Proteomic Characterization of Postmortem Amyloid Plaques
Isolated by Laser Capture Microdissection

Lujian Liao\(^{1,2}\), Dongmei Cheng\(^{1,2}\), Jian Wang\(^{1,2}\), Duc M. Duong\(^{1,2}\), Tatyana G. Losik\(^{1,2}\),
Marla Gearing\(^{2,3}\), Howard D. Rees\(^{2,4}\), James J. Lah\(^{2,4}\), Allan I. Levey\(^{2,4}\), and Junmin Peng,\(^{1,2*}\)

\(^{1}\)Department of Human Genetics, \(^{2}\)Center for Neurodegenerative Disease, \(^{3}\)Department of Pathology and Laboratory Medicine, \(^{4}\)Department of Neurology, Emory University, School of Medicine, Atlanta, Georgia 30322, USA.

*Corresponding to: jpeng@genetics.emory.edu

Running title: Proteomic characterization of amyloid plaques

Key words: Alzheimer’s disease, amyloid plaque, dynein, laser capture microdissection, mass spectrometry, proteomics
Abstract

The presence of amyloid plaques in the brain is one of the pathological hallmarks of Alzheimer’s disease (AD). We report here a comprehensive proteomic analysis of senile plaques from postmortem AD brain tissues. Senile plaques labeled with thioflavin-S were procured by laser capture microdissection (LCM), and their protein components were analyzed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). We identified a total of 488 proteins co-isolated with the plaques and found multiple phosphorylation sites on neurofilament intermediate chain, implicating the complexity and diversity of cellular processes involved in the plaque formation. More significantly, we identified 26 proteins enriched in the plaques of two AD cases by quantitative comparison with surrounding non-plaque tissues in each case. The localization of several proteins in the plaques was further confirmed by the approach of immunohistochemistry. In addition to previously identified plaque constituents, we discovered novel association of dynein heavy chain with the plaques in human postmortem brain and in a double transgenic AD mouse model, suggesting that neuronal transport may play a role in neuritic degeneration. Overall, our results revealed for the first time the sub-proteome of amyloid plaques that is important for further studies on disease biomarker identification and molecular mechanisms of AD pathogenesis.
Introduction

Alzheimer’s disease (AD) is a devastating neurological disorder that impairs cognitive function and disturbs emotion and personality. Histopathologically, AD is manifested by the extracellular aggregation of amyloid plaques and the intraneuronal neurofibrillary tangles. Although current amyloid cascade hypothesis (1) or tau hypothesis (2) provide frameworks for studying AD pathogenesis, the detailed molecular mechanisms that translate amyloid or tau accumulation into neuronal damage and functional brain impairments are largely unknown. In addition, there are numerous, complex pathological changes in AD brain that contribute to neuronal and synaptic degeneration, including mitochondrial dysfunction, oxidative damage, and inflammation (3-5).

The first major breakthrough in understanding the molecular pathogenesis of AD came from the biochemical purification of amyloid β-peptide (Aβ) from senile plaques by Glenner and Wong (6) and subsequent sequencing and identification of the Aβ precursor protein (APP) gene. While the major insoluble component of plaques has been identified as Aβ (6,7), the entire molecular composition of the plaques is not known. The plaques are highly complex structures with a variety of neural and glial elements (8), and many proteins have been localized to these structures by immunohistochemistry. However, biochemical verification of the plaque components has been scarce. Moreover, biochemical approaches previously applied to purify plaque components generally use very stringent extraction condition (e.g. high concentration of salt, urea, and/or protease treatment) that may remove Aβ-associated proteins. The identities and roles of other plaque proteins that may act synergistically or competitively with Aβ in aggregation and
deposition are also incomplete. A systematic analysis of plaque proteins should shed light on the underlying molecular processes that govern the plaque formation.

Traditionally, proteomic analysis is performed by comparing samples between AD cases and normal controls in two-dimensional (2D) gels and identifying proteins of interest by mass spectrometry (9). Several groups have tried this strategy and identified some proteins that are altered in the expression levels (10,11). However, the 2D gel method is generally incompatible with proteins of extreme size, pI, and hydrophobicity, and it is tedious to determine the identity of hundreds of protein spots displayed on a 2D gel. Many of the limitations can be overcome by the development of liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) (12,13). It is now possible to analyze hundreds to thousands of proteins directly from a complex protein mixture and the sensitivity can reach low femtomole and even subfemtomole level. The power of shotgun LC-MS/MS based proteomics technology has been documented by successful proteomic analysis of subcellular structures in mammalian cells, such as nucleolus (14), centrosome (15), nuclear envelope (16), mitochondria (17) and postsynaptic density (18). The methodology has also been used to address dynamic changes in protein level under specific conditions, as exemplified by the identification of protein components in EGF signaling pathway (19), and the functional investigation of myc oncogene (20). Mass spectrometry has also greatly simplified the analysis of posttranslational modifications (21,22).

While it may be problematic to isolate plaques to homogeneity using traditional biochemical methods, the advent of laser capture microdissection (LCM) allows procuring a microscopic region as small as 3-5 micrometer in diameter (23). The LCM
technology has been extensively used to collect homogenous cell types for DNA mutation detection and gene expression analysis at the mRNA level (23). More recently, its application in proteomics has begun to be appreciated (24,25). It is possible to use LCM to capture neuropathological structures with high purity, but the amount of samples collected by LCM is often limited, complicating proteomic analysis by 2D gel-based methods. These limitations can be alleviated by the integration of LCM with the highly sensitive LC-MS/MS technology.

Here, we present the isolation of postmortem amyloid plaques labeled with thioflavin-S using the LCM approach, and the systematic identification of extracted proteins by LC-MS/MS. The entire procedure was performed twice with samples from two AD cases. Together, more than 480 proteins were detected in the plaque samples and 26 proteins were shown to be enriched in the plaques in comparison with the surrounding tissue. The presence of selected proteins in the plaques was confirmed by immunohistochemistry and cytoplasmic dynein was found to be a novel component of amyloid plaques in human specimen and in an AD mouse model. These studies demonstrate a powerful new approach for achieving comprehensive analysis of the sub-proteome of neuropathological structures.

Materials and Methods

Brain sections

Small blocks of fresh frontal and temporal cortex were obtained at autopsy from a 55-year-old Caucasian female (postmortem interval, 4.5 hrs, case 1) and a 78-year-old Caucasian male (postmortem interval, 17.5 hrs, case 2). Both cases were
Proteomic characterization of amyloid plaques

neuropathologically diagnosed as definite AD according to CERAD criteria (26). The brain blocks were embedded in Tissue-Tek® OCT Compound (Jed Pella Inc., Redding, CA), frozen on dry ice and stored at -80°C. 10 µm thick brain sections were cut using a LEICA CM 3050 cryostat (Leica microsystems Inc., Bannockburn, IL), and mounted on uncoated and uncharged glass slides.

Laser Capture Microdissection

Isolation of plaques by LCM was performed based on the protocol previously developed (27). The frozen brain sections were thawed at room temperature, fixed with 75% ethanol for 1 min, stained with 1% thioflavin-S for 1 min, differentiated in 75% ethanol for 1 min, and then subjected to dehydration in a series of graded ethanol. Finally, the slides were cleared in xylene for 5 min and then air-dried and desiccated. LCM was performed the same day under a fluorescence microscope attached to a Pixcell II laser capture facility (Arcturus, Mountain View, CA) with the settings (excitation wavelength, 495 nm; laser power, 60-80 mW; duration, 1 ms; and laser spot size, 7.5 µm). A total of about 2000 amyloid plaques were procured from four cortical sections in both cases. Non-plaque areas surrounding the plaques were captured as a control. Each CapSure Macro LCM cap (Arcturus, Mountain View, CA) was used for the capture of about 500 plaques or control tissues from one slide.

Protein extraction and analysis by mass spectrometry

The caps were extracted twice with a lysis buffer at 65°C for 15 min. The lysis buffer was made from Phosphate Buffer Saline (PBS) buffer, pH 7.2 with the addition of 2%
sodium dodecylsulfate (SDS), 10% glycerol, 10 mM dithiothreitol (DTT), 1 mM di-Na ethylenediamine tetra-acetate (EDTA), and protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN). After the extraction, the samples were alkylated with 50 mM iodoacetamide in dark at room temperature for 30 min. The total amount of proteins in the samples was estimated on a silver-stained SDS gel according to a standard protein marker with known concentration.

For mass spectrometry analysis, Proteins in each sample were separated on a 6-12% SDS gel (0.75 mm thick) and stained with Coomassie blue G-250. The entire lane was cut into 15 pieces followed by in-gel trypsin digestion (28). The resulting peptides from each gel piece were dissolved in buffer A (0.4% acetic acid, 0.005% heptafluorobutyric acid (HFBA), 5% acetonitrile). A pressure cell was used to load each sample onto a 50 µm i.d. x 12 cm self-packed, fused-silica C18 capillary column as described (29). Peptides were eluted during a 2-hr gradient from 10% to 30% buffer B (0.4% acetic acid, 0.005% HFBA, 95% acetonitrile; flow rate: ~300 nl/min). Eluted peptides were ionized under high voltage (1.8-2 kV), detected in a MS survey scan from 400–1700 atomic mass unit (amu) with 2 µscans followed by three data-dependent MS/MS scans (3 µscans each, isolation width 3 amu, 35% normalized collision energy, dynamic range 3 min) in a completely automated fashion on an LCQ-DECA XP-Plus ion trap mass spectrometer (Thermo Finnigan, San Jose, CA).

