On p-adic vanishing cycles of log smooth families

Shuji Saito and Kanetomo Sato

1 Introduction

Let K be a henselian discrete valuation field of mixed characteristic $(0,p)$, with residue field k. Let O_K be the ring of integers in K, and let X be a regular scheme which is flat of finite type over $\text{Spec}(O_K)$. We consider cartesian squares of schemes

$$
\begin{array}{ccc}
X_K & \xrightarrow{j} & X \\
\downarrow & & \downarrow \\
\text{Spec}(K) & \xrightarrow{i} & \text{Spec}(O_K)
\end{array}
$$

The Kummer short exact sequence of étale sheaves on X_K

$$0 \rightarrow \mu_{p^n} \rightarrow \mathcal{O}_{X_K}^{\times} \xrightarrow{p^n} \mathcal{O}_{X_K}^{\times} \rightarrow 0$$

yields a long exact sequence of étale sheaves on X_k

$$0 \rightarrow i^* j_* \mu_{p^n} \rightarrow i^* j_* \mathcal{O}_{X_K}^{\times} \xrightarrow{p^n} i^* j_* \mathcal{O}_{X_K}^{\times} \xrightarrow{\delta} i^* R^1 j_* \mu_{p^n} \rightarrow i^* R^1 j_* \mathcal{O}_{X_K}^{\times} \rightarrow \cdots .$$

Since X is regular, we have $i^* R^1 j_* \mathcal{O}_{X_K}^{\times} = 0$ and the connecting map δ in this sequence induces an isomorphism

$$i^* R^1 j_* \mu_{p^n} \cong \text{Coker} \left(i^* j_* \mathcal{O}_{X_K}^{\times} \xrightarrow{p^n} i^* j_* \mathcal{O}_{X_K}^{\times} \right).$$

A motivation of this note is to extend this fundamental fact to higher cohomological degrees. More precisely, we are concerned with the surjectivity of a geometric version of Tate’s norm residue homomorphism

$$\vartheta_{X,n}^q : \mathcal{K}_q^M / p^n \rightarrow i^* R^\delta j_* \mu_{p^n}^q ,$$

where \mathcal{K}_q^M denotes a Milnor K-sheaf defined as a quotient of $(i^* j_* \mathcal{O}_{X_K}^{\times})^\otimes q$ and \mathcal{K}_q^M / p^n denotes the cokernel of the multiplication by p^n on \mathcal{K}_q^M, cf. [4] below. The sheaf $i^* R^\delta j_* \mu_{p^n}^q$ on the right hand side is, so called, the sheaf of p-adic vanishing cycles, which is an étale sheaf of arithmetic and geometric interest. In their paper [BK], Bloch and Kato proved that the map $\vartheta_{X,n}^q$ is surjective in the case where X is smooth over $\text{Spec}(O_K)$. Later in his paper [Hy], Hyodo extended this surjectivity to the case where X is a semistable family over
Spec(\(O_K\)). These surjectivity facts play a fundamental role in a construction of \(p\)-adic period maps in the \(p\)-adic Hodge theory cf. [Ku], [K2], [K5], [T1], [T2], [YY].

To state our main results more precisely, we introduce the following generalized situation with log poles. Let \(D\) be a normal crossing divisor on \(X\) which is flat over Spec(\(O_K\)), and let

\[\psi : U := X - (X_k \cup D) \hookrightarrow X\]

be the natural open immersion. We then have a version of symbol map with log poles

\[\varrho^q_{(X,D),n} : \mathcal{H}_q^M / p^n \longrightarrow M_n^q := i^* R^q \psi_* \mu_p^q,\]

where \(\mathcal{H}_q^M\) is again a Milnor K-sheaf defined as a quotient of \((i^* \psi_* \mathcal{O}_U^\times)^{\otimes q}\), cf. [4] below. Now we state a main result of this paper, where quasi-log smoothness is a generalization of log blow-ups, and then to reduce his assertion to the case that the \(q\)-th cohomology sheaf of \(S_n(q)_{(X,D)}\) is generated by symbols, which is rather a consequence of (1.2) and Theorem 1.1.

In his paper [12], Tsuji proves an isomorphism in the derived category of étale sheaves on \(X_k\)

\[S_n(q)_{(X,D)} \cong \tau_{\leq q} i^* R\psi_* \mu_p^q\] \(1.2\)

for quasi-log smooth \((X, D)\) assuming \(0 \leq q \leq p - 2\), where \(S_n(q)_{(X,D)}\) denotes a log syntomic complex. His strategy is to show that both hand sides in (1.2) are invariant under log blow-ups, and then to reduce his assertion to the case that \(X\) is smooth over Spec(\(O_K\)) (and \(D = \emptyset\)). This last case is due to Kurihara [Ku]. We will prove Theorem 1.1 using his arguments on log blow-ups, which is the first key ingredient of our results. We have to note that Theorem 1.1 does not follow from (1.2). Indeed, it is not clear that the \(q\)-th cohomology sheaf of \(S_n(q)_{(X,D)}\) is generated by symbols, which is rather a consequence of (1.2) and Theorem 1.1.

To continue the outline of our proof of Theorem 1.1 we introduce a subsheaf \(\mathcal{U}^1 \mathcal{H}_q^M\) of \(\mathcal{H}_q^M\), which is the subsheaf generated by the image of \(i^*(1 + \mathcal{I})^\times \otimes (i^* \psi_* \mathcal{O}_U^\times)^{\otimes (q-1)}\), where \(\mathcal{I}\) denotes the ideal sheaf of \(\mathcal{O}_X\) defining the reduced part \(Y := (X_k)_{\text{red}}\) of \(X_k\), and \((1 + \mathcal{I})^\times\) means the kernel of the map \(\mathcal{O}_X^\times \to i_* \mathcal{O}_Y^\times\). We will further introduce a multi-index descending filtration on \(\mathcal{U}^1 \mathcal{H}_q^M\), where the multi-indexes are assigned to irreducible components of \(X_k\), cf. Definition 4.2. To investigate the map \(\varrho^q_{(X,D),n}\), we will need to control the behavior of the sheaf

\[\mathcal{U}^1 M_1^n := \text{Im}(\mathcal{U}^1 \mathcal{H}_q^M \to M_1^n)\]

and a certain absolute logarithmic differential sheaf \(\omega^\log_{Y,\text{log}}\) under log blow-downs (see Lemma 5.10 below), which corresponds to a key computation by Hyodo in the semistable family case, cf. [Hy] Lemma (3.5). Our second key ingredient is the computations on the multi-graded quotients of the induced filtration on \(\mathcal{U}^1 M_1^n\), which will be carried out by ideas of Kato, who introduced a new Cartier operator on the absolute differential modules with log poles, cf. §3.2-4. By this computation on multi-graded quotients, the behavior of \(\mathcal{U}^1 M_1^n\) and \(\omega^\log_{Y,\text{log}}\) will be calculated by a result of Kato on the vanishing of the higher direct image of the
structure sheaf for log blow-ups [K4] Theorem 11.3. We would like to mention also that the
idea of our computation on multi-graded quotients of \(\mathcal{H}^1_{\mathcal{K}} \) has been used in a recent joint
paper of the first author with Rülling [RS].

Throughout this paper, we will work with the setting [1.4] stated below.

Definition 1.3 Let \(k \) be a field.

1. A normal crossing variety over \(k \) is a pure-dimensional scheme which is separated of
 finite type over \(k \) and everywhere étale locally isomorphic to
 \[\text{Spec} \left(k[T_0, \ldots, T_N]/(T_0 \cdots T_a) \right) \text{ for some } 0 \leq a \leq N := \dim(Y). \]

2. An admissible divisor on a normal crossing variety \(Y \) is a reduced effective Cartier
divisor \(E \) such that the immersion \(E \hookrightarrow Y \) is everywhere étale locally isomorphic to
 \[\text{Spec} \left(k[T_0, \ldots, T_N]/(T_0 \cdots T_a, T_{a+1} \cdots T_{a+b}) \right) \rightarrow \text{Spec} \left(k[T_0, \ldots, T_N]/(T_0 \cdots T_a) \right) \]
 for some \(a, b \geq 0 \) with \(a + b \leq N = \dim(Y) \).

Let \(K \) be a henselian discrete valuation field of characteristic 0 whose residue field \(k \) has
characteristic \(p > 0 \). Let \(O_K \) be the integer ring of \(K \). Unless mentioned otherwise, we do
not assume that \(k \) is perfect. Put \(B := \text{Spec}(O_K) \) and \(s := \text{Spec}(k) \).

Setting 1.4 \(X \) is a regular scheme of finite type over \(B \), and \(D \) is a reduced divisor on \(X \)
which is flat over \(B \) (\(D \) may be empty). We put \(Y := (X \times_B s)_{\text{red}} \), and assume the following
two conditions:

- The divisor \(Y \cup D \) has normal crossings on \(X \).
- \(Y \) is a normal crossing variety over \(s \), and \((D \times_B s)_{\text{red}} \) is an admissible divisor on \(Y \).

When \(k \) is perfect, the first condition implies the second condition.

2 Absolute differential modules with log poles

Let the notation be as in Setting [1.4]. Put
\[\mathcal{L} := j_* \mathcal{O}_U^+ \cap \mathcal{O}_X \subset j_* \mathcal{O}_U, \]
which we regard as a sheaf of commutative monoids by the multiplication of functions. Let
\[\alpha : i^* \mathcal{L} \longrightarrow \mathcal{O}_Y \]
be the natural map of étale sheaves, where \(i^* \) denotes the topological inverse image of étale
sheaves. In this section, we study the following étale sheaves.
Definition 2.1 (1) Let $\Omega^1_{/\mathbb{Z}}$ be the usual absolute Kähler differential sheaf on Y_{et}. We define the étale sheaf $\tilde{\omega}^1_Y$ on Y as the quotient sheaf of

$$\Omega^1_{/\mathbb{Z}} \oplus (\mathcal{O}_Y \otimes \mathcal{O}_U^\times)$$

divided by the \mathcal{O}_Y-submodule generated by local sections of the form

$$(d\alpha(x), 0) - (0, \alpha(x) \otimes x) \quad \text{with} \quad x \in i^* \mathcal{L}.$$

There is a logarithmic differential map

$$d \log : i^* j_* \mathcal{O}_U^\times \to \tilde{\omega}^1_Y, \quad x \mapsto (0, 1 \otimes x).$$

Put $\tilde{\omega}^0_Y := \mathcal{O}_Y$ and $\tilde{\omega}^q_Y := \wedge^q_{\mathcal{O}_Y} \tilde{\omega}^1_Y$ for $q \geq 2$.

(2) We define $\tilde{\mathcal{L}}^q_Y$ (resp. $\tilde{\mathcal{B}}^q_Y$) as the kernel of $d : \tilde{\omega}^q_Y \to \tilde{\omega}^{q+1}_Y$ (resp. the image of $d : \tilde{\omega}^{q-1}_Y \to \tilde{\omega}^q_Y$), and put

$$\tilde{\omega}^q_{Y, \text{log}} := \text{Im}(d \log : (i^* j_* \mathcal{O}_U^\times)^{\otimes q} \to \tilde{\omega}^q_Y).$$

Remark 2.2 The natural map $L \to \mathcal{O}_X$ gives a log structure on X in the sense of [K3]. In terms of log schemes, the sheaf $\tilde{\omega}^1_Y$ means the differential module $\omega^1_{(Y,L)/\mathbb{Z}}$ defined in loc. cit., (1.7), where L denotes the inverse image log structure of L onto Y (loc. cit., (1.4)).

Theorem 2.3 (1) The sheaf $\tilde{\omega}^0_Y$ is locally free over \mathcal{O}_Y.

