A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly formed stars, for example, to identify the presence of rotation and infall. IRAS 16293−2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (∼60″×46″, i.e., ∼55×35 AU) images of compact emission from the C^{17}O (3−2) and C^{34}S (7−6) transitions at 337 GHz (0.89 mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C^{17}O (3−2) and C^{34}S (7−6) both show a velocity gradient oriented along a northeast–southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS 16293A. Our combined eSMA and SMA observations show that the velocity field on the 50−400 AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293−2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.

Key words: circumstellar matter – ISM: individual objects (IRAS 16293−2422) – radio lines: ISM – stars: formation

Online-only material: color figures

1. INTRODUCTION

One of the key questions in studies of star and planet formation is when and how disk formation occurs. The formation of a circumstellar disk, which will potentially result in planet formation, takes place during the rotating collapse of a dense prestellar core. Indeed, pure rotation accompanying collapse will give rise to a centrifugal disk, initially of low mass, evolving and growing with time (Terebey et al. 1984). At the same time, the presence of a magnetic field can lead to the formation of a pseudo-disk around a young stellar object. The circumstellar disk is a product of relatively simple dynamics whereas the magnetic pseudo-disk arises through a magnetic pinch around a young stellar object (Basu 1998; Hennebelle & Ciardi 2009; Dapp & Basu 2010; Davidson et al. 2011; Galli & Shu 1993a, 1993b). A magnetic pseudo-disk grows continuously as material is accreted and it can be much more massive and larger in the early stage of formation and evolution than the pure rotation disk (e.g., Basu 1998). Such types of magnetic pseudo-disks have already been observed toward Class 0 young stellar objects (e.g., L1527 and IC3480-SMM2; Davidson et al. 2011; Ohashi et al. 1997) and Class I sources (e.g., L1551 IRS 5 and HL Tau; Momose et al. 1998; Takakuwa et al. 2004; Lim & Takakuwa 2006; Hayashi et al. 1993). Observational studies of the kinematics of low-mass protostars can quantify the importance of rotation and magnetically modified infall, giving considerable insight into the structure of Class 0 protostars and early disk formation in protostellar objects.

The well-studied, deeply embedded low-mass protostar, IRAS 16293−2422, which lies at a distance of 120 pc (de Geus et al. 1989; Knude & Høg 1998; Loinard et al. 2008) in the nearby L1689N cloud located in the ρ Ophiuchus cloud complex, is a potential source to undertake a kinematic study. Two related components A and B (Wootten 1989; Walker et al. 1993), hereafter IRAS 16293A and IRAS 16293B, separated by 5″ (600 AU; Mundy et al. 1992) are associated with this system. Although the nature of IRAS 16293A as a protostellar object (Class 0) is commonly agreed upon, that of IRAS 16293B is still debated: it could be a T Tauri star or an even younger protostellar object (Class 0/I or candidate first hydrostatic core, e.g., Stark et al. 2004; Chandler et al. 2005; Takakuwa et al. 2007; Rao et al. 2009; Pineda et al. 2012; Loinard et al. 2013; Zapata et al. 2013). The understanding of this region has been improved by high spatial resolution interferometric observations of complex molecules including organic and prebiotic species for astrochemical studies and of simple species for dynamic and kinematic studies (Kuan et al. 2004; Huang et al. 2005; Chandler et al. 2005; Bottinelli et al. 2004; Takakuwa et al. 2007; Bisschop et al. 2008; Jørgensen et al. 2011, 2012; Pineda et al. 2012; Girart et al. 2014). In the present paper, we focus on the latter aspect.

The structure of the protostar, IRAS 16293−2422, is complicated by the presence of infalling gas inside the circumstellar envelope (Walker et al. 1986; Narayanan et al. 1998; Ceccarelli et al. 2000; Chandler et al. 2005; Takakuwa et al. 2007), as well as two outflows: one driven by IRAS 16293A, which is...
oriented in an east–west direction (e.g., CO and SO observations, see Mundy et al. 1992; Yeh et al. 2008; Jørgensen et al. 2011) and a second that is oriented in a northeast–southwest (NE–SW) direction (Walker et al. 1988; Mizuno et al. 1990; Hirano et al. 2001; Castets et al. 2001; Garay et al. 2002; Stark et al. 2004). Likewise, rotating material has also been observed toward this protostar (e.g., C17O, SiO, and C18O observations; see Mundy et al. 1986, 1990; Menten et al. 1987; Zhou 1995; Schöier et al. 2004; Huang et al. 2005; Remijan & Hollis 2006). These studies have shown that the high angular resolution obtained with interferometers is required for detailed studies of the kinematics of low-mass protostars.

In this paper, we investigate the kinematics of the molecular gas toward IRAS 16293A with high angular resolution interferometric observations of carbon monoxide and monosulfide isotopologues (C17O and C34S, respectively). In Section 2, we present our Submillimeter Array (SMA; Ho et al. 2004) and extended SMA (eSMA; Bottinelli et al. 2008) data. A description of the data reduction and methodology used for combining these results is also given in this section. The basics results and the data analysis are presented in Sections 3 and 4, respectively. The different scenarios, which can explain the observed characteristics of the observations are discussed in Section 4 with conclusions in Section 5.

