Pathogenic mutations identified by a multimodality approach in 117 Japanese Fanconi anemia patients

Minako Mori, Asuka Hira, Kenichi Yoshida, Hideki Muramatsu, Yusuke Okuno, Yuichi Shiraishi, Michiko Anmae, Jun Yasuda, Shu Tadaka, Kengo Kinoshita, Tomoo Osumi, Yasushi Noguchi, Souichi Adachi, Ryoji Kobayashi, Hiroshi Kawabata, Kohsuke Imai, Tomohiro Morio, Kazuo Tamura, Akifumi Takaori-Kondo, Masayuki Yamamoto, Satoru Miyano, Seiji Kojima, Etsuro Ito, Seishi Ogawa, Keitaro Matsuo, Hiromasa Yabe, and Minoru Takata

1Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto, Japan; 2Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 3Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; 4Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; 5Laboratory of DNA Information Analysis, Human Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan; 6Medical Genetics Laboratory, Graduate School of Science and Engineering, Kindai University, Osaka, Japan; 7Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; 8Department of Applied Information Sciences, Graduate School of Information Sciences, Tohoku University, Sendai, Japan; 9Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan; 10Children’s Cancer Center, National Center for Child Health and Development, Tokyo, Japan; 11Department of Pediatrics, Japanese Red Cross Narita Hospital, Chiba, Japan; 12Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan; 13Department of Pediatrics and Adolescence, Sapporo Hokuyu Hospital, Sapporo, Japan; 14Department of Hematology and Immunology, Kanazawa Medical University, Uchinada-machi, Japan; 15Department of Community Pediatrics, Perinatal and Maternal Medicine, Tokyo Medical and Dental University, Tokyo, Japan; 16Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan; 17Department of Medical Biochemistry, Graduate School of Medicine, Tohoku University, Sendai, Japan; 18Department of Pediatrics, Hiroshi University Graduate School of Medicine, Hiroshi, Japan; 19Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden; 20Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan and 21Department of Innovative Medical Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan

©2019 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol.2018.207241

Received: September 20, 2018.
Accepted: February 15, 2019.
Pre-published: February 21, 2019.
Correspondence: MINORU TAKATA - mtakata@house.rbc.kyoto-u.ac.jp
MIHARU YABE - miharu@is.icc.u-tokai.ac.jp
Supplemental Data

Supplemental Note: Case 66 Presentation

A 23-year-old man was admitted to the hospital because of a giant mediastinal tumor. He was born to unrelated healthy parents and had no significant past medical history. Physically, he presented with short stature (155cm, -2.7SD) and severe microcephaly (49.4cm, -5SD). Hematological and bone marrow examination were normal (neutrophils, 3.88×10⁹/L; hemoglobin, 14.1 g/dl; hematocrit, 42.2%; reticulocytes, 1.5%; platelets 244×10⁹/L). On the basis of a CT scan and mediastinal tumor biopsy, he was diagnosed with mediastinal T-cell lymphoblastic lymphoma (T-LBL). Induction chemotherapy consisting of cyclophosphamide, vincristine, daunorubicin, prednisone, and L-asparaginase was performed and he suffered from severe sepsis due to prolonged pancytopenia. After hematological recovery, a mitomycin C induced chromosomal breakage test showed an increased rate of chromosomal breakage. Targeted-exome sequencing identified the splice site mutation c.475+1G>A and the missense mutation c.7847C>T in FANCD1 (BRCA2). He was diagnosed as Fanconi anemia.

After induction chemotherapy, the T-LBL achieved a partial remission but he was found to have adenosquamous lung cancer and bilateral renal tubule-papillary adenoma. He underwent focal radiation therapy to the mediastinal lesion and reduced-intensity chemotherapy. However, he relapsed and died of T-LBL 15 months after the initial chemotherapy.
Supplemental Table 1. Summary of 22 FA-related genes

