Identification of an Integration Center for Cross-talk between Protein Kinase C and G Protein Modulation of N-type Calcium Channels*

(Received for publication, September 24, 1998, and in revised form, December 8, 1998)

Jawed Hamid‡, Donald Nelson§, Renee Spaetgens‡‡, Stefan J. Dubel§, Terry P. Snutch¶, and Gerald W. Zamponi†‡**

From the ‡Department of Pharmacology and Therapeutics, Neuroscience Research Group, University of Calgary, Calgary, Alberta T2N 4N1, Canada and the §Biotechnology Laboratory, University of British Columbia, Vancouver, British Columbia, V6T 1Z3 Canada

The modulation of presynaptic calcium channel activity by second messengers provides a fine tuning mechanism for neurotransmitter release. In neurons, the activation of certain G protein-coupled receptors reduces N-type channel activity by ~60%. In contrast, activation of protein kinase C (PKC) results in an approximately 50% increase in N-type channel activity, and subsequent G protein inhibition is antagonized. Here, we describe the molecular determinants that control the dual effects of PKC-dependent phosphorylation. The double substitution of two adjacent PKC consensus sites in the calcium channel domain I-II linker (Thr422, Ser425) to alanines abolished both PKC-dependent up-regulation and the PKC-G protein cross-talk. The single substitution of Ser425 to glutamic acid eliminated PKC-dependent up-regulation but had no effect on G protein modulation. Replacement of Thr422 with glutamic acid eliminated PKC-dependent up-regulation and mimicked the effects of PKC phosphorylation on G protein inhibition. Our data suggest that Thr422 mediates the antagonistic effect of PKC on G protein modulation, while phosphorylation of either Thr422 or Ser425 are sufficient to increase N-type channel activity. Thus, Thr422 serves as a molecular switch by which PKC is able to simultaneously trigger the up-regulation of channel activity and antagonize G protein inhibition.

Calcium influx through neuronal voltage-dependent calcium channels mediates a range of cytoplasmic responses, such as neurotransmitter release, proliferation, and the activation of calcium-dependent enzymes. Most neurons express multiple calcium channel types with distinct functional properties, and molecular cloning has identified genes encoding at least eight different neuronal calcium channel a1 subunits (termed a1A through a1H). Functional expression in heterologous expression systems has revealed that a1A encodes for P/Q-type calcium channels (1–3); a1B defines an omega-conotoxin GVIA-sensitive N-type channel (4–6); a1C, a1D and a1F are L-type calcium channels (7–9); and a1E is a unique calcium channel with properties common to both high threshold and low threshold calcium channels (10, 11). More recently, a1G and a1H have been shown to encode members of the family of T-type calcium channels (12). Among the eight types of a1 subunits, a1A and a1B are predominantly located at more distal dendritic and presynaptic nerve terminals (13, 14) and are directly coupled to the presynaptic vesicle release machinery (15, 16).

The physiological properties of presynaptic calcium channels are extensively modulated by second messenger molecules, including protein kinase C and G protein βγ subunits (17–21). The activation of certain G protein-coupled seven-helix transmembrane receptors mediates a pronounced voltage-dependent inhibition of both N-type and P/Q-type calcium currents (Refs. 22–25; for a review, see Ref. 26). This inhibition is probably caused by direct 1:1 binding of G protein βγ subunits to the calcium channel a1 subunit, resulting in a reluctance of the channels to undergo opening in response to membrane depolarization (27, 28). In contrast, stimulation of protein kinase C-dependent phosphorylation results in a substantial up-regulation of N-type channel activity (19). PKC1 and Gβγ modulation are functionally coupled (termed cross-talk), such that PKC-dependent phosphorylation of the channel antagonizes subsequent G protein inhibition (20, 21, 29).

