Diabetes and cancer: Looking at the multiligand/RAGE axis

Armando Rojas, Ileana González, Erik Morales, Ramón Pérez-Castro, Jacqueline Romero, Héctor Figueroa

Abstract

The association between diabetes and hyperglycemia and the associated increased risk of several solid and hematologic malignancies has been the subject of investigation for many years. Although the association is not fully understood, current knowledge clearly indicates that diabetes may influence malignant cell transformation by several mechanisms, including hyperinsulinemia, hyperglycemia and chronic inflammation. In this context, the receptor for advanced glycation end-products (RAGE) has emerged as a focal point in its contribution to malignant transformation and tumor growth. We highlight how RAGE, once activated, as it manifests itself in conditions such as diabetes or hyperglycemia, is able to continuously bring about an inflammatory milieu, thus supporting the contribution of chronic inflammation to the development of malignancies.

© 2011 Baishideng. All rights reserved.

Key words: Diabetes; Cancer; Inflammation; Receptor for advanced glycation end-products; Malignant transformation

INTRODUCTION

The association between diabetes and hyperglycemia and cancer, has been investigated extensively. Most studies, but not all, have found that both conditions are associated with an increased risk of several solid and hematologic malignancies. Currently, more than 250 million people live with diabetes; hence any impact derived even in smaller increases in the risk of cancer may have important consequences at world population level, and on associated costs to healthcare systems worldwide[1]. Although this association has been consistently reported for the most common cancer, more research efforts are needed, particularly in connection with the less common cancers, where data are limited or absent[2].

From the biological point of view, an essential question is raised when the association is analyzed: What are the mechanistic links between diabetes and cancer risk? Obviously, the answer to this question is not easy to find. However, and based on current knowledge, diabetes may influence malignant cell transformation by several mechanisms, including hyperinsulinemia, hyperglycemia and chronic inflammation. These three mechanisms are closely related to the receptor for advanced glycation end-products (RAGE), which may represent a focal point in their respective contri-
RAGE and diabetes-associated cancer

The receptor for advanced glycation end-products (RAGE) is a member of the immunoglobulin protein family of cell surface molecules and shares structural homology with other immunoglobulin-like receptors. Firstly described in 1992, RAGE has attracted increasing attention, due to its diverse ligand repertoire and its involvement in several pathophysiological processes associated with inflammation, such as diabetes, cancer, renal and heart failure, as well as neurodegenerative diseases.

The RAGE gene is localized on chromosome 6 in the vicinity of the MHC class III complex region in humans and mice, and in close proximity to the homeobox gene HOX12 and the human counterpart of the mouse mammary tumor gene int-3.

RAGE is highly expressed during development, especially in the brain, but its expression level decreases in adult tissues. However, RAGE expression is also markedly augmented by increased levels of ligands, as observed in some pathologic states. The mature 382 amino-acid long RAGE is composed of an extracellular domain (85 aa), a single transmembrane spanning helix (27 aa) and a short cytosolic region (41 aa). The extracellular domain of RAGE contains one variable, like V-domain, and two constants, like C type domains, which are frequently referred to as C1 and C2 domains. Recent studies suggest that RAGE forms oligomers at the cell surface. RAGE possesses two N-glycosylation sites, one adjacent to the V-domain and the second one located within the V-domain.

Recently, RAGE splice variants have been classified and renamed according to the Human Gene Nomenclature Committee, and many of them appear to be more abundant under various pathological conditions. At DNA level, the RAGE gene consists of 11 introns/exons that can alternatively be spliced into different variants. In terms of prevalence, the three major isoforms appear to be the full-length RAGE, a secreted form RAGE_v1 (previously named sRAGE), secretory C-truncated RAGE, and a N-terminally truncated isoform RAGE_v2 (previously named Nt-RAGE, N-RAGE or N-truncated RAGE). It is important to point out that RAGE_v1 is released into the extracellular compartment, where it can interact with free RAGE ligands, then working as a “decoy receptor”, thereby preventing ligands from interacting with cell surface RAGE.

