Protective immunity against tuberculosis: what does it look like and how do we find it?
Lu Huang and David G Russell

Progress towards the development of an effective vaccine against tuberculosis is hampered by the lack of correlative readouts of immune protection, coupled with our limited understanding of the immune mechanisms that determine disease progression versus containment. In this article we discuss the value of microbial readouts of bacterial fitness to probe the host immune environments and determine those host cell subsets that promote or control bacterial growth. Ultimately, we feel that these bacterial reporters will prove to be key in understanding the immune mechanisms underpinning disease outcome, and that this knowledge is critical to any program developing vaccines or immune-modulatory therapeutics as a means of controlling tuberculosis.

Address
Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States

Corresponding author: Russell, David G (dgr8@cornell.edu)

Current Opinion in Immunology 2017, 48:44–50
This review comes from a themed issue on Host pathogens
Edited by Marc Pellegrini and Liz Hartland
For a complete overview see the Issue and the Editorial
Available online 18th August 2017
http://dx.doi.org/10.1016/j.coi.2017.08.001
0952-7915/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction
The absence of measurable protection in the MV85A anti-TB vaccine trial population was reported in early 2013 [1]. This outcome forces us to acknowledge that we lack some of the most basic tools required for rational vaccine development. We do not have reliable correlates of protective immunity and we cannot actually define what constitutes a protective immune response capable of preventing disease progression in humans.

In this opinion piece we discuss the current status of immune correlates of protection, explore models of disease progression based on host cell phenotype, and propose that microbiological readouts of bacterial fitness represent the most rational pathway towards understanding the decision points that underpin the transition from latent TB infection (LTBI) to active disease.

The disease
Mycobacterium tuberculosis (Mtbc) is a human pathogen, and, as a species, we deal with the infection pretty well. Considering the penetrance of the pathogen in the human population, currently estimated at around 25% [2**, a remarkably small percentage of infected, immune-competent individuals (5–10%) go on to develop active disease. And while evolution will favor survival of the host, that selection pressure is survival beyond breeding age and not ‘complete’ protection. It is the sheer number of infected individuals, in combination with co-infection with HIV, that makes this pathogen such a burden to Global Health [3].

In Figure 1, we show a schematic representation of possible outcomes of Mtbc infections in model hosts, discussed further by North and Jung [4]. In most instances the infection is marked by a rapid expansion of bacterial numbers prior to the establishment of an acquired immune response, which results in control of the bacterial burden without an apparent reduction in numbers. The induction of an immune response to Mtbc through vaccination prior to challenge usually results in the set point for establishment of subclinical infection at approximately a log fewer infecting organisms. Given that neither previous infection nor vaccination protects against infection/re-infection we would argue that the most meaningful question in this disease continuum is the determination of those factors that facilitate transition from control to active disease within the context of a ‘protective’ immune response. Progression to active disease appears to be determined at the level of the individual granuloma, and is usually perceived as a loss of immune control but that remains an assumption. The granuloma is a complex cellular aggregate comprising predominantly of macrophages present as inflammatory macrophages, foamy macrophages and epithelioid macrophages, with T-cells present around the periphery [5]. The structure both contains the infection and provides haven to the infecting bacilli and it is this balance that determines progression or control [6–8,9**,10]. Increased bacterial growth could be due to increased permissiveness at the host cellular level that is independent of the pathways of immune-mediated control.

Biomarkers of disease progression versus correlates of immune protection
Although often discussed together these two biomarkers categories are functionally very different. Recent publications on the identification of biomarkers predictive of
we see in instances of failed immunity. IFN-γ-receptor deficiencies in humans, as with IFN-γ-deficiency in mice, renders them both exquisitely susceptible to Mtb infection and acute disease [14–16]. This has resulted in a self-fulfilling logic pathway that has led to the adoption of IFN-γ release assays (IGRA) as a surrogate for the acquisition of a protective immune response, which is not its primary function [17]. IFN-γ is clearly required for antibacterial responses but it appears insufficient for effective immune protection.