FA gene (Alternative name)	OMIM No.	FA/FBOC/FA-like*	Functions	this study (2018)	Rockefeller Fanconi Anemia Mutation Database (2008)	National Network of the Italian Association of Pediatric Hematology and Oncology (2014)
FANCA	607139	FA	Component of the FA core complex	58%	57%	85%
FANCB	300515	FA	Component of the FA core complex	3%	0.9%	1%
FANCC	613899	FA	Component of the FA core complex	1%	15%	3%
FANCD1 (BRCA2)	600185	FBOC, FA	HR repair, mediator function for RAD51, Protects stalled replication fork	2%	2.9%	0%
FANCD2	613984	FA	Monoubiquitylated by the FA core complex, Forms ID2 complex, Regulates the DNA damage response	0%	3.9%	2%
FANCE	613976	FA	Component of the FA core complex	1%	2.3%	0%
FANCF	613897	FA	Component of the FA core complex	1%	2%	0%
FANCQ	620956	FA	Component of the FA core complex	25%	11.0%	9%
FANCI	611360	FA	Monoubiquitylated by the FA core complex, Forms ID2 complex, Regulates the DNA damage response	2%	1.7%	0%
FANCI (BRIP1)	605882	FBOC, FA	HR repair, DNA helicase	0%	2.4%	0%
FANCL	608111	FA	Component of the FA core complex, E3 ubiquitin ligase	0%	0.1%	0%
FANCN (PALB2)	610355	FBOC, FA	Component of the FA core complex, DNA translocase	0%	0%	0%
FANCO (RAD51C)	6092774	FBOC, FA-like	RAD51 paralog, HR repair, Stabilizes RAD51 nucleoprotein filament	0%	___***	0%
FANC (SLX1)	613278	FA	Resolves Holliday junctions, Nuclease regulation,	2%	___***	0%
FANCP (ERCC4)	133520	FA	Incises DNA-ICL damage	0%	___***	0%
FANCR (RAD51)	179017	FA-like	HR repair, Protects stalled replication fork	0%	___***	___***
FANCS (BRCA1)	113705	FBOC, FA-like	HR repair, Promotes RAD51 recruitment	0%	___***	___***
FANCT (UBE27)	610638	FA	E2 ubiquitin-conjugating enzyme	2%	___***	___***
FANCU (XRCC2)	600375	FA-like	RAD51 paralog, HR repair, Stabilizes RAD51 nucleoprotein filament	0%	___***	___***
FANCV (MAD2L2/REV7)	604094	FA	Translesion DNA synthesis	0%	___***	___***
FANCW (RFWD3)	614151	FA	HR repair, E3 ligase	0%	___***	___***

* FA-like genes cause a chromosome fragility syndrome with FA-related malformations but without bone marrow failure.3
** FANCM was originally thought to be FA gene but it turned out that biallelic FANCM mutations do not cause any overt FA phenotype but early onset cancer.5,6
*** These genes were not identified at the time of the publication.

