Gene Structure Analysis of Chemokines and Their Receptors in Allotetraploid Frog, *Xenopus laevis*

Akimasa Fukui1* and Masatoshi Matsunami2

1Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo, Japan, 2Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan

Chemokines, relatively small secreted proteins, are involved in cell migration and function in various biological events, including immunity, morphogenesis, and disease. Due to their nature, chemokines tend to be a target of hijacking of immunity by virus and therefore show an exceptionally high mutation rate. *Xenopus laevis* is considered an excellent model to investigate the effect of whole-genome duplication for gene family evolution. Because its allotetraploidization occurred around 17–18 million years ago, ancestral subgenomes L and S were well conserved. Based on the gene model of human and diploid frog *Xenopus tropicalis*, we identified 52 chemokine genes and 26 chemokine receptors in *X. laevis*. The retention rate of the gene in the *X. laevis* L and S subgenomes was 96% (45/47) and 68% (32/47), respectively. We conducted molecular phylogenetic analysis and found clear orthologies in all receptor genes but not in the ligand genes, suggesting rapid divergences of the ligand. dN/dS calculation demonstrated that dN/dS ratio greater than one was observed in the four ligand genes, *cxcl8b.1.S*, *cxcl18.S*, *ccl21.S*, and *xcl1.L*, but nothing in receptor genes. These results revealed that the whole-genome duplication promotes diversification of chemokine ligands in *X. laevis* while conserving the genes necessary for homeostasis, suggesting that selective pressure also supports a rapid divergence of the chemokines in amphibians.

Keywords: chemokine, homeolog, genome duplication, allotetraploid, subfunctionalization, neofunctionalization, *Xenopus*, amphibian

INTRODUCTION

Polyploidization via whole-genome duplication (WGD) is considered a driving force of evolutionary diversification by providing new functions through genetic redundancy (Ohno, 1970; Van de Peer et al., 2009). In general, since duplicated genes have redundant functions, one of the genes degenerates to a pseudogene (or completely lost from the genome). However, duplicated genes generated by WGD show relatively high retention rates compared to duplicated genes generated by usual tandem duplications. Although this feature is explained by proposed modes, such as the duplication-degeneration-complementation (DDC) model (Force et al., 1999), a complete picture of evolution after WGD is still obscure.

The African clawed frog *Xenopus laevis* is an excellent model species to infer the evolution after WGD. They have been thought to have undergone tetraploidization around 18 million years ago (Mya) by interspecific hybridization of diploid ancestors (Session et al., 2016). In contrast with the closely related diploid species, *Xenopus tropicalis*, allotetraploid species *X. laevis* has two
subgenomes, L and S (Hellsten et al., 2007; Session et al., 2016). The corresponding chromosomes of X. laevis L and S to X. tropicalis have identical numbers, except for the fused 9–10 chromosome (Matsuda et al., 2015; Session et al., 2016). The homologous genes in each subgenome are defined as homeologs, discerned by suffix _L or _S. Corresponding to protein-coding genes of X. tropicalis, X. laevis holds 88 and 66% retention rates in the L and S subgenomes, respectively, and 56% of the homeologous gene pairs (Session et al., 2016). The homology of chromosomes between X. laevis and X. tropicalis was well conserved.

Chemokines are low molecular weight cytokines that regulate cell migration through activating the G-protein coupled receptors. The importance of chemokines has been more recognized as they are involved in inflammatory and homeostatic functions, including recruiting leukocytes, cell-homing, neurogenesis, angiogenesis, and regeneration (reviewed in DeVries et al., 1999; Belperio et al., 2000; Cho and Miller, 2002; Bianchi and Mezzapelle, 2020). Depending on the sequence of the two closest cysteines in the peptide, chemokines are classified into four groups: CC, CXC, CX3C, and XC (Moser et al., 2004). Chemokines are not identified in chordates, whereas teleost _X. laevis _and _X. tropicalis _share the last genome, but naturally, not all species conserved the orhologies (Matsuda et al., 2015; Session et al., 2016). The homology of chemokine ligands and their receptors.

MATERIALS AND METHODS

Gene Identification, Syntenic Analysis, and Phylogenetic Analysis

All identified genes were screened from gene models of the _X. laevis _annotation gene model v1.8 and v9.2 and genome assembly v9.1 and v9.2 and the _X. tropicalis _annotation v9.0 and genome assembly v9 deposit in Xenbase (www.xenbase.org), with BLAST and BLAT using known _X. tropicalis _and human nucleotide and peptide sequences as queries, following secondary screening by the obtained sequences. Gene model sequence errors were corrected manually using genome assemblies in GenomeMatcher (Ohtsubo et al., 2008). Syntenic analysis was performed with genome assembly of _X. laevis _v9.2, _X. tropicalis _v10, and _H. sapiens _GRCh38. Phylogenetic trees were generated in MEGA X (Kumar et al., 2018). Two _Xenopus _species (_X. laevis _and _X. tropicalis _), chicken (_Gallus _), and human chemokine ligand and receptor genes were aligned using CLUSTAL Omega (Sievers et al., 2011) and trimmed manually. The maximum-likelihood method was performed with 1,000 bootstraps (Felsenstein, 1985). A parameter model was estimated in MEGA X and used JTT with a gamma-distributed model for chemokine ligands and JTT with a gamma-distributed and invariable model for receptors. The inference option was a nearest-neighbor-interchange method on a neighbor-joining (NJ) tree (Saitou and Nei 1987).

dN/ds Calculation

We analyzed molecular evolution rates by computing numbers of synonymous (dS) and non-synonymous (dN) nucleotide substitutions per site for each pair of _X. tropicalis versus X. laevis _L or versus _X. laevis _S gene. A low ratio (dN/dS < 1) indicates purifying selection, which maintains similarity between orthologues, whereas a high ratio (dN/dS > 1) indicates positive selection, promoting rapid divergence of the orthologues. The dN/dS ratios were calculated by the CODEML program implemented in the PAML v. 4.9j package (Yang, 2007).

