Feathers are remarkable integumentary innovations that are intimately linked to the evolutionary success of birds10 and occur in diverse non-avian dinosaurs from the Middle Jurassic onwards1. The early evolutionary history of feathers, however, remains controversial as relevant fossils are rare3,11. Integumentary appendages in pterosaurs, traditionally termed pycnofibres, were recently reinterpreted as feathers on the basis of preserved branching2 but their homology with feathers is debated12,13 and their functions remain unclear4. The small size and lack of secondary branching in pterosaur feathers precludes functions in active flight, but their dense packing and distribution over the body are consistent with thermoregulation6. This in turn is consonant with functional hypotheses for small, simple feathers in theropod dinosaurs14. Even simple unbranched feathers in theropods, however, functioned in visual signalling, as evidenced by melanosome-based colour patterning15,16. Whether feathers in earlier-diverging taxa also functioned in visual signalling—and thus functions of feathers in visual communication—has deep evolutionary origins. These features show that genetic regulation of melanosome chemistry and shape7–9 was active early in feather evolution.

Preserved pterosaur feathers

The cranium of a new specimen of *Tupandactylus* cf. *imperator* (MCT.R.1884; Pterosauria: Tapejaridae) (Supplementary Information) is preserved on five limestone slabs from the Lower Cretaceous Crato Formation17 (Araripe Basin, Brazil; Fig. 1, Extended Data Fig. 1, Supplementary Information). The specimen comprises an incomplete cranium associated with preserved skin, monofilaments and branched integumentary structures. These integumentary tissues preserve melanosomes that show tissue-specific geometries, a feature previously known only from theropod dinosaurs, including extant birds18. Collectively, these results confirm that branched integumentary structures in pterosaurs are feathers and provide evidence that tissue-specific partitioning of melanosome geometry—critical for melanin-based plumage patterning—has deep evolutionary origins in ancestral avemetatarsalians in the Early to Middle Triassic.

Remarkably well-preserved soft tissues in Mesozoic fossils have yielded substantial insights into the evolution of feathers1. New evidence of branched feathers in pterosaurs suggests that feathers originated in the avemetatarsalian ancestor of pterosaurs and dinosaurs in the Early Triassic2 but the homology of these pterosaur structures with feathers is controversial14. Reports of pterosaur feathers with homogeneous ovoid melanosome geometries2,5 suggest that they exhibited limited variation in colour, supporting hypotheses that early feathers functioned primarily in thermoregulation6. Here we report the presence of diverse melanosome geometries in the skin and simple and branched feathers of a tapejarid pterosaur from the Early Cretaceous found in Brazil. The melanosomes form distinct populations in different feather types and the skin, a feature previously known only in theropod dinosaurs, including birds. These tissue-specific melanosome geometries in pterosaurs indicate that manipulation of feather colour—and thus functions of feathers in visual communication—has deep evolutionary origins. These features show that genetic regulation of melanosome chemistry and shape7–9 was active early in feather evolution.

1Directorate Earth and History of Life, Royal Belgian Institute of Natural Sciences, Brussels, Belgium. 2Institute of Life, Earth and Environment, University of Namur, Namur, Belgium. 3School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland. 4Environmental Research Institute, University College Cork, Cork, Ireland. 5Evolution and Optics of Nanostructures Group, Biology Department, Ghent University, Ghent, Belgium. 6Centro Universitário Maurício de Nassau, Campina Grande, Brazil. 7Nationalis Biodiversity Center, Leiden, The Netherlands. 8Divisão de Bacias Sedimentares, Geological Survey of Brazil, Porto Alegre, Brazil. 9Research Group of Analytical and Circular Chemistry, Institute for Material Research, Hasselt University, Diepenbeek, Belgium. 10ELDONIA, Gannat, France. 11e-mail: acincotta@naturalsciences.be; maria.mcnamara@ucc.ie

https://doi.org/10.1038/s41586-022-04622-3
Received: 22 October 2021
Accepted: 7 March 2022
Published online: 20 April 2022
Open access
Check for updates
formation in Brazil. Only the posterior portion of the cranium is present, comprising part of the left orbit, left nasoantorbital fenestra, fibrous crista and occipital process. The preserved soft tissue cranial crest extends between the postpremaxillary and occipital processes (Fig. 1a, Supplementary Information). Two types of filamentous integumentary structure occur close to (within 15 mm of) the occipital process (Fig. 1b–f). The proximal portion of the occipital process is mostly associated with monofilaments (approximately 30 mm long and 60–90 μm wide; Fig. 1b, Extended Data Figs. 1, 2). These resemble stage I feathers and monofilaments in the anurognathid Jeholopterus ningchengensis, Sordes pilosus, juvenile anurognathids, the ornithischian dinosaur Tianyulong and the theropod Beipiaosaurus.

