Chen, Guangze; Rösner, Malte; Lado, Jose

Controlling magnetic frustration in 1T-TaS2 via Coulomb engineered long-range interactions

Published in:
Journal of physics: Condensed matter

DOI:
10.1088/1361-648X/ac9812

Published: 17/10/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Chen, G., Rösner, M., & Lado, J. (2022). Controlling magnetic frustration in 1T-TaS2 via Coulomb engineered long-range interactions. Journal of physics: Condensed matter, 34(48), 1-7. [485805]. https://doi.org/10.1088/1361-648X/ac9812
Controlling magnetic frustration in 1T-TaS$_2$ via Coulomb engineered long-range interactions

To cite this article: Guangze Chen et al 2022 J. Phys.: Condens. Matter 34 485805

View the article online for updates and enhancements.

You may also like

- Two-dimensional tantalum disulfide: controlling structure and properties via synthesis
 Rui Zhao, Benjamin Grisafe, Ram Krishna Ghosh et al.

- Photoinduced phase transitions in two-dimensional charge-density-wave 1T-TaS$_2$
 Wen Wen, Chunhe Dang et al.

- Friction anomalies at first-order transition spinodals: 1T-TaS$_2$
 Emanuele Panizon, Torben Marx, Dirk Dietzel et al.
Controlling magnetic frustration in 1T-TaS$_2$ via Coulomb engineered long-range interactions

Guangze Chen1, Malte Rösner2 and Jose L Lado1*

1 Department of Applied Physics, Aalto University, 02150 Espoo, Finland
2 Institute for Molecules and Materials, Radboud University, NL-6525 AJ Nijmegen, The Netherlands

E-mail: jose.lado@aalto.fi

Received 7 July 2022, revised 3 September 2022
Accepted for publication 6 October 2022
Published 17 October 2022

Abstract

Magnetic frustrations in two-dimensional materials provide a rich playground to engineer unconventional phenomena. However, despite intense efforts, a realization of tunable frustrated magnetic order in two-dimensional materials remains an open challenge. Here we propose Coulomb engineering as a versatile strategy to tailor magnetic ground states in layered materials. Using the frustrated van der Waals monolayer 1T-TaS$_2$ as an example, we show how long-range Coulomb interactions renormalize the low energy nearly flat band structure, leading to a Heisenberg model which depends on the Coulomb interactions. Based on this, we show that superexchange couplings in the material can be precisely tailored by means of environmental dielectric screening, ultimately allowing to externally drive the material towards a tunable frustrated regime. Our results put forward Coulomb engineering as a powerful tool to manipulate magnetic properties of van der Waals materials.

Keywords: magnetic van der Waals materials, Coulomb engineering, 1T-TaS$_2$

(Some figures may appear in colour only in the online journal)

1. Introduction

Magnetic frustration in quantum systems represents one of the fundamental ingredient to stabilize exotic magnetic order and, ultimately, quantum spin-liquid (QSL) states [1–5]. Interest in QSLs has been fueled by their potential emergent Majorana physics [6], high-temperature superconductivity [7, 8], and use for topological quantum computing [9]. A variety of materials have been proposed as QSL candidates [10–23], yet observing their QSL state is found to be highly sensitive to details of their Hamiltonian. While natural QSL materials are rare and require very precise fine-tuning, engineered materials allow to drastically overcome such challenges. Interestingly, van der Waals QSL candidates such as TaS$_2$ [24–26] and TaSe$_2$ [27] provide versatile platforms for a variety of quantum engineering methods such as straining [28, 29], twisting [30–32], impurity engineering [33–35] as well as Coulomb engineering, that could potentially promote QSL behavior in these materials.

Coulomb engineering [36–38] refers to a strategy to tailor many-body interactions by means of dielectric environments, which is particularly efficient for low-dimensional materials. This is due to the pronounced role of non-local Coulomb interactions, which decisively define many-body properties in low-dimensional systems and which can be simultaneously...
efficiently externally modified. In this way band gaps [38–44] as well as excitonic [38, 43, 45] or plasmonic [46, 47] excitations and even topological properties [48] can be precisely tailored in 2D and 1D systems with the help of (structured) dielectric substrates. Furthermore, Coulomb interactions also play a crucial role in magnetic van der Waals materials, affecting the magnetic exchange between localized magnetic moments. However, up to date, controlling magnetic properties of van der Waals materials via Coulomb engineering has been limited to the example of CrI$_3$ [49].

Here, we put forward Coulomb engineering as a powerful tool to manipulate the ground states of magnetic van der Waals materials. Using the frustrated van der Waals magnet 1T-TaS$_2$ as a prototypical example, we show how substrate screening renormalizes its low-energy electronic dispersion and how this controls the internal magnetic superexchange interactions. Together with direct exchange interactions, this allows to externally and non-invasively tailor the magnetic ground state in the material via changes to its dielectric environment. Importantly, beyond the case of 1T-TaS$_2$ analyzed here, our proposal provides a starting point towards the engineering of artificial magnets via tailored electronic interactions. Ultimately, these results put forward the control of long-range Coulomb interactions as a versatile strategy for quantum matter design.

