Systematic overexpression of genes encoded by mycobacteriophage Waterfoul reveals novel inhibitors of mycobacterial growth

Danielle Heller 1,† Isabel Amaya 1,† Aleem Mohamed 2, Ilzat Ali 2, Dmitri Mavrodi 3, Padraig Deighan 1,4 Viknesh Sivanathan 1,†

1Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA, 2Department of Biology, University of Maryland Baltimore County, Baltimore, MD 21250, USA, 3Center for Molecular & Cellular Biosciences, University of Southern Mississippi, Hattiesburg, MS 39406, USA, 4Department of Biology, Emmanuel College, Boston, MA 02115, USA

*Corresponding author: Department of Science Education, Howard Hughes Medical Institute, Chevy Chase, MD 20185, USA. Email: sivanathanv@hhmi.org

Accepted: February 07, 2022. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Bacteriophages represent an enormous reservoir of novel genes, many of which are unrelated to existing entries in public databases and cannot be assigned a predicted function. Characterization of these genes can provide important insights into the intricacies of phage–host interactions and may offer new strategies to manipulate bacterial growth and behavior. Overexpression is a useful tool in the study of gene-mediated effects, and we describe here the construction of a plasmid-based overexpression library of a complete set of genes for Waterfoul, a mycobacteriophage closely related to those infecting clinically important strains of Mycobacterium tuberculosis and/or Mycobacterium abscessus. The arrayed Waterfoul gene library was systematically screened in a plate-based cytotoxicity assay, identifying a diverse set of 32 Waterfoul gene products capable of inhibiting the growth of the host Mycobacterium smegmatis and providing a first look at the frequency and distribution of cytotoxic products encoded within a single mycobacteriophage genome. Several of these Waterfoul gene products were observed to confer potent anti-mycobacterial effects, making them interesting candidates for follow-up mechanistic studies.

Keywords: mycobacteriophage; Mycobacterium smegmatis; cytotoxicity

In this Mutant Screen Report, Heller et al. report the findings of a genome-wide screen to identify novel mycobacteriophage gene products capable of inhibiting mycobacterial growth. The findings of this study represent the core scientific output of a new research project developed by the Howard Hughes Medical Institute (HHMI) to be conducted within the context of undergraduate science courses. The HHMI Science Education Alliance Gene-function Exploration by a Network of Emerging Scientists, or SEA-GENES project, engages cohorts of undergraduate scientists and their faculty instructors, nationwide, in an exploration of bacteriophage genetics. The Genetics Society of America and G3 are partnering with HHMI to disseminate the student-led discoveries of the SEA-GENES course-based research project to further advance our understanding of this largely uncharted system. Read more about SEA-GENES in the accompanying commentary.

Introduction

Bacteriophage genomes are replete with genes of unknown function (Hatfull 2015, 2020). Genomes of ~3,500 phages isolated on actinobacterial species collectively encode ~23,000 different “phamilies” of related gene products, of which ~75% cannot be assigned a predicted function (Cresawn et al. 2011; Pope et al. 2015; Russell and Hatfull 2017; Hatfull 2018, 2020). Genes encoding products required for core viral functions such as virion structure and assembly or lysis and lysogeny can typically be identified by sequence and synteny; however, due to the remarkable diversity of the population, even these core functions cannot always be recognized and remain largely uncharacterized for most phages (Hatfull and Hendrix 2011; Hatfull 2018, 2020). Phage genomes also encode a variable number of noncore genes, and these are overwhelmingly genes with no known function (NKF) (Hatfull 2015). Typically, NKF genes are small, expressed over the course of the phage life cycle, and though many are dispensable for the lytic growth or lysogeny, they are thought to confer advantage under specific conditions (Hatfull and Hendrix 2011; Dedrick et al. 2013, 2017; Pope et al. 2014). Indeed, studies probing the functions of these NKF genes continue to expand our understanding of the dynamics and regulation of bacterial infection by phage and reveal novel phage–host interactions that can be exploited for antimicrobial drug development (Liu et al. 2004; Rybniker et al. 2010, 2011; Kiro et al. 2013; Molshanski-Mor et al. 2014; Dedrick et al. 2017; Ko and Hatfull 2018, 2020; Gentile et al. 2019; Montgomery et al. 2019).

