Abstract

In this work we compute a reasonably comprehensive set of tables for current and next generation survey facility filter conversions. Almost all useful transforms are included with the ProSpect software package described in Robotham, et al. (2020). Users are free to provide their own filters and compute their own transforms, where the included package examples outline the approach. This arXiv document will be relatively frequently updated, so people are encouraged to get in touch with their suggestions for additional utility (i.e. new filter sets).
Introduction

Converting between filters from different facilities is an important activity in astronomy since we are often trying to compare results from slightly inhomogeneous data sets. Whilst these conversions cannot be done perfectly, these tables use a physically motivated galaxy formation model Shark (Lagos, et al. 2018) processed with the R based ProSpect SED package (Robotham, et al. 2020) applying sensible dust prescriptions to generate best-effort filter mappings as a function of redshift. The latter is important compared to many tables available online, since many of these conversions change significantly with redshift as certain strong features (e.g. 4,000 Angstrom break) slide in and out of filters.

Here we focus on major optical and NIR survey facilities (presently, and soon to come online), where we convert all filters to target Sloan telescope optical (ugriz) and VISTA NIR (ZYJHKs, though note the Ks filter is also referred to as K in this document) filters. The filter responses for these target filters can be seen in the Figure below. The main current reference for Sloan filter transforms is http://www.sdss3.org/dr10/algorithms/sdssUBVRITransform.php, which explicitly notes that the transforms presented there are not optimised for galaxies (they are all based on stars and quasars). The most recent set of transforms for VISTA in the near-infrared can be found in González-Fernández, et al. (2018).

In this reference document we are interested in creating filter transforms that work well for galaxies over a reasonable range in redshift. By combining the ProSpect SED code with the plausible star formation histories (SFH) and metallicity histories (ZH) produced by Shark, we hope to capture the dominant transform effects. For moderate and high redshift galaxies (z > 0.5) these transforms should be a much more reasonable approximation to the usual sets that are available in reference papers (and littered around haphazardly on poorly maintained websites). For a number of current and upcoming surveys, these transforms appear to be entirely novel.

Finally, users are able to generate their own arbitrary mapping between any filter sets available in ProSpect using the Shiny web tool available at http://transformcalc.icrar.org. Currently it is not possible to upload a user defined filter to the web tool because of the computational time required to process the large sample of SFHs (roughly 10-20 seconds for the few 10,000s used). This can be done using the standalone ProSpect software however. A vignette describing how to do this is available at https://rpubs.com/asgr/567881. The caveat here is that the SFHs sampled are not taken from Shark (these take up too much memory to include with the ProSpect package), but are instead randomly generated by sampling the free parameters of the massfunc_b5 star formation history function. Users can also specify the redshift window that they compute their transforms over, which might be more accurate than the coarser grid supplied here.
Methods

Below we outline the linear form of the filter transform used, where we do not include an explicit redshift dependency term. Instead we compute each transform for 14 steps of redshift extending from \(z = 0 \) to \(z \sim 7 \), which covers most practical use cases in observational extra-galactic astronomy.

Filter Mapping Equation

In all cases (where \(F \) is the Target and Reference filter), \(\alpha \) is alpha, \(\beta \) is beta and \(\sigma \) is sigma) the filter mapping is defined by the linear colour equation

\[
F_{\text{Tar}} = F_{\text{Ref}} + \alpha \text{Col} + \beta \pm \sigma.
\]

To determine the best solution for a given target filter and reference facility we compute the minimum of

\[
2\alpha^2 + \beta^2 + \sigma^2
\]

for all possible adjacent linear combinations of the reference facility filters. This solution is the one presented in the following tables, and is a sensible definition of best since it will naturally minimise the effect of photometric errors when computing the mappings, assuming these are similar across the filters.

In general \(F_{\text{Ref}} \) is the filter that is natively closest to the \(F_{\text{Tar}} \) target filter. In the worst case scenario of only having a single filter pre transform, this should be used with the specified \(\beta \) part of the equation to achieve an approximate transform. Obviously, if a user has access to colour information via having multiple reference filters then a more accurate transform is possible.

The wary user should probably disregard solutions where the scatter (\(\sigma \)) is \(> 0.1 \). This would suggest a very poor filter mapping. Also, solutions where \(\alpha > 0.5 \) are dubious, having a very significant colour term that will enhance any colour noise present considerably. However, for consistency we keep all best solutions in these tables (reliable or not). Also, note that a large value of \(\beta (> 0.1) \) implies that the target and reference filters are far apart, and the user might want to exercise caution since the colour terms will become less accurate (e.g. the mapping might have become highly non-linear).

In summary, users should choose reference filters as close as possible to the target filter, and ignore solutions that appear larger than suggested above for the \(\alpha \), \(\beta \) and \(\sigma \) terms.

Cross Facility Mapping Equation

In general, if one wishes to convert between facilities that are not SDSS or VISTA, the following strategy is appropriate. Take an example galaxy at \(z = 0.417 \) mapping to the \(r_{\text{SDSS}} \) filter, where we actually want to convert between \(r_{\text{VST}} \) and \(r_{\text{HSC}} \). We find the following mappings from the tables published below (ignoring the \(\sigma \) term, that just estimates the error in the conversion):

\[
r_{\text{SDSS}} = r_{\text{VST}} + 0.050(g_{\text{VST}} - r_{\text{VST}}) - 0.010
\]

\[
r_{\text{HSC}} = r_{\text{HSC}} - 0.009(g_{\text{HSC}} - r_{\text{HSC}}) + 0.016
\]

With a bit of re-arrangement we get to

\[
r_{\text{HSC}} = r_{\text{VST}} + 0.050(g_{\text{VST}} - r_{\text{VST}}) + 0.009(g_{\text{HSC}} - r_{\text{HSC}}) - 0.026.
\]

Now we make a reasonable (but approximate) assumption that our colour terms (being relative) can be used interchangeably. This gets us to

\[
r_{\text{HSC}} = r_{\text{VST}} + 0.059(g - r) - 0.026.
\]
This is almost exactly the same solution that we recover when directly using **ProSpect** to compute the r_{HSC} to r_{VST} mapping, suggesting our colour approximation should in general work well when the filters are similar. As a consequence, cross facility conversions should use

$$F_{\text{Tar}} = F_{\text{Ref}} + (\alpha_{\text{Ref}} - \alpha_{\text{Tar}})\text{Col} + (\beta_{\text{Ref}} - \beta_{\text{Tar}}).$$

The pseudo β values will be more accurate than the pseudo α since we are not making any assumption on the colour behaviour being similar. This will only work reasonably when all of the α, β and σ terms are small (we recommend all should be less than 0.1).

The scatter (σ) is non-trivial to estimate when mapping across filter sets, but a pessimistic estimate is to add the reference σ in quadrature, i.e.:

$$F_{\text{Tar}} = F_{\text{Ref}} + (\alpha_{\text{Ref}} - \alpha_{\text{Tar}})\text{Col} + (\beta_{\text{Ref}} - \beta_{\text{Tar}}) \pm \sqrt{\sigma^2_{\text{Ref}} + \sigma^2_{\text{Tar}}}.$$

As discussed previously, users can convert more directly between filters that are not the included references sets using the webtool provided at http://transformcalc.icrar.org.

Application of Conversions To Empirical Data

Below we add a simple example of trying to create target HSC H band photometry based on VISTA photometry using **ProSpect** within an R session. We wish to apply this to the DEVILS survey (Davies, et al. 2018)), which has a typical redshift of around 0.5, so we use the 5 Gyr age SFHs to compute the mapping.

```R
$\text{tarY}_{\text{HSC}} = \text{filterTranMags}($\text{ProFiltTrans_Shark}\$maglist$\text{Age5}[,c("Z\_VISTA", "Y\_VISTA", "J\_VISTA")], \text{ProFiltTrans_Shark}\$maglist$\text{Age5}[,"Y\_HSC"], \text{return} = \text{’bestall’})$

print($\text{tarY}_{\text{HSC}}$params)
```

```r
## $Y\_VISTA + alpha.(Y\_VISTA - J\_VISTA) + beta +/- sigma$
## alpha beta sigma
## 0.253892139 -0.013014625 0.003892386
```

The best solution uses (Y_VISTA - J_VISTA) colour data. We can check how this looks against DEVILS D10 data:

```R
$\text{maghist}(\text{D10}[,"mag\_HY\_t" - mag\_Y\_t], \text{breaks}=\text{seq}(-1,1,by=0.01), \text{verbose}=\text{FALSE}, \text{xlim}=\text{c}(-0.5,0.5), \text{ylim}=\text{c}(0,2e3), \text{grid}=\text{TRUE}, \text{xlab} = \text{‘Y\_HSC - Y\_VISTA/Y\_Transform’}, \text{ylab} = \text{‘Counts’})$

$\text{maghist}(\text{D10}[,"mag\_HY\_t" - (mag\_Y\_t + 0.2539*(mag\_Y\_t - mag\_J\_t) + -0.0130)], \text{breaks}=\text{seq}(-1,1,by=0.01), \text{verbose}=\text{F}, \text{add}=\text{T}, \text{border} = \text{‘red’})$

$\text{legend}(\text{’topright’, legend}=\text{c}(\text{‘Y\_VISTA’,\’Y\_Transform’}), \text{col}=\text{c}(\text{‘black’,‘red’}, \text{lt}=\text{1})$
```
It is pretty clear we have a zero-point photometry issue here. The distribution is tighter, but offset from our target of zero. We can apply the offset and improve the result though:

```r
maghist(D10[, mag_HY_t - mag_Y_t], breaks=seq(-1,1,by=0.01), verbose=FALSE, xlim=c(-0.5,0.5), ylim=c(0,2e3), grid=TRUE, xlab='Y_HSC - Y_VISTA/Y_Transform', ylab='Counts')
maghist(D10[, mag_HY_t - (mag_Y_t + 0.2539*(mag_Y_t - mag_J_t) + -0.0603)], breaks=seq(-1,1,by=0.01), verbose=F, add=T, border='red')
legend('topright', legend=c('Y_VISTA','Y_Transform'), col=c('black','red'), lty=1)
```
The above issue highlights that for similar filters the systematic uncertainties due to zero-points probably often dominate over any idealised transform equation. In this case we have no way of knowing whether the error exists in the Y_HSC or Y_VISTA photometry, or perhaps both. The only route to understanding this over all bands is to analyse the multi-band residuals from full ProSpect fits.

We can carry out a test that is less sensitive to such zero-point issues. Instead of trying to predict small filter changes we can generate the transforms for a filter that sits inside a large gap between filters. In this case we will attempt to create a transform for DEVILS that predicts the Y_VISTA filter given surrounding Z_VISTA and J_VISTA filters. In this sense ProSpect can be used to create reasonable missing photometry for galaxies. This might be useful where a user wishes to create a Y_VISTA selection cut, but this data happens to missing for a particular galaxy. If the other photometric data are considered usable, a user might still want to use the galaxy for scientific analysis. This approach is clearly much cheaper computationally than trying to do full ProSpect SED fits to the data and infer the photometry with the outputs (which would also work). In fact, if spectroscopic or photometric redshift data is not available it might be more reasonable to just use an approximate transform.

```
tarY_VISTA = filterTranMags(ProFiltTrans_Shark$maglist$Age4[,c("Z_VISTA", "J_VISTA")],
ProFiltTrans_Shark$maglist$Age4[,"Y_VISTA"], return = 'bestall')
print(tarY_VISTA$params)
## $ Z_VISTA + alpha.(Z_VISTA - J_VISTA) + beta +/- sigma`
## alpha beta sigma
## -0.41812772 -0.04485583 0.01526601

maghist(D10[,mag_Y_t - mag_Z_t], breaks=seq(-1,1,by=0.01), verbose=FALSE, 
xlim=c(-0.5,0.5), ylim=c(0,1.5e3), grid=TRUE, xlab='Y_VISTA - Z_VISTA/Y_Transform',
ylab='Counts')
maghist(D10[,mag_Y_t - (mag_Z_t + -0.4181*(mag_Z_t - mag_J_t) + -0.0449)],
breaks=seq(-1,1,by=0.01), verbose=F, add=T, border='red')
```
There is still a small offset from 0 for the red (transformed) distribution, but it is clearly much tighter and closer to the target filter.

Conversion Tables

Below we list the conversion tables for a number of major current and upcoming optical and near-infrared survey facilities. This list is not meant to be exhaustive, as mentioned above specific solutions are available for many more filters through the ProSpect web tool (http://transformcalc.icrar.org), and unavailable filters can be processed by users using ProSpect locally using approaches outlined in the online vignette (https://rpubs.com/asgr/567881).