(2) There is a unique isomorphism

$$C^{-1} : \tilde{\omega}^q_Y \xrightarrow{\sim} \mathcal{H}^q(\tilde{\omega}^\bullet_Y) = \tilde{\mathcal{L}}^q_Y / \tilde{\mathcal{B}}^q_Y$$

sending a local section $x \cdot d \log(y_1) \wedge \cdots \wedge d \log(y_q)$ with $x \in \mathcal{O}_Y$ and each $y_i \in i^* j_* \mathcal{O}_U^\times$, to $x^p \cdot d \log(y_1) \wedge \cdots \wedge d \log(y_q) + \tilde{\mathcal{B}}^q_Y$.

(3) There is a short exact sequence on Y_{et}

$$0 \longrightarrow \tilde{\omega}^q_{Y, \text{log}} \longrightarrow \tilde{\mathcal{L}}^q_Y \longrightarrow \mathcal{H}^q(\tilde{\omega}^\bullet_Y) \longrightarrow 0.$$

Proof. We first reduce the problem to the case that X is a regular semistable family over $B = \text{Spec}(\mathcal{O}_K)$. Note that we may work étale locally. Indeed, once we prove (2) étale locally, then the isomorphisms C^{-1} patch together automatically by the uniqueness. Assume the following three conditions (cf. Setting [1.4]):

- X is affine, and $Y = \text{Spec}(k[T_0, \ldots, T_N]/(T_0 \cdots T_a))$ for $0 \leq a \leq N := \dim(Y)$.
- The irreducible components of D are regular and principal.
• There exists a regular sequence t_0, \ldots, t_N of prime elements of $\Gamma(X, \mathcal{O}_X)$ such that t_λ lifts $T_\lambda \in \Gamma(Y, \mathcal{O}_Y)$ for $0 \leq \lambda \leq N$ and such that t_{a+1}, \ldots, t_{a+b} are uniformizers of the irreducible components of D for $0 \leq b \leq N - a$.

Let π be a prime element of O_K. We have

$$\pi = u t_0^{e_0} t_1^{e_1} \cdots t_a^{e_a}$$

(2.4) for some $u \in \Gamma(X, \mathcal{O}_X^\times)$ and some $e_0, \ldots, e_a \geq 1$. Put

$$X' := \text{Spec}(O_K[S_0, \ldots, S_N/(S_0 \cdots S_a - \pi)],$$

$$Y' := (X')_s = \text{Spec}(k[S_0, \ldots, S_N/(S_0 \cdots S_a)],$$

$$U' := \text{Spec}(K[S_0, \ldots, S_N, S_{a+1}, \ldots, S_{a+b}]/(S_0 \cdots S_a - \pi)).$$

Let j' (resp. i') be the open (resp. closed) immersion $U' \hookrightarrow X'$ (resp. $Y' \hookrightarrow X'$), and let β be the isomorphism of schemes

$$\beta : Y' \xrightarrow{\sim} Y', \quad S_\lambda \mapsto T_\lambda \quad (0 \leq \lambda \leq N).$$

Put $\mathcal{H} := \text{Ker}(\mathcal{O}_Y^\times \to \mathcal{O}_X^\times)$ and $\mathcal{H}' := \text{Ker}(\mathcal{O}_{Y'}^\times \to \mathcal{O}_{X'}^\times)$. By (2.4), $j'_* \mathcal{O}_Y^\times / \mathcal{O}_X^\times$ is a free abelian sheaf generated by t_0, \ldots, t_{a+b}. Similarly $j'_* \mathcal{O}_{Y'}^\times / \mathcal{O}_{X'}^\times$ is a free abelian sheaf generated by S_0, \ldots, S_{a+b}. Hence there is an isomorphism of sheaves on Y_{et}

$$\beta^*(j'_* \mathcal{O}_Y^\times / \mathcal{H}') \xrightarrow{\sim} i'_* j'_* \mathcal{O}_{Y'}^\times / \mathcal{H}'$$

that extends the isomorphism $\beta^* \mathcal{O}_Y^\times \xrightarrow{\sim} \mathcal{O}_X^\times$ and sends $S_\lambda \mapsto t_\lambda$ for $0 \leq \lambda \leq a + b$. By this isomorphism we see that $\beta^* \omega_Y^q \cong \omega_X^q$. Thus we are reduced to the case that X is a regular semistable family over B.

We assume that X is a regular semistable family over B in what follows. Let ω_Y^q be the cokernel of the map

$$\tilde{\omega}_Y^{-1} \longrightarrow \tilde{\omega}_Y^q, \quad x \mapsto d\log(\pi) \wedge x.$$

We have a short exact sequence of complexes

$$0 \longrightarrow \omega_Y^{-1} \xrightarrow{d\log(\pi)} \tilde{\omega}_Y^q \longrightarrow \omega_Y^q \longrightarrow 0$$

(2.5) and a short exact sequence of the q-th cohomology sheaves for any $q \geq 0$

$$0 \longrightarrow \mathcal{H}^{q-1}(\omega_Y^q) \xrightarrow{d\log(\pi)} \mathcal{H}^q(\tilde{\omega}_Y^q) \longrightarrow \mathcal{H}^q(\omega_Y^q) \longrightarrow 0,$$

(2.6) cf. [I2] Lemma A.7 with $m = 0$. We recall here the following facts due to Tsuji, loc. cit. Theorems A.3 and A.4 (cf. [K3] Proposition (3.10), Theorem (4.12) (1)):

Fact 2.7 (1) ω_Y^q is a locally free \mathcal{O}_Y-module, and there is a unique isomorphism

$$C^{-1} : \omega_Y^q \xrightarrow{\sim} \mathcal{H}^q(\omega_Y^q)$$

sending a local section of the form $x \cdot d\log(y_1) \wedge \cdots \wedge d\log(y_q)$ with $x \in \mathcal{O}_Y$ and each $y_i \in i'_* j'_* \mathcal{O}_{Y'}^\times$, to $x^p \cdot d\log(y_1) \wedge \cdots \wedge d\log(y_q) + d\omega_Y^q - 1$.

5
(2) Let V be an open subset of Y which is smooth over k and for which $D \times_X V$ is empty. Then the short exact sequence (2.5) splits on V as complexes. Consequently the exact sequence (2.6) splits on V, i.e., we have

$$H^q(\omega_Y^\bullet) \xrightarrow{\sim} H^q(\Omega_Y^\bullet) \oplus H^{q-1}(\Omega_Y^\bullet).$$

(3) There is a short exact sequence on Y_{et}

$$0 \longrightarrow \omega_{Y,\log}^q \longrightarrow \omega_Y^q \xrightarrow{1-C^{-1}} H^q(\omega_Y^\bullet) \longrightarrow 0,$$

where $\omega_{Y,\log}^q$ is defined as $\text{Im}(d\log : (i^*j_*\Omega_Y^\bullet)^{\otimes q} \to \omega_Y^q)$.

Theorem 2.3(1) follows from (2.5) and Fact 2.7(1). We prove Theorem 2.3(2). Let V be a dense open subset of Y which is smooth over k and for which $D \times_X V$ is empty. Let σ be the open immersion $V \hookrightarrow Y$. We first show that the canonical adjunction map

$$H^q(\omega_Y^\bullet) \longrightarrow \sigma_*\sigma^*H^q(\omega_Y^\bullet) \cong \sigma_*\left(H^q(\Omega_Y^\bullet) \oplus H^{q-1}(\Omega_Y^\bullet) \right)$$

(2.8)

is injective. Indeed by (2.6) there is a commutative diagram with exact rows

$$
\begin{array}{c}
0 \longrightarrow H^{q-1}(\omega_Y^\bullet) \xrightarrow{d\log(\pi)^\wedge} H^q(\omega_Y^\bullet) \longrightarrow H^q(\omega_Y^\bullet) \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
0 \longrightarrow \sigma_*H^{q-1}(\Omega_Y^\bullet) \xrightarrow{\sigma_*d\log(\pi)^\wedge} \sigma_*H^q(\omega_Y^\bullet) \longrightarrow \sigma_*H^q(\omega_Y^\bullet) \longrightarrow 0,
\end{array}
$$

where the vertical arrows are adjunction maps. The left and right vertical arrows are injective by Fact 2.7(1). Hence the map (2.8) is injective. We define the map $C^{-1} : \omega_Y^q \to \mathcal{H}^q(\omega_Y^\bullet)$ as follows. Using differential symbols, we easily see that the image of the composite map

$$\omega_Y^q \xrightarrow{\sigma_*} \sigma_*\left(\Omega_Y^\bullet \oplus \Omega_Y^{q-1} \right) \xrightarrow{C^{-1}} \sigma_*\left(\mathcal{H}^q(\Omega_Y^\bullet) \oplus \mathcal{H}^{q-1}(\Omega_Y^\bullet) \right),$$

is contained in $\mathcal{H}^q(\omega_Y^\bullet)$. We thus obtain the map $C^{-1} : \omega_Y^q \to \mathcal{H}^q(\omega_Y^\bullet)$. By the construction, C^{-1} is described by the local assignment as in Theorem 2.3(2), which implies the uniqueness of C^{-1}. Moreover it is bijective by the following commutative diagram with exact rows and Fact 2.7(1):

$$
\begin{array}{c}
0 \longrightarrow \omega_{Y,\log}^{q-1} \xrightarrow{d\log(\pi)^\wedge} \omega_Y^q \longrightarrow \omega_Y^q \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow \quad \downarrow \\
0 \longrightarrow H^{q-1}(\omega_Y^\bullet) \xrightarrow{d\log(\pi)^\wedge} \omega_Y^q \longrightarrow \omega_Y^q \longrightarrow 0.
\end{array}
$$

This completes the proof of Theorem 2.3(2).

We prove Theorem 2.3(3). By the local presentation of C^{-1}, it is easy to see that the map $1 - C^{-1} : \omega_Y^q \to \mathcal{H}^q(\omega_Y^\bullet)$ is surjective and that its kernel contains $\omega_{Y,\log}^q$. Put

$$L := \text{Ker}(1 - C^{-1} : \omega_Y^q \to \mathcal{H}^q(\omega_Y^\bullet)).$$
We show that the natural inclusion $\tilde{\omega}^q_{Y,\log} \hookrightarrow L$ is surjective. By (2.5), (2.6) and Fact 2.7 (1), there is a commutative diagram with exact rows

$$
\begin{array}{cccccc}
0 & \rightarrow & \mathcal{O}^{-1}_Y & \rightarrow & \mathcal{O}^q_Y & \rightarrow & 0 \\
& & \downarrow 1-C^{-1} & & \downarrow 1-C^{-1} & & \\
0 & \rightarrow & \mathcal{H}^{-1}(\omega_{Y}^\bullet) & \rightarrow & \mathcal{H}^q(\omega_{Y}^\bullet) & \rightarrow & 0,
\end{array}
$$

By this diagram and Fact 2.7 (3), the lower row of the following commutative diagram of complexes is exact:

$$
\begin{array}{cccc}
0 & \rightarrow & \mathcal{O}^{-1}_Y & \rightarrow & \mathcal{O}^q_Y & \rightarrow & 0 \\
& & \downarrow \pi & & \downarrow \pi & & \\
0 & \rightarrow & \mathcal{O}^{-1}_Y & \rightarrow & \mathcal{O}^q_Y & \rightarrow & 0.
\end{array}
$$

Hence the middle vertical arrow is surjective, and we obtain Theorem 2.3 (3).

\[\square\]

3 Another Cartier isomorphism

Let the notation be as in Setting [1.4]. Let i and ψ be as follows:

$$
Y \overset{i}{\hookrightarrow} X \overset{\psi}{\leftarrow} U = X \smallsetminus (Y \cup D).
$$

For $\lambda \in \Lambda$, let $\mathcal{I}_\lambda \subset \mathcal{O}_X$ be the defining ideal of Y_λ. For $m = (m_\lambda)_{\lambda \in \Lambda} \in \mathbb{N}^\Lambda$, put

$$
\mathcal{I}^{(m)} := \prod_{\lambda \in \Lambda} \mathcal{I}_{m_\lambda} \subset \mathcal{O}_X,
$$

where \mathbb{N} denotes the set of natural numbers $\{0, 1, 2, \ldots\}$.

