Mefloquine for preventing malaria during travel to endemic areas (Review)

Tickell-Painter M, Maayan N, Saunders R, Pace C, Sinclair D

Tickell-Painter M, Maayan N, Saunders R, Pace C, Sinclair D. Mefloquine for preventing malaria during travel to endemic areas. Cochrane Database of Systematic Reviews 2017, Issue 10. Art. No.: CD006491. DOI: 10.1002/14651858.CD006491.pub4.

www.cochranelibrary.com
Table of Contents

- **Header** ... 1
- **Abstract** 1
- **Plain Language Summary** 3
- **Summary of Findings for the Main Comparison** 4
- **Background** 7
- **Objectives** 8
- **Methods** 8
- **Results** .. 11
 - Figure 1. .. 13
 - Figure 2. .. 14
 - Figure 3. .. 17
 - Figure 4. .. 21
 - Figure 5. .. 25
 - Figure 6. .. 29
- **Additional Summary of Findings** 32
- **Discussion** 36
- **Authors’ Conclusions** 38
- **Acknowledgements** 39
- **References** 39
- **Characteristics of Studies** 51
- **Data and Analyses** 156
 - Analysis 1.1. Comparison 1 Mefloquine versus placebo/non users, Outcome 1 Clinical cases of malaria. 167
 - Analysis 1.2. Comparison 1 Mefloquine versus placebo/non users, Outcome 2 Malaria; episodes of parasitaemia in semi-immune populations. 168
 - Analysis 1.3. Comparison 1 Mefloquine versus placebo/non users, Outcome 3 Serious adverse events or effects (all studies). 169
 - Analysis 1.4. Comparison 1 Mefloquine versus placebo/non users, Outcome 4 Discontinuations due to adverse effects (all studies). 170
 - Analysis 1.5. Comparison 1 Mefloquine versus placebo/non users, Outcome 5 Nausea (all studies). 171
 - Analysis 1.6. Comparison 1 Mefloquine versus placebo/non users, Outcome 6 Vomiting (all studies). 172
 - Analysis 1.7. Comparison 1 Mefloquine versus placebo/non users, Outcome 7 Abdominal pain (all studies). 173
 - Analysis 1.8. Comparison 1 Mefloquine versus placebo/non users, Outcome 8 Diarrhoea (all studies). 174
 - Analysis 1.9. Comparison 1 Mefloquine versus placebo/non users, Outcome 9 Headache (all studies). 175
 - Analysis 1.10. Comparison 1 Mefloquine versus placebo/non users, Outcome 10 Dizziness (all studies). 176
 - Analysis 1.11. Comparison 1 Mefloquine versus placebo/non users, Outcome 11 Abnormal dreams (all studies). 177
 - Analysis 1.12. Comparison 1 Mefloquine versus placebo/non users, Outcome 12 Insomnia (all studies). 178
 - Analysis 1.13. Comparison 1 Mefloquine versus placebo/non users, Outcome 13 Anxiety (all studies). 179
 - Analysis 1.14. Comparison 1 Mefloquine versus placebo/non users, Outcome 14 Depressed mood (all studies). 180
 - Analysis 1.15. Comparison 1 Mefloquine versus placebo/non users, Outcome 15 Abnormal thoughts and perceptions. 181
 - Analysis 1.16. Comparison 1 Mefloquine versus placebo/non users, Outcome 16 Pruritis (all studies). 182
 - Analysis 1.17. Comparison 1 Mefloquine versus placebo/non users, Outcome 17 Visual impairment (all studies). 183
 - Analysis 1.18. Comparison 1 Mefloquine versus placebo/non users, Outcome 18 Vertigo (all studies). 184
 - Analysis 1.19. Comparison 1 Mefloquine versus placebo/non users, Outcome 19 Other adverse events (RCTs). 185
 - Analysis 1.20. Comparison 1 Mefloquine versus placebo/non users, Outcome 20 Other adverse effects (cohort studies). 188
 - Analysis 2.1. Comparison 2 Mefloquine versus doxycycline, Outcome 1 Clinical cases of malaria (RCTs). 189
 - Analysis 2.2. Comparison 2 Mefloquine versus doxycycline, Outcome 2 Serious adverse events or effects (all studies). 190
 - Analysis 2.3. Comparison 2 Mefloquine versus doxycycline, Outcome 3 Discontinuations due to adverse effects (all studies). 191
 - Analysis 2.4. Comparison 2 Mefloquine versus doxycycline, Outcome 4 Nausea (all studies). 192
 - Analysis 2.5. Comparison 2 Mefloquine versus doxycycline, Outcome 5 Vomiting (all studies). 193
 - Analysis 2.6. Comparison 2 Mefloquine versus doxycycline, Outcome 6 Abdominal pain (all studies). 194
Analysis 2.7. Comparison 2 Mefloquine versus doxycycline, Outcome 7 Diarrhoea (all studies) .. 195
Analysis 2.8. Comparison 2 Mefloquine versus doxycycline, Outcome 8 Dyspepsia (all studies) .. 196
Analysis 2.9. Comparison 2 Mefloquine versus doxycycline, Outcome 9 Headache (all studies) .. 197
Analysis 2.10. Comparison 2 Mefloquine versus doxycycline, Outcome 10 Dizziness (all studies) .. 198
Analysis 2.11. Comparison 2 Mefloquine versus doxycycline, Outcome 11 Abnormal dreams (all studies) 199
Analysis 2.12. Comparison 2 Mefloquine versus doxycycline, Outcome 12 Insomnia (all studies) ... 200
Analysis 2.13. Comparison 2 Mefloquine versus doxycycline, Outcome 13 Anxiety (all studies) ... 201
Analysis 2.14. Comparison 2 Mefloquine versus doxycycline, Outcome 14 Depressed mood (all studies) 202
Analysis 2.15. Comparison 2 Mefloquine versus doxycycline, Outcome 15 Abnormal thoughts and perceptions 204
Analysis 2.16. Comparison 2 Mefloquine versus doxycycline, Outcome 16 Pruritis (all studies) .. 205
Analysis 2.17. Comparison 2 Mefloquine versus doxycycline, Outcome 17 Photosensitivity (all studies) 206
Analysis 2.18. Comparison 2 Mefloquine versus doxycycline, Outcome 18 Yeast infection (all studies) 207
Analysis 2.19. Comparison 2 Mefloquine versus doxycycline, Outcome 19 Visual impairment (all studies) 208
Analysis 2.20. Comparison 2 Mefloquine versus doxycycline, Outcome 20 Other adverse effects (cohort studies) 209
Analysis 2.21. Comparison 2 Mefloquine versus doxycycline, Outcome 21 Other adverse events (RCTs) 210
Analysis 2.22. Comparison 2 Mefloquine versus doxycycline, Outcome 22 Other adverse events (cohort studies) 211
Analysis 2.23. Comparison 2 Mefloquine versus doxycycline, Outcome 23 Adherence (cohort studies) 212
Analysis 3.1. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 1 Clinical cases of malaria (RCTs) 217
Analysis 3.2. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 2 Serious adverse events or effects (all studies) .. 218
Analysis 3.3. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 3 Discontinuations due to adverse effects (all studies) .. 219
Analysis 3.4. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 4 Nausea (all studies) 220
Analysis 3.5. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 5 Vomiting (all studies) 221
Analysis 3.6. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 6 Abdominal pain (all studies) 222
Analysis 3.7. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 7 Diarrhoea (all studies) 223
Analysis 3.8. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 8 Mouth ulcers (all studies) 224
Analysis 3.9. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 9 Headache (all studies) 225
Analysis 3.10. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 10 Dizziness (all studies) 226
Analysis 3.11. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 11 Abnormal dreams (all studies) 227
Analysis 3.12. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 12 Insomnia (all studies) 228
Analysis 3.13. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 13 Anxiety (all studies) 229
Analysis 3.14. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 14 Depressed mood (all studies) 230
Analysis 3.15. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 15 Abnormal thoughts and perceptions (all studies) .. 231
Analysis 3.16. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 16 Pruritis (all studies) 232
Analysis 3.17. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 17 Visual impairment (all studies) 233
Analysis 3.18. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 18 Other adverse effects (cohort studies) ... 234
Analysis 3.19. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 19 Other adverse events (cohort studies) 235
Analysis 3.20. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 20 Adherence (RCTs) 241
Analysis 3.21. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 21 Adherence (cohort studies) 242
Analysis 4.1. Comparison 4 Mefloquine versus chloroquine, Outcome 1 Clinical cases of malaria (RCTs) 243
Analysis 4.2. Comparison 4 Mefloquine versus chloroquine, Outcome 2 Serious adverse events or effects (all studies) 244
Analysis 4.3. Comparison 4 Mefloquine versus chloroquine, Outcome 3 Discontinuations due to adverse effects (all studies) .. 245
Analysis 4.4. Comparison 4 Mefloquine versus chloroquine, Outcome 4 Nausea (all studies) ... 246
Analysis 4.5. Comparison 4 Mefloquine versus chloroquine, Outcome 5 Vomiting (all studies) .. 247
Analysis 4.6. Comparison 4 Mefloquine versus chloroquine, Outcome 6 Abdominal pain (all studies) 248
Analysis 4.7. Comparison 4 Mefloquine versus chloroquine, Outcome 7 Diarrhoea (all studies) ... 249
Analysis 4.8. Comparison 4 Mefloquine versus chloroquine, Outcome 8 Headache (all studies) ... 250
Analysis 4.9. Comparison 4 Mefloquine versus chloroquine, Outcome 9 Dizziness (all studies) ... 251
Analysis 4.10. Comparison 4 Mefloquine versus chloroquine, Outcome 10 Abnormal dreams (all studies). 252
Analysis 4.11. Comparison 4 Mefloquine versus chloroquine, Outcome 11 Insomnia (all studies). 253
Analysis 4.12. Comparison 4 Mefloquine versus chloroquine, Outcome 12 Anxiety (all studies). 254
Analysis 4.13. Comparison 4 Mefloquine versus chloroquine, Outcome 13 Depressed mood (all studies). 255
Analysis 4.14. Comparison 4 Mefloquine versus chloroquine, Outcome 14 Abnormal thoughts and perceptions. 256
Analysis 4.15. Comparison 4 Mefloquine versus chloroquine, Outcome 15 Pruritis (all studies). 257
Analysis 4.16. Comparison 4 Mefloquine versus chloroquine, Outcome 16 Visual impairment (all studies). 258
Analysis 4.17. Comparison 4 Mefloquine versus chloroquine, Outcome 17 Vertigo (all studies). 259
Analysis 4.18. Comparison 4 Mefloquine versus chloroquine, Outcome 18 Cohort studies in travellers; prespecified adverse effects. 260
Analysis 4.19. Comparison 4 Mefloquine versus chloroquine, Outcome 19 Other adverse effects (cohort studies). 264
Analysis 4.20. Comparison 4 Mefloquine versus chloroquine, Outcome 20 Other adverse events (RCTs). 267
Analysis 4.21. Comparison 4 Mefloquine versus chloroquine, Outcome 21 Pregnancy related outcomes (RCTs). 269
Analysis 4.22. Comparison 4 Mefloquine versus chloroquine, Outcome 22 Adherence (cohort studies). 270
Analysis 5.1. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 1 Nausea; effects. 271
Analysis 5.2. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 2 Abdominal pain; effects. 272
Analysis 5.3. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 3 Diarrhoea; effects. 274
Analysis 5.4. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 4 Headache; effects. 275
Analysis 5.5. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 5 Dizziness; effects. 277
Analysis 5.6. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 6 Abnormal dreams; effects. 278
Analysis 5.7. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 7 Insomnia; effects. 280
Analysis 5.8. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 8 Anxiety; effects. 281
Analysis 5.9. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 9 Depressed mood; effects. 282
Analysis 5.10. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 10 Abnormal thoughts or perceptions; effects. 284
Analysis 5.11. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 11 Pruritis; effects. 285
Analysis 5.12. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 12 Visual impairment; effects. 286
Analysis 5.13. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 13 Adherence; during travel. 287
Analysis 5.14. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 14 Adherence; after return. 288
ADDITIONAL TABLES 289
APPENDICES 323
WHAT’S NEW 331
HISTORY 332
CONTRIBUTIONS OF AUTHORS 333
DECLARATIONS OF INTEREST 333
SOURCES OF SUPPORT 333
DIFFERENCES BETWEEN PROTOCOL AND REVIEW 334
INDEX TERMS 334
Mefloquine for preventing malaria during travel to endemic areas

Maya Tickell-Painter¹, Nicola Maayan², Rachel Saunders¹, Cheryl Pace¹, David Sinclair¹

¹Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK. ²Cochrane Response, Cochrane, London, UK

Contact address: Maya Tickell-Painter, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK. m.tickell-painter@nhs.net.

Editorial group: Cochrane Infectious Diseases Group.

Publication status and date: Unchanged, published in Issue 10, 2017.

Citation: Tickell-Painter M, Maayan N, Saunders R, Pace C, Sinclair D. Mefloquine for preventing malaria during travel to endemic areas. Cochrane Database of Systematic Reviews 2017, Issue 10. Art. No.: CD006491. DOI: 10.1002/14651858.CD006491.pub4.

ABSTRACT

Background

Mefloquine is one of four antimalarial agents commonly recommended for preventing malaria in travellers to malaria-endemic areas. Despite its high efficacy, there is controversy about its psychological side effects.

Objectives

To summarize the efficacy and safety of mefloquine used as prophylaxis for malaria in travellers.

Search methods

We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published on the Cochrane Library; MEDLINE; Embase (OVID); TOXLINE (https://toxnet.nlm.nih.gov/newtoxnet/toxline.htm); and LILACS. We also searched the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP; http://www.who.int/ictrp/en/) and ClinicalTrials.gov (https://clinicaltrials.gov/ct2/home) for trials in progress, using ‘mefloquine’, ‘Lariam’, and ‘malaria’ as search terms. The search date was 22 June 2017.

Selection criteria

We included randomized controlled trials (for efficacy and safety) and non-randomized cohort studies (for safety). We compared prophylactic mefloquine with placebo, no treatment, or an alternative recommended antimalarial agent. Our study populations included all adults and children, including pregnant women.

Data collection and analysis

Two review authors independently assessed the eligibility and risk of bias of trials, extracted and analysed data. We compared dichotomous outcomes using risk ratios (RR) with 95% confidence intervals (CI). Prespecified adverse outcomes are included in 'Summary of findings' tables, with the best available estimate of the absolute frequency of each outcome in short-term international travellers. We assessed the certainty of the evidence using the GRADE approach.
Main results

We included 20 RCTs (11,470 participants); 35 cohort studies (198,493 participants); and four large retrospective analyses of health records (800,652 participants). Nine RCTs explicitly excluded participants with a psychiatric history, and 25 cohort studies stated that the choice of antimalarial agent was based on medical history and personal preference. Most RCTs and cohort studies collected data on self-reported or clinician-assessed symptoms, rather than formal medical diagnoses.

Mefloquine efficacy

Of 12 trials comparing mefloquine and placebo, none were performed in short-term international travellers, and most populations had a degree of immunity to malaria. The percentage of people developing a malaria episode in the control arm varied from 1% to 82% (median 22%) and 0% to 13% in the mefloquine group (median 1%).

In four RCTs that directly compared mefloquine, atovaquone-proguanil and doxycycline in non-immune, short-term international travellers, only one clinical case of malaria occurred (4 trials, 1822 participants).

Mefloquine safety versus atovaquone-proguanil

Participants receiving mefloquine were more likely to discontinue their medication due to adverse effects than atovaquone-proguanil users (RR 2.86, 95% CI 1.53 to 5.31; 3 RCTs, 1438 participants; high-certainty evidence). There were few serious adverse effects reported with mefloquine (15/2651 travellers) and none with atovaquone-proguanil (940 travellers).

One RCT and six cohort studies reported on our prespecified adverse effects. In the RCT with short-term travellers, mefloquine users were more likely to report abnormal dreams (RR 2.04, 95% CI 1.37 to 3.04, moderate-certainty evidence), insomnia (RR 4.42, 95% CI 2.56 to 7.64, moderate-certainty evidence), anxiety (RR 6.12, 95% CI 1.82 to 20.66, moderate-certainty evidence), and depressed mood during travel (RR 5.78, 95% CI 1.71 to 19.61, moderate-certainty evidence). The cohort studies in longer-term travellers were consistent with this finding but most had larger effect sizes. Mefloquine users were also more likely to report nausea (high-certainty evidence) and dizziness (high-certainty evidence).

Based on the available evidence, our best estimates of absolute effect sizes for mefloquine versus atovaquone-proguanil are 6% versus 2% for discontinuation of the drug, 13% versus 3% for insomnia, 14% versus 7% for abnormal dreams, 6% versus 1% for anxiety, and 6% versus 1% for depressed mood.

Mefloquine safety versus doxycycline

No difference was found in numbers of serious adverse effects with mefloquine and doxycycline (low-certainty evidence) or numbers of discontinuations due to adverse effects (RR 1.08, 95% CI 0.41 to 2.87; 4 RCTs, 763 participants; low-certainty evidence).

Six cohort studies in longer-term occupational travellers reported our prespecified adverse effects; one RCT in military personnel and one cohort study in short-term travellers reported adverse events. Mefloquine users were more likely to report abnormal dreams (RR 10.49, 95% CI 3.79 to 29.10; 4 cohort studies, 2588 participants, very low-certainty evidence), insomnia (RR 4.14, 95% CI 1.19 to 14.44; 4 cohort studies, 3212 participants, very low-certainty evidence), anxiety (RR 18.04, 95% CI 9.32 to 34.93; 3 cohort studies, 2559 participants, very low-certainty evidence), and depressed mood (RR 11.43, 95% CI 5.21 to 25.07; 2 cohort studies, 2445 participants, very low-certainty evidence). The findings of the single cohort study reporting adverse events in short-term international travellers were consistent with this finding but the single RCT in military personnel did not demonstrate a difference between groups in frequencies of abnormal dreams or insomnia.

Mefloquine users were less likely to report dyspepsia (RR 0.26, 95% CI 0.09 to 0.74; 5 cohort studies, 5104 participants, low-certainty evidence), photosensitivity (RR 0.08, 95% CI 0.05 to 0.11; 2 cohort studies, 1875 participants, very low-certainty evidence), vomiting (RR 0.18, 95% CI 0.12 to 0.27; 4 cohort studies, 5071 participants, very low-certainty evidence), and vaginal thrush (RR 0.10, 95% CI 0.06 to 0.16; 1 cohort study, 1761 participants, very low-certainty evidence).

Based on the available evidence, our best estimates of absolute effect for mefloquine versus doxycycline were: 2% versus 2% for discontinuation, 12% versus 3% for insomnia, 31% versus 3% for abnormal dreams, 18% versus 1% for anxiety, 11% versus 1% for depressed mood, 4% versus 14% for dyspepsia, 2% versus 19% for photosensitivity, 1% versus 5% for vomiting, and 2% versus 16% for vaginal thrush.

Additional analyses, including comparisons of mefloquine with chloroquine, added no new information. Subgroup analysis by study design, duration of travel, and military versus non-military participants, provided no conclusive findings.
Authors’ conclusions
The absolute risk of malaria during short-term travel appears low with all three established antimalarial agents (mefloquine, doxycycline, and atovaquone-proguanil).
The choice of antimalarial agent depends on how individual travellers assess the importance of specific adverse effects, pill burden, and cost. Some travellers will prefer mefloquine for its once-weekly regimen, but this should be balanced against the increased frequency of abnormal dreams, anxiety, insomnia, and depressed mood.

Plain Language Summary
Can mefloquine prevent malaria during travel to areas where the disease is widespread?
We summarized trials that evaluated the effectiveness and safety of mefloquine when used to prevent malaria in people travelling to areas where the disease is widespread. We searched for relevant studies up to 22 June 2017 and included 20 randomized trials that involved 11,470 participants, 35 cohort studies (198,493 participants) and four large retrospective analyses of health records (800,652 participants).

What are the concerns about mefloquine and what are the alternatives?
Mefloquine is often prescribed to prevent malaria during travel to areas where the disease is widespread. However, there is controversy about the safety of mefloquine, especially when prescribed for military personnel in stressful situations, and there have been reports of depression and suicide.
The only commonly-used alternative drugs are doxycycline (which can cause skin problems and indigestion) and atovaquone-proguanil (which is often more expensive).

What the research says
Mefloquine appears to be a highly effective drug to reduce the risk of malaria (low-certainty evidence), however, evidence did not come from short-term international travellers.
Mefloquine has not been shown to have more frequent serious side effects than either atovaquone-proguanil (low-certainty evidence) or doxycycline (very low-certainty evidence).
People who take mefloquine are more likely to stop taking the drug due to side effects than people who take atovaquone-proguanil (high-certainty evidence), but may be equally as likely to stop as people who take doxycycline (low-certainty evidence).
People taking mefloquine are more likely to have abnormal dreams, insomnia, anxiety and depressed mood during travel than people who take atovaquone-proguanil (moderate-certainty evidence) or doxycycline (very low-certainty evidence). Doxycycline users are more likely to have dyspepsia, photosensitivity, vomiting, and vaginal thrush (very low-certainty evidence).
Summary of Findings for the Main Comparison

Mefloquine compared with atovaquone-proguanil for preventing malaria in travellers

Population: non-immune adults and children travelling to or living in malaria-endemic settings
Intervention: mefloquine 250 mg weekly
Comparison: atovaquone-proguanil (250 mg atovaquone and 100 mg proguanil hydrochloride) daily
Outcome data collection: physicians performed blinded assessment of whether reported symptoms could be related to the study drug

Outcomes	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	Studies contributing to effect estimate (participants)	Additional studies considered in GRADE assessment (participants)	Certainty of the evidence (GRADE)	
Atovaquone-proguanil	Mefloquine					
Clinical malaria	-	-	2 RCTs (1293)	-	⊕⊕⊕⊕ low¹,²,³	
Serious adverse effects	0 per 100	1 in 100 (0 to 12)	RR 1.40 (0.08 to 23.22)	4 cohort studies (3693)	⊕⊕⊕⊕ low¹,²,⁴,⁵	
Discontinuation of drug due to adverse effects	2 per 100	6 per 100 (3 to 11)	RR 2.86 (1.53 to 5.31)	3 RCTs (1438)	⊕⊕⊕⊕ high¹,²,⁴,⁶	
Abnormal dreams	7 per 100	14 per 100 (10 to 21)	RR 2.04 (1.37 to 3.04)	1 RCT (976)	⊕⊕⊕⊕ high¹,²,⁴,⁶	
Insomnia	3 per 100	13 per 100 (8 to 23)	RR 4.42 (2.58 to 7.64)	1 RCT (976)	⊕⊕⊕⊕ high¹,²,⁴,⁶	
Anxiety	1 per 100	6 per 100 (2 to 21)	RR 6.12 (1.82 to 20.66)	1 RCT (976)	⊕⊕⊕⊕ moderate¹,²,⁴,⁷	
Depressed mood	1 per 100	6 per 100 (2 to 20)	RR 5.78 (1.71 to 19.61)	1 RCT (976)	⊕⊕⊕⊕ moderate¹,²,⁴,⁷	
Abnormal thoughts or perceptions	0 per 100	1 per 100 (0 to 4)	RR 1.50 (0.30 to 7.42)	3 cohort studies (2433)	-	⚫⚫⚫⚫ very low1,2,8
---------------------------------	-----------	--------------------	-----------------------	----------------------	---	-------------------
Nausea	3 per 100	8 per 100 (5 to 15)	RR 2.72 (1.52 to 4.86)	1 RCT (976)	7 cohort studies (3509)	⚫⚫⚫⚫ high1,2,4,6
Vomiting	1 per 100	1 per 100 (0 to 4)	RR 1.31 (0.49 to 3.50)	1 RCT (976)	3 cohort studies (2180)	⚫⚫⚫⚫ moderate1,2,4,7
Abdominal pain	5 per 100	5 per 100 (3 to 8)	RR 0.90 (0.52 to 1.56)	1 RCT (976)	7 cohort studies (3509)	⚫⚫⚫⚫ moderate1,2,4,8
Diarrhoea	8 per 100	8 per 100 (5 to 12)	RR 0.94 (0.60 to 1.47)	1 RCT (976)	7 cohort studies (3509)	⚫⚫⚫⚫ moderate1,2,4,8
Headache	4 per 100	7 per 100 (4 to 12)	RR 1.72 (0.99 to 2.99)	1 RCT (976)	8 cohort studies (4163)	⚫⚫⚫⚫ moderate1,2,4,8
Dizziness	2 per 100	8 per 100 (4 to 15)	RR 3.99 (2.08 to 7.64)	1 RCT (976)	8 cohort studies (3986)	⚫⚫⚫⚫ high1,2,4,6
Pruritis	2 per 100	3 per 100 (1 to 5)	RR 1.28 (0.60 to 2.70)	1 RCT (976)	3 cohort studies (1824)	⚫⚫⚫⚫ moderate1,2,4,8
Visual impairment	2 per 100	4 per 100 (2 to 9)	RR 2.04 (0.88 to 4.73)	1 RCT (976)	2 cohort studies (1956)	⚫⚫⚫⚫ moderate1,2,4,8
Mouth ulcers	2 per 100	3 per 100 (1 to 6)	RR 1.45 (0.70 to 3.00)	1 RCT (976)	2 cohort studies (783)	⚫⚫⚫⚫ moderate1,2,4,8

*The assumed risk is the median control group risk across studies unless stated in footnotes. The corresponding risk (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI). Where the control group risk was 0, we used a value of 0.5 to calculate the corresponding risk in the intervention group. Data from cohort studies were used when data from RCTs were unavailable.

Abbreviations: CI: confidence interval; RR: risk ratio

'Summary of findings' tables are usually limited to seven outcomes. For adverse effects this problematic, as there are many, and to include some and not others risks selective reporting. We have therefore included all prespecified outcomes in the table.
GRADE Working Group grades of evidence

High certainty: further research is very unlikely to change our confidence in the estimate of effect.

Moderate certainty: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.

Low certainty: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.

Very low certainty: we are very uncertain about the estimate.

1. No serious risk of bias: the RCTs were generally at low risk of bias but two of three were sponsored by the manufacturer of one of the study drugs. All cohort studies had methodological problems which could introduce confounding or bias. However, as the GRADE approach automatically downgrades certainty by two levels for non-randomized studies, we did not downgrade further.

2. No serious indirectness: the RCTs were conducted in short-term international travellers to malaria-endemic areas in Africa or South America for less than 28 days. The cohort studies were from a variety of populations including short-term travellers (8 studies), longer-term occupational travellers (3 studies) and military personnel (1 study).

3. Downgraded by two levels for serious imprecision: no episodes of malaria were recorded in either trial.

4. No serious inconsistency: the findings of the cohort studies were consistent with the effects seen in the RCTs.

5. No serious imprecision: serious adverse effects were rare in all studies.

6. No serious imprecision. The effect was statistically significant and the overall data (RCTs and cohort studies) were adequately powered to detect this effect.

7. Downgraded by one level for serious imprecision: although the direction of the effect was consistent across all trials, there was substantial heterogeneity in the size of the effect.

8. Downgraded by one level for serious imprecision: the 95% CI is wide and includes important effects and no effect.
Malaria is a parasitic protozoal infection which is usually transmitted through the bite of female *Anopheles* mosquitoes (Warrell 2002). It is most common in tropical and subtropical regions. Clinical disease is caused by infection of red blood cells by one of four *Plasmodium* species: *P. falciparum*, *P. vivax*, *P. ovale*, and *P. malariae* (WHO 2017). Humans can also become infected by forms of malaria that usually infect animals, such as *P. knowlesi* (WHO 2017). Clinical presentation is nonspecific and varied; symptoms include fever, chills, headache, diarrhoea, muscle cramps, and abdominal pain (WHO 2015). Severe disease is usually caused by infection with *P. falciparum*, but can also occur following infection with *P. vivax* and *P. knowlesi*. Host factors determining severity include genetics, host immune status, and age (WHO 2015).

The true global incidence and prevalence of malaria is difficult to determine; the highest disease burden occurs in sub-Saharan Africa where vital registration and disease notification systems are weak (Murray 2014). However, the latest World Health Organization (WHO) figures estimate 212 million new cases of malaria in 2015 leading to 429,000 deaths (WHO 2016). Around 125 million travellers visit malaria-endemic areas annually, and all need to take steps to prevent infection with malaria (Croft 2005). Each year there are between 10,000 and 30,000 known cases of malaria in returned travellers, but the real figure is likely to be higher due to under-reporting (WHO 2017).

The individual risk of acquiring malaria is determined by the host immune status, the area travelled to, the duration of travel and season, and the use of prevention measures. Pregnant women, young children and non-immune travellers are particularly vulnerable to severe disease if they become infected (WHO 2015). In Europe, the incidence of malaria is higher in people who travel to their country of origin to visit friends and relatives than in tourists (Behrens 2015). However, mortality is higher in tourists (Behrens 2015).

The natural life cycle of malaria involves the consecutive infection of two hosts: female *Anopheles* mosquitoes and humans (CDC 2015a). The female mosquito acquires the disease when taking a blood meal from an infected human host. It will then become infectious over a period of 10 to 14 days depending on the region. Sporozoites are injected into the human host the next time the mosquito feeds. These travel via the blood stream to the liver and develop into schizonts which then rupture releasing merozoites. Merozoites invade erythrocytes and undergo asexual replication. Some of these develop through ring stage trophozoites into schizonts which rupture releasing further merozoites and thus perpetuate the infection. Others will develop into female and male gametocytes which are ingested by *Anopheles* mosquitoes during a blood meal leading to the spread of disease.

Description of the intervention

Mefloquine has been available for use in Europe since 1985 and the USA since 1990 (Schlagenhauf 1999). Alongside atovaquone-proguanil and doxycycline, it is considered standard chemoprophylaxis by many international health guidelines (CDC 2015b; PHAC 2014; PHE 2015; WHO 2017). Mefloquine belongs to the aryl amino acid group of antimalarial agents. Mefloquine has a long half life and is given as a weekly dose of 250 mg when used for prophylaxis in adults (Schlagenhauf 2010). Mefloquine is effective against all five strains of malaria known to affect humans. Although guidelines vary, many state that mefloquine should be taken for two to three weeks before travel and continued for four weeks following return (WHO 2017).

There are several situations in which mefloquine is potentially advantageous. All guidelines recommend that where avoidable pregnant women should not travel to areas where malaria is endemic (WHO 2017). However, where travel is essential, mefloquine is often the preferred option. Mefloquine is widely considered to be safe within the second and third trimesters of pregnancy and guidelines increasingly recommend its use in the first trimester (CDC 2015b; Schlagenhauf 2010). Mefloquine is suitable for both children who weigh more than 5 kg and breastfeeding mothers (Schlagenhauf 2010).

Doxycycline has restrictions on its use during pregnancy due to effects on skeletal development found in animal studies. The use of atovaquone-proguanil is limited by a lack of evidence for safety (PHE 2015). Chloroquine-proguanil is considered safe for pregnant women, but its use is limited by widespread resistance (PHAC 2014).

The main side effects of mefloquine are gastrointestinal, neurological and psychological. Psychological side effects vary from those considered to be very common (including insomnia and abnormal dreaming) to those with unknown frequency (including psychosis and suicidal ideation) (eMC 2015a). Existing drug labels suggest that these side effects are both prodromal and dose related (eMC 2015a).

How the intervention might work

Malaria chemoprophylaxis is defined as the use of antimalarial medication to prevent the clinical symptoms of malaria (Schlagenhauf 2010). This is because no drugs are able to prevent the introduction of infection by destroying the sporozoites injected by the female *Anopheles* mosquito. Chemoprophylaxis is one of several tools used to prevent malaria; other recommended measures include sleeping under insecticide-treated bed nets, wearing insecticide-treated clothing, and applying chemical repellent sprays to the skin surface (WHO 2017). None of these methods provide complete protection and a combination of approaches is advised.

Chemoprophylaxis works by blocking the development or repro-
duction of the malaria parasite at various stages in its life cycle:

- doxycycline and mefloquine are examples of suppressive prophylactics and act in the blood stream as the schizonts invade erythrocytes. Doxycycline therefore needs to be taken for at least one month after returning from endemic areas (Shanks 2005);
- atovaquone-proguanil and primaquine have effects on the early liver stages of Plasmodium spp and prevent the progression to blood stage parasites which cause clinical illness. These agents therefore only need to be taken for one week after leaving the malaria-endemic area (Shanks 2005).

Currently, the baseline efficacy of doxycycline, atovaquone-proguanil and mefloquine when used as prophylaxis to prevent malaria is thought to be similar. Most guidelines therefore recommend selecting appropriate antimalarial prophylaxis based on individual choice, pre-existing conditions, side effect profile, and drug resistance patterns in the destination country (CDC 2015b; PHE 2015; WHO 2017). Drug resistance to all antimalarial agents is a growing concern, and mefloquine resistance has been reported in some areas of north-western Thailand (Treiber 2010; Treiber 2011).

In addition, the efficacy of all forms of malaria prevention is impeded by adherence. Nearly all cases of fatal malaria in travellers occur due to non-adherence with prophylactic measures (Schlagenhauf 2010). However, this needs to be balanced against the tolerability and safety of chemoprophylaxis; the frequency of mild to moderate adverse drug reactions varies from 32% to 45% (Schlagenhauf 2003). Both policy makers and individual travellers need to balance carefully the risk benefit profile of contracting malaria against using chemoprophylaxis.

Why it is important to do this review

Mefloquine has long been associated with neurological and psychological side effects which range from mild headaches and dizziness to reports of suicide and psychosis. The frequency and severity of these outcomes has been debated. In 2013 the USA Food and Drug Administration (FDA) released a safety communication regarding potential long-term and significant neurological and psychiatric side effects of mefloquine (FDA 2013). This included the addition of a boxed warning to the drug label, the most serious form of warning that can be issued. Similarly in Europe in 2014 the European Medicine Agency (EMA) Pharmacovigilance Risk Assessment Committee (PRAC) required a change to the summary of product characteristics noting that "...in a small number of patients it has been reported that neuropsychiatric reactions (for example, depression, dizziness or vertigo and loss of balance) may persist for months or longer, even after discontinuation of the drug" (EMA 2014). This has been incorporated into summaries of product characteristics throughout Europe. Most recently the UK Defence Committee has suggested mefloquine should only be used as a drug of last resort (UK Parliament 2016).

Previous reviews on this topic have limited analyses to randomized controlled trials (RCTs) (Jacquerioz 2009; Jacquerioz 2015). However, RCTs are not always the optimal study design to determine the type, prevalence or nature of adverse events and adverse effects, and many set inclusion criteria which exclude groups of people who are likely to be affected (LOKE 2007). In addition, adverse effects are often the primary outcome measure of non-randomized trials, meaning that researchers may attempt to capture and define adverse events in a more rigorous manner than when they are a tertiary measure (LOKE 2011).

This Cochrane Review update broadened study inclusion criteria to include non-randomized studies that provide useful information regarding the side effect profile of mefloquine. This review did not address:

- the efficacy or safety of alternative forms of malaria chemoprophylaxis;
- the use by pregnant women of mefloquine as intermittent presumptive treatment of malaria, or;
- the use by travellers of emergency standby malaria treatment.

This new edition replaces the Cochrane Review on mefloquine for preventing malaria in non-immune adult travellers (Jacquerioz 2015). Malaria prophylaxis in children living in endemic areas, chemoprophylaxis in pregnant women, and malaria prevention in people with sickle cell disease have been assessed in other Cochrane Reviews (Meremikwu 2008; ONIYANGI 2006; Radeva-Petrova 2014).

OBJECTIVES

To summarize the efficacy and safety of mefloquine used as prophylaxis for malaria in travellers.

METHODS

Criteria for considering studies for this review

Types of studies

For efficacy we included randomized and quasi-randomized controlled trials, including cluster-randomized trials. For safety we also included non-randomized controlled trials/cohort studies. We included both prospective and retrospective cohort studies, but excluded studies where recruitment was linked to the occurrence of specific adverse events. A list of study design features for all included studies is included in Appendix 1.
Types of participants
Adults and children, including pregnant women.

Types of interventions

Intervention
Mefloquine at a prophylactic dose (for example, 250 mg once weekly in adults and equivalent dosing for children).

Control
Placebo, no intervention or an alternative malaria chemoprophylaxis agent in current use.

Types of outcome measures

Efficacy
Clinical cases of malaria.

Safety
- Adverse effects of any severity: defined as "an adverse event for which the causal relation between the intervention and the event is at least a reasonable possibility" (Loke 2011);
- serious adverse effects are those "leading to death, [which] are life threatening, require inpatient hospitalization or prolongation of existing hospitalization, or result in persistent or significant disability or incapacity, or is a congenital anomaly/birth defect" (ICH 1994);
- adverse events of any severity: defined as "any untoward medical occurrence that may present during treatment with a pharmaceutical product but which does not necessarily have a causal relationship with this treatment" (WHO-ART 2008);
- serious adverse events are those "leading to death, [which] are life threatening, require inpatient hospitalization or prolongation of existing hospitalization, or result in persistent or significant disability or incapacity, or is a congenital anomaly/birth defect." (ICH 1994);
- discontinuations of study drug due to adverse effects;
- measures of adherence to the drug regimen.

Pregnancy-related outcomes:
- adverse pregnancy outcomes: spontaneous abortions, stillbirths, congenital malformations.

Study authors often use the terms ‘adverse event’, ‘adverse effect’ or ‘side effect’ interchangeably and loosely. Where possible, we used the definitions described above to distinguish adverse events and adverse effects. Adverse effects encompasses reporting by study authors of ‘adverse effects’, ‘side effects’, ‘adverse events attributed to the study drug’, ‘adverse reactions’, and ‘symptoms related to the study drugs’.

Search methods for identification of studies
We attempted to find all relevant trials regardless of language or publication status (published, unpublished, in press, and in progress).

Electronic searches
We searched the following databases using the search terms and strategy described in Appendix 2:
- Cochrane Infectious Diseases Group Specialized Register to 22 June 2017;
- Central Register of Controlled Trials (CENTRAL), published on the Cochrane Library to 22 June 2017;
- MEDLINE (PubMed) from 1966 to 22 June 2017;
- Embase (Ovid) from 1974 to 22 June 2017; and
- LILACS (Bireme) from 1982 to 22 June 2017.

We also searched the WHO International Clinical Trials Registry Platform (WHO ICTRP) and ClinicalTrials.gov (https://clinicaltrials.gov/) for trials in progress, using 'mefloquine', 'Larion', and 'malaria' as search terms (22 June 2017).

For the safety analysis we also searched MEDLINE (PubMed) (1966 to 22 June 2017), Embase (Ovid) (1974 to 22 June 2017), and TOXLINE (1980 to 22 June 2017) (https://toxnet.nlm.nih.gov/newtoxnet/toxline.htm). The following MEDLINE terms were adapted as needed: (“Mefloquine/adverse effects”[Mesh] OR “Mefloquine/poisoning”[Mesh] OR “Mefloquine/toxicity”[Mesh]); Mefloquine ti, ab AND (safety OR tolerability OR death*OR suicid* OR adverse OR reaction* OR “side effect”*) ti, ab.

Searching other resources
We checked the reference lists of included studies for any references not identified by our searches.

Data collection and analysis

Selection of studies
Two review authors independently screened the results of the literature search for potentially relevant trials using Covidence software (Covidence 2017), and looked for multiple publications from the same data set. Full text copies were retrieved for all trials deemed potentially relevant for inclusion. Two review authors then independently assessed all identified trials for inclusion in the review using the prespecified inclusion criteria. Any disagreements were resolved through discussion.
Data extraction and management

Two review authors independently extracted data using a standardized and pre-piloted data collection form. When available, we extracted data on:

- details of study: start and end dates, setting (country of recruitment and country of malaria exposure), study design, method of participant recruitment and selection, number of participants enrolled, number of participants for whom data was available, mean duration of exposure to malaria, antimalarial resistance pattern of mefloquine and the comparator;
- study participants: inclusion and exclusion criteria, age, gender, body mass index (BMI), pregnancy status, risk factors (for malaria and for adverse outcomes), immune or non-immune participants, military or non-military;
- details of the intervention: drug dose during prophylaxis, use of a loading dose, duration of drug therapy before and after travel, frequency of drug administration and use of any co-interventions;
- outcomes measured and reported including definition, method of detection, timing in relation to treatment, duration and frequency of monitoring.

We resolved any disagreements through discussion, and where necessary we consulted a third review author. If clarification was necessary, we attempted to contact the trial authors for further information.

For dichotomous data, we recorded the number of participants experiencing the event and the number analysed in each group. For continuous outcome data, we extracted arithmetic means and standard deviations for each group together with the numbers experiencing the event and the number analysed in each group.

We also extract medians and ranges where necessary, we attempted to contact the trial authors for further information. However, we could not know in advance which adverse effects mefloquine would have. To constrain the number of outcomes in the 'Summary of findings' tables to seven would mean only reporting outcomes where effects were shown, which would lead to selective reporting.

We included 'Summary of findings' tables for comparisons of mefloquine with doxycycline and atovaquone-proguanil. This decision was made because chloroquine is used less frequently than mefloquine, doxycycline and atovaquone-proguanil. As reported in Results, the adverse effect profile of mefloquine in comparison to chloroquine was consistent with comparisons with doxycycline and atovaquone-proguanil.

Assessment of risk of bias in included studies

Two review authors independently assessed the risk of bias of each included study. For randomized and quasi-randomized controlled trials we used Cochrane’s 'Risk of bias' tool (Higgins 2011). We followed the guidance for making judgements on the risk of bias in five domains: sequence generation; allocation concealment; blinding (of participants, personnel and outcome assessors); incomplete outcome data; selective outcome reporting and other risk of bias. We categorized these judgements as low risk of bias, high risk of bias, or unclear risk of bias.

For non-randomized (cohort) studies we assessed the risk of bias using the Cochrane Risk of Bias Assessment Tool for Non-Randomized Studies of Interventions (now referred to as ROBINS-I (ACROBAT-NSRI tool). We followed the guidance for making judgements on the risk of bias in eight domains: confounding, selection of participants into the study, measurement of interventions, departures from intended interventions, missing data, selection of the reported result and other risk of bias. We categorized included only the denominator trials that actively reported the presence or absence of each specific adverse event or effect. Most RCTs and cohort studies collected data on self-reported or clinician-assessed symptoms rather than formal medical diagnoses. Therefore, we reported outcomes as symptoms. For example, we reported on 'depressed mood' rather than 'depression'.
these judgements as low risk of bias, moderate risk of bias, serious risk of bias and critical risk of bias. Where no information was provided on a category, this was stated. The criteria we used to make specific judgements are provided in Table 1.

For adverse events and adverse effects, we assessed the risk of bias in the conduct of the study by examining whether harms were pre-defined using standardized or precise definitions, ascertainment methods were adequately described, monitoring was active or passive and data collection was prospective or retrospective (Table 2). For laboratory tests and other investigations we assessed whether the number and timing of the tests was adequate. We resolved any disagreement through discussion, and where necessary, we consulted a third review author.

Measures of treatment effect

We analysed data using Review Manager 5 (RevMan 5) (RevMan 2014) and combined dichotomous data using risk ratios (RR). For continuous data summarized by arithmetic means and standard deviations, we combined data using mean differences (MD). We present RRs and MD with 95% confidence intervals (CI) and report medians and ranges in tables for non-RCTs.

Unit of analysis issues

When trials included more than two comparison groups, we split the trial for analysis as individual pair-wise comparisons. If more than one comparison group was included in a meta-analysis, we ensured that participants were only counted once by dividing the cases and participants evenly between the comparisons. For clinical cases of malaria, we included participants as the unit of analysis, such that each participant was counted once in the intervention or placebo arm. Where study reporting was unclear regarding the unit of analysis (that is, total clinical cases of malaria rather than clinical cases in each participant) we noted this in footnotes and performed a sensitivity analysis excluding these results.

Dealing with missing data

If data from trial reports were insufficient, unclear, or missing, we attempted to contact the trial authors for additional information. Our primary analysis was a complete-case analysis which excluded all participants without treatment outcomes. No imputation measures for missing data were applied. Where studies had grouped symptoms together by body system when reporting safety outcomes, we contacted authors to obtain disaggregated data. We obtained two additional full data sets (Cunningham 2014; Korhonen 2007) and received further clarification from two study authors (Kato 2013; Sonmez 2005). The full details of subsequent analyses are provided in the characteristics of included studies tables.

Assessment of heterogeneity

We assessed heterogeneity among trials by inspecting forest plots for overlapping CIs, applying the Chi² test with a 10% level of statistical significance, and using the I² statistic with a value of 50% to denote moderate levels of heterogeneity.

Assessment of reporting biases

We were unable to assess publication bias using funnel plots because there were too few trials reporting the same outcomes.

Data synthesis

We carried out statistical analyses using RevMan 5 (RevMan 2014). We analysed randomized controlled trials (RCTs) and non-RCTs separately, and compared interventions as individual pair-wise comparisons.

In the absence of heterogeneity, we used a fixed-effect model. Where we identified moderate heterogeneity, and it was appropriate to combine data, we used the random-effects model. When it was not appropriate to combine data in a meta-analysis, we tabulated data and reported outcomes as a narrative.

We report the term used for each adverse event in each trial. Where trials used different terminology for similar adverse events and adverse effects, we coded them using the preferred term based on Medical Dictionary for Regulatory Activities (MedDRA) terminology (for example, sleepiness, somnolence) and analysed these together (MedDRA 2016).

Subgroup analysis and investigation of heterogeneity

We explored possible sources of heterogeneity using subgroup analyses (study design, military versus non-military participants, short- versus long-duration of travel).

Sensitivity analysis

We conducted sensitivity analyses to evaluate the robustness of the results to the risk of bias components, by excluding studies at high or unclear risk of bias.

R E S U L T S

Description of studies

Results of the search

Searches (conducted 22 June 2017) identified 2155 records; we screened seven additional studies after reviewing reference lists.
Of these, we excluded 1953 after assessing titles and abstracts. We retrieved 209 full text publications to assess for inclusion.

Included studies
We included 20 randomized controlled trials (RCTs) (11,470 participants), 35 cohort studies (190,286 participants) and four large retrospective analyses of health records (800,652 participants). Efficacy outcomes were reported in 14 RCTs conducted between 1977 and 2003 in Thailand (four trials), Brazil, Cambodia, Ghana, Indonesia, Ivory Coast, Malawi, Nigeria, Kenya and two studies which included travellers to various destinations (10,710 participants). Two were conducted in short-term international travellers (Overbosch 2001; Schlagenhauf 2003); nine involved general populations living in endemic areas who are likely to have some immunity to malaria (Boudreau 1991; Bunnag 1992; Hale 2003; Nosten 1994; Pearlman 1980; Salako 1992; Sossouhounto 1995; Steketee 1996; Weiss 1995), two recruited non-immune military personnel (Arthur 1990; Ohrt 1997), and one recruited a mixed military and civilian semi-immune population (Santos 1993).

All 20 included RCTs and 35 cohort studies reported safety outcomes. Nine RCTs explicitly excluded participants with a psychiatric history, and 25 cohort studies stated that the choice of antimalarial agent was based on medical history and personal preference. Most RCTs and cohort studies collected data on self-reported or clinician-assessed 'symptoms', rather than formal medical diagnoses. Consequently, when describing these data we used non-medical descriptions such as 'depressed mood' rather than 'depression', even where the trial authors described the symptom as depression. However, four retrospective cohort studies analysed healthcare records (Eick-Cost 2017; Meier 2004; Schneider 2013; Wells 2006) and looked for people with formal mental health diagnoses. Where outcomes were presented grouped by organ system, we approached study authors for additional data and received full data sets for two studies (Cunningham 2014; Korhonen 2007) and additional information from another two (Kato 2013; Sonmez 2005).

Three RCTs (1827 participants) and 24 cohort studies (170,487 participants) included short-term international travellers. Five cohort studies included long-term occupational travellers (UK Foreign and Commonwealth Office Staff and Peace Corps volunteers) (13,211 participants); four RCTs (961 participants) and six cohort studies (6588 participants) included military personnel (including 1 study with a mixed military and civilian population). Thirteen RCTs included local residents who did not travel outside their home countries: Australia (Davis 1996), Ghana (Hale 2003), Israel (Potasman 2002), Ivory Coast (Sossouhounto 1995), Kenya (Weiss 1995), Malawi (Steketee 1996), the Netherlands (Vuurman 1996), Nigeria (Salako 1992), Switzerland (Schlagenhauf 1997) and Thailand (Boudreau 1991, Bunnag 1992, Nosten 1994, Pearlman 1980).

Seven RCTs and three cohort studies were sponsored by Roche (manufacturer of mefloquine), three RCTs and one cohort study were sponsored by GlaxoSmithKline (manufacturer of atovaquone-proguanil), one RCT was sponsored by Pfizer (manufacturer of doxycycline), and one by Mepha Ltd (manufacturer of a film-coated form of mefloquine). Only one RCT and one cohort study reported whether the study sponsor had any influence over collecting, analysis or interpretation of study results or the decision to publish.

Excluded studies
We excluded 141 studies after full-text screening (Figure 1). We excluded 37 studies because they were not research studies; 29 studies reported no relevant outcomes; 23 studies were single arm cohort studies and did not meet our inclusion criteria; 17 studies compared mefloquine with a regime which is not routinely used; 11 studies were not a randomized or cohort study (for example, case report or case-control study); in seven studies mefloquine was not used at a prophylactic dose, for example, treatment dose; seven studies were multiple publications from the same data set as included studies; four cohort studies the population was identified on the basis of having experienced adverse effects and we excluded 6 studies for other reasons. We have provided full details in the 'Characteristics of excluded studies' tables.
Risk of bias in included studies

We performed 'Risk of bias' assessments for the included RCTs using the Cochrane 'Risk of bias' assessment tool. We assessed the risk of bias in the cohort studies using the ACROBAT-NSRI tool (now referred to as ROBINS-I). For a summary of the 'Risk of bias' assessments for RCTs see Figure 2.
Figure 2. 'Risk of bias' summary for RCTs: review authors’ judgements about each ‘Risk of bias’ item for each included study.

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Blinding of participants and personnel (performance bias)	Blinding of outcome assessment (detection bias)	Incomplete outcome data (attrition bias)	Selective reporting (reporting bias)	Other bias
Arthur 1986	?	?	?	?	?	?	?
Boudreau 1991	?	?	?	?	?	?	?
Boudreau 1993	?	?	?	?	?	?	?
Burnag 1982	?	?	?	?	?	?	?
Davis 1986	?	?	?	?	?	?	?
Hale 2003	?	?	?	?	?	?	?
Nestor 1994	?	?	?	?	?	?	?
Cott 1987	?	?	?	?	?	?	?
Overbosch 2001	?	?	?	?	?	?	?
Pearlman 1960	?	?	?	?	?	?	?
Pollockman 2002	?	?	?	?	?	?	?
Saliako 1992	?	?	?	?	?	?	?
Santeš 1993	?	?	?	?	?	?	?
Schlagenhaur 1987	?	?	?	?	?	?	?
Schlagenhaur 2003	?	?	?	?	?	?	?
Sosseuhounto 1996	?	?	?	?	?	?	?
Steketee 1988	?	?	?	?	?	?	?
von Riemadijlik 2002	?	?	?	?	?	?	?
Vuurman 1996	?	?	?	?	?	?	?
Weiss 1985	?	?	?	?	?	?	?
Alloocation
Three trials were at low risk of selection bias, with adequate descriptions of generation of the random sequence and allocation concealment (Davis 1996; Overbosch 2001; van Riemsdijk 2002). A further 16 trials were at unclear risk of selection bias due to providing insufficient information regarding their methodology. One trial described sequential allocation of unblinded participants (Steketee 1996).

Blinding
Seven trials adequately described blinding of study personnel, including blinding of pathology technicians when detecting malaria, and blinding of outcome assessors when assessing safety outcomes (Nosten 1994; Ohrt 1997; Overbosch 2001; Potasman 2002; Schlagenhauf 2003; van Riemsdijk 2002; Weiss 1995). The remaining 13 trials did not adequately describe how outcome assessors were blinded.

Incomplete outcome data
Six trials had low and balanced losses to follow-up rates for efficacy outcomes (Hale 2003; Nosten 1994; Overbosch 2001; Salako 1992; Sossouhounto 1995; Weiss 1995). One trial was at high risk of bias because investigators did not follow up participants beyond the active phase of treatment for relapses (Santos 1993). Two studies did not make the method of detection of malaria, frequency or duration of follow up clear (Arthur 1990; Schlagenhauf 2003).

Seven trials had low losses to follow-up rates for adverse outcomes (Arthur 1990; Davis 1996; Hale 2003; Pearlman 1980; Salako 1992; Sossouhounto 1995; Weiss 1995). We judged four of the trials to be at high risk of bias because investigators did not provide numbers of participants lost to follow up across groups (Nosten 1994; Steketee 1996); did not assess all participants who received the study drug in the final analysis (Ohrt 1997); and because the proportion of participants who did not complete the study due to adverse outcomes varied significantly between groups (van Riemsdijk 2002).

Selective reporting
Fourteen trials reported on efficacy outcomes, and twelve of these appropriately reported all outcomes. However, 21 trials reported on our safety outcomes and only nine of these appropriately reported on all pre-specified outcomes. Three of these trials only reported on statistically significant differences between groups (Boudreau 1993; Pearlman 1980; Schlagenhauf 1997), and another four did not report data from all time points (Bunnag 1992; Nosten 1994; Ohrt 1997; Overbosch 2001). Two trials reported aggregate data across multiple time points (Schlagenhauf 2003; Steketee 1996), one trial only reports symptoms which occurred in > 10% of participants in each study arm (Davis 1996). Vuurman 1996 only reported events which occurred more than once and Hale 2003 reports the total number of serious adverse events does not allocate them to a drug regimen.

Other potential sources of bias
Seven trials were sponsored by Roche (manufacturer of mefloquine) (Bunnag 1992; Davis 1996; Ohrt 1997; Santos 1993; Schlagenhauf 1997; Schlagenhauf 2003; Vuurman 1996), three were sponsored by GlaxoSmithKline (manufacturer of atovaquone-proguanil) (Hale 2003; Overbosch 2001; Schlagenhauf 2003), one by Pfizer (manufacturer of doxycycline) (Ohrt 1997), and one by Mepha Ltd (manufacturer of a film-coated form of mefloquine) (Potasman 2002). Only one made the role of the study sponsor clear (Ohrt 1997).

We have presented details of the risk of bias of cohort studies in the ‘Effects of interventions’ section.

Effects of interventions
See: Summary of findings for the main comparison Mefloquine versus atovaquone-proguanil for preventing malaria in travellers; Summary of findings 2 Mefloquine versus doxycycline for preventing malaria in travellers

Comparison 1: Mefloquine versus placebo or no treatment

Description of studies

RCTs
Nine RCTs comparing prophylactic mefloquine with placebo reported efficacy (4032 participants, Table 3), and 13 reported safety outcomes (4293 participants, Table 4). The trials were conducted between 1977 and 2003, and none included participants travelling outside their home country. One trial conducted among soldiers in Indonesia described participants as non-immune (Ohrt 1997), but immunity is likely to be low in other trials from Asia (Bunnag 1992; Nosten 1994; Pearlman 1980). The participants in four trials from Africa were described as semi-immune (Hale 2003; Salako 1992; Sossouhounto 1995; Weiss 1995). Santos 1993 was conducted in an area of Brazil in which endemic transmission occurs.
Seven trials used mefloquine at a dose of 250 mg weekly (or equivalent doses for children), four at 250 mg weekly for the first four weeks and then 125 mg weekly for the remainder of the study, and one trial used mefloquine doses of 500 mg every four weeks and 250 mg every two weeks (Santos 1993). Pearlman 1980 used mefloquine doses of 180 mg weekly, 360 mg weekly and 360 mg fortnightly. Trial duration varied from 48 hours to 26 weeks.

For safety, nine trials used interviews with study personnel to elicit adverse events (Bunnag 1992; Hale 2003; Nosten 1994; Ohrt 1997; Salako 1992; Santos 1993; Schlagenhauf 1997; Vuurman 1996; Weiss 1995). Of these, six trials questioned participants about symptoms at least weekly (Hale 2003; Nosten 1994; Ohrt 1997; Salako 1992; Vuurman 1996; Weiss 1995). Two trials used participant self-reported diaries to record any adverse events (Davis 1996, Potasman 2002). Pearlman 1980 used a weekly ‘sick call’ by study personnel and Sossouhounto 1995 provided ‘access to the village health centre’. Only two trials used explicit definitions for adverse events and effects that allow for reproducible ascertainment (Davis 1996, Vuurman 1996). For safety outcomes, nine of the 13 trials adequately described how adverse events were ascertained. Eleven trials actively sought adverse events, and all 13 collected data prospectively (Table 5).

Eleven of thirteen which assessed safety outcomes trials did not adequately describe random sequence generation or allocation concealment, and eight did not adequately describe how outcome assessors and study personnel were blinded. We judged eight trials to be at high risk of selective outcome reporting with regard to safety outcomes. In two trials, this was because the overall number of adverse events in each study arm was reported, but not the type or severity (Bunnag 1992; Potasman 2002). Davis 1996 reported only adverse events that occurred in more than 10% of participants in both study arms; Vuurman 1996 reported only adverse events that occurred more than once; and Nosten 1994 only reported on adverse events in the second phase of the trial.

Five trials were funded by Roche (manufacturer of mefloquine) (Bunnag 1992; Davis 1996; Santos 1993; Schlagenhauf 1997; Vuurman 1996) and one by GlaxoSmithKline (manufacturer of atovaquone-proguanil) (Hale 2003) and one by Mepha Ltd (manufacturer of a film-coated form of mefloquine) (Potasman 2002).

Cohort studies

Five cohort studies compared mefloquine users with participants who travelled but did not take antimalarial prophylaxis at all (Hoebe 1997; Petersen 2000; Rietz 2002; van Riemsdijk 1997; Wells 2006). Four of these were conducted in travellers, and one in military personnel (Table 4). Two cohort studies included travellers who were prescribed an antimalarial agent but did not commence using (Hoebe 1997; Petersen 2000) and two asked travellers about an extensive list of general complaints which could have occurred during their journey (Rietz 2002; van Riemsdijk 1997). Wells 2006 was a retrospective healthcare record analysis looking at hospitalizations in active-duty USA military personnel (397, 442 participants).

Two cohort studies had non-response rates of over 20%. Wells 2006 was at serious risk for selection of participants and measurement of outcomes because start of follow up began after participants had finished taking mefloquine, authors used surrogate measures for mefloquine exposure and there was a possibility that some participants in the reference groups took mefloquine. Four cohort studies actively sought information from participants about adverse events and only one (van Riemsdijk 1997) obtained information prospectively (see Figure 3).
Figure 3. 'Risk of bias' summary in cohort studies: mefloquine versus placebo/no treatment
1 Assesses whether our pre-defined confounders were measured and balanced across groups.
2 Assesses the non-response rate of prospective participants.
3 Assesses the risk that participants labelled as taking mefloquine (or another antimalarial) actually took something else.
4 Assesses the risk that participants whose adverse effects are attributed to mefloquine (or another antimalarial) actually took another drug as well.
5 Assesses whether outcome data reasonably complete for most participants and whether intervention status reasonably complete for those in whom it was sought.
6 Assesses whether the outcome measure was subjective, and whether participants and outcome assessors were blinded.
7 Assesses whether it is clear that all information collected within the study has been reported.
8 Assesses the risk of bias due to influence by a corporate study sponsor.

Study	Confounding	Selection of participants	Measurement of interventions	Departures from intended interventions	Measurement of outcomes	Selection of the reported result	Other
Hoebe 1997	-	+	+	-	-	-	+
Petersen 2000	-	-	+	-	-	-	?
Rietz 2002	-	-	+	-	+	-	+
van Riemsdijk 1997	+	-	-	-	-	-	?
Wells 2006	-	-	-	-	+	+	+

+ low, - moderate, = serious, ? no information
Efficacy

Mefloquine is highly efficacious in reducing clinical cases of malaria compared to placebo, although there were important differences among trials, particularly regarding the dose of mefloquine used, populations studied, and the risk of malaria in the control group (Analysis 1.1). The risk of malaria was highest in the trial in military personnel travelling to Indonesia, described as "largely non-immune", where 53/65 (81%) of those in the placebo group had an episode of malaria compared to 0/67 (0%) with mefloquine (RR 0.01, 95% CI 0.00 to 0.16; Ohrt 1997, 126 participants). In the remaining trials the risk of malaria with placebo ranged from 1% to 59% (Bunnag 1992; Hale 2003; Nosten 1994; Pearlman 1980; Salako 1992; Santos 1993; Sossouhounto 1995; Weiss 1995).

Although quantitative heterogeneity was high, the direction of the effect was consistent across all trials. We performed a series of subgroup analyses by dose and immune status of participants, but this did not explain the heterogeneity or provide a reliable point estimate of efficacy with subgroups.

Five trials also reported the effect on parasitaemia (which was much more common than clinical malaria) (Hale 2003; Nosten 1994; Salako 1992; Sossouhounto 1995; Weiss 1995). Overall, mefloquine reduced numbers of participants who developed parasitaemia by around 80% (RR 0.18, 95% CI 0.06 to 0.55; 3 trials, 414 participants, Analysis 1.2), and substantially reduced the number of episodes of parasitaemia (RR 0.05, 95% CI 0.00 to 5.25; 2 trials, 510 participants, Analysis 1.2).

Safety

Serious adverse events or effects

Only three serious adverse events were reported from six RCTs, none of which were attributed to the drug regimen (1/592 mefloquine users versus 2/629 placebo; 6 trials; 1221 participants, Analysis 1.3). The serious event in the mefloquine user was the death of a pregnant woman who received mefloquine (septic shock after an emergency caesarean section for obstructed labour) (Nosten 1994). For serious pregnancy-related outcomes, Nosten 1994 reported four congenital malformations in the mefloquine group: limb dysplasia (1 case), ventricular septal defect (2 cases), amniotic bands (1 case) and one in the placebo group: anencephaly. All were considered unrelated to the drug regimen (Table 6).

By comparison in cohort studies, seven serious adverse effects (all attributed by study authors to the drug regimen) were reported among 913 mefloquine users, compared to none in 254 travellers who did not use antimalarials (RR 3.08, 95% CI 0.39 to 24.11; 2 studies, 1167 participants; Analysis 1.3; Table 7). Five of these were psychological (depression) and two were neurological adverse effects (dizziness).

Wells 2006 was a retrospective healthcare record analysis that reported adverse events. It compared numbers of hospitalizations in military personnel who had been prescribed mefloquine and were deployed to active duty in malarial areas, with those who had been deployed to non-malarial areas, and with military personnel with duty zip codes for Europe or Japan, who had not been deployed to active duty. Mefloquine users were less likely to be hospitalized (after deployment) with mood disorders (RR 0.38, 95% CI 0.17 to 0.86; 241,239 participants) or for any cause (RR 0.60, 95% CI 0.51 to 0.71; 241,239 participants) than military personnel who did not receive any antimalarial agents (but who were deployed to a war zone).

Discontinuations due to adverse effects

Within RCTs the number of people who discontinued the study drug due to adverse effects was low in both groups: 6/541 (1.1%) with mefloquine versus 4/583 (0.7%) with placebo (RR 1.64, 95% CI 0.55 to 4.88; 7 trials, 1124 participants, Analysis 1.4). No comparative data were available on this outcome from cohort studies because the comparison was with no treatment.

Prespecified adverse events or effects

None of the RCTs or cohort studies for this comparison reported on adverse effects (symptoms attributed by researchers or participants to the drug regimen). All comparisons were for adverse events (all symptoms that occurred while taking the study drug).

Gastrointestinal symptoms

Within RCTs, participants who received mefloquine were more likely to experience nausea than those who took placebo (RR 1.35, 95% CI 1.05 to 1.73; 2 trials, 244 participants, Analysis 1.5), but there was no difference between groups for vomiting, abdominal pain or diarrhoea (Analysis 1.6; Analysis 1.7; Analysis 1.8). The results from cohort studies were consistent with this finding, with more mefloquine users experiencing nausea (RR 1.85, 95% CI 1.42 to 2.43; 3 studies, 1901 participants, Analysis 1.5).

One RCT in pregnant women (Nosten 1994) reported on both upper and lower abdominal pain. Inclusion of both groups of results in sensitivity analyses had no impact on the results.
Neurological symptoms

Mefloquine users in RCTs were no more likely that recipients who took placebo to experience headache (RR 0.84, 95% CI 0.71 to 0.99; 5 trials, 791 participants, Analysis 1.9) or dizziness (RR 1.03, 95% CI 0.90 to 1.17; 3 trials, 452 participants, Analysis 1.10). This is in contrast to cohort studies, in which participants who took mefloquine were significantly more likely to experience dizziness than participants who travelled but took no prophylaxis (RR 1.80, 95% CI 1.29 to 2.49; 3 studies, 1901 participants, Analysis 1.10).

Psychological symptoms

None of the RCTs included in the analysis reported on any of our prespecified psychological symptoms. Participants in cohort studies who received mefloquine were more likely than participants who did not take prophylaxis to experience abnormal dreams (RR 2.35, 95% CI 1.15 to 4.80; 2 cohort studies, 931 participants, Analysis 1.11), and insomnia (RR 1.46, 95% CI 1.06 to 2.02; 2 cohort studies, 931 participants, Analysis 1.12). Effects on anxiety (RR 1.21, 95% CI 0.67 to 2.21; 2 cohort studies, 931 participants; I² statistic = 48%; Analysis 1.13), depressed mood (RR 2.43, 95% CI 0.65 to 9.07; 3 cohort studies, 1901 participants, I² statistic = 72%, Analysis 1.14) and abnormal thoughts or perceptions (RR 5.77, 95% CI 0.79 to 42.06; 1 cohort study, 970 participants, Analysis 1.15), were not consistent across studies, and overall, did not reach standard levels of statistical significance.

Other symptoms

Mefloquine users in cohort studies were more likely to experience pruritis (RR 6.71, 95% CI 1.58 to 28.55; 1 cohort study, 197 participants, Analysis 1.16). However, this finding was not replicated in RCTs (RR 0.86, 95% CI 0.60 to 1.24; 3 RCTs, 609 participants, Analysis 1.16). There was no difference between groups for visual impairment and vertigo in either RCTs nor cohort studies (Analysis 1.17; Analysis 1.18).

Other adverse events reported in more than 1% of study participants (in either study arm) in RCTs and cohort studies are presented in Analysis 1.19 and Analysis 1.20. Only respiratory tract infection reached statistical significance between groups; data were from a single trial with few events (RR 2.63, 95% CI 1.04 to 6.61; 1 trial, 140 participants).

Studies reporting groups of symptoms or other outcomes which could be used as proxy markers of psychological or neurological adverse effects are reported in Appendix 4.

Pregnancy outcomes

Nosten 1994 conducted an RCT in pregnant women over 20 weeks gestation. There was no reported difference between mefloquine and placebo for spontaneous abortions (RR 0.48, 95% CI 0.04 to 5.22; 311 participants), stillbirths (RR 2.63, 95% CI 0.86 to 8.08; 311 participants) or congenital malformations (RR 3.82, 95% CI 0.43 to 33.83; 311 pregnant women). However, the trial was significantly underpowered to evaluate these outcomes.

Adherence

In their RCT, Davis 1996 reported on any measure of adherence to the drug regimen assessed by pill count and direct questioning. Reported adherence was 100% in both arms.

Comparison 2: Mefloquine versus doxycycline

Description of studies

RCTs

Four RCTs, enrolling 1317 participants, reported on both efficacy and safety (Table 8). One was conducted in short-term travellers (Schlagenhauf 2003), two in military personnel (Arthur 1990; Ohrt 1997) and one in Kenyan children (Weiss 1995). The populations were described as non-immune (Arthur 1990; Schlagenhauf 2003), “largely” non-immune (Ohrt 1997) and semi-immune (Weiss 1995). Trial duration varied from four weeks to four months. The method for detecting malaria was unclear in two trials (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003). Three studies conducted daily interviews with participants to monitor for adverse events (Arthur 1990; Schlagenhauf 2003).
Cohort studies

We included 20 cohort studies that assessed and reported safety outcomes, in a total of 435,209 participants. Of these, 10 were conducted in short-term travellers (Goodyer 2011; Laver 2001; Lobel 2001; Meier 2004; Napoletano 2007; Philips 1996; Schwartz 1999; Sharafeldin 2010; Stoney 2016; Waner 1999), four in longer-term occupational travellers (Cunningham 2014; Korhonen 2007; Landman 2015; Tan 2017) and six in military personnel (Eick-Cost 2017; Saunders 2015; Shamiss 1996; Sonmez 2005; Terrell 2015; Tuck 2016); none included pregnant women. Most (17 cohort studies) used participant self-reported questionnaires to monitor adverse events.

Ten cohort studies had non-response rates of over 20% (Cunningham 2014; Korhonen 2007; Landman 2015; Lobel 2001; Philips 1996; Sharafeldin 2010; Tan 2017; Terrell 2015; Tuck 2016; Waner 1999), (Figure 4). We judged two to be at high risk of missing data; Goodyer 2011 included pre- and post-travel questionnaires, with an interim loss to follow-up rate of 27%, and Terrell 2015 excluded participants from the analysis if they reported an adverse effect but did not record its impact on their ability to work. None of these studies blinded participants or mentioned outcome assessors being blinded to intervention status. Seven studies collected data retrospectively, and eight collected information at an unclear or variable time point during treatment (Table 9). One study (Goodyer 2011) was funded by GlaxoSmithKline (manufacturer of atovaquone-proguanil), one (Meier 2004) by Roche (manufacturer of mefloquine), and one (Philips 1996) by Roche and Pfizer (manufacturers of doxycycline) (see Figure 4).
Figure 4. 'Risk of bias' summary in cohort studies: mefloquine versus doxycycline

1. Assesses whether our pre-defined confounders are measured and balanced across groups.
2. Assesses the non-response rate of prospective participants.
3. Assesses the risk that participants labelled as taking mefloquine (or another antimalarial) actually took something else.
4. Assesses the risk that participants whose adverse effects are attributed to mefloquine (or another antimalarial) actually took another drug as well.
5. Assesses whether outcome data reasonably complete for most participants and whether intervention status reasonably complete for those in whom it was sought.
6. Assesses whether the outcome measure was subjective, and whether participants and outcome assessors were blinded.
7. Assesses whether it is clear that all information collected within the study has been reported.
8. Assesses the risk of bias due to influence by a corporate study sponsor.

Study	Confounding	Selection of participants	Measurement of interventions	Measurement of outcome	Missing data	Randomisation of interventions*	Randomisation of outcome*	Other*
Cunningham 2014	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Eck-Cost 2017	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Goodyer 2011	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Kuthanai 2007	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Landman 2015	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Lever 2001	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Lobel 2001	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Motar 2004	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Napolitano 2007	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Phillips 1996	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Saunders 2015	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Schwartz 1999	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Shamiis 1996	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Sharaeldin 2010	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Sibney 2016	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Tan 2017	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Tunnel 2015	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Tuck 2016	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]
Water 1999	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]	![Icon]

* Indicates that the risk of bias may not have been assessed in this area.
Efficacy
Only seven episodes of malaria were reported while participants were receiving prophylaxis; similar numbers of participants were infected in both arms (4 episodes in 378 mefloquine users versus 3 episodes in 366 doxycycline users: RR 1.35, 95% CI 0.35 to 5.19; 4 trials, 744 participants, Analysis 2.1). Weiss 1995 reported on episodes of parasitaemia in the semi-immune population. There was no clear difference between groups (RR 1.47, 95% CI 0.68 to 3.14; 62 participants).

Safety
Serious adverse events or effects
Only Ohrt 1997 described an adverse event as “serious” (acute hysteria) in a doxycycline user, but did not provide sufficient detail to meet our definition. No other serious adverse outcomes were described in RCTs including 348 mefloquine users and 334 doxycycline users (Analysis 2.2; Table 6).
In comparison, three cohort studies reported a total of 29 serious adverse effects (attributed to the study drug by users): 19 in 2125 mefloquine users, and 10 in 1597 doxycycline users (RR 1.53, 95% CI 0.23 to 10.24; 3 cohort studies, 3722 participants; Analysis 2.2, Table 7).
Serious adverse effects in mefloquine users were psychological (4 cases) or due to dizziness (3), heart palpitations (2), limb numbness (1), abdominal pain (1), visual disturbance (1), yeast infection (1), passing out (2), seizure (1) and three hospitalizations with “either gastrointestinal or neurologic symptoms”. In contrast, serious adverse effects in doxycycline users were due to gastrointestinal disturbance (6), anaemia (1), photosensitivity (1), oesophagitis (1) and cough (1).
In addition, a cohort study (Lobel 2001) reported on hospitalizations in users of mefloquine and doxycycline which were not necessarily attributed to the drug regimen (adverse events). There were eight hospitalizations in 3703 mefloquine users, and none in 69 doxycycline users, with no statistically significant difference between groups (RR 0.32, 95% CI 0.02 to 5.51; 3772 participants, Table 6).

Discontinuations due to adverse effects
There were no overall differences between groups in numbers of discontinuations due to adverse effects in the RCTs (8/391 mefloquine users, 8/382 doxycycline users, RR 1.08, 95% CI 0.41 to 2.87; 4 RCTs, 773 participants, Analysis 2.3) or cohort studies (852/6116 mefloquine users, 378/4049 doxycycline users, RR 0.92, 95% CI 0.54 to 1.55; 10 cohort studies, 10,165 participants, Analysis 2.3). However, heterogeneity among cohort studies was high (I² statistic = 85%).

Prespecified adverse outcomes
Prespecified adverse effects (attributed to the study drug) were only reported by cohort studies conducted in long-term occupational travellers (3 studies) and military personnel (3 studies). These form our primary analysis (see Appendix 3 for decision tree).
One RCT in military personnel (Ohrt 1997) and one cohort study in short-term international travellers (Philips 1996) reported on all symptoms experienced by participants while taking the study drug (adverse events). Two large retrospective analyses of health records in general practice (Meier 2004) and USA military personnel (Eick-Cost 2017) databases compared rates of incident neurological or psychological diagnoses in participants who had received a prescription for mefloquine or doxycycline (adverse events).

Gastrointestinal symptoms
Across the cohort studies reporting adverse effects, mefloquine users were less likely to report nausea (RR 0.37, 95% CI 0.30 to 0.45; 5 cohort studies, 2683 participants, Analysis 2.4), vomiting (RR 0.18, 95% CI 0.12 to 0.27; 4 cohort studies, 5071 participants, Analysis 2.5), abdominal pain (RR 0.30, 95% CI 0.09 to 1.07; 4 cohort studies, 2569 participants, Analysis 2.6) and diarrhoea (RR 0.28, 95% CI 0.11 to 0.73; 5 cohort studies, 5104 participants, Analysis 2.7).
However, this finding was not consistent across study types. In the single RCT in military personnel that reported adverse events, no differences were demonstrated for nausea, vomiting, abdominal pain or diarrhoea. In the single cohort study in short-term international travellers reporting adverse events, mefloquine users were more likely to report nausea and diarrhoea; there was no difference between groups for abdominal pain (Analysis 2.4; Analysis 2.5; Analysis 2.6; Analysis 2.7).
Dyspepsia was consistently more common in doxycycline users but there was substantial heterogeneity in the size of this effect (RR 0.26, 95% CI 0.09 to 0.74; 5 cohort studies, 5104 participants, I² statistic = 77%, Analysis 2.8).

Neurological symptoms
In the cohort studies reporting adverse effects, no difference was demonstrated for headache (RR 1.21, 95% CI 0.50 to 2.92; 5 cohort studies, 3322 participants, Analysis 2.9) or dizziness (RR 3.49, 95% CI 0.88 to 13.75; 5 cohort studies, 2633 participants, Analysis 2.10).
In the RCT in military personnel (Ohrt 1997) and a cohort study in short-term international travellers (Philips 1996) both headache and dizziness were more common in mefloquine users. However, a large retrospective analysis of health records in military personnel (Eick-Cost 2017) found higher rates of dizziness in doxycycline users (Analysis 2.9; Analysis 2.10).

Psychological symptoms

In the cohort studies reporting adverse effects, mefloquine users were more likely to report abnormal dreams (RR 10.49, 95% CI 3.79 to 29.10; 4 cohort studies, Analysis 2.11), insomnia (RR 4.14, 95% CI 1.19 to 14.44; 4 cohort studies, 3212 participants, Analysis 2.12), anxiety (RR 18.04, 95% CI 9.32 to 34.93; 3 cohort studies, 2559 participants, Analysis 2.13) and depressed mood (RR 11.43, 95% CI 5.21 to 25.07; 2 cohort studies, 2445 participants, Analysis 2.14). There were 15 episodes of abnormal thoughts and perceptions with mefloquine and none with doxycycline in cohort studies reporting adverse effects (RR 6.60, 95% CI 0.92 to 47.20; 2 cohort studies, 2445 participants, Analysis 2.15).

The findings of the single cohort study in short-term international travellers reporting adverse events (Philips 1996) were consistent with this. However in the single RCT (Ohrt 1997) and the large retrospective healthcare record analyses, there were either no differences between groups, or doxycycline users were more likely to experience psychological symptoms (Analysis 2.11; Analysis 2.12; Analysis 2.13; Analysis 2.14; Analysis 2.15).

Other prespecified symptoms

Pruritis was more common in doxycycline users in cohort studies reporting adverse effects (RR 0.52, 95% CI 0.30 to 0.91; 2 cohort studies, 1794 participants, Analysis 2.16), but more common with mefloquine in the single cohort in short-term travellers reporting adverse events (RR 2.69, 95% CI 0.93 to 7.78; 1 cohort study, 668 participants).

In cohort studies reporting adverse effects, photosensitivity was more common in doxycycline users (RR 0.08, 95% CI 0.05 to 0.11; 2 cohort studies, 1875 participants, Analysis 2.17), as was vaginal yeast infection in female participants (RR 0.10, 95% CI 0.06 to 0.16; 1 cohort study, 1761 participants, Analysis 2.18). The findings of the single cohort study in short-term travellers reporting adverse events were consistent with this finding (Analysis 2.17; Analysis 2.18).

Visual impairment was more commonly reported among mefloquine users (RR 2.37, 95% CI 1.41 to 3.99; 2 cohort studies, 1875 participants; Analysis 2.19).

Other adverse events and effects

A range of other adverse effects were reported by the cohort studies. These included alopecia (hair loss), asthenia (physical weakness), balance disorder, decreased appetite, fatigue, hypoaesthesia (numbness), malaise, mouth ulcers, palpitations and tinnitus (Analysis 2.20). Mefloquine users were more likely to report alopecia (RR 3.44, 95% CI 1.96 to 6.03; 2 cohort studies, 1875 participants), unsteadiness (RR 2.87, 95% CI 1.48 to 5.59; 1 cohort study, 1761 participants) and limb numbness (RR 11.48, 95% CI 3.01 to 43.70; 2 cohort studies, 2445 participants), but were less likely to report malaise (RR 0.28, 95% CI 0.11 to 0.71; 1 cohort study, 734 participants).

