We study preheating in N-flation, assuming the Marčenko-Pastur mass distribution, equal energy initial conditions at the beginning of inflation and equal axion-matter couplings, where matter is taken to be a single, massless bosonic field. By numerical analysis we find that preheating via parametric resonance is suppressed, indicating that the old theory of perturbative preheating is applicable. While the tensor-to-scalar ratio, the non-Gaussianity parameters and the scalar spectral index computed for N-flation are similar to those in single field inflation (at least within an observationally viable parameter region), our results suggest that the physics of preheating can differ significantly from the single field case.

I. INTRODUCTION

While inflationary cosmology is becoming a precision science, with the advent of recent and upcoming experiments such as the measurement of the CMBR by the Planck satellite $[1]$, the particle physics origin of inflations still remains unclear. Due to their simplicity, single field models of inflation are considered the most economical explanation of a Gaussian, nearly scale invariant spectrum of primordial fluctuations, as well as the flatness and the large-scale homogeneity of the observed universe. Future experiments, however, could change this situation and put single field models under pressure. For these reasons, there has been a keen interest in building multi-field inflationary models, see e.g. the reviews $[2, 3]$. Promising setups of multi-field inflation include string-motivated models such as N-flation $[4]$, inflation from multiple M5-branes $[5]$ and inflation from tachyons $[6]$.

Naturally, the large parameter space for couplings, masses and initial conditions pertaining to multi-field inflation makes a systematic analysis difficult. An interesting exception, nevertheless, is N-flation. N-flation is a string motivated implementation of assisted inflation $[7, 8, 9, 10, 11, 12]$ where a large number of uncoupled scalar fields, identified with axions arising from KKLT compactification of type IIB string theory, assist each other to drive an inflationary phase $[4]$; see also $[13, 14, 15, 16, 17]$. One salient feature of this model is the possible avoidance of super-Planckian initial values. Further, using results from random matrix theory, the masses for the axion fields can be shown to conform to the Marčenko-Pastur (MP) law $[18]$ under reasonable approximations. The spectrum of the masses is controlled by only two parameters, the average mass and a variable controlling the ratio between the number of axions and the total dimension of the moduli space. This renders N-flation tractable despite the large number of fields. To a certain extent, successful inflation is contingent upon the initial conditions, however, the model becomes easily tractable by assuming that each field possesses equal initial energy.

Observable cosmological imprints from N-flation have been computed by several groups. The tensor-to-scalar ratio r was calculated by Alabidi and Lyth $[18]$ and was shown to have the same value as in the single field case. The non-Gaussianity parameter f_{NL} was computed in $[15, 19]$ where the deviation from single field models was found to be negligible. Unlike r and f_{NL}, the spectral index of the curvature perturbation n_s depends slightly on the model’s parameters. $[15, 16]$ showed that n_s is smaller (the spectrum being redder) than that found in single field models, in agreement with the general discussion made in $[20]$. These results suggest that the observational data predicted by N-flation are not drastically different from the single-inflaton case. Note however that the 5-year WMAP data already excludes some region of the parameter space; see $[21]$. In this article, we study multi-field preheating, focusing on N-flation as a specific example. To our knowledge, a general theory of preheating for multi-field inflationary models has not been fully developed. This is in part due to the highly non-trivial nature of the string theoretical constructions responsible for inflation. However, even at the phenomenological level, effects due to multiple inflatons contributing to preheating are largely unexplored in contrast to single field inflation $[22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]$. For instance, preheating via parametric resonance of a matter field might be more efficient in the presence of multiple inflatons, as indicated in Cantor preheating $[33, 34]$. Here, a non-periodic variation of the matter field’s effective mass leads to the dissolution of the stability bands and a possible parametric amplification of almost all Fourier modes. This expectation is based on spectral theory $[35, 36, 37]$, but a quantitative study about the magnitude of the amplification with more than two fields is missing $[38]$. Owing to the possible dissolution of the stability bands, one might expect that the collective behavior of the fields gives rise to efficient particle production after N-flation.

To introduce the notation, let us consider a single field model first: the equation of motion for a matter field χ_k with wavenumber k (assuming the coupling $g^2 \varphi^2 \chi^2 / 2$)

*email: diana.battefeld(AT)helsinki.fi
†email: shinsuke.kawai(AT)helsinki.fi
can be written as a Mathieu equation [25],
\[
\frac{d^2 X_k}{d\tau^2} + [A - 2q \cos(2\tau)] X_k = 0,
\]
for the comoving matter field \(X_k = a^{3/2}\chi_k \), where \(\tau = m_\phi t \) is the rescaled time, \(m_\phi \) the inflaton mass, and the two resonance parameters are
\[
q = \frac{g^2 \Phi_0^2}{4m_\phi^2}, \quad A = \frac{k^2}{a^2 m_\phi^2} + 2q.
\]
Here, \(\Phi_0 \) is the slowly varying inflaton amplitude, \(g \) is the inflaton-matter coupling and \(a \) the scale factor (see also section IV). The efficiency of parametric resonance is controlled by the resonance parameter \(q \), which needs to be large enough \((q \gg 1) \) in order for the resonance effect to hold against cosmic expansion. The upper bound on the coupling constant \(g \) is given by the potential’s stability condition against quantum gravity effects as well as radiative corrections [25, 39] (unless the potential is protected by supersymmetry). This upper bound on \(g \) and \(m_\phi \sim 10^{-6}M_P \) (\(M_P \) is the reduced Planck mass) from the COBE normalisation restricts the aforementioned resonance parameter \(q \), leaving not much room for effective parametric resonance [39]. One might hope to alleviate this fine-tuning in multi-field models.

For definiteness, we focus on \(\mathcal{N} \)-flation. We use the Marčenko-Pastur mass distribution for the axion masses, put forth in [13] based on random matrix theory, choosing the most likely mass distribution, see section IV. Further, for simplicity, we assume equal energy initial conditions at the onset of inflation. Recently, aspects of preheating in the context of \(\mathcal{N} \)-flation have been considered in [40], pointing out the danger of transferring energy preferably to hidden sectors instead of standard model particles. This reveals an additional need for fine tuning, a possible problem for many string-motivated models of inflation.

The study in [40] is based entirely on an effective single field description of \(\mathcal{N} \)-flation, such as the one above. Thus the common lore of parametric resonance models seems to be applicable in this work. Here we take the optimistic view that preheating might indeed occur in this work. Here we take the optimistic view that preheating might indeed occur in this work. We compare the slow-roll solution with a numerical solution that slightly underestimates the inflatons’ potential energy during inflation. We compare the slow-roll solution with a numerical solution that slightly underestimates the inflatons’ potential energy during inflation. We compare the slow-roll solution with a numerical solution that slightly underestimates the inflatons’ potential energy during inflation. We compare the slow-roll solution with a numerical solution that slightly underestimates the inflatons’ potential energy during inflation.

