The ppm Operon Is Essential for Acylation and Glycosylation of Lipoproteins in Corynebacterium glutamicum

Niloofar Mohiman1,2*, Manuela Argentini3#, Sarah M. Batt4, David Cornu3, Muriel Masi1,2, Lothar Eggeling5, Gurdyal Besra4, Nicolas Bayan1,2*

1 Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université Paris-Sud, Orsay, France, 2 Centre National de la Recherche Scientifique UMR 8619, Orsay, France, 3 Centre National de la Recherche Scientifique, Institut de Chimie des Substances Naturelles, Gif sur Yvette, France, 4 School of Biosciences, University of Birmingham, Birmingham, United Kingdom, 5 Forschungszentrum Juelich GmbH, Jülich, Germany

Abstract

Background: Due to their contribution to bacterial virulence, lipoproteins and members of the lipoprotein biogenesis pathway represent potent drug targets. Following translocation across the inner membrane, lipoprotein precursors are acylated by lipoprotein diacylglycerol transferase (Lgt), cleaved off their signal peptides by lipoprotein signal peptidase (Lsp) and, in Gram-negative bacteria, further glycosylated by lipoprotein N-acetyl transferase (Lnt). The existence of an active apolipoprotein N-acyltransferase (Ms-Ppm2) involved in the N-acylation of LppX was recently reported in M. smegmatis. Ms-Ppm2 is part of the ppm operon in which Ppm1, a polyrenol-monophosphomannose synthase, has been shown to be essential in lipoglycans synthesis but whose function in lipoprotein biosynthesis is completely unknown.

Results: In order to clarify the role of the ppm operon in lipoprotein biosynthesis, we investigated the post-translational modifications of two model lipoproteins (AmyE and LppX) in C. glutamicum Δppm1 and Δppm2 mutants. Our results show that both proteins are anchored into the membrane and that their N-termini are N-acylated by Cg-Ppm2. The acylated N-terminal peptide of LppX was also found to be modified by hexose moieties. This O-glycosylation is localized in the N-terminal peptide of LppX and disappeared in the Δppm1 mutant. While compromised in the absence of Cg-Ppm2, LppX O-glycosylation could be restored when Cg-Ppm1, Cg-Ppm2 or the homologous Mt-Ppm1 of M. tuberculosis is overexpressed.

Conclusion: Together, these results show for the first time that Cg-Ppm1 (Ppm synthase) and Cg-Ppm2 (Lnt) operate in a common biosynthetic pathway in which lipoprotein N-acylation and glycosylation are tightly coupled.

Introduction

Bacterial lipoproteins are a subgroup of exported proteins anchored into the membrane surface by two or three acyl chains covalently linked to their conserved N-terminal cysteine. They represent a functionally heterogeneous family of proteins involved in several functions ranging from cellular physiology to cell division or virulence in pathogenic species [1]. In Gram-negative bacteria, they are involved in crucial steps of cell envelope biogenesis such as outer membrane protein insertion by the Bam machinery [2] or peptidoglycan assembly with penicillin binding protein machineries [3,4]. In Gram-positive bacteria, they often act as substrate-binding proteins (SBP) associated with ATP binding cassette (ABC) transporters [5].

The genome of Mycobacterium tuberculosis H37Rv encodes about 100 putative lipoproteins among which half of them are specific to the genus Mycobacterium and have no assigned function [6]. Functional data on the involvement of mycobacterial lipoproteins in ABC transporters (PhoS123), two component regulatory systems (LpqB and LpqF) [7,8], biosynthetic pathways of cell wall components (LpqW, LppX) [9,10], resuscitation of dormant cells (RpfB) [11], cytokine responses and regulation of antigen presentation by host cells as Toll like-receptor ligands (LprA, LprG, LpqH) have been reported [12,13]. Although very few of them have been extensively characterized biochemically, it is striking to note that most lipoproteins studied so far are also glycosylated [14] as it was shown for PstS, a lipoprotein in the related actinomycete Streptomyces coelicolor [15].
Lipoprotein Acylation and Glycosylation

and PhoS1 [19]. The role of lipoprotein glycosylation is not yet clear, but could be a common post-translational modification that would act as a signal for protein export to the cell wall or the extracellular medium. Alternatively, it has been suggested that glycosylation might protect surface-exposed lipoproteins from proteolytic degradation [16,18]. Speculatively, glycosylation of mycobacterial lipoproteins might represent a signal to induce or to avoid a “shaving” mechanism similar to that proposed by Tjalsma [20] for the release of Bacillus subtilis lipoproteins in the culture medium.

Lipoproteins are synthesized as prelipoproteins and translocated across the plasma membrane via the Sec or Tat machinery. Subsequent post-translational modifications take place on the outer leaflet of the plasma membrane [21]. Typically, the acceptor residue for lipid modification is a conserved cysteine included in a consensus motif known as the lipobox (L(A/V)(Y/F)L(G/V)S(2-3)G(A/V)C or Cys(2-3)Cys). In the first step, the cysteine (Cys1) residue that will become the N-terminal amino acid of the mature lipoprotein receives a diacylglyceride at its sulfhydryl group through the action of the phosphatidylglycerol:prelipoprotein diacylglycerol transferase (Lgt). Then, the N-terminal signal peptide is processed by prelipoprotein signal peptidase A (LspA), resulting in an apolipoprotein. The third and last step is the acylation of the N-terminal cysteine residue by apolipoprotein N-acyl transferase (Lnt), generating a mature triacylated lipoprotein. This last step is conserved throughout Gram-negative bacteria, and it was shown to be a prerequisite for lipoprotein sorting to the outer membrane by the Lol system [22]. Although recent results showed that lipoproteins are also triacylated in low % G+C Gram-positive bacteria [23,24,25,26], Lnt is only found in high % G+C Gram-positive bacteria such as Mycobacterium or Streptomyces. Tschumi et al. [27] clearly showed that LppX, a lipoprotein of M. tuberculosis essential for Pthiocerol dimycocerosates (DIM) exposure at the cell surface of M. tuberculosis, is triacylated in M. smegmatis, because it interacts with Ms-Ppm1, a membrane protein and that this interaction is required for stability of Ms-Ppm1 [29]. This strong genetic link suggests that the (D2) domains carry Lnt and PPM synthase activities, respectively [30]. This genetic link suggests that the ppm1 and ppm2 gene products are involved in a common biosynthetic pathway. However, functional connection(s) between lipoprotein and lipoglycan biosynthesis pathways are unknown. By analogy with the mammalian dolichol-phosphomannose synthase, it has been proposed that M. smegmatis Ms-Ppm1 interacts with an inner membrane protein and that this interaction is required for stability and activity [29]. Consistent with this idea, Ms-Ppm2 has been shown to interact with Ms-Ppm1 in a bacterial two-hybrid assay [29]. The function of Ms-Ppm1 in lipoprotein biosynthesis has never been tested in M. smegmatis since the corresponding mutant is not viable. Corynebacterium glutamicum is a non-pathogenic bacterium widely accepted as a useful model to depict the cell wall biosynthesis of Corynebacterineae including M. tuberculosis. The genetic organization of the ppm genes is conserved between M. smegmatis and C. glutamicum. Mutants in Cg-ppm1 (Δppm1) or Cg-ppm2 (Δppm2) have been generated previously and are viable [28]. The Δppm1 mutant is highly affected in growth and do not synthesize any lipoglycans, LM or LAM. In contrast, the Δppm2 mutant although affected in LM and LAM biosynthesis is not impaired for growth (our unpublished data and [28]). In this work, we investigated the function of Cg-Ppm1, Cg-Ppm2 and their putative interplay in lipoprotein biosynthesis. We analyzed the acylation and the glycosylation status of two model lipoproteins AmyE [31], an abundant lipoprotein of C. glutamicum (a putative sugar substrate binding protein) and LppX of M. tuberculosis [9,14,27] in various strains affected in ppm1 or ppm2.

Results

AmyE is a Bona Fide Lipoprotein of C. glutamicum

According to predictions based on bioinformatics tools, the genome of C. glutamicum strain ATCC 13032 encodes 84 putative lipoproteins, representing about 2.8% of its total proteome (DOLOP [32]). In C. glutamicum, as in other Actinomycetes, these include many SBP of ABC transporters. Among these, AmyE (NCgl2375) is annotated as a putative mistose-binding protein and has been detected as a major spot in the proteome of C. glutamicum, suggesting it is well expressed in standard laboratory conditions [31]. We chose AmyE as a model to study the biosynthesis of lipoproteins in C. glutamicum. The DNA sequence corresponding to the ORF of amyE including its putative promoter was amplified and cloned in an E. coli/C. glutamicum shuttle vector pCGL482 in frame with a 3’ sequence encoding a 6xHis tag (AmyE). A variant of amyE, with a point mutation converting the cysteine +1 of the lipobox into a leucine (AmyEC1L), was obtained by site directed mutagenesis and used as a control in all studies.

