FROM A KINETIC EQUATION TO A DIFFUSION UNDER AN ANOMALOUS SCALING

GIADA BASILE

Abstract. A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process \((K(t), i(t), Y(t))\) on \((\mathbb{T}^2 \times \{1, 2\} \times \mathbb{R}^2)\), where \(\mathbb{T}^2\) is the two-dimensional torus. Here \((K(t), i(t))\) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance. \(Y(t)\) is an additive functional of \(K\), defined as \(\int_0^t v(K(s)) ds\), where \(|v| \sim 1\) for small \(k\). We prove that the rescaled process \((N \ln N)^{-1/2} Y(Nt)\) converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to a diffusion equation.

1. Introduction

One of the most interesting aspects of the problem of energy transport in a solid is an anomalous thermal conduction observed in low dimensional materials (see [21], [8] for a general review; see also [18] for experimental data for graphene materials). So far very few results are obtained by a rigorous analysis of microscopic dynamics, and even crucial points, such as the exponent of the divergence of thermal conductivity in dimension one, are still debated.

The theoretical approach proposed by Peierls [28] intended to compute thermal conductivity in analogy with the kinetic theory of gases, conforming to the idea that at low temperatures the lattice vibrations, responsible of energy transport, can be described as a gas of interacting particles (phonons). The time-dependent distribution function of phonons solves a Boltzmann type equation, and an explicit expression for the thermal conductivity is obtained, which is of the form of the kinetic theory \(\kappa = \int dkC_k v_k^2 \tau_k\). Here \(C_k\) is the heat capacity of phonons with wave number \(k\), \(v_k\) is their velocity and \(\tau_k\) is the average time between two collisions. A goal of the kinetic approach is the prediction...
that the mean free path $\lambda_k = v_k \tau_k$ and thus thermal conductivity are infinite in dimension one when the phonon momentum is conserved.

Over the last years, several papers are devoted to achieve phononic Boltzmann-type equations from microscopic dynamics (see [32] for main ideas and tools). In [2], [21], [20], [29] a kinetic limit is performed for chains of an-harmonic oscillators, and in [23] a linear Boltzmann equation is rigorously derived for the harmonic chain of oscillators with random masses. In [5] the authors consider a system of harmonic oscillators in d dimensions, perturbed by a weak conservative stochastic noise. The following linear Boltzmann-type equation is deduced for the energy density distribution, over the space \mathbb{R}^d, of the phonons, characterized by a vector valued wave-number $k \in \mathbb{T}^d$ (d-dimensional torus)

\[
\begin{align*}
\partial_t u_\alpha(t, r, k) + v(k) \cdot \nabla u_\alpha(t, r, k) \\
= & \frac{1}{d-1} \sum_{\beta \neq \alpha} \int_{\mathbb{T}^d} dk' R(k, k') [u_\beta(t, r, k') - u_\alpha(t, r, k)],
\end{align*}
\]

\[\alpha = 1, \ldots, d, \ d \geq 2.\] Equation in dimension one is similar, except for the mixing of the components. The kernel R is not negative and symmetric. Despite the exact expressions of R and v (the velocity), the crucial features are that v is finite for small k, i.e. $|v| \to 1$ as $|k| \to 0$, while R behaves like $|k|^2$ for small k, and like $|k'|^2$ for small k'. Naïvely, it means that phonons with small wave numbers travel with finite velocity, but they have low probability to be scattered, thus one expects that the their mean free paths have a macroscopic length (ballistic transport). This is in accordance with rigorous results showing that thermal conductivity is infinite in dimension one and two for a system of harmonic oscillators perturbed by a conservative noise ([5], [4]).

A probabilistic interpretation of (1) provides an exact statement of that intuition. The equation describes the evolution of the probability density of a Markov process $(K(t), i(t), Y(t))$ on $(\mathbb{T}^d \times \{1, \ldots, d\} \times \mathbb{R}^d)$, where $(K(t), i(t))$ is a reversible jump process and $Y(t)$ is a vector-valued additive functional of K, namely $Y(t) = \int_0^t ds \ v(K_s)$, K and i can be interpreted, respectively, as the wave number and the “polarization” of a phonon, while $Y(t)$ denotes its position. In order to investigate the property of the process $Y(t)$, one can look at the Markov chain $\{X_i\}$ on \mathbb{T}^d given by the sequence of states visited by $K(t)$, and at the waiting times $\{\tau(X_i)\}$, where $\tau(X_i)$ is the (random) time that the process spends at the i-th visited state. The vector-valued function $S_n = \sum_{i=1}^n \tau(X_i) v(X_i)$ gives the value of Y at the time of the n-th jump $T_n = \sum_{i=1}^n \tau(X_i)$, then $Y(t)$ is just the piecewise interpolation of S_n at the random times T_n.

The behaviour of the rate R implies that the stationary distribution of the chain is of the form $\pi(dk) \sim |k|^2 dk$ for k small, and since the average of $\tau(k)$ goes like $|k|^{-2}$ for $k \ll 1$, the tail distribution of the
random variables \(\{\tau(X_i)v(X_i)\} \) behaves like

\[
\pi \left[\|\tau(X_i)v(X_i)\| > \lambda \right] \sim \frac{1}{\lambda^{1+\frac{1}{d}}} \quad \forall d \geq 1.
\]

Therefore, in dimension one and two the variables \(\tau(X_i)v(X_i) \) have infinite variance with respect to the stationary measure. We remark that the variance has the same expression of the thermal conductivity obtained in [5].

The one dimensional case is discussed in [3], where the authors prove that the rescaled process \(N^{-2/3}Y(N\cdot) \) converges in distribution to a symmetric Lévy process, stable with index 3/2. Convergence of finite dimensional marginals has been proven earlier in [17]. Here we consider the other critical case \(d = 2 \). \(S_n \) is now a sum of variables with tail distribution \(\sim \frac{1}{\lambda^2} \), which means that if they were independent, they would be in the domain of attraction of a multivariate normal distribution. Looking at the behaviour of the variance

\[
\pi \left[(\tau(X_i)v_\alpha(X_i))^2 \mathbf{1}_{\{\|\tau(X_i)v_\alpha(X_i)\| \leq \sqrt{n}\}} \right] \sim \ln \lambda, \quad \alpha \in \{1, 2\},
\]

it turns out that the proper scaling contains an extra factor \((\ln n)^{1/2}\). The rescaled process \((n \ln n)^{-1/2}S_{nt}\) has a central part, given by the sum of truncated variables \(\tau(X_i)v_\alpha(X_i)\mathbf{1}_{\{\|\tau(X_i)v_\alpha(X_i)\| \leq \sqrt{n}\}} \), with finite variance and an extremal part that goes to zero in probability, due to the extra term \((\ln n)^{-1/2}\). This is a standard argument used for sums of i.i.d. random variables with tail distribution (2), introduced for the first time by Kolmogorov and Gnedenko in [16], that we adapt to the case of dependent variables.

Then we are reduced to the problem of convergence of a sum of centered, dependent, bounded random variables to a Wiener process. We propose two different approaches. In Section 5.1 we will use an abstract theorem due to Durrett and Resnick [9], based on the invariance principle for martingale difference arrays with bounded variables (Freedman, [14] and [15]), together with a random change of time (see, for example, Helland [19] and Billingsley [7]). The underlying central limit theorem for martingale difference arrays can be found in Dvoretzky [10, 11] (see also [25, 19] and references therein). The alternative proof, in Section 6, is based on the convergence of the moments to the moments of a Brownian motion, under some asymptotic factorization conditions, and it uses combinatorial techniques. In this case we will only show convergence of the finite dimensional marginals. The multidimensional generalization is based a Cramér-Wold argument (see for example [7, 1, 31, 19]).

Convergence of \((n \ln n)^{-1/2}S_{n}\) to a two-dimensional Wiener process is in the Skorokhod \(J_1 \)-topology. Moreover, since the random times \(T_n \) are sums of positive variables with finite expectation, one can prove,
using the arguments in [3], that \((n \ln n)^{-1/2} Y(n)\) converges to a two dimensional Wiener process in the uniform topology.

Finally we show that the properly rescaled solution of the linear Boltzmann equation in dimension two converges to diffusion. The proof includes a result on the algebraic \(L^2\)-convergence rate of the semigroup (Section 4.4). The key point is the derivation of a Nash type inequality which provides an estimate for convergence rates slower than exponential ([22], [6], [30]). The diffusion coefficient is given by an infrared regularization of the thermal conductivity obtained in [4], [5], with a proper renormalization ([13]).

Convergence of solutions of linear kinetic equations to a diffusion under an anomalous scaling was also proved by Mellet et al [26], using an analytical approach. We remark the fact that they assume a collision frequency strictly positive, while in our case it is zero in \(k = 0\).

The case \(d \geq 3\) can be easily treated with the same strategy. In particular the rescaled solution of the Boltzmann equation converges to a diffusion equation, with a diffusion coefficient given by the thermal conductivity obtained in [4], [5].

Acknowledgements. I would like to thank Anton Bovier and Nicola Kistler for valuable discussions.

2. The model

We consider equation (1) in dimension two, namely

\[
\partial_t u_\alpha(t, r, k) + v(k) \cdot \nabla u_\alpha(t, r, k) = \sum_{\beta \neq \alpha} \int_{\mathbb{T}^2} dk' R(k, k') [u_\beta(t, r, k') - u_\alpha(t, r, k)],
\]

\(\forall \alpha = 1, 2, t \geq 0, x \in \mathbb{R}^2, k \in \mathbb{T}^2\), with a (vector valued) velocity \(v\) and a scattering kernel \(R\) given by:

\[
v_\alpha(k) = \frac{\sin(\pi k_\alpha) \cos(\pi k_\alpha)}{\left(\sum_{\beta=1}^{2} \sin^2(\pi k_\beta)\right)^{1/2}}, \quad \forall k \in \mathbb{T}^2, \forall \alpha \in \{1, 2\}
\]

\[
R(k, k') = 16 \sum_{\alpha=1}^{2} \sin^2(\pi k_\alpha) \sin^2(\pi k'_\alpha), \quad \forall k, k' \in \mathbb{T}^2.
\]

We denote with \((K(t), i(t))\) the jump process with values in \(\mathbb{T}^2 \times \{1, 2\}\), defined by the generator

\[
L f(\alpha, k) = \sum_{\beta \neq \alpha} \int_{\mathbb{T}^2} dk' R(k, k') [f(\beta, k') - f(\alpha, k)],
\]
with \(f : \{1, 2\} \times \mathbb{T}^2 \to \mathbb{R} \) continuous on \(\mathbb{T}^2 \). The process waits in the state \((k, i)\) an exponential random time \(\tau \) with parameter \(\Phi(k, i) \)

\[
(7) \quad \Phi(k, i) = \sum_{j=1}^{2} (1 - \delta_{i,j}) \int_{\mathbb{T}^2} dk' R(k, k') = 8 \sum_{\alpha=1}^{2} \sin^2(\pi k_\alpha),
\]

then it jumps to another state \((j, k')\) with probability \(\nu[i, k; j, dk'] = (1 - \delta_{i,j}) P(k, dk') \), where

\[
(8) \quad P(k, dk') := \Phi(k)^{-1} R(k, k') dk' = 2 \sum_{\alpha} \sin^2(\pi k_\alpha) \sin^2(\pi k'_\alpha) dk'.
\]

Observe that the two processes \(K(t) \) and \(i(t) \) are independent. Disregarding the time, the stochastic sequence \(\{X_n\}_{n \geq 0} \) of states visited by \(K(t) \) is a Markov chain with value in \(\mathbb{T}^2 \), with probability kernel \(P(k, dk') \), which is strictly positive. Moreover, there exists a probability measure \(\lambda \) on \(\mathbb{T}^2 \), strictly positive on open sets, such that for any \(k \in \mathbb{T}^2 \) it holds \(P(k, \cdot) \geq c_0 \lambda(\cdot) \) for some \(c_0 > 0 \). This implies the Doeblin condition for kernel \(P \). In view of [27, Thm. 16.0.2], the discrete time Markov chain \(\{X_n\}_{n \geq 0} \) is uniform ergodic. That is there exists a probability \(\pi \) on \(\mathbb{T}^2 \) such that \(P^n(k, \cdot) \) converges to \(\pi \) in total variation uniformly with respect to the initial condition \(k \). Moreover, \(\pi \) is strictly positive on open sets. By direct computation \(\pi(dk) = \frac{1}{2} \Phi(k) dk \).

