Variação da concentração extracelular de 5’-trifosfato de adenosina na medula espinal de rata associadas a fibras aferentes vesicais. Um estudo com microdiálise

Extracellular adenosine 5’-triphosphate concentrations changes in rat spinal cord associated with the activation of urinary bladder afferents. A microdialysis study

Jeová Nina Rocha¹

RESUMO
Objetivo: Determinar as concentrações extracelulares do 5’-trifosfato de adenosina no interstício dos segmentos medulares L₇-S₁, em condições basais ou durante a ativação mecânica e química das fibras aferentes vesicais. Métodos: Um cateter de microdiálise foi implantado no sentido transversal na parte dorsal da medula espinal, entre os segmentos L₇-S₁ de ratas. O microdialisado foi coletado em intervalos de 15 minutos, durante 135 minutos, com os animais anestesiados. A concentração de 5’-trifosfato de adenosina nas amostras foi determinada mediante ensaio de bioluminescência. Em um grupo de animais (n=7), as amostras de microdialisado foram obtidas com a bexiga vazia, com distensão da bexiga para volume de 20 ou 40cmH₂O, com solução salina, solução salina com ácido acético, ou solução salina com capsaicina. Em outro grupo (n=6), foi realizada com a bexiga distendida, e a solução para microdiálise continha o inibidor de ectonucleotidase ARL 67156. Resultados: Os níveis extracelulares de trifosfato de adenosina no início do estudo foram 110,9±35,34fmol/15 minutos (média±EPM, n=13), e a distensão da bexiga causou um aumento nos níveis de 5’-trifosfato de adenosina, o que não foi observado após a distensão da bexiga com solução salina contendo capsaicina (10µM). A microdiálise com solução contendo ARL 67156 (1mM) foi associada com significante aumento dos níveis de trifosfato de adenosina extracelular, e nenhum aumento do trifosfato de adenosina foi observado durante a distensão da bexiga. Conclusão: O 5’-trifosfato de adenosina está presente no interstício do segmento L₇-S₁ da medula espinal, é degradado por ectonucleotidases, e sua concentração aumentou com a ativação das fibras aferentes mecanossensíveis da bexiga, mas não das quimiossensíveis. O 5’-trifosfato de adenosina pode ter sido liberado das terminações centrais dos neurônios aferentes primários mecanossensíveis ou, mais provavelmente, de neurônios espinais intrínsecos, ou ainda de células gliais. Sua liberação parece ser modulada por fibras aferentes primárias da bexiga ativadas pela capsaicina ou pelo próprio 5’-trifosfato de adenosina.

Descritores: Trifosfato de adenosina; Microdiálise; Fibras aferentes; Medula espinal

ABSTRACT
Objective: To determine adenosine 5’-triphosphate levels in the interstice of spinal cord L₇-S₁ segment, under basal conditions or during mechanical and chemical activation of urinary bladder afferents. Methods: A microdialysis probe was transversally implanted in the dorsal half of spinal cord L₇-S₁ segment in female rats. Microdialysate was collected at 15 minutes intervals during 135 minutes, in anesthetized animals. Adenosine 5’-triphosphate concentrations were determined with a bioluminescent assay. In one group of animals (n=7) microdialysate samples were obtained with an empty bladder during a 10-minutes bladder distension to 20 or 40cmH₂O with either saline, saline with acetic acid or saline with capsaicin. In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Results: Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5’-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). In another group of animals (n=6) bladder distention was performed and the microdialysis solution contained the ectonucleotidase inhibitor ARL 67156. Results: Basal extracellular adenosine triphosphate levels were 110.9±35.34fmol/15 minutes, (mean±SEM, n=13), and bladder distention was associated with a significant increase in adenosine 5’-triphosphate levels which was not observed after bladder distention with saline solution containing capsaicin (10µM). Microdialysis with solution containing ARL 67156 (1mM) was associated with significantly higher extracellular adenosine 5’-triphosphate levels and no further increase in adenosine 5’-triphosphate was observed during bladder distension. Conclusion: Adenosine 5’-triphosphate was present in the interstice of L₇-S₁ spinal cord segments, was degraded by ectonucleotidase, and

¹ Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.

