An update on the feeding habits of fish in the Mediterranean Sea (2002-2015)

KARACHLE P.
HCMR, Anavissos, Hellas

STERGIOU K.
Aristotle University of Thessaloniki, School of Biology, Department of Zoology, Laboratory of Ichthyology, Box 134, 54124, Thessaloniki

https://doi.org/10.12681/mms.1968

To cite this article:

KARACHLE, P., & STERGIOU, K. (2017). An update on the feeding habits of fish in the Mediterranean Sea (2002-2015). Mediterranean Marine Science, 18(1), 43-52. doi:https://doi.org/10.12681/mms.1968
An update on the feeding habits of fish in the Mediterranean Sea (2002-2015)

P.K. KARACHLE1 and K.J. STERGIOU1,2

1 Institute of Marine Biological Resources and Inland Waters, Hellenic Centre for Marine Research, 46.7 km Athens Sounio ave., P.O. Box 712, 19013 Anavyssos Attiki, Greece
2 Aristotle University of Thessaloniki, School of Biology, Department of Zoology, Laboratory of Ichthyology, Box 134, 54124, Thessaloniki, Greece

Corresponding author: pkarachle@hcmr.gr

Handling Editor: Argyro Zenetos

Received: 3 November 2016; Accepted: 16 December 2016; Published on line: 9 February 2017

Abstract

In this study we updated a previous compilation of the feeding habits and trophic levels (TROPHs) of Mediterranean fish. In total, 178 publications were retrieved and analysed. Collected data refer to 148 species, with a TROPH value ranging from 2.00 to 4.54. The analysis of the TROPH distribution verified the previously proposed classification of species into functional trophic groups. Overall, information on diet composition exists for 204 fish species out of >700 fishes from the Mediterranean, suggesting that feeding habits are understudied despite their importance in ecological applications and fisheries management. More than half (60.3%) of these species are classified as omnivores with a preference for animal material, 36.7% are carnivores, 2.0% are omnivores with a preference for plants, and two (i.e. Siganus luridus and S. rivulatus) are pure herbivores. Finally, recommendations for future research are given in view of filling information gaps.

Keywords: Feeding, trophic levels, functional trophic groups, Mediterranean.

Introduction

Feeding habits and trophic relations of fish have attracted attention for centuries, both in scientific essays (e.g. Aristotle (350 B.C.) Book 9, Chapter 2, 610b16: ‘Ὁ ὀψαλμός ἐστι τεῖς κρίτων πρὸς τοὺς ἔτοις κακωθεὶς γὰρ ὁ κρίττων’ (The stronger (fish) are hostile to the weaker; for the strong fish eat the others]) and literature (e.g. Shakespeare (1607-1608) (Act II, Scene I): ‘Master, I marvel how the fishes live in the sea’ ‘Why, as men do on land the great ones eat up the little ones’). Fish diets have been studied extensively, mainly by means of stomach content analysis, providing important information on the ecology, physiology and ethology of species, with wide ecological applications (see e.g. Stergiou & Karpouzi, 2002). Stergiou & Karpouzi (2002) reviewed all available relevant literature on feeding habits and estimated fractional trophic levels (TROPHs; see Pauly et al., 1998a,b, 2000a) for 148 fish species in the Mediterranean Sea. This work updates the compilation of Stergiou & Karpouzi (2002), reanalyses certain aspects using the combined data, and evaluates and further elaborates recommendations on future research on fish feeding habits.

Materials and Methods

Publications on feeding habits were gathered using Google, Google-scholar and Web of Science. Grey literature, mainly referring to publications in the proceedings of conferences and/or symposia, was also collected. The following search-key was used: ‘fishes AND Mediterranean feeding OR diet’, excluding the words “stable isotopes, reared, nutrition, lake, metabolic”, in order to discount publications referring to aquaculture and freshwater species. The search was conducted for the years 2002-2015, but information published during 2000-2001 was also cross-checked for publications that were not included in Stergiou & Karpouzi (2002).

Collected information was tabulated, following the table format (Tables 1A and 1B of Stergiou & Karpouzi (2002). Hence, for all species included therein, information on the study area and sampling period, as well as the sampling method and frequency was extracted from each publication. Length range and type, when reported, and sample size used were also recorded, along with the habitat type of each fish species (extracted from FishBase, www.fishbase.org; Froese & Pauly, 2016). Finally, the stomach content analysis method (including the vacuity coefficient when provided), main prey items and their contribution (by weight or/and number) were included in the table.

