Dietary organosulfur compounds: Emerging players in the regulation of bone homeostasis by plant-derived molecules

Laura Gambari, Brunella Grigolo and Francesco Grassi*
Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy

The progressive decline of bone mass and the deterioration of bone microarchitecture are hallmarks of the bone aging. The resulting increase in bone fragility is the leading cause of bone fractures, a major cause of disability. As the frontline pharmacological treatments for osteoporosis suffer from low patients’ adherence and occasional side effects, the importance of diet regimens for the prevention of excessive bone fragility has been increasingly recognized. Indeed, certain diet components have been already associated to a reduced fracture risk. Organosulfur compounds are a broad class of molecules containing sulfur. Among them, several molecules of potential therapeutic interest are found in edible plants belonging to the Allium and Brassica botanical genera. Polysulfides derived from Alliaceae and isothiocyanates derived from Brassicaceae hold remarkable nutraceutical potential as anti-inflammatory, antioxidants, vasorelaxant and hypolipemic. Some of these effects are linked to the ability to release the gasotransmitter hydrogen sulfide (H₂S). Recent preclinical studies have investigated the effect of organosulfur compounds in bone wasting and metabolic bone diseases, revealing a strong potential to preserve skeletal health by exerting cytoprotection and stimulating the bone forming activity by osteoblasts and attenuating bone resorption by osteoclasts. This review is intended for revising evidence from preclinical and epidemiological studies on the skeletal effects of organosulfur molecules of dietary origin, with emphasis on the direct regulation of bone cells by plant-derived polysulfides, glucosinolates and isothiocyanates. Moreover, we highlight the potential molecular mechanisms underlying the biological role of these compounds and revise the importance of the so-called ‘H₂S-system’ on the regulation of bone homeostasis.

KEYWORDS
organosulfur compounds (OSCs), osteoporosis, hydrogen sulfide (H₂S), Brassicaceae, Allium, glucosinolates, isothiocyanates, polysulfides
Highlights

A literature search was conducted using MEDLINE database. Relevant pre-clinical and clinical studies were selected using a combination of keywords including bone, diet and/or organosulfur compounds, Allium, Brassicaceae, alliin, allicin, garlic, ajoene, diallyl trisulfide, diallyl disulfide, S-allylcysteine, diallyl sulfide, glucosinolate, thiosulfinate, sulforaphane, broccoli, methyl sulfide, isothiocyanates. Additional studies were identified by an extensive manual search of bibliographic references in original papers and reviews. Abstracts and non-English papers were not included. This study selected a total of in vitro studies (10 Alliaceae, 9 Brassicaceae); in vivo studies (17 Alliaceae, 11 Brassicaceae) and population-based studies (4 Alliaceae, 1 Brassicaceae).

Introduction

Osteoporosis (OP) is a chronic metabolic bone disease characterized by the deterioration of bone microarchitecture and a reduction in bone mass, leading to decreased bone strength and increased risk of bone fracture (1). Approximately 6% of men and 21% of women aged 50–84 years are diagnosed with OP and the number of fragility fractures in Europe has increased from 3.1 to nearly 4.3 million in 20 years since year 2000 (2); due to the strong correlation with the ageing of the population, the prevalence of OP is projected to further increase over the next decades (3).

At the bone tissue level, OP is characterized by increased bone porosity which results from the loss of balance between bone formation and bone resorption as aging, disuse, inflammatory diseases, hormonal imbalance or the effect of glucocorticoids impair the ability of osteoblast to keep up with the pace of bone resorption by the osteoclasts (4). Importantly, aging is associated with a decreased number of osteoprogenitor cells, inhibited proliferation, decreased mineralizing capacity, and a shift of osteogenic differentiation toward adipogenesis in senescent mesenchymal stromal cells (MSCs) (5–7).

Pharmacotherapy helps patients to prevent the occurrence or recurrence of fragility fractures and to manage symptoms. However, drugs are mostly used in patients who already show severe bone loss, and the existence of side effects, although very limited in prevalence, often leads to low patient’s adherence to anti-OP drugs (8, 9). In this context, non-pharmacological strategies aimed at preventing excessive bone loss hold relevance given that OP remains in most cases a subclinical condition until fracture occurs.

One safe way to prevent bone loss and reduce the risk of bone fracture is to positively impact bone mass through healthy lifestyles and nutrition (10, 11). In particular, the importance of defining specific diet regimens for the prevention of excessive bone fragility has been increasingly recognized (12–15). Adherence to Mediterranean diet lowered hip fracture risk (16) and certain micronutrients contained in fruit and vegetables contributed to delay bone fragility in ageing and to decrease the incidence of bone fractures (17–20). Moreover, a dietary pattern consisting of a high consumption of fruits, vegetables and seafood, has been shown to be directly associated with increased bone mineral density (BMD), independent of dietary calcium intake (21, 22).

Phytochemicals are defined as the chemical bioactive components of nutrient plants that may provide desirable health benefits beyond basic nutrition to reduce the risk of major chronic diseases. They include several classes of compounds: terpenoids, polyphenols, alkaloids, organosulfur compounds (OSCs) and phytosterols (23). Concerning OSCs, much of the research on their health benefits has been in the areas of cardiovascular diseases, cancer and neurological disorders (24–26). However, a growing body of scientific evidence supports the idea that dietary OSCs may play an important role for skeletal health by favoring bone anabolism, inhibiting bone catabolism, and preventing pathological bone loss.

This manuscript intends to provide an up-to-date review of the current evidence from preclinical (both in vitro and in vivo) and clinical studies on the skeletal effects of OSCs of dietary origin, discussing the chemical nature, the mechanism of action and the potential role of hydrogen sulfide (H2S) in their biological action. A specific focus is given to the pair glucoraphanin (GRA)-sulforaphane (SFN) as a paradigm of OSCs-H2S system in bone tissue. Finally, implications and future challenges in the field will be discussed considering the potential translation of OSCs-containing dietary components to clinical studies.

Dietary sources and chemical nature of OSCs

Naturally derived OSCs are a broad class of molecules containing sulfur, predominantly found in edible plants belonging to the Allium and Brassica (also known as cruciferous vegetables) genera. These plants have been widely used throughout the centuries either as vegetables for culinary purposes as well as in folk and traditional medicine, given their renowned medicinal properties and therapeutic effects. Allium genus consists of more than 600 species which are among the oldest cultivated vegetables used as food and still represent one of the main components of the Mediterranean diet (27). Brassica genus consists of 37 species; among them, several species are known for their nutritional and therapeutic properties (28, 29). A partial list of edible plants belonging to the Allium and Brassica genera, and their main content in OSCs, is reported in Table 1.
In *Allium*, over half of the total sulfur content within the mature garlic bulb is found in the form of S-alk(en)yl cysteine sulfoxides (ASCOs) (69), non-protein sulfur amino acids which are converted to their respective thiocyanates or propanethial-S-oxide upon tissue damage (70).

The synthesis of ASCOs in *Allium* species starts with the transformation of γ-glutamyl peptides (such as γ-L-glutamyl-S-methyl-L-cysteine) into sulfur-containing γ-glutamyl-S-alk(en)yl-cysteines such as γ-glutamyl-S-alk(en)-yl-cysteines, γ-glutamyl-S-allyl-cysteine, γ-glutamyl-propenyl-L-cysteine sulfoxide (PeCSO). These are further deaminated and oxidized in the cytoplasm of plant cells. The intact garlic bulbs contain alliin, γ-glutamyl-S-allyl-cysteine (GSAC), methiin, S-trans-1-propenyl-L-cysteine sulfoxide, S-2-carboxypropylglutathione, S-allylcysteine (SAC) (37).

When the bulbs are cut, crushed, chopped or chewed, the enzyme alliinase (a vacuolar lyase) is released from vacuoles and catalyzes the formation of sulfenic acids from γ-cysteine sulfoxides: S-allyl-cysteine sulfoxide (alliin); S-methyl-cysteine sulfoxide (methiin); S-propyl-cysteine sulfoxide (propiin); S-trans-1-propenyl-cysteine sulfoxide (isoolin) (71, 72). Sulfenic acids spontaneously react with each other to form unstable compounds called thiocyanates (69): eg. alliin is converted into allicin (alkenyl alkene thiocyanate - diallyl thiocyanate). Allicin immediately decomposes into allyl sulfide (AS), diallyl disulfide (DADS), diallyl trisulfide (DATS), diallyl tetrasulfide, dipropyl disulfide (DPDS), ajoenes, and vinyldithiins (72). The direct catabolism of γ-glutamylcysteine by γ-glutamyltranspeptidase leads to the formation of SAC and S-allylmercaptopcysteine (SAMC). Allicin can react with glutathione and γ-cysteine to produce S-1-propenylglutathione (SAG) and SAMC, respectively (69, 72).

Among *Allium*, the most common ASCOs are alliin, methiin, propiin and isoolin (70, 73, 74). However, they are differentially expressed in specific edible plants. The most abundant in garlic is alliin; in onion isoalliin, methiin, propiin are predominantly detected.

In *Brassica* vegetables two different kinds of OSCs are present: methiin, mainly known from *Allium* vegetables, and glucosinolates (S-β-thioglycoside N-hydroxysulfates, GLS). Methiin is metabolized to (+)-2-thioglycoside sulfoxides which can degrade to volatile organosulfur compounds (VOSCs) such as S-methyl methane thiocyanate, which is converted to dimethyl trisulfide and dimethyl disulfide.

GLS are sulfur-based compounds that consist of β-thioglycoside N-hydroxysulfates with various side chains and a sulfur-linked β-o-glucopyranose moiety. A very different profile of GLS may be found in different *Brassica* extracts (75). Natural isothiocyanates (ITCs) are bioactive OSCs derived from the hydrolysis of GLS by the enzyme myrosinase. In plant cells, GLS are physically separated from myrosinases and come in contact only upon tissue damage or crushing. Importantly, myrosinase is not expressed by mammalian cells; however, a small proportion is converted in the mouth by action of plant myrosinase released by chewing (76); moreover, the gut microbiota is entailed with myrosinase activity and constitutes the major site in humans where GLS are hydrolyzed to ITCs (77). While GLS are chemically stable and are characterized by a relatively long half-life, ITCs are highly reactive and short-lived in vivo (75, 78).

Effect of OSCs on bone tissue: Preclinical evidence

The effect of OSCs in bone tissue has been investigated in several preclinical models, revealing a strong potential to preserve skeletal health by stimulating the bone forming activity of osteoblasts and inhibiting the bone resorbing activity of osteoclasts, two of the key processes of bone remodeling (79).

Figures 1, 2 provide a graphical summary, respectively, of the main biological processes and molecular targets regulated by OSCs within MSCs/osteoblasts and monocytes/osteoclasts. A detailed description of these mechanisms is provided in the next paragraphs.

Tables 2–5 summarize data from preclinical studies showing an effect of extracts rich in OSCs or individual OSCs molecules derived from *Allium* (Tables 2, 3) and *Brassica* vegetables (Tables 4, 5).

Importantly, while data obtained from studies on purified molecules (labeled with * in the tables) clearly attest to the effectiveness of individual OSCs, the effect of OSCs-rich extracts may result from the combined action of other phytochemicals contained in the extracts. Indeed, *Allium* species contains polyphenols, flavonoids, flavanols, anthocyanins, tannins, ascorbic acid, saponins and fructans (109–111); *Brassica* species contains ascorbic acid, phenolics, carotenoids, terpenes, phytoalexins and alkaloids (29, 112).

Regulation of osteogenesis and bone formation

Osteoblasts, the bone forming cells, regulate bone homeostasis by synthesizing a wide variety of extracellular protein of bone matrix. They differentiate from MSCs through the osteogenic differentiation process which is regulated by an orchestrated activation of several pathways. The master regulator of osteogenic differentiation is runt-related transcription factor 2 (RUNX-2), which is expressed in the early stages of differentiation and is at the intersection of several signaling pathways among which growth hormone-janus Kinase 2 (GH-JAK2), bone morphogenetic protein-SMAD (BMP-SMAD), canonical Wingless/Integratin (Wnt) and Notch signaling (113, 114).
Edible plants	Genus	Main OSCs
Garlic (Allium sativum L.)	Allium	• γ-glutamyl-S-allyl-L-cysteine
		• allicin
		• allin
		• methiin
		• S-trans-1-propenylcysteine sulfoxide
		• S-2-carboxypro-pylglutathione
		• S-allylcysteine
		• ajene
		• vinylidithiins
		• diallyl sulfide
		• diallyl trisulfide
		• γ-1-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide
Onion (Allium cepa L.)	Allium	• isooliin
		• methiin
		• propin
		• diallyl disulfide
		• diallyl trisulfide
		• γ-1-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide
Welsh onion (Allium fistulosum L.)	Allium	• γ-glutamyl-S-allyl-L-cysteine
		• allicin
Hooker’s Onion (Allium hookeri)	Allium	• cyclodiin
		• S-methyl cysteine sulfoxide
Long-stamen chive (Allium macrostemon)	Allium	• S-propenyl cysteine sulfoxide
		• S-alk(en)yl cysteine sulfoxides
Leek (Allium ampeloprasum var. porrum)	Allium	• propin
Shallot (Allium ascalonicum)	Allium	• γ-glutamyl-S-allyl-L-cysteine
Turnip (Brassica rapa L.)	Brassica	• glucoraphanin & sulforaphane
		• gluconapin & 3-butenyl isothiocyanate
		• glucoraphanin & 4-pentenyl isothiocyanate/gluconapoleiferin
		• glucoraphanin & 2-phenethyl isothiocyanate
		• goitrin
		• berteroin
Broccoli (Brassica oleracea var. italica L.)	Brassica	• sulphoraphane
		• glucosin (56–58)
		• 3-hydroxy-4(α-L-rhamnopyranosyl) benzyl glucosinolate
Water cress (Lepidium sativum L.)	Brassica	• glucotropaeolin
Cabbages (Brassica oleracea var. capitata L.)	Brassica	• glucoraphanin
		• singrin
		• glucoraphenin
		• glucosatrin
		• glucorucin
		• 4-hydroxyglucobrassicin
		• glucotropaeolin
Rocket (Eruca sativa)	Brassica	• glucoraphanin
		• glucoraphenin
		• glucosatrin
		• glucorucin
		• 4-hydroxyglucobrassicin
		• glucotropaeolin
Kohlrabi (Brassica oleracea var. gongylodes)	Brassica	• glucoraphanin & sulforaphane
		• glucorucin & methylthiobutyl isothiocyanate
		• benzyll isothiocyanate
		• gluconasturtin & phenylethyl isothiocyanate
		• sinigrin & allyl isothiocyanate
		• glucoraphanin & hydroxyglucobrassicin
		• neoglucobrassicin
		• methiin

(Continued)
Among the genes targeted by RUNX-2 are osteocalcin (OCN), collagen I (Col I), bone sialoprotein (BSP), osteopontin (OPN), alkaline phosphatase (ALP). BSP, OPN and ALP are correlated to matrix mineralization; Coll I and OCN are among the major components of bone matrix. Wnt-β-catenin signal activates osteogenic target genes such as distal-less homeobox 5 (Dlx5) and osterix (Oxx) (115) and suppresses the transcription of adipogenic transcription factors such as peroxisome proliferator-activated receptor-γ (PPAR-γ) (116). SMAD family number 1 (SMAD-1) is a critical immediate downstream mediator of BMP receptor transduction (117). Among downstream targets of canonical Wnt and BMP signaling is WNT1-inducible signaling pathway protein 1 (WISP-1), which is involved in the positive regulation of osteogenesis and negative regulation of adipogenesis (118). Interestingly, the expression of H2S generating enzymes, cystathionine-β-synthase (CBS) and cystathionine-γ-lyase (CSE), was found to be transcriptionally up-regulated during osteogenesis and to correlate with the biosynthesis of mineral matrix (119), thus suggesting a role for endogenous H2S in osteogenic differentiation. Osteogenic differentiation is associated to increased ALP activity and mineralization in vitro and increased BMD in vivo. Osteoblast finally differentiate toward osteocytes, multifunctional bone cells that are embedded in mineralized bone matrix. Osteocytes act as orchestrators of bone remodeling, through regulation of both osteoclast and osteoblast activity, as regulators of phosphate metabolism and calcium availability, by functioning as an endocrine cell; as mechanosensory cells (120). Key factors produced by osteocytes are sclerostin (a negative regulator of bone mass), FGF-23 (a regulator of phosphate metabolism), and the key regulator of osteoclast differentiation receptor activator of nuclear factor κB ligand (RANKL), also produced by osteoblasts and MSCs (120, 121).

