GREAT SPHERE FOLIATIONS AND MANIFOLDS
WITH CURVATURE BOUNDED ABOVE

VLADIMIR ROVENS KII AND VICTOR TOPO NOGOV

Abstract. The survey is devoted to Toponogov’s conjecture, that if a complete simply connected Riemannian manifold with sectional curvature ≤ 4 and injectivity radius ≥ π/2 has extremal diameter π/2, then it is isometric to CROSS. In Section 1 the relations of problem with geodesic foliations of a round sphere are considered, but the proof of conjecture on this way is not complete. In Section 2 the proof based on recent results and methods for topology and volume of Blaschke manifolds is given.

1. Great circle foliations

The interest to fibrations of the \(n \)-sphere by great \(\nu \)-spheres is propelled by the Blaschke problem and by extremal theorems in Riemannian geometry.

On a round sphere a foliation by geodesics is the same thing as a great circle fibration. The most simple of them – Hopf fibration with fibers \(\{S^1\} \), can be given as a collection of intersections of \(S^{2n-1} \) with all holomorphic 2-planes \(\{\sigma = x \wedge Jx\} \), where \(J \) is a complex structure – a linear operator in \(\mathbb{R}^{2n} \), given for some orthonormal basis \(\{e_i\} \) by the rule

\[
Je_{2i-1} = e_{2i}, \quad Je_{2i} = -e_{2i-1}, \quad (1 \leq i \leq n).
\]

Let \(F_0(S^{2n-1}) \) denote a space of all Hopf fibrations of sphere \(S^{2n-1} \), for \(n = 2 \) see Chapter 1. Each fiber spans corresponding two-plane through the origin in \(\mathbb{R}^{2n} \) and hence determines a point in the Grassmann manifold \(G(2, 2n) \).

2 Definition ([GW] for \(n = 2 \)). The skew-Hopf fibration is given by intersections of \(S^{2n-1} \) with all holomorphic 2-planes \(\{\sigma = x \wedge Jx\} \), where \(J \) is an almost complex structure – a linear operator in \(\mathbb{R}^{2n} \), given for some affine basis \(\{e_i\} \) by the rule (1).

By other words, the skew-Hopf fibration is obtained from the Hopf fibration by applying a nondegenerate linear transformation of \(\mathbb{R}^{2n} \) and then projection the images of fibers back to the \(S^{2n-1} \).

Let \(F_1(S^{2n-1}) \) denote a space of all skew-Hopf fibrations of sphere \(S^{2n-1} \). Let \(F(S^{2n-1}) \) denote a space of all oriented great circle fibrations of sphere \(S^{2n-1} \).

For simplicity we consider below geodesic foliations on three-sphere \((n > 2 \) see [Rov 2]). The space \(F_0(S^3) \) is 2-dimensional and homeomorphic to a pair of

1991 Mathematics Subject Classification. 53C12, 53C20.
This paper is a final form and no version of it will be submitted for publication elsewhere.
disjoint two-spheres. The 8-dimensional space $\mathcal{F}_1(S^3)$ is a disjoint union of two copies of $S^2 \times \mathbb{R}^6$. Both these spaces are homogeneous [GW]:

$$\mathcal{F}_0(S^3) = O(4)/U(2), \quad \mathcal{F}_1(S^3) = GL(4,\mathbb{R})/GL(2,\mathbb{C}).$$ (3)

The space $\mathcal{F}(S^3)$ is infinite dimensional. Let V be a Hopf unit vector field and D^2 a small ball transverse to V at point p. As was shown in [GW], a small C^1-perturbations of V on D^2, which are identity on the neighbourhood of boundary ∂D^2, lead to different great circle foliations of S^3.

For example, $G(2,4) \equiv S^2 \times S^2$ [GW], and a Hopf fibration $h \in \mathcal{F}_0(S^3)$ can be recognized by the fact that its orbit space M_h appears inside the Grassmanian as $\{\text{point}\} \times S^2$ or $S^2 \times \{\text{point}\}$.

For two 2-planes P and Q in \mathbb{R}^4 the smallest and the largest angles α_{min} and α_{max} from interval $[0,\frac{\pi}{2}]$, that any line in P makes with the plane Q, are called the principal angles between certain planes. The same angles result upon interchanging the roles of P and Q. The relative position of P and Q in \mathbb{R}^4 is completely determined by these principal angles in sense of rigid motion of \mathbb{R}^4.

One can always choose an orthonormal basis e_1, e_2, e_3, e_4 for \mathbb{R}^4 so that e_1, e_2 is an orthonormal basis for P and $\cos \alpha_{\text{min}} e_1 + \sin \alpha_{\text{min}} e_3$, $\cos \alpha_{\text{max}} e_2 + \sin \alpha_{\text{max}} e_4$ is an orthonormal basis for Q [GW]. Any two equidistant great circles from S^3 (in particular two leaves of Hopf fibration) determine two 2-planes from \mathbb{R}^4 with equal principal angles.

Not all submanifolds of $G(2,4)$ can appear in the role of M_f for $f \in \mathcal{F}(S^3)$.

4 Theorem [GW]. A submanifold in $G(2,4) \equiv S^2 \times S^2$ corresponds to a fibration $f \in \mathcal{F}(S^3)$ if and only if it is a graph of a distance decreasing map \tilde{f} from either S^2 factor to the other. Fibration f is differentiable if and only if the corresponding map \tilde{f} is differentiable with $|d\tilde{f}| \leq 1$.

Hence, the space $\mathcal{F}(S^3)$ deformation retracts to the space $\mathcal{F}_0(S^3)$.

The catalogue of great circle fibrations of the three-sphere (in Theorem 4) is one of first nontrivial examples in which one has a clear overview of all possible geodesic foliations of a fixed Riemannian manifold. There are plenty of nondifferentiable great circle fibrations of S^3. There also exist discontinuous fillings of S^3 by great circles: one can fill the closed solid torus $x_1^2 + x_2^2 \geq x_3^2 + x_4^2$ on S^3 as for Hopf original fibration and then fill the remaining open solid torus as for Hopf fibration with reversed screw sense [GW].