FA, Fanconi anemia; FBOC, familial breast and ovarian cancer; HR, homologous recombination; ID2 complex, FANCD2-FANCI heterodimer; ICL, interstrand crosslink.
Family No.	Case No.	Sex	Affected gene	Methods for identifying the mutations	Mutation 1	Mutation 2	ALDH2 genotype*	Hematological/Oncologic phenotype	Age at BMF/Malignancy diagnosis (months)	FA-features**	VACTERL-H	References /Comments
1	1	F	FANCA	WES	c.2870G>A	g.2722_27207CT>G	GG	MDS	121/535	Yes	No	5, 10
2	2	M	FANCA	WES	c.1303C>T	g.2435C	GA	AML	unknown/289	Yes	No	8, 10
3	3	F	FANCA	WES	c.2170A>C	g.2722T>P	GA	MDS	unknown/143	Yes	No	8, 10
4	4	M	FANCA, MLPA	WES, MLPA	c.2546delC	g.8849FlxX40	GA	AA	37	Yes	No	5, 8, 10
5	5	F	FANCA	WES	c.1303C>T	g.2435C	AA	AA	26	Yes	No	5, 8, 10
6-1	6-1	M	FANCA	WES	c.3765+1G>T	g.2602toX12	AA	AA	96	Yes	No	5, 10
6-2	6-2	F	FANCA	MLPA	c.3765+1G>T	g.2602toX12	AA	AA	51	Yes	No	5, 10
7	7	M	FANCA, Sanger	WES, Sanger	c.4240_4241delAG	g.2602-1G>A	ab	AA	41/115	Yes	No	5, 7, 8, 10
8	8	M	FANCA	Sanger	c.2546delC	g.8849FlxX40	GA	AA	38	Yes	No	5, 8, 10
9-1	9-1	M	FANCA, Sanger	MLPA, Sanger	c.978,979delGA	g.2435C	AA	MDS	60/192	Yes	No	5, 7, 10
9-2	9-2	F	FANCA, Sanger	MLPA, Sanger	c.978,979delGA	g.2435C	AA	AA	92	Yes	No	5, 7, 10
9-3	9-3	F	FANCA	MLPA	c.978,979delGA	g.2435C	AA	AA	45	Yes	No	5, 7, 10
10	10-1	F	FANCA	WES	c.2602-2A>T	g.2602toX12	AA	AA	120	Yes	No	5, 8, 10
10-2	10-2	F	FANCA	WES	c.2602-2A>T	g.2602toX12	AA	AA	48	Yes	No	5, 10
11	11	M	FANCA	WES	c.3569C>T	g.2190X	AA	AA	297	Yes	No	5, 10
12	12	M	FANCA	WES	c.3919_3920delT	g.2435C	AA	MDS	144/145	Yes	No	5, 10
13	13	F	FANCA	WES	c.2546delC	g.8849FlxX40	AA	AA	72/72	Yes	No	5, 7, 8, 10
14	14	M	FANCA	WES	c.2602-2A>T	g.2602toX12	AA	AA	134	Yes	No	5, 8, 10
15	15	F	FANCA	WES	e.1007+2A>GT	g.2602toX12	AA	AA	48/60	No	No	10
16	16	F	FANCA	WES	c.2546delC	g.8849FlxX40	AA	AA	24	Yes	No	5, 7, 8, 10
17	17	F	FANCA	WES	e.190_191insT	g.2190X	AA	AA	77	Yes	No	5, 10
18	18-1	M	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	MDS	0/12	Yes	No	5, 7, 10
18-2	18-2	F	FANCA	Targeted-Seq	c.2546delC	g.8849FlxX40	AA	MDS	69/69	Yes	No	7, 8, 10
19-1	19-1	M	FANCA	Targeted-Seq	c.283+2T>C	g.2730_27310delCT	AA	AA	30	Yes	No	5, 8, 10
19-2	19-2	M	FANCA	Targeted-Seq	c.283+2T>C	g.2730_27310delCT	AA	AA	16	Yes	No	7, 8, 10
20	20	F	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	MDS	77	Yes	No	5, 10
21	21	F	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	AML	21	Yes	No	5, 7, 10
22-1	22-1	F	FANCA	Sanger	c.2840C>G	g.2730_27310delCT	AA	AA	106	Yes	No	5, 10
22-2	22-2	M	FANCA	Sanger	c.2840C>G	g.2730_27310delCT	AA	AA	28/168	Yes	No	5, 10
23	23	F	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	AA/HNSCC	53/457	No	No	5, 10
24	24	M	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	AA	22	Yes	No	5, 7, 10
25	25	M	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	AA	78	Yes	No	5, 7, 10
26	26	M	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	AML	114	Yes	No	5, 10
27	27	F	FANCA	Sanger	c.2546delC	g.8849FlxX40	AA	AML	62/311	Yes	No	5, 7, 10
28	28	F	FANCA	Sanger	c.4124_4125delCA	g.2435C	AA	AA	156/156	Yes	No	5, 10
29	29	F	FANCA	Sanger	c.3765+1G>T	g.2435C	AA	AA	72	Yes	No	5, 10