2. Effective model for monolayer 1T-TaS$_2$

We now elaborate on the material we will focus on in our discussion, 1T-TaS$_2$. 1T-TaS$_2$ hosts a charge-density-wave (CDW) instability leading to the formation of the Star-of-David (SOD) unit cell with 13 Ta atoms at low temperature [24, 50–54]. The CDW as well as spin–orbit coupling (SOC) result in a half-filled narrow band at the Fermi energy, with a bandwidth of a few 10 meV [55]. Together with sizable Coulomb interactions [56] this renders 1T-TaS$_2$ a correlated insulator rather than a simple metal. The electrons form local magnetic moments with $S=1/2$ at each SOD, and interact via exchange and superexchange coupling (figure 1(a)), resulting in potential helical spiral and QSL ground states, as illustrated in figures 1(b) and (c), respectively.

We capture the low energy physics of 1T-TaS$_2$ with a single Wannier orbital model including long-range electronic interactions:

$$H = \sum_{i,j,\sigma} t_{ij} c_{i,\sigma}^\dagger c_{j,\sigma} + U \sum_i n_{i,\uparrow} n_{i,\downarrow} + \sum_{i,j,\sigma,\sigma'} \frac{V_{ij}}{2} n_{i,\sigma} n_{j,\sigma'},$$

where σ and σ' are spin indices, and $n_{i,\sigma} = c_{i,\sigma}^\dagger c_{i,\sigma}$. The hoppings t_{ij} are fitted to density functional theory (DFT) data [56] where we find hoppings up to the 14th neighbor. The hoppings exhibit an oscillating behavior in addition to a decay with distance. This oscillating behavior stems from the nature of the Wannier wavefunctions of this material, and is inherited from the electronic structure from first principles calculations. We parameterize the long-range Coulomb interactions V_{ij} via a modified Yukawa potential of the form

$$V_{ij} = \frac{U}{\sqrt{1 + \left(\frac{2\pi \alpha U r_{ij}}{r_{TF}}\right)^2}} e^{-r_{ij}/r_{TF}},$$

where U is the on-site Coulomb interaction and r_{ij} the distance between sites i and j. The included Ohno potential [44, 57] results in a r^{-1} long-wavelength behavior, which is further suppressed by the exponential term controlled by an effective screening length r_{TF}. This way, the non-local Coulomb interaction is fully parameterized by the local interaction U and the screening length r_{TF}. It is worth noting that environmental screening to layered materials, such as resulting from dielectric substrates, is strongly non-local [36, 37, 58] such that long-ranged interactions V_{ij} are stronger reduced than the local one U. To fully characterize this model we, however, treat U and r_{TF} as independent parameters in the following, understanding that any environmental screening will reduce both simultaneously.

The interacting model of equation (1) is analyzed in two steps. In the limit $U \gg V_{ij}$, we can first integrate out the long-range interactions V_{ij}, leading to a renormalized dispersion for the low-energy band [59, 60]. The resulting Hamiltonian \tilde{H} takes the form

$$\tilde{H} = \sum_{i,j,\sigma} \tilde{t}_{ij} c_{i,\sigma}^\dagger c_{j,\sigma} + U \sum_i n_{i,\uparrow} n_{i,\downarrow},$$

where \tilde{t}_{ij} are the renormalized hoppings derived from equation (1) using a Hatree–Fock variational wavefunction enforcing time-reversal symmetry.
For U between 100 and 500 meV as estimated for 1T metallic transitional metal dichalcogenides (TMDCs) [56, 61, 62] and several choices of r_{TF}, the corresponding long-range Coulomb interactions V_n and renormalized hoppings t_n are shown in figures 2(a) and (b), where V_n denotes nth neighbor Coulomb interaction and similarly for t_n. We see that V_n is increased by increasing U and r_{TF}, which mostly affects t_1 for $r_{TF} < a$ (a is the CDW lattice constant), while the long-range interaction with $r_{TF} = a$ also modulates hoppings up to t_5. In figures 2(c)–(f) we show the bare electronic dispersion after integrating out long-range Coulomb interactions V_n, corresponding to the band structure of $H_{bare} = \sum_{i,j,\sigma} t_{ij} c_i^\dagger \sigma c_j^\sigma$. For $r_{TF} = 0.3a$ (with $V_{n>1} \approx 0$) the renormalized bare bandwidth is not significantly affected and we find only modifications to the dispersion around Γ upon changing U, cf figures 2(c) and (d). Increasing $r_{TF} > 0.3a$ yields $V_{n>1} > 0$, which decisively affects both, the renormalized bare bandwidth and the overall dispersion, cf figures 2(e) and (f). As maintaining the Mott regime requires that the bandwidth renormalization should not be too large, we focus on $r_{TF} \ll 0.4a$ in the following.

