Identification and characterization of L- and D-lactate-inducible systems from *Escherichia coli* MG1655, *Cupriavidus necator* H16 and *Pseudomonas* species

Ernesta Augustiniene1 & Naglis Malys1,2

Lactic acid is an important platform chemical used for the production of various compounds including polylactic acid (PLA). Optically pure L- and D-lactic acids are required to obtain high quality PLA. To advance the development and selection of microbial strains for improved production of lactic acid enantiomers, a high-throughput screening, dynamic pathway control, or real-time monitoring are often applied. Inducible gene expression systems and their application in the genetically encoded biosensors contribute to the development of these techniques and are important devices for the advancement of lactic acid biotechnology. Here, we identify and characterize eleven lactate-inducible systems from *Escherichia coli*, *Cupriavidus necator*, and *Pseudomonas* spp. The specificity and dynamics of these systems in response to L- and D-lactate, or structurally similar compounds are investigated. We demonstrate that the inducible systems *EcLldR/P* lldP and *CnGntR/P* H16_RS19190 respond only to the L-lactate, exhibiting approximately 19- and 24-fold induction, respectively. Despite neither of the examined bacteria possess the D-lactate-specific inducible system, the *PaPdhR/P* lldP and *PfPdhR/P* lldP are induced approximately 37- and 366-fold, respectively, by D-lactate and can be used for developing biosensor with improved specificity. The findings of this study provide an insight into understanding of L- and D-lactate-inducible systems that can be employed as sensing and tuneable devices in synthetic biology.

Optically pure L- and D-lactic acids are used for synthesis of bioplastic PLA1 that has shown potential to replace traditional petroleum-based plastics. PLA exhibits physicochemical, mechanical, and thermal properties comparable to industrial plastics and most importantly, it is biodegradable contributing to the reduction of environmental pollution and plastic recycling costs2. Naturally, L- or D-lactic acid can be produced by lactic acid bacteria, some *Bacillus* species and filamentous fungi at close to 100% theoretical yields3. Seeking to reduce the expenditure of fermentation and substrate-associated costs, genetically modified strains are increasingly being developed for utilization of alternative carbon sources4.

Bacteria can not only produce lactic acid but also utilise it as a carbon source, typically involving two types of lactate dehydrogenases, NAD-dependent lactate dehydrogenases (nLDHs) and NAD-independent lactate dehydrogenases (iLDHs). nLDH catalyses the oxidation of lactate to pyruvate by using NADH as electron acceptor, whereas iLDH uses a flavin-dependent mechanism5. iLDHs are classified into NAD-independent L-lactate dehydrogenase (L-iLDH) and NAD-independent D-lactate dehydrogenase (D-iLDH) according to the substrate specificity. Most of the L-iLDHs belong to α-hydroxy acid oxidizing flavoproteins family and use flavin mononucleotide (FMN) as a cofactor. These dehydrogenases can be divided into three groups by the electron acceptor, which can utilise quinones, oxygen or cytochrome c5. D-iLDHs potential grouping is similar. Most bacterial D-iLDHs use flavin adenine dinucleotide (FAD) as a cofactor and belong to FAD-binding 4 family. According to the electron acceptor, LDH members of this family are further divided into quinone- or cytochrome c-dependent D-iLDH, and Fe-S D-iLDH5,6.

1Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania. 2Department of Organic Chemistry, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania. *email: naglis.malys@ktu.lt*
Genes encoding for L-iLDH, D-iLDH and lactate permease often form lactate utilization operon, the expression of which is regulated by a transcription factor. Such lactate catabolism-related genes and their corresponding transcriptional regulators (TRs) have been identified previously in several classes of bacteria including Gammaproteobacteria\(^7\)-\(^9\), Actinobacteria\(^11\), Bacilli\(^12\)-\(^13\), Deltaproteobacteria\(^15\), and Clostridia\(^14\). A majority of the lactate utilization operons reported so far are controlled by the GntR family TRs with one exception of LysR family regulator in *Shewanella oneidensis*\(^9\).

Inducible gene expression systems, composed of inducer-responsive TR and associated genetic elements including promoter and operator sequences, have increasingly been used for developing genetically encoded biosensors. Some inducible systems respond to distinct chemical ligands and they can be used for real-time monitoring of these compounds extracellularly and intracellularly, including applications such as a high-throughput screening of mutant libraries, dynamic pathway control, and adaptive laboratory evolution\(^7\)-\(^14\). For L-lactate, an inducible gene expression system from *E. coli* has been previously applied for monitoring mammalian cell cultures\(^9\). Recently, an inducible system exhibiting sixfold higher induction by D-lactate than that by L-lactate has been reported in *Pseudomonas fluorescens*\(^8\).

Here, we report the identification, characterization, and specificity of L- and D-lactate inducible-gene expression systems from gammaproteobacteria *E. coli* MG1655 and *Pseudomonas* spp., and betaproteobacterium *C. necator* H16. To identify lactate-responsive inducible systems, the L- and D-lactate catabolism-related gene clusters were analysed using a generalised genome-wide approach described previously\(^20\). The putative lactate-inducible systems are investigated for their response to L- and D-lactate, as well as structurally similar glycolate, glyoxylate, 3-hydroxypropionate and pyruvate, followed by a comprehensive characterization and specificity evaluation. Furthermore, to expedite synthetic biology and metabolic engineering efforts, the dynamics of inducible systems is parameterized and their suitability for controlling orthogonal gene expression is demonstrated.

