On Hardy-type integral inequalities in the whole plane related to the extended Hurwitz-zeta function

Michael Th. Rassias¹²*, Bicheng Yang³ and Andrei Raigorodskii⁴⁵⁶⁷

Abstract
Using weight functions, we establish a few equivalent statements of two kinds of Hardy-type integral inequalities with nonhomogeneous kernel in the whole plane. The constant factors related to the extended Hurwitz-zeta function are proved to be the best possible. In the form of applications, we deduce some special cases involving homogeneous kernel. We additionally consider some particular inequalities and operator expressions.

MSC: 26D15; 65B10

Keywords: Hardy-type integral inequality; Weight function; Equivalent form; Operator; Hurwitz-zeta function

1 Introduction
If \(f(x), g(y) \geq 0 \),

\[
0 < \int_0^\infty f^2(x) \, dx < \infty \quad \text{and} \quad 0 < \int_0^\infty g^2(y) \, dy < \infty,
\]

we have the following well-known Hilbert integral inequality (see [1]):

\[
\int_0^\infty \int_0^\infty \frac{f(x)g(y)}{x+y} \, dx \, dy < \pi \left(\int_0^\infty f^2(x) \, dx \right)^{1/2} \left(\int_0^\infty g^2(y) \, dy \right)^{1/2},
\]

with the best possible constant factor \(\pi \).

Recently, by the use of weight functions, several extensions of (1) have been established in [2] and [3]. Some Hilbert-type inequalities were also presented in [4–9]. Furthermore, Hong [10] considered as well an equivalent condition between a Hilbert-type inequality with homogenous kernel and a few parameters. Some additional kinds of Hilbert-type inequalities were also obtained in [11–19]. Most of these results are constructed in the quarter plane of the first quadrant.
In 2007, Yang [20] proved the following Hilbert-type integral inequality in the whole plane:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{f(x)g(y)}{(1 + e^{\lambda y})^\lambda} \, dx \, dy < B \left(\frac{\lambda}{2}, \frac{\lambda}{2} \right) \left(\int_{-\infty}^{\infty} e^{-\lambda f(x)} \, dx \right)^{1/2} \left(\int_{-\infty}^{\infty} e^{-\lambda g^2(y)} \, dy \right)^{1/2},$$

(2)

with the best possible constant factor $B \left(\frac{\lambda}{2}, \frac{\lambda}{2} \right) (\lambda > 0$, where $B(u, \nu)$ stands for the beta function) (see [21]). He et al. [22–35] also established some Hilbert-type integral inequalities in the whole plane with the best possible constant factors.

In the present paper, using weight functions, we establish a few equivalent statements of two kinds of Hardy-type integral inequalities with nonhomogeneous kernel and multi-parameters in the whole plane. The constant factors related to the extended Hurwitz-zeta function are proved to be the best possible. In the form of applications, we deduce a few equivalent statements of two kinds of Hardy-type integral inequalities with homogeneous kernel in the whole plane. As corollaries, we also consider some particular cases and operator expressions.

2 An example and two lemmas

Example 1 We set

$$H(xy) := \frac{(\min\{|xy|, 1\})^{1+\alpha} \ln |xy|^{\beta}}{(\max\{|xy|, 1\})^{\lambda+\alpha} |xy - 1|},$$

wherefrom

$$H(-xy) = \frac{(\min\{|xy|, 1\})^{1+\alpha} \ln |xy|^{\beta}}{(\max\{|xy|, 1\})^{\lambda+\alpha} |xy + 1|},$$

$$H(u) = \frac{(\min\{|u|, 1\})^{1+\alpha} \ln |u|^{\beta}}{(\max\{|u|, 1\})^{\lambda+\alpha} |u - 1|},$$

and

$$H(-u) = \frac{(\min\{|u|, 1\})^{1+\alpha} \ln |u|^{\beta}}{(\max\{|u|, 1\})^{\lambda+\alpha} |u + 1|} (u \in \mathbb{R}).$$

For $\beta > 0$, $\sigma > -\alpha - 1$, it follows that

$$K^{(1)}(\sigma) := \int_{-1}^{1} H(u) |u|^\sigma \, du = \int_{0}^{1} (H(-u) + H(u)) u^{\sigma - 1} \, du$$

$$= \int_{0}^{1} \frac{(\min\{u, 1\})^{1+\alpha} (-\ln u)^\beta u^{\sigma - 1}}{(\max\{u, 1\})^{\lambda+\alpha} (u + 1 + |u - 1|)} \, du$$

$$= \int_{0}^{1} (-\ln u)^\beta \left(\frac{1}{u + 1} + \frac{1}{1 - u} \right) u^{\sigma + \alpha} \, du$$

$$= 2 \int_{0}^{1} (-\ln u)^\beta \frac{u^{\sigma + \alpha}}{1 - u^2} \, du = 2 \int_{0}^{1} (-\ln u)^\beta \sum_{k=0}^{\infty} u^{2k+\sigma + \alpha} \, du.$$
By the Lebesgue term-by-term integration theorem (cf. [36]), for \(v = -(2k + \sigma + \alpha + 1) \ln u \), we obtain

\[
K^{(1)}(\sigma) = 2 \sum_{k=0}^{\infty} \int_0^1 (-\ln u)^\beta u^{2k+\sigma+\alpha} \, du
\]

\[
= 2 \sum_{k=0}^{\infty} \frac{1}{(2k + \sigma + \alpha + 1)^{\beta+1}} \int_0^\infty v^\beta e^{-v} \, dv
\]

\[
= \frac{1}{2^\beta} \sum_{k=0}^{\infty} \frac{1}{[k+(\sigma+\alpha+1)/2]^{\beta+1}} \int_0^\infty v^{(\beta+1)-1} e^{-v} \, dv
\]

\[
= \frac{\Gamma(\beta+1)}{2^\beta} \zeta \left(\beta + 1, \frac{\sigma + \alpha + 1}{2} \right) \in \mathbb{R},
\]

where

\[
\zeta(s,a) = \sum_{k=0}^{\infty} \frac{1}{(k+a)^s} \quad (\text{Re} \, s > 1; 0 < a \leq 1)
\]

stands for the Hurwitz-zeta function. Note that

\[
\zeta(s, 1) = \zeta(s) := \sum_{k=1}^{\infty} \frac{1}{k^s}
\]

is the Riemann-zeta function. Moreover,

\[
\zeta \left(\beta + 1, \frac{\sigma + \alpha + 1}{2} \right)
\]

stands for the extended Hurwitz-zeta function (cf. [21]).

In particular, for \(\sigma = -\alpha + 1 (>-\alpha - 1) \), it follows that

\[
K^{(1)}(-\alpha + 1) = \int_{-1}^{1} H(u)|u|^{-\alpha} \, du = \frac{\Gamma(\beta + 1)}{2^\beta} \zeta(\beta + 1).
\]

Similarly, for \(\beta > 0, \mu > -\alpha - 1 (\sigma + \mu = \lambda) \), we obtain that

\[
K^{(2)}(\sigma) := \int_{|u| \geq 1} H(u)|u|^\alpha \, du
\]

\[
= \int_{-1}^{1} (H(-u) + H(u))u^{\alpha-1} \, du
\]

\[
= \int_{-1}^{1} \left(\min(|v|, 1) \right)^{1+\alpha} |\ln |v||^\beta |v|^{\mu-1} \, dv
\]

\[
= \frac{\Gamma(\beta + 1)}{2^\beta} \zeta \left(\beta + 1, \frac{\mu + \alpha + 1}{2} \right) = K^{(1)}(\mu) \in \mathbb{R},
\]

\[
K^{(2)}(\lambda + \alpha - 1) = \int_{|u| \geq 1} H(u)|u|^{\lambda+\alpha-2} \, du = \frac{\Gamma(\beta + 1)}{2^\beta} \zeta(\beta + 1).
\]
Remark 1 For $\sigma + \mu = \lambda$, it is clear that

$$K^{(1)}(\sigma) < \infty \quad (\text{resp. } K^{(2)}(\sigma) = K^{(1)}(\mu) < \infty)$$

if and only if $\sigma > -\alpha - 1$ and $\beta > 0$ (resp. $\mu > -\alpha - 1$ and $\beta > 0$).

In the sequel, we assume that $p > 1, \frac{1}{p} + \frac{1}{q} = 1, \sigma + \mu = \lambda$.

Lemma 1 If $\sigma_1 \in \mathbb{R}$, there exists a constant M_1 such that, for any nonnegative measurable functions $f(x)$ and $g(y)$ in \mathbb{R}, the following inequality

$$\int_{-\infty}^{\infty} g(y) \left[\int_{-\infty}^{1} \frac{1}{|y|} \left(\min\{|xy|, 1\} \right)^{1+\alpha} \ln |xy|^\beta f(x) \, dx \right] dy
\leq M_1 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma) - 1} f_p(x) \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} |y|^{q(1-\sigma) - 1} g_q(y) \, dy \right]^{\frac{1}{q}} \tag{5}$$

holds true, then we have $\sigma_1 = \sigma > -\alpha - 1$ and $\beta > 0$.

