BROOKS TYPE RESULTS FOR CONFLICT-FREE COLORINGS AND
\{a, b\}-FACTORS IN GRAPHS.

MARIA AXENOVICH AND JONATHAN ROLLIN

Abstract. A vertex-coloring of a hypergraph is conflict-free, if each edge contains a vertex whose color is not repeated on any other vertex of that edge. Let \(f(r, \Delta) \) be the smallest integer \(k \) such that each \(r \)-uniform hypergraph of maximum vertex degree \(\Delta \) has a conflict-free coloring with at most \(k \) colors. As shown by Tardos and Pach, similarly to a classical Brooks’ type theorem for hypergraphs, \(f(r, \Delta) \leq \Delta + 1 \). Compared to Brooks’ theorem, according to which there is only a couple of graphs/hypergraphs that attain \(\Delta + 1 \) bound, we show that there are several infinite classes of uniform hypergraphs for which the upper bound is attained. We give better upper bounds in terms of \(\Delta \) for large \(\Delta \) and establish the connection between conflict-free colorings and so-called \(\{t, r-t\} \)-factors in \(r \)-regular graphs. Here, a \(\{t, r-t\} \)-factor is a factor in which each degree is either \(t \) or \(r - t \). Among others, we disprove a conjecture of Akbari and Kano [1] stating that there is a \(\{t, r-t\} \)-factor in every \(r \)-regular graph for odd \(r \) and any odd \(t < \frac{r}{3} \).

1. Introduction

Given a vertex coloring of a hypergraph we call a vertex contained in an edge \(E \) uniquely colored in \(E \), if its color is assigned to no other vertex in \(E \). If every edge of a hypergraph contains a uniquely colored vertex, then the coloring is called conflict-free. The conflict-free chromatic number \(\chi_{cf}(H) \) of a hypergraph \(H \) is the minimum number of colors used in a conflict-free coloring of \(H \).

Conflict-free colorings are closely related to proper colorings in which each hyperedge is not monochromatic, i.e., contains at least two vertices of distinct colors. The chromatic number \(\chi(H) \) of a hypergraph \(H \) is the smallest number of colors in a proper coloring of \(H \). The following Brooks’ type theorem for hypergraphs proved by Kostochka, Stiebitz and Wirth [15] generalizes Brooks’ theorem for graphs. The maximum degree \(\Delta(H) \) of a hypergraph is the largest number of hyperedges containing a common vertex.

Theorem 1 ([15]). Let \(H = (V, E) \) be a connected hypergraph with \(|E| \geq 2 \) for each edge \(E \). If \(|E| > 1 \) and \(H \) is neither an ordinary odd cycle nor an ordinary complete graph, then \(\chi(H) \leq \Delta(H) \). Otherwise \(\chi_{cf}(H) = \chi(H) = \Delta(H) + 1 \).

Pach and Tardos provided the same upper bound on \(\chi_{cf} \):

Theorem 2 ([19]). For each hypergraph \(H \), \(\chi_{cf}(H) \leq \Delta(H) + 1 \).

In this paper, we find infinite classes of hypergraphs for which the upper bound \(\Delta + 1 \) on the conflict-free chromatic number is attained and provide better general upper bounds in terms of the maximum degree for uniform hypergraphs. In addition, we provide a connection between conflict-free colorings of hypergraphs and so-called \(\{t, r-t\} \)-factors in \(r \)-regular graphs.
Here, a \(\{t, r - t\} \)-factor is a spanning subgraph with every vertex of degree \(t \) or \(r - t \).

Next we list the main results of the paper. A hypergraph is \(r \)-uniform if each hyperedge contains exactly \(r \) vertices. The main parameter we introduce is

\[
\chi_{cf}(H) = \max \{ \chi_{cf}(H) : H \text{ is } r\text{-uniform, } \Delta(H) = \Delta \}.
\]

For all positive integers \(r, \Delta \), the result of Kostochka and Rödl \[13\] implies that

\[
f(r, \Delta) = \frac{\Delta}{r \log(\Delta)} \left(\frac{1}{r} \right)^{\frac{1}{r-1}}.
\]

Our main results deal with the upper bounds on \(\chi_{cf} \).

Theorem 3. Let \(r, \Delta \) be positive integers.