Gene overexpression is a powerful strategy for studying gene function, linking genes to observable phenotypes. In particular, observation of the effects of phage gene overexpression on
bacterial growth has been used as a first indicator to identify phage proteins targeting fundamental cellular processes including replication, protein transcription, cell division, and morphology (Liu et al. 2004; Rybniker et al. 2010, 2011; Kiro et al. 2013; Molshanski-Mor et al. 2014; Ko and Hatfull 2018, 2020). For example, overexpression of NKF gene 52 from mycobacteriophage Fruitloop was observed to cause a severe growth defect in the host bacterium, Mycobacterium smegmatis, with subsequent work demonstrating that gp52 interacts with the essential cell elongation regulator, Wag31 (Ko and Hatfull 2018). A recently published screen of 193 select nonstructural genes from several mycobacteriophages found that 23% were capable of inhibiting growth of the host M. smegmatis, demonstrating that cytotoxic genes are abundant within the phage population (Ko and Hatfull 2020). However, as few studies have examined the comprehensive set of genes within a given phage genome, the full abundance and arrangement of these cytotoxic genes within individual phage genomes remain largely unexplored.

Here, we report the results of a genome-wide overexpression screen of the complete set of genes encoded by a single mycobacteriophage. Phage Waterfoul is a temperate siphovirus isolated on M. smegmatis mc² 155 (Jackson et al. 2016). Based on gene content similarity, Waterfoul is part of phage cluster K (Russell and Hatfull 2017), which includes several members that have been shown to infect clinically important strains of mycobacteria (Pope et al. 2011; Jacobs-Sera et al. 2012; Dedrick et al. 2019a, 2021; Guerrero-Bustamante et al. 2021). Waterfoul encodes 94 predicted protein-coding genes and a single predicted tRNA(Trp) (Fig. 1), and as is typical for phage genomes, most genes (~60%) have no assigned functions (Jackson et al. 2016; Russell and Hatfull 2017).

In our study, a diverse set of 32 Waterfoul genes were found to be cytotoxic when expressed from a multi-copy plasmid in the host bacterium M. smegmatis, including 17 NKF genes and several genes with predicted core viral functions. This systematic screen reveals that a significant fraction of the genes encoded within a single phage genome (34%) are capable of impairing bacterial growth, and that cytotoxic genes are distributed throughout the genome, often occurring in clusters.

Materials and methods

Growth of mycobacteria and mycobacteriophage

M. smegmatis mc² 155 was grown at 37°C in Middlebrook 7H9 (Difco) broth supplemented with 10% AD (2% w/v Dextrose, 145 mM NaCl, 5% w/v Albumin Fraction V), 0.05% Tween80, and 10 μg/ml cycloheximide (CHX) or on Middlebrook 7H10 (Difco) agar supplemented with 10% AD and 10 μg/ml CHX. For the transformation of M. smegmatis mc² 155, electrocompetent cells were electroporated with ~50-100 ng of pExTra plasmid DNA, recovered in 7H9 broth for 2 h at 37°C with shaking, and transformants selected on 7H10 agar supplemented with 20 μg/ml Kanamycin (GoldBio). Colonies were typically visible after 3 days at 37°C and used in cytotoxicity assays after 4-5 days of incubation. Waterfoul was propagated on M. smegmatis mc² 155 grown at 37°C in the presence of 1 mM CaCl₂ and no Tween in Middlebrook media and top agar.

Construction of the pExTra Waterfoul library

The pExTra plasmid was derived from vector pST-KT, a gift from Vinay Nandicoori (Addgene plasmid # 44561; http://n2t.net/addg

Fig. 1. The genome of phage Waterfoul. The Waterfoul genome is shown as a ruler with kbp markers and genes represented by boxes—those above the line are transcribed rightwards and those below are transcribed leftwards. Numbers inside the box correspond to gene numbers and predicted functions are indicated above each gene. Box shading corresponds to cytotoxicity scoring, with white boxes designating genes found to have no effect on M. smegmatis growth, gray boxes indicating genes for which transformants could not be recovered (+++*; genes 8 and 86), and blue representing observed toxicity in our assay. The saturation of blue boxes corresponds to the severity of growth inhibition using the following scores: light blue (+; reduction in colony size; genes 1, 3, 6, 13, 16, 32, 33, 58, 62, 63, 64, 65, 66, 79, and 82), medium blue (++; 1–3 log reduction in viability; genes 11, 19, 21, 34, 46, 48, 57, 87, and 89), and dark blue (+++; >3-log reduction in viability; genes 47, 49, 52, 71, 81, and 88).
ene: 44561, RRID: Addgene_44561) (Parikh et al. 2013). To generate the empty vector plasmid pExTra01, the pST-KT plasmid was amplified by PCR (NEB Q5 HotStart 2× Master Mix) with primers oDH117 and oDH153 to remove the encoded His6 and Flag tags. This linear PCR product was then assembled with a second DNA fragment by isothermal assembly (NEB 2× HiFi Master Mix). This second fragment, amplified from plasmid pTNDs-mcherry (a generous gift from Graham Hatfull) using primers oDH152 and oDH154, harbors the mcherry coding sequence downstream of an RBS-containing sequence (5'-AACAGATCTGATCCGATAAACACAGG AACAGATCT) adopted from plasmid pJEM15 (Timm et al. 1994; Ko and Hatfull 2018).

