Fine Structure Constant derived from Principle Theory.

Manfred Geilhaupt (manfred.geilhaupt@hsnr.de)
HSN University of Applied Sciences

Article

Keywords: principle theory, fine structure constant, standard model, general theory of relativity

DOI: https://doi.org/10.21203/rs.3.rs-524770/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Fine Structure Constant derived from Principle Theory.

Abstract
Derivation of mass \((m)\), charge \((e)\) and fine structure constant \((FSC)\) from theory are unsolved problems in physics up to now. Neither the Standard Model (SM) nor the General theory of Relativity (GR) has provided a complete explanation for the existence of the rest mass, i.e. restmass of the electron. The question “of what is rest mass” is therefore still essentially unanswered. We will show that the combination of two Principle Theories, General Relativity and Thermodynamics (TD), is able to derive the restmass of an electron \((m)\) which surprisingly depends on the (Sommerfeld) FSC. Same to the charge \((e)\).

1. Introduction

Since the introduction of the Higgs mechanism, the Standard Model (SM) presents an explanation of mass in the following way: „mass is built up by exchange-particles“, so-called Higgs particles \([1]\).

The mass of the Higgs mechanism is greater, the stronger the field is coupled to the elementary particle. The Higgs field is a free hypothesis given a priori in order to be able to justify non-zero mass by interaction with the field. However, this free “invention” has become a physical reality because there must be a Higgs boson from theory with a certain mass - theoretically predicted by Peter Higgs - and confirmed experimentally in the meantime \([1]\).

If the moving electron interacts with the Higgs field, then the mass of the electron must be greater by exactly this amount of Higgs-contribution. The conclusion based on this argument is now that the Higgs-Mass-value should be smaller if the electron is at rest. If so – and proved by experiment – the main part of restmass must come up from another “action”. So let us assume the restmass of the electron is from another action different from the Higgs-Mechanism. “Man kann ein Problem nicht mit derselben Denkweise lösen, durch das es entstanden ist.” (A. E.)
There is an alternative to the SM for deriving the (missing) rest energy of the electron independently of the Higgs mechanism. This alternative is well known as Einstein's theory of relativity. Mass and its gravity are the basis of theoretical considerations there. However, mass is set a priori in GR and is therefore remaining an open question within Einstein's approach as well.

"… insofern, dass man von Punktteilchen (mit Masse) ausgehen darf, ist die Thermodynamik eine vollständige Theorie." (A.E) Thus, we have to give up first the point particle hypothesis and second we need to combine GR and Thermodynamics (TD) because each alone cannot predict the existence of the electron mass. This is exactly the path that Einstein practically set in his wordings, but did not cover it himself

"A theory that sets mass and charge a priori is incomplete." (A.E)

Newton	Momentum P	G-Field Acceleration g	Velocity
dP/dt	$g = G \cdot M_e^* / R_e^2$	$v = g \cdot t$	
M_e: Mass Earth, R_e: Radius Earth, set a priori	g: “used”, v = “derivation in m/s”		

Author	Momentum P	G-Field Differential Equation	Velocity
dP/dt	$-R_o^2 \frac{\partial}{\partial t} \frac{\partial}{\partial t} r(t) = G \cdot m(t)$	$\frac{\partial r(t)}{\partial t} = \frac{c}{2\pi} \Psi(t) < c$	
G_o: Gravitational Constant, R_o: Planck-Length, $c = \omega_o R_o$, set a priori	Ψ: “used”, $m(t)$ = “derivation in kg”		

Klein Gordon	Momentum P	Differential Equation	Velocity
p^2	$\hbar \cdot \left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t} \frac{\partial}{\partial t} \right) \psi = (m \cdot c)^2 \psi$	$c = P/m$	
\hbar: Planck-Constant, m: Mass Electron given a priori, c: velocity of light, set a priori	m: “used”, Ψ = “derivation”		

Table 1: Overview. Derivation of $m(t)$ from a Differential Equation is new in physics
In the booklet “Fundamentals of the Theory of Relativity” Einstein writes on Page 22 (Chapter: Space and Time in Pre-Relativistic Physics) [2]:

Durch Vertauschung der Indizes und nachfolgender Subtraktion erhält man den Momentensatz:

\[
1.0 \quad \frac{d}{dt} \left[m \cdot \left(\xi_\mu \frac{d\xi_\nu}{dt} - \xi_\nu \frac{d\xi_\mu}{dt} \right) \right] = \xi_\mu X_\nu - \xi_\nu X_\mu
\]

Hinweis: \(\xi_\nu \) ist die Differenz der Koordinaten des materiellen Punktes \((m)\) und derjenigen eines raumfesten Punktes. So haben die \(\xi_\nu \) Vektorcharakter. Für den Fall, daß die Kräfte \(X_\mu \) konservativ sind, ist der Vektorcharakter von \(X_\nu \) leicht zu erkennen. Denn dann existiert eine potentielle Energie \((\Phi)\) mit der Kraft \(X_\nu = -\frac{d\Phi}{dx_\nu} \), eine Folge unserer allgemeinen Gesetze (Erweiterung eines Tensors vom Rang 0).

Bei dieser Darstellung wird es offenbar, daß die Momente von Vektoren nicht wieder Vektoren, sondern Tensoren sind wegen des antisymmetrischen Charakters gibt es aber nicht neun, sondern nur drei selbständige Gleichungen dieses Systems: Die Möglichkeit, antisymmetrische Tensoren zweiten Ranges im Raume von 3 Dimensionen durch Vektoren zu ersetzen, beruht auf Die Auffassung der antisymmetrischen Tensoren zweiten Ranges als Vektoren im Raum von 3 Dimensionen hat den Vorteil einer gewissen Anschaulichkeit, aber sie wird der eigentlichen Natur der betreffenden Größen nicht so unmittelbar gerecht wie die Tensorauffassung.

2. Derivation of mass

The general theory of relativity (GR) in connection with the principles of thermodynamics (TD) together makes it possible to answer the question of the rest mass differences of elementary particles if the following two hypotheses are taken into account.

1. Hypothesis:
 The restmass of the elementary particle is not an invariant.

2. Hypothesis:
 The main laws of thermodynamics and principles of GR are taken into account when solving the “equation of motion of an elementary particle at rest”.
Let us first look at Newton's equation of motion \((F = dP / dt)\) or Einstein's equation of moments of pre-relativistic time in the vector representation (1.0) as a basis for further discussion. In a special case, Newton and Einstein discuss the interaction of two masses with respect to their gravitational force (space-time curvature instead of force within Einstein’s approach).

In purely formal terms, the G-field is a “free invention” like the Higgs field is. The physical reality of a G-Field arises from the fact that an apple is attracted and accelerated by the earth's mass. In this case, it is assumed that both the apple and the earth have a (rest) “mass-reality”, namely before the apple is accelerated by earth. This is standard in physics and not that way of thinking we are going to proceed next.

The following common equation of momentum assumes that all quantities are time-dependent, i.e. mass \(m(t)\), distance \(r(t)\), and unit vector \(u(t)\).

\[2.0 \quad \frac{d}{dt}[m(t) \cdot \frac{d}{dt}\{r(t) \cdot \vec{u}(t)\}] = f_\mu \]

In 2.0 \(f_\mu\) describes the existence of internal forces. So “\(f_\mu\) due to a G-Field” is a free invention. The physical reality of internal force of an “internal G-Field” arises from the fact that we have experimental reality of an electrons restmass. The same argument holds true for the external Higgs-Field because we have the experimental reality of the mass of the Higgs-Boson. (The same argument holds true for the external (earth) G-Field because we have the experimental reality of the (earth) mass of the still missing quantum-gravity G-mass-boson.)

We neglect an external interaction with the environment \((F = 0)\), for example no interaction with the external Higgs field or with the external G field. Then we carry out the mathematical operations (left side 2.0). Formally by the product rule we get five “internal” force components \(f_1, f_2, f_3, f_4, f_5\) of a particle \(m(t)\): (“point” means partial derivation)

\[2.1 \quad \dot{\dot{m}} \cdot \dot{r} \cdot \ddot{u} + m \cdot \dot{r} \cdot \ddot{u} + 2m \cdot \dot{r} \cdot \dot{u} + \dot{m} \cdot \dot{r} \cdot \ddot{u} + m \cdot r \cdot \dddot{u} = f_\mu \]
m (t) is the mass in question in kilograms. r (t) is a distance function in meters due to internal action assumed to come up with restmass m(t) and u (t) is a unit vector allowed to rotate.

