Vasopressor Therapy and the Brain: Dark Side of the Moon

Nicholas Heming1,2*, Aurélien Mazeraud3, Eric Azabou2,4, Pierre Moine1,2 and Djillali Annane1,2

1 General Intensive Care Unit, Raymond Poincaré Hospital, Garches, France, 2 U1173 Lab Inflammation and Infection, University of Versailles SOQ-Paris Saclay – INSERM, Montigny-le-Bretonneux, France, 3 Department of Neuro-Anesthesiology and Intensive Care Medicine, Sainte-Anne Teaching Hospital, Paris-Descartes University, Paris, France, 4 Department of Physiology, Assistance Publique-Hôpitaux de Paris, Raymond-Poincaré Hospital, Garches, France

Sepsis, a leading cause of morbidity and mortality, is caused by a deregulated host response to pathogens, and subsequent life-threatening organ dysfunctions. All major systems, including the cardiovascular, respiratory, renal, hepatic, hematological, and the neurological system may be affected by sepsis. Sepsis associated neurological dysfunction is triggered by multiple factors including neuro-inflammation, excitotoxicity, and ischemia. Ischemia results from reduced cerebral blood flow, caused by extreme variations of blood pressure, occlusion of cerebral vessels, or more subtle defects of the microcirculation. International guidelines comprehensively describe the initial hemodynamic management of sepsis, revolving around the normalization of systemic hemodynamics and of arterial lactate. By contrast, the management of sepsis patients suffering from brain dysfunction is poorly detailed, the only salient point being mentioned is that sedation and analgesia should be optimized. However, sepsis and the hemodynamic consequences thereof as well as vasopressors may have severe untoward neurological consequences. The current review describes the general neurological complications, as well as the consequences of vasopressor therapy on the brain and its circulation and addresses methods for cerebral monitoring during sepsis.

Keywords: sepsis associated encephalopathy, delirium, coma, sepsis, septic shock

INTRODUCTION

Sepsis is characterized by life-threatening organ dysfunction following non-homeostatic host response to an infection (1). Sepsis associated encephalopathy (SAE), a transient and potentially reversible brain dysfunction, occurs during the course of sepsis of an extra neurological source. SAE is both a frequent and serious complication (2). Indeed, in sepsis, acute neurological dysfunction occurs in up to 70% of cases (3, 4). Altered mental status is a risk factor of poor outcome for infected patients in the emergency room or in the ward (1, 5). Imaging studies of the brain in SAE are in most cases unremarkable. Mechanisms underlying SAE include neuro-inflammation, excitotoxicity, and ischemia. Ischemia occurs because of macrocirculatory and/or microcirculatory defects. Vasopressors are a cornerstone of the management of septic shock. However, vasoactive drugs may have deleterious consequences on cerebral perfusion. We herein review how sepsis, per se, may affect the brain, as well as the direct and indirect cerebral consequences of vasopressor therapy in sepsis.
SAE results from several mechanisms, of which neuro-

inflammation, ischemia, and excitotoxicity are the main (25).

Neuro-Inflammation

The blood-brain barrier is formed by endothelial cells with
tight junctions, astrocyte endfeet and pericytes and isolates
the cerebral tissue from potentially noxious circulating
components. Circulating inflammatory components freely
interact with cerebral tissue devoid of blood-brain barrier, the
circumventricular organs (26, 27). Circulating cytokines may
also be shuttled across the blood-brain barrier by specialized
carrier proteins (28–30). Peripheral inflammation is sensed and
transmitted by the vagal nerve to neurovegetative centers and the
limbic system. Neuro-inflammation is subsequently mediated
by microglial cells, the resident macrophages of the brain and
by astrocytes, which support neuronal functions (31). Microglial
cells express membrane-bound receptors that detect damage
associated molecular patterns, and induce cellular activation.

Microglial activation occurs early in experimental models of
sepsis (32, 33) and is characterized by the production of pro
inflammatory cytokines, such as tumor necrosis factor alpha,
interleukin-1 beta and transforming growth factor beta (34).

Statins administered to reduce inflammation did not lower the
incidence of delirium in septic patient (35).

Low cerebral reserves of anti-oxidants make the brain
particularly vulnerable to oxidative stress. Anti-oxidant
reserves are depleted during sepsis (36). Inflammation in sepsis
induces early oxidative stress (37), which may be responsible
for subsequent cognitive impairment (38). Anti-oxidant
drugs reduce neuroinflammation in experimental models of
sepsis (39, 40).