Each Waterfoul gene was PCR-amplified (NEB Q5 HotStart 2× Master Mix) from a high-titer Waterfoul lysate and using a reverse primer complementary to the first 15–25 bp of the gene sequence, introducing a uniform ATG start codon, and a reverse primer complementary to the first 15–25 bp of the gene sequence, including the native stop codon (Supplementary Table S1). All forward primers contained a uniform, RBS-containing 5′ sequence.

Cytotoxicity screen and phenotype scoring

For cytotoxicity assays, transformed colonies were resuspended and serially diluted in 7H9 broth then spotted on 7H10 Kan plates supplemented with 0, 1, 10, or 100 ng/ml anhydrotetracycline (aTc, AlfaAesar). Each strain was tested in triplicate alongside pExTra-Fruitloop52 wild-type and mutant (I70S) controls, and growth was monitored over 5 days at 37 °C. Typically, spot growth was visible after 2–3 days incubation, with effects on colony size and color more apparent after 4–5 days incubation. Cytotoxic phenotypes were scored by comparing the spot dilution out to which cells grew in the presence vs. the absence of aTc inducer and classified as either having no effect, being moderately cytotoxic with a 1–3 log reduction in cell viability (+), or being highly cytotoxic, causing complete or near complete (>3-log) inhibition of growth (++)

Results and discussion

A system for studying gene-overexpression-mediated effects on M. smegmatis growth

A plasmid-based expression system was developed to assess the effects of phage gene overexpression in M. smegmatis, pExTra, standing for Expression with Transcriptional reporter, is a multi-copy shuttle plasmid with a tetracycline-inducible promoter (pTet) driving the expression of an inserted gene and a transcriptionally linked mcherry reporter gene, each associated with its own translation initiation signals (Fig. 2a). When transformed with the empty vector plasmid (pExTra01) encoding mcherry only, colonies of M. smegmatis mc2155 turn pink in the presence of the inducer anhydrotetracycline (aTc), with stronger color observed with increasing concentration of aTc, confirming tunable expression from pTet (Fig. 2b) (Ehrt et al. 2005; Parikh et al. 2013). Importantly, no notable growth defects were observed, even at the highest level of induction (Fig. 2b).

To determine the utility of this overexpression system for assessing gene-mediated effects on mycobacterial growth, pExTra derivatives containing alleles of toxic gene Fruitloop 52 between pTet and mcherry were engineered and tested in a plate-based bacterial growth assay. M. smegmatis mc2155 was transformed with pExTra encoding either wild-type gp52, which was previously shown to inhibit mycobacterial growth upon overexpression, or gp52-I70S, a variant that can be produced at a comparable level as the wild-type protein with minimal effect on M. smegmatis. Individual colonies of transformed cells were resuspended, serially diluted, and dilutions plated on 7H10 media with increasing levels of inducer. Consistent with previously published findings, cells expressing wild-type Fruitloop 52 exhibited a pronounced...
strains expressing the Fruitloop-based cytotoxicity assay alongside positive and negative control colonies for each gene in the library were tested in our plate-allele, respectively.

The pink extent in the presence or absence of inducer (Fig. 2b). The pink whereas those expressing the I70S mutant allele grew to a similar colony color of cells expressing the mutant provides visible confirmation. Moreover, the semiquantitative nature of the spot-dilution assay allows for the observation of a range of growth defects, from milder reduction in colony size (e.g. wild-type Fruitloop 52) to multi-log defects in colony number (indicated as +++), as compared to when uninduced; an example of each score is provided in Fig. 2c. This frequency of genes with pronounced cytotoxicity upon overexpression (15/92 genes; 16%) is comparable to that observed for a genome-wide cytotoxicity screen for bacteriophage 77 of Staphylococcus aureus (16%) (Liu et al. 2004). The remaining 15 cytotoxic genes identified in our study resulted in only mild defects in colony size (indicated as +).

Within this set of 30 cytotoxic genes, 14 have putative functional assignments, including 4 genes encoding products with putative nuclease domains—a Cas4 family exonuclease (gp57), the large terminase subunit (gp6), and 2 HNH-endonucleases (gp63 and gp64)—as well as 3 predicted replisome components—DNA Pol III sliding clamp protein (gp48), DNA primase/polymerase (gp65) and helicase (gp66). The observed cytotoxicity of the former may be a consequence of nonspecific nuclease activity upon overexpression (Rao and Black 1988; Bhattacharyya and Rao 1994), whereas the cytotoxicity of the latter category is consistent.

