Membrane Type 1 Matrix Metalloproteinase (MT1-MMP) Ubiquitination at Lys581 Increases Cellular Invasion through Type I Collagen*¹

Received for publication, September 23, 2011, and in revised form, January 24, 2012 Published, JBC Papers in Press, February 7, 2012, DOI 10.1074/jbc.M111.306340

Patricia A. Eisenach¹, Pedro Corrêa de Sampaio, Gillian Murphy, and Christian Roghi²

From the Department of Oncology, Cancer Research UK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, University of Cambridge, Cambridge CB2 0RE, United Kingdom

Background: MT1-MMP is a membrane-anchored matrix metalloproteinase involved in pericellular proteolysis and invasion. MT1-MMP is monoubiquitinated intracellularly at Lys581, modulating intracellular trafficking and cellular invasion. Regulation of the activity of MT1-MMP by monoubiquitination emphasizes the importance of its intracellular domain during MT1-MMP-driven cellular invasion.

Results: MT1-MMP is monoubiquitinated intracellularly at Lys581, modulating intracellular trafficking and cellular invasion.

Conclusion: Regulation of the activity of MT1-MMP by monoubiquitination emphasizes the importance of its intracellular domain during MT1-MMP-driven cellular invasion.

Significance: Given the key role MT1-MMP plays in pathological conditions, a better understanding of the regulation of MT1-MMP is essential for therapeutic intervention.

Membrane type 1 matrix metalloproteinase (MT1-MMP/MMP14) is a zinc-dependent type I transmembrane metalloproteinase playing pivotal roles in the regulation of pericellular proteolysis and cellular migration. Elevated expression levels of MT1-MMP have been demonstrated to correlate with a poor prognosis in cancer. MT1-MMP has a short intracellular domain (ICD) that has been shown to play important roles in cellular migration and invasion, although these ICD-mediated mechanisms remain poorly understood. In this study, we report that MT1-MMP is mono-ubiquitinated at its unique lysine residue (Lys581) within the ICD. Our data suggest that this post-translational modification is involved in MT1-MMP trafficking as well as in modulating cellular invasion through type I collagen matrices. By using an MT1-MMP Y573A mutant or the Src family inhibitor PP2, we observed that the previously described Src-dependent MT1-MMP phosphorylation is a prerequisite for ubiquitination. Taken together, these findings show for the first time an additional post-translational modification of MT1-MMP that regulates its trafficking and cellular invasion, which further emphasizes the key role of the MT1-MMP ICD.

Matrix metalloproteinases (MMPs)³ are key regulators of normal physiological tissue homeostasis as well as pathologies that include cancer, cardiovascular disease, and arthritis (1–4). Among the MMP family, the membrane-anchored membrane-type 1 MMP (MT1-MMP, MMP14) is of particular interest. The importance of MT1-MMP is demonstrated by the unusually severe phenotype manifest on gene ablation in mice; MT1-MMP$^{-/-}$ mice show defects in vascularization, connective tissue turnover, and bone formation, leading to craniofacial abnormalities, dwarfism, osteopenia, and arthritis (5–7). MT1-MMP has a broad repertoire of substrates, including the extracellular matrix components type I, II, and III collagen, fibronectin, laminins, vitronectin, and aggrecan (8–11) as well as non-extracellular matrix proteins, which include CD44, syndecan-1, intracellular adhesion molecule-1 (ICAM-1), and connective tissue growth factor (CTGF) (12–15). MT1-MMP has been found to be highly expressed in different cancers, and its expression was shown to promote migration, invasion, and metastasis of cancer cells in vitro as well as in vivo (16–22).

MT1-MMP has a 20-amino acid intracellular domain (ICD) that is involved in a plethora of cellular functions that includes the regulation of cell migration, invasion, the induction of intracellular signaling pathways, and the intracellular traffic of the proteinase (23–29). MT1-MMP was shown to be endocytosed by a clathrin-dependent internalization pathway, although additional means of internalization have been described (25, 30, 31). It has been demonstrated that the ICD of MT1-MMP recruits the μ2 subunit of the adaptor protein 2 (AP-2) to its LLY573 motif (26). Interestingly, mutation of the LLY573 motif or deletion of the entire ICD resulted in decreased migration and invasion, suggesting a link between regulated endocytosis and cell locomotion (23, 26, 32). MT1-MMP also was shown to be recycled back to the cell surface in a mechanism dependent on the DKV582 motif (29). Although the mechanism of MT1-MMP recycling remains unclear, DKV582 was also suggested to bind to proteins containing PDZ (postsynaptic density-95/Discs large/zona occludens-1) domains, thus facilitating protein–protein interactions and signal transduction (33). The MT1-MMP ICD further undergoes palmitoyla-
tion at Cys574, a lipid post-translational modification that was shown to modulate cell migration and clathrin-mediated internalization (34). Recently, it has been reported that MT1-MMP is phosphorylated within its ICD at Tyr573 in an Src-dependent mechanism (35). Expression of a non-phosphorylatable MT1-MMP Tyr573 mutant in fibrosarcoma cells resulted in impaired levels of proliferation within three-dimensional type-I collagen gels (36). Protein kinase C (PKC)-mediated phosphorylation at Thr567 has also been reported as being implicated in the regulation of collagenolytic activity (37).

In this work, we demonstrated that the MT1-MMP ICD is mono-ubiquitinated at Lys581. We were able to show that this modification is dependent on the Src-dependent phosphorylation of the Tyr573, thus changing the intracellular trafficking of the proteinase and increasing the ability of MT1-MMP to invade through collagen I gels.

EXPERIMENTAL PROCEDURES

Cell Culture, Cell Treatments, and Reagents—The human breast cancer cell line MCF-7 was obtained from Cancer Research UK (London, UK) and was routinely cultured in DMEM (Invitrogen) supplemented with 10% (v/v) FCS (Perbio, Research UK (London, UK) and was routinely cultured in complete DMEM). Cells (5 × 105) were seeded and transfected with 1 \(\mu \)g of cDNA of various MT1-MMP cDNAs using FuGENE 6TM (Roche Applied Science, Welwyn, UK) according to the manufacturer’s instructions. As indicated, cells were incubated with the phorbol ester phorbol 12-myristate 13-acetate (Sigma-Aldrich) at 100 ng/ml for 30 min. Inhibitors were used as follows: the Src family inhibitor PP2 (Calbiochem, Nottingham, UK) at 20 \(\mu \)M for 18 h and the proteasome inhibitor MG-132 (Calbiochem) at various concentrations for 3 h.

