Polyunsaturated fatty acid-derived lipid mediators and T cell function

Anna Nicolaou, Claudio Mauro, Paula Urquhart, and Federica Marelli-Berg

INTRODUCTION

The regulation of energy metabolism is crucial to T cell-mediated immunity including activation, proliferation, and differentiation (1). Following recognition of antigen in the lymph nodes, naive T lymphocytes undergo massive clonal expansion and differentiation, followed by a contraction or death phase, and the establishment and maintenance of immunological memory (2, 3). Before undergoing division, T cells activate biosynthetic pathways for the production of proteins, nucleic acids, lipids, carbohydrates, and other “building blocks” necessary for the generation of new cells. Following this stage, the metabolic machinery of T cells is reprogrammed, switching from the β-oxidation of fatty acids in naïve T cells to the glycolytic pathways in activated T cells (4–6).

Downstream of T cell receptor (TCR) signaling, phosphatidylinositol 3'-kinase (PI3K) leads to the activation of the serine–threonine kinase AKT, which promotes glucose metabolism by stimulating the localization of the glucose transporter Glut1 to the plasma membrane, and the activity of hexokinase and phosphofructokinase, two rate-limiting enzymes of the glycolytic pathway. Increased glycolytic flux enables activated T cells to generate ATP and, at the same time, efficiently utilize carbon sources in the form of amino acids and lipids for the biosynthesis of proteins and membranes necessary for the expansion phase that characterizes the immune response (7–11). AKT also controls the activation state of mammalian target of rapamycin (mTOR), a sensor of nutritional and energetic status in cells that promotes protein synthesis.

T cell activation also initiates distinct transcriptional programs, which determine their differentiation into functional subsets depending on the context (cytokines, prostaglandins (PG), and other extracellular signals) in which they were activated (12–14). These subsets define the characteristics of the immune response. Whereas CD8+ T cells differentiate into cytotoxic T lymphocytes that kill infected host cells, CD4+ T lymphocytes differentiate into either the Th1, Th2, or Th17 subset of helper T cells (effector T cells) that mediate appropriate immune responses or into induced regulatory T cells (iTreg cells) that suppress uncontrolled immune responses (12). There is evidence that the cytokine milieu in which T cells differentiate can influence their metabolic programming. A comparison of activated T cells responding to related cytokines IL-2 and IL-15 illustrates the differential regulation of T lymphocyte metabolism by distinct cytokine environments: IL-2 promotes elevated glucose metabolism and glycolysis, while IL-15 does not maintain this metabolic state and T cells responding to IL-15 are smaller with reduced nutrient uptake and glycolysis (15, 16).

After clearance of the infection, most clonally expanded and differentiated T cells undergo apoptosis (contraction phase). The surviving antigen-specific T cells (memory T cells) are responsible for enhanced immunity after re-exposure to the same pathogen. Of these various T cell subsets, the iTreg cells and memory T cells rely on lipid oxidation as a major source of energy, whereas cytotoxic T lymphocytes and effector T cells are characterized by high glycolytic activity (17–19).

Further to oxidation for energy production, fatty acids are involved in many other aspects of T cell biology. In particular,
omega-3 polyunsaturated fatty acids (n-3 PUFA) are recognized as modulators of inflammation and immunity mediating their pleiotropic activity through regulation of gene expression, influencing signaling cascades, and altering the composition of the cellular membranes (20, 21). The latter has implications for the structure and function of the membrane, as well as a direct impact on the production of n-6 and n-3 PUFA-derived bioactive lipids including PG, leukotrienes (LT), resolvins (Rv), protectins (PD), endocannabinoids, and related congeners.

Although the immunomodulatory properties of PUFA have been known for many years, the molecular mechanisms underlying these properties are not fully understood. It has been shown that n-3 PUFA suppress antigen presentation, T cell activation and proliferation, and lower the expression of signature cytokines (21–27). Disappointingly, early studies using daily supplementation with foods rich in n-3 PUFA failed to show significant improvement in organ transplantation rejection (28, 29). However, recent reports indicate that administration of purified eicosapentaenoic acid (EPA; 20:5n-3) induces the differentiation of regulatory T cells through upregulation of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated nuclear receptor that regulates lipid and glucose metabolism, leading to increased allograft survival (30, 31).

Following this direction, studies have explored the effect of cellular incorporation of the main n-3 PUFA, EPA, and docosahexaenoic acid (DHA; 22:6n-3). These fatty acids can alter the composition and molecular organization of membrane rafts with a consequent impact on the activity of raft-associated signaling proteins and related events. Examples include recruitment and activation of PLCγ and F-actin, impairing mitochondrial translocation necessary to maintain Ca2+ signaling for NFkB and AP-1 activation and IL-2 secretion, and suppression of phosphatidylinositol-dependent actin remodeling, all linked to reduced CT4+ T cell activation [recently reviewed in Ref. (20)]. Importantly, many of the PUFA mediated activities are conveyed through their metabolites that tend to be produced and metabolized upon request, can act near the site of their synthesis or transported via circulation and in this way mediate systemic effects (autacoids). These families of potent mediators are intimately involved in inflammation and immunity, with pro- and/or anti-inflammatory, proliferative, and chemoattractive activities (21).

Overall, these new findings suggest that a better understanding of the molecular mechanism of action of PUFA may lead to the development of effective therapeutics. In this article, we will overview the current knowledge of the function and impact of eicosanoids and related metabolites, as well as that of endocannabinoids and their congeners on T cell function, and examine potential applications in biomedical research.

PUFA-DERIVED LIPID MEDIATORS: BIOSYNTHESIS AND METABOLISM

The cellular membrane serves as a pool of PUFA available for further metabolism to various bioactive lipids. These potent autacoids act as local hormones and are produced upon request following the activation of signaling pathways or effect of environmental and other stimuli. The arachidonic acid (AA; C20:4n-3)-derived eicosanoids are some of the best known and studied bioactive lipids. The term “eicosanoids” is used to describe the bioactive derivatives of three fatty acids with 20-carbon acyl chains, namely: AA, EPA, and dihomo-gamma linolenic (DGLA; 20:3n-6). These metabolites, although mostly linked to inflammation, are also involved in cell migration, proliferation, chemotaxis, and immune reactions (32–34). Eicosanoids and related mediators derive from the activities of cyclooxygenases (COX), lipoxigenases (LOX), and cytochrome P450 (CYP) epoxygenases and mono-oxygenases (Figures 1 and 2) [reviewed in Ref. (35)]. The term “endocannabinoids” refers to endogenous lipids ligands of the cannabinoid receptors CB1 and CB2. These are also derivatives of AA, while other PUFA ethanolamides are now recognized as members of this family (36). Although endocannabinoids can be metabolized by COX and LOX, their precursor phospholipids and metabolism are different to eicosanoids (Figure 3).

CYCLOOXYGENASE-MEDIATED FORMATION OF PROSTANOIDS

The eicosanoid cascade starts with the activation of phospholipases (PL), predominantly PLA2 but also PLD and diacylglycerol (DAG) lipase that release AA and other PUFA from the cellular membrane (35). The family of PLA2 comprises a large number of enzymes with distinct characteristics in terms of their activation, cellular localization, and substrate specificity (37). There is evidence for the presence of various PLA2 isoforms in primary T cells and the Jurkat T cell line, including cPLA2, sPLA2, and iPLA2 (38–42). Inducible isoforms of PLC and DAG lipase have also been identified in tumor and peripheral T lymphocytes (42, 43).

Free AA is then metabolized via the constitutive and inducible COX isoforms (COX-1 and -2), respectively, to the unstable endoperoxide PGH2 that is then transformed to PG, thromboxanes (TX), and prostacyclin (PGL2) via tissue specific terminal prostaglandin synthases (Figure 1); these COX-derived mediators belong to the family of eicosanoids and are collectively known as prostanooids. Apart from AA, prostanooids are formed from the other two 20-carbon containing PUFA, DGLA, and EPA, with the resulting metabolites having different activities and being considered less-inflammatory than the AA-derived ones (35, 44).

The exact profile of prostanooids is determined by the prevalence of specific synthases in the cell type or tissue of interest. PGE2 is produced by prostaglandin E synthase (PGES) that is found as membrane bound (mPGES-1 and -2) or cytosolic (cPGES). mPGES-1 is an inducible isoform and is frequently found co-expressed with COX-2 (45, 46). PGD2 is produced by the hematopoietic-type (H-PGDS) or the lipocytic-type (L-PGDS) synthases (47), while further non-enzymatic hydrolysis of PGD2 gives rise to the anti-inflammatory cyclopentaneones PG IgJ and 15d-PGJ2 (48, 49). PGF2α is produced either directly from PGH2 via the prostaglandin F synthase (PGFS) or through further metabolism of PGE2 and PGD2 by PGE 9-ketoreductase and PGD 11-ketoreductase, respectively (50). Prostacyclin (PGL2) is produced via the prostacyclin synthase (PGIS) and is usually detected as its stable but inactive metabolite 6-keto-PGF1α (51). Finally, thromboxane synthase (TXS) converts PGH2 to TXA2, an unstable prostanooid that is quickly hydrolyzed to the stable but inert metabolite TXB2 (51). The bioactivity of prostanooids is mediated through G protein-coupled receptors for PGE2, PGD2, PGF2α, PGI2, and TXA2, designated EP, DP, FP, IP, and TP.
Nicolaou et al. Polyunsaturated fatty acid mediators and T cells

FIGURE 1 | Schematic representation of the main biochemical pathways that mediate the production of prostanoids. COX, cyclooxygenase; PGES, prostaglandin E synthase; PGDS, prostaglandin D synthase; PGFS, prostaglandin F synthase; PGIS, prostacyclin synthase; TXS, thromboxane synthase.