More recently other immune components have been studied as possible correlates for protection. Mice deficient in IL-17 and IL-17RA appear to be impaired in the recruitment of Th1 cells in a vaccine-induced protection model [18]. But data from different labs are contradictory on their role in protection and appear Mtb-strain-dependent [19]. NK cells are also implicated in control, and depletion of memory NK cells reduces vaccine-induced protection [20]. Finally γδ T cells are recruited to the lungs of Mtb-infected mice shortly after infection, and these cells can play a role in reducing viability of intracellular bacilli through perforin and granulysin-dependent mechanisms [21]. However, none of these candidates have been advanced to the point where they have the required robustness for assessing immune protection [22–24].

One of the assays that has gained increased traction recently is the mycobacterial growth inhibition assay (MGIA). It is attractive because it is a functional assay that measures the capacity of a cell population, usually from peripheral blood, to control Mtb growth upon coculture. Multiple analyses by MGIA have been performed on whole blood and PBMCs of humans, mice and cattle, and none of which correlate with protective immune status [25]. The most robust outcome was a study on BCG vaccinated children where it was found that MGIA demonstrate Mtb control following primary but not secondary vaccination [26]. The repeated failure of MGIA performed on PBMCs to generate data correla-
tive of protection would tend to indicate that the immune response in the peripheral circulation is an inadequate indicator of localized immune responses in infected tissue.

The impact of host cell phenotype on bacterial burden

The phagocyte populations of the lung during early Mtb infection are extremely plastic. Ernst and colleagues conducted a detailed analysis of the different phagocytes infected with Mtb early following challenge [27,28]. Mice were infected with GFP-expressing Mtb and the lung was harvested, and dissociated to generate single cell suspensions. They mapped the relative distribution of Mtb in the different phagocyte populations, including alveolar macrophages (AM), recruited interstitial macrophages
(IM), monocytes (MO), dendritic cells (DC), and neutrophils (PMN). At day 14 the bacteria were equally distributed between AMs, myeloid DCs, and PMNs. The number of infected PMNs increased to day 21, and then declined sharply. At days 21 and 28 the majority of infecting bacteria resided in myeloid DCs.

These myeloid DCs are thought to differentiate from IMs, which show a dramatic increase in number during this early period of infection [27,28]. Pamer’s group showed that pulmonary infection with Mtb and Aspergillus drives recruitment of CCR2 and LyC6+ expressing inflammatory monocytes [29,30]. Depletion of CCR2+ cells reduced transfer of the pathogen from the lung to the draining lymph nodes, abolished CD4+ T cell priming and impaired development of protective immunity. This is consistent with previous observations from Ernst’s lab in murine tuberculosis infections where transfer of Mtb to the draining lymph node was critical to the early priming of the immune response [31], and is in agreement with Skold and Behar’s observation that monocytes recruited to the lung following Mtb infection acquire a mature DC phenotype [32]. These data all emphasize the extraordinary plasticity of the cell populations recruited to the early granuloma.

Interestingly, Leeman and colleagues demonstrated that depletion of AMs prior to infection with a lethal challenge dose of Mtb improved survival of the mice [33]. They then showed that specific depletion of activated macrophages was detrimental to the mice [34]. One interpretation of these data is that certain macrophages are required to provide a permissive niche for bacterial growth and that the depletion of classically activated (M1) macrophages reduces control of the infection. The idea that disease progression can be influenced both positively and negatively by the relative expansion of distinct subsets of phagocytes was supported by Antonelli and colleagues [35]. They treated mice intra-nasally with the Type 1 IFN inducer Poly (I:C) prior to infection with Mtb and found that this induced a marked increase in bacterial load in the lungs without impacting the Th1 immune response. Most significantly, this outcome was ablated when the experiments were conducted in CCR2-deficient mice indicating that the phenotype was dependent on the host cells recruited to the site of infection.

