Mapping the Anthocyaninless (anl) Locus in Rapid-Cycling Brassica rapa (RBr) to Linkage Group R9

Carrie Burdzinski and Douglas L Wendell*

Abstract

Background: Anthocyanins are flavonoid pigments that are responsible for purple coloration in the stems and leaves of a variety of plant species. Anthocyaninless (anl) mutants of Brassica rapa fail to produce anthocyanin pigments. In rapid-cycling Brassica rapa, also known as Wisconsin Fast Plants, the anthocyaninless trait, also called non-purple stem, is widely used as a model recessive trait for teaching genetics. Although anthocyanin genes have been mapped in other plants such as Arabidopsis thaliana, the anl locus has not been mapped in any Brassica species.

Results: We tested primer pairs known to amplify microsatellites in Brassicas and identified 37 that amplified a product in rapid-cycling Brassica rapa. We then developed three-generation pedigrees to assess linkage between the microsatellite markers and anl. 22 of the markers that we tested were polymorphic in our crosses. Based on 177 F2 offspring, we identified three markers linked to anl with LOD scores ≥ 5.0, forming a linkage group spanning 46.9 cM. Because one of these markers has been assigned to a known B. rapa linkage group, we can now assign the anl locus to B. rapa linkage group R9.

Conclusion: This study is the first to identify the chromosomal location of an anthocyanin pigment gene among the Brassicas. It also connects a classical mutant frequently used in genetics education with molecular markers and a known chromosomal location.
ANTHOCYANINLESS1 (TAIR locus ANL1), responsible for anthocyanin production; ANTHOCYANINLESS2 (ANL2), a homeobox gene that affects anthocyanin distribution [9]; ANTHOCYANIN11 (TAIR locus AT1G12910), which contributes to anthocyanin production; TRANSPARENT TESTA 9 (TAIR locus TT9), which is involved in flavonoid biosynthesis, and three other pigmentation genes (TAIR loci AT1G56650, AT5G13930, and LAB).

Anthocyaninless mutants of rapid-cycling Brassica rapa (RBr), also known as Wisconsin Fast Plants, completely lack the purple coloration. (Wisconsin Fast Plants is a trademarked name, so we shall refer to them as RBr.) RBr are strains of Brassica bred for short life cycle, early flowering, and ease of cultivation, and are used in science education and research [10]. Absence of anthocyanin pigment in RBr is a recessive trait controlled by the anthocyaninless (anl) locus. The anthocyaninless trait, also called non-purple stem, makes an excellent model trait in monohybrid crosses in genetics education because the trait is easily scored and expressed at all stages of the life cycle [11]. In addition to its use in education, the B. rapa anthocyaninless phenotype has also been used as a marker to assess honey bee pollen deposition patterns [12] and to evaluate gene flow from transgenic plants into wild relatives [13].

RBr are a valuable tool for "hands on" genetics teaching. Cultivation is simple and inexpensive, and genetic crosses are easy to perform because they are self-incompatible for pollination. Many easily scored Mendelian traits have been identified including anthocyaninless, yellow-green (yellow-green coloration of all leaves), and hairless (lack of trichome on stems and leaves), to name a few. In addition to Mendelian traits, quantitative and polygenic traits have been identified including anthocyaninless, yellow-green (yellow-green coloration of all leaves), and hairless (lack of trichome on stems and leaves), to name a few. In addition to Mendelian traits, quantitative and polygenic traits have also been available. For example, in those plants that possesses a wild type ANL allele, the intensity of anthocyanin coloration is a quantitative trait described as purple anthocyanin (0–9) (Pan(0–9)), which is controlled by multiple modifying alleles [14,15]. Likewise, the trichome density, or "hairiness," is a quantitative trait affected by polygenic variation.

Despite these strengths, the RBr genetic repertoire lacks some important elements. All of the reported RBr mutations have been found to segregate independently of each other, so linkage analysis cannot be done with RBr. Also, none of the RBr loci used for education have been characterized at the molecular level. Therefore, we have sought to add such capabilities to RBr genetics, and our first step is to map the anl locus using molecular markers.

