Vibrio japonicus sp. nov., a novel member of the Nereis clade in the genus *Vibrio* isolated from the coast of Japan

Hiroyasu Doi1,*, Ikuko Osawa2, Hayamitsu Adachi1, Manabu Kawada1,2

1 Institute of Microbial Chemistry (BIKAKEN), Numazu, Numazu-shi, Shizuoka, Japan, 2 Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan

☯ These authors contributed equally to this work.
* doih@bikaken.or.jp

Abstract

A novel *Vibrio* strain, JCM 31412T, was isolated from seawater collected from the Inland Sea (Setonaikai), Japan, and characterized as a Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, ovoid-shaped bacterium with one polar flagellum. Based on 16S rDNA gene identity, strain JCM 31412T showed a close relationship with type strains of *Vibrio brasiliensis* (LMG 20546T, 98.2% identity), *V. harveyi* (NBRC 15634T, 98.2%), *V. caribbeanicus* (ATCC BAA-2122T, 97.8%) and *V. proteolyticus* (NBRC 13287T, 97.8%). The G+C content of strain JCM 31412T DNA was 46.8%. Multi-locus sequence analysis (MLSA) of eight loci (*ftsZ*, *gapA*, *gyrB*, *mreB*, *pyrH*, *recA*, *rpoA* and *topA*; 5535bp) further clustered strain JCM 31412T in the Nereis clade, genus *Vibrio*. Phenotypically, strain JCM 31412T differed from the closest related *Vibrio* species in its utilization of melibiose and raffinose, and its lack of casein and gelatin hydrolysis. It was further differentiated based on its fatty acid composition, specifically properties of C12:0 3OH and summed features, which were significantly different from those of *V. brasiliensis*, *V. nigripulchritudo* and *V. caribbeanicus* type strains. Overall, the results of DNA-DNA hybridization, and physiological and biochemical analysis differentiated strain JCM 31412T from other described species of the genus *Vibrio*. Based on these polyphasic taxonomic findings, it was therefore concluded that JCM 31412T was a novel *Vibrio* species, for which the name *Vibrio japonicus* sp. nov. was proposed, with JCM 31412T (= LMG 29636T = ATCC TSD-62T) as the type strain.

Introduction

The family *Vibrionaceae*, in class Gammaproteobacteria, currently includes nine recognized genera: *Vibrio* [1], *Photobacterium* [2], *Catenococcus* [3], *Grimonita* [4], *Echinimonas* [5], *Salinibrio* [6], *Enterovibrio* [7] and *Aliivibrio* [8]. To date, 131 species of *Vibrio* including two subspecies have been described (www.bacterio.net/vibrio/html). Vibrios were further grouped into 16 clades by multi-locus sequence analysis (MLSA) [9, 10]. Most have not been implicated in disease; however, *V. cholerae*, *V. parahaemolyticus* and *V. vulnificus* are commonly
identified as causative agents of human. In general, Vibrio species are halophilic, mesophilic or chemoorganotrophic in nature, with facultatively fermentative metabolism [11]. They are ubiquitous inhabitants of aquatic environments including marine, coastal, freshwater and sediments, as well as being eukaryotic hosts [12–14]. In this paper, we describe a new species (strain JCM 31412T) isolated from seawater from the Inland Sea, Japan, for which the name Vibrio japonicus is proposed.

Materials and methods

Bacterial strains and growth conditions

The type strain Vibrio japonicus JCM 31412T was isolated from surface seawater (26˚C) of the Inland Sea (Setonaikai), Ako City, Hyogo Prefecture, Japan (latitude 34˚44´44˝N, longitude 134˚22´35˝E) in Oct. 2013. Strain JCM 31412T was isolated with an agar medium that contained 0.5% Bacto peptone (Difco), 0.1% Bacto yeast extract (Difco), 0.01% Iron (III) phosphate and 1.5% agar (Difco) in artificial seawater (Osaka Yakken) (pH 7.6). Stock cultures were frozen at -80˚C in 20% glycerol (w/v) until use. Strains were grown aerobically on tryptone soy agar (TSA; Oxoid) supplemented with 2% (w/v) NaCl for 24h at 28˚C. Strain JCM 31412T was deposited in the Japan Collection of Microorganisms (JCM), Microbe Division, RIKEN BioResource Center, Ibaraki, Japan, the BCCM/LMG Bacteria Collection at Ghent University (Belgian Coordinated Collection of Microorganisms), Gent, Belgium and the American Type Culture Collection (ATCC), Manassas, VA, USA.