30 30 F FANCA Sanger c.2546delC p.S849FfsX40 c.2546delC p.S849FfsX40 GA AA 70 Yes Yes 5, 7, 10
31 31 F FANCA Sanger c.2546delC p.S849FfsX40 c.1567+1G>A aberrant splicing# GA MDS 82/82 Yes No 5, 10
32 32 F FANCA Sanger c.2546delC p.S849FfsX40 c.3720_3724del p.E1240fsX36 GA AA 88 Yes No 5, 10
33 33 M FANCA Sanger c.2546delC p.S849FfsX40 c.3720_3724del p.E1240fsX36 GA MDS 68/105 Yes No 10
34 34 F FANCA Sanger c.2546delC p.S849FfsX40 c.2602-1G>A aberrant splicing GA AML 60/282 Yes No 10
35 35-1 M FANCA Sanger c.2546delC p.S849FfsX40 c.2546delC p.S849FfsX40 AA MDS 0/4 Yes No 7, 10
35-2 M FANCA Sanger c.2546delC p.S849FfsX40 c.2546delC p.S849FfsX40 GA AA 21 Yes No 7, 10
36 36 M Sanger c.44_69del p.T13RxX13 c.2170A>C p.T724P GA MDS/4NSCC 108/348/348 Yes No 5, 10
37 37 F Sanger c.2546delC p.S849FfsX40 c.3296C>T p.Q1099X MDS 49/189 Yes Yes 5, 10
38 38 M WES, MLPA c.2840C>G p.S947X ex24-28del - GA AA 60 Yes No 5, 10
39 39 F FANCA Targeted-seq, MLPA Targeted-seq, MLPA c.462T>G p.Y154X ex6del - GA AA unknown No No 8
40 40 F Sanger c.2602-1G>A aberrant splicing# GA AML 108/384 Yes No 5, 10
41 41 M FANCA, MLPA c.2546delC p.S849FfsX40 ex37del - GA AML 136/736 Yes No 5, 10
42 42 F WES, MLPA c.4190G>C p.R1400P ex16_17del - GA AML 61/51 Yes No 5, 10
43 43 M Targeted-seq Targeted-seq c.2T>C p.M1T c.15G>A p.W6X GA AA 37 No No 7, 10
44 44 M Targeted-seq Targeted-seq c.2546delC p.S849FfsX40 c.2972delT p.P991fsX35 GA MDS 50/73 Yes Yes 7, 10
45 45-1 F Targeted-seq Targeted-seq c.4164C>A ex1_43del ex19_29del - GA AA 108 Yes No 10
45-2 F FANCA Targeted-seq, MLPA Targeted-seq, MLPA ex1_43del ex19_29del - GA AA 12 Yes No 10
46 46 F WES, MLPA WES, MLPA c.2546delC p.S849FfsX40 ex1_5del - GA AA unknown Yes No New case
47 47 M WES c.2546delC p.S849FfsX40 c.2546delC p.S849FfsX40 GA unknown unknown unknown unknown unknown 8
48 48 F WES c.4015_4017del CTC c.3638_3639delCTC p.L1213fsX64 p.P1133fsX64 GA unknown unknown unknown unknown unknown 8
49 49 F WES c.2546delC p.S849FfsX40 c.2546delC p.S849FfsX40 GA AA 71 Yes No 8
50 50 F WES c.2546delC p.S849FfsX40 c.2546delC p.S849FfsX40 GA AA 71 Yes No 8
51 51 F WES c.1464C>A c.1464C>A p.Y488X p.Y488X GA AA 157 Yes No 8
52 52 F WES, MLPA c.978_979delGA p.Q326fsX12 ex30del - GA unknown unknown unknown unknown unknown New case
53 53 M WES, MLPA c.978_979delGA p.Q326fsX12 ex30del - GA unknown unknown unknown unknown unknown New case
54 54 F WES c.2546delC p.S849FfsX40 not detected - GA AA 85 No No 8
55 55 F WES, MLPA c.2546delC p.S849FfsX40 not detected - GA AA 80 Yes No 8
56 56 F FANCA c.2316_2317+2T>A aberrant splicing# GA AA 59 Yes No 8
57 57 F Sanger c.2546delC p.S849FfsX40 not detected - GA MDS unknown/234 No No New case
58 58 F FANCA c.2546delC p.S849FfsX40 not detected - GA AA 82 Yes No New case
59 59 F FANCA c.2546delC p.S849FfsX40 not detected - GA AA 80 Yes No New case
60 60 M FANCR aCGH, Sanger complete loss - - GA AA 58 Yes Yes 5
61 61 M FANCR aCGH, Sanger complete loss - - GA MDS 24/51 Yes Yes 5, 10
62 62 M FANCR WES, RNA-seq c.1497G>T aberrant splicing (p.S500fsX14) - GA AA 96 Yes No 5
63 63 M FANCR WES c.516G>A p.W172X - not examined unknown unknown unknown unknown 8

