Natural radioactivity in granites and gneisses of the Opava Mountains (Poland): a comparison between laboratory and in situ measurements

Agnieszka Dżaluk1 · Dariusz Malczewski1 · Jerzy Żaba1 · Maria Dziurowicz1

Received: 13 November 2017 / Published online: 14 February 2018 © The Author(s) 2018. This article is an open access publication

Abstract
The natural radioactivities of five characteristic igneous rocks of the eastern foreland of the Opava Mountains (Eastern Sudetes, Poland), obtained in the laboratory and under in situ conditions, are presented. The activity concentrations of ^{232}Th, ^{238}U, and ^{40}K were measured using an HPGe gamma-ray spectrometry system. The ranges of the activity concentrations of ^{232}Th were 7–71 Bq kg$^{-1}$ in the laboratory and 6–68 Bq kg$^{-1}$ for the in situ measurements. For ^{238}U, the ranges of the activity concentrations were 5–52 Bq kg$^{-1}$ in the laboratory and 9–48 Bq kg$^{-1}$ for the in situ measurements, and for ^{40}K, the ranges were 520–1560 Bq kg$^{-1}$ in the laboratory and 537–1700 Bq kg$^{-1}$ for the in situ measurements. These determined activity concentrations were compared with the average activity concentrations of the radionuclides in similar types of rocks and with data from the Sudetes available in the literature. No significant differences were found between the in situ and laboratory measurements.

Keywords Natural radioactivity · Opava Mountains · Laboratory measurements · In situ measurements

Introduction
The investigated area includes the Opava Mountains, which are the farthest eastern mountain range in the Eastern Sudetes (SW Poland). These mountains run almost latitudinally along the Polish border with the Czech Republic. To the north, the Opava Mountains lie alongside the Głubczyce Plateau and, in the northwest, they border the Paczkowskie Foothills. Only a small part of these mountains is located in Poland, with the rest situated mostly in the Czech Republic. The highest peak (Příčný vrch, 975 m a.s.l.) is located on the Czech side.

The Opava Mountains are well known for their richness in rocks and minerals. This region has numerous valuable and attractive geological and mining heritage sites connected with gold exploitation. This paper presents the first results from laboratory and in situ measurements of the natural radioactivity of samples and outcrops of granites and gneisses from this region. The aim of these measurements is to compare the results with those obtained in situ and with the activities of ^{40}K, ^{232}Th, and ^{238}U in similar types of rocks.

Geological settings and locations of sampling points
The Opava Mountains are characterized by a specific tectonic position. They belong to the western part of the Upper Silesia Block, which together with the Brno Block form the Brunovistulicum structure [1]. The processes that created these mountains were several Variscan deformations caused by collisions of the Bohemian Massif and the Brunovistulicum, metamorphic processes, and overthrustings [2]. The Opava Mountains are composed of rocks of different ages and lithologies. There are five structural stages that run longitudinally [1]. From west to east, the East Sudetic nappe pile includes the Velké Víbrno and Keperník nappes resting on the parautochthonous gneisses of the Desná unit and covered by the allochthonous Devonian volcanosedimentary Víbrno group [3]. The Upper Devonian/Lower Carboniferous Andělská-Hora Formation is the oldest sequence of the Variscan flysch formation. It is
built of dark phyllites, metagreywackes, and subordinately metaconglomerates \[4\]. Only the Horní-Benešov Formation, which is of the Lower Carboniferous age, was not transformed. From the west, it contacts the Andělská-Hora Formation and, from the east, it contacts the Moravice Formation. This formation consists of sandstones, mudshales, and conglomerates \[1\]. The Žulova Massif is the Variscan granitoid intrusion of the Upper Carboniferous age. It occurs within the apophysis at a thickness of approximately 200 m and indicates the existence of acidic volcanism in this area. The Žulova Massif is covered by the gneisses of the Proterozoic Desna Series, and samples of these were collected as well in the present study.

