Tuning the electronic band structure of PCBM by electron irradiation

Seung Hwa Yoo, Jong Min Kum and Sung Oh Cho*

Abstract

Tuning the electronic band structures such as band-edge position and bandgap of organic semiconductors is crucial to maximize the performance of organic photovoltaic devices. We present a simple yet effective electron irradiation approach to tune the band structure of [6, 6]-phenyl-C61-butyric acid methyl ester (PCBM) that is the most widely used organic acceptor material. We have found that the lowest unoccupied molecular orbital (LUMO) level of PCBM up-shifts toward the vacuum energy level, while the highest occupied molecular orbital (HOMO) level down-shifts when PCBM is electron-irradiated. The shift of the HOMO and the LUMO levels increases as the irradiated electron fluence increases. Accordingly, the band-edge position and the bandgap of PCBM can be controlled by adjusting the electron fluence. Characterization of electron-irradiated PCBM reveals that the variation of the band structure is attributed to the molecular structural change of PCBM by electron irradiation.

Keywords: tunable band structure, HOMO, LUMO, organic semiconductor, PCBM, electron irradiation

Introduction

Organic semiconductors such as small molecules [1,2] and conjugated polymers [3,4] are widely used in organic photovoltaic cells [4-6], dye-sensitized solar cells [2,7], organic field-effect transistors [8-10], and organic light-emitting diodes [3,11]. In particular, [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) is a small molecule that is most widely used as an electron acceptor in organic photovoltaic (OPV) cells [1]. To improve the power conversion efficiency of OPV cells, open-circuit voltage (V_{oc}) of the cells should be increased. The upper limit of the V_{oc} is determined by the energy difference between the highest occupied molecular orbital (HOMO) level of the electron donor and the lowest unoccupied molecular orbital (LUMO) level of the electron acceptor [12]. Thus, several efforts have been made to increase the LUMO level of PCBM by chemical approach, for instance, placing electron-donating and electron-withdrawing substituents on the phenyl ring or synthesizing bisadduct analogue of PCBM [12-14]. However, these approaches generally require complicated synthetic procedures and result in a low yield of the products [13]. As an alternative, radiation chemistry can be a good strategy to modify the chemical structures of particularly organic materials [15-18]. As a result of the chemical structural modification, the optical properties of the organic materials can be changed [19-21]. Here, we present a simple and novel approach to tune the HOMO and LUMO levels of PCBM based on electron irradiation. Only by irradiating an electron beam onto PCBM, the bandgap as well as the HOMO and LUMO levels of PCBM can be changed, and furthermore the electronic band structures of PCBM can be controlled by adjusting the electron fluence.

Results and discussion

Figure 1 shows the reduction and oxidation properties of electron-irradiated PCBM thin films as well as pristine PCBM measured by cyclic voltammetry (CV). Pristine PCBM exhibits three reduction peaks (-1.11 V, -1.33 V, and -1.92 V vs. Ag/Ag+) and one oxidation peak (+1.76 V vs. Ag/Ag+). Electron irradiation led to a negative shift of the reduction peaks and a positive shift of the oxidation peak (+1.76 V vs. Ag/Ag+). Electron irradiation led to a negative shift of the reduction peaks and a positive shift of the oxidation peak. Interestingly, only two reduction peaks appeared for the electron-irradiated PCBM at fluences higher than 7.2 × 10^{16} cm^{-2}. The first reduction peak of pristine PCBM was located at -1.11 V vs. Ag/Ag++; however, the peak was negatively shifted to -1.22 V, -1.41 V, and -1.49 V as the electron fluence was...
increased to 3.6×10^{16}, 7.2×10^{16}, and 1.44×10^{17} cm$^{-2}$, respectively. On the contrary, the oxidation peak was positively shifted from the pristine value of 1.76 to 1.79, 1.86, and 1.94 V with increasing the electron fluence to 3.6×10^{16}, 7.2×10^{16}, and 1.44×10^{17}, respectively.