Cloning and Mutagenesis of cDNAs—Full-length MT1-MMP (MT1-WT), a Myc-tagged full-length MT1-MMP (MT1-MYC), MT1-Y573A, and the intracellular domain deleted MT1-MMP (ICD) mutant were described previously (23, 30, 35, 38–40). The MT1-K581R mutant was generated by site-directed mutagenesis as reported previously (39). MT1-MYC-Y573A, MT1-MYC-T567A, MT1-MYC-T567E, MT1-MYCΔICD, and MT1-MYC-K581R were generated by site-directed mutagenesis of MT1-MYC. Rab4-EGFP was a gift from M. Zerial (Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany). Rab6-EGFP was from B. Gould (Institut Pasteur, Paris, France) and Rab7-EGFP was from C. Bucci (Universita del Salento, Lecce, Italy). Rab11-EGFP was from M. Colombo (Universidad Nacional de Cuyo, San Rafael, Argentina). HA-tagged ubiquitin (ubiquitin-HA) was from K. Fujita (University College, London, UK).

Antibodies—The sheep polyclonal antibody (pAb) to MT1-MMP (N175/6) was prepared as described by Remacle et al. (30). The anti-Myc (clone 4A6; immunoblot: 0.5 \(\mu \)g/ml), the anti-early endosome antigen 1 (EEA1; immunofluorescence, 5 \(\mu \)g/ml) and the anti-MT1-MMP (clone LEM-2/15.8; immunoblot, 0.5 \(\mu \)g/ml; FACS, 10 \(\mu \)g/ml; immunofluorescence, 5 \(\mu \)g/ml) monoclonal antibodies (mAbs) were purchased from Millipore (Watford, UK). Anti-HA (immunoblot, 0.2 \(\mu \)g/ml; immunofluorescence, 4 \(\mu \)g/ml), anti-\(\beta \)-actin (immunoblot, 0.2 \(\mu \)g/ml), anti-LAMP-1 (immunofluorescence, 10 \(\mu \)g/ml) and anti-NEDD4-1 (immunoblot, 0.2 \(\mu \)g/ml) pAbs were from Abcam (Cambridge, UK). The anti-Myc pAb (clone 9B11; immunofluorescence, 1 \(\mu \)g/ml) was from Cell Signaling Technology (Hitchin, UK) and the anti-p21/WAF1 pAb (immunoblot, 1 \(\mu \)g/ml) was from Santa Cruz Biotechnology (Heidelberg, Germany). Rabbit and mouse control IgG antibodies were purchased from Dako (Ely, UK). Horseradish peroxidase (HRP) and Cy5-conjugated secondary antibodies were from Jackson ImmunoResearch Laboratories (Newmarket, UK). Species-specific Alexa Fluor® 488 and allophycocyanine-conjugated anti-mouse secondary antibodies were purchased from Invitrogen.

Immunoprecipitation and Protein Immunoblotting—Immunoprecipitation was performed as described previously (41). Briefly, cells were lysed in immunoprecipitation buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% (v/v) Triton X-100, 0.5% (v/v) Nonidet P-40, 1 mM EDTA, 1 mM EGTA, 1 mM sodium vanadate). Antibodies (3 \(\mu \)g) were bound to Dynabeads protein G (Invitrogen) at 4 °C for 16 h in 5 mg/ml BSA in PBS (137 mM NaCl, 4.3 mM Na\textsubscript{2}HPO\textsubscript{4}, 2.7 mM KCl, 1.47 mM KH\textsubscript{2}PO\textsubscript{4}). Cell lysates were then incubated with antibody-bound Dynabeads for 90 min at 4 °C under constant rotation. Beads were washed 4 × 10 min with immunoprecipitation buffer and resuspended in 2 × Laemml buffer. Denatured proteins were separated on 10% SDS-PAGE and electrotransferred onto nitrocellulose membrane (GE Healthcare). Membranes were blocked in 3% (w/v) low-fat milk in TBS (136.9 mM NaCl, 2.68 mM KCl, 24.76 mM Tris base, pH 8.0) containing 0.1% (v/v) Tween 20 for 1 h at room temperature and probed with the primary antibodies diluted in blocking buffer at 4 °C for 16 h. After washing (3 × 5 min), membranes were incubated for 1 h at room temperature with HRP-conjugated secondary antibodies, and immunoreactive bands were detected by enhanced chemiluminescence (ECL detection kit, GE Healthcare). Band intensities were quantified using NIH ImageJ image processing software.

Immunocytochemistry—Cells (1 × 105) were seeded on glass coverslips and transfected as described previously. After 18 h, cells were washed in PBS and fixed at room temperature for 20 min with 4% (w/v) PFA in PBS. PFA was quenched using 50 mM glycine (pH 8.0). Cells were subsequently washed in PBS, permeabilized in PBS containing 0.1% (v/v) Triton X-100, and incubated with the primary antibody for 1 h at room temperature. Cells were washed 3 × 5 min with PBS and were incubated with species-specific Alexa Fluor® 488 or Cy5-conjugated secondary antibodies. Slides were mounted using ProLong® Gold antifade reagent containing DAPI (Invitrogen). Series of optical sections were acquired using the Leica Tandem SP5 confocal laser microscope (Leica Microsystems) with a 63× oil immersion objective. Co-localization coefficients were calculated using the Volocity three-dimensional imaging and analysis software (Improvement, PerkinElmer Life Sciences, Coventry, UK).

Flow Cytometry—MCF-7 cells (1.5 × 105) were washed with PBS and detached from the plastic using PBS containing 5 mM EDTA. After a 15-min room temperature fixation in PFA (4% (v/v) in 5 mM EDTA/PBS), cells were incubated with an anti-MT1-MMP mAb (LEM-2/15.8) in PBS for 1 h at room temper-
MT1-MMP Ubiquitination Increases Cellular Invasion

RESULTS

MT1-MMP Is Monoubiquitinated—MT1-MMP has a 20-amino acid ICD with a single lysine residue proximal to its C-terminal end (Fig. 1A). Lys581 is part of the previously identified recycling motif DKV582, which is similar to the PDZ domain-binding motifs and is highly conserved among the MT-MMP subfamily (29). However, the precise mechanism underlying the MT1-MMP recycling process remains to be investigated. Because an intracellular lysine is a potential target for ubiquitination (43), we tested whether MT1-MMP undergoes ubiquitination. To assess this, a full-length MT1-MMP construct bearing a Myc tag within its hinge I domain was used (MT1-MYC; Fig. 1A). Initially, MT1-MYC was co-transfected with HA-tagged ubiquitin (ubiquitin-HA) into MCF-7 cells. Cells were lysed and immunoprecipitated with an anti-Myc antibody (clone 4A6, Millipore) and immunoblotted with an anti-HA antibody. As shown in Fig. 1B (top left panel), a confined band corresponding to a monoubiquitinated full-length MT1-MMP (~72 kDa) was detected. Quantification of four representative immunoprecipitations revealed that significant ubiquitination of MT1-MMP occurred, compared with the controls (Fig. 1B, lower left panel). However, we were unable to detect MT1-MMP polyubiquitination. Input controls demonstrate the expression of MT1-MYC as well as the total increase of ubiquitinated proteins in the cell extracts following exogenous ubiquitin-HA expression (Fig. 1B, right panel).

