Saturation Recovery Myocardial T_1 Mapping with a Composite Radiofrequency Pulse on a 3T MR Imaging System

Kosuke Morita¹, Seitaro Oda²*, Daisuke Utsunomiya³, Takeshi Nakaura², Takatoshi Matsubara¹, Makoto Goto¹, Tomoyuki Okuaki³, Hideaki Yuki², Yasunori Nagayama³, Masafumi Kido³, Kenichiro Hirata², Yuij Iyama³, Narumi Taguchi², Masahiro Hatemura¹, Masahiro Hashida¹, and Yasuyuki Yamashita²

Purpose: To evaluate the effect of a composite radiofrequency (RF) pulse on saturation recovery (SR) myocardial T_1 mapping using a 3T MR system.

Materials and Methods: Phantom and in vivo studies were performed with a clinical 3T MR scanner. Accuracy and reproducibility of the SR T_1 mapping using conventional and composite RF pulses were first compared in phantom experiments. An in vivo study was performed of 10 healthy volunteers who were imaged with conventional and composite RF pulse methods twice each. In vivo reproducibility of myocardial T_1 value and the inter-segment variability were assessed.

Results: The phantom study revealed significant differences in the mean T_1 values between the two methods, and the reproducibility for the composite RF pulse was significantly smaller than that for the conventional RF pulse. For both methods, the correlations of the reference and measured T_1 values were excellent ($r^2 = 0.97$ and 0.98 for conventional and composite RF pulses, respectively). The in vivo study showed that the mean T_1 value for composite RF pulse was slightly lower than that for conventional RF pulse, but this difference was not significant ($P = 0.06$). The inter-segment variability for the composite RF pulse was significantly smaller than that for conventional RF pulse ($P < 0.01$). Inter-scan correlations of T_1 measurements of the first and second scans were highly and weakly correlated to composite RF pulses ($r = 0.83$ and 0.29, respectively).

Conclusion: SR T_1 mapping using composite RF pulse provides accurate quantification of T_1 values and can lessen measurement variability and enable reproducible T_1 measurements.

Keywords: myocardial T_1 mapping, saturation recovery, composite radio-frequency pulse, reproducibility, 3T magnetic resonance

Introduction

Myocardial T_1 mapping has garnered increasing attention as a basic tool for cardiac MR imaging in the research and clinical settings, as it holds promise as a method for scanner-independent T_1 contrast and provides useful quantitative tissue information. Measurement of myocardial T_1 relaxation times using T_1 mapping is potentially useful for the detection of interstitial expansion due to myocardial edema, fibrosis, and deposition of protein and other T_1-altering substances, such as lipids and iron (hemorrhage, siderosis).

Late gadolinium enhancement imaging is an advancement of T_1-weighted imaging that allows the operator to select and nullify “normal” tissue to exaggerate the signal from any tissue with a different T_1 values, thus identifying focally abnormal regions of fibrosis, edema, and amyloid. Meanwhile, myocardial T_1 mapping requires quantification of the exact T_1 of the myocardium. Different tissues have specific ranges of T_1 signals (measured in ms) at a particular magnetic field strength that can be used to detect pathology.

Several T_1 mapping techniques using different acquisition schemes have been proposed to sample T_1 recovery information.
signals. Multiple images with different T_1-weighting are generally acquired for quantitative T_1 estimates using a model of the T_1 recovery signal. Inversion recovery (IR) sequences using look-locker techniques, such as modified look-locker IR (MOLLI)\(^6\)\(^,\)\(^7\) and related variants (e.g., shortened MOLLI [ShMOLLI])\(^8\)\(^,\)\(^9\) are commonly used for T_1 mapping and saturation recovery (SR) sequences are available.\(^\text{10}\) The most assessed T_1-mapping sequences are MOLLI and ShMOLLI. Although IR T_1 mapping sequences are sensitive to extreme heart rate values and tend to underestimate the true T_1 value, these methods allow highly reproducible T_1 mapping of the heart with high levels of intra- and inter-observer agreement.\(^\text{11-12}\) SR methods can overcome the limitations of IR sequences that underestimate myocardial T_1 values and yield high accuracy and reproducibility,\(^\text{12-15}\) but require high performance saturation pulses, particularly with a high-field (e.g., 3T) MR system. Poor saturation performance results in errors in calculated myocardial T_1 values. Our group recently optimized the SR T_1 mapping technique using a composite radiofrequency (RF) pulse\(^\text{16}\) to obtain high saturation efficiency and accurate myocardial T_1 values. The purpose of the present study was to evaluate the effect of a composite RF pulse on SR myocardial T_1 mapping using a 3T MR system.