We have previously shown that cross-talk between G protein and PKC pathways mainly occurs at the level of the calcium channel a1 subunit (29). In particular, the cytoplasmic linker connecting domains I and II of the a1B subunit is a crucial determinant of both G protein inhibition and PKC-G protein cross-talk. This region has also been implicated in PKC-dependent up-regulation of N-type calcium channels (19), suggesting the possibility of a common mechanism underlying the dual effects of protein kinase C-dependent phosphorylation. Here, we identify individual amino acid residues within the a1B domain I-II linker that mediate up-regulation by PKC-dependent phosphorylation as well as the cross-talk between PKC and G protein pathways. Using site-directed mutagenesis in combination with functional expression in human embryonic kidney cells, we show that phosphorylation of either threonine 422 or serine 425 is sufficient to mediate PKC-dependent up-regulation of the channel. Whereas the nature of serine 425 does not affect G protein inhibition, substitution of the threonine residue to glutamic acid to create a permanent phosphoform drastically reduces the degree of G protein inhibition. We propose a
PKC Modulation of Presynaptic Calcium Channels

model whereby threonine 422 acts as a molecular switch by which protein kinase C up-regulates the activity of N-type calcium channels and concomitantly antagonizes their inhibition by G protein β subunits. The remaining (\sim20%) degree of G protein inhibition is further reduced upon deletion of the 3' third of the α_{1b} carboxyl terminus, suggesting that the calcium channel domain I-II linker and the carboxyl terminus might cooperatively interact with G protein β subunits.

MATERIALS AND METHODS

Molecular Biology—DNA encoding wild type α_{1b} channels was subcloned into the cytomegalovirus expression vector. The α_{1b}-cytomegalovirus construct was cut with SpeI and SplI, and the SpeI–SplI fragment was then subcloned into a modified pSL1180 Bluescript vector (which had been cut with SauI and SmaI and recircularized to eliminate a KpnI site in the polylinker). A KpnI fragment was excised from this construct and subcloned into a modified pSL1180 vector (in which a NarI–NarI fragment was deleted). Site-directed mutagenesis of PKC consensus sites was carried out on this construct using the Quick Change site-directed mutagenesis kit (Stratagene). The mutations were confirmed via DNA sequencing. The KpnI fragment was subsequently subcloned into the SpeI–SphI construct in pSL1180, and the SpeI–SphI fragment was ligated into the full-length α_{1b} construct in cytomegalovirus. After completion of subcloning, the 900-base pair KpnI fragment contained in the full-length sequence was completely sequenced to confirm the presence of the mutations and to eliminate the possibility of cloning and polymerase chain reaction artifacts.

A carboxyl-terminal deletion mutant lacking amino acid residues 1955–2336 was constructed by eliminating an XbaI fragment contained between an XbaI site in the α_{1b} carboxyl terminus and a second XbaI site in the 3' portion of the polylinker of the cytomegalovirus expression vector. The construct was cut with XbaI and recircularized, and the successful elimination of the XbaI fragment was confirmed via enzyme analysis and DNA sequencing.

Transient Transfection—Human embryonic kidney TSA 201 cells were grown to 85% confluency, split with trypsin EDTA, and plated on a computer equipped with pCLAMP version 6.0. Patch pipettes (Sutter Instrum., Fairfield, CA) linked to a personal computer equipped with pCLAMP version 6.0. Patch pipettes (Sutter borosilicate glass; BF150–86-15) were pulled using a Sutter P-87 microelectrode puller, fire-polished using a Narashige microforge, and showed typical resistances of 2–3 megaohms. The internal pipette solution contained 105 mM CsCl, 25 mM triethanolamine chloride, 1 mM HEPES (pH 7.2). Whole cell patch clamp recordings were performed using an Axopatch 200B amplifier (Axon Instruments, Foster City, CA) linked to a personal computer equipped with pCLAMP version 6.0. Patch pipettes (Sutter borosilicate glass; BF150–86-15) were pulled using a Sutter P-87 microelectrode puller, fire-polished using a Narashige microforge, and showed typical resistances of 2–3 megaohms. The internal pipette solution contained 105 mM CsCl, 25 mM triethanolamine chloride, 1 mM CaCl$_2$, 11 mM EGTA, 10 mM HEPES (pH 7.2), supplemented with nystatin. Nystatin was dissolved in Me$_2$SO at 100 mg/ml and diluted directly into the pipette solution. After seal formation, nystatin was allowed to equilibrate into the pipette for 5–10 min to permit electrical access.

