Data-Aided Underwater Acoustic Ray Propagation Modeling

Kexin Li and Mandar Chitre, Senior Member, IEEE

Abstract—Acoustic propagation models are widely used in numerous oceanic and underwater applications. Most conventional models are approximate solutions of the acoustic wave equation, and require accurate environmental knowledge to be available beforehand. Environmental parameters may not always be easily or accurately measurable. While data-driven techniques might allow us to model acoustic propagation without the need for extensive prior environmental knowledge, such techniques tend to be data-hungry and often infeasible in oceanic applications where data collection is difficult and expensive. We propose a data-aided physics-based high-frequency acoustic propagation modeling approach that enables us to train models with only a small amount of data. The proposed framework is not only data-efficient, but also offers flexibility to incorporate varying degrees of environmental knowledge and generalizes well to permit extrapolation beyond the area where the data were collected. We demonstrate the feasibility and applicability of our method through four numerical case studies, and one controlled experiment. We also benchmark our method’s performance against two classical data-driven techniques—Gaussian process regression and deep neural network.

Index Terms—Acoustic propagation modeling, data-efficient modeling, physics-informed machine learning, ray method, scientific machine learning.

I. INTRODUCTION

Acoustic propagation in typical ocean environments exhibits strong spatial and temporal variability. The dynamic nature of oceans across all spatiotemporal scales poses a difficult problem for underwater acoustics. The ability to effectively model acoustic propagation is vital in many oceanic applications, and therefore necessary, although often challenging. Applications related to oceanic acoustic propagation modeling can be broadly categorized into two main classes—forward problems and inverse problems. The forward problems seek to estimate acoustic fields at various receiver locations given environmental information [1], [2], [3]. On the other hand, inferring unknown environmental parameters from acoustic measurements is the goal of inverse problems [4], [5], [6], [7]. Common inverse problems mainly focus on localization and remote sensing of the ocean environments [8]. Matched field processing (MFP) is a generalized beamforming method that is widely used in inverse problems. Conventional MFP employs acoustic propagation modeling to search for environmental parameters that generate field replicas matching acoustic measurements [9], [10], [11].

Physics-based acoustic propagation models estimate the acoustic field by leveraging our physical understanding of acoustic propagation. Most physics-based models are derived from the acoustic wave equation [12]. Closed-form solutions of the wave equation are typically analytically intractable in ocean environments [13]. There are various widely used approximate solutions to the wave equation, most of which can be seen as variants of the following four groups—ray methods [14], normal modes [15], parabolic equations [16], and wave number integration [17].

There are two main limitations of the physics-based models—high computational complexity (especially in complex 3-D environments), and the need for accurate environmental knowledge. A common approach today is to approximate 3-D propagation effects by applying 2-D models to N azimuths. This idea is often referred to as 2.5-D models or N×2D models in the literature [18], [19]. While it is computationally more efficient than full 3-D modeling, 2.5-D models can only be applied in environments where the out-of-plane arrival energy is insignificant. Since the multipath structure of an ocean environment leads to complicated constructive and destructive interference patterns that are strongly dependent on the environmental parameters [20], [21], [22], conventional physics-based models require accurate environmental knowledge to make good predictions of the acoustic field. Accurate measurement of environmental parameters such as sediment properties, bathymetry, internal waves, suspended bubbles, surface wave spectra, etc., may be difficult or expensive in practice. Even in cases where such information is available, it may not always be straightforward to incorporate it into propagation models.

While the limitations of physics-based models pose a practical hurdle for many underwater applications, the emergence of data-driven machine learning (ML) algorithms might offer a promising alternative. ML algorithms allow computers to automatically learn from data and perform certain tasks that were previously considered difficult [23], [24]. We can model the acoustic field using classical data-driven ML techniques such as Gaussian process regression (GPR) [25], [26] and artificial neural networks (NNs) [27], [28], provided sufficient acoustic field measurements are available as training data for the models. The Gaussian process model is a probabilistic model widely used for regression and classification problems. GPR is capable of capturing relations between inputs and outputs through nonparametric Bayesian inference [29], [30], [31], [32]. Given a set of acoustic measurements and the corresponding

Manuscript received 4 April 2022; revised 7 March 2023; accepted 26 June 2023. Date of publication 18 August 2023; date of current version 13 October 2023. (Corresponding author: Mandar Chitre.)

Associate Editor: Z.-H. Michalopoulou.

The authors are with the ARL, Tropical Marine Science Institute, Department of Electrical and Computer Engineering, National University of Singapore, Singapore 119077 (e-mail: kexin_li@u.nus.edu; mandar@nus.edu.sg).

Digital Object Identifier 10.1109/JOE.2023.3292417
measurement locations, GPR can interpolate and extrapolate acoustic predictions with uncertainty distributions at unvisited locations. The computational cost of the traditional GPR scales poorly with the size of training data, but sparse GPR models have been proposed to counter such a limitation [33]. The availability of a large amount of accessible data sets has driven the rapid growth in the development of NN algorithms over the past years. NNs are composed of interconnected neurons arranged in layers. NNs learn to identify complicated patterns and relationships in training data by properly adjusting the weights and biases of all neurons [34]. The universal function approximation theorem establishes that multilayer feed-forward NNs have the capability to approximate any continuous function given a sufficient number of hidden units [35]. This suggests that an NN should be able to approximate the solution of the wave equation by learning appropriate weights and biases from the training data.

Since data-driven approaches only require acoustic measurements for training, they eliminate the need to have full and accurate prior environmental knowledge. Once the model is trained, evaluating 3-D acoustic fields at unvisited locations is much faster than 2.5-D numerical methods. These factors make data-driven methods a feasible alternative for predicting acoustic fields in cases where physics-based models fail. However, the two key problems that limit their use in practical applications are the necessity of a large training data set, and the inability to extrapolate well [36]. The cost of acoustic data acquisition is inevitably high, as the ocean environment tends to be expensive to operate in. In this article, we address these two problems by developing hybrid propagation modeling methods that not only learn from data, but also utilize the knowledge of the physics of acoustic propagation, without requiring full environmental knowledge. We leverage the complementary strengths of physics-based propagation models and data-driven ML to develop a hybrid approach that utilizes available environmental knowledge, requires limited training data, and extrapolates well.

The need to combine knowledge of physics with data-driven ML is not limited to ocean acoustic modeling, and is in fact the focus of an emerging field called scientific machine learning (SciML) [37]. Researchers have explored synergistic ways that use scientific domain knowledge to aid data-driven ML [38], [39], [40], [41], [42], [43]. A popular SciML strategy, named physics-informed neural networks (PINNs), imposes physics constraints in the form of partial differential equations (PDEs) to act as a regularizer in the loss function of an NN [44]. Such an augmentation in the loss function helps to alleviate the problems of requiring large amounts of data, and the inability to extrapolate. A typical structure of PINN models is shown in Fig. 1. In the context of acoustic propagation, NNs can be informed by the acoustic wave equation to generate data-efficient solution approximations [45], [46], [47]. However, as far as we are aware, there are limited attempts at exploring the use of SciML for ocean modeling. One of the few works that assess the effectiveness of PINNs in solving simple ocean-related modeling problems is [48]. Although there are many successful implementations showing that imposing physics knowledge improves model training, DE Wolff et al. [48] found no significant benefits to the training error by having additional physics-informed constraints in the loss function in their simulation studies. DE Wolff et al. [49] explored the benefits of using PINNs to solve three ocean modeling-related PDEs, including the wave equation.

PINNs encode the physics as part of the loss function and strike a balance between data-driven and physics-informed through hyper-parameters that control the weights of various terms in the loss function. Hyper-parameter tuning is critical to the successful application of PINNs, but can often be difficult. We take a different approach to incorporate underlying physics in our models. We design a class of ML algorithms where the physics is encoded in the structure of the algorithms. The functions of these algorithms learn are automatically solutions to the acoustic wave equation. We give up the universal approximation property of NNs, and instead constrain our algorithms to only learn physically realistic functions. This constraint enables learning from very little data, and extrapolation beyond the region where the data were collected. Our approach is not only data-efficient but also avoids the need for additional hyper-parameter tuning. Moreover, the algorithm is computationally simple and we are able to fully model 3-D acoustic environments easily.

