Stomatal conductance bears no correlation with transpiration rate in wheat during their diurnal variation under high air humidity

Xinying Zhang1,2,3, Xurong Mei1,2,3, Yajing Wang1,2,3, Guirong Huang1,2,3, Fu Feng1,2,3, Xiaoying Liu1,2,3, Rui Guo1,2,3, Fengxue Gu1,2,3, Xin Hu4, Ziguang Yang5, Xiuli Zhong1,2,3 and Yuzhong Li1,2,3

1 Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
2 State Engineering Laboratory of Efficient Water Use and Disaster Mitigation for Crops, Beijing, China
3 Key Laboratory for Dryland Agriculture of Ministry of Agriculture, Beijing, China
4 Institute of Wheat Research, Shangqiu Academy of Agriculture and Forestry Sciences, Shangqiu, China
5 Luoyang Academy of Agriculture and Forestry, Luoyang, China

ABSTRACT

A good understanding of the response of photosynthesis rate (P_N) and transpiration rate (T_r) to stomatal alteration during the diurnal variations is important to cumulative photosynthetic production and water loss of crops. Six wheat genotypes were studied for 2 years with pot cultivation in rain-shelter. Among different genotypes, stomatal conductance (g_s) was significantly correlated with both P_N and T_r. But for each genotype, though g_s was significantly correlated with P_N regardless of relative air humidity (RH) status and it was also significantly correlated with T_r under lower RH (LRH, 15.4%) and moderate RH (MRH, 28.3%), it was not correlated with T_r under higher RH (HRH, 36.7%) during the diurnal changes. The conditional correlation between g_s and T_r of wheat evoked new thinking on the relationships among g_s, P_N and T_r. Path analysis was further carried out to clarify the correlations of g_s with the four atmospheric factors, that of T_r with g_s and the four factors and the direct and indirect effects of the factors, during their diurnal dynamic variation. The effects of these factors on g_s or T_r were related to RH. All the four factors had a much higher correlation with g_s under HRH than that under LRH and MRH. Air temperature (T) had a rather higher direct effect than RH and photosynthetically active radiation (PAR). Also, the other factors had a much higher indirect effect on g_s through vapor pressure deficit (VPD) and T. Transpiration rate was highly correlated with g_s under LRH and MRH, with g_s having a higher direct effect on it. In comparison, T_r was not correlated with g_s under HRH but highly correlated with the atmospheric factors, with T, RH, and PAR having a higher indirect effect through VPD.
INTRODUCTION

Water shortage has been the most significant factor restricting plant growth and crop productivity with a deepening water-resource crisis worldwide. Wheat (*Triticum aestivum* L.) is one of the main crops consumed by humans and is cultivated in different environments. Only less than 30% of the rainfall occurs during the wheat growing season in the North China Plain, the main wheat production region of China, which meets only about 25–40% of the water requirements of wheat. As a result, more than 70% of the irrigation water is used for winter wheat (Mei et al., 2013). Irrigation usage for wheat threatens the sustainability of the groundwater resource (Zhang, Pei & Hu, 2003). Therefore, how to conserve soil water to enable sustainable crop production and maximize harvest of fields is becoming a main goal for many efforts of agriculture researchers.

Stomata, the gateway through which vapor and CO$_2$ pass, play an important role in regulating both photosynthesis and transpiration. Low stomatal conductance (g_s) results in low net photosynthesis rate (P_N) by restricting CO$_2$ uptake (Farquhar & Sharkey, 1982), while high g_s benefits higher P_N but at a greater expense of water loss via transpiration (Lawson & Blatt, 2014). The ability of stomata to exert rapid control of their aperture to minimize water loss while maintaining CO$_2$ uptake is one of the primary evolutionary mechanisms that has allowed terrestrial plants to survive and spread in an otherwise desiccating atmosphere (Hetherington & Woodward, 2003). A good understanding of the response and behavior of stomata and transpiration in winter wheat is in urgent need of water saving through the pathway of cultivar adoption and agricultural practices. Stomata adjusts aperture in response to diverse external stimuli, such as vapor pressure deficit (VPD) (Devi, Sinclair & Vadez, 2010; Leonardi, Guichard & Bertin, 2000), relative air humidity (RH) (Bakker, 1991a, 1991b; Merilo et al., 2018; Suzuki et al., 2015; Talbott, Rahveh & Zeiger, 2003), soil moisture (Belko et al., 2012; Kholová et al., 2010a, 2010b), air temperature (T) (Haque et al., 2017; Hetherington & Woodward, 2003), photosynthetic photon flux density (PPFD) (McAusland et al., 2016), and CO$_2$ (Yoshimoto, Oue & Kobayashi, 2005). These atmospheric factors continually vary at diurnal and seasonal rhythms (Assmann & Wang, 2001). Besides, the circadian clock was reported to control g_s responses partly at least over the diurnal period (Dodd et al., 2005; Hassidim et al., 2017), with phase of the circadian clock adjusting to environmental cues, such as T and PPFD, etc. (De Dios et al., 2016; Yin & Johnson, 2000). The majority of these studies were conducted with controlled experiments. Few studies were performed utilizing different gradients of natural conditions, which may be largely different from those carried out in climate chambers or green houses. Besides, these researches seldom laid stress on how the influencing factors affect g_s during the diurnal dynamic change.