Definition 3.1

1. We endow \mathbb{N}^Λ with a semi-order as follows. For $m = (m_\lambda)_{\lambda \in \Lambda}$ and $n = (n_\lambda)_{\lambda \in \Lambda} \in \mathbb{N}^\Lambda$, we say that $m \leq n$ if $m_\lambda \leq n_\lambda$ for all $\lambda \in \Lambda$.

2. We put $0 := (0)_{\lambda \in \Lambda}$ and $1 := (1)_{\lambda \in \Lambda} \in \mathbb{N}^\Lambda$.

3. For $m, l \in \mathbb{N}^\Lambda$, we define a sheaf $\mathcal{O}_{m,l}^q (q \geq 0)$ on Y_{et} as

$$
\mathcal{O}_{m,l}^q := \mathcal{I}^{(m)} / \mathcal{I}^{(m+l)} \otimes_{\mathcal{O}_X} \mathcal{O}_{Y}^q,
$$

which is a locally free module over $\mathcal{O}_X / \mathcal{I}^{(l)}$. We define a map $d^q_m : \mathcal{I}^{(m)} \otimes_{\mathcal{O}_X} \mathcal{O}_{Y}^q \rightarrow \mathcal{I}^{(m)} \otimes_{\mathcal{O}_X} \mathcal{O}_{Y}^{q+1}$ by the local assignment

$$
\prod_{\lambda \in \Lambda} \mathcal{O}_{m_\lambda} \otimes \omega \mapsto \prod_{\lambda \in \Lambda} \mathcal{O}_{m_\lambda} \otimes \left(d\omega + \sum_{\lambda \in \Lambda} m_\lambda \cdot d\log(\pi_\lambda) \otimes \omega \right) (\omega \in \mathcal{O}_{Y}^q).
$$
where \(\pi_\lambda \in \mathcal{O}_X \) denotes a local uniformizer of \(Y_\lambda \) for each \(\lambda \in \Lambda \). This map does not depend on the choice of local uniformizers \(\{ \pi_\lambda \}_{\lambda \in \Lambda} \). One can easily check that \(d_n^{q+1} \circ d_n^q = 0 \) and that \(d_n^q \) is compatible with \(d_n^m \) for \(n \geq m \). Hence \(d_m^q \) induces a differential operator

\[
d = d_m^q : \omega_{m,l}^1 \longrightarrow \omega_{m,l}^{q+1}.
\]

Using this \(d \), we regard \(\omega_{m,l}^1 = (\omega_{m,l}^1, d) \) as a complex.

(4) We define \(\mathcal{D}_{m,l}^q \) (resp. \(\mathcal{D}_{m,l}^q \)) as the kernel of \(d : \omega_{m,l}^q \rightarrow \omega_{m,l}^{q+1} \) (resp. the image of \(d : \omega_{m,l}^{q-1} \rightarrow \omega_{m,l}^q \)), which are étale subsheaves of \(\omega_{m,l}^q \).

The following result is due to Kato:

Theorem 3.2 Let \(m = (m_\lambda)_{\lambda \in \Lambda} \) and \(l = (l_\lambda)_{\lambda \in \Lambda} \) be elements of \(\mathbb{N}^A \) with \(0 \leq l \leq 1 \). Let \(m' \in \mathbb{N}^A \) be the smallest element that satisfies \(p \cdot m' \geq m \), and define \(l' = (l'_\lambda)_{\lambda \in \Lambda} \) by

\[
l'_\lambda := \begin{cases} 1 & \text{(if } l_\lambda = 1 \text{ and } p|m_\lambda) \\ 0 & \text{(otherwise).} \end{cases}
\]

Then there is an isomorphism

\[
C^{-1} : \omega_{m',l'}^q \cong \mathcal{H}^q(\omega_{m,l}^\bullet) = \mathcal{D}_{m,l}^q / \mathcal{D}_{m,l}^{q+1}, \quad x \otimes \omega \mapsto x^p \otimes \omega,
\]

where \(x \) (resp. \(\omega \)) denotes a local section of \(\mathcal{F}^{(m')} \) (resp. \(\tilde{\omega}_{Y,l}^q \)).

We first state an immediate consequence of this theorem. For \(\mu \in \Lambda \), put \(\tilde{\omega}_{Y,\mu}^q := \mathcal{O}_{Y,\mu} \otimes_{\mathcal{O}_Y} \tilde{\omega}_{Y,\mu}^q \) and define \(\delta_{\mu,\lambda} = (\delta_{\mu,\lambda})_{\lambda \in \Lambda} \) by

\[
\delta_{\mu,\lambda} := \begin{cases} 1 & (\lambda = \mu) \\ 0 & (\lambda \neq \mu). \end{cases}
\]

Then we have \(\omega_{m,\delta_{\mu}}^q = \mathcal{F}^{(m)} \otimes_{\mathcal{O}_X} \tilde{\omega}_{Y,\mu}^q \), and Theorem 3.2 implies the following:

Corollary 3.3 (1) The complex \(\omega_{m,\delta_{\mu}}^q \) is acyclic (i.e., exact) if \(p \nmid m_\mu \).

(2) If \(p|m_\mu \), then we have an isomorphism

\[
C^{-1} : \omega_{m',\delta_{\mu}}^q \cong \mathcal{H}^q(\omega_{m,\delta_{\mu}}^\bullet),
\]

where \(m' \in \mathbb{N}^A \) is the smallest element satisfying \(p \cdot m' \geq m \).

Proof of Theorem 3.2 Let \(\pi_\lambda \in \mathcal{O}_X \) be a local uniformizer of \(Y_\lambda \) for each \(\lambda \in \Lambda \). If \(p \) divides \(m_\lambda \) for any \(\lambda \in \Lambda \), then the map \(d : \omega_{m,l}^q \rightarrow \omega_{m,l}^{q+1} \) sends

\[
\prod_{\lambda \in \Lambda} \pi_\lambda^{m_\lambda} \otimes \omega \mapsto \prod_{\lambda \in \Lambda} \pi_\lambda^{m_\lambda} \otimes d\omega,
\]

8
and the assertion follows from Theorem 2.3 (2).

We prove the general case. Take a sequence of elements of \mathbb{N}^A

$$m = m_0 \leq m_1 \leq m_2 \cdots \leq m_t = p \cdot m'$$

such that

$$\sum_{\lambda \in \Lambda} m_{i+1,\lambda} - \sum_{\lambda \in \Lambda} m_{i,\lambda} = 1 \quad \text{for} \quad 0 \leq i < t,$$

where $m_i = (m_{i,\lambda})_{\lambda \in \Lambda}$ and $m_{i+1} = (m_{i+1,\lambda})_{\lambda \in \Lambda}$. For $0 \leq i \leq t$, define $l_i = (l_{i,\lambda})_{\lambda \in \Lambda}$ by

$$l_{i,\lambda} = \begin{cases} 1 & \text{(if $l_{\lambda} = 1$ and $m_{i,\lambda} = m_{\lambda}$)} \\ 0 & \text{(otherwise)} \end{cases}.$$

We have inclusions of complexes

$$\omega_{m_i} \supseteq \omega_{m_i} \cap \omega_{m_{i+1}} \supseteq \cdots \supseteq \omega_{m_t} = \omega_{p \cdot m'},$$

and exact sequences ($0 \leq i < t$)

$$0 \to \omega_{m_{i+1},l_{i+1}} \to \omega_{m_i,l_i} \to \omega_{m_i,d_{\mu}} / \mathscr{S}(l_{i})_{\omega_{m_i,d_{\mu}}} \to 0,$$

where $\mu = \mu(i)$ is the unique element of Λ such that $m_{i+1,\mu} > m_{i,\mu}$ and d_{μ} is as we defined before Corollary 3.3. It is enough to show the following two assertions:

(A) The complex $\omega_{m_i,d_{\mu}} / \mathscr{S}(l_{i})_{\omega_{m_i,d_{\mu}}}$ is acyclic for $0 \leq i < t$.

(B) There is an isomorphism $C^{-1} : \tilde{\omega}^{q}_{Y^{\mu}} \to \mathcal{H}^{q}(\omega_{p \cdot m',v})$.

The assertion (B) follows from the proved case of the theorem. Because $\mathscr{S}(l_{i})$ is locally free over \mathcal{O}_X for any $0 \leq i < t$, the assertion (A) is reduced to the following:

Lemma 3.4 Let $\mu \in \Lambda$ and assume $p \nmid m_{\mu}$. Then the complex $\omega_{m_i,d_{\mu}}$ is acyclic.

We prove this lemma in what follows. Let $\tilde{\omega}^{q}_{Y^{\mu}}$ be as before Corollary 3.3. Note that $\tilde{\omega}^{q}_{Y^{\mu}}$ is generated by $\Omega^{q}_{Y^{\mu}}$ (usual Kähler q-forms) and q-forms of the form $d\log(\pi_{\lambda}) \wedge \eta$ with $\lambda \in \Lambda$ and $\eta \in \Omega^{q-1}_{Y^{\mu}}$. For $q \geq 1$, there is a residue homomorphism

$$\text{Res}^{q} : \tilde{\omega}^{q}_{Y^{\mu}} \to \tilde{\omega}^{q-1}_{Y^{\mu}}$$

characterized by the following two properties:

1. For $\omega \in \Omega^{q}_{Y^{\mu}}$, $\text{Res}^{q}(\omega)$ is zero.

2. For $\eta \in \Omega^{q-1}_{Y^{\mu}}$, we have

$$\text{Res}^{q}(d\log(\pi_{\lambda}) \wedge \eta) = \begin{cases} \eta & (\lambda = \mu) \\ 0 & (\lambda \neq \mu). \end{cases}$$
Since $\omega^q_{m,\delta} = \mathcal{I}^{(m)} \otimes_{\sigma X} \omega^q_{Y,\mu}$, we define a residue homomorphism

$$\text{Res}^q : \omega^q_{m,\delta} \rightarrow \omega^{q-1}_{m,\delta},$$

by $\text{Res}^q(a \otimes \omega) := a \otimes \text{Res}^q(\omega)$ for $a \in \mathcal{I}^{(m)}$ and $\omega \in \omega^q_{Y,\mu}$. We show that

$$d \text{Res}^q(x) + \text{Res}^{q+1}(dx) = m_{\mu} \cdot x \quad \text{for any } x \in \omega^q_{m,\delta}, \quad (3.5)$$

which implies that $\omega^q_{m,\delta}$ is acyclic if $p \nmid m_{\mu}$. Put

$$\xi^m := \prod_{\lambda \in \Lambda} \pi^m_{\lambda} \in \prod_{\lambda \in \Lambda} \mathcal{I}^{(m)} = \mathcal{I}^{(m)}.$$

