 MeV, and between 7035 and 7216 MeV, respectively. Manifestly, the results of the $1D$-wave fully charmed tetraquark states reaped by this work dovetail with the counterparts of Refs. [48, 49, 68, 83, 88], as laid out in Table XI.

C. Expositions on the $T_{\psi\psi}$ states

The potential tetraquark interpretations of the newly observed $T_{\psi\psi}(6200)$, $T_{\psi\psi}(6600)$, $T_{\psi\psi}(6900)$, and $T_{\psi\psi}(7300)$ states are displayed as follows.
The $T_{\psi\psi}(6200)$ state, whose mass lay around 6220 MeV, was discovered by the ATLAS collaboration recently [14]. Evidently, the mass 6220 ± 50 MeV of the $T_{\psi\psi}(6200)$ state is very close to the ground state mass 6200 MeV of the fully charmed tetraquark predicted by Ref. [18]. Besides, the predicted value of the 1^3S_2 $cc\bar{c}\bar{c}$ mass state in Table IV, from the MGI ($\mu = 100$) model in this work, is also close to the mass of the $T_{\psi\psi}(6200)$ state, which means that it is probable to assign the $T_{\psi\psi}(6200)$ state as the $1S$-wave fully charmed tetraquark state. Furthermore, numerous other predicted masses of the $1S$-wave $T_{\psi\psi}$ states, acquired by multifarious theories, lie on the energy domain between 6170 and 6270 MeV in unison, making the $1S$-wave interpretation of the $T_{\psi\psi}(6200)$ state more credible [18, 24, 26, 30, 31, 42, 46–49, 80, 81, 83, 84, 90, 91, 95]. Particularly, the masses 6200 ± 100 and 6270 ± 90 MeV of the 1^3S_0 and 1^3S_2 $cc\bar{c}\bar{c}$ states, predicted by the QCD sum rules approach, are in good agreement with the experimental value 6220 ± 50 MeV of the $T_{\psi\psi}(6200)$ state mass [90].

On the other hand, as demonstrated in Table VIII, some theoretical values of the $cc\bar{c}\bar{c}$ ground state masses are lower or higher than the mass of the $T_{\psi\psi}(6200)$ state, varying within a large interval between 5300 and 7438 MeV [20–23, 27–29, 32–37, 39, 41, 43–45, 50, 59, 60, 63, 66, 67, 72–74, 79, 82, 89, 96, 98, 100, 101, 105, 106, 108]. Hence, the $T_{\psi\psi}(6200)$ state is awaiting the further experimental conformation. Additionally, it is worthy of noting that the decay width of the $T_{\psi\psi}(6200)$ state is extremely broad, indicating that the $T_{\psi\psi}(6200)$ state detected by the ATLAS collaboration is likely a short-lived resonance state.

TABLE IX: A comparison of the $2S$-, $3S$-, and $4S$-wave fully charmed tetraquark masses from this work (GI, MGI, and NR models) and other phenomenological approaches (in unit of MeV).

Reference	2^1S_0	2^3S_1	2^5S_2	Reference	2^1S_0	2^3S_1	2^5S_2	Reference	2^1S_0	2^3S_1	2^5S_2		
[51]	6480 ± 80	6520 ± 80	6560 ± 80	MGI ($\mu = 50$)	6697	6738	6803	[43]	6908	6896	6921		
[66]	6555^{+16}_{-37}	...	6566_{-33}^{+14}	[23] I	6719	[42] I	6910	6740	6725		
[90]	6570 ± 90	6640	± 90	6690	90	GI	6751	6794	6864	[45]	6917	6928	6948
[49]	6573	6669	6739	[48]	6771	8	[68]	6930	6934	6942	
[74]	6575	6609	6639	[88]	6782	6816	6868	[110]	6937	6932	6952		
[81]	6575	6799	6794	[42] II	6825	6830	6825	[42] V	6950	6925	6900		
[100]	6644	6656	6678	[37] I	...	6856	6864	[42] IV	6950	7040	7010		
MGI ($\mu = 100$)	6644	6683	6744	[37] II	...	6894	6919	[42] VI	6975	7150	7050		
[33]	6663.3	6674.5	6698.1	[44]	6871 ± 25	...	6967 ± 25	[67]	7007	6954	6917		
NR	6667	6679	6703	[79]	6883	6911	6968	[60]	6975	6936	6894		
[23] II	6695	[42] III	6900	6960	6970	[101]	7202.2	7273.5	7281.3		