The fractional trophic level (TROPH) values were estimated using TrophLab and the Pauly et al. (2000b) equation:

$$\text{TROPH}_i = 1 - \sum_{j=1}^{G} \text{DC}_{ij} \times \text{TROPH}_j$$

where DC$_{ij}$ is the weight contribution of prey item j to the diet of species i, TROPH$_j$ is the trophic level of prey item j and G is the number of prey species included in the stomach of i. In addition, TrophLab provides an estimate of omnivory index (OI) is estimated as follows (Pauly et al., 2000b):

$$\text{OI} = \sum_{j=1}^{G} (\text{TROPH}_j - \text{TROPH})^2 \times \text{DC}_{ij}$$
and its square root is a standard error, i.e. \(\text{SE} = \sqrt{\text{OI}} \) (Christensen & Pauly, 1992).

Finally, the species were classified in functional trophic groups (FTGs), based on the scheme proposed by Stergiou & Kapouzi (2002): (a) herbivores (H; \(2.0 < \text{TROPH} < 2.1 \)), (b) omnivores with a preference for plants (OV; \(2.1 < \text{TROPH} < 2.9 \)), (c) omnivores with a preference for animal material (OA; \(2.9 < \text{TROPH} < 3.7 \)), (d) carnivores with a preference for decapods and fish (CD; \(3.7 < \text{TROPH} < 4.0 \)), and (e) carnivores with a preference for fish and cephalopods (CC; \(4.0 < \text{TROPH} \)).

Results and Discussion

Overall, 178 publications were retrieved. The annual number of publications generally increased with time during the past 40 years (Fig. 1). The annual mean number of publications for the period 2002-2015 was 12.1 (Standard Deviation, \(\text{SD} = 5.01 \)), which is two times higher than that for 1961-2002 (mean\(\pm \text{SD} = 5.67 \pm 2.90 \)), based on data from Stergiou & Karpouzi, 2002). There was a slight decline in the number of publications on feeding after 2010 (Fig. 1). This could be attributed to the fact that basic research on biological traits, especially studies at local scale and/or studies on non-commercial species are of low priority for major publishers (Stergiou & Tsikliras, 2006; Dimarchopoulou et al., 2016), despite their importance for marine ecology, modelling and ecosystem management (see also e.g. Pauly et al., 1998a,b; Stergiou & Karpouzi, 2002).

Out of the 178 publications, 290 datasets were extracted (Table 1; Table A online supplement), corresponding to 148 species (60 families, 21 Orders), 61 species of which are not included in Stergiou & Karpouzi (2002). Seventy three species were represented by only one dataset, whereas the largest number of datasets corresponded to *Arnoglossus laterna* and *Engraulis encrasicolus* (eight datasets each) (Table A online supplement). With respect to the spatial allocation of the datasets (Fig. 2), along the north-south Mediterranean axis, the vast majority of the datasets referred to the northern part of the Mediterranean Sea (230 datasets; 79.3%). Regarding the east-west axis, the number of datasets was higher in the Eastern Mediterranean (137 datasets; 47.2%), and decreased to 77 datasets (26.6%) in the Western Mediterranean, 40 datasets (13.8%) in the Central Mediterranean, 25 datasets (8.8%) in the Adriatic Sea and 12 datasets (4.2%) in the Marmara and Black Seas (Fig. 2).

The 290 datasets presented herein, include 320 subsets of feeding habits (Table 1; Table A online supplement). The sample size and length range of the studied specimens were reported by the original authors in 289 (90.6%) and 220 subsets (68.8%) out of the 320 subsets, respectively. The sampling gear used was reported in the vast majority

![Fig 1: Temporal distribution of publications referring to the feeding habits of fishes in the Mediterranean Sea. Blue bars refer to publications included in Stergiou & Karpouzi (2002), whereas red bars represent publications presented here.](http://epublishing.ekt.gr)
of subsets (287 subsets; 98.7%), whereas information on sampling frequency was provided in 162 subsets (50.6%). The method used for stomach content analysis (Table A online supplement) was almost always reported (310 subsets; 96.9%). Feeding habits were qualitatively studied in 217 subsets (67.8%) and quantitatively in 259 subsets (80.9%) (Table A online supplement). The stomach vacuity coefficient was estimated by the original authors in 242 subsets (75.6%) (Table A online supplement).

Fractional trophic levels (TROPHs) were estimated for 610 cases (Table 1; Table A online supplement). They ranged from 2.00±0.00 (for *Sarpa salpa*, *Siganus luridus* and *Siganus rivulatus*) to 4.54±0.60 (for *Lophius budegassa*) (Table A online supplement; Fig. 3). The dif-

Fig 2: Spatial distribution of datasets included in this study.

Fig 3: Distribution of trophic level (TROPH) estimates based on feeding habit studies in the Mediterranean Sea. Blue bars refer to estimates included in Stergiou & Karpouzi (2002), whereas red bars represent studies presented here. FTG=functional trophic group; H=pure herbivore 2.0<TROPH<2.1); OV=omnivore with preference to plants (2.1<TROPH<2.9); OA=omnivore with a preference for animal material (2.9<TROPH<3.7); CD=carnivore with a preference for decapods and fish (3.7<TROPH<4.0); and CC=carnivore with a preference for fish and cephalopods (4.0<TROPH<4.5); N=number of TROPH estimates; TROPH=m=mean TROPH; SD=standard deviation.