Data de submissão: 22/6/2016 – Data de aceite: 25/10/2016
Conflitos de interesse: não há.
DOI: 10.1590/1679-45082016AO3794
INTRODUÇÃO

O 5’-trifosfato de adenosina (ATP) foi detectado em extratos de gânglios dorsais há mais de 50 anos. Poucos anos depois, observou-se que a estimulação antidromica de fibras aferentes primárias causava um aumento de níveis extracelulares de ATP em tecidos inervados pelas fibras aferentes estimuladas. Desde então, as evidências acumuladas indicaram que o ATP, além de seu papel consagrado como fonte de energia intracelular, pode também agir como mensageiro extra- e intracelular, liberado por diversas células, incluindo neurônios no sistema nervoso central e periférico.

Também foi proposto que o ATP seria o neurotransmissor, liberado pelas terminações nervosas de alguns neurônios aferentes primários, embora a maior parte das evidências que apoiam esta proposta sejam indiretas. Por exemplo, estudos eletrofisiológicos (patch-clamp), em cortes de medula espinhal mostraram que dois supostos antagonistas seletivos do receptor P₂ (piridoxal fosfato-6-azofenil-2', 4'-ácido dissulfônico [PPADS] e suramina) reduziram, ao passo que os inibidores de ectonucleotidase (ARL 67156) aumentaram a amplitude de correntes pós-sinápticas excitatórias (EPSC - excitatory postsynaptic currents) de neurônios da lâmina V, provocadas pela estimulação da raiz dorsal. Além disso, em estudos in vitro, com culturas primárias de neurônios do corno dorsal (lâminas I-III) de ratos recém-nascidos, verificou-se que as correntes pós-sinápticas foram reduzidas por antagonistas dos receptores purinérgicos. Ademais, o ATP é liberado por preparações de sinaptossomas obtidos dos cornos dorsais da medula espinal quando esses são despolariizados pelo aumento da concentração extracelular de K⁺ e que o pré-tratamento com capsaicina dos animais não alterou a quantidade de ATP liberado por esses sinaptossomas. Como a quantidade de ATP liberado pelas sinaptossomas do corno dorsal da medula espinal foi apenas parcialmente reduzida pela rizotomia dorsal, tem sido proposto que o ATP tenha sido originado principalmente de fibras aferentes primárias não sensíveis à capsaicina (Aβ e Aδ), bem como de neurônios intrínsecos da medula espinal.

Com a administração intratecal de antagonistas seletivos do P2X, Kaan et al. sugeriram que receptores purinérgicos espinais podem regular os sinais aferentes oriundos da bexiga.

Considerando os experimentos iniciais em camundongos knockout dos receptores do P2X₂, bem como o uso de antagonistas seletivos, foi sugerido que receptores periféricos P₂X₁ e P₂X₃, localizados na bexiga, estariam envolvidos no reflexo miccional. Mais recentemente, foi demonstrado que o ATP é liberado pelo urotélio e que o mesmo é capaz de ativar receptores purinérgicos presentes nas terminações periféricas das fibras aferentes primárias da bexiga. Porém, experimentos recentes, conduzidos em ratos geneticamente modificados que não expressam receptores P₂X₂ nem P₂X₃, mostraram que esses receptores não são essenciais para o reflexo miccional em condições normais.

Todavia, ainda não existem resultados experimentais que confirmem se o ATP é liberado a nível espinal em resposta a impulsos aferentes oriundos da bexiga, e se o ATP está envolvido na integração do reflexo miccional a nível medular.

OBJETIVO

Determinar as concentrações extracelulares do 5’-trifosfato de adenosina nos segmentos medulares L₄-S₁, em condições basais ou durante a ativação mecânica e química das fibras aferentes vesicais.

MÉTODOS

Ratas Sprague Dawley, pesando entre 230 e 260g, foram usadas neste experimento. Todos os procedimentos foram aprovados pela Comissão de Ética em Experimentação Animal da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, protocolo 013/2014-1.