Database searching for protein identification

The Sequest algorithm (30) was utilized for searching all MS/MS spectra against the human reference database (ftp://ftp.ncbi.nih.gov/genbank, July, 2003). The parameters
were set to allow parent ion mass tolerance to be 3 and to consider only b and y ion series. Modifications were permitted to allow the detection of the following (mass shift shown in Daltons): oxidized methionine (+16), carboxymethylated cysteine (+57), and phosphorylated serine, threonine, and tyrosine (+80). We used more stringent Sequest criteria than previously described (31,32) including: (1) only fully-tryptic peptides were considered; (2) ĸCn score is at least 0.08; (3) Xcorr should be larger than 2.0, 1.7 or 3.3 for charge states of +1, +2, +3, respectively. To further reduce false-positives, we manually verified proteins matched by less than three peptides, since no false-positives were found among proteins identified by at least three distinct peptides (32). Therefore all peptides were accepted with high confidence. The conversion from the identified peptides to proteins was complicated by the presence of different names for the same protein and/or by the sharing of peptides within several proteins (e.g. protein paralogs) (33). Thus we manually verified all proteins and removed the redundancy. Typically we accepted proteins identified by at least one “unique peptide”. Obvious contaminants such as trypsin and keratins were removed. Finally we merged the datasets of the plaque samples from two independent experiments.

Protein quantification by mass spectrometry

Quantitative protein comparison between the plaques and the non-plaque control was carried out in two steps. The first step was based on the number of peptides identified for an assigned protein, indicative of protein abundance. We discarded proteins that were identified by more peptides in the control than in the plaques from either AD case. The second step was based on extracted ion current (XIC) of corresponding
peptides in MS survey scans (15,34,35). The ratio of peak intensities of selected peptides was measured in the 15 pairs of peptide mixtures that were generated by in-gel digestion of the 15 pairs of gel pieces as shown (Figure 1). We analyzed each pair of samples in two consecutive LC-MS/MS runs on the same column and found that the quantitative variation was within two-fold in general by using a trypsin auto-cleavage peptide (VATVSLPR, m/z 842.5 for singly charged ion) as internal control. Therefore, we used two-fold as the threshold for protein enrichment in the plaques. The trypsin auto-cleavage peptide was also used to normalize the measured peptide ratios, and to normalize the elution time of selected peptides between the pair of LC-MS/MS analysis. It should be mentioned that, in contrast to the peptide identification that was primarily derived from its MS/MS spectrum (Figure 3B), the peptide quantification was resulted from the MS survey scan (Figure 3A). An MS survey scan allowed the detection of many peptide ion peaks, of which only the most three predominant were selected for sequencing by MS/MS analysis. However, the other non-sequenced peaks on MS survey scans could be useful for quantification. For example, when a peptide was sequenced by MS/MS analysis in the plaque sample but not sequenced in the control, it is still possible to find and quantify the peptide ion in MS survey scans of the control sample according to its predicted m/z value and adjusted elution time. Otherwise, if the peptide could not be reliably located in the control sample, we estimated that the plaque/control (P/C) ratio was more than two-fold. Finally, we accepted proteins that were found to be enriched at least two-fold in both AD cases.

Immunohistochemistry
Non-transgenic and double transgenic C3/B6 mice expressing the APP695 isoform with the “Swedish” double mutation (APPswe) and PS1ΔEx9, a functional PS1 mutant lacking exon 9 (amino acids 290–319) (36,37), were used. Animals were anesthetized with isoflurane (Abbott, Chicago, IL), decapitated, and brains were removed and fixed in 4% paraformaldehyde for up to 6 hours. Sections of cingulate cortex from four patients with autopsy-confirmed AD and two normal controls were used. At autopsy, the brains were fixed with formalin for at least 48 hr. Brain blocks of tissue were then sectioned (50 µm) with a freezing microtome (Microm, Heidelberg, Germany). The brain sections were cryoprotected in 40% sucrose in PBS buffer (50 mM phosphate buffered saline, pH 7.2). Double labeling was performed using rabbit anti-Aβ (1:200, polyclonal, Chemicon, Temecula, CA) together with one of the following monoclonal antibodies: anti-Hsp70/90 (1:200, Stressgen, Victoria, BC, Canada) or anti-vimentin (1:2000, Boehringer Mannheim Biochemica, Mannheim, Germany). For Aβ colocalization with rabbit anti-dynein heavy chain (1:200, Santa Cruz Biotech Inc., Santa Cruz, CA), a monoclonal antibody against Aβ (4G8, 1:200, Chemicon) was used. After primary antibody incubation overnight at 4°C, the sections were extensively rinsed, incubated with FITC conjugated donkey anti-rabbit antibody (1:200, Jackson, Bar Harbor, ME), and then with biotinylated goat anti-mouse antibody (1:1000, Vector, Burlingame, CA) at room temperature for 2 hr. The biotinylated secondary antibody was further detected by avidin-biotin complex and Tyramide Signal Amplification (Perkin-Elmer, Boston, MA). The double labeled sections were examined with a 40X objective lens (numeric aperture 1.4) on a LSM510 laser scanning confocal microscope (Zeiss, Germany).
RESULTS

Identification of proteins enriched in AD amyloid plaques by quantitative proteomics

Senile plaques in AD brain tissues were stained with thioflavin-S and isolated using laser capture microdissection (LCM) (Figure 1A). Despite some background staining on the postmortem tissue sections, the plaques were easily distinguishable under the microscope. Approximately 2,000 plaques from one AD brain were captured to yield ~4 µg of total protein after extraction with SDS-containing lysis buffer. The non-plaque regions from the same brain sections were also procured as a control. The total protein samples extracted from the plaques and the non-plaque control were resolved in parallel on a SDS gel (Figure 1B), which indicates a similar protein composition in the two samples. The proteins in the entire gel lanes were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) as described in Methods. Approximately 30,000 MS/MS spectra were acquired for each sample and searched against a human protein database using the Sequest program (30). The matched peptides were further filtered rigorously and led to identification of 331 proteins in the plaques and 327 proteins in the adjacent non-plaque regions of cortex in this AD case (figure 2).

As the plaques are complex and heterogeneous neuropathological structures and are expected to vary among human cases, the protein components may differ in AD patients. We repeated the entire proteomic analysis using samples isolated from the second AD case and identified 413 proteins in the plaques and 384 proteins in its own non-plaque control (figure 2). The datasets from the two AD cases were combined to result in a list of 488 proteins detected in the plaque samples (Table S1). The current
literature identifies about 53 proteins present in the plaques, of which 44 proteins were found in our large-scale analyses (Table S1). As expected, many of these proteins were also found in the cortical areas without the plaques, since some normal cellular elements are components of the plaques, including glia and neurons. Alternatively, these proteins may reflect the capture of normal cellular elements along with the plaques.

To determine which of the above proteins were enriched in the plaque regions, we utilized a strategy outlined in figure 2. First, only the 256 plaque proteins detected in both AD cases were considered to increase the dataset reliability. Although it is difficult to estimate protein abundance directly from its peptide ion current, the number of peptides identified for each protein is roughly correlated with the abundance of the protein after the protein size is normalized (38,39). Based on this principle, we removed the proteins that were identified more frequently in the controls than in the plaques according to the corresponding peptide numbers (figure 2 and Table S1), and kept the remaining 168 proteins for further quantitative analysis. More recently, several groups proposed a simple relative quantification method via extracted ion current of peptides in successive analyses (15,34,35). We used this method to quantify the 168 proteins by manual inspection of the raw files. For example, during the LC-MS/MS analysis, an Aβ tryptic peptide was detected in an MS survey scan (Figure 3A) and sequenced by MS/MS (Figure 3B) in the plaque sample and the control. The extracted ion current signal for the peptide is shown in figure 3C, which allows the peptide quantification in both samples. It is worth noting that a trypsin auto-cleavage peptide was used as an internal standard to normalize the experimental variation and to fit the elution time of selected peptides. The plaque/control ratio of Aβ abundance was determined to be around 80, indicative of the
Proteomic characterization of amyloid plaques

enormous enrichment of Aβ in the plaques. The relative abundance of all other proteins was quantified in the similar manner, resulting in the final acceptance of 26 proteins enriched at least two-fold in the plaques of both AD cases (Table 1). However, the majority of previously identified plaque proteins are not in this list because some abundant proteins (e.g. actin and tubulin, Table S1) are present but not necessarily concentrated in the plaque, and some low abundance proteins (e.g. collagen XXV and antichymotrysin, Table S1) were detected only in one AD case maybe due to sensitivity limitation of the LC-MS/MS approach. Nevertheless, the list of 26 proteins that were identified and concentrated in the plaque regions in both AD cases are more likely to be genuine plaque proteins.

Classification of identified plaque proteins

To evaluate the proteins identified in the plaques from AD postmortem samples, we group them under functional categories in alphabetical order (Table 1 and Table S1) and discuss the implication of some enriched plaque proteins in AD pathogenesis.

Cell adhesion, cytoskeleton and membrane trafficking

A number of intercellular adhesion molecules have been shown to be localized in amyloid plaques in AD patients (40). We found that collagen I and fibrinogen were concentrated in the plaques. In addition to extracellular structures, integrity of the intracellular cytoskeleton is important for neuronal physiological functions such as axoplasmic flow of essential synaptic components (41). In our study, all major isoforms of cytoskeletal components, actin, tubulin and neurofilament, were identified with high numbers of peptides, which indicates that they are abundant species in the plaques as well as in non-plaque regions. Interestingly, we identified one actin binding proteins, coronin,
is concentrated in the plaque, although its potential role in pathogenesis remains unclear. Also enriched in plaques is a microtubule-associated protein tau that is more commonly known to be associated with neurofibrillary tangles and neurites (42), and likely represents dystrophic neurite component in the plaques. The identification of a variety of cytoskeletal protein elements, some of which are known to be relevant to AD, suggests that these elements may be involved in the plaque formation and cytoskeletal impairments may lead to deficit in axoplasmic flow and eventually to neuritic dystrophy. Indeed, numerous proteins involved in membrane trafficking and protein sorting were revealed to be concentrated in the plaques by the mass spectrometry analysis, such as clathrin heavy chain, dynamin and dynein heavy chain (Table 1). This observation implicates that the AD plaque might sequester some key proteins to perturb the protein sorting system that is crucial for maintaining normal synaptic plasticity.

