The electrical complex impedance measurement of rock samples using simple method on Halmahera rock samples

G Handayani and M H K Usman

1Laboratory of Earth Physics Bandung Institute of Technology

E-mail: gunawanhandayani@gmail.com

Abstract. The electrical complex impedance is very important physical parameter to determine the fluid and matrix condition of the rock sample. One mechanism in the samples that influences this complex, frequency – dependent behaviour of resistivity is the disseminated metal ores which can block the pores and subsequently trigger the mechanism for storage/delay. Pore water ions build up on either side of the grain, results in the effect of a capacitor. This paper presents a simple experimental set up to measure the complex resistivity of rock samples. The main mechanism is generation of high voltage sinusoidal signal. This is implemented as collector voltage of a transistor. The high voltage sinusoidal signal then is applied on either side of the rock sample. At two distances of the sample we measure the resulting voltage using the oscilloscope. The observed delay can be considered as the measured phase, whereas the amplitude of the observed voltage is considered as the voltage. We determine the absolute impedance as the voltage divided by the current. Using this simple method we measured the complex impedances of 14 rock samples obtained from Halmahera Island. From the results of measurement, we tried to infer and to model the disseminated metal ores of the samples.

1. Introduction

The electrical complex impedance is very important physical parameter to determine the fluid and matrix condition of the rock sample. One mechanism in the samples that influences this complex, frequency – dependent behavior of resistivity, is the disseminated metal ores which can block the pores and subsequently trigger the mechanism for storage/delay. This phenomenon is called Electrode polarization. It occurs when metallic minerals are present in a rock. The electrical current is conducted through the metallic grains and by means of ion movement of the fluid in the pores as described in Figure 1.

![Figure 1. Mechanism of complex resistivity: electrode polarization.](image-url)
When the voltage is applied at two points on the rock, the electronic conduction through the metallic grain is very fast, whereas at the interface the rate of electronic exchange between ions and metallic grains is slow, as the results there is a build-up of charge in the boundary between metallic grains and pore fluids. When the voltage is removed, the accumulation of charges diffuses back to the original location and causes a time-delayed decaying voltage. This phenomenon is called electrode polarization or overvoltage which causes inductor effect on electronic circuit (Fu, H, 2013) (Sumner, J.S., 1976).

There are three ways electrical current can flow through the rock i.e.: 1) Electronic conduction (Ohmic) 2) Electrolytic conduction (through ionic movement) 3) Dielectric conduction (electrode polarization mechanism).

2. Methodology

The principle of complex resistivity measurement on the rock samples can described as in Figure 2.

![Figure 2. The principle of complex resistivity measurement on the rock sample.](image)

Referring to Figure 2, the resistance R of the rock sample is governed by the following formula:

\[R = \rho \frac{L}{A} \]

(1)

where R is resistance, \(\rho \) is resistivity, L is sample length and A is area of the sample.

![Figure 3. Equivalence circuit of complex resistivity of rock samples.](image)

The complex resistivity measurement of the rock sample can be diagrammed by the circuit in Figure 3. In complex resistivity measurement, the rock sample can be considered as the resistor, capacitor and inductor in parallel circuit. If the AC voltage source \(V(t) = V_o \sin \omega t \), the total current would be the sums of three currents that passing through the resistor, inductor and capacitor i.e.:

\[I(t) = I_R(t) + I_L(t) + I_C(t) = I_{R0} \sin \omega t + I_{L0} \sin (\omega t - \frac{\pi}{2}) + I_{C0} \sin (\omega t + \frac{\pi}{2}) \]

(2)

The electric current through capacitor \(I_{C0} \), inductor \(I_{L0} \), and resistor \(I_{R0} \) of Figure 3, along with the applied potential \(V_o \), follows the phasor diagram in Figure 4 (Halliday, Resnick, 2007).
Figure 4. Phasor diagram of the parallel circuit.

And \(I_0 = \frac{V_0}{Z} \), \(Z = \frac{V_0}{I_0} \); or \(Z = \frac{V_{rms}}{I_{rms}} \); \(\phi \) is the phase difference between \(V_0(t) \) and \(I_0(t) \).

Figure 5. Diagram of complex impedance \(\vec{Z} \).

The complex impedance (Figure 5) can be calculated as:

\[
\frac{1}{\vec{Z}} = \frac{1}{\vec{R}} - \frac{1}{\vec{X}}
\]

An important issue to do is design a high-voltage sinusoidal signal source. The simple design is to use a transistor with output from collector as follows (Figure 6):

Figure 6. AC voltage circuit.

The alternating current from the source flows through the sample, produces voltage difference measured by a dual oscilloscope. The complex impedance is determined by reading maximum Voltage and maximum current:

\[
\vec{Z} = \frac{V_0}{I_0} \text{ or } \vec{Z} = \frac{V_{rms}}{I_{rms}}
\]
The phase constant between the voltage and current is determined by reading the time difference between the two sinusoidal waves using dual oscilloscope.

![Experimental circuit](image1)

Figure 7. Experimental circuit.

