Λ_c^+ production and baryon-to-meson ratios in pp and p–Pb collisions at √s_{NN} = 5.02 TeV at the LHC

ALICE Collaboration

Abstract

The prompt production of the charm baryon Λ_c^+ and the Λ_c^+ / D^0 production ratios were measured at midrapidity with the ALICE detector in pp and p–Pb collisions at √s_{NN} = 5.02 TeV. These new measurements show a clear decrease of the Λ_c^+ / D^0 ratio with increasing transverse momentum (p_T) in both collision systems in the range 2 < p_T < 12 GeV/c, exhibiting similarities with the light-flavour baryon-to-meson ratios p/π and Λ/K_S^0. At low p_T, predictions that include additional colour-reconnection mechanisms beyond the leading-colour approximation; assume the existence of additional higher-mass charm-baryon states; or include hadronisation via coalescence can describe the data, while predictions driven by charm-quark fragmentation processes measured in e^+e^- and e^-p collisions significantly underestimate the data. The results presented in this letter provide significant evidence that the established assumption of universality (colliding-system independence) of parton-to-hadron fragmentation is not sufficient to describe charm-baryon production in hadronic collisions at LHC energies.
Heavy-flavour hadron production in hadronic collisions occurs through the fragmentation of a charm or beauty quark, created in hard parton-parton scattering processes, into a given meson or baryon. Theoretical calculations of heavy-flavour production generally utilise the QCD factorisation theorem, which describes the hadron cross section as the convolution of three terms: the parton distribution functions, the parton hard-scattering cross sections, and the fragmentation functions. It is generally assumed that the fragmentation functions are universal between collision systems and energies, and the measurement of the relative production of different heavy-flavour hadron species is sensitive to fragmentation functions used in pQCD-based calculations. While perturbative calculations at next-to-leading order with next-to-leading-log resummation generally describe the D- and B-meson cross-section measurements within uncertainties, heavy-flavour baryon production is less well understood.

The Λ^+_c production cross section in pp collisions at $\sqrt{s} = 5.02$ TeV was reported by ALICE. It was shown that in both collision systems the p_T-differential Λ^+_c production cross section is higher than predictions from pQCD calculations with charm fragmentation tuned on previous e^+e^- and e^-p measurements. The Λ^+_c/D^0 ratio in pp and p–Pb collisions is consistent in both collision systems and also significantly underestimated by several Monte Carlo (MC) generators implementing different charm-quark fragmentation processes, suggesting that the fragmentation fractions of charm quarks into different hadronic states are non-universal with respect to collision system and centre-of-mass energy. The production of charm baryons has recently been calculated within the k_T-factorisation approach using unintegrated gluon distribution functions and the Peterson fragmentation functions, and with the GM-VFNS scheme using updated fragmentation functions from OPAL and Belle. These approaches are unable to simultaneously describe ALICE and LHCb data with the same set of parameters, suggesting that the independent parton fragmentation scheme is insufficient to fully describe the results. An alternative explanation has been offered by a statistical hadronisation model, taking into account an augmented list of charm-baryon states based on guidance from the Relativistic Quark Model (RQM) and lattice QCD, which is able to reproduce the Λ^+_c/D^0 ratio measured by ALICE. The magnitude of the relative yields of Λ^0_b baryons and beauty mesons in pp collisions measured by LHCb and CMS offers further evidence that the fragmentation fractions in the beauty sector also vary between collision systems.

The measurement of baryon production has also been important in heavy-ion collisions, where the high energy density and temperature create a colour-deconfined state of matter. A measured enhancement of the light-flavour and charm baryon-to-meson ratio at the LHC and RHIC can be explained via an additional mechanism of hadronisation known as coalescence (or recombination), where soft quarks from the medium recombine to form a meson or baryon, in addition to hydrodynamical radial flow. Measurements in p–Pb collisions are crucial to provide an ‘intermediate’ collision system where the generated particle multiplicities and energy densities are between those generated in pp and A–A collisions. ALICE and CMS reported an enhancement of the baryon-to-meson ratios in the light-flavour sector (p/π and Λ/K^0_S) at intermediate p_T ($2 < p_T < 10$ GeV/c) in high-multiplicity pp and p–Pb collisions, similar to that observed in heavy-ion collisions. This adds to the evidence that small systems also exhibit collective behaviour, which may have similar physical origins in pp, p–A, and A–A collisions. It has been suggested that hadronisation of charm quarks via coalescence may also occur in pp and p–Pb collisions.

In this letter, the measurements of the prompt production of the charm baryon Λ^+_c in pp collisions at $\sqrt{s} = 5.02$ TeV in $|y| < 0.5$ and in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV in $-0.96 < y < 0.04$
are presented, with a focus on the \(\Lambda^+_c / D^0 \) production ratios. The measurement is performed as an average of the \(\Lambda^+_c \) and its charge conjugate \(\bar{\Lambda}^-_c \), collectively referred to as \(\Lambda^+_c \) in the following. Two hadronic decay channels were measured: \(\Lambda^+_c \rightarrow pK^-\pi^+ \) (branching ratio \(BR = 6.28\pm0.33\% \)), and \(\Lambda^+_c \rightarrow pK^0_s \) (BR = 1.59\pm0.08\%)\(^{37} \), which were reconstructed exploiting the topology of the weakly-decaying \(\Lambda^+_c \) (\(c\tau = 60.7\mu\text{m} \))\(^{37} \). The results from both decay channels were averaged to obtain more precise production cross sections. With respect to the results presented in \(^{11} \), this work studies a different centre-of-mass energy for pp collisions, and the cross section is measured in finer \(p_T \) intervals and over a wider \(p_T \) range. The overall precision of the measurements is significantly improved, by a factor of 1.5–2, depending on \(p_T \), for both pp and p–Pb collisions. For a detailed description of the analysis techniques, corrections, systematic uncertainty determination, and supplementary measurements, the reader is referred to \(^{38} \).

A description of the ALICE detector and its performance are reported in \(^{39, 40} \). The pp data sample was collected in 2017 and the p–Pb data sample was collected in 2016 during the LHC Run 2. Both pp and p–Pb collisions were recorded using a Minimum Bias (MB) trigger, which required coincident signals in the two V0 scintillator detectors located on either side of the interaction vertex. Further offline selection was applied in order to remove background from beam–gas collisions and other machine-induced backgrounds. To reduce superposition of more than one interaction within the colliding bunches (pile-up), events with multiple reconstructed primary vertices were rejected. Only events with a \(z \)-coordinate of the reconstructed vertex position within 10 cm from the nominal interaction point were used. With these requirements, approximately one billion MB-triggered pp events were selected, corresponding to an integrated luminosity of \(\mathcal{L}_{\text{int}} = 19.5 \text{nb}^{-1}(\pm 2.1\% \)\(^{41} \)). Approximately 600 million MB-triggered p–Pb events were selected, corresponding to \(\mathcal{L}_{\text{int}} = 287 \mu\text{b}^{-1}(\pm 3.7\% \)\(^{42} \)).

The analysis techniques used for the results presented here are described in detail in \(^{38} \). Charged-particle tracks and particle decay vertices are reconstructed in the central barrel using the Inner Tracking System (ITS) and the Time Projection Chamber (TPC), which are located inside a solenoid magnet of field strength 0.5 T. In order to reduce the large combinatorial background, selections on the \(\Lambda^+_c \) candidates were made based on the particle identification (PID) signals and the displacement of the decay tracks from the collision point. The PID was performed using information on the specific energy loss of charged particles as they pass through the gas of the TPC and, where available, with flight-time measurements given by the Time-Of-Flight detector (TOF).