Phenotypic characterization

Strain JCM 31412T was subjected to the following phenotypic tests: cell morphology and mobility; Gram staining; Voges-Proskaur test; oxidase and catalase activity; oxidation/fermentation; hydrolysis of gelatin, esculin and casein; and DNA decomposition. Catalase activity was determined by bubble formation in 3% H2O2 solution, and oxidase activity using cytochrome oxidase paper (Nissui, Tokyo). DNA decomposition (DNase production) was tested by using the toluidine blue-DNA agar containing 1.0% Bacto peptone (Difco), 1.0% yeast extract (Difco), 0.2% deoxyribonucleic acid (from salmon testes), 0.01% toluidine blue, 2.0% agar (Difco) and 3.0% NaCl (pH 7.6). Growth at various temperatures (4–40˚C), pH (4–12), NaCl concentrations (0–10%) using tryptic soy broth (Difco) with 1.5% NaCl (for temperature and pH) at 28˚C (for pH and NaCl) with shaking, and on thiosulfate-citrate-bile sucrose (TCBS) agar (Nippon Beckton Dickinson) was also examined. Additional biochemical characterization was performed using standardized API 20E, API 20NE, API ZYM and API 50CH identification systems (bioMérieux) with incubation at 28˚C according to the manufacturers’ instructions, except that sterile 1.5% (w/v) NaCl was used to prepare the inocula. Strain JCM 31412T was phenotypically characterized in comparison with the following closely related Vibrio species obtained from bacterial culture collections: V. brasilensis LMG 20546T [15], V. nigripulchritudo LMG 03896T [16] and V. caribbeanicus ATCC BAA-2122T [17] (Table 1). Antibiotic sensitivity was established using a disc susceptibility assay as described by the Clinical and Laboratory Standard Institute (CLSI), document M45-A2 (2010) [18]. Sensitivity to the vibriostatic agent O/129 (2, 4-diamino-6, 7-diisopropylpteridine) was determined using Oxoid discs containing 10 and 150μg O/129 per disc. The inhibition zone of each antibiotic was measured using strains grown on Müller-Hinton agar (Difco) supplemented with 1.5% (w/v) NaCl for 16-18h at 35˚C. For negatively stained transmission electric micrograph observations of strain JCM 31412T cells, cells from an overnight culture in tryptic soy broth (Difco) with 1.5% NaCl at 28˚C with shaking were harvested by centrifugation and washed with sterile saline, and were then fixed for 30 min at 4˚C in 2% glutaraldehyde in 0.1M phosphate buffer (pH 7). A
A droplet of cell suspension was placed on carbon-film with a 400 Cu grid for two minutes. Excess liquid was removed using filter paper. The cells on the grid were negatively stained with 2% (w/v) uranyl acetate (Cerac, USA) for two minutes after drying the excess liquid at room temperature. Samples were observed by transmission electron microscopy (TEM) with H-7600 (HITACHI, Tokyo) at 100 kV.

Table 1. Phenotypic characteristics differentiating *Vibrio* sp. nov. JCM 31412T from type strains of phylogenetically related *Vibrio* species.

Characteristic	1	2	3	4
Growth in/at:				
Temperature (°C)	10–37	20–37	20–35	20–30
pH	7–12	6–12	6–10	6–9
NaCl (%)	0.5–9.0	0.5–7.0	0.85–6	0.5–5
OF-test	F	F	F	O
Fermentation of:				
sucrose	+	+	-	-
mannitol	+	+	-	-
melibiose	+	+	+	-
D-amygdalin	+	+	+	-
Utilization of:				
mannose	-	+	+	-
raffinose	+	-	-	-
pyruvic acid-Na	-	-	-	+
citric acid	+	+	+	-
L-tryptophan	+	+	+	+
Hydrolysis of:				
gelatine	-	+	+	+
esculin	-	+	+	-
casein	-	+	+	+
DNA	+	+	+	-
Growth on:				
TCBS medium	+	+	-	-
Produce of:				
α-galactosidase	+	-	-	-
β-galactosidase	-	+	+	-
α-glucosidase	-	+	+	+
β-gluconidase	+	-	-	-
lipase (C14)	-	+	+	+
cystinylamidase	-	-	+	+
trypsin	-	-	-	+
acidic phosphatase	-	-	+	+
amigdaline	+	+	+	-
arginine dehydratase	+	+	-	-
lysine decarboxylase	+	+	-	-
ornithine decarboxylase	-	-	+	-

Strains: 1, *Vibrio* sp. nov. JCM 31412T; 2, *Vibrio brasiliensis* LMG 20546T; 3, *Vibrio nigripulchritudo* LMG 03896T; 4, *Vibrio caribbeanicus* ATCC BAA-2122T.

All data were obtained in this study.

+ : positive, - : negative, F: fermentative, O: oxidative.

doi:10.1371/journal.pone.0172164.t001
Fatty acid analysis

Cellular fatty acid methyl esters were obtained from strain JCM 31412^T, *Vibrio brasiliensis* LMG 20546^T, *V. nigripulchritudo* LMG 03896^T and *V. caribebeanus* ATCC BAA-2122^T by saponification, methylation and extraction after growth for 24h at 28°C on trypticase soy agar containing 1.5% NaCl (w/v). The cellular fatty acids were extracted according to the protocol of the Sherlock Microbial Identification System [19] and subsequently identified by gas chromatography. Individual fatty acids were identified using the Microbial Identification software package (Sherlock version 6.0) based on the TSBA6 calculation method and TSBA6 library databases [20]. Fatty acid methyl esters were analyzed by gas chromatography with flame-ionization detection (GC-FID) using rapid Microbial Identification System software (RBTR20; MIDI Inc.) to identify the relative amounts of each fatty acid. For comparison, the three closest species based on 16S rDNA analysis were also examined in parallel.

