The structure of finite groups and θ-pairs of general subgroups

Yong Xu*, Hailong Hou, and Xinjian Zhang

Abstract: Using the concept of θ-pairs of proper subgroups of a finite group, we obtain some critical conditions of the supersolvability and nilpotency of finite groups.

Keywords: Finite group, supersolvable group, Nilpotent group, θ-pair

MSC: 20D10, 20D15

1 Introduction

In this paper, all groups considered are finite and G stands for a finite group. Let $\pi(G)$ stand for the set of all prime divisors of $|G|$. We use “$M \vartriangleleft G$” to denote that M is a maximal subgroup of G; We write “$N \text{ Char } G$” to mean that N is a characteristic subgroup of G. The other notations and terminologies are standard (see [4]).

It is well-know that each maximal subgroup of a solvable group is complement of a chief factor of G. Taking this elementary fact as starting point, N. P. Mukherjee and P. Bhattacharya [7] introduced the concept of θ-pairs of maximal subgroups and obtained some conditions for solvability, supersolvability or nilpotency of finite groups by using the properties of θ-pairs of maximal subgroups of G. Since then, many interesting results have been subsequently obtained (see [1–3]). Following the idea of Mukherjee and Bhattacharya, X. H. Li and S. H. Li [5] introduced the concept of θ-pairs of general subgroups. Let H be a subgroup of G. We call (A, B) a θ-pair of H in G if (i) $A \leq G$, $(H, A) = G$ and $B = (A \cap H)_G$; (ii) If A_1/B is a proper subgroup of A/B and $A_1/B \vartriangleleft G/B$, then $G \neq (H, A_1)$. If $A \vartriangleleft G$, then (A, B) is called a normal θ-pair of H in G. They gave sufficient conditions of supersolvability and nilpotence of a finite group by using the concept of θ-pair of some maximal subgroups of Sylow subgroups of G.

Given $H \vartriangleleft G$, we denote by $\theta(H)$ the family of all θ-pairs of H. A partial ordering \leq on $\theta(H)$ is introduced as follows: $(A, B) \preceq (A', B')$ if $A \preceq A'$. Thus, $\theta(H)$ is a partial set. We call a maximal element with respect to \leq a maximal θ-pair (see[5]). In [10] and [11], Wang introduced the concept of c-normal subgroups (c-supplemented subgroup). A subgroup H of a group G is said to be c-normal (c-supplemented) in G if G has a normal subgroup T (if G has a subgroup T) such that $HT = G$ and $H \cap T \leq H_G$, where $H_G = \bigcap_{x \in G} H^x$ is the core of H in G. Some authors have investigated the structure of a finite group G under the assumption that some subgroups of prime power order of G have those generalized normality in G, and obtained many results (see [8, 10] and [11]). By [5, Theorem 1], the definitions of c-normality etc. are developed by imposing some conditions on θ-pairs. Hence, all results, obtainable by using a c-normal subgroup and c-supplemented subgroup of G, have analogs in the θ-pairs of subgroups of G. Based on the fact that the general subgroup H of G has a maximal θ-pair, then there exists a normal θ-pair which satisfies some conditions (see Lemma 3 (2) in [5]). Thus it is enough to consider the normal θ-pairs
of subgroups. In this paper, we investigate the supersolvability and nilpotency of a group by using the concept of normal θ-pair of subgroups with order p^k of a Sylow p-subgroup of a normal subgroup N of G for a given positive integer k. In comparison to the assumptions of [8, Theorem 0.1], we consider all cyclic subgroups of order 2 and not all cyclic subgroups of order 2 and 4 when $p = 2$. And we generalize the results in [6].

2 Preliminary results

Lemma 2.1 ([5, Lemma 3 (1)]). Let H be a group of G. If $N \lhd G$ and $N \leq D$, then (C, D) is a θ-pair of H in G if and only if $(C/N, D/N)$ is a θ-pair of H/N in G/N.

Lemma 2.2 ([6, Lemma 2.2]). Let $N \lhd G$, $Q \leq G$, and $H = NQ < G$. Suppose that (C, D) is a normal θ-pair for Q and $N \not\leq D$. Set $B := (CN \cap H)_G$ and suppose that $BQ < G$. Then there is a subgroup A of G such that (A, B) is a normal θ-pair for H and A/B is a section of C/D.

Lemma 2.3 ([5, Lemma 2 (2)]). If (C, D) is a normal maximal θ-pair of a subgroup H of a group G, then $D = H_G$.