Most studies investigating OSCs extracts focused on a commonly used human osteoblastic model, the human osteosarcoma cell line (MG-63 cells). They showed increased cell proliferation and increased osteogenesis/mineralization by Allium Hookeri roots treatments (48); increased osteogenesis by Allium fistulosum (80) and Brassica Rapa L. (jeong); while no effect on proliferation and differentiation was shown by treatment with water solution of onion crude powder (81). However, MG-63 cells are osteoblasts derived from osteosarcoma, a malignant bone tumors, thus are not fully representative of physiological osteoblasts (122). Increased cells proliferation by Allium genus was also shown by ginger and garlic extracts released by 3D-printed calcium phosphate scaffolds on human fetal osteoblast cells (82); increased osteogenesis by Allium fistulosum was also shown in the mouse C57BL/6 osteoblastic calvaria cell line (MC3T3-E1) (80). Up to date no studies on primary cultures of human MSCs have been performed with extracts derived from Alliaceae or Brassicaceae.

Treatment with Alliaceae extracts improved bone formation in normal control rats (41, 48, 88) and mitigated the bone loss due to several pathological conditions among which osteoporosis (47, 80, 94). Similarly, extracts from Brassicaceae induced bone formation in control rats (54) and prevented bone loss in several models of osteoporosis (59, 99, 106–108). Interestingly, treatment with Lepidium sativum resulted in improved fracture healing (28, 123).

Notably, several studies focused on purified OSCs molecules, revealing a specific effect of OSCs on proliferation, osteogenic differentiation, and bone formation. Behera et al. showed increased proliferation, ALP activity and mineralization in murine MSCs derived from femur bone marrow (BM-MSCs) upon allyl sulfide stimulation, with a mechanism implicating increased RUNX-2 and OCN expression (83). Thaler et al. demonstrated increased mineralization in mouse MSCs and in an ex vivo culture of calvariae explants treated with SFN.
FIGURE 1

Regulation of bone remodeling processes by purified OSCs molecules. Bone remodeling is governed by the balance between bone formation by the osteoblasts (left side) and bone erosion by the osteoclasts (right side). Ancillary processes are shown. OSCs specifically regulate the following processes: promote cells proliferation and viability of mesenchymal stromal cells [1] while inhibit the proliferation and viability of monocytes [5]; promote the osteogenic differentiation [2] and bone formation [3], inhibit at different stages osteoclast differentiation [6] and reduce bone erosion [7]; inhibit the viability of osteocytes [4]. Among the OSCs which modulate bone processes are allicin, allyl sulfide (AS), sulforaphane (SFN), glucoraphanin (GRA), diallyl sulfide (DADS). See the text for details.

FIGURE 2

Molecular targets of purified OSCs molecules in bone cells. Osteoblastogenesis and osteoclastogenesis are the two key processes of bone remodeling and are regulated by a tightly organized activation of specific molecular targets. This figure shows a schematic representation of a mesenchymal stromal cells/osteoblast and a monocyte/osteoclast to highlight the specific molecular targets regulated by OSCs at different stages of differentiation from precursors to fully differentiated cells. Among the OSCs which drives the modulation of specific molecular targets are allicin, allyl sulfide (AS), sulforaphane (SFN), glucoraphanin (GRA) and diallyl sulfide (DADS). The overall effects are an activation of osteogenic differentiation in mesenchymal stromal cells and both a direct and indirect inhibition of osteoclast differentiation. Follows a list of the molecular targets shown in the figure. Markers of osteoblastogenesis: osteocalcin (OCN), runt-related transcription factor 2 (RUNX-2), alkaline phosphatase (ALP), WNT1-inducible-signaling pathway protein 1 (WISP-1), bone sialoprotein (BSP), cystathionine-β-synthase (CBS), SMAD family member 1 (SMAD-1). Markers of regulators of osteoclastogenesis produced by mesenchymal stromal cells or osteoblasts: receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG). Marker of cells survival and stress response: FAS, caspase 3/7, nuclear factor erythroid-derived 2-related factor 2 (NRF2), NAD(P)H: quinone oxidoreductase 1 (NQO1), heme oxygenase-1 (HO1), glutamate-cysteine ligase catalytic subunit (GCLC), glutamate-cysteine ligase modifier subunit (GCLM), peroxiredoxin 1 (PRDX-1). Markers of osteoclasts: nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), cathepsin K (CTSK), receptor activator of NF-κB (RANK), osteoclast stimulatory transmembrane protein (OC-STAMP), dendritic cell specific transmembrane protein (DC-STAMP), osteoclasts-specific activating receptor (OSCAR), tartrate-resistant acid phosphatase (TRAP), calcitonin receptor (CTRI), c-fos, tartrate-resistant acid phosphatase 5b (TRAP-5b), matrix metalloproteinase 9 (MMP-9). See the text for details.
Molecule tested	Experimental in vitro model	Concentration	Main effect	Specific outcomes	Authors	Ref
Hot-water extract and ethanol extracts of Allium hookeri roots	MG-63 cells line	0.1-0.5-1-5-10-25-50-100 µg/ml	Increased proliferation and osteogenesis	• ↑ viability/proliferation; no cytotoxicity (WST-8 assay)	Park et al. (48)	
				• ↑ ALP activity (pNPP detection)		
				• ↑ collagen (Sirius red assay)		
				• ↑ mineralization (Alizarin Red staining)		
Aqueous and ethanolic extracts of Allium fistulosum	MG-63 cell line	1-4-8-16-32-50-63-125 µg/ml	Increased osteogenesis	• no cytotoxicity (MTT assay)	Ryuk et al. (80)	
				• ↑ ALP activity (ALP assay kit)		
Water solution of onion crude powder	MG-63 cell line	300 µg/ml	No effect on proliferation or differentiation	ALP activity similar to control cells (ALP assay kit)	Tang et al. (81)	
				• Col I on cell lysate was similar to control cells (4-hydroxyproline quantification)		
				• OCN, OPN in cells surrants similar to control cells (ELISA)		
Aqueous and ethanolic extracts of Allium fistulosum	MC3T3-E1 cell line	1-4-8-16-32-50-63-125 µg/ml	Increased proliferation and osteogenesis	Ethanolic extracts:	Ryuk et al. (80)	
				• ↑ viability/proliferation; no cytotoxicity (MTT assay)		
				• ↑ALP activity (ALP assay kit)		
				Water extracts:		
				• no cytotoxicity (MTT assay)		
				• ↑ALP activity (ALP assay kit)		
Water Allium sativum L. extract	Human fetal osteoblast cells	3D-printed calcium phosphate scaffolds releasing ginger and garlic extract	Increased osteoblast proliferation	• ↑ proliferation (MTT assay)	Bose et al. (82)	
				• Rescue of proliferation and osteogenesis		
Allicin (AS) *	BMMSCs isolated from Age-associated OP mice’s femurs	Mice were fed by oral gavage with AS (200 mg/kg) for 3-months	Increased osteoblast proliferation	• ↑ ALP activity (ALP staining), ↑ mineralization of osteoclastogenesis	Behera et al. (83)	
				• ↑ proliferation as compared to aged mice (MTT assay)		
				• ↑ALP activity (ALP assay kit)		
				Water:		
				• OPG and ↓ RANKL in surrants (ELISA)		
Allium cepa L. extracts	In vitro bioactivity assay (simulated body fluid)	Chitosan + Allium cepa L. (ChAC) and Chitosan + Allium cepa L. + PLGA (ChPAC)	Improved natural bioactivity of chitosan	• Increased apatite crystals in the surface	Monárrrez-Cordero et al. (84)	
				• Increased Phosphorous/Calcium ratio		
				• Inhibition of osteoclast activity		
Water Allium sativum L. extract	Human osteoclast cells from THP1 monocytes	3D-printed calcium phosphate scaffolds releasing ginger and garlic extract	Inhibition of osteoclast activity	• ↓ resorption (pit assay)	Bose et al. (82)	
Ethanolic extract of onion	RAW 264.7 cell line	0.1-0.2-0.4 mg/ml	Inhibition of osteoclastogenesis	• no cytotoxicity (MTT assay)	Law et al. (85)	
Molecule tested	Experimental in vitro model	Concentration	Main effect			
---	----------------------------	----------------------------------	---			
Freeze dried onion juice	RAW 264.7 cell line	0.1-0.2-0.4 mg/ml	Inhibition of osteoclastogenesis			
			• ↓ osteoclasts (TRAP assay)			
			• no cytotoxicity (MTT assay)			
			• ↓ osteoclasts (TRAP assay)			
Water solution of onion crude powder	RAW 264.7 cell line	15-50-150-300 μg/ml	Inhibition of osteoclastogenesis			
			• ↓ osteoclasts (TRAP assay)			
			• ↓ CD51/61 (vitronectin receptor), MMP-9 and TRAP mRNA (RT-PCR)			
			• ↓ ERK, p38 and NF-kB (western blot)			
Diallyl disulfide (DADS) *	RAW 264.7 cell line	1-10-100-1000 μg/ml	Inhibition of osteoclastogenesis			
		20-40-60-80-100 μg/ml	• ↓ cytotoxicity at concentration higher to 100 μg/ml (CCK-8 assay)			
			• ↓ osteoclast and resorption (TRAP assay PIT assay)			
			• ↓ c-fos, NFATc1, TRAP, MMP9, CTR, CTSK, DC-STAMP, OC-STAMP mRNA			
			• ↓ osteoclast fusion (FAK staining)			
			• ↓ NF-kB, p-STAT3, NFATc1, c-FOS (western blot)			
			• ↓ ROS (detection by fluorescent probe)			
Water solution of onion crude powder	Osteoclast derived from	15-50-150-300 mg/ml	Inhibition of osteoclastogenesis			
	bone marrow cells of femurs		• ↓ osteoclasts and resorption (TRAP assay and pit assay)			
	of 6-8-week-old Sprague–Dawley rats		• ↓ c-fos, NFATc1, MMP9, DC-STAMP, OC-STAMP, RANK, TRAP (RT-PCR)			
			• ↓ Nox-1, NFATc1, c-fos (western blot)			
			• ↓ ROS (detection by fluorescent probe)			
Water solution of onion crude powder	Osteoclast derived from	15-50-150-300 mg/ml	Inhibition of bone resorption			
	long bones of 6-day-old		• ↓ resorption (pit assay)			
	rabbits		• ↓ osteoclasts (TRAP assay)			
Commercial onion powder (Chia Hui, Taipei, Taiwan)	Osteoclast derived from	300 μg/ml	Inhibition of osteoclastogenesis			
	bone marrow cells of femurs		• ↓ osteoclasts (TRAP assay)			
	of 6-8-week-old Sprague–Dawley rats		• ↓ inhibition of ERK, p38, and NF-kB activation (western blot)			
GPCS isolated by bioassay-guided fractionation of	Osteoclasts derived from	1-10-30 mg/ml 2-4-8 mM	Inhibition of osteoclast differentiation and activity			
	femora and tibiae of 2-		• ↓ osteoclast differentiation and resorption by GPCS			
	days-old Wistar Hanlbm rats		• ↓ osteoclast differentiation and activity			

(Continued)
Most in vitro studies were conducted by using water or ethanol extracts from Allium edible plants (4 studies, 13 in vitro models, Allium hookeri roots, Allium fistulosum, Allium sativum L., Allium cepa L.); a few used purified OSCs (3 studies, 6 in vitro models, diallyl disulfide (DADS), allyl sulfide (AS), γ-glutamyl-trans-S-1-propenyl-L-cysteine sulfinate – GPCs, allium). Most studies showed an increased osteoblast proliferation and osteogenesis and an inhibited osteoclastogenesis. Notably, only the effects of purified OSCs (labeled with * in the table) can be attributable entirely to OSCs. The concentrations tested ranged from 0.1 to 300 μg/ml. Murine in vitro models of osteoclastogenesis: osteoclasts derived from bone marrow of femora and tibiae of rats, rabbits, mice, RAw 264.7 cells. Human (OP) mice attributable entirely to OSCs. The concentrations tested ranged from 0.1 to 300 μg/ml. Murine in vitro models of osteoclastogenesis: osteoclasts derived from bone marrow of femora and tibiae of rats, rabbits, mice, RAw 264.7 cells. Human in vitro models of osteoclastogenesis: osteoclasts from human THP1 monocytes. Murine in vitro models of osteoblastogenesis used: MC3T3-E1 (mouse C57BL/6 cvt line cells line); murine bone marrow (BM) cells; bone marrow-derived mesenchymal stem cells (BM-MSCs) isolated from age-associated (AG) osteoporosis (OP) mice's femurs. Murine in vitro models for studying indirect inhibition of osteoclastogenesis: bone marrow-derived mesenchymal stem cells (BM-MSCs); bone marrow macrophages (BMM) and murine bone marrow (BM). Human in vitro models of osteoblastogenesis: MG-63 cells line (human osteosarcoma cells line), human fetal osteoblast. Functional assays for osteoclastogenesis used: tartrate-resistant acid phosphatase positive (TRAP staining); pit assay. Functional assays for osteoblastogenesis: alizarin red staining (marker of mineralization), sirius red assay (marker of collagen I). Proliferation/viability assays: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), cell counting kit-8 (CCK-8) cell viability assay, water-soluble tetrazolium-8 (WST-8) assay. Markers of osteoclasts: nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), cathepsin K (CTSK), receptor activator of NF-KB (RANK), osteoclast stimulatory transmembrane protein (OC-STAMP), tartrate-resistant acid phosphatase (TRAP), tartrate-resistant acid phosphatase 5b (TRAP-5b), receptor activator of nuclear factor-xB ligand (RANKL), dendritic cell specific transmembrane protein (DC-STAMP), reactive oxygen species (ROS), c-Jun N-terminal kinase (JNK), p38, extracellular signal-regulated kinase (ERK), matrix metallopeptidase 9 (MMP-9), CD51/61 (vitronectin receptor). Markers of osteoblastogenesis: collagen I (Col I), osteocalcin (OCN), osteopontin (OPN), runt-related transcription factor 2 (RUNX-2), osteoprotegerin (OPG), alkaline phosphatase (ALP). ↑ means up-regulation; ↓ means down-regulation.