VST

Table 1: Target filter: u_SDSS, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS	0.0369	u	(u - g)	0.0249	-0.0298	0.0015
u_SDSS	0.1149	u	(u - g)	0.0225	-0.0135	0.0008
u_SDSS	0.2025	u	(u - g)	0.0098	-0.0045	0.0010
u_SDSS	0.3021	u	(u - g)	0.0027	-0.0004	0.0020
u_SDSS	0.4170	u	(u - g)	0.0193	-0.0036	0.0012
u_SDSS	0.5519	u	(u - g)	0.0058	0.0001	0.0008
u_SDSS	0.7142	u	(u - g)	0.0097	0.0015	0.0016
u_SDSS	0.9152	u	(u - g)	0.0185	0.0004	0.0008
Table 2: Target filter: g_SDSS, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS	0.0369	g	(g - r)	-0.0045	0.0061	0.0017
g_SDSS	0.1149	g	(g - r)	0.0052	-0.0009	0.0010
g_SDSS	0.2025	g	(u - g)	0.0133	-0.0148	0.0024
g_SDSS	0.3021	g	(u - g)	0.0078	0.0064	0.0026
g_SDSS	0.4170	g	(g - r)	0.0023	0.0208	0.0027
g_SDSS	0.5519	g	(u - g)	0.0040	0.0005	0.0004
g_SDSS	0.7142	g	(u - g)	0.0069	-0.0003	0.0003
g_SDSS	0.9152	g	(g - r)	-0.0035	0.0008	0.0008
g_SDSS	1.1746	g	(u - g)	0.0084	-0.0003	0.0003
g_SDSS	1.5293	g	(u - g)	0.0046	0.0006	0.0005
g_SDSS	2.0582	g	(u - g)	0.0070	0.0007	0.0014
g_SDSS	2.9779	g	(u - g)	0.0173	-0.0275	0.0024
g_SDSS	5.2891	g	(g - r)	0.0027	-0.0017	0.0004

Table 3: Target filter: r_SDSS, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369	r	(g - r)	0.0455	-0.0056	0.0006
r_SDSS	0.1149	r	(g - r)	0.0433	0.0030	0.0014
r_SDSS	0.2025	r	(g - r)	0.0521	-0.0039	0.0023
r_SDSS	0.3021	r	(g - r)	0.0486	-0.0117	0.0052
r_SDSS	0.4170	r	(g - r)	0.0847	-0.0732	0.0065
r_SDSS	0.5519	r	(g - r)	0.0784	-0.0275	0.0123
r_SDSS	0.7142	r	(g - r)	0.0407	0.0589	0.0055
r_SDSS	0.9152	r	(g - r)	0.0559	0.0052	0.0031
r_SDSS	1.1746	r	(g - r)	0.0957	-0.0007	0.0036
r_SDSS	1.5293	r	(r - i)	0.0556	-0.0003	0.0026
r_SDSS	2.0582	r	(g - r)	0.0406	0.0006	0.0021
r_SDSS	2.9779	r	(g - r)	0.0384	-0.0028	0.0019
r_SDSS	5.2891	r	(g - r)	0.0928	-0.2914	0.0070

Table 4: Target filter: i_SDSS, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	i	(r - i)	0.0705	-0.0094	0.0027
i_SDSS	0.1149	i	(r - i)	0.0445	0.0041	0.0020
i_SDSS	0.2025	i	(r - i)	0.0329	0.0032	0.0007
i_SDSS	0.3021	i	(r - i)	0.0338	-0.0016	0.0005
F_Tar	z	F_Ref	Col	alpha	beta	sigma
--------	------	-------	--------	-------	-------	-------
i_SDSS	0.4170	i	(r - i)	0.0536	-0.0037	0.0017
i_SDSS	0.5519	i	(r - i)	0.0295	0.0032	0.0028
i_SDSS	0.7142	i	(r - i)	0.0631	-0.0519	0.0046
i_SDSS	0.9152	i	(r - i)	0.0656	-0.0301	0.0071
i_SDSS	1.1746	i	(r - i)	0.0338	0.0641	0.0078
i_SDSS	1.5293	i	(r - i)	0.0733	-0.0014	0.0015
i_SDSS	2.0582	i	(i - z)	0.0459	0.0000	0.0006
i_SDSS	2.9779	i	(r - i)	0.0415	0.0004	0.0007
i_SDSS	5.2891	i	(i - z)	0.1068	-0.0014	0.0009

Table 5: Target filter: z_SDSS, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	z	(i - z)	-0.0476	0.0024	0.0022
z_SDSS	0.1149	z	(i - z)	-0.0419	0.0038	0.0029
z_SDSS	0.2025	z	(i - z)	-0.0530	0.0055	0.0026
z_SDSS	0.3021	z	(i - z)	-0.0365	-0.0042	0.0018
z_SDSS	0.4170	z	(i - z)	-0.0386	-0.0015	0.0010
z_SDSS	0.5519	z	(i - z)	-0.0228	0.0022	0.0009
z_SDSS	0.7142	z	(i - z)	-0.0599	0.0110	0.0019
z_SDSS	0.9152	z	(i - z)	-0.0027	-0.0064	0.0036
z_SDSS	1.1746	z	(i - z)	-0.0834	0.0468	0.0085
z_SDSS	1.5293	z	(i - z)	-0.0484	-0.0651	0.0076
z_SDSS	2.0582	z	(i - z)	-0.0924	0.0023	0.0017
z_SDSS	2.9779	z	(i - z)	-0.0662	0.0033	0.0012
z_SDSS	5.2891	z	(i - z)	0.0149	-0.0003	0.0008

Table 6: Target filter: Z_VISTA, Reference facility: VST
Table 7: Target filter: Y_VISTA, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Y_VISTA	0.0369	r	(g - r)	-0.8770	0.0143	0.0900
Y_VISTA	0.1149	z	(i - z)	-0.7332	0.0304	0.0272
Y_VISTA	0.2025	z	(i - z)	-0.8780	0.0676	0.0238
Y_VISTA	0.3021	z	(i - z)	-0.7291	-0.0163	0.0171
Y_VISTA	0.4170	z	(i - z)	-0.6735	-0.0105	0.0081
Y_VISTA	0.5519	z	(i - z)	-0.6064	0.0193	0.0060
Y_VISTA	0.7142	z	(i - z)	-0.6594	-0.0492	0.0082
Y_VISTA	0.9152	z	(i - z)	-0.5635	0.0623	0.0350
Y_VISTA	1.1746	z	(i - z)	-1.0611	0.5462	0.0748
Y_VISTA	1.5293	z	(i - z)	-0.6283	-0.4970	0.0433
Y_VISTA	2.0582	z	(i - z)	-1.1802	0.0066	0.0250
Y_VISTA	2.9779	r	(g - r)	-0.8992	0.0671	0.0519
Y_VISTA	5.2891	z	(i - z)	-0.1775	-0.0031	0.0067

Table 8: Target filter: J_VISTA, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.0369	r	(g - r)	-1.1451	0.1604	0.1390
J_VISTA	0.1149	r	(g - r)	-1.1321	0.1517	0.1086
J_VISTA	0.2025	r	(g - r)	-1.1555	0.1953	0.0634
J_VISTA	0.3021	g	(u - g)	-1.1864	-0.3308	0.2189
J_VISTA	0.4170	g	(u - g)	-1.1624	-0.8231	0.2154
J_VISTA	0.5519	z	(i - z)	-1.3359	0.0154	0.0273
J_VISTA	0.7142	r	(g - r)	-1.3198	-0.0560	0.1438
J_VISTA	0.9152	z	(i - z)	-1.2554	0.1242	0.0657
J_VISTA	1.1746	i	(r - i)	-1.8826	-0.3007	0.0829
J_VISTA	1.5293	z	(i - z)	-1.6377	-0.3784	0.0554
J_VISTA	2.0582	g	(u - g)	-1.5127	-0.6486	0.3819
J_VISTA	2.9779	r	(g - r)	-1.5704	0.1398	0.1073
J_VISTA	5.2891	z	(i - z)	-0.7883	0.0444	0.0139

Table 9: Target filter: H_VISTA, Reference facility: VST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
H_VISTA	0.0369	r	(g - r)	-1.4029	0.2154	0.1927
H_VISTA	0.1149	r	(g - r)	-1.3756	0.2441	0.1546
H_VISTA	0.2025	r	(g - r)	-1.4256	0.3819	0.1020
H_VISTA	0.3021	g	(u - g)	-1.3030	-0.1936	0.2872
H_VISTA	0.4170	g	(u - g)	-1.2813	-0.7186	0.2852
H_VISTA	0.5519	g	(u - g)	-1.5497	-1.0195	0.3293
H_VISTA	0.7142	r	(g - r)	-1.5321	0.0209	0.2053
H_VISTA	0.9152	r	(g - r)	-1.6011	-0.6889	0.1962
H_VISTA	1.1746	i	(r - i)	-2.4204	-0.2569	0.1126
H_VISTA	1.5293	z	(i - z)	-2.4707	-0.3497	0.0743
H_VISTA	2.0582	g	(u - g)	-1.8526	-0.6261	0.5019
H_VISTA	2.9779	r	(g - r)	-2.5523	-0.3032	0.2294
H_VISTA	5.2891	z	(i - z)	-1.2982	0.1024	0.0280
Table 10: Target filter: Ks_VISTA, Reference facility: VST

F_Tar	z	Col	alpha	beta	sigma
Ks_VISTA 0.0369	r	(g - r)	-1.4129	0.4681	0.2367
Ks_VISTA 0.1149	r	(g - r)	-1.4572	0.4186	0.2043
Ks_VISTA 0.2025	r	(g - r)	-1.6271	0.5288	0.1476
Ks_VISTA 0.3021	g	(u - g)	-1.3813	-0.1645	0.3438
Ks_VISTA 0.4170	g	(u - g)	-1.3777	-0.6881	0.3398
Ks_VISTA 0.5519	g	(u - g)	-1.6623	-0.9425	0.3886
Ks_VISTA 0.7142	r	(g - r)	-1.7462	0.2512	0.2688
Ks_VISTA 0.9152	r	(g - r)	-1.8031	-0.5563	0.2514
Ks_VISTA 1.1746	i	(r - i)	-2.7868	-0.1661	0.1571
Ks_VISTA 1.5293	z	(i - z)	-2.9876	-0.2973	0.1086
Ks_VISTA 2.0582	g	(u - g)	-2.0351	-0.6515	0.5727
Ks_VISTA 2.9779	r	(g - r)	-3.1240	-0.1923	0.3075
Ks_VISTA 5.2891	z	(i - z)	-2.5664	0.2959	0.0585

HSC

Table 11: Target filter: u_SDSS, Reference facility: HSC

F_Tar	z	Col	alpha	beta	sigma
u_SDSS 0.0369	g	g	1.1965	0.5920	0.0414
u_SDSS 0.1149	g	g	1.2119	0.5403	0.0519
u_SDSS 0.2025	g	g	1.3668	0.2782	0.0956
u_SDSS 0.3021	g	g	1.6169	-0.1734	0.1456
u_SDSS 0.4170	g	g	2.0605	-1.0568	0.1581
u_SDSS 0.5519	g	g	1.7399	-1.0458	0.1399
u_SDSS 0.7142	g	g	1.1136	-0.3634	0.0909
u_SDSS 0.9152	g	g	0.7442	-0.0337	0.0594
u_SDSS 1.1746	g	g	1.1073	-0.0278	0.0712
u_SDSS 1.5293	g	g	1.5664	-0.0223	0.0756
u_SDSS 2.0582	g	g	1.9675	0.0886	0.1859
u_SDSS 2.9779	g	g	1.5971	1.8041	0.1103
u_SDSS 5.2891	g	g	0.4202	-0.2251	0.0921

Table 12: Target filter: g_SDSS, Reference facility: HSC

F_Tar	z	Col	alpha	beta	sigma
g_SDSS 0.0369	g	g	0.0462	0.0028	0.0033
g_SDSS 0.1149	g	g	0.0734	-0.0143	0.0025
g_SDSS 0.2025	g	g	0.0741	0.0008	0.0043
g_SDSS 0.3021	g	g	0.0565	0.0333	0.0038
g_SDSS 0.4170	g	g	0.0320	0.0561	0.0100
g_SDSS 0.5519	g	g	0.0776	-0.0433	0.0042
g_SDSS 0.7142	g	g	0.0655	-0.0200	0.0037
g_SDSS 0.9152	g	g	0.0280	-0.0004	0.0028
g_SDSS 1.1746	g	g	0.0431	-0.0014	0.0013
g_SDSS 1.5293	g	g	0.0584	0.0009	0.0026
g_SDSS 2.0582	g	g	0.0671	-0.0010	0.0021
g_SDSS 2.9779	g	g	0.1204	-0.0045	0.0044
Table 13: Target filter: r_SDSS, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369	r	r	0.0065	-0.0076	0.0005
r_SDSS	0.1149	r	r	0.0091	-0.0044	0.0006
r_SDSS	0.2025	r	r	0.0093	0.0056	0.0017
r_SDSS	0.3021	r	r	-0.0108	0.0093	0.0042
r_SDSS	0.4170	r	r	0.0214	-0.0469	0.0050
r_SDSS	0.5519	r	r	0.0525	-0.0607	0.0108
r_SDSS	0.7142	r	r	0.0100	0.0273	0.0030
r_SDSS	0.9152	r	r	0.0095	0.0013	0.0013
r_SDSS	1.1746	r	r	0.0298	-0.0076	0.0022
r_SDSS	1.5293	r	r	0.0072	0.0005	0.0005
r_SDSS	2.0582	r	r	-0.0002	0.0001	0.0014
r_SDSS	2.9779	r	r	0.0147	-0.0038	0.0010
r_SDSS	5.2891	r	r	0.1898	-0.1419	0.0028

