Changes in social functioning over the course of psychotic disorders—A meta-analysis

Lars de Winter a,i,*, Chrisje Couwenbergh a, Jaap van Weeghel a,i, Ilanit Hasson-Ohayon b, Jentien M. Vermeulen i, Cornelis L. Mulder c,k, Nynke Boonstra d,e, Kete M. Klaver f, Matthijs Oud g, Lieuwe de Haan i, Wim Veling h

a Phrenos Center of Expertise for Severe Mental Illnesses, Utrecht, the Netherlands
b Department of Psychology, Bar-Ilan University, Ramat-Gan, Israel
c Epidemiological and Social Psychiatric Research Institute, Erasmus MC, Rotterdam, the Netherlands
d NHL Stenden University of Applied Science, Leeuwarden, the Netherlands
e KieN Early Intervention Service, Leeuwarden, the Netherlands
f Department of Psychosocial Oncology and Epidemiology, Netherlands Cancer Institute, Amsterdam, the Netherlands
g Trimbos Institute, Utrecht, the Netherlands
h University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
i Department of Psychiatry, Amsterdam UMC location AMC, Amsterdam, the Netherlands
j Tranzo, Tilburg University, Tilburg, the Netherlands
k Parnassia Psychiatric Institute, the Netherlands

ARTICLE INFO
Keywords:
Psychosis
Schizophrenia
Longitudinal
Course
Social functioning
Meta-analysis

ABSTRACT

In this meta-analysis we investigated changes in social functioning and its moderators in patients with a psychotic disorder but different durations of illness at baseline.

We included longitudinal studies assessing the course of five domains of social functioning in patients with a psychotic disorder. Effect sizes of change between baseline and follow-up within these domains were analyzed in four subgroups based on durations of psychotic disorder at baseline: less than 2 years, between 2 and 5 years, between 5 and 10 years, and more than 10 years. The influence of baseline confounders was analyzed using meta-regression and sensitivity analysis.

We included 84 studies analyzing 33,456 participants. We found a medium improvement (d = 0.60) in overall social functioning over time, with a greater improvement for studies investigating patients with a duration of illness of less than 5 years. We found minor improvement in specific domains of social functioning, such as vocational functioning (d = 0.31), prosocial behavior (d = 0.36), activities (d = 0.15), and independence (d = 0.25). Improvement in social functioning was associated with lower baseline levels of negative symptoms, higher baseline levels of quality of life, and, specifically, improved vocational functioning, with rehabilitation and combined treatment.

Social functioning in patients with psychotic disorders improves over time, especially for patients with shorter illness durations. Reduction of negative symptoms and improving quality of life might reinforce improvement of social functioning.

1. Introduction

Psychotic disorders often lead to functional limitations and substantially impact individuals, their loved ones and society (Linscott and Van Os, 2013; Van Os and Reininghaus, 2016; Sullivan et al., 2020). The majority of patients with psychotic disorders have difficulties maintaining their societal roles, such as being employed or maintaining relationships, also after symptomatic remission (Bellack et al., 2016; Madeira et al., 2016). This often leads to a more chronic course of psychotic disorders (Linscott and Van Os, 2013; Santesteban-Echarri et al., 2017). Therefore, improving social functioning, which is defined as regaining societal roles (Mueser and Tarrier, 1998), is a major aim in
Disagreements were resolved by consensus. The included studies meet the following criteria:

2.2. Eligibility criteria

First, we investigated the influence of study design (RCT versus cohort studies) and diagnosis (studies only including schizophrenia patients versus studies also including other psychotic disorders) on the outcomes.

Other potential moderators of social functioning were selected following a two-step procedure. First we identified 52 significant moderators in included studies and comparable meta-analyses (Santesteban-Echarri et al., 2017; Fusar-Poli et al., 2015; Swistaj et al., 2012). Second, we applied the following three criteria reported in the Cochrane Handbook 5.1 (Higgins and Green, 2011): 1) reported by at least 10 of the selected studies; 2) ability to be clustered in separate multivariate models; 3) Not closely related to each other to prevent multicollinearity. This resulted in 19 moderators, which we clustered in seven multivariate regression models: 1) treatment variables: implementation of rehabilitation, psychotherapy, antipsychotic use, and combined treatment to (a subsample of) the participants; 2) symptoms: positive symptoms,
negative symptoms, depression, and substance use at baseline; 3) demographic variables: years of education and gender; 4) study characteristics: publication year, and attrition rate; 5) overall neurocognition at baseline; 6) illness related variables: clinical stabilization at baseline, age at onset, DUP, and setting in which the study is executed (i.e., naturalistic or healthcare); 7) subjective quality of life and level of social functioning at baseline.

From continuous moderators that were evaluated by different assessment instruments (i.e., assessments of symptoms, neurocognition, subjective quality of life, and social functioning) we calculated percentile scores based on normative data to ensure that each moderator was assessed in the same scale range. Operationalizations of each moderator are reported in Supplementary Material E.

2.6. Quality assessment

Quality assessment was conducted using the Quality in Prognostic Studies (QUIPS) tool (Hayden et al., 2013) and was based on six criteria: participation, attrition, prognostic factor measurement, handling confounders, outcome measurement, and analysis and reporting. Based on these criteria a high, moderate or low risk of bias score was assigned for each study.

Two authors (LdW & MO) independently conducted quality assessment of 10% of the studies. The level of agreement was fair to good (κ = 0.56). Disagreements were resolved by consensus. We investigated the influence of study quality on outcomes by sensitivity analysis.

2.7. Statistical analysis

2.7.1. Meta-analytic procedure

Meta-analyses were conducted using RevMan 5.3 (The Nordic Cochrane Centre, 2014). Effect sizes were calculated by comparing study outcomes between baseline and follow-up assessment. For clinical trials the total study sample, clustering both treatment and control groups, was analyzed. Overall effect sizes of categorical outcomes were converted into Cohen’s d (Chinn, 2000) to show homogeneous and consistent patterns for both continuous and categorical outcomes. Magnitude of effect was considered marginal and clinically not relevant when d < 0.2, small when d ≥ 0.2 and < 0.5, medium when d ≥ 0.5 and < 0.8, and large when d ≥ 0.8 (Chinn, 2000). All outcomes were reported with 95% confidence intervals (CIs). We used random effects models, weighted by the method of inverse variance (Higgins, 2008). Statistical heterogeneity was assessed by calculating the I^2 statistic (including 95% CI), describing the percentage of observed heterogeneity not expected by chance (Higgins and Thompson, 2002).

2.7.2. Subgroup analyses

We analyzed differences in effect sizes of change between subgroups regarding the baseline duration of illness and duration of follow-up (Borenstein and Higgins, 2013). Because of the large number of subgroups, there is a high chance of finding type-I errors in one of our subgroup analyses. Therefore, we controlled for multiple testing effects through a Benjamini-Hochberg correction, with the false discovery rate set on 0.3 (Benjamini and Hochberg, 1995).

2.7.3. Calculation of moderating effects

We investigated the influence of potential moderators on the five outcome domains through a meta-regression analysis using Stata version 12 (StataCorp, 2011). We conducted meta-regression analyses for all study outcomes and further investigated the influence of significant moderators within different duration of illness subgroups using a sensitivity analysis, comparing study outcomes of studies with high levels or presence versus low levels or absence of the respective moderator. Because of the large number of moderators and subgroups, we controlled for multiple testing effects in all analyses through a Benjamini-Hochberg correction (Benjamini and Hochberg, 1995).

2.7.4. Handling outliers and publication bias

Potential influence of outliers (i.e. confidence interval [CI] of study outcomes exceeded overall CI) was handled by re-analyzing the meta-analysis after removing the outliers. Potential publication bias was detected by visual inspection of funnel plots.

3. Results

3.1. Study flow

Of the 6741 records retrieved through database search and reference tracking, 6159 records were excluded after title and abstract screening. Of the remaining 583 records, 480 records were excluded after full-text selection (see Fig. 1 for study flow and reasons of exclusion). The remaining 103 articles reported results of 84 studies.
3.2. Study characteristics

We selected 84 studies describing the course of social functioning of 33,456 participants. The mean age of participants was 33.4 years (SD = 11.5), and 39.3% were female (see Table 1).

Thirty-seven studies (44.0%) also included participants with other psychiatric conditions with psychotic features (see Table 1). Thirty-four studies (40.5%) were clinical trials, and 50 (59.6%) were cohort studies. In 38 studies (53.5%) at least 80% of the participants received antipsychotic medication, in 22 studies (31.0%) participants received any kind of rehabilitation intervention, in 33 studies (46.5%) participants received psychotherapy, and in 25 studies (35.2%) participants received combined treatment with at least two of the aforementioned treatment components.

The average drop-out rate was 27.7% (SD = 17.4%). The drop-out rate was low in 32 studies (38.6%) (i.e., <20%), moderate in 32 (38.6%) (i.e., 20–40%), and high in 19 studies (22.9%) (i.e., >40%). Differences in baseline study and patient characteristics between the baseline duration of illness subgroups are presented in Supplementary material C. The subgroups did not significantly differ in most characteristics. However, we found that study samples with a longer duration of illness were older, had more severe substance abuse, used antipsychotics more often and were more frequently diagnosed with schizophrenia than subgroups with a shorter duration of illness.

3.3. Meta-analysis of study outcomes with different durations of psychosis

A general overview of the outcomes, within each duration of illness and follow-up subgroup is presented in Fig. 2 and Table 2. We also added forest plots of study outcomes in Supplementary materials D.

3.3.1. Overall social functioning

In general, we found a medium improvement in overall social functioning (d = 0.60). For the studies with a shorter baseline duration of illness (i.e., <2 years and 2–5 years). Specifically for the subgroup with a baseline duration of illness <2 years, we found a large improvement in overall social functioning after a longer follow-up duration ($\chi^2 = 50.83; df = 2; p < 0.01$). For the subgroup with a baseline duration of illness between 5 and 10 years we found no improvement and for the subgroup with a baseline duration of illness >10 years we found a small improvement in overall social functioning. Both subgroups with <2 years and 2–5 years of illness at baseline showed larger improvement over time than the subgroup with a baseline duration of illness >10 years ($\chi^2 = 15.30; df = 1; p < 0.01$ and $\chi^2 = 7.71; df = 1; p < 0.01$).

3.3.2. Prosocial behavior

Overall, we found a small improvement in prosocial behavior (d = 0.36). We observed a large improvement in prosocial behavior for the subgroup with a baseline duration of illness 5–10 years after a short follow-up duration. For the subgroup with a duration of illness >10 years at baseline we found small improvement in prosocial behavior, with no differences between short and long follow-up outcomes. The subgroup with a baseline duration of illness between 5 and 10 years showed a greater improvement after short follow-up than the other subgroups ($\chi^2 = 13.28; df = 1; p < 0.01$; $\chi^2 = 11.61; df = 1; p < 0.01$; $\chi^2 = 13.28; df = 1; p < 0.01$).
Table 1

Descriptive statistics of included studies.

Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis	Comorbidit y	Treatment	Baseline DOI	FU duration	Attrition rate	Outcome categories reported
Aas 201651	163–91	27.4 (8.3)	43.8%	Schizophrenia (31.3%); schizoaffective disorder (3.1%); bipolar disorder (3.3%); MDD with psychotic features (2.1%)	bipolar disorder	antipsychotics (76.0%); antidepressants (26.0%); mood stabilizers (22.9%)	2.99	1	41.1%	Overall social functioning
Addington 200052	80–65	33.2 (8.9)	21.1%	Schizophrenia (100%)	NA	Antipsychotics (100%); routine care (100%)	11.2	2.5	18.8%	Overall social functioning; Prosocial behavior
Baker 201553,54	235–139	41.6 (11.1)	41.3%	Schizophrenia spectrum disorder (58.7%); bipolar disorder (22.1%); Nonorganic psychotic syndrome (19.2%)	tobacco dependence	Health promotion intervention (51.9%); antipsychotics (100%)	18.6	1	40.9%	Overall social functioning
Bergé 201655	140–62	25.5 (5.3)	42.1%	Psychosis NOS (45.0%); schizoaffective disorder (27.1%); Brief psychotic disorder (10.7%); bipolar disorder with psychotic symptoms (3.6%); schizoaffective disorder (5.0%); Drug induced psychosis (2.9%); Delusional disorder (0.7%)	Cannabis abuse (11.0%); alcohol abuse (8.0%); cocaine abuse (5.0%); amphetamine abuse (6.0%)	antipsychotics (91.4%); ≤ 2 y	1 2 59.3% Overall social functioning			
Bjornestad 201756	363–168	26.9 (10.7)	46.1%	Schizophrenia (32.0%); Other psychotic disorder (68.0%)	Substance abuse (24.7%)	antipsychotic medication, supportive psychotherapy, and multifamily psychoeducation (100%)	0	1-feb	51.0%	Overall social functioning
Bodén 200957	124–76	28.5 (9.4)	36.8%	Schizophrenia (81.6%); schizoaffective disorder (7.9%); schizoaffective disorder (11.6%)	Schizophrenia (100%)	NR	0.29	5	38.7%	Independence; Vocational functioning
Calvocorelli 199858	17–aug	30.4 (9.3)	47.1%	Schizophrenia (100%)	NR	NR	1 52.9% Overall social functioning	0 13-2005 30.8% Overall social functioning		
Carlsson 200659	253–175	28.2 (7.1)	45.0%	Schizophrenia syndromes (schizophrenia, schizoaffective psychosis and schizoaffective psychosis; 40.8%; non-schizophrenia syndromes (delusional disorder, brief psychosis and psychotic disorder not otherwise specified (NOS); 59.2%)	NR	Need adapted treatment (100%); antipsychotics (41.8%); benzodiazepines (70.6%); antidepressants or lithium (44.7%)	0	1-3-2005	30.8%	Overall social functioning
Cechnicki 201760	80–67	26.6 (5.8)	56.7%	Schizophrenia (100%)	NR	Community treatment program (50%); Individual treatment program (50%)	0.79	3-dec	16.3%	Overall social functioning
Chan 200361	25–21	40.4 (7.8)	44.0%	Schizophrenia (100%)	NR	NR	15.4 0.33/0.67/1 16.0%	Independence; Overall social functioning Vocational functioning		
Chang 201162	153–93	31.7 (9.2)	54.8%	Schizophrenia (80.7%); schizoaffective disorder (14.0%); schizoaffective disorder (5.4%)	Schizophrenia (100%)	antipsychotics (48.4%); antidepressants (12.9%); benzodiazepines (12.9%)	1.5	1-2-2003	39.2%	Overall social functioning Vocational functioning
Ciudad 200963	452–376	37.7 (10.5)	35.6%	Schizophrenia (100%)	Schizophrenia (100%)	substance/alcohol abuse (34.3%); substance use disorder (28.0%); personality disorder (14.5%); depressive disorder (39.4%)	13.7	1	16.8%	Overall social functioning Activities; Independence; Overall social functioning; Prosocial behavior;
Conley 200964	2327–2228	41.8 (11.2)	38.5%	Schizophrenia (57.2%); schizoaffective disorder (33.6%); other psychotic disorder (9.3%)	Schizophrenia (100%)	antidepressants (38.8%); Anti-anxiety agents (11.3%); Mood stabilizers (31.2%); Hypnotics (1.7%); Antiparkinsonian	21.6	3	4.3%	(continued on next page)
Table 1 (continued)

Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis*	Comorbidity*	Treatment*	Baseline DOI*	FU duration	Attrition rate	Outcome categories reported
Coryell 1987566	144–98	37.3 (14.4)	64.6% Psychotic major depressive disorder (72.2%); schizoaffective disorder (27.8%)	major depression (100%)	agents (44.8%); atypical antipsychotics (59.8%); typical antipsychotics (58.2%); ECT (23.6%); antipsychotics (64.3%); antidepressants (100%)	10.3	1/2 5/10	31.9%	Vocational functioning	
DeLisi 199877	50–43	27.4 (7.0)	36.0% Schizophrenia (66.0%); schizoaffective disorder (16.0%); psychosis NOS (4.0%); bipolar disorder (2.0%); major depressive disorder (4.0%); Schizophrenia (63.9%); schizoaffective disorder (36.1%)	Substance abuse (48.0%);	lithium (30%); antidepressants (35%); minor tranquilizers (50%)	1.02	4/4.7/5	14.0%	Activities; Overall social functioning; Prosocial behavior; Vocational functioning	
Dickerson 199968	88–72	40.1 (9.6)	30.6% Schizophrenia (66.2%); schizoaffective disorder (13.9%); schizophreniform disorder (6.2%); Psychosis NOS (4.6%); Brief psychotic disorder (1.5%); no diagnosis (3.1%); unknown (4.6%); Schizophrenia (63.9%); schizoaffective disorder (36.1%)	NR		19.2	2	18.2%	Overall social functioning	
Dixon 20156970	65–20	22.2 (4.2)	36.9% Schizophrenia (66.2%); schizoaffective disorder (13.9%); schizophreniform disorder (6.2%); Psychosis NOS (4.6%); Brief psychotic disorder (1.5%); no diagnosis (3.1%); unknown (4.6%); Schizophrenia (66.6%); schizoaffective disorder (13.9%);	Bipolar disorder NOS (3.1%); Depressive disorder NOS (23.1%); Panic disorder (4.6%); Social phobia (3.1%); obsessive compulsive disorder (1.5%); PTSD (7.7%); anxiety disorder NOS (4.6%); alcohol use disorder (18.5%); sedative-hypnotic-anxiolytic use disorder (1.5%); Cannabis use disorder (35.9%); Stimulant use disorder (1.5%); Opioid use disorder (3.1%); Cocaine use disorder (4.6%); Hallucinogen use disorder (4.6%); Treatment connection program (100%)	3.39	1	17.0%	Overall social functioning		
Eack 200871	59–49	25.9 (6.3)	31.0% Schizophrenia (65.5%); Schizoaffective disorder (34.5%); Schizophrenia (78.3%); Schizoaffective disorder (21.7%);	NR		14.3	1/2/3/4	0.0%	Overall social functioning; Prosocial behavior; Vocational functioning	
Economou 201172	60–60	35.4 (6.9)	51.7% Schizophrenia (66.6%); schizoaffective disorder (13.9%); schizophreniform disorder (6.2%); Psychosis NOS (4.6%); Brief psychotic disorder (1.5%); no diagnosis (3.1%); unknown (4.6%); Schizophrenia (66.6%); schizoaffective disorder (13.9%);	NR		0.6	0.5/1	52.9%	Overall social functioning	
Edwards 199873	227–107	23.7 (5.9)	35.7% Schizophrenia (36.1%); schizophreniform disorder (22.5%); delusional disorder (2.2%); schizoaffective disorder (11.0%); bipolar disorder (12.8%); depression with psychotic features (8.4%); Bipolar disorder NOS (12.8%); depression with psychotic features (8.4%);	NR		17.6	4.6	49.3%	Overall social functioning	
Ekerholm 201274	71–36	41.1 (7.9)	13.9% Schizophrenia (100%);	NR	Antipsychotics (95.8%);	1.2/4	59.7%		Overall social functioning	
Friedman 200275	308–124	72.4 (6.3)	54.8% Schizophrenia (100%);	NR	Neuroleptics (74.1%); anticholinergics (13.0%);	1/1.25	25.9%		Overall social functioning	
Gaughran 201776	406–301	44.2 (10.1)	42.4% Psychotic disorder (100%);	NR	Health promotion intervention (52.5%);	0	7/11/17	9.8%	Vocational functioning	
Gmür 199177	92–83	22.9 (22.6)	43.5% Schizophrenia (100%);	NR						
Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis*	Comorbidity*	Treatment†	Baseline DOI†	FU duration	Attrition rate	Outcome categories reported
----------------------------	-----------------	----------	----------	--	---	--------------------------------------	---------------	--------------	--------------------------	-----------------------------
González-Blanch 2010	141–131	26.6 (6.8)	38.2%	Schizophrenia (73.3%); schizoaffective disorder (26.0%)	NR	outpatients treatment (15.2%); inpatient treatment (45.7%)	2.37	1	7.1%	Vocational functioning
Hill 2012	171–123	29.1 (12.0)	42.1%	Schizophrenia/ schizoaffective disorder (59.1%); other psychosis (40.9%)	Substance abuse (25.5%)	NR	1.94	12	28.1%	Overall social functioning
Horan 2012	81–55	22.3 (4.3)	23.6%	Schizophrenia (56.8%); schizoaffective disorder (12.4%); schizoaffective disorder (30.9%)	NR	Risperidone (100%)	0.7	1	32.1%	Independence; Prosocial behavior; Vocational functioning
Harrow 1999	157–120	22.9 (NR)	56.0%	Schizophrenia (40.8%); schizoaffective disorder (7.6%); Bipolar disorder (23.6%); Depressive disorder (17.8%); paranoid disorder (3.2%); other psychotic disorder (7.0%)	Bipolar disorder (23.6%); Depressive disorder (17.8%)	NR	NR	2/4.5/ 7.5/10/ 15/20	23.4%	Overall social functioning; Prosocial behavior; Vocational functioning
Harvey 1999	57–55	77.8 (8.2)	56.1%	Schizophrenia (100%)	NR	antipsychotics; anticholinergics (8.8%); Benzodiazepines (14.0%); Anticonvulsants (5.3%) second generation antipsychotics (100%)	47.1	2.6	3.5%	Overall social functioning
Harvey 2010	111–61	57.0 (9.0)	27.0%	Schizophrenia (100%)	NR	Aripiprazole (33.7%); Olanzapine (32.7%); Risperidone (32.7%) second generation antipsychotics (100%)	33.34	3.75	45.1%	Overall social functioning; Prosocial behavior; Prosocial behavior
Heeraman-Aubeeluck 2015	101–38	25.9 (7.3)	51.5%	Schizophrenia (100%)	NR	Aripiprazole (33.7%); Olanzapine (32.7%); Risperidone (32.7%) second generation antipsychotics (100%)	NR	0.5/1	62.4%	Overall social functioning; Prosocial behavior; Prosocial behavior
Hodgkin 2015	1027–923	23.0 (5.0)	31.0%	Unspecified psychosis (71.8%); Schizophrenia (14.3%); Bipolar disorder (5.2%); Schizoaffective disorder (1.7%); Substance induced psychosis (7.0%)	Bipolar disorder (5.2%); Substance use (67.0%)	Bipolar disorder (5.2%); Substance use (67.0%)	1.7	0.5/1	10.1%	Activities; Overall social functioning
Hovington 2013	136–122	22.6 (4.0)	28.7%	Schizophrenia spectrum disorder (62.5%); affective psychosis (27.2%); psychosis NOS (10.3%)	affective disorder (27.2%)	Risperidone (33.1%); Olanzapine (48.5%); Clozapine (5.2%); haloperidol (0.74%); paliperidone (1.47%); ziprasidone (1.47%)	5.46	1	10.3%	Overall social functioning
Ito 2015	156–72	30.6 (10.1)	53.2%	Schizophrenia spectrum disorder (100%)	NR	Antipsychotics (100%)	1.99	0.5/1/1.5	53.9%	Overall social functioning; Prosocial functioning
Jäger 2014	374–300	38.8 (12.4)	41.8%	Schizophrenia spectrum disorder (71.7%); Schizoaffective disorder (26.3%)	NR	antipsychotics; antidepressants (16.3%); benzodiazepines (16.0%); mood stabilizers (11.5%) Early intervention program; antipsychotics (100%)	NR	0.5/1/1.5	19.8%	Overall social functioning; Prosocial functioning
Jordan 2014	318–208	22.9 (4.0)	29.6%	Schizophrenia spectrum disorder (70.7%); affective disorder (23.3%)	affective disorder (23.3%); Substance dependence (53.5%)	Early intervention program; antipsychotics (100%)	0.71	2	34.6%	Prosocial behavior
Kalla 2011	86–68	27.5 (6.6)	52.9%	Schizophrenia (45.6%); Schizoaffective disorder (11.8%); Brief reactive psychosis (13.2%); Delusional disorder (2.9%); Psychotic disorder NOS (2.9%)	NR	inpatient treatment; neuroleptics (64.7%); tranquilizers (67.7%); Individual therapy (32.4%); Family therapy (73.5%); Group therapy (51.5%); Occupational therapy (39.7%); Rehabilitation (29.4%)	0.5	1	20.9%	Overall social functioning
Kam 2015	163–163	22.4 (NR)	25.8%	Schizophrenia, schizotypal and delusional disorders (82.8%)	NR	Early intervention services treatment (100%)	3.8	3.6	NR	Vocational functioning

(continued on next page)
Table 1 (continued)

Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis	Comorbidity	Treatment	Baseline DOI	FU duration	Attrition rate	Outcome categories reported
Kavai 2003	51–26	24.3 (6.6)	14.3%	Schizophrenia (46.4%); bipolar disorder (46.4%); Major depressive disorder (7.1%)	bipolar disorder (46.4%); Major depressive disorder (7.1%)	Typical neuroleptics (64.3%); atypical neuroleptics (35.7%); lithium (21.4%); sodium valproate (28.6%); antipsychotics (69.4%); anti-anxiety drugs (7.5%); antidepressants (14.2%); Lithium (14.2%); antiparkinsonian agents (43.2%)	0.56	1.5	49.0%	Overall social functioning
Katsanis 1992	134–107	23.9 (6.6)	28.7%	Schizophrenia (34.3%); schizophreniaform disorder (20.2%); major depressive disorder (17.9%); Bipolar disorder (27.6%)	Major depressive disorder (17.9%); Bipolar disorder (27.6%)	0.25	0.75/1.5	20.2%	Overall social functioning; Vocational functioning	
Kelly 2009	56–43	44.1 (8.3)	27.9%	Schizophrenia (100%)	NR	Haloperidol (58.1%); clozapine (41.9%); clobazapine (37%); family interventions (7%); CBT (13%)	22.11	1	23.2%	Overall social functioning; Activities; Overall social functioning
Kurihara 2005	59–46	26.7 (7.8)	41.3%	Schizophrenia (100%)	NR	inpatient treatment; psychotropic medication (50%)	2.4	1/3/5/11	22.0%	Prosocial behavior
Lake 2006	25–13	66.1 (11.0)	61.5%	Schizophrenia (75%); bipolar disorder (10%); frontotemporal dementia (15%)	bipolar disorder (10%); frontotemporal dementia (15%)	6.69	1	48.0%	Activities	
Lytard 2017	131–122	32.7 (7.9)	29.8%	Schizophrenia (88.6%); Schizoaffective disorder (7.6%); Psychosis NOS (1.5%); Delusional disorder (2.3%)	Schizophrenia (100%)	CBT (51.9%); Cognitive remediation (48.1%)	6.94	0.83/2	6.9%	Vocational functioning
Mason 1995	67–58	29.0 (9.8)	32.8%	Schizophrenia (100%)	Schizophrenia (100%)	22.0%	1-2-2013	13.4%	Prosocial behavior; Vocational functioning; Overall social functioning	
McGurk 2000	168–168	74.2 (6.6)	51.8%	Schizophrenia (100%)	Schizophrenia spectrum disorder (72.1%)	1.25	0.0%	33.2%	Activities; Independence; Prosocial functioning	
Melle 2010	301–201	30.0 (10.0)	44.3%	Schizophrenia (100%)	Schizophrenia spectrum disorder (72.1%)	0.25/1.2	≤2 y	≤2 y	Vocational functioning	
Mihaljevic-Peles 2016	362–258	37.0 (4.5)	36.5%	Schizophrenia (64.4%); Persistent delusional disorder (6.1%); Acute and transient psychotic disorder (14.9%); Schizoaffective disorder (9.8%); Other psychotic disorder (5.0%)	Schizophrenia (100%)	Risperidone (100%)	7	1	28.7%	Prosocial behavior; Vocational functioning
Mojtafari 2005	674–479	30.4 (10.0)	42.3%	Schizophrenia (27.6%); bipolar disorder (20.1%); major depression (16.6%); psychotic disorder NOS (12.4%); other diagnosis (23.4%)	bipolar disorder (20.1%); major depression (16.6%); substance use disorder (52.2%)	inpatient treatment; antipsychotics (19.6%)	1.84	4	28.9%	Overall social functioning
Montero 1998	70–60	26.8 (7.1)	46.7%	Schizophrenia (100%)	NR	antipsychotics (70.0%)	4.7	0.75/2	14.3%	Prosocial behavior; Independence; Prosocial behavior; Vocational functioning
Morgan 2014	557–387	30.8 (10.7)	45.9%	Non-affective psychosis (72.4%); manic psychosis (13.4%); depressive psychosis (14.3%); Schizophrenia (30.2%); unspecified psychosis (18.9%); reactive psychosis (13.2%); alcoholism (2.8%); paranoid state (7.6%); personality disorder (11.3%); neurosis (1.9%); manic depression (1.9%); drug or substance abuse (9.4%); anorexia nervosa (1.9%)	Mania (13.4%); depression (14.3%)	Antipsychotics (100%)	0.2	6.2/10/10.7	30.5%	Prosocial behavior; Vocational functioning
Munk-Jorgensen 1991	53–36	28.5 (13.6)	37.7%	Schizophrenia (30.2%); unspecified psychosis (18.9%); reactive psychosis (13.2%); alcoholism (2.8%); paranoid state (7.6%); personality disorder (11.3%); neurosis (1.9%); manic depression (1.9%); drug or substance abuse (9.4%); anorexia nervosa (1.9%)	alcoholism (3.8%); personality disorder (11.3%); neurosis (1.9%); manic depression (1.9%); drug or substance abuse (9.4%); anorexia nervosa (1.9%)	inpatient treatment (100%)	≤2 y	12	32.1%	Vocational functioning

(continued on next page)
Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis	Comorbidity	Treatment	Baseline DOI	FU duration	Attrition rate	Outcome categories reported	
Na 2016\(^a\)	25–24	28.2 (6.4)	48.0%	Schizophrenia (60.0%); Schizoaffective disorder (12.0%); Psychotic disorder NOS (28.0%)	(9.4%); anorexia nervosa (1.9%)	Antipsychotics (100%); Mind flower program (100%)	NR	0.5/1	4.0%	Overall social functioning; Prosocial behavior; Vocational functioning	
Novick 2016\(^b\,\(^c\)\)	16,380–10,698	38.5 (12.9)	43.6%	Schizophrenia (100%)	alcohol or substance use (3.8%)	outpatient treatment; antipsychotics (100%); antidepressants (19.7%); Tranquilizers (19.1%)	0.6\(^b\,\(^c\)\), 10.6\(^b\,\(^c\)\)	1.5/2/3	34.7%	Overall social functioning; Prosocial behavior; Vocational functioning	
O'Connor 2013\(^d\)	152–127	29.8 (9.0)	69.1%	Schizophrenia (23.6%); schizopreniform disorder (30.0%); schizoaffective-depressed (4.7%); schizoaffective-bipolar (6.3%); major depression with psychosis (10.2%); manic episode with psychosis (12.5%); psychosis NOS (12.6%)							
Okin 1995\(^e\) \(\text{continued}\)	37–37	37.6 (14.2)	41.5%	Schizophrenia (100%)		community residential treatment (100%)	11.5	7.5	0.0%	Activities; Independence; Vocational functioning	
Orite 2015\(^f\)	18–18	21.7 (4.6)	27.8%	Schizophrenia (100%)		atypical antipsychotics (72.2%); mood stabilizers (5.6%); antidepressants (33.3%); anxiolytics (16.7%)	1.15	1	0.0%	Overall social functioning	
Petersen 2008\(^g\)	547–369	26.8 (6.2)	41.7%	Schizophrenia (66.2%); schizotypal disorder (13.0%); delusional disorder (2.0%); brief psychosis (6.0%); schizoaffective disorder (7.0%); unspecified nonorganic psychosis (1.0%); affective disorder (1.0%)	substance abuse (26.7%); affective disorder (1.0%)	OPUS treatment (100%)	NR	2	32.5%	Independence; Overall social functioning; Vocational functioning	
Richard 2013\(^h\)	110–52	23.2 (7.9)	27.4%	Schizophrenia (43.6%); schizoaffective disorder (13.6%); delusional disorder (2.8%); major depressive disorder (10.9%); psychotic disorder NOS (18.2%); schizopreniform disorder (1.8%); bipolar disorder (3.7%)	major depression (10.9%); bipolar disorder (3.6%)					Overall social functioning	
Ritsner 2003\(^i\) \(\text{continued}\)	339–220	38.9 (10.1)	25.1%	Schizophrenia (74.4%); schizoaffective disorder (16.6%); major depressive disorder (4.5%); bipolar disorder (4.5%)	major depressive disorder (4.5%); bipolar disorder (4.5%)	antipsychotics (78.0%); benzodiazepines (32.0%); antidepressants (21.0%); mood stabilizers (30.0%); antipsychotics (83.4%); personalized medication management; family psychoeducation; resilience-focused individual therapy and supported employment (100%)	14.1	1.37	35.1%	Activities; Prosocial behavior	
Rosenheck2017\(^j\)	404–227	23.1 (5.1)	27.5%	Schizophrenia (53.0%); Schizoaffective disorder, bipolar (5.9%); Schizoaffective disorder, depressive (14.1%); schizopreniform disorder (16.6%); Brief psychotic disorder (0.5%); Psychotic disorder NOS (9.9%); schizoaffective disorder (25.1%)	alcohol abuse/dependence (36.4%); Cannabis abuse/dependence (35.6%)					43.8%	Vocational functioning
Rossi 2009\(^k\)	347–243	44.2 (11.4)	38.0%	Schizophrenia (74.9%); schizoaffective disorder (25.1%)		and education (55.2%); Community care (44.8%)	17.3	1	30.0%	Overall social functioning	
Ryu 2006\(^l\,\(^m\)\)	78–56	54.6 (7.2)	34.6%	Schizophrenia (100%)		Optimal Treatment Project (100%); antipsychotics (100%)	31.5	1/2/3/4/5	26.2%	Activities; Independence; Overall social functioning	
Table 1 (continued)

Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis	Comorbidity	Treatment	Baseline DOI	FU duration	Attrition rate	Outcome categories reported
Scanlon 2014	46–28	28.4 (8.8)	30.4%	Schizophrenia (32.6%); schizoaffective disorder (8.7%); schizophreniaform disorder (10.9%); delusional disorder (6.5%); mania (19.6%); psychotic depression (13.0%); psychosis NOS (8.7%)	mania (19.6%); psychotic depression (13.0%)	antipsychotics (84.8%)	3.5	3.5/4.65	39.1%	Overall social functioning
Schwartz 1997	23–23	40.1 (8.1)	39.1%	Schizophrenia (100%)	NR	inpatient residential treatment program (100%); neuroleptics (100%)	17.7	1	0.0%	Independence; Overall social functioning
Scottish Schizophrenia Research Group 1988	49–41	30.6 (NR)	53.1%	Schizophrenia (100%)	NR	antipsychotics (100%)	0.23	1-2-2005	16.3%	Independence; Prosocial behavior; Vocational functioning
She 2017	170–108	32.4 (8.3)	37.1%	Schizophrenia (100%)	NR	Integrated group treatment (50.6%); antipsychotics (100%)	7.24	0.25/1	36.5%	Independence; Prosocial behavior; Vocational functioning
Siegel 2006	208–98	28.6 (7.4)	40.8%	Schizophrenia (100%)	NR	antipsychotics (85.9%)	6.1	3	52.9%	Overall social functioning
Simonsen 2007	301–184	27.8 (9.6)	41.5%	Schizophrenia (27.9%); schizoaffective disorder (21.6%); schizoaffective disorder (13.0%); affective disorder (13.5%); alcohol abuse (16.0%); drug abuse (23.6%)	depressive disorder (4.0%)	antipsychotic medication (97.3%); TIPS treatment program (98.6%)	0.45	0.25/1/2/5/10	38.9%	Overall social functioning
Smith 2002	56–35	37.0 (9.0)	41.3%	Schizophrenia (60.9%); schizoaffective disorder (39.1%)	depressive disorder (4.0%)	outpatient treatment program (100%); antipsychotics (100%)	19	0.25/1	37.5%	Prosocial behavior
Stainby 2010	50–31	41.0 (13.2)	28.0%	Schizophrenia (90.0%); schizoaffective disorder (6.0%); depression with psychosis (4.0%)	depression (4.0%)	depression (4.0%)	16.8	2	38.0%	Overall social functioning
Stouten 2014	153–153	27.8 (NR)	27.5%	Schizophrenia (51.92%); brief psychotic disorder (5.77%); delusional disorder (3.21%); shared psychotic disorder (1.28%); psychotic disorder NOS (36.60%); Schizophrenia (100%)	depressive disorder (4.0%)	antidepressants (12.8%); benzodiazepines (31.9%); psychosocial rehabilitation (19.2%)	0.15	1	0.0%	Independence; Overall social functioning; Prosocial behavior; Vocational functioning
Tabares Seisdesos 2008	52–47	33.4 (8.2)	21.3%	Schizophrenia (100%)	depression (4.0%)	antipsychotics; antidepressants (12.8%); benzodiazepines (31.9%); psychosocial rehabilitation (19.2%)	8.7	1-mrt	9.6%	Independence; Prosocial behavior
Test 1990	122–105	23.1 (3.6)	32.8%	Schizophrenia (73.8%); schizoaffective disorder (23.0%); schizotypal personality disorder (3.3%)	bipolar disorder (72.6%); major depressive disorder (27.4%)	Training in community living (60%); usual psychiatric care (40%)	4.07	0.5/1/2	13.9%	Independence; Prosocial behavior
Tohen 2000	219–199	34.1 (15.3)	43.8%	Bipolar disorder (72.6%); major depressive disorder (27.4%)	bipolar disorder (72.6%); MDD (27.4%); substance use disorder (14.2%); medical disorder (33.8%)	psychotropic medication (89.5%)	0.4	0.5/1/2	9.1%	Overall social functioning
Tsang 2016	90–70	36.1 (9.3)	36.7%	Schizophrenia (57.8%); schizoaffective disorder (42.2%)	major depressive disorder (2.3%)	Supported employment (100%); cognitive remediation (50%)	11.21	0.58/1	22.2%	Vocational functioning
Van Os 1999	706–608	38.3 (11.7)	42.9%	Schizophrenia (38.1%); schizoaffective disorder	major depressive disorder (2.3%)	antipsychotics (96.3%); intensive case	10	1-feb	13.8%	Independence; Prosocial functioning (continued on next page)
3.3.3. Independence

Overall, we found a small improvement in independence (d = 0.25). We found a large improvement of independence after a short follow-up duration in the subgroup with a baseline duration of illness 5–10 years and a small improvement of independence with greater improvement for study outcomes with shorter follow-up durations in the subgroup with a baseline duration of illness >10 years ($\chi^2 = 21.29; df = 3; p < 0.01$).

3.3.4. Activities

Overall, we found no improvement in activities (d = 0.15). We found a small improvement over time for studies with a baseline duration of illness of less than 2 years. We found no improvement over time for subgroups with a longer baseline duration of illness.

3.3.5. Vocational functioning

Overall, we found a small improvement in vocational functioning (d = 0.31). We found a medium improvement after a short follow-up and a large improvement after long follow-up for the subgroup with a baseline duration of illness >10 years. Differences in improvement between short and long follow-up were significant ($\chi^2 = 27.92; df = 3; p < 0.01$). We found no improvement in vocational functioning for the subgroup with a shorter baseline duration of illness (i.e. <2; 2–5 or 5–10 years).

3.4. Outliers and publication bias

We found 13 positive and 7 negative outliers for overall social functioning outcomes, 16 positive and 4 negative outliers for prosocial behavior, 1 positive outlier for independence, and 3 negative outliers for vocational functioning. Excluding outliers did not significantly influence any study outcome.