5 Corollary [GW]. Each fibration $f \in \mathcal{F}(S^3)$ contains a pair of orthogonal fibers.

6 Theorem [Gag]. Each skew-Hopf fibration $f \in \mathcal{F}_1(S^3)$ corresponds to a distance decreasing map $f : S^2 \to S^2$ with convex image in a semi-sphere, which can be decomposed as: a) orthogonal projection of S^2 to a plane through the center of the sphere; followed by b) a distance decreasing linear map from one 2-plane to another; and finally c) inverse projection onto S^2.

Thus the space $\mathcal{F}_1(S^3)$ is stratified with respect to values of rank r of linear map from point b): each fibration with $r = 2$ has exactly one pair of antipodes, in degenerate case $r = 1$ each fibration has 1-parameter family (Hopf torus) of pairs of antipodes, case $r = 0$ is the same as Hopf fibrations.

By Corollary 5 for each $f \in \mathcal{F}(S^3)$ there exists orthonormal special basis $\{e_i\}$ in \mathbb{R}^4 such, that the sphere S^3 intersects with 2-planes $e_1 \wedge e_2$ and $e_3 \wedge e_4$ by
pair of orthogonal fibers, (which is unique when \(r = 2 \)). It is not difficult to see, that in special basis for each vector \(\lambda = (1, 0, \lambda_3, \lambda_4) \) there exists a unique vector \(h = (0, 1, h_3, h_4) \) such, that the intersection of the plane \(\lambda \wedge h \) with sphere \(S^3 \) is a fiber of \(f \). Hence, we may correspond to foliation \(f \in F(S^3) \) a diffeomorphism of 2–plane

\[
\varphi = (\varphi_1, \varphi_2) : \mathbb{R}^2 \to \mathbb{R}^2, \quad h_3 = \varphi_1(\lambda_3, \lambda_4), \quad h_4 = \varphi_2(\lambda_3, \lambda_4). \quad (7)
\]

If \(f \in F_0(S^3) \), then the corresponding \(\varphi : \mathbb{R}^2 \to \mathbb{R}^2 \) is a linear orthogonal map.

8 Lemma [Rov 1]. The space \(F_1(S^3) \) is characterized in \(F(S^3) \) by the property, that \(\varphi : \mathbb{R}^2 \to \mathbb{R}^2 \) is a linear operator and without real eigenvalues.

Proof. Let \(f \in F_1(S^3) \), and an almost complex structure \(J \) in \(\mathbb{R}^4 \) for special basis is given by block matrix:

\[
J = \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix}, \quad A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} a_{33} & a_{34} \\ a_{43} & a_{44} \end{pmatrix}, \quad A^2 = B^2 = -E, \quad (9)
\]

moreover, the matrices \(A, B \) have no real eigenvalues. It is easy to see, that \(\varphi \) is a linear operator on \(\mathbb{Bbb} \mathbb{R}^2 \) given by the following matrix without real eigenvalues

\[
F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad a = \frac{a_{33} - a_{11}}{a_{21}}, \quad b = \frac{a_{34}}{a_{21}}, \quad c = \frac{a_{43}}{a_{21}}, \quad d = \frac{a_{44} - a_{11}}{a_{21}}. \quad (10)
\]

Conversely, let \(\varphi \) be a linear transformation of \(\mathbb{R}^2 \) with matrix \(F = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) without real eigenvalues, i.e. the discriminant of characteristic quadratic equation is negative \(D = (a - d)^2 + 4bc < 0 \). Then the matrix of form (9) with coefficients

\[
a_{11} = -a_{22} = -\frac{a + d}{\sqrt{-D}}, \quad a_{33} = -a_{44} = \frac{a - d}{\sqrt{-D}}
\]

\[
a_{12} = \frac{2(bc - ad)}{\sqrt{-D}}, \quad a_{21} = \frac{2}{\sqrt{-D}}, \quad a_{34} = \frac{2b}{\sqrt{-D}}, \quad a_{43} = \frac{2c}{\sqrt{-D}} \quad (11)
\]

defines an almost complex structure in \(\mathbb{R}^4 \). It is easy to see, that the for induced foliation \(\tilde{f} \in F_1(S^3) \) the corresponding operator \(\tilde{\varphi} : \mathbb{R}^2 \to \mathbb{R}^2 \) has the following matrix \(F = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \).

We study the skew-Hopf fibrations in relations with interesting space \(F_R(S^{2n-1}) \) of analytic geodesic foliations of sphere \(S^{2n-1} \), see [Top 1-3] for more general case.

12 Definition [Top 1]. The subspace \(F_R(S^{2n-1}) \subset F(S^{2n-1}) \) consists of fibrations, for which there exists a tensor (multi-linear function) \(R : \mathbb{R}^4 \times \mathbb{R}^4 \times \mathbb{R}^4 \times \mathbb{R}^4 \to \mathbb{R}^4 \) with properties:

- \(R \) curvature symmetries

\[
R(x, y, z, w) = R(z, w, x, y) = -R(x, y, w, z),
\]

\[
R(x, y, z, w) + R(z, x, y, w) + R(y, z, x, w) = 0
\]

\[
R(x, y, z, w) = R(z, w, x, y) = -R(x, y, w, z),
\]

\[
R(x, y, z, w) + R(z, x, y, w) + R(y, z, x, w) = 0
\]
for almost each unit vector $x \in \mathbb{R}^{2n}$ there exists unique 2–plane $\sigma \ni x$, with condition

$$R(x, y, x, y) = 1, \quad (y \in \sigma, \ y \perp x, \ |y| = 1),$$

(14)\footnote{Remark.} The analogous fact is true for \mathbb{R}^n with complex structure J, standard metric and corresponding Hopf fibration have the properties $R_1 - R_3$.