In addition to the bandwidth renormalization, we observe a Coulomb controlled Lifshitz transition: as U and r_{TF} increase, the electron pocket at Γ vanishes, as depicted in the insets of figures 2(c)–(f). This transition results in different dependencies of superexchange couplings on the Coulomb interactions as we discuss in the following. We note that the renormalized bare dispersions shown in figures 2(c)–(f) do not explicitly take the local Coulomb interaction U into account as in the Hamiltonian \tilde{H} from equation (3). To obtain the electronic dispersion of \tilde{H} including the effects of U, dynamical mean field theory [44, 56, 61, 62] calculations are required. We show that this is not needed to analyze the magnetic properties of \tilde{H} in the following.

3. Coulomb engineering of the spin Hamiltonian of 1T-TaS₂

We now analyze the Hamiltonian from equation (3) in the strong coupling limit, i.e. $U \gg \tilde{t}_{ij}$, using the Schrieffer–Wolff transformation, leading to an effective model for spin-degrees of freedom:

$$\mathcal{H} = \sum_{i,j} J_{ij} \mathbf{S}_i \cdot \mathbf{S}_j,$$

with $J_{ij} = 2 \tilde{t}_{ij}^2$. Due to the renormalization of \tilde{t}_{ij} by V_{ij}, the magnetic superexchange interactions J_{ij} are controlled by changes to U and r_{TF} as well. In particular, we show in figure 3(a) the renormalized nth neighbor exchange J_n. We see that J_1 exhibits a strong dependence on U and r_{TF}, stemming from the significant renormalization of t_1. In figure 3(b) we depict the full U and r_{TF} dependencies of J_1 in units of $J_1^0 = 0.1$ meV, where J_1^0 is the typical magnitude of J_1 in our regime. We find two regimes (separated by the white dashed line in figure 3(b)) stemming from the Coulomb driven Lifshitz transition of the Hamiltonian of equation (1). In the upper regime V_n has a long-range character yielding renormalized band structures with unoccupied and rather flat dispersions around Γ, while in the lower regime the Coulomb interaction is short-ranged (U and V_n) and we find occupied electron pockets (with positive effective mass) around Γ. J_1 is correspondingly larger in the upper regime and strongly dependent on r_{TF}. In the lower regime J_1 is reduced and mostly dependent on U.

The model of equation (4) thus realizes a long-range Heisenberg model with tunable frustration controlled by the local and non-local Coulomb interactions. While a full calculation of the phase diagram would require exactly solving the two-dimensional quantum many-body model, e.g. with tensor-network [63, 64] or neural network quantum states [65, 66], here we will focus on highlighting the physical regime where the frustration of the system is maximal. A frustrated magnetic system has competing magnetic exchange interactions whose energies cannot be simultaneously minimized by any magnetic configuration [67]. As a consequence, classical magnetic ground states of a frustrated magnetic system exhibit a high degree of degeneracy, preventing
the system from magnetic ordering and promoting a QSL state. We may thus characterize the frustration of a magnetic system by the degeneracy of classical magnetic ground states. We consider different non-collinear magnetic configurations characterized by a vector \(\mathbf{q} \) [68, 69] and compute their energy \(\omega(\mathbf{q}) \) from the extended Hubbard model equation (1). The resulting \(\omega(\mathbf{q}) \) is then shifted and scaled: \(\tilde{\omega}(\mathbf{q}) = (\omega(q) - \omega_0)/(\omega_1 - \omega_q) \) with \(\omega_0 = \min(\omega(q)) \) and \(\omega_1 = \max(\omega(q)) \). The shifted ground state energy is 0, and the scaling allows comparison between systems with different magnitudes of magnetic exchange interactions. Finally, the degeneracy of the states at a given shifted and scaled energy \(\omega \) can be given by

\[
\tilde{\rho}(\omega) = \int_{\mathbf{q} \in \text{BZ}} \frac{d^3 q}{(2\pi)^2} \delta(\tilde{\omega}(\mathbf{q}) - \omega).
\]

In particular, \(\tilde{\rho}(0) \) characterizes the ground state degeneracy of a magnetic system, and a more frustrated system is characterized by larger \(\tilde{\rho}(0) \).

The computation of \(\omega(q) \) can be done by solving equation (1) self-consistently assuming the solution of a non-collinear magnetic state characterized by the vector \(\mathbf{q} \), where without loss of generality we take the magnetization to be in \(y-z \) plane. Alternatively, we can perform a unitary transformation that aligns the magnetization on every site to \(z \) axis [68–70]: \(H_q = U_q^\dagger H U_q \) with \(U_q = \prod_i e^{-i q \cdot \mathbf{r}_{i,j}} \), and solve it self-consistently assuming ferromagnetism in \(z \) direction. The transformed \(H_q \) is:

\[
H_q = \sum_{i,j,\sigma,\sigma'} t_{ij,\sigma\sigma'}(\mathbf{q}) c_{i,\sigma}^\dagger c_{j,\sigma'} + U \sum_i n_{i,\uparrow} n_{i,\downarrow} + \sum_{i,j,\sigma,\sigma'} \frac{V_{ij}}{2} n_{i,\sigma} n_{j,\sigma'},
\]

where \(t_{ij,\sigma\sigma'}(\mathbf{q}) = t_{ij} e^{i q \cdot (\mathbf{r}_j - \mathbf{r}_i)}(\sigma_i \cdot \sigma_j)^{-1} \). In the limit \(U \gg V_{ij} \), we can first integrate out \(V_{ij} \) as we did for equation (1), leading to

\[
H_q = \sum_{i,j,\sigma,\sigma'} \tilde{t}_{ij,\sigma\sigma'}(\mathbf{q}) c_{i,\sigma}^\dagger c_{j,\sigma'} + U \sum_i n_{i,\uparrow} n_{i,\downarrow},
\]

where \(\tilde{t}_{ij,\sigma\sigma'}(\mathbf{q}) = \tilde{t}_{ij} e^{i q \cdot (\mathbf{r}_j - \mathbf{r}_i)}(\sigma_i \cdot \sigma_j)^{-1} \) [71]. With the assumption of ferromagnetism along \(z \) direction: \(\langle n_{i,\uparrow} \rangle = 1, \langle n_{i,\downarrow} \rangle = 0 \), equation (7) reduces to

\[
H_q^{\text{MF}} = \sum_{i,j,\sigma,\sigma'} \tilde{t}_{ij,\sigma\sigma'}(\mathbf{q}) c_{i,\sigma}^\dagger c_{j,\sigma'} + \frac{U}{2} \sum_i (n_{i,\uparrow} - n_{i,\downarrow})
\]

up to a constant, and \(\omega(q) \) can be computed by summing over occupied states in equation (8).

Now we move on to compute \(\tilde{\rho}(0) \) for our model with different \(U \) and \(r_{TF} \). We find that, \(\tilde{\rho}(0) \) takes large values close to the Lifshitz transition and smaller values at other places (figure 3(c)). In particular, below the Lifshitz transition, \(\tilde{\omega}(\mathbf{q}) \) exhibits a minima between \(\Gamma \) and \(K \) (figure 3(c)). As we approach the Lifshitz transition, \(J_1 \) increases, lowering \(\tilde{\omega}(\mathbf{q}) \) around \(\mathbf{q} = K \), eventually this results in an almost flat dispersion of \(\tilde{\omega}(\mathbf{q}) \) in the region between \(\Gamma \) and \(K \). Above the Lifshitz transition, \(J_1 \) further increases and starts to dominate other exchanges. This results in the stabilization of the helical spiral state with \(\mathbf{q} = K \), where \(\omega(q) \) takes its minimum. We have thus found that by tuning the substrate-screening of 1T-TaS$_2$, we can enhance the magnetic frustration and make the QSL ground state more favorable.

We note that the extended Hubbard model equation (1) and the Heisenberg model equation (4) consider only superexchange couplings stemming from the local repulsion. Apart from that, it is important to note that direct exchange stemming from the overlap of Wannier centers would also appear in the effective Heisenberg model [56, 72]. In particular, strong
direct exchange interactions promote a ferromagnetic ground state in 1T-TaS$_2$ [56]. To account for this, we now include the direct exchange term $J_{\text{DIII}} \sum_{i,j} S_i \cdot S_j$, which results from Hund’s exchange interaction and can thus be assumed to be independent of the environmental screening [49]. The existence of a finite direct exchange merely cancels with the superexchange J_1. Thus the most frustrated regime appears at larger J_1, which for fixed U appears at larger r_{TF} (figure 3(d)). For smaller r_{TF}, $\omega(q)$ has a minimum along Γ-K (figure 3(f)), which would approach I for sufficiently small r_{TF} or sufficiently large J_{DIII}. Thus we find that the existence of finite direct exchange does not influence our main result. We have thus demonstrated the potential of Coulomb engineering to tailor the magnetic ground state and the magnetic frustration. In practice this can be achieved by exposing the monolayer to different substrates, such as SiO$_2$, SrTiO$_3$, or hBN, or by embedding it in a tunable dielectric environment [73, 74], where the effective dielectric constant can be controlled by the thickness of the substrate and by gating the substrate.

