Analysis of variation in reference evapotranspiration and its driving factors in mainland China from 1960 to 2016

Dong Wu1©, Shibo Fang2, Xingyuan Tong, Lei Wang, Wen Zhuo, Zhifang Pei, Yingjie Wu, Ju Zhang and Mengqian Li

1 State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081, People's Republic of China
2 Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
3 Nanjing University of Information Science & Technology, Nanjing 210044, People's Republic of China
4 Chengdu University of Technology, Chengdu 610000, People's Republic of China

E-mail: dr.sbfang@163.com

Keywords: reference evapotranspiration, spatiotemporal variation, abrupt change, driving factor, mainland China

Abstract

Understanding the variation in reference evapotranspiration (ET$_0$) is vital for hydrological cycles, drought monitoring, and water resource management. With 1507 meteorological stations and 130 radiation-measured stations, the annual and seasonal ET$_0$ were calculated at each site from 1960 to 2016 in mainland China. The phenomenon of coefficient 'a' being less than 0.25 and coefficient 'b' being greater than 0.50 in the Angstrom–Prescott model occurred in almost the whole country, except for a small area of western and northeastern China. Moreover, the Xiao's method was more applicable to calculate the net longwave radiation (R_{nl}) and then improve the estimation accuracy of ET$_0$. The annual ET$_0$ varied from 538.8 to 1559.8 mm and had a high-value center located in the plateau and desert of northwestern China and a low-value center located in Northeast China and near the Sichuan Basin. The spatial distribution of seasonal ET$_0$ was roughly similar to that of annual ET$_0$, except for that in winter when ET$_0$ was high in the south and low in the north. In mainland China, the annual ET$_0$ decreased by 21.2 mm decade$^{-1}$ because of the declining sunshine duration before 1993 and increased by 21.1 mm decade$^{-1}$ due to the decreased relative humidity (RH) after 1993. Generally, the abrupt change of ET$_0$ mainly occurred in the southern China rather than northern China (except for Qinghai Tibet Plateau). Therefore, the dominant driving factors of annual and seasonal ET$_0$ were RH and/or T_{max} after the abrupt change in most parts of China.

1. Introduction

Actual evapotranspiration (ET$_a$), as the nexus of the water and energy balances, is a combined process whereby water is lost from the soil surface by evaporation and from vegetation by transpiration, thus linking the soil, vegetation and atmosphere together in terrestrial ecosystems (Allen et al 1998). Moreover, ET$_a$ is the crucial component of the hydrological cycle and climate system and is broadly applied in regional water resource assessments, drought monitoring and early warning, and evaluations of the water use efficiency of ecosystems (Hanasaki et al 2008, Anderson et al 2011, Yang et al 2015). Therefore, a suite of measurements or estimation methods have been developed to quantify ET$_a$, including weighing lysimeters, eddy covariance, scintillometers, crop coefficient methods, and conservation of mass or energy methods (Norman et al 1995, Allen et al 1998, Bastiaanssen et al 1998, Yee et al 2015, Soubie et al 2016). However, observations of ET$_a$ are not only costly but also have insufficient time series, and ET$_a$ is strongly affected by surface characteristics (e.g. land cover and land change), climatic factors and the amount of available water, which constrain its applications in the aspect of climate change (Arnell and Liu 2001, McVicar et al 2012).

In contrast, the atmospheric evaporative demand (AED) represents the maximum evapotranspiration from a surface with an unlimited water supply...
under certain meteorological conditions, and it is mainly characterized by three indicators: potential evapotranspiration (E_{T_o}), reference evapotranspiration ($E_{T_{pan}}$) and pan evaporation ($E_{T_{pan}}$) (Fan and Thomas 2018, Xiang et al 2020). Among these metrics, E_{T_o} and $E_{T_{pan}}$ are extensively investigated in terms of temporal variability and attribution analysis because the former is independent of crop type, crop development and management practices and the latter provides a measurement of actual AED; both these variables are comparable in disparate climatic regions worldwide (Allen et al 1998, Wang et al 2017, Fan and Thomas 2018). However, the consistency of the pan evaporation data is not high enough in China for the reason that the type of evaporation pan was changed from D20 pan to E601B around 2000 but the homogenization has not been applied to the data (Yang and Yang 2012, National Standard of People’s Republic of China, GB/T35230-2017 2017). Many studies published at the beginning of the 21st century verified that most regions or countries, such as Australia, New Zealand, Alberta, the United States, China, and India, have suffered significant decreases in annual $E_{T_{pan}}$ or E_{T_o} in the past 50 years (Chattopadhyay and Hulme 1997, Thomas 2000, Roderick and Farquhar 2002, Hobbins and Ramirez 2004, Xu et al 2006, Rayner 2007). Obviously, the aforementioned phenomenon conflicts with the projected capacity of the atmosphere to hold more water vapor as the air temperature increased by 0.74 °C during the 20th century (Roderick and Farquhar 2002, McVicar et al 2012). Further investigation of synchronous climate information indicated that decreases in wind speed (termed ‘stilling’) and/or radiation (termed ‘dimming’) offset warming, inducing a decline in the AED (Roderick and Farquhar 2002, McVicar et al 2012, Jahani et al 2017). This is a convincing interpretation because the variability in AED is affected by the interaction of multiple meteorological elements, especially wind speed, atmospheric humidity, radiation and air temperature.

In recent years, as the length of the time series of meteorological observations has been expanding, abrupt change in annual E_{T_o} have been detected in some regions. In Greece, the abrupt change in annual E_{T_o} occurred in the early 1980s; before the 1980s, E_{T_o} decreased over time, while after the 1980s, it increased (Papaioannou et al 2011). In China, trend analyses have been implemented in different administrative, geographic and climatic regions, and monotonic and nonmonotonic changes have been reported in previous studies (Huo et al 2013, Lv et al 2016, Gao et al 2017, Wang et al 2019). For example, Wang et al (2016) depicted that the annual E_{T_o} in the three-river source region decreased significantly by −9.1 mm decade$^{-1}$ from 1980 to 2012; Wang et al (2019) showed that the annual E_{T_o} first decreased and then increased in mainland China (MLC) based on the China Meteorological Forcing Dataset from 1979 to 2015. In addition, the timing of abrupt change of annual E_{T_o} generally occurred in the 1980s or 1990s in China because existing studies were performed at disparate spatial scales (table 1). Synchronously, the dominant driving factors of annual E_{T_o} have been extracted by various approaches, such as multiple linear regression, differentiation equations, and Gaussian geographic weighted regression models (Wang et al 2016, 2017, Gao et al 2017, Zhang et al 2019).