The first sample locations in the Kamienna Góra quarry were chosen on natural outcrops of granite (Fig. 1, point 1) and gneiss (Fig. 1, point 2) belonging to the Žulova Massif. The second sample location was in the closed and flooded Nadziejów quarry (Fig. 1, point 3), where migmatitic gneiss occurs. The next rock sample was measured and collected from the Sławniowice quarry. It consisted of medium- and coarse-grained weathered granite of the Upper Carboniferous age (Fig. 1, point 4). The last measured rock was a paragneiss from the Glucholazy and Mikulice region (Fig. 1, point 5).

Materials and methods

The activity concentrations of the naturally occurring radionuclides were measured using the GX3020 gamma-ray spectrometry workstation. The system is based on a high-purity germanium (HPGe) detector with 32% relative efficiency (Fig. 2). The energy resolutions of the detector were 0.8 at 122 keV and 1.7 at 1330 keV.

In the laboratory measurements, the rock samples were crushed and then measured in Marinelli 450 beakers. Each sample was measured for 48 h. The obtained spectra were analyzed using LabSOCS (Laboratory Sourceless Calibration Software) and the Genie 2000 v. 3.4 software package. The ambient background (48 h measurement of an empty Marinelli 450 beaker) was subtracted from each measurement. The spectrometer energy was calibrated using homogeneously dispersed 241Am, 109Cd, 139Ce, 57Co, 60Co, 137Cs, 113Sn, 85Sr, 88Y, and 203Hg radioisotopes in a

Fig. 1 1 Sandstone and marble (Upper Cretaceous), Žulova Massif (Upper Devonian/Lower Carboniferous, Upper Carboniferous). 2 Granitoid and associated contact phenomena, Horn-Benešov Formation (Lower Carboniferous). 3 Sandstone, mudshale, and conglomerate; Andělská-Hora Formation (Upper Devonian/Lower Carboniferous). 4 Phyllite, metasandstone, crystalline limestone. 5 Greenstone, Vbrna Series (Lower Devonian). 6 Phyllite, graphitic shale, crystalline limestone, and metabasite (Middle Devonian). 7 Quartzite, quartzitic shale, and mica schist; Jesenik Massif. 8 Amphibolite (Lower and Middle Devonian) Desna Series (Proterozoic). 9 Marble II gneiss and biotite schist. 11 Contact zone of the Žulova granitoid intrusion. A geological sketch of the Opava Mountains showing locations of in situ measurements and sample collections. 1 Granite, the Kamienna Góra quarry; 2 gneiss, the Kamienna Góra quarry; 3 migmatitic gneiss, the Nadziejów quarry; 4 weathered granite, the Sławniowice quarry; 5 paragneiss, Glucholazy/Mikulice (after: \[1\])
The activities of the examined radionuclides were calculated from the following gamma transitions (energy in keV): 40K (1460.8); 208Tl (583.1, 860.5, 2614.5); 212Pb (238.6, 300.1); 214Pb (242, 295.2, and 351.9); 214Bi (609.3, 1120.3, and 1764.5); and 228Ac (338.32, 911.6, 964.6, and 969.1).

During the in situ measurements, the detector was mounted about 1 m above the ground and 0.2–0.5 m from the outcrop (Fig. 2). These geometries (Fig. 2) capture a majority of the emitted gamma rays from an area with approximately a 2–5 m radius [5]. The calculated average minimum detectable activity (MDA) for 40K was 2.7 Bq kg$^{-1}$, whereas the value for 214Pb, 214Bi, and 228Ac was about 1 Bq kg$^{-1}$ [6]. The total duration of a single measurement was 2 h, and in situ object counting software (ISOCS) was used for the efficiency calibration. The consistency of the activities calculated for gamma-ray transitions for a given multiline radionuclide (e.g., 208Tl, 214Bi, 214Pb, 228Ac) were checked using a line activity consistency evaluator (LACE) analysis. For all measurements obtained in the laboratory and for the in situ conditions presented here, the activity ratios for the multiline radionuclides were close to unity [7].