For the \(\Lambda^+_c \rightarrow pK^-\pi^+ \) analysis, candidates were built by reconstructing triplets of tracks with the correct configuration of charges. For this analysis, the high-resolution tracking provided by the detectors meant that the decay vertex of the \(\Lambda^+_c \) candidates could be resolved from the interaction point. To identify each of the p, K, and \(\pi \) daughter tracks, information from the TPC and TOF was combined using the ‘maximum-probability’ Bayesian approach described in \(^{43} \). Kinematic selections were made on the \(p_T \) of the decay products of the \(\Lambda^+_c \), and geometrical selections were made on topological properties related to the displaced vertex of the \(\Lambda^+_c \) decay.

The reconstruction of \(\Lambda^+_c \rightarrow pK^0_s \) candidates relied on reconstructing the V-shaped decay of the \(K^0_s \) meson into two pions, which was then combined with a proton track (bachelor). In pp collisions, candidates were further selected using criteria related to PID and properties of the \(\Lambda^+_c \rightarrow pK^0_s \) decay. The Bayesian probability of the combined TPC and TOF response for the bachelor track to be a proton was required to be above 80\%. The selection criteria on kinematical and geometrical variables included the distance of closest approach between the decay daughters, the invariant mass, and the cosine of the pointing angle of the neutral decay vertex (\(K^0_s \)) to the primary vertex.
For the $\Lambda_c^+ \rightarrow pK_S^0$ decay channel in p–Pb collisions, the analysis was performed using a multivariate technique based on the Boosted Decision Tree (BDT) algorithm provided by the Toolkit for Multivariate Data Analysis (TMVA) [44]. The BDT algorithm was trained using signal and background $\Lambda_c^+ \rightarrow pK_S^0$ decay candidates simulated using PYTHIA 6.4.25 [43] with the Perugia2011 tune [46], and the underlying p–Pb event simulated with HIJING 1.36 [47]. Candidates obtained with the same reconstruction strategy previously described were preselected using loose geometrical selections and PID selection on the bachelor proton track. The model was trained independently for each p_T interval analysed, with input variables comprising the p_T and Bayesian PID probability of the proton track, the $c\tau$ and invariant mass of the K_S^0, and the impact parameters of the Λ_c^+ decay tracks to the primary vertex. This model was then applied on data, and a selection on the output response was chosen based on the expected maximum significance determined from simulations.

For both decay channels the yield of Λ_c^+ baryons was extracted in each p_T interval via fits to the candidate invariant-mass distributions. The fitting function consisted of a Gaussian to estimate the signal and an exponential or polynomial function to estimate the background. The width of the Gaussian was fixed in each p_T interval to values obtained from Monte Carlo simulations, and the mean was treated as a free parameter. A statistical significance higher than 4 standard deviations was achieved in all p_T intervals.

Several corrections were applied to the measurement of the Λ_c^+ cross section. The geometrical acceptance of the detector as well as the selection and reconstruction efficiencies for prompt Λ_c^+ were taken into account. These correction factors were determined from pp collisions generated with PYTHIA 6 and PYTHIA 8.243 [48], with each event including either a $c\bar{c}$ or a $b\bar{b}$ pair. For p–Pb collisions, this was supplemented with an underlying event from the HIJING event generator. In p–Pb collisions the efficiency was calculated after reweighting the events based on their charged particle multiplicity. This accounts for the fact that the event multiplicity in simulation does not reproduce the one in data, and the efficiency depends on the multiplicity of the event as a consequence of the improvement of the resolution of the primary vertex and thus of the performance of the topological selections at higher multiplicities. The fraction of the Λ_c^+ yield originating from beauty decays (feed-down) was obtained using the beauty-quark production cross section from FONLL [4, 5], the fraction of beauty quarks that fragment into beauty hadrons H_b, from LHCb measurements [22], and $H_b \rightarrow \Lambda_c^+ + X$ decay kinematics from PYTHIA 8, as well as the selection and reconstruction efficiency of Λ_c^+ from beauty-hadron decays. The fraction of the Λ_c^+ yield from beauty decays was found to be 2% at low p_T and up to 16% at high p_T, and was subtracted from the measured yield. As done in the D-meson analysis [49], the possible modification of beauty-hadron production in p–Pb collisions was included in the feed-down calculation by scaling the beauty-quark production by a nuclear modification factor $R_{ppb}^{feed-down}$, where it was assumed that $R_{ppb}^{feed-down} = R_{ppb}^{prompt}$ with their ratio varied in the range $0.9 < R_{ppb}^{feed-down}/R_{ppb}^{prompt} < 1.3$ to evaluate the systematic uncertainties.

Systematic uncertainties on the Λ_c^+ cross sections were estimated considering the same sources as described in [11]. The contributions from the raw-yield extraction were evaluated by repeating the fits varying the fit interval and the functional form of the background fit function. For each of these variations the four combinations of free and fixed Gaussian mean and width parameters of the fit were considered. Overall, the relative uncertainty ranged from 4% to 11% depending on the p_T and analysis. The uncertainties on the track reconstruction efficiency were estimated by adding in quadrature the uncertainty due to track quality selection and the uncertainty due to the TPC-ITS matching efficiency (from 3% to 7%). The former is estimated by varying the track-quality selection criteria and the latter is estimated by comparing the probability to match the tracks from the TPC to the ITS hits in data and simulation. The uncertainty
Λ_c^+ production in pp and p–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

on the Λ_c^+ selection efficiency was estimated by varying the selection on the kinematical and topological properties of the Λ_c^+ decays, or the selection on the BDT response (from 3% to 15%). The uncertainty on the PID efficiency was estimated by varying the selection on the Bayesian probability variables (from 2% to 5%). The systematic effect on the efficiencies due to the shape of the simulated Λ_c^+ p_T distribution was evaluated by reweighting the generated Λ_c^+ from PYTHIA 6 to match the p_T distribution obtained from FONLL calculations for D mesons (maximum 1% uncertainty). The relative statistical uncertainty on the acceptance and efficiency correction was considered as an additional systematic uncertainty source (from 1−2% at low p_T to 3−5% at high p_T). The uncertainties on f_{prompt} were estimated by varying the hypothesis on the production of Λ_c^+ from B-hadron decays to account for the theoretical uncertainties of b-quark production within FONLL and experimental uncertainties on B-hadron fragmentation (around 2% at low p_T, and from 4% to 7% at high p_T, depending on the analysis). Global uncertainties of the measurement include those from the luminosity and Λ_c^+ branching ratios.

The raw-yield extraction uncertainty source are considered to be uncorrelated across p_T bins, while all other sources are considered to be correlated. The results in each collision system from the two Λ_c^+ decay channels were averaged to obtain the final results. A weighted average of the results was calculated, with weights defined as the inverse of the quadratic sum of the relative statistical and uncorrelated systematic uncertainties. The sources of systematic uncertainty assumed to be uncorrelated between different decay channels were those due to the raw-yield extraction, the statistical uncertainties on the efficiency and acceptance, and those related to the Λ_c^+ selection. The remaining uncertainties were assumed to be correlated, except the branching ratio uncertainties, which were treated as partially correlated among the hadronic-decay modes as defined in [37].

![Graph](image)

Fig. 1: Left: Prompt Λ_c^+ and D^0 p_T-differential cross section in pp collisions and in p–Pb collisions at √s_{NN} = 5.02 TeV. The results in p–Pb collisions are scaled with the atomic mass number A of the Pb nucleus. Right: the Λ_c^+/D^0 ratio as a function of p_T measured in pp collisions at √s = 5.02 TeV compared with theoretical predictions (see text for details). Statistical uncertainties are shown as vertical bars, while systematic uncertainties are shown as boxes, and the bin widths are shown as horizontal bars.