Ischemia

The adult human brain represents only 2% of the total body
weight (41). Due to high metabolic demand, cerebral blood flow
in healthy adults ranges from 750 to 900 ml/min, accounting
for ~15% of an individual's resting cardiac output (42, 43).
In physiological conditions, cerebral blood flow is modulated
both at a macrocirculatory and microcirculatory level. Cerebral
macrocirculation may be disrupted during sepsis, episodes of hypotension may alternate with hypertension leading to ischemic or hemorrhagic brain injuries (31, 44).

Cerebral Macrocirculation

Adequate cerebral blood flow is critical for the proper function of the brain. Cerebral autoregulation refers to the capacity to maintain a constant cerebral blood flow, independently of systemic arterial pressure. In man, autoregulation occurs for mean arterial pressures between 60 and 150 mmHg (43). Beyond these values, cerebral blood flow becomes pressure-dependent and is therefore linearly correlated with cerebral perfusion pressure. Low mean arterial pressure leads to low cerebral blood flow. By contrast, excessive doses of vasoconstrictors may also lead to end-organ vasoconstriction and ischemia (45, 46).

Assessment of cerebral blood flow in septic patients is compounded by methodological difficulties. Most studies involve small populations and compare cerebral blood flow in sedated and ventilated septic patients to awake, non-septic control subjects (47, 48). A decrease in cerebral blood flow of the middle cerebral artery is consistently observed in experimental endotoxinemia (49, 50) and in sepsis (51–53). Such a decrease may be secondary to hyperventilation rather than the consequences of endotoxinemia/sepsis on cerebral hemodynamics. Sepsis also impairs cerebral autoregulation (54–57). Interestingly, decreased cerebral autoregulation in sepsis was found to be associated with delirium (58).

Microcirculation

Cerebral energetic requirements relate to the functioning of neurons, rather than that of glial supporting tissue. Indeed, the generation of neuronal action potentials, through the active transmembrane transport of ions, requires large quantities of energy. Cerebral blood flow is inhomogeneous, increasing in areas where neuronal activity is the greatest (59). The metabolic rate is greater in the gray matter of the brain, where most cell bodies lie, than in the white matter (60). Adequate cerebral blood flow at the cellular level is obtained through a functioning gliovascular unit, associating endothelial cells, astrocytes and pericytes (61). Microrcirculatory cerebral blood flow adaptation is modulated by hydrogen ion concentration, partial carbon dioxide pressure, partial oxygen pressure as well as neurotransmitter concentration and intracellular calcium concentration (62, 63). Increased carbon dioxide or hydrogen ion concentrations or hypoxia lead to cerebral vascular vasodilation and greater cerebral blood flow (64).

Sepsis, by injuring endothelial cells and inducing the production of NO disrupts the blood brain barrier, allowing leucocytes and inflammatory cytokines to penetrate the brain, which in turn leads to neuroinflammation, thereby promoting brain dysfunction (65–67). Ischemic or hemorrhagic lesions in the brain may occur in the presence of disseminated intravascular coagulopathy, affecting up to one critically ill patient out of five (68). In addition, sepsis is associated with mitochondrial dysfunction, leaving neurons unable to properly use oxygen (69, 70).

The association of macro and microcirculatory dysfunction compounded by an incapacity to respond to metabolic needs, contribute to the formation of cerebral ischemic lesions (24). Indeed, post mortem studies of the brain of septic patients found evidence of ischemic lesions (44), which may in part explain the high prevalence of disability in sepsis survivors (24). Another well-documented risk factor for ischemic stroke is atrial fibrillation (71). Large retrospective studies report an increased risk of new onset atrial fibrillation during sepsis. In a cohort of more than 60,000 septic patients, atrial fibrillation occurred during 25.5% of hospitalizations (72). Prospective cohorts in the ICU confirmed the high incidence of new onset atrial fibrillation (73, 74). However, the exact prevalence of atrial fibrillation, which may be transient, is probably underestimated. Ischemic stroke is a major complication of atrial fibrillation (75). Large database studies report an increased risk of ischemic stroke associated with sepsis (75). Additionally, sepsis survivors having suffered from new onset atrial fibrillation exhibit a higher risk of subsequent stroke (76). Pathogens such as Mycoplasma pneumoniae are associated with an increased risk of stroke, possibly through immune mediated mechanisms (77). Other pathogens, including the varicella zoster virus, Treponema pallidum and Streptococcus pneumoniae may cause vasculopathy or vasculitis (78), while intracranial aneurysms or blebs, caused by an infection of the arterial wall are typically associated with Staphylococcus aureus or Streptococcus species endocarditis (79).

