Dimension of the Moduli Space of curves with an involution.

Luis Fuentes García* Manuel Pedreira Pérez

Authors' address: Departamento de Algebra, Universidad de Santiago de Compostela. 15706 Santiago de Compostela. Galicia. Spain. e-mail: pedreira@zmat.usc.es; luisfg@usc.es

Abstract: Given a smooth curve X of genus g we compute the dimension of the family of curves C which have an involution over X. Moreover we distinguish when the curve C is hyperelliptic.

Mathematics Subject Classifications (1991): Primary, 14H10; secondary, 14H30, 14H37.

Key Words: Curves, involution.

Introduction. Let $\mathcal{M}_π$ be the Moduli of smooth curves of genus $π$. It is well known that a generic smooth curve $C ∈ \mathcal{M}_π$ with $π ≥ 3$ does not have nontrivial automorphism. In particular a generic smooth curve does not have involutions.

However, given a smooth curve X of genus g and a divisor $b ∈ \text{Div}(X)$ verifying that $2(b − K)$ is smooth we can construct a double cover $γ : C → X$, where C is a smooth curve of genus $π ≥ 2g − 1$. C is not generic because it has an involution induced by $γ$. Moreover, we can characterize the divisors b which provides double covers $γ : C → X$ with C hyperelliptic (see [2]). Thus if we denote by $C^g_π$ the family of curves of genus $π$ with an involution of genus g and by $\text{Ch}^g_π$ the family of hyperelliptic curves of genus $π$ with an involution of genus g, we have that:

$$\text{Ch}^g_π ⊂ C^g_π ⊂ \mathcal{M}_π.$$

In this paper we compute the dimension of $C^g_π$ and $\text{Ch}^g_π$. Let $r = 2(π − 1) − 4(g − 1)$. The main results are:

1. If $r ≥ 0$ then $\dim(C^g_π) = 2π − g − 1$. Moreover, the dimension of the family of curves with an involution over a hyperelliptic curve of genus g is $2π − 2g + 1$.

2. If $r < 0$ then $\dim(C^g_π) = \emptyset$.

*Supported by an F.P.U. fellowship of Spanish Government
3. If \(r = 0, 2, 4 \) then \(\dim(C_{\mathcal{H}^u}) = \pi \).

4. If \(r < 0 \) or \(r > 4 \) then \(C_{\mathcal{H}^u} = \emptyset \).

Moreover, we proof that \(C_{\mathcal{H}^u} = C_{\mathcal{H}^{\pi-g}} \). In fact we prove that given an
hyperelliptic curve \(C \) of genus \(\pi \geq 2 \), an involution of \(C \) of genus \(g \) composed
with the canonical involution provides an involution of genus \(\pi - g \).

1 Preliminaries.

Let \(C, X \) be two smooth curves of genus \(\pi \) and \(g \) respectively. Let \(\gamma : C \rightarrow X \)
be a double cover. We know the following facts (see \cite{2}):

1. \(\gamma_* \mathcal{O}_C \cong \mathcal{O}_X \oplus \mathcal{O}_X(K - b) = \mathcal{S}_b \) is a decomposable geometrically ruled
 surface over the curve \(X \). We call it canonical geometrically ruled surface. \(b \) is a nonspecial divisor on \(X \)
 verifying \(2b - 2K \sim B \), where \(B \) is the branch divisor. If \(X_0 \) is the curve of minimum self-intersection of \(S_b \)
 and \(X_1 \sim X_0 + (b - K)f \) then \(C \sim 2X_1 \). In particular \(C \in \langle 2X_0 + BF, 2X_1 \rangle \).

2. Conversely, let \(\mathcal{O}_X \oplus \mathcal{O}_X(K - b) \) be a decomposable geometrically ruled
 surface over the curve \(X \), such that \(2b - 2K \) is a smooth divisor. Then
 the generic curve \(C \) in the linear system \(|2X_1| \) is smooth and then we
 have a double cover \(C \rightarrow X \). Moreover, if \(C \in \langle 2X_0 + BF, 2X_1 \rangle \), with
 \(B \sim 2b - 2K \) then the branch divisor of the cover is \(B \).