From the CV measurements, the LUMO and HOMO levels of PCBM were calculated using the following equation [22]:

$$\text{LUMO (HOMO) (eV)} = -4.8 - (E_{\text{on}} - E_{1/2} \text{ (ferrocene)})$$ \hspace{1cm} (1)

where E_{on} is the onset potential of the first reduction peak for LUMO or the onset potential of the oxidation peak for HOMO, and $E_{1/2}$ (ferrocene) is the half-wave potential of a ferrocene redox reaction. The LUMO level up-shifts toward the vacuum energy level, while the HOMO level down-shifts with increasing the electron fluence (Figure 1C, the detailed values are shown in Table 1). The LUMO level of the irradiated PCBM was increased by 0.3 eV and the HOMO level was decreased by 0.07 eV compared to the respective values of the pristine PCBM when the electron fluence was 1.44×10^{17} cm$^{-2}$. Consequently, the bandgap of electron-irradiated PCBM gradually increases with increasing the electron fluence: the bandgap increases from the pristine value of 2.48 to 2.85 eV at the electron fluence of 1.44×10^{17} cm$^{-2}$.

To investigate the origin of the change in the band structure of electron-irradiated PCBM, the molecular
structure of electron-irradiated PCBM was characterized by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and Raman spectroscopy. PCBM is a fullerene derivative of which molecular structure comprises a side chain of butyric acid methyl ester and a phenyl ring attached on a C_{60} cage [1], FTIR spectra show that the intensities of all the peaks decreased with increasing the electron fluence (Figure 2A), suggesting that the molecular bonds of PCBM are gradually decomposed by electron irradiation. Analysis on the peak intensity variation reveals the C-O bond of the butyric acid methyl ester is most rapidly decomposed (Figure 2B). This indicates that the C-O bond can be easily detached from the side chain, forming methoxy radicals (Figure 3B). In addition, one of the C-H bonds in the phenyl ring was also broken by electron irradiation, producing phenyl radicals (Figure 3B). These two radicals produced by radiolysis make bonds with each other to form methoxy-substituted phenyl ring on PCBM (Figure 3C). The presence of methoxy-substituted phenyl ring is verified by 1H NMR spectra. First, a new signal at 3.79 ppm appeared and this signal corresponds to the hydrogen a marked in Figure 4A, that is, the hydrogen of methoxy group attached on the para position of phenyl ring in electron-irradiated PCBM. In addition, another new signal at 6.86 ppm (Figure 4B) and 7.24 ppm (Figure 4C) emerged and these signals are attributed to the hydrogen b on the meta position and hydrogen c on the ortho position of methoxy-substituted phenyl ring, respectively. It has been reported that attaching methoxy group on phenyl ring up-shifts the LUMO level of PCBM [12,23]. Therefore, we propose that the up-shift in the LUMO level of electron-irradiated PCBM is partly attributed to the attachment of methoxy group on the phenyl ring of PCBM.

Along with the modification in the side chain of butyric acid methyl ester, C_{60} backbone in PCBM molecule was also deformed by electron irradiation. Figure 2B verifies this fact that the intensities of peaks associated with the C_{60} cage gradually decreases as the electron fluence increases. For more detailed interpretation of the modification in C_{60} cage, electron-irradiated PCBM was analyzed by Raman spectroscopy. PCBM shows ten Raman-active vibration modes, which originates from the icosahedral symmetry (I_h) of C_{60} [24]. These vibration modes are solely affected by change in the I_h symmetry of C_{60}, therefore, the structural change of C_{60} at different fluences of electron irradiation was analyzed by observing the variation of those vibration modes. At electron fluence of 3.6×10^{16} cm$^{-2}$, no significant change was observed in the Raman spectrum, which indicates the C_{60} cage was intact at low fluence of
electron irradiation. However, the ten Raman-active vibration modes show progressive decrease in the peak intensity as the electron fluence increases. Decrease in the peak intensity and the peak broadening of the strongest peak at 1,464 cm\(^{-1}\) (\(A_2\), “pentagonal pinch” mode) clearly proves that the cage was destroyed by further electron irradiation [25-28]. These facts lead to a conclusion that the C\(_{60}\) cage was degraded from its icosahedral symmetry by high dose of electron irradiation. After the electron irradiation at a high fluence of 2.88 \times 10^{17} \text{ cm}^{-2}, broad bands at 1,376, 1,618, and 1,578 cm\(^{-1}\), which respectively correspond to D\(-\), D\(+\), and G-bands of graphite [29,30] appeared (inset of Figure 5B). In addition, the Raman spectra of the electron-irradiated PCBM exhibit photoluminescence background with a positive slope and the slope of the background increases with increasing the electron fluence (Figure 5A) [25,31]. These two results indicate that PCBM is transformed into hydrogenated amorphous carbon structure at high dose of electron irradiation (Figure 3D).
Consequently, from these analyses, we can conclude that the change in the band structure of electron-irradiated PCBM is attributed to the modification of the molecular structure of PCBM by electron irradiation (Figure 3). Formation of methoxy-substituted phenyl ring on PCBM up-shifts the LUMO level at low electron fluencies; further electron irradiation deforms the C_{60} cage and gradually converts it to hydrogenated amorphous carbon, resulting in the increase of the HOMO-LUMO gap. This also indicates that the band structure of PCBM can be tuned by adjusting the electron dose.