For $x = \xi^m \otimes \omega$ with $\omega \in \Omega^q_{Y,\mu}$, we have $\text{Res}^q(x) = 0$ and

$$\text{Res}^{q+1}(dx) = \text{Res}^{q+1}((\xi^m \otimes (d\omega + \sum_{\lambda \in \Lambda} m_{\lambda} \cdot d\log(\pi_{\lambda}) \wedge \omega)))$$

$$= \xi^m \otimes m_{\mu} \cdot \omega = m_{\mu} \cdot x.$$

For $x = \xi^m \otimes d\log(\pi_{\nu}) \wedge \eta$ with $\eta \in \Omega^q_{Y,\mu}$ and $\nu \neq \mu$, we have $\text{Res}^q(x) = 0$ and

$$\text{Res}^{q+1}(dx) = \text{Res}^{q+1}((\xi^m \otimes (- d\log(\pi_{\nu}) \wedge d\eta + \sum_{\lambda \in \Lambda} m_{\lambda} \cdot d\log(\pi_{\lambda}) \wedge d\log(\pi_{\nu}) \wedge \eta)))$$

$$= \xi^m \otimes m_{\mu} \cdot d\log(\pi_{\nu}) \wedge \eta = m_{\mu} \cdot x.$$

Finally for $x = \xi^m \otimes d\log(\pi_{\mu}) \wedge \eta$ with $\eta \in \Omega^q_{Y,\mu}$, we have

$$d \text{Res}^q(x) = d(\xi^m \otimes \eta) = \xi^m \otimes (d\eta + \sum_{\lambda \in \Lambda} m_{\lambda} \cdot d\log(\pi_{\lambda}) \wedge \eta)$$

and

$$\text{Res}^{q+1}(dx) = \text{Res}^{q+1}((\xi^m \otimes (- d\log(\pi_{\mu}) \wedge d\eta + \sum_{\lambda \in \Lambda} m_{\lambda} \cdot d\log(\pi_{\lambda}) \wedge d\log(\pi_{\mu}) \wedge \eta)))$$

$$= \xi^m \otimes (- d\eta - \sum_{\lambda \neq \mu} m_{\lambda} \cdot d\log(\pi_{\lambda}) \wedge \eta) = - d \text{Res}^q(x) + m_{\mu} \cdot x.$$

Thus we obtain (3.5), Lemma 3.4 and Theorem 3.2. \qed

Corollary 3.6 \(\mathcal{D}^q_{m,X}\) is generated by local sections of the following forms:

1. $\prod_{\lambda \in \Lambda} \pi^m_{\lambda} \otimes (d\eta + \sum_{\lambda \in \Lambda} m_{\lambda} \cdot d\log(\pi_{\lambda}) \wedge \eta)$ with $\eta \in \omega^{q-1}_Y$, where $\pi_{\lambda} \in \mathcal{O}_X$ is a local uniformizer of Y_{λ} for each $\lambda \in \Lambda$.

2. $x^p \otimes \omega$ with $x \in \mathcal{I}^{(m')}$ and $\omega \in \omega^q_{Y,\log}$ where $m' \in \mathbb{N}^A$ is the smallest element satisfying $p \cdot m' \geq m$.

10
4 Structure of the sheaf $\mathcal{U}^1 M_q^1$

Let the notation be as in Setting [1.4] Let i and ψ be as follows:

$$X_{s, \text{red}} = Y \xrightarrow{i} X \xrightarrow{\psi} U = X \smallsetminus (Y \cup D).$$

For $q \geq 0$ and $n \geq 1$, we define étale sheaves M_n^q and \mathcal{K}_q^M on Y as

$$M_n^q := i^* R^q \psi_* \mathcal{M}_q^q$$

and

$$\mathcal{K}_q^M := \begin{cases}
 \mathbb{Z} & (q = 0)
 \begin{cases}
 i^* \psi_* \mathcal{O}_U^0 & (q = 1)
 (i^* \psi_* \mathcal{O}_U^0)^{\otimes q} / J_q & (q \geq 2)
 \end{cases}
\end{cases}$$

Here J_q for $q \geq 2$ denotes the subsheaf of $(i^* \psi_* \mathcal{O}_U^0)^{\otimes q}$ generated by local sections $x_1 \otimes \cdots \otimes x_q$ such that $x_{r+} + x_{r'} = 0$ or 1 for some $1 \leq r < r' \leq q$. There is a homomorphism of étale sheaves (cf. [BK] 1.2)

$$\mathcal{O}_{(X,D),n}^q : \mathcal{K}_q^M / \mathcal{P}^n \longrightarrow M_n^q;$$

which is a geometric version of Tate’s norm residue map. For $x_1, \ldots, x_q \in i^* \psi_* \mathcal{O}_U^0$, we denote the image of $\{x_1, x_2, \ldots, x_q\} \in \mathcal{K}_q^M$ under (4.1) again by $\{x_1, x_2, \ldots, x_q\}$.

Definition 4.2 (1) We define $\mathcal{U}^0 \mathcal{K}_q^M$ as the full-sheaf \mathcal{K}_q^M, and $\mathcal{U}^1 \mathcal{K}_q^M$ as the subsheaf generated locally by symbols of the form

$$\{1 + x, y_1, \ldots, y_{q-1}\} \text{ with } x \in i^* \mathcal{I} \text{ and } y_1, \ldots, y_{q-1} \in i^* \psi_* \mathcal{O}_U^0,$$

where $\mathcal{I} \subset \mathcal{O}_X$ denotes the defining ideal of Y. We define $\mathcal{U}^0 M_n^q$ and $\mathcal{U}^1 M_n^q$ as the image of $\mathcal{U}^0 \mathcal{K}_q^M$ and $\mathcal{U}^1 \mathcal{K}_q^M$ under the map (4.1), respectively.

(2) For $m = (m_\lambda)_{\lambda \in \Lambda} \in \mathbb{N}^\Lambda$ with $m \geq 1$, we define $\mathcal{U}^{(m)} \mathcal{K}_q^M$ as the subsheaf generated locally by symbols of the form

$$\{1 + x, y_1, \ldots, y_{q-1}\} \text{ with } x \in i^* \mathcal{I}^{(m)} \text{ and } y_1, \ldots, y_{q-1} \in i^* \psi_* \mathcal{O}_U^0,$$

where $\mathcal{I}^{(m)}$ is as we defined in the previous section. We define $\mathcal{U}^{(m)} M_n^q$ as the image of $\mathcal{U}^{(m)} \mathcal{K}_q^M$ under the map (4.1).

(3) We define $e = (e_\lambda)_{\lambda \in \Lambda} \in \mathbb{N}^\Lambda$ as follows. For $\lambda \in \Lambda$, let e_λ be the absolute ramification index of the discrete valuation ring $\mathcal{O}_{X, y_\lambda}$, where y_λ denotes the generic point of Y_λ. We put $e' := pe_\lambda / (p - 1)$ for $\lambda \in \Lambda$ and $e' := (e_\lambda)_{\lambda \in \Lambda} \in \mathbb{Q}^\Lambda$.

(4) For $m = (m_\lambda)_{\lambda \in \Lambda}$ and $n = (n_\lambda)_{\lambda \in \Lambda} \in \mathbb{Q}^\Lambda$, we say that $m < n$ (resp. $m \leq n$) if $m_\lambda < n_\lambda$ (resp. $m_\lambda \leq n_\lambda$) for any $\lambda \in \Lambda$.

The following lemma is straight-forward, and left to the reader:

Lemma 4.3 (1) We have $\mathcal{U}^1 M_n^q = \mathcal{U}^{(1)} M_n^q$, where 1 denotes $(1)_{\lambda \in \Lambda} \in \mathbb{N}^\Lambda$.

The main result of this section is the following, which is also due to Kato:

Theorem 4.4 Let m and l be elements of \mathbb{N}^A.

1. Assume $1 \leq m < e' + 1$ and $0 \leq l \leq 1$. For each $\lambda \in \Lambda$, assume $\ell_\lambda = 0$ if $m_\lambda \geq e'_\lambda$. Then there is an isomorphism

$$\omega^{q-1}_{m, l} / \mathcal{L}^{q-1}_{m, l} \cong \mathcal{U}^{(m)} M^q_1 / \mathcal{U}^{(m+l)} M^q_1$$

given by the local assignment

$$x \otimes d\log(y_1) \wedge \cdots \wedge d\log(y_{q-1}) \mapsto \{1 + \bar{x}, y_1, \ldots, y_{q-1}\} + \mathcal{U}^{(m+l)} M^q_1$$

for $x \in i^*(\mathcal{I}^m / \mathcal{I}^{m+l})$ and $y_1, \ldots, y_{q-1} \in i^*\psi_* \mathcal{O}^X_U$, where \bar{x} is a lift of x to $i^*\mathcal{I}^m$.

2. If $m \geq e'$, then $\mathcal{U}^{(m)} M^q_1$ is zero.

Theorem 4.4 describes the structure of the sheaf $\mathcal{U}^1 M^q_1$ as follows.

Corollary 4.5 Take a sequence of elements of \mathbb{N}^A

$$1 = m_0 \leq m_1 \leq m_2 \leq \cdots \leq m_t$$

satisfying the following conditions:

(a) $l_i := m_{i+1} - m_i$ satisfies $l_i \leq 1$ for any $i \leq t - 1$.

(b) We have $e' \leq m_t < e' + 1$. (Note that such m_t is unique in \mathbb{N}^A.)

(c) For any (i, λ) with $i \leq t - 1$ and $m_{i, \lambda} \geq e'_\lambda$, the λ-component of l_i is zero.

We then have

$$\mathcal{U}^{(m_i)} M^q_1 / \mathcal{U}^{(m_{i+1})} M^q_1 \cong \omega^{q-1}_{m_i, l_i} / \mathcal{L}^{q-1}_{m_i, l_i} \quad \text{for} \quad 0 \leq i \leq t - 1$$

$$\mathcal{U}^{(m_t)} M^q_1 = 0$$

by Theorem 4.4 (1) and (2), respectively.

To prove Theorem 4.4 (2), we need the following lemma:

Lemma 4.6

1. For $m, n \in \mathbb{N}^A$, we have $\{ \mathcal{U}^{(m)} \mathcal{K}^M_q, \mathcal{U}^{(n)} \mathcal{K}^M_q \} \subset \mathcal{U}^{(m+n)} \mathcal{K}^M_{q+q'}$.

2. There is a surjective homomorphism

$$i^*\mathcal{O}_X \otimes (i^*\psi_* \mathcal{O}^X_U)^{\otimes r} \rightarrow \mathcal{O}_Y, \quad x \otimes y_1 \otimes \cdots \otimes y_r \mapsto \bar{x} \cdot d\log(y_1) \wedge \cdots \wedge d\log(y_r),$$

where for $x \in i^*\mathcal{O}_X$, \bar{x} denotes its residue class in \mathcal{O}_Y. The kernel of this map is generated by local sections of the following forms:
• $x \otimes y_1 \otimes \cdots \otimes y_r$ with $x \in i^*\mathcal{I}$ or $y_s \in i^*(1 + \mathcal{I})$ for some $1 \leq s \leq r$,

• $x \otimes y_1 \otimes \cdots \otimes y_r$ with $y_s = y_{s'}$ for some $1 \leq s < s' \leq r$,

• $\sum_{s=1}^{m} (x_s \otimes x_1 \otimes y_1 \otimes \cdots \otimes y_{r-1}) - \sum_{t=1}^{\ell} (x_t' \otimes x_t' \otimes y_t \otimes \cdots \otimes y_{m-1})$ such that all x_s and x_t' belong to $i^*(\mathcal{O}_X \cap \psi_\ast \mathcal{O}_U^\lambda)$ and such that the sums $\sum_{s=1}^{m} x_s$ and $\sum_{t=1}^{\ell} x_t'$ taken in $i^*\mathcal{O}_X$ satisfy $\sum_{s=1}^{m} x_s \equiv \sum_{t=1}^{\ell} x_t'$ mod $i^*\mathcal{I}$.