Results
Identification of putative lactate-inducible systems in *E. coli* MG1655, *C. necator* H16, and *Pseudomonas* spp.
Several lactate catabolism-related gene clusters have been previously characterized in *E. coli*, *P. aeruginos*a, and *P. fluorescens*\(^7\)-\(^9\),\(^21\). To identify putative inducible systems, we searched GenBank (www.ncbi.nlm.nih.gov)\(^22\) for gene clusters with commonly occurring arrangements, where TR is transcribed in either the same or different orientation of catabolism-related genes and it either forms a part of or is adjacent to such gene cluster. Based on the homology of functional genes encoding LDHs and lactate permeases, we identified potential operons that contained at least two genes related to the lactate catabolism and the adjacent TR gene in *E. coli* MG1655, *C. necator* H16, and *Pseudomonas* spp.. The glycolate metabolism related gene clusters were also considered, as their involvement in the D-lactate catabolism has been reported previously\(^23\). All gene clusters were grouped according to the following two rules. First, they were divided into groups (I, II and III) according to the type of enzyme, which was determined by the requirement of cofactor and electron acceptor as described above. Second, groups were divided into subgroups (1, 2 and 3) based on the protein homology (with amino acid sequence identity of more than 40%) and the TR family (Fig. 1). Subsequently, identified gene clusters were divided into group I, representing FMN-dependent L-iLDHs (EC 1.1.2.3) and FAD-dependent D-iLDHs (EC 1.1.2.4), group II, containing 3-component Fe-S iLDHs\(^24\), and group III, associated with the glycolate catabolism.

C. necator H16 gene cluster H16_RS19175-H16_RS19195 was allocated to the group II, despite that the lactate permease (locus tag H16_RS19175) exhibits a high homology with 65% amino acid sequence identity to the ldp of *E. coli* MG1655 (locus tag b3603) from group I. In this case, other three genes encode proteins with 34%, 40%, and 31% sequences identity to the 3-component Fe-S iLDH encoded by ykgEFG operon from *E. coli* (Supplementary Table S1) and 32%, 40%, and 30% amino acid sequences identity to *S. oneidensis* iLDH\(^24\).

Another lactate utilization operon identified in *C. necator* H16 is controlled by potential inducible system CnGntR/P\(^7\). Iron-sulfur cluster-binding protein (locus tag H16_RS19180) (Fe-S)-binding protein (locus tag H16_RS19190) encoded by genes of this operon exhibit 40% and 40.5% sequence identity, respectively, with the proteins encoded by the gene cluster H16_RS06695-H16_RS06695 that contains potential inducible system CnIclR/P\(^7\) (Supplementary Table S1). Transcription factors of group II share no significant similarity with each other and belong to different TR families: GntR, AraC, and IclR. Therefore, all three gene clusters of group II were allocated into different subgroups 1, 2 and 3.

Two analogous *E. coli* MG1655 and *P. putida* KT2440 glycolate catabolism-related gene clusters containing GntR family TR were allocated to the subgroup 1 of group III. Although, similar gene cluster with genes glcD, glcE, glcF encoding proteins with greater than 47% sequence identity to *E. coli* MG1655 homologs was also identified in *C. necator* H16 (Supplementary Table S1), the expression of these genes is potentially regulated by the LysR family TR and, therefore this gene cluster was allocated to subgroup 2 of group III.

Altogether, eleven putative lactate catabolism-related gene clusters were identified in *E. coli* MG1655, *C. necator* H16, and *Pseudomonas* spp. Corresponding putative lactate-inducible gene expression systems, composed of TR gene and relevant promoter/operator region, were selected for further characterization.

Lactate-inducible systems: validation and evaluation. In order to examine the response of putative lactate-inducible systems to the L- and D-lactate or structurally similar compounds such as glycolate, glyoxylate, 3-hydroxypropionate and pyruvate, two types of plasmid constructs were assembled: the first carrying inducible promoter only and the second carrying inducible promoter and TR gene (Fig. 2a and Supplementary Information). To enable the measurement of promoter activity, both types of constructs include mRFP reporter gene located downstream to the inducible promoter. In the second type of construct, the TR gene is positioned in the opposite direction to the inducible promoter and reporter gene. *E. coli* DH5α, *C. necator* H16, and *P. putida*
KT2440 strains transformed with these constructs were used as whole-cell biosensors to evaluate the system's response to different ligands. Logarithmically growing cells in minimal medium were used to measure the RFP fluorescence output 6 h after addition of the inducer (Fig. 2b–d) ensuring that the gene expression is close to steady-state.

Amongst eleven putative lactate-inducible systems, two L-lactate specific systems were identified with EcLldR/PlldP characterized previously19,25,26. The EcLldR/PlldP (plasmid pEA015) exhibited approximately a 19-fold dynamic range with 5 mM L-lactate (Table 1 and Fig. 2b), complementing results reported in19. For gene clusters of 3-component iLDH (group II; Fig. 1), putative inducible systems CnGntR/PH16_RS19190, EcRclR/Pb0306, and CnIclR/PH16_RS06900 were proposed. Different type of TR was identified for each of three gene clusters in this group. Moreover, the 3-component iLDH proteins exhibit less than 40% identity between homologs encoded by gene clusters in group II, indicating a high degree of genetic diversification. This implicates that different mechanisms have likely evolved for the gene expression regulation of 3-component iLDH operons (Fig. 1). The CnGntR/PH16_RS19190 was induced approximately 24-fold by L-lactate (Table 1 and Fig. 2c). It appears to be controlled by the GntR family TR evidently involved in the L-lactate catabolism-related gene expression regulation (Supplementary Fig. S2). Whereas EcRclR/Pb0306 or CnIclR/PH16_RS06900 showed only a minor response to the glycolate of approximately twofold or D-lactate and glycolate of approximately 2- and threefold, respectively (Fig. 2c). Intriguingly, RclR is a redox-regulated transcription factor of the AraC family, which activates the expression of genes required for survival of reactive chlorine stress27. Besides, the expression from promoter Pb0306 is subjected to the carbon catabolic repression in the presence of glucose and it is derepressed when cells are grown using L- and D-lactate as a carbon source (pEA032; Fig. 2c and Supplementary Fig. S3).

