Supported metal clusters containing only a few atoms are of great interest. Progress has been made in synthesis of metal single-atom catalysts. However, precise synthesis of metal dimers on high-surface area support remains a grand challenge. Here, we show that Pt2 dimers can be fabricated with a bottom-up approach on graphene using atomic layer deposition, through proper nucleation sites creation, Pt1 single-atom deposition and attaching a secondary Pt atom selectively on the preliminary one. Scanning transmission electron microscopy, x-ray absorption spectroscopy, and theoretical calculations suggest that the Pt2 dimers are likely in the oxidized form of Pt2Ox. In hydrolytic dehydrogenation of ammonia borane, Pt2 dimers exhibit a high specific rate of 2800 molH2 molPt−1 min−1 at room temperature, ~17- and 45-fold higher than graphene supported Pt single atoms and nanoparticles, respectively. These findings open an avenue to bottom-up fabrication of supported atomically precise ultrafine metal clusters for practical applications.
Supported metal catalysts are among the most important categories of heterogeneous catalysts in many reactions including chemical upgrading, automobile exhaust treatment, Fischer-Tropsch synthesis, biomass conversions, and many other processes1-7. Decreasing metal particle size is desirable for improving metal utilization, since catalytic reactions take place on the surface of metal nanoparticles (NPs). When a metal cluster contains only a few metal atoms, it could have a discrete energy band structure, tightly correlated with the number of metal atoms. Changing one atom in the ultrathin cluster might largely alter the electronic structure and drastically change its catalytic properties. Such atom-dependent catalytic behaviors have been successfully demonstrated by the model catalysts of mass-selected metal clusters, which were fabricated by soft landing of mass-selected ions from their physical vapor under ultrahigh vacuum conditions8-14. However, such complicated approach is only limited to model catalyst studies and is not applicable to high-surface area supports for practical applications.

Recently, synthesis of supported metal single-atom catalysts (SACs) has been extensively explored and a number of successful examples have been demonstrated15-23. Nonetheless, synthesis of atomically precise ultrathin metal clusters, such as dimers, on high-surface area supports, remains a grand challenge. The decisive limitation is the lack of precise control over the aggregation process, which often causes metal NPs formation with a broad size distribution. Protecting metal clusters with a strong ligand can certainly inhibit metal aggregation to a large extent, such as in the case of thiolate-protected Au magic clusters24. However, these strong protective ligands typically poison the metal clusters, and decrease their catalytic activities considerably25-30. Alternatively, Gates et al. demonstrated that precisely defined iridium and rhodium clusters were achieved by grafting the corresponding carbonyl complexes with a specific number of metal atoms onto oxide supports31-33. But the success is limited. As a consequence, a general bottom-up approach to synthesize atomically precise metal clusters on high-surface area supports is still missing. Atomic layer deposition (ALD) relies on two sequential self-limiting surface reactions at the molecular level, which are separated by inert gas purging34-36. This unique character makes ALD possible to bottom-up construct catalytic materials on a high-surface area substrate uniformly and precisely37-39.

Here, we show that Pt\textsubscript{2} dimers can be bottom-up fabricated on a graphene support by depositing Pt on phenol-related oxygen anchor sites atom-by-atom in a sequential manner using Pt ALD. The dominant presence of isolated Pt\textsubscript{1} single atoms and Pt\textsubscript{2} dimers in the corresponding samples were confirmed by both aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and X-ray absorption fine structure spectroscopy (XAFS). Their structures were determined through a combination of density function theory (DFT) calculations and XAFS spectra simulations. In hydrolysis of ammonia borane (AB) for hydrogen generation, graphene supported Pt\textsubscript{2} dimers (Pt\textsubscript{2}/graphene) exhibited a striking activity, which is ~17- and 45-fold higher than that of graphene supported Pt\textsubscript{1} single atoms and Pt NPs, respectively. Compared to Pt\textsubscript{1} single atoms and Pt NPs, the decreased adsorption energies of both AB and H\textsubscript{2} molecules on Pt\textsubscript{2} dimers are likely the major reason for the high activity. More importantly, the Pt\textsubscript{2} dimers were stable under the current reaction condition and in the inert environment at below 300 °C.

