Temporomandibular disorder and headache prevalence: A systematic review and meta-analysis

Pankaew Yakkaphan¹, Jared G Smith², Pav Chana³, Tara Renton¹, and Giorgio Lambru⁴

Abstract

Background: Temporomandibular disorders (TMD) and headaches are prevalent among the global population. Patients often suffer from both conditions, and they are likely to be associated in a bidirectional way. However, the nature of the association remains unclear. Understanding the epidemiological aspects of the relationship between these conditions could have important clinical implications.

Objective: To evaluate the prevalence of headaches in TMD patients as well as the prevalence of TMD in patients who suffer from headaches.

Method: A systematic literature search was conducted using electronic databases. Studies published in English and those that used an acknowledged diagnostic criteria for TMD and headaches were included. Study quality was assessed using the Newcastle-Ottawa scale and meta-analyses were performed to generate pooled prevalence estimates.

Result: Thirty-one studies met the selection criteria for the review; 16 studies evaluated the prevalence of headache in TMD patients and 15 studies evaluated the prevalence of TMD in headache patients. The included studies were of moderate-to-high quality. Meta-analyses revealed moderate-to-large heterogeneities across included studies. Pooled prevalence estimates from meta-analyses indicated similar rates of headaches in TMD patients and of TMD in headache patients (61.58%, 95% CI 45.26–76.66 and 59.42%, 95% CI 51.93–66.60, respectively). Migraines were more commonly observed in TMD patients (40.25%, 95% CI 35.37–45.23) compared to tension-type headaches (18.89%, 95% CI 12.36–26.44). The prevalence of headaches was particularly high in painful-TMD (82.80%, 95% CI 75.41–89.10).

Conclusion: Despite large variance in prevalence rates across included studies, this review suggests headache and TMD frequently co-occur, particularly in the case of migraines and muscle related TMD. This association has important clinical, pathophysiological and therapeutic implications.

Keywords

headache, meta-analysis, migraine, prevalence, systematic review, temporomandibular disorder, tension-type headache

Date received: 7 January 2022; Received revised March 15, 2022; accepted: 11 April 2022
Introduction

Temporomandibular disorder (TMD) is defined as a musculoskeletal disorder that affects the temporomandibular joint and/or masticatory muscles and related structures. These conditions may present with pain in the TMJ and associated anatomical structures. The types of disorders this term includes is discussed later on, but it importantly excludes: non-painful conditions, TMJ pathology which may be congenital as well as traumatic and neoplastic TMJ conditions. TMD is also the most common painful chronic condition of non-dental origin pain in the head and neck region. This condition often results in persistent pain, mandibular functional movement limitations and joint noises. The prevalence of TMD varies between 31% in adults and 11% in adolescents. From the literature, disc displacement with reduction appears to be the most common condition among all TMD types. TMD affects more women (15–26%) than men (8–15%), occurs most often between the ages of 20 and 50 and commonly peaks in the fourth decade. According to the diagnostic criteria of the Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD) and the Diagnostic Criteria for Temporomandibular Disorders (DC/TMD), TMD is categorised into the three groups: arthrogenous TMD (including disc disfunction and joint), myogenous TMD (masticatory muscle disorders), and headache attributed to TMD (Table 1). There are also other TMD diagnostic classifications by the American Association of Orofacial Pain (AAOP), International Association for the Study of Pain (IASP) and International Classification of Orofacial Pain (ICOP). The IASP classification system covers several pain conditions and syndromes. TMD was included in the group of chronic headache and orofacial pain; it has very limited information regarding diagnosis of TMD. The DC/TMD focused on the most common TMD classifications and provided a comprehensive assessment and validated value for each categorisation. The AAOP has now adopted the expanded DC/TMD taxonomy that includes validated diagnostic criteria for the most common TMDs as well as evidence-based criteria for less common TMDs. Recently, the International Headache Society (IHS) has developed the ICOP incorporating the DC/TMD diagnosis and pain taxonomy created by the IASP and also the International Classification of Diseases (ICD-11). Although the ICOP adopts much of the terminology and criteria from DC/TMD, there are differences in terminology and in the distinction between primary and secondary pain.

Among headache disorders associated with TMD, primary headache disorders such as migraines and tension-type headache, especially in their chronic forms, constitute the most frequently comorbid conditions. Patients with TMD are twice more likely to exhibit a chronic daily headache pattern with or without a migraine biology and a linear relationship between the severity of TMD symptoms and the load of migraine symptoms has been postulated. Additionally, the presence of headache modified by or secondary to TMD is recognised as headache attributed to TMD in the diagnostic criteria of DC/TMD and ICHD-III. The DC/TMD defines headache attributed to TMD as a headache in the temple area secondary to TMD pain modified by jaw movement, function, or parafunction, and familiar headache occurs with provocation testing by the examiner. Contrarily, the ICHD-III criteria did not mention the location of a headache in the temple area. Moreover, they suggested evaluating the temporal relationship, which means that the headache developed after the onset of TMD.

The relationship between primary headaches and TMD seems to be bidirectional, suggesting that the presence of the former condition increases the likelihood of experiencing the latter condition and vice versa. Several elements may explain this relationship including gender similarities, peripheral sensitisation of anatomically shared structures, namely the trigemino-vascular system and central sensitisation of central nociceptive neuronal pathways, which may be shared in these conditions. However, several aspects of the association between TMD and headache disorders remain unknown. Understanding the epidemiological aspects of this association is pivotal to correctly

Table 1. Classification of TMD subtype.

TMD subtypes	TMD classification (ICOP)
Myogenous	Primary myofascial orofacial pain
	Acute primary myofascial orofacial pain
	Chronic primary myofascial orofacial pain
	Secondary myofascial orofacial pain
	Myofascial orofacial pain attributed to tendinitis
	Myofascial orofacial pain attributed to myositis
	Myofascial orofacial pain attributed to muscle spasm
Arthrogenous	Temporomandibular joint (TMJ) pain
	Primary TMJ pain
	Acute primary TMJ pain
	Chronic primary TMJ pain
	Secondary TMJ pain
	TMJ pain attributed to arthritis
	TMJ pain attributed to disc displacement
	TMJ pain attributed to degenerative joint disease
	TMJ pain attributed to subluxation

TMD: temporomandibular joint disorder.