1. If \(r = 2 \) or \(\Delta = 2 \) and \(r \notin \{3, 5\} \), then \(f(r, \Delta) = \Delta + 1 \).
2. There is a constant \(c_r = c(r) \) such that \(f(r, \Delta) \leq c_r \Delta \frac{2}{r} \).
3. There are constants \(c, c_0 \) such that if \(r \geq c \) and \(\Delta \geq c_0 \ln r \) then \(f(r, \Delta) \leq \Delta \).
4. If \(\Delta \geq 3 \), then \(f(4, \Delta) \leq \Delta \).

Part of the above theorem is a corollary of an independent result:

Theorem 4. Let \(t \) be an odd positive integer. If \(r \) is even or \(r \geq (t + 1)(t + 2) \), then there is an \(r \)-regular graph that has no \(\{t, r - t\} \)-factor.

This disproves the following conjecture.

Conjecture 5 (Akbari and Kano \[1\]). Let \(r \) be an odd integer and \(a, b \) denote positive integers such that \(a + b = r \) and \(a < b \). Then each \(r \)-regular graph has an \(\{a, b\} \)-factor.

Note that Brooks’ theorem and the theorem by Kostochka et al. \[15\] give a complete characterization of 2- and 3-uniform hypergraphs \(H \) for which \(\chi_{cf}(H) = \Delta(H) + 1 \). Here, we can also characterize the case of 4-uniform hypergraphs.

Theorem 6. If \(H \) is a 4-uniform hypergraph on \(m \) edges, then \(\chi_{cf}(H) = \Delta(H) + 1 \) iff \(\Delta(H) = 1 \) or \(\Delta(H) = 2 \) and \(m \) is odd.

We provide some history of the problem, background, and basic lemmas in Section 2. An important construction is given in Section 3. Finally, the theorems are proved in Sections 4 and 5.

2. Background and previous results

Conflict-free colorings were introduced by Even et al. \[9\] when considering a frequency assignment problem in wireless networks. A set of base stations in the plane defines the vertices of the hypergraph. A hyperedge is formed by every subset of base stations which is simultaneously reached by a mobile agent from some point in the plane. In order to avoid interferences in communication there should be at least one base station reachable whose frequency is unique among all stations in the range. This corresponds to a conflict-free coloring of the underlying (geometric) hypergraph, where colors correspond to frequencies. Since frequencies are expensive due to limited bandwidth, as few frequencies (respectively colors) as possible shall be used. A survey by Smorodinsky \[23\] summarizes several results where the hypergraph under consideration is induced by some geometric setting, for example by discs \[9, 20\] or rectangles in the plane \[22\] and pseudodiscs \[11\].

Besides these geometrically induced hypergraphs other classes of hypergraphs were considered. Pach and Tardos \[19\] considered the so called conflict-free chromatic parameter.
of a graph G defined as the conflict-free chromatic number of the hypergraph on the same vertex set $V(G)$ and hyperedges consisting of vertex neighborhoods in the graph. Initially this and lots of related questions were studied by Cheilaris [6]. Recently Glebov, Szabó and Tardos [10] showed upper and lower bounds on this parameter for random graphs in terms of the domination number. In addition, conflict-free colorings of hypergraphs whose hyperedges correspond to simple paths of a given graph were considered [7, 8]. A variant of conflict-free colorings using integral colors and each hyperedge containing a vertex whose color is larger than the color of every other vertex in this edge is called a Unique-Maximum coloring or a vertex ranking, see [4, 12, 16].

Research on general hypergraphs was started by Pach and Tardos [19]. They gave several upper bounds on χ_{cf} in terms of different parameters. For example $\chi_{cf} \in O(t \cdot D^{1/2} \cdot \log(D))$ if every edge has size at least $2t - 1$ and D is the maximum edge degree. More bounds are due to Kostochka, Kumbhat and Luczak [14].

Theorem 7 ([14]). If D is the maximum edge degree of \mathcal{H}, D is sufficiently large and $D \leq 2^{r/2}$ then $\chi_{cf}(\mathcal{H}) \leq 120 \ln D$.

Pach and Tardos described a greedy algorithm to find a conflict free coloring with at most $\Delta + 1$ colors. We present an alternative proof based on so called strongly independent sets of vertices, where a set S is strongly independent if each edge contains at most one vertex from S.

