ADDITIVE ρ-FUNCTIONAL INEQUALITIES
IN β-HOMOGENEOUS F-SPACES

HARIN LEEa, JAE YOUNG CHA$^b,^*$, MIN WOO CHOc
AND MYUNGJUN KWONd

Abstract. In this paper, we solve the additive ρ-functional inequalities
\begin{equation}
\|f(2x-y) + f(y-x) - f(x)\| \leq \|\rho(f(x+y) - f(x) - f(y))\|,
\end{equation}
where ρ is a fixed complex number with $|\rho| < 1$, and
\begin{equation}
\|f(x+y) - f(x) - f(y)\| \leq \|\rho(f(2x-y) + f(y-x) - f(x))\|,
\end{equation}
where ρ is a fixed complex number with $|\rho| < \frac{1}{2}$.

Using the direct method, we prove the Hyers-Ulam stability of the additive ρ-
functional inequalities (0.1) and (0.2) in β-homogeneous F-spaces.

1. Introduction and Preliminaries

The stability problem of functional equations originated from a question of Ulam
[23] concerning the stability of group homomorphisms.

The functional equation $f(x+y) = f(x) + f(y)$ is called the Cauchy equation. In
particular, every solution of the Cauchy equation is said to be an additive mapping.

Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers’ Theorem was generalized by Aoki [2] for additive mappings and by
Rassias [14] for linear mappings by considering an unbounded Cauchy difference. A
generalization of the Rassias theorem was obtained by Găvruta [7] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Rassias’
approach. The stability of quadratic functional equation was proved by Skof [22]
for mappings $f : E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space.

Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain

Received by the editors August 02, 2016. Accepted August 03, 2016
2010 Mathematics Subject Classification. Primary 39B62, 39B72, 39B52, 39B82.
Key words and phrases. Hyers-Ulam stability, β-homogeneous F-space, additive ρ-functional
inequality.

*Corresponding author.

© 2016 Korean Soc. Math. Educ.
E_1 is replaced by an Abelian group. The stability problems of various functional
equations have been extensively investigated by a number of authors (see [1, 3, 4, 6,
9, 10, 11, 12, 13, 15, 17, 18, 19, 20, 21, 24, 25]).

Definition 1.1. Let X be a (complex) linear space. A nonnegative valued function
$\| \cdot \|$ is an F-norm if it satisfies the following conditions:

1. \(\|x\| = 0 \) if and only if $x = 0$;
2. \(\|\lambda x\| = \|x\| \) for all $x \in X$ and all λ with $|\lambda| = 1$;
3. \(\|x + y\| \leq \|x\| + \|y\| \) for all $x, y \in X$;
4. \(\|\lambda_n x\| \to 0 \) provided $\lambda_n \to 0$;
5. \(\|\lambda x_n\| \to 0 \) provided $x_n \to 0$.

Then $(X, \| \cdot \|)$ is called an F^*-space. An F-space is a complete F^*-space.

An F-norm is called β-homogeneous ($\beta > 0$) if \(\|tx\| = |t|^\beta \|x\| \) for all $x \in X$ and
all $t \in \mathbb{C}$ and $(X, \| \cdot \|)$ is called a β-homogeneous F-space (see [16]).

In Section 2, we solve the additive ρ-functional inequality (0.1) and prove the
Hyers-Ulam stability of the additive ρ-functional inequality (0.1) in β-homogeneous
F-space.

In Section 3, we solve the additive ρ-functional inequality (0.2) and prove the
Hyers-Ulam stability of the additive ρ-functional inequality (0.2) in β-homogeneous
F-space.

Throughout this paper, let β_1, β_2 be positive real numbers with $\beta_1 \leq 1$ and
$\beta_2 \leq 1$. Assume that X is a β_1-homogeneous F-space with norm $\| \cdot \|$ and that Y
is a β_2-homogeneous F-space with norm $\| \cdot \|$.

2. **ADDITIVE ρ-FUNCTIONAL INEQUALITY (0.1)
IN β-HOMOGENEOUS F-SPACES**

Throughout this section, assume that ρ is a complex number with $|\rho| < 1$.

We solve and investigate the additive ρ-functional inequality (0.1) in β-homogeneous
F-spaces.