Currents were typically elicited from a holding potential of -100 mV to various test potentials using Clampex software (Axon Instruments). Current-voltage relations were generated by utilizing a ramp protocol (dV/dt = 1 mV/ms) as reported previously (30). Somatostatin (RBI) was dissolved in water to give a stock solution of 1 mM, and PMA (RBI) was dissolved in Me$_2$SO at a stock concentration of 2 mM. These compounds were diluted into the external recording solution at the appropriate final concentrations and perfused directly onto the cell using a gravity-driven micropipet system. At the applicable concentrations, Me$_2$SO by itself had no effect on calcium channel activity. In every case, peak current inhibition was assessed 15 s after somatostatin application. Data were filtered at 1 kHz and recorded directly onto the hard drive of the computer. Data were analyzed using Clampfit (Axon Instruments). All curve fitting was carried out in Sigmaglot 4.0 (Jandel Scientific). Unless stated otherwise, all error bars represent S.E. values, numbers in parentheses displayed in the figures reflect numbers of experiments, and p values given reflect Student's t tests.

RESULTS

The Domain I-II Linker Mediates both PKC and G Protein Modulatory Effects on N-type Channels—We have previously shown that N-type ($\alpha_{1a} + \alpha_{1b} + \beta_2\alpha$) calcium channels transiently expressed in human embryonic kidney cells are reversibly inhibited by 50–70% via activation of endogenous somatostatin receptors (Ref. 29; see Fig. 1C). In contrast, activation of protein kinase C with 100–400 nM of the phorbol ester PMA results in a pronounced (50–60%) up-regulation of α_{1B} N-type currents (Ref. 29; see Fig. 1D). Subsequent to PMA treatment, inhibition of N-type channel activity by somatostatin is dramatically reduced (see Fig. 1D), consistent with previous observations in intact neurons (20, 21). Synthetic peptides directed against two subregions of the α_{1B} calcium channel domain I-II linker block the modulatory effects of exogenously applied G$_{\beta\gamma}$, subunits (29). One of the peptides is a substrate for in vitro phosphorylation by protein kinase C, and when phosphorylated in vitro, it loses the ability to interfere with G protein modulation (29). These results suggested that cross-talk between protein kinase C and G protein pathways might occur in this subregion of the α_{1B} domain-I-II linker.

Two putative protein kinase C consensus sites, Thr422 and Ser425, are contained within this region of the channel (Fig. 1, inset). To test whether one or both of these residues might mediate PKC/G$_{\beta\gamma}$ cross-talk, we replaced both sites with alanine residues. Fig. 1A depicts current records obtained from the double alanine mutant in the absence and the presence of 100 nM somatostatin. Similar to that observed with the wild type channel (Fig. 1), activation of somatostatin receptors mediates a reversible and pronounced inhibition of channel activity, paired with a slowing of activation kinetics and an apparent slowing of inactivation. Fig. 1B illustrates the effect of PMA on channel activity and on somatostatin modulation of the alanine double mutant. While application of 100 nM PMA had no detectable effect on channel activity, the subsequent application of 100 nM somatostatin produced the same degree of G protein inhibition as that observed in the absence of PMA. Fig. 1A, C, and D illustrates the effect of alanine substitution for a number of experiments. There are two effects evident. First, the alanine mutation per se significantly reduces the degree of somatostatin inhibition seen with the wild type channel from 53 ± 5 to $36 \pm 5%$ ($p = 0.02$) (Fig. 1C). Second, while PMA treatment reduced the somatostatin effect for the wild type channel, the somatostatin sensitivity of the double mutant was not altered by PMA (36 ± 5 versus 37 ± 5%, $p = 0.86$; Fig. 1C), indicating that cross-talk between PKC and G protein pathways is blocked by the double alanine substitution. In addition, the PMA-induced up-regulation observed with the wild type channels was reduced from 49 ± 14 to 6 ± 5% when both PKC consensus sites were simultaneously replaced with alamines (Fig. 1D). Thus, the critical structures mediating up-regulation of channel activity and inhibition of direct G protein action appear to reside within overlapping regions of the calcium channel domain I-II linker and contain one or both of Thr422 and Ser425.