2. OBSERVATIONS

2.1. Extended SMA Observations of Carbon Monoxide and Monosulfide

Observations of IRAS 16293−2422 were carried out with the eSMA on 2009 March 22 for 3.4 hr on the source in the single linear polarization mode. The eSMA combines the SMA array (eight antennas of 6 m), the James Clerk Maxwell Telescope (JCMT, 15 m), and the Caltech Submillimeter Observatory (CSO, 10.4 m) single-dish telescopes, yielding enhanced sensitivity and higher spatial resolution than the SMA alone. The eSMA data presented in this study cover one spectral setup at 337 GHz (see set 1 in Table 1). The phase-tracking center was αJ2000 = 16:32:22.898, δJ2000 = −24°28′35″.50. The correlator was configured for a single sideband, with a uniform spectral resolution over ∼2 GHz bandwidth divided into 24 “chunks”,

Table 1

Set	Array	Observed Date	Rest Frequency (GHz)	Spectral Resolution (km s⁻¹)	Synthesized Beam (″ × ″)	P.A. (°)	Flux Conversion (K (Jy beam⁻¹))
1	eSMA	2009 Mar 22	337.671	0.72	0.46 × 0.29	52	80
2	SMA	2007 Mar 22	337.397	0.72	2.8 × 1.0	52	3.7
3	SMA and eSMA			0.72	0.59 × 0.38	48	48

Notes. (1) Reference number of the corresponding data set, (2) interferometer, (3) observed date, (4) rest frequencies, (5) spectral resolution, (6) and (7) resulting synthesized beams, and (8) conversion factor of Jy beam⁻¹ to K for each data set.

Table 2

Spectroscopic Line Parameters of the Carbon Monoxide and Carbon Monosulfide Isotopologues

Molecule	Frequency (MHz)	Transition	B (K)	E_u (K)
C17O	337061.123	3−2	0.01	32.35
C34S	337396.459	7−6	25.57	50.23

Note. All spectroscopic data from CO and CS isotopologues available from the CDMS molecular line catalog (Müller et al. 2001, 2005) through the Splatalogue (http://www.splatalogue.net; Remijan et al. 2007) portal and are based on laboratory measurements and model predictions by Klapper et al. (2003), Carzoli et al. (2002), Goorvitch (1994), Winkel et al. (1984), Ram (1995), Burkholder et al. (1987), Gottlieb et al. (2003), Ahrens & Winnewisser (1999), Kim & Yamamoto (2003), and Boge et al. (1982, 1981).

Each of 104 MHz width and resulting in 128 channels. The weather conditions were good and stable, and we estimate that the atmospheric opacity was 0.05–0.06. Table 1 presents the main parameters of the data (set 1).

In this paper, we focus only on emission lines of the carbon monoxide isotopologue C17O (3−2) and the carbon monosulfide isotopologue C34S (7−6). Table 2 lists the spectroscopic parameters of these transitions. To recover more extended emission, we have combined the eSMA data (minimum baseline length of 32 kλ) with observations of the same lines from the SMA in its compact configuration (minimum baseline length of 11 kλ, see Jørgensen et al. 2011, and set 2 in Table 1). Our combined eSMA and SMA observations are therefore not sensitive to structures extended on scales larger than 17″ (see Wilner & Welch 1994).

2.2. Data Reduction

The eSMA data were calibrated and reduced using the MIR/IDL package (Qi 2007). The nearby quasars 1626−298 and nrao530 (measured flux density of 1.3 Jy and 1.5 Jy, respectively) were used as phase and amplitude calibrators. The absolute flux calibration and the band-pass calibration were performed through observations of the quasar 3C 273, with an assumed flux of (10.3 ± 1.5) Jy, found by interpolating values obtained from the SMA calibrator list during the period 2009 February to April. For details about the reduction of the SMA data see Jørgensen et al. (2011). The (u, v) coverage of these data sets are shown in Figure 1.

9 The James Clerk Maxwell Telescope is operated by the Joint Astronomy Centre on behalf of the Science and Technology Facilities Council of the United Kingdom, the National Research Council of Canada, and (until 2013 March 31) the Netherlands Organisation for Scientific Research.

10 The Caltech Submillimeter Observatory is operated by Caltech under cooperative agreement with the National Science Foundation (AST-0838261).

11 http://sma1.sma.hawaii.edu/callist/callist.html

12 http://sma1.sma.hawaii.edu/callist/callist.html
Continuum subtraction and data imaging were performed using the MIRIAD software package (Sault et al. 1995). The calibrated SMA and eSMA (u, v) data were combined using the MIRIAD tasks invert and mosaic for both continuum and line analysis. Furthermore, in order to prevent any source position problems, which could result from the different phase centers of the SMA and eSMA observations (see Table 1), the option mosaic has been used. No cross-flux calibration was done. Cross-calibration of the SMA and eSMA data sets.

mosaic has been used. No cross-flux calibration was done.

mosaic has been used. No cross-flux calibration was done. More specifically, continuum emission from IRAS 16293A is clearly extended along a NE–SW axis, whereas toward IRAS 16293B the emission appears more compact.