Excitotoxicity

During sepsis, neuronal and microglial apoptosis occur mainly in the amygdala, nucleus tractus solitarii and locus coeruleus (44). Excitotoxic neuronal apoptosis is mediated by glutamate, which is produced in large quantities by activated microglial cells (80). Cerebrospinal fluid glutamate concentration correlates with the neurological state during bacterial meningitis (81). The adjunction of glutamate-rich cerebrospinal fluid to neuronal cell culture induces dose dependent cellular toxicity, which is attenuated by the adjunction of a NMDA receptor antagonist (82). Hydrogen sulfide and low doses of carbon monoxide also exhibit protective effects against glutamate-mediated neurotoxicity. Mitochondrial-mediated apoptosis occurs during sepsis, mediated by cellular pro-apoptotic factors (83, 84). Other pro-apoptotic factors, include, nitric oxide, TNFα, and hyperglycemia (85).

Secondary Neurological Injuries Occurring During Sepsis

Any organ dysfunction occurring during sepsis may affect the proper functioning of the brain. These include but are not limited to, circulatory or cerebral auto-regulation impairment, systemic organ (hepatic, renal, metabolic, or respiratory) failure as well as the direct or indirect consequences of medication side-effects (opioids, sedatives, antibiotics, sodium disorders…) and environmental factors (rest or lack thereof, light, and noise exposure) (6).
CEREBRAL MONITORING DURING SEPSIS

Cerebral function assessment in sepsis is frequently overlooked. For instance, hypoxic delirium, while common, is underestimated. Means to accurately monitor the cerebral function at the bedside are not wildly available. Concomitant sedation may depress the brain function. No evidence or recommendation supports monitoring cerebral perfusion or function in septic patients (86). While the dose of vasopressors should be tailored to meet specific targets or surrogates of organ function, no guideline proposes neurological endpoints in sepsis. Nevertheless, several methods enable physicians to assess the cerebral function or perfusion. Methods used to assess cerebral function or perfusion include but are not limited to:

- **Clinical Scores**
 The simplest mean of monitoring the brain in an awake patient is clinical. Acute brain dysfunction is identified using validated scales for delirium (i.e., ICSDC or CAM-ICU), coma (Glasgow Coma Scale) or brainstem reflexes in comatose patients (FOUR score) (10, 11, 20, 21). Vasopressors are rarely, if ever, titrated to clinical surrogates of brain dysfunction (87). Preliminary data seem to indicate that during sepsis mean arterial blood pressure of 80–85 mmHg rather than 65–70 mmHg may mitigate brain dysfunction (88).

- **Biomarkers**
 Several biomarkers have been promoted to diagnose or manage brain injuries; including brain injuries of a septic origin. Elevated levels of protein S100B, neuron-specific enolase (NSE) or neurofilament have been reported during SAE. However, their use is controversial since extra-neurological tissues may also release these proteins (89–92).

- **Neuroimaging**
 Cerebral blood flow may be noninvasively monitored by transcranial Doppler ultrasound at the bedside. Blood flow velocity in the cerebral mean artery, a surrogate for cerebral blood flow, is measured using sound waves. No impact of transcranial Doppler ultrasound use on patient centered outcomes has ever been demonstrated. Additionally, inadequate acoustic windows for transcranial doppler monitoring may occur in up to 10% of patients (93).

Neuroimaging, using computed tomography or magnetic resonance imaging of the brain may help demonstrate structural injury to the central nervous system. Imaging studies in septic patients with neurological involvement found evidence of white matter hyperdensities and of ischemic stroke (94–96). Such anomalies may be associated with long term cognitive impairment (24). Drawbacks of imaging studies include: impractical for continuous monitoring, do not accurately predict the functional state of the patient; and the most recent technology might not be available in every hospital.

Dynamic methods, including 18F-fluorodeoxyglucose (FDG) PET imaging and functional MRI go beyond a simple exploration of cerebral morphology by exploring cerebral activity. Dynamic neuroimaging techniques, while not routinely used, may be helpful in predicting long term outcomes in critically ill patients (97–99).

- **Electroencephalogram**
 The electroencephalogram (EEG) records the neuronal electrical activity at the surface of the scalp; indirectly informing on the quality of cerebral perfusion. The EEG is non-invasive and easily available at the bedside (100). EEG patterns may be modified during sepsis. Continuous generalized triphasic waves and burst suppression are associated with the severity of brain dysfunction and with mortality (101). Delta-predominant background, absence of EEG reactivity, periodic discharges are independently associated with mortality (102, 103). However, none of these patterns are specific of sepsis.