TABLE 2 Continued

Molecule tested	Experimental in vitro model	Concentration	Main effect	Specific outcomes	Authors Ref
Allium cepa L.					
Bulbs *	BMMs obtained from the femur and tibia bone marrow of 6-wk-old C57BL/6 mice	20-40-60-80-100 μg/ml	Inhibition of osteoclastogenesis (TRAP staining and pit assays)	↓ cytotoxicity at concentration higher to 100 μg/ml (CCK-8 assay)	Yang et al. (86)
Allyl sulfide (AS)*	BM cells	Cultured under 15% conditioned medium derived from BMMSCs culture of Age-associated OP mouse model (Fed by oral gavage with AS (200 mg/kg) for 3-months)	Inhibition of osteoclastogenesis via a paracrine mechanism	↓ osteoclasts (TRAP staining)	Behera et al. (83)

TABLE 3 Alliaceae-derived OSCs: effects on in vivo models of bone loss.

Molecule tested	Experimental in vivo model description	Mode of administration, dose and duration	Main effect	Specific outcomes	Authors Ref
Ethanol extracts of Allium macrostemon bulbs	Female, 25-day-old, Sprague-Dawley rats (adolescent mice)	Gavage, 100 and 300 mg/kg, twice daily for 10 days	Increase tibial longitudinal bone growth	Increase tibial longitudinal bone growth (fluorescence photomicrograph after tetracycline hydrochloride)	Kim et al. (85)
Hot-water extracts of Allium hookeri roots	Female, 3-week-old, Sprague-Dawley rats	Oral treatment, 500 mg/kg, single daily dose, for 6 weeks	Improved bone formation	↑ serum levels of OCN	Park et al. (48) (ELISA)
Wheat bread added with Allium sativum L.	Male weaning Wistar rats	Oral administration, 3 g per 100 g wheat flour, for 60 days	Increase in BMD	↑ total skeleton BMC and BMD, femur BMC, tibia BMC	Weisstaub et al. (88)
				↑ bone calcium	

(Continued)
Molecule tested	Experimental in vivo model description	Mode of administration, dose and duration	Main effect	Specific outcomes	Authors Ref
Ethanolic extracts of Allium cepa L. bulbs	Male, 9-week-old, Wistar Hanlbm rats	Orally given, one gram, daily treatment, for 10 days	Inhibition of bone resorption	↓ bone resorption (urinary excretion of tritium)	Wetli et al. [41]
Homogenized of Allium sativum L.	Hypercholesterolemic rat model (Pregnant albinorat Wistar fed with hypercholesterolemic diet, and their offspring)	Intragastrical injection, 100 mg/kg, a week prior to onset of feeding with hypercholesterolemic diet	Improved endochondral ossification	↑ ossification in mandibular, humerus, radio-ulna, femur, tibio-fibula, scapula and ilium (Alizarin red S for ossified skeletal bones in fixed offspring)	El-Sayyad et al. [89]
Water Allium sativum L. extract	In vivo implants in bicortical rat distal femur defects (Sprague-Dawley rats)	3D-printed calcium phosphate scaffolds designed with a bimodal pore distribution releasing ginger and garlic extract, implanted for 4-10 weeks	Increase in osteoinductivity	• ↑ osteoid tissue formation, mineralization (masson-goldner trichrome assay) • ↑ bone area, osteocytes (haematoxylin and eosin) • ↑ Col I (Col I staining) • ↑ serum calcium, OC and Col I vs CDD mice (ELISA) • ↑ serum ALP, OCN and Col I vs normal control mice (ELISA) • ↑ femoral and tibial BMC and BMD vs CDD mice and similar to normal control (DEXA) • Thicker growth plates vs CDD mice and similar to normal control (measured after hematoxylin and eosin stain)	Bose et al. [82]
Water extract of Allium fistulosum root	Rat model of OP and osteoarthritis (Female, 8-week-old, Sprague-Dawley rats, ovariectomy and MIA-induced OA)	Within rice porridge, 250 and 750 mg/kg, food supply was replaced every two days for 8 weeks	Prevention of bone loss	• ↑ BMD in lumbar bone spine, OA leg and control leg (DEXA) • ↑ serum ALP activity (ELISA) • ↑ serum ALP activity (pNPP measurements) and TRAP activity (commercial kit) • ↑ BMD of femur, thoracic rib, thoracic vertebra and lumbar vertebra (measured by Archimedes' principle)	Yang et al. [47]
Oil extract of Allium sativum L. from raw cloves	Rat model of OP (Female albinorats, ovariectomy)	Garlic, 100 mg/kg body wt/day, single evening dose for 30 days	Prevention of bone loss	• ↑ tensile strength of the femur (method of Shapiro and Heaney 2003) • ↑ serum estradiol levels (ELISA) • serum PTH levels is not affected (ELISA)	Mukherjee et al. [90]
Oil extract of Allium sativum L.	Rat model of OP (Female Wistar, ovariectomy)	Gavage, 100 mg/kg body wt/day, single evening dose for 30 days	Increase in bone strength and inhibition of bone resorption	• ↑ tensile strength of the femurs (method of Shapiro and Heaney 2003)	Mukherjee et al. [92]

(Continued)
Molecule tested	Experimental in vivo model description	Mode of administration, dose and duration	Main effect	Specific outcomes	Authors	Ref
Allium cepa L. powder	Rat model of OP (Female, 14-week-old, Wistar rats) treated or not with 1 mg/kg/day alendronate	Dietary administration, diet containing 3%, 7% and 14% (wt/wt) *Allium cepa* L. powder, for 6 weeks	Prevention of Ovx-induced bone loss and deterioration of biomechanical properties (efficacy was slightly inferior to that of alendronate)	• ↓ serum TRAP activity (commercial kit)	Huang et al.	(94)
Diallyl disulfide (DADS) *	A mouse calvarial osteosclerosis model (Female, 6-week-old, C57BL/6 mice, LPS treatment 5 mg/kg)	Subcutaneous injections, 20-40 mg/kg DADS, every alternate day for 14 days	Inhibition of LPS-induced osteolysis	• ↓ bone erosion as compared to LPS, ↑ BV/TV, ↓ porosity (microCT)	Yang et al.	(86)
Allyl sulfide (AS) *	Age-associated OP mouse model (Female, 20-months-old (aged), C57BL/6 J mice)	Oral gavage, 200 mg/kg, 3-months	Restored osteogenesis and bone density	• ↑ plasma levels of PINP and CTX-I	Behera et al.	(83)
Allicin *	Mouse model of lead-induced bone loss (Male, 3-week-old, C57BL/6 J mice, 0.2% lead acetate in drinking water ad libitum for 12 weeks)	Intraperitoneally injection, 10 mg/kg, in the last 4 weeks	Prevention lead-induced bone loss	• ↑ BMD, BVF, Tb.N, Tb.Th, ↑ Tb.Sp (microCT)	Li et al.	(95)
Allicin *	Mice model of aging rats (Male, 13 months-old, F344 rats)	Intragastric administration, 4-8-16 mg/kg, once daily for 8 months	Reverse aging-associated bone loss and frailty	• ↑ femoral, spinal, tibial BMD (DEXA)	Liu et al.	(96)

Most in vivo studies were conducted by using water or ethanol extracts of Allium edible plants (11 studies, Allium macrostemon, Allium hookeri, Allium fistulosum, Allium sativum L., Allium cepa L.). A few studies used Allium-derived OSCs (4 studies: diallyl sulphone, allyl sulphone, allicin). Most studies were performed in normal control mice showing improved bone formation and inhibited bone resorption, and in osteoporotic mice showing prevention of bone loss. Notably, only the effects of purified OSCs (labeled with * in the table) can be attributed entirely to OSCs. Markers of bone formation in serum: procollagen I intact N-terminal propeptide (PINP), osteocalcin (OCN), collagen I (Col I), alkaline phosphatase (ALP), parathormone (PTH). Markers of bone resorption in serum: serum type I collagen breakdown product (CTX-I). Markers of bone resorption in urine: urinary excretion of trittium. Bone microstructural parameters analyzed by microCT analysis: BMD (bone mineral density), bone volume fraction (BVF), spine BMD (s-SMD), tibia BMD (6-BMD), BMC (bone mineral content), bone volume (BV), bone volume/total volume (BV/TV), bone surface/bone volume (BS/BV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular space (Tb.Sp), bone volume fraction (BVF). Bone mineral density analyzed by dual-energy X-ray absorptiometry (DEXA). Markers of bone formation in histological specimen: ALP, Col I. Osteoid tissue detection by masson-goldner trichrome assay. Markers of osteoclasts/bone resorption in histological specimen: tartrate-resistant acid phosphatase (TRAP), nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), cathepsin K (CTSK). Markers of redox stress response: catalase (CAT), superoxide-dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA). Measurements of bone strength: method of Shapiro and Huey (2003); three-Point Bending Test. Other abbreviations: insulin-like growth factor 1 (IGF-1), bone morphogenetic protein 2 (BMP-2), lipo polysaccharide (LPS), sirtuin (SIRT), forkhead box O (FOXO). ↑ means up-regulation; ↓ means down-regulation.
Molecule (organosulfur compounds)	Experimental *in vitro* model	Concentration	Main effect	Specific outcomes	Authors Ref
Sulforaphane *	MLO-Y4, an osteocyte – cell line	3-10-15-30-100 μM	Inhibits cells proliferation; induces apoptosis; and inhibits osteoclastogenesis	• ↓ viability and metabolic activity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-like assay (EZ4U) • ↓ in the activities of Caspase 3/7 and 8 (assay kit) • ↑ Fas mRNA expression (RT-PCR) • ↑ RANKL mRNA expression (RT-PCR)	Thaler et al. (97)
Glucoraphanin *	In *vitro* culture of human mesenchymal stromal cells from tibial plateau	3.3-10-33-100 μM	Induction of osteogenesis	• ↑ viability (Wnt-8 assay) • ↑ ALP activity (pNPP measurements) • ↑ mineralization (alizarin red staining)	Gambari et al. (98)
Brassica rapa L. root ethanol extract	MG-63 cells line	1-5-10-25-50 μg/ml	Increased osteogenesis	• ↑ mineralization (alizarin red staining) • ↑ BSP, CBS, SMAD-1 mRNA (RT-PCR) • ↓ ALP, WISP-1 mRNA (RT-PCR)	Jeong et al. (54)
Sulforaphane *	MC3T3-E1	3-10-15-20-30-100 μM SFN	Promotion osteoblast differentiation and induction of apoptosis	• ↑ cells proliferation (3-(EZ4U) • ↑ in the activities of Caspase 3/7 and 8 (assay kit) • ↑ Fas mRNA expression (RT-PCR) • ↑ mineralization (alizarin red staining)	Thaler et al. (97)
Sulforaphane *	BMMSCs from long bones of 6-week-old C57BL/6 mice	3 μM	Promotes osteoblast differentiation	• ↑ mineralization (alizarin red staining) • ↑ RUNX-2 mRNA expression (RT-PCR)	Thaler et al. (97)
Hot water extract of *Brassica oleracea*	RAW 264.7 cell line	200 g/mL	Inhibition of osteoclast formation	• osteoclasts in femur, when in combination with P. ginseng extract (TRAP staining)	Kang et al. (99)
Sulforaphane *	RAW 264.7 cell line	3-10-15-30-100 μM	Reduces proliferation and induces apoptosis	• ↓ viability and metabolic activity (EZ4U) • No alteration in Acp5, Clcr, and CTSK mRNA expression (RT-PCR) • ↑ Tet1 and Fas-Caspase 8-Caspase 3/7 pathway (western blot, assay kit)	Thaler et al. (97)
Sulforaphane *	RAW 264.7 cell line	1-2-5-10 μM	Inhibition of osteoclastogenesis	• osteoclasts (TRAP staining) • ↑ Nrf2 protein accumulation (western blot); ↑ HO1, NQO1, GCLC and GCLM mRNA (RT-PCR) • ↑ ROS (2′,7′-Dichlorofluorescin diacetate) • ↑ NFATc1, C-FOS, TNFα, TRAP, CTSK, MMP-9, DC-STAMP mRNA (RT-PCR) • ↑ phosphorylation of STAT1 (Tyr701) (western blot)	Xue et al. (100)
Sulforaphane *	RAW 264.7 cell line	0.01-0.1-0.5-1 μM	1. Inhibits osteoclastogenesis 2. Inhibits osteoclasts cells-fusion	• induced cytotoxicity at > 5 μM (CCK-8 assay) • ↓ osteoclasts (TRAP assay) • ↑ NFATc1, TRAP, CTSK mRNA (RT-PCR) • ↑ OSCAR, DC-STAMP, OC-STAMP mRNA (RT-PCR) • ↑ phosphorylation of STAT1 (Tyr701) (western blot)	Takagi et al. (101)
Sulforaphane *	RAW 264.7 cell line	0.01-0.1-1-10 μM	Inhibition of osteoclastogenesis	• ↓ osteoclasts • ↓ NF-kappaB activation	Kim et al. (102)
Sulforaphane *	RAW 264.7 cell line	0.5, 1, 2.5, 5, 10, 20 μM	Decreased viability and osteoclastogenesis	• Marked cytotoxicity at concentration > 5 μM, low cytotoxicity 1-2.5 μM (CCK-8 assay) • ↓ osteoclasts (TRAP staining)	Luo et al. (103)

(Continued)
Most in vitro studies were conducted using purified OSCs (6 studies, 15 in vitro models; sulforaphane, glucoraphanin); while only a few used water or ethanol extracts from Brassicaceae edible plants (2 studies, 2 in vitro models; Brassica rapa, Brassica oleracea). Most studies showed increased osteogenesis and decreased osteoclastogenesis. Notably, only the effects of purified OSCs (labeled with * in the table) can be attributable to OSCs. The concentrations tested ranged from 0.01 to 100 μM. Murine in vitro models of osteoclastogenesis: osteoclasts derived from bone marrow of femora and tibiae of mice, RAW 264.7 cell line. Human in vitro models of osteoclastogenesis: human monocytes isolated from peripheral blood of healthy volunteers. Murine in vitro models of osteoblastogenesis: MC3T3-E1 (Mouse C57BL/6 calvaria cells line); murine bone marrow (BM) cells; bone marrow-derived mesenchymal stem cells (BMMSCs), bone marrow macrophages (BMMs). Human in vitro models of osteoblastogenesis: MC3T3-E1, MSCs isolated from human tibial plateau.

