Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Virtual pedagogical strategies and HESI student outcomes in response to COVID-19

Elizabeth Moxley a,b,∗, Anitha Saravanan a,b, Desale Habtezgi c, Larinda Dixon a, Janice Miller a, Maureen Waller a

a College of DuPage, 425 Fawell Blvd., Glen Ellyn, IL 60137, United States of America
b Northern Illinois University, United States of America
c DePaul University, Department of Mathematical Sciences, United States of America

ARTICLE INFO

Keywords:
HESI
Pedagogy
Virtual
Traditional
COVID-19
Associate degree
Concept-based
Curriculum

ABSTRACT

Background: To maintain curricular integrity in response to COVID-19, nurse educators are increasingly required to transition from traditional (face-to-face) to virtual pedagogy.

Objectives: The purpose of this analysis was to compare the HESI scores based on a traditional pedagogy with the HESI scores following implementation of virtual pedagogy during Spring 2020.

Methods: Student (n = 115; 81% female; mean age = 25.71 years) HESI scores were compared after each eight-week session using the Mann Whitney U test, permutation test and Wilcoxon rank test. Logistic regression was used to identify students achieving at least 850. Chi-square test was used to determine the relationship between pedagogy and students meeting 850 HESI scores. Fall 2019 Exit HESI scores were also compared with Spring 2020 Exit HESI scores.

Results: Students from diverse backgrounds (53.9% White; 27.8% Hispanic; 10.4% Asian; 5.2% Black; 1% Unknown) increased (p = 0.022) MHESI scores following virtual pedagogy in Fundamentals, although no difference was found in Maternity (p = 0.311), Psychiatric (p = 0.129) or Medical Surgical Nursing (p = 0.692). Wilcoxon rank test revealed significant differences in MHESI scores in same cohort of students between traditional (Psychiatric) and virtual strategies (Medical-Surgical) (p < 0.01); and traditional (Medical-Surgical) and virtual (Psychiatric) strategies (p = 0.023). White students’ MHESI scores were higher than Asian students’, as revealed by Logistic regression with no differences based on gender. Spring 2020 and Fall 2019 Exit HESI scores were comparable (p = 0.499). Chi-square analysis revealed no relationship between pedagogy and achieving at least 850 on HESI (χ² = 0.027, p = 0.871).

Conclusions: Based on the exit HESI scores, virtual pedagogy was as effective as traditional pedagogy for maintaining student competency in a community college associate degree nursing program. Future analyses of the effectiveness of virtual pedagogy in meeting curricular outcomes is warranted, regardless of exit degree option.

1. Introduction

The worldwide outbreak of the COVID-19 pandemic from SARS-CoV-2 (Zheng, 2020) has currently infected approximately 33,315,272 individuals and caused more than 597,965 deaths in the United States (Centers for Disease Control [CDC], 2021). This unprecedented global crisis has permeated political, societal, economic, and commercial sectors (Karabag, 2020), to include acute and long-term facilities and various community settings that require nursing care. While nurses are at the forefront providing care (American Association of Colleges of Nursing [AACN], 2020), simultaneously, nurse educators continue to prepare students to become competent practitioners through classroom, laboratory, simulation, and clinical instruction, in spite of the recent crisis which mandated a nearly overnight change in the curricula in most institutions. Further aggravating the demands of nursing education as well as the profession is concern for student risk regarding the lack of available personal protective equipment (PPE; Mason and Friese, 2020) and danger of acquiring or spreading the virus, all of which further

∗ Corresponding author at: Adjunct Faculty, College of DuPage, 425 Fawell Blvd., Glen Ellyn, IL 60137, United States of America.
E-mail addresses: moxleye@cod.edu (E. Moxley), dhabtzgh@depaul.edu (D. Habtezgi).

https://doi.org/10.1016/j.nedt.2021.105019
Received 13 October 2020; Received in revised form 28 April 2021; Accepted 8 June 2021
Available online 17 June 2021
threaten student engagement and nursing practice.

2. Background

Nurse education continues to be a dynamic process of preparing students to work with patients (Benner et al., 2009; Moxley and Waller, 2019; Njie-Carr et al., 2017; Ward et al., 2018), so the use of technology in nurse education is not new (De Gagne et al., 2013; Gorman, 2015). Several recent studies in healthcare education have demonstrated positive outcomes from the use of technology (Shellenbarger and Robb, 2015; Tao et al., 2010; Wiecha et al., 2010). Novel pedagogical strategies that focus on student-centered teaching have increased in recent decades (Johnsen et al., 2018; Morse et al., 2019). For example, the flipped classroom method (Betihavas et al., 2016; Hew and Lo, 2018; Tan et al., 2017) and narrative pedagogy (Brady and Asselin, 2016; Brown et al., 2008; Ironside, 2003; Nehls, 1995; Santo, 2011) have recently gained recognition (Brady and Asselin, 2016). Perhaps most notably, the momentum gained by virtual pedagogy has advanced nurse education to new levels. Manikins are used extensively to conduct clinical simulations (Padilha et al., 2019) and virtual platforms such as Second Life® (Linden labs, 2020), a new resource for nurse education, have recently been demonstrated as an effective pedagogy (Aebersold et al., 2012; Gallego et al., 2016).

