Safety and Utility of Single-Session Endoscopic Ultrasonography and Endoscopic Retrograde Cholangiopancreatography for the Evaluation of Pancreatobiliary Diseases

Kazumichi Kawakubo, Hiroshi Kawakami, Masaki Kuwatani, Shin Haba, Taiki Kudo, Yoko Abe, Shuhei Kawahata, Manabu Onodera, Nobuyuki Ehira, Hiroaki Yamato, Kazunori Eto, and Naoya Sakamoto

Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Japan

Endoscopic ultrasound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) are essential for diagnosing and treating pancreatobiliary diseases. Single-session EUS and ERCP are considered to be essential in reducing the duration of hospital stays; however, complications are a primary concern. The aim of this study was to evaluate the safety and efficacy of single-session EUS and ERCP. Sixty-eight patients underwent single-session EUS and ERCP at a tertiary referral center between June 2008 and December 2012. We retrospectively reviewed patient data from a prospectively maintained EUS-ERCP database and evaluated the procedural characteristics and complications. Thirty-eight patients (56%) underwent diagnostic EUS, and 30 patients (44%) underwent EUS fine-needle aspiration, which had an overall accuracy of 100%. Sixty patients (89%) underwent therapeutic ERCP, whereas the remaining eight procedures were diagnostic. Thirteen patients underwent biliary stone extraction, and 48 underwent biliary drainage. The median total procedural time was 75 minutes. Complications were observed in seven patients (10%). Six complications were post-ERCP pancreatitis, which were resolved using conservative management. One patient developed Mallory-Weiss syndrome, which required endoscopic hemostasis. No sedation-related cardiopulmonary complications were observed. Single-session EUS and ERCP provided accurate diagnosis and effective management with a minimal complication rate.

Key Words: Endoscopic retrograde cholangiopancreatography; Endoscopic ultrasound; Single-session procedure

INTRODUCTION

Both endoscopic ultrasonography (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) are required to evaluate and treat patients with pancreatobiliary diseases. ERCP is a well-established technique to evaluate and manage biliary obstructions, but it carries a risk of complications, such as post-ERCP pancreatitis, bleeding, and perforation. Therefore, ERCP is reserved mainly for therapeutic indications. EUS is a less-invasive modality and has high accuracy for diagnosing pancreatobiliary diseases such as biliary stones and pancreatic tumors. These two procedures can be performed during a single session under same anesthesia, but concern regarding their safety has been raised due to complications. However, a single session results in a reduction in hospital stay and avoidance of repeated sedation as compared to multiple sessions. Previous studies only evaluate the utility of single-session EUS and ERCP in a single setting. Therefore, we performed a retrospective analysis of patients with pancreatobiliary diseases who underwent single-session EUS and ERCP to evaluate their safety and efficacy in a variable setting.

CASE REPORT

We retrospectively reviewed data from a prospectively maintained database of patients who underwent single-session EUS with/without fine-needle aspiration (FNA) and ERCP at Hokkaido University Hospital between July 2008 and December 2012. The collected data included age, sex, indications for the procedure, primary diseases, endoscopic and clinical outcomes, procedural complications, and pathological findings if observed. This study was approved by the Institutional Review Board.
of Hokkaido University Hospital and was registered with the University Hospital Medical Information Network-Clinical Trial Registry (UMIN-CTR; number, UMIN000008409).

Written informed consent was obtained from all patients before the procedures. Combined EUS and ERCP were performed under conscious sedation using intravenous midazolam with fentanyl. Before 2009, EUS was performed with a radial echoendoscope (GF-UM2000 or GF-UE260; Olympus Medical Systems Co., Tokyo, Japan). After introduction of the linear echoendoscope (GF-UCT240-AL5; Olympus Medical Systems Co.) to our institution, we used either type of echoendoscope at the discretion of the endoscopist. Patients also underwent EUS-guided FNA (EchoTip Ultra, Cook-Japan, Tokyo, Japan; or Expect, Boston Scientific Japan, Tokyo, Japan) with rapid on-site cytology evaluation if necessary. Subsequent ERCP-related procedures were performed following EUS during the same session using a duodenoscope (JF-240, TJF-240, or TJF-260V; Olympus Medical Systems Co.). In patients who were using antithrombotic or antiplatelet agents, each procedure was performed according to the Japanese guidelines.12 After the procedure, patients were monitored at an inpatient unit in the same way as those who underwent ERCP alone. Procedural-related complications were classified and graded according to consensus criteria.13