In order to compute the dimension of the curves with an involution over a
fixed curve \(X \), we have to study when two curves in the linear system \(|2X_1| \) are
isomorphic. In this way we have the following proposition:

Proposition 1.1 Let \(X \) be a smooth curve of genus \(g \). Let \(b \) be a nonspecial
divisor of degree \(b \geq 2g - 2 \) defining a canonical ruled surface \(\mathcal{S}_b \). Let \(B \sim
2b - 2K \) be different points. Then, there is a unique curve \(C \in |2X_1| \) up to
isomorphism with a \(2 : 1 \) map \(\gamma : C \rightarrow X \) whose ramification points over \(X \)
are the points of \(B \).

Proof: We know that given a curve \(X_1 \in |X_0 + (b - K)f| \), a generic curve \(C \) of
the pencil \(L = \langle 2X_0 + BF, 2X_1 \rangle \) is a curve with an involution \(\gamma : C \rightarrow X \)
and ramification points at \(B \) (see Lemma 1.9 and Theorem 1.10 in \cite{3}). This curve
is invariant by the unique involution of \(\mathcal{S}_b \) that fixes the curves \(X_0 \) and \(X_1 \). In
this way, \(C \) meets each generator in two points and these points are related by
the involution.
Let C and C' be two curves of the pencil L. Let Pf be a generic generator. We can define an automorphism of S_b that fixes $X_0 \cap Pf$, $X_1 \cap Pf$ and takes a point of $C \cap Pf$ into a point of $C' \cap Pf$. If we consider the restriction of this automorphism to the pencil L we see that it takes C into C' and the two curves are isomorphic.

Now, let X_1 and X'_1 two irreducible curves of the linear system $|X_0 + (b - K)f|$. Since S_b is a decomposable ruled surface we can define an automorphism of S_b that takes X_1 into X'_1. In this way the curves of the pencils $L = \langle 2X_0 + Bf, 2X_1 \rangle$ and $L' = \langle 2X_0 + B'f, 2X'_1 \rangle$ are isomorphic and our claim follows.

2 Computing the dimensions.

Proposition 2.1 Let C^X_π be the family of smooth curves of genus $\pi \geq 1$ with an involution over a smooth curve X of genus $g > 0$. Let $r = 2(\pi - 1) - 4(g - 1)$.

1. If $r > 0$ then $\dim(C^X_\pi) = r - \dim(\text{Aut}(X))$.
2. If $r = 0$ then $\dim(C^X_\pi) = 0$.
3. If $r < 0$ then $C^X_\pi = \emptyset$.

Proof: Let C a smooth curve with an involution over the curve X of genus g. Let $\gamma : C \rightarrow X$ be the $2 : 1$ map. By Hurwitz Theorem we know that the map X has $r = 2(\pi - 1) - 4(g - 1)$ ramifications. If r is negative $C^X_\pi = \emptyset$.

1. Suppose that $r > 0$. Consider the following incidence variety:

$$J = \{(C, B) \in C^X_\pi \times U^r/C \text{ has an involution branched at } B \in X\}$$

where $U_r \subset S^rX$ are the open set of r unordered different points. We have two projection maps: $p : J \rightarrow C^X_\pi$ and $q : J \rightarrow U^r$.

Given a curve $C \in C^X_\pi$ there is a $2 : 1$ map $C \rightarrow X$ with r ramifications. From this, p is a surjection. Moreover, since $\pi > 1$ the group of automorphisms of C is finite, so there are a finite number of involutions of C over X. In this way we obtain a finite number of possible ramification points of X up to automorphisms of X. But if $g = 1$, $\dim(\text{Aut}(X)) = 1$ and $r \geq 1$ and if $g > 1$, $\dim(\text{Aut}(X)) = 0$. From this there is at most a finite number of automorphism fixing r generic points. Therefore, $\dim(p^{-1}(C)) = \dim(\text{Aut}(X))$.