The final combined C\(^{17}\)O and C\(^{34}\)S emission maps were restored using a uniform weighting, resulting in a synthesized beam size of 0°58 × 0°38. From Gaussian fits in the (u, v) plane the positions of the two main continuum sources, IRAS 16293A and IRAS 16293B, are \(\alpha_{2000} = 16^h32^m22^s87\), \(\delta_{2000} = -24^\circ28^\prime36^\prime\prime4\) and \(\alpha_{2000} = 16^h32^m22^s61\), \(\delta_{2000} = -24^\circ28^\prime32^\prime\prime4\). The structure of the emission of the continuum sources reveals both extended and compact emission. More specifically, continuum emission from IRAS 16293A is clearly extended along a NE–SW axis, whereas toward IRAS 16293B the emission appears more compact.

The final combined C\(^{17}\)O and C\(^{34}\)S emission maps were restored using a uniform weighting, resulting in a synthesized beam size of 0°59 × 0°38 (P.A. of 47°3 and 48°2, respectively).

which corresponds to ~71 × 46 AU at a distance of 120 pc. The most important parameters of the combined data are listed in Table 1 (see set 3).

3. RESULTS

In the following (sub)sections, we will only present and discuss results on line emissions that were obtained through the combined SMA and eSMA data (see set 3 in Table 1).

3.1. Emission Maps and Velocity Structure

Figures 3 and 4 show (1) the channel maps of the C\(^{17}\)O (3–2) and C\(^{34}\)S (7–6) from \(v_{\text{LSR}} = -1.3\) km s\(^{-1}\) to 8.1 km s\(^{-1}\), respectively, and (2) the integrated emission maps of these species. The detailed structure of the C\(^{17}\)O (3–2) and C\(^{34}\)S (7–6) line emission is complex, showing a velocity gradient oriented in a NE–SW direction with respect to IRAS 16293A. Indeed, the C\(^{17}\)O and C\(^{34}\)S velocity channel maps, presented in Figures 3 and 4, show that

1. from \(v_{\text{LSR}} = -0.6\) km s\(^{-1}\) to 3.8 km s\(^{-1}\) the blueshifted emission around the systemic velocity peaks toward the north/northeast of IRAS 16293A,
2. at \(v_{\text{LSR}} = 2.3\) km s\(^{-1}\) and 3.0 km s\(^{-1}\), some emission appears around IRAS 16293B,
3. from \(v_{\text{LSR}} = 1.6\) km s\(^{-1}\) to 5.9 km s\(^{-1}\), the C\(^{17}\)O channel maps present some elongated features along an east–west direction, which are consistent with the distribution of the SiO (8–7) emission observed toward IRAS 16293–2422 by Jørgensen et al. (2011),
4. and from \(v_{\text{LSR}} = 3.8\) km s\(^{-1}\) to 7.4–8.1 km s\(^{-1}\) the redshifted emission clearly peaks toward the south/southwest of IRAS 16293A.

Although the channel maps are complex, the bulk of the C\(^{17}\)O and C\(^{34}\)S emission is associated with the red and blue structures seen in the integrated intensity emission maps (see final panels of Figures 3 and 4). Figure 5 shows the higher red- and blueshifted integrated emission maps of both isotopologues from
Figure 3. Velocity channel maps of C17O toward IRAS 16293$-$2422. The v_{LSR} velocity is indicated on each plot. The first contour is at 3σ and the level step is 2σ (1σ level is 123 mJy beam$^{-1}$). The red crosses indicate positions of the continuum sources IRAS 16293A and IRAS 16293B (see Section 3.1). The principal red- and blueshifted directions of the two outflows arising from source A are indicated in the 8.08 km s$^{-1}$ channel map (Mundy et al. 1992; Yeh et al. 2008; Jørgensen et al. 2011; Walker et al. 1988; Mizuno et al. 1990; Hirano et al. 2001; Castets et al. 2001; Garay et al. 2002; Stark et al. 2004). The bottom right panel shows the integrated blue- and redshifted emission map of C17O. The blueshifted emission is integrated over the velocity channels from v_{LSR} = −3.0 to 3.8 km s$^{-1}$ and the redshifted emission between 3.8 and 9.0 km s$^{-1}$. The first contour and the level step are 1.4 Jy beam$^{-1}$ km s$^{-1}$. The SMA and eSMA synthesized beam is 0.59$''$ × 0.38 (see Table 1).

(A color version of this figure is available in the online journal.)

v_{LSR} = 6.6 to 9.0 km s$^{-1}$ and v_{LSR} = −2.6 to 0.7 km s$^{-1}$, respectively. The orientation NE$-$SW of the velocity gradient is clearly seen in Figure 5. The resulting measured P.A. is \sim54°.

3.2. Spectra

Figure 6 displays the spectral profiles of the C17O and C34S, on a (right ascension (R.A.), declination (decl.)) grid centered on IRAS 16293A. Most of the blueshifted emission is stronger in the northern/northeast offsets of IRAS 16293A whereas the redshifted emission is stronger in the southern/southwest offsets.

Toward the central source (IRAS 16293A), both C34S and C17O spectra can approximately be described by a single Gaussian ($\Delta v_{1/2}$ of \sim7$-$7.7 km s$^{-1}$) centered at \sim3.4 km s$^{-1}$ for C34S, which is close to the systemic velocity of the cloud (3$-$4 km s$^{-1}$; see Mizuno et al. 1990; Jørgensen et al. 2011), and at \sim1.4 km s$^{-1}$ for C17O. With the C17O spectrum being spread toward source IRAS 16293A (Figure 6), the resulting fit is poor, which leads to a non-accurate determination of the center of the Gaussian.