Our previous study found that RH played an important role in determining the diurnal g_s pattern of wheat. All tested genotypes under lower RH (LRH, 15.7%) and most genotypes under higher RH (HRH, 40.7%) displayed a gradual decline pattern from
morning through the afternoon. All genotypes presented a single-peak curve pattern under moderate RH (MRH, 28.3%), but the peak time differed among genotypes (Zhang et al., 2019). Based on the previous research, this study aims at (1) clarifying how the influencing factors contribute to the diurnal variation of \(g_s \) along with transpiration rate (\(T_r \)) of wheat under different RH and soil moisture regimes; (2) making clear how \(P_N \) and \(T_r \) of wheat are correlated with \(g_s \) during the diurnal change under different regimes of soil moisture and RH. A deep understanding of the stomata and transpiration traits of wheat, the influencing factors and their effect on \(P_N \) and \(T_r \) under different conditions have great implications for saving water through cultivars and agricultural practices.

MATERIALS AND METHODS

Plant materials

Six winter wheat genotypes, Jinmai 47, Chang 6878, Jing 411, Zhoumai 18, Lankaoaizao 8 and 12 Song 1 were used as materials, with the names and associated details being listed in Table 1. The six genotypes were selected from wheat germplasm nursery affiliated to Luoyang Academy of Agriculture and Forestry, located in Henan Province, China. In April 2016, the jointing stage of winter wheat, stomatal conductance was measured in three replications of different genotypes in the nursery under rain-fed and well-watered conditions. According to the data collected from 9:00 to 11:00 AM, six genotypes, which were in a wide spectrum of \(g_s \) from very low to rather high value in the two water conditions, were tentatively selected as materials.

Growth conditions

The experiments were carried out at Shunyi Scientific Experimental Station, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China (40°N and 116°E, altitude 34 m) in 2017–2018 growing seasons of winter wheat. The precipitation and air temperature of every month during the growing season are presented in Fig. 1. Pot cultivation was adopted in this experiment. Polyvinyl chloride pots were 30 cm depth and 35 cm in diameter, with a drainage hole on the bottom. The pots were filled with 16 kg plow layer soil, which was sieved through a 5 mm sieve and then fully mixed. The soil nutrients were determined as 0.109 g/kg of total nitrogen, 14.4 g/kg of organic matter, 24.5 mg/kg of available phosphorus, 106 mg/kg of available potassium and soil pH was 7.7.

Genotype	Year of release	Breeding place	Pedigree
Jing 411	1993	Beijing	Fengkang 2/Changfeng 1
12 Song 1	Line	Henan	LK 906/Yan 7961
Jinmai 47	1998	Shanxi	12057/Han 522/K37-20
Lankaoaizao 8	2003	Henan	Lankao 84(184)1/Lankao 90
Chang 6878	2003	Shanxi	Linhan 5175/Jinmai 63
Zhoumai 18	2005	Henan	Neixiang 185/Zhoumai 9

Table 1: Genotype names and associated details.
For each genotype, six pots were planted for two water treatments and three replications. A total of 20 wheat seeds were sown in each pot on 5 October 2017. A total of 13 uniform seedlings were kept for overwintering, with the slender ones being removed on 30 days after emergence. After recovering in the spring, 10 uniform seedlings were eventually selected and kept as materials, with the unqualified ones being eliminated.

Air humidity and soil water treatments

The treatments were different regimes of air humidity and soil water. The environmental RH gradient was taken as air humidity treatments. April 13, 28 and May 6, 2018, which were LRH (15.4%), MRH (28.3%) and HRH (36.7%) respectively, but similar in T and photosynthetically active radiation (PAR) were specifically selected. The specific diurnal meteorological conditions of the 3 days were shown in Fig. 2. Two water treatments were arranged: well-watered (WW) and drought stress (DS) conditions, with soil water content being 75% and 50% of field water holding capacity (FC), respectively. Water withholding for the two treatments was conducted by the weighing method. The plants were watered daily to restore the initial soil water content, between 1 and 2 h after sunset. Water withholding was kept for 30 days from April 6 to May 6. During water treatment periods, rain-shelter was used to prevent the rain on rainy days and was kept rolled up on sunny days to allow the crops to grow in the open-air conditions.

Leaf gas exchange measurements

The youngest fully expanded leaves of the main tiller were measured for measuring the diurnal variation of gas exchange parameters under LRH, MRH and HRH from 8:00 to 18:00 with the 2 h interval, utilizing a Licor-6400 portable infrared gas analyzer (LI-COR Inc., Lincoln, NE, USA). For each replication, the leaves of three plants were measured and
averaged as the value for each time span. With one measurement, three parameters concerned, including g_s, P_N, Tr, were obtained in the meanwhile. To eliminate the disturbance to PAR from cloud cover and shading of neighboring leaves, PAR was set as the average value of 5 days in April or May for each time span. And chamber T was set as the same as the air temperature outside the chamber. RH could not be set for Li-cor-6400 gas analyzer, RH of the air flowing into the chamber was as same as the air RH. At the same time with diurnal measurement of gas exchange parameters, four atmospheric factors were also determined. Air temperature and RH were monitored once per minute by an automated temperature and relative humidity system (TH12R, Miaoxin, CN). VPD was calculated by T and RH as follows.