Proof. (1) follows from the same argument as in \cite{BK} Lemma 4.1.

(2) Let z be a point on Y. Put $A := \mathcal{O}_X^\psi$, $I := \mathcal{I}_z$ and $L := (\psi_\ast \mathcal{O}_U^\lambda)$. Let $A[L]$ be the free A-module over the set L. There is a surjective A-homomorphism $A[L] \to (\omega_Y^1)^\ast$ sending $a[b] \mapsto \pi \cdot d\log(b)$. Its kernel is the A-submodule generated by elements of the following forms:

(i) $a[b]$ with $a \in I$ or $b \in 1 + I$,

(ii) $[b \cdot b'] - [b] - [b']$ with $b, b' \in L$,

(iii) $\sum_{s=1}^{m} a_s[a_s] - \sum_{t=1}^{\ell} a'_t[a'_t]$ (with $a_s, a'_t \in A \cap L$) with $\sum_{s=1}^{m} a_s \equiv \sum_{t=1}^{\ell} a'_t$ mod I.

The claim follows from this fact. The details are straight-forward and left to the reader. \qed

Proof of Theorem 4.4. (1) By Lemma 4.6 the local assignment in the theorem gives a well-defined surjective homomorphism of sheaves

$$\rho_{m,1} : \omega_{m,1}^{-1} \longrightarrow \mathcal{U}^{(m)} \big/ \mathcal{U}^{(m+1)} \big/ \mathcal{M}^q.$$

We prove $\rho_{m,1}(\omega_{m,1}^{-1}) = 0$ assuming $m < \ell'$, locally on Y. We may assume that Y_λ''s are principal on X. Fix uniformizers $\pi_\lambda \in i^*\mathcal{O}_X$ of Y_λ ($\lambda \in A$) and put

$$\xi^m := \prod_{\lambda \in A} \pi_\lambda^m \in i^*\mathcal{I}(m).$$

It is enough to show that local sections of $\omega_{m,1}^{-1}$ of the forms (1) and (2) of Corollary 3.6 map to zero under $\rho_{m,1}$. For $y_1 \in i^*\mathcal{O}_X^{\psi}$ and $y_2, \ldots, y_{q-1} \in i^*\psi_\ast \mathcal{O}_U^\lambda$, we have

$$\{1 + \xi^m y_1, y_1, y_2, \ldots, y_{q-1}\} + \sum_{\lambda \in A} m_\lambda \cdot \{1 + \xi^m y_1, \pi_\lambda, y_2, \ldots, y_{q-1}\}$$

$$= \{1 + \xi^m y_1, \xi^m y_1, y_2, \ldots, y_{q-1}\} = -\{1 + \xi^m y_1, -1, y_2, \ldots, y_{q-1}\} \in \mathcal{W}^{m+1} \mathcal{K}_q^M.$$

Hence $\rho_{m,1}(\omega) = 0$ for

$$\omega = \xi^m \otimes (d\eta + \sum_{\lambda \in A} m_\lambda \cdot d\log(\pi_\lambda) \wedge \eta) \in \omega_{m,1}^{-1}$$

with $\eta = y_1 \cdot d\log(y_2) \wedge \cdots \wedge d\log(y_{q-1}) \in \omega_Y^{q-2}$.

13
Next let \(m' \in N^A \) be the smallest element that satisfies \(p \cdot m' \geq m \). For \(x \in i^* \mathcal{G}^{(m')} \) and \(y_1, \ldots, y_{q-1} \in i^* \psi_x \mathcal{O}_x^q \), we have
\[
\{1 + x^p, y_1, \ldots, y_{q-1}\} - p \cdot \{1 + x, y_1, \ldots, y_{q-1}\} \in \mathcal{U}^{m'+e} \mathcal{X}_q^M \subset \mathcal{U}^{m+1} \mathcal{X}_q^M,
\]
where we have used the assumption \(m < e' \) to verify \(m' + e \geq m + 1 \). Hence \(\rho_{m, l}(\omega) = 0 \) for
\[
\omega = x^p \otimes d\log(y_1) \wedge \cdots \wedge d\log(y_{q-1}) \in \mathcal{F}_{m, l}^{q-1}.
\]
Thus we obtain \(\rho_{m, l}(\mathcal{F}_{m, l}^{q-1}) = 0 \) for \(m < e' \).

We prove \(\rho_{m, l}(\mathcal{F}_{m, l}^{q-1}) = 0 \) for \(m < e' + 1 \). Define \(n = (n_\lambda)_{\lambda \in \Lambda} \) and \(l' = (l'_\lambda)_{\lambda \in \Lambda} \) as
\[
n_\lambda := \begin{cases} m_\lambda & (\text{if } m_\lambda < e'_\lambda) \\
\lambda - 1 & (\text{if } m\lambda \geq e'_\lambda) \end{cases} \quad \text{and} \quad l'_\lambda := \begin{cases} l_\lambda & (\text{if } m_\lambda < e'_\lambda) \\
 & (\text{if } m_\lambda \geq e'_\lambda). \end{cases}
\]
We have \(n \leq m, 1 \leq n < e', 0 \leq l' \leq 1 \) and \(n + l' = m + 1 \) by the assumptions on \(m \) and \(l \), and there is a commutative diagram
\[
\begin{array}{c}
\mathcal{U}^{(m)} M_1^q / \mathcal{U}^{(m+1)} M_1^q \downarrow \rho_{m, l} \downarrow \quad \downarrow \rho_{n, l'} \\
\mathcal{U}^{(n)} M_1^q / \mathcal{U}^{(n+l')} M_1^q
\end{array}
\]
where the top horizontal arrow maps \(\mathcal{F}_{m, l}^{q-1} \) into \(\mathcal{F}_{n, l'}^{q-1} \). Hence \(\rho_{m, l}(\mathcal{F}_{m, l}^{q-1}) \) is zero by the previous case and the injectivity of the bottom horizontal arrow.

It remains to prove the injectivity of the induced map
\[
\overline{\rho}_{m, l} : \omega_{m, l}^{q-1} / \mathcal{F}_{m, l}^{q-1} \longrightarrow \mathcal{U}^{(m)} M_1^q / \mathcal{U}^{(m+l')} M_1^q.
\]
Since \(\omega_{m, l}^{q-1} / \mathcal{F}_{m, l}^{q-1} \) is a subsheaf of \(\omega_{m, l}^q \), the canonical adjunction map
\[
\omega_{m, l}^{q-1} / \mathcal{F}_{m, l}^{q-1} \longrightarrow \bigoplus_{y \in Y^0} i_y i^* (\omega_{m, l}^{q-1} / \mathcal{F}_{m, l}^{q-1})
\]
is injective by Theorem 2.3(1), where for \(y \in Y^0 \), \(i_y \) denotes the natural map \(y \to Y \). Hence we may replace \(X \) with \(\text{Spec} (\mathcal{O}_{X, y_\mu}) (\mu \in A) \), where \(y_\mu \) denotes the generic point of \(Y_\mu \). By the definition of \(d : \omega_{m, l}^{q-1} \to \omega_{m, l}^q \), we have
\[
\omega_{m, l}^{q-1} / \mathcal{F}_{m, l}^{q-1} \cong \begin{cases} \Omega_{y_\mu}^{q-1} \quad (\text{if } p \mid m_\mu, \ell_\mu = 1 \text{ and } m_\mu < e'_\mu) \\
d\Omega_{y_\mu}^{q-1} \oplus d\Omega_{y_\mu}^{q-2} \quad (\text{if } p \mid m_\mu, \ell_\mu = 1 \text{ and } m_\mu < e'_\mu) \\
0 \quad (\text{otherwise}) \end{cases}
\]
and the assertion follows from [BK] Corollary 1.4.1 (ii)-(iv).

(2) For \(m \in N^A \) with \(m \geq e' \), \(1 + \mathcal{G}^{(m)} \) is contained in \((1 + \mathcal{G}^{(m-e)})^p \). The assertion follows from this fact. \(\square \)
5 Surjectivity of the symbol map

Let O_K be as in §1, and let π be a prime element of O_K.

Definition 5.1 For an injective morphism of monoids $h : \mathbb{N} \rightarrow \mathbb{N}^d$, $1 \mapsto (e_\lambda)_{0 \leq \lambda \leq d-1}$, we define a scheme X^h and a divisor D^h on X^h as

$$X^h := \text{Spec} \left(O_K[\{T_0, T_1, \ldots, T_{d-1}\}] / \left(\prod_{\lambda \text{ with } e_\lambda \geq 1} T_\lambda^{e_\lambda} - \pi \right) \right)$$

$$D^h := \{ \prod_{\lambda \text{ with } e_\lambda = 0} T_\lambda = 0 \} \subset X^h.$$

Put $Y^h := (X^h)_{s,\text{red}}$. We define a scheme \mathcal{Y}^h as $\text{Spec}(k[\{T_0, \ldots, T_{d-1}\}])$ and denote the natural closed immersion $Y^h \hookrightarrow \mathcal{Y}^h$ by i^h.

Let (X, D) be as in Setting 1.4. We introduce the following terminology:

Definition 5.2 We say that (X, D) is a quasi-log smooth over $B = \text{Spec}(O_K)$, if it is, everywhere étale locally on X, isomorphic to (X^h, D^h) for some injective morphism of monoids $h : \mathbb{N} \rightarrow \mathbb{N}^d$ and a prime element $\pi \in O_K$, where d denotes $\text{dim}(X)$.

Example 5.3 Let (X, D) be a pair as in Setting 1.4.

1. Let \mathcal{M} be the log structure on X associated with D, and let \mathcal{N} be the log structure on $B = \text{Spec}(O_K)$ associated with the closed point $s \in B$. If the canonical morphism $(X, \mathcal{M}) \rightarrow (B, \mathcal{N})$ of log schemes is smooth in the sense of [K3] (3.3), then the pair (X, D) is quasi-log smooth over $\text{Spec}(O_K)$ in our sense. Note also that the converse is not necessarily true.

2. As a consequence of (1), a pair (X, D) as in Setting 1.4 is quasi-log smooth over $\text{Spec}(O_K)$, if the multiplicities of the irreducible components of X_s are prime to p.

Theorem 5.4 Assume that K contains a primitive p-th root of unity ζ_p, and that (X, D) is a smooth log pair over B. Then the symbol map in (4.1)

$$\theta_{(X, D), n} : \mathcal{K}^M_q / p^n \rightarrow M_n^q$$

is surjective, and there is an isomorphism

$$M_1^q / \mathcal{H}^1 M_1^q \xrightarrow{\sim} \tilde{\omega}^q_{Y, \log}$$

fitting into a commutative diagram

$$\begin{array}{ccc}
M_1^q / \mathcal{H}^1 M_1^q & \xrightarrow{\sim} & \tilde{\omega}^q_{Y, \log} \\
\theta_{(X, D), n} & \\ & \mathcal{K}^M_q / p
\end{array}$$

(5.5)
The proof of this result will be complete in the next section. We first note the following fact:

Lemma 5.6 Assume that \((X, D)\) is quasi-log smooth over \(B\) and that the underlying scheme \(X\) is smooth over \(B\). Then the map \(\partial^q_{(X,D),n}\) is surjective.

Proof. When \(D = \emptyset\), the assertion follows from a theorem of Bloch-Kato \([BK]\) Theorem 1.4. We proceed the proof of the lemma by induction on the number of the irreducible components of \(D\). Since the problem is étale local on \(X\), we may assume that \((X, D) = (X^h, D^h)\) for some injective map \(h : \mathbb{N} \rightarrow \mathbb{N}^d\) as in Definition 5.1. Fix an irreducible component \(V\) of \(D\), and put \(D' := D - V\) as an effective Cartier divisor. Let \(E\) be the pullback of \(D'\) onto \(V\). It is easy to see that \(E\) is a simple normal crossing divisor on \(V\) and the pair \((V, E)\) is quasi-log smooth over \(B\). Recall that \(Y := X_{s, \text{red}}\) and \(U := X \setminus (Y \cup D)\).

