Supplementary Information to accompany Kounatidou et al.

Contents

Figure legends (S1-S21) Pages 2-8
Tables (S1-S6) Pages 9-18
Supplementary Figures (S1-S22) Pages 19-41
Figure legends

Supplementary Figure S1. Validating CRISPR knock-in strategy in CWR22Rv1 cells. a. CWR22Rv1 cells were transiently transfected with either Cas9/gRNA_1- or Cas9/gRNA_2-encoding plasmids and immunofluorescence images were taken to demonstrate successful expression of the plasmid-derived GFP marker (left panel). Resultant SURVEYOR endonuclease assay of CRISPR target amplicon of the AR gene exon 5 locus from Cas9/gRNA_1- and Cas9/gRNA_2-transfected CWR22Rv1 cells (* indicates successful cleavage of hetero-duplexes generated as a consequence of mixing equal amounts wild-type and CRISPR-modified amplicons). b. TIDE analysis of resultant sequencing data derived from Cas9/gRNA_1- and Cas9/gRNA_2-transfected cells (PAM sites for both CRISPR complexes are shown at top of right panel). c. Diagrammatic representation of donor template used to knock-in stop codon (TAA) into exon 5 of the AR gene. TTAA sequence represents an Mse I restriction enzyme site to enable restriction fragment length polymorphism (RFLP) analysis. F- and R-labelled arrows indicate primers used to amplify DNA from clonal cell populations to identify incorporation of donor template into the host genome. d. Successful detection of donor template incorporation into CWR22Rv1 cells as indicated by the generation of two DNA fragments by Mse I-mediated RFLP to form the derivative cell line CWR22Rv1-AR-EK.

Supplementary Figure S2. Validating loss of FL-AR in CWR22Rv1-AR-EK cells. CWR22Rv1- and CWR22Rv1-AR-EK-derived lysates were subject to immunoblotting using four distinct AR N-terminal-targeting antibodies: AR N20 (Santa Cruz Biotechnology - discontinued), AR-BD (BD Pharmingen), AR ab74272 (Abcam) and AR-441 (Santa Cruz Biotechnology). Short and long exposure were performed to enable detection of FL-AR in CWR22Rv1 parental cells. α-tubulin was used as loading control.
Supplementary Figure S3. Validating genomic integrity of CWR22Rv1-AR-EK cells.

- **a.** Bright field images of CWR22Rv1 and CWR22Rv1-AR-EK cells were taken at a 10x magnification to demonstrate similar morphology of the two cell lines.
- **b.** CWR22Rv1 and CWR22Rv1-AR-EK share equivalent genomic SNP markers as determined using conventional cell line authentication.
- **c.** Predicted potential CRISPR off-target sites were amplified using specific primers and resultant amplicons were analysed by TIDE. Sequencing chromatograms of the three highest ranked off-target loci within COL1A2, KMT2B and SLC7A8 genes are shown for parental and CWR22Rv1-AR-EK cells (left panel) and analysed by TIDE (right panel).

Supplementary Figure S4. AR-V depletion in CWR22Rv1-AR-EK down-regulates androgenic gene expression. CWR22Rv1-AR-EK cells grown in steroid-depleted media were subject to control (siScr) or AR-V (siAR-V) depletion for 48 hours with either vehicle, 10 nM DHT or 10 µM enzalutamide (Enz) treatment for the final 24 hours before quantitative RT-PCR to assess UBE2C, ATAD2 and KLK2 expression. Data represents the average of three independent experiments +/- SD.

Supplementary Figure S5. AR target gene expression in CWR22Rv1-AR-EK is driven exclusively by AR-Vs.

- **a.** CWR22Rv1-AR-EK cells grown in steroid-depleted media were subject to transfection with control (siScr) or FL-AR-targeting siRNAs (siARex4 and siARex7) for 48 hours with either vehicle or 10 nM DHT treatment for the final 24 hours before quantitative RT-PCR to assess PSA, KLK2 and UBE2C expression. Data represents the average of three independent experiments +/- SD.
- **b.** Cell lysates harvested from the parallel experiment were subject to western blot analysis using anti-AR and α-tubulin antibodies to demonstrate that unlike siARex1, both siARex4 and siARex7 have no impact on AR-V levels in CWR22Rv1-AR-EK cells (left panel). Using CWR22Rv1 parental cells, siARex4 and siARex7 were able to successfully deplete FL-AR levels (right panel).
Supplementary Figure S6. AR-Vs associate with AR-target genes in CWR22Rv1-AR-EK cells. CWR22Rv1-AR-EK cells were subject to control (siScr) or AR (siARex1) knockdown for 48 hours before ChIP experiments, incorporating either N-terminal AR-binding or control (IgG) antibodies. Data represents the average of three independent experiments +/- SD (** represents p<0.01 as determined using one-way ANOVA).

Supplementary Figure S7. Validating samples for RNA sequencing analysis. a. Triplicate CWR22Rv1-AR-EK samples transfected with either control (siScr) or AR-V-targeting (siARex1) siRNAs were subject to quantitative RT-PCR and immunoblotting to assess effect on AR-target gene expression (left panel) and validate AR-V depletion (right panel). Data represents the average of three independent experiments +/- SD (** represents p<0.01 as determined using a two-tailed student T-test). b. MA plot of RNA sequencing data from three experimental replicates showing statistically significant gene expression changes (p<0.01) above and below the 0 y-intercept representing up- and down-regulated genes, respectively, shown in red.

