ON SUMMABILITY OF NONLINEAR MAPPINGS: A NEW APPROACH

DANIEL PELLEGRINO AND JOEDSON SANTOS

Abstract. The main goal of this paper is to characterize arbitrary nonlinear (non-multilinear) mappings $f : X_1 \times \cdots \times X_n \rightarrow Y$ between Banach spaces that satisfy a quite natural Pietsch Domination-type theorem around a given point $(a_1, ..., a_n) \in X_1 \times \cdots \times X_n$. As a consequence of our approach a notion of weighted summability arises naturally, which may be an interesting topic for further investigation.

1. Introduction

The theory of absolutely summing operators was initiated with Grothendieck´s ideas in the 50s but just in the sixties (see [19, 28]) the results were better understood and fully explored (for details we refer to the book [14]). Besides its intrinsic interest, this theory has beautiful applications in Banach space theory and nice connections with the geometry of the Banach spaces involved (see, for example, [8, 19] or [7] for a more recent approach). Due to the success of the linear theory, it is not a surprise that many authors have devoted their interest to the nonlinear setting; the multilinear theory, however, has a longer history, which seems to start with [3, 20]; for recent different nonlinear approaches and applications we mention [10, 11, 12, 13, 18, 22, 23, 24, 26, 27] and references therein.

Pietsch Domination-Factorization Theorems play a central role in the theory of absolutely summing linear operators and provide an unexpected and beautiful measure theoretic taste in the theory (for details we mention the monographs [2, 9, 14, 30]). In the last decade several different nonlinear versions of Pietsch Domination-Factorization Theorem have appeared in the literature (see, for example, [1, 4, 5, 15, 16, 21]); for this reason, in [6], an abstract unified approach to Pietsch-type results was presented as an attempt to show that all the known Pietsch-type theorems were particular cases of a unified general version. The main problem investigated in the present paper is motivated by the Pietsch-Domination Theorem (PDT) for n-linear mappings between Banach spaces, which we describe below.

From now on, if $X_1, ..., X_n, Y$ are Banach spaces over a fixed scalar field which can be either $\mathbb{K} = \mathbb{R}$ or \mathbb{C}, $\text{Map}(X_1, ..., X_n; Y)$ will denote the set of all arbitrary mappings from $X_1 \times \cdots \times X_n$ to Y (no assumption is necessary). The topological dual of a Banach space X will be denoted by X^* and its closed unit ball will be represented by B_{X^*}, with the weak-star topology.

D. Pellegrino by INCT-Matemática, PROCAD-NF Capes, CNPq Grant 620108/2008-8 (Ed. Casadinho) and CNPq Grant 301237/2009-3.
Let $0 < p_1, ..., p_n < \infty$ and $1/p = \frac{1}{n} \sum_{j=1}^{n} 1/p_j$. An n-linear mapping $T : X_1 \times \cdots \times X_n \rightarrow Y$ is $(p_1, ..., p_n)$-dominated if there is a constant $C > 0$ so that

$$
(1.1) \quad \left(\sum_{j=1}^{m} \left\| T(x^{(1)}_j, \ldots, x^{(n)}_j) \right\|^p \right)^{1/p} \leq C \prod_{k=1}^{n} \sup_{\varphi \in B_{X_k^*}} \left(\sum_{j=1}^{m} |\varphi(x^{(k)}_j)|^{p_k} \right)^{1/p_k},
$$

regardless of the choice of the positive integer m, $x^{(k)}_j \in X_k$, $k = 1, \ldots, n$ and $j = 1, \ldots, m$. The folkloric PDT for $(p_1, ..., p_n)$-dominated multilinear mappings (see [16] or [25] for a detailed proof) asserts that T is $(p_1, ..., p_n)$-dominated if and only if there are Borel probabilities μ_k on $B_{X_k^*}$, $k = 1, ..., n$, and a constant $C > 0$ such that

$$
(1.2) \quad \left\| T(x^{(1)}, \ldots, x^{(n)}) \right\| \leq C \left(\int_{B_{X_1^*}} \left| \varphi(x^{(1)}) \right|^{p_1} d\mu_1 \right)^{1/p_1} \cdots \left(\int_{B_{X_n^*}} \left| \varphi(x^{(n)}) \right|^{p_n} d\mu_k \right)^{1/p_n},
$$

for all $x^{(j)} \in X_j$, $j = 1, ..., n$.