Materials and Methods

MR experiments

All studies were performed with a clinical 3T MR scanner (Achieva 3.0T X-series TX, Koninklijke Philips N.V., Amsterdam, the Netherlands) equipped with a 32-channel torso cardiac coil using a conventional multishot SR method. The SR T_1 mapping sequence in this study was based on two image acquisitions (short- and long-saturation time delay [TD] images), as described previously.\(^\text{15}\) Scanning parameters of 2D turbo field echo using the SR method with conventional and composite RF pulses were as follows: repetition time/echo time = shortest/shortest; slice thickness = 8.0 mm; number of slices = 1, field-of-view = 36 × 36 cm\(^2\); acquisition matrix = 128 × 128 (reconstruction matrix = 256 × 256); number of signal averages = 1; SENSE factor = 2.0; and saturation TD = approximately 5000 and 500 ms, with an electrocardiogram trigger and breath holding (only in vivo studies). T_1 can be calculated pixel-wise by dividing the short saturation TD image ($I_{TD\text{ short}}$) by the long saturation TD image ($I_{TD\text{ long}}$) to correct for the unknown longitudinal magnetization (M_0) and then solving the Bloch equation governing T_1 relaxation describing the ideal SR experiment, as follows:

$$[I_{TD\text{ short}} = M_0 (1 - e^{-TD/T_1})] / (I_{TD\text{ long}} = M_0)$$

$$= (I - e^{-TD/T_1}) T_1 = -TD / \log (I - I_{TD\text{ short}} / I_{TD\text{ long}})$$

Conventional and composite RF pulse schemes are shown in Figs. 1 and 2. Composite RF pulse-designed water suppression was enhanced through T_1 effects (WET). The WET pre-saturation pulse used in this study applied a four-pulse saturation train that was modified from the WET saturation scheme originally used for spectroscopy.\(^\text{17}\) Previous articles demonstrated that this four-pulse scheme achieved better water suppression than conventional three-pulse chemical shift selective (CHESS) saturation schemes over a wide range of T_1 values and B_1 inhomogeneities.\(^\text{18}\) To obtain optimal water suppression over a wide range of B_1 fields, a series of numerical simulations of the WET sequence were performed using the following description to minimize residual magnetization (M_0) under large B_1 and T_1 ranges:

Fig. 1 Saturation recovery T_1 mapping sequence with conventional and composite radiofrequency (RF) pulses. Short and long saturation time delay images using a 2D turbo field echo readout. A composite RF pulse applied a four-pulse train to saturate magnetization uniformly and yielded more accurate and reproducible T_1 measurements on a high-field 3T MRI system. TD, time delay; TFE, turbo field echo.

Fig. 2 Pulse sequence diagrams for the saturation recovery T_1 mapping sequence with composite radiofrequency (RF) pulse. The composite RF pulse consists of specified non-selective four hard pulses. The angles of these four pulses, a_1, a_2, a_3, and a_4 are used 72, 92, 126, and 193 degrees, respectively.
Saturation Recovery Myocardial T1 Mapping

\[M_R(n) = M_0 \left\{ (1 - e^{-\frac{TR}{T_1}})e^{-\frac{t}{T_1}} \cos \theta_1 \cos \theta_2 \ldots \cos \theta_n + \right. \\
\left. (1 - e^{-\frac{t}{T_1}})(e^{-(n-1)\frac{t}{T_1}} \cos \theta_2 \cos \theta_3 \ldots \cos \theta_n + \right. \\
\left. \ldots + e^{-\frac{t}{T_1}} \cos \theta_n + 1)^{19} \right\} \\
\]

where \(M_0 \) is the equilibrium magnetization, \(n \) is the number of applied suppression pulses, \(\theta_n \) is the flip angle of the \(n \)th RF pulse, and \(TR \) is the overall repetition time. This approximation of the residual magnetization assumes complete dephasing of the spins between pulses and localized instantaneous RF pulses.\(^{20}\) Using a proprietary software program (PRIDE software, Philips Healthcare, Eindhoven, the Netherlands), myocardial T1 maps were created with an automated image registration technique.