- $I. \ T_{\psi\psi}(6200)$

The $T_{\psi\psi}(6200)$ state, whose mass lay around 6220 MeV, was discovered by the ATLAS collaboration recently [14]. Evidently, the mass 6220 ± 50 MeV of the $T_{\psi\psi}(6200)$ state is very close to the ground state mass 6200 MeV of the fully charmed tetraquark predicted by Ref. [18]. Besides, the predicted value of the 1^3S_2 $cc\bar{c}\bar{c}$ mass state in Table IV, from the MGI ($\mu = 100$) model in this work, is also close to the mass of the $T_{\psi\psi}(6200)$ state, which means that it is probable to assign the $T_{\psi\psi}(6200)$ state as the $1S$-wave fully charmed tetraquark state. Furthermore, numerous other predicted masses of the $1S$-wave $T_{\psi\psi}$ states, acquired by multifarious theories, lie on the energy domain between 6170 and 6270 MeV in unison, making the $1S$-wave interpretation of the $T_{\psi\psi}(6200)$ state more credible [18, 24, 26, 30, 31, 42, 46–49, 80, 81, 83, 84, 90, 91, 95]. Particularly, the masses 6200 ± 100 and 6270 ± 90 MeV of the 1^3S_0 and 1^3S_2 $cc\bar{c}\bar{c}$ states, predicted by the QCD sum rules approach, are in good agreement with the experimental value 6220 ± 50 MeV of the $T_{\psi\psi}(6200)$ state mass [90].

On the other hand, as demonstrated in Table VIII, some theoretical values of the $cc\bar{c}\bar{c}$ ground state masses are lower or higher than the mass of the $T_{\psi\psi}(6200)$ state, varying within a large interval between 5300 and 7438 MeV [20–23, 27–29, 32–37, 39, 41, 43–45, 50, 59, 60, 63, 66, 67, 72–74, 79, 82, 89, 96, 98, 100, 101, 105, 106, 108]. Hence, the $T_{\psi\psi}(6200)$ state is awaiting the further experimental conformation. Additionally, it is worthy of noting that the decay width of the $T_{\psi\psi}(6200)$ state is extremely broad, indicating that the $T_{\psi\psi}(6200)$ state detected by the ATLAS collaboration is likely a short-lived resonance state.
TABLE X: A comparison of the 1P- and 2P-wave fully charmed tetraquark masses from this work (GI, MGI, and NR models) and other phenomenological approaches (in unit of MeV).

Reference	1^3P_0	1^3P_1	1^3P_1	1^3P_2	1^3P_2	1^3P_3	
[19]	···	···	6550	6390	···	···	
[100]	6462	6556	6555	6461	6589	6579	6625
[33]	6480.4	6577.4	6577.1	6495.4	6609.9	6600.2	6641.2
[49]	6596	···	6580	6584	···	···	···
NR	6478	6584	6584	6495	6618	6609	6648
MGI ($\mu = 100$)	6545	6604	6605	6544	6623	6618	6643
[88]	6628	6634	6631	6635	6644	6648	6664
MGI ($\mu = 50$)	6588	6650	6651	6588	6670	6664	6691
GI	6633	6697	6698	6633	6718	6712	6739
[20] II	···	···	6714	···	···	···	···
[20] I	···	···	6718	···	···	···	···
[48] II	6597.19	6691.79	6726.68	6556.22	6711.55	6687.87	6817.51
[48] I	6595.79	6704.69	6727.98	6563.70	6764.09	6713.49	6802.59
[83] III	···	···	6730	···	6735	···	6744
[22] II	···	···	6740	···	···	···	···
[67]	6726	6743	6740	6718	6752	6739	6752
[22] I	···	···	6770	6750	···	···	···
[58]	6750	6769	6770	6754	6783	6781	6801
[110]	6796	6796	6791	6808	6797	6808	6809
[83] II	···	···	6901	···	6912	···	6924
[23] I	6876	6906	6917	···	6926	···	···
[23] II	6969	7004	7013	···	7033	···	···
[60]	···	···	7110 ± 50	···	···	···	···