Results

Synthesis and morphology of Pt\textsubscript{1}/graphene and Pt\textsubscript{2}/graphene

Based on our recent strategy22, the nucleation sites of isolated phenols or phenol–carbonyl pairs suggested by Shenoy et al40 for Pt ALD were first created on pristine graphene nanosheets through acid oxidation followed by high-temperature thermal reduction, as illustrated in the schematic model in Fig. 1. The reduced graphene oxide support was defect-rich multilayered graphite films with a thickness of about a few nanometers (Supplementary Fig. 1). It had a surface area of 570 m2/g. Next, Pt ALD was performed on the graphene support by alternating exposure steps of trimethyl(methylcyclopentadienyl)-platinum(IV) (MeCpPtMe\textsubscript{3}) and molecular O\textsubscript{2} at 250 °C. The self-limiting surface reactions between MeCpPtMe\textsubscript{3} and the support ensure nucleation of one MeCpPtMe\textsubscript{3} molecule on one phenol-related nucleation site during the saturated MeCpPtMe\textsubscript{3} exposure (Supplementary Fig. 2). It should be noted that Pt nucleation on graphene defect sites, such as edges and line defects, was inhibited at 250 °C, although it is possible at 300 °C (Supplementary Table 1)41. A similar temperature effect on inhibiting metal ALD on oxides was also observed by Elam et al42. Next, the ligands were removed through a combustion reaction during the O\textsubscript{2} exposure step43-45 and Pt\textsubscript{1} single atoms are formed (denoted as Pt\textsubscript{1}/graphene).

![Fig. 1 Schematic illustration of bottom-up synthesis of dimeric Pt\textsubscript{2}/graphene catalysts. Controlled creation of isolated anchor sites on pristine graphene; one cycle of Pt ALD on the anchor sites for Pt single atoms formation by alternately exposing MeCpPtMe\textsubscript{3} and molecular O\textsubscript{2} at 250 °C; second cycle of Pt ALD on the Pt\textsubscript{2}/Graphene to selectively deposit the secondary Pt atoms on the preliminary ones for Pt\textsubscript{2} dimers formation at 150 °C. The balls in cyan, white, red, and blue represent carbon, hydrogen, oxygen, and platinum while the ball in gray represents carbon atoms in the graphene support.](image-url)
Next, the formed Pt single atoms was further utilized as nucleation sites for anchoring the secondary MeCpPtMe3 molecule in the following cycle. Again, the steric hindrance between MeCpPtMe3 molecules restricts chemisorbing one MeCpPtMe3 molecule only on one isolated Pt1 atom. However, we noticed that a considerable amount of Pt NPs were formed after two successive cycles of Pt ALD at 250 °C (denoted as 2cPt/graphene, Supplementary Fig. 3). Therefore, the deposition temperature was decreased to 150 °C for the second ALD cycle to avoid any metal aggregation. Meanwhile, ozone (O3), a stronger oxidizing regent was utilized to remove the ligand efficiently to form Pt2 dimers (Pt2/graphene) (Fig. 1)6. The formed Pt single atoms and Pt2 dimers are expected to be in the oxidized forms, since they were exposed to O2 and O3 during synthesis, respectively.

Aberration-corrected HAADF-STEM measurements were carried out to investigate the morphologies of the single-atom Pt1/graphene and dimeric Pt2/graphene catalysts. Compared to the naked graphene (Supplementary Fig. 1), HAADF-STEM images illustrated that one cycle of Pt ALD on the graphene support at 250 °C resulted in a formation of atomically dispersed Pt1 atoms without presence of any visible clusters or NPs (Fig. 2a–c, and Supplementary Fig. 4). These Pt1 single atoms were well isolated from each other with a distance >2 nm in average, which is significantly larger than the effective diameter of the MeCpPtMe3 molecule of ~0.96 nm47, confirming the steric effect during synthesis. Similar to our recent study of Pd single-atom growth on graphene22, we found that complete removal of other oxygen-contained functional groups, such as carboxyl groups, from graphene by carefully tuning the reduction temperature and time, is the key to eliminate any Pt clusters or NPs formation (Supplementary Fig. 5). These findings suggest that metal atoms anchored on carboxyl groups have a general weak interaction with the graphene support, thus aggregate aggressively to larger metal NPs under the ALD conditions, in line with literature48.

After performing another cycle of Pt ALD on Pt1/graphene at 150 °C (Pt2/graphene), Pt2 dimers were dominantly formed along with a certain number of Pt1 single atoms (Fig. 2d–f, and Supplementary Fig. 6), where neither Pt clusters nor NPs were observed. Very interestingly, we noticed that a considerable amount of Pt NPs were formed after two successive cycles of Pt ALD at 250 °C (denoted as 2cPt/graphene, Supplementary Fig. 6), where neither Pt clusters nor NPs were found (Supplementary Table 1). Performing an additional cycle on Pt2/graphene to form Pt3 trimers might be possible. However, we noticed that the O3 in the second cycle can create additional nucleation sites on graphene. As a consequence, selective deposition was not achieved for the third cycle and resulted in a mixture of Pt1, Pt2 and Pt3. Therefore, we mainly focused on the Pt2 dimers in this work.