We used the free ratio model (model = 1, NS site = 0, fix omega = 0) for dN/dS calculation of each branch.

Transcriptome Correlation Analysis

RNA-seq data analysis and transcriptome correlation are described previously (Session et al., 2016; Watanabe et al., 2017). Expression profiles of identified genes were extracted from the series of oocytes (oocyte stages I-II, III-IV, and V-VI), egg, early embryos (stages 8, 9, 10.5, 12, 15, 20, 25, 30, 35, and 40), and adult organs (brain, eye, lung, stomach, intestine, liver, pancreas, kidney, testis, ovary, heart, muscle, skin, and spleen) of _X. laevis _J-strain, analyzed by Session et al. (2016), using RNA-seq short reads deposited in NCBI Gene Expression Omnibus (accession number GSE73430 for oocytes and all embryos, GSE73419 for all adult organs). The data include...
biological replicates (named “Taira201203” and “Ueno201210”) for embryos and adult organs but no replicate for oocytes (only “Ueno201210”). These distinct datasets were called Clutch T and Clutch U, respectively. Transcripts per million (TPM) values of each gene in each clutch are presented in Supplementary Table S1.

TABLE 1 | Review of chemokine ligands and receptors in Xenopus laevis. Loci were estimated by the closest locus of FISH results demonstrated in Session et al. (2016). Orthologies were obtained from molecular phylogenetic analysis and synteny analysis. Peptide sequence homology between L and S homeologous genes was calculated by CLUSTAL omega using full-length predicted peptide. Columns of transcriptome correlation analyses show the categories of HC: high correlation; NC: no correlation; SE: same expression levels; DE: different expression levels. “inc.” indicates inconsistent categories (see Materials and Methods). Note that cxcl16, ccl5, ccl21, ccl28, ccl42a, ccl42b, ccl42c, ccl42d, xcl1, xcl2, ccr2, and ccr8 genes are unidentiﬁed in teleosts, and cxcl18, ccl34a, ccl34b, and cxcr3l genes are unidentiﬁed in mammals (Nomiyama et al., 2013).

Gene name	Loci	L/S peptide Homology (%)	dN/dS	Transcriptome correlation analyses	Notes			
	L	S	Xtr-Xla.L	Xtr-Xla.S	Embryonic	Tissue		
Ligands								
cxcl2	1Lp12	1Sp12	80	0.43	0.42	inc. (DE)	N/CDE	Maternal S dominant expression
cxcl8a.1	1Lp12	1Sp12	87	0.18	0.29	inc. (n/a)	inc. (HC)	Embryonic L dominant expression
cxcl8a.2	1Lp12	1Sp12	89	0.95	0.44	No expression	inc. (HC)	Maternal L dominant expression
cxcl8b.1	1Lp12	1Sp12	68	0.49	2.13	inc. (n/a)	N/CDE	Maternal L dominant expression
cxcl8b.2	1Lp12	—	—	n.d.	n.d.	—	—	—
cxcl9	1Lp12	1Sp12	92	0.16	0.51	No expression	HCDE	—
cxcl10	1Lp11-12	1Sp12	78	0.37	0.65	No expression	HCDE	—
cxcl11	7Lq11-12	7Sq11	93	0.4	0.41	No expression	inc. (HC)	Embryonic L dominant expression
cxcl13a	1Lp11-12	1Sp12	86	0.22	0.69	No expression	inc. (n/a)	Maternal cxcl13a.L expression
cxcl13b	1Lp11-12	—	—	n.d.	n.d.	—	—	—
cxcl14	3Lq13	—	—	n.d.	n.d.	—	—	—
cxcl16	3Lq34-35	3c.20	63	0.81	0.61	No expression	inc. (HC)	Embryonic L dominant expression
cxcl18	7Lq11-12	7Sq11	72	0.96	1.88	No expression	inc. (SE)	Unidentiﬁed in mammals
ccl5	2Lp13	2Sp13	89	0.58	0.6	No expression	HCDE	Unidentiﬁed in teleosts
ccl19	1Lq35	1Sq35	84	0.6	0.37	No expression	HCDE	—
ccl20a	5Lq32	5Sq24-31	72	0.25	0.39	No expression	HCSE	—
ccl20b	5Lq32	5Sq24-31	83	0.41	0.24	No expression	HCDE	—
ccl20c*	1Lq35	1Sq35	60	0.68	1.04	No expression	HCSE	—
ccl21	1Lq12	—	—	n.d.	n.d.	—	—	—
ccl22	1Lq35	—	—	n.d.	n.d.	—	—	—
ccl23	1Lq33-34	—	—	n.d.	n.d.	—	—	—
ccl4a	5Lq32	5Sq24-31	80	0.2	0.42	No expression	inc. (HC)	Unidentiﬁed in mammals
ccl4b	5Lq32	5Sq24-31	80	0.5	0.38	No expression	n.d.	Unidentiﬁed in mammals
ccl42a	2Lq13-14	2Sq14-15	73	0.49	0.59	No expression	HCSE	Unidentiﬁed in teleosts
ccl42b	2Lq13-14	2Sq14-15	73	0.35	0.56	No expression	inc. (n/a)	Unidentiﬁed in teleosts
ccl42c	2Lq13-14	2Sq14-15	45	0.24	0.57	(n/a)	HCDE	Embryonic L dominant expression
ccl42d	2Lq13-14	—	—	n.d.	n.d.	—	—	—
xcl1	5Lq32	5Sq24-31	75	1.96	0.4	No expression	HCDE	—
xcl2	5Lq32	5Sq24-31	72	1	0.94	No expression	inc. (n/a)	Unidentiﬁed in teleosts
Receptors								
cxcr1	9/10Lq21	9/10Sq21	93	0.16	0.11	NCSE	HCDE	Embryonic S dominant expression
cxcr3	7Lq23	7Sq23	81	0.74	0.57	No expression	HCDE	—
cxcr3l	7Lq23	7Sq23	89	0.22	0.39	No expression	inc. (HC)	Unidentiﬁed in mammals
cxcr4	9/10Lq24	9/10Sq21	97	0.02	0.06	HCSE	HCDE	Embryonic even expression
cxcr5	7Lq12-13	5c.80	79	0.43	0.36	No expression	HCSE	—
cxcr6	6Lp13	—	—	n.d.	n.d.	—	—	—
ackr3 (ccr47)	9/10Lq24	9/10Sq31	97	0.07	0.06	N/CDE	HCDE	Embryonic L dominant expression
ackr4 (ccr11)	6Lp14	—	—	n.d.	n.d.	—	—	—
ccr2	6Lp13	6Sp12	80	0.55	0.73	(n/a)	inc. (n/a)	Maternal ccr2.L expression
ccr6	5Lq11	—	—	n.d.	n.d.	—	—	—
ccr7	9/10Lp12	9/10Sp14	87	0.34	0.3	No expression	HCSE	—
ccr8	3Lq16-21	—	—	n.d.	n.d.	—	—	—
ccr9	6Lp12-13	—	—	n.d.	n.d.	—	—	—
ccr10	6Lp22	—	—	n.d.	n.d.	—	—	—
xcr1	6Lp13	—	—	n.d.	n.d.	—	—	—
xcr2	6Lp13	6Sp12	86	0.56	0.17	No expression	—	—
xcr3	6Lp12-13	—	—	n.d.	n.d.	—	—	—
Prior to transcriptome correlation analysis, all TPM values \(\leq 0.5 \) were reduced to 0 because transcriptome data less than 0.5 TPM is considered to be irreproducible (Session et al., 2016). The transcriptomic dataset from 11 developmental stages (egg to stage 40) and 14 adult tissues were separately analyzed. Also, Clutch T and Clutch U were separately analyzed to examine the