The process \(Y(t) \), with value in \(\mathbb{R}^2 \), is an additive functional of \(K(t) \)

\[
(9) \quad Y(t) = Y(0) + \int_0^t ds \nu(K_s) ds.
\]

We choose \(Y(0) = 0 \). In order to investigate its properties, we define two functions of the Markov chain \(\{X_n\}_{n \geq 0} \), the clock, \(T_n \), with values in \(\mathbb{R}_+ \) and the position, \(S_n \), with values in \(\mathbb{R}^2 \)

\[
T_n = \sum_{\ell=0}^{n-1} e_\ell \Phi(X_\ell)^{-1}, \quad S_n = \sum_{\ell=0}^{n-1} e_\ell \nu(X_\ell) \Phi(X_\ell)^{-1}.
\]

Here \(\{e_\ell\}_{\ell \geq 0} \) are i.i.d. exponential random variables with parameter 1, and we take \(S_0 = 0 \). The clock \(T_n \) is the time of the \(n \)-the jump of the process \(K(t) \) and it is a sum of positive random variables with finite expectation with respect to the invariant measure, i.e. \(\mathbb{E}_\pi \Phi(X_1)^{-1} = 1 \). \(S_n \) is a two-components vector which gives the value of \(Y(t) \) at time \(T_n \), i.e. \(S_n = Y(T_n) \). It is a sum of centered random vectors whose components show a tail behavior given in (12).

Moreover, the covariance matrix of each of these vectors is diagonal. By denoting with \(T^{-1} \) the right-continuous inverse function of \(T_n \), i.e. \(T^{-1}(t) := \inf\{n : T_n \geq t\} \), we can represent process \(Y(t) \) as follows:

\[
Y(t) = S_{[T^{-1}(t)-1]} + v(X_{[T^{-1}(t)-1]}) (t - T_{[T^{-1}(t)-1]}),
\]
where $\lfloor \cdot \rfloor$ denotes the lower integer part. In particular, $Y(t)$ is the (vector valued) function defined by linear interpolation between its values S_n at the random points T_n.

3. Main results.

For every $N \geq 2$, $t \geq 0$, we define the rescaled processes

$$T_N(t) = \frac{1}{N} T_{\lfloor Nt \rfloor}, \quad T_N^{-1}(t) = \frac{1}{N} T^{-1}(Nt),$$

$$Z_N(t) = \frac{1}{\sqrt{N \ln N}} S_{\lfloor Nt \rfloor} + (Nt - \lfloor Nt \rfloor) \frac{1}{\sqrt{N \ln N}} v(X_{\lfloor Nt \rfloor}) .$$

Observe that Z_N is a two-dimensional continuous vector defined by linear interpolation between its values $\frac{1}{\sqrt{N \ln N}} S_n$ at the points n/N.

We assume that the initial distribution μ of the process K_t is not concentrated in $k = 0$, namely $\forall \varepsilon > 0$ exists δ such that

$$\mu(\{|k| < \delta\}) < \varepsilon .$$

This includes all the absolutely continuous measures w.r.t. Lebesgue measure and delta distributions $\delta_{k_0}(dk)$, with $k_0 \in \mathbb{T}^2 \setminus \{0\}$.

Let us denote with

$$\sigma^2 := \lim_{N \to \infty} \frac{1}{\ln N} \mathbb{E}_\sigma \left[\frac{\varepsilon_1 v_1(X_1)}{\Phi(X_1)} \right]^2 I\{1(\frac{X_1}{\sqrt{\ln N}}) \leq \varepsilon\} .$$

We remark that this limit exists and one can prove by direct computation that it is equal to $\frac{1}{64\pi}$. By symmetry, in this definition we can replace $v_1(X_1)$ with $v_2(X_1)$. We use the notation \bar{W}_σ for the vector valued process $\bar{W}_\sigma = (W^1_\sigma, W^2_\sigma)$, where W^1_σ and W^2_σ are independent Wiener processes with marginal distribution $W^\alpha_\sigma(t) - W^\alpha_\sigma(s) \sim N(0, \sigma^2(t-s)) \forall 0 \leq s < t, \forall \alpha = 1, 2$.

Theorem 3.1. Let Z_N be the process defined in (11). Then for any $0 < T < \infty$, $\{Z_N(t)\}_{0 \leq t \leq T}$ converges to the two-dimensional Wiener process $\{\bar{W}_\sigma(t)\}_{0 \leq t \leq T}$. Convergence is in distribution on the space of continuous functions $C([0, T], \mathbb{R}^2)$ equipped with the uniform topology.

Then we will prove that $\{T_N^{-1}(t)\}_{t \in [0, T]}$ converges in distribution to the function t. Combining these two results, we can show that $Z_N \circ T_N^{-1}$ converges in distribution to \bar{W}_σ. Observing that $Z_N \circ T_N^{-1}$ is the process

$$Y_N(t) = \frac{1}{(N \ln N)^{1/2}} \int_0^{NT} ds \ v(K_s) ,$$

this implies our main theorem.

Theorem 3.2. For any $0 < T < \infty$, $\{Y_N(t)\}_{0 \leq t \leq T}$ converges to the two-dimensional Wiener process $\{\bar{W}_\sigma(t)\}_{0 \leq t \leq T}$. Convergence is in distribution on the space of continuous functions $C([0, T], \mathbb{R}^2)$ equipped with the uniform topology.
Finally, we will use the previous result to show that the rescaled solution of the Boltzmann equation converges to a diffusion. We denote with u^N the two dimensional vector-valued measure defined as

$$u^N(t, k, x) := u(Nt, k, (N \ln N)^{1/2}x), \quad \forall t \geq 0, \forall k \in \mathbb{T}^2, \forall x \in \mathbb{R}^2,$$

where u is solution of (3) in dimension two, with initial condition $u(0, k, x) = u_0(k, (N \ln N)^{-1/2}x)$. Given a function $f \in \mathcal{S}(\mathbb{R}^2 \times \mathbb{T}^2)$ - the Schwartz space, for any $a \geq 1$ we define the norm

$$\|f\|_{A_a} = \left(\int_{\mathbb{R}^2 \times \mathbb{T}^2} dp \, dk |\hat{f}(p, k)|^a \right)^{1/a},$$

where \hat{f} is the Fourier transform of f in the first variable. We denote with A_a the completion of \mathcal{S} in the norm $\| \cdot \|_{A_a}$. Observe that $A_2 = L^2(\mathbb{R}^2 \times \mathbb{T}^2)$.

Theorem 3.3. Assume that $u_0 \in L^2(\mathbb{R}^2 \times \mathbb{T}^2; \mathbb{R}^2) \cap A_a$, with $a > 2$. Then, $\forall t \in (0, T]$, $u^N(t, \cdot, \cdot)$ converges in $L^2(\mathbb{R}^2 \times \mathbb{T}^2; \mathbb{R}^2)$ -weak to $\bar{u}(t, \cdot)$, which solves the following diffusion equation

$$\partial_t \bar{u}(t, r) = \frac{1}{2} \sigma^2 \Delta \bar{u}(t, r)$$

$$\bar{u}^\alpha(0, r) = \frac{1}{2} \sum_{\beta=1,2} \int_{\mathbb{T}^2} dk \ u_0^\beta(r, k) \quad \forall \alpha \in 1, 2, \forall r \in \mathbb{R}^2.$$

4. **Sketch of the proof**

We present an outline of the proof of the main theorems. Details are postponed in Section 5.

4.1. **Theorem 3.1** Define the two-dimensional random vector

$$\psi_n := \Phi(X_n)^{-1} \psi(X_n), \quad n \in \mathbb{N}_0.$$

We will denote with ψ_n^α, $\alpha = 1, 2$, the α-component of ψ_n.

We decompose Z_N, defined in (11) in two parts, i.e. $Z_N = Z_N^> + Z_N^<$, where $\forall \alpha = 1, 2$, $\forall t \geq 0$,

$$Z_N^>(t) = (N \ln N)^{-1/2} \sum_{n=0}^{[Nt]-1} e_n \psi_n^\alpha 1_{\{e_n |\psi_n^\alpha| > \sqrt{N} \}}$$

$$+ (N \ln N)^{-1/2} e_{[Nt]} \psi_{[Nt]}^\alpha 1_{\{e_{[Nt]} |\psi_{[Nt]}^\alpha| > \sqrt{N} \}} (Nt - [Nt])$$

$$Z_N^<(t) = (N \ln N)^{-1/2} \sum_{n=0}^{[Nt]-1} e_n \psi_n^\alpha 1_{\{e_n |\psi_n^\alpha| \leq \sqrt{N} \}}$$

$$+ (N \ln N)^{-1/2} e_{[Nt]} \psi_{[Nt]}^\alpha 1_{\{e_{[Nt]} |\psi_{[Nt]}^\alpha| \leq \sqrt{N} \}} (Nt - [Nt]).$$
At first we will show that $Z_N^P \sim \mathcal{P} \to 0$ when $N \to \infty$. It is enough to show that for every unitary vector $\lambda := (\lambda_1, \lambda_2)$

$$\lambda_1 Z_N^{1\gamma} + \lambda_2 Z_N^{2\gamma} \sim \mathcal{P} \to 0, \quad N \to \infty.$$

This is stated in the next Lemma.

Lemma 4.1. For every $\delta > 0$

$$\lim_{N \to \infty} \mathbb{P} \left[\sup_{t \in [0, T]} \left| \lambda_1 Z_N^{1\gamma}(t) + \lambda_2 Z_N^{2\gamma}(t) \right| > \delta \right] = 0,$$

$\forall \lambda \in \mathbb{R}^2$ such that $|\lambda| = 1$.