To further characterize the ubiquitination of MT1-MMP, cells were transfected with MT1-MYC and ubiquitin-HA as described previously and treated with increasing concentrations of hydrogen peroxide, a known substrate-dependent inducer of mono- and/or polyubiquitination (44–46). Co-transfection of MT1-MYC and ubiquitin-HA led to MT1-MMP monoubiquitination as shown previously (Fig. 1, B and C). Addition of 100 μM H2O2 resulted in a significant induction of total ubiquitination as shown in the anti-HA input control blot as well as in an increase in MT1-MMP monoubiquitination in the immunoprecipitates (Fig. 1C). However, treatment of cells with 10 μM H2O2 led to less MT1-MMP ubiquitination compared with control cells, which may be explained by the reduced amount of total protein used for that immunoprecipitation as shown in the β-actin input control.

MT1-MMP Is Monoubiquitinated at Its Unique ICD Lys581—To further confirm that MT1-MMP is ubiquitinated at its unique lysine residue within the ICD, we generated an MT1-MMP ICD deletion construct (MT1-MYC-ΔICD, Fig. 1A) and an MT1-K581R mutant (MT1-MYC-K581R) within the MT1-MYC backbone. The constructs were co-transfected and co-immunoprecipitated with ubiquitin-HA as described previously (Fig. 1D). MT1-MYC was monoubiquitinated as shown previously (Fig. 1, B–D). However, no ubiquitin-HA was detected following transfection of the ICD deletion mutant or the MT1-MYC-K581R mutant, suggesting that the observed monoubiquitination of MT1-MMP depends on Lys581 (Fig. 1D).

We confirmed this observation by immunofluorescence microscopy. MCF-7 cells were co-transfected with MT1-WT and ubiquitin-HA, fixed, and immunostained using an anti-HA and an anti-MT1-MMP (N175/6) antibody (Fig. 1E). A strong
co-localization was observed at or close to the plasma membrane of co-transfected MCF-7 cells (Fig. 1E, arrows within merged inset panel). However, when MCF-7 cells were transfected with ubiquitin-HA and the ubiquitination-deficient MT1-MMP construct (MT1-K581R), a reduced co-localization of both proteins was observed, which was also confirmed by quantification of co-localization (Fig. 1E, arrowheads within merged inset panel and quantification of co-localization). Remaining co-localization was still detected, indicating an overlap in the localization of both proteins although without direct interaction.

MT1-MMP Ubiquitination Increases Cellular Invasion

FIGURE 1. MT1-MMP is monoubiquitinated at Lys581 in MCF-7 cells. A, schematic representation of the Myc-tagged MT1-MMP cDNAs used. S, signal sequence; Pro, propeptide; CAT, catalytic domain; HPX, hemopexin domain; stalk, stalk region; TMD, transmembrane domain; MYC, N-EQKLISEEDL-C; MT1-WT, wild-type MT1-MMP; MT1-MYC, full-length MT1-MMP with a Myc tag fused into the hinge I region between the catalytic and hemopexin domain; MT1-MYC-ΔICD, MT1-MYC lacking the ICD. The Lys581 residue required for MT1-MMP monoubiquitination is shown in boldface type. B, MCF-7 cells were transfected with pcDNA3.1, ubiquitin-HA, and MT1-MYC, as indicated, and cell extracts were immunoprecipitated with an anti-Myc antibody (clone 4A6). Immunoprecipitates were immunoblotted with an anti-HA antibody. Input controls were immunoblotted with an anti-Myc, an anti-HA, and an anti-β-actin antibody. The semi-quantitative analyses of band intensities of four different immunoblots are shown ± S.E. with $p < 0.0001 (***)$, *, nonspecific band. AU, arbitrary units. C, MCF-7 cells were transfected with pcDNA3.1, ubiquitin-HA, and MT1-MYC as indicated and incubated for 30 min with 10 or 100 μM of hydrogen peroxide. Cell extracts were immunoprecipitated with an anti-Myc antibody and detected with an anti-HA antibody. The input controls were probed with an anti-Myc, anti-HA, and an anti-β-actin antibody. An asterisk indicates detection of a nonspecific band. D, MCF-7 cells were transfected as indicated with either pcDNA3.1, ubiquitin-HA, MT1-MYC-K581R, MT1-MYC, or MT1-MYC-ΔICD. Cell extracts were immunoprecipitated with an anti-Myc antibody. Immunoprecipitates were immunoblotted with an anti-HA antibody. Input controls were immunoblotted with an anti-Myc, an anti-HA, and an anti-β-actin antibody. *, nonspecific band. IB, immunoblot. E, MCF-7 cells were co-transfected with either MT1-WT and ubiquitin-HA or MT1-K581R and ubiquitin-HA. 16 h after transfection, the cells were fixed, permeabilized, and stained with an anti-HA (Alexa Fluor® 488 secondary, green) and an anti-MT1-MMP (N175/6; Cy5 secondary, red) antibody. Inset panels show magnified portions of each merged image as indicated (dashed squares). Arrows indicate regions of MT1-WT and ubiquitin-HA co-localization, whereas open arrowheads point at individual staining of ubiquitin-HA and MT1-K581R. Bars represent a distance of 25 μm. The co-localization between MT1-WT and ubiquitin-HA or MT1-K581R and ubiquitin-HA was determined using the Volocity three-dimensional imaging and analysis software of single confocal optical sections. Data represent the co-localization co-efficients ± S.E. of six optical sections with $p = 0.0001 (***)$. **
in a Src- or PKC-dependent manner (35, 37), which may be a prerequisite for protein ubiquitination (47). To test whether MT1-MMP phosphorylation affects its ubiquitination, MT1-MYC-Y573A and MT1-MYC-T567A mutants were used. We also generated the MT1-MYC-T567E mutant, mimicking constitutive threonine phosphorylation (48). Ubiquitin-HA was co-transfected with the MT1-MYC mutants as indicated, and lysates were co-immunoprecipitated with an anti-Myc antibody. As shown in Fig. 2A, MT1-MYC, MT1-MYC-T567A, and MT1-MYC-T567E were monoubiquitinated (Fig. 2A). However, MT1-MYC-Y573A displayed a significant reduction of ubiquitination compared with the other constructs used, as was also shown by quantification of three representative immunoprecipitations (Fig. 2A).