Maintaining rigor in a nursing curriculum to improve student outcomes is urgent considering the radical transformation in the last few months from traditional face-to-face didactic instruction in laboratory, simulation and clinical in either acute or community environments, to predominantly virtual pedagogy. The recent global pandemic has accentuated the need for creative methodologies in teaching such as virtual pedagogy and the robust integration of technology within a very brief time frame (Konrad et al., 2020). This need cannot be overstated; the magnitude of maintaining a quality standard in nursing education, consistent with the demands of the profession is immense. Nurse educators must continue to identify effective innovative strategies to improve learning. The aim of this investigation is to provide insight into virtual pedagogical strategies that effectively maintained HESI (Health Education Systems, Inc., Elsevier Publishing) outcomes during Spring 2020 in a community college associate degree nursing program that utilizes a concept-based curriculum. HESI scores were analyzed in four courses in which traditional eight-week face-to-face sessions occurred but were followed by an abrupt transition to eight weeks of virtual pedagogy. These outcomes and the strategies utilized for effective virtual learning may provide insight into nurse educators can maintain and/or achieve curricular requirements in the future, regardless of exit degree option.

3. Methods

3.1. Design

An ex post facto design was performed in which HESI outcomes for the first eight-week session in which traditional pedagogy was utilized in comparison to the second session in which virtual pedagogy was utilized. All students completed all HESI exams during Spring 2020. The Fall 2019 Exit HESI scores were compared with the Exit HESI scores from Spring 2020. Participant data were de-identified upon entry into the study therefore, were exempt from review by the IRB.

3.2. Setting and participants

All students were enrolled in a pre-licensure associate degree program (ADN) in a community college setting with the capacity to admit 160 students each academic year. The program utilizes a fully concept-based curriculum implemented in 2013 with a total of 53 concepts based on the “Concepts of Nursing Practice” (Giddens, 2020). The ADN program typically utilizes a traditional face-to-face teaching pedagogy for all modes of instruction, including classroom, laboratory, clinical and simulation. The clinical portion of two of the community-based courses (Family Health Concepts I and II) in which HESI exams were administered are presented in Table 1. Due to COVID-19, shortly after the first eight-week session, virtual pedagogy was abruptly incorporated into all types of instruction during week two of the second eight-week session. HESI exams are routinely integrated to measure student outcomes in courses and are administered in the Testing Center. During the second eight-week session, HESI exams were administered online. Based on faculty decision, a proctoring software (PROCTOR-U, 2020) was used to maintain exam integrity. Proctor U verified participant identity via video monitoring during the virtual HESI exams.

3.3. Virtual strategies

Traditional pedagogy was replaced with virtual pedagogy by implementing several instructional methods into the curriculum, such as case studies, virtual simulation programs, simulations, and use of reflection. In a traditional setting, students were assigned to small groups to complete case studies whereas, in the virtual setting, breakout rooms were used to present each of these exemplary activities, including case studies. In the smaller group setting, student engagement and discussion of content was enhanced, then students presented content to the entire class. The faculty also developed a page that was posted in Blackboard, the learning management system, with resources to help the faculty plan their courses. Despite the barrier from that lack of traditional classroom engagement, the faculty were committed to teaching concepts within the parameters of a virtual environment. The emphasis was on transferring the learning activities to a virtual model while maintaining the program integrity which involved continuing to adhere to the longitudinal testing plan in certain courses. While faculty were challenged to engage in technology, the curriculum remained sound in providing readiness for course exams.

Tools, technology and strategies were selected that facilitated learning and were consistent with the goals of the course rather than because they were new and exciting (Oermann, 2015). A priority amongst the faculty in developing the virtual learning strategies was to promote critical thinking (Caputi, 2020). Strategies were developed that aimed at active learning (Moore-Cox, 2017; Scheckel, 2020), and a reflection component was utilized to reinforce concepts and increase awareness of learned content to foster critical thinking (Moore-Cox). To stimulate clinical decision making, students were assigned to watch an interactive video then discuss their findings in groups. Strategies were utilized in simulation debriefings to allow for a greater depth of discussion of rationale, prioritization for interventions, and review of medications. The concept of safety was a priority in the clinical nursing courses and was consistently emphasized following the transition to the virtual format. To demonstrate medication safety, students watched a video and participated in an interactive case study involving role playing medication dispensation. Students also reviewed the six rights of medication administration and documented in an electronic health record to reinforce clinical decision making. Nursing students must be proficient in the psychomotor skills of nursing practice (Johnson et al., 2020) and adept at communication (The Joint Commission, 2017) to provide safe care.

