A phosphorylated transcription factor regulates sterol biosynthesis in *Fusarium graminearum*

Zunyong Liu, Yunqing Jian, Yun Chen, H. Corby Kistler, Ping He, Zhonghua Ma & Yanni Yin

Sterol biosynthesis is controlled by transcription factor SREBP in many eukaryotes. Here, we show that SREBP orthologs are not involved in the regulation of sterol biosynthesis in *Fusarium graminearum*, a fungal pathogen of cereal crops worldwide. Instead, sterol production is controlled in this organism by a different transcription factor, FgSR, that forms a homodimer and binds to a 16-bp cis-element of its target gene promoters containing two conserved CGAA repeat sequences. FgSR is phosphorylated by the MAP kinase FgHog1, and the phosphorylated FgSR interacts with the chromatin remodeling complex SWI/SNF at the target genes, leading to enhanced transcription. Interestingly, FgSR orthologs exist only in *Sordariomycetes* and *Leotiomycetes* fungi. Additionally, FgSR controls virulence mainly via modulating deoxynivalenol biosynthesis and responses to phytoalexin.
Sterols are essential membrane lipid components, and modulate membrane fluidity, stability, permeability, aerobic metabolism, cell cycle, and the activities of membrane-bound enzymes in most eukaryotic organisms. Cholesterol is the major sterol of cell membranes in mammals, while ergosterol is the major sterol of fungal cell membranes. In human, excess cholesterol forms solid crystals that kill cells or deposit in arteries to initiate atherosclerosis, while depleted cholesterol is a risk factor for primary intracerebral hemorrhage. In Candida albicans and Saccharomyces cerevisiae, ergosterol starvation leads to vacuolar alkalization by inhibiting the activity of V-ATPase. Hence, the regulation of sterol homeostasis is particularly important for various cellular processes.

To date, two types of sterol regulators, including Homo sapiens SREBP (sterol regulatory element binding protein) and S. cerevisiae Upc2 (sterol uptake control), have been identified. Regulatory mechanisms of sterol biosynthesis mediated by these regulators have been well characterized. In mammals, the SREBP precursor containing a typical helix-loop-helix domain and two transmembrane domains (TM) is an endoplasmic reticulum (ER) associated transcription factor, and mediates feedback regulation of cholesterol homeostasis through activation by SREBP cleavage activating protein (SCAP). SCAP possesses eight transmembrane segments in its N terminus that are defined as sterol sensing domain, and multiple WD repeat domains that mediate binding to SREBP in its C-terminus. Under sterol-replete conditions, SCAP directly binds to cholesterol that promotes its interaction with the ER-resident protein Insig (insulin-induced gene) and ultimately allowing for retention of SCAP-SREBP in the ER. However in sterol-depleted cells, the binding of SCAP to Insig is disrupted, and consequently SCAP will then escort SREBP from ER to the Golgi where SREBP is sequentially processed by Site 1 and Site 2 proteases (S1P and S2P) to release the N-terminal transcription factor domain of SREBP from the membrane. The released SREBP is transported into the nucleus as a dimer by importin β, and subsequently binds to the promoters of target genes involved in cholesterol metabolism. In Aspergillus fumigatus, Cryptococcus neoformans and Schizosaccharomyces pombe, the regulatory mechanism mediated by SREBP orthologs (also named SrbA or Sre1/2) is similar to that in mammals, although some components, such as Insig, SCAP or S1/2P, are not required for cleavage of the SREBPs.

In Saccharomyces cerevisiae, ergosterol biosynthesis is mainly modulated by transcription factor Upc2. In S. cerevisiae, Upc2 contains an N terminal zinc finger domain, and a typical C terminal ligand binding domain which can bind to ergosterol directly to sense the cellular ergosterol level, and subsequently modulates ergosterol biosynthesis. When bound with ergosterol, Upc2 forms an inactive conformation, which inhibits its nuclear localization sequence (NLS) function, and thus it is retained in the cytosol. Under ergosterol-deprived conditions, Upc2 dissociates from ergosterol, and is translocated into the nucleus for transcriptional activation of ergosterol-related genes. Mutations in the C terminus of Upc2 abolishes the sterol binding and increases its transcriptional activity, which leads to resistance to sterol biosynthesis inhibitors (SBIs)12–16. SBIs inhibit activity of cytochrome P450, leading to decreased ergosterol production and increased toxic intermediates catalyzed by ERG3.

Fusarium graminearum is the major causal agent of Fusarium head blight (FHB), which is a devastating disease of cereal crops worldwide. In addition to the yield loss caused by the disease, mycotoxins deoxynivalenol (DON) and its derivatives, produced by F. graminearum in infested grains, represent a serious threat to human and animal health. In the field, management of FHB is mainly dependent upon fungicide application due to the lack of highly resistant plant cultivars. Sterol synthesis inhibitors (azole drugs) have been applied for the control of FHB for more than 30 years, yet highly azole-resistant F. graminearum strains have not been detected in nature, in contrast to resistance that arises in other pathogenic fungi, including Mycosphaerella graminicola, Blumeria graminis, A. fumigatus, and C. albicans. Thus, we are interested in exploring the regulatory mechanism of ergosterol biosynthesis in F. graminearum.

Here, we show that deletion of the SREBP or Upc2 orthologs in F. graminearum does not lead to a change in azole sensitivity. We screen a F. graminearum mutant library and find a potential transcription factor FgSR that regulates sterol biosynthesis. We further confirm that FgSR binds to the promoters of several ergosterol biosynthesis genes. Surprisingly, the localization of FgSR is not altered under ergosterol-depleted conditions, which is different from what is known for Upc2 in budding yeast. FgSR is subject to phosphorylation by a mitogen-activated protein (MAP) kinase FgHog1, and phosphorylated FgSR interacts with chromatin-remodeling complex SWI/SNF. FgSR orthologs exist only in Sordariomycetes and Leotiomycetes fungi. Our study therefore identifies a novel regulatory mechanism of sterol biosynthesis, and provides new cues for management of this devastating pathogen.
FgSR contains a typical Zn(II)2-Cys6 zinc finger domain and a fungal specific transcription factor domain (Fig. 1d). Although FgSR contains similar domains with Upc2 and Ecm22 (a Upc2 paralog), it shares only 4.26% and 6.32% amino acid identity with Upc2 and Ecm22, respectively. Moreover, FgSR could not complement the sensitivity of yeast Upc2 and Ecm22 mutants toazole compounds (Supplementary Fig. 2a, b), indicating that FgSR is not functionally homologous to Upc2. Confocal microscopic examination revealed that FgSR is localized exclusively in the nucleus (Fig. 1e), which is also different from Upc2. Upc2 is translocated from the cytosol into the nucleus allowing for transcription activation of ergosterol-related genes under the ergosterol-deprived conditions\(^{14,28}\). These results indicate that FgSR serves as a novel transcription factor responsible for ergosterol biosynthesis in \(F.\ graminearum\).

In addition, to confirm that the phenotypic changes observed in the mutant resulted from deletion of FgSR, the mutant was complemented with a wild-type FgSR-GFP fusion construct under the control of its native promoter (Supplementary Fig. 3). The defects of \(\Delta\)FgSR in mycelial growth, sensitivity to azole compounds and ergosterol accumulation were complemented by genetic complementation with the wild-type FgSR-GFP (Fig. 1a–c).

