Greenhouse gases modulate the strength of millennial-scale subtropical rainfall, consistent with future predictions

Fei Guo1,1, Steven C Clemens2,2, Yuming Liu1,1, Ting Wang3,3, Huimin Fan3,3, Xingxing Liu4,4, and Youbin Sun5,5

1Institute of Earth Environment, CAS
2Brown University
3Institute of Earth Environment, Chinese Academy of Sciences
4State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences
5Institute of Earth Environment, Chinese Academy of Sciences

November 30, 2022

Abstract

Millennial scale East Asian monsoon variability is closely associated with natural hazards through long-term variability in flood and drought cycles. Here we present a new East Asian summer monsoon (EASM) rainfall reconstruction from the northwest Chinese loess plateau spanning the past 650,000 years. The magnitude of millennial monsoon variability (MMV) in EASM rainfall is strongly linked to ice volume and greenhouse gas (GHG) at the 100,000-year earth-orbital eccentricity band and to GHG and summer insolation at the 23,000-year precession band. At the precession band, times of stronger insolation and increased atmospheric GHG lead to increases in the MMV of EASM rainfall. These findings indicate increased extreme precipitation events under future warming scenarios, consistent with model results.
Greenhouse gases modulate the strength of millennial-scale subtropical rainfall, consistent with future predictions

Fei Guo1,2,*, Steven C. Clemens2,*, Yuming Liu1,3, Ting Wang1,3, Huimin Fan1, Xingxing Liu1, Youbin Sun1,4,5

1State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xian 710061, China.
2Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912-1846, USA
3University of Chinese Academy of Sciences, Beijing 100049, China
4CAS Center for Excellence in Quaternary Science and Global Change, Xian 710061, China.
5Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China.

Corresponding author: Fei Guo (guofei@ieecas.cn) and Steven C. Clemens (steven_clemens@brown.edu)

Key Points

The new precipitation-sensitive proxy (Ca/Ti) shows persistent millennial-scale East Asian summer monsoon changes over past 650 ka;

Greenhouse gases (GHG) and summer insolation modulate millennial fluctuations of loess Ca/Ti at the precession band but not that of $\delta^{18}O_{sp}$;

Increasing GHG and strong insolation lead to more frequently occurrence of extreme rainfall, consistent with model results.
Abstract: Millennial scale East Asian monsoon variability is closely associated with natural hazards through long-term variability in flood and drought cycles. Here we present a new East Asian summer monsoon (EASM) rainfall reconstruction from the northwest Chinese loess plateau spanning the past 650,000 years. The magnitude of millennial monsoon variability (MMV) in EASM rainfall is strongly linked to ice volume and greenhouse gas (GHG) at the 100,000-year earth-orbital eccentricity band and to GHG and summer insolation at the 23,000-year precession band. At the precession band, times of stronger insolation and increased atmospheric GHG lead to increases in the MMV of EASM rainfall. These findings indicate increased extreme precipitation events under future warming scenarios, consistent with model results.

Plain Language Summary
We present a new East Asian summer monsoon rainfall reconstruction from the northwest Chinese loess plateau over the last 650,000 years. This new precipitation proxy (Ca/Ti) and speleothem δ¹⁸O (δ¹⁸Osp) are assessed to illustrate the modulating drivers of magnitude of millennial monsoon variability (MMV) in long-term trend. Wavelet analysis highlights the remarkable ice volume and GHG modulation at 100 kyr band as well as GHG and local insolation forcing at precession band for the MMV of Ca/Ti, but not that of MMV in δ¹⁸Osp. The MMV of loess Ca/Ti and δ¹⁸Osp are modulated differently at orbital time scales, implying that these two proxies document different climatic response of millennial-scale monsoon circulations. At the precession band, increasing atmospheric GHG following with larger insolation results in further enhancement in MMV of EASM rainfall, which agrees with the model result and prediction in more frequently occurrence of extreme rainfall under future global warming conditions.

1. Introduction
The Chinese loess is a unique terrestrial archive that can well documents East Asian monsoon (EAM) variability at tectonic to millennial timescales (Porter and An, 1995; Liu and Ding, 1998; An, 2000; An et al., 2011). High-resolution loess have revealed persistent millennial-scale (1-10 kyr periodicity) EAM fluctuations spanning the last several glacial cycles (Guo et al., 1996; Ding et al., 1999; Sun et al., 2012, 2016, 2021a; Yang et al., 2014; Wang et al., 2020; Guo et al., 2021), which are dynamically linked with high-latitude abrupt changes in the north Atlantic including Heinrich (H) (Heinrich, 1988; Bond et al., 1992) and Dansgaard-Oeschger (DO) events (Dansgaard et al., 1982, 1993; Bond et al., 1993). This millennial-scale monsoon variability is
superimposed on glacial-interglacial variations (Ding et al., 1999; Sun et al., 2016; Yang et al., 2014; Clemens et al., 2018). Abrupt summer monsoon changes are closely linked to natural hazards such as flood and drought events (Huang et al., 2007; Wu et al., 2017), since summer monsoon plays a leading role in transporting water vapor from low to middle/high latitudes of the northern hemispheres (Webster et al., 1998; Wang and Ding, 2008; Wang, 2009; Guo et al., 2012; Liu et al., 2013; An et al., 2015). Abrupt rainfall events associated with short-term summer monsoon variations have seriously influence on agriculture, food production, water supply and social economic development (Ding and Chan, 2005; Huang et al., 2007; Yancheva et al. 2007; Cook et al. 2010; Li et al., 2017; Wu et al., 2021). However, how these flood/drought events are affected by both natural and anthropogenic factors remains poorly constrained. Understanding the mechanisms that modulate the magnitude of millennial-scale variability (MMV) is of critical importance for the scientific community as well as policy makers.

A number of well-dated, high-resolution speleothem δ^{18}O records have been developed in recent years (Wang et al., 2001, 2008; Cheng et al., 2016), providing the opportunity to examine the underlying relationship(s) between East Asian monsoon MMV and potential longer-term (orbital-scale) modulators. Cheng et al., (2016) hypothesized, on the basis of an East Asian composite speleothem δ^{18}O record (δ^{18}Osp), that periods of maximum Northern Hemisphere summer insolation correspond to weaker millennial-scale variability. Subsequently, however, Thirumalai et al. (2020) showed that precession does not modulate the MMV of δ^{18}Osp and postulated that it is, instead, modulated by internal processes related to the cryosphere. This work also raised the possibility that δ^{18}Osp is decoupled from regional Asian monsoon rainfall over millennial timescales (Zhang et al., 2018). As such, two important outstanding questions remain: is there a reliable proxy for East Asian summer monsoon (EASM) rainfall at the millennial timescale and what modulate the MMV thereof?