DNA isolation and genotypic analysis

Genomic DNA was extracted and purified using a commercial QIAamp DNA Blood Maxi Kit (QIAGEN) following the manufacturer’s protocol. The base sequence of complete 16S rDNA was determined according to the method of Nakagawa et al. [21]. Sequences were analyzed with an ABI PRISM 3130 xl genetic analyzer system (Applied Biosystems, CA, USA). A homology search was carried out using the BLASTN (https://blast.ncbi.nlm.nih.gov) and the 16S rDNA base sequences of other known related strains were retrieved from GenBank/EMBL/DDBJ. Sequences were aligned using CLUSTAL W [22] and phylogenetic trees reconstructed using neighbor-joining algorithms (MEGA version 5.05) [23, 24]. The stability of the grouping was estimated by bootstrap analysis with 1000 replications. Multi locus sequence analysis (MLSA) of eight concatenated housekeeping gene sequences encoding topoisomerase I (*topA*), cell division protein (*ftsZ*), glyceraldehydes-3-phosphate dehydrogenase (*gapA*), DNA gyrase B subunit (*gyrB*), actin-like cytoskeleton protein (*mreB*), uridylate kinase (*pyrH*), recombination repair protein (*recA*) and RNA polymerase alpha-subunit (*rpoA*) was carried out as described previously [25, 26]. PCR amplicons were edited and assembled into consensus sequences using CLUSTAL W [22] (accession numbers are listed in S1 Table). DNA-DNA hybridization experiments using photobiotin-labelled DNA was performed at 44°C according to the method of Suzuki et al. [27]. The G+C content of the DNA was determined by high-performance liquid chromatography (HPLC) [28] as mean percentage values ± SD of triplicate measurements. DNA-DNA hybridization between *Vibrio* sp. nov. JCM 31412^T, *V. brasiliensis* LMG 20546^T, *V. nigripulchritudo* LMG 03896^T, *V. caribebeanus* ATCC BAA-2122^T, *V. nereis* LMG 3895^T and *V. xuii* LMG 21346^T were performed in quadruplicate.

Results and discussion

Morphological description

Cells of strain JCM 31412^T were found to be a motile but swarming, ovoid and variable in size, ranging from 0.95–1.3 μm long and 0.6–0.9 μm wide. A sheathed single polar flagellum approximately 5.9 μm long was observed in TEM observations (Fig 1). Short rod bodies formed in older cultures. No endospores were observed. Colonies on ZoBell 2216E agar supplemented with 2.0% NaCl (w/v) were Gram-negative, cream colored, non-pigmented, non-luminescent, circular, smooth and convex, and 1–2 mm in diameter after incubation at 27°C for 24h.
Phenotypic analysis

Phenotypic traits and characteristics of strain JCM 31412^T and closely related *Vibrio* species are listed in Table 1. Strain JCM 31412^T showed distinct phenotypic features of the genus *Vibrio* that were Gram-negative, oxidase positive, grown on TCBS agar and were facultative anaerobes [29]. It was further identified as a facultative anaerobe capable of both fermentative and respiratory metabolism. Furthermore, it required salt (0.5–9.0%), and was capable of growth from 10 to 37°C and at pH 7.0–12.0. Vigorous growth also occurred on ZoBell marine agar 2216E (Difco) and tryptic soy agar supplemented with 2.0% NaCl (w/v) at 25–37°C for 12 h. Optimal growth was observed at 35°C with 2.0% NaCl (w/v) at pH 8.0. Growth on TCBS agar (Nippon Beckton Dickinson) was also observed in the form of a yellow, convex, round colony, about 1 mm in diameter, after 72 h incubation at 28°C. Strain JCM 31412^T was positive for

![Image](https://example.com/image.png)

*Fig 1. Negatively-stained transmission electron micrograph of *Vibrio japonicus* JCM 31412^T showing the sheathed single polar flagellum.* Transmission electron microscopy of strain JCM 31412^T using H-7600 (Hitachi) at an operating voltage of 100kV. The micrograph shown was captured at a magnification of ×28,000. The bar indicates 600 nm.

doi:10.1371/journal.pone.0172164.g001
oxidase but negative for catalase and gelatinase activity. It was arginine dihydrolase (ADH)-positive, lysine decarboxylase (LDC)-positive and ornithine decarboxylase (ODC)-negative. Overall, the novel strain could be differentiated from phylogenetically known *Vibrio* species by several phenotypic characteristics.