Fig. 1 Transcription factor FgSR regulates ergosterol biosynthesis in \(F.\ graminearum\). a Comparisons in colony morphology among the wild-type PH-1, \(\Delta\)FgSR and the complemented transformant \(\Delta\)FgSR-C grown on PDA, CM, or MM. b \(\Delta\)FgSR displayed increased sensitivity to azole compounds but not to the compounds targeting the high osmolarity glycerol (HOG) pathway. A 5-mm mycelial plug of each strain was inoculated on PDA alone or supplemented with 5 \(\mu\)g ml\(^{-1}\) triadimefon, 0.25 \(\mu\)g ml\(^{-1}\) tebuconazole, 10 \(\mu\)g ml\(^{-1}\) iprodione or 0.1 \(\mu\)g ml\(^{-1}\) fludioxonil, and then incubated at 25 °C for 2 days. c Relative abundance of ergosterol in each strain after growth in YEPD for 36 h. Data presented are the mean ± s.d. (\(n=3\)). Bars followed by the same letter are not significantly different according to a Fisher’s least significant difference (LSD) at \(P=0.01\). d The FgSR amino acid sequence shows a typical Zn(II)2-Cys6 zinc finger domain and a fungal specific transcription factor domain identified using the SMART protein database (http://smart.embl-heidelberg.de) and the NCBI protein database (https://blast.ncbi.nlm.nih.gov/Blast.cgi). e FgSR-GFP localized to the nucleus. Bar = 10 μm.
Fig. 2 FgSR enriches at the promoters of three FgCYP51 genes and regulates their transcription in F. graminearum. a The transcription of FgCYP51A and FgCYP51B was regulated by FgSR, whereas, expression of FgCYP51C was modulated by FgSR only under the ergosterol-absent condition. Each strain was cultured in YEPD for 36 h, and then treated with 2.5 μg ml⁻¹ tebuconazole for 6 h (left panel). ∆FgErg4 was used to mimic the ergosterol-absent condition (right panel). The expression level of each FgCYP51 in PH-1 without treatment was referred to 1 and the FgACTIN gene was used as the internal control for normalization. Data presented are the mean ± s.d. (n = 3). Bars followed by the same letter are not significantly different according to a LSD test at P = 0.01. b FgSR binds to the promoters of three FgCYP51 genes, but the enrichment of FgSR at FgCYP51A and FgCYP51B is more than that at FgCYP51C. Each strain was incubated in YEPD liquid medium for 36 h. ChIP- and input-DNA samples were quantified by quantitative PCR assays with primers amplifying different regions indicated on the diagram of each FgCYP51 promoter. A control reaction was processed in parallel with rabbit IgG and PH-1 transformed only with GFP used as a negative control.

examined the transcription of 14α-demethylase FgCYP51 genes that encode a key enzyme in sterol biosynthesis. F. graminearum contains three paralogous CYP51 genes, FgCYP51A, -B, and -C. Quantitative reverse transcription PCR (qRT-PCR) assays showed that expression of FgCYP51A and FgCYP51B, but not FgCYP51C was down-regulated significantly in ∆FgSR under both azole treatment and non-treatment conditions (Fig. 2a). Furthermore, the transcription of FgCYP51A and -B was greatly induced in the wild type but not in ∆FgSR after treatment with theazole compound tebuconazole (Fig. 2a), but not with iprodiene and fluodixonil, compounds with other modes of action (Supplementary Fig. 4). In addition, we tested the transcription of FgCYP51 genes under the ergosterol-depleting conditions. Our previous study showed that the FgERG4 deletion mutant (∆FgErg4) completely loses the ability to synthesize ergosterol since Erg4 catalyses the conversion of ergosta-5,7,22,24-tetraenol to ergosterol in the final step of ergosterol biosynthesis. In this study, ∆FgErg4 was therefore used to mimic the ergosterol-absent condition. As shown in Fig. 2a, the transcription levels of CYP51A and -B were elevated dramatically in ∆FgErg4 but not in the double mutant ∆FgErg4-FgSR. It is worthy to note that the transcription level of CYP51C was also significantly up-regulated in ∆FgErg4, but not in the double mutant ∆FgErg4-FgSR (Fig. 2a). These results indicate that FgSR regulates the expression of all three FgCYP51 genes under the ergosterol-depleting conditions.

To further verify that FgSR regulates transcription of FgCYP51 genes, we determined the binding ability of FgSR to the promoters of FgCYP51 genes in vivo using chromatin immunoprecipitation and quantitative PCR (ChIP-qPCR) assays. FgSR fused with GFP was transferred into ∆FgSR to serve as the positive strain. In addition, a strain transformed with GFP alone was used as a negative control. ChIP-qPCR analyses showed that FgSR was able to bind to the promoters of FgCYP51A, -B and -C although the enrichment of FgSR at the promoter of FgCYP51C was less obvious than that at the promoter of FgCYP51A or FgCYP51B (Fig. 2b). The low enrichment at the FgCYP51C promoter is consistent with the observation that FgCYP51C transcription was regulated by FgSR only under ergosterol-absent conditions (Fig. 1c; Fig. 2a). As a control, the GFP enrichment at conditioned ChIP-qPCR was used as a negative control.
FgCYP51A promoter in the negative control strain (Fig. 2b) was undetectable, confirming that enrichment determination of FgSR at the promoters of CYP51A is reliable. Taken together, these results indicate that FgSR binds to the promoters of FgCYP51 genes and regulates the transcription of FgCYP51 genes in F. graminearum.

FgSR is phosphorylated by FgHog1 and interacts with SWI/SNF. Under tebuconazole treatment or the lack of FgERG4, the transcription of FgCYP51A and -B was induced dramatically (Fig. 2a; Supplementary Fig. 5a), but the localization, transcription, and protein accumulation of FgSR were not altered under these conditions (Fig. 1d; Supplementary Fig. 5a–c). Moreover, the enrichment of FgSR at the promoter of FgCYP51A was not induced after treatment with tebuconazole for 1, 2, 4, and 6 h or by deletion of FgERG4 (Supplementary Fig. 5d). The result suggests that other components may be required for regulating transcription of FgCYP51A and -B by FgSR under the ergosterol-deprived condition. To test this hypothesis, we screened a F. graminearum cDNA library with the yeast two-hybrid (Y2H) approach, and identified 67 potential FgSR-interacting proteins (Supplementary data 1). One interaction protein was the FgSsk2 MAPKK kinase, and the FgSSK2 mutant showed increased sensitivity to tebuconazole (Fig. 3a). Furthermore, the association between FgSR and FgSsk2 was confirmed by the Y2H and co-immunoprecipitation (Co-IP) assays (Supplementary Fig. 6a, b), but the direct interaction between FgSR and FgSsk2 was not confirmed by BiFC assay (Supplementary Fig. 6c). Given that FgSsk2 usually functions via the MAPK HOG cascade FgSsk2-FgPbs2-FgHog1 in F. graminearum, we further determined the sensitivity of FgPbs2 and FgHog1 mutants to tebuconazole, and found that ΔFgPbs2 and ΔFgHog1 showed increased sensitivity to tebuconazole similar with ΔFgSsk2 (Fig. 3a). Further, deletion of FgSsk2, FgPbs2 or FgHOG1 dramatically decreased the expression level of FgCYP51A (Supplementary Fig. 6d). Moreover, FgSR5A could not be phosphorylated by FgHog1 in vitro (Fig. 3i). In contrast, FgSR-C5D shows similar phenotypes with the wild type under tebuconazole treatment (Fig. 3a, b; Supplementary Fig. 6d), indicating that phosphorylation of FgSR is required for activating FgCYP51A gene expression. We further explore the function of each phosphorylation site, and found that the mutants carrying the individual phospho-inactive site did not display increased sensitivity to tebuconazole (Supplementary Fig. 7c), indicating that the five phosphorylation sites of FgSR may share redundant roles. Collectively, these results indicate that FgHog1 phosphorylates FgSR and phosphorylation of FgSR is required for regulating expression of FgCYP51A.

