Exon coconversion biases accompanying intron homing: battle of the nucleases

John E. Mueller, Dorie Smith, and Marlene Belfort

Molecular Genetics Program, Wadsworth Center, New York State Department of Health and School of Public Health, State University of New York at Albany, Albany, New York 12201-2002 USA

Intron homing in phage T4 occurs in the context of recombination-dependent replication, by virtue of intron-encoded endonucleolytic activity. After the td intron endonuclease I-TevI cleaves the intronless recipient 23 and 25 nucleotides upstream of the intron insertion site, exonucleolytic degradation is required for recombination to proceed. This resection process results in coconversion of exon sequences flanking the intron. In a genetic system designed to study coconversion of flanking markers, we demonstrate that although there is a bidirectional polarity gradient, coconversion can be highly asymmetric. Furthermore, we show that the coconversion of flanking markers favors exon I sequences, upstream of the I-TevI cleavage site. These data are consistent with the asymmetric features of the homing pathways that have been invoked for intron mobility in phage T4. Moreover, these results are in accord with the finding that once the td homing-site substrate is cleaved, I-TevI remains bound to the downstream cleavage product, protecting against exonucleolytic degradation, and thereby limiting the extent of coconversion into exon II. The results suggest that recombination events are influenced by a competition between the homing endonuclease and exonucleases for sequences downstream of the I-TevI cleavage site, thereby implying a role for the homing endonuclease in the repair process.

[Key Words: Phage T4 td intron; coconversion analysis; exonucleolytic degradation; persistent endonuclease binding; recombination pathways]

Received May 20, 1996; revised version accepted July 22, 1996.

The mobilization of group I introns to cognate intronless alleles is dependent on the activity of site-specific endonucleases encoded within these introns [for review, see Dujon 1989; Lambowitz 1989; Perlman and Butow 1989; Belfort 1990; Mueller et al. 1993; Belfort and Perlman 1995]. Double-strand-break (DSB) formation in an intronless gene generates DNA ends that invade homologous exon sequences of an intron-containing allele and prime DNA repair synthesis. These events result in intron inheritance by the recipient allele, a process termed intron homing. Coconversion of flanking exon sequences often accompanies intron homing. Exon coconversion is attributable to exonucleolytic degradation of the cleaved recipient, and possibly also to branch migration during recombination.

In phage T4, the td intron-encoded endonuclease, I-TevI, cleaves the recipient allele 23 and 25 nucleotides upstream of the intron insertion site (Bell-Pedersen et al. 1990; Chu et al. 1990). The eccentric cleavage by I-TevI requires both 5'-3' and 3'-5' exonuclease activities to expose exon II sequences for strand invasion and ensure precise intron insertion [Clyman and Belfort 1992]. This is consistent with 100% coconversion of polymorphic markers between the cleavage site and the intron insertion site, as well as the observed bidirectional gradient of coconversion into distal sequences (Bell-Pedersen et al. 1989).

Functional studies on intron mobility in a phage T4 system indicated that once the recipient allele is cleaved, homing occurs in the context of recombination-dependent DNA replication (George and Kreuzer 1996; Mueller et al. 1996). Specific replication and recombination activities required for intron homing were partially consistent with utilization of the DSB repair (DSBR) pathway to effect intron inheritance. However, the ambiguous requirement for Holliday junction resolvases and the under-representation of crossover recombination products suggested that intron homing occurs via multiple pathways. The synthesis-dependent strand annealing (SDSA) pathway has been invoked as a plausible adjunct to DSBR. Accordingly, Holliday junction intermediates are not formed; therefore, the need for resolvase activity is obviated, and crossover products are not generated [Mueller et al. 1996]. Additionally, the extensive chromosome replication (ECR) pathway has been invoked to describe the repair of DSBs in a unimolecular plasmid-based system during phage T4 infection (George and Kreuzer 1996).