| Table 1 |
| Placement of HESI examinations (as of Spring, 2020). |
Course	HESI examination
Health and Illness, Concepts I	Fundamentals
Family Health Concepts I	Maternity
Health and Illness Concepts II	Medical-Surgical¹
Family Health Concepts II	Psychiatric
Clinical Decision Making, Practicum	Exit HESI
a Moved to 4th semester, Fall 2020.	
Two courses involved community based clinicals; faculty members developed modules to reflect the community activities. One assignment involved a Writing Workshop via Zoom that involved writing about a topic focused on health promotion in the context of its application to a community setting (Moxley and Waller, 2019). This assignment was an optional learning activity in the traditional setting, however, became mandatory in the health promotion course after transitioning to the virtual environment. This assignment required students write the article for publication on a local website to educate the community. It not only encouraged autonomous decision-making (Brown Tyo and McCurry, 2019) and critical thinking, but provided them with an opportunity to be creative and express their knowledge in writing.

Short term free trials of three programs that emphasized clinical reasoning were secured, two of which featured virtual simulations to provide opportunities to apply clinical scenarios to nursing practice, followed by discussion for improved knowledge of the content (Verkuyl et al., 2020). Another program included unfolding case studies to emphasize clinical reasoning. Simulation techniques utilizing case-based learning in groups with instructor facilitated debriefing and self-reflection facilitated reinforcement of the nursing process (Freytag et al., 2017). Similarly, an additional program was utilized that allowed the students to practice clinical decision making in an adaptive mode.

3.4. Outcome measures

Scores from the HESI exams: fundamentals, medical surgical, maternity, and psychiatric nursing were analyzed following the traditional and virtual sessions and are included in this analysis. HESI exams provide a theoretical basis for testing platforms (Nibert et al., 2006) to help students succeed (Nibert and Morrison, 2013) and routinely utilized to measure learning outcomes in this institution. HESI exam validity and reliability had been established (Morrison et al., 2004; Morrison et al., 2002). The number of students who scored at least 850 on the HESI exam was then analyzed. Next, students’ HESI scores of students in the same cohort after completing the traditional session were compared with HESI scores from the course completed following the virtual session. Fall 2019 HESI Exit scores were compared with Spring 2020 Exit HESI scores, the time frame in which virtual pedagogical strategies were abruptly implemented.

3.5. Data analysis

The median, average, inter quartile range and standard deviations were calculated for the numerical variables. Percentages and frequency distribution tables were created for the categorical variables. The normality assumption was not satisfied for the HESI scores due to the sample size (not large enough). As a result, Mann Whitney U test, permutation test and Wilcoxon rank test were employed to investigate the effectiveness of the traditional and virtual pedagogical strategies. To evaluate the performance of the students who achieved HESI exam scores of 850 or higher, logistic regression was used. The HESI score was categorized from a continuous variable into two groups above and below the passing HESI score as a response variable, and students’ age, race and gender were potential predictor variables for the logistic regression. A chi-square test was used to evaluate any link between teaching pedagogy and the proportion of students who passed HESI exam (850 or above). All testing was two-sided, with p values <0.05 as statistically significant. Statistical analyses were carried out using R and Statistical Analysis System [SAS] (Version 9.4 SAS Institute Inc.).

4. Results

4.1. Demographics

Nursing students’ (n = 115; MAGE = 25.71 years) backgrounds were fairly heterogenous (Hispanic 28%, Asian 10%, Black 5%, Other 3%) with the majority White (53.9%) females (81%) (Table 2).

4.2. Comparison of virtual and traditional pedagogy by course, different student cohorts

A significant difference was observed between HESI scores following the virtual and traditional pedagogy (Table 3) in only Fundamentals (p = 0.022) based on a Mann-Whitney U test, further confirmed by a Permutation test (p = 0.032) (Table 3, Figs. 1 and 2). No significant differences were observed between the average HESI scores following the virtual pedagogy and the HESI scores following the traditional pedagogy in any other course (Maternity, p = 0.311, and the permutation test confirmed, p = 0.429; Medical-Surgical Nursing, p = 0.692, permutation confirmation, p = 0.615, Psychiatric Nursing, p = 0.129, with permutation test confirmation, p = 0.203) as presented in Table 3.

The Mann-Whitney U test was utilized to compare the virtual and traditional pedagogical strategies for all courses, with a Permutation test further confirming each of these conclusions. Following implementation of the virtual pedagogy in Fundamentals, HESI scores increased by an average of 88.67 compared with HESI scores following traditional pedagogy. The overall quantitative results demonstrated that the HESI scores following the virtual pedagogy averaged 8.3 higher than HESI scores following the traditional pedagogy (Table 3, Figs. 1 and 2). In addition, the Fall 2019 Exit HESI scores (traditional) were compared with Spring 2020 Exit HESI scores in which virtual pedagogy was implemented, with no difference observed between cohorts (Table 3).