Chaperones and inflammation

It is well known that the senile plaque core is surrounded by activated astrocytes, microglia and dystrophic neurites (43,44), and the heat shock proteins exhibit high expression levels in reactive astrocytes in areas rich in senile plaques (45). Consistently, we identified many heat shock proteins (Table S1) and found that HSP90 was enriched in the plaques (Table 1). We also identified glial fibrillary acidic protein (GFAP) and vimentin with high numbers of peptides; both are the major components of intermediate filaments in activated glial cells.

Kinase/phosphatase and regulators

The imbalance of phosphorylation/dephosphorylation activity is believed to contribute to AD pathology, as evidenced by tau hyperphosphorylation in the neurofibrillary tangles.
We identified multiple kinases (Table S1) but none of them were specifically enriched in the plaque regions. Instead, three 14-3-3 isoforms showed a significant degree of enrichment in the isolated plaques. Previous studies have demonstrated that 14-3-3 proteins are present in neurofibrillary tangles (46), and at least one 14-3-3 protein has further been shown to be an effector of tau phosphorylation (47). Moreover, we attempted to detect protein phosphorylation sites in the plaque samples by tandem mass spectrometry and located two phosphorylated amino acid residues in neurofilament 3 (SPVPKSPVEEK and KAESPVKEEAVAVVTITK with modified sites shown bolded and italicized). The first phosphorylation site was documented in tandem repeats in the neurofilament sequence and was excessively modified in the AD brain (48). The second peptide indicated a phosphorylation site on serine 736 that we show for the first time. These phosphorylation events may play a role in the formation of dystrophic neurites surrounding the plaque core.

Proteolysis

The ubiquitin-proteasome system plays a crucial role in the degradation of misfolded proteins and turnover of cell signaling molecules (49). This study identified ubiquitin-activating enzyme E1 enriched in the plaques. More strikingly, numerous subunits of lysosomal ATPase and cathepsin D were found to be concentrated in the plaques, suggesting the high proteolytic activity in the plaques versus non-plaque regions. Moreover, we found in the plaques antitrypsin, cystatin B and cystatin C. Cystain C is a cysteine proteinase inhibitor and has been shown to be upregulated in AD and co-aggregated with Aβ (50,51). Cystain C is also proposed as a potential risk factor for late-onset AD (52). Overall, the relative abundance of proteolytic enzymes and inhibitors in
multiple cellular proteolytic pathways strongly suggests the activation of protein
degradation mechanisms and the interplay between proteolysis and inhibition activities
during the plaque formation.

Validation of selected plaque components

To further verify the localization of some of the proteins identified, we undertook
immunostaining analysis on postmortem brain tissues for their colocalization with Aβ. In
figure 4A, monoclonal antibody against vimentin specifically labeled activated astrocytes
surrounding the fibrillary plaque core that was recognized by Aβ antibody; and some
astrocyte processes were extended deeply into the plaque core, indicating a local
inflammatory response in the plaque region (53,54). Polyclonal antibodies against the
Hsp70 and Hsp90 complex show strong immunoreactive signal in dot-like structure
located in the plaque regions (Figure 4B), consistent with our proteomic analysis. More
strikingly, dynein heavy chain was detected as punctate and thread-like structures in
many plaques labeled by Aβ antibody (Figure 4C), suggesting that dynein heavy chain is
a constituent of plaque neurites. Confocal microscopic images clearly indicated that
dynein heavy chain was enriched in the plaque, compared with the surrounding neuropil
(Figure 4D).

The colocalization of dynein with amyloid plaque was corroborated in an AD
model, PS1/APP double transgenic mice (36,37). As expected, no plaque was visualized
in 9-month-old control animals and dynein heavy chain antibodies labeled the soma and
neurites in the cortex and hippocampus (Figure 4E). In great contrast, the similar brain
regions in 9-month-old AD mice manifested high density of amyloid plaques, the
majority of which are clearly surrounded by dynein immunoreactive structures that may
Proteomic characterization of amyloid plaques represent enlarged neurites (Figure 4F). Recently, missense mutations in dynein heavy chain have been genetically linked to progressive motor neuron degeneration and the formation of Lewy body-like inclusions (55). It has also been observed previously that dynein immunoreactivity in AD brain tissue is significantly increased compared with normal brain (56). Given that dynein is responsible for retrograde transport of vesicles along microtubules in the axon (57), the enrichment of dynein encircling the plaque core might trigger trafficking malfunction to cause neuritic dystrophy.

Discussion

Our studies revealed a total of 488 proteins in amyloid plaques, representing three histopathological components: the plaque core, activated glial cells, and dystrophic neurites. Identified intracellular proteins are likely derived from neurites and/or glial cells surrounding the plaque core, while extracellular proteins may be components of the plaque core. It is also possible that some intracellular proteins can leak out after plasma membrane damage during neuronal degeneration. By quantitative mass spectrometry, we further identified 26 proteins enriched in the plaques when comparing with the non-plaque control sample from the same AD case. This comparison is particularly valuable because both samples were derived from the same postmortem tissue specimen, which essentially eliminates the effects of many confounding factors (e.g. genetic variation, postmortem interval, etc.) that are often encountered in human tissue studies.

Our results confirmed the presence of most proteins that were previously detected in the plaques mainly by immunohistochemistry (40). The classic plaque components identified in this study include Aβ, α1-antichymotrypsin (58), apolipoprotein E (59),
collagen type XXV (60), cystatin C (61), α-synuclein (62), proteoglycans (63), and clusterin (64). On the other hand, only a few proteins known to be amyloid plaque components were missed in this study. Those included complement inhibitors (40), myeloperoxidase (5), α2-macroglobin (65), SOD (66), HO-1 (67), catalase (68), and cholinesterase (69). The apparent absence of these proteins in the plaques in our study could be due to the low abundance of the proteins, and/or incompatibility of tryptic peptides with the LC-MS/MS system (12). Our results from two independent studies of AD cases revealed that about two-thirds of the proteins were identified in both cases. The difference between the two datasets may be contributed by the sample variation in the patients and the nature of shotgun proteomics strategy, as only a fraction of peptides was selected and sequenced by mass spectrometry when a complex peptide mixture was analyzed by the LC-MS/MS approach (29).

Immunohistochemistry was employed as an independent approach to confirm the proteomic findings. Eight proteins (in Table 1 and Table S1) were selected largely based on antibodies availability. Most of them are concentrated with various degrees in the plaque regions, as exemplified by vimentin, Hsp 70/90 complex, dynein (Figure 4), α-synuclein, GFAP, and synaptophysin (data not shown). Other proteins like actin and tubulin display a broad distribution but not specifically concentrated in the plaques (data not shown), although actin and tubulin are believed to be plaque components. Therefore, the list of 26 proteins according to quantitative analysis should contain much less false plaque constituents.

Aβ is widely accepted as the major component of amyloid plaque core, consistently, our mass spectrometry analysis identified Aβ in both plaque and non-plaque
control but showed it to be enriched about 80 fold in the plaques. No other proteins were found to be accrued at the similar level, suggesting that Aβ is the sole major protein species in the plaque core. Although Aβ aggregates are resistant to extraction by many reagents except for 70% formic acid (7), in order to extract other co-aggregated proteins of interest, we chose 2% SDS among several tested extraction conditions since this buffer led to the best yield of total proteins. As is well known, SDS dissolves Aβ fibrils poorly (7), and accordingly, we identified only weak Aβ immunoreactivity in the SDS solubilized plaque sample but not in the non-plaque control by Western blotting (data not shown). However, the small amount of Aβ warranted strong signals in the LC-MS/MS analysis, which strongly suggest that many other major protein aggregates in the plaques can hardly elude the detection.

One major concern with this type of analysis is the purity of the plaque sample, since LC-MS/MS can detect protein species with high sensitivity. We used the LCM approach for the isolation of amyloid plaques from postmortem tissues stained by thioflavin-S. This dye preferentially labels proteins with β-sheet structure that are highly enriched in senile plaques. Under the fluorescence microscope, it is easy to distinguish senile plaques from the surrounding neuropil and from other labeled structures such as neurofibrillary tangles and amyloid deposits in blood vessels (amyloid angiopathy); and subsequent physical capture of the observed plaques individually renders highly pure preparations. Since senile plaques themselves are heterogeneous structures that may vary in their protein composition, one important question is whether the proteins identified are present in all senile plaques, or whether the diversity is contributed by heterogeneous senile plaques.
Among the two phosphorylated peptides identified in neurofilament 3 (medium chain), one peptide displays the repeated KSPV motif that is homologous to neurofilament heavy chain and tau (70). Hyperphosphorylation of neurofilament as well as tau may lead to abnormal microtubule network assembly and disruption of vesicle transport (71,72), potentially resulting in neuritic degeneration around the pathological plaque structure. We failed to find with confidence phospho-peptides derived from other proteins such as tau, because in LC-MS/MS analysis, only peptides with strong signals were selected for sequencing; thus, the majority of peptides generated from a complex mixture were missed by the mass spectrometer. To gain a more complete view of the phosphorylation events in the plaques, specific enrichment of the modified forms of proteins/peptides will be required.