To elucidate which of the two residues mediate the effects of PKC, we "permanently phosphorylated" either Thr422 or Ser425 by replacing them individually with glutamic acid residues. As shown in Fig. 2A, the S425E mutant exhibits a somatostatin response comparable with that of the wild type channel ($p = 0.41$), suggesting that phosphorylation of Ser425 does not antagonize G protein action. PMA treatment had no significant effect on current amplitude ($p = 0.83$, paired t test; see also Fig. 2B).
PKC Modulation of Presynaptic Calcium Channels

Fig. 1. Effect of a double substitution of I-II linker protein kinase C consensus sites for alanines on PKC and G protein action. A, current records illustrating G protein inhibition of the double alanine mutant. Somatostatin reversibly reduces the peak current amplitude of the mutant channel to 65% of its control value. The currents were leak-subtracted using a p/5 protocol. The holding potential was −100 mV, and the test potential was +20 mV. B, application of PMA does not affect current amplitude and has no adverse effects on G protein inhibition mediated by somatostatin (holding potential −100 mV, test potential +20 mV). Inset, proposed transmembrane topology of voltage-dependent calcium channels and amino acid sequence of part of the α1B channel I-II linker. The bar above the amino acid sequence indicates a previously identified putative target region for G protein/PKC cross-talk. The Thr422 and Ser425 residues were substituted to alanine residues. C, degree of somatostatin (100 nM) inhibition of wild type α1B channel and the alanine (422 and 425) mutant channels (each coexpressed with β2 and α2) with or without prior application of 100 nM PMA. Note that the alanine substitution slightly but significantly reduces the degree of somatostatin inhibition. While PMA reduces the G protein sensitivity of the wild type channel, the G protein inhibition of the double mutant is not affected. D, up-regulation of channel activity by 100 nM PMA. Note that the up-regulation seen with the wild type channel is blocked by the double alanine substitution. Error bars represent S.E. values; the test potential in C and D was +20 mV.

3B), suggesting that replacing Ser425 with glutamic acid mimics a permanently up-regulated state of the channel. Nonetheless, PMA treatment significantly attenuated the degree of somatostatin inhibition from 46 ± 7 to 15 ± 4% (p = 0.004) (Figs. 2B and 3A), suggesting that replacement of Ser425 with glutamic acid does not preclude phosphorylation of the adjacent Thr422 residue and that cross-talk between PKC and Gp7 modulation is probably mediated by Thr422 rather than Ser425. If this is correct, then mimicking phosphorylation of Thr422 (i.e., T422E) should reduce the degree of G protein inhibition to...
those levels observed after PKC phosphorylation of the wild-type channel. This is supported by the current records shown in Fig. 2, C and D, and the data presented in Fig. 3 A. The T422E mutant showed a significantly reduced somatostatin sensitivity, which was comparable in magnitude with that observed with the wild type channel after PMA treatment (WT (with PMA) 5 20 ± 5%; T422E (without PMA) 5 20 ± 3%, p = 0.91). These data indicate that replacing Thr 422 with a negatively charged side group mimics the antagonistic effect of PKC on G protein inhibition. PMA application did not further affect somatostatin sensitivity of T422E (T422E (with PMA) 5 14 ± 3%, p = 0.29). Also, PMA failed to increase the peak current amplitude of T422E (p = 0.71) (Figs. 2D and 3B), suggesting that similar to S425E, the T422E construct is likely be tonically up-regulated. Overall, the data suggest that whereas only Thr422 is capable of mediating the cross-talk effect, phosphorylation of either Ser425 or Thr422 is sufficient to fully up-regulate channel activity.

To confirm this hypothesis, we created two additional mutants in which Thr422 and Ser425 were substituted individually by alanines in order to further define the relative contributions of the individual PKC consensus sites to the overall action of PKC. As shown in Fig. 4A, T422A exhibits a somatostatin sensitivity that closely parallels that seen with the T422A/S425A double mutant shown in Fig. 1. After treatment with 100 nM PMA, the degree of somatostatin inhibition of T422A did not decrease significantly (37 ± 5% (without PMA) versus 32 ± 3% (with PMA), p = 0.42) and remained significantly (p < 0.003) larger than that of the PMA-treated wild type channel (20 ± 5%). These data indicate that cross-talk between PKC and G protein pathways is blocked upon selective removal of the Thr422 PKC substrate. Consistent with this notion, removal of the Ser425 PKC substrate (i.e. S425A) did not significantly change G protein sensitivity (p = 0.49), nor did it affect cross-talk between the G protein and PKC pathways (48 ± 7% (without PMA) versus 18 ± 3% (with PMA), p < 0.002, Fig. 4A). Both T422A and S425A exhibited a similar degree of PKC-dependent up-regulation (Fig. 4B), which did not differ significantly from that observed with the wild type channel (p > 0.79). This further supports the notion that N-type channel activity is fully up-regulated upon phosphorylation of either Thr422 or Ser425, whereas only Thr422 is capable of mediating the cross-talk between PKC and G protein pathways.