Plasmids expressing AmyE and AmyEC1L were transformed in C. glutamicum ATCC 13032. To examine the fate of AmyE proteins, cells were grown overnight, membranes and culture supernatants were prepared and analyzed by SDS-PAGE and immunoblotting (Fig. 1A). AmyE is detected as a 55 kDa polypeptide mostly present in the membrane fraction. Its apparent molecular weight on SDS-PAGE is slightly higher than the calculated molecular weight of the mature AmyE (47895 Da). Small amounts of a shorter form were found secreted in the culture medium and may have been released by proteolysis. Such a truncated form has also been detected previously by Hermann et al. [31]. In contrast, AmyEC1L is highly expressed but only detected in the culture supernatant as a 55 kDa species (Fig. 1A). To gain some insight on AmyE modifications, both variant forms were purified by affinity chromatography either from the membrane fraction (AmyE) or the culture supernatant (AmyEC1L). First, both proteins were subjected to SDS-PAGE before or after Triton X114 extraction. While both forms have a similar RF on SDS-PAGE, AmyE is recovered in the detergent phase and AmyEC1L remains in the soluble fraction (Fig. 1B). This is an indication that AmyE, but not AmyEC1L, has a hydrophobic moiety probably corresponding to acylation of its cysteine +1 (C+1). Second, purified AmyE and AmyEC1L were subjected to protein sequence analysis. Edman degradation of AmyEC1L resulted in a N-terminal sequence starting at the modified leucine +1 residue (LSGSTD) while no sequence could be obtained from AmyE. These results indicate that the mutant protein has been cleaved off its signal peptide and that AmyE carries a modification on its N-terminal amino group blocking its degradation by Edman reagents. To further characterize this modification, purified intact AmyE and AmyEC1L were analyzed by MALDI. A significant difference of 918 Da between the expected and the measured mass of AmyE (Mexpected = 47896 Da and Mmeasured = 48814 ± 150 Da) was observed, while there was no significant difference between the expected and the experimental measurement of AmyEC1L protein (Mexpected = 47896 and Mmeasured = 47981 ± 150 Da) (Fig. 1C). The 918 Da mass difference is consistent with a putative triacylation of AmyE. In order to characterize the post-translational modification of
AmyE more precisely, MALDI peptide mass fingerprinting analyses (PMF) were performed after in-gel trypsin digestion followed by peptide extraction with dodecylmaltoside (DDM) and chloroform/methanol. This procedure, described by Ujihara et al. [39], allowed the efficient detection of acylated peptides. AmyE and AmyE^{Δppm2} peptide profiles were very similar except for two main peaks shown in Fig. 1D. The m/z 4097.10 peak was detected exclusively in the AmyE spectrum while the m/z 3292.60 peak was only associated to the AmyE^{Δppm2} spectrum. The latter signal matches to the unmodified N-terminal peptide of AmyE^{Δppm2} (mass accuracy = 14 ppm), while the former most likely corresponds to the N-terminal peptide of AmyE harboring a post-translational modification of 814 Da (estimated mass accuracy <20 ppm). This is consistent with triacylation of AmyE as the 814 Da modification might correspond to the addition of a diacylglyceryl (576 Da) and a palmitoyl moiety (238 Da). Additional peaks that are apparently distinct to the spectra of AmyE and AmyE^{Δppm2} are attributable to differential oxidation of internal tryptic peptides of AmyE^{Δppm2} compared to AmyE, as detailed in the Legend to Fig. 1.

Cg-ppm2 is Essential for N-palmitoylation of AmyE

In Gram-negative bacteria, lipoproteins are successively acylated by Lgt (formation of a thioester linkage between the conserved C+1 and a diacylglycerol) and Ltn (covalent modification of the N-terminal C+1) to form mature triacylated proteins. While the Lgt-mediated reaction is universally conserved in bacteria [1], N-acylation was thought to be restricted to Gram-negative bacteria. Yet, genomic analysis revealed the presence of Ltn homologs in high % G+C Gram-positive bacteria, such as Actinomycetes including Mycobacteria and Corynebacteria. More recently, Sander and collaborators [27] convincingly showed that an Ltn homolog (MSMEG_3860 or Ms-Ppm2) was fully active in *M. smegmatis* and was able to N-acylate mycobacterial lipoproteins such as LppX and LprF. The homolog of Ms-Ppm2 was observed in the genome of *C. glutamicum* and corresponds to NCgl1424 formerly known as Cg-ppm2. This gene is putatively co-transcribed with Cg-ppm1, which encodes a polypropen monophosphomannose synthase involved in lipoglycan synthesis [28]. However, the putative role of Cg-ppm2 in N-acylation of lipoproteins in *C. glutamicum* has never been tested. AmyE was expressed in a Δppm2 mutant and in a complemented strain in which Cg-ppm2 was reintroduced in trans a plasmid under tac promoter control (pCg-ppm2). In both cases, AmyE was mainly found in the membrane fraction, similar to that observed in the wild-type strain (Fig. 2A and Fig. 1A). AmyE proteins from the membrane fraction of Δppm2 or the complemented strains (Δppm2-pCg-ppm2) were purified to homogeneity and analyzed by MALDI PMF using the same procedure as described above. Notably, the m/z 4097.10 peak detected for AmyE purified from the wt strain (Fig. 1D and Fig. 2B) was absent from the spectrum of the AmyE purified from the Δppm2 mutant, but was detected again in the spectrum of AmyE purified from the complemented strain (Fig. 2B). Instead, in the Δppm2 mutant, we identified a new m/z 3858.98 peak. This signal most likely corresponds to the N-terminal peptide of AmyE covalently linked with a diacylglycerol moiety (+576 Da assuming 1 C16:0 and 1 C18:1; estimated mass accuracy <20 ppm). The mass difference between the diacylglycerol and the triacyl N-terminal peptide is 238 Da, which corresponds to a palmitoyl moiety. This result suggests that AmyE is diacylated in Δppm2 but contains an additional modification with a palmitic acid in the wild-type and complemented strains. The absence of the m/z 3858.98 peak in the wild type spectrum suggests that, under these conditions, AmyE is fully tri-acylated. This was consistent with the observation that the N-terminus of AmyE purified from the wild-type strain was not accessible for sequencing by Edman degradation (data not shown). As previously shown for MSMEG_3860 (Ms-Ppm2), Cg-Ppm2 exhibits Ltn activity that results in N-palmitoylation of lipoproteins such as AmyE.

The genetic proximity between Cg-ppm1 and Cg-ppm2 and the fact that both corresponding proteins are encoded by the same ORF in *M. tuberculosis*, suggests that Cg-Ppm1 could be involved in lipoprotein biosynthesis in *C. glutamicum*. In order to investigate this possibility, we analyzed modifications of AmyE from a Δppm1 mutant by MALDI PMF. Results showed no difference in the acylation status of AmyE between the wild type strain and the Δppm1 derivative (data not shown).