RAGE AS A MULTILIGAND RECEPTOR

In addition to AGEs, other molecules have been identified as RAGE ligands, as has been demonstrated for S100/calgranulins; high-mobility group box 1 (HMGB1) have also been identified as ligands of this promiscuous receptor. The S100/calgranulin protein family comprises several members of non-ubiquitous Ca-binding proteins of the EF-hand type that have both intracellular and extracellular functions. At intracellular level, S100 proteins are responsible for different roles in the cell cycle, cell differentiation and cell motility. However, some members of the family have additional relevant extracellular roles, particularly...
at sites of chronic inflammation, where they are able to activate, via RAGE, endothelial cells, macrophages and peripheral blood mononuclear cells, including T lymphocytes. The DNA binding protein HMGB1 stabilizes nucleosome function, and acts as a transcription factor that regulates the expression of several genes. HMGB1 belongs to the so-called “damage associated molecular pattern molecules” or alarmins, which are released in response to infection or inflammatory stimuli, especially during tissue damage.

Although glucose may be the triggering stimulus to draw RAGE into diabetes pathology, consequent cellular stress results in the release of pro-inflammatory RAGE ligands S100/calgranulins and HMGB1. Thus, RAGE engagement in diabetic tissue produces a vicious cycle of ligand-RAGE perturbation, leading not only to chronic tissue injury, but also suppression of repair mechanisms. RAGE engagement activates multiple signaling pathways (Figure 1), including reactive oxygen species, p21ras, erk1/2 (p44/p42) mitogen-activated protein kinases, p38 and SAPK/JNK mitogen-activated protein kinases, rhoGTPases, phosphoinositol-3 kinase and JAK/STAT pathway, with important downstream inflammatory consequences, such as the activation of nuclear factor-kappaB (NFκB), AP-1 and STATs, which are involved in the inflammatory process seen in both diabetes and cancer.

RAGE, CHRONIC INFLAMMATION AND CANCER

In the nineteenth century, Rudolph Virchow first launched the idea about a putative connection between inflammation and cancer. At present, resurgent research interest in this topic has raised a growing body of evidence supporting the contribution of chronic inflammation to the development of malignancies, as well as an association between the usage of non-steroidal anti-inflammatory agents, and protection against various tumor types. For many years, the relationship between the expression of the receptor of advanced glycation end-products (RAGE) and cancer has been well-documented, as reported in gastric, prostate, lung, pancreas, and liver malignancies. However, the contribution of RAGE to cancer biology seems to be much more functional than initially thought, because it has now emerged as a relevant element of the so-called “damage associated molecular pattern molecules” or alarmins, which are released in response to infection or inflammatory stimuli, especially during tissue damage.

Although glucose may be the triggering stimulus to draw RAGE into diabetes pathology, consequent cellular stress results in the release of pro-inflammatory RAGE ligands S100/calgranulins and HMGB1. Thus, RAGE engagement in diabetic tissue produces a vicious cycle of ligand-RAGE perturbation, leading not only to chronic tissue injury, but also suppression of repair mechanisms. RAGE engagement activates multiple signaling pathways (Figure 1), including reactive oxygen species, p21ras, erk1/2 (p44/p42) mitogen-activated protein kinases, p38 and SAPK/JNK mitogen-activated protein kinases, rhoGTPases, phosphoinositol-3 kinase and JAK/STAT pathway, with important downstream inflammatory consequences, such as the activation of nuclear factor-kappaB (NFκB), AP-1 and STATs, which are involved in the inflammatory process seen in both diabetes and cancer.

RAGE engagement activates many signaling pathways which are involved in both diabetes-associated vascular complications and tissue damage, and as well as in the tumor microenvironment-associated inflammatory milieu. RAGE: Receptor of advanced glycation end-products.