Current study identified causative FA gene mutation.
#	Sex	Gene	WGS	cDNA change	Protein change	Splice change	AA	Gene change	Gene comment		
64	F	FANCC	WGS	c.1154+6G>A	aberrant splicing	p.(S386X)	40	AA	No	cancer gene mutations.	
65	F	FANCD2	WES	c.617+2A>G	aberrant splicing	p.R231X	No	9	No	7	Cancer gene mutations.
66	M	FANCD2	Targeted-seq	c.478+1G>A	aberrant splicing	p.S261X	No	9	No	5	Current case identified cancer gene mutations.
67	F	FANCC	WES	c.419T>C	aberrant splicing	p.L140P	Yes	9	Yes	5	Cancer gene mutations.
68	F	FANCC	WES	c.484_485delCT	aberrant splicing	p.Y22X	Yes	9	Yes	New case	
69	M	FANCC	WES	c.1066C>T	aberrant splicing	p.G356X	Yes	9	Yes	New case	
70	F	FANCC	WES	c.1066C>T	aberrant splicing	p.G356X	Yes	9	Yes	New case	
71	M	FANCC	WES	c.1066C>T	aberrant splicing	p.G356X	Yes	9	Yes	New case	
72	M	FANCC	WES	c.1066C>T	aberrant splicing	p.G356X	Yes	9	Yes	New case	
73	M	FANCC	WES	c.307+1G>C	aberrant splicing	p.A101X	Yes	9	Yes	New case	
74	F	FANCC	WES	c.1066C>T	aberrant splicing	p.G356X	Yes	9	Yes	New case	
75	M	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
76	F	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
77	F	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
78	F	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
79	F	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
80	M	FANCC	WES	c.1066C>T	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
81	F	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
82	M	FANCC	WES	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
83	F	FANCC	WES	c.1066C>T	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
84	M	FANCC	Sanger	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
85	M	FANCC	Sanger	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
86	F	FANCC	Sanger	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
87	M	FANCC	Sanger	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
88	M	FANCC	WES	c.1886delC	aberrant splicing	p.W463SfsX5	Yes	9	Yes	New case	
89	F	FANCC	Sanger	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
90	M	FANCC	WES	c.194delC	aberrant splicing	p.P65LeX7	Yes	9	Yes	New case	
91	F	FANCC	WES	c.1066C>T	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
92	M	FANCC	Sanger	c.194delC	aberrant splicing	p.P65LeX7	Yes	9	Yes	New case	
93	M	FANCC	Sanger	c.107+1G>C	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
94	M	FANCC	Sanger	c.1066C>T	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
95	M	FANCC	Sanger	c.1066C>T	aberrant splicing	p.Q356X	Yes	9	Yes	New case	
96	M	FANCC	WES	c.168-2A>G	aberrant splicing	p.S56fsX10	Yes	9	Yes	New case	
97	M	FANCC	WES	c.3346_3347insT	aberrant splicing	p.S1116fsX16	Yes	9	Yes	New case	
No.	98	99	100	101	102	103	104				
-----	----	----	-----	-----	-----	-----	-----				
Genes	FANCN										
Substitution Method	WES, RNA-seq	WES	Sanger	WES, aCGH	WES	WES	WES				
cDNA Mutation	c.3350+5C>T	c.343delA	c.434delA	c.343delA	c.4C>G	c.4C>G	c.4C>G				
AA	aberrant splicing (p.G1068VfsX5)	aberrant splicing (p.G1068VfsX5)	aberrant splicing (p.G1068VfsX5)	complete loss	aberrant splicing (p.E37RfsX49)	complete loss	not examined				
GA	FANCN										
FA features include physical abnormalities such as short stature, malformations or skin pigmentation. **FA features include physical abnormalities such as short stature, malformations or skin pigmentation.**											