We have to define a “math-structure” of each f_µ if we want to complete physically the momentum equation due to internal action of one particle with center at rest. With f_2 (the second force of five from 2.1) we define an internal force combined with inertial acceleration (- r’’). Thus presenting the following differential equation 2.1.1 in a general time dependent form:

\[m(t) = -\frac{1}{4\pi G(t)} \frac{\partial^2 r(t)}{\partial t^2} \cdot 4\pi r^2(t) \]

A solution r(t), (let us say a mass generating function) gives first m (t) and second allows to calculate the “effective mass value” (m), i.e. rest mass from a time average. The time average is from a mean square giving the effective value of mass (2.1.7 and 2.1.8) to be compared with the experimental value.

Notice: Furthermore the invention of a similar f_1 (Coulomb-Contribution) leads to the reality of the elementary charge of the electron. f_4 leads to the magnetic moment of the electron. f_3 is due to a Coriolis contribution. f_5 seems to be an unknown force up to now. (No further discussion here.)

Since the speed of light is an invariant within the theory of relativity, we can get the following equation if we multiply by c^2 (invariant GR-value) and introduce the Einstein kappa instead of Newton's G value.

\[m(t) \cdot c^2 = -\frac{2}{\kappa(t)} \frac{\partial^2 r(t)}{\partial t^2} \cdot 4\pi r^2(t) \]

We see immediately that now m (t), the mass of the particle, can no longer be an invariant. In order to be able to reconcile the equation with the conservation of energy, we allow a non-adiabatic change of state of mass included into the energy conservation concept, while applying the Second Law of Thermodynamics for that with respect to the mass generating function r(t).

\[E = m(t) \cdot c^2 + Q(t) = \text{const} \]
2a Generating function \(r(t) \)

2.1.3 \[r(t) = R_0 \cdot \left(\frac{\omega_0}{2\pi} \right) \int \psi(t) \cdot dt \]

2.1.4 \[\psi(t) = \cos\{e^{-(t-t_0)/\tau} \cdot \omega \cdot (t-t_0)\} \]

\(\Psi \) has to be imagined as a periodic wave-function. However, the “loss energy \(dQ <0 \)” (frequency-loss), executed by exponential decay while including the electron life-span \(\tau \), must be taken into account for each periodic process (II-Law applied). Here we only deal with rest mass non zero, based on action with less than speed of light, and \(dQ<0 \) for that. The electron therefore necessarily loses energy i.e. mass (dark matter candidate). The loss is unimaginably little, hence the very long lifespan is the consequence.

2b Important Prediction

This concept, “lifespan” \(\tau \) (due to non-adiabatic “internal” action) leads to the derivation of the FSC (revealed from a principle theory, as Pauli required, see 2.1.11, 2.1.12, 2.1.13).

2c Newtonian Approximation Calculation

\(a(t) := (t-t_0)/\tau \)

2.1.5 \[\dot{a}(t) = \frac{c}{\sqrt{2\pi}} \cos(e^{-(t-t_0)/\tau} \cdot \omega \cdot (t-t_0)) \]

2.1.6 \[m(t) = -\left(\frac{c}{\sqrt{2\pi}} \left[\omega \cdot (1-a) \cdot e^{-a} \right] \cdot \sin(e^{-a} \cdot \omega \cdot t) \frac{R_0^2}{G_0} \right) \]

2.1.7 \[\frac{m}{\tau} = \frac{1}{2\pi} \int_{0}^{2\pi} [c \cdot (\omega \cdot (1-a) \cdot e^{-a}) \cdot \sin(u) \frac{R_0^2}{G_0}]^2 du \]

2.1.8 \[m = \frac{c}{\sqrt{4\pi}} \left[\omega \cdot (a-1) \cdot e^{-a} \right] \frac{R_0^2}{G_0} = \frac{c}{\sqrt{4\pi}} \left[\frac{\omega_0}{N \cdot f} \cdot (a-1) \cdot e^{-a} \right] \frac{R_0^2}{G_0} \]