XAFS characterization and DFT calculations. Figure 3a shows the X-ray absorption near-edge structure (XANES) spectra of MeCpPtMe/graphene, Pt1/graphene, and Pt2/graphene at the Pt L3-edge, along with Pt foil, PtO2, and MeCpPtMe3 as references. Evidently, the XANES white line peaks of these three samples (11,567 eV) located at between Pt foil and PtO2, indicating that the Pt in MeCpPtMe/graphene, Pt1 single atoms, and Pt2 dimers were all in a similar oxidation state between Pt0 and Pt4+. The MeCpPtMe3 reference sample exhibits two well-resolved peaks at 1.62 and 1.99 Å in the Fourier transformed (FT) k3χ(k) curve in the real-space (R-space) (Fig. 3b), assigned to the shorter Pt–C bonds (1.99–2.14 Å) in the three Pt–Me groups and longer Pt–C bonds (2.26–2.36 Å) in the Pt–MeCp group, respectively (Supplementary Fig. 11a)47,50. Apparently, the two split peaks in the MeCpPtMe/graphene curve suggests that the MeCp group stayed on Pt in this sample. This observation is in line with both the experimental result of the formation of MeCpPtMe2 surface species on oxides53,51 and theoretical calculations where MeCpPtMe3 on epoxidated and hydroxylated graphene surfaces liberates either one or two methyl groups depending on the available surface groups52.

The first shell FT peak in the Pt1/graphene spectrum had a higher intensity and slightly shifted to 1.65 Å, while the peak at 1.99 Å disappeared. Clearly, the MeCp ligand was combusted off after the O2 exposure step at 250 °C. The first shell peak is assigned to Pt–O and/or Pt–C coordinations. Similar to MeCpPtMe/graphene, a very weak peak at 2.4 Å was visible in...
the spectrum of Pt$_1$/graphene. However, this peak is significantly different from the Pt–Pt coordination peak (at ~2.62 Å) in Pt foil, thus assigned to the second nearest C/O neighbors of Pt. This suggests the absence of Pt NPs in Pt$_1$/graphene, consistent with our STEM observation (Fig. 2a–c). The dimeric Pt$_2$/graphene sample showed a similar FT curve with Pt$_1$/graphene, implying a similar local C/O coordinations in these two samples. In the Pt$_2$/graphene spectrum, there was no discernible peak for the Pt–Pt coordination, suggesting the Pt$_2$ dimers are in the oxidized form after the ozone exposure step at 150 °C.

Considering the difficulties in discriminating the C/O neighbors by EXAFS fittings, we resorted to the combination of DFT calculations with EXAFS simulations to determine the optimized structures of these three samples. Here, a graphene support containing a carbon vacancy along with either isolated phenol group or phenol–carbonyl pairs40 was employed as the reduced graphene oxide surface. The structural models optimized by DFT calculations were further examined by EXAFS simulations.

Regarding the previous work52, the structures of MeCpPtMe$_2$ and MeCpPtMe were both considered for the MeCpPtMe/graphene sample (Supplementary Fig. 11). Compared to the MeCpPtMe$_3$ molecule, the five Pt–C bonds in the Pt–MeCp group in these two structures both changed significantly. According to the EXAFS simulations for these two structures, MeCpPtMe bonded to the graphene support through two interfacial O atoms might be the promising structure for the MeCpPtMe/graphene sample (Fig. 3c and Supplementary Figs. 11b and 12). Compared to the spectrum of MeCpPtMe$_3$, which was the most prominent peak at ~2.62 Å, the MeCpPtMe peak was shifted to ~2.5 Å, indicating a significant structural change.
the remarkably attenuated peak at 1.99 Å in the MeCpPtMe/graphene spectrum is due to the considerable distortion of the MeCp group.

When oxygen combusts off the ligand, additional oxygen chemisorbs on the Pt1 atom in the Pt1/graphene sample. Indeed, Pt1 atom with one chemisorbed O2 molecule at the terminal position (the Pt–O bond distance: 2.00 Å) and two O atoms at the interface (the Pt–O bond distance: 2.02 Å) produces an EXAFS spectrum in good agreement with the experimental result (Fig. 3d and Supplementary Fig. 12). On the contrary, the Pt1 atom with one O and one C atom at the interface generates split FT peaks in the first shell, in contrast with the experimental results (Supplementary Fig. 13). Nonetheless, this structure might not be completely ruled out.