The SWI/SNF complex utilizes the energy of ATP hydrolysis to mobilize nucleosomes and remodel chromatin, which regulates transcription of genes located at nucleosome-bound regions. Based on the cDNA library screening assay, we found that FgSR interacted with FgSwp73 that is a homolog of S. cerevisiae SWP73, which is a key subunit of the SWI/SNF complex for transcriptional regulation of SWI/SNF36, since we were unable to delete FgSwp73 after obtaining more than 300 ectopic strains. FgSwp73 is an essential gene in the SWI/SNF complex to activate transcription of FgCYP51A. The interaction of FgSR and FgSwp73 was confirmed by the Y2H approach and Co-IP assays (Fig. 4a, b). Moreover, the interaction of FgSR and FgSwp73 was enhanced under tebuconazole treatment (Fig. 4b). To explore whether FgSwp73 is involved in the transcriptional regulation of FgCYP51A under the treatment with tebuconazole, we first detected the enrichment of FgSwp73, and found that enrichment of FgSwp73 at the FgCYP51A promoter could be induced by tebuconazole in the wild type but not in ΔFgSR (Fig. 4c). Second, we deleted another key subunit of SWI/SNF complex FgArp9 which is also responsible for transcriptional regulation of SWI/SNF36, since we were unable to delete FgSwp73 after obtaining more than 300 ectopic transformants from five independent transformation experiments. As shown in Fig. 4d, e, ΔFgArp9 showed increased sensitivity to tebuconazole and the expression of FgCYP51A in ΔFgArp9 was significantly lower than that in the wild type after tebuconazole treatment. Third, the enrichment of FgArp9 at the FgCYP51A promoter also relied on FgSR (Fig. 4c). Fourth, the enrichment of histone H3 at the promoter of FgCYP51A significantly elevated in ΔFgSR and ΔFgArp9, indicating nucleosome occupancy at the FgCYP51A promoter is controlled by SWI/SNF and is associated with FgCYP51A transcription (Fig. 4f). These results indicate that the SWI/SNF complex interacts with FgSR during the transcriptional regulation of FgCYP51A.

Interestingly, the mutated FgSRΔT282/S92A/S102A/T217A/S305A could not interact with FgSwp73, indicating that the phosphorylation of FgSR is required for the interaction of FgSR and FgSwp73 (Fig. 4a, b). Further, we found that the ΔFgSsk2, ΔFgHog1, and ΔFgSR-C5A, the enrichments of FgSwp73 and FgArp9 at the FgCYP51A promoter were reduced and the
enrichment of histone H3 at the promoter of *FgCYP51A* is increased (Fig. 4c, f). These results suggest that the phosphorylation of FgSR is required for the interaction with the SWI/SNF complex.

FgSR forms a homodimer and binds to the target gene promoters. In the cDNA library screening assay, we found that FgSR interacts with itself (Supplementary data 1), indicating that FgSR may form a homodimer. We further confirmed FgSR homodimerization by using the Y2H, Co-IP, and BiFC assays (Fig. 5a–c). Subsequently, we tried to identify the functional domain in FgSR that is required for homodimerization. As shown in Fig. 5a, the Y2H assays with a series of truncated FgSRs revealed that the middle linker (ML) domain between zinc finger and fungal specific transcription factor domains is essential for homodimerization of FgSR. BiFC and Co-IP assays also confirmed the requirement of ML domain for the formation of FgSR homodimer. We further confirmed FgSR homodimerization by using the Y2H, Co-IP, and BiFC assays (Fig. 5a–c). Subsequently, we tried to identify the functional domain in FgSR that is required for homodimerization. As shown in Fig. 5a, the Y2H assays with a series of truncated FgSRs revealed that the middle linker (ML) domain between zinc finger and fungal specific transcription factor domains is essential for homodimerization of FgSR. BiFC and Co-IP assays also confirmed the requirement of ML domain for the formation of FgSR homodimer.
homodimer (Fig. 5b, c). Phenotypic characterization of the strain lacking the ML domain (ΔFgSR-ΔML) showed that, similar to ΔFgSR and the strain lacking the zinc finger (ZF) domain (ΔFgSR-CΔZF), ΔFgSR-CΔML displayed the defects in response toazole compounds, ergosterol biosynthesis, induction of FgCYP51A expression by tebuconazole treatment (Fig. 5d–f), although FgSRΔML-GFP localizes in nucleus (Fig. 5g). ChIP-qPCR assay showed that similar to ΔFgSR-CΔZF, FgSRΔML could not bind to the promoter of FgCYP51A (Fig. 5h). Previous studies have found that zinc finger transcription factor usually forms dimer to bind target sequence and the domain which is required for dimerization is primarily located in the C-terminus next to the...
DNA binding domain. These results indicate that the homodimerization of FgSR mediated by the ML domain is required for its binding to the target gene promoter.

FgSR targets multiple genes involved in ergosterol biosynthesis. To evaluate whether other ergosterol biosynthetic genes are also regulated by FgSR, we performed a genome-wide ChIP-Seq assay in two independent experiments, and found that FgSR bound to the 1-kb promoter region upstream of 119 open reading frames (ORFs) (Supplementary Fig. 8a; Supplementary data 2). The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that these 119 genes are mainly involved in steroid and terpenoid backbone biosynthesis, metabolism of tryptophan, glyoxylate and dicarboxylate, the phagosome, and valine, leucine and isoleucine degradation (Supplementary Fig. 8b). In addition, we conducted ChIP-qPCR assays with three selected genes, FgCTK1 (FGSG_13888), FgERG6A (FGSG_05740), and FgERG6B (FGSG_02783), to verify ChIP-Seq data (Supplementary Fig. 8c). Consistently, qRT-PCR assays showed that the expression levels of these genes were significantly down-regulated in ΔFgSR (Supplementary Fig. 8d).

Among the 119 genes bound by FgSR, 20 are involved in ergosterol biosynthesis (Supplementary data 2). ChIP-qPCR assays verified that FgSR was able to bind to the promoter of each of these genes (Fig. 6a). Moreover, the RNA-Seq assay showed that 14 out of these 20 genes were down-regulated in ΔFgSR (Fig. 6a; Supplementary data 3). Consistent with this observation, ΔFgSR displayed increased sensitivity to multiple SBIs, which target different sterol biosynthetic enzymes (Fig. 6a, b). Overall, these results strongly indicated that FgSR is a master transcriptional factor in the ergosterol biosynthesis pathway.

Identification of the cis-element of FgSR. To identify the FgSR-binding cis-element in the target promoters, we analyzed five ergosterol-related genes (FgCYPS1A, FgCYPS1B, FgERG6A, FgERG6B, and FgCTK1) using the multiple EM for motif elicitation (MEME) program. These five genes were down-regulated in RNA-Seq and bound by FgSR in ChIP-Seq data. The MEME
Fig. 6 FgSR is a master regulator of ergosterol biosynthesis in *F. graminearum*. **a** ChIP-Seq and -qPCR assays showed that FgSR binds to the promoters of 20 ergosterol biosynthesis genes indicated in blue. RNA-Seq further confirmed that 14 out of the above 20 genes were down-regulated in the ΔFgSR mutant. FgACTIN was used as a negative control in the ChIP-qPCR assay. ChIP- and input-DNA samples were quantified by quantitative PCR assays with the primer pair A2 indicated in Fig. 2b, and rabbit IgG was used as a control. The red arrow indicates the gene direction from 5′ to 3′. The green bar represents the gene promoter region, which is covered during ChIP-Sequencing. “black dashed line” indicates no change in gene transcription determined by the RNA-Seq assay (Supplementary data 3). The sequences below the kurtosis graphs represent the cis-elements within the promoters of the 20 ergosterol pathway genes identified by MEME analysis. Values on the bars followed by the same letter are not significantly different at *P* = 0.01. **b** FgSR regulates *F. graminearum* sensitivity to sterol biosynthesis inhibitors (SBIs) targeted to different biosynthetic enzymes. A 5-mm mycelial plug of each strain was inoculated on PDA supplemented with 5 μg ml⁻¹ nattifine, 0.5 μg ml⁻¹ terbinafine, 5 μg ml⁻¹ fluvastatin, 5 μg ml⁻¹ lovastatin, 10 μg ml⁻¹ spiroxamine, 5 μg ml⁻¹ tridemorph, or 0.25 μg ml⁻¹ prochloraz and then incubated at 25 °C for 3 days. As a control, each strain was cultured on PDA without supplementation.
analysis identified a predicted 16-bp cis-element containing two CGAA-repeated sequences (indicated by black squares in Fig. 7a), which is consistent with that provided by the ChIP-Seq analysis (Supplementary Fig. 8e). Further analysis revealed that this cis-element existed in the promoters of 64 (54%) FgSR-binding genes identified from the ChIP-Seq assay including 20 sterol biosynthesis genes (Fig. 6a; Supplementary data 2).