- **Evoked Potentials**
 Sensory evoked potentials are generated in response to somatosensory, visual or auditory stimuli. Evoked potentials may be obtained non-invasively at the bedside (100). Sensory evoked potentials explore the integrity of the peripheral or cranial nerve, the spinal cord and/or the brainstem, the thalamus and the cortex. Septic encephalopathy is associated with impaired somatosensory evoked potentials (104, 105). Prolonged nervous conduction times hint at an acute brain dysfunction and are prognostic markers in the critically ill (106, 107).

- **Intracranial Pressure**
 The ideal mean of estimating brain perfusion at the bedside is through the assessment of cerebral perfusion pressure. Since the brain is enclosed in a rigid cranium, cerebral perfusion pressure (CPP) is related to mean arterial pressure (MAP) and intracranial pressure (ICP) by the equation CPP = MAP—ICP. Brain injury leading to elevated ICP will reduce CPP if blood pressure remains identical. During severe brain injuries, vasopressors will maintain MAP but may also induce extreme vasoconstriction in the injured zones of the brain, lowering blood flow in these regions, thereby potentially worsening cerebral injuries (108). Optimal blood pressure strikes a delicate balance between transcapillary hydrostatic and oncotic forces and acceptable cerebral perfusion pressure (108). Only one study in sepsis assessed ICP without finding any evidence of intracranial hypertension (109). Intracranial pressure is almost never directly measured in sepsis, even in severe central nervous system infections, which are theoretically the most at risk of intracranial hypertension. Routine monitoring of intracranial pressure is not recommended in sepsis (110, 111).

- **Cerebral Oximetry**
 Near-infrared spectroscopy uses the principle of light transmission and absorption to determine the tissue concentration of oxyhemoglobin and deoxyhemoglobin and to calculate tissue oxygen saturation. Cerebral oxygen saturation is measured at the frontal lobe and is used as a surrogate for cerebral blood flow. Decreased cerebral oxygen saturation during sepsis may be associated with an increased risk of death (112). Cerebral tissues oxygenation indexes assess...
cerebral autoregulation in septic patients (56). The exact role of cerebral oximetry for monitoring the cerebral function in sepsis needs to be defined (113).

EFFECT OF VASOPRESSORS ON THE BRAIN

Direct Effect
Moderate doses of norepinephrine increase cerebral vascular resistances and moderately decrease cerebral blood flow in isolated perfused dog brains (114). In healthy volunteers, norepinephrine lowers cerebral blood flow by increasing cerebral vascular resistances (115). The systemic administration of low doses of dopamine or norepinephrine in healthy piglets increases cerebral oxygenation (116, 117). High doses of norepinephrine administered to healthy rodents induce heterogeneous increases of cerebral blood flow and disruption of the blood brain barrier (118). The infusion of high doses of norepinephrine in healthy volunteers negatively affects cerebral oxygenation (45). The adjunctive administration of vasopressin in sepsis did not alter the number of days alive without neurological dysfunction (119). The systemic administration of moderate doses of angiotensin II to healthy pigs increases carotid blood flow; the effect on cerebral blood flow was not reported (120). The systemic administration of high doses of angiotensin to healthy baboons lead to disruption of the blood brain barrier and to ischemic brain lesions (121). In healthy humans, the intracarotid administration of angiotensin did not change regional cerebral blood flow (122, 123).

Indirect Effect
New onset atrial fibrillation in the ICU is linked to the presence of endogenous or exogenous vasopressors. A randomized trial comparing the administration of norepinephrine plus dobutamine vs. epinephrine in the treatment of sepsis found that overall 2% of the population developed an ischemic stroke, and 1% of the population developed cerebral bleeding over the first 3 months (124). Both the incidence of supraventricular arrhythmia and of stroke was similar in patients treated by norepinephrine plus dobutamine vs. epinephrine (124). The incidence of cardiac arrhythmia is greater with dopamine than with norepinephrine (125, 126). The adjunctive administration of vasopressin in sepsis did not alter the prevalence of cerebrovascular accidents (119). The administration of angiotensin II in vasodilatory shock is not associated with an increased risk of brain injury (127).

Little data is available regarding goals for neuroprotection during sepsis. Higher blood pressure targets may be associated with mortality (128). Current guidelines indicate that the optimal MAP target to reduce mortality during sepsis is 65 mmHg (86). MAP target personalization remains to be formally evaluated.

CONCLUSIONS
Neurological dysfunction is frequent during sepsis. Both sepsis and high dose vasopressor therapy may negatively impact cerebral perfusion and/or oxygenation. The best way to monitor and to manage patients suffering from sepsis-induced neurological dysfunction remains to be elucidated.

AUTHOR CONTRIBUTIONS
NH conceived the manuscript. NH, AM, EA, PM, and DA contributed to the literature search and wrote the manuscript.