FIGURE 2 | Schematic representation of the main biochemical pathways that mediate the production of mono-hydroxy fatty acids and leukotrienes (A), and the poly-hydroxy fatty acids lipoxins, resolvins, and protectins (B), products of transcellular metabolism.

respectively. Pharmacological studies into their ligand-binding profiles and signal transduction pathways, and genetic analysis led to their classification into eight groups (EP1, EP2, EP3, EP4, DP1, FP, IP, and TP) although new developments have revealed the presence of a second PGD receptor, DP2, and the presence of heterodimers (52, 53). Overall, prostanoids are potent autacoids and their levels are controlled through enzymatic catabolism via dehydrogenations and reductions resulting in the formation of
metabolites with significantly reduced bioactivities (e.g., 15-keto- and 13,14-dihydro-15-keto PGs) (54).

LIPOXYGENASE-MEDIATED PRODUCTION OF LEUKOTRIENES AND OTHER HYDROXY FATTY ACIDS

Lipoxygenases mediate the oxygenation of free fatty acids including AA and other PUFA. Their activities are commonly defined by their positional selectivity when they oxygenate AA and, following this system, the main mammalian LOX enzymes are defined as 5-, 12-, and 15-LOX. They catalyze the stereoselective insertion of OH in the S configuration, with the exception of a mammalian skin-specific enzyme 12R-LOX. The products of LOX reactions are unstable hydroperoxides that are then reduced to hydroxy acids (55). 5-LOX acts in concert with 5-lipoxygenase activating protein (FLAP) to metabolize AA to 55-hydroperoxyicosatetraenoic acid (HPETE) that is further reduced to 55-HETE or dehydrated to LTA$_4$, an unstable epoxide containing a conjugated triene system characteristic of all LT. LTA$_4$ can be metabolized to LTD$_4$ or LTD$_4$, an unstable epoxide following conjugation with reduced glutathione (58). 5S-HETE can be also enzymatically reduced to the 5-oxo-icosatetraenoic acid (5-oxo-ETE), a chemoattractant mediator (59). Mammalian 12- and 15-LOX isoforms oxygenate a range of PUFA, both free and esterified in membrane phospholipids and lipoproteins (57), forming a multitude of mono- and poly-hydroxy fatty acids: e.g., AA produces hydroxyeicosatetraenoic acids (HETE), EPA generates hydroxyeicosapentaenoic acids (HEPE), DHA produces docosanoids including hydroxyeicosahexaenoic acids (HDHA), linoleic acid (LA; 18:2n-6) forms octadecanoids such as hydroxy octadecadienoic acids (HODE), DGLA forms hydroxyeicosatrienoic acids (HETE), etc.

CYTOCHROME P450 MEDIATED FATTY ACID EPOXIDES AND THEIR DERIVATIVES

Cytochrome P450 mono-oxygenases relevant to PUFA metabolism catalyze epoxygenations and mid-chain and omega-hydroxylations producing a range of LOX-like mono-hydroxy fatty acids (e.g., HETE, HEPE, HODE) although not necessarily of the S configuration [reviewed in Ref. (35)]. Interestingly, partially inhibited COX-2 (e.g., acetylated COX-2 following treatment with aspirin) can also generate LOX-like products with the OH group at R configuration, e.g., 15R-HETE from AA and 18R-HEPE from EPA (60). These metabolites are important in aspects of transcellular metabolism where sequential LOX/LOX or acetylated COX-2/LOX or CYP/LOX reactions involving more than one cell types are involved in the formation of multi-hydroxy fatty acid species. These include the lipoxins (LX) that are tri-hydroxytetraene-products of AA, and the di- and tri-hydroxy-PUFA termed Rx, PD, and maresins (MaR) that are derivatives of EPA and DHA. All these mediators are involved in inflammation and immunity exhibiting a range of protective roles (61–63).

THE ENDOCANNABINOIDS

The endocannabinoids anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl glycerol (2AG) are derivatives of AA and act as endogenous ligands to the cannabinoid receptors CB1 and CB2 [reviewed in Ref. (36)]. This family of bioactive lipids has been extended to include other fatty acid ethanolamides and glycerols, while recent findings regarding their metabolism suggest a wider involvement in inflammation and immunity. The biochemical precursors of AEA and its congeners are various N-acylated ethanolamine phospholipids (NAPE) that found in very low concentrations in the biological membranes and are hydrolyzed by NAPE-specific PLD or PLC-type lipases. 2AG production is mediated by PLC-diaclyglycerol lipase. AEA and 2-AG can be deactivated via hydrolysis mediated by fatty acid amide hydrolases (FAAH) or can be metabolized by COX-2 to generated prostaglandin ethanolamides known as prostamides (e.g., PGE$_2$-EA) and prostaglandin glyceryl esters (e.g. PGE$_2$-GE) (Figure 3) (52). LOX isoforms can also metabolize these lipids although the
prevalence and bioactivities of the resulting mediators remain to be explored.

EICOSANOIDs AND RELATED MEDIATORS IN T CELL FUNCTION/BIOLOGY

PROSTANOIDS

It is now recognized that resting and activated T cells express the COX-1/-2 system (64–68). Although the constitutive COX-1 is not affected during T cell activation, the inducible COX-2 is upregulated as has been shown in studies with CD4+ cells, Jurkat T cells and adaptive Tregs (66–69). To date, very little is known about the exact profile of prostanoids produced by T cells with only a few studies reporting the production of PGE2, PGD2 and its dehydroxy product 15d-PGJ2, as well as low levels of TXA2 (67, 68, 70). There is also very little information on the type of prostanoid synthases expressed in T cells, including evidence for H-PGDS and PGES in Tregs (67, 68). However, a number of studies have explored the role of PGE2, PGD2, PGJ2, PGI2, and TXA2 on various aspects of T cell function, showing that prostanoid-mediated effects process through receptors and related signaling pathways expressed in most T cell populations and subsets. Interestingly, it has been shown that treatment with AA upregulates the CXCR3/1 inducible chemokine receptors expressed in CD4+ T cells and increases their chemotactic responses through a COX-related pathway (71), suggesting a potential role for this pathway in the regulation of T cell migration.

PGE2

Although considered to be a, primarily, pro-inflammatory eicosanoid, PGE2 can also mediate anti-inflammatory signals, and is a potent immunosuppressor (72). PGE2 is one of the best studied bioactive lipids in T cell biology, exhibiting a multitude of effects. It is involved in the early stages of T cell development in the thymus, where it stimulates the differentiation of CD4+CD8+ thymocytes (73), while in later stages it regulates the development and balance of Th1, Th2, and Th17 subsets (74–76) and, overall, influences proliferation, differentiation, cytokine production, and apoptosis of mature T cells (14, 77–80). Interestingly, the activity of PGE2 on T cells appears to be concentration-dependent: while at low concentrations, it is involved in homeostatic events and inhibits the activation and differentiation of T lymphocytes, at high concentrations, PGE2 has the opposite effect, increasing T cell proliferation, and suppressing immune functions [recently reviewed in Ref. (81)]. For example, in ultraviolet radiation (UVR)-induced immunosuppression, impaired development of peripheral memory T cells can be attributed to UVR-induced PGE2 production (82).

Antigen presenting dendritic cells (DC) and macrophages secrete PGE2 and in this way can influence proliferation and differentiation of CD4+ and CD8+ cells, and direct the balance of Th1, Th2, and Th17 cell subsets (14). PGE2 can also affect the maturation of DC and alter DC-produced cytokines, thus influencing the differentiation of T cell subsets: for example, DC cells matured in the presence of PGE2 in vitro promote Th17 and inhibit Th1/Th2 polarization (78). PGE2 can also enhance the proliferation of T cells through the induction of costimulatory molecules OX40L, CD70, and 4-1BBL on DC (83), while other studies have reported that PGE2 inhibits the ability of DC to produce CCL19 and attract naive T cells (84). Interestingly, the ratio DC:T cells appears to be crucial in determining the overall immunogenic effect of PGE2: it has been reported that at high DC:T cell ratios, PGE2-matured DC cells inhibit the proliferation of T cells, while, when this cell ratio is low, an enhanced T cell stimulation is observed (85). A dose-dependent effect has also been observed in the way PGE2 mediates the balance Th1 to Th2 subtypes: high levels of PGE2 suppress Th1 cell differentiation and polarization, shifting the immune response toward a Th2 phenotype (79). These observations have been confirmed in vivo using COX-2 inhibitors (e.g., celecoxib) and COX-2 knockout models demonstrating that when PGE2 production is reduced, an increase in Th1 responses is observed [reviewed in Ref. (81)]. The regulation of Th2 cells by PGE2 is likely to impact in Th2-mediated immune disorders such as atopic dermatitis and asthma (86, 87). Finally, when PGE2 is produced by activated macrophages it reduces T cell activation and proliferation; this in turn leads to a reduction in cytokine production and consequent reduced stimulation of macrophages in a negative feed-back loop (72).

In vivo work has elucidated the role of EP receptors in mediating PGE2 effects. PGE2 produced by DC in the lymph node acts through the EP1 receptor to promote the differentiation of naive T cells to Th1 cells (88). Studies on the BALB/c mice, a strain showing propensity to generate Th2 responses, have shown that Th2 cells express high levels of EP2 and that PGE2 signaling through this receptor protects Th2 cells against activation induced cell death (77). Furthermore, in a model of experimental autoimmune encephalomyelitis (EAE), PGE2 signaling through EP4 was shown to exert a dual role: promoting immune inflammation through Th1 cell differentiation and Th17 cell expansion during the induction phase. In contrast, during the effector phase of the disease, it attenuated the access of these pathogenic T cells to the brain by protecting the blood brain barrier (89, 90).