Table 14: Target filter: i_SDSS, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	i	i	0.1435	-0.0097	0.0044
i_SDSS	0.1149	i	i	0.1197	0.0016	0.0038
i_SDSS	0.2025	i	i	0.0966	0.0043	0.0008
i_SDSS	0.3021	i	i	0.1007	-0.0050	0.0011
i_SDSS	0.4170	i	i	0.1007	0.0118	0.0018
i_SDSS	0.5519	i	i	0.1012	-0.0081	0.0059
i_SDSS	0.7142	i	i	0.1553	-0.0924	0.0078
i_SDSS	0.9152	i	i	0.1260	-0.0084	0.0098
i_SDSS	1.1746	i	i	0.0936	0.1049	0.0135
i_SDSS	1.5293	i	i	0.1663	-0.0003	0.0037
i_SDSS	2.0582	i	i	0.1056	-0.0012	0.0032
i_SDSS	2.9779	i	i	0.1204	0.0014	0.0016
i_SDSS	5.2891	i	i	0.1992	-0.1133	0.0036

Table 15: Target filter: z_SDSS, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	z	z	-0.0639	-0.0016	0.0052
z_SDSS	0.1149	z	z	-0.0362	0.0049	0.0035
z_SDSS	0.2025	z	z	-0.0379	0.0049	0.0016
z_SDSS	0.3021	z	z	-0.0636	0.0120	0.0042
z_SDSS	0.4170	z	z	-0.0247	-0.0154	0.0015
z_SDSS	0.5519	z	z	-0.0033	0.0018	0.0020
z_SDSS	0.7142	z	z	-0.0831	0.0158	0.0044
z_SDSS	0.9152	z	z	0.0085	-0.0083	0.0056
F_Tar	z	F_Ref	Col	alpha	beta	sigma
--------	-----	-------	-----	-------	-------	-------
z_SDSS	1.1746	z	z	-0.0623	0.0472	0.0087
z_SDSS	1.5293	z	z	-0.0421	-0.1190	0.0126
z_SDSS	2.0582	z	z	-0.0380	0.0066	0.0012
z_SDSS	2.9779	z	z	-0.0544	0.0033	0.0013
z_SDSS	5.2891	z	z	0.0292	-0.0017	0.0006

Table 16: Target filter: Z_VISTA, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_VISTA	0.0369	z	z	0.0573	0.0008	0.0008
Z_VISTA	0.1149	z	z	0.0669	-0.0014	0.0018
Z_VISTA	0.2025	z	z	0.0864	-0.0031	0.0004
Z_VISTA	0.3021	z	z	0.0524	0.0163	0.0026
Z_VISTA	0.4170	z	z	0.0647	-0.0038	0.0020
Z_VISTA	0.5519	z	z	0.0745	0.0013	0.0003
Z_VISTA	0.7142	z	z	0.0354	0.0243	0.0035
Z_VISTA	0.9152	z	z	0.0951	-0.0192	0.0022
Z_VISTA	1.1746	z	z	0.1099	-0.0458	0.0056
Z_VISTA	1.5293	z	z	0.0624	0.0049	0.0015
Z_VISTA	2.0582	z	z	0.1240	0.0022	0.0018
Z_VISTA	2.9779	z	z	0.0155	-0.0014	0.0013
Z_VISTA	5.2891	z	z	0.0292	0.0003	0.0016

Table 17: Target filter: Y_VISTA, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Y_VISTA	0.0369	Y	Y	-0.4745	0.0237	0.0050
Y_VISTA	0.1149	Y	Y	-0.4938	-0.0110	0.0090
Y_VISTA	0.2025	Y	Y	-0.4747	0.0119	0.0038
Y_VISTA	0.3021	Y	Y	-0.4830	0.0148	0.0021
Y_VISTA	0.4170	Y	Y	-0.5124	0.0156	0.0054
Y_VISTA	0.5519	Y	Y	-0.5020	0.0118	0.0042
Y_VISTA	0.7142	Y	Y	-0.3456	-0.0068	0.0026
Y_VISTA	0.9152	Y	Y	-0.4234	-0.0324	0.0036
Y_VISTA	1.1746	Y	Y	-0.4327	0.0644	0.0090
Y_VISTA	1.5293	Y	Y	-0.5167	0.1044	0.0255
Y_VISTA	2.0582	Y	Y	-0.4158	-0.0005	0.0054
Y_VISTA	2.9779	Y	Y	-0.8900	-0.0182	0.0116
Y_VISTA	5.2891	z	z	-0.1857	-0.0038	0.0061

Table 18: Target filter: J_VISTA, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.0369	r	r	-1.3073	0.1647	0.1374
J_VISTA	0.1149	r	r	-1.2868	0.1494	0.1091
J_VISTA	0.2025	r	r	-1.3200	0.1986	0.0618
J_VISTA	0.3021	i	i	-1.1511	-0.0091	0.0717
Table 19: Target filter: H_VISTA, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
H_VISTA	0.0369	r	r	-1.5935	0.2218	0.1906
H_VISTA	0.1149	r	r	-1.5545	0.2425	0.1553
H_VISTA	0.2025	r	r	-1.6179	0.3840	0.0998
H_VISTA	0.3021	i	i	-1.6158	0.1588	0.1306
H_VISTA	0.4170	i	i	-1.6492	0.1526	0.0981
H_VISTA	0.5519	i	i	-1.6739	0.2015	0.0522
H_VISTA	0.7142	r	r	-1.7100	-0.0332	0.2037
H_VISTA	0.9152	r	r	-1.7833	-0.6983	0.1996
H_VISTA	1.1746	i	i	-2.0272	-0.1366	0.1141
H_VISTA	1.5293	i	i	-2.5376	-0.5770	0.1661
H_VISTA	2.0582	z	z	-3.8102	-0.5124	0.1512
H_VISTA	2.9779	r	r	-2.8949	-0.2819	0.2236
H_VISTA	5.2891	z	z	-1.4271	0.1040	0.0272

Table 20: Target filter: Ks_VISTA, Reference facility: HSC

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Ks_VISTA	0.0369	r	r	-1.6080	0.4760	0.2346
Ks_VISTA	0.1149	r	r	-1.6422	0.4163	0.2051
Ks_VISTA	0.2025	r	r	-1.8401	0.5302	0.1449
Ks_VISTA	0.3021	i	i	-1.9485	0.2146	0.1814
Ks_VISTA	0.4170	i	i	-2.0215	0.2306	0.1381
Ks_VISTA	0.5519	i	i	-2.0718	0.3816	0.0800
Ks_VISTA	0.7142	r	r	-1.9443	0.1942	0.2672
Ks_VISTA	0.9152	r	r	-2.0025	-0.5660	0.2541
Ks_VISTA	1.1746	i	i	-2.3412	-0.0351	0.1612
Ks_VISTA	1.5293	i	i	-2.9291	-0.5590	0.2035
Ks_VISTA	2.0582	r	r	-4.3298	-0.6012	0.3657
Ks_VISTA	2.9779	r	r	-3.5375	-0.1659	0.3008
Ks_VISTA	5.2891	z	z	-2.8407	0.3013	0.0544

LSST / Rubin Observatory
Table 21: Target filter: u_SDSS, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS	0.0369	u	(u - g)	0.0906	0.0526	0.0141
u_SDSS	0.1149	u	(u - g)	0.2019	-0.1260	0.0112
u_SDSS	0.2025	u	(u - g)	0.2116	-0.1149	0.0099
u_SDSS	0.3021	u	(u - g)	0.1927	-0.0797	0.0107
u_SDSS	0.4170	u	(u - g)	0.0813	-0.0155	0.0099
u_SDSS	0.5519	u	(u - g)	0.0823	-0.0075	0.0112
u_SDSS	0.7142	u	(u - g)	0.0994	-0.0017	0.0040
u_SDSS	0.9152	u	(u - g)	0.1417	-0.0007	0.0060
u_SDSS	1.1746	u	(u - g)	0.1730	-0.0065	0.0076
u_SDSS	1.5293	u	(u - g)	0.1310	0.0079	0.0106
u_SDSS	2.0582	u	(u - g)	0.1064	0.0001	0.0173
u_SDSS	2.9779	u	(u - g)	0.1011	0.5350	0.0390
u_SDSS	5.2891	u	(u - g)	0.0931	0.0741	0.0035

Table 22: Target filter: g_SDSS, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS	0.0369	g	(u - g)	0.0180	-0.0012	0.0042
g_SDSS	0.1149	g	(g - r)	0.0631	-0.0258	0.0023
g_SDSS	0.2025	g	(u - g)	0.0591	-0.0307	0.0096
g_SDSS	0.3021	g	(u - g)	0.0295	0.0339	0.0072
g_SDSS	0.4170	g	(g - r)	0.0052	0.0069	0.0104
g_SDSS	0.5519	g	(u - g)	0.0323	0.0022	0.0019
g_SDSS	0.7142	g	(u - g)	0.0526	0.0005	0.0034
g_SDSS	0.9152	g	(g - r)	0.0327	-0.0015	0.0020
g_SDSS	1.1746	g	(g - r)	0.0313	-0.0016	0.0012
g_SDSS	1.5293	g	(u - g)	0.0291	0.0016	0.0017
g_SDSS	2.0582	g	(u - g)	0.0252	-0.0012	0.0066
g_SDSS	2.9779	g	(u - g)	0.0718	-0.0874	0.0072
g_SDSS	5.2891	g	(g - r)	0.0145	-0.0098	0.0025

Table 23: Target filter: r_SDSS, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369	r	(g - r)	0.0093	-0.0082	0.0005
r_SDSS	0.1149	r	(g - r)	0.0098	-0.0026	0.0004
r_SDSS	0.2025	r	(g - r)	0.0103	0.0031	0.0011
r_SDSS	0.3021	r	(r - i)	-0.0029	0.0062	0.0033
r_SDSS	0.4170	r	(g - r)	0.0200	-0.0355	0.0035
r_SDSS	0.5519	r	(g - r)	0.0379	-0.0400	0.0079
r_SDSS	0.7142	r	(g - r)	0.0050	0.0183	0.0019
r_SDSS	0.9152	r	(g - r)	0.0098	0.0002	0.0011
r_SDSS	1.1746	r	(g - r)	0.0291	-0.0015	0.0015
r_SDSS	1.5293	r	(r - i)	0.0166	0.0004	0.0003
r_SDSS	2.0582	r	(g - r)	0.0036	0.0001	0.0009
r_SDSS	2.9779	r	(g - r)	0.0124	-0.0024	0.0008
r_SDSS	5.2891	r	(r - i)	0.1655	-0.1038	0.0015
Table 24: Target filter: i_SDSS, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	i	(r - i)	0.0164	0.0000	4e-04
i_SDSS	0.1149	i	(r - i)	0.0120	0.0013	2e-04
i_SDSS	0.2025	i	(r - i)	0.0140	-0.0022	2e-04
i_SDSS	0.3021	i	(r - i)	0.0131	0.0007	2e-04
i_SDSS	0.4170	i	(r - i)	0.0126	0.0018	3e-04
i_SDSS	0.5519	i	(r - i)	0.0112	-0.0018	1e-03
i_SDSS	0.7142	i	(r - i)	0.0226	-0.0097	1e-03
i_SDSS	0.9152	i	(r - i)	0.0137	0.0062	6e-04
i_SDSS	1.1746	i	(r - i)	0.0141	-0.0026	3e-04
i_SDSS	1.5293	i	(r - i)	0.0211	0.0001	5e-04
i_SDSS	2.0582	i	(i - z)	0.0166	-0.0001	2e-04
i_SDSS	2.9779	i	(r - i)	0.0159	0.0001	2e-04
i_SDSS	5.2891	i	(i - z)	0.0087	0.0000	1e-03

Table 25: Target filter: z_SDSS, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	z	(i - z)	-0.2064	0.0012	0.0068
z_SDSS	0.1149	z	(i - z)	-0.2009	0.0127	0.0029
z_SDSS	0.2025	z	(i - z)	-0.2343	0.0151	0.0043
z_SDSS	0.3021	z	(i - z)	-0.1959	-0.0054	0.0028
z_SDSS	0.4170	z	(i - z)	-0.1700	0.0014	0.0016
z_SDSS	0.5519	z	(i - z)	-0.1708	-0.0002	0.0012
z_SDSS	0.7142	z	(i - z)	-0.1612	-0.0359	0.0038
z_SDSS	0.9152	z	(i - z)	-0.1812	0.0427	0.0083
z_SDSS	1.1746	z	(i - z)	-0.2576	0.1161	0.0225
z_SDSS	1.5293	z	(i - z)	-0.1865	-0.1275	0.0145
z_SDSS	2.0582	z	(z - y)	-0.2949	0.0017	0.0030
z_SDSS	2.9779	z	(i - z)	-0.1702	0.0046	0.0040
z_SDSS	5.2891	z	(i - z)	-0.0582	-0.0043	0.0017