REFERENCES
1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The Third International Consensus definitions for sepsis and septic shock (Sepsis-3). JAMA. (2016) 315:801–10. doi: 10.1001/jama.2016.0287
2. Edelman LA, Putterm Putterman D, Putterm C, Sprung CL. The spectrum of sepsis. Clin Invest Med. (1996) 19:470–3. doi: 10.1010/jcim.1996.0299
3. Young GB, Bolton CF, Austin TW, Archibald YM, Gonder J, Wells GA. The encephalopathy associated with septic illness. Crit Care Med. (1990) 18:969–79.
4. Sprung CL, Peduzzi PN, Shnay Rem, Wilson MF, Sheagren JN, et al. Impact of encephalopathy on mortality in the sepsis syndrome. The Veterans Administration Systemic Sepsis Cooperative Study Group. Crit Care Med. (1990) 28:1054–62. doi: 10.1016/j.ccm.2001.09.012
5. Wernzt W, Heming N, Chretien F, Shnay Rem, Avondo A, et al. Prognostic accuracy of SIRS criteria for in-hospital mortality among patients with suspected infection presenting to the emergency department. JAMA. (2017) 317:101–8. doi: 10.1001/jama.2016.3239
6. Mazeraud A, Pascia Q, Verdonk F, Heming N, Chretien F, Shnay Rem. Neuroanatomy and physiology of brain dysfunction in sepsis. Clin Chem. (2016) 37:333–45. doi: 10.1016/j.ccm.2016.01.013
7. Schenaio M, Bagnoli J-S. Endotoxin-induced experimental systemic inflammation in humans: a model to disentangle immune-to-brain communication. Brain Behav Immun. (2014) 35:1–8. doi: 10.1016/j.bbi.2013.09.015
8. Danzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. (2008) 9:46–56. doi: 10.1038/nrn2297
9. Girard TD, Dittus RS, Ely EW. Critical illness brain injury. Annu Rev Med. (2016) 67:497–513. doi: 10.1146/annurev-med-050913-015722
10. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, et al. Evaluation of delirium in critically ill patients: validation of the Confusion Assessment Method for the Intensive Care Unit (CAM-ICU). Crit Care Med. (2001) 29:2337–47. doi: 10.1097/00003143-200107000-00012
11. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. JAMA. (2001) 285:250–9. doi: 10.1001/jama.285.2.250
12. Peterson JF, Pun BT, Dittus RS, Thomason JWW, Jackson JC, Shintani AK, et al. Delirium and its motoric subtypes: a study of 614 critically ill patients: delirium subtypes in the critically ill. J Am Geriatr Soc. (2006) 54:749–754. doi: 10.1111/j.1532-5415.2005.200821.x
13. Ely EW, Avalos SK, Bernard GR, Gordon S, Francis J, May L, et al. Delirium in mechanically ventilated patients: validity and reliability of the confusion assessment method for the intensive care unit (CAM-ICU). JAMA. (2001) 286:2703–10. doi: 10.1001/jama.286.21.2703

Frontiers in Medicine | www.frontiersin.org 5 January 2020 | Volume 6 | Article 317
14. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell FE, et al. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. JAMA. (2004) 291:1753–62. doi: 10.1001/jama.291.14.1753

15. Page VJ, Casarin A, Ely EW, Zhao X, McDowell C, Murphy L, et al. Evaluation of early administration of simvastatin in the prevention and treatment of delirium in critically ill patients undergoing mechanical ventilation (MoDUS): a randomised, double-blind, placebo-controlled trial. Lancet Respir Med. (2017) 5:727–37. doi: 10.1016/S2213-2600(17)30234-5

16. Girard TD, Exline MC, Carson SS, Hough CL, Rock P, Gong MN, et al. Haloperidol and ziprasidone for treatment of delirium in critically ill patients in the intensive care unit. Crit Care Med. (2011) 39:1960–7. doi: 10.1097/CCM.0b013e3182b84b35

17. Giraud TD, Porcher R, Hassin T, Hemenway D, Kanzatour A, et al. Brainstem response patterns in deeply sedated critically ill patients predict 28-day mortality. PLOS ONE. (2017) 12:e0176012. doi: 10.1371/journal.pone.0176012

18. Sharshar T, Porcher R, Siami S, Rohaut B, Bailly-Salin J, Hopkinson NS, et al. Brainstem responses can predict death and delirium in sedated patients in intensive care units. Crit Care Med. (2011) 39:1960–7. doi: 10.1097/CCM.0b013e3182b84b35

19. Sharshar T, Porcher R, Hassin T, Hemenway D, Kanzatour A, et al. Brainstem response patterns in deeply sedated critically ill patients predict 28-day mortality. PLOS ONE. (2017) 12:e0176012. doi: 10.1371/journal.pone.0176012