To determine whether this cis-element is essential for transcription of FgCYP51A regulated by FgSR in vivo, we constructed cis-element-deleted (ΔFgCYP51A::P1-FgCYP51A) or -mutated (ΔFgCYP51A::P2-FgCYP51A and ΔFgCYP51A::P3-FgCYP51A) strains displaying increased sensitivity to tebuconazole. In the strains ΔFgCYP51A::P1-FgCYP51A, ΔFgCYP51A::P2-FgCYP51A, and ΔFgCYP51A::P3-FgCYP51A, the expression of FgCYP51A was reduced and could not be induced by the treatment with 2.5 μg ml⁻¹ tebuconazole. The expression level of FgCYP51A in the wild type without treatment was set to 1. A ChIP-qPCR assay revealed that FgSR could not bind to the FgCYP51A promoter lacking the cis-element or containing a mutated cis-element. ChIP- and input-DNA samples were quantified by quantitative PCR assays with the primer pair A2 indicated in Fig. 2b; rabbit IgG was used as a control. Data presented are the mean ± s.d. (n = 3). Bars followed by the same letter are not significantly different according to a LSD test at P = 0.01. FgSR binds to the cis-element in the FgCYP51A promoter as indicated by yeast one-hybrid (Y1H) assays. The native FgCYP51A promoter (pAbAi-P0), cis-element-deleted and mutated FgCYP51A promoters (pAbAi-P1 to -P3) or the two repeats of the cis-element (pAbAi-P4) was used as a bait, and the pGADT7-FgSR as the prey. g Verification of the binding of FgSR with the cis-element by electrophoretic mobility shift assay (EMSA). Lane 1 and 2, biotin-labeled motif of P0 (as indicated in Fig. 7b) without FgSRN1-158 (lane 1) or with FgSRN1-158 (lane 2); lane 3–5, biotin-labeled motif of P0 with 100 fold excess of unlabelled motif of P0 (lane 3), unlabeled mutated motif of P2 (lane 4), unlabeled mutated motif of P3 (lane 5) with FgSRN1-158; lanes 6 and 7, biotin-labeled mutated motif of P2 and P3 respectively with FgSRN1-158.
in vitro. Briefly, the full-length cDNA of FgSR was fused into the GAL4 activation domain in the vector pGADT7. The 1000-bp FgCYP51A promoter containing the P0 (the wild-type cis-element), or the mutated P1, P2, or P3 cis-elements were cloned into the pAbA1 vector (Fig. 7b). Y1H assays showed that FgSR was able to directly interact with the 1-kb FgCYP51A promoter region carrying the wild-type cis-element (P0), but did not bind to the promoter containing a deleted or mutated cis-element P1, P2 or P3 (Fig. 7f). Moreover, FgSR bound to P4, a sequence that contained only the two repeats of the cis-element, confirming that the binding of FgSR with the cis-element was independent of other sequences in the FgCYP51A gene promoter. In addition, we obtained the FgSR1, FgSR2, FgSR3, FgSR4 (containing the ZF and ML domains)-His recombinant protein. Consistently, EMSA confirmed that FgSRN1 binds the identified motif (Fig. 7g). Taken together, these results confirmed that this cis-element is required for the binding of FgSR to promoters of sterol biosynthesis genes.

Given that FgSR is different from SREBP and Upc2 orthologs in protein structure or the regulatory mechanism for sterol biosynthesis, we searched FgSR orthologs in 27 eukaryotic species belonging to five subphyla and ranging from the fungus S. cerevisiae to the mammal H. sapiens. As shown in Fig. 8a, FgSR and its orthologs were conserved in the Sordariomycetes and Leotiomycetes, which are phylogenetically closely related Ascomycota based on analysis of the conserved RNA polymerase II subunit RPB2. Moreover, MEME analysis of 41 CYP51 (also named as ERG11) orthologs from 27 eukaryotic species uncovered that the FgSR-binding cis-element only existed in Sordariomycetes and Leotiomycetes fungi, indicating an ancestral relationship for FgSR homologs and their corresponding cis-elements (Fig. 8a; Supplementary Table 1). Further, we knocked out FgSR orthologs in the Sordariomycetes fungus Fusarium oxysporum and the Leotiomycetes fungus Botrytis cinerea, and found that the mutants displayed increased susceptibility to SBIs but not to other antifungal compounds (Fig. 8b; Supplementary Fig. 9). These results indicate that FgSR homologs are a novel class of transcription factors, and they regulate ergosterol biosynthesis in Sordariomycetes and Leotiomycetes fungi.

FgSR is indispensable for virulence in F. graminearum. Given that F. graminearum is an important pathogen on various cereal crops21, we therefore were interested in evaluating virulence of ΔFgSR on flowering wheat heads and corn silks. As shown in Fig. 9a, scab symptoms caused by ΔFgSR were restricted to the inoculated spikelets fifteen days after inoculation. On the other hand, the wild type and the FgSR-complemented strains caused serious scab symptoms on wheat heads under the same condition. Similar results were observed in corn silk infection assays. In comparison with extensive necrosis in the wild type, ΔFgSR only caused limited necrosis and discoloration near the inoculation sites four days after inoculation (Fig. 9b). These results indicate that FgSR is required for full F. graminearum pathogenicity.

Our study found that deletion of FgSR reduced ~50% growth, but caused a dramatic decrease in virulence (Fig. 9a, b). We were therefore interested in exploring the mechanism of reduced virulence in ΔFgSR. DON, as an important virulence factor, plays crucial roles in the spread of F. graminearum within host plants18,38. Determination of DON accumulation showed that DON accumulation on sterilized wheat kernels inoculated with ΔFgSR was 85% lower than the wild type at 20 days after inoculation (Fig. 9c). Likewise, the transcription of DON biosynthesis genes FgTRI1, FgTRI6, and FgTRIB, as shown by qRT-PCR, was decreased in ΔFgSR in culture under the trichothecene biosynthesis inducing (TBI) conditions39 (Fig. 9d). These results indicate that the decreased virulence of ΔFgSR may at least partially result from the fact that the mutant produced less DON.

Two-benzoxazolinone (BOA) is a major phytoalexin produced by wheat during defense response to various biotic stresses40. Previous studies found that the degradation of the benzoxazolone class of phytoalexins is important for virulence of Fusarium11. Interestingly, we found that ΔFgSR was hypersensitive to BOA (Fig. 9e). To explore the response to BOA regulated by FgSR, we knocked out six genes that may be responsible for detoxification of BOA in F. graminearum41, and found that FgFDB1, −2, and −3 mutants showed increased sensitivity to BOA (Fig. 9e), which indicate that FgFDB1/2/3 play important roles in BOA detoxification. Further, qRT-PCR assays revealed that the transcription of FgFDB1, −2, and −3 was significantly reduced in ΔFgSR (Fig. 9f). In addition, the FgFDB1, −2, and −3 mutants displayed decreased virulence on wheat head (Fig. 9a, b). These results indicated that the defect in scavenging the phytoalexin contributes to reduced virulence of the ΔFgSR mutant.

During infection by plant pathogenic fungi, DNA damage stress triggered by plant defense responses such as increased levels of reactive oxygen species or reactive nitrogen species, pose a threat to successful infection of pathogens12,43. Thus, we determined the sensitivity of ΔFgSR to the DNA damage agents 4-nitroquinoline 1-oxide (4-NQO) and hydroxyurea (Hu), and found that this mutant displayed greatly increased sensitivity to these compounds (Fig. 9g). Further, we selected five genes involved in DNA replication based on the ChiP-Seq data (Supplementary data 2), and confirmed enrichment of the FgSR cis-element at the promoters of these five genes (Fig. 9h). Moreover, qRT-PCR assays showed that these five genes could be up-regulated by 4-NQO treatment in the wild type but not in ΔFgSR (Fig. 9i). These results indicated that FgSR may control virulence at least in part by regulating the response to DNA damage stress during infection.

