Activation of metabotropic glutamate receptor 1 regulates hippocampal CA1 region excitability in rats with status epilepticus by suppressing the HCN1 channel

Xiao-Dan Luo1, Tao Xiang2, Si-Jun Li1, Mei-Gang Ma1, Mei-Ling Chen1, Yuan Wu1, *

https://doi.org/10.4103/1673-5374.350206

Date of submission: December 24, 2021
Date of decision: April 15, 2022
Date of acceptance: May 10, 2022
Date of web publication: August 2, 2022

Abstract

Dysregulation of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels alters neuronal excitability. However, the role of HCN channels in status epilepticus is not fully understood. In this study, we established rat models of pentylenetetrazole-induced status epilepticus. We performed western blot assays and immunofluorescence staining. Our results showed that HCN1 channel protein expression, particularly HCN1 surface protein, was significantly decreased in the hippocampal CA1 region, whereas the expression of HCN2 channel protein was unchanged. Moreover, metabotropic glutamate receptor 1 (mGluR1) protein expression was increased after status epilepticus. The mGluR1 agonist (RS)-3,5-dihydroxyphenylglycine injected intracerebroventricularly increased the sensitivity and severity of pentylenetetrazole-induced status epilepticus, whereas application of the mGluR1 antagonist (+)-2-methyl-4-carboxyphenylglycine (LY367385) alleviated the severity of pentylenetetrazole-induced status epilepticus. The results from double immunofluorescence labeling revealed that mGluR1 and HCN1 were co-localized in the CA1 region. Subsequently, a protein kinase A inhibitor (H89) administered intraperitoneally successfully reversed HCN1 channel inhibition, thereby suppressing the severity and prolonging the latency of pentylenetetrazole-induced status epilepticus. Furthermore, H89 reduced the level of mGluR1, downregulated cyclic adenosine monophosphate (cAMP)/protein kinase A expression, significantly increased tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) (1a-4) expression, and restored TRIP8b (1b-2) levels. TRIP8b (1a-4) and TRIP8b (1b-2) are subunits of Rab8b interacting protein that regulate HCN1 surface protein.

Key Words: (RS)-3,5-dihydroxyphenylglycine; CA1 region; excitability; H89; HCN1 channel; LY367385; mGluR1; pentylenetetrazole; status epilepticus

Introduction

Status epilepticus (SE), which refers to repeated epileptic attacks that include unconscious intermissions or seizures sustained for more than 30 minutes (Weber et al., 2017), is a life-threatening emergency with a high mortality rate (Rosenow et al., 2007). SE causes brain damage through a series of cellular and molecular changes that eventually trigger spontaneous seizures (Postnikova et al., 2019; Liu et al., 2021); however, the exact pathogenesis of this disease remains unknown. Previous studies have revealed significant alterations in the function and expression of voltage-gated ion channels during SE. For example, Na+, K+, and Ca2+ voltage-gated channels become dysfunctional during the pathogenesis of epilepsy (Depienne et al., 2009; Poools and Johnston, 2012; Butler et al., 2018; Achar and Ghosh, 2021; Kinoshita and Koyama, 2021). Additional evidence has demonstrated the potential involvement of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels in epileptogenesis (Bonzanni et al., 2018; Lin et al., 2020). Specifically, HCN channels are voltage-gated ion channels highly expressed in the brain and associated with the onset of seizures (Jung et al., 2011). Results from animal experiments have revealed that HCN1 channel are strongly expressed in the hippocampus, superior colliculus, and cerebral cortex (Endo et al., 2008). HCN2 is extensively expressed in the brain cortex, whereas those for HCN3 mainly concentrated in the hypothalamus and HCN4 concentrated in thalamus (Notomi and Shigemoto, 2004).

Changes in HCN channels during SE have also been documented. For example, Powell et al. (2008) found that HCN channels were downregulated in the hippocampus in kainic acid (KA)-induced SE. Another study showed that HCN1 channel immunoreactivity was elevated in hippocampal pyramidal cell layers in a pilocarpine-induced SE model from 30 minutes to 12 hours after disease onset, whereas HCN2 immunoreactivity was suppressed in the dentate gyrus region (Oh et al., 2012). Results from a pilocarpine model revealed a reduction in HCN1 channel, whereas HCN2 channel remained unchanged (Santoro et al., 2010). Currently, there is limited information on HCN channels alterations during the early stages of SE. SE induced by KA and pilocarpine caused extensive neuronal death in the hippocampus at early stages (Curia et al., 2008; Richichi et al., 2008). However, in the early stages,
seizures developed separately from neuronal death (Zhvania et al., 2015). Notably, pentyleneetetrazole (PTZ)-induced SE recovered without spontaneous recurrence (Postnikova et al., 2019) and early neuronal death (Vasilev et al., 2018). Therefore, this model may be more suitable for studying the mechanism during the early stages of epilepsy (Zhvania et al., 2015).

Previous studies have shown that glutamate systems play an important role in the initiation and termination of SE (Devinsky et al., 2013; Furness et al., 2019; Green et al., 2021). Functionally, glutamate is released into synaptic gaps under physiological conditions and binds to glutamate receptors, leading to the propagation of motor potentials (Guo et al., 2010). Numerous studies have shown that metabolic glutamate receptors (mGLURs) are involved in the induction and maintenance of epilepsy (Ribeiro et al., 2010; Ghasemi et al., 2021). Particularly, the activation of group I mGLURs was found to increase epileptic activity (Keele et al., 1999), whereas exposure to group I mGLUR antagonists alleviated epileptic seizures, suggesting that group I mGLURs may be potential targets for antiepileptic therapy (Chapman et al., 1999; Shannon et al., 2005; Celii et al., 2019). mGLUR1 and mGLUR5 are two subtypes of group I mGLURs (Wieronska and Pilc, 2009). A previous study found that overexpressing mGLUR1-enhanced green fluorescence protein in mice significantly increased the frequency of pilocarpine-induced SE (Pitsch et al., 2007), and mGLUR1 upregulation was observed in epilepsy-associated focal cortical dysplasia (Aronica et al., 2003). Another study found that mGLUR1-positive cells were distributed throughout the hippocampal formation (Guo et al., 2010), suggesting that mGLUR1 may interact with HCN channels (Brager et al., 2012). mGLUR1 activation in a rat model of chronic sciatric nerve constriction injury contributed to neuronal hyperexcitability by inhibiting HCN channels in the anterior cingulate cortex (Gao et al., 2016). To date, the potential roles of HCN channels and the regulation of mGLUR1 and HCN channels in SE remain poorly understood.