*International Classification of Orofacial Pain, 1st edition.
*The International Classification of Headache Disorders, 3rd edition.
diagnosing and managing patients with these conditions. To date there are no systematic reviews and meta-analysis solely investigating the prevalence of co-occurring TMD and headache. Our aim is to systematically review the prevalence of this association by reviewing the published literature and perform a meta-analysis.

Methods
The search strategy and protocol were registered and available in the PROSPERO database. Data was collected and a meta-analysis was then performed. This systematic review was conducted and reported according to the PICO model and PRISMA guidelines.

Search strategy
The following electronic bibliographic databases were searched: PubMed, CINAHL, Web of Science, MEDLINE, PsycINFO, Scopus, Embase and EBM Review Cochrane (published until April 2020). An additional literature search using Google Scholar, OpenGrey and reference lists of downloaded articles was also carried out. We used the following search terms for TMD: temporomandibular disorder, jaw joint pain, orofacial pain, facial pain, myofacial, aching jaw, mandibular dysfunction, masticatory system disorder, oro-mandibular disorder and combined with ‘AND’, followed by headache terms: headache, head pain and migraine. The search was conducted during April–May 2020.

Eligibility
All articles were accessible, published in English language and there were no time limitations. Observational study designs included prospective studies, case control studies, as well as cohort and cross-study designs. The review included studies with no participants of all ages, genders, and no other excluding factors. In order to be included in the review, the following criteria must have been used to diagnose TMD: Research Diagnostic Criteria for Temporomandibular Disorders (RDC/TMD), Diagnostic Criteria for Temporomandibular Disorders (DC/TMD), The American Academy of Orofacial Pain (AAOP) and headache diagnosis: The International Classification of Headache Disorders (ICHD) or The International Headache Society (IHS).

Data extraction and analysis
The studies were selected on the basis of the previously mentioned criteria and presence of the proportion of TMD patients with comorbid headache or vice versa. Additionally, association measurement between TMD group and headache group (odd ratio, risk ratio, prevalence ratio) was also collected. One reviewer screened articles initially, and two more reviewers assessed full articles and retrieved data. Any disagreements between reviewers were discussed until a conclusion was reached. The following information was extracted from the included studies:
- author and year of publication
- study design
- sample size and source of the sample
- location of study
- sample demographics
- method of diagnosis of TMD and other pain conditions
- outcomes

A meta-analysis was conducted by pooling prevalence rates from relevant studies. The articles pooled for meta-analysis diagnosed headache and TMD according to defined or standardise criteria such as the ICHD for headache and RDC/TMD or AAOP for TMD. The included studies diagnosed TMD by using structural questionnaires and/or clinical assessments. Fixed and random effects meta-analyses were conducted using Freeman-Tukey transformations to calculate weighted summary proportions. Prevalence estimates were presented with 95% confidence intervals and Cochran’s Q and I² statistics calculated to indicate the presence of heterogeneity. Random effects modelling was employed to allow for the high heterogeneity values from the variance of included studies (I² > 50%). Forest plots were produced for all estimates. Analyses were conducted using SPSS (version 26.0, IBM) and MedCalc (MedCalc® Statistical Software).

Study quality
Rating for study quality was assessed by using The Newcastle-Ottawa Scale. The checklist for quality criteria is shown in Table 2. The scoring of all criteria is based on the Newcastle-Ottawa guidelines. We adjusted the measure of sample size by rating one star if the number of participants was greater than or equal to 100 per group, which we considered an appropriate number of representative samples. In the case of difficulties or disagreements, reviewers discussed and reached a consensus.

Results
Search result and data collection
The results from the database searches are shown in Figure 1. Initially, all titles and abstracts were screened. Articles were assessed according to the eligibility criteria and their relevance to the review question. We reported two major groups of studies: headache prevalence in TMD patients (total studies = 16) and TMD prevalence in headache patients (total studies = 15). Tables 3 and 4 describe the characteristics and results of relevant investigations in headache prevalence found in TMD groups, while Tables 5 and 6 demonstrate TMD prevalence among headache
patients. The estimated prevalence with confidence intervals for each analytic approach are shown in meta-analysis forest plots (Figures 2 to 10). Quality and risk of bias assessment of include studies is scored and shown in Tables 7 and 8. All published articles achieved equal to or greater than five stars (out of nine stars), representing moderate-to-high quality of the studies in this review.

Meta-analysis results

Throughout the data extraction process, reviewers found few studies that employed the exact same diagnostic criteria and type of assessment. For example, only two studies used the RDC/TMD criteria for clinical TMD diagnosis and questionnaires based on ICHD-II classification for headache. As such, to enable pooling of prevalence data via meta-analytic techniques, we combined findings from those studies that used structural questionnaires or interviews as well as those employing clinical evaluations with clarified or standardised diagnostic criteria.