Proof. For every $\lambda \in \mathbb{R}^2$ with $|\lambda| = 1$

$$\mathbb{P} \left[\sup_{t \in [0, T]} \left| \lambda_1 Z_N^{1\gamma}(t) + \lambda_2 Z_N^{2\gamma}(t) \right| > \delta \right] \leq \mathbb{P} \left[\sup_{t \in [0, T]} \left\{ |Z_N^{1\gamma}(t)| + |Z_N^{2\gamma}(t)| \right\} > \delta \right] \leq \sum_{\alpha=1,2} \mathbb{P} \left[\sup_{t \in [0, T]} |Z_N^{\alpha\gamma}(t)| > \frac{\delta}{2} \right].$$

For every $t \in [0, T], \forall \alpha = 1, 2$

$$|Z_N^{\alpha\gamma}(t)| \leq \frac{1}{\sqrt{N \ln N}} \sum_{n=0}^{\lfloor NT \rfloor - 1} e_n |\psi_n^\alpha| \mathbb{1}_{\{e_n |\psi_n^\alpha| > \sqrt{N}\}}.$$

Then, by Chebyshev’s inequality

$$\mathbb{P} \left[\sup_{t \in [0, T]} \left| Z_N^{\alpha\gamma}(t) \right| > \frac{\delta}{2} \right] \leq \frac{2}{\delta} \frac{1}{\sqrt{N \ln N}} \sum_{n=0}^{\lfloor NT \rfloor - 1} \mathbb{E} \left[e_n |\psi_n^\alpha| \mathbb{1}_{\{e_n |\psi_n^\alpha| > \sqrt{N}\}} \right] \leq \frac{2}{\delta} \frac{1}{\sqrt{\ln N}} C_0 T,$$

where in the last inequality we used the fact that $\forall n \geq 0, \forall \alpha = 1, 2$

$$\mathbb{E} \left[e_n |\psi_n^\alpha| \mathbb{1}_{\{e_n |\psi_n^\alpha| > \sqrt{N}\}} \right] \leq C_0 \frac{1}{\sqrt{N}},$$

as one can easily compute, using the upper bound for P^m (29) and the fact that $|k|^2 |\psi^\alpha(k)|$ is finite for every $k \in \mathbb{T}^2, \forall \alpha = 1, 2$.

\square
Let us consider \(Z_N^\leq \). As first step, we will prove that for every unitary vector \(\lambda \in \mathbb{R}^2 \), \(\langle Z_N^\leq, \lambda \rangle := \lambda_1 Z_N^1 + \lambda_2 Z_N^2 \Rightarrow W_\sigma \), where \(W_\sigma \) is a one dimensional Wiener process such that \(W_\sigma(t) - W_\sigma(s) \sim \mathcal{N}(0, \sigma^2(t-s)) \). This is stated in the following proposition, the proof is postponed to the next section.

Proposition 4.2. Fix \(T > 0 \). Then as \(N \rightarrow \infty \), for every \(\lambda \in \mathbb{R}^2 \), with \(|\lambda| = 1 \), \(\langle Z_N^\leq, \lambda \rangle \) converges weakly to the one dimensional Wiener process \(W_\sigma \). Convergence is in distribution on the space of continuous functions on \([0, T] \) equipped with the uniform topology.

Now we have to show that \(Z_N^\leq \) converges to \(\bar{W}_\sigma \). We follow the approach of [31] (see the proof of Lemma 4). The tightness of the sequence \(\{Z_N^\leq\}_{N \geq 1} \) follows from the tightness of the sequence \(\{\langle Z_N^\leq, \lambda \rangle\}_{N \geq 1} \), for every unitary vector \(\lambda \). Thus we only have to prove the convergence of the finite dimensional distribution. In particular, we have to show the following:

\[
\begin{align*}
(i) & \quad Z_N^\leq(t) - Z_N^\leq(s) \Rightarrow \bar{W}_\sigma(t) - \bar{W}_\sigma(s), \forall 0 \leq s \leq t \leq T; \\
(ii) & \quad Z_N^\leq(s) \text{ and } (Z_N^\leq(t) - Z_N^\leq(s)) \text{ are independent, as } N \rightarrow \infty, \\
& \quad \forall 0 \leq s \leq t \leq T.
\end{align*}
\]

In order to verify the first condition, we observe that the convergence of the process \(\langle Z_N^\leq(\cdot), \lambda \rangle \) to \(W_\sigma(\cdot) \) implies that \(\langle \langle Z_N^\leq(s), \lambda \rangle, \langle Z_N^\leq(t), \lambda \rangle \rangle \Rightarrow (W_\sigma(s), W_\sigma(t)), \) for every \(s, t \geq 0 \). But \((W_\sigma(s), W_\sigma(t)) \) has the same law of \((\langle \bar{W}_\sigma(s), \lambda \rangle, \langle \bar{W}_\sigma(t), \lambda \rangle) \), then

\[
\langle \langle Z_N^\leq(s), \lambda \rangle, \langle Z_N^\leq(s), \lambda \rangle \rangle \Rightarrow \langle \bar{W}_\sigma(t), \lambda \rangle - \langle \bar{W}_\sigma(s), \lambda \rangle
\]

for all \(\forall 0 \leq s \leq t \leq T, \forall \lambda \in \mathbb{R}^2 \) with \(|\lambda| = 1 \), and this implies (i).

In order to verify condition (ii) it is sufficient to prove that \(Z_N^\leq(s) \) and \(Z_N^\leq(t) - Z_N^\leq(s) \) are asymptotically jointly Gaussian and uncorrelated. This is stated in the next Lemma.

Lemma 4.3. For all \(\lambda, \mu \in \mathbb{R}^2 \)

\[
\begin{align*}
(17) & \quad \langle Z_N^\leq(s), \lambda \rangle + \langle Z_N^\leq(t) - Z_N^\leq(s), \mu \rangle \Rightarrow \mathcal{N}(0, \sigma^2(|\lambda|^2 s + |\mu|^2(t-s))), \\
& \quad \forall 0 \leq s < t \leq T.
\end{align*}
\]

We postpone the proof in section [5.2].

4.2. Proof of Theorem 3.2

Converge in probability of \(T_N^{-1} \) to the function \(\chi \), where \(\chi(t) = t \), in a compact \([0, T] \), is proved as in [3], see Lemma 8.1 and Proposition 8.2. Then

\[
(Z_N, T_N^{-1}) \Rightarrow (\bar{W}_\sigma, \chi)
\]

(Theorem 3.9 in Billingsley [7]) and therefore \(Z_N \circ T_N^{-1} \Rightarrow \bar{W}_\sigma \circ \chi \) (Billingsley [7], Lemma pg. 151).
4.3. **Proof of Theorem 3.3.** Given a vector valued, real function $J \in \mathcal{S}(\mathbb{R}^2; C(\mathbb{T}^2))$, we define the Fourier transform in the first variable

$$\hat{J}(p, k) = \int_{\mathbb{R}^2} du e^{-ip \cdot u} J(u, k), \quad \forall p \in \mathbb{R}^2, k \in \mathbb{T}^2;$$

and we introduce the norm on $\mathcal{S}(\mathbb{R}^2; C(\mathbb{T}^2))$

$$\|J\|_{\mathcal{B}_2}^2 = \int_{\mathbb{R}^2} dp \left(\sup_{k \in \mathbb{T}^2} |\hat{J}(p, k)| \right)^2.$$

We use a probabilistic representation of the solution of the rescaled Boltzmann equation, namely

$$\langle J, u^N(t) \rangle = \sum_{\alpha=1,2} \int_{\mathbb{R}^2 \times \mathbb{T}^2} dp \, dk \, \hat{J}_\alpha(p, k) \mathbb{E}_{(\alpha, \cdot)} \left[\tilde{u}_0(p, \alpha(Nt), K(Nt)) e^{-ip \cdot Y_N(t)} \right],$$

where $\mathbb{E}_{(\alpha, \cdot)}[\cdot]$ is the expectation starting from the state (α, \cdot), and $\tilde{F}(p, \beta, k) := \tilde{F}_\beta(p, k)$. The measure $\tilde{\pi}$ on $\{1, 2\} \times \mathbb{T}^2$, given by $\tilde{\pi}(\alpha, dk) = \frac{1}{2} dk$, is invariant for the (reversible) process $\{(\alpha(t), K(t)), t \geq 0\}$ on $\{\{1, 2\} \times \mathbb{T}^2\}$.

Let us choose a sequence of real numbers $\{\theta_N\}_{N \geq 1}$ such that $\theta_N \to \infty$ for $N \uparrow \infty$ and $\frac{\theta_N}{\sqrt{N \ln N}} \to 0$. We show that we can replace $Y_N(t)$ with $Y_N(t - \theta_N t/N)$. Fix $R > 0$.

Then

$$\left| \sum_{\alpha=1,2} \int_{\mathbb{R}^2 \times \mathbb{T}^2} dp \, dk \, \hat{J}_\alpha(p, k) \right|^2$$

$$\times \mathbb{E}_{(\alpha, \cdot)} \left[\tilde{u}_0(p, \alpha(Nt), K(Nt)) \left(e^{-ip \cdot Y_N(t)} - e^{-ip \cdot Y_N(t - \frac{\theta_N}{N} t)} \right) \right]$$

$$\leq \int_{\mathbb{R}^2} dp \sup_{k \in \mathbb{T}^2} |\hat{J}(p, k)| 1_{\{|p| \leq R\}}$$

$$\times \int_{\mathbb{T}^2} dk \mathbb{E}_{(\alpha, \cdot)} \left[|\tilde{u}_0(p, \alpha(Nt), K(Nt))| \left(e^{-ip \cdot Y_N(t)} - e^{-ip \cdot Y_N(t - \frac{\theta_N}{N} t)} \right) \right]$$

$$+ 2 \int_{\mathbb{R}^2} dp \sup_{k \in \mathbb{T}^2} |\hat{J}(p, k)| 1_{\{|p| > R\}} \int_{\mathbb{T}^2} dk \mathbb{E}_{(\alpha, \cdot)} \left[|\tilde{u}_0(p, \alpha(Nt), K(Nt))| \right].$$

Since

$$\left| e^{-ip \cdot Y_N(t)} - e^{-ip \cdot Y_N(t - \frac{\theta_N}{N} t)} \right| \leq C_0 \frac{\theta_N}{\sqrt{N \ln N}} |p| T,$$

using Cauchy-Schwartz we have that the r.h.s. of (18) is bounded by

$$C_0 R \frac{\theta_N}{\sqrt{N \ln N}} T \|J\|_{\mathcal{B}_2} \|\tilde{u}_0\|_{\mathcal{A}_2} + C_1 \|J\|_{\mathcal{B}_2} \left(\int_{\mathbb{R}^2 \times \mathbb{T}^2} dp \, dk \, |\tilde{u}_0|^2 1_{\{|p| > R\}} \right)^{1/2}.$$

We send $N \to \infty$ and then $R \to \infty$.