To address these questions, we have generated a high-resolution summer monsoon proxy (Ca/Ti) from Linxia (LX, 103.63°E, 35.15°N, 2200 m a.s.l.) on the western Chinese loess plateau (CLP) (Fig. S1). The Ca/Ti ratio is a precipitation-sensitive proxy linked to summer monsoon rainfall (Guo et al., 2021). Low values of Ca/Ti indicate stronger Ca leaching associated with intensified summer rainfall. The new precipitation proxy (Ca/Ti) and δ^{18}Osp are evaluated to elucidate the modulating drivers of these two proxy records. As discussed in the Results section,
we find that the MMV of Ca/Ti is mainly modulated by ice volume and greenhouse gases (GHG)
at the eccentricity band. GHG and summer insolation modulate the MMV of Ca/Ti at the
precession band but not that of δ¹⁸Osp; δ¹⁸Osp MMV is modulated by winter insolation at the
eccentricity and obliquity bands. The interpretations of these results are presented in the
Discussion section.

2. Materials and Methods

Here we present a high-resolution loess record (LX loess profile, 103.63°E, 35.15°N, 2,200 m
a.s.l.) from the western edge of the CLP (Fig. S1). At present, mean annual temperature and
precipitation in this region are about 8.1°C and 484 mm, respectively, with ~80% of the annual
precipitation falling during the summer season (May to September). 203.8 m-long core A (LXA,
consisting of 185 m of eolian loess-paleosol sequences, underlain by 17 m of fluvial loess and 1.8
m of sandy gravel layers), 72 m-long core B (LXB) and a 7 m pit were excavated in 2017. Powder
samples were collected at 2 cm intervals for analyzing mean grain size (MGS). Meanwhile, each
core was scanned at 2-cm resolution by XRF core scanning to obtain elemental intensities.

The upper 18 m is mapped to the OSL dated Yuanbao loess outcrop (~4 kilometers away) (Lai
et al., 2006, 2007). The whole 180 m loess chronology has been generated using an independent
loess chronology by synchronizing Chinese loess and speleothem δ¹⁸O records back to 650 ka
(Sun et al., 2021). The first set of control points delineate the loess/paleosol boundaries S₆ to S₀
matching well with the timing of the glacial terminations/inceptions of speleothem δ¹⁸O (Cheng et
al., 2009; 2016). The second and third sets of age control points delineate the timing of
precessional transition boundaries and abrupt cooling events (Fig. 1), respectively, based on the
assumption that the East Asian summer and winter monsoon co-vary with each other at orbital
timescales, and millennial-scale abrupt events are synchronous in the northern hemisphere
(Hemming et al., 2004; Sun et al., 2012; Rao et al., 2013; Barker et al., 2011; Clemens et al.,
2018). The tie points are shown in Fig.1.

Due to weak pedogenesis and high sedimentation rates, millennial-scale oscillations are well
preserved in the western and northwestern CLP over the past glacial cycles (Sun et al., 2012, 2016;
Guo et al., 2021). Meanwhile, the LX profile is well-suited for reconstructing rapid monsoon
changes because it is located in monsoon frontal zone and sensitive to high- and low-latitude
climate variability. The MGS reflects grain-size sorting, an indicator sensitive to winter monsoon
variations (An et al., 1990; Porter and An, 1995; Sun et al., 2006). The Ca/Ti ratio reflects precipitation-induced leaching intensity linked to summer monsoon rainfall (Guo et al., 2021). The high resolution δ18O of Sanbao-Hulu speleothem is an indicator of East Asian monsoon changes at orbital to centennial timescales (Cheng et al., 2009, 2016). Beyond clear glacial-interglacial and precessional fluctuations, high pass filtering (10 ka) of Ca/Ti and MGS in the LX sections shows persistent millennial-scale variations similar to that of Chinese speleothem δ18O (Fig. 2 and S2).

In order to estimate the MMV, all the raw datasets are linear interpolated at 0.1 kyr interval. The original time series are filtered using a Butterworth filter at a cutoff threshold of 10 kyr (XX-hi-10ka). The standard deviation of millennial-scale variability is applied to reflecting the orbitally evoked modulation and its association with internal and external forcing with 2 ka sliding window (calculation method following the paper from Thirumalai et al., 2020). The spectral result of all the proxies in this paper were conducted by using the Lomb-Scargle periodogram online (https://exoplanetarchive.ipac.caltech.edu/cgi-bin/Pgram/nph-pgram), which could analyze discontinuous time series and remove spurious spectral characteristics (VanderPlas, 2018). Normalized orbital parameters eccentricity, tilt, and precession (ETP), GHG, insolation and benthic δ18O of LR04 over the past 650 kyr are applied in the wavelet coherence (WTC) calculations to extract maximal phase and amplitude correlations with astronomical, ice volume and greenhouse gases forcing. WTC between time series was performed in a Monte Carlo framework (n = 1, 000) using open source metlab codes (Grinsted et al., 2004).

In this paper, the parameter ΔRFGHG is regarded as GHG radiative forcing factors and applied in WTC to evaluate the relationship between MMV of Ca/Ti and δ18O sp. The ΔRFGHG is reconstructed by referencing the content of EPICA ice core greenhouse gases to the modern value. ΔRFGHG is defined as the difference between a certain past GHG level ([CO2] and [CH4]) and the pre-industrial greenhouse gas level ([CO2]0 = 280 ppm, [CH4]0 = 700 ppb) (Ramaswamy et al., 2001). Although CH4 contributes only <5%, we calculated the ΔRFGHG using both CO2 and CH4. The equation used to determine ΔRFGHG is as follows (Li et al., 2017):

\[
\Delta \text{RFGHG} = \Delta \text{RFCO2} + \Delta \text{RFCH4}
\]

\[
= 4.841\ln([\text{CO2}]/[\text{CO2}]_0) + 0.0906(\sqrt{[\text{CO2}]} - \sqrt{[\text{CO2}]_0}) + 0.036\ln(\sqrt{[\text{CH4}]} - \sqrt{[\text{CH4}]_0}).
\]
3. Results

The Ca/Ti ratio exhibits distinct glacial-interglacial and precessional variations over the last 650 ka as seen in LR04 δ¹⁸O (Lisiecki and Raymo, 2005) and speleothem δ¹⁸O (Cheng et al., 2009, 2016), respectively (Fig. 1). Both Ca/Ti and δ¹⁸Osp show clear millennial-scale fluctuations overlaying orbital-scale variations. The high frequency millennial signals (isolated with a 10 kyr high pass filter) persist over the last 650 ka for the loess Ca/Ti and speleothem δ¹⁸O records, but the amplitude varies proxy to proxy (Fig. 1a and S2a). Spectral analysis of the raw records and MMV for loess and speleothem records display variable associations with eccentricity- (~100 kyr), obliquity- (~41 kyr), and precession-scale (~23 and ~19 kyr) over the past 650 ka. Loess Ca/Ti variance is mainly concentrated in obliquity with lesser variance in the eccentricity and precession bands (Fig. 2b), indicating prominent ice volume (eccentricity and obliquity) and isolation (precession) forcing. The speleothem δ¹⁸O shows predominant precession-scale variance (Fig. S2a) suggesting strong links to insolation forcing (Cheng et al., 2009, 2016). These results indicate ice volume and insolation play dominated roles in driving changes in loess Ca/Ti and speleothem δ¹⁸O, respectively. (Cheng et al., 2009, 2016; Clemens et al., 2010; An et al., 2011, 2015; Sun et al, 2015, 2019, 2021a).