Discussion

In this study, we identified a novel sterol biosynthesis regulator FgSR in F. graminearum. FgSR is structurally different from the SREBP and Upc2 orthologs used to regulate sterol biosynthesis in other fungi. Moreover, both the SREBP and Upc2 homologs are retained in F. graminearum, but no longer function in regulating sterol biosynthesis. Importantly, FgSR employs a unique regulatory mechanism, different from SREBP and Upc2, in modulating sterol biosynthesis in F. graminearum. Consistently, the FgSR binding cis-element DNA sequence is also distinct from those of Upc2 and SREBP44,45 (Fig. 8a). Phylogenetic analysis showed that FgSR orthologs are conserved only in Sordariomycetes and Leotiomycetes fungi. As experimental support of conserved function, deletion of FgSR homolog in F. oxysporum (a Sordariomycetes fungus) and in B. cinerea (a Leotiomycetes fungus) led to increased sensitivity to SBIs. Interestingly, the binding cis-element for FgSR also exists in the promoters of relevant genes only in Sordariomycetes and Leotiomycetes fungi, indicating that FgSR orthologs and their cognate cis-elements arose together in a common evolutionary ancestor. These results indicate that FgSR homologs functionally displace the Upc2 and SREBP and serve as a novel class of sterol biosynthesis regulator in Sordariomycetes and Leotiomycetes.

The regulatory mechanism of sterol biosynthesis mediated by the transcription factor SREBP in most fungi and metazoa, or Upc2 in Saccharomyces, has been well characterized13,46. In the current study, we found that FgSR possesses a novel mechanism for regulating sterol biosynthesis (Fig. 10), which differs from SREBP and Upc2 orthologs. First, FgSR has a stable presence in the nucleus, which is independent of treatment with

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09145-6 | www.nature.com/naturecommunications
Fig. 8 FgSR homologs and their binding cis-element are highly conserved in *Sordariomycetes* and *Leotiomycetes* fungi. **a** FgSR orthologs share high homology in *Sordariomycetes* and *Leotiomycetes* fungi, and the FgSR-binding cis-elements within the 1.2-kb promoters of the CYP51 orthologous genes were also detected only in these fungi. The phylogenetic tree was constructed based on the amino acid sequences of RPB2 from 27 eukaryotic species with Mega 5.0 using the neighbor-joining method. The bootstrap values from 1000 replications are indicated on the branches. The homology among FgSR orthologs from 27 species were analyzed using the BLASTMatrix tool on the Comparative Fungal Genomics Platform (http://cfgp.riceblast.snu.ac.kr/). The depth of blue color on the right indicates the level of homology with FgSR. **b** Deletion of the FgSR ortholog in the *Sordariomycetes* fungus *Fusarium oxysporum* led to elevated sensitivity to sterol biosynthesis inhibitor (SBIs). A 5-mm mycelial plug of each strain was inoculated on PDA alone or supplemented with a SBI compound, and then incubated at 25 °C for 2 days. The non-sterol biosynthesis inhibitors, iprodione and pyrimethanil, were used as a control.
an azole compound or ergosterol starvation. Conversely, the homologous SREBP proteins from *H. sapiens*[^24], *A. fumigatus*[^11], *C. neoformans*[^48], and *S. pombe*[^9], are transferred into nucleus only after their N terminus are released from membrane attachment under conditions of low intracellular sterol. Similarly in *S. cerevisiae*, Upc2 is trafficked into the nucleus following treatment with sterol-depleting drugs and disassociation of its LBD with ergosterol[^14]. Second, cellular FgSR protein levels are not altered by treatment with tebuconazole or by depleting the concentration of ergosterol. In contrast, the transcription and translation of Upc2 is up-regulated under the sterol-deprived condition created by the treatment of lovastatin, that is a competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and mimics ergosterol starvation in cells[^12]. Third, FgSR protein levels bound at the promoters of target genes do not increase under ergosterol-deprived conditions. Unlike FgSR, Upc2 protein levels at target gene promoters dramatically increased after the treatment with lovastatin in *S. cerevisiae*[^12]. Fourth, phosphorylation of FgSR mediated by the HOG pathway kinase regulates its activity and its interaction with the SWI/SNF complex. However, post-translational modification is not reported for transcriptional activation of SREBP and Upc homologs. The transcriptional activation of SREBP and Upc2 homologs both rely on the change of localization from cytosol to nucleus[^48]. Finally, in *S. pombe*, *S. cerevisiae*, *C. neoformans*, and *C. albicans*, Hog1 homologs suppress the transcription of ergosterol biosynthesis genes, subsequently the Hog1 mutants showed reduced sensitivity to theazole compound[^49]. In *F. graminearum*, however, we find that the kinases of HOG pathway positively regulates the transcription of ergosterol biosynthesis genes. Taken together,
transcriptional activation of FgSR in *F. graminearum* is dependent on phosphorylation, which is different from what is known for SREBP and Ucp2.

In eukaryotes, phosphorylation of transcription factors mediated by various kinases have been found to regulate their DNA binding ability and protein accumulation. In mammalian systems, phosphorylation of the runt-related transcription factor (RUNX3) at the threonine 173 (T173) residue disrupts its DNA binding activity. In *Arabidopsis thaliana*, phosphorylation of *Arabidopsis* seed-shattering 4-related 3 (Asc3) by MEK4 (MAPK-activated MPK4), and phosphorylation of trihelix transcription factor of glucocorticoid receptor (GR) binds the 5′-binding site of glucocorticoid response element (CRE) results in decreased GR-mediated transactivation. In fission yeast, phosphorylation of SpSre1 (a SREBP homolog) by Hph2, a member of the casein kinase family, reduces its protein quantity by accelerating its degradation. In this study, we discovered that phosphorylation of FgSR mediated by the MAP kinase FgHog1 did not alter protein accumulation or DNA binding ability of FgSR to its target promoters under ergosterol-depleted conditions. Additionally, we found that the strain ΔFgSR-C5A was more sensitive to tebuconazole than ΔFgHog1. The transcription of *FgCYP51* was more strongly induced in ΔFgHog1 under the tebuconazole treatment, and partial phosphorylated FgSR presented in ΔFgHog1 (Fig. 3a, b, e), which indicates that other kinase(s) besides the predominant FgHog1 may also be involved in phosphorylation of FgSR.

Surprisingly, we found that the phosphorylated FgSR interacts with the SWI/SNF complex to regulate target gene transcription. In mammalian, activator protein 1 (AP1), as a cooperative transcription factor of glucocorticoid receptor (GR) binds the regulatory elements prior to environmental stimuli and subsequently potentiates chromatin accessibility and GR binding. The detailed mechanism of regulating chromatin accessibility is unknown. In this study, we report that the phosphorylated FgSR interacts with the SWI/SNF complex to regulate the transcription of sterol biosynthesis genes upon tebuconazole treatment. Although there are several reports about that transcription factor or histone demethylase may recruit the chromatin remodelling complex or histone modification complex to regulate gene expression in *S. cerevisiae*, rice, and *Arabidopsis*, the function of protein post translational modification in this processing remains unclear.

Previous studies have shown that the regulation of hypoxia is important for fungal virulence and sterol biosynthesis is associated with the hypoxic growth during fungal infection. In *A. fumigatus*, *C. neoformans*, and *C. albicans*, deletion of transcription factor SREBP or Ucp2 causes reduced virulence, which mainly results from decreased growth under hypoxia or the abolishment of hypoxia-induced filamentation. However, deletion of FgSR did not affect vegetative growth in hypoxia although it caused decreased biosynthesis of aurofusarin (Supplementary Fig. 10) which is not required for full virulence in *F. graminearum*. These results suggest that FgSR regulation of virulence may employ a strategy that is different from what is known for Ucp2 and SREBP. In this study, we firstly found that FgSR regulates DON production that is important for disease spread. Farnesyl pyrophosphate (FPP) as the immediate precursor of DON biosynthesis is derived from the isoprenoid biosynthetic pathway, which is also the first step of sterol biosynthesis. Moreover, five isoprenoid biosynthesis genes, which are targeted by FgSR are significantly down-regulated in ΔFgSR (Supplementary Fig. 11). Thus, deletion of FgSR results in decreased FPP biosynthesis, which subsequently leads to reduced DON production. In addition, FgSR also modulates the response to phytoalexin BOA and DNA damage agent 4-NQO. Studies in *Fusarium pseudograminearum* and *C. albicans* have proved that the ability of pathogens to cope with phytoalexins and DNA damage agents plays important roles in their virulence. Therefore, FgSR controls virulence by regulating DON biosynthesis and response to environmental stresses in *F. graminearum*.