Now the left and the right vertical arrows in (5.7) are surjective by the induction hypothesis, and we obtain the assertion by a simple diagram chase. \[\square\]

Now put \(\zeta := V_{s, \text{red}}, U' := X \setminus (Y \cup D')\) and \(W := V \setminus (Z \cup E)\), and consider a commutative diagram of schemes

\[
\begin{array}{ccc}
Z & \xrightarrow{i} & V \xrightarrow{\theta} W \\
\downarrow{\iota} & & \downarrow{\alpha} \\
Y & \xleftarrow{i} & X \xrightarrow{\psi} U' \xleftarrow{\beta} U.
\end{array}
\]

We then have a commutative diagram of étale sheaves on \(Y\) whose upper row is a complex and whose lower row is exact

\[
\begin{array}{c}
\mathcal{H}^M_{q(X,D')} / p^n \xrightarrow{\phi^q} \mathcal{H}^M_{q,V,E} / p^n \xrightarrow{t^q} \mathcal{H}^M_{q-1,V,E} / p^n \\
\downarrow{\phi^q} & & \downarrow{t^q} & & \downarrow{\phi^{q-1}} \\
M^q_{n,(X,D')} & \xrightarrow{\phi^q} & M^q_{n,\mathcal{H}} & \xrightarrow{t^q} & M^{q-1}_{n,(V,E)}.
\end{array}
\]

Here we put \(M^q_{n,(X,D')} := i^* R^q \psi^!_{\mathcal{H}} \mu_p^q\) and \(M^{q-1}_{n,(V,E)} := i^* R^q \mu^{q-1}_{\mathcal{H}}\), and the sheaves \(\mathcal{H}^M_{q,X,D'}\) and \(\mathcal{H}^M_{q-1,V,E}\) are Milnor \(K\)-sheaves defined as quotients of \((i^* \psi_* \mathcal{O}^\infty_U)^{\otimes q}\) and \((i^* \theta_* \mathcal{O}^\infty_W)^{\otimes (q-1)}\), respectively. The right arrow in the upper row is a boundary map of Milnor \(K\)-sheaves, which one can check to be surjective. The lower row is obtained by applying \(i^* R^q \psi^!_{\mathcal{H}}\) to the Gysin distinguished triangle on \((U')_{\text{et}}\)

\[
\alpha_*\mu_p^{(q-1)\otimes -2} \rightarrow \mu_p^q \rightarrow R\beta_*\mu_p^{(q-1)} \rightarrow \alpha_*\mu_p^{(q-1)\otimes -1}.
\]

Now the left and the right vertical arrows in (5.7) are surjective by the induction hypothesis, and we obtain the assertion by a simple diagram chase. \[\square\]

We start the proof of Theorem 5.4. In this section, we prove the theorem assuming Lemma 5.10 below. Let \(y\) be a generic point of \(Y\), and let \(i_y\) be the natural map \(y \hookrightarrow Y\).

The strict henselian local ring \(\mathcal{O}^\infty_{Y, y}\) is a discrete valuation ring by the regularity of \(X\). Hence there is an isomorphism

\[
i_y^* (M^q_{n} / \mathcal{H}^1 M^q_{n}) \xrightarrow{\cong} \Omega^q_{y, \log} \oplus \Omega^{q-1}_{y, \log} = i_y^* \Omega^q_{Y, \log} = i_y^* \Omega^q_{Y, \log}
\]

(5.8)
([BK] Lemma 5.3, Theorem 5.12). Since $\tilde{\omega}_Y^q$ is locally free over \mathcal{O}_Y by Theorem 2.3 (1), the adjunction map

$$\tilde{\omega}_{Y,\log}^q \rightarrow \bigoplus_{y \in Y^0} i_y^* i_y^* \tilde{\omega}_{Y,\log}^q$$

is injective, and the isomorphism (5.8) induces a surjective map

$$\mathcal{U}^0 M_I^q / \mathcal{U}^1 M_I^q \rightarrow \tilde{\omega}_{Y,\log}^q$$

(cf. [Sa] Lemma 2.3). This map fits into the diagram (5.5) with $M_I^q / \mathcal{U}^1 M_I^q$ replaced by $U_0^q M_I^q / \mathcal{U}^1 M_I^q$. Put

$$N_q := \text{Ker}(U_0^q M_I^q / \mathcal{U}^1 M_I^q \rightarrow \tilde{\omega}_{Y,\log}^q) \quad \text{and} \quad L_q := M_I^q / \mathcal{U}^0 M_I^q.$$

We have to show that $N_q = 0$ and $L_q = 0$. Put $M_I^q := M_I^q$ and fix an arbitrary point $x \in Y$. We show the stalks $(N_q)_x = (L_q)_x = 0$ by induction on $c := \text{codim}_Y(x)$. If $c = 0$, then $(N_q)_x = (L_q)_x = 0$ by (5.8). In what follows, assume $c \geq 1$ and the following induction hypothesis:

1. $(N_q)_x = (L_q)_x = 0$ for any $q \geq 0$ and any $y \in Y$ of codimension $\leq c - 1$.

Since the problem is étale local, we may assume $(X, D) = (X^h, D^h)$ for an injective morphism $h : N \hookrightarrow N^d$ of monoids ($d = \text{dim}(X)$). Sorting the components of N^d if necessary, we assume the following two conditions:

2. The first component of $h(1) \in N^d$ is non-zero.

3. The composite map

$$Y \xrightarrow{\psi} \mathcal{U} = \text{Spec}(k[T_0, \ldots, T_{d-1}]) \xrightarrow{\text{Spec}(k[T_{c+1}, \ldots, T_{d-1}])}$$

sends x to the generic point of $\text{Spec}(k[T_{c+1}, \ldots, T_{d-1}])$ (cf. [T2] Lemma 5.3).

Following the idea of Tsuji in [T2] Proof of Theorem 5.1, we decompose $h : N \rightarrow N^d$ into a sequence of morphisms

$$h : N \xrightarrow{\kappa^0} N^d \xrightarrow{\kappa^1} N^d \xrightarrow{\kappa^2} \cdots \xrightarrow{\kappa^r} N^d$$

which satisfies the following two conditions:

4. $h^0(1) = (e, 0, \ldots, 0, *, \ldots, *)$ for some $e \neq 0$ (cf. (2)).

5. For $1 \leq t \leq d$, let $\epsilon_t \in N^d$ be the element whose t-th component is 1 and whose other components are 0. Then for $1 \leq \nu \leq r$, κ^ν sends ϵ_t ($1 \leq t \leq d$) to

$$\begin{cases}
\epsilon_t & (t \neq m) \\
\epsilon_m + \epsilon_n & (t = m)
\end{cases}$$

for some $m \neq n$ with $1 \leq m \leq c + 1$, $1 \leq n \leq c + 1$.

Put \(h^\nu := \kappa^\nu \kappa^{\nu-1} \cdots \kappa^1 h^0 \) and \(X := X^{h^\nu} \), and let \(f^\nu \) be the morphism induced by \(\kappa^\nu \):

\[
f^\nu : \nu X \longrightarrow \nu^{-1}X.
\]

We further fix some notation. Put \(Y^\nu := Y^{h^\nu} = (\nu X)_{s, \text{red}} \), and let \(x^\nu \in Y^\nu \) be the image of \(x \in Y \) under the composite

\[
Y = Y^\nu \xrightarrow{g^\nu} \nu^{-1}Y \xrightarrow{g^{-1}} \cdots \xrightarrow{g^{\nu+1}} \nu Y,
\]

where \(g^\nu : Y \rightarrow \nu^{-1}Y \) denotes the morphism induced by \(f^\nu \). For \(0 \leq \nu \leq r \), let \(\sigma^\nu \) be the composite map

\[
\nu Y \xrightarrow{\nu^\nu} \nu Y = (\nu X)_{s, \text{red}},
\]

and let \(x^\nu \in \nu Y \) be the image of \(x \in Y \) under the composite

\[
Y = \nu Y \xrightarrow{g^\nu} \nu^{-1}Y \xrightarrow{g^{-1}} \cdots \xrightarrow{g^{\nu+1}} \nu Y,
\]

where \(g^\nu : Y \rightarrow \nu^{-1}Y \) denotes the morphism induced by \(f^\nu \). For \(0 \leq \nu \leq r \), let \(\sigma^\nu \) be the composite map

\[
\nu Y \xrightarrow{\nu^\nu} \nu Y = (\nu X)_{s, \text{red}} \longrightarrow \nu Y,
\]

where \(\nu^\nu \) denotes \(\nu^{h^\nu} \). Since \(\sigma^\nu = \sigma^{\nu-1} g^\nu \) by (5), the point \(\sigma^\nu(x^\nu) \) is the generic point of \(\nu Y \) for any \(0 \leq \nu \leq r \) by (3). This implies the following:

(6) For any \(0 \leq \nu \leq r \), \(x^\nu \) has codimension \(c \) on \(Y^\nu \). Consequently, \(x^\nu \) is a closed point of \(\nu Y \).

We also need the following fact (cf. [T2] Lemmas 3.2 and 3.4):

(7) For \(1 \leq \nu \leq r \), \(f^\nu \) factors as

\[
\nu X \xrightarrow{\nu^\nu} \nu X \xrightarrow{\nu^\nu} \nu^{-1}X,
\]

where the left arrow is an open immersion and \(\nu^\nu \) is the blow-up at the closed subscheme \(\{T_m = T_n = 0\} \subset \nu^{-1}X \) (\(m \) and \(n \) are as in (5)). The fibers of \(\nu^\nu \) have dimension at most one.

Put

\[
\nu D := D^{h^\nu} \quad \text{and} \quad \nu U := \nu X \setminus (\nu Y \cup \nu D),
\]

and define the sheaves \(\nu M^q, \nu L^q \) and \(\nu N^q \) on \(\nu Y_{\text{et}} \) for the diagram

\[
\nu Y \xrightarrow{\nu X} \nu U
\]

in the same way as for \(M^q, L^q \) and \(N^q \) on \(Y_{\text{et}} \), respectively. In what follows, we prove

\[
(\nu L^q)_{\nu^\nu} = (\nu N^q)_{\nu^\nu} = 0
\]

by induction on \(0 \leq \nu \leq r \). We first note:

Lemma 5.9 We have \((\nu L^q)_{\nu^\nu} = 0 \) and \((\nu N^q)_{\nu^\nu} = 0 \).