13 Theorem [Rov 1]. \(\mathcal{F}_R(S^3) = \mathcal{F}_1(S^3). \)

Proof. For each $x \in \mathcal{F}(S^3)$ there exists special orthonormal basis such, that 2–planes $e_1 \wedge e_2$ and $e_3 \wedge e_4$ intersect with sphere S^3 by fibers. Let $\varphi : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be a diffeomorphism, which by Lemma 8 corresponds to fibration f.

1. We shall state firstly the inclusion $\mathcal{F}_R(S^3) \subset \mathcal{F}_1(S^3)$.

Let $f \in \mathcal{F}_R(S^3)$. For a special basis in view of $R_1 - R_3$ we have

$$R_{1214} = \delta_{24}, \quad R_{2124} = \delta_{14}, \quad R_{3444} = \delta_{14}, \quad R_{3444} = \delta_{13},$$

where $R_{ijkl} = R(e_i, e_j, e_k, e_l)$ are components of tensor R. Let us calculate the sectional curvature of R:

$$K(\lambda, h) = \frac{R(\lambda, h, \lambda, h)}{\lambda^2 h^2 - (\lambda, h)^2} = \frac{Q}{\lambda^2 h^2 - (\lambda, h)^2} + 1.$$

The quadratic form Q from variables $\lambda_3, \lambda_4, h_3, h_4$ is given by formula

$$Q = \sum_{i,k}(R_{2i2k} - \delta_{ik})\lambda_i \lambda_k + \sum_{j,p}(R_{1j1p} - \delta_{jp})h_j h_p + 2 \sum_{i,p}(R_{12i4} + R_{24i1})\lambda_i h_j. \quad (15)$$

The 2–parameter family of vectors $(\lambda_3, \lambda_4, h_3, h_4)$, which correspond to fibers of f, in view of $R_2 - R_3$ lies in kernel of form Q. In view of R_3 the subspace $\ker Q$ is 2–dimensional, and hence the functions $h_3(\lambda_3, \lambda_4), h_4(\lambda_3, \lambda_4)$ of variables λ_3, λ_4 are linear. Since the fibers do not intersect in S^3, then linear operator φ has no real eigenvalues. By Lemma 8 $f \in \mathcal{F}_1(S^3)$.

2. We shall now state the inverse inclusion $\mathcal{F}_1(S^3) \subset \mathcal{F}_R(S^3)$.

Let $f \in \mathcal{F}_1(S^3)$. Denote by $F = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ the matrix of linear operator φ, which corresponds to f in special ortho-basis, see Lemma 8. In view multi-linearity and symmetries of tensor R it is sufficient to define only some of components $\{R_{ijkl}\}$. It is easy to see, that properties $R_1 - R_3$ for tensor R and f are true, when we assume for arbitrary $\gamma < 0, \beta < 0$

$$R_{1214} = \delta_{24}, \quad R_{2124} = \delta_{14}, \quad R_{3444} = \delta_{14}, \quad R_{1313} = 1 = \gamma,$$

$$R_{1414} - 1 = \beta, \quad R_{2424} - 1 = b^2 \gamma + d^2 \beta, \quad R_{1323} = a \gamma, \quad R_{2324} = ab \gamma + cd \beta,$$

$$R_{1234} = \frac{1}{3}(-c \beta + b \gamma), \quad R_{2334} - 1 = a^2 \gamma + c^2 \beta, \quad R_{1424} = d \beta, \quad R_{1314} = 0,$$

$$R_{2431} = \frac{1}{3}(2b \gamma + c \beta), \quad R_{2341} = -\frac{1}{3}(2c \beta + b \gamma). \quad (16)$$

Thus $f \in \mathcal{F}_R(S^3)$.
A complete even-dimensional simply connected Riemannian manifold M with sectional curvature $0 < K_M \leq 4$ has injectivity radius $\text{inj}(M) \geq \frac{\pi}{2}$ and, hence, the diameter $\text{diam}(M) \geq \frac{\pi}{2}$. For complete odd-dimensional simply connected M the same inequalities for $\text{inj}(M)$ and $\text{diam}(M)$ are true under more strong curvature restriction $1 \leq K_M \leq 4$. The optimal value for the curvature pinching constant δ in the last case is unknown [AM], but for $\delta < \frac{1}{9}$ the proposition is wrong in view of Berge’s example [Ber 2].

17 Remark. M. Berge considered a family of Riemannian metrics g_s, $(0 < s \leq 1)$ on the odd-dimensional spheres S^{2n+1}, which are defined by shrinking the standard metric in the direction of the Hopf circles in such a way that their lengths with respect to g_s become $2\pi s$. The range of the sectional curvature of such a metric g_s is in the interval $[s^2, 4 - 3s^2]$. Clearly, $\pi s < \pi / \sqrt{4 - 3s^2}$ for $s^2 < \frac{1}{3}$. This means that for any $\delta \in (0, \frac{1}{9})$ there exists a M. Berger metric g_s whose sectional curvature K is δ-pinched and whose injectivity radius is strictly less than $\pi / \sqrt{\max K}$. From considering the curvature along horizontal geodesics, we obtain that for any $0 < s < 1$ the conjugate radius of g_s is strictly greater than $\pi / \sqrt{\max K}$.

Note, that $\text{inj}(M)$ is always not more then $\text{diam}(M)$. The manifolds with $\text{inj}(M) = \text{diam}(M)$ are exactly Blaschke manifolds [Bes].

In situations when the extremal value for curvature, diameter or volume of manifold is considered (under others given conditions), one often obtains, that manifold is isometric to a model space from a finite list. The bright example of such extremal theorems is the following

18 Theorem (minimal diameter) [Ber 1]. Let M be a complete, connected, simply connected Riemannian manifold with sectional curvature $1 \leq K_M \leq 4$ and diameter $\frac{\pi}{2}$. Then M is isometric to CROSS: round sphere of curvature 4 or projective spaces $\mathbb{C}P^n$, $\mathbb{H}P^n$, $\mathbb{C}aP^2$ with its canonical metric.