Table 26: Target filter: Z_VISTA, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_VISTA	0.0369	z	(i - z)	-0.0926	0.0032	0.0017
Z_VISTA	0.1149	z	(i - z)	-0.1003	0.0056	0.0010
Z_VISTA	0.2025	z	(i - z)	-0.1095	0.0060	0.0026
Z_VISTA	0.3021	z	(i - z)	-0.0827	-0.0023	0.0005
Z_VISTA	0.4170	z	(i - z)	-0.0851	0.0110	0.0009
Z_VISTA	0.5519	z	(i - z)	-0.0942	-0.0003	0.0021
Z_VISTA	0.7142	z	(i - z)	-0.0562	-0.0205	0.0027
Z_VISTA	0.9152	z	(i - z)	-0.1089	0.0311	0.0030
Z_VISTA	1.1746	z	(z - y)	-0.1051	-0.0275	0.0030
Z_VISTA	1.5293	z	(i - z)	-0.0901	-0.0023	0.0008
Z_VISTA	2.0582	z	(z - y)	-0.1397	-0.0013	0.0026
Z_VISTA	2.9779	z	(i - z)	-0.1095	0.0001	0.0018
Z_VISTA	5.2891	z	(i - z)	-0.0588	-0.0022	0.0006
Table 27: Target filter: Y_VISTA, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Y_VISTA	0.0369	y	(z - y)	-0.4673	0.0259	0.0037
Y_VISTA	0.1149	y	(z - y)	-0.4174	-0.0085	0.0098
Y_VISTA	0.2025	y	(z - y)	-0.4273	0.0141	0.0040
Y_VISTA	0.3021	y	(z - y)	-0.4893	0.0248	0.0050
Y_VISTA	0.4170	y	(z - y)	-0.3880	-0.0171	0.0045
Y_VISTA	0.5519	y	(z - y)	-0.4068	0.0141	0.0023
Y_VISTA	0.7142	y	(z - y)	-0.3499	0.0056	0.0021
Y_VISTA	0.9152	y	(z - y)	-0.3020	-0.0635	0.0074
Y_VISTA	1.1746	y	(z - y)	-0.4143	0.0873	0.0099
Y_VISTA	1.5293	y	(z - y)	-0.4659	0.0383	0.0164
Y_VISTA	2.0582	y	(z - y)	-0.3506	0.0028	0.0076
Y_VISTA	2.9779	y	(z - y)	-0.7973	-0.0148	0.0112
Y_VISTA	5.2891	z	(i - z)	-0.2455	-0.0081	0.0078

Table 28: Target filter: J_VISTA, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.0369	r	(g - r)	-1.2784	0.1619	0.1365
J_VISTA	0.1149	r	(g - r)	-1.2805	0.1712	0.1066
J_VISTA	0.2025	r	(g - r)	-1.3281	0.2225	0.0635
J_VISTA	0.3021	i	(r - i)	-1.3627	0.0058	0.0739
J_VISTA	0.4170	g	(u - g)	-1.2309	-0.7018	0.2148
J_VISTA	0.5519	i	(r - i)	-1.3651	0.0330	0.0585
J_VISTA	0.7142	r	(g - r)	-1.4720	-0.1339	0.1449
J_VISTA	0.9152	y	(z - y)	-1.5121	-0.1654	0.0149
J_VISTA	1.1746	y	(z - y)	-1.4091	0.1113	0.0560
J_VISTA	1.5293	z	(i - z)	-1.8969	-0.5372	0.0605
J_VISTA	2.0582	y	(z - y)	-1.6195	-0.5902	0.0716
J_VISTA	2.9779	r	(g - r)	-1.7874	0.1626	0.1031
J_VISTA	5.2891	z	(i - z)	-0.8415	0.0362	0.0152

Table 29: Target filter: H_VISTA, Reference facility: LSST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
H_VISTA	0.0369	r	(g - r)	-1.5597	0.2189	0.1896
H_VISTA	0.1149	r	(g - r)	-1.5489	0.2694	0.1524
H_VISTA	0.2025	r	(g - r)	-1.6273	0.4133	0.1018
H_VISTA	0.3021	g	(u - g)	-1.5194	-0.0111	0.2786
H_VISTA	0.4170	g	(u - g)	-1.3580	-0.5892	0.2849
H_VISTA	0.5519	g	(u - g)	-1.6194	-0.9917	0.3154
H_VISTA	0.7142	r	(g - r)	-1.7014	-0.0635	0.2068
H_VISTA	0.9152	r	(g - r)	-1.7914	-0.6990	0.1989
H_VISTA	1.1746	y	(z - y)	-2.2945	0.1428	0.0899
H_VISTA	1.5293	z	(i - z)	-2.7932	-0.5590	0.0804
H_VISTA	2.0582	g	(u - g)	-2.0565	-0.6112	0.4855
H_VISTA	2.9779	g	(u - g)	-2.2993	2.2036	0.3526
H_VISTA	5.2891	z	(i - z)	-1.3380	0.0915	0.0299
F_Tar	z	F_Ref	Col	alpha	beta	sigma
---------	-------	-------	------	-------	------	-------
Ks_VISTA 0.0369	r (g - r)	-1.5752	0.4736	0.2336		
Ks_VISTA 0.1149	r (g - r)	-1.6397	0.4462	0.2019		
Ks_VISTA 0.2025	r (g - r)	-1.8490	0.5628	0.1475		
Ks_VISTA 0.3021	g (u - g)	-1.6133	0.0285	0.3350		
Ks_VISTA 0.4170	g (u - g)	-1.4608	-0.5524	0.3395		
Ks_VISTA 0.5519	g (u - g)	-1.7415	-0.9116	0.3738		
Ks_VISTA 0.7142	r (g - r)	-1.9329	0.1603	0.2707		
Ks_VISTA 0.9152	r (g - r)	-2.0110	-0.5668	0.2538		
Ks_VISTA 1.1746	i (r - i)	-2.6246	-0.4359	0.1569		
Ks_VISTA 1.5293	z (i - z)	-3.3562	-0.5369	0.1087		
Ks_VISTA 2.0582	g (u - g)	-2.2608	-0.6349	0.5556		
Ks_VISTA 2.9779	g (u - g)	-2.6725	2.7210	0.4399		
Ks_VISTA 5.2891	z (i - z)	-2.5736	0.2780	0.0618		

UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS 0.0369	Z (Z - Y)	3.6527	1.6000	0.3116		
u_SDSS 0.1149	H (H - K)	4.7195	2.8144	0.5250		
u_SDSS 0.2025	Y (Y - J)	5.4409	1.8612	0.5022		
u_SDSS 0.3021	Y (Y - J)	5.8717	1.7622	0.5322		
u_SDSS 0.4170	J (J - H)	6.3523	2.4594	0.6025		
u_SDSS 0.5519	J (J - H)	6.4291	2.0348	0.6660		
u_SDSS 0.7142	J (J - H)	7.5205	1.4954	0.5983		
u_SDSS 0.9152	Z (Z - Y)	7.0061	0.8097	0.2728		
u_SDSS 1.1746	Z (Z - Y)	4.2352	0.9571	0.3382		
u_SDSS 1.5293	Y (Y - J)	4.5175	1.0251	0.3308		
u_SDSS 2.0582	Z (Z - Y)	3.9681	1.8290	0.2938		
u_SDSS 2.9779	J (J - H)	2.9697	0.6927	0.3590		
u_SDSS 5.2891	H (H - K)	4.1115	6.8442	0.2328		

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS 0.0369	Z (Z - Y)	2.2815	0.6229	0.2025		
g_SDSS 0.1149	Z (Z - Y)	3.6202	0.5635	0.2145		
g_SDSS 0.2025	Y (Y - J)	3.9299	0.9192	0.2771		
g_SDSS 0.3021	Y (Y - J)	4.1882	0.9963	0.2651		
g_SDSS 0.4170	J (J - H)	4.2646	1.7358	0.2924		
g_SDSS 0.5519	J (J - H)	4.6087	1.5911	0.3716		
g_SDSS 0.7142	Z (Z - Y)	5.8668	0.4358	0.1258		
g_SDSS 0.9152	Z (Z - Y)	5.2834	0.7740	0.1704		
g_SDSS 1.1746	Z (Z - Y)	3.0226	0.8727	0.2243		
g_SDSS 1.5293	Y (Y - J)	3.4500	0.9187	0.2170		
g_SDSS 2.0582	Z (Z - Y)	2.2056	0.0471	0.1055		
g_SDSS 2.9779	J (J - H)	2.0565	-0.8556	0.2046		
Table 33: Target filter: r_SDSS, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369	Z	(Z - Y)	1.2826	0.2454	0.0796
r_SDSS	0.1149	Z	(Z - Y)	1.6846	0.2370	0.0885
r_SDSS	0.2025	Y	(Y - J)	1.9665	0.4156	0.1414
r_SDSS	0.3021	Y	(Y - J)	2.0287	0.3973	0.1565
r_SDSS	0.4170	J	(J - H)	2.8847	0.7114	0.1888
r_SDSS	0.5519	J	(J - H)	3.3855	0.6862	0.2152
r_SDSS	0.7142	Z	(Z - Y)	2.9173	0.3008	0.0543
r_SDSS	0.9152	Z	(Z - Y)	2.6051	0.7041	0.0859
r_SDSS	1.1746	Z	(Z - Y)	1.8372	0.7695	0.1304
r_SDSS	1.5293	Z	(Z - Y)	2.3274	-1.3224	0.1568
r_SDSS	2.0582	Z	(Z - Y)	1.2349	0.0194	0.0440
r_SDSS	2.9779	Y	(Y - J)	1.3944	0.0414	0.0328
r_SDSS	5.2891	H	(H - K)	2.2087	0.8811	0.0809

Table 34: Target filter: i_SDSS, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	Z	(Z - Y)	0.8068	0.0598	0.0289
i_SDSS	0.1149	Z	(Z - Y)	0.9055	0.0817	0.0294
i_SDSS	0.2025	Z	(Z - Y)	0.8420	0.0995	0.0235
i_SDSS	0.3021	Z	(Z - Y)	1.0124	0.0141	0.0234
i_SDSS	0.4170	Z	(Z - Y)	1.3925	-0.0390	0.0106
i_SDSS	0.5519	Z	(Z - Y)	1.4987	0.0238	0.0104
i_SDSS	0.7142	Z	(Z - Y)	1.4112	-0.1241	0.0156
i_SDSS	0.9152	Z	(Z - Y)	1.3082	0.1553	0.0598
i_SDSS	1.1746	Z	(Z - Y)	0.5947	0.6404	0.0713
i_SDSS	1.5293	Z	(Z - Y)	1.1921	-0.6830	0.0695
i_SDSS	2.0582	Z	(Z - Y)	0.7233	0.0111	0.0208
i_SDSS	2.9779	Z	(Z - Y)	0.8173	0.0301	0.0138
i_SDSS	5.2891	H	(H - K)	1.5489	0.2217	0.0492

Table 35: Target filter: z_SDSS, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	Z	(Z - Y)	-0.1088	-0.0039	0.0018
z_SDSS	0.1149	Z	(Z - Y)	-0.0868	0.0024	0.0098
z_SDSS	0.2025	Z	(Z - Y)	-0.0879	-0.0001	0.0011
z_SDSS	0.3021	Z	(Z - Y)	-0.1119	-0.0001	0.0008
z_SDSS	0.4170	Z	(Z - Y)	-0.0900	-0.0097	0.0009
z_SDSS	0.5519	Z	(Z - Y)	-0.0839	-0.0002	0.0016
z_SDSS	0.7142	Z	(Z - Y)	-0.1340	0.0090	0.0019
z_SDSS	0.9152	Z	(Z - Y)	-0.0841	-0.0009	0.0025
Table 36: Target filter: Z_VISTA, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_SDSS	1.1746	Z	(Z - Y)	-0.1275	0.0143	0.0043
Z_SDSS	1.5293	Z	(Z - Y)	-0.1438	-0.0355	0.0073
Z_SDSS	2.0582	Z	(Z - Y)	-0.1210	0.0024	0.0022
Z_SDSS	2.9779	Z	(Z - Y)	-0.0775	0.0028	0.0013
Z_SDSS	5.2891	Z	(Z - Y)	-0.0020	-0.0001	0.0017