Both the LabSOCS and ISOCS procedures require the use of the Geometry Composer in Genie 2000 (v.3). The Geometry Composer parameters that must be specified include the Marinelli beaker and outcrop dimensions, the rock densities and chemical compositions both for laboratory and in situ measurements, and the distance between the rock outcrops and the detector for in situ measurements.
measurements. The final output from the LabSOCS/ISOCS software package is the full-energy efficiency for a given source-detector geometry. The obtained agreement between model and measurement is within 5% for point-like sources and within 10–15% for extended sources [8].

Results and discussion

Laboratory measurements

The results of the gamma-ray activities of the ^{40}K, ^{232}Th, and ^{238}U series are provided in Table 1. The gamma-ray spectra are shown in Fig. 3.

^{40}K

As is shown in Table 1, the lowest activity of ^{40}K was recorded in sample 5 (paragneiss, 520 Bq kg$^{-1}$) from Głuchołazy, while the maximum activity was observed in sample 4 (weathered granite, 1560 Bq kg$^{-1}$). The next highest value, 942 Bq kg$^{-1}$, occurred in sample 1 (granite). The activity of ^{40}K in sample 4 was nearly twice as high as the activity concentration in the non-weathered granite from the Kamienna Góra quarry. This is caused by the large amount of potassium feldspar in the weathered granite from Sławniowice [9]. Intermediate values were noted in sample 2 (gneiss, 645 Bq kg$^{-1}$) and sample 3 (migmatic gneiss, 778 Bq kg$^{-1}$). The activity of ^{40}K averaged over all the samples was 900 Bq kg$^{-1}$, which is lower than the averaged activity, about 1200 Bq kg$^{-1}$, that was reported for typical granite [10, 11] (Fig. 4). This value was only exceeded in sample 4 (weathered granite). Generally, except for the weathered granite, the activity of ^{40}K in the investigated rocks was lower than that measured in similar rocks of the Izera Block (Western Sudetes) [12, 13]. Granite from Kamienna Góra (sample 1) is also characterized by lower ^{40}K activity than in granites from the Bohemian Massif [14], Brazil [15, 16], Caucasus [17], Egypt [18], Yemen [19] and Chinese commercial granites [20]. The rock samples from the Kestanbol granitic plutons located in Turkey show the higher average activity concentrations as well. On the other hand, exceptionally low ^{40}K activity (261 Bq kg$^{-1}$) was recorded in granite from Saudi Arabia [23].

^{40}K activities that were similar to these observed in sample 2 (gneiss) and sample 3 (migmatite gneiss) were reported for the gneisses of the Bohemian Massif [14] and Koprubasi (Turkey) [24]. The recorded ^{40}K activity was definitely higher in the gneisses from Brazil [15, 16]. Paragneiss from Głuchołazy (sample 5) is characterized by lower ^{40}K activity than paragneisses from the Izera Block [13] and South Bohemia [14].

^{232}Th series (^{208}Tl, ^{212}Pb, ^{228}Ac)

The data presented in Table 1 show that all of the rock samples achieve radioactive equilibrium between the progenies in the ^{232}Th series. Since ^{228}Ac is the second radionuclide in the thorium series, the activity concentration of ^{232}Th can be determined based on the ^{228}Ac activity. The highest activity concentration of ^{232}Th was measured in migmatic gneiss from Nadziejów (sample 3, 71 Bq kg$^{-1}$), whereas the lowest activity was found in weathered granite from the Slawniowice quarry (sample 4, 8.7 Bq kg$^{-1}$).