The combination of laser capture microdissection with LC-MS/MS provides a general method integrating a cellular staining approach with biochemical protein analysis, which permits the direct sequencing of proteins present in a specific microscopic region with high sensitivity, as evidenced by the identification of several hundreds of proteins from less than five micrograms of total plaque proteins. By applying different staining methods that specifically label other types of plaques such as diffuse and primitive plaques, this methodology can be further extended to determine proteins involved in early stages of aggregation, and possibly illustrate the molecular events that initiate the plaque formation. This approach can also be applied to study plaque evolution in transgenic mouse model. Furthermore, it is possible to use this technology for the analysis of other pathological structures such as Lewy bodies in Parkinson disease, protein inclusions in Huntington’s disease, or ubiquitin-positive inclusions in
Proteomic characterization of amyloid plaques

frontotemporal dementia. On the other hand, the LC-MS/MS approach itself has been used as a primary tool to allow highly sensitive protein identification, and to provide protein quantification information by integrating the extracted ion current of eluted peptides. More accurate quantification of proteins could be achieved by applying stable isotope labeling-based techniques such as isotope-coded affinity tags (ICAT) strategy (73).

To our knowledge, this is the first large scale analysis of proteins from AD amyloid plaques. The results of this study demonstrate that the protein molecules in amyloid plaques are highly complex and diverse, implicating the involvement of many cellular pathways in disease development. The plaque subproteome identified in our study will be instructive for subsequent hypothesis-driven experiments on disease biomarker identification and molecular genesis of Alzheimer’s disease.

Acknowledgements

The authors thank Dr. Michael Iuvone and James Wessel for their help in LCM. We also thank Dr. Steven Gygi, Carson Thoreen and Rob Duarte for their help in computational analysis, Stephanie Carter for maintaining animal, Sara Dodson for making mouse brain sections. In addition, we are grateful to Drs. Victor Faundez, John Wood, and Deanna Smith for providing antibodies.

References

1. Hardy, J., and Selkoe, D. J. (2002) Science 297, 353-356
2. Lee, V. M., Goedert, M., and Trojanowski, J. Q. (2001) Annu Rev Neurosci 24, 1121-1159
3. Blass, J. P. (2001) J Neurosci Res 66, 851-856
4. Nunomura, A., Perry, G., Aliev, G., Hirai, K., Takeda, A., Balraj, E. K., Jones, P. K., Ghanbari, H., Wataya, T., Shimohama, S., Chiba, S., Atwood, C. S., Petersen, R. B., and Smith, M. A. (2001) *J Neuropathol Exp Neurol* **60**, 759-767

5. Akiyama, H., Barger, S., Barnum, S., Bradt, B., Bauer, J., Cole, G. M., Cooper, N. R., Eikelenboom, P., Emmerling, M., Fiebich, B. L., Finch, C. E., Frautschy, S., Griffin, W. S., Hampel, H., Hull, M., Landreth, G., Lue, L., Mrak, R., Mackenzie, I. R., McGeer, P. L., O’Banion, M. K., Pachter, J., Pasinetti, G., Plata-Salaman, C., Rogers, J., Rydel, R., Shen, Y., Streit, W., Strohmeyer, R., Tooyoma, I., Van Muiswinkel, F. L., Veerhuis, R., Walker, D., Webster, S., Wegrzyniak, B., Wenk, G., and Wyss-Coray, T. (2000) *Neurobiol Aging* **21**, 383-421

6. Glenner, G. G., and Wong, C. W. (1984) *Biochem Biophys Res Commun* **120**, 885-890

7. Masters, C. L., Simms, G., Weinman, N. A., Multhaup, G., McDonald, B. L., and Beyreuther, K. (1985) *Proc Natl Acad Sci U S A* **82**, 4245-4249

8. Terry, R. D., Gonatas, N. K., and Weiss, M. (1964) *Am J Pathol* **44**, 269-297

9. Butterfield, D. A., Boyd-Kimball, D., and Castegna, A. (2003) *J Neurochem* **86**, 1313-1327

10. Tsuji, T., Shiozaki, A., Kohno, R., Yoshizato, K., and Shimohama, S. (2002) *Neurochem Res* **27**, 1245-1253

11. Schonberger, S. J., Edgar, P. F., Kydd, R., Faull, R. L., and Cooper, G. J. (2001) *Proteomics* **1**, 1519-1528

12. Aebersold, R., and Mann, M. (2003) *Nature* **422**, 198-207

13. Washburn, M. P., Wolters, D., and Yates, J. R., 3rd. (2001) *Nat Biotechnol* **19**, 242-247

14. Andersen, J. S., Lyon, C. E., Fox, A. H., Leung, A. K., Lam, Y. W., Steen, H., Mann, M., and Lamond, A. I. (2002) *Curr Biol* **12**, 1-11

15. Andersen, J. S., Wilkinson, C. J., Mayor, T., Mortensen, P., Nigg, E. A., and Mann, M. (2003) *Nature* **426**, 570-574

16. Schirmer, E. C., Florens, L., Guan, T., Yates, J. R., 3rd, and Gerace, L. (2003) *Science* **301**, 1380-1382

17. Mootha, V. K., Bunkenborg, J., Olsen, J. V., Hjerrild, M., Wisniewski, J. R., Stahl, E., Bolouri, M. S., Ray, H. N., Sihag, S., Kamal, M., Patterson, N., Lander, E. S., and Mann, M. (2003) *Cell* **115**, 629-640

18. Peng, J., Kim, M. J., Cheng, D., Duong, D. M., Gygi, S. P., and Sheng, M. (2004) *J Biol Chem* **279**, 21003-21011

19. Blagoev, B., Kratchmarova, I., Ong, S. E., Nielsen, M., Foster, L. J., and Mann, M. (2003) *Nat Biotechnol* **21**, 315-318

20. Shio, Y., Donohoe, S., Yi, E. C., Goodlett, D. R., Aebersold, R., and Eisenman, R. N. (2002) *EMBO J* **21**, 5088-5096

21. Mann, M., and Jensen, O. N. (2003) *Nat Biotechnol* **21**, 255-261

22. Peng, J., Schwartz, D., Elias, J. E., Thoreen, C. C., Cheng, D., Marsischky, G., Roelofs, J., Finley, D., and Gygi, S. P. (2003) *Nat Biotechnol* **21**, 921-926

23. Simone, N. L., Bonner, R. F., Gillespie, J. W., Emmert-Buck, M. R., and Liotta, L. A. (1998) *Trends Genet* **14**, 272-276
24. Zhou, G., Li, H., DeCamp, D., Chen, S., Shu, H., Gong, Y., Flaig, M., Gillespie, J. W., Hu, N., Taylor, P. R., Emmert-Buck, M. R., Liotta, L. A., Petricoin, E. F., 3rd, and Zhao, Y. (2002) *Mol Cell Proteomics* **1**, 117-124
25. Jones, M. B., Krutzsch, H., Shu, H., Zhao, Y., Liotta, L. A., Kohn, E. C., and Petricoin, E. F., 3rd. (2002) *Proteomics* **2**, 76-84
26. Mirra, S. S., Heyman, A., McKeel, D., Sumi, S. M., Crain, B. J., Brownlee, L. M., Vogel, F. S., Hughes, J. P., van Belle, G., and Berg, L. (1991) *Neurology* **41**, 479-486
27. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R., Weiss, R. A., and Liotta, L. A. (1996) *Science* **274**, 998-1001
28. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996) *Anal. Chem.* **68**, 850-858
29. Peng, J., and Gygi, S. P. (2001) *J. Mass Spectrom.* **36**, 1083-1091.
30. Eng, J., McCormack, A. L., and Yates, J. R., 3rd. (1994) *J. Am. Soc. Mass Spectrom.* **5**, 976-989
31. Link, A. J., Eng, J., Schieltz, D. M., Carmack, E., Mize, G. J., Morris, D. R., Garvik, B. M., and Yates, J. R., 3rd. (1999) *Nat Biotechnol* **17**, 676-682.
32. Peng, J., Elias, J. E., Thoreen, C. C., Licklider, L. J., and Gygi, S. P. (2003) *J. Proteome Res.* **2**, 43-50
33. Rappsilber, J., and Mann, M. (2002) *Trends Biochem Sci* **27**, 74-78
34. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T. A., Hill, L. R., Norton, S., Kumar, P., Anderle, M., and Becker, C. H. (2003) *Anal Chem* **75**, 4818-4826
35. Chelius, D., Zhang, T., Wang, G., and Shen, R. F. (2003) *Anal Chem* **75**, 6658-6665
36. Borchelt, D. R., Ratovitski, T., van Lare, J., Lee, M. K., Gonzales, V., Jenkins, N. A., Copeland, N. G., Price, D. L., and Sisodia, S. S. (1997) *Neuron* **19**, 939-945
37. Wong, P. C., Cai, H., Borchelt, D. R., and Price, D. L. (2002) *Nat Neurosci* **5**, 633-639
38. Sanders, S. L., Jennings, J., Canutescu, A., Link, A. J., and Weil, P. A. (2002) *Mol Cell Biol* **22**, 4723-4738
39. Rappsilber, J., Ryder, U., Lamond, A. I., and Mann, M. (2002) *Genome Res* **12**, 1231-1245
40. Atwood, C. S., Martins, R. N., Smith, M. A., and Perry, G. (2002) *Peptides* **23**, 1343-1350
41. Terry, R. D. (1998) *J Neural Transm Suppl* **53**, 141-145
42. Kinoshita, A., Kinoshita, M., Akiyama, H., Tomimoto, H., Akiguchi, I., Kumar, S., Noda, M., and Kimura, J. (1998) *Am J Pathol* **153**, 1551-1560
43. Mandybur, T. I., and Chuirazzi, C. C. (1990) *Neurology* **40**, 635-639
44. Meda, L., Baron, P., and Scarlato, G. (2001) *Neurobiol Aging* **22**, 885-893
45. Renkawek, K., Bosman, G. J., and Gaestel, M. (1993) *Neuroreport* **5**, 14-16
46. Layfield, R., Fergusson, J., Aitken, J., Lowe, J., Landon, M., and Mayer, R. J. (1996) *Neurosci Lett* **209**, 57-60
47. Hashiguchi, M., Sobue, K., and Paudel, H. K. (2000) *J Biol Chem* **275**, 25247-25254
48. Hu, Y. Y., He, S. S., Wang, X. C., Duan, Q. H., Khatooon, S., Iqbal, K., Grundke-Iqbal, I., and Wang, J. Z. (2002) *Neurosci Lett* **320**, 156-160
49. Forloni, G., Terreni, L., Bertani, I., Fogliarino, S., Invernizzi, R., Assini, A., Ribizzi, G., Negro, A., Calabrese, E., Volonte, M. A., Mariani, C., Franceschi, M., Tabaton, M., and Bertoli, A. (2002) *Neurobiol Aging* 23, 957-976