Although no direct role for homing endonucleases in the recombination processes has been demonstrated,
Results

Intron homing is associated with asymmetric coconversion of flanking markers

To explore the relationship between the frequency and extent of coconversion in the two exons, we exploited the ability of phage T4 to act as a transducing agent (Wilson et al. 1979; Kreuzer and Alberts 1986) and package intron-recipient plasmids following infection by a phage T4 intron donor (Fig. 1; Clyman and Belfort 1992). Restriction site polymorphisms created between donor and recipient were used to examine the coconversion of exon markers. Single homing events from 52 independent infections were assayed by restriction analysis, and coconversion was determined by loss of restriction sites in the recombinant product.

The data indicate that the transfer of flanking markers is directly related to the distance separating the marker and the I-TevI cleavage site (Fig. 2A), in agreement with previous studies (Bell-Pedersen et al. 1989). However, there were three unexpected findings. First, the frequency of coconversion of exon I markers was greater than that of exon II markers at equivalent distances, as reflected by a shift between the two frequency curves (Fig. 2A). Second, at least as many of the homing reactions resulted in grossly asymmetric transfer of the polymorphic sites as in symmetric coconversion (Fig. 2B). Of 22 individual mobility events that could be classified with confidence regarding coconversion bias (Fig. 2, legend), 13 had coconversion tracts on one side of the DSB that were at least five times longer than coconversion tracts on the opposite side. This compared with nine symmetric events displaying less than a twofold bias.

Third, among the asymmetric events, coconversion into exon I [10 of 13 events] dominated over that into exon II [3 of 13 events] (Fig. 2B), in agreement with the general tendency of marker coconversion favoring exon I (Fig. 2A).

Homing endonuclease I-TevI remains bound to downstream cleavage product

The limited coconversion of exon II sequences (Fig. 2) suggested that I-TevI remains bound to its downstream cleavage product and protects exon II from nucleolytic degradation. This idea was reinforced by the fact that I-TevI makes primary contacts with its DNA substrate at sequences flanking the intron insertion site, downstream of the I-TevI cleavage site (Fig. 3A) (Bell-Pedersen et al. 1991; Bryk et al. 1993). To test the hypothesis that I-TevI remains bound to the DNA after cleavage, we performed electrophoretic analyses to examine the interaction of the endonuclease with upstream and downstream DNA sequences.
cleavage products. Upon incubation with its DNA substrate under Mg²⁺-plus cleavage conditions, I-TevI interaction with the upstream cleavage product was not detectable after cleavage was complete (Fig. 3B, lanes 1,2). In contrast, I-TevI remained bound to the downstream cleavage product (Fig. 3B, lanes 5,6) that contains the primary binding site for the endonuclease (Fig. 3A). Gel mobility-shift analyses were also performed with purified cleavage products. Again, the results indicate that the downstream cleavage product contains the necessary recognition signals to bind the endonuclease, whereas the upstream cleavage product does not (Fig. 3B, cf. lanes 7 and 8 with lanes 3 and 4). Thus, not only does I-TevI remain associated with one of its products, but it has the potential to bind the downstream product independently.

To further examine interactions with I-TevI, incubation was performed in the absence of Mg²⁺ under conditions in which the enzyme can bind, but not cleave, its substrate. Under such conditions, the full-length substrate forms two complexes with I-TevI in a gel mobility-shift assay (Fig. 3C, lane 2, Us and Up), as observed previously by Bryk et al. (1995) and Mueller et al. (1995), whereas the downstream cleavage product forms a single complex (Fig. 3C, lane 4). When limiting quantities of