Proof If $\sigma_1 > \sigma$, then for $n \geq \frac{1}{\sigma_1 - \sigma}$ ($n \in \mathbb{N}$) we consider the following functions:

$$f_n(x) := \begin{cases} |x|^\sigma y^{\frac{\beta}{\beta - 1}}, & 0 < |x| \leq 1, \\ 0, & |x| > 1, \end{cases} \quad g_n(y) := \begin{cases} 0, & 0 < |y| < 1, \\ |y|^\sigma y^{\frac{\beta}{\beta - 1}}, & y \geq 1, \end{cases}$$

and derive that

$$J_1 := \left\{ \int_{-\infty}^{\infty} |x|^{p(1-\sigma) - 1} f_p^n(x) \, dx \right\}^{\frac{1}{p}} \left\{ \int_{-\infty}^{\infty} |y|^{q(1-\sigma) - 1} g_q^n(y) \, dy \right\}^{\frac{1}{q}} = \left(2 \int_{0}^{1} x^{\frac{\beta}{\beta - 1}} \, dx \right)^{\frac{1}{p}} \left(2 \int_{1}^{\infty} y^{\frac{\beta}{\beta - 1}} \, dy \right)^{\frac{1}{q}} = 2n.$$

We obtain

$$I_1 := \int_{-\infty}^{\infty} g_n(y) \left[\int_{-\infty}^{1} \frac{1}{|y|} \left(\min\{|xy|, 1\} \right)^{1+\alpha} \ln |xy|^\beta f_n(x) \, dx \right] dy
= \int_{-\infty}^{1} \int_{\frac{1}{y}}^{1} \left(\min\{|xy|, 1\} \right)^{1+\alpha} \ln |xy|^\beta \left| x \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dx \left| y \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dy
+ \int_{1}^{\infty} \int_{\frac{1}{y}}^{1} \left(\min\{|xy|, 1\} \right)^{1+\alpha} \ln |xy|^\beta \left| x \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dx \left| y \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dy
= \int_{1}^{\infty} \int_{\frac{1}{y}}^{1} \left(H(-xy) + H(xy) \right) \left| x \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dx \left| y \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dy \quad (u = xy)
= 2 \int_{1}^{\infty} \int_{0}^{1} \left(H(-u) + H(u) \right) u^{\sigma \frac{1+\beta}{\beta - 1}} \, du \left| y \right|^\sigma y^{\frac{1+\beta}{\beta - 1}} \, dy, \tag{6}$$
and then by (5) we get

$$2K^{(1)}\left(\sigma + \frac{1}{pn} \right) \int_{1}^{\infty} y^{(\sigma_1 - \sigma) - \frac{1}{\gamma} - 1} \, dy = I_1 \leq M_1 J_1 = 2M_1 n.$$ \hspace{1cm} (7)

Since $$(\sigma_1 - \sigma) - \frac{1}{n} \geq 0,$$ it follows that

$$\int_{1}^{\infty} y^{(\sigma_1 - \sigma) - \frac{1}{\gamma} - 1} \, dy = \infty.$$

By (7), for $K^{(1)}(\sigma + \frac{1}{pn}) > 0,$ we have $\infty \leq 2M_1 n < \infty,$ which is a contradiction.

If $\sigma_1 < \sigma,$ then for $n \geq \frac{1}{\sigma - \sigma_1}$ ($n \in \mathbb{N}$) we consider the following functions:

$$\tilde{f}_n(x) := \begin{cases} 0, & 0 < |x| < 1, \\
|x|^{\frac{1}{1 - \sigma_1} - 1}, & |x| \geq 1,
\end{cases} \quad \tilde{g}_n(y) := \begin{cases} |y|^{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1}, & 0 < |y| \leq 1, \\
0, & |y| > 1,
\end{cases}$$

and derive that

$$\tilde{I}_1 := \left[\int_{-\infty}^{\infty} \tilde{f}_n(x) \left[\int_{-\infty}^{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1} \tilde{g}_n(y) \, dy \right] \frac{1}{y} \left[\int_{-\infty}^{\sigma_1 - \sigma} (\min(|xy|, 1))^{1 - \alpha} \ln |xy|^{\frac{\beta}{\sigma_1}} \left(\max(|xy|, 1) \right)^{\frac{\beta}{\sigma_1}} |xy - 1| \, dx \right] \right] dx$$

$$\begin{align*}
&= \int_{1}^{\infty} \left[\int_{1}^{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1} \frac{(\min(|xy|, 1))^{1 - \alpha} \ln |xy|^{\frac{\beta}{\sigma_1}} |y|^{\frac{1}{\sigma_1} + \frac{1}{\gamma} - 1} \, dy}{\left(\max(|xy|, 1) \right)^{\frac{\beta}{\sigma_1}} |xy - 1|} \right] (-x)^{\sigma - \frac{1}{\gamma} - 1} \, dx \\
&\quad + \int_{1}^{\infty} \left[\int_{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1}^{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1} \frac{(\min(|xy|, 1))^{1 - \alpha} \ln |xy|^{\frac{\beta}{\sigma_1}} |y|^{\frac{1}{\sigma_1} + \frac{1}{\gamma} - 1} \, dy}{\left(\max(|xy|, 1) \right)^{\frac{\beta}{\sigma_1}} |xy - 1|} \right] x^{\sigma - \frac{1}{\gamma} - 1} \, dx \\
&\quad + \int_{1}^{\infty} \left[\int_{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1}^{\infty} (H(-x) + H(x)) |y|^{\frac{1}{\sigma_1} + \frac{1}{\gamma} - 1} \, dy \right] x^{\sigma - \frac{1}{\gamma} - 1} \, dx \\
&\quad + \int_{1}^{\infty} \left[\int_{0}^{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1} (H(-u) + H(u)) u^{\frac{1}{\sigma_1} + \frac{1}{\gamma} - 1} \, du \right] x^{(\sigma - \sigma_1) - \frac{1}{\gamma} - 1} \, dx,
\end{align*}$$

and thus, by Fubini’s theorem (cf. [36]) and (5), it follows that

$$2K^{(1)}\left(\sigma_1 + \frac{1}{qn} \right) \int_{1}^{\infty} x^{(\sigma - \sigma_1) - \frac{1}{\gamma} - 1} \, dx$$

$$\tilde{I}_1 = \int_{-\infty}^{\infty} \tilde{g}_n(y) \left(\int_{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1}^{\frac{1}{\gamma} + \frac{1}{\sigma_1} - 1} H(xy) \tilde{f}_n(x) \, dx \right) \, dy \leq M_1 \tilde{I}_1$$

$$= 2M_1 n.$$ \hspace{1cm} (9)
Since \((\sigma - \sigma_1) - \frac{1}{n} \geq 0\), it follows that
\[
\int_1^\infty x^{(\sigma - \sigma_1) - \frac{1}{n} - 1} \, dx = \infty.
\]

By (9), for \(K^{(1)}(\sigma_1 + \frac{1}{qn}) > 0\), we get that \(\infty \leq 2M_1\mu < \infty\), which is a contradiction.

Hence, we conclude that \(\sigma_1 = \sigma\).

For \(\sigma_1 = \sigma\), we reduce (9) as follows:
\[
K^{(1)}(\sigma_1 + \frac{1}{qn}) = \int_0^1 (H(-u) + H(u))\mu^{\frac{1}{\beta} - 1} \, du \leq M_1.
\]

Since \(\{(H(-u) + H(u))\mu^{\frac{1}{\beta} - 1}\}_{n=1}^\infty\) is increasing in (0,1), by Levi's theorem (cf. [36]), we obtain that
\[
K^{(1)}(\sigma) = \lim_{n \to \infty} \int_0^1 (H(-u) + H(u))\mu^{\frac{1}{\beta} - 1} \, du
\]
\[
= \lim_{n \to \infty} \int_0^1 (H(-u) + H(u))\mu^{\frac{1}{\beta} - 1} \, du \leq M_1 < \infty.
\]

By Remark 1, it follows that \(\sigma > -\alpha - 1\) and \(\beta > 0\).

This completes the proof of the lemma. \(\square\)

Lemma 2 If \(\sigma_1 \in \mathbb{R}\) and there exists a constant \(M_2\) such that, for any nonnegative measurable functions \(f(x)\) and \(g(y)\) in \(\mathbb{R}\), the following inequality
\[
\int_{-\infty}^\infty g(y) \left[\int_{|x| \geq \frac{1}{1+n}} \frac{(\min\{|x|, 1\})^{1+\alpha} \ln |x|^{\beta} f(x) \, dx}{(\max\{|x|, 1\})^{1+\alpha} |x|^{1+\alpha} (x-y-1)} \right] dy
\]
\[
\leq M_2 \left\{ \int_{-\infty}^\infty |x|^{\beta(1-\sigma)} f^\sigma(x) \, dx \right\}^{\frac{1}{\sigma}} \left\{ \int_{-\infty}^\infty |y|^{\beta(1-\sigma)} g^\sigma(y) \, dy \right\}^{\frac{1}{\sigma}}
\]
(10)
holds true, then we have \(\sigma_1 = \sigma\), \(\mu > -\alpha - 1\), and \(\beta > 0\).

Proof If \(\sigma_1 < \sigma\), then for \(n \geq \frac{1}{\sigma - \sigma_1} (n \in \mathbb{N})\) we consider the functions \(\mathcal{F}_n(x)\) and \(\mathcal{G}_n(y)\) as in Lemma 1 and get
\[
\mathcal{I}_1 = \left\{ \int_{-\infty}^\infty |x|^{\beta(1-\sigma)} f^\sigma_n(x) \, dx \right\}^{\frac{1}{\sigma}} \left\{ \int_{-\infty}^\infty |y|^{\beta(1-\sigma)} g^\sigma_n(y) \, dy \right\}^{\frac{1}{\sigma}} = 2n.
\]

We obtain
\[
\tilde{\mathcal{I}}_2 := \int_{-\infty}^\infty \mathcal{G}_n(y) \left[\int_{|x| \geq \frac{1}{1+n}} \frac{(\min\{|x|, 1\})^{1+\alpha} \ln |x|^{\beta} \mathcal{F}_n(x) \, dx}{(\max\{|x|, 1\})^{1+\alpha} |x|^{1+\alpha} (x-y-1)} \right] dy
\]
\[
= \int_0^1 \int_{|x| \geq \frac{1}{1+n}} \frac{(\min\{|x|, 1\})^{1+\alpha} \ln |x|^{\beta} |x|^{\sigma - \frac{1}{\beta} - 1} \, dx}{(\max\{|x|, 1\})^{1+\alpha} |x|^{1+\alpha} (x-y-1)} (-1)^n \nu^{\sigma - \frac{1}{\beta} - 1} \, dy
\]
\[
+ \int_0^1 \int_{|x| \geq \frac{1}{1+n}} \frac{(\min\{|x|, 1\})^{1+\alpha} \ln |x|^{\beta} |x|^{\sigma - \frac{1}{\beta} - 1} \, dx}{(\max\{|x|, 1\})^{1+\alpha} |x|^{1+\alpha} (x-y-1)} \nu^{\sigma - \frac{1}{\beta} - 1} \, dy.
\]
\[\int_{0}^{1} \left[\int_{|x| \geq \frac{1}{2}} (H(-xy) + H(xy)) |x|^{-\frac{1}{p-1}} \, dx \right] \sigma^+ \frac{1}{p-1} \, dy \]

\[= 2 \int_{0}^{1} \left[\int_{1}^{\infty} (H(-u) + H(u)) u^{-\frac{1}{p-1}} \, du \right] \sigma^+(\sigma+\frac{1}{2}) - 1 \, dy, \]

and then by (10) it follows that

\[2K^{(2)} \left(\sigma - \frac{1}{pn} \right) \int_{0}^{1} y^{(\sigma_1-\sigma) + \frac{1}{2} - 1} \, dy = 2 \sigma \geq M_2 J_1 = 2M_2 n. \] (11)

Since \((\sigma_1 - \sigma) + \frac{1}{n} \leq 0 \), it follows that

\[\int_{0}^{1} y^{(\sigma_1-\sigma) + \frac{1}{2} - 1} \, dy = \infty. \]

By (11), for \(K^{(2)}(\sigma - \frac{1}{pn}) > 0 \), we have \(\infty \leq 2M_2n < \infty \), which is a contradiction.