Phantom study

A phantom that contained eight cylindrical phantoms with different T1 and T2 values (\(T_1 = 230–1900 \) ms; \(T_2 = 40–110 \) ms) was used for comparisons of the T1 mapping methods. T1 reference values for the phantoms were determined using the gold standard IR spin echo sequence. Scanning parameters of IR spin echo sequence were as follows: repetition time/echo time = 10000/13 ms; slice thickness = 5.0 mm; number of slices = 1; field-of-view = \(20 \times 20 \) cm\(^2\); acquisition matrix = \(192 \times 192 \); and inversion time = 100, 200, 400, 800, 1000, 1500, and 2000 ms. T1 value was determined three times, and the average value of the three measurements was taken as the T1 reference value. Each of the SR T1 maps with conventional and composite RF pulses was acquired 10 times. Mean T1 values were measured in the regions of interest (ROI) on each T1 map. A ROI of at least 80% of the whole area was drawn on the center of the cylindrical phantoms.

In vivo study

Ten healthy volunteers (eight men and two women, age, 31.4 ± 7.9 years; range, 25–52 years) with no prior cardiac history or symptoms of cardiovascular disease or known cardiac risk factors, and not taking cardiovascular medications and with normal electrocardiography findings were enrolled in this study. Informed consent was obtained from all volunteers and the study protocol was approved by our institutional review board. Both SR T1 mapping methods with conventional and composite RF pulses were performed two times each for all volunteers. On mid-ventricular short-axis T1 map images, the myocardium in each segment (anterior, septal, lateral, and inferior segments) was manually contoured (Fig. 3).

Statistical analysis

All numeric values are reported as the mean ± standard deviation (SD). Differences in the mean values between the two methods with normally and non-normally distributed data were determined with the two-tailed independent \(t \)-test and the Mann–Whitney \(U \)-test, respectively. Correlations between the reference and measured T1 values in the phantom study, and inter-scan correlations determined in the in-vivo study were assessed using the Pearson correlation or Spearman coefficient. The concordance correlation coefficient was used to explore the inter-scan agreement of the two methods. The root mean square error (RMSE) among reference T1, composite RF pulse, and conventional RF pulse was calculated to evaluate the accuracy of each method. A Bland–Altman analysis was also used to compare the agreement of the first and second measurements for each method in the in-vivo study. To assess the inter-scan variability of the T1 measurements, SD between the T1 values over each myocardial segment for the conventional and composite RF pulse methods for in-vivo study were compared using the Levene test. A difference with a probability (\(P \)) value of < 0.05 was considered statistically significant. We used softwares for statistical analyses (MedCalc, MedCalc Software, Mariakerke, Belgium, JMP software, SAS Institute, Cary, NC, USA).

Results

Phantom study

The mean T1 values and SD of the measured T1 values for conventional and composite RF pulses are shown in Table 1. There were significant differences in the mean T1 values of the vials except for vial no. 1 (reference T1 value = 290 ms). SD of the measured T1 values for the each vial of the composite RF pulse was statistically significantly smaller than that for conventional RF pulses except for vial no. 1 (reference T1 value = 290 ms) (Fig. 4). SD of the measured T1 values for the composite RF pulse was less than 10 ms. On the other hand, that of the conventional RF pulses was larger, particularly with higher T1 values. SD was more than 140 ms.
in vial number 6 (reference T₁ value = 1180 ms), 7 (1333 ms), and 8 (1797 ms). For both methods, the correlations of the reference and measured T₁ values were excellent (r² = 0.97, P < 0.01 [conventional RF pulse], and r² = 0.98, P < 0.01 [composite RF pulse]). The composite RF pulse method showed the smaller values of RMSE than those of conventional RF pulse method (41.9 ms vs. 146.9 ms).