A9 with RAGE involve carboxylated glycans; the transition from acute to chronic inflammatory conditions in the study cited did not occur in RAGE-/- mice, which in turn, produced fewer tumors in a colitis-associated cancer model.

The consequences of RAGE activation to tumor biology also reach key processes, such as the acquisition of an hypoxia–resistant phenotype in carcinoma cells. Recently, it has been reported that S100A8/A9 proteins contribute to the recruitment and retention of myeloid suppressor cells through a mechanism mediated, at least in part, by the binding to carboxylated N-glycans expressed on the receptor for advanced glycation end-products, and the subsequent activation of the NFκB signaling pathway. AGEs can also down-regulate in vitro the ability of dendritic cells (DCs) to express co-stimulatory signals and to activate T cells. Similar results have been described after a blockade of the autocrine secretion of HMGB1, and of RAGE activation.

In recent years, a growing body of evidence supports the role of ligands/RAGE axis in angiogenesis. Upon RAGE engagement, profound effects are reported in endothelial cells, including up-regulation of VEGF and metalloproteinase-2, as well as the disruption of the VE-cadherine/catenins complex, thus favoring capillary tube formation. Additionally, RAGE activation also increases endothelial permeability to macromolecules, a condition very common in tumor microvasculature. Although many aspects of differentiation, mobilization and recruitment of endothelial progenitor cells (EPCs) remain controversial, it has been reported that the levels of peripheral blood EPCs have been shown to be increased in certain malignant states.
A common focal point is the onset and perpetuation of the link between diabetes and cancer. The understanding of the mechanistic scenario supporting the RAGE axis, smoldering inflammation such as that lights the facts associated with the presence of an activated receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. \cite{17}

In 2000, a seminal report on the contribution of the multiligand/RAGE axis on invasion and metastasis demonstrated that a blockade of the RAGE-HGMB1-derived signaling decreased growth and metastases of both implanted tumors, and tumors developing spontaneously in susceptible mice\cite{18}.

CONCLUSION

During the last decade, relevant advances in our understanding of the pathophysiologic role of the multiligand/RAGE axis have lead to a substantial knowledge of how this promisscuous receptor, once activated, is able to continuously bring about an inflammatory milieu (Figure 2). The current relevance of Virchow’s postulate about the role of chronic inflammation in cancer development highlights the facts associated with the presence of an activated RAGE axis, smoldering inflammation such as that occurring in diabetes, and thus its contribution towards the understanding of the mechanistic scenario supporting the link between diabetes and cancer.