During the second Pt ALD cycle, a secondary Pt atom anchors on the preliminary one and then becomes oxidized during the O3 exposure step. Taking this information into account, a Pt2O6 chain structure with O atoms alternating between the terminal and bridge positions was constructed (inset in Fig. 3e). After optimization, our calculations show that the Pt–Pt bond distance in the Pt2O6 chain is 3.03 Å (the inset of Fig. 3e), consistent with the experimental results very well (Fig. 2g). The lengths of the Pt–O bonds in the Pt2O6 chain are very close to each other, ~1.93–2.03 Å. Moreover, XAFS spectrum simulation for this Pt2O6 chain structure also agrees very well with the experimental result (Fig. 3e and Supplementary Fig. 12). This chain structure is found to be similar to the suggested structure models for Pt_xO_y (x=1–3) clusters by Schneider et al. previously. Interestingly, we also noticed that the tilted angle of the Pt2O6 chain could vary largely from ~8 to ~50°, depending on both the size of carbon vacancies and the configurations of two interfacial O atoms (Supplementary Fig. 14). The largely varied angles tilted from the

Fig. 3 XAFS structural characterization and spectra simulations. a The XANE spectra and b the K²-weighted Fourier transform spectra of MeCpPtMe/graphene, Pt1/graphene, and Pt2/graphene at the Pt L₃-edge. The reference samples of Pt foil, PtO₂, and MeCpPtMe₃ are also shown for comparison. Comparison of the EXAFS simulations based on the corresponding DFT calculated structural models (insets) with the experimental EXAFS spectra of MeCpPtMe/graphene (c), Pt1/graphene (d) and Pt2/graphene (e). The ball in gray, white, red, and dark blue represent carbon, hydrogen, oxygen, and platinum, respectively.
The activity of 2cPt/graphene, synthesized by two successive cycles of Pt ALD on graphene at 250 °C, was rather close to Pt1/graphene, by generating 7.5 mL H2 in 10.5 min. Obviously, Pt2/graphene and 2cPt/graphene were distinctly different in structure. As a comparison, the activities of the Pt NP catalysts of Pt/graphene-WI, Pt/carbon, and Pt/SiO2, as well as the commercial PtO2 were tested. The Pt/graphene-WI catalyst with a Pt particle size of 1.8 ± 0.5 nm (Supplementary Fig. 15 and Table 3), showed a very poor activity of 6.6 mL H2 release in 15.2 min. The commercial Pt/carbon catalyst with a Pt particle size of 2.3 ± 0.7 nm (Supplementary Fig. 16 and Table 3) was considerably better, generating 23.4 mL H2 in 9.7 min. The Pt/SiO2 ALD catalyst with a Pt particle size of 1.9 ± 0.3 nm (Supplementary Fig. 17 and Table 3) was also very active, releasing 23.4 mL H2 in 6.8 min. The commercial PtO2 powder (Supplementary Fig. 18) generated ~21 mL H2 in 15 min. In this case, a reduction of PtO2 into Pt occurred during the reaction, in line with literature.

The specific rates of these samples were calculated based on the Pt contents. The rates were 160 and 110 molH2 molPt⁻¹ min⁻¹ for Pt1/graphene and 2cPt/graphene, respectively (Fig. 4b and Supplementary Fig. 19). For the Pt NP samples, the rates were 62, 380, and 440 molH2 molPt⁻¹ min⁻¹ for Pt/graphene-WI, Pt/carbon, and Pt/SiO2, respectively, close to the values for Pt catalysts reported in the literature (Supplementary Table 4). The rate of PtO2 was 197 molH2 molPt⁻¹ min⁻¹. Obviously, hydrolytic dehydrogenation of AB on Pt catalysts is a structure sensitive reaction, the size, and electronic properties of Pt NPs might both play important roles. In sharp contrast with the above samples, the Pt2 dimers exhibited the highest rate of 2800 molH2 molPt⁻¹ min⁻¹ ever reported in literature, which was ~17 and 45 times higher than the corresponding single-atom Pt1/graphene and Pt/graphene-WI samples, respectively. When the mole ratio of Pt to the AB substrate was increased, Pt2/graphene could preserve the high specific rate to a large extent (Supplementary Fig. 20). Note that all the Pt samples produced a similar product of BO₂⁻ in the spent reaction solution, according to the identical ¹¹B resonance at 8.9 ppm (Supplementary Fig. 21).

DFT calculations were further carried out to get a deeper insight into the vast activity difference between Pt1/graphene and Pt2/graphene. Since AB is known as an excellent reducing agent, and could likely strip off the terminal dioxygen of Pt1/graphene and Pt/graphene (the insets of Fig. 3d, e) during the reaction, partially reduced structures without the terminal dioxygen were considered for both Pt1/graphene and Pt/graphene (the insets of Fig. 5a). The reduced samples are denoted as Pt1/graphene-R and Pt2/graphene-R, respectively. First, we compared the projected density of states of the 5d orbitals of the Pt atom in Pt1/graphene-R and the top Pt atom in Pt2/graphene-R. It was found that the unoccupied 5d states of the top Pt atom in Pt2/graphene-R locates at a considerably higher energy position of 0.87 eV above Fermi level (E_F) than that of the Pt atom in Pt1/graphene-R (0.40 eV), which indicates that Pt1/graphene-R is more prone to accept electrons than Pt2/graphene-R (Fig. 5a). This result is in line with the recent literature where Åstrand et al. reported that Pt1 single atom had a more strong ability to accept electrons than the top Pt atom in Pt2 dimer, thereby showing stronger CO adsorption on Pt1.