Supplementary Figure S8. Reduced CWR22Rv1-AR-EK cell growth in response to AR-V depletion. CWR22Rv1-AR-EK and CWR22Rv1 cells grown in steroid-depleted media were subject to control (siScr), total AR (siARex1) or AR-V only (siAR-V) knockdown for 96 hours before 10 x magnification bright field images were taken.

Supplementary Figure S9. CWR22Rv1-AR-EK RNA sequencing demonstrates down-regulation of DDR-associated genes in response to AR-V depletion. Expression of the 41 DDR-associated genes
identified to be consistently and significantly down-regulated (* p<0.01) in response to AR-V knockdown.

Supplementary Figure S10. Validation of DDR-associated gene regulation by AR-Vs. a. CWR22Rv1-AR-EK cells depleted of AR-Vs (siARex1) for 48 hours were subject to quantitative RT-PCR to assess expression of several DDR-associated genes. Data represents the average of three independent experiments +/- SD (* p < 0.05 as determined using a two-tailed student T-test).

Supplementary Figure S11. Defining individual DNA repair pathways of the AR-V regulated DDR-associated genes. The 41 DDR-associated genes demonstrated to be regulated by AR-Vs in the CWR22Rv1-AR-EK cell line were sub-compartmentalised into their associated DNA repair pathway using FunRich.

Supplementary Figure S12. Expression AR-V-regulated DDR-associated genes is elevated in CRPC. Expression of several AR-V-regulated DDR-associated genes from the CWR22Rv1-AR-EK cell line was assessed in benign hyperplasia (BPH), localised PC and CRPC samples *in silico* using the Grasso et al., (2012) data set (ns is non-significant; *, **, ***, **** represent p< 0.05, 0.01, 0.001 and 0.0001, respectively).

Supplementary Figure S13. The presence of AR-V7 in patient samples correlates with elevated expression of several DDR-associated genes. a. Expression of the 41 AR-V-regulated DDR-associated genes identified in CWR22Rv1-AR-EK cells were assessed in the TCGA dataset using cBioPortal with the presence of AR-V7 applied as an additional clinical parameter to enable quantification of expression in samples positive and negative for the receptor splice variant. b. Of the 41 genes, 9
demonstrated significantly elevated expression in PC samples that co-expressed AR-V7 (n=84) as calculated using a Bioconductor TCGAbiolinks package (version 2.9.0).

Supplementary Figure S14. Overlapping DDR-associated genes between AR-Vs and FL-AR. Venn diagram demonstrating overlapping DDR-associated gene signatures driven by AR-Vs in CWR22Rv1 cells (Jones et al., 2015) and FL-AR in LNCaP cells (Polkinghorn et al., 2012).

Supplementary Figure S15. Examining ATM activation status in CWR22Rv1-AR-EK cells depleted of AR-Vs. CWR22Rv1-AR-EK cells were transfected with control (siScr) or AR-targeting (siARex1) siRNAs for 24 hours before 2 Gy irradiation treatment and incubation for an additional 24 hours before immunoblotting using total ATM, phospho-ATM, AR and β-actin antibodies.

Supplementary Figure S16. AR-V depletion in CWR22Rv1 cells reduces expression of ‘BRCAness’ genes. CWR22Rv1 cells grown in steroid-depleted medium were transfected for 24 hours with control (siScr) or AR-targeting siRNAs (siARex1) before 24 hour treatment with and without 10 µM enzalutamide (Enz) were subjected to quantitative RT-PCR to assess ‘BRCAness’ gene expression. Data is presented as a heatmap (upper panel) and in graphical form; both represent the mean +/- SD of three independent experiments (* p<0.05 as determined using a two-tailed student T-test).

Supplementary Figure S17. AR-V depletion in CWR22Rv1-AR-EK cells reduces expression of ‘BRCAness’ genes. CWR22Rv1-AR-EK cells grown in steroid-depleted medium were transfected with control (siScr) or AR-V-targeting siRNAs (siAR-V) for 48 hours and were subjected to quantitative RT-PCR to assess gene expression. Data represent the mean +/- SD of three independent experiments.
(*p<0.05 as determined using a two-tailed student T-test). Parallel samples were subject to immunoblotting using AR and α-tubulin antibodies.

Supplementary Figure S18. PARP inhibition using talazoparib reduces AR-V activity. CWR22Rv1-AR-EK cells were treated with 1 μM talazoparib (Talaz) for 24 hours before quantitative RT-PCR to assess AR-V target gene expression. Data represents three independent experiments +/- SD (**p<0.001 as determined using a two-tailed student T-test). Parallel samples were subject to immunoblotting using AR and α-tubulin antibodies.

Supplementary Figure S19. PARP inhibition using rucaparib reduces AR-V activity. CWR22Rv1-AR-EK and CWR22Rv1 cells were treated with 0.5 and 1 μM olaparib (Olap) for 24 hours before quantitative RT-PCR to assess AR-V target gene expression. Data represents three independent experiments +/- SD (**p<0.001 as determined using a two-tailed student T-test).