Table 37: Target filter: Y_VISTA, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_SDSS	0.0369	Z	(Z - Y)	0.0126	0.0015	0.0003
Z_SDSS	0.1149	Z	(Z - Y)	0.0115	0.0013	0.0008
Z_SDSS	0.2025	Z	(Z - Y)	0.0158	0.0014	0.0005
Z_SDSS	0.3021	Z	(Z - Y)	0.0100	0.0013	0.0008
Z_SDSS	0.4170	Z	(Z - Y)	0.0159	-0.0023	0.0007
Z_SDSS	0.5519	Z	(Z - Y)	0.0187	0.0013	0.0004
Z_SDSS	0.7142	Z	(Z - Y)	0.0046	0.0088	0.0011
Z_SDSS	0.9152	Z	(Z - Y)	0.0286	-0.0044	0.0009
Z_SDSS	1.1746	Z	(Z - Y)	0.0149	0.0048	0.0008
Z_SDSS	1.5293	Z	(Z - Y)	0.0064	-0.0035	0.0007
Z_SDSS	2.0582	Z	(Z - Y)	0.0065	0.0000	0.0008
Z_SDSS	2.9779	Z	(Z - Y)	-0.0218	-0.0006	0.0008
Z_SDSS	5.2891	Z	(Z - Y)	0.0208	0.0010	0.0002

Table 38: Target filter: J_VISTA, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_SDSS	0.0369	J	(J - H)	-0.0123	0.0001	4e-04
Z_SDSS	0.1149	J	(Y - J)	-0.0169	0.0004	3e-04
Z_SDSS	0.2025	J	(Y - J)	-0.0178	0.0030	6e-04
Z_SDSS	0.3021	J	(J - H)	-0.0176	0.0002	5e-04
F_Tar	z	F_Ref	Col	alpha	beta	sigma
---------	-----	-------	---------	-------	-------	-------
J_VISTA	0.4170	J	(J - H)	-0.0138	-0.0013	3e-04
J_VISTA	0.5519	J	(J - H)	-0.0089	0.0004	4e-04
J_VISTA	0.7142	J	(J - H)	-0.0116	-0.0002	5e-04
J_VISTA	0.9152	J	(J - H)	-0.0131	-0.0022	3e-04
J_VISTA	1.1746	J	(Y - J)	-0.0112	-0.0004	3e-04
J_VISTA	1.5293	J	(Y - J)	-0.0113	-0.0014	9e-04
J_VISTA	2.0582	J	(J - H)	-0.0145	0.0007	9e-04
J_VISTA	2.9779	J	(J - H)	-0.0111	0.0062	4e-04
J_VISTA	5.2891	J	(Y - J)	-0.0174	-0.0007	2e-04

Table 39: Target filter: H_VISTA, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
H_VISTA	0.0369	H	(J - H)	-0.0426	0.0017	0.0011
H_VISTA	0.1149	H	(H - K)	-0.0293	-0.0072	0.0010
H_VISTA	0.2025	H	(H - K)	-0.0155	-0.0016	0.0009
H_VISTA	0.3021	H	(J - H)	-0.0239	-0.0021	0.0006
H_VISTA	0.4170	H	(J - H)	-0.0248	0.0014	0.0003
H_VISTA	0.5519	H	(J - H)	-0.0267	0.0038	0.0005
H_VISTA	0.7142	H	(H - K)	-0.0242	-0.0021	0.0007
H_VISTA	0.9152	H	(J - H)	-0.0222	0.0001	0.0009
H_VISTA	1.1746	H	(J - H)	-0.0256	0.0017	0.0007
H_VISTA	1.5293	H	(J - H)	-0.0209	-0.0002	0.0002
H_VISTA	2.0582	H	(J - H)	-0.0214	-0.0058	0.0009
H_VISTA	2.9779	H	(J - H)	-0.0251	0.0044	0.0018
H_VISTA	5.2891	H	(H - K)	-0.0129	0.0005	0.0002

Table 40: Target filter: Ks_VISTA, Reference facility: UKIRT

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Ks_VISTA	0.0369	K	(H - K)	0.0597	-0.0160	0.0023
Ks_VISTA	0.1149	K	(H - K)	0.0560	-0.0170	0.0018
Ks_VISTA	0.2025	K	(H - K)	0.0206	-0.0212	0.0021
Ks_VISTA	0.3021	K	(H - K)	0.0470	-0.0179	0.0023
Ks_VISTA	0.4170	K	(H - K)	0.0882	-0.0012	0.0027
Ks_VISTA	0.5519	K	(H - K)	0.0744	0.0065	0.0011
Ks_VISTA	0.7142	K	(H - K)	0.0717	0.0076	0.0020
Ks_VISTA	0.9152	K	(H - K)	0.0758	-0.0048	0.0008
Ks_VISTA	1.1746	K	(H - K)	0.0973	-0.0151	0.0014
Ks_VISTA	1.5293	K	(H - K)	0.0537	0.0026	0.0024
Ks_VISTA	2.0582	K	(H - K)	0.0601	0.0043	0.0015
Ks_VISTA	2.9779	K	(H - K)	0.0604	0.0026	0.0010
Ks_VISTA	5.2891	K	(H - K)	0.1096	0.0256	0.0022

2MASS
Table 41: Target filter: u_SDSS, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS	0.0369	H (H - K)	4.8781	3.2002	0.5013	
u_SDSS	0.1149	H (H - K)	5.1784	2.7786	0.5228	
u_SDSS	0.2025	J (J - H)	6.5580	2.3031	0.4438	
u_SDSS	0.3021	J (J - H)	5.4381	2.4685	0.5008	
u_SDSS	0.4170	J (J - H)	5.9470	2.4203	0.6032	
u_SDSS	0.5519	J (J - H)	5.9968	2.0111	0.6546	
u_SDSS	0.7142	J (J - H)	7.1665	1.3751	0.5896	
u_SDSS	0.9152	J (J - H)	7.7028	0.9156	0.4469	
u_SDSS	1.1746	J (J - H)	7.7791	0.5908	0.3582	
u_SDSS	1.5293	J (J - H)	5.9292	0.6195	0.3348	
u_SDSS	2.0582	J (J - H)	4.6004	0.7743	0.4544	
u_SDSS	2.9779	J (J - H)	2.7381	0.7794	0.3530	
u_SDSS	5.2891	H (H - K)	4.6837	6.9673	0.2270	

Table 42: Target filter: g_SDSS, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS	0.0369	J (J - H)	4.0230	0.5654	0.1843	
g_SDSS	0.1149	J (J - H)	4.5484	0.8298	0.2098	
g_SDSS	0.2025	J (J - H)	4.8186	1.2544	0.2342	
g_SDSS	0.3021	J (J - H)	3.9974	1.5250	0.2394	
g_SDSS	0.4170	J (J - H)	3.9811	1.7073	0.2930	
g_SDSS	0.5519	J (J - H)	4.2707	1.5731	0.3625	
g_SDSS	0.7142	J (J - H)	5.5906	1.1877	0.3762	
g_SDSS	0.9152	J (J - H)	6.3372	0.8481	0.3106	
g_SDSS	1.1746	J (J - H)	6.2744	0.5835	0.1941	
g_SDSS	1.5293	J (J - H)	4.8091	0.5884	0.1941	
g_SDSS	2.0582	J (J - H)	3.2967	0.6106	0.2336	
g_SDSS	2.9779	J (J - H)	1.8825	0.7885	0.1986	
g_SDSS	5.2891	H (H - K)	4.0677	5.4116	0.1409	

Table 43: Target filter: r_SDSS, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369	J (J - H)	2.9166	0.1908	0.0735	
r_SDSS	0.1149	J (J - H)	2.9703	0.3800	0.0923	
r_SDSS	0.2025	J (J - H)	2.8213	0.6158	0.1173	
r_SDSS	0.3021	J (J - H)	2.3209	0.7021	0.1417	
r_SDSS	0.4170	J (J - H)	2.6823	0.6899	0.1891	
r_SDSS	0.5519	J (J - H)	3.1169	0.6719	0.2074	
r_SDSS	0.7142	J (J - H)	3.6994	0.7299	0.1901	
r_SDSS	0.9152	J (J - H)	4.0776	0.7457	0.1629	
r_SDSS	1.1746	J (J - H)	4.6948	0.5704	0.1219	
r_SDSS	1.5293	J (J - H)	3.9132	0.5679	0.1337	
r_SDSS	2.0582	J (J - H)	2.5451	0.5734	0.1594	
r_SDSS	2.9779	J (J - H)	1.2331	-0.6012	0.0983	
r_SDSS	5.2891	H (H - K)	2.5208	0.9475	0.0775	
Table 44: Target filter: i_SDSS, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	J	(J - H)	2.3941	0.0063	0.0373
i_SDSS	0.1149	J	(J - H)	2.3174	0.1755	0.0486
i_SDSS	0.2025	J	(J - H)	2.0075	0.3439	0.0569
i_SDSS	0.3021	J	(J - H)	1.6248	0.4074	0.0652
i_SDSS	0.4170	J	(J - H)	1.6682	0.4375	0.0981
i_SDSS	0.5519	J	(J - H)	1.6722	0.3816	0.1356
i_SDSS	0.7142	J	(J - H)	2.4444	0.1683	0.1377
i_SDSS	0.9152	J	(J - H)	3.0508	0.1727	0.0770
i_SDSS	1.1746	J	(J - H)	3.0298	0.5369	0.0699
i_SDSS	1.5293	J	(J - H)	2.8454	0.5541	0.0881
i_SDSS	2.0582	J	(J - H)	2.1479	0.5603	0.1239
i_SDSS	2.9779	J	(J - H)	0.9355	-0.4710	0.0656
i_SDSS	5.2891	H	(H - K)	1.7722	0.2685	0.0467

Table 45: Target filter: z_SDSS, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	J	(J - H)	1.5358	-0.0649	0.0216
z_SDSS	0.1149	J	(J - H)	1.5476	0.0318	0.0317
z_SDSS	0.2025	J	(J - H)	1.4242	0.1539	0.0323
z_SDSS	0.3021	J	(J - H)	1.1390	0.2264	0.0236
z_SDSS	0.4170	J	(J - H)	1.0582	0.2302	0.0432
z_SDSS	0.5519	J	(J - H)	0.9744	0.1976	0.0663
z_SDSS	0.7142	J	(J - H)	1.2571	0.1512	0.0731
z_SDSS	0.9152	J	(J - H)	1.6388	0.0291	0.0574
z_SDSS	1.1746	J	(J - H)	2.0195	-0.0277	0.0284
z_SDSS	1.5293	J	(J - H)	1.6540	0.4230	0.0572
z_SDSS	2.0582	J	(J - H)	1.4789	0.5460	0.0832
z_SDSS	2.9779	J	(J - H)	0.7152	-0.3768	0.0496
z_SDSS	5.2891	H	(H - K)	0.9923	0.1002	0.0233

Table 46: Target filter: Z_VISTA, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_VISTA	0.0369	J	(J - H)	1.6336	-0.0575	0.0250
Z_VISTA	0.1149	J	(J - H)	1.6246	0.0371	0.0323
Z_VISTA	0.2025	J	(J - H)	1.4929	0.1655	0.0337
Z_VISTA	0.3021	J	(J - H)	1.2017	0.2462	0.0266
Z_VISTA	0.4170	J	(J - H)	1.0960	0.2545	0.0476
Z_VISTA	0.5519	J	(J - H)	1.0069	0.2100	0.0720
Z_VISTA	0.7142	J	(J - H)	1.3638	0.1645	0.0787
Z_VISTA	0.9152	J	(J - H)	1.7307	0.0273	0.0630
Z_VISTA	1.1746	J	(J - H)	2.1929	-0.0459	0.0363
Z_VISTA	1.5293	J	(J - H)	1.7497	0.5484	0.0629
Z_VISTA	2.0582	J	(J - H)	1.5773	0.5441	0.0872
Z_VISTA	2.9779	J	(J - H)	0.7281	-0.3871	0.0504
Z_VISTA	5.2891	H	(H - K)	0.9946	0.1021	0.0222
Table 47: Target filter: Y_VISTA, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Y_VISTA	0.0369	J	(J - H)	0.8261	-0.0761	0.0083
Y_VISTA	0.1149	J	(J - H)	0.9244	-0.0274	0.0175
Y_VISTA	0.2025	J	(J - H)	0.8273	0.0695	0.0245
Y_VISTA	0.3021	J	(J - H)	0.7077	0.0986	0.0117
Y_VISTA	0.4170	J	(J - H)	0.6811	0.1008	0.0156
Y_VISTA	0.5519	J	(J - H)	0.5823	0.1154	0.0297
Y_VISTA	0.7142	J	(J - H)	0.6521	0.0600	0.0357
Y_VISTA	0.9152	J	(J - H)	0.8839	0.0251	0.0265
Y_VISTA	1.1746	J	(J - H)	0.9618	0.0070	0.0171
Y_VISTA	1.5293	J	(J - H)	1.0409	-0.0459	0.0438
Y_VISTA	2.0582	J	(J - H)	0.7959	0.5420	0.0611
Y_VISTA	2.9779	J	(J - H)	0.5075	-0.2658	0.0342
Y_VISTA	5.2891	H	(H - K)	0.8419	0.0678	0.0225