Figure 1 (left) shows a comparison of the Λ_c^+ p_T-differential cross sections in pp and in p–Pb collisions at √s_{NN} = 5.02 TeV. The D^0 p_T-differential cross sections measured in the same collision systems and at the same centre-of-mass energy during the same data taking periods [10, 50] are also shown. In order to compare the spectral shapes in the two different collision systems
at the same energy, the results in p–Pb collisions are scaled by the atomic mass number of the lead nucleus. For Λ_c^+ baryons the spectral shape in p–Pb collisions is slightly harder than in pp collisions, while for D^0 mesons the spectral shapes are fully consistent within uncertainties.

Figure 1 (right) shows the baryon-to-meson ratio Λ_c^+ / D^0 measured in pp collisions at $\sqrt{s} = 5.02$ TeV as a function of p_T, compared to theoretical predictions. The uncertainty on the luminosity cancels in the ratio. The Λ_c^+ / D^0 ratio is measured to be 0.4–0.5 at low p_T, and decreases to around 0.2 at high p_T. The previous results at $\sqrt{s} = 7$ TeV hinted at a decrease of the Λ_c^+ / D^0 ratio with p_T, although the precision was not enough to confirm this [11]. The results in pp collisions at $\sqrt{s} = 5.02$ TeV, with much higher precision than $\sqrt{s} = 7$ TeV results, show a clear decrease with increasing p_T. The strong p_T-dependence of the Λ_c^+ / D^0 ratio is in contrast with the ratios of strange and non-strange D mesons in pp collisions at $\sqrt{s} = 5.02$ TeV and $\sqrt{s} = 7$ TeV [10, 51] and in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [50], which do not show a significant p_T dependence within uncertainties and thus indicate that there are no large differences between fragmentation functions of charm quarks to charm mesons. The result presented here instead provides strong indications that the fragmentation functions of baryons and mesons differ significantly.

The measured Λ_c^+ / D^0 ratios in pp collisions are compared with predictions from several MC generators and models in which different hadronisation processes are implemented. The PYTHIA 8 predictions include the Monash tune [12] and a tune that implements colour reconnection beyond the leading-colour approximation, corresponding to CR Mode 2 as defined in [13]. Hadronisation in PYTHIA is built on the Lund string fragmentation model [52, 53], where quarks and gluons connected by colour strings fragment into hadrons, and colour reconnection allows for partons created in the collision to interact via colour strings. The latter tune introduces new colour reconnection topologies beyond the leading-colour approximation, including ‘junctions’ that fragment into baryons, leading to increased baryon production. As a technical point, the PYTHIA 8 simulations are generated with all soft QCD processes switched on [48]. The PYTHIA 8 Monash tune and HERWIG 7.2 [15] predictions are driven by the fragmentation fraction $f(c \to \Lambda_c^+)$ implemented in these generators, which all suggest a relatively constant Λ_c^+ / D^0 ratio versus p_T of about 0.1, significantly underestimating the data at low p_T. At high p_T, the data approach the predictions from these generators, although the measurement in $8 < p_T < 12$ GeV/c is still underestimated by about a factor of 2. A significant enhancement of the Λ_c^+ / D^0 ratio is seen with colour reconnection beyond the leading-colour approximation (PYTHIA 8 CR Mode 2).

This prediction is consistent with the measured Λ_c^+ / D^0 ratio in pp collisions, also reproducing the downward p_T trend. The statistical hadronisation model (‘SH model’ in the legend) [15] uses either an underlying charm-baryon spectrum taken from the PDG, or includes additional excited charm baryons that have not yet been observed but are predicted by the RQM. These additional states decay strongly to Λ_c^+ baryons, which contribute to the prompt Λ_c^+ spectrum. The RQM predictions include a source of uncertainty related to the branching ratios of the excited baryon states into Λ_c^+ final states, which is estimated by varying the branching ratios between 50% and 100%. With the PDG charm-baryon spectrum the model underpredicts the data. With the additional baryon states the model instead gives a good description of the pp data, both in the magnitude of the ratio, and the decreasing trend with p_T. The Catania model [36] assumes that a colour-deconfined state of matter is formed and hadronisation can occur via coalescence in addition to fragmentation. Coalescence is implemented through the Wigner formalism, where a blast wave model is used to determine the p_T spectrum of light quarks and FONLL pQCD calculations are used for heavy quarks. Hadronisation via coalescence is predicted to dominate at low p_T, while fragmentation dominates at high p_T. This model provides a good description of both the magnitude and shape of the data over the full p_T range.

Figure 2 shows the Λ_c^+ / D^0 baryon-to-meson ratio measured in pp collisions at $\sqrt{s} = 5.02$ TeV
Fig. 2: The charm baryon-to-meson ratio Λ_c^+/D^0 in pp collisions (left), and p–Pb collisions (right) at $\sqrt{s_{\text{NN}}} = 5.02$ TeV, compared to the light-flavour baryon-to-meson ratios Λ/K^0_S and p/π. Statistical uncertainties are shown as vertical bars, while systematic uncertainties are shown as boxes, and the bin widths are shown as horizontal bars.

(left) and in p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV (right) as a function of p_T, compared to baryon-to-meson ratios in the light-flavour sector, Λ/K^0_S [25, 54] and p/π [31, 55] (calculated as the sum of both charged particles and antiparticles, $(p + \bar{p})/(\pi^+ + \pi^-)$). The p/π ratio in pp collisions is shown at both $\sqrt{s} = 5.02$ TeV and $\sqrt{s} = 7$ TeV, displaying consistent results at both centre-of-mass energies, while the Λ/K^0_S ratio in pp collisions is shown only at $\sqrt{s} = 7$ TeV. Unlike heavy-flavour hadron production, which occurs primarily through the fragmentation of a charm quark produced in the initial hard scattering, light-flavour hadrons have a significant contribution from gluon fragmentation. Low-p_T light-flavour hadrons also primarily originate from soft scattering processes involving small momentum transfers. All particle yields in these ratios were corrected for feed-down from weak decays, although the pion spectrum is expected to have significant feed-down contributions also from the strong decays of other particle species, primarily ρ and ω mesons. Despite these differences, the three ratios, Λ_c^+/D^0, Λ/K^0_S, and p/π demonstrate some remarkably similar characteristics in both collision systems. All ratios exhibit a decreasing trend after $p_T \gtrsim 2–3$ GeV/c. The Λ_c^+/D^0 and Λ/K^0_S ratios are consistent, in terms of both shape and magnitude, within uncertainties. The light-flavour ratios both peak at $\sim 2–3$ GeV/c in both pp and p–Pb collisions, and there is an indication of a peak at $2 < p_T < 4$ GeV/c in the Λ_c^+/D^0 ratio in p–Pb collisions. These similarities between heavy-flavour and light-flavour measurements hint at a potential common mechanism for light- and charm-baryon formation.