FIGURE 1 | Genomic organization of *Xenopus* chemokines. Positions of chemokine genes (open triangles) and flanking genes (closed triangles) with direction are indicated in the order of *Xenopus* chromosome numbers. Chromosomes Abbreviations. HSA: *H. sapiens* (black lines); XTR: *X. tropicalis* (green lines); XLA_L and XLA_S: *X. laevis* L and S subgenome (red and blue lines), respectively. Sc is a scaffold number that is unbuilt in the chromosome assembly. The homologous relationship presented by connected lines was analyzed phylogenetically. The dotted line with N represents the genes unidentified with N-gap. Triangles drawn with dotted line show fossil genes (f).
reproducibility in biological replicates. Any gene whose TPM value is \(\leq 0.5 \) for all samples was removed from the analysis. Correlations of expression profiles between homeologs were examined using Pearson’s correlation and Student’s paired \(t \)-test on log2-transformed data [log2 (TPM+1)] as described by Berthelot et al. (2014). Homeologous pairs were categorized into four groups based on 1) correlation (HC: high correlation, \(p \leq 0.05 \); NC: no correlation, \(p > 0.05 \), Pearson’s correlation test) and 2) expression levels (SE: same expression levels, \(p > 0.05 \); DE: different expression levels, \(p \leq 0.05 \), Student’s paired \(t \)-test). Finally, we collected homeologous pairs which were consistently categorized into the same group in both Clutch T and Clutch U. If the category was inconsistent between Clutches, those genes were categorized as “inconsistent (inc).” Also, Clutches T and U were analyzed separately to examine reproducibility in biological replicates. Any gene with a TPM value \(\leq 0.5 \) for all samples was excluded from analysis and labeled “n/a.”

RESULTS

Overview of Gene Annotation and Identities of Xenopus Chemokine Ligand and Receptor Genes

Based on the gene model of human and *X. tropicalis*, we screened 52 chemokine ligand genes that contained 44 homeologs (22...
pairs) and 8 singletons from X. laevis genome assembly (Table 1, Supplementary Data S1, S2). We also reidentified 30 chemokine genes in X. tropicalis assemblies and represented the retention rate of the gene in X. laevis L subgenome as 93% (28/30) and that of S as 79% (23/30) (Figure 1). Furthermore, 26 chemokine receptors were identified in X. laevis genome, including 18 homeologs (9 pairs) and 8 singletons (Table 1, Figure 2, Supplementary Data S3, S4). The retention rate of the X. tropicalis genes in X. laevis L and S subgenomes was 100% (17/17) and 53% (9/17), respectively (Figure 2). The average amino acid sequence homology between homeologs was 88 and 77% for the receptors and ligands, respectively (Table 1). We conducted a molecular phylogenetic analysis using four vertebrate species (H. sapiens, G. gallus, X. laevis, and X. tropicalis). We found that all receptor genes (17/17) showed clear orthology in the phylogenetic tree among species, but only 43% (13/30) of the ligand genes retained clear orthology (Figures 3, 4). Further, dN/dS analysis against X. tropicalis sequences indicated that the dN/dS ratio greater than one of either homeologs was found in 19% (4/21) of the ligands but not in all of the receptors (0/8) (Table 1). These findings demonstrate that the mutation rates remarkably increased in the ligand. RNAseq analysis indicated the expression of eight chemokine ligands and five receptors in embryogenesis (TPM value >5), and only cxcl2S revealed S dominant expression (Figure 5). In adult tissues, L dominant expression of most genes was observed, but some showed S dominant expression described in distinct. Transcriptome correlation analysis indicated six high correlation-similar expression (HCSE), 10 high correlation-different expression (HCDE), 0 no correlation-similar expression (NCSE), and three no correlation-different expression (NCDE), with 11 inconsistent expression (inc.) in adult tissues (Table 1, Figure 6). We describe the chemokine ligands and receptors below in order of chromosome numbers.