We found asymmetrical funnel plots, indicating publication bias, for overall social functioning and prosocial behavior (see Supplementary Material H). For overall social functioning mainly study outcomes with a baseline duration of illness <2 years and 2–5 years and for prosocial behavior larger studies with a duration of illness between 5 and 10 years at baseline positively influenced the outcomes.

3.5. Analysis of potential moderators of outcome at baseline

Meta-regression outcomes and sensitivity analyses are presented in Supplementary Material E and Table 3. For some outcome domains moderators were excluded, because data were available for less than 10 studies.

3.5.1. Overall social functioning

Meta-regression showed that baseline levels of depression, positive symptoms, negative symptoms, subjective quality of life, and overall social functioning were significant moderators for changes in overall social functioning. Subsequently, sensitivity analyses indicated that higher baseline levels of positive symptoms, subjective quality of life, and overall social functioning, and lower baseline levels of negative symptoms was associated with greater improvement in overall social functioning ($\chi^2 = 16.24; df = 1; p < 0.01$; $\chi^2 = 8.64; df = 1; p < 0.01$; $\chi^2 = 24.76; df = 1; p < 0.01$; $\chi^2 = 8.48; df = 1; p < 0.01$). The influence of baseline positive and negative symptoms and baseline subjective quality of life applied to the subgroup with a duration of illness <2 years. For both baseline negative symptoms and overall social functioning the influence also applied to the subgroup with a duration of illness between 5 and 10 years.

3.5.2. Prosocial behavior

Meta-regression outcomes showed that baseline levels of positive symptoms and substance use, and a health care setting were moderators for changes in prosocial behavior. Sensitivity analyses indicated that higher baseline levels of positive symptoms, and studies executed in a

Table 1 (continued)

Study name	N (baseline-FU)	Age (SD)	% female	Primary diagnosis	Comorbidity	Treatment	Baseline DOI	FU duration	Attrition rate	Outcome categories reported
Veijola 2014	61–33	34.0 (1.6)	42.4%	Schizophrenia (50%); unspecified or functional psychosis (5%); major depressive disorder (2%); bipolar disorder (4.8%)	schizophrenia (100%)	management (49.9%); standard case management (50.2%)	0.25	1.5	67.1%	Overall social functioning
Whitehorn 2002	103–49	21.9 (5.7)	33.1%	Schizophrenia spectrum disorder (100%)	personality disorder (33.3%)	Antipsychotics (100%); cognitive behaviorally oriented service (51.0%); treatment as usual (49.0%)	0.01	2	52.4%	Overall social functioning
Wittorf 2008	151–96	33.9 (9.7)	49.0%	Schizophrenia (85.5%); schizoaffective disorder (11.5%)	personality disorder (33.3%)	Antipsychotics (100%); cognitive behaviorally oriented service (51.0%); treatment as usual (49.0%)	0.25	2	52.4%	Overall social functioning
Wunderink 2009	125–107	26.4 (6.4)	31.2%	Schizophrenia (45.6%); other nonaffective psychosis (54.4%)	cannabis dependence (24.0%)	Antipsychotics (100%); 0.7	1.5	2	14.4%	Prosocial behavior
Xie 2005	169–130	32.4 (7.2)	22.4%	Schizophrenia (70.4%); schizoaffective disorder (29.6%)	substance use disorder (100%); alcohol use disorder (81.6%); cannabis use disorder (44.7%); cocaine use disorder (15.1%); bipolar disorder (100%)	Dual disorder treatment (100%);	1.5/2	2	23.1%	Activities; Independence; Prosocial behavior; Vocational functioning

a NA = Not Applicable; NR = Not Reported; y = years.
b The reference list of the included studies are presented in Supplementary materials H.
Fig. 2. Effect sizes of improvement and/or deterioration of the five social functioning outcome categories.

* In this figure a positive trendline indicates improvement over time and a negative trendline indicates deterioration over time. The upper and lower whiskers show the 95% confidence interval. Thicker lines represent subgroup outcomes based on a higher number of patients.
health care setting were associated with greater improvement in prosocial behavior ($\chi^2 = 9.71; df = 1; p < 0.01; \chi^2 = 4.31; df = 1; p < 0.05$). Influence of positive symptoms and a health care setting applied to the subgroup with a duration of illness between 5 and 10 years ($\chi^2 = 38.15; df = 1; p < 0.01; \chi^2 = 9.52; df = 1; p < 0.01$).

3.5.3. Independence

Meta-regression outcomes showed that study samples with a schizophrenia diagnosis, and baseline levels of independence were significant moderators for changes in independence. Studies evaluating patients with high levels of baseline independence ($\chi^2 = 9.72; df = 1; p < 0.01$) and studies in which not the whole sample had schizophrenia ($\chi^2 = 13.03; df = 1; p < 0.01$) reported greater improvement in independence. The influence of baseline independence also applied to the subgroup with a duration of illness >10 years at baseline ($\chi^2 = 13.79; df = 1; p < 0.01$).

3.5.4. Activities

Meta-regression outcomes showed that publication year was a moderator for changes in activities. Sensitivity analyses indicated that studies that were published less than 10 years ago reported stronger improvement in activities than older studies ($\chi^2 = 16.24; df = 1; p < 0.01$), especially in the subgroup with a duration of illness between 5 and 10 years after baseline ($\chi^2 = 64.24; df = 1; p < 0.01$).

3.5.5. Vocational functioning

Meta-regression showed that rehabilitation, combined treatment, psychotherapy, depression, negative symptoms, positive symptoms, health care setting, publication year, and baseline vocational functioning are significant moderators for changes in vocational functioning.

Sensitivity analyses indicated that studies applying rehabilitation interventions ($\chi^2 = 41.30; df = 1; p < 0.01$), or combined treatment ($\chi^2 = 38.50; df = 1; p < 0.01$) to the (sub)sample describe greater improvement in vocational functioning. In contrast, studies applying psychotherapy reported weaker improvement in vocational functioning ($\chi^2 = 21.31; df = 1; p < 0.01$). These moderating effects of treatment applied to subgroups with a baseline duration of illness <2 years and 2–5 years.

Furthermore, studies evaluating patients with high levels of baseline positive symptoms ($\chi^2 = 15.77; df = 1; p < 0.01$), or low levels of baseline negative symptoms ($\chi^2 = 41.55; df = 1; p < 0.01$) reported greater improvement in vocational functioning. Moderating effects of negative symptoms applied to the subgroup with a baseline duration of illness >10 years ($\chi^2 = 98.31; df = 1; p < 0.01$).

Finally, studies conducted in a health care setting ($\chi^2 = 54.29; df = 1; p < 0.01$), published less than 10 years ago ($\chi^2 = 4.04; df = 1; p < 0.05$) and studies evaluating patients with high baseline vocational functioning ($\chi^2 = 31.64; df = 1; p < 0.01$) show greater improvement in vocational functioning than studies without these features. These differences applied to subgroups with both a baseline duration of illness <2 years and a baseline duration of illness 5–10 years.

3.6. Quality assessment

The quality assessment and its sensitivity analysis are presented in Supplementary Material F and G. High risk of bias, and lower study quality, was specifically indicated on a substantial number of studies for study attrition (26.2%) and prognostic factor measurement (36.9%).

Although the QUIPS items study attrition and prognostic factor measurement significantly influenced all outcome domains, the direction of the influence of these QUIPS items varied. Therefore, we did not find a consistent trend of influence of study quality of any of the QUIPS items.

4. Discussion

This meta-analysis investigated changes in social functioning and moderators of change in patients with psychotic disorders, with different durations of illness and duration of follow-up.

We observed medium improvement in overall social functioning, with greater improvement in those within the first 5 years of illness after a longer duration of follow-up. We found small improvement in vocational functioning, prosocial behavior and independence, specifically in subgroups with a baseline duration of illness of more than 5 years. We found no overall improvement of activities.

The results we found are in line with previous landmark longitudinal cohort studies, such as IPSS (Leff et al., 1992) that also found long-term improvement of social functioning for patients with psychotic disorders. Results are also in line with earlier studies indicating that patients with shorter illness duration at baseline showed more substantial improvement in social functioning than patients with longstanding psychosis (Frascarelli et al., 2015; Preston, 2000). Our findings also support the idea that the first 5 years after onset of a psychotic disorder could be labeled as a “critical period of recovery” (Birchwood et al., 1998), in which patients can achieve more improvement in social functioning (Luther et al., 2020). However, we observed small or no improvement in the other outcome domains of social functioning during the first five years of illness, though these results were based on a limited number of study outcomes. This emphasizes the need for more studies investigating specific domains of social functioning during early psychosis. The improvement in vocational functioning, prosocial behavior and independence in patients with a longer baseline duration of illness shows hopeful patterns of improvement for chronic patient populations, but also stresses the need for a focus on improvement in these domains for patients with early psychosis.

After controlling for multiple testing effects, we found indications...
Table 2

Meta-analysis of social functioning outcomes.

Overall social functioning	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect**	K (%) large effect** [+/-]**	Heterogeneity (I² (95%CI))**
All studies and outcomes	54 (99)	25,867–24,086	d = 0.60 [M] (0.52–0.69)	+ = 28 (28.57%)/– = 1 (1.02%)	I² = 97% (96–97%)

Baseline subgroup

Follow-up cohort

| Duration of illness < 2 years | 14 (25) | 2720–2506 | d = 0.92 [L] (0.60–1.24)** | + = 11 (45.83%)/– = 0 (0.00%) | I² = 97% (97–98%) |

Subgroups

| Duration of illness < 2 years | 2 (2) | 154–145 | d = 0.89 [L] (0.46–1.31)** | + = 1 (50.00%)/– = 0 (0.00%) | I² = 66% (NA) |

| Duration of illness 2–5 years | 2 (2) | 531–460 | d = 0.99 [L] (1.01–2.99) | + = 1 (50.00%)/– = 0 (0.00%) | I² = 98% (NA) |

| Duration of illness 5-10 years | 1 (1) | 67–67 | d = 0.00 [N] (–0.37–0.37)** | + = 0 (0.00%)/– = 0 (0.00%) | Not Applicable |

| Duration of illness >10 years | 10 (18) | 17,824–17,791 | d = 0.27 [S] (0.19–0.34)** | + = 3 (16.67%)/– = 0 (0.00%) | I² = 88% (83–91%) |

| Duration of illness unclear | 7 (14) | 996–768 | d = 0.64 [M] (0.23–1.04) | + = 6 (42.86%)/– = 1 (7.14%) | I² = 97% (96–97%) |

| Duration of illness < 2 years | 3 (3) | 876–824 | d = 0.52 [M] (0.15–0.90) | + = 1 (33.33%)/– = 0 (0.00%) | I² = 95% (99–97%) |

| Duration of illness 5-10 years | 2 (2) | 289–289 | d = 0.81 [L] (0.35–1.98) | + = 1 (50.00%)/– = 0 (0.00%) | I² = 58% (NA) |

| Duration of illness >10 years | 1 (1) | 33–33 | d = 0.19 [N] (–0.29–0.67)** | + = 0 (0.00%)/– = 0 (0.00%) | Not Applicable |

Subgroups Baseline subgroup

Follow-up cohort

| Duration of illness < 2 years | 6 (6) | 737–659 | d = 0.21 [S] (–0.08–0.50)** | + = 0 (0.00%)/– = 0 (0.00%) | I² = 80% (59–90%) |

| Duration of illness 2–5 years | 2 (2) | 190–190 | d = 0.69 [M] (0.49–0.90)** | + = 0 (0.00%)/– = 0 (0.00%) | I² = 0% (NA) |

| Duration of illness 5-10 years | 1 (1) | 307–300 | d = 0.07 [N] (–0.12–0.26)** | + = 0 (0.00%)/– = 0 (0.00%) | Not Applicable |

| Duration of illness clear | 1 (6) | 122–117 | d = 0.24 [S] (0.14–0.55)** | + = 0 (0.00%)/– = 0 (0.00%) | I² = 29% (0.51%) |

| Duration of illness unclear | 2 (2) | 122–105 | d = 0.20 [S] (–0.30–0.70) | + = 0 (0.00%)/– = 0 (0.00%) | I² = 63% (NA) |

Subgroups Baseline subgroup

Follow-up cohort

| Duration of illness < 2 years | 4 (13) | 320–319 | d = 1.08 [L] (0.71–1.45)** | + = 8 (61.54%)/– = 0 (0.00%) | I² = 94% (91–95%) |

| Duration of illness 5-10 years | 1 (2) | 46–46 | d = −0.17 [N] (–0.85–0.51) | + = 0 (0.00%)/– = 0 (0.00%) | Not Applicable |

| Duration of illness >10 years | 6 (19) | 1121–1120 | d = 0.34 [S] (0.19–0.49)** | + = 24 (20.69%)/– = 0 (0.00%) | I² = 94% (93–94%) |

(continued on next page)
Table 2 (continued)