Proof of Theorem 3. If $\Delta = 1$, then the hyperedges are disjoint and two colors are sufficient. For $\Delta > 1$, let S be a maximal strongly independent vertex set in \mathcal{H}. The new hypergraph \mathcal{H}' obtained by removing S and all edges incident to S has maximum degree at most $\Delta - 1$. A conflict-free coloring of \mathcal{H}' obtained by induction and using Δ colors, can be extended to a conflict-free coloring of \mathcal{H} by assigning a new color to each vertex in S. Indeed, each hyperedge from \mathcal{H} that is not a hyperedge of \mathcal{H}' contains exactly one vertex from S and thus a uniquely colored vertex. \square

Note that the usual and the conflict-free chromatic number may be arbitrarily far apart. We construct a hypergraph of chromatic number 2 and conflict-free chromatic number equal to $\Delta + 1$ inductively. If $\Delta = 1$, take a single edge with at least two vertices. If \mathcal{H} satisfies $\chi(\mathcal{H}) = 2$ and $\chi_{cf}(\mathcal{H}) = k$, then a hypergraph \mathcal{H}' is obtained from two vertex disjoint copies of \mathcal{H} and an additional edge E containing all vertices of both copies of \mathcal{H}. Coloring each copy of \mathcal{H} properly with 2 colors gives a proper coloring of \mathcal{H}' with two colors. However, any conflict-free coloring of \mathcal{H}' requires $k + 1$ colors, since one color is unique in E and hence is used in only one of the copies of \mathcal{H}.

Note, that there is another easy construction of a hypergraph \mathcal{H} with maximum degree Δ and $\chi_{cf}(\mathcal{H}) > \Delta$. Take two vertex disjoint copies of an ordinary complete graph K_Δ and add an edge E containing all vertices of both copies of \mathcal{H}. Coloring each copy of \mathcal{H} properly with 2 colors gives a proper coloring of \mathcal{H}' with two colors. However, any conflict-free coloring of \mathcal{H}' requires $k + 1$ colors, since one color is unique in E and hence is used in only one of the copies of \mathcal{H}.

Note that the hypergraphs in these constructions are not uniform.

Next, we prove Lemmas that will be used later.

Lemma 8. Let $r, \Delta \in \mathbb{N}$. If $f(r, \Delta) \leq \Delta$, then $f(r, \Delta + 1) \leq \Delta + 1$.

Proof. Let \mathcal{H} be an r-uniform hypergraph of maximum degree $\Delta + 1$ and let S be a maximal strongly independent set in \mathcal{H}. Consider the hypergraph \mathcal{H}' which is obtained by removing S
and all edges incident to \(S \) from \(\mathcal{H} \). Then \(\Delta(\mathcal{H}') \leq \Delta \) since every vertex in \(\mathcal{H} \) is adjacent to a vertex in \(S \). Thus \(\chi_{cf}(H') \leq f(r, \Delta) \leq \Delta \) by assumption on \(f \). Extending a conflict-free coloring of \(\mathcal{H}' \) with \(\Delta \) colors to a coloring of \(\mathcal{H} \) in which all vertices of \(S \) get the same new color gives a conflict-free coloring of \(\mathcal{H} \) with at most \(\Delta + 1 \) colors.

A hypergraph is \(a \)-regular if each vertex has degree \(a \). For a hypergraph \(\mathcal{H} = (V, \mathcal{E}) \), the dual hypergraph \(\mathcal{H}' = (\mathcal{E}, \mathcal{E}') \) is defined such that \(\mathcal{E}' = \{ E_v : v \in V \} \), \(E_v = \{ E \in \mathcal{E} : v \in E \} \). Note that a dual of a 2-regular \(r \)-uniform hypergraph is an ordinary \(r \)-regular graph. Moreover, any \(r \)-regular graph corresponds to a 2-regular \(r \)-uniform hypergraph.

Lemma 9. Let \(\mathcal{H} \) be a 2-regular \(r \)-uniform hypergraph and \(G \) be its dual graph. Then \(\chi_{cf}(\mathcal{H}) = 2 \) iff \(G \) has a \(\{1, r-1\} \)-factor.

Proof. Consider a conflict-free 2-coloring of \(\mathcal{H} \) and color each edge in \(G \) with the color of its corresponding vertex in \(\mathcal{H} \). Let \(F \) denote the set of edges of one of the color classes in \(G \). Then \(F \) is a \(\{1, r-1\} \)-factor. The other way round observe that the complement of a \(\{1, r-1\} \)-factor in \(G \) is a \(\{1, r-1\} \)-factor as well. So, \(G \) is an edge-disjoint union of \(F_1 \) and \(F_2 \), two \(\{1, r-1\} \)-factors. Color the vertices of \(\mathcal{H} \) corresponding to edges of \(F_1 \) red, and the vertices corresponding to the edges of \(F_2 \) blue. This defines a conflict-free coloring of \(\mathcal{H} \).