Chemokine Ligands of Xenopus Laevis

A large cluster of CXC-type chemokines was found between flanking genes rassf6 and usp42 in Xenopus chromosome 1, which contained four homeologous pairs and one L singleton
They have no one-to-one relationship with human orthologies indicated by molecular phylogenetic analysis (Figure 3). Among cxcl8 homologous genes, cxcl8b.1 were distinct in sequence homology (68%) and expression patterns, with L dominant in embryos and S dominant in tissues (Table 1, Figures 5, 6). Since the X residue of the CXC motif has been noted for altering the binding ability to the receptor (Wedemeyer et al., 2020), we examined that, of the cxcl8 chemokine family, four cxcl8 homologs between X. laevis and X. tropicalis were conserved as CQC in cxcl8b.2 and cxcl2, and CLC in cxcl8a.2 and cxcl8a.1 homologous genes. However, cxcl8b.1 homologs presented unique sequences as CKC in cxcl8b.1, CRC in cxcl8a.1, and CQC in cxcl8b.1.S, respectively. Finally, a higher \(\frac{dN}{dS} \) ratio (2.32) of cxcl8b.1.S exhibited potentially positive selection or relaxation, markedly suggesting that this gene experienced unusual evolution.

cxcl9, cxcl10, and cxcl11 exhibited the cluster on chromosome 1, and cxcl9.S retained the only cxcl9.S singleton among the chemokine ligands. They have no one-to-one relationship with human orthologies (Figure 3). Relatively S dominant expression of these genes was observed in tissues (Figure 6).

cxcl13 paralogs showed tandem duplication in the Xenopus genome. Their synteny is consistent with human, located between flanking genes ccng2 and cont6. Expression levels during oogenesis and embryogenesis presented L dominant expression, whereas tissue expression was highly correlated (HCSE) (Figures 5, 6).

ccl25 had no synteny conservation between Xenopus and human. This gene was adjacent to ankle1 in Xenopus, whereas flm3 and elavl1 were in humans (Figure 1). Broad expressions were found through oogenesis and embryogenesis and among adult tissues (Figures 5, 6), suggesting homeostatic function.

ccl28 was adjacent to the c5orf28 in both Xenopus and human, but their positions were rearranged (Figure 1). ccl28 formed a clade with ccl27 in phylogenetic analysis (Figure 3). Both ccl27 and ccl28 were L singleton and expressed in the skin dominantly (Figure 6).

Figure 4 | Phylogenetic tree of chemokine receptors. The tree indicates 82 chemokine receptor proteins, including 26 of X. laevis, 17 of X. tropicalis, 17 of G. Gallus, and 22 of H. sapiens genes. Receptor names represented on the arcs. Bootstrap values greater than 50% were indicated, and asterisks show values greater than 90%. The alignment of the receptor proteins was prepared using clustal omega and trimmed manually as 297 peptides with gaps. Maximum likelihood methods were performed with 1,000 bootstraps using the JTT model with Gamma distribution and invariant sites and complete deletion of gaps/missing data and inference option was a nearest-neighbor interchange method on NJ tree.
Inconsistent between Xenopus orhologies were not identified in human chemokine clusters. Further, ccl42a clade included G. gallus ccl1 with the bootstrap value of 72%, and ccl42b, ccl42c, and ccl42d formed a clade with human CCL1, CCL13, CCL8, CCL11, CCL7, and CCL2. These findings suggest that ccl42 chemokines were orthologs to mammalian ccl cluster genes. ccl42c.L was slightly expressed in embryogenesis, and ccl42a.L, ccl42b.L, and ccl42c.L were expressed in spleen L dominantly (Figures 5, 6).

cc114 is one of the most conserved chemokine genes among vertebrates and has been reported as a novel ligand of cxcr4 similar to cxcl12 (Tanegashima et al., 2013). RNaseq analysis demonstrated that the expression was detected from neurula, and relatively higher expressions were observed in the brain, skin, lung, stomach, eye, and muscle (Figures 5, 6).

cc116 is a transmembrane-type chemokine (Matloubian et al., 2008; Abel et al., 2004), and the CXC motif is replaced by the CC motif in the Xenopus genus. The peptide sequence homology between homeologs was relatively low (68%).

cc11, cc12, cc13a, cc13b, cc120a, and cc120b formed a cluster in Xenopus genomes, whereas human orthologs XCL1, XCL2, and CCL20 were scattered in different chromosomes (Figure 1). Further, the flanking gene of cc120a is ppp2r3a, whereas those of human CCL20 are SLC19A3 and DAW1. Phylogenetic analysis indicated cc120b, not cc120a, was relatively similar to human and bird CCL20. A distinct expression pattern was observed between cc120a and cc120b of a higher level of cc120a homeologs in the liver