4.3. Comparison of virtual and traditional by student cohort: different courses

Two subsequent cohorts were compared in which the HESI scores of the same students after they completed the virtual session were compared with their HESI score after they completed the traditional session. The HESI scores for the same student were not significantly different after completing Fundamentals in the traditional session with the virtual session for Maternity (MHESI = traditional and Maternity, virtual (p = 0.60) (Table 4). Nor were significant differences observed in the HESI scores of those students who completed Maternity via traditional pedagogy and Fundamentals, virtually (p = 0.09). Significant differences were observed in HESI scores; however, for students in the same cohort who completed Psychiatric (MHESI = 933.27, SD = 139.06; traditional) and Medical-Surgical (MHESI = 810.15, SD = 166.89; Table 2

Characteristic	N	%
Gender		
Male	22	19
Female	93	81
Race		
Asian	12	10.4
Black	6	5.2
Hispanic	32	27.8
Two or more race	2	1.7
Unknown	1	1.0
White	62	53.9

Age	Min	Median	Max	Mean	SD	IQR
	18	23	49	25.71	7.55	9.50
4.4. HESI scores of at least 850

Students who achieve 850 on HESI have a 90% likelihood of passing NCLEX® (Phelan, 2019). Most of the students scored at least 850 on the HESI in the four courses. Following the traditional pedagogy, 61% of students scored a mean of at least 850 of the HESI whereas, after the virtual pedagogy 59% achieved a score of 850. Thus, there is no significant link between teaching pedagogy and the proportion of students who met the 850 benchmarks on HESI ($\chi^2 = 0.027, p = 0.871$) (Table 6).

5. Discussion

On a global scale, COVID-19 has resulted in the radical transformation in the curricula of many nursing programs, from that of a predominantly traditional, face to face pedagogy to primarily a virtual

Course	Traditional: mean, SD	Virtual: mean, SD	Difference	Significance
	(1st session)	(2nd session)		
Fundamentals	848.58, 148.80	937.25, 176.86	88.67	$p = 0.022$
Maternity	888.17, 130.23	862.94, 131.26	–25.23	$p = 0.311$
Psychiatric	933.27, 139.06	889.63, 110.99	–43.64	$p = 0.129$
Medical-Surgical	785.81, 165.94	810.15, 166.89	24.34	$p = 0.692$

Exit HESI	In class FA2019	Virtual SP 2020	Difference	Significance
Fundamentals	882.80, 125.58	867.45, 114.56	–15.35	$W = 1.442, p = 0.604$
Maternity	888.17, 130.23	937.25, 176.86	49.08	$p = 0.09$
Psychiatric	933.27, 139.06	810.15, 166.89	–123.1154	$p < 0.01$
Medical-Surgical	785.81, 165.94	889.63, 110.99	103.8221	$p = 0.02$

Fig. 1. Comparison amongst courses: traditional (non-virtual) pedagogy.

Fig. 2. Comparison amongst courses: virtual pedagogy.

Table 3
Comparison of traditional (nonvirtual) and virtual courses in different student cohorts.

Table 4
Comparison of virtual and traditional courses in same cohort.
pedagogy, causing concern for curricular integrity (Konrad et al., 2020). The transformation of the nursing curricula in this program from a predominantly traditional pedagogy to a virtual pedagogy demonstrated successful curricular outcomes according to HESI scores. To our knowledge, this is the first study to compare the HESI outcomes between a traditional face-to-face curriculum with HESI scores following virtual strategies in the same semester during Spring 2020.

Students who represented diverse backgrounds successfully completed the four HESI exams after implementing virtual strategies. The courses aligning with HESI exams were Health and Illness Concepts I (Fundamentals HESI), Family Health Concepts I (Maternity HESI), Family Health Concepts II (Psychiatric HESI), and Health and Illness Concepts II (Medical-Surgical HESI). The average HESI score increased in the Foundations and Medical-Surgical courses but decreased in the Psychiatric and Maternity courses following the implementation of the virtual strategies. Virtual learning environments are typically used less for nursing education in mental health and illness courses (Wilson and Hungerford, 2015), although it is interesting to note the Psychiatric HESI score was the highest following traditional pedagogy, and the second highest HESI score following the virtual pedagogy session. The same faculty member taught both sessions of the Health and Illness Concepts II (Medical-Surgical HESI) course only (Table 1). Whereas, different faculty taught in the other courses (Health and Illness Concepts I (Fundamentals HESI), Family Health Concepts I (Maternity HESI), and Family Health Concepts II (Psychiatric HESI)) and may have contributed to the differences between HESI outcomes.

The lowest HESI score was found in Medical-Surgical for both sessions. This is typical based on when this exam is offered in the curriculum. In this analysis, the Medical-Surgical HESI was offered in third semester when students have not yet been taught all content on this HESI exam. In Spring 2020, the Medical-Surgical HESI was moved to a fourth semester course. Thus, the observed variance between the Psychiatric and Maternity courses following the implementation of the virtual strategies has been discussed. No difference was observed in the HESI scores of the same students following completion of the Maternity course and the Fundamentals course which suggests the HESI scores may be due to course content rather than pedagogy.