FTG	Stergiou & Karpouzi (2002)	This study	Combined			
	N	TROPH±SD	N	TROPH±SD	N	TROPH±SD
H	7	2.02±0.03	6	2.02±0.04	13	2.02±0.03
OV	6	2.59±0.18	25	2.56±0.22	31	2.56±0.21
OA	265	3.37±0.18	321	3.35±0.21	586	3.36±0.19
CD	67	3.84±0.08	73	3.86±0.08	140	3.85±0.08
CC	71	4.32±0.16	188	4.33±0.15	259	4.33±0.15
ference in TROPH estimates of the 87 species that are common in both studies, ranged from 0 (for four species, namely: Eutrigla gurnardus, Siganus luridus, Siganus rivulatus and Raja radula) to 0.96 (for Pagellus bogaraveo) (Table B online supplement). For the vast majority of the common species (82 out of 87 species; 94.3%) the difference in TROPH was less than 0.5 TROPH units, whereas only in five species this difference was >0.5 TROPH units (Fig. 4). Such differences could be attributed mainly to the different methodological approaches used for stomach content analyses, variations in the sample size and length range of the studied sample, as well as spatio-temporal differences in prey availability and use (e.g. Karachle & Stergiou, 2006, 2008). Thus, using similar protocols in diet studies, including the largest possible size range of adequate sample sizes, could result in minimizing differences in TROPH estimates. Nevertheless, the fact that the identified differences are relatively small further indicates that, when TROPH estimates are required for model development and are not available at local scale, then available values for similar ecosystems or generic estimates (such as those provided in FishBase) could be considered as good proxies.

The distribution of TROPH values in this study largely verified the functional trophic groups (FTGs) identified in Stergiou & Karpouzi (2002), given that similar distributional modes were identified in the two studies (Fig. 3). Overall, of the 148 species presented herein three were classified as herbivores (H), three as omnivores with a preference for plants (OV), 78 as omnivores with a preference for animal material (OA; 2.9<TROPH<3.7), 25 as carnivores with a preference for decapods and fish (CD), and 39 as carnivores with a preference for fish and cephalopods (CC). For 26 (29.9%) of the 87 common species in the two studies, there was a difference in FTG (Table B online supplement). For three species (i.e. Syngnathus typhle, Conger conger and Pagellus bogaraveo), this difference amounted to two FTGs, whereas for the remaining 23 species to one FTG (Table B online supplement).

Based on Stergiou & Karpouzi (2002) and this study, data on feeding habits in the Mediterranean exists for 204 fish species (Table 2).

Species	TROPH difference	Potential explanation
Pagellus bogaraveo	-0.96	length range
Boops boops	-0.61	sample size, method used for estimating diet composition
Gaidropsarus mediterraneus	-0.54	method used for estimating diet composition
Syngnathus typhle	0.80	length range, sample size
Parablennius gattorugine	0.89	length range, method used for estimating diet composition

Fig 4: Frequency distribution of the difference between the trophic level (TROPH) values for the 87 species that are common in Stergiou & Karpouzi (2002) and this study. All species with a TROPH difference >0.5 are given, along with the most probable explanation. Pictures of fishes are from FishBase (www.fishbase.org; Froese & Pauly, 2016).
Table 2. Minimum, maximum and mean trophic level estimated for 204 fishes, in alphabetic order, aggregated (included both in Stergiou & Karpouzi (2002) and this study). An asterisk (*) denotes species that are included only in this study, whereas a cross (+) indicates species that appear only in Stergiou & Karpouzi (2002). N=number of trophic level values estimates; min, max and mean=minimum, maximum and mean trophic level estimates; SD=standard deviation; SE=standard error; FTG=functional trophic group; H=pure herbivore 2.0<TROPH<2.1); OV= omnivore with a preference for plants (2.1<TROPH<2.9); OA=omnivore with a preference for animal material (2.9<TROPH<3.7); CD=carnivore with a preference for decapods and fish (3.7<TROPH<4.0); and CC=carnivore with a preference for fish and cephalopods (4.0<TROPH<4.5).

