Simulation and Virtual Prototyping of Tangible User Interfaces

Stefan Diewald 1, Andreas Möller 1, Luis Roalter 1, Matthias Kranz 2
1 Technische Universität München, Arcisstraße 21, 80333 Munich, Germany
2 Universität Passau, Innstraße 43, 94032 Passau, Germany
stefan.diewald@tum.de, andreas.moeller@tum.de, roalter@tum.de, matthias.kranz@uni-passau.de

ABSTRACT
Prototyping is an important part in research and development of tangible user interfaces (TUIs). On the way from the idea to a working prototype, new hardware prototypes usually have to be crafted repeatedly in numerous iterations. This brings us to think about virtual prototypes that exhibit the same functionality as a real TUI, but reduce the amount of time and resources that have to be spent.

Building upon existing open-source software – the middleware Robot Operating System (ROS) and the 3D simulator Gazebo – we have created a toolkit that can be used for developing and testing fully functional implementations of a tangible user interface as a virtual device. The entire interaction between the TUI and other hardware and software components is controlled by the middleware, while the human interaction with the TUI can be explored using the 3D simulator and 3D input/output technologies. We argue that by simulating parts of the hardware-software co-design process, the overall development effort can be reduced.

Author Keywords
TUI prototyping, middleware, virtual TUI, Gazebo, ROS

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User Interfaces—Prototyping

INTRODUCTION
The development and evaluation of prototypic tangible user interfaces (TUIs) [10] consumes a lot of effort and time due to iterative design and debug processes on some kind of hardware. Starting from I/O cubes [28], to tabletops [20] and various augmented everyday objects [4, 33], each TUI consists of individual hardware that has often to be built from scratch. In order to reduce the development time for initial prototypes, hardware frameworks, such as Blades & Tiles [27], Pin & Play [31] or Gadgeteer [32], are used by developers. However, still a lot of work has to be spent on the hardware before a running prototype can actually be used for evaluating user interaction and HCI-related aspects.

Hence, a prototyping approach allowing the simulation of tangible user interfaces at an early stage, e.g. to evaluate novel interaction concepts, before building any kind of hardware could extremely shorten the overall development time. This is especially the case for TUIs that are based on novel hardware that is not yet available or cannot be realized within reasonable expenditure.

In this paper, we introduce a toolkit for TUI simulation that allows shifting the early prototyping process into a high-fidelity 3D virtual environment [7]. That way, shapes of objects for a new TUI and/or new interaction concepts can be evaluated before an actual hardware prototype needs to be built. The proposed toolkit is based on a middleware that can be used for virtual as well as for real TUIs. For that reason, interactions between real and simulated components are possible. Moreover, the transition from the virtual to the real prototype does not entail significant changes from software side.

The paper is structured as follows: We first give an overview of existing state-of-the-art prototyping tools for TUIs. Then, the requirements for a TUI simulation environment are developed and presented. Based on these requirements, the designed TUI simulation toolkit is introduced. In a comparison between the development process of a real prototype and a virtual prototype, the working method with the proposed solution is presented. Subsequently, we portray the challenges that need to be overcome for being able to assess interactive as well as tangible aspects of a virtual TUI with the proposed toolkit. The paper concludes with a summary of achievements and describes directions for future work.
RELATED WORK: PROTOTYPING OF TANGIBLE USER INTERFACES

Before being able to enhance the process of TUI prototype development and testing, needs and requirements for TUI development have to be investigated. We derive these demands by reflecting our own experiences in TUI prototyping and by examining the features of currently available TUI software frameworks and hardware toolkits.

Tangible User Interface Markup Language (TUIML) and Management System (TUIMS)

During the early ideation phase of tangible user interfaces, it is important to create a clear definition of the interplay between the digital and physical domain. In 2009, Shaer and Jacob presented the Tangible User Interface Markup Language (TUIML) [30]. It can be used to describe the structure and behavior of TUIs.