Table 5

Coefficients	Significance
Intercept	-0.275
Female (Ref. C)	Ref. C
Male	0.342
Asian (Ref. C)	Ref. C
Black	0.695
Hispanic	0.524
Two or more races	0.351
White	1.01
Virtual (Ref. C)	Ref. C
Non-Virtual	-0.151

*p-value < 0.05.

Table 6

HESI	Virtual (n, %)	Traditional (n, %)	Total
≥ 850	66 (59%)	70 (61%)	136
> 850	46 (41%)	45 (39%)	91
Total	112	115	

HESI exams were required to be administered remotely, however, rather than in the testing center. A proctoring service, Proctor U, was adopted for this purpose, however, faculty needed to adopt new technology. Zoom was selected for virtual teaching; lectures, simulations, labs and clinical sessions although most faculty had never used Zoom.

Student frustration was heightened by inconsistent access to online exams. Many students lacked access to technology, a problem that went unnoticed before the pandemic because of cell phone use for the internet, and students were oriented to Proctor U on the day of exam. According to Morin (2020), virtual learning is more difficult for students with limited resources, or work and family responsibilities at home. In evaluating the learning experiences of students during the first month of confinement, Ramos-Morcillo et al. (2020) found older students and students in environments with limited electronic resources experienced greater limitations in virtual learning. The college at this institution allowed students who lacked a computer or internet access to borrow laptops, and in spite of technological issues, all students in the four courses completed the HESI exams.

The HESI exit exam (Langford and Young, 2013; Nibert et al., 2002; Phelan, 2019) links student scores with NCLEX-RN® success and is the most used standardized predictor NCLEX. A HESI score of 850 throughout the program is a recommended standard for course competency, therefore, 850 is the cut-score (Phelan, 2019). Most students achieved at least 850 or greater in the four courses following the implementation of virtual pedagogy. A minimal difference was found between those who achieved 850 following traditional pedagogy those who achieved 850 following virtual pedagogy which indicated the effectiveness of the virtual strategies in maintaining learning outcomes. Previous HESI scores in this program demonstrate a simultaneous upward trend between HESI scores and NCLEX-RN® pass rates. In 2016, intense rigor was implemented in the program due to NCLEX-RN® pass rates of 62% in 2015. By 2018, NCLEX pass rates were 95%, and 96% in 2019. The history of the NCLEX-RN® pass rates and programmatic challenges impacted the faculty decision to maintaining rigor in the curriculum during the transition to virtual instruction. Most faculty have taught in the program since 2016 and were committed to maintaining the HESI policy, offer HESI exams as scheduled, and to developing a HESI tool for curricular evaluation.

HESI scores were analyzed for the same students who were in different courses during the eight-week sessions. A significant difference was observed only between the HESI scores in the Psychiatric and Medical-Surgical courses; the rationale for these outcomes have been discussed. No difference was observed in the HESI scores of the same students following completion of the Maternity course and the Fundamentals course which suggests the HESI scores may be due to course content rather than pedagogy.

Exit HESI scores represent content learned throughout the program and not merely content learned in the current semester. Students who completed the Exam HESI exam during Spring 2020 were required to adjust to the abrupt change in pedagogy prior to taking that exam. The Exit HESI scores from the Spring 2020 and Fall 2019 cohorts were comparable (p = 0.499) indicating students were prepared from previous course due to the robust curriculum at this institution. In addition, the faculty at this institution have ample experience in nursing education and responded quickly to the transition, and the resources are adequate. Dreher et al. (2019) recently substantiated the legitimacy of the Exit HESI, largely refuting Sparlock and Hunt’s (2008) challenge of the usefulness of the HESI Exit to predict NCLEX-RN® success. Dreher et al. suggests the Exit HESI exam not only establish an expectation for students to prepare for class and exams, but standardized testing are an evaluation method to provide accountability for nursing schools’ curriculum, clinical experiences, and NCLEX-RN pass rates by the State Boards of Nursing and accrediting agencies. Moreover, the Exit HESI aids in strengthening knowledge of content and identifying weak areas for remediation (Dreher et al., 2019).
5.3. Conclusion

These outcomes provide implications for faculty, students and curricular outcomes, and clinical and didactic instruction. Albeit difficult, the faculty benefited from the transition to virtual pedagogy. The curriculum changes due to COVID-19 may prepare educators for possible future changes of nursing education and the opportunity to reconsider what constitutes critical information and essential competencies for entry-level nurses (Morin, 2020). Formerly critical content may no longer be considered relevant or feasible in the current context (Morin, 2020). Evidence is lacking to support a specific number of required hours for clinical experiences (Bowling et al., 2018). The curriculum in this ADN was the first in the state to discontinue acute obstetrical clinical experiences and nearly all clinical obstetrical content is taught during simulation although the HESI maternity scores consistently increase (Moxley and Waller, 2019). The need to focus on a competency-based education (Barton et al., 2020) exists due to an uncertain future of clinical availability in acute settings. Furthermore, it may be time to reconsider what is required to prepare and undergraduate level generalist nurse (Morin, 2020; Barton et al., 2020). Curricular outcomes in this program maintained due to a robust curriculum and resilience and professionalism of students and faculty alike. The faculty increased individual student meetings for support and to foster student engagement which increased student motivation, further impacting professionalism in practice. Future implications of these outcomes will provide insight into the use of virtual pedagogy in upcoming semesters, especially considering the rapidly changing environment of nurse education.