Lemma 2.4 ([6, Lemma 2.4]). Let P be a p-subgroup of G possessing a normal θ-pair (C, D) such that C/D is supersolvable. Then G is solvable.

Lemma 2.5 ([9, Lemma 2.2]). Let G be a group, p, q be different prime divisors of $|G|$, P a non-cyclic Sylow p-subgroup of G and Q a Sylow q-subgroup of G. If any maximal subgroup of P (except one) has a q-closed supplement in G, then Q is normal in G.

Lemma 2.6. Assume that every maximal subgroup of Sylow subgroup P of G has a nilpotent supplement in G, then G is nilpotent.

Proof. By [9, Theorem 1.4], G is supersolvable. Let $q = \max 1, p \leq q$, then $Q \lhd G$, where $Q \in Syl_q(G)$. It is clear that $G/\Phi(Q)$ satisfies the hypothesis, then $\Phi(Q) = 1$ by the formation of nilpotent groups is saturated, so Q is an elementary abelian q-subgroup. Since G/Q is nilpotent, we have $G/Q = P_1Q/Q \times P_2Q/Q \times \cdots \times P_sQ/Q$, where $s = \pi(G) - 1$ and $i \leq s$. Let $Q_1 \lhd Q$, by the hypothesis, there is a nilpotent subgroup M of G such that $G = Q_1M$, so $P_iQ = P_iQ \cap Q_1M = Q_1(M \cap P_iQ)$, thus Q_1 has a nilpotent supplement $M \cap P_iQ$ in P_iQ. If Q is cyclic, then $Q_1 = 1$, so $P_iQ = M \cap P_iQ$ is nilpotent, thus $P_i\text{Char}P_iQ$. If Q is non-cyclic, then $P_i\text{Char}P_iQ$ by Lemma 2.5. We conclude that $P_i\text{Char}P_iQ \lhd G$, so $P_i \lhd G$, hence G is nilpotent.

3 Main results

Theorem 3.1. Assume that every Sylow subgroup P of a normal subgroup N of G has a subgroup U with $1 < |U| < |P|$ such that every subgroup H of P of order $|U|$ has a normal θ-pair (C, D) with C/D supersolvable, then G is supersolvable.

Proof. Assume that the result is false and let G be a counterexample with least $|G| + |N|$. By Lemma 2.4, G is solvable.

Step 1. If L is a minimal normal subgroup of G contained in $P \in Syl_p(N)$, then $|L| \leq |U|$.

Suppose that $|L| > |U|$. Then every subgroup H of L of order $|U|$ has a normal θ-pair (C, D) such that C/D is supersolvable. Thus $G = HC$ and $D = (H \cap C)G$. Since $D \leq H < L$, we have $D = 1$ by the minimal normality of L in G. Obviously, $C \cap L \lhd G$, then $C \cap L = 1$ or $C \cap L = L$. If the former case is held, then $C \cap H = 1$, so
\[|G| = |CH| = |CL|, \] that is, \(|H| = |L|\), a contradiction. Thus \(C \cap L = L, L \leq C \), hence \(G = CH = CL = C \).

By a contradiction, \(C/D = G \) is supersolvable, a contradiction.

Step 2. For every minimal normal subgroup \(L \) of \(G \) contained in \(N \), the factor group \(G/L \) is supersolvable.

Let \(p \) be a prime and \(|L| = p^a \). Let \(G \) be a \(p \)-Sylow subgroup of \(N \). Assume that \(|L| = |U| \). By the hypothesis, there is a normal \(\theta \)-pair \((C, D)\) for \(L \) such that \(C/D \) is supersolvable, then \(G = LC \) and \(D = (L \cap C)_G = L \cap C \).

By the minimal normality of \(L \) in \(G \), we have \(L \cap C = L \) or \(L \cap C = 1 \). If the former case is true, then \(L \leq C \), that is, \(G = C \) and \(C/D = G/L \) is supersolvable. If the latter case is hold, then \(C/D = C \) is supersolvable, so \(G/L = CL/L \cong C/C \cap L = C \) is supersolvable.