Table 1

Nuclide	Activity (Bq kg$^{-1}$)
^{40}K	
1 Granite	942 ± 17
2 Gneiss	695 ± 15
3 Migmatic gneiss	778 ± 17
4 Weathered granite	1560 ± 34
5 Paragneiss	520 ± 11
^{232}Th series	
^{208}Tl	18.4 ± 0.6
^{212}Pb	55.7 ± 1.2
^{228}Ac	53.4 ± 1.5
^{238}U series	
^{214}Pb	44.4 ± 1.2
^{214}Bi	43.2 ± 1.1
^{226}Ra	43.8 ± 1.6

Branching ratio 36%

*Based on ^{214}Pb and ^{214}Bi activities. Uncertainties were calculated as: $\Delta^{226}\text{Ra} = (\Delta^{214}\text{Pb})^2 + (\Delta^{214}\text{Bi})^2)^{1/2}$.
Values of 51 and 25 Bq kg$^{-1}$ were measured in gneiss from Kamienna Góra (sample 2) and paragneiss from Głuchołazy (sample 5), respectively. The exceptionally low activity of 232Th in sample 4 results from a lack of dark minerals caused by the weathering process. The 232Th activity averaged over all samples was 42 Bq kg$^{-1}$ (Fig. 5). An arithmetic mean of the 232Th activity, excluding sample 4, is 50 Bq kg$^{-1}$. Similar to the 40K activity, both averages are below the mean of 70 Bq kg$^{-1}$ reported for 232Th in typical granite [10]. This value was only achieved in sample 3 (migmatic gneiss) (Fig. 5; Table 1). The average activity of 42 Bq kg$^{-1}$ is the same as that observed in granites and gneisses from the Izera Block obtained using an in situ field method [12, 13]. Similar results, obtained in granite from Kamienna Góra quarry (sample 1, 53 Bq kg$^{-1}$), were reported in the region of the Great Caucasus [17], Spain [25], and Italy [23], whereas the activity of thorium observed in Brazilian [15, 16] and Chinese granites [20] was significantly higher. Low 232Th activities of 8 and 13 Bq kg$^{-1}$ were found for granites located in Saudi Arabia [23] and cista type granite in the Bohemian Massif [14], respectively. These activities are comparable with the value in weathered granite from Sławniowice quarry (sample 4). The activity concentration of 232Th in ortho-gneiss from Kamienna Góra quarry (sample 2, 51 Bq kg$^{-1}$) is comparable with data reported in
the literature [14, 24]. Exceptionally high activities that even exceeded 200–300 Bq kg$^{-1}$ were reported in gneisses from Yemen [19], Brazil [15] and in granites from Turkey [21, 22]. The migmatic gneiss from Nadziejów (sample 3) gave the highest 232Th activity of 71 Bq kg$^{-1}$. Similar values, ranging from 78 to 81 Bq kg$^{-1}$, were observed in migmatic gneisses from Brazil [15], whereas migmatic gneiss from South Bohemia was characterized by a significantly lower thorium activity of about 24 Bq kg$^{-1}$ [14].

The activity concentrations of 238U were estimated assuming radioactive equilibrium in the 238U \rightarrow 226Ra \rightarrow 222Rn \rightarrow 214Pb \rightarrow 214Bi decay chain, which occurs in the vast majority of minerals and rocks [26, 27]. The 238U activity concentration was based on the 226Ra activity concentration, and the 226Ra activity concentration was calculated as the arithmetic mean of the activities of the 214Pb and 214Bi isotopes. The results, which are summarized in Table 1, show that the activity concentrations of 238U varied from \sim 6 Bq kg$^{-1}$ (weathered granite, sample 4) to 52 Bq kg$^{-1}$ (migmatic gneiss, sample 3). Granite (sample 1) and gneiss (sample 2) had activities of 44 and 43 Bq kg$^{-1}$, respectively. A relatively low activity for 238U was noted in paragneiss (sample 5, 16 Bq kg$^{-1}$).

