Same-day discharge after transcatheter mitral valve repair using MitraClip in a tertiary community hospital: a case series

Medhat Chowdhury 1, Rupinder Buttar 1, Devesh Rai 1, Muhammad Waqas Tahir 1, Bryan E-Xin Tan 1, Samarthkumar Thakkar 1, Hammad Ali 2, Harsh P. Patel 3, Deepak L. Bhatt 4*, and Jeremiah P. Depta 5*

1Department of Internal Medicine, Rochester General Hospital, Rochester, NY, USA; 2Department of Internal Medicine, Detroit Medical Center/Wayne State University, Detroit, MI, USA; 3Department of Internal Medicine, Louis A Weiss Memorial Hospital, Chicago, IL, USA; 4Department of Cardiology, Brigham and Women’s Hospital Heart & Vascular Center, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; and 5Department of Cardiology, Sands Constellation Heart Institute, Rochester Regional Health, 1425 Portland Avenue, Rochester, NY 14621, USA

Received 8 May 2021; first decision 3 June 2021; accepted 27 September 2021; online publish-ahead-of-print 1 October 2021

Background
Due to the current Coronavirus Disease 2019 (COVID-19) pandemic, there is a realization for innovation in procedures and protocols to minimize hospital stay and at the same time ensure continued evidence-based treatment delivered to the patients. We present a same-day discharge protocol for transcatheter mitral valve repair (TMVR) using MitraClip under general anaesthesia in a six-patient case series. This protocol aims to reduce the length of hospital stay, thereby minimizing potential for nosocomial COVID-19 infections and to promote safe discharge with cautious follow-up.

Case summary
Six patients with severe symptomatic mitral valve (MV) regurgitation underwent successful transfemoral MV repair using standard procedures. Following repair, patients were monitored on telemetry in the recovery area for 3 h, ambulated to assess vascular access stability and underwent post-procedural transthoracic echocardiogram to assess for any pericardial effusion or post-procedural prosthetic mitral stenosis.

Conclusion
Same-day discharge after TMVR is possible when done cautiously with close follow-up, can minimize hospital stay, improve resource utilization, and reduce risk of nosocomial COVID-19 infection.

Keywords
Transcatheter mitral valve repair • MitraClip • Same-day discharge • Day case procedure • Case series • Case report • COVID-19

Learning points
• Patients with stable heart failure symptoms, low bleeding risk, and without intra-procedural complications can be considered for same-day discharges (SDDs) following transcatheter mitral valve repair.
• SDD to selected patients might be of benefit in preventing potential exposure during the Coronavirus Disease 2019 pandemic.
Introduction

Mitral valve disease is the most common valvular disease in the USA with moderate or higher mitral regurgitation (MR) present in ~2% of the US adult population. Transcatheter mitral valve repair (TMVR) using MitraClip is an effective treatment option with low complication rates for severe symptomatic primary MR patients at high risk for open-heart surgery or severe secondary MR patients who remain symptomatic despite optimization of medical therapy. Over the past year, elective procedures and surgeries were initially cancelled to mitigate exposure to the Coronavirus Disease 2019 (COVID-19). Later on, they were rescheduled after implementing rules and restrictions using local, state, and federal guidelines to prevent exposure to patients and healthcare personnel. There is a dire need for innovation in procedural protocols to adapt to this change, which experts believe will remain relevant even after the pandemic. Given the potential risk of delaying treatment for patients with severe symptomatic MR, we developed a protocol for same-day discharge (SDD) for TMVR using MitraClip in the form of a case series with the goal of reducing the length of stay, resource utilization, and risk for nosocomial COVID-19 infection.

Case series and timelines

Thirty-seven patients were evaluated for TMVR in the outpatient office between 19 February 2020 and 2 December 2020. All patients evaluated were considered for SDD. Based on volume status, bleeding risk and frailty, risks and benefits of SDD were discussed and six patients consented to SDD. Patients generally underwent the procedure ~1–2 months following initial evaluation. A detailed description of the individual characteristics of each patient is presented in Timeline. All patients considered tested negative for COVID-19 prior to the procedure, they were ambulatory and independent with adequate social support at home or from supervised facilities.

- 80-year-old male with severe symptomatic MR due to degenerative mitral valvular disease who underwent uncomplicated placement of one MitraClip XTR attached to the middle segment (A2) and the middle scallop (P2) of the mitral leaflet.
- 89-year-old male with severe symptomatic primary MR secondary to degenerative mitral valvular disease who underwent uncomplicated MitraClip XTR placement to the middle segment (A2) and posterior scallop (P3) of the mitral leaflet.
- 91-year-old male with history ischaemic cardiomyopathy and severe functional MR who underwent uncomplicated MitraClip XTR placement to the A2–P2 scallops.