FIGURE 5 | Expression profiles during oogenesis and embryogenesis. Genes with a max TMP value of 5 or higher during oogenesis and embryogenesis are presented. Expression profiles for X. tropicalis were obtained from Tan et al. (2013). Unfortunately, cc10, cc11a, and cc120c have no expression profile of X. tropicalis. The vertical axis shows the expression level (TPM), and the horizontal axis is the developmental stages of X. laevis. X. tropicalis indicated within parentheses. All TPM values are shown in Supplementary Table S1. Orthologous family names and results of transcriptome correlation analysis are indicated on the upper left of each graph. Symbols: Square: X. tropicalis (green); circle: X. laevis L-clutch T (red); diamond: X. laevis L-clutch U (magenta); triangle: X. laevis S-clutch T (blue); reverse triangle: X. laevis S-clutch U (cyan). Note that the TPM value of X. tropicalis in cc112 was indicated one-fifth scale to increase the resolution (x5).
FIGURE 6] Expression profiles in adult tissues. log2 transformed TPM values in Clutch T and Clutch U [log2 (TPM+1)] of all chemokine ligand and receptor genes of brain, eye, lung, intestine, liver, pancreas, kidney, testis, ovary, heart, muscle, skin, and spleen are presented with heat maps. For each homeologous pair, transcriptome correlation groups are indicated on the right side of panels. In cases of the “inc.” group, their details are described with parentheses. If results from two clutches showed half-consistency, their common results are indicated (HC or SE). Singletons were presented in the separated panels. All TPM values are shown in Supplementary Table S1.
and kidney and ccl20b homeologs in the stomach (Figure 6). ccl20a.S was dominantly expressed in the kidney. ccl20b homeologous pair exhibited different expression patterns (HCDE). ccl20c identified in X. tropicalis (Nomiyaama et al., 2013) had no syntenic ortholog in X. laevis.

cxcl18.S was essentially expressed in the lung and spleen. However, molecular phylogenetic analysis exhibited separated branches of Xenopus and human orthologs (Figure 3). The gene name of cxcl34 depends on Nomiyaama et al. (2013). cxcl34a.L exhibited expression in the lung and spleen dominantly. There are no expression data of cxcl34b because this is a newly identified gene in this study after Session et al. (2016). cxcl1 and cxcl2 were clustering genes likewise orthologs of human. However, molecular phylogenetic analysis exhibited separated branches of Xenopus and human orthologs (Figure 3), and the Xenopus xcl1 and xcl2 were separated by each gene. This no one-to-one relationship suggests species-specific tandem duplication in the Xenopus ancestor. Intriguingly, dN/dS ratio of 1.96 and 1.00 in xcl1.L and xcl2.L, respectively, indicated higher relaxation in both L homeologs. Transcriptome correlation analysis demonstrated different expression (HCDE) between xcl1 homeologs. xcl2.S was expressed S dominantly in the spleen (Figure 6).

cxcl12 and cxcl18 were adjacent to tmem72 and on the opposite side (Figure 1). Expression profiles of cxcl12 homeologs demonstrated L dominant expressions in embryogenesis and adult tissues (Figures 5, 6). cxcl18 ortholog was found in the teleost, was unidentifiable in mammals, and has been not yet reported function (Nomiyaama et al., 2013). cxcl18.L was dominantly expressed in the eye and intestine. dN/dS ratio of 1.85 in cxcl18.S indicated relaxation or positive selection.

Chemokine Receptors of Xenopus Laevis

cxr was L singleton gene located between flanking genes lrrn3 and dock4 on chromosome 3, whereas the gene order was not conserved in human (Figure 1). RNAseq analysis demonstrated the unique pattern of cxl8.L. This gene was expressed in oocytes to blastula through embryogenesis and testis and ovary of adult tissues (Figure 6). cxr is a candidate receptor for ccl1 (Tiffany et al., 1997), and the phylogenetic analysis indicated G. gallus ccl1 organizes a clade with ccl42a (Figure 3), suggesting a functional similarity between ccl42a and ccl1.

cxcr6 was located between flanking genes lrrn3 and dock4 in X. tropicalis and nhsl1 and npyfr in X. laevis on chromosome 5, respectively (Figure 1). Partial synteny of X. tropicalis was conserved in human but not in X. laevis subgenomes. Phylogenetic analysis indicated clear orthology between species (Figure 4). Therefore, synteny inconsistency may be due to chromosome rearrangement (Session et al., 2016). RNAseq analysis indicated no expression of cxr6 in all tissues. Human CCR6 is identified as a CCL20 receptor (Baba et al., 1997; Hieshima et al., 1997). ackr4, also known as cxr11, is a decoy receptor that controls chemokine levels by sequestering the ligands. Xenopus ackr4 gene was located between acad11L and tgm4L on chromosome 7 as L singleton. Locus around ackr4 and its surrounding genes were not identified in the available S subgenome. RNAseq analysis demonstrated broad expression in adult tissues with a higher level in the heart, except for the ovary. Since human ACKR4 can bind to CCL2, CCL8, CCL13, CCL19, CCL20, CCL21, and CCL25 (Gosling et al., 2000; Schweickart et al., 2000; Matti et al., 2020), these chemokines might be the candidate ligands for Xenopus ackr4. Note that ccl42b, ccl42c, ccl42d were candidate orthologs for ccl2, ccl8, and ccl13 (see ligands sections). cxcr6, xcr1, xcr2, and ccr2 formed a cluster in Xenopus chromosome 6. cxr6 and xcr1 were L singleton, whereas xcr2 and ccr2 retained both homeologs. Flanking genes of this cluster were different between Xenopus and human, but synteny within-cluster was well-conserved. xcr1 seems to be duplicated in the ancestral Xenopus genome. Notably, three xcr1-type receptors, xcr1, xcr2, and xcr3, existed in the Xenopus genome with clear orthology (Figure 2). In contrast, synteny and phylogenetic analysis demonstrated that Xenopus ccr2 corresponds to a single ortholog for human CCR1, CCR2, CCR3, CCR5, and CCR12 (Figures 2, 4). RNAseq analysis of ccr2 homeologs indicated L dominant expression in embryogenesis and adult tissues.