Figure 6 shows an average 238U activity of 32 Bq kg$^{-1}$. Excluding sample 4, the average is 39 Bq kg$^{-1}$. Both of the averages are close to those reported for typical granite, 40 Bq kg$^{-1}$ [10, 11]. However, these averaged values are lower than the arithmetic mean of 57 Bq kg$^{-1}$ calculated from 48 samples of igneous rocks from the Sudetes (without the Opava Mountains) [28] and the arithmetic mean of 58 Bq kg$^{-1}$ calculated for igneous rocks of the Izera Mountains only [12, 13]. These values are also significantly lower than those measured in Turkey [21, 22], where, in the Kaymaz pluton, the average activity concentration of uranium amounted to more than 300 Bq kg$^{-1}$. The activity of 238U for granite from Kamienna Góra (sample 1) was reported to be similar to granites from Mexico [29] and Yemen [19]. The activities measured in the region of the Great Caucasus [17] and Saudi Arabia [23] were lower, but still significantly higher than that in weathered granite from the Sławniowice quarry (sample 4). The uranium activities recorded in granites from the Bohemian Massif [14], Egypt [18], and Brazil [16] were definitely higher (118–204 Bq kg$^{-1}$) than that noted in sample 1. The activity concentration of 238U in gneiss from Kamienna Góra (sample 2, 43 Bq kg$^{-1}$) measured in the Opava Mountains is nearly the same as the average reported in gneisses from the Bohemian Massif, \sim 41 Bq kg$^{-1}$. Slightly higher activities have been
reported in other localities, e.g., in Brazil [16], Yemen [19] and China [20]. Migmatic gneiss (sample 3) showed twice the uranium activity than those noted in Brazil [15] and in the Bohemian Massif [14]. The measured uranium activity in paragneisses (sample 5, 16 Bq kg\(^{-1}\)) is lower than that reported for paragneisses from the Bohemian Massif (21–42 Bq kg\(^{-1}\)) [14, 29].

Estimates of K (%), \(^{232}\)Th (ppm), and \(^{238}\)U (ppm)

Based on the activities given in Table 1, the concentrations of K (%), \(^{232}\)Th (ppm), and \(^{238}\)U (ppm) were calculated (Table 2). The concentration of K ranged from 1.7 wt% (sample 5, paragneiss) to 5.1 wt% (sample 4, weathered granite). The concentration of Th varied from 1.8 ppm in sample 4 (weathered granite) to 17.3 ppm in sample 3 (migmatic gneiss). As with the Th concentration, the lowest U concentration, 0.4 ppm, occurred in sample 4 and the highest concentration, 4.2 ppm, was found in sample 3.

As can be seen in Fig. 7, there is a strong positive correlation between the \(^{238}\)U and \(^{232}\)Th concentrations in the investigated rocks, with a correlation coefficient of 0.99. This strong correlation indicates that the thorium and uranium concentrations diminished proportionally during the weathering process in granite from the Sławniowice quarry (sample 4). Since the Th and U concentrations in the

Table 2 Concentrations of K (%), \(^{232}\)Th (ppm) and \(^{238}\)U (ppm)

Nuclide	Activity (Bq kg\(^{-1}\))				
Sample no.	1 Granite	2 Gneiss	3 Migmatic gneiss	4 Weathered granite	5 Paragneiss
K (%)\(^a\)	3.1 ± 0.1	2.3 ± 0.05	2.6 ± 0.1	5.1 ± 0.1	1.7 ± 0.04
\(^{232}\)Th (ppm)	13.1 ± 0.4	12.6 ± 0.4	17.3 ± 0.5	1.8 ± 0.1	6.2 ± 0.2
\(^{238}\)U (ppm)	3.5 ± 0.1	3.4 ± 0.1	4.2 ± 0.2	0.4 ± 0.05	1.3 ± 0.07

\(^a\)The following conversion factors were used: K (%) × 303.16 = \(^{40}\)K (Bq kg\(^{-1}\)); \(^{232}\)Th (ppm) × 4.07 = \(^{232}\)Th (Bq kg\(^{-1}\)); and \(^{238}\)U (ppm) × 12.36 = \(^{238}\)U (Bq kg\(^{-1}\)).