Conclusions
We have found that the electronic band structure of PCBM is changed by electron irradiation. The LUMO level of PCBM gradually up-shifts toward the vacuum energy level, while the HOMO level slightly down-shifts against the vacuum energy level as the electron fluence increase. Consequently, the bandgap of PCBM can be controlled by adjusting the electron fluence. The variation of the band structure is attributed to the change in the molecular structure of PCBM by electron irradiation. The electron irradiation technique can also be used to control the electronic band structures of other
organic semiconductors and thus this irradiation technique can provide a useful strategy to improve the performances of organic photovoltaic and organic optoelectronic devices.

Methods

PCBM solution was prepared by dissolving PCBM (99.5% purity, Nano-C, Inc., Westwood, MA, USA) powder into chlorobenzene (≥ 99.5% purity, Sigma-Aldrich, St. Louis, Mo, USA). PCBM films were fabricated on glassy carbon electrodes by spin-coating a chlorobenzene solution containing 24 mM PCBM at 2,000 rpm for 60 s. The irradiation of an electron beam on PCBM films were carried out using a three-electrode system consisting of the glassy carbon electrode as a working electrode, a platinum (Pt) wire as a counter electrode, and a Ag/Ag⁺ electrode as a reference electrode in an acetonitrile solution of 0.1 M Bu₄NPF₆. Potentials were quoted with reference to the internal ferrocene standard (E₁/₂ = 0.120 V vs. Ag/Ag⁺) that was measured in the same electrolyte. The scan rate was 100 mV s⁻¹ for all measurements. The changes in molecular structure of PCBM due to electron irradiation were investigated by ¹H NMR (Bruker AvanceIII 600, Bruker, Billerica, MA, USA), FTIR and high-resolution dispersive Raman spectroscopy (Jasco FT/IR-4100 (JASCO, Easton, MD, USA) and LabRAM HR UV/Vis/NIR (HORIBA Jobin Yvon, Edison, NJ, USA), respectively).

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (no. 2011-0020764).

Authors’ contributions

The work was carried out by collaboration between all authors. SOC initiated the idea of electron irradiation on PCBM. SHY performed the electron irradiation experiments and JMK carried out the FTIR, Raman, and NMR measurements of electron-irradiated PCBM. SOC and SHY analyzed the data and suggested the mechanism of band-tuning of electron-irradiated PCBM. All authors read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.

Received: 5 August 2011 Accepted: 4 October 2011 Published: 4 October 2011

References

1. Hummelen JC, Knight BW, Lepeq F, Wudl F, Yao J, Wilkins CL: Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 1995, 60:532.
2. Oregan B, Graetzel M: A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO₂ films. Nature 1991, 353:737.
3. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB: Light-emitting-diodes based on conjugated polymers. Nature 1990, 347:539.
4. Gunes S, Neugebauer H, Sariciftci NS: Conjugated polymer-based organic solar cells. Chem Rev 2007, 107:1524.
5. Chamberlain GA: Organic Solar-Cells - a Review. Sol Cells 1983, 8:47.
6. Facchetti A: pi-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 2011, 23:733.
8. Garnier F, Horowitz G, Peng XH, Fichou D: An all-organic soft thin-film transistor with very high carrier mobility. Adv Mater 1990, 2:592.

9. Ortiz RP, Herrera H, Blanco R, Huang H, Facchetti A, Marks TJ, Zheng Y, Segura JL: Organic n-channel field-effect transistors based on arylenediimide-thiophene derivatives. J Am Chem Soc 2010, 132:8440.

10. Di CA, Yu G, Liu YQ, Guo YL, Sun XN, Zheng J, Wen YG, Wu WP, Zhu DB: Selective crystallization of organic semiconductors for high performance organic field-effect transistors. Chem Mater 2009, 21:4873.