Reviewing the published literature, several short-comings regarding the E_{T_o} trend and its contributing factors must be addressed in MLC. First, strengthening the analysis of the seasonal E_{T_o} pattern is necessary in light of the variability in meteorological elements in different seasons. Second, it should be noted that markedly disparate timing of abrupt change of annual E_{T_o} was detected by several studies with the same spatial extent in MLC (table 1). Hence, it is crucial to adopt higher-quality data to further explore whether differences in data richness and data sources influence the assessment results. Finally, it is not clear whether the main driving factors of the E_{T_o} sequence change before and after the abrupt change.

Location	Period	Data	Abrupt change point	Driving factors	Source
Mainland China	1961−2013	0.5° gridded dataset	1982	U_2, T_{max}	Wang et al (2017)
Mainland China	1979−2015	0.1° gridded dataset	1990s	T	Wang et al (2019)
Mainland China	1956−2015	200 stations	1984	$U_2/T_{min} & SD$ in subregions	Fan et al (2016)
Mainland China	1970−2014	598 stations	1993	T_{max}, T_{min}	Zhang et al (2019)
Three Gorges Reservoir	1960−2013	41 stations	1982	—	Lv et al (2016)
Southwest China	1961−2016	99 stations	1996	1961−1996: SD, U_2 1997−2016: RH, T	Jiang et al (2019)

Note: T = average temperature; T_{max} = maximum temperature; T_{min} = minimum temperature; U_2 = wind speed at a height of 2 m; SD = sunshine duration; RH = relative humidity of atmosphere.
Consequently, the objectives of this study were to (a) analyze the spatial distribution of annual and seasonal ET\(o\) in MLC from 1960 to 2016; (b) investigate the annual and seasonal ET\(o\) series and determine the corresponding abrupt change points based on observations from higher-density meteorological stations; and (c) implement attribution analysis to explore the dominant driving factors of ET\(o\) before and after the abrupt change. The results are expected to serve as a reference for the evaluation of crop water demand, drought risk assessment and water resource allocation in MLC.

2. Data and methodology

2.1. Study area

China, the third largest country in the world, is characterized by various and complicated climates (e.g. temperate monsoon climate, temperate continental climate, subtropical monsoon climate, tropical monsoon climate and plateau alpine climate) and geographies (e.g. plain, plateau, basin, hill and mountain). Based on the specific combinations of climatic resources and terrains, MLC can be divided into nine agricultural regions, including the Northeast China Plain (I), northern arid and semiarid region (II), Huang-Huai-Hai Plain (III), Loess Plateau (IV), Qinghai Tibet Plateau (V), Sichuan Basin and surrounding regions (VI), middle-lower Yangtze Plain (VII), Yunnan-Guizhou Plateau (VIII), and southern China (IX) (figure 1(a), www.resdc.cn/data.aspx?DATAID=275). The multiyear averaged conditions of climatic elements are summarized in table S1 (available online at stacks.iop.org/ERL/16/054016/mmedia) for each region.

2.2. Data sources and processing

The daily meteorological observation data of 1507 high-density synoptic sites (figure 1(b)) were collected by the National Meteorological Information Centre of the China Meteorological Administration (http://data.cma.cn) from 1960 to 2016, consisting of average temperature (\(T\)), maximum temperature (\(T_{\text{max}}\)), minimum temperature (\(T_{\text{min}}\)), wind speed at a height of 10 m (\(U_{10}\)), relative humidity (RH), sunshine duration (SD), and precipitation (Pre). Moreover, 130 radiation-measured sites recorded the surface net radiation (\(R_{\text{sn}}\)) and shortwave radiation received (\(R_{s}\)) and reflected (\(R_{\text{ref}}\)) by the surface (only a few sites measured all elements) and were evenly distributed in MLC (figure 1(b)). However, the available number of radiation-measured sites varied over time because some of the stations had missing observations in certain years (figure S1).

An entire year is separated into four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). To estimate the relevant parameters during different seasons, screening criteria were adopted; for example, if a meteorological element is completely missing in a season, the relevant data for that season is no longer used. And the percentage of missing data against the entire sequence from 1960 to 2016 was controlled within 3.5% for each climatic factor. Subsequently, two gap-filling methods were implemented for the time series of climatic factors: (a) linear interpolation was used when the number of continuous missing data points was less than 5, and these missing values were substituted with the mean value of other years when the number of continuous missing data points was greater than 4 for all climatic factors except for precipitation; and (b) replacement with the value on the same day from the nearest meteorological stations was used for only the precipitation data (Wu et al. 2019).

2.3. Estimation of ET\(o\)

In this study, the FAO (Food and Agriculture Organization of the United Nations) Penman–Monteith equation was employed to calculate the daily ET\(o\) with basic meteorological parameters, which were defined as a hypothetical grass surface with a crop height of 0.12 m, a fixed surface resistance of 70 s m\(^{-1}\), an albedo of 0.23, and an adequate water supply (Allen et al. 1998). The formula is expressed as follows:

\[
\text{ET}_{o} = \frac{0.408\Delta (R_{\text{n}} - G) + \gamma \frac{n_{\text{w}}^{0.009}}{T_{\text{air}}^{0.727}} U_{2} (e_{a} - e_{s})}{\Delta + \gamma (1 + 0.34 U_{2})}
\]

where ET\(o\) is the daily reference evapotranspiration (mm d\(^{-1}\)); \(\Delta\) is the slope of the saturated vapor pressure curve (kPa °C\(^{-1}\)); \(\gamma\) is the psychrometric constant (kPa °C\(^{-1}\)); \(e_{a}\) is the saturation vapor pressure (kPa); \(e_{s}\) is the actual vapor pressure (kPa); T is the mean air temperature (°C) at a 2 m height, which is computed as the mean of \(T_{\text{max}}\) (°C) and \(T_{\text{min}}\) (°C); G is the soil heat flux (MJ m\(^{-2}\) d\(^{-1}\)) and is so small that it can be ignored for a one-day period; and \(U_{2}\) is the wind speed at a height of 2 m (m s\(^{-1}\)), and a logarithmic wind speed profile relationship is capable of converting \(U_{10}\) to \(U_{2}\) (Allen et al. 1998):

\[
U_{2} = U_{10} \left(\frac{4.87}{\ln(67.8 z - 5.42)}\right)
\]

where \(U_{10}\) is the measured wind speed at a height of 10 m, and \(z\) is the height of the measurement above the ground surface (i.e. 10 m). \(R_{s}\) is the net radiation at the canopy surface (MJ m\(^{-2}\) d\(^{-1}\)), which is the difference between net solar shortwave radiation (\(R_{\text{sn}}\), MJ m\(^{-2}\) d\(^{-1}\)) and net longwave radiation (\(R_{\text{nl}}\), MJ m\(^{-2}\) d\(^{-1}\)) (Allen et al 1998):

\[
R_{s} = R_{\text{sn}} - R_{\text{nl}}
\]

\[
R_{\text{nl}} = (1 - \alpha) R_{s}
\]
D Wu

because its application is
td and
are the observations from the
n) to estimate

MJ K

= (σ

T

+ T

is Stefan-Boltzmann con-

R

d and
is the albedo or canopy reflection coeffi-

= R

R
+n

◦

R
+ R

from all meteorological stations within
(Yin
2011)