Millennial-scale fluctuations co-exist with long-term orbital- and ice-volume variability; we seek to assess the potential linkages among them and in particular, the extent to which MMV is modulated by these longer-term orbital and internal climate parameters. The spectra of Ca/Ti MMV shows dominant eccentricity with less strong precession and weak obliquity variance (Fig. 2d). The spectrum of δ¹⁸Osp MMV has a small peak near 100 kyr and an offset 41 kyr peak with little to no variance at the 23 kyr period (Fig. S2d). Thus, while both proxies are similarly modulated at the 100-kyr period (such that the MMV is larger during glacial intervals relative to interglacial times) the MMV modulation is variable for the two proxies at other orbital bands. As with the spectral differences in the raw records, the MMV spectra also implies different MMV modulating drivers, potentially associated with insolation, ice volume, and/or GHG for the two different archives (Friedrich et al., 2009; Thirumalai et al., 2020). How do internal and external drivers interact with each other and modulate the MMV of these records at the orbital timescale?

We performed wavelet coherence and phase analyses (WTC reference here) of both MMV records relative to ETP, ice volume, ΔRFGHG (the GHG radiative forcing factor, more details refer to
methods section. CO₂ is the main contributor and CH₄ contribution is less than 5%), summer insolation, and winter insolation to identify which variables might modulate the MMV of these EASM records.

The MMV in Ca/Ti is strongly coherent with ice volume and GHG at the 100,000-year earth-orbital eccentricity band and to GHG and summer insolation at the 23,000-year precession band (Figure 3c, d). δ¹⁸Osp MMV is most strongly coherent with GHG and ice volume at the 100-kyr band and with winter insolation at the eccentricity and obliquity band (Figure S4c, d, g).

4. Discussion

Orbital-scale modulation factors for MMV of the EASM

Previous geological records and modeling indicate that high latitude ice volume or ice sheet topography plays an important role in triggering abrupt climate changes (MacAyeal, 1993; Broecker et al., 1994; Alley et al., 1999; Clark et al., 2001). In particular, abrupt climate changes are highly sensitive to ice volume variations and ice sheets are widely hypothesized to motivate and amplify these high frequency signals within a constrained benthic oxygen isotope-“ice volume threshold” between 3.5 and 4.5‰ (Wara et al., 2000; Shackleton et al., 2000; Bailey et al., 2010; Naffs et al., 2013; Zhang et al., 2014). Wavelet coherence between the MMV of loess Ca/Ti, speleothem δ¹⁸O and the global benthic δ¹⁸O stack show excellent coherence and near-zero phase with ice volume at the 100 kyr band (Fig. S3a, c and S4e, g); this demonstrates that EASM MMV primarily follows the glacial-interglacial rhythm of ice volume variations, enlarged during glacial times and dampened during interglacial times. However coherence of the MMV for these two proxies with the benthic δ¹⁸O stack are relatively weak and variable at the 41 kyr band (δ¹⁸Osp; Figure S4e,g) and 23-kyr band (Ca/Ti; Fig. S3a,c). These relationships demonstrate that ice volume directly modulates the MMV of the EASM, predominantly at the 100 kyr band, with high ice volume corresponding to larger MMV.

GHG concentration is another potential driver of abrupt climate changes (Ruddiman and Raymo, 2003; Alvarez-Solas et al., 2011; Hopcroft et al., 2014; Zhang et al., 2017). Wavelet coherence between the MMV of loess Ca/Ti, speleothem δ¹⁸O and the record of GHG RF show excellent coherence and ~180° phase at the 100-kyr eccentricity band (Fig. 3b, d and Fig. S4b, d) indicating strong MMV at times of low GHG. Given the coupled nature of global ice-volume and
atmospheric GHG, it is clear that over the late Pleistocene glacial-interglacial cycles, these two factors modulate the MMV of the EASM as recorded by Ca/Ti and speleothem δ18O such that abrupt climate change is amplified during times of high ice volume and low GHG concentration. However, this is not the case for the precession band. MMV of loess Ca/Ti displays discrete intervals high coherence and near-zero phase with GHG RF at the precession band (Figure 3b, d), which is not the case for speleothem δ18O (Figure S4b, d). Thus, GHG RF does play a role in modulating Ca/Ti MMV but not that of δ18Osp at the precession band, indicating a difference in the millennial-scale response of these two proxies at this time-scale. We investigate this further by assessing the response to local insolation forcing.

The MMV of Ca/Ti show discontinuous relatively weak coherence with 35°N summer insolation at the precession band with even weaker coherence at the 41-kyr band (Figure 3a, c); we note that the summer insolation modulation is less strong relative to that of GHG at the precession band (Figure 3b, d). In contrast, the MMV of δ18Osp displays high coherence and zero phase with 35°N winter insolation at 100 kyr period, relatively weaker coherence, with a lagging phase, at the 41 kyr band, and negligible coherence at the 23-kyr band (Figure S4a, c). These results indicate that the MMV of speleothem δ18O is modulated by local winter insolation, opposite to the Cheng et al., (2016) hypothesis calling on north hemisphere summer insolation.

Mechanism and implication for modulation of EASM MMV

At glacial-interglacial time scales, the MMV is amplified under the glacial boundary conditions. These millennial-scale variability recorded in loess and cave records is thought dynamic linked with high latitude North Atlantic Heinrich and DO events (Cheng et al., 2009, 2016; Sun et al., 2012, 2021a, b). They are thought to be controlled by ice volume and freshwater perturbation / Northern Hemisphere ice sheet changes, respectively and associated with Atlantic meridional overturning circulation (AMOC) changes (McManus et al., 1999; Hemming, 2004; Hodell et al., 2008; Naffs et al., 2013; Zhang et al., 2013; Menviel et al., 2014). At the intermediate heights (volume) of the ice sheets, minor changes in the height of Northern Hemisphere ice sheet and atmospheric CO2 concentrations can trigger the rapid climate transitions (Zhang et al., 2014, 2017). Altering the height of Northern Hemisphere ice sheets (NHISs) lead to changes in the gyre circulation and sea-ice coverage by shifting the Northern westerlies (Zhang et al., 2014). The maximum westerly wind stress shifts northwards associated with gradual increase of the Northern
Hemisphere ice volume. This, in turn, encourages the EAM move northward and results in increases in the MMV of EASM rainfall (especially northern China). In addition, CO₂ is supposed to act as an internal feedback agent to AMOC changes (Baker et al., 2007, 2016). Under intermediate glacial condition, when the AMCO reaches a regime of bi-stability, rising CO₂ during Heinrich Stadial cold events can trigger abrupt transitions to warm conditions. Decreasing CO₂ during warm events leads to abrupt cooling transitions (Zhang et al., 2017). Therefore, CO₂ generally provides a negative feedback on MMV of EASM rainfall. During interglacial times, decreasing ice volume, accompanied by reduced sea ice and stronger freshwater perturbation, is correlated with lower frequency and smaller amplitude variability. The increasing GHG concentrations in atmosphere would further alter the sea surface temperature by greenhouse effect and then modulate the MMV sequentially.