The explanation of Figure 7 is as follows, 1 is current source, 2 is signal generator, 3 is DC to AC converter, 4 is rock sample and 5 is oscilloscope.

![Oscilloscope](image2)

Figure 8. Method of determining phase constant by observing Δt (time difference) and period T.

Method of determining phase constant (Figure 8) by observing Δt (time difference) and period T of the sinusoidal wave of the input sinusoidal wave before passing through the sample and sinusoidal wave after passing through the sample by employing dual input oscilloscope. The phase constant is determined as $F = \frac{\Delta t}{T} \times 2\pi$ radian.

3. Results and Discussion
The measured rock samples from Halmahera island are shown in the following table:
Table 1. Physical view of the rock samples.

No.	Samples code	Pictures	Remarks	No.	Samples code	Pictures	Remarks
1	KKE 02	![Picture](image)	cylinder	8	LER MH 02A	![Picture](image)	cylinder
2	LER MH 01	![Picture](image)	cylinder	9	KKW 02	![Picture](image)	Half cylinder
3	LER MH 02	![Picture](image)	cylinder	10	LER 02-ST	![Picture](image)	Half cylinder
4	KKE 02	![Picture](image)	Not perfect	11	KKW 01	![Picture](image)	Half cylinder
5	LER MH 06	![Picture](image)	cylinder	12	KKE 01	![Picture](image)	Half cylinder
6	LER MH 01	![Picture](image)	cylinder	13	LER 01-ST	![Picture](image)	Half cylinder
7	LER MH 06A	![Picture](image)	cylinder	14	KKE 01	![Picture](image)	Half cylinder

Table 1 presents the number of the rock samples along with the physical view, and table 2 presents the results of measurements as described in Figures 7 and 8.

Table 2. Results of electrical measurements when input by a sinusoidal wave.

No	Sample code	Frequency (Hz)	Current rms (μA)	Voltage rms (mV)	No	Sample code	Frequency (Hz)	Current rms (μA)	Voltage rms (mV)
1	KKE 02	10	1.7	60	8	LER MH 02A	10	40200	1800
		100	13.2	30			100	4580	360
		1000	165	1600			1000	10.6	116
2	LER MH 01	10	109.5	3600	9	KKW 02	10	124.7	200
		100	16.9	1200			100	1238	170
		1000	29	130			1000	1.8	1.2
3	LER MH 02	10	9390	6000	10	LER 02-ST	10	80	1200
		100	160	1500			100	100.3	110
Tables 3, 4, and 5 present the calculation results to determine σ (conductivity) and F (phase constant).

Table 3. The electrical conductivity results of the halmahera’ rock samples.

No	Sample code	Depth (m)	σ (mho)	$\bar{\sigma}$ (mho)	σ (mho)	$\bar{\sigma}$ (mho)
1	KKE 02	2.9 - 3.05	28.333	190.486	440.000	103.125
2	LER MH 01	10 - 10.2	30.417	89.192	14.083	223.077
3	LER MH 02	18.7 - 18.85	1565.000	1012.778	106.667	1366.667
4	KKE 02	23.4 - 23.55	1190.000	3073.860	7331.579	700.000
5	LER MH 06	25.8 - 25.95	10909.091	8112.951	13404.762	25.000
6	LER MH 01	26.65 - 26.8	386.364	2838.724	5692.308	2437.500
7	LER MH 06A	39.05 - 39.2	108307.692	62602.564	79266.667	233.333

Whereas the F constant is presented as follows:
Table 4. The F phase constant of the rock samples.

No	Sample code	Frequency (Hz)	φ (μs)	φ (rad)	No	Sample code	Frequency (Hz)	φ (μs)	φ (rad)
1	KKE 02	10	0	0	8	LER MH 02A	10	0	0
		100	2	0.0002			100	0	0
		1000	20	0.02			1000	0	0
2	LER MH 01	10	0	0	9	KKW 02	10	10	0.0001
		100	1	0.0001			100	2	0.0002
		1000	0	0			1000	0	0
3	LER MH 02	10	0	0	10	LER 02-ST	10	0	0
		100	1	0.0001			100	2	0.0002
		1000	20	0.02			1000	0	0
4	KKE 02	10	0	0	11	KKW 01	10	0	0
		100	0.5	0.0005			100	2	0.0002
		1000	0	0			1000	0	0
5	LER MH 06	10	0	0	12	KKE 01	10	30	0.0003
		100	0	0			100	1.5	0.00015
		1000	0.1	0.0001			1000	0	0
6	LER MH 01	10	0	0	13	LER 01-ST	10	10	0.0001
		100	0	0			100	0	0
		1000	0	0			1000	0	0
7	LER MH 06A	10	-0.5	-5E-06	14	KKE 01	10	10	0.0001
		100	0	0			100	2	0.0002
		1000	-1	-0.001			1000	0	0

Table 5. The conductivities along with the F phase constant of the rock samples.