Waterfoul-encoded inhibitors of mycobacterial growth

In total, 30 Waterfoul genes were observed to reproducibly impair M. smegmatis growth in an aTc-dependent manner (Table 1, Fig. 1, and Supplementary Fig. S1). Of these, 15 resulted in pronounced growth defects, with 9 resulting in a roughly 1–3-log reduction in colony number (indicated as ++) and 6 with more than a 3-log decrease in colony number (indicated as +++), as compared to when uninduced; an example of each score is provided in Fig. 2c. Within this set of 30 cytotoxic genes, 14 have putative functional assignments, including 4 genes encoding products with putative nuclease domains—a Cas4 family exonuclease (gp57), the large terminase subunit (gp6), and 2 HNH-endonucleases (gp63 and gp64)—as well as 3 predicted replisome components—DNA Pol III sliding clamp protein (gp48), DNA primase/polymerase (gp65) and helicase (gp66). The observed cytotoxicity of the former may be a consequence of nonspecific nuclease activity upon overexpression (Rao and Black 1988; Bhattacharyya and Rao 1994), whereas the cytotoxicity of the latter category is consistent.
with replisome function being both essential and sensitive to the stoichiometry of its constituent parts (Reyes-Lamothe et al. 2010; Brüning et al. 2016; Homiski et al. 2021). We note that the predicted DnaQ-like DNA Pol III subunit (gp54) was not observed to be cytotoxic; this is consistent with the observation that overexpression of dnaQ in Escherichia coli is not cytotoxic but instead minimizes the accumulation of mutations during the SOS response (Jonczyk et al. 1988).

Unexpected cytotoxicity was observed for multiple gene products involved in virion structure and assembly (Table 1). Mild impacts on host growth were seen with overproduction of the major tail protein (gp16) and the putative head-to-tail stopper protein (gp13), whereas a greater impact on viability was observed with production of major capsid protein gp11, one of several minor tail proteins (gp21), and the tape measure protein (gp19). Interestingly, gp19 contains a short, conserved motif previously reported as related to predicted actinobacterial protease proteins (Pedulla et al. 2003) that may be responsible for the observed cytotoxicity. Finally, overexpression of the putative NrdH-like glutaredoxin (62) was also observed to cause a mild growth defect in M. smegmatis.

Table 1. Waterfoul genes observed to inhibit mycobacterial growth.

Gene	Phamilya	Length (aa)	Predicted function and features	Cytotoxicityb
1	54760	81	NKF	+
2	97870	76	NKF	+
3	96961	475	Large terminase subunit	+
4	15199	310	Major capsid protein	++
5	98409	120	Head-to-tail stopper	+
6	98249	203	Major tail protein	+
7	95098	1,369	Tapemeasure protein; TMDc and putative peptide domaind	+
8	83500	590	Minor tail protein	++
9	98277	111	NKF, TMD, DUF2746	+
10	97963	84	NKF	+
11	55599	405	NKF	+
12	95994	152	NKF, HTH DNA-binding	+
13	51764	243	NKF	+
14	98101	208	NKF, DUF310	+++
15	41220	376	DNA Pol III sliding clamp	+++
16	8075	112	NKF, DUF1523	+
17	17346	205	NKF	+
18	56083	286	Cas4 family exonuclease	+
19	96417	82	NrdH-like glutaredoxin	+
20	98588	163	HNH endonuclease	+
21	15677	126	HNH endonuclease	+
22	14830	719	DNA primase/polymerase	+
23	15073	569	DNA helicase	+
24	56483	284	NKF, TMD, HTH DNA-binding	+
25	84553	121	NKF	+
26	9343	213	NKF	+++
27	85055	225	NKF	+
28	15142	135	NKF	+
29	52229	228	NKF	++
30	56167	119	NKF	++

a Phamily numbers were obtained from phagesdb.org as of January 27, 2022.
b Growth of strains on media supplemented with 10 or 100 ng/ml aTc was compared to the same strains plated on media without aTc. Those denoted as + exhibited aTc-dependent differences in colony size, those denoted as ++ demonstrated a 1–3-log difference in growth in the presence of aTc, and those denoted as +++ demonstrated a severe >3-log reduction in growth in the presence of aTc.
c TMD, transmembrane domain.
d This domain was previously reported in Pedulla et al. 2003.

Waterfoul genes that do not inhibit mycobacterial growth upon overexpression

Of the Waterfoul genes tested for cytotoxicity, 67% caused no appreciable reduction in bacterial growth in our assay, with comparable viability and colony size in the presence or absence of aTc inducer (Fig. 2 and Supplementary Fig. S1). For the large majority of the genes found to be nontoxic to the host (53/62), pink colony color was observed at the higher concentration of aTc, indicating transcription and translation are occurring through the pTet operon (Supplementary Fig. S1). However, we cannot rule out that some of these nontoxic gene products may not be soluble or accumulate within cells in our assay.