No dia anterior à realização da microdialise, as ratas foram anestesiadas com isoflurana (isoflurana 3-4% para indução e 1-2% como dose de manutenção durante a cirurgia) e ventiladas com oxigênio puro (100%). Após tricotomia e antissepsia com betadine, foi feita incisão cirúrgica dorsal mediana na região da vértebra T₁₃ até L₅. O procedimento de implante do cateter de microdialise foi realizado conforme já descrito. Uma broca dental, (com 300µm de diâmetro) foi usada para produzir orifícios nas duas lâminas da vértebra L₅. Em seguida, um cateter multiperfurado para microdialise (200µm de diâmetro) de 6,0cm de comprimento, revestido com uma fina camada de epóxi (com exceção de uma região mediana de 2mm, que permaneceu sem o
revestimento para constituir a zona efetiva para a microdiálise) foi introduzido através desses orifícios, para posicioná-lo entre os segmentos L5-S1 da medula espinal para dialisar o interstício do corno dorsal e da colossura dorsal destes segmentos. O cateter foi fixado com cianoacrilato e cola epóxi, e suas extremidades foram conectadas a cateteres de polietileno (PE-20), que foram exteriorizados na região cervical dorsal através do túnel subcutâneo. As cânulas foram preenchidas com heparina 10% e seladas com um eletrocautério. Imediatamente após a cirurgia, todos os animais receberam injeção de ampicilina (100mg/kg, intramuscular) e foram colocados em gaiolas individuais com água e alimentação à vontade.

Experimentos com microdiálise

Os animais foram anestesiados com uretana (1g/kg, subcutâneo). Um cateter (PE-10 Clay Adams, New Jersey, EUA) foi introduzido na veia femoral direita para perfusão contínua de solução salina com glicose 5% (5µL/minuto). Um cateter de polietileno (PE-60) foi introduzido na bexiga através da uretra e fixado ao meato uretral para monitorar a pressão intravesical em condições isovolumétricas.

Cânulas de etileno propileno fluorado (FEP), previamente perfundidas com etanol 30% (30 a 40 minutos) e lavadas com água ultrapura Milli-Q, por 20 minutos, foram conectadas a cânulas PE-20 para perfundir o cateter de microdiálise (velocidade de fluxo de 5µL/minuto), usando uma bomba de microdiálise (modelo CMA-102, CMA, Suécia); a perfusão foi realizada usando solução de Krebs (mM: NaCl 113; KCl 4,7; CaCl2 2,5; MgSO4 1,2; NaHCO3 2,5; KH2PO4 1,2 e d-glicose 11,5), saturada com O2 95%/CO2 5%. A bexiga foi distendida até valores de pressão de 20 ou 40cmH2O, por 10 minutos, com solução salina 0,9% ou solução salina 0,9% com ácido acético 0,1%, ou solução salina 0,9% com capsaicina (10µm).

Em um grupo de animais (n=6), 1mM do inibidor ectonucleotidase 6-N, N-dietil-D-β, γ-dibromo metileno-ATP (ARL 67156) foi adicionado à solução dialisante de Krebs, 90 minutos após o início da microdiálise. Depois de acrescentar ARL 67156, a microdiálise foi continuada por mais 135 minutos. Em todos os experimentos, após 30 a 40 minutos de equilíbrio, o microdialisado foi coletado em amostras de 15 minutos (75µL), com um coletor de frações (CMA-142). As amostras foram mantidas em gelo até a determinação do ATP, feita imediatamente após a finalização da microdiálise.

Determinação do 5’-trifosfato de adenosina

As concentrações do ATP nas frações da microdiálise foram determinadas em triplicatas, com o kit de ensaio de bioluminiscência para ATP (Sigma; FL-AA, MO, USA). A luminescência foi medida em um luminômetro (Turner, TD 20/20, Sunnyvale, CA, EUA). A curva padrão foi construída com o uso de ATP dissódico dissolvido em solução de Krebs.

Histologia

No final do procedimento de microdiálise, os animais receberam uma overdose de uretana e foram imediatamente perfundidos mediante uma agulha intracardiaca, com 150mL de solução salina gelada, seguida de 300 a 350mL de paraformaldeído 4% em solução salina tampouada com fosfato (PBS). A medula espinal foi então dissecada, e o segmento contendo a região lombossacral foi pós-fixado no mesmo fixador (4°C, 24 horas). O segmento da medula espinal foi incluído em parafina, e cortes transversais de 10µm foram obtidos com um microtomo; os mesmos foram corados com hematoxilina-eosina para identificar a posição do cateter.

