Five MDM4 gene polymorphisms on cancer risk: An updated systematic review and meta-analysis

Yaxuan Wang, Zhan Yang, Xueliang Chang, Jingdong Li and Zhenwei Han

Abstract
Purpose: The study aims to provide a comprehensive account of the association of five MDM4 gene polymorphisms (rs1380576, rs1563828, rs10900598, rs11801299, and rs4245739) with susceptibility to cancer.
Methods: A literature search for eligible candidate gene studies published before 27 February 2021 was conducted in PubMed, Medline and Web of Science. The following combinations of main keywords were used: (MDM4 OR MDMX OR HDMX OR mouse double minute 4 homolog) AND (polymorphism OR mutation OR variation OR SNP OR genotype) AND (cancer OR tumor OR neoplasm OR malignancy OR carcinoma OR adenocarcinoma). Potential sources of heterogeneity were sought out via meta-regression, subgroup and sensitivity analysis.
Results: Overall, a total of 15 articles with 21,365 cases and 29,280 controls for five polymorphisms of the MDM4 gene were enrolled. In the stratified analysis of rs1380576, we found that Asians might have less susceptibility to cancer. We found that rs4245739 was correlated with a decreased risk of cancer for Asians and breast cancer susceptibility. However, for other polymorphisms, the results showed no significant association with cancer risk.
Conclusion: MDM4 rs1380576 polymorphism is negatively associated with the risk of cancer in the Asian population. MDM4 rs4245739 polymorphism is inversely associated with cancer risk for Asians and breast cancer susceptibility.

Keywords
Mouse double minute 4 homolog, MDM4, cancer, single-nucleotide polymorphism, meta-analysis

Introduction
Murine double minute 4 (MDM4), also known as MDMX or HDMX, is a structurally homologous protein of murine double minute 2 (MDM2).1 MDM4 shares an N-terminal p53-binding domain with MDM2, which is the major negative regulator of TP53 during various malignancies.2 Overexpressed MDM4 has been observed in many types of cancer, which might lead to the decrease of p53 activity and tumorigenesis.3,4 The presence of single nucleotide polymorphism (SNP) of MDM4 may affect its protein level, which could affect the expression of the tumor suppressor gene TP53 in various types of cancers.

Recently, many studies have demonstrated the association between MDM4 polymorphisms and risks of various cancers. However, these results are inconsistent, which might be due to the heterogeneity within cancer types, ethnicities, genotyping, source of control, HWE, small sample sizes, data source, and so on. Previous meta-analysis included many studies with incomplete data or obvious heterogeneity, resulting in low reliability of the results.5-8 Recently, more consistent studies about this topic were published. These studies yielded findings inconsistent with previous results. Hashemi et al.9 reported that rs4245739 and
rs11801299 had no significant correlation with breast cancer (BC) risk, while rs1380576 might be a protective factor for BC risk. Zhao et al.10 reported that rs4245739 might play a protective role in colorectal cancer risk. Mohammad Khanlou et al.11 reported that rs4245739 had no significant effect in thyroid cancer. To eliminate this inconsistency, it is necessary to update the meta-analysis after controlling the heterogeneity to accurately determine the association between genetic variation of MDM4 gene and cancer susceptibility.

Methods

Literature search
We conducted a systematic literature search on PubMed, Medline, and Web of Science to retrieve all eligible publications on the association between MDM4 polymorphisms and the risk of cancer (up to 27 February 2021) with the following keywords: (MDM4 OR MDMX OR HDMX OR mouse double minute 4 homolog) AND (polymorphism OR mutation OR variation OR SNP OR genotype) AND (cancer OR tumor OR neoplasm OR malignancy OR carcinoma OR adenocarcinoma). The language of enrolled studies was restricted to English. After careful screening, five polymorphisms were left for further investigation.