Figure 2. Coconversion analysis. (A) Quantitative analyses of combined coconversion events. The frequency of coconversion, determined by the loss of a restriction site in the recombinant product, was plotted as a function of the distance (base pairs) between the I-TevI cleavage site (CS) and the restriction site. (●) Exon I; (○) exon II. Restriction sites a–h correspond to those in Fig 1 and 2B and are listed in the legend to Fig 1. (B) Quantitative analyses of individual coconversion events. Map of eight polymorphic restriction endonuclease sites indicates distances from I-TevI cleavage site. Coconversion tracts (black bars) for 52 independent transductants were plotted. Three recombinants exhibited no coconversion of markers. When progeny of individual transductants were examined by restriction analysis, all exhibited identical coconversion profiles to the parental transductant indicating that the parental transductant represented a single coconversion event. Symmetric events, where coconversion on the two sides varied by less than twofold, are marked S (nine total), whereas asymmetric events, where coconversion on the two sides varied by greater than fivefold are marked A (13 total). The other 30 events (N) were not classified because values fell between these ranges or because coconversion tracts were too short.

Figure 3. I-TevI binding to its cleavage product. (A) Schematic representation of DNA substrate and cleavage products. (Solid arrowheads and CS) I-TevI cleavage site; (open arrowhead and IS) intron insertion site. Shading represents I-TevI, with the outlined region defining interaction of the DNA-binding domain of I-TevI with the primary binding site on the DNA (adapted from Bryk et al. 1995; Mueller et al. 1995). (S) intact 304-bp substrate. Pu and PD, 152-bp upstream- and downstream-cleavage products, respectively. (B) Electrophoretic analysis of I-TevI:td homing site interaction in the presence of Mg²⁺. DNA fragments S, Pu or PD were incubated in the absence (–) or presence (+) of I-TevI and separated on 8% polyacrylamide gels. Other labels as in A. (C) Mobility-shift analysis of intact substrate and downstream-cleavage product in the absence of Mg²⁺. Us and Up, catalytically active I-TevI-DNA complexes (Bryk et al. 1995).
I-TevI were incubated with equimolar amounts of an intact td homing-site fragment and its respective downstream product, the relative amount of binding by the endonuclease for each species was comparable to that amount when only a single substrate was used in the analysis. Thus, 58% of the DNA was bound by I-TevI when the intact td homing site served as substrate (Fig. 3C, lane 2); and in the mixing experiment, 55% of the intact homing site was bound by the endonuclease (Fig. 3C, lane 6). Likewise, when the cleavage product was the sole substrate in the analysis, 49% of the downstream product was bound by I-TevI (Fig. 3C, lane 4); and in the mixing experiment, 50% of the downstream product was bound (Fig. 3C, lane 6). These data indicate that I-TevI has comparable binding affinities for the intact td homing site and the downstream cleavage product and are in accord with the ensuing intron-mobility event being influenced by the delayed release of I-TevI from the downstream cleavage product.

The effect of I-TevI binding on exonucleolytic degradation

To examine the effect of the delayed release of I-TevI from downstream sequences on nucleolytic activity, degradation analyses were performed on recipient plasmid that had been incubated with I-TevI and T4-infected cell extracts. Experiments were designed such that degradation into sequences upstream and downstream of the I-TevI cleavage site were monitored from the same cleaved substrate and to the same distance into each exon on both strands, as defined by the primer binding sites (see Materials and methods and schematic representations in Figs. 4 and 5). To examine 5’−3’ degradation, quantitative primer-extension analyses were performed by use of primers d and i specific to exon I and exon II sequences, respectively (Fig. 4A). Each primer generated the expected 152-nucleotide run-off fragment from the I-TevI-cleaved recipient plasmid (Fig. 4B, inset, 0 min). When the plasmid was incubated with I-TevI (derivative H40Y, see Materials and Methods) and T4-infected cell extracts prior to analysis, nuclease activity was manifest by a reduction in intensity of the 152-nucleotide band (Fig. 4B, 5–30 min). Consistent with the protective effect of I-TevI, degradation into exon II sequences was significantly reduced compared with that into exon I over 30 min incubation (Fig. 4B). When I-TevI was not included in the incubation, degradation of the I-TevI-cleaved substrate was equivalent in both exons (data not shown).

To corroborate these results and to facilitate eventual examination of 3’−5’ degradation, hybridization analysis was performed by use of primers d and i as probes (Fig. 4C). In a time-course analysis over 20 min, degradation into exon I was again more rapid and affected a larger fraction of molecules than degradation into exon II.