Species	N	min	max	mean	SD	SE	FTG
Alepocephalus rostratus+	4	3.39	3.91	3.56	0.2439	0.122	OA
Alosa fallax*	2	4.32	4.5	4.41	0.1273	0.09	CC
Anthis anthis*	1	3.54					OA
Aphanias fasciatus*	2	3.25	3.27	3.26	0.0141	0.01	OA
Aphia minuta*	1	3.09					OA
Apelitodon dentatus+	1	3.19					OA
Apongon imberbis	2	3.54	3.98	3.76	0.3111	0.22	CD
Arnoglossus laterna	12	3.21	4.35	3.71	0.4356	0.1258	CD
Arnoglossus thori	2	3.29	3.61	3.45	0.2263	0.16	OA
Athina bayeri+	1	3.3					OA
Batrhypterus mediterraneus+	1	3.2					OA
Belone belone*	3	3.16	3.5	3.38	0.1908	0.1102	OA
Boops boops	7	3.37	3.47	3.41	0.0358	0.0135	OA
Buena jeffreysi+	1	3.6					OA
Baglossidium luteum	7	3.13	3.31	3.21	0.0631	0.0238	OA
Callionymus risso+	1	3.09					OA
Caproscaphus aper+	2	3.16	3.21	3.19	0.0354	0.025	OA
Caranx crysos*	4	4.28	4.48	4.4	0.0835	0.0417	CC
Caranx rhonchus*	6	3.68	4.5	4.15	0.2901	0.1184	CC
Cataetys alleni+	1	3.1					OA
Centrophorus granulosus+	1	4.5					CC
Centrosynapsis coelolepis+	2	4.16	4.35	4.26	0.1344	0.095	CC
Cepola macrphthalma	6	3	3.15	3.09	0.0554	0.0226	OA
Chelidonichthys catus+	2	3.6	3.82	3.71	0.1556	0.11	CD
Chelidonichthys lucerna	7	3.4	3.91	3.69	0.1771	0.0669	OA
Chelidonichthys obscurus	6	3.2	3.73	3.41	0.1998	0.0816	OA
Chimaera monstrosa+	5	3.28	3.59	3.46	0.0898	0.0402	OA
Chromis chromis	3	3.18	4.21	3.55	0.5755	0.3323	OA
Citharus lenticula	12	3.47	4.49	4.15	0.3002	0.0866	CC
Clintraichus argenteus*	3	3.32	3.34	3.33	0.0115	0.0067	OA
Coelorinchus caesicolorinus	6	3.17	3.6	3.3	0.1785	0.0729	OA
Coelorinchus labiatus*	1	3.12					OA
Conger conger	21	3.2	4.49	4.08	0.3949	0.114	CC
Coris julis	6	3.27	3.63	3.39	0.1338	0.0546	OA
Coryphaena hippurus*	8	3.81	4.5	4.27	0.2525	0.0893	CC
Coryphaenoides guentheri*	3	3.25	3.28	3.26	0.0173	0.01	OA
Coryphaenoides mediterraneus*	2	3.36	3.44	3.4	0.0566	0.04	OA
Ctenolabrus rupestris+	1	3.19					OA
Dalatias licha	3	4.35	4.5	4.45	0.0866	0.05	CC
Dasyatis marmorata*	1	3.7					OA
Dasyatis pastinaca*	10	3.46	3.8	3.67	0.1033	0.0327	OA
Deltentosteus quadriramulatus+	3	3.11	3.3	3.24	0.1097	0.0633	OA
Dentex dentex	3	4.49	4.5	4.5	0.0058	0.0033	CC
Diaphus metopocampus*	3	3.44	3.66	3.56	0.1124	0.0649	OA
Diplodus annularis	8	2.59	3.41	3.19	0.2689	0.0951	OA
Diplodus puntazzo	5	2.69	3.3	3.08	0.2386	0.1067	OA
Table 2 (continued)