A related question, not covered by the abstract approach presented in [6], arises:

Problem 1.1. If $(a_1, ..., a_n) \in X_1 \times \cdots \times X_n$, what kind of mappings $f \in \text{Map}(X_1, ..., X_n; Y)$ satisfy, for some $C > 0$ and Borel probabilities μ_k on $B_{X_k^*}$, $k = 1, ..., n$, the inequality

$$
(1.3) \quad \left\| f(a_1 + x^{(1)}, \ldots, a_n + x^{(n)}) - f(a_1, \ldots, a_n) \right\| \leq C \prod_{k=1}^{n} \left(\int_{B_{X_k^*}} \left| \varphi(x^{(k)}) \right|^{p_k} d\mu_k \right)^{1/p_k},
$$

for all $x^{(j)} \in X_j$, $j = 1, ..., n$?

In the next section we solve Problem 1.1.

2. Main Result

Let $0 < p_1, ..., p_n < \infty$ and $1/p = \frac{1}{n} \sum_{j=1}^{n} 1/p_j$. We will say that $f \in \text{Map}(X_1, ..., X_n; Y)$ is $(p_1, ..., p_n)$-dominated at $(a_1, ..., a_n) \in X_1 \times \cdots \times X_n$ if there is a $C > 0$ and there are Borel probabilities μ_k on $B_{X_k^*}$, $k = 1, ..., n$, such that (1.3) is valid for all $x^{(j)} \in X_j$, $j = 1, ..., n$.

It is worth mentioning that Pietsch’s original proof of his domination theorem uses Ky Fan Lemma instead of the usual Hahn-Banach separation theorem (see [29]). The use of Hahn-Banach theorem seems to be not adequate for proving our main result; for this task Pietsch’s original idea of using Ky Fan Lemma will be very useful. It is in some sense a nice surprise that Pietsch’s first argument conceived for linear maps has shown to be the more adequate when dealing with a very general and fully nonlinear context.

Lemma 2.1 (Ky Fan). Let K be a compact Hausdorff topological space and F be a concave family of functions $f : K \rightarrow \mathbb{R}$ which are convex and lower semicontinuous. If for each $f \in F$ there is a $x_f \in K$ so that $f(x_f) \leq 0$, then there is a $x_0 \in K$ such that $f(x_0) \leq 0$ for every $f \in F$.
For the proof of our main theorem we will need the following lemma (see [17, Page 17]):

Lemma 2.2. Let $0 < p_1, \ldots, p_n, p < \infty$ be so that $1/p = \sum_{j=1}^{n} 1/p_j$. Then

$$\frac{1}{p} \prod_{j=1}^{n} q_j^p \leq \sum_{j=1}^{n} \frac{1}{p_j} q_j^p$$

regardless of the choices of $q_1, \ldots, q_n \geq 0$.

Theorem 2.3. A map $f \in Map(X_1, \ldots, X_n; Y)$ is (p_1, \ldots, p_n)-dominated at $(a_1, \ldots, a_n) \in X_1 \times \cdots \times X_n$ if and only if there is a $C > 0$ such that

$$(2.1) \quad \left(\sum_{j=1}^{m} \left(\left| b_{j}^{(1)} \ldots b_{j}^{(n)} \right| \left\| f(a_1 + x_{j}^{(1)}, \ldots, a_n + x_{j}^{(n)}) - f(a_1, \ldots, a_n) \right\| \right)^{p} \right)^{1/p} \leq C \prod_{k=1}^{n} \sup_{\varphi \in B_{X_k^{*}}} \left(\sum_{j=1}^{m} \left(\left| b_{j}^{(k)} \right| \left\| \varphi(x_{j}^{(k)}) \right\| \right)^{p_k} \right)^{1/p_k}$$

for every positive integer m, $(x_{j}^{(k)}, b_{j}^{(k)}) \in X_k \times \mathbb{K}$, with $(j, k) \in \{1, \ldots, m\} \times \{1, \ldots, n\}$.