Next, both 5’−3’ and 3’−5’ exonuclease degradation were examined at precise and equivalent distances into the two exons, as defined by multiple primer binding sites (Fig. 5A). Representative data from a nuclease activity analysis at the 20 min timepoint are displayed graphically in Figure 5B. Both 5’−3’ and 3’−5’ degradation of exon I were more extensive than that of exon II, and furthermore, this degradation bias exhibited distance-dependence, being more clearly apparent proximal to the cleavage site than at distal sequences (Fig. 5B cf. exon I and exon II at distances of 10 to 140 nucleotides versus 270 nucleotides). These data are in accord with the in vivo coconversion analysis in which the disparity in frequencies between the two exons was also more dramatic for markers proximal to the cleavage site than
Figure 5. Distance-dependence of 5′-3′ and 3′-5′ exonucleolytic degradation into exon sequences. [A] Schematic of hybridization probes. Primers a–e and f–j [open arrowheads] were used to measure 5′-3′ degradation [open arrows] into exon I and exon II, respectively. Primers k–o and p–t [solid arrowheads] were used to examine 3′-5′ degradation [solid arrows] into exon I and exon II, respectively. For precise primer coordinates, see Materials and Methods. [B] Distance-dependence of nucleolytic degradation. Shaded bar, exon I, solid bar, exon II. Intensities of quantified dot blots for 20-min incubations relative to 0-min incubations were plotted as a function of approximate distance (nt) of probe from I-TevI cleavage site. Analyses were performed at least two times for each distance with degradation profiles exhibiting similar trends. Probes for each hybridization are indicated above bars.

for distal markers [Fig. 2A]. Together, the results indicate that the interaction of I-TevI with the downstream cleavage product protects exon II sequences from both 5′-3′ and 3′-5′ exonucleolytic degradation, in accord with the genetic data demonstrating limited coconversion into this exon.

Discussion

Coconversion biases were manifest in several different ways when exon marker coinheritance with the intron was measured in our transduction assay. First, on average, coconversion of markers occurred with greater frequency in exon I than in exon II [Fig. 2A]. Second, for independent events, highly asymmetric coconversion tracts were as frequent as symmetric events in the two exons [Fig. 2B]. Third, the lengthy asymmetric events into exon I outnumbered those into exon II by about 3:1 [Fig. 2B]. The disparity in coconversion frequency in the two exons, with more limited coconversion into exon II, was viewed in the context of I-TevI remaining bound to its downstream cleavage product [Fig. 3]. The data indicate that sequences downstream of the I-TevI cleavage site, which include the primary binding site for theendonuclease [Bell-Pedersen et al. 1991; Bryk et al. 1993], are initially guarded from nucleolytic processing into exon II by I-TevI binding [Figs. 4 and 5]. Under such circumstances, exonucleolytic degradation of downstream sequences, which is required for homing and coconversion into exon II, is presumed to reflect competition for binding between the mobility endonuclease and degradative exonuclease(s) [see below].

In accord with the observed exon degradation biases are experiments in which there is heterology between intron donor and recipient, where there is a demand for extensive resection of the cleaved recipient before homologous sequences are reached [Parker et al. 1996]. In such cases, degradation of exon I sequences upstream of the I-TevI cleavage site was favored over degradation of downstream sequences. Thus, homing frequencies were 25% higher when sequence heterology between donor and recipient existed on the exon I side, than on the exon II side of the I-TevI cleavage site. The protective effect of persistent I-TevI binding is thus manifest in vivo under very different genetic circumstances.