Additional adverse events reported in the RCT and cohort studies are presented in Analysis 2.21 and Analysis 2.22 respectively. In Eick-Cost 2017, a large retrospective healthcare record analysis in USA military personnel that reported adverse events, mefloquine users were less likely than doxycycline users to receive formal medical diagnoses of adjustment disorder (RR 0.43, 95% CI 0.40 to 0.45; 354,959 participants), convulsions (RR 0.58, 95% CI 0.45 to 0.75), hallucinations (RR 0.18, 95% CI 0.08 to 0.45), post-traumatic stress disorder (PTSD) (RR 0.58, 95% CI 0.53 to 0.64), suicidal ideation (RR 0.38, 95% CI 0.31 to 0.47) and tinnitus (RR 0.65, 95% CI 0.61 to 0.71). There were no differences in overall rates of suicide in the large retrospective healthcare record analyses (4/53,029 mefloquine users and 15/322,995 doxycycline users; RR 1.21, 95% CI 0.32 to 4.56, Analysis 2.22).

Studies reporting groups of symptoms or other outcomes that could be used as proxy markers of psychological or neurological adverse effects are reported in Appendix 5.

Adherence

Arthur 1990, an RCT, performed serological assays to assess adherence. Arthur 1990 reported measurable serum drug levels at the end of the trial in 87% of 119 military personnel prescribed doxycycline and 92% of 134 who were prescribed mefloquine. However, medication was administered under the supervision of each participant’s squad leader.

Thirteen cohort studies compared the proportion of participants with 100% self-reported adherence and found higher rates of adherence during travel in mefloquine users (RR 1.15, 95% CI 1.12 to 1.18; 13 cohort studies, 15,583 participants, Analysis 2.23), but no differences between groups in the post-travel period (RR 1.08, 95% CI 0.95 to 1.22; 4 cohort studies, 840 participants, Analysis 2.23). Most (77%) mefloquine users described themselves as adherent during travel (range 24% to 100%), compared to 63% of doxycycline users (range 37% to 92%). In the post-travel period this dropped to 55% of mefloquine users (range 50% to 87%) and 51% of doxycycline users (range 27% to 75%). There was no difference in the results when the analysis was limited to short-term international travellers (RR 1.11, 95% CI 1.06 to 1.17; 4 cohort studies; 8390 participants).
Comparison 3: Mefloquine versus atovaquone-proguanil

Description of studies

RCTs
Two RCTs in non-immune travellers reported efficacy, with most participants visiting sub-Saharan Africa for fewer than three weeks (Overbosch 2001; Schlagenhauf 2003). Efficacy was assessed by testing for antibodies to a circumsporozoite protein four weeks after travel in the study by Overbosch 2001, and the method was unclear in Schlagenhauf 2003.

Three RCTs (Overbosch 2001; Schlagenhauf 2003; van Riemsdijk 2002), and 16 cohort studies (Andersson 2008; Belderok 2013; Cunningham 2014; Eick-Cost 2017; Goodyer 2011; Kato 2013; Korhonen 2007; Kuhner 2005; Landman 2015; Laverone 2006; Napoletano 2007; Schneider 2013; Sharafeldin 2010; Stoney 2016; Tan 2017; Tuck 2016) assessed and reported safety outcomes (Table 11). Only Overbosch 2001 performed a blinded assessment of whether there was a reasonable possibility that each adverse event was caused by the study drug (adverse effects). Overbosch 2001 was funded by GlaxoSmithKline (manufacturer of atovaquone-proguanil) and Schlagenhauf 2003 received funding from both GlaxoSmithKline and Roche (manufacturers of mefloquine).

Cohort studies
In the cohort studies, safety was assessed by self-reported questionnaires (Andersson 2008; Belderok 2013; Cunningham 2014; Goodyer 2011; Kato 2013; Korhonen 2007; Kuhner 2005; Landman 2015; Laverone 2006; Sharafeldin 2010; Stoney 2016; Tan 2017; Tuck 2016), telephone interview (Napoletano 2007), and retrospective analysis of a healthcare records (Eick-Cost 2017; Schneider 2013). Seven studies collected adverse event data retrospectively and six collected these data at an unclear or variable time point during treatment (Table 11). One study (Goodyer 2011) was funded by GlaxoSmithKline (manufacturer of atovaquone-proguanil) and one (Schneider 2013) was funded by Roche (manufacturer of mefloquine) (Figure 5).
Figure 5. 'Risk of bias' summary in cohort studies: mefloquine versus atovaquone-proguanil

1. Assesses whether our pre-defined confounders are measured and balanced across groups.
2. Assesses the non-response rate of prospective participants.
3. Assesses the risk that participants labelled as taking mefloquine (or another antimalarial) actually took something else.
4. Assesses the risk that participants whose adverse effects are attributed to mefloquine (or another antimalarial) actually took another drug as well.
5. Assesses whether outcome data reasonably complete for most participants and whether intervention status reasonably complete for those in whom it was sought.
6. Assesses whether the outcome measure was subjective, and whether participants and outcome assessors were blinded.
7. Assesses whether it is clear that all information collected within the study has been reported.
8. Assesses the risk of bias due to influence by a corporate study sponsor.
Efficacy
No clinical cases of malaria were recorded (2 RCTs, 636 mefloquine users; 657 atovaquone-proguanil users).

Safety

Serious adverse events or effects
Overbosch 2001, an RCT, reported 10 serious adverse events in 483 participants who received mefloquine and four in 493 participants who received atovaquone-proguanil. None were considered attributable to the drug regimen (Table 6). Three cohort studies reported a total of 15 serious adverse effects (attributed by participants to the study drug) in 2651 mefloquine users (Table 7). There were no serious adverse effects reported in participants who received atovaquone-proguanil (940 users). The difference between groups was not statistically significant (RR 1.40, 95% CI 0.08 to 23.22; 3 cohort studies, 3591 participants, Analysis 3.2). The serious adverse effects in mefloquine users were: psychological (4 cases), dizziness (3), heart palpitations (2), limb numbness (1), abdominal pain (1), visual disturbance (1), yeast infection (1), and passing out (2).

Discontinuations due to adverse effects
In the RCTs, participants who received mefloquine were more likely to discontinue their medication due to adverse effects than participants who took atovaquone-proguanil (39/714 mefloquine versus 13/724 atovaquone-proguanil; RR 2.86, 95% CI 1.53 to 5.31; 3 RCTs, 1438 participants, Analysis 3.3). The overall effect size was similar in the cohort studies (RR 2.73, 95% CI 1.83 to 4.08; 9 cohort studies, 7785 participants, Analysis 3.3).

Prespecified adverse effects

Gastrointestinal symptoms
Mefloquine users were more likely to report nausea than atovaquone-proguanil users with similar effect sizes in the RCT (RR 2.72, 95% CI 1.52 to 4.86; 976 participants) and overall in the cohort studies (RR 2.50, 95% CI 1.54 to 4.06; 7 cohort studies, 3509 participants, Analysis 3.4). There were no consistent differences in the frequency of reported vomiting (Analysis 3.5), abdominal pain (Analysis 3.6) or diarrhoea (Analysis 3.7). Mouth ulcers were less commonly reported with mefloquine in cohort studies (RR 0.12, 95% CI 0.04 to 0.37; 2 cohort studies, 783 participants), but not in the RCT (RR 1.45, 95% CI 0.70 to 3.00; 976 participants; Analysis 3.8).

Neurological symptoms
Mefloquine users were more likely to report headache although this did not reach standard levels of statistical significance in the RCT (RR 1.72, 95% CI 0.99 to 2.99; 976 participants). The effect was larger and consistent across the cohort studies (RR 3.42, 95% CI 1.71 to 6.82; 8 cohort studies, 4163 participants, Analysis 3.9). Similarly, dizziness was more common in mefloquine users in the RCT (RR 3.99, 95% CI 2.08 to 7.64) and consistently more common in the cohort studies (RR 3.83, 95% CI 2.23 to 6.58; 8 cohort studies, 3986 participants, Analysis 3.10). The same trend was seen in the retrospective healthcare record analyses, although the effect size was smaller (RR 1.23, 95% CI 1.04 to 1.46; 49,419 participants).

Psychological symptoms
In the RCT, mefloquine users were more likely than atovaquone-proguanil users to report abnormal dreams (RR 2.04, 95% CI 1.37 to 3.04), insomnia (RR 4.42, 95% CI 2.56 to 7.64), anxiety (RR 6.12, 95% CI 1.82 to 20.60) and depressed mood (RR 5.78, 95% CI 1.71 to 19.61; 976 participants) (Overbosch 2001). Consistent, larger effects were seen in the cohort studies: abnormal dreams (RR 6.81, 95% CI 1.65 to 28.15; 7 cohort studies, 3848 participants, Analysis 3.11), insomnia (RR 7.29, 95% CI 4.37 to 12.16; 8 cohort studies, 3986 participants, Analysis 3.12), anxiety (RR 10.10, 95% CI 3.48 to 29.32; 4 cohort studies, 2664 participants, Analysis 3.13) and depressed mood (RR 8.02, 95% CI 3.56 to 18.07; 6 cohort studies, 3624 participants, Analysis 3.14). In addition, 21 mefloquine users and no atovaquone-proguanil users reported abnormal thoughts or perceptions, but the difference between groups was not statistically significant (RR 1.50, 95% CI 0.30 to 7.42; 3 cohort studies, 2441 participants, Analysis 3.15). Consistent effects were seen in the retrospective healthcare record analysis (adverse events, Eick-Cost 2017) although the effect size was smaller.

Other prespecified adverse symptoms
No differences were demonstrated for pruritis (1 RCT, 3 cohort studies; Analysis 3.16); or visual impairment (1 RCT, 2 cohort studies; Analysis 3.17).
Other adverse outcomes

Other adverse effects reported in more than 1% of study participants in cohort studies (in either study arm) included: allergic reaction, alopecia (hair loss), asthenia (weakness), balance disorder, cough, disturbance in attention, dyspepsia, fatigue, hypoaesthesia, loss of appetite, muscle pain, palpitation, photosensitization, pyrexia, rash, restlessness, slight illness, somnolence, tinnitus and circulatory disorders (Analysis 3.18). Mefloquine users were more likely to report concentration difficulties (RR 4.45, 95% CI 1.84 to 10.77; 3 cohort studies, 1363 participants). In the large retrospective healthcare record analyses which reported adverse events, mefloquine users were more likely to receive formal medical diagnoses of adjustment disorder (RR 1.76, 95% CI 1.54 to 2.02; 49,419 participants, Analysis 3.19), PTSD (RR 2.51, 95% CI 1.93 to 3.26; Analysis 3.19), suicidal ideation (RR 1.69, 95% CI 1.03 to 2.77; Analysis 3.19) and tinnitus (RR 1.42, 95% CI 1.21 to 1.68; Analysis 3.19). However, users were less likely to experience hallucinations (RR 0.25, 95% CI 0.08 to 0.79; Analysis 3.19). Studies reporting groups of symptoms, or other outcomes which could be used as proxy markers of psychological or neurological adverse effects, are reported in Appendix 6.

Adherence

van Riemsdijk 2002 monitored adherence through reference to the participants’ diary cards and counts of returned study medication. It was found that 93% of mefloquine users were completely adherent, compared to 98.3% of atovaquone-proguanil users (RR 0.95, 95% CI 0.88 to 1.02; 1 RCT, 119 participants, Analysis 3.20).

Overbosch 2001 defined participants as adherent if they took at least 80% of prescribed doses. Overbosch 2001 also found no difference between the groups during travel (RR 0.98, 95% CI 0.95 to 1.01; 966 participants; Analysis 3.20). However, analysis in the post-travel period found that mefloquine users were less likely to complete the regimen (RR 0.80, 95% CI 0.74 to 0.85; 966 participants); 93% of mefloquine users were adherent during travel, dropping to 70% in the post-travel period, compared to 95% and 88% for atovaquone-proguanil.

Six cohort studies compared the proportion of participants with 100% self-reported adherence and found no difference during travel (RR 1.08, 95% CI 0.86 to 1.34; 6 cohort studies, 5577 participants, Analysis 3.21) or in the post-travel period (RR 0.89, 95% CI 0.64 to 1.23; 2 cohort studies, 422 participants, Analysis 3.21). In these studies, 60% of mefloquine users described themselves as adherent during travel, dropping to 51% in the post-travel period, compared to 53% and 62% respectively for people who took atovaquone-proguanil.

Belderok 2013 categorized travellers as adherent if they took at least 75% of prescribed doses. Belderok 2013 reported higher rates of adherence in participants who took mefloquine both during and after travel. Meta-analysis of these results did not result in a significant difference (during travel: RR 1.04, 95% CI 0.77 to 1.40; 5 cohort studies, 2810 participants, post-travel: RR 1.07, 95% CI 0.72 to 1.59; 3 cohort studies, 941 participants).

Pregnancy outcomes

One cohort study included respondents who were pregnant (Cunningham 2014) but did not report which prophylaxis the women took or on any outcomes related to pregnancy.

Mefloquine versus chloroquine

Description

RCTs

We included five RCTs comparing mefloquine with chloroquine that reported on efficacy and six on safety (Table 12). Trials were conducted in immune or semi-immune adult populations in the Ivory Coast (Sossouhounto 1995), Malawi (Steketee 1996), Nigeria (Salako 1992) Thailand (Boudreau 1991; Bunnag 1992) and the USA. (Boudreau 1993). The Malawi trial by Steketee 1996 was limited to pregnant women. None included non-immune travellers or children. All six trials used interview with study personnel to obtain information about adverse events. Boudreau 1993 excluded participants with a history of psychiatric or neurological problems.

None of the trials adequately described random sequence generation or allocation concealment. Participants were adequately blinded in four trials (Boudreau 1993; Bunnag 1992; Salako 1992; Sossouhounto 1995), the trial in pregnant women did not blind participants or outcome assessors (Steketee 1996). We judged three of the trials to be at high risk of selective reporting of safety outcomes. Bunnag 1992 was funded by Roche (manufacturer of mefloquine). Five trials actively sought information on adverse events (Boudreau 1991; Boudreau 1993; Bunnag 1992; Salako 1992; Steketee 1996) and all collected information prospectively (Table 13).

Cohort studies

We included 15 cohort studies in this comparison; 12 included short-term travellers (Albright 2002; Corominas 1997; Hill 2000; Laver 2001; Laverone 2006; Lobel 2001; Napoletano 2007; Petersen 2000; Rietz 2002; Steffen 1993; Stoney 2016; Wanner 1999) and three longer-term occupational travellers (Cunningham 2014; Korhonen 2007; Tan 2017) (Table 12). Albright 2002 included only children. Twelve studies used participant-self reported questionnaires to collect information about adverse events; three
of these, including the largest study (Steffen 1993, 145,003 participants), collected information from travellers flying back to Europe from Africa. The remaining three studies collected information through interviews with study personnel (Albright 2002; Hill 2000; Napoletano 2007).

Eight of the cohort studies had non-response rates of over 20% (Figure 6). We judged 14 cohort studies to be at low risk of missing data, the largest study (Steffen 1993) was at moderate risk due to a 15% loss to follow-up between the first and second questionnaire in the second phase of the study. Steffen 1993 did not report on non-serious adverse effects from the first phase of the study (44,677 participants) and was funded by Roche (manufacturer of mefloquine). Six studies collected information about adverse events at set time points (Corominas 1997; Hill 2000; Napoletano 2007; Petersen 2000; Rietz 2002; Stoney 2016; Tan 2017), and one collected information prospectively (Stoney 2016) (Table 13; Figure 6).
Figure 6. *Risk of bias* summary in cohort studies: mefloquine versus chloroquine

1. Assesses whether our pre-defined confounders are measured and balanced across groups.
2. Assesses the non-response rate of prospective participants.
3. Assesses the risk that participants labelled as taking mefloquine (or another antimalarial) actually took something else.
4. Assesses the risk that participants whose adverse effects are attributed to mefloquine (or another antimalarial) actually took another drug as well.
5. Assesses whether outcome data reasonably complete for most participants and whether intervention status reasonably complete for those in whom it was sought.
6. Assesses whether the outcome measure was subjective, and whether participants and outcome assessors were blinded.
7. Assesses whether it is clear that all information collected within the study has been reported.
8. Assesses the risk of bias due to influence by a corporate study sponsor.
Efficacy
Participants who took mefloquine were less likely to experience malaria than participants who took chloroquine (RR 0.38, 95% CI 0.28 to 0.52; 4 RCTs, 877 participants, Analysis 4.1). However, two RCTs were conducted in settings with known chloroquine resistance at the study sites, and the other two reported no episodes of malaria in either study arm. All RCTs included semi-immune populations, and were conducted over 20 years ago.

Safety

Serious adverse events or effects
Across four RCTs, two serious adverse events were reported in 529 mefloquine users and none in 471 chloroquine users; the difference between groups was not significant (RR 2.77, 95% CI 0.32 to 23.85; 5 RCTs, 1000 participants, Analysis 4.2, Table 6). Both events were psychiatric admissions due to depression and suicidal thoughts; both study participants had previous psychiatric histories. In one case, the participant’s psychiatrist did not think the event was drug-related, and in the other “felt this individual’s current depression was not drug related, unless it was aggravated by inability to sleep”. Additionally, Steketee 1996 described one withdrawal due to a “neuropsychiatric side effect” (disorientation to time and place) but did not provide enough detail to meet our definition of serious adverse event or effect. Four cohort studies reported a total of 29 serious adverse events (attributed by users to the study drug) in 56,674 mefloquine users, and 13 serious adverse effects in 22,583 chloroquine users. The difference between groups was not statistically significant (RR 1.14, 95% CI 0.62 to 2.07; 6 cohort studies; 79,257 participants; Analysis 4.2). Serious side effects in mefloquine users were psychological (11 cases), dizziness (5), seizures (3), heart palpitations (2), abdominal pain (1), blackout (2), visual disturbance (1), limb numbness (1), yeast infection (1), and two which were not described (Table 7). Those in chloroquine users were psychological (4 cases), seizures (3), abdominal pain (1) and visual disturbance (1).

Discontinuations of the study drug due to adverse effects
There was no differences between groups in the number of discontinuations due to adverse effects in the RCTs (RR 1.60, 95% CI 0.61 to 4.18; 3 RCTs, 815 participants, Analysis 4.3) or cohort studies in short-term international travellers (RR 0.99, 95% CI 0.78 to 1.26; 6 cohort studies, 55,397 participants, Analysis 4.3). However, in the two cohort studies in longer-term occupational travellers, mefloquine users were significantly more likely to stop taking medication (RR 2.97, 95% CI 2.41 to 3.66; 2 cohort studies; 6085 participants; Analysis 4.3).

Prespecified adverse effects
The RCTs only reported adverse events (all symptoms without assessing whether they might be related to the study drug). Our primary analysis was therefore taken from the six cohort studies reporting adverse effects.

Gastrointestinal symptoms
There were no consistent differences between groups for nausea (RR 1.23, 95% CI 0.89 to 1.68; I² statistic = 78%, 6 cohort studies, 58,984 participants, Analysis 4.4), vomiting (RR 1.05, 95% CI 0.78 to 1.40; 5 cohort studies, 5577 participants, Analysis 4.5) or abdominal pain (RR 0.99, 95% CI 0.80 to 1.22; 4 cohort studies, 5440 participants; Analysis 4.6). This was consistent with adverse events reported by RCTs (Analysis 4.4; Analysis 4.5; Analysis 4.6) Overall, mefloquine users were less likely to report diarrhoea but this finding was from a single cohort study with over 90% of the weight in the meta-analysis (RR 0.84, 95% CI 0.74 to 0.95; 5 cohort studies, 5577 participants; Analysis 4.7). No difference was seen in the RCTs (Analysis 4.7).

Neurological symptoms
In the cohort studies, there was no substantial difference between groups in the proportion of participants reporting headache (RR 0.84, 95% CI 0.53 to 1.34; 6 cohort studies, 56,998 participants, Analysis 4.8), but mefloquine users reported more dizziness (RR 1.51, 95% CI 1.34 to 1.70; 5 cohort studies, 56,710 participants; Analysis 4.9). The RCTs reporting adverse events did not demonstrate a difference between groups (Analysis 4.8; Analysis 4.9).

Psychological symptoms
Across the cohort studies, mefloquine users were more likely to report abnormal dreams (RR 1.21, 95% CI 1.10 to 1.33; 4 cohort studies, 2845 participants, Analysis 4.10), anxiety (RR 6.30, 95% CI 4.37 to 9.09; 3 cohort studies, 3408 participants, Analysis 4.12), depressed mood (RR 3.14, 95% CI 1.15 to 8.57; I² statistic = 90%; 5 cohort studies, 58,855 participants, Analysis 4.13) and abnormal thoughts or behaviour (RR 5.49, 95% CI 2.65 to 11.35; 4 cohort studies, 4831 participants, Analysis 4.14). Of these outcomes only abnormal dreams was reported by RCTs and the result was consistent with the cohort studies (Analysis 4.10). Insomnia
was reported by five cohort studies (RR 1.81, 95% CI 0.73 to 4.51; 5 cohort studies, 56952 participants) and two RCTs (RR 1.19, 95% CI 0.76 to 1.84; 2 RCTs, 359 participants), and no consistent differences were seen between groups (Analysis 4.11).

Other prespecified adverse symptoms

There were no consistent differences demonstrated in reported pruritis between groups in cohort studies (RR 1.13, 95% CI 0.92 to 1.40; 2 cohort studies; 55,544 participants) or RCTs (RR 0.28, 95% CI 0.03 to 2.93; 2 RCTs, 413 participants; Analysis 4.15). There were no differences in visual impairment in cohort studies (RR 1.10, 95% CI 0.50 to 2.44; P statistic = 90%, 5 cohort studies, 58,847 participants), or in the single RCT (RR 0.14, 95% CI 0.01 to 2.63; 210 participants, Analysis 4.16).

Prespecified adverse symptoms restricted to cohort studies in short-term travellers

Analysis 4.18 presents the pre-specified adverse symptoms restricted to the cohort studies in short-term travellers.

Other adverse outcomes

Other adverse effects reported by cohort studies were alopecia (hair loss), asthenia, altered spatial perception, balance disorder, confusion, decreased appetite, fatigue, hypoaesthesia, irritability, mouth ulcers, paraesthesia, palpitation, photosensitization, restlessness, slight illness, somnolence and yeast infection (Analysis 4.19). Of note, single cohort studies found that mefloquine users were more likely to report altered spatial perception (RR 3.16, 95% CI 1.55 to 6.45; 2032 participants), unsteadiness (RR 3.59, 95% CI 2.15 to 6.00; 2137 participants), alopecia (RR 1.69, 95% CI 1.27 to 2.25; 2137 participants), limb numbness (RR 20.26, 95% CI 1.23 to 333.93; 2137 participants) and tingling (RR 2.22, 95% CI 1.27 to 3.89; 2 cohort studies, 2778 participants). Other adverse events reported by RCTs were abdominal distension, anger, disturbance in attention, irritability, loss of appetite, malaise and altered mood (Analysis 4.20). No statistically significant differences were noted.

Pregnancy-related outcomes

One quasi-randomized trial (Steketee 1996) was conducted in pregnant Malawian women and reported no difference between mefloquine and chloroquine for spontaneous abortions (RR 0.80, 95% CI 0.36 to 1.79; 2334 participants), still births (RR 1.01, 95% CI 0.67 to 1.52; 2334 participants) or congenital malformations (0 events in either study arm, 2334 participants, Analysis 4.21). Steketee 1996 sequentially allocated participants to each drug regimen, and did not blind participants or study personnel.

Adherence

Three cohort studies in short-term travellers (Hill 2000; Laver 2001; Rietz 2002) compared the proportion of participants with 100% self-reported adherence and found no difference overall (RR 1.00, 95% CI 0.90 to 1.13; 3 cohort studies, 852 participants, Analysis 4.22). Among participants in these studies, 84% of mefloquine users described themselves as adherent during travel (range 71% to 88%) compared to 82% of chloroquine users (range 82% to 85%). In the two studies in longer-term occupational travellers, self-reported adherence was higher in mefloquine users (RR 2.02, 95% CI 1.80 to 2.26; 2 cohort studies, 5777 participants). One study (Stoney 2016) measured adherence in the post-travel period and found no difference (RR 1.00, 95% CI 0.54 to 1.87; 46 participants, Analysis 4.22). However, rates of completion were low in both groups (56% in mefloquine users and 54% in chloroquine users).

Subgroup analyses

Given the similarity in adverse effect profiles for mefloquine compared to the two main alternatives (doxycycline and atovaquone-proguanil), we combined findings from the two comparisons and performed a series of subgroup analyses to explore the effects of study design, duration of travel, and military versus non-military participants.

Prespecified adverse effects

Study design

Only one RCT performed a blinded assessment of whether there was a reasonable possibility that any reported symptoms could be related to the study drug (Overbosch 2001). We compared this with participants self-reporting of adverse effects in cohort studies. The findings were largely consistent across study designs with mefloquine users experiencing higher rates of headache (Analysis 5.4), dizziness (Analysis 5.5), abnormal dreams (Analysis 5.6), insomnia (Analysis 5.7), anxiety (Analysis 5.8) and depressed mood (Analysis 5.9). Although the relative risk of psychiatric side effects was consistently slightly higher in cohort studies, in only one case was the test for subgroup differences statistically significant (abnormal dreams: RCT: RR 2.04, 95% CI 1.37 to 3.04; 976 participants, cohort studies: RR 7.30, 95% CI 2.51 to 21.18; 7 cohort studies, 4543 participants, test for subgroup differences P = 0.03).

Duration of travel

The relative risk of all psychological adverse effects was higher with longer-term travel than in short-term travel; insomnia (short-term RR 3.09 versus longer-term RR 8.67), anxiety (short-term RR 3.26 versus longer-term RR 18.05), depressed mood (short-term
RR 2.52 versus longer-term RR 12.59) and abnormal thoughts and perceptions (short-term RR 1.29 versus longer-term RR 7.78) (Table 14). However, in only one case was the test for subgroup differences statistically significant (P range 0.02 to 0.40). This same effect was not observed with gastrointestinal symptoms (nausea, abdominal pain, diarrhoea) or neurological symptoms (headache, dizziness).

Military versus non-military participants
There were no significant differences in the relative risk of adverse effects between military and non-military participants (Table 15). Very few cohort studies in military personnel reported on our prespecified symptoms. In one of these in which military personnel who took mefloquine for 6 months or longer (Andersson 2008), the rates of psychological side effects were significantly higher than in short-term travellers, but not significantly different from other trials in longer-term travellers.

Adherence

Study design
Across cohort studies, self-reported complete adherence was slightly higher in participants who took mefloquine than in users of other antimalarial agents (RR 1.16, 95% CI 1.03 to 1.30; 11 cohort studies, 12131 participants, Analysis 5.13). However, there was no difference in self-reported completion of the treatment after return (RR 1.04, 95% CI 0.92 to 1.17; 4 cohort studies, 1221 participants, Analysis 5.14).

Duration of travel
Self-reported complete adherence was slightly higher in short-term travellers who took mefloquine than users of other antimalarial agents (RR 1.10, 95% CI 1.03 to 1.18; 7 cohort studies, 7241 participants). However, the same effect was not seen in longer-term travellers (RR 1.20, 95% CI 0.88 to 1.62; 4 cohort studies, 4890 participants, test for subgroup differences P = 0.61, Table 14).
There was no overall difference in rates of completing the treatment regimen after return in short-term travellers who took mefloquine than in those who received other antimalarial agents (RR 1.04, 95% CI 0.92 to 1.17; 4 cohort studies, 1221 participants). No studies in longer-term travellers monitored adherence after return.

Military versus non-military participants
There were no differences in self-reported complete adherence when comparing military versus non-military participants, either during travel or after return (Table 15).
Additional Summary of Findings [Explanation]

Mefloquine compared with doxycycline for preventing malaria in travellers

Population: Non-immune adults and children travelling to malaria-endemic settings
Intervention: Mefloquine 250 mg weekly
Comparison: Doxycycline 100 mg daily
Outcome data collection: Self-reported symptoms experienced whilst taking prophylaxis (adverse events)

Outcomes	Anticipated absolute effects* (95% CI)	Relative effect (95% CI)	Studies contributing to effect estimate (participants)	Additional studies considered in GRADE assessment (participants)	Certainty of the evidence (GRADE)
Clinical malaria	1 per 100 (0 to 5)	RR 1.35 (0.35 to 5.19)	4 RCTs (744)	-	⊕⊕⊕⊕ low 1,2,3,4
Serious adverse effects	6 per 1000 (1 to 61)	RR 1.53 (0.23 to 10.24)	3 cohort studies (3722)	3 RCTs, 1 cohort study (682; 3772)	⊕⊕⊕ very low 1,3,6,7
Discontinuations due to adverse effects	2 per 100 (1 to 6)	RR 1.08 (0.41 to 2.87)	4 RCTs (763)	10 cohort studies (10,165)	⊕⊕⊕ low 1,3,7,8
Abnormal dreams	3 per 100 (11 to 87)	RR 10.49 (3.79 to 29.10)	4 cohort studies (2588)	1 RCT, 1 cohort study (123; 688)	⊕⊕⊕ very low 2,6,9,10
Insomnia	3 per 100 (4 to 43)	RR 4.14 (1.19 to 14.44)	4 cohort studies (3212)	1 RCT, 2 cohort studies (123; 355,627)	⊕⊕⊕ very low 6,9,10,11
Anxiety	1 per 100 (9 to 35)	RR 18.04 (9.32 to 34.93)	3 cohort studies (2559)	2 cohort studies (355,627)	⊕⊕⊕ very low 6,9,10,11
Depressed mood	1 per 100 (5 to 25)	RR 11.43 (5.21 to 25.07)	2 cohort studies (2445)	3 cohort studies (430,006)	⊕⊕⊕ very low 6,9,10,11
Abnormal thoughts or perceptions	0 per 100 (0 to 24)	RR 6.60 (0.92 to 47.20)	2 cohort studies (2445)	2 cohort studies (376,024)	⊕⊕⊕ very low 6,9,10,11

33

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Condition	Incidence	Incidence placebo	RR (95% CI)	Study details	Risk of bias	
Nausea	8 per 100	3 per 100	RR 0.37 (0.30 to 0.45)	5 cohort studies (2683)	1 RCT, 1 cohort study (123; 668)	⊕⊕⊕⊕ very low^{3,6,10,11}
Vomiting	5 per 100	1 per 100	RR 0.18 (0.12 to 0.27)	4 cohort studies (5071)	1 RCT (123)	⊕⊕⊕⊕ very low^{3,6,10,11}
Abdominal pain	15 per 100	5 per 100	RR 0.30 (0.09 to 1.07)	3 cohort studies (2536)	1 RCT, 1 cohort study (123; 668)	⊕⊕⊕⊕ very low^{6,7,9,11}
Diarrhoea	5 per 100	1 per 100	RR 0.28 (0.11 to 0.73)	5 cohort studies (5104)	2 RCTs; 1 cohort study (376; 668)	⊕⊕⊕⊕ very low^{3,6,10,11}
Dyspepsia	14 per 100	4 per 100	RR 0.26 (0.09 to 0.74)	5 cohort studies (5104)	-	⊕⊕⊕⊕ low^{2,3,6,10}
Headache	2 per 100	2 per 100	RR 1.21 (0.50 to 2.92)	5 cohort studies (3320)	1 RCT, 1 cohort study (123; 668)	⊕⊕⊕⊕ very low^{3,6,7,11}
Dizziness	1 per 100	3 per 100	RR 3.49 (0.88 to 13.75)	5 cohort studies (2633)	1 RCT, 2 cohort studies (123; 355,627)	⊕⊕⊕⊕ very low^{3,6,7,11}
Visual impairment	3 per 100	7 per 100	RR 2.37 (1.41 to 3.99)	2 cohort studies (1875)	-	⊕⊕⊕⊕ very low^{2,6,7,9}
Pruritis	3 per 100	2 per 100	RR 0.52 (0.30 to 0.91)	2 cohort studies (1794)	1 cohort study (688)	⊕⊕⊕⊕ very low^{6,9,10,11}
Photosensitivity	19 per 100	2 per 100	RR 0.08 (0.05 to 0.11)	2 cohort studies (1875)	1 cohort study (688)	⊕⊕⊕⊕ very low^{2,6,9,10}
Vaginal thrush	16 per 100	2 per 100	RR 0.10 (0.06 to 0.16)	1 cohort study (1761)	1 cohort study (354)	⊕⊕⊕⊕ very low^{2,6,9,10}
The *assumed risk* is the median control group risk across cohort studies unless stated in footnotes. The *corresponding risk* (and its 95% confidence interval) is based on the assumed risk in the comparison group and the *relative effect* of the intervention (and its 95% CI). Where the control group risk was 0, we used a value of 0.5 to calculate the corresponding risk in the intervention group. Where no RCTs including short-term travellers reported on our prespecified adverse outcomes, we included information from cohort studies as our primary analysis.

Summary of findings tables are usually limited to seven outcomes. For adverse effects this problematic, as there are many, and to include some and not others risks selective reporting. We have therefore included all prespecified outcomes in the table.

GRADE Working Group grades of evidence

- **High certainty**: further research is very unlikely to change our confidence in the estimate of effect.
- **Moderate certainty**: further research is likely to have an important impact on our confidence in the estimate of effect and may change the estimate.
- **Low certainty**: further research is very likely to have an important impact on our confidence in the estimate of effect and is likely to change the estimate.
- **Very low certainty**: we are very uncertain about the estimate.

1. No serious risk of bias: none of the RCTs adequately described methods of random sequence generation or allocation concealment. However, given that so few events occurred in these trials, it is unlikely to have introduced bias.
2. No serious inconsistency: the direction of the effect is consistent across study designs, or there in inconsistency in the finding of no effect.
3. No serious indirectness: the primary analysis included studies in short-term international travellers, longer-term occupational travellers, and military personnel.
4. Downgraded by two levels for imprecision: only seven episodes of clinical malaria occurred in the four trials, and consequently, the analysis was substantially underpowered to exclude important differences.
5. For serious adverse outcomes we expressed the control group risk as the overall risk in the control group.
6. No serious risk of bias: all cohort studies had methodological problems which could introduce confounding or bias. However, as the GRADE approach automatically downgrades certainty by two levels for non-randomized studies, we did not downgrade further.
7. Downgraded by one level for serious imprecision: the 95% confidence interval includes both clinically important effects and no effect.
8. Downgraded by one level for serious inconsistency: although there was no substantial difference between drugs in the cohort studies, the proportion of discontinuations was higher with both drugs: 14% for mefloquine and 9% for doxycycline.
9. Downgraded by one level for indirectness: the primary analysis included only cohort studies in longer-term occupation travellers (USA Peace Corps volunteers) and military personnel. Adverse effects in shorter-term international travellers may be lower.
10. No serious imprecision: the effect was statistically significant and the overall data (RCTs and cohort studies) were adequately powered to detect this effect.
11. Downgraded by one level for serious inconsistency: there was heterogeneity between trials in the direction of effect.
DISCUSSION

Summary of main results

Mefloquine efficacy
We included 12 randomized controlled trials (RCTs) that compared mefloquine with placebo; none were performed in short-term international travellers, and most populations had a degree of immunity to malaria. The percentage of people developing a malaria episode in the control arm varied from 1% to 82% (median 22%) and in the mefloquine group 0% to 13% (median 1%).

In four other RCTs that directly compared mefloquine, atovaquone-proguanil and doxycycline in non-immune, short-term international travellers, only one clinical case of malaria occurred (low-certainty evidence).

Mefloquine safety versus currently used alternatives
Serious adverse effects have been reported for mefloquine and doxycycline, but not for atovaquone-proguanil. Serious adverse effects are uncommon, and on statistical testing, no difference was detected between mefloquine and atovaquone-proguanil (low-certainty evidence), or between mefloquine and doxycycline (very low-certainty evidence).

Participants who received mefloquine were more likely to discontinue their medication due to adverse effects than participants who received atovaquone-proguanil (high-certainty evidence), but there was no difference in comparisons with doxycycline (low-certainty evidence).

We included one RCT and six cohort studies that reported our prespecified adverse effects that compared mefloquine and atovaquone-proguanil. In the RCT in short-term travellers, mefloquine users were more likely to report abnormal dreams (moderate-certainty evidence), insomnia (moderate-certainty evidence), anxiety (moderate-certainty evidence), and depressed mood during travel (moderate-certainty evidence). The cohort studies in longer-term travellers were consistent with these findings but most had larger effect sizes. Mefloquine users were also more likely to report nausea (high-certainty evidence) and dizziness (high-certainty evidence). We included six cohort studies in longer-term occupational travellers that compared mefloquine with doxycycline which reported our prespecified adverse effects. We also included one RCT in military personnel and one cohort in short-term travellers that reported adverse events. Mefloquine users were more likely to report abnormal dreams (very low-certainty evidence), insomnia (very low-certainty evidence), anxiety (very low-certainty evidence) and depressed mood (very low-certainty evidence). The findings of the single cohort study reporting adverse events in short-term international travellers were consistent with these findings but the single RCT in military personnel did not demonstrate a difference between groups in the frequency of abnormal dreams or insomnia.

Doxycycline users were more likely to report dyspepsia (very low-certainty evidence), photosensitivity (very low-certainty evidence), vomiting (very low-certainty evidence) and vaginal thrush (very low-certainty evidence).

Comparisons with chloroquine showed a broadly consistent pattern with these results.

Overall completeness and applicability of evidence
Mefloquine has been licensed for prevention of malaria in travellers since the late 1980s, and as such, it is perhaps surprising how few well-conducted RCTs were available. However, because we were mainly interested in the adverse effect profiles of different antimalarial agents, cohort studies (of which there are many) are probably the most appropriate study design despite their inherent limitations. Most RCTs excluded people with a previous history of mental health problems, precluding an analysis of whether psychological side effects are more common in this group. Conversely, many of the cohort studies explicitly stated that the choice of antimalarial agent was influenced by both past medical history and personal preference. While this undoubtedly introduces some confounding between study groups, we consider this confounding to be appropriate and directly applicable to clinical practice. Similarly, we would normally be cautious about interpreting unblinded self-reported assessments of adverse effects and causality. In this scenario, self-reported adverse effects provide useful and relevant information for travellers, who would also be unblinded. It should be noted that the reported adverse effects are largely self-reported psychiatric symptoms and not formal psychiatric diagnoses.

Given the heterogeneity in trial design, mefloquine doses used, and the study population, we were unable to derive a reliable estimate for mefloquine efficacy. However, the evidence suggests that mefloquine is likely to be highly effective in reducing clinical episodes of malaria. Comparative trials found no difference in efficacy between mefloquine and atovaquone-proguanil or doxycycline for preventing clinical malaria, but the number of malaria episodes was very low, and consequently, much larger trials would be needed to exclude clinically important differences. As a consequence, knowledge about antimalarial resistance patterns in the country of travel seems an appropriate approach to decision making rather than further RCTs.

The choice between antimalarial agents will therefore depend on how individual travellers rate the relative importance of specific adverse effects, pill burden and cost. Prophylactic mefloquine is widely acknowledged to cause abnormal dreams and psychological adverse effects and we found consistent evidence for these effects across comparisons with atovaquone-proguanil, doxycycline and chloroquine (the most commonly used alternatives). Doxycycline does not have the same risk of psychological adverse effects, but is associated with increased risk of photosensitivity, dyspepsia, and vaginal thrush, which some travellers will undoubtedly consider...
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Potential biases in the review process

During the course of this review we made changes to the protocol. Two changes were made to shorten the overall length of the review:
- we excluded comparisons of mefloquine with primaquine and tafenoquine because these are planned for assessment in another Cochrane Review (Rodrigo 2016);
- we excluded single-arm cohort studies because there were sufficient data from comparative studies to reach reasonable conclusions. These studies have been analysed for the very rare outcomes of death or attempted suicide in another systematic review (Tickell-Painter 2017).

We do not think these decisions biased the review.

Agreements and disagreements with other studies or reviews

Several recently published reviews regarding the safety of mefloquine have been narrative, and included little or no description of methods applied and a lack of clearly defined and prespecified outcomes (McCarthy 2015; Nevin 2015; Schlagenhauf 2010). McCarthy 2015 and Nevin 2015 discuss the policy implications of mefloquine use by the military which was beyond the scope of this Cochrane Review. Schlagenhauf 2010 highlighted several areas in which mefloquine prophylaxis may be considered advantageous (during pregnancy and while breastfeeding, in long-term travellers, travellers who are visiting friends and relatives and families with small children). The main disagreement with our review was in regard to safety in long-term travellers, in whom the review authors refer to mefloquine as “a good option if well tolerated”. This is based on a narrative analysis of a single cohort study which compared mefloquine users with users of chloroquine-proguanil, which was not included in this review (Lobel 1993).

Our review added data from several additional studies evaluating longer-term use (Andersson 2008; Cunningham 2014; Korhonen 2007; Landman 2015), and we found some observational evidence that risk of adverse effects was higher than with short-term travel. Our findings are broadly consistent with the previous version of this Cochrane Review, which was withdrawn (Jacquerioz 2015). Jacquerioz 2015 found higher rates of neuropsychiatric adverse events in mefloquine users compared with users of both atovaquone-proguanil and doxycycline. We expanded on this finding by providing estimated risks for specific neurological and psychiatric symptoms, and by including additional data from cohort studies. Jacquerioz 2015 included a brief analysis of case reports of deaths associated with mefloquine in the Discussion. We excluded this analysis from this update, but this aspect has been addressed in a separate review of single-arm cohort studies and case reports (Tickell-Painter 2017).

Two recent reviews included evaluations of mefloquine efficacy and safety during pregnancy. González 2014 concluded there were no indications that mefloquine use during pregnancy carries an increased risk for the foetus. González 2014 included additional studies to those we included in this Cochrane Review, including mefloquine when used at treatment dose, or as intermittent presumptive treatment in pregnancy. Muanda 2015 also included mefloquine when used as intermittent presumptive treatment in pregnancy. Muanda 2015 reported findings from two trials in which the number of adverse events (Briand 2009), and number of serious adverse events (González 2014a) was higher in participants who received mefloquine as intermittent presumptive treatment in pregnancy than in those who received sulphadoxine-pyrimethamine.

Authors’ conclusions

Implications for practice

The absolute risk of malaria during short-term travel appears to be very low with all three established antimalarial agents (mefloquine, doxycycline and atovaquone-proguanil).

The choice of antimalarial agent will therefore depend on how individual travellers rate the relative importance of specific adverse effects, pill burden and cost. Some will prefer mefloquine for its once-weekly regimen, but this should be balanced against the increased frequency of abnormal dreams, anxiety, insomnia, and depressed mood during travel.

Implications for research

Given the low absolute risk of malaria in travellers, very large trials would be necessary to exclude clinically important differences among antimalarial agents. As a consequence, knowledge about antimalarial resistance patterns in the country of travel seems an appropriate approach to decision making rather than further RCTs.

Although a large number of RCTs evaluating mefloquine prophylaxis have been performed, very few could be included in our analyses. Many RCTs chose to report proxy measures of psychiatric outcomes, such as Profile of Mood States questionnaires and Environmental Symptoms Questionnaires, which are difficult for clinicians and participants to interpret. Furthermore, many studies grouped symptoms together when reporting outcomes. ‘Neuropsychiatric’ or ‘neuropsychologic’ were commonly used terms, although the symptoms included varied from headaches to psychosis, making them of limited value in clinical decision making.

Even though we found moderate- and high-certainty evidence that mefloquine use is associated with a range of psychological adverse effects, further RCTs could increase confidence in the size of the effect. The relative risk of psychological side effects was higher with...
long-term use of mefloquine, although this finding was only statistically significant in one comparison. An alternative explanation is the possibility of an interaction between mefloquine and level of psychological stress given the occupation of participants surveyed (Foreign and Commonwealth Office workers, Peace Corps volunteers and military personnel). Further research should examine these potential interactions.

Furthermore, well-designed trials could test hypotheses regarding male versus female users, whether mefloquine users with a previous history of mental health problems are more likely to experience psychological adverse effects, and the severity or duration of the reported adverse effects.

ACKNOWLEDGEMENTS

Dr Maya Tickell-Painter, Dr Rachel Saunders, and Dr David Sinclair received support from the by the Effective Health Care Research Consortium. The Consortium and the editorial base of the Cochrane Infectious Diseases Group are funded by UK aid from the UK Government for the benefit of developing countries (Grant: 5242). The funding body had no role in study design, data collection and analysis, or preparation of the manuscript. The views expressed in this review do not necessarily reflect UK government policy.

REFERENCES

References to studies included in this review

Albright 2002 [published data only]
Albright TA, Binns HJ, Katz BZ. Side effects of and compliance with malaria prophylaxis in children. *Journal of Travel Medicine* 2002;9(6):289–92.

Andersson 2008 [published data only]
Andersson H, Askling HH, Falck B, Rombo L. Well-tolerated chemoprophylaxis uniformly prevented Swedish soldiers from *Plasmodium falciparum* malaria in Liberia, 2004-2006. *Military Medicine* 2008;173(12):1194–8.

Arthur 1990 [published data only]
Arthur JD, Echeverria P, Shanks GD, Karwacki J, Bodhidatta L, Brown JE. A comparative study of gastrointestinal infections in United States soldiers receiving doxycycline or mefloquine for malaria prophylaxis. *American Journal of Tropical Medicine and Hygiene* 1990;43(6):608–13.

Belderok 2013 [published data only]
Belderok SM, van den Hoek A, Roeffen W, Sauerwein R, Sonder GJ. Adherence to chemoprophylaxis and *Plasmodium falciparum* anti-circumsporozoite seroconversion in a prospective cohort study of Dutch short-term travelers. *PLoS ONE* 2013;8(2):e56863.

Boudreau 1991 [published data only]
Boudreau EF, Pang JW, Chaikummao S, Wityayarut C. Comparison of mefloquine, chloroquine plus pyrimethamine-sulfadoxine (Fansidar), and chloroquine as malarial prophylaxis in eastern Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 1991; Vol. 22, issue 2:183–9.

Boudreau 1993 [published data only]
Boudreau E, Schuster B, Sanchez J, Novakowski W, Johnson R, Redmond D, et al. Tolerability of prophylactic Lariam regimens. *Tropical Medicine and Parasitology* 1993;44(3):257–65.

Bunnag 1992 [published data only]
Bunnag D, Malikul S, Chaitamas S, Chindanond D, Harinasuta T, Fernex M, et al. Fansimef for prophylaxis of malaria: a double-blind randomized placebo controlled trial. Southeast Asian Journal of Tropical Medicine and Public Health 1992; Vol. 23, issue 4:777–82.

Corominas 1997 [published data only]
Corominas N, Gascon J, Mejias T, Caparros F, Quinto L, Codina C, et al. Adverse drug reactions associated to the antimalarial chemoprophylaxis. *Medicina Clinica* 1997;108(20):772–5.

Cunningham 2014 [published and unpublished data]
Cunningham J, Horsley J, Patel D, Tunbridge A, Laloo DG. Compliance with long-term malaria prophylaxis in British expatriates. *Travel Medicine and Infectious Disease* 2014;12(4):341–8.

Davis 1996 [published data only]
Davis TM, Dembo LG, Kaye-Eddie SA, Hewitt BJ, Hislop RG, Batté QT. Neuropsychological, cardiovascular and metabolic effects of mefloquine in healthy volunteers: a double-blind, placebo-controlled trial. *British Journal of Clinical Pharmacology* 1996;42(4):415–21.

Eick-Cost 2017 [published data only]
Eick-Cost A, Hu Z, Rohrbeck P, Clark L. Neuropsychiatric outcomes after mefloquine exposure among U.S. military service members. *American Journal of Tropical Medicine and Hygiene* 2017;96(1):159–66.

Goodyer 2011 [published data only]
Goodyer L, Rice L, Martin A. Choice of and adherence to prophylactic antimalarials. *Journal of Travel Medicine* 2011;18(4):245–9.

Hale 2003 [published data only]
Hale BR, Owusu-Agyei S, Fryauff DJ, Koram KA, Adjuik M, Oduro AR, et al. A randomized, double-blind, placebo-controlled, dose-ranging trial of tafenoquine for weekly prophylaxis against *Plasmodium falciparum*. *Clinical Infectious Diseases* 2003;36(5):541–9.

Hill 2000 [published data only]
Hill DR. Health problems in a large cohort of Americans traveling to developing countries. *Journal of Travel Medicine* 2000;7(5):259–66.

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Mefloquine for preventing malaria during travel to endemic areas (Review)

Hoebe 1997 [published data only]
Hoebe C, de Munter J, Thuijs C. Adverse effects and compliance with mefloquine or proguanil antimalarial chemoprophylaxis. *European Journal of Clinical Pharmacology* 1997;52(4):269–75.

Jute 2007 [published data only]
Jute S, Toovey S. Knowledge, attitudes and practices of expatriates towards malaria chemoprophylaxis and personal protection measures on a mine in Mali. *American Journal of Tropical Medicine and Hygiene* 2007;5(1):40–3.

Kato 2013 [published and unpublished data]
Kato T, Okuda J, Ide D, Amano K, Takei Y, Yamaguchi Y. Questionnaire-based analysis of atovaquone-proguanil compared with mefloquine in the chemoprophylaxis of malaria in non-immune Japanese travelers. *Journal of Infection and Chemotherapy* 2013;19(1):20–3.

Korhonen 2007 [published and unpublished data]
Korhonen C, Peterson K, Bruder C, Jung P. Self-reported adverse events associated with antimalarial chemoprophylaxis in Peace corps volunteers. *American Journal of Preventive Medicine* 2007;33(3):194–9.

Kuhner 2005 [published data only]
Kuhner S, Drager-Hoppe HS, Dreesman J. Malaria chemoprophylaxis - A survey on drug-related adverse events. *Medizinische Welt* 2005;56(1-2):51–5.

Landman 2015 [published data only]
* Landman KZ, Tan KR, Arguin PM. Adherence to malaria prophylaxis among Peace Corps volunteers in the Africa region, 2013. *Travel Medicine and Infectious Disease* 2015;13(1):61–8.

* Landman KZ, Tan KR, Arguin PM. Knowledge, attitudes, and practices regarding antimalarial chemoprophylaxis in U.S. Peace Corps volunteers - Africa, 2013. *Morbidity and Mortality Weekly Report* 2014;63(23):516–7.

Laver 2001 [published data only]
Laver SM, Wetzels J, Behrens RH. Knowledge of malaria, risk perception, and compliance with prophylaxis and personal and environmental preventive measures in travelers exiting Zimbabwe from Harare and Victoria Falls International airport. *Journal of Travel Medicine* 2001;8(6):298–303.

Laverone 2006 [published data only]
Laverone E, Boccalini S, Bechini A, Belli S, Santini MG, Baretto S, et al. ‘Travelers’ compliance to prophylactic measures and behavior during stay abroad: Results of a retrospective study of subjects returning to a travel medicine center in Italy. *Journal of Travel Medicine* 2006;13(6):338–44.

Lobel 2001 [published data only]
Lobel HO, Baker MA, Gras FA, Stennies GM, Meerbong P, Hiemstra E, et al. Use of malaria prevention measures by North American and European travelers to East Africa. *Journal of Travel Medicine* 2001;8(4):167–72.

Mavrogordato 2012 [published data only]
Mavrogordato A, Lever AM. A cluster of Plasmodium vivax malaria in an expedition group to Ethiopia: Prophylactic efficacy of atovaquone/proguanil on liver stages of P. vivax. *Journal of Infection* 2012;65(3):269–74.

Meier 2004 [published data only]
Meier CR, Wilcock K, Jick SS. The risk of severe depression, psychosis or panic attacks with prophylactic antimalarials. *Drug Safety* 2004;27(3):203–13.

Napoletano 2007 [published data only]
Napoletano G, Bissoli P, Bisoffi Z, Todescato A, Gottardello L, Costa S, et al. Malaria chemoprophylaxis - Follow up of returned travellers of Veneto Region, Italy. *Giornale Italiano di Medicina Tropicale* 2007;12(1-4):13–9.

Nosten 1994 [published data only]
Nosten F, Ter Kuile F, Maclennan L, Chongsuphajaisiddhi T, Nopdonratradoon L, Tangkitvor T, et al. Mefloquine prophylaxis prevents malaria during pregnancy: A double-blind, placebo-controlled study. *Journal of Infectious Diseases* 1994;169(3):595–603.

Ohrt 1997 [published data only]
Ohrt C, Richic TL, Widjaja H, Shanks GD, Fitriadi J, Fryauf DJ, et al. Mefloquine compared with doxycycline for the prophylaxis of malaria in Indonesian soldiers. A randomized, double-blind, placebo-controlled trial. *Annals of Internal Medicine* 1997; Vol. 126, issue 12:963–72.

Overbosch 2001 [published data only]
Overbosch D, Schilthuis H, Biemzle U, Behrens RH, Kain KC, Clarke P, et al. Atovaquone-proguanil versus mefloquine for malaria prophylaxis in nonimmune travelers: results from a randomized, double-blind study. *Clinical Infectious Diseases* 2001;33(7):1015–21.

Pearlman 1980 [published data only]
Pearlman EJ, Doberstein EB, Sudsok S, Thiemanun W, Kennedy RS, Canfield CJ. Chemosuppressive field trials in Thailand. IV. The suppression of Plasmodium falciparum and Plasmodium vivax parasitemias by mefloquine (WR 142,490, A 4-quinolinemethanol). *American Journal of Tropical Medicine and Hygiene* 1980;29(6):1311–7.

Peterson 2000 [published data only]
Peterson E, Ronne T, Ronn A, Bygbjerg I, Larsen SO. Reported side effects to chloroquine, chloroquine plus proguanil, and mefloquine as chemoprophylaxis against malaria in Danish travelers. *Journal of Travel Medicine* 2000;7(2):79–84.

Philips 1996 [published data only]
Philips MA, Kass RB. User acceptability patterns for mefloquine and doxycycline malaria chemoprophylaxis. *Journal of Travel Medicine* 1996;3(1):40–5.

Potassium 2002 [published data only]
Potasman I, Weller B. Does mefloquine prophylaxis affect electroencephalographic patterns?. *American Journal of Medicine* 2002;112(2):147–9.

Rack 2005 [published data only]
Rack J, Wichmann O, Kamara B, Gunther M, Cramer J, Schonfeld C, et al. Risk and spectrum of diseases in travelers to popular tourist destinations. *Journal of Travel Medicine* 2005;12(5):248–53.
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
infection during pregnancy and at delivery in mother, placenta, and newborn: efficacy of chloroquine and mefloquine in rural Malawi. *American Journal of Tropical Medicine and Hygiene* 1996;55(Suppl 1):24–32.

* Steketee RW, Wriima JF, Slutsker WL, Khoromana CO, Breman JG, Heymann DL. Objectives and methodology in a study of malaria treatment and prevention in pregnancy in rural Malawi: the Mangochi Malaria Research Project. *American Journal of Tropical Medicine and Hygiene* 1996;55 (Suppl 1):8–16.

Stoney 2016 [published data only]
Stoney RJ, Chen LH, Jentes ES, Wilson ME, Han PV, Benoit CM, et al. Malaria prevention strategies: adherence among Boston area travelers visiting malaria-endemic countries. *American Journal of Tropical Medicine and Hygiene* 2016;94(1):136–42.

Tan 2017 [published data only]
Tan KR, Henderson S, Williamson J, Ferguson RW, Wilkinson TM, Jung P, et al. Long-term health outcomes among returned Peace Corps volunteers after malaria chemoprophylaxis, 1995-2014. *Travel Medicine and Infectious Disease* 2017;17:50–55.

Terrell 2015 [published data only]
Terrell AG, Forde ME, Firth R, Ross DA. Malaria chemoprophylaxis and self-reported impact on ability to work: mefloquine versus doxycycline. *Journal of Travel Medicine* 2015;22(6):383–8.

Tuck 2016 [published data only]
Tuck J, Williams J. Malaria protection in Sierra Leone during the Ebola outbreak 2014/15: The UK military experience with malaria chemoprophylaxis Sep 14-Feb 15. *Travel Medicine and Infectious Diseases* 2016;14(5):471–4.

van Riemsdijk 1997 [published data only]
van Riemsdijk MM, van der Klauw MM, van Heest JA, Recedeke FR, Ligthelm RJ, Herings RM, et al. Neuro-psychiatric effects of antimalarials. *European Journal of Clinical Pharmacology* 1997;52(1):1–6.

van Riemsdijk 2002 [published data only]
van Riemsdijk MM, Sturkenboom MC, Ditters JM, Ligthelm RJ, Overbosch D, Stricker BH. Atovaquone plus chloroguanide versus mefloquine for malaria prophylaxis: a focus on neuropsychiatric adverse events. *Clinical Pharmacology and Therapeutics* 2002;72(3):294–301.

Vuurman 1996 [published data only]
Vuurman EF, Muntjewereff ND, Uiterwijk MM, Van Veggel LM, Crevoster C, Haglund L, et al. Effects of mefloquine alone and with alcohol on psychomotor and driving performance. *European Journal of Clinical Pharmacology* 1996;50(6):475–82.

Waner 1999 [published data only]
Waner S, Durrheim D, Braack LE, Gammon S. Malaria protection measures used by in-flight travelers to South African game parks. *Journal of Travel Medicine* 1999;6(4):254–7.

Weiss 1995 [published data only]
Weiss WR, Oloo AJ, Johnson A, Koech D, Hoffman SL. Daily primaquine is effective for prophylaxis against falciparum malaria in Kenya: Comparison with mefloquine, doxycycline, and chloroquine plus proguanil. *Journal of Infectious Disease* 1995;171(6):1569–75.

Wells 2006 [published data only]
Wells TS, Smith TC, Smith B, Wang LZ, Hansen CJ, Reed RJ, et al. Mefloquine use and hospitalizations among US service members, 2002-2004. *American Journal of Tropical Medicine and Hygiene* 2006;74(5):744–9.

References to studies excluded from this review

Abraham 1999 [published data only]
Abraham C, Clift S, Grabowski P. Cognitive predictors of adherence to malaria prophylaxis regimens on return from a malarious region: protective study. *Social Science and Medicine* 1999;48(11):1641–54.

Adera 1995 [published data only]
Adera T, Wolfe MS, McGuire-Rugh K, Calhoun N, Marum L. Risk factors for malaria among expatriates living in Kampala, Uganda: The need for adherence to chemoprophylactic regimens. *American Journal of Tropical Medicine and Hygiene* 1995;52(3):207–12.

Adshud 2014 [published data only]
Adshud S. The adverse effects of mefloquine in deployed military personnel. *Journal of the Royal Naval Medical Service* 2014;100(3):232–7.

Angelin 2014 [published data only]
Angelin M, Evengard B, Palmgren H. Travel health advice: Benefits, compliance, and outcome. *Scandinavian Journal of Infectious Diseases* 2014;46(6):447–53.

Anonymous 1991 [published data only]
Anonymous. Mefloquine - A new antimalarial. *Drug and Therapeutics Bulletin* 1991;29(13):51–2.

Anonymous 1998 [published data only]
Anonymous. Medication-associated depression. *WHO Drug Information* 1998;12(2):81.

Anonymous 1998a [published data only]
Anonymous. Mefloquine effectiveness impaired by high withdrawal rates. *WHO Drug Information* 1998;12(1):7–8.

Anonymous 2005 [published data only]
Anonymous. Mefloquine: Revised patient information. WHO Drug Information 2005;19(2):119.

Anonymous 2009 [published data only]
Anonymous. Mefloquine: interstitial pneumonia: rare events. *Prescrire International* 2009;18(102):167.

Artaso 2004 [published data only]
Artaso Irigoyen B, Langarica Eserverr M, Campos Mangas MC. Mefloquine-induced acute psychosis. *Psiquiatria Biologica* 2004;11(4):164–6.

Arthur 1990a [published data only]
Arthur JD, Shanks GD, Echeverria P. Mefloquine prophylaxis. *Lancet* 1990;335(8695):972.
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

human malaria. Antimicrobial Agents and Chemotherapy 1976;9(3):384–6.

Cobelens 1997 [published data only]
Cobelens FG, van Thiel PP. There is no evidence of more symptoms with mefloquine than with other drugs in malaria prophylaxis. Nederlands Tijdschrift voor Geneeskunde 1997;141(16):794–5; author reply 796.

Cohen 1997 [published data only]
Cohen J. Mefloquine prophylaxis - revisited. Australian Family Physician 1997;26(8):909.

Conget 1993 [published data only]
Conget JJ, Navarro M, Navarro P, Corachan M. Prophylaxis with mefloquine and changes in thyroidal hormones. Medicina Clinica 1993;100(13):516.

Conrad 1997 [published data only]
Conrad KA, Kiser WR. Response to doxycycline vs. mefloquine. Military Medicine 1997;162(6):iii.

Corbett 1996 [published data only]
Corbett EL, Doherty JF, Behrens RH. Adverse events symptoms with mefloquine than with other drugs in malaria prophylaxis. Transactions of the Royal Society of Tropical Medicine and Hygiene 1996;84(1):46–9.

Coulaud 1986 [published data only]
Coulaud JP. Chemoprophylaxis of malaria. Medecine et Maladies Infectieuses 1986;16(12):746.

Croft 1996 [published data only]
Croft AM, World MJ. Neuropsychiatric reactions with mefloquine chemoprophylaxis. Lancet 1996;347(8997):326.

Croft 1997 [published data only]
Croft AM, Clayton TC, World MJ. Side effects of mefloquine prophylaxis for malaria: an independent randomized controlled trial. Transactions of the Royal Society of Tropical Medicine and Hygiene 1997;91(2):199–203.

Del Cacho 2001 [published data only]
Del Cacho Ma E, Martinez M, Tuset M, Biarnes C, Mejias T, Gascon I, et al. Advice program for travelers about antimalarial prophylaxis. Atencion Farmaceutica 2001;3(3):171–6.

Dia 2010 [published data only]
Dia A, Gautret P, Adhesoti E, Bienaire A, Gaillard C, Simon F, et al. Illness in French travelers to Senegal: Prospective cohort follow-up and sentinel surveillance data. Journal of Travel Medicine 2010;17(5):296–302.

Durrheim 1999 [published data only]
Durrheim DN, Gammon S, Waner S, Braack LE. Antimalarial prophylaxis–use and adverse events in visitors to the Kruger National Park. Suid-Afrikaanse Tydskrif vir Geneeskunde 1999;89(2):170–5.

Eamslil 1993 [published data only]
Eamslil C, Singharaj P, Yooyen P, Charnugrob P, Nopavong Na Ayuthya A, Webster HK, et al. Prevention of Plasmodium falciparum malaria by Fansimef and Lariam in the northeastern part of Thailand. Southeast Asian Journal of Tropical Medicine and Public Health 1993;24(4):672–6.

El Jaoudi 2010 [published data only]
El Jaoudi R, Benzie H, Khabbal Y, Elomri N, Lamsoouri J, Cherchra Y. Long-term malaria prophylaxis with mefloquine: a study of adverse drug reactions. Therapie 2010;65(5):439–45.

Fernando 2016 [published data only]
Fernando SD, Dharmawardana P, Semege E, Epasinghe G, Senanayake N, Rodrigo C, et al. The risk of imported malaria in security forces personnel returning from overseas missions in the context of prevention of re-introduction of malaria to Sri Lanka. Malaria Journal 2016;15(1):144.

Fujii 2007 [published data only]
Fujii T, Kaku K, Jelinek T, Kimura M. Malaria and mefloquine prophylaxis use among Japan ground self-defense force personnel deployed in East Timor. Journal of Travel Medicine 2007;14(4):226–32.

Hamer 2008 [published data only]
Hamer DH, Ruffing R, Callahan MV, Lyons SH, Abdullah AS. Knowledge and use of measures to reduce health risks by corporate expatriate employees in western Ghana. Journal of Travel Medicine 2008;15(4):237–42.

Hellgren 1990 [published data only]
Hellgren U, Angel VH, Bergqvist Y, Arvidsson A, Forero-Gomez J, Rombo L. Plasma concentrations of sulfadoxine-pyrimethamine and of mefloquine during regular long term malaria prophylaxis. Transactions of the Royal Society of Tropical Medicine and Hygiene 1990;84(1):46–9.

Hopperus 1996 [published data only]
Hopperus Buma AP, Thiell PP, Lobel HO, Ohrt C, Ameijden EJ, Veltink RL, et al. Long-term malaria chemoprophylaxis with mefloquine in Dutch marines in Cambodia. Journal of Infectious Diseases 1996;173(6):1506–9.

Jaspers 1996 [published data only]
Jaspers CA, Hopperus Buma AP, Thiell PP, van Hulst RA, Kager PA. Tolerance of mefloquine chemoprophylaxis in Dutch military personnel. American Journal of Tropical Medicine and Hygiene 1996;55(2):230–4.

Jensen 1998 [published data only]
Jensen JJ. Mefloquine: neuropsychiatric adverse effects are often severe and persistent long after withdrawal of the drug. Ugeskrift for Laeger 1998;160(16):2413.

Kar bwang 1991 [published data only]
Karbwang J, Molunto P, Bangchang KN, Banmairuroi V, Bunnag D, Harinasuta T. Pharmacokinetics of prophylactic mefloquine. Southeast Asian Journal of Tropical Medicine and Public Health 1991;22(4):519–22.

Karbwang 1991a [published data only]
Karbwang J, Bangchang KN, Supapojana A, Bunnag D, Harinasuta T. Pharmacokinetics of prophylactic mefloquine in Thai healthy volunteers. Southeast Asian Journal of Tropical Medicine and Public Health 1991;22(1):68–71.

Khalil 2001 [published data only]
Khalil Y, Gallicano K, Carignan CT, Cooper C, McCarthy A. Pharmacokinetic interaction between mefloquine and
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

Mefloquine in healthy volunteers. *British Journal of Clinical Pharmacology* 2001;51(6):591–600.

Kimura 2006 *(published data only)*

Kimura M, Kawakami K, Hashimoto M, Hamada M. Malaria prevention and stand-by emergency treatment among Japanese travelers. *Travel Medicine and Infectious Disease* 2006;4(2):81–5.

Kitchener 2003 *(published data only)*

Kitchener S, Nasveld P, Russell B, Elmes N. An outbreak of malaria in a forward battalion on active service in East Timor. *Military Medicine* 2003;168(6):457–9.

Kitchener 2005 *(published data only)*

Kitchener SJ, Nasveld PE, Gregory RM, Edstein MD. Mefloquine and doxycycline malaria prophylaxis in Australian soldiers in East Timor. *Medical Journal of Australia* 2005;182(4):168–71.

Kok 1997 *(published data only)*

Kok PW, Puls FT, Zonderland HD. Not more symptoms with mefloquine use than with other drugs in malaria prophylaxis. *Nederlands Tijdschrift Voor Geneeskunde* 1997;141(18):898.

Kollaritsch 2000 *(published data only)*

Kollaritsch H, Karbwang J, Wiedermann G, Mikolasek A, Na-Bangchang K, Werndorfer WH. Mefloquine concentration profiles during prophylactic dose regimens. *Wiener Klinische Wochenchrift* 2000;112(10):441–7.

Kozarsky 1993 *(published data only)*

Kozarsky P, Eaton M. Use of mefloquine for malarial chemoprophylaxis in its first year of availability in the United States. *Clinical Infectious Diseases* 1993;16(1):185–6.

Landry 2006 *(published data only)*

Landry P, Iorillo D, Darioli R, Burnier M, Gerton B. Do travelers really take their mefloquine malaria chemoprophylaxis? Estimation of adherence by an electronic pillbox. *Journal of Travel Medicine* 2006;13(1):8–14.

Lapierre 1983 *(published data only)*

Lapierre J, Devant J, Coquelin B, Faurant C, Galal AA. Results of an experiment on chemoprophylaxis of malaria using mefloquine in Cambodia (Cambodia-Thai border region). *Bulletin de la Societe de Pathologie Exotique et de ses Filiales* 1983;76(4):357–63.

Lim 2005 *(published data only)*

Lim DS. Dermatology in the military: An East Timor study. *International Journal of Dermatology* 2005;44(4):304–11.

Lobel 1993 *(published data only)*

Lobel HO, Bernard KW, Williams SL, Hightower AW, Patchen LC, Campbell C. Effectiveness and tolerance of long-term malaria prophylaxis with mefloquine. Need for a better dosing regimen. *JAMA* 1991;265(3):361–4.

Lobel HO, Miani M, Eng T, Bernard KW, Hightower AW, Campbell CC. Long-term malaria prophylaxis with weekly mefloquine. *Lancet* 1993;341(8849):848–51.

Looareesuwan 1987 *(published data only)*

Looareesuwan S, White NJ, Warrell DA, Forgo I, Schwartz DE, et al. Studies of mefloquine bioavailability and kinetics using a stable isotope technique: comparison of Thai patients with falciparum malaria and healthy Caucasian volunteers. *British Journal of Clinical Pharmacology* 1987;24(1):37–42.

MacArthur 2002 *(published data only)*

MacArthur JR, Parisi ME, Steketee RW. Relationships between mefloquine blood levels, gender, and adverse reactions. *American Journal of Tropical Medicine and Hygiene* 2002;66(5):445; author reply 446–7.

Malvy 2006 *(published data only)*

Malvy D, Pistone T, Rezvani A, Lanczon F, Vatan R, Receveur MC, et al. Risk of malaria among French adult travellers. *Travel Medicine and Infectious Disease* 2006;4(5):259–69.

Marcy 1996 *(published data only)*

Marcy SM, Wilson ME. Malaria prophylaxis in young children and pregnant women. *Pediatric Infectious Disease Journal* 1996;15(1):101–2.

Massey 2007 *(published data only)*

Massey P, Durrheim DN, Speare R. Inadequate chemoprophylaxis and the risk of malaria. *Australian Family Physician* 2007;36(12):1058–60.

Matsumura 2005 *(published data only)*

Matsumura T, Fujii T, Miura T, Koibuchi T, Endo T, Nakamura H, et al. Questionnaire-based analysis of mefloquine chemoprophylaxis for malaria in a Japanese population. *Journal of Infection and Chemotherapy* 2005;11(4):196–8.

Meszaros 1996 *(published data only)*

Meszaros K. Acute psychosis caused by mefloquine prophylaxis?. *Canadian Journal of Psychiatry* 1996;41(3):196.

Michel 2007 *(published data only)*

Michel R, Ollivier L, Meynard JB, Guette C, Migliani R, Boutin JP. Outbreak of malaria among policemen in French Guiana. *Military Medicine* 2007;172(9):977–81.

Mimica 1983 *(published data only)*

Mimica I, Fry W, Eckert G, Schwartz DE. Multiple-dose kinetic study of mefloquine in healthy male volunteers. *Chemotherapy* 1983;29(3):184–7.

Mizuno 2006 *(published data only)*

Mizuno Y, Kudo K, Kano S. Chemoprophylaxis according to the guidelines on malaria prevention for Japanese overseas travellers. *Southeast Asian Journal of Tropical Medicine and Public Health* 2006;37(Suppl 3):11–4.

Mizuno 2010 *(published data only)*

Mizuno Y, Kudo K, Kano S. Mefloquine chemoprophylaxis against malaria in Japanese travelers: Results of a study on adverse effects. *Travel Medicine and Health* 2010;18(3):105–6.

Moon 2011 *(published data only)*

Moon J, Deye G, Miller L, Fracisco S, Miller RS, Tosh D, et al. Malaria infection in individuals taking mefloquine does
not induce antibody response to MSP142. 58th Annual Meeting of the American Society of Tropical Medicine and Hygiene; 2009 November 18-22; Washington, USA. Washington, USA: American Journal of Tropical Medicine and Hygiene, 2009; Vol: 81:156–7.

Moon JE, Deye GA, Miller L, Fracisco S, Miller RS, Tosh D, et al. Plasmodium falciparum infection during suppressive prophylaxis with mefloquine does not induce an antibody response to merozoite surface protein-1(42). American Journal of Tropical Medicine and Hygiene 2011;84 (5):825–29.

Morales de Naime 1989 [published data only]
Morales de Naime L, Kosidub H, Martínez Iturriza L. Prophylactic malaria with pyrimethamine, sulfadoxine and mefloquine [Paludismo tratamiento profiláctico con pirimetamina, sulfadoxina y mefloquina]. Medicina Interna 1989;5(3-4):125–37.

Munawar 2012 [published data only]
Munawar CM, Khan TP, Hyder MF. Effect of mefloquine prophylaxis with pirimetamina, sulfadoxina y mefloquina. [published data only]

Mølle 2000 [published data only]
Mølle I, Christensen KL, Hansen PS, Dragsted UB, Aarup M, Mads Buhl R. Use of medical chemoprophylaxis and mefloquine [Paludismo tratamiento profiláctico con pirimetamina, sulfadoxina y mefloquina]. Journal of Travel Medicine 2000;7(5):253–8.

Namikawa 2008 [published data only]
Namikawa K, Kikuchi H, Kato S, Takizawa Y, Konta A, Iida T, et al. Knowledge, attitudes, and practices of Japanese travelers towards malaria prevention during overseas travel. Journal of Travel Medicine and Infectious Disease 2008;6(3):137–41.

Nasveld 2010 [published data only]
Nasveld PE, Edstein MD, Reid M, Brennan L, Harris IE, Moulder K, et al. Randomized, double-blind study of the safety, tolerability, and efficacy of tafenoquine versus mefloquine for malaria prophylaxis in non-immune subjects. Antimicrobial Agents and Chemotherapy 2010;54(2):792–8.

Nevin 2010 [published data only]
Nevin RL. Mefloquine prescriptions in the presence of contraindications: Prevalence among US military personnel deployed to Afghanistan, 2007. *Pharmacoepidemiology and Drug Safety* 2010;19(2):206–10.

Nevin 2012 [published data only]
Nevin RL. Biased measurement of neuropsychiatric adverse effects of pediatric mefloquine treatment. *Pediatric Infectious Diseases Journal* 2012;31(1):102; author reply 102-3.

Nosten 1999 [published data only]
Nosten F, Karbwang J, White NJ, Honeymoon, Na Bangchang K, Bunag D, et al. Mefloquine antimalarial prophylaxis in pregnancy: dose finding and pharmacokinetic study. *British Journal of Clinical Pharmacology* 1990;30(1):79–85.

Nosten 1999 [published data only]
Nosten F, Vincenti M, Simpson J, Ye Y, Thwai KL, de Vries A, et al. The effects of mefloquine treatment in pregnancy. *Clinical Infectious Diseases* 1999;28(4):808–15.

Nwokolo 2001 [published data only]
Nwokolo C, Wämbebe C, Akinianju O, Raji AA, Audu BS, Emodi IJ, et al. Mefloquine versus proguanil in short-term malaria chemoprophylaxis in sickle cell anaemia. *Clinical Drug Investigation* 2001;21(8):537–44.

Olanrewaju 2000 [published data only]
Olanrewaju I, Lin L. Mefloquine chemoprophylaxis in Chinese railway workers on contract in Nigeria. *Journal of Travel Medicine* 2000;7(3):116–9.

Ollivier 2004 [published data only]
Ollivier L, Tifratene K, Josse R, Keudjian A, Bourtin JP. The relationship between body weight and tolerance to mefloquine prophylaxis in non-immune adults: results of a questionnaire-based study. *Annals of Tropical Medicine and Parasitology* 2004;98(6):639–41.

Peetermans 2001 [published data only]
Peetermans WE, Van Wijngaerden E. Implementation of prtravel advice: Good for malaria, bad for diarrhoea. *Acta Clinica Belgica* 2001;56(5):284–8.

Peragallo 1999 [published data only]
Peragallo MS, Sabatinielli G, Sarnicola G. Compliance and tolerability of mefloquine and chloroquine plus proguanil for long-term malaria chemoprophylaxis in groups at particular risk (the military). *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1999;93(1):73–7.

Peragallo 2002 [published data only]
Peragallo MS, Croft AM, Kitchener SJ. Malaria during a multinational military deployment: the comparative experience of the Italian, British and Australian Armed Forces in East Timor. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2002;96(5):481–2.

Peragallo 2014 [published data only]
Peragallo MS, Sarnicola G, Boccolini D, Romi R, Mammana G. Risk assessment and prevention of malaria among Italian troops in Afghanistan, 2002 to 2011. *Journal of Travel Medicine* 2014;21(1):24–32.

Philips 1994 [published data only]
Philips M. Antimalarial mefloquine. *Medical Journal of Australia* 1994;161(3):227–8.

Philips 1996 [published data only]
Philips M. Adverse events associated with mefloquine. Women may be more susceptible to adverse events. *British Medical Journal* 1996;313(7071):1552–3.

Phillips-Howard 1998 [published data only]
Phillips-Howard PA, Steffen R, Kerr L, Vanhauwere B, Schildknecht J, Fuchs E, et al. Safety of mefloquine and other antimalarial agents in the first trimester of pregnancy. *Journal of Travel Medicine* 1998;5(3):121–6.
Mefloquine for preventing malaria during travel to endemic areas (Review)

Pistone 2007 (published data only)
Pistone T, Gilbert P, Gay F, Malby D, Ezzedine K, Receveur MC, et al. Malaria risk perception, knowledge and prophylaxis practices among travellers of African ethnicity living in Paris and visiting their country of origin in sub-Saharan Africa. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 2007;101(10):990–5.

Port 2011 (published data only)
Port A, Cottrell G, Dechavanne C, Briand V, Bouraïma A, Guerra J, et al. Prevention of malaria during pregnancy: assessing the effect of the distribution of IPTp through the national policy in Benin. *American Journal of Tropical Medicine and Hygiene* 2011;84(2):270–5.

Potsman 2000 (published data only)
Potsman I, Beny A, Seligmann H. Neuropsychiatric problems in 2,500 long-term young travelers to the tropics. *Journal of Travel Medicine* 2000;7(1):5–9.

Quinn 2016 (published data only)
Quinn JC. Better approach needed to detect and treat military personnel with adverse effects from mefloquine. *BMJ* 2016;352:i3838.

Reisinger 1989 (published data only)
Reisinger EC, Horstmann RD, Dietrich M. Tolerance of mefloquine alone and in combination with sulfadoxine-pyrimethamine in the prophylaxis of malaria. *Transactions of the Royal Society of Tropical Medicine and Hygiene* 1989;83(4):474–7.

Rieckmann 1974 (published data only)
Rieckmann KH, Trenholme GM, Williams RL, Carson PE, Frischer H, Desjardins RE. Prophylactic activity of mefloquine hydrochloride (WR 142490) in drug-resistant malaria. *Bulletin of the World Health Organization* 1974;51(4):375–7.

Rieke 1993 (published data only)
Rieke B, Fleischer K. Permanent health impairment after staying in malaria areas. *Vereinsbergenedizin* 1993;45(6):197–202.

Ries 1993 (published data only)
Ries S. Cerebral spasm during malaria prophylaxis with mefloquine. *Deutsche Medizinische Wochenschrift* 1993;118(51-2):1911–2.

Ringsvist 2015 (published data only)
Ringsvist A, Bech P, Glenthøj B, Petersen E. Acute and long-term psychiatric side effects of mefloquine: a follow-up on Danish adverse event reports. *Travel Medicine and Infectious Disease* 2015;13(1):80–8.