Prosocial behavior

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI)\(^2\) and magnitude of effect\(^**\)	K (%) large effect\(^**\) \([-/–/+]*)	Heterogeneity \((I^2 (95\% CI))\)
All studies and outcomes	30 (113)	5813–4615	\(d = 0.36 [S (0.27–0.46)]\)	\(+ = 24 (20.69\%)/+ = 0 (0.00)%\)	\(I^2 = 94\% (93–94\%)\)
Duration of illness \(>\)10 years					
\(\geq\)2–<5 years	7 (26)	3300–2221	\(d = 0.17 [N (0.01–0.33)]^2\)	\(+ = 5 (19.23\%)/+ = 0 (0.00)%\)	\(I^2 = 94\% (92–96\%)\)
\(\geq\)5–<8 years	4 (14)	351–315	\(d = 0.27 [S (0.04–0.51)]^2\)	\(+ = 3 (21.43\%)/+ = 0 (0.00)%\)	\(I^2 = 88\% (53–92\%)\)
\(\geq\)8 years	1 (8)	130–125	\(d = 0.37 [S (–0.01–0.76)]^2\)	\(+ = 3 (37.50\%)/+ = 0 (0.00)%\)	\(I^2 = 94\% (90–96\%)\)
Subgroup differences between follow-up cohorts					
Duration of illness unclear					
\(\leq\)2 years	3 (4)	107–107	\(d = 0.94 [L (0.41–1.48)]^2\)	\(+ = 2 (50.00\%)/+ = 0 (0.00)%\)	\(I^2 = 87\% (70–94\%)\)
\(\geq\)2–<5 years	3 (4)	453–453	\(d = 0.04 [N (–0.20–0.27)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 75\% (30–91\%)\)
\(\geq\)5–<8 years	1 (2)	157–148	\(d = –0.16 [N (–0.37–0.05)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 0\% (NA)\)
\(\geq\)8 years	3 (4)	236–159	\(d = –0.11 [N (–0.42–0.20)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 56\% (0–87\%)\)

Independence

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI)\(^2\) and magnitude of effect\(^**\)	K (%) large effect\(^**\) \([-/–/+]*)	Heterogeneity \((I^2 (95\% CI))\)
All studies and outcomes	18 (40)	4734–3669	\(d = 0.25 [S (0.13–0.37)]^2\)	\(+ = 6 (15.00\%)/+ = 0 (0.00)%\)	\(I^2 = 90\% (88–92\%)\)
Subgroups					
Baseline subgroup	Follow-up cohort				
Duration of illness \(<\)2 years					
\(\leq\)2 years	3 (3)	257–257	\(d = 0.07 [N (–0.18–0.33)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 32\% (0–98\%)\)
Duration of illness 2–5 years					
\(\leq\)2–<5 years	1 (1)	122–122	\(d = 0.07 [N (–0.18–0.32)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	Not applicable
\(\geq\)5–8 years	1 (1)	122–122	\(d = 0.20 [S (–0.05–0.45)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	Not applicable
Duration of illness 5–10 years					
\(\leq\)2 years	3 (5)	277–276	\(d = 0.92 [L (0.60–1.24)]^2\)	\(+ = 3 (60.00\%)/+ = 0 (0.00)%\)	\(I^2 = 82\% (60–92\%)\)
Duration of illness \(>\)10 years					
\(\leq\)2 years	3 (9)	200–200	\(d = 0.42 [S (0.09–0.75)]^2\)	\(+ = 3 (33.33\%)/+ = 0 (0.00)%\)	\(I^2 = 81\% (65–90\%)\)
\(\geq\)2–<5 years	4 (8)	3156–2092	\(d = –0.05 [N (–0.11–0.02)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 16\% (1–28\%)\)
\(\geq\)5–8 years	2 (4)	186–181	\(d = 0.20 [S (0.02–0.37)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 51\% (9–84\%)\)
\(\geq\)8 years	2 (4)	183–173	\(d = 0.22 [S (0.08–0.35)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 0\% (0–85\%)\)
Duration of illness unclear					
\(\leq\)2 years	1 (1)	124–124	\(d = 0.12 [N (0.01–0.23)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	Not applicable
\(\geq\)2–<5 years	3 (3)	745–745	\(d = 0.02 [N (–0.55–0.58)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 96\% (90–98\%)\)
\(\geq\)5–8 years	1 (1)	76–76	\(d = –0.20 [S (–0.86–0.45)]^2\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	Not applicable

Activities

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI)\(^2\) and magnitude of effect\(^**\)	K (%) large effect\(^**\) \([-/–/+]*)	Heterogeneity \((I^2 (95\% CI))\)
All studies and outcomes	13 (32)	4489–3273	\(d = 0.15 [N (–0.02–0.32)]^2\)	\(+ = 3 (9.38\%)/+ = 0 (0.00)%\)	\(I^2 = 95\% (94–96\%)\)
Subgroups	Baseline subgroup	Follow-up cohort			
Duration of illness \(<\)2 years					
\(\leq\)2 years	1 (2)	764–623	\(d = 0.25 [S (0.17–0.32)]^4\)	\(+ = 0 (0.00)%/+ = 0 (0.00)%\)	\(I^2 = 0\% (NA)\)

(continued on next page)
Table 2 (continued)

Activities

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect**	K (%) large effect**	Heterogeneity (I² (95%CI))**
All studies and outcomes	13 (32)	4489-3273	$d = 0.15 \left[N: (-0.02-0.32)\right]$	$+ = 3 (9.38\%)/- = 0 (0.00\%)$	$I^2 = 95\% (94-96\%)$
Duration of illness 2-5 years	6 (3)	327	$d = -0.40 \left[N: (-0.83-0.02)\right]$	$+ = 0 (0.00\%)/- = 0 (0.00\%)$	Not Applicable
Duration of illness 5-10 years	7 (5)	351-351	$d = -0.01 \left[N: (-0.11-0.09)\right]$	$+ = 0 (0.00\%)/- = 0 (0.00\%)$	$I^2 = 0\% (0.79\%)$
Duration of illness > 10 years	7 (6)	394-364	$d = -0.01 \left[N: (-0.12-0.10)\right]$	$+ = 0 (0.00\%)/- = 0 (0.00\%)$	$I^2 = 0\% (0.75\%)$
Duration of illness unclear	1 (1)	152-152	$d = -0.19 \left[N: (-0.33 to -0.04)\right]$	$+ = 0 (0.00\%)/- = 0 (0.00\%)$	$I^2 = 0\% (0.90\%)$

Vocational functioning

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect**	K (%) large effect**	Heterogeneity (I² (95%CI))**
All studies and outcomes	27 (61)	6396-4896	$d = 0.31 \left[S: (0.20-0.42)\right]$	$+ = 12 (19.67\%)/- = 1 (1.64\%)$	$I^2 = 89\% (87-90\%)$

Subgroups

Baseline subgroup

Follow-up cohort	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect**	K (%) large effect**	Heterogeneity (I² (95%CI))**
Duration of illness <2 years	5 (7)	557-507	$d = 0.06 \left[N: (-0.37-0.48)\right]$	$+ = 0 (0.00\%)/- = 0 (0.00\%)$	$I^2 = 94\% (89-96\%)$
Duration of illness 2-5 years	2 (2)	158-158	$d = 0.66 \left[M: (0.46-1.78)\right]$	$+ = 1 (50.00\%)/- = 0 (0.00\%)$	$I^2 = 75\% (NA)$
Duration of illness > 10 years	2 (2)	434-337	$d = -0.51 \left[M: (-1.52-0.51)\right]$	$+ = 0 (0.00\%)/- = 1 (50.00\%)$	$I^2 = 87\% (NA)$
Duration of illness unclear	2 (2)	223-214	$d = 0.34 \left[S: (-0.95-1.62)\right]$	$+ = 1 (50.00\%)/- = 0 (0.00\%)$	$I^2 = 98\% (NA)$

Outcomes in **bold** are significant (p < 0.05) after Benjamini-Hochberg correction; Outcomes underlined are no longer significant after Benjamini-Hochberg correction for multiple testing.

1Significant subgroup differences with the duration of illness <2 years subgroup outcome within the same follow-up cohort.

70
that high levels of baseline positive symptoms and social functioning, low levels of baseline negative symptoms and studies published in more recent publications were associated with more improvement in multiple domains of social functioning. Furthermore, we found that a high level of baseline subjective quality of life was associated with improvement in overall social functioning and that the presence of specific rehabilita-
tion, or combined treatment, and the absence of psychotherapy were associated with improvement in vocational functioning.

The positive influence of high baseline levels of positive symptoms on improvement in social functioning contradicts previous studies indicating that lower severity of psychotic symptoms is an important predictor for social recovery (Alvarez-Jimenez et al., 2012; Bottledor et al., 2010). The results might be explained by the fact that patients with more severe symptoms have a higher level of functional impairment (Rymaszewska et al., 2007) and thereby greater potential for improvement in social functioning. The negative association between baseline levels of positive symptoms and functioning at baseline (r = -0.48; p < 0.01) in our included studies corroborates this explanation.

Furthermore, the positive association between low levels of baseline negative symptoms and improvement in social functioning is in accordance with previous findings (Albert et al., 2011; Bottledor et al., 2010; Gee et al., 2016; Moller et al., 2000). This might be explained by the conceptual overlap between features of negative symptoms (e.g. apathy and speech problems) and social functioning and the negative association between negative symptoms and neurocognition, social cognition and adherence to treatment (Bliksted et al., 2017; Ventura et al., 2015), which may hamper social recovery. In our report we could not replicate these negative associations, due to lack of study outcomes and lack of heterogeneity of neurocognition assessments. Therefore, we recommend further investigation of the etiology and pathobiology of negative symptoms and possibilities for integrating interventions targeting negative symptoms within functional rehabilitation (Gee et al., 2016; Stiekema et al., 2018; Fervaha et al., 2014).

The positive influence of baseline subjective quality of life on the improvement in overall social functioning confirms previous findings (Burns-Lynch and Musa, 2016; Lambert et al., 2009). This might be explained by the fact that better subjective quality of life might lead to increased engagement in social roles due to increased hope and optimism and a reduced “why try?” effect (Corrigan et al., 2009).

The positive association between recent publications and improvement in activities and vocational functioning might give some first indications for a shift towards greater emphasis on social functioning in standard care for psychosis. We recommend further elaboration of this trend in future research.

Furthermore, studies delivering rehabilitation and combined treatment to the study (sub)sample are associated with improvement in vocational functioning especially for patients with a short illness duration at baseline. This is in line with previous studies indicating beneficial vocational outcomes for vocational rehabilitation programs, such as individual placement and support (IPS), in early intervention services (Bond et al., 2015; Rinaldi et al., 2004). The negative influence of psychotherapy on vocational outcomes might be explained by the fact that most of the psychotherapy studies were not focused on rehabilitation or combined treatment and thereby less focused on vocational rehabilitation.

It is important to consider that we analyzed the whole study sample of each study, so we analyzed both the intervention and the control condition. Therefore, intervention effects do not exclusively explain changes in vocational functioning. The results could be explained by the ‘Hawthorne effect’ which indicates that being a subject of social investiga-
tion might explain the behavior-modifying effect (Wickström and Bendix, 2000). We recommend future research investigating long-term effects of different types of treatment and treatment adherence on different levels of social functioning to put current results into perspective.

Finally, we found a negative association between a diagnosis of schizophrenia and improvement in independence. This indicates that a more severe and chronic pattern of psychotic disorders might affect improvement in this outcome domain. However, both study design and study sample did not influence the other outcome domains in this meta-
analysis. Therefore, the broad inclusion norms increase the generaliz-
ability of our findings with limited influence on the heterogeneity of study outcomes.

A possible important explanation for the results we found might be explained by the fact that the duration of illness subgroups might be biased and censored because sample characteristics between these subgroups differed at baseline. However, in our meta-analysis we found no indications of such a sampling effect, except for the fact that studies with a longer duration of illness were more often diagnosed with schizophrenia than studies with a shorter duration of illness. This might have influenced outcomes as a schizophrenia diagnosis is negatively associated with improvement in independence. Nevertheless, the influence of this moderator is very limited, so the results could not be explained by sampling effects.

There are several limitations to address. First, the subgroup and sensitivity analyses were often based on a limited number of studies with heterogeneous outcomes, making the outcomes less reliable (Bühning et al., 2017). The high heterogeneity might be explained by the fact that social functioning remains a complex and disputed construct with low psychometric quality (Bellack et al., 2006). Although heterogeneity of study outcomes in complex meta-analyses are often inevitable and could not be directly translated to clinical implications of study outcomes (Ioannidis, 2008), we partly explained heterogeneity by executing meta-
regression analyses on potential moderators of outcomes. Quality assessment also revealed lower quality of a few included studies. How-
ever, the sensitivity analysis did not indicate a significant influence of study quality on outcomes. Furthermore, although subgroup and sensi-
tivity analyses were necessary to answer our research questions, the relatively high number of analyses might have caused alpha inflation. Therefore, we executed a Benjamini-Hochberg correction on all signific-
ant outcomes to test for potential type-I errors. Furthermore, we could not analyze the influence of potentially relevant moderators, such as stigma, social cognition, premorbid functioning, regional differences or ethnic groups due to limited studies reporting on these factors. These moderators would be valuable to investigate in future research. Finally, indications of publication bias and high numbers of positive outliers might have inflated study outcomes, though analyses of positive outliers does not support this possibility.

Our findings show hopeful patterns of improvement in social func-
tioning in the first 5 years of illness. However, even patients with a longer duration of illness improve in distinct outcome domains of social functioning. This stresses the needs for extensive intervention services. Reduction of negative symptoms and improvement in subjective quality of life might amplify improvement in social functioning. Further research into specific interventions might help to further unlock the social potential of patients with psychotic disorders.
Table 3
Sensitivity analysis of significant moderators.