Proof. In order to simplify notation, from now on we will write

$$f(b_{j}^{(k)}, x_{j}^{(k)})_{k=1}^{n} := \left(\left(b_{j}^{(1)} \ldots b_{j}^{(n)} \right| \left\| f(a_1 + x_{j}^{(1)}, \ldots, a_n + x_{j}^{(n)}) - f(a_1, \ldots, a_n) \right\| \right)^{p}.$$

Assume the existence of such measures μ_1, \ldots, μ_n satisfying [1,3]. Then, given $m \in \mathbb{N}$, $x_{j}^{(l)} \in E_l$ and $b_{j}^{(l)} \in \mathbb{K}$, with $(j, l) \in \{1, \ldots, m\} \times \{1, \ldots, n\}$, we have, using Hölder Inequality,

$$\sum_{j=1}^{m} f(b_{j}^{(k)}, x_{j}^{(k)})_{k=1}^{n} \leq C_{p} \prod_{k=1}^{n} \left(\int_{B_{X_k^{*}}} \left(\left| b_{j}^{(k)} \right| \left\| \varphi(x_{j}^{(k)}) \right\| \right)^{p_k} d\mu_k \right)^{\frac{p}{p_k}} \leq C_{p} \prod_{k=1}^{n} \left(\sup_{\varphi \in B_{X_k^{*}}} \left(\sum_{j=1}^{m} \left(\left| b_{j}^{(k)} \right| \left\| \varphi(x_{j}^{(k)}) \right\| \right)^{p_k} \right)^{\frac{p}{p_k}} \right).$$