Recent studies have provided evidence that tetrathioptepetide repeat-containing Rab8b-interacting protein (TRIPbb) is a regulatory subunit of HCN channels in the brain (Santoro et al., 2004; Lewis et al., 2009). In the hippocampus, TRIPbb is essential for maintaining the expression level and surface availability of HCN channels in the distal dendrites of pyramidal neurons (Lewis et al., 2011). Notably, TRIPbb (1a-4), TRIPbb (1a), and TRIPbb (1b-2) are the three predominantly expressed isoforms (Santoro et al., 2009). TRIPbb (1a-4) upregulates the surface expression of HCN1 (Santoro et al., 2009), whereas TRIPbb (1b-2) downregulates that of HCN1 and HCN2 (Santoro et al., 2004). Additional evidence has shown that TRIPbb interacts with the C-linker/cyclic nucleotide-binding domain (CNBD) of HCN1 channel (Han et al., 2011; Santoro et al., 2011). Because CNBD is also a binding site for cyclic adenosine monophosphate (cAMP), increased cAMP disrupts the interaction between TRIPbb and CNBD, thereby inhibiting the upregulation of HCN1 channel (Han et al., 2011). Previous studies have shown that mGLUR1 couples to Gs protein, thereby increasing the cAMP concentration in certain cultured cells (Tateyama and Kudo, 2006; Cordeiro Matos et al., 2015). Moreover, mGLUR1 is a long-term potentiation (LTP) activator (Markstein et al., 2016) through the protein kinase A (PKA) signaling pathway (Sugiyama et al., 2008). Given that the actual role of these regulators (mGLUR1, TRIPbb, CAMP, and PKA) in SE is currently unclear, we applied a widely used rat model of PTZ-induced SE to study HCN channels and elucidate the underlying molecular mechanisms in the hippocampal CA1 region during the early stages of SE development.

Methods

Animals

Because estrogen is a protective factor for epilepsy (Iacobas et al., 2018), adult male Sprague-Dawley rats (aged 2–3 months) with a body weight of 220–250 g were purchased from the Experimental Animal Center, Guangxi Medical University, Nanning, China (Experiment project license No. SCXK (Gui) 2020-0003). The rats were habituated to standard conditions of 22 ± 2°C, 55 ± 5% humidity, and lighting conditions (a 12-hour light/dark schedule with lights on at 8:00 a.m.) for 7 days. All rats lived in clean cages and were allowed free access to food and water. The experiments were carried out between 9:00 a.m. and 5:00 p.m. All procedures were conducted in accordance with the National Institutes of Health guide for the Care and Use of Laboratory Animals (8th edition) (Ni et al., 2021). The experiments were approved by the Review Committee for the Care and Use of Laboratory Animals of Guangxi Medical University (experiment project license No. 202101010, approval date January 5, 2021). A minimum sample size of animals was calculated according to the results of preliminary experiments. All efforts were made to minimize the pain and suffering of animals. The rats were anesthetized with 3% sodium pentobarbital by intraperitoneal injection (30 mg/kg, P3761, Sigma-Aldrich) before decapitation.

Experimental design

Our study consisted of three experiments. The experimental design is shown in Figure 1.

Experiment 1

Ninety-six rats were randomly divided into a control group and 30 minutes, 60 minutes, 1 day, 2 days, and 7 days post-SE onset groups (n = 16/group). Rats in the first experimentally injected with 5S mGLUR1 (P6500, Sigma-Aldrich, St. Louis, MO, USA; dissolved in normal saline (NS), followed by 10 mg/kg every 5 minutes until SE occurred (Wang et al., 2017). This method reliably achieved a controllable intensity and sufficient duration of SE (approximately 30–40 minutes). In the control group, rats were intraperitoneally injected with an equal volume (1.5–2 mL) of NS.

Using a modified Racine’s scale (Racine, 1972; Lüttjohann et al., 2009) to evaluate seizure phenotypes and stages, only rats with stage 4 and above were selected for this study. Seizure phenotypes and stages were determined as follows: stage 1, chewing or facial movement; stage 2, nod regularly; stage 3, unilateral or bilateral forelimb clonus; stage 4, bilateral limb clonus and rearing; and stage 5, generalized convulsions, falling, and rearing.

Experiment 2

For part I, 48 rats were assigned to sham, (RS)-3,5-dihydroxyphenylglycine (DHPG), and (+)-2-methyl-4-carboxyphenylglycine (LY367385) groups (n = 16/group). DHPG (an agonist of group I mGLUR; single dose of 500 nmol/10 μL; HY-12598, MCE, Monmouth Junction, NJ, USA) (Ngomba et al., 2011) and LY367385 (a selective agonist for mGLUR1; single dose of 320 nmol/10 μL; HY-107515, MCE) (Chapman et al., 1999) dissolved in NS were injected into the right lateral ventricle [1.5–2.0 mm lateral to the bregma, 0.8–1.0 mm posterior to bregma, 3.5–4.0 mm ventral to the dura (Ni et al., 2020)] for 10 minutes using a 10-μL microsyringe (Gaoge, Shanghai, China) (Ni et al., 2020). In the control group, rats were intracerebroventricularly injected with 10 μL NS. Five days after recovery (Ni et al., 2020), spontaneous seizures were observed. Thereafter, rats were deeply anesthetized to collect brain samples.

For part II, a mGLUR1 agonist and mGLUR1 antagonist were intracerebroventricularly injected to observe the effects of these drugs on excitability in PTZ-induced SE. Briefly, 68 rats were assigned to NS (n = 8), NS + PTZ (n = 20), DHPG + PTZ (n = 20), and LY367385 + PTZ (n = 20) groups. In part II, 10 μL of NS, DHPG, or LY367385 were intracerebroventricularly injected, and the rats were intraperitoneally administered PTZ as described in experiment 1 to induce SE. The behaviors of rats were observed, including the jerks latency, seizure scores (Racine’s scale), number of rats with SE, mortality after SE, the jerks latency, seizure scores (Racine’s scale), number of rats with SE, mortality after SE, the jerks latency, seizure scores (Racine’s scale), number of rats with SE, mortality after SE, the jerks latency, seizure scores (Racine’s scale), number of rats with SE, mortality after SE, the jerks latency, seizure scores (Racine’s scale), number of rats with SE, mortality after SE, and mortality after SE. The jerks latency is the time from when PTZ (55 mg/kg) was first injected intraperitoneally to the induction of partial or generalized seizures (Zaitsev et al., 2015). At 24 hours post-SE induction, rats were deeply anesthetized to collect brain tissues.

Experiment 3

Sixty-four rats were divided into NS, H89, NS + PTZ, and H89 + PTZ groups (n = 16/group). All rats were intraperitoneally injected with NS (1.5–2.0 mL) and H89 (20 mg/kg, a PKA inhibitor; dissolved in NS (Hosseini-Zare et al., 2011), 0.2 mg/100 g, HY-15979A, MCE). Rats in NS + PTZ or H89 + PTZ groups were intraperitoneally administered NS (1.5–2.0 mL) or H89 30 minutes before PTZ injection.
To investigate changes in the fluorescence intensity of HCN1 after SE, HCN1 immunofluorescence was performed. The slices were incubated with 10% goat serum (CO265, Beyotime) for 1 hour, followed by mouse anti-HCN1 primary antibody (1:200, Abcam, Cambridge, UK, Cat# ab48846; RRID: AB_2151171) at 4°C overnight. They were washed with phosphate-buffered saline (PBS, 0.12 M, pH 7.4) and incubated with goat anti-rabbit IgG H&L horseredish peroxidase was used as the secondary antibody. The slides were boiled in sodium citrate buffer for 20 minutes to achieve antigen retrieval and then incubated with 3% hydrogen peroxide (180303, South Land Pharmaceutical, Guangdong, China) for 20 minutes and 5% bovine serum albumin (STO23, Beyotime, Shanghai, China) for 1 hour. The slices were incubated with a mixture of anti-rabbit antibody (1:200, Servicebio, Cat# GB23303) at 4°C for 1 hour. Subsequently, the slices were washed with 2-(4-amidinophenyl)-6-indolecarbamidine dihydrochloride (C1005, Beyotime).