Rombo 1993 (published data only)
Rombo L, Angel VH, Friiman G, Hellgren U, Mittelholzer ML, Sturchler D. Comparative tolerability and kinetics during long-term intake of Lariam and Fansidar for malaria prophylaxis in nonimmune volunteers. *Transactions of the Royal Society of Tropical Medicine and Parasiology* 1993;44(3):254–6.

Rann 1998 (published data only)
Rønne AM, Ranne-Rasmussen J, Gøtzsche PC, Bygbjerg IC. Neuropsychiatric manifestations after mefloquine therapy for Plasmodium falciparum malaria: comparing a retrospective and a prospective study. *Tropical Medicine and International Health* 1998;3(2):83–8.

Sallent 1997 (published data only)
Sallent LV. Anti-malarial prophylaxis: The role of the general practitioner. *Atencion Primaria* 1997;20(10):558–62.

Schlagenhauf 1996 (published data only)
Schlagenhauf P, Steffen R, Lobel H, Johnson R, Letz R, Tischopp A, et al. Mefloquine tolerability during chemoprophylaxis: focus on adverse event assessments, stereochemistry and compliance. *Tropical Medicine and International Health* 1996;1(4):485–94.

Scott 1993 (published data only)
Scott R. Malaria chemoprophylaxis. *South African Medical Journal* 1993;83(11):861.

Smail 1991 (published data only)
Smail A, Ducroix JP, Cohen G, Baillet J. Current malaria prophylactic therapy for travellers servicemen. *La Semaine des Hopitaux de Paris* 1991;67(40-41):1824–7.

Smoak 1997 (published data only)
Smoak BL, Writer JV, Keep IW, Cowan J, Chantelois JL. The effects of inadvertent exposure of mefloquine chemoprophylaxis on pregnancy outcomes and infants of US Army servicewomen. *Journal of Infectious Disease* 1997;176(3):831–3.

Suriyamongkol 1991 (published data only)
Suriyamongkol V, Timsaad S, Shanks GD. Mefloquine chemoprophylaxis of soldiers on the Thai-Cambodian border. *Southeast Asian Journal of Tropical Medicine and Public Health* 1991;22(4):515–8.

Tansley 2010 (published data only)
Tansley R, Lotharius J, Priesley A, Bull F, Duparc S, Mohrle J. A randomized, double-blind, placebo-controlled study to investigate the safety, tolerability, and pharmacokinetics of single enantiomer (+)-mefloquine compared with racemic mefloquine in healthy persons. *American Journal of Tropical Medicine and Hygiene* 2010;83(6):1195–201.

Ter Kuile 1993 (published data only)
Ter Kuile FO, Nosten F, Luxemburger C, White NJ. Mefloquine prophylaxis. *Lancet* 1993;342(8870):551.

Todd 1997 (published data only)
Todd GD, Hopperus Buma AP, Green MD, Jaspers CA, Lobel HO. Comparison of whole blood and serum levels of mefloquine and its carboxylic acid metabolite. *American Journal of Tropical Medicine and Hygiene* 1997;57(4):399–402.

Turner 2014 (published data only)
Turner C, Sabin C, Chioldini P, Bhagani S, Johnson M, Zuckerman J. Cross-sectional study investigating the prescription, adherence and tolerability of malaria prophylaxis in HIV-positive travellers. 3rd Joint Conference of the British HIV Association, BASHH with the British Association for Sexual Health and HIV, BASHH Liverpool United Kingdom: 2014 April 1–4; Liverpool, UK. Liverpool, UK: HIV Medicine, 2014; Vol. 15:127.
Adverse effects of mefloquine: Agitation undermines objective assessment. Van Grootheest AC, Van Puijenbroek EP, Heeringa M. Journal of Travel Medicine 2005;12(6):327–31.

Atovaquone-proguanil versus mefloquine for malaria prophylaxis in nonimmune travelers: Results from a randomized, double-blind study. Van Genderen PJ, Koene HR, Spong K, Overbosch D. Journal of Travel Medicine 2007;14(2):92–5.

Van Grootheest 1999 [published data only] Van Grootheest AC, Van Puijenbroek EP, Heeringa M. Adverse effects of mefloquine: Agitation undermines objective assessment. Pharmaceutisch Weekblad 1999;134(4):114–6.

dev Riemersdijk 2004 [published data only] Aarnoudse AL, van Schaik RH, Dieleman J, Molokhia M, van Riemersdijk MM, Ligthelm RJ, et al. MDR1 gene polymorphisms are associated with neuropsychiatric adverse effects of mefloquine. Clinical Pharmacology and Therapeutics 2006;80(4):367–74.

van Riemersdijk MM, Ditters JM, Sturkenboom MC, Tulen JH, Ligthelm RJ, Overbosch D, et al. Neuropsychiatric events during prophylactic use of mefloquine before travelling. British Journal of Clinical Pharmacology 2002;58(6):441–5.

Venturini 2011 [published data only] Venturini E, Chiappini E, Mannelli F, Bonsignori F, Galli L, De Martino M. Malaria prophylaxis in African and Asiatic children traveling to their parents’ home country: A Florentine study. Journal of Travel Medicine 2011;18(3):161–4.

Wagner 1986 [published data only] Wagner WH. Fight against malaria - chemotherapy and immunoprophylaxis. Part 1. Chemotherapy. Arzneimittel Forschung 1986;36(1):1–9.

Wallace 1996 [published data only] Sánchez JL, DeFraites RF, Sharp TW, Hanson RK. Mefloquine or doxycycline prophylaxis in US troops in Somalia. Lancet 1993;341(8851):1021–2.

Wallace MR. Malaria among United States troops in Somalia. American Journal of Medicine 1996;100(1):49–55.

Weinke 1991 [published data only] Weinke T, Trautmann M, Held T, Weber G, Eichenlaub D, Fleischer K, et al. Neuropsychiatric side effects after the use of mefloquine. American Journal of Tropical Medicine and Hygiene 1991;45(1):86–91.

White 2016 [published data only] White C. UK troops to continue to receive mefloquine despite concern over adverse events. BMJ 2016;354:i5030.

Win 1985 [published data only] Win K, Thwe Y, Lwin TT, Win K. Combination of mefloquine with sulfadoxine-pyrimethamine compared with two sulfadoxine-pyrimethamine combinations in malaria chemoprophylaxis. Lancet 1985;2(8457):694–5.

Winstanley 1999 [published data only] Winstanley P, Behrens R. Malaria prophylaxis with mefloquine: Neurological and psychiatric adverse drug reactions. Prescribers’ Journal 1999;39(3):161–5.

Wolters 1997 [published data only] Wolters BA, Bosje T, Luinstra-Passchier MJ. Not more problems with mefloquine compared to other antimalarial prophylactics. Nederlands Tijdschrift voor Geneeskunde 1997;141(7):331–4.

Additional references

ACROBAT-NSRI tool Sterne JAC, Higgins JPT, Reeves BC on behalf of the development group for ACROBAT-NSRI. A Cochrane Risk Of Bias Assessment Tool: for Non-Randomized Studies of Interventions (ACROBAT-NSRI). Version 1.0.0 [September 2014]. Available from: http://www.riskofbias.info [Accessed September 2017].

Behrens 2015 Behrens R, Neave P, Jones P. Imported malaria among people who travel to visit friends and relatives: is current UK policy effective or does it need a strategic change?. Malaria Journal 2015;14:149.

Briand 2009 Briand V, Bottero J, Noel H, Masse V, Cordel H, Guerra J, et al. Intermittent treatment for the prevention of malaria despite concern over adverse events. Prescribers’ Journal 1999;39(3):161–5.

Bukirwa 2014 Bukirwa H, Unnikrishnan B, Kramer CV, Sinclair D, Nair S, Tharyan P. Artesunate plus pyronaridine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database of Systematic Reviews 2014, Issue 3. DOI: 10.1002/14651858.CD006404.pub2

CDC 2015a Centers for Disease Control and Prevention. Malaria policy effective or does it need a strategic change?. Malaria Journal 2015;14:149.

CDC 2015b Centers for Disease Control and Prevention. Drugs for malaria prevention table. Travelers’ health. 2015. Yellow book. wwwnc.cdc.gov/travel/diseases/malaria (accessed September 2017).
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

Schlagenhauf 2003
Schlagenhauf P, Tischopp A, Johnson R, Nothdurft HD, Beck B, Schwartz E, et al. Tolerability of malaria chemoprophylaxis in non-immune travellers to sub-Saharan Africa: multicentre, randomised, double blind, four arm study. BMJ 2003;327(7423):1078.

Schlagenhauf 1999
Schlagenhauf P. Mefloquine for malaria chemoprophylaxis 1992-1998: a review. Journal of Travel Medicine 1999;6(2):122–33.

References to other published versions of this review
Jacquerioz 2007
Jacquerioz FA, Croft AM. Drugs for preventing malaria in travellers. Cochrane Database of Systematic Reviews 2007, Issue 2. DOI: 10.1002/14651858.CD006491

Jacquerioz 2009
Jacquerioz FA, Croft AM. Drugs for preventing malaria in travellers. Cochrane Database of Systematic Reviews 2009, Issue 10. DOI: 10.1002/14651858.CD006491.pub2

Jacquerioz 2015
Jacquerioz FA, Croft AM. Drugs for preventing malaria in travellers. Cochrane Database of Systematic Reviews 2015, Issue 10. DOI: 10.1002/14651858.CD006491.pub3

* Indicates the major publication for the study
Characteristics of included studies
ordered by study ID

Albright 2002

Methods
- **Design:** retrospective cohort study.
- **Study dates:** November 1997 to January 2000
- **Malaria transmission pattern and local antimalarial drug resistance:** various destinations, not specified
- **Adverse event monitoring:** one off telephone interview with parents whose children had previously been prescribed antimalarial prophylaxis

Participants
- **Number enrolled:** 177 fit inclusion criteria and interviewed, 190 contacted
- **Inclusion criteria:** children aged ≤ 13 years who visited the travel clinic at the Children’s Memorial Hospital in Chicago within the study dates. Subjects who were not on other medications
- **Exclusion criteria:** “…data were only included if the child was living with the interviewed parent while taking the antimalarial”. “Unwillingness to participate in the study and language barriers”
- **Factors influencing drug allocation:** “children... instructed to take mefloquine or chloroquine for malaria prophylaxis”
- **Country of recruitment:** USA.
- **Country of malaria exposure:** various; Africa 58%, Central or South America 21%, India 12% or Eastern Asia 9%
- **Duration of exposure to malaria:** various, not specified.
- **Type of participants:** travellers

Interventions
1. Mefloquine*
2. Chloroquine*

* dosing regimen not specified

Outcomes
1. Adverse effects; any, nausea, vomiting, diarrhoea, headache, insomnia, abnormal dreams
2. Serious adverse effects
3. Discontinuations of study drug due to adverse effects

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
Age, sex and destination of travel were recorded, but were not reported across prophylactic regimens
2. **Selection of participants into the study:** low
Non-response rate 1.6%
3. **Measurement of interventions:** moderate
The prescription was provided by a travel clinic, but participants were asked to recall if they discontinued their medication 2.8 to 28 months after visiting
4. **Departures from intended interventions:** serious
Information was collected up to 2 years after taking the drug. No information was captured on switches |
Albright 2002 (Continued)

5. Missing data: low	All information was collected at one time point, there were no losses to follow-up
6. Measurement of outcomes: serious	The outcome measure was subjective, participants and personnel were not blinded
7. Selection of the reported results: low	All outcomes included in the introduction were reported in the results
8. Other: low	“The authors had no financial or other conflicts of interest to disclose”

Andersson 2008

Methods
- **Design:** Prospective cohort study
- **Study dates:** March 2004 to November 2006
- **Malaria transmission pattern and local antimalarial drug resistance:** Malaria attack rate of 44% with *P. falciparum* in another similar study at the time
- **Adverse event monitoring:** Patient self-reported questionnaire

Participants
- **Number enrolled:** 690 soldiers sent questionnaire, 609 respondents
- **Inclusion criteria:** All Swedish soldiers deployed to Liberia within the study dates
- **Exclusion criteria:** None stated.
- **Factors influencing drug allocation:** “...mefloquine was prescribed to almost all soldiers in the first two contingents and to about two-thirds in the last three contingents. The remaining soldiers were recommended atovaquone/proguanil. The latter group consisted mainly of those with body weight < 70 kg and those who had already experienced adverse events with mefloquine. No other drug regimes were used”
- **Country of recruitment:** Sweden
- **Country of malaria exposure:** Liberia
- **Duration of exposure to malaria:** 6 months
- **Type of participants:** Military

Interventions
1. Mefloquine*
2. Atovaquone-proguanil*
 - *dosing regimen not specified

Outcomes
Included in the review:
1. Adverse events; any, nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams nightmares, insomnia sleep disturbance, depression
2. Serious adverse events; serious
3. Adverse events; other (concentration difficulties, mouth ulcers, fever, muscle pain)
4. Discontinuations of study drug due to adverse effects

Outcomes assessed not included in the review:
5. Clinical cases of malaria
6. Overall satisfaction with the drug
7. Whether they would take the drug again
8. Measures of adherence to the drug regimen (data provided on aggregate)
Andersson 2008
(Continued)

Notes	Funding sources: Not stated

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	**1. Confounding: moderate**
Information on potential confounders is not provided across prophylactic groups
2. Selection of participants into the study: moderate
609/690 (88%) response rate
3. Measurement of interventions: low
All participants were issued with the study drug.
4. Departures from intended interventions: low
Switches were recorded and reported
5. Missing data: serious
Outcomes were reported from 3 of 5 cohorts. No information was provided for 2 remaining cohorts
6. Measurement of outcomes: serious
The outcome measure was subjective, participants and personnel were not blinded
7. Selection of the reported results: low
All outcomes prespecified in the introduction were reported.
8. Other: moderate
Study sponsor not mentioned, but 2 study authors worked for GlaxoSmithKline |

Arthur 1990

Methods

Design: RCT
Study dates: June to August 1988
Malaria transmission pattern and local drug resistance: local chloroquine resistance
Adverse event monitoring: blood taken at induction and at days 57 and 70 of treatment. Interviews regarding side effects when sera taken. Stool sample at induction, at end of exercise and at any time participants sought medical care

Participants

Number enrolled: 270
Inclusion criteria: soldiers (aged 18 to 40 years), awaiting deployment to Thailand
Exclusion criteria: previous history of gastrointestinal illness
Country of recruitment: USA
Country of malaria exposure: Thailand
Duration of exposure to malaria: 5 weeks
Type of participants: soldiers, non-immune

Interventions

1. Mefloquine (1 x 250 mg tablet) once weekly, starting 1 week before travel and continuing throughout the period of deployment.*
2. Doxycycline (1 capsule containing doxycycline hyclate 100 mg) once daily, starting 1
week before travel and continuing throughout the period of deployment*
Co-interventions: Both groups given doxycycline 100mg daily for suppression of *P. falciparum* and primaquine 45 mg weekly for elimination of liver hypnozoites for 6 weeks on return to the USA
matched placebo for each treatment arm

Outcomes	Included in the review:
	1. Clinical cases of malaria
	2. Serious adverse event
	3. Adverse events; diarrhoea
	4. Discontinuation of study drug due to adverse effects
	5. Measures of adherence to the drug regimen
	Outcomes assessed not included in the review:
	6. Laboratory tests; enteric pathogens
	7. Adverse events; nausea, vomiting, headache, dizziness (data provided on aggregate)

| Notes | Funding sources: Pfizer Inc supplied active and placebo doxycycline; Hoffman-La Roche Inc supplied active and placebo mefloquine |

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	“Volunteers were assigned from a computer generated random number list to receive daily doxycycline or weekly mefloquine”
Allocation concealment (selection bias)	Unclear risk	Comment: Unclear how the tablets were labelled and whether allocation concealment occurred
Blinding of participants and personnel (performance bias)	Low risk	“Soldiers receiving mefloquine also received identical appearing doxycycline placebo capsules daily, and those receiving daily doxycycline received weekly mefloquine placebo tablets”
Blinding of outcome assessment (detection bias)	Unclear risk	Comment: described as double blind but no explanation of how this was achieved for researchers and outcome assessors
Incomplete outcome data (attrition bias); efficacy	High risk	“Of the 270 volunteers who were deployed, 253 were correctly taking the assigned study malaria prophylaxis on arrival in Korat” Comment: Reasons for not taking medication were not reported. Method of detection for malaria, frequency and duration of follow-up were not reported
Arthur 1990

(Continued)

Incomplete outcome data (attrition bias); safety	Low risk	Comment: 17 participants (6%) were not “correctly taking the prophylaxis on arrival to Korat” and were excluded from the analysis. Data were not stratified by time point
Selective reporting (reporting bias); efficacy	Low risk	“None of the soldiers developed malaria”
Selective reporting (reporting bias); safety	Unclear risk	Comment: data for general side effects (e.g. headaches) were presented for the study population but not for each group
Other bias	Unclear risk	Comment: study sponsor not mentioned

Belderk 2013

Methods

- Design: prospective cohort study
- Study dates: October 2006 to October 2007
- Malaria transmission pattern and local antimalarial drug resistance: various destinations, not specified
- Adverse event monitoring: not performed

Participants

- Number enrolled: 945
- Inclusion criteria: People aged ≥ 18 years were eligible if they were planning to travel for 1 to 13 weeks to one or more malaria-endemic countries
- Exclusion criteria: None stated
- Factors influencing drug allocation: “Dutch national guidelines for travelers’ health advice”
- Country of recruitment: Netherlands
- Regions of malaria exposure: various; Asia 48%, Africa 30% and Latin America 22%
- Duration of exposure to malaria: various; 49% ≤ 13 days, 35% 14 to 28 days and 9% ≥ 29 days
- Type of participants: travellers

Interventions

1. Mefloquine: taken 3 weeks prior to arrival, during trip and for 4 weeks after return, dose and frequency of dose not specified
2. Atovaquone-proguanil: 1 day prior to arrival, during trip and for 7 days after return, dose and frequency of dose not specified
3. Proguanil: On day of arrival, during trip and for 4 weeks after return, dose and frequency of dose not specified

Outcomes

- *Included in the review:*
 1. Measures of adherence to the drug regime
- *Outcomes assessed not included in the review:*
 2. Clinical cases of malaria
 3. Predictors of adherence to malaria prophylaxis
 4. Use of antimosquito preventive measures

Notes

- Funding sources: The Amsterdam Academic Collaborative Center on Public Health is financially supported by the Netherlands Organization for Health Research and Development (ZonMw; grant number 7115 0001, http://www.zonmw.nl/nl/)
Risk of bias

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
Length of stay, travel destination, age and sex were not reported across groups
2. **Selection of participants into the study:** moderate
Non-response rates were not reported
3. **Measurement of interventions:** low
Participants made daily diary entries during travel
4. **Departures from intended interventions:** low
Participants made daily diary entries during travel
5. **Missing data:** low
Information was collected at one time point
6. **Measurement of outcomes:** moderate
Outcome assessors were not blinded, methods were comparable across groups
7. **Selection of the reported results:** low
Outcomes were reported for 610/620 participants
8. **Other:** low
Government funding |

Boudreau 1991

Methods

- Design: RCT
- Study dates: July 1983 to March 1984
- Malaria transmission pattern and local antimalarial drug resistance: “in this area we believe the efficacy of chloroquine prophylaxis at the time of the study was negligible”
- Adverse event monitoring: “at each 2 week visit… history of symptoms over the previous fortnight was obtained. Patients were asked about fever, chills, headache, nausea, vomiting, diarrhoea, anorexia, rash, myalgia and dysuria or abnormally coloured urine”. Laboratory studies were performed at baseline and at 6 weeks in participants who had not developed malaria

Participants

- Number enrolled: 501
- Inclusion criteria: “Only males 21 years of age or over were accepted”
- Exclusion criteria: "All participants were required to have a negative malaria smear (after examination of 200 fields on thick smear) on entry into the study”. “...the use of other antimalarials or antibiotics”
- Country of recruitment: Cambodia
- Country of malaria exposure: Cambodia
- Duration of exposure to malaria: ongoing in semi immune population, 14 week study period
- Type of participants: Thai gem miners with a degree of immunity
Interventions

Included in review comparisons:
1. Mefloquine (2 x 250 mg tablet) fortnightly for 14 weeks*
2. Chloroquine (1 x 300 mg tablet) weekly*

Not included in review comparisons:
3. Fansidar (2 x 500 mg sulfadoxine and 25 mg pyrimethamine) fortnightly and chloroquine (1 x 300 mg tablet) weekly*

matched placebo for each treatment arm

Outcomes

Included in the review:
1. Clinical cases of malaria
2. Adverse events; other (myalgias, rash)

Outcomes assessed not included in the review:
3. Laboratory tests; haematocrit, complete blood count, transaminase levels, total and direct bilirubin, alkaline phosphatase, blood urea nitrogen
4. Adverse events; headache, anorexia, fever, chills, nausea, diarrhoea or vomiting (data provided on aggregate)

Notes

Funding sources: Support for this study was from the USA Army Medical Research and Development Command

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	“Assignment… is a 4:3:2 ratio” Comment: method of sequence generation not reported
Allocation concealment (selection bias)	Unclear risk	Comment: no details of allocation concealment were reported
Blinding of participants and personnel (performance bias)	Unclear risk	“Every two weeks in a double blind fashion one of the investigators administered five tablets to each subject” Comment: not mentioned whether placebo tablets had an identical appearance
Blinding of outcome assessment (detection bias)	Unclear risk	Comment: described as double blind but no mention of how this was achieved for researchers and outcome assessors
Incomplete outcome data (attrition bias); efficacy	Unclear risk	“Only 194 patients completed the study until positivity or end of the 14 weeks observation period”. “Therefore of the original 501 enrollees, 63 were discarded due to positivity at week 0 and 104 were discarded since they never returned beyond week 0”
Boudreau 1991 (Continued)

		Comment: Losses to follow-up during the study was not reported across groups
Incomplete outcome data (attrition bias); safety	Unclear risk	“Only 194 patients completed the study until positivity or end of the 14 weeks observation period...Any subject missing one appointment was excluded from the study though each subject’s records up to the time of exclusion were entered into the survival analysis...After 3 weeks post treatment and a negative malaria smear some patients wishing to continue were reentered under a new study number and were assigned a double blind randomized treatment”
Selective reporting (reporting bias); efficacy	Unclear risk	Comment: number of people contracting malaria in each group and person-weeks in the study were reported
Selective reporting (reporting bias); safety	Unclear risk	“There were no significant differences in frequency of complaints among the study groups for headache, anorexia, fever, chills, nausea, diarrhoea, or vomiting” Comment: Data for specific adverse events not reported. Methods section states participants were asked about dysuria and abnormally coloured urine, but this was not reported in the results
Other bias	Low risk	Support for this study was from the USA Army Medical Research and Development Command

Boudreau 1993

Methods

Design: RCT
Study dates: not mentioned
Malaria transmission pattern and local antimalarial drug resistance: not applicable
Adverse event monitoring: “At each visit, the subject answered two computerised questionnaires (the Environmental Symptoms Questionnaire and the Profile of Mood States) [and] a physician interview was performed”

Participants

Number enrolled: 359
Inclusion criteria: “males at least 18 years old, met military weight standards, were available for weekly administration of medications and monitoring during the 13 week study period, and were willing to give informed consent”
Exclusion criteria: “treatment with beta-blocking agents or other cardiotropic drugs, underlying chronic disease, history of cardiac arrhythmia, medical history of psychiatric or neurological problems within the last 5 years, anaemia or impaired hepatic or renal...
function. Women were excluded from participation in the study due to the risk of teratogenicity involved when the drug is used in early pregnancy.”

Country of recruitment: USA
Country of malaria exposure: not applicable
Duration of exposure to malaria: not applicable
Type of participants: military, non-travellers

Interventions
1. Mefloquine (1 x 250 mg tablet), larium 228 mg base (F Hoffman La Roche) weekly for 11 weeks
2. Mefloquine (1 x 250 mg tablet), larium 228 mg base (F Hoffman La Roche) weekly for 11 weeks, with loading dose of 1 x 250 mg tablet daily for 3 days during the first week
3. Chloroquine (1 x 300 mg tablet), 300 mg base (F Hoffman La Roche) weekly for 11 weeks

Outcomes
Included in the review:
1. Adverse events; nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams, insomnia
2. Adverse events; other (irritability, poor concentration, anger, moodiness, abdominal distension, anorexia, environmental symptoms questionnaire (ESQ), sleep assessment, Profile of Mood States questionnaire)
Outcomes assessed not included in the review:
3. Laboratory tests: haemoglobin, haematocrit, platelets, white blood cell count, alanine aminotransferase, blood urea nitrogen and creatinine
4. Analysis of the dizziness index on the ESQ
5. Spontaneous comments on the ESQ (data provided on aggregate)

Notes
Funding sources: Not mentioned

Risk of bias
Bias
Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)

Outcome	Risk	Details
All outcomes	Unclear risk	Comment: described as double blind but no description provided of how this was achieved for researchers and outcome assessors

Incomplete outcome data (attrition bias)

Outcome	Risk	Details
Efficacy	Unclear risk	N/A
Safety	Unclear risk	Comment: 15 medical withdrawals are reported within the study. It is unclear whether these are the only losses to follow up which occurred, or whether they occurred in the mefloquine loading dose group or weekly administration group

Selective reporting (reporting bias)

Outcome	Risk	Details
Efficacy	Unclear risk	N/A
Safety	High risk	'Table 5 outlines the percent of the group with symptoms only when significance was demonstrated’ ‘Selected haematology and biochemistry tests were performed… no significant differences were noted among the three drugs when comparing the mean values’ Comment: data is not fully reported for ‘other symptoms’; only significant results are reported for the ESQ and data for spontaneous comments on the ESQ are not reported; data is not fully reported for the POMS

Other bias

Risk	Details
Unclear risk	Comment: study sponsor not mentioned, but the lead author is attributed to ‘Pharmaceutical Systems Incorporated’
Methods

Design: RCT
Study dates: July 1987 to January 1988
Malaria transmission pattern and local antimalarial drug resistance: “a malaria endemic area”. Reports chloroquine, sulfadoxine-pyrimethamine and quinine resistance within Thailand at the time of the study
Adverse event monitoring: “volunteers asked about adverse events at each visit (weeks 4, 9, 14, 19, 24, 28)...starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team; most of them were also seen by principal investigators”

Participants

Number enrolled: 605 randomized, 3 excluded because of baseline parasitaemia
Inclusion criteria: “...healthy male volunteers, aged between 16 and 60, living in this area, were recruited”
Exclusion criteria: “persons with a known history of allergy against sulphonamides, with an evidence illness of fever, or which a positive blood film (with or without symptomatic malaria) were excluded”
Country of recruitment: Thailand
Country of malaria exposure: Thailand
Duration of exposure to malaria: trial duration 24 weeks
Type of participants: Thai residents in a malaria-endemic area (presumed semi-immune)

Interventions

Included in the review:
1. Mefloquine (1 tablet containing 125 mg mefloquine) once weekly, double dose during first 4 weeks*
2. Chloroquine (1 tablet containing 300 mg chloroquine) once weekly*
3. Placebo
Not included in the review:
4. Fansifem (1 tablet containing 125 mg mefloquine, 250 mg sulfadoxine, 12.5 mg pyrimethamine) once weekly, double dose during first 2 weeks*
5. Fansidar (1 tablet containing 500 mg sulfadoxine, 25 mg pyrimethamine) once weekly*
*matched placebo for each treatment arm

Outcomes

Included in the review:
1. Clinical cases of malaria
2. Adverse events; any
3. Discontinuations of study drug due to adverse effects
Outcomes assessed not included in the review:
4. Laboratory tests; haematocrit, white blood cell count and neutrophil count

Notes

Funding sources: “The project was jointly organized and conducted by the Malaria Division, Department of Communicable Disease, Ministry of Public Health; the Hoffman-La Roche company, Basel, Switzerland; and The Faculty of Tropical Medicines, Mahidol University, Bangkok”

Risk of bias

Bias	Authors’ judgement	Support for judgement

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Bias Type	Risk Level	Comments
Random sequence generation	Unclear	“Eligible volunteers were randomly assigned to treatment groups” Comment: method of random sequence generation not reported
Allocation concealment	Unclear	“The tablets were identical in appearance; they were packed in numbered blister packs and were in addition labelled weeks 1-24. .. the coded test drugs for weeks 1-4 were given to every subject” Comment: no mention of concealed opaque envelopes or central allocation
Blinding of participants and personnel	Low	“A randomised double blind trial…the tablets were identical in appearance; they were packed in numbered blister packs”
Blinding of outcome assessment	Unclear	Comment: described as double blind but no explanation provided of how this was achieved for researchers and outcome assessors
Incomplete outcome data; efficacy	Unclear	“Of the 605 subjects originally randomised, 3 were excluded because of baseline parasitaemia… Although some of the volunteers left the study for personal reasons (moving away from the area)” Comment: numbers lost to follow up have not been reported
Incomplete outcome data; safety	Unclear	“94% (116/123) in the mefloquine group and 98% (119/121) in the placebo group were included for adverse event reporting” “Although some of the volunteers left the study for personal reasons (moving away from the area)” Comment: numbers lost to follow-up were not reported
Selective reporting; efficacy	Low	Comment: Malaria cases were fully reported
Selective reporting; safety	High	Comment: Data were collected but not reported for adherence to drug regimen. Data were provided on aggregate across all time points. The number of adverse events were reported but not types or severity
Bunnag 1992

Other bias
High risk
“"The project was jointly organized and conducted by the Malaria Division, Department of Communicable Disease, Ministry of Public Health; the Hoffman-La Roche company, Basel, Switzerland; and The Faculty of Tropical Medicines, Mahidol University, Bangkok.”

Corominas 1997

Methods
Design: retrospective cohort study
Study dates: June 1992 to July 1994
Malaria transmission pattern and local antimalarial drug resistance: various, not specified
Adverse event monitoring: patient self-reported questionnaire

Participants
Number enrolled: 1511 questionnaires distributed, 1054 respondents
Inclusion criteria: travellers who visited areas with a risk of malaria infection who were travelling on short trips < 6 weeks duration
Exclusion criteria: none mentioned
Factors influencing drug allocation: The fact of participating in this study did not change at all the typical prophylaxis when performing, which followed the usual criteria (Google Translate = “El hecho de participar en este estudio no cambio en absoluto el tipico de profilaxis al realizar, que siguio los criterios habituales”)

Interventions
Included in the review:
1. Mefloquine (1 x 250 mg tablet) weekly, starting 1 week prior to travel, during the trip and 4 weeks following return from the malaria-endemic area
2. Chloroquine (5 mg/kg) weekly, starting 1 week prior to travel, during the trip and 4 weeks following return from the malaria-endemic area

Outcomes
Included in the review:
1. Adverse effects; any, vertigo, visual impairment, nausea, vomiting, abdominal pain, diarrhoea, insomnia, anxiety, depression, pruritis
2. Adverse effects; other (irritability)
3. Discontinuations of study drugs due to adverse effects

Notes
Funding sources: Not mentioned
Corominas 1997 (Continued)

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	

1. Confounding: moderate
Sex was reported across groups. No other confounders were reported

2. Selection of participants into the study: serious
1054/1511 (70%) response rate

3. Measurement of interventions: low
The antimalarial prescription was provided by a travel clinic which also performed the study

4. Departures from intended interventions: moderate
Discontinuations were reported across groups. It is unclear if information regarding switches was obtained

5. Missing data: low
All participants were included in the analysis. All information was included at one time point

6. Measurement of outcomes: serious
Comment: the outcome measure was subjective, participants and personnel were not blinded

7. Selection of the reported results: moderate
The analysis of the relationship of symptoms by weight was reported only for mefloquine

8. Other: no information
No information was provided regarding the study sponsor

Cunningham 2014

Methods
Design: cross-sectional cohort study
Study dates: questionnaire emailed July 2012, reminder emails were circulated at 8 and 12 weeks
Malaria transmission pattern and local antimalarial drug resistance: various destinations, not specified
Adverse event monitoring: patient self-reported questionnaire

Participants
Number enrolled: 579 questionnaires emailed, 327 responses
Inclusion criteria: all Foreign and Commonwealth Office staff posted to a malaria-endemic area
Exclusion criteria: none stated
Factors influencing drug allocation: “prophylaxis based on the Advisory Committee on Malaria Prevention in UK Travellers (ACMP) guidelines”
Country of recruitment: various, not specified
Country of malaria exposure: various, not specified
Duration of exposure to malaria: 0 to 3 months N = 16 (4.9%), 4 to 6 months N = 26 (8.0%), 7 to 12 months N = 46 (14.1%), 13 to 36 months N = 75 (22.9%), > 36 months N = 167 (51.1%)
Type of participants: UK Foreign and Commonwealth Office staff

Interventions
1. Mefloquine*
2. Atovaquone-proguanil*
3. Doxycycline*
4. Chloroquine*
*dosing regimen not specified

Outcomes

Included in the review:
1. Adverse effects; psychiatric disorders (abnormal dreams)
2. Adverse effects; other (skin sensitivity, indigestion, other psychological)

Outcomes assessed not included in the review:
3. Clinical cases of malaria
4. Background knowledge of malaria
5. Attitudes regarding malaria prophylaxis
6. Use of personal protective measures
7. Impact of pregnancy on malaria prevention
8. Measures of adherence to drug regimen (data provided on aggregate)

Notes

Funding sources: not mentioned

Communications with study authors: the study authors provided us with access to the full original data set. The data set differed from findings in the published version of the paper, and we were unable to determine the cause for differences. The included figures were from the full data set

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
No information on confounders was provided across prophylaxis groups

2. **Selection of participants into the study:** serious
Response rate for the survey was 56.5%

3. **Measurement of interventions:** moderate
Participants were asked to self-report which medications they were prescribed. Compliance rate was 25%

4. **Departures from intended interventions:** serious
No questions were included in the questionnaire regarding switches between chemoprophylactic regimens

5. **Missing data:** low
All participants were included in the analysis

6. **Measurement of outcomes:** serious
Comment: the outcome measure was subjective; participants and personnel were not blinded

7. **Selection of the reported results:** low
The entire questionnaire was provided in full, all outcomes included were reported

8. **Other:** no information
Study sponsor not mentioned |
Methods
- **Design:** RCT
- **Study dates:** not mentioned
- **Malaria transmission pattern and local antimalarial drug resistance:** not applicable
- **Adverse event monitoring:** daily self-reported diary. Three medical check ups for laboratory and other tests

Participants
- **Number enrolled:** 106 randomized, 95 completed all study procedures
- **Inclusion criteria:** “healthy adult staff and students at teaching hospitals in Perth, Western Australia”
- **Exclusion criteria:** “Those with a past history of psychiatric conditions, or neurological, cardiac, hepatic or renal disease were excluded, as were pregnant or breastfeeding females and those with a known allergy to, or taking medication known to interact with quinolone drugs. None of the subjects had taken mefloquine in the 3 months before the study”
- **Country of recruitment:** Australia
- **Country of malaria exposure:** not applicable
- **Duration of follow up:** 7 weeks
- **Type of participants:** non-immune non-travellers

Interventions
1. Mefloquine (1 x 250 mg tablet), with placebo dose followed 1 week later by 250 mg mefloquine weekly, active treatment duration 4 weeks
2. Placebo, 1 tablet weekly, duration 5 weeks

Outcomes
Included in the review:
1. Measure of adherence to the drug regimen
2. Adverse events: other outcome measures (symbol digit modalities test, digit span forwards and backwards test, ECG, hearing loss at 6kHz)

Outcomes assessed not included in the review:
3. Laboratory tests: serum glucose, insulin, ionized calcium, phosphate, magnesium and albumin concentrations
4. Adverse events: headache, lethargy, abdominal pain, diarrhoea, cough, nausea; study reports events occurring in the first week (after both groups had received placebo) and the relative risk of symptoms worsening over time

Notes
- **Funding sources:** “We thank… F. Hoffman La Roche & Co. for financial support”

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	“…allocation… was by a random number code generated by independent Fremantle Hospital Pharmacy staff”
Allocation concealment (selection bias)	Low risk	“…who kept the code strictly confidential until the last volunteer had completed the protocol”
Davis 1996 (Continued)

Source of Bias	Risk of Bias	Description
Blinding of participants and personnel	Low risk	“Tablets were prepared in individually numbered but otherwise unlabelled con-
(performance bias)		tainers... identical placebo tablets...”
Adverse effects/events		
Blinding of outcome assessment (detection bias)	Unclear risk	“Allocation of active or placebo formulation was by a random number code gen-
All outcomes		erated by independent Freemantle hospital staff who kept the code strictly
		confidential”
		Comment: not mentioned whether outcomes assessors were blinded
Incomplete outcome data (attrition bias); efficacy	Unclear risk	N/A
Incomplete outcome data (attrition bias); safety	Low risk	“Of 106 randomised volunteers, 95 (90%) completed all study procedures... eight sub-
		jects withdrew after initial assessment and three after the second. Follow-up of these
		individuals revealed no toxicity in those allocated mefloquine
Selective reporting (reporting bias); efficacy	Unclear risk	N/A
Selective reporting (reporting bias); safety	High risk	Comment: not all symptoms were reported, only those occurring in > 10% of participants in both groups. Absolute numbers of participants experiencing each symptom after mefloquine/placebo commenced not provided, only relative risk of symptoms worsening over time
Other bias	High risk	“We thank… F. Hoffman La Roche & Co. for financial support”

Eick-Cost 2017

Study	Design: Retrospective cohort study
	Study dates: 1 January 2008 to 30 June 2013
	Malaria transmission pattern and local antimalarial drug resistance: Various, not specified
	Adverse event monitoring: Data collected retrospectively from the Defense Medical Surveillance System, the Pharmacy Data Transaction Service and the Theater Medical Data Store

Participants	Number enrolled: 367,840
	Inclusion criteria: Active component service members who filled a prescription for mefloquine, doxycycline or atovaquone-proguanil
	Exclusion criteria: Doxycycline and atovaquone-proguanil prescriptions were excluded if the service member previously or concurrently received mefloquine. Doxycycline prescriptions were restricted to 100 mg, once daily, tabular
Eick-Cost 2017 (Continued)

Form, minimum 30 day prescription	Factors influencing drug allocation: Not specified
Country of recruitment: USA	
Country of malaria exposure: Various, not specified	
Duration of exposure to malaria: Various, not specified	
Type of participants: Military	

Interventions

1. Mefloquine (250 mg weekly)
2. Atovaquone-proguanil*
3. Doxycycline (100 mg, tabular form, daily dose, 30 day minimum prescription)

*dosing regimen not specified

Outcomes

1. Adverse events (anxiety disorders, depressive disorders, psychoses, insomnia, vertigo)
2. Adverse events; other (adjustment disorders, post-traumatic stress disorder, tinnitus, suicidal ideation, convulsions, hallucinations, paranoia, confusion)

Notes

Funding source: not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	**1. Confounding: moderate**
Identified confounders were measured and not balanced across groups

2. Selection of participants into the study: low
Start of intervention and start of follow-up coincided for most participants. Retrospective medical records were used, therefore there were no non-responders

3. Measurement of interventions: moderate
Information regarding drug prescriptions were obtained from a medical database, without any verification that users took the prescription

4. Departures from intended interventions: serious
Discontinuations and switches between prophylactic regimes were not recorded in the database

5. Missing data: low
All records in the research database were included in the analysis

6. Measurement of outcomes: moderate
Participants and outcome assessors (physicians) were not blinded. However, information was collected anonymously and on aggregate. Participants were unaware of their participation at the time of seeking healthcare

7. Selection of the reported results: low
Outcome data were reported for all outcomes prespecified for analysis

8. Other: no information
No information was available regarding the study sponsor.
Methods

- **Design:** prospective cohort study
- **Study dates:** December 2004 to April 2006
- **Malaria transmission pattern and local antimalarial drug resistance:** various destinations, not specified
- **Adverse event monitoring:** "a post travel questionnaire… approximately 1 week after they were due to complete their course of medication"

Participants

- **Number enrolled:** 252 recruited, 185 completed pre- and post-travel questionnaires
- **Inclusion criteria:** "...to be eligible, travelers had to be at least 18 years of age and to have been prescribed or supplied. .. an antimalarial medication as a result of planned travel for a duration of 28 days or less."
- **Exclusion criteria:** "travelers participating in other prospective clinical research or observational studies, pregnant travelers or travelers planning to get pregnant during the study were excluded"
- **Factors influencing drug allocation:** "Treatment choice was solely at the discretion of the traveler and practitioner"
- **Country of recruitment:** UK
- **Country of malaria exposure:** various, not reported
- **Duration of exposure to malaria:** various, median 14 days (interquartile range 9 to 20)
- **Type of participants:** travellers

Interventions

1. Mefloquine*
2. Atovaquone-proguanil*
3. Doxycycline*

* dosing regimen not specified

Outcomes

- **Included in the review:**
 1. Any adverse effects
 2. Measures of adherence to the drug regimen

- **Outcomes assessed not included in the review:**
 3. Relative importance of factors in choice of antimalarial drugs, for both healthcare professionals and travellers

Notes

- **Funding sources:** “The study was commissioned and paid for by GlaxoSmithKline”

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
 “There were statistically significant differences in mean age”
 Several other confounders were not reported across groups
 2. **Selection of participants into the study:** moderate
 No information is provided regarding people who did not wish to participate
 3. **Measurement of interventions:** low
 The antimalarial prescription was provided by a travel clinic which also performed the study
 4. **Departures from intended interventions:** moderate
 No information was captured regarding switches between interventions of interest |
Hale 2003

Methods
- **Design:** RCT
- **Study dates:** not mentioned
- **Malaria transmission pattern and local antimalarial drug resistance:** "the 20-week cumulative incidence of reinfection by *P. falciparum* to be nearly 100%". No mention of local drug resistance patterns
- **Adverse event monitoring:** "...during the prophylaxis and follow-up phases, health workers visited the subjects 3 times weekly. Subjects with physical complaints were examined by a study physician the next day or on an emergent basis, as needed. Hematologic analysis was done on days 4 and 10 after starting the loading dose phase and during weeks 4, 8, 12, and 15. Biochemical analysis was done during weeks 4, 8, 12, and 15"

Participants
- **Number enrolled:** 530 enrolled and completed radical cure regimen. 509 participants took at least 1 dose of the weekly study drug or placebo and comprised the full intention-to-treat data set
- **Inclusion criteria:** "Inclusion criteria included the following: age of 18-60 years (men) or 50-60 years (women); lack of significant systemic illness as determined by history, physical examination, and clinical laboratory test results (including negative results of a urine pregnancy test for women); and absence of seizures or other neuropsychiatric illness (past or present)"
- **Exclusion criteria:** "The high rate of pregnancy and breast-feeding in women aged 18-49 years precluded their enrollment... G6PD deficiency accounted for 179 of 338 exclusions"
- **Country of recruitment:** Ghana
- **Country of malaria exposure:** Ghana
- **Duration of exposure to malaria:** trial duration 12 weeks
- **Type of participants:** Ghanain residents, semi-immune

Interventions
- **Included in the review:**
 1. Mefloquine (1 x 250 mg tablet, salt), weekly, with supervised 3 day loading dose*
 2. Placebo, with supervised 3 day loading dose*
- **Not included in the review:**
 3. Tafenoquine (1 x 25 mg tablet, base), weekly, with supervised 3 day loading dose*
 4. Tafenoquine (1 x 50 mg tablet, base), weekly, with supervised 3 day loading dose*
 5. Tafenoquine (1 x 100 mg tablet, base), weekly, with supervised 3 day loading dose*

Goodyer 2011

(Continued)

5. **Missing data:** serious
 - 185/252 participants completed the pre- and post-travel questionnaire. Interim loss to follow up 27%
6. **Measurement of outcomes:** serious
 - Comment: the outcome measure was subjective; participants and personnel were not blinded
7. **Selection of the reported results:** moderate
 - The number of reported side effects was reported, but not the types or severity
8. **Others:** serious
 - Funded by GlaxoSmithKline; the role of the study sponsor was not made clear
6. Tafenoquine (1 x 200 mg tablet, base), weekly, with supervised 3 day loading dose*
*matched placebo for each treatment arm

Outcomes	Included in the review:
	1. Clinical cases of malaria
	2. Adverse events; any, abdominal pain, diarrhoea, headache
	3. Adverse events; other (gastritis, back pain, myalgia, polyarthralgia/arthritis, respiratory tract infection, sore throat, rash)
	4. Discontinuation of study drug due to adverse effects
	Outcomes assessed not included in the review:
	5. Laboratory tests; haematological and biochemical analyses

| Notes | Funding sources: USA Army Medical Materiel Development |

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	“The randomization code was generated in blocks of 11 numbers”
		Comment: not mentioned how randomization code was produced
Allocation concealment (selection bias)	Unclear risk	“Code numbers were assigned according to the chronological order of appearance of the subjects at screening. Study drugs were prepackaged and prelabeled with a unique study number according to the randomization code”
		Comment: no mention of opaque sealed envelopes
Blinding of participants and personnel	Unclear risk	“A ‘double-dummy’ design allowed double-blind administration of tafenoquine and mefloquine active drugs and their corresponding placebos”
(performance bias) Adverse effects/events		“A placebo (tafenoquine placebo, GlaxoSmith-Kline; mefloquine placebo, Hoffmann-La Roche) served as the negative comparator”
		Comment: does not report that the tablets were identical
Blinding of outcome assessment (detection bias)	Unclear risk	“All slides positive for the presence of malaria causing parasites, and an equal number of randomly selected slides with negative results were reevaluated by a second (blinded) microscopist.”
All outcomes		Comment: no other mention of outcome
Hale 2003 (Continued)

Bias Type	Risk Level	Description
Incomplete outcome data (attrition bias); efficacy	Low risk	"Data analysis for efficacy used 2 data sets: the 'full, intent-to-treat' data set (n=509), comprising all subjects who took at least 1 dose of the weekly study drug or placebo, and the 'per-protocol' data set (n=428), comprising those subjects who strictly fulfilled the protocol criteria"
Incomplete outcome data (attrition bias); safety	Low risk	Comment: The safety and tolerability analyses included data for all participants who received at least 1 dose of the study drug or placebo (N = 513)
Selective reporting (reporting bias); efficacy	Low risk	Comment: total number of participants with positive blood smear result at any time during prophylaxis was reported. Clinical cases of malaria were reported
Selective reporting (reporting bias); safety	High risk	"There were 9 serious adverse events in the study... No serious adverse events were considered by study physicians to be related to the study drug, and no deaths occurred" Comment: Data for serious adverse events were not attributed to the drug regimen. No information was provided on how causality was assessed
Other bias	High risk	Acknowledgement of "Philip Pickford and Rachel Moate (GlaxoSmithKline), for statistical and editorial advisement"

Hill 2000

Methods
- **Design:** retrospective cohort study
- **Study dates:** June 1989 to May 1991
- **Malaria transmission pattern and local antimalarial drug resistance:** various, not specified
- **Adverse event monitoring:** patient self-reported questionnaire. "Any reported illness was followed up by telephone interview about the nature of the illness, during which time more complete information was obtained using standardized questions"

Participants
- **Number enrolled:** 869 participants enrolled, 822 completed follow-up
- **Inclusion criteria:** all individuals attending the International Traveler's Medical Service at the University of Connecticut Health Center and traveling for ≤ 90 days
- **Exclusion criteria:** none mentioned
- **Factors influencing drug allocation:** "prior to travel each person was given extensive counseling and written material on the prevention of malaria and traveler's diarrhea. They were given prescriptions for prophylactic antimalarials"
Country of recruitment: USA
Country of malaria exposure: Various: Indian subcontinent 21%, central and east Africa 20%, South America 16%, Southeast Asia 14%, West Africa 10%, Central America and Mexico 10%, North Africa 65, East Asia 6%, Caribbean 5%, Southern Africa 5%, Middle East 3%
Duration of exposure to malaria: median 19 days (up to 90 days)
Type of participants: travellers

Interventions	Included in the review:
	1. Mefloquine*
	2. Chloroquine*
	Not included in the review:
	2. Chloroquine-proguanil*
	*dosing regimen not specified

Outcomes	Included in the review:
	1. Any adverse effects
	2. Discontinuations of study drug due to adverse effects
	3. Measures of adherence to the drug regime
Outcomes assessed not included in the review:	
	4. Clinical cases of malaria
	5. Adverse events (provided for entire cohort, not by type of malaria prophylaxis)
	6. Adverse effects; other (all gastrointestinal disorders, all nervous system disorders - no comparative data provided)
	7. Illness during and following travel

| Notes | Funding sources: Not mentioned |

Risk of bias	
Bias	Authors' judgement
Other bias	Unclear risk
	Support for judgement
	1. Confounding: moderate
	Age, sex, destination and duration of travel were measured but not reported across groups
	2. Selection of participants into the study: moderate
	Non-response rate was not reported.
	3. Measurement of interventions: low
	The antimalarial prescription was provided by a travel clinic which also performed the study
	4. Departures from intended interventions: moderate
	Information was provided on discontinuations, but no information was captured on switches between interventions
	5. Missing data: low
	Information on adverse effects was available for all participants who ever filled the prescription for the study drug (571/612, 93%)
	6. Measurement of outcomes: serious
	Comment: the outcome measure was subjective; partici-
Hill 2000

(Continued)

		pants and personnel were not blinded
		7. Selection of the reported results: moderate
		It is unclear which questions were included in the questionnaire. Information was provided on aggregate
		8. Other: no information
		No information provided on study sponsor

Hoebe 1997

Methods

- Design: retrospective cohort study
- Study dates: January to June 1995
- Malaria transmission pattern and local antimalarial drug resistance: various, not specified
- Adverse event monitoring: one-off telephone interview between 4 and 20 weeks post-travel

Participants

- Number enrolled: 454 eligible travellers, 300 successfully contacted and agreed to participate
- Inclusion criteria: subjects who visited the travel vaccination service of the regional public health institute in Maastricht if they had returned from their journey to tropical countries between 4 and 20 weeks previously. The group of non-users was formed by people who travelled either to tropical countries without malaria risk or to cities in malarious areas, and by travellers who were prescribed an antimalarial drug but did not commence use
- Exclusion criteria: participants who had a serious adverse reaction to mefloquine in the first week
- Country of recruitment: Netherlands
- Region of malaria exposure: various; Asia, Africa, South America
- Duration of exposure to malaria: mean ~3 weeks (range 1 to 9 weeks)
- Type of participants: travellers

Interventions

Included in the review:

1. Mefloquine (1 x 250 mg tablet) weekly, taken 1 week prior to leaving, during travel and 4 weeks after departure
2. Non-users of antimalarials

Not included in the review:

3. Proguanil (1 x 100 mg tablet) twice daily, taken during travel and 4 weeks after departure

Outcomes

1. Adverse events; any, nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams, insomnia, anxiety, depression, pruritis
2. Adverse events; other (palpitations, severity of symptoms, time point of symptoms in relation to drug taking)
3. Discontinuations of study drug due to adverse effects
4. Measure of adherence to the drug regimen

Notes

- Funding sources: Not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	**1. Confounding: moderate**
		Travel destination varies significantly between users of mefloquine and non-users of prophylaxis (6.7% America mefloquine versus 29.0% non-users)
		2. Selection of participants into the study: low
Hoebe 1997 (Continued)

13/454 (2.8%) of travellers successfully contacted refused to participate
3. Measurement of interventions: low
Prescription was provided by a travel clinic which also performed the study, and discontinuations were reported
4. Departures from intended interventions: moderate
No information regarding switches been interventions of interest was reported
5. Missing data: moderate
“If somebody discontinued drug use within a certain period, symptoms that occurred in the following period were not counted”
Comment: Mefloquine has a half life of 17 to 21 days
6. Measurement of outcomes: moderate
“The participants were specifically asked about symptoms instead of adverse effects...To hide our focus on symptoms as adverse effects of the drugs, participants were informed that the aim of the study was to investigate symptoms during travelling. We structured the questionnaire so that the interviewers asked about symptoms first and drug use last, in order to blind them to the drug used when addressing symptoms”
7. Selection of the reported results: low
All prespecified outcomes were reported.
8. Other: no information
Funding source was not mentioned

Jute 2007

Methods
Design: cross-sectional cohort study
Study dates: 2003
Malaria transmission pattern and local antimalarial drug resistance: during the dry season (considered a low risk malaria season). Local chloroquine/proguanil resistance
Adverse event monitoring: Patient self-reported questionnaire

Participants
Number enrolled: 90 questionnaires distributed, 68 responses
Inclusion criteria: “all expatriate employees at the mine”
Exclusion criteria: non mentioned
Country of recruitment: Mali
Country of malaria exposure: Mali
Duration of exposure to malaria: various, not specified
Type of participants: long-term expatriates

Interventions
Included in the review:
1. Mefloquine
2. Doxycycline
3. Atovaquone-proguanil

Not included in the review:
4. Chloroquine-proguanil
Outcomes

1. Adverse effects; any

Notes

Study sponsor not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
		Sex was recorded but not reported across chemoprophylaxis groups. Duration of travel
		was not reported. Destination of travel was set by the study design
		2. Selection of participants into the study: serious
		68/90 response rate (76%)
		3. Measurement of interventions: no information
		It was unclear whether information on participants chemoprophylaxis was taken from
		medical records or patient self-reporting
		4. Departures from intended interventions: moderate
		No information regarding switches between interventions of interest were reported.
		Discontinuations were reported
		5. Missing data: low
		All information was collected at one time point
		6. Measurement of outcomes: serious
		The outcome measure was subjective. There was no mention of participants or outcome
		assessors being blinded
		7. Selection of the reported results: no information
		No information was provided regarding which topics were included within the questionnaire
		8. Other: no information
		Funding source was not mentioned

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Kato 2013 (Continued)

| Africa 36, South Pacific 21, South America 16, India 8, North Africa 5, Central America 1
| Duration of exposure to malaria: mean 20.0 ± 9.6 days in the atovaquone-proguanil group and 59.0 ± 15.9 days in the mefloquine group
| Type of participants: travellers
|
| **Interventions**
| 1. Mefloquine (1 x 250 mg tablet, Mephaquin; Mepha) weekly, starting 1 week prior to arrival, during the stay, and continuing for 4 weeks after leaving the endemic area
| 2. Atovaquone-proguanil (1 tablet containing 250 mg atovaquone and 100 mg proguanil, Malarone; GlaxoSmithKline) daily, starting 2 days prior to arrival, during the stay, and for 1 week after leaving the endemic area
|
| **Outcomes**
| 1. Adverse effects (any vertigo/dizziness, nausea, abdominal pain, diarrhoea, headache, insomnia, depression, any cardiovascular, any gastrointestinal, any psychoneurotic, allergic reaction)
| 2. Discontinuations of study drug due to adverse effects
|
| **Notes**
| Funding sources: not mentioned
| Communications with the study authors: the study authors provided us with disaggregated study data for the following outcomes: vertigo/dizziness, nausea, abdominal pain, diarrhoea, headache, insomnia, depression. Because we did not get receive the full disaggregated data set, we also retained this study in the analysis of groups of symptoms

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding: moderate**
		PTravellers in the mefloquine group were significantly younger than travellers in the A/P group (p=0.01)”
		2. **Selection of participants into the study: serious**
		“316 of 1119 travelers (28.2 %) were enrolled”
		3. **Measurement of interventions: low**
		The prescription has been provided by travel clinic which also performed the study and discontinuations have been reported
		4. **Departures from intended interventions: moderate**
		No information was available regarding switches between interventions of interest
		5. **Missing data: low**
		One participant in the mefloquine group appears to be missing from the adverse events analysis. No reason was given
		6. **Measurement of outcomes: serious**
		Comment: the outcome measure was subjective; participants and personnel were not blinded
		7. **Selection of the reported results: low**
		Study authors provided us with disaggregated study data for individual outcomes
		8. **Other: serious**
		“The authors wish to acknowledge that Makoto Ono and Tomoko Kawamura of GlaxoSmithKline are highly ap-
Kato 2013 (Continued)

	appreciated for conducting Data Management and Statistics Analysis of this study

Korhonen 2007

Methods
- **Design:** prospective cohort study
- **Study dates:** 1 August 2005 to 31 July 2006.
- **Malaria transmission pattern and local antimalarial drug resistance:** various, chloroquine resistance specified by country of destination
- **Adverse event monitoring:** "Peace Corps medical staff in these countries were provided surveys for distribution during mandatory in-country volunteer training sessions"

Participants
- **Number enrolled:** 2701 (6216 Peace Corps volunteers during the time period)
- **Inclusion criteria:** "all Peace Corps countries with malaria risk"
- **Exclusion criteria:** none mentioned
- **Factors influencing drug allocation:** "Volunteers are provided chemoprophylaxis (either chloroquine, mefloquine, doxycycline, or atovaquone/proguanil)... medical officers can provide alternative chemoprophylaxis regimens for volunteers when adverse events or other factors require the cessation of any medication"
- **Country of recruitment:** various
- **Country of malaria exposure:** various
- **Duration of exposure to malaria:** "6 months or longer"
- **Type of participants:** Peace Corps volunteers

Interventions
- **Included in the review:**
 1. Mefloquine*
 2. Chloroquine*
 3. Doxycycline*
 4. Atovaquone-proguanil*
 *dosing regimen not specified

Outcomes
- **1. Adverse effects; any (mild, moderate, severe, sought medical advice), nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams, insomnia, depression, anxiety, visual disturbance**
- **2. Adverse effects; other (unsteadiness, hair loss, weakness, itchy skin, photosensitivity, yeast infection)**
- **3. Serious adverse effects**
- **4. Discontinuations of study drug due to adverse effects**

Notes
- **Funding sources:** "CK and PJ are employed by the Peace Corps, which has a significant number of volunteers taking anti-malarial medications. There were no other financial disclosures"
- **Communications with study authors:** The study authors provided us with access to the disaggregated study data for the specific symptoms mentioned above. The questionnaire in the paper allowed participants to describe side effects from the antimalarial they were currently taking, and any regimen they had previously used. For non-serious side effects, in line with the original paper, we only included side effects for the subject’s original regimen. Where subjects had previously taken more than one regimen, we only include side effects for whichever regimen to which the participant attributed the greater number of side effects; this affected 70/2701 participants. This analysis resulted in a decrease in the effect size for side effects attributed to mefloquine. For serious side effects (hospitalizations) and discontinuations we included all participants entries for all regimens. In addition, our denominator differed from the original paper because we did not exclude participants who had been in post for fewer than six months"
Korhonen 2007 (Continued)

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	**1. Confounding: moderate**
“The questionnaire did not collect demographic information because of privacy concerns”		
Comment: destination has been reported, but not by type of antimalarial chemoprophylaxis. Duration was set by the study design		
		2. Selection of participants into the study: serious
“A total of 2701 surveys were received yielding a response rate of 43%”		
		3. Measurement of interventions: moderate
Participants were asked to self-report which prophylaxis they were currently taking and had previously taken		
		4. Departures from intended interventions: moderate
Switches between interventions of interest were reported. Approximately 1/3 of study participants had switched prophylactic regimens		
		5. Missing data: low
We were able to include all participants in the study analysis because we had access to the original data set		
		6. Measurement of outcomes: serious
“If respondents identified any adverse event, the survey instructed them to self-report which drug they believed caused the adverse event”		
Comment: the outcome measure was subjective; participants and personnel were not blinded		
		7. Selection of the reported results: low
We were able to include all results in the analysis because we had access to the original data set		
		8. Other: low
No evidence of pharmaceutical company funding |

Kuhner 2005

Methods

- **Design:** prospective cohort study
- **Study dates:** 2000 to 2003
- **Malaria transmission pattern and local antimalarial drug resistance:** various, not specified
- **Adverse event monitoring:** retrospective patient self-reporting questionnaire

Participants

- **Number enrolled:** 495 enrolled, 284 response rate
- **Inclusion criteria:** unclear. Users of the travel medicine department of the lower Saxony regional health office in Hanover, Germany
- **Exclusion criteria:** None mentioned
- **Factors influencing drug allocation:** “the prescriptions of medications followed individual consultation”
- **Country of recruitment:** Germany
Country of malaria exposure: various, not specified
Duration of exposure to drug: atovaquone-proguanil mean 2.6 weeks, mefloquine mean 7 weeks
Type of participants: short-term travellers

Interventions

Included in the review:
1. Mefloquine*
2. Atovaquone-proguanil*

Not included in the review:
3. Chloroquine-proguanil*
4. Chloroquine (not included in the study analysis)
* dosing regimen not specified

Outcomes

1. Adverse effects; any, nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams, insomnia, pruritis
2. Adverse effects; other (concentration difficulties, palpitations, circulation disorders, rash)
3. Discontinuations of study drug due to adverse effects

Notes

Funding sources: not mentioned

Risk of bias

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
Sex, age and duration of travel were reported but not balanced across groups
2. Selection of participants into the study: serious
284/495 (59.8%) response rate
3. Measurement of interventions: low
The prescription was provided by a travel clinic which also performed the study; switches and discontinuations were recorded and reported
4. Departures from intended interventions: moderate
No information was provided regarding switches between prophylactic regimens
5. Missing data: low
All information was collected at one time point
6. Measurement of outcomes: serious
The outcome measure was subjective. There was no mention of outcome assessors being blinded
7. Selection of the reported results: moderate
Insufficient information was provided regarding the questionnaire to know whether all outcomes were reported
8. Other: no information
Study sponsor not mentioned |
Methods

Design: prospective cohort study
Study dates: 19 August to 30 September 2013
Malaria transmission pattern and local antimalarial drug resistance: various
Adverse event monitoring: participant self-reported questionnaire

Participants

- **Number enrolled:** 3207 emails sent, 1184 unique, valid responses received
- **Inclusion criteria:** “(volunteers in) Peace Corps offices of all 23 countries with active posts in the Africa region to all active Volunteers in-country”
- **Exclusion criteria:** Volunteers serving in Ethiopia, Kenya, Tanzania, Namibia, Botswana, South Africa
- **Region of recruitment:** African region except Ethiopia, Kenya, Tanzania, Namibia, Botswana, South Africa
- **Factors influencing drug allocation:** “all prophylaxis options (mefloquine, doxycycline, atovaquone-proguanil) [are] equally available... They are instructed to individualize their choice of agent based on area-specific recommendations, drug contraindications and precautions, drug tolerance, and dosing schedule”
- **Country of malaria exposure:** various: Togo (3.7%), Sierra Leone (6.3%), Uganda (7.8%), Liberia (5.6%), Malawi (2.0%), Cameroon (11.4%), Benin (10.2%), Burkina Faso (1.9%), Zambia (6.0%), Mozambique (4.5%), Ghana (10.8%), Rwanda (5.4%), Gambia (4.4%), Madagascar (11.1%), Swaziland (2.3%)
- **Duration of exposure to malaria:** various, not specified
- **Type of participants:** Peace Corps volunteers

Interventions

1. Mefloquine*
2. Atovaquone-proguanil*
3. Doxycycline*
* dosing regimen not specified

Outcomes

Included in the review:
1. Adverse effects; any, vertigo, headache, abnormal dreams, insomnia, anxiety, depression, psychosis
2. Adverse effects; other (any neuropsychiatric disorder, any gastrointestinal disorder, any skin or subcutaneous disorder, limb numbness, tinnitus, 'constitutional', genitourinary)
3. Measures of adherence to the drug regimen
Outcomes assessed not included in the review:
4. Reasons for non-adherence (not ascribed to prophylactic regimen, provided on aggregate),
5. Malaria knowledge
6. Health behaviours

Notes

Funding sources: not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
The age, sex and BMI of included participants was not recorded. The destination and duration of travel was not reported by prophylactic regimen
2. Selection of participants into the study: serious
1184/3248 (36%) response rate
3. Measurement of interventions: moderate
Travellers were asked to self-report which prophylaxis they were taking at various time points during treatment |
4. Departures from intended interventions: serious
“Two hundred seventy-six (35%) respondents reported having changed prophylaxis at some point during their service”
Comment: this was not provided by prophylactic regimen

5. Missing data: low
703/781 (90%) participants reported data for adherence; 733/781 (94%) participants reported data for adverse events. Data were only included from the 2015 version of the publication

6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded

7. Selection of the reported results: low
All outcomes prespecified in the methods section were reported

8. Other: no information
Study sponsor not mentioned

Laver 2001

Methods
- Design: cross-sectional cohort study
- Study dates: February 2000
- Malaria transmission pattern and local antimalarial drug resistance: “during February 2000, which was a peak period of malaria transmission in Zimbabwe”
- Adverse event monitoring: patient self-reported questionnaire

Participants
- Number enrolled: 660
- Inclusion criteria: Passengers in Harare and Victoria Falls international airport during February 2000
- Exclusion criteria: “Children under the age of 18 were excluded on the assumption that parents probably influence their health seeking behavior... Excluded, were travelers from the African continent and VIP travelers who exited through special departure lounges”
- Factors influencing drug allocation: no information provided
- Country of recruitment: Zimbabwe
- Country of malaria exposure: Zimbabwe
- Duration of exposure to malaria: various: 1 week or less, N = 317; 8 days to 2 weeks, N = 144; 15 days to 4 weeks, N = 90; > 4 weeks, N = 41
- Type of participants: travellers

Interventions
- Included in the review:
 1. Mefloquine*
 2. Doxycycline*
 3. Chloroquine*
- Not included in the review:
 4. Proguanil*
 5. Dapsone and pyrimethamine*
 6. Chloroquine and proguanil*
* dosing regimen not specified
Outcomes

Included in the review:
1. Measure of adherence to the drug regimen

Outcomes assessed not included in the review:
2. Sources of pre-travel health advice
3. Knowledge about malaria transmission
4. Knowledge about malaria prevention
5. Threat and risk perception

Notes

- Funding sources: not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding: moderate** Sex (P < 0.008), education (P < 0.022), previous episodes of malaria (P < 0.001) and access to pre-travel advice (P < 0.001) were all significantly associated with reduced compliance at the significance value set by the study. None of these factors were adjusted for in the analysis
		2. **Selection of participants into the study: moderate** “The nonresponse rate was about 10% (n = 65), with the main reason being the short transit time”
		3. **Measurement of interventions: low** Participants were asked to self-report which prophylactic regimen they were taking while they were still taking it
		4. **Departures from intended interventions: moderate** No information was provided regarding switches between prophylactic regimens
		5. **Missing data: low** Adherence information was not available for 4/595 participants
		6. **Measurement of outcomes: serious** The outcome measure was based on participant self-reporting; participants and personnel were not blinded
		7. **Selection of the reported results: moderate** There was insufficient information provided to know what questions were asked regarding adherence
		8. **Other: low** “The authors had no financial or other conflicts of interest to disclose”
Laverone 2006

Methods
- Design: retrospective cohort study
- Study dates: 1 January 2003 to 31 December 2004
- Malaria transmission pattern and local antimalarial drug resistance: various, not specified
- Adverse event monitoring: "An anonymous survey in a post-travel situation"

Participants
- Number enrolled: 1176 agreed to participate, 1237 approached
- Inclusion criteria: "travellers who had already completed their journey for which they had undergone immunization prophylaxis and who had returned to complete their vaccination schedule"
- Exclusion criteria: none mentioned
- Factors influencing drug allocation: "offered health advice following the World Health Organization guidelines for international travel"
- Country of recruitment: Italy
- Regions of malaria exposure: 97 countries: 39 states in Africa, 25 in Asia, 16 in North and Central America, 8 in South America, 6 in Europe and 3 in Oceania
- Duration of exposure to malaria: 1 to 7 days, 8.9%; 8 to 14 days, 30.1%; 15 to 21 days, 34.6%; 22 to 30 days, 16.8%; > 30 days, 8.9%; not available 0.7%
- Type of participants: travellers

Interventions
Included in the review:
1. Mefloquine*
2. Atovaquone-proguanil*
3. Chloroquine*

Not included in the review:
4. Chloroquine-proguanil*
5. Proguanil*
* dosing regimen not specified

Outcomes
Included in the review:
1. Adverse effects; any, visual impairment (blurred vision), nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams (nightmares), insomnia, anxiety (anxiety disorder), depression, psychosis (hallucinations)
2. Adverse effects; other (slight illness, tiredness, restlessness, drowsiness, palpitations, weakness, photosensitization, mental confusion, rash)

Outcomes assessed not included in the review:
3. Adverse effects; other, incidence < 1% (liver pain, aerophagy, rise in transaminase levels, gastrointestinal disturbance, epistaxis, fever)
4. Compliance with vaccinations
5. Side effects from vaccinations
6. Occurrence of health problems and unforeseen events during travel in the countries visited
7. Attention to avoiding potentially risky food and drink

Notes
- Funding sources: Not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
Demographic information was collected, but provided on aggregate for the entire cohort |
2. Selection of participants into the study: low
1176 of 1237 (95.1%) response rate

3. Measurement of interventions: serious
Participants were asked to self-report which prophylactic regimen they had used, up to over 12 months since travelling

4. Departures from intended interventions: serious
No switches were reported, and this information was not sought in the questionnaire

5. Missing data: low
642/646 (99%) participants were included in the analysis

6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded

7. Selection of the reported results: low
The questionnaire was provided in full, and all outcomes were reported

8. Other: no information
No information was provided regarding the study sponsor

Lobel 2001

Methods
Design: cross-sectional cohort study
Study dates: 13 July to 9 August 1997
Malaria transmission pattern and local antimalarial drug resistance: various, not specified
Adverse event monitoring: patient self-reported questionnaire

Participants
Number enrolled: 6633 respondents, 5626 met inclusion criteria
Inclusion criteria: “travelers departing Nairobi, or Mombasa, Kenya, from July 13 to August 9, 1997, on flights to Europe, including London, Paris, Frankfurt, Amsterdam, and Rome”
Exclusion criteria: residents of African countries, individuals who had remained in Africa for more than 1 year, individuals who visited only non malarious areas, including Nairobi and Lesotho
Factors influencing drug allocation: no information available
Region of recruitment: Nairobi or Mombasa, Kenya
Region of malaria exposure: Nairobi or Mombasa, Kenya
Duration of exposure to malaria: < 5 weeks
Type of participants: travellers

Interventions
Included in the review:
1. Mefloquine*
2. Doxycycline*
3. Chloroquine*

Not included in the review:
4. Chloroquine-proguanil*
5. Proguanil*
*dosing regimen not specified
Outcomes

Included in the review:
1. Adverse effects; any,
2. Serious adverse outcomes
3. Adverse effects; other (neuropsychologic, gastrointestinal, respiratory)
4. Measure of adherence to the drug regimen

Outcomes assessed not included in the review:
5. Pre-travel medical advice
6. Compliance with antimosquito measures
7. Self-treatment of presumed malaria

Notes

Funding sources: not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
The number of travellers and country of origin was reported, but was not adjusted for in the analysis. Sex, age and duration of stay were reported on aggregate
2. Selection of participants into the study: serious
Response rate 6633/15,487 (43%)
3. Measurement of interventions: low
Participants were asked to provide information regarding their prophylactic regimen during their flight home, while they should have still been using it
4. Departures from intended interventions: moderate
No information was available regarding switches between alternative prophylactic regimens
5. Missing data: low
4934/4982 (99%) participants included in adverse event reporting
6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded
7. Selection of the reported results: moderate
There was insufficient information provided regarding the questions included in the questionnaire. Symptoms were grouped together to report outcomes
8. Other: low
“The authors had no financial or other conflicts of interest to disclose”
| **Methods** | Design: retrospective cohort study
Study dates: October to December 2005, with a 2 year follow-up
Malaria transmission pattern and local antimalarial drug resistance: "Malaria endemic area. Local chloroquine/proguanil resistance"
Adverse event monitoring: Not clear |
|---|---|
| **Participants** | Number enrolled: 33
Inclusion criteria: not explicitly stated. Participants were travellers who took part in a scientific survey and rafting expedition in Ethiopia between October and December 2005
Exclusion criteria: none stated
Country of recruitment: various, participants were from "a non-malarious area, mainly the UK"
Country of malaria exposure: Ethiopia
Duration of exposure to malaria: 3 months
Type of participants: travellers |
| **Interventions** | Included in the review:
1. Mefloquine, dose not specified, during travel and 4 weeks after return
2. Atovaquone-proguanil, dose not specified, during travel and for 1 week after return
3. Doxycycline, dose not specified, during travel and 4 weeks after return
Not included in the review:
4. Chloroquine-proguanil, dose not specified, during travel and 4 weeks after return |
| **Outcomes** | Included in the review:
1. Measures of adherence to the drug regimen
Outcomes assessed not included in the review:
2. Clinical cases of malaria
3. Adverse effects (information not provided by drug class)
4. Factors influencing choice of prophylaxis |
| **Notes** | Funding sources: Work was supported by the Biomedical Research Centre (Grant RG561620 to AMLL) |

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding: moderate**
Demographic information is provided for the entire cohort
2. **Selection of participants into the study: low**
No participants refused to participate in the study. Start of follow-up began at the start of travel and not at the start of treatment, but this was judged to have a low impact on monitoring self-reported adherence
3. **Measurement of interventions: low**
Intervention status was determined by one of the participants on the expedition
4. **Departures from intended interventions: low**
There are no documented switches between interventions of interest |
Mavrogordato 2012
(Continued)

		5. Missing data: low
 Two people (6%) were lost to follow-up in respect to data on efficacy. No participants were lost to follow-up when monitoring adherence
6. Measurement of outcomes: serious
Adherence was monitored by the medical officer on the trip, and reporting may have been influenced by social desirability bias
7. Selection of the reported results: low
All prespecified outcomes have been reported
8. Other: low
Government funding |

Meier 2004

Methods	
Design: retrospective cohort study	
Study dates: 1 January 1990 and 31 December 1999
Malaria transmission pattern and local antimalarial drug resistance: various, not specified
Adverse event monitoring: incident cases of depression, psychoses and panic attacks severe enough to require hospitalisation, referral to a specialist or specific pharmacological treatment within the UK general practice research database |

Participants	
Number enrolled: 35,370	
Inclusion criteria: "men and women aged 17-79 years who received between one and four prescriptions for mefloquine, proguanil and/or chloroquine, or subjects who received one prescription only for doxycycline... we included only those subjects who medical record contained a code indicating that the person received the drug for malaria prophylaxis within 1 week of the prescription date e.g. 'travel advice' or 'prophylactic drug use'"
Exclusion criteria: "participants who received the study drugs on a longer-term basis...subjects had to be enrolled in the database for at least 12 months before the date of the first prescription for a study drug and had to have had some recorded activity (diagnoses or drug prescriptions) after the prescription(s) for an antimalarial drug... subjects with a history of alcoholism"
Country of recruitment: UK
Country of malaria exposure: various, not specified
Duration of exposure to malaria: various, not specified
Type of participants: travellers |

Interventions	
Included in the review:	
1. Mefloquine*
2. Doxycycline*
Not included in the review:
3. Chloroquine-proguanil*
4. Proguanil*
5. Chloroquine* (data reported combined with proguanil and chloroquine-proguanil)
*dosage regimen not specified |

Outcomes	
1. Serious adverse events	
2. Adverse events; psychiatric disorders (depression, psychosis)
3. Adverse events; other (panic attacks, suicide) |
Notes
Funding sources: “This study was funded by an unconditional grant by F. Hoffmann-La Roche Ltd, Basel, Switzerland”

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
Women and those aged 40 to 49 years were at higher risk of depression but this was not adjusted for in the analysis. Risk ratio estimates for psychoses and panic attacks could not be adjusted for because numbers were too small for the multivariate model. Data on destination and duration of travel were not available

2. **Selection of participants into the study:** low
Recruitment onto the General Practice Research Database was unlikely to be related to exposure or outcome

3. **Measurement of interventions:** moderate
"Antimalarial drugs can be used for malaria prophylaxis, for treatment of an acute malaria infection, or as a reserve drug… In order to distinguish these options, we included only those subjects whose medical records contained a code indicating ‘travel advice’ or ‘prophylactic drug use’”

4. **Departures from intended interventions:** serious
Discontinuations and switches between prophylactic regimens were not recorded in this database

5. **Missing data:** low
All participants in the research database were included in the analysis

6. **Measurement of outcomes:** moderate
"…we reviewed all computer records of potential cases and included or excluded cases on the available clinical information, blinded to exposure status”
Comment: general practitioners diagnosing patients would have been aware of their exposure status

7. **Selection of the reported results:** low
Information on all outcomes prespecified in the methods section were reported for all participants

8. **Other:** serious
Funded by Roche pharmaceuticals
Methods

Design: retrospective cohort study
Study dates: 1 October 2005 to 30 June 2006
Malaria transmission pattern and local antimalarial drug resistance: various, not specified
Adverse event monitoring: telephone questionnaire to all travellers to tropical countries for whom antimalarial chemoprophylaxis was prescribed

Participants

Number enrolled: 1906 questionnaires returned
Inclusion criteria: participants staying in high risk malarial areas, aged between 18 and 65 years, with no severe underlying disease (e.g. heart disease, diabetes) with an available phone number
Exclusion criteria: immigrants (due to potential difficulty in linguistic communication)
Country of recruitment: Italy
Country of malaria exposure: various: Kenya, Tanzania/Zanzibar, India, Madagascar, Brazil, other countries of South America, South Africa, Senegal, Mali, Myanmar, Ghana, Congo, and others
Duration of exposure to malaria: mean stay 2 weeks
Type of participants: Travellers

Interventions

Included in the review:
1. Mefloquine*
2. Chloroquine*
3. Atovaquone + proguanil*
4. Doxycycline*
Not included in the review:
5. Chloroquine + proguanil*
* dosing regimen not specified

Outcomes

Included in the review:
1. Adverse effects; any
2. Serious adverse effects
3. Adverse effects; other (any gastrointestinal, any neuropsychiatric)
4. Discontinuations of study drug due to adverse effects
Outcomes assessed not included in the review:
5. Clinical cases of malaria
6. Eating habits during travel

Notes

Funding sources: Not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
Demographic information was provided on aggregate for the entire cohort
2. **Selection of participants into the study:** moderate
Non-response rates to the questionnaire were not reported
3. **Measurement of interventions:** moderate
The prescription was provided by several travel clinics which also performed the study. However, it was unclear whether this information was used to determine interven- |
Napleton 2007 (Continued)

		tion status or relied on participant self-reporting
		4. Departures from intended interventions: low
		Discontinuations were reported, with detailed reasons for discontinuations. No switches to alternative regimens were reported
		5. Missing data: low
		All participants were included in the analysis
		6. Measurement of outcomes: serious
		Comment: the outcome measure was subjective; participants and personnel were not blinded
		7. Selection of the reported results: low
		The methods section makes clear which outcomes were being assessed; all outcomes were reported
		8. Other: no information
		No information was provided regarding the study sponsor

Nosten 1994

Methods

Design: RCT
Study dates: January 1987 to November 1990
Malaria transmission pattern and local antimalarial drug resistance: "in an area of seasonal malaria transmission... mefloquine and quinine resistance is increasing in this area, and the proportion of recrudescent infections is rising"
Adverse event monitoring: trial occurred over two phases. Phase 1: Weekly basic observations and simple symptom questionnaire. ECG, haematological and biochemical tests were done fortnightly. Children born to women in the trial were assessed at birth and at 3, 6, 12, and 24 months. Phase 2: weekly basic observations and expanded simple symptom questionnaire. ECG and blood tests were performed at baseline, at midstudy and at term. Each delivery was supervised. Additional assessments at 1 week and 2 and 9 months for children born to women in the trial

Participants

Number enrolled: 339
Inclusion criteria: "Women attending the weekly clinic were admitted to the study if they were at > 20 weeks of estimated gestation"
Exclusion criteria: Not mentioned
Region of recruitment: Thai-Burmese border
Region of malaria exposure: Thai-Burmese border
Duration of exposure to malaria: ongoing exposure in a semi-immune population, monitored until delivery
Type of participants: Pregnant Thai residents in malaria-endemic area (presumed semi-immune)

Interventions

1. Mefloquine (1 x 250 mg tablet, Lariam; Hoffmann-La Roche) weekly for 4 weeks, then 125 mg weekly until delivery, with 500 mg base loading dose in phase 1 but not phase 2
2. Placebo (1 tablet) weekly until delivery
Included in the review:
1. Clinical cases of malaria
2. Episodes of parasitaemia
3. Serious adverse events (including childhood deaths)
4. Adverse events; vertigo, visual impairment (visual abnormalities), nausea, vomiting, abdominal pain, headache, dizziness, pruritis
5. Adverse events; other (weakness, anorexia, cough, falls, constipation, unsteadiness)
6. Discontinuation of study drug due to adverse effects
7. Adverse pregnancy outcomes (spontaneous abortions, still births, congenital malformations)

Outcomes assessed not included in the review:
8. Laboratory tests; haematologic (full blood count, haematocrit) and biochemical (creatinine, blood urea, transaminases, alkaline phosphatase, albumin, globulin)
9. Outcomes related to pregnancy; weight gain during follow-up, complications of labour, mean duration of labour, maternal anaemia
10. Fetal outcomes; mean birth weight, percent premature, fetal distress
11. Infant follow up; mean age at which children could crawl, sit, walk or talk, Romberg test

Notes
Funding sources: United Nations Development Programme/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases; Welcome Trust of Great Britain; Pravention Foundation. The Hague (to FLK)

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	"...women were randomized to receive either mefloquine…or placebo" Comment: unclear what method of randomization was used
Allocation concealment (selection bias)	Unclear risk	"...the investigators were unaware of the randomisation" Comment: no mention of method used to conceal allocation
Blinding of participants and personnel (performance bias)	Low risk	"...double blind...women were randomised to receive either mefloquine…or identical placebo"
Blinding of outcome assessment (detection bias)	Low risk	"...the investigators were unaware of the randomisation"
Incomplete outcome data (attrition bias); efficacy	Low risk	Comment: total number of participants with positive blood smear result at any time during prophylaxis was reported. Clinical cases of malaria were reported
Nosten 1994 (Continued)

Issue	Bias Level	Details
Incomplete outcome data (attrition bias); safety	High risk	“Ten women (8%) in phase I (3 mefloquine, 7 placebo) and 18 (8%) in phase II (9 in each group) dropped out of the study. The main reason was the discomfort of blood sampling (26 cases) and, in 1 case, pruritus attributed to mefloquine” Comment: 28 women dropped out but reasons were provided for only 27 women; numbers were not provided across groups
Selective reporting (reporting bias); efficacy	Low risk	Comment: all episodes of parasitaemia and clinical cases of malaria were reported
Selective reporting (reporting bias); safety	High risk	Comment: Data on adverse effects were reported for only participants from phase 2 of the trial (220/339 women). Fifteen symptoms were listed in the comparative table, but the narrative states “twenty questions were asked”. Romberg test results were not reported. Biochemical, haematological and ECG parameters were not reported other than “there were no differences”
Other bias	Low risk	Funding: United Nations Development Programme/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases; Wellcome Trust of Great Britain; Preven tion Foundation. The Hague (to FLK)

Ohrt 1997

Section	Details
Methods	Design: RCT
Duration of study: May to July 1994	
Malaria transmission pattern and local drug resistance: “*P. falciparum* resistant to sulfadoxine-pyrimethamine and both *P falciparum* and *P vivax* resistant to chloroquine”	
Adverse event monitoring: symptoms reported in the first week of the study, daily questioning about symptoms, exit questionnaire	
Participants	Number enrolled: 204
Inclusion criteria: “All soldiers from military posts that were considered to have high malaria attack rates”
Exclusion criteria: history of frequent travel, allergy to one of the study drugs, glucose-6-phosphate dehydrogenase deficiency, history of underlying illness
Country of recruitment: Indonesia
Country of malaria exposure: Indonesia
Duration of exposure to malaria: Study duration was approximately 13 weeks
Type of participants: military, semi-immune (60% of participants had prior exposure to
Interventions

1. Mefloquine (1 x 250 mg tablet, containing the equivalent of 228 mg mefloquine base) once weekly (after a loading dose of 250 mg per day for 3 days).*
2. Doxycycline hyclate (1 x 100 mg capsule) once daily*
3. Placebo*

Co-interventions: All soldiers were given doxycycline tablets for 4 to 6 weeks to enable clearance of sulfadoxine-pyrimethamine from the blood before study prophylaxis began. All participants received radical treatment for pre-existing malaria parasites in the blood and liver prior to beginning study prophylaxis

*matched placebo for each treatment arm

Outcomes

Included in the review:
1. Clinical cases of malaria
2. Adverse events; any, nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, insomnia, abnormal dreams
3. Serious adverse events
4. Adverse events; other (all gastrointestinal, all neurologic, constipation, anorexia, fever, malaise, skin related, cough, somnolence, palpitations, sexual dysfunction)
5. Discontinuation of study drug due to adverse effect

Outcomes assessed not included in the review:
6. Exit questionnaire (incomplete data reported)

Notes

Funding source: Pfizer Indonesia supplied active and placebo doxycycline; F. Hoffman-La Roche supplied active and placebo mefloquine, and gave financial support; USA Army Medical Research and Materiel Command gave financial support; USA Naval Medical Research and Development Command gave financial support

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	“Block randomization was used (block size, 15)” Comment: Used a randomization code, but it was not stated how it was generated
Allocation concealment (selection bias)	Unclear risk	“The randomization code was stored in individual envelopes in a locked box at the study site...Drugs were packaged into weekly ziplock plastic bags” Comment: Unclear whether the investigators or participants would foresee assignment. There was no mention of central allocation, sequentially numbered drug containers or sequentially numbers opaque sealed envelopes
Blinding of participants and personnel (performance bias)

| Adverse effects/events | Low risk |

“Drugs were packaged into weekly zipper-lock plastic bags: each bag contained a mefloquine or mefloquine placebo tablet and a blister pack of seven doxycycline or doxycycline placebo capsules (double-dummy technique)”

The placebo medication had an “identical appearance”

Blinding of outcome assessment (detection bias)

| All outcomes | Low risk |

“The randomisation code was stored in individual envelopes in a locked box at the study site. All investigators and study personnel did not have access to or know the randomisation code throughout the study”

Incomplete outcome data (attrition bias); efficacy

| Unclear risk |

“Sixteen of the 204 participants did not complete the study”

Comment: It was unclear whether the duration of follow up included the post-prophylaxis period to monitor for relapses

Incomplete outcome data (attrition bias); safety

| High risk |

Exit questionnaire: “Only data from persons who were still receiving the study drug at the time of the questionnaire were included”

Comment: numbers not reported

Selective reporting (reporting bias); efficacy

| Low risk |

“The primary end point for efficacy was the first occurrence of malaria, as documented by a positive malaria smear”

Comment: all cases of malaria were reported.