Supplementary Figure S20. PARP inhibition reduces AR enrichment at target genes. CWR22Rv1-AR-EK (a.) or CWR22Rv1 cells (b.) treated for 4 (and 8) hours with 1 μM talazoparib (Talaz) were subject to ChIP using either anti-AR or control (IgG) antibodies to assess AR enrichment at AR target gene promoters PSA and KLK2. Data represents two independent experiments +/- SD (*, ** p<0.05, 0.01, respectively, as determined using a two-tailed student T-test). Immunoblotting of resultant CWR22Rv1 cell lysates using AR and α-tubulin antibodies is shown in the right panel.

Supplementary Figure S21. PARP inhibition reduces AR enrichment at target genes. CWR22Rv1-AR-EK cells were treated with and without 1 μM talazoparib (Talaz) for 4 hours before ChIP using PARP1/2 and control (IgG) antibodies to assess protein enrichment at AR target gene promoters PSA and KLK2,
and the **TMPRSS2** enhancer. Data represents two independent experiments +/- SD (** p<0.01 as determined using a two-tailed student T-test).

Supplementary Figure S22. Effect of ectopic AR-V7 and PARP1/2 inhibition on DDR-associated gene expression in LNCaP cells. LNCaP cells transiently transduced with control or AR-V7-expressing lentivirus for 24 hours and then treated with 1 μM talazoparib (Talaz) for an additional 24 hours were subject to quantitative RT-PCR to assess expression of DDR-associated genes. Data represents three independent experiments +/- SD (** p<0.01 as determined using a two-tailed student T-test). Genes were segregated into those up-regulated by ectopic AR-V expression and sensitive to PARP inhibitor (top left panel); those enhanced by AR-V7, but insensitive to PARP blockade (top right panel); and those AR-V independent (bottom panel).
Supplementary Table S1 (up-regulated genes in response to AR-V depletion)

Gene	Gene	Gene	Gene	Gene	Gene
AATK	AKR1A1	ABCD1	ACE	ACTL10	ABHD14B
ADAT3	ATP7A	AMOT1	ANKR16	ALX4	ABTB1
AGT2A	BDH2	AMPD2	ASTN2	ANKR52	ADCK5
BAH1	C4orf48	ARAP2	BAIAP2L	ANXA9	AMIGO2
BID	CA11	ARNT2	BPNT1	APPL2	ANG
C1orf103	CALCOCO1	BICD2	C1orf115	AR5	ASS1
C1orf24	CAMK2N1	BTBD9	CDH7	ATXN7L1	BOK
C6orf32	CBX6	C2orf118	CFD	BSRY	CACFD1
C7orf43	CLN8	C4orf32	CYP1A1	CASP7	CDKN1A
CARD4	CLTB	CAMK1	DBN1	CD1PT	CHRM3
CARN51	CRB3	CAMLG	DDN	CDK8	CLSTN3
CBL	CREBL2	CTCL	DNAJC18	CHFR	CYB561D1
CHRN1E	DNAL	CTXN1	DSC2	COL5A2	DDHD1
COBL	DUSP2	CUEDC1	EFN1A	DNASE1	DUSP16
DBC1	EEF1A2	DACH1	EML6	DOPEY2	EFNAN3
DCAF1L2	EID1	DEGS2	EPRB3	ELOM3	FAM102A
DEAF1	EPAS1	DHR53	ERGIC1	EPHB3	GLYCTK
DEND5A	EPN3	DOCK4	ERO1L	FM109A	GMIP
DGL5	FGF3	ENTPD6	FAM63A	FAM111A	HIST3H2A
ETV4	FKRP	ERBB4	FAM86HP	FGD3	HOXC10
EVPL	FOSL2	FAM173A	FNIP2	FXYD3	HSPG2
FAM162A	G3BP2	FERMT3	GADD45G	GRAMD1A	IKZF2
FAM84A	HEXIM1	GPR160	GSTT1	HIST1H2AC	IL17RE
FKB8P8	IFI35	GYS1	HES7	HOXC13	ITGAE
FZD4	IFT27	KLC3	ICA1	IRAK2	IZUMO4
GGT1	KDM6B	LOC646826	ID1	ITGAE5	JOSD2
GREE5B1	KIAA0513	MIR600HG	JMD7	KHYNY	JUN
HIST2HBE	KLF4	MTHFR	JUP	LOC284578	KDM2A
IGFBP3	KLHL28	MVP	KIF9	LIX	KIAA0922
LAMB2	LDHD	MYOIF	LAT2	MAPK15	LLGL2
LITAF	LRFN4	NCOA3	LOC283335	MEX3D	LOC729737
LPPR2	LYPLA2	NGEF	LRSAM1	MICAL1	MAP1LC3A
MROH6	LZTR1	NR1P1	MAN2A2	MRRA8	MPP24
MXD4	MANSC1	OSGIN1	MAN2B1	MYH14	NACC2
MZF1	MAPKAPK3	PAN3	MFS6D	NKAIN1	NFKB1Z
NADK	MARK1	PANX2	NCK2	NOXA1	PLEKHA2
NUDT22	MC1R	PCDHA10	PCBP4	NPDC1	POMGNT1
PLC3D	MFS6D10	PERP	PSMB80	NUDT15	PPRG2
PLXNA1	MP2L3	PKP2	PTRPK	PCHD19	RAB30
PODXL2	NAP1L3	PLEKHA6	RBPMS	PCDH9	RUNDC3B
POLD4	NAPRT1	PNPLA6	REEP2	PCNXL3	SDC4
PRAC	NDUFB4	PPP2R2A	RHOC	PDE4B	SEMA3C
					PTGS2
					PRPH
PRRT3 PDF PRMT6 S100P PDLIM2 SGSM3 RAB17 PTPRCAP
PVT1 PHF12 PROM2 SERTAD1 PSD3 SH3GL2B RENBP PTRH1
QDPR PITPNM1 RAB24 SGSM1 PTGFR SIX2 RHNPI1 RALYL
RAB11FIP4 PPP2R5A RNF11 SH2B1 PVRL4 SLC26A11 SATB1 RDH5
RASEF PTPN21 SAMD10 SH3BGR2 RAB3B SLC7A8 SH3RF1 RELB
RFX3 RILP SAT1 SITD2 RBMS2 SLT1 SLC30A10 RNF208
ROBO1 SLC29A4 SEMA3F SLC12A6 RIT1 SOX9 SLC40A1 SGK2
RSPH1 SLC41A2 SIGIR SLC25A29 RNPEPL1 SPHK2 SPRYD3 SI
S100A11 SLC6A6 SLC52A3 SLC39A13 RWDD2A STK40 SSSH3 SLC17A5
SCAND1 SOWAHB SLC5A6 SP110 Selm STX12 SYT7 SLC43A2
SHC4 SYTL1 STARD10 STOM SNX32 SYNGR2 TLL1 SLITRK5
SLC48A1 TEP1 STBD1 STXBP5 SPRY1 TBX2 TM7SF2 SSTR1
TMEM135 TET3 SYNJ2BP TJ2 JP TBHS1 TJP3 TNFRSF12A STON1
TNFRSF21 TINAGL1 TMEM184B TM6C TMEM79 TPM4 TNFSF9 TMC4
TRPV3 TMEM8A TPDS2L1 TMEM238 TNK2 TSTD1 TRPM4 TMEM125
TYRO3 WWP2 UNC13B TRADD TP53INP2 VASN TRPS1 TNFSF15
WNT9A XK8 WDR45 TTBB2 TULP4 ZNF385B TCC39A TRIB1
ZBTB7A ZDHHC18 ZG16B UNC45A ZFP36 ZNF524 UUK1 ZCCHC3
ZFP36L2 ZNF341 ZSCAN16 VGLL4 ZFYVE21 ZNF827 ZFP36L1 ZSWIM4