The following lemma is a straightforward application of the Local Lemma that was pointed out in most papers on conflict-free colorings. We include it here for completeness.

Lemma 10. Let \(r, \Delta \in \mathbb{N} \), \(r, \Delta \geq 2 \), and \(\mathcal{H} = (V, \mathcal{E}) \) be an \(r \)-uniform hypergraph of maximum degree \(\Delta \). Then
\[
\chi_{cf}(\mathcal{H}) \leq \frac{1}{2} (er)^{1+\frac{2}{r}} \cdot \Delta^{\frac{2}{r}}.
\]

Proof. Color each vertex uniformly and independently at random with one out of \(k \) colors. For a hyperedge \(E \), a bad event \(A_E \) occurs when \(E \) has at most \(r/2 \) colors. Note that when there are no bad events, each edge has more than \(r/2 \) colors, and thus each edge has a vertex of a unique color. Using Lovász Local Lemma, we have \(\text{Prob}(\bigwedge_{E \in \mathcal{E}} \overline{A_E}) > 0 \) if \(\text{Prob}(A_E) \leq p \) for each \(E \) and \(ped < 1 \), where each \(A_E \) is mutually independent of all but at most \(d \) other bad events. We have that
\[
\text{Prob}(A_E) \leq \left(\frac{k}{2} \right)^r \left(\frac{r}{2k} \right)^r \leq k^{-\frac{2}{r}} \left(\frac{e}{2} \right)^{\frac{2}{r}}.
\]
So, let \(p = k^{-\frac{2}{r}} \left(\frac{e}{2} \right)^{\frac{2}{r}} \). In addition, there are at most \(r(\Delta - 1) \) edges intersecting any given edge \(E \), so \(d \leq r(\Delta - 1) \). Thus \(ped < 1 \) if \(er\Delta k^{-\frac{2}{r}} \left(\frac{e}{2} \right)^{\frac{2}{r}} < 1 \). Solving for \(k \), we have that \(ped < 1 \) if \(k \geq \sqrt{1 + \frac{r}{2}} \cdot \Delta^{\frac{2}{r}} = c_r \Delta^{\frac{2}{r}} \). Therefore, there is a conflict-free coloring of \(\mathcal{H} \) with \(k \) colors for \(k \geq c_r \Delta^{\frac{2}{r}} \) and thus \(\chi_{cf}(\mathcal{H}) \leq \left(\frac{er}{2} \right)^{\frac{2}{r}} \cdot \Delta^{\frac{2}{r}} \).

For additional notations on hypergraphs we refer to [5]. In the remaining text we call an edge \(\text{good} \), if it contains a uniquely colored vertex and a coloring \(\text{good} \), if every edge is good.

3. Construction of a Graph \(G(t, r) \)

Let \(r \) and \(t \) be positive odd integers, \(r \geq (t + 1)(t + 2) \). To construct \(G(t, r) \), we shall consider several graphs. Start with a copy \(K \) of \(K_{r-1, r} \) with partite sets \(U, V \), where \(|U| = r - 1, |V| = r \). A graph \(H \) is obtained by adding a matching \(M \) on \(r - t - 2 \) vertices from \(V \).
and by adding a new vertex \(u \) connected to the \(t + 2 \) remaining vertices of degree \(r - 1 \) in \(V \).

In \(H \) every vertex in \(U \cup V \) is of degree \(r \) and the vertex \(u \) is of degree \(t + 2 \).

Take \(t + 1 \) vertex-disjoint copies \(H_1, \ldots, H_{t+1} \) of \(H \) and identify all copies of the vertex \(u \). Call the resulting vertex \(w \), and the resulting graph \(G' \). Moreover, call the copy of \(M \) in \(H_i \)

as \(M_i \), and call the copies of \(U \) and \(V \) as \(U_i \) and \(V_i \), respectively, \(i = 1, \ldots, t + 1 \). The degree of \(w \) in \(G' \) is \((t + 1)(t + 2) \leq r \) and the degree of each other vertex is \(r \).

Let \(\delta := r - (t + 1)(t + 2) \). It remains to raise the degree of \(w \) to \(r \). The graph \(G(t,r) \) is defined by taking \(\delta + 1 \) copies of \(G' \) and adding an edge between each two copies of \(w \). Since every copy of \(w \) receives \(\delta \) additional edges, the graph \(G(t,r) \) is \(r \)-regular. See Figure 1 for an illustration of the case \(r = 7, t = 1 \) and \(\delta = 7 - 2 \cdot 3 = 1 \). This concludes the Construction.