PGE2-induced effects mediated via the EP2/EP4 receptors are linked to cAMP concentration and related signaling (53). In cytotoxic T cells, PGE2 and other CAMP activators trigger increased concentration of cAMP and this interferes with the cytoskeleton function and terminates cytotoxic T cell secretion and adhesion (91). Dietary interventions with n-3 and n-6 PUFAs can alter the cell membrane composition with consequent changes in the concentration of PGE2 produced, as well as the prevalence of the less-inflammatory PGE species, PGE1 and PGE3 (44). Although frequently cited as anti-inflammatory, these species do not always appear to be different in their immunomodulatory properties: for example, studies have shown that both PGE2 and PGF1α suppress mitogen-induced blastogenesis in T cells, an effect confirmed with experiments using indomethacin, a non-specific COX inhibitor (92).

PGE2 ethanolamide appears to be also involved in the motility of T cells (93, 94) and recent work using imaging has identified PGE2 as an antagonist of the T cell migration stop signal (95). This activity was shown to be subset specific, with Th migration in response to IL-2 inhibited at 10–100 ng/ml PGE2 in vitro, although, in the same experimental conditions, the migration of cytotoxic T cells was not affected (96, 97). PGE2 has also been suggested to inhibit the transendothelial migration of T cells through increased
calcium and cAMP concentrations (98, 99). In rats, PGE$_2$ was found to inhibit the migration of T cells across the microvascular retinal endothelial cells although it did not affect the expression of adhesion molecules on either endothelial or T cells (100). However, PGE$_2$ at nanomolar to micromolar concentrations elicited migration of T cells in vitro and increased secretion matrix metalloproteases (MMP); although MMP inhibitors suppressed the transmigration, the inhibition did not affect the PGE$_2$-initiated T cell motility (101). Finally, overexpression of COX-2 in a mouse breast cancer model increased the recruitment of Tregs in the tumor, an effect mediated via EP2 and EP4 receptors (102).

PGD$_2$ and 15d-PGJ$_2$

PGD$_2$ is considered an immunomodulatory prostaglandin and some of its cyclopentanone PG metabolites, such as 15-deoxy-D$_{12,14}$-PGJ$_2$ (15d-PGJ$_2$), are endowed with anti-inflammatory activities (49, 103). Production of PGD$_2$ has been detected in Th2 cells and this was linked to expression of H-PGDS, while L-PGDS has not been identified in any T cell subtype (67, 104, 105). The downstream product of PGD$_2$ dehydration, 15d-PGJ$_2$, has also been detected in human T cell cultures (67).

PGD$_2$ mediates its effects through two receptors DP1 and DP2, the latter better known as chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). DP1 belongs to the prostanoid family of receptors, signals through cAMP and has been detected in Th1, Th2, and CD8+ cells (106). DP2/CRTH2 has little similarity to prostanoid receptors and belongs to the cytokine receptor family; it signals through increased calcium and inhibition of cAMP and has been found to be preferentially expressed by activated Th2 cells mediating their recruitment and motility (106, 107). While PGD$_2$ can signal through either receptor, findings to date indicate that 15d-PGJ$_2$ activates only DP2 (103). It has been suggested that PGH$_2$ may also be an agonist of DP2 (108). PGD$_2$ and 15d-PGJ$_2$ are also agonists of PPAR$_\gamma$ and can induce differentiation of fibroblasts to adipocytes; this has been shown in the case of Grave’s disease where it was reported that activated T cells drive fibroblast differentiation in ocular tissue through production of PGD$_2$ and 15d-PGJ$_2$, implying that T cell infiltrates can influence fat deposition in other tissues (67).

PGD$_2$ can mediate different effects depending on the target receptor and related signaling events (109). DP1 can induce differentiation of Th2, whilst DP2/CRTH2 is mostly involved in their recruitment, although the two receptors may exert opposing effects, as examined in an animal model of contact hypersensitivity where DP2/CRTH2 appeared to mediate inflammatory events while DP1 was inhibitory (110). Furthermore, both receptors have been reported involved in T cell proliferation, and DP1 has been suggested to promote T cell apoptosis and downregulate immune responses, while DP2 has been reported to delay Th2 apoptosis (111). A potentially anti-inflammatory protective effect of 15d-PGJ$_2$ in pregnancy has been attributed to its suppression of Th1 response and promotion of Th2 immunity through DP2 (112).

Activation of Th2 cells by PGD$_2$ is thought to occur predominantly through DP2/CRTH2 with concomitant increase in the production of cytokines and pro-inflammatory proteins (106, 113–115). PGD$_2$ binding to this receptor is also very important for CD4+ T cell trafficking and motility (116, 117). When produced at high concentrations by mast cells, as seen in allergic inflammation, there is a consequent activation and recruitment of Th2 cells toward the PGD$_2$ producing sites (118, 119). Activated T cells can also produce PGD$_2$ and this may promote further accumulation of Th2 in the inflamed tissue (107, 116).

Finally, PGD$_2$ has been shown to affect the maturation of monocyte derived DC impacting on their ability to stimulate naive T cells and favoring their differentiation toward Th2 cells (120, 121). Interestingly, age related increase in PGD$_2$ levels have been associated with decreased DC migration and reduced T cell responses in a mouse model of respiratory infections, suggesting that inhibition of PGD$_2$ functions may be an effective therapeutic approach (122).

PGF$_{2\alpha}$

To date, there is very limited information on the contribution of this vasoactive prostaglandin on T cell function. There are no reports on the production of PGF$_{2\alpha}$ or expression of the relevant synthases on T lymphocytes. Early work exploring the involvement on PG on T cell locomotion considered the involvement of PGF$_{2\alpha}$ but this was not supported by the resulting data (93). However, a recent report on allergic lung inflammation presents evidence for the contribution of PGF$_{2\alpha}$ in Th17 cell differentiation, an autocrine effect mediated through cell surface FP receptors (123).

PGI$_2$

PGI$_2$ is best known as an inhibitor of platelet aggregation and potent vasodilator, while recent finding has shown its involvement in immune regulation with particular importance in airway inflammation. The IP receptor is expressed in a number of immune cells in the lung, including T lymphocytes of the Th1 and Th2 lineage (124, 125). However, there is very little information on the actual production of PGI$_2$ by T cells with only some indirect evidence for possible transcellular biosynthesis operating between platelets and lymphocytes, and some recent work showing PGIS mRNA in an animal model of contact hypersensitivity (125, 126). Studies in various models suggest that PGI$_2$ is involved in regulating the balance of Th1 and Th2 responses, as well as promoting Th17 cell differentiation (13, 127). Work in a mouse model of asthma has shown that PGI$_2$ produced by endothelial cells and signaling through the IP receptor prevents the recruitment of Th2 in the airways (128). However, a mouse model of contact hypersensitivity shows that in cutaneous disease PGI$_2$-IP signaling raises intracellular cAMP concentration and promotes Th1 differentiation (125). Furthermore, PGI$_2$ increased the ratio of IL-23/IL-12 leading to differentiation of Th17 cells and exacerbation of EAE in mice (129). Finally, the anti-inflammatory effect of PGI$_2$ has been explored through analogs that reduced the production of pro-inflammatory cytokines and chemokines by DC, increased the production of anti-inflammatory IL-10, and inhibited their ability to stimulate CD4+ T cell proliferation (124).

TXA$_2$

Although production of TXA$_2$ by T cells has been reported, albeit at very low levels, the expression of the relevant synthase has not yet been shown (70, 130). However, the TP receptor has been...
Oxidative stress appears to stimulate the metabolism of 5-HETE and induce cytotoxic T cells in vitro while LTC4 involved in Th17 cell differentiation, Th1 and Th2 proliferation, improve CD8+ T cell subtypes (140–143). BLT1 is also important for homing events, as it enables the adhesion of T cells to epithelial cells, and appears of particular importance for the recruitment and direction of T cells to the airways in asthma (141, 144). Blockade of LTC4/LTD4/LTE4 pathway has also been shown to improve CD8+ T cell mediated colitis (145). Finally, LTD4 appears involved in Th17 cell differentiation, Th1 and Th2 proliferation, and cytokine production (146–149).

LTC4, LTD4, LTE4

The cysteinyl LT specific receptors CysLT1 and CysLT2 have been found to be expressed by peripheral blood T cells (150). Interestingly, it has been reported that resting Th2 cells display higher expression of the CysLT1 receptor compared to Th1 or activated Th2 cells, suggesting its involvement in Th2 cell differentiation (151, 152). Accordingly, in the presence of PGD2, LTD4 and LTE4 have been shown to enhance Th2 cell activation and cytokine production, in a more than additive effect (153).

Furthermore, LTC4 appears to induce T cell proliferation (154), while LTC4-maturated DC appear to stimulate CD4+ responses and induce cytotoxic T cells in vitro without concomitant recruitment of Tregs (155).

5-HETE and 5-oxo-ETE

Oxidative stress appears to stimulate the metabolism of 5-HETE to 5-oxo-ETE in peripheral blood lymphocytes, although the role of this lipid mediator in T cell function is not clear (156, 157).

12-, 15-HETE

12-HETE has been involved in T cell function, with particular relevance to allergic disease. Although 12(S)-HETE is a neutrophil chemoattractant it does not appear to have a similar effect on T cells. Work on skin-derived lymphocytes involved in psoriasis has shown that 12(R)-HETE, a 12R-LOX product found in psoriatic skin, has modest chemotactic properties for T cells but is less potent than LTE4 (158, 159). Furthermore, it has been shown that inhibition of 12/15-LOX enhanced the production of Th2 cytokines and attenuated the development of allergic inflammation in a mouse model of allergic lung disease, whilst delivery of 12(S)-HETE had the opposite effect (136). Increased levels of 12-HETE were also associated with metabolic changes in T cells leading to development of autoimmune disease (137).