AATK AKR1A1 ABCD1 ACE ACTL10 ABHD14B ACBD4 ABCA1 APCDD1 AHR
ADAT3 ATP7A AMOT1 ANKRD16 ALX4 ABT1 ACPP ADP ATM1 ARHGAP32
AGT2A BH2D AMPD2 ASTN2 ANKRDS2 ADK5 ADAM15 ALOX15 BAMBI BASP1
BAHD1 C4orf48 ARAP2 BAIA2L2 ANX9 AMIG02 ADAMTS1 AMER3 BCRP2 C11orf95
BID CA11 ARNTL2 BPNT1 APPL2 ANG AES ANXA1 C19orf21 C8orf4
C17orf103 CALCOCO1 BID2 C1orf115 ARS1 ASS1 ARHGEF3 AQP3 C2orf15 C9orf152
C19orf24 CAMK2N1 BTBD9 CDH7 ATXN7L1 BOK ATP2B1 B3GNT3 CDC159 CACNA1D
C6orf132 CBX6 C2orf118 CF2 BSRY CACFD1 ATP8A1 CDC42EP3 CDH18 CDC64B
C7orf43 CLN8 C4orf32 CYP1A1 CASP7 CDKN1A C15orf57 CNT3 CLN1 CDC120 CDC68B
CARD14 CLT8 CAMK1 DBN1 CDIP CHRM3 CCDC120 CREG3L1 CLN4 CDH12
CARN5I CRB3 CAMLG DDN CDK8 CLSTN3 CPEB3 DSCAM-AS1 CYP4F35P CHST2
CBLC CREBL2 CTC1 DNAJC18 CHFR CYB561D1 CYSTM1 ELF3 DCUN1D COL4A1
CHRNE DNLN1 CTX1 DSC2 COL5A2 DDHD1 DSP1 ENPP4 DSP4 CTTNBP2
COBL DUSP2 CUEDC1 EFNA1 DNASE1 DUSP16 Dyrk1B FBLIM1 FAM110C CYP1A2
DBC1 EEFA2 DACH1 EML6 DOPEY2 EFNB2 EFNA3 FJI38109 FJU22184 DDIT4L
DCAF1L2 EID1 DEGS2 ERBB3 ELMO3 FAM102A EGR1 GAB2 FLJ23867 DGKA
DEAF1 EPSA1 DHR53 ERGIC1 EPHB3 GLYCTK FAM195B GATA2 FOXO4 ELF5
DENNDA4 EPN3 DOCK4 ERO1L FAM109A GMIP FAM214B GPR3 FOXP4 ENPPS
DING5 FGFR3 ENTPD6 FAM63A FAM111A HIST3H2A FLJ20021 HABP4 GDPD1 EVX1
ETV4 FKRP ERB4 FAM86HP FGDO3 HOXC10 GABARAP1 HGD GPR35 FOS
EVPL FOSL2 FAM173A FNIP2 FXD3 HSPG2 HIST1H3H HID1 GUSPB1 GALNT3
FAM162A G3BP2 FERM3 GADD45G GRAMOD1A IKZF2 HOXA13 HIST1H2AG HGF GSN
FAM84A HEXIM1 GPR160 GST11 HIST1H2AC IL17RE IL17RC HIST1H2BK HIST1H1C HMGCS2
FKBP8 IFI35 GYS1 HES7 HOXC13 ITGAX IMMP2L KCND2 HIST1H3E HOXC12
Supplementary Table S2 (down-regulated genes in response to AR-V depletion)