Voltage Dependence of G Protein Modulation—To examine the voltage dependence of the T422E mutant, we utilized a ramp protocol to allow the acquisition of complete current-voltage relations without contamination from receptor desensitization. Fig. 5 compares the somatostatin response of wild type channels to that of the T422E mutant at a number of test potentials. In both cases, the effect of somatostatin is dependent on membrane potential and is consistent with the direct inhibition of native N-type calcium channels by G proteins (18, 23, 24, 31, 32). As evident from Fig. 5, somatostatin produced a significantly greater inhibition of the wild type channels at all

![Fig. 2. Effect of individual replacement of I-II linker PKC consensus sites with glutamic acid residues. The holding potential was 100 mV, the test potential was -20 mV, and currents were leak-subtracted using a p/5 protocol. A and C, inhibition of mutant channels by 100 nM somatostatin. Note that the threonine substitution dramatically reduces G protein sensitivity. B and D, effect of PMA on channel activity and on the degree of somatostatin inhibition. Either mutation blocks up-regulation of the channel by PMA. S425E shows a reduced sensitivity to somatostatin inhibition following application of PMA (i.e. cross-talk remains intact), while no additional effect of PMA on G protein inhibition of T422E is evident.](image-url)
peak current amplitude and mediates the slowing of activation kinetics typical of direct $G_{b\gamma}$ modulation, the degree of inhibition is reduced compared with the wild type channel (from $53 \pm 5\%$ to $32 \pm 2\%, p = 0.02$). In contrast, up-regulation by PMA remains intact (Fig. 6C and inset), suggesting that the deleted portion of the carboxyl-terminal does not directly mediate PKC-dependent changes in channel activity. Following pretreatment with PMA, somatostatin application resulted in only a small effect on peak current amplitude ($4 \pm 2\%$ inhibition), at a test potential of $+20$ mV (Fig. 6D). Hence, PKC-dependent phosphorylation in combination with deletion of the carboxyl terminus further reduces the degree of $G_{b\gamma}$ modulation. To further examine this observation, we deleted the carboxyl-terminal region of the T422E mutant. As seen from Fig. 6D, this mutant showed only a $\sim 10\%$ inhibition in response to somatostatin at a test potential of $+20$ mV. The degree of inhibition did not differ significantly from that seen with mutant T422E after PMA treatment ($p = 0.1$) but was significantly lower than the sensitivity of the α_{1B}COOH construct ($p = 0.025$). These data indicate that deletion of the carboxyl terminus and replacement of Thr422 with glutamic acid produce additive effects on G protein sensitivity. This particular construct did not express well in HEK cells, and we were unable to systematically examine the voltage dependence of somatostatin action.

Overall, the data suggest that the carboxyl region mediates an important role in stabilizing the $G_{b\gamma}$ interaction with the calcium channel α_1 subunit, especially when PKC sites in the α_{1B} domain I-II linker are phosphorylated.

DISCUSSION

Protein Kinase C-dependent Up-regulation Is Mediated by the Calcium Channel I-II Linker—Whole cell currents of exogenously expressed α_{1B} N-type channels are up-regulated by activation of protein kinase C by either phorbol esters (such as PMA) or activation of coexpressed metabotropic glutamate receptors (19). Here, we have used application of 100 nM PMA to stimulate protein kinase C in human embryonic kidney cells expressing α_{1B} channels. Consistent with the results of Stea and co-workers (19), PMA application resulted in a pronounced increase in channel activity for wild type α_{1B} channels that was blocked by pretreatment with staurosporine. In their study, Stea and co-workers (19) were able to confer aspects of PKC sensitivity of α_{1B} onto the less sensitive α_{1A} channels by inserting the domain I-II linker of α_{1A} into α_{1B}. We have previously shown that a fusion protein directed against the α_{1A} I-II linker region is a substrate for PKC-dependent phosphorylation (29). Two considerations have led us to focus on a pair of PKC consensus sites (Thr422 and Ser425) located within a 20-amino acid stretch (residues 410–428) of the α_{1B} I-II linker. First, this stretch of residues is both a substrate for in vitro phosphorylation by PKC and has also been implicated in the PKC-mediated antagonism of G protein inhibition of wild type α_{1B} channels (29). Second, certain amino acid substitutions in the vicinity of the corresponding region in α_{1A} increases PKC sensitivity of α_{1A}.