(Sub)analysis	Overall social functioning						
	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect **	K (%) large effect ***	Heterogeneity (I² (95% CI))		
Confounder	**Rating**	**Depression**	**High** (14 (17))	3490–2297	d = 0.82 [L] (0.41–1.23)	+ = 6 (35.29%)/– 1 (5.88%)	I² = 98% (97–98%)
Low (12 (18))	2066–1832	d = 0.58 [M] (0.15–1.02)	+ = 6 (33.33%)/– 0 (0.00%)	I² = 98% (98–99%)			
Positive symptoms	**High** (14 (25))	1959–1793	$\chi^2 = 0.61; df = 1; p = 0.44$	$d = 1.16 [L] (0.83–1.50)$	+ = 14 (56.00%)/– 0 (0.00%)	I² = 96% (96–97%)	
Low (17 (33))	2869–2712	d = 0.42 [S] (0.29–0.56)	+ = 6 (18.75%)/– 0 (0.00%)	I² = 90% (87–92%)			
Negative symptoms	**High** (17 (37))	3934–2817	$\chi^2 = 16.24; df = 1; p < 0.01$	d = 0.59 [M] (0.43–0.75)	+ = 13 (35.14%)/– 0 (0.00%)	I² = 94% (93–95%)	
Low (15 (19))	3010–2697	d = 1.33 [L] (0.85–1.80)	+ = 10 (52.63%)/– 0 (0.00%)	I² = 98% (98–99%)			
Subjective quality of life	**High** (4 (18))	436–377	d = 0.63 [M] (0.27–0.98)	+ = 4 (22.22%)/– 0 (0.00%)	I² = 95% (94–96%)		
Low (9 (19))	20,636–19,272	d = 0.09 [N] (0.03–0.15)	+ = 2 (10.53%)/– 0 (0.00%)	I² = 89% (85–92%)			
Baseline functioning	**High** (27 (44))	22,236–20,881	$\chi^2 = 6.84; df = 1; p < 0.01$	d = 0.85 [L] (0.73–0.98)	+ = 19 (43.18%)/– 1 (2.27%)	I² = 98% (97–98%)	
Low (27 (56))	3998–3562	d = 0.41 [S] (0.30–0.53)	+ = 10 (17.86%)/– 0 (0.00%)	I² = 92% (91–93%)			

*Subgroup differences between follow-up cohorts $\chi^2 = 24.76; df = 1; p < 0.01$

*Duration of illness at baseline < 2 years study outcomes

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect **	K (%) large effect ***	Heterogeneity (I² (95% CI))		
Confounder	**Rating**	**Depression**	**High** (5 (7))	497–389	d = 1.17 [L] (0.21–2.14)	+ = 3 (42.86%)/– 0 (0.00%)	I² = 98% (98-99%)
Low (6 (9))	1042–973	d = 0.99 [L] (0.35–1.64)	+ = 5 (55.56%)/– 0 (0.00%)	I² = 98% (98–99%)			
Positive symptoms	**High** (6 (15))	1096–889	$\chi^2 = 0.09; df = 1; p = 0.76$	d = 1.22 [L] (0.79–1.64)	+ = 8 (53.33%)/– 0 (0.00%)	I² = 96% (95–97%)	
Low (5 (5))	1201–1059	d = 0.48 [S] (0.09–0.87)	+ = 2 (50.00%)/– 0 (0.00%)	I² = 88% (74–94%)			
Negative symptoms	**High** (4 (11))	339–288	d = 0.79 [M] (0.40–1.17)	+ = 5 (45.45%)/– 0 (0.00%)	I² = 92% (87–95%)		
Low (9 (11))	2292–2012	d = 1.68 [L] (1.04–2.33)	+ = 7 (63.64%)/– 0 (0.00%)	I² = 98% (98–99%)			
Subjective quality of life	**High** (2 (7))	278–234	d = 1.23 [L] (0.61–1.84)	+ = 4 (57.14%)/– 0 (0.00%)	I² = 96% (93–97%)		
Low (1 (2))	1290–1159	d = 0.21 [S] (0.01–0.43)	+ = 0 (0.00%)/– 0 (0.00%)	I² = 72% (NA)			
Baseline functioning	**High** (12 (18))	17,907–17,744	$\chi^2 = 9.32; df = 1; p < 0.01$	d = 1.15 [L] (0.71–1.59)	+ = 9 (50.00%)/– 0 (0.00%)	I² = 98% (97–98%)	
Low (5 (11))	1273–1094	d = 0.67 [M] (0.30–1.04)	+ = 4 (36.36%)/– 0 (0.00%)	I² = 95% (92–96%)			

*Subgroup differences between follow-up cohorts $\chi^2 = 2.69; df = 1; p < 0.01$

*Duration of illness at baseline 2–5 years study outcomes

(Sub)analysis	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI) and magnitude of effect **	K (%) large effect ***	Heterogeneity (I² (95% CI))		
Confounder	**Rating**	**Depression**	**High** (2 (2))	142–124	d = 1.34 [L] (0.02–2.65)	+ = 1 (50.00%)/– 0 (0.00%)	I² = 94% (NA)
Low	X	X	X	X	X		
Positive symptoms	**High**	X	X	X	X	X	
Low (3 (3))	209–191	d = 0.88 [L] (−0.06–1.82)	+ = 1 (33.33%)/– 0 (0.00%)	I² = 94% (83–98%)			
Negative symptoms	**High** (1 (1))	67–67	d = 0.00 [N] (−0.37–0.37)	+ = 0 (0.00%)/– Not Applicable			
Low (2 (2))	142–124	d = 1.34 [L] (0.02–2.65)	+ = 1 (50.00%)/– 0 (0.00%)	I² = 94% (NA)			

*Subgroup differences between follow-up cohorts $\chi^2 = 3.68; df = 1; p < 0.05$

(continued on next page)
(Sub)analysis	Overall social functioning	All studies and outcomes	Heterogeneity (I² (95% CI))			
	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect **	K (%) large effect [+/−] ***		
Subjective quality of life	High	X	X	X	X	
	Low	X	X	X	X	
Baseline functioning	High	2 (2)	543–481	$d = 0.54$ [M] (−0.58–1.82)	$+ = 1$ (50.00%)/− 0 (0.00%)	$I^2 = 96\%$ (NA)
	Low	3 (3)	209–191	$d = 0.88$ [I] (−0.06–1.82)	$+ = 1$ (33.33%)/− 0 (0.00%)	$I^2 = 94\%$ (83–98%)
Subgroup differences between follow-up cohorts	$\chi^2 = 0.20$; $df = 1$; $p = 0.65$					
Subjective quality of life	High	X	X	X	X	
	Low	X	X	X	X	
Baseline functioning	High	1 (1)	96–96	$d = 2.37$ [I] (2.00–2.74)	$+ = 1$ (100.00%)/− 0 (0.00%)	Not applicable
	Low	4 (5)	324–318	$d = 0.36$ [S] (−0.14–0.86)	$+ = 1$ (20.00%)/− 0 (0.00%)	$I^2 = 91\%$ (81–95%)
Subgroup differences between follow-up cohorts	$\chi^2 = 40.27$; $df = 1$; $p < 0.01$					
Quality of life	High	X	X	X	X	
	Low	X	X	X	X	
Baseline functioning	High	2 (11)	158–143	$d = 0.24$ [S] (0.04–0.44)	$+ = 0$ (0.00%)/− 0 (0.00%)	$I^2 = 78\%$ (61–88%)
	Low	7 (14)	19,336–18,256	$d = 0.12$ [N] (0.07–0.17)	$+ = 2$ (14.29%)/− 0 (0.00%)	$I^2 = 81\%$ (72–87%)
Subgroup differences between follow-up cohorts	$\chi^2 = 1.28$; $df = 1$; $p = 0.26$					

Prosocial behavior

(Sub)analysis	All studies and outcomes	Heterogeneity (I² (95% CI))				
	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect **	K (%) large effect [+/−] ***		
Substance use	High	5 (13)	827–766	$d = 0.34$ [S] (0.18–0.50)	$+ = 0$ (0.00%)/− 0 (0.00%)	$I^2 = 67\%$ (52.77%)

(continued on next page)
Table 3 (continued)

(Sub)analysis	All studies and outcomes	Prosocial behavior				
	K (studies (outcome))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect*	Heterogeneity (I^2 (95% CI))	
Low	5 (54)	2842–1778	d = 0.30 [S] (0.18–0.43)	+ = 0 (0.00%)/--	I^2 = 93% (92-94%)	
Positive symptoms	Subgroup differences between follow-up cohorts					
High	6 (54)	743–734	d = 0.50 [M] (0.33–0.67)	+ = 0 (0.00%)/--	I^2 = 96% (95-96%)	
Low	10 (24)	1057–1020	d = 0.15 [N] (0.01–0.29)	+ = 0 (0.00%)/--	I^2 = 81% (75-86%)	
Health care setting	Subgroup differences between follow-up cohorts					
Health care	16 (81)	1964–1894	d = 0.43 [S] (0.28–0.58)	+ = 0 (0.00%)/--	I^2 = 95% (94-95%)	
Naturalistic	14 (32)	3836–2707	d = 0.20 [S] (0.02–0.29)	+ = 0 (0.00%)/--	I^2 = 91% (89-93%)	
	Subgroup differences between follow-up cohorts					
	Duration of illness at baseline < 2 years study outcomes					
Substance use	Rating	K (studies (outcome))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect*	Heterogeneity (I^2 (95% CI))
Positive symptoms						
High	5 (6)	760–704	d = 0.39 [S] (0.10–0.67)	+ = 0 (0.00%)/--	I^2 = 82% (64-91%)	
Low	X X X X					
Health care setting	Subgroup differences between follow-up cohorts					
Health care	4 (5)	453–404	d = 0.46 [S] (0.19–0.74)	+ = 0 (0.00%)/--	I^2 = 72% (37-88%)	
Naturalistic	4 (4)	656–620	d = 0.11 [N] (-0.15–0.36)	+ = 0 (0.00%)/--	I^2 = 73% (26-90%)	
	Subgroup differences between follow-up cohorts					
	Duration of illness at baseline 2–5 years study outcomes					
Substance use	Rating	K (studies (outcome))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect*	Heterogeneity (I^2 (95% CI))
Positive symptoms						
High	1 (8)	122–117	d = 0.32 [S] (0.14–0.49)	+ = 0 (0.00%)/--	I^2 = 32% (0-70%)	
Low	X X X X					
Health care setting	Subgroup differences between follow-up cohorts					
Health care	1 (8)	122–117	d = 0.32 [S] (0.14–0.49)	+ = 0 (0.00%)/--	I^2 = 32% (0-70%)	
Naturalistic	X X X X					
(Sub)analysis	All studies and outcomes	Prosocial behavior				
	K (studies (outcome))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect*	Heterogeneity (I^2 (95% CI))	
	Duration of illness at baseline 5–10 years study outcomes					
Substance use	Rating	K (studies (outcome))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect*	Heterogeneity (I^2 (95% CI))
Positive symptoms						
High	1 (6)	170–169	d = 1.68 [L] (1.32–2.03)	+ = 0 (100.00%)/--	I^2 = 91% (83-95%)	
Low	1 (2)	47–47	d = 0.24 [S] (-0.06–0.53)	+ = 0 (0.00%)/--	I^2 = 0% (NA)	
Health care setting	Subgroup differences between follow-up cohorts					
Health care	2 (8)	216–215	d = 1.24 [L] (0.77–1.72)	+ = 6 (75.00%)/--	I^2 = 95% (93-97%)	
Naturalistic	3 (7)	216–188	d = 0.43 [S] (0.24–0.63)	+ = 2 (28.57%)/--	I^2 = 13% (0-75%)	
(Sub)analysis	Duration of illness at baseline > 10 years study outcomes					
Substance use	Rating	K (studies (outcome))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect*	Heterogeneity (I^2 (95% CI))
Positive symptoms						
High	X X X X					
Low	3 (47)	2433–1369	d = 0.32 [S] (0.19–0.45)	+ = 0 (0.00%)/--	I^2 = 93% (92-94%)	(continued on next page)
Table 3 (continued)

Subanalysis

Subgroup differences between follow-up cohorts	K (studies outcomes)	N (baseline-FU)	Effect size (95% CI) and magnitude of effect **	K (%) large effect**	Heterogeneity (I² (95% CI))
Positive symptoms					
High	1 (43)	152–152	$d = -0.34$ [S] (0.21–0.48)	+ 3 (14.29%)/− 0 (0.00%)/−	I² = 91% (89–92%)/− 0 (0.00%)/−
Low	4 (11)	403–387	$d = -0.16$ [N] (−0.02–0.34)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 71% (46–84%)/− 0 (0.00%)/−
Schizophrenia diagnosis					
Yes	6 (7)	812–517	$d = -0.03$ [N] (−0.22–0.16)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 71% (46–84%)/− 0 (0.00%)/−
No	9 (18)	4530–3985	$d = 0.56$ [M] (0.30–0.81)	+ 6 (33.33%)/− 0 (0.00%)/−	I² = 91% (88–93%)/− 0 (0.00%)/−
Baseline dependence					
High	9 (26)	932–931	$d = 0.37$ [S] (0.20–0.54)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 90% (87–92%)/− 0 (0.00%)/−
Low	9 (14)	3802–2738	$d = -0.02$ [N] (−0.13–0.16)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 81% (72–87%)/− 0 (0.00%)/−