4. PROOFS OF THEOREMS 3(1), (2), (3) AND 4

Proof of Theorem 4 First we shall show that for any odd natural numbers \(r, t \) with \(r \geq (t + 1)(t + 2) \), \(G = G(t,r) \) has no \(\{t, r - t\} \)-factor.

Assume there is a \(\{t, r - t\} \)-factor \(F \) of \(G \). Consider one of the copies of \(G' \). We shall show that in each of \(H_1, \ldots, H_{t+1} \) there is at least one edge incident to \(w \) that belongs to \(F \) and there is at least one edge incident to \(w \) that does not belong to \(F \).

Assume, without loss of generality, that in \(H_1 \), none of the edges incident to \(w \) belongs to \(F \). Let \(x \) be the number of edges of \(M_1 \) in \(F \). The degree of each vertex in \(U_1 \) in \(F \)

is either \(t \) or \(r - t \), that is \(t \) modulo \(r - 2t \). Thus the number of edges of \(F \) between \(U_1 \)

and \(V_1 \) modulo \(r - 2t \) is \((r - 1)t \). On the other hand (counting the edges incident to \(V_1 \)) it is \(rt - 2x \) modulo \(r - 2t \). So, \(rt - t = rt - 2x \) (mod \(r - 2t \)), so \(2x - t = 0 \) (mod \(r - 2t \)).

We also have that \(2x - t \geq -t > -r + 2t \), so using the fact that \(2x - t \) is odd, we have that \(2x - t = k(r - 2t) \) for a positive integer \(k \). So, \(2x - t \geq r - 2t \), i.e., \(2x \geq r - t \), a contradiction since \(2x \leq r - t - 2 \) by construction.

Assume further, that in \(H_1 \) all of the edges incident to \(w \) belong to \(F \). Then the number of edges of \(F \) between \(U_1 \) and \(V_1 \) is \((r - 1)t \equiv rt - (t + 2) - 2x \) (mod \(r - 2t \)). Then \(2x + 2 = 0 \) (mod \(r - 2t \)). Since \(2x + 2 \) is an even positive number and \(r - 2t \) is odd, we have that \(2x + 2 \geq 2(r - 2t) = 2r - 4t \), a contradiction since \(2x + 2 \leq r - t \).

This shows that in each of the \(H_i \)'s, there is an edge of \(F \) and a non-edge of \(F \) incident to \(w \). Thus, the degree of \(w \) in \(F \) is at least \(t + 1 \) and at most \(r - t - 1 \), a contradiction.

Now, observe that for any odd \(t \) and even \(r \), \(K_{r+1} \) does not have a \(\{t, r - t\} \)-factor for even \(r \).
Indeed, since \(t \) is odd and \(r \) is even, a \(\{t, r - t\} \) factor has odd degrees. However, \(K_{r+1} \) has an odd number of vertices, thus \(F \) is a graph with odd degrees and an odd number of vertices, a contradiction.

\[
\text{Proof of Theorem 3(1).} \quad \text{Note first that if } r \in \{2, 3\} \text{ then } \chi(H) = \chi_{cf}(H) \text{ because any proper coloring is also a conflict-free coloring. Thus, we know precisely for what 2- and 3-uniform hypergraphs } \chi_{cf} = \Delta + 1 \text{ from Theorem 1. In particular, } f(2, \Delta) = \Delta + 1 \text{ and } f(3, 1) = 2 = \Delta + 1, \text{ but } f(3, \Delta) \leq \Delta \text{ if } \Delta \geq 2. \text{ Theorem 4 and Lemma 9 imply that } f(r, 2) = 3 \text{ for all } r \notin \{3, 5\}. \quad \square
\]

\[
\text{Proof of Theorem 3(2).} \quad \text{Theorem follows immediately from Lemma 10 according to which } f(r, \Delta) \leq \frac{1}{2} (er)^{1+\frac{2}{r}} \cdot \Delta^\frac{2}{r} = c_r \Delta^\frac{2}{r}. \quad \square
\]

\[
\text{Proof of Theorem 3(3).} \quad \text{Consider } H, \text{ an } r\text{-uniform hypergraph with maximum degree } \Delta \text{ and maximum edge-degree } D. \text{ A set } S \text{ of vertices separates } H = (V, E) \text{ if the hypergraph } H' = (V - S, \{E - S : E \in E\}) \text{ is disconnected. We denote } H' \text{ as } H - S.
\]