REFERENCES

1. van Dieren S, Beulens JW, van der Schouw YT, Grobbbee DE, Neal B. The global burden of diabetes and its complications: an emerging pandemic. \textit{Eur J CardiovascPrev Rehabil} 2010; 17 Suppl 1: S3-S8
2. Vigneri P, Frasca F, Sciaccia L, Pandini G, Vigneri R. Diabetes and cancer. \textit{Endocr Relat Cancer} 2009; 16: 1103-1123
3. Shinohara M, Thornalley PJ, Giardino I, Beisswenger P, Thorpe SR, Onorato J, Brownlee M. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis. \textit{J Clin Invest} 1999; 101: 1142-1147
4. Vande Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. \textit{Science} 2009; 324: 1029-1030
5. Kislinger T, Fu C, Huber B, Qu W, Taguchi A, Du Yan S, Hofmann M, Yan SF, Pischetsrieder M, Stern D, Schmidt AM. N(epsilon)-(carboxymethyl)lysine adducts of proteins are ligands for receptor for advanced glycation end products that activate cell signaling pathways and modulate gene expression. \textit{J Biol Chem} 1999; 274: 31740-31749
6. Cho SJ, Roman G, Yeboah F, Konishi Y. The road to advanced glycation end products: a mechanistic perspective. \textit{Curr Med Chem} 2007; 14: 1653-1671
7. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. \textit{Nature} 2001; 414: 813-820
8. Kim W, Hudson BI, Moser B, Guo J, Rong LL, Lu Y, Qu W, Lalla E, Lerner S, Chen Y, Yan SS, D’Agati V, Naka Y, Ramasamy R, Herold K, Yan SF, Schmidt AM. Receptor for advanced glycation end products and its ligands: a journey from the complications of diabetes to its pathogenesis. \textit{Ann N Y Acad Sci} 2005; 1043: 553-561
9. Méndez JD, Xie J, Aguilar-Hernández M, Méndez-Valenzuela E. Trends in advanced glycation end products research in diabetes mellitus and its complications. \textit{Mol Cell Biochem} 2010; 341: 33-41
10. Singh R, Barden A, Mori T, Belin L. Advanced glycation end products: a review. \textit{Diabetologia} 2001; 44: 129-146
11. Yamagishi S, Matsui T. Advanced glycation end products (AGEs), oxidative stress and diabetic retinopathy. \textit{Curr Pharm Biotechnol} 2011; 12: 362-368
12. van Heijst JW, Niessen HW, Hoekman K, Schalkwijk CG. Advanced glycation end products in human cancer tissues: detection of N epsilon-(carboxymethyl)lysine and argpyrimidine. \textit{Ann N Y Acad Sci} 2005; 1043: 725-733
13. Tan KC, Shiu SW, Wong Y, Tam X. Serum advanced glycation end products is associated with insulin resistance. \textit{Diabetes Metab Res Rev} 2011 [Epub ahead of print]
14. Sarkar P, Kar K, Mondal MC, Chakraborty I, Kar M. Elevated level of carbonyl compounds correlates with insulin resistance in type 2 diabetes. \textit{Ann Acad Med Singapore} 2010; 39: 909-904
15. Tahara N, Yamagishi SI, Matsui T, Takeuchi M, Nitta Y, Kodama N, Mizoguchi M, Inaiizumi T. Serum Levels of Advanced Glycation End Products (AGEs) are Independent Correlates of Insulin Resistance in Nondiabetic Subjects. \textit{Cardiovasc Ther} 2010 [Epub ahead of print]
16. Schalkwijk CG, Brouwers O, Stehouwer CD. Modulation of insulin action by advanced glycation end products: a new player in the field. \textit{Horm Metab Res} 2008; 40: 614-619
17. Hunter SJ, Boyd AC, O’Harte FP, McKillop AM, Wiggam ML, Mooney MH, McCluskey JT, Lindsay JR, Ennis CN, Gamble R, Sheridan B, Barnett CR, McNulty H, Bell PM, Flatt PR. Demonstration of glycated insulin in human diabetic plasma and decreased biological activity assessed by euglycemic-hyperinsulminemic clamp technique in humans. \textit{Diabetes} 2003; 52: 492-498
18. Riboulet-Chavey A, Pierron A, Durand I, Murdaca J, Giudicelli J, Van Obberghen E. Methylglyoxal impairs the insulin signaling pathways independently of the formation of intracellular reactive oxygen species. \textit{Diabetes} 2006; 55: 1289-1299
19. Jia X, Wu L. Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. \textit{Mol Cell Biochem} 2007; 306: 133-139
20. He C, Li J, Sabol J, Hattori M, Chang M, Mitsuhashi T, Vlassara
Rojas A et al. RAGE and diabetes-associated cancer

H. AGE-restricted diet decreases incidence of diabetes and prolongs survival in NOD mice (Abstract). Diabetes 1999; 48 (Suppl 1): A144

21 Lin RY, Choudhury RP, Cai W, Lu M, Fallon JT, Fisher EA, Vlassara H. Dietary glycoxidants promote diabetic atherosclerosis in apolipoprotein E-deficient mice. Atherosclerosis 2003; 168: 213-220