Novel mutations (not included in the Rockefeller FA mutation data base) are indicated in boldface type.

Effects of these splicing mutations are unverified.

5. **FA** features include physical abnormalities such as short stature, malformations or skin pigmentation.

AA, aplastic anemia; **ALDH2** wild type and the inactivating mutation (p.Glu504Lys) allele is referred to as G and A, respectively.

References in this table (the numbers are the same as the references in the main text)

5. Hira A, Yabe H, Yoshida K, et al. Variant **ALDH2** is associated with accelerated progression of bone marrow failure in Japanese Fanconi anemia patients. Blood. 2013;122(18):3206–3209.

6. Hira A, Yoshida K, Sato K, et al. Mutations in the Gene Encoding the E2 Conjugating Enzyme **UBE2T** Cause Fanconi Anemia. Am J Hum Genet. 2015;96(6):1001–1007.

7. Muramatsu H, Okuno Y, Yoshida K, et al. Clinical utility of next-generation sequencing for inherited bone marrow failure syndromes. Genet Med. Nature Publishing Group; 2017;19(7):796–802.

8. Sekinaka Y, Mitsuiki N, Imai K, et al. Common Variable Immunodeficiency Caused by FANC Mutations. J Clin Immunol. Springer US; 2017;37(5):434–444.