The distal part of the occipital process is associated with short (2–5 mm long) branched integumentary structures (Fig. 1c–f, Extended Data Fig. 2). Each shows a poorly defined central shaft (approximately 60 μm wide; Extended Data Fig. 3) that thins close to the proximal tip (Fig. 1c, e). This narrow, light-toned proximal portion of the shaft resembles a basal calamus (Fig. 1e). Short (approximately 100–200 μm long), straight and closely spaced secondary fibres extend from the shaft along almost its entire length, forming a branched structure (Fig. 1d–f). These branched structures can be straight but are often curved; when curved, the branches are characteristically splayed (Fig. 1c, d). Such splaying can be generated only where a central shaft and lateral branches are stiff and where the branches diverge along the length of the shaft, rather than diverging from a single point or limited region of the shaft (Extended Data Fig. 3). This mode of branching is directly comparable to that in stage IIIa feathers of extant birds, that is, with barbs branching from a central rachis. This is strong evidence that the fossil branched structures are feathers comprising a rachis and barbs. This is consistent with and supports recent claims of branched feathers in other pterosaurs. The monofilaments are thus most plausibly interpreted as stage I feathers.

To our knowledge, stage IIIa feathers have not previously been reported in pterosaurs. The Tupandactylus branched structures resemble those in the dromaeosaurid dinosaur Sinornithosaurus millenii, which are considered homologous to avian feathers, and differ from the three types of branched feathers described in anurognathid pterosaurs. Branching in the anurognathid feathers can be distal (brush-like ‘type 2’ feathers), near the midpoint (brush-like ‘type 3’ feathers) or proximal (tuft-like ‘type 4’ feathers; see Extended Data Table 1 for comparison of fossil feather nomenclature systems). Unlike these three anurognathid feather types, all of which branch in a narrow zone along the feather shaft, the branched feathers in Tupandactylus branched along almost the entire length of the rachis. Further, the consistent length of the Tupandactylus secondary fibres (barbs) differs from the varying length of those in anurognathid feathers.

The Tupandactylus feathers are not taphonomic artefacts. Both monofilaments and branched feathers occur in the specimen, which is consistent with the presence of multiple feather types in anurognathids, feathered dinosaurs and fossil and extant birds. Critically, Tupandactylus includes many isolated (non-superimposed) feathers where branching is obvious (Fig. 1c–f) and thus cannot be explained by superposition of monofilaments. Nor does branching reflect degradation of monofilaments—branched feathers show a consistent morphology, unlike the random pattern of fragmentation expected from decay. Further, the branched feathers do not represent structural fibres of the skin that have decayed, as the feathers are restricted to a portion of the skull (occipital process) that should be devoid of such fibres. Moreover, the cranial crest lacks feathers despite the preservation of long straight fibres (100–150 μm wide; up to approximately 300 mm long) that presumably represent preserved structural skin fibres (Supplementary Information and Extended Data Figs. 1, 4).

Our phylogenetic reconstruction used a recently published phylogeny for pterosaurs, birds and non-avain dinosaurs that preserve
The phylogeny shows the results of ancestral-state estimations for the origin of feathers with the highest likelihood (−72.52), in addition to the lowest AICc (168.32) and the highest AICc weighting (64.56). Only the most complex integumentary structure present is shown for each taxon. Feathers are reconstructed as ancestral to the common avemetatarsalian ancestor of dinosaurs and pterosaurs. Branch lengths are estimated using the mbl branch length estimation and reconstructed integumentary structures. Given their lack of secondary branching (that is, barbules), branched feathers in Tupandactylus correspond to an open pennaceous vane. Ancestral-state estimations indicate that the statistically most likely result (corrected Akaike information criterion (AICc) weight = 84%) is that the avemetatarsalian ancestor of pterosaurs and dinosaurs possessed integumentary filaments, with approximately equal likelihood of possessing monofilaments, tufted feathers and brush-like feathers (Fig. 2, Extended Data Figs. 5–7, Extended Data Table 2). This is not inconsistent with the hypothesis that filamentous integumentary structures originated independently in both groups13. The more parsimonious interpretation, however, is that monofilaments and branched feather morphologies have a single origin in Avemetatarsalia. Our model predicts that progressively more complex integumentary structures arose within both Pterosauria and Theropoda (Fig. 2, Extended Data Figs. 5–7, Extended Data Table 2). This does not imply that identical feather types evolved in each group. Some feather morphologies are shared (that is, monofilaments, brush-like and tufted feathers and feathers with along-rachis branching), but others are not—for example, feathers with midpoint branching in pterosaurs and all feathers with barbules in theropods. Barbules are thus a unique innovation of theropod feathers. Progressive evolution of feather complexity is consistent with the younger age of Tupandactylus (with open vane branched feathers) relative to the previously studied anurognathids (with branching restricted to a narrow zone on the shaft).

Tissue-specific melanosomes geometries

We analysed samples of soft tissue from the fossil monofilaments, branched feathers and fibrous soft tissues from the cranial crest (Extended Data Fig. 8). Scanning electron microscopy shows that all soft tissue samples contain abundant ovoid or elongate microbodies approximately 0.5–1 μm in length (Extended Data Table 3). These microbodies are often embedded in an amorphous matrix similar to that preserved in feathers of other pterosaurs2,6 and some non-avian dinosaurs and early-diverging birds13,36,37 and interpreted as the degraded remains of the feather keratin matrix2,37,38. Samples of sedimentary matrix adjacent to the cranial crest lack microbodies (Extended Data Fig. 1, samples 1 and 9), confirming that the latter are restricted to the soft tissues. Microbodies with relatively homogeneous ovoid geometries were previously reported in fibrous soft tissues of the crest of another Tupandactylus specimen from the Crato Forma-
tion5 and in filamentous structures from a pterosaur from the Jehol Group6. In each case, the microbodies were interpreted as preserved melanosomes5,6. This is consistent with the broad consensus (based on extensive morphological, ultrastructural, chemical and contextual evidence) that similar microbodies, preserved in dark carbonaceous soft tissue films associated with other fossil vertebrates, represent fossil melanosomes39,40.