22 Hofmann SM, Dong HJ, Li Z, Cai W, Altomonte J, Thung SN, Zeng F, Fisher EA, Vlassara H. Improved insulin sensitivity is associated with restricted intake of dietary glycoxidation products in the db/db mouse. Diabetes 2002; 51: 2082-2089

23 Cassese A, Esposito I, Fiory F, Barbagallo AP, Patruzio F, Mirra P, Ullochian L, Giacco F, Iadiccio C, Lombardi A, Oriente F, Van Obbergen H, Beguinot F, Formisano P, Miele C. In skeletal muscle advanced glycation end products (AGEs) inhibit insulin action and induce the formation of multimolecular complexes including the receptor for AGEs. J Biol Chem 2008; 283: 36088-36099

24 Basta G. Receptor for advanced glycation endproducts and atherosclerosis: From basic mechanisms to clinical implications. Atherosclerosis 2008; 196: 9-21

25 Yan SF, Ramasamy R, Schmidt AM. Mechanisms of disease: advanced glycation end-products and their receptor in inflammation and diabetes complications. Nat Clin Pract Endocrinol Metab 2008; 4: 285-295

26 Rojas A. Mercadal E, Figueroa H, Morales MA. Advanced Glycation and ROS: a link between diabetes and heart failure. Curr Vase Pharmacol 2008; 6: 44-51

27 Schmidt AM, Stern DM. Receptor for age (RAGE) is a gene within the major histocompatibility class III region: implications for host response mechanisms in homeostasis and chronic disease. Front Biosci 2001; 6: D1151-D1160

28 Sugaya K, Fukagawa T, Matsumoto K, Mita K, Takahashi E, Ando A, Inoko H, Ikemura T. Three genes in the human MHC class III region near the junction with the class II: Ii gene for receptor of advanced glycosylation end products, PBX2 homeobox gene and a notch homolog, human counterpart of mouse mammary tumor gene int-3. Genomics 1994; 23: 408-419

29 Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying inflammatory and immunological responses. J Clin Invest 2001; 108: 949-955

30 Neep M, Schmidt AM, Burt J, Yan SD, Wang F, Pan YC, Elliot K, Stern D, Shaw A, Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992; 267: 14998-15004

31 Xie J, Reverdatto S, Frolow A, Hoffmann R, Burz DS, Shekhtman A. Structural basis for pattern recognition by the receptor for advanced glycation end products (RAGE). J Biol Chem 2008; 283: 25725-25729

32 Srikrishna G, Huttunen HJ, Johansson L, Weigle B, Yamaguchi Y, Rauvala H, Freeze HH. N-Glycans on the receptor for advanced glycation end-products influence amphoterin binding and neurite outgrowth. J Neurochem 2002; 80: 998-1008

33 Hudson BL, Carter AM, Harja E, Kalea AZ, Arriero M, Yang H, Grant PJ, Schmidt AM. Identification, classification, and expression of RAGE gene splice variants. FASEB J 2008; 22: 1572-1580

34 Geroldi D, Falcone C, Emanuele E. Soluble receptor for advanced glycation end products: from disease marker to potential therapeutic target. Curr Med Chem 2006; 13: 1971-1978

35 Marenholz I, Heizmann CW, Fritz G. S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochem Biophys Res Commun 2004; 322: 1111-1122

36 Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 2005; 5: 331-342

37 Coffelt SB, Scandurra AB. Tumors sound the alarmin(s). Cancer Res 2008; 68: 6482-6485

38 Yan SF, Ramasamy R, Schmidt AM. Receptor for AGE (RAGE) and its ligands-cast into leading roles in diabetes and the inflammatory response. J Mol Med (Berl) 2009; 87: 235-247

39 Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357: 539-545

40 Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature 2008; 454: 436-444

41 Rakoff-Nahoum S, Medzhitov R. Toll-like receptors and cancer. Nat Rev Cancer 2009; 9: 57-63

42 Harald zur Hausen. Infections Causing Human Cancer, 2007. Wiley-VCH: Weinheim. 532p

43 Rojas A, Figueroa H, Morales E. Fueling inflammation at tumor microenvironment: the role of multiligand/RAGE axis. Carcinogenesis 2010; 31: 334-341