Table 48: Target filter: J_VISTA, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.0369	J	(J - H)	-0.0613	0.0047	0.0007
J_VISTA	0.1149	J	(J - H)	-0.0732	0.0062	0.0006
J_VISTA	0.2025	J	(J - H)	-0.0814	-0.0001	0.0014
J_VISTA	0.3021	J	(J - H)	-0.0583	-0.0088	0.0019
J_VISTA	0.4170	J	(J - H)	-0.0491	-0.0081	0.0007
J_VISTA	0.5519	J	(J - H)	-0.0591	-0.0052	0.0020
J_VISTA	0.7142	J	(J - H)	-0.0480	-0.0118	0.0022
J_VISTA	0.9152	J	(J - H)	-0.0551	-0.0017	0.0023
J_VISTA	1.1746	J	(J - H)	-0.0884	-0.0004	0.0010
J_VISTA	1.5293	J	(J - H)	-0.0718	0.0151	0.0011
J_VISTA	2.0582	J	(J - H)	-0.0492	-0.0528	0.0044
J_VISTA	2.9779	J	(J - H)	-0.0559	0.0297	0.0032
J_VISTA	5.2891	J	(J - H)	-0.0810	0.0001	0.0006

Table 49: Target filter: H_VISTA, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
H_VISTA	0.0369	H	(J - H)	-0.0015	0.0027	3e-04
H_VISTA	0.1149	H	(J - H)	-0.0102	-0.0008	6e-04
H_VISTA	0.2025	H	(H - K)	0.0000	0.0003	5e-04
H_VISTA	0.3021	H	(J - H)	0.0011	-0.0015	5e-04
H_VISTA	0.4170	H	(J - H)	-0.0024	-0.0003	1e-04
H_VISTA	0.5519	H	(H - K)	0.0006	0.0003	3e-04
H_VISTA	0.7142	H	(H - K)	-0.0114	0.0020	3e-04
H_VISTA	0.9152	H	(H - K)	0.0025	-0.0009	4e-04
H_VISTA	1.1746	H	(J - H)	-0.0035	0.0005	4e-04
H_VISTA	1.5293	H	(J - H)	-0.0031	-0.0019	2e-04
H_VISTA	2.0582	H	(J - H)	-0.0045	0.0029	4e-04
H_VISTA	2.9779	H	(J - H)	-0.0031	0.0039	9e-04
H_VISTA	5.2891	H	(H - K)	0.0022	0.0005	3e-04
Table 50: Target filter: Ks_VISTA, Reference facility: 2MASS

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Ks_VISTA	0.0369	K	(H - K)	0.0121	-0.0004	3e-04
Ks_VISTA	0.1149	K	(H - K)	0.0038	-0.0027	2e-04
Ks_VISTA	0.2025	K	(H - K)	0.0068	-0.0019	1e-04
Ks_VISTA	0.3021	K	(H - K)	0.0111	-0.0007	2e-04
Ks_VISTA	0.4170	K	(H - K)	0.0124	0.0004	2e-04
Ks_VISTA	0.5519	K	(H - K)	0.0088	0.0005	1e-04
Ks_VISTA	0.7142	K	(H - K)	0.0105	0.0006	1e-04
Ks_VISTA	0.9152	K	(H - K)	0.0115	-0.0005	2e-04
Ks_VISTA	1.1746	K	(H - K)	0.0112	-0.0007	2e-04
Ks_VISTA	1.5293	K	(H - K)	0.0100	0.0000	1e-04
Ks_VISTA	2.0582	K	(H - K)	0.0088	0.0023	2e-04
Ks_VISTA	2.9779	K	(H - K)	0.0077	0.0007	2e-04
Ks_VISTA	5.2891	K	(H - K)	0.0105	-0.0006	1e-04

JWST

Table 51: Target filter: u_SDSS, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS	0.0369	F090	(F090 - F115)	3.0918	1.7496	0.2998
u_SDSS	0.1149	F090	(F090 - F115)	3.2990	1.6888	0.3698
u_SDSS	0.2025	F090	(F090 - F115)	5.0877	1.4110	0.3986
u_SDSS	0.3021	F115	(F115 - F150)	5.0707	2.3069	0.5156
u_SDSS	0.4170	F070	(F070 - F090)	4.8876	0.4260	0.2026
u_SDSS	0.5519	F070	(F070 - F090)	4.0374	0.5369	0.2281
u_SDSS	0.7142	F070	(F070 - F090)	3.0154	0.5407	0.2671
u_SDSS	0.9152	F070	(F070 - F090)	2.7481	-0.6150	0.2665
u_SDSS	1.1746	F070	(F070 - F090)	2.5063	-1.3863	0.2853
u_SDSS	1.5293	F070	(F070 - F090)	1.8159	-0.2991	0.1985
u_SDSS	2.0582	F070	(F070 - F090)	2.8034	0.1228	0.2266
u_SDSS	2.9779	F115	(F115 - F150)	2.8056	1.3888	0.3180
u_SDSS	5.2891	F070	(F070 - F090)	2.5052	5.9694	0.1701

Table 52: Target filter: g_SDSS, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS	0.0369	F070	(F070 - F090)	1.8219	0.2173	0.1011
g_SDSS	0.1149	F090	(F090 - F115)	2.2318	0.6873	0.2193
g_SDSS	0.2025	F070	(F070 - F090)	2.7423	0.1201	0.0412
g_SDSS	0.3021	F070	(F070 - F090)	2.5861	0.2486	0.0636
g_SDSS	0.4170	F070	(F070 - F090)	2.0913	0.5475	0.0688
g_SDSS	0.5519	F070	(F070 - F090)	1.9640	0.6423	0.0818
g_SDSS	0.7142	F070	(F070 - F090)	1.7833	0.5888	0.1203
g_SDSS	0.9152	F070	(F070 - F090)	1.8657	-0.3218	0.1478
g_SDSS	1.1746	F070	(F070 - F090)	1.6073	-0.8864	0.1408
g_SDSS	1.5293	F070	(F070 - F090)	1.0356	-0.1699	0.0717
g_SDSS	2.0582	F070	(F070 - F090)	1.1702	0.0162	0.0577
g_SDSS	2.9779	F115	(F115 - F150)	1.8587	-0.3490	0.1645
Table 53: Target filter: r_SDSS, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS 0.0369	F070	(F070 - F090)	0.4230	0.0575	0.0221	
r_SDSS 0.1149	F070	(F070 - F090)	0.6046	0.0152	0.0149	
r_SDSS 0.2025	F070	(F070 - F090)	0.6621	0.0260	0.0120	
r_SDSS 0.3021	F070	(F070 - F090)	0.7755	-0.0334	0.0074	
r_SDSS 0.4170	F070	(F070 - F090)	0.7855	-0.0747	0.0156	
r_SDSS 0.5519	F070	(F070 - F090)	0.7092	0.0645	0.0444	
r_SDSS 0.7142	F070	(F070 - F090)	0.4458	0.3692	0.0314	
r_SDSS 0.9152	F070	(F070 - F090)	0.4703	0.1340	0.0469	
r_SDSS 1.1746	F070	(F070 - F090)	0.6691	-0.0894	0.0444	
r_SDSS 1.5293	F070	(F070 - F090)	0.4410	-0.0747	0.0246	
r_SDSS 2.0582	F070	(F070 - F090)	0.2822	0.0026	0.0086	
r_SDSS 2.9779	F070	(F070 - F090)	0.6143	-0.0034	0.0109	
r_SDSS 5.2891	F070	(F070 - F090)	0.4520	0.4734	0.0142	

Table 54: Target filter: i_SDSS, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS 0.0369	F070	(F070 - F090)	-0.2059	-0.0321	0.0085	
i_SDSS 0.1149	F070	(F070 - F090)	-0.2466	-0.0107	0.0086	
i_SDSS 0.2025	F070	(F070 - F090)	-0.3198	0.0093	0.0022	
i_SDSS 0.3021	F070	(F070 - F090)	-0.3093	-0.0116	0.0025	
i_SDSS 0.4170	F070	(F070 - F090)	-0.3161	0.0052	0.0036	
i_SDSS 0.5519	F070	(F070 - F090)	-0.3347	0.0195	0.0086	
i_SDSS 0.7142	F070	(F070 - F090)	-0.2667	-0.0894	0.0116	
i_SDSS 0.9152	F070	(F070 - F090)	-0.2086	-0.1585	0.0163	
i_SDSS 1.1746	F070	(F070 - F090)	-0.3049	0.1399	0.0118	
i_SDSS 1.5293	F070	(F070 - F090)	-0.2517	0.0427	0.0085	
i_SDSS 2.0582	F070	(F070 - F090)	-0.1807	0.0008	0.0050	
i_SDSS 2.9779	F070	(F070 - F090)	-0.3273	-0.0010	0.0038	
i_SDSS 5.2891	F070	(F070 - F090)	-0.2720	-0.0206	0.0048	

Table 55: Target filter: z_SDSS, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS 0.0369	F090	(F070 - F090)	0.0084	0.0021	0.0023	
z_SDSS 0.1149	F090	(F090 - F115)	0.0103	-0.0027	0.0009	
z_SDSS 0.2025	F090	(F070 - F090)	0.0355	-0.0125	0.0024	
z_SDSS 0.3021	F090	(F070 - F090)	0.0066	0.0082	0.0005	
z_SDSS 0.4170	F090	(F070 - F090)	0.0134	0.0000	0.0005	
z_SDSS 0.5519	F090	(F070 - F090)	-0.0010	0.0031	0.0021	
z_SDSS 0.7142	F090	(F070 - F090)	0.0210	0.0030	0.0013	
z_SDSS 0.9152	F090	(F090 - F115)	0.0018	-0.0021	0.0039	
Table 56: Target filter: Z_VISTA, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_VISTA 0.0369	F090	(F070 - F090)	0.0821	0.0007	0.0074	
Z_VISTA 0.1149	F090	(F090 - F115)	0.0700	-0.0005	0.0024	
Z_VISTA 0.2025	F090	(F090 - F090)	0.1005	-0.0180	0.0037	
Z_VISTA 0.3021	F090	(F090 - F090)	0.0707	0.0087	0.0024	
Z_VISTA 0.4170	F090	(F090 - F090)	0.0616	0.0099	0.0013	
Z_VISTA 0.5519	F090	(F090 - F090)	0.0413	0.0043	0.0043	
Z_VISTA 0.7142	F090	(F070 - F090)	0.0844	0.0066	0.0019	
Z_VISTA 0.9152	F090	(F070 - F090)	0.0487	-0.0214	0.0090	
Z_VISTA 1.1746	F090	(F070 - F090)	0.1519	-0.1266	0.0210	
Z_VISTA 1.5293	F090	(F090 - F115)	0.0674	0.1463	0.0197	
Z_VISTA 2.0582	F090	(F090 - F115)	0.1349	-0.0461	0.0093	
Z_VISTA 2.9779	F090	(F090 - F115)	0.0303	-0.0080	0.0040	
Z_VISTA 5.2891	F090	(F070 - F090)	-0.0248	0.0054	0.0020	

Table 57: Target filter: Y_VISTA, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Y_VISTA 0.0369	F115	(F090 - F115)	0.4336	-0.0319	0.0047	
Y_VISTA 0.1149	F090	(F070 - F090)	-0.4279	0.0202	0.0271	
Y_VISTA 0.2025	F090	(F070 - F090)	-0.4581	0.0341	0.0167	
Y_VISTA 0.3021	F090	(F070 - F090)	-0.4271	0.0106	0.0156	
Y_VISTA 0.4170	F090	(F070 - F090)	-0.3633	-0.0154	0.0068	
Y_VISTA 0.5519	F090	(F070 - F090)	-0.3630	0.0113	0.0051	
Y_VISTA 0.7142	F090	(F070 - F090)	-0.3507	-0.0298	0.0137	
Y_VISTA 0.9152	F115	(F090 - F115)	0.4362	0.0060	0.0038	
Y_VISTA 1.1746	F115	(F090 - F115)	0.3932	0.0005	0.0160	
Y_VISTA 1.5293	F090	(F070 - F090)	-0.3904	-0.3489	0.0317	
Y_VISTA 2.0582	F115	(F090 - F115)	0.4816	0.1729	0.0184	
Y_VISTA 2.9779	F115	(F115 - F150)	0.3274	-0.0944	0.0165	
Y_VISTA 5.2891	F090	(F070 - F090)	-0.1554	0.0041	0.0060	