Antibiotic susceptibility test

Strain JCM 31412^T was susceptible to ampicillin (10 μg), ampicillin-sulbactam (10/10 μg), amoxicillin-clavulanic acid (20/10 μg), piperacillin (100 μg), piperacillin-tazobactam (100/10 μg), cefazolin (30 μg), cefepime (30 μg), cefotaxime (30 μg), ceftazidime (30 μg), cefuroxime sodium (parenteral) (30 μg), imipenem (10 μg), meropenem (10 μg), amikacin (30 μg), gentamicin (10 μg), tetracycline (30 μg), ciprofloxacin (5 μg), levofloxacin (5 μg) and trimethoprim-sulfamethoxazole (1.25/23.75 μg). In addition, susceptibility to vibriostatic agent O/129 was observed at both 10 and 150 μg per disc.

Fatty acid analysis

The total cellular fatty acid composition of the strain JCM 31412^T and 3 other *Vibrio* species are shown in Table 2. The predominant fatty acids were C_{12:0}, C_{12:0}-3OH, C_{14:0}, C_{16:0}-3OH/iso-

Fatty acid	1	2	3	4
11:0	0.1			0.7
11:0-3OH	0.1			
12:0	3.8	3.4		15.9
14:0	4.5	7.8	8.7	2.8
16:0	21.9	11.4	18.7	9.5
17:0	1.5	0.2	0.2	0.8
12:0-3OH	4.3	0.8		0.8
13:0 iso	0.7	0.4		6.3
14:0 iso	4.5	7.8	8.7	2.8
15:0 iso	0.2	0.3		1.4
15:0 iso-3OH	1.2	0.1		0.9
16:0 iso	0.6	4.5	0.4	1.1
16:1 ω7c alcohol	0.3	0.3	0.3	1.8
16:1 ω9c	0.4	0.8	1.1	0.3
17:0 iso	0.2	0.1		1.6
20:1 ω7c	0.1			
17:1 ω6c	0.9	0.2	0.1	1.4
17:1 ω8c	1.9	0.4	0.4	1.8
Summed feature1^a	1.2			0.4
Summed feature2^b	6.4	1.8	5.0	2.6
Summed feature3^c	27.7	44.0	48.7	27.4
Summed feature8^d	17.3	15.9	12.7	8.0

Table 2. Fatty acid composition (%) of *Vibrio* sp. nov. JCM 31412^T and 3 related *Vibrio* species.

Strains: 1, *Vibrio* sp. nov. JCM 31412^T; 2, *Vibrio brasiliensis* LMG 20546^T; 3, *Vibrio nigripulchritudo* LMG 03896^T; 4, *Vibrio caribbeanicus* ATCC BAA-2122^T. All data were obtained in this study.

^aC15:1 iso H and/or C13:0-3OH
^bC12:0 ALDE, unknown 10.928
^cC16:1 ω7c and/or C16:1 ω6c
^dC18:1 ω7c and/or C18:1 ω6c

doi:10.1371/journal.pone.0172164.t002
C15:0, C17:1ω8c, C17:0, summed isoH-C15:1 and 3OH-C13:0 summed ALDE-C12:0, unknown 10.928, iso-C16:1 and C14:03OH, summed C16:1ω7c and C16:1ω6c, and summed C18:1ω7c and C18:1ω6c, constituting 90.5% of the total cellular fatty acids. Forty-one fatty acids with 11–20 carbon atoms were detected. The fatty acid profile from strain JCM 31412T showed significant differences from those of related type strains. Strain JCM 31412T contained C11:0-3OH and C20:1ω7c which were not detected in other reference strains.

16S rDNA genotypic analysis

After analyzing and assembling the 1477-bp 16S rDNA gene sequence of strain JCM 31412T, the consensus sequence was used to query the GenBank database of NCBI using BLAST to identify strains with the highest sequence identity. Sequence searches demonstrated that strain JCM 31412T belongs to the genus *Vibrio*. Analysis (query coverage 100%) further revealed that type strains of *V. brasilienis* (LMG 20546T), *V. harveyi* (NBRC 13287T), *V. proteolyticus* (NBRC 13287T) and *V. caribbeanicus* (ATCC BAA-2122T) were most closely related, sharing 98.2, 98.2, 97.8 and 97.8% 16S rDNA gene sequence identity, respectively. Moreover, a neighbor-joining tree derived from 16S rDNA gene sequences of 24 different *Vibrio* species including strain JCM 31412T included novel strain JCM 31412T in a cluster with *V. brasilienis* LMG 20546T, *V. nigripulchritudo* ATCC 27043T and *V. caribbeanicus* N384T (Fig 2).