When AB is adsorbed on Pt1/graphene-R, two B–H bonds were significantly elongated from 1.22 to 1.42 Å, with a strong adsorption energy of ~3.20 eV (Fig. 5b). On Pt2/graphene-R, the elongation of the two B–H bonds was slightly less, to 1.39 Å, and the AB adsorption energy was considerably weaker, about ~2.81 eV (Fig. 5c). The adsorption of AB on Pt (111) was also investigated as a comparison (Supplementary Fig. 22). We found...
that AB could quickly dissociate to three H atoms and BNH₃ species without any barrier. The AB adsorption energy is −3.97 eV, significantly stronger than that on Pt₁ single atom and Pt₂ dimer. The strong AB adsorption on Pt (111) revealed by DFT calculations agrees well with the literature, where Pt NP catalyst deactivation induced by B poisoning was observed during the AB hydrolysis reaction. Bearing this in mind, we further examined the recycling stabilities of the Pt₁/graphene-R, Pt₁ single atoms and Pt₂ dimers and measured the B contents in the used samples using ICP-AES. Indeed, catalyst deactivations and considerable amounts of B adsorption were observed on all the used samples (Supplementary Figs. 23 and 24), in line with the literature. Importantly, the dimeric Pt₂/graphene catalyst showed a high stability under the current reaction conditions and in the inert environment at below 300 °C. Finally, our findings point out a new avenue to bottom–up synthesis of atomically precise ultrafine metal (and/or metal oxide) clusters on high-surface area supports for advanced catalysis.

Stability of Pt₂ dimers on graphene. In sharp contrast with other Pt samples shown in Supplementary Fig. 23, the dimeric Pt₂/graphene catalyst exhibited a very high stability in the AB hydrolysis reaction during the recyclability test for five cycles (Fig. 6a). STEM measurements showed that there was no any visible Pt NPs formation and Pt₂ dimers remained as the main features in the used sample (Fig. 6d, g). The Pt₁ single atoms shown in Fig. 6g were likely produced by the electron beam during STEM measurements (Supplementary Figs. 7–9), since there was no apparent activity decrease. When Pt₂/graphene was annealed at high temperatures in helium, the activity declined considerably (Fig. 6b), but rates still remained as high as1670 and 1037 molH₂ MolPt⁻¹ min⁻¹ for the sample annealed at 300 °C (Pt₁/graphene-300C) and 400 °C (Pt₂/graphene-400C), respectively (Fig. 6c). Obviously, significant amounts of Pt₂ dimers were survived after the high-temperature treatments. Indeed, HAADF-STEM revealed a mixture of Pt₂ dimers, Pt₁ single atoms, and Pt NPs in both Pt₂/graphene-300C (Fig. 6e, h) and Pt₁/graphene-400C (Fig. 6f, i). Please keep in mind that these STEM images might significantly underestimate the portion of Pt₂ dimers in the samples owing to the possible beam damage during STEM measurements (Supplementary Figs. 7–9).

In conclusion, we have successfully demonstrated that Pt₂ dimers can be bottom–up constructed on graphene with a high-surface area. We found that the type of surface nucleation sites, selective deposition, the self-limiting nature of ALD, and the high stabilities of Pt₁ single atoms and Pt₂ dimers are the keys factors for the Pt₂ dimers synthesis. The dominant presence of Pt₂ dimers on graphene in the oxidized form of Pt₂O₃ were confirmed by a combination of aberration-corrected HAADF-STEM, ICP-AES, and XAFS and DFT calculations. Rotating and uncoupling of Pt₂ dimers under the electron beam during STEM measurements, provide direct evidence of the presence of Pt₂ dimers on graphene. In the AB hydrolysis reaction, the dimeric Pt₂/graphene catalyst exhibited a strikingly high activity, which was ~17- and 45-fold higher than graphene supported Pt₁ single atoms and Pt NPs, respectively. The lower adsorption energies of AB and H₂ on the Pt₂ dimers than that on Pt₁ single atoms or Pt NPs are likely the major reasons for the high activity. Importantly, the dimeric Pt₂/graphene catalyst showed a high stability under the current reaction conditions and in the inert environment at below 300 °C. Finally, our findings point out a new avenue to bottom–up synthesis of atomically precise ultrafine metal (and/or metal oxide) clusters on high-surface area supports for advanced catalysis.