For double immunofluorescence labeling of HCN1/mGlur1, the slices were incubated with a mixture of anti-HCN1 (mouse, monoclonal antibody, 1:200, Abcam, Cat# ab48846; RRID: AB_2151171) and anti-mGlur1 (rabbit, polyclonal antibody, 1:200, Abcam, Cat# ab82211) overnight at 4°C (Gao et al., 2016). Next, they were incubated with fluorescein isothiocyanate-conjugated goat anti-rabbit IgG (H+L) (1:200, Proteintech Group, Cat# SA00003-2; RRID: AB_2890897) and Cy3-conjugated goat anti-rat IgG (1:200; Servicebio, Cat# GB23305) for 2 hours. Counterstaining with 4-(aminomethyl)-5-indolecarbamidine dihydrochloride (C1005, Beyotime), photographed, and then analyzed using the Olympus Microscope System (Olympus, Tokyo, Japan). The number of NeuN-positive cells was calculated by ImageJ software (version 1.59f1, National Institutes of Health, Bethesda, MD, USA) (Schneider et al., 2012).

Western blot assay

Brains were rapidly harvested from anesthetized rats and submerged in ice-cold PBS. The division of three regions of the hippocampus using a dissecting microscope (Li et al., 2014) is shown in Figure 2A. Tissues of the hippocampal CA1 region were stored in an ultra-low temperature refrigerator at –80°C. Radio immunoprecipitation assay buffer (R0010, Solarbio, Beijing, China) was used to extract membrane proteins. Primary antibodies included mouse anti-HCN1 (1:1000, Abcam, Cat# ab48846; RRID: AB_2151171) overnight at 4°C (Gao et al., 2016). Next, they were incubated with fluorescein isothiocyanate-conjugated goat anti-rabbit IgG (H+L) (1:200, Proteintech Group, Cat# SA00003-2; RRID: AB_2890897) and Cy3-conjugated goat anti-rat IgG (1:200; Servicebio, Cat# GB23305) for 2 hours. Counterstaining with 4-(aminomethyl)-5-indolecarbamidine dihydrochloride (C1005, Beyotime), photographed, and then analyzed using the Olympus Microscope System. Immunofluorescence intensity was calculated by ImageJ software using the following formula: average fluorescence intensity = total fluorescence intensity/area (Lin et al., 2020).

Results

Time course expression of HCN channels after PTZ-induced SE

We monitored the progression of epileptic seizures after PTZ treatment, and seizures were not observed in the control group. We classified experimental rats into PTZ-induced SE cohort displayed a mortality rate of 14% (11/80). HCN channels consist of four subunits (HCN1–4) (Berrera et al., 2006), among which, HCN1 and HCN2 represent the major subunits in the brain (Brewster et al., 2005). Here, we analyzed the expression of HCN1 and HCN2 proteins in the hippocampal CA1 region over time after SE using western blot assays. The results showed that HCN1 total protein was significantly downregulated at 1 day post-SE and was lower than in the control group (P < 0.01; Figure 2B). There was no significant change in HCN2 total protein expression in CA1 regions between different time points (P > 0.05; Figure 2C). These results were consistent with the findings of a previous study by Brennan et al. (2016). Immunofluorescence staining results revealed a significant decrease in HCN1 intensity at 1 day post-SE compared with that in the control group (P < 0.01; Figure 2D and E). Collectively, these results suggest that HCN1 may play a crucial role in the mechanism underlying the pathophysiology of early-stage SE. Therefore, we further determined the change in HCN1 surface expression. The expression of HCN1 surface expression in CA1 are shown in Figure 2F. HCN1 surface expression rapidly decreased at 60 minutes post-SE (P < 0.01) compared with that in the control group, decreased to the lowest point at 1 day post-SE (P < 0.001), and then slightly but significantly recovered at 2 days post-SE (P < 0.05). HCN1 surface expression was decreased at 1 day post-SE compared with that in the SE 60 minutes group (P < 0.01; Figure 2F). The ratio of HCN1 S/T was approximately 44.2 ± 3.2% in the control group (Figure 2G). Notably, this ratio decreased at 60 minutes (P < 0.05; Figure 2G) and was the lowest at 1 day post-SE (P < 0.001; Figure 2G) compared with that in the control group. Consistent with HCN1 surface expression, the HCN1 S/T ratio was also decreased at 1 day post-SE compared with that in the SE 60 minutes group (P < 0.05; Figure 2G). Western blot analysis of surface protein extracts demonstrated no reactivity with anti-β-tubulin antibodies, indicating no specific distribution of cytoskeletal interactions (Figure 3A). These results demonstrated the downregulation of total and surface HCN1 protein expression post-SE. However, HCN1 surface protein was downregulated at 60 minutes post-SE, earlier than HCN1 total protein. Moreover, the S/T ratio was lowest at 1 day post-SE.

PTZ-induced SE does not cause neuronal death in the hippocampal CA1 region

A previous study showed that SE may cause neuronal death and subsequent neuronal deficits that are associated with the suppression of HCN channels (Lin et al., 2020). In fact, the suppression of NeuN-positive neurons indicates the loss of neurons (Mullen et al., 1992; Vaseline et al., 2013). To explore whether PTZ-induced SE causes neuronal death or loss, we performed NeuN immunohistochemical staining of hippocampal sections followed by western blot assays. The results revealed the abundance of NeuN-positive neurons in the CA1 region of the hippocampus, with no statistically significant difference between the control and post-SE groups (P > 0.05; Figure 3A and B). Similarly, we found no significant changes in NeuN protein expression between control and post-SE groups (P > 0.05; Figure 3C and D). Taken together, these results indicated...
that PTZ-induced SE does not induce early neuronal loss in the hippocampal CA1 region, and suppression of the HCN1 channel post-SE is not caused by changes in the number of neurons.