These studies all focus on initial stages of infection prior to and during development of the acquired immune response. However, phagocyte heterogeneity is also observed in established granulomas in non-human primates (NHP). Flynn and colleagues showed that TB granulomas in macaques contain many diverse types of phagocytes that express different markers such as Arg1, Arg2, iNOS and eNOS [36], proteins linked to the M1/M2 activation phenotype. These data were the basis for a model for granuloma progression driven by macrophage polarization developed by Kirschner and Flynn [37]. They argue that the ratio of M1/M2 polarized macrophages is predictive of granuloma outcome. The heterogeneity in phagocyte phenotype is also reflected in the relative balance of lymphocyte subsets in different granulomas in Mtb-infected macaques [38]. Finally, the manipulation of macrophage phenotypes in mice through the use of allergens, or the exploitation of different genetic backgrounds, impacts the ratio of M1/M2 type macrophage subsets and influences the bacterial burden [39,40].

Functional readouts of bacterial fitness

Many of these studies are based on the impact of perturbing the balance of phagocyte populations in the lung. What we do not know is the relative fitness or replication status of Mtb in these different phagocyte populations under ‘normal’ circumstances. We have investigated the changing transcriptional response in Mtb as it enters the macrophage and establishes an intracellular infection [41–44]. One of the products of these studies has been the generation of reporter Mtb strains that express GFP under certain environmental cues relevant to the infection status of the macrophage [41,45,46].

We challenged naïve and vaccinated mice with fluorescent reporter strains of Mtb (Figure 2) [45]. We demonstrated that induction of expression of hspX promoter-driven GFP correlated directly with the presence of an acquired immune response, and localized to regions that stained positively with antibodies against NOS2 enzyme. Minimal label was observed in NOS2−/− mice, indicating that the reporter was linked to production of NO. We also infected the mice with a replication reporter strain on Mtb with the single strand binding protein (SSB) fused to GFP and found that dots of SSB-GFP positivity were much more abundant early in naïve mice than in mice vaccinated previously with heat-killed Mtb. In addition, these replication indicators were expressed more frequently in Mtb in mice deficient in production of IFN-γ. These data demonstrate the validity of the strains to probe host cell phenotype at site of infection.

We utilized fluorescent Mtb strains to probe the functionality of host cells in single cell suspensions generated from mice infected with the reporter bacteria (Figure 3) [47,48]. In initial studies utilizing bacterial fluorescence to identify infected host phagocytes we demonstrated that Mtb in immune-activated host phagocytes exhibited markedly higher levels of drug tolerance than those in resting phagocytes [47]. Then using bacterial fitness reporter strains we found that Mtb in AMs showed relatively low expression of the bacterial stress readout hspX::GFP [48] compared to those bacill in IM and neutrophils. The suggestion that AM represent a more permissive host cell environment to Mtb than the recruited IM is consistent with the previous study by...
Leemans and colleagues where the depletion of the AM population reduced bacterial burden and improved disease outcome in mice [35].

Coupled metabolism of host and pathogen

Macrophage immunometabolism is a rapidly emerging area of research. In brief, M1 activated macrophages exhibit enhanced glycolysis whilst M2 macrophages show higher fatty acid oxidation [49,50]. Tuberculosis infection is known to induce the Warburg effect in mouse lungs [51] and increased glycolysis is linked control of Mtb in human macrophages [52]. In contrast, active human disease is linked to dysfunctional lipid metabolism, accumulation of lipid droplets, and the formation of caseum from dead foamy macrophages [7,53–55]. Moreover, a recent chemical screen against intracellular Mtb identified inhibitors of bacterial cholesterol breakdown as a critical nutrient acquisition pathway for this pathogen [56*]. Obviously, the metabolic status of Mtb infected pulmonary macrophages is more complicated and does not fit simply with our current knowledge of metabolism in M1/M2 macrophages. However, intranasal treatment of Mtb-infected mice with the TLR3 agonist poly (I:C) led to increased bacterial growth and accelerated disease progression [35]. Poly (I:C) is known to enhance triacylglyceride retention and reduce lipolysis in macrophages providing an environment that would, in theory, support enhanced mycobacterial growth [57]. These data suggest that progression of tuberculosis could be the product of expansion of a host cell type more supportive of bacterial growth through increased availability of nutrients, and that this expansion could occur independently of mechanisms of immune control.