$$\text{VPD} = (1 - \text{RH}) \times 0.6108 \times e^{\frac{17.27 \times T}{T+273.3}}$$

For investigating the relationships between g_s with P_N and Tr across genotypes under identical soil water and meteorological conditions, leaf gas exchange parameters were measured with six different genotypes under two water treatments at 9:30–11:00 AM on April 16, 29 and May 5, 2018, the LRH (16.4%), MRH (25.9%) and HRH (37.8%) day respectively. The same gas analyzer described above were used, with the leaf chamber conditions being set at the same temperature of 25 °C, PAR of 1,000 μmol-m$^{-2}$·s$^{-1}$.

Figure 2 The diurnal meteorological conditions of measurement days. (A) Diurnal temperature (T) condition of each measurement day. (B) Diurnal relative air humidity (RH) condition of each measurement day. (C) Diurnal vapor pressure deficit (VPD) condition of each measurement day. (D) Diurnal photosynthetically active radiation (PAR) condition of each measurement day. Values represent means ± standard errors ($n = 3$). DOI: 10.7717/peerj.8927/fig-2
Statistical analysis
The collected data were statistically analyzed by SAS software (SAS 9.4, Cary, NC, USA). A Pearson correlation analysis was used to assess correlations between parameters. Significance was considered at $P < 0.05$ and 0.01. Data were presented as means ± standard errors ($n = 3$).

RESULTS
Main meteorological factors responsible for the diurnal variation of stomatal conductance
The four meteorological factors, T, RH, VPD and PAR interact and associate with each other. Each factor might directly affect g_s, also indirectly affect g_s through other factors. Path analysis was carried out to clarify the correlations of four terms with g_s and their direct and indirect effects on g_s during diurnal dynamic variation. Table 2 showed how g_s related to diurnally varying atmospheric factors depended on moisture regimes. All the four factors had a much higher correlation with g_s under HRH than that under LRH and MRH. The correlation between g_s and the four factors tended to be higher under WW than that under DS when RH was the same level. Of the four factors, g_s was significantly correlated with T and PAR under all the regimes except DS + MRH. All the four factors were not correlated with g_s under DS + MRH. Temperature had a rather higher direct effect than RH and PAR on g_s. And other factors had a much higher indirect effect on g_s through VPD and T on g_s.

Main factors responsible for the diurnal variation of transpiration rate
Stomatal conductance and the four main meteorological factors T, RH, VPD and PAR were closely related to each other. Path analysis was conducted to clarify the correlations between Tr and the five factors, the direct effect and indirect effect through other factors on Tr during their diurnal dynamic variation (Table 3).

Under LRH, Tr was highly correlated with g_s under both WW and DS, with higher direct effect coefficient ($DPC = 0.7346$) and a higher negative indirect effect through VPD and a positive indirect effect through T under WW, with higher direct effect ($DPC = 0.8225$) and a weak indirect effect through other factors under DS. Transpiration rate was also significantly correlated with T, RH and VPD under WW. The temperature had a higher positive direct effect and a higher negative indirect effect through VPD on Tr. RH had a relatively lower direct effect and a higher negative indirect effect through T and a higher positive indirect effect through VPD on Tr. VPD had a higher direct effect and a higher indirect effect through T on Tr. All the four meteorological factors had a lower indirect effect through g_s on Tr.

Under MRH, Tr had an extremely significant correlation with all the five factors, with the correlation between Tr and g_s being much higher, that between Tr and RH being negative, and that between Tr and T, VPD and PAR being positive. Stomatal conductance had a rather higher direct effect than the indirect effect through any other factors.
Of the four meteorological factors, VPD had the highest direct effect and T, RH and PAR had a higher indirect effect through VPD on Tr. The indirect effect of four meteorological factors through gs on Tr was rather smaller.

Under HRH, Tr was not correlated with gs but significantly correlated with the four meteorological factors except PAR under WW. VPD had the largest direct effect, while PAR had the smallest direct effect on Tr under DS. The indirect effect of T, RH and PAR on Tr through VPD was the largest, with that of RH being negative and that of T and PAR being positive. The indirect effect through gs of the four meteorological factors on Tr was rather smaller.

Table 2 Path analysis of stomatal conductance with meteorological factors during diurnal dynamic variation.