Proof. The problem is reduced to Lemma [5.6] by the assumption (4) and the arguments in [T2] Proposition 5.6. \(\square \)
Assume $\nu \geq 1$ and the following induction hypothesis:

\[(8) \ (\nu_1L^q)_{\nu_{\nu-1}} = 0 \text{ and } (\nu_1N^q)_{\nu_{\nu-1}} = 0.\]

We change the notation slightly and put

\[
\begin{aligned}
X := \text{Spec}(\mathcal{O}_{\nu_{-1}X,\nu_{\nu-1}}) \\
Y := X_{\text{red}} \\
D := \text{Spec}(\mathcal{O}_{\nu_{-1}D,\nu_{\nu-1}}) \\
U := X \setminus (Y \cup D)
\end{aligned}
\]

and

\[
\begin{aligned}
X' := \nu_X \times_{\nu_{-1}X} \text{Spec}(\mathcal{O}_{\nu_{-1}X,\nu_{\nu-1}}) \\
Y' := (X')_{\text{red}} \\
D' := \nu_D \times_{\nu_X} X' \\
U' := X' \setminus (Y' \cup D')
\end{aligned}
\]

for simplicity. Here νD denotes the closure of $(\nu Y)^{-1}(\nu D)_{\text{red}} \setminus (\nu X)_{\text{red}} \subset \nu X$. Note that $\nu D = \nu D \times_{\nu X} \nu X$. Let $i': Y' \hookrightarrow X'$ and $\psi': U' \hookrightarrow X'$ be the canonical closed and open immersions, respectively. We define étale sheaves M^q, L^q and N^q on Y' as

\[
M^q := i'^*R^t\mu_p^q, \quad N^q := \text{Ker}(M^{q}/\mathcal{V}^{1}M^{q} \rightarrow \mathcal{V}^{q}_{Y',\text{log}}), \quad L^q := M^q/\mathcal{V}^{0}M^{q}.
\]

In view of (6), once we prove N^q and L^q are zero, we will finish the induction on ν and c. We will prove the following lemma in the next section:

Lemma 5.10 (cf. [Hy] Lemma (3.5)) For any $t \geq 0$, we have

\[
\begin{align*}
\Gamma(Y, \mathcal{V}^{0}_{Y',\text{log}}) &\cong \Gamma(Y', \mathcal{V}^{0}_{Y',\text{log}}), \\
H^1(Y', \mathcal{V}^{1}M^{t}) &\cong H^1(Y', \mathcal{V}^{1}_{Y',\text{log}}) = 0.
\end{align*}
\]

We prove here that N^q and L^q are zero admitting this lemma. Noting that $\mu_p \cong \mathbb{Z}/p\mathbb{Z}$ on U' by the assumption on K, we compute the Leray spectral sequence

\[
e^a_{b} = H^a(Y', M^b) \Rightarrow H^{a+b}(U', \mu_p^q) \cong H^{a+b}(U, \mu_p^q),
\]

where the last isomorphism follows from the proper base-change theorem ([SGA4] XII.5.2) for $X' \rightarrow X$. Since $\text{cd}_p(Y') \leq 1$ by (7), this spectral sequence yields a short exact sequence

\[
0 \rightarrow H^1(Y', M^{q-1}) \rightarrow H^q(U, \mu_p^q) \rightarrow \Gamma(Y', M^q) \rightarrow 0.
\]

Because L^t and N^t are skyscraper sheaves on Y for any $t \geq 0$ by the induction hypothesis (1) for X', both $H^1(Y', M^{q-1})$ and $H^1(Y', \mathcal{V}^{0}M^{q})$ are zero by Lemma 5.10. Hence there is a commutative diagram whose lower row is exact

\[
\begin{array}{ccc}
\mathbb{V}^{0}H^q(U, \mu_p^q) & \rightarrow & H^q(U, \mu_p^q) \\
\downarrow & & \downarrow \\
0 & \rightarrow & \Gamma(Y', \mathcal{V}^{0}M^{q}) \rightarrow \Gamma(Y', M^{q}) \rightarrow \Gamma(Y', L^q) \rightarrow 0,
\end{array}
\]

where $\mathbb{V}^{0}H^q(U, \mu_p^q)$ denotes the filtration on the stalk of the sheaf of p-adic vanishing cycles on Y (cf. Definition 4.2(1), Lemma 4.3(2)), and the upper equality follows.
from the induction hypothesis (8). This diagram shows that the skyscraper sheaf L^q is zero. We next show that N^q is zero. Put

$$\text{gr}^0 M^q := \mathcal{U}^0 M^q / \mathcal{U}^1 M^q = M^q / \mathcal{U}^1 M^q.$$

Since N^q is skyscraper by (1), there is an exact sequence

$$0 \rightarrow \Gamma(Y', N^q) \rightarrow \Gamma(Y', \text{gr}^0 M^q) \alpha \rightarrow \Gamma(Y', \tilde{\omega}_{Y', \log}) \rightarrow 0$$

and a commutative diagram with exact rows (cf. Lemma 4.3 (2))

$$
\begin{array}{ccc}
0 & \rightarrow & \mathcal{U}^1 H^q(U, \mu_p^q) \\
\downarrow & & \downarrow \beta \\
0 & \rightarrow & \Gamma(Y', \mathcal{U}^1 M^q) \rightarrow \Gamma(Y', M^q) \rightarrow \Gamma(Y', \text{gr}^0 M^q) \rightarrow 0.
\end{array}
$$

Here the upper row is exact by the induction hypothesis (8), and the lower row is exact by Lemma 5.10. The arrow β denotes the map induced by the left square, and the middle vertical arrow is bijective by the proof of the vanishing of L^q. Now this diagram shows that α is bijective, because β is surjective and $\alpha \beta$ is bijective by Lemma 5.10. Hence the skyscraper sheaf N^q is zero. Thus the induction on ν and c is complete and we obtain Theorem 5.4, assuming Lemma 5.10.

6 Proof of Lemma 5.10

In this section we prove Lemma 5.10 to finish the proof of Theorem 5.4. Let the notation be as in Setting 1.4. Assume that

$$X = \text{Spec} \left(\mathcal{O}_K[T_0, \ldots, T_N]/(T_0^{e_0} \cdots T_a^{e_a} - \pi) \right) \quad (e_0, \ldots, e_a \geq 1, \ N = \dim(Y))$$

$$D = \{T_{a+1} \cdots T_N = 0\} \subset X,$$

where π is a prime element of \mathcal{O}_K and D is empty if $a = N$. Let

$$f : X' \rightarrow X$$

be the blow-up at the regular closed subscheme $\{T_b = T_c = 0\} \subset X$ with $0 \leq b < c \leq N$. Put $Y' := (X')_{s,\text{red}}$. We define a reduced normal crossing divisor D' on X' as

$$D' := f^{-1}(D)_{\text{red}} \sim Y' \subset X'$$

and define the sheaves $\tilde{\omega}_{Y', \log}$ and $M^q_{1,X'}$ on $(Y')_{\text{et}}$ in the same way as for $\tilde{\omega}_{Y, \log}$ and M^q_1 on Y_{et}. Let

$$g : Y' \rightarrow Y$$

be the morphism induced by f. Lemma 5.10 follows from the following lemma and the proper base-change theorem [SGA4] XII.5.2.
Lemma 6.1 Let $D(Y_{\text{et}})$ be the derived category of complexes of étale sheaves on Y.

1. We have $\omega_{Y,\text{log}}^q \xrightarrow{\sim} Rg_*\omega_{Y,\text{log}}^q$ in $D(Y_{\text{et}})$ for any $q \geq 0$.

2. We have $\mathcal{U}_1^q \otimes^{\mathbb{L}}_{\mathcal{O}_Y} \mathcal{U}_{X,\text{log}}^q \otimes^{\mathbb{L}}_{\mathcal{O}_X} \mathcal{O}_X$ in $D(Y_{\text{et}})$ for any $q \geq 0$.

Sublemma 6.2 (1) We have $g^*\omega_Y^q \xrightarrow{\sim} \omega_Y^q$, for any $q \geq 0$, where g^* denotes the inverse image of coherent sheaves.

2. We have $\mathcal{O}_Y \xrightarrow{\sim} Rg_*\mathcal{O}_Y$ in $D(Y_{\text{et}})$.

We first prove Lemma 6.1 admitting the sublemma.

Proof of Lemma 6.1 (1) By Theorem 2.3 (2) and (3), it is enough to show that

(a) $\omega_Y^q \xrightarrow{\sim} Rg_*\omega_Y^q$, and

(b) $\mathcal{Z}_Y^q \xrightarrow{\sim} Rg_*\mathcal{Z}_Y^q$, in $D(Y_{\text{et}})$.

We first show (a). Since ω_Y^q is locally free over \mathcal{O}_Y by Theorem 2.3 (1), we have

$$Rg_*\omega_Y^q \cong Rg_*(\mathcal{O}_Y \otimes_{\mathcal{O}_Y} g^*\omega_Y^q) \cong (Rg_*\mathcal{O}_Y) \otimes_{\mathcal{O}_Y} \omega_Y^q \cong \omega_Y^q$$

by projection formula and the sublemma. We next show (b). The case $q = 0$ follows from (a) and the isomorphism $\mathcal{Z}_Y^0 = (\mathcal{O}_Y)^p \cong \mathcal{O}_Y$. We proceed the proof by induction on q. There is a commutative diagram with distinguished rows in $D(Y_{\text{et}})$

$$\begin{array}{ccccccc}
\mathcal{Z}_Y^q & \xrightarrow{d} & \mathcal{Z}_Y^{q+1} & \xrightarrow{\omega_Y^q} & \mathcal{Z}_Y^q[1] \\
\downarrow & & \downarrow & & \uparrow \\
Rg_*\mathcal{Z}_Y^q & \xrightarrow{d} & Rg_*\mathcal{Z}_Y^{q+1} & \xrightarrow{\omega_Y^q} & Rg_*\mathcal{Z}_Y^q[1].
\end{array}$$

By Theorem 2.3 (2), there is another commutative diagram with distinguished rows in $D(Y_{\text{et}})$

$$\begin{array}{ccccccc}
\mathcal{Z}_Y^{q+1} & \xrightarrow{\omega_Y^{q+1}} & \mathcal{Z}_Y^{q+1} & \xrightarrow{\mathcal{Z}_Y^{q+1}} & \mathcal{Z}_Y^{q+1}[1] \\
\downarrow & & \downarrow & & \uparrow \\
Rg_*\mathcal{Z}_Y^{q+1} & \xrightarrow{\omega_Y^{q+1}} & Rg_*\mathcal{Z}_Y^{q+1} & \xrightarrow{\mathcal{Z}_Y^{q+1}} & Rg_*\mathcal{Z}_Y^{q+1}[1],
\end{array}$$

where \mathcal{C} denotes the inverse of the isomorphism \mathcal{C}^{-1}. The induction on q works by these diagrams.

(2) For $\lambda \in \mathcal{A} := \{0, 1, \ldots, a\}$, let Y_λ be the closed subset $\{T_\lambda = 0\} \subset X$ endowed with the reduced subscheme structure, which is an irreducible component of Y. Let $\{Y_\lambda\}_{\lambda \in \mathcal{A}'}$ be the irreducible components of Y'. We have

$$\mathcal{A}' = \begin{cases} A \cup \{\infty\} & \text{if } b \leq a \\ A & \text{if } a < b, \end{cases}$$

21
where Y'_{λ} for $\lambda \in \Lambda$ is the strict transform of Y_{λ} and Y'_{∞} is the exceptional fiber of f. For $m = (m_{\lambda})_{\lambda \in \Lambda} \in \mathbb{N}^{A}$, we define $f^{*}m = (n_{\lambda})_{\lambda \in A'} \in \mathbb{N}^{A'}$ as

$$n_{\lambda} = \begin{cases} m_{\lambda} & \text{(if } \lambda \in A) \\ m_{b} & \text{(if } b \leq a < c \text{ and } \lambda = \infty) \\ m_{b} + m_{c} & \text{(if } c \leq a \text{ and } \lambda = \infty). \end{cases}$$

For $n \in \mathbb{N}^{A'}$, we define $\mathcal{I}_{X,n} \subset O_{X'}$ in the same way as for $\mathcal{I}(\bullet) \subset O_{X}$. We have

$$f^{*}\mathcal{I}(m) = \mathcal{I}(f^{*}m). \quad (6.3)$$

We first show

$$\mathcal{U}^{1}M^{q}_{1} \xrightarrow{\sim} Rg_{*}\mathcal{U}^{(f^{-1})}M^{q}_{1,X'} \text{ in } D(Y_{\text{et}}). \quad (6.4)$$

Take a sequence of elements of \mathbb{N}^{A}

$$1 = m_{0} \leq m_{1} \leq m_{2} \leq \cdots \leq m_{i} \leq \cdots \leq m_{t}$$

satisfying the following conditions:

(i) If $i \leq t - 1$, then $l_{i} := m_{i+1} - m_{i}$ agrees with δ_{μ} for some $\mu = \mu(i) \in \Lambda$.