Second C. necator H16 gene cluster, allocated to the group II and containing genes encoding 3-component iLDH, revealed putative inducible system CnIclR/PH16_RS06900 with atypical transcription factor IclR (Fig. 1). C. necator H16 cells harbouring plasmid pIE005 with promoter and TR gene (CnIclR/PH16_RS06900) showed marginally higher induction level of approximately 21- and threefold with D-lactate and glycolate, respectively, than those harbouring pIE004 with promoter only (CnP PH16_RS06900) (Fig. 2a,c). These results suggest that either the IclR has minor effect on the activation of promoter CnP PH16_RS06900 or the expression of iclR gene is suppressed under tested conditions. To investigate this further, the iclR gene was placed under control of either a strong constitutive synthetic promoter P1328 or inducible system EcAraC/ParaBAD, resulting in the construct pEA014 or pEA028, respectively. The comparison of absolute normalized fluorescence outputs, obtained using pIE005, pEA014 and pEA028, showed that the placing of iclR gene under the control of either constitutive or inducible promoter significantly affects the activity of CnP PH16_RS06900. However, the IclR has little effect on the inducible system's response to D-lactate and glycolate (Supplementary Figs. S4 and S5).

Subsequently, we hypothesized that CnP PH16_RS06900 could be regulated by unknown transcription factor with one specific candidate identified as FadR encoded by a gene located downstream to the iclR. We constructed two additional plasmids pEA019 and pEA020 containing fadR gene (Supplementary Fig. S4a). However, C. necator...
Figure 2. Quantitative evaluation of lactate-inducible systems. (a) Summary of the identified inducible systems, including the system type (I, II and III) based on the gene cluster grouping in Fig. 1, system origin, TR name, inducible promoter or system, and corresponding plasmid construct. Schematic illustration of plasmid constructs is provided in the Supplementary Fig. S1. (b–d) Single time-point RFP fluorescence measurements taken 6 h after addition of inducer for inducible systems type I (b), II (c), and III (d). The fluorescence output was determined in the absence of inducer (white) and in the presence of either L-lactate (light grey), D-lactate (dark grey), or glycolate (black) to a final concentration of 5 mM. Inducible systems from *E. coli* and *C. necator* were assayed using *E. coli* DH5α and *C. necator* H16, respectively, as hosts, whereas systems from *Pseudomonas* spp. were tested in *P. putida* KT2440. Cells were grown in minimal medium containing 0.4% glucose (in the case of *C. necator* H16 supplemented with 0.4% gluconate). Error bars represent standard deviations of three biological replicates,*p < 0.001, unpaired two-tailed t-test.

Table 1. Parameters of the lactate-inducible systems. Data are mean ± SD, n = 3. ND—not determined.

Construct (inducible system)	Application host	Inducer	Dynamic range, in -fold	\(K_m\) (mM)	Hill coefficient
pEA015 (EclLdR/P_lldP)	*E. coli* DH5α	L-lactate	19.0 ± 2.3\(^a\)	0.22 ± 0.05	1.18 ± 0.06
pEA018 (PdPldhR/P_lldP)	*P. putida* KT2440	L-lactate	43.9 ± 6.7\(^a\)	0.04 ± 0.01	1.16 ± 0.08
pEA021 (PdPldhR/P_lldP)	*P. putida* KT2440	L-lactate	42.8 ± 9.4\(^b\)	ND	ND
pEA027 (PdPldhR/P_lldP)	*P. putida* KT2440	L-lactate	42.8 ± 9.4\(^b\)	ND	ND
pEA007 (CnGntR/P_cn_RS19190)	*C. necator* H16	L-lactate	23.7 ± 4.9\(^a\)	0.67 ± 0.21	1.19 ± 0.10
pE005 (CnIclR/P_cn_RS06900)	*C. necator* H16	glycolate	2.6 ± 0.5\(^b\)	ND	ND
pEA021 (CnLysR/P_cn_RS15430)	*C. necator* H16	D-lactate	3.9 ± 0.6\(^b\)	ND	ND
		glycolate	7.6 ± 0.8\(^b\)	ND	ND
elucidate the regulation of glycolate-inducible system from P. putida grown in minimal medium with glucose as a carbon source (Fig. 2b). Further research is required to examine.

Cn fold in response to D-lactate, was also induced approximately 672-fold by L-lactate (Table 1). Similarly, and absorbance were monitored over time using plasmid-transformed C. necator (pEA007), of homology to the inducible system Pa expression here is activated in the presence of either L- or D-lactate. Intriguingly, despite exhibiting a high level respectively) and D-lactate (43- and 37-fold, respectively). TRs of these systems act as repressors and the gene system (Supplementary Fig. S7). Absolute normalized fluorescence results showed that P dhR/P (pEA015) and P dfhR/P (pEA025) determined in response to different concentrations of either L- and D-lactate 6 h after inducer addition. Level range of L- or D-lactate varied from 0 to 5 mM (0, 0.0003, 0.0006, 0.0012, 0.0024, 0.0048, 0.009, 0.019, 0.039, 0.078, 0.156, 0.313, 0.625, 1.25, 2.5, and 5 mM). The dose–response curves were fitted using Hill function as described in Methods. The maximum level of reporter output was set to 100%. K_d is marked using a dotted line. Cells were grown in minimal medium containing 0.4% glucose (in the case of C. necator H16 supplemented with 0.4% gluconate). Error bars represent standard deviations of three biological replicates. Source data are provided in Supplementary Data file.