This article is structured as follows: in section III we review \(\mathcal{N} \)-flation and its dynamics during slow roll. We extend this discussion in section III where we provide an extrapolated slow roll solution that slightly underestimates the inflatons’ potential energy during inflation. We compare the slow-roll solution with a numerical solution and argue that even after \(\eta < 1 \) is violated by one or more of the heavier axion fields, the overall behavior of the inflatons is still well approximated by the slow-roll regime, up until preheating commences. In section IV we set the stage for preheating corresponding to the end of slow roll for the effective single field model. To begin, we set all axion masses equal to each other and discuss the physics of preheating in this particular system; then we return to \(\mathcal{N} \)-flation, where the Marčenko-Pastur mass spectrum is used. Finally, in section V we conclude with comments and prospects for studying further issues on multi-field preheating. In Appendix A we give a semianalytic solution that provides an upper bound for the inflaton potential, which further supports the observation made in section III.

II. \(\mathcal{N} \)-FLATION AND SLOW ROLL

The action for \(\mathcal{N} \) minimally coupled scalar fields, responsible for driving an inflationary phase, can be written as (see [2] for a review on multi-field inflation)
\[
S = -\int d^4x \sqrt{-g} \left(\frac{1}{2} \sum_{i=1}^{\mathcal{N}} g^\mu\nu \partial_\mu \phi_i \partial_\nu \phi_i + W(\phi_1, \phi_2, \ldots) \right),
\]
where we assume canonical kinetic terms. The unperturbed volume expansion rate from an initial hypersurface at \(t_s \) to a final hypersurface at \(t_c \) (below we use * and c to denote values evaluated at \(t_s \) and \(t_c \)) is given by
\[
N(t_c, t_s) \equiv \int_s^c H dt,
\]
where \(N \) is the number of e-folds, \(H \) is the Hubble parameter and \(t \) is cosmic time.

In \(\mathcal{N} \)-flation [4], the \(\mathcal{N} \) scalar fields that drive inflation are associated with axion fields. All cross-couplings vanish when the periodic potentials are expanded around their minima [13]. Therefore, in the proximity of their
In this paper we split the mass range
\[W(\varphi_1, \varphi_2, \ldots, \varphi_N) = \sum_{i=1}^{N} V_i(\varphi_i) = \sum_{i=1}^{N} \frac{1}{2} m_i^2 \varphi_i^2, \]
where the fields have been arranged according to the magnitude of their masses, namely \(m_i > m_j \) if \(i > j \). \(\mathcal{N} \)-flation is a specific realization\(^1\) of assisted inflation\(^2\)[4], where the \(\mathcal{N} \) scalar fields assist each other in driving an inflationary phase. In this manner, individual fields do not need to traverse a super-Planckian stretch in field space. The spectrum of masses in (5), which were assumed to be equal in [4], can be evaluated by means of in field space. The spectrum of masses in (5), which were largest masses are given by \(\langle m_i^2 \rangle = \tilde{m}^2 + \beta \tilde{m} \) and \(\tilde{m}^2 \) completely describe the distribution. The smallest and minima the fields have a potential of the form
\[m_{\text{min}} \equiv \tilde{m}(1 - \sqrt{\beta}), \]
\[m_{\text{max}} \equiv \tilde{m}(1 + \sqrt{\beta}). \]
In this paper we split the mass range \((m_{\text{min}}, m_{\text{max}})\) into \(\mathcal{N} \) bins,
\[(\tilde{m}_0, \tilde{m}_1), (\tilde{m}_1, \tilde{m}_2), \ldots, (\tilde{m}_{N-1}, \tilde{m}_N) \]
where \(\tilde{m}_0 = m_{\text{min}}, \tilde{m}_N = m_{\text{max}} \) and \(\tilde{m}_{i-1} < \tilde{m}_i \), so that
\[\int_{\tilde{m}_{i-1}^2}^{\tilde{m}_i^2} p(m^2) dm^2 = \frac{1}{N}, \quad i = 1, 2, \ldots, \mathcal{N}. \]
We then represent each bin \((\tilde{m}_{i-1}, \tilde{m}_i)\) by an inflaton of mass \(m_i \). In practice we simply set
\[\tilde{m}_i^2 = (\tilde{m}_{i-1}^2 + \check{m}_i^2)/2, \quad i = 1, 2, \ldots, \mathcal{N}, \]
in the numerical computations. Apart from the \(\mathcal{N} \) inflatons \(\varphi_1, \varphi_2, \ldots, \varphi_\mathcal{N} \) with masses \(m_1, m_2, \ldots, m_\mathcal{N} \), we introduce a fiducial inflaton \(\varphi_0 \) with mass \(m_0 = m_{\text{min}} \) for computational convenience (we shall use this as a clock). In \([12]\), \(\beta \) is identified with the number of axions contributing to inflation divided by the total dimension of the moduli space (Kähler, complex structure and dilaton) in a given KKLT compactification of type IIB string theory. Due to constraints arising from the renormalization of Newton’s constant \(\beta \sim 1/2 \) is preferred. Hence, we will work with \(\beta = 1/2 \) in the following. Further, the magnitude of \(\tilde{m} \) is constrained by the COBE normalization\([13, 43]\), so that there is not much freedom in \(\mathcal{N} \)-flation to tune parameters.

At this point, we introduce a convenient dimensionless mass parameter
\[x_i = \frac{m_i^2}{m_{\text{min}}^2}, \]
as well as the suitable short-hand notation
\[\xi = \frac{m_{\text{max}}^2}{m_{\text{min}}^2} = \left(\frac{1 + \sqrt{\beta}}{1 - \sqrt{\beta}} \right)^2. \]
A properly normalised probability distribution for the variable \(x = m^2/m_{\text{min}}^2 \) is \(\hat{p}(x) = m_{\text{min}}^2 p(m^2) \); hence expectation values with respect to the MP-distribution can be evaluated via
\[\langle f(x) \rangle = \frac{1}{N} \sum_{i=1}^{N} f(x_i) = \int_{1}^{\xi} \hat{p}(x) f(x) dx = \frac{(1 - \sqrt{\beta})^2}{2\pi \beta} \int_{1}^{\xi} \sqrt{(\xi - x)(x - 1)} f(x) x dx. \]
In section [14] and in appendix A we make use of the additional notation
\[\langle f(x) \rangle \bigg|_a^b = \frac{(1 - \sqrt{\beta})^2}{2\pi \beta} \int_{a}^{b} \sqrt{(\xi - x)(x - 1)} f(x) x dx \]
where \(a \) and \(b \) are the limits of integration. When \(f(x) \) is a polynomial in \(x \), \([14]\) reduces to a hypergeometric integral. In particular,
\[\langle x^{-1} \rangle = \xi^{-1/2}, \quad \langle 1 \rangle = 1, \quad \langle x \rangle = \frac{1}{(1 - \sqrt{\beta})^2}. \]
Fig.1 shows a plot of the probability distribution function \(\hat{p}(x) \), for \(\beta = 1/2 \).