Prevalence of primary headache in TMD patients. The estimated prevalence of primary headache disorders and their subtypes in the TMD population is presented in Figures 2 to 10. After pooling data from six studies, the overall prevalence of headache in the TMD population was 61.58% (95% CI 45.26–76.66) (Figure 2) and considerable heterogeneity was found among these studies ($I^2 = 98.62\%$, 95% CI 98.04–99.03). We additionally investigated the prevalence of two primary headache subtypes and found that 40.25% (95% CI 35.37–45.23) and 18.89% (95% CI 12.36–26.44) of TMD patients suffered from migraine and tension-type headache TTH, respectively (Figures 4 and 6).
Study design	Author, year	Location	Sample size	Source of the sample	Gender	Mean age (years), ± SD
Case-control study	Kemper and Okeson, 1983	USA	141 TMD patients	TMJ clinic	127 women, 14 men	33
			159 controls	Patients sought for routine dental treatment	93 women, 66 men	27
	Franco et al., 2010	Brazil	152 TMD patients	Orofacial pain clinic	84.2% women, 15.8% men	Women = 40.1, men = 41.7
			68 controls	Patients sought routine dental care	76.5% women, 23.5% men	Women = 38, men = 36.8
	Gonçalves et al., 2011	Brazil	247 TMD patients	Orofacial pain clinic	82.7% women, 17.3% men	Women = 37.4, men = 39.8
			53 controls	Patients sought dental treatment		
	Hoffmann et al., 2011	USA	1511 TMD patients	Web-based registry of the TMJ association	90% female	41
			57 controls	Unaffected TMD patients’ friends	4:1 matched based on age, sex and education	
	Nilsson et al., 2013	Sweden	285 TMD patients	33 public dental clinics	77.2% girls, 22.8% boys	16.0 ± 2.1
			302 controls		77.5% girls, 22.5% boys	16.1 ± 2.1
	Fernandes et al., 2019	Brazil	149 TMD patients	Community adolescents	57% girls, 43% boys	13.7 ± 0.7
	Ciancaglini and Radaelli, 2001	Italy	483 (at least one TMD symptom = 266)	Adult population	62.1% women, 37.9% men	44.9
	Mitrirattanakul and Merrill, 2006	USA	246 Orofacial pain patients (TMD = 223)	University-based orofacial pain clinic	81.3% women	42.07 ± 0.95
			177 controls	General dental patients	49.9% women	42.07 ± 0.95
	Gonçalves et al., 2010	Brazil	1230 (at least one TMD symptom = 430)	General population	51.5% women, 48.5% men	51% were in the 20–45 age group
	Porporatti et al., 2015	Brazil	400 TMD patients divided into four groups (I) 64, (II) 48, (III) 173, (IV) 115	1200 ical records	1.81 25% women, 1.89 58% women, 1.86 12% women, 1.94 78% women	1.36 87, 1.36 79, 1.36 36, 1.36 79
	Dahan et al., 2016	Canada	180 TMD patients	TMD patients in two different hospitals	82.8% women	42.8 ± 1.2
	Contreras et al., 2018	Brazil	352; 305 TMD patients, 47 healthy controls	Patients sought for dental care	83.8% women	37.7 ± 12.7
	de Melo Júnior et al., 2019	Brazil	1342 (TMD = 445)	165 public schools	68.7% women, 31.3% men	Range 10–17
	Ashraf et al., 2019	Finland	5876: migrainers = 498, nonmigrainers = 5378	Data taken from the nationwide health survey	Migrainers: 77.9% women, 22.1% men, Non-migrainers: 51.6% women, 48.4% men	52.5 ± 14.8
	Wieckiewicz et al., 2020	Poland	213 (painful TMD = 119, TMJ disorder = 104)	Inhabitants from four cities	149 women, 64 men	37 ± 15.84
Cohort	Di Paolo et al., 2017	Italy	929 TMD patients	TMD clinic	Not provided	25.3% were in the 26–40 age group
Table 4. Outcome summary of included studies on prevalence of headache in TMD patients (N = 16).

Author, year	TMD diagnosis	Headache diagnosis	Main outcome (prevalence of headache)	Additional outcome
1 Kemper and Okeson, 1983	Questionnaire with described criteria	Self-report headache	TMD group: 68.1%, Control: 30.2% (p = 0.001) (at least one headache per week)	TMD samples reported higher risk for any headache (OR = 7.05; 95% CI 3.65–13.61), for migraine (OR = 2.76; 95% CI 1.50–5.06) and for tension-type headache (OR = 2.51; 95% CI 1.18–5.35)
2 Franco et al., 2010	Symptom questionnaire and clinical examination guided by RDC TMD	Questionnaire based on ICHD- II	TMD group: 85.53%, Control: 45.58% (p = 0.000) prevalence of TMD in headache subtype, migraine: 55.26%, tension-type headache: 30.26%	Prevalence of TMD in headache subtype, migraine: 55.26%, tension-type headache: 30.26%
3 Gonçalves et al., 2011	Questionnaire and clinical assessment aligned with RDC/TMD	Questionnaire based on ICHD- II	TMD group: 95.14%, Control: 54.72% (p = 0.000) Prevalence of TMD in headache subtype, chronic daily headaches (CDH): 35.22%, migraine: 35.22%, and episodic tension-type headache (ETTH): 14.98%	Prevalence of TMD in headache subtype, chronic daily headaches (CDH): 35.22%, migraine: 35.22%, and episodic tension-type headache (ETTH): 14.98%
4 Hoffmann et al., 2011	Self-reported TMD symptoms	Self-reported headache diagnosis	No overall prevalence of primary headache provided Migraine: TMD group 50%, controls 16% (p < 0.001) Tension-type headache (TTH): TMD group 64%, controls 23% (p < 0.001)	Before TMD existing, 20% of TMD samples reported migraine and 28% presented TTH. After TMD onset, the prevalence of migraine and TTH raised to 54% and 72% respectively
5 Nilsson et al., 2013	2 questions for the presence of jaw pain	2 questions measured headache frequency and intensity	TMD group: 69.5%, Control: 26.2% (p < .001) (at least one headache per week)	Samples with headache ≥ once a week likely to have TMD pain, OR = 5.06 (95% CI 3.36–7.63, p < 0.001) than who have headache < once a week
6 Fernandes et al., 2019	Questionnaire and clinical assessment based on RDC/TMD	Questionnaire used in the American migraine prevalence and prevention studies	Overall prevalence of primary headache was 79.87% Migraine: painful TMD 46.99%, non-painful TMD 22.72%, Tension-type headache (TTH): painful TMD 14.77%, non-painful TMD 16.87%	Painful TMD group was likely to have migraine (OR = 3.0; 95% CI 1.47–6.19, p = .002), probable TTH (OR = 0.7; 95% CI 0.33–1.42, p = .307), TTH (OR = 0.9; 95% CI 0.39–2.14, p = 0.834)
7 Ciancaglini and Radaelli, 2001	Questions adapted from Agerberg and Helkimo	Self-report presence of headache	Individuals with TMD symptom: 27.44% control: 15.20% (p = 0.002)	Significant correlation between headache with TMD symptom with OR = 2.11; 95% CI 1.30–3.42, p = 0.002
8 Mitirirattanakul and Merrill, 2006	Clinician diagnosis by using AAOP	Clinician diagnosis guided by ICHD-II	31.66% individuals with TMD had primary headache 66.67% headache patients had TMD	Risk of having headache in patients with TMD, OR = 1.51 (95% CI 1.28–2.24, p = .004. Risk for having TMD in patients with headache, OR = 3.00 (95% CI 0.869–10.36), p = 0.82