4. ANALYSIS AND DISCUSSION

4.1. Missing Flux

The present section aims to estimate the portion of the total flux resolved out by the interferometer. To estimate the fraction of the total flux which is missing, we compared the SMA and eSMA data to archival JCMT observations13 and to published CSO observations (Blake et al. 1994).

The SMA and eSMA C17O spectrum was convolved with a Gaussian beam to mimic the JCMT beam at 337 GHz (15$''$), and the JCMT spectrum has been converted into main beam temperature (T_{mb}) using $T_{\text{mb}} = T^*_{\text{A}}/\eta_{\text{mb}}$, where T^*_{A} is the antenna temperature and η_{mb} the main beam efficiency. We have adopted a value of 0.64 for η_{mb} (Buckle et al. 2009). In addition, the JCMT spectrum has been smoothed to the same spectral resolution (0.72 km s$^{-1}$) as that of the combined SMA and eSMA spectrum (see Table 1).

At the systemic velocity of the cloud (3$-$4 km s$^{-1}$; Mizuno et al. 1990; Jørgensen et al. 2011) almost all of the C17O emission is resolved out, since this emission is present largely in the extended surrounding cold gas. However, in the line wings (from v_{LSR} = 0 km s$^{-1}$ to 2 km s$^{-1}$ and from v_{LSR} = 5.5 km s$^{-1}$ to 7.5 km s$^{-1}$, as shown in Figure 7), 60%$-$70% of the C17O flux is recovered by the combined SMA and eSMA observations.

Concerning the C34S emission, no single-dish spectra are available. We therefore compared the integrated line flux, reported by Blake et al. (1994) from CSO observations, with the integrated line flux derived from the convolution of the SMA and eSMA C34S spectrum with a Gaussian beam similar to the CSO beam at 337 GHz (20$''$). The comparison shows that 59% \pm 5% of the C34S emission is resolved out. We conclude

13 The JCMT data used here are public and available from the JCMT Science Archive portal; see http://www.jach.hawaii.edu/JCMT/archive/.
Figure 4. Velocity channel maps of C^{34}S toward IRAS 16293−2422. The v_{LSR} velocity is indicated on each plot. The first contour is at 3σ and the level step is 2σ. The first contour and the level step are 1.9 Jy beam$^{-1}$ km s$^{-1}$. The SMA and eSMA synthesized beam is 0.6′ × 0.38′.

(A color version of this figure is available in the online journal.)

that C^{34}S emission is filtered out by the interferometer in a manner to an extent similar to that for C^{17}O emission.

4.2. Interpretation of the Velocity Data for C^{17}O and C^{34}S

4.2.1. Indication of Non-outflowing Gas

The purpose of this section is to investigate the hypothesis that C^{17}O and C^{34}S show any velocity gradient in the propagation direction of the outflow.

Although the orientation of NE–SW velocity gradient seen in the C^{17}O and C^{34}S channel and spectral maps (Figures 3, 4, and 6) is aligned with the one of the NE–SW outflows of the source (P.A. of ~45°; Walker et al. 1988; Mizuno et al. 1990; Hirano et al. 2001; Castets et al. 2001; Garay et al. 2002; Stark et al. 2004; Chandler et al. 2005; Loinard et al. 2013), the NE–SW–southwest outflow harbors large-scale structures only (~15,000 AU), as discussed in Loinard et al. (2013) and Yeh et al. (2008), in contrast to C^{17}O and C^{34}S that are only probing small scales.

For the east–west outflow, Yeh et al. (2008) showed that it had a complex structure in CO emission, but on small scales is oriented in the NE–SW direction with a P.A. of about 70°.

Takakuwa et al. (2007) and Huang et al. (2005) also reported a velocity

14 The CO (2–1) observations were carried out with the SMA by Jørgensen et al. (2011).

Contrary to HCN emission, the C^{17}O and C^{34}S emission appears to be nearly ~40° and 90° different in angles than the CO emission for the high redshifted and blueshifted emission, respectively. Furthermore, as shown in Figure 5, a P.A. of 70° does not fit on the higher red- and blueshifted integrated emission maps of both isotopologues. Our finding suggests that C^{17}O and C^{34}S are unlikely to probe a structure, which is associated with the east–west outflow and could originate from a different source than IRAS 16293A, which likely drives the east–west outflow (Yeh et al. 2008).

4.2.2. Rotation Pattern

The emission of C^{17}O and C^{34}S, which we assume to be optically thin, is complex. The observed northeast/north–southwest/south velocity gradients and line profiles do not appear to trace outflowing material but may indicate rotation signatures. The presence of rotating material toward source IRAS 16293A (roughly perpendicular to the second outflow of IRAS 16293, which is oriented in an east–west direction; see Mundy et al. 1992; Yeh et al. 2008; Jørgensen et al. 2011) has been reported based on the single-dish and interferometric observations of 13CO, C^{18}O, H$_2$CO, and C^{32}S (Mundy et al. 1986, 1990; Menten et al. 1987; Zhou 1995; Schöier et al. 2004). Likewise, from SMA observations of HCN and HC^{15}N, Takakuwa et al. (2007) and Huang et al. (2005) also reported a velocity
gradient in a northeast/north–southwest/south direction (i.e., along the outflow oriented NE–SW). Takakuwa et al. (2007) interpreted the observed, flattened structure as an accreting disk and Huang et al. (2005) suggested that the emission is probing an inclined (30°, with respect to the sky) rotating circumstellar disk. These earlier velocity gradient observations are all consistent with our SMA and eSMA C17O and C34S observations (see Figures 3–6), but are of lower resolution.