For creating the high-level description of a TUI in TUIML, the TUI Management System (TUIMS) Prism [30] has been created. It is an interactive application that allows modeling a TUI and assigning behaviors to it. A canvas view provides a graphical editor for sketching 3D representations of the physical objects. The TUI description is automatically translated to TUIML. The additional run-time environment supports a Java3D graphical simulation of the physical objects. In addition, it can control two microcontroller platforms and a RFID reader. The source code for the microcontroller platforms can be generated automatically by the management system. One goal of such a markup language is to obtain a standardized description of a TUI which can be used in a collaborative development process.

In contrast to this system, our approach is based on a high-fidelity 3D simulation connected to a middleware that is equally used for simulated objects as well as for real physical objects. Our toolkit allows merging the virtual and the real domain; no distinction is made between real objects and simulated objects. The real prototype can run the same code, trigger the same actions and be influenced by the same parameters as the simulated prototype, just by replacing the device drivers. Our approach does not replace nor contradict the solution by Shaer et al., but increases the interaction evaluation possibilities in the early design phase, since the simulation is not any more decoupled from real objects and real actions.

TUI Hardware Toolkits and Software Frameworks

During the last few years, several hardware toolkits and software frameworks for TUI prototyping have emerged and therewith simplified the TUI development process. One of the goals of these frameworks is the decoupling of the hardware and software development.

The Blades & Tiles from Sankaran et al. [27] is an example for such a hardware toolkit. By combining different Blades and Tiles various interaction devices can be realized. BOXES [9] is another rapid construction toolkit for interactive physical prototypes in the early design stages. With BOXES, physical objects can be made interactive by attaching so-called thumbtacks [9] to them. The little touch sensors can then be mapped to specific keyboard or mouse input events on the connected PC.

The Papier-Mâché toolkit enables to build tangible interfaces using computer vision, electronic tags, and bar codes. Owners of a Vicon Tracking system can make use of the DisplayObjects rapid prototyping workbench [1]. It allows designing functional interfaces on 3D physical objects of any shape. Other commonly used hardware toolkits are Arduino\(^1\), Phidgets\(^2\) or iStuff [2].

HephaistTK [8] is an agent-based software toolkit for rapid creation of multimodal interfaces. The agents are managing the communication between input recognizers, extraction engines, and output modules. A central postman is used for storing incoming input events and distributing these messages to agents that are subscribed to the specific message types. Responsive Objects, Surfaces, and Spaces (ROSS) API [37] and reacTIVision [11] are examples for tabletop TUI prototyping toolkits. OpenInterface [29] is a component-based tool for rapid development of multimodal input interfaces. Its integrated development environment allows graphical high-level assembling of different components such as device drivers, interaction techniques, or multimodal fusion facilities.

Low-fidelity prototyping for evaluating tangible interactions is possible with Sketch-a-TUI by Wiethoff et al. [35]. Sketch-a-TUI is based on conductive ink that can be applied to cardboard objects. In this way, the objects can be detected by capacitive touch screens that, for example, are built-in in state-of-the-art smartphones and tablet PCs. This allows for fast

\(^1\)http://www.arduino.cc/, last accessed May 6, 2014
\(^2\)http://www.phidgets.com/, last accessed May 6, 2014

Figure 2. Up to now, TUIs consisted always of a physical part that only influenced the virtual environment by controlling software applications running on a computer. The proposed solution introduces virtual TUIs and proposes a middleware for connecting elements in real and virtual environments.
and cost-efficient prototyping of tangible interactions since the graspable objects do not need any industrial production process and, thus, are very cheap. However, the created objects do not have any intelligence on their own and only work on a very limited space.

OUR APPROACH: PROTOTYPING WITH VIRTUAL HARDWARE

Since all of the currently available TUI prototyping toolkits and methods need some kind of dedicated real hardware to test the functionality of the TUI, we have considered a prototyping platform that can be used without any real hardware components. Based on the results from Kranz et al. with intelligent and smart environments [24, 17], we created a toolkit that allows a complete virtual representation of a TUI. As presented in Fig. 1, we can create high-fidelity virtual prototypes that look almost identical to subsequently developed real prototypes.