It has been reported that 15-HETE regulates T cell division and displays anti-proliferative effects on a leukemia T cell line (160–162). Metabolism of 15-HETE through β-oxidation has been observed in blood T cells leading to the hypothesis that the resulting β-hydroxy acids and their oxidized and decarboxylated products may play a role in T cell biology (163). 15-LOX metabolites have also been involved in Th1 responses in a mouse model of Th1 allergic inflammation induced by double-stranded RNA (164).

**Lipoxygenase isoforms identified in various T cell populations include 5-, 12-, and 15-LOX (135–138). Although some early studies suggested that externally provided AA could inhibit 5-LOX, recent reports have indicated that provision of substrate may be necessary for the synthesis of LTb (135, 139). There is evidence that 5-HETE, LT4 and LT6, and the cysteiny LT LTC4, LTD4, and LTE4 are produced by human and animal primary T cells and cell lines (43, 135, 138, 139). Furthermore, the presence of 5-LOX and 12/15-LOX would suggest the production of hydroperoxy- and hydroxy-PUFA by T cells. Nevertheless, there are not many studies examining the formation of such mediators and the majority of relevant reports focus on the effect of 12- and 15-HETE, LX, resolvins, and PD on T cell function.

LTC4, LTD4, LTE4

The main activity attributed to LTb4 is chemotaxis, a property mediated through the high affinity receptor BLT1 that is expressed in many CD4+ and CD8+ T cell subtypes (140–143). BLT1 is also important for homing events, as it enables the adhesion of T cells to epithelial cells, and appears of particular importance for the recruitment and direction of T cells to the airways in asthma (141, 144). Blockade of LTb4/BLT1 pathway has also been shown to improve CD8+ T cell mediated colitis (145). Finally, LTb4 appears involved in Th17 cell differentiation, Th1 and Th2 proliferation, and cytokine production (146–149).

ENDOCANNABINOIDS AND CONGENERS

The endocannabinoid system is considered an important regulator of the immune response with AEA, 2AG, and related enzymes and receptors being involved in T cell function (173–176). Production of AEA and 2AG have been shown in human T lymphocytes found in a range of T cell populations and a polymorphism identified in Th2 cells has been linked to aspirin-exacerbated respiratory disease (130–133). Work with human lymphocytes suggested that TXA2 is involved in the inhibition of T cell proliferation and related cytokine production (134). Following production of TXA2 by DC, stimulation in TP expression was observed and this appeared to be involved in the random movement of naive but not memory T cells, suggesting that TXA2 can mediate DC–T cell interactions (130).

LEUKOTRIENES, HYDROXY FATTY ACIDS, LIPOXINS, RESOLVINS, AND PROTECTINS

Lipoxygenase isoforms identified in various T cell populations include 5-, 12-, and 15-LOX (135–138). Although some early studies suggested that externally provided AA could inhibit 5-LOX, recent reports have indicated that provision of substrate may be necessary for the synthesis of LTb (135, 139). There is evidence that 5-HETE, LT4 and LT6, and the cysteiny LT LTC4, LTD4, and LTE4 are produced by human and animal primary T cells and cell lines (43, 135, 138, 139). Furthermore, the presence of 5-LOX and 12/15-LOX would suggest the production of hydroperoxy- and hydroxy-PUFA by T cells. Nevertheless, there are not many studies examining the formation of such mediators and the majority of relevant reports focus on the effect of 12- and 15-HETE, LX, resolvins, and PD on T cell function.

LTC4, LTD4, LTE4

The cysteinyl LT specific receptors CysLT1 and CysLT2 have been found to be expressed by peripheral blood T cells (150). Interestingly, it has been reported that resting Th2 cells display higher expression of the CysLT1 receptor compared to Th1 or activated Th2 cells, suggesting its involvement in Th2 cell differentiation (151, 152). Accordingly, in the presence of PGD2, LTD4 and LTE4 have been shown to enhance Th2 cell activation and cytokine production, in a more than additive effect (153).

Furthermore, LTC4 appears to induce T cell proliferation (154), while LTC4-maturated DC appear to stimulate CD4+ responses and induce cytotoxic T cells in vitro without concomitant recruitment of Tregs (155).
AEA inhibited the migration of CD8+ T lymphocytes has shown to stimulate upon activation (179, 180). In particular, the CB2 receptor has been shown to mediate the inhibition of mixed lymphocyte reactions by cannabinoids and is of interest for the development of novel chemotherapeutic approaches to prolong graft survival (181). Furthermore, CB2 has been suggested as an important factor for the formation of T cell subsets including splenic memory CD4+ cells and natural killer T cells (182). Interestingly, a common CB2 gene polymorphism has been linked to reduced immune modulation by endocannabinoids and may be a risk factor for autoimmune disorders (183). Finally, FAAH and monoacylglycerol lipase (MAGL) are also present in human T lymphocytes (179). FAAH appears to play a protective role controlling the levels of AEA in pregnancy as well as immune-mediated liver inflammation (178, 184).

AEA and congeners

Work with activated primary human T lymphocytes has shown that AEA can suppress T cell proliferation and cytokine release in a CB2-dependent manner, without exerting cytotoxic effects (185, 186). However, other studies suggested that AEA inhibits T cell proliferation and induces apoptosis through a mechanism that may not be receptor mediated but most probably related to lipid rafts (187, 188).

The immunosuppressive effect of AEA extends to Th17 cell and this is of particular interest for the development of immunotherapeutic approaches (186). Endogenous AEA or inhibition of FAAH leading to increased AEA levels, were effective in reducing cytokine levels, decreased liver injury, and increased numbers of Treg cells in a murine model of immune-mediated liver inflammation (184). AEA inhibited the migration of CD8+ T cells in a collagen-based migration assay, again through the CB2 receptor (189). However, a study evaluating the direct anti-cancer potential of AEA, reported no effect on lymphocyte proliferation or Treg generation or cytokine production (190). In contrast, other studies have reported proinflammatory effects by AEA. In a mouse model of atherosclerosis, reduced levels of FAAH that resulted in increased AEA and its congeners, palmitoyl- and oleoyl-ethanolamide, were accompanied by reduced CD4+FoxP3+ regulatory T cells, suggesting a pro-inflammatory effect on the overall immune response (191). In addition, AEA appears to promote Th1 immunity as shown in a model of sensitization where it was reported to induce DC activation and IFNγ production (192). Finally, a recent study with bimatoprost suggested that this prostamide can induce calcium signaling in human T cells (193).

2AG

The chemotactic properties of 2AG are also mediated through the CB2 receptor and this has been shown in various immune cells including migration of splenocytes (194), homing of B cells (195), and motility of human natural killer cells (196). When this potential was assessed in activated T lymphocytes, it was reported that although 2AG did not induce T cell migration, it inhibited migratory responses toward the chemokine CXCL12, suggesting a possible regulatory role in T cell migration (179). Furthermore, 2AG can act as DC chemoattractant and indirectly shift the memory response toward a Th1 phenotype in a CB2-mediated fashion (197). 2AG can also suppress IL-2 production in Jurkat cells through PPAR-γ activation and independently of CB1 and CB2-mediated signaling (198). The contribution of a COX-2 metabolite of 2AG has also been considered by recent reports confirming that the 15-deoxy-delta-(1)(2),(1)(4)-PGJ2-glycerol ester (15d-PGJ2-GE) is a PPAR-γ ligand that suppresses IL-2 production in activated Jurkat cells (111, 199).

CONCLUDING REMARKS

While current evidence support a key role for PUFA-derived bioactive lipids in the regulation of T cell immunity (Table 1), the complexity of their biological properties and the lack of a comprehensive understanding of their exact contribution to different stages of the immune response hinders the identification of mediators of interest either as markers or as target compounds for drug development. In general, it appears that lipid mediators regulate T helper cell polarization into Th1/Th2 and Th17 cells, a key event in many immune-mediated diseases. Despite the molecular mechanisms for this effect and the regulatory role of these lipids on other T cell functions have yet to be explored, an extensive number of studies in mice and humans underscore their therapeutic potential.

This concept is supported by the large number of studies using their precursor fatty acids. Of particular importance is the focus on n-3 PUFA that have been explored as anti-inflammatory and immune-protective agents for a range of diseases and relevant experimental models including psoriasis, rheumatoid arthritis, and atherosclerosis (32, 33, 200). A recent study has shown that dietary n-3 PUFA favorably modulate intestinal inflammation in part by downregulating pathogenic T cell responses (201). The Fat-1 mouse, a genetic model that synthesizes long-chain n-3 PUFA de novo, was shown to be relatively resistant to colitis induction due to a reduced differentiation of Th17 cells and related cytokines (202). The immunoregulatory potential of a number of fatty acids has been reported over the years including that of DGLA and GLA (203), stearidonic acid (204) as well as various CLA mixtures used for inflammatory bowel syndrome and human Crohn’s disease (205). Parenteral administration of fatty acids has been shown to ameliorate disease via immunomodulatory effect in a model of rat sepsis (206), A randomized study in patients awaiting carotid endarterectomy showed that n-3 PUFA ethyl esters are incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and T cell infiltration, and increased stability following dietary supplementation with EPA (207). Furthermore, altering the profile of lipid mediators to strengthen the responses of T cells may be of value to cancer immunotherapy and could result in the development of potent and/or less toxic therapeutics. For example, it is well-documented that most tumors express PGE2 and this can contribute to immune suppression (103, 208). Pharmacological inhibition of PGE2 via non-steroidal anti-inflammatory drugs or EP receptor agonists could be supported or even replaced by systemic administration of EPA, precursor of the less potent eicosanoid PGE3 and the anti-inflammatory resolving series E (RvE) that can tone down the
Table 1 | Summary of the main immunoregulatory roles of bioactive lipid mediators related to T cell function and biology.