Cg-Ppm1 is Essential for Glycosylation of LppX in *C. glutamicum*

Ppm1 proteins from *C. glutamicum*, *M. smegmatis* and *M. tuberculosis* have been characterized as PPM synthases, enzymes that transfer mannose (Man) moieties on polypropen monophosphate from GDP-Man to produce PPM molecules that constitute Man-donors for lipoglycan biosynthesis [29,30]. Glycoproteomics studies based on ConA lectin affinity capture of mannosylated proteins revealed that 41 proteins of *M. tuberculosis* are potentially glycosylated [14]. Among these, 18 were lipoproteins, suggesting a possible connection between protein glycosylation and acylation pathways in Mycobacteria. Tschni et al., recently described the N-acylation of lipoprotein LppX in *M. smegmatis* [27]. Because LppX was also one of the proteins found to be post-translationally glycosylated in the glycoproteomic study [14], we sought to investigate the role of Cg-Ppm1 in post-translational modification of LppX. The DNA sequence encoding LppX-HA-His (LppX with C-terminal hemagglutinin and 6xHis epitopes) was amplified by PCR from pMV261-Gm-FusLppX-HA-His and cloned under the amyE promoter in the shuttle E. coli/C. glutamicum vector pCGL482. When expressed in wild-type *C. glutamicum*, LppX was mainly found associated with the membrane fraction (Fig. 3A). LppX was purified by affinity chromatography from the membranes, in-gel digested with trypsin, and the peptide mixture was analyzed by liquid chromatography-electrospray-ionization-tandem mass spectrometry (LC-ESI-MS/MS). The MS/MS data were analyzed with the Mascot Error Tolerant Search software against the recombinant LppX protein sequence. Protein coverage was 90% (Fig. 3A) and the N-terminal qPDAEEQYPVSP-TASDPPALAEIR₂₉ peptide was found to be heterogeneously glycosylated with hexose units. Accurate analysis of the MS data after deconvolution within 21.5 and 23.5 minutes of retention time revealed 1 [M+H]⁺ molecular ion corresponding to the unmodified LppX₂₉ (m/z 2462.17) and 4 [M+H]⁺ molecular ions differing by 162 Da which correspond to the LppX₂₉ glycopeptides with 1, 2, 3 and 4 hexose units (m/z 2624.21, 2786.26, 2948.30, 3110.35). Curiously enough, we also observed 4 [M+H]⁺ molecular ions corresponding to the unmodified, mono, di and tri-glycosylated LppX₂₉ peptides with an additional single modification of 262 Da (m/z 2724.23, 2836.28, 3048.34, 3210.37) (Fig. 3B). This modification is, however, still unknown. MS/MS/MS data of LppX₂₉ glycopeptides were analyzed and neutral losses of 162 Da were observed in all the MS/MS spectra of the glycopeptides. This well known property is diagnostic of dissociation of hexose units from singly charged glycopeptides [34]. The MS/MS spectra of the unmodified and tetraglycosylated LppX₂₉ peptide produced intense b₈, y₈ and y₁₆ ions that were systematically detected in the MS/MS spectra of all the glycopeptides (data not shown and Fig. 3C). Hence these ions were considered as diagnostic to ascertain the amino-acidic nature of the LppX₂₉ peptide. In the MS/MS spectrum of the
Figure 1. Lipoprotein AmyE is triacylated. A. AmyE localization in *C. glutamicum* wild-type cells expressing AmyE (pAmyE) or a variant of AmyE with a point mutation substituting the cysteine +1 by a leucine (pAmyEC1L). An empty vector (pCGL482) was used as a control. Membrane and secreted proteins were analyzed by SDS-PAGE followed by immunoblotting using monoclonal anti-his antibodies. The band labeled with an asterisk corresponds to a shorter form of AmyE. B. AmyE (left panel) and AmyEC1L (right panel) were purified and analyzed by SDS PAGE before (lane 1) or after Triton X114 extraction. Proteins from both aqueous (lane 2) and detergent (lane 3) phases were precipitated and loaded on the gel. C. MALDI mass measurements of intact purified AmyE and AmyEC1L proteins. Estimated mass accuracy is 150 Da. D. MALDI PMFs of AmyE and AmyEC1L proteins purified from *C. glutamicum* wild-type strain. The m/z 3200–4800 region of the mass spectra of AmyE and AmyEC1L tryptic peptides after DDM/CHCl3-CH3OH treatment is shown and significant monoisotopic [M+H]+ peaks are indicated. Upper panel: m/z 4097.10 (bold) corresponds to the triacylated AmyE1–29 peptide while m/z 3451.65, 3821.53 and 4045.88 match to internal tryptic peptides, AmyE334–365, AmyE366–397 and AmyE55–91 respectively. m/z 4061.74 and 4077.54 peaks could correspond to mono- and di- oxidized AmyE55–91 peptides. Bottom panel: m/z 3292.60 (bold) corresponds to the C1L-mutated AmyE1–29 peptide while m/z 3451.65 and 3821.72 match to AmyE334–365 and AmyE366–397 peptides.
The N-terminal LppX_{1-29} Peptide is Acylated and Glycosylated

Purified LppX partitioned in the detergent phase when treated with Triton X-114 (Fig. 3A) suggesting that it is acylated in C. glutamicum. In order to evaluate the nature of this modification and its potential coexistence with glycosylation, we submitted tryptic-digested LppX to mass spectrometry analyses. The LC-ESI-MS/MS approach could not be used because triacylated peptides were not detected under standard liquid chromatography conditions (data not shown). Hence, as for AmyE, LppX peptides were extracted with dodecylmaltoside (DDM) and chloroform/methanol, then analyzed by MALDI-PMF. Two main peaks (m/z 4103.09 and 4277.11) were detected in the spectrum from the wild-type strain (Fig. 4A). They match to the N-terminal triacylated and glycosylated LppX_{1-29} N-terminal peptide with 2 and 4 mannose residues respectively. In the Δppm1 context, these peaks were absent but a single m/z 3779.28 peak was detected (Fig. 4A). This peak matched to the N-terminal triacylated LppX_{1-29} peptide. All experimentally found m/z values are summarized and compared to the calculated m/z values in Table 1. The presented results clearly show that LppX N-terminus is acylated and glycosylated in C. glutamicum and that these modifications are not mutually exclusive.

Deletion of Cg-ppm2 Affects both N-acylation and Glycosylation of LppX

In order to test the role of Cg-Ppm2 on post-translational modifications of LppX, the protein was expressed in the Δppm2 mutant. The protein, which is still associated with the membrane, was purified and analyzed exactly as the one from the wild type strain. As expected from our results on AmyE, only the diacylated N-terminal LppX_{1-29} peptide was detected (m/z 3540.89) in the spectrum (Fig. 5), confirming that Cg-Ppm2 has apolipoprotein N-acyltransferase activity and that it is also active on heterologously expressed mycobacterial lipoproteins. The m/z 3340.89 peak (diacylated peptide) is observed neither in the wild type nor in the ppm1 background suggesting that, in these conditions, LppX is fully triacylated exactly as AmyE. Interestingly, this peak corresponds to the non-glycosylated diacylated LppX_{1-29} N-terminal peptide. Moreover, only the non-glycosylated form of the LppX_{1-29} peptide was detected (data not shown), further confirming that LppX is not glycosylated when expressed in the Δppm2 mutant. This could be an indication that protein glycosylation occurs downstream of protein acylation or that the absence of Cg-Ppm2 affects the stability and/or the activity of enzymes that directly contribute to lipoprotein glycosylation. The observation that post-translational modifications (triacylation and/or glycosylation) were recovered when LppX was purified from the Δppm2 (pCg-ppm2) and the Δppm2ΔpCg-ppm1 strains (Fig. 5) favored the second functional hypothesis.

Mt-ppm1 (Rv2051c) can Complement C. glutamicum Δppm1 and Δppm2 Mutants

LppX is triacylated but not glycosylated in a Δppm1 mutant and only diacylated in a Δppm2 mutant. Mt-Ppm1 exhibits polyisoprenylmonophosphomannose activity and it is also able to complement Ms-Ppm2 activity in M. smegmatis [27]. Here, Mt-ppm1 was introduced in trans in C. glutamicumΔΔppm1 and ΔΔppm2 mutants. LppX purified from these strains indicated restoration of both N-palmitoylation and mannosylation (Fig. 6). This result indicates that both apolipoprotein N-acyltransferase (Lnt) and polyisoprenylmonophosphomannose (PMP) synthase activities of Mt-Ppm1 are functional in C. glutamicum. Interestingly, the N-terminal domain alone of Mt-Ppm1 (D1) that contains Lnt activity was not able to restore N-acylation of LppX, but restored glycosylation (Table 1). This result confirms that glycosylation does not require N-acylation and suggests functional interplay between protein N-acylation and glycosylation in C. glutamicum.

Discussion

Lnt Activity is Present in C. glutamicum

In Gram negative bacteria, the lipoprotein biosynthesis pathway is well understood and consists in a three-step post-translational mechanism that successively involves the enzymes Lgt, LpaA and Lnt. Additional determinants are required for the transport of lipoproteins to the outer membrane. In the Corynebacterium, only a few lipoproteins have been functionally characterized and little is known about their biosynthesis and localization. This is of medical importance since lipoproteins have been shown to contribute to virulence in M. tuberculosis. Lnt homologues are present in Mycobacteria, Corynebacteria and Streptomycetes species. In M. tuberculosis, Mt-Ppm1 (Rv2051c) is a bi-domain enzyme with a N-terminal Lnt domain and a C-terminal PPM synthase domain. Interestingly, these two domains are encoded by individual adjacent ORF – named ppm1 and ppm2 – in the genomes of other Mycobacteria and Corynebacteria. A detailed study demonstrated that Ms-Ppm2 (MSMEG_3860) and Mt-Ppm1 (Rv2051c) exhibit Lnt activity in M. smegmatis and M. tuberculosis, respectively, generating triacylated lipoproteins [27]. The function of Ms-Ppm1 and the D2 domain of Mt-Ppm1 are supposed to be essential for lipoglycan synthesis but their role in lipoprotein biosynthesis has never been tested so far. In C. glutamicum, the ppm operon has been described to be essential for the synthesis of lipoglycans. While the Δppm1 mutant displayed altered growth rate, inability to synthesize PPM molecules and lipoglycans, the Δppm2 has a lower content of lipoglycans but no growth defect. Here, we studied the role of ppm1 and ppm2 of C. glutamicum in the post-translational modification of lipoproteins. For this purpose,
match to internal tryptic peptides, AmyE\textsubscript{334–365}, AmyE\textsubscript{60–91} and AmyE\textsubscript{55–91}, respectively. Bottom panel: \textit{m/z} 4097.21 (bold) corresponds to the triacylated AmyE\textsubscript{1–29} peptide while \textit{m/z} 3451.65, 3547.61 and 4045.88 match to AmyE\textsubscript{334–365}, AmyE\textsubscript{60–91} and AmyE\textsubscript{55–91} peptides. doi:10.1371/journal.pone.0046225.g002