If \(\sigma_1 > \sigma \), then for \(n \geq \frac{1}{\sigma_1-\sigma} (n \in \mathbb{N}) \) we consider the functions \(f_n(x) \) and \(g_n(y) \) as in Lemma 1 and derive that

\[I_1 = \left[\int_{-\infty}^{\infty} |x|^{(1-\alpha)-1} f_n(x) \, dx \right] \left[\int_{-\infty}^{\infty} |y|^{(1-\alpha)-1} g_n(y) \, dy \right] = 2n. \]

We obtain

\[I_2 := \int_{0}^{\infty} f_n(x) \left[\int_{|y| \leq \frac{1}{2}} \frac{\left(\min(|xy|, 1) \right)^{1-\alpha} |\ln|xy||^{\beta}}{\max(|xy|, 1)^{1-\alpha} |xy - 1|} g_n(y) \, dy \right] \, dx \]

\[= \int_{0}^{1} \left[\int_{|y| \geq \frac{1}{2}} \left(\frac{\left(\min(|xy|, 1) \right)^{1-\alpha} |\ln|xy||^{\beta}}{\max(|xy|, 1)^{1-\alpha} |xy - 1|} \right) x^{\frac{1}{p-1} - 1} \, dx \right] \left(-x \right)^{\sigma^+ \frac{1}{p-1}} \, dy \]

\[+ \int_{0}^{1} \left[\int_{|y| \geq \frac{1}{2}} \left(\frac{\left(\min(|xy|, 1) \right)^{1-\alpha} |\ln|xy||^{\beta}}{\max(|xy|, 1)^{1-\alpha} |xy - 1|} \right) y^{\sigma^+ \frac{1}{p-1}} \, dy \right] x^{\frac{1}{p-1} - 1} \, dx \]

\[= \int_{0}^{1} \left[\int_{|y| \geq \frac{1}{2}} (H(-xy) + H(xy)) y^{\sigma_1 - \frac{1}{2} - 1} \, dy \right] x^{\frac{1}{p-1} - 1} \, dx \]

\[= 2 \int_{1}^{\infty} (H(-u) + H(u)) u^{\sigma - \frac{1}{p-1} - 1} \, du \int_{0}^{1} x^{(\sigma_1 - \sigma) + \frac{1}{2} - 1} \, dx, \]

and then, by Fubini’s theorem (cf. [36]) and (8), it follows that

\[2K_2 \left(\sigma_1 - \frac{1}{qn} \right) \int_{0}^{1} x^{(\sigma_1 - \sigma) + \frac{1}{2} - 1} \, dx = I_2 \]

\[= \int_{0}^{\infty} g_n(y) \left(\int_{|x| \geq \frac{1}{2}} H(xy) f_n(x) \, dx \right) \, dy \leq M_2 J_1 = 2M_2 n. \] (12)

Since \((\sigma - \sigma_1) + \frac{1}{n} \leq 0 \), we get that

\[\int_{0}^{1} x^{(\sigma - \sigma_1) + \frac{1}{2} - 1} \, dx = \infty. \]

By (12), for \(K^{(2)}(\sigma_1 - \frac{1}{qn}) > 0 \), we deduce that \(\infty \leq 2M_2n < \infty \), which is a contradiction.
Hence, we conclude the fact that $\sigma_1 = \sigma$.

For $\sigma_1 = \sigma$, we reduce (12) as follows:

$$K^{(2)} \left(\sigma - \frac{1}{qn} \right) = \int_1^\infty (H(-u) + H(u)) u^{\sigma - \frac{1}{qn} - 1} \, du \leq M_2. \quad (13)$$

Since $\{(H(-u) + H(u)) u^{\sigma - \frac{1}{qn} - 1} \}_{n=1}^{\infty}$ is increasing in $[1, \infty)$, applying again Levi's theorem (cf. [36]), we have that

$$K^{(2)}(\sigma) = \int_1^\infty \lim_{n \to \infty} (H(-u) + H(u)) u^{\sigma - \frac{1}{qn} - 1} \, du$$

$$= \lim_{n \to \infty} \int_1^\infty (H(-u) + H(u)) u^{\sigma - \frac{1}{qn} - 1} \, du \leq M_2 < \infty.$$

By Remark 1, we get that $\mu > -\alpha - 1$ and $\beta > 0$.

This completes the proof of the lemma. \hfill \Box

3 Main results and some corollaries

Theorem 1 If $\sigma_1 \in \mathbb{R}$, then the following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant M_1 such that, for any $f(x) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f(x) \, dx < \infty,$$

we have the following Hardy-type integral inequality of the first kind with the nonhomogeneous kernel:

$$I := \left\{ \int_{-\infty}^{\infty} |y|^{p \sigma_1 - 1} \left[\int_1^{\infty} \frac{\left(\min\{|x|, 1\} \right)^{1+\sigma} \ln |x||y|^\beta}{(\max\{|x|, 1\})^{1+\sigma}|x| - 1} f(x) \, dx \right]^p \, dy \right\}^{\frac{1}{p}}
\leq M_1 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f(x) \, dx \right]^{\frac{1}{p}}. \quad (14)$$

(ii) There exists a constant M_1 such that, for any $f(x), g(y) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} |y|^{q(1-\sigma_1)-1} g^q(y) \, dy < \infty,$$

we have the following inequality:

$$I := \int_{-\infty}^{\infty} g(y) \left[\int_1^{\infty} \frac{\left(\min\{|x|, 1\} \right)^{1+\sigma} \ln |x||y|^\beta}{(\max\{|x|, 1\})^{1+\sigma}|x| - 1} f(x) \, dx \right] dy
\leq M_1 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f(x) \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} |y|^{q(1-\sigma_1)-1} g^q(y) \, dy \right]^{\frac{1}{q}}. \quad (15)$$

(iii) $\sigma_1 = \sigma > -\alpha - 1$ and $\beta > 0$.

If statement (iii) holds true, then the constant $M_1 = K^{(1)}(\sigma) \ (\in \mathbb{R}_+)$ in (14) and (15) (for $\sigma_1 = \sigma$) is the best possible.
Proof (i) \Rightarrow (ii). By Hölder’s inequality (cf. [37]), we have

$$I = \int_{-\infty}^{\infty} \left(|y|^{\sigma_1 - \frac{1}{p}} \left[\int_{-\infty}^{y} |H(xy)f(x)dx \right] \right) \left(|y|^{\beta - \alpha_1} g(y) \right) dy$$

$$\leq \frac{1}{\int_{-\infty}^{\infty} \left(|y|^{\beta - \alpha_1 - 1} g^2(y) \right) dy \frac{1}{p}}.$$ \hspace{1cm} (16)

Then by (14) we deduce (15).

(ii) \Rightarrow (iii). By Lemma 1, we have $\sigma_1 = \sigma > -\alpha - 1$ and $\beta > 0$.

(iii) \Rightarrow (i). We obtain the following weight function:

For $y \neq 0$,

$$\omega_1(\sigma, y) := |y|^\sigma \int_{-\infty}^{\infty} \left(\min(|xy|, 1) \right)^{1-u} |\ln|xy||^\beta \left(|x|^{\sigma - 1} \right) dx$$

$$= |y|^\sigma \int_{-\infty}^{0} H(xy)(-x)^{\sigma - 1} dx + |y|^\sigma \int_{0}^{1} H(xy)x^{\sigma - 1} dx$$

$$= |y|^\sigma \int_{0}^{1} H(-xy)x^{\sigma - 1} dx + |y|^\sigma \int_{0}^{\infty} H(xy)x^{\sigma - 1} dx$$

$$= |y|^\sigma \int_{0}^{1} H(-u) + H(u) u^{\sigma - 1} du$$

$$= K^{(1)}(\sigma).$$ \hspace{1cm} (17)

By the weighted Hölder inequality and (17), we obtain

$$\left\{ \int_{\mathbb{R}^n} \left(\min(|xy|, 1) \right)^{1-u} |\ln|xy||^\beta \left(|x|^{\sigma - 1} \right) f(x) dx \right\}^p$$

$$= \left\{ \int_{\mathbb{R}^n} H(xy) \left[\frac{|y|^{\sigma - 1} f^p(x)}{|x|^{(\sigma - 1)/q}} \right] \left[\frac{|x|^{(\sigma - 1)/q}}{|y|^{(\sigma - 1)/p}} \right] dx \right\}^p$$

$$\leq \int_{\mathbb{R}^n} H(xy) \left[\frac{|y|^{\sigma - 1} f^p(x)}{|x|^{(\sigma - 1)/q}} \right] \left(\int_{\mathbb{R}^n} H(xy) \frac{|x|^{\sigma - 1}}{|y|^{(\sigma - 1)/p}} dx \right)^{p-1}$$

$$= \int_{\mathbb{R}^n} H(xy) \left[\frac{|y|^{\sigma - 1} f^p(x)}{|x|^{(\sigma - 1)/q}} \right] \left(\omega_1(\sigma, y) |y|^{q(\sigma - 1) - 1} \right)^{p-1}$$

$$= \left(K^{(1)}(\sigma) \right)^{p-1} |y|^{-p\sigma + 1} \int_{-\infty}^{\infty} H(xy) \frac{|y|^{\sigma - 1}}{|x|^{(\sigma - 1)/p}} f^p(x) dx.$$ \hspace{1cm} (18)