Lipid mediator	Receptor	Effect on T cells	Reference
PGE$_2$	EP1, EP2/EP4	Differentiation	(73, 78, 79, 81, 88)
	EP2/EP4	Proliferation	(72, 81, 83, 85)
	EP2/EP4	Cytokine production	(72, 77–80)
	EP2/EP4	Apoptosis	(77, 91)
	EP2/EP4	Motility of T cells	(93–95)
	EP2/EP4	Treg recruitment	(102)
	EP2/EP4	Th1, Th2, Th17 balance	(14, 74–76, 78, 79)
PGD$_2$	DP1	Differentiation of Th2; T cell apoptosis	(110, 120, 121)
	DP1, DP2	Recruitment, proliferation of Th2	(111)
	DP2	Activation, cytokine production, trafficking, and motility of Th2	(106, 107, 113–119)
15d-PGJ$_2$	DP2	Suppression of Th1 and promotion of Th2	(103, 112)
		DC-T cell interaction	(120, 121)
PGF$_2$α	FP	Th17 differentiation	(123)
PGI$_2$	IP	Th1/Th2 balance	(13)
		Th1, Th17 differentiation	(125, 127, 129)
TXA$_2$	TP	Inhibition of T cell proliferation	(134)
		Mediation of DC-T cell interactions	(130)
LTB$_4$	BLT1	Homing	(141, 144)
		Differentiation, proliferation, and cytokine production	(146–149)
CysLTD$_4$	CysLT1	Th2 differentiation	(151–153)
CysLTE$_4$			
12-HETE		Weak T cell chemotaxis	(158, 159)
		Metabolic changes	(137)
15-HETE		Proliferation	(160–162)
		Th1 responses	(164)
LXA$_4$	BLT1	Cytokine production	(167)
AEA	CB2	Suppression of Th1 and Th17 proliferation and cytokine release	(185, 186)
		Inhibition of proliferation; apoptosis via membrane rafts	(187, 188)
		Increased Tregs	(184)
2AG	CB2	T cell migration	(179)
		Suppression of cytokine production via PPAR-γ	(189)

PGE$_2$-mediated effects. Finally, a large number of other investigations have reported that immunonutrition with fatty acids leads to amelioration of a variety of immune-mediated disease by targeting T cell function. Examples include studies showing that the use of ω-3 PUFA can improve lung injury and sepsis in animal models, and reduce infectious complications in patients undergoing major surgery and following severe trauma (209–211), while other reports draw attention to the contribution of fatty acids and their mediators in vaccine-induced immunity in infants, the prevention of experimental autoimmune encephalomyelitis through inhibition of Th1/Th17 differentiation by DHA, EPA-mediated protection of cardiac allografts, and amelioration of contact dermatitis following DHA and AA supplements (212–215). Overall, there is a strong case for further developing therapeutic approaches based on the use of bioactive lipids as immunomodulators. The unmet challenge to fully exploit their therapeutic potential will be to unravel the circuits and molecular mechanisms by which these powerful mediators impact on T cell-mediated immunity.

ACKNOWLEDGMENTS

Research support provided by the Wellcome Trust (Anna Nicolaou: WT094028) and British Heart Foundation (Claudio Mauro: FS/12/38/29640 and Federica Marelli-Berg: RG/09/002/2642) is gratefully acknowledged. We thank Dr. Sharon A. Murphy for her contribution to the figures shown in the manuscript.
REFERENCES

1. Wang R, Green DR. Metabolic checkpoints in activated T cells. Nat Immunol (2012) 13(10):967–9. doi:10.1038/ni.2386
2. Schumacher TN, Gerlach C, van Heijst JW. Mapping the life histories of T cells. Nat Rev Immunol (2010) 10(9):621–31. doi:10.1038/nri2822
3. Green DR. Overview: apoptotic signaling pathways in the immune system. Immunol Rev (2003) 193(5–9). doi:10.1034/j.1600-065X.2003.00045.x
4. Wang R, Green DR. The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Biol Rep (2013) 5:49. doi:10.3410/B4/9
5. Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, et al. The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity (2012) 35(6):871–82. doi:10.1016/j.immuni.2011.09.021
6. Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol (2012) 33(4):164–73. doi:10.1016/j.it.2012.01.010
7. Marelli-Berg FM, Fu H, Mauro C. Molecular mechanisms of metabolic reprogramming in proliferating cells: implications for T-cell-mediated immunity. Immunology (2012) 136(3):363–9. doi:10.1111/j.1365-2567.2012.05383.x
8. Mauro C, Hu, Marelli-Berg FM. T cell trafficking and metabolism: novel mechanisms and targets for immunomodulation. Curr Opin Pharmacol (2012) 12(4):452–7. doi:10.1016/j.coph.2012.02.018
9. Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity (2011) 33(3):301–11. doi:10.1016/j.immuni.2010.09.002
10. Peter C, Waldmann H, Cobbold SP. mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol (2010) 22(5):655–61. doi:10.1016/j.coi.2010.08.010
11. Jones BG, Thompson CB. Reviving the engine: signal transduction fuels T cell activation. Immunity (2007) 27(2):173–8. doi:10.1016/j.immuni.2007.07.008
12. Yamane H, Paul WE. Early signaling events that underlie fate decisions of naive CD4(+) T cells toward distinct T-helper cell subsets. Immunol Rev (2013) 251(1):122–131. doi:10.1111/imr.12032
13. Boswell MG, Zhou W, Newsom DC, Peebles RS Jr, PG12 as a regulator of CD4+ subset differentiation and function. Prostaglandins Other Lipid Mediat (2011) 96(1–4):21–6. doi:10.1016/j.prostaglandin.2011.08.003
14. Li H, Edin ML, Grauzdev A, Cheng J, Bradbury JA, Graves JP, et al. Regulation of T helper cell subsets by cyclooxygenases and their metabolites. Prostaglandins Other Lipid Mediat (2013) 104:105–74. doi:10.1016/j.prostaglandins.2012.11.002
15. Macintyre AN, Finlay D, Preston G, Sinclair LV, Waugh CM, Tamas P, et al. Protein kinase B controls transcriptional programs that direct cytotoxic T cell fate but is dispensable for T cell metabolism. Immunity (2011) 34(2):224–36. doi:10.1016/j.immuni.2011.01.012
16. Cornish GH, Sinclair LV, Cantrell DA. Differential regulation of T-cell growth by IL-2 and IL-15. Blood (2006) 108(10):600–8. doi:10.1182/blood-2005-12-4827
17. Shi LZ, Wang R, Huang G, Vogel P, Neale G, Green DR, et al. HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J Exp Med (2011) 208(7):1367–76. doi:10.1084/jem.20110278
18. Michalek RD, Gerriets VA, Jacobs SR, Macintyre AN, Maclver NJ, Mason EF, et al. Cutting edge: distinct glycolytic and lipid oxidative metabolic programs are essential for effector and regulatory CD4+ T cell subsets. J Immunol (2011) 186(6):3299–303. doi:10.4049/jimmunol.1003613
19. van der Windt GJ, Everts B, Chang CH, Curtis JD, Freitas TC, Amiel E, et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity (2012) 36(1):68–78. doi:10.1016/j.immuni.2011.12.007
20. Shaikh SR, Jolly CA, Chapkin RS. n-3 Polyunsaturated fatty acids exert immunomodulatory effects on lymphocytes by targeting plasma membrane molecular organization. Mol Aspects Med (2012) 33(1):46–54. doi:10.1016/j.mam.2011.10.002
21. Calder PC. The relationship between the fatty acid composition of immune cells and their function. Prostaglandins Leukot Essent Fatty Acids (2008) 79(3–5):101–8. doi:10.1016/j.plf.2008.09.016
22. Kew S, Mesa MD, Tricson S, Buckley R, Minihane AM, Yaqoob P. Effects of oils rich in eicosapentaenoic and docosahexaenoic acids on immune cell composition and function in healthy humans. Am J Clin Nutr (2004) 79(4):674–81.
Nicolaou et al. Polyunsaturated fatty acid mediators and T cells

42. Le Gouvello S, Colard O, Theodorou I, Bismuth G, Tarantino N, Deber P. CD2 triggering stimulates a phospholipase A2 activity beside the phospholipase C pathway in human T lymphocytes. J Immunol (1999) 164(6):2359–64.

43. Cifone MG, Cirioni L, Santoni A, Testi R. Diacylglycerol lipase activation and 5-lipoygenase activation and translocation following TCR/CD3 triggering in T cells. Eur J Immunol (1995) 25(4):1080–6. doi:10.1002/eji.1830250433

44. Calder PC. Polysaturated fatty acids and inflammatory processes: new twists in an old tale. Biochimie (2009) 91(6):791–5. doi:10.1016/j.bioch.2009.01.008

45. Arakawa M, Kondo I. Prostaglandin D synthase: a novel drug target for inflammation and cancer. Curr Pharm Des (2006) 12(8):943–54. doi:10.2174/13816120677659912

46. Hara S, Kamei D, Sasaki Y, Tanemoto A, Nakatani Y, Murakami M. Resolution circuits initiated by aspirin treatment that counter proinflammation signals. Am J Pathol (2006) 167(1):246–54.