M. Berger used direct geometric arguments to see the curvature tensor in enough detail to prove that such a manifold must be locally symmetric and hence (since simply connected) symmetric space. Appealing to the classification of these finished the proof. J. Cheeger and D. Ebin [CE] also give a geometricaly more direct proof for this result. H. Gluck and co-authors [GWZ] reproved constructively this theorem, used Berger’s geometric arguments to show that the exponential map from the tangent cut locus to the cut locus is a fibration of a round sphere by parallel great spheres, and hence a Hopf fibration. Then they see how this fibration encodes the curvature tensor and use this to display an isometry between M and a round sphere or projective space. Latter Berger’s theorem was generalized in some directions:

1) stability results: there exists a constant $\delta_n < \frac{1}{4}$ such that any n-dimensional, complete, simply connected Riemannian manifold M^n with $\delta_n \leq K_M \leq 1$ is homeomorphic to CROSS [Ber 3], for compact odd-dimensional manifold such δ is universal and less than $\frac{1}{4}(1 + 10^{-6})^{-2}$ [AM].

2) upper curvature bound is replaced by corresponding lower bound for the diameter or radius: a complete, simply connected Riemannian manifold M^n with $K_M \geq 1$ and radius $\text{rad}(M) \geq \frac{\pi}{2}$ is either homeomorphic to the sphere or the universal covering \tilde{M} is isometric to CROSS [Wil].

Analogous result with diameter is obtained by [GG3], where the only case of $\mathbb{C}aP^2$ is unknown. Recall that the radius $\text{rad}(M)$ of a compact connected Rie-
mannian manifold is defined as the infimum of the function $p \to \text{rad}_p(M) =: \max_{q \in M} \text{dist}(p,q)$. Clearly, $\text{inj}(M) \leq \text{rad}(M) \leq \text{diam}(M)$. One of key point in these results is the studying of Riemannian foliations on the round sphere. For 1- and 3-dimensional leaves they are always Hopf fibrations $[GG]$, a partial classification of Riemannian foliations on S^{15} with 7-dimensional leaves is obtained by $[Wil],[Lu]$.

Thus it is natural to investigate $V^m(-\infty,4)$ – a complete simply connected Riemannian manifold, whose sectional curvature $K_V \leq 4$ and injectivity radius $\text{inj}(V) \geq \frac{\pi}{2}$. Since this manifold has lower estimate for diameter, the case of extremal value $\frac{\pi}{2}$ of diameter is especially interesting. Note that inequality $\text{inj}(V) \geq \frac{\pi}{2}$ is equivalent to condition, that the perimeter of every nondegenerate geodesic biangle in $V^m(-\infty,4)$ is not less than π.

19 Theorem $[Top 2,3]$. The manifold $M = V^{2n+1}(-\infty,4)$ with diameter $\frac{\pi}{2}$ is isometric to sphere of curvature 4. The manifold $M = V^{2n}(-\infty,4)$ with extremal diameter $\frac{\pi}{2}$ is isometric to sphere of curvature 4, either geodesics are grouped into families (as for projective spaces):

- F_1) for every point $p \in M$ and any vector $\lambda \in T_pM$ there exists a-dimensional ($a = 2, 4, 8$ and if $a = 8$, then $\dim M = 16$) subspace $d(\lambda) \subset T_pM$ such, that all geodesics $\gamma \subset M$, $(\gamma(0) = p, \gamma'(0) \in d(\lambda))$ form a totally geodesic submanifold $F(p,\lambda)$, which is isometric to round sphere $S^a(4)$;
- F_2) for all nonzero vectors $\lambda_1, \lambda_2 \in T_pM$ the submanifolds $F(p,\lambda_1), F(p,\lambda_2)$ coincide, either their intersection consists only of one point p.

The key point of Theorem 19 is the following result:

20 Theorem $[Top 2]$. If a Riemannian manifold $V^n(-\infty,4)$ has a closed geodesic γ with length π and index $a - 1$, then there is a-dimensional totally geodesic submanifold containing γ, which is isometric to a-dimensional sphere of curvature 4.

We outline the idea of the proof of Theorem 20.

21 Lemma $[Top 2]$. Under the conditions and with the notations of Theorem 20, any two points P and Q of γ whose mutual distance on γ is $\frac{\pi}{2}$ are conjugate of multiplicity $a - 1$.

The proof of Lemma 21 uses the condition $\text{inj}(V) \geq \frac{\pi}{2}$ and well-known Lemma of the calculus of variations.

From Lemma 21 we obtain by an easy induction

22 Lemma $[Top 2]$. Under the conditions and with the notations of Theorem 20, there exists an arc σ of length $> \frac{\pi}{2}$ on the geodesic γ and a $(a - 1)$-parameter family of parallel vector fields ν along σ such that the Riemann curvature for the two-dimensional directions in ν along γ is equal to 4.

Using Lemma 22 for all the fields ν we can construct a sequence of triangles $\Delta_n(\nu)$ whose perimeter is strictly less then π and which converges to γ. It follows from condition $\text{inj}(V) \geq \frac{\pi}{2}$ that in every triangle $\Delta_n(\nu)$ we can span a cone $K_n(\nu)$ obtained as the set of the shortest lines between the vertices of $\Delta_n(\nu)$ and the opposite edges. For these cones the following Lemma holds.
23 Lemma [Top 2]. The Gauss curvature in points of \(K_n(\nu) \) does not exceed 4.

Lemma 23 follows from Synge’s Theorem.

24 Lemma [Top 2]. The area of the cone \(K_n(\nu) \) is not greater than the area of the triangle \(\Delta_n^L(\nu) \) on the sphere of curvature 4 whose sides have the length of the corresponding sides of \(\Delta_n(\nu) \).

Lemma 24 follows from a Theorem of A.D.Aleksandrov, see [Top 2]. From Lemmas 23 and 24 we obtain an upper bound of the integral curvature of \(K_n(\nu) \). On the other hand, the Gauss-Bonnet Theorem for the integral curvature of \(K_n(\nu) \) can be used to obtain a lower bound for the angle sum of \(K_n(\nu) \). A comparison of these bounds shows that the Gauss curvature of \(K_n(\nu) \) is everywhere almost equal to 4 and the area of \(K_n(\nu) \) is almost equal to \(\pi \).