Although this is not a quick fix, we believe that these bacterial fitness readouts will provide a mechanistic understanding of disease control and progression, and will ultimately identify those immune effector cells that need to be either expanded or contracted for vaccine-induced control of disease. We suspect strongly that
disease outcome is due to the balance between permissive and controller host cells, and we are unlikely to understand this process until we appreciate the physiological basis of permissiveness, and not just control.

Conflict of interest statement
Nothing declared.

Acknowledgements
This work is supported by the National Institutes of Health awards [AI118582, AI067027 and AI134183]; the Bill and Melinda Gates Foundation, Seattle, WA [OPP1156451] to DGR.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

• of special interest

•• of outstanding interest

1. Tameris MD, Hatherill M, Landry BS, Scriba TJ, Snowden MA, Lockhart S, Shea JE, McClain JB, Hussey GD, Hanekom WA et al.: Safety and efficacy of MVA85A, a new tuberculosis vaccine, in infants previously vaccinated with BCG: a randomised, placebo-controlled phase 2b trial. Lancet 2013, 381:1021-1028.

2. Houben RM, Dodd PJ: The global burden of latent tuberculosis infection: a re-estimation using mathematical modelling. PLoS Med 2016, 13:e1002152.

3. World Health Organization: Global Tuberculosis Report 2016. 2016.

4. North RJ, Jung YJ: Immunity to tuberculosis. Annu Rev Immunol 2004, 22:599-623.

5. Russell DG, Barry CE III, Flynn JL: Tuberculosis: what we don’t know can, and does, hurt us. Science 2010, 328:852-856.

6. Flynn JL, Gideon HP, Mathila JT, Lin PL: Immunology studies in non-human primate models of tuberculosis. Immunol Rev 2015, 264:60-73.

7. Kim MJ, Wainwright HC, Locketz M, Bekker LG, Walther GB, Dittrich C, Visser A, Wang W, Hsu FF, Wiebarth U et al.: Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol Med 2010, 2:258-274.
8. Lin PL, Ford CB, Coleman MT, Myers AJ, Gawande R, Ioerger T, Sacchettini J, Fortune SM, Flynn JL. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat Med 2014, 20: 75-79.

9. Marino S, Cifone NA, Mattila JT, Linderman JJ, Flynn JL, Kirschner DE: Macrophage polarization drives granuloma outcome during Mycobacterium tuberculosis infection. Infect Immun 2015, 83:324-338.

This was the study that accessed the phenotypic balance of macrophage subsets in NHP granulomas and proposed that it was the relative ratio of classical activated (M1) versus alternatively activated (M2) phagocytes that determined disease progression at the level of the individual granuloma.

10. Russell DG: Who puts the tubercle in tuberculin? Nat Rev Microbiol 2007, 5:39-47.

11. McNab FW, Berry MP, Graham CM, Bloch SA, Oni T, Wilkinson KA, Wilkinson RJ, Kon OM, Banchereau J, Chausabel D et al.: Programmed death ligand 1 is over-expressed by neutrophils in the blood of patients with active tuberculosis. Eur J Immunol 2011, 41:1941-1947.

12. Berry MP, Graham CM, McNab FW, Xu Z, Bloch SA, Oni T, Wilkinson KA, Banchereau R, Skinner J, Wilkinson RJ et al.: An interferon-inducible neutrophil-driven blood transcriptional signature in human tuberculosis. Nature 2010, 466:973-977.