Inclusion criteria and exclusion criteria
Articles enrolled in our meta-analysis satisfied the following inclusion criteria: (a) case–control studies that evaluated the association between MDM4 polymorphisms and cancer risk; (b) publications focusing on population genetic polymorphisms; (c) articles with sufficient genotype data to assess odds ratios (ORs) and the corresponding 95% confidence intervals (CIs); and (d) the control subjects satisfied the HWE. The major exclusion criteria were: (a) case-only studies, case reports or reviews; (b) studies without raw data for the MDM4 genotype; and (c) combined with other influencing factors.

Data extraction
Two investigators (YW and ZY) independently extracted the data. All the case–control studies satisfied the inclusion criteria and consensus for any controversy was achieved. The data from the eligible articles comprise the first author’s name, year of publication, ethnicity, source of control, cancer type and numbers of cases and controls in MDM4 genotypes. Ethnicity was categorized as ‘Asian’, ‘Caucasian’, and ‘Iranian-Azeri’.

Statistical analysis
The risk between the MDM4 polymorphisms and cancer was evaluated using summary ORs and the corresponding 95% CIs in allelic (B vs. A), dominant (BA + BB vs. AA), and recessive (BB vs. BA + AA) models (A: wild allele; B: mutated allele). Cochran’s Q-statistic test was used to assess the heterogeneity between studies, and the inconsistency was quantified with the I² statistic. The substantial heterogeneity was considered significant when I² > 50% or P_H ≤ 0.1; then, a random effects model was used; otherwise, the fixed effects model was applied. Meta-regression analysis was performed to determine the potential sources of heterogeneity. Subgroup meta-analysis was performed by cancer type, ethnicity, genotyping, and the source of control. We also conducted sensitivity analysis to assess stability of the results by omitting one study each time to exclude studies. HWE was estimated by the asymptotic test, and deviation was considered when P < 0.05. The potential publication bias of the eligible studies was evaluated by Begg’s and Egger’s regression test quantitatively. The data was analyzed using the Stata 14.0 software (version 14.0; Stata Corporation, College Station, Texas, USA). A two-tailed P < 0.05 was considered statistically significant.

Results

Main characteristics of the enrolled studies
The study selection processes were presented in Figure 1. For polymorphisms of MDM4 gene (rs1380576, rs1563828, rs10900598, rs11801299, and rs4245739), a total of 15 articles (including 29 case–control studies) with 21,365 cases and 29,280 controls met the inclusion criteria.9-23 A total of 14 studies were performed in Asians, 11 studies were performed in Caucasians, and four studies in Iranian-Azeri. Controls of 19 studies were population-based controls and 10 studies were hospital-based controls. All studies were in compliance with HWE. Table 1 showed the characteristics of all the eligible studies and genotype frequency distributions of the five MDM4 polymorphisms included in our meta-analysis. The Newcastle-Ottawa scale (NOS) was used to evaluate the quality of the enrolled studies, as shown in Supplementary Table 1.

Quantitative synthesis
rs1380576. The pooled results based on three included studies (including 2278 cases and 2400 controls) indicated that no significant association between rs1380576 polymorphism and cancer risk was found.12,15,16 However, in the stratification analysis by ethnicity, we observed that the Asian group was significantly related to a reduced risk of cancer in a recessive model (BB vs. AA + AB: OR = 0.74, 95% CI = 0.57–0.96, P = 0.023, Supplementary Figure 1). Moreover, when the subgroup analysis was performed based on source of controls, the population-based control group was significantly related to a decreased risk of cancer in a recessive model (BB vs. AA + AB:
OR = 0.74, 95% CI = 0.57–0.96, \(P = 0.023 \) (Supplementary Table 2).

rs1563828. The pooled results based on three included studies (including 517 cases and 1798 controls) indicated that no significant association between rs1563828 polymorphism and cancer risk was found.\(^{13,14}\) Further subgroup analysis by ethnicity and genotyping also indicated that no significant result was uncovered (Supplementary Table 3).

rs10900598. The pooled results based on two included studies (including 2152 cases and 2252 controls) suggested no significant association between rs1563828 polymorphism and cancer risk\(^{12,15}\) (Supplementary Table 4).