Here, we show that the double substitution of Thr422 and Ser425 for alanines abolishes the PKC-dependent up-regulation of α_{1B} channels, suggesting that phosphorylation of one or both of these residues is sufficient to mediate up-regulation. Individual substitutions of these residues for glutamic acid also precluded the effect of PKC stimulation. In contrast, individual substitution of these two residues for alanines had no adverse effect on PKC-dependent up-regulation. These data imply that the effects of phosphorylation of the two PKC consensus sites are nonadditive and that phosphorylation of either Thr422 or

2. G. W. Zamponi and T. P. Snutch, unpublished observations.
Ser425 is sufficient to mediate complete up-regulation of channel activity in an all or none manner. At present, the molecular mechanisms by which the phosphorylation event affects channel activity remain to be determined. It is possible that phosphorylation induces a conformational change in the domain I-II linker that directly affects activation. Alternatively, phosphorylation of these residues might alter the interaction with the calcium channel β subunit, which in turn may affect channel activation. Such a mechanism would be consistent with data of Stea and co-workers (19), who reported that the calcium channel β subunit is required for PKC-dependent up-regulation.

Recently, Shistik et al. (35) showed that deletion of N-terminal residues 2–46 abolished PKC-dependent up-regulation of rabbit heart α1C channels expressed in Xenopus oocytes. The N-terminal region of rat brain α1B N-type calcium channel is 51 residues shorter than that of the rabbit heart α1C channel and thus lacks the motif identified by Shistik et al. (35). Furthermore, there is no counterpart to Thr422 present in the rabbit heart α1C sequence, and the analog to Ser425 (Ser499 in the rabbit heart α1C sequence) is not part of a PKC consensus motif. This suggests that the molecular mechanism underlying the PKC-dependent modulation of N-type calcium channel activity is fundamentally different from that for the rabbit cardiac L-type isoform.

Model for the G Protein Inhibition of N-type Calcium Channels—Over the past several years, a number of studies have examined the molecular determinants of G protein modulation of presynaptic calcium channels (18, 28, 29, 31–34, 36–40). It is now widely accepted that the Gbg subunits are the active G protein species mediating the antagonistic effect on presynaptic calcium channel activity (28, 29, 31, 32). The G protein bg subunits are able to interact with two separate regions within the calcium channel domain I-II linker (29, 36). We have previously suggested that the PKC dependent phosphorylation of one of these two I-II linker Gbg binding motifs might mediate the previously identified antagonistic effect of PKC stimulation on G protein sensitivity (29). Here, we present further confirmation for the involvement of the domain I-II linker region in direct G protein modulation of N-type calcium channels. Each, the double alanine mutant and the T422E and T422A constructs, exhibited a significantly reduced sensitivity to somatostatin-induced Gbg modulation. Neither of these substitutions resulted in significant changes in current kinetics or half-activation potential, minimizing the possibility of an indirect effect due to changes in channel gating. We suggest the possibility that these substitutions more likely reduce the affinity of the channel for binding Gbg.

In addition to the domain I-II linker, the carboxyl terminus...
as well as domain I (38) and the amino terminus (39) of the calcium channel α1 subunit have all been implicated in direct G protein modulation. Here, we present corroborating evidence that the carboxyl terminus contributes to a portion of the overall G protein inhibition of N-type channels. A deletion of one-third of the carboxyl-terminal region significantly reduced but did not eliminate the somatostatin-induced inhibition of α1B channels. The deleted portion contains a highly conserved motif that was recently implicated in Gbg binding to α1E channels (33). Together with our results, it appears that while the carboxyl terminus probably contributes to Gbg binding to α1E channels, the major determinant of G protein action is the domain I-II linker. That the carboxyl terminus contributes to Gbg binding could account for the observation that α1B or α1E channel constructs containing the α1C I-II linker remain sensitive to G protein inhibition (33, 34) despite the fact that α1C I-II linker fusion proteins do not bind Gbg. It is possible that the carboxyl region cooperatively enhances binding to the α1C I-II linker in these chimeric constructs.