cxcr9 was next to xcr3 between trlpb and lztfl1 in chromosome 6 as L singleton and weakly expressed in the lung and spleen. The candidate ligand ccl25 existed in the Xenopus genome.

Human CXCX5 is a candidate receptor for CXCL13 and has been reported to be essential for B cell migration (Förster et al., 1996). Surrounding synteny of this gene was conserved between Xenopus and human. Expression of both ccrx5.L and ccrx5.S was found in the spleen.

Xenopus ccrx3 and ccrx3l were tandemly aligned between prss3 and syl3 in chromosome 7. There was no syntonic conservation with human. Phylogenetic analysis revealed that ccrx3, ccrx3l, and ccrx5 clades form a clade with a bootstrap value of 57% (Figure 4). L dominant expression of ccrx3 was observed in the lung, intestine, kidney, and spleen with different expression (HCDE), whereas S dominant expression of ccrx3l was observed in the lung and spleen.

ccr7 and its surrounding genes (smarc1L and tns4) were conserved between human and X. laevis. Unfortunately, locus in X. tropicalis was not identified in available genome sequences. RNAseq analysis demonstrated expression in the spleen and dominant expression of ccr7.L in the intestine and ccr7.S in the testis (Figure 6). CCR7 is a candidate receptor for CCL19 and CCL21 in human (Förster et al., 2008). Interestingly, dominant expression of ccl21.S in the intestine and ccl19.L and ccl21.L in the testis was observed. This inconsistent expression pattern of receptor and ligand in L versus S may serve as a model for crosstalk between subgenomes.

ccr10 was L singleton and gene order around Xenopus ccr10 was inconsistent with human. CCR10 binds to CCL27 in human (Homey et al., 2000). Slightly expression was observed in the heart and spleen.

xcr1 is a candidate for the receptor of the cxcl8 cluster genes. Synteny was conserved in human adjacent to arpc2 and tns1, although human ortholog was tandemly duplicated as ccr1 and ccr2 (Figure 2). RNAseq analysis demonstrated S dominant expression in embryogenesis and spleen, and transcriptome analysis indicated different expression (HCDE).

ccr4 and ackr3 were receptors for cxcl12. ccr4 was located between tshd8b and dars. In X. tropicalis, cosp8 was translocated within X. tropicalis chromosome 9 (XTR9). Almost similar
embryonic expressions of both ccr4.L and ccr4.S were detected from stage 9 (late blastula). In adult tissues, transcriptome correlation analysis indicated different expression (HCDE) as L dominant expression in the intestine, liver, heart, and spleen. ackr3 was located between iqca1 and cops8, and L-dominant expression was detected from stage 9. Almost L dominant expression was observed among adult tissues. However, S was dominant in testis. Transcriptome analysis indicated different expression (HCDE).

DISCUSSION

This study comprehensively identified and analyzed chemokine ligands and their receptors in X. laevis genome. L subgenome retained genes are dominant as 13 for L singleton genes versus one for S singleton of the identified genes, consistent with the S subgenome having a faster rate of pseudogenization than the L after allopolyploidization Xenopus species (Furman et al., 2018). Transcriptome correlation analysis suggests that the genes of 13 different expression (DE) homeologous pairs include potential candidates for subfunctionalization or neofunctionalization.

For the retention rates of homeologous gene pairs, all ligand genes in X. laevis genome showed 71% (22/31) in this study. This rate was higher than all analyzed genes (56%; 8,806/15,613) reported by Session et al. (2016). The details of that were 71% (10/14) for CXC-type, 71% (10/14) for CC-type, and 100% (2/2) for XC-type ligands; no significant differences between them were observed, suggesting that WGD promotes constant evolutionary divergence of ligands because it ensured diversity and increased the likelihood of acquiring novel functions such as antibacterial activity (Hieshima et al., 2003). This idea may be supported by transcriptome correlation analysis that revealed a higher rate of different expression and L or S dominant expression pairs in chemokine ligands (9 of DE vs. 2 of SE, one L-dominant and one S-dominant, Table 1).

The retention rate of all chemokine receptor homeologous pairs (53%, 9/17) was similar to all analyzed genes. However, details were 86% (6/7) for CXC-type (including ackr3), 29% (2/7) for CC-type (including ackr4), and 33% (1/3) for XC-type chemokine receptor. S subgenome gene loss of CC and XC may depend on “genome fractionation” (Schnable et al., 2011; Sankoff et al., 2012; Garsmeur et al., 2014). In contrast, the CXC-type receptors and the candidate CXC-type ligands tended to have higher retention rates, suggesting selective pressure for dosage compensation or subfunctionalization in their expression domain or target specificity (Session et al., 2016; Watanabe et al., 2017). As another example, the homeologous pairs of the ligands and receptors involved in growth factors showed the highest retention rate for TGF, FGF, and Wnt signaling (Michiue et al., 2017; Suzuki et al., 2017).

dN/dS analysis revealed four genes, cxc8b.1.S, cxc18.S, ccl21.S, and xcl1.L, had a dfns ratios greater than one, and four genes, ccr4.L, ccr4.S, ackr3.L, and ackr3.S, had shallow ratios of less than 0.1. Referring to ratios from automatically calculated results from Session et al. (2016), the homeologous genes with *dN/dS* ratios greater than one were only 0.3% [45 in 17,590 genes (8,795 homeologous pairs)] and less than 0.1 were 32% (5,561 in 17,590). These findings suggest a higher tendency of relaxation in the chemokine genes among homeologous genes.