To the best of our knowledge, our previous preliminary works [50], [51] are the first attempts to explore the feasibility of modifying the structure of neurons in an NN to incorporate the underlying physics of ocean acoustics propagation. Ray models are computationally efficient and widely used in high-frequency underwater applications [52]. They can be seen as an intuitive way to interpret the wave equation solution as they track the trajectories of a set of rays originating from the source as they propagate in oceans [14]. In [50], we utilized ray models as the basis of our data-aided modeling. In this follow-up article, we investigate this idea further and develop a general recipe that targets solving forward problems in cases where there is a lack of environmental knowledge (but some acoustic measurements are available). Although inverse problems are not the focus of our work here, our modeling approach can also help solve some inverse problems as a by-product. The recipe presented in this article is based on ray methods, but it can be extended to other

\[f(x) = \int_{0}^{x} g(u) \, du \]

...
The main contributions of this article are summarized below.

1) We develop a recipe to generate physics-aided data-driven forward acoustic propagation models that solve the acoustic wave equation in a desired number of dimensions (typically 1-D, 2-D, or 3-D).
2) The model does not require accurate environmental knowledge but is able to utilize any available environmental knowledge.
3) The model does not require a large amount of training data, and has the ability to extrapolate beyond the region where the data were collected.
4) The recipe supports composition, thus enabling us to combine purely data-driven ML models and physics-aided ML models into a single propagation model. For example, we may use a standard NN to model the reflection coefficient of the seabed, and combine it with a physics-aided model for the overall propagation modeling.
5) Our framework brings interpretability to trained model parameters. This is particularly useful in inverse problems, where environmental information may be extracted from the trained model parameters.
6) We demonstrate our method with several numerical experiments, and benchmark it against two popular data-driven techniques—GPR and deep neural network (DNN). We also carry out a controlled experiment in a water tank to validate the performance of a generated propagation model.

The rest of this article is organized as follows. In Section II, we introduce the modeling recipe and illustrate three example formulations arising from the use of the recipe. In Section III, we numerically demonstrate some use cases of the proposed framework for four common oceanic applications. This is followed by an experimental validation in a water tank environment in Section IV. The field estimation results are benchmarked against a GPR model and a DNN model. In Section V, we highlight the assumptions and limitations of our proposed recipe. We also discuss potential solutions and possible extensions. Finally, Section VI concludes this article.

Some abbreviations and symbols used throughout the article are listed in Tables I and II.

Notation: Bold symbols and \([\cdot] \) denote vectors. Symbols in calligraphic font and \((\cdot) \) represent tuples. Sets are written as \(\{ \cdot \} \). We use the interval notation: \([a, b] = \{ x \in \mathbb{R} | a \leq x < b \} \). \(|c| \) denotes the magnitude of a complex number \(c \). For vectors \(a \) and \(b \), \(a \cdot b \) is the dot product. \(\|a\|_1 \) and \(\|a\|_2 \) denote \(L_1 \)-norm and \(L_2 \)-norm of vector \(a \), respectively. The symbol \(\equiv \) denotes equivalence and the symbol \(\nabla^2 \) is the Laplace operator.

II. Problem and Solution Formulation

A. Ray-Basis Neural Network Framework

We consider an acoustic propagation modeling problem where we have limited environmental knowledge and a small amount of acoustic data collected within an area of interest (AOI). We assume an acoustic source is located at position \(r_s \) and omnidirectionally transmits a continuous wave (CW) signal at frequency \(f \). The signal emitted from the source is scattered by the water surface and other boundaries as it propagates through the acoustic channel. The received signal \(p(r) \) at location \(r \) is composed of a sum of multipath arrivals, each with an associated intensity and arrival time. The constructive and destructive interference due to the multipath may lead to strong spatial variations in the acoustic field within the AOI.

The acoustic wave equation determines the propagation of the acoustic energy from a source, and is expressed as \[\frac{\partial^2 p}{\partial t^2} = c^2 \nabla^2 p \quad (1) \]
where \(p \) represents acoustic pressure, \(t \) denotes time, and \(c \) is the sound speed in water. A solution to (1) can be written as \[p(r, t) = \bar{p}(r)e^{i\omega t} \quad (2) \]
where \(r \) is the spatial coordinate, \(\bar{p}(r) \) represents complex pressure amplitude, and \(\omega = 2\pi f \) denotes angular frequency. Substituting (2) back into (1) and rearranging, we get the Helmholtz equation
\[k^2 \bar{p}(r) + \nabla^2 \bar{p}(r) = 0 \quad (3) \]
where \(k = \omega/c \) is called the wave number. Equation (3) can be solved by
\[\bar{p}(r) = A e^{i\phi} e^{ikr} \quad (4) \]
where \(A \) and \(\phi \) represent the amplitude and phase of a plane wave, and \(k \) is the wave propagation vector pointing normal to the wavefront, such that \(\|k\|_2 = k \).

Any function of the form (4) solves the wave equation. Due to the linearity of the wave equation, the superposition of \(n_{rays} \) such plane-wave solutions (each associated with a ray) must also be

Table I

Abbreviation	Description
GPR	Gaussian process regression
ML	Machine learning
NN	Neural network
DNN	Deep neural network
SciML	Scientific machine learning
PINN	Physics-informed neural network
PDE	Partial differential equation
AOI	Area of interest
CW	Continuous wave
RBNN	Ray basis neural network
RCNN	Reflection coefficient neural network
ISM	Image source method
RMS	Root mean square
MATE	Mean absolute test error

2 In a general formulation, the sound speed \(c \) may vary with position and depth. While the method in this article can be extended for application in such cases, in this article, we mostly restrict our discussion to the case where \(c \) is constant in the AOI for field estimation.
Fig. 2. Example showing the superposition of 5 multipath arrivals at a receiver location \(r \).

a solution to the wave equation. Thus, the field at a location \(r \) can be expressed as the sum of terms given by (4)

\[
\bar{p}(r) = \sum_{m=1}^{n_{\text{ray}}} A_m e^{i\phi_m} e^{ik_m \cdot r} \quad (5)
\]

where \(A_m \) denotes the amplitude of \(m \)th arrival, \(\phi_m \) refers to the corresponding phase term, and \(k_m = k \hat{k}_m \) for some unit vector \(\hat{k}_m \).

This is the well-known ray solution to the acoustic wave equation [14], with \(A_m e^{i\phi_m} \) being the complex amplitude of the \(m \)th ray and \(\hat{k}_m \), being the direction of travel of that ray. Fig. 2 elaborates on the intuitive interpretation behind (5) from a receiver’s point of view. The acoustic field at a receiver location \(r \) can be visualized as the superposition of \(n_{\text{ray}} \) multipath arrivals. Conventional ray models determine \(A_m, \phi_m, \text{ and } k_m \) for all \(m \), given detailed environmental knowledge. It is not generally possible to compute \(A_m, \phi_m, \text{ and } k_m \) if partial or no environmental knowledge is available. Fortunately, ML provides us with the necessary tools to learn unknown parameters or functions from data. We can think of (5) as a function to be modeled using a specialized NN with each term in the summation playing the role of a neuron\(^3\) (with parameters closely related to \(A_m, \phi_m, \text{ and } k_m \)). The values of the parameters can be learned from the data using a generalized backpropagation algorithm [53], [54] with automatic differentiation [55] applied to this NN. Various optimization algorithms, such as ADAM [56], SGD [57], L-BFGS [58], etc., commonly used in ML, may be utilized for training (learning the model parameters from the data).

The functions that this NN can learn are guaranteed to solve the wave equation (1) by construction, hence incorporating the acoustic domain knowledge in the structure of the NN. We term this specialized NN as a ray basis neural network (RBNN), as the neurons in the network can be interpreted as acoustic plane waves arriving at a given receiver location as shown in Fig. 3.

It is worth noting that our model structure is determined by the governing physics and is conceptually different from a conventional PINN. Instead of imposing physical constraints using the loss function of a standard NN, we embed the constraints in the structure of the NN by making each neuron individually obey the governing physics. We then use the same training strategies that standard NNs typically use to find the best-fitted values of the unknown parameters of the resulting model by continuously minimizing a loss function that measures the error between the model output and the observed data. The data set used in the model training stage is comprised of a set of measurement locations \(r_{\text{train}} \) and corresponding acoustic field measurements \(y_{\text{train}} \).

\(^3\)The term neuron, while originally inspired by biological neurons, is now used in the ML literature to denote a trainable unit of computation in the NN. Layers of various types of neurons (e.g., fully connected layers, convolution layers, etc.) are commonly combined together to form a NN. Each term in (5) is a trainable computational unit and hence plays the role of a neuron, and the summation of all terms plays the role of a layer of neurons in an NN.
with a mix of standard neurons and RBNN-neurons, as we shall show later. Such NNs can be useful in solving problems with partial environmental knowledge.