In a conclusion, we have identified a novel transcription factor FgSR and its cis-element regulating ergosterol biosynthesis in *F. graminearum*. The ML domain within FgSR controls its DNA binding ability. Furthermore, the phosphorylation of FgSR regulates its transcriptional activity and its interaction with the SWI/SNF complex. Interestingly, phylogenetic and genetic analyses showed that FgSR homologs may serve as a main sterol biosynthesis regulator in *Sordariomycetes* and *Leotiomycetes* fungi. In addition, FgSR also functions in virulence by modulating DON biosynthesis, and fungal responses to phytoalexins and DNA damage.

Methods

Strains and phenotype determination. The wild-type strain PH-1 (NRRL 31084) of *F. graminearum* was used as a parental strain for transformation experiments. Mycelial growth of the wild-type and the resulting transformants were assayed on PDA, CM or MM, and the image were taken three days after inoculation. To determine sensitivity to various stresses, 5-mm mycelial plugs of each strain taken from a 3-day-old colony edge were inoculated on PDA supplemented without/with each stress agent, or under normoxia/hypoxia, then incubated at 25 °C for 2 or 3 days in the dark. The concentrations for each compound were indicated in figure legends. Three biological replicates were used for each strain and each experiment was repeated three times independently.

To determine ergosterol content, mycelia were grown in yeast extract peptone dextrose (YPD) liquid medium for 36 h. The powdered mycelium was combined with 8 ml of 3 M KOH in ethanol and incubated at 80 °C on a shaker in a water bath for 1 h. Extraction mixtures were centrifuged for 15 min at 4000 rpm and the supernatant diluted with 2 ml distilled water. Ergosterol was extracted from the supernatant by two successive applications of 5 ml hexane. The organic fractions were combined and evaporated under nitrogen, then re-suspended in 500 µl of methanol and analyzed for ergosterol content using an Agilent 1100 HPLC system (Palo Alto, CA, USA).

To determine DON production, healthy wheat kernels were soaked in sterile water for 18 h, and then laid on a sieve for 2 h to remove excess water. A 50-g sample of healthy wheat kernels was then sterilized and inoculated with five mycelial plugs of each strain. A negative control was prepared with the wheat kernels inoculated with five agar plugs without mycelium. After incubation at 25 °C for 20 days, 1.5 g portions of grain extract were extracted with 10 ml of
acetone:isooctane:water (86/14/4, v/v) and shaken for overnight. Extracts were purified with a PurifySUSDON column TC-T200 (TriologyAnalytical Laboratory, Washington, MO, USA) and then evaporated to a stream of nitrogen at 40 °C. Finally, the extracts were resolubilized in 2 ml of methanol/water (1/1, v/v) for HPLC analysis using an Agilent 1100 HPLC system (Palo Alto, CA, USA). The amount of \(F. graminearum \) DNA in each sample was used as a reference.

To perform a yeast two-hybrid (Y2H) assay, the \(F. graminearum \) cDNA was cloned into the yeast vector pGBKT7 (Clontech). A pair of Y2H plasmids (pGBKT7 and pGADT7) was used as a negative control. Transformants were grown at 30 °C for 4 days on SD-Leu with 100 ng ml\(^{-1}\) ABA. The interaction of pGADT7-p53 and p53-\(pBA\) plasmids was used as the positive control. Three independent experiments were performed to confirm the YH results.

To construct plasmids for Y2H analyses, the coding sequence of each tested gene was amplified from cDNA of the wheat line with primer pairs indicated in Supplementary data 4. The cDNA fragment was inserted into the yeast GAL4-promoting domain vector pGBK7 and GAL4-activation domain vector pGADT7 (Clontech, Mountain View, CA, USA) separately. The pairs of Y2H plasmids were co-transformed into \(S. cerevisiae \) strain Y2H Gold following the lithium/acetate/single-stranded DNA/polyethylene glycol transformation protocol. In addition, the plasmid pair pGBK7-p53 and pGADT7 served as a positive control. The yeast strains were plated on SD-Leu and pair pGBK7-LacI and pair pGADT7-LacI were used as a negative control.

To search for \(F. graminearum \)-interacting proteins, we performed Y2H screens. \(F. graminearum \) cells were transformed with the cDNA clones interacting with \(F. graminearum \) were further confirmed in selection medium SD-Trp-Leu-His-Ade.

Co-IP assays. The GFP- and 3 × Flag-fusion constructs were verified by DNA sequencing and transformed in pairs into \(P. aeruginosa \). Transformants expressing a pair of fusion constructs were confirmed by western blot analysis. For Co-IP assays, fresh \(F. graminearum \) mycelia (200 mg) were finely ground and suspended in 1 ml of extraction buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 2 mM phenylmethylsulfonyl fluoride (PMSF) containing 10 μl of protease inhibitor cocktail (Sangon Co., Shanghai, China)). After homogenization with a vortex shaker, the lysate was centrifuged at 10,000 × g for 20 min at 4 °C and the supernatant was incubated with the anti-GFP (Chromotec, Mainz, Germany) agarose. Proteins eluted from agarose or from supernatant were analyzed by western blot detection with monoclonal anti-Flag (A9404, Sigma, St. Louis, MO, USA; 1:10,000 dilution), anti-GFP (ab32146, Abcam, Cambridge, UK; 1:20,000 dilution) antibody. The samples were also detected with monoclonal anti-P-p38 (sc-165978, Santa Cruz, CA, USA; 1:2000 dilution) antibody. The samples were also detected with monoclonal anti-Hog1 (H0921, Cell Signaling Technology Inc., Boston, MA, USA; 1:1000 dilution) antibody. The samples were also detected with monoclonal anti-HPH antibody (EM1101, Hangzhou HuaAn Biotechnology co., Ltd.; 1:10,000 dilution) as a reference. After incubation with the secondary antibody anti-rabbit IgG-HRP (sc-2317, Santa Cruz Biotech, Heidelberg, Germany; 1:10,000 dilution) or anti-mouse IgG-HRP (sc-2791, Santa Cruz 315 Biotech, Heidelberg, Germany; 1:10,000, chemiluminescence was detected. The experiment was conducted independently three times. All blots were imaged by the ImageQuant LAS 4000 mini (GE Healthcare) (Supplementary Fig. 12).

Bimolecular fluorescence complementation (BFC) assay. The FgSR-CPF, FgSRΔMM-CPF, FgHog1-CPF, and FgSk2-CPF fusion constructs were generated by cloning the related fragments into pH268. Similarly, the FgNYF and FgNYFΔM-NYP fusion constructs were generated by cloning the related fragments into pH265. A pair of FgNYF-NYP and FgHog1-CPF constructs were co-transformed into \(P. aeruginosa \). Construct pairs of FgNYF-NYP and FgSk2-CPF, FgNYF-CPF and FgSk2-CPF, FgNYFΔM-CPF and FgSk2-CPF, FgHog1-CPF and NYP, FgNYF + CYPF were also co-transformed into \(P. aeruginosa \) to serve as controls. Transformants resistant to both hygromycin and zeocin were isolated and confirmed by PCR, YFP signals were examined with a Zeiss LSM780 confocal microscope (Göttingen, Niedersachsen, Germany). The experiment was conducted independently three times.