Denoting with $\hat{U}_p(\alpha_t, K_t) = \hat{u}_0(p, \alpha_t, K_t) - \hat{\pi}[\hat{u}_0](p)$, $\forall p \in \mathbb{R}^2$, $\forall t > 0$, we have

$$
\mathbb{E}_{(\alpha, k)} \left[(\hat{u}_0(p, \alpha(N_t), K(N_t)) - \hat{\pi}[\hat{u}_0](p)) e^{-ipY_N(t - \frac{\theta N}{\sigma^2} t)} \right] = \mathbb{E}_{(\alpha, k)} \left[e^{-ipY_N(t - \frac{\theta N}{\sigma^2} t)} S_{\theta N, t} \hat{U}_p(\alpha_t - \theta N_t, K_t - \theta N_t) \right],
$$

where $\{S_t\}_{t \geq 0}$ is the semigroup associated to the generator \hat{L}. Thus, using Cauchy-Schwartz,

$$
\left| \sum_{\alpha=1,2} \int_{\mathbb{R}^2 \times \mathbb{T}^2} dp \, dk \, \hat{J}_\alpha(p, k)^* \right| \leq 2 \left\| J \right\|_{A_2} \left(\int_{\mathbb{R}^2} dp \left\| S_{\theta N, t} \hat{U}_p \right\|_{L^2_\theta(\mathbb{T}^2)}^2 \right)^{1/2}
$$

In order to prove that the last expression converges to zero, we use the following lemma on the L^2-convergence.

Lemma 4.4. For every $f \in \mathcal{D}(\mathcal{L})$ with $\hat{\pi}[f] = 0$ the following inequality holds:

$$
\left\| S_t f \right\|_{L^2_\theta}^2 \leq C \left\| f \right\|_{L^2_\theta}^2 \frac{1}{t^{1 - \frac{2}{p}}}, \quad p > 2,
$$

for every $t \geq 0$.

We postpone the proof in Section 4.4. Then the r.h.s. of (19) is bounded by

$$
C_1 \left\| J \right\|_{A_2} \left\| u_0 \right\|_{A_2} \frac{1}{(\theta N t)^{\frac{1}{2} - \frac{1}{p}}}, \quad p > 2,
$$

which converges to zero for $N \to \infty$. Finally, we can replace $\mathbb{E}_{(\alpha, k)} \left[\exp\{-ipY_N(t)\} \right]$ with $\exp\{-\frac{1}{2} |p|^2 \sigma^2 t\}$. We have

$$
\left| \sum_{\alpha} \int_{\mathbb{R}^2 \times \mathbb{T}^2} dp \, dk \, \hat{J}_\alpha(p, k) \hat{\pi}[\hat{u}_0(p)] \mathbb{E}_{(\alpha, k)} \left[e^{-ipY_N(t)} - e^{-\frac{1}{2} |p|^2 \sigma^2 t} \right] \right|
$$

$$
\leq C_0 \left\| J \right\|_{B_2} \left(\int_{\mathbb{R}^2} dp \left| \hat{\pi}[\hat{u}_0(p)] \right|^2 \mathbf{1}_{\{|p| \geq R\}} \right)^{1/2}
$$

$$
+ \int_{\mathbb{R}^2} dp \sup_{k \in \mathbb{T}^2} |\hat{J}(p, k)| \left| \hat{\pi}[\hat{u}_0(p)] \right| \mathbf{1}_{\{|p| \leq R\}}
$$

$$
\times \int_{\mathbb{T}^2} dk \left| \mathbb{E}_{(\alpha, k)} \left[e^{-ipY_N(t)} - e^{-\frac{1}{2} |p|^2 \sigma^2 t} \right] \right|,
$$

for any $R > 0$. By Theorem 3.2, the second integral on the r.h.s. converges to zero for $N \to \infty$, $\forall t \in [0, \bar{T}]$, then we send $R \to \infty$.

We conclude the proof by observing that, since

$$
\left\| S_t u_N(t) \right\|_{L^2_\theta(\mathbb{R}^2 \times \mathbb{T}^2)} \leq \left\| u_0 \right\|_{L^2(\mathbb{R}^2 \times \mathbb{T}^2)}^2, \quad \forall N \geq 1, \forall t \geq 0,
$$
then there exists $\tilde{u}(t) \in L^2(\mathbb{R}^2 \times \mathbb{T}^2)$ such that $u^N(t)$ weakly converges to $\tilde{u}(t)$ as $N \to \infty$. Moreover, we have just proved that for every $J \in \mathcal{S}$ $(J, u^N(t)) \rightarrow (J, \tilde{u}(t))$ as $N \to \infty$, for any $t > 0$, where $\tilde{u}(t)$ is solution of (14). Therefore, using the fact that the Schwartz space \mathcal{S} is dense in L^2, we have $u^N(t) \to \tilde{u}(t)$ weakly in $L^2(\mathbb{R}^2 \times \mathbb{T}^2)$.

4.4. Algebraic convergence rate. Suppose that, for every f in the domain of the generator \mathcal{L}, such that $\hat{\pi}[f] = 0$, the following weak Poincaré inequality holds:

\begin{equation}
\|f\|_{L^2_\alpha}^2 \leq \frac{C_0}{r^{p/(p-2)}} \mathcal{E}(f, f) + r \|f\|_{L^p_\alpha}^p, \quad \forall r > 0, \quad p > 2,
\end{equation}

where $\mathcal{E}(f, f)$ is the Dirichelet form. Set $a - 1 = \frac{p}{p-2}$. Then, optimizing on r, one gets a Nash type inequality:

$$
\|f\|_{L^2_\alpha}^2 \leq C'[\mathcal{E}(f, f)]^{1/[a]} \left(\|f\|_{L^p_\alpha}^2\right)^{1 - \frac{d}{p}}, \quad p > 2,
$$

which provides the following algebraic rate of convergence

\begin{equation}
\|S_t f\|_{L^2_\alpha}^2 \leq C \|f\|_{L^p_\alpha}^2 \frac{1}{t^{a-1}}, \quad p > 2,
\end{equation}

where $a - 1 = \frac{p}{p-2}$ (see also [30]). Therefore, in order to prove Lemma 4.4 it suffices to show that (22) holds.

For every $\delta \in (0, 1)$, we define the set $A_\delta = \{k \in \mathbb{T}^2 : |k| > \delta\}$ and we denote by A_δ^c its complement. It easy to see that $\forall \varepsilon > 0$ $\hat{\pi}[1_{\{A_\delta\}}] \geq 1 - \varepsilon$, if $\delta \leq c \varepsilon^{1/2}$, with c constant. We have

$$
\|f\|_{L^2_\alpha}^2 = \|f1_{\{A_\delta\}}\|_{L^2_\alpha}^2 + \|f1_{\{A_\delta^c\}}\|_{L^2_\alpha}^2,
$$

where, using Hölder inequality,

$$
\|f1_{\{A_\delta\}}\|_{L^2_\alpha}^2 \leq \|f\|_{L^q_\alpha}^2 \left(\hat{\pi}[1_{\{A_\delta\}}]\right)^{\frac{1}{q - 1}}, \quad q > 1.
$$

Choosing $\delta < c \varepsilon^{1/2}$, we get

\begin{equation}
\|f1_{\{A_\delta\}}\|_{L^2_\alpha}^2 \leq \varepsilon^{1 - \frac{1}{q}} \|f\|_{L^q_\alpha}^2, \quad q > 1.
\end{equation}

The Dirichelet form has the following expression:

$$
\mathcal{E}(f, f) = -(f, \mathcal{L} f)_{\pi} = \frac{1}{2} \sum_{\alpha = 1, 2} \int_{\mathbb{T}^2} dk \Phi(k) f(\alpha, k)^2 - \frac{1}{2} \sum_{\alpha = 1, 2} \sum_{\beta \neq \alpha} \int_{\mathbb{T}^2} dk \Phi(k) f(\alpha, k) \int_{\mathbb{T}^2} dk' P(k, k') f(\beta, k').
$$
We observe that \(P(k, k') \Phi(k) \leq c_1 < 1 \), \(\forall k, k' \in \mathbb{T}^2 \), then
\[
\mathcal{E}(f, f) \geq \frac{1}{2} (1 - c_1) \sum_{\alpha = 1, 2} \int_{\mathbb{T}^2} dk \Phi(k) f(\alpha, k)^2
\]
\[
\geq c_2 \inf_{\{k: |k| \geq \delta\}} \Phi(k) \| f^1 \|_{L^2}^2, \quad \delta > 0.
\]
Since \(\inf_{\{k: |k| \geq \varepsilon^{1/2}\}} \Phi(k) = c_3 \varepsilon \), using (24) we obtain
\[
\| f \|_{L^2}^2 \leq \frac{C_0}{\varepsilon} \mathcal{E}(f, f) + \varepsilon^{1 - \frac{1}{q}} \| f \|_{L^2}^2, \quad q > 1, \quad \forall \varepsilon > 0.
\]
Setting \(r = \varepsilon^{1 - \frac{1}{q}} \) and \(p = 2q \), we get the weak Poincaré inequality (22).

Remark. We can extend this proof to the general case of the process in \(d \)-dimensions. We get the following algebraic convergence rate:

\[
\| S_t f \|_{L^2}^2 \leq C \| f \|_{L^2}^2 \frac{1}{t^{d/2(1 - \frac{1}{p})}}, \quad p > 2, \quad \forall d \geq 1.
\]

5. Details

We start with some preliminary results on \(P^m \), the \(m \)-th convolution integral of \(P \), the probability kernel defined in 8. By direct computation

\[
P^m(k, dk') = \frac{2}{\sum_{\gamma = 1}^2 \sin^2(\pi k_\gamma)} \sum_{\alpha = 1}^2 \sum_{\beta = 1}^2 \sin^2(\pi k_\alpha) A_{\alpha, \beta}^{(m)} \sin^2(\pi k'_\beta) dk'
\]

where, \(\forall \alpha, \beta \in \{1, 2\} \),

\[
A_{\alpha, \beta}^{(1)} = \delta_{\alpha, \beta}, \quad A_{\alpha, \beta}^{(m+1)} = [a^m]_{\alpha, \beta} \quad \forall m \geq 1.
\]

Here \(a \) is a \(2 \times 2 \) real matrix with elements

\[
a_{11} = a_{22} = 2 \int_{\mathbb{T}^2} dk \frac{\sin^4(\pi k_1)}{\sum_{\alpha} \sin^2(\pi k_\alpha)},
\]

\[
a_{12} = a_{21} = 2 \int_{\mathbb{T}^2} dk \frac{\sin^2(\pi k_1) \sin^2(\pi k_2)}{\sum_{\alpha} \sin^2(\pi k_\alpha)}.
\]

Observe that the condition

\[
\int_{\mathbb{T}^2} P^m(k, dk') = 1 \quad \forall m \geq 1,
\]

implies

\[
\sum_{\beta = 1}^2 A_{\alpha, \beta}^{(m)} = 1, \quad \forall \alpha = 1, 2, \quad \forall m \geq 1,
\]

and thus

\[
P^m(k, dk') \leq 2 \sum_{\beta = 1, 2} \sin^2(\pi k'_\beta) dk', \quad \forall k \in \mathbb{T}^2, \quad \forall m \geq 1.
\]
5.1. **Proof of Proposition 4.2** Fix $\lambda := (\lambda_1, \lambda_2)$ with $\lambda_1^2 + \lambda_2^2 = 1$. We will follow the strategy of Durrett and Resnick [9] to prove that $\langle Z_N^\lambda, \lambda \rangle := \lambda_1 Z_N^{1<} + \lambda_2 Z_N^{2<}$ converges weakly to a Wiener process W_c. They use a result of Freedman [14], pages 89-93, on martingale difference arrays with uniformly bounded variables. We start with the following

Definition 5.1. A collection of random variables $\{\xi_{N,i}\}$, $N \geq 1$, $i \geq 1$ and σ-fields $F_{N,i}$, $i \geq 0$, $N \geq 1$ is a martingale difference array if

(i) for all $N \geq 1$, $F_{N,i}$, $i \geq 0$ is a nondecreasing sequence of σ-fields;

(ii) for all $N \geq 1$, $i \geq 1$, $\xi_{N,i}$ is $F_{N,i}$ measurable;

(iii) for all $N \geq 1$, $E[\xi_{N,i} | F_{N,i-1}] = 0$ a.s.