Requirements for a Virtual TUI Simulation Environment

A simulation environment for TUIs needs to fulfill several requirements in order to enable a complete evaluation of the system at an early stage and to fulfill the key properties of TUIs as described by Kim and Maher [12]. Since tangible user interfaces are based on the linkage of the virtual and physical domain, it is important that the simulation can simulate any kind of physical object, especially rigid body objects that are commonly used in many activities of daily living (ADL). A physics engine has to ensure that the virtual objects behave like real physical ones. Besides the support for modeling objects of any arbitrary shape, it should further support realistic textures. Simple geometric shapes [15, 36] as well as complex TUIs, such as topobo [25], should be supported. In order to allow an intuitive evaluation by the user it has to offer an intuitive 3D interface with the possibility to interact with the simulated objects and to explore the virtual environment.

Another important factor is the connection of the simulation environment to a middleware that can actively support the TUI development. It would be useful to choose one that can be used for the virtual simulation as well as afterwards for a real implementation.

The ROS Middleware as TUI Middleware

Based on former research on the simulation of intelligent environments, we have chosen the Robot Operating System (ROS) as middleware. ROS is one of the major middleware systems in the domain of robotics, e.g. running on the PR2 and several other robots [5]. Thus, an advantage of this middleware is that a huge set of drivers and applications (mainly for robotic systems) is already available. ROS has also been used on immobile robots (ImmunoBots) such as intelligent environments [26]. As argued in this work, intelligent objects behave somewhat like robots as well. This allows us to deal with TUIs as if they were robots, implying that we are able to use any robotic simulation method equally for TUIs.

As presented in Fig. 2, the middleware brings different hardware and software concepts together, creating the possibility to interconnect real TUIs with virtual TUIs (vTUIs).

Using the same toolkit for intelligent environments, robots and TUIs, a common middleware reduces the amount of code that has to be written to establish the communication between these kinds of systems. The middleware already provides us with basic messages and communication protocols to transfer any kind of data between different nodes. For the virtual development process, ROS does not depend on existing hardware. The developers are completely free in designing the communication with other TUIs and Smart Things.

3D Simulation of Physical Objects with Gazebo

The 3D simulation is performed with Gazebo [14], a 3D robot simulator. Gazebo is a complete physical simulation of robots including shapes, joints, contacts, collisions, and friction. Gazebo utilized the 3D framework OGRE (Object-Oriented Graphics Rendering Engine)\(^5\) for rendering the environment and objects. It uses the Open Dynamics Engine (ODE)\(^6\) library as physics engine that can simulate rigid body dynamics. During the simulation, Gazebo publishes the models’ states and behaviors via the ROS middleware’s communication infrastructure so that all other nodes can use these parameters for triggering certain actions.

Gazebo uses URDF (Unified Robot Description Format)\(^5\) files for the description of the models. The physical elements for the simulation can be modeled with all common 3D modeling tools such as Blender\(^6\), Cinema4D\(^6\), Autodesk Maya\(^8\) or 3ds Max\(^8\). Gazebo further offers the possibility to draw defined simple geometric objects, such as boxes, spheres, and cylinders with a single XML tag. All of these simple elements or meshed elements, i.e. more complex polyhedral objects, can be linked together with joints. Gazebo distinguishes between different kinds of joints to be able to calculate their physical state. This enables to confine the degrees of freedom to the desired ones. After choosing a type of joint (e.g. prismatic, revolute, or sliding), the limits of the joint and the forces needed to interact with this joint in the simulation can be set. By defining a mass, inertia and friction values for an element, the physics engine can simulate its dynamic behavior in a realistic way.

Originally developed as outdoor robotic sensor simulator, a specialty of Gazebo are virtual sensors and actuators that can be assigned to any object in the simulation. Examples of available sensors are cameras, laser scanners, contact switches, force sensors, or inertial measurement units (IMUs). It is even possible to simulate a simple battery unit that can be loaded and drained, which is another important factor for modeling wireless active components for i.e. (e.g. prismatic, revolute, or sliding), the limits of the joint and the forces needed to interact with this joint in the simulation can be set. By defining a mass, inertia and friction values for an element, the physics engine can simulate its dynamic behavior in a realistic way.