9. Yabe M, Koike T, Ohtsuki K, et al. Associations of complementation group, **ALDH2** genotype, and clonal abnormalities with hematological outcome in Japanese patients with Fanconi anemia. Ann Hematol. 2019;98(2):271–280.
| DNA change | Location | Effect | Comments | No. of alleles | No. of patients | No.of unrelated families |
|------------|----------|--------|----------|---------------|----------------|-------------------------|
| **missense mutations** | | | | | | |
| c.2T>C | exon 1 | p.M1T | known mutation | 1 | 1 | 1 |
| c.1303C>T | exon 14 | p.R435C | known mutation | 3 | 2 | 2 |
| c.2170A>C | exon 24 | p.T724P | known mutation | 2 | 2 | 2 |
| c.2290C>T | exon 25 | p.R764W | known mutation | 1 | 1 | 1 |
| c.252G>T | exon 27 | p.Y843D | known mutation | 1 | 1 | 1 |
| c.2723_2725TCT>GCC | exon 28 | p.LS908_909RP | novel mutation | 1 | 1 | 1 |
| c.396T>G | exon 40 | p.V1322G | novel mutation | 1 | 1 | 1 |
| c.4198C>T | exon 42 | p.R1400C | known mutation | 2 | 2 | 1 |
| c.4199G>C | exon 42 | p.R1400P | known mutation | 1 | 1 | 1 |
| **nonsense mutations** | | | | | | |
| c.15G>A | exon 1 | p.W5X | known mutation | 1 | 1 | 1 |
| c.462T>G | exon 5 | p.Y154X | novel mutation | 1 | 1 | 1 |
| c.505G>T | exon 5 | p.E169X | known mutation | 1 | 1 | 1 |
| c.1464C>A | exon 15 | p.Y488X | novel mutation | 2 | 1 | 1 |
| c.2840C>G | exon 29 | p.R947X | known mutation | 2 | 2 | 2 |
| c.2870G>A | exon 30 | p.W957X | known mutation | 1 | 1 | 1 |
| c.2985C>T | exon 33 | p.Q1099X | novel mutation | 1 | 1 | 1 |
| c.3565C>T | exon 36 | p.Q1190X | known mutation | 1 | 1 | 1 |
| **small insertions/deletions** | | | | | | |
| c.44_69del | exon 1 | p.P15RfsX40 | known mutation | 1 | 1 | 1 |
| c.190_191insT | exon 3 | p.Y154X | novel mutation | 2 | 1 | 1 |
| c.978_978delGA | exon 11 | p.Q988X | known mutation | 5 | 3 | 30 |
| c.2544delC | exon 27 | p.S843X | known mutation | 41 | 33 | 30 |
| c.2594delA | exon 27 | p.R846X | novel mutation | 1 | 1 | 1 |
| c.2730_2731delCT | exon 28 | p.W911D | known mutation | 2 | 2 | 1 |
| c.2972delT | exon 30 | p.F997X | known mutation | 1 | 1 | 1 |
| c.3638_3639del | exon 37 | p.P1212X | known mutation | 1 | 1 | 1 |
| c.3720_3724del | exon 37 | p.R1240X | known mutation | 2 | 2 | 2 |
| c.3781_3785del | exon 38 | p.F1261X | novel mutation | 1 | 1 | 1 |
| c.3919_3920insT | exon 39 | p.Q1307X | known mutation | 1 | 1 | 1 |
| c.3931_3932delAG | exon 39 | p.S1311X | novel mutation | 1 | 1 | 1 |
| c.4015_4017delCTC | exon 41 | p.L1339del | known mutation | 1 | 1 | 1 |
| c.4042_4043insC | exon 41 | p.L1348X | novel mutation | 2 | 2 | 1 |
| c.4124_4125delCA | exon 41 | p.T1375del | known mutation | 1 | 1 | 1 |
| c.4240_4241delAG | exon 42 | p.Q1414X | known mutation | 1 | 1 | 1 |
| **splicing mutations** | | | | | | |
| c.283+2T>C | intron 3 | aberrant splicing | novel mutation | 2 | 2 | 1 |
| c.1005-2A>G | intron 11 | aberrant splicing | novel mutation | 1 | 1 | 1 |
| c.1567-1G>A | intron 16 | aberrant splicing | novel mutation | 1 | 1 | 1 |
| c.2316+2T>A | intron 25 | aberrant splicing | novel mutation | 1 | 1 | 1 |
| c.2802-2A>G | intron 27 | aberrant splicing | known mutation | 6 | 5 | 4 |
| c.3025+1G>A | intron 27 | aberrant splicing | known mutation | 4 | 4 | 4 |
| c.3765+1G>T | intron 37 | aberrant splicing | known mutation | 2 | 2 | 1 |
| c.4168-1G>C | intron 41 | aberrant splicing | known mutation | 1 | 1 | 1 |
| c.4168-2A>G | intron 41 | aberrant splicing | known mutation | 3 | 3 | 2 |
| **large deletions** | | | | | | |
| ex1-3 del | — | — | — | 1 | 1 | 1 |
| ex1-5 del | — | — | — | 1 | 1 | 1 |
| ex1-28 del | — | — | — | 1 | 1 | 1 |
| ex1-43 del | — | — | — | 2 | 2 | 1 |
| ex6 del | — | — | — | 1 | 1 | 1 |
| ex6-17 del | — | — | — | 1 | 1 | 1 |
| ex19-29 del | — | — | — | 2 | 2 | 1 |
| ex24-28 del | — | — | — | 1 | 1 | 1 |
| ex30 del | — | — | — | 8 | 8 | 5 |
| ex30-31 del | — | — | — | 1 | 1 | 1 |
| ex37 del | — | — | — | 1 | 1 | 1 |
| c.3765+827_3814del | intron 37-exon 38 | — | novel mutation | 1 | 1 | 1 |
| **large duplication** | | | | | | |
| ex11-15 dupi | — | — | — | 1 | 1 | 1 |
| **Total** | | | | | | 130 |
| DNA change | Location | Effect | Comments | No. of alleles | No. of patients |
|-----------------|----------|--------------|-------------------|----------------|----------------|
| **nonsense mutations** | | | | | |
| c.91C>T | exon 2 | p.Q31X | known mutation | 2 | 2 |
| c.1066C>T | exon 8 | p.Q356X | known mutation | 15 | 10 |
| **small deletions** | | | | | |
| c.194delC | exon 3 | p.P65LfsX7 | known mutation | 3 | 2 |
| c.907_908del | exon 7 | p.L303GfsX5 | novel mutation | 1 | 1 |
| c.1386delC | exon 10 | p.W463GfsX55 | novel mutation | 1 | 1 |
| **splicing mutations** | | | | | |
| c.307+1G>C | intron 3 | aberrant splicing | known mutation | 34 | 21 |
| c.1637-15G>A | intron 12| VUS | novel mutation | 1 | 1 |
| **Total** | | | | 57 | |