In Tupandactylus, melanosomes from the skin fibres in the crest, monofilaments and branched feathers differ significantly in geometry
(analysis of variance (ANOVA); F(4, 2,989) = 449.3, P < 0.0001, n = 2,994). Elongate melanosomes are restricted to the monofilaments (Fig. 1h, Extended Data Fig. 8) (845 ± 172 nm long and 255 ± 62 nm wide; n = 406). Melanosomes in the branched feathers are ovoid (794 ± 127 nm long and 303 ± 50 nm wide; n = 878; Fig. 1i. Extended Data Fig. 8). Melanosomes are ovoid in skin fibres located between the base of the cranial crest and the occipital process (Fig. 1g. Extended Data Fig. 8; area 1. Extended Data Table 3; 935 ± 145 nm long and 371 ± 92 nm wide; n = 786) and in the posterior part of the cranial crest (Extended Data Fig. 8; area 2. Extended Data Table 3; 702 ± 153 nm long and 344 ± 92 nm wide; n = 693). In the dorsal part of the crest (area 3. Extended Data Table 3), melanosomes are spheroidal (649 ± 156 nm long and 400 ± 120 nm wide; n = 231). Similar tissue-specific partitioning of melanosome geometry has been reported in diverse other fossil and extant vertebrates. The absence of multiple distinct melanosome populations in the other studied specimens of *Tupandactylus* may reflect limited sampling.

The diversity of melanosome morphologies reported here expands the known range of geometries of pterosaur melanosomes (Extended Data Fig. 9c): rods and spheres had previously been reported only from mammalian hair and dinosaur (non-avialan and avialan) feathers. The geometry of the melanosomes in *Tupandactylus* overlaps with that of extant animals (Extended Data Fig. 9a–d). This further supports the hypothesis that the branched integumentary structures in pterosaurs are feathers. It does not, however, completely exclude the alternative (albeit unlikely) hypothesis that pterosaur filamentous integumentary structures represent a third type of vertebrate integumentary outgrowth (in addition to hair and feathers) that is capable of imparting, and varying, melanin-based coloration.

The different geometries of the preserved melanosomes in the monofilaments and branched feathers are suggestive of different visible colours. Irrespective of the actual colour produced, the data confirm tissue-specific melanosome populations in MCT.R.1884. In turn, this strongly suggests that the genomic and developmental mechanisms required for tuning melanosome geometry were already in place in the avemetatarsalian ancestor of pterosaurs.

Origins for visual signalling in feathers

Our study has important implications for understanding the evolution of melanin-based colouration. Melanosomes in other pterosaur fossils have ovoid to spheroidal shapes, even in integumentary filaments or feathers. This low melanosome diversity resembles that in the skin of extant reptiles, where many colours are generated by non-melanin pigment housed in iridophores and xanthophores. Preservation of ovoid and spheroidal melanosomes in pterosaur feathers and skin was therefore previously interpreted as evidence for retention of the ancestral state in pterosaurs. Unlike those fossils, however, MCT.R.1884 shows important differences in melanosome geometry between the skin and feathers, with evidence for expanded diversity of melanosome geometry (that is, elongate melanosomes) in the feathers. This tissue-specific partitioning of melanosome geometry—and, in particular, the greater morphological diversity of melanosomes in integumentary appendages (feathers and hair) than in skin—also characterizes extant birds and mammals. This feature may reflect preferential selection of more extreme, oblate melanosome geometries in order to expand melanin-based colour space into regions associated with eumelanin-dominated darker and iridescent hues. In turn, this may be a response to the loss of non-melanin-containing chromatophores during the evolution of integumentary appendages. Alternatively, these fundamental changes in skin structure may derive from changes in metabolism and immunity during the evolution of endothermy. At a genomic and developmental level, the production of elongate, eumelanin-rich melanosomes reflects earlier activation of α-melanocyte-stimulating hormone (α-MSH) and/or enhanced production of premelanosome proteins that form a scaffold for eumelanin deposition during melanosome development. The discovery of elongate melanosomes in the feathers, but not skin, of the specimen of *Tupandactylus* described here expands the known range of feather melanosome geometries in pterosaurs and confirms that pterosaurs show similar tissue-specific trends in melanosome geometry to fossil and extant birds and other theropods. This could reflect one of three evolutionary scenarios related to the timing of origin of the genomic regulatory networks governing melanogenesis (especally linked to α-MSH, agouti signaling protein, SRY-box transcription factor 10 (Sox10) and melanocortin-1-receptor) and their phenotypic expression. The genotypic and phenotypic characters could both be ancestral to avemetatarsalians; alternatively, both evolved independently in theropods and pterosaurs, or the genes are ancestral and the phenotypic expression occurred independently in the two groups. Our ancestral-state estimations (Extended Data Fig. 9e) reveal that the most parsimonious scenario is that feathers in the avemetatarsalian ancestor had melanosomes with different geometries. This is consistent with a single, deep evolutionary origin for this feature, whereby critical shifts in the genetic machinery facilitating plasticity in melanosome shape occurred in the common ancestor of pterosaurs and birds. Key genomic controls on melanin-based colouration that define the plumage colours of theropods and fossil and extant birds were therefore already in place in early-diverging avemetatarsalians in the Middle to Late Triassic.