Hence we have (2.1). Conversely, suppose (2.1) and consider the sets $P(B_{X_k^{*}})$ of the probability measures in $C(B_{X_k^{*}})^{*}$, for all $k = 1, \ldots, n$. It is well-known that each $P(B_{X_k^{*}})$ is compact when each $C(B_{X_k^{*}})^{*}$ is endowed with the weak-star topology. For each $(x_{j}^{(l)})_{j=1}^{m} \in E_l$ and $(b_{j}^{(l)})_{j=1}^{m} \in \mathbb{K}$, with
In fact, since each \(B \) is compact, \(g \in \mathcal{F} \) is concave. In fact, let \(N \) be a positive integer, \(g_k \in \mathcal{F} \) and \(\alpha_k \geq 0 \), \(k = 1, \ldots, N \), so that \(\alpha_1 + \cdots + \alpha_N = 1 \). We have
\[
\sum_{k=1}^{N} \alpha_k g_k ((\mu_i)_{i=1}^{n}) \leq g \left((x_{i,j}^{(j)})_{j,k=1}^{m}, (b_{j}^{(j)})_{j,k=1}^{m}, (\alpha_k b_{j}^{(j)})_{j,k=1}^{m}, (s,l) \in \{1, \ldots, n \} \times \{1, \ldots, m \} \right).
\]
One can also easily prove that each \(g \in \mathcal{F} \) is convex and continuous. Besides, for each \(g \in \mathcal{F} \) there are measures \(\mu_k^g \in P(B_{X_k}^*) \), \(k = 1, \ldots, n \), so that
\[
g(\mu_1^g, \ldots, \mu_n^g) \leq 0.
\]
In fact, since each \(B_{X_k}^* \) is compact \((k = 1, \ldots, n) \) there are \(\varphi_k \in B_{X_k}^* \) so that
\[
\sum_{j=1}^{m} \left(b_{j}^{(k)} \left| \varphi_k(x_{j}^{(k)}) \right| \right)^{p_k} = \sup_{\varphi \in B_{X_k}^*} \sum_{j=1}^{m} \left(b_{j}^{(k)} \left| \varphi(x_{j}^{(k)}) \right| \right)^{p_k}.
\]
Now, consider the Dirac measures \(\mu_k^g = \delta_{\varphi_k} \), \(k = 1, \ldots, n \), and hence
\[
g(\mu_1^g, \ldots, \mu_n^g) = \sum_{j=1}^{m} \left[\frac{1}{p} f(b_{j}, x_{j}) \left| x_{j}^{(k)} \right| \right]_{k=1}^{n} - C_p \sum_{k=1}^{n} \frac{1}{p_k} \int_{B_{X_k}^*} \sum_{j=1}^{m} \left(b_{j}^{(k)} \left| \varphi(x_{j}^{(k)}) \right| \right)^{p_k} d\mu_k^g
\]
\[
= \sum_{j=1}^{m} \left[\frac{1}{p} f(b_{j}, x_{j}) \left| x_{j}^{(k)} \right| \right]_{k=1}^{n} - C_p \sum_{k=1}^{n} \frac{1}{p_k} \left[\left(\sup_{\varphi \in B_{X_k}^*} \sum_{j=1}^{m} \left(b_{j}^{(k)} \left| \varphi(x_{j}^{(k)}) \right| \right)^{p_k} \right)^{\frac{1}{p_k}} \right]
\]
\[
\leq \sum_{j=1}^{m} \left[\frac{1}{p} f(b_{j}, x_{j}) \left| x_{j}^{(k)} \right| \right]_{k=1}^{n} - C_p \frac{1}{p_k} \prod_{k=1}^{n} \left[\left(\sup_{\varphi \in B_{X_k}^*} \sum_{j=1}^{m} \left(b_{j}^{(k)} \left| \varphi(x_{j}^{(k)}) \right| \right)^{p_k} \right)^{\frac{1}{p_k}} \right]
\]
\[
\leq 0,
\]
where in (*) we have used Lemma 2.2 and in (**) we invoked (2.1). So Ky Fan Lemma applies and we obtain \(\overline{\mu_k} \in P(B_{X_k}^*) \), \(k = 1, \ldots, n \), so that
\[
g(\overline{\mu_1}, \ldots, \overline{\mu_n}) \leq 0
\]
for all \(g \in \mathcal{F} \). Hence
\[
\sum_{j=1}^{m} \left[\frac{1}{p} f(b_{j}, x_{j}) \left| x_{j}^{(k)} \right| \right]_{k=1}^{n} - C_p \sum_{k=1}^{n} \frac{1}{p_k} \int_{B_{X_k}^*} \sum_{j=1}^{m} \left(b_{j}^{(k)} \left| \varphi(x_{j}^{(k)}) \right| \right)^{p_k} d\overline{\mu_k} \leq 0
\]
and making \(m = 1 \) we get (for every \(b^{(k)} \in \mathbb{K} \) and \(x^{(k)} \in X_k, \ k = 1, \ldots, n \))

\[
\frac{1}{p} \left(\left| b^{(1)} \ldots b^{(n)} \right| \left\| f(a_1 + x^{(1)}, \ldots, a_n + x^{(n)}) - f(a_1, \ldots, a_n) \right\| \right)^p \leq C^p \sum_{k=1}^{n} \frac{1}{p_k} \int_{B_{X_k}^*} \left(\left| b^{(k)} \right| \left| \varphi(x^{(k)}) \right| \right)^{p_k} d\mu_k.
\]

Let \(x^{(1)}, \ldots, x^{(n)} \) and \(b^{(1)}, \ldots, b^{(n)} \neq 0 \) be given and, for \(k = 1, \ldots, n \), define

\[
\tau_k := \left(\int_{B_{X_k}^*} \left(\left| b^{(k)} \right| \left| \varphi(x^{(k)}) \right| \right)^{p_k} d\mu_k \right)^{1/p_k}.
\]

If \(\tau_k = 0 \) for every \(k \) then, from (2.2) we conclude that

\[
\left(\left| b^{(1)} \ldots b^{(n)} \right| \left\| f(a_1 + x^{(1)}, \ldots, a_n + x^{(n)}) - f(a_1, \ldots, a_n) \right\| \right)^p = 0
\]

and we obtain (1.3), as planned. Let us now suppose that \(\tau_j \) is not zero for some \(j \in \{1, \ldots, n\} \). Consider

\[
V = \{ j \in \{1, \ldots, n\}; \tau_j \neq 0 \}
\]

and for each \(\beta > 0 \) define

\[
\vartheta_{\beta,j} = \begin{cases} \left(\tau_j \beta^p \right)^{-1} & \text{if } j \in V \\ 1 & \text{if } j \notin V. \end{cases}
\]