(continued)
Author, year	TMD diagnosis	Headache diagnosis	Main outcome (prevalence of headache)	Additional outcome
9 Gonçalves et al., 2010³²	Questionnaire adapted from AAOP proposal	Questionnaire based on ICHD-II	Individuals with TMD symptom: 56.51% control: 31.89% (p = 0.002) prevalence of TMD in headache subtype, migraine 32.33% episodic tension-type headache (ETTH): 19.10% chronic daily headaches (CDH): 5.12%	compared with samples without headache, TMD pain was increased in migraine (PR = 5.3; 95% CI 3.8–7.4), CDH (PR = 3.9; 95% CI 1.8–8.1) and ETTH (PR = 2.7; 95% CI 1.8–3.9)
10 Porporatti et al., 2015³³	Previous clinician diagnosis based on AAOP	Previous clinician diagnosis based on IHS	40.75 % of TMD patients had comorbid primary headache	
11 Dahan et al., 2016³⁴	Questionnaire and clinical screening guided by RDC/TMD	ID-Migraine Questionnaire	All TMD groups reported migraine: 46.11% myofascial TMD reported migraine: 54.55% non-myofascial TMD reported migraine: 28.81%	Self-reported migraine patients were likely to have myofascial TMD three times than non-myofascial TMD, OR = 3.00 (95% CI 1.14–6.40)
12 Contreras et al., 2018³⁵	The Fonesca Aamnestic Index	Questionnaire and physical assessment using ICHD-II	86.55% of patients with painful TMD presented comorbid migraine	
13 de Melo Júnior et al., 2019³⁶	Questionnaire and clinical examination based on RDC/TMD	Question No.18 of the RDC/TMD Axis II	TMD group: 77.98 % controls: 67.44%	
14 Ashraf et al., 2019³⁷	Examination guidelines by Dworkin and LeResche	Prior diagnosis by a physician	Overall TMD patients reported 14.58% of migraine, controls 7.98%. Muscular disorder in migraine patients was 81.25%	Painful muscular TMD, but not joint related TMD was associated with the presence of migraine (OR = 1.5; 95% CI 1.23–2.04, p < 0.01)
15 Wieckiewicz et al., 2020³⁸	Clinical evaluation using DC/TMD	Self-identity questionnaire guided by Head-Hunt Study and ICHD-III	Pain-related TMD group: overall headache 58.82%, migraine 31.93%, tension-type headache 26.89%. TMJ disorder group: overall headache 47.11%, migraine 26.92%, tension-type headache 20.19%	Patients suffering from TMD-related pain were likely to have any headache, (OR = 4.77, 95% CI 2.44–9.32, p = .000) for migraine (OR = 4.53, 95% CI 2.06–5.95, p = .000), for tension-type headache (OR = 2.80, 95% CI 1.31–5.97, p = .005)
16 Di Paolo et al., 2017³⁹	Previous clinician diagnosis based on DC/TMD	Clinical examination based on ICDH-III	Overall headache 67.28% Migraine: 40.26% tension-type headache: 22.28%	
Table 5. Characteristics of included studies on prevalence of TMD in headache patients (N = 15).

Study design	Author, year	Location	Sample size	Source of the sample	Gender	Mean age (years), ± SD
Case-control study						
1	Liljestrom et al.,	Finland	296: Headache group = 230, Controls = 66	Primary school children	49.15% girls, 50.85% boys	13.4
	2001					
2	Liljestrom et al.,	Finland	296: Headache group = 231, Controls = 65	Children in primary school	48.99% girls, 51.01% boys	13.4
	2005					
3	Glaros et al.,	USA	Headache group = 23	General population	96% women, 4% men	38.77 (9.26)
	2007		Control = 17		76% women, 24% men	32.51 (10.42)
4	Stuginski-Barbosa	Brazil	episodic migraine (EM) = 31, chronic migraine (CM) = 34	Patients in headache clinic	EM: 68.8% women, CM: 75.6% women	32.7
	et al., 2010		controls without migraine = 28			
5	Goncalves et al.,	Brazil	episodic migraine (EP) = 38, chronic migraine (CM) = 23	University-based headache clinic	100% women	38.83
	2013		controls without headache = 30			
6	Franco et al.,	Brazil	1307: Headache = 595, No headache = 712	Children from public school	56.8% girls, 43.2% boys	range 12–14
	2014					
7	Wagner and Filho,	Brazil	160: frequent episodic tension-type headache (FETTH) group = 80	Military firefighters sought treatment at the orofacial pain clinic	48 women, 32 men	38.5
	2018		control group = 8		36 women 44 men	35.2
Cross-sectional study						
8	Reik and Hale,	USA	100 (reported only 11 patients with unilateral TMD)	Headache patients in the headache Clinic	9 women, 2 men, median = 32	
	1981					
9	Wannman and	Sweden	285 children	General participants in the urban districts	48.8% girls, 51.2% boys	17
	Agerberg, 1986					
10	Ballegaard et al.,	Denmark	98 Headache patients	Patients in headache centre	76 women, 23 men	44.8
	2008					
11	Goncalves et al.,	Brazil	1,230	General populations	51.5% women, 48.5% men	51% were in 20–45
	2009					
12	Tomaz-Morais et al.,	Brazil	42 Headache patients	Patients from neurology clinic	40.5% women 59.5% men	31
	2015					
Cross-sectional study						
13	Florencio et al.,	Brazil	84 samples: episodic migraine (EM) = 31, chronic migraine (CM) = 21, healthy women = 32	University-based hospital	All was women	EM = 33 ± 11, CM = 35 ± 10 controls = 31 ± 9
	2017					
14	Sojka et al.,	Poland	40	Neurology Department	19 women, 21 men	14.9
	2018					
15	Mingels et al.,	Belgium	44: episodic cervicogenic headache (CeH) = 22, control = 22	General call launched inside university	100% women	episodic CeH = 20.7 ± 2.5 controls = 21 ± 2.3
Table 6. Outcome summary of included studies on prevalence of TMD in headache patients (N = 15).