Regarding cxl8 genes, the homeologs of cxl8a.1 and cxl8a.2 showed a high correlation (Table 1), and the pattern of the expressed organs was also similar. These genes possess ELR motifs and are predicted to promote the migration of neutrophils (Strieter et al., 1995). Since cxl8a.1 gene expression was upregulated by virus infection (Koubouri et al., 2018), it may function in the early response to infection and inflammation in Xenopus. In contrast, cxc8b.2.L recruited anti-inflammatory macrophages, which expressed genes associated with immune suppression (Koubouri et al., 2018). During inflammation and tissue repair, there is the recruitment of proinflammatory M1 macrophage, followed by anti-inflammatory M2 macrophage (Murray and Wynn, 2011). Diversified cxc8b genes in X. laevis may play a different role in regeneration and tissue repair.

We found the expression of ccr2 and ccr8 in oogenesis, suggesting that these genes act in oogenesis or as a maternal factor. ccr2 was also broadly expressed in adult tissues (Figure 6), reflecting its expression in macrophages and lymphocytes. Although a ligand for ccr2 was not identified in Xenopus, ccl42b, ccl42c, and ccl42d conserved synten and retained similarity with the CCL2, which is human CCR2 ligand (Zlotnik and Yoshie, 2000). Therefore, some of these may be candidates for the ligand of Xenopus ccr2. Actually, not in the oocyte, but the weak expression of ccl42b.S was detected in the ovary (Figure 6). Next, regarding ccr8, among all the receptors examined in this study, only ccr8.L showed dominant expression in the testis and ovary. CCL1 and CCL18 were known as ligands for CCR8 (Garlisi et al., 1999; Islam et al., 2013), but both have been unidentified in Xenopus. Interestingly, although ccr2 and ccr8 are not identified in teleosts (Table 1), CCR2 and CCR8 RNAs have also been detected in the human oocyte (Zhao et al., 2020). Although their role in oocytes is still unclear, both genes may have evolutionarily conserved functions.

ccxl2, ccr4, and ackr3 were examined their expression and function in the early development of X. laevis (Moepps et al., 2000; Braun et al., 2002; Fukui et al., 2007; Takeuchi et al., 2010; Mishra et al., 2013; Sheddall and Mayor, 2016). Because sequence homology of each ortholog is relatively well conserved among vertebrates (DeVries et al., 2006; Nomiyama et al., 2013), ccc12, cccr4, and ackr3 are anticipated to undergo intense purifying selection. This prediction was also supported in this study. In contrast, the expression levels of ccc12.S and ackr3.S were reduced compared to L counterparts in early development, and all three homeologous pairs indicated HCDE in adult tissues. These findings suggest that the potential subfunctionalization/pseudogenization is progressing in homeologs of ccc12, cccr4, and ackr3.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.
ETHICS STATEMENT

Ethical review and approval were not required for the animal study because we used only genome assembly datum, not organisms.

AUTHOR CONTRIBUTIONS

AF did gene model screening, manual annotation validation, and transcriptome analysis. MM conducted dN/dS analysis. All authors contributed to the phylogenetic analysis and manuscript writing.

FUNDING

This study was supported by the Joint Research Grant from the Institute of Science and Engineering, Chuo University.

REFERENCES

Abel, S., Hundhausen, C., Mentlein, R., Schulte, A., Berkhour, T. A., Broadway, N., et al. (2004). The Transmembrane CXC-Chemokine Ligand 16 Is Induced by IFN-γ and TNF-α and Shed by the Activity of the Disintegrin-like Metalloproteinase ADAM10. J. Immunol. 172, 6362–6372. doi:10.4049/jimmunol.172.10.6362

Baba, M., Imai, T., Nishimura, M., Kakizaki, M., Takagi, S., Hieshima, K., et al. (1997). Identification of CCR6, the Specific Receptor for a Novel Lymphocyte-Directed CC Chemokine LARC. J. Biol. Chem. 272, 14893–14898. doi:10.1074/jbc.272.23.14893

Belperio, J. A., Keane, M. P., Arenberg, D. A., Addison, C. L., Ehlert, J. E., Berthelot, C., Brunet, F., Chalopin, D., Juanchich, A., Bernard, M., Noël, B., et al. (2014). The Rainbow trout Genome Provides Novel Insights into Evolution and Proliferation and Tissue Regeneration. Front. Immunol. 5, 3657. doi:10.3389/fimmu.2020.02109

Braun, M., Wunderlin, M., Spieth, K., Knöchel, W., Gierschik, P., and Moepps, B. (2002). Xenopus laevis StromaL Cell-Derived Factor 1: Conservation of Structure and Function during Vertebrate Development. J. Immunol. 168, 2340–2347. doi:10.4049/jimmunol.168.5.2340