Passing to the limit for \(n \to \infty \), we see that there exists a \((a-1) \)-parameter family of surfaces \(\{F\} \) that are isometric to the 2-dimensional hemisphere of curvature 4 and whose boundary is \(\gamma \).

It is now easily shown that the union of all surfaces of that family is a \(a \)-dimensional surface \(F_a \) which is isometric to the \(a \)-dimensional sphere. From the previous results and \(inj(V) \geq \frac{\pi}{2} \) it follows easily that \(F_a \) is a totally geodesic surface in \(M \).

The proof of Theorem 19 follows similar reasoning, analog to the preceding reduction, only we need the certain topological results and in particular a Theorem of W.Brouder.

V. Toponogov [Top 1-3] conjectured, that a manifold \(V^{2n}(-\infty, 4) \) with extremal diameter \(diam(V) = \frac{\pi}{2} \) is isometric to CROSS.

Note, that the tangent \(a \)-planes to submanifolds \(\{F(p, \lambda)\} \) (in Theorem 19) induce \((a-1) \)-dimensional great sphere foliation of the round sphere \(S_p \) in the tangent space \(T_pM \). In case \(K_M > 0 \) for almost each point \(p \in M \) such foliation \(f_p \) is related with function of sectional curvature in \(T_pM \) by the following way (compare with 12) [Top 1]:

\(R_2 \) for almost each vector \(x \in T_pM \) there exists unique \(a \)-dimensional subspace \(V \ni x \) with condition

\[K(x, y) = 4, \ (y \in V), \]

\(R_3 \) if \(a \)-dimensional subspace \(V \) contains a fiber of \(f_p \), then

\[K(x, y) = 4, \ (x, y \in V). \]

The natural strategy to prove, that Riemannian manifold \(M \) with properties \(R_1, R_2 \) is isometric to CROSS, (and, hence, to prove Toponogov’s conjecture) is to deduce firstly, that induced great sphere foliations in tangent spheres \(\{S_p\}, \ (p \in M) \) are Hopf fibrations. The last claim was conjectured in [Lemma 6, Top 1] for foliation with properties \(R_2, R_3 \) and curvature symmetries \(R_4 \). From the consideration at one point of \(M \) (see results of 1) one can only obtain, that such foliations on tangent spheres \(\{S_p\}, \ (p \in M) \), are skew-Hopf fibrations (the proof of [Lemma 6, Top 1] is wrong). By other words, manifold in Theorem 19, when \(a = 2 \), admits an almost complex structure \(J : TM \to TM \) with identity

\[(\nabla_x J)x = 0, \ (x \in TM), \]

and with constant holomorphic curvature (totally geodesic submanifolds \(F(p, \lambda) \) are \(J \)-invariant). Note, that Hermitian manifold \((M, J) \) with above identity is
called *nearly Kahlerian*. We don’t know is it possible to prove locally, that \(J \) is Hermitian.

Latter the Toponogov’s conjecture was proved on another way [RovT]: by using of global integral geometrical methods by M. Berge and J. Kazdan and recent topological results for manifolds with closed geodesics.

Manifolds \(M \) with properties \(F_1, F_2 \) are the particular case of Blaschke manifolds. We shall give a short survey.

25. Manifolds with closed geodesics.

A compact Riemannian manifold \(M \) is called a \(C_π \)-**manifold**, if all its geodesics are closed of equal length \(π \). This class includes (A.Allamigeon and F.Warner) **Blaschke manifolds**, for which all cut loci \(\text{Cut}(p) \subset T_pM, (p \in M) \) are round spheres of constant radius and dimension. The examples are CROSS: a sphere or projective spaces over a classical fields.

If \(M \) is a simply connected \(C_π \)-manifold, then it is homotopically equivalent to CROSS (R.Bott and H.Samelson).

For Blaschke manifold the exponential map \(\exp_p : T_pM \to C(p) \), restricted on sphere \(S_p \) with radius \(d(p,C(p)) \), defines a *great sphere foliation*, for CROSS this foliation is Hopf fibration. Since every great sphere foliation of \(S^N \) is homeomorphic to Hopf fibration [Sat], (partial cases in works by H.Gluck, F.Warner, C.Yang), then a simply connected Blaschke manifold is homeomorphic to its model CROSS.

The well-known **Blaschke conjecture**, that any Blaschke manifold is isometric to its model CROSS, had been proved for spherical case by following scheme [Bes]:

1) using integral geometry in the space of geodesics one shows that \(\text{vol}(M^N) \geq \text{vol}(S^N, \text{can}) \) with equality of volumes if and only if \(M \) is isometric to \((S^N, \text{can}) \),

2) on the other hand, one uses topological arguments to show that the **Weinstein integer** \(i(M) = \text{vol}(M^N) / \text{vol}(S^N, \text{can}) \), which has a description by cogomology of the space of oriented geodesics of given \(C_π \)-manifold, is actually one.

The evident analog of Blaschke conjecture for \(C_π \)-manifolds is wrong already when model CROSS is \(S^2 \), but unknown for non-spherical case.

The step 2) is related with **weak Blaschke conjecture** by C.T.Yang, that all Blaschke manifolds have right volumes. It was proven in [Yan] for complex projective space \(CP^n \) and for \(C_π \)-manifolds homeomorphic to model CROSS in [Rez 1,2].

In view of facts in 25 the missing link for proving Toponogov’s conjecture is the follows

26 Theorem [RovT].

If a Riemannian manifold \(M, (\dim M = an) \) has the properties \(F_1, F_2 \), then its volume is not less then volume of \(KP^n(4), (\dim \mathbb{K} = a) \) and equality holds if and only if \(M \) is isometric to \(KP^n(4) \).

Proof. We use the scheme [App. D, Bes] with modification by splitting of Jacobi equation and volume measure along family \(\{F(p, \lambda)\} \). The same proof (for Blaschke manifold with taut geodesics) is given in [Heb].