Author, year	TMD diagnosis	Headache diagnosis	Main outcome (prevalence of TMD)	Additional outcome
1 Liljestrom et al., 2001	Questionnaire and clinical examination with described criteria	Clinical assessment using IHS 1998	Headache group: 67.83% presented very mild–moderate sign of TMD	
Controls: 56.06% presented very mild–moderate sign of TMD	Comparing to controls, children with migraine had more signs of TMD with			
COR \(= 2.1; 95\% \text{CI} 1.1–4.2\) and migraine-type headache group presented				
COR \(= 2.2; 95\% \text{CI} 1.1–4.2\)				
2 Liljestrom et al., 2005	Interview and clinical examination with described criteria	Clinical assessment using IHS 1998	Headache group: 79.65% reported TMD pain	
Control group: 72.31% reported TMD pain	Comparing to controls, children with migraine had more signs of TMD with			
COR \(= 2.1; 95\% \text{CI} 1.1–4.2\) and migraine-type headache group presented				
COR \(= 2.2; 95\% \text{CI} 1.1–4.2\)				
3 Glaros et al., 2007	Clinical assessment using RDC/TMD	Questionnaire based on ICHD-II	Headache group: 47.83% met myofascial pain diagnosis, 78.26% had arthralgia. Controls:	
none of controls (N \(= 17\)) reported TMD				
4 Stuginski-Barbosa et al., 2010	Clinical evaluation described by Helkimo	Clinical examination based on ICHD-II	\(83.87\% \) of EM and \(94.28\% \) of CM presented at least 1 TMD sign.	
The significant difference was found in CM relative to controls (p < 0.05)				
71.42\% of controls reported TMD sign				
5 Goncalves et al., 2013	Physical assessment guided by RDC/TMD	Physical assessment guided by ICHD-II	Overall (EM+CM): \(88.52\%\)	
Episodic migraine (EM): \(86.8\%\), chronic migraine (CM): \(91.3\%\), control group = \(33.3\%\), prevalence was significant between				
CM and EM (p < 0.001)				
6 Franco et al., 2014	Clinical examination based on RDC/TMD	Question No. 18 of the RDC/TMD Axis II history questionnaire	Headache in TMD group: overall TMD \(66.25\%\), painful-TMD \(73.94\%\), non-painful	
TMD \(28.36\%\),				
TMD in headache group: overall headache \(44.20\%\), painful TMD \(41.01\%\), non-painful				
TMD \(31.19\%\),				
18.82\% of controls without headache had those both types of TMD				
7 Wagner and Filho, 2016	Physical examination based on RDC/TMD	Physical examination based on ICHD-II	FETTH group: \(76.25\%\), controls: \(11.25\%\)	
8 Reik and Hale, 1981	Clinical examination with informed criteria	Clinical examination guided by the Ad Hoc Committee on		
Classification of Headache	\(14\%\) Patients with unilateral headache presented comorbid TMJ pain dysfunction			
Author, year	TMD diagnosis	Headache diagnosis	Main outcome (prevalence of TMD)	Additional outcome
-------------	---------------	-------------------	----------------------------------	-------------------
Wänman and Agerberg, 1986	Questionnaire and clinical examination with explained criteria	Questionnaire and clinical examination with explained criteria	72.7% of participants with headache reported painful masticatory muscle on palpation	
Ballegaard et al., 2008	Clinical examination using RDC/TMD	Clinical examination using ICHD-II	56.12% of overall headache patients met TMD diagnosis	Prevalence of TMD in subgroup of headache: migraine with and without aura (MIG) = 53.3%, tension-type headache (TTH) = 45.4%, MIG + TTH 75% and MIG + TTH + medication overuse headache = 50%
Gonçalves et al., 2009	Symptom questionnaire based on AAOP	Questionnaire used in research in Brazil	51.48% of headache patients and 27.66% of controls reported at least one symptom of TMD	Prevalent ratio (PR) of TMD symptoms in episodic tension-type headache was 1.48; 95% CI 1.20–1.79, migraine PR = 2.10; 95% CI 1.80–2.47, and chronic daily headache PR = 2.41; 95% CI 1.84–3.17
Tomaz-Morais et al., 2015	Fonseca’s questionnaire	Previous clinician diagnosis based on ICHD-II	TMD in overall headache 54.76% Prevalence in subgroup: migraine 71.34%, TTH 38.10%	EM were more likely to have TMD with RR = 1.77; 95% CI 1.14–2.73 (p = 0.01) and for CM, RR = 2.28; 95% CI 1.54–3.39 (p < .001)
Florencio et al., 2017	The Fonseca Anamnestic Index questionnaire	Physical assessment ICHD-III	TMD sign and symptom was 78% for episodic migraine (EM), 100% for chronic migraine (CM) and 54% for control group	
Sojka et al., 2018	Clinical evaluation based on RDC/TMD	Clinical diagnosis based on ICHD-II	Overall, 72.50% of headache patients had TMD 40% suffered from muscle disorders, 32.5% had disc displacement with reduction	
Mingels et al., 2019	Preclinical signs of TMD; Temporomandibular range of motion and Temporomandibular palpation pain	Interview questions based on ICHD-III	Headache patients reported pain on palpation at 10/44 sites of lateral TMJ (right and left from 22 samples) and 61/66 sites of masseter muscle Control group presented pain on palpation at 6/44 sites of lateral TMJ (right and left from 22 samples) and 13/66 sites of masseter muscle	Headache group showed smaller maximal mouth opening (p < 0.05) and had more positive pain responses of the masseter at the origin, body and insertion
Table 7. Quality assessment of studies using Newcastle-Ottawa scale* for assessing included studies on prevalence of headache in TMD patients.