Among the nontoxic genes, 21 have predicted functions, including several genes for which we would not predict toxicity, for example, the putative immunity repressor (42), a gene predicted to be expressed in a lysogen based on our general understanding of repressor function and supported by published expression data for the homologous gene in the cluster K phage Zoel (Dedrick et al. 2019b). Overproduction of the Waterfoul lysin A (gp29) and lysin B (gp30) proteins alone had no effect on host viability, consistent with reports that these must work in concert with each other and holin to coordinate disruption of the cell...
envelope (Payne et al. 2009; Catalão and Pimentel 2018). Interestingly, a few mycobacteriophage lysis A proteins have been shown to cause holin-independent cell death when expressed in the cytoplasm (Payne and Hatfull 2012), including the Waterfoul homolog from mycobacteriophage Kostya, which was found to cause modest lysis after prolonged induction in liquid (Payne and Hatfull 2012). We did not observe any evidence of clearing in a culture of M. smegmatis expressing Waterfoul 29 after ~16 h of induction with 100 ng/ml aTc (data not shown). It should be noted that this strain is one for which pink color was not observed (on plates or in liquid), and differences in expression level may account for the different behavior of the homologs.

Further characterization and comparison of these 2 homologs, which share 66% amino acid identity, could offer interesting insights into the genetic determinants of holin-independent killing. Overproduction of the putative Waterfoul holin protein (gp31) was also found to have no obvious effect on host viability, though this strain displayed robust mcherry expression in our assay (Supplementary Fig. S1). While there are reports in the literature of cytotoxicity associated with overexpression of some holin proteins (Catalão et al. 2011), it is not known how broadly this applies to the diverse population of holin-like proteins.

Additional observations of Waterfoul gene expression

Not included in the discussion above are results for Waterfoul genes 8 and 86. Despite multiple transformation attempts using 2 independently constructed pExTra clones of each plasmid, we were unable to obtain M. smegmatis transformants containing pExTra encoding genes 8 or 86. One potential explanation for this poor transformant recovery is cytotoxicity associated with leaky protein production in the absence of inducer. Indeed, this seemed especially likely for Waterfoul 86, which is predicted to encode a BrnT-like ribonuclease toxin from the type II BrnT/BrnA toxin-antitoxin system. To test this possibility, we generated versions of pExTra encoding nonsense alleles of 8 and 86 with a stop codon inserted at the second codon position and compared the ability of the wild-type and mutant alleles to transform M. smegmatis mc²155. In both cases, the nonsense mutation allowed for the recovery of transformants (Fig. 2d), indicating that leaky expression of 8 and 86 from the pTet promoter is responsible for poor transformant recovery. This also suggests that these gene products are cytotoxic to the mycobacterial host (designated as +/+* in Fig. 1), bringing the total number of Waterfoul-encoded inhibitors to 32. We additionally note that rescue was incomplete for Waterfoul 8 harboring the nonsense mutation, with residual defects still observed for transformant recovery and colony size as compared to the pExTra01 control plasmid (Fig. 2d). Given that some phage genes are known to harbor intragenic translation signals (Catalão and Pimentel 2018), we speculate that production of truncated products of gp8 could account for these observed results.

Finally, although in most cases transformation of M. smegmatis mc²155 with pExTra derivatives yielded white colonies in the absence of aTc as expected, 6 consistently yielded uniformly pink transformants, presumably due to aTc-independent mcherry expression (Fig. 2e and Supplementary Fig. S1). No mutations were found in the pTet promoter region of these plasmids, suggesting that these inserted phage genes may harbor promoter sequences that can be recognized by the host transcriptional machinery.

Insights into genome-wide patterns of host inhibition

The systematic screening of the complete set of Waterfoul genes allows for several genome-wide observations. First, cytotoxic genes can account for approximately one-third (32/94, 34%) of all genes within a phage genome. Though we do not expect these cytotoxic genes to necessarily be employed by the phage to halt host growth during infection, this figure highlights the numerous ways in which the suite of gene products encoded by a phage can interact with host proteins and perturb essential host processes.