The formulation presented above forms a basic recipe to model high-frequency acoustic propagation using SciML. The exact calculations of \(A_m, \phi_m, \) and \(k_m \) of each ray are application-dependent, since some of these terms may be calculated based on environmental knowledge, and others determined from parameters learned from data. In Section II-B and II-C, we apply the recipe to generate models to handle three different application scenarios: plane wave (far-field propagation), spherical wave (near-field propagation) without knowledge of geometry, and a spherical wave with knowledge of geometry. In each scenario, the exact details of RBNN-neurons change, but the overall RBNN structure and the training process remain the same.

B. Plane Wave RBNN

In the far-field of a point source, a ray arrival can be well approximated by a planar wavefront. So, if the AOI is sufficiently far from the source, we can use a plane wave formulation for the unknowns in (5). This formulation does not require any prior environmental knowledge, and is particularly helpful to model practical scenarios where the environment is largely unknown. The unknown terms \(A_m \) and \(\phi_m \) are treated as unknown model parameters to be determined during training. If the sound speed or frequency is unknown, \(\hat{k} \) may also be treated as an unknown parameter. The unit vector \(\hat{k}_m \) is parametrized in terms of azimuthal angle \(\theta_m \) and elevation angle \(\psi_m \)

\[
\hat{k}_m = \begin{bmatrix} \cos(\theta_m) \sin(\psi_m) \\ \sin(\theta_m) \sin(\psi_m) \\ \cos(\psi_m) \end{bmatrix}. \tag{6}
\]

The set of trainable RBNN model parameters in the plane wave formulation therefore is

\[
\mathcal{T}_p \equiv (A, \phi, k, \theta, \psi) \tag{7}
\]

where \(A = [A_1, A_2, \ldots, A_{n_{ray}}] \), \(\phi = [\phi_1, \phi_2, \ldots, \phi_{n_{ray}}] \), \(\theta = [\theta_1, \theta_2, \ldots, \theta_{n_{ray}}] \), and \(\psi = [\psi_1, \psi_2, \ldots, \psi_{n_{ray}}] \). The complex pressure amplitude predicted at location \(r \) can be expressed as (5).

Since we do not assume detailed environmental information, the number of rays \(n_{ray} \) is unknown, but a conservative upper bound can often be estimated. Nevertheless, we find it better to think of \(n_{ray} \) as a model hyper-parameter to be tuned during training, with the tuning guided by an estimate, if available. Due to the strongly nonlinear effect of parameters \(\theta_m \) and \(\psi_m \), the RBNN may get trapped in local minima or saddle points during training if \(n_{ray} \) is small. A large \(n_{ray} \) and uniformly distributed random initialization of \(\theta \) and \(\psi \) ensure better convergence, but create potential for overfitting. A \(L_1 \)-norm regularization on parameters \(A \) encourages sparsity, i.e., a trained model with only a small number of rays, and therefore avoids overfitting.

The loss function we minimize during the training is therefore the sum-square difference in predicted and measured pressure amplitudes at given receiver locations, combined with the \(L_1 \)-norm regularization term to encourage sparsity

\[
L_p(r, y; \mathcal{T}_p) = (|\hat{p}(r)| - y)^2 + \alpha \| A \|_1 \tag{8}
\]

where \(y \) is the observed pressure amplitude at location \(r \) and \(\alpha \) is a hyper-parameter that controls the regularization. While we write (8) for a single training data point, it is usually summed over a training mini-batch as per the standard practice in ML [59]. During validation and model evaluation, \(\alpha \) in (8) is set to 0 to only calculate the prediction error term.

C. Spherical Wave RBNN

The acoustic propagation near a point source is best modeled using spherical waves. In a typical ocean environment, there are three key factors that contribute to the overall transmission loss: geometric spreading loss \(l_g \), volume absorption loss \(l_v \) and reflection loss \(l_r \) (net effect from all reflecting boundaries) [60]. In contrast to the plane wave formulation, the amplitude \(A \) and phase \(\phi \) of an arriving ray in our spherical wave formulation are functions of both source location \(r_s \) and receiver location \(r \). Therefore, (5) is rewritten as [12], [61], and [62]

\[
\hat{p}(r) = \sum_{m=1}^{n_{ray}} \tilde{A}_m(r_s, r) e^{i \tilde{\phi}_m(r_s, r)} \tag{9}
\]

where

\[
\tilde{A}_m(r_s, r) = l_g^m(r_s, r) l_v^m(r_s, r) l_r^m(r_s, r) \tag{10a}
\]

\[
\tilde{\phi}_m(r_s, r) = \phi_m^m(r_s, r) + k \tilde{d}_m(r_s, r). \tag{10b}
\]

Here, \(\phi_m^m(r_s, r) \) is the overall reflection phase shift along the trajectory of the \(m \)-th ray, and \(k \tilde{d}_m(r_s, r) \) corresponds to the phase change for a propagation distance of \(\tilde{d}_m(r_s, r) \). The 3-D spherical geometric spreading loss is [60]

\[
l_g^m(r_s, r) = \frac{1}{d_m(r_s, r)}. \tag{11}
\]

The volume absorption loss generally depends on the operating frequency, propagation distance, and characteristics of the propagating medium. The widely used simplified expression of the attenuation per unit distance due to volume absorption is given in [63]. The attenuation and phase shift when sound interacts with scattering boundaries (e.g., seabed) can also be calculated if we know the angle of interaction and the properties and structure of the boundary [64].
The spherical wave formulation can incorporate varying degrees of environmental knowledge. The model parameters involved in the field prediction can be found through either datadriven learning strategies or numerical calculations, depending on the environmental knowledge provided. We next illustrate two examples that correspond to the scenarios with and without knowledge of the channel geometry:

1) Without Knowledge of Channel Geometry: For the scenarios where the channel geometry is largely unknown, the trajectories of rays from the source to the receiver are unknown. However, applying the image source method (ISM) [65] to the problem, we can replace the unknown source location and channel geometry by a set of unknown image sources, as illustrated in Fig. 4. The problem then reduces to finding the parameters of the unknown image sources to match with the training data.

Let \(\bar{r} \) be an arbitrary reference position within the AOI. We can parametrize each image source by a pressure amplitude \(A_m \), phase \(\phi_m \), a direction vector (corresponding to azimuthal angle \(\theta_m \) and elevation angle \(\psi_m \)), and distance \(d_m \) from this reference position. In the case of an isovelocity environment, the pressure amplitude at a receiver location \(r \) is then given by

\[
\tilde{p}(r) = \sum_{m=1}^{n_{\text{ray}}} A_m \left| \frac{r - s_m}{2} \right|^2 e^{i(\phi_m + k|s_m - r|)}
\]

where

\[
s_m = \bar{r} - d_m \begin{bmatrix} \cos(\theta_m) \sin(\psi_m) \\ \sin(\theta_m) \sin(\psi_m) \\ \cos(\psi_m) \end{bmatrix}
\]

and \(l_a(\cdot) \) is attenuation due to volume absorption as given in [63].

The complete set of trainable parameters for this model are

\[
T_s \equiv (k, \theta, \psi, d, A, \phi)
\]

where \(d = [d_1, d_2, \ldots, d_{n_{\text{ray}}}] \). The loss function to be minimized is identical to (8).

2) With Knowledge of Channel Geometry: If the channel geometry and associated reflecting boundaries are partially or completely known, we can incorporate available knowledge into our model. To illustrate the idea, let us assume that we know the source location and the channel geometry. We also assume that the sea surface is modeled well as a pressure-release boundary, but we do not know the reflection coefficient for the seabed.

Given the source location and channel geometry, we can compute the incidence angle \(\gamma_m \) for each ray at the seabed. The reflection coefficient of the seabed is an unknown function of the incidence angle, and may be modeled using a simple 1-input 2-output (magnitude and phase) feedforward NN with a single hidden layer. We call this NN as the reflection coefficient neural network (RCNN). The same reflection coefficient function applies to all rays incident on the seabed, and hence the RCNN weights are shared across all the rays. The RCNN is implemented as an additional layer in the RBNN framework with shared weights, as illustrated in Fig. 5.

A ray may experience more than one reflection at the seabed. The overall reflection coefficient for the \(m \)th arrival ray is

\[
l_m^m(r) = \prod_{i=1}^{n_{\text{rc}}} \text{RCNN}_c(\gamma_i^m(r))
\]

where \(n_{\text{rc}}^m \) is the number of seabed reflections for ray \(m \), \(\gamma_i^m(\cdot) \) is the incidence angle for reflection \(i \), and \(\text{RCNN}_c(\cdot) \) is the predicted reflection coefficient magnitude from the RCNN. The corresponding cumulative phase shift is

\[
\phi_m^m(r) = n_{\text{rc}}^m \pi + \sum_{i=1}^{n_{\text{rc}}} \text{RCNN}_c(\gamma_i^m(r))
\]

where \(\text{RCNN}_c(\cdot) \) is the reflection phase shift predicted by the RCNN, and \(n_{\text{rc}}^m \) is the number of surface reflections for ray \(m \). The phase change \(n_{\text{rc}}^m \pi \) is due to the pressure-release boundary assumption, and can easily be replaced by a more sophisticated surface reflection model, if desired.