50. Levy, E., Sastre, M., Kumar, A., Gallo, G., Piccardo, P., Ghetti, B., and Tagliavini, F. (2001) *J Neuropathol Exp Neurol* 60, 94-104

51. Deng, A., Irizarry, M. C., Nitsch, R. M., Growdon, J. H., and Rebeck, G. W. (2001) *Neurology* 55, 763-768

52. Crawford, F. C., Freeman, M. J., Schinka, J. A., Abdullah, L. I., Gold, M., Hartman, R., Krivian, K., Morris, M. D., Richards, D., Duara, R., Anand, R., and Mullan, M. J. (2000) *Neurology* 55, 789-794

53. Combs, C. K., Johnson, D. E., Karlo, J. C., Cannady, S. B., and Landreth, G. E. (2000) *Neurology* 55, 763-768

54. Breitner, J. C. (1996) *Neurobiol Aging* 17, 789-794

55. Hafezparast, M., Klocke, R., Ruhrberg, C., Marquardt, A., Ahmad-Annuar, A., Bowen, S., Lalli, G., Witherden, A. S., Hummerich, H., Nicholson, S., Morgan, P. J., Oozageer, R., Priestley, J. V., Averill, S., King, V. R., Ball, S., Peters, J., Toda, T., Yamamoto, A., Hiraoka, Y., Augustin, M., Korthaus, D., Wattler, S., Wabnitz, P., Dickneite, C., Lampel, S., Boehme, F., Peraus, G., Popp, A., Rudelius, M., Schlegel, J., Fuchs, H., Hrabe de Angelis, M., Schiavo, G., Shima, D. T., Russ, A. P., Stumm, G., Martin, J. E., and Fisher, E. M. (2003) *Science* 300, 808-812

56. Kopec, K., and Chambers, J. P. (1997) *Proc Soc Exp Biol Med* 216, 429-437

57. Ahmad, F. J., Echeverri, C. J., Vallee, R. B., and Baas, P. W. (1998) *J Cell Biol* 140, 391-401

58. Abraham, C. R., Selkoe, D. J., and Potter, H. (1988) *Cell* 52, 487-501

59. Namba, Y., Tomonaga, M., Kawasaki, H., Otomo, E., and Ikeda, K. (1991) *Brain Res* 541, 163-166

60. Hashimoto, T., Wakabayashi, T., Watanabe, A., Kowa, H., Hosoda, R., Nakamura, A., Kanazawa, I., Arai, T., Takio, K., Mann, D. M., and Iwatsubo, T. (2002) *EMBO J* 21, 1524-1534

61. Vinters, H. V., Nishimura, G. S., Secor, D. L., and Pardridge, W. M. (1990) *Am J Pathol* 137, 233-240

62. Masliah, E., Iwai, A., Mallory, M., Ueda, K., and Saitoh, T. (1996) *Am J Pathol* 148, 201-210

63. Snow, A. D., Mar, H., Nochlin, D., Kimata, K., Kato, M., Suzuki, S., Hassell, J., and Wight, T. N. (1988) *Am J Pathol* 133, 456-463

64. May, P. C., Lampert-Etchells, M., Johnson, S. A., Poirier, J., Masters, J. N., and Finch, C. E. (1990) *Neuron* 5, 831-839

65. Narita, M., Holtzman, D. M., Schwartz, A. L., and Bu, G. (1997) *J Neurochem* 69, 1904-1911

66. Furuta, A., Price, D. L., Pardo, C. A., Troncoso, J. C., Xu, Z. S., Taniguchi, N., and Martin, L. J. (1995) *Am J Pathol* 146, 357-367

67. Smith, M. A., Kutty, R. K., Richey, P. L., Yan, S. D., Stern, D., Chader, G. J., Wiggert, B., Petersen, R. B., and Perry, G. (1994) *Am J Pathol* 145, 42-47

68. Pappolla, M. A., Omar, R. A., Kim, K. S., and Robakis, N. K. (1992) *Am J Pathol* 140, 621-628
Figure Legends

Figure 1. Isolation of amyloid plaques by laser capture microdissection. (A) The “before” and “after” images indicate the removal of a plaque region from a thioflavin-S-stained AD brain section. The isolated plaque was attached to the cap as shown. Moreover, the surrounding non-plaque regions were also captured as control on a different cap. (B) Protein in the captured plaques (p) and non-plaque control (c) were extracted by a SDS-containing lysis buffer. A small fraction (~5%) of each sample and molecular weight marker (m) were run on a SDS gel followed by silver-staining as indicated. The remaining samples (~95%, approximately 4 µg) were resolved on another SDS gel and stained with Coomassie blue G250 (data not shown). Each sample lane was cut into 15 pieces that were subjected to trypsin digestion and LC-MS/MS analysis. The gel excision pattern is shown on the right according to the marker.

Figure 2. Flow chart for the identification of proteins enriched in the plaque regions.

Proteins identified in the plaques and the controls are represented by solid-line circles and
dashed-line circles, respectively. The number of overlapped proteins in both plaque samples is indicated in the relevant areas. A total of 256 proteins found in both AD plaques were processed in two successive steps: (i) removing proteins that were found to be abundant in the non-plaque control and (ii) quantifying the remaining 168 proteins based on extracted ion current of corresponding peptides. Finally we found that 26 proteins were enriched at least two-fold in the plaque regions, of which several proteins were further verified by conventional immunohistochemistry.

Figure 3. Identification and quantification of Aβ by reverse-phase liquid chromatography-tandem mass spectrometry (LC-MS/MS). (A) A comparison of MS survey scans shows that a peptide ion with \(m/z \) 663.8 is much more abundant in the plaques (lower panel) than in the non-plaque control (upper panel). A partial region (620-700 amu) is shown for simplicity, although the entire scan range is from 400 to 1700 amu. (B) MS/MS scan of the precursor ion 663.8 \(m/z \), which led to the identification of a tryptic peptide derived from Aβ. Gaps between the adjacent product ions fit the mass of amino acid residues as indicated. (C) The elution profile of the Aβ tryptic peptide (\(m/z \) 663.4-666.4 due to naturally occurring isotopic distribution) from the non-plaque control and the plaque sample after normalizing the elution time. The peptide was quantified based on the extract ion current. In fact, the data acquired in LC-MS/MS are three-dimensional (ion current indicated by the relative abundance, retention time of LC, and the \(m/z \) measurement every ~2 seconds during the entire LC). Panel A was a snapshot of \(m/z \) measurement at retention time point of 65-minute in Panel C.
Figure 4. Images of double-labeling immunofluorescence confocal microscopy. Sections of human postmortem AD neocortex were stained with Aβ antibody (either polyclonal anti-Aβ40, A and B, or monoclonal 4G8, C and D, green) and antibodies against vimentin (A, red), Hsp70/90 complex (B, red), or dynein heavy chain (C and D, red). Four serial confocal slices through a plaque region are shown in panel D at 1 µm optical slice thickness and 4 µm intervals between slices. Brain sections containing cortex and hippocampus from non-transgenic (E) and PS1/APP double transgenic mice (F) at an age of 9 months were labeled with monoclonal Aβ antibody 4G8 (green) and dynein heavy chain (red). Scale bar, A, B, D and the insert in F, 50 µm; C, E and F, 100 µm.
case 1, non-plaque control, 327 proteins

case 1, plaque, 331 proteins
case 2, non-plaque control, 384 proteins

case 2, plaque, 413 proteins

188
21
17
30

Take proteins identified in plaques from both cases

256 proteins detected in both plaques

Remove proteins abundant in the non-plaque controls

168 candidate proteins

Determine the enrichment of plaque proteins based on quantitative mass spectrometry

26 proteins enriched in plaques

Immunohistochemistry

Validation of selected proteins in amyloid plaques
A. 100% = 5.38E5
 non-plaque control
 663.8
 plaque sample

B. 100%
 Identification of an Aβ tryptic peptide:
 LVFFAEDVGSNK

C. 100% = 7.96E5
 non-plaque control
 Aβ tryptic peptide
 663.8
 plaque sample
 Aβ tryptic peptide
 The elution profile based on extracted ion current (m/z 663.4-666.4)
Table 1. The list of twenty-six proteins enriched in amyloid plaques as compared with non-plaque areas