So, from (2.2), we have

\[
\frac{1}{p} f(\vartheta_{\beta,k} b^{(k)}, x^{(k)})_{k=1}^n \leq C^p \sum_{k=1}^{n} \frac{1}{p_k} \int_{B_{X_k}^*} \left(\left| \vartheta_{\beta,k} b^{(k)} \right| \left| \varphi(x^{(k)}) \right| \right)^{p_k} d\mu_k
\]

\[
\leq C^p \sum_{k \in V} \frac{1}{p_k} \vartheta_{\beta,k}^{p_k} \int_{B_{X_k}^*} \left(\left| b^{(k)} \right| \left| \varphi(x^{(k)}) \right| \right)^{p_k} d\mu_k
\]

\[
\leq C^p \sum_{k \in V} \frac{1}{p_k} \left(\tau_k \beta^p \right)^{-p_k} \tau_k^{p_k}
\]

\[
= C^p \sum_{k \in V} \frac{1}{p_k} \frac{1}{\beta^p}
\]

\[
\leq C^p \frac{1}{\beta^p}.
\]

Hence

\[
\vartheta_{\beta,1} \ldots \vartheta_{\beta,n} \frac{1}{p} f(b^{(k)}, x^{(k)})_{k=1}^n \leq C^p \frac{1}{\beta^{1/p}}
\]
and we have
\[
(2.3) \quad f(b^{(k)}_1, x^{(k)}_1) \leq C_p \beta^{-1/p} \left(\varphi_{\beta,1}^{p} \ldots \varphi_{\beta,n}^{p} \right)^{-1} n_k = 1 \leq C_p \beta^{-1/p} \prod_{j \in V} \left(\tau_j \beta^{p_j} \right)^{p} = C_p \beta^{-1/p} \prod_{j \in V} \tau_j^{p}. \]

If \(V \neq \{1, \ldots, n\} \), then
\[
\frac{1}{p} - \sum_{j \in V} \frac{1}{p_j} > 0.
\]
Letting \(\beta \to \infty \) in (2.3) we get
\[
f(b^{(k)}_1, x^{(k)}_1) n_k = 1 = 0
\]
and we again reach (1.3). If \(V = \{1, \ldots, n\} \), from (2.3) we conclude the proof, since
\[
\left(\left| b^{(1)}_j \ldots b^{(n)}_j \right| \left| f(a_1 + x^{(1)}_j, \ldots, a_n + x^{(n)}_j) - f(a_1, \ldots, a_n) \right| \right)^{p} = f(b^{(k)}_1, x^{(k)}_1) n_k = 1 \leq C_p \prod_{j=1}^{n} \tau_j^{p}.
\]

Note that inequality (2.1) seems to arise an idea of weighted summability. We interpret as each \(x^{(k)}_j \) has a “weight” \(b^{(k)}_j \) and in this context the respective sum
\[
\left\| f(a_1 + x^{(1)}_j, \ldots, a_n + x^{(n)}_j) - f(a_1, \ldots, a_n) \right\|
\]
inherits a weight \(\left| b^{(1)}_j \ldots b^{(n)}_j \right| \). It is easy to note that if \(f \) is \(n \)-linear and \(a_1 = \ldots = a_n = 0 \), then inequality (2.1) coincides with the usual non-weighted inequality. So, the concept of weighted summability can be viewed as a natural extension of the multilinear concept to nonlinear (non-multilinear) maps.

Acknowledgement. The authors thank G. Botelho and P. Rueda for helpful conversations on the topics of this paper. The authors also thank the referee for important suggestions.