AAED1	ACADL	ACBD7	ADORA1	AAK1	AADAT	AFAP1L1	ABHD15	ALDH1L2	ARL1
GGT1	KDM6B	LOC646862	ID1	ITGAV	JOSD2	LAD1	KIAA1522	IL36RN	KIAA1199
GREB1L	KIAA0513	MIR600HG	JMJD7	KHNYN	JUN	LOC113230	KRT8	INPP5A	KIAA1324
HIST2H2BE	KLF4	MTHFR	JUP	LOC284578	KDM2A	LOC338758	LANC3	JUNB	LCOR
IGFBP3	KHLH28	MVP	KIF9	LNX	KIAA0922	MAFK	LOC100862671	KCNJ11	LNX1
LAMB2	LDHD	MYOF	LAT52	MAPK15	LLGL2	MAP15	LOC388692	KCNJ3	LOC286367
LITAF	LRNF4	NCOA3	LOC283335	MEX3D	LOC729737	MAPRE2	LRPL0	KIF13B	MAFF
LPPR2	LYPLA2	NGEF	LRSAM1	MICAL1	MAP1LC3A	MNT	MAPK13	KLHL1	MAPK4
MROH6	LZR1	NRP1	MAN2A2	MXRA8	MMP24	MTS51L	MST4	LHX9	MFS4
MXD4	MAN5C1	OSGIN1	MAN2B1	MYH14	NACC2	MYRIP	MUC1	LMA1	NCMAP
MZF1	MAPKAPK3	PAN3	MFS6D	NKA1N1	NFKB1Z	NCAM2	MYO7A	LIPH	NOTCH3
NADK	MARK1	PANX2	NCK2	NOXA1	PLEKHA2	NR1H2	Pced1B	LOC10012770	NOV
NUDT22	MC1R	PCDAH10	PCBP4	NPD1C	POMGNT1	PCDAH4	PEG10	LRRK56	OGRF
PLCD3	MFSD10	PERP	PSM1B	NUDT14	PRRG2	PEX11A	PEL1	MAL2	OSBPL5
PLXNA1	MPZL3	PKP2	PTRPK	PCDH19	RA830	PLEKHA7	PHLD03	MESDC2	PAN3-A51
PODOXL2	NAP1L3	PLEKHA6	RBPMS	PCDH9	RuncDC3B	PLEKHB1	PIK3AP1	MESP1	PART1
POLD4	NAPRT1	PNPLA6	REEP2	PCNJL3	SDC4	PLXNA2	PLXNB3	NKD1	PLAG2A4
PRAC	NDUFB4	PPP2R2A	RHOC	PDE4B	SDA3C	PTGS2	PRPH	PBIP1	PLAG24F
PRRT3	PDF	PRMT6	S100P	PLD1M2	SGS3M	RAB17	PTRPCAP	PLA2G16	PPFA2
PVT1	PHF12	PROM2	SERTAD1	PS3D	SH3GL2B	RENBP	PTRH1	PNCK	RALGAPA2
QO9DR	PITPNM1	RAB24	SGSM1	PTGFR	SIX2	RHNPL1	RALY	PNPLA7	REG4
RAB11FIP4	PPP2R5A	RNF11	SH2B1	PVR14	SLC26A11	SATB1	RDS5	PPP1R38	SCUBE2
RASEF	PTPN21	SAMD10	SH3BGRL2	RAB3B	SLC7A8	SH3RF1	RELB	PTHLH	SLC5A8
RXF3	RELP	SAT1	SIT2	RBMS2	SLT1	SLC30A10	RNF208	QSOX1	SPEF1
ROBO1	SLC29A4	SDA3F	SLC12A6	RIT1	SOX9	SLC40A1	SGK2	RAB25	STAP2
RSPH1	SLC41A2	SIGIRR	SLC25A29	RNPEPL1	Sphyk2	SPRYD3	SI	RBM11	SULT2B1
S100A11	SLC6A6	SLC52A3	SLC39A13	RWD2DA	STK40	SSH3	SLC17A5	RNF223	SYT4
SCAND1	SOWAH8	SLC5A6	SP110	SELM	STX12	SY77	SLC43A2	SLC50A1	SYT2
SHC4	SYT1	STARD10	STOM	SNX32	SYNGR2	TLL1	SLTRK5	SMPDL3B	TLE1
SLC48A1	TEPI	STBD1	STXBPS	SPRY1	TBX2	TM7SF2	SSRT1	TMEM2	TMEM45B
TMEM135	TET3	SYNJ2BP	TIP2	THBS1	TJIP	TNFRSF12A	STON1	TNFRSF11B	TNFRSF19
TNFRSF21	TINAGL1	TMEM184B	TMC6	TMEM79	TPM4	TNFRSF9	TMC4	TPS3INP1	TSPAN1
TRPV3	TMEM8A	TPSD2L1	TEMD238	TNK2	TSTD1	TRPM4	TMEM125	TSPAN12	ZDHHC16
TYRO3	WW2P	UNC13B	TRADD	TPS3INP2	VASN	TRPS1	TNFRSF15	TSPAN15	ZNF385A
WNT9A	XKR8	WDR45	TTBK2	TULP4	ZNF385B	TTCA9	TRIB1	TUF1	
ZBTB7A	ZDHHC18	ZG16B	UNC45A	ZFP36	ZNF524	ULK1	ZCCHC3	ZCCHC3	
ZFP36L2	ZNF341	ZSCAN16	VGLL4	ZFYVE21	ZNF827	ZFP36L1	ZSWIM4	ZCCHC24	
Biological process	No. of genes	% of genes	Fold enrichment	P-value (Hypergeometric test)	Bonferroni method (corrected p-value)				
------------------------------------	--------------	------------	----------------	-----------------------------	--------------------------------------				
cell division	63	9.81	4.96	1.77393E-26	2.10849E-22				
DNA-dependent DNA replication	7	1.09	8.46	1.12367E-05	0.133559243				
DNA-dependent DNA replication initiation