13. Petruccioli E, Scriba TJ, Petrone L, Hatherill M, Cirillo DM.

14. Cooper AM, Dalton DK, StewART TA, Griffin JP, Russell DG, Orme IM: Disseminated tuberculosis in interferon gamma gene-disrupted mice. J Exp Med 1993, 178:2243-2247.

15. Flynn JL, Chan J, Triebold KJ, Dalton DK, Stewart TA, Bloom BR: An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. J Exp Med 1993, 178:2249-2254.

16. Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, Levin M, Blanche S, Seboun E, Fischer A et al.: Interferon-gamma-receptor deficiency in an infant with fatal bacille Calmette-Guerin infection. N Engl J Med 1996, 335:1956-1961.

17. Dobler CC: Biologic agents and tuberculosis. Microbiol Spectr 2016:4.

18. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL et al.: IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunol 2007, 8:369-377.

19. Gopal R, Monin L, Slicht S, Uche U, Blanchard E, Fallert J, Junecko BA, Ramos-Payan T, Stallings CL, Reinhart TA, Kolls JK et al.: Unexpected role for IL-17 in protective immunity against hypervirulent Mycobacterium tuberculosis HN878 infection. PLoS Pathog 2014, 10:e1004099.

20. Dhiman P, Perisamy S, Barnes PF, Jaiswal AG, Paidipally P, Barnes AB, Tvinnereim A, Vankayalapati R: NK1.1+ cells and IL-22 regulate vaccine-induced protective immunity against challenge with Mycobacterium tuberculosis. J Immunol 2012, 189:897-905.

21. Dei F, Troye-Blomberg M, Ivanj I, Fournie JJ, Krensky AM, Bonville M, Peyrat MA, Caccamo N, Sireci G, Saliero A: Granulysin-dependent killing of intracellular and extracellular Mycobacterium tuberculosis by Vgamma9Vdelta2 T lymphocytes. J Infect Dis 2001, 184:1082-1085.

22. Bhatt K, Verma S, Elner JJ, Salgame P: Ouest for correlates of protection against tuberculosis. Clin Vaccine Immunol 2015, 22:258-266.

23. Goletti D, Petruccioli E, Joosten SA, Ottenhoff TH: Tuberculosis biomarkers: from diagnosis to protection. Infect Dis Rep 2016, 8:5586.

24. Kaufmann SH, Fortune S, Pepponi I, Ruhwald M, Schrager LK, Ottenhoff TH: TB biomarkers, TB correlates and human challenge models: new tools for improving assessment of new TB vaccines. Tuberculosis (Edinb) 2016, 99(Suppl 1):S8-S11.

25. Tanner R, O’Shea MK, Fletcher HA, McShane H: In vitro mycobacterial growth inhibition assays: a tool for the assessment of protective immunity and evaluation of tuberculosis vaccine efficacy. Vaccine 2016, 34:4666-4665.

26. Fletcher HA, Tanner R, Wallis RS, Meyer J, Manjaly ZR, Harris S, Satti I, Silver RF, Holt D, Kampmann B et al.: Inhibition of mycobacterial growth in vitro following primary but not secondary vaccination with Mycobacterium bovis BCG. Clin Vaccine Immunol 2013, 20:1683-1689.

27. Srivastava S, Ernst JD, Desvignes L: Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev 2014, 242:179-192.

28. Wolf AJ, Linas B, Trevejo-Nunez GJ, Kincaid E, Tamura T, Takatsu K, Ernst JD: Mycobacterium tuberculosis infects dendritic cells with high frequency and impairs their function in vivo. J Immunol 2007, 179:2509-2519.

29. Hohl TM, Rivera A, Lipuma L, Gallegos A, Shi C, Mack M, Pamer EG: Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 2009, 6:470-481.

30. Samstein M, Schreiber HA, Leiner IM, Susac B, Glickman MS, Pamer EG: Essential yet limited role for CCR2(+) inflammatory monocytes during Mycobacterium tuberculosis-specific T cell priming. Elife 2013, 2:e01086.