The combination of symmetric and asymmetric marker coconversion events may be viewed in terms of multiple pathways being utilized for intron homing [Mueller et al. 1996; George and Kreuzer 1996]. Although the intermolecular nature of our plasmid-based assay does not allow us to evaluate our results in the context of the ECR pathway, asymmetric coconversion of flanking markers over single events could be envisaged for either the DSBR pathway or SDSA pathway for intron mobility. An underlying assumption in the following arguments is that association with donor sequences protects the recipient ends from nucleolytic degradation [White and Haber 1990; Sweetser et al. 1994]. The exon sequences involved in strand invasion would thereby be afforded protection at the onset of repair synthesis, whereas the noninvading exon would be subject to exonucleolytic degradation until it became associated with complementary template sequences for repair synthesis. It could be argued, however, that the asymmetry would be exaggerated for the SDSA pathway because of the way in which the noninvading strand initiates repair synthesis [Fig. 6]. A major difference between the two pathways lies in the origin of the template for repair synthesis of the noninvading strand. For DSBR, the donor allele serves as template for repair synthesis [Fig. 6A, stage 5], whereas for SDSA it is the recipient allele [Fig. 6A, stage 6']. Thus, during DSBR, repair synthesis of the noninvading strand of the recipient depends on sequences at the leading edge of the displaced D-loop of the donor [Fig. 6A,B, stage 5]. In contrast, for SDSA, it is the newly synthesized strand, released from the trailing edge of the replication bubble, that serves as template for repair synthesis of the noninvading strand [Fig. 6A, stage 6']. Therefore, during SDSA, the size of the replication bubble influences the availability of repair template [Fig. 6B] and, consequently, the extent of degradation of the exposed, noninvading strand.
Coconversion biases and intron homing

In the absence of extensive exonucleolytic degradation, the formation of heteroduplex DNA resulting from strand-invasion and branch-migration events could account for the observed coconversion of polymorphic markers. Interestingly, in vivo and in vitro studies have demonstrated that repair tracts in a phage T4 system are locally confined to the mismatch and neighboring sequences (Kleff and Kemper 1988; Shcherbakov and Plugina 1991; Solaro et al. 1993). Therefore, if heteroduplex DNA resulting from branch migration is repaired during infection, one would predict discontinuities in coconversion tracts. We have observed no such discontinuities in our analyses, suggesting that exonucleolytic degradation is the major contributor to coconversion (Fig. 2B; data not shown).

Considering that I-TevI binds the downstream cleavage product [Fig. 3B,C] and appears to protect exon II sequences from degradation (Figs. 4 and 5), one must address the fact that resection of sequences between the I-TevI cleavage site and intron insertion site is necessary to ensure precise homing. The way in which I-TevI contacts its substrate suggests a means for exonucleases to access the downstream cleavage product even in the presence of the endonuclease [Fig. 6A; stage 1] [Bryk et al. 1993, 1995; Mueller et al. 1995]. Although I-TevI interacts with two distinct regions of the intronless td gene, stretching from the intron insertion site to the cleavage site [Fig. 3A], primary contacts made by the endonuclease are limited to 6 nucleotides upstream of the intron insertion site [Bryk et al. 1993]. Therefore, nucleolytic degradation from the cleavage site toward the insertion site could begin even in the presence of bound I-TevI. While I-TevI is likely to stall the resection enzyme[s], degradation into exon II would ensue once I-TevI became displaced from its binding site. In light of these observations, the conundrum that exon II sequences need to be exposed for precise homing to occur, yet I-TevI binding protects these sequences from degradation, can be explained by a competition between I-TevI and the degradative exonucleases for the downstream cleavage product.

From the foregoing it would appear that asymmetric coconversion of exon markers during T4 homing is largely attributable to nucleolytic degradation, which might be influenced by both features of the repair pathway and the persistent binding of I-TevI. Protection from degradation might be achieved by early strand invasion on the one hand, and/or by I-TevI binding on the other. Given the observed asymmetry of coconversion, which is biased toward exon I sequences, one is tempted to ask whether I-TevI merely plays a role in impeding nucleolytic degradation of exon II sequences or whether the endonuclease is further involved in homing. Recombination might be initiated by the endonuclease delivering the downstream sequences to the intron donor thereby stimulating strand invasion, or by recruiting proteins that potentiate homing.