Originally developed as outdoor robotic sensor simulator, a specialty of Gazebo are virtual sensors and actuators that can be assigned to any object in the simulation. Examples of available sensors are cameras, laser scanners, contact switches, force sensors, or inertial measurement units (IMUs). It is even possible to simulate a simple battery unit that can be loaded and drained, which is another important factor for modeling wireless active components for

\(^{5}\)http://www.ogre3d.org/, last accessed May 11, 2014.
\(^{6}\)http://ode-wiki.org/wiki/, last accessed May 11, 2014.
\(^{7}\)http://www.ros.org/wiki/urdf, last accessed May 12, 2014.
\(^{8}\)http://www.blender.org/, last accessed May 12, 2014.
\(^{9}\)http://usa.autodesk.com/maya/, last accessed May 12, 2014.
\(^{10}\)http://usa.autodesk.com/3ds-max/, last accessed May 12, 2014.
TUIs. Diewald et al. have presented a more extensive list of available sensors and actuators for Gazebo [6].

Gazebo’s functionality can be easily extended through a well-documented API. For example, we have added the support for touch-sensitive virtual displays. Based on this extension, we are able to simulate complete tabletop TUIs or TUIs with embedded displays such as the Display Cube [18] (see Fig. 1) which is used for comparing the development process of a real TUI to a simulated TUI in a later section of this paper.

For testing and evaluating a TUI system, users can interact with the physical objects through a GUI. They can apply rotational and translational force to any object in the simulation.

Combination of Real and Virtual TUIs
Hardware abstraction allows using the ROS as middleware for real as well as for simulated TUIs. A common abstract hardware layer is used for hiding the actual implementation and for handling the exchange of states and values. The states and values can be accessed by publishing/subscribing to nodes, or requested as part of a service callback. By recording and afterwards playing back the messages the exchanged messages, the middleware can simulate individual objects and larger parts of the environment or setup, without the need of performing input actions repeatedly. By using high-level hardware layer bindings, the injection of hardware messages is possible with little effort. Connecting virtual and real TUIs to the same middleware network transparently joins both virtual and real hardware together. They are indistinguishable for other nodes.

COMPARISON OF THE DEVELOPMENT PROCESS OF A REAL AND A SIMULATED TANGIBLE USER INTERFACE
Most of the differences between performing rapid prototyping on real hardware and modeling a system virtually emerge during the early prototyping phase. We illustrate the advantage of virtual modeling over conventional modeling by comparing the development process of a cube with a 3D accelerometer and six displays as an example for a TUI. For the real prototype, one needs to choose the sensors and hardware components which fulfill the needs of the developer. This process is time-consuming. Using a virtual TUI, the developer only needs to specify the parameters s/he needs to get from the TUI, such as pose, location, etc. In the simulation, the desired actions can be attached to these parameters, so that the simulator can be used for evaluating the model and the designed behavior. This approach helps finding the necessary and proper parameters before the real prototype is implemented. A last goal of such an approach is to separate physical development from the software development.

A typical iterative development model for the prototyping process is shown in Fig. 3. It is barely possible to meet all requirements for the actual implementation with the first prototype. Hence, the cycle needs to be traversed multiple times to iteratively improve the prototype. Creating and refining virtual models is usually significantly faster than creating physical prototypes, which allows for faster iterations in the development cycle of prototyping and testing. Often, detected deficiencies after testing result in the creation of an entirely new model. In the virtual representation, the object of the last iteration can much easier be reused by e.g. modifying the shape or texture. Using the ROS for connecting the devices, one can simultaneously develop the software for the virtual device and for the final prototype.

In currently available toolkits and TUIs, a communication protocol to connect heterogeneous hardware has to be created explicitly. The ROS middleware simplifies this process by reducing the code that has to be written just to a device driver that connects the device to an actual ROS node. With increasing processing power of microcontroller platforms, the ROS node could in the future reside in the TUI itself.