5.2. Limitations and strengths

This study has limitations, specifically, the retrospective design does not allow for interpretation of causality, as data were collected as part of routing curricular procedures rather than purposes of the study aim. It is also possible that since the outcomes were measured during a crisis situation in which a sudden curricular transition occurred; the findings may not be generalizable to all situations. Virtual pedagogical strategies were selected based on availability rather than if most effective in all situations: time and resource constraints impacted academic freedom. Validated methodology may be more strategic when designing future interventions. Furthermore, virtual strategies were not consistent across the courses and involved a combination of synchronous and asynchronous platforms and different faculty. Conversely, strengths of this study include the unique opportunity to obtain such student outcomes following the implementation of virtual pedagogy during the COVID-19 crisis. Moreover, in a brief time-period, the strong foundation of the faculty and curriculum could be observed. Faculty had the fortitude to be creative and were courageous in spontaneously and authentically designing virtual pedagogy with unfamiliar resources to fit an existing curriculum.

5.3. Conclusion

The sudden transition to virtual pedagogy in response to COVID-19 may influence how nurses are educated in the future. Based on HESI scores in four courses, this analysis demonstrates a well-planned virtual pedagogy is possible for maintaining curricular outcomes. Nursing educators in an associate degree program abruptly integrated virtual pedagogical strategies relevant to nearly any nursing curriculum, regardless of exit degree option. No significant link was observed between pedagogy and student achievement of at least an 850 on the HESI exam. The future impact of COVID-19 remains uncertain; however, virtual pedagogy will likely be utilized on a long-term basis given the increasing emphasis on technology in nurse education. Further exploration of the impact of virtual exposure in clinical, laboratory, and simulation contexts in addition to didactic instruction as compared with traditional pedagogy and continued evaluation of the importance of HESI scores to curricular outcomes is currently warranted.

Disclosures

None.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

The authors wish to especially thank Jennifer Chiavola and Erin Ohman for their support in this project. We are also extremely grateful to the nursing students who persevered through the transition to virtual instruction during the COVID-19 pandemic in Spring Semester 2020.

References

Aebersold, M., Tschannen, D., Stephens, M., Anderson, P., Lei, X., 2012. Second life: a new strategy in educating nursing students. Clinical Simulation in Nursing 8 (9), e465–e475. https://www.nursingsimulation.org/article/S1876-1399(11)00058-2/abstract

American Association of Critical-Care Nurses, 2020. Position statement: moral distress in times of crisis. March. https://www.aacn.nursing-excellence/healthy-work-environments//~/media/aacn-website/policy-andadvocacy/stat-20-position-stat ement_moral-distress.pdf.

Barton, A. J., Murray, T. A., & Spurluck, D. R., Jr (2020). An open letter to members of the nursing education community. J. Nurs. Educ., 59(4), 183. doi:https://doi.org/10.3978/j.1048-8343.20200322-01.

Benner, P., Surpren, M., Leonard, V., Dey, L., Shulman, L., S., 2009. Educating Nurses: A Call for Radical Transformation, 15, Wiley.

Betihavas, V., Bridgham, H., Kornhabber, R., Cross, M., 2016. The evidence for ‘flipping out’: a systematic review of the flipped classroom in nursing education. Nurse Educ. Today 38, 15-21. https://doi.org/10.1016/j.nedt.2015.12.010.

Bowling, A.M., Cooper, R., Kelihii, A., Kulin, L., Smith, T., 2018. Evidence to support number of clinical hours necessary for nursing competency. J. Pediatr. Nurs. 39, 27–36. https://doi.org/10.1016/j.pedn.2017.12.012.

Brady, D.R., Asselin, M.E., 2016. Exploring outcomes and evaluation in narrative pedagogy: an integrative review. Nurse Educ. Today 45, 1–8. https://doi.org/10.1016/j.nedt.2016.06.002.

Brown, S.T., Kirkpatrick, M.K., Mangum, D., Avery, J., 2008. A review of narrative pedagogy strategies to transform traditional nursing education. J. Nurs. Educ. 47 (6), 283–286.

Brown Teyo, M., & McCurry, M. (2019). An integrative review of clinical reasoning teaching strategies and outcome evaluation in nursing education. Nurs. Educ. Perspect., 40(1), 11–17. doi:https://doi.org/10.15977/01.nep.00000001000000075.