A total of 1,519 ERCP and 1,559 EUS procedures were performed respectively at our institution. Among them, 68 patients (mean age, 69 years; 38 males and 30 females) underwent EUS and ERCP in a single session and were included in this study (Table 1). Diagnostic EUS was performed in 38 patients (linear EUS in 14 and radial EUS in 24) with a median procedure time of 32 minutes. EUS-FNA was performed in 30 patients (44%) (Table 2). The sensitivity and specificity of EUS-FNA for malignancy were 100% and 100%. Choledocholithiasis was confirmed in all patients with acute cholangitis. Bile duct cannulation following EUS was successful in all but one patient. Sixty patients underwent therapeutic ERCP, whereas the remaining eight were diagnostic procedures. Thirteen patients underwent endoscopic

Table 1. Patient Characteristics
Characteristic
No. of patients
Age, yr
Sex, male/female
Indicators for EUS
Indeterminate biliary stricture
Acute cholangitis
Other
Laboratory data
WBC/m^3
CRP, mg/dL
Total bilirubin, mg/dL
Amylase, IU/mL
Final diagnosis
Pancreatic cancer
Bile duct cancer
Gallbladder cancer
Ampullary cancer
Lymph node metastasis
Pancreatic neuroendocrine tumor
Intraductal papillary mucinous neoplasm
Autoimmune pancreatitis
Choledocholithiasis
Benign biliary stricture

Data are presented as number or median (interquartile range).

Table 2. Characteristics of the Procedures
Characteristic
Total procedure time, min
Diagnostic EUS
Linear/radial
Procedure time, min
EUS-FNA
Procedure time, min
Puncture site (pancreas/lymph node/bile duct)
Needle (19/22/25 gauge)
Sensitivity, %
Specificity, %
Accuracy, %
ERCP
Diagnostic/therapeutic
Biliary cannulation failure
Biliary stenting
Plastic stent/ENBD/SEMS
Stone extraction
Sphincterotomy
Procedure time, min
Sedative/analgesic agents
Midazolam, mg
Fentanyl, μg
Complications
Post-ERCP pancreatitis (mild/moderate/severe)
Pneumonia
Perforation
Mallory-Weiss syndrome

Data are presented as number (%) or median (interquartile range).

EUS, endoscopic ultrasonography; EUS-FNA, EUS-guided fine-needle aspiration; ERCP, endoscopic retrograde cholangiopancreatography; ENBD, endoscopic nasobiliary drainage; SEMS, self-expandable metallic stent.
sphincterotomy followed by stone extraction, whereas six pa-
tients underwent plastic stent placement due to severe chol-
angitis or were taking antithrombotic agents. Biliary drainage was
performed using self-expandable metallic stents in 12 patients,
plastic stents in 11, and nasobiliary drainage in 25.

Seven complications (10.3%; 95% confidence interval, 3.1
to 17.5) were observed. Six were post-ERCP pancreatitis. One
patient with bile duct carcinoma who underwent EUS-FNA for
lymph node and endoscopic nasobiliary drainage placement for
obstructive jaundice developed severe pancreatitis. Three pa-
tients were mild, and two patients were moderate, according to
the consensus criteria. All patients resolved with conservative
management. One patient developed Mallory-Weiss syndrome
1 day after the single-session procedure, which required endo-
scopic hemostasis. No severe cardiopulmonary complications or
deaths related to the combined procedure were observed.

DISCUSSION

We revealed that single-session EUS and ERCP were both
safe and effective for managing pancreaticobiliary disorder in a
variable setting. The combined procedure facilitated appropriate
patient management without severe complications and could be
considered a standard treatment that reduces hospital stay and
avoids unnecessary sedation.

It was necessary but sometimes difficult to distinguish be-
tween malignant and benign originating lesions in patients with
biliary obstructions. EUS has greater sensitivity for detecting
small pancreatic tumors or preoperative staging than computed
tomography, and improves the diagnosis of indeterminate bile
duct strictures without EUS-FNA. Therefore, identifying unre-
sectable malignant tumors by EUS in patients with a biliary ob-
struction may require a metallic stent rather than a plastic stent
due to the longer patency. Furthermore, if the presence of a
biliary stent interferes with preoperative staging of a pancreatic
head tumor by EUS, EUS should be performed before ERCP to
avoid unnecessary laparotomies. In this study, three patients
who did not have tumors following the EUS examination were
diagnosed with a benign biliary stricture, and were managed
successfully. Ascencce et al. also reported that benign biliary
strictures can be diagnosed and managed successfully by single-
session EUS-ERCP without FNA.