20. Tessade G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. (1974) 2:81–4. doi: 10.1016/S0140-6736(74)91639-0

21. Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: the FOUR score. Ann. Neurol. (2005) 58:858–93. doi: 10.1002/ana.20611

22. Iwashyna TJ, Ely EW, Smith DM, Langa KM. Long-term cognitive impairment and functional disability among survivors of severe sepsis. JAMA. (2010) 304:1787–94. doi: 10.1001/jama.2010.1553

23. Ehlenbach WJ, Gilmore-Bykovskyi A, Repplinger MD, Westergaard PM, et al. Vasopressors do not influence cerebral critical closing pressure human endotoxemia. Crit Care Med. (1991) 19:139–43. doi: 10.1097/00003246-199105000-00004

24. Bowton DL, Bertels NH, Prough DS, Stump DA. Cerebral blood flow is impaired in brain, heart and kidney perfusion: an experimental study in pigs after transient myocardial ischemia. Crit Care. (2008) 12:R20. doi: 10.1186/cc6794

25. Heming et al. The Brain, Vasopressors, and Sepsis

26. Banks WA, Kastin AJ, Gutierrez EG. Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett. (1994) 179:53–6. doi: 10.1016/0735-6757(94)90633-4

27. Tracey KJ. The inflammatory reflex. Nature. (2002) 420:833–9. doi: 10.1038/nature01321

28. Pan W, Kastin AJ. TNFalpha transport across the blood-brain barrier is abolished in receptor knockout mice. Exp Neurol. (2002) 174:193–200. doi: 10.1006/exnr.2002.7871

29.Sharshar T, Annane D, de la Grandmaison GL, Brouland JP, Hopkinson NS, Françoise G. The neuropathology of septic shock. Brain Pathol. (2004) 14:21–33. doi: 10.1111/j.1715-8667.2004.tb00494.x

30. Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory Il-1βeta and anti-inflammatory Il-10 cytokines. Brain Behav Immun. (2009) 23:309–17. doi: 10.1016/j.bbi.2008.09.002

31. Hannestad J, Gallezot J-D, Schabauer T, Lim K, Klöcknizky T, Morris ED, et al. Endotoxin-induced systemic inflammation activates microglia: [14C]PBR28 positron emission tomography in nonhuman primates. Neuroimage. (2012) 63:232–9. doi: 10.1016/j.neuroimage.2012.06.055

32. Semmler A, Hermann S, Mormann F, Weberpals M, Paxian SA, Okulla T, et al. Sepsis causes neuroinflammation and concomitant decrease of cerebral metabolism. J Neuroinflammation. (2008) 5:38. doi: 10.1186/1742-204X-5-38

33. Ehlenbach WJ, Gilmore-Bykovskyi A, Repplinger MD, Westergaard

34. Van den Brule JMD, Stolk R, Vinke EJ, van Loon LM, Pickkers P, et al. Vasopressors do not influence cerebral critical closing pressure during systemic inflammation evoked by experimental endotoxemia and sepsis in humans. SHOCK. (2018) 49:529–35. doi: 10.1097/SHK.0000000000001003.
51. Terborg C, Schummer W, Albrecht M, Reinhart K, Weiller C, Röther J. Dysfunction of vasomotor activity in severe sepsis and septic shock. *Intens Care Med.* (2001) 27:1231–4. doi: 10.1007/s001340101005

52. Kadoi Y, Saito S, Kawachi C, Hinomura H, Kunimoto F. Comparative effects of propranolol vs dexamethadione on cerebrovascular carbon dioxide reactivity in patients with septic shock. *Br J Anaesth.* (1980) 100:224–9. doi: 10.1093/bja/sem343

53. Füledi B, Szatmári S, Antek C, Fülep Z, Sárhány P, Csiba L, et al. Cerebral vasoreactivity to acetazolamide is not impaired in patients with severe sepsis. *J Crit Care.* (2012) 27:337–43. doi: 10.1016/j.jcc.2011.11.002

54. Crippa IA, Subirá C, Vincent J-L, Fernandez RF, Hernandez SC, Arguelles-Reyes MT, et al. Association between mitochondrial dysfunction and cerebrovascular thrombotic microangiopathies—what intensivists need to know. *Crit Care.* (2018) 22:86. doi: 10.1186/s13054-018-2258-6

55. Comin CM, Rezin GT, Scaini G, Di Pietro PB, Cardoso MR, Petrilloho FC, et al. Mitochondrial respiratory chain and creatine kinase activities in rat brain after sepsis induced by cecal ligation and perforation. *Mitochondrion.* (2008) 8:313–18. doi: 10.1016/j.mito.2008.07.002