Initially, we restrict ourselves to the slow roll approximation. As we have already seen, \(\mathcal{N} \) fields contribute to the energy density of the universe through a separable potential. In this regime, the dynamics of \(\mathcal{N} \)-flation is as follows: first note that the field equations and Friedmann equations can be written as
\[3H \dot{\varphi}_i \approx -\frac{\partial V_i}{\partial \varphi_i} = -V'_i, \]
\[3H^2 \approx W. \]
Here and throughout most of our analysis, we set the reduced Planck mass to \(M_P = (8\pi G)^{-1/2} = 1 \). The slow

\(^1\) For a different realization of assisted inflation based on M-theory from multiple M5-branes see [6, 41]. See also [12] for another approach to random potentials in the landscape.
III. EVOLUTION OF INFLATONS AND AN EFFECTIVE SINGLE FIELD MODEL DURING INFLATION

In this section we investigate the evolution of the axion fields after the slow roll condition is violated for one or more of them. In order to study the system’s collective behavior, it is useful to use an effective single field description \[^2\]. Given equal energy initial conditions for the fields, the slow roll parameter \(\eta_N\) of the heaviest field will be the first one to become of order unity \[^4\]. Hence, prior to this moment we can safely implement an effective model composed of a single field \(\sigma\) which evolves according to an effective potential \(W_{\text{eff}}(\sigma)\). After \(\eta_N\) became of order one, the corresponding field \(\varphi_N\) cannot be described by the slow-roll solution. Below we argue that in our particular model of \(\mathcal{N}\)-flation the whole system is nevertheless well approximated by the slow-roll solution, up until the slow-roll parameter \(\varepsilon\) of \[^6\] becomes of order one\(^2\); during this stage, the contribution of the heavy axions is negligible compared to that of the lighter fields. This is due to three characteristic features of the model: (1) the majority of the axions is distributed around the lightest mass in the MP law; (2) the small value of the heaviest fields is prescribed by the equal energy initial condition; hence, heavy fields provide a small contribution from the onset; (3) when the slow-roll condition \(\eta_i < 1\) is violated for the heaviest fields the Hubble parameter is still very large, resulting in an over-damped evolution of the heavy fields.

Naturally, it is possible to continue using the slow roll approximation when the next heaviest field violates slow roll and so on and so forth. This regime ends when slow roll fails for the effective single field \(\sigma\), after which light fields will actually start to evolve faster and preheating starts. It is important to note that we can trust our approximation up until preheating starts, where possible particle production due to non-linear parametric resonance is our main concern.

A. Effective single field model

Here we derive the effective single-field model based on the slow roll approximation. This provides a lower bound to the evolution of the total potential energy. We identify the effective inflaton field \(\sigma\) as the path-length of the trajectory in the \(\mathcal{N}\) dimensional field space; namely, for \(\mathcal{N}\) scalar fields \(\phi_i\) we have \[^2\]

\[
\sigma = \int_{t_\ast}^{t} \sum_{i=1}^{N} \dot{\phi}_i \phi_i dt ,
\]

\[^2\] Or the slow roll parameter of the effective degree of freedom in \[^6\].
with
\[\dot{\sigma}_i = \frac{\dot{\varphi}_i}{\sqrt{\sum_j \dot{\varphi}_j^2}}, \]
(25)
where the \(\dot{\varphi}_i \) can be computed given the dynamical relations in (22), which are valid during slow roll, as well as the initial conditions in (23). Note that \(\sigma = 0 \) at the initial time \(t_* \).

Using
\[y = \frac{\varphi^2_0}{\varphi^2}, \]
(26)
(where \(y \) parameterizes how far the field \(\varphi_0 \) rolls down its potential) and \(x_1 \) is defined in (12), as well as the equal energy initial conditions (29), we can rewrite the dynamical relations as
\[\varphi^2_i = \varphi^2_0 \frac{W_{x_i}}{x_i}. \]
(27)

We are using the fiducial inflaton \(\varphi_0 \) for computational convenience; \(\varphi_0 \) is not one of the \(N \) inflatons driving \(N \)-flation (note that there is a vanishing probability for \(m = m_0 = m_{\text{min}} \) according to the MP law). From the Klein-Gordon equations during slow roll along with the Friedmann equation we obtain \(\dot{\varphi}^2_i = m^2_{\text{min}} x_i \varphi^2_0 y^{x_i} / (3W) \), as well as \(dy = -(2m^2_0 y/\sqrt{3W}) dt \), with \(W = (1/2)m^2_0 \varphi^2_0 \sum_{i=1}^N y^{x_i} \). Using these relations in (24), we obtain an effective single-field solution (for which the subscript \(I \) is used),
\[\sigma_I(y) = \frac{-\varphi^*_0}{2} \int_1^y \left(\sum_{i=1}^N x_i s^{x_i} \right)^{1/2} ds \]
\[= \sqrt{\frac{N}{2}} \frac{\varphi^*_0}{\varphi_0} \int_1^y \sqrt{\langle s^{x_0} \rangle} ds, \]
(28)
where in the last step we used the definition of the MP-expectation values from (13). Similarly, the corresponding potential in (14) can be computed as
\[W_I(y) = \frac{1}{2} m^2_0 \varphi^2_0 \sum_{i=1}^N y^{x_i}, \]
\[= \frac{N}{2} m^2_0 \varphi^2_0 \langle y^{x} \rangle. \]
(29)

Equations (28) and (29) provide an implicit means of computing \(W_I(\sigma_I) \). The number of e-folds can also be computed with this approximation. From (21) we find,
\[N_I(y) = \frac{1}{4} \varphi^2_0 \sum_{i=1}^N \frac{1}{x_i} \left[\frac{y^{x_i}}{x_i} \right], \]
\[= \frac{N}{4} \varphi^2_0 \left[\langle x^{-1} \rangle - \langle x^{-1} y^{x_i} \rangle \right]. \]
(30)

Let us look at the solution more quantitatively. Since we assume the lightest possible inflaton to set off from the reduced Planck scale, \(\varphi^*_0 = 1 \). Then it follows from the equal energy initial conditions that all the other fields evolve safely within sub-Planckian scale. Here and in the following we use the preferred \(\beta = 1/2 \) so that the ratio of the heaviest to the lightest mass squared in (13) is about \(\xi \approx 34 \). The e-folding number (30) depends linearly on the number of inflations \(N \). If we take \(N = 1500 \) we get \(N_{\text{max}} \equiv N_I(0) \approx 64.3 \), which is large enough to solve the standard cosmological problems. Note, however, that one cannot trust (28) and (29) down to \(y = 0 \), since slow roll ends earlier. Strictly speaking, our effective single field solution (with subscripts \('I' \)) is only valid as long as the slow roll conditions are satisfied, that is until \(\eta_N = 1 \). Using (29) and \(m_N \approx m_{\text{max}} \) this can be written as
\[\langle y^{x} \rangle = \frac{2\xi}{N \varphi^2_0}, \]
(31)
from which the value of \(y \) at \(\eta_N = 1 \) is found numerically as \(y_N \approx 0.488 \) for \(N = 1500 \). The number of e-folds at this instant is \(N_I(y_N) \approx 55.6 \) and we see that there is still a breadth of inflation to come. If we ignore this fact, we could extrapolate \(\sigma_I \) up until this effective degree of freedom leaves its own slow rolling regime when
\[\sigma_o \equiv \frac{1}{2} \left(\frac{W_{\text{I}}'}{W_{\text{I}}} \right)^2 = 1. \]
(32)
This equation can be rewritten as
\[2 \langle xy^{x} \rangle = N \varphi^2_0 \langle y^{x} \rangle^2, \]
(33)
where we used
\[W_I' \equiv \frac{\partial W_I}{\partial \sigma_I} = \sum_{i=1}^N \sigma_i \frac{\partial V_i}{\partial \varphi_i} \]
\[= \sum_{i=1}^N \sigma_i m_i^2 \varphi_i \]
\[= m_0^2 \varphi_0 \sqrt{N} \langle xy^{x} \rangle. \]
(34)

Equation (33) can be numerically solved to obtain \(y_{\text{end}} \approx 0.0836 \) for \(N = 1500 \) so that \(\sigma_I(y_{\text{end}}) \approx 17.6 \) and \(N_I(y_{\text{end}}) \approx 63.8 \). At this point inflation comes to an end and preheating is about to commence. The potential at this instant is \(W_I(y_{\text{end}}) \approx 0.128 \bar{m}^2 \approx 1.49 m_0^2 \) (see Table 1).