Although anthocyanin mutants are studied in Brassica and have been mapped in the related Arabidopsis, the anl locus has not been mapped in any Brassica species. In this study we create a microsatellite marker-based linkage map of anl in RBr. The linkage group may be integrated into known B. rapa linkage groups and used for comparative mapping among related species. Our findings open the door for experiments in linkage analysis and the use of molecular markers with RBr in science education.

Results

Microsatellite markers

We tested a total of 138 microsatellite markers for amplification and polymorphism in the RBr test population. Most (122 out of 138) were from B. rapa, but a few from other Brassica species were tested since the sequence homology between Brassicas in the U Triangle allowed for analysis of microsatellites first identified in B. napus, B. oleracea and B. nigra [16-18]. Of the 138 primer pairs tested, 37 amplified a product under our PCR conditions. Of these, 22 were polymorphic in our crosses (Table 1). We further tested these polymorphic microsatellites for linkage to anl.

F2 test population

We employed an inbred sib-pair design for genetic mapping, and chose plants for genotyping that would maximize the marker information obtained. Because rapid-cycling Brassica rapa strains are outbred, when a cross is conducted between two different strains, a given marker

Table 1: Microsatellite markers found to be polymorphic in RBr

Microsatellite	N	Alleles	Allele size (bp)
Bn9A	31	2	200–205
BRMS-006	26	3	120–225
BRMS-024 (b)	72	3	170–200
BRMS-032	69	2	240–350
BRMS-034	47	3	150–180
BRMS-037	24	2	150–200
BRMS-040	89	2	195–270
BRMS-042-2	69	3	220–240
BRMS-050	73	2	170–190
CAL-SSRLS-107	52	3	140–165
Na10-G10	14	2	135–220
Na12-H09	44	3	130–215
Ra2-A01	55	3	95–120
Ra2-D04	38	2	160–170
Ra2-E04	24	3	110–120
Ra2-E07	48	4	90–185
Ra2-G04	43	3	180–195
Ra2-G05	56	3	130–175
Ra2-G09	14	2	235–245
Ra2-D02B	14	2	275–290
Ra3-H09	24	2	110–120
Ra3-H10	50	2	140–185

*Number of informative F2 plants used to test linkage.

*Number of alleles observed among the 177 anl plants constituting the RBr F2 test population.

*Approximate allele sizes based on visual comparison to 100-bp ladder on non-denaturing polyacrylamide minigels.
may be polymorphic between some pairs of parental generation plants but not others. Even for markers that are polymorphic between strains, some alleles may be shared. Therefore, after we had identified microsatellite markers that were polymorphic in the Standard *Brassica rapa* strain (Table 1), we tested them for polymorphism in each of the parental generation mating pairs. From these, we chose six mating pairs that displayed polymorphism for at least one marker. F1 generation plants were grown and siblings were mated (inbred sib-pairs). The F1 sib-pairs were surveyed, and those exhibiting a high degree of marker heterozygosity were chosen for further analysis. These 44 F1 plants (22 F1 sib-pairs) produced 699 F2 plants, of which 177 (25.32%) were anthocyaninless. This ratio is consistent with monogenic inheritance of this recessive trait. The 177 anthocyaninless F2 plants constituted the RBr test population for determining linkage between *anl* and the 22 polymorphic microsatellites (Table 1). The use of the inbred sib-pair design allowed us to clearly distinguish whether microsatellite bands detected in the F2 generation were identical by descent or identical by state.

Linkage analysis and map construction

After we identified markers that were polymorphic in the parental generation, we evaluated each as a candidate for linkage to the *anl* locus, followed by more detailed linkage analysis of candidates. All primer pairs used for mapping produced bands that segregated from each other as alleles, thus verifying that the microsatellites are single locus products that are differentiated ~14.5 to 20.4 million years ago [25]. Therefore, after we had identified microsatellite markers flanking *anl* allows us to determine the chromosomal location of the *anthocyaninless* gene. *Br* has been mapped to a region near the center of the previously unmapped *R9* linkage group (Table 2) which we have referred to as *LG3* [21,22]). Thus, it can be inferred that both *anl* and the 22 polymorphic markers are present more than once in the *B. rapa* genome due to extensive intragenomic duplications [24]. Therefore, we refer to the locus that we have mapped as *BRMS-024b*.