TABLE 4 Continued

Molecule (organosulfur compounds)	Experimental in vitro model	Concentration	Main effect	Specific outcomes	Authors	Ref
Sulforaphane *	Primary mouse osteoclasts from tibial and femoral bone marrow of 8-week-old C57BL/6 mice	3 μM	Inhibition of osteoclasts resorption	↓ resorption activity	Thaler et al.	(97)
Sulforaphane *	Primary osteoclast precursors isolated from BM of tibias and femurs of 8–12 weeks old male C57BL/6 mice	1–5 μM	Inhibition of osteoclastogenesis	↓ osteoclasts (TRAP staining)	Xue et al.	(100)
Sulforaphane *	BM cells obtained from the femur and tibia of 7–10-week-old ddY male mice	0.01–0.1-0.5-1 μM	Inhibition of osteoclastogenesis	• induced cytotoxicity at > 5 μM (CCK-8 assay)	Takagi et al.	(101)
Sulforaphane *	BM cells isolated from femora and tibia of 4- 6-week-old C57BL/6 mice	0.01-0.1-1-10 μM	Inhibition of osteoclastogenesis	↓ osteoclasts	Kim et al.	(102)
Sulforaphane *	BMMs from 5-week-old C57BL/6 female mice	1, 2.5, 5 μM	Decreased viability and inhibition of osteoclastogenesis	Moderate cytotoxicity at concentrations >2.5 μM (CCK-8 assay); ↓ osteoclasts (TRAP staining)	Luo et al.	(103)
Sulforaphane *	Human monocytes isolated from peripheral blood of healthy volunteers	0.2-1-5 μM	Inhibition of osteoclastogenesis	↓ osteoclasts (TRAP staining); ↑ NRF2 accumulation (immunocytochemistry); ↑ NQO1 and PRDX1 mRNA expression (RT-PCR)	Gambari et al.	(104)

Most in vitro studies were conducted using purified OSCs (6 studies, 15 in vitro models; sulforaphane, glucoraphanin); while only a few used water or ethanol extracts from Brassicaceae edible plants (2 studies, 2 in vitro models; Brassica rapa, Brassica oleracea). Most studies showed increased osteogenesis and decreased osteoclastogenesis. Notably, only the effects of purified OSCs (labeled with * in the table) can be attributable to OSCs. The concentrations tested ranged from 0.01 to 100 μM. Murine in vitro models of osteoclastogenesis: osteoclasts derived from bone marrow of femora and tibiae of mice, RAW 264.7 cell line. Human in vitro models of osteoclastogenesis: human monocytes isolated from peripheral blood of healthy volunteers. Murine in vitro models of osteoblastogenesis: MC3T3-E1 (Mouse C57BL/6 calvaria cells line); murine bone marrow (BM) cells; bone marrow-derived mesenchymal stem cells (BMMSCs), bone marrow macrophages (BMMs). Human in vitro models of osteoblastogenesis: MC3T3-E1, MSCs isolated from human tibial plateau. Osteocyte – cell line: MLO-Y4. Functional assays for osteoclastogenesis: tartrate-resistant acid phosphatase positive (TRAP staining); pit assay. Functional assays for osteoblastogenesis: Alizarin red staining (marker of mineralization), Sirius red assay (marker of collagen I), p-nitrophenyl phosphate (pNPP) quantification. Proliferation/viability assays: cell counting kit-8 (CCK-8) cell viability assay, water-soluble tetrazolium-8 (WST-8) assay, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide-like assay (EZ4U). Markers of osteoclasts: nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), cathepsin K (CTSK), receptor activator of NF-κB (RANK), osteoclast stimulatory transmembrane protein (OC-STAT5), tartrate-resistant acid phosphatase (TRAP), receptor activator of nuclear factor-κB ligand (RANKL), dendritic cell specific transmembrane protein (DC-STAT5), reactive oxygen species (ROS), c-fos, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), matrix metallopeptidase 9 (MMP-9), osteoclast-specific activating receptor (OSCAR), acid phosphatase 5, tartrate resistant (ACP5), calcitonin receptor-like receptor (Ccl3), colony-stimulating factor-1 receptor (c-fms), c-fos. Markers of osteoblastogenesis: c-Jun N-terminal kinase (JNK), NQO1 and PRDX1 mRNA expression (RT-PCR).

(97); at the molecular level, SFN induced up-regulation of RUNX-2 in mouse MSCs (97). Gambari et al. showed increased mineralization and BSP, CBS and SMAD-1 mRNA up-regulation by GRA administration in primary human MSCs (98). Finally, with regards to osteocyte regulation, Thaler et al. showed that SFN inhibited proliferation in murine osteocyte-like cell line (MLO-Y4) (97).

Purified OSCs have also been tested in *in vivo* models of bone loss or osteolysis, showing beneficial effects on preserving bone mass. Oral administration of allyl sulfoxide in an age-associated osteoporosis mouse model resulted in increased bone density at X-ray analysis and increased serum levels of procollagen 1 intact N-terminal propeptide (P1NP; a marker of bone formation) (83). Similarly, intragastric administration of allicin increased BMD, as detected by dual energy X-ray...
Molecule tested	Experimental in vivo model description	Mode of administration, dose and duration	Main effect	Specific features	Authors	Ref
Sulforaphane	C57BL/6 mice, Mouse calvarial models treated with LPS (10 mg/kg body weight injected in calvaria)	Intraperitoneal injection, 10 mg/kg body weight, the day before LPS treatment for 6 days	Protection against LPS-induced calvarial bone erosion by inhibition of osteoclastogenesis	↑ BV/TV, Tb.N, ↓Tb.Sp (microCT)	Luo et al.	(103)
	Ex vivo culture of calvariae explants of 2–3-day-old and 7-week-old, C57BL/6 mice	3 μM	Promotes osteogenesis inhibits osteoclastogenesis	↓ ECM mineralization (alizarin red staining on calvaria tissue)	Thaler et al.	(97)
Sulforaphane	Mouse calvarial models treated with LPS (10 mg/kg body weight injected in calvaria)	Intraperitoneal injection, 10 mg/kg body weight, the day before LPS treatment for 6 days	Prevention of bone loss	↑ BV/TV, Tb.N, ↓Tb.Sp, no effect on Tb.Th or Co.Th in tibiae (micro CT)	Thaler et al.	(97)
SX- 01® (a stable form of Sulforaphane)	Mice model of OP (Female, 8-week-old, C57BL/6 mice, ovariectomy)	Intraperitoneal injection, 7.5 mM DL-SFN, every other day for 5 weeks	Prevention of bone loss	↑ BV/TV, Tb.N, ↓Tb.Sp, no effect on Tb.Th or Co.Th in tibiae (micro CT)	Thaler et al.	(97)
Brassica rapa L. root ethanol extract	Female, 3-week-old, Sprague-Dawley rats	Oral administration, 500 mg/kg/day, single daily dose for 6 weeks	Increased bone formation	↑ BMD, BV, BV/TV, Tb.N, Tb.Th., ↓Tb.Sp. (microCT)	Jeong et al.	(54)
Lepidium sativum seed extract	Rat model of OP (Female Wistar rats, ovariectomy)	Oral gavage 50 and 100 mg/kg	Prevention of bone loss and bone strengthening activity	↑ femur weight (weights were calculated as wet femur weight/body weight)	Abdallah et al.	(59)
Lepidium sativum seed	Glucocorticoid-induced OP (GIO) model (Female Wistar rat, subcutaneous injection of methylprednisolone 3.5 mg/kg per day for 4 weeks)	Oral gavage, 6 g of LS seeds in diet daily	Prevention of GIO-dependent bone loss	↑ percentage of trabecular bone vs GIO (histopathological examination and Image J quantification)	Eshal et al.	(106)
Lepidium sativum seed	Fracture-induced healing model (New Zealand White rabbits, induced fractures in the midshaft of the left femur)	Oral gavage, 6 g of Lepidium sativum seeds in their food daily after surgery	Increased healing of fractures	Increased callus formation in fractures (x-rays and quantification)	Juma et al.	(83)
Methanolic and aqueous extract of Lepidium sativum seeds	Fracture healing model (Charles foster rats, hand held three-point bending technique)	Oral administration, methanolic extracts 400 mg/kg or aqueous extracts 550 mg/kg, from the day of fracture induction for 2 months	Increased healing of fractures	Larger callus formation (x-rays and quantification)	Dixit Jr Iii et al.	(28)

(Continued)
Table 5 Continued

Molecule tested	Experimental in vivo model description	Mode of administration, dose and duration	Main effect	Specific features	Authors Ref
Lepidium sativum seeds	Glucocorticoid-induced OP (Adult male guinea pigs, methyl prednisolone 3.5 mg/kg per day for 4 weeks subcutaneously)	Oral administration through a gastric tube, 300 mg/kg, for 4 weeks	Prevention of bone loss in femur	and ALP serum levels (commercial kits)	EL-Haroun et al. (107)
Ethanol extracts of Maca root	Rat model of OP (Female, 90-day-old, Sprague-Dawley rats, ovariectomy)	Oral gavage, 0.096 and 0.24 g/kg, for 28 weeks	Prevention of estrogen deficient bone loss	• ↑ calcium content of femur (Atomic Absorption Spectrophotometer)	Zhang et al. (108)
Hot water extract of Brassica oleracea (Bo)	Mice model of OP (Female, 7-week-old, C57BL/6 mice, ovariectomy)	Oral administration, 500 mg/kg, daily for 10 weeks	Inhibits OVX-induced bone loss	• ↑ BMD and trabecular bone of the lumbar vertebrae (DEXA)	Kang et al. (99)

Most in vivo studies were conducted by using water or ethanol extracts of Brassica edible plants (8 studies; Brassica rapa, Lepidium sativum, Lepidium meyenii Walp, Brassica oleracea). A minority of studies used Brassicaceae-purified OSCs (3 studies; 4 models; SFN, SFX-01). Most studies were performed in osteoporosis mice showing prevention of bone loss. Notably, only the effects of purified OSCs (labeled with * in the table) can be attributable entirely to OSCs. The route of administration was mainly by oral administration. Markers of bone formation in serum: procollagen 1 intact N-terminal propeptide (P1NP), osteocalcin (OCN). Markers of bone resorption in serum: osteocalcin (OCN), OPG. Markers of bone formation in histological specimen: alkaline phosphatase (ALP), osteopontin (OPN). Markers of osteoclasts in femur: tartrate-resistant acid phosphatase (TRAP), osteoprotegerin (OPG), cortical thickness (Co.Th). Bone microstructural parameters analyzed by microCT analysis: BMD (bone mineral density), bone volume (BV), bone volume/total volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), trabecular space (Tb.Sp). Bone mineral density analyzed by Dual-energy X-ray absorptiometry (DEXA). Markers of bone formation in histological specimen: alkaline phosphatase (ALP), osteopontin (OPN). Markers of osteoclasts / bone resorption in histological specimen: tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK). Measurements of bone strength: Erweka GmbH, Heusen-stamm Germany. Extracellular matrix (ECM).

Regulation of osteoclastogenesis and bone resorption

Osteoclasts are bone-resorbing cells which arise from immature monocytes and mature tissue macrophages. Osteoclasts differentiation stems from the signaling triggered by two critical cytokines produced by MSCs, osteoblasts and osteocytes: macrophage colony-stimulating factor (M-CSF) and RANKL binding, respectively, to the receptors colony...
stimulating factor-1 receptor (c-fms) and receptor activator of nuclear factor κ B (RANK) (125, 126). RANKL signaling activation induces various intracellular signal transduction cascades such as tumor necrosis factor-associated factor 6 (TRAF-6), NADPH oxidase 1 (NOX-1), RAC family small GTPase 1 (RAC1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nuclear factor-activated T cells c1 (NFATc1), c-fos (127–129). Other

![Diagram](image)

FIGURE 3
H₂S release by OSCs derived from Alliaceae and Brassicaceae. The known reactions occurring for H₂S release by polysulﬁdes and isothiocyanates are shown. Among garlic-derived polysulﬁdes, diallyl disulﬁde (DADS) and diallyl trisulﬁde (DATS) have been shown to release H₂S by reaction with glutathione (GSH) by polarographic H₂S sensor (154)(147)(148). Among glucosinolates, GRA has been found to release H₂S by amperometric approach (149). Similarly, several isothiocyanates showed H₂S-releasing activity: allyl isothiocyanate (AITC), 4-hydroxybenzyl isothiocyanate (HBITC), benzyl isothiocyanate (BITC), erucin (ER), sulforaphane (SFN) (149)(150). While the mechanism of release is unknown for glucosinolates, the mechanism of release by isothiocyanates is dependent on L-cysteine reaction (155). Moreover, different OSCs have different kinetics of H₂S release.

TABLE 6 Clinical studies on musculoskeletal effects of OSCs-rich food and extracts.

Molecule tested	Patients data	Mode of administration, concentration, treatments	Main effect	Specific features	Authors	Ref
Onion	Perimenopausal and postmenopausal non-Hispanic white women, 50 years and older	Onion consumption ≥ once a day; 3-5 a week; 2 a month to 2 a week, 1 a month or less	Prevention of bone loss	↑ BMD by increased consumption	Matheson et al.	(179)
Onion juice	Healthy subjects, male and female, 40-80 years	100 mL of onion juice or placebo for 8 weeks	Decreased bone anabolic markers	↓ ALP serum level (commercial kit)	Law et al.	(85)
Onion juice	Postmenopausal women	100 mL of onion juice or placebo for 8 weeks	Mild changes in BMD	↓ ALP serum levels (commercial kit)	Law et al.	(85)
Allium vegetables (onion, leek, and garlic)	Women, ≥70 years	Habitual intakes of Allium intake	Inversely associated with all fractures	Inversely associated with all fractures	Bekkenhorst et al.	(18)
Cruciferous (cabbage, brussel sprouts, cauliflower, and broccoli)	Women aged ≥70 years	Cruciferous vegetables intake	Inversely associated with all fractures	Inversely associated with all fractures	Bekkenhorst et al.	(18)
Raw garlic consumption	28958 patients (males and females)	Habitual intakes of raw garlic	Positive correlation with handgrip strength		Gu et al.	(139)

Analysis of bone mineral density (BMD) by Dual-energy X-ray absorptiometry (DEXA). Measurement of alkaline phosphatase (ALP). ↑ means up-regulation; ↓ means down-regulation.
receptors involved in osteoclastogenesis are calcitonin receptor (CTR), ITAM bearing Fc receptor standard g chain (FcRγ), osteoclasts-specific activating receptor (OSCAR) (126, 130); key signaling is mediated by mitogen-activated protein kinases (MAPK), and includes extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 activation. Moreover, critical to osteoclast differentiation and function are: intracellular reactive oxygen species (ROS) generation, which act as key signaling molecules (82, 88, 94); osteoclast fusion mediated among other factors, by the fusogenic molecules osteoclasts-stimulatory transmembrane protein (OC-STAMP) and dendritic cell-specific transmembrane protein (DC-STAMP) (126, 131, 132); and expression of specific enzymes such as tartrate-resistant acid phosphatase (TRAP), cathepsin K (CTSK) (126, 130), tartrate-resistant acid phosphatase 5b (TRAP5b) (83) and matrix metallopeptidase 9 (MMP-9).