rs11801299. The pooled results based on four included studies (including 2542 cases and 2618 controls) indicated that no significant association between rs11801299 polymorphism and risk of cancer was uncovered.\(^{9,12,15,16}\) Moreover, in the subgroup analysis by ethnicity, source of control, and genotyping, similar results were found (Supplementary Table 5).

rs4245739. The pooled results based on 17 included studies (including 13,876 cases and 20,212 controls) indicated that rs4245739 was significantly related to a reduced risk of cancer in allelic contrast (B vs. A: OR = 0.83, 95% CI = 0.75–0.92, \(P = 0.000 \)) and dominant model (AB + BB vs. AA: OR = 0.81, 95% CI = 0.71–0.91, \(P = 0.001 \))\(^{9,11,17-23}\) Then, in the stratification analysis by cancer type, we observed that rs4245739 polymorphism was significantly related to a decreased risk of breast cancer in a recessive model (BB vs. AA + AB: OR = 0.75, 95% CI = 0.59–0.95, \(P = 0.019 \), Figure 2). In addition, in the stratification analysis by ethnicity, we observed

Figure 1. Flow chart of studies selection process for mouse double minute 4 homolog gene polymorphisms.
that rs4245739 polymorphism was significantly related to a decreased cancer risk for Asians in allelic contrast (B vs. A: OR = 0.56, 95% CI = 0.48–0.66, P = 0.000, Figure 3), dominant model (BB + AB vs. AA: OR = 0.54, 95% CI = 0.46–0.64, P = 0.000) and recessive model (BB vs. AA + AB: OR = 0.56, 95% CI = 0.32–0.98, P = 0.041). Moreover, when the subgroup analysis was performed based on source of controls, the population-based control group was significantly related to a decreased risk of cancer in allelic contrast (B vs. A: OR = 0.73, 95% CI = 0.63–0.84, P = 0.000), dominant model (BB + AB vs. AA: OR = 0.69, 95% CI = 0.58–0.82, P = 0.000) (Table 2).

Sensitivity analysis and publication bias

Sensitivity analyses were performed to evaluate the influence of each separate case–control study. The results showed that there was no material alteration in corresponding pooled ORs for rs1380576, rs1563828, rs10900598, rs11801299, and rs4245739 (Supplementary Figures 2 to 6). In addition, Begg’s test and Egger’s regression test were performed to evaluate the publication bias. As for rs1380576, rs1563828, rs10900598, and rs11801299, no evidence of publication bias was identified. However, publication bias was detected for rs4245739 (Supplementary Table 6 and Supplementary Figures 7 to 11).

Meta-regression analysis

Because of the high heterogeneity and publication bias in the meta-analysis of rs4245739, we performed a meta-regression to determine the potential source of heterogeneity. The main source of significant heterogeneity was ethnicity in allelic contrast (B vs. A: t = 5.17, 95% CI = 0.23–0.56, P = 0.000), dominant model (BB + AB vs. AA: t = 5.40, 95% CI = 0.25–0.58, P = 0.000; Supplementary Table 7 and Supplementary Figures 12 to 14)

The Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) checklist is reported in Supplementary Table 8.

Table 1. Characteristics of eligible case–control studies included in the meta-analysis.