Materials and methods

DNA oligonucleotides

Primers used for coconversion analyses are as follows: W340, 5'-GTGTAATTGGCGGGCCTGCTCTGTTATAGC-3'
and W341, 5'-CGCAGCAGCCTTAATGACAATAGTCTG-3'. Probes and primers used for nuclease assays (Fig. 4 and 5) are as follows, with the distance between the center of each primer (a-t) and the distance between the center of each primer and W341, 5'-CGCAGCAGCCTTAATGACAATAGTCTG-3'.

(a-t) and the probes and primers used for nuclease assays (Fig. 4 and 5) are as nucleotides); (c)=W562, 5'-CCAGCTGAACTTAAATATATGATGGC-3' (85 nucleotides); (d) = W311, 5'-TATTGATCGTATTAACAGTCTGGGATG-3' (270 nucleotides); (f)=W608, 5'-TGGATTTGCAGTGGTATCAAC-3' (11 nucleotides); (g) = W612, 5'-GCATATGACGCAATATTAAAC-3' (41 nucleotides); (h) = W565, 5'-CCCTTGAATAGATTACACATCTTCCAGGC-3' (83 nucleotides); (i)=W605, 5'-TGGATTTGCAGTGGTATCAAC-3' (11 nucleotides); (j) = W553, 5'-GGCCTAAAGATTTCGTT-3' (276 nucleotides). Progeny phage were then infected into Su" host Escherichia coli B and the cells grown on tetracycline-containing plates. Single isolated Tet R transductants from 52 independent plasmid pACYC184tdAiVRS (Tet R) were infected with T4K10 phage (Selick et al. 1988) at an moi of 6.0. Infection proceeded for 17 min, cells were collected by centrifugation and stored at -80°C. Cell pellets were resuspended in 0.01 of the original culture volume in 50 mM Tris-HCl at pH 8.0, 25% sucrose and incubated with 0.2 mg/ml lysozyme for 45 min at 4°C. Extracts were brought to a final concentration of 5% Triton X-100 (Sigma, St. Louis, MO) and incubated for 60 min at 4°C. Debris was removed by centrifugation at 30,000g for 60 min at 4°C. The supernatant was brought to a final concentration of 2.5% streptomycin sulfate (Sigma, St. Louis, MO), stirred gently for 60 min at 0°C-4°C and nucleic acids were removed by centrifugation at 30,000g for 30 min at 4°C. Ammonium sulfate (GIBCO-BRL, Gaithersburg, MD) was added slowly to the supernatant to a final concentration of 30,000g for 30 min at 4°C. Proteins were precipitated by centrifugation at 30,000g for 30 min at 4°C, resuspended in 25 mM Tris-HCl at pH 8.0, 1.2 mM EDTA, 1 mM β-mercaptoethanol, 100 mM NaCl and dialyzed against the same buffer at 4°C. Extracts were quick-frozen in liquid nitrogen as 0.1 ml aliquots and stored at -80°C.

Nuclease activity assays

I-TevI-cleaved pBSdAIn substrate (250 ng) was incubated with 5 units of purified I-TevI (H40Y) and 5 μl of extract from T4-infected cells for 5–30 min at 37°C in 50 mM Tris-HCl at pH 8.0, 10 mM MgCl2. The I-TevI (H40Y) derivative binds and cleaves the td homing site with wild-type fidelity, yet exhibits reduced catalytic activity (M. Bryk, D. Smith, and J.E. Mueller, unpubl., V. Derbshire, J.C. Kowalski, J.T. Dansereaux, C.R. Hauer, and M. Belfort, in prep.). Thus, the enzyme is easily overexpressed and purified allowing stoichiometric amounts of I-TevI to be used in the nuclease assay. Reactions were stopped by phenol extraction and the DNA precipitated with ethanol. Quantitative primer-extension assays were performed by modification of the procedures of Singer-Sam and Riggs (1993) to monitor 5'-3' nuclease activity. Samples were subjected to primer extension with Sequenase 1.0 (USB, Amersham Life Sciences, Cleveland, Ohio) in the presence of [α-32P]dATP, as suggested by the manufacturer, without the addition of ddNTPs. Half of the primer-extension aliquot was analyzed with primer d to examine degradation upstream of the I-TevI cleavage site, while the other half was analyzed with primer i to examine downstream sequences. Primer-extension products were analyzed on 6% denaturing polyacrylamide gels [Mueller et al. (1995)] with a Molecular Dy-
Coconversion biases and intron homing