Reference	2^3P_0	2^3P_1	2^3P_1	2^3P_2	2^3P_2	2^3P_3	
[100]	6852	6927	6926	6850	6952	6945	6983
MGI ($\mu = 100$)	6902	6937	6937	6902	6949	6946	6963
[49]	6953	···	6940	6943	···	···	···
[33]	6866.5	6943.9	6944.1	6875.6	6970.4	6962.1	6996.7
NR	6876	6951	6951	6877	6977	6970	7002
[48]	···	···	7011.9 ± 1.1	···	···	···	···
MGI ($\mu = 50$)	6975	7013	7013	6975	7027	7023	7041
[88]	7100	7099	7091	7113	7098	7113	7112
GI	7050	7091	7091	7051	7106	7102	7122
[110]	7146	7146	7142	7155	7147	7155	7156

2. $T_{\psi\bar{\psi}}(6600)$

From the experimental points of view, two sorts of LHCb fit models, applied to the $T_{\psi\bar{\psi}}(6600)$ data of the CMS collaboration, engendered a large difference around 200 MeV between the masses obtained by Fit Model I (labelled as the $T_{\psi\bar{\psi}}(6600)_{C}$ state) and Fit Model II (labelled as the $T_{\psi\bar{\psi}}(6600)_{C'}$ state) [15]. Thereinto, the mass 6552 ± 10 MeV of the $T_{\psi\bar{\psi}}(6600)_{C}$ state is close to the mass 6620 ± 30 MeV of
the state reported by the ATLAS collaboration (labelled as the \(T_{\psi\psi}(6600)_{\pm} \) state) \[14\], and the mass 6736 ± 38 MeV of the \(T_{\psi\psi}(6600)_{C'} \) state is very close to the mass 6741 ± 6 MeV of the state obtained by applying Fit Model II to the \(T_{\psi\psi}(6600) \) data of the LHCb collaboration (labelled as the \(T_{\psi\psi}(6600)_{L'} \) state) \[13\]. All of the masses of the \(T_{\psi\psi}(6600) \) states accord with the predicted masses of the \(1P^- \) and \(2S^- \) wave fully charmed tetraquark states from the GI, MGI (\(\mu = 50 \)), MGI (\(\mu = 100 \)), and NR models in this work. Consequently, the \(T_{\psi\psi}(6600) \) states are good candidates of the \(1P^- \) and \(2S^- \) wave fully charmed tetraquark states.

Likewise, as Table IX unveils, a number of theoretical

TABLE XI: A comparison of the \(3P^- \), \(1D^- \), \(2D^- \), and \(1F^- \) wave fully charmed tetraquark masses from this work (GI, MGI, and NR models) and other phenomenological approaches (in unit of MeV).

Reference	\(3^1P_0 \)	\(3^1P_1 \)	\(3^1P_2 \)	\(3^1P_3 \)
MGI (\(\mu = 100 \))	7151	7175	7175	7151
\[100\]
[49]	7226
NR	7166	7239	7240	7173
MGI (\(\mu = 50 \))	7261	7289	7289	7262
GI	7374	7406	7406	7376

Reference	\(1^3D_0 \)	\(1^3D_1 \)	\(1^3D_2 \)	\(1^3D_3 \)	\(1^3D_4 \)
[19]
[49]	6827	6827	6829	6827	...
NR	6826	6835	6841	6859	6850
MGI (\(\mu = 100 \))	6831	6839	6846	6860	6853
[48]	6861.45 ± 0.95	...
[88]	6899	6904	6909	6921	6915
MGI (\(\mu = 50 \))	6891	6900	6907	6922	...
GI	6953	6963	6970	6985	6978
[68]	6968	6976	6978	6986	6989
[83] III	6995	...
[83] II	7182	...
[60]	7305 ± 85	...