Reference study	Selection	Compatibility	Outcome
Case-control study			
Kemper and Okeson, 1983	*	*	5
Franco et al., 2010	*	*	7
Gonçalves et al., 2011	*	*	7
Hoffmann et al., 2011			6
Nilsson et al., 2013	*	*	6
Fernandes et al., 2019			
Cross-sectional study			
Ciancaglini and Radaelli, 2001			6
Mitiratanakul and Merrill, 2006			8
Gonçalves et al., 2010			7
Porporatti et al., 2015			7
Dahan et al., 2016			8
Contreras et al., 2018			8
de Melo Júnior et al., 2019			6
Ashraf et al., 2019			7
Wieckiewicz et al., 2020			
Cohort study			
Di Paolo et al., 2017			8

*Guideline for star allocation shown in Table 2.
Reference study	Selection	Compatibility	Outcome	Total (9°)
Case-control study				
Liljestrom et al., 2004*	*	*	*	8
Liljestrom et al., 2005*	*	*	*	8
Glaros et al., 2007*	*	*	*	6
Stuginski-Barbosa et al., 2010*	*	*	*	7
Goncalves et al., 2013*	*	*	*	6
Franco et al., 2014*	*	*	*	7
Wagner and Filho, 2018*	*	*	*	6
Cross-sectional study				
Reik and Hale, 1981*	*	*	*	5
Wannman and Agerberg, 1986*	*	*	*	7
Ballegaard et al., 2008*	*	*	*	8
Goncalves et al., 2009*	*	*	*	7
Tomaz-Morais et al., 2015*	*	*	*	6
Florencio et al., 2017*	*	*	*	7
Sojka et al., 2018*	*	*	*	7
Mingels et al., 2019*	*	*	*	7
The heterogeneity test for both analyses indicated moderate to high variability of included studies. Migraine prevalence in TMD resulted in $I^2 = 61.19\%$, 95% CI 0.00–88.94 and TTH prevalence analysis showed $I^2 = 85.10\%$, 95% CI 39.53–96.33.

Further analysis focusing on the painful-TMD group only revealed a prevalence estimate of headache of 82.80\%, 95% CI 75.41–89.10 (Figure 3) with $I^2 = 80.95\%$, 95% CI 50.13–92.73. Regarding headache subtypes, 47.09\% (95% CI 15.50–80.07) and 31.42\% (95% CI 26.63–36.52) of painful TMD population experienced migraine and TTH, respectively (Figures 5 and 7). The measure of heterogeneity presented high inconsistency among pooled studies on migraine in TMD ($I^2 = 99.32\%$, 95% CI 99.08–99.50) and moderate inconsistency in pooled studies on TTH in TMD ($I^2 = 47.34$, 95% CI 0.00–84.57).
Prevalence of TMD in headache patients. Four studies measuring TMD prevalence in headache patients were pooled using a meta-analytic approach. The proportion of TMD in all primary headache patients is presented in Figures 8 to 10. The result showed that 59.42% (95% CI 51.93–66.60) of the headache population had TMD (Figure 8) with a moderate I² value of 46.52%, 95% CI 0.00–84.26. In terms of the primary headache subgroup, 59.29% (95% CI 18.82–93.30) of migraine patients and 55.39% (95% CI 28.04–81.09) of TTH patients had TMD (Figures 9 and 10). There were high levels of heterogeneity for studies of TMD prevalence in migraine (I² = 97.74% (95% CI 96.17–98.67)) and in the investigation of TMD prevalence in TTH (I² = 84.24% (95% CI 52.88–94.73)).

Discussion
The present systematic review included 31 studies investigating the prevalence of primary headache among patients with TMDs and vice versa. TMD and headache diagnostic criteria differed across the studies because of the evolution of classification systems overtime. The diversity of diagnostic criteria, study designs, as well as population demographics contributed to a challenge in the meta-analytic approach and resulted in a high degree of heterogeneity among pooled studies.

Some of the included studies which used a clinical assessment of patients for headache and TMD reported a lower prevalence of these conditions compared to those studies which only used a standalone questionnaire to
diagnose these conditions. 26,27 This might be because clinical examination is more validated than questionnaires and results in lower proportion of participants recruited in research. From the perspective of sample size and source, larger samples in population-based studies appeared to indicate a lower prevalence of disorders 8,32,37 compared with smaller studies performed in hospitals. 25,34,35 Even though such studies are more feasible in tertiary care or university-based hospitals, the higher prevalence estimates are often found in epidemiological research due to the higher rate of disease than in the general population.

Most studies in this review used standard and widely acceptable diagnostic guidelines, RDC/TMD, ICHD-II etc., but undertook different methods of assessment which included: self-reported questionnaires, face-to-face or telephone interviews, or formal physical examination. Participants of the included studies had non-specific occupations, were of middle-age and included both genders. However, one study only examined firefighters 46 and there were other studies which only examined young participants 29,30,36,41,45,48 or female adults. 44,50,52 Our review showed that epidemiological studies favoured investigating younger populations and the female population, which may be due to the high prevalence of TMD occurring in these two subgroups. 53 It has been suggested that women are almost two times more likely to suffer from headache compared to men which may account for these differences. 54

Our review showed that the prevalence of headache in the TMD population was 61.58%. Gonçalves et al. 27 reported the highest headache frequencies at 85.42% while Mitirirattanakul and Merrill 51 obtained the lowest of that at 27.24%. Migraine is the most common headache subtype in all TMD patients with a prevalence of 40.25%, which is much higher than the prevalence of headaches in the general population and twice as high as the prevalence of tension-type headache (18.89%). Chronic daily headache (CHD) is an umbrella term, not a diagnosis, comprising of several primary and secondary headache disorders. Despite the lack of a sufficient number of studies in the literature, it seems that the prevalence of TMD in CHD ranged between 5.12% in one study 32 and 35.22% in another study, 27 while the prevalence of CHD in TMD was 66.7%. 15 This suggests that TMD is frequently associated with a daily headache disorder, often migraine and TTH and perhaps other chronic headache disorders, likely chronic migraine maybe associated with TMD.