Let \(\mu \) be a volume measure on \(M \), the whole measure \(V(M) = \int_M d\mu \) of manifold is called *volume*. The volumes of projective spaces \(KP^n(4), (\mathbb{K} = \mathbb{C}, \mathbb{H}, \mathbb{C}_0) \) with standard metrics and diameter \(\frac{\pi}{2} \) and volume of sphere \(S^{an-1}_1 \) of radius 1 will be denoted by \(V(KP^n) \) and \(V(S^{an-1}) \), their numerical values are known. The total space of fibration \(\pi : UM \to M \) of unit spheres tangent to \(M \) is endowed by canonical metric and measure \(\mu_1 = \sigma \otimes \mu \), where \(\sigma \) is standard volume measure.
on S^{an-1}. Thus $V(UM) = V(S^{an-1})V(M)$. The unit geodesical vector field Z on UM is defined, – the projections of the integral curves of Z are geodesics in M, the induced dynamical system ξ on UM is called geodesical flow. Note, that the measure μ_1 is invariant under geodesical flow ξ on manifold UM [Bes].

Let γ_u, $(u = (p, \lambda) \in UM)$ be a unit speed geodesic with initial values $\gamma_u(0) = p$, $\gamma_u'(0) = \lambda$ and ξ be a evolution map of geodesical flow, i.e. $\pi(\xi^t(u)) = \gamma_u'(t)$.

Let $f(u, t)$, where $u \in UM$, $t \in \mathbb{R}_+$, denotes a volume form on M in polar coordinates, i.e. at the point $\exp(\lambda \bar{t})$ it is true $d\mu = f(u, t)d\sigma \otimes dt$. This function $f(u, t)$ may be calculated with the help of Jacobi fields by the following way. Let $\{\lambda_i\}$, $(2 \leq i \leq an)$ be orthonormal basis of subspace λ^+ (orthogonal complement to λ) and $\{Y_i\}$, $(2 \leq i \leq an)$ – Jacobi fields along γ_u with initial values $Y_i(0) = 0$, $Y_i'(0) = \lambda_i$. Then for all t it is true: $f(u, t) = |\det Y_2(t) \wedge \cdots \wedge Y_{an}(t)|$ [Bes]. In our case the vectors $\lambda_2, \ldots, \lambda_a$ are chosen tangent to $d(\lambda)$, and vectors $\lambda_{a+1}, \ldots, \lambda_{an}$ – orthogonal to $d(\lambda)$. Along geodesic γ_u the curvature transformation $R(\gamma_u, \gamma_u), \gamma_u$ has two invariant subspaces: the tangent space to the totally geodesic constant curvature submanifold $F(p, \lambda)$ containing γ_u, on which it is a multiplication by 4, and the space orthogonal to this.

Since the Jacobi fields $Y_2(t), \ldots, Y_a(t)$ are tangent to totally geodesic submanifold $F(p, \lambda)$ with constant curvature 4, they are given by known formula:

$$Y_i(t) = \left(\frac{1}{2} \sin 2t\right)\bar{\lambda}_i, \ (2 \leq i \leq a),$$

where $\bar{\lambda}_i \in \lambda_i$ is parallel vector field along γ_u. In view of F_2 the vector fields $Y_{a+1}(t), \ldots, Y_{an}(t)$ are non-zero for $0 < t < \pi$, they span the normal bundle to $F(p, \lambda)$ along geodesic γ_u. Thus,

$$f(u, t) = f_1(u, t)\left|\frac{1}{2} \sin 2t\right|^{a-1},$$

where function $f_1(u, t) = |\det Y_{a+1}(t) \wedge \cdots \wedge Y_{an}(t)|$ is positive for $0 < t < \pi$. We shall denote

$$\varphi(u, t) = f_1(u, t)\left|\frac{1}{2} \sin 2t\right|^{a-1},$$

i.e.

$$f(u, t) = \varphi(u, t)\left|\frac{1}{2} \sin 2t\right|^{a-1}.$$

In particular, for model CROSS $KP^n(4)$ it is true $\varphi(u, t) = \sin t$.

27 Lemma. $\pi V^2(M) = \int_{UM} (\int_0^\pi (\int_0^{\pi-x} f(\xi^z(u), t)dt)dx) d\mu_1$.

Proof of Lemma 27. Since diameter and injectivity radius of M are $\bar{\pi}$, then $\forall p \in M$ and a ball $B(p, \frac{\bar{\pi}}{2})$ it is true:

$$V(M) = V(B(p, \frac{\bar{\pi}}{2})) = \int_{U_p M} \left(\int_0^{\pi/2} f(u, t)dt\right)d\sigma.$$

With the help of equality $f(-u, t) = f(u, \pi - t)$, $(\forall u \in UM)$ [App. D, Bes], we obtain:

$$\int_{U_p M} \left(\int_0^{\pi/2} f(-u, t)dt\right)d\sigma = \int_{U_p M} \left(\int_0^{\pi/2} f(u, \pi - t)dt\right)d\sigma = \int_{U_p M} \left(\int_0^\pi f(u, t)dt\right)d\sigma.$$

(28)
Thus the integration on interval \([0, \pi]\) gives us the double volume

\[
2V(M) = \int_{U_\rho M} \left(\int_0^\pi f(u, t)dt \right) d\sigma. \tag{29}
\]

We integrate (29) over \(M\)

\[
2V^2(M) = \int_M \left(\int_{U_\rho M} \left(\int_0^\pi f(u, t)dt \right) d\sigma \right) dp = \int_{U_M} \left(\int_0^\pi f(u, t)dt \right) d\mu_1
\]

and then integrate the last equality over interval \([0, \pi]\) with using the invariance of measure \(\mu_1\) under geodesic flow

\[
2\pi V^2(M) = \int_{U_M} \left(\int_0^\pi \int_0^\pi f(\xi^x(u), t)dx \right) dt \mu_1. \tag{30}
\]