Reference	\(2^3D_0 \)	\(2^3D_1 \)	\(2^3D_2 \)	\(2^3D_3 \)	\(2^3D_4 \)
MGI (\(\mu = 100 \))	7092	7098	7103	7113	...
[49]	7125	7125	7128	7126	...
NR	7124	7133	7137	7154	7147
MGI (\(\mu = 50 \))	7187	7194	7199	7211	...
[48]	7215.0 ± 1.7	...
GI	7285	7293	7298	7311	...

Reference	\(1^3F_1 \)	\(1^3F_2 \)	\(1^3F_3 \)	\(1^3F_4 \)	\(1^3F_5 \)
[19]
MGI (\(\mu = 100 \))	7035	7040	7039	7047	...
NR	7046	7051	7050	7057	...
MGI (\(\mu = 50 \))	7115	7121	7120	7128	...
GI	7197	7203	7202	7210	...
[60]	7485 ± 125	...
masses of the 2S-wave $cc\bar{c}\bar{c}$ states are close to the masses of the $T_{\psi}(6600)$ states [23, 33, 48, 49, 51, 66, 74, 90, 100]. Moreover, the experimental values of the $T_{\psi}(6600)$ states masses are also consistent with the most predicted values of the 1P-wave $cc\bar{c}\bar{c}$ states masses in Table X [19, 20, 22, 33, 48, 49, 58, 67, 83, 88, 100]. Therefore, the experimental determination on the parities of the $T_{\psi}(6600)$ states is crucial to identify the nature of them in the future. On the other hand, there are several theoretical predictions that prefer to regard the $T_{\psi}(6600)$ states as the 1S'-wave $cc\bar{c}\bar{c}$ ground states, making the further progress of experiments more necessary [45, 79, 83, 84, 98].

3. $T_{\psi}(6900)$

As the first $cc\bar{c}\bar{c}$ structure discovered by experiments, the $T_{\psi}(6900)$ state is the T_{ψ} state which possesses the most experimental information in the entire members of the T_{ψ} family [13]. So far, as Table I reveals, the number of the $T_{\psi}(6900)$ states reported by various experiments is the largest, compared to the other $cc\bar{c}\bar{c}$ states [13–15]. Although two sorts of LHCb fit models are also applied to the $T_{\psi}(6900)$ data of the LHCb and CMS collaborations, the corresponding difference between the masses obtained by Fit Model I and Fit Model II is tiny. Not only that, the four masses 6905 ± 11, 6886 ± 11, 6927 ± 9, and 6918 ± 10 MeV of the $T_{\psi}(6900)$ states observed by the LHCb and CMS collaborations are in accordance with the mass 6870 ± 30 MeV of the $T_{\psi}(6900)$ state detected by the ATLAS collaboration in the $J/\psi+J/\psi$ channel (labelled as the $T_{\psi}(6900)_\lambda$ state). Bizarrely, as far as the $T_{\psi}(6900)$ states are concerned, a conundrum that the 2S'-wave assignment of the GI model is distinct with the 1D- and 2P-wave assignments of the other MGI ($\mu = 50$), MGI ($\mu = 100$), and NR models emerged in this work. By retrospecting the spectroscopic properties of heavy flavored mesons, the masses of highly excited states predicted by the GI model are regularly higher than the counterparts acquired by experiments and other theoretical models, e.g., the MGI and NR models [119, 137, 139]. Thereupon, the 1D- and 2P-wave assignments from the MGI ($\mu = 50$), $\mu = 100$, and NR models are deemed as the most potential interpretations of the $T_{\psi}(6900)$ states.