Table 3 In situ measured activity concentrations of primordial radionuclides at specified locations.

Nuclide	Activity (Bq kg\(^{-1}\))					
Sample no.	1 Granite	2 Gneiss	3 Migmatic gneiss	4 Weathered granite	5 Paragneiss	
Non series	\(^{40}\)K	932 ± 21	700 ± 15	806 ± 17	1700 ± 38	537 ± 12
\(^{232}\)Th series	\(^{208}\)Tm\(^a\)	20.1 ± 0.8	17.1 ± 0.7	25.9 ± 1.1	2.5 ± 0.2	9.5 ± 0.4
	\(^{210}\)Pb	55.9 ± 2.3	47.0 ± 2.2	70.7 ± 2.6	6.4 ± 0.7	26.9 ± 1.1
	\(^{228}\)Ac	56.0 ± 1.7	46.6 ± 1.7	70.6 ± 2.0	7.0 ± 0.6	26.2 ± 1.2
\(^{238}\)U series	\(^{214}\)Pb	35.9 ± 1.6	46.4 ± 1.5	47.9 ± 1.9	8.6 ± 0.2	18.8 ± 0.9
	\(^{214}\)Bi	35.3 ± 1.7	44.7 ± 1.6	48.4 ± 1.7	8.8 ± 0.3	18.7 ± 0.4
	\(^{226}\)Ra\(^b\)	35.6 ± 2.3	45.6 ± 2.2	48.2 ± 2.5	8.7 ± 0.4	18.8 ± 1.0

\(^a\)Branching ratio 36%\(^b\)Based on \(^{214}\)Pb and \(^{214}\)Bi activities. Uncertainties were calculated as: Δ\(^{226}\)Ra = ((Δ\(^{214}\)Pb)\(^2\) + (Δ\(^{214}\)Bi)\(^2\))\(^{1/2}\)
Comparing in situ and laboratory measurements

Preliminary results and a discussion of in situ measurements of four of these rocks were presented in previous work by Dzaluk et al. [30]. After additional measurements, the previous results were slightly modified and the results of activities in paragneiss from Glucholazy (location 5) were added. The resulting in situ measurements in the granites and gneisses of the Opava Mountains are listed in Table 3.

As seen in Fig. 8a–c, the results obtained in situ and in laboratory conditions agree well. The in situ activities of 40K, 232Th, and 238U, averaged over all locations, were 935, 41, and 31 Bq kg$^{-1}$, respectively. The in situ averages for 232Th and 238U are the same, within the level of uncertainty, as those obtained in laboratory measurements. A noticeable difference in the 40K activity of 140 Bq kg$^{-1}$ between the in situ and laboratory measurements only occurred for weathered granite (location and sample 4) (Fig. 8a). For other locations, the calculated average of the absolute differences between the in situ and laboratory measurements $|^{40}$K$_{\text{in situ}} - ^{40}K_{\text{lab}}|$ was 15 Bq kg$^{-1}$. This value is close to the individual uncertainties presented in Tables 1 and 3. Figure 8b shows that the smallest differences between the in situ and laboratory results were observed for the 232Th activities. An average from the absolute differences of $|^{232}$Th$_{\text{in situ}} - ^{232}Th_{\text{lab}}|$ was 1.7 Bq kg$^{-1}$. Similar to the results for potassium, this average is practically the same as the individual uncertainties given in Tables 1 and 3. For gneiss (location and sample 2), the 232Th activity obtained in the laboratory exceeded the activity from the in situ measurement by 4.5 Bq kg$^{-1}$. For 238U, the largest differences between the laboratory and in situ measurements were observed in granite (location and sample 1) and migmatitic gneiss (location and sample 3); these differences were 8.2 and 4.2 Bq kg$^{-1}$, respectively (Fig. 8c). An average of the absolute differences of $|^{238}$U$_{\text{in situ}} - ^{238}U_{\text{lab}}|$ for all the locations and samples was 4 Bq kg$^{-1}$, and when excluding granite, the average was 3.2 Bq kg$^{-1}$.