T
b
+b
and
a
= R
n

(4.903 × 10
−3) MJ K
−4 m
−2 d
−1; T
max
and T
min
are the maximum and minimum absolute air temper-
atures (K = °C + 273.16); and a, b, c, d and f are
empirical regression coefficients (dimensionless), of
which default values are 0.25, 0.50, 0.34, −0.14, and
−0.35, respectively, recommended by FAO paper 56.

The ‘a’ and ‘a + b’ variables represent the frac-
tion of extraterrestrial radiation reaching the earth on
overcast days and on clear days, respectively. Coef-
ficients a and b change depending on atmospheric
and climatic factors, the optimal Ral model and
the corresponding coefficients ‘a’ and ‘b’ derived from
the nearest radiation-measured stations. And mean
values of ETa from all meteorological stations within
a certain region were used to represent the regional
conditions.

2.4. Trend detection

The nonparametric Mann–Kendall test was adopted
to quantify the trend of ETa at a prescribed
significance level of α because its application is
not limited by the distribution of sample data
(Hirsch and Slack 1984, Dinpashoh et al 2011,
Jhajharia et al. (2012). Note that the pre-whitening process for the ET₀ time series was implemented first to avoid the impact of serial correlation of the sample on the Mann–Kendall trend test (Yue and Wang 2002). Additionally, the nonparametric Sen’s slope estimator, developed by Sen, was used to evaluate the slope of the trend of a time series (Sen 1968). In the study, the significance level α of the Mann–Kendall trend test was set to 0.05 or 0.01. For the standard normal test statistic, Z, a significant ascending trend exists in the time series if Z is greater than 1.96 or 2.58, and a significant descending trend exists in the time series if Z is less than −1.96 or −2.58.

Influenced by natural or anthropogenic factors, the variability of hydrological and meteorological time series are often periodic or oscillating but seldom monotonous (She et al. 2017). The moment that the trend of the time series changes from increasing (decreasing) to decreasing (increasing) is termed abrupt change (Villarini et al., 2012, Gu et al. 2017). The Mann–Kendall abrupt test was widely applied in the field of hydrology and meteorology (Yang and Tian 2009, Liang et al. 2010, Zhao et al. 2014). However, the Mann–Kendall abrupt test may induce the phenomenon of multiple abrupt change points (Fang et al., 2016, Wu et al. 2019). Therefore, the non-parametric Pettitt approach was employed to implement abrupt change analysis for the reason that it can identify one change point at a time (Pettitt 1979, Zuo et al. 2012, Lv et al. 2016, Wang et al. 2016).

2.5. Multiple standardized stepwise regression

ET₀, which consists of radiative and aerodynamic terms, is comprehensively affected by diverse climatic factors, such as T, U₂, SD, and RH, among which complex direct or indirect relationships exist. Moreover, the contribution of a specific climatic factor to ET₀ depends on not only the sensitivity of ET₀ but also its degree of change (Zhao et al. 2020). To extract the dominant driving factors of annual or seasonal ET₀, a multiple standardized stepwise regression model was employed to establish the relation between dependent variables (i.e. ET₀) and independent variables (i.e. T max, T min, U₂, RH, and SD) (Wang et al. 2017). Specifically, the analysis process included: (a) normalizing the climatic factors and ET₀ (with the mean and variance equal to 0 and 1, respectively); (b) setting the maximum p value and minimum p value to 0.05 for an independent variable to be added to and removed from the linear model, respectively; (c) implementing the model fitting with MATLAB R2014a and R square representing the model performance; and (d) calculating the ratio of the regression coefficient of each independent variable against the sum of all the regression coefficients as the relative contribution of the climatic factor to ET₀; the larger the contribution rate is, the more significant the climatic variable to ET₀ is, and vice versa (Wang et al. 2017).

2.6. Evaluation metrics

The coefficients of variation (CV) is used to depict the temporal variability of the relevant elements. The variability levels were limited by CV < 0.1, 0.1 < CV < 1.0 and CV ≥ 1.0, as weak, moderate and strong, respectively (Ayantobo et al. 2017).

The performance of the Rₐ models reported in table 2 were evaluated by the correlation coefficient (R), mean bias error (MBE) and root mean square error (RMSE) of the simulated values to measured values. The smaller the RMSE, the more accuracy of the Rₐ model. MBE represent the estimation error, positive and negative means higher and lower estimation, respectively (Itenfisu et al. 2003, Yin et al. 2008). The R, MBE and RMSE were given by:

\[
R = \frac{\sum_{i=1}^{n} (S_i - \bar{S})(O_i - \bar{O})}{\sqrt{\sum_{i=1}^{n} (S_i - \bar{S})^2 \sum_{i=1}^{n} (O_i - \bar{O})^2}}
\]

(10)

MBE = \frac{\sum_{i=1}^{n} (S_i - O_i)}{n}

(11)

RMSE = \sqrt{\frac{\sum_{i=1}^{n} (S_i - O_i)^2}{n}}

(12)

where \(S_i\) and \(O_i\) are simulated and observed values of the \(i\)th sample, respectively; \(\bar{S}\) and \(\bar{O}\) are the mean values of simulated and observed samples, respectively; and \(n\) is the sample size.

Table 2. Methods to calculate the net longwave radiation.

Expression	Name	c	d	f	Source
Equation (6)	FAO56	0.34	−0.14	−0.35	Allen et al (1998)
Equation (8)	Penman	0.56	−0.25	0.1	Penman (1948)
Equation (8)	FAO24	0.34	−0.14	0.1	Doorenbos and Pruitt (1977)
Equation (8)	Xiao	0.43	−0.15	0.36	Xiao and Kong (2021)
3. Results

3.1. Spatiotemporal variability of coefficients ‘a’ and ‘b’ in the Angstrom–Prescott model

3.1.1. Spatial distribution of coefficients ‘a’ and ‘b’

The multiyear average of coefficients ‘a’ and ‘b’ in the Angstrom–Prescott model, based on the seasonal fitted values, was calculated for 87 radiation-measured stations from 2000 to 2015 (relatively more stations were available within the period). Then, the ordinary kriging method was adopted to interpolate the ‘a’ and ‘b’ coefficients and analyze the spatial heterogeneity in MLC (figure 2).