Lemma 2.1. If a mapping $f : X \to Y$ satisfies

\[
\|f(2x - y) + f(y - x) - f(x)\| \leq \rho (f(x + y) - f(x) - f(y))
\]

for all $x, y \in X$, then $f : X \to Y$ is additive.

Proof. Assume that $f : X \to Y$ satisfies (2.1).
Letting \(x = 0 \) and \(y = 0 \) in (2.1), we get \(\| f(0) \| \leq \| \rho(f(0)) \| \) and so \(f(0) = 0 \) with \(|\rho| < 1 \).

Letting \(x = 0 \) in (2.1), we get \(\| f(-y) + f(y) \| \leq 0 \) and so \(f \) is an odd mapping.

Letting \(x = z \) and \(y = z - w \) in (2.1), we get

\[
\| f(z + w) - f(z) - f(w) \| \leq \| \rho(f(2z - w) + f(w - z) - f(z)) \|
\]

for all \(z, w \in X \).

It follows from (2.1) and (2.2) that

\[
\| f(2x - y) + f(y - x) - f(x) \|
\leq \| \rho(f(x + y) - f(x) - f(y)) \| \leq |\rho|^2 \| f(2x - y) + f(y - x) - f(x) \|
\]

and so \(f(2x - y) + f(y - x) = f(x) \) for all \(x, y \in X \). It is easy to show that \(f \) is additive. \(\square \)

We prove the Hyers-Ulam stability of the additive \(\rho \)-functional inequality (2.1) in \(\beta \)-homogeneous \(F \)-spaces.

Theorem 2.2. Let \(r > \frac{\beta_2}{\beta_1} \) and \(\theta \) be nonnegative real numbers and let \(f : X \to Y \) be a mapping satisfying

\[
\| f(2x - y) + f(y - x) - f(x) \|
\leq \| \rho(f(x + y) - f(x) - f(y)) \| + \theta(\| x \|^r + \| y \|^r)
\]

for all \(x, y \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\| f(x) - A(x) \| \leq \frac{2\theta}{2^{\beta_1}r - \beta_2} \| x \|^r
\]

for all \(x \in X \).

Proof. Letting \(x = y = 0 \), in (2.3), we get \(\| f(0) \| \leq 0 \). So \(f(0) = 0 \).

Letting \(y = 0 \) in (2.3), we get

\[
\| f(2x) + f(-x) - f(x) \| \leq \theta \| x \|^r
\]

for all \(x \in X \).

Letting \(x = 0 \) in (2.3), we get

\[
\| f(y) + f(-y) \| \leq \theta \| y \|^r
\]

for all \(y \in X \).
From (2.5) and (2.6), we get
\[\| f(2x) - 2f(x) \| \leq \| f(2x) + f(-x) - f(x) \| + \| f(x) + f(-x) \| \]
(2.7)
\[\leq 2\theta \| x \|^r \]
for all \(x \in X \). Hence
\[\| 2^j f \left(\frac{x}{2^j} \right) - 2^m f \left(\frac{x}{2^m} \right) \| \leq \sum_{j=l}^{m-1} \| 2^j f \left(\frac{x}{2^j} \right) - 2^{j+1} f \left(\frac{x}{2^{j+1}} \right) \|
\]
(2.8)
\[\leq \frac{2}{2^{j+1}} \sum_{j=l}^{m-1} \frac{2^{j+1}}{2 \beta q} \theta \| x \|^r \]
for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.8) that the sequence \(\{ 2^k f \left(\frac{x}{2^k} \right) \} \) is Cauchy for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ 2^k f \left(\frac{x}{2^k} \right) \} \) converges. So one can define the mapping \(A : X \to Y \) by
\[A(x) := \lim_{k \to \infty} 2^k f \left(\frac{x}{2^k} \right) \]
for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.8), we get (2.4).

It follows from (2.3) that
\[\| A(2x - y) + A(y - x) - A(x) \| = \lim_{n \to \infty} \| 2^n \left(f \left(\frac{2x - y}{2^n} \right) + f \left(\frac{y - x}{2^n} \right) - f \left(\frac{x}{2^n} \right) \right) \|
\]
\[\leq \| \rho \left(x + y \right) - \rho \left(x \right) \| \leq \| \rho \left(A(x + y) - A(x) - A(y) \right) \|
\]
for all \(x, y \in X \). So
\[\| A(2x - y) + A(y - x) - A(x) \| \leq \| \rho(A(x + y) - A(x) - A(y)) \|
\]
for all \(x, y \in X \). By Lemma 2.1, the mapping \(A : X \to Y \) is additive.