Figure 3. Dose–response curves of L- and D-lactate inducible systems. Relative normalized fluorescence of E. coli DH5α, C. necator H16 and P. putida KT2440 harbouring pEA015 with EcLdr/P_dhp, pEA007 with CnGntR/P_H16_RS19190 and pEA018 with PfdhR/P_dhp, and pEA025 with Pf dhR/P_dhp determined in response to different concentrations of either L- and D-lactate 6 h after inducer addition. Level range of L- or D-lactate varied from 0 to 5 mM (0, 0.0003, 0.0006, 0.0012, 0.0024, 0.0048, 0.009, 0.019, 0.039, 0.078, 0.156, 0.313, 0.625, 1.25, 2.5, and 5 mM). The dose–response curves were fitted using Hill function as described in Methods. The maximum level of reporter output was set to 100%. K_d is marked using a dotted line. Cells were grown in minimal medium containing 0.4% glucose (in the case of C. necator H16 supplemented with 0.4% gluconate). Error bars represent standard deviations of three biological replicates. Source data are provided in Supplementary Data file.

H16 cells harbouring plasmids pEA019 and pEA020 exhibited fluorescence outputs similar to those observed with plE005 and plE004 (Supplementary Fig. S4b and Fig. 2c). Furthermore, the comparison of absolute normalized fluorescence outputs, obtained using plE005, pEA019 and pEA020 in E. coli DH5α, showed no response to either D-lactate or glycolate (Supplementary Fig. S6). Above results suggest that it is unlikely that FadR regulates of homology to the inducible system Pa expression here is activated in the presence of either L- or D-lactate. Intriguingly, despite exhibiting a high level respectively) and D-lactate (43- and 37-fold, respectively). TRs of these systems act as repressors and the gene system (Supplementary Fig. S7). Absolute normalized fluorescence results showed that P dhR/P (pEA015) and P dfhR/P (pEA025) determined in response to different concentrations of either L- and D-lactate 6 h after inducer addition. Level range of L- or D-lactate varied from 0 to 5 mM (0, 0.0003, 0.0006, 0.0012, 0.0024, 0.0048, 0.009, 0.019, 0.039, 0.078, 0.156, 0.313, 0.625, 1.25, 2.5, and 5 mM). The dose–response curves were fitted using Hill function as described in Methods. The maximum level of reporter output was set to 100%. K_d is marked using a dotted line. Cells were grown in minimal medium containing 0.4% glucose (in the case of C. necator H16 supplemented with 0.4% gluconate). Error bars represent standard deviations of three biological replicates. Source data are provided in Supplementary Data file.

Parameterisation of lactate-inducible systems. To obtain data of induction kinetics, the fluorescence and absorbance were monitored over time using plasmid-transformed E. coli (pEA015), C. necator (pEA007), and P. putida (pEA018, pEA025, pEA027) carrying inducible systems EcLdr/P_dhp, CnGntR/P_H16_RS19190, Pf-dhR/P_dhp, Pf dhR/P_dhp, PdhR/P_dhp and PdhR/P_dhp, respectively (Supplementary Figs. S8 and S9, respectively). Cells were grown in minimal medium containing 0.4% glucose or gluconate (in the case of C. necator H16) and supplemented with L- or D-lactate to a final concentration of 5 mM. Furthermore, L-lactate specific inducible systems EcLdr/P_dhp (pEA015) and CnGntR/P_H16_RS19190 (pEA007) along with systems PaPdhR/P_dhp (pEA018) and Pf-dhR/P_dhp (pEA025), responding to both L- and D-lactate, were subsequently evaluated for their dose–response using different concentrations of inducer (from 0 to 5 mM) (Fig. 3). A maximum concentration of 5 mM was used to avoid growth inhibition observed at higher concentrations of lactate. Generally, at this concentration
all inducible systems were fully saturated. The parameters of lactate-inducible systems that respond to L-lactate or both lactic acid enantiomers are shown in Table 1. Both L-lactate specific inducible systems EcLldR/PlldR (pEA015) and CnGntR/P_H16_RS19190 (pEA007) exhibit K_m values slightly below of 1 mM, indicating that these systems respond to μM–mM concentration range of L-lactate. The EcLldR-regulated gene expression can be tuned over a slightly lower range of approximately 9 μM–1 mM than that of the CnGntR (approximately 80 μM–5 mM). Dose response analysis showed that inducible systems PaPdhR/PlldR (pEA018) and PPaPdhR/PlldR (pEA025) exhibit similar affinities to both lactic acid enantiomers. The gene expression using these constructs can be tuned in the range of approximately 9 μM–2 mM of L- or D-lactate.

Determination of inducible systems specificity. Determination of inducible system specificity can provide a better understanding about the affinity of TR to the lactate or structurally similar compounds, the structural properties required for transcription factor binding, and may allow the list of analogous metabolites to be expanded. Therefore, the response of selected inducible gene expression systems including EcLldR/PlldR (pEA015), CnGntR/P_H16_RS19190 (pEA007), PaPdhR/PlldR (pEA018), and PPaPdhR/PlldR (pEA025) to glyoxylate, 3-hydroxypropionate, and pyruvate in addition to glycolate, L- and D-lactate was investigated. Each inductor was added to a final concentration of 5 mM and fluorescence outputs were monitored over time of logarithmically growing cultures in minimal medium containing 0.4% glucose or gluconate (in the case of C. necator H16). The results showed that structurally similar compounds, such as glyoxylate, 3-hydroxypropionate, and pyruvate do not induce the tested systems. Inducible systems EcLldR/PlldR (pEA015) and CnGntR/P_H16_RS19190 (pEA007) are specific only to the L-lactate, whereas the PaPdhR/PlldR (pEA018) and PPaPdhR/PlldR (pEA025) do not differentiate between L and D enantiomers and respond to both optical forms of lactate (Fig. 4).