we first focused on AmyE, a predicted lipoprotein, highly expressed in \textit{C. glutamicum}. We report that AmyE is indeed a lipoprotein, post-translationally modified on its C1 cysteine and anchored in the membrane. Experiments of membrane separation on sucrose gradients further indicated that AmyE was primarily present in the inner membrane fractions (data not shown), consistent with its function of SBP of an ABC transporter. As expected, AmyEC1L is no longer post translationally modified and therefore not associated with the membrane. Instead, AmyEC1L is released from intact cells in the culture medium. This localization is surprising and suggests that the mycomembrane integrity has been compromised by the overexpression of this non-lipidated variant. Both the cell-bound wild-type and the released non-lipidated forms of AmyE were of the same size and cleaved off their signal sequence, indicating that Lsp of \textit{C. glutamicum} is active on preprolipoproteins. This behaviour is similar to that of other Gram-positive bacteria, while Gram-negative Lsp are only active on diacylated prolipoproteins [35].

MALDI analysis of AmyE showed a difference between the calculated and the experimental mass of the intact protein, fully compatible with a triacylation. In addition, after trypsin cleavage, the N-terminal peptide of AmyE from the parental strain has a mass of 4097.10 Da instead of 3283.52 Da expected for the unmodified peptide, while the same N-terminal peptide from the isoegenic \textit{Δppm2} showed a mass of 3858.98 Da. After calculating all theoretical combinations of the main fatty acids found in \textit{C. glutamicum}, we inferred that our results are a strong indication of the addition of a diacylglycerol moiety (C16:0 and C18:1) completed by an N-palmitoylation (C16:0). In total, the observed modification accounts for 814 Da. We found exactly the same modifications on \textit{M. tuberculosis} LppX expressed in \textit{C. glutamicum}. This result indicates that lipoprotein-modifying enzymes (including Lgt and Lnt) of \textit{C. glutamicum} are active on heterologously expressed mycobacterial lipoproteins. In a previous report, Tschumi \textit{et al.} found a mass difference of 831 Da due to post-translational modification of LppX expressed in \textit{M. smegmatis} [27]. This included a diacylglycerol modification (tuberculostearic acid C19:0 and C16:0) and an N-palmitoylation (C16:0). The slightly smaller value we found (814) when LppX was expressed in \textit{C. glutamicum} is likely due to the absence of mycobacterial specific fatty acids. Indeed, tuberculostearic acid is a 10-methyloctadecanoic acid that may account for the mass difference of +17 Da observed for LppX modification in \textit{M. smegmatis} as compared to the C18:1 in \textit{C. glutamicum}. The N-palmitoylation of AmyE and LppX (+238 Da) does not occur in a \textit{Δppm2} mutant, confirming that Cg-ppm2 has Lnt activity similar to that of its homolog in \textit{M. smegmatis}. All together, our results constitute a second report that shows the presence of a Lnt activity in \textit{Corynebacterineae} and therefore confirms that these outer membrane-containing Gram-positive bacteria are able to triacylate lipoproteins, just as Gram-negative bacteria. In Gram-negative bacteria, depletion of Lnt causes mislocalization of outer membrane proteins [36]. In \textit{C. glutamicum}, both AmyE and LppX were anchored to the membrane in the presence or in the absence of Cg-ppm2, indicating that protein diacylation is sufficient for membrane tethering. Because AmyE\textsubscript{C1L} and LppX are found mainly associated to the cytoplasmic membrane (data not shown), we cannot determine a putative role of Cg-ppm2-mediated triacylation in the export of lipoproteins to the mycomembrane. In any case, the

Figure 2. Cg-Ppm2 exhibits apolipoprotein N-acyltransferase activity. A. Localization of AmyE in \textit{C. glutamicum} \textit{Δppm2} or \textit{Δppm2} (Cg-ppm2) strains. Membrane (M) and secreted (S) proteins were analyzed by SDS-PAGE followed by immunoblotting using monoclonal anti-his antibodies. The band labeled with an asterisk corresponds to a secreted form of AmyE. B. MALDI PMFs of AmyE protein purified from \textit{Δppm2} and \textit{Δppm2} (Cg-ppm2) strains. The \textit{m/z} 3200–4800 region of the mass spectra of AmyE tryptic peptides after DDM/CHCl\textsubscript{3}-CH\textsubscript{3}OH treatment is shown and significant monoisotopic \([\text{M+H}]^+\) peaks are annotated. Upper panel: \textit{m/z} 3858.98 (bold) corresponds to the diacylated AmyE\textsubscript{1–29} peptide while \textit{m/z} 3451.65, 3547.59 and 4045.88 correspond to internal tryptic peptides, AmyE\textsubscript{334–365}, AmyE\textsubscript{60–91} and AmyE\textsubscript{55–91}, respectively. Bottom panel: \textit{m/z} 4097.21 (bold) corresponds to the triacylated AmyE\textsubscript{1–29} peptide while \textit{m/z} 3451.65, 3547.61 and 4045.88 match to AmyE\textsubscript{334–365}, AmyE\textsubscript{60–91} and AmyE\textsubscript{55–91} peptides. doi:10.1371/journal.pone.0046225.g002
absence of Cg-Ppm2 did not cause any defect in cell envelope stability or cell growth. The precise role of protein N-palmitoylation in the cell physiology remains to be elucidated.

Figure 3. M. tuberculosis LppX is O-glycosylated in C. glutamicum. A. Localization of LppX in *C. glutamicum* wild-type strain: Membrane (M) and secreted (S) proteins were analyzed by SDS-PAGE, followed by immunoblotting using monoclonal anti-his antibodies (left). Purification of LppX: LppX was purified and analyzed by SDS PAGE before (lane 1) or after Triton X114 extraction. Proteins from both aqueous (lane 2) and detergent (lane 3) phases were precipitated and loaded on the gel (right). LC-ESI-MS/MS analysis of LppX peptides: Identified peptides generated by standard extraction procedures are shown in boldface type on the amino acid sequence of recombinant LppX. * indicates hydroxyl amino acid residues of the LppX6–29 peptide. B. LC-MS analysis of LppX6–29 glycopeptides. The deconvoluted LC-MS chromatogram is shown (21.5<RT<23.5 minutes). [M+H]+ ions corresponding to the unmodified peptide (m/z 2462.17), glycosylated forms with 1 to 4 hexose units (m/z 2624.21, 2786.26, 2948.30, 3110.35) and Δ262- glycosylated forms with 0 to 3 hexose units (m/z 2724.23, 2886.28, 3048.34, 3210.37) are shown. = 1 hexose (Δm = 162). = unknown modification (Δm = 262). C. Deconvoluted MS/MS spectra of unmodified and tetraglycosylated peptides. Fragmentation patterns of the triply charged ions corresponding to unmodified (left) and tetraglycosylated (right) LppX6–29 peptides are shown. b8, y8 and y16 most intense fragment ions are annotated in both MS/MS spectra. Fragmentation pattern of the tetraglycosylated LppX6–29 peptidereveals 4 neutral losses of 162 Da coming from the intact tetraglycosylated peptide (m/z 3110.38) and from the tetraglycosylated y16 fragment ion (m/z 2285.03). = 1 hexose (Δm = 162 Da).