B. Implications for non-Gaussianities

In contrast to single-field inflationary models, in which non-Gaussianities (NG) are known to be suppressed, in multi-field models there is a possibility that NG may become large due to the existence of isocurvature perturbations (47); if there is a sudden turn of the trajectory in field space as in the case of the curvaton scenario, a
conversion of isocurvature perturbations into adiabatic ones takes place, giving rise to larger NG. In N-flation the non-linearity parameters characterizing the bi- and tri-spectrum were investigated in the horizon crossing approximations in [14] and it was found that N-flation is indistinguishable from single field inflationary models in this limit. Also, incorporating the evolution of perturbations after horizon crossing, but still within slow roll, revealed that additional contributions remain negligible [19]. Hence, NG are expected to be heavily suppressed as long as slow roll is considered [40]. In the present paper we investigate the evolution in N-flation after the slow roll condition is violated for one or more of the axion fields and find (see the next sections) that the extrapolated slow-roll solution remains a good approximation up until preheating commences. Thus, in this intermediate regime (after slow roll inflation but before preheating), NG should also be suppressed; additional NG would be due to the evolution of the adiabatic mode after horizon crossing: for this to occur, isocurvature modes have to source the adiabatic one, but in N-flation, the trajectory in field space is smooth; therefore, NG should be heavily suppressed up until slow roll fails for the effective single degree of freedom, i.e. when preheating begins. During preheating NG may still appear; this requires further study, and we hope to come back to this issue in the near future.

C. Numerical solutions

Fig. 2 shows the time evolution of $N = 1500$ axions in our setup, namely the MP mass distribution with $\beta = 0.5$ and the equal energy initial conditions, obtained numerically. The plot shows φ_i with $i = 1, 300, 600, 900, 1200$, and 1500. For the initial conditions we used [23] with $\varphi_0^i = 1$ and $\varphi_1^i = 0$. Due to these initial values, lighter axions evolve from larger values, closer to 1. The figure clearly shows that heavy axions, even φ_{300}, roll down the potential rapidly and their oscillation amplitudes are much smaller than that of the lightest field φ_1. Indeed, fields are usually over-damped up until preheating starts. Naturally, the lighter fields are expected to be responsible for preheating (unless the coupling between the heavy fields and a matter field is extremely strong).

In Table I we summarise the values of W and N obtained by the extrapolated slow-roll solutions (I) and numerical results, at $\sigma = \sigma(y_N)$ and $\sigma(y_{end})$. A comparison between the analytic and numerical computation for $N = 100, 200, 400, 1500$ reveals an agreement, roughly within 15%, indicating that the extrapolated slow-roll solution (I) is a good approximation up until y_{end}. In Appendix A we provide a semi-analytic computation of an upper bound to W (solution II), which further supports this observation. How many inflatons still satisfy the slow-roll condition $\eta_i < 1$ at y_{end}? This can be found by comparing the values of $W(y_{end})/m_0^2$ and the mass parameter x_i, since $\eta_i = m_0^2/W = x_i/m_0^2/W$. Numerically, we find that 13, 18, 25, 56 lightest fields are still in the slow-roll regime at $y = y_{end}$, for $N = 100, 200, 400, 1500$. Analytically, solution I yields somewhat smaller values: 10, 13, 18, 41, respectively.

![Figure 2](image-url)

FIG. 2: Evolution of the axion fields for $N = 1500$ (numerical result). The figure shows φ_i with $i = 1, 300, 600, 900, 1200, 1500$ from the top. The time $t = m_0 t$ is in units measured by the fiducial mass $m_0 = m_{	ext{min}}$. In this unit, $y = y_N$ is at $t = 7.14$ and $y = y_{end}$ is at $t = 11.6$.

N	y_N	y_{end}	$\sigma_i(y_N)$	$\sigma_i(y_{end})$	$W_i(y_N)$	$N_i(y_N)$	$W_i(y_{end})$	$N_i(y_{end})$
100	0.964	0.541	34.0	0.758	34.0	1.10	2.83	4.34
200	0.879	2.00	34.0	3.72	34.3	4.14	2.27	8.83
400	0.762	4.37	34.0	10.9	34.4	11.4	1.95	17.6
1500	0.488	12.86	34.0	55.6	34.4	56.3	1.62	65.1

TABLE I: Comparison of analytic and numerical solutions for the effective single-field values W and N at $\sigma(y_N)$ and $\sigma(y_{end})$, for the number of inflatons $N = 100, 200, 400$, and 1500. The values of σ_i are found using (23) and the corresponding analytic and numerical values for W/m_0^2 and N are shown. Apart from the conspicuous disagreement in the e-folding number N for small N, the extrapolated slow-roll solutions (I) are relatively in good agreement with the numerical solutions, roughly within 15% difference. Typically, the results of solution (I) slightly underestimate the potential W.

D. Light axion dominance

From Fig. 2 we can infer that heavy fields lose energy quite rapidly and that the later stage of N-flation is driven solely by the light fields. To see this quantitatively let us introduce the ratio of the potential energy
of ℓ lightest fields to that of all N fields, defined by

$$R_\ell = \frac{W_{\text{light}}}{W_{\text{total}}} = \frac{\sum_{i=1}^{\ell} V_i}{\sum_{i=1}^{N} V_i}. \quad (35)$$

Using the extrapolated slow-roll solution (I), this ratio can be evaluated as

$$R_\ell^I(y) = \frac{\sum_{i=1}^{\ell} \langle y^{x_i} \rangle}{\sum_{i=1}^{N} \langle y^{x_i} \rangle} = \left(\frac{\langle y^{x} \rangle}{\langle y^{x} \rangle} \right)^{\frac{\ell}{\lambda}}. \quad (36)$$

The ratio of the number of light fields to all fields is similarly

$$\lambda \equiv \frac{N}{N} = \langle 1 \rangle \left| \frac{\tilde{\xi}}{1} \right. \quad (37)$$

Fig. 3 shows $R_\ell^I(y)$ versus λ and y. Note that this plot does not depend on N (however y_N and y_{end} do depend on N). For small y (i.e. at late time), R_ℓ^I approaches 1 for even small values of λ, indicating that the potential energy is dominated by light axions.

Table I summarizes the amount of the total potential energy carried by the lightest 10% of the axions at $\sigma = \sigma(y_{\text{end}})$, for $N = 100, 200, 400, 1500$. These values are calculated using both, solution I and numerical computations. The results clearly show that for large N, the potential energy is carried by only a small portion of lightest axion fields. Using (36), it is not difficult to check that this tendency becomes stronger when N is larger. This in turn justifies our usage of the approximation given by solution I, which corresponds to using slow roll for all fields, even if the slow roll condition $\eta_i < 1$ is violated for the majority of fields; all in all, heavy fields do not contribute much to the total potential energy, and henceforth inflation.