Conclusions

The results of laboratory and in situ gamma-ray measurements in granites and gneisses in the Opava Mountains are consistent. The highest 40K activity concentration was observed in the granites, whereas the highest 232Th and 238U activities were measured in migmatitic gneiss. The exceptionally low 232Th and 238U activities were measured in weathered granite. The activity concentrations of 40K, 232Th, and 238U in weathered granite are exceptionally low, there are only negative correlations between K and Th and K and U for all of the investigated rocks. Excluding sample 4, the correlation coefficients of K–Th and K–U are 0.74 and 0.81, respectively.
11. Van Schmus WR (1995) Natural radioactivity of the Crust and
10. Eisenbud M, Gesell T (1997) Environmental radioactivity from
The concentrations of 232Th (ppm) and 238U (ppm) showed
its expected correlation.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Żaba J, Ciesielczuk J, Malik K, Strzyżewska-Konieczna S (2005)
Structural and structural evolution of the Devonian and Carbon-
iferous rocks in the Opava Mountains. In: Jureczek J, Buła Z,
Żaba J (eds) Geology and environmental protection of the Upper
Silesia region. LXXVI Scientific Conference of Polish Geological
Society. Polish Geological Institute, Polish Geological society,
Warszawa
2. Schulmann K, Gayer R (2000) A model for a continental accre-
tionary wedge developed by oblique collision: the NE Bohemian
Massif. J Geol Soc 157:401–416
3. Mazur S, Aleksandrowski P, Turniak K, Awdankiewicz M (2007)
Geology, tectonic evolution and Late Paleozoic magmatism of
Sudetes—an overview. In: Kozłowski A, Wiszniewska J (eds)
AM Monograph No. 1: Granitoids in Poland. KNMPAN-WG
UW, Warszawa
4. Kozdriń W (2003) Metabasites from the Polish of the Andelska
Hora formation (Moravo-Silesian Zone): Geochemistry, meta-
morphic history and geotectonic meaning. J Czech Geol Soc
48:82
5. Helfer IK, Miller KM (1998) Calibration factors for Ge detectors
used for field spectrometry. Health Phys 55:15–29
6. Canberra Industries (2004) Genie 2000 3.0 customization tools
manual, Meriden, USA
7. Canberra Industries (2004) Genie 2000 3.0 operations manual,
Meriden, USA
8. Canberra Industries (2004) ISO/LSLABSOCS detector character-
ization. Report ACK#0403379, Meriden, USA
9. Dziedzicowa H, Lorenc M, Wojnar B (1981) Petrographic
study of physical constants. Am Geophys Union, Washington, DC
10. Malczewski D, Dzierowicz M (2015) 222Rn and 220Rn emana-
tions as a function of the absorbed z-doses from select metamict
minerals. Am Miner 100:1378–1385. https://doi.org/10.2138/am-
2015-4917
11. Van Schmus WR (1995) Natural radioactivity of the Crust and
the Mantel. In: Ahrens TJ (ed) Global earth physics: a handbook of
physical constants. Am Geophys Union, Washington, DC
12. Malczewski D, Teper L, Dorda J (2004) Assessment of natural
and anthropogenic radioactivity levels in rocks and soils in the
environs of Świeradów Zdrój in Sudetes, Poland, by in situ
gamma-ray spectrometry. J Environ Radioact 73:233–245.
https://doi.org/10.1016/j.jenvrad.2003.08.010
13. Malczewski D, Sitarek A, Żaba J, Dorda J (2005) Natural
radioactivity of selected crystalline rocks of the Izena Blocks
(Sudetes, SW Poland). Prz Geol 53:237–244