As mutation of the Tyr573 residue reduced MT1-MMP monoubiquitination, we tested further whether Src-mediated phosphorylation of this residue was required. Cells were co-transfected with ubiquitin-HA and MT1-MYC and treated with 20 μM of the Src family inhibitor PP2. As shown in Fig. 2B, inhibition of Src activity by PP2 significantly reduced the level of MT1-MMP monoubiquitination. In contrast, treatment of transfected cells with 100 ng/ml of the phorbol ester phorbol
MT1-MMP ubiquitination is dependent on Src-mediated phosphorylation of Tyr573 within the MT1-MMP ICD. A, MCF-7 cells were transfected as indicated with either pcDNA3.1, ubiquitin-HA, MT1-MYC, MT1-MYC-Y573A, MT1-MYC-T567A, or MT1-MYC-T567E. Cell extracts were immunoprecipitated with an anti-Myc antibody, and immunoprecipitates (IP) were immunoblotted with an anti-HA antibody. Input controls were detected with an anti-Myc, an anti-HA, and an anti-β-actin antibody. The semiquantitative analyses of band intensities of three different immunoblots are shown ± S.E. with p < 0.0001 (***). ns, not significant. AU, arbitrary units. B, MCF-7 cells were transfected with ubiquitin-HA and MT1-MYC, and cells were treated for 18 h with 20 μM PP2 or for 30 min with 100 ng/ml phorbol 12-myristate 13-acetate. Cell extracts were immunoprecipitated with an anti-Myc antibody, and immunoprecipitates were immunoblotted with an anti-HA antibody. Input controls were detected with an anti-Myc, an anti-HA, or an anti-β-actin antibody. *, nonspecific band. DMSO, dimethyl sulfoxide; IB, immunoblot.
12-myristate 13-acetate had little effect on the level of MT1-MMP ubiquitination (Fig. 2B), confirming that activation of PKC and subsequent phosphorylation of Thr567 within the MT1-MMP ICD (Fig. 2A) is not required for its ubiquitination.

Ablation of MT1-MMP Ubiquitination Decreased Expression of Proteinase at Cell Surface—MT1-MMP cell surface expression has been demonstrated to be highly regulated, at least partly by controlled protein internalization (30, 31). Given the key role that monoubiquitination plays in protein endocytosis (50), we assessed the MT1-MMP cell surface levels of MT1-WT, MT1-K581R, and MT1-ΔICD by flow cytometry. Cells were transfected with the different MT1-MMP constructs, fixed, and stained with an anti-MT1-MMP mAb (LEM-2/15.8) directed against the catalytic domain. As controls, MT1-MMP-transfected cells either remained unstained or cells were stained with an anti-IgG control antibody (Fig. 4A). As expected, cells expressing MT1-WT showed a significantly enhanced level of MT1-MMP cell surface staining compared with the cells transfected with the vector control (pcDNA3.1; Fig. 4A). The MT1-MMP cell surface expression of MT1-ΔICD expressing cells was further increased, although not significantly, compared with MT1-WT transfectants. This confirmed previous observations (26). However, no difference in MT1-MMP cell surface staining was observed between the vector control and cells expressing MT1-K581R (Fig. 4A).

The lack of MT1-MMP-K581R expression at the cell surface was also demonstrated by immunofluorescence microscopy. Wild-type MT1-MMP and the ubiquitination-deficient Myctagged MT1-Lys581 mutant were co-transfected into MCF-7 cells, permeabilized, and subsequently co-stained with the anti-Myc and anti-MT1-MMP antibodies. Both constructs were detected with the anti-MT1-MMP antibody (N175/6, directed against the extracellular domain), whereas the anti-Myc antibody only detected the MT1-MYC-K581R mutant. As shown in Fig. 4B, the staining of both antibodies overlapped in the intracellular compartment (arrows), whereas only MT1-WT was detected at or close to the cell membrane (arrowheads), confirming the decreased cell surface localization of the MT1-K581R mutant as observed by flow cytometry. The same staining pattern was observed when cells were transfected either with MT1-WT or with MT1-K581R and stained with the anti-MT1-MMP antibody (N175/6), indicating that the different staining pattern shown in Fig. 4B was not an artifact of cDNA co-transfection (Fig. 4C).

Although proteasomal degradation of ubiquitinated proteins is linked mainly to Lys48 polyubiquitination (51), we tested whether inhibition of the proteasome affects MT1-MMP protein levels present in the cell. Therefore, MCF-7 cells were transfected with ubiquitin-HA and MT1-MYC, as indicated, and lysates were immunoprecipitated with an anti-Myc antibody. As shown in Fig. 3, NEDD4-1 protein expression could be silenced efficiently with all four siRNAs used. In NEDD4-1 silenced cells, no MT1-MYC monoubiquitination was observed, suggesting that NEDD4-1 ubiquitin E3 ligase is important for MT1-MMP monoubiquitination.
established marker of protein degradation by the proteasome (52). However, we observed a decrease of ubiquitinated MT1-MMP and no induction of MT1-MMP degradation upon inhibition of proteasome function, suggesting that MT1-MMP ubiquitination is not required for proteasomal degradation. Furthermore, no increase in cellular MT1-MMP levels was observed in MT1-K581R expressing cells compared with MT1-WT transfectants, indicating that MT1-MMP ubiquitination is not followed by lysosomal degradation (supplemental Fig. 1B).