Second, gene cytotoxicity can be difficult to predict. For example, overexpression of many structure and assembly genes known to be highly expressed in the host cell during lytic infection (Dedrick et al. 2019b) were found to impair host growth, whereas the presence of a transmembrane domain, which may be expected to destabilize the bacterial membrane when present at high concentrations, did not predict cytotoxicity. Of the 7 Waterfoul proteins predicted to contain transmembrane domains (gp19, gp31, gp32, gp41, gp45, gp58, and gp71), only 3 were observed to inhibit growth (Supplementary Fig. S1); those that were not toxic (gp31, gp41, gp45, and gp58) all exhibited pink color on aTc, suggesting that expression was occurring. Cytotoxic genes are also distributed throughout the genome, and their gene products can range in size, from 50 aa to the largest protein encoded by Waterfoul, the 1,369 aa tape measure protein.

Finally, we observed that cytotoxic genes are typically clustered with other cytotoxic genes (Fig. 1). As it is well-established that genes are arranged within phage and bacterial genomes according to shared function, a cytotoxic cluster may thus represent multiple genes that target a common host process. In the search for anti-bacterial therapeutics, cytotoxic clusters might prove a useful strategy for identifying host vulnerabilities well-suited for drug development.

In conclusion, the observations presented here highlight the value of conducting comprehensive genome-wide cytotoxicity screens. In conjunction with further characterization of these Waterfoul-encoded growth inhibitors, systematic screening of additional phage genomes will undoubtedly uncover many more cytotoxic genes, providing important comparisons to further dissect the determinants of cytotoxicity and to better understand the generalizability and relevance of the genome-wide patterns reported here.

Data availability

All plasmids and plasmid sequences reported in this study are available upon request.

The authors affirm that all data necessary for confirming the conclusions of this article are represented fully within the article and its tables and figures.

Supplemental material is available at G3 online.

Acknowledgments

We would like to acknowledge several members of the Science Education Alliance for their contributions to this work, including Maria Gainey, Jamie Wallen, Billy Biederman, and all faculty and student members of the SEA-GENES program. We would like to thank David Asai for advice and comments on the manuscript, and Graham Hatfull for reagents, research advice, and helpful input on the manuscript. We thank New England Biolabs and Integrated DNA Technologies for providing reagent support.
Funding
This work was conducted as part of the HHMI-supported Science Education Alliance GENES (Gene function Exploration by a Network of Emerging Scientists) project.

Conflicts of interest
None declared.

Literature cited

Bhattacharyya SP, Rao VB. Structural analysis of DNA cleaved in vivo by bacteriophage T4 terminase. Gene. 1994;146(1):67–72. https://doi.org/10.1016/0378–1119(94)90834-6.

Brüning J-G, Myka KK, McGlynn P. Overexpression of the replicative helicase in Escherichia coli inhibits replication initiation and replication fork reloading. J Mol Biol. 2016;428(6):1068–1079. https://doi.org/10.1016/j.jmb.2016.01.018.

Catalão MJ, Pimentel M. Mycobacteriophage lysis enzymes: targeting the mycobacterial cell envelope. Viruses. 2018;10(8):428. https://doi.org/10.3390/v10080428.

Catalão MJ, Gil F, Moniz-Pereira J, Pimentel M. Functional analysis of the holin-like proteins of mycobacteriophage Ms6. J Bacteriol. 2011;193(11):2793–2803. https://doi.org/10.1128/jb.01519-10.

Cresawn SG, Bogel M, Day N, Jacobs-Sera D, Hendrix RW, Hatfull GF. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics. 2011;12:395–395. https://doi.org/10.1186/1471–2105-12-395.

Dedrick RM, Marinelli LJ, Newton GL, Pogliano K, Pogliano J, Hatfull GF. Functional requirements for bacteriophage growth: gene essentiality and expression in mycobacteriophage Giles. Mol Microbiol. 2013;83(3):577–589. https://doi.org/10.1111/mmi.12210.

Dedrick RM, Jacobs-Sera D, Bustamante CAG, Garlena RA, Mavrich TN, Pope WH, Reyes JCC, Russell DA, Adair T, Alvey R, et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat Microbiol. 2017;2:16251. https://doi.org/10.1038/nmicrobiol.2016.251.

Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Russell DA, Ford K, Harris K, Gilmour KC, Soothill J, Jacobs-Sera D, Schooley RT, et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat Med. 2019a;25(5):730–733. https://doi.org/10.1038/s41591-019-0437-z.

Dedrick RM, Guerrero-Bustamante CA, Garlena RA, Pinches RS, Cornely K, Hatfull GF. Mycobacteriophage Zoe: a broad host-range close relative of mycobacteriophage TM4. Tuberculosis. 2019b;115:14–23. https://doi.org/10.1016/j.tube.2019.01.002.

Dedrick RM, Smith BE, Garlena RA, Russell DA, Aull HG, Mahalingam V, Divens AM, Guerrero-Bustamante CA, Zack KM, Abad I, et al. Mycobacterium abscessus strain morphotype determines phase susceptibility, the repertoire of therapeutically useful phages, and phase resistance. mBio. 2021;12(2):e03431–20. https://doi.org/10.1128/mbio.03431–20.