N	solution I	Numerical
100	62.9	63.3
200	78.4	80.0
400	88.0	89.9
1500	96.5	97.5

Table II: The ratio of the potential energy carried by the lightest axions (10%) with respect to the total potential energy, evaluated at the end of slow-roll regime $\sigma = \sigma(y_{\text{end}})$. The table shows both semi-analytic and numerical results.

IV. PREHEATING

Now let us discuss the physics of preheating. In order to solve problems of the standard big-bang cosmology the number of e-foldings must be large enough; with this in mind, we assume $N = 1500$ in the following. If we forget about its string theoretical origin (which we do in this paper), N can be even larger, giving rise to a (harmless) larger number of e-folds. Our choice of N is for definiteness, and also for numerical tractability.

A. The model of preheating

We first recall that the axion mass scale is observationally constrained. The power spectrum for multi-field models is computed by the δN-formalism [48] and for δN-flation it becomes [13, 45]

$$P_R = \sum_i \frac{m_i^2 \varphi_i^2}{96\pi^2 M_P^2} \sum_j \varphi_j^2 \langle y^x \rangle \langle x^{-1} y^x \rangle, \quad (38)$$

where in the second line the MP distribution and equal energy initial conditions have been used. To be specific, if we evaluate P_R at $t = t_*$ (corresponding to large scales) we obtain

$$P_R = \frac{N^2 m_0^2 \varphi_0^4}{96\pi^2 M_P^2} \langle x^{-1} \rangle. \quad (39)$$

Comparing this with $P_R \approx 2.3 \times 10^{-9}$ from WMAP measurements [49, 50, 51], we find the mass of the lightest field

$$m_0 \approx 2.4 \times 10^{-6} M_P, \quad (40)$$
for $\mathcal{N} = 1500$, $\beta = 0.5$ and $\varphi_0^* = M_P$. Consequently, the average mass is $\bar{m} = m_0/(1 - \sqrt{\beta}) \approx 8.1 \times 10^{-6} M_P$. In what follows, we assume these values for the mass parameters; all other masses follow via the MP-distribution.

In the previous section we have seen that the late stage of \mathcal{N}-flation is mainly driven by a few light axions; we naturally expect that preheating is triggered by these lightest axions, coupled to a matter field, at least before back reaction becomes important. Thus, in this section we focus on the relevant scenario of $\mathcal{N} = 150$ light axions, which carry more than 95% of the total potential energy at $y = y_{\text{end}}$. It is important to note at this point that the relevant mass scale for preheating is set by the mass of the light fields and not the average mass \bar{m}. For the matter into which the inflatons decay, we consider a massless bosonic field χ coupled to the axions via the coupling $\frac{1}{2} g^2 \varphi^2 \chi^2$, where we assume for simplicity an identical coupling constant to each φ_i. The model we consider is then described by the following Lagrangian,

$$\mathcal{L} = -\sum_{i=1}^{\mathcal{N}} \left\{ \frac{1}{2} g^{\mu
u} \partial_\mu \varphi_i \partial_\nu \varphi_i + \frac{1}{2} m_i^2 \varphi_i^2 + \frac{1}{2} g^2 \varphi_i^2 \chi^2 \right\} - \frac{1}{2} g^{\mu
u} \partial_\mu \chi \partial_\nu \chi. \quad (41)$$

The equations of motion are

$$\ddot{\varphi}_i + 3H \dot{\varphi}_i + (m_i^2 + g^2 \langle \chi^2 \rangle) \varphi_i = 0, \quad (42)$$

$$\ddot{\chi}_k + 3H \dot{\chi}_k + \left(\frac{k^2}{a^2} + g^2 \sum_i \varphi_i^2 \right) \chi_k = 0, \quad (43)$$

$$3H^2 = \frac{1}{2} \sum_i \dot{\varphi}_i^2 + \frac{1}{2} \sum_i m_i^2 \varphi_i^2 + \frac{1}{2} \langle \chi^2 \rangle + \frac{1}{2} g^2 \langle \chi^2 \rangle \sum_i \varphi_i^2, \quad (44)$$

where χ_k is the mode operator of the matter field and $\langle \cdot \rangle$ is the mode sum over k. We consider the axions and gravity as the background, and ignore backreaction from the matter field χ_k; consequently, $\langle \chi^2 \rangle$ and $\langle \varphi_i^2 \rangle$ are set to zero.

B. Parametric resonance in the equal-mass case

Before addressing the more involved preheating scenario of \mathcal{N}-flation, we discuss a model with $\mathcal{N} = 150$ inflatons having the same mass, $m_i \equiv m$.

In this case, the equal energy initial conditions set the same initial values for all \mathcal{N} axions, so that the evolution of the \mathcal{N} axions is identical. Neglecting backreaction of the matter field we can write the equations of motion as,

$$\ddot{\varphi}_i + 3H \dot{\varphi}_i + m^2 \varphi_i = 0, \quad (45)$$

$$\ddot{\chi}_k + 3H \dot{\chi}_k + \left(\frac{k^2}{a^2} + \mathcal{N} g^2 \varphi_i^2 \right) \chi_k = 0, \quad (46)$$

$$3H^2 = \frac{\mathcal{N}}{2} \left(\dot{\varphi}_i^2 + m^2 \varphi_i^2 \right). \quad (47)$$

Defining $\varphi \equiv \sqrt{\mathcal{N}} \varphi_i$, the equations of motion reduce to those of the well-understood single field model, yielding non-perturbative preheating $\frac{3}{2} - 2 \frac{24}{25} \frac{27}{25} 52$. The Klein-Gordon equation for φ reads

$$\ddot{\varphi} + 3H \dot{\varphi} = -m^2 \varphi, \quad (48)$$

whose solution is approximated during the preheating era by

$$\varphi(t) = \Phi(t) \sin(mt), \quad (49)$$

where $\Phi(t) = \sqrt{8/(3mt)}$ is a slowly decaying amplitude due to Hubble friction. The corresponding equation for a Fourier mode of the matter field reads

$$\ddot{\chi}_k + 3H \dot{\chi}_k + \left(\frac{k^2}{a^2} + g^2 \varphi^2 \right) \chi_k = 0, \quad (50)$$

where we also neglected the term proportional to the pressure, $-(3/4)(H^2 + 2a/\dot{a})$. If we ignore the time dependence of the amplitude Φ in q and of A_k, Eq. (49) is the Mathieu equation. It is known that parametric resonance occurs for wavenumbers k within resonance bands (see $[25, 53]$, for the stability/instability chart). This means if k is within the nth resonance band, the corresponding mode increases exponentially

$$X_k \propto e^{\mu_k^{(n)} t}, \quad (51)$$

where $\mu_k^{(n)} > 0$ is the Floquet index $[53]$. Physical parameters correspond to the region $A_k \geq 2q$ and, in particular, the zero mode $k = 0$ evolves along the $A_k = 2q$ line from large q to $q \sim 0$, as the inflaton amplitude Φ decays slowly. As it evolves, the system crosses resonance bands where exponential particle production takes place. Particle production is efficient in the large q ($q \gg 1$) region, broad resonance (or stochastic resonance when expansion effects are included). For small q the resonance effect is limited as it is not strong enough to hold against redshifting $\chi_k \propto a^{-3/2}$. Then the main concern is whether it is possible to have a large enough q in a given model. A stringent constraint comes from radiative corrections, restricting the value of the coupling to $g \lesssim 10^{-3} [25, 39]$.