Protein Name	Accession No.	AD Case 1	AD Case 2	AD Case 1	AD Case 2	Plaque	P/C	Plaque	P/C
		Ctl	Plaque	Ctl	Plaque				
cell adhesion									
collagen I, alpha-1 polypeptide	NP_000079.1	0	2	3.6	0	1	>2		
fibrinogen, gamma	NP_000500.1	0	3	>2	0	2	>2		
channels/receptors									
ATPase, Ca++ transporting	NP_001674.1	1	3	2.1	0	2	>2		
chaperones									
heat shock 90kDa protein 1, beta	NP_031381.2	7	9	2.1	11	14	2.0		
cytoskeleton									
coronin, actin binding protein	NP_009005.1	0	1	>2	0	1	>2		
tau	NP_058519.1	1	3	6.8	2	4	3.2		
inflammation									
glial fibrillary acidic protein (GFAP)	NP_002046.1	16	21	3.6	20	24	2.1		
vimentin	NP_003371.1	4	12	9	11	15	2.3		
kinases/phosphatases and regulators									
14-3-3 beta/alpha	NP_003395.1	2	4	3.1	5	8	3.5		
14-3-3 epsilon	NP_006752.1	2	5	6.1	7	9	4.4		
14-3-3 zeta	NP_003397.1	4	6	7.7	5	10	7.4		
membrane trafficking									
clathrin, heavy polypeptide 1	NP_001826.1	0	1	>2	0	5	2.7		
dynamin 1	NP_004399.1	5	6	2.3	18	23	2.2		
dynein, heavy polypeptide 1	NP_001367.2	0	1	4.8	0	1	>2		
metabolism									
phosphofructokinase	NP_002618.1	0	2	3.9	3	7	2.5		
others									
amyloid beta-peptide	NP_000475.1	1	1	80.0	0	1	>2		
proteolysis									
antitrypsin	NP_000286.2	0	3	>2	1	2	2.5		
ATPase, H+ transporting, lysosomal V0 subunit A	NP_005168.2	0	1	>2	1	3	2.4		
ATPase, H+ transporting, lysosomal V1 subunit B	NP_001684.2	0	4	2.1	4	8	3.0		
ATPase, H+ transporting, lysosomal V1 subunit D	NP_057078.1	0	1	>2	1	3	2.6		
ATPase, H+ transporting, lysosomal V1 subunit E	NP_001687.1	1	2	5.0	4	5	8.3		
cathepsin D	NP_001900.1	0	1	>2	0	3	>2		
cystatin B	NP_000091.1	1	2	2.9	0	1	>2		
cystatin C	NP_000090.1	0	1	>2	0	1	>2		
ubiquitin-activating enzyme E1	NP_695012.1	0	1	7.1	3	4	2.0		
vacuolar ATPase subunit H	NP_057025.1	0	1	>2	1	3	2.1		

The proteins and functional categories were sorted in the alphabetic order.
Ctl: the number of different peptides that identify a protein in the control samples of non-plaque regions
Plaque: the number of peptides that identify a protein in the plaque samples
P/C: the abundance ratio of proteins from the plaque samples versus non-plaque regions
When a peptide in the non-plaque control was not detected, we assumed the ratio was more than 2. Sometimes, even if a peptide ion was not sequenced by MS/MS, it was still possible to identify it in MS survey scan to enable quantification (see Methods).
Table S1. The list of 488 proteins identified in isolated amyloid plaque samples from two AD cases

Protein Name	Accession No.	Case 1	Case 2	Cal. MW	App. MW	
annexin I	NP_000691.1	0	0	1	39	30-35
annexin II	NP_004303.0	0	1	3	39	35-45
annexin V	NP_001145.1	0	0	1	36	30-35
annexin VI	NP_001146.1	0	0	1	76	55-60
catenin, alpha	NP_004380.1	0	1	0	105	80-120
catenin, gamma	NP_002221.1	0	0	0	82	60-80
chondroitin sulfate proteoglycan 2						
collagen II	NP_005593.2	1	1	1	139	120-160
collagen I	NP_000079.1	0	2	0	139	120-160
collagen XXV	NP_115907.1	0	1	0	129	120-160
connexin 43	NP_000156.1	0	0	0	15	<15
desmin	NP_004380.1	0	1	1	156	55-60
fibrinogen, beta	NP_005132.1	0	1	1	56	55-60
fibrinogen, gamma	NP_000500.1	0	3	0	49	45-50
hyaluronan and proteoglycan link protein 2						
lecitin, galactose-binding	NP_002296.1	0	1	0	15	<15
neural cell adhesion molecule 1	NP_000606.1	7	6	4	93	80-120
neural cell adhesion molecule 2	NP_004531.2	0	0	1	93	60-80
reticulin 1	NP_006595.1	0	2	1	84	60-80
reticulin 3	NP_006605.1	0	1	1	26	25-30
reticulin 4	NP_005393.1	0	1	2	130	50-55
TNF 1 receptor associated protein	NP_000276.2	0	1	2	150	160-220
cell death						
cell death-regulatory protein GRIM-19	NP_057049.3	3	2	0	28	15-20
neuron membrane protein 35	NP_036438.2	0	0	1	35	20-25
prohibitin	NP_002625.1	2	1	1	30	25-30
reticulin 1	NP_066595.1	0	2	1	84	60-80
reticulin 3	NP_006605.1	0	1	1	26	25-30
reticulin 4	NP_005393.1	0	1	2	130	50-55
TNF 1 receptor associated protein	NP_000276.2	0	1	2	150	160-220
channels/receptors						
aquaporin 1	NP_000376.1	0	1	0	29	20-25
aquaporin 4	NP_004019.1	0	1	0	32	30-35
ATPase, Ca++ transporting, plasma membrane 2 (also 1, 3, 4)	NP_001674.1	1	3	0	133	120-160
ATPase, H+/K+ exchanging, alpha polypeptide	NP_000695.1	2	2	3	114	80-120
ATPase, Na+/K+ transporting, alpha 1 polypeptide	NP_000692.2	9	11	14	113	80-120
ATPase, Na+/K+ transporting, alpha 2 polypeptide	NP_000693.1	6	9	10	112	80-120
ATPase, Na+/K+ transporting, alpha 3 polypeptide	NP_089509.1	9	12	12	112	80-120
ATPase, Na+/K+ transporting, beta 1 polypeptide	NP_001668.1	6	5	5	35	35-45
ATPase, Na+/K+ transporting, beta 2 polypeptide	NP_001669.1	2	1	3	33	35-45
FXYD domain-containing ion transport regulator 1	NP_005222.2	0	1	0	10	<15
FXYD domain-containing ion transport regulator 6	NP_071286.1	1	0	1	11	<15
MLC1 gene, a potential integral membrane transporter	NP_631941.1	0	0	1	41	30-35
progesterone receptor membrane component 1	NP_006658.1	1	1	0	22	20-25
voltage-dependent anion channel 1	NP_003865.1	5	4	6	9	31
voltage-dependent anion channel 2	NP_003865.1	2	3	3	5	32
voltage-dependent anion channel 3	NP_005653.3	2	3	3	3	31
chaperones						
calnexin	NP_001737.1	2	0	4	68	60-80
calpainin containing TCP1, subunit 4 (delta)	NP_006421.1	0	0	1	58	30-35
crystallin, alpha B; heat-shock 20 kD like-protein						
crystallin, mu; NADP-regulated thyroid-hormone binding protein	NP_001767.1	1	4	5	34	30-35
heat shock 10kDa protein 1 (chaperonin 10)	NP_002148.1	4	0	11	43	65-70
heat shock 27kDa protein 1	NP_001531.1	1	2	3	23	20-25
heat shock 60kDa protein 1 (chaperonin)	NP_002147.2	2	0	3	61	55-60
heat shock 70kDa protein 12B	NP_432022.3	0	0	2	76	60-80
heat shock 70kDa protein 1A (also 1B)	NP_005336.2	4	2	6	92	60-80
heat shock 70kDa protein 1-1	NP_005156.2	3	2	6	70	60-80
heat shock 70kDa protein 2	NP_068814.2	7	3	10	70	60-80
heat shock 70kDa protein 5	NP_005338.1	3	2	10	70	60-80
heat shock 70kDa protein 8 isofrom 1 (also isofrom 2)	NP_006588.1	12	6	13	71	60-80
Protein Name	Accession	Start	End	Length	Function/Type	
---	-----------	-------	-----	--------	----------------	
Heat shock 70kDa protein 9	NP_004125.3	0	7	8	60-80	
Heat shock 90kDa protein 1, alpha	NP_005339.1	12	11	17	85-120	
Heat shock 90kDa protein 1, beta	NP_001381.1	7	9	14	83-120	
Heat shock 90kDa protein 2	NP_001100.1	7	9	14	83-120	
Cytoskeleton						
Actin, alpha 1 (also alpha 2)	NP_001091.1	9	14	5	35-45	
Actin, beta	NP_001092.1	16	15	11	42-50	
Actin, gamma	NP_001605.1	16	15	11	42-50	
Actin, alpha 1 (also alpha 2, 3, 4)	NP_001093.1	0	4	2	103-120	
Adducin 1 (alpha) isoform a (also isoform b, c, d)	NP_001110.2	1	2	1	81-120	
Ankyrin 2 isoform 1 (also isoform 2)	NP_001139.2	1	1	3	434-160	
ARP1 actin-related protein 1 homolog A	NP_005727.1	2	0	3	43-150	
ARP1 actin-related protein 1 homolog B	NP_005726.1	2	0	2	42-35	
ARP2/3 protein complex subunit 34	NP_005722.1	0	1	0	34-35	
CAP1, actin-interacting protein	NP_006358.1	1	1	2	33-35	
CAP2, actin-interacting protein	NP_006357.1	1	1	3	35-45	
Capping protein (actin filament) muscle Z-line, alpha 2	NP_006127.1	9	14	5	35-45	
Collin 1	NP_005498.1	5	2	4	19-20	
Contactin 1	NP_001834.2	1	1	2	113-120	
Copine	NP_052642.1	0	0	1	70-55-60	
Coronin, actin binding protein	NP_000905.1	0	1	1	51-55	
CRMP-2 (also1,3)	NP_001377.1	9	10	14	62-60	
Cytoskeleton-associated protein 1	NP_001272.1	0	1	2	27-35	
Destrin actin depolymerizing factor	NP_006861.1	1	1	3	19-15	
Erythrocyte membrane protein band 4.1-like 3	NP_036439.2	2	1	6	121-80	
Fascin 1; Singed, drosophila, homolog-like	NP_003079.1	0	0	1	55-45	
Filamin 1 (actin-binding protein-280)	NP_001447.1	0	7	0	281>220	
Fliotillin 1	NP_005794.1	0	0	1	47-35	
Gelsolin (amyloidosis, Finnish type)	NP_001608.1	1	3	12	86-120	
Gelsolin (amyloidosis, Finnish type)	NP_006193.1	0	0	1	30-25	
MAP 1B	NP_005900.1	3	0	6	271-160	
MAP PR/EB family, member 1	NP_006503.1	0	0	1	37-30	
MAP PR/EB family, member 2	NP_002365.2	3	1	2	199-160	
Neurofilament 3 (150kDa medium)	NP_005373.1	7	5	22	17-102	
Neurofilament 5 (66kDa)	NP_116116.1	3	3	10	55-50	
Neurofilament, heavy polypeptide 200kDa	NP_006554.2	0	0	3	112-120	
Neuronal protein, NP22	NP_003791.1	0	2	1	31-20	
Postsynaptic density protein 95	NP_001356.1	1	1	0	85-120	
Profilin 1	NP_005013.1	3	5	1	15-15	
Profilin 2	NP_002619.1	1	2	1	15-15	
Radixin	NP_002897.1	0	0	2	69-60	
Septin 6	NP_006503.1	0	1	1	49-45	
Septin D1	NP_006381.1	0	1	1	64-35	
Septin family member, Nedd5	NP_004395.1	0	1	3	41-35	
Septin family, cdc10	NP_001779.1	4	3	5	49-55	
Spectrin, alpha, non-erythrocytic 1	NP_003111.1	4	6	5	284>220	
Spectrin, beta, non-erythrocytic 1	NP_003119.1	6	7	11	275>220	
Tau isoform 1 (also isoform 2, 3, 4)	NP_005819.1	1	3	2	79-60	
Transgelin 2; SM22-alpha homolog	NP_003555.1	0	3	1	22-20	
Transgelin; SM22-alpha	NP_003117.1	0	11	0	22-20	
Tropomodulin 2 (neuronal)	NP_005363.1	0	0	2	40-35	
Tubulin, alpha 3 (also alpha 1, 2, 4, 6, 8)	NP_006000.2	17	16	17	50-45	
Tubulin, beta 2 (also beta 1, 4, 5)	NP_006079.1	20	19	26	27-50	
G-protein pathways						
ARF 1 (also 3, 4, 5)	NP_001649.1	2	0	2	21-20	
G protein alpha 12	NP_005615.1	0	1	0	60-35	
G protein alpha 13	NP_031379.1	1	1	1	44-35	
G protein alpha activating activity polypeptide O	NP_006532.1	0	1	1	44-35	
G protein, alpha inhibiting activity polypeptide 1	NP_006268.1	7	7	10	40-35	
G protein, alpha stimulating activity polypeptide 1	NP_002064.1	0	0	1	41-35	
G protein, alpha transducing activity polypeptide 1	NP_001381.1	7	9	11	83-120	
Proteomic characterization of amyloid plaques