4. Discussion

Finally, we comment on several aspects that should be addressed in future work. First, the exact dependence of the parameters U and r_{TF} on the substrate dielectric constant can be solved with ab initio calculations in specific experimental setups. Second, our analysis focuses on a spin-isotropic model, where potentially anisotropic terms stemming from SOC are not included, which is motivated by recent DFT study [56]. The inclusion of SOC in the low-energy model would give rise to spin-dependent hoppings, which in turn could induce anisotropic exchange in the spin model generating an even richer phase diagram. Third, we used a Hatree–Fock variational wavefunction to capture the bandwidth renormalization induced by V_{II}, while a more accurate approach would be extensions of the Peierls–Feynman–Bogoliubov variational principle [59, 75, 76] taking the full non-local Coulomb and nearest-neighbor exchange interactions into account. Yet for long-range V_{II} up to 3rd neighbor, such an approach involves heavy computation that would go beyond the scope of this work. Fourth, we note that a more sophisticated description of the frustration can be performed by exactly solving the many-body system and analyzing the mathematical structure of the associated reduced density matrices [67]. Fifth, our analysis focused on the bilinear spin interactions of the spin-Hamiltonian, yet at intermediate interactions the strength biquadratic and four-spin ring-exchange couplings can have sizable contributions [77]. Finally, although we used the 1T-TaS$_2$ band structure as an example here, the same methodology can be applied to other van der Waals materials such as 1T-NbSe$_2$ [61, 78–80], 1T-NbS$_2$ [81, 82], 1T-TaSe$_2$ [83], as well as other 1T-dichalcogenide alloys, and potentially twisted graphene multilayers [84, 85], where non-local Coulomb interactions are not negligible. As an outlook, Coulomb engineering can also be performed with spatially structured [38, 39, 42, 47, 48] or anisotropic [86, 87] screening environments giving rise to spatially dependent exchange interactions, that potentially leads to coexisting ground states of different character within the same, homogeneous layered material.

5. Conclusions

To summarize, we have put forward a strategy to control the magnetic ground state of strongly correlated layered materials, which shows the potential to drive a two-dimensional magnetic material to a tunable frustrated regime by means of Coulomb engineering. Taking as a starting point the Wannier model for the nearly flat band structure in 1T-TaS$_2$, we demonstrated that tunable screening drastically impacts the low-energy spin model of the system. In particular, we showed that the long-range Coulomb interactions result in bandwidth renormalization at the Hatree–Fock level. The renormalized bandwidth, together with the long-range nature of the Wannier model gives rise in the strongly interacting limit to a screening-dependent frustrated Heisenberg model. Finally, we showed how tuning the long-range Coulomb interaction via screening can bring the system to a highly degenerate regime by analyzing the frustration of the spin system. Our proposal demonstrates how substrate-dependent screening, widely present in studies of van der Waals heterostructures, provides a powerful strategy to stabilize unconventional correlated states of matter. Ultimately, our results provide a starting point towards tailoring frustrated quantum magnetism via Coulomb engineering, potentially allowing to stabilize tunable frustrated states in a variety of van der Waals magnets.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

We acknowledge the computational resources provided by the Aalto Science-IT project, and the financial support from the Academy of Finland Projects Nos. 331342 and 336243. We thank M I Katsnelson, A N Rudenko, A A Bagrov, T Westerhout, P Liljeroth and V Vaio for fruitful discussions.

ORCID IDs

Guangze Chen https://orcid.org/0000-0002-1956-2519
Matte Rösner https://orcid.org/0000-0002-6199-2176
Jose L. Lado https://orcid.org/0000-0002-9916-1589