Since \(\xi^x(-u) = -\xi^{x-x}(u), (u \in UM, 0 \leq x \leq \pi)\) and the map \(u \to -u\) is diffeomorphism of manifold \(UM\) which preserve measure \(\mu_1\), then in view of \(f(-u, t) = f(u, \pi - t)\) it is true

\[
\int_{U_M} \left(\int_0^\pi \int_0^\pi f(\xi^x(u), \pi-t)dt \right) dx dt \mu_1 = \int_{U_M} \left(\int_0^\pi \int_{\pi-x}^\pi f(\xi^x(u), t) dt \right) dx dt \mu_1 = \]

\[
\int_{U_M} \left(\int_0^\pi \int_0^{\pi-x} f(\xi^x(u), \pi-t) dt \right) dx dt \mu_1 = \int_{U_M} \left(\int_0^{\pi-x} \int_0^\pi f(\xi^x(u), t) dt \right) dx dt \mu_1.
\]

Thus the integral (30) may be broken onto two equal parts. \(\Box\)

31 Lemma. For any \(u \in UM\) it is true

\[
J(u) = \int_0^\pi \left(\int_0^{\pi-x} f(\xi^x(u), t) dt \right) dx \geq \pi \frac{V(KP^n)}{V(S^{an-1})}
\]

with equality for only case of \(K(\gamma'(x), y) \equiv 1, (y \perp d(\gamma'(x)), 0 \leq x \leq \pi)\).

Proof of Lemma 31. We shall use the Holder inequality of order \(p = an - a\)

\[
\int g_1 g_2 \leq \left(\int g_1^p \right)^{\frac{1}{p}} \left(\int g_2^q \right)^{\frac{1}{q}},
\]

where equality holds if and only if \(g_1^p = \rho g_2^q\), \((\rho = \text{const})\). In our case the functions will be

\[
g_1(t) = \varphi(t) \frac{1}{2} \sin 2t |\sin(t)|^{an-a}, \quad g_2(t) = (\sin t)^{an-a-1} \frac{1}{2} \sin 2t |\sin(t)|^{\frac{(an-a-1)(a-1)}{an-1}}
\]

and the condition \(g_1 = \rho g_2^\frac{1}{p}\) takes a form: \(\varphi = \rho \sin\). Thus

\[
J(u) = \int_0^\pi \left(\int_0^\pi \varphi^{an-a}(\xi^x(u), x-y) \frac{1}{2} \sin 2(y-x)(a-1) dy \right) dx \geq
\]

\[
\int_0^\pi \left(\int_0^{\pi-x} \varphi^a(\xi^x(u), x-y) \frac{1}{2} \sin 2(y-x) dy \right) dx
\]

\[
\int_0^\pi \left(\int_0^{\pi-x} \varphi^{an-a}(\xi^x(u), x-y) \frac{1}{2} \sin 2(y-x)dy \right) dx \geq
\]

\[
\int_0^\pi \left(\int_0^{\pi-x} \varphi^{an-a}(\xi^x(u), x-y) \frac{1}{2} \sin 2(y-x)dy \right) dx
\]
From above it follows, that our manifold M is true the inequality (proof is the same, as in [App. D, Bes])

$$\int_0^\pi \int_0^x \varphi(\xi^x(u), y - x) \sin^{a-n-1}(y - x) \left| \frac{1}{2} \sin 2(y - x) \right|^{a-1} dy dx \frac{an-a}{a}.$$ (32)

Since the submanifolds $\{F(p, \lambda)\}$ are totally geodesic, then for function $\varphi(u, x)$ it is true the inequality (proof is the same, as in [App. D, Bes])

$$\varphi(\xi^x(u), z) \geq \varphi(u, x) \varphi(u, x + z) \int_x^{x+z} dt \frac{\varphi^2(u, t)}{\varphi^2(u, t)}.$$

With the help of Kazdan’s inequality [App. E, Bes] with weight function

$$\rho(y - x) = \sin(y - x)^{an-a} \frac{1}{2} \sin 2(y - x)|^{a-1}$$

we shall estimate the numerator in (32)

$$\int_0^\pi \left(\int_x^\pi \varphi(\xi^x(u), y - x) \sin(y - x)^{an-a} \left| \frac{1}{2} \sin 2(y - x) \right|^{a-1} dy dx \right) \geq$$

$$\int_0^\pi \left(\int_x^\pi \frac{\varphi(\xi^x(u), y - x) \varphi(u, y) \varphi^2(u, y)}{\varphi^2(u, t)} \sin(y - x)^{an-a} \left| \frac{1}{2} \sin 2(y - x) \right|^{a-1} dtdy dx \right) \geq$$

$$\int_0^\pi \left(\int_x^\pi \sin(y - x)^{an-a} \left| \frac{1}{2} \sin 2(y - x) \right|^{a-1} dy dx \right) = \beta(a, n).$$

Thus

$$J(u) \geq \beta(a, n) = \int_0^\pi \left(\int_x^\pi \sin(y - x)^{an-a} \left| \frac{1}{2} \sin 2(y - x) \right|^{a-1} dy dx \right).$$

The equality holds for only case of (see [App. D, Bes])

$$K(\gamma'_u(x), y) = 1, \ (0 \leq x \leq \pi, \ y \perp d(\gamma'_u(x))).$$

We shall show below, that $\beta(a, n) = \pi V(KP^n)_{V(S^{an-1})}$. \qed

Continue the proof of Theorem 26. From Lemma 27 and Lemma 31 it follows

$$\pi V^2(M) \geq \int_{UM} \beta(a, n) d\mu_1 = V(UM) \beta(a, n).$$

Since $V(UM) = V(M)V(S^{an-1})$, then $\pi V^2(M) \geq \beta(a, n)V(M)V(S^{an-1})$, i.e.

$$V(M) \geq \frac{1}{\pi} \beta(a, n)V(S^{an-1}).$$

The equality holds for only case of M being with constant sectional curvature

$$K(\lambda, y) = 1, \ (\lambda \in U_p M, \ y \perp d(\lambda), \ p \in M).$$

From above it follows, that our manifold M has positive $\frac{1}{\pi}$—pinched sectional curvature and by Theorem 18 M is isometric to $KP^n(4)$. If we repeat the above for model CROSS $KP^n(4)$, then obtain the numeric value of $\beta(a, n)$:

$$V(KP^n) = \frac{1}{\pi} \beta(a, n)V(S^{an-1}) \Rightarrow \beta(a, n) = \frac{V(KP^n)}{\pi V(S^{an-1})}.$$ \qed

From the above statement and facts about Blaschke manifolds it follows
33 Theorem [RovT]. Riemannian manifold M, $(\dim M = an)$ with the properties F_1, F_2 is isometric to CROSS.