Protein Name	Accession Number	Score	Expect	Forward Peptides	Reverse Peptides	Forward Coverage	Reverse Coverage
guanylate-binding protein 3: atlastin	NP_853629.1	0	0	0	0	2	2
RAB GDP dissociation inhibitor (GDI), alpha	NP_001484.1	3	3	9	15	62	45-50
RAB10	NP_057215.2	3	3	3	3	3	3
RAB14	NP_057406.1	1	1	2	2	22	20-25
RAB1A (also RAB1B)	NP_001485.1	3	3	4	4	23	20-25
RAB2	NP_002856.1	1	1	2	2	24	20-25
RAB3A	NP_002857.1	1	1	1	1	24	20-25
RAB35	NP_002858.2	2	2	2	2	25	20-25
RAB5	NP_005393.2	1	1	0	0	24	20-25
RAB6A	NP_005394.1	0	0	0	0	23	20-25
RAB8	NP_005395.1	0	0	0	0	23	20-25
RAB8b	NP_005396.1	0	0	0	0	23	20-25
RAB9	NP_005397.1	0	0	0	0	23	20-25
RAB10	NP_005398.1	0	0	0	0	23	20-25
Rac1 (also Rac2, 3)	NP_005399.1	0	0	0	0	23	20-25
Rho GDP dissociation inhibitor (GDI), alpha	NP_005400.1	0	0	0	0	23	20-25
SH3-domain GRB2-like 2 (also GRB-like 1)	NP_005401.1	1	1	1	1	24	20-25
B-cell associated protein	NP_005402.1	0	0	3	3	33	30-35
BM88 antigen	NP_005403.1	0	0	3	3	33	30-35
CD81 antigen	NP_005404.1	0	0	3	3	33	30-35
CD9 antigen; motility related protein; leukocyte antigen MIC3	NP_005405.1	0	0	3	3	33	30-35
complement component 1	NP_005406.1	0	0	3	3	33	30-35
complement component 3	NP_005407.1	0	0	3	3	33	30-35
FK506-binding protein 4	NP_005408.1	0	0	3	3	33	30-35
G5b protein, similar to lymphocyte antigen 6 complex	NP_005409.1	0	0	3	3	33	30-35
glial fibrillary acidic protein	NP_005410.1	0	0	3	3	33	30-35
glycogen synthase kinase 3 (GSK3) inhibitor p24	NP_005411.1	0	0	3	3	33	30-35
kinase/phosphatases and regulators							
14-3-3 epsilon	NP_005412.1	0	0	3	3	33	30-35
14-3-3 eta	NP_005413.1	0	0	3	3	33	30-35
14-3-3 gamma	NP_005414.1	0	0	3	3	33	30-35
14-3-3 protein beta/alpha	NP_005415.1	0	0	3	3	33	30-35
14-3-3 sigma	NP_005416.1	0	0	3	3	33	30-35
14-3-3 zeta	NP_005417.1	0	0	3	3	33	30-35
CaM kinase II delta isoform 1 (also isoform 2, 3)	NP_005418.1	0	0	3	3	33	30-35
CaM kinase II gamma isoform 1 (also isoform 2,3,4,5,6)	NP_005419.1	0	0	3	3	33	30-35
CaM kinase IIa	NP_005420.1	0	0	3	3	33	30-35
CaM kinase IIB isoform 1 (also isoform 2,3,4,5,6,7,8,9)	NP_005421.1	0	0	3	3	33	30-35
glycogen synthase kinase 3 (GSK3) inhibitor p24	NP_005422.1	0	0	3	3	33	30-35
MAP kinase 1; protein tyrosine kinase ERK2	NP_005423.1	0	0	3	3	33	30-35
MAP kinase 2	NP_005424.1	0	0	3	3	33	30-35
MAP kinase 3	NP_005425.1	0	0	3	3	33	30-35
MAP kinase 4	NP_005426.1	0	0	3	3	33	30-35
nucleoside diphosphate kinase	NP_005427.1	0	0	3	3	33	30-35
phosphatidylinositol-4-phosphate 5-kinase type II, beta	NP_005428.1	0	0	3	3	33	30-35
phosphatidylinositol-4-phosphate 5-kinase, type II, gamma	NP_005429.1	0	0	3	3	33	30-35
PKC	NP_005430.1	0	0	3	3	33	30-35
PKC and casein kinase substrate in neurons 1	NP_005431.1	0	0	3	3	33	30-35
PKC substrate, neurogranin	NP_005432.1	0	0	3	3	33	30-35
PKC substrate, phosphomyristin	NP_005433.1	0	0	3	3	33	30-35
protein kinase, cAMP-dependent, catalytic, alpha	NP_005434.1	0	0	3	3	33	30-35
Proteomic characterization of amyloid plaques - 4 -

protein kinase, cAMP-dependent, catalytic, beta
protein kinase, X-linked
protein phosphatase 1, catalytic subunit
protein phosphatase 1, regulatory subunit 7
protein phosphatase 2A, 55 kDa regulatory subunit
protein phosphatase 2A, 65 kDa regulatory subunit
protein phosphatase 2A, catalytic subunit 3 (formerly 2B), alpha
protein tyrosine phosphatase
membrane trafficking

adaptor-related protein complex 1, beta 1 subunit
adaptor-related protein complex 2, alpha 2 subunit
adaptor-related protein complex 2, beta 1 subunit
adaptor-related protein complex 2, mu 1 subunit
adaptor-related protein complex 2, sigma 1 subunit
amphiphysin II
amphiphysin isoform 1 (also isoform 2)
clathrin, heavy polypeptide-like 1
clathrin, heavy polypeptide-like 2
clathrin, light polypeptide isoform b
dynamin 1
dynamin 1-like protein isoform 1
dynamin 1-like protein isoform 2
dynein, heavy polypeptide 1
dynein, intermediate polypeptide 1
dynein, light chain 2

metabolism

2',3'-cyclic nucleotide 3' phosphodiesterase
aconitase 2
adenylate kinase 1
adenylate kinase 3 alpha like
adenylate kinase 5 isoform 1 (also isoform 2)
aldehyde dehydrogenase 6A1 precursor
aldolase A (also aldolase B)
alcohol dehydrogenase C (also aldolase B)
alpha glucosidase II alpha subunit
apollipoprotein E