In most parts of MLC, coefficient ‘a’ was lower than 0.25, except in the northern zone I, northeastern zone II and western zone V (figure 2(a)). The stripes extending from Northeast China to Western China and extending from Southeast China to Northwest China were roughly viewed as the high-value and low-value regions of coefficient ‘a’, respectively. Furthermore, the whole middle-lower Yangtze Plain presented almost the lowest value of coefficient ‘a’, with a value less than 0.19 (figure 2(a)).

In most parts of MLC, coefficient ‘b’ was greater than 0.50, except in northeastern China and western zone II (figure 2(b)). The subregion, constituted by zones I, II, III, and IV, had a coefficient ‘b’ below 0.54. However, coefficient ‘b’ in the rest of MLC was greater than 0.54. In addition, several high-value centers appeared in the northwestern zone II, southwestern zone V, western zone VI, and southeastern zone VII, with coefficient ‘b’ values greater than 0.56 (figure 2(b)).

3.1.2. Temporal variation in coefficients ‘a’ and ‘b’

Limited by the continuity of radiative data records, the temporal variation in coefficients ‘a’ and ‘b’ was analyzed from only 18 radiation-measured stations evenly distributed throughout MLC (figure S2). The annual and seasonal patterns of coefficient ‘a’ showed an approximately slight downward trend from 1960 to 1990, followed by an upward trend from 1990 to 2016 (figure 3). The multiyear average of seasonal coefficient ‘a’ gradually increased from spring (and summer) to winter (0.16, 0.16, 0.18, and 0.20 in sequence), and low variability with a coefficient of coefficient (CV) less than 0.10 was present in each season (table 3). The annual and seasonal coefficient ‘b’ fluctuated and decreased from 1960 to approximately 2005 but increased slightly in recent years (figure 3). Coefficient ‘b’ was largest in spring, with a multiyear average of 0.56, followed by that in autumn, summer...
Table 3. Annual and seasonal statistics on coefficients 'a' and 'b' in the Angstrom–Prescott model in mainland China from 1960 to 2016 (CV denotes the coefficient of variation).

Seasons	Coefficient 'a'	Coefficient 'b'								
	Max.	Min.	Mean	CV	Max.	Min.	Mean	CV	Correlation	p
Annual	0.20	0.15	0.18	0.08	0.58	0.50	0.54	0.04	−0.46	<0.01
Spring	0.18	0.13	0.16	0.08	0.60	0.53	0.56	0.03	−0.30	0.02
Summer	0.20	0.13	0.16	0.10	0.56	0.49	0.52	0.03	−0.55	<0.01
Autumn	0.21	0.15	0.18	0.09	0.61	0.49	0.54	0.05	−0.45	<0.01
Winter	0.24	0.16	0.20	0.08	0.59	0.46	0.52	0.07	−0.51	<0.01

Table 4. Validation stations for net longwave radiation used in the study.

No.	ID	Station	Province	Latitude (° E)	Longitude (° E)	Elevation (m)	Sample size (day)
1	54511	Beijing	Beijing	39.80	116.47	31.3	8724
2	52889	Lanzhou	Gansu	36.05	103.88	1517.2	4356
3	52983	Yuzhong	Gansu	35.87	104.15	1874.4	4314
4	59287	Guangzhou	Guangzhou	23.22	113.48	70.7	8712
5	57816	Guiyang	Guizhou	26.58	106.73	1223.8	1594
6	59948	Sanya	Hainan	18.22	109.58	419.4	8669
7	57083	Zhengzhou	Henan	34.72	113.65	110.4	8729
8	50136	Mohe	Heilongjiang	52.97	122.52	438.5	7044
9	50953	Haerbing	Heilongjiang	45.93	126.57	118.3	8724
10	57494	Wuhan	Hubei	30.60	114.05	23.6	8629
11	54342	Shenyang	Liaoning	41.73	123.52	49.0	8620
12	52267	Ejinaqi	Neimenggu	41.95	101.07	940.5	8709
13	52818	Geermu	Qinghai	36.42	94.92	2807.6	8655
14	58362	Baoshan	Shanghai	31.4	121.45	5.5	8668
15	51463	Urumqi	Xinjiang	43.78	87.65	935.0	8599
16	51709	Kashi	Xinjiang	39.48	75.75	1385.6	8642
17	57516	Shapingba	Chongqing	29.58	106.47	259.1	29

and winter. A smaller variability (CV below 0.07) existed in the four seasons compared to that of coefficient 'a'. Moreover, a significantly moderate negative correlation was detected between coefficients 'a' and 'b' at different time scales (table 3). One of the main reasons for this result is that the sum of coefficients 'a' and 'b' is constrained to less than 1.

3.2. Comparison of estimation methods of \(R_{nl} \)

Seventeen radiation-measured stations in MLC were selected to analyse the applicability of the four estimation methods of \(R_{nl} \) because of \(R_{s} \), \(R_{a} \) and \(R_{ref} \) were observed in these sites. Table 4 depicted the site locations and sample size of the observations. The actual \(R_{nl} \) could be obtained by equation (9) and the most suitable \(R_{nl} \) model could be extracted by means of analysis of relevant statistical indicators.

The correlations between four \(R_{nl} \) methods and actual observations were basically similar, of which Xiao's method had a slightly stronger relationship with observations (i.e. mean value of \(R \) was 0.73 within 17 sites) (figure 4(a)). Moreover, the accuracy of \(R_{nl} \) simulation by FAO56 and FAO24 was extremely low and the RMSE were 3.77 and 3.49 MJ m\(^{-2}\) d\(^{-1}\), respectively. However, the estimation methods of \(R_{nl} \) developed by Penman and Xiao could calculate the net longwave radiation well and Xiao's method had the highest accuracy with RMSE equal to 2.14 MJ m\(^{-2}\) d\(^{-1}\) (figure 4(b)). In addition, estimation methods of \(R_{nl} \) by FAO56 and FAO24 completely underestimated the net longwave radiation on the 17 stations and the mean values of MBE were −3.12 and −2.77 MJ m\(^{-2}\) d\(^{-1}\), respectively. Nevertheless, the mean value of MEB between simulated \(R_{nl} \) by Xiao's method and observations was approximately close to 0 (MBE was equal to −0.22 MJ m\(^{-2}\) d\(^{-1}\)) (figure 4(c)). In conclusion, Xiao's method had a high accuracy to estimate \(R_{nl} \) and was employed to compute \(ET_0 \) as a crucial sub procedure in the study.