SNP	First author	Year	Ethnicity	Source of control	Cancer type	Case	Control			
rs1380576	Yu	2011	Caucasian	HB	OC	487	477 111	518	455 106	Y
	Wang	2017	Asian	PB	OC	487	493 97	552	485 136	Y
	Yu	2019	Asian	PB	OC	77	39 10	71	59 18	Y
rs1563828	Zhang	2012	Asian	PB	OC	98	91 21	90	88 22	Y
	Thunell	2014	Caucasian	PB	OC	136	92 29	389	340 70	Y
	Thunell	2014	Caucasian	PB	OC	27	21 2	389	340 70	Y
rs10900598	Yu	2011	Caucasian	HB	OC	307	545 223	296	552 231	Y
	Wang	2017	Asian	PB	OC	547	447 83	604	462 107	Y
rs11801299	Yu	2011	Caucasian	HB	OC	684	351 40	665	376 38	Y
	Wang	2017	Asian	PB	OC	380	539 158	449	532 192	Y
	Hashemi	2018	Iranian-Azeri	HB	BC	183	75 6	164	50 4	Y
	Yu	2019	Asian	PB	OC	39	49 38	57	64 27	Y
rs4245739	Liu	2013	Asian	PB	BC	733	67 0	686	111 3	Y
	Liu	2013	Asian	PB	BC	278	22 0	501	96 3	Y
	Zhou	2013	Asian	PB	OC	501	37 2	478	70 2	Y
	Zhou	2013	Asian	PB	OC	529	56 3	510	88 2	Y
	Fan	2014	Asian	PB	OC	187	13 0	346	53 1	Y
	Gao	2015	Asian	PB	LC	297	22 1	548	90 2	Y
	Gao	2015	Asian	PB	LC	183	17 0	321	77 2	Y
	Gansmo	2015	Caucasian	PB	BC	996	643 108	1021	703 146	Y
	Gansmo	2015	Caucasian	PB	OC	1412	927 161	1021	736 120	Y
	Gansmo	2015	Caucasian	PB	OC	823	600 108	2042	1439 266	Y
	Gansmo	2015	Caucasian	PB	LC	715	515 101	2042	1439 266	Y
	Gansmo	2016	Caucasian	HB	OC	757	541 106	1021	703 146	Y
	Gansmo	2016	Caucasian	HB	OC	716	564 105	1021	703 146	Y
	Pedram	2016	Iranian-Azeri	HB	BC	123	87 10	165	81 14	Y
Mohammad Khanlou	2017	Iranian-Azeri	HB	OC	63	34 5	144	76 12	Y	
Hashemi	2018	Iranian-Azeri	HB	OC	175	83 7	142	70 9	Y	
Zhao	2020	Asian	HB	OC	304	128 11	323	180 25	Y	

Abbreviations: SNP: single nucleic polymorphism; HWE: Hardy–Weinberg equilibrium; PB: population based; HB: hospital based; Y: yes; BC: breast cancer; LC: lung cancer; OC: other cancer.
Discussion

MDM4 is a structurally homologous protein of MDM2, and they share an N-terminal p53-binding domain. MDM4 can inhibit the degradation of MDM2 protein via the Really Interesting New Gene finger domain. The MDM4/MDM2 complex can induce the degradation of TP53 through the ubiquitin–proteasome pathway to inhibit TP53 activities. TP53 is one of the most important tumor suppressor genes. Therefore, MDM4 may play an important role in tumorigenesis. Many studies have investigated the relationship between the SNP polymorphisms of MDM4 gene and cancer risk. However, due to incomplete data or obvious heterogeneity, the results are still controversial. Recently, more consistent studies about this topic have been published. Therefore, we conducted this updated meta-analysis after controlling the heterogeneity to accurately determine the association between genetic variation of MDM4 gene and cancer susceptibility.

In this study, a total of 15 articles including 29 case–control studies were enrolled to validate the association between five MDM4 gene polymorphisms (rs1380576, rs1563828, rs10900598, rs11801299, and rs4245739) and the risk of cancer. We identified that rs4245739 was inversely associated with the risk of cancer under different allele contrast and dominant model. However, for MDM4 rs1380576, rs1563828, rs10900598, and rs11801299 polymorphisms, no significant association with cancer risk was uncovered. In subgroup meta-analysis stratified by ethnicity and source of control, we found that rs1380576 has significantly reduced cancer susceptibility in Asians and population-based control subgroups in a recessive model. Wang et al.8 and Zhai et al.7 reported that rs1380576 polymorphism was not associated with cancer susceptibility. Wang et al.25,26 included two inadequate studies, one of which had insufficient data; the other had unmatched HWE. Zhai et al.26,27

![Figure 2. Forest plot of mouse double minute 4 homolog rs4245739 polymorphism and cancer risk in recessive model stratified by cancer type.](image)

Note: BC, breast cancer; LC, lung cancer; OC, other cancer.
also included two inadequate studies, one of which had duplicate data; the other did not match HWE. We only included three studies with less heterogeneity. Despite the small sample size, we still could conclude that rs1380576 might reduce cancer susceptibility in the Asian population. However, more studies are needed to confirm this result.