Methods

Materials. Trimethyl(methylcyclopentadienyl)platinum(IV) (MeCpPtMe₃, 98%), chloroplatinic acid (H₂PtCl₆, ≥99.9%, trace metals basis), ammonia borane (97%), the commercial PtO₂ (≥99.9%, 70 m²/g), and Pt/carbon catalysts (the Pt content, 5.0 wt%) were all purchased from Sigma Aldrich. Silica gel was purchased from Alfa Aesar (Brunauer, Emmett, and Teller (BET) surface area 300 m²/g). Pristine graphene nanosheet (99.5%) was bought from Chengdu Organic Chemicals Co.
Preparation of reduced graphene oxide. Pristine graphene nanosheet was first oxidized to graphene oxide according to the procedure described previously62. In brief, 0.6 g graphene nanosheet and 0.3 g sodium nitrate was sequentially added into concentrated sulfuric acid (H2SO4, 15 mL) and stirred at room temperature for 22 h. Then the mixture was cooled down to 0 °C to add 1.8 g potassium permanganate (KMnO4). After stirring at room temperature and 35 °C for 2 and 3 h, respectively, the mixture was heated to 98 °C and kept at this temperature for another 30 min. Next, it was cooled down to 40 °C, and 90 mL of water and 7.5 mL of hydrogen peroxide (H2O2, 30%) were slowly added into the mixture. After that the precipitate was filtered out by washing with HCl (5%) and ultrapure water, it was dried in a vacuum oven at 45 °C overnight. The dry material was grinded to obtain graphene oxide powder. Finally, the reduced graphene oxide was obtained by thermal deoxygenation of graphene oxide powder at 1050 °C for 2 min under helium at a flow rate of 50 mL/min.

Synthesis of Pt2/graphene. Pt ALD was carried out on a viscous flow reactor (GEMSTAR-6 Benchtop ALD, Arradiance) by alternatively exposing to MeCpPtMe3 precursor and O2 (99.999%) at 250 °C46,63,64. Ultrahigh purity N2 (99.999%) was used as the carrier gas at a flow rate of 200 mL/min. The Pt precursor was heated to 65 °C to get a sufficient vapor pressure. The reactor inlets were held at 110 °C to avoid any precursor condensation. The timing sequence was 90, 120, 60, and 120 sec for the MeCpPtMe3 exposure, N2 purge, O2 exposure, and N2 purge, respectively (90-120-60-120).

Synthesis of 2cPt/graphene. Two consecutive cycles of Pt ALD was also performed on the reduced graphene oxide at 250 °C using the same timing sequence.
Synthesis of Pt/\(\text{SiO}_2\). Pt ALD was performed on the silica gel support for one cycle at 250 °C using the same timing sequence.

Synthesis of Pt/graphene-WI. A Pt/graphene NP catalyst was synthesized by the wetimpregnation method (Pt/graphene-WI). In this case, 100 mg graphene support was slowly added into a 1.93 × 10^{-2} M H_2PtCl_6 aqueous solution (0.9 mL). Then, the mixture was stirred for 30 min, and then dried in air at room temperature for 12 h. The dried material was first calcined in air at 120 °C for 12 h, and then reduced in 10% H_2 in argon at 300 °C for another 2 h to get the Pt/graphene-WI catalyst.

Catalyst characterization. The Pt loadings in these samples were determined by ICP-AES measurements; therein all samples were dissolved in hot fresh aqua regia. The BET surface area was measured on a Micromeritics ASAP 2020 system. Raman spectra were recorded on a LabRAM HR Raman spectrometer with a 514 nm Ar laser in a backscattering geometry. Aberration-corrected HAADF-STEM measurements were taken on a JEM-ARM200F instrument (University of Science and Technology of China) at 200 keV. XAFS measurements at the Pt L_\text{3}-edge (11.564 eV) were performed in the transmission mode with the Si (111) monochromator at the BL14W1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF), China. The storage ring of SSRF worked at 3.5 GeV with a maximum current of 210 mA.

XAFS data analysis and simulation. The acquired EXAFS data were processed according to the standard procedures using the ATHENA module implemented in the IFEFFIT software package.\(^\text{64}\) The EXAFS oscillations functions \(\chi(k)\) were obtained by subtracting the post-edge background from the overall absorption spectra and then normalized with respect to the edge-jump step. The \(R_0\) value of 1.0 was used for all samples. Subsequently, \(k^\text{2}\)-weighted \(\chi(k)\) functions in the k range of 2.2–13.5 Å^{-1} were FT to the R space by using a Hanning window of \(dk = 3.0\) Å^{-1}.