We introduce the following notations:

$$\langle \lambda, \bar{\Psi}_{N,m} \rangle := \lambda_1 \frac{e_m \psi_m^1}{\sqrt{N \ln N}} 1_{\{e_m | \psi_m^1| \leq \sqrt{N}\}} + \lambda_2 \frac{e_m \psi_m^2}{\sqrt{N \ln N}} 1_{\{e_m | \psi_m^2| \leq \sqrt{N}\}},$$

(30)

$\forall N \geq 2$, $m \geq 0$, and, for $N = 1$,

$$\langle \lambda, \bar{\Psi}_{1,m} \rangle = \lambda_1 e_m \psi_m^1 1_{\{e_m | \psi_m^1| \leq 1\}} + \lambda_2 e_m \psi_m^2 1_{\{e_m | \psi_m^2| \leq 1\}},$$

for all $m \geq 0$.

For all $N \geq 1$, $m \geq 0$, we denote with $F_{N,m}$ the σ-field generated by $\{X_0, ..., X_m\} \times \{\epsilon_0, ..., \epsilon_m\}$, where $\{X_m\}_{m \geq 0}$ is the Markov chain with value in \mathbb{T}^2. Then $\{\langle \lambda, \bar{\Psi}_{N,m} \rangle, F_{N,m}\}_{N \geq 1, m \geq 1}$ is a martingale difference array. In particular, condition (iii) of [5.1] can be easily checked using the explicit form of probability kernel $P[k, dk']$.

By definition, the variables $\langle \lambda, \bar{\Psi}_{N,m} \rangle$ are uniformly bounded in m, i.e. for all $N \geq 1$ $\{\langle \lambda, \bar{\Psi}_{N,m} \rangle \} \leq \varepsilon_N$, $\forall m \geq 0$, where $\varepsilon_N = \frac{2}{\sqrt{\ln N}}$ if $N \geq 2$, and $\varepsilon_1 = 2$. In particular $\varepsilon_N \downarrow 0$ when $N \to \infty$.

For every $N \geq 1$, $j \geq 1$, let us define

$$\langle \lambda, S_{N,j} \rangle = \sum_{m=1}^j \langle \lambda, \bar{\Psi}_{N,m} \rangle,$$

(31)

$$\langle \lambda, V_{N,j} \rangle = \sum_{m=1}^j E[\langle \lambda, \bar{\Psi}_{N,m} \rangle^2 | F_{N, m-1}].$$

(32)

We will prove in lemma [5.2] that $\mathbb{P}[\lim_{j \to \infty} \langle \lambda, V_{N,j} \rangle = \infty] = 1$, for all $N \geq 1$, i.e. the martingale difference array $\{\langle \lambda, \bar{\Psi}_{N,m} \rangle, F_{N,m}\}_{N \geq 1, m \geq 0}$ satisfies the hypotheses of Theorem 2.1 in [9]. Thus, setting

$$j_{N,\lambda}(t) = \sup\{j | \langle \lambda, V_{N,j} \rangle \leq t\},$$

we get that $\langle \lambda, S_{N,j_{N,\lambda}(\cdot)} \rangle$ converges weakly as a sequence of random elements of $D[0, \mathcal{T}]$ to a standard Wiener process W.

Now let $\phi_{N,\lambda}(t) = \langle \lambda, V_{N,\lfloor N\theta \rfloor} \rangle$, $\forall t \in [0, T]$. By definition

$$j_{N,\lambda} \circ \phi_{N,\lambda}(t) = [Nt].$$

In order to prove that $\phi_{N,\lambda}$ converges in probability to the function $\phi : \phi(t) = \sigma^2 t$, it suffices to show that $\phi_{N,\lambda}(t) \xrightarrow{P} \sigma^2 t$, $\forall t \in [0, T]$, since ϕ is continuous and $\phi_{N,\lambda}$ is monotone. That will be proved in lemma 5.2.

Then

$$\langle \lambda, S_{N,j_{N,\lambda}} \rangle \circ \phi_{N,\lambda} \Rightarrow W \circ \phi$$

(Billingsley [7], Lemma pg. 151).

Finally,

$$\langle \lambda, S_{N,\lfloor N \cdot \rfloor} \rangle = \langle \lambda, S_{N,j_{N}(\phi_{N}())} \rangle \Rightarrow W^2_{\sigma},$$

where convergence is in distribution on the space $D[0, T]$ equipped with the Skorohod J_1-topology.

The process $\langle \lambda, \tilde{S}_{N}(t) \rangle := \sum_{m=0}^{[NT]-1} \langle \lambda, \tilde{\Psi}_{N,m} \rangle$ converges also to W_{σ}. For every $N \geq 2$, $\langle Z_{\tilde{N}}, \lambda \rangle = \lambda_1 Z_{\tilde{N}}^{<} + \lambda_2 Z_{\tilde{N}}^{<}$ is the continuous function defined by linear interpolation between its values $\langle \lambda, \tilde{S}_{N}(m/N) \rangle$ at points m/N. The two sequences $\{\langle \lambda, \tilde{S}_{N}(t) \rangle, 0 \leq t \leq T \}$ and $\{\{Z_{\tilde{N}}(\theta), \lambda \} | 0 \leq \theta \leq T \}$ are asymptotically equivalent, i.e. if either converges in distribution as $N \to \infty$, then so does the other. Convergence of $\langle Z_{\tilde{N}}, \lambda \rangle$ to W_{σ} is in distribution on the space of continuous functions equipped with the uniform topology.

We conclude this subsection with the main Lemma.

Lemma 5.2. For every $N \geq 1$, for every unitary vector $\lambda \in \mathbb{R}^2$,

$$\mathbb{P} \left(\lim_{j \to \infty} \langle \lambda, V_{N,j} \rangle = \infty \right) = 1.$$

Moreover, for every $\delta > 0$, for every unitary vector $\lambda \in \mathbb{R}^2$,

$$\lim_{N \to \infty} \mathbb{P} \left(\left| \langle \lambda, V_{N,\lfloor N\theta \rfloor} \rangle - \sigma^2 \theta \right| > \delta \right) = 0,$$

$\forall \theta \in [0, T]$.

Proof. Fix $\lambda \in \mathbb{R}^2$, with $|\lambda|^2 = 1$. $\forall N \geq 2$, we define $f_N : T^2 \to \mathbb{R}^2$

$$f_N(k) = \int_0^\infty dz \ e^{-z}$$

$$\times \int_{T^2} P(k, dk') \left(\sum_{\alpha=1,2} \lambda_{\alpha} \frac{z}{\sqrt{N \ln N}} \mathbf{1}_{\{z |\psi^{\alpha}(k')| \leq \sqrt{N} \}} \right)^2.$$

Using (26), we get $f_N(k) \geq C_0/N$, with $0 \leq C_0 < \infty$. Since $f_N(X_m) = \mathbb{E} \left[|\tilde{\Phi}_{N,m+1}, \lambda |^2 | \mathcal{F}_m \right]$, $\forall m \geq 0$
then, for all $N \geq 1$, $\langle \lambda, V_{N,j} \rangle \geq j C_0 N^{-1}$ which goes to infinity for $j \to \infty$, a.s.

Now we focus on (34). By Chebychev inequality, for every $N \geq 1$

$$P\left[|\langle \lambda, V_{N,\lfloor Nt \rfloor} \rangle - \sigma^2 t| > \delta \right]$$

$$\leq P\left[\sum_{n=1}^{\lfloor Nt \rfloor} \left(\mathbb{E} \left[(\tilde{\Psi}_{N,n}^2) |\mathcal{F}_{n-1} \right] - \frac{\sigma^2}{N} \right) \right]$$

$$\leq \frac{1}{\delta^2 N} \sum_{n=1}^{\lfloor Nt \rfloor} \mathbb{E} \left[\left(\mathbb{E} \left[(\tilde{\Psi}_{N,n}^2) |\mathcal{F}_{n-1} \right] - \frac{\sigma^2}{N} \right)^2 \right]$$

$$+ \frac{1}{\delta^2 N} \sum_{n=1}^{\lfloor Nt \rfloor} \sum_{m \neq n} \mathbb{E} \left[\mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right] - \frac{\sigma^2}{N} \right]$$

$$\times \left(\mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right] - \frac{\sigma^2}{N} \right),$$

where $\tilde{\delta}_N = \delta - N^{-1}$. By (29), we get

$$\mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right] = f_N(X_{m-1}) \leq \frac{C_0}{N},$$

thus the first sum on the r.h.s. of (36) is bounded by $\tilde{\delta}_N^2 C_1 T / N$, with C_1 finite. Let us consider the second sum on the r.h.s. of (36). For $n > m$

$$\mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right] = \mathbb{E} \left[(\tilde{\Psi}_{N,n}^2) |\mathcal{F}_{n-1} \right] \mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right]$$

$$= \mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right] \mathbb{E} \left[(\tilde{\Psi}_{N,n}^2) |\mathcal{F}_{n-1} \right] \mathbb{E} \left[(\tilde{\Psi}_{N,m}^2) |\mathcal{F}_{m-1} \right].$$

We set

$$g_{N,m}(X_{m-1}) := \mathbb{E} \left[(\tilde{\Psi}_{N,n}^2) |\mathcal{F}_{n-1} \right],$$

where, for every $t \geq 1$, $N \geq 1$, the function $g : \mathbb{T}^2 \to \mathbb{R}^2$ is given by

$$g_N^t(k) = \int_{\mathbb{T}^2} dk' P^t(k, dk') f_N(k'),$$

with f_N defined in (35). By (29) and (37) we get

$$g_N^t(k) \leq \frac{C_0}{N}, \quad \forall k \in \mathbb{T}^2, \forall t \geq 1.$$
We fix M, $1 \leq M < N$ and we get

\[
\sum_{n=1}^{\lfloor Nt \rfloor} \sum_{m \neq n} \mathbb{E} \left[\mathbb{E} \left[\langle \tilde{\Psi}_{N,n}, \lambda \rangle^2 | \mathcal{F}_{n-1} \right] \mathbb{E} \left[\langle \tilde{\Psi}_{N,m}, \lambda \rangle^2 | \mathcal{F}_{m-1} \right] \right] \\
= 2 \sum_{m=1}^{M} \sum_{n=m+1}^{\lfloor Nt \rfloor} \mathbb{E} \left[f_N(X_{m-1}) g_{N}^{n-m}(X_{m-1}) \right] \\
+ 2 \sum_{m=M+1}^{\lfloor Nt \rfloor} \sum_{n=m+M}^{\lfloor Nt \rfloor} \mathbb{E} \left[f_N(X_{m-1}) g_{N}^{n-m}(X_{m-1}) \right] \\
+ 2 \sum_{m=M+1}^{\lfloor Nt \rfloor} \sum_{n=m+M+1}^{\lfloor Nt \rfloor} \mathbb{E} \left[f_N(X_{m-1}) g_{N}^{n-m}(X_{m-1}) \right].
\]

By [55], the first and the second sum on the r.h.s. are bounded form above by CTM/N, with C finite. We denote by $\mu \lambda_{m-1}$ the convolution integral of the initial measure μ and the probability P^m. For every $l \geq 1$,

\[
\mathbb{E} \left[f_N(X_{m-1}) g_{N}^{l}(X_{m-1}) \right] = \mathbb{E}_{\pi} \left[f_N(X_{m-1}) g_{N}^{l}(X_{m-1}) \right] \\
+ \int_{T^2} [\mu P^{m-1}(dk) - \pi (dk)] f_N(k) g_{N}^{l}(k)
\]

where the last term is bounded by $C'N^{-2} \int_{T^2} |\mu P^{m-1}(dk) - \pi (dk)|$.