Selective reporting (reporting bias); safety

| High risk |

Comment: Not all data were reported from the exit questionnaire; the study reports “...the only statistically significant finding”. Data on adverse symptoms were not reported for the placebo group

Other bias

| Low risk |

“Neither of the pharmaceutical companies that provided support played any role in the gathering, analysing or interpreting the data”
Overbosch 2001

| Methods | Design: RCT
| | Duration of study: April to October 1999
| | Malaria transmission pattern and local drug resistance: not mentioned
| | Adverse event monitoring: "evaluated 7, 28 and 60 days after return to obtain information about a targeted list of adverse events"

| Participants | Number enrolled: 1013
| | Inclusion criteria: "travellers aged ≥ 3 years and weighing ≥ 11 kg with planned travel of ≤ 28 days to a malaria-endemic area"
| | Exclusion criteria: "poor general health; drug hypersensitivity (to atovaquone, chloroquine or proguanil); history of alcoholism, seizures or psychiatric or severe neurological disorders; generalized psoriasis; severe blood disorders; pregnancy/lactation; renal, hepatic or cardiac dysfunction; clinical malaria within previous 12 months; travel to malaria endemic area within previous 60 days"
| | Countries of recruitment: Canada, Germany, Netherlands, South Africa, UK
| | Regions of malaria exposure: various malaria-endemic destinations (79% Africa, 6% South America)
| | Mean duration of exposure to malaria: 2.5 weeks
| | Type of participants: travellers, non-immune

| Interventions | 1. Mefloquine (1 x 250 mg tablet; or alternatively ¼, ½ or ¾ of a tablet, according to body weight) once weekly, starting 1 to 3 weeks before travel and continuing for 4 weeks after travel*
| | 2. Atovaquone-proguanil (1 combined tablet containing 250 mg atovaquone and 100 mg proguanil hydrochloride; or alternatively 1 to 3 combined tablets for children according to body weight, each tablet containing 62.5 mg atovaquone and 25 mg proguanil hydrochloride) once daily, starting 1 to 2 days before travel and continuing for 1 week after leaving the malaria-endemic area*
| | *matched placebo for each treatment arm

| Outcomes | Included in the review:
| | 1. Clinical cases of malaria (antibody to blood-stage malaria parasites)
| | 2. Adverse events; any
| | 3. Serious adverse events
| | 4. Adverse effects; any (moderate or severe), visual impairment, nausea, vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams, insomnia, anxiety, depression, pruritis
| | 5. Adverse effects; other (mouth ulcers)
| | 6. Discontinuation of study drug due to adverse effects
| | 7. Measures of adherence to the drug regimen
| | Outcomes assessed not included in the review:
| | 8. Laboratory tests: haematology (haemoglobin level, white blood cell count and platelet count) and chemistry (creatinine and alanine aminotransferase)

| Notes | Funding source: GlaxoSmithKline
| | "Subjects were enrolled in study MAL30010"- Enrollment criteria and study conduct were described in a separate publication (Høgh 2000) which refers to a different study population (atovaquone-proguanil versus chloroquine-proguanil)

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	“A computer-generated code was used to randomly assign a treatment number” (Høgh 2000)
Allocation concealment (selection bias)	Low risk	“Treatment codes were provided to investigators in opaque sealed envelopes, to be opened only if knowledge of study drug assignment was required for management of a medical emergency” (Høgh 2000)
Blinding of participants and personnel (performance bias)	Low risk	“For each active drug, capsules or film-coated tablets were identical in appearance to the matching placebo”
Blinding of outcome assessment (detection bias)	Low risk	“All subjects and study personnel remained blinded to treatment assignment with 5 exceptions. Two subjects in the atovaquone-proguanil group and 3 in the mefloquine group lost their study drug during their return trip from a malaria-endemic area, and the investigator broke the blind to enable completion of postexposure prophylaxis with active drug”
Incomplete outcome data (attrition bias); efficacy	Low risk	“A total of 963 subjects completed the 60-day follow-up period and had efficacy information recorded. A total of 915 subjects had paired serum samples available for serological testing” Comment: 963/976 (randomized and received first dose of study drug) = 98.7%. 915/976 = 93.75%. Reasons for leaving the study early were reported and numbers were balanced across groups
Incomplete outcome data (attrition bias); safety	Unclear risk	Comment: 96.35% of randomized participants were included in adverse event reporting. Reasons for leaving the study early were reported and numbers were balanced across groups
Selective reporting (reporting bias); efficacy	Low risk	Comment: Full clinical details were provided for every episode in which an episode of malaria was considered (4 cases)
Selective reporting (reporting bias); safety

High risk

Comment: Data on adverse symptoms were not reported for the placebo group due to a shorter duration of follow-up. Data were collected 7, 28 and 60 days after travel. However, data were only presented for 7 days after return.

Other bias

High risk

Funding: GlaxoSmithKline
It was not made clear whether the interpretation of the study findings was independent of the study sponsor.

Pearlman 1980

Methods
Design: RCT
Study dates: unclear, during 1977
Malaria transmission pattern and local antimalarial drug resistance: "subjects were resident in an area highly endemic for *P. vivax* and chloroquine resistant *P. falciparum*"
Adverse event monitoring: "a physician visited the study area each week and conducted a sick call for participating and nonparticipating villagers...Between physician visits, residents were taken to a nearby health centre for serious medical problems"

Participants
Number enrolled: 990
Inclusion criteria: “All eligible and consenting villagers over 10 years of age were included in the study”
Exclusion criteria: "Female villagers of childbearing age (15-44 years) were not considered for inclusion"
Country of recruitment: The Bhu Phram Valley, Thailand
Country of malaria exposure: The Bhu Phram Valley, Thailand
Duration of exposure to malaria: study duration 26 weeks
Type of participants: Thai residents, semi-immune

Interventions
1. Mefloquine (1 x 180 mg tablet, children 22 to 35 kg ½ dose) weekly
2. Mefloquine (1 x 360 mg tablet, children 22 to 35 kg ¼ dose) weekly
3. Mefloquine (1 x 360 mg tablet, children 22 to 35 kg ¼ dose) every 2 weeks
4. Placebo (1 x tablet) weekly
Co-interventions: “Those who had experienced falciparum parasitemias were given a therapeutic dose of sulfadoxine (1,500 mg)-pyrimethamine (75 mg), and those with vivax or malariae parasitemias were treated with the standard regimen of chloroquine (1,500 mg over a 3-day period), followed by primaquine, 15 mg daily for 14 days, for those study subjects known to be G-6-PD normal”

Outcomes

Included in the review:
1. Clinical cases of malaria
2. Episodes of parasitaemia
3. Adverse events; any

Outcomes assessed not included in the review:
4. Laboratory tests; haematocrit, white cell count, white cell differential, serum glutamic
Pearlman 1980 *(Continued)*

Notes	oxaloacetic transaminase, alkaline phosphatase and blood urea nitrogen
Funding sources: Not mentioned	

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	"Assignment to one of six treatment groups was made on a stratified random number basis"
 | | Comment: no details of how random numbers were generated |
| Allocation concealment (selection bias) | Unclear risk | "In the course of this visit, the technician opened a sealed, numbered envelope, gave the enclosed tablets, and observed the subject swallow them"
 | | Comment: no mention of the envelope being opaque |
| Blinding of participants and personnel (performance bias) | Low risk | "Each subject received two tablets each week (medication, placebo or a combination) in order to maintain the double blind nature of the study”
 | | "All tablets were identical in appearance" | |
| Adverse effects/events | | |
| Blinding of outcome assessment (detection bias) | Unclear risk | Comment: described as double blind but not clear how this was achieved |
| All outcomes | | |
| Incomplete outcome data (attrition bias); efficacy | Unclear risk | "Nine hundred and ninety nine subjects began the 25-week field trial and 856 completed it (86.5%). 160/189 (85%) of the mefloquine 180 mg weekly group, 169/191 (88%) of the mefloquine 360 mg weekly, 158/184 (86%) of the mefloquine 360 mg fortnightly and 36/44 (82%) of the placebo group completed the trial”
 | | Comment: reasons for losses to follow-up were not reported |
| Incomplete outcome data (attrition bias); safety | Low risk | "There was no clinical evidence of drug toxicity in the 990 study participants, nor were there significant changes in the biochemical parameters”
| | | |
Pearlman 1980 (Continued)

Risk Factor	Risk Level	Comment
Selective reporting (reporting bias); efficacy	Low risk	“Table 2 shows the number of subjects in each group who completed the study, the number infected with *P. falciparum*, and the number of episodes of asexual parasitemia”
Selective reporting (reporting bias); safety	High risk	“There was no clinical evidence of drug toxicity in the 990 study participants” Comment: it was unclear whether all events that occurred during the 6 month trial period were included
Other bias	Unclear risk	Comment: study sponsor not reported

Petersen 2000

Methods
- Design: retrospective cohort study
- Study dates: 1 May 1996 to 30 April 1998
- Malaria transmission pattern and local antimalarial drug resistance: various, not specified
- Adverse event monitoring: patient self-reported questionnaire

Participants
- Number enrolled: 5446 questionnaires mailed, 4158 respondents
- Inclusion criteria: “travellers 18 years old or older, who were not pregnant and had no previous adverse reactions to any of the prescribed drugs”
- Exclusion criteria: none mentioned
- Factors influencing drug allocation: “the standard recommendations to Danish travelers were followed”
- Country of recruitment: Denmark
- Country of malaria exposure: various, not specified
- Duration of exposure to malaria: various, not specified
- Type of participants: travellers

Interventions
- Included in the review:
 1. Mefloquine*
 2. Chloroquine*
- Not included in the review:
 3. Chloroquine + proguanil* *dosing regimen not specified

Outcomes
- Included in the review:
 1. Adverse events; any
 2. Serious adverse outcomes
 3. Adverse effects; visual impairment (blurred vision), nausea, vomiting, abdominal pain, diarrhoea, dizziness, depression
 4. Adverse effects; other (loss of appetite, strange thoughts, tingling, altered spatial perception, mouth ulcers)
- Outcomes assessed not included in the review:
 5. Discontinuation of study drug due to adverse effects (data reported on aggregate)
 6. Measure of adherence to the drug regimen (data reported on aggregate)
 7. Duration in days of symptoms
Notes
Funding sources: Not mentioned

Risk of bias

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	

1. **Confounding:** moderate
 The questionnaire collected information regarding age, body weight and gender, destination and duration of travel but these were not reported.

2. **Selection of participants into the study:** serious
 Response rate 4158/5446 (76.3%)

3. **Measurement of interventions:** low
 The prescription was provided by a travel clinic which also performed the study, and switches and discontinuations have been recorded and reported.

4. **Departures from intended interventions:** moderate
 Discontinuations were reported. Although changes in prophylaxis were mentioned, it was unclear whether participants were analysed according to original or subsequent prophylactic grouping.

5. **Missing data:** low
 4020/4158 (97%) of participants are included in the analysis for adverse events.

6. **Measurement of outcomes:** serious
 Comment: the outcome measure was subjective; participants and personnel were not blinded. It was unclear whether the questionnaire implied causality to the drug regimen.

7. **Selection of the reported results:** moderate
 The questionnaire included demographic information, but this was not reported. All results were reported according to short-term or long-term users of prophylaxis, which was not specified in the methods section.

8. **Other:** no information
 No information is provided regarding the study sponsor.

Philips 1996

Methods
Design: cross-sectional cohort study
Study dates: November 1993 to October 1994
Malaria transmission pattern and local antimalarial drug resistance: various, not specified
Adverse event monitoring: patient questionnaire sent 2 weeks after travellers return

Participants
Number enrolled: 741 respondents, 918 questionnaires sent
Inclusion criteria: “...travelers were asked to participate in the study when they attended TMVC clinics in Adelaide or Melbourne for pretravel consultation. If either doxycycline or mefloquine malaria chemoprophylaxis was recommended for part, or whole, of their itinerary, permission was sought to have them receive a mailed questionnaire.”
Exclusion criteria: "...under 18 years old, if doxycycline was recommended at doses other than 100mg daily, if other antimalarials were to be used during the intended journey, or if a traveller was not returning home in under 6 months"
Factors influencing drug allocation: "Unless a contraindication existed for one or the other drug, the choice of which one to take was left to the traveler, the physician having already discussed, at some length, the different regimens, cost, and commonly reported adverse effects"
Country of recruitment: Australia
Region of malaria exposure: various (Southeast Asia, Africa, South Asia (India), Pacific)
Duration of exposure to malaria: various, not specified
Type of participants: travellers

Interventions
1. Mefloquine*
2. Doxycycline*
*dosing regimen not specified

Outcomes
Included in the review:
1. Adverse events; any, nausea/vomiting, abdominal pain, diarrhoea, headache, dizziness, abnormal dreams, insomnia, anxiety
2. Serious adverse events
3. Adverse events; other (mood change, palpitations, itching, rash, red skin, vaginal itch)
4. Adverse effects; any
5. Adverse effects; abdominal pain, diarrhoea
6. Discontinuation of study drug due to adverse effects
7. Measure of adherence to the drug regimen
Outcomes assessed not included in the review
8. Reasons for choice of antimalarial drug regimen

Notes
Funding sources: “Thanks to Roche and Pfizer pharmaceutical companies for their financial support”

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate Identified confounders were measured and reported across groups. Mefloquine users were more likely to be female and had longer duration of treatment 2. **Selection of participants into the study:** serious Response rate 668 of 918 (73%) 3. **Measurement of interventions:** low The prescription was provided by a travel clinic which also performed the study; discontinuations were recorded and reported 4. **Departures from intended interventions:** moderate Discontinuations were recorded. It was unclear whether information regarding switches was recorded 5. **Missing data:** low All information was collected at one time point and all participants were included in the analysis
Philips 1996

6. Measurement of outcomes: serious
Comment: The outcome measure was subjective; participants and personnel were not blinded

7. Selection of the reported results: serious
Information was reported for all adverse events recorded, but participants’ assessment of causality to the study drug was only reported for two side effects

8. Other: serious
“Sponsored by Roche and Pfizer pharmaceuticals”
The role of the study sponsor was not made clear

Potasman 2002

Methods

Design: RCT
Study dates: unclear
Malaria transmission pattern and local antimalarial drug resistance: not applicable
Adverse event monitoring: “Two days after drug ingestion, a second EEG was performed, and a blood sample for mefloquine level was obtained...Travelers were given forms on which to record adverse effects that appeared within 48 hours after drug intake”

Participants

Number enrolled: 90
Inclusion criteria: not explicitly mentioned, included travellers from the Bnia Zion medical centre, Haifa, Israel
Exclusion criteria: “Travelers younger than 18 years; with a history of epilepsy or depression, known allergy to mefloquine, cardiac conduction block; using beta-blockers; or who were pregnant...Travelers with an abnormal baseline EEG (unifocal or repetitive bursts)”
Country of recruitment: Israel
Country of malaria exposure: not applicable
Duration of follow up: 48 hours
Type of participants: non-travellers

Interventions

| 1. Mefloquine (1 x Mephaquine 250 mg tablet, Mepha, Aesch, Switzerland) one dose |
| 2. Mefloquine (1 x Larium 250 mg tablet, Roche, Basel, Switzerland) one dose |
| 3. Placebo |

Outcomes

| 1. Adverse events; any |
| 2. Adverse events; other (neuropsychiatric, abnormal EEG 48 hours after ingestion) |

Notes

| Funding sources: “Partially funded by Mepha Ltd, Aesch, Switzerland” |

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	“Eligible travelers were randomly assigned to one of three groups” “Randomization and statistical tests were carried out using...”
Potasman 2002
(Continued)

Bias Type	Risk Level	Comment/Notes
Allocation concealment (selection bias)	Unclear	Statmate and InStat”
Blinding of participants and personnel (performance bias) Adverse effects/events	Unclear	“Participants were unaware of their group assignment until they completed their tests” Comment: methods used to blind participants not reported
Blinding of outcome assessment (detection bias) All outcomes	Low	“EEG pairs (pre- and post-mefloquine) were examined separately by two senior neurologists who were unaware of group allocation”
Incomplete outcome data (attrition bias); efficacy	Unclear	N/A
Incomplete outcome data (attrition bias); safety	Unclear	Comment: data were provided for all participants who were not excluded on the basis of abnormal baseline EEG
Selective reporting (reporting bias); efficacy	Unclear	N/A
Selective reporting (reporting bias); safety	Unclear	“Adverse effects, mainly gastrointestinal and neuropsychiatric were noted in 26 travellers” Comment: specific nature of each adverse effect is not noted per group
Other bias	High	Partially funded by Mepha Ltd, Aesch, Switzerland. Comment: the role of the study sponsor was not clear

Rack 2005

Methods
- Design: retrospective cohort study
- Study dates: July 2003 to June 2004
- Malaria transmission pattern and local antimalarial drug resistance: various, not specified
- Adverse event monitoring: patient self-reported questionnaire

Participants
- Number enrolled: 794
- Inclusion criteria: Travellers who were visiting five popular tropical regions or countries
- Exclusion criteria: aged < 18 years, travelling for more than 2 months, and major acute or chronic diseases
- Country of recruitment: Germany
- Country of malaria exposure: Kenya/Tanzania, Senegal/Gambia, India/Nepal, Thailand, Brazil
- Duration of exposure to malaria: various, mean duration of travel 23.9 days
- Type of participants: travellers

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Interventions	Included in the review:
1. Mefloquine*	
2. Doxycycline*	
3. Atovaquone-proguanil*	
4. Chloroquine*	
Not included in the review:	
5. Chloroquine-proguanil*	
*dosing regimen not specified	

Outcomes	Included in the review:
1. Narrative description of adverse effects	

| Outcomes assessed not included in the review: |
| 2. Risk behaviours during travel |
| 3. Illness during travel |
| 4. Seeking medical care owing to illness or accident |
| 5. Accidents during travel |

| Notes | Funding sources: not mentioned |

Risk of bias

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
Demographic information was provided for the entire cohort, not by prophylactic regimen
2. Selection of participants into the study: moderate
Numbers of participants choosing not to participate in the study were not reported
3. Measurement of interventions: serious
Participants were asked to self-report which prophylaxis they took after return. The time after return was not specified
4. Departures from intended interventions: no information
There was insufficient information provided to determine whether the questionnaire contained information regarding discontinuations or switches
5. Missing data: moderate
Follow up was obtained for 658 (83%) travellers
6. Measurement of outcomes: serious
There was insufficient information on the questionnaire about how adverse effects were sought and if outcome measures were objective. There was no mention of blinding of outcome assessors
7. Selection of the reported results: moderate
There was insufficient information provided regarding the questionnaire to determine if all questions were reported. |
Rack 2005 (Continued)

Side effects were grouped to report symptoms
8. Other: no information
No information was provided regarding the study sponsor

Rieckmann 1993

Methods
- **Design:** cohort study
- **Study dates:** 1989
- Malaria transmission pattern and local antimalarial drug resistance: higher levels of *P. falciparum* than *P. vivax* locally.
- Local chloroquine and primaquine resistance
- Adverse event monitoring: unclear

Participants
- **Number enrolled:** 349
- **Inclusion criteria:** Unclear
- **Exclusion criteria:** Unclear
- **Country of recruitment:** Australia
- **Country of malaria exposure:** Papua New Guinea
- **Duration of exposure to malaria:** 3 to 13 week training exercises
- **Type of participants:** Soldiers

Interventions
- **Included in the review:**
 - 1. Mefloquine (1 x 250 mg weekly)
 - 2. Doxycycline (1 x 100 mg tablet, daily, starting one day before deployment and continuing until 3 days after return)
- **Not included in the review:**
 - 3. Doxycycline + primaquine
 - 4. Doxycycline + chloroquine

Outcomes
- **Included in the review:**
 - 1. Narrative description of adverse effects
- **Outcomes assessed not included in the review:**
 - 2. Clinical cases of malaria

Notes
- **Funding sources:** not mentioned

Risk of bias

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
No demographic information was provided
2. **Selection of participants into the study:** moderate
Numbers of participants choosing not to participate in the study not reported
3. **Measurement of interventions:** low
All participants were soldiers who were issued with medication
4. **Departures from intended interventions:** moderate
No information was provided regarding discontinuations |
Rieckmann 1993 (Continued)

5. Missing data: moderate	No losses to follow-up or treatment withdrawals were reported, but the paper does not clearly state that none occurred
6. Measurement of outcomes: serious	There was insufficient information on how adverse effects were sought and if outcome measures were objective. There was no mention of blinding outcome assessors
7. Selection of the reported results: moderate	There was insufficient information provided regarding the questionnaire to determine if all questions were reported. Side effects were grouped to report symptoms
8. Other: no information	No information is provided regarding the study sponsor

Rietz 2002

Methods

- **Design:** cross-sectional cohort study
- **Study dates:** June to December 2000
- **Malaria transmission pattern and local antimalarial drug resistance:** various, not specified
- **Adverse event monitoring:** patient self-reported questionnaire

Participants

- **Number enrolled:** 491
- **Inclusion criteria:** “visitors over fifteen who were travelling to South or Central America, Africa, India or South-East Asia, including China, and who were not suffering from any chronic illness”
- **Exclusion criteria:** none mentioned
- **Factors influencing drug allocation:** “After talking to the doctor, the doctor wrote whether malaria prophylaxis had been decided on and if so which kind”
- **Country of recruitment:** Sweden
- **Region of malaria exposure:** various, including South or Central America, Africa, India or Southeast Asia, including China
- **Duration of exposure to malaria:** “most were abroad between two to four weeks”
- **Type of participants:** travellers

Interventions

- **Included in the review:**
 1. Mefloquine*
 2. Chloroquine*
 3. Non-users
- **Not included in the review:**
 4. Chloroquine-proguanil*
 *dosing regimen not specified

Outcomes

- **Included in the review:**
 1. Adverse events; any, seriously negative effect on the journey
 2. Adverse effects; any
 3. Adverse effects; other (neuropsychiatric, skin problems)
- **Outcomes assessed not included in the review:** 4. Importance attached to prophylaxis

Note:

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Rietz 2002 (Continued)

| Notes | Funding sources: not mentioned |

| **Risk of bias** |
|------------------|--------------------------------|
| **Bias** | **Authors’ judgement** | **Support for judgement** |
| Other bias | Unclear risk | 1. **Confounding:** moderate
Age, sex, destination and duration of travel data were collected but not reported across groups. BMI was not measured
2. **Selection of participants into the study:** serious
Response rate 62%
3. **Measurement of interventions:** low
The prescription was provided by a travel clinic which also performed the study
4. **Departures from intended interventions:** moderate
Discontinuations were reported, but not across groups. Switches were not recorded
5. **Missing data:** low
All participants who completed both questionnaires were included in the analysis
6. **Measurement of outcomes:** moderate
The outcome measure was subjective; participants and personnel were not blinded. Participants were asked to report all symptoms, and which they felt were due to prophylaxis
7. **Selection of the reported results:** moderate
Symptoms were grouped to report outcomes
8. **Other:** low
Source of funding not mentioned. “competing interests: none declared” |

Salako 1992

| **Methods** | Design: RCT
Study dates: July 1987 to June 1988
Malaria transmission pattern and local antimalarial drug resistance: “holoendemic for malaria... at the time of the trial, chloroquine resistance was not a problem”
Adverse event monitoring: “study participants were seen weekly up to week 28”. Interview with study personnel for events such as “fever, chills, malaise, nausea and vomiting, rashes and other symptoms and signs that could be regarded as adverse events” |
| **Participants** | Number enrolled: 567
Inclusion criteria: “...adult males aged 16 to 60 years, judged healthy on clinical grounds (no history of any illness and physical examination revealed no evidence of an acute or chronic illness). The patients were not on any drugs” |
Exclusion criteria: “...known hypersensitivity to sulphonamides, antimalarial drug treatment in the preceding four weeks, presence of chronic debilitating disease and inability to attend regularly for follow up”
Country of recruitment: Nigeria
Country of malaria exposure: Nigeria
Duration of exposure to malaria: study duration 24 weeks
Type of participants: Nigerian residents, semi-immune.

Interventions	1. Mefloquine (1 x 250 mg tablet, Hoffman-La Roche) weekly for 4 weeks followed by 1 x 125 mg tablet weekly for 20 weeks, total duration 24 weeks*	2. Chloroquine (1 x 300 mg base tablet, Hoffman-La Roche) weekly, total duration 24 weeks*
	3. Placebo, 1 tablet (Hoffman-La Roche) weekly, total duration 24 weeks*	*matched placebo for each treatment arm

Outcomes	Included in the review:	
	1. Clinical cases of malaria	
	2. Episodes of parasitaemia	
	3. Adverse events; any, abdominal pain, diarrhoea, headache, dizziness, pruritis, visual impairment (blurred sight)	
	4. Serious adverse events	
	5. Discontinuations of study drug due to adverse effects	

Outcomes assessed not included in the review:
6. Laboratory tests; white blood cell counts, haematocrit, serum glutamic oxaloacetic transaminase and serum glutamic-pyruvic transaminase
7. Adverse events: rash, muscle stiffness (occurred in < 1% of study participants)

Notes
Funding sources: not mentioned

Risk of bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	“...subjects were allocated randomly into five groups on the basis of a pre-determined randomisation list”
Allocation concealment (selection bias)	Unclear risk	“...blister packs containing a total of 24 tablets were provided for each subject ... The packs and tablets were identical in appearance and were labelled with the appropriate double-blind number”

Salako 1992 (Continued)
Salako 1992 (Continued)

Source of Bias	Risk of Bias	Comment
Blinding of participants and personnel (performance bias) Adverse effects/events	Low risk	“The packs and tablets were identical in appearance”
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Comment: described as double blind but no description provided of how this was achieved for researchers and outcome assessors
Incomplete outcome data (attrition bias); efficacy	Low risk	Comment: numbers lost to follow up were provided across groups, with reasons provided. 107/113 (95%) mefloquine recipients, 103/115 (90%) chloroquine recipients and 101/114 (89%) placebo recipients completed the trial
Incomplete outcome data (attrition bias); safety	Low risk	Comment: reports “number of individuals suffering adverse events during the trial”. Numbers lost to follow up were provided across groups, with reasons provided. 107/113 (95%) mefloquine recipients, 103/115 (90%) chloroquine recipients and 101/114 (89%) placebo recipients completed the trial
Selective reporting (reporting bias); efficacy	Low risk	Comment: clinical cases of malaria and episodes of parasitaemia are reported for all participants
Selective reporting (reporting bias); safety	Unclear risk	“No change of clinical relevance occurred in any of the groups in the above laboratory tests” Comment: there was insufficient information available regarding the collection of adverse events to determine whether the reported list included all events or only a targeted list. Data not fully reported for blood tests
Other bias	Unclear risk	Comment: study sponsor not mentioned, but four of the authors are attributed to F Hoffman-La Roche

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
| Methods | Design: RCT
Study dates: August 1982 to January 1983
Malaria transmission pattern and local antimalarial drug resistance: region considered hyperendemic. \(P. falciparum \) resistant to chloroquine and “high prevalence of multiresistant \(P. falciparum \) transmission”
Adverse event monitoring: during the initial screening visit, weekly visits, and a final visit at study end, participants were asked about illnesses, mainly about signs and symptoms compatible with malaria, and blood tests were done, including haematocrit and leucocyte count |
|------------------|--|
| Participants | Number enrolled: 122
Inclusion criteria: “volunteer soldiers and civilians aggregated to the 5th Battalion of Engineering and Construction in a community in Porto Velho”
Exclusion criteria: aged < 12 years and > 55 years, pregnancy, people with debilitating disease, people who took antimalarial drugs in the previous four weeks and people with allergy to sulphonamides
Country of recruitment: Brazil
Country of malaria exposure: Brazil
Duration of exposure to malaria: Mean duration within study (across groups) 16.9 weeks
Type of participants: Brazilian soldiers and civilians, semi-immune |
| Interventions | Included in review comparisons:
1. Mefloquine (2 x 250 mg tablets, Roche) every 4 weeks*
2. Mefloquine (1 x 250 mg tablet, Roche) every 2 weeks*
3. Placebo
Not included in review comparisons:
4. Fansidar*
*matched placebo for each treatment arm |
| Outcomes | Included in the review:
1. Clinical cases of malaria
2. Adverse effects; any, anxiety
Outcomes assessed not included in the review:
3. Laboratory tests; haematocrit, white blood cell counts, serum glutamic oxaloacetic transaminase and serum glutamic-pyruvic transaminase |
| Notes | Funding sources: Laboratory Roche provided mefloquine and “support” for conducting the study. Comando do 5o Batalhão de Engenharia e Construção, Porto Velho, RO, provided laboratory and field installations | |
| Risk of bias | Authors' judgement | Support for judgement |
| Bias | Unclear risk | Comment: described as a randomized controlled trial, but no details were given on the sequence generation |
Allocation concealment (selection bias)
- Unclear risk
 - Comment: no description of allocation concealment provided

Blinding of participants and personnel (performance bias)
Adverse effects/events
- Low risk
 - “Each week... participants ingested 4 tablets of equal appearance, contained in sealed envelopes”

Blinding of outcome assessment (detection bias)
All outcomes
- Unclear risk
 - “Each week... participants ingested 4 tablets of equal appearance, contained in sealed envelopes, with a code pre-determined for each individual and not opened after the completion of the study”
 - Comment: no mention of blinding of outcome assessors

Incomplete outcome data (attrition bias); efficacy
- High risk
 - “120 participants were initially recruited (30 in each group). Six of them were then excluded and were not included in the analysis. 8 participants left the area of study (one after the 10th week and 7 after the 11th week of exposure)”
 - Outcomes were included in the analysis, and were substituted by eight new participants. With these six excluded participants and eight substituted participants, final sample size was 122
 - Comment: participants were not followed up beyond the active phase of treatment for relapses

Incomplete outcome data (attrition bias); safety
- Unclear risk
 - Comment: reasons for losses to follow-up were not reported

Selective reporting (reporting bias); efficacy
- Low risk
 - Comment: all cases of malaria were reported

Selective reporting (reporting bias); safety
- Unclear risk
 - Comment: there was insufficient information provided regarding the method of adverse effects monitoring to determine whether all outcomes had been reported

Other bias
- High risk
 - Roche provided mefloquine and “support” for conducting the study
Methods

Design: retrospective cohort study
Study dates: January to June 2007
Malaria transmission pattern and local antimalarial drug resistance: "malaria risk and transmission patterns have been known to shift rapidly in Afghanistan"
Adverse event monitoring: "A retrospective, anonymous survey was completed by soldiers returning to Fort Drum, NY from Afghanistan"

Participants

| Number enrolled: 2601 surveys distributed, 2351 (90%) returned | Inclusion criteria: none mentioned | Exclusion criteria: none mentioned |
| Factors influencing drug allocation: "oral mefloquine 250 mg per week was the primary alternative to doxycycline... In some cases, mefloquine was chosen as the first-line therapy based on either perceived advantages in compliance, unit force protection, and/or operational concerns" | Country of recruitment: USA | Country of malaria exposure: Afghanistan | Duration of exposure to malaria: various, not specified | Type of participants: military |

Interventions

Included in review comparisons:
1. Mefloquine*
2. Doxycycline*
Not included in review comparisons:
3. Atovaquone-proguanil* (data on adverse events not collected; data on compliance not reported)
* dosing regimen not specified

Outcomes

Included in the review:
1. Adverse effects; any, vomiting, diarrhoea
2. Adverse effects; other (heartburn/dyspepsia)
3. Discontinuations of study drug due to adverse effects
4. Measure of adherence to the drug regimen
Outcomes assessed not included in the review:
5. Clinical cases of malaria
6. Adverse effects: numbers not reported in both groups (nausea, headache, dizziness, abnormal dreams, insomnia, depression, photosensitivity, rash, loss of appetite, pain and/or difficulty swallowing, vaginitis, lightheadedness, nervousness, ringing in ears, chills)
7. Use of personal protective measures to prevent mosquito bites

Notes

Funding sources: not mentioned

Risk of bias

Bias	**Authors' judgement**	**Support for judgement**
Other bias | Unclear risk | 1. Confounding: moderate
Information was provided on duration of deployment, area of deployment, sex, age group and rank across regimens. Area deployed in Afghanistan and sex were different across groups. No adjustment for confounders was made in the analysis
Saunders 2015

(Continued)

2. Selection of participants into the study: low
Response rate 2351/2601 surveys (90%)

3. Measurement of interventions: moderate
Participants were asked to self-report which prophylaxis was used on return to the USA. It is unclear if participants were still receiving the intervention at this time

4. Departures from intended interventions: serious
“There were 520 respondents (25.2%) reporting more than one medication used to prevent malaria over the course of the deployment”

5. Missing data: low
Analysis included 1898/2011 (94.4%) respondents for doxycycline, 564/596 (94.6%) respondents for mefloquine

6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded. Different criteria were used to assess adverse effects related to mefloquine and doxycycline

7. Selection of the reported results: serious
There was insufficient information provided regarding the questionnaire to determine whether all included outcomes were reported. Data for doxycycline were provided by severity gradings but not for mefloquine

8. Other: no information
No information is provided regarding the study sponsor

Schlagenhauf 1997

Methods
Design: cross-over RCT
Study dates: 1993 to 1994
Malaria transmission pattern and local antimalarial drug resistance: not applicable
Adverse event monitoring: “Throughout dosing, the participants were monitored and questioned regarding their general well-being. The participants were seen 1) prior to taking any medication, 2) at the end of the first week (during which the loading dose was administered, 3) one week before testing, and 4) on the testing day itself when they were asked to report any changes from normal and questioned with regard to any symptoms experienced while taking the drug”

Participants
Number enrolled: 23
Inclusion criteria: “conducted with trainee pilots attending the Swiss Civil Aviation School during the classroom phases of their study”
Exclusion criteria: “history of a seizure disorder; psychosis or severe depression; known allergy or sensitivity to mefloquine or related compounds; concurrent use of cardiovascular medication; compromised renal or hepatic function; pregnancy or the intention to become pregnant within three months of mefloquine use; use of mefloquine in the preceding two months, and use of hypnotics or tranquillizers during the two weeks prior to testing and alcohol within 12 hr of testing”
Schlagenhauf 1997 (Continued)

Country of recruitment: Switzerland
Country of malaria exposure: not applicable
Duration of follow up: 4 weeks
Type of participants: Swissair trainee pilots, did not travel

Interventions
1. Mefloquine (1 x 250 mg tablet) given daily on 3 consecutive days followed from day 8 by once a week administration of 1 tablet for three consecutive weeks
2. Placebo (1 tablet) given daily on 3 consecutive days followed from day 8 by once a week administration of one tablet for 3 consecutive weeks

Outcomes
Included in the review:
1. Adverse events; any
2. Discontinuations of study drug due to adverse effects
3. Adverse events; other outcomes (instrument co-ordination analyser, sleep assessment, sway, neurobehavioural evaluation system, profile of mood states)

Notes
Funding sources: This study was sponsored by the F. Hoffmann La Roche Tropical Medicine Unit (Basel, Switzerland)

Risk of bias
Bias
Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Adverse effects/events
Blinding of outcome assessment (detection bias)
All outcomes
Incomplete outcome data (attrition bias); efficacy
Incomplete outcome data (attrition bias); safety

| Authors’ judgement |
| Unclear risk |

| Support for judgement |
| Comment: method of randomization not reported |
| Comment: no details of allocation concealment reported |
| Comment: described as double blind but no mention of whether placebo was identical to the active formulation |
| Comment: described as double blind but no description of who was blinded and how |
| N/A |
| “There was one withdrawal due to dizziness, diarrhea, and flu-like symptoms and three volunteers spontaneously reported minor sleep-related AEs (adverse events), including insomnia, unpleasant dreams, superficial sleep, and early awakening. These events all occurred in the mefloquine loading dose phase” |
| Comment: not clear whether this with- |
Schlagenhauf 1997 (Continued)

Selective reporting (reporting bias); efficacy	Unclear risk	N/A
Selective reporting (reporting bias); safety	High risk	“The individual Environmental Symptom Questionnaire (ESQ) symptoms were also analyzed and items selected for their relevance to mefloquine administration were assessed by Cochran’s Q test for related samples” Comment: intra-individual changes in scores were obtained during the study, but outcomes were presented as means across groups. Data from the ESQ were not reported, only “no significant differences”. Data for the Profile of Mood States questionnaire was presented in a graph with no standard deviations
Other bias	High risk	This study was sponsored by the F. Hoffmann-La Roche Tropical Medicine Unit (Basel, Switzerland). The role of the study sponsor was not clear

Schlagenhauf 2003

| Methods | Design: RCT
Study dates: 1998 to 2001
Malaria transmission pattern and local drug resistance: not mentioned
Adverse event monitoring: patient self-reported questionnaire |
| Participants | Number enrolled: 674
Inclusion criteria: adult travellers aged 18 to 70 years, with planned travel of 1 to 3 weeks to a malaria-endemic area, and consulting at a travel clinic ≥ 17 days before departure
Exclusion criteria: glucose-6-phosphate dehydrogenase deficiency, history of severe adverse events with any of the four study drugs or a contra-indication for their use, pregnancy or unwillingness to adhere to reliable contraception, history of seizures, psychiatric disorders, severely impaired renal or hepatic function, concurrent or recent vaginal infections or bacterial enteric disorders, a history of photosensitivity, or unwillingness to adhere to the study protocol
Countries of recruitment: Switzerland, Germany and Israel
Region of malaria exposure: sub-Saharan Africa
Duration of exposure to malaria: 1 to 3 weeks
Type of participants: travellers |
| Interventions | 1. Mefloquine (1 capsule containing mefloquine hydrochloride 274.09 mg, equivalent to mefloquine 250 mg base) once weekly, starting 17 days before travel and continuing for 4 weeks after travel* |
2. Chloroquine-proguanil (1 combined capsule containing chloroquine diphosphatase 161.21 mg, equivalent to chloroquine 100 mg base; and 200 mg proguanil hydrochloride) once daily, starting 17 days before travel and continuing for 4 weeks after travel*
3. Doxycycline (1 capsule containing doxycycline monohydrate 100 mg) once daily, starting 17 days before travel and continuing for 4 weeks after travel*
4. Atovaquone-proguanil (1 combined capsule containing 250 mg atovaquone and 100 mg proguanil hydrochloride) once daily, starting 17 days before travel and continuing for 1 week after travel*

*matched placebo for each treatment arm

Outcomes

Included in the review:
1. Adverse events; any
2. Serious adverse events
3. Adverse events; other ('gastrointestinal', 'skin symptoms', 'neuropsychological') - any severity, mild, moderate, severe
4. Discontinuation of study drug due to adverse effects
5. Adverse events; other outcomes (profile of mood states, quality of life score)

Notes

Funding sources: GlaxoSmithKline supplied atovaquone-proguanil and gave financial support; Zeneca supplied chloroquine-proguanil; Pfizer supplied doxycycline; Roche supplied mefloquine and gave financial support

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Low risk	"Randomisation was from a computer generated table of numbers in permuted blocks of five"
Allocation concealment (selection bias)	Unclear risk	"Participants were allocated treatment sequentially in order of study numbers. Allocation concealment was by sealed envelope" Comment: not reported whether envelopes were opaque
Blinding of participants and personnel (performance bias) Adverse effects/events	Low risk	"The drugs were provided as identical capsule blister packs in weekly cards"
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Comment: Described as double blind but no mention of how this was achieved for researchers and outcome assessors
Incomplete outcome data (attrition bias); efficacy	High risk	Comment: Method of detection for malaria, frequency and duration of follow up were not reported
Incomplete outcome data (attrition bias); safety	Unclear risk	
---	--------------	
"Adverse events were analysed in 623 participants who completed questionnaires at recruitment and at least one of the follow up periods"		
"Data was collected during recruitment and at follow up 13-11 days before departure, 6-4 days before departure and 7-14 days after departure"		
Comment: it was unclear how many participants provided data at each time point		

Selective reporting (reporting bias); efficacy	Low risk
"No cases of malaria were reported for any study arm"	

Selective reporting (reporting bias); safety	High risk
"Adverse events were analysed in 623 participants who completed questionnaires at recruitment and at least one of the follow up periods"	
"Data was collected during recruitment and at follow up 13-11 days before departure, 6-4 days before departure and 7-14 days after departure"	
Comment: Data were presented on aggregate across multiple time points	

Other bias	High risk
Funding: Pfizer, GlaxoSmithKline, Roche, and Zeneca provided the drugs free of charge. GlaxoSmithKline and Roche provided research grants	
"Competing interests: PS has received speakers’ honorariums and travel expenses from Roche and GlaxoSmithKline. She acted as a consultant to Roche in a drug safety database evaluation. RS has received speakers’ honorariums and travel expenses from GlaxoSmithKline, Roche, and Pfizer. He is also a member of the advisory board of GlaxoSmithKline for malaria prophylaxis related questions. BB has received a speaker’s honorarium and travel expenses from GlaxoSmithKline. HN has received speakers’ honorariums and travel expenses from GlaxoSmithKline on different occasions. He has been principal or coinvestigator in several vaccine trials sponsored by GlaxoSmithKline"	
Schneider 2013

Methods
- **Design:** retrospective cohort study
- **Study dates:** 1 January 2001 and 1 October 2009
- **Malaria transmission pattern and local antimalarial drug resistance:** various, not specified
- **Adverse event monitoring:** Incident cases of a neuropsychiatric disorder including anxiety, stress-related disorders or psychosis, depression, epilepsy or peripheral neuropathies during or after anti-malarial drug use within the UK general practice research database

Participants
- **Number enrolled:** Not available
- **Inclusion criteria:** We identified in the general practice research database all patients who had ≥ 1 prescription of mefloquine, chloroquine and/or proguanil or atovaquone/proguanil between January 1, 2001 and October 1, 2009, and who had a pre-travel consultation within 1 week of the prescription
- **Exclusion criteria:** We only included subjects who used anti-malarial drugs for malaria prophylaxis... Furthermore, individuals had at least 12 months of information on prescribed drugs and medical diagnoses before the first prescription date for a study drug. In addition, subjects had recorded activity (diagnoses or drug prescriptions) at any time after the prescription for an anti-malarial drug to include only subjects who returned to the UK. We excluded all patients with a diagnosis of malaria prior to the start of anti-malarial drug use, patients with a history of cancer, alcoholism, rheumatoid arthritis; or with an outcome of interest prior to using anti-malarial drugs. The date of the first neuropsychiatric disorder was the index date for each case
- **Country of recruitment:** UK
- **Country of malaria exposure:** various, not specified
- **Duration of exposure to malaria:** various, not specified
- **Type of participants:** travellers

Interventions
- **Included in review comparisons:**
 1. Mefloquine*
 2. Atovaquone-proguanil*
- **Not included in review comparisons:**
 3. Chloroquine-proguanil*
 4. Unexposed (case-control design)
- **Dosing regimen not specified**

Outcomes
- **Included in the review:**
 1. Adverse events; psychiatric disorders (anxiety, depression, psychosis)
 2. Adverse events; other (‘anxiety or stress related disorders or psychosis’, epilepsy, neuropathy, phobia, panic attack)

Notes
- **Funding sources:** F. Hoffmann-La Roche Ltd., Basel, Switzerland

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
Age, sex and BMI were measured but only reported for people experiencing adverse events
2. Selection of participants into the study: moderate
“We excluded all patients with a personal history of recorded neuropsychiatric disorders from the study population, but family history is not consistently recorded in the database” |
Schneider 2013

3. Measurement of interventions: moderate
“We only included subjects who used anti-malarial drugs for malaria prophylaxis. We identified prescriptions for which the GP recorded - within a week of the anti-malarial drug prescription - specific codes indicating that the person received the prescription for malaria prophylaxis, such as ‘travel advice’ or ‘prophylactic drug use’

4. Departures from intended interventions: serious
It is possible that participants discontinued or switched medication and this would not have been captured in the study

5. Missing data: moderate
The study did not report the total number of participants, only those who experienced adverse events

6. Measurement of outcomes: moderate
General practitioners diagnosing patients would have been aware of their exposure status

7. Selection of the reported results: moderate
Data for anxiety, stress-related disorders and psychosis were reported on aggregate

8. Other: serious
Study was sponsored by Roche. The role of the funding source was not made clear

Schwartz 1999

Methods
Design: cross-sectional cohort study
Study dates: October 1995 to April 1998
Malaria transmission pattern and local antimalarial drug resistance: ”both P. falciparum and P. vivax are hyperendemic“
Adverse event monitoring: ”...we directly contacted all travelers for complete follow-up and assessment of compliance.
Fifty travelers taking primaquine completed a questionnaire regarding side effects”

Participants
Number enrolled: 158
Inclusion criteria: Israelis participating in rafting trips in Southern Ethiopia
Exclusion criteria: none mentioned
Country of recruitment: Israel
Country of malaria exposure: Ethiopia
Duration of exposure to malaria: 14 to 20 days
Type of participants: travellers

Interventions
Included in review comparisons:
1. Mefloquine (1 x 250 mg tablet) weekly, Starting 1 week prior to departure, during travel and for 4 weeks after return
2. Doxycycline (1 x 100 mg tablet) daily

Not included in review comparisons:
3. Primaquine 15 mg daily for travellers with body weight < 70 kg and 30 mg for those weighing > 70 kg, starting 1 day prior to departure and continuing for up to 2 days after departure
4. Hydroxychloroquine*
*dosing regimen not specified
Outcomes

Included in the review:
1. Discontinuations of study drug due to adverse effects
2. Clinical cases of malaria
3. Measure of adherence to the drug regimen (not fully reported)
4. Adverse effects; any (methods of detection different for primaquine versus other regimens)

Outcomes assessed not included in the review:

Notes

Funding sources: not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
Age, sex and BMI were not reported for any participants. Destination and duration of travel was roughly equivalent across all groups
2. **Selection of participants into the study:** moderate
Subjects were selected on the basis of their travel destination. Start of follow up and start of intervention coincide. No non-responses were reported
3. **Measurement of interventions:** moderate
"Prior to the trip, participants consulted one of a number of travel clinics in Israel, among them our clinic”
Comment: it was unclear how intervention status was ascertained for participants who visited other clinics
4. **Departures from intended interventions:** low
Two discontinuations (158 participants) were reported
5. **Missing data:** serious
"In addition, we directly contacted all travelers for complete follow-up and assessment of compliance. Fifty travelers taking primaquine completed a questionnaire regarding side effects”
It was unclear how information on discontinuations and side effects were obtained for participants who did not take primaquine”
6. **Measurement of outcomes:** serious
Comment: the outcome measure was subjective; participants and personnel were not blinded
7. **Selection of the reported results:** serious
"In addition, we directly contacted all travelers for complete follow-up and assessment of compliance. Fifty travelers taking primaquine completed a questionnaire regarding side effects”
It was unclear how information on discontinuations and side effects was obtained for participants who did not take primaquine
Shamiss 1996

Methods	Design: cross-sectional cohort study
	Study dates: not mentioned
	Malaria transmission pattern and local antimalarial drug resistance: not applicable
	Adverse event monitoring: patient self-reported questionnaire

Participants	Number enrolled: 45
	Inclusion criteria: none mentioned
	Exclusion criteria: none mentioned
Factors influencing drug allocation:	Prior knowledge about the side effect profile of mefloquine forced us to prescribe doxycycline 100 mg daily for aviators and mefloquine 250 mg weekly for non-aviator crew
Country of recruitment:	Israel
Country of malaria exposure: Rwanda and Zaire	
Duration of exposure to malaria:	biweekly flights to and from Rwanda to Zaire with an average of 4 hours stay in the field over a period of 2 months
Type of participants:	military

| Interventions | 1. Mefloquine (1 x 250 mg tablet) weekly, starting on the day of travel (< 12 hours before the first flight) and continuing until 4 weeks after return |
|------------------| 2. Doxycycline (1 x 100 mg tablet) daily, starting on the day of travel (< 12 hours before the first flight) and continuing until 4 weeks after return |

Outcomes	Included in the review:
	1. Adverse effects; any, nausea, abdominal pain, dizziness
	2. Adverse effects; other (fatigue)
	3. Discontinuations of study drug due to adverse effects
	4. Measure of adherence to the drug regimen
Outcomes assessed not included in the review:	5. Clinical cases of malaria

| Notes | Funding sources: not mentioned |

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
		Sex and BMI were not measured. Destination and duration of travel were set by the study design
		2. Selection of participants into the study: low
		"Prior knowledge about the side effects profile of mefloquine forced us to prescribe doxycycline 100 mg daily for aviators and mefloquine 250 mg weekly for non-aviator aircrew up to 1 mo after the last return"
Shamiss 1996

All participants completed questionnaires.
3. Measurement of interventions: low
Type of prophylaxis used was set by the job of the included participants
4. Departures from intended interventions: low
“Two non-aviators were dropped from the study because of receiving the wrong prescription”
5. Missing data: low
“Two non-aviators were dropped from the study because of receiving the wrong prescription”
Information was provided for the remaining 43 participants.
6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded
7. Selection of the reported results: moderate
“…the questionnaire included questions about compliance, side effects attributed to chemoprophylaxis, and any illness after return”
No information was provided regarding illness after return.
8. Other: no information
No information is provided regarding the study sponsor

Sharafeldin 2010

Methods	Design: retrospective cohort study
Study dates: July 2006 to December 2008	
Malaria transmission pattern and local antimalarial drug resistance: various, not specified	
Adverse event monitoring: “Participants… were sent an informative email asking them to complete a web-based questionnaire”	

Participants	Number enrolled: 242 students sent questionnaire, 180 respondents
Inclusion criteria: “all medical students who had performed an elective abroad between July 2006 and December 2008, who had visited countries where hepatitis A is endemic, and who had notified the student registrar to obtain study credits”	
Exclusion criteria: none mentioned	
Factors influencing drug allocation: “…students are free to visit [our occupational health department] or any other travel clinic including the LUMC in-hospital travel clinic or their general practitioner”	
Country of recruitment: Netherlands	
Country of malaria exposure: none mentioned	
Duration of exposure to malaria: mean duration of stay = 74 days (range 10 to 224 days)	
Type of participants: travellers	

Interventions	Included in review comparisons:
1. Mefloquine*	
2. Atovaquone-proguanil*	
3. Doxycycline*	
Not included in review comparisons:	

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Sharafeldin 2010 (Continued)

4. Primaquine*
5. Proguanil*
6. Chloroquine* (no data reported)
 *dosing regimen not specified

Outcomes

Included in the review:
1. Adverse effects; any
2. Serious adverse outcomes
3. Discontinuations of study drug due to adverse effects
 Outcomes assessed not included in the review:
4. Clinical cases of malaria
5. Risk of infection with bloodborne viruses
6. Health risks while abroad
7. Health problems experienced whilst abroad
8. Health problems experienced on return

Notes
Funding sources: There was no dedicated funding for this project

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
Age, sex, destination and duration of travel were measured but information not provided across groups. BMI was not measured
2. Selection of participants into the study: serious
Response rate 180/242 (74.4%)
3. Measurement of interventions: serious
 “...six students did not remember which prophylaxis had been prescribed”
 Students were asked to self-report which prophylaxis they took an average of 235 days after completing their trip
4. Departures from intended interventions: moderate
 “Eight students who used mefloquine (20%) stopped the drug prematurely as did ten students on atovaquone-proguanil (16%) and the student on doxycycline. Only two of these students switched to another prophylaxis”
5. Missing data: low
 “none of the questionnaires was incomplete”
 All participants were included in the analysis
6. Measurement of outcomes: serious
 The outcome measure was subjective; participants and personnel were not blinded
7. Selection of the reported results: moderate
 Insufficient information was provided on how data on adverse effects were sought
8. Other: low
 “There was no dedicated funding for this project”
Sonmez 2005

Methods

- **Design:** prospective cohort study
- **Study dates:** April 2002 to October 2003
- **Malaria transmission pattern and local antimalarial drug resistance:** "20% of recent cases were due to *P. falciparum* 'chloroquine resistant *P. falciparum*"
- **Adverse event monitoring:** "common questionnaires were used to investigate the compliance to and side effects of both regimes"

Participants

- **Number enrolled:** 1400 soldiers worked in the region
- **Inclusion criteria:** "...all Turkish soldiers were examined in detail and serum samples were taken before heading for the region"
- **Exclusion criteria:** "...none of the participants had any chronic disease"
- **Factors influencing drug allocation:** "The preference of the preventive regime was related to the availability of the drugs... the prophylaxis was started with doxycycline, which was at hand in March 2002. Then again the soldiers who came after July 2002 were given mefloquine"
- **Country of recruitment:** Afghanistan
- **Country of malaria exposure:** Afghanistan
- **Duration of exposure to malaria:** "The average time of presence for a single soldier in Kabul region was approx. 6 month [sic]"
- **Type of participants:** military

Interventions

1. Mefloquine*
2. Doxycycline*

* **dosing regimen not specified*

Outcomes

Included in the review:

1. Serious adverse effects
2. Adverse effects; any, nausea, vomiting, abdominal pain, diarrhoea, headache, insomnia, dyspepsia, anorexia

Outcomes assessed not included in the review:

3. Clinical cases of malaria

Notes

- **Funding sources:** Not mentioned
- **Communications with study author:**
 - Sonmez 2005 no longer had access to the original study data. However, the study authors confirmed that for table 1: "The comparisons of the number of side effects of both regimes" the number of side effects for specific symptoms e.g. nausea was equivalent to the number of soldiers reporting that side effect. In addition, the authors were able to clarify a discrepancy in the original text: the paper states "27 mefloquine takers (41.2%) reported 43 side effects at the 2nd week of prophylaxis". The total number of mefloquine participants was 228; 41.2% equates to 94 participants. The authors confirmed that the correct figure was 27 mefloquine users (11%)"

Risk of bias

Bias	Authors' judgement	Support for judgement
Other bias	Unclear risk	**1. Confounding: moderate** Age of participants was balanced across groups. Destination and duration of travel were set by the study design. Sex and BMI were not reported **2. Selection of participants into the study: serious**
Sonmez 2005

	734 soldiers returned questionnaires (52.2%)
3. Measurement of interventions: low	All soldiers were issued with prophylaxis
4. Departures from intended interventions: low	Switches between prophylactic regimens were not possible
5. Missing data: low	The data were collected at 2 time points. The reported denominator for each time point was the same
6. Measurement of outcomes: serious	Comment: the outcome measure was subjective; participants and personnel were not blinded
7. Selection of the reported results: moderate	There was insufficient information provided to be sure that all outcomes included in the questionnaire were reported
8. Other: no information	No information was provided regarding the study sponsor

Sossouhounto 1995

Methods

	Design: RCT
Study dates:	January 1989 to June 1989
Malaria transmission pattern and local antimalarial drug resistance:	“region endemic for P. falciparum malaria”
Adverse event monitoring:	“participants had access to a village health center, where they could notify personnel of any malaise or side effects. Clinical examinations and parasitologic tests were performed every 4 weeks. Blood counts were carried out at the end of weeks 4, 19 and 24”

Participants

	Number enrolled: 500
Inclusion criteria:	“five-hundred male volunteers, aged 16-60 years, who were residents of a local village, were randomly assigned”
Exclusion criteria:	none mentioned
Country of recruitment:	Adzope region, Ivory Coast
Country of malaria exposure:	Adzope region, Ivory Coast
Duration of exposure to malaria:	study duration 20 weeks
Type of participants:	Ivory Coast residents, semi-immune

Interventions

	Included in review comparisons:
1. Mefloquine (1 x 250 mg tablet) weekly in weeks 1 to 4, (1 x 125 mg tablet) weekly in weeks 5 to 20	
2. Chloroquine (1 x 300 mg tablet) weekly for 20 weeks	
3. Placebo (1 tablet) weekly for 20 weeks	

	Not included in review comparisons:
4. Fansidar	
5. Fansifem	
Outcomes

Included in the review:
1. Clinical cases of malaria
2. Episodes of parasitaemia
3. Serious adverse events
4. Adverse events: any, diarrhoea, headache, pruritis

Outcomes assessed not included in the review:
5. Laboratory tests; haematocrit and white blood cell count
6. Adverse events: other (leukopenia, malaise; did not occur in any study participants)

Risk of bias

Bias	Authors’ judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	“Five-hundred male volunteers… were randomised” Comment: Method of randomization was not described
Allocation concealment (selection bias)	Unclear risk	Comment: no description of allocation concealment was provided
Blinding of participants and personnel (performance bias) Adverse effects/events	Low risk	“double blind”. “The medications and placebo were identical in appearance”
Blinding of outcome assessment (detection bias) All outcomes	Unclear risk	Comment: described as double blind but no information was provided on how this was achieved for researchers and outcome assessors
Incomplete outcome data (attrition bias); efficacy	Low risk	“Four hundred and ninety-nine subjects were evaluated for safety (at least one tablet taken and one visit) as well as for efficacy” Comment: 499/500 (99.8%) participants included in the analysis
Incomplete outcome data (attrition bias); safety	Low risk	“Four hundred and ninety-nine subjects were evaluated for safety (at least one tablet taken and one visit) as well as for efficacy” Comment: 499/500 (99.8%) participants included in the analysis
Selective reporting (reporting bias); efficacy	Low risk	Comment: all outcomes prespecified in the methods section were reported

Notes

Funding sources: not mentioned
Sossouhounto 1995 (Continued)

| Selective reporting (reporting bias); safety | Unclear risk | “Blood counts were carried out at the end of weeks 4, 19 and 24”
Comment: blood counts were reported only for one participant who developed reversible leukopenia |
| Other bias | Unclear risk | Comment: no information provided regarding the study sponsor |

Steffen 1993

Methods
- **Design:** cohort study
- **Study dates:** Malpro 1- April 1985 to July 1988, Malpro 2- July 1988 to December 1991
- **Malaria transmission pattern and local antimalarial drug resistance:** various, not stated
- **Adverse event monitoring:** self-completed questionnaires were distributed and collected by cabin crews to all passengers returning on charter planes

Participants
- **Number enrolled:** 145,003
- **Inclusion criteria:** not explicitly stated. This trial includes two publications, Steffen 1993 states “All passengers returning on charter planes from Mombasa, Kenya, to Europe”, whereas Steffen 1990 states “all passengers flying back to Europe from East Africa (Kenya) or West Africa (9 countries)”. Data have been included from Steffen 1993
- **Exclusion criteria:** “All travellers who stayed longer than one year in tropical Africa were excluded, as were those who did not spend the main part of their visit in East Africa (Kenya, Tanzania and Uganda)”
- **Country of recruitment:** not applicable
- **Region of malaria exposure:** East Africa (Kenya, Tanzania, Uganda)
- **Duration of exposure to malaria:** various, not stated
- **Type of participants:** travellers

Interventions
- **Included in review comparisons:**
 1. Mefloquine*
 2. Chloroquine (1 x 300 mg tablet) weekly
- **Not included in review comparisons:**
 3. Chloroquine (1 x 600 mg tablet) weekly
 4. Proguanil*
 5. Chloroquine + proguanil*
 6. Pyrimethamine + sulfadoxine*
 7. Non-users (this population was asked about side effects (adverse effects) and instead answered regarding adverse events
- **dosing regimen not specified**

Outcomes
- **Included in the review:**
 1. Serious adverse effects
 2. Adverse effects; any (mild, moderate or severe), visual impairment, nausea, headache, dizziness, insomnia, depression, pruritis
 3. Adverse effects; other (‘other skin’, medical consultations due to side effects, incapacitation due to side effects, ‘cutaneous’, ‘redness of the skin’, consulted a doctor)
 4. Discontinuations of study drug due to adverse effects
- **Outcomes assessed not included in the review:**
5. Clinical cases of malaria
6. Measures taken against mosquito bites
7. Sources of pre-travel health information
8. Places visited in tropical Africa

Notes
Funding sources: “This study was sponsored by F. Hoffman-La Roche Ltd, Basel, Switzerland”

Risk of bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	

1. **Confounding: moderate**
 Age, sex and BMI were not reported across different prophylactic groups

2. **Selection of participants into the study: moderate**
 “In Malpro 1, 80.1% of all passengers completed the in-flight questionnaire… in Malpro 2 the response rate [was] 83.9%”

3. **Measurement of interventions: low**
 Passengers were asked to self-report which malaria prophylaxis was used. Data were collected on the journey home, meaning it was likely that passengers were still taking this medication

4. **Departures from intended interventions: low**
 Handschin 1997: “2.9% of passengers changed the prophylactic regimen during the observation period”

5. **Missing data: moderate**
 Malpro 1 losses to follow-up 4.1%, Malpro 2 losses to follow-up 14.1%

6. **Measurement of outcomes: moderate**
 The outcome measure was subjective; participants and personnel were not blinded. Serious adverse events were verified independently

7. **Selection of the reported results: serious**
 Data on non-serious side effects were not included from Malpro 1- 31% of participants (44,667) were not included

8. **Other: serious**
 The study was funded by Roche. The role of the study sponsor was not made clear
Methods

Design: quasi-RCT
Study dates: September 1987 to June 1990
Malaria transmission pattern and local antimalarial drug resistance: “primarily *P. falciparum* (> 90%), some *P. malariae* and minimal *P. ovale*... High levels of *Plasmodium falciparum* resistance to CQ... sensitivity of *P. falciparum* to mefloquine was documented”
Adverse event monitoring: “At the time of each dose, a questionnaire was administered to record symptoms including fever and reported drug side effects since the last visit”

Participants

Number enrolled: 4220
Inclusion criteria: “...consecutive attenders at first antenatal clinic visit were enrolled at three sites... At a fourth side, consecutive attenders in their first and second pregnancy were enrolled”
Exclusion criteria: “At this site [fourth site, government district hospital] women with two or more pregnancies were not enrolled because of the large number of patients attending the clinic and the limited number of study staff”
Country of recruitment: Malawi
Country of malaria exposure: Malawi
Duration of exposure to malaria: Ongoing in semi-immune population - monitored from enrolment for various periods of time
Type of participants: pregnant Malawian residents, semi-immune

Interventions

1. Mefloquine (1 x 250 mg tablet) weekly, with a single loading dose of 750 mg
2. Chloroquine (1 x 300 mg tablet) weekly, with a loading dose 25 mg of base/kg given as a divided dose over 2 days
3. Chloroquine (1 x 300 mg tablet) weekly

Outcomes

Included in the review:
1. Episodes of parasitaemia
2. Adverse events; any
3. Serious adverse events
4. Discontinuations of study drug due to adverse effects
5. Adverse pregnancy outcomes; still births, abortions
Outcomes assessed not included in the review:
6. Frequency of placental malarial infection
7. Frequency of prematurity or intra-uterine growth retardation
8. Frequency of maternal febrile illness or anaemia
9. Likelihood of infant acquisition of malarial infection

Notes

Funding sources: “This work was supported and made possible by the Africa Bureau, Office of Operations and New Initiatives and the Office of Analysis, Research and Technical Support, the USAID through the Africa Child Survival initiative... The Global Program on AIDS, World Health Organisation provided support for the HIV testing and evaluation portion of this study”

Risk of bias

Bias	Authors’ judgement	Support for judgement

Steketee 1996

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Bias Type	Risk Level	Description
Random sequence generation (selection bias)	High risk	“Systematic assignment of regimens was done based on the clinic and day of enrolment… All women making their first antenatal clinic on a given day were assigned to the same regimen; the following day, enrolled women were assigned to the following regimen”
Allocation concealment (selection bias)	High risk	“Systematic assignment of regimens was done based on the clinic and day of enrolment… All women making their first antenatal clinic on a given day were assigned to the same regimen; the following day, enrolled women were assigned to the following regimen”
Blinding of participants and personnel (performance bias)	High risk	Comment: no mention of participants being blinded to which prophylactic regimen they were taking
Blinding of outcome assessment (detection bias)	Unclear risk	“All blood smear examinations were done with the microscopist blinded to the study subject’s antimalarial regimen”
		Comment: No mention of outcome assessors being blinded to the treatment regimen used when assessing safety outcomes
Incomplete outcome data (attrition bias); efficacy	Unclear risk	“Among the 4187 enrolled women, 3380 (81%) [were analysed]… 94 did not have an initial blood smear result for comparison, 89 left the study area before follow up, 397 delivered before the follow up visit, 133 missed their appropriate follow up visit, and 94 did not have documented adherence to the drug regimen”
		Comment: numbers lost to follow up were not reported across groups
Incomplete outcome data (attrition bias); safety	High risk	“A total of 4101 women had information available after their first dose and 2976 women had information available after their dose at four weeks”
		Comment: reasons for missing data were not reported
Selective reporting (reporting bias); efficacy	Unclear risk	“Only \(P falciparum\) infections were of interest for this study… when \(P malariae\) alone was identified these infections were...”
Steketee 1996 (Continued)

Excluded from the analysis
"For the purposes of malaria prevention and infant outcome we analysed the group of women… only if they were enrolled in the study for six or more weeks and had received the appropriate amount of medication during their participation"
"A total of 1,790 women delivered in study health facilities had received proper dosing on their antimalarial regimen, and had their peripheral blood examined"
Comment: women who had reported fever during pregnancy, and during the 2 weeks prior to delivery was reported, but not reported across antimalarial drug regimens

Selective reporting (reporting bias); safety
High risk
"All other complaints e.g. weakness, heart palpitations accounted for less than 15% of reported symptoms"
Comment: Data were collected weekly but only reported after the first and the fourth dose

Other bias
Low risk
"This work was supported and made possible by the Africa Bureau, Office of Operations and New Initiatives and the Office of Analysis, Research and Technical Support, the USAID through the Africa Child Survival initiative… The Global Program on AIDS, World Health Organisation provided support for the HIV testing and evaluation portion of this study"

Stoney 2016

Methods
Design: Prospective cohort study
Study dates: 2009 to 2011
Malaria transmission pattern and local antimalarial drug resistance: various, not specified
Adverse event monitoring: "...participants were asked to complete a survey each week during travel and a post-travel survey within 2-4 weeks after return"

Participants
Number enrolled: 628 participants completed all three surveys, 370 included in the analysis
Inclusion criteria: "Travelers were included from among all those enrolled if they received a prescription for chemoprophylaxis, traveled to at least one malaria-endemic area, and completed pre- and post-travel surveys and at least one during-travel survey"
Exclusion criteria: "To complete the study in a reasonable amount of time, only participants with shorter durations of travel (approximately 2 months) were included"
Factors influencing drug allocation: "Several different medications are available for malaria chemoprophylaxis, depending on the traveler's destination and medical history"
Country of recruitment: USA
Country of malaria exposure: India (13%), Tanzania (8%), Kenya (7%), South Africa (7%), and Haiti (7%)
Duration of exposure to malaria: median travel duration 13 days
Type of participants: travellers

Interventions	Included in the review:
	1. Mefloquine*
	2. Doxycycline*
	3. Atovaquone-proguanil*
	4. Chloroquine*
	Not included in the review:
	5. Primaquine*
	*dosing regimen not specified

Outcomes	Included in the review:
	1. Adverse effects; any, headache, abnormal dreams ‘intense nightmares’, any gastrointestinal
	2. Discontinuations of study drug due to adverse effects
	3. Measure of adherence to the drug regimen
	Outcomes assessed not included in the review:
	4. Clinical cases of malaria
	5. Reasons for non-compliance with chemoprophylaxis (data provided on aggregate),
	6. Use of personal protective measures for malaria prevention

Notes
Funding sources: “This work was supported by a cooperative agreement [1 U19CI000508-01] between the Centers for Disease Control and Prevention and Boston Medical Center”

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
		Age, sex, destination and duration of travel were recorded but figures were not reported across prophylactic regimens
		2. Selection of participants into the study: moderate
		No information was provided regarding travellers who did not wish to participate in the study
		3. Measurement of interventions: low
		“The type of chemoprophylaxis prescribed were collected from data entered by clinicians into patients’ medical records”
		4. Departures from intended interventions: moderate
		No switches or discontinuations were reported. It was unclear whether this information was captured in the questionnaire
		5. Missing data: low
		364/370 (98%) participants were included in the analysis
		6. Measurement of outcomes: serious
		Comment: the outcome measure was subjective, partici-
Stoney 2016		
(Continued)	pants and personnel were not blinded	
---	---	
7. Selection of the reported results: moderate	Insufficient information provided on how data on adverse effects were obtained to determine whether all outcomes had been reported	
8. Other: low	Government funding	

Tan 2017

Methods
- Design: retrospective cohort study
- Study dates: 18 July to 16 September 2016
- Malaria transmission pattern and local antimalarial drug resistance: various, not specified
- Adverse event monitoring: patient self-reported questionnaire

Participants
- Number enrolled: 8931
 - Inclusion criteria: Returned Peace Corps volunteers (RPCV) who served between 1995 and 2014 and had an e-mail address in Peace Corps’ RPCV database
 - Exclusion criteria: None mentioned
 - Factors influencing drug allocation: none specified
 - Country of recruitment: USA
 - Country of malaria exposure: various, not specified
 - Duration of exposure to malaria: various, not specified
 - Type of participants: returned Peace Corps volunteers

Interventions
- 1. Mefloquine*
- 2. Doxycycline*
- 3. Atovaquone-proguanil*
- 4. Chloroquine*
 *dosing regimen not specified

Outcomes
- **Included in the review:**
 1. Measure of adherence to the drug regimen
- **Outcomes assessed not included in the review:**
 2. “Questions about medications before, during, or after Peace Corps, as well as habits such as drinking”

Notes
- Funding source: “this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors”

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	
	1. **Confounding: moderate**	
	Important confounders were measured but not been reported across groups. Duration and destination of travel were not measured	
	2. **Selection of participants into the study: serious**	
Continued

8931/47,238 potential respondents included (13% response rate)

3. Measurement of interventions: serious
Participants were asked to self-report which chemoprophylaxis they had taken at least 2 years after they had finished the course

4. Departures from intended interventions: serious
Limited information was provided regarding switches between interventions. Participants were asked to self-report this information at least 2 years after finishing treatment

5. Missing data: low
Information on adherence was reported for all participants who answered this question (5026 respondents/5055 who reported taking malaria prophylaxis)

6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded

7. Selection of the reported results: moderate
There was insufficient information provided to be sure that all outcomes included in the questionnaire were reported

8. Other: low
"This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors"

Terrell 2015

Methods
Design: cross-sectional cohort study
Study dates: 2012 and 2013
Malaria transmission pattern and local antimalarial drug resistance: "...high risk of malaria (mainly P. falciparum) in Kenya, although the risk is assessed as very low in Nairobi and in the highlands above 2,500 m... widespread resistance to chloroquine"
Adverse event monitoring: "...questionnaire-based, two-arm cohort study"

Participants
Number enrolled: 2032 completed questionnaires available, 220 failed to indicate which drug they were taking
Inclusion criteria: all military personnel on deployment to Kenya who travelled on one of three main body flights on their return to the UK
Exclusion criteria: none mentioned
Factors influencing drug allocation: "...the choice of drugs considered in this study was limited to mefloquine or doxycycline... participants were free to use another drug should they experience unacceptable adverse effects or where there was an occupational reason"
Country of recruitment: UK
Country of malaria exposure: Kenya
Duration of exposure to malaria: "The majority of participants spent approximately 6 weeks in Kenya with a small number spending a few weeks longer if they filled an administrative role"
Type of participants: military
Interventions Included in review comparisons:
1. Mefloquine*
2. Doxycycline*

Not included in review comparisons:
3. Atovaquone-proguanil* (results not included in the analysis)
 *dosing regimen not specified

Outcomes Included in the review:
1. Adverse effects; any
2. Measure of adherence to the drug regimen

Outcomes assessed not included in the review:
3. Clinical cases of malaria
4. Impact of adverse effects on self-reported ability to work

Notes Funding sources: "The research was not sponsored by any external body"
After we submitted the review for peer referee, the author sent us a spreadsheet containing numbers of events relating to a variety of symptoms after the review had been submitted for publication. These data are not included in the review and will require some clarification over how they were collected to allow us to assess risk of bias. This additional information will be considered in future updates

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. Confounding: moderate
"Although not formally recorded, each unit can be assumed to be composed of similar populations in terms of number, age, gender, occupation, and general health"
2. Selection of participants into the study: serious
"Completion rates were consistently poor throughout the study period with only 150 to 250 questionnaires returned per tranche of around 1,000 troops"
3. Measurement of interventions: low
Participants were asked to self-report which medication they were on while still taking the medication"
4. Departures from intended interventions: moderate
"...[participants] were invited to complete the questionnaire for whichever drug they took for the longer period"
5. Missing data: moderate
"2,032 completed questionnaires available for analysis of which 10.8% (220) failed to indicate which drug they were taking"
6. Measurement of outcomes: serious
The outcome measure was subjective; participants and personnel were not blinded
7. Selection of the reported results: serious
"In both arms, some participants indicated that they had experienced an adverse effect but did not report how it had
Terrell 2015 (Continued)

| Mefloquine: 71 participants, doxycycline: 67 participants | impacted upon their ability to work. They were excluded from the final analysis |

Mefloquine: 71 participants, doxycycline: 67 participants

8. Other: low

“The research was not sponsored by any external body”

Tuck 2016

Methods

- **Design:** cohort study
- **Study dates:** 15 to 22 February 2015
- **Malaria transmission pattern and local antimalarial drug resistance:** not specified
- **Adverse event monitoring:** patient self-reported questionnaire

Participants

- **Number enrolled:** 115 (337 eligible)
- **Inclusion criteria:** all land-based members of a UK military expedition to Sierra Leone
- **Exclusion criteria:** none specified
- **Country of recruitment:** Sierra Leone
- **Country of malaria exposure:** Sierra Leone
- **Duration of exposure to malaria:** not specified
- **Type of participants:** military

Interventions

1. Mefloquine
2. Doxycycline
3. Atovaquone-proguanil

Outcomes

Included in the review:

1. Adverse effects: any, nausea, abdominal pain, diarrhoea, dizziness, insomnia ‘disturbed sleep’, pruritis, indigestion, mouth ulcers, lethargy
2. Measure of adherence to the drug regime

Notes

- **Funding source:** unfunded

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Confounding:** moderate
Age, sex and BMI were not measured. Demographic information not reported across groups

2. **Selection of participants into the study:** serious
151 (46.3%) returned survey forms

3. **Measurement of interventions:** low
Participants were asked to self-report which medication they were taking while taking it

4. **Departures from intended interventions:** moderate
Switches between groups were recorded. 8/151 recipients had medications switched due to unacceptable adverse effects. It was unclear to which drug adverse effects were transferred.
van Riemsdijk 1997

Methods
- Design: prospective cohort study
- Study dates: 24 February to 24 May 1994
- Malaria transmission pattern and local antimalarial drug resistance: various, not stated
- Adverse event monitoring: participant self-reporting questionnaire

Participants
- Number enrolled: 1791 eligible and willing to co-operate, data obtained from 1501 participants
- Inclusion criteria: “...persons who visited the Travel Clinic in the period between 24 February and 24 May, 1994, and who had an anticipated date of return to the Netherlands before the end of the study period, and who had given informed consent”
- Exclusion criteria: none stated
- Country of recruitment: Rotterdam, Netherlands
- Region of malaria exposure: various; Africa, South America, Asia or the Middle East
- Duration of exposure to malaria: various, not specified
- Type of participants: travellers

Interventions
- **Included in review comparisons:**
 1. Mefloquine (1 x 250 mg tablet) weekly
 2. Non-users of antimalarials
- **Not included in review comparisons:**
 3. Proguanil (1 x 200 mg tablet) daily

Outcomes
- **Included in the review:**
 1. Adverse events; nausea, diarrhoea, dizziness, abnormal dreams, insomnia, anxiety, depression, visual impairment
 2. Adverse events; other (agitation, confusion)
- **Outcomes assessed not included in the review:**
 3. Profile of mood states (only reported in comparison with proguanil)

Notes
- Funding sources: Not stated

Risk of bias

Bias	Authors’ judgement	Support for judgement

5. **Missing data:** low
Data were reported for all survey respondents.