Análise estatística

Os valores da concentração de ATP foram expressos em percentagem de valor basal, e apresentados como média±EPM. A significância estatística foi determinada pelo teste t de Student para amostras pareadas. Foram considerados estaticamente significativos valores de p<0,05.

Reagentes e drogas

Uretana, ARL 67156, ATP, ácido acético e todos os componentes da solução de Krebs foram comprados de Sigma Chemical Co.; a capsaicina foi adquirida de Tocris Cookson Inc.; ampicilina foi obtida da Bayer.

RESULTADOS

A posição correta do cateter (100 a 150µm dorsalmente ao canal central) foi histologicamente confirmada em 13 dos 42 animais operados. Na figura 1, observou-se um corte transversal da medula espinal representativo de um animal em que o cateter foi considerado corretamente posicionado. Os dados descritos e analisados nestes resultados correspondem apenas aos 13 animais cuja sonda foi considerada corretamente posicionada.
Nos animais com bexigas não distendidas (condições basais), a quantidade de ATP acumulada no microdialisado durante os 15 minutos do período de coleta basal foi de 110,9±35,34fmol (n=13). Quando a bexiga foi distendida por 10 minutos, com solução salina até atingir uma pressão vesical de aproximadamente 20cmH2O, a quantidade de ATP no microdialisado aumentou significativamente e de maneira reproduzível – esse aumento foi transitório, retornando aos valores basais após a remoção da distensão (Figura 2). O aumento na concentração de ATP foi ligeiramente maior, embora não estatisticamente significativo quando a bexiga foi distendida com solução salina até atingir um valor de pressão intravesical de 40cmH2O (Figura 2). É interessante notar que, quando a bexiga foi distendida à pressão intravesical de 20cmH2O com solução salina contendo ácido acético (0,1%) ou capsaicina (10µm), a quantidade de ATP no microdialisado não foi maior do que o observado na bexiga distendida apenas com a solução salina. E ainda mais surpreendente foi que, após a bexiga ter sido distendida com a solução salina contendo capsaicina, os níveis de ATP no microdialisado não aumentaram durante a distensão da bexiga com solução salina subsequente (Figura 2).

A quantidade de ATP no microdialisado aumentou significativamente quando se adicionou ARL 67156 à solução dialisante. Os níveis de ATP permaneceram elevados na presença contínua de ARL e, surpreendentemente, a distensão da bexiga de 10 minutos, com solução salina até atingir uma pressão de 20 ou 40cmH2O, não causou aumento de ATP no microdialisado (Figura 3).

DISCUSSÃO

Os resultados deste estudo usando microdiálise de medula espinal *in vivo* mostram, pela primeira vez, que o ATP está presente no líquido extracelular do corno dorsal dos segmentos L₆-S₁ da medula espinal de ratos, na ausência de distensão da bexiga, sugerindo que o ATP é liberado tonicamente neste segmento da medula espinal. Considerando-se que a porção permeável da
sonda era de 2mm, a área dialisada incluiu principalmente ambos os cornos dorsais bem como a comissura cinzenta dorsal, e dado que os segmentos L₅-S₁ recebem informações de fibras aferentes mecanossensíveis, que inervam a bexiga urinária, não é improvável que parte do ATP encontrado no fluido extracelular na ausência de estimulação vesical seja liberado em resposta a inputs de fibras aferentes mecanossensíveis ativas da bexiga, previamente descritas.(18)

Além disso, esses resultados também mostram pela primeira vez que uma distensão fisiológica da bexiga (pressão intravesical até aproximadamente 20cmH₂O) está associada a um aumento de ATP extracelular na metade dorsal dos segmentos espinais L₅-S₁. O aumento observado é significativamente menor do que o relatado para liberação de ATP medido mediante biosensores na área quimiossensível do tronco encefálico induzida por hipercapnia,(19) ou no núcleo do trato solitário (NTS) após ativação de receptores de estiramento pulmonar.(20) É provável que esse aumento no ATP extracelular resulte de sua liberação por neurônios espinais intrínsecos, ativados pelas terminações centrais dos aferentes mecanossensíveis da bexiga. Essa interpretação é consistente com os dados que mostram que neurônios intrínsecos, células gliais, ou ambos, em resposta às informações de aferentes primários sensíveis à capsaicina que inervam a bexiga, inibem diretamente as células espinais intrínsecas, que liberam ATP no corno dorsal, em resposta a informações de aferentes primários mecanossensíveis.