47. Li H, Edin ML, Bradbury JA, Graves JP, DeGraff LM, Gruzdev A, et al. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients. Eur J Immunol (2005) 35(8):2313–24. doi:10.1002/eji.255905583

48. Xu L, Zhang L, Yi Y, Kang HK, Datta SK. Human lupus T cells resist inactivation and escape death by upregulating COX2. Nat Med (2004) 10(4):411–5. doi:10.1038/nm1005

49. Iniguez MA, Martinez-Martinez S, Punzon C, Redondo JM, Fresno M. An essential role of the nuclear factor-κB network in the regulation of the expression of the cyclooxygenase-2 gene in human T lymphocytes. J Biol Chem (2000) 275(31):23627–35. doi:10.1074/jbc.M001381200

50. Serhan CN. Maresins: novel products of cyclooxygenase-2 and lipoxygenase processing of a committed precursor, resolvins. Biochimie (2004) 86(10):747–54. doi:10.1016/j.biochi.2004.09.003

51. Cathcart MC, Reynolds JV, O'Byrne KJ, Pidgeon GP. The role of prostaglandin H synthases as a novel example of functional convergence. Prostaglandins Other Lipid Mediat (2002) 69(6–9):375–82. doi:10.1016/S0909-6980(02)00042-4

52. Woodward DF, Jones RL, Narumiya S. International union of basic and clinical pharmacology: XXXXIII: classification of prostanooid receptors, updating 15 years of progress. Pharmacol Rev (2012) 1805(2):153–66. doi:10.1124/pr.110.100166

53. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL. Acetylation of human cyclooxygenase-2 by aspirin. J Biol Chem (2011) 286(33):23679–82. doi:10.1074/jbc.M013812000

54. Le Gouvello S, Colard O, Theodorou I, Bismuth G, Tarantino N, Debre P. CD2 triggering stimulates a phospholipase A2 activity beside the phospholipase C pathway in human T lymphocytes. J Immunol (1999) 164(6):2359–64.

55. Dobrian AD, Lieb DC, Cole BK, Taylor-Fishwick DA, Chakrabarti SK, Nadler M. Delta(1)(2,1)(4)-prostaglandin J(2), an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochim Pharmacol (2011) 82(10):1335–51. doi:10.1016/j.biopharm.2011.07.100

56. Powell WS, Rokach J. Biochemistry, biology and chemistry of the 5-lipoxygenase activating protein. Biochim Biophys Acta (2010) 1805(2):374–82. doi:10.1016/j.bbapap.2010.02.007

57. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med (2009) 206(1):15–23. doi:10.1084/jem.20081880

58. Tai HH, Ensor CM, Tong M, Zhou H, Yan F. Prostaglandin catabolizing enzymes. Prostaglandins Other Lipid Mediat (2002) 69(6–9):375–82. doi:10.1016/S0909-6980(02)00042-4

59. Zeytinoglu E, O’Dea KL. Regulation of cyclooxygenase and lipoxygenase enzymes by aspirin. Biochem Pharmacol (2006) 71(5):447–63. doi:10.1016/j.bcp.2005.07.100

60. Kuhn H, O’Dea KL. Cyclooxygenase-1 and -2 are expressed by human T cells. Clin Exp Immunol (1999) 115(1):86–90. doi:10.1046/j.1365-2249.1999.00780.x

61. Shaik V, Sreeramkumar V, Fresno M, Cuesta N. Prostaglandin E2 and T cells: friends or foes? Immunol Lett (2009) 126(1):115–31. doi:10.1016/j.plipres.2010.10.005

62. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med (2009) 206(1):15–23. doi:10.1084/jem.20081880

63. Chacon P, Vega A, Monteseirin J, El Bekay R, Alba G, Perez-Formoso JL, et al. Induction of cyclooxygenase-2 expression by allergens in lymphocytes from allergic patients. Eur J Immunol (2005) 35(8):2313–24. doi:10.1002/eji.255905583

64. Xin L, Zhang L, Yi Y, Kang HK, Datta SK. Human lupus T cells resist inactivation and escape death by upregulating COX2. Nat Med (2004) 10(4):411–5. doi:10.1038/nm1005

65. Iniguez MA, Martinez-Martinez S, Punzon C, Redondo JM, Fresno M. An essential role of the nuclear factor-κB network in the regulation of the expression of the cyclooxygenase-2 gene in human T lymphocytes. J Biol Chem (2000) 275(31):23627–35. doi:10.1074/jbc.M001381200

66. Feldon SE, O’Loughlin CW, Ray DM, Landskroner-Eiger S, Seweryniak KE, Phipps RP. Activated human T lymphocytes express cyclooxygenase-2 and produce proapidogenic prostaglandins that drive human orbital fibroblast differentiation to adipocytes. Am J Pathol (2006) 167(3):1183–93. doi:10.1016/j.ajpath.2006.06.0434

67. Mahic M, Yaqub S, Johansson CC, Tasken K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. J Immunol (2006) 177(1):246–54.

68. Pablos JL, Santiago B, Carreira PE, Galindo M, Gomez-Reino JJ. Cyclooxygenase-1 and -2 are expressed by human T cells. Clin Exp Immunol (1999) 115(1):86–90. doi:10.1046/j.1365-2249.1999.00780.x

69. Watanabe K. Prostaglandin F synthase. Prostaglandins Other Lipid Mediat (2002) 69(6–9):491–7. doi:10.1016/S0909-6980(02)00044-8

70. Lecomte M, Laneuville O, Ji C, DeWitt DL, Smith WL. Acetylation of human cyclooxygenase-2 by aspirin. J Biol Chem (2011) 286(33):23679–82. doi:10.1074/jbc.M013812000

71. Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, et al. Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med (2009) 206(1):15–23. doi:10.1084/jem.20081880
101. Leppert D, Hauser SL, Kishiyama JL, An S, Zeng L, Goetzl EJ. Stimulation of Th2 cells selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med (2001) 193(2):255–61. doi:10.1084/jem.193.2.255

102. Schuligoi R, Sedej M, Waldhofer M, Yakoja A, Sturm EM, Lippe IT, et al. Prostaglandin H2 induces the migration of human eosinophils through the chemooceptor receptor homologous molecule of Th2 cells, CRTH2. J Leukoc Biol (2009) 85(1):36–45. doi:10.1189/jlb.0608387

103. Petitt R. The roles of the prostaglandin D2 receptors DP1 and CRTH2 in promoting allergic responses. Br J Pharmacol (2008) 153(Suppl 1):S191–9. doi:10.1388/bj.070448

104. Yamamoto Y, Otani S, Hirai H, Nagata K, Aritake K, Urade Y, et al. Dual functions of prostaglandin D2 in murine contact hypersensitivity via DP and CRTH2. Am J Pathol (2011) 179(1):302–14. doi:10.1038/ajpath.2011.5.

105. Raman P, Kaplan BI, Kamiński NE. 15-Deoxy-Delta(12,14)-prostaglandin J2(-)-glycerol, a putative metabolite of 2-arachidonoylglycerol and a peroxisome proliferator-activated receptor gamma ligand, modulates nuclear factor of activated T cells. J Pharmacol Exp Ther (2013) 342(5):816–26. doi:10.1124/jpet.112.201902

106. Sykes L, MacIntyre DA, Yap XJ, Ponnapalam S, Trob TG, Bennett PR. Changes in the Th1:Th2 cytokine bias in pregnancy and the effects of the anti-inflammatory cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2. Mediators Inflamm (2012) 2012:416739. doi:10.1155/2012/416739

107. Perez-Gimeno CA, Holtappels G, Vinall SL, Xue L, Zang N, Bachert C, et al. CRTH2 mediates the activation of human Th2 cells in response to PGD(2) released from IgE/anti-IgE treated nasal polyp tissue. Allergy (2009) 65(3):304–10. doi:10.1111/j.1398-9995.2009.02204.x

108. Xue L, Gyles SL, Barrow A, Petitt R. Inhibition of cPLA2 and calcium influx suppresses chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)-dependent responses of Th2 lymphocytes to prostaglandin D(2). Biochem Pharmacol (2007) 73(6):843–53. doi:10.1016/j.bcp.2006.11.021

109. Xue L, Barrow A, Petitt R. Interaction between prostaglandin D and chemoattractant receptor-homologous molecule expressed on Th2 cells mediates cytokine production by Th2 lymphocytes in response to activated mast cells. Clin Exp Immunol (2009) 156(1):126–33. doi:10.1111/j.1365-2249.2008.03873.x

110. Vinall SL, Townsend ER, Petitt R. A paracrine role for chemoattractant receptor-homologous molecule expressed on Th2 cells in mediating chemotactic activation of CRTH2: CD4+ T helper type 2 lymphocytes. Immunol Lett (2007) 121(4):577–84. doi:10.1016/j.imlet.2007.02.060.x

111. Ahmed SR, McGitcheon HM, Yates CM, Buckley CD, Ratcliffe MJ, Nash GR, et al. Prostaglandin D2 regulates CD4+ memory T cell trafficking across blood vascular endothelium and primes these cells for clearance across lymphatic endothelium. J Immunol (2011) 187(3):1432–9. doi:10.4049/jimmunol.1100299

112. Shirasaki H, Ikuchi M, Kanazumi E, Himo T. Accumulation of CRTH2-positive leukocytes in human allergic nasal mucosa. Ann Allergy Asthma Immunol (2009) 102(2):110–5. doi:10.1016/j.saai.2008.12.029

113. Gyles SL, Xue L, Townsend ER, Wettig F, Petitt R. A dominant role for chemoattractant receptor-homologous molecule expressed on T helper type 2 (Th2) cells (CRTH2) in mediating chemotaxis of CRTH2+ CD4+ Th2 lymphocytes in response to mast cell supernatants. Immunology (2006) 119(3):362–8. doi:10.1111/j.1365-2677.2006.02400.x

114. Gosset P, Borea F, Angel V, Pichard M, Faveve C, Tonnell AB, et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequences on the polarization of naive Th cells. J Immunol (2003) 170(1):4943–52.