Extracts from both *Allium* and *Brassica* species were shown to attenuate osteoclast differentiation in vitro in the murine macrophage cell line, RAW 264.7. In particular, extracts of onion (85), freeze dried onion juice (85), solution of onion crude powder (81) inhibited osteoclastogenesis, as measured by TRAP staining in vitro. A similar effect was achieved by an extract of *Brassica oleracea* but only in combination with extract from *Panax ginseng* (99). Using human THP1 monocytes, Bose et al. showed that ginger and garlic extracts reduce the frequency and the size of resorption pits carved by osteoclasts (82); inhibition of osteoclast number was found also by onion and commercial onion extracts in rat and rabbit osteoclasts (81). Notably, Weli et al. demonstrated that onion extract reduced rat osteoclast differentiation and were able to isolate a specific sulfoxide component of onion powder, γ-glutamyl-trans-S-1-propenyl-L-cysteine sulfoxide (GPCS), which the authors found to be the key responsible of this biological activity (41).

In vivo administration of extracts rich in OSCs decreased osteoclastogenesis and bone erosion in rodent model of osteoporosis; Huang et al. showed that ovariectomized rats fed with different concentrations of onion extracts (up to 14% wt/wt in the diet powder) were partly protected against loss of bone mass and bone material properties (94); moreover, histomorphometry revealed that treatment with onion extracts was associated with a lower number of osteoclasts in vivo (94). Similar findings were reported by Kang et al. using ovariectomized mice fed with a combination of extracts obtained from *Panax ginseng* and *Brassica oleracea* (99). Furthermore, Abdallah HM et al. reported that ovariectomized rats treated with extracts of *Lepidium sativum* were partly protected against osteoporosis and showed a sharply decreased RANKL/osteoprotegerin (OPG) ratio in femur bones (59).

Studies that used purified OSCs molecules further supported efficacy and specificity. Yang et al. demonstrated a dose-dependent inhibition of osteoclast differentiation and a decreased bone resorption by mature osteoclasts upon treatment with DADS (86). Monocytes proliferation and viability was inhibited by SFN (97).
Luo et al. (103) and Xue et al. (100) showed that SFN inhibits osteoclast differentiation in RAW 264.7 murine macrophagic cell line; Takagi et al. (101) and Kim et al. (102) showed similar findings in murine BM cells and so did Gambari et al. (104) in a model of osteoclast derived from human monocytes. Moreover, Chen et al. reported the inhibition of osteoclast differentiation by alliin in RAW 264.7 via scavenging of ROS signaling (87).

Mechanisms of regulation of osteoclastic differentiation by OSCs involved different molecular targets. Li et al. reported that the anti-osteoclastic activity of allin in mice is associated to the activation of the SIRT1/FOXO1 pathway and ROS scavenging (95). Similarly, one key mechanism of action of SFN is the activation of the master regulator of the antioxidant defense system, nuclear factor erythroid-derived 2-related factor 2 (NRF2), and its downstream target antioxidant and detoxifying enzymes (133), which is known to actively inhibit mouse osteoclasts differentiation in vitro (104, 134). SFN modifies sulphydryl groups in kelch-like erythroid-cell-derived protein with CNC homology (ECH)-associated protein (KEAP-1), causing KEAP-1 dislocation, NRF2 stabilization and nuclear translocation (135); moreover, SFN regulates NRF2 expression via epigenetic mechanisms (136). Coherently, SFN was shown to increase NRF2 protein accumulation in RAW 264.7 murine cell line, to increase the expression of some NRF2-mediated antioxidant genes (heme oxygenase-1, HO1; NAD(P)H: quinone oxidoreductase 1, NQO1; glutamate cysteine ligase catalytic subunit, GCLC; ligase modifier subunit, GCLM) and decrease intracellular ROS production, and the overall number of osteoclasts as shown by Xue et al. (100). Similarly, SFN was shown to inhibit the osteoclast differentiation of human monocytes while increasing NRF2 nuclear translocation and protein expression of NRF2-mediated antioxidant genes (NQO1; Peroxiredoxin 1, PRDX-1), as published by Gambari et al. (104). Finally, SFN induces Caspase 8 and 3/7, thus inducing apoptosis in a RAW 264.7 murine cell line as shown by Thaler et al. (97).

Moreover, downregulation of the key transcription factor NFATc1 is implicated in several studies showing inhibition of osteoclast development. Yang et al. reported a dose-dependent down-regulation of NFATc1 in a RAW 264.7 murine cell line after DADS treatment (86); Xue et al. (100) and Takagi et al. (101), respectively, reported similar findings in RAW 264.7 murine cell line and in murine BM cells after SFN treatment; Behera et al. in murine BM cells after allyl sulfide treatment (83). The inhibition of other key transcription factor c-Fos and NFkB was shown by Yang et al. in a RAW 264.7 murine cell line after DADS treatment (86).

Several other proteins implicated in the adhesion and proteolytic extracellular matrix degradation, such as TRAP, CTSK, CTR or MMPs were shown to be affected by OSCs, specifically by allin, DADS, SFN, allyl sulfide (83, 95, 100, 137), in RAW264.7 cells and murine BM and are detailed in Tables 2, 4.

OSCs can modulate the expression of osteoclasts-specific activating receptors, necessary for the co-stimulatory signaling with immunoreceptors and prevented osteoclast fusion by inhibiting fusogenic molecules. Takagi et al. showed in RAW 264.7 murine cell line that OSCAR is inhibited by SFN (101). DC-STAMP was found inhibited in RAW 264.7 murine cell line after SFN treatment as shown by Takagi et al. (101) and by Xue et al. (100) and after DADS treatment as shown by Yang et al. (86). OC-STAMP was found inhibited in RAW 264.7 murine cell line after SFN treatment as shown by Takagi et al. (101).

Finally, OSCs compounds were shown to inhibit osteoclast differentiation via a paracrine mechanism, acting on osteoclast-supporting cells. Thaler et al. showed that RANKL was inhibited by SFN in a murine osteocytes cell line (MLO-Y4) (97). Behera et al. showed that RANKL was inhibited while OPG was increased in supernatants of murine MSCs cells culture treated with allyl sulfide (83); and that treatment with this conditioned medium inhibited the expression of RANK and osteoclast differentiation of murine bone marrow (BM) cells (83).

Only a few in vivo studies used purified OSCs to investigate bone metabolism. In a mice model of lead-induced bone loss, intraperitoneal injection of allin alleviates bone loss by preventing oxidative stress and osteoclastogenesis by modulating SIRT1/FOXO1 pathway (95). SFN treatment in a mouse calvaria model treated with LPS decreased the number of osteoclasts (103). Treatment of Lepidium sativum in a rat model of ovariectomy-induced osteoporosis improved mechanical properties of femurs while decreasing TRAP, serum type I collagen breakdown product (CTX-I), RANKL (59) and the number of osteoclasts (107).

H2S release from OSCs as a potential mechanism of bioactivity in bone

H2S is a pleiotropic molecule which provides numerous health benefits by improving hypertension and cardiometabolic disorders (138) (139), relieving pain (140, 141), and increasing insulin sensitivity (142); protecting against neurological diseases including Alzheimer disease (143). Moreover, H2S is critically involved in the extension of lifespan provided by caloric restriction (144, 145). Supraphysiological levels of H2S may be generated in certain pathological conditions and lead to toxicity, inducing inflammation or tissue damage (146).

The intriguing overlap between biological effects attributed to some Allium and Brassica species and those exhibited by the gasotransmitter H2S prompted several researchers to verify the H2S releasing capacity of those molecules. Recently, the ability of releasing H2S was found as a distinctive feature of several OSCs, and a plausible mechanism for their biological effects across different organs and tissues was described. The biological relevance of H2S release by OSCs was first demonstrated by
Benavides et al. in the context of a study on the vasoactivity of garlic. The authors showed that garlic polysulfides DATS and DADS, the downstream metabolites of alliin, released H_2S in red blood cells; importantly, pre-treating the cells with the thiol-blocking reagent iodoacetamide inhibited the release of H_2S, thereby demonstrating that the mechanism by which polysulfides release H_2S is dependent on intracellular thiols, such as glutathione (GSH) (147). Chemically, this reaction involves a nucleophilic substitution from thiol at the α carbon of the H_2S-donor moiety and a subsequent release of H_2S (148).

This mechanism is biologically relevant as the relaxation induced by both garlic extract and DADS on isolated rat aortic rings strongly correlated to the amount of H_2S released. In the wake of this work, Citi et al. first revealed that a similar mechanism accounts for the ability of several Brassicaceae-derived ITCs to release pharmacologically relevant concentrations of H_2S in an ϵ-cysteine dependent manner (149): allyl isothiocyanate (AITC), 4-hydroxybenzyl isothiocyanate (HBITC), benzyl isothiocyanate (BITC), erucin (ER), SFN (149, 150). The same group reported that H_2S-release is associated with the in vitro anti-hypertensive, hypoglycemic, pain-relieving, and anti-inflammatory effects of OSCs derived from the Brassicaceae Eruca Sativa (138, 151-153). Interestingly, Lucarini et al. first demonstrated that GRA, a GLS, can release H_2S in aqueous solution independent of myrosinase, but the chemical mechanism underlying this phenomenon is still unclear (150). Whether other Alliaceae or Brassicaceae-derived OSCs releases H_2S is still unknown.

Figure 3 summarizes the known reactions leading to H_2S release from polysulfides, GLS or ITCs.

This mechanism holds important implications for bone. Recent findings by our group and others demonstrated that H_2S plays an important role in the regulation of bone cell differentiation and function. In vitro, H_2S-donors promote osteogenic differentiation and stimulate mineralization by increasing calcium intake (156) and the expression of genes directly involved in the biosynthesis of hydroxyapatite, such BSP (157). Furthermore, the expression of the enzymes CBS and CSE, which are responsible for endogenous H_2S production, steadily increased during osteogenic differentiation and correlated to mineral apposition (119). Moreover, H_2S-donors inhibit osteoclast maturation and resorption by activating the antioxidant response elicited by the NRF2 transcription factor (104, 158). Further attesting to the relevance of H_2S in bone homeostasis, evidence from several in vivo preclinical models showed that the depletion of H_2S levels is associated with loss of bone mass; similar findings were reported in ovariectomized mice (157), in H_2S-deficient CBS+/− mice (156), in glucocorticoids-induced osteoporosis (159). Interestingly, when animals were treated with pharmacological H_2S-donors to normalize the plasma level of H_2S, bone loss was prevented or reversed (156, 157). The ability of H_2S to stimulate bone formation appears to be maintained across various conditions, even unrelated to systemic or genetic disfunctions: for example, the exogenous administration of H_2S by means of the pharmacological donor GYY4137 was effective to attenuate the bone loss induced by modelled microgravity (160) and to promote osteogenesis in a model of distraction osteogenesis (161).

Overall, these data demonstrate that H_2S regulates osteogenesis and bone formation in both healthy and pathological conditions.

Therefore, H_2S release by OSCs could account, at least in part, for their biological properties. However, up to date no clinical or preclinical in vivo studies have investigated the effect of OSCs by correlating their bioactivity to the H_2S levels.

The GRA/SFN system: A case-model for OSCs bioactivity based on H_2S release

GRA is a glucosinolate abundant in aerial portions, developing florets (flower buds), sprouts, seeds and mature plants of cabbage, broccoli, cauliflower, kale and Brussels sprouts (77). GRA conversion to SFN, an ITC, requires the enzyme myrosinase, an intracellular thioglucosidase, which catalyzes its hydrolysis to an unstable aglucurone that spontaneously rearranges to give rise to a range of products, including SFN. SFN is the progenitor of a family of compounds widely studied in the literature mostly due to their antioxidant and anticancer properties. In mammals, GRA conversion to SFN is primarily mediated by bacterial microflora of the gastrointestinal tract; while a small proportion is generated in the mouth by plant myrosinase when released by plants after chewing. Our current knowledge on the bioavailability and the rate of conversion of GSL into ITCs are largely based on studies on the GRA/SFN system.

Although most of GRA introduced with diet undergoes hydrolysis in the gut by microbial thioglucosidases, a fraction of GRA (around 10-15%) is absorbed directly in the stomach and in the small intestine, before the catabolic breakdown to SFN is triggered by gut microbiota (77, 162).

Gastric acidity appears to attenuate GSL bioavailability (163). However, GRA is not destroyed by digestive enzymes during passage through the digestive tract and is able to reach the rat cecum intact, when is hydrolyzed to SFN which is able to cross the cecal enteroocyte for systemic absorption and enterohepatic circulation (164, 165). Conversion of GRA to bioactive SFN by the rat cecal microbiota requires four or more days after broccoli consumption and is reversible (166); however, recent randomized clinical trials have ascertained that upon ingestion of GRA-enriched soups, increased SFN levels were detectable as early as 30’ in plasma and 1h in the urine of patients (162). Attesting the tissue systemic absorption of SFN and ITCs in general, they have been detected in both plasma and synovial fluid of osteoarthritis patients undergoing consumption of GSL-rich diets for 2 weeks.
Of note, our group recently demonstrated that GRA obtained from Tuscan black kale promotes osteogenesis in human MSCs, independent of SFN, and this effect is associated to the release of H₂S and an increased H₂S uptake inside the cells (98). This is relatively unexpected as GLS have been considered for many years a relatively inert precursor of reactive derivatives ITCs. Although the chemistry underlying this phenomenon is still unclear and will require further investigation, this finding suggests that GLS may exert inherent biological activity based on their capacity to release H₂S.

As the hydrolytic product of GRA, SFN, had been already shown to inhibit the activity of osteoclast in bone, it can be suggested that the ‘GRA-SFN system’ exerts a beneficial effect on bone both at level of GLS and of its cognate ITC. The routes of absorption of GRA and SFN as well as the proposed mode of action on bone cells is summarized in Figure 4.

Clinical studies

OSCs and chronic diseases

Despite this review focuses primarily on the skeletal effects of OSCs, much of the clinical research on the health benefits of OSCs is aimed at metabolic or cardiovascular disease and cancer.

Vegetables or extracts rich in OSCs improved dyslipidemia, insulin resistance, hypertension and cardiovascular risk linked to atherosclerotic plaques in human studies.

Among interventional, randomized clinical trials, Jeon et al. evidenced that ethanol extracts from Brassica rapa, administrated as a part of the diet of overweight human for 10 weeks, induce a significant increase in the HDL/cholesterol concentration and a significant reduction in the total cholesterol/HDL-cholesterol ratio, free fatty acid, and adipin levels (174). A randomized double-blind trial, performed by Bahadoran et. al., investigated the effects of broccoli sprouts powder containing high concentration of SFN for four weeks in type 2 diabetic patients and showed that broccoli sprouts improve insulin resistance by decreasing serum insulin concentration and ‘homeostatic model assessment for insulin resistance’ (HOMA-IR) score (175).