Regimes	Independent variable	Direct path coefficient	Indirect path coefficient	Simple correlation coefficient		
WW LRH	T	1.8076	1.1045	2.3004	0.2830**	
	RH	-1.2985	-1.5376	2.1758	0.2603	-0.3999**
	VPD	-2.3397	1.7773	1.2075	-0.3159	0.3291**
	PAR	-0.3435	1.7297	0.984	-2.1519	0.2183*
DS LRH	T	-7.4551**	-1.802	8.8615	0.1602	-0.2355*
	RH	2.1159**	6.3492	-8.3855	-0.127	-0.0474
	VPD	9.0120**	-7.3306	-1.9688	0.154	-0.1335
	PAR	0.1675	-7.1306	-1.6041	8.2849	-0.2824**
WW MRH	T	0.0172	-0.3842	0.6178	0.0045	0.2553*
	RH	0.4345	-0.0152	-0.5996	-0.0044	-0.1847
	VPD	0.6316	0.0168	-0.4125	0.0047	0.2406*
	PAR	0.0051	0.0153	-0.3711	0.5763	0.2257*
DS MRH	T	-1.6275*	-0.4768	2.0112	0.1741	0.081
	RH	0.529	1.4669	-1.9455	-0.1709	-0.1205
	VPD	2.0436	-1.6017	-0.5036	0.1789	0.1172
	PAR	0.1994	-1.4211	-0.4535	1.8332	0.158
WW HRH	T	-0.3377	0.1237	-0.4543	-0.0818	-0.7502**
	RH	-0.1346	0.3103	0.4425	0.0776	0.6959**
	VPD	-0.4605	-0.3332	0.1294	-0.0757	-0.7400**
	PAR	-0.1288	-0.2144	0.0812	-0.2705	-0.5325**
DS HRH	T	2.0471	1.082	-3.3811	-0.2891	-0.5411**
	RH	-1.2121	-1.8274	3.3177	0.2236	0.5018**
	VPD	-3.4552	2.0031	1.1639	-0.2514	-0.5396**
	PAR	-0.4298*	1.3769	0.6306	-2.0211	0.4433**

Notes:

* Significant difference at \(p < 0.05 \).
** Significant difference at \(p < 0.01 \).
Stomatal conductance bear no correlation with transpiration rate in the diurnal change under HRH

The meteorological factors, such as T, RH and VPD, vary with time diurnally. Meteorological conditions were considered to be identical for different genotypes under

Regimes	Independent variable	Direct path coefficient	Indirect path coefficient	Simple correlation coefficient			
WW	\(g_s\)	0.7346 **	0.9623	0.3766	-1.1614	-0.1552	0.7569 **
LRH	\(T\)	3.4006 **	0.2079	0.8009	-3.4695	-0.6801	0.2598
	RH	-0.9416	-0.2938	-2.8927	3.2816	0.5386	-0.3079 **
	VPD	-3.5288 *	0.2418	3.3435	0.8756	-0.6536	0.2785 **
	PAR	-0.7107 **	0.1604	3.254	0.7135	-3.2454	0.1718
	\(g_s\)	0.8225 **	0.0305	-0.0303	-0.1454	0.0678	0.7451 **
	LRH	-0.1296	-0.1937	-0.5435	1.071	-0.2296	-0.0253
	RH	0.6381	-0.039	0.1103	-1.0134	0.182	-0.122
	VPD	1.0891	-0.1098	-0.1274	-0.5938	-0.2206	0.0376
	PAR	-0.24	-0.2323	-0.1239	-0.4838	1.0013	-0.0787
WW	\(g_s\)	0.7465 **	0.0179	0.1135	-0.1575	0.0687	0.7890 **
MRH	\(T\)	0.0703	0.1906	0.5432	-0.6404	0.2707	0.4345 **
	RH	-0.6143 *	-0.1379	-0.0621	0.6215	-0.2601	-0.4529 **
	VPD	-0.6547 *	0.1796	0.0687	0.5832	0.2779	0.4547 **
	PAR	0.3045 *	0.1684	0.0625	0.5247	-0.5974	0.4627 **
	\(g_s\)	0.7503 **	0.0547	0.0912	-0.1643	0.0373	0.7692 **
	LRH	-0.1296	-0.1937	-0.5435	1.071	-0.2296	-0.0253
	RH	0.6381	-0.039	0.1103	-1.0134	0.182	-0.122
	VPD	1.0891	-0.1098	-0.1274	-0.5938	-0.2206	0.0376
	PAR	-0.24	-0.2323	-0.1239	-0.4838	1.0013	-0.0787
WW	\(g_s\)	0.5982 **	0.2367	0.2545	-0.9967	-0.0338	0.0589
HRH	\(T\)	-0.3155	-0.4488	-0.336	1.329	0.0403	0.2690
	RH	0.3658	0.4163	0.2899	-1.2945	-0.0383	-0.2609 *
	VPD	1.347	-0.4427	-0.3113	-0.3515	0.0373	0.2787 **
	PAR	0.0635	-0.3186	-0.2003	-0.2205	0.7912	0.1153
	\(g_s\)	0.5807 **	1.0599	0.5937	-1.8809	-0.2289	0.1245
	LRH	-1.9589	-0.3142	-1.0561	3.4108	0.3472	0.4289 **
	RH	1.183	0.2914	1.7487	-3.3469	-0.2686	-0.3923 **
	VPD	3.4856 *	-0.3133	-1.9169	-1.136	0.302	0.4214 **
	PAR	0.5162 **	-0.2574	-1.3176	-0.6155	2.0388	0.3645 **

Notes:
* Significant difference at \(p < 0.05\).
** Significant difference at \(p < 0.01\).