11. Kulkarni AP, Tonozola CJ, Babel A, Jeneke SA: Electron transport materials for organic light-emitting diodes. Chem Mater 2004, 16:4556.

12. Kooistra FB, Knoll J, Kastenberg F, Popescu LM, Verhees WJH, Kroon JM, Hummelen JC: Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor. Org Lett 2007, 9:551.

13. Lenes M, Wetzelaer GJAH, Koostra FB, Veenstra SC, Hummelen JC, Blom PWM: Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv Mater 2008, 20:2116.

14. Yang C, Kim JY, Cho S, Lee JK, Heeger AJ, Wudl F: Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. J Am Chem Soc 2008, 130:6444.

15. Miller AA: Radiation chemistry of polydimethylsiloxane. I. Crosslinking and gas yields. J Am Chem Soc 1959, 82:3519.

16. Kang HY, Saito O, Dole M: The radiation chemistry of polyethylene. IX. temperature coefficient of cross-linking and other effects. J Am Chem Soc 1967, 89:1980.

17. Li Y, Lee EJ, Cai W, Kim KY, Cho SO: Unconventional method for morphology-controlled carbonaceous nanoarrays based on electron irradiation of a polystyrene colloidal monolayer. ACS Nano 2008, 2:1108.

18. Novembre AE, Tai WM, Komatani JM, Hanson JE, Nakamatsu O, Taylor ON, Reichmanis E, Thompson LF: Radiation-induced chemistry of poly[4-dimethylaminostyrene-co-sulfur dioxide]. Chem Mater 1992, 4:278.

19. Lee HW, Kim YN, Kim BH, Kim SO, Cho SO: Fabrication of luminescent nanoarchitectures by electron irradiation of polystyrene. Adv Mater 2008, 20:2094.

20. Davenas J, Bouteux G, Xu XL, Adem E: Role of the modifications induced by ion-beam irradiation in the optical and conducting properties of polyimide. Nucl Instrum Meth B 1988, 32:136.

21. Hicki T, Noda S, Sugira M, Kakeno M, Yamada K, Kawamoto J: Electrical and optical-properties of ion-irradiated organic polymer Kapton-H. Appl Phys Lett 1983, 43:30.

22. Al-Ibrahim M, Roth HK, Zhokhavets U, Gobsch G, Sensfuss S: Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene. Sol Energ Mat Sol C 2005, 85:13.

23. Morvillo P, Bobeico E: Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study. Sol Energ Mat Sol C 2008, 92:1192.

24. Bethune DS, Meijer G, Tang WC, Rosen HJ: The vibrational Raman-spectra of purified solid films of C-60 and C-70. Chem Phys Lett 1990, 174:219.

25. Dmytryenko OP, Kulish NP, Belyi NM, Poprescu LM, Vlase K, Taylor ON, Reichmanis E, Thompson LF: Radiation-induced chemistry of poly(4-dimethylaminostyrene-co-sulfur dioxide). Chem Mater 1992, 4:278.

26. Robinson APG, Palmer RB, Tada T, Karayama T, Precey JA, Philip D, Jonas U, Deiderich F: Electron beam induced fragmentation of fullerene derivatives. Chem Phys Lett 1998, 289:586.

27. Hunt MRC, Schmidt J, Palmer RE: Electron-beam-induced fragmentation in ultrathin C-60 films on Si(100)-2 x 1-H: mechanisms of cage destruction. Phys Rev B 1999, 60:5527.

28. Liu Z, Suemaga K, Ijima S: Imaging the structure of an individual C-60 fullerene molecule and its deformation process using HRTEM with atomic sensitivity. J Am Chem Soc 2007, 129:6666.

29. Cataldo F, Baratta GA, Strazzulla G, He+ ion bombardment of C-60 fullerene: an FT-IR and Raman study. Fuller Nanotub Car N 2002, 10:197.

30. Meinardi F, Palean A, Manfredini M, Milani P: Raman characterization of amorphous-carbon produced by fullerite laser-induced transformation. Solid State Commun 1995, 93:335.

31. Marchon B, Giu, J, Grannen K, Rauch GC, Ager JW, Silva SRP, Robertson J: Photoluminescence and Raman spectroscopy in hydrogenated carbon films. Jee T Magn 1997, 33:3148.

32. Cho SO, Lee BC, Jeong YU: Effects of beam loss on the stability of a recirculating electrostatic accelerator for a long-pulse free-electron laser. Nucl Instrum Meth A 2003, 515:402.