44 Gebhardt C, Riehl A, Durdewich M, Netha J, Fürstenberger G, Müller-Decker K, Enk A, Arnold B, Bierhaus A, Nawroth PP, Hess J, Angel P. RAGE signaling sustains inflammation and promotes tumor development. J Exp Med 2008; 205: 275-285

45 Turovskaya O, Foell D, Sinha P, Vogt T, Newlin R, Nayak J, Nguyen M, Olsson A, Nawroth PF, Bierhaus A, Varki N, Kronenberg M, Freeze HH, Srikrishna G. RAGE, carboxylated glycans and S100A8/A9 play essential roles in colitis-associated carcinogenesis. Carcinogenesis 2008; 29: 2035-2043

46 Hiwatsahi K, Ueno S, Abeyama K, Kubo F, Sakoda M, Maruyama I, Hanaonue M, Natsugo S, Aikou T. A novel function of the receptor for advanced glycation end-products (RAGE) in association with tumorigenesis and tumor differentiation of HCC. Ann Surg Oncol 2008; 15: 923-933

47 Sinha P, Okoro C, Foell D, Freeze HH, Ostrand-Rosenberg S, Srikrishna G. Proinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cells. J Immunol 2008; 181: 4666-4675

48 Price CL, Sharp PS, North ME, Ruckle SJ, Knight SC. Advanced glycation end products modulate the maturation and function of peripheral blood dendritic cells. Diabetes 2004; 53: 1452-1458

49 Dumitriu IE, Baruah P, Bianchi ME, Manfredi AA, Rovere-Querini P. Requirement of HMGB1 and RAGE for the maturation of human plasmacytoid dendritic cells. Eur J Immunol 2008; 38: 2184-2190

50 Dumitriu IE, Baruah P, Valentinis B, Voll RE, Herrmann M, Nawroth PP, Arnold B, Bianchi ME, Manfredi AA, Rovere-Querini P. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 2005; 174: 7506-7515

51 Hoffmann S, Friedrichs U, Eichler W, Rosenthal A, Wiedemann P. Advanced glycation end products induce chondrial endothelial cell proliferation, matrix metalloproteinase-2 and VEGP upregulation in vitro. Gru Beych Del Clin Exp Ophiol 2002; 240: 996-1002

52 Yamagishi S, Yonekura H, Yamamoto Y, Katsuno K, Sato F, Mita I, Ooka H, Satozawa N, Kawakami T, Nomura M, Yamamoto H. Advanced glycation end products-driven angiogenesis in vitro. Induction of the growth and tube formation of human microvascular endothelial cells through autocrine vascular endothelial growth factor. J Biol Chem 1997; 272: 8723-8730

53 Otero K, Martinez F, Beltran A, Gonzalez D, Herrera B, Quintero G, Delgado R, Rojas A. Albumin-derived advanced glycation end-products trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 2001; 359: 567-574

54 Ding YT, Kumar S, Yu DC. The role of endothelial progenitor cells in tumour vasculogenesis. Pathobiology 2008; 76: 265-273

55 Chavakis E, Hain A, Vinci M, Carmona G, Bianchi ME,
Vajkoczy P, Zeiher AM, Chavakis T, Dimmeler S. High-mobility group box 1 activates integrin-dependent homing of endothelial progenitor cells. Circ Res 2007; 100: 204-212

Taguchi A, Blood DC, del Toro G, Canet A, Lee DC, Qu W, Tanji N, Lu Y, Lalla E, Fu C, Hofmann MA, Kialinger T, Ingram M, Lu A, Tanaka H, Hori O, Ogawa S, Stern DM, Schmidt AM. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 2000; 403: 354-360

Rojas A et al. RAGE and diabetes-associated cancer