SE upregulates mGluR1 in the hippocampal CA1 region

Glutamatergic neurotransmission is considered an underlying factor of epilepsy (Guo et al., 2010), and endogenous glutamate is elevated after SE (Kanda et al., 1996). Most endogenous glutamate produced during epilepsy is released from astrocytes and transporters (EAATs) and receptors (Guo et al., 2010). Notably, EAAT2 has been reported to be responsible for up to 90% of the total glutamate uptake (Tanaka et al., 1997), with the upregulation of EAAT2 protein shown to be a marker of increased glutamate concentrations (Vasilev et al., 2018). The results of experiment 1 showed that EAAT2 protein was significantly upregulated post-SE, specifically at 60 minutes (P < 0.01), 1 day (P < 0.01), and 2 days (P < 0.05), and the degree of upregulation was higher than that in the control group (Figure 4A and B). Previous studies have shown that excess extracellular glutamate increases the risk factor for epilepsy and excitotoxicity (Sattar and Cordeiro, 2006; Seki and Lipton, 2008). In addition, evidence indicates an increase in glutamate binding to elevated group I mGluRs (mGluR1 and mGluR5) (Schroeder et al., 1999). In this study, we focused on mGluR1 expression owing to its occurrence in the occurrence of epilepsy (Aronica et al., 2003). Our results showed that mGluR1 protein was significantly upregulated in the hippocampal CA1 region at 60 minutes post-SE (P < 0.05) and increased to the highest level at 1 day (P < 0.01) post-SE, followed by returning to control levels at 2 days (P > 0.05; Figure 4A and C).

mGluR1 and HCN1 are co-localized in the hippocampal CA1 region

The above results revealed upregulated mGluR1 protein and downregulated HCN1 protein in the hippocampal CA1 region. The contrasting pattern of expression led us to hypothesize that the two proteins might be correlated. Previous studies have reported that HCN1 and mGluR1 are co-localized in the soma and apical dendrites of anterior cingulate cortex layer 5 pyramidal neurons (Gao et al., 2016). Therefore, we applied double immunofluorescence labeling to analyze their localization in the hippocampal CA1 region in experiment 1. The results revealed that HCN1 and mGluR1 were co-localized in hippocampal CA1 pyramidal neurons (Figure 4D).

mGluR1 upregulates excitability in PTZ-induced SE by inhibiting HCN1 expression

Previous studies have shown that the activation of mGluR5 potentiates NMDA receptors by altering kindling and inducing entorhinal cortex plasticity (Brager and Johnston, 2007). The results of the present study revealed the upregulation of EAAT2, which subsequently activated mGluR1. Moreover, HCN1 channel protein was downregulated almost simultaneously, especially at 1 day post-SE. Double immunofluorescence labeling results in experiment 1 indicated that mGluR1 and HCN1 were co-localized in hippocampal CA1 pyramidal neurons. Thus, we hypothesized that increased glutamate after SE may activate mGluR1 expression, thereby inhibiting HCN1 channel to test this hypothesis, we evaluated the effect of mGluR1 agonist and antagonist on HCN1 channel. In part 1 of experiment 2, groups without PTZ administration showed no spontaneous epileptic seizures (Vasilev et al., 2018). The results from a previous study (Hosseini-Zare et al., 2011). Notably, DHPG treatment did not significantly elevate the cAMP concentration compared with control (Figure 6G and H). The detection results from a previous study revealed that the degree of HCN1 surface protein downregulation was greater in the DHPG + PTZ group than in the NS + PTZ group (P < 0.05; Figure 6E and F), although we found no significant difference in the S/T ratio between the two groups (P > 0.05; Figure 6I). In the LY367385 + PTZ group, HCN1 surface protein was significantly higher than that in NS + PTZ (P < 0.001) and NS (P < 0.01) groups (Figure 6I). A previous study showed that the activation of mGluR1 may stimulate adenylyl cyclase, which subsequently activates cAMP-dependent PKA (Schwartz, 1993). BPK is an upstream regulator of HCN1 protein (Shim et al., 2016), we investigated the effects of a mGluR1 agonist or antagonist on cAMP-PKA expression. The results showed significantly increased cAMP-PKA concentration in the mGluR1 agonist and antagonist (Figure 6J and K) and downregulated PKA protein upregulation (P < 0.01; Figure 6K) in the NS + PTZ group compared with those in the NS group. These results were consistent with findings from a previous study (Hosseini-Zare et al., 2011). Notably, DHPG treatment significantly elevated the cAMP concentration compared with control (Figure 6G and H). The detection results from a previous study suggested that PTZ-induced SE does not induce early neuronal loss in the hippocampal CA1 region (Vasilev et al., 2018). The results of experiment 1 showed that PTZ-induced SE significantly increased glutamate binding to elevated group I mGluRs (mGluR1 and mGluR5) and upregulated PKA protein (P < 0.01; Figure 6K) in the DHPG + PTZ group compared with those in the NS + PTZ group. LY367385 treatment decreased the cAMP concentration (P < 0.001, Figure 6I) and downregulated PKA protein expression (P < 0.001; Figure 6J) as compared with those in the NS + PTZ group. These results suggest that mGluR1 activation increases intracellular cAMP-PKA expression and downregulates HCN1 expression.

cAMP-PKA regulates mGluR1 on HCN1 channel after SE

We explored the intracellular signaling pathway between mGluR1 activation and HCN1 downregulation after SE. The results from experiment 2 revealed that SE activated mGluR1, increased cAMP-PKA, and downregulated HCN1 protein expression. The cAMP-PKA signaling pathway is a possible intracellular regulator of mGluR1 activation and HCN1 downregulation in SE. The results from experiment 3 showed that rats treated with H89 exhibited significantly longer jerks latency (P < 0.001; Figure 7A), significantly lower seizure stages (P < 0.05; Figure 7B) compared with those in the NS + PTZ group. Only 50% rats developed SE (Figure 7C), and none of them died (Figure 7D). Western blot assays revealed significant downregulation of mGluR1 in the H89 + PTZ group compared with those in the NS + PTZ group and compared with the NS group (P > 0.05; Figure 7E) and Rats. In the PTZ + H89 group significantly higher HCN1 total protein than that in the NS + PTZ group (P < 0.01; Figure 7E and G) but not the NS group (P > 0.05; Figure 7E and G). cAMP-PKA protein was significantly downregulated in the PTZ + H89 group compared with those in the NS + PTZ group (P < 0.05) but not the NS group (P > 0.05; Figure 7E and H). We found no significant changes in the expression of mGluR1, HCN1 total protein, and PKA in the H89 group. HCN channels are modulated through the binding of cAMP to their CB52 (Saponaro et al., 2018). In addition, HCN channels are regulated by the auxiliary protein TRIP8b, which modulates trafficking and gating (Zolles et al., 2009). Moreover, TRIP8b is essential for maintaining the surface availability and expression levels of HCN1 channels (Levchenko et al., 2011). To further explore the correlation between mGluR1 and HCN1 channel function in SE, we detected the expression patterns of HCN1 surface protein and TRIP8b subunits (1a-4 and 1b-2) in the cAMP-PKA signaling pathway. The findings revealed that HCN1 surface protein expression was significantly upregulated in the H89 + PTZ group compared with that in the NS + PTZ group (P < 0.01; Figure 7I and J). HCN1 surface protein was significantly upregulated in the H89 + PTZ group compared with that in the NS + PTZ group (P < 0.01; Figure 7I and J). Moreover, HCN1 surface protein was significantly upregulated in the H89 + PTZ group compared with that in the NS + PTZ group (P < 0.01; Figure 7I and J). And a significant difference in the S/T ratio in the H89 group (P < 0.001; Figure 7I and J). Moreover, TRIP8b (1a-4) protein was significantly downregulated (P < 0.01; Figure 7I and L) whereas TRIP8b (1b-2) was significantly downregulated (P < 0.001) in the H89 + PTZ group compared with those in the NS + PTZ group (Figure 7I, K, and L). However, both were still significantly lower than that in the PTZ group as is the case for post-SE with PTZ injection (Figure 6G and H). The latency of seizures in the TRIP8b (1a-4) protein was significantly upregulated (P < 0.05), and TRIP8b (1b-2) remained unchanged (P > 0.05) compared with those in the NS group (Figure 7I, K, and L).
Protein expression of EAAT2 and mGluR1 in the hippocampal CA1 region after SE. **NeuN-positive cells and NeuN protein in the hippocampal CA1 region after SE.**