Online content

Any methods, additional references, Nature Research reporting summaries, source data, extended data, supplementary information, acknowledgements, peer review information; details of author contributions and competing interests; and statements of data and code availability are available at https://doi.org/10.1038/s41586-022-04622-3.

1. Xu, X. In *The Evolution of Feathers* (eds Foth, C. & Rauhut, O. W. M.) 67–78 (Springer, 2020).
2. Yang, Z. et al. Pterosaur integumentary structures with complex feather-like branching. *Nat. Ecol. Evol.* **3**, 24–30 (2019).
3. Unwin, D. M. & Martill, D. M. No protofeathers on pterosaurs. *Nat. Ecol. Evol.* **4**, 1590–1591 (2020).
4. Benton, M. J., Dhouailly, D., Jiang, B. & McNamara, M. The early origin of feathers. *Trends Ecol. Evol.* **24**, 856–869 (2009).
5. Pinheiro, F. L. et al. Chemical characterization of pterosaur melanin challenges color inferences in extinct animals. *Sci. Rep.* **9**, 15947 (2019).
6. Li, Q. et al. Melanosome evolution indicates a key physiological shift within feathered dinosaurs. *Nature* **507**, 350–353 (2014).
7. Rees, J. L. Genetics of skin and hair colour. *Annu. Rev. Genet.* **37**, 67–90 (2003).
8. Eliaison, C. M., Shawkey, M. D. & Clarke, J. A. Evolutionary shifts in the melanin-based color system of birds. *Evolution* **70**, 445–455 (2016).
9. Kapoo, G. & Marks, M. S. Melanosome—dark organelles enlighten endosomal membrane transport. *Nat. Rev. Mol. Cell Biol.* **18**, 786–797 (2007).
10. Brustatter, S. L., O'Connor, J. K. & Jarvis, E. D. The origin and diversification of birds. *Curr. Biol.* **25**, R888–R898 (2015).
11. Yang, Z. et al. Reply to: No protofeathers on pterosaurs. *Nat. Ecol. Evol.* **4**, 1592–1593 (2020).
12. Marsh, R. L. & Dawson, W. R. In *Animal Adaptation to Cold* (ed Wang, L. C. H.) 205–253 (Springer, 1989).
13. Li, Q. et al. Plumage color patterns of an extinct dinosaur. *Science* **327**, 1389–1372 (2010).
14. Smithwick, F. M., Nichols, R., Cushull, J. I. & Vinther, J. Countershading and stripes in the theropod dinosaur *Sinosauropteryx* reveal heterogeneous habitats in the Early Cretaceous Jehol Biota. *Curr. Biol.* **27**, 5337–5343 (2017).
15. Vinther, J., Briggs, D. E., Prum, R. O. & Sananathan, V. The colour of fossil feathers. *Biol. Lett.* **4**, 522–525 (2008).
16. McGraw, K. J. In *Bird Coloration: Mechanisms and Measurements* (eds Hill, G. E. & McGraw, K.) 243–294 (Harvard Univ. Press, 2006).
17. Martill, D. M., Bechly, G. & Lovrendice, R. F. *The Cretaceous Fossil Birds of Brazil: Window into an Ancient World* (Cambridge Univ. Press, 2007).
18. Ross, V., McNamara, M. E., Webb, S. M., Ito, S. & Wakamatsu, K. Tissue-specific geometry and chemistry of modern and fossilized melanosomes reveal internal anatomy of extinct dinosaurs. *Proc. Natl Acad. Sci.* **116**, 7890–7899 (2019).
19. Prum, R. O. Development and evolutionary origin of feathers. *J. Exp. Zool.* **285**, 291–306 (1999).
20. Prum, R. O. & Brash, A. H. The evolutionary origin and diversification of feathers. *Q. Rev. Biol.* **77**, 261–295 (2002).
21. Kallner, A. W. et al. The soft tissue of Jeholopterus (*Pterosaurus, Anurognathidae, Batrachognathinae*) and the structure of the pterosaur wing membrane. *Proc. R. Soc. Lond. B* **277**, 321–329 (2010).
22. Wang, X., Zhou, Z., Zhang, F. & Xu, X. A nearly completely articulated theropod from Inner Mongolia, northeast China. Chin. Sci. Bull. 47, 226–230 (2002).
23. Sharov, A. G. Phosphorite of the Orthopteridae (No. 59572 SHA) (NTIS, 1971).
24. Unwin, D. M. & Martill, D. M. No protofeathers on pterosaurs. Proc. R. Soc. B 286, 20191649 (2019).
25. Zheng, X. T., You, H. L., Xu, X. & Dong, Z. M. An Early Cretaceous heterodontosaurid dinosaur with filamentous integumentary structures. Nature 456, 333–336 (2008).
26. Xu, X., Tang, Z. L. & Wang, X. L. A thienosaurid dinosaur with integumentary structures from China. Nature 399, 350–354 (1999).
27. Xu, X., Wang, X. L. & Wu, X. C. A dromaeosaurid dinosaur with a filamentous integument from the Yixian Formation of China. Nature 401, 262–266 (1999).
28. Xu, X., Zhou, Z. H. & Prum, R. O. Branched integumental structures in Sinornithosaurus and the origin of feathers. Nature 410, 200–204 (2001).
29. Xu, X. et al. Four-winged dinosaurs from China. Nature 421, 335–340 (2003).
30. Hu, D., Hou, L., Zhang, L. & Xu, X. A pre-Archeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461, 640–643 (2009).
31. Godefroit, P. et al. A Jurassic ornithischian dinosaur from Siberia with both feathers and scales. Science 345, 451–455 (2014).
32. Chiappe, L. M., Ji, S. A., Ji, Q. & Norell, M. A. Anatomy and systematics of the Confuciusornithidae (Theropoda, Aves) from the late Mesozoic of northeastern China. Bull. Am. Mus. Nat. Hist. 242 (1999).
33. Zhang, F. & Zhou, Z. A primitive anantomithine bird and the origin of feathers. Science 290, 1955–1959 (2000).
34. Streitenheim, P. R. The integumentary morphology of modern birds—an overview. Am. Zool. 40, 461–477 (2000).
35. Unwin, D. M. & Martill, D. M. No protofeathers on pterosaurs. Nat. Ecol. Evol. 4, 1590–1591 (2020).
36. Campione, N. E., Barrett, P. M. & Evans, D. C. In The Evolution of Feathers: From their Origin to the Present (eds Foth, C. & Rauhut, O. M. W.) 213–243 (Springer, 2020).
37. Zhang, F. et al. Fossilized melanosomes and the colour of Cretaceous dinosaurs and birds. Nature 463, 1075–1078 (2010).
38. Li, Q. et al. Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335, 1215–1219 (2012).
39. D’Alba, L. & Shawkey, M. D. Melanosomes: biogenesis, properties, and evolution of an ancient organelle. Physiol. Rev. 99, 1–18 (2019).
40. McNamara, M. E. et al. Decoding the evolution of melanin in vertebrates. Trends Ecol. Evol. 36, 430–443 (2021).
41. Rogers, C. S. et al. Synchrotron X-ray absorption spectroscopy of melanosomes in vertebrates and cephalopods: implications for the affinity of Tullimonstrum. Proc. R. Soc. B 286, 20191649 (2019).
42. Ross, V., Webb, S. & McNamara, M. E. Hierarchical biota-level and taxonomic controls on the chemistry of fossil melanosomes revealed using synchrotron X-ray fluorescence. Sci. Rep. 10, 8970 (2020).
43. Landmann, L. In Biology of the Integument (eds Bereiter-Hahn, L. et al.) 150–187 (Springer, 1986).
44. Alexander, N. J. & Fahrenbach, W. H. The dermal chromatophores of Anolis carolinensis (Reptilia, Iguanidae). Am. J. Anat. 126, 41–55 (1969).
45. Cooper, W. & Greenberg, N. In Biology of the Reptilia (eds Gans, E. C. & Crews, D.), 298–422 (Univ. Chicago Press, 1992).
46. Vinther, J. A guide to the field of palaeo colour: melanin and other pigments can fossilise: reconstructing colour patterns from ancient organisms can give new insights to ecology and behaviour. Bioessays 37, 643–656 (2015).
47. Baxter, L. L. & Pavan, W. J. Pmel17 expression is Mitf-dependent and reveals cranial melanoblast migration during murine development. Gene Expr. Patterns 3, 703–707 (2003).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Methods