Moreover, for every $l \geq 1$

\[
\mathbb{E}_{\pi} \left[f_N(X_{m-1}) g_{N}^{l}(X_{m-1}) \right] \\
= \int_{T^2} \pi (dk) f_N(k) \int_{T^2} dk' P^l(k, dk') f_N(k') \\
\leq \left(\int_{T^2} \pi (dk) f_N(k) \right)^2 + \frac{C'}{N^2} \int_{T^2} |\mu P^{m-1}(dk) - \pi (dk)|.
\]

We get

\[
\sum_{n=1}^{\lfloor Nt \rfloor} \sum_{m \neq n} \mathbb{E} \left[\mathbb{E} \left[\langle \tilde{\Psi}_{N,n}, \lambda \rangle^2 | \mathcal{F}_{n-1} \right] \mathbb{E} \left[\langle \tilde{\Psi}_{N,m}, \lambda \rangle^2 | \mathcal{F}_{m-1} \right] \right] \\
\leq \lfloor Nt \rfloor (\lfloor Nt \rfloor - 1) \left(\mathbb{E}_{\pi} \left[\langle \tilde{\Psi}_{N,1}, \lambda \rangle^2 \right] \right)^2 \\
+ C'T \frac{M}{N} + C' T \int_{T^2} |\mu P^M (dk) - \pi (dk)|,
\]
we C and C' finite. In the same way one can prove that
\[
\sum_{n=1}^{[Nt]} \mathbb{E} [\langle \bar{\Psi}_{N,n}, \lambda \rangle^2] \leq [Nt] \mathbb{E} \left[\langle \bar{\Psi}_{N,n}, \lambda \rangle^2 \right] \\
+ C \frac{M}{N} + C' \int_{\mathbb{T}^2} |\mu P^M (dk) - \pi (dk)|,
\]
with some C, C' finite, and finally we get
\[
\mathbb{P} \left[|\langle \lambda, V_{N,[Nt]} \rangle - \sigma^2 t| > \delta \right] \leq \frac{1}{\delta_N^2} CT \frac{M}{N} + \frac{1}{\delta_N^2} C' \int_{\mathbb{T}^2} |\mu P^M (dk) - \pi (dk)|,
\]
where C, C' are finite. (34) is proved by sending $M, N \to \infty$ in such a way that $M/N \to 0$.

\[\Box\]

5.2. Proof of Lemma (4.3). We use the central limit theorem for martingale difference array ([10], Theorem 1; see also [11], [19]) which states the follows: fix $t > 0$, and let \(\{\xi_{N,i}, \mathcal{F}_{N,i}\}_{N \geq 1, i \geq 0} \) be a martingale difference array such that
\[
(i) \quad \sum_{i=1}^{[Nt]} \mathbb{E} \left[\xi_{N,i}^2 | \mathcal{F}_{N,i-1} \right] \overset{P}{\to} ct, \quad N \uparrow \infty;
\]
\[
(ii) \quad \sum_{i=1}^{[Nt]} \mathbb{E} \left[\xi_{N,i}^2 \mathbf{1}_{\{|\xi_{N,i}| > \varepsilon\}} | \mathcal{F}_{N,i-1} \right] \overset{P}{\to} 0, \quad N \uparrow \infty, \quad \forall \varepsilon > 0.
\]
Then
\[
\sum_{i=1}^{[Nt]} \xi_{N,i} \Rightarrow \mathcal{N}(0, ct).
\]

By definition of Z_N^λ, $\forall \lambda \in \mathbb{R}^2$
\[
\lambda, Z_N^\lambda(t) = \langle \lambda, S_{N,[Nt]} \rangle + (Nt - [Nt]) \langle \lambda, \bar{\Psi}_{[Nt]} \rangle,
\]
$\forall t \in [0, \mathcal{T}]$, where $\langle \lambda, S_N, \cdot \rangle$ is defined in (31). The rightmost term in (39) goes to zero in probability by Chebyshev’s inequality. We fix $\lambda, \mu \in \mathbb{R}^2$ and $0 \leq s < t \leq \mathcal{T}$, and we define the following array of variables:
\[
\tilde{\xi}_{N,i} = \begin{cases}
\langle \lambda, \bar{\Psi}_{N,i} \rangle & \text{if } 0 \leq i \leq \lfloor Ns \rfloor - 1, \\
\langle \mu, \bar{\Psi}_{N,i} \rangle & \text{if } \lfloor Ns \rfloor \leq i,
\end{cases} \quad \forall N \geq 1.
\]

We denote with $\mathcal{F}_{N,i}$ the σ-algebra generated by $(X_0, ..., X_i) \times (e_0, ..., e_i)$, $\forall N \geq 1, i \geq 0$. Then $\{\tilde{\xi}_{N,i}, \mathcal{F}_{N,i}\}_{N \geq 1, i \geq 0}$ is a martingale difference array. In particular, since $|\langle \mu, \bar{\Psi}_{N,i} \rangle| \leq 2(\ln N)^{-1/2}$ for every $i \geq 1$, for
every unitary vector $\nu \in \mathbb{R}^2$, it follows that $\forall \varepsilon > 0$, there exists \tilde{N} such that $|\tilde{\xi}_{N,i}| < \varepsilon$, $\forall N \geq \tilde{N}$, $\forall i \geq 1$. Therefore condition (ii) is satisfied.

Moreover, with similar arguments of the proof of (34), one can prove that

$$\sum_{i=1}^{[Nt]} E \left[\tilde{\xi}^{2}_{N,i} | \mathcal{F}_{N,i-1} \right] \xrightarrow{P} \sigma^2 |\lambda|^2 s + \sigma^2 |\mu|^2 (t - s),$$

with σ^2 defined in (13). Thus

$$\sum_{i=[Ns]}^{[Nt]-1} \langle \lambda, \tilde{\Psi}_{N,i} \rangle + \sum_{i=[Ns]}^{[Nt]-1} \langle \mu, \tilde{\Psi}_{N,i} \rangle = \sum_{i=1}^{[Nt]} \tilde{\xi}_{N,i} \Rightarrow \mathcal{N}(0, \sigma^2 \{ |\lambda|^2 s + |\mu|^2 (t - s) \}).$$

6. An invariance principle for centered, bounded random variables

In this section we present an alternative proof of Proposition 4.2. We start with a CLT for arrays of centered, uniformly bounded random variables, based on the convergence of the moments to the moments of a normal distribution. Some asymptotic factorization conditions, holding on average, are required. Then we will use it to show that for every unitary vector $\lambda \in \mathbb{R}^2$, $\langle \lambda, Z_N(t) \rangle = \lambda_1 Z_{N1}^N(t) + \lambda_2 Z_{N2}^N(t) \Rightarrow W_\sigma(t)$, $\forall t \in [0T]$.

Proposition 6.1 (CLT). Let $\{\tilde{X}_{n,i} \mid i = 1, \ldots, n, n \geq 1 \}$ be an array of centered random variables and suppose that exists $\varepsilon_n \downarrow 0$ such that $|\tilde{X}_{n,i}| \leq \varepsilon_n$, for all n and i. Let $\tilde{S}_n = \sum_{i=1}^{n} \tilde{X}_{n,i}$. Then $\tilde{S}_n \Rightarrow \mathcal{N}(0, c)$, if the following conditions hold:

(i) $\forall \ell \geq 1$, for every sequence of positive integers $\{p_1, \ldots, p_\ell\}$ such that $\exists p_j = 1, j \in \{1, \ldots, \ell\}$

$$\sum_{i_1 \neq i_2 \neq \ldots \neq i_\ell}^{n} E \left[\tilde{X}_{n,i_1}^{p_1} \ldots \tilde{X}_{n,i_\ell}^{p_\ell} \right] \xrightarrow{n \uparrow \infty} 0$$

(ii) $\forall \ell \geq 1$

$$\sum_{i_1 \neq i_2 \neq \ldots \neq i_\ell}^{n} E \left[\tilde{X}_{n,i_1}^{2} \ldots \tilde{X}_{n,i_\ell}^{2} \right] \xrightarrow{n \uparrow \infty} c^\ell$$

Proof. The proof is based on the convergence of the moments of \tilde{S}_n. Of course $E[\tilde{S}_n] = 0$, while for the second moment we have

$$E \left[(\tilde{S}_n)^2 \right] = \sum_{i=1}^{n} E \left[(\tilde{X}_{i,n})^2 \right] + \sum_{i \neq j}^{n} E \left[X_{i,n} X_{j,n} \right] \rightarrow c,$$

since the second sum goes to zero for condition (i).
Now let us compute the third moment:

\[
\mathbb{E} \left[(\bar{S}_n)^3 \right] = \sum_{i=1}^{n} \mathbb{E} \left[(\bar{X}_{i,n})^3 \right] + 3 \sum_{i \neq j} \mathbb{E} \left[(\bar{X}_{i,n})^2 \bar{X}_{j,n} \right] + \sum_{i \neq j \neq k} \mathbb{E} \left[\bar{X}_{i,n} \bar{X}_{j,n} \bar{X}_{k,n} \right].
\]

The last two sums go to zero for condition \((i)\). For the first sum we have

\[
\left| \sum_{i=1}^{n} \mathbb{E} \left[(\bar{X}_{i,n})^3 \right] \right| \leq \sum_{i=1}^{n} \mathbb{E} \left[(\bar{X}_{i,n})^2 | \bar{X}_{i,n} \right] \leq \varepsilon_n \sum_{i=1}^{n} \mathbb{E} \left[(\bar{X}_{i,n})^2 \right] \sim \varepsilon_n c^{n} \rightarrow 0.
\]