Rotational motion, of Keplerian type in particular, can be distinguished from solid-body motions and infall signatures through position–velocity diagrams (hereafter PV diagrams). Typically, if the gas is dominated by rotation, the PV diagram along the supposed axis of rotation should present no evidence of rotation, whereas the PV diagram along the perpendicular axis should show the maximum effect (e.g., Brinch et al. 2009). Figure 9 presents the PV diagrams for C17O and C34S centered on the position of IRAS 16293A (1) for a slice along the NE–SW velocity gradient direction (~54°) and (2) for a slice along its perpendicular direction (~144°), which is assumed to be the rotational axis. We note that, for both isotopologues, no evidence of systemic motions is observed along the supposed rotational axis. Furthermore, the perpendicular axis, which is oriented in the NE–SW direction, clearly represents a strong rotation pattern (see the left-hand upper and middle panels of Figure 9): (1) the blueshifted emission is located in the north whereas the redshifted emission is mainly seen in the south, (2) the related main blue- and redshifted emission peaks are shifted west and east from the systemic velocity axis, and (3) the emission drops at low velocities and the distribution of the emission can be described by a “butterfly wing” shape in the upper-left and bottom-right quadrants only. The positions of the blue- and redshifted emission peaks in the C17O and C34S velocity profiles are consistent with PV diagrams in CS, 13CO, C18O, HCN, and HC15N, toward IRAS 16293A, for which rotation of material has been reported (see Mundy et al. 1986, 1990; Zhou 1995; Menten et al. 1987; Huang et al. 2005).

4.2.3. Keplerian-type Rotation or Reflection of a Rotating/infalling Core?

Both C17O and C34S PV diagrams present a “butterfly wing” shape along the NE–SW axis. This specific pattern is usually associated with the Keplerian motion of the gas. Indeed, it has been seen toward several Class I young stellar objects for which disks in Keplerian rotation have been observed (e.g., L1489 IRS, IRS43, IRS 63, Elias 29, and HH 111; see Hogerheijde 2001; Lommen et al. 2008; Jørgensen et al. 2009; Lee 2010). Our results in Figure 9 appear to indicate that the motion of the gas could be dominated by Keplerian-type rotation. Nonetheless, rotation of material that has a constant angular momentum could also fit the observed patterns. In order to estimate whether the rotation is purely Keplerian or reflecting a rotating infalling core, simple models of a rotation velocity profiles have been performed (see left-hand panels in Figure 9). The velocity field was parameterized by a rotational velocity depending on the radius:

1. for purely Keplerian rotation, where the stellar mass dominates over the envelope mass, we adopted a velocity profile for a disk seen edge-on:

\[V = \sqrt{\frac{GM_\star}{r}}, \]

where \(M_\star \) is the mass of the central object,

2. and for infall with conservation of the angular momentum, we used a simple power law, \(V \sim r^{-1} \), assuming an angular momentum of 150 AU km s\(^{-1}\), which is in agreement with the typical values reported by Belloche (2013).

In addition, our velocity profile studies also include gas probed by the methyl formate molecule (HCOOCH3). Pineda et al. (2012) have suggested, from ALMA science verification observations, that the HCOOCH3 PV diagram along the north/northeast–south/southwest direction toward IRAS 16293A is consistent with the rotation of a disk.

The best models, roughly fitting both emission peaks and the 3σ edge, are presented in the left-hand panels in Figure 9. For the infall model, our best model is well-described by the following law: \(V = 1.5(r/100 \text{AU})^{-1} \) km s\(^{-1}\). A salient result is that Keplerian rotation cannot be unambiguously distinguished from rotation conserving its angular momentum the C17O and C34S PV diagrams. Our data are therefore consistent with rotation and we might be observing a change of rotation profile in the envelope as observed in some Class I objects (e.g., Lee 2010; Momose et al. 1998) but we can make no firm conclusion.

Furthermore, the rotation seems to reflect the decrease in envelope mass. Indeed, the predicted curves for a purely Keplerian rotation profile are obtained for a central object of 0.49 \(M_\odot \) based on C17O observations—which is in agreement within 10% with the masses of the central object derived by Looney et al. (2000), Huang et al. (2005), and Pineda et al. (2012), but a factor of two lower than the central mass derived in Takakuwa et al. (2007)—and for central objects of 0.39 \(M_\odot \) and 0.09 \(M_\odot \) from C34S and HCOOCH3 observations, respectively.
The results indicate that a single central mass is inconsistent with the data. One possibility is that the envelope mass \(M_{\text{env}}(r) \) is getting closer to the stellar mass, resulting in a rotation profile better described by

\[
V \propto \sqrt{\frac{G(M_\star + M_{\text{env}}(r))}{r}}.
\]

(2)

Furthermore, the HCOOCH\(_3\) ALMA-SV observations suggest that if the mass of the central object is greater than 0.1 \(M_\odot \), then a purely Keplerian velocity field will be inconsistent with our measurements (see Figure 9).