If (18) takes the form of equality for some $y \in \mathbb{R} \setminus \{0\}$, then (cf. [37]) there exist constants A and B such that they are not both zero and

$$A \frac{|y|^{\sigma - 1}}{|x|^{(\sigma - 1)/p}} f^p(x) = B \frac{|x|^{\sigma - 1}}{|y|^{(\sigma - 1)/q}} \text{ a.e. in } \mathbb{R}.$$
Let us assume that $A \neq 0$ (otherwise $B = A = 0$). It follows that

$$|x|^{p(1-\sigma)-1}f^p(x) = \frac{|y|^{q(1-\sigma)}B}{A|x|} \text{ a.e. in } \mathbb{R},$$

which contradicts the fact that

$$0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1}f^p(x) \, dx < \infty.$$

Hence, (18) takes the form of strict inequality.

For $\sigma_1 = \sigma > -\alpha - 1$ and $\beta > 0$, we have $K^{(1)}(\sigma) \in \mathbb{R}_+$. In view of Fubini’s theorem (cf. [36]), we obtain

$$J < (K^{(1)}(\sigma))^\frac{1}{q} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H(xy) \frac{|y|^{\sigma-1}}{|x|^{(\sigma-1)p-1}} f^p(x) \, dx \, dy \right]^{\frac{1}{p}}$$

$$= (K^{(1)}(\sigma))^\frac{1}{q} \left[\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \omega_1(\sigma,x)|x|^{p(1-\sigma)-1}f^p(x) \, dx \right]^{\frac{1}{p}}$$

$$= K^{(1)}(\sigma) \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1}f^p(x) \, dx \right]^{\frac{1}{p}}.$$

Setting $M_1 \geq K^{(1)}(\sigma)$, we have

$$J < K^{(1)}(\sigma) \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1}f^p(x) \, dx \right]^{\frac{1}{p}} \leq M_1 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1}f^p(x) \, dx \right]^{\frac{1}{p}},$$

namely, (14) follows.

Therefore, statements (i), (ii), and (iii) are equivalent.

When statement (iii) is satisfied, if there exists a constant $M_1 \leq K^{(1)}(\sigma)$ such that (15) is valid, then by the proof of Lemma 1, we have $K^{(1)}(\sigma) \leq M_1$. It follows that the constant factor $M_1 = K^{(1)}(\sigma)$ in (15) is the best possible. The constant factor $M_1 = K^{(1)}(\sigma)$ in (14) is still the best possible. Otherwise, by (16) (for $\sigma_1 = \sigma$), we would conclude that the constant factor $M_1 = K^{(1)}(\sigma)$ in (15) was not the best possible.

This completes the proof of the theorem. □

In particular, for $\sigma = \sigma_1 = \frac{1}{l} > -\alpha - 1$ in Theorem 1, the following corollary holds true.

Corollary 1 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant M_1 such that, for any $f(x) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} |x|^{p-2}f^p(x) \, dx < \infty,$$
the following inequality is satisfied:

\[
\left\{ \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \left(\frac{1}{x^p} \frac{\min(|xy|, 1)^{1+\alpha} \ln |xy|^\beta}{\max(|xy|, 1)^{1+\alpha} |xy - 1|^\lambda} f(x) \right)^p dy \right]^{\frac{1}{p}} \right\}^{\frac{1}{p}} < M_1 \left(\int_{-\infty}^{\infty} |x|^{-\frac{p-1}{2}} f\left(\frac{x}{y}\right) \frac{1}{y} \right)^{\frac{1}{p}}. \tag{19}
\]

(ii) There exists a constant \(M_1 \) such that, for any \(f(x), g(y) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{-\frac{p-1}{2}} f\left(\frac{x}{y}\right) \frac{1}{y} \frac{x}{y} - 1 \right] f(x) dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} g^\theta(y) dy < \infty,
\]

we have the following inequality:

\[
\int_{-\infty}^{\infty} g(y) \left[\int_{-\infty}^{\infty} \frac{1}{x^p} \frac{\min(|xy|, 1)^{1+\alpha} \ln |xy|^\beta}{\max(|xy|, 1)^{1+\alpha} |xy - 1|^\lambda} f(x) \right] dx dy < M_1 \left(\int_{-\infty}^{\infty} |x|^{-\frac{p-1}{2}} f\left(\frac{x}{y}\right) \frac{1}{y} \right)^{\frac{1}{p}} \left(\int_{-\infty}^{\infty} g^\theta(y) dy \right)^{\frac{1}{p}}. \tag{20}
\]

(iii) \(\alpha > -\frac{1}{p} - 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then the constant \(M_1 = K^{(1)}(\frac{1}{p}) \) (in \(\mathbb{R}_+ \)) in (19) and (20) is the best possible.

Setting \(y = \frac{1}{Y} \), \(G(Y) = g\left(\frac{1}{Y}\right) \frac{1}{Y^\sigma} \) in Theorem 1, and then replacing \(Y \) by \(y \), we obtain the following corollary.

Corollary 2 If \(\sigma_1 \in \mathbb{R} \), then the following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_1 \) such that, for any \(f(x) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{-\frac{p-1}{2}} f\left(\frac{x}{y}\right) \frac{1}{y} \frac{x}{y} - 1 \right] f(x) dx < \infty,
\]

we have the following inequality:

\[
\left\{ \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} \left(\frac{1}{x^p} \frac{\min(|xy|, 1)^{1+\alpha} \ln |xy|^\beta}{\max(|xy|, 1)^{1+\alpha} |xy - 1|^\lambda} f(x) \right)^p dy \right] \right\}^{\frac{1}{p}} < M_1 \left[\int_{-\infty}^{\infty} |x|^{-\frac{p-1}{2}} f\left(\frac{x}{y}\right) \frac{1}{y} \right]^{\frac{1}{p}}. \tag{21}
\]

(ii) There exists a constant \(M_1 \) such that, for any \(f(x), G(y) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{-\frac{p-1}{2}} f\left(\frac{x}{y}\right) \frac{1}{y} \frac{x}{y} - 1 \right] f(x) dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} y^{\sigma(1+\sigma)-1} G^\theta(y) dy < \infty,
\]
we have the following inequality:

\[
\int_{-\infty}^{\infty} G(y) \left[\int_{-\infty}^{y} \left(\min \{|x|, |y|\} \right)^{1+\alpha} \ln |x| |y|^{\beta} f(x) \, dx \right] dy < M_1 \left[\int_{-\infty}^{\infty} |x|^{\beta(1-\sigma)-1} f^p(x) \, dx \right]^{\frac{1}{p}}, \tag{22}
\]

(iii) \(\sigma_1 = \sigma > -\alpha - 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then the constant \(M_1 = K^{(1)}(\sigma) \) in (21) and (22) (for \(\sigma_1 = \sigma \)) is the best possible.

For \(g(y) = y^\alpha G(y) \) and \(\mu_1 = \lambda - \sigma_1 \) in Corollary 2, we deduce the following corollary.

Corollary 3 If \(\mu_1 \in \mathbb{R} \), then the following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_1 \) such that, for any \(f(x) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{\beta(1-\sigma)-1} f^p(x) \, dx < \infty,
\]

we have the following Hardy-type integral inequality of the first kind with homogeneous kernel:

\[
\left\{ \int_{-\infty}^{\infty} y^{\beta(1-\sigma)-1} \left[\int_{-\infty}^{y} \left(\min \{|x|, |y|\} \right)^{1+\alpha} \ln |x| |y|^{\beta} f(x) \, dx \right] dy \right\}^{\frac{1}{\beta}} < M_1 \left[\int_{-\infty}^{\infty} |x|^{\beta(1-\sigma)-1} f^p(x) \, dx \right]^{\frac{1}{p}}. \tag{23}
\]

(ii) There exists a constant \(M_1 \) such that, for any \(f(x), g(y) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{\beta(1-\sigma)-1} f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} |y|^{\beta(1-\mu_1)-1} g^q(y) \, dy < \infty,
\]

we have the following inequality:

\[
\int_{-\infty}^{\infty} g(y) \left[\int_{-\infty}^{y} \left(\min \{|x|, |y|\} \right)^{1+\alpha} \ln |x| |y|^{\beta} f(x) \, dx \right] dy < M_1 \left[\int_{-\infty}^{\infty} |x|^{\beta(1-\sigma)-1} f^p(x) \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} |y|^{\beta(1-\mu_1)-1} g^q(y) \, dy \right]^{\frac{1}{q}}. \tag{24}
\]

(iii) \(\mu_1 = \mu < \lambda + \alpha + 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then the constant \(M_1 = K^{(1)}(\sigma) \) in (23) and (24) (for \(\mu_1 = \mu \)) is the best possible.