Now, let \(T : X \to Y \) be another additive mapping satisfying (2.4). Then we have
\[\| A(x) - T(x) \| = \| 2^q A \left(\frac{x}{2^q} \right) - 2^q T \left(\frac{x}{2^q} \right) \|
\]
\[\leq \| 2^q A \left(\frac{x}{2^q} \right) - 2^q T \left(\frac{x}{2^q} \right) \| + \| 2^q T \left(\frac{x}{2^q} \right) - 2^q f \left(\frac{x}{2^q} \right) \|
\]
\[\leq \frac{4\theta}{2 \beta q} \frac{2^{\beta q}}{2 \beta q} \| x \|^r , \]
which tends to zero as \(q \to \infty \) for all \(x \in X \). So we can conclude that \(A(x) = T(x) \) for all \(x \in X \). This proves the uniqueness of \(A \), as desired.

Theorem 2.3. Let \(r < \frac{\beta_2}{\beta_1} \) and \(\theta \) be nonnegative real numbers and let \(f : X \to Y \) be a mapping satisfying (2.3). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\| f(x) - A(x) \| \leq \frac{2\theta}{2^{\beta_2} - 2^{\beta_1} r} \| x \|^r
\]

for all \(x \in X \).

Proof. It follows from (2.7) that

\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{2}{2^{\beta_2}} \theta \| x \|^r
\]

for all \(x \in X \). Hence

\[
\left\| \frac{1}{2^l} f(2^l x) - \frac{1}{2^m} f(2^m x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\| \leq \frac{2}{2^{\beta_2}} \sum_{j=l}^{m-1} 2^{\beta_1 r j} \theta \| x \|^r
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (2.10) that the sequence \(\{ \frac{1}{2^n} f(2^n x) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ \frac{1}{2^n} f(2^n x) \} \) converges. So one can define the mapping \(A : X \to Y \) by

\[
A(x) := \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (2.10), we get (2.9).

The rest of the proof is similar to the proof of Theorem 2.2.

Remark 2.4. If \(\rho \) is a real number such that \(-1 < \rho < 1 \) and \(Y \) is a \(\beta \)-homogeneous real \(F \)-space, then all the assertions in this section remain valid.

3. Additive \(\rho \)-Functional Inequality (0.2) in \(\beta \)-Homogeneous \(F \)-Spaces

Throughout this section, assume that \(\rho \) is a complex number with \(|\rho| < \frac{1}{2} \).

We solve and investigate the additive \(\rho \)-functional inequality (0.2) in \(\beta \)-homogeneous \(F \)-spaces.
Lemma 3.1. If a mapping $f : X \to Y$ satisfies

$$\|f(x+y) - f(x) - f(y)\| \leq \|\rho(f(2x-y) + f(y-x) - f(x))\|$$

for all $x, y \in X$, then $f : X \to Y$ is additive.

Proof. Assume that $f : X \to Y$ satisfies (3.1).

Letting $x = y = 0$ in (3.1), we get $\|f(0)\| \leq 0$. So $f(0) = 0$.

Letting $y = x$ in (3.1), we get $\|f(2x - 2f(x))\| \leq 0$ and so

$$2f(x) = f(2x)$$

for all $x \in G$.

Letting $y = 2x$ in (3.1), we get $\|f(3x - f(x) - f(2x))\| \leq 0$ and from (3.2),

$$3f(x) = f(3x)$$

for all $x \in X$.

Letting $y = -x$ in (3.1), we get $\|f(x) + f(-x)\| \leq \|\rho(f(3x) + f(-2x) - f(x))\|$.

From (3.2) and (3.3), $f(3x) + f(-2x) - f(x) = 2f(x) + 2f(-x)$, so $\|f(x) + f(-x)\| \leq 0$, and we get

$$f(x) + f(-x) = 0$$

for all $x \in X$. So f is an odd mapping.

Letting $x = z, y = z - w$ in (3.1), we get

$$\|f(2z - w) - f(z) - f(z - w)\| \leq \|\rho(f(z + w) + f(-w) - f(z))\|$$

and from (3.4),

$$\|f(2z - w) + f(w - z) - f(z)\| \leq \|\rho(f(z + w) - f(z) - f(w))\|$$

for all $z, w \in X$.