At the precession band, higher GHG concentration and local insolation correspond to larger MMV of subtropical rainfall. Recent transient sensitivity experiments of δ¹⁸Osp suggests that millennial-scale rainfall variability is driven primarily by meltwater and secondarily by insolation (He et al., 2021). During interglacial times under the combined influence of insolation and CO₂, model simulation shows that when insolation reaches the lower “threshold” value (358.2 and 352.1 W. m⁻²), it triggers a strong abrupt weakening of the AMOC and results in abrupt cooling transitions over last 800ka (Yin et al., 2021). Increased insolation could warm sea surface temperature and accelerate freshwater input from high latitude ice sheet as well as altering GHG concentration in the atmosphere (Lewkowicz and Way, 2019; Zheng et al., 2020), which could, in turn, modulate MMV changes in the low latitude monsoon regions.

If both millennial-scale Ca/Ti and δ¹⁸Osp represent subtropical rainfall amount, the modulation factors should be consistent. However, eccentricity, obliquity and precession bands MMV modulators differ for loess Ca/Ti and δ¹⁸Osp, indicating they monitor different aspects of millennial-scale monsoon circulations. Modern observations and Lagrangian trajectories of air parcels in China during the summer monsoon indicate that moisture-induced precipitation doesn’t derive from the strongest water vapor pathways (Sun et al., 2011; Jiang et al., 2017); local water vapor recycling contributes significantly to regional precipitation in East China (over 30%) and North China (exceeding 55%) (Shi et al., 2020). Hence, we speculate that δ¹⁸Osp MMV monitors changes in the isotopic composition of rainfall, varying with changes in westerly transport paths
associated with North Atlantic cooling events, consistent with the MMV of 18Osp being closely
linkage to winter insolation at 100- and 41- kyr periods and the absence of MMV modulation at
precession band. We further hypothesize that Ca/Ti mainly represents the MMV in local rainfall
amount, consistent with the MMV of tropical rainfall being more dynamically related to GHG and
summer insolation at precession band.

In recent decades atmospheric GHG concentration is accelerating due to anthropogenic
contribution of fossil fuels suggesting that EASM (extreme) precipitation will increase as well.
This inference is consistent with model simulations indicating that the number of extreme daily
precipitation events and mean precipitation overall will increase significantly in response to higher
GHG concentration (Dairaku and Emori, 2006; Li et al., 2015; Li and Ting, 2017). The
anthropogenic GHG-evoked warming is projected to increase the lower-tropospheric water vapor
content and enhance the thermal contrast between land and ocean (Kitoh et al., 1997; Hu et al.,
2000; Ashrit et al., 2003). This will give rise to a northward shift of lower tropospheric monsoon
circulation and an increase rainfall during the East Asian summer monsoon (Vecchi and Soden,
2007; Held and Soden 2006). Our results indicate that factors modulating EASM precipitation
MMV in the past are consistent with those predicted to influence future changes in monsoonal
precipitation, lending further confidence in those projections.

5. Summary

Our high-resolution loess Ca/Ti record displays millennial monsoon oscillations were
persistent over the last 650 kyr. Wavelet results highlights the remarkable GHG modulation at both
100 kyr and precession band as well as ice volume at 100 kyr period and local insolation forcing at
precession band. The MMV of loess Ca/Ti and speleothem 18O are modulated by different orbital
factors, implying that these two proxies document different climatic response of millennial-scale
monsoon circulations. The underlying dynamics on how these internal and external factors
modulate the MMV still needs further model testing. In recent decades, atmospheric GHG
concentration is dramatically increasing due to anthropogenic contribution of fossil fuels
(Bousquet et al., 2006; Davis et al., 2010), resulting in accelerated melting of ice-sheets in bi-polar
regions (Swingedouw et al., 2008; Pattyn et al., 2018; Golledge et al., 2019). Their combined
effects lead to more frequently occurrence of extreme rainfall (Dairaku and Emori, 2006; Li et al.,
2015; Li and Ting, 2017; IPCC, 2018). Our results indicate that the MMV EASM rainfall can be
modulated by ice volume, GHG, and insolation factors, consistent with those predictions to influence future changes in monsoonal precipitation.

Acknowledgments
We thank Xiaojing Du for offering idea on potential model test for this paper. This work was supported by grants from the Strategic Leading Research Program of Chinese Academy of Science (XDB40000000) and National Natural Science Foundation of China (41525008 and 41977173). Loess Ca/Ti of this research is temporarily available as a supporting information file.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References
Alvarez-Solas, J., Charbit, S., Ramstein, G., Paillard, D., Dumas, C., Ritz, C., & Roche, D. M. (2011). Millennial-scale oscillations in the Southern Ocean in response to atmospheric CO$_2$ increase. Global and Planetary Change, 76(3-4), 128-136. https://doi.org/10.1016/j.gloplacha.2010.12.004

An, Z., Liu, T., Lu, Y., Porter, S.C., Kukla, G., Wu, X., & Hua, Y. (1990). The long-term paleomonsoon variation recorded by the loess-paleosol sequence in central China. Quaternary International, 7, 91-95. https://doi.org/10.1016/1040-6182(90)90042-3

An, Z. (2000). The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 19(1-5), 171-187. https://doi.org/10.1016/S0277-3791(99)00060-8

An, Z., Clemens, S.C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W. L., Luo, J., Wang, S., Xu, H., Cai, Y., Zhou, W., Liu, X., Liu, W., Shi, Z., Yan, L., Xiao, X., Chang, H., Wu, F., Ai, L., & Lu, F. (2011). Glacial-interglacial Indian summer monsoon dynamics. Science, 333(6043), 719-723. https://doi.org/10.1126/science.1203752

An, Z., Wu, G., Li, L., Li, J., Sun, Y., Liu, Y., Zhou, W., Cai, Y., Duan, A., Li, L., Mao, J., Cheng, H., Shi, Z., Tan, L., Yan, H., Ao, H., Chang, H., & Feng, J. (2015). Global monsoon dynamics and climate change. Annual review of earth and planetary sciences, 43, 29-77. https://doi.org/10.1146/annurev-earth-060313-054623

Alley, R. B., Clark, P. U., Keigwin, L. D., & Webb, R. S. (1999). Making sense of millennial-scale climate change. Geophysical Monograph-American Geophysical Union, 112, 385-394.
Ashrit, R. G., Douville, H., & Kumar, K. R. (2003). Response of the Indian monsoon and ENSO-monsoon teleconnection to enhanced greenhouse effect in the CNRM coupled model. Journal of the Meteorological Society of Japan. Ser. II, 81(4), 779-803.