Burns, J. M., Summers, B. C., Wang, Y., Melkian, A., Berahovich, R., Miao, Z., et al. (2006). A Novel Chemokine Receptor for SDF-1 and Its Role Involving in Cell Survival, Cell Adhesion, and Tumor Development. J. Exp. Med. 203, 2201–2213. doi:10.1084/jem.20052214

Cho, C., and Miller, R. J. (2002). Chemokine Receptors and Neuronal Function. J. Neurovirol. 8, 573–584. doi:10.1080/1355028029010003

Cui, X., Han, Y., Pan, Y., Xu, X., Ren, W., and Zhang, S. (2011). Molecular Cloning, Expression and Functional Analysis of Interleukin-8 (IL-8) in South African Clawed Frog (Xenopus laevis). Dev. Comp. Immunol. 35, 1159–1165. doi:10.1016/j.dci.2011.04.005

DeVries, M. E., Ran, L., and Kelvin, D. J. (1999). On the Edge: the Physiological and Pathophysiological Role of Chemokines during Inflammatory and Immunological Responses. Semin. Immunol. 11, 95–104. doi:10.1006/smim.1999.0165

DeVries, M. E., Kelvin, A. A., Xu, L., Ran, L., Robinson, J., and Kelvin, D. J. (2006). Defining the Origins and Evolution of the Chemokine/chemokine Receptor System. J. Immunol. 176, 401–415. doi:10.4049/jimmunol.176.1.401

Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution 39, 783–791. doi:10.1111/j.1558-5646.1985.tb00420.x

Förster, R., Mattis, A. E., Kremmer, E., Wolf, E., Brem, G., and Lipp, M. (1996). A Putative Chemokine Receptor, BLR1, Directs B Cell Migration to Defined Lymphoid Organs and Specific Anatomic Compartments of the Spleen. Cell 87, 1037–1047. doi:10.1016/0092-8674(96)90179-5

Forster, R., Davalos-Misslitz, A. C., and Rot, A. (2008). CCR7 and its Ligands: Balancing Immunity and Tolerance. Nat. Rev. Immunol. 8, 362–371. doi:10.1038/nri2297

Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y.-L., and Postlethwait, J. (1999). Preservation of Duplicate Genes by Complementary, Degenerative Mutations. Genetics 151, 1531–1545. doi:10.1093/genetics/151.4.1531

Fukui, A., Goto, T., Kitamoto, J., Homma, M., and Asashima, M. (2007). SDF-1 Signaling in Embryonic Germline and Somatic Embryonic Development of the Pseudotetraploid Frog, X. mu. Nat. Commun. 5, 3657. doi:10.1038/ncomms4657

Garlisi, C. G., Xiao, H., Tian, F., Hedrick, J. A., Billah, M. M., Egan, R. W., et al. (1999). The Assignment of Chemokine-Chemokine Receptor Pairs: TARC and MIP-1β Are Not Ligands for Human CC-Cchemokine Receptor 8. Eur. J. Immunol. 29, 3210–3215. doi:10.1002/imm.1521-4119(199910)29:12<3210::aid-immu3210>3.0.co;2-w

Garmsre, O., Schnable, J. C., Almeida, A., Jourda, C., D’Hont, A., and Freeling, M. (2014). Two Evolutionarily Distinct Classes of Polycomb Complex, Mol. Biol. Evol. 31, 448–454. doi:10.1093/molbev/msu230

Gosling, J., Dairaghi, D. J., Wang, Y., Hanley, M., Talbot, D., Miao, Z., et al. (2000). Cutting Edge: Identification of a Novel Chemokine Receptor that Binds Dendritic Cell- and T Cell-Active Chemokines Including ELC, SLC, and TECK. J. Immunol. 164, 2851–2856. doi:10.4049/jimmunol.164.6.2851

Goto, T., Michiue, T., Ito, Y., and Asashima, M. (2013). Characterization of CCX-type Chemokine Molecules in Early Xenopus laevis Development. Int. J. Dev. Biol. 57, 41–47. doi:10.1387/ijdb.120223ma

Hattermann, K., and Mentlein, R. (2013). An Infernal Trio: the Chemokine CXCL12 and its Receptors CXCR4 and CXCR7 in Tumor Biology. Annu. Anat. - Anatomischer Anzeiger 195, 103–110. doi:10.1111/j.1661-1652.2010.01013

Hellsten, U., Kohlka, M. K., Grammer, T. C., Harland, R. M., Richardson, P., and Rohrsch, D. S. (2007). Accelerated Gene Evolution and Subfunctionalization in the Pseudotetraploid Frog Xenopus laevis. BMC Biol. 5, 31. doi:10.1186/1740-8729-5-31

Hieshima, K., Imai, T., Opdenakker, G., Van Damme, J., Kusuda, J., Tei, H., et al. (1999). Molecular Cloning of a Novel Human CC Chemokine Liver and Activation-Regulated Chemokine (LARC) Expressed in Liver. J. Biol. Chem. 272, 5846–5853. doi:10.1074/jbc.272.9.5846

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fgene.2021.787979/full#supplementary-material

ACKNOWLEDGMENTS

We would like to thank all members of the X. laevis genome project consortium in Japan. We also thank Atsushi Toyoda, Yutaka Suzuki, Taejoon Kwon, Atsushi Suzuki, Naoto Ueno, and Masanori Taira for RNA-seq experiments and TPM calculations. Thanks also are to Yoshinobu Uno for the FISH experiment. We acknowledge the Hiroshima University Amphibian Research Center through the National BioResource Project (NBRP) of AMED for providing the useful genome browser for X. tropicalis and X. laevis under Grant Number JP20km0210085.
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations or those of the publisher, the editors, and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Fukui and Matsunami. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.