Sound matching on the translation of Al-Quran ayat as a learning media for children using mobile-based fast fourier transform and divide conquer algorithm

M Abdurrodjak*, M H Mud‘is, H Qodim, I F S R Khaerani, U Rosidin and B Busro
UIN Sunan Gunung Djati Bandung, Jl. AH Nasution No. 105 Bandung, West Java, Indonesia

*mochabdurrodjak@gmail.com

Abstract. In this paper, a sound matching application was built on the pronunciation of Ayat Al-Quran as a learning medium for children using the Fast Fourier Transform (FFT) Algorithm and Divide Conquer (DC) that support learning independently. The system built in the final project is to utilize the Google API feature on android as voice matching. Furthermore, the incoming sound will convert into text form using the Google API. The conversion method used is a Fast Fourier Transform (FFT). The valuation method, Divide Conquer is used by calculating the sound proximity value of the Google API conversion results by matching Arabic text in the database. Based on the testing that has been done on the system testing. The results of the test found 61.1% accuracy for the appropriate reading and 38.9% for inappropriate reading.

1. Introduction
Speech recognition is a process of recognizing letters, words or sentences that are spoken. Voice recognition is better known as Automatic Speech Recognition (ASR) [1,2]. Automatic Speech Recognition (ASR) has been widely applied in everyday life, for example, is the operation of a smartphone that is run through automatic commands (voice recognition) [3,4]. Makharijul huruf (Places of Articulation) is the place where the letter is released when the letter is pronounced. The letter of origin is the basis for reading verses from the Quran [5–7]. Errors in Makharijul huruf (Places of Articulation) can cause differences in meaning or meaning errors in the verse being read [8].

Some previous studies regarding the application of the Qur’an [9,10]. Some previous studies regarding the application of the Qur’an, but no one has discussed the Sound Matching on The Translation of Al-Quran Verse. Generally, the method of learning to read the Quran is used accompanied by a companion teacher who is proficient in their field. In this project, a sound matching application was built on the pronunciation of Ayat Al-Quran as a learning medium for children using the Fast Fourier Transform (FFT) Algorithm and Divide Conquer (DC) that support learning independently. The system built in the final project is to utilize the Google API feature on android as voice matching. Furthermore, the incoming sound will convert into text form using the Google API. The conversion method used is the Fast Fourier Transform (FFT).
2. Methodology
Speech recognition is a process of recognizing letters, words or sentences that are spoken [11]. The introduction of sound patterns is recognized in various levels of tasks, the introduction in the level of acoustic signals in the form of test levels in the arrangement of sub-word units in the form of phonemes, words, phrases, and sentences. The recognition of vocal letter sounds is the basis of speech recognition because the arrangement of words is an arrangement of several letters one of which is vowel letters so that if obtained the basic principle of the process of recognition of vowel sounds can be used in further research [12]. Speech Recognition Scheme can be seen in figure 1.

3. Results and discussion
3.1. Menu interface
The following is a menu display that consists of Figure 2 is main menu interface, Figure 3 is read test menu, Figure 4 is dictionary menu and figure 5 is guide menu.
Figure 2. Main menu.

Figure 3. Read test menu.

Figure 4. Dictionary menu.
3.2. Application system testing

Application System Testing is done by a black box method where testing focuses on the process of running the system being developed. Identify the extent to which the system matches the system's functional specifications.

Code	Scenario	Result	Information
Req1	Click Recitation of the Verse of the Koran	✔	Successfully opened the main page
Req2	Click Test Read	✔	Successfully opened the Al-Quran verse page
Req3	Click Material	✔	Successfully opened the makhirj reading law page
Req4	Click About	✔	Successfully opened a page about
Table 2. Process page testing.

Code	Scenario	Result	Information
Req 1.1	Showing verses of the Koran	✓	Successfully opened the Verse Al-Quran Reading page
Req 1.2	Click Read	✓	Successfully opened google speech and voice input
Req 1.3	Click Continue	✓	Successfully opened the next page of the Al-Quran verse

Table 3. Testing of users.

Code	Scenario	Result	Information
Req 1.1	Provide graduation of the Quran reading grade	✓	Successfully gives the Al-Quran reading value
Req 1.2	Displays an error value for the wrong pronunciation of makhraj	✓	Successfully displayed a makhraj error

4. Conclusion

Based on the results of application testing it can be concluded that Fast Fourier Transform algorithm has the role of extracting sound into frequency and numbers assisted by Speech Recognition feature to convert to text form and Divide and Conquer the role of matching Arabic text from the conversion of Speech Recognition Google API with Arabic text samples in the database. Based on the testing that has been done on the system testing. The results of the test found 61.1% accuracy for the appropriate reading and 38.9% for inappropriate reading.

Acknowledgments

We would like to show our gratitude to the Research and Publishing Centre of UIN Sunan Gunung Djati Bandung, for supporting publication of this article.

References

[1] Lippmann R P 1997 Speech recognition by machines and humans *Speech Commun.* **22** 1 1–15
[2] Cooke M, Barker J, Cunningham S and Shao X 2006 An audio-visual corpus for speech perception and automatic speech recognition *J. Acoust. Soc. Am.* **120** 5 2421–2424
[3] Besacier L, Barnard E, Karpov A and Schultz T 2014 Automatic speech recognition for under-resourced languages: A survey *Speech Commun.* **56** 85–100
[4] Schalkwyk J 2010 Your Word is my Command: Google Search by Voice: A Case Study *Advances in Speech Recognition* (Boston, MA: Springer US) 61–90
[5] Tareq T 2017 Lips Tracking Identification of a Correct Quranic Letters Pronunciation for Tajweed Teaching and Learning *IJUM Eng. J.* **18** 1 177–191
[6] Sulaeman E 2016 Model Pembelajaran Qiraah Al-Kutub untuk Peningkatan Keterampilan Membaca Kitab Tafsir Al-Bayan *J. Stud. Ilmu Al- Qur’an dan Tafsir* **1** 2 99–114
[7] Gerhana Y A 2018 Computer speech recognition to text for recite Holy Quran *IOP Conf. Ser. Mater. Sci. Eng.* **434** 12044
[8] Hidayat N S 2015 Analisis Kesalahan dan Konstrastif dalam Pembelajaran Bahasa Arab Kutubikanah *J. Stud. Ilmu Al- Qur’an dan Tafsir* **17** 2 160–174
[9] Maylawati D S, Ramdhani M A, Rahman A and Darmalaksana W 2017 Incremental technique
with set of frequent word item sets for mining large Indonesian text data 2017 5th International Conference on Cyber and IT Service Management (CITSM) 1–6
[10] Maylawati D S, Zulfikar W B, Slamet C, Ramdhani M A and Gerhana Y A 2018 An Improved of Stemming Algorithm for Mining Indonesian Text with Slang on Social Media 2018 6th International Conference on Cyber and IT Service Management (CITSM) 1–6
[11] Ellis D 2005 Speech separation in humans and machines IEEE Workshop on Automatic Speech Recognition and Understanding 1–13
[12] Melissa G 2008 Pencocokan Pola Suara (Speech Recognition) dengan Algoritma Fast Fourier Transform dan Division and Conquer