No	Sample code	Depth (m)	σ (mho)	δσ(mho)	φ (rad)	No	Sample code	Depth (m)	σ (mho)	δσ(mho)	φ (rad)
1	KKE 02	2.9 - 3.05	28.333	440	0	8	LER MH 02A	40.6 - 40.8	22333.33	12722.22	11715.65
			190.486		0.0002				9317.90	1500	0
			103.125		0.02				1500	0	0
2	LER MH 01	10 - 10.2	30.417	14.083	0	9	KKW 02	52.1 - 52.2	623.5	1988.235	1370.578
			89.192		0.0001				66.667	911.818	626.162
			223.077		0				900	0	0
3	LER MH 02	18.7 - 18.85	1565	106.667	0	10	LER 02-ST	61.1 - 61.25	66.667	911.818	626.162
			1012.77		0.0001				900	0	0
			1366.67		0.02				900	0	0
4	KKE 02	23.4 - 23.55	1190	7331.579	0	11	KKW 01	74.5 - 74.65	610	27142.86	9350.952
			3073.86		0.0005				300	0	0
			700		0				100	0	0
5	LER MH 06	25.8 - 25.95	10990.99	13404.76	0	12	KKE 01	175.65 - 175.80	16.136	535.714	217.284
			8112.951		0				100	0	0
			25		0.0001				100	0	0
6	LER MH 01	26.65 - 26.8	386.364	5692.308	0	13	LER 01-ST	209.10 - 209.25	366.981	422.222	291.273
			2838.724		0				84.615	0	0
			2437.5		0				84.615	0	0
7	LER MH 06A	39.05 - 39.2	108307.7	79266.67	-5.00E-06	14	KKE 01	213.55 - 213.7	98.667	857.143	328.603
			62602.56		0				30	0	0
If we look up the references regarding the Halmahera island, we found the geological map of the island (Figure 9), and Table 6 presents the Weda Bay (one of the bay in Halmahera island) profile.

![Figure 9. The geological map of Halmahera island (after Farrokhpay, S. et al., 2019)](image)

Table 6. The Weda Bay profile (adopted from Cock and Lynch, 1999)

Horizon	Mineralogy	Ni%	Thickness (m)
Limestone	Goethite, Hematite	0.8	2
Ferruginous saprolite	Ni-rich goethite, Mn oxides	1.2–1.6	4-8
Transition zone	Mg silicates, Ni-rich saprolite	1.5–2.5	3-4
Saprolite	Ni-rich saprolite, Talc, serpentine	0.5–0.8	
Lower saprolite	Serpentine, Olivine, pyroxene	0.3	

Referring to Tables 5 and 6, we infer that the rock sample number KKE 02 with the conductivity of 190.486 mhos may be the Ferruginous saprolite goethite with a Ni percentage of 1.2 – 1.6. The rock sample, whose number is LER MH 01, maybe from the transition zone because the conductivity of the sample is 89.192 mhos (lower than the conductivity of KKE 02). The LER MH 02 rock sample with the conductivity of 1012.778 mhos from the depth of 18.7-18.85 m may be from the saprolite with a Ni percentage of 1.5 – 2.5. It has the phase constant F of 0.1 mrad for 100 Hz and 20 mrad for 1 kHz. As mentioned earlier, the phase constant indicates the inductive property of the rock samples, which proportionate to the disseminated metal grain. With increasing depth, the rock samples can be classified as bedrock with large conductivities (Serpentine, Olivine, and pyroxene) and some the phase constant F associated with a Ni percentage of 0.3.
4. Conclusion
This paper has presented the measurement of complex resistivity of rock samples of Halmahera Island. The value of conductivity and the phase constant (from table 5) can deduce the metallic content of the rock samples. The positive value of the f phase constant indicates that the rock samples are inductive, whereas the negative value of the f phase constant indicates the rock samples are capacitive. Sample numbers LER MH 02, KKE 02, LER MH 06, and KKW 02 show this inductive property. Sample number KKW 01 shows a slight inductive property. The metallic grains disseminated in the rock samples are the cause of inductive properties. The greater the conductivity and the phase constant, the greater the metallic disseminated minerals are. The electrode polarization causes this inductive phenomenon.

Acknowledgments
Authors wishing to acknowledge assistance or encouragement from colleagues, special work by technical staff or financial support from Water Development Research Center Indonesia.

References
[1] Cock, G.C., Lynch, J.E., 1999, Discovery and Evaluation of the Weda Bay Nickel/Cobalt Deposits Central Halmahera, Indonesia, PACRIM 99 Congress, AusIMM.
[2] Farrokhpay, S., Cathelineau, M., Blancher, S.B., Laugier, O., Fillippov, L., Characterization of WedaBay nickel laterite ore from Indonesia, Journal of Geochemical Exploration, 2019.
[3] Fu, Haiyan, Interpretation of Complex Resistivity of Rock Using GEMTIP Analysis, A thesis submitted to the faculty of The University of Utah in partial fulfilment of the requirements for the degree of Master of Science, University of Utah, 2013.
[4] Halliday, Resnick, Fundamental of Physics, Wiley, 2007.
[5] Sumner, J.S., Principles of Induced Polarization for Geophysical Exploration, Elsevier, 1976.