Assume that \(|L| < |U| \). If \(p = q \), then \(L < H \), where \(|H| = |U| \). By the hypothesis, there is a normal \(\theta \)-pair \((C, D)\) for \(H \) and \(C/D \) is supersolvable. Clearly, \(L \leq D \leq C \). Now Lemma 2.1 implies that \((\bar{C}, \bar{D}) \) is a normal \(\theta \)-pair for \(\bar{H} \) and \(\bar{C}/\bar{D} \cong C/D \) is supersolvable. If \(p \neq q \), then \(Q^* \) is a Sylow subgroup of \(N/L \), then by Schur-Zassenhaus theorem, it is easy to prove that \(Q^* = L \times Q \), where \(Q \in Syl_q(N) \). By the hypothesis, \(Q \) has a subgroup \(U \) such that \(1 < |U| < |Q| \) and every subgroup \(H \) of \(Q \) of order \(|U| \) has a normal \(\theta \)-pair \((C, D)\) such that \(C/D \) is supersolvable. Set \(B := (CL \cap HL)_G \) and observe that \(H^* = HL < G, L \not\leq D \) and \(BH \leq L \), then there is a normal subgroup \(A \) of \(N \) minimal w.r.t. satisfying \(B \leq A \leq C \) and \(HA = N \).

As \(A/B \) is the homomorphic image of the subgroup \(A/H_G \) of the supersolvable group \(C/H_G \), we find that \((A, B)\) is a normal \(\theta \)-pair for \(H \) in \(N \) with \(A/B \) supersolvable. If \(N < G \), then \((N, N)\) satisfies the hypothesis, thus \(N \) is supersolvable by the minimality of \(|G| + |N| \), so \(N \) is \(q \)-closed. If \(N = G \), we can assume that \(\{G_r | r \in \pi(G)\} \) is a Sylow system of \(G \) and \(G = G_qG_r \) for any \(r \in \pi(G) \) with \(r \neq q \). By the similar discuss as above, the hypothesis is still true for \((K, K)\). If \(|\pi(G)| \geq 3 \), then \(N_q < K \), which implies that \(G_q \not< G \), a contradiction. Thus we may assume that \(|G| = |N| = p^aq^b \).

Let \(L \) be a minimal normal subgroup of \(G \), then \(G/L \) is \(q \)-closed by **Step 2**. Since \(q \)-closed is a saturated formation, we may assume that \(L \not< \Phi(G) \) and \(L \) is the only minimal normal subgroup of \(G \). If \(L \) is a \(q \)-group, then \(G_q \not< G \), a contradiction. Thus \(L \leq P \) and so \(L \leq O_p(G) \). We also get \(L \) is not cyclic by **Step 2**, so \(P \) is non-cyclic. Now we show that \(L = O_p(G) \). Let \(W \) be a maximal subgroup of \(G \) such that \(L \not< W \), then \(G = LW \) and \(L \cap W = 1 \). Since \(W \cong G/L, W \) is \(q \)-closed. By \(L \leq O_p(G), G = LW = O_p(G)W \).

From \(O_p(G) \leq F(G) \leq C_G(L), \) it is easy to see that \(L \) and \(W \) normalize \(O_p(G) \cap W, \) thus \(O_p(G) \cap W \not< \). So \(O_p(G) \cap W = 1 \) or \(L \leq O_p(G) \cap W \). If the later case happened, then \(L \leq W \), that is, \(G = L \times W \), a contradiction. So \(O_p(G) \cap W = 1 \), thus \(|O_p(G)| = |G : W| = |L|, \) hence \(L = O_p(G) \). By the hypothesis, \(P \) has a subgroup \(U \) with \(|U| \leq |P| \) such that every subgroup \(H \) of order \(|U| \) has a normal \(\theta \)-pair \((C, D)\) and \(C/D \) is supersolvable, then \(G = HC \) and \(D = (H \cap C)_G \). If \(L \leq H \), then \(G = HW \), so \(W \) is a \(q \)-closed supplement of \(H \) in \(G \). If \(L \not< H \), then \(D = 1 \) by the minimal normality of \(L \) in \(G \), so \(C \) is supersolvable, of course, is \(q \)-closed. Then every maximal subgroup of \(P \) has a \(q \)-closed supplement in \(G, \) so \(N = G \) is \(q \)-closed by Lemma 2.5, a contradiction.

Step 3. Let \(q = \max_\pi(N) \) and \(Q \) be a Sylow \(q \)-subgroup of \(N \). By **Step 3**, \(Q \) is normal in \(N \). By **Step 2**, we may assume that \(Q = N = P \). Let \(L \) be a minimal normal subgroup of \(G \) contained in \(N \). Then by the proof of **Step 3**, \(L = O_p(G) = P \). But by **Step 1**, \(|L| \leq |U| < |P| \), a contradiction. This contradiction completes the proof of this theorem.

\(\square \)
Corollary 3.2 ([6, Theorem 3.1]). Assume that every maximal subgroup of any Sylow subgroups of a normal subgroup N of G has a normal θ-pair (C, D) such that C/D is supersolvable, then G is supersolvable.