EUS-FNA has great sensitivity for detecting malignancy in
not only pancreatic tumors, but also biliary strictures. Identify-
ing a malignancy by EUS-FNA eliminates the need for bili-
ary brushing, the sensitivity of which is inferior to that of EUS-
FNA. Furthermore, because preoperative biliary drainage is not
necessary in patients with obstructive jaundice who undergo a
Whipple resection, positive cytology could avoid unnecessary
biliary stenting. Ross et al. reported that the combination of
EUS-FNA with ERCP for evaluation of patients with obstructive
jaundice from presumed pancreatic malignancy provides ac-
curate tissue diagnosis and biliary drainage. In this study, EUS-
FNA was performed in 30 patients; malignancy was detected in
all malignant diseases. Three patients without malignancy were
diagnosed with autoimmune pancreatitis and successfully man-
aged with steroid therapy. Furthermore, EUS-FNA immediately
after biliary stent placement was associated with a high rate of
inconclusive cytology; thus, EUS-FNA should be performed
before ERCP for a correct diagnosis. In patients with indeter-
minate biliary stricture, single-session EUS and ERCP would be
the most reasonable.

EUS is superior to other modalities for detecting biliary stones
and can avoid unnecessary ERCP in patients with suspected
biliary stone or biliary pancreatitis. Fabbri et al. reported
that single-session EUS and ERCP in patients at low risk of bili-
ary stones is safe and effective with reduced procedural time
and costs compared to performance in separate sessions. In our
study, 13 patients underwent EUS and ERCP with sphinctero-
tomy and stone extraction without complications, whereas the re-
main ing patients with severe cholangitis and/or those who were
taking antithrombotic agents underwent placement of a biliary
stent without sphincterotomy. One of the concerns regarding a
single-session procedure is total procedural time. However, Ben-
jaminov et al. reported that separate EUS and ERCP sessions for
symptomatic choledocholithiasis expose the patient to a higher
risk of cholangitis as compared to a single-session procedure.
Stone extraction in a single session is reasonable considering its
safety and decreased hospital stay. Therefore, single-session EUS
and ERCP would be the most useful for patients with cholangitis
in whom choledocholithiasis could not be confirmed by other
imaging modalities.

The advantage of single-session EUS and ERCP as com-
pared to a separate session is expedited patient management,
shortening of the hospital stay, reduced cost and avoidance of
repeated sedation. The major disadvantages of these proce-
dures are the long procedural time and the increase in intestinal
gas volume. However, previous studies of single-session EUS
and ERCP reported no severe complications. We observed
six cases of post-ERCP pancreatitis, all of which resolved with
conservative management. However, post-ERCP pancreatitis
is an inherent complication of ERCP and was not attributed to
the single-session procedure. We had experienced one Mallory-
Weiss syndrome, which was also one of the complications of
upper endoscopy. Iles-Shih et al. reported the safety of single-
session EUS and ERCP in elderly patients, with no more adverse
events than in nonelderly patients. Therefore, this disadvantage
does not preclude performance of both procedures in a single
session, considering their efficacy.

Our study had some limitations. First, it was of a retrospective
design conducted at a single center. Second, a single-session
procedure can be performed only by endoscopists experienced
in both EUS and ERCP. A single-session procedure is not the
standard. Third, we did not compare hospital stay duration and

Kawakubo K, et al: Single-Session EUS and ERCP

21 Iles-Shih et al. reported the safety of single-

7,10 The major disadvantages of these proce-
dures are the long procedural time and the increase in intestinal
gas volume.
the cost of a single-session procedure with those of separate sessions. Fourth, we could not evaluate the patients who could avoid unnecessary ERCP.