SE 30 min

Protein expression of HCN1 in the brain (Curia et al., 2008; Lüttjohann et al., 2009). Although several studies have shown that SE may induce changes in synaptic properties and intrinsic membrane characteristics (Beck and Yaari, 2008), neurogenesis (Pitkänen and Lukasiuk, 2009), the extracellular matrix (Smirnova et al., 2018), and axonal sprouting and dendritic remodeling (Amakhin et al., 2017). However, data on HCN channels alterations during the early stage of SE remain limited. Findings from epileptic animal models have shown that the CA1 region of the hippocampus is one of the key areas regulating epilepsy in the brain (Curia et al., 2008; Lüttjohann et al., 2009). Although several factors have been implicated in SE development, we mainly focused on the role of HCN channels, which have been shown to mediate the I_h current (Bonzanni et al., 2018). There are two different mechanisms through which I_h affects the excitability of neurons. The I_h current can be deactivated by depolarization (Marcelin et al., 2009) and activated by hyperpolarization of the cell membrane, a phenomenon that endows the I_h current with unique and multiple functions to regulate neuronal excitability (Robinson and Siegelbaum, 2003). Notably, different brain regions and various cell types have distinct neuron excitabilities because of differences in the subcellular distribution of HCN channels (Santoro and Baram, 2003). Studies have shown that most HCN1 and HCN2 channels are distributed in the distal dendrites of hippocampal pyramidal neurons, where they regulate resting membrane potential (Ludwig et al., 2003; Santoro et al., 2010; Kozák, 2019).

Figure 2 | Protein expression of HCN1 and HCN2 in the CA1 region after SE. (A) Schematic diagram showing the three regions of the hippocampus. The analyzed areas of the hippocampus (CA1, CA3, and DG) are segmented by black lines. (B) Analysis of HCN1 levels in the hippocampal CA1 region after SE. The total protein level of HCN1 was downregulated at 1 day post-SE, as determined by western blot assays. (C) The total protein expression of HCN2 was not altered, as revealed by western blot analysis. (D) The immunofluorescence of HCN1 (red, Cy3, white arrow) in the hippocampal CA1 region. HCN1 fluorescence intensity was weakened at 1 day post-SE compared with that in the control group. Scale bars: 100 μm. (E) The total fluorescent intensity of HCN1 in the SE 1 day group was significantly decreased compared with that in the control group. (F) The surface protein expression of HCN1 by western blot analysis. HCN1 surface expression was decreased at SE 60 minutes and the lowest at 1 day post-SE. (G) The ratio of HCN1 surface/total protein (S/T). Data are presented as the mean ± SD (n = 4/group). *P < 0.05, **P < 0.01, ***P < 0.001, vs. control group; #P < 0.05, ##P < 0.01, ###P < 0.001, vs. SE 1 day group (one-way analysis of variance followed by the least significant difference test). ATP1A1: ATPase alpha 1 subunit; CA1: cornu ammonis 1; CA3: cornu ammonis 3; ctrl: control; DAPI: 2-(4-Amidinophenyl)-6-indolecarbamidine dihydrochloride; DG: dentate gyrus; HCN: hyperpolarized activated cyclic nucleotide-gated cation channels; SE: status epilepticus.

Figure 3 | NeuN-positive cells and NeuN protein in the hippocampal CA1 region after SE. (A) NeuN immunohistochemical staining (white arrow) in the hippocampal CA1 at different time points post-SE. NeuN-positive neurons (brown) exhibited no detectable cell loss. Scale bars: 50 μm. (B) The number of NeuN-positive cells in the hippocampal CA1 area. (C, D) Quantitative results of NeuN protein in the hippocampus using western blot analysis. Data are presented as the mean ± SD (n = 4/group) and were analyzed by one-way analysis of variance followed by the least significant difference post hoc test. CA1: Cornu ammonis 1; ctrl: control; HCN: hyperpolarized activated cyclic nucleotide-gated cation channels; NeuN: neuronal nuclei; SE: status epilepticus.

Figure 4 | Protein expression of EAAT2 and mGluR1 in the hippocampal CA1 region after SE. (A–C) EAAT2 and mGluR1 expression were upregulated in the hippocampal CA1 region after SE, as determined using western blot analysis. Data are presented as the mean ± SD (n = 4/group). *P < 0.05, **P < 0.01, vs. control group (one-way analysis of variance followed by the least significant difference test). (D) Immunofluorescence images showing HCN1 (red, Cy3, white arrow) and mGluR1 (green, FITC, white arrow) co-localization in the hippocampal CA1 area. Scale bar: 20 μm. EAAT2: excitatory amino acid transporter 2; HCN: hyperpolarized activated cyclic nucleotide-gated cation channels; mGluR1: metabotropic glutamate receptor 1; SE: status epilepticus.

Discussion

Previous studies have shown that SE may induce changes in synaptic properties and intrinsic membrane characteristics (Beck and Yaari, 2008), neurogenesis (Pitkänen and Lukasiuk, 2009), the extracellular matrix (Smirnova et al., 2018), and axonal sprouting and dendritic remodeling (Amakhin et al., 2017). However, data on HCN channel alterations during the early stage of SE remain limited. Findings from epileptic animal models have shown that the CA1 region of the hippocampus is one of the key areas regulating epilepsy in the brain (Curia et al., 2008; Lüttjohann et al., 2009). Although several factors have been implicated in SE development, we mainly focused on the role of HCN channels, which have been shown to mediate the I_h current (Bonzanni et al., 2018). There are two different mechanisms through which I_h affects the excitability of neurons. The I_h current can be deactivated by depolarization (Marcelin et al., 2009) and activated by hyperpolarization of the cell membrane, a phenomenon that endows the I_h current with unique and multiple functions to regulate neuronal excitability (Robinson and Siegelbaum, 2003). Notably, different brain regions and various cell types have distinct neuron excitabilities because of differences in the subcellular distribution of HCN channels (Santoro and Baram, 2003). Studies have shown that most HCN1 and HCN2 channels are distributed in the distal dendrites of hippocampal pyramidal neurons, where they regulate resting membrane potential (Ludwig et al., 2003; Santoro et al., 2010; Kozák, 2019).

598 | NEURAL REGENERATION RESEARCH | Vol 18 | No. 3 | March 2023
Western blot analysis and immunofluorescence staining showing HCN1 and mGluR1 protein expression after SE in the presence of DHPG or LY367385.