Stomatal conductance bear no correlation with transpiration rate in the diurnal change under HRH

The meteorological factors, such as T, RH and VPD, vary with time diurnally. Meteorological conditions were considered to be identical for different genotypes under
the same measurement time span (9:30–11:00 AM). Across different genotypes, \(g_s \) had extremely significant correlations with \(P_N \) and \(Tr \) under identical meteorological conditions and soil water status (Table 4). The correlations between \(g_s \) and \(Tr \) under WW were lower than those under DS in the three different RH conditions. For the case of LRH, the correlations under WW were lower than those under DS. While for MRH and HRH, the correlation between \(g_s \) and \(P_N \) was higher under WW than that under DS. On the other hand, the correlations among \(g_s \) with \(P_N \) and \(Tr \) in the diurnal dynamics were investigated with six genotypes individually under WW and DS conditions (Table 5). There were the same results in WW and DS whether respectively or collectively. Stomatal conductance was closely correlated with \(P_N \) and \(Tr \) under LRH and MRH. Interestingly, though \(g_s \) was still closely correlated with \(P_N \), it did not significantly correlate with \(Tr \) for each genotype under HRH in the diurnal variation. This proved the high dependency between \(g_s \) and \(P_N \), also revealed the minor role of \(g_s \) on determining \(Tr \) diurnal variation under HRH. It might be other factors, mainly the meteorological factors, that predominantly control \(Tr \) in the diurnal variation in such case.

Table 4 Correlations of stomatal conductance \((g_s)\) with net photosynthesis rate \((P_N)\) and transpiration rate \((Tr)\) among six genotypes. The measurements were conducted with six genotypes during 9:30–11:00 at each measurement day. WW, well-watered; DS, drought stress; LRH, lower relative air humidity; MRH, moderate relative air humidity; HRH, higher relative air humidity. The daily average relative air humidity of LRH, MRH and HRH were 16.4%, 25.9% and 37.8% respectively.

Group	WW	DS		
	\(g_s-P_N \)	\(g_s-Tr \)	\(g_s-P_N \)	\(g_s-Tr \)
LRH	0.9460**	0.8968**	0.9663**	0.9820**
MRH	0.9100**	0.9376**	0.9096**	0.9837**
HRH	0.9547**	0.6741**	0.8222**	0.9491**

Note: ** Significant difference at \(p < 0.01 \).

Table 5 Correlations of stomatal conductance \((g_s)\) with net photosynthesis rate \((P_N)\) and transpiration rate \((Tr)\) in diurnal dynamics of each genotype. The measurement dates and diurnal meteorological conditions are shown in Fig. 2. LRH, lower relative air humidity; MRH, moderate relative air humidity; HRH, higher relative air humidity. The daily average relative air humidity of LRH, MRH and HRH were 15.4%, 28.3% and 36.7% respectively.

Genotype	LRH	MRH	HRH
Song 12	0.9726**	0.7655**	0.8910**
Lankaoaizao 8	0.7316**	0.8859**	0.8437**
Jinmai 47	0.8771**	0.8234**	0.7184**
Chang 6878	0.8233**	0.8274**	0.7666**
Jing 411	0.9240**	0.5895**	0.8501**
Zhoumai 18	0.8453**	0.9162**	0.8163**

Note: ** Significant difference at \(p < 0.01 \).
DISCUSSION

Factors influencing the diurnal variation of stomatal conductance and transpiration rate

Stomata adjust aperture in response to environmental factors, such as soil water stress and atmospheric factors, as reported by many studies (Xu et al., 2016; Hernandez-Santana et al., 2016). The present study aimed at the relations between g_s of wheat with the influencing factors during the diurnal dynamic variation and found that the relations was associated closely with RH. Stomatal conductance was not correlated with RH and VPD under LRH + DS and MRH + DS regimes, but highly correlated with the two factors under HRH. Moreover, stomatal conductance displayed a higher correlation with the influencing factors under WW than under DS. Thus, it seems that only when g_s of wheat was relatively higher in the case of high air RH and soil moisture, it was closely related to atmospheric factors during the diurnal variation. The reduced stomatal aperture could not respond to diurnally varying factors sensitively under dry soil and air moisture, which explain the rather lower correlation between them. Stomatal conductance of wheat was significantly correlated with PAR in most of the regimes. Sabir & Yazar (2015) found that g_s was better correlated with PAR for all the tested grapevine cultivars than the other measured meteorological parameters, including RH, T etc. This is consistent with the case under DS + LRH and WW + MRH in our study, implying that sunlight had a significant effect on stomatal diurnal response under the two regimes.

Transpiration rate is controlled by the plant itself through stomatal adjustment on one hand. As a passive diffusion process of water, it was also regulated by surrounding factors, such as T, RH and solar radiation intensity (Yang et al., 2012). Which factors mainly restrict T_r during the diurnal variation depended on RH, as the present study showed. Higher correlation between g_s and T_r of wheat existed under LRH and MRH, but no correlation under HRH. This might imply that increased g_s under HRH was not restricting factors for T_r, instead, atmospheric factors restricted T_r in this case. While reduced g_s became the main limiting factor for T_r under lower RH. VPD had the highest direct effect of the four atmospheric factors and other factors had the highest indirect effect through VPD under almost all the regimes.