Species	N	min	max	mean	SD	SE	FTG
Diplodus sargus sargus	11	3.04	3.5	3.25	0.1429	0.0431	OA
Diplodus vulgaris*	7	3	3.7	3.26	0.2501	0.0945	OA
Dipturus nidarosiensis*	1		3.8				CD
Dipturus oxyrinchus*	15	3.41	4.28	3.75	0.2304	0.0595	CD
Engraulis encrasicolus	24	3	3.5	3.1	0.1603	0.0327	OA
Epigonus telescopus+	1			3.4			OA
Epinephelus aeneus+	1		4.1				CC
Epinephelus caninus+	1		3.8				CD
Epinephelus costae*	1		3.39				OA
Epinephelus fasciatus+	1		4.5				CC
Epinephelus marginatus	6	3.73	4.38	4.06	0.2292	0.0936	CC
Etmopterus spinax	2	3.55	3.9	3.73	0.2475	0.175	CD
Eutrigla gurnardus	2	3.1	3.3	3.2	0.1414	0.0327	OA
Fistularia commersonii*	9	4.5	4.5	4.5	0	0	OA
Galeus melastomus	9	3.34	4.5	3.97	0.3467	0.1156	CD
Gaidropsarus biscayensis	4	3.6	3.67	3.64	0.0299	0.0149	OA
Gaidropsarus grandis*	1		3.6				OA
Gaidropsarus mediterraneus	3	3.41	3.95	3.59	0.3089	0.1784	OA
Gaidropsarus vulgaris*	2	3.42	3.49	3.46	0.0495	0.035	OA
Galeus melastomus	9	3.34	4.5	3.97	0.3467	0.1156	CD
Gnatholax mystax	5	3.51	3.85	3.63	0.1324	0.0592	OA
Gobius auratus*	7	3.2	3.57	3.46	0.1471	0.0556	OA
Gobius fallax*	1		3.5				OA
Gobius geniporus*	1		3.5				OA
Gobius niger	7	3.2	3.57	3.46	0.1471	0.0556	OA
Gobius vitatus*	8	3.25	3.46	3.32	0.0697	0.0246	OA
Helicolenus dactylopterus*	4	3.63	4.01	3.84	0.166	0.083	CD
Hexanchus griseus*	2	4.2	4.5	4.35	0.2121	0.15	CC
Hippocampus guttatus*	1		3.1				OA
Hippocampus hippocampus*	2	3.15	3.2	3.18	0.0354	0.025	OA
Hoplostethus mediterraneus*	1		3.5				OA
Hymenocampus italicus	3	3.2	3.4	3.27	0.1102	0.0636	OA
Labrus bergylta*	1		3.24				OA
Labrus merula*	1		3.47				OA
Labrus viridis	3	3.29	3.84	3.65	0.3119	0.1801	OA
Lagoccephalus sceleratus*	2	3.73	3.86	3.8	0.0919	0.065	CD
Lampanyctus olivi*	2	3.05	3.1	3.08	0.0354	0.025	OA
Lepidion lepidion+	2	3.3	3.67	3.49	0.2616	0.185	OA
Lepidopus calidus+	5	3.2	3.84	3.66	0.263	0.1176	OA
Lepidorhombus boschii+	11	3.22	3.85	3.64	0.1829	0.0551	OA
Lepidorhombus whiffilagonis+	3	4.01	4.24	4.11	0.1193	0.0689	CC
Lepidotrigla cavillone	8	3.1	3.5	3.31	0.1304	0.0461	OA
Lesueurigobius suerii*	1		3.35				OA
Leucoraja naevus*	1		3.93				CD
Lithognathus mormyris	8	2.78	3.5	3.21	0.2183	0.0772	OA
Lophius budegassa	11	3.9	4.54	4.38	0.1657	0.05	CC
Lophius piscatorius	2	4.3	4.48	4.39	0.1273	0.09	CC
Merlangius merlangus*	3	3.75	4.38	3.97	0.3528	0.2037	CD

(continued)
Table 2 (continued)

Species	N	min	max	mean	SD	SE	FTG
Merluccius merluccius	45	3.2	4.5	4.09	0.3793	0.0565	CC
Microchirius variegatus*	1			3.06			OA
Micromesistius poutaxou	9	3.34	4.39	3.92	0.2926	0.0975	CD
Molva macrocephalma+	1			4.5			CC
Monochirius hispidus*	1			3.19			OA
Mullus barbatas	21	2.79	3.57	3.29	0.204	0.0445	OA
Mullus surmuletus	24	3.03	3.58	3.34	0.1436	0.0293	OA
Muraena helena*	4	4.11	4.27	4.2	0.0661	0.033	CC
Myliobatis aquila*	2	3.37	3.84	3.61	0.3323	0.1392	CD
Nezumia aequalis	5	3.09	3.49	3.25	0.1518	0.0679	OA
Notacanthus bonaparte+	1	3.4					OA
Oblada melanura	6	3.1	3.53	3.28	0.1727	0.0705	OA
Ophidion barbatum+	2	3.47	3.56	3.52	0.0636	0.045	OA
Pagellus acarne	5	3.47	3.84	3.61	0.1427	0.0638	OA
Pagellus bogaaveo	4	3.4	4.43	3.71	0.484	0.242	CD
Pagellus erythrinus	21	3.08	3.83	3.37	0.1847	0.0403	OA
Pagrus auriga+	1	3.31					OA
Pagrus caeruleostictus+	1	3.51					OA
Pagrus pagrus	9	3.36	3.9	3.71	0.1646	0.0549	CD
Parableninus gastorugine	2	2.11	3	2.56	0.6293	0.445	OV
Parableninus roxi+	1	3.2					OA
Parableninus tentacularis+	1	3.11					OA
Parophidion vassali+	1	3.43					OA
Pegusa imper*	1	3.2					OA
Pegusa lascaris*	2	3.12	3.15	3.14	0.0212	0.015	OA
Physic blennoides	7	3.55	3.89	3.72	0.1167	0.0441	CD
Physic physix+	1			4.09			CC
Pomatomus saltatrix*	2	4.46	4.5	4.48	0.0283	0.02	CC
Pomatiaschistus hathi+	2	3.2	3.3	3.25	0.0707	0.05	OA
Pomatiaschistus quagga+	1			3.29			OA
Ponticola platyrostris*	1	3.88					CD
Pteropleytrigon violacea*	2	4.5	4.5	4.5	0	0	CC
Raja asterias*	10	3.6	3.97	3.76	0.1107	0.035	CD
Raja brachyura*	9	3.4	4.5	4.27	0.4168	0.1389	CC
Raja clavata*	13	3.35	4.27	3.83	0.2812	0.078	CD
Raja miraletus	13	3.29	3.9	3.59	0.194	0.0538	OA
Raja polystigma*	1			3.68			OA
Raja radula	6	3.5	4.22	3.9	0.2682	0.1095	CD
Rhinobatos rhinobatos	13	3.5	4.28	3.93	0.2087	0.0579	CD
Ranvettus pretiosus*	1			4.5			CC
Sarla sarda	5	4.46	4.5	4.48	0.0148	0.0066	CC
Sardinella pilchardus	10	2.1	3.2	2.76	0.432	0.1366	OV
Sardinella aurita*	22	2.4	3.54	2.97	0.3231	0.0689	OA
Sargocentron rubrum	2	3.36	3.5	3.43	0.099	0.07	OA
Sarpa salpa	6	2	2.5	2.11	0.1946	0.0794	OV
Saurida undosquemis	3	3.8	4.5	4.26	0.4013	0.2317	CC