In vivo study

The mean T₁ value for the composite RF pulses was slightly lower than that for the conventional RF pulses, but this difference was not significant (1415 ± 35.6 ms vs. 1456 ± 51.6 ms, P = 0.06). The inter-segment variability for the composite RF pulses was significantly smaller than that for conventional RF pulses (44.5 ± 21.4 vs. 72.8 ± 29.2 ms, P < 0.01) (Fig. 5). Correlation coefficients (r) and concordance correlation coefficient (ρc) for the inter-scan agreement were 0.29 (P = 0.41) and 0.28, respectively, for the conventional RF pulse and 0.83 (P < 0.01) and 0.64, respectively, for composite RF pulse. Inter-scan comparisons showed a lower Bland–Altman limit of agreement with the composite RF pulse (mean difference, −26.5 ms; 95% limit of agreement, −70.0–17.0 ms; coefficient of repeatability, 66.3) than with the conventional RF pulse (9.9 ms; −140.9–160.7 ms; 144.3) (Fig. 6).

Discussion

Our phantom study demonstrated that myocardial T₁ mapping with the SR method using composite RF pulses yielded more accurate and less variable measurements for a wide range of T₁ values as compared with the conventional RF pulse method. Meanwhile, the results of our *in-vivo* study...
Saturation Recovery Myocardial T₁ Mapping

![Fig. 6 Bland–Altman analysis of the T₁ measurements for the composite radiofrequency (RF) pulse methods. The lower Bland–Altman limit of agreement was with the composite RF pulse method. SD, standard deviation.](image)

showed that use of composite RF pulses significantly reduce inter-segment variability of T₁ values with excellent inter-scan correlations.

Myocardial T₁ values are altered in various disease states due to increased water content or other changes to the local molecular environment. Changes in myocardial T₁ values are considered important biomarkers. Characterization of the T₁ values of myocardial tissue may be used to detect and assess various cardiac diseases and have been shown to convey important prognostic significance.\(^1,2\) Furthermore, T₁ mapping has the potential to detect and quantify various cardiac diseases at early stages of disease.\(^1,2\)

Multiple approaches are currently available to obtain myocardial T₁ values, including IR and SR sequences. However, the collection of further information regarding the accuracy, precision, and reproducibility of the different approaches is crucial to reach consensus.\(^2\) Roujol et al.\(^12\) compared the accuracy, precision, and reproducibility of IR methods (MOLLI and ShMOLLI), the SR method (saturation recovery single-shot acquisition [SASHA]), and a combined method (saturation pulse prepared heart rate independent IR [SAPPHIRE]) for myocardial T₁ mapping, and reported that SASHA and SAPPHIRE yielded higher accuracy, lower precision, and similar reproducibility as MOLLI and ShMOLLI for T₁ measurements. They also found that MOLLI and ShMOLLI led to an underestimation of myocardial, particularly with higher T₁ values. Other studies identified several factors affecting MOLLI measurements, including T₂-dependence, the magnetization transfer effect, flow, motion, and dependence on the inversion efficiency.\(^12,13,23\) SR sequences yielded excellent accuracy for a wide range of T₁ values that are less sensitive to the magnetization transfer effect as well as other factors.\(^12\) SR techniques are, however, noisier and somewhat more artifact prone because of non-ideal saturation efficiency at this point in time. The SR sequence with composite RF pulse applied in our study is a newly developed SR acquisition method for T₁ mapping. Using composite RF pulses as pre-saturation pulses, saturated magnetization is uniform and yields more accurate and reproducible T₁ measurements with a high-field 3T MR system. Our SR T₁ mapping sequence with a composite RF pulse is based on only two images, short and long TD images, whereas MOLLI acquires 11 images with different inversion times during 17 heartbeats and requires a relatively long breath-hold duration. SASHA also consists of 10 images acquired over consecutive heartbeats.\(^10\) Unlike MOLLI and SASHA, our method is inherently insensitive to heart rate and rhythm conditions\(^15\) and has less misregistration of post-processed T₁ map images caused by breathing, patient movement, and mistriggering. Furthermore, while MOLLI and SASHA are a commercial or research application, our SR T₁ mapping sequence consist of commonly-used pulse sequences that do not require a commercial application.