Bailey, I., Bolton, C. T., DeConto, R. M., Pollard, D., Schiebel, R., & Wilson, P. A. (2010). A low threshold for North Atlantic ice rafting from “low - slug slippery” late Pliocene ice sheets. Paleoceanography, 25(1). https://doi.org/10.1029/2009PA001736

Barker, S., & Knorr, G. (2016). A paleo-perspective on the AMOC as a tipping element. PAGES Magazine, 24(1), 14-15. http://orca.cardiff.ac.uk/id/eprint/95186

Barker, S., & Knorr, G. (2007). Antarctic climate signature in the Greenland ice core record. Proceedings of the National Academy of Sciences, 104(44), 17278-17282. https://doi.org/10.1073/pnas.0708494104

Barker, S., Knorr, G., Edwards, R. L., Parrenin, F., Putnam, A. E., Skinner, L. C., Wolff, E. & Ziegler, M. (2011). 800,000 years of abrupt climate variability. Science, 334(6054), 347-351. https://doi.org/10.1126/science.1203580

Bond, G., Broecker, W., Johnsen, S., McManus, J., Labeyrie, L., Jouzel, J., & Bonani, G. (1993). Correlations between climate records from North Atlantic sediments and Greenland ice. Nature, 365(6442), 143-147. https://doi.org/10.1038/365143a0

Bond, G., Heinrich, H., Broecker, W., Labeyrie, L., McManus, J., Andrews, J., Huon, S., Jantschik, R., Clasen, S., Simet, C., Tedesco, K., Klas, M., Bonani, G., & Ivy, S. (1992). Evidence for massive discharges of icebergs into the North Atlantic ocean during the last glacial period. Nature, 360(6401), 245-249. https://doi.org/10.1038/360245a0

Bousquet, P., Ciais, P., Miller, J. B., Dlugokencky, E. J., Hauglustaine, D. A., Prigent, C., & White, J. (2006). Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443(7110), 439-443. https://doi.org/10.1038/nature05132

Broecker, W. S. (1994). Massive iceberg discharges as triggers for global climate change. Nature, 372(6505), 421-424. https://doi.org/10.1038/372421a0

Cheng, H., Edwards, R.L., Broecker, W.S., Denton, G.H., Kong, X., Wang, Y., Zhang, R., & Wang, X. (2009). Ice age terminations. Science, 326(5950), 248-252. https://doi.org/10.1126/science.1177840

Cheng, H., Edwards, L., Sinha, A., Spötl, C., Yi, L., Chen, S., Kelly, M., Kathayat, G., Wang, X.F., Li, X.L., Kong, X.G., Wang, Y.J., Ning, Y.F., Zhang, H.W. (2016). The Asian monsoon over the past 640,000 years and ice age terminations. Nature, 534(7609), 640-646. https://doi.org/10.1038/nature18591

Clark, P. U., Marshall, S. J., Clarke, G. K., Hostetler, S. W., Licciardi, J. M., & Teller, J. T., (2001). Freshwater forcing of abrupt climate change during the last glaciation. Science, 293(5528), 283-287. https://doi.org/10.1126/science.1062517
Clemens, S. C., Holbourn, A., Kubota, Y., Lee, K. E., Liu, Z., Chen, G., Nelson, A., Fox-Kemper, B. (2018). Precession-band variance missing from East Asian monsoon runoff. Nature communications, 9(1), 1-12. https://doi.org/10.1038/s41467-018-05814-0

Clemens, S. C., Prell, W. L., & Sun, Y. (2010). Orbital - scale timing and mechanisms driving Late Pleistocene Indo-Asian summer monsoons: Reinterpreting cave speleothem δ 18O. Paleoceanography, 25(4). https://doi.org/10.1029/2010PA001926

Cook, E. R., Anchukaitis, K. J., Buckley, B. M., D’Arrigo, R. D., Jacoby, G. C., & Wright, W. E. (2010). Asian monsoon failure and megadrought during the last millennium. Science, 328(5977), 486-489. https://doi.org/10.1126/science.1185188

Dansgaard, W., Clausen, H. B., Gundestrup, N., Hammer, C. U., Johnsen, S. F., Kristinsdottir, P. M., & Reeh, N. (1982). A new Greenland deep ice core. Science, 218(4579), 1273-1277. https://doi.org/10.1126/science.218.4579.1273

Dansgaard, W., Johnsen, S. J., Clausen, H. B., Dahl-Jensen, D., Gundestrup, N. S., Hammer, C. U., & Bond, G. (1993). Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218-220. https://doi.org/10.1038/364218a0

Dairaku, K., & Emori, S. (2006). Dynamic and thermodynamic influences on intensified daily rainfall during the Asian summer monsoon under doubled atmospheric CO2 conditions. Geophysical Research Letters, 33(1). https://doi.org/10.1029/2005GL024754

Davis, S. J., Caldeira, K., & Matthews, H. D. (2010). Future CO2 emissions and climate change from existing energy infrastructure. Science, 329(5997), 1330-1333. https://doi.org/10.1126/science.1188566

Ding, Z.L., Sun, J., Rutter, N.W., Rokosh, D., & Liu, T. (1999). Changes in sand content of loess deposits along a north-south transect of the Chinese Loess Plateau and the implications for desert variations. Quaternary Research, 52(1), 56-62. https://doi.org/10.1006/qres.1999.2045

Ding, Y., H., & Chan, J. (2005). The East Asian summer monsoon: an overview. Meteorology and Atmospheric Physics, 89(1), 117-142. https://doi.org/10.1007/s00703-005-0125-z

Friedrich, T., Timmermann, A., Timm, O., Mouchet, A., & Roche, D. M. (2009). Orbital modulation of millennial-scale climate variability in an earth system model of intermediate complexity. Climate of the Past Discussions, 5(4), 2019-2051. https://doi.org/10.5194/cpd-5-2019-2009

Golledge, N. R., Keller, E. D., Gomez, N., Naughten, K. A., Bernales, J., Trusel, L. D., & Edwards, T. L. (2019). Global environmental consequences of twenty-first-century ice-sheet melt. Nature, 566(7742), 65-72. https://doi.org/10.1038/s41586-019-0889-9

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear processes in geophysics, 11(5/6), 561-566. https://doi.org/10.5194/npg-11-561-2004

Guo, F., Clemens, S. C., Wang, T., Wang, Y., Liu, Y., Wu, F., Jin, Z., & Sun, Y. (2021). Monsoon variations inferred from high-resolution geochemical records of the Linxia loess/paleosol...
sequence, western Chinese Loess Plateau. Catena, 198, 105019.