References

[1] D. Achour and L. Mezrag, On the Cohen strongly \(p \)-summing multilinear operators, J. Math. Anal. Appl. 327 (2007), 550-563.
[2] F. Albiac and N. Kalton, Topics in Banach Space Theory, Springer Verlag, 2006.
[3] H. F. Bohnenblust and E. Hille, On the absolute convergence of Dirichlet series, Ann. Math. 32 (1931), 600-622.
[4] G. Botelho, D. Pellegrino and P. Rueda, Pietsch’s factorization theorem for dominated polynomials, J. Funct. Anal 243 (2007), 257-269.
[5] G. Botelho, D. Pellegrino and P. Rueda, A nonlinear Pietsch Domination Theorem, Monatsh. Math. 158 (2009), 247-257.
[6] G. Botelho, D. Pellegrino and P. Rueda, A unified Pietsch Domination Theorem, J. Math. Anal. Appl. 365 (2010), 269-276.
[7] G. Botelho, D. Pellegrino and P. Rueda, Cotype and absolutely summing linear operators. Math. Z., to appear.
[8] W.J. Davis and W.B. Johnson, Compact non-nuclear operators, Studia Math. 51 (1974), 81-85.
A. Defant and K. Floret, Tensor Norms And Operator Ideals, North-Holland, Amsterdam, 1992.

A. Defant and D. Pérez-García, A tensor norm preserving unconditionality in L_p-spaces. Trans. Amer. Math. Soc. 360 (2008), 3287-3306.

A. Defant, D. García, M. Maestre and D. Pérez-García, Bohr’s strip for vector valued Dirichlet series, Math. Ann. 342 (2008), 533-555.

A. Defant and P. Sevilla-Peris, A new multilinear insight on Littlewood’s 4/3-inequality, J. Funct. Anal. 256 (2009), 1642-1664.

A. Defant, D. Popa and U. Schwarting, Coordinatewise multiple summing operators in Banach spaces, J. Funct. Anal 259 (2010), 220-242.

J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge University Press 1995.

J. Farmer and W. B. Johnson, Lipschitz p-summing operators, Proc. Amer. Math. Soc. 137 (2009), 2989-2995.

S. Geiss, Ideale multilinearer Abbildungen, Diplomarbeit, 1985.

G. H. Hardy, J.E. Littlewood and G. Polya, Inequalities, Cambridge University Press, 1952.

H. Junek, M. C. Matos and D. Pellegrino, Inclusion theorems for absolutely summing holomorphic mappings, Proc. Amer. Math. Soc. 136 (2008), 3983-3991.

J. Lindenstrauss and A. Pelczyński, Absolutely summing operators in L_p spaces and their applications, Studia Math. 29 (1968), 275-326.

J.E. Littlewood, On bounded bilinear forms in an infinite number of variables, Quart. J. (Oxford Ser.) 1 (1930), 164–174.

F. Martínez-Giménez and E. A. Sánchez-Pérez, Vector measure range duality and factorizations of (D, p)-summing operators from Banach function spaces, Bull. Braz. Math. Soc. New series 35 (2004), 51-69.

M. C. Matos, Nonlinear absolutely summing multilinear mappings between Banach spaces, Math. Nachr. 258 (2003), 71-89.

M. C. Matos and D. Pellegrino, Fully summing mappings between Banach spaces, Studia Math. 178 (2007), 47-61.

D. Pellegrino, Cotype and absolutely summing homogeneous polynomials in L_p spaces. Studia Math. 157 (2003), 121-231.

D. Pérez-García, Operadores multilineales absolutamente sumantes, Dissertation, Universidad Complutense de Madrid, 2002.

D. Pérez-García, The inclusion theorem for multiple summing operators. Studia Math. 165 (2004), 275-290.

D. Pérez-García, M.M. Wolf, C. Palazuelos, I. Villanueva and M. Junge, Unbounded violations of tripartite Bell inequalities, Commun. Math. Phys. 279 (2008), 455-486.

A. Pietsch, Absolut p-summierende Abbildungen in normierten Räumen, Studia Math. 27 (1967), 333-353.

A. Pietsch, Operator Ideals, North-Holland, 1980.

R. Ryan, Introduction to Tensor Products of Banach Spaces. Springer Monographs in Mathematics, Springer-Verlag, 2002.

(D. Pellegrino) DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DA PARAÍBA, 58.051-900 - JOÃO PEIXOTO, BRAZIL. [J. Santos] DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE SERGIPE, 49500-000-ITABAIANA, BRAZIL

E-mail address: dmpellegrino@gmail.com