In the general case, the \(m\)-th moment \(\mathbb{E} \left[(\bar{S}_n)^m \right]\) is made up of terms of the form

\[
A(p_1, \ldots, p_{\ell}) \sum_{i_1 \neq i_2 \neq \cdots \neq i_{\ell}}^{n} \mathbb{E} \left[(\bar{X}_{i_1,n})^{p_1} \ldots (\bar{X}_{i_{\ell},n})^{p_{\ell}} \right], \quad 1 \leq \ell \leq m
\]

with \(\{p_i, \ i = 1, \ldots, \ell\}\) positive integers such that \(p_1 + p_2 + \cdots + p_\ell = m\). Here \(A(p_1, \ldots, p_{\ell})\) is the number of all possible partitions of \(m\) objects in \(\ell\) subsets made up of \(p_1, \ldots, p_\ell\) objects. Since all sums containing a singleton (i.e. there is a \(p_i = 1\)) go asymptotically to zero, we consider just the cases with \(p_i \geq 2, \forall i = 1, \ldots, \ell\). Observe that this implies in particular that \(\ell \leq m/2\). In this case

\[
\left| \sum_{i_1 \neq i_2 \neq \cdots \neq i_{\ell}}^{n} \mathbb{E} \left[(\bar{X}_{i_1,n})^{p_1} \ldots (\bar{X}_{i_{\ell},n})^{p_{\ell}} \right] \right| \leq \varepsilon_n^{m-2\ell} \sum_{i_1 \neq i_2 \neq \cdots \neq i_{\ell}}^{n} \mathbb{E} \left[(\bar{X}_{i_1,n})^2 \ldots (\bar{X}_{i_{\ell},n})^2 \right] \sim \varepsilon_n^{m-2\ell} c^{\ell},
\]

which goes to zero if \(\ell \neq m/2\). Therefore all odd moments are asymptotically negligible, while for even moments asymptotically

\[
\mathbb{E} \left[(\bar{S}_n)^{2k} \right] \sim A_k \sum_{i_1 \neq \cdots \neq i_{k}}^{n} \mathbb{E} \left[(\bar{X}_{i_1,n})^2 \ldots (\bar{X}_{i_k,n})^2 \right] \rightarrow A_k c^k;
\]

where \(A_k\) is the number of all possible pairings of \(2k\) objects, namely

\[
A_k = (2k-1)(2k-3) \cdots 1 = (2k-1)!!
\]

Finally

\[
\mathbb{E} \left[(\bar{S}_n)^m \right] \overset{n \to \infty}{\longrightarrow} \begin{cases}
0 & m \ odd \ \text{odd} \\
(m-1)!! c^{m/2} & m \ even
\end{cases}
\]

which are the moments of a Gaussian variable \(\mathcal{N}(0, c)\). \(\square\)

Let us consider the array of variables \(\{\langle \lambda, \bar{\Psi}_{N,m} \rangle, N \geq 2, m \geq 0\}\) defined in \((30), (15)\), with \(\lambda \in \mathbb{R}^2\) unitary vector. We have

\[
\langle \lambda, Z_N(t) \rangle = \sum_{m=0}^{[Nt]-1} \langle \lambda, \bar{\Psi}_{N,m} \rangle + \langle Nt - [Nt] \langle \lambda, \bar{\Psi}_{N,[Nt]} \rangle \rangle,
\]

\(\forall t \in [0, T], \forall N \geq 2\), where the rightmost term goes to zero in probability by Chebyshev’s inequality. By definition, \(\langle \lambda, \bar{\Psi}_{N,m} \rangle \leq \frac{\sqrt{2m}}{\sqrt{\ln N}}\) for
every $m \geq 0$, $\forall N \geq 2$. Moreover, since $\psi(k)$ is an odd function, and the probability kernel $P(k, dk')$ has a density which is even in both k and k', the array satisfies condition (i). In order to check condition (ii), we will use the following Lemma.

Lemma 6.2. For every $\ell \geq 1$, for every sequence (m_1, \ldots, m_ℓ) such that $m_1 \geq 0$, $m_i \geq 1$, for every $N \geq 2$

\begin{equation}
(40) \quad E \left[\langle \lambda, \tilde{\Psi}_{N,m_1} \rangle^2 \ldots \langle \lambda, \tilde{\Psi}_{N,m_1+\ldots+m_\ell} \rangle^2 \right] \leq \frac{c_0^\ell}{N^\ell}
\end{equation}

with c_0 finite, $\forall t \in [0, T]$.

Proof. By definition

$$
E \left[\langle \lambda, \tilde{\Psi}_{N,m_1} \rangle^2 \ldots \langle \lambda, \tilde{\Psi}_{N,m_1+\ldots+m_\ell} \rangle^2 \right] = \int_0^\infty dz_1 e^{-z_1} \int_{T^2} \mu m_1 (dk_1) \langle \lambda, \tilde{\Psi}_N(k_1, z_1) \rangle^2 \int \ldots
$$

$$
\times \int_0^\infty dz_m e^{-z_m} \int_{T^2} \mu m_\ell (k_{m-1}, k_m) \langle \lambda, \tilde{\Psi}_N(k_m, z_m) \rangle^2
\leq 2^\ell \left(\int_0^\infty dz e^{-z} \int_{T^2} \pi(k) \langle \lambda, \tilde{\Psi}_N(k, z) \rangle^2 \right)^\ell,
$$

where in the last inequality we used (29). We conclude the proof by observing that

$$
\lim_{N \to \infty} N \int_0^\infty dz e^{-z} \int_{T^2} \pi(k) \langle \lambda, \tilde{\Psi}_N(k, z) \rangle^2 = \sigma^2,
$$

with σ defined in (13). \qed

We observe that

$$
\sum_{i_1 \neq i_2 \neq \ldots \neq i_\ell \in \{0, \ldots, [Nt] - 1\}} \frac{E \left[\langle \lambda, \tilde{\Psi}_{N,i_1} \rangle^2 \ldots \langle \lambda, \tilde{\Psi}_{N,i_\ell} \rangle^2 \right]}{\ell!} = \frac{\ell!}{\ell!} \sum_{m_1 \geq 0} \sum_{m_2, \ldots, m_\ell \geq 1 \atop m_1 + \ldots + m_\ell \leq [Nt] - 1} E \left[\langle \lambda, \tilde{\Psi}_{N,m_1} \rangle^2 \ldots \langle \lambda, \tilde{\Psi}_{N,m_1+\ldots+m_\ell} \rangle^2 \right].
$$

We split the sum on m_1 in two parts, namely $\sum_{m_1=0}^{M-1} + \sum_{m_1 \geq M}$, with $0 < M < [Nt] - 1$. Using (40) and the relation

$$
\lim_{N \to \infty} \sum_{m_1, \ldots, m_k \geq 1 \atop m_1 + \ldots + m_k \leq N} N^{-k} = \frac{1}{k!},
$$

we get that for every $\ell \geq 1$, $N \geq 2$, $\forall t \in [0, T]$

$$
\ell! \sum_{m_1=0}^{M-1} \sum_{m_2, \ldots, m_\ell \geq 1 \atop m_1 + \ldots + m_\ell \leq [Nt] - 1} E \left[\langle \lambda, \tilde{\Psi}_{N,m_1} \rangle^2 \ldots \langle \lambda, \tilde{\Psi}_{N,m_1+\ldots+m_\ell} \rangle^2 \right]
\leq C_\ell T^\ell \frac{M}{N}.
$$
By repeating this procedure for all the sums, we have

\[
\sum_{m_1 \ldots m_\ell \geq M \atop m_1 + \ldots + m_\ell \leq |N| - 1} \mathbb{E} \left[(\lambda, \tilde{\Psi}_{N,i_1})^2 \ldots (\lambda, \tilde{\Psi}_{N,i_\ell})^2 \right] = \ell! \sum_{m_1 \ldots m_\ell \geq M \atop m_1 + \ldots + m_\ell \leq |N| - 1} \mathbb{E} \left[(\lambda, \tilde{\Psi}_{N,m_1})^2 \ldots (\lambda, \tilde{\Psi}_{N,m_1 \ldots + m_\ell})^2 \right] + \mathcal{E}_\ell(M, N),
\]

with \(\mathcal{E}_\ell(M, N) \leq \tilde{C}_\ell T^{\ell-1} M/N, \forall \ell \geq 1. \)

Observe that for every \(m \geq 2 \)

\[
\int_{T^2} P^m(k, d\bar{k}) \langle \lambda, \tilde{\Psi}_N(k, \bar{z}) \rangle^2 = \int_{T^2} \pi(d\bar{k}) \langle \lambda, \tilde{\Psi}_N(k, \bar{z}) \rangle^2 + \int_{T^2} P^{m-1}(k, d\bar{k}) - \pi(d\bar{k}) \int_{T^2} P\tilde{k}(d\bar{k}) \langle \lambda, \tilde{\Psi}_N(k, \bar{z}) \rangle^2,
\]

where, using (29),

\[
\sup_{k \in \mathbb{T}^2} \int_{T^2} \left| P^{m-1}(k, d\bar{k}) - \pi(d\bar{k}) \right| \int_{T^2} P\tilde{k}(d\bar{k}) \langle \lambda, \tilde{\Psi}_N(k, \bar{z}) \rangle^2 \leq \frac{C_0}{N} \sup_{k \in \mathbb{T}^2} \int_{T^2} \left| P^{m-1}(k, d\bar{k}) - \pi(d\bar{k}) \right|.
\]

Thus, thanks to (40), for every \((m_1, \ldots, m_\ell)\) with \(m_i \geq M, i = 1, \ldots, \ell,\)

\[
\mathbb{E} \left[(\lambda, \tilde{\Psi}_{N,m_1})^2 \ldots (\lambda, \tilde{\Psi}_{N,m_1 \ldots + m_\ell})^2 \right] = \left(\int_{0}^{\infty} dz e^{-z} \int_{T^2} \pi(d\bar{k}) \langle \lambda, \tilde{\Psi}_N(k, \bar{z}) \rangle^2 \right) \ell + \tilde{\mathcal{E}}_\ell(M, N),
\]

where

\[
\tilde{\mathcal{E}}_\ell(M, N) \leq \ell \frac{C_0}{N^\ell} \sup_{m \geq M-1} \sup_{k \in \mathbb{T}^2} \int_{T^2} \left| P^m(k, d\bar{k}) - \pi(d\bar{k}) \right|.
\]

Finally, by (41) and (42) we get

\[
\sum_{i_1 \neq i_2 \neq \ldots \neq i_\ell \in \{0, \ldots, |N| - 1\}} \mathbb{E} \left[(\lambda, \tilde{\Psi}_{N,i_1})^2 \ldots (\lambda, \tilde{\Psi}_{N,i_\ell})^2 \right] = \ell! \sum_{m_1 \ldots m_\ell \geq M \atop m_1 + \ldots + m_\ell \leq |N| - 1} \left(\mathbb{E}_\pi \left[(\lambda, \tilde{\Psi}_{N,1})^2 \right] \right)^\ell + \mathcal{R}_\ell(M, N),
\]

where

\[
\mathcal{R}_\ell(M, N) \leq C_\ell T^{\ell} \left(\frac{M}{N} + \sup_{m \geq M-1} \sup_{k \in \mathbb{T}^2} \int_{T^2} \left| P^m(k, d\bar{k}) - \pi(d\bar{k}) \right| \right).
\]
Lemma 6.3. The array of variables \(\{\langle \lambda, \bar{\Psi}_{N,m} \rangle, N \geq 2, m \geq 0\}\) satisfies also condition (ii), and we get

\[
\bar{S}_N(t) := \sum_{n=0}^{[NT]-1} \langle \lambda, \bar{\Psi}_{N,n} \rangle \frac{N}{1} \rightarrow \mathcal{N}(0, \sigma^2 t),
\]

\(\forall t \in [0, T], \forall \lambda \in \mathbb{R}^2\) such that \(|\lambda| = 1\).