56. Rhodes A, Creteur D, Skrobik Y, Meade M, Ferguson D, et al. Prevalence, risk factors, and outcomes of delirium in mechanically ventilated adults. *Crit Care Med.* (2015) 43:567–66. doi: 10.1097/CCM.0000000000000777

57. Walker AJ, Greiner MA, Heckbert SR, Jensen PN, Piccioni JP, Sinner ME, et al. Atrial fibrillation among Medicare beneficiaries hospitalized with sepsis: incidence and risk factors. *Am Heart J.* (2013) 165:949–55.e3. doi: 10.1016/j.ahj.2013.03.020

58. Klein Klouwenberg PMC, Frenken JF, Kuipers S, Ong DSY, Peelen LM, van Vught LA, et al. Incidence, predictors, and outcomes of new-onset atrial fibrillation in critically ill patients with sepsis. A cohort study. *Am J Respir Crit Care Med.* (2017) 195:205–11. doi: 10.1164/rccm.201603-0618OC

59. Meierhenrich R, Steinhilber E, Eggermann C, Weiss M, Voglic S, Bögelein D, et al. Incidence and prognostic impact of new-onset atrial fibrillation in patients with septic shock: a prospective observational study. *Crit Care.* (2010) 14:R108. doi: 10.1186/cc9057

60. Walker AJ, Wiener RS, Ghorbrial JM, Curtis LH, Benjamin EJ. Incident stroke and mortality associated with new-onset atrial fibrillation in patients hospitalized with severe sepsis. *JAMA.* (2011) 306:2248–54. doi: 10.1001/jama.2011.1615

61. Walker AJ, Hamill BG, Curtis LH, Benjamin EJ. Long-term outcomes following development of new-onset atrial fibrillation during sepsis. *Chest.* (2014) 146:1187–95. doi: 10.1378/chest.14-0003

62. Méné N, Turc G. Stroke associated with recent mycoplasma pneumoniae infection: a systematic review of clinical features and presumed pathophysiological mechanisms. *Front Neurol.* (2018) 9:1109. doi: 10.3389/fneur.2018.01109

63. Katchanov J, Siebert E, Klingebiel R, Endres M. Inflammatory vasoactivity of intracranial large- and medium-sized vessels in neurological intensive care unit: a clinicoradiological study. *Neurocrit Care.* (2010) 12:369–74. doi: 10.1007/s12028-010-9335-4

64. Ducruet AF, Hickman ZL, Zacharia BE, Narula R, Grobelny BT, Gorski J, et al. Intracranial infectious aneurysms: a comprehensive review. *Neurosurug Rev.* (2013) 36:37–46. doi: 10.1007/s10143-009-0233-1

65. Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. *J Biol Chem.* (2008) 283:21362–8. doi: 10.1074/jbc.M600504200

66. Spranger M, Schwab S, Krempien S, Winterholler M, Schneider T, Hacke W. Excess glutamate levels in the cerebrospinal fluid predict clinical outcome of bacterial meningitis. *Arch Neurol.* (1996) 53:992–6. doi: 10.1001/archneur.1996.00550100066006

67. Spranger M, Krempien S, Schwab S, Maillard M, Bruno K, Hacke W. Excess glutamate in the cerebrospinal fluid in bacterial meningitis. *J Neurosci.* (1996) 16:12555–61. doi: 10.1007/s10143-001-0325-3

68. Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. *J Chem Neuroanat.* (2005) 30:313–18. doi: 10.1016/j.jchneu.2005.07.003

69. Comin CM, Barbichello T, Grandigirdarl D, Dal Pizzol F, Quevedo I, Leib SL. Caspase-3 mediates in part hippocampal apoptosis in sepsis. *Mol Neurobiol.* (2013) 47:394–8. doi: 10.1007/s12035-013-0325-x

70. Molto A, Brouland J-P, Porcher R, Sonnenville R, Siam S, Stevens RD, et al. Hyperglycaemia and apoptosis of microglial cells in human septic shock. *Crit Care.* (2011) 15:R31. doi: 10.1186/cc10244

71. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. *Intens Care Med.* (2017) 43:304–77. doi: 10.1007/s00134-017-4683-6

72. St-Arnaud C, Ether J-F, Hameleic C, Bersten A, Guyatt G, Meade M, et al. Prescribed targets for titration of vasopressors in septic shock: a retrospective cohort study. *CMAJ Open.* (2013) 1:E127–33. doi: 10.9781/cmajopen.20130006

73. Jouan Y, Seegers V, Meziani F, Grelon F, Megarbane B, Anguel N, et al. Effects of mean arterial pressure on arousal in sedated ventilated patients with septic
Heming et al.