Additionally, the 1D-wave assignment and 2P-wave assignment of the $T_{\psi}(6900)$ states are also endorsed by Refs. [48, 88] and [33, 100], respectively. Wherefore, it is requisite to determine the parities of the $T_{\psi}(6900)$ states by dint of experiments. On the other hand, the probability of the 3S'-wave assignment of the $T_{\psi}(6900)$ states cannot be excluded in consideration of several theoretical predictions, which means that the experimental information of the $T_{\psi}(6900)$ states is still insufficient [37, 66, 74, 81, 90]. Remarkably, the state reported by the ATLAS collaboration in the $J/\psi+\psi(2S)$ channel (labelled as the $T_{\psi}(6900)_\lambda$ state), whose mass is 6780 ± 360 MeV, is left out in the spectroscopic comparison of experiments and theoretical models of this work, owing to the extremely broad interval of the mass value.

4. $T_{\psi}(7300)$

Hitherto, there are two $T_{\psi}(7300)$ states with the masses 7220 ± 30 and 7287 ± 19 MeV, which have been reported by the ATLAS and CMS collaborations [14, 15], respectively. As mentioned previously, the assignments of the $T_{\psi}(7300)$ states from the GI model are omitted due to the possible overestimation on the predicted masses of the highly excited states in heavy flavored mesons [119, 137, 139]. On the basis of the predictions of the MGI ($\mu = 50$), MGI ($\mu = 100$), and NR models in Table V, the $T_{\psi}(7300)$ states are able to be assigned as the 2D-, 3P-, or 4S'-wave fully charmed tetraquark states. Apart from that, as Tables IX and XI lay out, the 2D-wave assignment, 3P-wave assignment, and 4S'-wave assignment of the $T_{\psi}(7300)$ states are also championed by Refs. [48, 49, 100], and [49, 90], respectively. Thus, the parities of the $T_{\psi}(7300)$ states are the pivotal hints to decipher the nature of them, awaiting the further delving of experiments.

V. SUMMARY

In the wake of a slew of experimental discoveries of heavy flavored exotic hadron states in recent decades, the inquiries on hadron spectroscopy are on the brick of a new era. In particular, the emergence of several fully charmed tetraquark states reported by the LHCb [13], ATLAS [14], and CMS [15] collaborations lately, promotes the further investigations on the family of heavy flavored multiquarks powerfully. Thereupon, in light of the diquark-antidiquark scenarios, this work aims to go in quest of the potential tetraquark interpretations of the newly observed T_{ψ} states systematically. Concretely, three sorts of diquark models, comprising the Godfrey-Isgur (GI) relativized diquark model, the modified Godfrey-Isgur (MGI) relativized diquark model with the color screening effects, and the nonrelativistic (NR) diquark model, are performed for the sake of endeavoring to unravel the nature of the $T_{\psi}(6200)$, $T_{\psi}(6600)$, $T_{\psi}(6900)$, and $T_{\psi}(7300)$ structures.

Overall, in this work, the 1S'-wave tetraquark assignment of the $T_{\psi}(6200)$ state is perspicuously championed by the MGI diquark model. In the case of the $T_{\psi}(6600)$ state, both of the 1P- and 2S'-wave tetraquark assignments are prevalently endorsed by the GI, MGI, and NR diquark formalisms. With regard to the $T_{\psi}(6900)$ state, both of the 1D- and 2P-wave tetraquark assignments are favored by the MGI and NR diquark approaches. In terms of the $T_{\psi}(7300)$ state, all of the 2D-, 3P-, and 4S'-wave tetraquark assignments are the potential interpretations on the basis of the MGI and NR diquark scenarios. It is facile to be aware of that the experimental determination of parities is the fateful testimony to disentangle the nature of the newly observed T_{ψ} states. Ergo, the further experimental explorations on the $cc\bar{c}\bar{c}$ structures are obviously indispensable in the future, awaiting to be attained by the LHCb, ATLAS, CMS, and other collaborations.
ACKNOWLEDGMENTS

W. C. Dong would like to thank Duojie Jia for helpful discussions and valuable comments. This work is supported by the National Natural Science Foundation of China (Grant No. 12175068).