In summary, our analysis suggests that the velocity field is inconsistent with pure Keplerian rotation around a single point mass; rather the enclosed envelope mass plus stellar mass is influencing the distribution of the rotational velocities. In this instance, different tracers may have different enclosed masses and thus the rotation curves may be more distinct. In this case, the inferred dynamical mass from C\(_{17}\)O and C\(_{34}\)S must be larger than the dynamical mass from HCOOCH\(_3\) with each probing larger scale. This point is illustrated in Figure 10, which shows the density and dust temperature profiles of IRAS 16293−2422 from Schöier et al. (2002) and indicates the radii equivalent to the
radii of the enclosed masses corresponding to the HCOOCH$_3$, C$_{34}$S, and C17O mass estimates. We also conclude that methyl formate is clearly probing denser and warmer gas than C$_{34}$S and C17O.

4.2.4. Other Possible Hypotheses

Our analysis shows that C$_{34}$S and C17O are probing a rotating structure. Nevertheless, other scenarios, which cannot be ruled out at the present time, can also explain our observations.

The first hypothesis implies that the observed structure may be contaminated by infall motions in the envelope. In that connection, Takakuwa et al. (2007) interpreted the observed, flattened structure seen in HCN and HC$_{15}$N, which shows a velocity gradient along a NE–SW direction, but with a different P.A., as an accreting disk. Although our present data are consistent with rotation, we cannot rule out the possibility that a part of the material is actually infalling at some place in the envelope (i.e., at P.A. other than 144$^\circ$). In that light, Tobin et al. (2012) have shown that at a scale larger than 1000 AU, a mix of infall and (solid-body) rotation can result in a PV diagram that presents similarities with the PV diagrams for C17O and C$_{34}$S (see, for example, Figure 6 of Belloche 2013 and Figure 1 of Tobin et al. 2012). Likely, infall can also affect a Keplerian-type PV diagram on a scale smaller than 1000 AU.

Another hypothesis involves the nature of the circumstellar infalling envelope. Recently, Tobin et al. (2011, 2012) have shown that the morphology of an envelope can affect the kinematics on scales larger than 1000 AU. Indeed, due to projection effects, a filamentary infalling envelope could give rise to a PV diagram similar to a differential rotation PV diagram. Although unlikely, the nature of the envelope might affect the kinematic we are observing at scales close to 1000 AU (see Figure 10).

Alternatively, C17O and C$_{34}$S could be probing a magnetic pseudo-disk (see Galli & Shu 1993a, 1993b; Davidson et al. 2011; Hennebelle & Ciardi 2009). In this connection, Davidson et al. (2011) have shown that pseudo-disks are observed for Class 0 young stellar objects (e.g., L1527, IC348–SMM2). The salient reasons which support the hypothesis that a pseudo-disk may give rise to our observations are as follows.

1. Observational data suggest the presence of a large flattened infalling and rotating structure in the inner part of the envelope at radii less than 8000 AU (see Figure 10 and Schöier et al. 2002).
2. Polarization observations support the presence of a magnetic pseudo-disk.

With regard to the magnetic field, large-scale polarization has been reported by Rao et al. (2009) and Tamura et al. (1995) based on observations of the dust continuum emission toward IRAS 16293$-$2422. According to Rao et al. (2009) the magnetic energy associated with the magnetic field of about 4.5 mG is comparable with the rotational energy of the system given that it is a rotating disk. Very briefly, the rotational energy (E_r) of the disk divided by the magnetic energy (E_{mag}) in the disk is given by

\[
E_r / E_{mag} = \frac{\frac{1}{2}I(\Omega)^2}{\frac{1}{2}B^2} = \frac{1}{2}I(\Omega)^2 / B^2
\]

Figure 8. Left: integrated C17O (blue), C$_{34}$S (cyan), and CO (dark) emission maps at the higher blueshifted velocities (from v_{LSR} in the range -2.6 to 0.7 km s$^{-1}$). The first contour and the level step are at 2σ (with 2σ = 0.7, 0.6, and 5 Jy beam$^{-1}$ km s$^{-1}$ for C17O, C$_{34}$S, and CO, respectively). Right: integrated C17O (red), C$_{34}$S (magenta), and CO (dark) emission maps at the higher redshifted velocities (from v_{LSR} in the range 6.6–9.0 km s$^{-1}$). The first contour and the level step are at 2σ (with 2σ = 0.6, 0.5, and 9 Jy beam$^{-1}$ km s$^{-1}$ for C17O, C$_{34}$S, and CO, respectively). The CO (2–1) observations were carried out with the SMA by Jørgensen et al. (2011). Crosses indicate positions of the sources IRAS 16293A and IRAS 16293B. The black line indicates the orientation of the C17O and C$_{34}$S northeast–southwest gradient (P.A. $\sim 54^\circ$, see Figure 5).