Table 58: Target filter: J_VISTA, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA 0.0369	F115	(F090 - F115)	-0.2647	0.0179	0.0049	
J_VISTA 0.1149	F115	(F090 - F115)	-0.4279	0.0202	0.0271	
J_VISTA 0.2025	F115	(F090 - F115)	-0.3641	0.0411	0.0055	
J_VISTA 0.3021	F115	(F090 - F115)	-0.3331	0.0221	0.0122	
Table 59: Target filter: H_VISTA, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.4170	F115	(F090 - F115)	-0.2889	0.0143	0.0113
J_VISTA	0.5519	F115	(F090 - F115)	-0.3030	0.0128	0.0084
J_VISTA	0.7142	F115	(F090 - F115)	-0.2714	-0.0042	0.0050
J_VISTA	0.9152	F115	(F090 - F115)	-0.2441	-0.0100	0.0029
J_VISTA	1.1746	F115	(F090 - F115)	-0.2611	-0.0189	0.0081
J_VISTA	1.5293	F115	(F090 - F115)	-0.2929	0.1712	0.0144
J_VISTA	2.0582	F115	(F090 - F115)	-0.2587	-0.1645	0.0134
J_VISTA	2.9779	F115	(F115 - F150)	-0.2941	0.0881	0.0114
J_VISTA	5.2891	F150	(F150 - F200)	-0.1929	0.0043	0.0020

Table 60: Target filter: Ks_VISTA, Reference facility: JWST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Ks_VISTA	0.0369	F200	(F150 - F200)	-0.1639	0.0879	0.0050
Ks_VISTA	0.1149	F200	(F150 - F200)	-0.1054	0.0889	0.0064
Ks_VISTA	0.2025	F200	(F150 - F200)	-0.2298	0.0499	0.0079
Ks_VISTA	0.3021	F200	(F150 - F200)	-0.3297	0.0063	0.0086
Ks_VISTA	0.4170	F200	(F150 - F200)	-0.2586	-0.0203	0.0043
Ks_VISTA	0.5519	F200	(F150 - F200)	-0.2254	-0.0157	0.0059
Ks_VISTA	0.7142	F200	(F150 - F200)	-0.2829	0.0036	0.0040
Ks_VISTA	0.9152	F200	(F150 - F200)	-0.3328	0.0457	0.0044
Ks_VISTA	1.1746	F200	(F150 - F200)	-0.2537	0.0174	0.0065
Ks_VISTA	1.5293	F200	(F150 - F200)	-0.2502	0.0169	0.0097
Ks_VISTA	2.0582	F200	(F150 - F200)	-0.2027	-0.0048	0.0036
Ks_VISTA	2.9779	F200	(F150 - F200)	-0.1967	0.0442	0.0064
Ks_VISTA	5.2891	F200	(F150 - F200)	-0.4371	0.0109	0.0039

Euclid
Table 61: Target filter: u_SDSS, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS	0.0369 VIS	(VIS - Y)	1.8930	1.1486	0.2098	
u_SDSS	0.1149 VIS	(VIS - Y)	2.4309	0.9321	0.2146	
u_SDSS	0.2025 VIS	(VIS - Y)	3.1629	0.6199	0.1910	
u_SDSS	0.3021 VIS	(VIS - Y)	3.2241	0.5443	0.1941	
u_SDSS	0.4170 VIS	(VIS - Y)	3.0751	0.4865	0.2348	
u_SDSS	0.5519 VIS	(VIS - Y)	2.9139	0.2088	0.2555	
u_SDSS	0.7142 VIS	(VIS - Y)	2.4940	-0.0238	0.2523	
u_SDSS	0.9152 VIS	(VIS - Y)	2.0742	-0.2815	0.2411	
u_SDSS	1.1746 VIS	(VIS - Y)	1.6525	-0.5997	0.2664	
u_SDSS	1.5293 VIS	(VIS - Y)	1.2413	-0.7173	0.2428	
u_SDSS	2.0582 VIS	(VIS - Y)	1.5371	-0.0648	0.2649	
u_SDSS	2.9779 VIS	(VIS - Y)	2.9390	2.0688	0.2068	
u_SDSS	5.2891 VIS	(VIS - Y)	2.8864	4.9942	0.1542	

Table 62: Target filter: g_SDSS, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS	0.0369 VIS	(VIS - Y)	0.9950	0.3138	0.1154	
g_SDSS	0.1149 VIS	(VIS - Y)	1.3859	0.1808	0.1035	
g_SDSS	0.2025 VIS	(VIS - Y)	1.6931	0.1469	0.0554	
g_SDSS	0.3021 VIS	(VIS - Y)	1.5509	0.3219	0.0494	
g_SDSS	0.4170 VIS	(VIS - Y)	1.3247	0.5666	0.0676	
g_SDSS	0.5519 VIS	(VIS - Y)	1.4627	0.4289	0.0833	
g_SDSS	0.7142 VIS	(VIS - Y)	1.5288	0.1862	0.1033	
g_SDSS	0.9152 VIS	(VIS - Y)	1.4408	-0.0936	0.1255	
g_SDSS	1.1746 VIS	(VIS - Y)	1.0698	-0.3400	0.1309	
g_SDSS	1.5293 VIS	(VIS - Y)	0.7440	-0.4359	0.1042	
g_SDSS	2.0582 VIS	(VIS - Y)	0.6668	-0.0688	0.0829	
g_SDSS	2.9779 VIS	(VIS - Y)	1.4684	0.1090	0.0724	
g_SDSS	5.2891 VIS	(VIS - Y)	2.2071	3.7757	0.0934	

Table 63: Target filter: r_SDSS, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369 VIS	(VIS - Y)	0.2580	0.0618	0.0215	
r_SDSS	0.1149 VIS	(VIS - Y)	0.3261	0.0340	0.0234	
r_SDSS	0.2025 VIS	(VIS - Y)	0.3920	0.0243	0.0175	
r_SDSS	0.3021 VIS	(VIS - Y)	0.4110	0.0069	0.0182	
r_SDSS	0.4170 VIS	(VIS - Y)	0.4800	-0.0629	0.0136	
r_SDSS	0.5519 VIS	(VIS - Y)	0.5707	-0.0724	0.0342	
r_SDSS	0.7142 VIS	(VIS - Y)	0.4721	0.1474	0.0286	
r_SDSS	0.9152 VIS	(VIS - Y)	0.4451	0.1917	0.0330	
r_SDSS	1.1746 VIS	(VIS - Y)	0.4733	-0.0851	0.0369	
r_SDSS	1.5293 VIS	(VIS - Y)	0.3567	-0.2168	0.0453	
r_SDSS	2.0582 VIS	(VIS - Y)	0.1943	-0.0269	0.0176	
r_SDSS	2.9779 VIS	(VIS - Y)	0.3310	0.0024	0.0125	
r_SDSS	5.2891 VIS	(VIS - Y)	0.7438	0.0325	0.0120	
Table 64: Target filter: i_SDSS, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	VIS	(VIS - Y)	-0.0771	-0.0683	0.0163
i_SDSS	0.1149	VIS	(VIS - Y)	-0.1269	-0.0402	0.0165
i_SDSS	0.2025	VIS	(VIS - Y)	-0.2012	-0.0137	0.0106
i_SDSS	0.3021	VIS	(VIS - Y)	-0.2298	-0.0082	0.0077
i_SDSS	0.4170	VIS	(VIS - Y)	-0.2340	0.0113	0.0050
i_SDSS	0.5519	VIS	(VIS - Y)	-0.1905	-0.0439	0.0152
i_SDSS	0.7142	VIS	(VIS - Y)	-0.0778	-0.2219	0.0172
i_SDSS	0.9152	VIS	(VIS - Y)	-0.0419	-0.1820	0.0264
i_SDSS	1.1746	VIS	(VIS - Y)	-0.1481	0.1579	0.0129
i_SDSS	1.5293	VIS	(VIS - Y)	-0.0990	0.0496	0.0073
i_SDSS	2.0582	VIS	(VIS - Y)	-0.0578	0.0028	0.0052
i_SDSS	2.9779	VIS	(VIS - Y)	-0.1679	-0.0059	0.0052
i_SDSS	5.2891	VIS	(VIS - Y)	0.0017	-0.2802	0.0076

Table 65: Target filter: z_SDSS, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	Y	(VIS - Y)	0.4607	-0.0732	0.0196
z_SDSS	0.1149	Y	(VIS - Y)	0.4269	-0.0593	0.0239
z_SDSS	0.2025	Y	(VIS - Y)	0.4023	-0.0468	0.0220
z_SDSS	0.3021	Y	(VIS - Y)	0.3592	-0.0088	0.0170
z_SDSS	0.4170	Y	(VIS - Y)	0.3331	0.0020	0.0081
z_SDSS	0.5519	Y	(VIS - Y)	0.3316	-0.0175	0.0062
z_SDSS	0.7142	Y	(VIS - Y)	0.3687	-0.0390	0.0086
z_SDSS	0.9152	Y	(VIS - Y)	0.4118	-0.1342	0.0170
z_SDSS	1.1746	Y	(VIS - Y)	0.4632	-0.2295	0.0276
z_SDSS	1.5293	Y	(VIS - Y)	0.3950	0.2286	0.0219
z_SDSS	2.0582	VIS	(VIS - Y)	-0.4692	0.0547	0.0160
z_SDSS	2.9779	Y	(VIS - Y)	0.4764	-0.0164	0.0091
z_SDSS	5.2891	Y	(VIS - Y)	0.2368	-0.0710	0.0040

Table 66: Target filter: Z_VISTA, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_VISTA	0.0369	VIS	(VIS - Y)	-0.4909	-0.0722	0.0237
Z_VISTA	0.1149	Y	(VIS - Y)	0.4658	-0.0646	0.0249
Z_VISTA	0.2025	Y	(VIS - Y)	0.4438	-0.0517	0.0221
Z_VISTA	0.3021	Y	(VIS - Y)	0.4003	-0.0075	0.0182
Z_VISTA	0.4170	Y	(VIS - Y)	0.3639	0.0123	0.0072
Z_VISTA	0.5519	Y	(VIS - Y)	0.3615	-0.0188	0.0082
Z_VISTA	0.7142	Y	(VIS - Y)	0.4180	-0.0435	0.0091
Z_VISTA	0.9152	Y	(VIS - Y)	0.4511	-0.1510	0.0205
Z_VISTA	1.1746	VIS	(VIS - Y)	-0.4733	-0.2754	0.0360
Z_VISTA	1.5293	Y	(VIS - Y)	0.4402	0.3246	0.0281
Z_VISTA	2.0582	VIS	(VIS - Y)	-0.4105	0.0439	0.0155
Z_VISTA	2.9779	Y	(VIS - Y)	0.4965	-0.0205	0.0110
Z_VISTA	5.2891	Y	(VIS - Y)	0.2368	-0.0691	0.0052
Table 67: Target filter: Y_VISTA, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Y_VISTA	0.0369	Y	(VIS - Y)	0.1048	-0.0365	0.0025
Y_VISTA	0.1149	Y	(VIS - Y)	0.1163	-0.0343	0.0073
Y_VISTA	0.2025	Y	(VIS - Y)	0.0746	0.0001	0.0120
Y_VISTA	0.3021	Y	(VIS - Y)	0.0802	-0.0119	0.0091
Y_VISTA	0.4170	Y	(VIS - Y)	0.0862	-0.0141	0.0064
Y_VISTA	0.5519	Y	(VIS - Y)	0.0710	0.0144	0.0018
Y_VISTA	0.7142	Y	(VIS - Y)	0.0755	-0.0218	0.0034
Y_VISTA	0.9152	Y	(VIS - Y)	0.1015	-0.0237	0.0038
Y_VISTA	1.1746	Y	(VIS - Y)	0.0770	-0.0260	0.0086
Y_VISTA	1.5293	Y	(VIS - Y)	0.1240	-0.0705	0.0202
Y_VISTA	2.0582	Y	(VIS - Y)	0.1296	0.1100	0.0144
Y_VISTA	2.9779	Y	(VIS - Y)	0.1421	-0.0043	0.0034
Y_VISTA	5.2891	Y	(VIS - Y)	0.0980	-0.0350	0.0024

Table 68: Target filter: J_VISTA, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.0369	J	(Blue - J)	0.2642	0.0131	0.0041
J_VISTA	0.1149	J	(Blue - J)	0.3064	0.0015	0.0027
J_VISTA	0.2025	J	(Blue - J)	0.3058	-0.0166	0.0030
J_VISTA	0.3021	Y	(VIS - Y)	-0.2443	0.0322	0.0359
J_VISTA	0.4170	Y	(VIS - Y)	-0.2413	0.0307	0.0283
J_VISTA	0.5519	Y	(VIS - Y)	-0.2641	0.0338	0.0175
J_VISTA	0.7142	Y	(VIS - Y)	-0.2466	0.0222	0.0088
J_VISTA	0.9152	Y	(VIS - Y)	-0.2717	0.0834	0.0136
J_VISTA	1.1746	J	(Blue - J)	0.2838	-0.0026	0.0020
J_VISTA	1.5293	J	(Blue - J)	0.3167	0.0172	0.0057
J_VISTA	2.0582	J	(Blue - J)	0.3798	-0.1505	0.0175
J_VISTA	2.9779	J	(Blue - J)	0.4139	0.0519	0.0087
J_VISTA	5.2891	J	(Blue - J)	0.2551	0.0026	0.0019