As in the previous section, we choose to apply the ISM to replace the source with multiple image sources. This allows us to work with approximate knowledge of channel geometry and learn the exact locations of the image sources from the data, as we illustrate later in this section. The resultant pressure amplitude can be expressed as

\[
\tilde{p}(r) = \sum_{m=1}^{n_{\text{ray}}} l_a^m(r) \left| \frac{r - s_m}{2} \right|^2 e^{i(\phi_m + k|s_m - r|)}
\]

where the ray trajectory necessary for the evaluation of \(l_a^m(\cdot) \) can be computed by geometric ray tracing. Since we are using a ray tracing model, it may be possible to extend the algorithm to nonisovelocity sound speed profiles by changing the Euclidean distance terms \(|s_m - r| \) in (17) to actual propagation distances along the curved ray paths.

The overall computation graph for (17) can be viewed as an NN with a geometric ray tracer, RCNN layer, and RBNN layer, as shown in Fig. 5. The set of trainable RBNN parameters in this model are

\[
T_{\text{rb}} \equiv (k, \theta, \psi, d, R)
\]

where \(R \) represents all trainable parameters in the RCNN layer.

The search spaces for \(\theta \) and \(\psi \) span \([0, 2\pi]\), and for \(d \) spans \([0, \infty)\). The knowledge of geometry and the source location allows us to precalculate nominal arrival ray directions \(\theta', \psi' \) and propagation distances \(d' \) before the model training stage. The calculated nominal directions and distances may deviate from reality due to limited knowledge or measurement error. We model this with appropriate error terms \(e_{\theta}, e_{\psi}, \) and \(e_d \):

\[
\theta = \theta' + e_{\theta}
\]

\[
\psi = \psi' + e_{\psi}
\]

\[
d = d' + e_d.
\]
We then replace the trainable parameters θ, ψ, and d with the corresponding error terms, thus, replacing (18) with

$$ T_{sg} \equiv (k, e_\theta, e_\psi, e_d, R). $$

The amount of error allowed in e_θ, e_ψ, and e_d reflect how confident we are about our knowledge of the channel geometry and source location. We impose L_2-norm penalty terms in the loss function to constrain values of e_θ, e_ψ, and e_d learned during the training process. We also add a harsh penalty term to ensure that the upper bound of reflected energy learned by the RCNN obeys energy conservation. The resulting loss function is

$$ L_{sg}(r, y; T_{sg}) = (|\bar{p}(r)| - y)^2 + \left\| \zeta \sqrt{e_\theta^2 + e_\psi^2} \right\|_2 + \beta \|e_d\|_2 $$

$$ + \eta \max \left\{ 0, \int_0^{0.5\pi} \text{RCNN}_c(\gamma)^2 d\gamma - 1 \right\} $$

where ζ, β, and η are hyper-parameters related to the three penalty terms. All elements in the hyper-parameters are set to 0 during the validation and model evaluation. In general, the image sources corresponding to higher order reflections are assigned smaller penalty coefficients as angular errors are amplified with an increasing number of reflections.

III. Simulation Studies

To study the effectiveness of our proposed method, we consider four common applications of ocean acoustic propagation models. These are summarized in Fig. 6.

All four applications considered use a profiling float equipped with a single hydrophone, collecting acoustic field measurements at a constant sampling rate. Such floats provide a cost-effective way of sparsely sampling acoustic fields. We assume that the profiling float can control its motion vertically, but not horizontally. The float freely drifts horizontally with ocean currents, thus following a zig-zag trajectory as it moves up and down through the water column.

A. Far-Field Acoustic Field Prediction

The first application we shall consider is that of acoustic field prediction within an AOI at a long distance from an acoustic
Fig. 7. Simulated environment for the far-field acoustic field prediction application. The trajectory of the profiling float can be seen in terms of the training data points. The ground truth field pattern within the AOI is also shown.

Parameters	Value
Environmental model	2 D
Frequency	10 kHz
Seabed	Sandy clay¹
Bathymetry	Range-dependent
Source depth	5 m
Sound speed	1.541 m/s
Distance between source and AOI	1000 m
Dimensions of AOI	50 m × 30 m
Number of training data	700
Number of validation data	300
Number of test data in AOI	601 601
Number of rays in the RBNN layer	60

¹ Sandy clay seabed is characterized by a relative density of 1.147, a relative sound speed of 0.9849 and a dimensionless seabed absorption coefficient of 0.00242 [66].

where A and ϕ represent amplitudes and initial phase of rays, θ and d are used to model the wavefront curvatures of all rays. We use (8) as the loss function to train our RBNN model.

We simulate a profiling float performing 9 profiles through a 50 m × 30 m AOI at a distance of 1000 m from a 10 kHz source deployed at a depth of 5 m. The simulation setup is detailed in Table III and illustrated in Fig. 7. A total of 1000 acoustic field measurements are collected along the trajectory of the float, of which 70% are used to train the models, and the remaining 30% are used for validation. We wish to predict the acoustic field in the entire AOI.

We benchmark the field estimation performance of the RBNN against two popular data-driven techniques—GPR and DNN. We use a GPR with a composite kernel of a squared exponential isotropic kernel and a Matérn 5/2 ARD kernel. The DNN model takes location data as input and outputs corresponding pressure amplitude. It has three fully connected hidden layers with ReLU as the activate function. We try various initial learning rates and choose the one that yields the smallest validation error. The trainable model parameters in RBNN and DNN models are randomly initialized. We therefore carry out 20 Monte Carlo simulations for the RBNN and DNN models and present the results of runs with the smallest validation errors. We implement early stopping [67] for RBNN and DNN model training to avoid overfitting.

We use the Bellhop model [68] to generate the 1000 synthetic acoustic measurements along the profiler’s trajectory for training and validation. The high-frequency source produces a complex interference pattern. To evaluate the field prediction performance in simulation, we generate a dense test data set of 601 601 data points over a grid covering AOI, with a resolution of 0.05 m in depth and range. We also add a random position error of up to 0.1 m on each dimension of the measurement locations of the training and validation data to evaluate model robustness.

Among the several commonly used kernels we tried, this type of composite kernel yields minimal validation error for our field estimation problems. We optimized the hyperparameters of this composite kernel using the L-BFGS technique based on training data.
The root mean square (RMS) test error and the model complexity (number of model parameters) of the three models are reported in Table IV. The acoustic field patterns estimated by the three approaches are shown in Fig. 8. All three methods are able to learn key features of the acoustic field within the AOI. The RBNN model recovers most of the details in the AOI and extrapolates well in an extended region beyond the AOI. The GPR learns the field pattern well within the AOI where training data are available, but fails to extrapolate the field in the extended region. The field pattern reconstructed by the DNN has the lowest fidelity among the three approaches. The extrapolated field by the DNN also deviates significantly from the ground truth. The extrapolated field patterns shown in Fig. 8(f)–(h) highlight the unique ability of the RBNN to not only interpolate well, but also to extrapolate.

The field estimation performance of the GPR and the DNN, as quantified by RMS test error, is not significantly affected by position errors in the data set. On the other hand, the field estimation accuracy of the plane wave RBNN was found to be vulnerable to position errors. The qualitative field patterns seen in Fig. 8(i)–(k) show that the RBNN captures the overall field pattern best.

B. Near-Field Acoustic Field Prediction

We next consider an acoustic field prediction application within an AOI from a less distant source assuming that the channel geometry is known. Acoustic measurements are collected along a zig-zag trajectory within AOI using a profiling float. Since some of the environmental parameters (e.g., seabed properties) are unknown, we cannot employ physics-based propagation models for field prediction. We can, however, use the spherical wave RBNN from Section II-C2 with the knowledge of channel geometry. We can calculate the nominal arrival ray directions θ', ψ' and propagation distances d' before the training. This significantly reduces the training time and improves prediction accuracy.

For this application, we use a simple spherical wave RBNN model based on (17), without the RCNN layer. The overall effect of the reflections and absorption is modeled with a set of trainable parameters A, associated with the set of rays. To model geometrical measurement errors, we also add error parameters for nominal direction and propagation distance. The set of trainable parameters therefore is

$$\mathcal{T} = (e_\theta, e_\psi, e_d, A, \phi).$$ \hspace{1cm} (23)

We use (21) as the loss function to train the trainable parameters and set η in (21) to 0 as we do not have RCNN as part of the network.