14. Kresl M, Vankova V (1978) Radioactivity and heat production
data from several boreholes in the Bohemian Massif. Studia Geoph.
et Geod 22:165–176
15. Anjos RM, Juri Ayub J, Cid AS, Cardoso R, Lacerda T (2011)
External gamma-ray dose rate and radon concentration in indoor
environments covered with Brazilian granites. J Environ Radioact
102:1055–1061. https://doi.org/10.1016/j.jenvrad.2011.06.001
16. Salas HT, Nasini HA Jr, Mendes JC (2006) Radioactivity dosage
evaluation of Brazilian ornamental granitic rocks based on
chemical data, with mineralogical and lithological characteriza-
tion. Environ Geol 49:520–526. https://doi.org/10.1007/s00245-
005-0066-3
17. Asvárova TA, Abdulaeva AS, Magomedov MA (2012) Natural
radionuclides in rocks and soils of the high-mountain region of
the great caucasus. Eurasian Soil Sci 45:625–637. https://doi.org/
10.1134/S1064229312060026
18. Harb S, Abbady A, El-Kamel AH, Saleh II, Abd El-Mageed AI
(2012) Natural radioactivity and their radiological effects for
different types of rocks from Egypt. Radiat Phys Chem 81:221–225
19. Abd El-mageed AI, El-Kamel AH, Abbady A, Harb S, Youssef
AMM, Saleh II (2011) Assessment of natural and anthropogenic
radioactivity levels in rocks and soils in the environments of
Juban town in Yemen. Radiat Phys Chem 80:710–715. https://
doi.org/10.1016/j.radphyschem.2011.02.025
20. Xinwei L, Lingqing W, Xiaodan JJ (2006) Radiometric analysis
of Chinese comercial granites. J Radioanal Nucl Chem 267:669–673.
https://doi.org/10.1007/s10967-006-0010-1
21. Örgün Y, Altinsoy N, Gültekin AH, Karahan G, Karacik Z (2007)
Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region
(Çanakkale), Western Anatolia, Turkey. Appl Radiat Isotop
65:739–747
22. Örgün Y, Altinsoy N, Gültekin AH, Karahan G, Çelebi N (2005)
Natural radioactivity levels in granitic plutons and groundwaters
in Southeast part of Eksiehir, Turkey. Appl Radiat Isotop
63:267–275
23. Al-Sahel S, Al-Berzan B (2007) Measurements of natural
radioactivity in some kinds of marble and granite used in Riyadh
region. J Nucl Radiat Phys 2:25–36
24. Simek C (2008) Assessment of natural radioactivity in aquifer
medium bearing uranium ores in Koprubasi, Turkey. Environ
Geol 55:1646–1647. https://doi.org/10.1007/s00254-007-1113-z
25. García-Lobón JL, Rey-Moral C, Ayala C (2006) Comprehensive
petrophysics of rocks from the Monesterio Antiform (Ossa
Morena Zone, SW Spain). J Appl Geophys 59:190–204
26. Attendorn HG, Bowen RNC (1997) Radioactive and stable iso-
tope geology. Chapman & Hall, London
27. Malczewski D, Dzierowicz M (2015) 222Rn and 220Rn emana-
tions as a function of the absorbed z-doses from select metamict
minerals. Am Miner 100:1378–1385. https://doi.org/10.2138/am-
2015-4917
28. Przylibski A (2004) Concentration of 226Ra in rocks of the
southern part of Low Silesia (SW Poland). J Environ Radioact
75:171–191
29. Kresl M, Vankova V (1982) A method of reducing the disturbing
effects in gamma-spectrometric measurements of rock radioac-
tivity. Studia Geoph et Geod 26:66–73
30. Dżaluk A, Malczewski D, Żaba J, Dzierowicz M (2014) In situ
measurements of natural radioactivity in selected igneous rocks
of the Opava Mountains region. Contemp Trends Geosci 3:5–13.
https://doi.org/10.2478/ctg-2014-0001