Confidence

Subgroup differences between follow-up cohorts	K (studies outcomes)	N (baseline-FU)	Effect size (95% CI) and magnitude of effect **	K (%) large effect**	Heterogeneity (I² (95% CI))
Duration of illness at baseline < 2 years study outcomes					
Positive symptoms					
High	2 (2)	104–104	$d = 0.26$ [S] (0.06–0.59)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 0% (NA)/− 0 (0.00%)/−
Low	1 (1)	153–153	$d = -0.08$ [N] (−0.30–0.14)	+ 0 (0.00%)/− 0 (0.00%)/−	Not Applicable
Schizophrenia diagnosis					
Yes	2 (2)	234–208	$d = 0.07$ [N] (−0.28–0.41)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 62% (NA)/− 0 (0.00%)/−
No	1 (1)	49–41	$d = -0.08$ [N] (−0.30–0.14)	+ 0 (0.00%)/− 0 (0.00%)/−	Not Applicable
Baseline					
High	2 (2)	104–104	$d = 0.26$ [S] (0.06–0.59)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 0% (NA)/− 0 (0.00%)/−
Low	1 (1)	153–153	$d = -0.08$ [N] (−0.30–0.14)	+ 0 (0.00%)/− 0 (0.00%)/−	Not Applicable

Subgroup differences between follow-up cohorts

K (studies outcomes)	N (baseline-FU)	Effect size (95% CI) and magnitude of effect **	K (%) large effect**	Heterogeneity (I² (95% CI))	
Duration of illness at baseline ≥ 2 years study outcomes					
Positive symptoms					
High	2 (2)	X	X	X	
Low	1 (1)	X	X	X	
Schizophrenia diagnosis					
Yes	1 (2)	122–125	$d = 0.14$ [N] (−0.04–0.31)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 0% (NA)/− 0 (0.00%)/−
No	1 (2)	122–122	$d = 0.14$ [N] (−0.04–0.31)	+ 0 (0.00%)/− 0 (0.00%)/−	I² = 0% (NA)/− 0 (0.00%)/−

(continued on next page)
Confounder	Rating	N (baseline-FU)	Duration of illness at baseline 5–10 years study outcomes	K (%) large effect**	K (studies (outcomes))	Effect size (95% CI)* and magnitude of effect**	Heterogeneity (I² (95% CI))
Positive symptoms	High	170–169	d = 1.18 [L] (1.04–1.32)	+ = 3 (100.00%)/= = 0 (0.00%)	1 (3)	+ = 3 (100.00%)/= = 0 (0.00%)	I² = 6% (0–90%)
	Low	47–47	d = 0.39 [S] (–0.02–0.80)	+ = 0 (0.00%)/= = 0 (0.00%)	1 (1)	+ = 3 (60.00%)/= = 0 (0.00%)	I² = Not Applicable
Schizophrenia diagnosis	Yes	X X					
	No	292–215	d = 0.92 [L] (0.60–1.24)	+ = 3 (60.00%)/= = 0 (0.00%)	3 (5)	+ = 3 (60.00%)/= = 0 (0.00%)	I² = 82% (60–92%)
Baseline Independence	Low	X X					

Confounder	Rating	N (baseline-FU)	Duration of illness at baseline >10 years study outcomes	K (%) large effect**	K (studies (outcomes))	Effect size (95% CI)* and magnitude of effect**	Heterogeneity (I² (95% CI))
Positive symptoms	High	152–152	d = 0.12 [N] (0.03–0.20)	+ = 0 (0.00%)/= = 0 (0.00%)	1 (13)	+ = 3 (42.78% /)= = 0 (0.00%)	I² = 42% (0–70%)
	Low	78–78	d = 0.11 [N] (–0.58–0.80)	+ = 0 (0.00%)/= = 0 (0.00%)	1 (2)	+ = 3 (60.00%)/= = 0 (0.00%)	I² = 40% (0–60%)
Schizophrenia diagnosis	Yes	3202–3026	d = 0.08 [N] (–0.01–0.16)	+ = 0 (0.00%)/= = 0 (0.00%)	3 (13)	+ = 3 (60.00%)/= = 0 (0.00%)	I² = 83% (48–73%)
	No	163–137	d = 0.43 [S] (0.09–0.78)	+ = 0 (0.00%)/= = 0 (0.00%)	4 (8)	+ = 3 (78.00%)/= = 0 (0.00%)	I² = 78% (65–87%)
Baseline Independence	High	3080–2016	d = 0.06 [N] (–0.12–0.00)	+ = 0 (0.00%)/= = 0 (0.00%)	2 (16)	+ = 3 (82.00%)/= = 0 (0.00%)	I² = 50% (0–58%)
	Low	177–177	d = 0.23 [S] (0.09–0.36)	+ = 0 (0.00%)/= = 0 (0.00%)	5 (9)	+ = 3 (60.00%)/= = 0 (0.00%)	I² = 10% (0–57%)

Confounder	Rating	N (baseline-FU)	Duration of illness at baseline <2 years study outcomes	K (%) large effect**	K (studies (outcomes))	Effect size (95% CI)* and magnitude of effect**	Heterogeneity (I² (95% CI))
Publication year	Recent	1548–1426	d = 1.01 [L] (0.49–1.53)	+ = 3 (43.96%)/= = 0 (0.00%)	4 (7)	+ = 3 (98.99%)/= = 0 (0.00%)	I² = 99% (98–99%)
	Dated	2941–1847	d = –0.07 [N] (–0.12 to –0.01)	+ = 0 (0.00%)/= = 0 (0.00%)	1 (13)	+ = 3 (15% /)= = 0 (0.00%)	I² = 78% (9–20%)
Subgroup differences between follow-up cohorts			d = 16.24; df = 1; p < 0.01				

Confounder	Rating	N (baseline-FU)	Duration of illness at baseline 2–5 years study outcomes	K (%) large effect**	K (studies (outcomes))	Effect size (95% CI)* and magnitude of effect**	Heterogeneity (I² (95% CI))
Publication year	Recent	764–673	d = 0.25 [S] (0.17–0.32)	+ = 0 (0.00%)/= = 0 (0.00%)	1 (2)	+ = 3 (87% /)= = 0 (0.00%)	I² = 87% (64–96%)
	Dated	60–60	d = –0.40 [S] (–0.83–0.02)	+ = 3 (100.00%)/= = 0 (0.00%)	1 (1)	+ = 3 (100.00%)/= = 0 (0.00%)	I² = Not Applicable
Subgroup differences between follow-up cohorts			d = 1.16; df = 1; p < 0.01				

Confounder	Rating	N (baseline-FU)	Duration of illness at baseline 5–10 years study outcomes	K (%) large effect**	K (studies (outcomes))	Effect size (95% CI)* and magnitude of effect**	Heterogeneity (I² (95% CI))
Publication year	Recent	170–169	d = 2.08 [L] (1.63–2.53)	+ = 3 (100.00%)/= = 0 (0.00%)	3 (3)	+ = 3 (100.00%)/= = 0 (0.00%)	I² = 87% (64–96%)
Subgroup differences between follow-up cohorts			d = 1.16; df = 1; p < 0.01				

(continued on next page)
Table 3 (continued)

Activities

(Sub)analysis	All studies and outcomes	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect**	Heterogeneity (I² (95% CI))
Dated					
Subgroup differences between follow-up cohorts					
	60-60	2 (2)	$d = -0.28$ [S] (-0.64-0.08) $\chi^2 = 64.24$; $df = 1; p < 0.01$ $I^2 = 0\%$ (NA)		
Publication year	Recent	X	Yes $d = -0.05$ [N] (-0.10 to -0.00) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 11\%$ (6-16%)		
Psychotherapy					
Subgroup differences between follow-up cohorts					
	6 (22)	2821-1727	$d = -0.05$ [N] (-0.10 to -0.00) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 11\%$ (6-16%)		
Combined treatment					
Subgroup differences between follow-up cohorts					
	Yes	12 (40)	$d = -0.58$ [M] (0.43-0.73) $\chi^2 = 21.31$; $df = 1; p < 0.01$ $I^2 = 86\%$ (83-89%)		
	No	12 (22)	$d = -0.05$ [N] (-0.18-0.08) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 86\%$ (83-89%)		
Depression					
Subgroup differences between follow-up cohorts					
	High	3 (12)	$d = -0.14$ [N] (0.06-0.22) $\chi^2 = 38.50$; $df = 1; p < 0.01$ $I^2 = 39\%$ (21-53%)		
	Low	5 (12)	$d = -0.04$ [N] (-0.31-0.40) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 94\%$ (91-96%)		
Positive symptoms					
Subgroup differences between follow-up cohorts					
	High	5 (21)	$d = -0.71$ [M] (0.53-0.89) $\chi^2 = 0.27$; $df = 1; p = 0.60$ $I^2 = 73\%$ (63-80%)		
	Low	7 (21)	$d = 0.22$ [S] (0.05-0.38) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 85\%$ (81-89%)		
Negative symptoms					
Subgroup differences between follow-up cohorts					
	High	6 (14)	$d = -0.02$ [N] (-0.06-0.09) $\chi^2 = 15.77$; $df = 1; p < 0.01$ $I^2 = 41\%$ (23-54%)		
	Low	10 (35)	$d = 0.62$ [M] (0.45-0.78) $\chi^2 = 41.55$; $df = 1; p = 0.01$ $I^2 = 86\%$ (82-89%)		
Setting					
Subgroup differences between follow-up cohorts					
	Naturalistic	12 (21)	$d = -0.12$ [N] (-0.23 to -0.01) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 78\%$ (71-84%)		
	Health care	15 (44)	$d = 0.56$ [M] (0.42-0.70) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 87\%$ (84-89%)		
Publication year					
Subgroup differences between follow-up cohorts					
	Recent (<10 years)	15 (30)	$d = 0.43$ [S] (0.28-0.58) $\chi^2 = 54.29$; $df = 1; p < 0.01$ $I^2 = 86\%$ (82-89%)		
	Dated (>10 years)	12 (35)	$d = 0.21$ [S] (0.07-0.36) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 99\%$ (86-91%)		
Baseline functioning					
Subgroup differences between follow-up cohorts					
	High	14 (47)	$d = 0.49$ [S] (0.35-0.62) $\chi^2 = 4.04$; $df = 1; p = 0.05$ $I^2 = 87\%$ (85-89%)		
	Low	13 (18)	$d = -0.09$ [N] (-0.24-0.06) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 85\%$ (79-89%)		

Vocational functioning

(Sub)analysis	All studies and outcomes	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect**	Heterogeneity (I² (95% CI))
Rehabilitation					
Subgroup differences between follow-up cohorts					
	Yes	2 (4)	$d = 0.81$ [L] (0.48-1.13) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 64\%$ (48-86%)		
	No	6 (7)	$d = -0.43$ [S] (-0.69 to -0.17) $\chi^2 = 0.00$; $df = 0; p = 0.00$ $I^2 = 82\%$ (65-90%)		

(continued on next page)
Table 3 (continued)

Vocational functioning

(Sub)analysis	All studies and outcomes				
	K (studies (outcomes))	N (baseline-FU)	Effect size (95% CI)* and magnitude of effect**	K (%) large effect***	Heterogeneity (I² (95% CI))
-----------------	--------------------------				
(Sub)analysis	All studies and outcomes				
-----------------	--------------------------				
Subgroup differences between follow-up cohorts					
Psychotherapy Yes	5 (6)	–	$\chi^2 = 33.34; df = 1; p < 0.01$	–	–
No	0 (0.00%)/-	–	$\chi^2 = 7.14; df = 1; p < 0.01$	–	–
Publication year Recent (46 years)	6 (8)	–	$\chi^2 = 27.03; df = 1; p < 0.01$	–	–
Dated (> 78 years)	4 (5)	–	$\chi^2 = 0.33 [S] (0.06-0.72)$	–	–
Baseline functioning High	2 (4)	–	$\chi^2 = 97.11; df = 1; p < 0.01$	–	–
Low	1 (2)	–	$\chi^2 = 6.24; df = 1; p < 0.05$	–	–

Note: χ^2 denotes the chi-square statistic, df denotes degrees of freedom, and p denotes the probability level.
Table 3 (continued)

Subgroup differences between follow-up cohorts	Not applicable
Setting	Naturalistic
X	X
Health care	698–609
Publication year	Recent (<10 years)
X	X
Health care	698–609
Publication year	Dated (>10 years)
X	X
Baseline functioning	High
X	X
Dated (>10 years)	698–609
Publication year	Low
X	X
Baseline functioning	X

(Sub)analysis	Duration of illness at baseline 5–10 years study outcomes	Not applicable
Rating	Rehabilitation	Not applicable
Yes	1 (2)	131–128
No	2 (2)	454–291
Psychotherapy	Not applicable	
Yes	1 (1)	362–199
No	2 (3)	223–220
Combined treatment	Not applicable	
Yes	1 (2)	131–128
No	2 (2)	454–291
Depression	Not applicable	
High	X	X
Low	X	X
Positive symptoms	Not applicable	
High	X	X
Low	1 (2)	131–128
Negative symptoms	Not applicable	
High	X	X
Low	1 (2)	131–128
Setting	Naturalistic	
X	X	
Health care	585–419	
Publication year	Recent (<10 years)	
2 (3)	493–327	
Publication year	Dated (>10 years)	
1 (1)	92–92	
Publication year	High	
2 (3)	493–327	
Publication year	Low	
1 (1)	92–92	

(Sub)analysis	Duration of illness at baseline >10 years study outcomes	Not applicable
Rating	Rehabilitation	Not applicable
Yes	5 (23)	990–990

Effect size (95% CI)* and magnitude of effect**	K (%) large effect***
X	X
X	X
X	X
X	X
X	X
d = 0.28 [S] (0.10–0.46)	
+ = 3 (30.00%)/− = 0 (0.00%)(continued on next page)	
Outcomes in bold are significant (p < 0.05) after Benjamini-Hochberg correction; Outcomes underlined are no longer significant after Benjamini-Hochberg correction for multiple testing.