MT1-MMP Ubiquitination Increases Cellular Invasion

MT1-MMP Monoubiquitination Modulates Trafficking and Cell Surface Recycling of Protease—Given that MT1-MMP monoubiquitination was not found to enhance MT1-MMP cell surface localization or modulate protein degradation, we next tested how the K581R mutation affected trafficking of the proteinase. Therefore, MT1-WT, MT1-Y573A, MT1-K581R, or MT1-ΔCD were transfected into MCF-7 cells. The expression of MT1-MMP constructs and various markers of the endosomal sorting machinery were visualized by immunofluorescence. As shown in Fig. 5, MT1-WT and all MT1-MMP mutants partly co-localized with the endogenous lysosomal marker LAMP-1. Quantification of the co-localization coefficients revealed no significant differences in co-localization between MT1-MMP constructs and LAMP-1 (Fig. 5, lower left panel), confirming that MT1-MMP monoubiquitination is not followed by lysosomal degradation as shown in supplemental Fig. 1B. In con-
Contrast, MT1-WT clearly co-localized with the EEA1 as described previously (25), which was reduced upon mutation of the Tyr573 residue and deletion of the ICD (Fig. 5). These observations were expected because the Y573A mutation has been reported to inhibit endocytosis of MT1-MMP by 40% and thus is less present in early endosomes (26). Uekita et al. (26) also reported a decrease in MT1-MMP internalization when the ICD was deleted. In contrast, the MT1-K581R mutant exhibited a significantly stronger co-localization with EEA1 than MT1-WT. Rab4 (Ras-related protein 4)-EGFP and Rab11-EGFP have been co-transfected with the MT1-MMP mutants to assess the localization of MT1-MMP with respect to recycling endosomes. However, no difference in staining patterns could be observed (supplemental Fig. 2). The same results were obtained upon co-transfection with the Golgi marker Rab6-EGFP or the marker of the late endosomes Rab7-EGFP (supplemental Fig. 2). Taken together, these data demonstrate that the mutation of Lys581 within the MT1-MMP ICD disrupts the trafficking of the protease and leads to an accumulation of the proteinase in EEA1-positive early endosomes.

Mutation of MT1-MMP Ubiquitination Site Decreases Degradation of and Invasion through Type I Collagen Gels—To test whether mutation of the MT1-MMP Lys581 residue affects the ability of MT1-MMP to invade through type I collagen, we used a modified Boyden chamber assay. Untransfected cells or cells expressing various MT1-MMP constructs were tested for their ability to migrate through uncoated filters (chemotaxis) or through type I collagen-coated filters (100 μl of 100 μg/ml) (chemoinvasion). MCF-7 cells expressing either pcDNA3.1, MT1-WT, MT1-Y573A, MT1-K581R, or MT1-ΔICD were seeded in serum-free medium in the top chamber. A serum gradient was applied by filling the lower chamber with medium containing 10% serum. The cellular invasiveness of MCF-7 cells expressing pcDNA3.1 vector control was reduced when transwells were coated with type I collagen (Fig. 6A). However, this effect was rescued upon expression of MT1-WT, demonstrating that the activity of MT1-MMP is sufficient for collagen degradation, as demonstrated previously (53, 54). Reduced invasion was observed for cells expressing MT1-Y573A, as described for invasion through fibronectin in HT1080 cells (35). Expression of MT1-ΔICD in MCF-7 cells resulted in a slight increase, although not significant, of invasion through collagen compared with vector control (Fig. 6A). Similarly, Uekita et al. reported a significant decrease in cellular invasion through Matrigel in MT1-ΔICD transfectants compared with MT1-WT expressing CHO-K1 cells (26). Expression of MT1-ΔICD has been shown to result in an increased cell surface expression level due to reduced protein internalization (Fig. 4A), and it has been proposed that a defect in MT1-MMP internalization perturbs the ability of the protein to induce cellular invasion (26). Expression of MT1-K581R in MCF-7 cells also led to a significant decrease of cell invasion through collagen.
compared with MT1-WT expressing cells (Fig. 6A), which may be explained by the decreased cell surface expression of this mutant (Fig. 4A). Accordingly, the ability of MT1-Y573A, MT1-K581R, and MT1-ΔICD to degrade FITC-labeled type I collagen was decreased compared with MT1-WT-expressing cells (Fig. 6B). These results are in agreement with the decreased expression of MT1-K581R at the cell surface of MCF-7 cells as detected by flow cytometry and immunofluorescence (Fig. 4, A–C).

DISCUSSION

Recent evidence showed that the MT1-MMP ICD is pivotal for the MT1-MMP-driven cellular invasion in a number of tumor cell lines (24, 26, 55, 56) as well as primary endothelial cells (57). ICD deletion mutants exhibit no effect on MT1-MMP cell surface proteolytic activity but reduce MT1-MMP-driven cell migration, thus establishing a link between the ICD and the proteolytic activity of the enzyme, its localization, as well as efficient cellular migration (24, 26, 56, 57). Given the numerous roles of the ICD in biological functions induced by MT1-MMP, the reduction in cell migration upon expression of an ICD deletion mutant may be related to perturbed endocytosis, reduced recycling or disruption of the extracellular signal-regulated protein kinase (ERK) signaling cascade (56).

In this work, we demonstrate for the first time the ubiquitination of MT1-MMP at Lys 581. In MT1-MYC transfected MCF-7 cells, we detected a well defined signal corresponding to monoubiquitinated full-length MT1-MMP. By employing either an ICD deletion or a K581R mutant, we were able to confine the site of MT1-MMP ubiquitination to the Lys581 residue. An immunocytochemical approach supported these observations as a strong co-localization between wild-type MT1-MMP and ubiquitin-HA was observed, whereas this co-localization was reduced significantly upon expression of the MT1-K581R mutant.

Nyalendo and co-workers (35) have reported recently the phosphorylation of MT1-MMP by Src at the intracellular Tyr573 residue. Given the extensive cross-talk between post-translational modifications, especially the link between phosphorylation and subsequent ubiquitination (47), we found a consistent requirement for the Tyr573 residue as well as Src activity for MT1-MMP monoubiquitination. This observation has a profound impact, as we have shown that the presence of MT1-MMP in MCF-7 cells per se induces the activity of Src (41), thus inducing a positive feedback loop resulting in
MT1-MMP Ubiquitination Increases Cellular Invasion

increased MT1-MMP phosphorylation, ubiquitination, and, hence, increased cell migration and invasion.

Ubiquitination is traditionally associated with targeting cargo proteins for (proteasomal) degradation (51); however, it has become increasingly apparent that ubiquitination has further non-proteolytic functions, including the regulation of trafficking and localization, thus modulating protein activity (58–62). MT1-MMP is known to relocalize to local invasive structures, including lamellipodia and podosomes, and it has been shown that this constant redistribution and adaptation during cellular invasion is dependent on a balanced interplay between protein endocytosis and recycling. MT1-MMP protein turnover depends on its ICD; the LLY573 motif has been shown to recruit the μ2 subunit of AP-2, thus facilitating clathrin-dependent endocytosis (23, 26). The recycling of MT1-MMP back to the cell surface is a process that is dependent on the C-terminal DKV582 motif (29). Here, we have shown that mutation of the Lys581 residue, and therefore the ablation of MT1-MMP monoubiquitination, led to decreased levels of the enzyme at the cell surface. An analysis of the localization of MT1-MMP and the ubiquitin-deficient mutant with respect to various markers of the trafficking and recycling machinery showed a significant increase in co-localization between the MT1-MMP and the ubiquitin-deficient mutant with respect to the trafficking machinery (29). Wang et al. (29) have unequivocally shown that deletion of the entire ICD or truncation of the ICD at Leu579 (thus deleting the DKV582 motif) reduced MT1-MMP recycling to the cell surface, albeit showing a normal internalization process. MT1-MMP recycling was hypothesized to require the interaction of DKV582 with adaptor proteins containing PDZ motifs, as has been shown for the recycling of MT5-MMP depending on the adaptor protein Mint-3 (63). However, no mechanism regulating MT1-MMP recycling has been identified to date. The most pressing issue that needs to be addressed as a result of the present study is to test for the effect single mutations of the encompassing residues (Asp580 and Val582) induce on intracellular MT1-MMP localization.