\[
\text{Lemma 11.} \quad \text{If } H \text{ is an } r\text{-uniform connected hypergraph, then there is a set } S \text{ of } r - 1 \text{ vertices contained in an edge of } H \text{ such that } H - S \text{ is connected.}
\]

\[
\text{Proof.} \quad \text{Consider all pairs of edges with the largest distance between them. Among those, choose a pair } E, E' \text{ that has a geodesic } P' \text{ whose tail has the smallest size. Let } P' = (E_1, \ldots, E_k). \text{ Let } v \in E_{k-1} \cap E_k \text{ and } S = E_k - \{v\}. \text{ We shall show that } S \text{ does not separate } H.
\]

\[
\text{If } k = 2, \text{ then } H \text{ is intersecting. Assume that } S \text{ separates } H, \text{ and let } E \text{ be an edge such that } E - S \text{ is in a different connected component than } E_1 - S \text{ in } H - S. \text{ Then } v \notin E. \text{ However, since } H \text{ is intersecting, } E \cap E_1 \neq \emptyset \text{ and } E \cap E_1 \subseteq E_1 \cap S. \text{ We have that } E_1 \cap E_2 = (E_1 \cap S) \cup \{v\}. \text{ Thus, } |E_1 \cap E| < |E_1 \cap E_2|, \text{ a contradiction. Thus } S \text{ does not separate } H.
\]

\[
\text{We can assume that } k \geq 3. \text{ Note first that } S \cap E_i = \emptyset \text{ for } i = 1, \ldots, k-2, \text{ otherwise } P' \text{ is not an } E-E'\text{-geodesic. Assume that } H - S \text{ has at least two connected components. One of these contains all edges of } P' \text{ with } S \text{ deleted from them, and the other contains some vertex } u. \text{ Let } E'' \text{ be an edge incident to } u. \text{ Then an } E-E''\text{-geodesic } P'' \text{ must contain some vertices of } S \text{ in its edges and it must have length at most } k. \text{ So, } P'' = (E'_1, E'_2, \ldots, E'_i, E''_i, E''_{i+1}, \ldots, E'').
\]
where $E'_1 \cap S \neq \emptyset$ and $E'_{i+1} \cap S \neq \emptyset$. Then $i \geq k - 1$ because otherwise E'_1, \ldots, E'_i together with E' contains an E-E' path that is shorter than P'. Thus $i = k - 1$ and $E'_k = E''$. Then P' together with E'' forms an E-E''-geodesic of length $k + 1$, unless E'' contains a vertex from $E_{k-1} \cap E_k$. Since any geodesic in \mathcal{H} is of length at most k, we have that the latter happens and $E_1, E_2, \ldots, E_{k-1}, E''$ is an E-E''-geodesic of length k. However, $v \notin E''$, so $|E_{k-1} \cap E''| < |E_{k-1} \cap E_k|$, where $E_k = E'$, a contradiction to the choice of E, E' with the smallest tail-size. Thus S does not separate \mathcal{H}. □

Note that Lemma 11 does not hold if \mathcal{H} is not uniform. Indeed, consider a hypergraph \mathcal{H} on vertices v_1, \ldots, v_r, u, u' and four edges $\{v_1, \ldots, v_r\}, \{v_2, \ldots, v_{r+1}\}, \{u, v_1\}$, and $\{u', v_{r+1}\}$. Then, without loss of generality $S = \{v_2, \ldots, v_r\}$ or S contains v_1. In both cases $\mathcal{H} - S$ is disconnected.

Proof of Theorem 3(4). We first shall show that $f(4, 3) \leq 3$. Then Lemma 2 implies that $f(4, \Delta) \leq \Delta$ for any $\Delta \geq 3$. Let \mathcal{H} be a connected 4-uniform hypergraph, $\Delta(\mathcal{H}) = 3$ and S be a subset of 3 vertices contained in an edge E of \mathcal{H} such that $\mathcal{H} - S$ is connected. Such S exists by Lemma 11. Let $\mathcal{H} = \{(v_1, v_2, v_3) : \{v_1, v_2, v_3\} \cup S = \{v_1, v_2, v_3\} \}$ and for any vertex $v_i \in \{v_1, \ldots, v_{r-1}\}$ there is at least one vertex $v_j, j > i$ such that v_i and v_j belong to the same edge. This ordering could be done since $\mathcal{H} - S$ is connected. Then for each $j, j < n, v_j$ is the last vertex of at most two edges and v_n is the last vertex of at most three edges including E. To find a good coloring of \mathcal{H}, we use a procedure: Color the vertex v_i with color $i, i = 1, 2, 3$. Assume that v_1, \ldots, v_{n-1} have been colored. For $j \leq n$, consider at most two edges E_1, E_2, such that v_j is the last vertex in them and such that $E \notin \{E_1, E_2\}$ for $j = n$. Let q_i be the color of X_i and E_i. If X_i is monochromatic and let q_i be a unique color of X_i otherwise, $i = 1, 2$. Then let the color of v_j be from $\{1, 2, 3\} - \{q_1, q_2\}$. This gives a good coloring of E_1 and E_2. When $j = n$ we need also to worry about the edge E being good. However, since E contains the vertices v_1, v_2, v_3 of colors 1, 2, and 3, E is good regardless of the color of v_n. □