Composite saturation pulses composed of trains of shaped RF pulses with mathematically optimized flip angles have been designed for several different ranges of B₀ and B₁ scale factors. For instance, enhanced water suppression has been achieved over narrow ranges of B₀ and B₁ for MR spectroscopy at 1.5-T\(^17\) and optimized composite pulses have been employed for wide B₀/B₁ ranges at 7.0-T system.\(^24\) Composite saturation pulses with flip angles optimized for high performance over B₀ and B₁ ranges expected at 3T systems have also been investigated in-vivo.\(^25,26\) However, the maximum residual longitudinal magnetization of more than 8% of this design may be a significant cause of error when applied to quantitative imaging sequences. Chow et al.\(^14\) optimized composite saturation pulses for quantitative SR T₁ mapping for 1.5-T and 3T systems, and achieved absolute residual longitudinal magnetization of less than 1% in phantom experiments, enabling greater accuracy in quantitative SR T₁ imaging. In accordance with our findings, they concluded that optimized composite saturation pulses can minimize errors in quantitative SR T₁ mapping. In our phantom results, T₁ measurement variability for composite RF pulse was significantly smaller than that for conventional RF pulses except for short T₁ value object (vial no. 1, reference T₁ value = 290 ms). It can be assumed that the signals fully recover with short delay time regardless of the type of saturation pulse in short T₁ objects. Meanwhile, the signals can vary during signal recovery process in long T₁ objects unless they are high performance saturation pulses.

There were some limitations to our study that should be addressed. First, the study cohort included a small number of volunteers; thus, our proposed techniques must be rigorously evaluated in large-scale clinical investigations. Second, the volunteers were limited to relatively young healthy adults, while in actual clinical practice, patients demonstrate a wide range of pathologic myocardial T₁ values and greater variability in body size, heart rates, and motion artifacts, as
compared with healthy volunteers, which may affect the results. Third, while post-contrast T_1 mapping and extracellular volume (ECV) measurements are useful for the detection of diffuse interstitial fibrosis27 and provide interesting insights into various cardiac diseases,1,21 we did not perform post-contrast T_1 mapping and did not assess the ECV. To address these issues, studies are underway to determine whether SR T_1 mapping with composite RF pulses convey additional advantages for ECV measurements. Fourth, although the composite RF pulse method lessens the measurement variability, a possibility cannot be denied that the real T_1 variability becomes obscure. Regional differences in native myocardial T_1 values for healthy adult in MOLLI sequences have been previously reported; the native T_1 values were longer in the left ventricular septum vs. lateral wall.28 B_0 inhomogeneities and motion artifacts in the lateral wall may affect the regional differences in native myocardial T_1 values. Although SR T_1 mapping using composite RF pulse may lessen the regional differences in native myocardial T_1 values by the better B_0 inhomogeneities and higher temporal resolution, further investigations are needed to confirm this issue. Fifth, we did not compare our SR T_1 mapping method to the MOLLI method, which is the most common T_1 mapping sequence. Therefore, further studies comparing these T_1 mapping methods are required. Finally, different results may be obtained if different MR systems are used because myocardial T_1 values are variable between the systems and sequences.

In conclusion, the proposed T_1 mapping with the SR method using composite RF pulse provides accurate quantification of myocardial T_1 values and can lessen measurement variability and enable reproducible myocardial T_1 measurements when compared to the use of conventional RF pulse.

Conflicts of Interest

Tomoyuki Okuaki is an employee of Philips Ltd. The other authors declare no conflicts of interest in regard to the products under investigation or the subject matter discussed in this manuscript.