References

[1] Balents L 2010 Spin liquids in frustrated magnets Nature 464 199–208
[2] Lee P A 2008 An end to the drought of quantum spin liquids Science 321 1306–7
[3] Broholm C, Cava R J, Kivelson S A, Nocera D G, Norman M R and Senthil T 2020 Quantum spin liquids Science 367 eaay0668
[4] Zhou Y, Kanoda K and Ng T-K 2017 Quantum spin liquid states Rev. Mod. Phys. 89 025003
[5] Savary L and Balents L 2016 Quantum spin liquids: a review Rep. Prog. Phys. 80 016502
[6] Kitaev A 2006 Anyons in an exactly solved model and beyond Am. Phys. NY 321 2–111
[7] Anderson P W 1987 The resonating valence bond state in La$_2$CuO$_4$ and superconductivity Science 235 1196–8
[8] Kelly Z A, Gallagher MJ and McQueen T M 2016 Electron doping a kagome spin liquid Phys. Rev. X 6 041007
[9] Aasen D, Mong R S K, Hunt B M, Mandrus D and Alicea J 2020 Electrical probes of the non-Abelian spin liquid in Kitaev materials Phys. Rev. X 10 031014
[10] Han T-H, Helton J S, Chu S, Nocera D G, Rodriguez-Rivera J A, Broholm C and Lee Y S 2012 Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet Nature 492 406–10
[11] Fu M, Imai T, Han T-H and Lee Y S 2015 Evidence for a gapped spin-lattice ground state in a kagome Heisenberg antiferromagnet Science 350 655–8
[12] Powell B J and McKenzie R H 2011 Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors Rep. Prog. Phys. 74 065601
[13] Takahashi S K, Wang J, Arsenault A, Imai T, Abramchuk M, Tafci F and Singer P M 2019 Spin excitations of a proximate Kitaev quantum spin liquid realized in Cu$_3$IrO$_3$ Phys. Rev. X 9 031047
[14] Norman M R 2016 Colloquium: Herbstsmithite and the search for the quantum spin liquid Rev. Mod. Phys. 88 041003
[15] Takagi H, Takayama T, Jackeli G, Khalessi G and Nagler S E 2019 Concept and realization of Kitaev quantum spin liquids Nat. Rev. Phys. 1 264–80
[16] Shimizu Y, Miyagawa K, Kanoda K, Maesato M and Saito G 2003 Spin liquid state in an organic Mott insulator with a triangular lattice Phys. Rev. Lett. 91 107001
[17] Yamashita M, Nakata N, Kasahara Y, Sasaki T, Yoneyama N, Kobayashi N, Fujimoto S, Shibahara T and Matsuda Y 2008 Thermal-transport measurements in a quantum spin-liquid state of the frustrated triangular magnet ν-($\text{BEDT-TTF})_2\text{Cu}_2\text{CN}$, Nat. Phys. 4 44–47
[18] Itou T, Oyamada A, Maegawa S, Tamura M and Kato R 2008 Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe$_3$Sb$_2$Br$_5$ Phys. Rev. B 77 104413
[19] Isomoto T, Kamo H, Ueda A, Takahashi K, Kimata M, Tajima H, Tsuchiya S, Terasahima T, Uji S and Mori H 2014 Gapless quantum spin liquid in an organic spin-1/2 triangular-lattice $\nu=1$ (Cat-EDT-TTF)$_2$ Phys. Rev. Lett. 112 177201
[20] Helton J S et al 2007 Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu$_3$(OH)$_2$Cl$_6$ Phys. Rev. Lett. 98 107204
[21] Ding L et al 2019 Gapless spin-liquid state in the structurally disorder-free triangular antiferromagnet NaYbO$_3$ Phys. Rev. B 100 144432
[22] Bordelon M M et al 2019 Field-tunable quantum-disordered ground state in the triangular-lattice antiferromagnet NaYb$_2$O$_3$ Nat. Phys. 15 1058–64
[23] Dai P-L et al 2021 Spinon Fermi surface spin liquid in a triangular lattice antiferromagnet NaYbSe$_2$ Phys. Rev. X 11 021044
[24] Law K T and Lee P A 2017 1T-TaS$_2$ as a quantum spin liquid Proc. Natl Acad. Sci. 114 6996–7000
[25] Murayama H et al 2020 Electrically driven quantum-disordered quantum spin liquid state of the triangular-lattice antiferromagnet 1T-TaS$_2$ Phys. Rev. B 101 035109
[26] Mañas-Valero S, Huddart B, Lancaster T, Coronado E and Pratt F 2020 Multiple quantum spin liquid phases in 1T-TaS$_2$ (arXiv:2007.15905)
[27] Chen Y et al 2020 Strong correlations and orbital texture in single-layer 1T-TaSe$_2$ Nat. Phys. 16 218–24
[28] Guine F, Katsnelson M I and Geim A K 2009 Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering Nat. Phys. 6 30–33
[29] Xu C, Feng J, Kawamura M, Yamaji Y, Nahas Y, Prokorenko S, Qi Y, Xiang H and Bellaiche L 2020 Possible Kitaev quantum spin liquid state in 2D materials with $s=3/2$ Phys. Rev. Lett. 124 087205
[30] Lopes dos Santos J M B, Peres N M R and Castro Neto A H 2007 Graphene bilayer with a twist: electronic structure Phys. Rev. Lett. 99 256802
[31] Andrei E Y, Efetov D K, Jarillo-Herrero P, MacDonald A H, Mak K F, SentilH T, Tutuc E, Yazdani A and Young A F 2021 The marvels of moiré materials Nat. Rev. Mater. 6 201–6
[32] Chen G and Lado J L 2021 Tunable moiré spinons in magnetically encapsulated twisted van der Waals quantum spin liquids Phys. Rev. Res. 3 033276
[33] Gonzalez-Herrero H, Gomez-Rodriguez J M, Mallet P, Moaded M, Palacios J J, Salgado C, Ugeda M M, Veuillen J-Y, Yndurain F and Brihuega I 2016 Atomic-scale control of graphene magnetism by using hydrogen atoms Science 352 437–41
[34] Savary L and Balents L 2017 Disorder-induced quantum spin liquid in spin ice pyrochlores Phys. Rev. Lett. 118 087203
[35] Chen G and Lado J L 2020 Impurity-induced resonant spinon zero modes in Dirac quantum spin liquids Phys. Rev. Res. 2 033466
[36] Jena D and Konar A 2007 Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering Phys. Rev. Lett. 98 136805
[37] Rößner M, Şaşoğlu E, Friedrich C, Blügel S and Wehling T O 2015 Wannier function approach to realistic Coulomb interactions in layered materials and heterostructures Phys. Rev. B 92 085102
[38] Raja A et al 2017 Coulomb engineering of the bandgap and excitons in two-dimensional materials Nat. Commun. 8 15251
[39] Rößner M, Steinke C, Lorke M, Gies C, Jahneke F and Wehling T O 2016 Two-dimensional heterojunctions from nonlocal manipulations of the interactions Nano Lett. 16 2322–7
[40] Steinhoff A, Florian M, Rößner M, Schönhoff G, Wehling T O and Jahneke F 2017 Exciton fusion in monolayer transition metal dichalcogenide semiconductors Nat. Commun. 8 1166
[41] Iqbal Balti Utama M et al 2019 A dielectric-defined lateral heterojunction in a monolayer semiconductor Nat. Electron. 2 60–65
[42] Steinke C, Wehling T O and Rößner M 2020 Coulomb-engineered heterojunctions and dynamical screening in transition metal dichalcogenide monolayers Phys. Rev. B 102 115111
[43] Waldecker L et al 2019 Rigid band shifts in two-dimensional semiconductors through external dielectric screening Phys. Rev. Lett. 123 206403
[44] van Looon E G C, Müller M, Springer D, Sangiovanni G, Tomczak J M and Wehling T O 2020 Coulomb engineering of two-dimensional Mott materials (arXiv:2001.01735)
[45] Steinke C, Mourad D, Rößner M, Lorke M, Gies C, Jahneke F, Czycholl G and Wehling T O 2017 Noninvasive control of excitons in two-dimensional materials Phys. Rev. B 96 045431
[46] da Jornada F H, Xian L, Rubio A and Louie S G 2020 Universal slow plasmons and giant field enhancement in atomically thin quasi-two-dimensional metals Nat. Commun. 11 1013
[47] Jiang Z, Haas S and Rösner M 2021 Plasmonic waveguides from Coulomb-engineered two-dimensional metals 2D Mater. 8 035037