Correlations between stomatal conductance with transpiration rate and photosynthesis rate in the diurnal dynamics

Across different genotypes under identical meteorological conditions and soil water status, extremely significant correlations existed between g_s with P_N and T_r, as reported by some previous studies (Wong, Cowan & Farquhar, 1979; McAusland et al., 2016). This indicates the important contribution of cultivars with different stomatal traits to photosynthesis and transpiration and in turn to yield formation and water consumption, in the case of identical environmental conditions.

During the diurnal dynamics, g_s was significantly correlated with T_r in all the wheat genotypes tested under LRH and MRH, but not under HRH (Table 5), indicating the correlation between them depended on RH. As a physical process of water passive
diffusion, transpiration is not only controlled by the plant itself through stomatal adjustment but also driven by soil moisture and atmospheric factors. In some cases, Tr is mainly regulated by RH or VPD, instead of gs. Devi, Sinclair & Vadez (2010) found that Tr increased over VPD rising, with a break point occurring in some genotypes above which there was little or no further increase in Tr of peanut. Stomatal conductance declined with VPD increasing (Leonardi, Guichard & Bertin, 2000; Talbott, Rahveh & Zeiger, 2003), or RH declining (Fanourakis et al., 2016, 2019), which implied that Tr did not decline with gs reducing, but increased with VPD rising. And the occurrence of Tr breakpoint might be due to that gs continuously declined and turned to be the restricting factor of Tr. Also, Aliniaeifard & Van Meeteren (2016) conducted an experiment with Chrysanthemum morifolium plants in the growth chamber. Similarly, they found higher gs but lower Tr under low VPD (high RH) in comparison with growth under moderate VPD. Consistently, Giday et al. (2015) found cultivar differences in plant transpiration rate at high rRH were not related to genotypic variation in stomatal responsiveness. The transpiration rate did not increase with gs rising but lowered down with increased RH. These indicated that it was VPD but not gs that controlled Tr in such cases. Whether gs is closely related to Tr depends on if gs is restricting Tr under the specific circumstance. In the present study, the correlation coefficients between gs and Tr of wheat under LHR and HRH were contrasting (Table 5). This might be ascribed to the different limiting effects of gs on Tr. Stomatal conductance went down and turned to be the limiting factor of Tr under LRH. While enhanced gs is no more a limiting factor of Tr under HRH and weakly correlated with Tr. It might be either the regulating and limiting effect of gs to Tr or the synchronous response of gs and Tr to the atmospheric factors that result in the high correlation between gs and Tr under MRH.

Stomatal conductance was highly correlated with P_N of wheat in the diurnal dynamics for each genotype, also across different genotypes at identical environmental conditions, highlighting the strong dependency between photosynthesis and stomatal regulation. However, as reported, stomata did not respond to environmental cues with P_N synchronously, but an order of magnitude slower than P_N (Lawson & Blatt, 2014). The lag in stomatal behavior and the temporal disconnect between P_N and gs challenge the notion that stomata adjust the aperture to regulate P_N. Moreover, Mott (1988) reported that it was CO$_2$ concentration inside the leaf (Ci) rather than that outside the leaf influenced stomatal aperture. Afterwards, series of studies carried out by Roelfsema et al. (2002, 2006) found that red light-induced stomatal opening is mediated by the reduction of Ci which is in turn caused by the increased photosynthetic activity of mesophyll cell. A recent study in maize (Zea mays L.) identified two Ca genes which encode carbonic anhydrase mediated the response of plants to increased Ci (Kolbe et al., 2018). As an organism of high auto-regulation, plants respond to environmental cues positively within its adaptation limits. Under some specific circumstances, photosynthesis, the initiative anabolism process, might be capable of regulating gs according to its demand for CO$_2$ through affecting Ci, though gs has been proved to be a limiting factor of photosynthesis by most studies (Carmo-Silva et al., 2012; Chastain et al., 2014).
CONCLUSIONS

Relative air humidity played an important role in affecting the correlation between g_s with P_N and Tr of wheat during the diurnal variation. The transpiration rate was not significantly correlated with g_s but mainly affected by the atmospheric factors under HRH. In particular, VPD had a rather higher direct and indirect effect on Tr. The notion that stomata continuously adjust aperture in response to environmental factors to optimize the tradeoff between photosynthesis and water loss was challenged. Thus, the definite interrelationship among P_N, Tr and g_s of wheat needs to be elucidated conditionally.

In cases where g_s is not the key influential factor for Tr, any efforts to artificially reduce g_s of wheat may not contribute significantly to water saving, but pay the price of photosynthetic reduction and yield loss. But when meteorological and soil water conditions were identical, g_s was significantly correlated with Tr and P_N across different genotypes. Thus, to select and adopt appropriate wheat cultivars with specific stomata traits is undoubtedly a good strategy for realizing water saving. Taking yield issue into account, genotype adoption has to compromise the requirement for yield and water saving, and needs to match the water availability of areas with stomatal sensitivity of wheat genotypes to water stress.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by a grant from The National Key Research and Development Program (2017YFD0201702). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Key Research and Development Program: 2017YFD0201702.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
- Xinying Zhang conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
- Xurong Mei conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- Yajing Wang performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
- Guirong Huang performed the experiments, prepared figures and/or tables, and approved the final draft.
- Fu Feng performed the experiments, prepared figures and/or tables, and approved the final draft.
• Xiaoying Liu conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Rui Guo conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Fengxue Gu conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Xin Hu conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Ziguang Yang conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Xiuli Zhong conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
• Yuzhong Li conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The raw measurements are available in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/peerj.8927#supplemental-information.