EXAFS simulations were performed with the FEFF8.4 code\(^\text{62}\) using the structural models suggested by DFT calculations. The simulated EXAFS \(\chi(k)\) functions were also \(k^\text{2}\)-weighted and FT into the R-space by using the same \(k\) range of 2.2–13.5 Å^{-1} as that in the experimental data. During simulations, the coordination numbers were set to the values of the model structures generated by DFT calculations. The amplitude reduction factor \(S_\text{ph}\) was fixed at the value of 0.866 for all samples. Debye-Waller factors for the nearest Pt-O/C and Pt-Pt pairs were set at the typical values of 0.0030 and 0.0065 Å^2 determined from the fittings of PtO_2 and Pt foil references, respectively, and they were set at 0.008 Å^2 for all the other distant paths which contributed barely discernable signals as seen from the experimental data in the R-space. To further improve the match between the simulation and the experimental data, for the MePdPt/Me/graphene sample, the two nearest Pt-C and Pt-O interatomic distances were optimized to 2.00 and 2.02 Å, respectively, both of which are within ~2% error level as compared to the optimized structure by DFT calculations (2.05 and 2.06 Å, respectively). For the other two samples, the simulated EXAFS spectra based on the DFT-generated structures match well with the experimental data, thus no further structure optimization was performed during EXAFS simulations.

DFT Calculations. All spin-polarized calculations were performed by using the DFT method. The DFT Semi-core Pseudopotential method\(^\text{66}\) with a double numerical basis set together with polarization functions (DNP) were adopted to form the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional within the generalized gradient approximation\(^\text{67}\), implemented in DMol3 package (DMol3) is a density functional theory quantum mechanical package available from Accelrys Software Inc.\(^\text{68}\). A DFT-D semi-empirical correction with Tkatchenko-Schefter (TS) method is applied with the PBE functional to account for the dispersion interaction. Conductor-like screening model (COSMO) with a dielectric constant of 78.54 is adopted to consider the water solvent effect regarding the adsorption of water. The acquired EXAFS data were processed according to the Eq. (2):

\[r - \frac{n_{H_2}}{n_{Pt}} > l \]

Here \(n_{H_2}\) is the mole of generated H_2, while \(n_{Pt}\) is the total mole of Pt in the sample. \(l\) is the reaction time in min.

Data availability. All the relevant data are available from the authors upon request.