6. **Measurement of outcomes:** serious
The outcome measure was subjective; participants and personnel were not blinded.

7. **Selection of the reported results:** moderate
There was insufficient information provided to be sure that all outcomes included in the questionnaire were reported.

8. **Other:** low
“This audit was unfunded”
van Riemsdijk 1997
(Continued)

Other bias	Unclear risk
1. Confounding:	low
Identified	
confounders were	
measured and	
balanced across	
groups	
2. Selection of	moderate
participants into	
the study:	
moderate	
1501/1791 (86%	
response rate)	
3. Measurement	moderate
of interventions:	
moderate	
Comment: the	
prescription was	
provided by a	
travel clinic	
which also	
performed the	
study but no	
information	
regarding	
switches and	
discontinuations	
were recorded or	
reported	
4. Departures	moderate
from intended	
interventions:	
moderate	
No information	
was provided on	
discontinuations	
or switches	
5. Missing data:	moderate
serious	
1227/1449 (85%)	
participants	
were included in	
the analysis;	
chloroquine-proguanil users were not included. The number of non-users decreased from 392 to 340 without explanation	
6. Measurement of	serious
outcomes:	
Comment: the	
outcome measure	
was subjective;	
participants and	
personnel were	
not blinded	
7. Selection of	moderate
the reported	
results:	
moderate	
It was clear	
what was asked	
in the questionnaire. Information was sought on the severity of adverse events but this was not reported	
8. Other: no	information
information was	
provided regarding the study sponsor	

van Riemsdijk 2002

Methods

Design: RCT
Malaria transmission pattern and local drug resistance: not mentioned
Study dates: unclear
Adverse event monitoring: baseline evaluation prior to travel, and follow up date 7 days after the participant left the endemic area and two scheduled telephone conversations

Participants

Number enrolled: 140
Inclusion criteria: travellers aged ≥ 3 years and weighing ≥ 11 kg with planned travel ≤ 28 days to a malaria-endemic area (Overbosch 2001)
Exclusion criteria: In the published report “We excluded those who had risk factors for concentration impairment (e.g. use of opioids, hypnotics, or tranquillizers or use of alcohol 4 hours before testing)”
Within Høgh 2000 (unclear if the same exclusion criteria were applied): poor general health; drug hypersensitivity (to atovaquone, chloroquine or proguanil); history of alcoholism, seizures, psychiatric disorders, severe neurological disorders, severe blood disorders; renal, hepatic or cardiac dysfunction; clinical malaria within previous 12 months; travel to malaria-endemic area within previous 60 days; risk factors for concentration impairment (e.g. use of opioids, hypnotics, or tranquillizers; or use of alcohol 4 hours

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Interventions

1.	Mefloquine (1 x 250 mg tablet; or ¼, ½ or ¾ of a tablet, according to body weight) once weekly, starting 7 days before travel and continuing for 4 weeks after travel*
2.	Atovaquone-chloroguanil (1 combined tablet containing 250 mg atovaquone and 100 mg proguanil hydrochloride; or alternatively 1 to 3 combined children's tablets according to body weight, each tablet containing 62.5 mg atovaquone and 25 mg proguanil hydrochloride) once daily, starting 1 to 2 days before travel and continuing for 1 week after leaving the malaria-endemic area*

*matched placebo for each treatment arm

Outcomes

1.	Adverse events; other outcomes (profile of mood states, neurobehavioural evaluation system)
2.	Measures of adherence to the drug regimen
3.	Discontinuations of the study drug due to adverse effects

Notes

- Funding source: Netherlands Inspectorate for Healthcare gave financial support
- ‘independently performed in a sample of patients from one center that participated in the MAL30010 multicenter clinical trial’- Enrollment criteria and study conduct were described in a separate publication (Høgh 2000) which refers to a different study population (atovaquone-proguanil versus chloroquine-proguanil)
- ‘This study was planned and performed independently from the trial by other researchers and without knowledge of its results.’
- ‘Subjects were separately recruited and asked for consent during the initial screening visit of the trial.’

Risk of bias

Bias	Authors’ judgement	Support for judgement	
Random sequence generation (selection bias)	Low risk	“A computer-generated code was used to randomly assign a treatment number to the three bottles of study drug for every individual. At all sites consecutively enrolled individuals who satisfied all entry criteria received the next treatment number” (Høgh 2000)	
Allocation concealment (selection bias)	Low risk	“Treatment codes were provided to investigators in opaque sealed envelopes, to be opened only if knowledge of study drug assignment was required for management of a medical emergency” (Høgh 2000)	
Outcome Assessment	Risk Assessment	Risk Level	Comments
--------------------	----------------	------------	----------
Blinding of participants and personnel (performance bias)	Adverse effects/events	Unclear risk	“To mask differences between the dosing regimes, placebo tablets were used... All placebo treatment regimens were identical to the aforementioned scheme for the active ingredient of mefloquine and atovaquone plus chloroguanide” Comment: did not mention whether the placebo and intervention tablets were identical in appearance
Blinding of outcome assessment (detection bias)	All outcomes	Low risk	“The assessments were made by researchers who were unaware of the treatment allocation”
Incomplete outcome data (attrition bias); efficacy	Unclear risk	N/A	“We enrolled a total of 140 subjects in the cohort, 119 of whom completed the follow up” Comment: Those who did not complete follow up were not included in the subsequent statistical analysis. The proportion of participants who did not complete the study due to adverse outcomes varied significantly between groups (67% mefloquine and 33% atovaquone plus chloroguanide)
Incomplete outcome data (attrition bias); safety	High risk	“Data were collected on concurrent medications, as well as subject’s use of coffee, alcohol and illicit drugs” “stratification for sex and adjustment for potential confounders such as smoking and the use of coffee and tea did not affect the result” Comment: these data were not presented	
Selective reporting (reporting bias); efficacy	Unclear risk	N/A	
Selective reporting (reporting bias); safety	Low risk	“Data were collected on concurrent medications, as well as subject’s use of coffee, alcohol and illicit drugs” “stratification for sex and adjustment for potential confounders such as smoking and the use of coffee and tea did not affect the result” Comment: these data were not presented	
Other bias	Low risk	Funding: “For this study came from the Inspectorate for Health Care. Glaxo Wellcome kindly provided us with the treatment allocation codes after completion of the study. No financial support, however, was received from any pharmaceutical company”	
Methods

Design: RCT
Study dates: not mentioned
Malaria transmission pattern and local antimalarial drug resistance: not applicable
Adverse event monitoring: "After each driving test, subjects [described] the presence and severity of adverse effects - drowsiness, weakness, headache, fatigue, nervousness, nausea, dizziness and memory disturbance"

Participants

Number enrolled: 42
Inclusion criteria: "...[volunteers] were medically screened by routine blood chemistry and haematology tests, a physical examination including an 12-lead ECG recording, and urine tests for pregnancy and drugs of abuse"
Exclusion criteria: "...clinically relevant abnormalities in any blood test; far-field, binocular visual acuity that deviated by more than 0.65 dioptres from normal, corrected or uncorrected; known hypersensitivity to any drug; history of any serious gastrointestinal, hepatic, renal neurologic or psychiatric disorder; evidence of drug or alcohol abuse, excessive alcohol or nicotine use; blood donation or participation in a drug trial within the prior 2 months; and for premenopausal females, pregnancy, lactation or failure to exercise reliable birth control"
Country of recruitment: Netherlands
Country of malaria exposure: not applicable
Duration of follow up: 30 days
Type of participants: non-exposed Dutch nationals

Interventions

| 1. Mefloquine (1 x 250 mg tablet) weekly, with loading dose of one tablet daily for 3 days in week 1 |
| 2. Placebo (1 tablet) weekly, with identical loading regimen of placebo tablets |

Outcomes

| 1. Adverse events; any, nausea, diarrhoea, headache, dizziness |
| 2. Adverse events; other (fatigue) |
| 3. Discontinuations of study drug due to adverse effects |
| 4. Adverse events; other outcome measures (critical flicker/fusion frequency, critical instability tracking test, standardized stabilimetry method of the International Society of Posturography, tests of driving performance) |

Notes

| Funding sources: "The study was sponsored by F. Hoffmann-La Roche Ltd" |

Risk of bias

Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	"The study followed a randomised, 2-arm, double-blind, parallel group design" Comment: method of sequence generation not described
Allocation concealment (selection bias)	Unclear risk	"The study followed a randomised, 2-arm, double-blind, parallel group design" Comment: method of allocation concealment not described
Vuurman 1996 (Continued)

Bias Type	Risk	Comment
Blinding of participants and personnel	Low risk	"They received mefloquine 250 mg or placebo in identically appearing tablets"
(performance bias) Adverse effects/events		
Blinding of outcome assessment (detection	Unclear risk	Comment: described as double blind but no description of how this was achieved for researchers and outcome assessors
bias) All outcomes		
Incomplete outcome data (attrition bias);	Unclear risk	N/A
efficacy		
Incomplete outcome data (attrition bias);	Low risk	Comment: dropouts were reported. 2/20 participants dropped out of the mefloquine group, one due to adverse effects related to the study drug
safety		
Selective reporting (reporting bias); efficacy	Unclear risk	N/A
Selective reporting (reporting bias); safety	High risk	"...subjects used 10 cm visual-analogue scales to describe their mood in three dimensions - 'Alertness', 'Contentedness', and 'Calmness'”
Other bias	High risk	“The study was sponsored by F. Hoffmann-La Roche Ltd”

Waner 1999

Methods	Design: cross-sectional cohort study
Study dates	April to May 1996
Malaria transmission pattern and local	“a high risk Malaria area... Chloroquine-resistant
antimalarial drug resistance	*P. falciparum* malaria*
Adverse event monitoring	"In-flight self administered questionnaires were distributed and completed by travelers on flights returning to Johannesburg International Airport"

Participants	Number enrolled: 4035 questionnaires distributed, 3051 returned
Inclusion criteria	All travelers boarding the only commercial airline serving this area during April and May 1996 were included in the survey
Exclusion criteria	None mentioned
Country of recruitment	South Africa
Country of malaria exposure	South Africa
Duration of exposure to malaria	various, not specified
Type of participants	travellers
Interventions

Included in review comparisons:
1. Mefloquine*
2. Doxycycline*
3. Chloroquine*

Not included in review comparisons:
4. Chloroquine-proguanil*
5. Proguanil*

* dosing regimen not specified

Outcomes

Included in review comparisons:
1. Adverse effects; any

Outcomes assessed not included in the review:
2. Sources of information on malaria prior to visit,
3. Use of personal protective measures against mosquitoes,
4. Measures of adherence to the drug regimen (information provided on aggregate),
5. Travellers knowledge of malaria symptoms

Notes

- Funding sources: not mentioned

Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	**1. Confounding: moderate**
Sex of travellers was not provided by prophylactic regimen. Destination of travel was set by the study design. BMI of travellers and duration of travel were not recorded

2. Selection of participants into the study: serious
Response rate 3051/4035 (75%)

3. Measurement of interventions: low
Travellers were asked to self-report which prophylactic regimen they were taking while still using the drug

4. Departures from intended interventions: moderate
No discontinuations or switches were reported. This information was not included in the questionnaire

5. Missing data: low
Outcome data were available for 973/978 mefloquine recipients and 80/80 doxycycline recipients

6. Measurement of outcomes: serious
Comment: the outcome measure was subjective; participants and personnel were not blinded

7. Selection of the reported results: moderate
Insufficient information provided on how data on adverse effects were obtained to determine whether all outcomes were reported

8. Other: no information
No information was provided regarding the study sponsor.
Weiss 1995

Methods

Design: RCT
Study dates: April to July 1993
Malaria transmission pattern and local antimalarial drug resistance: “Incidence of new cases of falciparum malaria during the rainy seasons has been measured at 90% in adults. *P. falciparum* accounts for > 95% of all malaria in Saradidi”
Adverse event monitoring: “Each subject was visited daily at home by an assigned field worker, who asked about symptoms of malaria or drug side effects, obtained malaria smears, or administered drug doses if the subject was not at school”

Participants

Number enrolled: 169
Inclusion criteria: aged 9 to 14 years. “Screening consisted of a physical examination, a urine pregnancy test for girls, and blood tests for complete blood cell count; blood urea nitrogen, serum alanine aminotransferase, and glucose-6 phosphate dehydrogenase (G6PD) levels; and hemoglobin electrophoresis”
Exclusion criteria: none mentioned
Country of recruitment: Saradidi Rural Health Project, Nyanza province, Kenya on the shores of Lake Victoria
Country of malaria exposure: Saradidi Rural Health Project, Nyanza province, Kenya on the shores of Lake Victoria
Duration of exposure to malaria: study duration 4 months
Type of participants: Kenyan residents, semi-immune

Interventions

1. Mefloquine (1 x 125 mg tablet) weekly, with a second dose given on the third day of the study, equal to their usual weekly medication
2. Doxycycline (1 x 50 mg tablet) daily
3. Primaquine
4. Multivitamin (1 x tablet containing vitamin A, 2500 IU, thiamine, 1 mg, riboflavin, 0.5 mg, nicotinamide, 7.5 mg, ascorbic acid, 15 mg, vitamin 0 3, 250 IU) daily
Co-interventions: After baseline malaria smears, all subjects received curative therapy for preexisting malaria: 7 days of quinine bisulfate, 300 mg three times daily, and doxycycline, 50 mg twice daily. The first dose of prophylactic drug was given starting the day after curative therapy finished

Outcomes

Included in the review:
1. Clinical cases of malaria
2. Episodes of parasitaemia
3. Discontinuations of study drug due to adverse effects
Outcomes assessed not included in the review:
4. Laboratory tests; complete blood cell counts, blood urea nitrogen and serum alanine aminotransferase
5. Mean number of symptoms reported per subject: nausea, abdominal pain, diarrhoea, headache, fever

Notes

Funding sources: Financial support: USA Naval Medical Research and Development Command (work unit no. 623002A.81 0.00 J0 LHFX. J433). Kenya Medical Research Institute. USA Army Medical Research and Materiel Command Provisional (contract no. DAMDI7-92-V-20J2)

Risk of bias
Bias	Authors' judgement	Support for judgement
Random sequence generation (selection bias)	Unclear risk	“Students from each village school were separately randomized, to control for geographic variation in malaria transmission”
Comment: no description of how randomization was performed		
Allocation concealment (selection bias)	Unclear risk	“All medications were in brown envelopes and were administered 7 days each week by a field worker at each school”
Comment: no mention of whether envelopes were sealed or if field workers had access to their content		
Blinding of participants and personnel	Unclear risk	Comment: no mention of whether participants were blinded
(performance bias)		
Adverse effects/events		
Blinding of outcome assessment (detection	Low risk	“None of the malaria slide readers knew which drugs the subjects were taking. None of the field workers visiting the homes daily to ask about symptoms or clinical staff evaluating and treating subjects at the Saradidi Clinic knew which drugs the subjects were taking. If there was concern about a drug side effect, the clinical staff would consult the medical monitor, who would break the code for that subject. This occurred only four times during the studies”
bias)		
All outcomes		
Incomplete outcome data (attrition bias)	Unclear risk	N/A
efficacy		
Incomplete outcome data (attrition bias)	Unclear risk	Comment: number included in the safety analysis not reported
safety		
Selective reporting (reporting bias); efficacy	Unclear risk	N/A
Safety		
Selective reporting (reporting bias); safety	Unclear risk	Comment: mean number of symptoms reported per subject during 11 weeks of the study were reported. A targeted list of symptoms was reported, with everything else included in ‘all other’. It was unclear what this list included
Other bias	Low risk	Financial support: USA Naval Medical Research and Development Command (work unit no. 623002A.81 0.00 J0 I.HFX.
Wells 2006

| Methods | Design: retrospective cohort study
| | Study dates: January 2002 to December 31 2002
| | Malaria transmission pattern and local antimalarial drug resistance: various, not specified
| | Adverse event monitoring: “The study cohort was electronically linked to the Standardized Inpatient Data Record (SIDR) and the Health Care Service Record (HCSR) to identify hospitalization... We analyzed any-cause hospitalization (excluding complications of pregnancy, childbirth, and the puerperium, congenital anomalies, and certain conditions originating in the perinatal period)” |
| Participants | Number enrolled: 397442
| | Inclusion criteria: “All active-duty US service members during the period January 1, 2002, and December 31, 2002, as reported by the Defense Manpower Data Center (DMDC), Monterey, CA. The mefloquine prescribed group was defined as service members who had been prescribed a minimum of seven mefloquine tablets beginning in 2002 and who were identified as having been deployed at some point during the same time period. We used two reference groups. The first reference group was comprised of service members who had duty zip codes for either Europe or Japan at some time during 2002 and had no evidence of having been deployed from October 1, 2001 through the individual’s period of observation... The second reference group consisted of US service members who were identified as having been deployed for a minimum of 1 month during 2002”
| | Exclusion criteria: “Both reference groups were restricted to individuals who had no evidence of having received a prescription for mefloquine or chloroquine or a doxycycline prescription for more than 14 tablets.’ ‘Individuals who could not be followed a minimum of 2 months were excluded from the study”
| | Country of recruitment: USA
| | Country of malaria exposure: various, not specified
| | Duration of exposure to malaria: various, not specified
| | Type of participants: military
| Interventions | 1. Mefloquine*
| | 2. Non-users of antimalarials
| | *dosing regimen not specified
| Outcomes | Included in the review:
| | 1. Adverse events; serious (any hospitalization, hospitalizations due to vertiginous syndromes, migraine, dizziness and giddiness, anxiety disorders, somatoform disorders, mood disorders, PTSD, substance use disorders, personality disorders, nystagmus or adjustment reaction)
| | Outcomes assessed not included in the review:
| | 2. Hospitalizations coded according to classification system: infectious/parasitic, neoplasms, endocrine, nutritional, metabolic, blood and blood-forming organs, mental disorders, nervous system, circulatory system, respiratory system, digestive system, genitourinary system, skin and subcutaneous tissues, musculoskeletal and connective tissue, ill-defined conditions, injury and poisoning
| Notes | Funding sources: “This represents report 05-05, supported by the Department of Defense, under work unit no. 60002” |
Risk of bias

Bias	Authors’ judgement	Support for judgement
Other bias	Unclear risk	1. **Counfounding: moderate**
BMI, destination and duration of travel have not been recorded
2. **Selection of participants into the study: serious**
“Follow-up time began on return from deployment for mefloquine-prescribed members, and for the deployed reference group, on assignment to Europe or Japan, or January 1, 2002, whichever occurred last for the Europe/Japan reference group”
Start of follow up began a long time after start of intervention
3. **Measurement of interventions: serious**
Surrogate measure used for mefloquine exposure. There was a possibility that some participants in the second deployed reference group took mefloquine
4. **Departures from intended interventions: moderate**
“Both reference groups were restricted to individuals who had no evidence of having received a prescription for mefloquine or chloroquine or a doxycycline prescription for more than 14 tablets”
5. **Missing data: moderate**
“Individuals who could not be followed a minimum of 2 months were excluded from the study”
Comment: number of participants in this group not reported
6. **Measurement of outcomes: low**
The outcome measure (hospitalizations) was objective
7. **Selection of the reported results: low**
All prespecified outcomes were reported
8. **Other: low**
Government funding |
| Reference | Description |
|--------------------|--|
| Angelin 2014 | No relevant outcomes reported |
| Anonymous 1991 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Anonymous 1998 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Anonymous 1998a | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Anonymous 2005 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Anonymous 2009 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Artaso 2004 | Not a randomized or cohort study e.g. case report or case control study |
| Arthur 1990a | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Banerjee 2001 | No relevant outcomes reported |
| Barbero Gonzalez 2003 | No relevant outcomes reported |
| Barrett 1996 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
| Berger 1998 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Berman 2004 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Bernado 1994 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Bijker 2014 | This trial evaluated chemoprophylaxis plus sporozoite immunization |
| Bjorkman 1991 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Black 2007 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Blanke 2003 | Cohort study. Reported on efficacy but no other relevant outcomes |
| Botella de Maglia 1999 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Bourgeade 1990 | Not a randomized or cohort study e.g. case report or case control study |
| Brenier-Pinchart 2000 | Not a randomized or cohort study e.g. case report or case control study |
| Brisson 2012 | No relevant outcomes reported |
| Bruguera 2007 | Not a randomized or cohort study e.g. case report or case control study |
| Reference | Description |
|-----------|-------------|
| Burke 1993 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Caillon 1992 | Not a randomized or cohort study e.g. case report or case control study |
| Carme 1997 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
| Castot 1988 | Not a randomized or cohort study e.g. case report or case control study |
| Cave 2003 | No relevant outcomes reported |
| Charles 2007 | No relevant outcomes reported |
| Chin 2016 | No relevant outcomes reported |
| Clifford 2009 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Clift 1996 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Clyde 1976 | Single-arm cohort study |
| Cobelens 1997 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Cohen 1997 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Conget 1993 | Not a randomized or cohort study e.g. case report or case control study |
| Conrad 1997 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Corbett 1996 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
| Coulaud 1986 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Croft 1996 | Not a randomized or cohort study e.g. case report or case control study |
| Croft 1997 | RCT. Compared mefloquine with a regimen that is no longer used routinely |
| Del Cacho 2001 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
| Dia 2010 | No relevant outcomes reported |
| Durrheim 1999 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
| Eamsila 1993 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
| El Jaoudi 2010 | Single-arm cohort study |
| Study | Description |
|---------------|---|
| Fernando 2016 | No relevant outcomes reported |
| Fujii 2007 | Single arm cohort study |
| Hamer 2008 | No relevant outcomes reported |
| Hellgren 1990 | No relevant outcomes reported |
| Hopperus 1996 | Single arm cohort study |
| Jaspers 1996 | Single arm cohort study |
| Jensen 1998 | Not a randomized or cohort study e.g. case report or case control study |
| Karbwang 1991 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose) |
| Karbwang 1991a| Mefloquine was used as a combination regimen with sulphadoxine and pyrimethamine |
| Khaliq 2001 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Kimura 2006 | No relevant outcomes reported |
| Kirchener 2003| No relevant outcomes reported |
| Kirchener 2005| Cohort study. Allocation to study drug was based on the occurrence of adverse effects |
| Kok 1997 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Kollaritsch 2000 | Single arm cohort study |
| Kozarsky 1993 | Single arm cohort study |
| Landry 2006 | Single arm cohort study |
| Lapiere 1983 | Single arm cohort study |
| Lim 2005 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Lobel 1993 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely. Chloroquine users were not clearly separated from users of chloroquine-proguanil |
| Looareesuwan 1987 | No relevant outcomes reported |
| MacArthur 2002| Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
Malvy 2006 | Cohort study. Reported on efficacy but no other relevant outcomes
Marcy 1996 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial
Massey 2007 | No relevant outcomes reported
Matsumura 2005 | Single arm cohort study
Meszaros 1996 | Not a randomized or cohort study e.g. case report or case control study
Michel 2007 | Cohort study. Reported on efficacy but no other relevant outcomes
Mimica 1983 | No relevant outcomes reported
Mizuno 2006 | Single arm cohort study
Mizuno 2010 | Single arm cohort study
Moon 2011 | No relevant outcomes reported
Morales de Naime 1989 | No relevant outcomes reported
Munawar 2012 | Single arm cohort study
Molle 2000 | Cohort selected on basis of adverse events
Namikawa 2008 | No relevant outcomes reported
Nasveld 2010 | RCT. Compared mefloquine with a regimen which is not used routinely
Nevin 2010 | No relevant outcomes reported
Nevin 2012 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial
Nosten 1990 | RCT. Did not include a comparator; compared alternate mefloquine doses
Nosten 1999 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose)
Nwokolo 2001 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely
Olanrewaju 2000 | Single arm cohort study
Ollivier 2004 | Single arm cohort study
Peetermans 2001 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely
| Reference | Study Type | Summary |
|--------------------|------------|---|
| Peragallo 1999 | Cohort study | Compared mefloquine with a regimen that is no longer used routinely |
| Peragallo 2002 | Single arm cohort study | |
| Peragallo 2014 | Single arm cohort study | |
| Philips 1994 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial | |
| Phillips 1996 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial | |
| Phillips-Howard 1998 | Cohort study | Compared mefloquine with a regimen that is no longer used routinely |
| Pistone 2007 | No relevant outcomes reported | |
| Port 2011 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose) |
| Potasman 2000 | Cohort selected on basis of adverse events | |
| Quinn 2016 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial | |
| Reisinger 1989 | RCT. Compared mefloquine with a regimen that is no longer used routinely | |
| Rieckmann 1974 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose) | |
| Rieke 1993 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial | |
| Ries 1993 | Not a randomized or cohort study e.g. case report or case control study | |
| Ringqvist 2015 | Cohort selected on basis of adverse events | |
| Rombo 1993 | RCT. Compared mefloquine with a regimen that is no longer used routinely | |
| Rønn 1998 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose) | |
| Sallent 1997 | No relevant outcomes reported | |
| Schlagenhauf 1996 | Single arm cohort study | |
| Scott 1993 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial | |
| Smail 1991 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial | |
| Smoak 1997 | Single arm cohort study | |
| Author | Study Type | Description |
|-------------------|--|--|
| Suriyamongkol 1991| Single arm cohort study | |
| Tansley 2010 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose) |
| ter Kuile 1993 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Todd 1997 | No relevant outcomes reported | |
| Turner 2014 | No relevant outcomes reported | |
| Valerio 2005 | No relevant outcomes reported | |
| Van Genderen 2007 | No participants received mefloquine prophylaxis | |
| Van Grootheest 1999| Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| van Riemsdijk 2004| Single arm cohort study | |
| Venturini 2011 | Single arm cohort study | |
| Wagner 1986 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Wallace 1996 | Field study in which troops switched extensively between mefloquine and doxycycline. Unable to attribute side effects to either prophylactic regimen |
| Weinke 1991 | Cohort selected on basis of adverse events | |
| White 2016 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Win 1985 | Mefloquine not used at a prophylactic dose (e.g. treatment dose or intermittent preventive treatment of malaria in pregnancy dose) |
| Winstanley 1999 | Not a research study of malaria prophylaxis e.g. letter to the editor or editorial |
| Wolters 1997 | Cohort study. Compared mefloquine with a regimen that is no longer used routinely |
DATA AND ANALYSES

Comparison 1. Mefloquine versus placebo/non users

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size		
1 Clinical cases of malaria	9	1908	Risk Ratio (M-H, Random, 95% CI)	0.09 [0.04, 0.19]		
2 Malaria; episodes of parasitaemia in semi-immune populations	5		Risk Ratio (M-H, Random, 95% CI)	Subtotals only		
2.1 Trials reporting number of participants with parasitaemia	3	414	Risk Ratio (M-H, Random, 95% CI)	0.18 [0.06, 0.55]		
2.2 Trials reporting number of episodes of parasitaemia	2	510	Risk Ratio (M-H, Random, 95% CI)	0.05 [0.00, 5.25]		
3 Serious adverse events or effects (all studies)	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
3.1 RCTs (adverse events)	6	1221	Risk Ratio (M-H, Fixed, 95% CI)	0.70 [0.14, 3.53]		
3.2 Cohort studies (adverse effects)	2	1167	Risk Ratio (M-H, Fixed, 95% CI)	3.08 [0.39, 24.11]		
4 Discontinuations due to adverse effects (all studies)	7	1130	Risk Ratio (M-H, Fixed, 95% CI)	1.64 [0.55, 4.88]		
4.1 RCTs (adverse effects)	7	1130	Risk Ratio (M-H, Fixed, 95% CI)	1.64 [0.55, 4.88]		
5 Nausea (all studies)	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
5.1 RCTs (adverse events)	2	244	Risk Ratio (M-H, Fixed, 95% CI)	1.35 [1.05, 1.73]		
5.2 Cohort studies (adverse events)	3	1901	Risk Ratio (M-H, Fixed, 95% CI)	1.85 [1.42, 2.43]		
6 Vomiting (all studies)	3		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
6.1 RCTs (adverse events)	1	202	Risk Ratio (M-H, Fixed, 95% CI)	0.77 [0.50, 1.19]		
6.2 Cohort studies (adverse events)	2	1167	Risk Ratio (M-H, Fixed, 95% CI)	0.74 [0.45, 1.21]		
7 Abdominal pain (all studies)	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
7.1 RCTs (adverse events)	3	550	Risk Ratio (M-H, Fixed, 95% CI)	1.09 [0.84, 1.40]		
7.2 Cohort studies (adverse events)	2	1167	Risk Ratio (M-H, Fixed, 95% CI)	0.97 [0.66, 1.42]		
8 Diarrhoea (all studies)	7		Risk Ratio (M-H, Random, 95% CI)	Subtotals only		
8.1 RCTs (adverse events)	4	589	Risk Ratio (M-H, Random, 95% CI)	0.72 [0.32, 1.62]		
8.2 Cohort studies (adverse events)	3	1901	Risk Ratio (M-H, Random, 95% CI)	1.25 [0.93, 1.68]		
9 Headache (all studies)	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
9.1 RCTs (adverse events)	5	791	Risk Ratio (M-H, Fixed, 95% CI)	0.84 [0.71, 0.99]		
9.2 Cohort studies (adverse events)	1	197	Risk Ratio (M-H, Fixed, 95% CI)	1.64 [0.63, 4.26]		
10 Dizziness (all studies)	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
10.1 RCTs (adverse events)	3	452	Risk Ratio (M-H, Fixed, 95% CI)	1.03 [0.90, 1.17]		
10.2 Cohort studies (adverse events)	3	1901	Risk Ratio (M-H, Fixed, 95% CI)	1.80 [1.29, 2.49]		
11 Abnormal dreams (all studies)	2		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only		
11.1 Cohort studies (adverse events)	2	931	Risk Ratio (M-H, Fixed, 95% CI)	2.35 [1.15, 4.80]		
Adverse Event	RCTs (all studies)	Cohort studies (all studies)	Cohort studies (adverse events)	Cochrane Collaboration (all studies)	Methodology	Subtotals only
---------------	--------------------	-----------------------------	--------------------------------	---------------------------------	------------	---------------
12 Insomnia (all studies)	2	Risk Ratio (M-H, Fixed, 95% CI)	1.46 [1.06, 2.02]	Subtotals only		
13 Anxiety (all studies)	2	Risk Ratio (M-H, Fixed, 95% CI)	1.21 [0.67, 2.21]	Subtotals only		
14 Depressed mood (all studies)	3	Risk Ratio (M-H, Random, 95% CI)	2.43 [0.65, 9.07]	Subtotals only		
15 Abnormal thoughts and perceptions	1	Risk Ratio (M-H, Fixed, 95% CI)	5.77 [0.79, 42.06]	Subtotals only		
16 Pruritis (all studies)	4	Risk Ratio (M-H, Fixed, 95% CI)	0.86 [0.60, 1.24]	Subtotals only		
17 Visual impairment (all studies)	2	Risk Ratio (M-H, Fixed, 95% CI)	0.98 [0.66, 1.46]	Subtotals only		
18 Vertigo (all studies)	1	Risk Ratio (M-H, Fixed, 95% CI)	1.02 [0.78, 1.34]	Subtotals only		
19 Other adverse events (RCTs)	4	Risk Ratio (M-H, Fixed, 95% CI)	0.50 [0.23, 1.10]	Subtotals only		
19.1 Arthralgia	1	Risk Ratio (M-H, Fixed, 95% CI)	0.29 [0.02, 5.48]	Subtotals only		
19.2 Back pain	1	Risk Ratio (M-H, Fixed, 95% CI)	0.10 [0.01, 1.61]	Subtotals only		
19.3 Blurred vision	1	Risk Ratio (M-H, Fixed, 95% CI)	0.19 [0.01, 3.89]	Subtotals only		
19.4 Cough	1	Risk Ratio (M-H, Fixed, 95% CI)	0.90 [0.71, 1.14]	Subtotals only		
19.5 Constipation	1	Risk Ratio (M-H, Fixed, 95% CI)	0.77 [0.53, 1.11]	Subtotals only		
19.6 Decreased appetite	1	Risk Ratio (M-H, Fixed, 95% CI)	1.10 [0.95, 1.28]	Subtotals only		
19.7 Fatigue	1	Risk Ratio (M-H, Fixed, 95% CI)	1.08 [0.82, 1.43]	Subtotals only		
19.8 Gastritis	1	Risk Ratio (M-H, Fixed, 95% CI)	0.91 [0.14, 5.86]	Subtotals only		
19.9 Myalgia	1	Risk Ratio (M-H, Fixed, 95% CI)	1.02 [0.10, 10.98]	Subtotals only		
19.10 Rash	1	Risk Ratio (M-H, Fixed, 95% CI)	1.53 [0.36, 6.57]	Subtotals only		
19.11 Tingling	1	Risk Ratio (M-H, Fixed, 95% CI)	0.29 [0.04, 2.30]	Subtotals only		
19.12 Respiratory tract infection	1	Risk Ratio (M-H, Fixed, 95% CI)	2.63 [1.04, 6.61]	Subtotals only		
19.13 Sore throat	1	Risk Ratio (M-H, Fixed, 95% CI)	0.82 [0.00, 82.00]	Subtotals only		
19.14 Unsteadiness	1	Risk Ratio (M-H, Fixed, 95% CI)	1.06 [0.74, 1.52]	Subtotals only		
19.15 Weakness	1	Risk Ratio (M-H, Fixed, 95% CI)	1.06 [0.96, 1.17]	Subtotals only		
20 Other adverse effects (cohort studies)	3	Risk Ratio (M-H, Fixed, 95% CI)	1.06 [0.61, 1.82]	Subtotals only		
20.1 Agitation	1	Risk Ratio (M-H, Fixed, 95% CI)	0.34 [0.04, 2.75]	Subtotals only		
20.2 Altered spatial perception	1	Risk Ratio (M-H, Fixed, 95% CI)	0.94 [0.57, 153.97]	Subtotals only		
20.3 Confusion	1	Risk Ratio (M-H, Fixed, 95% CI)	0.67 [0.25, 1.78]	Subtotals only		
20.4 Loss of appetite	1	Risk Ratio (M-H, Fixed, 95% CI)	0.90 [0.54, 1.50]	Subtotals only		
20.5 Mouth ulcers	1	Risk Ratio (M-H, Fixed, 95% CI)	1.00 [0.39, 2.56]	Subtotals only		
20.6 Palpitations	1	Risk Ratio (M-H, Fixed, 95% CI)	8.06 [0.44, 147.68]	Subtotals only		
20.7 Tingling	1	Risk Ratio (M-H, Fixed, 95% CI)	1.92 [0.59, 6.24]	Subtotals only		
Comparison 2. Mefloquine versus doxycycline

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Clinical cases of malaria (RCTs)	4	744	Risk Ratio (M-H, Fixed, 95% CI)	1.35 [0.35, 5.19]
2 Serious adverse events or effects (all studies)	6		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
2.1 RCTs (adverse events)	3	682	Risk Ratio (M-H, Random, 95% CI)	0.34 [0.01, 8.16]
2.2 Cohort studies (adverse effects)	3	3722	Risk Ratio (M-H, Random, 95% CI)	1.53 [0.23, 10.24]
3 Discontinuations due to adverse effects (all studies)	14		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
3.1 RCTs	4	763	Risk Ratio (M-H, Random, 95% CI)	1.08 [0.41, 2.87]
3.2 Cohort studies	10	10165	Risk Ratio (M-H, Random, 95% CI)	0.92 [0.54, 1.55]
4 Nausea (all studies)	7		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
4.1 Cohort studies (adverse effects)	5	2683	Risk Ratio (M-H, Fixed, 95% CI)	0.37 [0.30, 0.45]
4.2 RCTs (adverse events)	1	123	Risk Ratio (M-H, Fixed, 95% CI)	2.71 [0.75, 9.74]
4.3 Cohort studies (adverse events)	1	668	Risk Ratio (M-H, Fixed, 95% CI)	1.61 [1.06, 2.43]
5 Vomiting (all studies)	5		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 Cohort studies (adverse effects)	4	5071	Risk Ratio (M-H, Fixed, 95% CI)	0.18 [0.12, 0.27]
5.2 RCTs (adverse events)	1	123	Risk Ratio (M-H, Fixed, 95% CI)	2.03 [0.19, 21.84]
6 Abdominal pain (all studies)	6		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
6.1 Cohort studies (adverse effects)	4	2569	Risk Ratio (M-H, Random, 95% CI)	0.30 [0.09, 1.07]
6.2 RCTs (adverse events)	1	123	Risk Ratio (M-H, Random, 95% CI)	1.65 [0.74, 3.70]
6.3 Cohort studies (adverse events)	1	668	Risk Ratio (M-H, Random, 95% CI)	1.34 [0.83, 2.18]
7 Diarrhoea (all studies)	8		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
7.1 Cohort studies (adverse effects)	5	5104	Risk Ratio (M-H, Random, 95% CI)	0.28 [0.11, 0.73]
7.2 RCTs (adverse events)	2	376	Risk Ratio (M-H, Random, 95% CI)	1.01 [0.78, 1.29]
7.3 Cohort studies (adverse events)	1	668	Risk Ratio (M-H, Random, 95% CI)	3.58 [1.69, 7.59]
8 Dyspepsia (all studies)	5		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
8.1 Cohort studies (adverse effects)	5	5104	Risk Ratio (M-H, Random, 95% CI)	0.26 [0.09, 0.74]
9 Headache (all studies)	7		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
9.1 Cohort studies (adverse effects)	5	3322	Risk Ratio (M-H, Random, 95% CI)	1.21 [0.50, 2.92]
9.2 RCTs (adverse events)	1	123	Risk Ratio (M-H, Random, 95% CI)	2.31 [1.25, 4.27]
9.3 Cohort studies (adverse events)	1	668	Risk Ratio (M-H, Random, 95% CI)	2.45 [1.38, 4.34]
10 Dizziness (all studies)	8		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
10.1 Cohort studies (adverse effects)	5	2633	Risk Ratio (M-H, Random, 95% CI)	3.49 [0.88, 13.75]
10.2 RCTs (adverse events)	1	123	Risk Ratio (M-H, Random, 95% CI)	3.05 [1.30, 7.16]
10.3 Cohort studies (adverse events)	668	Risk Ratio (M-H, Random, 95% CI)	2.40 [1.47, 3.90]	
10.4 Retrospective healthcare record analysis (adverse events)	354959	Risk Ratio (M-H, Random, 95% CI)	0.68 [0.62, 0.73]	
11 Abnormal dreams (all studies)	2588	Risk Ratio (M-H, Random, 95% CI)	4.33 [2.08, 9.00]	
11.1 Cohort studies (adverse effects)	6	Risk Ratio (M-H, Random, 95% CI)	Subtotals only	
11.2 RCTs (adverse events)	123	Risk Ratio (M-H, Random, 95% CI)	1.02 [0.07, 15.89]	
11.3 Cohort studies (adverse events)	1668	Risk Ratio (M-H, Random, 95% CI)	10.49 [3.79, 29.10]	
12 Insomnia (all studies)	123	Risk Ratio (M-H, Random, 95% CI)	4.54 [2.09, 9.83]	
12.1 Cohort studies (adverse effects)	3212	Risk Ratio (M-H, Random, 95% CI)	4.14 [1.19, 14.44]	
12.2 RCTs (adverse events)	1668	Risk Ratio (M-H, Random, 95% CI)	0.46 [0.43, 0.49]	
12.3 Cohort studies (adverse events)	354959	Risk Ratio (M-H, Random, 95% CI)	Subtotals only	
12.4 Retrospective healthcare record analysis (adverse events)	0.46 [0.43, 0.49]			
13 Anxiety (all studies)	2559	Risk Ratio (M-H, Fixed, 95% CI)	18.04 [9.32, 34.93]	
13.1 Cohort studies (adverse effects)	6	Risk Ratio (M-H, Fixed, 95% CI)	8.74 [1.99, 38.40]	
13.2 Cohort studies (adverse effects)	1668	Risk Ratio (M-H, Fixed, 95% CI)	0.51 [0.47, 0.56]	
13.3 Retrospective healthcare record analysis (adverse events)	3212	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
14 Depressed mood (all studies)	2445	Risk Ratio (M-H, Fixed, 95% CI)	11.43 [5.21, 25.07]	
14.1 Cohort studies (adverse effects)	1668	Risk Ratio (M-H, Fixed, 95% CI)	6.27 [1.82, 21.62]	
14.2 Cohort studies (adverse events)	376024	Risk Ratio (M-H, Fixed, 95% CI)	0.55 [0.51, 0.60]	
15 Abnormal thoughts and perceptions	2445	Risk Ratio (M-H, Fixed, 95% CI)	2.69 [0.93, 7.78]	
15.1 Cohort studies (adverse effects)	376024	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
15.2 Retrospective healthcare record analyses (adverse events)	0.41 [0.26, 0.66]			
16 Pruritis (all studies)	1794	Risk Ratio (M-H, Fixed, 95% CI)	0.52 [0.30, 0.91]	
16.1 Cohort studies (adverse effects)	1668	Risk Ratio (M-H, Fixed, 95% CI)	2.69 [0.93, 7.78]	
16.2 Cohort studies (adverse events)	376024	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
17 Photosensitivity (all studies)	1875	Risk Ratio (M-H, Fixed, 95% CI)	0.08 [0.05, 0.11]	
17.1 Cohort studies (adverse effects)	1794	Risk Ratio (M-H, Fixed, 95% CI)	0.03 [0.00, 0.49]	
17.2 Cohort studies (adverse events)	1668	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
18 Yeast infection (all studies)	1761	Risk Ratio (M-H, Fixed, 95% CI)	0.10 [0.06, 0.16]	
Section	N	Study Details	Risk Ratio (M-H, Fixed, 95% CI)	
--	----	---	---------------------------------	
18.2 Cohort studies (adverse events)	1	354	0.19 [0.06, 0.63]	
19 Visual impairment (all studies)	2			
19.1 Cohort studies (adverse effects)	2	1875	2.37 [1.41, 3.99]	
20 Other adverse effects (cohort studies)	6			
20.1 Alopecia	2	1875	3.44 [1.96, 6.03]	
20.2 Asthenia	1	1761	1.83 [0.89, 3.76]	
20.3 Balance disorder	1	1761	2.87 [1.48, 5.59]	
20.4 Decreased appetite	1	734	1.23 [0.42, 3.64]	
20.5 Fatigue	2	74	0.23 [0.03, 1.77]	
20.6 Hypoaesthesia	2	2445	11.48 [3.01, 43.70]	
20.7 Malaise	1	734	0.28 [0.11, 0.71]	
20.8 Mouth ulcers	1	33	0.5 [0.02, 11.42]	
20.9 Palpitations	1	1761	2.76 [0.16, 48.91]	
20.10 Tinnitus	1	684	7.20 [0.39, 133.30]	
21 Other adverse events (RCTs)	1			
21.1 Constipation	1	123	2.03 [0.19, 21.84]	
21.2 Cough	1	123	0.53 [0.28, 1.01]	
21.3 Decreased appetite	1	123	3.56 [1.24, 10.20]	
21.4 Malaise	1	123	2.03 [0.88, 4.69]	
21.5 Palpitations	1	123	2.03 [0.19, 21.84]	
21.6 Pyrexia	1	123	2.85 [1.09, 7.42]	
21.7 Sexual dysfunction	1	123	3.05 [0.33, 28.51]	
21.8 Somnolence	1	123	2.03 [0.19, 21.84]	
22 Other adverse events (cohort studies)	3			
22.1 Adjustment disorder	1	354959	0.43 [0.40, 0.45]	
22.2 Confusion	1	354959	2.18 [0.24, 19.49]	
22.3 Convulsions	1	354959	0.58 [0.45, 0.75]	
22.4 Hallucinations	1	354959	0.18 [0.08, 0.45]	
22.5 Paranoia	1	354959	0.40 [0.10, 1.63]	
22.6 Palpitations	1	668	13.44 [1.73, 104.38]	
22.7 Panic attacks	1	21065	4.16 [0.55, 31.49]	
22.8 PTSD	1	354959	0.58 [0.53, 0.64]	
22.9 Rash	1	668	1.21 [0.50, 2.94]	
22.10 Suicidal ideation	1	354959	0.38 [0.31, 0.47]	
22.11 Suicide	2	376024	1.21 [0.82, 4.56]	
22.12 Tinnitus	1	354959	0.65 [0.61, 0.71]	
23 Adherence (cohort studies)	14			
23.1 Adherence during travel	13	15583	1.15 [1.12, 1.18]	
23.2 Adherence in the post-travel period	4	840	1.08 [0.95, 1.22]	
Comparison 3. Mefloquine versus atovaquone-proguanil

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Clinical cases of malaria (RCTs)	2	1293	Odds Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]
2 Serious adverse events or effects (all studies)	3	3591	Risk Ratio (M-H, Fixed, 95% CI)	1.40 [0.08, 23.22]
2.1 Cohort studies				
3 Discontinuations due to adverse effects (all studies)	12	3591	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 RCTs	3	1438	Risk Ratio (M-H, Random, 95% CI)	2.86 [1.53, 5.31]
3.2 Cohort studies	9	7785	Risk Ratio (M-H, Random, 95% CI)	Subtotals only
4 Nausea (all studies)	8	976	Risk Ratio (M-H, Fixed, 95% CI)	0.90 [0.52, 1.56]
4.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	2.72 [1.52, 4.86]
4.2 Cohort studies (adverse effects)	7	3509	Risk Ratio (M-H, Fixed, 95% CI)	2.50 [1.54, 4.06]
5 Vomiting (all studies)	4		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Random, 95% CI)	1.31 [0.49, 3.50]
5.2 Cohort studies (adverse effects)	3	2180	Risk Ratio (M-H, Random, 95% CI)	0.57 [0.08, 4.09]
6 Abdominal pain (all studies)	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
6.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	0.64 [0.38, 1.07]
6.2 Cohort studies (adverse effects)	7	3509	Risk Ratio (M-H, Fixed, 95% CI)	0.64 [0.38, 1.07]
7 Diarrhoea (all studies)	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
7.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	0.94 [0.60, 1.47]
7.2 Cohort studies (adverse effects)	7	3509	Risk Ratio (M-H, Fixed, 95% CI)	0.85 [0.53, 1.35]
8 Mouth ulcers (all studies)	3		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
8.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	1.45 [0.70, 3.00]
8.2 Cohort studies (adverse effects)	2	783	Risk Ratio (M-H, Fixed, 95% CI)	0.12 [0.04, 0.37]
9 Headache (all studies)	9		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
9.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	1.72 [0.99, 2.99]
9.2 Cohort studies (adverse effects)	8	4163	Risk Ratio (M-H, Fixed, 95% CI)	3.42 [1.71, 6.82]
10 Dizziness (all studies)	10		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
10.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	3.99 [2.08, 7.64]
10.2 Cohort studies (adverse effects)	8	3986	Risk Ratio (M-H, Fixed, 95% CI)	3.83 [2.23, 6.58]
10.3 Retrospective healthcare record analysis (adverse events)	1	49419	Risk Ratio (M-H, Fixed, 95% CI)	1.23 [1.04, 1.46]
11 Abnormal dreams (all studies)	8		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
11.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Random, 95% CI)	2.04 [1.37, 3.04]
11.2 Cohort studies (adverse effects)	7	3848	Risk Ratio (M-H, Random, 95% CI)	6.81 [2.16, 28.15]
12 Insomnia (all studies)	10		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
12.1 RCTs (adverse effects)	1	976	Risk Ratio (M-H, Fixed, 95% CI)	4.42 [2.56, 7.64]
12.2 Cohort studies (adverse effects)	8	3986	Risk Ratio (M-H, Fixed, 95% CI)	7.29 [4.37, 12.16]
Topic	Total	Risk Ratio (M-H, Fixed, 95% CI)	Reference	
--	---------	---------------------------------	---	
12.3 Retrospective healthcare record analysis (adverse events)	1	4,9419 Risk Ratio (M-H, Fixed, 95% CI) 1.24 [1.06, 1.44]	Subtotals only	
13 Anxiety (all studies)	6		Risk Ratio (M-H, Fixed, 95% CI) Subtotals only	
13.1 RCTs (adverse effects)	1	976 Risk Ratio (M-H, Fixed, 95% CI) 6.12[1.82, 20.66]	Subtotals only	
13.2 Cohort studies (adverse effects)	4	2,664 Risk Ratio (M-H, Fixed, 95% CI) 10.10 [3.48, 29.32]	Subtotals only	
13.3 Retrospective healthcare record analysis (adverse events)	1	4,9419 Risk Ratio (M-H, Fixed, 95% CI) 1.54 [1.28, 1.85]	Subtotals only	
14 Depressed mood (all studies)	8		Risk Ratio (M-H, Fixed, 95% CI) Subtotals only	
14.1 RCTs (adverse effects)	1	976 Risk Ratio (M-H, Fixed, 95% CI) 5.78 [1.71, 19.61]	Subtotals only	
14.2 Cohort studies (adverse effects)	6	3,624 Risk Ratio (M-H, Fixed, 95% CI) 8.02 [3.56, 18.07]	Subtotals only	
14.3 Retrospective healthcare record analysis (adverse events)	1	4,9419 Risk Ratio (M-H, Fixed, 95% CI) 1.93 [1.56, 2.38]	Subtotals only	
15 Abnormal thoughts and perceptions (all studies)	4		Risk Ratio (M-H, Fixed, 95% CI) Subtotals only	
15.1 Cohort studies (adverse effects)	3	2,433 Risk Ratio (M-H, Fixed, 95% CI) 1.50 [0.30, 7.42]	Subtotals only	
15.2 Retrospective healthcare record analysis (adverse effects)	1	4,9419 Risk Ratio (M-H, Fixed, 95% CI) 3.00 [0.69, 12.97]	Subtotals only	
16 Pruritis (all studies)	4		Risk Ratio (M-H, Fixed, 95% CI) Subtotals only	
16.1 RCTs (adverse effects)	1	976 Risk Ratio (M-H, Fixed, 95% CI) 1.28 [0.60, 2.70]	Subtotals only	
16.2 Cohort studies (adverse effects)	3	1,824 Risk Ratio (M-H, Fixed, 95% CI) 2.07 [0.40, 10.68]	Subtotals only	
17 Visual impairment (all studies)	3		Risk Ratio (M-H, Fixed, 95% CI) Subtotals only	
17.1 RCTs (adverse effects)	1	976 Risk Ratio (M-H, Fixed, 95% CI) 2.04 [0.88, 4.73]	Subtotals only	
17.2 Cohort studies (adverse effects)	2	1,956 Risk Ratio (M-H, Fixed, 95% CI) 1.17 [0.29, 4.72]	Subtotals only	
18 Other adverse effects (cohort studies)	8		Risk Ratio (M-H, Fixed, 95% CI) Subtotals only	
18.1 Allergic reaction	1	316 Risk Ratio (M-H, Fixed, 95% CI) 0.79 [0.04, 14.48]	Subtotals only	
18.2 Alopecia	1	1,469 Risk Ratio (M-H, Fixed, 95% CI) 4.55 [0.30, 70.01]	Subtotals only	
18.3 Asthenia	2	1,956 Risk Ratio (M-H, Fixed, 95% CI) 1.84 [0.26, 13.12]	Subtotals only	
18.4 Balance disorder	1	1,469 Risk Ratio (M-H, Fixed, 95% CI) 2.86 [0.19, 44.19]	Subtotals only	
18.5 Cough	1	652 Risk Ratio (M-H, Fixed, 95% CI) 0.49 [0.08, 2.92]	Subtotals only	
18.6 Disturbance in attention	3	1,363 Risk Ratio (M-H, Fixed, 95% CI) 4.45 [1.84, 10.77]	Subtotals only	
18.7 Dyspepsia	2	362 Risk Ratio (M-H, Fixed, 95% CI) 0.50 [0.17, 1.46]	Subtotals only	
18.8 Fatigue	2	618 Risk Ratio (M-H, Fixed, 95% CI) 4.62 [0.47, 45.56]	Subtotals only	
18.9 Hypoaesthesia	2	1,946 Risk Ratio (M-H, Fixed, 95% CI) 4.45 [0.93, 21.26]	Subtotals only	
18.10 Loss of appetite	1	652 Risk Ratio (M-H, Fixed, 95% CI) 0.69 [0.33, 1.43]	Subtotals only	
18.11 Muscle pain	1	652 Risk Ratio (M-H, Fixed, 95% CI) 7.57 [0.45, 127.80]	Subtotals only	
18.12 Palpitations	3	2,180 Risk Ratio (M-H, Fixed, 95% CI) 3.34 [0.73, 15.26]	Subtotals only	
18.13 Photosensitization	2	718 Risk Ratio (M-H, Fixed, 95% CI) 0.69 [0.10, 4.92]	Subtotals only	
18.14 Pyrexia	1	652 Risk Ratio (M-H, Fixed, 95% CI) 4.28 [0.24, 75.57]	Subtotals only	
18.15 Rash	2	711 Risk Ratio (M-H, Fixed, 95% CI) 0.96 [0.15, 6.09]	Subtotals only	
18.16 Restlessness	1	487 Risk Ratio (M-H, Fixed, 95% CI) 5.24 [0.32, 84.52]	Subtotals only	
18.17 Slight illness	1	487 Risk Ratio (M-H, Fixed, 95% CI) 5.83 [0.36, 93.84]	Subtotals only	
18.18 Somnolence	1	487 Risk Ratio (M-H, Fixed, 95% CI) 1.55 [0.21, 11.40]	Subtotals only	
18.19 Tinnitus	1	477 Risk Ratio (M-H, Fixed, 95% CI) 2.31 [0.13, 42.64]	Subtotals only	
18.20 Circulatory disorders	1	224 Risk Ratio (M-H, Fixed, 95% CI) 6.38 [0.36, 114.01]	Subtotals only	

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Comparison 4. Mefloquine versus chloroquine

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Clinical cases of malaria (RCTs)	4	877	Risk Ratio (M-H, Fixed, 95% CI)	0.38 [0.28, 0.52]
2 Serious adverse events or effects (all studies)	10		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
2.1 RCTs	4	1000	Risk Ratio (M-H, Fixed, 95% CI)	2.77 [0.32, 23.85]
2.2 Cohort studies	6	79257	Risk Ratio (M-H, Fixed, 95% CI)	1.14 [0.62, 2.07]
3 Discontinuations due to adverse effects (all studies)	11		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
3.1 RCTs	3	815	Risk Ratio (M-H, Fixed, 95% CI)	1.60 [0.61, 4.18]
3.2 Cohort studies in short-term travellers	6	55397	Risk Ratio (M-H, Fixed, 95% CI)	0.99 [0.78, 1.26]
3.3 Cohort studies in longer term occupational travellers	2	6085	Risk Ratio (M-H, Fixed, 95% CI)	2.97 [2.41, 3.66]
4 Nausea (all studies)	7		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
4.1 Cohort studies (adverse effects)	6	58984	Risk Ratio (M-H, Random, 95% CI)	1.23 [0.89, 1.68]
4.2 RCTs (adverse events)	1	359	Risk Ratio (M-H, Random, 95% CI)	1.01 [0.57, 1.79]
5 Vomiting (all studies)	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
5.1 Cohort studies (adverse effects)	5	5577	Risk Ratio (M-H, Fixed, 95% CI)	1.05 [0.78, 1.40]
5.2 RCTs (adverse events)	1	359	Risk Ratio (M-H, Fixed, 95% CI)	1.12 [0.36, 3.49]
6 Abdominal pain (all studies)	6		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
6.1 Cohort studies (adverse effects)	4	5440	Risk Ratio (M-H, Fixed, 95% CI)	0.99 [0.80, 1.22]
6.2 RCTs (adverse events)	2	569	Risk Ratio (M-H, Fixed, 95% CI)	0.71 [0.37, 1.36]
7 Diarrhoea (all studies)	8		Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only
7.1 Cohort studies (adverse effects)	5	5577	Risk Ratio (M-H, Fixed, 95% CI)	0.84 [0.74, 0.95]
7.2 RCTs (adverse events)	3	772	Risk Ratio (M-H, Fixed, 95% CI)	0.83 [0.46, 1.50]
8 Headache (all studies)	**9**	**56998**	Risk Ratio (M-H, Random, 95% CI)	**Subtotals only**
8.1 Cohort studies (adverse effects)	6	56998	Risk Ratio (M-H, Random, 95% CI)	0.84 [0.53, 1.34]
8.2 RCTs (adverse events)	3	772	Risk Ratio (M-H, Random, 95% CI)	0.89 [0.61, 1.31]
9 Dizziness (all studies)	**7**	**58847**	Risk Ratio (M-H, Fixed, 95% CI)	**Subtotals only**
9.1 Cohort studies (adverse effects)	5	58847	Risk Ratio (M-H, Fixed, 95% CI)	1.51 [1.34, 1.70]
9.2 RCTs (adverse events)	2	569	Risk Ratio (M-H, Fixed, 95% CI)	0.72 [0.35, 1.46]
10 Abnormal dreams (all studies)	**5**	**2845**	Risk Ratio (M-H, Fixed, 95% CI)	**Subtotals only**
10.1 Cohort studies (adverse effects)	4	2845	Risk Ratio (M-H, Fixed, 95% CI)	1.21 [1.10, 1.33]
10.2 RCTs (adverse events)	1	359	Risk Ratio (M-H, Fixed, 95% CI)	2.70 [1.05, 6.95]
11 Insomnia (all studies)	**6**	**56952**	Risk Ratio (M-H, Random, 95% CI)	**Subtotals only**
11.1 Cohort studies (adverse effects)	5	56952	Risk Ratio (M-H, Random, 95% CI)	1.81 [0.73, 4.51]
11.2 RCTs (adverse events)	1	359	Risk Ratio (M-H, Random, 95% CI)	1.19 [0.76, 1.84]
12 Anxiety (all studies)	**3**	**3408**	Risk Ratio (M-H, Fixed, 95% CI)	**Subtotals only**
12.1 Cohort studies (adverse effects)	3	3408	Risk Ratio (M-H, Fixed, 95% CI)	6.30 [4.37, 9.09]
13 Depressed mood (all studies)	**5**	**58855**	Risk Ratio (M-H, Random, 95% CI)	**Subtotals only**
13.1 Cohort studies (adverse effects)	5	58855	Risk Ratio (M-H, Random, 95% CI)	3.14 [1.15, 8.57]
14 Abnormal thoughts and percepts	**4**	**4831**	Risk Ratio (M-H, Fixed, 95% CI)	**Subtotals only**
14.1 Cohort studies (adverse effects)	4	4831	Risk Ratio (M-H, Fixed, 95% CI)	5.49 [2.65, 11.35]
15 Pruritis (all studies)	**4**	**5544**	Risk Ratio (M-H, Random, 95% CI)	**Subtotals only**
15.1 Cohort studies (adverse effects)	2	5544	Risk Ratio (M-H, Random, 95% CI)	1.13 [0.92, 1.40]
15.2 RCTs (adverse events)	2	413	Risk Ratio (M-H, Random, 95% CI)	0.28 [0.03, 2.93]
16 Visual impairment (all studies)	**6**	**58847**	Risk Ratio (M-H, Random, 95% CI)	**Subtotals only**
16.1 Cohort studies (adverse effects)	5	58847	Risk Ratio (M-H, Random, 95% CI)	1.10 [0.50, 2.44]
16.2 RCTs (adverse events)	1	210	Risk Ratio (M-H, Random, 95% CI)	0.14 [0.01, 2.63]
17 Vertigo (all studies)	**1**	**746**	Risk Ratio (M-H, Fixed, 95% CI)	**Subtotals only**
17.1 Cohort studies (adverse effects)	1	746	Risk Ratio (M-H, Fixed, 95% CI)	1.13 [0.05, 23.43]
18 Cohort studies in travellers; preads adverse effects	**6**	**708**	Risk Ratio (M-H, Random, 95% CI)	**Subtotals only**
18.1 Vertigo	1	746	Risk Ratio (M-H, Random, 95% CI)	1.13 [0.05, 23.43]
18.2 Nausea	5	56847	Risk Ratio (M-H, Random, 95% CI)	1.42 [0.94, 2.13]
18.3 Vomiting	4	3440	Risk Ratio (M-H, Random, 95% CI)	0.89 [0.55, 1.42]
18.4 Abdominal pain	3	3303	Risk Ratio (M-H, Random, 95% CI)	0.98 [0.74, 1.30]
18.5 Diarrhoea	4	3440	Risk Ratio (M-H, Random, 95% CI)	1.22 [0.57, 2.64]
18.6 Headache	5	54861	Risk Ratio (M-H, Random, 95% CI)	1.12 [0.48, 2.65]
18.7 Dizziness	4	56710	Risk Ratio (M-H, Random, 95% CI)	1.52 [1.10, 2.10]
18.8 Abnormal dreams	3	708	Risk Ratio (M-H, Random, 95% CI)	4.21 [0.57, 31.33]
18.9 Insomnia	4	54815	Risk Ratio (M-H, Random, 95% CI)	1.56 [0.40, 6.10]
18.10 Anxiety	2	1271	Risk Ratio (M-H, Random, 95% CI)	3.94 [0.53, 29.48]
18.11 Depressed mood	4	56710	Risk Ratio (M-H, Random, 95% CI)	2.49 [0.75, 8.31]
----------------------	---	-------	-------------------------------	--------------------
18.12 Abnormal thoughts or perceptions	3	2694	Risk Ratio (M-H, Random, 95% CI)	4.42 [1.58, 12.40]
18.13 Pruritis	1	53407	Risk Ratio (M-H, Random, 95% CI)	1.18 [0.94, 1.48]
18.14 Visual impairment	4	56710	Risk Ratio (M-H, Random, 95% CI)	0.66 [0.55, 0.79]

19 Other adverse effects (cohort studies)	5	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
19.1 Altered spatial perception	1	2032	Risk Ratio (M-H, Fixed, 95% CI)	3.16 [1.55, 6.45]
19.2 Alopecia	1	2137	Risk Ratio (M-H, Fixed, 95% CI)	1.69 [1.27, 2.25]
19.3 Asthenia	3	3408	Risk Ratio (M-H, Fixed, 95% CI)	1.52 [0.97, 2.40]
19.4 Balance disorder	1	2137	Risk Ratio (M-H, Fixed, 95% CI)	3.59 [2.15, 6.00]
19.5 Confusion	1	525	Risk Ratio (M-H, Fixed, 95% CI)	2.03 [0.11, 36.31]
19.6 Decreased appetite	1	2032	Risk Ratio (M-H, Fixed, 95% CI)	1.17 [0.67, 2.07]
19.7 Fatigue	1	525	Risk Ratio (M-H, Fixed, 95% CI)	2.37 [0.57, 10.80]
19.8 Hypoaesthesia	1	2137	Risk Ratio (M-H, Fixed, 95% CI)	20.26 [1.23, 333.93]
19.9 Irritability	746	Risk Ratio (M-H, Fixed, 95% CI)	4.75 [0.28, 80.59]	
19.10 Mouth ulcers	2	55439	Risk Ratio (M-H, Fixed, 95% CI)	1.37 [1.01, 1.87]
19.11 Paraesthesia	2	2778	Risk Ratio (M-H, Fixed, 95% CI)	2.22 [1.27, 3.89]
19.12 Palpitations	3	3408	Risk Ratio (M-H, Fixed, 95% CI)	4.71 [0.91, 24.26]
19.13 Photosensitization	2	2662	Risk Ratio (M-H, Fixed, 95% CI)	0.89 [0.52, 1.53]
19.14 Restlessness	1	525	Risk Ratio (M-H, Fixed, 95% CI)	4.74 [0.65, 34.46]
19.15 Slight illness	1	525	Risk Ratio (M-H, Fixed, 95% CI)	2.65 [0.64, 10.87]
19.16 Somnolence	1	525	Risk Ratio (M-H, Fixed, 95% CI)	6.08 [0.37, 100.36]
19.17 Yeast infection	1	2137	Risk Ratio (M-H, Fixed, 95% CI)	1.15 [0.53, 2.49]

20 Other adverse events (RCTs)	2	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
20.1 Abdominal distension	1	359	Risk Ratio (M-H, Fixed, 95% CI)	3.13 [0.64, 15.27]
20.2 Anger	1	359	Risk Ratio (M-H, Fixed, 95% CI)	0.33 [0.07, 1.55]
20.3 Disturbance in attention	1	359	Risk Ratio (M-H, Fixed, 95% CI)	3.16 [0.61, 16.47]
20.4 Irritability	1	359	Risk Ratio (M-H, Fixed, 95% CI)	1.08 [0.45, 2.64]
20.5 Loss of appetite	1	359	Risk Ratio (M-H, Fixed, 95% CI)	1.06 [0.35, 3.25]
20.6 Malaise	1	203	Risk Ratio (M-H, Fixed, 95% CI)	0.32 [0.01, 7.85]
20.7 Mood altered	1	359	Risk Ratio (M-H, Fixed, 95% CI)	1.13 [0.29, 4.34]

21 Pregnancy related outcomes (RCTs)	1	Risk Ratio (M-H, Fixed, 95% CI)	Subtotals only	
21.1 Spontaneous abortions	1	2334	Risk Ratio (M-H, Fixed, 95% CI)	0.80 [0.36, 1.79]
21.2 Still births	1	2334	Risk Ratio (M-H, Fixed, 95% CI)	1.01 [0.67, 1.52]
21.3 Congenital malformations	1	2334	Risk Ratio (M-H, Fixed, 95% CI)	0.0 [0.0, 0.0]

22 Adherence (cohort studies)	6	Risk Ratio (M-H, Random, 95% CI)	Subtotals only	
22.1 Short-term travellers	3	852	Risk Ratio (M-H, Random, 95% CI)	1.00 [0.90, 1.13]
22.2 Short-term travellers: after return	1	46	Risk Ratio (M-H, Random, 95% CI)	1.00 [0.54, 1.87]
22.3 Longer-term occupational travellers	2	5777	Risk Ratio (M-H, Random, 95% CI)	2.02 [1.80, 2.26]
Comparison 5. Mefloquine versus currently used regimens; by study design

Outcome or subgroup title	No. of studies	No. of participants	Statistical method	Effect size
1 Nausea; effects	12		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
1.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	2.72 [1.52, 4.86]
1.2 Cohort studies	11	5973	Risk Ratio (M-H, Random, 95% CI)	1.72 [0.78, 3.77]
2 Abdominal pain; effects	10		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
2.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	0.90 [0.52, 1.56]
2.2 Cohort studies	9	4494	Risk Ratio (M-H, Random, 95% CI)	0.49 [0.27, 0.87]
3 Diarrhoea; effects	11		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
3.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	0.94 [0.60, 1.47]
3.2 Cohort studies	10	7648	Risk Ratio (M-H, Random, 95% CI)	0.61 [0.28, 1.34]
4 Headache; effects	10		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
4.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	1.72 [0.99, 2.99]
4.2 Cohort studies	9	5592	Risk Ratio (M-H, Random, 95% CI)	2.19 [1.22, 3.93]
5 Dizziness; effects	10		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
5.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	3.99 [2.08, 7.64]
5.2 Cohort studies	9	4606	Risk Ratio (M-H, Random, 95% CI)	3.17 [1.58, 6.35]
6 Abnormal dreams; effects	8		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
6.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	2.04 [1.37, 3.04]
6.2 Cohort studies	7	4543	Risk Ratio (M-H, Random, 95% CI)	7.30 [2.51, 21.18]
7 Insomnia; effects	10		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
7.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	4.42 [2.56, 7.64]
7.2 Cohort studies	9	5299	Risk Ratio (M-H, Random, 95% CI)	5.70 [2.83, 11.47]
8 Anxiety; effects	5		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
8.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	6.12 [1.82, 20.66]
8.2 Cohort studies	4	3390	Risk Ratio (M-H, Random, 95% CI)	15.26 [8.66, 26.89]
9 Depressed mood; effects	7		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
9.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	5.78 [1.71, 19.61]
9.2 Cohort studies	6	4236	Risk Ratio (M-H, Random, 95% CI)	7.82 [3.79, 16.12]
10 Abnormal thoughts or perceptions; effects	3		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
10.1 Cohort studies	3	3045	Risk Ratio (M-H, Random, 95% CI)	4.20 [0.81, 21.87]
11 Pruritis; effects	4		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
11.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	1.28 [0.60, 2.70]
11.2 Cohort studies	3	2034	Risk Ratio (M-H, Random, 95% CI)	0.88 [0.16, 4.76]
12 Visual impairment; effects	4		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
12.1 RCTs	1	976	Risk Ratio (M-H, Random, 95% CI)	2.04 [0.88, 4.73]
12.2 Cohort studies	3	2560	Risk Ratio (M-H, Random, 95% CI)	2.06 [1.05, 4.02]
13 Adherence; during travel	12		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
13.1 RCTs	1	119	Risk Ratio (M-H, Random, 95% CI)	0.95 [0.88, 1.02]
13.2 Cohort studies	11	12131	Risk Ratio (M-H, Random, 95% CI)	1.16 [1.03, 1.30]
14 Adherence; after return	4		Risk Ratio (M-H, Random, 95% CI)	Subtotals only
14.1 Cohort studies	4	1221	Risk Ratio (M-H, Random, 95% CI)	1.04 [0.92, 1.17]
Analysis 1.1. Comparison 1 Mefloquine versus placebo/non users, Outcome 1 Clinical cases of malaria.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 1 Clinical cases of malaria

Study or subgroup	Mefloquine	Placebo	Risk Ratio	Weight	Risk Ratio
	n/N	n/N			
Bunnag 1992 (1)	2/123	6/121	10.2 %	0.33	[0.07, 1.59]
Hale 2003 (2)	0/46	4/94	5.0 %	0.22	[0.01, 4.08]
Nosten 1994 (3)	5/159	37/152	14.5 %	0.13	[0.05, 0.32]
Ohrt 1997 (4)	0/61	53/65	5.4 %	0.01	[0.00, 0.16]
Pearlman 1980 (5)	1/160	6/12	8.0 %	0.01	[0.00, 0.10]
Pearlman 1980 (6)	0/169	6/12	5.2 %	0.01	[0.00, 0.10]
Pearlman 1980 (7)	2/158	7/12	11.0 %	0.02	[0.01, 0.09]
Salako 1992 (8)	0/107	7/101	5.2 %	0.06	[0.00, 1.09]
Santos 1993 (9)	1/31	3/15	7.3 %	0.16	[0.02, 1.42]
Santos 1993 (10)	2/32	3/15	9.7 %	0.31	[0.06, 1.68]
Sossouhounto 1995 (11)	0/103	1/96	4.4 %	0.31	[0.01, 7.54]
Weiss 1995 (12)	4/30	20/34	14.2 %	0.23	[0.09, 0.59]

Total (95% CI) 1179 729 100.0 % 0.09 [0.04, 0.19]

Total events: 17 (Mefloquine), 153 (Placebo)

Heterogeneity: Tau² = 0.83; Chi² = 23.36, df = 11 (P = 0.02); I² = 53%

Test for overall effect: Z = 6.21 (P < 0.00001)

Test for subgroup differences: Not applicable
Analysis 1.2. Comparison 1 Mefloquine versus placebo/non users, Outcome 2 Malaria; episodes of parasitaemia in semi-immune populations.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 2 Malaria; episodes of parasitaemia in semi-immune populations

Study or subgroup	Mefloquine	Risk Ratio M-H (Random) 95% CI	Weight	Risk Ratio M-H (Random) 95% CI
	n/N	n/N		
1 Trials reporting number of participants with parasitaemia				
Hale 2003	6/46	86/94	38.3 %	0.14 [0.07, 0.30]
Salako 1992	1/107	19/103	18.9 %	0.05 [0.01, 0.37]
Weiss 1995	11/30	34/34	42.8 %	0.38 [0.24, 0.60]
Subtotal (95% CI)	**183**	**231**	**100.0 %**	**0.18 [0.06, 0.55]**

Total events: 18 (Mefloquine), 139 ()

Heterogeneity: Tau² = 0.71; Chi² = 10.18, df = 2 (P = 0.01); I² =80%

Test for overall effect: Z = 3.01 (P = 0.0026)

2 Trials reporting number of episodes of parasitaemia

0.001	0.01	0.1	1	10	100	1000
Favours mefloquine	Favours placebo					

(Continued...)

Mefloquine for preventing malaria during travel to endemic areas (Review) Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 1.3. Comparison 1 Mefloquine versus placebo/non users, Outcome 3 Serious adverse events or effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 3 Serious adverse events or effects (all studies)

Study or subgroup	Mefloquine	Placebo	Risk Ratio M-H,Fixed,95% CI	Weight
Nosten 1994	22/159	89/152	54.2 % 0.24 [0.16, 0.36]	
Sossouhounto 1995	0/103	68/96	45.8 % 0.01 [0.00, 0.11]	
Subtotal (95% CI)	**262**	**248**	**100.0 % 0.05 [0.00, 5.25]**	

Heterogeneity: Tau² = 10.69; Chi² = 11.49, df = 1 (P = 0.00070); I² = 91%
Test for overall effect: Z = 1.27 (P = 0.20)

Study or subgroup	Mefloquine	Placebo	Risk Ratio M-H,Fixed,95% CI	Weight
Bunnag 1992	0/116	1/121	41.6 % 0.35 [0.01, 8.45]	
Hale 2003	0/46	0/94	Not estimable	
Nosten 1994	1/159	0/152	14.5 % 2.87 [0.12, 69.88]	
Ohrt 1997	0/61	0/65	Not estimable	
Salako 1992	0/107	0/101	Not estimable	
Sossouhounto 1995	0/103	1/96	43.9 % 0.31 [0.01, 7.54]	
Subtotal (95% CI)	**592**	**629**	**100.0 % 0.70 [0.14, 3.53]**	

Total events: 1 (Mefloquine), 2 (Placebo)
Heterogeneity: Chi² = 1.18, df = 2 (P = 0.55); I² = 0.0%
Test for overall effect: Z = 0.44 (P = 0.66)

(Continued...)
Analysis 1.4. Comparison 1 | Mefloquine versus placebo/non users, Outcome 4 Discontinuations due to adverse effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 1 Mefloquine versus placebo/non users
Outcome: 4 Discontinuations due to adverse effects (all studies)

Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Bunnag 1992	2/116	1/119	18.6 % 2.05 [0.19, 22.32]		
Hale 2003	0/46	3/94	43.7 % 0.29 [0.02, 5.48]		
Nosten 1994	1/159	0/152	9.6 % 2.87 [0.12, 69.88]		
Ohrt 1997	1/61	0/65	9.1 % 3.19 [0.13, 76.93]		
Salako 1992	0/113	0/101			Not estimable
Vuurman 1996	1/22	0/20	9.9 % 2.74 [0.12, 63.63]		
Weiss 1995	1/30	0/32	9.1 % 3.19 [0.14, 75.49]		
Total (95% CI)	**547**	**583**	**100.0 % 1.64 [0.55, 4.88]**		

Total events: 6 (Mefloquine), 4 (Control)
Heterogeneity: $\chi^2 = 1.93$, df = 5 ($P = 0.86$); $I^2 = 0.0\%$
Test for overall effect: $Z = 0.88$ ($P = 0.38$)
Test for subgroup differences: Not applicable

(1) Hoebe 1997. Event described by study authors as ‘serious’, but not enough detail provided to meet our definition.
Analysis 1.5. Comparison 1 Mefloquine versus placebo/non users, Outcome 5 Nausea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 5 Nausea (all studies)

Study or subgroup	Mefloquine n/N	Control n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
1 RCTs (adverse events)					
Nosten 1994 (1)	65/102	48/100	1.33 [1.03, 1.71]	95.9 %	1.33 [1.03, 1.71]
Vuurman 1996	4/22	2/20	1.82 [0.37, 8.88]	4.1 %	1.82 [0.37, 8.88]
Subtotal (95% CI)	**124**	**120**		**100.0 %**	**1.35 [1.05, 1.73]**
Total events:	**69 (Mefloquine), 50 (Control)**				
Heterogeneity: Chi² = 0.15, df = 1 (P = 0.70); I² =0.0%					
Test for overall effect: Z = 2.33 (P = 0.020)					
2 Cohort studies (adverse events)					
Hoebe 1997	16/104	9/93	1.59 [0.74, 3.42]	12.4 %	1.59 [0.74, 3.42]
Petersen 2000	130/809	14/161	1.85 [1.09, 3.12]	30.4 %	1.85 [1.09, 3.12]
van Piirnsdijk 1997	91/394	41/340	1.92 [1.36, 2.69]	57.3 %	1.92 [1.36, 2.69]
Subtotal (95% CI)	**1307**	**594**		**100.0 %**	**1.85 [1.42, 2.43]**
Total events:	**237 (Mefloquine), 64 (Control)**				
Heterogeneity: Chi² = 0.19, df = 2 (P = 0.91); I² =0.0%					
Test for overall effect: Z = 4.51 (P < 0.00001)					
Test for subgroup differences: Chi² = 2.90, df = 1 (P = 0.09), I² =66%					

(1) Nosten 1994. All non-serious adverse event data only reported from phase 2 of the trial
Analysis 1.6. Comparison 1 Mefloquine versus placebo/non users, Outcome 6 Vomiting (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 6 Vomiting (all studies)

Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed, 95% CI		M-H,Fixed, 95% CI
RCTs (adverse events)					
Nosten 1994	26/102	33/100	0.77 [0.50, 1.19]	100.0%	
Subtotal (95% CI)	102	100			0.77 [0.50, 1.19]
Total events: 26 (Mefloquine), 33 (Control)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.17 (P = 0.24)					
Cohort studies (adverse events)					
Hoebe 1997	6/104	6/93	0.89 [0.30, 2.68]	20.2%	
Petersen 2000	53/809	15/161	0.70 [0.41, 1.22]	79.8%	
Subtotal (95% CI)	913	254			0.74 [0.45, 1.21]
Total events: 59 (Mefloquine), 21 (Control)					
Heterogeneity: Chi² = 0.15, df = 1 (P = 0.70); I² = 0.0%					
Test for overall effect: Z = 1.19 (P = 0.23)					
Test for subgroup differences: Chi² = 0.01, df = 1 (P = 0.90), I² = 0.0%					
Comparison 1 Mefloquine versus placebo/non users, Outcome 7 Abdominal pain (all studies).

Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
RCTs (adverse events)					
Hale 2003	3/46	6/94	6.9 % 1.02 [0.27, 3.90]	6.9 % 1.02 [0.27, 3.90]	
Nosten 1994 (1)	57/102	52/100	92.2 % 1.07 [0.83, 1.39]	92.2 % 1.07 [0.83, 1.39]	
Salako 1992	1/107	0/101	0.9 % 2.83 [0.12, 68.76]	0.9 % 2.83 [0.12, 68.76]	
Subtotal (95% CI)	255	295	100.0 % 1.09 [0.84, 1.40]	100.0 % 1.09 [0.84, 1.40]	
Cohort studies (adverse events)					
Hoebe 1997	13/104	12/93	27.5 % 0.97 [0.47, 2.02]	27.5 % 0.97 [0.47, 2.02]	
Petersen 2000 (2)	97/809	20/161	72.5 % 0.97 [0.62, 1.51]	72.5 % 0.97 [0.62, 1.51]	
Subtotal (95% CI)	913	254	100.0 % 0.97 [0.66, 1.42]	100.0 % 0.97 [0.66, 1.42]	

Total events: 61 (Mefloquine), 58 (Control)
Heterogeneity: Chi^2 = 0.36, df = 2 (P = 0.83); I^2 =0.0%
Test for overall effect: Z = 0.64 (P = 0.52)

Total events: 110 (Mefloquine), 32 (Control)
Heterogeneity: Chi^2 = 0.00, df = 1 (P = 0.99); I^2 =0.0%
Test for overall effect: Z = 0.18 (P = 0.86)
Test for subgroup differences: Chi^2 = 0.25, df = 1 (P = 0.62), I^2 =0.0%

(1) Nosten 1994. 'Upper' abdominal pain.
(2) Petersen 2000. Reported in the original paper as 'stomach pain'
Analysis 1.8. Comparison 1 Mefloquine versus placebo/non users, Outcome 8 Diarrhoea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 8 Diarrhoea (all studies)

Study or subgroup	Mefloquine	Placebo/no treatment	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
1 RCTs (adverse events)					
Hale 2003 (1)	4/46	15/94	0.54 [0.19, 1.55]	60.3%	
Salako 1992	1/107	0/101	2.83 [0.12, 68.76]	6.5%	
Sossouhounto 1995	2/103	3/96	0.62 [0.11, 3.64]	21.1%	
Vuurman 1996	2/22	1/20	1.82 [0.18, 18.55]	12.2%	
Subtotal (95% CI)	**278**	**311**	**0.72 [0.32, 1.62]**	100.0%	

Total events: 9 (Mefloquine), 19 (Placebo/no treatment)
Heterogeneity: $\tau^2 = 0.00$; $\chi^2 = 1.62$, df = 3 ($P = 0.65$); $I^2 = 0.0$
Test for overall effect: $Z = 0.79$ ($P = 0.43$)

2 Cohort studies (adverse events)					
Hoebe 1997	29/104	29/93	0.89 [0.58, 1.38]	24.1%	
Petersen 2000	249/809	41/161	1.21 [0.91, 1.61]	34.0%	
van Reemtsaik 1997	206/394	114/340	1.56 [1.31, 1.86]	41.9%	
Subtotal (95% CI)	**1307**	**594**	**1.25 [0.93, 1.68]**	100.0%	

Total events: 484 (Mefloquine), 184 (Placebo/no treatment)
Heterogeneity: $\tau^2 = 0.05$; $\chi^2 = 6.58$, df = 2 ($P = 0.04$); $I^2 = 70$
Test for overall effect: $Z = 1.47$ ($P = 0.14$)
Test for subgroup differences: $\chi^2 = 1.55$, df = 1 ($P = 0.21$); $I^2 = 36$

(1) Hale 2003. Reported in the original paper as ‘dysentry/ diarrhoea’
Analysis 1.9. Comparison 1 Mefloquine versus placebo/non users, Outcome 9 Headache (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 9 Headache (all studies)

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs (adverse events)					
Hale 2003	1/46	6/94	4.4 %	0.34 [0.04, 2.75]	
Nosten 1994	70/102	83/100	93.3 %	0.83 [0.71, 0.97]	
Salako 1992	0/107	0/101	Not estimable		
Sossouhounto 1995	0/103	1/96	1.7 %	0.31 [0.01, 7.54]	
Vuurman 1996	4/22	0/20	0.6 %	8.22 [0.47, 143.66]	
Subtotal (95% CI)	**380**	**411**	**100.0 %**	**0.84 [0.71, 0.99]**	
Total events: 75 (Mefloquine), 90 (Placebo/ no treatment)					
Heterogeneity: $\chi^2 = 3.57, df = 3 (P = 0.31); I^2 = 16\%$					
Test for overall effect: $Z = 2.02 (P = 0.043)$					
2 Cohort studies (adverse events)					
Hoebe 1997	1/104	6/93	1000 %	1.64 [0.63, 4.26]	
Subtotal (95% CI)	**104**	**93**	**100.0 %**	**1.64 [0.63, 4.26]**	
Total events: 11 (Mefloquine), 6 (Placebo/ no treatment)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.01 (P = 0.31)$					
Test for subgroup differences: $\chi^2 = 1.83, df = 1 (P = 0.18), I^2 = 45\%$					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 1.10. Comparison 1 Mefloquine versus placebo/non users, Outcome 10 Dizziness (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: Mefloquine versus placebo/non users

Outcome: Dizziness (all studies)

Study or subgroup	Mefloquine n/N	Placebo/ no treatment n/N	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI	
Nosten 1994	84/102	81/100	97.5 % 1.02 [0.89, 1.16]			
Salako 1992	0/107	0/101	Not estimable			
Vuurman 1996	3/22	2/20	2.5 % 1.36 [0.25, 7.34]			
Subtotal (95% CI)	**231**	**221**	**100.0 %**	**1.03** [**0.90**, **1.17**]		

Total events: 87 (Mefloquine), 83 (Placebo/no treatment)

Heterogeneity: \(\chi^2 = 0.13, \text{df} = 1 (P = 0.72); I^2 = 0.0\%

Test for overall effect: \(Z = 0.36 (P = 0.72) \)

2 Cohort studies (adverse events)

Study or subgroup	Mefloquine n/N	Placebo/ no treatment n/N	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI	
Hoebe 1997	13/104	3/93	5.8 % 3.88 [1.14, 13.18]			
Petersen 2000	88/809	7/161	21.4 % 2.50 [1.18, 5.30]			
van Reemsdijk 1997	61/394	37/340	72.8 % 1.42 [0.97, 2.08]			
Subtotal (95% CI)	**1307**	**594**	**100.0 %**	**1.80** [**1.29**, **2.49**]		

Total events: 162 (Mefloquine), 47 (Placebo/no treatment)

Heterogeneity: \(\chi^2 = 3.70, \text{df} = 2 (P = 0.16); I^2 = 46\%

Test for overall effect: \(Z = 3.49 (P = 0.00048) \)

Test for subgroup differences: \(\chi^2 = 9.54, \text{df} = 1 (P = 0.00), I^2 = 90\% \)
Analysis 1.11. Comparison 1 Mefloquine versus placebo/non users, Outcome 11 Abnormal dreams (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 11 Abnormal dreams (all studies)

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H Fixed 95% CI		M-H Fixed 95% CI
Cohort studies (adverse events)					
Hoebe 1997 (1)	9/104	2/93	19.7 %	4.02	[0.89, 18.15]
van Riemstijk 1997 (2)	18/394	8/340	80.3 %	1.94	[0.86, 4.41]
Subtotal (95% CI)	**498**	**433**	**100.0 %**	**2.35**	**[1.15, 4.80]**

Total events: 27 (Mefloquine), 10 (Placebo/ no treatment)

Heterogeneity: Chi² = 0.70, df = 1 (P = 0.40); I² =0.0%

Test for overall effect: Z = 2.35 (P = 0.019)

Test for subgroup differences: Not applicable

(1) Hoebe 1997. Reported in the original paper as ‘nightmares’

(2) van Riemstijk 1997. Reported in the original paper as ‘nightmares’
Analysis 1.12. Comparison 1 Mefloquine versus placebo/non users, Outcome 12 Insomnia (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 12 Insomnia (all studies)

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
Cohort studies (adverse events)					
Hoebe 1997	14/104	8/93	1.56 [0.69, 3.56]	15.5%	
van Rensburg 1997	72/394	43/340	1.44 [1.02, 2.05]	84.5%	
Subtotal (95% CI)	498	433	1.46 [1.06, 2.02]	100.0%	

Total events: 86 (Mefloquine), 51 (Placebo/ no treatment)

Heterogeneity: Chi² = 0.03, df = 1 (P = 0.86); I² = 0.0%

Test for overall effect: Z = 2.32 (P = 0.020)

Test for subgroup differences: Not applicable
Analysis 1.13. Comparison 1 Mefloquine versus placebo/non users, Outcome 13 Anxiety (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 13 Anxiety (all studies)

Study or subgroup	Placebo/ no treatment Risk Ratio M-H,Fixed,95% CI	Weight M-H,Fixed,95% CI
Cohort studies (adverse events)		
Hoebe 1997	4/104 0/93	2.8 % 8.06 [0.44, 147.68]
van Piensdijk 1997	20/394 17/340	97.2 % 1.02 [0.54, 1.91]
Subtotal (95% CI)	498 433	100.0 % 1.21 [0.67, 2.21]

Total events: 24 (Mefloquine), 17 (Placebo/ no treatment)

Heterogeneity: Chi² = 1.93, df = 1 (P = 0.16); I² = 48%

Test for overall effect: Z = 0.63 (P = 0.53)

Test for subgroup differences: Not applicable
Analysis 1.14. Comparison 1 Mefloquine versus placebo/non users, Outcome 14 Depressed mood (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 14 Depressed mood (all studies)

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio M-H, Random, 95% CI	Weight
Hoebe 1997 (1)	12/104	4/93	2.68 [0.90, 8.03]	36.1%
Petersen 2000	55/809	1/161	10.95 [1.53, 78.52]	23.2%
van Riemsdijk 1997 (2)	12/394	11/340	0.94 [0.42, 2.11]	40.8%

Subtotal (95% CI)

| Risk Ratio M-H, Random, 95% CI | 1307 | 594 | 100.0% | 2.43 [0.65, 9.07] |

Total events: 79 (Mefloquine), 16 (Placebo/no treatment)

Heterogeneity: $\tau^2 = 0.94$; $\chi^2 = 7.21$, df = 2 ($p = 0.03$); $I^2 = 72$

Test for overall effect: $Z = 1.32$ ($p = 0.19$)

Test for subgroup differences: Not applicable

(1) Hoebe 1997. Reported in the original paper as ‘depression’

(2) van Riemsdijk. 1997. Reported in the original paper as ‘depression’
Analysis 1.15. Comparison 1 Mefloquine versus placebo/non users, Outcome 15 Abnormal thoughts and perceptions.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 15 Abnormal thoughts and perceptions

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H Fixed 95% CI		M-H Fixed 95% CI
Cohort studies (adverse events)					
Petersen 2000 (1)	29/809	1/161	5.77 [0.79, 42.06]	100.0%	
Subtotal (95% CI)					
	809	161	5.77 [0.79, 42.06]	100.0%	

Total events: 29 (Mefloquine), 1 (Placebo/ no treatment)

Heterogeneity: not applicable

Test for overall effect: Z = 1.73 (P = 0.084)

Test for subgroup differences: Not applicable

(1) Petersen 2000. Reported in the original paper as 'strange thoughts'
Analysis 1.16. Comparison 1 Mefloquine versus placebo/non users, Outcome 16 Pruritis (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 16 Pruritis (all studies)

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
	n/N	n/N			
1 RCTs (adverse events)					
Nosten 1994 (1)	34/102	34/100	76.9 % 0.98 [0.67, 1.44]		
Salako 1992 (2)	1/107	5/101	11.5 % 0.19 [0.02, 1.59]		
Sossouhounto 1995	4/103	5/96	11.6 % 0.75 [0.21, 2.70]		
Subtotal (95% CI)	312	297	100.0 % 0.86 [0.60, 1.24]		
Total events: 39 (Mefloquine), 44 (Placebo/ no treatment)					
Heterogeneity: $\chi^2 = 2.43$, df = 2 ($P = 0.30$); $I^2 = 18\%$					
Test for overall effect: $Z = 0.80$ ($P = 0.43$)					
2 Cohort studies (adverse events)					
Hoebe 1997 (3)	15/104	2/93	100.0 % 6.71 [1.58, 28.55]		
Subtotal (95% CI)	104	93	100.0 % 6.71 [1.58, 28.55]		
Total events: 15 (Mefloquine), 2 (Placebo/ no treatment)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 2.57$ ($P = 0.010$)					
Test for subgroup differences: $\chi^2 = 7.25$, df = 1 ($P = 0.01$); $I^2 = 86\%$					

(1) Nosten 1994. Reported in the original paper as 'itching'.
(2) Salako 1992. Reported in the original paper as 'pruritis/itching'.
(3) Hoebe 1997. Reported in the original paper as 'itching'.
Analysis 1.17. Comparison 1 Mefloquine versus placebo/non users, Outcome 17 Visual impairment (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 17 Visual impairment (all studies)

Study or subgroup	Mefloquine n/N	Placebo/ no treatment n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
Nosten 1994 (1)	33/102	33/100	1.00 [0.66, 1.46]	100.0%	0.98 [0.66, 1.46]
Subtotal (95% CI)	**102**	**100**			
Petersen 2000 (2)	14/809	3/161	0.93 [0.27, 3.19]	100.0%	0.93 [0.27, 3.19]
Subtotal (95% CI)	**809**	**161**			

Total events: 33 (Mefloquine), 33 (Placebo/no treatment)

Heterogeneity: not applicable

Test for overall effect: Z = 0.10 (P = 0.92)

Test for subgroup differences: Chi² = 0.12, df = 1 (P = 0.91), I² = 0.0%

(1) Nosten 1994. Reported in the original paper as ‘visual abnormalities’.

(2) Petersen 2000. Reported in the original paper as ‘blurred vision’.
Analysis 1.18. Comparison 1 Mefloquine versus placebo/non users, Outcome 18 Vertigo (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 18 Vertigo (all studies)

Study or subgroup	Mefloquine	Placebo/ no treatment	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
1 RCTs (adverse events)					
Nosten 1994	52/102	50/100	1.02 [0.78, 1.34]	100.0 %	1.02 [0.78, 1.34]

Subtotal (95% CI)

Total events: 52 (Mefloquine), 50 (Placebo/ no treatment)

Heterogeneity: not applicable

Test for overall effect: Z = 0.14 (P = 0.89)

Test for subgroup differences: Not applicable
Analysis 1.19. Comparison 1 Mefloquine versus placebo/non users, Outcome 19 Other adverse events (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 19 Other adverse events (RCTs)

Study or subgroup	Mefloquine n/N	Control n/N	Risk Ratio M-H,Fixed 95% CI	Weight M-H,Fixed 95% CI
1. Arthralgia				
Hale 2003	0/46	3/94		
Subtotal (95% CI)	**46**	**94**	**100.0 %**	**0.29 [0.02, 5.48]**
Total events: 0 (Mefloquine), 3 (Control)				
Heterogeneity: not applicable				
Test for overall effect: Z = 0.83 (P = 0.41)				
2. Back pain				
Hale 2003	0/46	10/94		
Subtotal (95% CI)	**46**	**94**	**100.0 %**	**0.10 [0.01, 1.61]**
Total events: 0 (Mefloquine), 10 (Control)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.63 (P = 0.10)				
3. Blurred vision				
Salako 1992 (1)	0/107	2/101		
Subtotal (95% CI)	**107**	**101**	**100.0 %**	**0.19 [0.01, 3.89]**
Total events: 0 (Mefloquine), 2 (Control)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.08 (P = 0.28)				
4. Cough				
Nosten 1994	56/102	61/100		
Subtotal (95% CI)	**102**	**100**	**100.0 %**	**0.90 [0.71, 1.14]**
Total events: 56 (Mefloquine), 61 (Control)				
Heterogeneity: not applicable				
Test for overall effect: Z = 0.88 (P = 0.38)				
5. Constipation				
Nosten 1994	32/102	41/100		
Subtotal (95% CI)	**102**	**100**	**100.0 %**	**0.77 [0.53, 1.11]**
Total events: 32 (Mefloquine), 41 (Control)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.41 (P = 0.16)				
6. Decreased appetite				
Nosten 1994 (2)	82/102	73/100		
Subtotal (95% CI)	**102**	**100**	**100.0 %**	**1.10 [0.95, 1.28]**
Total events: 82 (Mefloquine), 73 (Control)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.41 (P = 0.16)				

(Continued...)
Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N			
Total events:	82 (Mefloquine), 73 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 1.24 (P = 0.22)				
Falls	Nosten 1994	53/102	48/100	100.0%	1.08 [0.82, 1.43]
Subtotal (95% CI)	102	100		100.0%	1.08 [0.82, 1.43]
Total events:	53 (Mefloquine), 48 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.56 (P = 0.57)				
Fatigue	Vuurman 1996	2/22	2/20	100.0%	0.91 [0.14, 5.86]
Subtotal (95% CI)	22	20		100.0%	0.91 [0.14, 5.86]
Total events:	2 (Mefloquine), 2 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.10 (P = 0.92)				
Gastritis	Hale 2003	1/46	2/94	100.0%	1.02 [0.10, 10.98]
Subtotal (95% CI)	46	94		100.0%	1.02 [0.10, 10.98]
Total events:	1 (Mefloquine), 2 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.02 (P = 0.99)				
Myalgia	Hale 2003	3/46	4/94	100.0%	1.53 [0.36, 6.57]
Subtotal (95% CI)	46	94		100.0%	1.53 [0.36, 6.57]
Total events:	3 (Mefloquine), 4 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.58 (P = 0.57)				
Rash	Hale 2003	1/46	7/94	100.0%	0.29 [0.04, 2.30]
Subtotal (95% CI)	46	94		100.0%	0.29 [0.04, 2.30]
Total events:	1 (Mefloquine), 7 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 1.17 (P = 0.24)				
Respiratory tract infection	Hale 2003	9/46	7/94	100.0%	2.63 [1.04, 6.61]
Subtotal (95% CI)	46	94		100.0%	2.63 [1.04, 6.61]
Total events:	9 (Mefloquine), 7 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 2.05 (P = 0.040)				
Sore throat	Hale 2003	1/46	6/94	100.0%	0.34 [0.04, 2.75]
Study or subgroup	Mefloquine	Control	Risk Ratio (M-H,Fixed) 95% CI	Weight	Risk Ratio (M-H,Fixed) 95% CI
------------------	------------	---------	-----------------------------	--------	-----------------------------
Subtotal (95% CI)	46	94		100.0 %	0.34 [0.04, 2.75]
Total events: 1 (Mefloquine), 6 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.01$ ($P = 0.31$)					
14 Unsteadiness					
Nosten 1994	39/102	36/100		100.0 %	1.06 [0.74, 1.52]
Subtotal (95% CI)	102	100		100.0 %	1.06 [0.74, 1.52]
Total events: 39 (Mefloquine), 36 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 0.33$ ($P = 0.74$)					
15 Weakness					
Nosten 1994	93/102	86/100		100.0 %	1.06 [0.96, 1.17]
Subtotal (95% CI)	102	100		100.0 %	1.06 [0.96, 1.17]
Total events: 93 (Mefloquine), 86 (Control)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.15$ ($P = 0.25$)					

1. Salako 1992. 'Blurred sight'
2. Nosten 1994. 'Anorexia'
Analysis 1.20. Comparison 1 Mefloquine versus placebo/non users, Outcome 20 Other adverse effects (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 1 Mefloquine versus placebo/non users

Outcome: 20 Other adverse effects (cohort studies)

Study or subgroup	Mefloquine	Non-users	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 Agitation	27/394	22/340	1.06 [0.61, 1.82]	100.0 %	1.06 [0.61, 1.82]
Subtotal (95% CI)	394	340	100.0 %	1.06 [0.61, 1.82]	
			Subtotal (95% CI) 394 340		
			Heterogeneity: not applicable		
			Test for overall effect: Z = 0.21 (P = 0.84)		
2 Altered spatial perception	Petersen 2000	23/809 0/161	9.40 [0.57, 153.97]	100.0 %	9.40 [0.57, 153.97]
Subtotal (95% CI)	809	161	100.0 %	9.40 [0.57, 153.97]	
			Subtotal (95% CI) 809 161		
			Heterogeneity: not applicable		
			Test for overall effect: Z = 0.12 (P = 0.12)		
3 Confusion	van Riemsdijk 1997	7/394 9/340	0.67 [0.25, 1.78]	100.0 %	0.67 [0.25, 1.78]
Subtotal (95% CI)	394	340	100.0 %	0.67 [0.25, 1.78]	
			Subtotal (95% CI) 394 340		
			Heterogeneity: not applicable		
			Test for overall effect: Z = 0.42 (P = 0.42)		
4 Loss of appetite	Petersen 2000 (1)	72/809 16/161	0.90 [0.54, 1.50]	100.0 %	0.90 [0.54, 1.50]
Subtotal (95% CI)	809	161	100.0 %	0.90 [0.54, 1.50]	
			Subtotal (95% CI) 809 161		
			Heterogeneity: not applicable		
			Test for overall effect: Z = 0.42 (P = 0.67)		
5 Mouth ulcers	Petersen 2000	25/809 5/161	1.00 [0.39, 2.56]	100.0 %	1.00 [0.39, 2.56]
Subtotal (95% CI)	809	161	100.0 %	1.00 [0.39, 2.56]	
			Subtotal (95% CI) 809 161		
			Heterogeneity: not applicable		
			Test for overall effect: Z = 0.01 (P = 0.99)		
6 Palpitations	Hoebe 1997	4/104 0/93	8.06 [0.44, 147.68]	100.0 %	8.06 [0.44, 147.68]
Subtotal (95% CI)	104	93	100.0 %	8.06 [0.44, 147.68]	

(Continued ...)

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Study or subgroup & Mefloquine & Non-users & Risk Ratio & Weight & Risk Ratio & Weight
\hline
Total events: 4 (Mefloquine), 0 (Non-users) \\
Heterogeneity: not applicable \\
Test for overall effect: Z = 1.41 (P = 0.16) \\
7 Tingling \\
Petersen 2000 & 29/809 & 3/161 & 100.0 % & 1.92 [0.59, 6.24] & \\
\textbf{Subtotal (95% CI)} & 809 & 161 & 100.0 % & 1.92 [0.59, 6.24] & \\
Total events: 29 (Mefloquine), 3 (Non-users) \\
Heterogeneity: not applicable \\
Test for overall effect: Z = 1.09 (P = 0.28) \\
Test for subgroup differences: Chi2 = 6.44, df = 6 (P = 0.38), I2 = 7%

Analysis 2.1. Comparison 2 Mefloquine versus doxycycline, Outcome 1 Clinical cases of malaria (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 1 Clinical cases of malaria (RCTs)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio	Weight
Arthur 1990 (1)	0/134	0/119			Not estimable	
Ohrt 1997 (2)	0/61	1/62			43.5 %	0.34 [0.01, 8.16]
Schlagenhauf 2003 (3)	0/153	0/153			Not estimable	
Weiss 1995 (4)	4/30	2/32			56.5 %	2.13 [0.42, 10.81]
Total (95% CI)	378	366	100.0 %	1.35 [0.35, 5.19]		
Analysis 2.2. Comparison 2 Mefloquine versus doxycycline, Outcome 2 Serious adverse events or effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 2 Mefloquine versus doxycycline
Outcome: 2 Serious adverse events or effects (all studies)

Study or subgroup	Mefloquine	Doxycycline	Rm	Weight
Subtotal (95% CI)	348	334	100.0 %	0.34 [0.01, 8.16]
Total events: 0 (Mefloquine), 1 (Doxycycline)				

Heterogeneity: not applicable
Test for overall effect: Z = 0.67 (P = 0.50)

Cohort studies (adverse effects)

Study or subgroup	Mefloquine	Doxycycline	Rm	Weight
Subtotal (95% CI)	2125	1597	100.0 %	1.53 [0.23, 10.24]
Total events: 19 (Mefloquine), 10 (Doxycycline)				

Heterogeneity: Tau² = 1.32; Chi² = 2.86, df = 1 (P = 0.09); I² =65%
Test for overall effect: Z = 0.43 (P = 0.66)
Test for subgroup differences: Chi² = 0.63, df = 1 (P = 0.43), I² =0.0%

(1) Arthur 1990: Non-immune soldiers. Mefloquine dose 250mg weekly
(2) Oht 1997. 'Largely non-immune' Indonesian soldiers. Mefloquine dose 250mg weekly
(3) Schlagenhauf 2003: Short term international travellers. Mefloquine dose 250mg weekly
(4) Weiss 1995. Kenyan children, semi-immune. Mefloquine dose 125mg weekly.
Analysis 2.3. Comparison 2 Mefloquine versus doxycycline, Outcome 3 Discontinuations due to adverse effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 3 Discontinuations due to adverse effects (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H	Random, 95% CI	Weight
	n/N	n/N			
1 RCTs					
Arthur 1990	0/134	0/119			
Ohrt 1997	1/61	1/62			
Schlagenhaufer 2003	6/156	5/169			
Weiss 1995	1/30	2/32			
Subtotal (95% CI)	381	382			100.0%
				1.08 [0.41, 2.87]	
Total events:	8 (Mefloquine), 8 (Doxycycline)				
Heterogeneity: Tau^2 = 0.0; Chi^2 = 0.45, df = 2 (P = 0.80); I^2 = 0.0%					
Test for overall effect: Z = 0.15 (P = 0.88)					

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H	Random, 95% CI	Weight
	n/N	n/N			
2 Cohort studies					
Korhonen 2007	370/1612	88/708			
Napoletano 2007	66/548	4/33			
Philips 1996	18/285	22/383			
Saunders 2015	23/596	196/2011			
Schwartz 1999	0/25	1/19			
Shamiss 1996	0/13	1/28			
Sharafeldin 2010	8/40	1/11			
Stoney 2016	0/11	0/18			
Tan 2017	365/2973	64/828			
Tuck 2016	2/13	1/20			
Subtotal (95% CI)	6116	4049			100.0%
				0.92 [0.54, 1.55]	
Total events:	852 (Mefloquine), 378 (Doxycycline)				
Heterogeneity: Tau^2 = 0.37; Chi^2 = 54.51, df = 8 (P<0.0001); I^2 = 85%					
Test for overall effect: Z = 0.32 (P = 0.75)					
Test for subgroup differences: Chi^2 = 0.08, df = 1 (P = 0.77), I^2 = 0.0%					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 2.4. Comparison 2 Mefloquine versus doxycycline, Outcome 4 Nausea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 4 Nausea (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Shamiss 1996	2/13	0/28	0.2 % 10.36 [0.53, 201.60]		
Sonmez 2005 (1)	7/228	41/506	12.7 % 0.38 [0.17, 0.83]		
Kerhonen 2007	165/1453	102/308	83.8 % 0.34 [0.28, 0.42]		
Cunningham 2014 (2)	2/49	7/65	3.0 % 0.38 [0.08, 1.75]		
Tuck 2016	1/13	1/20	0.4 % 1.54 [0.11, 22.49]		
Subtotal (95% CI)	**1756**	**927**	**100.0 % 0.37 [0.30, 0.45]**		
2 RCTs (adverse events)					
Ohrt 1997	8/61	3/62	100.0 % 2.71 [0.75, 9.74]		
Subtotal (95% CI)	**61**	**62**	**100.0 % 2.71 [0.75, 9.74]**		
3 Cohort studies (adverse events)					
Philips 1996 (3)	43/285	36/383	100.0 % 1.61 [1.06, 2.43]		
Subtotal (95% CI)	**285**	**383**	**100.0 % 1.61 [1.06, 2.43]**		

Total events: 177 (Mefloquine), 151 (Doxycycline)

Heterogeneity: Chi² = 6.40, df = 4 (P = 0.17); I² =38%

Test for overall effect: Z = 9.38 (P < 0.00001)

(1) Sonmez 2005: Data from the second week of the study

(2) Cunningham 2014: Includes ‘nausea’, ‘nauseous’ and ‘feeling sick’

(3) Philips 1996. Reported in the original paper as ‘nausea/vomiting’
Analysis 2.5. Comparison 2 Mefloquine versus doxycycline, Outcome 5 Vomiting (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 5 Vomiting (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed 95% CI		M-H,Fixed 95% CI
Cohort studies (adverse effects)					
Sonmez 2005 (1)	0/228	10/506	4.7 %	0.11	[0.01, 1.79]
Korhonen 2007	28/1453	38/308	44.9 %	0.16	[0.10, 0.25]
Cunningham 2014	0/49	1/65	0.9 %	0.44	[0.02, 10.57]
Saunders 2015	9/564	151/1898	49.5 %	0.20	[0.10, 0.39]
Subtotal (95% CI)	**2294**	**2777**		**100.0 %**	**0.18 [0.12, 0.27]**
RCTs (adverse events)					
Ohrt 1997	2/61	1/62		**100.0 %**	**2.03 [0.19, 21.84]**
Subtotal (95% CI)	**61**	**62**		**100.0 %**	**2.03 [0.19, 21.84]**

Total events: 37 (Mefloquine), 200 (Doxycycline)

Heterogeneity: $\chi^2 = 0.87$, $df = 3$ ($P = 0.83$); $I^2 = 0.0$

Test for overall effect: $Z = 8.10$ ($P < 0.00001$)

Heterogeneity: not applicable

Test for overall effect: $Z = 0.59$ ($P = 0.56$)

Test for subgroup differences: $\chi^2 = 3.91$, $df = 1$ ($P = 0.05$), $I^2 = 74$

(1) Sonmez 2005. Data from the second week of the study
Analysis 2.6. Comparison 2 Mefloquine versus doxycycline, Outcome 6 Abdominal pain (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 6 Abdominal pain (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	H/Random,95% CI		H/Random,95% CI
Overall weighted mean					
1 Cohort studies (adverse effects)					
Shamiss 1996	3/13	7/28	35.7 %	0.92 [0.28, 3.01]	
Sonmez 2005 (1)	0/228	30/506	14.8 %	0.04 [0.00, 0.59]	
Korhonen 2007	54/1453	45/308	49.5 %	0.25 [0.17, 0.37]	
Tuck 2016	0/13	0/20		Not estimable	
Subtotal (95% CI)	**1707**	**862**	**100.0 %**	**0.30 [0.09, 1.07]**	
2 RCTs (adverse events)					
Ohrt 1997	13/61	8/62		1.65 [0.74, 3.70]	
Subtotal (95% CI)	**61**	**62**	**100.0 %**	**1.65 [0.74, 3.70]**	
3 Cohort studies (adverse events)					
Philips 1996	30/285	30/383		1.34 [0.83, 2.18]	
Subtotal (95% CI)	**285**	**383**	**100.0 %**	**1.34 [0.83, 2.18]**	

Total events: 57 (Mefloquine), 82 (Doxycycline)
Heterogeneity: \(T^2 = 0.81; \ Chi^2 = 6.76, df = 2 (P = 0.03); I^2 = 70\%
Test for overall effect: Z = 1.85 (P = 0.065)

Test for subgroup differences: \(Chi^2 = 5.34, df = 2 (P = 0.07), I^2 = 63\%

(1) Sonmez 2005. Data from the second week of the study
Analysis 2.7. Comparison 2 Mefloquine versus doxycycline, Outcome 7 Diarrhoea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 7 Diarrhoea (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight
	n/N	n/N	M-H, Random, 95% CI	
M-H, Random, 95% CI				
1 Cohort studies (adverse effects)				
Sonmez 2005 (1)	4/228	108/506	24.6 % 0.08 [0.03, 0.22]	4.6 %
Korhonen 2007	45/1453	12/308	29.1 % 0.79 [0.43, 1.48]	7.8 %
Cunningham 2014	0/49	2/65	7.8 % 0.26 [0.01, 5.38]	7.8 %
Saunders 2015	22/564	311/1898	31.1 % 0.24 [0.16, 0.36]	31.1 %
Tuck 2016	0/13	1/20	7.4 % 0.50 [0.02, 11.42]	7.4 %
Subtotal (95% CI)	2307	2797	100.0 % 0.28 [0.11, 0.73]	100.0 %
Total events: 71 (Mefloquine), 434 (Doxycycline)				
Heterogeneity: Tau² = 0.73; Chi² = 18.74, df = 4 (P = 0.00088); I² =79%				
Test for overall effect: Z = 2.61 (P = 0.0090)				
2 RCTs (adverse events)				
Arthur 1990	64/134	58/119	95.5 % 0.98 [0.76, 1.27]	95.5 %
Ohrt 1997	7/61	4/62	45.5 % 1.78 [0.55, 5.77]	45.5 %
Subtotal (95% CI)	195	181	100.0 % 1.01 [0.78, 1.29]	100.0 %
Total events: 71 (Mefloquine), 62 (Doxycycline)				
Heterogeneity: Tau² = 0.0; Chi² = 1 (P = 0.32); I² =0.0%				
Test for overall effect: Z = 0.05 (P = 0.96)				
3 Cohort studies (adverse events)				
Philips 1996	24/285	9/383	100.0 % 3.58 [1.69, 7.59]	100.0 %
Subtotal (95% CI)	285	383	100.0 % 3.58 [1.69, 7.59]	100.0 %
Total events: 24 (Mefloquine), 9 (Doxycycline)				
Heterogeneity: not applicable				
Test for overall effect: Z = 3.33 (P = 0.00086)				
Test for subgroup differences: Chi² = 17.73, df = 2 (P = 0.00), I² =89%				

(1) Sonmez 2005. Data from the second week of the study
Analysis 2.8. Comparison 2 Mefloquine versus doxycycline, Outcome 8 Dyspepsia (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 8 Dyspepsia (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio Mefloquine	Weight	Risk Ratio Doxycycline
	n/N	n/N	Risk Ratio M-H,Random,95% CI		Risk Ratio M-H,Random,95% CI
1. Cohort studies (adverse effects)					
Sonmez 2005 (1)	5/228	61/506	0.18 [0.07, 0.45]	25.2 %	0.18 [0.07, 0.45]
Korhonen 2007 (2)	1/1453	6/308	0.04 [0.00, 0.29]	13.5 %	0.04 [0.00, 0.29]
Cunningham 2014 (3)	3/49	11/65	0.36 [0.11, 1.23]	21.7 %	0.36 [0.11, 1.23]
Saunders 2015 (4)	57/564	259/1898	0.74 [0.56, 0.97]	30.6 %	0.74 [0.56, 0.97]
Tuck 2016	0/13	3/20	0.21 [0.01, 3.84]	9.0 %	0.21 [0.01, 3.84]

Subtotal (95% CI) 2307 2797 100.0 % 0.26 [0.09, 0.74]

Total events: 66 (Mefloquine), 340 (Doxycycline)

Heterogeneity: Tau² = 0.88; χ² = 17.70, df = 4 (P = 0.001); I² = 77%

Test for overall effect: Z = 2.54 (P = 0.011)

Test for subgroup differences: Not applicable

(1) Sonmez 2005. Data from the second week of the study

(2) Korhonen 2007. Reported in the original paper as ‘heartburn’

(3) Cunningham 2014. Reported in the original paper as ‘indigestion’

(4) Saunders 2015. Reported in the original paper as ‘heartburn/dyspepsia’
Analysis 2.9. Comparison 2 Mefloquine versus doxycycline, Outcome 9 Headache (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 9 Headache (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H (95% CI)	Weight
	n/N	n/N		
1 Cohort studies (adverse effects)				
Sonmez 2005 (1)	2/228	11/506	0.40 [0.09, 1.81]	20.0%
Korhonen 2007	100/1453	15/308	1.41 [0.83, 2.40]	40.5%
Cunningham 2014	0/49	3/65	0.19 [0.01, 3.57]	7.5%
Landman 2015	23/380	6/304	3.07 [1.26, 7.44]	32.0%
Stoney 2016	0/11	0/18	Not estimable	
Subtotal (95% CI)	2121	1201	1.21 [0.50, 2.92]	100.0%

Total events: 125 (Mefloquine), 35 (Doxycycline)
Heterogeneity: $I^2 = 60\%$
Test for overall effect: $Z = 0.43$ ($P = 0.67$)

2 RCTs (adverse events)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H (95% CI)	Weight
	n/N	n/N		
Ohrt 1997	25/61	11/62	2.31 [1.25, 4.27]	100.0%
Subtotal (95% CI)	61	62	2.31 [1.25, 4.27]	100.0%

Total events: 25 (Mefloquine), 11 (Doxycycline)
Heterogeneity: not applicable
Test for overall effect: $Z = 2.67$ ($P = 0.0076$)

3 Cohort studies (adverse events)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H (95% CI)	Weight
	n/N	n/N		
Philips 1996	31/285	17/383	2.45 [1.38, 4.34]	100.0%
Subtotal (95% CI)	285	383	2.45 [1.38, 4.34]	100.0%

Total events: 31 (Mefloquine), 17 (Doxycycline)
Heterogeneity: not applicable
Test for overall effect: $Z = 3.08$ ($P = 0.0021$)
Test for subgroup differences: $Chi^2 = 1.87$, df = 2 ($P = 0.39$), I² = 0.0%

(1) Sonmez 2005. Data from the second week of the study

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 2.10. Comparison 2 Mefloquine versus doxycycline, Outcome 10 Dizziness (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 2 Mefloquine versus doxycycline
Outcome: 10 Dizziness (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H,Random,95% CI	Weight	Risk Ratio M-H,Random,95% CI
n/N	n/N				
1 Cohort studies (adverse effects)					
Shamiss 1996	2/13	0/28	13.2 % 10.36 [0.53, 201.60]		
Korhonen 2007	189/1453	22/308	33.6 % 1.82 [1.19, 2.78]		
Cunningham 2014 (1)	1/49	0/65	12.1 % 3.96 [0.16, 95.17]		
Landman 2015 (2)	52/380	3/304	27.8 % 13.87 [4.37, 43.97]		
Tuck 2016	0/13	2/20	13.3 % 0.30 [0.02, 5.79]		
Subtotal (95% CI)	**1908**	**725**	**100.0 % 3.49 [0.88, 13.75]**		
2 RCTs (adverse events)					
Ohrt 1997	18/61	6/62	100.0 % 3.05 [1.30, 7.16]		
Subtotal (95% CI)	**61**	**62**	**100.0 % 3.05 [1.30, 7.16]**		
3 Cohort studies (adverse events)					
Philips 1996	41/285	23/383	100.0 % 2.40 [1.47, 3.90]		
Subtotal (95% CI)	**285**	**383**	**100.0 % 2.40 [1.47, 3.90]**		
4 Retrospective healthcare record analysis (adverse events)					
Eick-Cost 2017 (3)	608/36538	7834/318421	100.0 % 0.68 [0.62, 0.73]		
Subtotal (95% CI)	**36538**	**318421**	**100.0 % 0.68 [0.62, 0.73]**		
Total events: 244 (Mefloquine), 27 (Doxycycline)					
Heterogeneity: Tau^2 = 1.41; Chi^2 = 14.26, df = 4 (P = 0.01); I^2 =72%					
Test for overall effect: Z = 1.78 (P = 0.074)					
Total events: 18 (Mefloquine), 6 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.56 (P = 0.010)					
Total events: 41 (Mefloquine), 23 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 3.52 (P = 0.00044)					
Total events: 608 (Mefloquine), 7834 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 9.37 (P < 0.00001)					
Test for subgroup differences: Chi^2 = 41.66, df = 3 (P = 0.00), I^2 =93%					
(1) Cunningham 2014. Reported in the original paper as ‘feeling of vertigo’
(2) Landman 2015. Reported in the original paper as ‘dizziness/vertigo’
(3) Eck-Cost 2017. ‘Vertigo’

Analysis 2.11. Comparison 2 Mefloquine versus doxycycline, Outcome 11 Abnormal dreams (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 11 Abnormal dreams (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H Randolph 95% CI	Weight	Risk Ratio M-H Randolph 95% CI
1 Cohort studies (adverse effects)					
Korhonen 2007 (1)	775/1453	12/308	39.9 % 13.69 [7.85, 23.89]	39.9 % 13.69 [7.85, 23.89]	
Cunningham 2014 (2)	5/49	3/65	24.7 % 2.21 [0.55, 8.81]	24.7 % 2.21 [0.55, 8.81]	
Landman 2015 (3)	173/380	6/304	35.4 % 23.07 [10.37, 51.33]	35.4 % 23.07 [10.37, 51.33]	
Stoney 2016 (4)	0/11	0/18	Not estimable	Not estimable	
Subtotal (95% CI)	1893	695	100.0 % 10.49 [3.79, 29.10]	100.0 % 10.49 [3.79, 29.10]	

Total events: 953 (Mefloquine), 21 (Doxycycline)

Heterogeneity: $\tau^2 = 0.60$, $\chi^2 = 8.53$, df = 2 ($P = 0.01$); $I^2 = 77$

Test for overall effect: $Z = 4.52$ ($P < 0.00001$)

2 RCTs (adverse events)

| Ohrt 1997 (5) | 1/61 | 1/62 | 100.0 % 1.02 [0.07, 15.89] | 100.0 % 1.02 [0.07, 15.89] |
| **Subtotal (95% CI)** | 61 | 62 | 100.0 % 1.02 [0.07, 15.89] | 100.0 % 1.02 [0.07, 15.89] |

Total events: 1 (Mefloquine), 1 (Doxycycline)

Heterogeneity: not applicable

Test for overall effect: $Z = 0.01$ ($P = 0.99$)

3 Cohort studies (adverse events)

| Philips 1996 | 29/285 | 9/383 | 100.0 % 4.33 [2.08, 9.00] | 100.0 % 4.33 [2.08, 9.00] |
| **Subtotal (95% CI)** | 285 | 383 | 100.0 % 4.33 [2.08, 9.00] | 100.0 % 4.33 [2.08, 9.00] |

Total events: 29 (Mefloquine), 9 (Doxycycline)

Heterogeneity: not applicable

Test for overall effect: $Z = 3.92$ ($P = 0.000087$)

Test for subgroup differences: $\chi^2 = 3.40$, df = 2 ($P = 0.18$), $I^2 = 41$%
(1) Korhonen 2007. Reported in the original paper as ‘strange dreams’
(2) Cunningham 2014. Reported in the original paper as ‘unpleasant dreams’
(3) Landman 2015. Reported in the original paper as ‘nightmares/vivid dreams’
(4) Stoney 2016. Reported in the original paper as ‘intense nightmares’
(5) Ohrt 1997. Referred to in the original paper as ‘dreams’

Analysis 2.12. Comparison 2 Mefloquine versus doxycycline, Outcome 12 Insomnia (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 12 Insomnia (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio $\text{M-H, Random, 95\% CI}$	Weight	Risk Ratio $\text{M-H, Random, 95\% CI}$
Sonmez 2005 (1)	0/228	14/506	12.7 % 0.08 [0.00, 1.27]		
Korhonen 2007	49/453	8/308	32.6 % 13.01 [6.54, 25.88]		
Landman 2015	94/380	8/304	32.4 % 9.40 [4.64, 19.04]		
Tuck 2016	3/13	2/20	22.2 % 2.31 [0.44, 11.98]		
Subtotal (95\% CI)	**2074**	**1138**		100.0 %	4.14 [1.19, 14.44]

Total events: 588 (Mefloquine), 32 (Doxycycline)

Heterogeneity: $\tau^2 = 1.12; \chi^2 = 14.82, \text{df} = 3 (P = 0.002); I^2 = 80\%$

Test for overall effect: $Z = 2.23 (P = 0.026)$

2 RCTs (adverse events)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio $\text{M-H, Random, 95\% CI}$	Weight	Risk Ratio $\text{M-H, Random, 95\% CI}$
Ohrt 1997	8/61	4/62	100.0 % 2.03 [0.65, 6.40]		
Subtotal (95\% CI)	**61**	**62**		100.0 %	2.03 [0.65, 6.40]

Total events: 8 (Mefloquine), 4 (Doxycycline)

Heterogeneity: not applicable

Test for overall effect: $Z = 1.21 (P = 0.23)$

3 Cohort studies (adverse events)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio $\text{M-H, Random, 95\% CI}$	Weight	Risk Ratio $\text{M-H, Random, 95\% CI}$
Philips 1996	27/285	8/383	100.0 % 4.54 [2.09, 9.83]		
Subtotal (95\% CI)	**285**	**383**		100.0 %	4.54 [2.09, 9.83]

Total events: 27 (Mefloquine), 8 (Doxycycline)

Heterogeneity: not applicable

(Continued...)

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 2.13. Comparison 2 Mefloquine versus doxycycline, Outcome 13 Anxiety (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 13 Anxiety (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Korhonen 2007	380/1453	4/308	52.4	20.14 [7.58, 53.52]	
Cunningham 2014 (1)	1/49	0/65	3.4	3.96 [0.16, 95.17]	
Landman 2015	104/380	5/304	44.1	16.64 [6.87, 40.30]	
Subtotal (95% CI)	**1882**	**677**	**100.0 %**	**18.04 [9.32, 34.93]**	

Total events: 485 (Mefloquine), 9 (Doxycycline)

Heterogeneity: Chi^2 = 0.95, df = 2 (P = 0.62); I^2 =0.0%

Test for overall effect: Z = 8.58 (P < 0.00001)

2 Cohort studies (adverse events)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
Philips 1996	13/285	2/383	100.0	8.74 [1.99, 38.40]	
Subtotal (95% CI)	**285**	**383**	**100.0 %**	**8.74 [1.99, 38.40]**	

Total events: 245 (Mefloquine), 11 (Doxycycline)

Heterogeneity: Chi^2 = 0.05, df = 1 (P = 0.82); I^2 =0.0%

Test for overall effect: Z = 0.32 (P = 0.75)

(Continued...)
Analysis 2.14. Comparison 2 Mefloquine versus doxycycline, Outcome 14 Depressed mood (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 14 Depressed mood (all studies)

Study or subgroup	Mefloquine n/N	Doxycycline n/N	Risk Ratio M-H,Fixed 95% CI	Weight
1 Cohort studies (adverse events)				
Korhonen 2007 (1)	208/1453	3/308	52.7%	14.70 [4.73, 45.64]
Landman 2015 (2)	39/380	4/304	47.3%	7.80 [2.82, 21.59]
Subtotal (95% CI)	**1833**	**612**	**100.0%**	**11.43 [5.21, 25.07]**
Total events: 247 (Mefloquine), 7 (Doxycycline)				
Heterogeneity: Ch² = 0.73, df = 1 (P = 0.39); I² = 0.0%				
Test for subgroup differences: Ch² = 6.08 (P < 0.00001)				
2 Cohort studies (adverse events)				
Philips 1996 (3)	14/285	3/383	100.0%	6.27 [1.82, 21.62]

(Continued...)

(1) Cunningham 2014. Reported in the original paper as 'anxiety attack'

(2) Eick-Cost 2017. Reported in the original paper as 'anxiety disorders'
Study or subgroup

Mefloquine	Doxycycline	Risk Ratio	Weight	
n/N	n/N	M-H,Fixed,95% CI	M-H,Fixed,95% CI	
Subtotal (95% CI)	285	383	100.0 %	6.27 [1.82, 21.62]
Total events: 14 (Mefloquine), 3 (Doxycycline)				
Heterogeneity: not applicable				
Test for overall effect: Z = 2.91 (P = 0.0036)				
3 Retrospective healthcare record analysis (adverse events)				
Meier 2004	53/16491	14/4574	1.2 %	1.05 [0.58, 1.89]
Eick-Cost 2017 (4)	541/36538	8640/318421	98.8 %	0.55 [0.50, 0.59]
Subtotal (95% CI)	53029	322995	100.0 %	0.55 [0.51, 0.60]
Total events: 594 (Mefloquine), 8654 (Doxycycline)				
Heterogeneity: Chi² = 4.66, df = 1 (P = 0.03); I² =79%				
Test for overall effect: Z = 13.67 (P < 0.00001)				
Test for subgroup differences: Chi² = 70.92, df = 2 (P = 0.00), I² =97%				

(1) Korhonen 2007. Reported in the original paper as ‘depression’
(2) Landman 2015. Reported in the original paper as ‘depression’
(3) Philips 1996. Reported in the original paper as ‘mood change’
(4) Eick-Cost 2017. Reported in the original paper as ‘depressive disorders’
Analysis 2.15. Comparison 2 Mefloquine versus doxycycline, Outcome 15 Abnormal thoughts and perceptions.

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 2 Mefloquine versus doxycycline
Outcome: 15 Abnormal thoughts and perceptions

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
Cohort studies (adverse effects)					
Korhonen 2007 (1)	9/1453	0/308	59.8 %	4.04 [0.24, 69.19]	
Landman 2015 (2)	6/380	0/304	40.2 %	10.41 [0.59, 184.00]	
Subtotal (95% CI)	1833	612	100.0 %	6.60 [0.92, 47.20]	
Total events: 15 (Mefloquine), 0 (Doxycycline)					
Retrospective healthcare record analyses (adverse events)					
Meier 2004 (3)	4/16491	0/4574	1.0 %	2.50 [0.13, 46.36]	
Eick-Cost 2017 (4)	17/36538	381/318421	99.0 %	0.39 [0.24, 0.63]	
Subtotal (95% CI)	53029	322995	100.0 %	0.41 [0.26, 0.66]	
Total events: 21 (Mefloquine), 381 (Doxycycline)					

Heterogeneity: Chi^2 = 0.21, df = 1 (P = 0.65); I^2 = 0.0%
Test for overall effect: Z = 1.88 (P = 0.06)
Test for subgroup differences: Chi^2 = 7.25, df = 1 (P = 0.01), I^2 = 86%

(1) Korhonen 2007. Reported in the original paper as ‘hallucinations’ or ‘went crazy’
(2) Landman 2015. Reported in the original paper as ‘psychosis’
(3) Meier 2004. Reported in the original paper as ‘psychosis’
(4) Eick-Cost 2017. Reported in the original paper as ‘psychosis’. Hallucinations were reported separately.
Analysis 2.16. Comparison 2 Mefloquine versus doxycycline, Outcome 16 Pruritis (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 16 Pruritis (all studies)

Study or subgroup	Mefloquine n/N	Doxycycline n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
1 Cohort studies (adverse effects)					
Korhonen 2007 (1)	42/1453	17/308	0.52 [0.30, 0.91]	100.0%	
Tuck 2016	0/13	0/20	Not estimable		
Subtotal (95% CI)	1466	328	0.52 [0.30, 0.91]	100.0%	
Total events:	42 (Mefloquine), 17 (Doxycycline)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 2.31 (P = 0.021)				
2 Cohort studies (adverse events)					
Philips 1996 (2)	10/285	5/383	2.69 [0.93, 7.78]	100.0%	
Subtotal (95% CI)	285	383	2.69 [0.93, 7.78]	100.0%	
Total events:	10 (Mefloquine), 5 (Doxycycline)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 1.82 (P = 0.068)				
Test for subgroup differences:	Chi² = 7.18, df = 1 (P = 0.001), I² = 86%				

(1) Korhonen 2007. Reported in the original paper as 'itchy skin'

(2) Philips 1996. Reported in the original paper as 'itching'
Analysis 2.17. Comparison 2 Mefloquine versus doxycycline, Outcome 17 Photosensitivity (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 17 Photosensitivity (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Korhonen 2007	34/1453	95/308	0.08 [0.05, 0.11]	97.1 %	
Cunningham 2014 (1)	0/49	5/65	0.12 [0.01, 2.12]	2.9 %	
Subtotal (95% CI)	**1502**	**373**	**100.0 %**	**0.08 [0.05, 0.11]**	
Total events: 34 (Mefloquine), 100 (Doxycycline)					
Heterogeneity: Chi² = 0.10, df = 1 (P = 0.75); I² =0.0%					
Test for overall effect: Z = 13.46 (P < 0.00001)					
2 Cohort studies (adverse events)					
Philips 1996 (2)	0/285	22/383	0.03 [0.00, 0.49]	100.0 %	
Subtotal (95% CI)	**285**	**383**	**100.0 %**	**0.03 [0.00, 0.49]**	
Total events: 0 (Mefloquine), 22 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.46 (P = 0.014)					
Test for subgroup differences: Chi² = 0.44, df = 1 (P = 0.51), I² =0.0%					

(1) Cunningham 2014. Reported in the original paper as ‘skin sensitivity’

(2) Philips 1996. Reported in the original paper as ‘red skin’
Analysis 2.18. Comparison 2 Mefloquine versus doxycycline, Outcome 18 Yeast infection (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 18 Yeast infection (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Korhonen 2007	22/1453	49/308	100.0 %	0.10	[0.06, 0.16]
Subtotal (95% CI)	1453	308	100.0 %	0.10	[0.06, 0.16]
Total events: 22 (Mefloquine), 49 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 9.45 (P < 0.00001)					
2 Cohort studies (adverse events)					
Philips 1996	3/171	17/183	100.0 %	0.19	[0.06, 0.63]
Subtotal (95% CI)	171	183	100.0 %	0.19	[0.06, 0.63]
Total events: 3 (Mefloquine), 17 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.70 (P = 0.0069)					
Test for subgroup differences: Chi² = 1.06, df = 1 (P = 0.30), I² =6%					

(1) Philips 1996. Reported in the original paper as ‘vaginal itch’, the analysis of vaginal itch was limited to females.
Analysis 2.19. Comparison 2 Mefloquine versus doxycycline, Outcome 19 Visual impairment (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 19 Visual impairment (all studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
Cohort studies (adverse effects)					
Korhonen 2007 (1)	164/1453	14/308	2.48 [1.46, 4.23]	94.7%	
Cunningham 2014	0/49	1/65	0.44 [0.02, 10.57]	5.3%	
Subtotal (95% CI)	1502	373	2.37 [1.41, 3.99]	100.0%	

Total events: 164 (Mefloquine), 15 (Doxycycline)

Heterogeneity: $\chi^2 = 1.11$, df = 1 ($P = 0.29$); $I^2 = 10\%$

Test for overall effect: $Z = 3.26$ ($P = 0.0011$)

Test for subgroup differences: Not applicable

(1) Korhonen 2007. Reported in the original paper as 'visual disturbance'
Analysis 2.20. Comparison 2 Mefloquine versus doxycycline, Outcome 20 Other adverse effects (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 2 Mefloquine versus doxycycline
Outcome: 20 Other adverse effects (cohort studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
n/N	n/N	M-H,Fixed,95% CI	M-H,Fixed,95% CI		
Alopecia	1/49	0/65	2.1 %	3.96 [0.16, 95.17]	
Cunningham 2014 (1)	1/49	0/65	2.1 %	3.96 [0.16, 95.17]	
Korhonen 2007 (2)	194/1453	12/308	97.9 %	3.43 [1.94, 6.06]	
Subtotal (95% CI)	**1502**	**373**		**100.0 %**	**3.44 [1.96, 6.03]**
Total events:			195 (Mefloquine), 12 (Doxycycline)		
Heterogeneity:	Chi² = 0.01, df = 1 (P = 0.93); I² =0.0%				
Test for overall effect:	Z = 4.31 (P = 0.000016)				
Asthenia	69/1453	8/308	100.0 %	1.83 [0.89, 3.76]	
Korhonen 2007 (3)	69/1453	8/308	100.0 %	1.83 [0.89, 3.76]	
Subtotal (95% CI)	**1453**	**308**		**100.0 %**	**1.83 [0.89, 3.76]**
Total events:			69 (Mefloquine), 8 (Doxycycline)		
Heterogeneity:	not applicable				
Test for overall effect:	Z = 1.64 (P = 0.10)				
Balance disorder	122/1453	9/308	100.0 %	2.87 [1.48, 5.59]	
Korhonen 2007 (4)	122/1453	9/308	100.0 %	2.87 [1.48, 5.59]	
Subtotal (95% CI)	**1453**	**308**		**100.0 %**	**2.87 [1.48, 5.59]**
Total events:			122 (Mefloquine), 9 (Doxycycline)		
Heterogeneity:	not applicable				
Test for overall effect:	Z = 3.11 (P = 0.0019)				
Decreased appetite	5/228	9/506	100.0 %	1.23 [0.42, 3.64]	
Sonmez 2005 (5)	5/228	9/506	100.0 %	1.23 [0.42, 3.64]	
Subtotal (95% CI)	**228**	**506**		**100.0 %**	**1.23 [0.42, 3.64]**
Total events:			5 (Mefloquine), 9 (Doxycycline)		
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.38 (P = 0.70)				
Fatigue	0/13	5/28	64.2 %	0.19 [0.01, 3.17]	
Shamiss 1996	0/13	5/28	64.2 %	0.19 [0.01, 3.17]	
Tuck 2016 (6)	0/13	2/20	35.8 %	0.30 [0.02, 5.79]	
Subtotal (95% CI)	**26**	**48**		**100.0 %**	**0.23 [0.03, 1.77]**
Total events:			0 (Mefloquine), 7 (Doxycycline)		
Heterogeneity:	Chi² = 0.05, df = 1 (P = 0.82); I² =0.0%				
Test for overall effect:	Z = 1.41 (P = 0.16)				

(Continued...)

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
6 Hypoaesthesia	22/1453	1/308	59.8 %	4.66 [0.63, 34.47]	
Korhonen 2007 (7)					
Landman 2015 (8)	27/380	1/304	40.2 %	21.60 [2.95, 158.05]	
Subtotal (95% CI)	**1833**	**612**	**100.0 %**	**11.48 [3.01, 43.70]**	
7 Malaise	5/228	39/506	100.0 %	0.28 [0.11, 0.71]	
Sonmez 2005 (9)					
Subtotal (95% CI)	**228**	**506**	**100.0 %**	**0.28 [0.11, 0.71]**	
8 Mouth ulcers	0/13	1/20	100.0 %	0.50 [0.02, 11.42]	
Tuck 2016					
Subtotal (95% CI)	**13**	**20**	**100.0 %**	**0.50 [0.02, 11.42]**	
9 Palpitations	6/1453	0/308	100.0 %	2.76 [0.16, 48.91]	
Korhonen 2007 (7)					
Subtotal (95% CI)	**1453**	**308**	**100.0 %**	**2.76 [0.16, 48.91]**	
10 Tinnitus	4/380	0/304	100.0 %	7.20 [0.39, 133.30]	
Landman 2015 (8)					
Subtotal (95% CI)	**380**	**304**	**100.0 %**	**7.20 [0.39, 133.30]**	

Heterogeneity: Chi² = 1.17, df = 1 (P = 0.28); I² = 14%
Analysis 2.21. Comparison 2 Mefloquine versus doxycycline, Outcome 21 Other adverse events (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 21 Other adverse events (RCTs)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed,95% CI	
Constipation				
Ohrt 1997	2/61	1/62	100.0 %	2.03 [0.19, 21.84]
Subtotal (95% CI)	61	62	100.0 %	2.03 [0.19, 21.84]
Total events:	2 (Mefloquine), 1 (Doxycycline)			
Heterogeneity:	not applicable			
Test for overall effect: Z = 0.59 (P = 0.56)				
Cough				
Ohrt 1997	11/61	21/62	100.0 %	0.53 [0.28, 1.01]
Subtotal (95% CI)	61	62	100.0 %	0.53 [0.28, 1.01]
Total events:	11 (Mefloquine), 21 (Doxycycline)			
Heterogeneity:	not applicable			
Test for overall effect: Z = 1.94 (P = 0.053)				
Decreased appetite				
Ohrt 1997 (1)	14/61	4/62	100.0 %	3.56 [1.24, 10.20]
Subtotal (95% CI)	61	62	100.0 %	3.56 [1.24, 10.20]
Total events:	14 (Mefloquine), 4 (Doxycycline)			

Favours mefloquine Favours doxycycline

(Continued . . .)
Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Heterogeneity: not applicable					
Test for overall effect: Z = 2.36 (P = 0.018)					
4 Malaise					
Ohrt 1997	14/61	7/62			
Subtotal (95% CI)	61	62		100.0 %	2.03 [0.88, 4.69]
Total events: 14 (Mefloquine), 7 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.66 (P = 0.096)					
5 Palpitations					
Ohrt 1997	2/61	1/62			
Subtotal (95% CI)	61	62		100.0 %	2.03 [0.19, 21.84]
Total events: 2 (Mefloquine), 1 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.59 (P = 0.56)					
6 Pyrexia					
Ohrt 1997 (2)	14/61	5/62			
Subtotal (95% CI)	61	62		100.0 %	2.85 [1.09, 7.42]
Total events: 14 (Mefloquine), 5 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.14 (P = 0.032)					
7 Sexual dysfunction					
Ohrt 1997	3/61	1/62			
Subtotal (95% CI)	61	62		100.0 %	3.05 [0.33, 28.51]
Total events: 3 (Mefloquine), 1 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.98 (P = 0.33)					
8 Somnolence					
Ohrt 1997	2/61	1/62			
Subtotal (95% CI)	61	62		100.0 %	2.03 [0.19, 21.84]
Total events: 2 (Mefloquine), 1 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.59 (P = 0.56)					

(1) Ohrt 1997. Referred to in the original paper as 'anorexia'

(2) Ohrt 1997. Referred to in the original paper as 'fever'
Analysis 2.22. Comparison 2 Mefloquine versus doxycycline, Outcome 22 Other adverse events (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: Mefloquine versus doxycycline

Outcome: Other adverse events (cohort studies)

Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI	M-H,Fixed,95% CI	
1 Adjustment disorder	Eick-Cost 2017 1220/36538 24853/318421	24853/318421	100.0 %	0.43 [0.40, 0.45]	
Subtotal (95% CI)	36538	318421	100.0 %	0.43 [0.40, 0.45]	
Total events: 1220 (Mefloquine), 24853 (Doxycycline)	Heterogeneity: not applicable	Test for overall effect: Z = 29.48 (P < 0.00001)			
2 Confusion	Eick-Cost 2017 1/36538 4/318421	4/318421	100.0 %	2.18 [0.24, 19.49]	
Subtotal (95% CI)	36538	318421	100.0 %	2.18 [0.24, 19.49]	
Total events: 1 (Mefloquine), 4 (Doxycycline)	Heterogeneity: not applicable	Test for overall effect: Z = 0.70 (P = 0.49)			
3 Convulsions	Eick-Cost 2017 65/36538 973/318421	973/318421	100.0 %	0.58 [0.45, 0.75]	
Subtotal (95% CI)	36538	318421	100.0 %	0.58 [0.45, 0.75]	
Total events: 65 (Mefloquine), 973 (Doxycycline)	Heterogeneity: not applicable	Test for overall effect: Z = 4.23 (P = 0.000024)			
4 Hallucinations	Eick-Cost 2017 5/36538 237/318421	237/318421	100.0 %	0.18 [0.08, 0.45]	
Subtotal (95% CI)	36538	318421	100.0 %	0.18 [0.08, 0.45]	
Total events: 5 (Mefloquine), 237 (Doxycycline)	Heterogeneity: not applicable	Test for overall effect: Z = 3.75 (P = 0.00018)			
5 Paranoia	Eick-Cost 2017 2/36538 44/318421	44/318421	100.0 %	0.40 [0.10, 1.63]	
Subtotal (95% CI)	36538	318421	100.0 %	0.40 [0.10, 1.63]	
Total events: 2 (Mefloquine), 44 (Doxycycline)	Heterogeneity: not applicable	Test for overall effect: Z = 1.28 (P = 0.20)			
6 Palpitations	Philips 1996 10/285 1/383	1/383	100.0 %	13.44 [1.73, 104.38]	
Subtotal (95% CI)	285	383	100.0 %	13.44 [1.73, 104.38]	

(Continued...)
Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Total events: 10 (Mefloquine), 1 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.48 (P = 0.013)					
7 Panic attacks					
Meier 2004	15/16491	14574			
Subtotal (95% CI)	16491	4574	100.0 %	4.16 [0.55, 31.49]	4.16 [0.55, 31.49]
Total events: 15 (Mefloquine), 1 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.38 (P = 0.17)					
8 PTSD					
Eick-Cost 2017	448/36538	6719/318421			
Subtotal (95% CI)	36538	318421	100.0 %	0.58 [0.53, 0.64]	0.58 [0.53, 0.64]
Total events: 448 (Mefloquine), 6719 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 11.20 (P < 0.00001)					
9 Rash					
Philips 1996	9/285	10/383			
Subtotal (95% CI)	285	383	100.0 %	1.21 [0.50, 2.94]	1.21 [0.50, 2.94]
Total events: 9 (Mefloquine), 10 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.42 (P = 0.67)					
10 Suicidal ideation					
Eick-Cost 2017	91/36538	2066/318421			
Subtotal (95% CI)	36538	318421	100.0 %	0.38 [0.31, 0.47]	0.38 [0.31, 0.47]
Total events: 91 (Mefloquine), 2066 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 8.95 (P < 0.00001)					
11 Suicide					
Eick-Cost 2017	2/36538	15/318421			
Meier 2004	2/16491	0/4574			
Subtotal (95% CI)	53029	322995	100.0 %	1.16 [0.27, 5.08]	1.16 [0.27, 5.08]
Total events: 4 (Mefloquine), 15 (Doxycycline)					
Heterogeneity: Chi² = 0.01, df = 1 (P = 0.92); P =0.0%					
Test for overall effect: Z = 0.28 (P = 0.78)					
12 Tinnitus					
Eick-Cost 2017	707/36538	9416/318421			
Subtotal (95% CI)	36538	318421	100.0 %	0.65 [0.61, 0.71]	0.65 [0.61, 0.71]
Total events: 707 (Mefloquine), 9416 (Doxycycline)					
Heterogeneity: not applicable					
Test for overall effect: Z = 10.99 (P < 0.00001)					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 2.23. Comparison 2 Mefloquine versus doxycycline, Outcome 23 Adherence (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 2 Mefloquine versus doxycycline

Outcome: 23 Adherence (cohort studies)

Study or subgroup	Mefloquine n/N	Doxycycline n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
1 Adherence during travel					
Cunningham 2014 (1)	12/49	24/65	0.7 % 0.66 [0.37, 1.19]	0.045	
Goodyer 2011 (2)	21/30	29/70	0.6 % 1.69 [1.17, 2.43]	0.035	
Korhonen 2007 (3)	946/1453	115/308	6.3 % 1.74 [1.50, 2.02]	0.035	
Landman 2015 (4)	231/380	206/304	7.6 % 1.74 [1.50, 2.02]	0.035	
Laver 2001 (5)	163/184	38/48	2.0 % 1.12 [0.96, 1.31]	0.035	
Lavel 2001 (6)	3430/3630	53/60	3.5 % 1.07 [0.98, 1.17]	0.035	
Philips 1996 (7)	223/285	261/383	7.4 % 1.15 [1.05, 1.26]	0.035	
Saunders 2015 (8)	477/536	870/1438	17.0 % 1.32 [1.25, 1.40]	0.035	
Shamiss 1996 (9)	15/15	21/28	0.5 % 1.31 [1.04, 1.65]	0.035	
Sonmez 2005 (10)	138/228	284/506	5.9 % 1.08 [0.95, 1.23]	0.035	
Tan 2017 (11)	1691/2972	425/828	22.2 % 1.11 [1.03, 1.19]	0.035	
Terrell 2015 (12)	891/938	695/752	25.8 % 1.03 [1.00, 1.05]	0.035	
Tuck 2016 (13)	13/13	15/20	0.4 % 1.31 [0.99, 1.72]	0.035	
Subtotal (95% CI)	**10773**	**4810**	100.0 % 1.15 [1.12, 1.18]	0.035	

Total events: 8251 (Mefloquine), 3036 (Doxycycline)

Heterogeneity: Chi² = 162.08, df = 12 (P<0.00001); I² = 93%

Test for overall effect: Z = 10.12 (P < 0.00001)

2 Adherence in the post-travel period

Study or subgroup	Mefloquine n/N	Doxycycline n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
Goodyer 2011 (14)	15/30	19/70	5.5 % 1.84 [1.09, 3.11]	0.035	
Philips 1996 (15)	154/285	205/383	84.8 % 1.01 [0.88, 1.16]	0.035	
Shamiss 1996 (16)	13/15	21/28	7.1 % 1.16 [0.86, 1.55]	0.035	
Stoney 2016 (17)	6/11	7/16	2.6 % 1.40 [0.64, 3.09]	0.035	
Subtotal (95% CI)	**341**	**499**	100.0 % 1.08 [0.95, 1.22]	0.035	

Total events: 188 (Mefloquine), 252 (Doxycycline)

(Continued . . .)
Study or subgroup	Mefloquine	Doxycycline	Risk Ratio	Weight	Risk Ratio
n/N n/N M-H,Fixed,95% CI	n/N M-H,Fixed,95% CI				
Heterogeneity: Chi2 = 5.47, df = 3 (P = 0.14); I2 =45% Test for overall effect: Z = 1.13 (P = 0.26) Test for subgroup differences: Chi2 = 1.02, df = 1 (P = 0.31), I2 =2%					
(1) Cunningham 2014. Reported taking prophylaxis >95% of the time					
(2) Goodyer 2011. Defined as ‘proportion of travelers reporting taking all medication’					
(3) Karhonen 2007. Defined as participants who reported they ‘never’ missed doses					
(4) Landman 2015. Defined as ‘PCVs reporting taking daily medications at any time each day or taking weekly medications with no more than 8 days between doses were defined as adherent’					
(5) Laver 2001. Defined as ‘full compliance, i.e., regular medication with no missed doses’					
(6) Lobel 2001. Defined as ‘uninterrupted use of antimalarial drugs during travel in Africa’					
(7) Philips 1996. Defined as ‘complete self-reported compliance’					
(8) Saunders 2015. Defined as doxycycline recipients reporting daily use, or mefloquine recipients reporting weekly use.					
(9) Shamiss 1996. Defined as ‘compliance throughout operation’					
(10) Sonmez 2005. Defined as ‘always regular’					
(11) Tan 2017. ‘Taken as prescribed’					
(12) Terrell 2015. ‘Reported that they had taken their drugs as prescribed’					
(13) Tuck 2016. ‘Fully compliant’					
(14) Goodyer 2011. Reported as ‘took all drugs in the post-travel period’					
(15) Philips 1996. Reported as ‘reported completing the regimen’					
(16) Shamiss 1996. Reported as ‘compliance in post operation period’					
(17) Stoney 2016. Reported as ‘number adherent during post-prophylaxis period’					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 3.1. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 1 Clinical cases of malaria (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 1 Clinical cases of malaria (RCTs)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Odds Ratio	Weight	Odds Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Overbosch 2001	0/483	0/493	Not estimable		Not estimable
Schagenhauf 2003	0/153	0/164	Not estimable		Not estimable
Total (95% CI)	**636**	**657**	**Not estimable**		

Total events: 0 (Mefloquine), 0 (Atovaquone-proguanil)

Heterogeneity: not applicable

Test for overall effect: not applicable

Test for subgroup differences: Not applicable

Favours mefloquine Favours atovaquone-proguanil
Analysis 3.2. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 2 Serious adverse events or effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 2 Serious adverse events or effects (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed 95% CI		M-H,Fixed 95% CI
1 Cohort studies					
Andersson 2008	0/491	0/161	Not estimable		
Korhonen 2007 (1)	15/1612	0/72	100.0 %	1.40	[0.08, 23.22]
Napoletano 2007	0/548	0/707	Not estimable		
Total (95% CI)	**2651**	**940**	**100.0 %**	**1.40**	**[0.08, 23.22]**

Total events: 15 (Mefloquine), 0 (Atovaquone-proguanil)

Heterogeneity: not applicable

Test for overall effect: Z = 0.24 (P = 0.81)

Test for subgroup differences: Not applicable

(1) Korhonen 2007. The denominator includes all participants who reported taking the drug at any time. Participants may contribute data more than once.
Analysis 3.3. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 3 Discontinuations due to adverse effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 3 Mefloquine versus atovaquone-proguanil
Outcome: 3 Discontinuations due to adverse effects (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H	Weight	Risk Ratio M-H
	n/N	n/N			
1 RCTs					
Overbosch 2001	24/483	6/493	4.08 [1.68, 9.90]	49.2 %	
Schlagenhauf 2003	6/156	3/166	2.13 [0.54, 8.36]	20.6 %	
van Riemsdijk 2002	9/75	4/65	1.95 [0.63, 6.04]	30.2 %	
Subtotal (95% CI)	**714**	**724**	**100.0 %**	**2.86 [1.53, 5.31]**	
Total events: 39 (Mefloquine), 13 (Atovaquone-proguanil)					

Heterogeneity: Tau² = 0.0; Chi² = 1.25, df = 2 (P = 0.53); I² =0.0%
Test for overall effect: Z = 3.31 (P = 0.00093)

2 Cohort studies

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H	Weight	Risk Ratio M-H
	n/N	n/N			
Andersson 2008	40/488	4/121	2.48 [0.90, 6.80]	11.2 %	
Kato 2013	4/38	5/278	5.85 [1.64, 20.85]	7.9 %	
Korhonen 2007	370/1612	2/72	8.26 [2.10, 32.50]	7.0 %	
Kuhner 2005	7/142	4/82	1.01 [0.30, 3.35]	8.7 %	
Napoletano 2007	66/548	24/707	3.55 [2.25, 5.58]	25.4 %	
Sharafeldin 2010 (1)	8/40	10/62	1.24 [0.54, 2.87]	14.2 %	
Stoney 2016	0/11	10/297	1.18 [0.07, 19.02]	2.0 %	
Tan 2017	365/2973	8/183	2.81 [1.42, 5.57]	18.0 %	
Tuck 2016	2/13	5/118	3.63 [0.78, 16.88]	5.8 %	
Subtotal (95% CI)	**5865**	**1920**	**100.0 %**	**2.73 [1.83, 4.08]**	
Total events: 862 (Mefloquine), 72 (Atovaquone-proguanil)					

Heterogeneity: Tau² = 0.11; Chi² = 11.89, df = 8 (P = 0.16); I² =33%
Test for overall effect: Z = 4.90 (P < 0.00001)
Test for subgroup differences: Chi² = 0.01, df = 1 (P = 0.91), I² =0.0%

(1) Sharafeldin 2010. Number of discontinuations due to adverse effects was unclear. ‘Shortage of tablets or simply forgetting to take the prophylaxis constituted the main reasons for stopping the use of atovaquone/proguanil’
Analysis 3.4. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 4 Nausea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 4 Nausea (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio (M-H,Fixed,95% CI)	Weight	Risk Ratio (M-H,Fixed,95% CI)		
1 RCTs (adverse effects)							
Overbosch 2001	40/483	15/493	2.72 [1.52, 4.86]	100.0 %	2.72 [1.52, 4.86]		
Subtotal (95% CI)	**483**	**493**				100.0 %	2.72 [1.52, 4.86]
Total events: 40 (Mefloquine), 15 (Atovaquone-proguanil)							
Heterogeneity: not applicable							
Test for overall effect: Z = 3.38 (P = 0.00071)							
2 Cohort studies (adverse effects)							
Andersson 2008 (1)	30/491	4/161	2.46 [0.88, 6.87]	26.2 %	2.46 [0.88, 6.87]		
Cunningham 2014	2/49	1/182	7.43 [0.69, 80.24]	1.8 %	7.43 [0.69, 80.24]		
Kato 2013	5/38	5/277	7.29 [2.21, 24.02]	5.2 %	7.29 [2.21, 24.02]		
Korhonen 2007	165/1453	2/16	0.91 [0.25, 3.35]	17.2 %	0.91 [0.25, 3.35]		
Kuhner 2005	19/142	5/82	2.19 [0.85, 5.66]	27.6 %	2.19 [0.85, 5.66]		
Laverone 2006	65/444	2/43	3.15 [0.80, 12.41]	15.9 %	3.15 [0.80, 12.41]		
Tuck 2016	1/13	7/118	1.30 [0.17, 9.73]	6.0 %	1.30 [0.17, 9.73]		
Subtotal (95% CI)	**2630**	**879**				100.0 %	2.50 [1.54, 4.06]
Total events: 287 (Mefloquine), 26 (Atovaquone-proguanil)							
Heterogeneity: $\chi^2 = 6.80$, df = 6 (P = 0.34); $I^2 = 12\%$							
Test for overall effect: Z = 3.72 (P = 0.00020)							
Test for subgroup differences: $\chi^2 = 0.05$, df = 1 (P = 0.83), $I^2 = 0.0\%$							