VIRTUAL TUI EXAMPLES
In order to show the broad applicability of our toolkit, we have implemented simulations of several TUIs that have been presented and published previously.
A collection of virtual TUIs is depicted in Fig. 4. It shows (from left to right) two virtual Sifteo cubes [22], a virtual I/O cube and a virtual TUI for a ubiquitous presence system [16]. The meshes have been created with the free 3D modeling software Blender10. In order to allow physical simulation, the centers of gravity have been set to the objects’ centers. Sizes and masses correspond to the respective real objects.

All of these TUIs are equipped with virtual accelerometers and virtual displays. The Sifteo cubes further have virtual proximity sensors and touch-sensitive screens (cf. Fig. 5, right). The communication system is based on the ROS middleware’s communication infrastructure that can also be used by real TUIs.

The left Sifteo cube in Fig. 4 is selected for manipulation in Gazebo. The blocks and circles around the virtual object represent the six degrees of freedom (DoF) that can be manipulated via the GUI. Besides mouse and keyboard input, the manipulation can also be performed with six-degrees-of-freedom (6DoF) technology such as 3Dconnexion’s Space-Navigator11. This allows for a more realistic interaction with the 3D scene.

Comparing to the fragile real objects (cf. Fig. 6, Fig. 5 left), new interaction methods can also be explored with the virtual prototypes. Examples are throwing the I/O cube like a dice or tossing the Sifteo cubes like a coin. In addition, it is possible to create virtual prototypes with sensors and actuators that would be too expensive or are not yet available at a specific size. This allows, for example, adding GPS sensors to tiny objects or using an indoor positioning system with an accuracy that is not yet available today.

10http://www.blender.org/, last accessed May 12, 2014.

11http://www.3dconnexion.com/products/spacenavigator.html, last accessed May 18, 2014.
Following Bishop’s Marble Answering Machine idea, we have designed a system that allows managing personal messaging. Soft balls can display images of contacts on their surfaces. Depending on the amount of exchanged messages and the time elapsed since the last contact, the balls can grow or shrink. When the ball is pressed, squeezed or bounced, the conversation pops up on a tablet PC. The system is currently a prototype. The messaging applications runs on a real tablet PC. The balls are simulated with our toolkit. The communication is performed via the ROS middleware. The messaging application on the Android-based tablet PC is using rosjava12 for connecting with the balls. A virtual representation of two balls is depicted in Fig. 7. Creating a hardware prototype of such a system would have been more costly and also have consumed more time and effort.

CHALLENGES TOWARDS THE SIMULATION OF TANGIBLE ASPECTS

For shifting the whole prototyping phase of a TUI into simulation, users need to be able to evaluate interactive as well as tangible aspects. However, with the currently available input/output systems, the simulation is – for the most part – limited to interactive aspects. This is mainly due to the lack of haptic feedback. Many tangible interactions [23], such as squeezing a ball or feeling the structure of a surface, cannot be experienced in the 3D environment. This often restricts the evaluation of “look and feel” to the “look” part. Although our experiences have shown that advanced 3D simulation users can also get a good impression of the “feel” component over time, the assumed “feeling” from advanced users cannot replace the user evaluations of TUIs.

The evaluation of tangible aspects could be enabled by introducing haptic feedback that allows “feeling” the virtual objects and their surfaces. This can be realized, for example, through haptic output devices such as wristbands with vibration motors, fingertip tactile displays [3] or joint input/output devices such as a PHANTOM Desktop13 (cf. Wang et al. [34]).

For exploring 3D virtual scenes and manipulating virtual objects, the mouse/keyboard combination is not optimal. By using a three-button mouse with scroll wheel, the user can navigate in the 3D scene by performing the translation and rotation movements one after the other. However, when it comes to interaction, force can only be applied directly in the 2D plane the user has previously navigated to, since the mouse is only a 2D input device. With the help of Gazebo’s 6 DoF force targets (cf. Fig. 4, left object), this could be overcome. However, applying force via predetermined targets does not correspond to natural interaction. By using a 6 DoF device, the navigation can be enormously simplified since translations and rotations can be done simultaneously in a more natural way. However, applying force on an object is still inconvenient since the target object has to be selected first, before the user can give an impulsive force to the object via the 6 DoF controller.