We can easily adapt the proof and show that \(\forall 0 \leq s < t \leq T\)

\[
\bar{S}_N(t) - \bar{S}_N(s) \rightarrow \mathcal{N}(0, \sigma^2 (t-s)).
\]

In order to prove the convergence of the finite dimensional marginal to the Wiener process \(W_\sigma\), we have to show that \(\forall n \geq 2\), for every partition \(0 \leq t_1 < ... < t_n \leq T\) the variables \(\bar{S}_N(t_1), \bar{S}_N(t_2) - \bar{S}_N(t_1), ..., \bar{S}_N(t_n) - \bar{S}_N(t_{n-1})\) are asymptotically jointly Gaussian and uncorrelated. This is stated in the next Lemma.

Lemma 6.3. For every \(n \geq 1\), \(\forall \alpha(n) := (\alpha_1, .., \alpha_n) \in \mathbb{R}^n\) such that \(|\alpha(n)| = 1\)

\[
\sum_{k=1}^{n} \alpha_k (\bar{S}_N(t_k) - \bar{S}_N(t_{k-1})) \Rightarrow \mathcal{N} \left(0, \sigma^2 \sum_{k=1}^{n} \alpha_k^2 (t_k - t_{k-1}) \right),
\]

\(\forall 0 = t_0 < t_1 < \ldots < t_n \leq T\).

Proof. The case \(n = 1\) is proved. Let us consider the case \(n = 2\). Fixed \((\alpha_1, \alpha_2) \in \mathbb{R}^2\), with \(\alpha_1^2 + \alpha_2^2 = 1\), we consider the following array of variables

\[
\xi_{N,m} = (\alpha_1 1_{m \leq [NT]-1} + \alpha_2 1_{m \geq [NT]})(\lambda, \bar{\Psi}_{N,m}), \quad \forall N \geq 2, \forall m \geq 0,
\]

which are uniformly bounded by \(\frac{2}{\sqrt{N}}\) and satisfy condition (i). Let us define, \(\forall t \geq 0, m \geq 0, N \geq 2,\)

\[
a_{N,m}(t) := \alpha_1 1_{m \leq [NT]-1} + \alpha_2 1_{m \geq [NT]},
\]

which is uniformly bounded by 1. In order to check condition (ii), we repeat the steps done for \(\bar{S}_N(t)\) and we get

\[
\sum_{i_1 \neq i_2 \ldots \neq i_{[NT]-1}} \mathbb{E} \left[\xi_{N,i_1}^2 \ldots \xi_{N,i_{[NT]-1}}^2 \right] = \ell! \sum_{0 < i_1 < \ldots < i_{[NT]-1}} a_{N,i_1}(t_1)^2 \ldots a_{N,i_{[NT]-1}}(t_{[NT]-1})^2 \mathbb{E} \left[\langle \lambda, \bar{\Psi}_{N,1} \rangle ^2 \right]^\ell + \mathcal{R}_\ell(M, N),
\]
with $R_\ell(M,N)$ the same of (13). By direct computation

$$\ell! \sum_{0 \leq i_1 < \ldots < i_\ell \leq [Nt_2]-1} a_{N,i_1}(t_1)^2 \ldots a_{N,i_\ell}(t_1)^2$$

$$= \ell! \sum_{0 \leq i_1 < \ldots < i_\ell \leq [Nt_1]} \sum_{[Nt_1]<i_{k+1}<\ldots<i_{\ell}\leq [Nt_2]} (\alpha_1)^{2k} \sum_{[Nt_1]<i_{k+1}<\ldots<i_{\ell}\leq [Nt_2]} (\alpha_2)^{2(\ell-k)},$$

then using

$$\sum_{1 \leq i_1 < \ldots < i_k \leq N} N-k \frac{N^t \to 1}{k!}, \quad N^\ell \left(E_\pi \left[\langle \lambda, \tilde{\Psi}_{N,1} \rangle^2 \right] \right)^\ell \to (\sigma^2)^\ell,$$

with σ defined in (13), we get that condition (ii) is satisfied, i.e.

$$\lim_{N \to \infty} \sum_{1 \leq i_1 < \ldots < i_\ell \leq N} \sum_{1 \leq t_1, t_2, \ldots, t_\ell \in \{0, \ldots, [Nt_2]-1\}} E \left[\xi_{N,i_1}^2 \cdots \xi_{N,i_\ell}^2 \right]$$

$$= (\sigma^2)^\ell \sum_{k=0}^{\ell} \frac{\ell!}{k!(\ell-k)!} \alpha_1^{2k} t_1^k \alpha_2^{2(\ell-k)} (t_2 - t_1)^{\ell-k}$$

$$= (\sigma^2)^\ell [\alpha_1^2 t_1 + \alpha_2^2 (t_2 - t_1)]^\ell,$$

thus

$$\alpha_1 S_N(t_1) + \alpha_2 [S_N(t_2) - S_N(t_1)] = \sum_{m=0}^{[Nt_2]-1} \xi_{N,m}$$

$$\to \mathcal{N}(0, (\sigma^2)[\alpha_1^2 t_1 + \alpha_2^2 (t_2 - t_1)]).$$

The proof can be repeated for $n \geq 3$, in that case we find the multinomial formula for a polynomial with n terms to the power ℓ.

□

REFERENCES

[1] O. Aalen, Weak convergence of stochastic integrals related to counting processes, Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 261-277 (1977);
[2] K. Aoki, J. Lukkarinen and H. Spohn, Energy transport in weakly anharmonic chain, J. Stat. Phys. 124, 1105 (2006);
[3] G. Basile and A. Bovier, Convergence of a kinetic equation to a fractional diffusion equation, Markov Proc. Rel. Fields 16, 15-44 (2010);
[4] G. Basile, C. Bernardin, S. Olla, Thermal conductivity for a momentum conserving model, Comm. Math. Phys. 287, 1, 67-98 (2009);
[5] G. Basile, S. Olla and H. Spohn, Energy transport in stochastically perturbed lattice dynamics, Arch. Rational Mech. Anal. DOI 10.1007/s00205-008-0205-06 (2009);
[6] L. Bertini and B. Zegarlinsky, Coercive inequalities for Kawasaki Dynamics. The product case, Markov Proc. Rel. Fields 5, 125-162 (1999);
[7] P. Billingsley, Convergence of Probability Measures (2nd ed.), Wiley Series in Probability and Statistics (1999);
[8] A. Dhar, Heat Transport in low-dimensional systems, Adv. Phys. 57, 457-537 (2008);
[9] R. Durrett and S. Resnick, Functional limit theorems for dependent variables, Ann. of Prob. 6, 829-849 (1978);
[10] A. Dvoretsky, Central limit theorems for dependent random variables, Actes, Congrès int. Math. Tome 2, 565-570 (1970);
[11] A. Dvoretsky, Asymptotic normality for sums of dependent random variables, Proc. Sixth Berkeley Symp. Math. Statist. Probability, Univ. of California Press, 513-535 (1972);
[12] W. Feller, An introduction to probability theory and its applications, Vol.2, Wiley Series in Probability and Statistics (1971);
[13] E. Fermi, J. Pasta and S. Ulam, in Collected papers of E. Fermi, University of Chicago Press, Chicago, Vol. 2, pg 78 (1965);
[14] D. Freedman, Brownian Motion and Diffusion, Holden-Day, San Francisco (1971);
[15] D. Freedman, On tail probabilities for martingales, Ann. Probability 3, 100-118 (1975);
[16] B. V. Gnedenko and A. N. Kolmogorov, Predel 'anye raspredeleniya dlya summ nezavisimyh sluchainyh velicin. (Russian) [Limit Distributions for Sums of Independent Random Variables] Gosudarstv. Izdat. Tehn.-Teor. Lit. Moscow-Leningrad, 264 (1949);
[17] M. Jara, T. Komorowski, and S. Olla, Limit theorems for additive functionals of a Markov chain, Ann. Appl. Probab. 19, no. 6, 2270-2300 (2009);
[18] S. Ghosh, W. Bao, D. L. Nika, E. P. Pokatilov, C. N. Lau and A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene materials, Nature Materials 9, 555-558 (2010);
[19] I. S. Helland, Central limit theorems for martingales with discrete or continuous time, Scand. J. Statist. 9, 79-94 (1982);
[20] R. Lefevere and A. Schenkel, Normal heat conductivity in a strongly pinned chain of anharmonic oscillators, Journal of Statistical Mechanics: Theory and Experiment 2006, no. 02, L02001 (2006);
[21] S. Leprì, R. Livi and A. Politi, Thermal conduction in classical low-dimensional lattice, Phys. Rep. 377, 1-80 (2003);
[22] T. M. Liggett, L^2 rates of convergence for attractive reversible nearest particle systems, Ann. Probab. 19, 935-959, (1991);
[23] J. Lukkarinen and H. Spohn, Kinetic limit for wave propagation in a random medium, Arch. Ration. Mech. Anal. 183, 93-162 (2007);
[24] J. Lukkarinen and H. Spohn, Anomalous energy transport in the FPU-β chain, Comm. in Pure and Appl. Math. 61, 1753-1789 (2008);
[25] D. L. McLeish, Dependent central limit theorems and invariance principles, Annals of Probability, 2, 4, 620-628 (1974);
[26] A. Mielke and C. Mischler, Fractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal. 199, no. 2, 493-525 (2011);
[27] S. P. Meyn and R. L. Tweedie, Markov chains and stochastic stability, second edition, Cambridge University Press (2009);
[28] R. E. Peierls, Ann. Phys. Lpz., 3, 1055 (1929);
[29] A. Pereverzev, Fermi-Pasta-Ulam β lattice: Peierls equation and anomalous heat conductivity, Phys. Rev. E 68, 056124 (2003);
[30] M. Röckner and F-Y. Wang, Weak Poincaré inequalities and L^2-convergence rates of Markov Semigroups, J. Funct. Anal. 185, 564-603 (2001);
[31] S. J. Sepanski, Some invariance principles for random vectors in the generalized domain of attraction of the multivariate normal law, Journal of Theoretical Probability, 10, 4, 153-1063 (1997);
[32] H. Spohn, The phonon Boltzmann equation, properties and link to weakly
anharmonic lattice dynamics, J. Stat. Phys. 124, no. 2-4, 10411104 (2006).

G. Basile, Dipartimento di Matematica, Università di Roma La Sapienza,
Piazzale Aldo Moro 5, 00185 Roma, Italy
E-mail address: basile@mat.uniroma1.it