Guo, Z., Liu, T., Guiot, J., Wu, N., Lü, H., Han, J., Gu, Z. (1996). High frequency pulses of East Asian monsoon climate in the last two glaciations: link with the North Atlantic. Climate Dynamics, 12(10), 701-709. https://doi.org/10.1007/s003820050137

Guo, Z., Zhou, X., & Wu, H. (2012). Glacial-interglacial water cycle, global monsoon and atmospheric methane changes. Climate Dynamics, 39(5), 1073-1092. https://doi.org/10.1007/s00382-011-1147-5

He, C., Liu, Z., Otto-Bliesner, B.L., Brady, E.C., Zhu, C., Tomas, R., Clark, P.U., Zhu, J., Jahn, A., Gu, S., Zhang, J., Nusbaumer, J., Noone, D., Cheng, H., Wang, Y., Yan, M., & Bao, Y. (2021). Hydroclimate footprint of pan-Asian monsoon water isotope during the last deglaciation. Science Advances, 7(4), eabe2611. https://doi.org/10.1126/sciadv.eabe2611

Heinrich, H. (1988). Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years, Quaternary research, 29(2), 142-152. https://doi.org/10.1016/0033-5894(88)90057-9

Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. Journal of climate, 19(21), 5686-5699. https://doi.org/10.1175/JCLI3990.1

Hemming, S. R. (2004). Heinrich events: Massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Reviews of Geophysics, 42(1). https://doi.org/10.1029/2003RG000128

Hodell, D. A., Channell, J. E., Curtis, J. H., Romero, O. E., & Röhl, U. (2008). Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (~640 ka). Paleoceanography, 23(4). https://doi.org/10.1029/2008PA001591

Hoegh-Guldberg, O., Jacob, D., Bindi, M., et al., (2018). Impacts of 1.5°C global warming on natural and human systems. Global warming of 1.5°C. An IPCC Special Report. IPCC Secretariat, 175-311. http://hdl.handle.net/10138/311749

Hopcroft, P. O., Valdes, P. J., Wania, R., & Beerling, D. J. (2014). Limited response of peatland CH4 emissions to abrupt Atlantic Ocean circulation changes in glacial climates. Climate of the Past, 10(1), 137-154. https://doi.org/10.5194/cp-10-137-2014

Huang, R., Chen, J., & Huang, G. (2007). Characteristics and variations of the East Asian monsoon system and its impacts on climate disasters in China. Advances in Atmospheric Sciences, 24(6), 993-1023. https://doi.org/10.1007/s00376-007-0993-x

Huang, R., Liu, Y., Du, Z., Chen, J., & Huangfu, J. (2017). Differences and links between the East Asian and South Asian summer monsoon systems: Characteristics and variability. Advances in Atmospheric Sciences, 34(10), 1204-1218. https://doi.org/10.1007/s00376-017-7008-3

Hu, Z. Z., Latif, M., Roeckner, E., & Bengtsson, L. (2000). Intensified Asian summer monsoon and its variability in a coupled model forced by increasing greenhouse gas concentrations. Geophysical Research Letters, 27(17), 2681-2684. https://doi.org/10.1029/2000GL011550
Jiang, Z., Jiang, S., Shi, Y., Liu, Z., Li, W., & Li, L. (2017). Impact of moisture source variation on decadal-scale changes of precipitation in North China from 1951 to 2010. Journal of Geophysical Research: Atmospheres, 122(2), 600-613. https://doi.org/10.1002/2016JD025795

Kitoh, A., Yukimoto, S., Noda, A., & Motoi, T. (1997). Simulated changes in the Asian summer monsoon at times of increased atmospheric CO2. Journal of the Meteorological Society of Japan. Ser. II, 75(6), 1019-1031. https://doi.org/10.2151/jmsj1965.75.6_1019

Lai, Z. P., & Wintle, A. G. (2006). Locating the boundary between the Pleistocene and the Holocene in Chinese loess using luminescence. The Holocene, 16(6), 893-899. https://doi.org/10.1191/0959683606hol980rr

Lai, Z., Wintle, A. G., & Thomas, D. S. (2007). Rates of dust deposition between 50 ka and 20 ka revealed by OSL dating at Yuanbao on the Chinese Loess Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 248(3-4), 431-439. https://doi.org/10.1016/j.palaeo.2006.12.013

Lewkowicz, A. G., & Way, R. G. (2019). Extremes of summer climate trigger thousands of thermokarst landslides in a High Arctic environment. Nature communications, 10(1), 1-11. https://doi.org/10.1038/s41467-019-09314-7

Li, F. X., Zhang, S. Y., Chen, D., He, L., & Gu, L. L. (2017). Inter-decadal variability of the east Asian summer monsoon and its impact on hydrologic variables in the Haihe River Basin. China, J. Resour. Ecol, 8(2), 174-375. https://doi.org/10.5814/j.issn.1674-764X.2017.02.008

Li, X., & Ting, M. (2017). Understanding the Asian summer monsoon response to greenhouse warming: The relative roles of direct radiative forcing and sea surface temperature change. Climate Dynamics, 49(7), 2863-2880. https://doi.org/10.1007/s00382-016-3470-3

Li, X., Ting, M., Li, C., & Henderson, N. (2015). Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. Journal of Climate, 28(10), 4107-4125. https://doi.org/10.1175/JCLI-D-14-00559.1

Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1). https://doi.org/10.1029/2004PA001071

Liu, J., Wang, B., Cane, M. A., Yim, S. Y., & Lee, J. Y. (2013). Divergent global precipitation changes induced by natural versus anthropogenic forcing. Nature, 493(7434), 656-659. https://doi.org/10.1038/nature11784

MacAyeal, D. R. (1993). Binge/purge oscillations of the Laurentide Ice Sheet as a cause of the North Atlantic’s Heinrich events, Paleoceanography 8(6), 775-784. https://doi.org/10.1029/93PA02200

McManus, J. F., Oppo, D. W., & Cullen, J. L. (1999). A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. science, 283(5404), 971-975. https://doi.org/10.1126/science.283.5404.971

Menven, L., Timmermann, A., Friedrich, T., & England, M. H. (2014). Hindcasting the continuum of Dansgaard-Oeschger variability: mechanisms, patterns and timing. Climate of the Past, 10(1),
B. Stein, Y., (2013). Millennial-scale ice rafting events and Hudson Strait Heinrich (-like) Events during the late Pliocene and Pleistocene: a review. Quaternary Science Reviews, 80, 1-28. https://doi.org/10.1016/j.quascirev.2013.08.014

Pattyn, F., Ritz, C., Hanna, E., Asay-Davis, X., DeConto, R., Durand, G., & Van den Broeke, M., (2018). The Greenland and Antarctic ice sheets under 1.5 C global warming. Nature Climate Change, 8(12), 1053-1061. https://doi.org/10.1038/s41558-018-0305-8

Porter, S. C., & Zhisheng, A. (1995). Correlation between climate events in the North Atlantic and China during the last glaciation. Nature, 375(6529), 305-308. https://doi.org/10.1038/375305a0

Ramaswamy, V. et al. Radiative forcing of climate change in Climate Change 2001: The Scientific Basis, Houghton, J. T. et al. eds, Cambridge University Press, 349-416.