Caputi, L., 2020. Think Like a Nurse: A Handbook. Windy City Publishing, Chicago, IL.

Centers for Disease Control and Prevention. 2021. https://covid.cdc.gov/covid-data tracker/?CDC_AA_refVal=http%3A%2F%2Fwww.cdc.gov%2FCoronavirus%2FP2019novel%2Fcases%2Fstates%2Fus-cases-deaths.html#cases.

De Gagne, J.C., Oh, J., Kang, J., Vorderstrasse, A.A., Johnson, C.M., 2013. Virtual worlds for the purposes of the study aim. It is
derred, H.M., Smith Glasgow, M.E., Schreiber, J., 2019. The use of “high-stakes testing” in nursing education: rhetoric or rigor? Nurs. Forum 54 (4), 477–482. https://doi.org/10.1111/nuf.12363.

Dreher, J.M., Smith Glasgow, M.E., Schreiber, J., 2019. The use of “high-stakes testing” in nursing education: rhetoric or rigor? Nurs. Forum 54 (4), 477–482. https://doi.org/10.1111/nuf.12363.

Freytag, J., Strohen, F., Hautz, W., Eisenmann, D., & Kifmmer, J. (2017). Improving patient safety through better teamwork: how effective are different methods of simulation debriefing? Protocol for a pragmatic, prospective and randomized study. BMJ Open, 7(6), E015977. doi:https://doi.org/10.1136/bmjopen-2017-015977.

Gallego, M.D., Barro, S., Noyes, J., 2016. Second life adoption in education: a motivational model based on uses and gratifications theory. Comput. Educ. 100, 81–93. https://www.sciencedirect.com/science/article/abs/pii/S0360131516301105?via%3Dihub.

Giddens, Jean F. (2020). Concepts for Nursing Practice (3rd ed.). St. Louis, MO: Mosby/ Elsevier.

Hew, K.F., Lo, C.K., 2018. Flipped classroom improves student learning in health professions education: a meta-analysis. BMC Medical Education 18 (1), 38. https://doi.org/10.1186/s12909-018-1144-z.
Ironside, P.M., 2003. New pedagogies for teaching thinking: the lived experiences of students and teachers enacting narrative pedagogy. J. Nurs. Educ. 42 (11), 509–516.

Johnsen, H.M., Fossum, M., Vivekananda-Schmidt, F., Frithling, A., Slettebø, Å., 2018. Developing a serious game for nurse education. J. Gerontol. Nurs. 44 (1), 15–19. https://doi.org/10.3978/j.00989141.20171213-05.

Johnson, C. E., Kimble, L.P., Gumby, S. S., & Davis, A. (2020). Using deliberate practice and simulation for psychomotor skill competency acquisition and retention. Nurse Educ. 5, 6(45), 150–154. doi:https://doi.org/10.1097/NNE.0000000000001713.

Karabag, S.F., 2020. An unprecedented global crisis! The global, regional, national, political, economic and commercial impact of the coronavirus pandemic. Journal of Applied Economics and Business Research 10 (1), 1–6.

Konrad, S., Fitzgerald, A., Deckers, C., 2020. Nursing fundamentals—supporting clinical competency online during the COVID-19 pandemic. Teaching and Learning in Nursing: Official Journal of the National Organization for Associate Degree Nursing. https://doi.org/10.1016/j.teln.2020.07.005.

Langford, R., Young, A., 2013. Predicting NCLEX-RN success with the HESI exit exam: eighth validity study. J. Prof. Nurs. 29 (2 Suppl 1), S5–S9. https://doi.org/10.1016/j.profnurs.2012.06.007.

Linden Labs, 2020. Second life. http://secondlife.com.

Mason, D.J., Friese, C.R., 2020. Protecting Health Care Workers Against COVID-19—and being prepared for future pandemics. JAMA Health Forum 1 (3). https://doi.org/10.1001/jamahealthforum.2020.0353.

Moore-Cox, A., 2017. Lesson plans: road maps for the active learning classroom. J. Nurs. Educ. 56 (11), 697–700. https://doi.org/10.3928/01484834-20171020-12.

Morin, K.H., 2020. Nursing education after COVID-19: same or different? J. Clin. Nurs. 29 (17–18), 3117–3119. https://doi.org/10.1111/jocn.15522.

Morris, S., Free, K.W., Newman, M., 2002. Do progression and remediation policies improve NCLEX-RN pass rates? Nurse Educ. 27 (2), 94–96. https://doi.org/10.1097/00006223-200203000-00014.

Moorey, E., Waller, M., 2019. Alternative strategies for providing clinical experiences in a family nursing course. Teach. Learn. Nurs. 14 (3), 173–178. https://doi.org/10.1016/j.teln.2019.02.055.

Nebels, N., 1995. Narrative pedagogy: rethinking nursing education. J. Nurs. Educ. 34 (5), 204–210.