Timeline

Characteristics	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6
Age	80	89	92	83	62	74
Sex	Male	Male	Male	Male	Male	Male
Hypertension	Present	Present	Present	Present	Absent	Present
Coronary artery disease	Non-obstructive disease	Mild	None	Mild	Present	
Chronic kidney disease	None	III	None	III	III	
Atrial fibrillation present?	Yes	No	No	No	Yes	
Symptoms	Exertional dyspnoea					
Katz score	6	6	6	6	6	6
Exam	3/6 holosystolic murmur					
Heart Association/New York Heart Association	IIIC	IIIC	IIE	IIIC	IV	III
Brain natriuretic peptide	186	119	2752	191	189	79
Ejection fraction (%)	65	70	45	55	30	50
Society of Thoracic Surgeons score (%)	1.4	2	7.7	2.5	3.4	3.5
Regurgitation type	Primary	Primary	Functional	Primary	Functional	Functional
Regurgitation jet	Eccentric	Eccentric	Eccentric	Central	Eccentric	Eccentric
Mitral valve mean gradient (mmHg)	Pre-clip	1	2	2	2	2
	Post-clip	1	1	1	3	2
Mitral regurgitation grade	Pre-clip 4+					
	Post-clip Trace	Trace	Trace	2+	1+	1+
Left ventricular end-systolic diameter (cm)	3.5	6.4	3.48	3.4	6.73	5.46
Left ventricular end-diastolic diameter (cm)	5.2	3.4	4.67	4.8	7.07	6.38
Effective regurgitant orifice area (cm²)	Pre-clip 0.62	Pre-clip 1.31	Pre-clip 0.50	Pre-clip 0.40	Pre-clip 0.37	Pre-clip 0.27
	Post-clip 0.09	Post-clip 0.15	Post-clip Indeterminate	Post-clip 0.19	Post-clip 0.05	Not available

Continued
Our series included patients with both primary and functional regurgitation, all of whom were underwent an elective TMVR with the MitraClip. All patients were discharged the same day after a post-procedural TTE noted no pericardial effusion, absence of prosthetic valve malformation, and normal sinus rhythm.
stenosis, and significant residual regurgitation. Of the patients discharged, one of the patients was readmitted within a week for symptomatic anaemia from a gastric AVM requiring transfusion support. The reason for major bleeding was likely due to triple anticoagulation therapy in the setting of stent placement and concomitant atrial fibrillation. This is consistent with the findings noted by Tamburino et al., who attributed the prolonged length of stay in patients with atrial fibrillation to be due to anticoagulation management. Hence, patients with atrial fibrillation requiring anticoagulation and with a HAS-BLED score ≥ 3, may require extended stay for serial

Figure 1 Proposed protocol for selection of patients with favourable characteristics for same-day discharge. TMVR, transcatheter mitral valve repair; TTE, transthoracic echocardiography
haemoglobin and haematocrit monitoring and should be excluded from this protocol. In patients with functional MR, one of the three patients had markedly elevated BNP and clinical findings indicative of decompensated congestive heart failure. Despite the favourable outcome in the patient included in our series, outcomes of MitraClip in patients with decompensated heart failure is not well established\(^\text{14}\) and further studies are necessary to investigate short outcomes prior to considering SDD in these patients. Hence, our protocol is primarily directed towards patients with functional MR and stable heart failure symptoms with a BNP <500 ng/L. While repair using MitraClip is directed towards frail high-risk surgical patients, frailty in itself has been linked to prolonged recovery and increased susceptibility to complications.\(^\text{15}\) All patients in our case series were independent with their activities of daily living as demonstrated by a score of 6/6 on the Katz index, a pragmatic measure that has shown to be a good predictor of early adverse outcomes in patients undergoing transcatheter aortic valve implantation\(^\text{16}\) and cardiac surgery.\(^\text{17}\)

Figure 1 shows a proposed protocol for selection of patients with favourable characteristics for SDD. Based on the patients described in the case series, the protocol is applicable to electively admitted patients with primary or functional MR, without any clinical findings for decompensated congestive heart failure, with a KATZ score <6 and in patients on aspirin alone or on oral anticoagulants with a HAS-BLED score of <3 and with good social support. Figure 2 provides an overview of the temporal events on the day of the procedure to guide safe discharge. To qualify for safe discharge, patients are to undergo uncomplicated MitraClip placement without any local access site vascular complications and should not have any arrhythmias or pauses on telemetry or electrocardiogram post-procedure while at rest and ambulation. Post-procedural TTE is necessary to confirm MitraClip position, residual regurgitation or prosthetic stenosis, and absence of pericardial effusion.