From the above discussion it can be deduced that having many inflatons does not increase q, and resonance effects are not enhanced. Given that the equations of motion lead to the one of the single field model, $\varphi = \sqrt{\mathcal{N}} \varphi_i$ starts oscillating from the single field value $\sim 0.2 M_P$. Each inflaton φ_i oscillates with smaller amplitude $\Phi/\sqrt{\mathcal{N}}$, while q is unaltered. In the next subsection,
we compare the equal mass case to a broader mass distribution (MP mass distribution). To this aim, we provide numerical plots. In Fig. 4, we show the evolution of the oscillating term φ^2 in the equal mass case, where we have chosen $N = 150$, $m = m_0 = 2.4 \times 10^{-6} M_P$. The initial values of φ_i are all taken to be $M_P = 1$, and the initial velocities are $\dot{\varphi}_i = 0$. In Fig. 5 the evolution of the matter field mode function χ_k and the comoving occupation number of particles, defined by

$$n_k = \frac{1}{2} \left(\frac{\dot{X}_k}{\omega_k} + \omega_k |X_k|^2 \right) - \frac{1}{2},$$

are shown for $g = 10^{-3}$ and $k/a_{init} = 6.0 \times m$ (corresponding to a fastest growing mode, see [25]). Here,

$$\omega_k = \sqrt{\frac{k^2}{a^2} + g^2 \sum_i \varphi_i^2},$$

which reduces to $\sqrt{k^2/a^2 + g^2 \varphi^2}$ in the present case. The condition on the resonance parameter $g = g^2 \Phi^2/4 \pi^2 \geq O(1)$ corresponds to $|\varphi|^2 \gtrsim 10^{-5}$ for $g = 10^{-3}$, which is roughly $\tau \lesssim 4000$. We are ignoring both, backreaction and rescattering effects. The corresponding plots for the Marčenko-Pastur distribution are shown in Figs. 6 and 10 below.

C. Numerical results for the Marčenko-Pastur case

Let us turn to the question of multiple fields whose masses obey the MP law. The equations of motion of our system are [12, 13, 14]: we are assuming that all inflaton fields are coupled to the same matter field with identical strength g^2, and we consider only $N = 150$ axions since the heavier 90% of the axions are negligible in the later stage of N-flation. We also ignore backreaction, meaning we set $\langle \chi^2 \rangle = \langle \varphi^2 \rangle = 0$ (which, in the end, is justified since amplification of the matter field is found to be suppressed). The initial values and the velocities of the axions at the onset of preheating $y = y_{end}$ corresponds to the extrapolated slow-roll solution, discussed in Section III

$$\varphi_i(y_{end}) = \varphi_0^* \sqrt{\frac{y_{end}^i}{x_i}},$$

$$\dot{\varphi}_i(y_{end}) = -m_0^2 \varphi_0^* \sqrt{\frac{x_i y_{end}^i}{3W_{1}(y_{end})}}.$$

The initial conditions for the matter field is set by the positive frequency mode function, $X_i(t) = a^{3/2} \chi_k(t) \approx e^{-i \omega_k (t - t_{end})/m_0} / \sqrt{2 \omega_k}$, at $\tau = \tau_{end}$ = 11.6 corresponding to the onset of the preheating stage $y = y_{end}$.

Short time scale behavior: Fig. 6 shows the evolution of $\sum_i \chi_i^2$ until $\tau = 50$. The horizontal axis used here is the dimensionless time $\tau = m_0 t$. Clearly, the axion masses are all different in the Marčenko-Pastur distribution.

FIG. 4: The evolution of the oscillating term φ^2 that drives parametric resonance. The horizontal axis is the dimensionless time $\tau = m_0 t$. Since $\varphi = \sqrt{N} \varphi_i$, and φ_i are chosen to start from $M_P = 1$, φ^2 starts from $N = 150$ at $\tau = 0$.

FIG. 5: The evolution of (the real part of) the mode χ_k (a) and the occupation number n_k (b). The initial conditions for χ_k are set by the positive-frequency solution at $\tau = 13.5$, when the slow-roll conditions break down. The coupling constant is $g = 10^{-3}$ and the wavenumber is chosen as $k/am = 6.0$ at $\tau = 13.5$. One can see amplification due to typical stochastic resonance, i.e. the overall amplitude grows exponentially while there are occasional decreases of the amplitude. We are ignoring backreaction so that resonances are present until $g \approx O(1)$, corresponding to $\tau \approx 4000$ for $g = 10^{-3}$. Backreaction from the matter field shuts off resonances earlier.
Pastur case, resulting in a somewhat different evolution of the \(\sum_i \varphi_i^2 \) term from the equal-mass case. We can see that the oscillations are more obtuse compared to Fig.4; this is a consequence of dephasing of the axion oscillations owed to relative mass differences. As the time-dependent mass term oscillates, some resonance effects for the dynamics of \(\chi_k \) are expected. This is indeed the case, at least to some extent. Fig.7 (a) shows the time evolution of the matter field mode function \((g = 10^{-3} \text{ and } k/am_0 = 6.0 \text{ at } \tau = \tau_{\text{end}}, \text{as in the previous section}) \). The temporal enhancement of the amplitude (which is clearly seen for small \(\tau \) but becomes weaker for large \(\tau \)) is caused by parametric resonance with (the collective behavior of) the axions. In contrast to the equal-mass case, the amplitude of \(\chi_k \) decreases on average; the resonance effect is not strong enough to resist dilution due to cosmic expansion, even when the coupling constant is as large as \(g \sim 10^{-3} \).

One can separate out the effect of cosmic expansion by looking at the comoving field \(X_k = a^{3/2} \chi_k \). The equation of motion for \(X_k \) is

\[
\ddot{X}_k + \left[\frac{k^2}{a^2} + g^2 \sum_i \varphi_i^2 - \frac{3}{4} (2\dot{H} + 3H^2) \right] X_k = 0, \quad (55)
\]

where the last term in the square bracket is proportional to the pressure and is very small during reheating. Fig.7 (b) shows the numerical plot of the evolution of \(X_k \). We can see that the peaks occur when \(\sum_i \varphi_i^2 \) of Fig.6 reaches local minima, and \(\dot{\omega}_k/\omega_k^2 \) becomes large (see Fig.5), i.e. when the system becomes less adiabatic; this is characteristic of parametric resonance. In contrast to the equal-mass case, the minima of the mass term do not approach zero due to dephasing, caused by the relative mass differences of the axion fields. This yields relatively small \(\dot{\omega}_k/\omega_k^2 \) and makes preheating inefficient.