The setup of the simulated environment is shown in Fig. 9 and summarized in Table V. A profiling float performs 2 profiles across a 50 m × 28 m AOI at a distance of 100 m from a 5-kHz source deployed at a depth of 15 m to collect 167 acoustic field measurements. We use the Pekeris ray model [69] to generate synthetic data. We use 70% of the collected measurements to train the RBNN, and aim to estimate the acoustic field in the entire AOI. We benchmark the field estimation performance of the RBNN against GPR and DNN with the same model configurations as discussed in Section III-A.

A dense test data set of 581 581 data points on a 0.05 m spacing grid covering the AOI is generated to evaluate the field prediction performance. As RBNN and DNN may be sensitive to random initialization, we carry out 20 Monte Carlo simulations for each, and present the results with the best validation error. The initial values of hyper-parameters in the GPR kernel are tuned to yield the best validation error. We then use the L-BFGS technique to further optimize hyper-parameters by minimizing the training error of the GPR model. To evaluate model robustness, we add random measurement errors in the source location (0.3 m in horizontal directions, 0.1 m in depth), measurement locations (maximum of 0.4 m in all directions) and water depth (1 m) of AOI.

The RMS test errors of the estimated fields within the AOI by the three models are shown in Table VI. The acoustic field patterns within AOI estimated by the three approaches are shown in Fig. 10(c)–(e). Fig. 10(f)–(h) show extrapolated fields by the three models. The RBNN model is able to predict and extrapolate the spatially fast-varying field patterns well, even with a much smaller training data set as compared to the far-field acoustic field prediction application in the previous section. However, the GPR and DNN show poor performance in terms of the estimated field pattern and RMS test error, for both interpolation

Method	Number of model parameters	RMS test error (dB)	
		Error-free data	Noisy data
RBNN1	60	1.346	1.678
GPR	14002	1.783	1.637
DNN	6421	2.121	2.180

1 Plane-wave RBNN.
2 Dimensionality of each data point × training data size.

Parameters	Value
Environmental model	3-D
Frequency	5 kHz
Seabed	Sandy clay
Bathymetry	Range-independent
Water depth	30 m
Source depth	15 m
Sound speed	1 541 m/s
Distance between source and AOI	100 m
Dimension of AOI	50 m × 28 m
Number of training data	116
Number of validation data	51
Number of test data in AOI	581 581
Number of rays in RBNN	60
and extrapolation of the acoustic field. The results highlight the data-efficiency of the RBNN model—the model can effectively incorporate knowledge of channel geometry and therefore train with very little data. The conventional GPR and DNN models, on the other hand, fail to predict field patterns as they do not benefit from partial environmental knowledge.

As one would expect, measurement noise worsens the prediction accuracy of the RBNN model. The sensitivity of field estimation to position errors is summarized in Table VII. However, the qualitative field pattern can still be recovered even with large measurement errors as seen in Fig. 10(i).

C. Geo-Acoustic Inversion for a Seabed Reflection Model

The third application we demonstrate is to extract a seabed reflection model from acoustic measurements. While our proposed model primarily targets forward problems, it also has
LI AND CHITRE: DATA-AIDED UNDERWATER ACOUSTIC RAY PROPAGATION MODELING

Fig. 9. Simulated environment for the near-field acoustic field prediction application. The trajectory of the profiling float can be seen in terms of the training data points. The ground truth field pattern within the AOI is also shown.

Method	RMS test error (dB)	
	Error-free data	Noisy data
RBNN	1.889	6.219
GPR	7.119	7.066
DNN	7.074	7.127

Table VI
RMS Test Error for the Near-Field Acoustic Field Prediction Application

We assume that the channel geometry and source location are known. A profiling float is employed to perform 12 profiles through a 300 m × 28 m AOI from a 5 kHz source deployed at a depth of 15 m. The simulation setup is illustrated in Fig. 11. A total of 1112 acoustic field measurements are collected along the trajectory, and 70% of them are used to train the composite RBNN model. The environmental setup is similar to the near-field acoustic field prediction application in Section III-B, and the synthetic data are generated using the Pekeris ray model. We precalculate the nominal arrival directions and propagation distances, and use acoustic data to optimize the trainable model parameters T

$$T \equiv (R).$$

D. Geo-Acoustic Inversion for Seabed Properties

The last application we shall consider is a geo-acoustic inversion problem, where we wish to determine geo-acoustic seabed properties from acoustical field measurements. We consider a simple Rayleigh reflection model to illustrate the idea. The complex Rayleigh reflection coefficient is given by [64]

$$\Gamma = \frac{\rho_\gamma \cos \gamma - \sqrt{\left(\frac{\delta \gamma}{\rho_\gamma}\right)^2 + \sin^2 \gamma}}{\rho_\gamma \cos \gamma + \sqrt{\left(\frac{\delta \gamma}{\rho_\gamma}\right)^2 + \sin^2 \gamma}}$$

The potential to solve geo-acoustic inversion problems as a by-product.

Seabed reflection depends on the seabed’s structure and material properties, which are often unknown. In applications where multipath arrivals overlap and cannot be separated, we cannot measure the reflection coefficient directly. Our proposed recipe can, however, learn a reflection model from observed total transmission loss at a number of observation points. We use the RBNN model from Section II-C2 together with the RCNN layer, where the RCNN models the unknown reflection coefficient (as a function of reflection angle). By training the composite spherical wave model described in (17), we can recover a trained RCNN as a model for the seabed reflection.

We use (21) as the loss function to learn the reflection model.

In Table VIII, we present the inferred reflection coefficient curves and phase shift curves for various amounts of position measurement error. In an ideal scenario with no measurement errors, we can accurately recover the seabed reflection model. The modeling errors increase with the amount of position measurement error, with phase of the reflection coefficient being more sensitive to errors than its amplitude. The effect of measurement error can be partially mitigated by increasing the size of the training data set.

Table VII
Sensitivity of RMS Test Error of Field Estimation to Random Position Error for the Near-Field Acoustic Field Prediction Application

Maximum position error (m)	RMS test error (dB)
0.0	1.889
0.1\sqrt{3}	3.401
0.2\sqrt{3}	4.665
0.3\sqrt{3}	5.423
0.4\sqrt{3}	6.219

1 Maximum position error per dimension × √3.
where

\[
\bar{\delta} = 1 + i\delta
\]

\[
\rho_r = \frac{\rho_{\text{seabed}}}{\rho_{\text{seawater}}}
\]

\[
c_r = \frac{c_{\text{seabed}}}{c_{\text{seawater}}}
\]

(26a) \hspace{1cm} (26b) \hspace{1cm} (26c)

where \(\delta\) denotes dimensionless seabed absorption coefficient, \(\rho_r\) denotes relative density, \(c_r\) represents relative sound speed. We assume \(\rho_r\), \(c_r\), and \(\delta\) are unknown and to be determined from acoustic field measurements.

We assume that the source and receiver locations, as well as the channel geometry are known. An profiling float is employed to take 167 acoustic measurements over 100 m \(\times\) 28 m AOI along a zig-zag trajectory from a 5 kHz acoustic source deployed at a depth of 15 m. As in previous applications, 70% of the
measurements are used to train the RBNN model, while the balance 30% is used for validation. Fig. 12 depicts the simulated environment and the sampling trajectory of the profiling float.

In Section III-C, we modeled the angle-dependent complex reflection coefficient using a RCNN. While this is useful for acoustic propagation modeling, this approach does not yield estimates of geo-acoustic properties such as ρᵣ, cᵣ, and δ. We therefore replace the RCNN layer in (17) with the expression for complex reflection coefficient from (25), and train the resultant composite RBNN.

We use (8) as the loss function to learn the best-fitted geo-acoustic parameters. The set of trainable parameters for this RBNN is

$$\mathcal{T} \equiv (\rho_r, c_r, \delta).$$ \hspace{1cm} (27)

Table IX summarizes the estimated values and percentage error for the three unknown geo-acoustic parameters for various levels of position measurement errors. With accurate measurements, the model is effective in accurately determining the geo-acoustic parameters. In the presence of position errors, we need to increase the training data size to improve model robustness. The robustness of geo-acoustic inversion depends on the sensitivity of the acoustic field to each geo-acoustic parameter. In this example, ρᵣ and cᵣ affect the acoustic field more strongly than δ. Increasing training data set size improves the robustness of the estimates of ρᵣ and cᵣ, but much less so for δ.