[1] R. L. Workman et al. [Particle Data Group], Review of Particle Physics, PTEP 2022, 083C01 (2022).
[2] S. L. Olsen, T. Skwarnicki and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90, no. 1, 015003 (2018).
[3] A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016, no. 6, 062C01 (2016).
[4] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639, 1-121 (2016).
[5] A. Ali, J. S. Lange and S. Stone, Exotics: Heavy Pentaquarks and Tetraquarks, Prog. Part. Nucl. Phys. 97, 123-198 (2017).
[6] R. F. Lebed, R. E. Mitchell and E. S. Swanson, Heavy-Quark QCD Exotica, Prog. Part. Nucl. Phys. 93, 143-194 (2017).
[7] A. Esposito, A. Pilloni and A. D. Polosa, Multiquark Resonances, Phys. Rept. 668, 1-97 (2017).
[8] F. K. Guo, C. Hanhart, U. G. Meiβner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90, no.1, 015004 (2018) [erratum: Rev. Mod. Phys. 94, no.2, 029901 (2022)].
[9] M. Karliner, J. L. Rosner and T. Skwarnicki, Multiquark States, Ann. Rev. Nucl. Part. Sci. 68, 17-44 (2018).
[10] Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pentaquark and Tetraquark states, Prog. Part. Nucl. Phys. 107, 237-320 (2019).
[11] N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XYZ states: experimental and theoretical status and perspectives, Phys. Rept. 873, 1-154 (2020).
[12] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, An updated review of the new hadron states, Rept. Prog. Phys. 86, no.2, 026201 (2023).
[13] R. Aaij et al. [LHCb Collaboration], Observation of structure in the J/ψ pair mass spectrum, Sci. Bull. 65, no.23, 1983-1993 (2020).
[14] [ATLAS Collaboration], Observation of an excess of di-charmonium events in the four-muon final state with the ATLAS detector, ATLAS-CONF-2022-040.
[15] [CMS Collaboration], Observation of new structures in the J/ψJ/ψ mass spectrum in pp collisions at √s = 13 TeV, CMS-PAS-BPH-21-003.
[16] M. Gell-Mann, A Schematic Model of Baryons and Mesons, Phys. Lett. 8, 214-215 (1964).
[17] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking; Version 2, CERN-T-H12.
[18] Y. Iwasaki, A Possible Model for New Resonances-Exotics and Hidden Charm, Prog. Theor. Phys. 54, 492 (1975).
[19] K. T. Chao, The (cc)-(qq) (Diquark-Antidiquark) States in e+e− Annihilation, Z. Phys. C 7, 317 (1981).
[20] J. P. Ader, J. M. Richard and P. Taxil, Do narrow heavy multi-quark states exist? Phys. Rev. D 25, 2370 (1982).
[21] L. Heller and J. A. Tjon, Bound States of Heavy QQ̅ System, Phys. Rev. D 32, 755 (1985).
[22] A. M. Badalian, B. L. Ioffe and A. V. Smilga, Four-quark states in heavy quark systems, Nucl. Phys. B 281, 85 (1987).
[23] R. J. Lloyd and J. P. Vary, All charm tetraquarks, Phys. Rev. D 70, 014009 (2004).
[24] M. N. Anwar, J. Vijande and A. Valcarce, Four-quark spectroscopy within the hyperspherical formalism, Phys. Rev. D 73, 054004 (2006).
[25] T. W. Chiu et al. [TWQCD], Y(4260) on the lattice, Phys. Rev. D 73, 094510 (2006).
[26] A. V. Berezhnyst, A. V. Luchinsky and A. A. Novoselov, Heavy tetraquark production at the LHC, Phys. Rev. D 86, 034004 (2012).
[27] W. Heupel, G. Eichmann and C. S. Fischer, Tetraquark Bound States in a Bethe-Salpeter Approach, Phys. Lett. B 718, 545-549 (2012).
[28] Z. G. Wang, Analysis of the QQ̅QQ̅ tetraquark states with QCD sum rules, Eur. Phys. J. C 77, no.7, 432 (2017).
[29] W. Chen, H. X. Chen, X. Liu, T. G. Steele and S. L. Zhu, Hunting for exotic doubly hidden-charm/bottom tetraquark states, Phys. Lett. B 773, 247-251 (2017).
[30] M. Karliner, S. Nussinov and J. L. Rosner, QQ̅̅QQ̅̅ states: masses, production, and decays, Phys. Rev. D 95, no.3, 034011 (2017).
[31] J. Wu, Y. R. Liu, K. Chen, X. Chen and S. L. Zhu, Heavy-flavored tetraquark states with the QQ̅̅QQ̅̅ configuration, Phys. Rev. D 97, no.9, 094015 (2018).
[32] M. N. Anwar, J. Ferretti, F. K. Guo, E. Santopinto and B. S. Zou, Spectroscopy and decays of the fully-heavy tetraquarks, Eur. Phys. J. C 78, no.8, 647 (2018).
[33] V. R. Debastiani and F. S. Navarra, A non-relativistic model for the [cc][c̅c̅] tetraquark, Chin. Phys. C 43, no.1, 013105 (2019).
[34] M. S. Liu, Q. F. Lü, X. H. Zhong and Q. Zhao, All-heavy tetraquarks, Phys. Rev. D 100, no.1, 016006 (2019).
[35] Z. G. Wang and Y. Y. Di, Analysis of the vector and axialvector QQ̅̅QQ̅̅ tetraquark states with QCD sum rules, Acta Phys. Polon. B 50, 1335 (2019).
[36] S. Esau, A. Palameta, R. T. Kleiv, D. Harnett and T. G. Steele, Axial Vector cc and bb Diquark Masses from QCD Laplace Sum-Rules, Phys. Rev. D 100, 074025 (2019).
[37] G. J. Wang, L. Meng and S. L. Zhu, Spectrum of the fully-heavy tetraquark state QQ̅̅QQ̅̅, Phys. Rev. D 100, no.9, 096013 (2019).
[38] C. Becchi, J. Ferretti, A. Giachino, L. Maiani and E. Santopinto, A study of cc̅c̅c̅ tetraquark decays in 4 muons and in D̅′cc̅c̅c̅ at LHC, Phys. Lett. B 811, 135952 (2020).
[39] M. C. Gordillo, F. De Soto and J. Segovia, Diffusion Monte Carlo calculations of fully-heavy multiquark bound states, Phys. Rev. D 102, no.11, 114007 (2020).
[40] X. Y. Wang, Q. Y. Lin, H. Xu, Y. P. Xie, Y. Huang and X. Chen, Discovery potential for the LHCb fully-charm tetraquark X(6900) state via pp annihilation reaction, Phys. Rev. D 102, 116014 (2020).
[41] R. M. Albuquerque, S. Narison, A. Rabemananjara, D. Rabeiirivony and G. Randriamana trika, Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO,
[102] P. Y. Niu, E. Wang, Q. Wang and S. Yang, Determine the quantum numbers of X(6900) from photon-photon fusion in ultra-peripheral heavy ion collisions, arXiv:2209.01924.