One can see that the amplitude of \(X_k \) exhibits power-law like growth on average. This growth does not necessarily mean production of particles, since it is mainly due to redshift [25]. When \(k \) is large the power \(X_k \sim a^7 \) tends to \(\gamma \approx 0.5 \), which is understood as follows: in the mass term of \((55) \), \(k^2/a^2 \) is dominant and it stays dominant since \(a^{-2} \sim t^{-4/3}, \varphi_i^2 \sim t^{-2}, \dot{H} \sim t^{-2} \text{ and } H^2 \sim t^{-2} \text{ as } a \sim t^{2/3} \text{ during preheating}. \) Then \((55) \) becomes

\[
\ddot{X}_k + C t^{-4/3} X_k = 0 \text{ for some constant } C, \text{ which is exactly soluble in the form of } X_k \sim t^{\alpha} F(t) \text{ where } F(t) \text{ is a fast oscillating function; discarding the decaying solution we find } \gamma = 3\alpha/2 = 0.5. \text{ For smaller } k, X_k \text{ grows faster than } \sim a^{0.5}; \text{ for } k \approx 0 \text{ we find } \sim a^{0.75} \text{ numerically.}
\]

Long time scale behavior: in the equal-mass model (see section 4.2), with a large enough value of \(g \), the resonance parameter is \(g \gg 1 \) and resonances arise for reasonably long time scales, specifically, up until \(\tau \approx 4000 \text{ for } g = 10^{-3} \) (ignoring backreaction). Similarly, in the MP case, even though there

Fig. 6: The evolution of the term \(\sum \varphi_i^2 \) that couples to the matter field. The time is as in Fig.4. Oscillations are less sharp than in the equal-mass case, Fig.4.

Fig. 7: (a) The evolution of the mode function of the matter field \(\chi_k \), in \(N \)-flation using the MP mass distribution. The coupling is \(g = 10^{-3} \) and the wavenumber is chosen as \(k/am_0 = 6.0 \text{ at } \tau = \tau_{\text{end}} = 11.6. \) (b) The evolution of \(X_k = a^{3/2} \chi_k \) for the same parameters. There are wiggles in the oscillation amplitude (these are evident for small \(\tau \) and become smaller for larger times) indicating some effect of parametric resonance. This resonance is, however, not strong enough and the amplitude of \(\chi_k \) decays on average.
is no well-defined q-parameter, resonances can ensue during short time intervals for large τ, again assuming a similar large coupling g. In this case, the collective behaviour of the axions is crucial and the adiabaticity parameter $\dot{\omega}_k/\omega_k^2$ shows a rather complicated behaviour (see Fig. 10 (a)). Since the mass differences between the neighbouring axions in \mathcal{X} with $N = 1500$ is typically of order of $\Delta m^2 \approx \mathcal{O}(10^{-2}) \times m_0^2$, once dephased, the axions’ collective oscillations return to near-coherence in time scales of order $\Delta \tau \approx \mathcal{O}(10^2)$, causing beats in the effective mass for χ_k (see Fig. 10 (b)). In Fig. 10 we show the evolution of χ_k until $\tau = 2000$ (a), and the evolution of the comoving occupation number n_k calculated for X_k (b). In this example, there is some amplification due to parametric resonances around $\tau \approx 450$. On these time scales, for $g > 10^{-3}$ and small k, we find the occasional amplitude enhancement of a few orders of magnitude. For larger wavenumbers ($k/am_0 > 10^4$ at $\tau = \tau_{\text{end}}$) we find somewhat different behaviour of n_k. The overall amplitude of $\dot{\omega}_k/\omega_k^2$ becomes smaller but the spikes at large τ remain. Consequently, the bursts at $\tau \approx 450$ disappear and the late time dynamics is dominated by a random-walk like behaviour. These resonance effects are, however, not frequent or long enough to dominate preheating.

To summarize, we saw that preheating of a single matter field is not due to explosive particle production in \mathcal{N}-flation; even though there is some amplification, it is too weak in small time scales and not very frequent in large time scales, to compete with the dilution due to Hubble expansion. We have also studied parameters not presented above, including larger values of the coupling g; for $g = 3 \times 10^{-3}$ the resonance is barely sufficient to compete with the Hubble expansion. For the MP parameter $\beta = 0.7$ and 0.9, we found similar results (inefficient resonance). The physical reason for the suppression of parametric resonance can be understood as follows: the axions are all out of phase, averaging out each other’s contribution, so that the driving term $\propto \sum \varphi_i^2$ in the equation of motion for χ_k does not provide a coherent oscillatory behavior that is needed for efficient parametric resonance. Hence, instead of an exponential increase, we observe power-law like behavior $\sum \varphi_i^2$ in time scales $\tau \lesssim 200$, where γ is typically between 0.5 and 0.75 for the parameter region we have studied. For longer time scales $\tau \approx 200$ to 6000, we find occasional particle production, although these are not strong enough to dominate preheating. This conclusion differs from the common lore, namely, that parametric resonance effects are crucial for preheating.

![Graph](image_url)

FIG. 8: The adiabaticity parameter $\dot{\omega}_k/\omega_k^2$, for $\tau \lesssim 50$. The slight negative shift is due to the cosmic expansion.

FIG. 9: (a) The long time scale behaviour of the adiabaticity parameter $\dot{\omega}_k/\omega_k^2$. (b) The sum of axions’ squared amplitudes $\sum \varphi_i^2$, for the time scale $\tau = 200$ to 600. The coupling g and the wavenumber k are the same as in Fig. 7.

V. CONCLUSIONS

In this paper we studied the late time dynamics of \mathcal{N}-flation, a string motivated realization of assisted inflation, assuming the Marčenko-Pastur mass distribution (arising from random matrix theory) and equal-energy initial conditions at the onset of slow roll inflation. We provided analytic and numerical calculations of the intermediate phase after the slow roll conditions are violated for heavy fields, but before preheating commences. We find that the majority of the energy at the onset of preheating is carried by the axions with light masses, be-
cause $\sim 90\%$ of the energy is carried by only $\sim 10\%$ of the fields. Thus, only these light fields need to be taken into account during preheating. To study preheating, we coupled a single massless bosonic matter field χ to the axions φ_i, assuming the same coupling constant g^2 between χ and φ_i. Within this setup, we solved for the evolution of the matter field numerically, including the expansion of the universe, and found power-law like behavior in short time scales and occasional, not very frequent resonance amplifications in long time scales in the parameter region that would give rise to stochastic resonance in single field models. In particular, the growth of the matter field is generically not strong enough to resist redshifting due to cosmic expansion. As a result, the old theory of perturbative preheating (see e.g. [22]) applies to this scenario and not parametric resonance models. The outcome is desirable for the model, as there is no danger of producing unwanted relics. The prediction of this model is hence rather different from the accepted view that parametric resonance effects are crucial for preheating [3].

Further, we have ignored back reaction and rescattering during preheating, since modifications due to these two effects should be minor. Explosive χ-particle production due to parametric resonance is irrelevant in N-flation, as argued above, so that $\langle \chi^2 \rangle$ remains small; in addition, their inclusion would only diminish resonance effects further.

FIG. 10: (a) Long time behavior of χ_k, exhibiting short lived, weak resonances around $\tau \approx 450$. The choice of parameters is the same as in Fig. 7. (b) The comoving occupation number n_k calculated for X_k.

ACKNOWLEDGMENTS

We thank Thorsten Battefeld and Richard Easther for early discussions motivating this work, as well as helpful conversations with Shinta Kasuya. We also thank Kari Enqvist and Dmitry Podolsky for helpful comments. D.B is supported by the EU FP6 Marie Curie Research and Training Network “UniverseNet” (MRTN-CT-2006-035863). S.K is supported by the Academy of Finland Finnish-Japanese Core Programme grant 112420. Some of the numerical calculations were carried out using computing facilities at the Yukawa Institute, Kyoto University.