MLSA

Vibrios are comprised of closely related species and are therefore difficult to identify [30]. MLSA of housekeeping genes has proven to be an accurate tool for delineation of microorganisms [31], as well as phylogenetic studies of the genus *Vibrio* [25]. To further optimize the taxonomic resolution, a neighbor-joining tree was therefore constructed from concatenated sequences of eight housekeeping genes (*topA, ftsZ, gapA, gyrB, mreB, pyrH, recA* and *rpoA*) as recommended by Sawabe et al. [32]. As a result, MLSA clustered strain JCM 31412T in the Nereis clade along with *V. nereis* LMG 3895T and *V. xuii* LMG 21346T, with high bootstrap values. Based on 16S rDNA gene sequence identity, the closest related neighbors were found to be type strains of *V. brasilienis* (Orientalis clade), *V. nigripulchritudo* (Nigripulchritudo clade) and *V. caribbeanicus* (Pectenicida clade). Phylogenetic analysis of sequences of protein coding genes therefore revealed substantial differences from the phylogenetic tree obtained based on 16S rDNA gene sequences due to low interspecies resolution with the latter [26, 33–35]. GenBank/EMBL/DBJ accession numbers of the 16S rDNA, *topA, ftsZ, gapA, gyrB, mreB, pyrH, recA* and *rpoA* gene sequences of strain JCM 31412T, and all other gene sequences used in this study are listed in the S1 Table.

DNA-DNA hybridization analysis

The phylogenetic tree based on 16S rDNA gene sequences of strain JCM 31412T and related species showed that strain JCM 31412T formed its closest phylogenetic cluster with type strains of *V. brasilienis*, *V. nigripulchritudo* and *V. caribbeanicus* but with low bootstrap support (Fig 2). In contrast, MLSA revealed that strain JCM 31412T formed a distinct cluster in the Nereis clade with type strains of *V. nereis* and *V. xuii*, with high bootstrap values (Fig 3). DNA-DNA hybridization experiments were therefore performed between novel strain JCM 31412T and established strains grouped in the Nereis clade as well as closest phylogenetic neighbors based on 16S rDNA gene sequences. DNA of strain JCM 31412T showed relatively low DNA-DNA relatedness with *V. brasilienis* LMG 20546T [15], *V. nigripulchritudo* LMG 03896T [16], *V. caribbeanicus* ATCC BAA-2122T [17], *V. nereis* LMG 3895T [36] and *V. xuii* LMG 21346T [15] (36.4±1.6, 24.8±1.8, 24.5±3.0, 36.4±2.6 and 32.7±3.4%, respectively), significantly below the
recommended cut-off threshold of 70% DNA–DNA hybridization for the identification of bacterial species (Table 3) [37]. These results further support the suggestion that strain JCM 31412T represents a species distinct from either of its nearest neighbors based on MLSA, as well as from type strains of \textit{V. nereis} and \textit{V. xuii}.

G+C content analysis

The mean G+C content of strain JCM 31412T was calculated as 46.8 mol\%, which falls within the range of 38–51 mol\% previously found for other members of the genus \textit{Vibrio} [38].

Nucleotide sequence accession numbers

All sequence files are available on the GenBank nucleotide database with accession numbers for the 16S rDNA gene, \textit{topA}, \textit{ftsZ}, \textit{gapA}, \textit{gyrB}, \textit{mreB}, \textit{pyrH}, \textit{recA} and \textit{rpoA} sequences, respectively. Other relevant data are provided in S1 Table.

Conclusion

This study characterized strain JCM 31412T both phenotypically and genotypically, supporting its description as a novel and previously uncharacterized \textit{Vibrio} species. Strain JCM 31412T
formed a stable group in the Nereis clade, and could be differentiated from closely related species based on phylogenetic analysis, DNA-DNA relatedness and phenotypic characterization. Overall, these data confirm that strain JCM 31412T is a novel species belonging to the genus \textit{Vibrio}, for which the name \textit{Vibrio japonicus} sp. nov. is proposed.

Table 3. DNA-DNA similarity between \textit{Vibrio} sp. nov. JCM 31412T and 5 related \textit{Vibrio} species.

	1	2	3	4	5	6
\textit{Vibrio} sp. nov. JCM 31412T	100					
\textit{Vibrio} brasiliensis LMG 20546T	36.4±1.6	100				
\textit{Vibrio} nigripulchritudo LMG 03896T	24.8±1.8	25.0±1.9	100			
\textit{Vibrio} caribbeanicus ATCC BAA-2122T	24.5±3.0	27.0±2.8	23.0±2.1	100		
\textit{Vibrio} nereis LMG 3895T	36.4±2.6	30.6±1.8	25.0±1.6	24.2±1.0	100	
\textit{Vibrio} xuii LMG 21346T	32.7±3.4	28.3±3.6	24.5±4.1	19.4±0.4	44.5±3.8	100

Strains: 1, \textit{Vibrio} sp. nov. JCM 31412T; 2, \textit{Vibrio} brasiliensis LMG 20546T; 3, \textit{Vibrio} nigripulchritudo LMG 03896T; 4, \textit{Vibrio} caribbeanicus ATCC BAA-2122T; 5, \textit{Vibrio} nereis LMG 3895T; 6, \textit{Vibrio} xuii LMG 21346T. Values are expressed as means ± SD (n = 4).

doi:10.1371/journal.pone.0172164.003
Description of *Vibrio japonicus* sp. nov.

Vibrio japonicus (ja.po’ni.cus N.L. masc. adj. *japonicus* pertaining to Japan, from where the type strain was originally isolated).