[103] R. N. Faustov, V. O. Galkin and E. M. Savchenko, Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model, Symmetry 14, no.12, 2504 (2022).

[104] Q. Zhou, D. Guo, S. Q. Kuang, Q. H. Yang and L. Y. Dai, Nature of the X(6900) in partial wave decomposition of J/ψ/ψ' scattering, Phys. Rev. D 106, no.11, L111502 (2022).

[105] J. Zhang, J. B. Wang, G. Li, C. S. An, C. R. Deng and J. J. Xie, Spectrum of the S-wave fully-heavy tetraquark states, Eur. Phys. J. C 82, no.12, 1126 (2022).

[106] H. T. An, S. Q. Luo, Z. W. Liu and X. Liu, Spectroscopy behavior of fully heavy tetraquarks, arXiv:2208.03899.

[107] V. Biloshitskyi, V. Pascalutsa, L. Harland-Lang, B. Malaescu, K. Schmieden and M. Schott, Two-photon decay of X(6900) from light-by-light scattering at the LHC, Phys. Rev. D 106, no.11, L111902 (2022).

[108] S. Pal, B. Chakrabarti and A. Bhattacharya, A theoretical investigation on the spectroscopy and structure of the exotic tetraquark states, Nucl. Phys. A 1029, 122559 (2023).