Kinetic modeling of G protein inhibition of single N-type calcium channels has shown that G protein binding results in a reluctance of channels to undergo transitions from the closed states to channel opening (27). Upon membrane depolarization, G proteins dissociate from the channels prior to opening, and the associated increase in first latency to opening results in a decrease in peak current amplitude. Within the framework of this model, the binding of Gbg to the domain I-II linker and perhaps the carboxyl terminus mediates the stabilization of the closed state by inducing a conformational change in the channel protein. The translation of G protein binding into a change in channel function may be mediated by residues located in domain I, consistent with previous studies (34, 38, 39).

Overall, a model emerges in which Gβγ interacts with two high affinity regions within the calcium channel domain I-II linker (residues 353–389 and 410–428 (29, 36) and a lower affinity site in the carboxyl terminus (33). PKC-dependent phosphorylation probably destabilizes Gβγ binding to the second site within the I-II linker Gβγ binding domain (i.e. residues 410–428), thereby shifting the voltage dependence of Gβγ dissociation to more hyperpolarized potentials and perhaps reducing the increase in first latency to opening associated with Gβγ binding (27). Single channel experiments will ultimately be required to confirm any effects of phosphorylation (and of the T422E substitution) on first latency.

Implications of Dual PKC Sites for Calcium Channel Modu-
neurotransmitter release at presynaptic nerve terminals. The selective phosphorylation of Ser^425 would result in up-regulation by ~50%, and the subsequent stimulation of the G protein pathway would produce a ~50% inhibition of the PKC-enhanced current, resulting in an overall inhibition of ~25%. Phosphorylation of Thr^422 (or of both residues simultaneously) would also result in the 50% up-regulation, but subsequent G protein inhibition would be attenuated to ~20% and result in a net up-regulation by ~20%. Since activation of PKC and G protein pathways individually would respectively produce a 50% increase and a 50% decrease in control current levels, Thr^422 and Ser^425 may function as an integration center for inputs from PKC and G protein pathways to produce multiple levels of calcium channel activity. Together with recent reports that protein kinase C-dependent phosphorylation disrupts the interactions between syntaxin and the calcium channel II-III linker (16), this convergence of second messenger pathways directly at the level of the calcium channel α1 subunit would provide a mechanism to precisely control neurotransmitter release at presynaptic nerve terminals.