Our data strongly indicate that a polymorphic microsatellite that is amplified with primers for *BRMS-024* [23] is part of the *anl* linkage group (Table 2) which we have shown to be a part of *Brassica rapa* linkage group R9 by virtue of its member *Bn9A*. However, *BRMS-024* has been found by others to belong to linkage group R1 (G. Teakle, personal communication). Given such results, it is likely that sequences that can be amplified with *BRMS-024* primers are present more than once in the *B. rapa* genome due to extensive intragenomic duplications [24]. Therefore, we refer to the locus that we have mapped as *BRMS-024b*.

Comparative mapping studies allow utilization of *B. rapa* map data in other crucifers. *B. rapa* and *Arabidopsis thaliana* are related by a common ancestor from which they differentiated ~14.5 to 20.4 million years ago [25]. Although markers may be twice as far apart in the larger *B.*
rapsa genome [22], the two species possess many regions with conserved organization; segments as large as 282.5 cM from the *B. rapa* map are observed in Arabidopsis [26]. A multination service to sequence the genomes of Brassica species is currently under way (Multinational Brassica Genome Project, 2007, http://www.brassica.info), including the sequencing of *B. rapa* linkage group R9 (Korean Brassica Genome Project, 2006, http://www.brassica-rapa.org). Linkage group R9, tentatively referred to as chromosome 5 [26], is now identified as cytogenetic Chr1 on the conserved boundaries on Chr1 (TAIR accession number 2010356) supports the idea that the orthologous anthocyanin pigment gene *AN1* on Arabidopsis Chr1 is located within a region that is conserved on *B. rapa* Chr1 (Korean Brassica Genome Project, 2006, http://www.brassica-rapa.org). Additionally, a small region just below the Bn9A locus on *B. rapa* Chr1 is located within a region that is conserved on Arabidopsis Chr1 (Korean Brassica Genome Project, 2006, http://www.brassica-rapa.org). While we cannot yet be certain that anl lies precisely within these conserved boundaries on *B. rapa* Chr1, the presence of the orthologous anthocyanin pigment gene *AN11* on Arabidopsis Chr1 (TAIR accession number 2010356) supports the idea that the Arabidopsis ortholog of anl is located within the conserved regions.

Conclusion

We have found the chromosomal location of the anl locus in RBr and identified three molecular markers linked to it. This linkage map of anl in *B. rapa* represents the first localization of an anthocyanin pigment gene in the Brassicas, and may be used for *B. rapa* map enhancement and comparative mapping of related species.

Methods

Polymerase chain reaction (PCR)

138 Brassica microsatellites and their PCR primer sequences were identified from published sources and primer pairs were produced by custom synthesis (Integrated DNA Technologies, Coralville, IA) (Table 3). Nucleotide sequences of primers were obtained from the Brassica microsatellite information exchange of the Multinational Brassica Genome Project web site http://www.brassica.info/ssr/SSRinfo.htm. All primer pairs were tested for ability to amplify a product from rapid-cycling Brassica *rapsa* DNA under a standard set of PCR conditions. PCR reactions were carried out as follows: 1X Accuprime II buffer (Invitrogen Corporation, Carlsbad, CA), 1.5 mM MgCl$_2$, 200 uM dNTPs, 0.05 U/ul Accuprime Taq DNA polymerase (Invitrogen), 40 ng Brassica *rapsa* DNA, 10 pmol forward primer and 10 pmol reverse primer in a total reaction volume of 10 ul. The PCR program was as follows: 94°C for 2 minutes; 24 cycles at 94°C for 30 seconds; 61°C for 1 minute; 72°C for 1 minute; finished at 72°C for 4 minutes.

DNA purification and quantitation

DNA was purified from frozen leaf tissue using Plant DNazol Reagent (Invitrogen) with the manufacturer’s recommended protocol, including the use of polyvinylpyrrolidone to remove polyphenolics. The concentration of DNA samples was assayed using Quant-iT PicoGreen Reagent (Invitrogen).