Fossil material
Twenty-two soft tissue samples were collected using sterile tools from MCT.R.1884. These samples represent: (1) six distinct integumentary appendages located close to the posterior part of the occipital process (Extended Data Fig. 1, samples 3, 4, 6, 7, 23 and 24); (2) three skin fibres projecting from the crest towards the occipital process (Extended Data Fig. 1, samples 2, 5 and 8); (3) four skin fibres from the posterior part of the crest (Extended Data Fig. 1, samples 10, 11, 15 and 18); (3) nine skin fibres situated on the anterior portion of the crest (Extended Data Fig. 1, samples 12–14, 16, 17, 19–22). We also collected two samples of the sedimentary matrix (Extended Data Fig. 1, samples 1 and 9) in the region located between the cranial crest and the posterior extension of the skull.

Scanning electron microscopy
Samples of soft tissue were mounted on double-sided carbon tape and sputter-coated with gold. Scanning electron microscopy (SEM) was performed with an environmental FEI Quanta 200 SEM and a FEI Quanta 650 FEG-SEM, using a working distance of 8.6–13 mm, accelerating voltage of 10–30 kV and a probe current of 1.5–3.0.

Measurements of melanosome geometry
Long and short axis were measured for a total of 2,994 melanosomes using ImageJ48 (version 64-bit Java 1.8.0_172; http://imagej.nih.gov/ij/). Orientation was measured for selected samples. For melanosomes in each sample, values for the mean, standard deviation, skew and coefficient of variance were calculated for melanosome length, width and aspect ratio. The significance of variation in the data was tested statistically using the ANOVA test in the freeware PAST50 (version 4.09; palaeontological statistics: https://www.nhm.uio.no/english/research/infrastructure/past/).

Ancestral-state estimations
Data on melanosome geometry were analysed using quadratic discriminant analysis and multinomial logistic regression using the MASS package50 and the Nnet-package, both implemented in R using a penalized analysis and multinomial logistic regression using the MASS package. Ancestral-state estimations for integumentary appendages in Avenetatarsalia were performed using the methodology and data in ref. 2.