Cells ovoid (approx. 0.8 μm wide and 1.0μm long), Gram-negative, motile coccus with one flagellum. Flagellum sheaths observed. Grows well on ZoBell marine agar 2216E (Difco) and Tryptic soy agar supplemented with 2.0% NaCl (w/v) at 25–37˚C for 12h. Colonies cream colored, translucent, smooth, rounded, with a diameter of 1–2 mm on ZoBell marine agar 2216E (Difco), motile but swarming. Growth at 10–37˚C, NaCl concentrations of 0.5–9.0% and pH 7.0–12.0. Optimal growth at 35˚C with 2.0% NaCl (w/v) at pH 8.0. Colonies yellow, convex, round and approximately 1 mm on TCBS agar after 72 h incubation at 28˚C. Bioluminescence not observed. Susceptible to ampicillin (10 μg), ampicillin-sulbactam (10/10 μg), amoxicillin-clavulanic acid (20/10 μg), pipercillin (100 μg), pipercillin-tazobactam (100/10 μg), cefazolin (30 μg), ceftazidime (30 μg), cefotaxime (30 μg), cefoxitin (30 μg), ceftazidime (30 μg), cefuroxime sodium (parenteral) (30 μg), trimethoprim-sulfamethoxazole (1.25/23.75 μg). Also susceptible to vibriostatic agent O/129 at both 10 and 150 μg. Catalase-negative, oxidase-positive, arginine dihydrolase-positive, lysine decarboxylase-positive and ornithine decarboxylase-negative. Also positive for alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, naphthol-As-Bl-phosphohydrolase, alkaline phosphatase, esterase (C4), esterase lipase (C8), leucine arylamidase, valine arylamidase, cystine arylamidase, naphthol-As-BI-phosphohydrolase, α-mannosidase, α-fucosidase, ornithine decarboxylase and urease activity (starch). Negative for lipase (C14), cystine arylamidase, trypsin, α-chymotrypsin, α-galactosidase, α-glucosidase, β-glucosidase, N-acetyl-β-glucosaminidase, α-mannosidase, α-fucosidase, ornithine decarboxylase and urease activity, hydrolysis of gelatin, casein and esculin. Positive for citrate utilization, production of indole, fermentation of glucose, sucrose, D-mannitol, melibiose and D-amylodextrin, and assimilation of galactose, fructose, D-cellobiose, D-ribose, trehalose, D-raffinose, glycogen and N-acetylglucosamine. Negative for nitrate reduction to nitrate and H₂S and acetoin (Voges-Proskauer) production. Able to utilize DL-malic acid and sodium citrate but unable to utilize mannose, sorbose, D-lactose, L-rhamnose, D-arabinose, D-xylene, gentiobiose, D-turanose, D-tagatose, D-fucose, L-fucose, D-melezitose, amygdaline, inulin, salicin, arbutin, esculin, ferric citrate, xylitol, D-Arabitol, L-arabitol, glycerol, erythritol, adonitol, dulcitol, inositol, D-sorbitol, N-capric acid, adipic acid, gulonate, 2-keto-gluconate, 5-keto-gluconate, sodium pyruvate, phenyl acetate, sodium thiosulfate, methyl-αD-mannopyranoside, methyl-βD-glucopyranoside, methyl-β-D-xlyopyranoside, o-nitrophenyl-β-D-galactopyranoside, p-nitrophenyl-β-D-galactopyranoside and urea. The most abundant fatty acids are C₁₂:0, C₁₂:0 3OH, C₁₄:0, C₁₆:0 3OH/iso-C₁₅:0, C₁₇:1ω8c, C₁₇:0 summed isoH-C₁₅:1 and 3OH-C₁₃:0, summed ALDE-C₁₂:0, unknown 10.928, iso-C₁₆:1 and C₁₄:0 3OH, summed C₁₆:1ω7c and C₁₆:1ω6c, and summed C₁₈:1ω7c and C₁₈:1ω6c. G+C content 46.8±0.1 mol%.

The type strain JCM 31412ᵀ (= LMG 29636ᵀ = ATCC TSD-62ᵀ) was isolated from seawater collected from the Inland Sea, (Setonaikai) Japan. GenBank/EMBL/DDBJ accession numbers for 16S rDNA, *topA*, *ftsZ*, *gapA*, *mreB*, *pyrH*, *recA* and *rpoA* gene sequences of strain JCM 31412ᵀ are LC143378, LC143379, LC143380, LC143381, LC143382, LC143383, LC143384, LC143385 and LC143386, respectively.

Supporting information

S1 Table. GenBank accession numbers of 16S rDNA and housekeeping genes of *V. japonicus* JCM 31412ᵀ sp. nov. and reference type strains. (DOCX)
Acknowledgments

The authors would like to thank Emiko Sato for technical assistance. They would also like to acknowledge TechnoSuruga Laboratory Co., Ltd. (Shizuoka, Japan) for useful technical advice.