Our case series highlights that SDD can be safely performed following MitraClip and has the potential to reduce exposure to COVID-19. This can potentially translate to better resource utilization and likely improved patient satisfaction as demonstrated in other percutaneous procedures with SDD protocol such as percutaneous coronary intervention\(^\text{18}\) and more recently valvular procedures such as transcatheter aortic valve replacement.\(^\text{19}\) Same-day discharge following MitraClip appears to be safe and maybe included among these procedures. However, further studies are needed prior to considering this as a standard of care.

Conclusion

Same-day discharge after TMVR is possible when done cautiously with close follow-up, it has the potential to improve resource utilization and improve patient satisfaction.

Lead author biography

Jeremiah P. Depta is the Director of the Advanced Valvular and Structural Heart Disease Program at Sands-Constellation Heart Institute at Rochester General Hospital in Rochester, New York. He serves as a proctor for TAVR instructing physicians across the USA and abroad. He completed his residency at Cleveland Clinic, General Cardiology Fellowship at...
Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The authors confirm that written consent for submission and publication of this case report including images and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: J.P.D. discloses the following relationships—Consultant/Advisory Board: Edwards Lifesciences, Boston Scientific, WL Gore & Associates. D.L.B. discloses the following relationships—Advisory Board: Cardax, Cerenzo Scientific, Elsevier Practice Update Cardiology, Level Ex, Medscape Cardiology, PhaseBio, PLx Pharma, Regado Biosciences; Board of Directors: Boston VA Research Institute, Society of Cardiovascular Patient Care, TobeSoft; Chair: American Heart Association Quality Oversight Committee; Data Monitoring Committees: Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute, for the PORTICO trial, funded by St. Jude Medical, now Abbott), Cleveland Clinic (including for the ExCeed trial, funded by Edwards), Duke Clinical Research Institute, Mayo Clinic, Mount Sinai School of Medicine (for the ENVISAGE trial, funded by Daiichi Sankyo), Population Health Research Institute; Honoraria: American College of Cardiology (Senior Associate Editor, Clinical Trials and News, ACC.org; Vice-Chair, ACC Accreditation Committee), Baim Institute for Clinical Research (formerly Harvard Clinical Research Institute; RE-DUAL PCI clinical trial steering committee funded by Boehringer Ingelheim; AEGIS-II executive committee funded by CSL Behring), Belvoir Publications (Editor in Chief, Harvard Heart Letter), Duke Clinical Research Institute (clinical trial steering committees, including for the PRONOUNCE trial, funded by Ferring Pharmaceuticals), HMP Global (Editor in Chief, Journal of Invasive Cardiology), Journal of the American College of Cardiology (Guest Editor; Associate Editor), Medintelligence/ReachMD (CME steering committees), Level Ex, MJH Life Sciences, Population Health Research Institute (for the COMPASS operations committee, publications committee, steering committee, and USA national co-leader, funded by Bayer), Slack Publications (Chief Medical Editor, Cardiology Today’s Intervention), Society of Cardiovascular Patient Care (Secretary/Treasurer), WebMD (CME steering committees); Other: Clinical Cardiology (Deputy Editor), NCDR-ACTION Registry Steering Committee (Chair), VA CART Research and Publications Committee (Chair); Research Funding: Abbott, Afinimmune, Amarin, Amgen, AstraZeneca, Bayer, Boehringer Ingelheim, Bristol-Myers Squibb, Cardax, Chiesi, CSL Behring, Eisai, Ethicon, Ferring Pharmaceuticals, Forest Laboratories, Fractyl, Idorsia, Ironwood, Ischemix, Lexicon, Lilly, Medtronic, Pfizer, PhaseBio, PLx Pharma, Regeneron, Roche, Sanofi Aventis, Synaptic, The Medicines Company; Royalties: Elsevier (Editor, Cardiovascular Intervention: A Companion to Braunwald’s Heart Disease); Site Co-Investigator: Biotronik, Boston Scientific, CSL, St. Jude Medical (now Abbott), Svelte: Trustee: American College of Cardiology; Unfunded Research: FlowCo, Merck, Novo Nordisk, Takeda.

Funding: None declared.