On the other hand, given a set $\beta \in X$ of r different points we can take a divisor $b \in \text{Div}(X)$ such that $2b - 2K \sim \beta$. Let S_b be the corresponding
canonical ruled surface. By Proposition 1.1, there is a unique curve $C \in |2X_1| \subset S_b$ with an involution over X with branch points over the set β, so q is a surjection. Furthermore, we know that a curve C with an involution over the curve X lays on the linear system $|2X_1|$ of a canonical ruled surface. Since there are a finite number of divisors b satisfying $2b - 2K \sim b$ (see [2]), we see that $\dim(q^{-1}(C)) = 0$ and $\dim(J) = \dim(U^r) = r$.

Thus, we have:

$$\dim(C_X^\pi) = \dim(J) - \dim(p^{-1}(C)) = r - \dim(Aut(X)).$$

2. Suppose that $r = 0$. In this case there are not ramification points. Given a curve $C \in C_X^\pi$ we know that lays on the canonical system $|2X_1|$ of a canonical ruled surface S_b with $2b - 2K \sim 0$. All curves of this system are isomorphic (Proposition 1.1). Moreover, there are a finite number of divisors b verifying $2b \sim 2K$. Thus $\dim(C_X^\pi) = 0$.

Proposition 2.2 Let Ch_π^X be the family of smooth hyperelliptic curves of genus $\pi \geq 1$ with an involution over a smooth curve X of genus g. Let $r = 2(\pi - 1) - 4(g - 1)$. Then:

1. If X is neither elliptic nor hyperelliptic then $Ch_\pi^X = \emptyset$.

2. If X is elliptic or hyperelliptic then:

 (a) If $r > 4 (\pi > 2g + 1)$ or $r < 0 (\pi < 2g - 1)$ then $Ch_\pi^X = \emptyset$.

 (b) If $r = 4 (\pi = 2g + 1)$ then $\dim(Ch_\pi^X) = 2$

 (c) If $r = 2 (\pi = 2g)$ then $\dim(Ch_\pi^X) = 1$.

 (d) If $r = 0 (\pi = 2g - 1)$ then $\dim(Ch_\pi^X) = 0$.

Proof: We apply Theorem 3.6 of [2]. We see that $Ch_\pi^X = \emptyset$ except when X is elliptic or hyperelliptic and $r = 0, 2, 4$.

1. Suppose that $r = 2$ or $r = 4$. By Theorem 3.6 of [2], the branch divisor β verifies:

 (a) If X is hyperelliptic and $r = 4$ then $\beta \sim 2g_2^1$.

 (b) If X is elliptic and $r = 4$ then $\beta \sim a_1 + a_2 + a_3 + a_4$ with $a_1 + a_2 \sim a_3 + a_4$.

 (c) If X is hyperelliptic and $r = 2$ then $\beta \sim g_2^1$.

 (d) If X is elliptic and $r = 2$ then $\beta \sim a_1 + a_2$ for any $a_1, a_2 \in X$, $a_1 \neq a_2$.

4
Thus, if we consider the incidence variety:

$$J_h = \{(C, B) \in \text{Ch}^X_\pi \times U^r / C \text{ has an involution branched at } B \in X\}$$

in this case the projection map $q_h : J_h \longrightarrow U^r$ is not a surjection. In fact we have:

(a) If X is hyperelliptic and $r = 4$ then $\dim(\text{Im}(q_h)) = 2$.
(b) If X is elliptic and $r = 4$ then $\dim(\text{Im}(q_h)) = 3$.
(c) If X is hyperelliptic and $r = 2$ then $\dim(\text{Im}(q_h)) = 1$.
(d) If X is elliptic and $r = 2$ then $\dim(\text{Im}(q_h)) = 2$.