IV. EXPERIMENTAL VALIDATION

To further validate the acoustic field estimation performance of the proposed framework, we undertook a controlled experiment in a water tank. This allows us to make careful repeatable measurements to validate the method—something that is very difficult to do at sea due to time variability.

The tank environment is strongly reverberant and surprisingly complicated to model. While acoustic rays in the rectangular geometry can be modeled with a 3-D ray-tracer, multiple reflections lead to strong sensitivity to minor geometrical irregularities of the tank wall. The tank walls are made of an inhomogeneous composite material (fiberglass) with complicated reflection properties. This provides us with a challenging acoustic propagation modeling problem to demonstrate our proposed method.

Before undertaking experimental validation, we developed a simplified simulation model of the tank to establish the feasibility of applying our method to the tank environment. The simulation results are presented in Section IV-A. Once we had established the feasibility and developed an understanding of what performance we might expect, we undertook experimental validation in the tank. The results from the experiment are presented in Section IV-B.

A. Feasibility Study

We simulate a 3-D water tank environment with the dimension of 2.5 m × 1.2 m × 0.8 m and a 10-kHz CW signal source,
as illustrated in Fig. 13. A 0.36 m × 0.9 m × 0.44 m AOI is located 0.5 m from the source. The sound speed is assumed to be 1505 m/s, in accordance with conductivity and temperature measurements in our tank. We split the AOI into nonoverlapping training and test regions. The training and validation data (250 and 28 data points, respectively) are obtained from the training region, whereas the test region is used to test (222 data points) how well the model extrapolates beyond the training region. We adopt the spherical wave formulation with the knowledge of geometry based on (17) and (20)\(^5\) to predict the field in AOI. The loss function we minimize is (21).

\[^5\]We assume \(k\) is known as sound speed \(c\) is measurable in this experiment.

We adopt a geometrical ray model to simulate the acoustic propagation in the tank environment, and generate synthetic acoustic measurements\(^6\) within the AOI. We assume the water–air interface to be a perfect reflector with a reflection coefficient of \(-1\). We adopt a simple tank sidewall and bottom reflection model, and assume the reflection coefficient to be given by (25), with \(\rho_r = 1.5\), \(c_r = 0.9\), and \(\delta = 0.0\). For benchmarking, we use GPR and DNN similar to those described in Section III-A. We generate a dense test data set of 30 303 points over the entire

\[^6\]The acoustic measurements are shown in Volts, as we measure the preamplified output from the hydrophones in Volts during the experiment. These can be converted to \(\mu\)Pa by multiplying by the gain-corrected acoustic sensitivity of the hydrophone.
TABLE IX
ESTIMATED SEABED PARAMETERS AS A FUNCTION OF MAXIMUM POSITION MEASUREMENT ERROR

Maximum error (m)	Total data size	Distance travelled (m)	ρ_r [% error]	c_r [% error]	$\log(\delta)$ (dB) [% error]			
0.00	167	100	1.147	0.985	-2.616	0.0%	0.0%	0.0%
0.01 $\sqrt{3}$	167	100	1.125	0.989	-2.444	-1.9%	0.4%	6.6%
0.05 $\sqrt{3}$	250	150	1.036	0.998	-2.728	-9.7%	1.3%	-4.3%
0.10 $\sqrt{3}$	334	200	1.209	0.962	-1.485	5.4%	-2.3%	43.2%
0.20 $\sqrt{3}$	375	250	1.084	0.993	-2.742	-5.5%	0.8%	-4.8%
0.50 $\sqrt{3}$	417	300	1.249	0.962	-1.432	8.9%	-2.3%	45.3%

Fig. 13. Tank experiment setup. (a) Side view. (b) Top view.

AOI with a resolution of 0.01 m in range and width, and 0.05 m in depth. It is not practical to collect such a dense data set during the latter experiment, and so we also generate a sparse test data set of 222 points in the test region for later benchmarking of the experimental results.

Since the measurement accuracy of tank dimensions and transducer locations in the tank is limited, we introduce measurement errors in the tank size, source location, and measurement locations in simulation too. The simulated tank dimensions are mismatched from the geometrical knowledge available to our algorithm by 0.010, 0.015, and 0.020 m in the three dimensions. The source location deviates by 0.02 m from the location provided to the algorithm. Due to practical considerations, the measurement errors in shallower hydrophone locations in our tank are expected to be less than that for deeper locations. We therefore introduce a random error of up to 0.02 m per dimension for acoustic measurements with depths shallower than 0.36 m, and 0.04 m per dimension for deeper locations. We calculate the nominal incoming ray directions and propagation distances before the training. We allow our RBNN model to train the error to the nominal directions and propagation distances to cope with the erroneous source location and tank size measurements, as discussed in Section II-C2. To allow for a few measurement outliers during the experiment, we opt to minimize the mean absolute error in the training process, rather than the RMS error. This encourages the model to focus on fitting the majority of the training data well, and ignore a few outliers.

The rich multipath in the simulated water tank environment yields a complicated field pattern. Cross-sections of the ground truth field and the estimated field at four different depths within the AOI are shown in Fig. 14. Note that the estimated field at the depth of 0.45 m is extrapolated as none of the training data or validation data falls in this test region. We see that the
Fig. 14. Ground truth and estimated acoustic field at four different depths. The depth of 0.45 m is in the test region, where no training data were made available to the three models. The other three depths are in the training region. (a) Ground truth field within the AOI. (b) RBNN field estimates within AOI. (c) GPR field estimates within AOI. (d) DNN field estimates within AOI.

The RBNN model can recover and extrapolate the field reasonably well, whereas the GPR and RBNN methods fail to do so. The mean absolute test error (MATE) of the sparse and dense test data sets is shown in Table X. The sparse test error and dense test error are based on error-free measurements. The two types of test errors are in a similar range for all of the three models. This suggests that the sparse test error is a representable measure of field estimation performance. We also extrapolate the field to the entire water tank environment as shown in Fig. 15. Not surprisingly, the two classical data-driven techniques—GPR and DNN fail to extrapolate the field in the region away from the AOI, whereas the RBNN model can generalize well and predict the field in the entire water tank.

B. Controlled Experiment

With the feasibility established via simulation, we carried out an experimental validation in a water tank using the same setup described in Section IV-A. The equipment setup used in the experiment is shown in Fig. 16. We used a National Instruments Data Acquisition (NI-DAQ) system to transmit a CW signal at 10 kHz with an amplitude of 1 Vpp. A pair of TC4013 acoustic transducers were used as the transmitter and receiver. A total of 500 acoustic measurements were collected at the same locations as the data generated in the feasibility study. Each acoustic transducer was attached to a fishing line, with a reel and sliding block mechanism to control the 3-D position of...
LI AND CHITRE: DATA-AIDED UNDERWATER ACOUSTIC RAY PROPAGATION MODELING 1143

![Fig. 15. Ground truth and extrapolated field within the entire tank at four different depths. (a) Ground truth field in the AOI and extended region. (b) RBNN extrapolated field estimates. (c) GPR extrapolated field estimates. (d) DNN extrapolated field estimates.](image)

Method	MATE (V_{pp})	
	Sparse	Dense
RBNN	0.351	0.292
GPR	1.846	1.196
DNN	1.426	0.919

TABLE X

MATE OF THE ESTIMATED ACOUSTIC FIELD FOR THE FEASIBILITY STUDY

the transducer as shown in Fig. 17. The water tank was located outdoors and experienced a light breeze on occasion. This led to slight measurement errors due to small-scale oscillations of the source and receiver. The oscillations manifest themselves as fluctuations in the amplitude and phase of the recorded signal. We computed the average envelope over a 40-s period to reduce the impact of oscillations on the measurement. We assign different weights to the 500 measurements to capture the confidence levels of our measurements. The measurements with smaller standard deviations over the 40-s recorded signals weigh more. The RBNN model allows for errors in direction of arrival to be estimated during training.

In addition to angular errors, we also expect some errors (a few cm) in the measurement of the location of the transducers. We design a two-stage training strategy to deal with such location measurement errors. The first stage aims to optimize the trainable parameters \mathcal{T}, specified in the designed RBNN model, using

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
measured location data. We train our model using weighted MAE. We freeze the trained RBNN model at the end of this stage, and focus on estimating measurement errors in the second stage. We feed the corrected locations (measured locations offset by the estimated location errors in all dimensions) into the RBNN model to predict the acoustic field in this stage. A L_2-norm penalty term of absolute position errors is added in the loss function to constrain the range of position errors. By minimizing the loss function, the second stage aims to estimate the most appropriate location errors using the RBNN model parameterized by the parameters trained in the first training stage.