115. Petitt R. Prostaglandin H2 induces the migration of human eosinophils through the chemooceptor receptor homologous molecule of Th2 cells, CRTH2. J Leukoc Biol (2009) 85(1):36–45. doi:10.1189/jlb.0608387

116. Sykes L, MacIntyre DA, Yap XJ, Ponnapalam S, Trob TG, Bennett PR. Changes in the Th1:Th2 cytokine bias in pregnancy and the effects of the anti-inflammatory cyclopentenone prostaglandin 15-deoxy-Delta(12,14)-prostaglandin J2. Mediators Inflamm (2012) 2012:416739. doi:10.1155/2012/416739

117. Perez-Gimeno CA, Holtappels G, Vinall SL, Xue L, Zang N, Bachert C, et al. CRTH2 mediates the activation of human Th2 cells in response to PGD(2) released from IgE/anti-IgE treated nasal polyp tissue. Allergy (2009) 65(3):304–10. doi:10.1111/j.1398-9995.2009.02204.x

118. Xue L, Gyles SL, Barrow A, Petitt R. Inhibition of cPLA2 and calcium influx suppresses chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2)-dependent responses of Th2 lymphocytes to prostaglandin D(2). Biochem Pharmacol (2007) 73(6):843–53. doi:10.1016/j.bcp.2006.11.021

119. Gyles SL, Xue L, Townsend ER, Wettig F, Petitt R. A dominant role for chemoattractant receptor-homologous molecule expressed on T helper type 2 (Th2) cells (CRTH2) in mediating chemotaxis of CRTH2+ CD4+ Th2 lymphocytes in response to mast cell supernatants. Immunology (2006) 119(3):362–8. doi:10.1111/j.1365-2677.2006.02400.x

120. Gosset P, Borea F, Angel V, Pichard M, Faveve C, Tonnell AB, et al. Prostaglandin D2 affects the maturation of human monocyte-derived dendritic cells: consequences on the polarization of naive Th cells. J Immunol (2003) 170(1):4943–52.

121. Gosset P, Borea F, Angel V, Pichard M, Faveve C, Tonnell AB, Trottein F. Prostaglandin D2 affects the differentiation and functions of human dendritic cells. Front Immunol (2013) 4:281. doi:10.3389/fimmu.2013.00281
cells' impact on the T cell response. *Eur J Immunol* (2005) 35(5):1491–500. doi:10.1002/eji.200423519

120. Zhao J, Legge K, Perlman S. Age-related increases in PGD2 expression impair respiratory DC migration, resulting in diminished T cell responses upon viral respiratory infection in mice. *J Clin Invest* (2011) 121(12):4921–30. doi:10.1172/JCI59777

121. Li H, Bradbury JA, Dakor RT, Edlin ML, Graves JP, DeGraff LM, et al. Cyclooxygenase-2 regulates Th17 cell differentiation during allergic lung inflammation. *Am J Respir Crit Care Med* (2011) 184(1):37–49. doi:10.1164/rccm.201010-1637OC

122. Zhou W, Hashimoto K, Goleniewska K, O'Neal JF, Ji S, Blackwell TS, et al. Prostaglandin D2 analogs inhibit proinflammatory cytokine production and T cell stimulation function of dendritic cells. *J Immunol* (2007) 178(2):702–10.

123. Nakajima S, Honda T, Sakata D, Egawa G, Tazuki H, Otsuka A, et al. Prostaglandin D2 signaling promotes Th1 differentiation in a mouse model of contact hypersensitivity. *J Immunol* (2010) 184(10):5595–603. doi:10.4049/jimmunol.0903260

124. Wu KK, Papp AC, Manter CE, Hell ER. Interaction between lymphocytes and platelets in the synthesis of prostacyclin. *J Clin Invest* (1987) 79(6):1601–6. doi:10.1172/JCI111295

125. Xue L, Barrow A, Fleming VM, Hunter MG, Ogg G, Klenerman P, et al. Thromboxane A2 receptor +/−795T gene polymorphisms are associated with proinflammatory cytokine production and Th2 skewing in the absence of 5-lipoxygenase. *J Immunol* (2007) 179(9):6193–203.

126. Zhou W, Powell WS. Synthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid by human monocytes and lymphocytes. *Biochem J* (1983) 215(4):956–73. doi:10.1042/bj02150956

127. Meadeiros AE, Sa-Nunes A, Turato WM, Secatto A, Frantz FG, Sorgi CA, et al. Leukotrienes are potent adjuvant during fungal infection: effects on memory T cells. *J Immunol* (2008) 181(12):8544–51.

128. Luster AD, Tager AM. T-cell trafficking in asthma: lipid mediators grease the way. *Nat Rev Immunol* (2004) 4(9):711–24. doi:10.1038/nri1438

129. Nancy S, Boscotti G, Hacini F, Sardi F, Durand PY, Le Borgne M, et al. Blockade of LTβR(+)LTβ(1) pathway improves CD8(+) T-cell-mediated colitis. *Inflamm Bowel Dis* (2011) 17(1):279–88. doi:10.1002/ibd.21404

130. Chen H, Qin J, Wei P, Zhang J, Li Q, Fu L, et al. Effects of leukotriene B4 and prostaglandin E2 on the differentiation of murine Foxp3+ T regulatory cells and Th17 cells. *Prostaglandins Leukot Essent Fatty Acids* (2009) 80(4):185–200. doi:10.1177/0032548109344833

131. DiMeo D, Tian J, Zhang J, Narashima S, Berg DJ. Increased interleukin-10 production and Th2 skewing in the absence of 5-lipoxygenase. *Immunity* (2007) 27(3):250–62. doi:10.1016/j.immuni.2007.02.0694.x

132. Arcedillo F, Milano S, D’Agostino P, Cillari E. Effect of exogenous leukotriene B4 (LTB4) on BALB/c mice splenocyte production of Th1 and Th2 lymphokines. *Int J Immunopharmacol* (1995) 17(6):457–63. doi:10.1016/0192-0561(95)00038-4

133. Dornand J, Gerber M. Mechanisms of IL2 production impairment by lipoxinogen inhibitors in activated Jurkat cells. *J Lipid Mediat* (1991) 4(1):23–38.

134. Ladlaw TM, Boyce JA. Cysteinyl leukotriene receptors, old and new; implications for asthma. *Clin Exp Allergy* (2013) 43(9):1913–20. doi:10.1172/JCI59777

135. Parmentier CN, Fuerst E, McDonald J, Bowen H, Lee TH, Pease JE, et al. Human T(H)2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. *J Allergy Clin Immunol* (2012) 129(4):1136–42. doi:10.1016/j.jaci.2012.03.072

136. Prinz I, Gre bikes C, Mollenkopf H, Aguado E, Wang Y, Malissen M, et al. The type 1 cysteinyl leukotriene receptor triggers calcium influx and chemotaxis in mouse alpha- and gamma delta effector T cells. *J Immunol* (2005) 175(2):713–9.

137. Xue L, Barrow A, Fleming VM, Hunter MG, Ogg G, Klennerman P, et al. Leukotriene E4 activates human Th2 cells for exaggerated proinflammatory cytokine production in response to prostaglandin D2. *J Immunol* (2011) 188(5):694–702. doi:10.4049/jimmunol.1102474

138. Bailey JM, Vanderhoek JY, Makheja AN, Pupillo M. Activation of mitogen-induced T-lymphocyte proliferation by leukotriene C4. *Biochem Soc Trans* (1997) 25(5):503S.

139. Dannull J, Schneider T, Lee WT, de Rosa N, Tyler DS, Pruitt SK. Leukotriene C4 induces migration of human monocyte-derived dendritic cells without loss of immunostimulatory function. *Blood* (2012) 119(13):3113–22. doi:10.1182/blood-2011-10-385930

140. Zhang Y, Styhler A, Powell WS. Synthesis of 5-oxo-6,8,11,14-eicosatetraenoic acid by human monocytes and lymphocytes. *J Leukoc Biol* (1996) 59(6):847–54.

141. Erlenmann KR, Rokach J, Powell WS. Oxidative stress stimulates the synthesis of the eosinophil chemoattractant 5-oxo-6,8,11,14-eicosatetraenoic acid by inflammatory cells. *J Biol Chem* (2004) 279(39):40376–84. doi:10.1074/jbc.M401294200

142. Bacon KB, Camp RD. Lipid leukotriene chemoattractants in psoriasis. *Prostaglandins* (1990) 40(6):603–14. doi:10.1016/0090-6980(90)90005-G

143. Bacon KB, Camp RD, Cunningham FM, Woodall PM. Contrasting in vitro lymphocyte chemotactic activity of the hydroxy enantiomers of 12-hydroxy-5,8,10,14-eicosatetraenoic acid. *Br J Pharmacol* (1988) 95(3):966–74. doi:10.1111/j.1365-2172.1988.tb1727.x

144. Kumar KA, Arunasree KM, Roy KR, Reddy NP, Aparna A, Reddy GV, et al. Effects of (15S)-hydroxyeicosatetraenoic acid and (15S)-hydroxyeicosatetraenoic acid on the acute-lungoblastic-leukaemia cell line
Jurfk: activation of the Fas-mediated death pathway, *Biotechnol Appl Biochem* (2009) 52(2):P 2:121–33. doi:10.1042/BA20070264

161. Bailey JM, Bryant RW, Low CE, Papillo MB, Vanderkooy J. Regulation of T-lymphocyte mitogenesis by the leukocyte product 15-hydroxyeicosatetraenoic acid (15-HEET). *Cell Immunol* (1992) 167(1):112–20. doi: 10.1006/cimm.1992.20039

162. Bailey JM, Fletcher M, Vanderkooy J, Makheja AN. Regulation of human T-lymphocyte proliferative responses by the lipoxigenase product 15-HETE. *Biochem Soc Trans* (1997) 25(2):S475.