Our results show that single-session EUS and ERCP were safe and useful for management of pancreatobiliary diseases. However, development of a new therapeutic endoscope, using which both EUS and ERCP can be performed in a single-session without scope exchange, is necessary for the widespread acceptance of this combined procedure.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. Cotton PB, Garrow DA, Gallagher J, Romagnuolo J. Risk factors for complications after ERCP: a multivariate analysis of 11,497 procedures over 12 years. Gastrointest Endosc 2009;70:80-88.
2. DeWitt J, Devereaux B, Chriswell M, et al. Comparison of endoscopic ultrasonography and multidetector computed tomography for detecting and staging pancreatic cancer. Ann Intern Med 2004;141:753-763.
3. Liu CL, Fan ST, Lo CM, et al. Comparison of early endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography in the management of acute biliary pancreatitis: a prospective randomized study. Clin Gastroenterol Hepatol 2005;3:1238-1244.
4. Mergener K, Jowell PS, Branch MS, Baillie J. Pneumoperitoneum randomised study. Clin Gastroenterol Hepatol 2005;3:1238-1244.
5. DeWitt J, Devereaux B, Chriswell M, et al. Comparison of endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography (ERCP) performed immediately after EUS-guided fine needle aspiration. Gastrointest Endosc 1998;47:541-542.
6. Di Matteo F, Shimpi L, Gabbrielli A, et al. Same-day endoscopic retrograde cholangiopancreatography after transduodenal endoscopic ultrasound-guided needle aspiration: do we need to be cautious? Endoscopy 2006;38:1149-1151.
7. Benjaminov F, Stein A, Lichtman G, Pomerenz I, Konikoff FM. Consecutive versus separate sessions of endoscopic ultrasonound (EUS) and endoscopic retrograde cholangiopancreatography (ERCP) for symptomatic choledocholithiasis. Surg Endosc 2013;27:2117-2121.
8. Ross WA, Wasan SM, Evans DB, et al. Combined EUS with FNA and ERCP for the evaluation of patients with obstructive jaundice from presumed pancreatic malignancy. Gastrointest Endosc 2008;68:461-466.
9. Fabbri C, Poliferno AM, Luigiano C, et al. Single session versus separate session endoscopic ultrasonography plus endoscopic retrograde cholangiography in patients with low to moderate risk for choledocholithiasis. J Gastroenterol Hepatol 2009;24:1107-1112.
10. Ascunce G, Ribeiro A, Rocha-Lima C, et al. Single-session endoscopic ultrasonography and endoscopic retrograde cholangiopancreatography for evaluation of pancreaticobiliary disorders. Surg Endosc 2010;24:1447-1450.
11. Iles-Shih L, Hilden K, Adler DG. Combined ERCP and EUS in one session is safe in elderly patients when compared to non-elderly patients: outcomes in 206 combined procedures. Dig Dis Sci 2012;57:1949-1953.
12. Ogoshi K, Kaneko E, Tada M, et al. The management of anticoagulation and antiplatelet therapy for endoscopic procedures. Gastroenterol Endosc 2005;47:2691-2695.
13. Cotton PB, Lehman G, Vennes J, et al. Endoscopic sphincterotomy complications and their management: an attempt at consensus. Gastrointest Endosc 1991;37:381-393.
14. Cotton PB, Eisen GM, Aabakken L, et al. A lexicon for endoscopic adverse events: report of an ASGE workshop. Gastrointest Endosc 2010;71:446-454.
15. Lee JH, Salem R, Aslanian H, Chacho M, Topazian M. Endoscopic ultrasound and fine-needle aspiration of unexplained bile duct strictures. Am J Gastroenterol 2004;99:1069-1073.
16. Isayama Y, Yasuda I, Rozyawa S, et al. Results of a Japanese multicenter, randomized trial of endoscopic stenting for non-resectable pancreatic head cancer (JM-test): Covered Wallstent versus DoubleLayer stent. Dig Endosc 2011;23:310-315.
17. Fusaroli P, Manta R, Fedeli P, et al. The influence of endoscopic biliary stents on the accuracy of endoscopic ultrasound for pancreatic head cancer staging. Endoscopy 2007;39:813-817.
18. Haba S, Yamao K, Bhatia V, et al. Diagnostic ability and factors affecting accuracy of endoscopic ultrasound-guided fine needle aspiration for pancreatic solid lesions: Japanese large single center experience. J Gastroenterol 2013;48:973-981.
19. Olshima Y, Yasuda I, Kawakami H, et al. EUS-FNA for suspected malignant biliary strictures after negative endoscopic transpapillary brush cytology and forceps biopsy. J Gastroenterol 2011;46:921-928.
20. Oppong K, Raine D, Nayar M, Wadehra V, Ramakrishnan S, Charney RM. EUS-FNA versus biliary brushings and assessment of simultaneous performance in jaundiced patients with suspected malignant obstruction. JOP 2010;11:560-567.
21. van der Gaag NA, Rauws EA, van Eijck CH, et al. Preoperative biliary drainage for cancer of the head of the pancreas. N Engl J Med 2010;362:129-137.
22. Fisher JM, Gordon SR, Gardner TB. The impact of prior biliary stenting on the accuracy and complication rate of endoscopic ultrasound fine-needle aspiration for diagnosing pancreatic adenocarcinoma. Pancreas 2011;40:21-24.
23. Lee YT, Chan FK, Leung WK, et al. Comparison of EUS and ERCP in the investigation with suspected biliary obstruction caused by choledocholithiasis: a randomized study. Gastrointest Endosc 2008;67:660-668.
24. Kondo S, Isayama H, Akahane M, et al. Detection of common bile duct stones: comparison between endoscopic ultrasonography, magnetic resonance cholangiography, and helical-computed-tomographic cholangiography. Eur J Radiol 2005;54:271-275.