We performed an additional subgroup analysis of painful and non-painful TMD. A very high prevalence of headache (82.80%) was seen in painful-TMD patients, with small variations between studies (from 73.94% to 86.75%). 30,45 Migraine remains the most common comorbid condition among these patients (47.08%) followed by tension-type headache (31.42%). After pooling studies on non-painful TMD, we found only one study based on the clear definition of non-painful TMD with the recognised assessment – DC/TMD. 38 This study only investigated non-painful TMD in TTH and migraine patients, reporting a proportion of headache in non-painful TMD patients of 78.85%, mostly migraine (31.93%), followed by TTH (20.19%). 38 The prevalence of headache in non-painful TMD is almost as high as the prevalence in painful TMD, with interesting pathophysiological implications that should be explored in future studies. The analysis of studies investigating the prevalence of headache in the subgroup of TMD suggested that migraine is particularly associated with painful muscular TMD, but not with joint-related pain. 37 Individuals with painful muscle-related TMD symptoms had a 1.6-fold higher risk of having migraine than those with other TMD symptoms. In addition, TMD pain, either muscular or joint-related origin, that presented with migraine was also associated with higher migraine frequency and higher prevalence of medication use headache. 37

We also explored the prevalence of TMD in the headache population. Most studies investigating TMD in headache patients rarely classified TMD subgroups; instead, they differentiated by headache subtypes. The results showed that 59.42% of headache patients suffer from TMD, with variation in percentage between 54.76% and 72.50%. 49,51 Migraine patients are slightly more likely to have TMD in comorbidity compared to tension-type headache patient (respectively 59.29% and 55.39%). Although our meta-analysis didn’t include TMD prevalence in non-headache population, it was evident that the prevalence of TMD was higher in patients with headache compared to people without headache; additionally, myogenous TMD patients were more likely to report headaches than those with arthrogenous TMD. 5 The relationship of myogenous TMD and headache was also consistent with Sojka et al.’s study, 51 who found headache patients suffered mostly from muscle dysfunction (40%) and 32.5% from disc displacement with reduction.

The prevalence of comorbid headache in TMD and current TMD in headache from this review are quite similar (61.58% and 59.42%). Despite the large variance across included studies, the review therefore suggests a high co-occurrence of the two disorders in the general and clinical populations. Headache is mostly found in painful TMD sufferers and migraine appears to be most prevalent type of primary headache found among total TMD patients. Besides the main findings, results from measuring association of two conditions also showed significantly higher risk of having headache in TMD group compared to healthy controls. 6,26,29–32,38,55 However, some of the included studies were conducted in tertiary university-based hospital with small sample sizes. Further epidemiological studies should be performed in large population-based investigation. Other studies focusing on the relationship and mechanism or aetiologies between the two pathologies should also be conducted to provide better understanding and management in patients with both conditions.
The pathophysiology of TMD and headache involves the peripheral and central nervous systems. The trigeminal pathway is a key component in the nociceptive transmission and processing of TMD pain and headache.10,18 Trigeminal nerve activation is therefore thought to play a significant role in the underlying mechanisms of headache and facial pain disorders, including TMD.10,18,19 Peripheral and central sensitisation may contribute to the overlap of the two disorders and lead to the difficulties in distinguishing both conditions. Therefore, headache and TMD may occur as separate or overlapping entities. Although there is no evidence to date of a causal relationship between TMD and primary headaches, they may be related in a bidirectional fashion. TMD signs and symptoms may be a perpetuating factor for the primary headache and the primary headache may similarly act as a triggering pain for the TMD condition.17 This could be a supporting explanation for Gonçalves et al.’s study,56 which revealed the significant improvement in migraine when TMD was treated in patients with TMD comorbid with migraine.

This review showed a high prevalence of TMD and primary headache disorders in the same individual. This implies that an association between two conditions may exist. This finding highlights the importance routine TMJ evaluation in headache clinics as well as careful headache phenotyping in dental/maxillo-facial settings, to fully assess our patients’ symptoms. When TMD and headache coexist, the management of both conditions may lead to a better outcome and patient satisfaction.

Limitation of the review

This systematic review analysed multiple study designs, including studies without control groups, but the difference in prevalence estimates between patient and control samples related to comorbid conditions were not assessed in the meta-analysis. In addition, only English-language articles were included in our systematic review. Without a language restriction, the review could capture more information and thus eliminate systematic bias. Another point to consider is that the data from this review were pooled across studies using different diagnostic criteria and methods. Therefore, a degree of caution in interpreting the findings is warranted. Although the prevalence estimates obtained show moderate to high heterogeneity, subgroup analyses are of little use when the number of studies included in the meta-analysis is too small to conduct meaningful subgroup analyses. Additionally, this review only estimated the prevalence of headaches associated with TMD. Importantly, chronic pain in localised areas, such as headache and TMD, which may occur concurrently, may be a feature of FMS. Clinicians should not ignore this and should investigate other areas of pain in the body besides headache or TMD pain.

Conclusions

The findings of this systematic review suggest that primary headache disorders are highly prevalent in TMD. Migraine and TTH are the most prevalent headache disorders associated with TMD and they often occur in their chronic subtype. Migraine is the most frequent headache condition associated with painful myogenous TMD. Similarly, a high proportion of patients with primary headache disorders suffer with TMD, though it is unclear which subtypes of TMD are more prevalent in headache patients. Migraine and TTH seem to be the headache conditions more often associated with TMD.

Large population-based studies using uniform diagnostic criteria are needed to clarify the details of the epidemiological association between TMD and headache. However, current available data highlights the importance of their association in terms of similar pathophysiological mechanisms, chronification mechanisms, and overlapping treatments. In light of this research need, future studies should shed light on the epidemiological, clinical, pathophysiological and treatment aspects of this association.

Article highlights

- Primary headache disorders are frequent in TMD and vice versa.
- Migraine and TTH appear to be the most common headache disorders associated with TMD.
- Migraine is the most prevalent headache condition associated with painful TMD.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Pankaew Yakkaphan \(\text{https://orcid.org/0000-0002-1699-7496}\)
Giorgio Lambru \(\text{https://orcid.org/0000-0002-2780-4776}\)

References

1. de Leeuw R. Orofacial pain: guidelines for assessment, diagnosis, and management. 6th ed. Hanover Park, IL: Quintessence Publishing Co., Inc., 2018.
2. Magnusson T, Egermark I and Carlsson GE. A longitudinal epidemiologic study of signs and symptoms of temporomandibular disorders from 15 to 35 years of age. J Orofac Pain 2000; 14: 310–319.
3. Valesan LF, Da-Cas CD, Réus JC, et al. Prevalence of temporomandibular joint disorders: a systematic review and meta-analysis. Clin Oral Investig 2021; 25: 441–453.
4. Ballegaard V, Thede-Schmidt-Hansen P, Svensson P, et al. Are headache and temporomandibular disorders related? A blinded study. Cephalalgia 2008; 28: 832–841.