(A color version of this figure is available in the online journal.)
Figure 9. Upper and middle panels: PV diagrams, respectively, in 17O and 34S centering on the IRAS 16293A position at $v_{\text{LSR}} = 3.8$ km s$^{-1}$. The left-hand panels correspond to a slice perpendicular to the supposed axis of rotation ($\sim 54^\circ$) and the right-hand panels correspond to a slice in the direction of the rotation axis ($\sim 144^\circ$). The first contour and level steps are at 3.36 Jy beam$^{-1}$ for 17O and at 3.96 Jy beam$^{-1}$ for 34S. Bottom left panel: PV diagram in HCOOCH$_3$ (transition at 220.166 GHz) toward IRAS 16293A, corresponding to the direction of the northeast–southwest velocity gradient (ALMA-SV data; see Pineda et al. 2012). Over-plotted are the predicted curves for purely Keplerian rotation around a 0.49 M_\odot central object (solid red lines, top panel), a 0.39 M_\odot central object (solid green lines, middle panel), and a 0.09 M_\odot central object (solid blue lines, bottom panel), as well as predictions (dotted lines), for a $\pm 50\%$ uncertainty on the mass. In addition, $1/r$ rotation curves are over-plotted, dashed line, in the 17O and 34S PV diagrams (upper and middle left-hand panels).

(A color version of this figure is available in the online journal.)

Figure 10. Density (left panel) and dust temperature (right panel) profiles of IRAS 16293–2422 taken from Schöier et al. (2002). Over-plotted, in dashed lines, are the radii equivalent to the radii of the enclosed masses corresponding to the HCOOCH$_3$ (blue), 34S (green), and 17O (red) mass estimates.

(A color version of this figure is available in the online journal.)

by

$$
\frac{E_r}{E_{\text{mag}}} = \frac{1}{B^2} \left(r^2 \omega^2 \rho \mu_0 \right),
$$

where r is the radius of the disk, ω is the angular velocity of the disk, ρ is the average density in the disk, μ_0 is the permittivity of free space, and B is the magnetic field. If we use the ansatz that $B \sim b(n_{H_2})^{1/2}$, where b is a constant between 1 and 5, then we obtain the result that the rotational and magnetic energies are roughly equal for $b \sim 3$. Here we have used the observed quantities of $r \sim 300$ AU and ω is given by $\sim 1.7 \times 10^{-10}$ rad s$^{-1}$.

In this connection, Hennebelle & Ciardi (2009) have recently performed simulations of disk formation for which both rotation and magnetic field are present. These models show that it is feasible to maintain a magnetic pseudo-disk in the presence of rotation.

The formation of a pseudo-disk and its growth are regulated by the geometry of the magnetic field (see Davidson et al. 2011). The rotational axis of such a disk should be aligned with the magnetic field direction (Galli & Shu 1993b;...
5. CONCLUSIONS

We have performed a subarcsecond (0.′′59 × 0.′′38) interferometric study of the velocity structure of the low-mass protostar IRAS 16293–2422 using combined SMA and eSMA observations of C17O (3–2) and C34S (7–6). Our main results and conclusions are the following.

1. A velocity gradient which is oriented in a NE–SW direction is observed toward source IRAS 16293A. More specifically, this NE–SW velocity gradient prevails in the bulk of the C17O and C34S emission which is composed of blue- and redshifted emissions lying in the v_{LSR} range −3 to 9 km s$^{-1}$.

2. Our observations show that the C17O and C34S emissions are probing larger scales than HCOOCH3 and are therefore consistent with having a larger enclosed mass. In addition, the HCOOCH3 ALMA-SV observations show that if the mass of the central object is greater than 0.1 M_\odot, then the Keplerian field will be inconsistent with our measurements.

3. The C17O and C34S observations appear to probe a rotating structure. This structure and the dynamics of the gas could result from the presence of a magnetic field through the formation of a magnetic pseudo-disk.

The data presented in this paper illustrate the necessity of high angular resolution observations with high spectral resolution combined with single-dish observations (to recover the extended emission) to disentangle the motion of the gas in this object and understand which scenario prevails here. The data also show that the structure of the low-mass protostar, IRAS 16293–2422, is complicated and therefore only a complex model of the source will help us to constrain and access the relative importance of outflowing, infalling, and rotational motions.

We thank the entire SMA and eSMA staff who produced such excellent instruments. The development of the eSMA has been facilitated by grant 614.061.416 from the Netherlands Organisation for Scientific Research, NWO. The Submillimeter Array is a joint project between the Smithsonian Astrophysical Observatory and the Academia Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academia Sinica. We are grateful to Sandrine Bottinelli who was the original proposer of the presented eSMA observations. C.F. thanks Edwin Bergin for enlightening discussions. C.F. also acknowledges the financial support provided by The Instrument Center for Danish Astrophysics (IDA). The research of J.K.J. was supported by a Junior Group Leader Fellowship from the Lundbeck Foundation. Research at the Centre for Star and Planet Formation is funded by the Danish National Research Foundation. This research used the facilities of the Canadian Astronomical Data Centre operated by the National Research Council of Canada with the support of the Canadian Space Agency.