The trafficking and intracellular compartmentalisation of MT1-MMP depends on the extracellular matrix surrounding the cell. It has been shown previously that MT1-MMP is recycled back to the cell surface in Rab4-positive recycling endosomes in HT1080 cells, in a setting where MT1-MMP is not involved in extracellular matrix degradation (30). However, when MDA-MB-231 cells were cultured in a three-dimensional type I collagen matrix, MT1-MMP was recruited from an intracellular storage compartment, different from the recycling endosomes, in Rab8-positive exocytic vesicles (64). Accordingly, we observed a difference in cellular invasion and migration in cells cultured in two dimensions versus three dimensions, with a reduction of cell invasion in the MT1-K581R expressing cells in two dimensions and no apparent change in spheroid outgrowth compared with MT1-WT expressing cells (supplemental Fig. 3). These differences observed were expected as the migratory capability of cells not only depends on the right localization of MT1-MMP at the cell surface but also on the substrate surrounding the cell. Furthermore, it has been demonstrated that only the migratory capabilities of the outer cellular layer of multicellular spheroids are measured in three-dimensional migration assays, introducing a bias in the quantification (65). Given that cells expressing MT1-K581R or MT1-WT exhibited similar migratory capabilities, we believe that MT1-MMP monoubiquitination might be required for protein recycling as being the most probable explanation. Indeed, how monoubiquitination is regulating the recycling of MT1-MMP back to the cell surface is a question we intend to address in future studies. A possible mechanism that induces recycling of ubiquitinated cargo is employed by the well-characterized mechanism of epidermal growth factor receptor (EGFR) trafficking. EGFR is targeted for lysosomal degradation by ubiquitin-mediated interactions with the ESCRTs (endosomal-sorting complexes required for transport) machinery. However, Aoh et al. (66) have demonstrated previously that the tetraspanin integral membrane-protein SCAMP3 (secretory carrier membrane protein 3) is competing with members of the ESCRT family for binding of ubiquitinated cargo, thus increasing EGFR recycling to the cell surface. SCAMP proteins are present in the cell surface recycling system including the membranes of early, late, and recycling endosomes, in the trans-Golgi network and the plasma membrane (67), thus introducing an interesting mechanism that may explain MT1-MMP recycling depending on ubiquitination. Interestingly, in this study, we identified NEDD4-1 (neural precursor cell expressed developmentally down-regulated protein 4) as the E3 ubiquitin ligase that is required for MT1-MMP monoubiquitination. NEDD4-1 is a member of the WW domain containing HECT (homologous to E6-AP carboxyl terminus) E3 ubiquitin ligases (68) that has been shown to ubiquitinate various target genes, including EGFR (66, 69), vascular endothelial growth factor receptor-2 (VEGFR-2) (70) as well as components of the ESCRT system (71). Helliwell et al. (72) recently have reported that the trafficking of general amino acid permease GAP1 is regulated by NEDD4-1-induced ubiquitination. Therefore, monoubiquitination induces the trafficking of the protein to the cell surface. However, the exact mechanism of NEDD4-1 induced MT1-MMP monoubiquitination in the intracellular trafficking of the proteinase remains to be investigated.

In conclusion, we have shown that MT1-MMP is monoubiquitinated at its unique lysine residue within its ICD, thus modulating protein recycling and subsequently cellular invasion and migration. The work presented here also offers a potential explanation for the question of how MT1-MMP recycling is regulated and what the role of the DKV582 motif is during that process.

Acknowledgments—We thank the Cancer Research UK Cambridge Research Institute core facilities for advice and assistance. We are also grateful to Julia Freede and Helen Gillingham (University of Cambridge) for technical support and to K. Fujita (University College, London, UK) for providing reagents.
REFERENCES

1. Egeblad, M., and Werb, Z. (2002) New functions for the matrix metalloproteinases in cancer progression. *Nat. Rev. Cancer* 2, 161–174

2. Janssens, S., and Lijnen, H. R. (2006) What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models? *Cardiovasc. Res.* 69, 585–594

3. Overall, C. M., and Kleifeld, O. (2006) Tumor microenvironment—opinion: Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. *Nat. Rev. Cancer* 6, 227–239

4. Burrag, P. S., Mix, K. S., and Brinckerhoff, C. E. (2006) Matrix metalloproteinases: Role in arthritis. *Front. Biosci.* 11, 529–543

5. Holmbeck, K., Bianco, P., Caterina, J., Yamada, S., Kroemer, M., Kuznetsov, S. A., Mankani, M., Robey, P. G., Poole, A. R., Pidoux, I., Ward, J. M., and Birkedal-Hansen, H. (1999) MT1-MMP-deficient mice develop dwarfishm, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. *Cell* 99, 81–92

6. Zhou, Z., Apte, S. S., Birkedal-Hansen, H., Holmbeck, K., Miyake, Y., Chun, T. H., and Weiss, S. J. (2005) An MT1-MMP-PDGFB receptor–β axis regulates mural cell investment of the microvasculature. *Genes Dev.* 19, 979–991

7. Lehti, K., Allen, E., Birkedal-Hansen, H., Holmbeck, K., Miyake, Y., Chun, T. H., and Weiss, S. J. (2005) An MT1-MMP-PDGF receptor–β axis regulates mural cell investment of the microvasculature. *Genes Dev.* 19, 979–991

8. d’Ortho, M. P., Will, H., Atkinson, S., Butler, G., Messent, A., Gavrilovic, J., Smith, B., Timpl, R., Zardi, L., and Murphy, G. (1997) Membrane-type matrix metalloproteinases 1 and 2 exhibit broad-spectrum proteolytic capacities comparable to many matrix metalloproteinases. *Eur. J. Biochem.* 250, 751–757

9. Ohuchi, E., Imai, K., Fujii, Y., Sato, H., Seiki, M., and Okada, Y. (1997) Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. *J. Biol. Chem.* 272, 2446–2451

10. Kosnik, N., Glenni, G., Cirulli, V., Miyazaki, K., and Quarta, V. (2000) Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. *J. Cell Biol.* 148, 615–624