5. Ciancaglini R and Radaelli G. The relationship between headache and symptoms of temporomandibular disorder in the general population. J Dent 2001; 29: 93–98.

6. Ferreira CLP, Silva MAM, Felício CM. Signs and symptoms of temporomandibular disorders in women and men. CoDAS 2016; 28: 17–21.

7. Fricton J. Myogenous temporomandibular disorders: diagnostic and management considerations. Dent Clin North Am 2007; 51: 61–83.

8. Speciali JG and Dach F. Temporomandibular dysfunction and headache disorder. Headache 2015; 55(Suppl 1): 72–83.

9. Graff-Radford SB. Temporomandibular disorders and headache. Dent Clin North Am 2007; 51: 129–144.

10. Dworkin SF and LeResche L. Research diagnostic criteria for temporomandibular disorders: review, criteria, examinations and specifications, critique. J Craniofac Disord 1992; 6: 301–355.

11. Schiffman E, Ohrbach R, Truelove E, et al. Diagnostic criteria for temporomandibular disorders (DC/TMD) for clinical and research applications: recommendations of the International RDC/TMD Consortium Network and Orofacial Pain Special Interest Group. J Oral Fac Pain Headache 2014; 28(1): 6–27.

12. Treede R-D, Rief W, Barke A, et al. A classification of chronic pain for ICD-11. Pain 2015; 156: 1003–1007.

13. Benoliel R et al. International classification of orofacial pain, 1st edition (ICOP). Cephalalgia 2020; 40: 129–221.

14. Benoliel R, Svensson P, Evers S, et al. The IASP classification of chronic pain for ICD-11: chronic secondary headache or orofacial pain. Pain 2019; 160: 60–68.

15. Gonçalves DAG, Speciali JG, Lopes LC, et al. Temporomandibular symptoms, migraine, and chronic daily headaches in the population. Neurology 2009; 73: 645–646.

16. Olesen J. Headache Classification Committee of the International Headache Society (IHS) the international classification of headache disorders, 3rd edition. Cephalalgia 2018; 38: 1–211.

17. Graff-Radford SB and Bassiu JP. Temporomandibular disorders and headache. Neurol Clin 2014; 32: 525–537.

18. Sessle BJ. Peripheral and central mechanisms of orofacial pain and their clinical correlates. Minerva Anestesiol 2005; 71: 117–136.

19. Woolf CJ. Central sensitization: implications for the diagnosis and treatment of pain. Pain 2011; 152: S2–S15.

20. Yakkaphan P, Tara R and Huann L. Systematic review of temporomandibular disorders with comorbid headache. PROSPERO, https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020177509 (2020, accessed 20 March 2020).

21. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6: e1000100.
39. Di Paolo C, D’Urso A, Papi P, et al. Temporomandibular disorders and headache: a retrospective analysis of 1198 patients. *Pain Res Manag* 2017; 2017: 1–8.

40. Liljestro¨m MR, Jämsä T, Le Bell Y, et al. Signs and symptoms of temporomandibular disorders in children with different types of headache. *Acta Odontol Scand* 2001; 59: 413–417.

41. Liljestro¨m MR, Le Bell Y, Anttila P, et al. Headache children with temporomandibular disorders have several types of pain and other symptoms. *Cephalalgia* 2005; 25: 1054–1060.

42. Glaros A, Urban D and Locke J. Headache and temporomandibular disorders: evidence for diagnostic and behavioural overlap. *Cephalalgia* 2007; 27: 542–549.

43. Stuginski-Barbosa J, MacEdo HR, Eduardo Bigal M, et al. Signs of temporomandibular disorders in migraine patients: a prospective, controlled study. *Clin J Pain* 2010; 26: 418–421.

44. Gonçalves MC, Florencio LL, Chaves TC, et al. Do women with migraine have higher prevalence of temporomandibular disorders? *Brazilian J Phys Ther* 2013; 17: 64–68.

45. Franco AL, Fernandes G, Gonçalves DAG, et al. Headache associated with temporomandibular disorders among young Brazilian adolescents. *Clin J Pain* 2014; 30: 340–345.

46. Wagner B A and Filho PFM. Painful temporomandibular disorder, sleep bruxism, anxiety symptoms and subjective sleep quality among military firefighters with frequent episodic tension-type headache. A controlled study. *Arq Neuropsiquiatr* 2018; 76: 387–392.

47. Reik L and Hale M. The temporomandibular joint pain-dysfunction syndrome: a frequent cause of headache. *Headache J Head Face Pain* 1981; 21: 151–156.

48. Wänman A and Agerberg G. Headache and dysfunction of the masticatory system in adolescents. *Cephalalgia* 1986; 6: 247–255.

49. Tomaz-Morais JF, de Sousa Lucena LB, Mota IA, et al. Temporomandibular disorder is more prevalent among patients with primary headaches in a tertiary outpatient clinic. *Arq Neuropsiquiatr* 2015; 73: 913–917.

50. Florencio LL, de Oliveira AS, Carvalho GF, et al. Association between severity of temporomandibular disorders and the frequency of headache attacks in women with migraine: a cross-sectional study. *J Manipulative Physiol Ther* 2017; 40: 250–254.

51. Sojka A, Zarowski M, Steinborn B, et al. Temporomandibular disorders in adolescents with headache. *Adv Clin Exp Med* 2018; 27: 193–199.

52. Mingels S, Dankaerts W and Granitzer M. Preclinical signs of a temporomandibular disorder in female patients with episodic cervicogenic headache versus asymptomatic controls: a cross-sectional study. *PMR* 2019; 11: 1287–1295.

53. Ryan J, Akhter R, Hassan N, et al. Epidemiology of temporomandibular disorder in the general population: a systematic review. *Adv Dent Oral Heal*. Epub ahead of print 19 February 2019. DOI: 10.19080/ADOH.2019.10.555787.

54. Rasmussen B. Epidemiology of headache. *Cephalalgia* 2001; 21: 774–777.

55. Gone DAG, Camparis CM, Speciali JG, et al. With headache diagnoses. *Headache* 2011; 27: 611–615.

56. Gonçalves DAG, Camparis CM, Franco AL, et al. How to investigate and treat: migraine in patients with temporomandibular disorders. *Curr Pain Headache Rep* 2012; 16: 359–364.