It follows from (3.1) and (3.5) that

$$\|f(x+y) - f(x) - f(y)\| \leq \|\rho(f(2x-y) + f(y-x) - f(x))\| \leq |\rho|^2 \|f(x+y) - f(x) - f(y)\|$$

and so $f(x+y) = f(x) + f(y)$ for all $x, y \in X$. So f is additive. \qed

We prove the Hyers-Ulam stability of the additive ρ-functional inequality (3.1) in β-homogeneous F-spaces.
Theorem 3.2. Let \(r > \frac{\beta_2}{\beta_1} \) and \(\theta \) be nonnegative real numbers and let \(f : X \to Y \) be a mapping satisfying

\[
\| f(x + y) - f(x) - f(y) \| \\
\leq \| \rho(f(2x - y) + f(y - x) - f(x)) \| + \theta(\|x\|^r + \|y\|^r)
\]

for all \(x, y \in X \). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\| f(x) - A(x) \| \leq \frac{2\theta}{2^\beta_1 r - 2^\beta_2} \|x\|^r
\]

for all \(x \in X \).

Proof. Letting \(x = y = 0 \) in (3.4), we get \(\|f(0)\| \leq 0 \). So \(f(0) = 0 \).

Letting \(y = x \) in (3.6), we get

\[
\| f(2x) - 2f(x) \| \leq 2\theta \|x\|^r
\]

for all \(x \in X \). So

\[
\left\| 2^l f \left(\frac{x}{2^l} \right) - 2^m f \left(\frac{x}{2^m} \right) \right\| \\
\leq \sum_{j=l}^{m-1} \left\| 2^j f \left(\frac{x}{2^j} \right) - 2^{j+1} f \left(\frac{x}{2^{j+1}} \right) \right\|
\]

(3.9)

\[
\leq \frac{2}{2^\beta_1 r} \sum_{j=l}^{m-1} \frac{2^\beta_2}{2^\beta_1 r} \theta \|x\|^r
\]

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.9) that the sequence \(\{2^k f \left(\frac{x}{2^k} \right) \} \) is Cauchy for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{2^k f \left(\frac{x}{2^k} \right) \} \) converges. So one can define the mapping \(A : X \to Y \) by

\[
A(x) := \lim_{k \to \infty} 2^k f \left(\frac{x}{2^k} \right)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.9), we get (3.7).

The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Theorem 3.3. Let \(r < \frac{\beta_2}{\beta_1} \) and \(\theta \) be nonnegative real numbers and let \(f : X \to Y \) be a mapping satisfying (3.4). Then there exists a unique additive mapping \(A : X \to Y \) such that

\[
\| f(x) - A(x) \| \leq \frac{2\theta}{2^\beta_2 - 2^\beta_1 r} \|x\|^r
\]

for all \(x \in X \).
Proof. It follows from (3.8) that

\[
\left\| f(x) - \frac{1}{2} f(2x) \right\| \leq \frac{2}{2^{3\beta_2}} \theta \|x\|^r
\]

for all \(x \in X \). Hence

\[
\left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^m} f(2^m x) \right\| \leq \sum_{j=l}^{m-1} \left\| \frac{1}{2^j} f(2^j x) - \frac{1}{2^{j+1}} f(2^{j+1} x) \right\|
\]

(3.11)

for all nonnegative integers \(m \) and \(l \) with \(m > l \) and all \(x \in X \). It follows from (3.11) that the sequence \(\{ \frac{1}{2^m} f(2^m x) \} \) is a Cauchy sequence for all \(x \in X \). Since \(Y \) is complete, the sequence \(\{ \frac{1}{2^m} f(2^m x) \} \) converges. So one can define the mapping \(A : X \to Y \) by

\[
A(x) : = \lim_{n \to \infty} \frac{1}{2^n} f(2^n x)
\]

for all \(x \in X \). Moreover, letting \(l = 0 \) and passing the limit \(m \to \infty \) in (3.11), we get (3.10).

The rest of the proof is similar to the proof of Theorem 2.2. \(\square \)

Remark 3.4. If \(\rho \) is a real number such that \(-\frac{1}{2} < \rho < \frac{1}{2}\) and \(Y \) is a \(\beta \)-homogeneous real \(F \)-space, then all the assertions in this section remain valid.

Acknowledgments

This work was supported by the Seoul Science High School R&E Program in 2016.