In summary, Λ_c^+-baryon production was measured in pp collisions at midrapidity ($|y| < 0.5$) and in p–Pb collisions in the rapidity interval $-0.96 < y < 0.04$ at $\sqrt{s_{\text{NN}}} = 5.02$ TeV. A clear p_T-dependence of the Λ_c^+/D^0 ratio is reported, with the ratio decreasing as the p_T increases. This trend is similar to that of baryon-to-meson ratios measured in the light-flavour sector in pp and p–Pb collisions, suggesting common mechanisms for light- and charm-baryon formation.
While models incorporating fragmentation parameters from e^+e^- and e^-p collisions significantly underestimate the Λ_c^+/D^0 ratio, three models can reproduce the measurements. The first is a tune of PYTHIA 8 which considers that, in pp collisions at high energy, multi-parton interactions produce a rich hadronic environment that requires an extension of colour reconnection in hadronisation processes beyond the leading-colour approximation. The second method is the SH+RQM model, which relies on the presence of a large set of yet-unobserved higher-mass charm-baryon states with relative yields following the Statistical Hadronisation model. The third relies on hadronisation via coalescence and fragmentation after the formation of a colour-deconfined state of matter. All three models imply a substantially different description of the charm-baryon production in pp collisions with respect to e^+e^- and e^-p collisions, indicating that the assumption of universal parton-to-hadron fragmentation between collision systems is not sufficient to describe charm-baryon production.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centres and the Worldwide LHC Computing Grid (WLCG) collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences, Austrian Science Fund (FWF): [M 2467-N36] and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Ministry of Communications and High Technologies, National Nuclear Research Center, Azerbaijan; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC) , Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Conselho Nacional de Ciência e Tecnologia (CNPq), Financiadora de Estudos e Projetos (Finep), Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) and Universidade Federal do Rio Grande do Sul (UFRGS), Brazil; Ministry of Education of China (MOEC) , Ministry of Science & Technology of China (MSTC) and National Natural Science Foundation of China (NSFC), China; Ministry of Science and Education and Croatian Science Foundation, Croatia; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research — Natural Sciences, the VILLUM FONDEN and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung und Forschung (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; General Secretariat for Research and Technology, Ministry of Education, Research and Religions, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE), Department of Science and Technology, Government of India (DST), University Grants Commission, Government of India (UGC) and Council of Scientific and Industrial Research (CSIR), India; Indonesian Institute of Science, Indonesia; Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology , Nagasaki Institute of Applied Science (IIST), Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Académico (DGAPA), Mexico; Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; The Research Council of Norway, Norway; Commission on Science and
Λ⁺ production in pp and p–Pb collisions at √sNN = 5.02 TeV

ALICE Collaboration

Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education, National Science Centre and WUT ID-UB, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Ministry of Research and Innovation and Institute of Atomic Physics, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation, National Research Centre Kurchatov Institute, Russian Science Foundation and Russian Foundation for Basic Research, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Swedish Research Council (VR) and Knut & Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; Suranaree University of Technology (SUT), National Science and Technology Development Agency (NSTDA) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.

References

[1] J. C. Collins, D. E. Soper, and G. F. Sterman, “Factorization of Hard Processes in QCD”, Adv. Ser. Direct. High Energy Phys. 5 (1989) 1–91, arXiv:hep-ph/0409313
[2] B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Collinear subtractions in hadroproduction of heavy quarks”, Eur. Phys. J. C41 (2005) 199–212, arXiv:hep-ph/0502194 [hep-ph]
[3] B. A. Kniehl, G. Kramer, I. Schienbein, and H. Spiesberger, “Inclusive Charmed-Meson Production at the CERN LHC”, Eur. Phys. J. C72 (2012) 2082, arXiv:1202.0439 [hep-ph]
[4] M. Cacciari, M. Greco, and P. Nason, “The pT Spectrum in Heavy-Flavour Hadroproduction”, JHEP 05 (1998) 007, arXiv:hep-ph/9803400 [hep-ph]
[5] M. Cacciari et al., “Theoretical predictions for charm and bottom production at the LHC”, JHEP 10 (2012) 137, arXiv:1205.6344 [hep-ph]
[6] A. Andronic et al., “Heavy-flavour and quarkonium production in the LHC era: from proton–proton to heavy-ion collisions”, Eur. Phys. J. C76 no. 3, (2016) 107, arXiv:1506.03981 [nucl-ex]
[7] LHCb Collaboration, R. Aaij et al., “Measurements of prompt charm production cross-sections in pp collisions at √s = 13 TeV”, JHEP 03 (2016) 159, arXiv:1510.01707 [hep-ex] [Erratum: JHEP09,013(2016); Erratum: JHEP05,074(2017)].
[8] CMS Collaboration, V. Khachatryan et al., “Measurement of the total and differential inclusive B⁺ hadron cross sections in pp collisions at √s = 13 TeV”, Phys. Lett. B771 (2017) 435–456, arXiv:1609.00873 [hep-ex]
[9] LHCb Collaboration, R. Aaij et al., “Measurement of the B± production cross-section in pp collisions at √s = 7 and 13 TeV”, JHEP 12 (2017) 026, arXiv:1710.04921 [hep-ex].

9
Λ_c^+ production in pp and p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

[10] ALICE Collaboration, S. Acharya et al., “Measurement of D^0, D^+, D^{*+} and D_s^+ production in pp collisions at $\sqrt{s} = 5.02$ TeV with ALICE”, Eur. Phys. J. C79 no. 5, (2019) 388 [arXiv:1901.07979 [nucl-ex]]

[11] ALICE Collaboration, S. Acharya et al., “Λ_c^+ production in pp collisions at $\sqrt{s} = 7$ TeV and in p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, JHEP 04 (2018) 108 [arXiv:1712.09581 [nucl-ex]]

[12] P. Skands, S. Carrazza, and J. Rojo, “Tuning PYTHIA 8.1: the Monash 2013 Tune”, Eur. Phys. J. C74 no. 8, (2014) 3024 [arXiv:1404.5630 [hep-ph]]

[13] J. R. Christiansen and P. Z. Skands, “String Formation Beyond Leading Colour”, JHEP 08 (2015) 003 [arXiv:1505.01681 [hep-ph]]

[14] C. Bierlich and J. R. Christiansen, “Effects of color reconnection on hadron flavor observables”, Phys. Rev. D84 (2011) 014025 [arXiv:1105.0583 [hep-ph]]

[15] M. He and R. Rapp, “Charm-Baryon Production in Proton-Proton Collisions”, Phys. Lett. B795 (2019) 117–121 [arXiv:1902.08889 [nucl-th]]

[16] LHCb Collaboration, R. Aaij et al., “Measurement of b-hadron production fractions in 7 TeV pp collisions”, Phys. Rev. D85 (2012) 032008 [arXiv:1111.2357 [hep-ex]]

[17] CMS Collaboration, S. Chatrchyan et al., “Measurement of Λ_c^+ production in Pb–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV”, Phys. Rev. Lett. 111 (2013) 222301 [arXiv:1307.5530 [nucl-ex]]
Λ⁺ production in pp and p–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

[26] STAR Collaboration, J. Adams et al., “Measurements of identified particles at intermediate transverse momentum in the STAR experiment from Au + Au collisions at √s_{NN} = 200 GeV”, arXiv:nucl-ex/0601042.

[27] ALICE Collaboration, S. Acharya et al., “Λ⁺ production in Pb–Pb collisions at √s_{NN} = 5.02 TeV”, Phys. Lett. B793 (2019) 212–223, arXiv:1809.10922 [nucl-ex].

[28] STAR Collaboration, J. Adam et al., “Observation of enhancement of charmed baryon-to-meson ratio in Au+Au collisions at √s_{NN} = 200 GeV”, Phys. Rev. Lett. 124 no. 17, (2020) 172301, arXiv:1910.14628 [nucl-ex].

[29] CMS Collaboration, A. M. Sirunyan et al., “Production of Λ⁺ baryons in proton-proton and lead-lead collisions at √s_{NN} = 5.02 TeV”, Phys. Lett. B803 (2020) 135328, arXiv:1906.03322 [hep-ex].

[30] R. J. Fries, V. Greco, and P. Sorensen, “Coalescence Models For Hadron Formation From Quark Gluon Plasma”, Ann. Rev. Nucl. Part. Sci. 58 (2008) 177–205, arXiv:0807.4939 [nucl-th].