Improvement of the L-lactate-inducible system. In order to establish if the inducible system EcLldR/PlldR can be improved by altering LldR expression, constructs containing an intergenic region with promoter PlldR and the gene of the transcriptional regulator (LldR) under control of either the synthetic promoter P13 (pEA015) or arabinose inducible system E.cAraC/ParaBAD (pEA033), were evaluated (Fig. 5). Construct pEA016 containing only the intergenic region with promoter PlldR was used as a negative control. Single time-point fluorescence measurements of E. coli harbouring pEA015, pEA033, and pEA016 were performed in the absence and presence of L-lactate. Results showed that 6 h after supplementation with 5 mM L-lactate and 0.2% L-arabinose (in the case of pEA033) the absolute normalized fluorescence was very similar for all three constructs, whereas the overexpression of lldR (pEA015 and pEA033) resulted in reduced fluorescence when L-lactate was absent and pEA015 exhibited almost a complete inhibition. Further analysis revealed that the gene expression was induced by approximately 59-fold for pEA015 and 18-fold for pEA033 (Fig. 5b). This suggests that the promoter P13 likely enhances the lldR expression more than the E.cAraC/ParaBAD and the increase in the LldR amount can stimulate repression of the EcLldR/PlldR in the absence of L-lactate.

Simultaneously, to improve inducible system EcLldR/PlldR, the application of different strength RBSs controlling the LldR synthesis was investigated in the construct pEA015 containing TR gene under control of constitutive promoter P13. Theoretical translation rates of RBS variants were estimated using an RBS calculator (https://salislab.net/software). Absolute normalized fluorescence results obtained by using RBS variants showed that the sequences with different theoretical translation rates exhibit a statistically significant effect on the gene expression and EcLldR/PlldR induction (Supplementary Fig. S10). A much improved dynamic range of approximately 100- and 122-fold was achieved when RBSs with theoretical translation rates of 179.032.18 and 51.067.85 A.U., respectively, were introduced into pEA015 comparing to approximately a 59-fold induction obtained using RBS with a theoretical translation rate of 19.143.57 A.U. Altogether, these results show that the inducible system EcLldR/PlldR can be improved by fine-tuning the lldR expression.

Applicability of inducible systems in non-host microorganisms. To our knowledge, the lactate-inducible gene expression systems have not been previously studied in non-host organisms. To evaluate if the inducible systems identified in this study can be used in other host microorganisms, most prominent systems
such as EcLldR/P\textsubscript{lldP}, PfPdhR/P\textsubscript{lldP} and PdPhR/P\textsubscript{lldP} were tested in betaproteobacteria C. necator H16 and gammaproteobacterium P. putida KT2440. First, the inducible system EcLldR/P\textsubscript{lldP} was introduced into these strains on the plasmids pEA015 and pEA033. No significant change in fluorescence output was observed in the presence of L-lactate, when plasmid-transformed cells were grown in minimal medium with 0.4% glucose (P. putida) or gluconate (C. necator) as carbon source (Supplementary Fig. S11 for pEA015 and Supplementary Fig. S12a for pEA033). However, when C. necator cells, harbouring pEA033 with lldR under control of the EcAraC/P\textsubscript{araBAD}, were grown using L-lactate as sole carbon source, approximately a 58-fold induction was observed (Supplementary Fig. S12). These results show that in C. necator H16, when lldR is under control of arabinose-inducible system (pEA033), the EcLldR/P\textsubscript{lldP} is activated in the presence of L-lactate as sole carbon source and it seemingly overcomes a threshold associated with the carbon catabolite repression. Our results complement the recently published study that analyses the catabolic repression of the lldPDE system from E. coli MG1655 in the presence of glucose. Second, the inducible systems PfPdhR/P\textsubscript{lldP} (pEA025) and PlPdhR/P\textsubscript{lldP} (pEA027), induced by both lactic acid enantiomers in P. putida KT2440 (Fig. 2a), were investigated using C. necator H16 as a host (Supplementary Figs. S13 and S14). RFP fluorescence outputs revealed that the PfPdhR/P\textsubscript{lldP} and PlPdhR/P\textsubscript{lldP} are induced approximately 7- and sixfold, respectively, by L-lactate and 14- and 12-fold, respectively, by D-lactate (Fig. 6).

Discussion

The replacement of chemical synthesis by renewable bio-based processes is becoming a major international objective aimed at the reducing reliance on fossil fuels and energy. The lactic acid is an important platform chemical with multiple applications including synthesis of biodegradable PLAs. In the last decade, substantial biotechnology efforts have been made to identify and develop new microbial strains suitable for the bio-based production of L- and D-lactate. The lactic acid was ranked as top one bio-based chemical opportunities in the UK, due to the large market potential and environmental concerns related to the use of fossil-derived and non-renewable plastics.

TF-based inducible gene expression systems are useful tools for screening and development microbial strains with improved production of chemical compounds including lactic acid. Inducible systems have been widely used in the synthetic biology and biotechnology, helping to the development of improved biosynthesis processes and due to their adaptability to design–build–test–learn cycle. In this study, we identified eleven putative gene clusters related to the lactate catabolism and pursued characterization of corresponding inducible gene expression systems from E. coli MG1655, C. necator H16, and Pseudomonas spp.. Amongst these, two inducible systems specific to the L-lactate were characterized. The EcLldR/P\textsubscript{lldP} (pEA015) dynamic range of approximately 19-fold was in agreement with an 18.63-fold induction observed using the same P\textsubscript{lldP} promoter and LldR TR from E. coli in the presence of 14 mM L-lactate.