(A–C) HCN1 was decreased, but mGluR1 protein was significantly increased in the DHPG group. In the LY group, HCN1 increased slightly but not significantly, whereas mGluR1 was significantly decreased. (D–F) The mean fluorescence intensity of HCN1 (Cy3, red, white arrow) was decreased in the DHPG group. The mean fluorescence intensity of mGluR1 (green, FITC, white arrow) was increased in the DHPG group. In the LY group, the mean fluorescence intensity of HCN1 was unchanged, whereas that of mGluR1 was decreased. Scale bars: 20 μm. Data are presented as the mean ± SD (n = 4/group). *P < 0.05, **P < 0.01, ***P < 0.001, vs. NS group; #P < 0.05, ##P < 0.01, ###P < 0.001, vs. NS group (one-way analysis of variance followed by the least significant difference test). ctrl: Control; DHPG: (RS)-3,5-dihydroxyphenylglycine; HCN: hyperpolarized activated cyclic nucleotide-gated cation channels; i.c.v.: intracerebroventricular injection; LY: LY367385; (+)-2-methyl-4-carboxyphenylglycine; mGluR1: metabotropic glutamate receptor 1; NS: normal saline; PTZ: pentylenetetrazole; SE: status epilepticus.

Activation of mGluR1 inhibits HCN1 channel through the cAMP-PKA pathway, increasing the epilepsy sensitivity and severity of PTZ-induced SE.

(A) Graphs show the jerk latency (n = 20/group). (B) The average seizure score (n = 20/group). (C) Distribution of rats based on the number of SE. (D) Lethality (n = 20/group). (E–H) Western blot results showing the expression of total HCN1, mGluR1, and TRIP8b (1b-2) in the hippocampal CA1 region (n = 4/group). (I) The ratio of HCN1 surface/total protein (5/1). (J) The concentration of cAMP (n = 4/group). (K) Western blot results showing the expression of PKA (n = 4/group). Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, vs. NS group; #P < 0.05, ##P < 0.01, ###P < 0.001, vs. NS group + PTZ group (one-way analysis of variance followed by the least significant difference test). ATP1A1: ATPase alpha 1 subunit; CA1: cornu ammonis 1; cAMP: cyclic adenosine monophosphate; DHPG: (RS)-3,5-dihydroxyphenylglycine; HCN: hyperpolarized activated cyclic nucleotide-gated cation channels; i.c.v.: intracerebroventricular injection; LY: (+)-2-methyl-4-carboxyphenylglycine; mGluR1: metabotropic glutamate receptor 1; NS: normal saline; PKA: protein kinase A; PTZ: pentylenetetrazole; SE: status epilepticus.

H89 treatment decreases the severity of PTZ-induced SE.

(A) Graphs show the jerk latency (n = 16/group). (B) Average seizure score (n = 16/group). (C) Distribution of rats based on the number of SE. (D) Treatment with H89 did not cause death in rats following PTZ-induced seizures (n = 16/group). (E–H) Western blotting results showing the expression of total HCN1, mGluR1, and PKA. (I–L) Surface expression of HCN1, TRIP8b (1a-4), and TRIP8b (1b-2) in the hippocampal CA1 region (n = 4/group). Data are presented as the mean ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, vs. NS group; #P < 0.05, ##P < 0.01, ###P < 0.001, vs. NS group + PTZ group; SP < 0.05, ***P < 0.001, vs. NS + PTZ group; ***P < 0.001, vs. H89 + PTZ group (behavioral results: the comparison between two groups was performed using the Student’s test; others: one-way analysis of variance followed by the least significant difference test). CA1: Cornu ammonis 1; cAMP: cyclic adenosine monophosphate; H89: PKA inhibitor; HCN: hyperpolarized activated cyclic nucleotide-gated cation channels; mGluR1: metabotropic glutamate receptor 1; NS: normal saline; PKA: protein kinase A; PTZ: pentylenetetrazole; SE: status epilepticus.
The first research showing changes in HCN channels expression during epileptogenesis described febrile seizures, which chronically enhanced i, in CA3 pyramidal neurons and significantly slowed the activation and deactivation of HCN channels following febrile and KA-induced seizures revealed persistent loss of HCN1 mRNA and protein expression, as well as transient downregulation of HCN2 expression (Brewster et al., 2002, 2005). Moreover, Powell et al. (2008) revealed up-regulation of HCN channels in the CA1 region of the hippocampus and entorhinal cortex of a KA-induced model at 24 hours, 7 days, and 6 weeks after SE. Moreover, HCN1 mRNA was downregulated after a brief increase post-SE in the hippocampal CA3 region and dentate gyrus (Powell et al., 2008). Jung et al. (2011) found that pircarpine-induced SE models show extensive neuronal death in the early stage (Ye et al., 2020; Xiang et al., 2021). Recent studies on the ultrastructure of the CA1 region post-SE revealed that a mGluR1 antagonist was upregulated in instable atrophy, high alkaline, and the generation of high electron density (dark) cells but did not lead to neuronal cell death (Noam et al., 2010; Zaitsev et al., 2015; Zhvania et al., 2015). Our results were consistent with the previous findings that day 1 of normal changes in neurons are more intuitive.

The results of the present study indicated that HCN1 total protein was significantly downregulated in the hippocampal CA1 region of rats at 1 day post-SE. These findings from our study are consistent with the results of our previous studies. We found no changes in the expression of HCN2 protein; thus, we concluded that changes in HCN1 protein play a more important role in the pathogenesis of PTZ-induced SE. Previous studies have shown that the expression of HCN1 to cAMP is not as high as that of HCN2 (Moller et al., 2014). HCN1 responses faster to CAMP than HCN2 (Li et al., 2014). The activation of HCN2 channel is slower during the neonatal stage, but the rapid activation and CAMP expression of HCN1 channel occur preferentially in the CA1 region post-SE (Santoro et al., 2007). This suggests that the downregulation of HCN1 channel protein is more likely to cause neuronal excitability in the early stage of SE, similar to that in the immature brain (Lin et al., 2020).