Exemplarily, we have examined the steps for spinning a top in the virtual environment. In our example, we have used a 3Dconnexion SpaceNavigator together with a standard mouse. The first step is navigating through the 3D environment with the 6 DoF device until we reach the object and can see it from the desired view point. For selecting the object which should be manipulated, we need the mouse to activated the force control by clicking on the spinning top’s handle. In the third step, we can lift the spinning top by lifting the 6 DoF device’s control element. The last step is giving a rotational impulse via the control element followed by an abrupt release of the device.

In order to simplify the exploration of the scene and the manipulation of objects, for example, 3D navigation TUIs [38] or gesture interfaces [19] could be coupled to the simulation environment. Combined with tactile displays, this would allow assessing the tangible as well as the interactive aspect in a realistic way.

CONCLUSION

The proposed simulation approach based on the ROS middleware has several advantages compared to classical prototyping approaches. For most developers, the time savings will be the most important one. The possibility to simulate tangible user interfaces with new and yet not realizable technologies is another benefit. The effort in terms of costs and time to explore design alternatives is significantly reduced. The interaction between real and simulated devices allows extending available systems with novel devices. Repeatable and easily modifiable test scenarios enable objective comparability of different systems. Time and resources can also be saved for multi-device scenarios, since an object can simply be spawned multiple times in the virtual environment.

We extended the ROS middleware by several components that provide functions necessary for TUIs. For example, we have

12https://code.google.com/p/rosjava/, last accessed May 18, 2014.

13http://www.sensible.com/haptic-phantom-desktop.htm, last accessed May 17, 2014.
developed components for display outputs and various sensors, such as a touch sensor. By implementing selected existing, previously published research prototypes of TUIs and a commercial platform, we confirmed the feasibility and function of the proposed approach.

Due to the limitations of the currently available off-the-shelf input/output devices for 3D exploration, the proposed solution is not yet intended to fully replace a physical prototype, but to minimize the time-consuming and costly iterations for creating a working physical prototype. Future work includes finding better suitable interfaces for exploring the 3D scene and manipulating the virtual objects. In order to evaluate the benefit of our proposed solution, we are currently setting up an exploratory study. The third-party participants will be split up in two groups. One group will use a real hardware setup; the other group will perform prototyping with the virtual simulation.

REFERENCES

1. Akaoka, E., Ginn, T., and Vertegaal, R. DisplayObjects: Prototyping Functional Physical Interfaces on 3D Styrofoam, Paper or Cardboard Models. In Proceedings of the 4th International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’10, ACM (New York, NY, USA, 2010), 49–56.

2. Ballagas, R., Ringel, M., Stone, M., and Borchers, J. iStuff: A Physical User Interface Toolkit for Ubiquitous Computing Environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’03, ACM (New York, NY, USA, 2003), 537–544.

3. Chinello, F., Malvezzi, M., Pacchierotti, C., and Prattichizzo, D. A Three DoFs Wearable Tactile Display for Exploration and Manipulation of Virtual Objects. In Haptics Symposium, HAPTICS ’12, IEEE (New York, NY, USA, 2012), 71–76.

4. Chung, K., Shilman, M., Merrill, C., and Ishii, H. OnObject: Gestural Play with Tagged Everyday Objects. In Adjunct Proceedings of the 23rd Annual ACM Symposium on User Interface Software and Technology, UIST ’10, ACM (New York, NY, USA, 2010), 379–380.

5. Cousins, S. ROS on the PR2. Robotics & Automation Magazine, IEEE 17, 3 (Sept. 2010), 23–25.

6. Diewald, S., Roalter, L., Möller, A., and Kranz, M. Towards a Holistic Approach for Mobile Application Development in Intelligent Environments. In Proceedings of the 10th International Conference on Mobile and Ubiquitous Multimedia, MUM ’11, ACM (New York, NY, USA, 2011), 73–80.

7. Diewald, S., Roalter, L., Möller, A., and Kranz, M. Simulation of Tangible User Interfaces with the ROS Middleware. In Adjunct Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, TEI ’14 (Feb. 2014).