APPENDIX A: FURTHER ANALYTIC ESTIMATES

In section III A we developed a semi-analytic solution (I) which underestimates the numerical values of the potential energy W (see Table I). Here we present a second analytic approximation, which we call solution (II), that might change the scenario. For instance, it is argued in [33, 38] that the oscillations of multiple inflatons (with irrational mass ratios) can enhance drastically the decay rate (Cantor preheating). This argument is based on two pillars: first, theorems in spectral theory indicate that stability bands vanish [33, 34, 38] in the case of more fields whose masses are not related by rational numbers. Second, numerical evidence in two field models indicate a slight enhancement of particle production for well chosen parameters [38]. In the latter study of Cantor preheating, dephasing of fields is unimportant since only two fields are considered. Nevertheless, an enhancement effect like in Cantor preheating cannot be excluded in N-flation, especially if only a few axions couple to a given matter field.

Besides Cantor preheating, we would like to comment on yet another effect. It has been shown in [51, 52] that noise on top of an oscillating driving force can also enhance resonant particle production [3]. This phenomenon could also occur in multi-field inflation, if preheating is dominated by one or two fields: the oscillations of the many other fields would then act similar to noise, potentially enhancing preheating.

Further, we have ignored back reaction and rescattering during preheating, since modifications due to these two effects should be minor. Explosive χ-particle production due to parametric resonance is irrelevant in N-flation, as argued above, so that $\langle \chi^2 \rangle$ remains small; in addition, their inclusion would only diminish resonance effects further.

APPENDIX A: FURTHER ANALYTIC ESTIMATES

In section II A we developed a semi-analytic solution (I) which underestimates the numerical values of the potential energy W (see Table I). Here we present a second analytic approximation, which we call solution (II), that
gives an upper bound for W after the slow roll condition for the heaviest field is violated, to check the numerical solution in Table I. In addition, both analytic solutions can be used for arbitrarily large numbers of fields that would not be tractable via a brute force numerical integration.

The basic idea consists of holding fixed heavy fields as soon as the corresponding η becomes of order one: first, we take the continuum limit so that we can make use of the Marčenko-Pastur law for the continuous mass variable $1 \leq x \leq \xi$. Second, we partition this interval into $\cal M$ bins according to a simple rule and denote the upper boundaries of bins with X_A, $A = 1, \ldots, \cal M$, so that $X_\cal M = \xi$. Third, whenever η_A (corresponding to some X_A) becomes of order one, we hold fixed all fields with masses in the Ath bin. Naturally, one recovers the full microscopic model if one takes $\cal M = \cal N$ and uses the Marčenko-Pastur law as a rule for choosing the bins so that $X_A = \bar{m}_A^2/m_0^2$.

Taking $\cal M < \cal N$ leads to a coarse-grained model which is more tractable, but one pays the price of having a larger W. This approximation is justified as long as the energy left in the heavy fields is small compared to the energy in the light fields; $\cal M \sim 50$ suffices for the range of y-values that we are interested in.\footnote{Note, generically $\sigma_I(y) \neq \sigma_{II}(y)$ because firstly, a number of fields are artificially held fixed and no longer contribute to the path length σ, and secondly, the total potential energy is bigger so that light fields evolve slightly slower. Only small corrections result, since fixed fields are already near the minimum of their potential, not contributing much to σ anyhow. Moreover, we demand $R < 1$. Consequently, we have $y_{II} \sim y_I$ and $\sigma_{II} \sim \sigma_I$.
}

We now proceed to compute W_{II}, σ_{II} and N_{II} as outlined above. We assume first a partition $\{X_1, \ldots, X_\cal M\}$ of the interval $1 \leq x \leq \xi$ and denote with Y_A the values of y where $\eta_{\cal M-A+1} = 1$ (note that $Y_A < Y_B$ if $A > B$). If we further denote the energy W_I that is valid in the range $Y_A < y < Y_{A-1}$ with W_A, we can calculate the corresponding Y_A as the solution to

$$W_A(Y_A) = m_0^2 X_{\cal M-A+1},$$

starting with $W_1 \equiv W_I$. Note that $Y_1 = y_{\cal N}$ from (31), as it should. We can then compute W_A for $A \geq 2$ to

$$W_A(y) = \frac{N}{2} m_0^2 \varphi_0^2 \left(\langle y^2 \rangle^{X_{\cal M-A+1}}_1 + \sum_{n=1}^{A-1} \langle y^{2n} \rangle^{X_{\cal M-n+1}}_{X_{\cal M-n}} \right).$$

Similarly, if we denote with σ_{II} the effective field which is valid in the range $Y_A < y < Y_{A-1}$ (so that $\sigma_1 = \sigma_I$), we arrive at

$$\sigma_{II}(y) = \sigma_{A-1}(Y_{A-1}) + \sqrt{\frac{N}{2}} \varphi_0 \int_{y}^{Y_{A-1}} \frac{1}{8} \langle x^2 \rangle^{X_{\cal M-A+1}}_1 ds \quad \text{(A3)}$$

and finally the number of e-folds becomes (with $Y_0 = 1$)

$$N_A(y) = N_{A-1}(Y_{A-1}) + \int_{y}^{Y_{A-1}} \frac{W_A(s)}{2m_0^2} ds. \quad \text{(A4)}$$

In an appropriate large $\cal M$-limit the above approximation becomes independent of the partition, which is of course our aim. We would like to use W_I up to when W_I is no longer a viable lower bound for the true energy W_I that is, until $\sigma \approx \sigma_I(y_{\text{end}})$. This is possible by tuning X_1 such that $\sigma_{II}(Y_\cal M) \approx \sigma_I(y_{\text{end}})$.\footnote{We choose X_1 as large as possible so that $R < 1$, while keeping X_1 small enough to ensure that the solution (II) remains applicable up until σ_I leaves slow roll; thus we demand $\sigma_{II}(Y_\cal M) \approx \sigma_I(y_{\text{end}})$, leading to $X_1 = 1.75$ for $\cal N = 1500$. Simultaneously, to distribute the remaining bins, we choose $(\cal M - 2)/2$ narrow bins from X_1 to $X_{\cal M/2} \approx 11$ (the MP distribution peaks in that region), followed by larger bins up to $X_\cal M = \xi \approx 34$. For $\cal N = 1500$ even $\cal M \leq 50$ yield results insensitive to the chosen partition.}

That way, the energy ratio of heavy to light fields becomes

$$R \equiv \frac{W_{\text{heavy}}}{W_{\text{light}}} = \frac{\sqrt{\frac{2}{m_0^2}} W_I(Y_\cal M) - \langle Y^{2n} \rangle^{X_{\cal M}}_{Y_1}}{\langle Y^{2n} \rangle^{X_{\cal M}}_{Y_1}} \quad \text{(A5)}$$

which has to be smaller than one (see Table III), so that we can trust our approximation.

We compare (I) and (II) solutions in Table III where we also vary the number of fields. The solutions approach each other in the large $\cal N$ limit. Henceforth, the numerical solution is well approximated by either one in the case of $\cal N$-flation, where we deal with thousands of fields, and consequently, we are justified to use the slow roll approximation to set the initial stage for preheating.