Phos-tag analysis. The FgSK-Flag fusion construct was transformed into the wild-type strain PH-1, FgSk2Δs, and FgHog1Δs, respectively. Each protein sample was extracted as described in Co-IP assays. The resulting protein samples were resolved on 8% SDS-polyacrylamide gels prepared with 25 μM Phos binding dye.
Electrophoretic mobility shift assay (EMSA). cDNA encoding the N terminal 1–158 amino acids of FgSr (FgSrN1–158) was amplified and cloned into pET32a vector to generate His-tagged protein. The resulting construct was transformed into E. coli strain BL21 (DE3) after verifying the cDNA sequence. The recombinant FgSrN1–158-His was purified by Ni sepharose beads and eluted by imidazole. Probe DNAs labeled with or without biotin at the 3’ end and their reverse complementary chains were synthesized by ThermoFisher company. For EMSA, we used LightShift™ Chemiluminescent EMSA Kit 20148 (ThermoFisher Company, USA). Reaction mixtures containing purified FgSrN1–158 and biotin-labeled probe were incubated for 20 min at room temperature. The reactions were electrophoresed on 6% polyacrylamide gel in 0.5 x TBE, and transferred to a positively charged nylon membrane (Millipore, USA). Signals were detected using Chemiluminescent Substrate in the kit according to the manufacturer’s instruction. The experiment was conducted independently three times.

In vitro protein-binding and phosphorylation assays. The full length His-FgSr and mutated His-FgSrS79A were expressed in E. coli and purified using Ni sepharose beads by company (Detai Biologics, Nanjing, China). The GST fusion proteins encoding the FgHog1 and FgPbs2 were expressed in E. coli DH5α and purified using glutathione-sepharose beads (GE Healthcare). To test in vitro binding between His- and GST-tagged proteins, 3 μg of GST-tagged protein or GST (negative control) that was still bound to the glutathione beads was mixed with 10 μg of His-tagged protein and rocked for 2 h at 4°C. The beads were washed six times with cold TBS and resuspended in 5 x SDS sample buffer, and GST pull-down proteins were then analyzed by western blotting using the monoclonal mouse anti-GST antibody (A9044, Sigma, St. Louis, MO; 1:10,000 dilution). The experiments were conducted independently three times.

Reporting summary. Further information on experimental design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The 16P-RNASeq data has been deposited in the NCBI BioProject database with accession code PRJNA520738. Other relevant data supporting the findings of the study are available in this article and its Supplementary Information files.

Received: 9 January 2018 Accepted: 20 February 2019 Published online: 15 March 2019

References
1. Wollam, J. & Antebi, A. Sterol regulation of metabolism, homeostasis, and development. Annu. Rev. Biochem. 80, 885–916 (2011).
2. Daum, G., Lees, N. D., Bard, M. & Dickson, R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14, 1471–1510 (1998).
3. Espenshade, P. J. & Hughes, A. L. Regulation of sterol synthesis in eukaryotes. Annu. Rev. Genet. 41, 401–427 (2007).
4. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 99, 331–340 (1999).
5. Zhang, Y. Q. et al. Requirement for ergosterol in V-ATPase function underlies antifungal activity ofazole drugs. PLoS Pathog. 6, e1000399 (2010).
6. Espenshade, P. J. SREBPs: sterol-regulated transcription factors. J. Cell Sci. 119, 973–976 (2006).
7. Rawson, R. B. The SREBP pathway—insights from Insgins and insects. Nat. Rev. Mol. Cell Biol. 4, 631–640 (2003).
8. Lee, S. J. et al. The structure of importin-β bound to SREBP-2: nuclear import of a transcription factor. Science 302, 1571–1575 (2003).
9. Hughes, A. L., Todd, B. L. & Espenshade, P. J. SREBP pathway responds to sterols and functions as an oxygen sensor in fusion yeast. Cell 120, 831–842 (2005).
10. Zhang, J. S. et al. Insg ins regulates HMG-CoA Reductase by controlling enzyme phosphorylation in fusion yeast. Cell Metab. 8, 522–531 (2008).
11. Butler, G. Hypoxia and gene expression in eukaryotic microbes. Annu. Rev. Microbiol. 67, 291 (2013).
12. Davies, B. S., Wang, H. S. & Rine, J. Dual activators of the sterol biosynthetic pathway of Saccharomyces cerevisiae: similar activation/regulatory mechanisms Nat. Genet. 38, 140–144 (2006).
13. Maguire, S. L. et al. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomyces cerevisiae. PLoS. Genet. 10, e1004076 (2014).
14. Yang, H. et al. Structural mechanism of ergosterol regulation by fungal sterol transcription factor Ucp2. Nat. Commun. 6, 6129 (2015).
15. Flowers, S. A. et al. Gain-of-function mutations in UCP2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot. Cell 11, 1289–1299 (2012).
16. Heilmann, C. J., Schneider, S., Barker, K. S., Rogers, P. D. & Morschhäuser, J. An An643T mutation in the transcription factor Ucp2 causes constitutive ERG11 upregulation and increased fluconazole resistance in Candida albicans. Antimicrob. Agents Chemother. 54, 355–359 (2010).
17. Shapiro, R. S., Robbins, N. & Cowen, L. E. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75, 213–267 (2011).
18. Starkey, D. E. et al. Global molecular surveillance reveals novel Fusarium head blight high-yielding wheat lines and trichothecene toxin diversity. Fungal Genet. Biol. 44, 1194–1207 (2004).
19. Pestka, J. J. & Smolinski, A. T. Deoxynivalenol: toxicology and potential effects on humans. J. Toxicol. Environ. Health B 8, 39–69 (2005).
20. McMullen, M., Jones, R. & Gallenberg, D. Scalb of wheat and barley: a re-emerging disease of devastating impact. Plant Dis. 81, 1340–1348 (1997).
21. Dean, R. et al. The Top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).
22. Yin, Y., Liu, X., Li, B. & Ma, Z. Characterization of sterol demethylation inhibitor-resistant isolates of Fusarium asiaticum and F. graminearum collected from wheat in China. Phytopathology 99, 487–497 (2009).
23. Recher, R., Hettwer, U., Karlovsky, P., Deising, H. B. & Wizsel, S. G. R. Adaptation of Fusarium graminearum to tebuconazole yield descendants diverging for levels of fitness, fungicide resistance, virulence, and mycotoxin production. Phytopathology 100, 443–450 (2010).
24. Abdolrasouli, A. et al. Genomic context of azole resistance mutations in Aspergillus fumigatus determined using whole-genome sequencing. MBio 6, e00636 (2015).
25. Godet, F. & Limpert, E. Recent evolution of multiple resistance of Blumeria (Erysiphe) graminis f.sp. tritici to selected DM1 and morpholine fungicides in France. Pest. Manag. Sci. 54, 244–252 (2015).
26. Hughes, B. T. & Espenshade, P. J. Oxygen-regulated degradation of fusion yeast SREBP by Odg1, a polyol hydroxylase family member. EMBO J. 27, 1491–1501 (2008).
27. Sellam, A., Tebbj, F. & Nantel, A. Role of Ndi8p in sterol metabolism and azole resistance in Candida albicans. Eukaryot. Cell 8, 1174–1183 (2009).
28. Marie, C., Leyde, S. & White, T. C. Cytoplasmic localization of sterol transcription factors Upc2p and Ecm22p in S.cerevisiae. Fungal Genet. Biol. 45, 1430–1438 (2008).
29. Liu, X., Jiang, J., Yin, Y. & Ma, Z. Involvement of FgERG4 in ergosterol biosynthesis, vegetative differentiation and virulence in Fusarium graminearum. Mol. Plant Pathol. 14, 71–83 (2013).
30. Zheng, D. et al. The FgHOG1 pathway regulates hyphal growth, stress responses, and plant infection in Fusarium graminearum. PLoS ONE 7, e94995 (2012).
31. Wang, C. et al. Functional analysis of the kinome of the wheat scab fungus Fusarium graminearum. PLoS Pathog. 7, e1002460 (2011).
32. Murakami, Y., Tatebayashi, K. & Saito, H. Two adjacent docking sites in the yeast Hog1 mitogen-activated protein (MAP) kinase differentially interact with the Pbs2 MAP kinase kinase and the Ptp2 protein tyrosine phosphatase. Mol. Cell. Biol. 28, 2481–2494 (2008).
33. Tatebayashi, K., Takekawa, M. & Saito, H. A docking site determining function of the Hog1p MAPK in the yeast HOG pathway. EMBO J. 22, 3624–3634 (2003).
34. Wilson, B. G. & Roberts, C. W. SWI/SNF nucleosome remodelers and cancer. Nat. Rev. Cancer 11, 481–496 (2011).
35. Whitehouse, I. et al. Nucleosome mobilization catalyst by the yeast SWI/SNF complex. Nature 400, 784–787 (1999).
36. Szerlong, H., Saha, A. & Cairns, B. R. The nuclear actin related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 22, 3175–3187 (2003).