[31] ALICE Collaboration, J. Adam et al., “Multiplicity dependence of charged pion, kaon, and (anti)proton production at large transverse momentum in p–Pb collisions at √s_{NN} = 5.02 TeV”, Phys. Lett. B 760 (2016) 720–735, arXiv:1601.03658 [nucl-ex].

[32] CMS Collaboration, V. Khachatryan et al., “Multiplicity and rapidity dependence of strange hadron production in pp, pPb, and PbPb collisions at the LHC”, Phys. Lett. B768 (2017) 103–129, arXiv:1605.06699 [nucl-ex].

[33] J. L. Nagle and W. A. Zajc, “Small System Collectivity in Relativistic Hadronic and Nuclear Collisions”, Ann. Rev. Nucl. Part. Sci. 68 (2018) 211–235, arXiv:1801.03477 [nucl-ex].

[34] J. Song, H.-h. Li, and F.-l. Shao, “New feature of low p_T charm quark hadronization in pp collisions at √s = 7 TeV”, Eur. Phys. J. C78 no. 4, (2018) 344, arXiv:1801.09402 [hep-ph].

[35] H.-H. Li, F.-L. Shao, J. Song, and R.-Q. Wang, “Production of single-charm hadrons by quark combination mechanism in p-Pb collisions at √s_{NN} = 5.02 TeV”, Phys. Rev. C97 no. 6, (2018) 064915, arXiv:1712.08921 [hep-ph].

[36] V. Minissale, S. Plumari, and V. Greco, “New feature of low pT charm quark hadronization in pp collisions at √s = 7 TeV”, Eur. Phys. J. C78 no. 4, (2018) 344, arXiv:1801.09402 [hep-ph].

[37] Particle Data Group Collaboration, P. A. Zyla et al., “Review of Particle Physics”, Progress of Theoretical and Experimental Physics 2020, 083C01 (2020).

[38] ALICE Collaboration, S. Acharya et al., “Λ⁺ production in pp and in p-Pb collisions at √s_{NN} = 5.02 TeV”, Phys. Rev. C 104 no. 5, (2021) 054905, arXiv:2011.06079 [nucl-ex].

[39] ALICE Collaboration, K. Aamodt et al., “The ALICE experiment at the CERN LHC”, JINST 3 (2008) S08002.

[40] ALICE Collaboration, B. Abelev et al., “Performance of the ALICE Experiment at the CERN LHC”, Int. J. Mod. Phys. A29 (2014) 1430044, arXiv:1402.4476 [nucl-ex].
Λ⁺ production in pp and p–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV
ALICE Collaboration

[41] ALICE Collaboration, “ALICE 2017 luminosity determination for pp collisions at \(s = 5 \) TeV”, [http://cds.cern.ch/record/2648933] ALICE-PUBLIC-2018-014.

[42] ALICE Collaboration, B. Abelev et al., “Measurement of visible cross sections in proton-lead collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV in van der Meer scans with the ALICE detector”, [JINST 9 no. 11, (2014) P11003] arXiv:1405.1849 [nucl-ex].

[43] ALICE Collaboration, J. Adam et al., “Particle identification in ALICE: a Bayesian approach”, [Eur. Phys. J. Plus 131 no. 5, (2016) 168] arXiv:1602.01392 [physics.data-an].

[44] A. Höcker et al., “TMVA: Toolkit for Multivariate Data Analysis”, [PoS ACAT (2007) 040] arXiv:physics/0703039.

[45] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “PYTHIA 6.4 Physics and Manual”, [JHEP 05 (2006) 026] arXiv:hep-ph/0603175 [hep-ph].

[46] P. Z. Skands, “The Perugia Tunes”, in Proceedings, 1st International Workshop on Multiple Partonic Interactions at the LHC (MPI08): Perugia, Italy, October 27-31, 2008, pp. 284–297. 2009. arXiv:0905.3418 [hep-ph].

[47] X.-N. Wang and M. Gyulassy, “HIJING: A Monte Carlo model for multiple jet production in p p, p A and A A collisions”, [Phys. Rev. D44 (1991) 3501–3516].

[48] T. Sjöstrand, S. Mrenna, and P. Z. Skands, “A Brief Introduction to PYTHIA 8.1”, [Comput. Phys. Commun. 178 (2008) 852–867] arXiv:0710.3820 [hep-ph].

[49] ALICE Collaboration, J. Adam et al., “D-meson production in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV and in pp collisions at \(\sqrt{s} = 7 \) TeV”, [Phys. Rev. C94 no. 5, (2016) 054908] arXiv:1605.07569 [nucl-ex].

[50] ALICE Collaboration, S. Acharya et al., “Measurement of prompt D₀, D⁺, D∗+, and D_S⁺ production in p–Pb collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV”, [JHEP 12 (2019) 092] arXiv:1906.03425 [nucl-ex].

[51] ALICE Collaboration, S. Acharya et al., “Measurement of D-meson production at mid-rapidity in pp collisions at \(\sqrt{s} = 7 \) TeV”, [Eur. Phys. J. C77 no. 8, (2017) 550] arXiv:1702.00766 [hep-ex].

[52] B. Andersson, G. Gustafson, G. Ingelman, and T. Sjöstrand, “Parton fragmentation and string dynamics”, [Physics Reports 97 no. 2, (1983) 31 – 145].

[53] B. Andersson, The Lund model, vol. 7. Cambridge University Press, 7, 2005.

[54] ALICE Collaboration, B. B. Abelev et al., “Multiplicity Dependence of Pion, Kaon, Proton and Lambda Production in p–Pb Collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV”, [Phys. Lett. B 728 (2014) 25–38] arXiv:1307.6796 [nucl-ex].

[55] ALICE Collaboration, S. Acharya et al., “Production of charged pions, kaons and (anti-)protons in Pb-Pb and inelastic pp collisions at \(\sqrt{s_{NN}} = 5.02 \) TeV”, [Phys. Rev. C 101 no. 4, (2020) 044907] arXiv:1910.07678 [nucl-ex].

[56] CMS Collaboration, A. M. Sirunyan et al., “Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at \(\sqrt{s_{NN}} = 8.16 \) TeV”, [Phys. Rev. Lett. 121 no. 8, (2018) 082301] arXiv:1804.09767 [hep-ex].
[57] **ALICE** Collaboration, S. Acharya *et al.*, “Azimuthal Anisotropy of Heavy-Flavor Decay Electrons in p-Pb Collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV”, *Phys. Rev. Lett.* **122** no. 7, (2019) 072301, [arXiv:1805.04367 [nucl-ex]]
A The ALICE Collaboration