(1) Andersson 2008. Reported in the original paper as ‘nausea/vomiting’
Analysis 3.5. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 5 Vomiting (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 5 Vomiting (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N			
			M-H,Random,95% CI		M-H,Random,95% CI
1 RCTs (adverse effects)					
Overbosch 2001	9/483	7/493	100.0 %	1.31	[0.49, 3.50]
Subtotal (95% CI)	483	493	100.0 %	1.31	[0.49, 3.50]
Total events:	9 (Mefloquine), 7 (Atovaquone-proguanil)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.54 (P = 0.59)				
2 Cohort studies (adverse effects)					
Korhonen 2007	28/1453	2/16	38.7 %	0.15	[0.04, 0.59]
Kuhner 2005	5/142	1/82	30.5 %	2.89	[0.34, 24.29]
Laverone 2006	6/444	1/43	30.8 %	0.58	[0.07, 4.72]
Subtotal (95% CI)	2039	141	100.0 %	0.57	[0.08, 4.09]
Total events:	39 (Mefloquine), 4 (Atovaquone-proguanil)				
Heterogeneity:	Tau² = 2.16, Chi² = 6.93, df = 2 (P = 0.03); I² =71%				
Test for overall effect:	Z = 0.56 (P = 0.57)				
Test for subgroup differences:	Chi² = 0.56, df = 1 (P = 0.46), I² =0.0%				

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 3.6. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 6 Abdominal pain (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 6 Abdominal pain (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
I RCTs (adverse effects)					
Overbosch 2001	23/483	26/493		100.0 %	0.90 [0.52, 1.56]
Subtotal (95% CI)	**483**	**493**		**100.0 %**	**0.90 [0.52, 1.56]**
Total events: 23 (Mefloquine), 26 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.37 (P = 0.71)					
2 Cohort studies (adverse effects)					
Andersson 2008 (1)	18/491	13/161	57.5 %	0.45 [0.23, 0.91]	
Cunningham 2014	0/49	4/182	5.7 %	0.41 [0.02, 7.43]	
Kato 2013	1/38	11/277	7.8 %	0.66 [0.09, 4.99]	
Khorhen 2007	54/1453	0/16	2.9 %	1.27 [0.08, 19.80]	
Kuhner 2005	9/142	4/82	14.9 %	1.30 [0.41, 4.09]	
Laverone 2006 (2)	9/444	1/43	5.4 %	0.87 [0.11, 6.72]	
Tuck 2016	0/13	9/118	5.9 %	0.45 [0.03, 7.28]	
Subtotal (95% CI)	**2630**	**879**		**100.0 %**	**0.64 [0.38, 1.07]**
Total events: 91 (Mefloquine), 42 (Atovaquone-proguanil)					
Heterogeneity: Chi² = 2.90, df = 6 (P = 0.82); I² =0.0%					
Test for overall effect: Z = 1.71 (P = 0.087)					
Test for subgroup differences: Chi² = 0.82, df = 1 (P = 0.37), I² =0.0%					

(1) Andersson 2008. Reported in the original paper as ‘stomach pain’

(2) Laverone 2006. Reported in the original paper as ‘stomachache’
Analysis 3.7. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 7 Diarrhoea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 7 Diarrhoea (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs (adverse effects)					
Overbosch 2001	34/483	37/493	1.000 %	0.94	[0.60, 1.47]
Subtotal (95% CI)	**483**	**493**		**0.94**	[0.60, 1.47]
Total events: 34 (Mefloquine), 37 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.28 (P = 0.78)					
2 Cohort studies (adverse effects)					
Andersson 2008	23/491	6/161	24.5 %	1.26	[0.52, 3.03]
Cunningham 2014	0/49	3/182	4.1 %	0.52	[0.03, 9.96]
Kato 2013	1/38	14/277	9.2 %	0.52	[0.07, 3.85]
Korhonien 2007	45/1453	1/116	5.4 %	0.50	[0.07, 3.38]
Kuhner 2005	16/142	10/82	34.4 %	0.92	[0.44, 1.94]
Laverone 2006	21/444	3/43	14.8 %	0.68	[0.21, 2.18]
Tuck 2016	0/13	13/118	7.7 %	0.31	[0.02, 5.01]
Subtotal (95% CI)	**2630**	**879**		**0.85**	[0.53, 1.35]
Total events: 106 (Mefloquine), 50 (Atovaquone-proguanil)					
Heterogeneity: Chi² = 2.09, df = 6 (P = 0.91); I² = 0.0%					
Test for overall effect: Z = 0.70 (P = 0.48)					
Test for subgroup differences: Chi² = 0.10, df = 1 (P = 0.75), I² = 0.0%					
Analysis 3.8. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 8 Mouth ulcers (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 8 Mouth ulcers (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs (adverse effects)					
Overbosch 2001	17/483	12/493	1.45 [0.70, 3.00]	100.0 %	1.45 [0.70, 3.00]
Subtotal (95% CI)	483	493			
Total events: 17 (Mefloquine), 12 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.99 (P = 0.32)					
2 Cohort studies (adverse effects)					
Andersson 2008	3/491	11/161	0.09 [0.03, 0.32]	82.7 %	0.09 [0.03, 0.32]
Tuck 2016	0/13	16/118	0.26 [0.02, 4.06]	17.3 %	0.26 [0.02, 4.06]
Subtotal (95% CI)	504	279			
Total events: 3 (Mefloquine), 27 (Atovaquone-proguanil)					
Heterogeneity: Chi² = 0.50, df = 1 (P = 0.48); I² =0.0%					
Test for overall effect: Z = 3.64 (P = 0.00028)					
Test for subgroup differences: Chi² = 12.98, df = 1 (P = 0.00), I² =92%					

Favours Mefloquine Favours Atovaquone-Proguanil
Analysis 3.9. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 9 Headache (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 9 Headache (all studies)

Study or subgroup	Mefloquine n/N	Atovaquone-proguanil n/N	Risk Ratio M-H,Fixed 95% CI	Weight
1 RCTs (adverse effects)				
Overbosch 2001	32/483	19/493	1.72 [0.99, 2.99]	100.0 %
Subtotal (95% CI)	483	493	1.72 [0.99, 2.99]	100.0 %
Total events: Mefloquine 32, Atovaquone-proguanil 19				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.92 (P = 0.055)				

2 Cohort studies (adverse effects)				
Andersen 2008	21/491	2/161	3.44 [0.82, 14.52]	25.7 %
Cunningham 2014	0/49	3/182	12.8 %	0.52 [0.03, 9.96]
Kata 2013	4/38	4/277	8.2 %	7.29 [1.90, 27.94]
Korhonen 2007	100/1453	0/16	8.4 %	2.35 [0.15, 36.30]
Kuhner 2005	8/142	2/82	21.7 %	2.31 [0.50, 10.62]
Landman 2015	23/380	1/97	13.6 %	5.87 [0.80, 42.94]
Laverone 2006	18/444	0/43	7.8 %	3.66 [0.22, 59.68]
Stoney 2016	0/11	2/97	1.7 %	4.97 [0.25, 97.88]
Subtotal (95% CI)	3008	1155	3.42 [1.71, 6.82]	100.0 %
Total events: Mefloquine 174, Atovaquone-proguanil 14				
Heterogeneity: Chi² = 3.45, df = 7 (P = 0.84); I² = 0.0%				
Test for overall effect: Z = 3.49 (P = 0.00048)				
Test for subgroup differences: Chi² = 2.32, df = 1 (P = 0.13), I² = 57%				
Analysis 3.10. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 10 Dizziness (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 3 Mefloquine versus atovaquone-proguanil
Outcome: 10 Dizziness (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed 95% CI		M-H,Fixed 95% CI
Subtotal (95% CI)	483	493	-	100.0%	3.99 [2.08, 7.64]
1 RCTs (adverse effects)					
Overbosch 2001 (1)	43/483	11/493	-	100.0%	3.99 [2.08, 7.64]
Subtotal (95% CI)	483	493	-	100.0%	3.99 [2.08, 7.64]
Total events: 43 (Mefloquine), 11 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 4.17 (P = 0.000030)					
2 Cohort studies (adverse effects)					
Andersson 2008	52/491	6/161	-	45.6%	2.84 [1.24, 6.49]
Cunningham 2014	1/49	2/182	-	4.3%	1.86 [0.17, 20.06]
Kato 2013	3/38	8/277	-	9.7%	2.73 [0.76, 9.86]
Korhonen 2007	189/1453	1/16	-	100.0%	2.08 [0.31, 13.95]
Kuhner 2005	17/142	1/82	-	6.4%	9.82 [1.33, 72.42]
Landman 2015 (2)	52/380	0/97	-	4.0%	27.01 [1.68, 433.65]
Laverone 2006	25/444	2/43	-	18.4%	1.21 [0.30, 4.94]
Tuck 2016	0/13	1/118	-	1.6%	2.83 [0.12, 66.27]
Subtotal (95% CI)	3010	976	-	100.0%	3.83 [2.23, 6.58]
Total events: 339 (Mefloquine), 21 (Atovaquone-proguanil)					
Heterogeneity: Chi² = 6.88, df = 7 (P = 0.44); I² =0.0%					
Test for overall effect: Z = 4.86 (P < 0.000001)					
3 Retrospective healthcare record analysis (adverse events)					
Eick-Cost 2017	608/36538	174/12881	-	100.0%	1.23 [1.04, 1.46]
Subtotal (95% CI)	36538	12881	-	100.0%	1.23 [1.04, 1.46]
Total events: 608 (Mefloquine), 174 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.44 (P = 0.015)					
Test for subgroup differences: Chi² = 25.29, df = 2 (P = 0.00), I² =92%					

(1) Overbosch 2001. Reported in the original paper as ‘dizziness or vertigo’
(2) Landman 2015. Reported in the original paper as ‘dizziness/vertigo’
Analysis 3.11. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 11 Abnormal dreams (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 11 Abnormal dreams (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M: H Random, 95% CI	Weight
n/N	n/N			
Overbosch 2001 (1)	66/483	33/493	2.04 [1.37, 3.04]	
Total events: 66 (Mefloquine), 33 (Atovaquone-proguanil)				
Heterogeneity: not applicable				
Test for overall effect: Z = 3.51 (P = 0.00045)				

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M: H Random, 95% CI	Weight
n/N	n/N			
Andersson 2008 (2)	168/491	5/161	3.51 [1.91, 6.37]	
Cunningham 2014 (3)	5/49	27/182	1.90 [0.69, 5.51]	
Korhonen 2007 (4)	775/1453	0/16	18.13 [1.18, 278.37]	
Kuhner 2005	8/142	0/82	11.7 [0.69, 21.52]	
Landman 2015 (5)	173/380	2/97	11.5 [0.54, 25.26]	
Laverone 2006 (6)	25/444	0/43	11.5 [0.31, 42.41]	
Stoney 2016 (7)	0/11	1/297	11.5 [0.36, 39.02]	
Total events: 1154 (Mefloquine), 35 (Atovaquone-proguanil)				
Heterogeneity: Tau² = 2.55; Chi² = 31.02, df = 6 (P = 0.00003); I² = 81%				
Test for overall effect: Z = 2.65 (P = 0.0080)				
Test for subgroup differences: Chi² = 2.57, df = 1 (P = 0.11), I² = 61%				

(1) Overbosch 2001. Reported in the original paper as 'strange or vivid dreams'
(2) Andersson 2008. Reported in the original paper as 'nightmares'
(3) Cunningham 2014. Reported in the original paper as 'unpleasant dreams'
(4) Korhonen 2007. Reported in the original paper as 'strange dreams'
(5) Landman 2015. Reported in the original paper as 'nightmares/ vivid dreams'
(6) Laverone 2006. Reported in the original paper as 'nightmares'
(7) Stoney 2016. Reported in the original paper as 'intense nightmares'
Analysis 3.12. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 12 Insomnia (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 12 Insomnia (all studies)

Study or subgroup	Mefloquine n/N	Atovaquone-proguanil n/N	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
1 RCTs (adverse effects)					
Overbosch 2001	65/483	15/493	4.42 [2.56, 7.64]	100.0%	
Subtotal (95% CI)	483	493	4.42 [2.56, 7.64]	100.0%	
Total events: 65 (Mefloquine), 15 (Atovaquone-proguanil)					

Heterogeneity: not applicable

Test for overall effect: Z = 5.33 (P < 0.00001)

2 Cohort studies (adverse effects)					
Andersson 2008 (1)	171/491	8/161	54.8 % 7.01 [3.53, 13.92]	1.1 % 14.58 [1.35, 156.96]	
Cunningham 2014	0/49	5/182	10.7 % 0.33 [0.02, 5.92]	4.5 % 11.49 [0.75, 176.52]	
Kato 2013	2/38	1/277	5.8 % 8.08 [1.08, 60.36]	4.5 % 12.00 [3.01, 47.82]	
Kehronen 2007	491/1453	0/16	4.5 % 4.58 [1.35, 156.96]	4.5 % 7.29 [4.37, 12.16]	
Kuhner 2005	14/142	1/82	1.1 % 14.58 [1.35, 156.96]	4.5 % 7.02 [0.44, 112.48]	
Landman 2015	94/380	2/97	1.1 % 14.58 [1.35, 156.96]	4.5 % 7.02 [0.44, 112.48]	
Laverone 2006	35/444	0/43	1.1 % 14.58 [1.35, 156.96]	4.5 % 7.02 [0.44, 112.48]	
Tuck 2016	3/13	5/118	1.1 % 14.58 [1.35, 156.96]	4.5 % 7.02 [0.44, 112.48]	
Subtotal (95% CI)	3010	976	100.0% 7.29 [4.37, 12.16]		
Total events: 810 (Mefloquine), 22 (Atovaquone-proguanil)					

Heterogeneity: Chi² = 5.56, df = 7 (P = 0.59); I² = 0%

Test for overall effect: Z = 7.61 (P < 0.00001)

3 Retrospective healthcare record analysis (adverse events)					
Eick-Cost 2017	743/36538	212/12881	1.24 [1.06, 1.44]	100.0%	
Subtotal (95% CI)	36538	12881	1.24 [1.06, 1.44]	100.0%	
Total events: 743 (Mefloquine), 212 (Atovaquone-proguanil)					

Heterogeneity: not applicable

Test for overall effect: Z = 2.74 (P = 0.0061)

Test for subgroup differences: Chi² = 57.94; df = 2 (P = 0.00); I² = 97%

(1) Andersson 2008. Reported in the original paper as ‘sleep disturbance’
Analysis 3.13. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 13 Anxiety (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 13 Anxiety (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs (adverse effects)					
Overbosch 2001	18/483	3/493	`<`	100.0 %	6.12 [1.82, 20.66]
Subtotal (95% CI)	483	493	`<`	100.0 %	6.12 [1.82, 20.66]
Total events:	18 (Mefloquine), 3 (Atovaquone-proguanil)				
Heterogeneity: not applicable					
Test for overall effect: Z = 2.92 (P = 0.0035)					
2 Cohort studies (adverse effects)					
Cunningham 2014	1/49	1/182	`<`	7.7 %	3.71 [0.24, 58.32]
Kerhonen 2007	380/1453	0/16	`<`	17.9 %	8.90 [0.58, 136.71]
Landman 2015	104/380	2/97	`<`	57.8 %	13.27 [3.34, 52.83]
Laverone 2006 (1)	16/444	0/43	`<`	16.5 %	3.26 [0.20, 53.46]
Subtotal (95% CI)	2326	338	`<`	100.0 %	10.10 [3.48, 29.32]
Total events:	501 (Mefloquine), 3 (Atovaquone-proguanil)				
Heterogeneity: Chi² = 1.29, df = 3 (P = 0.73); I² =0.0%					
Test for overall effect: Z = 4.25 (P = 0.000021)					
3 Retrospective healthcare record analysis (adverse events)					
Eick-Cost 2017 (2)	620/36538	142/12881	`<`	100.0 %	1.54 [1.28, 1.85]
Subtotal (95% CI)	36538	12881	`<`	100.0 %	1.54 [1.28, 1.85]
Total events:	620 (Mefloquine), 142 (Atovaquone-proguanil)				
Heterogeneity: not applicable					
Test for overall effect: Z = 4.66 (P < 0.00001)					
Test for subgroup differences: Chi² = 16.12, df = 2 (P = 0.00), I² =88%					

(1) Laverone 2006. Reported in the original paper as 'anxiety disorder'

(2) Eick-Cost 2017. Report in the original paper as 'anxiety disorder'
Analysis 3.14. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 14 Depressed mood (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 14 Depressed mood (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs (adverse effects)					
Overbosch 2001 (1)	17/483	3/493	100.0 %	5.78 [1.71, 19.61]	
Subtotal (95% CI)	483	493	100.0 %	5.78 [1.71, 19.61]	
Total events: 17 (Mefloquine), 3 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.82 (P = 0.0048)					
2 Cohort studies (adverse effects)					
Andersson 2008 (2)	82/491	2/161	33.1 %	13.44 [3.34, 54.05]	
Kato 2013 (3)	0/38	3/277	9.5 %	1.02 [0.05, 19.34]	
Korhonen 2007 (4)	208/1453	0/16	10.9 %	4.88 [0.32, 75.03]	
Kuhner 2005 (5)	13/142	2/82	27.9 %	3.75 [0.87, 16.22]	
Landman 2015 (6)	39/380	0/97	8.7 %	20.32 [1.26, 327.69]	
Laverone 2006 (7)	6/444	0/43	10.0 %	1.29 [0.07, 22.44]	
Subtotal (95% CI)	2948	676	100.0 %	8.02 [3.56, 18.07]	
Total events: 348 (Mefloquine), 7 (Atovaquone-proguanil)					
Heterogeneity: Chi^2 = 5.58, df = 5 (P = 0.35); I^2 =10%					
Test for overall effect: Z = 5.03 (P < 0.00001)					
3 Retrospective healthcare record analysis (adverse events)					
Eick-Cost 2017 (8)	541/36538	99/12881	100.0 %	1.93 [1.56, 2.38]	
Subtotal (95% CI)	36538	12881	100.0 %	1.93 [1.56, 2.38]	
Total events: 541 (Mefloquine), 99 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 6.02 (P < 0.00001)					
Test for subgroup differences: Chi^2 = 13.64, df = 2 (P = 0.00), I^2 =85%					
Analysis 3.15. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 15 Abnormal thoughts and perceptions (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 3 Mefloquine versus atovaquone-proguanil
Outcome: 15 Abnormal thoughts and perceptions (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Korhonen 2007 (1)	9/1453	0/16	36.7 % 0.22 [0.01, 3.67]		
Landman 2015 (2)	6/380	0/97	29.5 % 3.34 [0.19, 58.85]		
Laverone 2006 (3)	6/444	0/43	33.8 % 1.29 [0.07, 22.44]		
Subtotal (95% CI)	2277	156	100.0 % 1.50 [0.30, 7.42]		

Total events: 21 (Mefloquine), 0 (Atovaquone-proguanil)
Heterogeneity: $\chi^2 = 2.10$, df = 2 ($P = 0.35$); $I^2 = 5\%$
Test for overall effect: $Z = 0.50$ ($P = 0.62$)

2 Retrospective healthcare record analysis (adverse events)
| Eick-Cost 2017 (4) | 17/36538 | 2/12881 | 100.0 % 3.00 [0.69, 12.97] | | |
| Subtotal (95% CI) | 36538 | 12881 | 100.0 % 3.00 [0.69, 12.97] | | |

Total events: 17 (Mefloquine), 2 (Atovaquone-proguanil)
Heterogeneity: not applicable
Test for overall effect: $Z = 1.47$ ($P = 0.14$)
Test for subgroup differences: $\chi^2 = 0.39$, df = 1 ($P = 0.53$); $I^2 = 0\%$
Analysis 3.16. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 16 Pruritis (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 3 Mefloquine versus atovaquone-proguanil
Outcome: 16 Pruritis (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs (adverse effects)					
Overbosch 2001 (1)	15/483	12/493	1.28 [0.60, 2.70]	100.0 %	1.28 [0.60, 2.70]
Subtotal (95% CI)	483	493	100.0 %	1.28 [0.60, 2.70]	
Total events:	15 (Mefloquine), 12 (Atovaquone-proguanil)				
Heterogeneity:	not applicable				
Test for overall effect:	$Z = 0.64 (P = 0.52)$				
2 Cohort studies (adverse effects)					
Korhonen 2007 (2)	42/1453	0/16	4.06 [0.21, 77.69]	29.5 %	4.06 [0.21, 77.69]
Kuhner 2005	3/142	0/82	4.06 [0.21, 77.69]	29.5 %	4.06 [0.21, 77.69]
Tuck 2016	0/13	2/118	1.70 [0.09, 33.65]	24.5 %	1.70 [0.09, 33.65]
Subtotal (95% CI)	1608	216	100.0 %	2.07 [0.40, 10.68]	
Total events:	45 (Mefloquine), 2 (Atovaquone-proguanil)				
Heterogeneity:	$\chi^2 = 0.49, df = 2 (P = 0.78); I^2 = 0.0%$				
Test for overall effect:	$Z = 0.87 (P = 0.38)$				
Test for subgroup differences:	$\chi^2 = 0.28, df = 1 (P = 0.60), I^2 = 0.0%$				

(1) Overbosch 2001. Reported in the original paper as ‘itching’
(2) Korhonen 2007. Reported in the original paper as ‘itchy skin’
Analysis 3.17. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 17 Visual impairment (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 17 Visual impairment (all studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed, 95% CI		M-H,Fixed, 95% CI
1 RCTs (adverse effects)					
Overbosch 2001 (1)	16/483	8/493	100.0 %	2.04 [0.88, 4.73]	
Subtotal (95% CI)	**483**	**493**	**100.0 %**	**2.04 [0.88, 4.73]**	
Total events: 16 (Mefloquine), 8 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.67 (P = 0.096)					
2 Cohort studies (adverse effects)					
Korhonen 2007 (2)	164/1453	1/16	52.0 %	1.81 [0.27, 12.11]	1.17 [0.29, 4.72]
Laverone 2006 (3)	5/444	1/43	48.0 %	0.48 [0.06, 4.05]	0.01 0.1 1 10 100
Subtotal (95% CI)	**1897**	**59**	**100.0 %**	**1.17 [0.29, 4.72]**	
Total events: 169 (Mefloquine), 2 (Atovaquone-proguanil)					
Heterogeneity: Chi² = 0.86, df = 1 (P = 0.35); I² =0.0%					
Test for overall effect: Z = 0.22 (P = 0.82)					
Test for subgroup differences: Chi² = 0.45, df = 1 (P = 0.50), I² =0.0%					

(1) Overbosch 2001. Reported in the original paper as ‘visual difficulties’

(2) Korhonen 2007. Reported in the original paper as ‘visual disturbances’

(3) Laverone 2006. Reported in the original paper as ‘blurred vision’

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 3.18. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 18 Other adverse effects (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 18 Other adverse effects (cohort studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed 95% CI		M-H,Fixed 95% CI
1 Allergic reaction	0/38	4/278	0.79 [0.04, 14.48]	100.0 %	**0.79 [0.04, 14.48]**
Subtotal (95% CI)	**38**	**278**	**100.0 %**	**0.79 [0.04, 14.48]**	
Total events: 0 (Mefloquine), 4 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.16 (P = 0.88)					
2 Alopecia	194/1453	0/16	4.55 [0.30, 70.01]	100.0 %	**4.55 [0.30, 70.01]**
Subtotal (95% CI)	**1453**	**16**	**100.0 %**	**4.55 [0.30, 70.01]**	
Total events: 194 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.09 (P = 0.28)					
3 Asthenia	69/1453	0/16	1.63 [0.10, 25.18]	52.1 %	**1.63 [0.10, 25.18]**
Laverone 2006 (3)	10/444	0/43	2.08 [0.12, 34.84]	47.9 %	**2.08 [0.12, 34.84]**
Subtotal (95% CI)	**1897**	**59**	**100.0 %**	**1.84 [0.26, 13.12]**	
Total events: 79 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: Chi² = 0.01, df = 1 (P = 0.90); I² =0.0%					
Test for overall effect: Z = 0.61 (P = 0.54)					
4 Balance disorder	122/1453	0/16	2.86 [0.19, 44.19]	100.0 %	**2.86 [0.19, 44.19]**
Subtotal (95% CI)	**1453**	**16**	**100.0 %**	**2.86 [0.19, 44.19]**	
Total events: 122 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.75 (P = 0.45)					
5 Cough	3/491	2/161	0.49 [0.08, 2.92]	100.0 %	**0.49 [0.08, 2.92]**
Subtotal (95% CI)	**491**	**161**	**100.0 %**	**0.49 [0.08, 2.92]**	
Total events: 3 (Mefloquine), 2 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.78 (P = 0.43)					

(Continued ...)
Study or subgroup	Mefloquine n/N	Atovaquone-proguanil n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
Andersson 2008 (5)	55/491	4/161	97.6 %	79.6 %	4.51 [1.66, 12.25]
Kühner 2005 (6)	7/142	0/82	8.4 %	8.1 %	8.71 [0.50, 150.50]
Laverone 2006 (7)	5/444	0/43	12.0 %	12.0 %	1.09 [0.06, 19.35]
Subtotal (95% CI)	**1077**	**286**	**100.0 %**	**100.0 %**	**4.45 [1.84, 10.77]**
Total events: 67 (Mefloquine), 4 (Atovaquone-proguanil)					
Heterogeneity: $\chi^2 = 1.13$, df = 2 ($P = 0.57$); $I^2 = 0.0\%$					
Test for overall effect: $Z = 3.31$ ($P = 0.00094$)					
7 Dyspepsia					
Cunningham 2014 (8)	3/49	21/182	78.6 %	78.6 %	0.53 [0.17, 1.71]
Tuck 2016 (9)	0/13	11/118	21.4 %	21.4 %	0.37 [0.02, 5.94]
Subtotal (95% CI)	**62**	**300**	**100.0 %**	**100.0 %**	**0.50 [0.17, 1.46]**
Total events: 3 (Mefloquine), 32 (Atovaquone-proguanil)					
Heterogeneity: $\chi^2 = 0.06$, df = 1 ($P = 0.81$); $I^2 = 0.0\%$					
Test for overall effect: $Z = 1.27$ ($P = 0.20$)					
8 Fatigue					
Laverone 2006 (10)	26/444	0/43	74.2 %	74.2 %	5.24 [0.32, 84.52]
Tuck 2016 (11)	0/13	1/118	25.8 %	25.8 %	2.83 [0.12, 66.27]
Subtotal (95% CI)	**457**	**161**	**100.0 %**	**100.0 %**	**4.62 [0.47, 45.56]**
Total events: 26 (Mefloquine), 1 (Atovaquone-proguanil)					
Heterogeneity: $\chi^2 = 0.10$, df = 1 ($P = 0.75$); $I^2 = 0.0\%$					
Test for overall effect: $Z = 1.31$ ($P = 0.19$)					
9 Hypoaesthesia					
Korhonen 2007 (12)	21/1453	0/16	38.3 %	38.3 %	0.50 [0.03, 7.97]
Landman 2015 (13)	27/380	1/97	61.7 %	61.7 %	6.89 [0.95, 50.09]
Subtotal (95% CI)	**1833**	**113**	**100.0 %**	**100.0 %**	**4.45 [0.93, 21.26]**
Total events: 48 (Mefloquine), 1 (Atovaquone-proguanil)					
Heterogeneity: $\chi^2 = 2.58$, df = 1 ($P = 0.11$); $I^2 = 61\%$					
Test for overall effect: $Z = 1.87$ ($P = 0.062$)					
10 Loss of appetite					
Andersson 2008	21/491	10/161	100.0 %	100.0 %	0.69 [0.33, 1.43]
Subtotal (95% CI)	**491**	**161**	**100.0 %**	**100.0 %**	**0.69 [0.33, 1.43]**
Total events: 21 (Mefloquine), 10 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: $Z = 1.00$ ($P = 0.32$)					
11 Muscle pain					
Andersson 2008	11/491	0/161	100.0 %	100.0 %	7.57 [0.45, 127.80]
Subtotal (95% CI)	**491**	**161**	**100.0 %**	**100.0 %**	**7.57 [0.45, 127.80]**
Total events: 11 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Study or subgroup	Mefloquine (n/N)	Atovaquone-proguanil (n/N)	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
------------------	-----------------	---------------------------	-----------------------------	--------	-----------------------------
Palpitations					
Korhonen 2007	6/1453	0/16	39.1% 0.15 [0.01, 2.59]		
Kuhner 2005	7/142	0/82	25.0% 0.81 [0.05, 15.050]		
Laverone 2006	15/444	0/43	36.0% 3.07 [0.19, 50.36]		

Subtotal (95% CI) 2039 141 100.0% 3.34 [0.73, 15.26]

Total events: 28 (Mefloquine), 0 (Atovaquone-proguanil)
Heterogeneity: Chi² = 4.99, df = 2 (P = 0.08); I² = 60%
Test for overall effect: Z = 1.40 (P = 0.16)

Sensitization					
Cunningham 2014	0/49	4/182	68.0% 0.41 [0.02, 7.43]		
Laverone 2006	6/444	0/43	32.0% 1.29 [0.07, 22.44]		

Subtotal (95% CI) 493 225 100.0% 0.69 [0.10, 4.92]

Total events: 6 (Mefloquine), 4 (Atovaquone-proguanil)
Heterogeneity: Chi² = 0.31, df = 1 (P = 0.58); I² = 0%
Test for overall effect: Z = 0.37 (P = 0.71)

Pyrexia					
Andersson 2008	6/491	0/161	100.0% 4.28 [0.24, 75.57]		

Subtotal (95% CI) 491 161 100.0% 4.28 [0.24, 75.57]

Total events: 6 (Mefloquine), 0 (Atovaquone-proguanil)
Heterogeneity: not applicable
Test for overall effect: Z = 0.99 (P = 0.32)

Rash					
Kuhner 2005	2/142	1/82	58.2% 1.15 [0.11, 12.54]		
Laverone 2006	3/444	0/43	41.8% 0.69 [0.04, 13.18]		

Subtotal (95% CI) 586 125 100.0% 0.96 [0.15, 6.09]

Total events: 5 (Mefloquine), 1 (Atovaquone-proguanil)
Heterogeneity: Chi² = 0.07, df = 1 (P = 0.79); I² = 0%
Test for overall effect: Z = 0.04 (P = 0.97)

Restlessness					
Laverone 2006	26/444	0/43	100.0% 5.24 [0.32, 84.52]		

Subtotal (95% CI) 444 43 100.0% 5.24 [0.32, 84.52]

Total events: 26 (Mefloquine), 0 (Atovaquone-proguanil)
Heterogeneity: not applicable
Test for overall effect: Z = 1.17 (P = 0.24)

Slight illness					
Laverone 2006	29/444	0/43	100.0% 5.83 [0.36, 93.84]		

Heterogeneity: not applicable
Test for overall effect: Z = 1.17 (P = 0.24)
Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI
Subtotal (95% CI)	444	43		100.0 %	5.83 [0.36, 93.84]
Total events: 29 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.24 (P = 0.21)					
18 Somnolence					
Laverone 2006 (16)	16/444	1/43	100.0 %	1.55 [0.21, 11.40]	
Subtotal (95% CI)	444	43		100.0 %	1.55 [0.21, 11.40]
Total events: 16 (Mefloquine), 1 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.43 (P = 0.67)					
19 Tinnitus					
Landman 2015	4/380	0/97	100.0 %	2.31 [0.13, 42.64]	
Subtotal (95% CI)	380	97		100.0 %	2.31 [0.13, 42.64]
Total events: 4 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.56 (P = 0.57)					
20 Circulatory disorders					
Kuhner 2005	5/142	0/82	100.0 %	6.38 [0.36, 114.01]	
Subtotal (95% CI)	142	82		100.0 %	6.38 [0.36, 114.01]
Total events: 5 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.26 (P = 0.21)					
(1) Korhonen 2007. Reported in the original paper as ‘hair loss’
(2) Korhonen 2007. Reported in the original paper as ‘weakness’
(3) Laverone 2006. Reported in the original paper as ‘weakness’
(4) Korhonen 2007. Reported in the original paper as ‘unsteadiness’
(5) Andersson 2008. Reported in the original paper as ‘concentration difficulties’
(6) Kunher 2005. Reported in the original paper as ‘losing of concentration’
(7) Laverone 2006. Reported in the original paper as ‘mental confusion’
(8) Cunningham 2014. Reported in the original paper as ‘indigestion’
(9) Tuck 2016. Reported in the original paper as ‘indigestion’
(10) Laverone 2006. Reported in the original paper as ‘tiredness’
(11) Tuck 2016. Reported in the original paper as ‘lethargy’
(12) Korhonen 2007. Reported in the original paper as ‘limb numbness’
(13) Landman 2015. Reported in the original paper as ‘limb numbness’
(14) Cunningham 2014. Reported in the original paper as ‘skin sensitivity’
(15) Andersson 2008. Reported in the original paper as ‘fever’
(16) Laverone 2006. Reported in the original paper as ‘drowsiness’
Analysis 3.19. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 19 Other adverse events (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 19 Other adverse events (cohort studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed, 95% CI		M-H,Fixed, 95% CI
1 Adjustment disorder	1220/36538	244/12881		100.0%	1.76 [1.54, 2.02]
Subtotal (95% CI)	**36538**	**12881**		100.0%	1.76 [1.54, 2.02]
Total events: 1220 (Mefloquine), 244 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 8.17 (P < 0.00001)					
2 Confusion	1/36538	0/12881	100.0%	1.06 [0.04, 25.96]	
Subtotal (95% CI)	**36538**	**12881**	100.0%	1.06 [0.04, 25.96]	
Total events: 1 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.03 (P = 0.97)					
3 Convulsions	65/36538	17/12881	100.0%	1.35 [0.79, 2.30]	
Subtotal (95% CI)	**36538**	**12881**	100.0%	1.35 [0.79, 2.30]	
Total events: 65 (Mefloquine), 17 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.10 (P = 0.27)					
4 Hallucinations	5/36538	7/12881	100.0%	0.25 [0.08, 0.79]	
Subtotal (95% CI)	**36538**	**12881**	100.0%	0.25 [0.08, 0.79]	
Total events: 5 (Mefloquine), 7 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.36 (P = 0.018)					
5 Paranoia	2/36538	0/12881	100.0%	1.76 [0.08, 36.72]	
Subtotal (95% CI)	**36538**	**12881**	100.0%	1.76 [0.08, 36.72]	
Total events: 2 (Mefloquine), 0 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.37 (P = 0.71)					
6 PTSD	448/36538	63/12881	100.0%	2.51 [1.93, 3.26]	

(Continued...)
Study or subgroup

	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
Subtotal (95% CI)	36538	12881	* 100.0 % 2.51 [1.93, 3.26]		
Total events: 448 (Mefloquine), 63 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 6.85 (P < 0.00001)					
7 Suicidal ideation					
Eick-Cost 2017	91/36538	19/12881	100.0 % 1.69 [1.03, 2.77]		
Total events: 91 (Mefloquine), 19 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.08 (P = 0.038)					
8 Suicide					
Eick-Cost 2017	2/36538	1/12881	100.0 % 0.71 [0.06, 7.78]		
Total events: 2 (Mefloquine), 1 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.29 (P = 0.78)					
9 Tinnitus					
Eick-Cost 2017	707/36538	175/12881	100.0 % 1.42 [1.21, 1.68]		
Total events: 707 (Mefloquine), 175 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 4.22 (P = 0.000024)					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 3.20. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 20 Adherence (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 3 Mefloquine versus atovaquone-proguanil

Outcome: 20 Adherence (RCTs)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H/Random, 95% CI	Weight	Risk Ratio M-H/Random, 95% CI
van Riemsdijk 2002	54/58	60/61	100.0 % 0.95 [0.88, 1.02]		
Subtotal (95% CI)	**58**	**61**	**100.0 % 0.95 [0.88, 1.02]**	**1**	
Overbosch 2001; during travel	444/477	465/489	100.0 % 0.98 [0.95, 1.01]		
Subtotal (95% CI)	**477**	**489**	**100.0 % 0.98 [0.95, 1.01]**	**1**	
Overbosch 2001; post-travel	334/477	430/489	100.0 % 0.80 [0.74, 0.85]		
Subtotal (95% CI)	**477**	**489**	**100.0 % 0.80 [0.74, 0.85]**	**1**	

Total events: 54 (Mefloquine), 60 (Atovaquone-proguanil)

Heterogeneity: not applicable

Test for overall effect: Z = 1.40 (P = 0.16)

Test for subgroup differences: Chi2 = 29.61, df = 2 (P = 0.00001), I2 = 93%
Analysis 3.21. Comparison 3 Mefloquine versus atovaquone-proguanil, Outcome 21 Adherence (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: Mefloquine versus atovaquone-proguanil
Outcome: Adherence (cohort studies)

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M. H.Random, 95% CI	Weight	Risk Ratio M. H.Random, 95% CI
n/N	n/N				
During travel					
Cunningham 2014 (1)	12/49	40/182	9.2 % 1.11 [0.63, 1.96]		
Goodyer 2011 (2)	21/30	56/84	16.9 % 1.05 [0.79, 1.39]		
Korhonen 2007 (3)	946/1453	8/16	10.8 % 1.30 [0.80, 2.13]		
Landman 2015 (4)	231/380	77/97	21.4 % 0.77 [0.67, 0.87]		
Tan 2017 (5)	1691/2972	86/183	20.6 % 1.21 [1.03, 1.42]		
Tuck 2016 (6)	13/13	93/118	21.2 % 1.23 [1.07, 1.41]		
Subtotal (95% CI)	4897	680	100.0 % 1.08 [0.86, 1.34]		
Total events	2914 (Mefloquine), 360 (Atovaquone-proguanil)				
Heterogeneity: Tau² = 0.06; Chi² = 31.62, df = 5 (P<0.00001); I² =84%					
Test for overall effect: Z = 0.64 (P = 0.52)					
2 Post-travel					
Goodyer 2011 (7)	15/30	46/84	64.3 % 0.91 [0.61, 1.37]		
Stoney 2016 (8)	6/11	190/297	35.7 % 0.85 [0.49, 1.47]		
Subtotal (95% CI)	41	381	100.0 % 0.89 [0.64, 1.23]		
Total events	21 (Mefloquine), 236 (Atovaquone-proguanil)				
Heterogeneity: Tau² = 0.0; Chi² = 0.04, df = 1 (P = 0.84); I² =0.0%					
Test for overall effect: Z = 0.69 (P = 0.49)					
Test for subgroup differences: Chi² = 0.87, df = 1 (P = 0.35); I² =0.0%					

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
(1) Cunningham 2014. Defined as ‘travellers reporting >95% adherence’
(2) Goodyer 2011. Defined as ‘proportion of travelers reporting taking all medication’
(3) Korhonen 2007. Defined as ‘participants who reported they ‘never’ missed doses’
(4) Landman 2015. ‘PCVs reporting taking daily medications at any time each day or taking weekly medications with no more than 8 days between doses were defined as adherent’
(5) Tan 2017. ‘Taken as prescribed’
(6) Tuck 2016. ‘Fully compliant’
(7) Goodyer 2011. Defined as ‘proportion of travelers reporting taking all medication, post travel’
(8) Stoney 2016. Defined as ‘number adherent in the post-prophylaxis period’

Analysis 4.1. Comparison 4 Mefloquine versus chloroquine, Outcome 1 Clinical cases of malaria (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 4 Mefloquine versus chloroquine
Outcome: 1 Clinical cases of malaria (RCTs)

Study or subgroup	Mefloquine n/N	Control n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
Boudreau 1991 (1)	38/145	53/77	0.38 [0.28, 0.52]	93.2 %	
Bunnag 1992 (2)	2/123	5/119	0.39 [0.08, 1.96]	6.8 %	
Salako 1992 (3)	0/107	0/103	Not estimable		
Sossouhounto 1995 (4)	0/103	0/100	Not estimable		
Total (95% CI)	**478**	**399**	**0.38 [0.28, 0.52]**	**100.0 %**	

Total events: 40 (Mefloquine), 58 (Control)
Heterogeneity: $Chi^2 = 0.00$, df = 1 ($P = 0.98$); $I^2 = 0.0$
Test for overall effect: $Z = 6.08$ ($P < 0.00001$)
Test for subgroup differences: Not applicable

(1) Boudreau 1991. Population: Thai adults, semi-immune, mefloquine dose 500mg fortnightly.
(2) Bunnag 1992. Thai adult males, presumed semi-immune. Dose 250mg weekly for first 4 weeks, then 125mg weekly.
(3) Salako 1992. Nigerian adults, semi-immune. Dose 250mg weekly for first 4 weeks, then 125mg weekly.
(4) Sossouhounto 1995. Ivory coast adult males, semi-immune. Dose 250mg weekly for first 4 weeks, then 125mg weekly.
Analysis 4.2. Comparison 4 Mefloquine versus chloroquine, Outcome 2 Serious adverse events or effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 2 Serious adverse events or effects (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs					
Boudreau 1993 (1)	1/46	0/78		35.9 %	5.04 [0.21, 121.28]
Boudreau 1993	1/157	0/78		64.1 %	1.50 [0.06, 36.40]
Bunnag 1992	0/116	0/112			Not estimable
Salako 1992	0/107	0/103			Not estimable
Sossouhounto 1995	0/103	0/100			Not estimable
Subtotal (95% CI)	**529**	**471**	**100.0 %**	**2.77 [0.32, 23.85]**	
Total events:	2 (Mefloquine), 0 (Chloroquine)				
Heterogeneity: Chi² = 0.28, df = 1 (P = 0.60); I² =0.0%					
Test for overall effect: Z = 0.93 (P = 0.35)					
2 Cohort studies					
Albright 2002	1/115	0/22		4.5 %	0.59 [0.03, 14.15]
Corominas 1997	1/1609	0/137		4.4 %	0.68 [0.03, 16.57]
Korhonen 2007	15/1612	4/832		28.3 %	1.94 [0.64, 5.81]
Napoletano 2007	0/548	0/37			Not estimable
Petersen 2000	5/809	2/1223		8.5 %	3.78 [0.74, 19.43]
Steffen 1993 (2)	7/52981	7/20332		54.3 %	0.38 [0.13, 1.09]
Subtotal (95% CI)	**56674**	**22583**	**100.0 %**	**1.14 [0.62, 2.07]**	
Total events:	29 (Mefloquine), 13 (Chloroquine)				
Heterogeneity: Chi² = 7.35, df = 4 (P = 0.12); I² =46%					
Test for overall effect: Z = 0.41 (P = 0.68)					
Test for subgroup differences: Chi² = 0.61, df = 1 (P = 0.43), I² =0.0%					

(1) Boudreau 1993, Mefloquine group received loading dose of 250mg daily for 3 days

(2) Steffen 1993, Reports of serious side effects were followed up locally (in Africa and Europe) for diagnosis and outcome. Includes all events possibly or probably related to the drugs
Analysis 4.3. Comparison 4 Mefloquine versus chloroquine, Outcome 3 Discontinuations due to adverse effects (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 3 Discontinuations due to adverse effects (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 RCTs					
Boudreau 1993	10/203	5/156	1.54 [0.54, 4.41]	84.7 %	
Bunnag 1992	2/116	1/112	1.93 [0.18, 21.00]	15.3 %	
Salako 1992	0/113	0/115	Not estimable		
Subtotal (95% CI)	**432**	**383**	**100.0 %**	**1.60 [0.61, 4.18]**	
Total events:	12 (Mefloquine), 6 (Chloroquine)				
Heterogeneity:	Chi² = 0.03, df = 1 (P = 0.86); I² =0.0%				
Test for overall effect:	Z = 0.95 (P = 0.34)				
2 Cohort studies in short-term travellers					
Albright 2002	2/115	0/22	0.99 [0.05, 19.98]	0.6 %	
Corominas 1997	30/609	4/137	1.69 [0.60, 4.71]	5.0 %	
Hill 2000	0/102	3/374	0.52 [0.03, 9.99]	1.2 %	
Napoletano 2007	66/548	0/37	9.21 [0.58, 145.85]	0.7 %	
Steffen 1993	851/50053	64/3354	0.89 [0.69, 1.15]	92.4 %	
Stoney 2016	0/11	0/35	Not estimable		
Subtotal (95% CI)	**51438**	**3959**	**100.0 %**	**0.99 [0.78, 1.26]**	
Total events:	949 (Mefloquine), 71 (Chloroquine)				
Heterogeneity:	Chi² = 4.38, df = 4 (P = 0.36); I² =9%				
Test for overall effect:	Z = 0.10 (P = 0.92)				
3 Cohort studies in longer term occupational travellers					
Korhonen 2007	370/1612	70/832	2.73 [2.14, 3.47]	71.1 %	
Tan 2017	365/2973	23/668	3.57 [2.36, 5.39]	28.9 %	
Subtotal (95% CI)	**4585**	**1500**	**100.0 %**	**2.97 [2.41, 3.66]**	
Total events:	735 (Mefloquine), 93 (Chloroquine)				
Heterogeneity:	Chi² = 1.23, df = 1 (P = 0.27); I² =19%				
Test for overall effect:	Z = 10.15 (P < 0.00001)				
Test for subgroup differences:	Chi² = 45.67, df = 2 (P = 0.00), I² =96%				
Analysis 4.4. Comparison 4 Mefloquine versus chloroquine, Outcome 4 Nausea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 4 Nausea (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio M/H Random, 95% CI	Weight	Risk Ratio M/H Random, 95% CI
	n/N	n/N			
1. Cohort studies (adverse effects)					
Albright 2002	1/115	2/22	1.7 %	1.7 %	0.10 [0.01, 1.01]
Corominas 1997	15/609	0/137	1.2 %	1.2 %	7.01 [0.42, 116.50]
Korhonen 2007	165/1453	0/137	28.6 %	28.6 %	0.87 [0.69, 1.11]
Laverone 2006	65/444	3/81	6.3 %	6.3 %	3.95 [1.27, 12.27]
Petersen 2000	130/809	89/684	29.1 %	29.1 %	1.56 [1.24, 1.96]
Steffen 1993	6157/50053	362/3354	33.1 %	33.1 %	1.14 [1.03, 1.26]
Subtotal (95% CI)	**53483**	**5501**	**100.0 %**	**100.0 %**	**1.23 [0.89, 1.68]**
Total events: 6533 (Mefloquine), 582 (Chloroquine)					
Heterogeneity: Tau^2 = 0.08; Chi^2 = 22.34, df = 5 (P = 0.00045); I^2 = 78%					
Test for overall effect: Z = 1.27 (P = 0.20)					
2 RCTs (adverse events)					
Boudreau 1993	22/157	10/78	67.8 %	67.8 %	1.09 [0.54, 2.19]
Boudreau 1993 (1)	5/46	10/78	32.2 %	32.2 %	0.85 [0.31, 2.33]
Subtotal (95% CI)	**203**	**156**	**100.0 %**	**100.0 %**	**1.01 [0.57, 1.79]**
Total events: 27 (Mefloquine), 20 (Chloroquine)					
Heterogeneity: Tau^2 = 0.0; Chi^2 = 0.16, df = 1 (P = 0.68); I^2 = 0.0%					
Test for overall effect: Z = 0.02 (P = 0.98)					

(1) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days
Analysis 4.5. Comparison 4 Mefloquine versus chloroquine, Outcome 5 Vomiting (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 5 Vomiting (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Albright 2002	3/115	2/22	4.0 %	0.29	[0.05, 1.62]
Corominas 1997	8/609	0/137	1.0 %	3.85	[0.22, 66.23]
Korhonen 2007	28/1453	6/684	9.7 %	2.20	[0.09, 5.28]
Laverone 2006	6/444	0/81	1.0 %	2.40	[0.14, 42.11]
Petersen 2000	53/809	89/1223	84.3 %	0.90	[0.65, 1.25]
Subtotal (95% CI)	3430	2147		100.0 %	1.05 [0.78, 1.40]
Total events: 98 (Mefloquine), 97 (Chloroquine)					
Heterogeneity: Ch² = 6.82, df = 4 (P = 0.15); I² = 41%					
Test for overall effect: Z = 0.29 (P = 0.77)					
2 RCTs (adverse events)					
Boudreau 1993	9/157	3/78	68.2 %	1.49	[0.42, 5.35]
Boudreau 1993 (1)	0/46	2/78	31.8 %	0.34	[0.02, 6.85]
Subtotal (95% CI)	203	156		100.0 %	1.12 [0.36, 3.49]
Total events: 9 (Mefloquine), 5 (Chloroquine)					
Heterogeneity: Ch² = 0.80, df = 1 (P = 0.37); I² = 0.0%					
Test for overall effect: Z = 0.20 (P = 0.84)					

(1) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days.
Analysis 4.6. Comparison 4 Mefloquine versus chloroquine, Outcome 6 Abdominal pain (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 6 Abdominal pain (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1 Cohort studies (adverse effects)					
Corominas 1997	30/609	4/137	3.9 %	1.69 [0.60, 4.71]	
Korhonen 2007	54/1453	25/684	20.3 %	1.02 [0.64, 1.62]	
Laverone 2006	9/444	0/81	0.5 %	3.50 [0.21, 59.57]	
Petersen 2000	97/809	158/1223	75.3 %	0.93 [0.73, 1.18]	
Subtotal (95% CI)	**3315**	**2125**	100.0 %	0.99 [0.80, 1.22]	
Total events:	190 (Mefloquine), 187 (Chloroquine)				
Heterogeneity: Chi2 = 2.09, df = 3 (P = 0.55); I2 =0.0%					
Test for overall effect: Z = 0.11 (P = 0.91)					
2 RCTs (adverse events)					
Boudreau 1993 (1)	5/46	8/78	32.1 %	1.06 [0.37, 3.05]	
Boudreau 1993	8/157	9/78	65.1 %	0.44 [0.18, 1.10]	
Salako 1992	1/107	0/103	2.8 %	2.89 [0.12, 70.11]	
Subtotal (95% CI)	**310**	**259**	100.0 %	0.71 [0.37, 1.36]	
Total events:	14 (Mefloquine), 17 (Chloroquine)				
Heterogeneity: Chi2 = 2.33, df = 2 (P = 0.31); I2 =14%					
Test for overall effect: Z = 1.04 (P = 0.30)					

(1) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days
Analysis 4.7. Comparison 4 Mefloquine versus chloroquine, Outcome 7 Diarrhoea (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 7 Diarrhoea (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio M-H,Fixed,95% CI	Weight	Risk Ratio M-H,Fixed,95% CI
n/N	n/N				
1 Cohort studies (adverse effects)					
Albright 2002	3/115	0/22	0.2 %	1.39 [0.07, 25.97]	
Corominas 1997	21/609	1/137	0.4 %	4.72 [0.64, 34.82]	
Korhonen 2007	45/1453	24/684	8.0 %	0.88 [0.54, 1.44]	
Laverone 2006	21/444	2/81	0.8 %	1.92 [0.46, 8.01]	
Petersen 2000	249/809	467/1223	90.6 %	0.81 [0.71, 0.91]	
Subtotal (95% CI)	**3430**	**2147**	**100.0 %**	**0.84 [0.74, 0.95]**	
Total events: 339 (Mefloquine), 494 (Chloroquine)					
Heterogeneity: Chi² = 4.69, df = 4 (P = 0.32); I² = 15%					
Test for overall effect: Z = 2.85 (P = 0.0044)					
2 RCTs (adverse events)					
Boudreau 1993	11/157	10/78	63.5 %	0.55 [0.24, 1.23]	
Boudreau 1993 (1)	5/46	9/78	31.7 %	0.94 [0.34, 2.64]	
Salako 1992	1/107	0/103	2.4 %	2.89 [0.12, 70.11]	
Sossouhounto 1995	2/103	0/100	2.4 %	4.86 [0.24, 99.90]	
Subtotal (95% CI)	**413**	**359**	**100.0 %**	**0.83 [0.46, 1.50]**	
Total events: 19 (Mefloquine), 19 (Chloroquine)					
Heterogeneity: Chi² = 2.98, df = 3 (P = 0.40); I² = 0.0%					
Test for overall effect: Z = 0.61 (P = 0.54)					

(1) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days
Analysis 4.8. Comparison 4 Mefloquine versus chloroquine, Outcome 8 Headache (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 8 Headache (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio (Mefloquine	Weight	Risk Ratio (Chloroquine	Weight
	n/N	n/N				
1. Cohort studies (adverse effects)						
Albright 2002	3/115	2/22	6.2 %	0.29	[0.05, 1.62]	
Corominas 1997	17/609	1/137	4.8 %	3.82	[0.51, 28.49]	
Korhonen 2007	100/1453	7/8684	39.6 %	0.60	[0.46, 0.80]	
Latorene 2006	18/444	1/81	4.8 %	3.28	[0.44, 24.26]	
Steffen 1993	3103/50053	215/3354	44.6 %	0.97	[0.85, 1.11]	
Stoney 2016	0/11	0/35	Not estimable			
Subtotal (95% CI)	**52685**	**4313**		**100.0 %**	**0.84 [0.53, 1.34]**	
Heterogeneity: Tau² = 0.12; Chi² = 14.15, df = 4 (P = 0.01); I² = 72%						
Test for overall effect: Z = 0.72 (P = 0.47)						

2 RCTs (adverse events)	Mefloquine	Chloroquine	Risk Ratio (Mefloquine	Weight	Risk Ratio (Chloroquine	Weight
	n/N	n/N				
Boudreau 1993	35/157	20/78	63.8 %	0.87	[0.54, 1.40]	
Boudreau 1993 (1)	11/46	19/78	34.8 %	0.98	[0.51, 1.87]	
Salako 1992	0/107	1/103	1.4 %	0.32	[0.01, 7.79]	
Sossouhounto 1995	0/103	0/100	Not estimable			
Subtotal (95% CI)	**413**	**359**		**100.0 %**	**0.89 [0.61, 1.31]**	
Heterogeneity: Tau² = 0.00; Chi² = 4.99, df = 2 (P = 0.78); I² = 0.0%						
Test for overall effect: Z = 0.58 (P = 0.57)						

- 0.01 0.1 1 10 100
 - Favours mefloquine
 - Favours chloroquine

(1) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days
Analysis 4.9. Comparison 4 Mefloquine versus chloroquine, Outcome 9 Dizziness (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 9 Dizziness (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed,95% CI	
1 Cohort studies (adverse effects)				
Corominas 1997	33/609	9/137	3.1 % 0.82 [0.40, 1.68]	
Korhonen 2007	189/1453	55/684	15.6 % 1.62 [1.22, 2.15]	
Laverone 2006	25/444	1/81	0.4 % 4.56 [0.63, 33.19]	
Petersen 2000	88/809	68/1223	11.3 % 1.96 [1.44, 2.65]	
Steffen 1993	3804/50053	178/3354	69.7 % 1.43 [1.24, 1.66]	
Subtotal (95% CI)	53368	5479	100.0 % 1.51 [1.34, 1.70]	
Total events: 4139 (Mefloquine), 311 (Chloroquine)				

Heterogeneity: Chi² = 7.47, df = 4 (P = 0.11); I² =46%

Test for overall effect: Z = 6.88 (P < 0.00001)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed,95% CI	
2 RCTs (adverse events)				
Boudreau 1993	9/157	7/78	58.2 % 0.64 [0.25, 1.65]	
Boudreau 1993 (1)	4/46	7/78	32.3 % 0.97 [0.30, 3.13]	
Salako 1992	0/107	1/103	9.5 % 0.32 [0.01, 7.79]	
Subtotal (95% CI)	310	259	100.0 % 0.72 [0.35, 1.46]	
Total events: 13 (Mefloquine), 15 (Chloroquine)				

Heterogeneity: Chi² = 0.55, df = 2 (P = 0.76); I² =0.0%

Test for overall effect: Z = 0.92 (P = 0.36)

(1) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days.
Analysis 4.10. Comparison 4 Mefloquine versus chloroquine, Outcome 10 Abnormal dreams (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 10 Abnormal dreams (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed,95% CI	
1 Cohort studies (adverse effects)				
Albright 2002 (1)	4/115	0/22	0.2 %	1.78 [0.10, 32.02]
Korhonen 2007 (2)	775/1453	306/684	99.6 %	1.19 [1.08, 1.31]
Laverone 2006 (3)	25/444	0/81	0.2 %	9.40 [0.58, 152.84]
Stoney 2016 (4)	0/11	0/35	Not estimable	
Subtotal (95% CI)	**2023**	**822**	100.0 %	1.21 [1.10, 1.33]

Total events: 804 (Mefloquine), 306 (Chloroquine)
Heterogeneity: Chi2 = 2.24, df = 2 (P = 0.33); I2 = 11%
Test for overall effect: Z = 3.87 (P = 0.00011)

2 RCTs (adverse events)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed,95% CI	
Boudreau 1993 (5)	6/46	2/78	27.0 %	5.09 [1.07, 24.17]
Boudreau 1993	11/157	3/78	73.0 %	1.82 [0.52, 6.34]
Subtotal (95% CI)	**203**	**156**	100.0 %	2.70 [1.05, 6.95]

Total events: 17 (Mefloquine), 5 (Chloroquine)
Heterogeneity: Chi2 = 1.02, df = 1 (P = 0.31); I2 = 2%
Test for overall effect: Z = 2.06 (P = 0.039)

(1) Albright 2002. Reported in the original paper as ‘vivid dreams’

(2) Korhonen 2007. Reported in the original paper as ‘strange dreams’

(3) Laverone 2006. Reported in the original paper as ‘nightmares’

(4) Stoney 2016. Reported in the original paper as ‘intense nightmares’

(5) Boudreau 1993. Reported in the original paper as ‘dreams’. Mefloquine group received loading dose of 250mg daily for 3 days
Analysis 4.11. Comparison 4 Mefloquine versus chloroquine, Outcome 11 Insomnia (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 11 Insomnia (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	H Random, 95% CI		H Random, 95% CI
1. Cohort studies (adverse effects)					
Albright 2002 (1)	1/115	1/22	8.5 %	0.19 [0.01, 2.95]	
Corominas 1997	19/609	1/137	13.1 %	4.27 [0.58, 31.66]	
Korhonen 2007	491/1453	83/684	34.9 %	2.78 [2.25, 3.45]	
Laverone 2006	35/444	0/81	8.3 %	13.08 [0.81, 211.16]	
Steffen 1993	2102/50053	151/3354	35.2 %	0.93 [0.79, 1.10]	
Subtotal (95% CI)	52674	4278	100.0 %	1.81 [0.73, 4.51]	

Total events: 2648 (Mefloquine), 236 (Chloroquine)
Heterogeneity: Tau² = 0.61; Chi² = 70.73, df = 4 (P<0.00001); I² = 94%
Test for overall effect: Z = 1.28 (P = 0.20)

2 RCTs (adverse events)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	H Random, 95% CI		H Random, 95% CI
Boudreau 1993 (1)	39/157	20/78	55.1 %	0.97 [0.61, 1.54]	
Boudreau 1993 (2)	17/46	19/78	44.9 %	1.52 [0.88, 2.61]	
Subtotal (95% CI)	203	156	100.0 %	1.19 [0.76, 1.84]	

Total events: 56 (Mefloquine), 39 (Chloroquine)
Heterogeneity: Tau² = 0.03; Chi² = 1.51, df = 1 (P = 0.22); I² = 34%
Test for overall effect: Z = 0.76 (P = 0.45)

(1) Albright 2002. Reported in the original paper as 'changes in sleep'

(2) Boudreau 1993. Mefloquine group received loading dose of 250mg daily for 3 days
Analysis 4.12. Comparison 4 Mefloquine versus chloroquine, Outcome 12 Anxiety (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 12 Anxiety (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Cohort studies (adverse effects)					
Corominas 1997	5/609	0/137	2.1 %	2.49 [0.14, 44.74]	
Korhonen 2007	380/1453	28/684	95.8 %	6.39 [4.40, 9.28]	
Laverone 2006 (1)	16444	0/81	2.1 %	6.08 [0.37, 100.36]	
Subtotal (95% CI)	**2506**	**902**	**100.0 %**	**6.30 [4.37, 9.09]**	

Total events: 401 (Mefloquine), 28 (Chloroquine)

Heterogeneity: Chi² = 0.40, df = 2 (P = 0.82); I² =0.0%

Test for overall effect: Z = 9.85 (P < 0.00001)

(1) Laverone 2006. Reported in the original paper as ‘anxiety disorder’
Analysis 4.13. Comparison 4 Mefloquine versus chloroquine, Outcome 13 Depressed mood (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 13 Depressed mood (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio M-H (Random, 95% CI)	Weight	Risk Ratio M-H (Random, 95% CI)
n/N	n/N				
1 Cohort studies (adverse effects)					
Corominas 1997 (1)	3/609	0/137	8.3 %	1.58 [0.08, 30.48]	
Korhonen 2007 (2)	209/1461	17/684	27.5 %	5.76 [3.54, 9.36]	
Laverone 2006 (3)	6/444	0/81	8.7 %	2.40 [0.14, 42.11]	
Petersen 2000	55/809	14/1223	26.8 %	5.94 [3.33, 10.61]	
Steffen 1993 (4)	901/50053	47/3354	28.7 %	1.28 [0.96, 1.72]	
Subtotal (95% CI)	53376	5479	100.0 %	3.14 [1.15, 8.57]	

Total events: 1174 (Mefloquine), 78 (Chloroquine)

Heterogeneity: Tau² = 0.89; Chi² = 40.33, df = 4 (P<0.00001); I² = 90%

Test for overall effect: Z = 2.24 (P = 0.025)

(1) Corominas 1997. Reported in the original paper as 'depression'
(2) Korhonen 2007. Reported in the original paper as 'depression'
(3) Laverone 2006. Reported in the original paper as 'depression'
(4) Steffen 1993. Reported in the original paper as 'depression'
Analysis 4.14. Comparison 4 Mefloquine versus chloroquine, Outcome 14 Abnormal thoughts and perceptions.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 14 Abnormal thoughts and perceptions

Study or subgroup	Mefloquine n/N	Chloroquine n/N	Risk Ratio M-H,Fixed 95% CI	Weight	Risk Ratio M-H,Fixed 95% CI
	n/N	n/N			
1 Cohort studies (adverse effects)					
Albright 2002 (1)	1/115	0/22	10.5 % 0.59 [0.03, 14.15]		
Korpainen 2007 (2)	9/1453	0/684	8.6 % 8.95 [0.52, 153.57]		
Laverone 2006 (3)	6/444	0/81	10.6 % 2.40 [0.14, 42.11]		
Petersen 2000 (4)	29/809	7/1223	70.3 % 6.26 [2.76, 14.23]		
Subtotal (95% CI)	2821	2010	100.0 % 5.49 [2.65, 11.35]		

Total events: 45 (Mefloquine), 7 (Chloroquine)

Heterogeneity: Chi² = 2.42, df = 3 (P = 0.49); I² = 0.0%

Test for overall effect: Z = 4.59 (P < 0.00001)

(1) Albright 2002. Reported in the original paper as ‘hallucinations’

(2) Karhonen 2007. Reported in the original paper as ‘hallucinations’ or ‘went crazy’

(3) Laverone 2006. Reported in the original paper as ‘hallucinations’

(4) Petersen 2000. Reported in the original paper as ‘strange thoughts’
Analysis 4.15. Comparison 4 Mefloquine versus chloroquine, Outcome 15 Pruritis (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 15 Pruritis (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio M-H Random 95% CI	Weight	Risk Ratio M-H Random 95% CI
	n/N	n/N			
1 Cohort studies (adverse effects)					
Korhonen 2007 (1)	42/1453	21/684	16.2 % 0.94 [0.56, 1.58]	95% CI	1.18 [0.94, 1.48]
Steffen 1993	1351/50053	773/3354	83.8 %	0.28 [0.03, 2.93]	
Subtotal (95% CI)	51506	4038	100.0 % 1.13 [0.92, 1.40]	95% CI	
Total events: 1393 (Mefloquine), 98 (Chloroquine)					
Heterogeneity: $\tau^2 = 0.0; \chi^2 = 1 (P = 0.44); I^2 =0.0\%$					
Test for overall effect: Z = 1.19 (P = 0.24)					
2 RCTs (adverse events)					
Salako 1992 (2)	1/107	12/103	44.5 % 0.08 [0.01, 0.61]	95% CI	0.78 [0.21, 2.81]
Sossouhounto 1995	4/103	5/100	55.5 %	0.28 [0.03, 2.93]	
Subtotal (95% CI)	210	203	100.0 % 0.28 [0.03, 2.93]	95% CI	
Total events: 5 (Mefloquine), 17 (Chloroquine)					
Heterogeneity: $\tau^2 = 2.13; \chi^2 = 3.85, df = 1 (P = 0.05); I^2 =74\%$					
Test for overall effect: Z = 1.06 (P = 0.29)					

(1) Korhonen 2007. Reported in the original paper as 'itchy skin'

(2) Salako 1992. Reported in the original paper as 'pruritis/itching'
Analysis 4.16. Comparison 4 Mefloquine versus chloroquine, Outcome 16 Visual impairment (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 16 Visual impairment (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio Mefloquine vs Chloroquine (95% CI)	Weight
n/N	n/N			
M-H, Random, 95% CI				
1. Cohort studies (adverse effects)				
Corominas 1997 (1)	4/609	1/137	9.2% [0.10, 7.99]	
Korhonen 2007 (2)	164/1453	35/684	28.0% [1.55, 3.14]	
Laverone 2006 (3)	5/444	1/81	9.5% [0.11, 7.71]	
Petersen 2000 (4)	14/809	19/1223	24.3% [0.56, 2.21]	
Steffen 1993 (5)	1102/50053	117/3354	29.1% [0.52, 0.76]	
Subtotal (95% CI)	**53368**	**5479**	**100.0%** [0.50, 2.44]	
Total events: 1289 (Mefloquine), 173 (Chloroquine)				
Heterogeneity: Tau² = 0.56; Chi² = 39.43, df = 4 (P<0.0001); I² = 90%				
Test for overall effect: Z = 0.23 (P = 0.82)				
2. RCTs (adverse events)				
Salako 1992 (6)	0/107	3/103	100.0% [0.01, 2.63]	
Subtotal (95% CI)	**107**	**103**	**100.0%** [0.01, 2.63]	
Total events: 0 (Mefloquine), 3 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.32 (P = 0.19)				

(1) Corominas 1997. Reported in the original paper as 'loss of visual acuity'

(2) Korhonen 2007. Reported in the original paper as 'visual disturbance'

(3) Laverone 2006. Reported in the original paper as 'blurred vision'

(4) Petersen 2000. Reported in the original paper as 'blurred vision'

(5) Steffen 1993. Reported in the original paper as 'visual'

(6) Salako 1992. Reported in the original paper as 'blurred sight'

Mefloquine for preventing malaria during travel to endemic areas (Review) Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 4.17. Comparison 4 Mefloquine versus chloroquine, Outcome 17 Vertigo (all studies).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 4 Mefloquine versus chloroquine
Outcome: 17 Vertigo (all studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
Cohort studies (adverse effects)	2/609	0/137	1.13 [0.05, 23.43]	100.0 %	1.13 [0.05, 23.43]
Subtotal (95% CI)	609	137	100.0 %	1.13 [0.05, 23.43]	

Total events: 2 (Mefloquine), 0 (Chloroquine)
Heterogeneity: not applicable
Test for overall effect: Z = 0.08 (P = 0.94)
Analysis 4.18. Comparison 4 Mefloquine versus chloroquine, Outcome 18 Cohort studies in travellers; prespecified adverse effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 18 Cohort studies in travellers; prespecified adverse effects

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N			
1 Vertigo					
Corominas 1997	2/609	0/137			1.13 [0.05, 23.43]
Subtotal (95% CI)	609	137	100.0 %		1.13 [0.05, 23.43]
2 Nausea					
Albright 2002	1/115	2/22			0.10 [0.01, 1.01]
Corominas 1997	15/609	0/137			7.01 [0.42, 116.50]
Laverone 2006	65/444	3/81			3.95 [1.27, 12.27]
Petersen 2000	130/809	126/1223			1.56 [1.24, 1.96]
Steffen 1993	6157/50053	362/3354			1.14 [1.03, 1.26]
Subtotal (95% CI)	52030	4817	100.0 %		1.42 [0.94, 2.13]
3 Vomiting					
Albright 2002	3/115	2/22			0.29 [0.05, 1.62]
Corominas 1997	8/609	0/137			3.85 [0.22, 66.23]
Laverone 2006	6/444	0/81			2.40 [0.14, 42.11]
Petersen 2000	53/809	89/1223			0.90 [0.65, 1.25]
Subtotal (95% CI)	1977	1463	100.0 %		0.89 [0.55, 1.42]
4 Abdominal pain					
Corominas 1997	30/609	4/137			1.69 [0.60, 4.71]
Laverone 2006	9/444	0/81			3.50 [0.21, 59.57]
Petersen 2000	97/809	158/1223			0.93 [0.73, 1.18]

Heterogeneity: not applicable

Test for overall effect: Z = 0.08 (P = 0.94)

Heterogeneity: Tau^2 = 0.09; Chi^2 = 16.28, df = 4 (P = 0.003); I^2 = 75%

Test for overall effect: Z = 1.68 (P = 0.093)

Heterogeneity: Tau^2 = 0.04; Chi^2 = 3.16, df = 3 (P = 0.37); I^2 = 5%

Test for overall effect: Z = 0.50 (P = 0.61)

(Continued . . .)
Study or subgroup	Mefloquine (n/N)	Chloroquine (n/N)	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
Subtotal (95% CI)	1862 1441	100.0% 0.98 [0.74, 1.30]			
Total events: 136 (Mefloquine), 162 (Chloroquine)					
Heterogeneity: Tau² = 0.01; Chi² = 2.06, df = 2 (P = 0.36); I² = 3%					
Test for overall effect: Z = 0.13 (P = 0.89)					
Diarrhoea					
Albright 2002	3/115 0/22	6.2% 1.39 [0.07, 25.97]			
Corominas 1997	21/609 1/137	12.0% 4.72 [0.64, 34.82]			
Laverone 2006	21/444 2/81	19.8% 1.92 [0.46, 8.01]			
Petersen 2000	249/809 467/1223	61.9% 0.81 [0.71, 0.91]			
Subtotal (95% CI)	1977 1463	100.0% 1.22 [0.57, 2.64]			
Total events: 294 (Mefloquine), 470 (Chloroquine)					
Heterogeneity: Tau² = 0.24; Chi² = 4.59, df = 3 (P = 0.20); I² = 35%					
Test for overall effect: Z = 0.52 (P = 0.61)					
Headache					
Albright 2002	3/115 2/22	17.1% 0.29 [0.05, 1.62]			
Corominas 1997	17/609 1/137	13.7% 3.82 [0.51, 28.49]			
Laverone 2006	18/444 1/81	13.8% 3.28 [0.44, 24.26]			
Steffen 1993	3103/50053 215/3354	55.4% 0.97 [0.85, 1.11]			
Stoney 2016	0/11 0/35	Not estimable			
Subtotal (95% CI)	51232 3629	100.0% 1.12 [0.48, 2.65]			
Total events: 3141 (Mefloquine), 219 (Chloroquine)					
Heterogeneity: Tau² = 0.34; Chi² = 5.16, df = 3 (P = 0.04); I² = 42%					
Test for overall effect: Z = 0.27 (P = 0.79)					
Dizziness					
Corominas 1997	33/609 9/137	14.7% 0.82 [0.40, 1.68]			
Laverone 2006	25/444 1/81	25.0% 4.56 [0.63, 33.19]			
Petersen 2000	88/809 68/1223	35.7% 1.96 [1.44, 2.65]			
Steffen 1993	3804/50053 178/3354	47.1% 1.43 [1.24, 1.66]			
Subtotal (95% CI)	51915 4795	100.0% 1.52 [1.10, 2.10]			
Total events: 3950 (Mefloquine), 256 (Chloroquine)					
Heterogeneity: Tau² = 0.05; Chi² = 7.23, df = 3 (P = 0.06); I² = 58%					
Test for overall effect: Z = 2.54 (P = 0.011)					
Abnormal dreams					
Albright 2002 (1)	4/115 0/22	48.3% 1.78 [0.10, 32.02]			
Laverone 2006 (2)	25/444 0/81	51.7% 9.40 [0.58, 152.84]			
Stoney 2016 (3)	0/11 0/35	Not estimable			
Subtotal (95% CI)	570 138	100.0% 4.21 [0.57, 31.33]			
Study or subgroup	Mefloquine	Chloroquine	Risk Ratio M-H	Weight	Risk Ratio M-H
------------------	------------	-------------	----------------	--------	---------------
	n/N	n/N	95% CI		95% CI
Total events:					
9 Insomnia	29 (Mefloquine), 0 (Chloroquine)				
Albright 2002 (4)	1/115	1/22	16.1 %	0.19 [0.01, 29.5]	
Corominas 1997	19/609	1/137	23.0 %	4.27 [0.58, 31.66]	
Laverone 2006	35/444	0/81	15.8 %	13.08 [0.81, 211.16]	
Steffen 1993	2/102/50053	1/135/3354	45.1 %	0.93 [0.79, 1.10]	
Subtotal (95% CI)	51221	3594	100.0 %	1.56 [0.40, 6.10]	
10 Anxiety	2157 (Mefloquine), 153 (Chloroquine)				
Corominas 1997	5/609	0/137	48.5 %	2.49 [0.14, 44.74]	
Laverone 2006	16/444	0/81	51.5 %	6.08 [0.37, 100.36]	
Subtotal (95% CI)	1053	218	100.0 %	3.94 [0.53, 29.48]	
11 Depressed mood	965 (Mefloquine), 61 (Chloroquine)				
Corominas 1997 (6)	3/609	0/137	11.7 %	1.58 [0.08, 30.48]	
Laverone 2006 (7)	6/444	0/81	12.2 %	2.40 [0.14, 42.11]	
Petersen 2000	55/809	1/1223	36.8 %	5.94 [3.33, 10.61]	
Steffen 1993 (8)	9/509	0/1223	39.3 %	1.28 [0.96, 1.72]	
Subtotal (95% CI)	51915	4795	100.0 %	2.49 [0.75, 8.31]	
12 Abnormal thoughts or perceptions	36 (Mefloquine), 7 (Chloroquine)				
Albright 2002 (9)	1/115	0/22	9.9 %	0.59 [0.03, 14.15]	
Laverone 2006	6/444	0/81	11.8 %	2.40 [0.14, 42.11]	
Petersen 2000 (10)	29/809	7/1223	78.1 %	6.26 [2.76, 14.23]	
Subtotal (95% CI)	1368	1326	100.0 %	4.42 [1.58, 12.40]	

Heterogeneity: Tau^2 = 0.0; Chi^2 = 0.74, df = 1 (P = 0.39); I^2 = 0.0%

Test for overall effect: Z = 1.41 (P = 0.16)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio M-H	Weight	Risk Ratio M-H
	n/N	n/N	95% CI		95% CI
13 Pruritis	0.005	0.1	1.00	100.0%	4.48 [1.58, 12.40]
Study or subgroup	Mefloquine n/N	Chloroquine n/N	Risk Ratio M-H Random, 95% CI	Weight	
------------------	---------------	----------------	-------------------------------	--------	
Steffen 1993	1351/50053	77/3354	1.18 [0.94, 1.48]	100.0%	

Subtotal (95% CI) 50053 3354 100.0% 1.18 [0.94, 1.48]

Total events: 1351 (Mefloquine), 77 (Chloroquine)

Heterogeneity: not applicable

Test for overall effect: Z = 1.40 (P = 0.16)

14 Visual impairment

Study or subgroup	Mefloquine n/N	Chloroquine n/N	Risk Ratio M-H Random, 95% CI	Weight
Corominas 1997 (11)	4/609	1/137	0.90 [0.10, 7.99]	
Laverone 2006 (12)	5/444	1/81	0.91 [0.11, 7.71]	
Petersen 2000 (13)	14/809	19/1223	1.11 [0.56, 2.21]	
Steffen 1993 (14)	1102/50053	117/3354	0.63 [0.52, 0.76]	

Subtotal (95% CI) 51915 4795 100.0% 0.66 [0.55, 0.79]

Total events: 1125 (Mefloquine), 138 (Chloroquine)

Heterogeneity: $\tau^2 = 0.0$, $\chi^2 = 2.64$, df = 3 (P = 0.45); I² = 0.0%

Test for overall effect: Z = 4.55 (P < 0.00001)

(1) Albright 2002. Reported in the original paper as ‘vivid dreams’
(2) Laverone 2006. Reported in the original paper as ‘nightmares’
(3) Stoney 2016. Reported in the original paper as ‘intense nightmares’
(4) Albright 2002. Reported in the original paper as ‘changes in sleep’
(5) Laverone 2006. Reported in the original paper as ‘anxiety disorder’
(6) Corominas 1997. Reported in the original paper as ‘depression’
(7) Laverone 2006. Reported in the original paper as ‘depression’
(8) Steffen 1993. Reported in the original paper as ‘depression’
(9) Albright 2002. Reported in the original paper as ‘hallucinations’
(10) Petersen 2000. Reported in the original paper as ‘strange thoughts’
(11) Corominas 1997. Reported in the original paper as ‘loss of visual acuity’
(12) Laverone 2006. Reported in the original paper as ‘blurred vision’
(13) Petersen 2000. Reported in the original paper as ‘blurred vision’
(14) Steffen 1993. Reported in the original paper as ‘visual’
Analysis 4.19. Comparison 4 Mefloquine versus chloroquine, Outcome 19 Other adverse effects (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 19 Other adverse effects (cohort studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Fixed,95% CI		M-H,Fixed,95% CI
1. Altered spatial perception					
Petersen 2000	23/809	11/1223			
	100.0 %				
Subtotal (95% CI)	809	1223			
Total events: 23 (Mefloquine), 11 (Chloroquine)					
Heterogeneity: not applicable					
Test for overall effect: Z = 3.16 (P = 0.0016)					
2. Alopecia					
Korhonen 2007	194/1453	54/684			
	100.0 %				
Subtotal (95% CI)	1453	684			
Total events: 194 (Mefloquine), 54 (Chloroquine)					
Heterogeneity: not applicable					
Test for overall effect: Z = 3.58 (P = 0.00034)					
3. Asthenia					
Corominas 1997	5/609	1/137			
	5.0 %				
Korhonen 2007 (1)	69/1453	22/684			
Laverone 2006 (2)	10/444	0/81			
	92.4 %				
Subtotal (95% CI)	2506	902			
Total events: 84 (Mefloquine), 23 (Chloroquine)					
Heterogeneity: Chi^2 = 0.51, df = 2 (P = 0.77); I^2 = 0.0%					
Test for overall effect: Z = 1.81 (P = 0.070)					
4. Balance disorder					
Korhonen 2007 (3)	122/1453	16/684			
	100.0 %				
Subtotal (95% CI)	1453	684			
Total events: 122 (Mefloquine), 16 (Chloroquine)					
Heterogeneity: not applicable					
Test for overall effect: Z = 4.88 (P < 0.00001)					
5. Confusion					
Laverone 2006 (4)	5/444	0/81			
	100.0 %				
Subtotal (95% CI)	444	81			
Total events: 5 (Mefloquine), 0 (Chloroquine)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.48 (P = 0.63)					

(Continued...)