3.3. Spatiotemporal variability of \(ET_0 \)

3.3.1. Annual and seasonal patterns of the spatial distribution of \(ET_0 \)

The multiyear average annual \(ET_0 \) ranged from 538.8 to 1559.8 mm in MLC. Generally, the inland \(ET_0 \) in the northwest was higher than that in the central and eastern parts of China. The high-value region with an \(ET_0 \) above 1100 mm mainly presented in the central and western parts of zone II and the western part of zone V, where the plateau and Gobi Desert are located. The low-value regions with an \(ET_0 \) below 700 mm were located in the northeastern part of the MLC and adjacent areas among zone VI, zone VII and zone VIII (figure 5).
Figure 4. Correlation coefficient (R, (a)), mean bias error (MBE, (b)) and root mean square error (RMSE, (c)) between four estimation methods of net longwave radiation (R_{nl}) and actual observations with 17 radiation-measured stations. Within each boxplot, the dot and lines indicate the mean value and quantiles (25th percentile, 50th percentile and 75th percentile). The crosses represent the maximum and minimum values.

Figure 5. Spatial distribution of the annual and seasonal reference evapotranspiration (ET_o) in mainland China from 1960 to 2016.

The spatial distribution of ET_o in spring, summer and autumn was basically similar to its annual pattern, except for the magnitude of ET_o, the slightly shifted location and the diverse extent of high-value and low-value regions. For example, the locations of the relatively low-ET_o region varied from South China (surrounded by a 200 mm contour) to Southwest China (surrounded by a 300 mm contour) to Central China (surrounded by a 150 mm contour). However, an obvious graded distribution of ET_o was present in winter, gradually increasing from Northwest and Northeast China to Southwest China. Overall, the ET_o was largest in summer, followed by that in spring, autumn, and winter (figure 5).

3.3.2. Temporal variation in ET_o and its abrupt change
An abrupt change point that occurred in 1993 was detected in the time sequence of the annual ET_o from 1960 to 2016 in MLC; before this point, the annual ET_o decreased by 21.2 mm decade$^{-1}$, while after this point, the values displayed an increasing trend of 21.1 mm decade$^{-1}$ (figures 6 and 8). Moreover, the ET_o sequences during spring and summer were also separated into an increasing and a decreasing segments due to the abrupt change, and the timing of these abrupt change points were 2004 and 1996, respectively (figures 6 and 7). Compared with the ET_o time series in summer, the ET_o sequence in spring decreased more slowly before abrupt change and increased more faster after abrupt change (figure 8). However, there were no abrupt change points for the ET_o sequences during autumn and winter and the insignificant increased trends were detected with 0.6 and 1.0 mm decade$^{-1}$, respectively (figure 8).

Generally, the abrupt change had not been detected for most annual and seasonal ET_o time series in northern China, such as zone I, zone II, zone III and zone IV (except for zone V) (figure 7). However, a majority of the annual and seasonal ET_o time series in the Qinghai Tibet Plateau (i.e. zone
V) and the southern China were disturbed by the abrupt change, which caused a descending sequence and a subsequent ascending sequence (figures 7 and 8). The timing of the abrupt change of the annual ET$_o$ sequence in subregions was particularly early or late, such as that in zone VII, which had an abrupt change point appearing in 1974, and that in zone VI, which had an abrupt change point appearing in 2004. However, the abrupt change of the seasonal ET$_o$ time series generally occurred in approximately 1995, especially in autumn and winter (figure 7).

The annual ET$_o$ in zone I and II and zone III and IV continuously but insignificantly increased or declined. Moreover, the annual ET$_o$ in zone V and IX decreased by more than 30 mm decade$^{-1}$ before abrupt change, which was higher than that in MLC. And the annual ET$_o$ in zone VI and VIII increased by more than 40 mm decade$^{-1}$ after abrupt change, which was far larger than in MLC or other subregions. Basically, the decrease in ET$_o$ in summer and the increase in ET$_o$ in summer and autumn played important roles in the corresponding trend of the annual ET$_o$ before and after the abrupt change in most subregions (figure 8).

3.4. Driving factors of annual and seasonal ET$_o$

The annual ET$_o$ in MLC was regulated by RH, SD and T_{max}, which contributed 48.5%, 27.1%, and 24.4%, respectively, to the variability in ET$_o$ from 1960 to
2016. However, the driving factors of annual ET$_o$ were completely disparate before and after the abrupt change, which were SD and RH respectively. For the whole seasonal ET$_o$, the RH was the dominant driving factor in spring, summer, autumn, and winter, and the contributions were 39.7%, 100%, 34.8%, and 58.7%, respectively. Furthermore, the driving factors of seasonal ET$_o$ before and after abrupt change during spring and summer were completely disparate. Before abrupt change, the seasonal ET$_o$ were mainly affected by SD and RH in spring and summer, respectively. However, the dominant driving factors were U_2 and T_{max} after abrupt change in spring and summer, respectively (figures 9 and 10).

Affected by diverse climates and complex terrains, the drivers of annual and seasonal ET$_o$ were significantly distinct in the different subregions. For the annual ET$_o$ in each subregion, the RH in southern China (zone VI, VII, VIII, and IX) and zone II and IV, the T_{max} in zone I and V, and the U_2 in zone III were the corresponding dominant driving factors of ET$_o$. In spring, the seasonal ET$_o$ in central and eastern China (i.e. zone III, IV, VI, and VII) was mainly affected by RH. In summer, RH had an important

Figure 8. Trend (mm decade$^{-1}$) of annual and seasonal reference evapotranspiration (ET$_o$) before (a) and after (b) abrupt change in different regions (MLC: mainland China; I: Northeast China Plain; II: northern arid and semiarid region; III: Huang-Huai-Hai Plain; IV: Loess Plateau; V: Qinghai Tibet Plateau; VI: Sichuan Basin and surrounding regions; VII: middle-lower Yangtze Plain; VIII: Yunnan-Guizhou Plateau; IX: southern China). ‘#’ and ‘*’ denote that the trend is significant at the levels of 0.05 and 0.01, respectively. ‘*’ indicates that the trend is not significant. In addition, the blue or red figures in the blank grid indicates that the trend always decreases or increases, respectively.