All inducible systems from lactate catabolism-related gene clusters in group I (Fig. 1) are regulated by TRs (LldR and PdhR) that belong to the FadR subfamily of the GntR family. Members of same subfamily control inducible systems CnGntR/P\textsubscript{lldP} (pEA007), EcGlC/P\textsubscript{lldP} (pEA012), and PfGlC/P\textsubscript{lldP} (pEA012) of groups II and III. The FadR subfamily is a diverse group of TRs that regulate various metabolic processes in bacteria by binding organic ligands, mostly carboxylic acids, and then undergoing conformational changes affecting the DNA-binding. Members of this family of TRs are involved in the regulation of various central metabolism-related pathways including gluconate (GntR), galactonate (DgoR), glycolate (GlC), lactate (LldR), and pyruvate (PdhR). In the case of gluconate catabolism, GntR acts as a transcriptional repressor and the gnt gene cluster expression is derepressed in the presence of gluconate that interferes with the TR binding to the promoter, as
first reported in *Bacillus subtilis*37. Moreover, *gnt* operon expression can be regulated by the catabolite control protein (CcpA) through the carbon catabolite repression and activated by the cAMP receptor protein (CRP)-cAMP complex38. Similarly, our data demonstrate that the expression of lactate catabolism-related operons in group I are regulated by the L- and D- lactate and carbon catabolite repression.

Inducible systems found to be regulated by FadR subfamily TRs and responding to the L- or D-lactate were characterized for their specificity and orthogonality in different bacterial species. Our results demonstrated that the selected inducible systems *Ec* LldR/P(lldP) (pEA015), *Cn* GntR/P (pEA007), *Pa* PdhR/P(lldP) (pEA018), and *Pf* PdhR/P(lldP) (pEA025) exhibit a high specificity toward L-lactate (middle grey) and D-lactate (dark grey) to a final concentration of 5 mM. Cells were grown in minimal medium containing 0.4% glucose (in the case of *C. necator* H16 supplemented with 0.4% gluconate). Error bars represent standard deviations of three biological replicates. *p* ≤ 0.01 (unpaired *t*-test).

Methods

Gene cluster identification in bacterial genomes. A search for putative gene clusters responsible for L- and/or D-lactate catabolism was performed in the GenBank database (https://www.ncbi.nlm.nih.gov)22. Protein homologs encoded by genes in these clusters were identified and homology determined using a basic local alignment search tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). The primary search in genomes of *E. coli* MG1655, *C. necator* H16, and *Pseudomonas* spp. was performed using sequences of proteins encoded by *lldD* and *lldP* genes from *E. coli* MG1655 (Supplementary Materials and Methods). Secondary searches in genomes of *E. coli* MG1655, *C. necator* H16, and *Pseudomonas* spp. were carried out using sequences of proteins encoded by genes found to be adjacent to the genes exhibiting identity to the *lldD* and *lldP* of *E. coli* MG1655 and located in the clusters associated with lactate catabolism.

Chemicals. All chemicals used as inducers in this study are listed in Supplementary Table S2.

Base strains and media. All strains used in this study are listed in Supplementary Table S3. *E. coli* Top10 and *E. coli* DH5α (Invitrogen, USA) were grown in Luria–Bertani (LB) medium and used for plasmid propagation as described by36. For reporter gene assays, *E. coli* DH5α, and *P. putida* KT2440 strains were cultivated at 30 °C in M9 minimal medium supplemented with 1 μg/mL thiamine, 0.4 mM leucine, and 0.4% (w/v) glucose39, whereas *C. necator* H16 cells were grown in minimal medium containing 0.4% (w/v) sodium gluconate40 at

![Figure 6](https://doi.org/10.1038/s41598-022-06028-7)
30 °C. Antibiotics were added to the growth medium at the following concentrations: 25 μg/mL or 50 μg/mL chloramphenicol for *E. coli* or *C. necator* H16, respectively, and 25 μg/mL tetracycline for *P. putida* KT2440.

To estimate catabolic repression, minimal medium was supplemented with 44 mM L- or D-lactate as a carbon source by replacing 0.4% (w/v) glucose.

Standard DNA techniques. Plasmid DNA was purified by using the GeneJET Plasmid Miniprep Kit (Thermo Scientific, Lithuania). Microbial genomic DNA was extracted employing the GenElute Bacterial Genomic DNA Kit (Sigma, USA). The Zymoclean Gel DNA Recovery Kit (Zymo, USA) was employed to extract gel-purified linearised DNA. Phusion High-Fidelity DNA polymerase, restriction enzymes and T4 DNA Ligase were purchased from Thermo Scientific (Lithuania) and reactions were set up according to the manufacturer’s protocol. NEBuilder HiFi DNA assembly kit was purchased from New England Biolabs (NEB, USA) and reactions were performed according to the manufacturer’s recommendations.

Chemical competent cells of *E. coli* were prepared and transformed as described by39. Electrocompetent *C. necator* H16 and *P. putida* KT2440 were prepared and transformed as described by41.

Plasmid construction. Oligonucleotide primers were synthesized by Sigma-Aldrich (USA) and Invitrogen (USA) (Supplementary Table S4). Plasmids were constructed by employing either the NEBuilder HiFi DNA assembly method or by restriction enzyme-based cloning procedures. Constructs were verified by DNA sequencing (Eurofins Genomics, Germany). For plasmids transferred to *P. putida* KT2440, the antibiotic resistance gene was changed from chloramphenicol to tetracycline. A detailed construction description for each plasmid is provided in the Supplementary Information and graphic plasmids overview presented in Supplementary Information Fig. S1. The mRFP1 protein was used in all constructed plasmids and its nucleotide and protein sequence is given in Supplementary Information.