Analysis of Phylogenetics and Evolution with R (Springer, 2002).

Additional information
The online version contains supplementary material available at https://doi.org/10.1038/s41586-022-04622-3.

Competing interests
The authors declare no competing interests.

Correspondence and requests for materials
Correspondence and requests for materials should be addressed to Aude Cincotta or Maria McNamara.

Peel review information
Nature thanks Michael Benton, Stephen Brusatte and Xing Xu for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permissions information
Reprints and permissions information is available at http://www.nature.com/reprints.
Extended Data Fig. 1 | Location of the samples collected from the soft tissue cranial crest, monofilaments and branched feathers and sedimentary matrix. The soft tissue crest is characterized by elongate brown fibres. The posterodorsal part of the crest is darker than the rest of the crest and the brown fibres are faint or not evident in that area. Scale bar, 100 mm.
Extended Data Fig. 2 | Distribution of feather types in the tapejarid pterosaur *Tupandactylus cf. imperator* (MCT.R.1884).

a, Schematic illustration of MCT.R.1884. Monofilaments (red) are restricted to the region immediately adjacent to the proximal part of the occipital process and the branched feathers (blue) to the region adjacent to the distal part of the occipital process. The cranial soft tissue crest is shown in dark grey and the preserved bones are shown in white. The proximal part of the skull (in black) is not present on the slab.

b, Reconstruction of MCT.R.1884 showing the distribution of feathers along the occipital process (colours are not reconstructed here). Image credit, Julio Lacerda. Scale bar in (a), 100 mm.
Extended Data Fig. 3 | Taphonomic scenarios to explain the origin of the splayed appearance of the branched feathers, based on different styles of feather branching and stiffness. Only scenario 3, in particular scenario 3b, with a stiff central shaft and stiff barbs of equal length, can explain the particular structures observed in *Tupandactylus* feathers. a–c, Branched feathers from MCT.R.1884. c. Close-up of the splayed structure in (b) showing branching and a thin shaft at the point of flexure of the barbs (arrow). Scale bars, 1 mm (a, b), 250 μm (c).
Extended Data Fig. 4 | Integumentary structures of the cranial crest of MCT.R.1884.

- **a**, Ventral part of the soft tissue crest separated from the occipital process (op) by a zone lacking soft tissue and showing only sediment (s).
- **b, c**, Detail of the basal part of the cranial crest showing dark brown structures at the base of the fibres (see arrows).
- **d**, Posterodorsal part of the cranial crest.
- **e, f**, Details of regions indicated in (d). The brown fibres of the soft tissue crest are oriented perpendicular to prominent wrinkles, expressed as variation in the topography of the specimen. Scale bars, 10 mm (a, d); 2 mm (b, c); 5 mm (e, f). op, occipital process; s, sediment; w, wrinkle.
Extended Data Fig. 5 | Time-tree phylogeny of Avemetatarsalia, estimated using the 'mbl' branch-length estimation and reconstructed according to the 'equal rates' evolutionary model. The likelihood values for model parameters are shown in Extended Data Table 2. The different categories of integumentary structures represent: scales, monofilaments, brush-like filaments, tufts of filaments joined basally, open pennaceous vane lacking secondary branching and closed pennaceous feathers comprising a rachis-like structure associated with lateral branches (see material and methods in the main text for more details). *Tupandactylus* silhouette by Evan Boucher from www.phylopic.org. Silhouettes of integumentary appendages are reproduced from ref. 2. (Fig. 3).
Extended Data Fig. 6 | Time-tree phylogeny of Avemetatarsalia, estimated using the 'mbl' branch-length estimation and reconstructed according to the ‘SYM’ evolutionary model. The likelihood values for model parameters are shown in Extended Data Table 2. The different categories of integumentary structures represent: scales, monofilaments, brush-like filaments, tufts of filaments joined basally, open pennaceous vane lacking secondary branching and closed pennaceous feathers comprising a rachis-like structure associated with lateral branches (see material and methods in the main text for more details). Tupandactylus silhouette by Evan Boucher from www.phylopic.org. Silhouettes of integumentary appendages are reproduced from ref. 2 (Fig. 3).
Extended Data Fig. 7 | Time-tree phylogeny of Avemetatarsalia, estimated using the ‘mbl’ branch-length estimation and reconstructed according to the ‘all rates different’ (ARD) evolutionary model. The likelihood values for model parameters are shown in Extended Data Table 2. The different categories of integumentary structures represent: scales, monofilaments, brush-like filaments, tufts of filaments joined basally, open pennaceous vane lacking secondary branching and closed pennaceous feathers comprising a rachis-like structure associated with lateral branches (see material and methods in the main text for more details). *Tupandactylus* silhouette by Evan Boucher from www.phylopic.org. Silhouettes of integumentary appendages are reproduced from ref. 2. (Fig. 3).
Extended Data Fig. 8 | Scanning electron micrographs of melanosomes in the soft tissues of MCT.R.1884. a–c, Elongate melanosomes from monofilaments. d–f, Ovoid melanosomes from the branched feathers. g–i, Ovoid melanosomes from the soft tissue crest (area 1, Extended Data Table 2). Scale bars, 2 μm.
Extended Data Fig. 9 | See next page for caption.
Extended Data Fig. 9 | Scatterplots of melanosome geometry in amniotes and ancestral-state estimation of the diversity of melanosome geometries within Avemetatarsalia.

a–d. Melanosome geometry in amniotes; data from refs. 2,4 and this study.