Finalmente, esses achados também indicam que o próprio ATP poderia estar envolvido no controle autoinibitório de sua liberação, uma vez que, após adição do inibidor de ATPase ARL 67156 à solução dialisadora, que por si só aumentou os níveis de ATP extracelular, a distensão da bexiga não se associou a um aumento maior de ATP no interstício do corno dorsal. O fato de que os níveis de ATP aumentaram durante a microdiálise contendo ARL 67156 é consistente com a descrição da presença de ectonucleotidases capazes de degradar ATP no corno dorsal dos segmentos lombares da medula. Esse controle autoinibitório poderia ser exercido diretamente nas células espinais (neurônais ou gliais) que liberam ATP, ou por uma ação indireta nos interneurônios espinais, provocando a liberação de neurotransmissores inibitórios, como GABA e glicina, conforme demonstrado anteriormente.(28,29)

CONCLUSÃO

Em resumo, este estudo mostra pela primeira vez, usando microdiálise in vivo, que a ativação de fibras aferentes mecanossensíveis da bexiga causou um aumento da concentração de 5'-trifosfato de adenosina extracelular no corno dorsal dos segmentos L₅-S₁ da medula espinal. Ainda não foi investigado se esse aumento resulta do 5'-trifosfato de adenosina liberado por neurônios espinais intrínsecos, células gliais, ou ambos, em resposta às informações sinápticas de fibras aferentes mecanossensíveis primárias. Esses achados também indicam que a liberação de 5'-trifosfato de adenosina parece ser modulada apenas pelo próprio 5'-trifosfato de adenosina e pela atividade de neurônios aferentes primários sen-
síveis à capsaicina. Finalmente, embora sejam necessários mais estudos para elucidar o papel do 5'-trifosfato de adenosina liberado no corno dorsal na modulação do reflexo miccional em condições fisiológicas e patológicas, não é improvável que a neurotransmissão purinérgica no corno dorsal da medula, ativada por distensão da bexiga, constitua-se em num alvo farmacoterapêutico potencial para corrigir alterações clinicamente relevantes no reflexo miccional.

AGRADECIMENTOS

O autor gostaria de agradecer o Dr. Gustavo Ballejo, Professor Associado, Departamento de Farmacologia da Faculdade de Medicina de Ribeirão Preto da Universidade de São Paulo, por sua colaboração e leitura crítica do trabalho.