Note however, that for any even $r \geq 2$, there is a 3-regular hypergraph \mathcal{H} with every edge of size at most r and $\chi_{cf}(\mathcal{H}) > 3$. Indeed, for $r = 2$ this is an ordinary graph K_4. For $r \geq 4$, consider $r/2$ vertex disjoint copies of $K_4 - e$, a complete graph on 4 vertices without an edge, and form an edge E of size r from all vertices of degree 2 in these copies of $K_4 - e$. If the resulting hypergraph were to be conflict-free 3-colorable, then all ordinary edges would be non-monochromatic and in each copy of $K_4 - e$, the two vertices of degree 2 would get the same color. Thus, in E, each color would be repeated.

Proof of Theorem 6. Let \mathcal{H} be a 4-uniform hypergraph. If $\Delta(\mathcal{H}) \geq 3$, then by Theorem 3(4), $\chi_{cf}(\mathcal{H}) \leq \Delta$. If $\Delta = 1$ then $\chi_{cf}(\mathcal{H}) \geq 2 = \Delta + 1$. Assume that $\Delta = 2$. It is easy to see that if \mathcal{H} is not regular, then $\chi_{cf}(\mathcal{H}) \leq \Delta = 2$. Thus, we can assume that \mathcal{H} is a 2-regular 4-uniform hypergraph. From Lemma 3, we see that $\chi_{cf}(\mathcal{H}) = 2$ iff its dual 4-regular graph has a $\{1, 3\}$-factor. Theorem 6.7 from [3] claims that a 4-regular graphs has a $\{1, 3\}$-factor iff the number of vertices is even. □

6. Conclusions and Open Questions

The largest conflict free chromatic number of an r-uniform hypergraph with maximum degree Δ is denoted $f(r, \Delta)$. As for the usual chromatic number, $f(r, \Delta) \leq \Delta + 1$.

Compared to graph/hypergraph Brooks’-type theorems we show that the upper bound $\Delta + 1$ is attained by infinite classes of hypergraphs, in particular for each $r \neq 3, 5$ and $\Delta = 2$. We prove that $f(r, \Delta)$ is at most Δ when r is sufficiently large and $\Delta > c \ln r$.

We find a relation between conflict-free colorings and \(\{t, r - t\}\)-factors, studied as early as 1891 by Petersen [21], when the existence of a \(t\)-factor in every \(r\)-regular graph was proved for \(r \text{ and } t\) even. For each even \(r \neq 4\) and each odd \(t\) there is an \(r\)-regular graph without \(\{t, r - t\}\)-factor [17,18]. A 4-regular graph on \(n\) vertices has a \(\{1, 3\}\)-factor if and only if \(n\) is even. For odd \(r\) and arbitrary even \(t\) or odd \(t \geq \frac{r}{3}\) every \(r\)-regular graphs contains a \(\{t, r - t\}\)-factor [1]. Akbari and Kano conjectured the existence of such a factor for the remaining range of odd \(t\), see Conjecture [5]. We disprove this for \(r \geq (t+1)(t+2)\). For \(t = 1\) this disproves the conjecture for all odd \(r \geq 7\). An interesting open problem remains to determine whether a \(\{1, 4\}\)-factor exists in any 5-regular graph. As noted by by Akbari et al. [2], such a factor exists if and only if there is an assignment of labels 1 and 2 to the edges such that the sum of the labels on the edges incident to each vertex is zero modulo 3. There were at least two incorrect proofs for the existence of such a factor posted in the Internet by independent groups of researchers.

Besides the value of \(f(5, 2)\), many other values for \(f(r, \Delta)\) are to be determined. In particular, the question of whether \(f(r, \Delta) \leq \Delta\) for any \(r, \Delta \geq 3\) remains open except for the cases when \(r \leq 4\) that we handled.