From Theorem 33 and Theorem 19 it follows the confirmation of Toponogov’s conjecture:

34 Theorem [RovT]. Riemannian manifold $V^m(-\infty, 4)$ with extremal diameter $\frac{\pi}{2}$ is isometric to CROSS.

35 Corollary (diameter rigidity). A complete, connected, simply connected Riemannian manifold M^{2n} with sectional curvature $0 < K_M < 4$ and diameter $\text{diam}(M) = \frac{\pi}{2}$ is isometric to CROSS.

Theorem 34 and Corollary 35 generalize the Theorem 18 by M. Berge.

Theorem 34 has many corollaries. Below is one of them.

Projective planes $KP^2(4), (K = \mathbb{R}, \mathbb{C}, \mathbb{H}, \mathbb{C}a)$ with standard metrics are at the same time Riemannian manifolds with dimensions $2a = 2, 4, 8, 16$. Totally geodesic spheres $\{KP^1(4) = S^a(4)\}$ (with dimension a and constant curvature 4) play the role of straight lines in $KP^2(4)$, and axioms of projective geometry are true:

P_1: for all two different points there exists exactly one straight line, which connects them,

P_2: every two different straight lines have intersection at exactly one point.

Thus we obtain differential geometrical test of projective planes over $\mathbb{C}, \mathbb{H}, \mathbb{C}a$.

36 Corollary. Assume, that M^{2a}, $(a > 1)$ be a complete Riemannian manifold with the conditions P_1, P_2 and straight lines are totally geodesic submanifolds isometric to Euclidean sphere $S^a(4)$. Then $a = 2, 4, 8$ and M^{2a} is isometric to projective plane $KP^2(4), (K = \mathbb{C}, \mathbb{H}, \mathbb{C}a)$ with standard metric.
References

[AM] Abresch U. and Meyer W., Injectivity radius estimates and sphere theorems (1995), 1–38 (to appear).

[Ber 1] Berger M., Les varietes riemanniennes pincees, Ann. Scuola Norm. Sup. Pisa, 14 (1960), 161–170.

[Ber 2] Sur les varietes riemanniennes pincees juste au-dessous de $\frac{1}{4}$, Ann. Inst. Fourier, 33 (1983), 135–150.

[Bes] Besse A., Manifolds all of whose Geodesics are Closed, Springer-Verlag, 1978.

[CE] Cheeger J. and Ebin D., Comparison theorems in Riemannian geometry, vol. 9, North. Holl. Publ. Co., Amsterdam; Oxford, 1975, pp. 179.

[Gag] Gage M., A note on the skew-Hopf fibrations, Proc. A.M.S., 93 (1985), 145–150.

[GG] Gromoll D. and Grove K., The low-dimensional metric foliations on Euclidean spheres, J. Diff. Geom., 28 (1988), 143–156.

[GG3] A generalization of Berger’s rigidity theorem for positively curved manifolds, Ann. Sci. Ec. norm. super., 20 (1987), 227–239.

[GW] Gluck H. and Warner F., Great circle fibrations of the three sphere, Duke Math. J., 50 (1983), 107–132.

[GWZ] Gluck H., Warner F. and Ziller W., Fibrations of spheres by parallel great spheres and Berger’s rigidity theorem, Ann. of Global Analysis and Geom., 5 (1987), 53–92.

[Heb] Hebda J., Blaschke manifolds with taught geodesics, Duke Math. J., 48 (1981), 85–91.

[Lu] Lu D., Homogeneous foliations of spheres, Trans. A.M.S., 340 (1993), 95–102.

[Rez 1] Reznikov A., The weak Blaschke conjecture for $\mathbb{H}P^n$, Docl. Acad. Nauk SSSR, 283(2) (1985), 308–312.

[Rez 2] The weak Blaschke conjecture for $\mathbb{C}P^n$, Invent. Math., 117 (1994), 447–454.

[Rov 1] Rovenskii V., Geodesic foliations on the three-dimensional sphere, Theoretical and applied problems in differential equations, CMP-90 13, Karagand. Gos. Univ., Karaganda, 1986, pp. 115–119. (Russian)

[Rov 2] Twisted Hopf bundles, J. Soviet Math., 53 (1991), 532–541.

[RovT] Rovenskii V. and Toponogov V., Geometric characteristics of a complex projective space, Geometry and topology of homogeneous spaces, Altaisk. Gos. Univ., Barnaul, 1988, pp. 98–104. (Russian)

[Sat] Sato H., On topological Blascke conjecture, III, Lect. Notes Math., vol. 1201, 1986, pp. 242–253.

[Top 1] Toponogov V., One characteristic property of four-dimensional rank 1 symmetric space, Sibirskii Math. J., 13(4) (1972), 884–902.

[Top 2] Extremal theorems for Riemannian spaces with curvature bounded from below, Sibirskii Math. J., 15(6) (1974), 1348–1371.

[Top 3] Riemannian spaces with diameter equal to π, Sibirskii Math. J., 16(1) (1975), 124–131.

[Wil] Wilhelm F., The radius rigidity theorem for manifolds of positive curvature, preprint, (1995), SUNY at Stony Brook.

[Yan] Yang C.T., Any Blaschke manifold of the homotopy type of $\mathbb{C}P^n$ has the right volume, Pacific J. Math., 151 (1991), 379–394.

Chair of Geometry, Mathematical Dept., Pedagogical State University, Lebedeva st. 89, Krasnoyarsk-49, 660049, Russia
E-mail address: roven@edk.krasnoyarsk.su

Mathematical Institute, 630090 Novosibirsk–90, Russia