(continued)
Table 2 (continued)

Species	N	min	max	mean	SD	SE	FTG
Sciaena umbra	3	3.5	3.8	3.61	0.1652	0.0954	OA
Scomber colias*	1			3.99			
Scomber scombrus	2	3.9	4.37	4.14	0.3323	0.235	CC
Scopraena notata	7	3.43	3.6	3.51	0.0648	0.0245	OA
Scopraena porcus	17	3.4	4.2	3.82	0.272	0.066	CD
Scopraena scrofa	9	3.9	4.4	4.18	0.1706	0.0569	CC
Scyliorhinus canicula	12	3.37	4.5	4.04	0.3961	0.1143	CC
Serrana cabrilla	6	3.3	4.37	3.76	0.3907	0.1595	CD
Serrana hepatus	7	3.47	3.77	3.63	0.118	0.0446	OA
Serrana sibrica	3	3.7	3.94	3.84	0.1234	0.0713	CD
Siganus luridus	4	2	2	2	0	0	H
Siganus rivulatus	3	2	2	2	0	0	H
Solea solea	26	2.26	3.34	2.95	0.3452	0.0677	OA
Sparus aurata	1	3.42					OA
Spicara maena	13	3	4.1	3.25	0.2966	0.0823	OA
Spicara smaris	3	3	3.49	3.2	0.2589	0.1495	OA
Spondylus canthus	5	3.29	3.62	3.44	0.1214	0.0543	OA
Squalus acanthias*	3	3.61	4.4	4.08	0.4158	0.2401	CC
Squalus blainville*	1	4.42					OA
Squalus cincites	3	3.1	3.3	3.23	0.1102	0.0636	OA
Squalus maderrianei	2	3.1	3.22	3.16	0.0849	0.06	OA
Symglossus cinereus*	6	2.55	3.57	3.18	0.3617	0.1477	OA
Symglossus maderrianei*	3	3.3	3.41	3.37	0.0608	0.0351	OA
Symglossus tincta	7	2.95	3.71	3.33	0.2643	0.0999	OA
Symglossus nigrescens	4	3.2	3.42	3.32	0.0918	0.0459	OA
Synaptura lusitanica*	1	3.1					OA
Syngnathus abaster*	2	3.44	3.47	3.46	0.0212	0.015	OA
Syngnathus acus*	2	3.51	4.31	3.91	0.5657	0.4	CD
Syngnathus typhle	2	4.2	4.5	4.35	0.2121	0.15	CC
Thalassoma pavo*	1	3.42					OA
Thunus thynus*	4	4	4.5	4.3	0.2259	0.113	CC
Torpedo marmorata	5	4.39	4.5	4.47	0.0487	0.0218	CC
Torpedo torpedus	7	4.02	4.5	4.26	0.212	0.0801	CC
Trachinus draco*	1	4.19					OA
Trachinus maderrianei*	22	3.15	4.01	3.52	0.2842	0.0606	OA
Trachurus maderrianei*	26	3.2	4.18	3.8	0.3356	0.0638	CD
Trachurus trachurus	6	3.14	3.83	3.47	0.2579	0.1053	OA
Trigla lyra*	9	3.28	3.7	3.45	0.1301	0.0434	OA
Triglosoridus lastoviza*	7	3.32	3.58	3.46	0.092	0.0348	OA
Tripierion delatei*	2	3.5	3.5	3.5	0	0	OA
Trisopterus capelans*	10	3.39	4.13	3.7	0.2132	0.0674	OA
Umbra cirrosa*	1	3.51					OA
Upaneus asymmetricus*	1	3.6					OA
Upaneus moluccensis*	2	3.4	3.89	3.65	0.3465	0.245	OA
Upaneus pori*	1	3.51					OA
Uranoscopus scaber	8	3.8	4.43	4.26	0.2319	0.082	CC
Xiphius gladius	4	4.33	4.5	4.46	0.0835	0.0417	CC
Xyrichtys novacula*	3	3.24	3.49	3.37	0.125	0.0722	OA
Zeus faber	9	4.36	4.5	4.47	0.0539	0.018	CC
Zosterisessor ophioccephalus*	1	3.16					OA
Table 3. Issues raised by Stergiou & Karpouzi (2002) regarding future efforts in studying the diet of fishes, and how or whether these have been addressed based on the findings of this study. Recommendations in addressing those issues are also provided.