doi:10.1371/journal.pone.0046225.g003

Lipoprotein Glycosylation in *C. glutamicum*

Besides acylation, LppX was found to be O-glycosylated in *C. glutamicum*. This glycosylation is attributable to hydroxyl-bearing amino acids within the peptide "PDAEEOGCPVSPTASDPAL-"
This peptide contains two serines (S16 and S20) and one threonine (T18) in proximity to prolines, a feature reminiscent of glycosylation targets in Actinomycetes [15,16,34,37]. Ser 16 and Thr 18 were also predicted as potential targets for O-glycosylation by the Net-OGlyc 3.1 software (data not shown). However, we were not able to locate the exact sites of glycosylation using conventional CID MS/MS techniques because of the lability of glycosidic bonds. Since in Gram-negative bacteria amino acids at positions +2 and +3 are essential for the correct localization of protein in the inner or the outer membrane [38] it is interesting to note that the atypical double serine residues at the +2 and +3 position of LppX were not found to be glycosylated in our study. This is similar to LpqH from *M. tuberculosis*, which also contains a double serine at positions +2 and +3, but has been shown to be
glycosylated somewhere in the threonine cluster, located between amino acids 13 and 20. Even though there is no sequence homology between LpqH and LppX, the position of the glycosylation sites may have been conserved in the two proteins. The glycosylation of LppX observed in C. glutamicum most likely reflects its modification in Mycobacteria. Indeed, in M. smegmatis, LppX has been shown to be post-translationally modified by hexoses (P. Sander, personal communication) and in M. tuberculosis, LppX has a high affinity for ConA-lectins [14]. This latter result suggests that LppX is indeed mannosylated, which is in line with our results, showing that the LppX\textsubscript{1–29} glycopeptide can be deglycosylated by treatment with alpha-mannosidase (data not shown). To our knowledge, this result indicates that Mt-Ppm1 is functional in C. glutamicum, and might be related to its cell wall localization and could be essential for translocation of complex lipids (DIM) to the outer leaflet of the outer membrane as it was proposed for SodC [18] or LpqH [16,39]. Finally, it is worth noting that besides mannosylation, an additional modification of 262 Da was consistently observed for LppX\textsubscript{1–29} (data not shown). The function of LppX glycosylation is still unknown but, as suggested recently, the lack of complementation of Ms-Ppm1 in protein glycosylation of secreted proteins including the resuscitation promoting factor 2 (Rpf2) and the putative lipoprotein LppS [45]. In this context, our results indicate that, in addition to its essential role in LAM and LM synthesis, Cg-Ppm1 is also a key element for the glycosylation of lipoproteins in C. glutamicum.

Mt-Ppm1 is Active in C. glutamicum

In M. tuberculosis, Ppm1 and Ppm2 proteins are encoded by the single ORF Rv2051c (Mt-ppm1). Here we show that Mt-Ppm1 is able to complement the Δppm2 mutant for LppX acylation and glycosylation and the Δppm1 mutant for LppX glycosylation. This result indicates that Mt-Ppm1 is functional in C. glutamicum and does not show any host specificity. Tschumi et al. [27] previously reported that Ms-Ppm2 was not able to complement its E. coli homolog even after exchange of the two essential amino acids differing between E. coli and M. smegmatis. The authors suggested that this lack of complementation could be due to the fact that Ms-Ppm2 only recognizes lipoproteins modified with a diacylglycerol residue carrying at least one long chain fatty acid, the tuberculostearic acid. Our data show that Mt-Ppm1 is able to complement Cg-Ppm2 and is therefore able to recognize a diacylglycerol residue without tuberculostearic acid. Hence, the absence of complementation of Ms-Ppm2 observed by Tschumi et al. [27] could be due to low expression level or low enzymatic.

Table 1. Summary of the N-terminal LppX\textsubscript{1–29} peptides detected by MALDI-PMF after DDM/CHCl\textsubscript{3}-CH\textsubscript{3}OH treatment in different genetic backgrounds.

Strains	Triacylated LppX\textsubscript{1–29} MH\textsubscript{+} = 3778.46	Triacylated and glycosylated LppX\textsubscript{1–29} (triacylated LppX + n = 162)	Diacylated LppX\textsubscript{1–29} MH\textsubscript{+} = 3540.46	Diacylated and glycosylated LppX\textsubscript{1–29} (diacylated LppX + n = 162)
WT	4103.09 (n = 2)	4427.11 (n = 4)		
Δppm1	3779.28			
Δppm1 (pCg-ppm1)	4103.03 (n = 2)	4427.05 (n = 4)		
Δppm1 (pMt-ppm1/D1+D2)	4103.22 (n = 2)	4427.18 (n = 4)		
Δppm2			3540.89	
Δppm2 (pCg-ppm2)	3779.23	3941.15 (n = 1)	3864.99 (n = 2)	
Δppm2 (pMt-ppm1/D1+D2)	3779.20	3941.22 (n = 1)	4188.82 (n = 4)	
Δppm2 (pCg-ppm1)	3702.89 (n = 1)	4103.26 (n = 2)	3702.89 (n = 1)	3864.87 (n = 2)
Δppm2 (pMt-ppm1/D1)				

Triacylated peptides are in bold. Glycosylated peptides are in italic. \(n\) represents the number of hexoses associated with the peptide. Unmodified LppX\textsubscript{1–29} MH\textsubscript{+} = 2964.46.
Lipoprotein Acylation and Glycosylation

Figure 5. Cg-Ppm2 activity affects LppX glycosylation. Comparison of MALDI PMF profiles of LppX protein purified from Δppm2, Δppm2(pCg-ppm2) and Δppm2(pCg-ppm1). The m/z 3500–4550 region of the mass spectra of LppX tryptic peptides after DDM/CHCl3-CH3OH treatment is shown and significant monoisotopic [M+H]+ peaks are annotated. Upper spectrum: the Δppm2 strain, only the m/z peak corresponding to the non-glycosylated diacylated LppX1–29 peptide is identified (m/z 3540.89, bold). Five peaks were assigned but not identified (m/z 3624.64, 3635.96, 3794.77, 3808.89 and 4518.28). These peaks do not match to internal tryptic LppX peptides. Middle spectrum: in the Δppm2 (pCg-ppm2) strain, m/z peaks corresponding to different glycosylated forms of the diacylated LppX1–29 peptide are observed (m/z 3941.15, 4041.13 and 4103.22, in bold) as well as the peak corresponding to the non-glycosylated triacylated LppX1–29 peptide (m/z 3779.23, in bold). The m/z 3624.63 peak was detected but not identified. Bottom spectrum: in the Δppm2 (pCg-ppm1) strain different glycosylated forms of the diacylated LppX1–29 peptide are detected (m/z 3864.99, 3964.86, 4188.82 and 4288.85, in bold). ● = 1 hexose (ΔM = 162 Da), ○ = unknown modification (ΔM = 262 Da). “ni” means not identified and asterisks indicate that m/z assignments are not very accurate. Inset: SDS PAGE of the purified LppX proteins from the wild type, the Δppm2 and the complemented strains.

doi:10.1371/journal.pone.0046225.g005

activity of Ms-Ppm2, which may not sustain growth of E. coli, rather than to substrate specificity.

Glycosylation of LppX is Dependent on the Presence of Cg-Ppm2

Interestingly, we found that the deletion of the Cg-ppm2 gene caused the complete loss of glycosylation of LppX. This observation was unexpected and might be explained as follows. First, the absence of glycosylation of LppX may suggest that triacylation of LppX is a prerequisite for glycosylation. This hypothesis has been ruled out since overexpression of Cg-ppm1 in a Δppm2 mutant restores glycosylation and that Mt-Ppm1/D1 (N domain of Rv2051c), which is not able to restore acylation in the Δppm2 mutant, is nevertheless able to restore glycosylation. Second, because Cg-ppm1 is located immediately downstream of Cg-ppm2, a possible decrease in Cg-ppm1 transcription could not be excluded and may explain our observations. LAM and LM activity of Cg-Ppm2 is not sustained in a Δppm2 mutant as compared to the wild type strain and could not be restored by complementation (our unpublished data and [28]). This observation clearly indicates that there is indeed a polar effect of Cg-ppm2 deletion on Cg-ppm1 expression. However, this decrease in Cg-ppm1 transcription, could not alone explain the absence of LppX glycosylation in the Δppm2 mutant since glycosylation (and triacylation) were recovered when LppX was purified from the Δppm2 complemented strain (Δppm2(pCg-ppm2)). Finally, a third possibility could be that Cg-Ppm2, in addition to its apolipoprotein N-acyltransferase activity, is able to interact with Cg-Ppm1 and increase its activity by anchoring the protein at the membrane surface. This hypothesis is in line with the results of Baulard et al. who demonstrated a direct interaction between Ms-Ppm1 and Ms-Ppm2 in M. smegmatis [29]. Because lipoprotein glycosylation, but not lipoglycans synthesis, can be restored by complementation of the Δppm2 mutant with pCg-ppm2, we propose that Cg-Ppm2 could even mediate a physical interaction between Cg-Ppm1 and Pmt in order to efficiently drive the transfer of mannose directly from the phosphoprenol carrier to the lipoprotein. This interesting perspective pointing to unexpected links between lipoglycans and lipoprotein biogenesis awaits further analysis.