Event	Value1	Value2	Value3	Value4	Value5
DNA-dependent DNA replication initiation	17	2.65	13.12	1.0575E-15	1.25696E-11
DNA replication	34	5.30	6.95	1.43037E-19	1.70013E-15
mitotic cell cycle	20	3.12	4.56	1.35163E-08	0.000160655
G1/S transition of mitotic cell cycle	21	3.27	5.61	1.0804E-10	1.28416E-06
regulation of transcription involved in G1/S phase of mitotic cell cycle	11	1.71	13.29	1.10301E-10	1.31104E-06
G2/M transition of mitotic cell cycle	19	2.96	4.06	2.05028E-07	0.002436959

Cell Division

KOHL42; NCAPG2; CDC25C; KIF11; RB1; CCNE2; MIS18A; CCSAP; CEP63; KNSTRN; NTC1; MAD2L1; CETN3; ITGB3BP; CDC48; REEP4; CDC7; MASTL; LRRCC1; MIS18BP1; REEP3; CENPJ; ERCC6L; NU62; CDC6; KIF20B; HLLS; GNAI2; SMAC; KIF14; EPB41; DYNLT1; CDK1; NCAPG; BORA; SKE3; NUP43; CCNB2; SMC2; SMCA1A; CCNA2; NDC80; HAUS3; SPAG5; KIF18B; BUB1B; CCNB1; SPDL1; UBE2C; FBXO5; HAUS6; TCC28; CDC20; LG1; ZWINT; BOD1; SPC25; CENP; ZWILCH; NEDD1; CCNE1; PDS5B; CENPF;

DNA-dependent DNA replication

POLE2; POLQ; RFC3; WDHD1; RFC5; RFC4; POLA1;

DNA-dependent DNA replication initiation

CCNE2; POLE2; MCM8; MCM10; CDC7; PRIM1; MCM3; CDC6; POLA2; GINS4; POLA1; MCM6; ORC3; ORC1; MCM4; PRIM2; CCNE1;

DNA replication

RRM1; CDC25C; CLSPN; BARD1; RRM2; POLE2; MCM8; TICRR; DNA2; BRIP1; MCM10; BRCA1; CDC7; DTD1; MCM3; BLM; EXO1; RAD1; CDC6; RFC3; RFC5; RMI1; CDK1; RFC4; RHNO1; DONSON; POLA2; POLA1; MCM6; ORC3; FEN1; RMI2; ORC1; MCM4;

Mitotic cell cycle
RRM1; KIF11; CIT; MYBL1; PBK; DNMT3A; KIF15; MASTL; CDC6; WDHD1; SKA3; NDC80; XRCC2; CLIP1; KIF18B; BUB1B; PBRM1; CENPE; TUBE1; CENPF;

G1/S transition of mitotic cell cycle

RB1; CCNE2; POLE2; MCM8; MCM10; CDC7; PRIM1; MCM3; CDC6; RPS6KB1; CUL4B; POLA2; POLA1; MCM6; ORC3; ORC1; MCM4; EIF4EBP1; PRIM2; CCNE1; CDKN3;

Regulation of transcription involved in G1/S phase of mitotic cell cycle

PCNA; RRM2; CDC6; KLF11; TYMS; POLA1; FBXO5; ORC1; E2F1; DHFR; CCNE1;

G2/M transition of mitotic cell cycle

CDC25C; CIT; FBXW11; CEP63; MASTL; CENPJ; CEP152; CDK1; BORA; CCNB2; CCNA2; HAUS3; MELK; CEP78; CCNB1; HAUS6; NES; NEDD1; PLK4;