Issue	Stergiou & Karpouzi (2002)	This study	Recommendation
Feeding habits of new species and habitats	Report on a total of 146 species. Main effort so far on demersal, benthiopelagic and pelagic species. Should expand to other habitats with emphasis on bathypelagic and bathydemersal fishes.	Report on 148 species, 61 not included in Stergiou & Karpouzi (2002). There was an increase towards pelagic and reef-associated species, but information on bathypelagic and bathydemersal ones is still lacking.	Effort should continue, as out of >700 fishes in the Mediterranean (Froese & Pauly, 2016), diet information exists only for 204. As the vast majority of samples of the studied species originate from trawling (i.e. mainly depths >50m), sampling with other gear, and/or in shallower waters will increase our knowledge. In addition, future efforts should focus on filling the information gap as regards bathypelagic and bathydemersal species.
Feeding habits of certain species: (a) commercially important fish and/or essential for Ecopath with Ecosim models	Effort on studying the feeding habits of e.g. Scomber colias, Sardinella aurita, Sprattus sprattus, Merlangius merlangus, Auxis spp., Pomatomus saltatrix, Mustelus spp., Pseuda maxima, Sphyraena spp, Belone belone, Denex macrophthalmus, Squidus acanthias, Caranx spp., Squatinus squatinus, Platichthys flesus, Katsuwonus pelamis, Lamna nasus, Thunnus obesus, Istiophorus albicans, Pleuronectes platessa	Of the 20 species/genera proposed, information now exists for nine (Scomber colias, Sardinella aurita, Merlangius merlangus, Pomatomus saltatrix, Mustelus spp., Sphyraena spp, Belone belone, Squidus acanthias, Caranx spp.)	Effort should continue in that direction, especially regarding top/apex predators, to gain knowledge valuable for ecosystem modelling and management of aquatic resources.
Feeding habits of certain species: (b) Elasmobranchs	Diet of 11 Elasmobranch species presented	Diet of 25 Elasmobranch species. Nine were also included in Stergiou & Karpouzi (2002), with the exception of Centroscymnus coelephtis and Dasyatis marmorata	As they are top/apex predators and, as such, of high importance for Marine Strategy Framework Directive Descriptor 4 (EU, 2008), additional efforts should be made, taking into consideration the IUCN status of the species (most of them are protected) regarding sample size. Moreover, samples should be exhaustively treated for all aspects of biology.
Reported length range of specimens	Reported at a rate of 58.7%	Reported at a rate of 68.8%	Length range should always be reported, and is in the vast majority of cases. This information is also essential for identifying/explaining intraspecific differences in trophic level estimates (see figure 4 also). Yet, many studies provide the entire length range of the sample without further indicating the actual range of the subsample used for stomach content analyses. The actual length range of the sample should be reported.
Estimates of TROPH	Should always be estimated and reported	Reported rarely	Authors of diet-reporting papers must apply TrophLab, a user friendly and free downloadable (from www.fishbase.us/download/TrophLab2K.zip) MicroSoft Access-routine.
For nine out of the 204 species (i.e. Merluccius mer-
luccius, Solea solea, Trachurus trachurus, E. encrasi-
colus, Mullus surmuletus, Sardinella aurita, Trachurus mediterraneus, Mullus barbatus, and Pagellus erythri-

nuas; Table 2), all highly commercial, there are more than
20 TROPH estimates. Yet, given that there are more than
700 fishes in the Mediterranean Sea (Froese & Pauly,
2016), the number of fish for which information on their
feeding habits in the Mediterranean Sea is currently un-
available is still extremely high. Those approximately
500 species that have not been studied in the Mediter-
anean include some key species in terms of habitat (e.g.
bathypelagic and bathydemersal species), abundance/
value (e.g. Auxis spp., Psetta maxima, Dentex macroph-
thalminus, P latichthys flesus, Katsuwonus pelamis, Thun-
nus obesus, Pleuronectes platessa) and ecological impor-
tance (e.g. Elasmobranchs) (Table 3).