8. Dumas, B., Lalanne, D., and Ingold, R. HephaisTK: A Toolkit for Rapid Prototyping of Multimodal Interfaces. In Proceedings of the International Conference on Multimodal Interfaces, ICMI-MLMI ’09, ACM (New York, NY, USA, 2009), 231–232.

9. Hudson, S., and Mankoff, J. Rapid Construction of Functioning Physical Interfaces from Cardboard, Thumbtacks, Tin Foil and Masking Tape. In Proceedings of the 19th Annual ACM Symposium on User Interface Software and Technology, UIST ’06, ACM (New York, NY, USA, 2006), 289–298.

10. Ishii, H., and Ullmer, B. Tangible Bits: Towards Seamless Interfaces Between People, Bits and Atoms. In Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems, CHI ’97, ACM (New York, NY, USA, 1997), 234–241.

11. Kaltenbrunner, M., and Bencina, R. reacTIVision: A Computer-Vision Framework for Table-based Tangible Interaction. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, TEI ’07, ACM (New York, NY, USA, 2007), 69–74.

12. Kim, M. J., and Maher, M. L. The Impact of Tangible User Interfaces on Spatial Cognition During Collaborative Design. Design Studies 29, 3 (May 2008), 222–253.

13. Klemmer, S., Li, J., Lin, J., and Landay, J. Papier-Mache: Toolkit Support for Tangible Input. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, ACM (New York, NY, USA, 2004), 399–406.

14. Koenig, N., and Howard, A. Design and Use Paradigms for Gazebo, an Open-Source Multi-Robot Simulator. In Proceedings of the International Conference on Intelligent Robots and Systems, IROS ’04, IEEE (New York, NY, USA, 2004), 2149–2154.

15. Kranz, M., Holleis, P., and Schmidt, A. DistScroll – A New One-Handed Interaction Device. In 25th IEEE International Conference on Distributed Computing Systems Workshops, vol. 5, IEEE Computer Society (Los Alamitos, CA, USA, 2005), 499–505.

16. Kranz, M., Holleis, P., and Schmidt, A. Ubiquitous Presence Systems. In Proceedings of the 2006 ACM Symposium on Applied Computing, SAC ’06, ACM (New York, NY, USA, 2006), 1902–1909.

17. Kranz, M., Möller, A., and Roalter, L. Robots, Objects, Humans: Towards Seamless Interaction in Intelligent Environments. In 1st International Conference on Pervasive and Embedded Computing and Communication Systems (PECCS 2011) (Algarve, Portugal, March 2011), 163–172.

18. Kranz, M., Schmidt, D., Holleis, P., and Schmidt, A. A Display Cube as a Tangible User Interface. In Adjunct Proceedings of the 7th International Conference on Ubiquitous Computing (2005).
19. Liu, K., Kaleas, D., and Ruuspakka, R. Prototyping Interaction with Everyday Artifacts: Training and Recognizing 3D Objects via Kinects. In Proceedings of the 6th International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12, ACM (New York, NY, USA, 2012), 241–244.

20. McAdam, C., and Brewster, S. Multimodal Feedback for Tabletop Interactions. In Proceedings of the ACM International Conference on Interactive Tabletops and Surfaces, ITS ’11, ACM (New York, NY, USA, 2011), 274–275.

21. Merrill, D., Kalanithi, J., and Maes, P. Siftables: Towards Sensor Network User Interfaces. In Proceedings of the 1st International Conference on Tangible and Embedded Interaction, TEI ’07, ACM (New York, NY, USA, 2007), 75–78.

22. Merrill, D., Sun, E., and Kalanithi, J. Sifteo Cubes. In Proceedings of the 2012 ACM Annual Conference Extended Abstracts on Human Factors in Computing Systems, CHI EA ’12, ACM (New York, NY, USA, 2012), 1015–1018.

23. Möller, A., Diewald, S., Roalter, L., and Kranz, M. MobiMed: Comparing Object Identification Techniques on Smartphones. In Proceedings of the 7th Nordic Conference on Human-Computer Interaction, NordiCHI ’12, ACM (New York, NY, USA, 2012), 31–40.