Figure 9. Driving factors of annual and seasonal reference evapotranspiration (ET$_o$) for the whole series (represented by the letter W) and before (represented by the letter B) and after (represented by the letter A) the abrupt change in mainland China from 1960 to 2016. The gray dot indicates the R square of the standardized stepwise regression model between ET$_o$ and meteorological variables (SD: sunshine duration; RH: relative humidity; U_2: wind speed at a height of 2 m; T_{min}: minimum temperature; T_{max}: maximum temperature).
Figure 10. Interannual variations of annual and seasonal reference evapotranspiration (ET_o) and its dominant driving factors in mainland China from 1960 to 2016.

impact on the variability of seasonal ET_o in northern China (i.e. zone I, II, III, IV, and V). In autumn, the dominant driving factor was RH in northern China, while the T_{max} was the main driver in southern China. However, the main driving factors were approximately opposite in winter compared to that in autumn (figure 11).

Given that the abrupt change mainly occurred in southern China, the analysis of trend change was implemented in zone VI, VII, VIII, and IX. Both before and after abrupt change, the RH and SD were the dominant driving factors of annual ET_o in zone VII and VIII and zone VII and IX, respectively. After abrupt change, the seasonal ET_o was mainly influenced by SD in spring and winter in southern China. However, the T_{max} was the dominant driving factor of seasonal ET_o in summer and autumn after abrupt change. It should be noted that the SD was always the dominant driver of annual and seasonal ET_o in zone IX after abrupt change (figure 11).

4. Discussion

The ET_o is determined by two crucial components: radiative and aerodynamic terms that are comprehensively influenced by climatic factors, such as T, SD, U_2, and RH (Allen et al 1998, McVicar et al 2007, Dinpashoh et al 2011, Jhajharia et al 2012). In MLC, the high-value regions of annual ET_o were concentrated in northwestern and southwestern, where the annual ET_o exceeded 1100 mm. However, northeastern China, the Sichuan Basin, and the middle and lower reaches of the Yangtze River were low-value regions of annual ET_o, and some of these areas had an annual ET_o less than 700 mm. Referring to table S1, zones II and IX and zones I and VI showed relatively
high and low annual ET\textsubscript{o} values, respectively. Basically, the district characterized by high air temperature, low atmospheric humidity, strong wind, and long sunshine duration (enhancing the holding capacity of water vapor in the atmosphere, improving the ability of water vapor transport, and meeting the energy requirements of the evaporation surface) had a higher ET\textsubscript{o}, and vice versa.

Trend analysis of the annual ET\textsubscript{o} calculated with high-density meteorological stations in MLC again verified that the abrupt change in the ET\textsubscript{o} sequence induced a downward trend and a subsequent upward trend (Fan et al 2016, Wang et al 2019, Zhang et al 2019). The timing of the abrupt change of the annual ET\textsubscript{o} in the study was 1993, which was slightly different from the results (i.e. 1984 and 1982) by Fan et al (2016) and Wang et al (2017) but similar or identical to the results (i.e. 1990s and 1993) by Wang et al (2019) and Zhang et al (2019), respectively. In the subregions, Jiang et al (2019) indicated that the abrupt change point for ET\textsubscript{o} series occurred in 1996 in Southwest China, which was basically consistent with the result (1997) of abrupt change for zone VIII in the study. In addition, there had few abrupt change of the ET\textsubscript{o} sequence by the Pettitt test in northern China. However, the abrupt change of ET\textsubscript{o} has been detected in some basins or provinces in northern China (Zuo et al 2012, Lv et al 2016, Li et al 2017). The difference of abrupt change point among the relevant studies is principally induced by four aspects that are the calculation procedure of ET\textsubscript{o}, the study area, data source, and the detection method of abrupt change. Compared to the original FAO 56 Penman–Monteith equation, using the corrected \(R_{\text{exp}} \) and \(R_{\text{cl}} \) procedure can obtain more accurate ET\textsubscript{o} (Yin et al 2008, Xiao and Kong 2021). In addition, the difference in the aspects of the study area and data source (grids or sites, the quantities of meteorological stations) can also cause the disparity of ET\textsubscript{o}. Furthermore, a series of methods can be adopted to detect the abrupt change of ET\textsubscript{o} sequence, such as Mann–Kendall test (Yang and Tian 2009, Zhao et al 2014, 2017).
Fang et al 2016, Pettitt (Wang et al 2016, 2017), moving t-test (MTT) (Lv et al 2016, Wu et al 2019), cumulative sum (CUSUM) (Lv et al 2016, Wang et al 2017), Gramer’s test (Jiang et al 2019), et al. And different test methods may present distinct results of abrupt change.

The driving factors of ET\textsubscript{o} are determined by two aspects: the sensitivity of ET\textsubscript{o} to parameters and the degree of variability of these parameters (Zhao et al 2020). Local sensitivity analysis methods, such as partial derivatives, have been widely employed to detect the sensitivity of ET\textsubscript{o} to several climatic elements because of the simplicity of the algorithm in China (Huo et al 2013, Fan et al 2016, She et al 2017, Jiang et al 2019, Wang et al 2019, Zhao et al 2020). Nevertheless, a shortcoming of the local approach is that the effect of the variation in a factor on the dependent variable does not include its interactions with other factors. Therefore, a global method named the extended Fourier amplitude sensitivity test (eFAST) (Saltelli et al 1999, 2005) was adopted to analyze the first-order sensitivity (single effect) and total sensitivity (mutual effect) of 10 parameters to ET\textsubscript{o}. The most sensitive factors were the \(T_{\text{max}} \) and RH, followed by the \(U_2 \) and \(T_{\text{min}} \). In contrast, the sensitivities of SD and other parameters were quite small (figure S3). Fan et al (2016), Wang et al (2019) and Zhao et al (2020) also indicated that the RH and \(T_{\text{max}} \) presented similar high sensitivities.

Although the sensitivities of SD to ET\textsubscript{o} were relatively low, the very significant downward trend (~68.63 h decade\(^{-1}\)) of SD indicated that the annual ET\textsubscript{o} decreased by 21.2 mm decade\(^{-1}\) from 1960 to 1993 (figure S4). This so-called phenomenon of ‘dimming’ was consistent with the analyses by Roderick and Farquhar (2002) and Jahani et al (2017). After 1993, however, the decreasing trends of SD were relatively weak, and simultaneously, the annual ET\textsubscript{o} increased by 21.1 mm decade\(^{-1}\) as the decreasing RH which induced an increase in the vapor pressure deficit of the atmosphere (figure S4). Moreover, the RH and/or \(T_{\text{max}} \) as dominant factors, always had a crucial effect on the annual and seasonal pattern of ET\textsubscript{o} in most parts of China. The increase in ET\textsubscript{o} may intensify the hydrological cycle in humid southern China and exacerbate the drought risk and pressure on water resources in the arid and semiarid regions of northern China. The result about trend change and driving factors of ET\textsubscript{o} are expected to serve as a reference for the evaluation of crop water demand, drought risk assessment and water resource allocation in MLC.

