Another look at e

Samuel L. Marateck†

Courant Institute of Mathematical Sciences, New York University, New York, N.Y. 10012

Abstract

This note describes a way of obtaining e that differs from the standard one. It could be used as an alternate way of showing how the value of e is obtained. No attempt is made to show the existence of the limit in the definition of e that appears in the final equation.

1. Introduction.

Traditionally the value of e has been obtained, for instance, by taking the limit of ever-decreasing interest intervals in the compound interest formula (see Greenleaf [1]) or linear interpolation (see Flanders and Price [2]). We describe an alternate technique of obtaining e that should have pedagogic value. In this section we give an approximation of e using this technique and generalize it in the next section.

If $f'(x)$, the derivative of $f(x)$, exists at point x, and you start at point x and move a distance Δx, the value at the point $x + \Delta$ is given by

$$ f(x + \Delta x) \approx f(x) + f'(x) \cdot \Delta x \quad (1) $$

We want to find a constant, let’s call it e, such that when it’s raised to the power x obtaining the function e^x, the function’s derivative is also e^x.‡

Since $f'(x)$ equals $f(x)$, we rewrite equation (1) as

$$ f(x + \Delta x) \approx f(x)(1 + \Delta x) \quad (2) $$

We will analyse this in the interval $[1,2]$. Let’s take $x = 1$ and $\Delta x = 0.1$. So $x + \Delta x$ is 1.1. Equation (2) gives

$$ f(1.1) \approx f(1)(1 + 0.1) \quad (3) $$

or

$$ e^{1.1} \approx 1.1e \quad (4) $$

*The initial version of this paper was submitted for publication on July 12, 2009
† email: marateck@courant.nyu.edu
‡ Our analysis also holds if $f(x) = Ce^x$ where C is a constant.
Now take \(x = 1.1 \) and use the same value of \(\Delta x \), i.e., 0.1. We will be using the same increment in \(x \) in this and all subsequent steps since eventually we will let \(\Delta x \) approach zero. Continuing in this way

\[
f(1.1 + 0.1) \approx 1.1 f(1.1)
\]

So \(f(1.2) \approx 1.1e^{1.1} \). Or

\[
e^{1.2} \approx (1.1)^2 e
\]

Eventually we will get \(e^2 \) on the left side of the equation, so we can solve for \(e \). So let’s compute \(e^{1.3} \). We get \(e^{1.3} \approx 1.1e^{1.2} \). But this equals \((1.1)^3 e\). If we extrapolate to \(x = 1.8 \), we see that

\[
e^{1.9} \approx (1.1)^9 e
\]

and finally that

\[
e^2 \approx (1.1)^{10} e
\]

Solving for \(e \) we get \(e \approx (1.1)^{10} \) or \(e \) equals 2.59 to three digits, where the 10 corresponds to dividing 1 by 0.1. Equation (1) presupposes that \(\Delta x \) approaches zero. If we let \(\Delta x = .00000001 \), or \(10^{-8} \), we raise \((1 + .00000001)\) to \(10^8 \). The answer for \(e \) is 2.71828 to five significant figures.

2. Generalization.

We now sketch the steps that describe the preceding method in general. Using equation (2), and setting \(x = 1 \), we write

\[
e^{1 + \Delta x} \approx e(1 + \Delta x)
\]

We continue, letting \(x = x + \Delta x \) and keeping \(\Delta x \) the same, and write

\[
e^{1 + \Delta x + \Delta x} \approx e^{1 + \Delta x}(1 + \Delta x)
\]

or

\[
e^{1 + 2\Delta x} \approx e(1 + \Delta x)^2
\]

We have to add \(\Delta x \) to \(x \) \(1/\Delta x \) times to get \(e^2 \) on the left side of these equations. So we get

\[
e^{1 + (1/\Delta x) \cdot \Delta x} \approx e(1 + \Delta x)^{1/\Delta x}
\]

or

\[
e^2 = e(1 + \Delta x)^{1/\Delta x}
\]
Solve for e and since the definition of the derivative in equation (1) lets $\Delta x \to 0$, take the same limit here. We get

$$e = \lim \limits_{\Delta x \to 0} (1 + \Delta x)^{1/\Delta x}$$

which is one of the definitions of e.

3. References.

[1] Greenleaf, Fredrick E.. *Quantitative Reasoning, 3/e*, McGraw Hill (2006).
[2] Flanders, Harley and Price, Justin J., *Calculus with Analytic Geometry*, Academic Press (1978).