Experimental Procedures

Strains and Plasmids

All C. glutamicum strains used in this study are derivatives of ATCC13032 RES167 [47] and were routinely cultured on Brain Heart Infusion (BHI) medium (DIFCO) at 30°C. The construction of mutants Δppm1 and Δppm2 has been described elsewhere [28]. E. coli DH5α was used as a host for cloning. C. glutamicum strains carrying pCGL482 [48] or pVWE2x [49] derivative plasmids were grown in the presence of chloramphenicol (Gm) and tetracycline,
Figure 6. M. tuberculosis Ppm1 is active in C. glutamicum. Comparison of MALDI PMF profiles of LppX protein purified from ∆ppm2 (pMt-ppm1) and ∆ppm1 (pMt-ppm1). The m/z 3500–4550 region of the mass spectra of LppX tryptic peptides after DDM/CHCl₃-CH₃OH treatment is shown and significant monoisotopic [M+H]+ peaks are indicated. Upper spectrum: in the ∆ppm2 (pMt-ppm1) m/z peaks corresponding to different glycosylated forms of the triacylated LppX₁₋₂₉ peptide were observed (m/z 3941.22, 4041.18, 4103.26, 4203.25, 4427.28 and 4527.23) as well as the peak of the non-glycosylated triacylated LppX₁₋₂₉ peptide (m/z 3779.20). Bottom spectrum: in the ∆ppm1 (pMt-ppm1) strain, peaks corresponding to different glycosylated forms of the triacylated LppX₁₋₂₉ peptide were observed (m/z 4103.22, 4203.26, 4427.18 and 4527.12, in bold). Three peaks (m/z 3547.83, 3662.78 and 3943.95) were detected but not identified. ● = 1 hexose (∆m = 162 Da); △= unknown modification (∆m = 262 Da). "ni" means not identified and asterisks indicate that m/z assignments are not very accurate.

doi:10.1371/journal.pone.0046225.g006
(Tet) at final concentrations of 25 μg ml⁻¹ and 5 μg ml⁻¹ respectively. Transformations of C. glutamicum were performed by electroporation as described by Bonamy et al. [30]. Primers synthesis and DNA sequencing were performed by Eurofins MWG operon.

Construction of Expression Vectors

The DNA region encoding AmyE-6his was amplified by PCR using genomic DNA from C. glutamicum ATCC 13032 as a template, the forward primer (5'-AGCGGAGGATCTCTG-TATTGTATGTTCGAGGCGCCG-3') with a BamHI site and the reverse primer (5'-CGTCACGGATCGGGAACGTTGCATGCTGC-3') with a XhoI site and digested with XhoI and BamHI and ligated into sites of pCGL429, generating pCGL429-AmyE. Expression of amyE from this plasmid was driven by its own native promoter.

The DNA region encoding LppX-HA-His was amplified by PCR from plasmid pMV261-Gm-Fus-LppX-HA-His [27] with the forward primer (5'-GAATTCGTTATGTTTTAGGCCCG-3') and the reverse primer (5'-TATTTGTATGTTTTAGGCCCG-3') with a XhoI site and the reverse primer (5'-CGTCACGGATCGGGAACGTTGCATGCTGC-3') with an EcoRV site. After digestion with EcoRV and XhoI, the PCR product was inserted into appropriately restricted pCGL429-AmyE, resulting in pCGL429-LppX, in which expression of lppX is under the control of the amyE promoter.

Construction of Plasmids Expressing ppm Genes

Cg-ppm1 was cloned under the tac promoter in pVWEx2 as described previously [28]. Cg-ppm2, Mt-ppm1/D1 and Mt-ppm1/D1+D2 were similarly cloned in the same vector by using the following primers:

- Cgppm2_Xbal_F CAT GCA TGG TCTA GAA AGG AGA TAT AGA TAT GAC ACT GTT TGT TCG GCT C
- Cgppm2_BamHI_R CAT GCA TGG CAG CT GCT TTT ACT TTT CGA CGA TT
- Cgppm1_D1_XbaI_F CAT GCA TGG TCTA GAA AGG AGA TAT AGA TAT GAA GCT TGG CGC CTG CTG GT G
- Cgppm1_D1_BamHI_R CAT GCA TGG CAG CTG TCT TAC ATG TAC TCT TCG GAT CT
- Mtppm2_D1_XbaI_F CAT GCA TGG TCTA GAA AGG AGA TAT AGA TAT GAA GCT TGG CGC CTG CTG GT G
- Mtppm2_D1_BamHI_R CAT GCA TGG CAG CTG TCT TAC ATG TAC TCT TCG GAT CT
- Mtppm2_D1_XbaI_R GAT CTC TAG ATC ATT CGG TCA GTG CCG GCC GCC GGC

Site-directed Mutagenesis

Site-directed mutagenesis of the amyE gene was performed with a QuickChange XL Mutagenesis Kit (Stratagene) according to the manufacturer’s protocol. In order to replace the cysteine +1 by a leucine in the ORF of AmyE, we performed a PCR reaction on pCGL429-AmyE with primers Cys/Leu1 (5’-GTC GGT GGA GCC GGA CAAGCGG GAC GAG ACT TG 3’) and Cys/Leu2 (5’-GGA AGT CTC GTC GCG TTT TGC GGC TCC GAC GAC 3’). The resulting product was treated with DpnI to degrade the parental plasmid and directly transformed into DH5α E. coli cells. The presence of the mutation was confirmed by sequencing pCGL429-AmyEC1L with the primer 482S (5’-GCAAGAA-TAAATGATCCCTGC-3’) and was introduced in C. glutamicum strain ATCC 13032.

Cell Fractionation

10 ml cultures of C. glutamicum were grown overnight in BHI medium at 30°C with vigorous shaking (200 rpm). 1 ml culture aliquots were centrifuged, cell pellets were resuspended 1 ml of 50 mM Tris-HCl pH 7.0 with glass beads and vortexed for 15 min. Unbroken cells were discarded and total membranes were collected by centrifugation (65,000g, 30 min.) in a Beckman TLA 100.3 rotor. Proteins in the supernatant were precipitated with 10% trichloroacetic acid (TCA) at 4°C for 30 min. The precipitated proteins were recovered by centrifugation (15,000g, 15 min) and washed with cold acetone. Protein samples were analyzed on SDS-PAGE and immunoblotting.

Purification of 6His-tagged Proteins

6His-tagged AmyE and LppX proteins were expressed in wild-type C. glutamicum, Δppm1 and Δppm2 mutants and purified from their respective membrane fractions. 300 ml of BHI was inoculated with the appropriate strain and incubated at 30°C with vigorous shaking (200 rpm) overnight. Cell pellets were collected by centrifugation, washed and resuspended in 10 ml of 25 mM HEPES pH 7.4. Cells were broken by three passages through a French pressure cell at 18,000 psi. Unbroken cells were removed by low-speed centrifugation (4,000g for 15 min) and the cleared supernatant was then centrifuged at 65,000g for 30 min (rotor Beckman TLA 100.3). Total membranes were homogenized in 25 mM phosphate buffer pH 8.0 containing 0.1 mg/ml Pefabloc and 4% LDAO (lauryl-dimethylamine-oxide), and stirred for 30 min room temperature. Insoluble material was removed by centrifugation at 65,000g for 30 min. Solubilized membrane protein extracts were saved and loaded on a Ni-NTA column (Qiagen Ni-NTA superflow) previously equilibrated with 25 mM phosphate buffer pH 8.0, 2% LDAO (buffer A). The column was washed with ten column volume of buffer A containing 10 mM imidazole and His-tagged proteins were eluted with buffer A containing 250 mM of imidazole. AmyEC1L was concentrated from a 300 ml-cell culture supernatant using ultrafiltration units (Amicon YM 10 kDa) (1 ml/min for 5 h at 4°C). The resulting protein concentrate was dialyzed extensively against 25 mM phosphate buffer pH 8.0, 2% LDAO (buffer A). The column was washed with ten column volume of buffer A containing 1 mM imidazole and His-tagged proteins were eluted with buffer A containing 250 mM of imidazole. Purified proteins were dialyzed against buffer A and stored at −20°C until use.

Triton X114 Extraction

Purified proteins were diluted 10-fold in 25 mM HEPES buffer pH 7.4 containing 2% Triton X-114. Lipoprotein extraction was performed at 4°C for 2 h 30 min. on a rocking platform. After incubation at 37°C for 10 min and centrifugation at 12,000xg for 10 min., the detergent phase and the aqueous phase were separated. Proteins in both phases were 1D-precipitated as described, resuspended in Laemmli buffer and analyzed by SDS-PAGE and immunoblotting.