Nibert, A., Morrison, S., 2013. HESI testing—a history of evidence-based research. Journal of Professional Nursing: Official Journal of the American Association of Colleges of Nursing 29 (2 Suppl 1), S2–S4. https://doi.org/10.1016/j.profnurs.2012.06.006.

Nibert, A.T., Young, A., Adamson, C., 2002. Predicting NCLEX success with the HESI exit exam: fourth annual validity study. Computers, Informatics, Nursing 20 (6), 261–267. https://doi.org/10.1097/00024665-200211000-00013.

Nibert, A.T., Adamson, C., Young, A., Lauchner, K.A., Britt, R.B., Hinds, M.N., 2006. Choosing a theoretical framework to guide HESI exit examination research. J. Nurs. Educ. 45 (8), 303–307. https://doi.org/10.3978/j.0148-4834-20060801-65.

Njie-Carr, V.P., Ludeman, E., Lee, M.C., Dordunoo, D., Trocky, N.M., Jenkins, L.S., 2017. An integrative review of flipped classroom teaching models in nursing education. Journal of Professional Nursing 33 (2), 133–144. https://doi.org/10.1016/j.profnurs.2016.07.001.

Oermann, M.H., 2015. Technology and teaching innovations in nursing education: engaging the student. Nurse Educ. 40 (2), 55–56. https://doi.org/10.1097/NNE.0000000000000139.

Padilha, J.M., Machado, P.F., Ribeiro, A., Ramos, J., Costa, P., 2019. Clinical virtual simulation in nursing education: randomized controlled trial. J. Med. Internet Res. 21 (3), e11529 https://doi.org/10.2196/11529.

Phelan J (2019) Lippincott for life: white paper HESI/ATI research summary. Retrieved from https://download.bwn.com/efficacy/WP_HESI1ATI_RESEARCH_SUM.pdf.

ProctorU, 2020. In: https://www.proctoru.com/.

Ramos-Morcillo, A.J., Leal-Costa, C., Moral-García, J.E., Ruaza-Martínez, M., 2020. Experiences of nursing students during the abrupt change from face-to-face to e-learning education during the first month of confinement due to COVID-19 in Spain. Int. J. Environ. Res. Public Health 17 (15), 5519. https://doi.org/10.3390/ijerph17155519.

Santo, L.R., 2011. Evaluating Narrative Pedagogy in Nursing Education. AL: University of Alabama.

Scheckel, M., 2020. Designing courses and learning experiences. In D. M. Billings, & J. A. Halstead (Eds.), pp. 154–173, Teaching in Nursing: A Guide for Faculty. St. Louis, MO: Elsevier.

Shellenharger, T., Robb, M., 2015. Technology-based strategies for promoting clinical reasoning skills in nursing education. Nurse Educ. 40 (2), 79–82. https://doi.org/10.1097/NNE.0000000000000111.

Spurlock Jr., D.R., Hunt, L.A., 2008. A study of the usefulness of the HESI exit exam in predicting NCLEX-RN failure. J. Nurs. Educ. 47 (4), 157–166. https://doi.org/10.3928/01484834-20080401-07.

Tao, J., Yue, W.G., Fu, Y., 2017. Effectiveness of flipped classrooms in nursing education: systematic review and meta-analysis. Chin. Nurs. Res. 4 (4), 192–200. https://www.sciencedirect.com/science/article/pii/S2215785917300995?via%3Dihub.

Watkins, P. (2010). A case study on applying second life to supplement classroom teaching in a health care curriculum. Journal of Interactive Instruction Development, 21(4), x.

The Joint Commission. (2017). Sentinel event alert: inadequate hand-off communication. Retrieved from https://www.jointcommission.org/assets/1/18/SEA_58_Hand_off_Comms_9_6_FINAL_1.pdf.

Verkuyl, M., Lapum, J.L., St-Amant, O., Hughes, M., Romanuk, D., McCulloch, T., 2020. Exploring debriefing combinations after a virtual simulation. Clinical Simulation in Nursing 40, 36–42. https://doi.org/10.1016/j.ecns.2019.12.002.

Ward, M., Knowlton, M.C., Laney, C.W., 2018. The flip side of traditional nursing education: a literature review. Nurse Educ. Pract. 29, 163–171. https://doi.org/10.1016/j.nepr.2018.01.003.

Wiecha, J., Heyden, R., Stermlhal, E., Merialdi, M., 2010. Learning in a virtual world: experience with using second life for medical education. J. Med. Internet Res. 12 (1), e1 https://doi.org/10.2196/jmir.1337.

Wilson, R., Hungerford, C., 2015. Mental health education and virtual learning environments (VLEs) in pre-registration nursing degrees: follow the leaders? Issues in Mental Health Nursing 36 (5), 379–387. https://doi.org/10.3109/01613840.2014.1002647.

Zheng, J., 2020. sars-cov-2: an emerging coronavirus that causes a global threat. Int. J. Biol. Sci. 16 (10), 1678–1685. https://doi.org/10.7150/ijbs.45053. http://www.ijbs.com/v16p1678.htm.