Out of the total 204 species for which information
currently exists for the Mediterranean Sea, 75 (36.8%)
are carnivores (29 CD and 46 CC species). The latter are
of high importance for monitoring the status of aquatic
food webs (e.g. Pauly et al., 1998a, 2000a; Stergiou &
Karpouzi, 2002), and this is also depicted in the first indi-
cator of the Marine Strategy Framework Directive (EU,
2008), namely Descriptor 4 (D4: food webs) ‘Perform-
ance of key predator species using their production per
unit biomass (productivity)’. Stergiou & Karpouzi (2002) provided guidelines
for future research on feeding studies, many of which have been addressed to some extent (Table 3). These guidelines are hitherto updated and refined, in order to set needs/priorities for studies on feeding habits (Table 3). It should be noted that there is still a need to accumu-
late knowledge on all aspects of Mediterranean fish biology (e.g. age and growth, mortality, fecundity, repro-
duction) and for as many species as possible (Tsikliras et al.,
2010; Tsikliras & Stergiou, 2014, 2015; Apostolidis &
Stergiou, 2014; Dimarchopoulou et al., 2016). Thus, collected samples intended for study, should be treated
exhaustively in order to extract the maximum possible
information from them.

References

Apostolidis, C., Stergiou K.I., 2014. Estimation of growth pa-
rameters from published data for several Mediterranean fi-
shes. Journal of Applied Ichthyology, 30, 189-194.
Aristotle (≈350 B.C.) Τὸν προτερότατον: el.wikisource.
org/wiki/%CE%B1%CE%BC%CE%BA%CE%9A%CE%9A
%CE%97%CE%9F%CE%91%CE%95%CE%99%CE%95
%CE%99%CE%9F%CE%91%CE%95%CE%91 (Aristotle’s History
of Animals) English translation by Richard Cresswell (1878),
available at https://archive.org/stream/aristotleshistor00ari-
srch/aristotleshistor00arisrch_djvu.txt
Christensen, V., Pauly, D., 1992. ECOPATH II – a software for
balancing steady-state ecosystem models and calculating
network characteristics. Ecological Modelling, 61, 169-185.
Dimarchopoulou, D., Stergiou, K.I., Tsikliras, A. 2016. Gaps in
biological knowledge of the Mediterranean marine fishes.
Rapport de la Commission internationale de la Mer Medi-
terrannée, 41, in press.
EU, 2008. Directive 2008/56/EC of the European Parliament and
of the Council of 17 June 2008 establishing a framework for
community action in the field of marine environmental poli-
cy (Marine Strategy Framework Directive). Official Journal
of the European Union, L 164, 19-40.
Froese, F., Pauly, D., 2016. FishBase. http://www.fishbase.org
(Accessed 18 August 2016)
Karachle, P.K., Stergiou, K.I., 2006. Trophic levels of North Ae-
gean Sea fishes and comparisons with those from FishBase.
p. 22-26- In: Fishes in Databases and Ecosystems. Paloma-
res, M.L.D., Stergiou, K.I., Pauly, D. (Eds). Fisheries Cent-
tre Research Reports 14(4). Fisheries Centre, University of
British Columbia, Vancouver.
Karachle, P.K., Stergiou, K.I., 2008. The effect of season and sex
on trophic levels of marine fishes. Journal of Fish Biology,
72, 1463-1487.
Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., Torres,
F.Jr. 1998a. Fishing down marine foodwebs. Science, 279,
860-863.
Pauly, D., Christensen, V., Froese, R., Palomares, M.L., 2000a.
Fishing down aquatic food webs. American Scientist, 88, 46-51.
Pauly, D., Froese, R., Sa-a, P., Palomares, M.L., Christensen, V.,
Rius, J., 2000b. Trophlab manual. ICLARM, Manila, 3 pp.
Pauly, D., Trites, A., Capuli, E., Christensen, V., 1998b. Diet
composition and trophic levels of marine mammals. ICES
Journal of Marine Science, 55, 467-481.
Shakespeare W (1607-1608). Pericles Prince of Tyre. Available
at: http://shakespeare.mit.edu/pericles/full.html.
Stergiou, K.I., Karpouzi, V.S., 2002. Feeding habits and trophic
levels of Mediterranean fish. Reviews in Fish Biology and
Fisheries, 11, 217-254.
Stergiou, K.I., Tsikliras, A., 2006. Underrepresentation of re-
gional ecological research output by bibliometric indices.
Ethics in Science and Environmental Politics, 2006. 15-17.
Tsikliras, A.C., Stergiou, K.I., 2014. Size at maturity of Medi-
terranean marine fishes. Reviews in Fish Biology and Fisher-
ies, 24(1), 219-268.
Tsikliras, A.C., Stergiou, K.I., 2015. Age at maturity of Medi-
terranean marine fishes. Mediterranean Marine Science,
16(1), 5-20.
Tsikliras, A.C., Antonopoulou, E., Stergiou, K.I., 2010. Spaw-
ning period of Mediterranean marine fishes. Reviews in Fish
Biology and Fisheries, 20, 499-538.

52 Medit. Mar. Sci., 18/1, 2017, 43-52
http://epublishing.ekt.gr | e-Publisher: EKT | Downloaded at 20/10/2020 00:16:50 |