Chu, F.K., G. Maley, J. Pedersen-Lane, A.-M. Wang, and F. Maley. 1990. Characterization of the restriction site of a prokaryotic intron-encoded endonuclease. Proc. Natl. Acad. Sci. 87: 3574–3578.

Clyman, J. and M. Belfort. 1992. Trans and cis requirements for intron mobility in a prokaryotic system. Genes & Dev. 6: 1269–1279.

Dujon, B. 1989. Group I introns as mobile genetic elements: Facts and mechanistic speculations—a review. Gene 82: 91–114.

George, J.W. and K.N. Kreuzer. 1996. Repair of double-strand breaks in bacteriophage T4: Break-stimulated gene conversion in a coupled repair/repllication reaction. Genetics 143: 1507–1520.

Kleff, K. and B. Kemper. 1988. Initiation of heteroduplex-loop repair by T4-encoded endonuclease VII in vitro. EMBO J. 7: 1527–1535.

Kreuzer, K.N. and B.M. Alberts. 1986. Characterization of a defective phage system for the analysis of bacteriophage T4 DNA replication origins. J. Mol. Biol. 188: 185–198.

Lambowitz, A.M. 1989. Infectious introns. Cell 56: 323–326.

Loizos, N., G.H. Silva, and M. Belfort. 1996. The intron-encoded endonuclease I-TevI binds across the minor groove and induces two distinct conformational changes in its DNA substrate. J. Mol. Biol. 255: 412–424.

Morrison, C.F., L.A. Moran, and B.M. Alberts. 1979. Purification of gene 41 protein of bacteriophage T4. J. Biol. Chem. 254: 6797–6802.

Mueller, J.E., M. Bryk, N. Loizos, and M. Belfort. 1993. Homing endonucleases. In Nucleases (ed. S.M. Linn, R.S. Lloyd, and R.J. Roberts), pp. 111–143. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Mueller, J.E., D. Smith, M. Bryk, and M. Belfort. 1995. Intron-encoded endonuclease I-TevI binds as a monomer to effect sequential cleavage via conformational changes in the td homing site. EMBO J. 14: 5724–5735.

Mueller, J.E., J. Clyman, Y. Huang, M.M. Parker, and M. Belfort. 1996. Intron mobility in phage T4 occurs in the context of recombination-dependent DNA replication by multiple pathways. Genes & Dev. 10: 351–364.

Parker, M.M., D.A. Court, K. Freiter, and M. Belfort. 1996. Homology requirements for double-strand break-mediated recombination in a phage lambda-td intron model system. Genetics 143: 1057–1068.

Perlman, P.S. and R.A. Butow. 1989. Mobile introns and intron-encoded proteins. Science 246: 1106–1109.

Perrin, A., M. Buckle, and B. Dujon. 1993. Asymmetrical recognition and activity of the I-SceI endonuclease on its site and on intron–exon junctions. EMBO J. 12: 2939–2947.

Plessis, A., A. Perrin, J.E. Haber, and B. Dujon. 1992. Site-specific recombination determined by I-Sce, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130: 451–460.

Samboj, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning. A laboratory manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Selick, H.E., K.N. Kreuzer, and B.M. Alberts. 1988. The bacteriophage T4 insertion/substitution vector system. A method for introducing site-specific mutations into the virus chromosome. I. Biol. Chem. 263: 11336–11347.