Author Contributions

Conceptualization: HD.
Investigation: HD IO.
Supervision: HA MK.
Writing – original draft: HD.
Writing – review & editing: HA.

References

1. Baumann P, Schubert RHW. (1984) In: Krieg NR, Holt G, editors. Family II. Vibrionaceae Veron 1965. Bergey's Manual of Systematic Bacteriology, vol. 1, Williams & Wilkins: Baltimore, pp. 516–517.
2. Baumann P, Baumann L. (1984) In: Genus II. Photobacterium Beijerinck 1889. Bergey's Manual of Systematic Bacteriology, vol. 1. Edited by Krieg N. R. & Holt J. G.. Williams & Wilkins: Baltimore, pp. 539–545.
3. Sorokin DY. (1992) Catenococcus thiocyclus gen. nov. sp. nov. -a new facultatively anaerobic bacterium from a near-shore sulphidic hydrothermal area. J Gen Microbiol 138: 2287–2292.
4. Thompson FL, Hoste B, Vandemuelebroecke K, Swings J. (2003) Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov. Int. J Syst Evol Microbiol 53: 1615–1617.
5. Nedashkovskaya OI, Stenkova AM, Zhukova NV, Van Trappen S, LEE JS, Kim SB. (2013) Echinominas agarilytica gen. nov., sp. nov., a new gammaproteobacterium isolated from the sea urchin Strongylocentrotus intermedius. Antonie van Leeuwenhoek, 103: 69–77. doi: 10.1007/s10482-012-9787-y PMID: 22945862
6. Mellado E, Moore ERB, Nieto JJ, Ventosa A. (1996) Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov. Int J Syst Bacteriol 46: 817–821. doi: 10.1099/00207713-46-3-817 PMID: 8782695
7. Thompson FL, Hoste B, Thompson CC, Goris J, Gómez-Gil B, Huys L, et al. (2002) Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae. Int J Syst Evol Microbiol 52: 2015–2022. doi: 10.1099/00207713-52-6-2015 PMID: 12508862
8. Urbanczyk H, Ast JC, Higgins MJ, Carson J, Dunlap PV. (2007) Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov. Int J Syst Evol Microbiol 57: 2823–2829. doi: 10.1099/ijsv.0.05081-0 PMID: 18048732
9. Gao F, Al-Saari N, Rohul A.K.M., Sato K, Mino S, Suda W, et al. (2016) Vibrio ishigakensis sp. nov., in Halolocci clade isolated from seawater in Okinawa coral reef area, Japan. Syst Appl Microbiol. 39(5): 330–335. doi: 10.1016/j.syapm.2016.04.002 PMID: 27262360
10. Al-saari N, Gao F, Rohul A.K.M., Sato K, Mino S, Suda W, et al. (2015) Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio australiensis sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae. PLoS ONE 10(8): e0136279. doi: 10.1371/journal.pone.0136279 PMID: 26313925
11. Thompson FL, Iida T, Swings J. (2004) Biodiversity of Vibrios. Microbiology and Molecular Biology Reviews 68 (3): 403–431. doi: 10.1128/MMBR.68.3.403-431.2004 PMID: 15353563
12. Takemura AF, Chien DM, Polz MF. (2014) Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front Microbiol 11: 5. 38. eCollection 2014.
13. Colwell RR. (2006) A global and historical perspective of the genus Vibrio. In: Thompson FL, Austin B, Swings J, editors. The biology of Vibrios. American Society for Microbiology: Washington, DC, pp. 3–11.
14. Thompson FL, Swings J. (2006) Taxonomy of the vibrios. In: Thompson FL, Austin B, Swings J, editors. The biology of Vibrios. American Society for Microbiology: Washington, DC, pp. 29–43.
Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Mino S, et al. (2013) Updating the taxonomy of Vibrio japonicus sp. nov.

Baumann P, Baumann L, Mandel M. (1971) Taxonomy of Marine Bacteria: the Genus Beneckeia J Bacteriol 107(1): 268–294. PMID: 4935323

Hoffmann M, Monday SR, Allard MW, Strain EA, Whittaker P, Naum M, et al. (2012) Vibrio caribbeanus sp. nov., isolated from the marine sponge Sclerodictyon cyanea. Int J Syst Evol Microbiol 62(8): 1736–1743. Epub 2011 Sep 19.

CLSI (2010) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria: Approved Guideline-Second edition CLSI document M45-A2, vol. 30, no. 18. Wayne, PA: Clinical and Laboratory Standards Institute.

MIDI (2005) Sherlock Microbial Identification System Operating Manual, version 6.0. Newark, DE: MIDI Inc.

Sasser M. (1990) Identification of bacteria by gas chromatography of cellular fatty acids. Microbial ID Inc., Newark.