REFERENCES
Aliniaeifard S, Van Meeteren U. 2016. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Scientia Horticulturae 205:84–89 DOI 10.1016/j.scienta.2016.04.025.
Assmann SM, Wang XQ. 2001. From milliseconds to millions of years: guard cells and environmental responses. Current Opinion in Plant Biology 4(5):421–428 DOI 10.1016/S1369-5266(00)00195-3.
Bakker JC. 1991a. Effects of humidity on stomatal density and its relation to leaf conductance. Scientia Horticulturae 48(3–4):205–212 DOI 10.1016/0304-4238(91)90128-L.
Bakker JC. 1991b. Leaf conductance of four glasshouse vegetable crops as affected by air humidity. Agricultural and Forest Meteorology 55(1–2):23–36 DOI 10.1016/0168-1923(91)90020-Q.
Belko N, Zaman-Allah M, Cisse N, Diop NN, Zombre G, Ehlers JD, Vadez V. 2012. Lower soil moisture threshold for transpiration decline under water deficit correlates with lower canopy conductance and higher transpiration efficiency in drought-tolerant cowpea. Functional Plant Biology 39(4):306–322 DOI 10.1071/FP11282.
Carmo-Silva AE, Gore MA, Andrade-Sanchez P, French AN, Hunsaker DJ, Salvucci ME. 2012. Decreased CO₂ availability and inactivation of Rubisco limit photosynthesis in cotton plants under heat and drought stress in the field. Environmental and Experimental Botany 83:1–11 DOI 10.1016/j.envexpbot.2012.04.001.
Chastain DR, Snider JL, Collins GD, Perry CD, Whitaker J, Byrd SA. 2014. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross
photosynthesis. Journal of Plant Physiology 171(17):1576–1585 DOI 10.1016/j.jplph.2014.07.014.

De Dios VR, Gessler A, Ferrio JP, Alday JG, Bahn M, Del Castillo J, Devisal D, Garcia-Munoz S, Kayler Z, Landais D, Martin-Gomez P, Milcu A, Piel C, Pirhofer-Walzl K, Ravel O, Salekin S, Tissue DT, Tjoelker MG, Volta JS, Roy J. 2016. Circadian rhythms have significant effects on leaf-to-canopy scale gas exchange under field conditions. GigaScience 5(1):43 DOI 10.1186/s13742-016-0149-y.

Devi MJ, Sinclair TR, Vadez V. 2010. Genotypic variation in peanut for transpiration response to vapor pressure deficit. Crop Science 50(1):191–196 DOI 10.2135/cropsci2009.04.0220.

Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibbert JM, Millar AJ, Webb AAR. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science 309(5734):630–633 DOI 10.1126/science.1115581.

Fanourakis D, Bouranis D, Giday H, Carvalho DR, Nejad AR, Ottosen CO. 2016. Improving stomatal functioning at elevated growth air humidity: a review. Journal of Plant Physiology 207:51–60 DOI 10.1016/j.jplph.2016.10.003.

Fanourakis D, Giday H, Hyldgaard B, Bouranis D, Körner O, Ottosen CO. 2019. Low air humidity during cultivation promotes stomatal closure ability in rose. European Journal of Horticultural Science 84(4):245–252 DOI 10.17660/eJHS.2019/84.4.7.

Farquhar GD, Sharkey TD. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33(1):317–345 DOI 10.1146/annurev.pp.33.060182.001533.

Giday H, Kjaer KH, Ottosen CO, Fanourakis D. 2015. Cultivar differences in plant transpiration rate at high relative air humidity are not related to genotypic variation in stomatal responsiveness. Acta Horticulturae 1064(1064):99–106 DOI 10.17660/ActaHortic.2015.1064.12.

Haque MS, De Sousa A, Soares C, Kjaer KH, Fidalgo F, Rosenqvist E, Ottosen CO. 2017. Temperature variation under continuous light restores tomato leaf photosynthesis and maintains the diurnal pattern in stomatal conductance. Frontiers in Plant Science 8:1602 DOI 10.3389/fpls.2017.01602.

Hassidim M, Dakhya Y, Turjeman A, Hussien D, Shor E, Anidjar A, Goldberg K, Green RM. 2017. Circadian clock associated1 (CCA1) and the circadian control of stomatal aperture. Plant Physiology 175(4):1864–1877 DOI 10.1104/pp.17.01214.

Hernandez-Santana V, Fernandez JE, Rodriguez-Dominguez CM, Romero R, Diaz-Espejo A. 2016. The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit. Agricultural and Forest Meteorology 218:92–101 DOI 10.1016/j.agrformet.2015.11.013.

Hetherington AM, Woodward FI. 2003. The role of stomata in sensing and driving environmental change. Nature 424(6951):901–908 DOI 10.1038/nature01843.