Facilities: SMA, ALMA, JCMT

REFERENCES

Ahrens, V. & Winnewisser, G. 1999, Z. Naturforsch., 54a, 131
Alves, F. O., Vlemmings, W. H. T., Girart, J. M., & Torrelles, J. M. 2012, A&A, 542, A14
Basu, S. 1998, ApJ, 509, 229
Beltran, A., 2013, in Observation of Rotation in Star Forming Regions: Clouds, Cores, Disks, and Jets, ed. P. Hennebelle & C. Charbonnel (EAS Publications Series, Vol. 62; Cambridge: Cambridge Univ. Press), 25
Bisschop, S. E., Jørgensen, J. K., Bourke, T. L., Bottinelli, S., & van Dishoeck, E. F. 2008, A&A, 488, 959
Blake, G. A., van Dishoeck, E. F., Jansen, D. J., Groesbeck, T. D., & Mundy, L. G. 1994, ApJ, 428, 680
Bogley, M., Demuynck, C., & Destombes, J. L. 1981, CPL, 81, 256
Bogley, M., Demuynck, C., & Destombes, J. L. 1982, JMoSp, 95, 35
Bottinelli, S., Ceccarelli, C., Neri, R., et al. 2004, ApJL, 617, L69
Bottinelli, S., Young, K. H., Chamberlin, R., et al. 2008, Proc. SPIE, 7012, 701220
Brinch, C., Jørgensen, J. K., & Hogerheijde, M. R. 2009, A&A, 502, 199
Buckle, J. V., Hills, R. E., Smith, H., et al. 2009, MNRAS, 399, 1026
Buckholder, J. B., Lovejoy, E. R., Hammer, P. D., & Howard, C. J. 1987, JMoSp, 124, 450
Castets, A., Ceccarelli, C., Loinard, L., Caux, E., & Leftwich, B. 2001, A&A, 375, 40
Cazzoli, G., Dore, L., Puzzarini, C., & Beninati, S. 2002, PPCP, 4, 3575
Ceccarelli, C., Castets, A., Caux, E., et al. 2000, A&A, 355, 1129
Chandler, C. J., Brogan, C. L., Shirley, Y. L., & Loinard, L. 2005, ApJ, 632, 371
Crutcher, R. M. 2006, Sci, 313, 771
Dapp, W. B., & Basu, S. 2010, A&A, 521, L56
Davidson, J. A., Novak, G., Matthews, T. G., et al. 2011, ApJ, 732, 97
de Geus, E. J., de Zeeuw, P. T., & Lub, J. 1989, A&A, 216, 44
Galli, D., & Shu, F. H. 1993a, ApJ, 417, 220
Galli, D., & Shu, F. H. 1993b, ApJ, 417, 243
Garay, G., Mardones, D., Rodríguez, L. F., Caselli, P., & Bourke, T. L. 2002, ApJ, 567, 980
Goorvitch, D. 1994, ApJS, 95, 535
Gottlieb, C. A., Myers, P. C., & Thaddeus, P. 2003, ApJ, 588, 655
Girart, J. M., Estalella, R., Palau, A., Torrelles, J. M., & Rao, R. 2014, ApJL, 780, L11
Hayashi, M., Ohashi, N., & Miyama, S. M. 1993, ApJL, 418, L71
Hennebelle, P., & Ciardi, A. 2009, A&A, 506, L29
Hirota, Kamihara, H., Umemoto, T., Yamamoto, S., & Taniguchi, Y. 2001, A&A, 374, 899
Ho, P. T. P., Moran, J. M., & Lo, K. Y. 2004, ApJL, 616, L11
Hogerheijde, M. R. 2001, ApJ, 553, 618
Hwang, H.-C., Kuan, Y.-J., Charnley, S. B., et al. 2005, AdSpR, 36, 146
Jørgensen, J. K., Bourke, T. L., Nguyen Luong, Q., & Takakuwa, S. 2011, A&A, 534, A100
Jørgensen, J. K., Favre, C., Bisschop, S. E., et al. 2012, ApJL, 757, L4
Jørgensen, J. K., van Dishoeck, E. F., Visser, R., et al. 2009, A&A, 507, 861
Kim, E., & Yamamoto, S. 2003, JMoSp, 219, 296
Klapper, G., Surin, L., Lewen, F., et al. 2003, ApJ, 582, 262
Knude, J., & Høg, E. 1998, A&A, 338, 897
Kuan, Y., Huang, H., Charnley, S. B., et al. 2004, ApJ, 616, L27
Lee, C.-F. 2010, ApJ, 725, 712
Loinard, L., Torres, R. M., Mioduszewski, A. J., & Rodríguez, L. F. 2013, MNRAS, 430, L10
Lommen, D., Jørgensen, J. K., van Dishoeck, E. F., & Crapsi, A. 2008, A&A, 481, 141
Looney, L. W., Mundy, L. G., & Welch, W. J. 2000, ApJ, 529, 477
Menten, K. M., Serabyn, E., Guesten, R., & Wilson, T. L. 1987, A&A, 177, L57
Meeus, M., Fukui, Y., Iwata, T., Noszay, S., & Takano, T. 1990, ApJ, 356, 184
Mommose, M., Ohashi, N., Kawabe, R., & Hayashi, M. 1998, ApJ, 504, 314
Müller, H. S. P., Schlöder, F., Stutzki, J., & Winnewisser, G. 2005, JMoSp, 742, 215
Müller, H. S. P., Thorwirth, S., Roth, D. A., & Winnewisser, G. 2001, A&A, 370, L49
Mundy, L. G., Myers, S. T., & Wilking, B. A. 1986, ApJL, 311, L75
Mundy, L. G., Wootten, H. A., & Wilking, B. A. 1990, ApJ, 352, 159