In a prospective cohort study on Australian women aged 70 years and older, without clinical atherosclerotic vascular disease (ASVD) or diabetes mellitus at baseline, Blekkenhorst et al. investigated the occurrence of ASVD-related deaths during 15 years of follow-up and correlated it with several dietary intake, through a multivariable-adjusted model. Among the nutrients tested, intakes of cruciferous and Allium vegetables were inversely associated with ASVD mortality supporting the evidence that the effect of increased intake of cruciferous and Allium vegetables lowered cardiovascular disease risk (176).

In cancer, treatment with OSCs-rich food showed promising results as chemopreventive.

A placebo double-blind randomized controlled trial on men scheduled for prostate biopsy and treated with broccoli sprout extract (BSE) supplementation (providing SFN and myrosinase) for 4.4 wk, performed by Zhang et. al., showed that BSE supplementation correlated with changes in gene expression but not with other prostate cancer immunohistochemistry biomarkers (173). In a double-blind placebo randomized clinical trial in patients with colorectal adenomas-precancerous lesions of the large bowel treated with aged garlic extract (AGE), Tanaka et al. demonstrated that AGE significantly reduced the size and number of colon adenomas in patients after 12 month (25). Several epidemiological studies showed that SFN consumption has been reported to be associated with a lower risk of cancer development (breast, lung, stomach, esophagus, mammary glands, gastric, colorectal, prostate, skin, head and neck, and liver) (172). In a large cohort study Millen et al. correlated the presence of adenoma with food intake of several fruit and vegetables, as assessed by a food-frequency questionnaire, and showed that onions and garlic were significantly related to lower risk of adenoma (177). Notably, a randomized double-blinded intervention study, performed by Traka et. al., showed that consuming GRA-rich broccoli for 12 months reduced the risk of prostate cancer progression (178). In particular, patients administrated with a weekly portion of soup made from a standard broccoli or 2 experimental broccoli genotypes with enhanced concentrations of GRA, showed dose-dependent attenuated activation of gene expression associated to oncogenic pathways in transperineal biopsies; and an inverse association between consumption of cruciferous vegetables and cancer progression was observed (178).

Overall, these studies highlighted the significant role of diet administration of OSCs in several chronic diseases and substantiate the relevance of creating specific dietary regimen for their prevention.
OSC in the prevention of bone loss and skeletal frailty

A few clinical trials or population-based studies have revealed positive relationships between the consumption of vegetables, bone density, muscle strength and fractures in women/men, as summarized in Table 6.

Matheson et al. used a food frequency questionnaire added to the Nutritional Health and Nutrition Examination Survey (2003–2004) to examine the correlation between habitual consumption of onion over the past 12 months to BMD (N unweighted =507; N weighed =35.7 million). They found that higher consumption of onion increased the BMD by 5% (179). Law et al. administrated onion juice to healthy men and women and post-menopausal women for 8 weeks and investigated the association with bone BMD; the results found that the BMD of 3 postmenopausal women was mildly improved at the end of the treatment (85).

In an intriguing study, Blekkenhorst et al. used a food frequency questionnaire to examine the associations of vegetable and fruit intakes, separately, and specific types of vegetables and fruits with fracture-related hospitalizations in a prospective cohort of elderly women (mean age ≥ 70; n=1468); the authors found that the consumption of vegetable, but not fruit, is associated to a lower incidence of fracture; of note, the habitual consumption of cruciferous vegetables and Allium vegetables was significantly inversely associated with all fractures (18); importantly, these results were adjusted for energy intake and physical activity.

In musculoskeletal ageing, sarcopenia and declining physical activity are often associated with osteoporosis as the clinical hallmarks of frailty (180).

Interestingly, a prospective cohort study performed on elderly women (mean age ≥ 70; n=1429) investigated the correlation between vegetable consumption and incident falls-related hospitalization over a time-period of 14 years. The authors found that hospitalizations were lower in participants consuming more vegetables, but the consumption of cruciferous vegetables was most strongly associated with lower falls-related hospitalization (181) and was associated with increased muscle strength.

Finally, cross-sectional study, by Gu et. al., demonstrated a positive correlation between raw garlic consumption, assessed using a food frequency questionnaire, and handgrip strength in both males and females (182). The results were adjusted for age, body mass index, smoking status, alcohol-consumption status, education levels, employment status, household income, family history of diseases (cardiovascular disease, hypertension, hyperlipidemia, and diabetes), metabolic syndromes, physical activity, total energy intake, dietary pattern, onion intake. Although this study did not directly assess indexes of bone quantity, it supports an overall protective effect of OSCs-rich vegetables on the musculoskeletal system (181).

Perspectives and challenges

The present literature revision stems from the increasing appreciation of the link between dietary habits, and particularly the use of phytochemicals, and bone health. We show that a growing body of evidence supports a beneficial effect of dietary OSCs on skeletal health. Of note, although a few population-based studies offer interesting clues on the clinical relevance of OSCs-rich vegetables for the prevention of bone fragility (18, 85, 179, 183), no clinical studies have been performed yet to specifically address the potential protective role of OSCs against osteoporosis or bone fractures; this goal would require a study design including a controlled intake of OSCs-rich nutrients for long time-periods and/or the evaluation of purified OSCs molecules.

The ability of OSCs to work as as dietary source of the bioactive molecule H2S provide interesting future perspectives. OSCs-rich vegetables appear as the ideal candidate for clinical investigations on whether nutrients rich in sulfur can affect the pool of circulating reactive sulfur species (RSS), which include H2S; this may have a broad implication for the prevention of those pathologies, sometimes referred to as ‘H2S-poor diseases’, where the onset of the disease was associated to a lower systemic concentration of RSS compared to healthy controls. Increasing systemic RSS levels may also have important implication for bone-wasting diseases such as osteoporosis: indeed, animal studies have established that the bone loss associated to estrogen deficiency or to corticosteroid therapy is associated to a low systemic level of H2S (157, 159). However, these preclinical data still await confirmation in observational clinical studies in humans. To obtain reliable data on this topic, it will be critical to include in the study design a robust analytical methodology to quantitatively measure the different sulfur species in human serum or plasma since they may hold different importance in different pathologies (184, 185) and the high reactivity of these gaseous molecules implies a complex chemistry (186).

Further investigations may be addressed to the evaluation of the effect of these compounds on the gut-bone axis. OSCs show a considerable ability to modulate the gut microbiome and its secondary metabolites (187–190) and to mitigate the gut-based inflammatory response; given the paramount importance of metabolites and cytokines originated from the gut on the regulation on bone metabolism (191), it is conceivable that dietary OSCs may modulate the bone-bioactive components of the microbiota.

In the end, it is apparent that members of the OSCs family of phytochemicals affect bone homeostasis in several ways and may provide new insights into the potential bone health benefits of plant-derived food and leading to a more effective prevention of osteoporosis by non-pharmacological tools.
This review may be useful to fuel clinical trials that may use a robust set of outcome measurements, aiming at assessing both bone quantity and bone quality before and after specific nutrition protocols; correlation between nutrients intake, \(H_2 \)S blood levels and bone status would help to define preventive/clinical dietary protocols for patients with an increased risk of bone fragility.

Author contributions

FG and LG contributed to the conception and design of the review. FG ad LG wrote the first draft of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

References

1. Clynes MA, Harvey NC, Curtis EM, Puggle NR, Dennison EM, Cooper C. The epidemiology of osteoporosis. *Br Med Bull* (2020) 133(1):105–17. doi: 10.1093/ bmb/ldaad005

2. Hernlund E, Svensson A, Ivergard M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European union: medical management, epidemiology and economic burden. a report prepared in collaboration with the international osteoporosis foundation (IOF) and the European federation of pharmaceutical industry associations (EFPIA). *Arch Osteoporos*. (2013) 8:136. doi: 10.1007/s11657-013-0136-1

3. Kanis JA, Norton N, Harvey NC, Jacobson T, Johansson H, Lerenstorm M, et al. SCOPE 2021: a new scorecard for osteoporosis in Europe. *Arch Osteoporos*. (2021) 16(1):82. doi: 10.1007/s11657-020-00871-9

4. Zaidi M. Skeletal remodeling in health and disease. *Nat Med* (2007) 13(7):791–801. doi: 10.1038/nm1505

5. Menzies P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: a quantitative study of 84 iliac bone biopsies. *Clin Orthop Relat Res* (1971) 80:147–54. doi: 10.1097/00002089-197108000-00002

6. Verma S, Rajaratnam JH, Denton J, Hoyland J, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. *J Clin Pathol* (2002) 55(9):693–8. doi: 10.1136/jcp.55.9.693

7. Infante A, Rodriguez CI. Osteogenesis and aging: lessons from mesenchymal stem cells. *Stem Cell Res Ther* (2018) 9(1):244. doi: 10.1186/s13287-018-0995-x

8. Papiasemou A, Kennedy CC, Dolovich L, Lau E, Adachi JD. Patient adherence to osteoporosis medications: problems, consequences and management strategies. *Drugs Aging.* (2007) 24(1):37–55. doi: 10.2165/00002052-200724010-00003

9. Sirius ES, Harris ST, Rosen CJ, Barr CE, Arvesen JN, Abbott TA, et al. Adherence to bisphosphonate therapy and fracture rates in osteoporotic women: the submitted version.

10. Willems HME, van den Heuvel E, Schoemaker RJW, Klein-Nulend J, Bakker AD. Diet and exercise: a match made in bone. *Curr Osteoporos Rep* (2017) 15(6):555–63. doi: 10.1007/s11914-017-0406-8

11. Karpouzos A, Diamantis E, Farmaki P, Savvanis S, Troupis T. Nutritional aspects of bone health and fracture healing. *J Osteoporos*. (2017) 2017:4218472. doi: 10.1155/2017/4218472

12. Munoz-Garach A, Garcia-Fontana B, Munoz-Torres M. Nutrients and dietary patterns related to osteoporosis. *Nutrients* (2020) 12(7):1986. doi: 10.3390/nu12071986

13. Rizzoli R. Dairy products and bone health. *Aging Clin Exp Res* (2022) 34(1):9–24. doi: 10.1590/0102-0280-2021-01970-4

14. Rizzoli R, Biver E, Brennan-Sporanu TC. Nutritional intake and bone health. *Lancet Diabetes Endocrinol* (2021) 9(9):606–21. doi: 10.1016/S2213-8587(21)00119-4

15. Warenjo Lemming E, Byberg L. Is a healthy diet also suitable for the prevention of fragility fractures? *Nutrients* (2020) 12(9):2642. doi: 10.3390/ nu12092642

16. Benetou V, Orfanos P, Feenakich D, Michaelsson K, Petterson-Kymmer U, Byberg L, et al. Mediterranean Diet and hip fracture incidence among older adults: the CHANCES project. *Osteoporos Int* (2018) 29(7):1591–9. doi: 10.1007/s00198-018-4517-6

17. Benetou V, Orfanos P, Petterson-Kymmer U, Bergstrom U, Svennson O, Johansson I, et al. Mediterranean Diet and incidence of hip fractures in a European cohort. *Osteoporos Int* (2013) 24(5):1587–98. doi: 10.1007/s00198-012-2187-3

18. Blekenhorst LC, Hodgson JM, Lewis JR, Devine A, Woodward RJ, Lim WH, et al. Vegetable and Fruit Intake and Fracture-Related Hospitalisations: A Prospective Study of Older Women. (2017) 9(5):11. doi: 10.3390/nu8050111

19. Byberg L, Cellavia A, Oruini N, Wolk A, Michaelsson K. Fruit and vegetable intake and risk of hip fracture: a cohort study of Swedish men and women. *J Bone Miner Res.* (2015) 30(6):976–84. doi: 10.1002/jbmr.2384

20. Tucker KL, Chen H, Hannon MT, Cupples LA, Wilson PW, Felson D, et al. Bone mineral density and dietary patterns in older adults: the framingham osteoporosis study. *Am J Clin Nutr* (2002) 76(1):245–52. doi: 10.1093/ajcn/76.1.245

21. de Haas SCM, de Jonge EAL, Voortman T, Graaf JS, Franco OH, Iak MA, et al. Dietary patterns and changes in frailty status: the Rotterdam study. *Eur J Nutr* (2018) 57(7):2365–75. doi: 10.1007/s00394-017-1509-9

22. de Jonge EAL, Rivadeneira F, Erf JR, Hofman A, Uitterlinden AG, Franco OH, et al. Dietary patterns in an elderly population and their relation with bone mineral density: the Rotterdam study. *Eur J Nutr* (2018) 57(1):61–73. doi: 10.1007/ s00394-016-1297-7

23. Somani SJ, Modi KP, Majumdar AS, Sadarani RN. Phytochemicals and their potential usefulness in inflammatory bowel disease. *Phytodetox Res* (2015) 29(3):339–50. doi: 10.1002/prt.2571

24. Mathew BC, Prasad NV, Prabodh R. Cholesterol-lowering effect of organosulfur compounds from garlic: a possible mechanism of action. *KUMJ* (2004) 2(2):100–2.