24. Möller, A., Roalter, L., and Kranz, M. Cognitive Objects for Human-Computer Interaction and Human-Robot Interaction. In Proceedings of the 6th International Conference on Human-Robot Interaction, HRI ’11, ACM (New York, NY, USA, 2011), 207–208.

25. Raffle, H. S., Parkes, A. J., and Ishii, H. Topobo: A Constructive Assembly System with Kinetic Memory. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’04, ACM (New York, NY, USA, 2004), 647–654.

26. Roalter, L., Möller, A., Diewald, S., and Kranz, M. Developing Intelligent Environments: A Development Tool Chain for Creation, Testing and Simulation of Smart and Intelligent Environments. In Proceedings of the 7th International Conference on Intelligent Environments, IE ’11, ACM (New York, NY, USA, 2011), 214–221.

27. Sankaran, R., Ullmer, B., Ramanujam, J., Killakuri, K., Jandhyala, S., Toole, C., and Laan, C. Decoupling Interaction Hardware Design Using Libraries of Reusable Electronics. In Proceedings of the 3rd International Conference on Tangible and Embedded Interaction, TEI ’09, ACM (New York, NY, USA, 2009), 331–337.

28. Schiettecatte, B., and Vanderdonckt, J. AudioCubes: A Distributed Cube Tangible Interface Based on Interaction Range for Sound Design. In Proceedings of the 2nd International Conference on Tangible and Embedded Interaction, TEI ’08, ACM (New York, NY, USA, 2008), 3–10.

29. Serrano, M., Nigay, L., Lawson, J.-Y. L., Ramsay, A., Murray-Smith, R., and Denef, S. The OpenInterface Framework: A Tool for Multimodal Interaction. In CHI ’08 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’08, ACM (New York, NY, USA, 2008), 3501–3506.

30. Shaer, O., and Jacob, R. A Specification Paradigm for the Design and Implementation of Tangible User Interfaces. ACM Transactions on Computer-Human Interaction (TOCHI) 16, 4 (Nov. 2009), 20:1–20:39.

31. Van Laerhoven, K., Villar, N., Schmidt, A., Gellersen, H.-W., Hakansson, M., and Holmquist, L. Pin&Play: The Surface as Network Medium. IEEE Communications Magazine 41, 4 (Apr. 2003), 90–95.

32. Villar, N., Scott, J., and Hodges, S. Prototyping with Microsoft .NET Gadgeteer. In Proceedings of the 5th International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’11, ACM (New York, NY, USA, 2011), 377–380.

33. Wakkary, R., and Hatala, M. Situated Play in a Tangible Interface and Adaptive Audio Museum Guide. Personal and Ubiquitous Computing 11, 3 (Feb. 2007), 171–191.

34. Wang, J., and Lu, W. F. A Haptics-based Virtual Simulation System for Product Design. Computer Applications in Technology 45, 2/3 (Dec. 2012), 163–170.

35. Wiethoff, A., Schneider, H., Rohs, M., Butz, A., and Greenberg, S. Sketch-a-TUI: Low Cost Prototyping of Tangible Interactions Using Cardboard and Conductive Ink. In Proceedings of the 6th International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12, ACM (New York, NY, USA, 2012), 309–312.

36. Wimmer, R., Holleis, P., Kranz, M., and Schmidt, A. Thracker – Using Capacitive Sensing for Gesture Recognition. In Proceedings of the 26th International Conference on Distributed Computing Systems Workshops (2006), 64–69.

37. Wu, A., Mendenhall, S., Jog, J., Hoag, L. S., and Mazalek, A. A Nested API Structure to Simplify Cross-Device Communication. In Proceedings of the 6th International Conference on Tangible, Embedded and Embodied Interaction, TEI ’12, ACM (New York, NY, USA, 2012), 225–232.

38. Wu, A., Reilly, D., Tang, A., and Mazalek, A. Tangible Navigation and Object Manipulation in Virtual Environments. In Proceedings of the 5th International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’11, ACM (New York, NY, USA, 2011), 37–44.