31. Wolf AJ, Desvignes L, Linas B, Banaee N, Tamura T, Takatsu K, Ernst JD: Initiation of the adaptive immune response to Mycobacterium tuberculosis depends on antigen production in the local lymph node, not the lungs. J Exp Med 2008, 205:105-115.

32. Skold M, Behar SM: Tuberculosis triggers a tissue-dependent program of differentiation and acquisition of effector functions by circulating monocytes. J Immunol 2008, 181:6349-6360.

33. Leemans JC, Juffermans NP, Florquin S, van Rooijen N, Vervoordeldonk MJ, Verbon A, van Deventer SJ, van der Poll T: Depletion of alveolar macrophages exerts protective effects in pulmonary tuberculosis in mice. J Immunol 2001, 166:4604-4611.

34. Leemans JC, Thepen T, Weijer S, Florquin S, van Rooijen N, van de Winkel JG, van der Poll T: Macrophages play a dual role during pulmonary tuberculosis in mice. J Infect Dis 2005, 191:65-74.

35. Antonelli LR, Gigliotti Rothfuchs A, Goncalves R, Roffe E, Cheever AW, Bafica A, Salazar AM, Feng C, Sher A: Intranasal Poly-IC treatment exacerbates tuberculosis in mice through the pulmonary recruitment of a pathogen-permissive monocyte/macrophage population. J Clin Invest 2012, 120:1674-1682.

36. Mattila JT, Ojo OO, Kepka-Lenhart D, Marino S, Kim JH, Eum SY, Via LE, Barry CE III, Klein E, Kirschner DE et al.: Microenvironments in tissue-dependent and -independent Mycobacterium tuberculosis infection delineate by distinct populations of macrophage subsets and expression of nitric oxide synthase and arginase isoforms. J Immunol 2013, 191:773-784.

37. Marino S, Gideon HP, Gong C, Mankad S, McCrone JT, Lin PL, Linderman JJ, Flynn JL, Kirschner DE: Computational and empirical studies predict Mycobacterium tuberculosis specific T cells as a biomarker for infection outcome. PLoS Comput Biol 2016, 12:e1004804.

38. Gideon HP, Phuah J, Myers AJ, Bryson BD, Rodgers MA, Coleman MT, Maiello P, Rutledge T, Marino S, Fortune SM et al.: Variability in tuberculosis granuloma T cell responses exists, but a balance of pro- and anti-inflammatory cytokines is associated with sterilization. PLoS Pathog 2015, 11:e1004603.

39. Bertolini TB, de Souza AI, Gembrue AF, Pineros AR, Prado Rde Q, Silva JS, Ramalho LN, Bonato VL: Genetic background affects the expansion of macrophage subsets in the lungs of...
Host pathogens

Mycobacterium tuberculosis-infected hosts. *Immunology* 2016, 148:102-113.

40. Pineros AR, Campos LW, Fonseca DM, Bertolini TB, Gembre AF, Prado RQ, Alves-Filho JC, Ramos SG, Russo M, Bonato VL: M2 macrophages or IL-33 treatment attenuate ongoing *Mycobacterium tuberculosis* infection. *Sci Rep* 2017, 7:41420.

41. Abramovitch RB, Rohde KH, Hsu FF, Russell DG: aprABC: a *Mycobacterium tuberculosis* complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. *Mol Microbiol* 2011, 80:678-684.

42. Homolková S, Niemann S, Russell DG, Rohde KH: Functional genetic diversity among *Mycobacterium tuberculosis* complex clinical isolates: delineation of conserved core and lineage-specific transcriptomes during intracellular survival. *PLoS Pathog* 2010, 6:e1000988.

43. Rohde KH, Abramovitch RB, Russell DG: *Mycobacterium tuberculosis* invasion of macrophages: linking bacterial gene expression to environmental cues. *Cell Host Microbe* 2007, 2:352-364.

44. Rohde KH, Veiga DF, Caldwell S, Balazsi G, Russell DG: Linking the transcriptional profiles and the physiological states of *Mycobacterium tuberculosis* during an extended intracellular infection. *PLoS Pathog* 2012, 8:e1002789.