11. Sithu, S. D., English, W. R., Olson, P., Kruskak, D., Baker, A. H., Murphy, G., and D’Souza, S. E. (2007) Membrane-type 1 matrix metalloproteinase regulates intracellular adhesion molecule-1 (ICAM-1)-mediated monocyte transmigration. *J. Biol. Chem.* 282, 25010–25019

12. Kajita, M., Itoh, Y., Chiba, T., Mori, H., Okada, A., Kinoh, Y., and Seiki, M. (2001) Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell motility. *J. Cell Biol.* 153, 893–904

13. Endo, K., Takino, T., Miyamori, H., Kinzen, H., Yoshizaki, T., Furukawa, M., and Sato, H. (2003) Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. *J. Biol. Chem.* 278, 40704–40710

14. Tam, E. M., Morrison, C. J., Wu, Y. I., Stack, M. S., and Overall, C. M. (2004) Membrane protease proteomics: Isozyme-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. *Proc. Natl. Acad. Sci. U.S.A.* 101, 6917–6922

15. Zhang, W., Matrisian, L. M., Holmbeck, K., Vick, C. C., and Chen, W. T. (1997) Transmembrane/cytosplasmic domain-mediated membrane type 1 matrix metalloprotease docking to invadopodia is required for cell invasion. *Proc. Natl. Acad. Sci. U.S.A.* 94, 7959–7964

16. Rozanov, D. V., Ghebrehiwet, B., Ratnikov, B., Monosov, E. Z., Deryugina, E. I., and Strongin, A. Y. (2002) The cytoplasmic tail peptide sequence of membrane type-1 matrix metalloproteinase (MT1-MMP) directly binds to gC1qR, a compartment-specific chaperone-like regulatory protein. *FEBS Lett.* 527, 51–57

17. Wang, X., Ma, D., Keski-Oja, J., and Pei, D. (2004) Co-recycling of MT1-MMP and MT3-MMP through the trans-Golgi network. Identification of DKK582 as a recycling signal. *J. Biol. Chem.* 279, 9331–9336

18. Remacle, A., Murphy, G., and Roghi, C. (2003) Membrane type-1 matrix metalloproteinase (MT1-MMP) is internalized by two different pathways and is recycled to the cell surface. *J. Cell Sci.* 116, 3905–3916

19. Gálvez, B. G., Matías-Román, S., Yáñez-Mó, M., Vicente-Manzanares, M., Sánchez-Madrid, F., and Arroyo, A. G. (2004) Caveolae are a novel path for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. *Mol. Biol. Cell* 15, 678–687

20. Wickramasinghe, R. D., Ko Ferrigno, P., and Roghi, C. (2010) Peptidase adaptomers as new tools to modulate clathrin-mediated internalization—inhibition of MT1-MMP internalization. *BMC Cell Biol.* 11, 58

21. Stricker, N. L., Christopherson, K. S., Yi, B. A., Schatz, P. J., Raab, R. W., Dawes, G., Bassett, D. E., Jr., Bredt, D. S., and Li, M. (1997) PDZ domain of neuronal nitric oxide synthase recognizes novel C-terminal peptide sequences. *Nat. Biotechnol.* 15, 336–342

22. Anilkumar, N., Uekita, T., Couchman, J. R., Nagase, H., Seiki, M., and Itoh, Y. (2005) Palmitoylation at Cys 574 is essential for MT1-MMP to promote cell migration. *FASEB J.* 19, 1326–1328

23. Nyalendo, C., Beaulieu, E., Sartelet, H., Michaud, M., Fontaine, N., Ginras, D., and Béliveau, R. (2007) Src-dependent phosphorylation of membrane type I matrix metalloproteinase on cytoplasmic tyrosine 573: Role in endothelial and tumor cell migration. *J. Biol. Chem.* 282, 15690–15699

24. Nyalendo, C., Beaulieu, E., Sartelet, H., Michaud, M., Fontaine, N., Ginras, D., and Béliveau, R. (2008) Impaired tyrosine phosphorylation of membrane type 1 matrix metalloproteinase reduces tumor cell proliferation in three-dimensional matrices and abrogates tumor growth in mice. *Carcinogenesis* 29, 1655–1664

25. Moss, N. M., Wu, Y. I., Liu, Y., Munshi, H. G., and Stack, M. S. (2009)
Modulation of the membrane type 1 matrix metalloproteinase cytosolic tail enhances tumor cell invasion and proliferation in three-dimensional collagen matrices. J. Biol. Chem. 284, 19791–19799

38. Atkinson, S. I., Roghi, C., and Murphy, G. (2006) MT1-MMP hemopexin domain exchange with MT4-MMP blocks enzyme maturation and trafficking to the plasma membrane in MCF7 cells. Biochem. J. 398, 15–22

39. Labrecque, L., Nylandeo, C., Langlois, S., Durocher, Y., Roghi, C., Murphy, G., Gingras, D., and Béliveau, R. (2004) Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J. Biol. Chem. 279, 52132–52140

40. Sounni, N. E., Roghi, C., Chabottaux, V., Janssen, M., Munaut, C., Maquoi, E., Galvez, B. G., Gilles, C., Frankenke, F., Murphy, G., Foidart, J. M., and Noel, A. (2004) Up-regulation of vascular endothelial growth factor-A by active membrane-type 1 matrix metalloproteinase through activation of Src-tyrosine kinases. J. Biol. Chem. 279, 13564–13574

41. Eisenach, P. A., Roghi, C., Fogarasi, M., Murphy, G., and English, W. R. (2010) MT1-MMP regulates VEGF–A expression through a complex with VEGFR-2 and Src. J. Cell Sci. 123, 4182–4193

42. Wolf, K., Müller, R., Borgmann, S., Bröcker, E. B., and Friedl, P. (2003) Aneurin ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of functional diversity within the Nedd4 family by accessory and adaptor proteins.

43. Li, W., and Ye, Y. (2008) Polyubiquitin chains: Functions, structures, and mechanisms. Cell. Mol. Life Sci. 65, 2397–2406

44. Onishi, Y., Hirasaka, K., Ishihara, I., Oara, M., Goto, J., Ogawa, T., Suzue, N., Nakano, S., Furochi, H., Ishidoh, K., Kishi, K., and Nikawa, T. (2005) Identification of mono-ubiquitinated LDH-A in skeletal muscle cells exposed to oxidative stress. Biochem. Biophys. Res. Commun. 336, 799–806

45. Cao, C., Li, Y., Leng, Y., Li, P., Ma, Q., and Kufe, D. (2005) Ubiquitination and degradation of the Arg tyrosine kinase is regulated by oxidative stress. Oncogene 24, 2433–2440

46. van der Horst, A., de Vries-Smits, A. M., Benkman, A. B., van Triest, M. H., van den Broek, N., Colland, F., Maurice, M. M., and Burgering, B. M. (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP.