For MDM4 rs1563828 and rs10900598, few studies reported their relationship with cancer in each group. No significant results were found. We excluded studies with high heterogeneity and added new studies with less heterogeneity. Because of the small sample size, we cannot draw any conclusions based on the current literature.

For MDM4 rs11801299, Wang et al. and Zhai et al. included only one sufficient study. Three more studies about MDM4 rs11801299 have been published recently. Our results showed that MDM4 rs11801299 was not associated with cancer susceptibility in various models. More larger sample size studies are needed for further evaluation.

For MDM4 rs4245739, we strictly followed the inclusion and exclusion criteria to include the studies. We excluded a large sample size study because of unclear control, which could lead to great bias. We also excluded a study reported by Wynendaele et al., which was not a human case-control study. Our meta-analysis showed that rs4245739 had significantly reduced cancer susceptibility in allele contrast and dominant model. However, publication bias was detected for rs4245739 and meta-regression analysis revealed that the main source of significant heterogeneity was ethnicity. In subgroup meta-analysis stratified by ethnicity, we found that rs4245739 showed significantly reduced cancer susceptibility in Asians. We also found that rs4245739 had significantly reduced breast cancer susceptibility in Asians. This result needs more large sample size studies for further evaluation.

In this study, we spent great effort in searching for eligible studies. We conducted a systematic and comprehensive
search to obtain more accurate and reliable results. We then used NOS to evaluate the quality of the included studies, and eliminated low-quality studies to improve overall research quality. In order to eliminate heterogeneity, meta-regression and subgroup analysis were performed. Sensitivity analysis was used to test the stability of the studies. In addition, Egger's and Begg's tests were used to evaluate publication bias. However, several limitations of this meta-analysis should be considered. First, the small sample size limited the reliability of the results. Second, we only evaluated the studies published in English language, which might influence the effects of the polymorphisms. Third, we could not get enough data to evaluate the relationship between MDM4 polymorphisms and cancer types. Fourth, publication bias was detected for rs4245739, which could lead to large deviations in the results. Fifth, we did not address the linkage disequilibrium, which might not properly reflect the function. Finally, well-designed case-control studies with larger sample size are needed to confirm these findings.

Conclusion

Our meta-analysis suggests that MDM4 rs1380576 polymorphism is negatively associated with the risk of cancer in the Asian population. However, MDM4 rs4245739 polymorphism is inversely associated with cancer risk. Further well-designed case-control studies with larger sample size are needed to confirm these findings. Future large sample case-control studies are needed to investigate the functions of MDM4 polymorphisms.

Acknowledgment

We thank Dr. Chawnshang Chang at the University of Rochester Medical Center for helping with the preparation of the manuscript.

Author Notes

YW and ZY authors contributed equally to this work.

Abbreviations: n: number; BC: breast cancer; LC: lung cancer; OC: other cancer; PB: population based; HB: hospital based; OR: odds ratio; CI: confidence interval.

Table 2. Meta-analysis of rs4245739.