The Brain, Vasopressors, and Sepsis

Heming et al. The Brain, Vasopressors, and Sepsis

104. Zauner C, Gendo A, Kramer L, Kranz A, Grimm G, Madl C. Azabou E, Fischer C, Guerit JM, Annane D, Mauguiere F, Lofaso F, Azabou E, Magalhaes E, Braconnier A, Yahiaoui L, Moneger G, Heming N, Polito A, Eischwald F, Maho A-L, Polito A, Azabou E, Annane D, et al. Polito A, Eischwald F, Maho A-L, Polito A, Azabou E, Annane D, et al. Sharshar T, Carlier R, Bernard F, Guidoux C, Brouland J-P, Nardi O, et al. Marinoni M, Ginanneschi A, Forleo P, Amaducci L. Pattern of brain injury in the acute setting of human septic shock. Crit Care (2013) 17:R204. doi: 10.1186/cc12899

95. Di Perri C, Bahri MA, Amico E, Thibaut A, Heine L, Antonopoulos G, De Backer D, Biston P, Devriendt J, Madl C, Chochrad D, Aldecoba C, et al. Brain lesions in septic shock: a magnetic resonance imaging study. Brain lesions in septic shock: a magnetic resonance imaging study. J Crit Care (2013) 28:224–32. doi: 10.1016/j.jcrc.2013.02.006

91. Grandi C, Tomasi CD, Fernandes K, Stertz L, Kapczinski F, Quevedo J, et al. Brain-derived neurotrophic factor and neuron-specific enolase, but not S100β correlate with the severity of encephalopathy during sepsis. J Neurosci (2014) 34:1348–53. doi: 10.1523/JNEUROSCI.2780-13.2014

89. Piazza O, Cotena S, De Robertis E, Caranci F, Tufano R. Elevated S100B levels do not correlate with the severity of encephalopathy during sepsis. Br J Anaesth (2010) 104:518–21. doi: 10.1093/bja/aem201

79. Piazza O, Cotena S, De Robertis E, Caranci F, Tufano R. Sepsis-associated encephalopathy in intensive care unit patients. J Crit Care (2014) 29:54. doi: 10.1016/j.jcrc.2013.07.090

69. Piazza O, Cotena S, De Robertis E, Caranci F, Tufano R. Sepsis-associated encephalopathy - a prospective, pilot observational study. PLoS ONE (2014) 9:e91976. doi: 10.1371/journal.pone.0091976

59. Pfister D, Schmidt B, Smielewski P, Siegemund M, Strebel SP, Rüegg S, et al. Intracranial pressure in patients with sepsis. Acta Neurochir Suppl (2008) 102:71–5. doi: 10.1186/978-3-211-85578-2_14

49. Tariq A, Aguilar-Salinas P, Hanel RA, Naval N, Chmaysani M. The role of ICP monitoring in meningitis. Neurosurg Focus. (2013) 47:E3. doi: 10.3171/2017.8.FOCUS17419

39. Glimäker M, Johansson R, Halldorsdottir H, Wanecek M, Elmers, H., Lerner G., Drzezga A., Ghatan PH, et al. Neuro-intensive treatment targeting intracranial hypertension improves outcome in severe bacterial meningitis: an intervention-control study. PLoS ONE. (2014) 9:e91976. doi: 10.1371/journal.pone.0091976

29. Heming B, Lang R, O’Connor P, Ghebremedhin T, Banta G, et al. Changes in cerebral saturation in patients with septic shock: a SEPSISPAM post hoc exploratory study. Ann Intens Care. (2019) 9:54. doi: 10.1186/s13613-019-0525-8
126. De Backer D, Aldecoa C, Njimi H, Vincent J-L. Dopamine versus norepinephrine in the treatment of septic shock: a meta-analysis*. Crit Care Med. (2012) 40:725–30. doi: 10.1097/CCM.0b013e31823778ee

127. Khanna A, English SW, Wang XS, Ham K, Tumlin J, Szerlip H, et al. Angiotensin II for the treatment of vasodilatory shock. N Engl J Med. (2017) 377:419–30. doi: 10.1056/NEJMoa1704154

128. Lamontagne F, Day AG, Meade MO, Cook DJ, Guyatt GH, Hylands M, et al. Pooled analysis of higher versus lower blood pressure targets for vasopressor therapy septic and vasodilatory shock. Intens Care Med. (2018) 44:12–21. doi: 10.1007/s00134-017-5016-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Heming, Mazeraud, Azabou, Moine and Annane. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.