2.1.9 \[m = m_0 \cdot 6 \cdot (1-a) / N = 9.107 \cdot e^{-31} \text{kg and } a = \ln 3 \text{ und } N = 10^{32} \text{ und } M_0 = (h \cdot c / G_0)^{1/2} \]
Mo is the Planck mass or \(mo = Mo / \sqrt{4\pi} \) and Ro is the Planck length or \(ro = Ro / \sqrt{4\pi} \) and \(w_0 \) is the Planck frequency (see 2.1.10 and for \(\ln 3 \) see 2.1.15 and 2.1.16)

\[
2.1.10 \quad M_0 = \sqrt{\frac{\hbar \cdot c}{G_0}} = \frac{c \cdot \omega_0 \cdot R_0^2}{G_0} = \frac{c^2 \cdot R_0^4}{G_0}
\]

Excursus 3-Fermions Mass

So 3 quantize
d mass values from experiment require 3 quantum numbers N from theory.
Hypothesis \(N(N1,N2,N3) \)
Electron \(N_e = N_1 e^* N_2 * 3N_3 \), Myon \(N_y = N_1 e^* (1)*4N_3 \), Touon \(N_t = N_1 e^* N_2 * (1) \) with \(N_1 e^* \) to be that new fermion-invariant instead of the mass itself. \(f(N1N2N3\text{-permutations}) = 3! \) And \(a = \ln 3 \) (see 2b Entropy discussion). So \(e^* = 3 \) and Ne, Ny, Nt are now a fact from theory. (N1, N2, N3 are new open questions now.)

Thus we can write fermion mass \((m) \) with open question due to \(N \) in the following way:

\[
2.1.11 \quad m = m_0 \cdot \left[\frac{3!}{N} \cdot (a-1) \right] = m_0 \cdot \sqrt{\left[\frac{36}{N^2} \cdot (a-1)^2 \right]} = m_0 \cdot \sqrt{\frac{24}{N} \cdot \frac{[3/4 \cdot (a-1)^2]}{}}
\]

Notice: \([3/4 \cdot (a-1)^2]\) is simply a number derived by assuming a frequency decay process.

Extended GR-invariance condition (Planck Mass \(m_{Pl} = Mo \) and also \(m_o = m_{Pl}/\sqrt{4\pi} \))

\[
E1 \quad \left(m_{Pl} \cdot c^2 \right)^2 = E_e^2 - (c \cdot P)^2 + \sum \left(\frac{n}{n_i} \cdot c \cdot P \right)^2 - \left(\frac{n}{n_i} \cdot E_e \right)^2
\]

\[
E2 \quad E_N = \frac{1}{\sqrt{1-(\frac{v}{c})^2}} \cdot \left[\frac{1}{\sqrt{1-(\frac{v}{c})^2}} \cdot \ldots \right] \sqrt{\frac{24 \cdot 2 \cdot m_{Pl} \cdot c^2}{N_1 \cdot N_2 \cdot N_3 \cdot \sqrt{4\pi}}}
\]

\[
E3 \quad E_{me} = \frac{1}{\sqrt{1-(\frac{v}{c})^2}} \cdot m_e \cdot c^2
\]

Example \(n/ni = 3/5 < 1 \). So \(\gamma(3/5) = 1/\sqrt{(1-(3/5)^2)} = 1/\sqrt{(25-9/25)} = 1/\sqrt{(16/25)} = 5/4 \)

\(e^*N \) \((n/ni)\)-invariant	\(N \) \((n/ni) \)	\(3 \) \((n/ni) \)
Ne \((19*37*61) \) \((2*5)^{12} \) \((3*5*4*5*35*37*11/61) \) \((3/5)*5*(19*61) \)	UALC(5/25) = 1	UALC(5/25) = 1
Ny \((19*37*61) \) \((2*5)^{12} \) \((3*5*4*5*35*37*11/61) \) \((3/5)*5*(19*61) \)	UALC(5/25) = 1	UALC(5/25) = 1
Nt \((19*37*61) \) \((2*5)^{12} \) \((3*5*4*5*35*37*11/61) \) \((3/5)*5*(19*61) \)	UALC(5/25) = 1	UALC(5/25) = 1

Table 2: Fermion Quantum Numbers restriction from Einstein new Gamma-factor \((n/ni) \) condition and possible degeneration \((x*n)/(x*ni) \)
So that with $N_3(n/ni)$ and then $Ne/Nt=3*19*61=3177$ is close to the experimental ratio $mt/me=3177.23$

| Ne/Nµ | = | N² | 206.7639< | 206.7682 |
| Ne/Nt | = | N³ | 3477.0000< | 3477.23 |

Table 3 The Higgs-Field mass contribution might explain the difference between GR+TD results and experimental ratio.