Variables	Allele contrast	Dominant model	Recessive model				
	n	p, OR(99% CI)	p (Q test), I²	p, OR(99% CI)	p (Q test), I²	p, OR(99% CI)	p (Q test), I²
Total	17	0.000, 0.83(0.75, 0.92)	0.000, 79.7%	0.001, 0.81(0.71, 0.91)	0.000, 80.2%	0.222, 0.94(0.85, 1.04)	0.862, 0.0%
Cancer type							
BC	5	0.075, 0.77(0.58, 1.03)	0.000, 82.6%	0.140, 0.78(0.56, 1.09)	0.000, 83.4%	0.019, 0.75(0.59, 0.95)	0.763, 0.0%
LC	3	0.148, 0.61(0.31, 1.19)	0.000, 90.4%	0.142, 0.59(0.29, 1.20)	0.000, 90.5%	0.600, 1.07(0.84, 1.35)	0.814, 0.0%
OC	9	0.048, 0.89(0.80, 1.00)	0.000, 72.8%	0.051, 0.87(0.75, 1.00)	0.000, 75.1%	0.576, 0.97(0.86, 1.09)	0.902, 0.0%
Ethnicity							
Asian	8	0.000, 0.56(0.48, 0.66)	0.000, 85.0%	0.252, 0.70(0.46, 0.46)	0.252, 22.2%	0.041, 0.56(0.32, 0.98)	0.892, 0.0%
Caucasian	6	0.814, 0.99(0.95, 1.04)	0.223, 28.3%	0.196, 0.90(0.94, 1.07)	0.196, 31.9%	0.479, 0.96(0.87, 1.07)	0.602, 0.0%
Iranian-Azeri	3	0.682, 1.04(0.86, 1.26)	0.412, 0.0%	0.314, 1.10(0.86, 1.41)	0.314, 13.6%	0.421, 0.80(0.46, 1.38)	0.862, 0.0%
Source of control							
PB	11	0.000, 0.73(0.63, 0.84)	0.000, 84.3%	0.000, 0.69(0.58, 0.82)	0.000, 83.9%	0.452, 0.95(0.85, 1.08)	0.769, 0.0%
HB	6	0.787, 0.98(0.87, 1.11)	0.000, 52.6%	0.874, 1.01(0.87, 1.18)	0.050, 54.8%	0.294, 0.91(0.77, 1.08)	0.644, 0.0%

The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Funding
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work has been supported by The National Natural Science Foundation of China (No. 81802544), and Hebei Province Natural Science Foundation (H2020206146).

ORCID iD
Zhenwei Han https://orcid.org/0000-0002-1247-7004

Supplemental material
Supplemental material for this article is available online.