(ii) We have $m_{i} \geq \epsilon'$ (in \mathbb{Q}^{A}) if and only if $i = t$.

See the definitions before Corollary 5.3 for δ_{μ}, and see Definition 4.2 (3) for ϵ'. By Theorem 4.4 we have

$$\mathcal{U}^{(m_{i})}M^{q}_{1} / \mathcal{U}^{(m_{i+1})}M^{q}_{1} \cong \omega^{q-1}_{m_{i},1}/\mathcal{U}^{q-1}_{m_{i},1} \text{ for } 0 \leq i \leq t - 1,$$

$$\mathcal{U}^{(m_{t})}M^{q}_{1} = 0.$$

Define the element $\mathcal{E}' \in \mathbb{Q}^{A'}$ with respect to X' in the same way as for $\mathcal{E}' \in \mathbb{Q}^{A}$. For $n, n' \in \mathbb{N}^{A'}$ with $0 \leq n' \leq 1$, we define the sheaf $\omega^{q-1}_{n,n',X'}$ on Y' in the same way as for $\omega^{q-1}_{n,n',X}$ on Y. By the choice of the above δ_{μ}''s and the fact that $f^{*}\epsilon' = \mathcal{E}'$, we see that

(i') For $i \leq t - 1$, we have $f^{*}l_{i} = f^{*}m_{i+1} - f^{*}m_{i} \in \mathbb{N}^{A'}$ and satisfies $0 \leq f^{*}l_{i} \leq 1$.

(ii') We have $f^{*}m_{i} \geq \epsilon'(\text{in } \mathbb{Q}^{A'})$ if and only if $i = t$.

Hence by Theorem 4.4 for X', we have

$$\mathcal{U}^{(f^{*}m_{i})}M^{q}_{1,X'} / \mathcal{U}^{(f^{*}m_{i+1})}M^{q}_{1,X'} \cong \omega^{q-1}_{f^{*}m_{i},f^{*}l_{i},X'}/\mathcal{U}^{q-1}_{f^{*}m_{i},f^{*}l_{i},X'} \text{ for } 0 \leq i \leq t - 1,$$

$$\mathcal{U}^{(f^{*}m_{t})}M^{q}_{1,X'} = 0.$$

Because we have

$$\omega^{q-1}_{m_{i},1}/\mathcal{U}^{q-1}_{m_{i},1} \xrightarrow{\sim} Rg_{*}(\omega^{q-1}_{f^{*}m_{i},f^{*}l_{i},X'}/\mathcal{U}^{q-1}_{f^{*}m_{i},f^{*}l_{i},X'})$$
by [K4] Theorem 11.3 and the same argument as for Lemma 6.1(1), we have
\[\mathcal{U}(m_i)M^q_i \xrightarrow{\sim} Rg_* \mathcal{U}(f^*m_i)M^q_{1,X'} \]
for any \(0 \leq i \leq t \) by (6.3) and descending induction on \(i \). Thus we obtain (6.4).

By (6.4), it remains to show
\[Rg_* \left(\mathcal{U}^1 M^q_{1,X'}/ \mathcal{U}(f^*1)M^q_{1,X'} \right) = 0 \quad \text{in} \quad D(Y_{\text{ét}}). \] (6.5)

If \(a < c \), then we have \(f^*1 = 1 \) in \(\mathbb{N}' \) and the assertion is obvious. We prove the case \(c \leq a \).

In this case we have \(f^*1 = 1 + \mathfrak{d}_{\infty} \) in \(\mathbb{N}' \) and
\[\mathcal{U}^1 M^q_{1,X'}/ \mathcal{U}(f^*1)M^q_{1,X'} \cong \mathcal{M}^q_{1,\mathfrak{d}_{\infty},X'}/ \mathcal{M}^q_{1,\mathfrak{d}_{\infty},X'}. \]

Note that \(Y'_{\infty} \) is isomorphic to the trivial \(\mathbb{P}^1 \)-bundle over \(Y_b \cap Y_c \), and that \(Y'_{\infty} \cap Y'_b \) and \(Y'_{\infty} \cap Y'_c \) are relative hyperplane sections of \(Y'_{\infty} \) over \(Y_b \cap Y_c \). Since \(\mathcal{O}_{X'}(Y'_{\infty}) \otimes \mathcal{O}_{X'} \mathcal{O}_{Y'_{\infty}} \cong \mathcal{O}(-1) \), we have
\[\mathcal{I}^{(1)}/ \mathcal{I}^{(f^*1)} \cong \mathcal{I}^{(1)} \otimes \mathcal{O}_{X'} \mathcal{I}^{(1)} / \mathcal{O}_{X'} \mathcal{O}_{X'} \cong \mathcal{O}(-1) \quad \text{on} \quad Y'_{\infty}, \]
where for \(\lambda \in \mathbb{N}' \), \(\mathcal{I}^{(1)} \subset \mathcal{O}_{X'} \) denotes the defining ideal of \(Y'_{\infty} \) and we have used the fact that \(\mathcal{I}^{(1)} \) is principal for \(\lambda \neq b, c, \infty \). Hence we have
\[Rg_* \mathcal{L}^q_{1,\mathfrak{d}_{\infty},X'} \cong Rg_* \left(\mathcal{I}^{(1)}/ \mathcal{I}^{(f^*1)} \otimes \mathcal{O}_{Y'} \mathcal{O}^q_{Y_{\infty}} \right) \cong Rg_* \left(\mathcal{I}^{(1)}/ \mathcal{I}^{(f^*1)} \right) \otimes \mathcal{O}_{Y'} \mathcal{O}^q_{Y_{\infty}} = 0 \]
by a standard fact on the cohomology of projective lines. Moreover, we have
\[Rg_* \mathcal{L}^q_{1,\mathfrak{d}_{\infty},X'} = 0 \]
by similar arguments as for Lemma 6.1(1), which shows (6.5). Thus we obtain Lemma 6.1 admitting Sublemma 6.2.

Proof of Sublemma 6.2 Let \((X, \mathcal{L}) \) and \((X', \mathcal{L}') \) be the log schemes associated with the pairs \((X, D) \) and \((X', D') \), respectively (cf. Remark 2.2), and let \(L \) (resp. \(L' \)) be the inverse image log structure onto \(Y \) (resp. onto \(Y' \)).

(1) The morphism \((Y', L') \rightarrow (Y, L) \) of log schemes induced by \(f \) is étale in the sense of [K3] (3.3) by loc. cit. Theorem (3.5). Hence the assertion follows from loc. cit., Proposition 3.12.

(2) Let \(\mathcal{I} \subset \mathcal{O}_X \) and \(\mathcal{I}' \subset \mathcal{O}_{X'} \) be the defining ideals of \(Y \) and \(Y' \), respectively. Applying [K4] Theorem 11.3 to the morphism \((X', \mathcal{L}') \rightarrow (X, \mathcal{L}) \) induced by \(f \), we have
\[\mathcal{O}_X \xrightarrow{\sim} Rf_* \mathcal{O}_{X'} \quad \text{and} \quad \mathcal{I} \xrightarrow{\sim} Rf_* f^* \mathcal{I} \quad \text{in} \quad D(X_{\text{ét}}), \]
and it remains to show that
\[Rf_* (\mathcal{I}' / f^* \mathcal{I}) = 0 \quad \text{in} \quad D(X_{\text{ét}}). \]

Since \(\mathcal{I}' = \mathcal{I}^{(1)}_{X'} \) and \(f^* \mathcal{I} = \mathcal{I}^{(f^*1)}_{X'} \) by (6.3), this vanishing follows from the proof of (6.5).

This completes the proof of Sublemma 6.2, Lemma 6.1, and Theorem 5.4.

\[23 \]
Acknowledgments

The authors express their gratitude to Professor Kazuya Kato. This paper is based on his notes on the computations on the complexes \(\omega_{m,l}^* \) (§3) and the filtration \(\mathbb{Z}^{\langle m \rangle} M_1^q \) (§4).

References

[BK] Bloch, S., Kato, K.: \(p \)-adic étale cohomology. Inst. Hautes Études Sci. Publ. Math. 63, 107–152 (1986)

[GNM] Gros, M., Narváez-Maccaro, L.: Cohomologie évanescence \(p \)-adique: calculs locaux. Rend. Semin. Mat. Univ. Padova 104, 71–90 (2000)

[Hy] Hyodo, O.: A note on \(p \)-adic etale cohomology in the semi-stable reduction case. Invent. Math. 91, 543–557 (1988)

[I] Illusie, L.: Complexe de de Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12, 501–661 (1979)

[JS] Jannsen, U., Saito, S.: Kato homology of arithmetic schemes and higher class field theory over local fields. Doc. Math. Extra Volume: Kazuya Kato’s Fiftieth Birthday, 479–538 (2003)

[K1] Kato, K.: A Hasse principle for two-dimensional global fields. (with an appendix by Colliot-Thélène, J.-L.), J. Reine Angew. Math. 366, 142–183 (1986)

[K2] Kato, K.: On \(p \)-adic vanishing cycles (Application of ideas of Fontaine-Messing). In: Algebraic Geometry, Sendai 1985, (Adv. Stud. in Pure Math. 10), pp. 207–251, Tokyo, Kinokuniya, 1987

[K3] Kato, K.: Logarithmic structures of Fontaine-Illusie. In: Igusa, J. (ed.) Algebraic Analysis, Geometry and Number Theory, pp. 191–224, Baltimore, The Johns Hopkins Univ. Press, 1988

[K4] Kato, K.: Toric singularities. Amer. J. Math. 116, 1073–1099 (1994)

[K5] Kato, K.: Semi-stable reduction and \(p \)-adic étale cohomology. In: Périodes \(p \)-adiques, Séminaire de Bures, 1988, (Astérisque 223), pp. 269–293, Marseille, Soc. Math. France, 1994

[Ku] Kurihara, M.: A note on \(p \)-adic étale cohomology. Proc. Japan Acad. Ser. A 63, 275–278 (1987)

[RS] Rülling, K., Saito, S.: higher Chow groups with modulus and relative Milnor \(K \)-theory. preprint, 2015, \texttt{arXiv:1504.02669}
[Sa] Sato, K.: Cycle classes for p-adic étale Tate twists and the image of p-adic regulator. Doc. Math. 18, 177–247 (2013)

[Sh] Shiho, A.: On logarithmic Hodge-Witt cohomology of regular schemes. J. Math. Sci. Univ. Tokyo 14, 567–635 (2007)

[T1] Tsuji, T.: p-adic étale cohomology and crystalline cohomology in the semi-stable reduction case. Invent. Math. 137, 233–411 (1999)

[T2] Tsuji, T.: On p-adic nearby cycles of log smooth families. Bull. Soc. Math. France 128, 529–575 (2000)

[YY] Yamashita, G., Yasuda, S.: p-adic étale cohomology and crystalline cohomology for the open varieties with semi-stable reduction. preprint, 2014

[SGA4] Grothendieck, A., Artin, M., Verdier, J.-L., with Deligne, P., Saint-Donat, B.: Théorie des Topos et Cohomologie Étale des Schémas. (Lecture Notes in Math. 269, 270, 305), Berlin, Springer, 1972–73