Theorem 3.3. Assume that every non-cyclic Sylow subgroup P of G has a subgroup U with $1 < |U| < |P|$ such that every subgroup H of P of order $|U|$ has a normal θ-pair (C, D) with C/D supersolvable, then G is supersolvable.

Proof. The proof is similar to Theorem 3.1 and omitted here.

Corollary 3.4. Assume that every minimal subgroup of any non-cyclic Sylow subgroups of G has a normal θ-pair (C, D) and C/D is supersolvable, then G is supersolvable.

Corollary 3.5. Assume that every maximal subgroup of any non-cyclic Sylow subgroups of G has a normal θ-pair (C, D) and C/D is supersolvable, then G is supersolvable.

Theorem 3.6. Assume that every Sylow subgroup P of a normal subgroup N of G has a subgroup U with $1 < |U| < |P|$ such that every subgroup H of P of order $|U|$ has a normal θ-pair (C, D) with C/D nilpotent, then G is nilpotent.

Proof. Assume that the result is false and let G be a counterexample with least $|G|$. By Theorem 3.1, G is supersolvable and so is N. Let $p = \max \pi(N), P \in Syl_p(N)$, then $P Char N < G$, so $P < G$.

Lemma 2.6 and the arguments in the Step 2 of the proof of Theorem 3.1 show that there is the unique minimal normal subgroup L of G contained in P such that G/L is nilpotent. By the hypothesis, P has a subgroup U with $1 < |U| < |P|$ such that every subgroup H of P of order $|U|$ has a normal θ-pair (C, D) and C/D is nilpotent. If $H_G = 1$, then $D = 1$. Thus C is nilpotent, so is $G = PC$ by $C < G$ and $P < G$, a contradiction. Thus $H_G \neq 1$, so $L \leq H_G \leq H \leq P_1$, where $P_1 < P$, hence $L \leq \bigcap_{P_1 < P} P_1 = \Phi(P) \leq \Phi(G)$. Then $G/\Phi(G)$ is nilpotent. Since the formation of nilpotent groups is saturated, we have G is nilpotent, a final contradiction.

Corollary 3.7 (see [6, Theorem 3.1]). Assume that every maximal subgroup of any Sylow subgroups of a normal subgroup N of G has a normal θ-pair (C, D) such that C/D is nilpotent, then G is nilpotent.

Acknowledgement: The authors are very grateful to the referees for careful reading and helpful comments.

This work was supported by the National Natural Science Foundation of China (Grant N. 11326056, 11501235), the Natural Science Foundation of Jiangsu Province (N. BK20140451), the Henan University of Science and Technology science fund for innovative team (N. 2015XTD010), the Henan University of Science and Technology science fund for youths (N. 13000954).

References

[1] Ballester-Bolinches, A., On saturated formations, theta-pairs and completions in finite groups, Sib. Math. J., 1996, 37(2), 207-212
[2] Ballester-Bolinches, A., Zhao, Y., On maximal subgroups of finite groups and theta pairs, Comm. Algebra, 1996, 24(13), 4199-4209
[3] Guo, X., On theta pairs for maximal subgroup, Comm. Algebra, 1994, 22(4), 4653-4659
[4] Huppert, B., Endliche Gruppen I, Springer, New York, Berlin, 1967
[5] Li, X., Li, S., Theta pair and the structure of finite groups, Sib. Math. J., 2004, 45(3), 557-561
[6] Li, X., Nan, A., The structure of finite group and the θ-pairs of subgroups, Contributions to general algebra 19, Proceedings of the Olomouc Conference 2010, (AAA79+CYA25), Verlag Johannes Heyn, Klagenfurt 2010
[7] Mukherjee, N., Bhattacharya, P., On theta pairs for a maximal subgroup, Proc. Amer. Math. Soc., 109(3), 1990, 589-596
[8] Skiba, A., A note on c-normal subgroups of finite groups, Algebra Discrete Math., 2005, 3, 85-95
[9] Skiba, A., On weakly s-permutable subgroups of finite groups, J. Algebra, 2007, 315(1), 192-209
[10] Wang, Y., c-normality of groups and its properties, J. Algebra, 1996, 180, 954-965
[11] Wang, Y., Finite groups with some subgroup of Sylow subgroups c-supplemented, J. Algebra, 2000, 224, 467-478
[12] Xu, Y., Zhao, T., Li, X., On $CISE$-normal subgroups of finite groups, Turkish J. Math., 2012, 36, 231-243