Shcherbakov, V.P. and L.A. Pluggina. 1991. Marker-dependent recombination in T4 bacteriophage. III. Structural prerequisites for marker discrimination. Genetics 128: 673–685.

Singer-Sam, J. and A.D. Riggs. 1993. Quantitative analysis of messenger RNA levels: Reverse transcription-polymerase chain reaction single nucleotide primer extension assay.

Acknowledgments

We acknowledge Deb Court and Joe Kowalski for generating the polymorphic substrates used in the coconversion analysis. We thank past and present members of the laboratory for insightful discussions and Mary Bryk, Vicki Derbyshire, Joyce Huang, and Monica Parker for critical comments on the manuscript. We are especially grateful to Maryellen Carl and Maureen Belisle for preparation of the manuscript and illustrations. This work has been supported by grants GM39422 and GM44844 to M.B. and GM15454 to J.E.M. from the National Institutes of Health.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked ‘advertisement’ in accordance with 18 USC section 1734 solely to indicate this fact.

References

Belfort, M. 1990. Phage T4 introns: Self-splicing and mobility. Annu. Rev. Genet. 24: 363–385.

Belfort, M. and P.S. Perlman. 1995. Mechanisms of intron mobility. J. Biol. Chem. 270: 30237–30240.

Bell-Pedersen, D., S.M. Quirk, M. Aubrey, and M. Belfort. 1989. A site-specific endonuclease and co-conversion of flanking exons associated with the mobile td intron of phage T4. Gene 82: 119–126.

Bell-Pedersen, D., S. Quirk, J. Clyman, and M. Belfort. 1990. Intron mobility in phage T4 is dependent upon a distinctive class of endonucleases and independent of DNA sequences encoding the intron core: Mechanistic and evolutionary implications. Nucleic Acids Res. 18: 3763–3770.

Bell-Pedersen, D., S.M. Quirk, M. Bryk, and M. Belfort. 1991. I-TevI, the endonuclease encoded by the mobile td intron, recognizes binding and cleavage domains on its DNA target. Proc. Natl. Acad. Sci. 88: 7719–7723.

Bryk, M., S.M. Quirk, J.E. Mueller, N. Loizos, C. Lawrence, and M. Belfort. 1993. The td intron endonuclease makes extensive sequence tolerant contacts across the minor groove of its DNA target. EMBO J. 12: 2141–2149.

Bryk, M., M. Belisle, J.E. Mueller, and M. Belfort. 1995. Selection of a remote cleavage site by I-TevI, the td intron-encoded endonuclease. J. Mol. Biol. 247: 197–210.
Mueller et al.

Methods Enzymol. 225: 344–351.
Solaro, P.C., K. Birkenkamp, P. Pfeiffer, and B. Kemper. 1993. Endonuclease VII of phage T4 triggers mismatch correction in vitro. J. Mol. Biol. 230: 868–877.
Sweetser, D.B., H. Hough, J.F. Whelden, M. Arbuckle, and J.A. Nickoloff. 1994. Fine-resolution mapping of spontaneous and double-strand break-induced gene conversion tracts in Saccharomyces cerevisiae reveals reversible mitotic conversion polarity. Mol. Cell. Biol. 14: 3863–3875.
White, C.I. and J.E. Haber. 1990. Intermediates of recombination during mating type switching in Saccharomyces cerevisiae. EMBO J. 9: 663–673.
Wilson, G.G., K.K.Y. Young, and G.J. Edlin. 1979. High-frequency generalised transduction by bacteriophage T4. Nature 280: 80–81.
Exon coconversion biases accompanying intron homing: battle of the nucleases.

J E Mueller, D Smith and M Belfort

Genes Dev. 1996, 10:
Access the most recent version at doi:10.1101/gad.10.17.2158

This article cites 29 articles, 13 of which can be accessed free at:
http://genesdev.cshlp.org/content/10/17/2158.full.html#ref-list-1

License

Email Alerting Service
Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.