In particular, for \(\lambda = 1, \sigma = \frac{1}{q}, \mu = \frac{1}{p} \) in Corollary 3, we get the following corollary.
Corollary 4 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant M_1 such that, for any $f(x) \geq 0$ satisfying
\[
0 < \int_{-\infty}^{\infty} f^p(x) \, dx < \infty,
\]
the following inequality holds true:
\[
\left\{ \int_{-\infty}^{\infty} \left[\int_{|y|}^{\infty} \left(\frac{\min\{|x|, |y|\}}{\max\{|x|, |y|\}} \right)^{1+\alpha} \frac{\ln |x/y|^\beta}{|x-y|} f(x) \, dx \right]^p \, dy \right\}^{1/p} < M_1 \left(\int_{-\infty}^{\infty} f^p(x) \, dx \right)^{1/p}.
\] (25)

(ii) There exists a constant M_1 such that, for any $f(x), g(y) \geq 0$ satisfying
\[
0 < \int_{-\infty}^{\infty} f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} g^q(y) \, dy < \infty,
\]
we have the following inequality:
\[
\int_{-\infty}^{\infty} g(y) \left[\int_{|y|}^{\infty} \left(\frac{\min\{|x|, |y|\}}{\max\{|x|, |y|\}} \right)^{1+\alpha} \frac{\ln |x/y|^\beta}{|x-y|} f(x) \, dx \right] dy < M_1 \left(\int_{-\infty}^{\infty} f^p(x) \, dx \right)^{1/p} \left(\int_{-\infty}^{\infty} g^q(y) \, dy \right)^{1/q}.
\] (26)

(iii) $\alpha > -\frac{1}{q} - 1$ and $\beta > 0$.
If statement (iii) holds true, then the constant factor $M_1 = K^{(1)}(\frac{1}{q}) (\in \mathbb{R}_+)$ in (25) and (26) is the best possible.

Remark 2

(i) For $\sigma_1 = \sigma = -\alpha + 1$ in (14), we have the following inequality with the best possible constant factor $\frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) (\beta > 0)$:
\[
\left\{ \int_{-\infty}^{\infty} x^{p(1-\alpha)-1} \left[\int_{|x|}^{\infty} \left(\frac{\min\{|x|, 1|\}}{\max\{|x|, 1|\}} \right)^{1+\alpha} \ln |x/y|^\beta f(x) \, dx \right]^p \, dy \right\}^{1/p} < \frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) \left[\int_{-\infty}^{\infty} x^{p\alpha-1} f^p(x) \, dx \right]^{1/p}.
\] (27)

(ii) For $\mu_1 = \mu = \lambda + \alpha - 1$ in (23), we have the following inequality with the best possible constant factor $\frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) (\beta > 0)$:
\[
\left\{ \int_{-\infty}^{\infty} y^{\mu(1-\alpha)-1} \left[\int_{|y|}^{\infty} \left(\frac{\min\{|x|, |y|\}}{\max\{|x|, |y|\}} \right)^{1+\alpha} \ln |x/y|^\beta f(x) \, dx \right]^p \, dy \right\}^{1/p} < \frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) \left[\int_{-\infty}^{\infty} x^{\mu\alpha-1} f^\mu(x) \, dx \right]^{1/p}.
\] (28)
Rassias et al. *Journal of Inequalities and Applications* (2020) 2020:94 Page 14 of 24

(iii) For $\alpha = -1$ in (25), we have the following inequality with the best possible constant factor $\Gamma(\beta + 1, \frac{1}{2q})$ ($\beta > 0$):

$$\{ \int_{-\infty}^{\infty} \left[\int_{|y|}^{\infty} \frac{|\ln |x/y||^{\beta}}{|x-y|} f(x) \, dx \right]^{\rho} \, dy \}^\frac{1}{\rho} \leq \frac{\Gamma(\beta + 1, \frac{1}{2q})}{\Gamma(\beta, \frac{1}{2q})} \left(\int_{-\infty}^{\infty} f^\rho(x) \, dx \right)^\frac{1}{\rho}. \tag{29}$$

Similarly, in view of Lemma 2, we obtain the following weight function:

For $y \neq 0$,

$$\omega_2(\sigma, y) := |y|^{\sigma} \int_{|x| \geq \frac{1}{|y|}} \frac{(\min(|xy|, 1))^{1+\sigma} |\ln |xy||^{\beta}}{(\max(|xy|, 1))^{1+\sigma} |x-y|} |x|^{\sigma-1} \, dx$$

$$= \int_{1}^{\infty} (H(-u) + H(u)) u^{\sigma-1} \, du = K^{(2)}(\sigma),$$

and then similarly, we derive the following results.

Theorem 2 If $\sigma_1 \in \mathbb{R}$, then the following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant M_2 such that, for any $f(x) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)^{-1}} f^p(x) \, dx < \infty,$$

the following Hardy-type integral inequality of the second kind with nonhomogeneous kernel is satisfied:

$$\{ \int_{-\infty}^{\infty} y^{\sigma_1-1} \left[\int_{|x| \geq \frac{1}{|y|}} \frac{(\min(|xy|, 1))^{1+\sigma} |\ln |xy||^{\beta}}{(\max(|xy|, 1))^{1+\sigma} |x-y|} f(x) \, dx \right]^{\rho} \, dy \}^\frac{1}{\rho} \leq M_2 \left[\int_{-\infty}^{\infty} |x|^{p\rho(1-\sigma)^{-1}} f^\rho(x) \, dx \right]^{\frac{1}{\rho}}. \tag{30}$$

(ii) There exists a constant M_2 such that, for any $f(x), g(y) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)^{-1}} f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} |y|^{q(1-\sigma)^{-1}} g^q(y) \, dy < \infty,$$

we have the following inequality:

$$\int_{-\infty}^{\infty} g(y) \left[\int_{|x| \geq \frac{1}{|y|}} \frac{(\min(|xy|, 1))^{1+\sigma} |\ln |xy||^{\beta}}{(\max(|xy|, 1))^{1+\sigma} |x-y|} f(x) \, dx \right] \, dy$$

$$< M_2 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)^{-1}} f^p(x) \, dx \right]^{\frac{1}{\rho}} \left[\int_{-\infty}^{\infty} y^{q(1-\sigma)^{-1}} g^q(y) \, dy \right]^{\frac{1}{q}}. \tag{31}$$

(iii) $\sigma_1 = \sigma < \lambda + \alpha + 1$ and $\beta > 0$.

If statement (iii) holds true, then the constant $M_2 = K^{(2)}(\sigma) \in \mathbb{R_+}$ in (30) and (31) (for $\sigma_1 = \sigma$) is the best possible.
In particular, for \(\sigma = \sigma_1 = \frac{1}{p} \) in Theorem 2, we obtain the following corollary.

Corollary 5 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_2 \) such that, for any \(f(x) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{p-2} f^p(x) \, dx < \infty,
\]

we have the following inequality:

\[
\left\{ \int_{-\infty}^{\infty} \left[\int_{|x| \leq |y|} \left(\frac{\min(|x|, 1)^{1-\sigma} \ln |x|} {\max(|x|, 1)^{1-\sigma} |xy - 1|} f(x) \, dx \right) dy \right] \right\}^{\frac{1}{p}} < M_2 \left(\int_{-\infty}^{\infty} |x|^{p-2} f^p(x) \, dx \right)^{\frac{1}{p}}. \tag{32}
\]

(ii) There exists a constant \(M_2 \) such that, for any \(f(x), g(y) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{p-2} f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} g^q(y) \, dy < \infty,
\]

we have the following inequality:

\[
\int_{-\infty}^{\infty} g(y) \left[\int_{|x| \geq |y|} \left(\frac{\min(|x|, 1)^{1-\sigma} \ln |x|} {\max(|x|, 1)^{1-\sigma} |xy - 1|} f(x) \, dx \right) dy \right]^{\frac{1}{q}} < M_2 \left(\int_{-\infty}^{\infty} g^q(y) \, dy \right)^{\frac{1}{q}}. \tag{33}
\]

(iii) \(\alpha > -\lambda - \frac{1}{q} \) and \(\beta > 0 \).

If statement (iii) holds true, then the constant \(M_2 = K^{(2)}(\frac{1}{p}) (\in \mathbb{R}_+) \) in (32) and (33) is the best possible.

Setting \(y = \frac{1}{p} \), \(G(Y) = g(\frac{1}{p})^{\frac{1}{q}} \) in Theorem 2, and then replacing \(Y \) by \(y \), we deduce the following corollary.

Corollary 6 If \(\sigma_1 \in \mathbb{R} \), then the following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_2 \) such that, for any \(f(x) \geq 0 \) satisfying

\[
0 < \int_{-\infty}^{\infty} |x|^{(1-\sigma)-1} f^p(x) \, dx < \infty,
\]

we have the following inequality:

\[
\left\{ \int_{-\infty}^{\infty} y^{p-2} \left[\int_{|x| \geq |y|} \left(\frac{\min(|x/y|, 1)^{1-\sigma} \ln |x/y|} {\max(|x/y|, 1)^{1-\sigma} |x/y - 1|} f(x) \, dx \right) dy \right] \right\}^{\frac{1}{p}} < M_2 \left(\int_{-\infty}^{\infty} y^{(1-\sigma)-1} f^p(x) \, dx \right)^{\frac{1}{p}}. \tag{34}
\]
(ii) There exists a constant \(M_2 \) such that, for any \(f(x), G(y) \geq 0 \) satisfying
\[
0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} |y|^{q(1+\sigma)-1} G^q(y) \, dy < \infty,
\]
we have the following inequality:
\[
\int_{-\infty}^{\infty} G(y) \left[\int_{|x| \geq |y|} \frac{(\min(|x|, |y|))^{1+\alpha} \ln |x| |y|^{\beta}}{(\max(|x|, |y|))^{1+\alpha} |x-y|} f(x) \, dx \right] \, dy < M_2 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f^p(x) \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} |y|^{q(1+\sigma)-1} G^q(y) \, dy \right]^{\frac{1}{q}}. \tag{35}
\]

(iii) \(\sigma_1 = \sigma < \lambda + \alpha + 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then the constant \(M_2 = K^{(2)}(\sigma) (\in \mathbb{R}_+ \) in (34) and (35) (for \(\sigma_1 = \sigma \)) is the best possible.

For \(g(y) = y^q G(y) \) and \(\mu_1 = \lambda - \sigma_1 \) in Corollary 6, we deduce the following corollary.