References

1. Bulluck H, Maestri V, Rosmini S, et al. Myocardial T_1 mapping. Circ J 2015; 79:487–494.
2. Dall’Armellina E, Piechnik SK, Ferreira VM, et al. Cardiovascular magnetic resonance by non contrast T_1-mapping allows assessment of severity of injury in acute myocardial infarction. J Cardiovasc Magn Reson 2012; 14:15.
3. Rogers T, Dabir D, Mahmoud I, et al. Standardization of T_1 measurements with MOLLI in differentiation between health and disease—the ConSept study. J Cardiovasc Magn Reson 2013; 15:78.
4. Ferreira VM, Piechnik SK, Dall’Armellina E, et al. Non-contrast T_1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T_2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 2012; 14:42.
5. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 2011; 57:891–903.
6. Messroghli DR, Greiser A, Fröhlich M, Dietz R, Schulz-Menger J. Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T_1 mapping of the heart. J Magn Reson Imaging 2007; 26:1081–1086.
7. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-Locker inversion recovery (MOLLI) for high-resolution T_1 mapping of the heart. Magn Reson Med 2004; 52:141–146.
8. Piechnik SK, Ferreira VM, Lewandowski AJ, et al. Normal variation of magnetic resonance T_1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 2013; 15:13.
9. Piechnik SK, Ferreira VM, Dall’Armellina E, et al. Shortened Modified Look-Locker Inversion recovery (ShMOLLI) for clinical myocardial T_1-mapping at 1.5 and 3 T within a 9 heartbeat breathhold. J Cardiovasc Magn Reson 2010; 12:69.
10. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T_1 mapping. Magn Reson Med 2014; 71:2082–2095.
11. Messroghli DR, Plein S, Higgins DM, et al. Human myocardium: single-breath-hold MRTT_1 mapping with high spatial resolution—reproducibility study. Radiology 2006; 238:1004–1012.
12. Roujol S, Weingärtner S, Foppa M, et al. reproducibility of four T_1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 2014; 272:683–689.
13. Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S. T_1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 2013; 70:664–670.
14. Chow K, Killman P, Spottiswoode BS, et al. Saturation pulse design for quantitative myocardial T_1 mapping. J Cardiovasc Magn Reson 2015; 17:84.
15. Fitts M, Breton E, Khlovomsky EG, et al. Arrhythmia insensitive rapid cardiac T_1 mapping pulse sequence. Magn Reson Med 2013; 70:1274–1282.
16. Morita K, Utsunomiya D, Oda S, et al. Myocardial T_1 mapping with a saturation recovery method using composite RF pulse - preliminary study. In: Proceedings of the Joint Annual Meeting ISMRM-ESMRMB, Milan, Italy, 2014; 2451.
17. Ogg RJ, Kingsley PB, Taylor JS. WET, a T_1- and B_0-insensitive water-suppression method for in vivo localized 1H NMR spectroscopy. J Magn Reson B 1994; 104:1–10.
18. Frahm J, Bruhn H, Gungell ML, Merboldt KD, Hänicke W, Sauter R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 1989; 9:79–93.
19. Zhang W, Silva AC, Williams DS, Koretsky AP. NMR measurement of perfusion using arterial spin labeling.
without saturation of macromolecular spins. Magn Reson Med 1995; 33:370–376.
20. Golay X, Petersen ET, Hui F. Pulsed star labeling of arterial regions (PULSAR): a robust regional perfusion technique for high field imaging. Magn Reson Med 2005; 53:15–21.
21. Hamlin SA, Henry TS, Little BP, Lerakis S, Stillman AE. Mapping the future of cardiac MR imaging: case-based review of T_1 and T_2 mapping techniques. Radiographics 2014; 34:1594–1611.
22. Moon JC, Messroghli DR, Kellman P, et al. Myocardial T_1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 2013; 15:92.
23. Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T_1 mapping. Magn Reson Med 2014; 71:1428–1434.
24. Tao Y, Hess AT, Keith GA, et al. Optimized saturation pulse train for human first-pass myocardial perfusion imaging at 7T. Magn Reson Med 2015; 73:1450–1456.
25. Sung K, Nayak KS. Design and use of tailored hard-pulse trains for uniformed saturation of myocardium at 3 Tesla. Magn Reson Med 2008; 60:997–1002.
26. Kim D, Gonen O, Oesingmann N, Axel L. Comparison of the effectiveness of saturation pulses in the heart at 3T. Magn Reson Med 2008; 59:209–215.
27. Ugander M, Oki AJ, Hsu IY, et al. Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 2012; 33:1268–1278.
28. Rauhalammi SM, Mangion K, Barrientos PH, et al. Native myocardial longitudinal (T_1) relaxation time: Regional, age, and sex associations in the healthy adult heart. J Magn Reson Imaging 2016; 44:541–548.