[48] Rösner M and Lado J L 2021 Inducing a many-body topological state of matter through Coulomb-engineered local interactions Phys. Rev. Res. 3 013265

[49] Soriano D, Ruedenko A N, Katsnelson M I and Rösner M 2021 Environmental screening and ligand-field effects to magnetism in CrI\textsubscript{3} monolayer npj Comput. Mater. 7 162

[50] Cho D, Cheon S, Kim K-S, Lee S-H, Cho Y-H, Cheong S W and Yeom H W 2016 Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS\textsubscript{2} Nat. Commun. 7 10453

[51] Qiao S et al 2017 Motnness collapse in 1T-TaS\textsubscript{2}–Se\textsubscript{2} transition-metal dichalcogenide: an interplay between localized and itinerant orbitals Phys. Rev. X 7 041054

[52] Kratochvilova M, Hillier A D, Wildes A R, Wang L, Cheong S-W and Park J-G 2017 The low-temperature highly correlated quantum phase in the charge-density-wave 1T-TaS\textsubscript{2} compound npj Quantum Mater. 2 42

[53] Vano V, Amini M, Ganguli S C, Chen G, Lado J L, Kezilebieke S and Liljeroth P 2021 Artificial heavy fermions in a van der Waals heterostructure Nature 599 582–586

[54] Wang Y D, Yao W L, Xin Z M, Han T T, Wang Z G, Chen L, Cai C, Li Y and Zhang Y 2020 Band insulator to Mott insulator transition in 1T-TaS\textsubscript{2} Nat. Commun. 11 4215

[55] Rossnagel K and Smith N V 2006 Spin-orbit coupling in the band structure of reconstructed 1T-TaS\textsubscript{2} Phys. Rev. B 73 073106

[56] Pasquier D and Yazyev O V 2022 Ab initio theory of magnetism in two-dimensional 1T-TaS\textsubscript{2} Phys. Rev. B 105 L081106

[57] Ohno K 1964 Some remarks on the Pariser–Parr–Pople method Theor. Chim. Acta 2 219–27

[58] Keldysh L V 1979 Pis'ma Zh. Eksp. Teor. Fiz. 29 716

[59] Veld Y in ’t, Schüler M, Wehling T O, Katsnelson M I and van Loon E G C P 2019 Bandwidth renormalization due to the interstice Coulomb interaction J. Phys.: Condens. Matter 31 465803

[60] Ayral T, Biermann S, Werner P and Boehnke L 2017 Influence of Fock exchange in combined many-body perturbation and dynamical mean field theory Phys. Rev. B 95 245130

[61] Kamil E, Berges J, Schönhoff G, Rösner M, Schüler M, Sangiovanni G and Wehling T O 2018 Electronic structure of single layer 1T-NbSe\textsubscript{2}: interplay of lattice distortions, non-local exchange and Mott–Hubbard correlations J. Phys.: Condens. Matter 30 325601

[62] Pizarro J M, Adler S, Zantout K, Mertz T, Barone P, Valenti R, Sangiovanni G and Wehling T O 2020 Decoherence of Mott localized electrons into topological and spin-orbit-coupled dirac fermions npj Quantum Mater. 5 79

[63] Yan S, Huse D A and White S R 2011 Spin–liquid ground state of the s = 1/2 kagome Heisenberg antiferromagnet Science 332 1173–6