Supplementary Table S4

Biological process	No. of genes	% of genes	Fold enrichment	P-value (Hypergeometric test)	Bonferroni method (corrected p-value)
DNA synthesis involved in DNA repair	15	2.34	11.91	3.13E-13	3.73E-09
DNA repair	32	4.98	4.23	4.63E-12	5.5E-08
DNA ligation involved in DNA repair	3	0.47	8.35	0.004611	1
DNA damage checkpoint	9	1.40	8.34	6.97E-07	0.008287
DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest	9	1.40	4.04	0.000354	1
double-strand break repair via homologous recombination	17	2.65	5.91	2.85E-09	3.38E-05

DNA synthesis involved in DNA repair

BARD1; DNA2; BRIP1; BRCA1; BLM; EXO1; BRCA2; RFC3; RAD51B; RAD51AP1; RMI1; RAD51; POLA1; XRCC2; RMI2;

DNA repair
DNA ligation involved in DNA repair

HMGB2; PARP2; LIG1;

DNA damage checkpoint

CLSPN; CEP63; CLOCK; BRIP1; RAD1; RHNO1; DONSON; USP28; E2F1;

DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest

PCNA; CNOT6; CDC25C; CENPJ; CDK1; SFN; CCNB1; E2F7; E2F1;

Double-strand break repair via homologous recombination

AUNIP; RAD54B; MCM8; RAD54L; MMS22L; POLQ; BRCA1; BLM; BRCA2; RAD51B; RAD51AP1; RAD51; GEN1; NUCKS1; XRCC2; FEN1; SMC6;

Supplementary Table S5 (Primers used for qRT-PCR and ChIP)

Oligo Name	Sequence (5'→3')	
HPRT1 mRNA F	TTGCTTTCCCTGGTCAGGCA	
HPRT1 mRNA R	AGCTTTGACCTTGACCATCT	
UBE2C mRNA F	TGCCCTGTATGATGTCAGGA	
UBE2C mRNA R	GGGACTATCAATGTTGGGTCT	
PSA mRNA F	GCAGCATTGAACCAGAGGAG	
PSA mRNA R	AGAACTGAGGAGGCGTTGAG	
CCNA2 mRNA F	GAAGACGAGACGGTGTTGCA	
CCNA2 mRNA R	AGAGAAGACGGTGACATGCT	
KLK2 F mRNA	AGCATCGAACCAGAGGTGTTCT	
KLK2 R mRNA	TGAGGACTCAACACCACTGAAGA	
ATAD2 mRNA F	TGCGACCACTGCATCAT	
ATAD2 mRNA R	AGCTTCAGGAATCACCCTGGG	
FKBP5 mRNA F	CCCCTATTGTTATCCGGAGTAC	
FKBP5 mRNA R	TTGGGAAGACAGACACACCTG	
TMPRSS2 mRNA F	CTGCTGGATTTCCCGGTG	
Gene	mRNA Type	Primer Sequence
--------------	-----------	-----------------
TMPRSS2	mRNA R	TTCTGAGGTCTTCCCTTCTCCT
FL-AR	mRNA F	AACAGAAGTACCTGTGCCGGC
FL-AR	mRNA R	TTCAGATTACCAAGTTCTTCAG
AR exon 3	mRNA F	AACAGAAGTACCTGTGCCGGC
AR-V1	mRNA R	TGAAGCTCAAACACCTCAG
AR-V3	mRNA F	AGACGAAGCTTCTGGGTG
AR-V3	mRNA R	CATGCAGTATGGCTGGG
AR-V5	mRNA R	CAAAGAAATTTGGAAGAAG
AR-V7	mRNA R	TCAGGGTCTGGTCATTTTGA
AR-V9	mRNA R	GCAAAATGTCTCAAAAAGCAG
DMC1	mRNA F	AGGTGCAAATGTTATACCC
DMC1	mRNA R	TGAAGACACTCGGCTC
XRC2	mRNA F	TCACCTGGTCATGGTGATTT
XRC2	mRNA R	TTCCAGGCACCTTCTGATT
RMI2	mRNA F	GCCAGGGTAGTAGTAGGGCAAG
RMI2	mRNA R	CCTGAACCACCTCCCCACTACCAT
BRCA1	mRNA F	CGTAAAGACTGCTGACGGC
BRCA1	mRNA R	AGGGTAGCTTGAAGGCTG
RAD51AP1	mRNA F	CTTCTGGAGAGCCTAGTG
RAD51AP1	mRNA R	AGAGAAGTCTTCGCTTATAT
RAD54L	mRNA F	CTTTCTCCATCCTGAGT
RAD54L	mRNA R	GCTTCAAGGCTGTAACAGG
CHEK1	mRNA F	GTGCAGTAGCTCCAGG
CHEK1	mRNA R	GTTCTGGCTGAGAAGACTG
EXO1	mRNA F	TCGGATCTCAGGTGG
EXO1	mRNA R	AGCTGTCTGCACATTCTAGCC
NBN1	mRNA F	TCTGTGAGGCCAGAGAAGAAG
NBN1	mRNA R	CACCTCAGAAAAGAAGGCAAG
RAD54B	mRNA F	GGTGTTGCAAGCTCCTAGC
RAD54B	mRNA R	AGCATATCCATGACGCTTACATAC
RAD51C	mRNA F	GTGAACCCCTCCAGCTG
RAD51C	mRNA R	CCTGCTCAAGAAGTCTCAGTGC
ABCF2	mRNA F	GAGGTTCCTAGGAGCAGAAG
ABCF2	mRNA R	CTGTAGGGTCTTCTCCTG
CLSPN	mRNA F	AAGGGAGCAATTGAAGGG
CLSPN	mRNA R	TCTGCAGGGTCTGAGCT
PCNA	mRNA F	GCCATATTGGAGATGCTG
PCNA	mRNA R	TGAGTGTCACGTTGAAG
BRCA2	mRNA F	GCTTTAAAAAGCACTCCAGAG
BRCA2	mRNA R	GATTCTGTATCCGCTTGAAG
RAD21	mRNA F	TCCCCCAGAGGACCTCCAA
Oligo Name	Sequence (5'→3')	
------------------	--------------------------------------	
RAD21 mRNA R	AGCAAGAGCTCGCTGGAGACCA	