References
1. Leslie PL, Ke H and Zhang Y. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization. J Biol Chem 2015; 290: 12941–12950.
2. Wade M, Wang YV and Wahl GM. The p53 orchestra: Mdm2 and Mdmx set the tone. Trends Cell Biol 2010; 20: 299–309.
3. Wade M, Li YC and Wahl GM. MDM2, MDMX and p53 in oncogenesis and cancer therapy. Nat Rev Cancer 2013; 13: 83–96.
4. Valetin-Vega YA, Barboza JA, Chau GP, El-Naggar AK and Lozano G. High levels of the p53 inhibitor MDM4 in head and neck squamous carcinomas. Hum Pathol 2007; 38: 1553–1562.
5. Jin X, Zhao W, Zheng M, Zhou P and Niu T. The role of MDM4 SNP34091 A>C polymorphism in cancer: a meta-analysis on 19,328 patients and 51,058 controls. Int J Biol Markers 2017; 32: e62–e67.
6. Xu C, Zhu J, Fu W, et al. MDM4 Rs4245739 A > C polymorphism correlates with reduced overall cancer risk in a meta-analysis of 69477 subjects. Oncotarget 2016; 7: 71718–71726.
7. Zhai Y, Dai Z, He H, et al. A PRISMA-compliant meta-analysis of MDM4 genetic variants and cancer susceptibility. Oncotarget 2016; 7: 73935–73944.
8. Wang MJ, Luo YJ, Shi ZY, et al. The associations between MDM4 gene polymorphisms and cancer risk. Oncotarget 2016; 7: 55611–55623.
9. Hashemi M, Sanaei S, Hashemi SM, Eskandari E and Bahari G. Association of single nucleotide polymorphisms of the MDM4 gene With the susceptibility to breast cancer in a Southeast Iranian population sample. Clin Breast Cancer 2018; 18: e883–e891.
10. Zhao DM, Diao YE and Xu Q. Association of MDM4 gene rs4245739 polymorphism with the risk and clinical characteristics of colorectal cancer in a Chinese Han population. Pharmgenomics Pers Med 2020; 13: 673–678.
11. Mohammad Khanlou Z, Pouladi N, Hosseinpour Feizi M and Pedram N. Lack of associations of the MDM4 rs4245739 polymorphism with risk of thyroid cancer among Iranian-Azeri patients: a case-control study. Asian Pac J Cancer Prev 2017; 18: 1133–1138.
12. Yu H, Wang LE, Liu Z, et al. Polymorphisms of MDM4 and risk of squamous cell carcinoma of the head and neck. Pharmacogenet Genomics 2011; 21: 388–396.
13. Zhang YW, Guan J, Zhang Y, Qiu YR and Chen LH. Role of an MDM4 polymorphism in the early age of onset of nasopharyngeal carcinoma. Oncol Lett 2012; 3: 1115–1118.
14. Thunell LK, Bivik C, Waster P, et al. MDM2 SNP309 promoter polymorphism confers risk for hereditary melanoma. Melanoma Res 2014; 24: 190–197.
15. Wang MY, Jia M, He J, et al. MDM4 Genetic variants and risk of gastric cancer in an eastern Chinese population. Oncotarget 2017; 8: 19547–19555.
16. Yu F, Jiang Z and Song A. Association of rs11801299 and rs1380576 polymorphisms at MDM4 with risk, clinicopathological features and prognosis in patients with retinoblastoma. Cancer Epidemiol 2019; 58: 153–159.
17. Liu J, Tang X, Li M, et al. Functional MDM4 rs4245739 genetic variant, alone and in combination with P53 Arg72Pro polymorphism, contributes to breast cancer susceptibility. Breast Cancer Res Treat 2013; 140: 151–157.
18. Zhou L, Zhang X, Li Z, et al. Association of a genetic variation in a mir-191 binding site in MDM4 with risk of esophageal squamous cell carcinoma. PLOS One 2013; 8: e64331.
19. Fan C, Wei J, Yuan C, et al. The functional TP53 rs1042522 and MDM4 rs4245739 genetic variants contribute to Non-Hodgkin lymphoma risk. PLOS One 2014; 9: e107047.
20. Gao F, Xiong X, Pan W, et al. A regulatory MDM4 genetic variant locating in the binding sequence of multiple MicroRNAs contributes to susceptibility of small cell lung cancer. PLOS One 2015; 10: e0135647.
21. Gansmo LB, Romundstad P, Birkeland E, et al. MDM4 SNP34091 (rs4245739) and its effect on breast-, colon-, lung-, and prostate cancer risk. Cancer Med 2015; 4: 1901–1907.
22. Gansmo LB, Bjornslett M, Halle MK, et al. The MDM4 SNP34091 (rs4245739) C-allele is associated with increased risk of ovarian-but not endometrial cancer. Tumour Biol 2016; 37: 10697–10702.
23. Pedram N, Pouladi N, Feizi MA, Montazeri V, Sakhinia E and Estiar MA. Analysis of the association between MDM4 rs4245739 single nucleotide polymorphism and breast cancer susceptibility. Clin Lab 2016; 62: 1303–1308.
24. Hu Z, Wu C, Shi Y, et al. A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 2011; 43: 792–796.
25. Wang Z, Sturgis EM, Zhang Y, et al. Combined p53-related genetic variants together with HPV infection increase oral cancer risk. Int J Cancer 2012; 131: E251–E258.
26. Wu GC and Zhang ZT. Genetic association of single nucleotide polymorphisms in P53 pathway with gastric cancer risk in a Chinese Han population. Med Oncol 2015; 32.
27. Yu H, Sturgis EM, Liu Z, Wang LE, Wei Q and Li G. Modifying effect of MDM4 variants on risk of HPV16-associated squamous cell carcinoma of oropharynx. Cancer 2012; 118: 1684–1692.
28. Garcia-Closas M, Couch FJ, Lindstrom S, et al. Genome-wide association studies identify four ER negative-specific breast cancer risk loci. Nat Genet 2013; 45: 392–398. 8e1–2.
29. Wynendaele J, Bohnke A, Leucci E, et al. An illegitimate microRNA target site within the 3′ UTR of MDM4 affects ovarian cancer progression and chemosensitivity. Cancer Res 2010; 70: 9641–9649.