[64] Hu S, Zha W, Eggert S and He Y-C 2019 Dirac spin liquid on the spin-1/2 triangular Heisenberg antiferromagnet Phys. Rev. Lett. 123 207203

[65] Carleo G and Troyer M 2017 Solving the quantum many-body problem with artificial neural networks Science 355 602–6

[66] Choo K, Neupert T and Carleo G 2019 Two-dimensional frustrated J–J\textsubscript{2} model studied with neural network quantum states Phys. Rev. B 100 125124

[67] Giampaolo S M, Gualdi G, Monras A and Illuminati F 2011 Characterizing and identifying frustration in quantum many-body systems Phys. Rev. Lett. 107 260602

[68] Egger R and Flensberg K 2012 Emerging Dirac and Majorana fermions for carbon nanotubes with proximity-induced pairing and spiral magnetic field Phys. Rev. B 85 235462

[69] Chen G, Khosravian M, Lado J L and Ramires A 2022 Designing spin-textured flat bands in twisted graphene multilayers via helimagnet encapsulation 2D Mater. 9 024002

[70] Braunecker B, Japaridze G I, Klinovaja J and Loss D 2010 Spin-selective Peterls transition in interacting one-dimensional conductors with spin–orbit interaction Phys. Rev. B 82 045127

[71] We can perform a change of basis to equation (6): $d_{ij}^\uparrow = \cos \theta c_{ij}^\uparrow + i \sin \theta c_{ij}^\downarrow$ and $d_{ij}^\downarrow = i \sin \theta c_{ij}^\uparrow + \cos \theta c_{ij}^\downarrow$. This does not change the V_{ij} term, and the Hamiltonian becomes equation (1) with only changes in the U term. The resulting t_0 after integrating out V_{ij} is thus given by equation (3). Transforming back to the original basis results in equation (7)

[72] Mazurenko V V, Ruedenko A N, Nikolaev S A, Medvedeva D S, Lichtenstein A I and Katsnelson M I 2016 Role of direct exchange and Dzyaloshinskii-Moriya interactions in magnetic properties of graphene derivatives: C\textsubscript{2}F and C\textsubscript{2}H Phys. Rev. B 94 214411

[73] Riis-Jensen A C, Lu J and Thygesen K S 2020 Electrically controlled dielectric band gap engineering in a two-dimensional semiconductor Phys. Rev. B 101 121110

[74] Saito Y, Ge J, Watanabe K, Taniguchi T and Young A F 2020 Independent superconductors and correlated-insulators in twisted bilayer graphene Nat. Phys. 16 926–30

[75] Schüler M, Rösner M, Wehling T O, Lichtenstein A I and Katsnelson M I 2013 Optimal Hubbard models for materials with nonlocal Coulomb interactions: graphene, silicene and benzene Phys. Rev. Lett. 111 036601

[76] van Loon E G C P, Schüler M, Katsnelson M I and Wehling T O 2019 Internal screening and dielectric band gap engineering in a monolayer 1T-NbSe\textsubscript{2} Phys. Rev. B 100 L081106

[77] Pasquier D and Yazyev O V 2018 2D correlated dielectric and ferromagnetism in monolayer 1T-NbSe\textsubscript{2} Phys. Rev. B 98 045114

[78] Pasquier D and Yazyev O V 2018 Charge density wave phase, Mottness and ferromagnetism in two-dimensional 1T-TaS\textsubscript{2} Phys. Rev. B 108 L081106

[79] Liu M et al 2021 Monolayer 1T-NbSe\textsubscript{2} as a 2D-correlated magnetic insulator Sci. Adv. 7 eabe6339

[80] Wang W, Wang B, Gao Z, Tang G, Lei W, Zheng X, Li H, Ming X and Autieri C 2020 Charge density wave instability and pressure-induced superconductivity in bulk 1T-NbSe\textsubscript{2} Phys. Rev. B 102 155115

[81] Wang W, Si C, Lei W, Xiao F, Liu Y, Autieri C and Ming X 2022 Stacking order and Coulomb correlation effect in the layered charge density wave phase of 1T-NbSe\textsubscript{2} Phys. Rev. B 105 035119

[82] Ruan W et al 2021 Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe\textsubscript{2} from scanning tunnelling microscopy Nat. Phys. 17 1154–61

[83] Pizarro J M, Rösner M, Thomale R, Valenti R and Wehling T O 2019 Internal screening and dielectric engineering in magic-angle twisted bilayer graphene Phys. Rev. B 100 161102

[84] Wolf T M R, Lado J L, Blatter G and Zilberberg O 2019 Electrically tunable flat bands and magnetism in twisted bilayer graphene Phys. Rev. Lett. 123 096802

[85] Xia F, Wang H and Jia Y 2014 Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics Nat. Commun. 5 4458

[86] Kiraly B et al 2019 Anisotropic two-dimensional screening at the surface of black phosphorus Phys. Rev. Lett. 123 216403