Supplementary Table S6 (siRNA sequences used in study)

Oligo Name	Sequence (5'→3')
siARex1	CAAGGGAGGUUACACCCAAA
siARex4	CCAUCUUUCUGAAUGUCUU
siARex7	GGAACUCGAAUCGUAUCAUUU
siAR-V	GUAGUUGUGAGUAUCUGA
siScr	UUCUCCGAACGUGUCAGU
CWR22Rv1

*sgRNA_1: 116 bp+221 bp
*sgRNA_2: 128 bp+209 bp

TIDE analysis

% Sequences	deletion	insertion
sgRNA_1	21.1%	8.9%
sgRNA_2	21.2%	8.8%

Total eff. = 32.4%

Total eff. = 20.1%

α-tubulin

Supplementary Figure S1
Supplementary Figure S2

Supplementary Figure S2

IB	AR-N20	AR-BD	AR ab74272	AR-441
Epitope (aa):	NTD 33-485	NA 299-315		

Notes:

- **AR-FL**
- **AR-Vs**
- **α-tubulin**

Exposure:
- **Short exposure**
- **Long exposure**
c.

CRISPR off-target analysis: CWR22Rv1-AR-EK

- **COL1A2**
 - CWR22Rv1
 - AR-EK
 - PAM

- **KMT2B**
 - CWR22Rv1
 - AR-EK
 - PAM

- **SLC7A8**
 - CWR22Rv1
 - AR-EK
 - PAM

Cell line validation

Markers	CWR22Rv1	CWR22Rv1-AR-EK
Amelogenin	X,Y	X,Y
vWA	15,21	15,21
TPOX	8	8
THO1	6,9.3	6,9.3
D21S11	30	30
D5S818	11,12	11,12
D13S317	9,12	9,12
D7S820	10,11	10,11
D16S539	12	12
CSF1PO	10,11	10,11
Supplementary Figure S4
Supplementary Figure S5
Supplementary Figure S6
Supplementary Figure S7

a.

CWR22Rv1-AR-EK

![Bar chart showing normalized mRNA expression for PSA, TMPRSS2, UBE2C, and AR-V7 with siScr and siARex1 treatments.](image)

b.

![Results of Western blot analysis showing the mean of normalized counts for AR-Vs and β-actin with p < 0.01.](image)
Supplementary Figure S9
Supplementary Figure S10
Supplementary Figure S11
a. b.TCGA

Supplementary Figure S13
Supplementary Figure S14
CWR22Rv1-AR-EK

Irradiation (2 Gy):
- +

IB: Total ATM
IB: Phospho-ATM
IB: AR (N)

↓AR-Vs

β-actin

Supplementary Figure S15
Supplementary Figure S16
CWR22Rv1-AR-EK

Supplementary Figure S17
CWR22Rv1-AR-EK

Supplementary Figure S18
CWR22Rv1-AR-EK

a.

![Bar charts showing normalised mRNA expression for PSA, KLK2, UBE2C, and CCNA2 in CWR22Rv1-AR-EK cells treated with DMSO, 0.5 µM Ruc, and 1 µM Ruc.](image)

b.

![Bar charts showing normalised mRNA expression for PSA, KLK2, UBE2C, and CCNA2 in CWR22Rv1 cells treated with DMSO, 0.5 µM Ruc, and 1 µM Ruc.](image)

Supplementary Figure S19
CWR22Rv1-AR-EK

AR ChIP: PSA Prom

AR ChIP: KLK2 Prom

Fold % Input

CWR22Rv1

AR ChIP: PSA Prom

AR ChIP: PSA Enh

AR ChIP: KLK2 Prom

AR ChIP: TMPRSS2 Enh

Fold % Input

Goodness of fit:

DMSO
4h - Talaz (1μM)
8h - Talaz (1μM)
IgG

Supplementary Figure S20
Supplementary Figure S22

AR-V-driven PARPi sensitive

- RAD21 mRNA
- CHEK1 mRNA

AR-V-driven PARPi insensitive

- XRCC2 mRNA
- DMC1 mRNA
- EXO1 mRNA

AR-V independent

- RAD51AP1 mRNA
- RAD54L mRNA
- RAD51C mRNA
- RMI1 mRNA
- ABCF2 mRNA
- RAD54B mRNA