Mass Spectrometry Analysis

MALDI (matrix-assisted laser desorption/ionisation) protein mass measurements. Purified recombinant proteins (0.5 μl) were mixed with an equal volume of the sinapic acid matrix (Sigma-Aldrich; 10 mg/ml, 50% CH3CN, 1% trifluoroacetic acid (TFA)). Crystals were obtained using the dried droplet method, and ~300 mass spectra were averaged per spot. Acquisitions were performed in positive linear mode with the Voyager-DE STRM ALDI-TOF mass spectrometer (ABSCIEX). External calibration was performed with enolase (M = 46672 Da) and bovine serum albumin (M = 66431 Da) of the promix 3 mixture (LaserBio Labs).
MALDI Peptide Mass Fingerprinting (PMF). Enzymatic digestion of excised bands was performed using the Prodigy robot (Genomic Solutions). Briefly, protein bands were extensively washed with CH3CN and 25 mM NH4HCO3. The excised bands were treated with 100 μl 10 mM DTT at 57°C for 30 min. After DTT removal, 100 μl of 55 mM iodoacetamide was added for cysteine carbamidomethylation, and the reaction was left to proceed at room temperature for 30 min. After removal of the supernatant, the washing procedure was repeated, and then gel slices were dried. Twenty microliters of 10 ng/μl Porcine Gold Trypsin (Promega) diluted in 25 mM NH4HCO3 was added, and enzymatic digestion was performed overnight at room temperature. Peptides were extracted either with standard procedures (40%H2O, 60% CH3CN, 0.1%TFA) or following a protocol described by Ujihara [33] with minor modifications. 20 μl of 1% dodecyl maltoside (Anatrace, n-Dodecyl-D-Maltopyranoside DDM, Sol-Grade) was added and the solution was mixed (1500 rpm) for 1 hour at room temperature; 35 μl of a 2:1 chloroform:methanol solution (CHCl3-CH3OH) was added and the solution mixed as before. Peptide extracts from the aqueous and organic phases (0.5 μl) were quickly spotted onto a 0.5 μl droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich; 20 mg/ml, 50% CH3CN, 0.1%TFA). Peptide mixtures were analyzed in a droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich) diluted in 25 mM NH4HCO3, and enzymatic digestion was performed overnight at room temperature. Mass spectral analyses were performed with the Data Explorer software (ABSCIEX). MALDI PMF spectra were internally calibrated with tryptic peptides of recombinant proteins: m/z 3451.65 and 4045.88 for AmyE in C. glutamicum wild-type, Δppm2 and Δppm2(pCg-ppm2) strains. m/z 2760.30 and 3451.65 for AmyE [13] in the wild-type strain. m/z 3296.76 and m/z 2211.10 (autolytic peptide of trypsin) for LppX in wild-type, Δppm2, Δppm2(pCg-ppm2), Δppm2(pCg-ppm1), Δppm2(Mt-ppm1) and Δppm1(Mt-ppm1) strains. m/z 2462.24 and 3296.76 for LppX in Δppm1 strain.

NanoLC-ESI-MS/MS analyses. Trypsin-generated peptide mixtures extracted with standard procedures (see above) were dried under vacuum, then resuspended in aqueous solution (0.1% HCOOH) and finally analyzed with the Q/TOF Premier mass spectrometer (Waters) coupled to the nanoRSLC chromatography (Dionex) equipped with a trap column (Acclaim PepMap100 C18, 75 μm I.D.×2 cm, 3 μm, nanoViper) and an analytical column (Acclaim PepMap RSLC C18, 75 μm I.D.×15 cm, 2 μm, 100 Å, nanoViper). The loading buffer was H2O/CH3CN/TFA (98%/2%/0.03%), buffer A and B were H2O/HCOOH (0.1%) and CH3CN/HCOOH (0.1%), respectively. A 2–50% B gradient was set for 40 minutes with a flow rate of 0.3 μl/min. Data-dependent scanning was applied to generate MS/MS spectra with a collision energy of 35% and organic phases (0.5 μl) were quickly spotted onto a 0.5 μl droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich; 20 mg/ml, 50% CH3CN, 0.1%TFA). Peptide mixtures were analyzed in a droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich) diluted in 25 mM NH4HCO3, and enzymatic digestion was performed overnight at room temperature. Mass spectral analyses were performed with the Data Explorer software (ABSCIEX). MALDI PMF spectra were internally calibrated with tryptic peptides of recombinant proteins: m/z 3451.65 and 4045.88 for AmyE in C. glutamicum wild-type, Δppm2 and Δppm2(pCg-ppm2) strains. m/z 2760.30 and 3451.65 for AmyE [13] in the wild-type strain. m/z 3296.76 and m/z 2211.10 (autolytic peptide of trypsin) for LppX in wild-type, Δppm2, Δppm2(pCg-ppm2), Δppm2(pCg-ppm1), Δppm2(Mt-ppm1) and Δppm1(Mt-ppm1) strains. m/z 2462.24 and 3296.76 for LppX in Δppm1 strain.

Acknowledgments

We would like to thank Peter Sander for providing the plasmid pMV261-Gm-FusLppX-HA-His encoding LppX and for communicating unpublished data. We are very grateful to Christophe Salmeron for his excellent technical assistance and enthusiasm. We thank Virginie Redeker for comments on mass spectrometry analyses and Nienke Buddelmeijer for her constant support and helpful discussions.

Author Contributions

Conceived and designed the experiments: NM MA MM NB. Performed the experiments: NM MA SMB MM DC. Analyzed the data: NM MA MM NB. Contributed reagents/materials/analysis tools: LE SMB GB. Wrote the paper: MA MM NB.

References

1. Sutcliffe IC, Harrington DJ, Hutchings MI (2012) A phylum level analysis reveals lipoprotein biosynthesis to be a fundamental property of bacteria. Protein Cell 3: 163–170.
2. Knowles TJ, Scott-Tucker A, Overduin M, Henderson IR (2009) Membrane protein architectures: the role of the BAM complex in outer membrane protein assembly. Nat Rev Microbiol 7: 206–214.
3. Paraíso-Blanco C, Markowski M, Uehara T, Lupoli TJ, Walker S, et al. (2010) Lipoprotein cofactors located in the outer membrane activate bacterial cell wall assembly. Nat Rev Microbiol 8: 1073–1083.
4. Tryptic digestion of excised bands was performed using the Prodigy robot (Genomic Solutions). Briefly, protein bands were extensively washed with CH3CN and 25 mM NH4HCO3. The excised bands were treated with 100 μl 10 mM DTT at 57°C for 30 min. After DTT removal, 100 μl of 55 mM iodoacetamide was added for cysteine carbamidomethylation, and the reaction was left to proceed at room temperature for 30 min. After removal of the supernatant, the washing procedure was repeated, and then gel slices were dried. Twenty microliters of 10 ng/μl Porcine Gold Trypsin (Promega) diluted in 25 mM NH4HCO3 was added, and enzymatic digestion was performed overnight at room temperature. Peptides were extracted either with standard procedures (40%H2O, 60% CH3CN, 0.1%TFA) or following a protocol described by Ujihara [33] with minor modifications. 20 μl of 1% dodecyl maltoside (Anatrace, n-Dodecyl-D-Maltopyranoside DDM, Sol-Grade) was added and the solution was mixed (1500 rpm) for 1 hour at room temperature; 35 μl of a 2:1 chloroform:methanol solution (CHCl3-CH3OH) was added and the solution mixed as before. Peptide extracts from the aqueous and organic phases (0.5 μl) were quickly spotted onto a 0.5 μl droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich; 20 mg/ml, 50% CH3CN, 0.1%TFA). Peptide mixtures were analyzed in a droplet of 2,5-dihydroxybenzoic acid (Sigma-Aldrich) diluted in 25 mM NH4HCO3, and enzymatic digestion was performed overnight at room temperature. Mass spectral analyses were performed with the Data Explorer software (ABSCIEX). MALDI PMF spectra were internally calibrated with tryptic peptides of recombinant proteins: m/z 3451.65 and 4045.88 for AmyE in C. glutamicum wild-type, Δppm2 and Δppm2(pCg-ppm2) strains. m/z 2760.30 and 3451.65 for AmyE [13] in the wild-type strain. m/z 3296.76 and m/z 2211.10 (autolytic peptide of trypsin) for LppX in wild-type, Δppm2, Δppm2(pCg-ppm2), Δppm2(pCg-ppm1), Δppm2(Mt-ppm1) and Δppm1(Mt-ppm1) strains. m/z 2462.24 and 3296.76 for LppX in Δppm1 strain.

Acknowledgments

We would like to thank Peter Sander for providing the plasmid pMV261-Gm-FusLppX-HA-His encoding LppX and for communicating unpublished data. We are very grateful to Christophe Salmeron for his excellent technical assistance and enthusiasm. We thank Virginie Redeker for comments on mass spectrometry analyses and Nienke Buddelmeijer for her constant support and helpful discussions.