Eht H, Guo XY, Hickey CM, Ryou M, Monteleone M, Riley IW, Schnappinger D. Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor. Nucleic Acids Res. 2005;33(2):e21. https://doi.org/10.1093/nar/gni013.

Gabler F, Nam S, Till S, Mirdita M, Steinegger M, Söding J, Lupas ANAV. Protein sequence analysis using the MPI bioinformatics toolkit. Curr Protoc Bioinform. 2020;72:e108. https://doi.org/10.1002/cpbi.108.

Gentile GM, Wetzel KS, Dedrick RM, Montgomery MT, Garlena RA, Jacobs-Sera D, Hatfull GF. More evidence of collussion: a new prophage-mediated viral defense system encoded by mycobacteriophage Sbash. mBio. 2019;10(2):e00196–19. https://doi.org/10.1128/mbio.00196–19.

Guerrero-Bustamante CA, Dedrick RM, Garlena RA, Russell DA, Hatfull GF. Toward a phage cocktail for tuberculosis: susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains. mBio. 2021;12(3):e00973–21. https://doi.org/10.1128/mbio.00973–21.

Hatfull GF. Dark matter of the biosphere: the amazing world of bacteriophage diversity. J Virol. 2015;89(16):8107–8110. https://doi.org/10.1128/jvi.01340-15.

Hatfull GF. Mycobacteriophages. Microbiol Spectr. 2018;6(5):https://doi.org/10.1128/microbiolspec.gpp3-0026–2018.

Hatfull GF. Actinobacteriophages: genomics, dynamics, and applications. Annu Rev Virol. 2020;7(1):37–61. https://doi.org/10.1146/annurev-virology-122019-070009.

Hatfull GF, Hendrix RW. Bacteriophages and their genomes. Curr Opin Virol. 2011;1(4):298–303. https://doi.org/10.1016/j.coviro.2011.06.009.

Heller D, Sivananthan V. Publishing student-led discoveries in genetics. G3: Genes|Genomes|Genetics; https://doi.org/10.1093/g3journal/jka141.

Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics. 1998;14(4):378–379. https://doi.org/10.1093/bioinformatics/14.4.378.

Homicki CJ, Scotland MK, Babu VMP, Chodavarapu S, Maul RW, Kaguni JM, Sutton MD. The mutant JE202K sliding clamp protein impairs DNA polymerase III replication activity. J Bacteriol. 2021;203(23):e00303–21. https://doi.org/10.1128/jb.00303-21.

Jackson PN, Embry JK, Johnson CO, Watson TL, Weast SK, DeGraw CJ, Douglas JR, Sellers JM, D’Angelo WA, Mavrodi DV. Genome sequence of Mycobacterium phage Waterfoul. Genome Announc. 2016;4(6):e01281–16. https://doi.org/10.1128/genomea.01281-16.

Jacobs-Sera D, Marinelli LJ, Bowman C, Broussard GW, Guerrero Bustamante C, Boyle MM, Petrova ZO, Dedrick RM, Pope WH, Modlin RL, et al.; Science Education Alliance Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) program. On the nature of mycobacteriophage diversity and host preference. Virology. 2012;434(2):187–201. https://doi.org/10.1016/j.virol.2012.09.026.

Jonczyk P, Fijalkowska I, Ciesla Z. Overproduction of the epsilon subunit of DNA polymerase III counteracts the SOS mutagenic response of Escherichia coli. Proc National Acad Sci U S A. 1988;85(23):9124–9127. https://doi.org/10.1073/pnas.85.23.9124.

Kiro R, Molshanski-Mor S, Yosef I, Milam SL, Erickson HP, Qimron U. Gene product 0.4 increases bacteriophage T7 competitiveness by inhibiting host cell division. Proc National Acad Sci U S A. 2013;110(48):19549–19554. https://doi.org/10.1073/pnas.1314096110.

Ko C, Hatfull GF. Mycobacteriophage Fruitloop gp52 inactivates Wag31 (DivIVA) to prevent heterotypic superinfection. Mol Microbiol. 2018;108(4):443–460. https://doi.org/10.1111/mmi.13946.

Ko C-C, Hatfull GF. Identification of mycobacteriophage toxic genes reveals new features of mycobacterial physiology and morphology. Sci Rep. 2020;10(1):14670. https://doi.org/10.1038/s41598-020–71588-5.

Krogh A, Larsson B, Heijne G, von Sonnenfels ELL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;315(3):567–580. https://doi.org/10.1006/jmbi.2000.4315.