- significant (p < 0.05)

** N = No effect (d ≥ −0.20 • < 0.20); S = Small effect (d ≤ −0.20 and > −0.50•≥0.20 and < 0.50); M = Medium effect (d ≤ −0.50 and > −0.80•≥0.50 and < 0.80); L = Large effect (d < −0.80. > 0.80).

*** + = improvement of outcome at follow-up; - = deterioration of outcome at follow-up.

Acknowledgements

None.

Only the authors of this study worked on this manuscript. Therefore, no other acknowledgements are needed to be made.

CRediT authorship contribution statement

Lars de Winter, MSc. Lars de Winter is a research officer working at Phrenos Center of Expertise for Severe Mental Illnesses and Amsterdam Medical Center in the Netherlands. He has extensive experience in research about the topics of psychiatric rehabilitation and psychosocial rehabilitation in conducting meta-analyses and systematic reviews. Lars de Winter is the corresponding author for this manuscript.

Dr. Chrisje Couwenbergh. Chrisje Couwenbergh is a social scientist working at Phrenos Center of Expertise for Mental Illnesses. She studies different topics in the field of recovery oriented practice, rehabilitation and severe mental illnesses.

Prof. Jaap van Weeghel, PhD., Jaap van Weeghel is a social scientist working at Phrenos Center of Expertise for Mental Illnesses. He is also emeritus professor at Tranzo Scientific Center for Care and Welfare, Department of Social and Behavioral Sciences, Tilburg University, The Netherlands. He studies various aspects of the recovery, rehabilitation and social inclusion of people with psychotic disorders or other severe mental illnesses.

Prof. Ilanit Hasson-Ohayon, PhD. Ilanit Hasson-Ohayon is a rehabilitation psychologist and full professor at the department of psychology in Bar-Ilan University, Israel. She studies different psychological aspects of coping with illnesses and disabilities.

Dr. Jentien Vermeulen. Jentien Vermeulen is a psychiatrist in training and post-doctoral researcher in the field of psychosis and addiction at the Amsterdam University Medical Centers, location AMC. She has a specific track record in the etiology, interventions and prevention of tobacco smoking and severe mental illness, both in research.
as in clinical practice.

Prof. Dr. Cornelis Mulder. Cornelis Mulder is a psychiatrist and professor of public mental health. He is program leader of the Epide-

miological and Social Research Institute at Erasmus University Medical Centre, department of psychiatry, psychiatrist and teacher at Antes/ Parsamia Psychiatric Institute. He is involved in research projects concern-

ing help seeking behavior, motivation and compliance, dual diag-

nosis, victimisation, emergency psychiatry, assertive outreach, and coercion and has published over 200 (inter)national scientific articles (see pubmed), chapters and several books on these matters.

Prof. Dr.ynke Boonstraynke Boonstra is a mental health nurse practitioner at the early intervention service of KieN VIP and professor Healthcare and Innovation in Psychiatry at NHL Stenden University of Applied Science, the Netherlands. She studies various aspects of societal and personal recovery in patients with a psychotic disorder.

Kete Klaver, MSc. Kete Klaver is neuropsychologist and PhD candidate at the Netherlands Cancer Institute in Amsterdam. Currently, she is conducting a randomized controlled trial into the effectiveness of a cognitive rehabilitation program for working cancer survivors.

Matthijs Oud, MSc. Matthijs Oud is a research officer and is working at Trimbos Institute, the Netherlands. His main topic of research is conducting systematic reviews and meta-analyses on different topics of mental health care.

Prof. Dr. Lieuwe de Haan. Lieuwe de Haan, is a psychiatrist and Professor of Psychiatry in Amsterdam Medical Center in the Netherlands. Prof. Dr. Lieuwe de Haan has extensive experience in different research topics, especially focused on early psychosis and schizophrenia.

Prof. Dr. Wim Veling. Wim Veling, MD, PhD, is a psychiatrist and adjunct Professor of Psychiatry in the Department of Psychiatry at University Medical Center Groningen, University of Groningen, the Netherlands. His research focuses on the social context of psychosis and other psychiatric disorders. He uses epidemiology and virtual reality as a tool for understanding of psychosocial mechanisms and treatment of psychiatric disorders.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.schres.2021.11.010.

References

Albert, N., Bertelsen, M., Thorup, A., Petersen, L., Jeppesen, P., Le Quack, P., Nordenstam, M., 2011. Predictors of recovery from psychotic analyses of clinical and social factors associated with recovery among patients with first-episode psychosis after 5 years. Schizophr. Res. 125 (2–3), 257–266.

Alvarez-Jimenez, M., Gleeson, J.F., Henry, L.P., Harrigan, S.M., Harris, M.G., Killackey, E., Jackson, H.J., 2012. Road to full recovery: longitudinal relationship between symptomatic remission and psychosocial recovery in first-episode psychosis over 7.5 years. Psychol. Med. 42 (3), 595–606. American Psychiatric Association, 1980. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed. Washington, DC.

American Psychiatric Association, 2000. Diagnostic and Statistical Manual of Mental Disorders. text rev, 4th ed. Washington, DC.

American Psychiatric Association, 2013. Diagnostic and Statistical Manual of Mental Disorders, 5th ed. Washington DC.

Bellack, A.S., Green, M.F., Cook, J.A., Fenton, W., Harvey, P.D., Heaton, R.K., Patterson, T.L., 2006. Assessment of community functioning in people with schizophrenia and other severe mental illnesses: a white paper based on an NIMH-sponsored workshop. Schizophr. Bull. 33 (3), 805–822.

Benjaminji, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Retrieved April 30, 2021, from J. R. Stat. Soc. Ser. B Methodol. 57 (1), 289–300. https://www.jstor.org/stable/2346101. Birchwood, M., Smith, J.G.O., Cochran, R., Watts, S., Copsey, S.O.N.I.A., 1990. The social functioning scale the development and validation of a new scale of social adjustment for use in family intervention programmes with schizophrenic patients. Br. J. Psychiatry 157 (6), 853–859.

Birchwood, M., Todd, P., Jackson, C., 1998. Early intervention in psychosis: the critical period hypothesis. Br. J. Psychiatry 172 (S33), 53–59.

Bliksted, V., Videbech, P., Fagerlund, B., Frith, C., 2017. The effect of positive symptoms on social cognition in first-episode schizophrenia is modified by the presence of negative symptoms. Neuropsychology 31 (2), 209.

Böhmig, D., Lerduswansri, R., Holling, H., 2017. Some general points on the I2 measure of heterogeneity in meta-analysis. Metrika 80 (6–8), 685–695.

Bond, G.G., Drake, R.E., Luziiano, G., 2015. Empirical evidence of functional outcomes in early intervention programmes for early psychosis: a systematic review. Epidemiol. Psychiact. Sci. 24 (5), 446–457.

Borenstein, M., Higgins, J.P., 2013. Meta-analysis and subgroups. Prev. Sci. 14 (2), 194–215.

Bottleder, R., Strauli, A., Möller, H.J., 2010. Social disability in schizophrenia, schizoaffective and affective disorders 15 years after first admission. Schizophr. Res. 116 (3), 9–15.

Breithorde, N.J., Schravi, H.L., Woods, S.W., 2009. Review of the operational definition for first-episode psychosis. Early Interv. Psychiatry 3 (4), 259–265.

Burns-Lynch, B., Musa, E.B., 2016. An empirical study of the relationship between community participation, recovery, and quality of life of individuals with serious mental illnesses. Int. J. Soc. Psychiatry. Soc. Sci. 53 (1), 467–474.

Chinn, S., 2000. A simple method for converting an odds ratio to effect size for use in meta-analysis. Stat. Med. 19, 3127–3131.

Corticci, F.W., Larson, J.E., Ruesch, N., 2009. Self-stigma and the ‘why try’ effect: impact on life goals and evidence-based practices. World Psychiatry 8 (2), 75–81.

Coxsull, E., Altun, O.S., 2018. The relationship between the hope levels of patients with schizophrenia and functional recovery. Arch. Psychiat. Nurs. 32 (1), 98–102.

De Wolf, A.C., Tate, R.L., Lannin, N.A., Middleton, J., Lane-Brown, A., Cameron, I.D., 2012. The World Health Organization disability assessment scale, WHODAS II: reliability and validity in the measurement of activity and participation in a spinal cord injury population. J. Rehabil. Med. 44 (9), 747–755.

Fervaha, G., Fountas, G., Agid, O., Br...
McGorry, P.D., Nelson, B., Goldstone, S., Yung, A.R., 2010. Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Can. J. Psychiatry 55 (8), 486–497.

Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Prisma Group, 2009. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys. Ther. 89 (9), 873–880.

Moller, H.J., Bottlender, R., Wegner, U., Witzmann, J., Strauß, A., 2000. Long-term course of schizophrenic, affective and schizoaffective psychosis: focus on negative symptoms and their impact on global indicators of outcome. Acta Psychiat. Scand. 102, 54–57.

Morosini, P.L., Magliano, L., Brambilla, L., Ugolini, S., Pioli, R., 2000. Development, reliability and acceptability of a new version of the DSM-IV social and occupational functioning assessment scale (SOFAS) to assess routine social functioning. Acta Psychiat. Scand. 101 (4), 323–329.

Müser, K., Tarrier, N., 1998. The Handbook of Social Functioning in Schizophrenia. Allyn & Bacon, Boston.

Preston, N.J., 2000. Predicting community survival in early psychosis and schizophrenia populations after receiving intensive case management. Aust. N. Z. J. Psychiatry 34 (1), 122–128.

Rinaldi, M., Mcneil, K., Firn, M., Koletsi, M., Perkins, R., Singh, S.P., 2004. What are the benefits of evidence-based supported employment for patients with first-episode psychosis? Psychiatr. Bull. 28 (8), 281–284.

Rymaszewska, J., Jarosz-Nowak, J., Kiepna, A., Kallert, T., Schützwohl, M., Priebe, S., Raboch, J., 2007. Social disability in different mental disorders. Eur. Psychiatry 22 (3), 160–166.

Santesteban-Echarri, O., Paino, M., Rice, S., González-Blanch, C., McGorry, P., Gleeson, J., Alvarez-Jimenez, M., 2017. Predictors of functional recovery in first-episode psychotic: a systematic review and meta-analysis of longitudinal studies. Clin. Psychol. Rev. 58, 59–75.

StataCorp, 2011. Stata Statistical Software: Release 12. StataCorp LP, College Station, TX.

Stickenna, A.P., Islam, M.A., Liemburg, E.J., Castelino, S., van den Heuvel, E.B., van Weeghel, J., van der Meer, L., 2018. Long-term course of negative symptom subdomains and relationship with outcome in patients with a psychotic disorder. Schizophr. Res. 193, 173–181.

Sullivain, S.A., Kouall, D., Cannon, M., David, A.S., Fletcher, P.C., Holmans, P., Owen, M.J., 2020. A population-based cohort study examining the incidence and impact of psychotic experiences from childhood to adulthood, and prediction of psychotic disorder. Am. J. Psychiatr. 177 (4), 308–317.

Switala, P., Ancewska, M., Chrostek, A., Sabatério, C., Geza, A., Bickenbach, J., Chatterji, S., 2012. Disability and schizophrenia: a systematic review of experienced psychosocial difficulties. BMC Psychiatry 12 (1), 192.

Tandon, R., Nasrallah, H.A., Keshavan, M.S., 2009. Schizophrenia, “just the facts” 4. Clinical features and conceptualization. Schizophr. Res. 110, 1–23.

The Nordic Cochrane Centre, 2014. Review Manager (RevMan) [Computer Program]. Version 5.3, 2014. The Nordic Cochrane Centre, The Cochrane Collaboration, Copenhagen.

Van Os, J., Reininghaus, U., 2016. Psychosis as a transdiagnostic and extended phenotype in the general population. World Psychiatry 15 (2), 118–124.

Ventura, J., Subotnik, K.I., Gittin, M.J., Gretchen-Doofly, D., Ered, A., Villa, K.F., Nouscherlein, K.H., 2015. Negative symptoms and functioning during the first year after a recent onset of schizophrenia and 8 years later. Schizophr. Res. 161 (2–3), 407–413.

Wickström, G., Bendix, T., 2000. The “Hawthorne effect”—what did the original Hawthorne studies actually show? Scand. J. Work Environ. Health 363-367.

Wiersma, D., Vanderling, J., Dragomirecka, E., Ganev, K., Harrison, G., Der Heiden, W. A., Walsh, D., 2000. Social disability in schizophrenia: its development and prediction over 15 years in incidence cohorts in six european centres. Psychol. Med. 30 (5), 1155–1167.