REFERÊNCIAS

1. Holton FA, Holton P. The capillary dilator in dry powders of spinal roots; a possible role for adenosine triphosphate in chemical transmission from nerve endings. J Physiol. 1954;126(1):124-40.
2. Holton P. The liberation of adenosine triphosphate on antidromic stimulation of sensory nerves. J Physiol. 1959;145(3):494-504.
3. Khakh BS, North RA. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron. 2012;76(1):51-69. Review.
4. Burnstock G. An introduction to the roles of purinergic signaling in the CNS. Neuron. 2001;21(15):5670-7.
5. Salter MW, De Koninck Y, Henry JL. Physiological for adenosine and ATP in the CNS. Nature Rev. Neurosci. 2016;104:4-17. Review.
6. Nakatsuka T, Gu JG. P2X purinoceptors and sensory transmission. Pflugers Arch. 2008;452(5):598-607. Review.
7. Jo YW, Schlichter R. Synaptic co-release of ATP and GABA in cultured spinal neuron. Nat Neurosci. 1999;2(3):241-5.
8. Sawynok J, Dowie JW, Reid AR, Cahil CM, White TD. ATP release from dorsal spinal cord synaptosomes: characterization and neuronal origin. Brain Res. 1993;610(1):32-8.
9. Vlaskovska M, Kasabov L, Rong W, Bodin P, Bardini M, Cockayne DA, et al. P2X2 knockout mice reveal a major sensory role for urothelially released ATP. J Neurosci. 2001;21(15):5670-7.
10. King BE, Knowles ID, Burnstock G, Ramage AG. Investigation of the effects of P2 purinoreceptor ligands on the mictrition reflex in female urethaneanesthetized rats. Br J Pharmacol. 2004;142(3):519-30.
11. Nakagomi H, Yoshiyama M, Mochizuki T, Miyamoto T, Komatsu R, Imura Y, et al. Urothelial ATP exocytosis: regulation of bladder compliance in the urinary storage phase. Sci Rep. 2016;6:29761.
12. Cockayne DA, Dunn PM, Zhong Y, Dong W, Hamilton SG, Knight GE, et al. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J Physiol. 2005;567(Pt 2):621-39.
13. Vlaskovska M, Kasabov L, Rong W, Bodin P, Bardini M, Cockayne DA, et al. P2X2 knockout mice reveal a major sensory role for urothelially released ATP. J Neurosci. 2001;21(15):5670-7.
14. King BE, Knowles ID, Burnstock G, Ramage AG. Investigation of the effects of P2 purinoreceptor ligands on the mictrition reflex in female urethaneanesthetized rats. Br J Pharmacol. 2004;142(3):519-30.
15. Nakagomi H, Yoshiyama M, Mochizuki T, Miyamoto T, Komatsu R, Imura Y, et al. Urothelial ATP exocytosis: regulation of bladder compliance in the urinary storage phase. Sci Rep. 2016;6:29761.
16. Takezawa K, Kondo M, Kuchi H, Ueda N, Soda T, Fukuhara S, et al. Authentic role of ATP signaling in mictrition reflex. Sci Rep. 2016;6;19585.
17. Rocha JN, Ballejo G. Nitric oxide metabolites in the lumbosacral spinal cord interstice and cerebrospinal fluid in female rats with acute cyclophosphamide-induced cystitis. An in vivo microdialysis study. einstein (São Paulo). 2013;11(1):88-94. Erratum in: einstein (São Paulo). 2013;11(2):262. Oliveira, Gustavo B [corrected to Ballejo, Gustavo].
18. Su X, Sengupta JN, Gehbarg EF. Effects of opioids on mechanosensitive pelvic nerve afferent fibers innervating the urinary bladder of the rat. J Neurophysiol. 1997;77(3):1566-80.
19. Gourine AV. On the peripheral and central chemoreception and control of breathing: an emerging role of ATP. J Physiol. 2005;568(Pt 3):715-24. Review.
20. Gourine AV, Dalo N, Kosak A, Llaudet E, Tian F, Huckstepp R, et al. Release of ATP and glutamate in the nucleus tractus solitarii. Channels. 2008;2(4):179-84.
21. Masuda T, Ozono Y, Mikuriya S, Kohro S, Tozaki-Saith H, Ishizaki K, et al. ATP released from sensory afferent fibers innervating the urinary bladder of the rat. J Neurophysiol. 1999;80(1):330-7.
22. Zhang JM, Wang HK, Ye CQ, Ge W, Chen Y, Jiang ZL, et al. ATP released by astrocytes mediates glutamatergic activity-dependent heterosynaptic suppression. Neuro. 2003;40(5):971-82.
23. Gu JG, MacDermott AB. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature. 1997;389(6652):749-53.
24. Vlachanova L, Riedl MS, Shuster SJ, Stone LS, Hargreaves KM, Buell G, et al. P2X3 is expressed by DRG neurons that terminate in inner lamina II. Eur J Neurosci. 1998;10(11):3470-8.
25. Jahr CE, Jessell TM. ATP excites a subpopulation of rat dorsal horn neurons. Nature. 1983;304(5928):730-3.
26. Li P, Calejesan AA, Zhuo M. ATP P2X receptors and sensory synaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J Neurophysiol. 2005;94(4):1538-51.
27. Vongtau HO, Lavoie EG, Sévigné J, Molliver DC. Distribution of ecto-5’-nucleotidase CD73 in nociception and mechanoreception. Neuroscience. 2011;193:387-98.
28. Hugel S, Schlichter R. Presynaptic P2X receptors facilitate inhibitory GABAergic transmission between cultured rat spinal cord dorsal horn neurons. J Neurosci. 2000;20(6):2121-30.
29. Rhee JS, Wang ZM, Nabeckura J, Hnou K, Aiko N. ATP facilitates spontaneous glycinergic IPSC frequency at dissociated rat dorsal horn interneuron synapses. J Physiol. 2000;524(Pt 2):471-83.