Now, reasoning as in the proposition above we obtain:

$$\dim(\text{Ch}^X_\pi) = \dim(J_h) - \dim(p^{-1}(C)) = \dim(\text{Im}(q_h)) - \dim(\text{Aut}(X)).$$

and the result follows.

2. Suppose that $r = 0$. By Theorem 3.6 of [2], $\text{Ch}^X_2 \neq \emptyset$ when X is elliptic or hyperelliptic and then $\dim(\text{Ch}^X_2) = 0$.

Proposition 2.3 Let C^g be the family of smooth curves of genus $\pi > 1$ with an involution over a curve of $g \geq 0$. Let $r = 2(\pi - 1) - 4(g - 1)$.

1. If $r > 0$ ($\pi > 2g - 1$) then $\dim(C^g) = r - \dim(\text{Aut}(X)) + \dim(M_g)$.
2. If $r = 0$ ($\pi = 2g - 1$) then $\dim(C^g) = \dim(M_g)$.
3. If $r < 0$ ($\pi < 2g - 1$) then $\dim(C^g) = 0$.

From this, $\dim(C^g) = 2\pi - g - 1$. Moreover, the dimension of the family of curves with an involution over a hyperelliptic curve of genus g is $2\pi - 2g + 1$.

Proof: Since a curve of genus $\pi > 1$ has at most a finite number of involutions, such curve only has involutions over a finite number of curves of genus g. Therefore, $\dim(C^g) = \dim(C^g_{\pi}) + \dim(M_g)$.

Moreover, we know that:

When $g = 0$ then $\dim(M_g) = 0$ and $\dim(\text{Aut}(X)) = 3$.

When $g = 1$ then $\dim(M_g) = 1$ and $\dim(\text{Aut}(X)) = 1$.

When $g > 1$ then $\dim(M_g) = 3(g - 1)$ and $\dim(\text{Aut}(X)) = 0$.

If $g \geq 2$ the dimension of the family of hyperelliptic curves of genus g is $\dim(C^g_2) = 2g - 1$.

5
We have supposed that \(\pi > 1 \) so \(r > 0 \) when \(g = 1 \) or \(g = 0 \). Now, applying Proposition 2.1 the result follows.

Proposition 2.4 Let \(C_h^g \) be the family of smooth hyperelliptic curves of genus \(\pi > 1 \) with an involution over a curve of \(g \geq 0 \). Let \(r = 2(\pi - 1) - 4(g - 1) \).

1. If \(r = 0, 2, 4 \) (\(\pi = 2g - 1, 2g, 2g + 1 \)) then \(\dim(C_h^g) = \pi \).

2. If \(r < 0 \) (\(\pi < 2g - 1 \)) or \(r > 4 \) (\(\pi > 2g + 1 \)) then \(C_h^g = \emptyset \).

Proof: Since a curve of genus \(\pi > 1 \) has at most a finite number of involutions, such curve only has involutions over a finite number of curves of genus \(g \). Therefore, \(\dim(C_h^g) = \dim(C_h^X) + \dim(C_0^g) \). Moreover, we know that \(\dim(C_0^g) = 2g - 1 \). Applying the Proposition 2.2 the result follows.

Remark 2.5 Note that the dimension of \(C_h^g \) does not depend of \(g \). The reason is that an involution of a hyperelliptic curve \(C \) of genus \(g \) provides an involution of genus \(\pi - g \), if we compose it with the canonical involution. We will study this situation in next section.

3 The hyperelliptic case.

Let \(C \) be an hyperelliptic curve of genus \(\pi \geq 2 \). \(C \) has a canonical involution defined by its unique \(\pi_2 \). We will denote it by \(\delta : C \rightarrow C \), with \(\delta(P) = \pi_2(P) \). Note that any automorphism \(\nu : C \rightarrow C \) of \(C \) verifies that \(\nu(\pi_2) = \pi_2 \), so it commutes with \(\delta \).