Microsatellite	Reference	Primer sequences*
Bn9A	[28]	GAGGCCATCCTAGCACAACAAG CAGTGAAGCAAGATGAGAT
Gel electrophoresis for genotyping

Microsatellite alleles were resolved by non-denaturing polyacrylamide gel electrophoresis. Most PCR products were resolved using minigels (Mini-Protein III (Bio-Rad Laboratories, Hercules, CA)) consisting of 8% acrylamide/bis (24:1) run at 150 V for 60 to 90 minutes. When marker alleles could not be resolved on minigels, they were resolved in large (18 cm) gels (Protein II (Bio-Rad Laboratories)) which consisted of 8% acrylamide/bis (19:1) run at 150 V for 1350 Volt-hours. Gels were stained with SYBR Green Stain (Invitrogen) and visualized with a Molecular Dynamics Storm 860 Scanner (GE Healthcare, Piscataway, NJ).

Genetic crosses and data analysis

Three-generation pedigrees were used to assess linkage between the anl locus and microsatellite markers. The rapid-cycling *Brassica rapa* for the parental generation were strains of Wisconsin Fast Plants obtained from Carolina Biological Supply Company (Burlington, North Carolina). The parental generation consisted of a true breeding anthocyaninless strain ("Non-Purple Stem, Hairless," catalog number 15-8812) and a true-breeding purple strain ("Standard Brassica rapa," catalog number 15-8804). One anthocyaninless and one purple plant constituted a mating pair. F1 sibling pairs were then crossed to produce the F2 generation.

Before genotyping families, microsatellite markers were screened for usefulness by testing each pair of primers for the ability to amplify a product and identify polymorphism in DNA of a panel of several Standard *Brassica rapa* plants. Each mating pair in the parental generation was then tested for polymorphism for those markers. When a given marker was found to be polymorphic in a pair of parental generation plants, their F1 progeny were genotyped for that marker. Finally, for each pair of mated F1 siblings in which a given marker was polymorphic and informative, their F2 generation offspring with anthocyaninless phenotype were genotyped for that marker. This inbred sib-pair mating design ensured that alleles from the F2 anthocyaninless test population could be traced to their parental generation ancestor, so that linkage phase for each marker and anl loci would be known.

For each marker that was polymorphic within a family, anthocyaninless F2 offspring were assigned a parental or recombinant designation for segregation between anl and the marker. The parental:recombinant ratio was then assessed for deviation from the expected 1:1 ratio for unlinked loci by the chi-square test. Markers presenting significant chi-square values (p < 0.05) were identified as candidates for linkage to anl, and two-point LOD analysis was performed between the marker and anl. Those markers with preliminary LOD scores greater than 3.0 were further analyzed with Mapmanager QTX (Kosambi map function, p < 0.05) to determine marker arrangements and multi-point LOD scores [19,27].

Competing interests

The author(s) declares that there are no competing interests.

Authors’ contributions

CB participated in the design of the study, carried out all breeding and genotyping, conducted analysis of the data, and drafted the manuscript. DW participated in the conception of the project and design of the study, assisted with analysis of the data, and edited the manuscript.

Both authors read and approved the final version of the manuscript.

Acknowledgements

This work was funded by the National Science Foundation Division of Undergraduate Education grant # 0340910 (USA). The authors are extremely grateful to G. Teakle for advice on data interpretation and for sharing data on the mapping of BRMS-024 prior to publication.