Kholova J, Hash CT, Kakker A, Kocova M, Vadez V. 2010a. Constitutive water-conserving mechanisms are correlated with the terminal drought tolerance of pearl millet [Pennisetum glaucum (L.) R. Br.]. Journal of Experimental Botany 61(2):369–377 DOI 10.1093/jxb/erp314.

Kholová J, Hash CT, Kumar PL, Yadav RS, Kočová M, Vadez V. 2010b. Terminal drought-tolerant pearl millet [Pennisetum glaucum (L.) R. Br.] have high leaf ABA and limit transpiration at high vapour pressure deficit. Journal of Experimental Botany 61(5):1431–1440 DOI 10.1093/jxb/erq013.

Kolbe AR, Brutnell TP, Cousins AB, Studer AJ. 2018. Carbonic anhydrase mutants in Zea mays have altered stomatal responses to environmental signals. Plant Physiology 177(3):980–989 DOI 10.1104/pp.18.00176.
Lawson T, Blatt MR. 2014. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiology 164(4):1556–1570 DOI 10.1104/pp.114.237107.

Leonardi C, Guichard S, Bertin N. 2000. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Scientia Horticulturae 84(3–4):285–296 DOI 10.1016/S0304-4238(99)00127-2.

McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist 211(4):1209–1220 DOI 10.1111/nph.14000.

Mei X-R, Zhong X-L, Vincent V, Liu X-Y. 2013. Improving water use efficiency of wheat crop varieties in the North China Plain: review and analysis. Journal of Integrative Agriculture 12(7):1243–1250 DOI 10.1016/S2095-3119(13)60437-2.

McAusland L, Vialet-Chabrand S, Davey P, Baker NR, Brendel O, Lawson T. 2016. Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency. New Phytologist 211(4):1209–1220 DOI 10.1111/nph.14000.

Mott KA. 1988. Do stomata respond to CO$_2$ concentrations other than intercellular? Plant Physiology 86(1):200–203 DOI 10.1104/pp.86.1.200.

Roelfsema MRG, Hanstein S, Felle HH, Hedrich R. 2002. CO$_2$ provides an intermediate link in the red light response of guard cells. Plant Journal 32(1):65–75 DOI 10.1046/j.1365-313X.2002.01403.x.

Roelfsema MRG, Konrad KR, Marten H, Psaras GK, Hartung W, Hedrich R. 2006. Guard cells in albino leaf patches do not respond to photosynthetically active radiation, but are sensitive to blue light, CO$_2$ and abscisic acid. Plant Cell and Environment 29(8):1595–1605 DOI 10.1111/j.1365-3040.2006.01536.x.

Sabir A, Yazar K. 2015. Diurnal dynamics of stomatal conductance and leaf temperature of grapevines (Vitis vinifera L.) in response to daily climatic variables. Acta Scientiarum Polonorum—Hortorum Cultus 14:3–15.

Suzuki M, Umeda H, Matsuo S, Kawasaki Y, Ahn D, Hamamoto H, Iwasaki Y. 2015. Effects of relative humidity and nutrient supply on growth and nutrient uptake in greenhouse tomato production. Scientia Horticulturae 187:44–49 DOI 10.1016/j.scienta.2015.02.035.

Talbott LD, Rahveh E, Zeiger E. 2003. Relative humidity is a key factor in the acclimation of the stomatal response to CO$_2$. Journal of Experimental Botany 54(390):2141–2147 DOI 10.1093/jxb/erg215.

Wong S, Cowan I, Farquhar G. 1979. Stomatal conductance correlates with photosynthetic capacity. Nature 282(5737):424–426 DOI 10.1038/282424a0.

Xu ZZ, Jiang YL, Jia BR, Zhou GS. 2016. Elevated-CO$_2$ response of stomata and its dependence on environmental factors. Frontiers in Plant Science 7(19120):657 DOI 10.3389/fpls.2016.00657.

Yang Z, Sinclair TR, Zhu M, Messina CD, Cooper M, Hammer GL. 2012. Temperature effect on transpiration response of maize plants to vapour pressure deficit. Environmental and Experimental Botany 78:157–162 DOI 10.1016/j.envexpbot.2011.12.034.

Yin Z-H, Johnson GN. 2000. Photosynthetic acclimation of higher plants to growth in fluctuating light environments. Photosynthesis Research 63(1):97–107 DOI 10.1023/A:1006303611365.

Yoshimoto M, Oue H, Kobayashi K. 2005. Energy balance and water use efficiency of rice canopies under free-air CO$_2$ enrichment. Agricultural and Forest Meteorology 133(1–4):226–246 DOI 10.1016/j.agrformet.2005.09.010.
Zhang XY, Pei D, Hu CS. 2003. Conserving groundwater for irrigation in the North China Plain. *Irrigation Science* **21**(4):159–166 DOI 10.1007/s00271-002-0059-x.

Zhang XY, Wang YJ, Huang GR, Feng F, Liu XY, Guo R, Gu FX, Hu X, Yang ZG, Zhong XL, Mei XR. 2019. Atmospheric humidity and genotype are key determinants of the diurnal stomatal conductance pattern. *Journal of Agronomy and Crop Science* **206**(2):161–168 DOI 10.1111/jac.12375.