S. Acharya142, D. Adamuiał97, A. Adler75, J. Adolfsön82, G. Aglieri Rinella35, M. Agnello31, N. Agrawal55, Z. Ahmad142, S. Ahmad16, S.U. Ahn77, Z. Akbar52, A. Akindinov94, M. Al-Turany109, D.S.D. Albuquerque124, D. Aleksandrov96, B. Alessandro60, H.M. Alifandı7, R. Alfaro Molina72, B. Ali16, V. Ali14, A. Alici26, N. Alizadehvandchali127, A. Alkin35, J. Alme25, T. Alt69, L. Altenkamper21, I. Altseybeev115, M.N. Anaam7, C. Andrej49, D. Andreou92, A. Andronic145, M. Angeletti35, V. Anguelov106, T. Antićič110, F. Antinori58, P. Antonioli55, N. Apadula81, L. Apeccece117, H. Appelshäuser69, S. Arcelli20, R. Arnaldi89, M. Arratia81, I.C. Arsenoi20, M. Arslanbekov147,106, A. Augustinus35, R. Averbeck27, S. Aziz2, M.D. Azmi16, A. Badalà57, Y.W. Baek42, X. Bai20, B. Bahlouli129, R. Baláž103, A. Baldissi139, M. Ball44, D. Banerjee4, R. Barbera27, L. Bariglio25, M. Barlow14, G.G. Barnaföldi4, L.S. Barnby96, V. Barret136, C. Bartels129, K. Barth35, E. Bartsch69, F. Baruffaldi28, N. Bastid136, S. Basti82,144, G. Batigno117, B. Batyunya75, D. Bauri70, J.L. Bazo Alba114, I.G. Beaudoin117, C. Beattie147, I. Belikov138, A.D.C. Bell Hechavarria145, F. Bellini35, R. Bellwied127, S. Belokurova115, V. Belylaev95, G. Bencedi70,146, S. Beoee25, J. Bercuci78, Y. Berdnikov100, A. Berdnikov106, D. Berenyi146, L. Bergmann106, M.G. Besos81, L. Betev35, P.P. Bhaduri142, A. Bhasin103, I.R. Bhat103, M.A. Bhat4, B. Bhattacharjee43, P. Bhattacharya23, B. Bianchi25, L. Bianchi25, N. Bianchi53, J. Bielcik8, J. Bielicki97, A. Bilandzic107, G. Biro146, S. Biswas4, J.T. Blair121, D. Blau90, M.B. Bilardor9, C. Blume69, G. Boca29, F. Bock88, A. Bogdanov95, S. Bo23, J. Bok62, L. Boldizsár146, A. Bolozdynya59, M. Bombara39, G. Bonomi141, H. Bore139, A. Borissov83,95, H. Bossi147, E. Botta25, L. Bratru69, P. Braun-Munzinger109, M. Bregant123, M. Broz38, G.E. Brun08,104, M.D. Buckland129, H. Buesching69, S. Bufalino31, O. Bugnon117, P. Buhler116, P. Buncic35, Z. Buthelezi73,133, J.B. Butt129, S.A. Byasiak20, D. Caffarri92, A. Caliva99, E. Calvo Villar114, J.M.M. Camacho122, R.S. Camacho46, P. Camerini24, F.D.M. Canedo123, A.A. Capan116, F. Carmencic26, R. Caron39, J. Castillo Castellanos139, E.A.R. Casula56, F. Catalano31, C. Ceballos Sanchez76, P. Chakraborti50, S. Chandra142, W. Chang7, S. Chapelend35, M. Chartier129, S. Chattopadhyay142, S. Chattopadhyay112, A. Chauvin25, C. Cheshkov137, B. Cheynis37, V. Chibante Barroso35, D.D. Chimellato24, S. Cho62, P. Chochula36, P. Christakoglou92, C.H. Christensen91, P. Christiansen83, T. Choj5, C. Cicala60, L. Cifarelli26, F. Cindolo25, M.R. Ciupik109, G. Cilia1,155, J. Clyeemans126, F. Colamarina54, J.S. Colburn31, D. Colella54, A. Colli11, M. Colocci35,26, M. Concacci116, G. Conesa Balbastre80, Z. Conesa del Valle79, G. Contini24, J.G. Contreras38, T.M. Cormier98, P. Cortese122, M.R. Cosentino125, F. Costa35, S. Costanza29, P. Crochet136, E. Cuautle70, P. Cui7, L. Cunqueiro88, T. Dahms107, A. Dainese58, F.P.A. Damas117,139, M.C. Danisch106, A. Dam198, D. Das112, I. Das112, P. Das88, P. Das4, S. Das4, S. Dash90, S. De88, A. De Caro50, G. De Cataldo54, L. De Cilliadi25, J. De Cuveland90, A. De Falco25, D. De Gruttola30, N. De Marco60, C. De Martin54, S. De Pasquale30, S. Dei53, H.F. Degenhardt123, K.R. Deja143, S. Delsanto55, W. Deng7, P. Dhankher19,50, D. Di Bar34, A. Di Mauro39, R.A. Diaz8, T. Dietel126, P. Dillensege69, Y. Ding7, R. Diviá3, D.U. Dixit19, O. Djouvas21, U. Dmitriev64, J. Do26, A. Dobrin68, B. Dochad90, O. Dordic10, A.K. Dube128, A. Dubla109,82, S. Dudi102, M. Dukhishayam88, P. Dupieux136, T.M. Eder145, R.J. Ehlers98, V.N. Eikeland113, D. Elia54, B. Erazmus117, F. Erhardt101, L. Erokin155, M.R. Erdsal21, B. Espagnon79, G. Eulisse53, D. Evans13, S. Evdokimov93, L. Fabbietti107, M. Faggini28, J. Faiivre80, F. Fan7, A. Fantoni53, M. Fasel198, P. Feccioli31, A. Felicioli60, G. Feofilov11, A. Fernández Téllez46, A. Ferrero130, A. Ferreti25, A. Festanti35, V.J.G. Feuillard106, J. Figiel120, S. Füchsig111, D. Finoge64, F.M. Fionda21, G. Fiorenza54, F. Flor127, A.N. Flores121, S. Fotschth3, P. Foka109, S. Fokin99, E. Fragiacomo61, U. Fuchs35, C. C. Furger80, A. Furs64, M. Fusco Girard30, J.J. Gaardhøje91, M. Gagliotti25, A.M. Gago114, A. Gal138, C.D. Galvan122, P. Ganoti86, C. Garabatos, J.R.A. Garcia46, E. Garcia-Solis10, K. Garg17, C. Gargiulo39, A. Garibbi39, K. Garner145, P. Gaski107, E.F. Gauger121, M.B. Gay Ducati141, M. Germain117, J. Ghosh12, P. Ghosh12, S.K. Ghosh1, M. Giacomoni6, P. Gianotti153, P. Giubellino46,26, 100, P. Giubilato28, A.M.C. Glaczer9, P. Glässel106, V. Gonzalez144, L.H. González-Trueba72, S. Gorbonov58, L. Görlöc120, S. Gotsowac36, V. Grabski72, L.K. Graczovsky143, K.L. Graham31, L. Grein81, A. Grelli89, C. Grigoras35, V. Grigoriev35, A. Grigoryan11, S. Grigoryan76, O.S. Groevtik21, F. Gross60, J.P. Grosse-Oetringhaus35, R. Gross109, R. Guernane80, M. Guibaud117, M. Guittiere117, K. Guhrbrandt91, T. Gujji103, R. Gupt103, I.B. Guzman46, R. Haake147, M.K. Habib109, C. Hadjidakis79, H. Hamagaki84, G. Hamar146, M. Hamid7, R. Hannigan121, M.R. Haque143,88, A. Harlenderova109, J.W. Harris147, A. Harton10, J.A. Hasenbichler35, H. Hassan98.
The production of Λ^+ in pp and p–Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