25. Tanaka S, Haruma K, Yoshihara M, Kajiyama G, Kira K, Amagase H, et al. Aged garlic extract has potential suppressive effect on colorectal adenomas in humans. *J Nutr* (2006) 136(3 Suppl):821S–6. doi: 10.1093/jn/136.3.821S

26. Fanjwani AA, Liu H, Fahey JW. Crucifers and related vegetables and supplements for neurologic disorders: what is the evidence? *Curr Opin Clin Nutr Metab Care* (2018) 21(6):451–7. doi: 10.1097/MOC.0000000000000511

27. Del Chierico F, Vernocchi P, Dallapiccola B, Putignani L. Mediterranean Diet and health: food effects on gut microbiota and disease control. *Int J Med Sci* (2014) 11(1):1168–99. doi: 10.3938/jims.110711678

28. Drix J, Ji Iu, Kumar I, Palandurkar K, Giri R, Giri K. Lepidium sativum: Bone healer in traditional medicine, an experimental validation study in rats. *J Family Med Prim Care* (2020) 9(2):812–8. doi: 10.4103/jfmpc.jfmpc_761_19

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
29. Ramírez D, Abellan-Victorio A, Beretta V, Camargo A, Moreno DA. Functional food ingredients from brassicaceae species. Overview and perspectives. Int J Mol Sci (2020) 21(6):1998. doi: 10.3390/ijms21061998

30. Berl B, Winkler G, Müller B, Knobloch K. Quantitative determination of allin and allin from garlic by HPLC. Planta Med (1990) 56(3):320–6. doi: 10.1055/s-1990-396968

31. Bose S, Laha B, Banerjee S. Quantification of allin by high performance liquid chromatography-ultraviolet analysis with effect of post-ultrasonic sound and microwave radiation on fresh garlic cloves. Pharmacog Mag. (2014) 10(Suppl 2): S588–93. doi: 10.4103/0973-1299.133672

32. Berl B, Winkler G, Knobloch K. Products of allin transformation: Ajoenes and dihydro derivatives, characterization and their determination by HPLC. Planta Med (1990) 56(2):202–11. doi: 10.1055/s-1990-969926

33. Egen-Schwind C, Eckard R, Jekat FW, Winterhoff H. Pharmacokinetics of vinylthiinblins, transformation products of allin. Planta Med (1992) 58(1):8–13. doi: 10.1055/s-1992-1064579

34. Lawson LD, Wang ZJ, Hughes BG. Identification and HPLC quantification of the sulfoxides and dialk(en)yl thiosulfinates in commercial garlic products. Planta Med (1991) 57(4):363–70. doi: 10.1055/s-1991-2069119

35. Rabinkov A, Miron T, Mirelman D, Wilchek M, Glosman S, Yavin E, et al. Al-limbermeric acid, a volatile product of allin with glutathione possesses SH-modifying and antioxidant properties. Biochim Biophys Acta (2000) 1499(1–2):144–53. doi: 10.1016/S0006-898X(00)01119-1

36. Bastaik SM, Ojha S, Kalasar H, Adehage E. Chemical constituents and medicinal properties of allium species. Mol Cell Biochem (2021) 476(12):4031–21. doi: 10.1007/s11010-021-04213-2

37. Iciek M, Kwiecien I, Wlodek L. Biological properties of garlic and garlic-derived organosulfur compounds. Environ Mol Mutagen (2009) 50(3):247–65. doi: 10.1002/em.20474

38. Rauf A, Abuziad T, Thiervogelmad M, Imran M, Olatunde A, Sharih MT, et al. Garlic (Allium sativum l.): Its chemistry, nutritional composition, medicinal ingredients and health promoting properties. J Agric Food Chem (2000) 48(12):1087–93. doi: 10.1021/jf990368t

39. Iberl B, Winkler G, Knobloch K. Products of allicin transformation: Ajoenes and dihydro derivatives, characterization and their determination by HPLC. Planta Med (1990) 56(2):202–11. doi: 10.1055/s-1990-969926

40. Barbier GPR, Maggio A, De Pascale S, Fogoiano V. Glucosinolates profile of Brassicaceae capitanes. J Agric Food Chem (2016) 64(10):2798–804. doi: 10.1021/acs.jafc.6b02750

41. Marcinkowska M, Frank S, Steinhauser M, Jelen HH. Key odorants of raw and cooked green kohlrabi (Brassica oleracea var. gongylodes) plants as identified by olfactometry and metabolite fingerprinting using UPLC/MS/ MS. Food Chem Toxicol (2015) 77:112169. doi: 10.1016/j.fct.2015.11.023

42. Kim S, Lee S, Shin D, Yoo M. Change in organosulfur compounds in onion (Allium cepa l.) during heat treatment. Food Sci Technol (2016) 25(3):115–9. doi: 10.1007/s12233-015-0016-7

43. Setlhi BA, Brenneisen R, Tschudi I, Langos M, Bigler P, Sprang T, et al. Allicin transformation products of allicin with glutathione possesses SH-modifying and antioxidant properties. Biochim Biophys Acta (2000) 1499(1–2):144–53. doi: 10.1016/S0006-898X(00)01119-1

44. Wu HY, Zhang Z, Li X. HPLC method for the determination of allium compounds in commercial garlic products. J Agric Food Chem (2005) 53(9):3408–14. doi: 10.1021/jf045457l

45. Iberl B, Winkler G, Knobloch K. Products of allicin transformation: Ajoenes and dihydro derivatives, characterization and their determination by HPLC. Planta Med (1990) 56(2):202–11. doi: 10.1055/s-1990-969926

46. Tigu AB, Moldovan CS, Toma VA, Farcas AD, Mot AC, Jurj A, et al. Deciphering the metabolic fingerprint of garlic - Allium sativum l. and Allium cepa l. Plant Foods Hum Nutr (2020) 75(3):376–89. doi: 10.1007/s11103-012-9905-2

47. Hashem FA, Motawea HE, El-Shabrawy AE, El-Shkeri S. Myrosinase hydrolysates of brassica oleraceae l. var. italica reduce the risk of colon cancer. Phytother Res (2012) 26(5):743–7. doi: 10.1002/ptr.3591

48. Abdallah HM, Farag MA, Algandaby MM, Nasrallah ME, Abdel-Naim AR, Eid BG, et al. Osteoprotective activity and metabolite fingerprinting using UPLC/MS/ MS and GC/MS of lepidum sativum in ovariectomized rats. Nutrients (2020) 12:2075. doi: 10.3390/nu12092075

49. Robin AH, Yi GE, Laila R, Yang K, Park JJ, Kim HR, et al. Expression profiling of glucosinolate biosynthetic genes in brassica oleracea l. var. capitata inbred lines reveals their association with glucosinolate content. Molecular (2016) 21(6):787. doi: 10.3390/foods10122911

50. Jeong J, Park H, Hyun H, Kim J, Kim H, Oh HI, et al. Effects of glucosinolates from turnip (Brassica rapa l.) root on bone formation by human osteoblast-like MG-63 cells and in normal young rats. Phytother Res (2015) 29(6):902–9. doi: 10.1002/ptr.5531

51. Barbier GPR, Maggio A, De Pascale S, Fogoiano V. Glucosinolates profile of Brassica rapa l. subsp. Sylviae I. Junc. var: scutata. Hort. Food Chem (2008) 107(4):1687–91. doi: 10.1021/jf070054K

52. Cramer JM, Teran-Garcia M, Jeffery EH. Enhancing sulforaphane absorption and excretion in healthy men through the combined consumption of fresh broccoli sprouts and a glucoraphin-rich powder. Br J Nutr (2012) 107(9):1333–8. doi: 10.1017/S0007114511004429

53. Liang H, Li C, Yuan Q, Vrisekoop F. Separation and purification of sulforaphane from broccoli seeds by solid phase extraction and preparative high-performance liquid chromatography. J Agric Food Chem (2007) 55(20):8047–53. doi: 10.1021/jf070663X

54. Gil Arru Y, Fuentes-Aliaga I, Jiru M, Ovesna J. Variability in s-Alkyl-L-Cysteine sulfoxides in garlic within a seven-month period determined by a liquid chromatography - tandem mass spectrometry method. Plant Foods Hum Nutr (2020) 75(3):376–82. doi: 10.1016/j.plfn.2020-08-00817-a
70. Rose P, Whitehead M, Moore PK, Zhu YZ. Bioactive s-alk(en)yl cysteine sulfoxide metabolites in the genus allium: the chemical potential of therapeutic agents. Nat Prod Rep (2005) 22(3):351–68. doi:10.1039/b417639c
71. Koderia Y, Kurita M, Nakamoto M, Matsutomo T. Chemistry of aged garlic: Diversity of constituents in aged garlic extract and their production mechanisms via the combination of chemical and enzymatic reactions. Exp Ther Med (2020) 19(12):1574–84. doi:10.3892/etm.2019.9839
72. Yoshimoto N, Saito K. S-alk(en)yl cysteine sulfoxides in the genus allium: proposed biosynthesis, chemical conversion, and bioactivities. J Exp Bot (2019) 70(16):4123–37. doi:10.1093/jxb/erz243
73. Block E. Recent results in the organsulfur and organoselenium chemistry of genus allium and brassica plants: relevance for cancer prevention. Adv Exp Med Biol (1996) 401:155–69. doi:10.1007/1-461-0399-2_13
74. Calvé EM, White KD, Matsuk JE, Sha D, Block E. Allium chemistry: identification of organosulfur compounds in rham (Allium triococum) homogranates. Phytochemistry (1998) 49(23-24):63-64. doi:10.1016/S0031-9422(98)00135-5
75. Prieto MA, Lopez CJ, Simal-Gandara J. Glucosinolates: Molecular structure, breakdown, genetic, bioavailability, properties and healthy and adverse effects. Adv. Food Nutr Res (2019) 90:305–50. doi:10.1016/bs.tfarn.2019.02.008
76. Shekarri Q, Dekker M. A physiological-based model for simulating the bioavailability and metabolism of sulforaphane from broccoli foods. Foods (2021) 10(11):2761. doi:10.3390/foods10112761
77. Angellino DJ. E Glucosinolate hydrolysis and bioavailability of resulting isothiocyanates: Focus on glucoraphanin. J Funct Foods (2014) 7:76–7. doi:10.1016/j.jff.2013.09.029
78. Shapiro TA, Fairley JW, Wade KL, Stephenson KK, Talalay P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev (1998) 7(12):1093–100.
79. Datta HK, Ng WF, Walker JA, Tuck SP, Varani S. The cell biology of bone metabolism. J Clin Pathol (2008) 61(5):577–87. doi:10.1136/jcp.2007.048868
80. Ryuk JA. Effect of allium fistulosum extracts on the stimulation of longitudinal bone growth in animal modeling diet-induced calcium and vitamin d deficiencies. Adv Nutr (2021) 11(7):7786. doi:10.1093/advancems/lnab177
81. Tang CH, Huang TH, Chang CS, Fu WM, Yang RS. Water solution of onion crude powder inhibits RAW264.7 induced osteoclastogenesis through p38 and NF-kappaB pathways. Osteoporos Int (2009) 20(1):93–100. doi:10.1007/s00198-009-0630-0
82. Bose S, Banerjee D, Vu AA. Ginger and garlic extracts enhance osteoinduction in 3D printed calcium phosphate bone scaffolds with bimodal pore distribution. ACS Appl Mater Interfaces (2022) 14(11):12964–75. doi:10.1021/acsami.1c01961
83. Behera J, Ison J, Rai H, Tryagi N. Allyl sulhide promotes osteoblast differentiation and bone density via reducing mitochondrial DNA release mediated Kdm6b/H3K27me3 epigenetic mechanism. Biochem Biophys Res Commun (2023) 543:87–94. doi:10.1016/j.bbrc.2021.01.016
84. Monarrez-Cordero BE, Rodriguez-Gonzales CA, Valencia-Gomez LE, Hernandez-Paz JF, Martel Estrada SA, Camacho-Montes H, et al. The effect of allium cepa extract on the chitosan/PLGA scaffolds bioactivity. J Appl Pharm Sci (2022) 12(2):179–89.
85. Law YY, Chiu HF, Lee HH, Shen YC, Venkatakrishnan K, Wang CK. Consumption of onion juice modulates oxidative stress and attenuates the risk of obesity in a high-fat diet murine model. J Nutr (2016) 146(9):1516–23. doi:10.3945/jrn.116.021351
86. Wong SY, Fan MY, Liu JB, Shang Z. Sulforaphane inhibits osteoclast differentiation by inhibiting nuclear factor-kappaB. Biochem Biophys Res Commun (2019) 511(3):637–43. doi:10.1016/j.bbrc.2019.02.095
87. Takagi T, Inoue H, Takahashi N, Katsumata-Tsoubo R, Uehara M. Sulforaphane inhibits osteoclast differentiation by suppressing the cell-cell fusion molecules DC-STAMP and OC-STAMP. Biochem Biophys Res Commun (2017) 485(2):718–24. doi:10.1016/j.bbrc.2016.12.075
88. Kim SI, Kang SY, Shin HH, Choi HS. Sulforaphane inhibits osteoclastogenesis by inhibiting nuclear factor-kappaB. Mol Cells (2005) 20(3):364–70.
89. Luo T, Fu X, Liu Y, Ji Y, Shang Z. Sulforaphane inhibits osteoclastogenesis via suppression of the autophagic pathway. Molecules (2021) 26(2):342. doi:10.3390/ molecules26020342
90. Gambari L, Luigoni G, Cattini L, Manferdini C, Facchini A, Grassi F. Sodium hydrosulfide inhibits the differentiation of osteoclast progenitor cells via the Nrf2-dependent mechanism. Pharmacol Res (2014) 87:99–112. doi:10.1016/j.phrs.2014.06.014
91. Javaheri B, Poulot B, Aljazzar A, de Souza R, Piles M, Hopkinson M, et al. Stable sulforaphane protects against gait anomalies and modifies bone microarchitecture in the spontaneous STR/Ort model of osteoarthritis. Bone (2017) 103:308–17. doi:10.1016/j.bone.2017.07.028
92. Elshal MF, Almakti AL, Hussein IK, Khan JA. Synergistic antosteoporotic effect of lepidum sativum and alendronate in glucocorticoid-induced osteoporosis in wistar rats. Afr J Tradit Complement Altern Med (2015) 12(5):267–73. doi:10.4314/atcam.v13i5.8
93. El-Haroun H. Comparative study on the possible protective effect of lepidum sativum versus teriparatide in induced osteoporosis in adult Male Guinea pigs. Egyptian J Hystol (2020) 43(3):931–47. doi:10.21608/ ejh.2020.18855.1193
94. Zhang Y, Yu L, Mo M, Jin W. Effect of ethanol extract of lepidum meyenii walp. on osteoporosis in ovariectomized rat. J Ethnopharmacol (2006) 105(1-2):274–79. doi:10.1016/j.jep.2005.12.013
95. Gornstein S, Leontowicz H, Leontowicz M, Namiesnik J, Najman K, Dreziwlecki J, et al. Comparison of the main bioactive compounds and antioxidant activities in garlic and white and red onions after treatment protocols. J Agric Food Chem (2008) 56(12):4418–24. doi:10.1021/jf080388b
96. Kohthari D, Lee WD, Niu KM, Kim SK. The genus Allium as poultry feed additive: A review. Anim (Basel). (2019) 14(2):1013. doi:10.3390/ani9121013
97. Sobolewska D, Michalka K, Podolak I, Grabowska K. Steroidal sapogenins from the genus Allium. Phytochem Rev (2016) 15(1–3). doi:10.1007/s11199-014-9381-3
113. Darvin P, Joung YH, Yang YM. JAK2-STAT5B pathway and osteoblast differentiation. JAKSTAT (2013) 2(4):e2493. doi: 10.4161/jakstat.24931

114. Lin GL, Hankenson KD. Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem (2011) 112(24):3941–50. doi: 10.1002/jcb.23237

115. Kang S, Bennett CN, Gerin L, Rapp LA, Hankenson KD, MacDougall OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer-binding protein alpha and peroxisome proliferator-activated receptor gamma. J Bone Chem (2007) 282(19):14515–24. doi: 10.1074/jbc.M70030200

116. Jeon MJ, Kim JA, Kwon SH, Kim SW, Park KS, Park SW, et al. Activation of peroxisome proliferator-activated receptor-gamma inhibits the Runx2-mediated transcription of osteocalcin in osteoblasts. J Bone Chem (2003) 278(26):23270–7. doi: 10.1074/jbc.M211632200

117. Wang M, Jin H, Tang D, Huang S, Zuszik MJ, Chen D. Smad1 plays an essential role in bone development and postnatal bone formation. Osteoarter Cartil (2011) 19(6):751–62. doi: 10.1101/joca.2011.03.004

118. Meyers CA, Xu J, Asauten G, Ding C, Shen J, Broderick K, et al. WISP1 does bone formation at the expense of fat formation in human perivascular stem cells. Sci Rep (2018) 8(1):15618. doi: 10.1038/s41598-018-34143-x

119. Gamberi L, Lisignoli G, Gabusi E, Manfredi C, Paesella F, Piacentini A, et al. Distinctive expression pattern of cytokine-beta-synthesizing and cytokine-gamma-lyase identities mesenchymal stromal cell transdifferentiation to mineralizing osteoblasts. J Cell Physiol (2017) 232(12):3574–85. doi: 10.1002/jcp.25825

120. Robling AG, Bonefeld LF. The osteocyte: New insights. Ann Rev Physiol (2020) 82:485–506. doi: 10.1146/annurev-physiol-021119-034332

121. Kitaura H, Marahleh A, Ohori F, Noguchi T, Shen WR, Qi J, et al. Osteocyte-related cytokines regulate osteoclast formation and bone resorption. Int J Mol Sci (2020) 21(14):5169. doi: 10.3390/ijms21145169

122. Paule T, Schicker M, Tischer T, Kokk A, Neth P, Mutschler V, et al. Characterization of osteosarcoma cell lines MG-63, sas-2 and U-2 OS in comparison to human osteoblasts. Anticancer Res (2004) 24(6):3743–8.