Table 69: Target filter: H_VISTA, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
H_VISTA	0.0369	H	(Red - H)	0.3566	-0.0312	0.0044
H_VISTA	0.1149	Red	(Red - H)	-0.4877	-0.0059	0.0051
H_VISTA	0.2025	H	(Red - H)	0.4451	0.0113	0.0029
H_VISTA	0.3021	H	(Red - H)	0.3365	0.0095	0.0021
H_VISTA	0.4170	H	(Red - H)	0.3610	0.0105	0.0028
H_VISTA	0.5519	H	(Red - H)	0.3971	-0.0103	0.0017
H_VISTA	0.7142	H	(Red - H)	0.4506	-0.0222	0.0017
H_VISTA	0.9152	H	(Red - H)	0.4104	-0.0082	0.0040
H_VISTA	1.1746	H	(Red - H)	0.4156	-0.0124	0.0046
H_VISTA	1.5293	H	(Red - H)	0.3716	0.0005	0.0026
H_VISTA	2.0582	H	(Red - H)	0.3576	0.0113	0.0016
H_VISTA	2.9779	H	(Red - H)	0.4237	-0.1030	0.0117
H_VISTA	5.2891	Red	(Red - H)	-0.3445	0.0037	0.0020
Table 70: Target filter: Ks_VISTA, Reference facility: Euclid

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Ks_VISTA	0.0369	H	(Red - H)	-0.8424	0.2095	0.0159
Ks_VISTA	0.1149	H	(Red - H)	-0.8602	0.1538	0.0163
Ks_VISTA	0.2025	Y	(VIS - Y)	-1.0564	0.3985	0.1074
Ks_VISTA	0.3021	Y	(VIS - Y)	-0.9793	0.3207	0.1257
Ks_VISTA	0.4170	Y	(VIS - Y)	-0.9077	0.3065	0.1213
Ks_VISTA	0.5519	Y	(VIS - Y)	-0.9154	0.3447	0.1146
Ks_VISTA	0.7142	Y	(VIS - Y)	-0.8945	0.3884	0.0960
Ks_VISTA	0.9152	Y	(VIS - Y)	-0.9026	0.4397	0.0784
Ks_VISTA	1.1746	Y	(VIS - Y)	-0.8612	0.4364	0.0621
Ks_VISTA	1.5293	Y	(VIS - Y)	-0.9347	0.6271	0.0992
Ks_VISTA	2.6582	H	(Red - H)	-0.9739	-0.0276	0.0050
Ks_VISTA	2.9779	H	(Red - H)	-1.1354	0.2680	0.0201
Ks_VISTA	5.2891	Y	(VIS - Y)	-1.6132	0.7389	0.0358

WFIRST

Table 71: Target filter: u_SDSS, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
u_SDSS	0.0369	R062	(R062 - Z087)	2.6570	0.6463	0.1046
u_SDSS	0.1149	R062	(R062 - Z087)	2.8691	0.5599	0.0946
u_SDSS	0.2025	R062	(R062 - Z087)	3.1221	0.4672	0.1195
u_SDSS	0.3021	R062	(R062 - Z087)	3.1274	0.3830	0.1431
u_SDSS	0.4170	R062	(R062 - Z087)	2.9865	0.2459	0.1929
u_SDSS	0.5519	R062	(R062 - Z087)	2.7556	-0.0477	0.2268
u_SDSS	0.7142	R062	(R062 - Z087)	2.2681	-0.3167	0.2411
u_SDSS	0.9152	R062	(R062 - Z087)	1.9022	-0.9002	0.2128
u_SDSS	1.1746	R062	(R062 - Z087)	1.5195	-0.7464	0.2247
u_SDSS	1.5293	R062	(R062 - Z087)	1.2389	-0.1240	0.1617
u_SDSS	2.0582	R062	(R062 - Z087)	2.3557	0.0955	0.2126
u_SDSS	2.9779	R062	(R062 - Z087)	3.5148	1.9374	0.1755
u_SDSS	5.2891	R062	(R062 - Z087)	2.3631	4.1819	0.1479

Table 72: Target filter: g_SDSS, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
g_SDSS	0.0369	R062	(R062 - Z087)	1.2502	0.0355	0.0519
g_SDSS	0.1149	R062	(R062 - Z087)	1.4210	-0.0143	0.0243
g_SDSS	0.2025	R062	(R062 - Z087)	1.3998	0.0989	0.0432
g_SDSS	0.3021	R062	(R062 - Z087)	1.2328	0.2683	0.0495
g_SDSS	0.4170	R062	(R062 - Z087)	1.0633	0.4483	0.0486
g_SDSS	0.5519	R062	(R062 - Z087)	1.1874	0.2919	0.0622
g_SDSS	0.7142	R062	(R062 - Z087)	1.2316	0.0055	0.0903
g_SDSS	0.9152	R062	(R062 - Z087)	1.1754	-0.5101	0.1015
g_SDSS	1.1746	R062	(R062 - Z087)	0.8297	-0.4067	0.0924
g_SDSS	1.5293	R062	(R062 - Z087)	0.5760	-0.0558	0.0452
g_SDSS	2.0582	R062	(R062 - Z087)	0.8279	0.0023	0.0498
g_SDSS	2.9779	R062	(R062 - Z087)	1.5381	0.0432	0.0540
Table 73: Target filter: r_SDSS, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
r_SDSS	0.0369	R062	(R062 - Z087)	0.0161	-0.0068	0.0020
r_SDSS	0.1149	R062	(R062 - Z087)	0.0205	-0.0059	0.0029
r_SDSS	0.2025	R062	(R062 - Z087)	0.0167	0.0154	0.0053
r_SDSS	0.3021	R062	(R062 - Z087)	0.0515	-0.0190	0.0105
r_SDSS	0.4170	R062	(R062 - Z087)	0.1456	-0.1271	0.0101
r_SDSS	0.5519	R062	(R062 - Z087)	0.2265	-0.1376	0.0267
r_SDSS	0.7142	R062	(R062 - Z087)	0.0995	0.0879	0.0121
r_SDSS	0.9152	R062	(R062 - Z087)	0.0496	0.0786	0.0145
r_SDSS	1.1746	R062	(R062 - Z087)	0.1200	-0.0669	0.0148
r_SDSS	1.5293	R062	(R062 - Z087)	0.0814	-0.0114	0.0077
r_SDSS	2.0582	R062	(R062 - Z087)	0.0013	-0.0049	0.0071
r_SDSS	2.9779	R062	(R062 - Z087)	0.0316	-0.0162	0.0057
r_SDSS	5.2891	R062	(R062 - Z087)	0.3013	-0.2119	0.0073

Table 74: Target filter: i_SDSS, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
i_SDSS	0.0369	Z087	(R062 - Z087)	0.4716	-0.0469	0.0169
i_SDSS	0.1149	Z087	(R062 - Z087)	0.3997	-0.0058	0.0123
i_SDSS	0.2025	Z087	(R062 - Z087)	0.3550	0.0070	0.0033
i_SDSS	0.3021	Z087	(R062 - Z087)	0.3555	-0.0053	0.0032
i_SDSS	0.4170	Z087	(R062 - Z087)	0.3844	-0.0138	0.0047
i_SDSS	0.5519	Z087	(R062 - Z087)	0.4094	-0.0495	0.0144
i_SDSS	0.7142	Z087	(R062 - Z087)	0.4928	-0.2076	0.0170
i_SDSS	0.9152	Z087	(R062 - Z087)	0.4843	-0.1340	0.0291
i_SDSS	1.1746	Z087	(R062 - Z087)	0.3988	0.2500	0.0235
i_SDSS	1.5293	R062	(R062 - Z087)	-0.4902	0.0451	0.0129
i_SDSS	2.0582	R062	(R062 - Z087)	-0.4279	-0.0036	0.0057
i_SDSS	2.9779	Z087	(R062 - Z087)	0.3713	-0.0038	0.0047
i_SDSS	5.2891	R062	(R062 - Z087)	-0.4091	-0.3308	0.0064

Table 75: Target filter: z_SDSS, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
z_SDSS	0.0369	Z087	(R062 - Z087)	-0.1109	0.0172	0.0043
z_SDSS	0.1149	Z087	(R062 - Z087)	-0.0986	0.0076	0.0060
z_SDSS	0.2025	Z087	(R062 - Z087)	-0.0749	-0.0111	0.0017
z_SDSS	0.3021	Z087	(R062 - Z087)	-0.0830	0.0093	0.0014
z_SDSS	0.4170	Z087	(R062 - Z087)	-0.0764	0.0003	0.0018
z_SDSS	0.5519	Z087	(R062 - Z087)	-0.0942	0.0092	0.0020
z_SDSS	0.7142	Z087	(R062 - Z087)	-0.0932	0.0347	0.0064
z_SDSS	0.9152	Z087	(R062 - Z087)	-0.1210	0.0694	0.0091
F_Tar	z	F_Ref	Col	alpha	beta	sigma
--------	------	-------	----------------	--------	-------	--------
z_SDSS	1.1746	Z087	(R062 - Z087)	-0.0555	-0.0887	0.0056
z_SDSS	1.5293	Z087	(R062 - Z087)	-0.0986	-0.0194	0.0066
z_SDSS	2.0582	Z087	(R062 - Z087)	-0.1206	0.0003	0.0031
z_SDSS	2.9779	Z087	(R062 - Z087)	-0.0911	-0.0009	0.0015
z_SDSS	5.2891	Z087	(R062 - Z087)	-0.1384	0.0757	0.0047

Table 76: Target filter: Z_VISTA, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
Z_VISTA	0.0369	Z087	(Z087 - Y106)	0.1217	-0.0170	0.0019
Z_VISTA	0.1149	Z087	(Z087 - Y106)	0.1690	-0.0196	0.0015
Z_VISTA	0.2025	Z087	(Z087 - Y106)	0.1233	0.0033	0.0076
Z_VISTA	0.3021	Y106	(Z087 - Y106)	0.1337	-0.0096	0.0049
Z_VISTA	0.4170	Y106	(Z087 - Y106)	0.1606	-0.0177	0.0046
Z_VISTA	0.5519	Y106	(Z087 - Y106)	0.1124	0.0184	0.0017
Z_VISTA	0.7142	Y106	(Z087 - Y106)	0.1095	-0.0113	0.0020
Z_VISTA	0.9152	Y106	(Z087 - Y106)	0.1511	-0.0012	0.0032
Z_VISTA	1.1746	Y106	(Z087 - Y106)	0.0735	0.0116	0.0096
Z_VISTA	1.5293	Y106	(Z087 - Y106)	0.2079	-0.1268	0.0198
Z_VISTA	2.0582	Y106	(Z087 - Y106)	0.1620	0.0865	0.0100
Z_VISTA	2.9779	Y106	(Y106 - J129)	0.0975	-0.0010	0.0034
Z_VISTA	5.2891	Y106	(Y106 - J129)	0.2005	0.0026	0.0014

Table 77: Target filter: Y_VISTA, Reference facility: WFIRST

F_Tar	z	F_Ref	Col	alpha	beta	sigma
J_VISTA	0.0369	J129	(Y106 - J129)	0.0680	0.0079	0.0035
J_VISTA	0.1149	J129	(Y106 - J129)	0.0974	0.0005	0.0009
J_VISTA	0.2025	J129	(Y106 - J129)	0.0714	-0.0079	0.0018
J_VISTA	0.3021	J129	(Y106 - J129)	0.1336	-0.0204	0.0024
Conclusions

This work offers a hopefully useful set of filter conversion references, and will be regularly modified going forwards as new facilities and filter sets are defined. The main limitations are:
• The physicality of the ProSpect SED processing approach (see Robotham, et al. 2020 for details on the implementation),
• The physicality of the galaxies generated by Shark, where we are limited by the realism of the star formation and metallicity histories generated (see Lagos, et al. 2018 for details on the implementation),
• The accuracy of the filters used, where in reality many filters degrade and change throughput characteristics over time, and the effective throughput is modified by variable water vapour in the atmosphere at the time of any given observation etc.

Users are able to create arbitrary conversions with a larger set of filters through our web tool available at http://transformcalc.icrar.org. Furthermore, users can specify their own filters directly, but in this case it is necessary to use ProSpect directly as per https://rpubs.com/asgr/567881.

Acknowledgements

This document was compiled from a self-generating Rmarkdown file and processed with pandoc. All figures were created with the magicaxis R package (Robotham 2016). Thanks to Sabine Bellstedt for reading over the final document, and Simon Driver and Luke Davies for useful feedback and testing whilst this document was being assembled.

References

Davies, et al. 2018. MNRAS 480: 768.
González-Fernández, et al. 2018. MNRAS 474: 5459.
Lagos, et al. 2018. MNRAS 481: 3573.
Robotham. 2016. ASCL 1604.004.
Robotham, et al. 2020. MNRAS 495: 905.