Corollary 7 If \(\mu_1 \in \mathbb{R} \), then the following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_2 \) such that, for any \(f(x) \geq 0 \) satisfying
\[
0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f^p(x) \, dx < \infty,
\]
we have the following inequality:
\[
\left\{ \int_{-\infty}^{\infty} y^{p(1-\sigma)-1} \left[\int_{|x| \geq |y|} \frac{(\min(|x|, |y|))^{1+\alpha} \ln |x| |y|^{\beta}}{(\max(|x|, |y|))^{1+\alpha} |x-y|} f(x) \, dx \right] \, dy \right\}^{\frac{1}{p}} < M_2 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f^p(x) \, dx \right]^{\frac{1}{p}}. \tag{36}
\]

(ii) There exists a constant \(M_2 \) such that, for any \(f(x), g(y) \geq 0 \) satisfying
\[
0 < \int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} |y|^{q(1+\sigma)-1} g^q(y) \, dy < \infty,
\]
we have the following inequality:
\[
\int_{-\infty}^{\infty} g(y) \left[\int_{|x| \geq |y|} \frac{(\min(|x|, |y|))^{1+\alpha} \ln |x| |y|^{\beta}}{(\max(|x|, |y|))^{1+\alpha} |x-y|} f(x) \, dx \right] \, dy < M_2 \left[\int_{-\infty}^{\infty} |x|^{p(1-\sigma)-1} f^p(x) \, dx \right]^{\frac{1}{p}} \left[\int_{-\infty}^{\infty} |y|^{q(1+\sigma)-1} g^q(y) \, dy \right]^{\frac{1}{q}}. \tag{37}
\]

(iii) \(\mu_1 = \mu > -\alpha - 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then the constant \(M_2 = K^{(2)}(\sigma) (\in \mathbb{R}_+ \) in (36) and (37) (for \(\mu_1 = \mu \)) is the best possible.

In particular, for \(\lambda = 1, \sigma = \frac{1}{\eta}, \mu = \frac{1}{\xi} \) in Corollary 7, we obtain the following corollary.
Corollary 8 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant M_2 such that, for any $f(x) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} f^p(x) \, dx < \infty,$$

we have the following inequality:

$$\left\{ \int_{-\infty}^{\infty} \left[\int_{|x|,|y| \geq |y|} \left(\frac{\min(|x|,|y|)}{\max(|x|,|y|)} \right)^{1+\alpha} \frac{\ln |x/y|^\beta}{|x-y|} f(x) \, dx \right] dy \right\}^{\frac{1}{p}} < M_2 \left(\int_{-\infty}^{\infty} f^p(x) \, dx \right)^{\frac{1}{2}}.$$ \hspace{1cm} (38)

(ii) There exists a constant M_2 such that, for any $f(x), g(y) \geq 0$ satisfying

$$0 < \int_{-\infty}^{\infty} f^p(x) \, dx < \infty \quad \text{and} \quad 0 < \int_{-\infty}^{\infty} g^q(y) \, dy < \infty,$$

we have the following inequality:

$$\int_{-\infty}^{\infty} g(y) \left\{ \int_{|x|,|y| \geq |y|} \left(\frac{\min(|x|,|y|)}{\max(|x|,|y|)} \right)^{1+\alpha} \frac{\ln |x/y|^\beta}{|x-y|} f(x) \, dx \right\} dy < M_2 \left(\int_{-\infty}^{\infty} f^p(x) \, dx \right)^{\frac{1}{2}} \left(\int_{-\infty}^{\infty} g^q(y) \, dy \right)^{\frac{1}{q}}.$$ \hspace{1cm} (39)

(iii) $\alpha > -\frac{1}{p} - 1$ and $\beta > 0$.

If statement (iii) holds true, then the constant $M_2 = K^{(2)}(\frac{1}{q}) (\in R_+)$ in (38) and (39) is the best possible.

Remark 3

(i) For $\sigma_1 = \sigma = \lambda + \alpha - 1$ in (30), we have the following inequality with the best possible constant factor $\frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) (\beta > 0)$:

$$\left\{ \int_{-\infty}^{\infty} y^{(\beta+1)-1} \left[\int_{|x|,|y| \geq |y|} \left(\frac{\min(|x|,|y|)}{\max(|x|,|y|)} \right)^{1+\alpha} \frac{\ln |x/y|^\beta}{|x-y|} f(x) \, dx \right] dy \right\}^{\frac{1}{p}} < \frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) \left[\int_{-\infty}^{\infty} |x|^{\beta(2-\lambda-\alpha)-1} f^p(x) \, dx \right]^{\frac{1}{p}}.$$ \hspace{1cm} (40)

(ii) For $\mu_1 = \mu = -\alpha + 1$ in (36), we have the following inequality with the best possible constant factor $\frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) (\beta > 0)$:

$$\left\{ \int_{-\infty}^{\infty} y^{(\beta+1)-1} \left[\int_{|x|,|y| \geq |y|} \left(\frac{\min(|x|,|y|)}{\max(|x|,|y|)} \right)^{1+\alpha} \frac{\ln |x/y|^\beta}{|x-y|} f(x) \, dx \right] dy \right\}^{\frac{1}{p}} < \frac{\Gamma(\beta+1)}{2^\beta} \zeta(\beta+1) \left[\int_{-\infty}^{\infty} |x|^{\beta(2-\lambda-\alpha)-1} f^p(x) \, dx \right]^{\frac{1}{p}}.$$ \hspace{1cm} (41)
(iii) For $\alpha = -1$ in (38), we have the following inequality with the best possible constant factor $\frac{\Gamma(\beta + 1)}{2^p} (\beta > 0)$:

$$\left\{ \int_{-\infty}^{\infty} \left[\int_{|x| \leq |y|} \frac{|\ln |x/y||^\beta}{|x-y|} f(x) \, dx \right]^p \, dy \right\}^{\frac{1}{p}} < \frac{\Gamma(\beta + 1)}{2^p} \zeta(\beta + 1, \frac{1}{2}) \left(\int_{-\infty}^{\infty} f^p(x) \, dx \right)^{\frac{1}{p}}.$$

(42)

4 Operator expressions

We set the following functions:

$$\varphi(x) := |x|^p (1 - \sigma)^{-1}, \quad \psi(y) := |y|^q (1 - \sigma)^{-1}, \quad \phi(y) := |y|^q (1 - \mu)^{-1},$$

wherefrom

$$\psi^{-1}(y) = |y|^q (1 - \sigma), \quad \phi^{-1}(y) = |y|^q (1 - \mu), \quad (x, y \in \mathbb{R}).$$

We also define the following real normed linear spaces:

$$L_{p,\varphi}(\mathbb{R}) := \left\{ f : \|f\|_{p,\varphi} := \left(\int_{-\infty}^{\infty} \varphi(x) |f(x)|^p \, dx \right)^{\frac{1}{p}} < \infty \right\},$$

wherefrom

$$L_{q,\psi}(\mathbb{R}) = \left\{ g : \|g\|_{q,\psi} := \left(\int_{-\infty}^{\infty} \psi(y) |g(y)|^q \, dy \right)^{\frac{1}{q}} < \infty \right\},$$

$$L_{q,\phi}(\mathbb{R}) = \left\{ g : \|g\|_{q,\phi} := \left(\int_{-\infty}^{\infty} \phi(y) |g(y)|^q \, dy \right)^{\frac{1}{q}} < \infty \right\},$$

$$L_{p,\psi^{-1}}(\mathbb{R}) = \left\{ h : \|h\|_{p,\psi^{-1}} := \left(\int_{-\infty}^{\infty} \psi^{-1}(y) |h(y)|^p \, dy \right)^{\frac{1}{p}} < \infty \right\},$$

$$L_{q,\phi^{-1}}(\mathbb{R}) = \left\{ h : \|h\|_{q,\phi^{-1}} := \left(\int_{-\infty}^{\infty} \phi^{-1}(y) |h(y)|^q \, dy \right)^{\frac{1}{q}} < \infty \right\}.$$

(a) In view of Theorem 1, for $\sigma_1 = \sigma$ and $f \in L_{p,\psi}(\mathbb{R})$, setting

$$h_1(y) := \int_{-1}^{1} \left(\frac{1}{|y|} \ln |xy| \right)^{\beta} f(x) \, dx \quad (y \in \mathbb{R}),$$

by (14), we obtain that

$$\|h_1\|_{p,\psi^{-1}} = \left[\int_{-\infty}^{\infty} \psi^{-1}(y) h_1^p(y) \, dy \right]^{\frac{1}{p}} < M_1 \|f\|_{p,\psi} < \infty.$$

(43)

Definition 1 We define a Hardy-type integral operator of the first kind with nonhomogeneous kernel

$$T_1^{(1)} : L_{p,\psi}(\mathbb{R}) \to L_{p,\psi^{-1}}(\mathbb{R})$$

as follows:
For any \(f \in L_{p,\psi}(\mathbb{R}) \), there exists a unique representation
\[
T_1^{(1)} f = h_1 \in L_{p,\psi^{1-p}}(\mathbb{R})
\]
satisfying \(T_1^{(1)} f(y) = h_1(y) \) for any \(y \in \mathbb{R} \).

In view of (43), it follows that
\[
\| T_1^{(1)} f \|_{p,\psi^{1-p}} = \| h_1 \|_{p,\psi^{1-p}} \leq M_1 \| f \|_{p,\psi},
\]
and thus the operator \(T_1^{(1)} \) is bounded satisfying
\[
\| T_1^{(1)} \| = \sup_{f(\cdot,0) \in L_{p,\psi}(\mathbb{R})} \frac{\| T_1^{(1)} f \|_{p,\psi^{1-p}}}{\| f \|_{p,\psi}} \leq M_1.
\]

If we define the formal inner product of \(T_1^{(1)} f \) and \(g \) as follows:
\[
(T_1^{(1)} f, g) := \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{\| \cdot \|^\alpha} \left(\min \{ |x|, |y| \} \right)^{1+\alpha} \ln |xy|^\beta f(x) d\frac{\ln}{\| \cdot \|^\beta} g(y) dy,
\]
we can then rewrite Theorem 1 (for \(\sigma_1 = \sigma \)) as follows.