Rao, Z., Chen, F., Cheng, H., Liu, W., Lai, Z., & Bloemendal, J. (2013). High-resolution summer precipitation variations in the western Chinese Loess Plateau during the last glacial. Scientific Reports, 3(1), 1-6. https://doi.org/10.1038/srep02785

Ruddiman, W. F., & Raymo, M. E. (2003). A methane-based time scale for Vostok ice. Quaternary Science Reviews, 22(2-4), 141-155. https://doi.org/10.1016/S0277-3791(02)00082-3

Shackleton, N. J., Hall, M. A., & Vincent, E. (2000). Phase relationships between millennial-scale events 64,000-24,000 years ago. Paleoceanography, 15(6), 565-569. https://doi.org/10.1029/2000PA000513

Shi, Y., Jiang, Z., Liu, Z., & Li, L. (2020). A Lagrangian analysis of water vapor sources and pathways for precipitation in East China in different stages of the East Asian summer monsoon. Journal of Climate, 33(3), 977-992. https://doi.org/10.1175/JCLI-D-19-0089.1

Sun, B., Zhu, Y., & Wang, H. (2011). The recent interdecadal and interannual variation of water vapor transport over eastern China. Advances in Atmospheric Sciences, 28(5), 1039-1048. https://doi.org/10.1007/s00376-010-0093-1

Sun, Y., Clemens, S. C., An, Z., & Yu, Z. (2006). Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews, 25(1-2), 33-48. https://doi.org/10.1016/j.quascirev.2005.07.005

Sun, Y., Clemens, S., Guo, F., Liu, X., Wang, Y., Yan, Y., & Liang, L. (2021). High-sedimentation-rate loess records: A new window into understanding orbital-and millennial-scale monsoon variability. Earth-Science Reviews, 103731. https://doi.org/10.1016/j.earscirev.2021.103731

Sun, Y., Clemens, S. C., Morrill, C., Lin, X., Wang, X., & An, Z. (2012). Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience, 5(1), 46-49. https://doi.org/10.1038/ngeo1326

Sun, Y., Kutzbach, J., An, Z., Clemens, S., Liu, Z., Liu, W., ... & Li, Y. (2015). Astronomical and glacial forcing of East Asian summer monsoon variability. Quaternary Science Reviews, 115, 132-142. https://doi.org/10.1016/j.quascirev.2015.03.009
Sun, Y., Liang, L., Bloemendal, J., Li, Y., Wu, F., Yao, Z., & Liu, Y. (2016). High-resolution scanning XRF investigation of Chinese loess and its implications for millennial-scale monsoon variability. Journal of Quaternary Science, 31(3), 191-202. https://doi.org/10.1002/jqs.2856

Sun, Y., Yin, Q., Crucifix, M., Clemens, C., Araya-Melo, P., Liu, W., Qiang, X., Liu, Q., Zhao, H., Liang, L., Chen, H., Li, Y., Zhang, L., Dong, G., Li, M., Zhou, W., Berger, A., & An, Z. (2019). Diverse manifestations of the mid-Pleistocene climate transition. Nature communications, 10(1), 1-11. https://doi.org/10.1038/s41467-018-08257-9

Swingedouw, D., Fichefet, T., Huybrechts, P., Goosse, H., Driesschaert, E., & Loutre, M. F. (2008). Antarctic ice-sheet melting provides negative feedbacks on future climate warming. Geophysical Research Letters, 35(17). https://doi.org/10.1029/2008GL034410

Thirumalai, K., Clemens, S. C., & Partin, J. W. (2020). Methane, Monsoons, and Modulation of Millennial-Scale Climate. Geophysical Research Letters, 47(9), e2020GL087613. https://doi.org/10.1029/2020GL087613

Vecchi, G. A., & Soden, B. J. (2007). Global warming and the weakening of the tropical circulation. Journal of Climate, 20(17), 4316-4340. https://doi.org/10.1175/JCLI4258.1

VanderPlas, J. T. (2018). Understanding the Lomb-scargle periodogram. The Astrophysical Journal Supplement Series, 236(1), 16. https://doi.org/10.3847/1538-4365/aab766

Wang, B., & Ding, Q. (2008). Global monsoon: Dominant mode of annual variation in the tropics. Dynamics of Atmospheres and Oceans, 44(3-4), 165-183. https://doi.org/10.1016/j.dynatmoce.2007.05.002

Wang, P. (2009). Global monsoon in a geological perspective. Chinese Science Bulletin, 54(7), 1113-1136. https://doi.org/10.1007/s11434-009-0169-4

Wara, M. W., Ravelo, A. C., Revenaugh, J. S., 2000. The pacemaker always rings twice. Paleoceanography 15(6), 616-624. https://doi.org/10.1029/2000PA000500

Webster, P. J., Magana, V. O., Palmer, T. N., Shukla, J., Tomas, R. A., Yanai, M. U., & Yasunari, T. (1998). Monsoons: Processes, predictability, and the prospects for prediction. Journal of Geophysical Research: Oceans, 103(C7), 14451-14510. https://doi.org/10.1029/97JC02719

Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen, C. C., & Dorale, J. A. (2001). A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science, 294(5550), 2345-2348. https://doi.org/10.1126/science.1064618

Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X., Chen, S., & An, Z. (2008). Millennial-and orbital-scale changes in the East Asian monsoon over the past 224,000 years. Nature, 451(7182), 1090-1093. https://doi.org/10.1038/nature06692

Wang, Y., Guo, F., Ma, L., Yan, Y., Liu, X., & Sun, Y. (2020). Millennial-scale summer monsoon oscillations over the last 260 ka revealed by high-resolution elemental results of the Mangshan loess-palaeosol sequence from the southeastern Chinese Loess Plateau. Quaternary International, 552, 164-174. https://doi.org/10.1016/j.quaint.2020.05.039

Wu, S., Hu, Z., Wang, Z., Cao, S., Yang, Y., Qu, X., & Zhao, W. (2021). Spatiotemporal variations
in extreme precipitation on the middle and lower reaches of the Yangtze River Basin (1970 – 2018). Quaternary International, 592, 80-96. https://doi.org/10.1016/j.quaint.2021.04.010