Liu J, Debbi M, Moeck M, Arhin F, Bauda P, Bergeron D, Callejo M, Ferretti V, Ha N, Kwan T, et al. Antimicrobial drug discovery
through bacteriophage genomics. Nat Biotechnol. 2004;22(2): 185–191. https://doi.org/10.1038/nbi932.

Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurvitz DJ, Marchler GH, Song JS, et al. CDD/SPARCLE: the conserved domain database in 2020. Nucleic Acids Res. 2020; 48(D1):D265–D268. https://doi.org/10.1093/nar/gkz991.

Mehla J, Dedrick RM, Caufield JH, Wagemans J, Sakhawalkar N, Johnson A, Hatfull GF, Uetz P. Virus-host protein-protein interactions of mycobacteriophage Giles. Sci Rep. 2017;7(1):16514. https://doi.org/10.1038/s41598-017-16303-7.

Molshanski-Mor S, Yosef I, Kiro R, Edgar R, Manor M, Gershovits M, Mehla J, Dedrick RM, Caufield JH, Wagemans J, Sakhawalkar N, Larsen MH, Jacobs WR, Lawrence JG, Hendrix RW, et al. Genomics Origins of Cluster K. Genomics. 2019;1185757.

Pope WH, Jacobs-Sera D, Russell DA, Rubin DHF, Kajee A, Msibi ZNP, Rao VB, Black LW. Cloning, overexpression and purification of the terminase proteins gp16 and gp17 of bacteriophage T4 construction of a defined in-vitro DNA packaging system using purified terminase proteins. J Mol Biol. 1988;200(3):475–488. https://doi.org/10.1002/0022–2836(88)90537-2.

Reyes-Lamothe R, Sherratt DJ, Leake MC. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science. 2010;328(5977):498–501. https://doi.org/10.1126/science.1185757.

Russell DA, Hatfull GF. PhagesDB: the actinobacteriophage database. Bioinformatics. 2017;33(5):784–786. https://doi.org/10.1093/bioinformatics/btw711.

Rybniker J, Plum G, Robinson N, Small PL, Hartmann P. Identification of three cytotoxic early proteins of mycobacteriophage L5 leading to growth inhibition in Mycobacterium smegmatis. Microbiology (Reading). 2008;154(Pt. 8):2304–2314. https://doi.org/10.1099/mic.0.2008/017004-0.

Rybniker J, Nowag A, Gumpel EV, Nissen N, Robinson N, Plum G, Hartmann P. Insights into the function of the WhiB-like protein of mycobacteriophage TM4 – a transcriptional inhibitor of WhiB2. Mol Microbiol. 2010;77(3):642–657. https://doi.org/10.1111/j.1365–2958.2010.07235.x.

Rybniker J, Krumbach K, Gumpel E, van Plum G, Eggeling I, Hartmann P. The cytotoxic early protein 77 of mycobacteriophage L5 interacts with MSMEG_3532, an L-serine dehydratase of Mycobacterium smegmatis. J Basic Microbiol. 2011;51(5):515–522. https://doi.org/10.1002/jobm.201000446.

Singh S, Godavarthi S, Kumar A, Sen R. A mycobacteriophage genomics approach to identify novel mycobacteriophage proteins with mycobactericidal properties. Microbiology (Reading) 2019; 165(7):722–736. https://doi.org/10.1099/mic.0.000810.

Timm J, Lim EM, Gicquel B. Escherichia coli-mycobacteria shuttle vectors for operon and gene fusions to lacZ: the pJEM series. J Bacteriol. 1994;176(21):6749–6753. https://doi.org/10.1128/jb.176.21.6749–6753.1994.

Tran NQ, Rezende LF, Qimron U, Richardson CC, Tabor S. Gene 1.7 of bacteriophage T7 confers sensitivity of phage growth to dideoxythymidine. Proc National Acad Sci U S A. 2008;105(27):9373–9378. https://doi.org/10.1073/pnas.0804164105.

Tran NQ, Tabor S, Amarasingwardena CJ, Kulczyk AW, Richardson CC. Characterization of a nucleotide kinase encoded by bacteriophage T7. J Biol Chem. 2012;287(35):29468–29478. https://doi.org/10.1074/jbc.m112.389619.

Tran NQ, Tabor S, Richardson CC. Genetic requirements for sensitivity of bacteriophage T7 to dideoxythymidine. J Bacteriol. 2014; 196(15):2842–2850. https://doi.org/10.1128/jb.01718-14.

Tsirigos KD, Peters C, Shu N, Käll L, Elofsson A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides. Nucleic Acids Res. 2015;43(W1):W401–W407. https://doi.org/10.1093/nar/gkv485.