Theorem 3 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_1 \) such that, for any \(f(x) \geq 0, f \in L_{p,\psi}(\mathbb{R}), \| f \|_{p,\psi} > 0 \), we have the following inequality:
\[
\| T_1^{(1)} f \|_{p,\psi^{1-p}} < M_1 \| f \|_{p,\psi}. \tag{44}
\]

(ii) There exists a constant \(M_1 \) such that, for any \(f(x), g(y) \geq 0, f \in L_{p,\psi}(\mathbb{R}), g \in L_{q,\psi}(\mathbb{R}), \| f \|_{p,\psi}, \| g \|_{q,\psi} > 0 \), we have the following inequality:
\[
(T_1^{(1)} f, g) < M_1 \| f \|_{p,\psi} \| g \|_{q,\psi}. \tag{45}
\]

(iii) \(\sigma > -\alpha - 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then it holds that \(\| T_1^{(1)} \| = K^{(1)}(\sigma) \).

(b) In view of Corollary 3, for \(\mu_1 = \mu \) and for \(f \in L_{p,\psi}(\mathbb{R}) \), setting
\[
h_2(y) := \int_{-\infty}^{\infty} \frac{1}{\| \cdot \|^\alpha} \left(\min \{ |x|, |y| \} \right)^{1+\alpha} \ln |xy|^\beta f(x) d\frac{\ln}{\| \cdot \|^\beta} (y \in \mathbb{R}),
\]
by (23), we have
\[
\| h_2 \|_{p,\psi^{1-p}} = \left[\int_{-\infty}^{\infty} \phi^{1-p}(y) h_2(y) dy \right]^\frac{1}{p} < M_1 \| f \|_{p,\psi} < \infty. \tag{46}
\]
Definition 2 We define a Hardy-type integral operator of the first kind with homogeneous kernel

\[T_{1}^{(2)} : L_{p, \varphi}(\mathbb{R}) \to L_{p, \varphi^{1-p}}(\mathbb{R}) \]

as follows:

For any \(f \in L_{p, \varphi}(\mathbb{R}) \), there exists a unique representation

\[T_{1}^{(2)} f = h_{2} \in L_{p, \varphi^{1-p}}(\mathbb{R}) \]

satisfying \(T_{1}^{(2)} f(y) = h_{2}(y) \) for any \(y \in \mathbb{R} \).

In view of (46), it follows that

\[\| T_{1}^{(2)} f \|_{p, \varphi^{1-p}} = \| h_{2} \|_{p, \varphi^{1-p}} \leq M_{1} \| f \|_{p, \varphi}, \]

and thus the operator \(T_{1}^{(2)} \) is bounded satisfying

\[\| T_{1}^{(2)} \| = \sup_{f \in L_{p, \varphi}(\mathbb{R})} \frac{\| T_{1}^{(2)} f \|_{p, \varphi^{1-p}}}{\| f \|_{p, \varphi}} \leq M_{1}. \]

If we define the formal inner product of \(T_{1}^{(2)} f \) and \(g \) in the following manner:

\[\left(T_{1}^{(2)} f, g \right) := \int_{-\infty}^{\infty} \left[\int_{-|y|}^{|y|} \frac{(\min{|x|, |y|})^{1+\alpha} \ln |x/y|^{p}}{(\max{|x|, |y|})^{1+\alpha}} |x-y|^{\lambda+\alpha} f(x) \right] g(y) \, dy, \]

then we can rewrite Corollary 3 (for \(\mu_{1} = \mu \)) as follows.

Corollary 9 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_{1} \) such that, for any \(f(x) \geq 0, f \in L_{p, \varphi}(\mathbb{R}), \| f \|_{p, \varphi} > 0 \), we have the following inequality:

\[\| T_{1}^{(2)} f \|_{p, \varphi^{1-p}} < M_{1} \| f \|_{p, \varphi}. \] (47)

(ii) There exists a constant \(M_{1} \) such that, for any \(f(x), g(y) \geq 0, f \in L_{p, \varphi}(\mathbb{R}), g \in L_{q, \varphi}(\mathbb{R}), \| f \|_{p, \varphi}, \| g \|_{q, \varphi} > 0 \), we have the following inequality:

\[\left(T_{1}^{(2)} f, g \right) < M_{1} \| f \|_{p, \varphi} \| g \|_{q, \varphi}. \] (48)

(iii) \(\mu < \lambda + \alpha + 1 \) and \(\beta > 0 \).

If statement (iii) holds true, then we have \(\| T_{1}^{(2)} \| = K^{(1)}(\sigma) \).

(c) In view of Theorem 2, for \(\sigma_{1} = \sigma \) and for \(f \in L_{p, \varphi}(\mathbb{R}) \), setting

\[H_{1}(y) := \int_{|x| \geq \frac{1}{|y|}} \frac{(\min{|xy|, 1})^{1+\alpha} \ln |xy|^{p}}{(\max{|xy|, 1})^{1+\alpha}|xy-1|} f(x) \, dx \quad (y \in \mathbb{R}), \]
by (30) we obtain that

$$
\|H_1\|_{p,\psi^{1-p}} = \left[\int_{-\infty}^{\infty} \psi^{1-p}(y) H_1(y) \, dy \right]^\frac{1}{p} < M_2 \|f\|_{p,\psi} < \infty.
$$

(49)

Definition 3 We define a Hardy-type integral operator of the second kind with nonhomogeneous kernel

$$
T_2^{(1)} : L_{p,\psi}(\mathbb{R}) \to L_{p,\psi^{1-p}}(\mathbb{R})
$$

as follows:

For any $f \in L_{p,\psi}(\mathbb{R})$, there exists a unique representation

$$
T_2^{(1)} f = H_1 \in L_{p,\psi^{1-p}}(\mathbb{R})
$$

satisfying $T_2^{(1)} f(y) = H_1(y)$ for any $y \in \mathbb{R}$.

In view of (49), it follows that

$$
\|T_2^{(1)} f\|_{p,\psi^{1-p}} = \|H_1\|_{p,\psi^{1-p}} \leq M_2 \|f\|_{p,\psi},
$$

and then the operator $T_2^{(1)}$ is bounded satisfying

$$
\|T_2^{(1)}\| = \sup_{f(\theta) \in L_{p,\psi}(\mathbb{R})} \frac{\|T_2^{(1)} f\|_{p,\psi^{1-p}}}{\|f\|_{p,\psi}} \leq M_2.
$$

If we define the formal inner product of $T_2^{(1)} f$ and g in the following manner:

$$
\langle T_2^{(1)} f, g \rangle := \int_{-\infty}^{\infty} \left[\int_{\{x : \omega > \frac{1}{2}\}) \frac{(\min(|xy|, 1))^{1+\alpha} \ln |xy| \|\psi\|_p}{(\max(|xy|, 1))^{1+\alpha} |xy - 1|} f(x) \, dx \right] g(y) \, dy,
$$

then we can rewrite Theorem 2 (for $\sigma_1 = \sigma$) as follows.

Theorem 4 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant M_2 such that, for any $f(x) \geq 0$, $f \in L_{p,\psi}(\mathbb{R})$, $\|f\|_{p,\psi} > 0$, we have the following inequality:

$$
\|T_2^{(1)} f\|_{p,\psi^{1-p}} < M_2 \|f\|_{p,\psi}.
$$

(50)

(ii) There exists a constant M_2 such that, for any $f(x), g(y) \geq 0$, $f \in L_{p,\psi}(\mathbb{R})$, $g \in L_{q,\psi}(\mathbb{R})$, $\|f\|_{p,\psi}, \|g\|_{q,\psi} > 0$, we have the following inequality:

$$
\langle T_2^{(1)} f, g \rangle < M_2 \|f\|_{p,\psi} \|g\|_{q,\psi}.
$$

(51)

(iii) $\sigma < \lambda + \alpha + 1$ and $\beta > 0$.

If statement (iii) holds true, then we have $\|T_2^{(1)}\| = K^{(2)}(\sigma)$.

(d) In view of Corollary 7 \((\mu_1 = \mu)\), for \(f \in L_{p\phi}(\mathbb{R})\), setting
\[
H_2(y) := \int_{|x|\geq |y|} \frac{(\min\{|x|, |y|\})^{1+\alpha} |\ln |x/y||^\beta}{(\max\{|x|, |y|\})^{1+\alpha} |x-y|} f(x) \, dx \quad (y \in \mathbb{R}),
\]
by (36) we obtain that
\[
\|H_2\|_{p,\phi^{1-p}} = \left[\int_{-\infty}^{\infty} \phi^{1-p}(y) H_2^p(y) \, dy \right]^\frac{1}{p} < M_2 \|f\|_{p,\phi} < \infty. \tag{52}
\]

Definition 4 We define a Hardy-type integral operator of the second kind with homogeneous kernel
\[
T_2^{(2)} : L_{p\phi}(\mathbb{R}) \to L_{p\phi^{1-p}}(\mathbb{R})
\]
as follows:

For any \(f \in L_{p\phi}(\mathbb{R})\), there exists a unique representation
\[
T_2^{(2)} f = H_2 \in L_{p\phi^{1-p}}(\mathbb{R})
\]
satisfying \(T_2^{(2)} f(y) = H_2(y)\) for any \(y \in \mathbb{R}\).

In view of (52), it follows that
\[
\left\| T_2^{(2)} f \right\|_{p,\phi^{1-p}} = \|H_2\|_{p,\phi^{1-p}} \leq M_2 \|f\|_{p,\phi},
\]
and thus the operator \(T_2^{(2)}\) is bounded satisfying
\[
\left\| T_2^{(2)} \right\| = \sup_{f(\theta) \in L_{p\phi}(\mathbb{R})} \frac{\left\| T_2^{(2)} f \right\|_{p,\phi^{1-p}}}{\|f\|_{p,\phi}} \leq M_2.
\]

If we define the formal inner product of \(T_2^{(2)} f\) and \(g\) as follows:
\[
(T_2^{(2)} f, g) := \int_{-\infty}^{\infty} \int_{|x|\geq |y|} \frac{(\min\{|x|, |y|\})^{1+\alpha} |\ln |x/y||^\beta}{(\max\{|x|, |y|\})^{1+\alpha} |x-y|} f(x) \, dx \, g(y) \, dy,
\]
then we can rewrite Corollary 7 (for \(\mu_1 = \mu\)) as follows.