End of excurse

In so far as the Fermion-Quantum-Number N cannot be explained completely by physical arguments at this moment, we accept that N remains an unsolved problem in equation E3.1.

$$E3.1 \quad m = \sqrt{\frac{h \cdot c / G_0 \cdot 2\alpha / 4\pi \cdot 24/N^2}{}}$$

But the main result is not the existence of a Quantum-Number N but the derivation of the FSC is (α, not depending on N). So we focus on that result next.

Notice:
The restmass $m(\alpha)$ depends on the FSC!

2c Fine structure constant from the point of view of GR + TD

The Newtonian approximation provides for the fine structure constant, if SR and GR influences are not taken into account:

$$2.1.12 \quad \alpha_0 = 3/4 \cdot (-\ln 3 + 1)^2 = 1/137.112$$

If SR and GR influences are taken into account this leads to the following general formula for the FSC:

$$2.1.13 \quad \alpha = \frac{1}{g_{44}} \frac{1}{(\beta_{int})^2} (3/4) \cdot (1/ \beta_{int} \cdot \ln(1/3) + 1)^2$$

The corresponding DG of the principle theory (GR + TD) which gives 2.1.13 is 2.1.14 assuming the particle at rest ($c*dt=d\lambda$):

$$2.1.14 \quad m(\lambda) = -\frac{2}{\kappa(\lambda)} \cdot \frac{\partial^2 r(\lambda)}{g_{44} \cdot \partial \lambda^2} \cdot 4\pi r(\lambda)$$

Corresponds to 2.1.2
Remark: Within GR we have to define applied and restricted to internal action:

\[G(\lambda) = G_0 \cdot \left(\frac{a_0}{\sqrt{2\pi}} \right) \int \cos(e^{-(\lambda-\lambda_0)/\tau} \cdot \omega \cdot (\lambda - \lambda_0)) \partial \lambda \]

\[r^2/G=\text{const}=R_0^2/G_0 \]

\[r(\lambda) = R_0 \cdot \frac{a_0}{\sqrt{2\pi}} \int \cos(e^{-(\lambda-\lambda_0)/\tau} \cdot \omega \cdot (\lambda - \lambda_0)) \partial \lambda \]

2d Entropy discussion

\[(-\Delta \lambda / \tau) = \text{sqr} \left(1 - \frac{\nu_{\text{int}}^2}{c^2} \right) \cdot \Delta t / \tau_0 = -\beta_{\text{int}} \cdot a(t) = -\ln 3 \]

We define the GR invariant (-ln3) being a consequence of a 3D space (or vice versa).

2.1.15 \[-\Delta\lambda*/\tau*\hbar = -\Delta Q/(k*T) = -\ln 3 = +\ln(1/3) \]

2.1.16 \[S=(\Delta\lambda*\hbar*k)/(\tau*\hbar) = \Delta Q/T = k*\ln W = k*\ln(1/3) \]

Notice:

Probability W=1/3 is physically equal to the possibility of movement in one of the 3 spatial directions.

The increase in lambda is compensated by the heat-loss dQ (dark matter production), so that the spatial dimension (-ln3=+ln(1/3)) remains constant.

Conclusion:

So the FSC is depending on GR(g_{44}) and SR(\beta) parameters, now derived from a principle theory. This new results predict new experiments.

3. Application new Experiments

3.1 The FSC on white dwarfs are different due to the metric influence g_{44} \[^3\].

3.2 The same to the moon (private investigation, suggested experiment 2020).

(earth: 1/137.035999024 \[^4\] moon author predicts: 1/137.035999239)
Literature:

(1) Higgs Mechanism: A. Djouadi, arXiv hep-ph / 0503172

(2) Albert Einstein: Grundzüge der Relativitätstheorie Vieweg & Sohn, Braunschweig, 1969

(3) Webb et al. Phys. Rev. Lett. 107,191101 (2011)

(4) R.H. Parker (2018): Measurement of the fine-structure constant as a test of the Standard Model, Atomic Physics, Science 13 Apr 2018: Vol. 360, Issue 6385, pp. 191-195
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SIDAicho.docx