Let \(\sigma : C \rightarrow C \) be an involution of genus \(g \) and \(\gamma : C \rightarrow X \) the corresponding double cover. Let \(b \) the divisor of \(X \) such that \(\gamma_*\mathcal{O}_C \sim \mathcal{O}_X \oplus \mathcal{O}_X(\mathcal{K} - b) \).

Lemma 3.1 Let \(P \) be a point of \(C \). Then \(\delta(P) = \sigma(P) \) if and only if \(x = \gamma(P) \) is a base point of \(b \).

Proof: Let \(x = \gamma(P) \). Then \(\delta(P) = \sigma(P) \) if and only if \(\gamma^*(x) \sim \pi_2 \). But

\[
\gamma^*(x) \sim \pi_2 \iff h^0(\mathcal{O}_C(\mathcal{K}_C - \gamma^*(x))) = h^0(\mathcal{O}_C(\mathcal{K}_C)) - 1
\]

and

\[
h^0(\mathcal{O}_C(\mathcal{K}_C - \gamma^*(x))) = h^0(\mathcal{O}_{S_b}(X_0 + (b - x)f) = h^0(\mathcal{O}_X(\mathcal{K} - x)) + h^0(\mathcal{O}_X(b - x))
\]

\[
h^0(\mathcal{O}_C(\mathcal{K}_C)) = h^0(\mathcal{O}_{S_b}(X_0 + bf) = h^0(\mathcal{O}_X(\mathcal{K})) + h^0(\mathcal{O}_X(b))
\]

Because \(\mathcal{K}_X \) is base-point-free the conclusion follows.
Theorem 3.2 Let \(C \) an hyperelliptic curve of genus \(\pi \geq 2 \). Let \(\sigma : C \to C \) be an involution of genus \(g \). Then \(\delta \sigma \) is an involution of \(C \) of genus \(\pi - g \).

Proof: Note that \(\delta \sigma \) is an involution, because \(\sigma \) commutes with any automorphism of \(C \).

Let us study the ramifications points of \(\delta \sigma \). We have that \(\delta \sigma(P) = P \iff \sigma(P) = \delta(P) \). By Lemma 3.1, this happens when \(\gamma(x) \) is a base point of \(b \). Thus, the ramifications points of \(\delta \sigma \) are \(\{ \gamma^{-1}(x)/x \text{ is a base point of } b \} \). By Theorem 3.6 of [2] we know:

1. If \(\pi = 2g + 1 \), \(b = K + g_2^1 \) and \(b \) is base-point-free.
2. If \(\pi = 2g \), \(b = K + P \), with \(2P \sim g_2^1 \) and \(b \) has one base point.
3. If \(\pi = 2g - 1 \), \(b = \sum_{1}^{g-2} g_2^1 + P + Q \), with \(2P \sim 2Q \sim g_2^1 \), and \(b \) has two base points except when \(X \) is elliptic. But we have supposed \(\pi \geq 2 \) so in this case \(g > 1 \).

From this we see that the number of ramifications of \(\delta \sigma \) is 0, 2, 4 when \(\pi = 2g + 1, 2g, 2g - 1 \) respectively. Applying Hurwitz’s formula we obtain that the genus of \(\delta \sigma \) is \(\pi - g \).

Corollary 3.3 If \(\pi \geq 2 \) and \(g \geq 1 \) then \(Ch_{\pi}^{g} = Ch_{\pi}^{\pi - g} \).

References

[1] Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J. Geometry of Algebraic Curves. Volume I. Grundlehren der mathematischen Wissenschaften 267. Springer–Verlag, 1985

[2] Fuentes, L.; Pedreira, M. Canonical geometrically ruled surfaces. Preprint. math.AG/0107114.

[3] Hartshorne, R. Algebraic Geometry. GTM, 52. Springer–Verlag, 1977.