Yang, S., & Ding, Z. (2014). A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability. Geochemistry, Geophysics, Geosystems, 15(3), 798-814. https://doi.org/10.1002/2013GC005113

Yancheva, G., Nowaczyk, N.R., Mingram, J., Dulski, P., Schettler, G., Negendank, J.F.W., Liu, J., Sigman, D.M., Peterson, L.C., & Haug, G. H. (2007). Influence of the intertropical convergence zone on the East Asian monsoon. Nature, 445(7123), 74-77. https://doi.org/10.1038/nature05431

Yin, Q. Z., Wu, Z. P., Berger, A., Goosse, H., & Hodell, D. (2021). Insolation triggered abrupt weakening of Atlantic circulation at the end of interglacials. Science, 373(6558), 1035-1040. https://doi.org/10.1126/science.abg1737

Zhang, H., Griffiths, M. L., Chiang, J. C. H., Kong, W., Wu, S., Atwood, A., Huang, J., Cheng, H., Ning, Y., & Xie, S. (2018). East Asian hydroclimate modulated by the position of the westerlies during Termination I. Science, 362(6414), 580-583. https://doi.org/10.1126/science.aat9393

Zhang, X., Knorr, G., Lohmann, G., & Barker, S. (2017). Abrupt North Atlantic circulation changes in response to gradual CO₂ forcing in a glacial climate state. Nature Geoscience, 10(7), 518-523. https://doi.org/10.1038/ngeo2974

Zhang, X., Lohmann, G., Knorr, G., & Purcell, C. (2014). Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 512(7514), 290-294. https://doi.org/10.1038/nature13592

Zhang, X., Lohmann, G., Knorr, G., & Xu, X. (2013). Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Climate of the Past, 9(5), 2319-2333. https://doi.org/10.5194/cp-9-2319-2013

Zheng, Y., Fang, Z., Fan, T., Liu, Z., Wang, Z., Li, Q., Pancost, R., & Naafs, B. D. A. (2020). Operation of the boreal peatland methane cycle across the past 16 ky. Geology, 48(1), 82-86. https://doi.org/10.1130/G46709.1
Fig. 1 Variations of mean grain size, Ca/Ti over last 650 ka and age model of Linxia loess section.

Comparison of mean grain size and Ca/Ti in Linxia section with Sanbao-Hulu (Cheng et al., 2009, 2016) and benthic δ¹⁸O stack (Lisiecki and Raymo, 2005). The dark brown squares, blue triangles and red dots represent the first (glacial-interglacial transition), second (precession cycles) and third (millennial-scale events) class age control points at the corresponding position of cave record, respectively (Sun et al., 2021). Light blue bands donate the interglacial times.
Fig. 2 Raw datasets, millennial-scale components (10 ka high pass filtering signals) and MMV of the Linxia loess Ca/Ti record over the past 650 ka with their corresponding spectra. The orbital bands are marked with red dashed lines (eccentricity-100 ka, obliquity-41 ka, precession-23 ka and 19 ka). Clearly variable eccentricity, obliquity and precession variances as well as persistent millennial-scale components are observed for loess Ca/Ti.
Fig. 3 Comparison of a) 35°N summer insolation and b) GHG radiative forcing (black dashed line donates the precession band-pass filtering results of GHG) for MMV of Linxia loess Ca/Ti; Wavelet coherence between c) 35°N summer insolation, d) GHG concentration and MMV of loess Ca/Ti over the past 650 ka. The orbital bands are marked with red dashed lines (eccentricity-100 kyr, obliquity-41 kyr, precession-23 kyr and 19 kyr). The black outlines indicate coefficients of determination greater than 0.76. The black arrows represent the phrase relationship with rightward, upward and downward arrows indicating in-phase, leading and lagging phase, respectively. Strong eccentricity- and precession-band GHG modulation as well as weak summer insolation forcing are observed for MMV of loess Ca/Ti.
Supporting Information for

Greenhouse gases modulate strength of millennial subtropical rainfall and future forecasts

Fei Guo1,2,*, Steven C. Clemens2,*, Yuming Liu1,3, Ting Wang1,3, Huimin Fan1, Xingxing Liu1, Youbin Sun1,4,5

1State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xian 710061, China.
2Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI 02912-1846, USA
3University of Chinese Academy of Sciences, Beijing 100049, China
4CAS Center for Excellence in Quaternary Science and Global Change, Xian 710061, China.
5Open Studio for Oceanic-Continental Climate and Environment Changes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266200, China.
Fig. S1 The location of the Linxia (LX) loess profile and Hulu-Sanbao cave records. The Linxia profile, located on the edge of convergence zone for alpine Qinghai-Tibet Plateau, northwest arid and the southeast monsoon area, is very sensitive to the migration of desert regions and monsoon rainfall. Sanbao-Hulu cave is located in monsoon-influenced Yangtze River Valley, sensitive to the monsoon-induced precipitation changes. Black dash line represents the scope of Chinese Loess Plateau.
Fig. S2 Raw datasets, millennial-scale components (10ka high pass filtering signals) and MMV of the speleothem d18O record over the past 650 ka with their corresponding spectra. The orbital bands are marked with red dashed lines (eccentricity-100 ka, obliquity-41 ka, precession-23 ka and 19 ka).
Fig. S3 Comparison of a) ice volume and b) ETP forcing for MMV of Linxia loess Ca/Ti; Wavelet coherence between c) ice volume, d) ETP and MMV of loess Ca/Ti over the past 650 ka. The orbital bands are marked with red dashed lines (eccentricity-100 kyr, obliquity-41 kyr, precession-23 kyr and 19 kyr). The black outlines denote coefficients of determination greater than 0.76. The black arrows represent the phase relationships with rightward, upward and downward arrows indicating in-phase, leading and lagging phase, respectively. Strong eccentricity, weak obliquity and precession bands ice volume modulation are observed for MMV of loess Ca/Ti.
Fig. S4 Comparison of (a) 30°N winter insolation, (b) GHG radiative forcing (black dash line) donates the precession band-pass filtering results of GHG), (c) ice volume and (d) ETP forcing for MMV of speleothem δ¹⁸O; Wavelet coherence between (e) 30°N winter insolation, (d) GHG, (g) ice volume, (h) ETP and MMV of speleothem δ¹⁸O over the past 640 ka. The orbital bands are marked with red dashed lines (eccentricity-100 kyr, obliquity-41 kyr, precession-23 kyr and 19 kyr). The black outlines denote coefficients of determination greater than 0.76. The black arrows represent the phase relationship with rightward, upward and downward arrows indicating in-prase, leading and lagging phrase, respectively. Strong ice volume, GHG and winter insolation modulation at 100 kyr band, relative weak ice volume and winter insolation forcing as well as unclear precession band modulation are observed for MMV of speleothem δ¹⁸O.