Downloaded from http://www.jbc.org/ by guest on March 24, 2020
Protein Name	Accession	Log2 Fold	p-value	Benjamini-Hochberg	FPKM	Observed
Aspartate aminotransferase 1	NP_002070.1	2	1	5	46	35-45
Aspartate aminotransferase 2 precursor	NP_002071.1	1	4	5	47	35-45
Brain acetyl-CoA hydrolase	NP_009205.2	0	0	2	37	35-45
Brain creatine kinase	NP_001814.2	14	16	15	43	35-45
Brain glycogen phosphorylase; glycogen phosphorylase B	NP_002853.2	2	0	6	5	97
Carbonic anhydrase II	NP_000058.1	0	1	3	4	29
Carnobyl reductase (NADPH) 1 (also 3)	NP_001748.1	2	3	9	7	30-35
Cytosolic malate dehydrogenase	NP_005908.1	0	0	2	2	52
Dihydropipamide S-acetyltransferase	NP_001924.2	0	0	2	3	49
Dimethylarginine dimethylaminohydrolase	NP_001748.1	2	3	9	7	30-35
Enolase 1; tau-crystallin	NP_001419.1	6	7	8	8	47
Enolase 2 (also 3); neuron-specific enolase; enolase	NP_001965.1	3	3	6	8	47
Lactate dehydrogenase	NP_005557.1	2	0	7	6	37
Lactate dehydrogenase B	NP_002291.1	6	7	9	10	37
Phosphoglycerate dehydrogenase	NP_005557.1	2	0	7	6	37
Phosphoglycerate kinase 1	NP_000282.1	4	4	9	5	45
Phosphoglycerate kinase 2	NP_000282.1	4	4	9	5	45
Phosphoglycerate kinase 3	NP_005557.1	2	0	7	6	37
Phosphoglycerate kinase 1 (also 2)	NP_000282.1	4	4	9	5	45
Phosphoglycerate kinase 1 (also 2, muscle)	NP_000282.1	4	4	9	5	45
Phosphoglycerate kinase 3 (isoform 2)	NP_002626.1	1	3	4	4	40
Phosphoglycerate kinase 5	NP_002291.1	6	7	9	10	37
Phosphoglycerate kinase 5 (isoform 2)	NP_002626.1	1	3	4	4	40
Phosphoglycerate kinase 5 (isoform 2)	NP_002626.1	1	3	4	4	40
Phosphoglycerate kinase 5 (isoform 2)	NP_002626.1	1	3	4	4	40
Phosphoglycerate kinase 5 (isoform 2)	NP_002626.1	1	3	4	4	40
Phosphoglycerate kinase 5 (isoform 2)	NP_002626.1	1	3	4	4	40
Phosphoglycerate kinase 5 (isoform 2)	NP_002626.1	1	3	4	4	40

mitochondria

Protein Name	Accession	Log2 Fold	p-value	Benjamini-Hochberg	FPKM	Observed
ATP synthase, mitochondrial F0 complex, subunit b	NP_001679.2	3	3	4	6	29
ATP synthase, mitochondrial F0 complex, subunit alpha	NP_004037.1	11	12	14	13	60
ATP synthase, mitochondrial F0 complex, subunit b	NP_001677.2	16	16	17	21	57
ATP synthase, mitochondrial F0 complex, subunit d	NP_006347.1	3	2	2	3	18
ATP synthase, mitochondrial F0 complex, subunit delta	NP_001678.1	1	1	0	0	17
ATP synthase, mitochondrial F0 complex, subunit e	NP_009031.1	1	2	0	0	8
ATP synthase, mitochondrial F0 complex, subunit f	NP_004980.1	2	0	1	1	11
ATP synthase, mitochondrial F0 complex, subunit g	NP_006467.3	2	2	0	0	11

Downloaded from http://www.jbc.org/ by guest on March 24, 2020
Protein Name	Accession Number	Uniprot ID	GoID	EC	KEGG	PID	Primary Source	GO Category	Evidence Code	Supporting Evidence
...										
...										

nuclear activities

Protein Name	Accession Number	Uniprot ID	GoID	EC	KEGG	PID	Primary Source	GO Category	Evidence Code	Supporting Evidence
...										
...										

others

Protein Name	Accession Number	Uniprot ID	GoID	EC	KEGG	PID	Primary Source	GO Category	Evidence Code	Supporting Evidence
...										
...										
Gene Name	Accession	ID	Presence	Mass	Median (median)					
---	-------------	----	----------	--------	----------------					
fragile X mental retardation 1	NP_002015.1		0	0	0					
globin, alpha	NP_000549.1	5	7	6	15					
globin, beta	NP_000509.1	8	10	6	16					
globin, delta	NP_000510.1	6	9	3	4					
globin, epsilon	NP_005321.1	1	1	1	1					
globin, gamma	NP_000550.1	1	2	1	2					
hematopoietic stem/progenitor cells protein MDS029	NP_060934.1	4	2	1	2					
hypothetical protein BM-509	NP_057707.2	0	0	3	3					
hypothetical protein DKFZp434N1235	NP_112581.1	1	1	1	1					
hypothetical protein DKFZP566K1924	NP_056278.1	1	1	1	1					
hypothetical protein FLJ10849	NP_060173.1	1	2	0	2					
hypothetical protein FLJ21665	NP_078962.1	2	1	3	3					
hypothetical protein FLJ23033	NP_079079.1	0	0	1	0					
hypothetical protein MGC40368	NP_689985.1	1	1	0	0					
KIAA0711	NP_055682.1		0	1	2					
KIAA0913	NP_055581.2		0	1	1					
macroglobulin precursor, alpha 2	NP_051003.1		0	1	0					
neuron growth-associated protein 43	NP_020361.1	4	2	6	3					
N-myc downstream-regulated gene 2	NP_057334.1	2	1	0	0					
peptideyl-prolyl cis/trans isomerase	NP_006212.1	1	1	1	1					
phosphatidylethanolamine binding protein	NP_002558.1	4	6	3	3					
phosphoprotein enriched in astrocytes, 15kD	NP_003759.1	1	1	0	0					
proteolipid protein1 (Pelizaeus-Merzbacher disease)	NP_005242.1	4	3	5	6					
ribosomal protein S3	NP_000986.2		0	1	1					
SH3 domain binding glutamic acid-rich protein like	NP_003013.1	0	2	0	0					
similar to RIKEN cDNA 1810055D09	NP_060304.1		1	0	0					
synuclein, alpha	NP_003076.1	5	4	3	3					
synuclein, gamma	NP_003078.1	3	1	2	0					
translation elongation factor 1	NP_001393.1	3	4	5	2					
translation elongation factor 2	NP_001952.1	0	1	2	0					
translation inhibitor protein p14.5	NP_005827.1	0	2	0	0					
translation initiation factor 4A	NP_001958.1	1	2	1	4					
transmembrane protein 10	NP_149984.1	0	0	1	2					
transmembrane protein 14C	NP_057546.1	0	1	0	0					
visinin-like 1	NP_003376.2	0	1	0	0					

oxidative stress

Gene Name	Accession	ID	Presence	Mass	Median (median)
DJ-1	NP_009193.2	3	2	2	1
ganglioside-induced differentiation-associated protein 1	NP_061845.1	0	1	0	0
glutathione S-transferase pi (GSTP1)	NP_000843.1	0	1	1	2
glutathione transferase omega	NP_004823.1	0	0	1	2
microsomal glutathione S-transferase 3	NP_004519.1	1	1	1	1
peroxiredoxin 1	NP_002565.1	3	2	4	3
peroxiredoxin 3	NP_006784.1	0	0	3	2
peroxiredoxin 5	NP_036216.1	3	1	3	5
thioredoxin	NP_004896.1	3	3	4	4

proteolysis

Gene Name	Accession	ID	Presence	Mass	Median (median)
aminopeptidase P	NP_056116.2	0	0	0	1
aminopeptidase, puromycin sensitive	NP_006301.2		0	6	4
antichymotrypsin, alpha 1	NP_001076.1	0	0	1	1
antipain	NP_000286.2	0	3	1	2
ATPase, H+ transporting, lysosomal 14kD, V1 subunit F	NP_004222.1	1	1	0	0
ATPase, H+ transporting, lysosomal 31kD, V1 subunit E	NP_001687.1	2	4	5	2
ATPase, H+ transporting, lysosomal 34kD, V1 subunit D	NP_057078.1	0	1	1	3
ATPase, H+ transporting, lysosomal 58kD, V1 subunit B	NP_001684.2	0	4	4	8
ATPase, H+ transporting, lysosomal 70kD, V1 subunit A	NP_001681.2	2	2	9	13
ATPase, H+ transporting, lysosomal V0 subunit A	NP_005168.2	0	1	1	3
ATPase, H+ transporting, lysosomal V0 subunit D	NP_004682.2	1	2	2	1
cathepsin D	NP_001900.1	0	1	0	0
cystatin A	NP_005204.1	0	2	0	0
cystatin B	NP_000091.1	1	2	0	1
cystatin C	NP_000090.1	0	1	0	1
dipeptidylpeptidase VI	NP_070629.1	0	0	2	0
elongin C	NP_005639.1	0	1	0	0
lysozyme precuror	NP_002301.1	0	1	0	0
proteasome alpha 2 subunit	NP_002778.1	0	0	1	2
proteasome beta 2 subunit	NP_002785.1	0	1	1	0
Proteins were grouped by functional categories and sorted by protein name in alphabetic order.
Ctl: the number of identified peptides for an assigned protein in the control samples of non-plaque regions
Plaque: the number of identified peptides for a protein in the plaque samples
Cal. MW: the molecular weight of a protein that is calculated based on its amino acid sequence
App. MW: the apparent molecular weight of a protein according to its mobility shift on the 1D gel for LC-MS/MS analysis. If a protein was identified in several gel pieces, the apparent MW closest to the calculated MW is shown in the table.
Proteomic characterization of postmortem amyloid plaques isolated by laser capture microdissection

Lujian Liao, Dongmei Cheng, Jian Wang, Duc M. Duong, Tatyana G. Losik, Marla Gearing, Howard D. Rees, James J. Lah, Allan I. Levey and Junmin Peng

J. Biol. Chem. published online June 25, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M403672200

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2004/07/08/M403672200.DC1