Author Contributions

Conceived and designed the experiments: NM MA MM NB. Performed the experiments: NM MA SMB MM DC. Analyzed the data: NM MA SMB DC MM GB NB. Contributed reagents/materials/analysis tools: LE SMB GB. Wrote the paper: MA MM NB.
10. Kovacevic S, Anderson D, Morita YS, Patterson J, Haies R, et al. (2006) Identification of a novel protein with a role in lipoparabinomannan biosynthesis in mycobacteria. J Biol Chem 281: 9011–9017.

11. Russell-Goldman E, Xu J, Wang X, Chan J, Tufarillo JM (2008) A Mycobacterium tuberculosis Rpf double-knockout strain exhibits profound defects in reactivation from chronic tuberculosis and innate immune phenotypes. Infect Immun 76: 4269–4281.

12. Gehring AJ, Rojas RE, Canaday DH, Lueky DL, Harding CV, et al. (2003) The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon-induced HLA-DR and Fc gamma RI on human macrophages through Toll-like receptor 2. Infect Immun 71: 4487–4497.

13. Gehring AJ, Dobos KM, Belisle JT, Harding CV, Boom WH (2004) Mycobacterium tuberculosis LprG (Rv1411c) is a novel TLR-2 ligand that inhibits human macrophage class II MHC antigen processing. J Immunol 173: 2660–2668.

14. Gonzalez-Castrozo M, Mendoza-Hernandez G, Xolalpa W, Parada C, Vallejo AJ, et al. (2009) Mycobacterium tuberculosis glycoproteins based on ConA-lectin affinity capture of mannosylated proteins. J Proteome Res 8: 721–733.

15. Wehmeier S, Varghese AS, Guricha S, Tisot B, Panico M, et al. (2009) Glycosylation of the phosphate binding protein, PstN, in Streptomyces coelicolor as a pathway that resembles protein O-mannosylation in eukaryotes. Mol Microbiol 71: 421–433.

16. Hermann JE, O’Gara P, Gallagher A, Thole JE, Young DB (1996) Bacterial lipoproteins: a link between glycosylation and proteolytic cleavage of a 19 kDa antigen from Mycobacterium tuberculosis. EMBO J 15: 3547–3554.

17. Brulle JK, Grau T, Tschumi A, Auchli Y, Burri R, et al. Cloning, expression and characterization of Mycobacterium tuberculosis lipoprotein LprF. Biochem Biophys Res Commun 391: 679–684.

18. Serebryakova MV, Demina IA, Galyamina MA, Kondratov IG, Ladygina VG, Ujihara T, Sakurai I, Mizusawa N, Wada H (2008) A method for analyzing lipid-modified proteins with mass spectrometry. Anal Chem 80: 429–431.

19. Espitia C, Mancilla R (1989) Identification, isolation and partial characterization of apolipoprotein N-acyltransferase (Lnt) in mycobacteria. J Biol Chem 264: 72146–27156.

20. Tjalsma H, van Dijl JM (2005) Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5: 4472–4482.

21. Wu HC (1996) Escherichia coli and Salmonella. Cellular and Molecular Biology. Washington D.C. USA: ASM Press.

22. Fukada A, Matsuyama S, Hara T, Nakayama J, Nagasawa H, et al. (2002) Aminoacylation of the N-terminal cysteine is essential for Lps-dependent release of lipoproteins from membranes but does not depend on lipoprotein sorting signals. J Biol Chem 277: 45312–45318.

23. Kurokawa K, Ryu KH, Ichikawa R, Masuda A, Kim MS, et al. (2012) Novel bacterial lipoprotein structures conserved in low-GC content Gram-positive bacteria are recognized by Toll-like receptor 2. J Biol Chem.

24. Kurokawa K, Lee H, Rohl KB, Asanuma M, Kim YS, et al. (2009) The Triacylated ATP Binding Cluster Transporter Substrate-binding Lipoprotein of Staphylococcus aureus Functions as a Native Ligand for Toll-like Receptor 2. J Biol Chem 284: 8406–8411.

25. Asanuma M, Kurokawa K, Ichikawa R, Ryu KH, Chae JH, et al. (2011) Structural evidence of alpha-aminooacylated lipoproteins of Staphylococcus aureus. FEBS J 278: 716–728.

26. Serebryakova MV, Demina IA, Galyma MA, Kondratov IG, Ladygina VG, et al. (2011) The acylation state of surface lipoproteins of mollicute Acholeplasma laidlawii. J Biol Chem 286: 22769–22776.

27. Tschumi A, Nai C, Auchli Y, Hunziker P, Gehrig P, et al. (2006) Genetic determination of the effect of post-translational modification on the innate immune response to the 19 kDa lipoprotein of Mycobacterium tuberculosis. BMC Microbiol 9: 93.

28. Chaban B, Logan SM, Kelly F, Jarrell K (2009) AglC and AglK are involved in biosynthesis and attachment of diacylated glucuronic acid to the N-glycan in Methanococcus voltae. J Bacteriol 191: 187–195.

29. Briken V, Porcelli SA, Beira GS, Kremer L (2004) Mycobacterial lipoarabinomannan and related lipoglycans: from biosynthesis to modulation of the immune response. Mol Microbiol 53: 391–403.

30. Cowlishaw DA, Smith MC (2002) A gene encoding a homologue of dechito phosphopeptide-beta-D-mannose synthase is required for infection of Streptomyces coelicolor A3(2) by phage phiC31. J Bacteriol 184: 6081–6083.

31. Bonamy C, Vidal-Iniguiardi D, Pagley AP (2003) Depletion of apolipoprotein N-acetyltransferase causes mislocalization of outer membrane lipoproteins in Escherichia coli. J Biol Chem 278: 907–913.

32. Michell SL, Whelan AO, Wheeler PR, Panico M, Easton RL, et al. (2003) The MIPB3 antigen from Mycobacterium bovis contains O-linked mannose and 1-3-linked mannobiose moieties. J Biol Chem 278: 16423–16432.

33. Terada M, Kuroda T, Matsuyma SI, Tokuda H (2001) Lipoprotein sorting signals evaluated as the LolA-dependent release of lipoproteins from the cytoplasmic membrane of Escherichia coli. J Biol Chem 276: 47690–47694.

34. Wilkinson KA, Newton SM, Stewart GR, Martinez AP, Patel J, et al. (2009) Structural evidence of alpha-aminooacylated lipoproteins of Mycobacterium tuberculosis. BMC Microbiol 9: 93.

35. Endo T (2004) Structure, function and pathology of O-mannosyl glycans. Glycoconj J 21: 3–7.

36. Cheng J, Vallee DJ, Soderman J, Schafft SF, Harley MJ (2009) AglC and AglK are involved in biosynthesis and attachment of diacylated glucuronic acid to the N-glycan in Methanococcus voltae. J Bacteriol 191: 187–195.

37. Michell SL, Whelan AO, Wheeler PR, Panico M, Easton RL, et al. (2003) The MIPB3 antigen from Mycobacterium bovis contains O-linked mannose and 1-3-linked mannobiose moieties. J Biol Chem 278: 16423–16432.

38. Willer T, Valero MC, Tanner W, Crueces J, Strahl S (2003) O-mannosyl glycans: from yeast to novel associations with human disease. Curr Opin Struct Biol 13: 621–630.

39. Mahne M, Tauch A, Pulher A, Kalinowski J (2006) The Corynebacterium glutamicum glutamicum gene pmt encoding a glycosyltransferase related to eukaryotic O-mannosyltransferases is essential for glycosylation of the resuscitation promoting factor (Rpf2) and other secreted proteins. FEMS Microbiol Lett 259: 226–233.

40. Vanden-Briel CG, Hardy JD, Cricke DC, Belisle JT (2005) Export-mediated assembly of mycobacterial glycoproteins parallels eukaryotic pathways. Science 309: 941–943.

41. Dusch N, Pulher A, Kalinowski J (1999) Expression of the Corynebacterium glutamicum pnd gene encoding L-aspartate-alpha-decarboxylase leads to pantothenate overproduction in Escherichia coli. Appl Environ Microbiol 65: 1380–1389.

42. Schaefer A, Tauch A, Jager W, Kalinowski J, Thierbach G, et al. (1994) Small plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69–73.

43. Endo T (2004) Structure, function and pathology of O-mannosyl glycans. Glycoconj J 21: 3–7.

44. Endo T (2004) Structure, function and pathology of O-mannosyl glycans. Glycoconj J 21: 3–7.

45. Endo T (2004) Structure, function and pathology of O-mannosyl glycans. Glycoconj J 21: 3–7.