References

1. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP et al.; On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 2019;139:e56–e628.
2. Elbadawi A, Elgendy IY, Elzeneini M, Mentias A, Elsherbeny AM, Abbott JD et al. Temporal trends and outcomes of transcatheter mitral valve repair and surgical mitral valve intervention in patients with prior CABG. JACC Cardiovasc Interv 2019;12:2445–2447.
3. Khani B, Zayed Y, Barbarazzi M, Osman M, Chahine A, Ahmed S et al. Interventions for secondary mitral regurgitation in patients with heart failure: a network meta-analysis of randomized controlled comparisons of surgery, medical therapy and transcatheter intervention. JACC Cardiovasc Interv 2020;13:1484–1488.
4. Medical Association A. Factsheet: State Action Related to Delay and Resumption of “Elective” Procedures during COVID-19: Pandemic State Directives Ordering a Delay in Elective Procedures and Related Guidance from the Federal Government and the American College of Surgeons (ACS) Guidelines from the Centers for Medicare and Medicaid Services (CMS), the Centers for Disease Control and Prevention (CDC) and ACS. 2020. https://www.cdc.gov/coronavirus/2019-ncov/delay-elective-procedures.html (14 March 2021).
5. Shah PB, Welt FGP, Mahmud E, Phillips A, Kleman NS, Young MN et al. Triage considerations for patients referred for structural heart disease intervention during the COVID-19 pandemic: an ACCSCAI position statement. JACC Cardiovasc Interv 2020;13:1484–1488.
6. Wang X, Bhatt DL. COVID-19: an unintended force for medical revolution? J Invasive Cardiol 2020;32:881–882.
7. Eggebrecht H, Scheile S, Puls M, Plicht B, von Bardeleben RS, Butter C et al. Risk and outcomes of complications during and after MiraClip implantation: experience in 828 patients from the German TRANscatheter mitral valve interventions (TRAM) registry. Catheter Cardiovasc Interv 2015;86:728–735.
8. Tripathi B, Sawant AC, Sharma P, Tandon V, Patel T, Klein J et al. Short term outcomes after transcatheter mitral valve repair. Int J Cardiol 2021;327:163–169.
9. Lima IV, Kolte D, Rolfberg V, Molino J, Zhang Z, Elmariah S et al. Thirty-day readmissions after transcatheter versus surgical mitral valve repair in high-risk patients with mitral regurgitation: analysis of the 2014–2015 Nationwide readmissions databases. Catheter Cardiovasc Interv 2020;96:664–674.
10. Case BC, Yerasi C, Forrestal B, Wang Y, Musallam A, Hahn J et al. MiraClip 30-day readmissions and impact of early discharge: an analysis from the nationwide readmission databases. Cardiovasc Rev Med 2020;21:954–958.
11. Sorajja P, Vemulapalli S, Feldman T, Pack M, Holmes DR, Stebbings A et al. Outcomes with transcatheter mitral valve repair in the United States: an STS/Acc TVT registry report. J Am Coll Cardiol 2017;70:2315–2327.
12. Marmagkiolis K, Klic ID, Ates I, Kose G, Illescu CC. Feasibility of same-day discharge after transcatheter mitral valve repair procedures. J Invasive Cardiol 2021;33:E123–E126.
13. Tamburino C, Buccheri S, Popolo Rubbio A, Scandura D, Di Salvo ME, Mangiacco S et al. Feasibility and predictors of early discharge after percutaneous edge-to-edge mitral valve repair. Heart 2017;103:931–936.
14. Schae T, Isotani A, Neus M, Schopp M, Seifert M, Höpfer C et al. Long-term survival after MiraClip® therapy in patients with severe mitral regurgitation and severe congestive heart failure: a comparison among survivors predicted by heart failure models. J Cardiol 2016;67:287–294.
15. Iliaidis C, Schwabe L, Muller D, Stock S, Baldus S, Pfister R. Impact of frailty on perioperative health care utilization in patients undergoing transcatheter edge-to-edge mitral valve repair. Clin Res Cardiol 2021;110:658–666.
16. Puls M, Sobisiak B, Bleckmann A, Jacobshagen C, Danner BC, Hünlich M et al. Impact of frailty on short- and long-term morbidity and mortality after transcatheter aortic valve implantation: risk assessment by Katz Index of activities of daily living. *EuroIntervention* 2014;10:609–613.

17. Lee DH, Buth KJ, Martin BJ, Yip AM, Hirsch GM. Frail patients are at increased risk for mortality and prolonged institutional care after cardiac surgery. *Circulation* 2010;121:973–978.

18. Shroff A, Kupfer J, Gilchrist IC, Caputo R, Speiser B, Bertrand OF et al. Same-day discharge after percutaneous coronary intervention: Current perspectives and strategies for implementation. *JAMA Cardiol* 2016;1:216–223.

19. Rai D, Tahir MW, Chowdhury M, Ali H, Buttar R, Abtahian F et al. Transcatheter aortic valve replacement same-day discharge for selected patients: a case series. *Eur Hear J Case Rep* 2021;5. https://academic.oup.com/ehjcr/article/doi/10.1093/ehjcr/ytaa556/6089178 (22 February 2021).