RFP fluorescence assay. RFP fluorescence was measured using an Infinite M200 PRO (Tecan, Austria) microplate reader. The fluorescence bottom-reading mode was applied for RFP excitation and emitted light measurement using 585 and 620 nm wavelengths with 9 and 20 nm bandwidths, respectively. The gain factor was set to 120%. Absorbance was measured at 600 nm wavelength with 9 nm bandwidth. RFP fluorescence and absorbance were quantified over time and their values were corrected for autofluorescence and autoabsorbance of the medium, respectively. As reported previously29, the autofluorescence of cells was similar to the fluorescence of the medium not exceeding 1 A.U. and, therefore, it was considered insignificant. An absolute normalized fluorescence (ANF) was calculated as described previously42 using formula (1).

\[
ANF = \frac{RFP_{\text{raw}} - RFP_{\text{medium}}}{OD_{\text{raw}} - OD_{\text{medium}}}
\]

(1)

The fold induction was calculated by dividing the ANF value of the induced sample by the ANF of the uninduced sample. Relative normalized fluorescence (A.U.) values as shown in Fig. 4 were obtained by subtracting the absolute normalized fluorescence of the uninduced cells from the absolute normalized fluorescence values of cells supplemented with the inducer.

Parametrization of inducible system. To obtain system parameters, absolute normalized fluorescence values (RFP) were plotted as a function of inducer concentration using software GraphPad Prism 8 and a non-linear least-squares fit was performed using the Hill function (2) as described previously42:

\[
RFP = b_{\text{max}} \times \frac{I^h}{K_m^h + I^h} + b_{\text{min}}
\]

(2)

The system parameters were calculated according to this function (2): maximum rate of RFP synthesis and basal level of RFP synthesis (*b*_{max} and *b*_{min} respectively), the concentration of inducer (*I*), the Hill coefficient (*h*), and the inducer concentration that mediates half-maximal reporter output (*K_m*).

The dynamic range µ was calculated using formula (3):

\[
\mu = \frac{b_{\text{max}}}{b_{\text{min}}}
\]

(3)

Relative normalized fluorescence (%) values as shown in Fig. 3 were obtained calculated using ANF values at a specific inducer concentration in formula (4):

\[
\text{Relative normalized fluorescence} (%) = 100 \times \left(\frac{ANF - b_{\text{min}}}{b_{\text{max}} - b_{\text{min}}} \right)
\]

(4)