47. Hunter, T. (2007) The age of cross-talk: Phosphorylation, ubiquitination, and beyond. Mol. Cell 28, 730–738

48. Moss, N. M., Barbolina, M. V., Liu, Y., Sun, L., Munshi, H. G., and Stack, M. S. (2009) Ovarian cancer cell detachment and multicellular aggregate formation are regulated by membrane type 1 matrix metalloproteinase: A potential role in I.P. metastatic dissemination. Cancer Res. 69, 7121–7129

49. Tomari, T., Koshikawa, N., Uematsu, T., Shinkawa, T., Hoshino, D., Egawa, N., Isobe, T., and Seiki, M. (2009) High throughput analysis of proteins associating with a proinvasive MT1-MMP in human malignant melanoma A375 cells. Cancer Sci. 100, 1284–1290

50. Sigismund, S., Polo, S., and Di Fiore, P. P. (2004) Signaling through monoubiquitination. Curr. Top Microbiol. Immunol. 286, 149–185

51. Pickart, C. M. (2001) Mechanisms underlying ubiquitination. Ann. Rev. Biochem. 70, 503–533

52. An, W. G., Hwang, S. G., Trepel, J. B., and Blagosklonny, M. V. (2000) Protease inhibitor-induced apoptosis: Accumulation of wt p53, p21WAF1/CIP1, and induction of apoptosis are independent markers of proteasome inhibition. Leukemia 14, 1276–1283

53. Hotary, K., Allen, E., Punturieri, A., Yana, I., and Weiss, S. J. (2000) Regulation of cell invasion and morphogenesis in a three-dimensional type I collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3. J. Cell Biol. 149, 1309–1323

54. Sabeh, F., Ota, I., Holmbeck, K., Birkedal-Hansen, H., Soloway, P., Balbin, M., Lopez-Otin, C., Shapiro, S., Inada, M., Krane, S., Allen, E., Chung, D., and Weiss, S. J. (2004) Tumor cell traffic through the extracellular matrix is controlled by the membrane-anchored collagenase MT1-MMP. J. Cell Biol. 167, 769–781

55. Rozanov, D. V., Deryugina, E. I., Ratnikov, B. I., Monosov, E. Z., Marchenko, G. N., Quiigley, J. P., and Strongin, A. Y. (2001) Mutation analysis of membrane type-1 matrix metalloproteinase (MT1-MMP). The role of the cytosplasmic tail Cys574, the active site Glu240, and furin cleavage motifs in oligomerization, processing, and self-proteolysis of MT1-MMP expressed in breast carcinoma cells. J. Biol. Chem. 276, 25705–25714

56. Gingras, D., Bousquet-Gagnon, N., Langlois, S., Lachambre, M. P., Anabi, B., and Béliveau, R. (2001) Activation of the extracellular signal-regulated protein kinase (ERK) cascade by membrane-type-1 matrix metalloproteinase (MT1-MMP). FEBS Lett. 507, 231–236

57. Langlois, S., Gingras, D., and Béliveau, R. (2004) Membrane type 1-matrix metalloproteinase (MT1-MMP) cooperates with sphingosine 1-phosphate to induce endothelial cell migration and morphogenic differentiation. Blood 103, 3020–3028

58. Giasson, B. I., and Lee, V. M. (2003) Are ubiquitination pathways central to Parkinson disease? Cell 114, 1–8

59. Bhjo, V. G., and Chen, Z. J. (2009) Ubiquitylation in innate and adaptive immunity. Nature 458, 430–437

60. Chen, Z. J., and Sun, L. J. (2009) Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 33, 275–286

61. Hoeller, D., and Dikic, I. (2009) Targeting the ubiquitin system in cancer therapy. Nature 458, 438–444

62. Raiborg, C., and Stenmark, H. (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458, 445–452

63. Wang, P., Wang, X., and Pei, D. (2004) Mint-3 regulates the retrieval of the internalized membrane-type matrix metalloproteinase, MT5-MMP, to the plasma membrane by binding to its carboxyl end motif EWW. J. Biol. Chem. 279, 20461–20470

64. Bravo-Cordero, J. L., Marrero-Diaz, R., Megias, D., Genis, L., Garcia-Grande, A., Garcia, M. A., Arroyo, A. G., and Montoya, M. C. (2007) EMBO J. 26, 1499–1510

65. Pettet, G. J., Please, C. P., Tindall, M. J., and McElwain, D. L. (2001) The migration of cells in multicell tumor spheroids. Bull Math Biol. 63, 231–257

66. Aoh, Q. L., Castle, A. M., Hubbard, C. H., Katsumata, O., and Castle, J. D. (2009) SCAMP3 negatively regulates epidermal growth factor receptor degradation and promotes receptor recycling. Mol. Biol. Cell 20, 1816–1832

67. Castle, A., and Castle, D. (2005) Ubiquitously expressed secretory carrier membrane proteins (SCAMPs) 1–4 mark different pathways and exhibit limited constitutive trafficking to and from the cell surface. J. Cell Sci. 118, 3769–3780

68. Shearwin-Whyatt, L., Dalton, H. E., Foot, N., and Kumar, S. (2006) Regulation of functional diversity within the Nedd4 family by accessory and adaptor proteins. Bioessays 28, 617–628

69. Katz, M., Sttigeman, K., Tal-Or, P., Yakir, L., Mossesson, Y., Harari, D., Machluf, Y., Asao, H., Jovin, T., Sugamura, K., and Yarden, Y. (2002) Ligand-independent degradation of epidermal growth factor receptor involves receptor ubiquitylation and Hgs, an adaptor whose ubiquitin-interacting motif targets ubiquitylation by Nedd4. Traffic 3, 740–751

70. Murdaca, J., Treins, C., Montthoué-Kartmann, M. N., Pontier-Bres, R., Kumar, S., Van Obbergen, E., and Giorgetti-Peraldì, S. (2004) Grb10 prevents Nedd4-mediated vascular endothelial growth factor receptor-2 degradation. J. Biol. Chem. 279, 26754–26761

71. Usami, Y., Popov, S., Popova, E., Inoue, M., Weissennhorn, W., and Götlinger, H. (2009) The ESCRT pathway and HIV-1 budding. Biochem. Soc. Trans. 37, 181–184

72. Helliewell, S. B., Losko, S., and Kaiser, C. A. (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J. Cell Biol. 153, 649–662