ALICE Collaboration

R. Pregghenella55, F. Prino60, C.A. Pruneau144, I. Pshenichnov64, M. Puccio35, S. Qiu92, L. Quaglia25, R.E. Quispe127, S. Ragoni113, J. Rak128, A. Rakotozafindrabe139, L. Ramello32, F. Rami138, S.A.R. Ramireez44, A.G.T. Ramos44, R. Raniwa104, S. Raniwa104, S.S. Räsänen45, R. Rath51, I. Ravasenga92, K.F. Readmyre82, A.R. Redelbach40, K. Redlich187, A. Rehman31, P. Reichelt69, F. Reidt135, R. Renfordt160, Z. Rescakova25, K. Regeers106, A. Riabov109, V. Riabov109, T. Richter82,91, M. Richter20, P. Riedler36, W. Riegel35, F. Riggi127, C. Ristea68, S.P. Rod61, M. Rodriguez Cahnartz46, K. Roed109, R. Rogalev103, E. Rogochaya76, T.S. Rogoschinski69, D. Rohr135, D. Röhrich21, P.F. Rojas46, P.S. Rokita143, F. Ronchetti46, S. Rosa133, E. Rossa70, A. Ross98, A. Rotondi29, A. Roy51, P. Roy112, O.V. Rueda82, R. Rui24, B. Runyanstev76, A. Rustamov89, E. Ryabinin79, Y. Ryabov100, A. Rybicki120, H. Rytkonen28, O.A.M. Saarimaki45, R. Sadek117, S. Sadovsky93, J. Saetre23, K. Safarik38, S.K. Saha142, S. Saha88, B. Sahoo50, P. Sahoo50, R. Sahoo51, S. Saha51, P.K. Sahu66, J. Saini42, S. Saka135, S. Sambya103, V. Samsonov100,95, D. Sarkar144, N. Sarkar142, P. Sarma43, V.M. Sarti107, M.H.P. Sasa147,63, J. Schambach98,121, H.S. Scheid99, C. Schiaua49, R. Schicker106, A. Schmah106, C. Schmidt109, H.R. Schmidt105, M.O. Schmidt106, M. Schmidt105, N.V. Schmidt98,69, A.R. Schmier132, R. Schottel138, J. Schukraft35, Y. Schutz138, K. Schwarz109, K. Schweda109, G. Sciel126, E. Scoomarin160, J.E. Seger15, Y. Sekiguchi134, D. Sekhata134, I. Selyuzhenkov109,95, S. Senyukov138, J.J. Sec76, D. Serebyakov46, L. Sersknyot107, A. Sevenco68, A. Shabanov64, A. Shabetai117, R. Shahoyan35, W. Shaikh112, A. Shangaraev93, A. Sharma102, H. Sharma120, M. Sharma103, N. Sharma102, S. Sharma103, O. Sheibani127, A.I. Sheik4, K. Shigaki47, M. Shimomura57, S. Shirikin94, Q. Shou41, Y. Sibiriak90, S. Siddhanta56, T. Siemarczuk57, D. Silvermyre87, G. Simatovic92, G. Simonetti25, B. Singh107, R. Singh88, R. Singh31, R. Singh31, K.V. Singh42, V. Singhel42, T. Sinha12, B. Sitar13, M. Sitta32, T.B. Skaali39, M. Slupecki55, N. Smirnov147, R.J.M. Snellings83, C. Soncoe114, J. Song27, A. Songmoolnak145, F. Soramen25, S. Sorensen132, I. Sputowska120, J. Stachel106, I. Stan86, P.J. Steffanci132, P.F. Stiefelmaier106, D. Stocco117, M.M. Storeveth53, L.D. Stritito30, C.P. Stylianos92, A.A.P. Suaide72,123, T. Sugitate17, C. Suire79, M. Sulic35, R. Sultanov34, M. Sundera79, V. Sumbera103, S. Sunowidagdo52, S. Swain66, A. Szabe13, I. Szarka13, U. Tabassam14, S.F. Taghav107, G. Taillepied136, J. Takahashi124, G.J. Tammavc31, S. Tang136,7, Z. Tang130, M. Tarhini117, M.G. Tarzila49, A. Tauro35, G. Tejeda Muñoz46, A. Telecsa35, L. Terlizzi25, C. Terrevo127, G. Tersimonov3, S. Thakur142, D. Thomas121, F. Thoresen91, R. Tielent137, A. Tikhonov46, A.R. Timmins127, M. Tkacik119, A. Toia69, N. Topilskaya64, M. Topp53, F. Torales-Acosta19, S.R. Torres89, A. Trirírío33,57, S. Tripathy70, T. Tripathy50, S. Trogolo28, G. Trombetta34, L. Tropp39, V. Trubnikov83, W.H. Trzaska128, T.P. Trzciński143, B.A. Trzeciak38, A. Tumkin111, R. Turrisi58, T.S. Tveten20, K. Ulland21, E.N. Umana127, A. Uras137, G.L. Uss23, M. Vala39, N. Valle29, S. Vallero60, N. van der Kolk63, L.V.R. van Doremalen63, M. van Leeuwen92, P. Vande Vyvere136, D. Varga146, Z. Varga146, M. Varga-Kofarago146, A. Vargas46, M. Vasileior6, A. Vasilio90, O. Vázquez-Doe107, V. Vechnernin115, E. Vercellin25, S. Vergara Limón6, L. Vermunt3, R. Vértes146, M. Verwiebe63, L. Vickovic66, Z. Vilakazi133, O. Villalobos Baillie133, G. Vino54, A. Vinogradov90, T. Virgili30, V. Vislavicius91, A. Vodopyanov76, B. Volke35, M.A. Völkl105, K. Voloshin48, A.A. Voloshin144, G. Volpe34, B. von Halle115, I. Vorobyev107, D. Voscek119, J. Vrláková39, B. Wagner21, M. Weber116, A. Wegrynyn35, S.C. Wenzel35, J.P. Wessels145, J. Wiechula19, J. Wikne29, G. Wilk87, J. Wilkinson109, G.A. Willsen145, E. Willsher113, B. Windelband106, M. Winn139, W.E. Witt112, J.R. Wright121, Y. Wu130, R. Xu7, S. Yalcin28, Y. Yamaguchi47, K. Yamakawa47, S. Yang21, S. Yano147,319, Z. Yin7, H. Yokoyama63, I.-K. Yoo17, J.H. Yoon139, S. Yuan21, A. Yurecic106, V. Yurchenko3, V. Zaccolo24, A. Zaman14, C. Zampolli35, H.J.C. Zanoli63, N. Zardoshti35, A. Zarochnetsev115, P. Závada67, N. Zaviyalov111, H. Zbroszycky143, M. Zhilov100, S. Zhang41, X. Zhang7, Y. Zhang30, V. Zherebcekvi115, Y. Zhi11, D. Zhou7, Y. Zhou31, J. Zhu7,9, Y. Zhu7, A. Zichichi26, G. Zinovjev3, N. Zurlo141

Affiliation notes

1 Deceased
2 Also at: Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Bologna, Italy
3 Also at: Dipartimento DET del Politecnico di Torino, Turin, Italy
4 Also at: M.V. Lomonosov Moscow State University, D.V. Skobeltsyn Institute of Nuclear, Physics,
Λ⁺ production in pp and p–Pb collisions at √s_{NN} = 5.02 TeV