37. Näär, A. M. & Thakur, J. K. Nuclear receptor-like transcription factors in chromatin remodeling. Mol. Microbiol. 72, 578–593 (2009).

38. Seong, K. Y. et al. Global gene regulation by NAC transcription factors: insights into the regulation of the yeast cell cycle. J. Biol. Chem. 282, 38173–38178 (2007).

39. Menke, J., Dong, Y. & Kistler, H. C. The nuclear actin related proteins Arp7 and Arp9: a dimeric module that cooperates with architectural proteins for chromatin remodeling. Plant. Plant Microbe. Interact. 25, 1408–1418 (2012).

40. Niemeyer, H. M. Hydroxamic acids derived from 2-hydroxy-2 H-1, 4-oxazoline-3 (4 H)-one: key defense chemicals of cereals. J. Agr. Food Chem. 57, 1697–1706 (2009).

41. Kettle, A. J. et al. Degradation of the benzoxazolinone class of phytoalexins is important for virulence of Fusarium pseudogrimearinum towards wheat. Mol. Plant Pathol. 16, 946–962 (2015).

42. Emery, P., Durand, B., Mach, B. & Reith, W. RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucl. Acids Res. 24, 803–807 (1996).

43. Hao, B. et al. Candida albicans RXF2 encodes a DNA binding protein involved in DNA damage responses, morphogenesis, and virulence. Eukaryot. Cell 9, 627–639 (2010).

44. Liu, Y. et al. Phosphorylation of trihelix transcriptional repressor ASR3 by MAP KINASE4 negatively regulates its transcriptional activity. Proc. Natl Acad. Sci. USA 103, 10299–10304 (2006).

45. Kim, J. B. et al. Dual DNA binding specificity of ADD1/SREBP1 controlled by a single amino acid in the basic helix-loop-helix domain. Nucleic Acids Res. 44, 5709–5720 (2016).

46. Osborne, T. F. & Espenshade, P. J. Evolutionary conservation and adaptation of DNA binding proteins conserved in the eukaryotic kingdom. Genes Dev. 24, 1008–1023 (2010).

47. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

48. Chen, C. D., Liu, O. W. & Madhani, H. D. A link between virulence and homeostatic responses to hypoxia during infection by the human fungal pathogen Cryptococcus neoformans. PLoS Pathog. 3, e22 (2007).

49. Ko, C. et al. Remodeling of global transcription patterns of Cryptococcus neoformans genes mediated by the stress-activated HOG signaling pathways. Eukaryot. Cell 8, 1197–1207 (2015).

50. Hu, L., Fang, Y., Hayafuji, T., Ma, Y. & Furuyashiki, T. Azoles activate Aftl1 mediated transcription through MAP kinase pathway for antifungal effects in fission yeast. Genes Cells 20, 695–705 (2015).

51. Montaña, F. M., Pascual Ahuir, A. & Profi, M. Repression of ergosterol biosynthesis is essential for stress resistance and is mediated by the Hog1 MAP kinase and the Mot3 and Rox1 transcription factors. Mol. Microbiol. 79, 1008–1023 (2010).

52. Li, B. et al. Phosphorylation of trilobal transcriptional repressor ASR3 by MAP KINASE4 negatively regulates Arabidopsis immunity. Plant Cell 27, 839–856 (2015).

53. Huang, L. S. et al. Aurora kinase-induced phosphorylation excludes transcription factor RUNX from the chromatin to facilitate proper mitotic progression. Proc. Natl Acad. Sci. USA 113, 6490–6495 (2016).

54. Marechal, E. et al. Modulation of GT-1 DNA-binding activity by calcium-dependent phosphorylation. Plant Mol. Biol. 40, 373–386 (1999).

55. Brookheart, R. T., Lee, C. Y. & Espenshade, P. J. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis. J. Biol. Chem. 289, 2725–2735 (2014).

56. Biddie, S. C. et al. Transcription factor API1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell. 43, 145–155 (2011).

57. Voss, T. C. et al. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146, 544–554 (2011).

58. Li, C. et al. Concerted genomic targeting of H3K27 demethylase RFeF and chromatin-remodelling ATPase BRM in Arabidopsis. Nat. Genet. 48, 687 (2016).

59. Cheng, S. et al. WOX11 recruits a histone H3K27me3 demethylase to promote gene expression during shoot development in rice. Nucleic Acids Res. 46, 2356–2368 (2018).

60. Sanz, A. B., García, R., Rodríguez-Peña, J. M., Nombela, C. & Arroyo, J. Cooperation between SAGA and SWI/SNF complexes is required for efficient transcriptional responses regulated by the yeast MAPK Slt2. Nucleic Acids Res. 44, 7159–7172 (2016).

61. Wang, B., Ketenbach, A. N., Gerber, S. A., Loris, J. J. & Dunlap, J. C. Neurospora WC-1 recruits SWI/SNF to remodel frequency and initiate a circadian cycle. PLoS Genet. 10, e1004599 (2014).

62. Kowalski, C. H. et al. Heterogeneity among isolates reveals that fitness in low oxygen correlates with Aspergillus fumigatus virulence. MBio 7, 01515–01516 (2016).

63. Synnott, J. M., Guida, A., Mulhern-Haughey, S., Higgins, D. G. & Butler, G. Regulation of the hypoxic response in Candida albicans. Eukaryot. Cell 9, 1734–1746 (2010).

64. Van, T. N., Schäfer, W. & Bornmann, J. The stress-activated protein kinase FgS2 is a key regulator in the life cycle of the cereal pathogen Fusarium graminearum. Mol. Plant Microbe. Interact. 25, 1142–1156 (2012).

65. Yun, Y. et al. Functional analysis of the Fusarium graminearum phosphatase. New Phytopt. 207, 119–134 (2015).

66. Yun, Y. et al. The MAPKK FgMkk1 of Fusarium graminearum regulates vegetative differentiation, multiple stress response, and virulence via the cell wall integrity and high osmolarity glycerol signaling pathways. Environ. Microbiol. 16, 2023–2037 (2014).

67. Zheng, Z. et al. FgFim1, a key protein regulating resistance to the fungicide JS399–19, sexual and sexual development, stress responses and virulence in Fusarium graminearum. Mol. Plant Pathol. 15, 488–499 (2014).

68. Nasmith, C. G. et al. Tri6 Is a global transcription regulator in the phytopathogen Fusarium graminearum. PLoS Pathog. 7, e1002266 (2011).

Acknowledgements
We thank Prof. Jinrong Xu (Purdue University) for providing PFL-1–Hog1-GFP strains, Miss. Shuang Li for technical assistance, and Professor Guohua Zhao for his kind gift of FgPbs2 and FgHog1 mutants. This research was supported by the National Natural Science Foundation for Distinguished Young Scholar (31525020), the National Key R&D Program of China (2017YFC0600900), National Science Foundation (31517945, 31871910, 31801675), China Agriculture Research System (CARS-3–1–15), the Fundamental Research Funds for the Central Universities (2017FZA6014), Dabeinong Funds for Discipline Development and Talent Training in Zhejiang University, China Postdoctoral Science Foundation (2017M620250) and The International Postdoctoral Exchange Fellowship Program. Additional support was provided by award 2014–67013–21561 from the USDA National Institute of Food and Agriculture.

Author contributions
Z.L. conducted most of the experiments. Z.L., Y.Y., and Z.M. designed most of the experiments and directed the project. Y.J. performed chromatin remodeling work; Y.C. performed the analyses of RNA-Seq data; Z.L., Y.Y., Z.M., H.C.K., and P.H. analyzed the data and wrote the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-019-09145-6.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.