References

1. Dodd IC, Critchley C, Woodall GS, Stewart GR: Photoinhibition in different colored juvenile leaves of Syzgium species. Exp Bot 1998, 49:1437-1445.
2. Klaper R, Frankel S, Benenbaum MR: Anthocyanin content and UVB sensivity in Brassica rapa. Photochem Photobiol 1996, 63:811-813.
3. Barker DH, Seaton, GGR, Robinson SA: Internal and external photoprotection in developing leaves of the CAM plant Cotyledon orbiculata. Plant Cell Environ 1996, 20:617-620.
4. Hale KL, Tufari HA, Pickering Jl, George GN, Terry N, Plion M, Plion-Smits EAH: Anthocyanins facilitate tungsten accumulation in Brassica. Physiologia Plantarum 2002, 116:351-358.
5. Hale KL, McGrath SP, Lombi E, Stack SM, Terry N, Pickering Jl, George GN, Plion-Smits EAH: Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiology 2001, 126:351-358.
6. Mol JM, Jenkins GJ, Schafer E, Weiss D: Signal perception, transduction and gene expression involved in anthocyanin biosynthesis. Crit Rev Plant Sci 1996, 15:525-527.
7. Dobrovolskaya O, Arbusova VS, Lohwasser U, Roder MS, Bomer A: Microsatellite mapping of complementary genes for purple grain colour in bread wheat (Triticum aestivum L.). Euphytica 2006, 150:355-364.
8. Chaim AB, Borovsky Y, Dejong W, Paran I: Linkage of the A locus for the presence of anthocyanin and fs10,1, a major fruit-shape QTL in pepper. Theor Appl Genet 2003, 106:889-894.
9. Kubo H, Peeters AJM, Pereira A, Koornneef M: ANTHOCYAN INLESS2, a homeobox gene affecting anthocyanin distribution and root development in Arabidopsis. Plant Cell Environ 2006, 29:1217-1226.
10. Williams PH, Hill CB: Rapid-cycling populations of Brassica. Science 1986, 232:1385-1389.
11. Fast Plants Monohybrid Cross. [http://www.fastplants.org/]
12. Morris WF, Mangel M, Adler FR: Mechanisms of pollen deposition by insect pollinators. Evol Ecol 1995, 9:304-317.
13. Manasse R: Ecological risks of transgenic plants: effects of spatial dispersion on gene flow. Ecol Appl 1992, 2:421-438.
14. Goldman IL: Teaching recurrent selection in the classroom with Wisconsin Fastplants. HortTechnology 1999, 9(4):579-584.
15. The Rapid Cycling Brassica rapa Collection Catalog. [http://www.fastplants.org/activities.research.php?menu]
16. Plieseke J, Struss D: Microsatellite markers for genome analysis in Brassica. I. Development in Brassica napus and abundance in Brassicaceae species. Theor Appl Genet 2001, 102:689-694.
17. Saal B, Plieseke J, Hu J, Quiros CF, Struss D: Microsatellite markers for genome analysis in Brassica. II. Assignment of rapeseed microsatellites to the A and C genomes and genetic mapping in Brassica oleracea. Theor Appl Genet 2001, 102:695-699.
18. UN: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japan J Bot 1935, 7:389-452.
19. Manly K, Cudmore R, Meer J: Mapmanager QTX, cross-platform software for genetic mapping. Mamm Genome 2001, 12:930-932.
20. Kim JS, Chung TY, King GJ, Jin M, Yang TJ, Jin YM, Kim HI, Park BS: A sequence-tagged linkage map of Brassica rapa. Genetics 2006, 174:29-39.
21. Kole C, Kole P, Vogelzang, Osborn TC: Genetic linkage map of a Brassica rapa recombinant inbred population. J Heredity 1997, 88(6):553-557.
22. Teutonico RA, Osborn TC: Mapping of RFLP and qualitative trait loci in Brassica rapa and comparison to the linkage maps of B. napus, B. oleracea, and Arabidopsis thaliana. Theor Appl Genet 1994, 89:885-894.
23. Suwabe K, Iketani H, Nunome T, Kage T, Hirai M: Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 2002, 104:1092-1098.
24. Langercrantz U, Lydiate DJ: Comparative genome mapping in Brassica. Genetics 1996, 144:1903-1910.
25. Yang YW, Lai KN, Tai FY, Li VH: Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 1999, 48:597-604.
26. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S: Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 2006, 173:209-319.
27. Kosambi D: The estimation of map distance from recombination values. Ann Eugen 1944, 12:172-175.
28. Kresovich S, Szewc-McFadden AK, Biek SM, McFerson JR: Abundance and characterization of simple-sequence repeats (SSRs) isolated from a size-fractionated genomic library of Brassica napus L. (rapeseed). Theor Appl Genet 1995, 91:206-211.
29. Smith LB, King GJ: The distribution of BoCAL-a alleles in Brassica oleracea is consistent with a genetic model for curd development and domestication of the cauliflower. Molec Breeding 2000, 6:603-613.
30. Lowe AJ, Moule C, Trick M, Edwards KJ: Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 2004, 108:1103-1112.
31. Brassica Microsatellite Information Exchange. [http://www.brassica.info/ssr/SSRinfo.htm]