REFERENCES
1. Mori, Y., Friedrich, T., Kim, M.-S., Mikami, A., Nakai, J., Ruth, P., Bosse, E., Hofmann, F., Flockerzi, V., Furuthi, T., Mikoshiba, K., Imoto, K., Tanabe, T., and Numa, S. (1991) Nature 350, 398–402
2. Sather, W. A., Tanabe, T., Zhang, J. F., Mori, Y., Adams, M. E., and Tsien, R. W. (1993) Neuron 11, 291–303
3. Stea, A., Tomlinson, W. J., Bourinet, E., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1994) Proc. Natl. Acad. Sci. U. S. A. 91, 10567–10580
4. Williams, M. E., Brust, P. F., Feldman, D. H., Patti, S., Simerson, S., Maruishi, A., McCue, A. F., Velieelbe, G., Ellis, S. B., and Harpold, M. (1992) 389–385
5. Dubel, S. J., Starr, T. V. B., Hell, J., Ahlijanian, M. K., Enyeart, J. J., Catterall, W. A., and Snutch, T. P. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 5058–5062
6. Fujita, Y., Mynieiff, M., Dikrein, B. T., Kim, M., Niidome, T., Nakai, J., Friedrich, T., Iwase, N., Miyata, T., Furuthi, T., Furutama, D., Mikoshiba, K., Mori, Y., and Beam, K. G. (1993) Neuron 10, 585–598
7. Williams, M. E., Feldman, D. H., McCue, A. F., Brenner, R., Velieelbe, G., Ellis, S. B., and Harpold, M. M. (1992) Neuron 8, 71–84
8. Tomlinson, W. J., Stea, A., Bourinet, E., Charlet, P., Nargeot, J., and Snutch, T. P. (1993) Neuropharmacology 32, 1117–1126
9. Fisher, S. E., Cicodicilia, A., Tanaka, K., Curci, A., Descat., S., D’Urso, M., and Craig, I. W. (1997) Genomics 45, 340–347
10. Soong, T. W., Stea, A., Hodson, C. D., Dubel, S. J., Vincent, S. R., and Snutch, T. P. (1993) Science 260, 1133–1136
11. Williams, M. E., Marubio, L. M., Deal, C. R., Hans, M., Brust, P. F., Philipson, L. H., Miller, R. J., Johnson, E. C., Harpold, M. M., and Ellis, S. B. S. (1994) J. Biol. Chem. 269, 22427–22557
12. Perez-Reyes, E., Cribs, L., Daud, A., Lacerda, A. E., Barclay, J., Williamson, M. P., Fox, M., Rees, M., and Lee, J. H. (1998) Nature 391, 896–900
13. Westenbroek, R. E., Hell, J. W., Warbemn C., Dubel, S. J., Snutch, T. P., and Catterall, W. A. (1992) Neuron 9, 1099–1115
14. Westenbroek, R. E., Sakurai, T., Elliott, E. M., Hell, J. W., Starr, T. V., Snutch, T. P., and Catterall, W. A. (1996) J. Neurosci. 15, 6403–6418
15. Sheng, Z., Petro, T., Takahashi, M., and Catterall, W. A. (1994) Neuron 13, 1303–1313
16. Yokoyama, C. T., Sheng, Z., and Catterall, W. A. (1997) J. Neurosci. 17, 6929–6938
17. Dunlap, K. and Fischbach, G. D. (1981) J. Physiol. 317, 519–535
18. Bourinet, E., Soong, T. W., Stea, A. and Snutch, T. P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 1486–1491
19. Stea, A., Soong, T. W., and Snutch, T. P. (1995) Neuro 5, 929–940
20. Swartz, K. J., Merrit, A., Bean, B. P., and Lovinger, D. M. (1993) Nature 361, 165–168
21. Swartz, K. J. (1993) Neuron 11, 305–320
22. Ikeda, S. R., and Schofield, G. (1989) J. Physiol. 409, 221–240
23. Bean, B. P. (1989) Nature 340, 153–156
24. Boland, L. M., and Bean, B. P. (1993) J. Neurosci. 13, 515–533
25. Mintz, I. M., and Bean, B. P. (1993) Neuron 10, 889–889
26. Hille, B. (1994) Trends Neurosci. 17, 531–536
27. Patil, P. G., de Leon, M., Reed, R. R., Dubel, S., Snutch, T. P., and Yue, D. T. (1996) Bioch. J. 71, 261–262
28. Zamponi, G. W., and Snutch, T. P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 4035–4039
29. Zamponi, G. W., Bourinet, E., Nelson, D., Nargeot, J., and Snutch, T. P. (1997) Nature 385, 442–446
30. Zamponi, G. W., Bourinet, E., and Snutch, T. P. (1996) J. Membr. Biol. 151, 77–90
31. Herlitze, S., Garcia, D. E., Mackie, K., Hille, B., Scheuer, T., and Catterall, W. A. (1996) Nature 380, 255–262
32. Ikeda, S. R. (1996) Nature 380, 255–258
33. Quin, N., Platano, Olesse, R., Stefani, E., and Birnbaumer, L. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 8866–8871
34. Zhang, J. F., Elinor, P. T., Aldrich, R. W., and Tsien, R. W. (1996) Neuron 17, 991–1003
35. Shistik, E., Ivanina, T., Blumenstein, Y., and Dascal, N. (1998) J. Biol. Chem. 273, 17901–17909
36. DeWaard, M., Liu, H., Walker, D., Scott, V. E. S., Gurnett, C. A., and Campbell, K. F. (1997) Nature 385, 446–450
37. Page, K. M., Stephens, G. J., Berrow, N. S., and Dolphin, A. C. (1997) J. Neurosci. 17, 1330–1338
38. Stephens, G. J., Canti, C., Page, K. M., and Dolphin, A. C. (1998) J. Physiol. 509, 163–169
39. Page, K. M., Canti, C., Stephens, G. J., Berrow, N. S., and Dolphin, A. C. (1998) J. Neurosci. 18, 4815–4824
40. Herlitze, S., Hockermann, G. H., Scheuer, T., and Catterall, W. A. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 1532–1536