Received: 24 May 2021; Accepted: 17 January 2022
Published online: 08 February 2022
References
1. Klotz, S., Kaufmann, N., Kuenz, A. & Prüße, U. Biotechnological production of enantiomerically pure D-lactic acid. Appl. Microbiol. Biotechnol. 100, 9423–9437 (2016).
2. Nduko, J. M. & Taguchi, S. Microbial production of biodegradable lactate-based polymers and oligomeric building blocks from renewable and waste resources. Front. Bioeng. Biotechnol. 8, 618077 (2021).
3. Augustinie, E. et al. Bioproduction of L- and D-lactic acids: Advances and trends in microbial strain application and engineering. Crit. Rev. Biotechnol. online ahead of print.
4. Ahmad, A., Banat, F. & Taher, H. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ. Technol. Innov. 20, 101138 (2020).
5. Jiang, T., Gao, C., Ma, C. & Xu, P. Microbial lactate utilization: Enzymes, pathogenesis, and regulation. Trends Microbiol. 22, 589–599 (2014).
6. Jiang, T. et al. A bacterial multidomain NAD-independent D-Lactate dehydrogenase utilizes flavin adenine dinucleotide and Fe-S clusters as cofactors and quinone as an electron acceptor for D-Lactate oxidation. J. Bactieriol. 199, e0342-e417 (2017).
7. Aguilerà, L. et al. Dual role of LdlR in regulation of the LldPRD operon, involved in L-lactate metabolism in Escherichia coli. J. Bacteriol. 180, 2997–3005 (2008).
8. Gao, C. et al. Lactate utilization is regulated by the FadR-type regulator LdlR in Pseudomonas aeruginosa. J. Bacteriol. 194, 2687–2692 (2012).
9. Singh, K., Ainala, S. K., Kim, Y. & Park, S. A novel D(−)-lactic acid-inducible promoter regulated by the GntR-family protein D-LdlR of Pseudomonas fluorescens. Synth. Syst. Biotechnol. 4, 157–164 (2019).
10. Gao, Y.-G. et al. Structural and functional characterization of the LdlR from Corynebacterium glutamicum: A transcriptional repressor involved in l-lactate and sugar utilization. Nucleic Acids Res. 36, 7110–7123 (2008).
11. Chai, Y., Költer, R. & Losick, R. A widely conserved gene cluster required for lactate utilization in Bacillus subtilis and its involvement in biofilm formation. J. Bacteriol. 191, 2423–2430 (2009).
12. Chiu, K.-C., Lin, C.-J. & Shaw, G.-C. Transcriptional regulation of the L-lactate permease gene lactP by the LutR repressor of Bacillus subtilis RO-NN-1. Microbiology 160, 2178–2189 (2014).
13. Rajeev, L. et al. LurR is a regulator of the central lactate oxidation pathway in sulfate-reducing Desulfovibrio species. PLoS One 14, e0214960 (2019).
14. Ueki, T. Key enzymes for anaerobic lactate metabolism in Geobacter sulfurreducens. Appl. Environ. Microbiol. 87, e01968-e2020 (2021).
15. Schoelmerich, M. C. et al. Regulation of lactate metabolism in the aceticogenic bacterium Acetobacterium woodii. Environ. Microbiol. 20, 4587–4595 (2018).
16. Bruttiné, E. D. & Gralnick, J. A. Preferential utilization of D-lactate by Shewanella oneidensis. Appl. Environ. Microbiol. 78, 8474–8476 (2012).
17. Hossain, G. S., Saini, M., Miyake, R., Ling, H. & Chang, M. W. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol. 38, 797–810 (2020).
18. Mitchler, M. M., Garcia, J. M., Montero, N. E. & Williams, G. J. Transcription factor-based biosensors: A molecular-guided approach for natural product engineering. Curr. Opin. Biotechnol. 69, 172–181 (2021).
19. Goers, L. et al. Whole-cell Escherichia coli lactate biosensor for monitoring mammalian cell cultures during biopharmaceutical production. Biotechnol. Bioeng. 114, 1290–1300 (2017).
20. Hanko, E. K. et al. A genome-wide approach for identification and characterisation of metabolite-inducible systems. Nat. Commun. 11, 1213 (2020).
21. Sweeney, J., Murphy, C. D. & McDonnell, K. Towards an effective biosensor for monitoring AD leachate: A knockout E. coli mutant that cannot catabolise lactate. Appl. Microbiol. Biotechnol. 99, 10209–10214 (2015).
22. Bengtson, D. A. et al. GenBank. Nucleic Acids Res. 41, D36–D42 (2013).
23. Zhang, Y. et al. Coexistence of two D-lactate-utilizing systems in Pseudomonas putida KT2440. Environ. Microbiol. Rep. 8, 699–707 (2016).
24. Pinchuk, G. E. et al. Genomic reconstruction of Shewanella oneidensis MR-1 metabolism reveals a previously uncharacterized machinery for lactate utilization. Proc. Natl. Acad. Sci. U.S.A. 106, 2874–2879 (2009).
25. Ho, J. M. et al. A suppressor tRNA-mediated feedforward loop eliminates leaky gene expression in bacteria. Nucleic Acids Res. 49, e25 (2021).
26. Zühliga, A. et al. An engineered lactate responding promoter system operating in glucose-rich and anaerobic environments. ACS Synth. Biol. in press (2021).
27. Parker, B. W., Schwessinger, E. A., Jakob, U. & Gray, M. J. The RclR protein is a reactive chloride-specific transcription factor in Escherichia coli. J. Biol. Chem. 288, 32574–32584 (2013).
28. Alagesan, S. et al. Functional genetic elements for controlling gene expression in C取胜uidus necator H16. Appl. Environ. Microbiol. 84, e00878-e918 (2018).
29. Hanko, E. K. R., Minton, N. P. & Malyis, N. A transcription factor-based biosensor for detection of itaconic acid. ACS Synth. Biol. 7, 1436–1446 (2018).
30. Reis, A. C. S. H. M. An automated model test system for systematic development and improvement of gene expression models. ACS Synth. Biol. 9, 315–3156 (2020).
31. Park, H., McGill, S. L., Arnold, A. D. & Carlson, R. P. Pseudomonad reverse carbon catabolite repression, interspecies metabolite exchange, and consortial division of labor. Cell. Mol. Life Sci. 77, 395–413 (2020).
32. LBNet. UK top bio-based chemicals opportunities. E4tech (UK) Ltd for LBNet https://www.bbnet-nibb.co.uk/resource/uk-top-bio-based-chemicals-opportunities (2017).
33. Li, J.-W., Zhang, X.-Y., Wu, H. & Bai, Y.-P. Transcription factor engineering for high-throughput strain evolution and organic acid bioproduction: a review. Front. Bioeng. Biotechnol. 8, 98 (2020).
34. Rogers, J. K. & Church, G. M. Genetically encoded sensors enable real-time observation of metabolic production. Proc. Natl. Acad. Sci. U.S.A. 113, 2388–2393 (2016).
35. Rigali, S., Derouaux, A., Giannotta, F. & Dusart, J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and Yra subfamilies. J. Biol. Chem. 277, 12507–12515 (2002).
36. Suvorova, I. A., Korostelev, Y. D. & Gelfand, M. S. GntR family of bacterial transcription factors and their DNA binding motifs: structure, positioning and co-evolution. PLoS One 10, e0132618 (2015).
37. Fujita, Y. & Fujita, T. The glucose operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc. Natl. Acad. Sci. U.S.A. 84, 4524–4528 (1987).
38. Frunzke, J., Engels, V., Hansenbein, S., Gärtgens, C. & Rott, M. Co-ordinated regulation of glucose catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol. Microbiol. 67, 305–322 (2008).
39. Sambrook, J. & Russell, D. Molecular Cloning: A Laboratory Manual, 3rd ed., vols 1, 2 and 3 (Cold Spring Harbor Laboratory Press, 2001).
40. Schlegel, H. G., Kaltwasser, H. & Gottschalk, G. Ein submersverfahren zur kultur wasserstoffoxydierender bakterien: Wachstum-
physiologische untersuchungen. Arch. Mikrobiol. 38, 209–222 (1962).
41. Ausubel, F. M. et al. Current Protocols in Molecular Biology (Wiley, 1988).
42. Hanko, E., Minton, N. & Malys, N. Design, cloning and characterization of transcription factor-based inducible gene expression
systems. Methods Enzymol. 621, 153–169 (2019).

Acknowledgements
This work was supported by the European Regional Development Fund (project No 01.2.2-LMT-K-718-02-0023)
under grant agreement with the Research Council of Lithuania (LMTLT). We thank Ilona Jonuskiene, Michail Syras, Egle Valanciene, Paulius Matulis and Ingrida Kutraite for assistance in carrying out this research.

Author contributions
E.A. designed and performed the experiments, analysed the results and wrote the manuscript. N.M. conceived
the project, designed the experiments, analysed the results and wrote the manuscript. Both authors read and
approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1038/s41598-022-06028-7.

Correspondence and requests for materials should be addressed to N.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or
format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022