Received: 21 February 2017 Accepted: 4 September 2017

References
1. Bartholomew, C. H. & Farrauto, R. J. Fundamentals of Industrial Catalytic Processes. 2nd edn., (Wiley, 2006).
2. Funabiki, M., Yamada, T. & Kayano, K. Auto exhaust catalysts. Catal. Today 10, 33–43 (1991).
3. Guo, Z. et al. Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem. Soc. Rev. 43, 3480–3524 (2014).
4. Shanks, B. H. Conversion of biorenewable feedstocks: new challenges in heterogeneous catalysis. Ind. Eng. Chem. Res. 49, 10212–10217 (2010).
5. Khodakov, A. Y., Chu, W. & Fong Garland, P. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 1692–1744 (2007).
6. Alonso, D. M., Wettstein, S. G. & Dunnecis, J. A. Bimetallic catalysts for upgrading of biomass to fuels and chemicals. Chem. Soc. Rev. 41, 8075–8098 (2012).
7. Calle-Vallejo, F., Koper, M. T. M. & Bandarenka, A. S. Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chem. Soc. Rev. 42, 5210–5230 (2013).
8. Kaden, W. E., Wu, T. P., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO_2 surfaces. Science 326, 826–829 (2009).
9. Palmer, R. E., Praterope, S. & Boyen, H. G. Nanostructured surfaces from size-selected clusters. Nat. Mater. 2, 443–448 (2003).
10. Li, Z. Y. et al. Three-dimensional atomic-scale structure of size-selected gold nanoclusters. Nature 451, 46–48 (2008).
11. Abbet, S. et al. Acetylene cyclotrimerization on supported size-selected Pd-n clusters (1 <= n <= 30): one atom is enough. J. Am. Chem. Soc. 122, 4533–4537 (2000).
12. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au-8 clusters on MgO. Science 307, 403–407 (2005).
13. Nesselberger, M. et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat. Mater. 12, 919–924 (2013).
14. Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009).
15. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).
16. Yang, M. et al. Catalytically active Au-O(OH)(x)-species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).
17. Flytzani-Stephanopoulos, M. Gold atoms stabilized on various supports catalyze the water-gas shift reaction. Acc. Chem. Res. 47, 783–792 (2014).
18. Qiao, B. T. et al. Single-atom catalysis of CO oxidation using Pt-1/FeCo. Nat. Chem. 3, 634–641 (2011).
19. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerationally atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).
20. Vile, G. et al. A stable single-site palladium catalyst for hydrogenations. Angew. Chem. Int. Ed. 54, 11265–11269 (2015).
21. Liu, P. X. et al. Photochemical route for synthesizing atomically dispersed palladium catalysts. Science 352, 797–801 (2016).
22. Yan, H. et al. Single-atom pd-1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butanediene. J. Am. Chem. Soc. 137, 10484–10487 (2015).
23. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).
24. Jin, R. C., Zeng, J., Zhou, M. & Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116, 10346–10413 (2016).
25. Yoskamtorn, T. et al. Thiolate-mediated selectivity control in aerobic alcohol oxidation by porous carbon-supported Au-25 clusters. ACS Catal. 4, 3696–3700 (2014).
26. Fang, J. et al. The support effect on the size and catalytic activity of thiolated Au-25 nanoclusters as precatalysts. Nanoscale 7, 6325–6333 (2015).
27. Das, S. et al. Reductive deprotection of monolayer protected nanoclusters: an efficient route to supported ultrasmall au nanoclusters for selective oxidation. Small 10, 1473–1478 (2014).
28. Liu, J. et al. Ligand-stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis. Chem. Eur. J. 19, 10201–10208 (2013).
29. Nie, X. T., Qian, H. F., Ge, Q. J., Xu, H. Y. & Jin, R. C. CO oxidation catalyzed by oxide-supported Au-25(SR)(18) nanoclusters and identification of perimeter sites as active centers. ACS Nano 6, 6014–6022 (2012).
30. Wu, Z. L. et al. Thiolate ligands as a double-edged sword for CO oxidation on CeO2 Supported Au-25(SCH2CH2Ph)(18) Nanoclusters. J. Am. Chem. Soc. 136, 6111–6122 (2014).
31. Xu, Z. et al. Size-dependent catalytic activity of supported metal-clusters. Nature 372, 346–348 (1994).
32. Argo, A. M., Odrak, J. F., Lai, F. S. & Gates, B. C. Observation of ligand effects during alkenes hydrogenation catalysed by supported metal clusters. Nature 415, 623–626 (2002).
33. Gates, B. C. Supported metal-clusters - synthesis, structure, and catalysis. Chem. Rev. 95, 511–522 (1995).
34. George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).
35. Puurunen, R. L. Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J. Appl. Phys. 97, 121301 (2005).
36. Knez, M., Niessch, K. & Niinisto, L. Synthesis and surface engineering of small CeO2 Supported Au-25(SR)(18) Nanoclusters. J. Phys. Chem. C133, 6022 (2009).
37. Delley, B. From molecules to solids with the DMol(3) approach. J. Phys. Chem. B 108, 1473–1477 (2004).
38. Blum, H. J. et al. Ab initio density functional calculations of chemisorption on metal surfaces. Surf. Sci. 415, 1–11 (1999).
39. Kresse, G. & Hafner, J. Ab initio molecular dynamics studies of copper clusters. Phys. Rev. B 50, 14857–14860 (1994).
40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
41. Hummers, W. S. & Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958).
42. Kim, J. S. et al. Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano Lett. 8, 2405–2409 (2008).
43. Zhou, Y., King, D. M., Liang, X. H., Li, J. H. & Weimer, A. W. Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Appl. Catal. B Environ. 101, 54–60 (2010).
44. Hamalainen, J., Puukklainen, E., Sajavaara, T., Ritala, M. & Leskela, M. Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants. Thin Solid Films 531, 243–250 (2013).
45. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 66, 155125 (2002).
46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).
47. Delley, B. From molecules to solids with the DMol(3) approach. J. Phys. Chem. B 113, 7756–7764 (2009).
48. Jiang, H. L. & Xu, Q. Catalytic hydrosilation of ammonia borane for chemical hydrogen storage. Catal. Today 170, 56–63 (2011).

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21473169, 21673215, 21533007, and 21233007), Innovative Research Groups of the National Natural Science Foundation of China (11621063), the One Thousand Young Talents Program under the Recruitment Program of Global Experts, the Young Scientists Fund of the National Natural Science Foundation of China (11404314), Anhui Provincial Natural Science Foundation (1708085MA06), and the Fundamental Research Funds for the Central Universities (WK2006030017). The calculations were performed on the supercomputing system inUSTC-SCC and Guangzhou-SCC. We gratefully thank the BL14W1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF), China.

Author contributions

J.L. conceived the idea and designed the experiments. H.Y. performed catalyst synthesis and catalytic performance evaluations. Y.L. performed the STEM measurements. S.W., Z.S., H.C., W.L. and T.Y. performed the XAFS measurements. W.Z., H.W. and J.Y. performed the DFT calculations. C.W., J.L. and X.H. assisted catalyst characterization and catalytic performance tests. J.L. wrote the manuscript. All the authors contributed and commented on the manuscript. H.Y. and Y.L. contributed equally to this work.

Additional information

Supplementary Information accompanies this paper at 10.1038/s41467-017-01259-z.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/