7. Acknowledgements

The authors thank Torsten Ueckerdt, André Kündgen, and Alexander Kostochka for useful discussions.

References

[1] S. Akbari and M. Kano. \(\{k, r - k\}\)-Factors of \(r\)-Regular Graphs. Graphs and Combinatorics, 30(4):821 - 826, 2014.
[2] S. Akbari, F. Rahmati, and S. Zare. Zero-sum magic labelings and null sets of regular graphs. The Electronic Journal of Combinatorics, 21(2):2 - 17, 2014.
[3] J. Akiyama and M. Kano. Factors and factorizations of graphs. Springer, Heidelberg, 2011.
[4] H. L. Bodlaender, J. S. Deogun, K. J., T. Kloks, D. Kratsch, H. Müller, and Z. Tuza. Rankings of graphs. SIAM Journal on Discrete Mathematics, 11(1):168 - 181, 1998.
[5] B. Bollobás. Combinatorics: Set systems, hypergraphs, families of vectors and combinatorial probability. Cambridge University Press, Cambridge, reprint edition, 1990.
[6] P. Cheilaris. Conflict-Free Coloring. PhD thesis, City University of New York, 2009.
[7] P. Cheilaris, B. Keszegh, and D. Pálvölgyi. Unique-Maximum and Conflict-Free Coloring for Hypergraphs and Tree Graphs. In SOFSEM, 190 - 201, 2012.
[8] P. Cheilaris and G. Tóth. Graph unique-maximum and conflict-free colorings. Journal of Discrete Algorithms, 9(3):241 - 251, 2011.
[9] G. Even, Z. Lotker, D. Ron, and S. Smorodinsky. Conflict-free colorings of simple geometric regions with applications to frequency assignment in cellular networks. SIAM Journal on Computing, 33(1):94 - 136, 2003.
[10] R. Glebov, T. Szabó, and G. Tardos. Conflict-free colouring of graphs. Combinatorics, Probability and Computing, 23(3):434 - 448, 2014.
[11] S. Har-Peled and S. Smorodinsky. Conflict-Free Coloring of Points and Simple Regions in the Plane. Discrete & Computational Geometry, 34(1):47 - 70, 2005.
[12] A. V. Iyer, H. D. Ratliff, and G. Vijayan. On an edge ranking problem of trees and graphs. Discrete Applied Mathematics, 30(1):43 - 52, 1991.
[13] A. Kostochka and V. Rödl. Constructions of sparse uniform hypergraphs with high chromatic number. Random Structures Algorithms, 36(1):40 - 56, 2010.
[14] A. Kostochka, M. Kumbhat, and T. Łuczak. Conflict-free colourings of uniform hypergraphs with few edges. Combinatorics, Probability and Computing, 21(4):611 - 622, 2012.
[15] A. Kostochka, M. Stiebitz, and B. Wirth. The colour theorems of Brooks and Gallai extended. Discrete Mathematics, 162(1):299 - 303, 1996.
[16] T. W. Lam and F. L. Yue. Optimal edge ranking of trees in linear time. Algorithmica, 30(1):12 - 33, 2001.
[17] H. Lu and Y. Lin. Note on parity factors of regular graphs. Electronic Journal of Graph Theory and Applications, 1(1):50 - 55, 2013.
[18] H. Lu, D. G. L. Wang, and Q. Yu. On the existence of general factors in regular graphs. SIAM Journal on Discrete Mathematics, 27(4):1862 - 1869, 2013.
[19] J. Pach and G. Tardos. Conflict-free colourings of graphs and hypergraphs. Combinatorics, Probability and Computing, 18(5):819 - 834, 2009.
[20] J. Pach and G. Tóth. Conflict-free colorings. In Discrete and computational geometry, 665 - 671. Springer, Berlin, 2003.
[21] J. Petersen. Die Theorie der regulären Graphen. Acta Mathematica, 15(1):193 - 220, 1891.
[22] S. Smorodinsky. On The Chromatic Number of Geometric Hypergraphs. SIAM Journal of Discrete Math., 21(3):676 - 687, 2007.
[23] S. Smorodinsky. Conflict-Free Coloring and its Applications. arXiv:1005.3616, 2010.

Karlsruher Institut für Technologie, Karlsruhe, Germany
E-mail address: maria.aksenovich@kit.edu

Karlsruher Institut für Technologie, Karlsruhe, Germany
E-mail address: jonathan.rollin@kit.edu