To benchmark the RBNN performance, we use a GPR model and a DNN model\(^7\) as in the feasibility study. For each of the three methods, Figs. 19 and 20 show the estimated fields within the AOI and the extrapolated fields in the entire tank, respectively. The field pattern extrapolated by the RBNN model looks reasonable in the sense that the region with the strongest pressure amplitude is consistent with the source location. The GPR and DNN fail to reconstruct any discernable field pattern in the tank. In line with this, the MATE of the RBNN model is significantly lower than that of the GPR and DNN models, as shown in Table XI. The absolute trained position errors for the 222 sparse test data points are shown in Fig. 18. Most errors are below 4 cm, as we would expect from our measurement procedure.

Fig. 21 shows the learned reflection coefficient for the water tank walls. While we do not have ground truth to validate the reflection coefficient curve, the learned model works well to estimate the acoustic field in the tank. We observe this in the good agreement between RBNN prediction and measured data in Fig. 22, and also as a Spearman’s correlation coefficient of 0.961 between the prediction and data in Table XI. On the other hand, the GPR and DNN simply learn to predict average values regardless of the measurement location. The results obtained from the controlled experiment thus validate the efficacy of our proposed method to model acoustic propagation in unknown or partially known environments.

V. Discussion

If perfect environmental knowledge is available, one can use physics-based models for field estimation. In the absence of environmental knowledge and when field interpolation is of interest, data-driven methods can be employed to interpolate fields at unvisited locations. Our proposed method is particularly advantageous in practical scenarios where only partial environmental knowledge is available and extrapolation is required. It enables field interpolation and extrapolation using a limited number of acoustic observations by incorporating the available domain knowledge.

\(^7\)We found that the DNN performed better with experimental data if we replaced the ReLU activation function with a hyperbolic tangent (tanh) activation function, and therefore, we present results for the tanh-activated DNN in this section.
The RBNN framework offers a high-frequency physics-based acoustic propagation modeling approach that can incorporate known environmental information and be trained with observed data, making it suitable for solving acoustic modeling problems with limited data. The approach that we took to derive the RBNN from a high-frequency approximation to the solution of a wave equation can also be applied to other approximations. For example, applying the same approach to a normal mode approximation yields normal mode neural networks that may be used for low-frequency acoustic propagation problems. The RBNN framework could incorporate environmental complexities such as range-dependent bathymetry, nonisovelocity sound speed profiles, and various geo-acoustic models. When the physics is fully or partially known, explicit expressions can be included in the computational graph, with potentially some unknown parameters. On the other hand, when physics is unknown, NNs can be used as components of the computational graph to model arbitrary functions. The resulting computational graph can be automatically differentiated with respect to the model parameters, thus, making it suitable for training with standard gradient-descent-based NN training algorithms.

The specific components that constitute RBNN trainable parameters are determined by the problem formulation. There are several factors that can affect the model training time, including the number of training epochs allowed, the size of training data, and the size of trainable parameters. In general, on typical personal computers today, it takes at most a few minutes to train the three models for studies evaluated in this article. For example, on a MacBook Air with an M2 chip and 16 GB RAM, it takes 58.8 s, 2.23 ms, and 31.9 s\(^8\) to train the RBNN model, GPR model, and DNN model, respectively for the near field estimation problem in Section III-B.

Our method is robust to noise, as the loss function minimizes noise regardless of its level. Our approach can be applied at various propagation ranges as we make no implicit assumptions about it. Typically, field patterns become less complicated with range and are therefore easier to model. The approach can be applied across a vast range of frequencies. However, we require more training data for higher frequencies, as the field structure becomes more intricate at smaller scales as frequencies increase.

In our current work, we assumed quasi-static environments. This assumption could lead to serious performance degradation in environments that undergo significant changes over the period during which acoustic observations are collected, particularly at

\[8\] We measure the minimum elapsed time during the benchmark for the three models.
VI. CONCLUSION

Modeling acoustic propagation in underwater environments is particularly challenging in partially unknown environments. Physics-based acoustic propagation models have limited practical uses as they require accurate prior environmental knowledge to estimate acoustic fields in a given area. While classical ML techniques such as GPR and DNN can use data to approximate an unknown acoustic propagation model, they lack the ability to incorporate scientific domain knowledge (in our case, the acoustic wave equation) and environmental knowledge (e.g., known channel geometry). Without incorporating the domain or environmental knowledge, these techniques tend to be data-hungry during training, and extrapolate poorly. They can also make predictions that are physically unrealistic.

To address the limitations in physics-based models and data-driven modeling techniques, we proposed a modeling recipe that embeds scientific domain knowledge into data-driven ML to leverage their complementary strengths. We showed that our RBNN method can learn from very little data, extrapolate well beyond the region where training data are available, and always make predictions that are consistent with physics. We demonstrated a few applications of the RBNN framework, highlighting the flexibility it provides in modeling acoustic high frequencies. One of the possible ways to address environmental dynamics is to incorporate the knowledge of environmental changes into the modeling. This would allow us to generate a time-varying physics-based data-aided propagation model. For example, if an environmental parameter undergoes a first-order linear change over time, one could model RBNN parameters as linear functions of time.

Fig. 20. Extrapolated field patterns of the entire tank environment using the experimental data by the three models. (a) RBNN extrapolated field estimates. (b) GPR extrapolated field estimates. (c) DNN extrapolated field estimates.

Fig. 21. Estimated reflection coefficient based on the trained RCNN layer of the composite RBNN.
propagation scenarios with varying degrees of environmental complexity and knowledge. We believe that the framework can be applied to solve a much wider variety of acoustic propagation problems.

REFERENCES

[1] K. R. James and D. R. Dowling, “A method for approximating acoustic-field-amplitude uncertainty caused by environmental uncertainties,” J. Acoustical Soc. America, vol. 124, no. 3, pp. 1465–1476, 2008.

[2] S. Gul, S. S. H. Zaidi, R. Khan, and A. B. Wala, “Underwater acoustic channel modeling using BELLHOP ray tracing method,” in Proc. 14th Int. Bhurban Conf. Appl. Sci. Technol., 2017, pp. 665–670.

[3] J. Llor and M. P. Malumbres, “Underwater wireless sensor networks: How do acoustic propagation models impact the performance of higher-level protocols?,” Sensors, vol. 12, no. 2, pp. 1312–1335, 2012.

[4] N. R. Chapman, “Inverse problems in underwater acoustics,” in Handbook of Signal Processing in Acoustics. New York, NY, USA: Springer, 2008, pp. 1723–1735.

[5] N. R. Chapman, S. Chin-Bing, D. King, and R. B. Evans, “Benchmarking geoaoustic inversion methods for range-dependent waveguides,” IEEE J. Ocean. Eng., vol. 28, no. 3, pp. 320–330, Jul. 2003.

[6] S. Dosso, M. Seremy, J. Ozard, and N. Chapman, “Estimation of ocean-bottom properties by matched-field inversion of acoustic field data,” IEEE J. Ocean. Eng., vol. 18, no. 3, pp. 232–239, Jul. 1993.

[7] J. Bonnel, B. Nicolas, J. I. Mars, and S. C. Walker, “Estimation of modal group velocities with a single receiver for geoaoustic inversion in shallow water,” J. Acoustical Soc. America, vol. 128, no. 2, pp. 719–727, 2010.

[8] M. Collins and W. Kuperman, “Inverse problems in ocean acoustics,” Inverse Problems, vol. 10, no. 5, 1994, Art. no. 1023.

[9] A. Tolstoy, “Applications of matched-field processing to inverse problems in underwater acoustics,” Inverse Problems, vol. 16, no. 6, 2000, Art. no. 1655.

[10] A. B. Baggeroer, W. Kuperman, and H. Schmidt, “Matched field processing: Source localization in correlated noise as an optimum parameter estimation problem,” J. Acoustical Soc. America, vol. 83, no. 2, pp. 571–587, 1988.

[11] A. B. Baggeroer, W. A. Kuperman, and P. N. Mikhailovsky, “An overview of matched field methods in ocean acoustics,” IEEE J. Ocean. Eng., vol. 18, no. 4, pp. 401–424, Oct. 1993.

[12] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Wave propagation theory,” in Computational Ocean Acoustics. New York, NY, USA: Springer, 2011, pp. 65–153.

[13] T. C. A. Oliveira, Y.-T. Lin, and M. B. Porter, “Underwater sound propagation modeling in a complex shallow water environment,” Front. Mar. Sci., vol. 4, 2017, Art. no. 1464.

[14] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Ray methods,” in Computational Ocean Acoustics. New York, NY, USA: Springer, 2011, pp. 155–232.