Loss of the J current increases the intrinsic excitability of neurons and contributes to the occurrence of epilepsy (Ohrfelt-Johnsen et al., 2008), and expression levels of neuronal activity on cell membrane HCN channels (Santoro et al., 2010). In the present study, we detected changes in the expression of HCN1 surface proteins in the CA1 region after SE. Results from experiment 1 showed that, in the CA1 region of the control group, HCN1 protein expression on the cell surface accounted for approximately 42% of the total protein, which was less than the 75% previously reported by Jung et al. (2011). This difference may be related to the different collection methods of hippocampal CA1 specimens. We used the entire CA1 region brain tissue for protein extraction, whereas Jung et al. (2011) used electrophysiological hippocampal slices for the microdissection of the CA1 region. The brain tissue they collected may contain pure CA1 pyramidal neurons. In addition, HCN1 surface protein levels began to decrease at 60 minutes after SE, and the HCNI total protein was downregulated at 1 day post-SE, which may indicate that the rapid internalization of surface protein occurred at 60 minutes post-SE. The downregulation of HCN1 surface protein and reduction in the S/T ratio downregulated functional proteins on the cell membrane that reduced the intrinsic excitability of neurons (Jung et al., 2011; Lin et al., 2020). The S/T ratio was the lowest at 1 day post-SE, indicating marked membrane internalization (Mao and Wang, 2019). Our results on the intrinsic excitability of neurons are consistent with those of Jung et al. (2011), who found that the hippocampal neurons became more excitable and started firing at a reduced excitatory input because of a significant increase in Ri at 1 day post-SE in the PTZ-induced model using a patch clamp. PTZ treatment caused rapid SE development, which was spontaneously relieved. However, the detection of HCN1 surface protein and total protein in our study and the electrophysiological detection by Postnikova et al. (2019) showed that the downregulation of HCN1 surface protein was the highest day post-SE; however, there were no seizures at this time, neuronal excitability remained high. This phenomenon causes us to speculate whether it is necessary to administer treatment to reduce neuron excitability even though there were no seizures and the function of neurons was still functioning normally (Santoro et al., 2004). Our results revealed that the intrinsic excitability of neurons began to decrease after 1 day post-SE, which is consistent with the results of a study by Jung et al. (2011). Consequently, we speculated that SE rapidly induced the internalization of HCN1 surface protein, followed by its degradation at 1 day post-SE (Jung et al., 2011). Although HCN1 total protein had not recovered back to control levels at 2 days post-SE, the surface protein and S/T ratio were restored, suggesting that neuronal excitability recovered back to the baseline level. Our results in the present study also indicated that the downregulation of HCN1 occurred more rapidly in PTZ-induced SE rats. Therefore, elucidating the underlying mechanisms may provide relevant insight into the early processes of epilepsy development. The induction and maintenance of elevated neuronal excitability by mGluR1 over-activated cAMP-PKA, thereby strongly downregulating HCN1 expression on the cell membrane. The present results revealed the downregulation and upregulation of TRIPb (1a–4) and TRIPb (1b–2) proteins, respectively, in the hippocampal CA1 region of rats in the NS + PTZ group. The reduction in TRIPb (1a–4) levels weakened the inhibition of surface HCN1 channel trafficking to the plasma membrane, whereas the upregulation of TRIPb (1b–2) promoted excitability. A previous study showed that TRIPb (1b–2) induces the near-complete internalization of HCN1 channel proteins (Santoro et al., 2004). Our results revealed that TRIPb (1b–2) was significantly upregulated after SE in the NS + PTZ group, but HCN1 surface protein did not completely disappear. In the H89 + PTZ group, H89 inhibited PKA protein, upregulated TRIPb (1a–4) expression, and partly restored TRIPb (1b–2) protein levels. TRIPb (1b–2) was still highly expressed, but HCN1 surface protein was downregulated. These phenomena might be attributed to the inhibition of TRIPb (1b–2) for approximately 10–15% of total TRIPb mRNAs in the brain (Santoro et al., 2004). Because TRIPb (1a–4) is the most abundant TRIPb subunit, it may play an important role in regulating HCN1 surface protein. A previous study revealed that other TRIPb subunits (TRIPb (1a–4) and TRIPb (1b–2)) also regulate HCN1 surface protein (Li et al., 2014). Therefore, the trafficking of HCN1 surface protein might be attributed to a combination of all TRIPb subunits, especially TRIPb (1a–4).

Although this study did not measure neurotransmitter changes using an electrophysiological method, the present study also revealed that the activation of mGluR1 after SE may show a more similar pattern of expression to mGluR1 in PTZ-induced SE. Thus, the changes in HCN channels in this model can be observed more intuitively.
upregulated mGlur1 expression, and subsequently activates the CAMP-PKA signaling pathway. Consequently, TRPPb8 (1a-4) and TRIPb8 (1b-2) proteins are downregulated and upregulated, respectively, thereby reducing the surface expression of HCN1 and increasing neuronal excitability.

Author contributions: Study conception and design: YW, XDL, TX; administrative support: XDL, TX, MGM; materials provision: XDL, TX; data collection and assembly: XDL, SII; data analysis and interpretation: YW, MLC; manuscript writing: XDL. All authors contributed to manuscript revision, read and approved the final version of the manuscript.

Conflicts of interest: The authors declare no competing financial interests.

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Open peer reviewer: Mohd Salman, The University of Tennessee Health Science Center, USA.

Additional file: Open peer review report 1.

References

Achar A, Ghosh C (2021) Multiple hurdle mechanism and blood-brain barrier in epilepsy: glucocorticoid receptor-heat shock proteins on drug regulation. Neural Regen Res 16:2427-2428.

Akbar MT, Rattray M, Powell JF, Meldrum BS (1996) Altered expression of group I metabotropic glutamate receptors in the hippocampus of amygdala-kindled rats. Brain Res Mol Brain Res 43:105-116.

Amakini DV, Maltkin SI, Ergina JI, Kryukov KA, Veniaminova EA, Zubareva OE, Zaisiev AV (2017) Alterations in properties of glutamatergic transmission in the temporal cortex and hippocampus following pilocarpine-induced acute seizures in Wistar rats. Front Cell Neurosci 11:264.

Aronami I, Nakashiki S (1992) Signal transduction and pharmacological characteristics of a metabotropic glutamate receptor, mGlur1, in transfected CHO cells. Neurochem Res 8:757-765.

Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Ramkema M, Troost D (2003) Expression and cell distribution of group I and II metabotropic glutamate receptor subtypes in type I fetal cortical dysplasia. Epilepsia 44:785-795.

Bakhache W, Neyret A, Bernard E, Merits A, Briant L (2020) Palmitoylated cysteines in hCNi1 and hCNi2 channels: from genes to function. Physiol Rev 89:847-885.

Beck H, Yaari Y (2008) Plasticity of intrinsic neuronal properties in CNS disorders. Nat Rev Neurosci 9:357-369.

Berrera M, Pantano S, Carloni P (2006) cAMP Modulation of the cytoplasmic domain in the HCN2 channel investigated by molecular simulations. Biophys J 90:3248-3433.

Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:565-613.

Bonzanni M, DiFrancesco JC, Milanesi R, Campostrini G, Castellotti B, Bucchi A, Baruscotti R, Krogness KE, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:565-613.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.

Brennan GP, Baram TZ, Poolos NP (2016) Hyperpolarization-activated cyclic nucleotide-gated channels throughout development in hippocampal I(h). Nat Neurosci 19:106821.
Rosenow F, Hamer HM, Knake S (2007) The epidemiology of convulsive and nonconvulsive status epilepticus. Epilepsia 48 Suppl 8:82-84.

Santoro B, Wainger BJ, Siegelbaum SA (2004) Regulation of HCN channel function by cAMP-dependent protein kinase A. J Neurophysiol 91:1076-1082.

Santoro B, Piskorski RA, Pian P, Hu L, Liu H, Siegelbaum SA (2009) TRPBP splice variants form a family of auxiliary subunits that regulate gating and trafficking of HCN channels in the brain. Neuron 62:802-813.

Santoro B, Lee JY, Englert DJ, Gilderseel S, Piskorski RA, Siegelbaum SA, Winawer MR, Blumenfeld H (2010) Increased seizure severity and seizure-related death in mice lacking HCN1 channels. Epilepsia 61:1627-1637.

Santoro B, Hu L, Liu H, Saponaro A, Pian P, Piskorski RA, Moroni A, Siegelbaum SA (2011) TRPBP regulates HCN channel trafficking and gating through two distinct C-terminal interaction sites. J Neurosci 31:4074-4086.