[109] S. Q. Kuang, Z. Zhao, D. Guo, Q. H. Yang and L. Y. Dai, Study of X(6900) with unitarized coupled channel scattering amplitudes, arXiv:2302.03968.

[110] G. L. Yu, Z. Y. Li, Z. G. Wang, J. Lu and M. Yan, The S- and P-wave fully charmed tetraquark states and their radial excitations, arXiv:2212.14339.

[111] J. W. Zhu, X. D. Guo, R. Y. Zhang, W. G. Ma and X. Q. Li, A possible interpretation for X(6900) observed in four-muon final state by LHCb – A light Higgs-like boson? arXiv:2011.07799.

[112] B. D. Wan and C. F. Qiao, Gluonic tetracharm configuration of X(6900), Phys. Lett. B 817, 136339 (2021).

[113] Z. G. Wang, Analysis of the Ξ_2^-, Ξ_b^- hexaquark molecular state with the QCD sum rules, Phys. Lett. B 819, 136464 (2021).

[114] M. Z. Liu and L. S. Geng, Is X(7200) the heavy anti-quark diquark symmetry partner of X(3872)? Eur. Phys. J. C 81, no.2, 179 (2021).

[115] S. Godfrey and N. Isgur, Mesons in a Relativized Quark Model with Chromodynamics, Phys. Rev. D 32, 189-231 (1985).

[116] S. Godfrey, K. Moats and E. S. Swanson, Bottomonia and Bc mesons, Phys. Rev. D 94, no.5, 054025 (2016).

[117] S. Godfrey and K. Moats, Properties of Exotic Charm and Charm-Strange Mesons, Phys. Rev. D 93, no.3, 034035 (2016).

[118] S. Godfrey, Spectroscopy of B_c mesons in the relativized quark model, Phys. Rev. D 70, 054017 (2004).

[119] T. Barnes, S. Godfrey and E. S. Swanson, Higher charmonia, Phys. Rev. D 72, 054026 (2005).

[120] S. Godfrey and K. Moats, Bottomonium Mesons and Strategies for their Observation, Phys. Rev. D 92, no.5, 054034 (2015).

[121] S. Capstick and N. Isgur, Baryons in a relativized quark model with chromodynamics, Phys. Rev. D 34, no.9, 2809-2835 (1986).

[122] Q. F. Lü, Y. Dong, X. Liu and T. Matsuki, Puzzle of the $J/\psi \bar{\psi}$-pair invariant mass spectrum, Phys. Rev. D 96, no.11, 114006 (2017).

[123] Q. F. Lü, K. L. Wang, L. Y. Xiao and X. H. Zhong, Mass spectra and radiative transitions of doubly heavy baryons in a relativized quark model, Phys. Rev. D 98, no.7, 074021 (2018).

[124] Q. F. Lü, L. S. Geng, Z. G. Wang, Analysis of the $\bar{\Omega}_c$ bound state plausible?, Phys. Rev. D 105, 074026 (2022).

[125] R. N. Faustov, V. O. Galkin and E. M. Savchenko, Fully Heavy Tetraquark Spectroscopy in the Relativistic Quark Model, Symmetry 14, no.12, 2504 (2022).

[126] Q. Zhou, D. Guo, S. Q. Kuang, Q. H. Yang and L. Y. Dai, Nature of the X(6900) in partial wave decomposition of J/ψ/ψ' scattering, Phys. Rev. D 106, no.11, L111502 (2022).

[127] J. Ferretti, Effective Degrees of Freedom in Baryon and Meson Spectroscopy, Few Body Syst. 60, no.1, 17 (2019).

[128] L. D. Landau and E. M. Lifshits, Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Pergamon Press, Oxford, 1977).

[129] A. Ali, L. Maiani, A. V. Borisov, I. Ahmed, M. Jamil Aslam, A. Y. Parkhomenko, A. D. Polosa and A. Rehman, A new look at the Y tetraquarks and Ω̄, baryons in the diquark model,