References

1. M. Adam: On the stability of some quadratic functional equation. J. Nonlinear Sci. Appl. 4 (2011), 50-59.
2. T. Aoki: On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
3. L. Cădariu, L. Găvruţa & P. Găvruţa: On the stability of an affine functional equation. J. Nonlinear Sci. Appl. 6 (2013), 60-67.
4. A. Chahbi & N. Bounader: On the generalized stability of d’Alembert functional equation. J. Nonlinear Sci. Appl. 6 (2013), 198-204.
5. P.W. Cholewa. Remarks on the stability of functional equations. *Aequationes Math.* 27 (1984), 76-86.

6. G. Z. Eskandani & P. Găvruta: Hyers-Ulam-Rassias stability of pexiderized Cauchy functional equation in 2-Banach spaces. *J. Nonlinear Sci. Appl.* 5 (2012), 459-465.

7. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. *J. Math. Anal. Appl.* 184 (1994), 431-436.

8. D.H. Hyers: On the stability of the linear functional equation. *Proc. Natl. Acad. Sci. U.S.A.* 27 (1941), 222-224.

9. C. Park: Orthogonal stability of a cubic-quartic functional equation. *J. Nonlinear Sci. Appl.* 5 (2012), 28-36.

10. _______: Additive ρ-functional inequalities and equations. *J. Math. Inequal.* 9 (2015), 17-26.

11. _______: Additive ρ-functional inequalities in non-Archimedean normed spaces. *J. Math. Inequal.* 9 (2015), 397-407.

12. C. Park, K. Ghasemi, S.G. Ghaleh & S. Jang: Approximate n-Jordan $*$-homomorphisms in C^*-algebras. *J. Comput. Anal. Appl.* 15 (2013), 365-368.

13. C. Park, A. Najati & S. Jang: Fixed points and fuzzy stability of an additive-quadratic functional equation. *J. Comput. Anal. Appl.* 15 (2013), 452-462.

14. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. *Proc. Amer. Math. Soc.* 72 (1978), 297-300.

15. K. Ravi, E. Thandapani & B.V. Senthil Kumar: Solution and stability of a reciprocal type functional equation in several variables. *J. Nonlinear Sci. Appl.* 7 (2014), 18-27.

16. S. Rolewicz: *Metric Linear Spaces*. PWN-Polish Scientific Publishers, Warsaw, 1972.

17. S. Schin, D. Ki, J. Chang & M. Kim: Random stability of quadratic functional equations: a fixed point approach. *J. Nonlinear Sci. Appl.* 4 (2011), 37-49.

18. S. Shagholi, M. Bavand Savadkouhi & M. Eshaghi Gordji: Nearly ternary cubic homomorphism in ternary Fréchet algebras. *J. Comput. Anal. Appl.* 13 (2011), 1106-1114.

19. S. Shagholi, M. Eshaghi Gordji & M. Bavand Savadkouhi: Stability of ternary quadratic derivation on ternary Banach algebras. *J. Comput. Anal. Appl.* 13 (2011), 1097-1105.

20. D. Shin, C. Park & Sh. Farhadabadi: On the superstability of ternary Jordan C^*-homomorphisms. *J. Comput. Anal. Appl.* 16 (2014), 964-973.

21. _______: Stability and superstability of J^*-homomorphisms and J^*-derivations for a generalized Cauchy-Jensen equation. *J. Comput. Anal. Appl.* 17 (2014), 125-134.

22. F. Skof: Propriet locali e approssimazione di operatori. *Rend. Sem. Mat. Fis. Milano* 53 (1983), 113-129.

23. S.M. Ulam: *A Collection of the Mathematical Problems*. Interscience Publ. New York, 1960.

24. C. Zaharia: On the probabilistic stability of the monomial functional equation. *J. Nonlinear Sci. Appl.* 6 (2013), 51-59.
25. S. Zolfaghari: Approximation of mixed type functional equations in p-Banach spaces. *J. Nonlinear Sci. Appl.* 3 (2010), 110-122.

<a>Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea
Email address: harinboy@naver.com

Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea
Email address: ckvodud99@naver.com

<c>Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea
Email address: whalsdn9903@naver.com</c>

d<Mathematics Branch, Seoul Science High School, Seoul 03066, Republic of Korea
Email address: m_james_kwon@naver.com