[15] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Normal modes,” in Computational Ocean Acoustics. New York, NY, USA: Springer, 2011, pp. 337–455.

[16] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Parabolic equations,” in Computational Ocean Acoustics. New York, NY, USA: Springer, 2011, pp. 491–505, 1995.

[17] F. R. DiNapoli and R. L. Deavenport, “Numerical models of underwater acoustic propagation,” in Ocean Acoustics. Berlin, Germany: Springer, 1979, pp. 79–157.

[18] P. C. Etter, “Review of ocean-acoustic models,” in Proc. OCEANS, 2009, pp. 1–6, 2009.

[19] I. Goodfellow, Y. Bengio, and A. Courville, “Machine learning basics,” Deep Learn., vol. 1, no. 7, pp. 96–160, 2016.

[20] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[21] D. Caviedes-Nozal, N. A. Riis, F. M. Heuchel, J. Bruuskov, P. Gerstoft, and E. Fernandez-Grande, “Gaussian processes for sound field reconstruction,” J. Acoustical Soc. America, vol. 149, no. 2, pp. 1107–1119, 2021.

[22] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Proc. Nat. Physical Lab., Gloucestershire, U.K., NPL Rep. AC 12, 1989.

[23] K. Gurney, “Neural networks–an overview,” in Handbook of Machine Learning Research. New York, NY, USA: Springer, 2011, pp. 457–529.

[24] M. I. Jordan and T. M. Mitchell, “Machine learning: Trends, perspectives, and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[25] T. Kohlsche, S. Lippert, and O. von Estorff, “Gaussian process based surrogate modelling of acoustic systems,” Proc. Appl. Math. Mechanics, vol. 19, no. 1, 2019, Art. no. e201900471.

[26] B. M. Lee, J. R. Johnson, and D. R. Dowling, “Predicting acoustic transmission loss uncertainty in ocean environments with neural networks,” J. Mar. Sci. Eng., vol. 10, no. 10, 2022, Art. no. 1548.
[36] A. Karpatne et al., “Theory-guided data science: A new paradigm for scientific discovery from data,” IEEE Trans. Knowl. Data Eng., vol. 29, no. 10, pp. 2318–2331, Oct. 2017.

[37] N. Baker et al., “Workshop report on basic research needs for scientific machine learning: Core technologies for artificial intelligence,” USDOE Office Sci., Washington, DC, USA, 2019. [Online]. Available: https://wwwosti.gov/biblio/1478774

[38] M. Raisi and G. E. Karniadakis, “Hidden physics models: Machine learning of nonlinear partial differential equations,” J. Comput. Phys., vol. 357, pp. 125–148, 2018.

[39] L. P. Swiler, M. Gulian, A. L. Frankel, C. Safta, and J. D. Jakeman, “A survey of constrained gaussian process regression: Approaches and implementation challenges,” J. Mach. Learn. Model. Comput., vol. 1, no. 2, pp. 119–156, 2020.

[40] J. Willard, X. Jia, S. Xu, M. Steinbach, and V. Kumar, “Integrating scientific knowledge with machine learning for engineering and environmental systems,” ACM Comput. Surv., vol. 55, no. 4, Nov. 2022, Art. no. 66. [Online]. Available: doi: 10.1145/3514228.

[41] C. Rackauckas et al., “Universal differential equations for scientific machine learning,” 2020, arXiv:2001.04385.

[42] J. S. Read et al., “Process-guided deep learning predictions of lake water temperature,” Water Resour. Res., vol. 55, no. 11, pp. 9173–9190, 2019.

[43] J. Sun, Z. Niu, K. A. Innanen, J. Li, and D. O. Tread, “A theory-guided deep learning formulation of seismic waveform inversion,” SEG Tech. Prog. Expanded Abstr. vol. 2019, pp. 2343–2347, 2019.

[44] M. Raisi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations,” J. Comput. Phys., vol. 378, pp. 686–707, 2019.

[45] N. Borrel-Jensen, A. P. Ensig-Karup, and C.-H. Jeong, “Physics-informed neural networks for one-dimensional sound field predictions with parameterized sources and impedance boundaries,” JASA Exp. Lett., vol. 1, no. 12, 2021, Art. no. 122402.

[46] B. Moseley, A. Markham, and T. Nissen-Meyer, “Solving the wave equation with physics-informed deep learning,” 2020, arXiv:2006.11894.

[47] M. Rashid-Behesht, C. Huber, K. Shukla, and G. E. Karniadakis, “Physics-informed neural networks (PINNs) for wave propagation and full waveform inversions,” J. Geophys. Res.: Solid Earth, vol. 12, no. 2, pp. 1312–1335, 2022.

[48] T. DE Wolff, H. Carrillo, L. Marti, and N. Sanchez-Pi, “Assessing physics informed neural networks in ocean modelling and climate change applications,” in Proc. Int. Conf. Learn. Representations, 2021. [Online]. Available: https://openreview.net/forum?id=FJZAIQAgEWW.pdf

[49] T. DE Wolff, H. Carrillo, L. Marti, and N. Sanchez-Pi, “Towards optimally weighted physics-informed neural networks in ocean modelling,” 2021, arXiv:2106.08747.

[50] K. Li and M. Chitre, “Ocean acoustic propagation modeling using scientific machine learning,” in OCEANS. San Diego, CA, USA: IEEE, 2021, pp. 1–5.

[51] K. Li and M. A. Chitre, “Physics-aided data-driven modal ocean acoustic propagation modeling,” in Proc. 24th Int. Congr. Acoust., 2022, pp. 1–9.

[52] J. M. Hovem, “Ray trace modeling of underwater sound propagation,” in Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microstructures. London, U.K.: IntechOpen, 2013.

[53] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in Neural Networks for Perception. Amsterdam, Netherlands: Elsevier, 1992, pp. 65–93.

[54] P. Werbos, “Beyond regression: New tools for prediction and analysis in the behavioral sciences,” Ph.D. dissertation, Committee Appl. Math., Harvard Univ., Cambridge, MA, USA, 1974.

[55] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind, “Automatic differentiation in machine learning: A survey,” J. Mach. Learn. Res., vol. 18, 2018.

[56] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2015, arXiv:1412.6980.

[57] N. Ketkar and N. Ketkar, “Stochastic gradient descent,” in Deep Learning With Python: A Hands-on Introduction. New York, NY, USA: Apress, 2017, pp. 113–132.

[58] A. S. Berahas, J. Nocedal, and M. Takáč, “A multi-batch L-BFGS method for machine learning,” in Proc. Adv. Neural Inf. Process. Syst., 2016.

[59] M. Li, T. Zhang, Y. Chen, and A. J. Smola, “Efficient mini-batch training for stochastic optimization,” in Proc. 26th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2014, pp. 661–670.

[60] F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, “Fundamentals of Ocean Acoustics,” in Computational Ocean Acoustics.New York, NY, USA: Springer, 2011, pp. 1–64.

[61] A. Kistovich, P. Kokazevev, and T. Chapulina, “General properties and character types of sound waves,” in Ocean Acoustics. Berlin, Germany: Springer, 2020, pp. 23–41.

[62] P. M. Morse and K. U. Ingard, “The Radiation of Sound,” in Theoretical Acoustics. Princeton, NJ, USA: Princeton Univ. Press, 1986, pp. 306–394.

[63] F. Fisher and V. Simmons, “Sound absorption in sea water,” J. Acoustical Soc. America, vol. 62, no. 3, pp. 558–564, 1977.

[64] L. Brekhovskikh and Y. P. Lysanov, “Reflection of sound from the surface and bottom of the ocean: Plane waves,” in Fundamentals of Ocean Acoustics. New York, NY, USA: Springer, 2003, pp. 61–79.

[65] J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” J. Acoustical Soc. America, vol. 65, no. 4, pp. 943–950, 1979.

[66] APL-UW, “Bottom,” in High-Frequency Ocean Environmental Acoustic Models Handbook. Seattle, WA, USA: Washington Univ. Seattle Appl. Phys. Lab, 1994, pp. 122–175.

[67] L. Prechelt, “Early stopping—but when?,” in Neural Networks: Tricks of the Trade, 2nd edn. Berlin, Germany: Springer, 2012, pp. 53–67.

[68] M. B. Porter, “The BELLHOP manual and user’s guide: Preliminary draft,” Heat Light Sound Rex., 2011. [Online]. Available: https://hlsresearch.com/Rays/HLS-2010-1.pdf

[69] M. Chitre, “Differentiable ocean acoustic propagation modeling,” in Proc. IEEE/MTS OCEANS Linerick, 2023, pp. 1–7.