- **a.** Mammal hair (n = 1984).
- **b.** Squamate skin (n = 734).
- **c.** Pterosaur skin (this study, n = 2115; melanosomes imaged from ten independent samples; purple datapoints) and pterosaur feathers (n = 2173; orange datapoints, this study (n = 1284; melanosomes imaged from four independent samples); black and yellow datapoints, previous studies 2,4).
- **d.** Extinct and extant bird feathers (n = 3643). Data from non-avialan dinosaurs are not shown here. Polygon with dark grey shading in (a–d) shows the range of melanosome geometries known for extant and extinct bird feathers. Darker shades in (a) and (d) indicate more than one data point with similar measurements.

e. Simplified time-tree phylogeny estimated using the ‘mbl’ branch-length estimation and reconstructed according to the best evolutionary model, i.e. ‘equal rates’ (ER) model. The different categories (or ‘states’) of melanosome geometry are: one geometry (in black), two geometries (in red) and three geometries (in green). Only taxa for which melanosome length and aspect ratio was known have been included in our dataset (n = 20). *Taxa showing spheroidal melanosomes in addition to any other category.

*Tupandactylus silhouette (in e) by Evan Boucher from www.phylopic.org.
Extended Data Table 1 | Classification of pterosaur feathers

Pterosaur feather morphology	Taxon	Branching	Feather type (sensu Yang et al., 2019)	Evo-devo Stage (sensu Prum (1999); Prum & Brush, 2002)	Feather morphotype (sensu Xu et al., 2010; Xu, 2020)	Assignment to evo-devo Stage
anurognathids & Tupandactylus	none	type 1	Stage I	morphotype 1 ("SMFI")		Stage I
anurognathids	terminal	type 2	n/a	morphotype 4 ("BJSFF")		Stage II+
anurognathids	mid-point	type 3	n/a	n/a		Stage II+
anurognathids	basal	type 4	Stage II	morphotype 3 ("BJFF")		Stage II
Tupandactylus	along-rachis	n/a	Stage IIIa	morphotype 5 ("RBSFF")		Stage IIIa

Assignment of pterosaur feathers, including those reported in Tupandactylus cf. imperator (this manuscript) and two anurognathid pterosaurs\(^1\), to existing classification systems, i.e. feather type (sensu Yang et al., 2019), evo-devo stage (sensu Prum et al. 1999 and Prum & Brush, 2002) and feather morphotype (sensu Xu et al., 2010 and Xu, 2020). SMFI: slender monofilamentous integument, BJFF: basally joining filamentous feather, BJSFF: basally joining shafted filamentous feather, RBSFF: radially branched shafted filamentous feather.
Extended Data Table 2 | Model performance of the phylogenetic reconstructions using different methods for branch length reconstruction and different transition rates

Model	nvar	LnL	Scales	Filaments	AIC	AICc	AICc_wt
equal – ER	1	-92.35	98.30%	1.70%	186.70	186.75	1.28E-05
equal – SYM	15	-81.36	96.60%	3.40%	192.72	200.46	6.30E-07
equal – ARD	30	-74.35	0%	100%	208.70	248.27	2.13E-10
equal – ordered	10	-73.12	0%	100%	166.24	169.52	0.35
mbl – ER	1	-93.17	91.50%	8.50%	188.34	188.39	5.63E-06
mbl – SYM	15	-76.85	92.40%	7.60%	183.70	191.44	5.73E-05
mbl – ARD*	30	-72.74	0%	100%	205.48	245.05	N/A
mbl – ordered	10	-72.52	0%	100%	165.04	168.32	0.64

Parameters shown are the number of variables (nvar), log-likelihood (LnL), probability of scales being ancestral (scales), probability of feather-like structures being present (filaments), Akaike Information Criterion (AIC), second order bias correction of AIC (AICc) and relative weight of the corrected AIC (AICc_wt). * mbl-ARD was calculated using a different method (make.simmap) and was not used in the weighted AICc calculations.
Extended Data Table 3 | Geometry of melanosomes (mean plus standard deviation) from various soft tissues in *Tupandactylus imperator* (MCT.R.1884)

Tissue type	n	Long axis (nm)	Short axis (nm)	Aspect ratio	Geometry
Crest fibres (area 1) (Extended Data Fig. 8g)	786	835 ± 145	371 ± 92	2.37 ± 0.66	
Crest fibres (area 2) (Extended Data Fig. 8i)	693	702 ± 153	344 ± 92	1.97 ± 0.39	
Crest fibres (dark regions of the crest; area 3)	231	649 ± 156	400 ± 120	1.60 ± 0.28	
Monofilaments (Fig. 1h and Extended Data Fig. 8a-c)	406	848 ± 172	255 ± 62	3.57 ± 1.04	
Branched feathers (Fig. 1i and Extended Data Fig. 8d-f)	878	794 ± 127	303 ± 50	2.68 ± 0.56	

Schematic melanosome morphology is shown for each tissue analyzed. n, number of individual melanosomes measured for each tissue type.
Reporting Summary

Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

- [] n/a
- [x] Confirmed

- [] The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- [] A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- [] The statistical test(s) used AND whether they are one- or two-sided
 - Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- [] A description of all covariates tested
- [] A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- [] A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- [] For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
 - Give P values as exact values whenever suitable.
- [] For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- [] For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- [] Estimates of effect sizes (e.g. Cohen’s d, Pearson’s r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about: availability of computer code

Data collection

No software was used to collect data

Data analysis

Melanosomes were measured using ImageJ freeware (version 64-bit Java 1.8.0_172; https://imagej.nih.gov/ij/); The significance of variation in the data was tested statistically using the ANOVA test of the freeware PAST (Palaeontological Statistics, version 4.09; https://www.nhm.uio.no/english/research/infrastructure/past/downloads/); Normality tests were done using RStudio freeware (version 1.1.463); Data on melanosome geometry was analysed using quadratic discriminant analysis (QDA) and multinomial logistic regression (MLR) using the MASS package (Venables & Ripley, 2002) and the nnet package, both implemented in R using a published melanosome dataset (Babarović et al., 2019); Ancestral state estimations were performed using the methodology and data presented in Yang et al., (2019). We used maximum-likelihood estimations implemented in the ‘ace’ function of the ape 4 package (Paradis, 2011). Tree branch lengths were estimated using two methods: ‘equal branch’ length and ‘minimum branch’ length (mbl) using the ‘DatePhylo’ function in the strap R package (Bell & Loyd, 2015); The evolutionary models were run using the ‘make.simmap’ function of the phytools package (Revell, 2012).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and reviewers. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Portfolio guidelines for submitting code & software for further information.
Data

Policy information about availability of data. All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third-party data, please ensure that the statement adheres to our policy

Additional data, including dimension of melanosomes and the character matrix used in the phylogenetic analyses have been deposited in a data repository at Zenodo.org (DOI: 10.5281/zenodo.6122213); SEM images and samples are available from the corresponding authors on request.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

☐ Life sciences ☑ Behavioural & social sciences ☐ Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description: We report diverse melanosome geometries in the skin and simple and branched feathers associated with the cranial crest of a tapejaraid pterosaur from the Early Cretaceous of Brazil (Crato Formation). We collected fossil soft tissue samples from the cranial crest and from both feather types. We imaged the samples using scanning electron microscopy (SEM) and measured the length and width of melanosomes from the SEM images. We imaged 22 samples in total.

Research sample: The research sample is a pterosaur cranial crest (Tapantana cf. imperator; MCT R.1884). The specimen provides an almost complete cranial crest and two types of integumentary appendages. We targeted the soft tissue part of the crest (skin) and the feathers to study (1) their structure and (2) their taphonomy.

Sampling strategy: No statistical method was used to predetermine sample size. Small samples (a few mm wide) were collected in order to maintain the integrity of the fossil as much as possible. The size of the sample was sufficient to observe abundant melanosomes and have statistically significant data points.

Data collection: Twenty-two soft tissue samples were collected by A. Circotta using sterile tools (tweezers). These samples are: (1) six independent monofilaments and branched feathers located around the posterior extension of the occipital process, (2) three fibres from the crest projecting from the base of the crest towards the occipital process, (3) four fibres collected on the posterior part of the crest, and (4) nine skin fibres located on the anterior part of the crest. Samples from the sedimentary matrix (from the region located between the base of the crest and the occipital process) were also collected. Samples were stored in SEM storage boxes before imaging.

Timing and spatial scale: Sample collection started in 2017 and finished in 2021. The timing for sample collection is related to the advance of our study. Timing of data collection has no importance in our study (fossil samples). Millimeter-sized samples were collected.

Data exclusions: No data were excluded from the analyses.

Reproducibility: Melanosome measurements, data for ancestral state estimations and other supplementary data are deposited in a data repository, available on:

Randomization: Samples were differentiated after their location on the fossil and their morphology: (1) cranial crest, (2) monofilaments and (3) branched feathers.

Blinding: Blinding is not relevant to our study because it does not involve randomised control trials.

Did the study involve field work? ☐ Yes ☑ No

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
Materials & experimental systems

	Involved in the study
✗	Antibodies
	Eukaryotic cell lines
✗	Palaeontology and archaeology
✗	Animals and other organisms
✗	Human research participants
	Clinical data
✗	Dual use research of concern

Methods

	Involved in the study
✗	ChiP-seq
	Flow cytometry
✗	MRI-based neuroimaging

Palaeontology and Archaeology

Specimen provenance

The fossil was originally collected from the Crato Formation at an unknown locality. The specimen resided in private collections for an unknown period of time before being deposited at the Royal Belgian Institute of Natural Sciences (RBINS). A cooperation agreement was signed on 11 October 2021 between RBINS and the embassy of Brazil in Belgium, which led to the official repatriation of the specimen to the Museum of Earth Sciences at Rio de Janeiro, Brazil, in early February 2022.

Specimen deposition

The specimen has been deposited at the Museum of Earth Sciences, Rio de Janeiro, Brazil. Collection number: MCT R.1884.

Dating methods

No new dates are provided in our study.

Ethics oversight

No ethical approval was required as the specimen studied is a fossil. The specimen was repatriated to its country of origin as part of a joint collaboration between Brazil and Belgium, and in agreement with the 1972 UNESCO convention concerning the protection of the World cultural and natural heritage.

Note that full information on the approval of the study protocol must also be provided in the manuscript.