45. Sukumar N, Tan S, Aldridge BB, Russell DG: Exploitation of *Mycobacterium tuberculosis* reporter strains to probe the impact of vaccination at sites of infection. *PLoS Pathog* 2014, 10:e1004394.

This study was the first to utilize bacteria fitness reporters to relate bacteria fitness at site of infection with host immune response in naive and vaccinated experimental infections.

46. Tan S, Sukumar N, Abramovitch RB, Parish T, Russell DG: *Mycobacterium tuberculosis* responds to chloride and pH as synergistic cues to the immune status of its host cell. *PLoS Pathog* 2013, 9:e1003282.

47. Liu Y, Tan S, Huang L, Abramovitch RB, Rohde KH, Zimmerman MO, Chen C, Dartois V, VanderVen BC, Russell DG: Immune activation of the host cell induces drug tolerance in *Mycobacterium tuberculosis* both in vitro and in vivo. *J Exp Med* 2016, 213:809-825.

This study demonstrated the functional linkage between the induction of drug tolerance and the immune activation status of the host phagocytes both in vitro and in vivo.

48. VanderVen BC, Huang L, Rohde KH, Russell DG: The minimal unit of infection: *Mycobacterium tuberculosis* in the macrophage. *Microbiol Spectr* 2016:4.

49. Mills EL, Kelly B, O’Neill LA: Mitochondria are the powerhouses of immunity. *Nat Immunol* 2017, 18:488-498.

50. Van den Bossche J, O’Neill LA, Menon D: Macrophage immunometabolism: where are we (going)? *Trends Immunol* 2017.

51. Shi L, Salamon H, Eugenin EA, Pine R, Cooper A, Gennaro ML: Infection with *Mycobacterium tuberculosis* induces the Warburg effect in mouse lungs. *Sci Rep* 2015, 5:18176.

52. Gieseson LE, Sheedy FJ, Palisson-McDermott EM, Triglia D, O’Leary SM, O’Sullivan MP, O’Neill LA, Keane J: Cutting edge: *Mycobacterium tuberculosis* induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. *J Immunol* 2016, 196:2444-2449.

53. Lee W, VanderVen BC, Fahey RJ, Russell DG: Intracellular *Mycobacterium tuberculosis* exploits host-derived fatty acids to limit metabolic stress. *J Biol Chem* 2013, 288:6788-6800.

54. Peyron P, Vaubourgeix J, Poquet Y, Levillain F, Botanch C, Bardou F, Daffe M, Emile JF, Marchou B, Cardona PJ et al.: Foamy macrophages from tuberculous patients’ granulomas constitute a nutrient-rich reservoir for *M. tuberculosis* persistence. *PLoS Pathog* 2008, 4:e1000204.

55. Russell DG, Cardona PJ, Kim MJ, Allain S, Altare F: Foamy macrophages and the progression of the human tuberculosis granuloma. *Nat Immunol* 2009, 10:943-948.

56. VanderVen BC, Fahey RJ, Lee W, Liu Y, Abramovitch RB, Memmott C, Crowe AM, Eltsi LD, Perola E, Deininger DD et al.: Novel inhibitors of cholesterol degradation in *Mycobacterium tuberculosis* reveal how the bacterium’s metabolism is constrained by the intracellular environment. *PLoS Pathog* 2015, 11:e1004679.

This study details completion of a large empirical chemical screen against intracellular Mtb that identified bacterial cholesterol metabolism as critical to intracellular survival and growth. The result highlights the intimate association between host cell immune status and metabolism, and bacterial nutrient acquisition.

57. Feingold KR, Shigenaga JK, Kazemi MR, McDonald CM, Patzek SM, Cross AS, Moser A, Grunfeld C: Mechanisms of triglyceride accumulation in activated macrophages. *J Leukoc Biol* 2012, 92:829-839.