ALICE Collaboration

Moscow, Russia

\(^V\) Also at: Institute of Theoretical Physics, University of Wroclaw, Poland

Collaboration Institutes

1 A.I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
2 AGH University of Science and Technology, Cracow, Poland
3 Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
4 Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India
5 Budker Institute for Nuclear Physics, Novosibirsk, Russia
6 California Polytechnic State University, San Luis Obispo, California, United States
7 Central China Normal University, Wuhan, China
8 Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
9 Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
10 Chicago State University, Chicago, Illinois, United States
11 China Institute of Atomic Energy, Beijing, China
12 Chungbuk National University, Cheongju, Republic of Korea
13 Comenius University Bratislava, Faculty of Mathematics, Physics and Informatics, Bratislava, Slovakia
14 COMSATS University Islamabad, Islamabad, Pakistan
15 Creighton University, Omaha, Nebraska, United States
16 Department of Physics, Aligarh Muslim University, Aligarh, India
17 Department of Physics, Pusan National University, Pusan, Republic of Korea
18 Department of Physics, Sejong University, Seoul, Republic of Korea
19 Department of Physics, University of California, Berkeley, California, United States
20 Department of Physics, University of Oslo, Oslo, Norway
21 Department of Physics and Technology, University of Bergen, Bergen, Norway
22 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
24 Dipartimento di Fisica dell’Università and Sezione INFN, Trieste, Italy
25 Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
26 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Bologna, Italy
27 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Catania, Italy
28 Dipartimento di Fisica e Astronomia dell’Università and Sezione INFN, Padova, Italy
29 Dipartimento di Fisica e Nucleare e Teorica, Università di Pavia and Sezione INFN, Pavia, Italy
30 Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
31 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
32 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
33 Dipartimento di Scienze MIFT, Università di Messina, Messina, Italy
34 Dipartimento Interateneo di Fisica ‘M. Merlin’ and Sezione INFN, Bari, Italy
35 European Organization for Nuclear Research (CERN), Geneva, Switzerland
36 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
37 Faculty of Engineering and Science, Western Norway University of Applied Sciences, Bergen, Norway
38 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
39 Faculty of Science, P.J. Šafárik University, Košice, Slovakia
40 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
41 Fudan University, Shanghai, China
42 Gangneung-Wonju National University, Gangneung, Republic of Korea
43 Gauhati University, Department of Physics, Guwahati, India
44 Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn,
Λ⁺ production in pp and p–Pb collisions at √NN = 5.02 TeV

ALICE Collaboration

45 Helsinki Institute of Physics (HIP), Helsinki, Finland
46 High Energy Physics Group, Universidad Autónoma de Puebla, Puebla, Mexico
47 Hiroshima University, Hiroshima, Japan
48 Hochschule Worms, Zentrum für Technologietransfer und Telekommunikation (ZTT), Worms, Germany
49 Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania
50 Indian Institute of Technology Bombay (IIT), Mumbai, India
51 Indian Institute of Technology Indore, Indore, India
52 Indonesian Institute of Sciences, Jakarta, Indonesia
53 INFN, Laboratori Nazionali di Frascati, Frascati, Italy
54 INFN, Sezione di Bari, Bari, Italy
55 INFN, Sezione di Bologna, Bologna, Italy
56 INFN, Sezione di Cagliari, Cagliari, Italy
57 INFN, Sezione di Catania, Catania, Italy
58 INFN, Sezione di Padova, Padova, Italy
59 INFN, Sezione di Roma, Rome, Italy
60 INFN, Sezione di Torino, Turin, Italy
61 INFN, Sezione di Trieste, Trieste, Italy
62 Inha University, Incheon, Republic of Korea
63 Institute for Gravitational and Subatomic Physics (GRASP), Utrecht University/Nikhef, Utrecht, Netherlands
64 Institute for Nuclear Research, Academy of Sciences, Moscow, Russia
65 Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
66 Institute of Physics, Homi Bhabha National Institute, Blubaneswar, India
67 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
68 Institute of Space Science (ISS), Bucharest, Romania
69 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
70 Instituto de Ciencias Nucléares, Universidad Nacional Autónoma de México, Mexico City, Mexico
71 Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
72 Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
73 iThemba LABS, National Research Foundation, Somerset West, South Africa
74 Jeonbuk National University, Jeonju, Republic of Korea
75 Johann-Wolfgang-Goethe Universität Frankfurt Institut für Informatik, Fachbereich Informatik und Mathematik, Frankfurt, Germany
76 Joint Institute for Nuclear Research (JINR), Dubna, Russia
77 Korea Institute of Science and Technology Information, Daejeon, Republic of Korea
78 KTO Karatay University, Konya, Turkey
79 Laboratoire de Physique des 2 Infinis, Irène Joliot-Curie, Orsay, France
80 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
81 Lawrence Berkeley National Laboratory, Berkeley, California, United States
82 Lund University Department of Physics, Division of Particle Physics, Lund, Sweden
83 Moscow Institute for Physics and Technology, Moscow, Russia
84 Nagasaki Institute of Applied Science, Nagasaki, Japan
85 Nara Women’s University (NWU), Nara, Japan
86 National and Kapodistrian University of Athens, School of Science, Department of Physics, Athens, Greece
87 National Centre for Nuclear Research, Warsaw, Poland
88 National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, India
89 National Nuclear Research Center, Baku, Azerbaijan
90 National Research Centre Kurchatov Institute, Moscow, Russia
91 Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
92 Nikhef, National institute for subatomic physics, Amsterdam, Netherlands
93 NRC Kurchatov Institute IHEP, Protvino, Russia
94 NRC «Kurchatov» Institute - ITEP, Moscow, Russia
Λ_+^+ production in pp and p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

95 NRNU Moscow Engineering Physics Institute, Moscow, Russia
96 Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
97 Nuclear Physics Institute of the Czech Academy of Sciences, Rež u Prahy, Czech Republic
98 Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
99 Ohio State University, Columbus, Ohio, United States
100 Petersburg Nuclear Physics Institute, Gatchina, Russia
101 Physics Department, Faculty of science, University of Zagreb, Zagreb, Croatia
102 Physics Department, Panjab University, Chandigarh, India
103 Physics Department, University of Jammu, Jammu, India
104 Physics Department, University of Rajasthan, Jaipur, India
105 Physikalisches Institut, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
106 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
107 Physik Department, Technische Universität München, Munich, Germany
108 Politecnico di Bari and Sezione INFN, Bari, Italy
109 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
110 Rudjer Bošković Institute, Zagreb, Croatia
111 Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
112 Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
113 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
114 Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
115 St. Petersburg State University, St. Petersburg, Russia
116 Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
117 SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, Nantes, France
118 Suranaree University of Technology, Nakhon Ratchasima, Thailand
119 Technical University of Košice, Košice, Slovakia
120 The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
121 The University of Texas at Austin, Austin, Texas, United States
122 Universidad Autónoma de Sinaloa, Culiacán, Mexico
123 Universidade de São Paulo (USP), São Paulo, Brazil
124 Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
125 Universidade Federal do ABC, Santo Andre, Brazil
126 University of Cape Town, Cape Town, South Africa
127 University of Houston, Houston, Texas, United States
128 University of Jyväskylä, Jyväskylä, Finland
129 University of Liverpool, Liverpool, United Kingdom
130 University of Science and Technology of China, Hefei, China
131 University of South-Eastern Norway, Tonsberg, Norway
132 University of Tennessee, Knoxville, Tennessee, United States
133 University of the Witwatersrand, Johannesburg, South Africa
134 University of Tokyo, Tokyo, Japan
135 University of Tsukuba, Tsukuba, Japan
136 Université Clermont Auvergne, CNRS/IN2P3, LPC, Clermont-Ferrand, France
137 Université de Lyon, CNRS/IN2P3, Institut de Physique des 2 Infinis de Lyon , Lyon, France
138 Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France, Strasbourg, France
139 Université Paris-Saclay Centre d’Etudes de Saclay (CEA), IRFU, Département de Physique Nucléaire (DPhN), Saclay, France
140 Università degli Studi di Foggia, Foggia, Italy
141 Università di Brescia and Sezione INFN, Brescia, Italy
142 Variable Energy Cyclotron Centre, Homi Bhabha National Institute, Kolkata, India
143 Warsaw University of Technology, Warsaw, Poland
144 Wayne State University, Detroit, Michigan, United States
145 Westfälische Wilhelms-Universität Münster, Institut für Kernphysik, Münster, Germany
146 Wigner Research Centre for Physics, Budapest, Hungary
147 Yale University, New Haven, Connecticut, United States
Λ_c^+ production in pp and p–Pb collisions at $\sqrt{s_{\text{NN}}} = 5.02$ TeV

ALICE Collaboration

148 Yonsei University, Seoul, Republic of Korea