Nakagawa Y, Tamura Y, Kawasaki H. (2001) Methods in gene analysis. In: Miyadoh S, Hamada M, Hotta K, Kudo T, Seino A, Suzuki K, Yokota A, editors. Identification manual of actinomycetes. Business center for academic societies Japan: Tokyo, pp. 83–117.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404 PMID: 17846036

Tamura K, Peterson N, Stecher G, Nei M, Kumar S. (2012) MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

Saitou N, Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425. PMID: 3447015

Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, et al. (2005) Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71: 5107–5115. doi: 10.1128/AEM.71.9.5107-5115.2005 PMID: 16151093

Sawabe T, Kita-Tsumakoto K, Thompson FL. (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189: 7932–7936. doi: 10.1128/JB.00020-07 PMID: 17704223

Suzuki K. (2001) Methods for classification and identification of microorganisms-general approaches to molecular genetic and molecular biological technique. In: Suzuki K, Hiraishi A, Yokota A, editors. DNA-DNA hybridization. Springer-verlag: Tokyo, pp. 34–37.

Suzuki K. (2001) Methods for classification and identification of microorganisms-general approaches to molecular genetic and molecular biological technique. In: Suzuki K, Hiraishi A, Yokota A, editors. Molecular genetic and molecular biological technique. In: Suzuki K, Hiraishi A, Yokota A, editors. Identificati on manual of actinomyc etes. Busi-

Clustal X version 2.0. Bioinformatics 23: 2947–2948. doi: 10.1093/bioinformatics/btm404 PMID: 17846036

Tamura K, Peterson N, Stecher G, Nei M, Kumar S. (2012) MEGA6: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739.

Saitou N, Nei M. (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425. PMID: 3447015

Thompson FL, Gevers D, Thompson CC, Dawyndt P, Naser S, Hoste B, et al. (2005) Phylogeny and molecular identification of Vibrios on the basis of multilocus sequence analysis. Appl Environ Microbiol 71: 5107–5115. doi: 10.1128/AEM.71.9.5107-5115.2005 PMID: 16151093

Sawabe T, Kita-Tsumakoto K, Thompson FL. (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol 189: 7932–7936. doi: 10.1128/JB.00020-07 PMID: 17704223

Suzuki K. (2001) Methods for classification and identification of microorganisms-general approaches to molecular genetic and molecular biological technique. In: Suzuki K, Hiraishi A, Yokota A, editors. DNA-DNA hybridization. Springer-verlag: Tokyo, pp. 34–37.

Suzuki K. (2001) Methods for classification and identification of microorganisms-general approaches to molecular genetic and molecular biological technique. In: Suzuki K, Hiraishi A, Yokota A, editors. DNA-DNA hybridization. Springer-verlag: Tokyo, pp. 34–37.

Asina M, Blanch AR. (1994) A set of key for biochemical identification of environmental Vibrio species. J Appl Bacteriol 76: 79–85. PMID: 8144409

González-Castillo A, Enciso-Ibarra J, Bolán-Mejía MC, Balboa S, Lasa A, Romalde JL, et al. (2015) Vibrio mexicanus sp. nov., isolated from a cultured oyster Crassostrea corteziana. Antonie van Leeuwenhoek 108: 355–364. doi: 10.1007/s10482-015-0488-1 PMID: 26021481

Stackebrandt E, Ebers J. (2006) Taxonomic parameters revisited: tarnished gold standards. Microbial Today 33: 152–155.

Sawabe T, Ogura Y, Matsumura Y, Feng G, Amin AR, Mino S, et al. (2013) Updating the Vibrio clades defined by multilocus sequence phylogeny: proposal of eight new clades, and the description of Vibrio tritonius sp. nov. Front Microbiol 4: 1–14.

Gómez Gil B, Roque A, Chimetto L, Moreira AP, Lang E, Thompson FL. (2012) Vibrio alfacsensis sp. nov., isolated from marine organisms. Int J Syst Evol Microbiol. 62(12): 2955–2961.

Wang Y, Zhang XH, Yu M, Wang H, Austin B. (2010) Vibrio atypicus sp. nov., isolated from the digestive tract of the Chinese prawn (Penaeus chinensis O’seebek). Int J Syst Evol Microbiol. 60(11): 2517–23.

Thompson FL, Gómez-Gil B, Vasconcelos ATR, Sawabe T. (2007) Multilocus sequence analysis reveals that Vibrio harveyi and Vibrio campbellii from distinct species. Appl Environ Microbiol 73: 4279–4285. doi: 10.1128/AEM.00020-07 PMID: 17483280

Baumann P, Baumann L, Bang SS, Woolkalis M. (1980) Reevaluation of the taxonomy of Vibrio, Beneckeia, and Photobacterium: abolition of the genus Beneckeia. Curr Microbiol 4: 127–132.
37. Wayne LG, Brenner DJ, Colwell RR, Grimont PAD, Kandler P, Krichevsky MI, et al. (1987) Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464.

38. Farmer JJ, Janda JM, Brenner FW, Cameron DN, Birkhead KM. (2005) Genus I. *Vibrio* Pacini 1854, 411AC. In: Brenner NR, Krieg NR and Staley JT, editors. Bergey’s manual of systematic bacteriology, 2nd edn, vol. 2B, The Williams & Wilkins Co: Baltimore, pp. 494–546.