163. Hadi jagapou C, Travies JB, Fertel RH, Sprecher H. Metabolism of 15-hydroxy-5,8,11,13-eicosatetraenoic acid by MOLT-4 cells and blood T-lymphocytes. *J Biol Chem* (1996) 271(8):S469–73.

164. Jeon SG, Moon HG, Kim YS, Choi JP, Shin TS, Hong SW, et al. 15-Lipoxygenase (15-LO) inhibition increases anandamide levels in human peripheral lymphocytes. *Int Immunopharmacol* (2000) 25(3):615–22.

165. Lin KT, Godfrey HP, Spokas EG, Sun FF, Wong PY. Modulation of LTB4 receptor expression in T-lymphocytes via CB2 receptor activation. *PLoS One* (2010) 5(11):e108048.

166. Lin KT, Duddhane A, Godfrey HP, Wong PY. Identification and characterization of a high-affinity leukotriene B4 receptor on guinea pig T lymphocytes and its regulation by lipoxin A4. *J Pharmacol Exp Ther* (1996) 272:679–84.

167. Aries A, Chiang N, Arita M, Petasis NA, Serhan CN. Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells. *J Immunol* (2003) 170(12):S642–67.

168. Zhang B, Ha H, Liu J, Yang Z, Jiang T, Tang K, et al. Depletion of regulatory T cells facilitates growth of established tumors: a mechanism involving the regulation of myeloid-derived suppressor cells by lipoxin A4. *J Immunol* (2010) 185(12):7199–206. doi: 10.4049/jimmunol.1001876

169. Aries A, Li PL, Wang W, Tang WX, Fredman G, Hong M, et al. The docosantriene protectin D1 is produced by TH2 skewing and promotes human T cell apoptosis via lipid raft clustering. *J Biol Chem* (2005) 280(52):47397–80. doi:10.1074/jbc.M509796200

170. Kim TH, Kim GD, Jin YH, Park YS, Hong SW, et al. Omega-3 fatty acid-derived mediators and T cell responses. *Future Med Chem* (2012) 5(5):43079–86.

171. Vassilou EK, Kesler OM, Tadros JH, Ganea D. Bone marrow-derived dendritic cells through the transcription factor Ikaros. Evidence for a synergistic effect of resolvin E1, an endocannabinoid degradative product, endotoxic shock and inflammation. *Curr Drug Targets Inflamm Allergy* (2011) 10(2):133–49.

172. Rajasagi NK, Reddy PB, Suryawanshi A, Mulik S, Gjorstrup P, Rouse BT. Evidence for a synergistic effect of resolvin E1, an endocannabinoid degradative product, endotoxic shock and inflammation. *Curr Drug Targets Inflamm Allergy* (2011) 10(2):133–49.

173. Bambang KN, Lambert DG, Lam PM, Quenby S, Maccarrone M, Konje JC. Immunity and early pregnancy events: are endocannabinoids the missing link? *J Reprod Immunol* (2012) 96(1):1–28. doi:10.1016/j.jri.2012.10.003

174. Maccarrone M, Bari M, Battista N, Finazzi-Agro A. Endocannabinoid degradation, endotoxic shock and inflammation. *Curr Drug Targets Inflamm Allergy* (2002) 1(1):53–63. doi:10.2174/156802602344878

175. Nagaraki P, Pandey R, Rieder SA, Hegde VL, Nagarkatti M, Nagaraki PS. Endocannabinoids as novel anti-inflammatory drugs. *Future Med Chem* (2009) 1(7):1333–49. doi:10.4155/fmc.09.93

176. Nagaraki P, Chauhan A, Singh U, Nagaraki M, Nagaraki P. Cannabinoid-induced apoptosis in immune cells as a pathway to immunosuppression. *Immunobiology* (2009) 214(8):598–605. doi:10.1016/j.imunol.2009.04.003

177. Maccarrone M, De Petrocellis L, Bari M, Fezza F, Salvati S, Di Marzo V, et al. Lipopolysaccharide downregulates fatty acid hydroxylase expression and increases anandamide levels in human peripheral lymphocytes. *Arch Biochem Biophys* (2001) 393(2):321–8. doi:10.1006/abbi.2001.2500

178. Maccarrone M, Bari M, De Rienzo M, Finazzi-Agro A, Rossi A. Progesterone activates fatty acid amide hydrolase (FAAH) promoter in human T lymphocytes through the transcription factor Ikaros. Evidence for a synergistic effect of leptin. *J Biol Chem* (2003) 278(35):32726–32. doi:10.1074/jbc.M302123200

179. Coopman K, Smith LD, Wright KL, Ward SG. Temporal variation in CB2R levels following T lymphocyte activation: evidence that cannabinoids modulate CXCL12-induced chemotaxis. *Int Immunopharmacol* (2007) 7(3):360–71. doi:10.1016/j.intimp.2006.11.008
199. Rockwell CE, Raman P, Kaplan BL, Kaminski NE. A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonoyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol (2008) 76(3):353–61. doi:10.1016/j.bcp.2008.05.005

200. McCasker MM, Grant-Kels JM. Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin Dermatol (2010) 28(4):440–51. doi:10.1016/j.clindermatol.2010.03.020

201. Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, et al. Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res (2011) 70(20):7960–9. doi:10.1158/0008-5472.CAN-10-1396

202. Monk JM, Jia Q, Callaway E, Weeks B, Alaniz RC, McMurray DN, et al. Th17 cell accumulation is decreased during chronic experimental colitis by (n-3) PUFAs in Fat-1 mice. J Nutr (2011) 141(1):117–24. doi:10.3945/jn.111.147054

203. Vassilopoulos D, Zierer RB, Rossetti RG, Tsikos GC. Gammalinolenic acid and dihomogammalinolenic acid suppress the CD3-mediated signal transduction pathway in human T cells. Clin Immunol Immunopathol (1997) 83(2):237–44. doi:10.1006/clim.1997.4343

204. Bassaganya-Riera J, Hontecillas R. Dietary conjugated linoleic acid and n-3 polyunsaturated fatty acids in inflammatory bowel disease. Curr Opin Clin Nutr Metab Care (2010) 13(5):569–73. doi:10.1097/MCO.0b013e32833b648e

205. Cawood AL, Ding R, Napper FL, You RH, Williams JA, et al. Eicosapentaenoic acid (EPA) from highly enriched n-3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis (2010) 212(1):252–9. doi:10.1016/j.atherosclerosis.2010.05.022

206. Chen EP, Smyth EM. COX-2 and PGE2-dependent immunomodulation in breast cancer. Prostaglandins Other Lipid Mediat (2011) 96(1–4):14–20. doi:10.1016/j.prostaglandins.2011.08.005

207. Rockwell CE, Raman P, Kaplan BL, Kaminski NE. A COX-2 metabolite of the endogenous cannabinoid, 2-arachidonoyl glycerol, mediates suppression of IL-2 secretion in activated Jurkat T cells. Biochem Pharmacol (2008) 76(3):353–61. doi:10.1016/j.bcp.2008.05.005

208. McAsker MM, Grant-Kels JM. Healing fats of the skin: the structural and immunologic roles of the omega-6 and omega-3 fatty acids. Clin Dermatol (2010) 28(4):440–51. doi:10.1016/j.clindermatol.2010.03.020

209. Woodworth HL, McCaskey SJ, Duriancik DM, Clinthorne JF, Langohr IM, et al. Dietary fish oil alters T lymphocyte cell populations and exacerbates disease in a mouse model of inflammatory colitis. Cancer Res (2011) 70(20):7960–9. doi:10.1158/0008-5472.CAN-10-1396

210. Suzuki D, Furukawa K, Kinura F, Shimizu H, Yoshidome H, Ohtsuka M, et al. Effects of perioperative immunonutrition on cell-mediated immunity, T helper type 1 (Th1)/Th2 differentiation, and Th17 response after pancreatectoduodenectomy. Surgery (2010) 148(3):573–81. doi:10.1016/j.surg.2010.01.017

211. Marik PE, Flemmer M. Immunonutrition in the surgical patient. Minerva Anestesiol (2012) 78(3):336–42.

212. Furuhjelm C, Jenmalm MC, Falh-Magnusson K, Duchen K, Th1 and Th2 chemokines, vaccine-induced immunity, and allergic disease in infants after maternal omega-3 fatty acid supplementation during pregnancy and lactation. Pediatr Res (2011) 69(3):259–64. doi:10.1203/PDR.0b013e3182072229

213. Kong W, Yen JH, Ganea D. Docosahexaenoic acid prevents dendritic cell maturation, inhibits antigen-specific Th1/Th17 differentiation and suppresses experimental autoimmune encephalomyelitis. Brain Behav Immun (2011) 25(5):872–82. doi:10.1016/j.bbi.2010.09.012

214. Ye R, Li J, Wang S, Xie A, Sun W, Xia J. Eicosapentaenoic acid disrupts the balance between Tregs and IL-17+ T cells through PPARgamma nuclear receptor activation and protects cardiac allografts. J Surg Res (2011) 173(1):161–70. doi:10.1016/j.jss.2010.08.052

215. Weise C, Heunemann C, Loddenkemper C, Herz U, van Tol EA, Worm M. Dietary docosahexaenoic acid in combination with arachidonic acid ameliorates allergen-induced dermatitis in mice. Pediatr Allergy Immunol (2011) 22(5):497–504. doi:10.1111/j.1399-3038.2010.01133.x

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 19 December 2013; paper pending published: 08 January 2014; accepted: 11 February 2014; published online: 25 February 2014.

Citation: Nicolaou A, Mauro C, Urquhart P and Marelli-Berg F (2014) Polyunsaturated fatty acid-derived lipid mediators and T cell function. Front. Immunol. 5:75. doi:10.3389/fimmu.2014.00075

This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology. Copyright © 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.