5. Conclusions

Coefficients ‘\(a \)’ and ‘\(b \)’ in the Angstrom–Prescott model were lower and higher than the reference values (i.e. 0.25 and 0.50) of FAO paper 56, respectively, in most parts of China, except for a small area of western and northeastern China. The temporal variations in the two parameters were all characterized by annual and seasonal patterns that first decreased and then increased from 1960 to 2016, but they had different change points. In addition, the Xiao’s method to estimate \(R_{\text{al}} \) can greatly improve the accuracy of ET\textsubscript{o}.

In MLC, the multiyear average annual ET\textsubscript{o} was from 538.8 to 1559.8 mm, with a high-value region exceeding 1100 mm located in the plateau and desert areas of western and northwestern China and a low-value region below 700 mm located in northeastern China and near the Sichuan Basin. Moreover, the seasonal ET\textsubscript{o} was highest in summer, followed by that in spring, autumn, and winter. The spatial distribution of seasonal ET\textsubscript{o} was roughly similar to that of annual ET\textsubscript{o}, except for that in winter when ET\textsubscript{o} was low in northern China and high in southern China.

An abrupt change point that appeared in 1993 separated the annual ET\textsubscript{o} sequence into two segments: a decreasing interval with a slope of 21.2 mm decade\(^{-1}\) and an increasing interval with a slope of 21.1 mm decade\(^{-1}\) in MLC. Except for Qinghai Tibet Plateau, few abrupt change points of the ET\textsubscript{o} sequences have been detected in northern China. Although the abrupt change of annual ET\textsubscript{o} sequences occurred in most of the southern China, the timing of the abrupt change was not consistent. However, the abrupt change of the seasonal ET\textsubscript{o} in southern China generally occurred in approximately 1995, especially in autumn and winter. In MLC, the driving factors of annual ET\textsubscript{o} was SD before 1993 and RH after 1993. Basically, the variation in the annual and seasonal ET\textsubscript{o} was mostly controlled by RH and/or \(T_{\text{max}} \) in most parts of China.

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

Acknowledgments

This work was supported by the National Key Research and Development Program of China (Grant No. 2019YFC1510205), the National Natural Science Foundation of China (Grant No. 42075193) and the Fundamental Research Fund (Grant No. 2019ZD10).

ORCID iD

Dong Wu https://orcid.org/0000-0002-3202-255X

References

Allen R G, Pereira L S, Raes D and Smith M 1998 Crop evapotranspiration: guidelines for computing crop water requirements Irrigation and Drainage Paper No. 56 (Rome: United Nations Food and Agriculture)
Anderson M C, Hain C, Wardlow B, Pimstein A, Mecikalski J R and Kustas W P 2011 Evaluation of drought indices based on thermal remote sensing of evapotranspiration over the continental United States J. Clim. 24 2025–44
Arnell N and Liu C-Z 2001 Hydrology and Water Resources, in Climate Change 2001: Impacts, Adaptation, and Vulnerability—Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change (New York: Cambridge University Press)
Ayantobo O O, Li Y, Song S and Yao N 2017 Spatial comparability of drought characteristics and related return periods in mainland China over 1961–2013 J. Hydrol. 550 549–67
Bastiaanssen W G M, Menenti M, Feddes R A and Holtslag A A M 1998 A remote sensing surface energy balance algorithm for land (SEBAL) 1 Formulation J. Hydrol. 212–213 196–212
Chattopadhyay N and Hulme M 1997 Evapotranspiration and potential evapotranspiration in India under conditions of recent and future climate change Agric. For. Meteorol. 87 55–73
Dinpashoh Y, Jhajharia D, Fakheri-Fard A, Singh V P and Kahya E 2011 Trends in reference crop evapotranspiration over Iran J. Hydrol. 399 422–33
Doorenbos J and Pruitt W O 1977 Guidelines for predicting crop water requirements Irrigation and Drainage Paper 24 (Rome: Food and Agriculture Organization of the United Nations) p 179
Fan J, Wu L, Zhang F, Xiang Y and Zheng J 2016 Climate change effects on reference evapotranspiration across different climatic zones of China during 1956–2015 J. Hydrol. 542 923–37
Fan Z-X and Thomas A 2018 Decadal changes of reference crop evapotranspiration attributes: spatial and temporal variability over China 1960-2011 J. Hydrol. 560 461–70
Fang S, Qi Y, Han G, Li Q and Zhao G 2016 Changing trends and abrupt features of extreme temperature in mainland China during 1960–2010 Atmosphere 7 979–1000
Gao Z, He J, Dong K and Li X 2017 Trends in reference evapotranspiration and their causative factors in the West Liao River basin, China Agric. For. Meteorol. 232 106–17
Gu X, Zhang Q, Singh V P and Shi P 2017 Changes in magnitude and frequency of heavy precipitation across China and its potential links to summer temperature J. Hydrol. 547 718–31
Hanasaki N, Kanae S, Oki T, Masuda K, Motoya K, Shirakawa N, Shen Y and Tanaka K 2008 An integrated model for the assessment of global water resources-part 2: applications and assessments Hydrol. Earth Syst. Sci. 12 1027–37
Hirsch R M and Slack J R 1984 A nonparametric trend test for seasonal data with serial dependence Water Resour. Res. 20 727–32
Hobbins M T and Ramirez J A 2004 Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: paradoxical or complementary? Geophys. Res. Lett. 31 L13503
Huo Z, Dai X, Feng S, Kang S and Huang G 2013 Effect of pR climate change on reference evapotranspiration and aridity index in arid region of China J. Hydrol. 492 24–34
Ittenfisu D, Elliott R L, Allen R G and Walter I A 2003 Comparison of reference evapotranspiration calculations as part of the ASCE standardization effort J. Irrig. Drain. Eng. 129 440–8
Jahani B, Dinpanshoh Y and Wild M 2017 Dimming in Iran since 2000s and the potential underlying causes Int. J. Climatol. 38 1543–59
Jhajharia D, Dinpanshoh Y, Kahya E, Singh V P and Ahmad F-F 2012 Trends in reference evapotranspiration in the humid region of northeast India Hydrol. Procs. 26 421–35
Jiang S, Liang C, Cui N, Zhao L, Du T, Hu X, Feng Y, Guan J and Feng Y 2019 Impacts of climatic variables on reference evapotranspiration during growing season in Southwest China Agr. Water Manage. 216 565–78
Li Y, Yao N and Chau H W 2017 Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xingjiang, China Sci. Total Environ. 592 680–92
Liang L, Li Q and Liu Q 2010 Temporal variation of reference evapotranspiration during 1961–2015 in the Taor River basin of Northeast China Agric. For. Meteorol. 150 298–306
Liu M-Q, Chen J-L, Mirza Z A, Chen C-D, Wen Z-F, Jiang Y, Ma M-H and Wu S-J 2016 Spatial distribution and temporal variation of reference evapotranspiration in the three Gorges Reservoir area during 1960–2013 Int. J. Climatol. 36 4497–511
McVicar T R and al et 2012 Global review and synthesis of trends in observed terrestrial near-surface wind speeds: implications for evaporation J. Hydrol. 416–417 182–205
McVicar T R, Van Niel T G, Li L, Hutchinson M F, Mu X and Liu Z 2007 Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences J. Hydrol. 338 196–200
National Standard of People's Republic of China, GB/T35230–2017 2017 Specifications for surface meteorological observation-evaporation
Norman J M, Kustas W P and Humes K S 1995 Source approach for estimating soil and vegetation energy fluxes observations of directional radiometric surface temperature Agric. For. Meteorol. 77 263–93
Papiaomoogu N, Kitsera G and Athanasatos S 2011 Impact of global and brightening on reference evapotranspiration in Greece J. Geophys. Res. 116 D09107
Penman H L 1948 Natural evaporation from open water, bare soil and grass Proc. R. Soc. 193 120–45
Petitt A N 1979 A non-parametric approach to the change-point problem Appl. Stat. 28 126–35
Rayner D P 2007 Wind run changes: the dominant factor affecting pan evaporation trends in Australia J. Clim. 20 3379–94
Roderick M L and Farquhar G D 2002 The cause of decreased pan evaporation over the past 50 years Science 298 1410–1
Saltelli A, Ratto M, Tarantola S and Campolongo F 2005 Sensitivity analysis for chemical models Chem. Rev. 105 2811–27
Saltelli A, Tarantola S and Chan K P S 1999 A quantitative model-independent method for global sensitivity analysis of model output Technometrics 44 39–56
Sen P K 1968 Estimates of the regression coefficient based on Kendall’s tau J. Am. Stat. Assoc. 63 1379–89
She D, Xia J and Zhang Y 2017 Changes in reference evapotranspiration and its driving factors in the middle reaches of Yellow River Basin, China Sci. Total Environ. 607–608 1151–62
Soubie R, Heinrichs B, Granier A, Aubinet M and Vicinec C 2016 Evapotranspiration assessment of a mixed temperate forest by four methods: Eddy covariance, soil water budget, analytical and model Agric. For. Meteorol. 228 191–204
Thomaz A 2000 Spatial and temporal characteristics of potential evapotranspiration trends over China Int. J. Climatol. 20 381–96
Villarini G, Smith J A, Serinaldi F, Ntelekos A A and Schwarz U 2012 Analyses of extreme flooding in Austria over the period 1951–2006 Int. J. Climatol. 32 1178–92
Wang Z, Wang J, Zhao Y, Li H, Zhai J, Yu Z and Zhang S 2016 Reference evapotranspiration trends from 1980 to 2012 and their contribution to meteorological drivers in the three-river source region, China Int. J. Climatol. 36 3759–69
Wang Z, Xie P, Lai C, Chen X, Wu X, Zeng Z and Li J 2017 Spatiotemporal variability of reference evapotranspiration and contributing climatic factors in China during 1961–2013 J. Hydrol. 544 97–108
Wang Z, Ye A, Wang L, Liu K and Cheng L 2019 Spatial and temporal characteristics of reference evapotranspiration and its climatic driving factors over China from 1979–2015 Agric. Water Manage. 213 1096–108
Wu D, Fang S, Li X, He D, Zhu Y, Yang Z, Xu J and Wu Y 2019 Spatial-temporal variation in irrigation water requirement for the winter wheat–summer maize rotation system since the 1980s on the North China Plain Agric. Water Manage. 214 78–86
Xiang K, Li Y, Horton R and Feng H 2020 Similarity and difference of potential evapotranspiration and reference crop evapotranspiration—a review Agric. Water Manage. 232 1–16