variant of unknown significance
Supplemental Figure 1. Proposed model for mechanism of microhomology-mediated end joining (MMEJ) to repair DNA double-strand break (DSB). This repair model consists of at least five steps: resection of the DSB ends by nuclease digestion, annealing of 3bp homologous regions, removal of heterologous flaps, and fill-in synthesis and ligation. The mutation is speculated to be created by two DSBs and subsequent religation of the two distant ends by MMEJ repair.
Supplemental Figure 2. Display of a cross section of RNA-sequencing (top) and Whole-exome sequencing (bottom). RNA sequence reads of exon 7 in FANCB and exon 12 in FANCN were absent for Case 62 (A) and Case 98 (B), respectively, which enabled us to identify exon skipping. WES analysis revealed a synonymous mutation (FANCB c.1497G>T) in Case 62, resulting in skipping of exon 7, and a homozygous mutation (PALB2 c.3350+5G>A) in intron 12 in Case 98, resulting in skipping of exon 12. These mutation variants were also verified by PCR and Sanger sequencing.
Supplemental Figure 3. Localization of mutation variants found in FANCA (A) or FANCG (B).
Case 63: c.516G>A (p.W172X)
Case 62: c.1497G>T (p.S500AfsX14)

Case 60: complete loss of FANCB gene (chrX g.14730104-14904216 del)
Case 61: complete loss of FANCB gene (chrX g.14810970-14932973 del)

Case 96: c.158-2A>G (p.S54fsX5)
c.288G>A (p.C56fsX8)

Case 97: c.3006+3A>G
c.3346_3347insT (p.S1116FfsX16)

Case 65: c.517-2A>G
c.6952C>T (p.R2318X)
c.7847C>T (p.S2616F)

Case 66: c.475+1G>A

Case 98: Homozygous c.3350+5C>T (p.G1068VfsX5)

Supplemental Figure 4. Localization of mutation variants in FANCB (A), FANCI (B), FANCD1 (BRCA2) (C), and FANCN (PALB2) (D).
Supplemental References

1. Neveling K, Endt D, Hoehn H, Schindler D. Genotype-phenotype correlations in Fanconi anemia. Mutat Res. 2009;668(1-2):73–91.

2. De Rocco D, Bottega R, Cappelli E, et al. Molecular analysis of Fanconi anemia: the experience of the Bone Marrow Failure Study Group of the Italian Association of Pediatric Onco-Hematology. Haematologica. 2014;99(6):1022–1031.

3. Bogliolo M, Surrallés J. Fanconi anemia: a model disease for studies on human genetics and advanced therapeutics. Curr Opin Genet Dev 2015;33:32–40.

4. Singh TR, Bakker ST, Agarwal S, Jansen M, Grassman E, Godthelp BC, et al. Impaired FANCD2 monoubiquitination and hypersensitivity to camptothecin uniquely characterize Fanconi anemia complementation group M. Blood. 2009;114(1):174–80.

5. Bogliolo M, Bluteau D, Lespinasse J, Pujol R, Vasquez N, d’Enghien CD, et al. Biallelic truncating FANCM mutations cause early-onset cancer but not Fanconi anemia. Genet Med. 2018;20(4):458–463.

6. Catucci I, Osorio A, Arver B, Neidhardt G, Bogliolo M, Zanardi F, et al. Individuals with FANCM biallelic mutations do not develop Fanconi anemia, but show risk for breast cancer, chemotherapy toxicity and may display chromosome fragility. Genet Med. 2018;20(4):452–457.

7. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. 2016;26(1):52–64.