Saponaro A, Cantini F, Porrto A, Buchic D, Ferrari D, Maione V, Donadoni C, Introni L, Mesina P, Mangoni ME, Thiels C, Banci L, Santoro B, Moroni A (2018) A synthetic peptide that prevents AMP modulation in mammalian hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. J. Inherit. Metab. Dis. 41:711-718.

Schröder H, Becker A, Schröder U, Heeßel LB, Hoellt V, (2000). 3H-L-glutamate binding and synaptic plasticity in the hippocampus of patients with medial temporal lobe epilepsy and hippocampal sclerosis (MTELE). Neurol Disord 10:1114-1126.

Liu YL, Wang Y, Yan Q, Wang G, Hou BR, Wang DF, Ma B, Ren HH (2021) Therapeutic effect of stem cells in chronic tonic lobe epilepsy: a systematic review of animal studies. Zhongguo Zhusi Gongcheng Yanjiu 25:152-158.

Ludwig A, Budd M, Stieber T, Moomang S, Wahl C, Holthoff K, Langebartels A, Wotjak CT, Munsch C, Zong X, Feil S, Feil R, Lancel M, Chin K, Kroneck AN, Pappe H, Bächle M, Hofmann FM (2003) Absence epilepsy and sinus dysrhythmia in mice lacking the pacemaker channel HCN2. J Neurophysiol 82:216-224.

Lüttjohann A, Fabene PF, van Luijtelaar G (2009) A revised Racine’s scale for PTZ-induced seizures in rats. Physiol Behav 89:279-286.

Ma JM, Wang JQ (2019) Amphetamine-induced conditioned place preference and changes in mGlur1 receptor expression and signaling in the rat medial prefrontal cortex. Neuroscience 400:110-119.

Marcelin B, Chauvière L, Becker A, Migliore M, Eslapat M, Bernard C (2009) A channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol Dis 33:436-447.

Møller S, Alferi A, Bertinetti D, Aquila M, Schwede F, Licitato M, Rehm H, Moroni A, Herberg FW (2014) Cyclic nucleotide mapping of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Acta Biochem Biophys 4:110-117.

Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neuropsychopharmacol Biol Psychiatry 31:1-30.

Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specific nuclear protein in vertebrates. Developmental and physiological properties of neuronal and non-neuronal-appearing subunits in a rat hippocampal-pilocarpine model. Neuroscience 55:3-32.

Mulaivoy MG, Ksovreli M, Japaridze NJ, Lordkipanidze TG (2015) Ultrastructural changes in hippocampal CA1 pyramidal neurons after kindling. Micron 74:22-29.

Noa Y, Ya Q, Phan L, Wu RL, Chechkov DM, Wadam WF, Baram TZ (2011) Trafficking and surface expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases during status epilepticus. J Biol Chem 286:14724-14736.

Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241-276.

Oh Y, Na J, Jeong JH, Park DK, Park KH, Ko JS, Kim DS (2012) Alterations in hyperpolarization-activated cyclic nucleotide-gated channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus. BMJ Rep 45:635-640.

Peavy RD, Conn PJ, 1998 Phosphorylation of mitogen-activated protein kinase in cultured rat hippocampal pyramidal neurons. Neuron 9:621-935.

Ngombta RT, Santoni I, Biagioni F, Mollison G, Simonyi A, van Rijn CM, D’Amore Y, Mastronardao F, Olivieri G, Gradini R, Ferrari I, Battalla G, Bruno V, Pultt A, van Luijtelaar G, Nicolotti F (2011) Protective role for type-I metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 60:1281-1291.

Ni X, Yu D, Dong Y, Kong W, Lu G, Wang L, Ji Q, Li J, Ou D, Sun Z, Sun H, Lu L (2020) The potential role of the HCN1 channel and BDNF/mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Trans Psychiatry 10:101.

Noam Y, Ya Q, Phan L, Wu RL, Chechkov DM, Wadam WF, Baram TZ (2011) Trafficking and surface expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases during status epilepticus. J Biol Chem 286:14724-14736.

Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241-276.

Oh Y, Na J, Jeong JH, Park DK, Park KH, Ko JS, Kim DS (2012) Alterations in hyperpolarization-activated cyclic nucleotide-gated channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus. BMJ Rep 45:635-640.

Peavy RD, Conn PJ, 1998 Phosphorylation of mitogen-activated protein kinase in cultured rat hippocampal pyramidal neurons. Neuron 9:621-935.

Ngombta RT, Santoni I, Biagioni F, Mollison G, Simonyi A, van Rijn CM, D’Amore Y, Mastronardao F, Olivieri G, Gradini R, Ferrari I, Battalla G, Bruno V, Pultt A, van Luijtelaar G, Nicolotti F (2011) Protective role for type-I metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 60:1281-1291.

Ni X, Yu D, Dong Y, Kong W, Lu G, Wang L, Ji Q, Li J, Ou D, Sun Z, Sun H, Lu L (2020) The potential role of the HCN1 channel and BDNF/mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Trans Psychiatry 10:101.

Noam Y, Ya Q, Phan L, Wu RL, Chechkov DM, Wadam WF, Baram TZ (2011) Trafficking and surface expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases during status epilepticus. J Biol Chem 286:14724-14736.

Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241-276.

Oh Y, Na J, Jeong JH, Park DK, Park KH, Ko JS, Kim DS (2012) Alterations in hyperpolarization-activated cyclic nucleotide-gated channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus. BMJ Rep 45:635-640.

Peavy RD, Conn PJ, 1998 Phosphorylation of mitogen-activated protein kinase in cultured rat hippocampal pyramidal neurons. Neuron 9:621-935.

Ngombta RT, Santoni I, Biagioni F, Mollison G, Simonyi A, van Rijn CM, D’Amore Y, Mastronardao F, Olivieri G, Gradini R, Ferrari I, Battalla G, Bruno V, Pultt A, van Luijtelaar G, Nicolotti F (2011) Protective role for type-I metabotropic glutamate receptors against spike and wave discharges in the WAG/Rij rat model of absence epilepsy. Neuropharmacology 60:1281-1291.

Ni X, Yu D, Dong Y, Kong W, Lu G, Wang L, Ji Q, Li J, Ou D, Sun Z, Sun H, Lu L (2020) The potential role of the HCN1 channel and BDNF/mTOR signaling pathways and synaptic transmission in the alleviation of PTSD. Trans Psychiatry 10:101.

Noam Y, Ya Q, Phan L, Wu RL, Chechkov DM, Wadam WF, Baram TZ (2011) Trafficking and surface expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels increases during status epilepticus. J Biol Chem 286:14724-14736.

Notomi T, Shigemoto R (2004) Immunohistochemical localization of Ih channel subunits, HCN1-4, in the rat brain. J Comp Neurol 471:241-276.

Oh Y, Na J, Jeong JH, Park DK, Park KH, Ko JS, Kim DS (2012) Alterations in hyperpolarization-activated cyclic nucleotide-gated channel (HCN) expression in the hippocampus following pilocarpine-induced status epilepticus. BMJ Rep 45:635-640.

Peavy RD, Conn PJ, 1998 Phosphorylation of mitogen-activated protein kinase in cultured rat hippocampal pyramidal neurons. Neuron 9:621-935.