Xiao M and Kong D 2021 Improvement in the estimation of daily net surface radiation in China J. Irrig. Drain. Eng. 147 04021002

Xu C, Gong L, Jiang T, Chen D and Singh V P 2006 Analysis of spatial distribution and temporal trend of reference evapotranspiration and pan evaporation in Changjiang (Yangtze River) catchment J. Hydrol. 327 81–93

Yang X, Chen Y, Pacenka S, Gao W, Ma L, Wang G, Yan P, Sui P and Steenhuis T S 2015 Effect of diversified crop rotations on groundwater levels and crop water productivity in the North China Plain J. Hydrol. 522 428–38

Yang Y and Tian F 2009 Abrupt change of runoff and its major driving factors in Haihe River catchment China J. Hydrol. 374 373–83

Yang Y and Yang D 2012 Climatic factors influencing changing pan evaporation across China from 1961 to 2001 J. Hydrol. 414–415 184–93

Yee M S, Pauwels V R N, Daly E, Beringer J, Rüdiger C, McCabe M F and Walker J P 2015 A comparison of optical and microwave scintillometers with eddy covariance derived surface heat fluxes Agric. For. Meteorol. 213 226–39

Yin Y, Wu S, Zheng D and Yang Q 2008 Radiation calibration of FAO56 Penman-Monteith model to estimate reference crop evapotranspiration in China Agric. Water Manage. 95 77–84

Yue S and Wang C 2002 Application of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test Water Resour. Res. 38 4–1–4–7

Zhang L, Traore S, Cui Y, Luo Y, Zhu G, Liu B, Fipps G, Karthikeyan R and Singh V 2019 Assessment of spatiotemporal variability of reference evapotranspiration and controlling climate factors over decades in China using geospatial techniques Agric. Water Manage. 213 499–511

Zhao G, Tian P, Mu X, Jiao J, Wang F and Gao P 2014 Quantifying the impact of climate variability and human activities on streamflow in the middle reaches of the Yellow River, China J. Hydrol. 519 387–98

Zhao Z, Wang H, Wang C, Li W, Chen H and Deng C 2020 Changes in reference evapotranspiration over Northwest China from 1957 to 2018: variation characteristics, cause analysis and relationships with atmospheric circulation Agric. Water Manage. 231 105958

Zuo D, Xu Z, Yang H and Liu X 2012 Spatiotemporal variations and abrupt changes of potential evapotranspiration and its sensitivity to key meteorological variables in the Wei River basin China Hydrol. Process. 26 1149–60