Corollary 10 The following statements (i), (ii), and (iii) are equivalent:

(i) There exists a constant \(M_2\) such that, for any \(f(x) \geq 0, f \in L_{p\phi}(\mathbb{R}), \|f\|_{p,\phi} > 0\), we have the following inequality:
\[
\left\| T_2^{(2)} f \right\|_{p,\phi^{1-p}} < M_2 \|f\|_{p,\phi}. \tag{53}
\]

(ii) There exists a constant \(M_2\) such that, for any \(f(x), g(y) \geq 0, f \in L_{p\phi}(\mathbb{R}), g \in L_{q\phi}(\mathbb{R}), \|f\|_{p,\phi}, \|g\|_{q,\phi} > 0\), we have the following inequality:
\[
(T_2^{(2)} f, g) < M_2 \|f\|_{p,\phi} \|g\|_{q,\phi}. \tag{54}
\]
(iii) $\mu > -\alpha - 1$ and $\beta > 0$.

If statement (iii) holds true, then we have $\|T^{(2)}_2\| = K^{(2)}(\sigma)$.

5 Conclusions

In the present paper, using weight functions we obtain in Theorems 1, 2 a few equivalent statements of two kinds of Hardy-type integral inequalities with nonhomogeneous kernel and multi-parameters in the whole plane. The constant factors related to the extended Hurwitz-zeta function are proved to be the best possible. In the form of applications, a few equivalent statements of two kinds of Hardy-type integral inequalities with the homogeneous kernel in the whole plane are also deduced in Corollaries 3, 7. We also consider some particular cases in Corollaries 1, 4, 5, 8 and in Remarks 2, 3. We additionally consider operator expressions in Theorems 1, 4, 5, 8 and Corollaries 9, 10. The lemmas and theorems within the present work provide an extensive account of this type of inequalities.

Acknowledgements

We are thankful to the mathematicians who have read the manuscript of the paper for their constructive comments that helped improve its presentation.

Funding

B. Yang’s work is supported by the National Natural Science Foundation (No. 61370186, No. 61640222) and Appropriate Researching Fund for Professors and Doctors, Guangdong University of Education (No. 2015ARF25). We are grateful for this help.

Availability of data and materials

Not applicable.

Competing interests

The authors of the present paper do not have any competing interests.

Authors’ contributions

The authors have contributed equally to the preparation of the present paper. All authors read and approved the final manuscript.

Author details

1Institute of Mathematics, University of Zurich, Zurich, Switzerland. 2Program in Interdisciplinary Studies, Institute for Advanced Study, Princeton, USA. 3Department of Mathematics, Guangdong University of Education, Guangzhou, PR China. 4Moscow Institute of Physics and Technology, Dolgoprudny, Russia. 5Moscow State University, Moscow, Russia. 6Buryat State University, Ulan-Ude, Russia. 7Caucasus Mathematical Center, Adyghe State University, Maykop, Russia.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 March 2020 Accepted: 30 March 2020 Published online: 06 April 2020

References

1. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)
2. Yang, B.C.: The Norm of Operator and Hilbert-Type Inequalities. Science Press, Beijing (2009)
3. Yang, B.C.: Hilbert-Type Integral Inequalities. Bentham Science Publishers Ltd., Sharjah (2009)
4. Yang, B.C.: On the norm of an integral operator and applications. J. Math. Anal. Appl. 321, 182–192 (2006)
5. Xu, J.S.: Hardy–Hilbert’s inequalities with two parameters. Adv. Math. 36(2), 63–76 (2007)
6. Yang, B.C.: On the norm of a Hilbert’s type linear operator and applications. J. Math. Anal. Appl. 325, 529–541 (2007)
7. Xin, D.M.: A Hilbert-type integral inequality with the homogeneous kernel of zero degree. Math. Theory Appl. 30(2), 70–74 (2010)
8. Yang, B.C.: A Hilbert-type integral inequality with the homogenous kernel of degree 0. J. Shandong Univ. Nat. Sci. 45(2), 103–106 (2010)
9. Debnath, L., Yang, B.C.: Recent developments of Hilbert-type discrete and integral inequalities with applications. Int. J. Math. Math. Sci. 2012, Article ID 871845 (2012)
10. Hong, Y.: On the structure character of Hilbert’s type integral inequality with homogeneous kernel and applications. J. Jilin Univ. Sci. Ed. 55(2), 189–194 (2017)
11. Rassias, M.Th., Yang, B.C.: On half-discrete Hilbert’s inequality. Appl. Math. Comput. 220, 75–93 (2013)
12. Yang, B.C., Konic, M.: A half-discrete Hilbert-type inequality with a general homogeneous kernel of degree 0. J. Math. Inequal. 6(3), 401–417 (2012)
13. Rassias, M.Th., Yang, B.C.: A multidimensional half-discrete Hilbert-type inequality and the Riemann zeta function. Appl. Math. Comput. 225, 263–277 (2013)
14. Rassias, M.Th., Yang, B.C.: On a multidimensional half-discrete Hilbert-type inequality related to the hyperbolic cotangent function. Appl. Math. Comput. 242, 800–813 (2013)
15. Rassias, M.Th., Yang, B.C., Raigorodskii, A.: Two kinds of the reverse Hardy-type integral inequalities with the equivalent forms related to the extended Riemann zeta function. Appl. Anal. Discrete Math. 12, 273–296 (2018)
16. Rassias, M.Th., Yang, B.C.: On an equivalent property of a reverse Hilbert-type integral inequality related to the extended Hurwitz-zeta function. J. Math. Inequal. 13, 315–334 (2019)
17. Hong, Y., He, B., Yang, B.C.: Necessary and sufficient conditions for the validity of Hilbert type integral inequalities with a class of quasi-homogeneous kernels and its application in operator theory. J. Math. Inequal. 12, 777–788 (2018)
18. Rassias, M.Th., Yang, B.C.: A multidimensional Hilbert-type integral inequality related to the Riemann zeta function. In: Daras, N.J. (ed.) Applications of Mathematics and Informatics in Science and Engineering, pp. 417–433. Springer, New York (2014)
19. Chen, Q., Yang, B.C.: A survey on the study of Hilbert-type inequalities. J. Inequal. Appl. 2015, Article ID 302 (2015)
20. Yang, B.C.: A new Hilbert-type integral inequality. Soochow J. Math. 33(4), 849–859 (2007)
21. Wang, Z.Q., Guo, D.R.: Introduction to Special Functions. Science Press, Beijing (1979)
22. He, B., Yang, B.C.: On a Hilbert-type integral inequality with the homogeneous kernel of 0-degree and the hypergeometric function. Math. Pract. Theory 40(18), 105–211 (2010)
23. Yang, B.C.: A new Hilbert-type integral inequality with some parameters. J. Jilin Univ. Sci. Ed. 46(6), 1085–1090 (2008)
24. Yang, B.C.: A Hilbert-type integral inequality with a non-homogeneous kernel. J. Xiamen Univ. Natur. Sci. 48(2), 165–169 (2008)
25. Zeng, Z., Xie, Z.T.: On a new Hilbert-type integral inequality with the homogeneous kernel of degree 0 and the integral in whole plane. J. Inequal. Appl. 2010, Article ID 256796 (2010)
26. Wang, A.Z., Yang, B.C.: A new Hilbert-type integral inequality in whole plane with the non-homogeneous kernel. J. Inequal. Appl. 2011, Article ID 123 (2011)
27. Xin, D.M., Yang, B.C.: A Hilbert-type integral inequality in whole plane with the homogeneous kernel of degree −2. J. Inequal. Appl. 2011, Article ID 401428 (2011)
28. He, B., Yang, B.C.: On an inequality concerning a non-homogeneous kernel and the hypergeometric function. Tamsui Oxf. J. Inf. Math. Sci. 27(1), 75–88 (2011)
29. Yang, B.: A reverse Hilbert-type integral inequality with a non-homogeneous kernel. J. Jilin Univ. Sci. Ed. 49(3), 437–441 (2011)
30. Xie, Z.T., Zeng, Z., Sun, Y.F.: A new Hilbert-type inequality with the homogeneous kernel of degree −2. Adv. Appl. Math. Sci. 12(7), 391–401 (2013)
31. Huang, Q.L., Wu, S.H., Yang, B.C.:Parameterized Hilbert-type integral inequalities in the whole plane. Sci. World J. 2014, Article ID 169061 (2014)
32. Zhen, Z., Raja Rama Gandhi, K., Xie, Z.T.: A new Hilbert-type inequality with the homogeneous kernel of degree −2 and with the integral. Bull. Math. Sci. Appl. 3(1), 11–20 (2014)
33. Rassias, M.Th., Yang, B.C.: A Hilbert-type integral inequality in the whole plane related to the hyper geometric function and the beta function. J. Math. Anal. Appl. 428(2), 1286–1308 (2015)
34. Huang, X.Y., Cao, J.F., He, B., Yang, B.C.: Hilbert-type and Hardy-type integral inequalities with operator expressions and the best constants in the whole plane. J. Inequal. Appl. 2015, Article ID 129 (2015)
35. Gu, Z.H., Yang, B.C.: A Hilbert-type integral inequality in the whole plane with a non-homogeneous kernel and a few parameters. J. Inequal. Appl. 2015, 314 (2015)
36. Kuang, J.C.: Introduction to Real Analysis. Hunan Edudcon Press, Changsha (1996)
37. Kuang, J.C.: Applied Inequalities. Shangdong Science and Technology Press, Jinan (2004)