123. Juma A. The effects of lepidium sativum seeds on fracture-induced healing in rabbits. MedGenMed (2007) 9(2):23. doi: 10.1101/jmp.2005.12.013

124. Boyce BF. Advances in the regulation of osteoclasts and osteoclast functions. J Dent Res (2013) 92(10):860–7. doi: 10.1177/0022034513035006

125. Kim JM, Lin C, Stavre Z, Greenblatt MB, Shim JH. Osteoblast-osteoclast communication and bone homeostasis. Cells (2020) 9:9. doi: 10.3390/cells9092073

126. Gambari L, Lisignoli G, Gabusi E, Manfredi C, Paesella F, Piacentini A, et al. Osteosome formation in human mesenchymal stromal cells. Cells (2020) 9(9). doi: 10.3390/cells9092073

127. Kida K, Marutani E, Nguyen RK, Ichinose F. Inhaled hydrogen sulfide prevents neuropathic pain after peripheral nerve injury in mice. Nitric Oxide (2015) 46:87–92. doi: 10.1016/j.niox.2014.11.014

128. Xu R, Hao DD, Sun JP, Li WW, Zhao MM, Li XH, et al. Hydrogen sulfide treatment promotes glucose uptake by increasing insulin receptor sensitivity and ameliorates kidney lesions in type 2 diabetes. Antioxid Redox Signal (2015) 19(1):5–23. doi: 10.1089/ars.2015.6024

129. Guivinazo D, Bursac B, Stoddio JN, Nalluru S, Vignate T, Snowman AM, et al. Hydrogen sulfide is neuroprotective in Alzheimer’s disease by sulphydrating GSK3beta and inhibiting tau hyperphosphorylation. Proc Natl Acad Sci U S A. (2021) 118(4):2021725118. doi: 10.1073/pnas.2021725118

130. Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol (2017) 13(1):49–59. doi: 10.1038/nrhowmatic.2017.04.029

131. Hine C, Mitchell JR. Carbonate and methionine restriction in control of endogenous hydrogen sulfide production by the transsulfuration pathway. Exp Gerontol. (2015) 68:26–32. doi: 10.1016/j.exger.2014.12.010

132. Whiteman M, Winyard PG. Hydrogen sulfide and inflammation: the good, the bad, and the ugly. Expert Rev Clin Pharmacol (2014) 7(1):13–32. doi: 10.1586/ecp.13.104

133. Benavides GA, Squadrito GL, Mills RW, Patel HD, Patel RP, et al. Hydrogen sulfide mediates the vasorelaxation of garlic by sulphydryl trapping of GSH-beta and inhibiting tau hyperphosphorylation. Proc Natl Acad Sci U S A. (2007) 104(46):17977–82. doi: 10.1073/pnas.0705710104

134. Liang D, Wu H, Wong MW, Huang D. Diallyl disulfide with thiols. Antioxid (Basel). (2017) 121(26):e2017225118. doi: 10.3390/antiox9090865

135. Lin Y, Yang X, Liu Y, Qu C, Kikuiri T, et al. Hydrogen sulde donor, but diallyl disulde with thiols. Antioxid (Basel). (2015) 7(6):909–10. doi: 10.3390/antiox6019287

136. Lin Y, Yang X, Liu Y, Qu C, Kikuiri T, et al. Hydrogen sulde donor, but diallyl disulfde with thiols. Antioxid (Basel). (2015) 7(6):909–10. doi: 10.3390/antiox6019287

137. Yang H, Qin J, Wang X, Ei-Shora HM, Yu B. Production of plant-derived hydrogen sulde as H2S donors against chemotherapy-induced neuropathic pain: Role of Kv7 potassium channels. Neuropharmacology (2017) 121:49–59. doi: 10.1016/j.neuropharm.2017.04.029

138. Costa AG, Cusano NE, Silva BC, Cremers S, Bilezikian JP. Cathepsin K: its skeletal actions and role as a therapeutic target in osteoporosis. Nat Rev Rheumatol (2017) 13(1):49–59. doi: 10.1038/nrhowmatic.2017.04.029

139. Citi V, Martelli A, Testai L, Marino A, Breschi MC, Calderone V. Hydrogen sulfide releasing capacity of natural isothiocyanates: is it a reliable explanation for the multiple biological effects of brassicaceae? Planta Med (2014) 80(9-10):610–3. doi: 10.1055/s-0034-1368591

140. Di Cesare Mannelli L, Lucarni E, Micheli L, Mosca L, Ambrosino P, Solidoro MV, et al. Effects of natural and synthetic isothiocyanate-based H2S releasers against chemotherapy-induced neuropathic pain. Role of Kv7 potassium channels. Neuropharmacology (2017) 121:49–59. doi: 10.1016/j.neuropharm.2017.04.029
Ca(2+) channel sulthihydration. Cell Stem Cell (2014) 15(1):66–78. doi: 10.1016/j.stem.2014.03.005

157. Grassi F, Tyagi AM, Calvert JW, Gambhari L, Walker LD, Yu M, et al. Hydrogen sulfoxide is a novel regulator of bone formation implicated in the bone loss induced by estrogen deficiency. J Bone Miner Res (2016) 31(5):949–63. doi: 10.1002/jbmr.2737

158. Lee SK, Chung JH, Choi SC, Ahn QS, Lee YM, Lee SL, et al. Sodium hydrogen sulfoxide inhibits nicotine and lipopolysaccharide-induced osteoclast differentiation and reversed osteoblastic differentiation in human periodontal ligament cells. J Cell Biochem (2013) 114(5):1183–93. doi: 10.1002/jcb.24461

159. Ma J, Shi C, Liu Z, Han B, Guo L, Zhu L, et al. Hydrogen sulfoxide is a novel regulator implicated in glucocorticoids-inhibited bone formation. Aging (Albany NY). (2019) 11(18):7357–52. doi:10.18632/aging.102269

160. Zheng W, Li X, Zhang T, Wang J. Biological mechanisms and clinical efficacy of sulforaphane for mental disorders. Gen Psychiutr (2022) 35(2):e007000. doi: 10.1136/gywch.2021.100700

161. Jiang X, Chen Y, Lu K, Zhang H, Fan X. GY1437 promotes bone formation in a rabbit distraction osteogenesis model: a preliminary report. J Oral Maxillofac Surg (2015) 73(4):732–6. doi: 10.1016/j.joms.2014.11.012

162. Sivapalan T, Melchini A, Saha S, Needs PW, Traka MH, Tapp H, et al. Bioavailability of glucoraphanin and sulforaphane from high-glucoraphanin broccoli. Mol Nutr Food Res (2018) 62(18):e1709911. doi: 10.1002/mnfr.201700991

163. Fabeys J, Wade KL, Stephenson KK, Panwia AA, Liu H, Cornblatt G, et al. Bioavailability of sulforaphane following ingestion of glucoraphanin-rich broccoli-sprout and seed extracts with active myrosinase. A pilot study of the effects of proton pump inhibitor administration. Nutrients (2019) 11(7):1489. doi: 10.3390/n11071489

164. Lai RH, Miller MJ, Jeffery E. Glucoraphanin hydrolysis by microbiota in the rat cecum results in sulforaphane absorption. Food Funct (2010) 1(2):161–6. doi: 10.1039/c0060110d

165. Bheemreddy RM, Jeffery EH. The metabolic fate of purified glucoraphanin in F344 rats. J Agric Food Chem (2013) 61(5):2861–6. doi: 10.1021/jf302355f

166. Liu X, Wang Y, Hoelfinger JL, Neme BP, Jeffery EH, Miller MJ. Dietary broccoli alters rat cecal microbiota to improve glucoraphanin hydrolysis to bioactive isothiocyanates. Nutrients (2017) 9(3):262. doi: 10.3390/nut9030262

167. Davidson R, Gardner S, Jupp O, Bullough A, Butters S, Watts L, et al. Transcriptional changes in prostate of men on active surveillance after a 12-month glucoraphanin-rich broccoli intervention—results from the effect of sulforaphane on prostate CaNCrP EvEnV (ESCAPE) randomized controlled trial. Am J Clin Nutr (2019) 109(4):1133–44. doi: 10.3945/ajcn.19000715

168. Matheson EM, Mainous AG3rd, Carmessola MA. The association between onion consumption and bone density in perimenopausal and postmenopausal non-Hispanic white women 50 years and older. Menopause (2009) 16(4):756–9. doi: 10.1097/gme.0b013e31819531a5

169. Greco EA, Pietschmann P, Migliaccio S. Osteoprotegerin and sarcopenia increase frailty syndrome in the elderly. Front Endocrinol (Lausanne). (2019) 10:255. doi:10.3389/fendo.2019.00255

170. Sim M, Bakkenhorst LC, Lewis JR, Bondonno CP, Devine A, Zhu K, et al. Vegetable and fruit intake and injurious falls risk in older women: a prospective cohort study. Br J Nutr (2018) 120(5):925–34. doi: 10.1017/S0007114518002155

171. Gu Y, Zhang S, Wang J, Chi VTO, Zhang Q, Liu L, et al. Relationship between consumption of raw garlic and handgrip strength in a large-scale adult population. Clin Nutr (2020) 39(4):1234–41. doi: 10.1016/j.clnu.2019.05.015

172. Sim M, Bakkenhorst LC, Lewis JR, Bondonno CP, Devine A, Zhu K, et al. Vegetable diversity, injurious falls, and fracture risk in older women: A prospective cohort study. Nutrients (2018) 10(3):1081. doi: 10.3390/nu10030181

173. Zuhra K, Tome CS, Forte E, Vicente JB, Giuffre A. The multifaceted roles of sulfane sulfur species in cancer-associated processes. Biochem Biophys Acta Bioenerg. (2021) 1862(1):148338. doi: 10.1016/j.bbadis.2020.148338

174. Kolluru GK, Shen X, Kevil CG. Reactive sulfur species: A new redox player in cardiovascular pathophysiology. Arterioscler Thromb Vasc Biol (2020) 40(4):874–84. doi: 10.1161/ATvbaha.120.314984

175. Blekkenhorst LC, Bondonno CP, Lewis JR, Bondonno CP, Devine A, Zhu K, et al. Vegetable intake and prevalence of colorectal adenoma in a cancer screening trial. Am J Clin Nutr (2017) 96(6):1754–64. doi: 10.3945/ajcn.165.1754

176. Traka MH, Melchini A, Coode-Bate J, Al Kadhi O, Saha S, Defernez M, et al. Transcriptional changes in prostate of men on active surveillance after a 12-month glucoraphanin-rich broccoli intervention—results from the effect of sulforaphane on prostate CaNCrP EvEnV (ESCAPE) randomized controlled trial. Am J Clin Nutr (2019) 109(4):1133–44. doi: 10.3945/ajcn.19000715

177. Millen AE, Subar AF, Graubard BI, Peters U, Hayes RB, Weissfeld JL, et al. Fruit and vegetable intake and prevalence of colorectal adenoma in a cancer screening trial. Am J Clin Nutr (2007) 86(6):1754–64. doi: 10.3945/ajcn.865.1754

178. Traka MH, Melchini A, Coode-Bate J, Al Kadhi O, Saha S, Defernez M, et al. Transcriptional changes in prostate of men on active surveillance after a 12-month glucoraphanin-rich broccoli intervention—results from the effect of sulforaphane on prostate CaNCrP EvEnV (ESCAPE) randomized controlled trial. Am J Clin Nutr (2019) 109(4):1133–44. doi: 10.3945/ajcn.19000715
Glossary

Abbreviation	Definition
ACP5	Acid phosphatase 5, tartrate resistant
AG	Age-associated
AGE	Aged garlic extract
ATIC	Allyl isothiocyanate
ALP	Alkaline phosphatase
ASCOs	S-alk(en)yl cysteine sulfoxides
AS	Allyl sulfide
ASVD	Atherosclerotic vascular disease
Atg5	Autophagy related 5
Atg12	Autophagy related 12
BITC	Benzyl isothiocyanate
BM	Bone marrow
BMD	Bone mineral density
BMM	Bone marrow macrophages
BMMSCs	Bone marrow-derived mesenchymal stem cells
BMP	Bone morphogenetic protein
BS/BV	Bone surface/bone volume
BSE	Broccoli sprout extract
BSP	Bone sialoprotein
BV	Bone volume
BVF	Bone volume fraction
BV/TV	Bone volume / trabecular volume
CAT	Catalase
CBS	Cystathionine beta synthase
Clr	Calcitonin receptor-like receptor
CCK-8	Cell counting kit-8
c-fms	Colony-stimulating factor-1 receptor
Col I	Collagen I
CSE	Cystathionine-γ-lyase
CTR	Calcitonin receptor
CTX-I	Serum type I collagen breakdown product
CTSK	Catepsin K
DADS	Diallyl disulfide
DATS	Diallyl trisulfide
DC-	Dendritic cell-specific transmembrane protein
STAMP	Stimulating transmembrane protein
DEXA	Dual-energy X-ray absorptiometry
Dhx5	Distal-Less Homeobox 5
DPDS	Dipropyl disulfide
ECM	Extracellular matrix
ER	Eucarin
ERK	Extracellular signal-regulated kinase
EZ4U	3-(4,5-Dimethyl-2-yl)-2,5-diphenylytriazolium bromide-like assay
FcRγ	Fc receptor standard g chain
FOXO	Forkhead box O
GCLc	Glutamate cysteine ligase catalytic subunit
GCLM	Glutamate-cysteine ligase modifier subunit

(Continued)
Continued

SAC S-allylcysteine
SAMC S-allylmercaptocysteine
SAMG S-allylmercaptoglutathione
SFN Sulforaphane
SIRT Sirtuin
SMAD-1 SMAD family member 1
STAT3 Signal transducer and activator of transcription 3
Tb.N Trabecular number
Tb.Th Trabecular thickness
Tb.Sp Trabecular space
TRAF-6 Tumor necrosis factor receptor-associated factor 6
TRAP Tartrate-resistant acid phosphatase
TRAP5b Tartrate-resistant acid phosphatase 5b
VOSCs Volatile organosulfur compounds
WISP-1 WNT1-inducible-signaling pathway protein 1
Wnt Wingless/Integrated
WST-8 Water-soluble tetrazolium-8