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed 95% CI	
6 Decreased appetite	72/809	93/1223	100.0 %	1.17 [0.87, 1.57]
Subtotal (95% CI)	**809**	**1223**	100.0 %	1.17 [0.87, 1.57]
Total events: 72 (Mefloquine), 93 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.05 (P = 0.30)				
7 Fatigue				
Laverone 2006 (6)	26/444	2/81	100.0 %	2.37 [0.57, 9.80]
Subtotal (95% CI)	**444**	**81**	100.0 %	2.37 [0.57, 9.80]
Total events: 26 (Mefloquine), 2 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.19 (P = 0.23)				
8 Hypoaesthesia				
Korhonen 2007 (7)	21/1453	0/684	100.0 %	20.26 [1.23, 333.93]
Subtotal (95% CI)	**1453**	**684**	100.0 %	20.26 [1.23, 333.93]
Total events: 21 (Mefloquine), 0 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 2.10 (P = 0.035)				
9 Irritability				
Corominas 1997 (8)	10/609	0/137	100.0 %	4.75 [0.28, 80.59]
Subtotal (95% CI)	**609**	**137**	100.0 %	4.75 [0.28, 80.59]
Total events: 10 (Mefloquine), 0 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.08 (P = 0.28)				
10 Mouth ulcers				
Petersen 2000	25/809	33/1223	34.2 %	1.15 [0.69, 1.91]
Steffen 1993	601/50053	27/3354	65.8 %	1.49 [1.02, 2.19]
Subtotal (95% CI)	**50862**	**4577**	100.0 %	1.37 [1.01, 1.87]
Total events: 626 (Mefloquine), 60 (Chloroquine)				
Heterogeneity: Chi2 = 0.66, df = 1 (P = 0.42); I2 = 0.0%				
Test for overall effect: Z = 2.02 (P = 0.044)				
11 Paresthesia				
Corominas 1997	1/609	0/137	5.1 %	0.68 [0.03, 16.57]
Petersen 2000 (9)	29/809	19/1223	94.9 %	2.31 [1.30, 4.09]
Subtotal (95% CI)	**1418**	**1360**	100.0 %	2.22 [1.27, 3.89]
Total events: 30 (Mefloquine), 19 (Chloroquine)				
Heterogeneity: Chi2 = 0.55, df = 1 (P = 0.46); I2 = 0.0%				
Test for overall effect: Z = 2.80 (P = 0.0051)				
12 Palpitations				
Corominas 1997	5/609	0/137	34.9 %	2.49 [0.14, 44.74]
0.005 0.1 1 10 200				
Favours mefloquine	Favours chloroquine			
(Continued . . .)				
Study or subgroup	Mefloquine	Chloroquine	Risk Ratio Weight	Risk Ratio
------------------	------------	-------------	------------------	------------
	n/N	n/N	M-H Fixed, 95% CI	M-H Fixed, 95% CI
Korhonen 2007	6/1453	0/684		29.1% 6.12 [0.35, 108.56]
Laverone 2006	15/444	0/81		36.1% 5.71 [0.35, 94.53]
Subtotal (95% CI)	**2506**	**902**	**100.0% 4.71 [0.91, 24.26]**	
Total events: 26 (Mefloquine), 0 (Chloroquine)				
Heterogeneity: Chi² = 0.24, df = 2 (P = 0.89); I² = 0.0%				
Test for overall effect: Z = 1.85 (P = 0.064)				
13 Photosensitization				
Korhonen 2007	34/1453	19/684		96.8% 0.84 [0.48, 1.47]
Laverone 2006	6/444	0/81		3.2% 2.40 [0.14, 42.11]
Subtotal (95% CI)	**1897**	**765**	**100.0% 0.89 [0.52, 1.53]**	
Total events: 40 (Mefloquine), 19 (Chloroquine)				
Heterogeneity: Chi² = 0.50, df = 1 (P = 0.48); I² = 0.0%				
Test for overall effect: Z = 0.41 (P = 0.68)				
14 Restlessness				
Laverone 2006	26/444	1/81		100.0% 4.74 [0.65, 34.46]
Subtotal (95% CI)	**444**	**81**	**100.0% 4.74 [0.65, 34.46]**	
Total events: 26 (Mefloquine), 1 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.54 (P = 0.12)				
15 Slight illness				
Laverone 2006	29/444	2/81		100.0% 2.65 [0.64, 10.87]
Subtotal (95% CI)	**444**	**81**	**100.0% 2.65 [0.64, 10.87]**	
Total events: 29 (Mefloquine), 2 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.35 (P = 0.18)				
16 Somnolence				
Laverone 2006 (10)	16/444	0/81		100.0% 6.08 [0.37, 100.36]
Subtotal (95% CI)	**444**	**81**	**100.0% 6.08 [0.37, 100.36]**	
Total events: 16 (Mefloquine), 0 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 1.26 (P = 0.21)				
17 Yeast infection				
Korhonen 2007	22/1453	9/684		100.0% 1.15 [0.53, 2.49]
Subtotal (95% CI)	**1453**	**684**	**100.0% 1.15 [0.53, 2.49]**	
Total events: 22 (Mefloquine), 9 (Chloroquine)				
Heterogeneity: not applicable				
Test for overall effect: Z = 0.36 (P = 0.72)				
(1) Korhonen 2007. Reported in the original paper as ‘weakness’
(2) Laverone 2006. Reported in the original paper as ‘weakness’
(3) Korhonen 2007. Reported in the original paper as ‘unsteadiness’
(4) Laverone 2006. Reported in the original paper as ‘mental confusion’
(5) Petersen 2000. Reported in the original paper as ‘loss of appetite’
(6) Laverone 2006. Reported in the original paper as ‘tiredness’
(7) Korhonen 2007. Reported in the original paper as ‘limb numbness’
(8) Coreminas 1997. Reported in the original paper as ‘irritability’
(9) Petersen 2000. Reported in the original paper as ‘tingling’
(10) Laverone 2006. Reported in the original paper as ‘drowsiness’

Analysis 4.20. Comparison 4 Mefloquine versus chloroquine, Outcome 20 Other adverse events (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas
Comparison: 4 Mefloquine versus chloroquine
Outcome: 20 Other adverse events (RCTs)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight
	n/N	n/N	M-H,Fixed,95% CI	
Abdominal distension	2/46	1/78	35.7 %	3.39 [0.32, 36.37]
Boudreau 1993 (1)	6/157	1/78	64.3 %	2.98 [0.37, 24.33]
Subtotal (95% CI)	203	156	100.0 %	3.13 [0.64, 15.27]
Anger	2/157	3/78	68.2 %	0.33 [0.06, 1.94]
Boudreau 1993	0/46	2/78	31.8 %	0.34 [0.02, 6.85]
Subtotal (95% CI)	203	156	100.0 %	0.33 [0.07, 1.55]

Test for overall effect: Z = 1.41 (P = 0.16)
Heterogeneity: Chi² = 0.01, df = 1 (P = 0.94); I² = 0.0%

(Continued ...)
Study or subgroup	Mefloquine n/N	Chloroquine n/N	Risk Ratio	Weight n/N	Risk Ratio
3 Disturbance in attention	1/46	1/78	35.7 %	1.70 [0.11, 26.46]	
Boudreau 1993 (2)	1/46	1/78	35.7 %	1.70 [0.11, 26.46]	
Boudreau 1993 (3)	8/157	1/78	64.3 %	3.97 [0.51, 31.22]	
Subtotal (95% CI)	203	156	100.0 %	3.16 [0.61, 16.47]	
Total events:	9 (Mefloquine), 2 (Chloroquine)	Heterogeneity: Ch^2 = 0.24, df = 1 (P = 0.62); P =0.0%	Test for overall effect: Z = 1.37 (P = 0.17)		
4 Irritability	4/46	4/78	35.7 %	1.70 [0.45, 6.46]	
Boudreau 1993	4/46	4/78	35.7 %	1.70 [0.45, 6.46]	
Boudreau 1993	6/157	4/78	64.3 %	0.75 [0.22, 2.56]	
Subtotal (95% CI)	203	156	100.0 %	1.08 [0.45, 2.64]	
Total events:	10 (Mefloquine), 8 (Chloroquine)	Heterogeneity: Ch^2 = 0.78, df = 1 (P = 0.38); P =0.0%	Test for overall effect: Z = 0.18 (P = 0.86)		
5 Loss of appetite	5/157	3/78	73.0 %	0.83 [0.20, 3.38]	
Boudreau 1993	5/157	3/78	73.0 %	0.83 [0.20, 3.38]	
Boudreau 1993 (4)	2/46	2/78	27.0 %	1.70 [0.25, 11.63]	
Subtotal (95% CI)	203	156	100.0 %	1.06 [0.35, 3.25]	
Total events:	7 (Mefloquine), 5 (Chloroquine)	Heterogeneity: Ch^2 = 0.35, df = 1 (P = 0.56); P =0.0%	Test for overall effect: Z = 0.11 (P = 0.92)		
6 Malaise	3/103	1/100	100.0 %	0.32 [0.01, 7.85]	
Sossouhounto 1995	0/103	1/100	100.0 %	0.32 [0.01, 7.85]	
Subtotal (95% CI)	103	100	100.0 %	0.32 [0.01, 7.85]	
Total events:	0 (Mefloquine), 1 (Chloroquine)	Heterogeneity: not applicable	Test for overall effect: Z = 0.69 (P = 0.49)		
7 Mood altered	2/46	1/78	21.7 %	3.39 [0.32, 36.37]	
Boudreau 1993 (5)	2/46	1/78	21.7 %	3.39 [0.32, 36.37]	
Boudreau 1993	2/157	2/78	78.3 %	0.50 [0.07, 3.46]	
Subtotal (95% CI)	203	156	100.0 %	1.13 [0.29, 4.34]	
Total events:	4 (Mefloquine), 3 (Chloroquine)	Heterogeneity: Ch^2 = 1.51, df = 1 (P = 0.22); P =34%	Test for overall effect: Z = 0.17 (P = 0.86)		

(1) Boudreau 1993. Mefloquine loading dose group (250mg daily for 3 days)
(2) Boudreau 1993. 'Concentration difficulties' Mefloquine loading dose group (250mg daily for 3 days)
(3) Boudreau 1993. 'concentration difficulties'
(4) Boudreau 1993. Reported in the original paper as 'anorexia'
(5) Boudreau 1993. Reported in the original paper as 'moodiness'
Analysis 4.21. Comparison 4 Mefloquine versus chloroquine, Outcome 21 Pregnancy related outcomes (RCTs).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 21 Pregnancy related outcomes (RCTs)

Study or subgroup	Mefloquine n/N	Chloroquine n/N	Risk Ratio M-H(Fixed,95% CI)	Weight %	Risk Ratio M-H(Fixed,95% CI)
1 Spontaneous abortions	42.8 % 1.01 [0.32, 3.17]				
Steketee 1996 5/466 7/661					
Steketee 1996 (1) 4/466 10/741					
Subtotal (95% CI) 932 1402	100.0 % 0.80 [0.36, 1.79]				
Total events: 9 (Mefloquine), 17 (Chloroquine)					
Heterogeneity: Chi² = 0.32, df = 1 (P = 0.57); I² =0.0%					
Test for overall effect: Z = 0.55 (P = 0.58)					
2 Still births					
Steketee 1996 19/466 29/661	54.4 % 0.93 [0.53, 1.64]				
Steketee 1996 (2) 18/466 26/741	45.6 % 1.10 [0.61, 1.99]				
Subtotal (95% CI) 932 1402	100.0 % 1.01 [0.67, 1.52]				
Total events: 37 (Mefloquine), 55 (Chloroquine)					
Heterogeneity: Chi² = 0.16, df = 1 (P = 0.68); I² =0.0%					
Test for overall effect: Z = 0.04 (P = 0.97)					
3 Congenital malformations					
Steketee 1996 0/932 0/1402					
Subtotal (95% CI) 932 1402	Not estimable				
Total events: 0 (Mefloquine), 0 (Chloroquine)					
Heterogeneity: not applicable					
Test for overall effect: not applicable					
Test for subgroup differences: Chi² = 0.26, df = 1 (P = 0.61), I² =0.0%					

(1) Steketee 1996. Chloroquine loading dose group (25mg of base/kg given as a divided dose over 2 days)

(2) Steketee 1996. Chloroquine loading dose group (25mg of base/kg given as a divided dose over 2 days)
Analysis 4.22. Comparison 4 Mefloquine versus chloroquine, Outcome 22 Adherence (cohort studies).

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 4 Mefloquine versus chloroquine

Outcome: 22 Adherence (cohort studies)

Study or subgroup	Mefloquine	Chloroquine	Risk Ratio	Weight	Risk Ratio
	n/N	n/N			
1 Short-term travellers					
Hill 2000 (1)	90/103	314/382	1.06 [0.97, 1.16]	44.6 %	
Laver 2001 (2)	163/184	34/40	1.04 [0.91, 1.20]	31.7 %	
Rietz 2002 (3)	65/92	42/51	0.86 [0.71, 1.03]	23.7 %	
Subtotal (95% CI)	**379**	**473**	1.00 [0.90, 1.13]		
Total events: 318 (Mefloquine), 390 (Chloroquine)					
Heterogeneity: Tau² = 0.01; Ch² = 4.51, df = 2 (P = 0.10); I² = 56%					
Test for overall effect: Z = 0.07 (P = 0.95)					
2 Short-term travellers: after return					
Stoney 2016 (4)	6/11	19/35	1.00 [0.54, 1.87]	100.0 %	
Subtotal (95% CI)	**11**	**35**	1.00 [0.54, 1.87]		
Total events: 6 (Mefloquine), 19 (Chloroquine)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.02 (P = 0.99)					
3 Longer-term occupational travellers					
Korhonen 2007 (5)	946/1453	233/684	1.91 [1.71, 2.14]	54.4 %	
Tan 2017 (6)	1691/2972	177/668	2.15 [1.89, 2.45]	45.6 %	
Subtotal (95% CI)	**4425**	**1352**	2.02 [1.80, 2.26]		
Total events: 2637 (Mefloquine), 410 (Chloroquine)					
Heterogeneity: Tau² = 0.00; Ch² = 1.82, df = 1 (P = 0.18); I² = 45%					
Test for overall effect: Z = 1.96 (P < 0.0001)					
Test for subgroup differences: Ch² = 72.01, df = 2 (P = 0.000), I² = 97%					

(1) Hill 2000. Defined as filled prescription, taken the prescribed number of doses before, during and following their trip

(2) Laver 2001. Defined as 'full compliance, i.e. regular medication with no missed doses'

(3) Rietz 2002. Defined as 'took them as prescribed during the whole journey and even after their return'

(4) Stoney 2016. Defined as 'number adherent in the post-prophylaxis period'

(5) Korhonen 2007. Defined as 'reported never missing the drug during their time in service.'

(6) Tan 2017. 'Taken as prescribed'
Analysis 5.1. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 1 Nausea; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 1 Nausea; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H,Random,95% CI	Weight	Risk Ratio M-H,Random,95% CI
1 RCTs					
Overbosch 2001 (1)	40/483	15/493	100.0 % 2.72 [1.52, 4.86]		
Subtotal (95% CI)	483	493	100.0 % 2.72 [1.52, 4.86]		

Total events: 40 (Mefloquine), 15 (Control)

Heterogeneity: not applicable

Test for overall effect: Z = 3.38 (P = 0.00071)

2 Cohort studies

Study or subgroup	Mefloquine	Control	Risk Ratio M-H,Random,95% CI	Weight	Risk Ratio M-H,Random,95% CI
Andersson 2008 (2)	30/491	4/161	10.5 % 2.46 [0.88, 6.87]		
Corominas 1997 (3)	15/609	0/137	4.9 % 7.01 [0.42, 116.50]		
Cunningham 2014 (4)	2/49	8/247	8.7 % 1.26 [0.28, 5.76]		
Kata 2013 (5)	5/38	5/277	9.9 % 7.29 [2.21, 24.02]		
Karhonen 2007 (6)	165/1453	104/324	12.7 % 0.35 [0.29, 0.44]		
Kuhner 2005 (7)	19/142	5/82	10.8 % 2.19 [0.85, 5.66]		
Laverone 2006 (8)	65/444	2/43	9.2 % 3.15 [0.80, 12.41]		
Philips 1996 (9)	43/285	36/383	12.4 % 1.61 [1.06, 2.43]		
Shamiss 1996 (10)	2/13	0/28	4.5 % 10.36 [0.53, 20.60]		
Sonmez 2005 (11)	7/228	41/506	11.4 % 0.38 [0.17, 0.83]		
Tuck 2016	1/13	1/20	5.1 % 1.54 [0.11, 22.49]		

Subtotal (95% CI) 3765 2208 100.0 % 1.72 [0.78, 3.77]

Total events: 354 (Mefloquine), 206 (Control)

Heterogeneity: Tau² = 1.26; Ch² = 96.35, df = 10 (P<0.00001); I² =90%

Test for overall effect: Z = 1.35 (P = 0.18)

Test for subgroup differences: Ch² = 0.85, df = 1 (P = 0.36), I² =0.0%
Analysis 5.2. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 2 Abdominal pain; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 2 Abdominal pain; effects

Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	RR		
	n/N	n/N	M-H Random	95% CI	
1 RCTs					
Overbosch 2001 (1)	23/483	26/493	100.0 %	0.90 [0.52, 1.56]	
Subtotal (95% CI)	483	493	100.0 %	0.90 [0.52, 1.56]	
2 Cohort studies					
Anderson 2008 (2)	18/491	13/161	22.3 %	0.45 [0.23, 0.91]	
Cunningham 2014 (3)	0/49	4/182	3.6 %	0.41 [0.02, 7.43]	
Kato 2013 (4)	1/38	11/277	6.7 %	0.66 [0.09, 4.99]	
Karhonen 2007 (5)	54/1453	45/324	28.5 %	0.27 [0.18, 0.39]	
Study or subgroup	Mefloquine	Control	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
------------------	------------	---------	-------------------------------	--------	-------------------------------
Kuhner 2005 (6)	9/142	4/82	14.5 % 1.30 [0.41, 4.09]	14.5 %	1.30 [0.41, 4.09]
Laverone 2006 (7)	9/444	1/43	6.6 % 0.87 [0.11, 6.72]	6.6 %	0.87 [0.11, 6.72]
Shamiss 1996 (8)	3/13	7/28	14.0 % 0.92 [0.28, 3.01]	14.0 %	0.92 [0.28, 3.01]
Sonmez 2005 (9)	0/228	30/506	3.9 % 0.04 [0.00, 0.59]	3.9 %	0.04 [0.00, 0.59]
Tuck 2016	0/13	0/20	Not estimable		
Subtotal (95% CI)	**2871**	**1623**	100.0 % 0.49 [0.27, 0.87]	100.0 %	0.49 [0.27, 0.87]

Total events: 94 (Mefloquine), 115 (Control)
Heterogeneity: Tau² = 0.28; Chi² = 13.88, df = 7 (P = 0.05); I² = 50%
Test for overall effect: Z = 2.42 (P = 0.016)
Test for subgroup differences: Chi² = 2.31, df = 1 (P = 0.13), I² = 57%

(1) Overbosch 2001. Mefloquine versus atovaquone-proguanil recipients
(2) Andersson 2008. Mefloquine versus atovaquone-proguanil recipients
(3) Cunningham 2014. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(4) Kato 2013. Mefloquine versus atovaquone-proguanil recipients
(5) Korhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(6) Kuhner 2005. Mefloquine versus atovaquone-proguanil recipients
(7) Laverone 2006. Mefloquine versus atovaquone-proguanil recipients
(8) Shamiss 1996. Mefloquine versus doxycycline recipients
(9) Sonmez 2005. Mefloquine versus doxycycline recipients
Analysis 5.3. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 3 Diarrhoea; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 3 Diarrhoea; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
1 RCTs					
Overbosch 2001 (1)	34/483	37/493	100.0 % 0.94 [0.60, 1.47]		
Subtotal (95% CI)	**483**	**493**	**100.0 % 0.94 [0.60, 1.47]**		
Total events: 34 (Mefloquine), 37 (Control)					
Heterogeneity: not applicable					
Test for overall effect: Z = 0.28 (P = 0.78)					
2 Cohort studies					
Andersson 2008 (2)	23/491	6/161	11.7 % 1.26 [0.52, 3.03]		
Cunningham 2014 (3)	0/49	5/247	4.8 % 0.45 [0.03, 8.03]		
Kato 2013 (4)	1/38	14/277	7.2 % 0.52 [0.07, 3.85]		
Karhonan 2007 (5)	45/1453	13/324	12.7 % 0.77 [0.42, 1.41]		
Kuhner 2005 (6)	16/142	10/82	12.2 % 0.92 [0.44, 1.94]		
Laverone 2006 (7)	21/444	3/43	10.5 % 0.68 [0.21, 2.18]		
Philips 1996 (8)	24/285	9/383	12.2 % 3.58 [1.69, 7.59]		
Saunders 2015 (9)	22/564	31/1898	13.2 % 0.24 [0.16, 0.36]		
Sonmez 2005 (10)	4/228	108/506	11.3 % 0.08 [0.03, 0.22]		
Tuck 2016	0/13	1/20	4.3 % 0.50 [0.02, 11.42]		
Subtotal (95% CI)	**3707**	**3941**	**100.0 % 0.61 [0.28, 1.34]**		
Total events: 156 (Mefloquine), 480 (Control)					
Heterogeneity: Tau² = 1.16, Chi² = 63.94, df = 9 (P<0.0000); I² =86%					
Test for overall effect: Z = 1.22 (P = 0.22)					
Test for subgroup differences: Chi² = 0.84, df = 1 (P = 0.36), I² =0.0%					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 5.4. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 4 Headache; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 4 Headache; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H	Weight	Risk Ratio M-H
	n/N	n/N			
1 RCTs					
Overbosch 2001 (1)	32/483	19/493	1.72 [0.99, 2.99]	100.0 %	
Subtotal (95% CI)	483	493	1.72 [0.99, 2.99]	100.0 %	
Total events: 32 (Mefloquine), 19 (Control)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.92 (P = 0.055)					

2 Cohort studies

	n/N	n/N			
Andersen 2008 (2)	21/491	2/161	11.0 %	3.44 [0.82, 14.52]	
Cunningham 2014 (3)	0/49	6/247	3.7 %	0.38 [0.02, 6.66]	
Kato 2013 (4)	4/38	4/227	12.0 %	7.29 [1.90, 27.94]	
Korhonen 2007 (5)	100/1453	15/324	25.8 %	1.49 [0.88, 2.52]	
Kuhner 2005 (6)	8/142	2/82	10.1 %	2.31 [0.50, 10.62]	

(Continued...)

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Study or subgroup	Mefloquine n/N	Control n/N	Risk Ratio M-H, Random, 95% CI	Weight
Landman 2015 (7)	23/380	7/401	19.6 % 3.47 [1.51, 7.99]	
Laverone 2006 (8)	18/444	0/43	3.9 % 3.66 [0.22, 59.68]	
Sonmez 2005 (9)	2/228	11/506	10.4 % 0.40 [0.09, 1.81]	
Stoney 2016 (10)	0/11	2/315	3.4 % 5.27 [0.27, 103.81]	
Subtotal (95% CI)	**3236**	**2356**	**100.0 % 2.19 [1.22, 3.93]**	

Total events: 176 (Mefloquine), 49 (Control)

Heterogeneity: Tau^2 = 0.27; Chi^2 = 13.36, df = 8 (P = 0.10); I^2 = 40%

Test for overall effect: Z = 2.62 (P = 0.0087)

Test for subgroup differences: Chi^2 = 0.34, df = 1 (P = 0.56), I^2 = 0.0%

(1) Overbosch 2001. Mefloquine versus atovaquone-proguanil recipients
(2) Andersson 2008. Mefloquine versus atovaquone-proguanil recipients
(3) Cunningham 2014. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(4) Kato 2013. Mefloquine versus atovaquone-proguanil recipients
(5) Karhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(6) Kühner 2005. Mefloquine versus atovaquone-proguanil recipients
(7) Landman 2015. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(8) Laverone 2006. Mefloquine versus atovaquone-proguanil and chloroquine recipients
(9) Sonmez 2005. Mefloquine versus doxycycline recipients
(10) Stoney 2016. Mefloquine versus atovaquone-proguanil, chloroquine and doxycycline recipients
Analysis 5.5. Comparison of Mefloquine versus currently used regimens; by study design, Outcome 5. Dizziness; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: Mefloquine versus currently used regimens; by study design

Outcome: Dizziness; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H Random 95% CI	Weight	Risk Ratio M-H Random 95% CI
1 RCTs					
Overbosch 2001 (1)	43/483	11/493	3.99 [2.08, 7.64]	100.0%	
Subtotal (95% CI)	483	493		100.0%	3.99 [2.08, 7.64]
Total events: 43 (Mefloquine), 11 (Control)					
Heterogeneity: not applicable					
Test for overall effect: Z = 4.17 (P = 0.000030)					
2 Cohort studies					
Andersson 2008 (2)	52/491	6/161	17.3% 2.84 [1.24, 6.49]		
Cunningham 2014 (3)	1/49	2/247	6.2% 2.52 [0.23, 27.25]		
Kata 2013 (4)	3/38	8/277	12.8% 2.73 [0.76, 9.86]		
Karhonen 2007 (5)	189/1453	23/234	21.1% 1.83 [1.21, 2.78]		
Kuhner 2005 (6)	17/142	1/82	7.9% 9.82 [1.33, 72.42]		
Landman 2015 (7)	52/380	3/401	14.0% 18.29 [5.76, 58.07]		
Laverene 2006 (8)	25/444	2/43	11.8% 1.21 [0.30, 4.94]		
Shamiss 1996 (9)	2/13	0/28	4.4% 10.36 [0.53, 201.60]		
Tuck 2016	0/13	2/20	4.4% 0.30 [0.02, 5.79]		
Subtotal (95% CI)	3023	1583		100.0%	3.17 [1.58, 6.35]
Total events: 341 (Mefloquine), 47 (Control)					
Heterogeneity: τ² = 0.55; χ² = 20.61, df = 8 (P = 0.01); I² = 61%					
Test for overall effect: Z = 3.26 (P = 0.0011)					
Test for subgroup differences: χ² = 0.22, df = 1 (P = 0.64), I² = 0.0%					
Analysis 5.6. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 6 Abnormal dreams; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 6 Abnormal dreams; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H, Random, 95% CI	Weight %	Risk Ratio M-H, Random, 95% CI
Overbosch 2001 (1)	66/483	33/493	2.04 [1.37, 3.04]	100.0	2.04 [1.37, 3.04]
Total events: 66 (Mefloquine), 33 (Control)					
Heterogeneity: not applicable					
Test for overall effect: Z = 3.51 (P = 0.00045)					
2 Cohort studies					
Andersson 2008 (2)	168/491	5/161	18.4 %	11.02 [4.61, 26.34]	
Cunningham 2014 (3)	5/49	30/247	18.2 %	0.84 [0.34, 2.06]	
Korhonen 2007 (4)	775/1453	12/324	19.8 %	14.40 [8.25, 25.14]	
Kuhner 2005 (5)	8/142	0/82	8.4 %	9.87 [0.58, 168.77]	
Landman 2015 (6)	173/380	8/401	19.2 %	22.82 [11.39, 45.71]	
Laverone 2006 (7)	15/444	0/43	8.6 %	3.07 [0.19, 50.36]	

0.005 0.1 1 10 200
Favours mefloquine Favours other regime

(Continued...)
Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H, Random, 95% CI		M-H, Random, 95% CI
Stoney 2016 (8)	0/11	1/315	7.4 % 8.78 [0.38, 204.48]		
Subtotal (95% CI)	**2970**	**1573**	**100.0 % 7.30 [2.51, 21.18]**		
			Test for overall effect: Z = 3.66 (P = 0.00026)		
			Test for subgroup differences: Chi² = 4.82, df = 1 (P = 0.03), I² = 79%		
			Heterogeneity: Tau² = 1.41; Chi² = 38.64, df = 6 (P<0.00001); I² = 84%		

(1) Overbosch 2001. Mefloquine versus atovaquone-proguanil recipients
(2) Andersson 2008. Mefloquine versus atovaquone-proguanil recipients
(3) Cunningham 2014. Mefloquine versus atovaquone-proguanil and doxycycline participants
(4) Korhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(5) Kühner 2005. Mefloquine versus atovaquone-proguanil recipients
(6) Landman 2015. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(7) Laverone 2006. Mefloquine versus atovaquone-proguanil and chloroquine recipients
(8) Stoney 2016. Mefloquine versus atovaquone-proguanil, chloroquine and doxycycline recipients
Analysis 5.7. Comparison of Mefloquine versus currently used regimens; by study design, Outcome 7: Insomnia; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas.

Comparison: 5 Mefloquine versus currently used regimens; by study design.

Outcome: 7 Insomnia; effects.

Study or subgroup	Mefloquine n/N	Control n/N	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
1 RCTs					
Overbosch 2001 (1)	65/483	15/493			
Subtotal (95% CI)	483	493			
Total events:	65 (Mefloquine)	15 (Control)			

Heterogeneity: not applicable

Test for overall effect: Z = 5.33 (P < 0.00001)

2 Cohort studies

Study or subgroup	Mefloquine n/N	Control n/N	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
Andersson 2008 (2)	171/491	8/161			
Cunningham 2014 (3)	0/49	5/247			
Kata 2013 (4)	2/38	1/277			
Karhonen 2007 (5)	491/1453	8/324			
Kuhner 2005 (6)	14/42	1/82			
Landman 2015 (7)	94/380	10/401			
Laverone 2006 (8)	35/444	0/43			
Sonmez 2005 (9)	0/228	14/506			
Tuck 2016	3/13	2/20			
Subtotal (95% CI)	3238	2061			

Total events: 810 (Mefloquine), 15 (Control)

Heterogeneity: $\tau^2 = 0.52; \chi^2 = 19.74, df = 8 (P = 0.01); I^2 = 59\%$

Test for overall effect: Z = 4.88 (P < 0.00001)

Test for subgroup differences: $\chi^2 = 0.31, df = 1 (P = 0.57), I^2 = 0.0\%$

Favours Mefloquine Favours other regime

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 5.8. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 8 Anxiety; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 8 Anxiety; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H,Random,95% CI	Weight	Risk Ratio M-H,Random,95% CI
	n/N	n/N			
1 RCTs					
Overbosch 2001 (1)	18/483	3/493	100.0 % 6.12 [1.82, 20.66]		
Subtotal (95% CI)	483	493	100.0 % 6.12 [1.82, 20.66]		
2 Cohort studies					
Cunningham 2014 (2)	2/98	1/247	5.6 % 5.04 [0.46, 54.96]		
Korhonen 2007 (3)	380/1453	4/324	33.6 % 21.18 [7.97, 56.32]		
Landman 2015 (4)	104/380	7/401	56.7 % 15.68 [7.39, 33.27]		
Laverone 2006 (5)	16/444	0/43	4.1 % 3.26 [0.20, 53.46]		
Subtotal (95% CI)	2375	1015	100.0 % 15.26 [8.66, 26.89]		

Total events: 18 (Mefloquine), 3 (Control)
Heterogeneity: not applicable
Test for overall effect: Z = 2.92 (P = 0.0035)

(Continued . . .)
Analysis 5.9. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 9 Depressed mood; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 9 Depressed mood; effects

Study or subgroup	Mefloquine	Control	Risk Ratio M-H, Random, 95% CI	Weight	Risk Ratio M-H, Random, 95% CI
n/N	n/N				
1 RCTs					
Overbosch 2001 (1)	17/483	3/493	5.78 [1.71, 19.61]	100.0%	5.78 [1.71, 19.61]
Subtotal (95% CI)	483	493	100.0%	5.78	5.78 [1.71, 19.61]
Total events: 17 (Mefloquine), 3 (Control)					
Heterogeneity: not applicable					
Test for overall effect: Z = 2.82 (P = 0.0048)					
2 Cohort studies					
Andersson 2008 (2)	82/491	2/161	13.44 [3.34, 54.05]	18.8%	13.44 [3.34, 54.05]
Kato 2013 (3)	0/38	3/277	1.02 [0.05, 19.34]	5.5%	1.02 [0.05, 19.34]

(Continued . . .)
Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	M-H,Random		M-H,Random
Korhonen 2007 (4)	208/1453	3/324	24.6 %	15.46	[4.98, 48.02]
Kuhner 2005 (5)	13/142	2/82	17.5 %	3.75	[0.87, 16.22]
Landman 2015 (6)	39/380	4/401	27.8 %	10.29	[3.71, 28.52]
Laverone 2006 (7)	6/444	0/43	5.8 %	1.29	[0.07, 22.44]
Subtotal (95% CI)	2948	1288	100.0 %	7.82	[3.79, 16.12]

Total events: 348 (Mefloquine), 14 (Control)

Heterogeneity: Tau² = 0.22; Chi² = 6.92, df = 5 (P = 0.23); I² = 28%

Test for overall effect: Z = 5.57 (P < 0.00001)

Test for subgroup differences: Chi² = 0.17, df = 1 (P = 0.68), I² = 0.0%

(1) Overbosch 2001. Mefloquine versus atovaquone-proguanil recipients
(2) Andersson 2008. Mefloquine versus atovaquone-proguanil recipients
(3) Kato 2013. Mefloquine versus atovaquone-proguanil recipients
(4) Korhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(5) Kuhner 2005. Mefloquine versus atovaquone-proguanil recipients
(6) Landman 2015. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(7) Laverone 2006. Mefloquine versus atovaquone-proguanil recipients

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 5.10. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 10 Abnormal thoughts or perceptions; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 10 Abnormal thoughts or perceptions; effects

Study or subgroup	Mefloquine	Control	Risk Ratio [M/H] Random, 95% CI	Weight	Mefloquine	Control	Risk Ratio [M/H] Random, 95% CI
1 Cohort studies							
Korhonen 2007 (1)	9/1453	0/324	33.7% 1.00 [0.25, 72.78]	4.20	0.00	0.00	100.0% 4.20 [0.81, 21.87]
Landman 2015 (2)	6/380	0/401	33.0% 13.72 [0.78, 242.65]	0.00	0.00	0.00	100.0% 1.29 [0.07, 22.44]
Laverone 2006 (3)	6/444	0/43	33.3% 1.29 [0.07, 22.44]	0.00	0.00	0.00	100.0% 1.29 [0.07, 22.44]
Subtotal (95% CI)	2277/768		100.0% 4.20 [0.81, 21.87]				

Total events: 21 (Mefloquine), 0 (Control)
Heterogeneity: τ² = 0.0; χ² = 1.36, df = 2 (P = 0.51); I² = 0.0%
Test for overall effect: Z = 1.70 (P = 0.088)
Test for subgroup differences: Not applicable

(1) Korhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(2) Landman 2015. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(3) Laverone 2006. Mefloquine versus atovaquone-proguanil recipients
Analysis 5.11. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 11 Pruritis; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 11 Pruritis; effects

Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	(M-H, Random, 95% CI)		(M-H, Random, 95% CI)
1 RCTs					
Overbosch 2001 (1)	15/483	12/493	100.0% 1.28 [0.60, 2.70]		
Subtotal (95% CI)	483	493	100.0% 1.28 [0.60, 2.70]		
Total events:	15 (Mefloquine), 12 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 0.64 (P = 0.52)				
2 Cohort studies					
Korhonen 2007 (2)	42/1453	17/324	76.5% 0.55 [0.32, 0.96]		
Kuhner 2005 (3)	3/142	0/82	23.5% 4.06 [0.21, 77.69]		
Tuck 2016	0/13	0/20	Not estimable		
Subtotal (95% CI)	1608	426	100.0% 0.88 [0.16, 4.76]		
Total events:	45 (Mefloquine), 17 (Control)				
Heterogeneity:	Tau² = 0.89; Chi² = 1.76, df = 1 (P = 0.18); I² = 43%				
Test for overall effect:	Z = 0.15 (P = 0.88)				
Test for subgroup differences:	Chi² = 0.15, df = 1 (P = 0.69), I² = 0.0%				

(1) Overbosch 2001. Mefloquine versus atovaquone-proguanil recipients

(2) Korhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients

(3) Kuhner 2005. Mefloquine versus atovaquone-proguanil recipients
Analysis 5.12. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 12 Visual impairment; effects.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 12 Visual impairment; effects

Study or subgroup	Mefloquine	Control	Risk Ratio	Weight	Risk Ratio
	n/N	n/N	n/N		n/N
I RCTs					
Overbosch 2001 (1)	16/483	8/493			
	100.0 %	2.04 [0.88, 4.73]			
Subtotal (95% CI)	483	493	100.0 %	2.04	0.88, 4.73
Total events:	16 (Mefloquine), 8 (Control)				
Heterogeneity:	not applicable				
Test for overall effect:	Z = 1.67 (P = 0.096)				
2 Cohort studies					
Cunningham 2014 (2)	0/49	1/247			
Korhonen 2007 (3)	164/1453	15/324			
Laverone 2006 (4)	5/444	1/43			
Subtotal (95% CI)	1946	614	100.0 %	2.06	1.05, 4.02
Total events:	169 (Mefloquine), 17 (Control)				
Heterogeneity:	Tau² = 0.07; Chi² = 2.15, df = 2 (P = 0.34); I² =7%				
Test for overall effect:	Z = 2.12 (P = 0.034)				
Test for subgroup differences:	Chi² = 0.00, df = 1 (P = 0.99), I² =0.0%				

(1) Overbosch 2001. Mefloquine versus atovaquone-proguanil recipients
(2) Cunningham 2014. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(3) Korhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline recipients
(4) Laverone 2006. Mefloquine versus atovaquone-proguanil recipients
Analysis 5.13. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 13 Adherence; during travel.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 13 Adherence; during travel

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H Random, 95% CI	Weight	Risk Ratio M-H Random, 95% CI
1 RCTs	n/N	n/N			
van Riemsdijk 2002 (1)	54/58	60/61		100.0 %	0.95 [0.88, 1.02]
Subtotal (95% CI)	58	61		100.0 %	0.95 [0.88, 1.02]
Total events: 54 (Mefloquine), 60 (Atovaquone-proguanil)					
Heterogeneity: not applicable					
Test for overall effect: Z = 1.40 (P = 0.16)					
2 Cohort studies					
Cunningham 2014 (2)	12/49	64/247		3.3 %	0.95 [0.55, 1.61]
Goodyer 2011 (3)	21/30	85/154		6.9 %	1.27 [0.96, 1.67]
Korhonen 2007 (4)	946/1453	123/324		9.6 %	1.72 [1.48, 1.98]
Landman 2015 (5)	231/380	283/403		10.3 %	0.87 [0.78, 0.96]
Laver 2001 (6)	163/184	38/48		9.4 %	1.12 [0.96, 1.31]
Lobel 2001 (7)	3430/3630	53/60		10.5 %	1.07 [0.98, 1.17]
Philips 1996 (8)	223/285	261/383		10.5 %	1.15 [1.05, 1.26]
Saunders 2015 (9)	477/596	870/1438		10.9 %	1.32 [1.25, 1.40]
Shamiss 1996 (10)	15/15	21/28		7.7 %	1.31 [1.04, 1.65]
Sonmez 2005 (11)	138/228	284/506		9.8 %	1.08 [0.95, 1.23]
Terrell 2015 (12)	891/938	695/752		11.1 %	1.03 [1.00, 1.05]
Subtotal (95% CI)	7788	4343		100.0 %	1.16 [1.03, 1.30]
Total events: 6547 (Mefloquine), 2777 (Atovaquone-proguanil)					
Heterogeneity: Tau2 = 0.03; Chi2 = 166.53, df = 10 (P<0.0000); I² = 94%					
Test for overall effect: Z = 2.44 (P = 0.015)					
Test for subgroup differences: Chi2 = 7.87, df = 1 (P = 0.01), I² = 87%					

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Analysis 5.14. Comparison 5 Mefloquine versus currently used regimens; by study design, Outcome 14 Adherence; after return.

Review: Mefloquine for preventing malaria during travel to endemic areas

Comparison: 5 Mefloquine versus currently used regimens; by study design

Outcome: 14 Adherence; after return

Study or subgroup	Mefloquine	Atovaquone-proguanil	Risk Ratio M-H Random 95% CI	Weight	Risk Ratio M-H Random 95% CI
	n/N	n/N			
1 Cohort studies					
Goodyer 2011 (1)	15/30	65/154	8.7 %	1.18 [0.79, 1.77]	
Philips 1996 (2)	154/285	205/383	70.0 %	1.01 [0.88, 1.16]	
Shamiss 1996 (3)	13/15	21/28	16.6 %	1.16 [0.86, 1.55]	
Stoney 2016 (4)	6/11	197/315	4.7 %	0.87 [0.51, 1.51]	
Subtotal (95% CI)	341	880	100.0 %	1.04 [0.92, 1.17]	

Total events: 188 (Mefloquine), 488 (Atovaquone-proguanil)
Heterogeneity: Tau² = 0.0; Chi² = 1.51, df = 3 (P = 0.68); I² = 0.0%
Test for overall effect: Z = 0.64 (P = 0.52)
Test for subgroup differences: Not applicable

van Riemsdijk 2002. Information about adherence was obtained by reference to the subjects diary cards and counts of returned study medication.
Cunningham 2014. Mefloquine versus atovaquone-proguanil and doxycycline users
Goodyer 2011. Mefloquine versus atovaquone-proguanil and doxycycline users
Karhonen 2007. Mefloquine versus atovaquone-proguanil and doxycycline users
Landman 2015. Mefloquine versus atovaquone-proguanil and doxycycline users
Laver 2001. Mefloquine versus doxycycline users
Lobel 2001. Mefloquine versus doxycycline users
Philips 1996. Mefloquine versus doxycycline users
Saunders 2015. Mefloquine versus doxycycline users
Shamiss 1996. Mefloquine versus doxycycline users
Sonmez 2005. Mefloquine versus doxycycline users
Terrell 2015. Mefloquine versus doxycycline users

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
ADDITIONAL TABLES

Table 1. Risk of bias assessment methods for cohort studies

Bias	Authors’ judgement	Support for judgement	
Confounding	Low risk	We used the following criteria:	
	Moderate risk	Low risk: identified confounders were measured and were balanced across groups (age,	
	Serious risk	sex, destination and duration of travel)	
	Critical risk	Moderate risk: identified confounders were measured and not balanced across groups, or	
	No information	several confounders had not been measured or not reported across groups	
		Serious risk: a critical confounder has been measured and is not balanced across groups	
Selection of participants into the study	Low risk	We assessed whether selection into the study was unrelated to intervention or unrelated to outcome, and whether start of intervention and start of follow up coincided for most subjects. Non-responder bias at the point of selection was considered here for cohort studies. We used the following cut offs for non-response rate: low risk < 10%, moderate risk 10% to 20%, serious risk > 20%	
	Moderate risk		
	Serious risk		
	Critical risk		
	No information		
Measurement of interventions	Low risk	We used the following criteria:	
	Moderate risk	Low risk: the prescription was provided by a travel clinic which also performed the study, and discontinuations were recorded and reported, or all participants were issued with their medication e.g. soldiers or participants were asked to self-report which medication they took whilst they were taking it	
	Serious risk	Moderate risk: the prescription was provided by a travel clinic which also performed the study but no information regarding switches and discontinuations was	
	Critical risk	No information	
	No information		
Table 1. Risk of bias assessment methods for cohort studies (Continued)

Category	Low risk	Moderate risk	Serious risk	Critical risk	No information
Departures from intended interventions					
We assessed whether switches between					
interventions of interest were available.					
We assessed whether discontinuations and					
switches between prophylactic regimens had					
been recorded and reported					
Missing data					
We assessed whether outcome data was					
reasonably complete for most participants.					
We recorded missing data for included					
participants e.g. loss to follow up rates					
and treatment withdrawals					
Measurement of outcomes					
We assessed whether the outcome measure					
was objective or subjective. We assessed					
whether participants or study personnel were					
blinded to the intervention received. We					
assessed whether the methods of outcome					
assessment were comparable across intervention groups					
Selection of the reported result					
We used the following criteria:					
Low risk: If the questionnaire was provided					
in full, or it was clear what was asked					
within it					
Moderate risk: If it is unclear which					
questions are asked, or information was					
provided on aggregate					
Serious risk: If data captured within the					
questionnaire was clearly missing					
Other					
We reported the study sponsor. We classified					
the analysis of studies sponsored by					
pharmaceutical companies as independent of					
the sponsor when it was clearly stated that					
the sponsor had no input to the trial analysis					

Adapted from Higgins 2011 and ACROBAT-NSRI tool
Table 2. Adverse events and adverse effects risk of bias assessment methods

Criterion	Assessment	Explanation
On conduct		
Were harms pre-defined using standardised or precise definitions?	Adequate	We classified as 'adequate' if the study reported explicit definitions for adverse events and effects that allow for reproducible ascertainment e.g., what adverse events were being investigated and what constituted an "event", what was defined as a serious or severe adverse event
	Inadequate	
	Unclear	
Was ascertainment technique adequately described?	Adequate	We classified as 'adequate' if the study reported methods used to ascertain complications, including who ascertained, timing, and methods used
	Inadequate	
	Unclear	
Was monitoring active or passive?	Active	We classified monitoring as 'active' when authors reviewed participants at set time points during treatment and enquired about symptoms
	Passive	
	Unclear	
Was data collection prospective or retrospective?	Prospective	We classified as 'prospective' if data collection occurred during treatment, or 'retrospective' if data collection occurred following treatment
	Retrospective	
	Unclear	
For laboratory investigations or other tests		
Was the number and timing of tests adequate?	Adequate	We classified the number and timing of tests as 'adequate', when tests were taken at baseline and at least one time point during prophylaxis
	Inadequate	
	Unclear	

Adapted from Bukiwra 2014

Table 3. Characteristics of included studies for efficacy

Study ID	Participants (immune status)	Number of randomised participants	Mefloquine dose	Drug comparisons of interest	Duration of exposure to malaria	Country of malaria exposure	Local drug resistance
Bunnag 1992	Thai male adults (presumed semi-immune)	605	250 mg weekly for first 4 weeks, then 125 mg weekly	Placebo	24 weeks (trial duration)	Thailand	Chloroquine, sulphadoxine-pyrimethamine and quinine resistance
Nosten 1994	Pregnant women from the Thai-Burma border	339	250 mg weekly for first 4 weeks, then	Placebo	Various in endemic area (monitored)	Thai-Burma border	Not mentioned
Study	Characteristics	Placebo	Duration	Location	Notes		
-------	-----------------	---------	----------	----------	-------		
Pearlman 1980	Burma border (presumed semi-immune)	125 mg weekly until delivery	26 weeks	Thailand	Chloroquine resistant \textit{Plasmodium falciparum}		
Santos 1993	Thai residents aged 10 to 60 years (semi-immune)	180 mg tablet weekly, 360 mg tablet weekly, 360 mg every 2 weeks with appropriate adjustments for children	17 weeks	Brazil	\textit{Plasmodium falciparum} resistant to chloroquine and "high prevalence of multi-resistant \textit{Plasmodium falciparum} transmission"		
Sossouhounto 1995	Brazilian civilians and soldiers aged 12 to 55 years (semi-immune)	500 mg every 4 weeks, 250 mg every 2 weeks	20 weeks	Ivory Coast	Not mentioned		
Ohrt 1997	Ivory Coast adult males (semi-immune)	250 mg weekly for first 4 weeks, then 125 mg weekly	'approximately weeks' 13	Indonesia	Sulfadoxine-pyrimethamine and chloroquine resistance		
Weiss 1995	Indonesian soldiers ('largely' non-immune)	250 mg weekly	Placebo, doxycycline	11 weeks	Kenya	Not mentioned	
Salako 1992	Kenyan children (semi-immune)	125 mg weekly	Placebo (multivitamin), doxycycline, primaquine	24 weeks (trial duration)	Nigeria	"...at the time of the trial, chloroquine resistance was not a problem"	
Table 3. Characteristics of included studies for efficacy (Continued)

Study ID	Participants	Number enrolled	Method of adverse event monitoring	Exclusions for psychiatric adverse effects	Trial duration	Source of funding
Hale 2003	Ghanaian adults (semi-immune)	530	Placebo	12 weeks	Ghana	Not mentioned
Arthur 1990	USA soldiers (non-immune)	270	Doxycycline	8 weeks	Thailand	Local chloroquine resistance
Boudreau 1991	Thai adult males (semi-immune)	501	Chloroquine	14 weeks (trial duration)	Cambodia	Local chloroquine resistance
Steketee 1996	Pregnant Malawian residents (semi-immune)	4220	Chloroquine	Various in endemic area (monitored until delivery)	Malawi	$P. falciparum$ resistant to chloroquine, documented sensitivity of $P. falciparum$ to mefloquine

Table 4. Mefloquine versus placebo/no treatment; characteristics of included studies for safety

Study ID	Participants	Number enrolled	Method of adverse event monitoring	Exclusions for psychiatric adverse effects	Trial duration	Source of funding
RCTs						
Bunnag 1992	Thai male adults	605	Interview with study personnel	None	24 weeks	Roche
Davis 1996	Australian adults who did not travel	106	Daily self-reported diary	Past history of psychiatric conditions	7 weeks	Roche
Hale 2003	Ghanaian adults	530	Interview with study personnel	History of neuropsychiatric illness	12 weeks	USA Army
Nosten 1994	Pregnant women, Thai-Burma border	339	Phase 1: weekly symptom questionnaire. Babies were assessed at birth and at 3, 6, 12, and 24 months	None	Various	Government funding
Table 4. Mefloquine versus placebo/no treatment; characteristics of included studies for safety (Continued)

Study (Year)	Participants	Number enrolled	Phase 2: weekly symptom questionnaire. Babies were assessed at birth and at 2 and 9 months	Method of adverse event monitoring	Factors influencing	Duration travel	Source of funding
Ohrt 1997	Indonesian soldiers	204	Two symptom questionnaires. Daily interview with study personnel	History of underlying illness	13 weeks	Roche, Pfizer, USA Army	
Pearlman 1980	Thai residents aged 10 to 60 years	990	Weekly sick call by study personnel	None	26 weeks	Not mentioned	
Potasman 2002	Israeli adults who did not travel	90	Self-reporting diary	History of depression	48 hours	Mepha Ltd	
Salako 1992	Nigerian adult males	567	Interview with study personnel	None	24 weeks	Not mentioned	
Santos 1993	Brazilian civilians and soldiers aged 12 to 55	128	Interview with study personnel	None	17 weeks	Roche	
Schlagenhauf 1997	Swissair trainee pilots who did not travel	23	Interview with study personnel	Psychosis or severe depression	4 weeks	Roche	
Sossouhounto 1995	Ivory C oast adult males	500	Access to the village health centre	None	20 weeks	Not mentioned	
Vuurman 1996	Dutch adult who did not travel	42	Interview with study personnel	History of any serious psychiatric disorder; evidence of drug or alcohol abuse	30 days	Roche	
Weiss 1995	Kenyan children	169	Interview with study personnel	None	4 months	USA Army	

Cohort studies

Participants	Number enrolled	Method of adverse event monitoring	Factors influencing	Duration travel	Source of funding

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Table 4. Mefloquine versus placebo/no treatment; characteristics of included studies for safety (Continued)

Study ID	Country	Travellers	Sample Size	Allocation Method	Drug Allocation	Duration	Funding Source
Hoebe 1997	Denmark	300	Telephone interview	Allocation based on guidelines and patient preference	Mean 3 weeks, range 1 to 9 weeks	Not mentioned	
Petersen 2000	Denmark	4154	Participant self-reported questionnaire	Allocation based on guidelines and patient preference	Various, not specified	Not mentioned	
Rietz 2002	Sweden	491	Participant self-reported questionnaire	Allocation based on guidelines and patient preference	“Most”, range 2 to 4 weeks	Not mentioned	
van Riemsdijk 1997	Denmark	1501	Participant self-reported questionnaire	Allocation based on guidelines and patient preference	Mean = 23 days	Not mentioned	
Wells 2006	USA	397,442	Restrospective analysis of hospital records	No information available	Minimum month 1	Government funding	

Table 5. Mefloquine versus placebo/no treatment; quality of adverse events reporting

Study ID	Description of how adverse outcomes were defined and recorded¹	Description of ascertainment technique²	Active or passive monitoring³	Prospective or retrospective data collection?
Bunnag 1992	Inadequate Comment: No definition of adverse events or effects was provided, it is unclear whether or how causality was assessed	Adequate	Active	Prospective
Davis 1996	Adequate	Adequate	Active	Prospective
Hale 2003	Inadequate Comment: ‘serious’ adverse events were not defined, and methods for determining causality not	Adequate	Active	Prospective
Study	Reporting Quality	Data Collection	Study Design	
---------------------	-------------------	-----------------	--------------	
Nosten 1994	Inadequate	Adequate	Active	
Comment: It is unclear what questions were included within the questionnaire and whether and how causality was assessed. ‘Serious’ adverse effects not defined	Prospective			
Ohrt 1997	Inadequate	Adequate	Active	
Comment: No definition of adverse events or effects provided, it was unclear whether or how causality was assessed	Prospective			
Pearlman 1980	Inadequate	Inadequate	Passive	
Comment: No definition of adverse events or effects was provided, it was unclear whether or how causality was assessed	Prospective			
Potasman 2002	Inadequate	Adequate	Active	
Salako 1992	Inadequate	Adequate	Active	
Santos 1993	Inadequate	Inadequate	Active	
Schlagenhauf 1997	Inadequate	Adequate	Active	
Table 5. Mefloquine versus placebo/no treatment; quality of adverse events reporting (Continued)

Study	Definitions & Detection	Causality	Collection	Study Design
Unclear whether or how causality was assessed				
Sossouhounto 1995	Inadequate	Unclear	Passive	Prospective
Vuurman 1996	Adequate	Unclear	Active	Prospective
Weiss 1995	Inadequate	Adequate	Active	Prospective
Cohort studies				
Hoebe 1997	Adequate	Adequate	Active	Retrospective
Petersen 2000	Adequate	Adequate	Active	Retrospective
Rietz 2002	Adequate	Adequate	Active	'Filled in after their return'
Steffen 1993	Adequate	Adequate	Passive	Unclear
van Riemsdijk 1997	Adequate	Adequate	Active	Prospective
Wells 2006	Adequate	Adequate	Passive	Retrospective

1. Were harms pre-defined using standardised or precise definitions?
2. Was ascertainment technique adequately described?
| Study ID | Study design | Mefloquine users | Drug comparators | | | |
|---|---|---|---|---|---|---|
| | **Events/ participants** | **Description** | **Drug** | **Events/ participants** | **Description** |
| **Bunnag 1992** | RCT | 0/116 | - | Placebo | 1/121 | None provided |
| **Nosten 1994** | RCT | 1/159 (women) | One death | Placebo | 0/152 (women) | One congenital malformation:
| | | | • Septic shock after an emergency caesarean section | | | • anencephaly |
| | | | Four congenital malformations: | | | |
| | | | • Limb dysplasia (1 case) | | | |
| | | | • Ventricular septal defect (2 cases) | | | |
| | | | • Amniotic bands (1 case) | | | |
| **Sossouhounto 1995** | RCT | 0/103 | - | Placebo | 1/96 | One death (not described) |
| **Ohrt 1997** | RCT | 0/61 | - | Placebo | 0/65 | - |
| | | | Doxycycline | 1/62 | Acute hysteria¹ |
| **Lobel 2001** | Cohort study | 8/3703 | 8 hospitalisations
• for “fainting, gastrointestinal symptoms, rashes, headaches, ophthalmologic symptoms, and fever” | Doxycycline | 0/69 | - |
| | | | Chloroquine | 0/119 | - |
| **Overbosch 2001** | RCT | 10/483 | “...infectious illnesses in 7 subjects and breast cancer, anaphylaxis, or fractured femur in 1 subject” | Atovaquone-proguanil | 4/493 | “...infectious illnesses in 3 subjects and cerebral ischemia in 1 subject” |
Table 6. Serious adverse events; mefloquine versus comparators (Continued)

Studies reporting no serious events or effects	RCT	Cohort study	
Salako 1992	Placebo Chloroquine	0/101 0/103	-
Arthur 1990	Doxycycline	0/119	-
Schlagenhauf 2003	Doxycycline Atovaquone-proguanil	0/153 0/164	-
Sonmez 2005	Doxycycline	0/506	-
Andersson 2008	Atovaquone-proguanil	0/161	-
Napoletano 2007	Atovaquone-proguanil Chloroquine	0/707 0/37	-
Sossouhounto 1995	Chloroquine	0/100	-

1 This trial described a potentially serious adverse event, but did not provide enough detail to meet our definition.
Study ID	Study design	Mefloquine users	Description	Drug comparators	Events/ participants	Description
		Events/ participants	Description			
Hoebe 1997	Cohort study	2/104	Two "serious acute adverse reactions"¹	No treatment	0/93	-
			• Depressed mood			
			• Dizziness			
Petersen 2000	Cohort study	5/809	5 hospitalisations:	Chloroquine	6/1223	2 hospitalisations:
			• Depressed mood			• Blurred vision, nausea, headache, general skin itching, paraesthesia
			• Depressed mood			• Depressed mood
			• Depressed mood, "strange thoughts"			
			• Depressed mood, "strange thoughts", itching, vertigo			
			• Vertigo, fever, mouth ulcers, diarrhoea			
Korhonen 2007	Cohort study	15/1612	15 hospitalisations:	Doxycycline	9/708	9 hospitalisations:
			• Dizziness (3)			• Gastrointestinal disturbance (6)
			• Heart palpitations (2)			• Photosensitivity (1),
			• Limb numbness (1)			• Coughing (1)
			• Abdominal pain (1)			• Anaemia (1)
			• Yeast infection (1)			
			• Anxiety and depression (1)			
			• Visual disturbance, photosensitivity			
Table 7. Serious adverse effects; mefloquine versus comparators (Continued)

Treatment	Serious adverse effects	Hospitalisations	Notes
	(1)		
	• Passing out, extreme fatigue		
	• “Went crazy”, anxiety, nausea, vomiting		
	• “Psychotic reaction”, anxiety, abnormal dreams		
	• Anxiety, abnormal dreams, insomnia, unsteadiness		
	• Nausea, dizziness, blackout	0/72	-
	Atovaquone-proguanil		
	(1)		
	• Anxiety, abnormal dreams, insomnia, unsteadiness		
	• Nausea, dizziness, visual disturbance, insomnia, abnormal dreams, unsteadiness, weakness		
	• Abnormal dreams		
	• Seizures		
	• Abdominal pain, diarrhoea	4/832	4 hospitalisations:
	Chloroquine		Nausea, dizziness, visual disturbance, insomnia, abnormal dreams, unsteadiness, weakness
	(1)		
	• Abnormal dreams		
	• Seizures		
	• Abdominal pain, diarrhoea		
Philips 1996	Cohortstudy	4/285	3 hospitalisations with "either gastrointestinal or neurologic symptoms" and one seizure
	Doxycycline	1/383	Severe oesophagitis
Steketee 1996	RCT	1/?	One "neuropsychiatric side effect"
			Disorientation to time and place¹
	Chloroquine	0/?	-
Study	Design	N	Serious events, including:
-----------------------	----------	-------	---
Albright 2002	Cohort	1/115	One “serious side effect”¹ • Hallucinations
Corominas 1997	Cohort	1/609	One hospitalisation: • Heart palpitations, convulsions, paraesthesia and vertigo
Steffen 1993	Cohort	7/52981	7 hospitalisations, including: • Seizures (2) • Psychosis (2) • Vertigo (1) • 2 not characterised
Studies reporting no serious events or effects			
Hale 2003	RCT	0/46	Nine serious adverse events in the trial (trial arm not specified) “none of which were considered by study physicians to be related to the study drug”
Salako 1992	RCT	0/107	“Adverse events were all mild and there were no deaths”
Arthur 1990	RCT	0/134	“No serious side effects occurred with either drug regimen”
Schlagenhauf 2003	RCT	0/153	“Although a large number of adverse events were reported, none were considered adverse events”
Table 7. Serious adverse effects; mefloquine versus comparators (Continued)

Study ID	Method of adverse event monitoring	Significant exclusions for psychiatric adverse effects	Duration of travel	Source of funding
Sonmez 2005	"No drug induced side effects necessitating emergency care were observed"	Doxycycline	0/506	-
Andersson 2008	"No serious adverse events were recorded"	Atovaquone-proguanil	0/161	-
Napoletano 2007	Records hospitalisations, and reports that none occurred in either group of participants	Atovaquone-proguanil Chloroquine	0/707/0/37	-
Sossouhounto 1995	"All side effects were transient (and) mild"	Chloroquine	0/100	-

¹ This trial described a potentially serious adverse effect, but did not provide enough detail to meet our strict definition.

Table 8. Mefloquine versus doxycycline; characteristics of included studies for safety

Study ID	Participants	Method of adverse event monitoring	Significant exclusions for psychiatric adverse effects	Duration of travel	Source of funding
Arthur 1990	USA soldiers	Blood tests, stool samples. Interview with study personnel	None	5 weeks	Not mentioned
Ohrt 1997	Indonesian soldiers	Interview with study personnel. Exit questionnaire	" History of underlying illness"	13 weeks	Pfizer and Roche
Schlagenhauf 2003	Non-immune adult short-term	Participant self-reported	History of seizures or psychoses	4 to 6 weeks	GlaxoSmithKline and Roche
Table 8. Mefloquine versus doxycycline: characteristics of included studies for safety (Continued)

Travellers	Questionnaire Method of adverse event monitoring Factors influencing drug allocation Duration of travel	Source of funding
Weiss 1995	Kenyan children 169 Interview with study personnel None 4 months	Government funding

Non-randomized studies

Participants	Number enrolled	Method of adverse event monitoring Factors influencing drug allocation Duration of travel	Source of funding
Cunningham 2014	UK Foreign and Commonwealth Office staff 327	Participant self-reported questionnaire Allocation based on guidelines and participant preference 0 to 36 months	Not mentioned
Eick-Cost 2017	USA soldiers 367,840	Data from the Defense Medical Surveillance System, the Pharmacy Data Transaction Service and the Theater Medical Data Store No information available Various, not specified	Not mentioned
Goodyer 2011	UK adult short-term travellers 185	Participant self-reported questionnaire Allocation based on guidelines and participant preference < 28 days	GlaxoSmithKline
Korhonen 2007	Peace Corps volunteers 2701	Participant self-reported questionnaire Allocation based on guidelines and participant preference ≥ 6 months	Two staff employed by Peace Corps
Landman 2015	Peace Corps volunteers 1184	Participant self-reported questionnaire Allocation based on guidelines and participant preference Various, not specified	Not mentioned
Laver 2001	Adult short-term travellers 660	Participant self-reported questionnaire No information available 93% < 4 weeks	“No financial interests to disclose”
Lobel 2001	Adult short-term travellers 5626	Participant self-reported questionnaire No information available < 5 weeks	“No financial interests to disclose”
Table 8. Mefloquine versus doxycycline; characteristics of included studies for safety *(Continued)*

Study	Population	Sample Size	Method of Collection	Follow-Up	Duration	Funding
Meier 2004	UK adults enrolled in UK general practice research database	35,370	Incident cases of depression, psychoses and panic attacks within the UK general practice research database	No information available	Various, not specified	Roche
Napoletano 2007	Italian short-term travellers	1906	Telephone interview	Allocation based on guidelines and participant preference	Mean 2 weeks, range 0 to > 35 days	Not mentioned
Philips 1996	Australian short-term travellers	741	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Various, mean 3 weeks, maximum 3 months	Roche and Pfizer
Saunders 2015	USA soldiers	2351	Participant self-reported questionnaire	Primarily doxycycline, soldiers with contra-indications received mefloquine	> 90% for 10 months or more	Not mentioned
Schwartz 1999	Israeli short-term travellers	158	Participant self-reported questionnaire	"... daily doxycycline or daily primaquine... was recommended"	14 to 20 days	Not mentioned
Shamiss 1996	Israeli soldiers	45	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	"... an average of 4 hours stay in the field over a period of 2 months"	Not mentioned
Sharafeldin 2010	Dutch medical students	180	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Mean 74 days (range 10 to 224 days)	No dedicated funding
Sonmez 2005	Turkish soldiers	1400	Participant self-reported questionnaire	Prior to March 2002: doxycycline After July 2002: mefloquine	A pprox. 6 months	Not mentioned
Table 8. Mefloquine versus doxycycline; characteristics of included studies for safety (Continued)

Study ID	Country and study population	Participants	Study design	Allocation	Duration	Funding type
Stoney 2016	USA short-term travellers	370	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Median duration 13 days	Government funding
Tan 2017	Peace Corps volunteers	8931	Participant self-reported questionnaire	No information available	Various, not specified	No dedicated funding
Terrell 2015	UK soldiers	2032	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Median duration 13 days	“... not funded by an external body”
Tuck 2016	UK soldiers	151	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Various, not specified	No dedicated funding
Waner 1999	Adult short-term travellers	3051	Participant self-reported questionnaire	No information available	Approx. 6 weeks	Not mentioned

Table 9. Mefloquine versus doxycycline; quality of adverse event reporting

Study ID	Harms predefined¹	Description of ascertainment technique²	Active or passive monitoring³	Prospective or retrospective data collection?
RCTs				
Arthur 1990	Inadequate: No definitions provided for serious side effects	Unclear: it is not reported who conducted the interviews	Active	Prospective
Ohrt 1997	Inadequate: Comment: No definitions of adverse events or effects were provided, it was unclear whether or how causality was assessed	Adequate	Active	Prospective
Schlagenhauf 2003	Adequate	Adequate	Active	Prospective
Weiss 1995	Inadequate: Comment: Each subject was visited daily at home by an assigned field worker, who	Adequate	Active	Prospective
Table 9. Mefloquine versus doxycycline; quality of adverse event reporting
(Continued)

Study	Quality	Method	Cohort Structure	Notes
Cunningham 2014	Inadequate	Adequate	Passive	Unclear: questionnaire included a targeted list of side effects, including "other psychological problems". What was included within this was not defined
Eick-Cost 2017	Adequate	Adequate	Passive	Prospective
Goodyer 2011	Inadequate	Adequate	Active	Retrospective
Korhonen 2007	Adequate	Adequate	Passive	Unclear: no information was provided regarding the timing of the questionnaire during treatment
Landman 2015	Adequate	Adequate	Passive	Unclear: all participants were emailed the questionnaire at one time point, which occurred at varying points during the prophylactic regimen
Lobel 2001	Inadequate	Adequate	Passive	Unclear: information was collected at the airport, when travellers should still have been taking the prophylactic regimen
Meier 2004	Adequate	Adequate	Passive	Retrospective
Table 9. Mefloquine versus doxycycline; quality of adverse event reporting (Continued)

Study	Quality Assessment	Reporting Method	Study Design	
Napoletano 2007	Unclear	Adequate	Active	Retrospective
Comment: adverse events were categorised on a scale of one to four, but it is unclear whether and how causality was assessed				
Philips 1996	Inadequate	Inadequate	Active	Retrospective
Comment: it was unclear what constituted a serious or severe event and insufficient information on the questions that travellers were asked				
Comment: no details provided regarding abbreviated questionnaire				
Saunders 2015	Inadequate	Adequate	Passive	Retrospective
Comment: insufficient information of the questions that travellers were asked				
Schwartz 1999	Inadequate	Inadequate	Unclear	Unclear
Comment: see quote. Different methods of follow up for different forms of prophylaxis				
Shamiss 1996	Inadequate	Inadequate	Passive	Unclear
Comment: see quote. Different methods of follow up for different forms of prophylaxis				
Sharafeldin 2010	Inadequate	Inadequate	Passive	Retrospective
Comment: no information was provided on how adverse events were assessed				
Comment: no mention of how adverse events were assessed				

Mefloquine for preventing malaria during travel to endemic areas (Review)

Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Table 9. Mefloquine versus doxycycline; quality of adverse event reporting (Continued)

Study	How information on adverse effects was sought	Were recorded in the questionnaire	Monitoring classed as ‘active’ if it occurred at set time points during treatment	Methodology
Sonmez 2005	Inadequate	Adequate	Active	Prospective
	Comment: insufficient information provided on the questions that travellers were asked			
Stoney 2016	Inadequate	Inadequate	Active	Prospective
	Comment: insufficient information provided on the questions that travellers were asked	No information is reported on how adverse events were ascertained		
Tan 2017	Adequate	Adequate	Active	Retrospective
Terrell 2015	Inadequate	Adequate	Passive	Unclear
	Comment: The questionnaire approved by the MODREC included the 19 commonest adverse effects described in the manufacturers’ product documentation			
	Comment: adverse events listed in the questionnaires are not reported			
Tuck 2016	Inadequate	Adequate	Active	Unclear
	Comment: insufficient information provided on the questions that travellers were asked			
Waner 1999	Inadequate	Adequate	Passive	Unclear
	Comment: insufficient information provided on the questions that travellers were asked			

1. Were harms pre-defined using standardised or precise definitions?
2. Was ascertainment technique adequately described?
3. Monitoring classed as ‘active’ if it occurred at set time points during treatment.
For full description of analysis methods, see Table 2.
| Study ID | Participants | Number enrolled | Method of adverse event monitoring | Significant exclusions for psychiatric adverse effects | Duration of travel | Source of funding |
|-----------|---|-----------------|-----------------------------------|---|--------------------|-------------------|
| **Randomized controlled trials** | | | | | | |
| Overbosch 2001 | Travellers from Canada, Germany, Netherlands, South Africa, UK | 1013 | Interview with study personnel | "... history of alcoholism, seizures or psychiatric or severe neurological disorders" | Mean 2.5 weeks | GlaxoSmithKline |
| Schlagenhauf 2003 | Non-immune adult short-term travellers | 674 | Participant self-reported questionnaire | "History of seizures or psychiatric disorders" | 4 to 6 weeks | GlaxoSmithKline and Roche |
| van Riemsdijk 2002 | Dutch short-term travellers | 140 | Interview and testing with study personnel | "History of alcoholism, seizures, psychiatric disorders, severe neurological disorders" | Mean 19 days | Government funding |
| **Non-randomized studies** | | | | | | |
| Andersson 2008 | Swedish soldiers | 609 | Participant self-reported questionnare | Mainly mefloquine, soldiers with contra-indications received atovaquone-proguanil | 6 months | Not mentioned |
| Belderok 2013 | Dutch short-term travellers | 945 | Participant self-reported questionnare (measured adherence) | Allocation based on guidelines and participant preference | 84% < 29 days | Government funding |
| Cunningham 2014 | UK Foreign and Commonwealth Office staff | 327 | Participant self-reported questionnare | Allocation based on guidelines and participant preference | 0-36 months | Not mentioned |
Table 10. Mefloquine versus atovaquone-proguanil; characteristics of included studies for safety (Continued)

Study	Location/Limitation	Sample Size	Methodology	Allocation	Follow-up	Safety Considerations
Eick-Cost 2017	USA soldiers	367,840	Data from the Defense Medical Surveillance System, the Pharmacy Data Transaction Service and the Theater Medical Data Store	No information available	Various, not specified	Not mentioned
Goodyer 2011	UK adult short-term travellers	185	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	< 28 days	GlaxoSmithKline
Kato 2013	Japanese short-term travellers	316	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Mean 20.0 ± 9.6 days in the atovaquone-proguanil group and 59.0 ± 15.9 days in the mefloquine group	Not mentioned
Korhonen 2007	Peace Corps volunteers	2701	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	≥ 6 months	Two staff employed by Peace Corps
Kuhner 2005	German short-term travellers	495	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	A tovaquone-proguanil mean 2.6 weeks, mefloquine mean 7 weeks	Not mentioned
Landman 2015	Peace Corps volunteers	1184	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Various, not specified	Not mentioned
Laverone 2006	Italian short-term travellers	1176	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	> 90% 0 to 30 days	Not mentioned
Table 10. Mefloquine versus atovaquone-proguanil; characteristics of included studies for safety (Continued)

Study ID	Country and Setting	Sample Size	Study Design	Method of Assignment	Duration Range	Funding Information
Napoletano 2007	Italian short-term travellers	1906	Telephone interview	Allocation based on guidelines and participant preference	Mean 2 weeks, range 0 to > 35 days	Not mentioned
Schneider 2013	UK adults enrolled in UK general practice research database	Not available	Incident cases of neuropsychiatric disorders during or after antimalarial drug use	No information available	Various, not specified	Roche
Sharafeldin 2010	Dutch medical students	180	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Mean duration of stay 74 days (range 10 to 224 days)	"No dedicated funding for this project"
Stoney 2016	USA short-term travellers	370	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Median duration 13 days	Government funding
Tan 2017	Peace Corps volunteers	8931	Participant self-reported questionnaire	No information available	Various, not specified	No dedicated funding
Tuck 2016	UK soldiers	151	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Various, not specified	No dedicated funding

Table 11. Mefloquine versus atovaquone-proguanil; quality of adverse event reporting

Study ID	Harms predefined	Description of ascertainment technique	Active or passive monitoring	Prospective or retrospective data collection?
RCTs				
Overbosch 2001	Adequate	Adequate	Active	Prospective
Schlagenhauf 2003	Adequate	Adequate	Active	Prospective
van Riemsdijk 2002	Adequate	Adequate	Active	Prospective

Cohort studies
Study	Adverse Event Reporting	Data Collection	Adverse Event Reporting	Methodology	Comment:
Andersson 2008	Inadequate	Inadequate	Active	Unclear	Insufficient information provided on the questions which soldiers were asked; different ascertainment technique used for one of the three groups, which is inadequately described
Cunningham 2014	Inadequate	Adequate	Passive	Unclear	Different ascertainment technique used for one of the three groups, which is inadequately described
Eick-Cost 2017	Adequate	Adequate	Passive	Prospective	Data collection was prospective for 448/609 participants (LA04 and LA05), but retrospective for 161 participants (LA02)
Goodyer 2011	Inadequate	Adequate	Active	Retrospective	Questionnaire included a targeted list of side effects, including "other psychological problems". What was included within this was not defined
Kato 2013	Adequate	Adequate	Passive	Unclear	Data collection was prospective for 448/609 participants (LA04 and LA05), but retrospective for 161 participants (LA02)
Korhonen 2007	Adequate	Adequate	Passive	Unclear	Data collection was prospective for 448/609 participants (LA04 and LA05), but retrospective for 161 participants (LA02)
Kuhner 2005	Inadequate	Adequate	Active	Retrospective	Data collection was prospective for 448/609 participants (LA04 and LA05), but retrospective for 161 participants (LA02)
Landman 2015	Adequate	Adequate	Passive	Unclear	Data collection was prospective for 448/609 participants (LA04 and LA05), but retrospective for 161 participants (LA02)
Study	Type of Surveillance	Causality Assessment	Period of Reporting		
---------------	----------------------	----------------------	---------------------		
Laverone 2006	Adequate	Passive	Varying points during prophylactic regimen		
Napoletano 2007	Unclear	Adequate	Active		
Schneider 2013	Adequate	Adequate	Passive		
Sharafeldin 2010	Inadequate	Inadequate	Passive		
Stoney 2016	Inadequate	Inadequate	Active		
Tan 2017	Adequate	Adequate	Passive		
Tuck 2016	Inadequate	Adequate	Active		

1. Were harms pre-defined using standardised or precise definitions?
2. Was ascertainment technique adequately described?
3. Monitoring classed as ‘active’ if it occurred at set time points during treatment.
For full description of analysis methods, see Table 2.
Table 12. Mefloquine versus chloroquine; characteristics of included studies for safety

Study ID	Participants	Number enrolled	Method of adverse event monitoring	Significant exclusions for psychiatric side effects	Trial duration	Source of funding
RCTs						
Boudreau 1991	Thai gem miners	501	Interview with study personnel	None	14 weeks	USA Army
Boudreau 1993	USA soldiers	359	Interview with study personnel and computerised questionnaire	"Medical history of psychiatric or neurological problems within the last 5 years"	13 weeks	Not mentioned
Bunnag 1992	Thai adult males	605	Interview with study personnel	None	24 weeks	Roche
Salako 1992	Nigerian adult males	567	Interview with study personnel	None	24 weeks	Not mentioned
Sossouhounto 1995	Ivory C coast adult males	500	"Access to the village health centre. Clinical examination with study personnel"	None	20 weeks	Not mentioned
Steketee 1996	Pregnant Malawian women	4220	Interview with study personnel	None	Monitored from enrolment to delivery	Government funding

Non-randomised studies						
Albright 2002	USA travelling children aged < 13 years	177	Interview with study personnel	Allocation based on guidelines and participant preference	Various, not specified	Not mentioned
Corominas 1997	Spanish short-term adult travellers	1054	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Maximum 6 weeks	Not mentioned
Study	Type of Traveller	N	Data Collection Method	Allocation Method	Duration	Financial Interest
Cunningham 2014	UK Foreign and Commonwealth Office staff	327	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	0 to 36 months	Not mentioned
Hill 2000	USA short-term travellers	822	Interview with study personnel	Allocation based on guidelines and participant preference	Median 19 days, up to 90 days	Not mentioned
Korhonen 2007	Peace Corps volunteers	2701	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	≥ 6 months	Two staff employed by Peace Corps
Laver 2001	Adult short-term travellers	660	Participant self-reported questionnaire	No information available	93% < 4 weeks	No financial interests to disclose
Laverone 2006	Italian short-term travellers	1176	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	> 90% 0 to 30 days	Not mentioned
Lobel 2001	Adult short-term travellers	5626	Participant self-reported questionnaire	No information available	Most < 5 weeks	No financial interests to disclose
Napoletano 2007	Italian short-term travellers	1906	Telephone interview	Allocation based on guidelines and participant preference	Mean 2 weeks, range 0 to > 35 days	Not mentioned
Petersen 2000	Danish travellers	4154	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	Various, 65% < 3 weeks	Not mentioned
Rietz 2002	Swedish short-term travellers	491	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	“Most” 2 to 4 weeks	Not mentioned
Steffen 1993	Adult short-term travellers	145,003	Participant self-reported questionnaire	No information available	98% stayed between 1 and 4 weeks	Roche
Table 12. Mefloquine versus chloroquine; characteristics of included studies for safety (Continued)

Study ID	Country	Study Type	Sample Size	Data Collection Method	Allocation Method	Median Duration	Funding
Stoney 2016	USA	Short-term travellers	370	Participant self-reported questionnaire	Allocation based on guidelines and participant preference	13 days	Government funding
Tan 2017		Peace Corps volunteers	8931	Participant self-reported questionnaire	No information available	Various, not specified	No dedicated funding
Wanner 1999		Adult short-term travellers	3051	Participant self-reported questionnaire	No information available	Approx. 6 weeks	“not funded by an external body”

Table 13. Mefloquine versus chloroquine; quality of adverse events reporting

Study ID	Harms predefined¹	Description of ascertainment technique²	Active or passive monitoring³	Prospective or retrospective data collection?
RCTs				
Boudreau 1991	Adequate	Adequate	Active	Prospective
Boudreau 1993	Adequate	Adequate	Active	Prospective
Bunnag 1992	Inadequate	Adequate	Active	Prospective
	Adverse events	Adequate	Active	
	were defined	Adequate	Active	
	clinically, and	Adequate	Active	
	starting week 14,	Adequate	Active	
	volunteers	Adequate	Active	
	reporting adverse	Adequate	Active	Prospective
	events were	Adequate	Active	
	interviewed	Adequate	Active	
	by members of	Adequate	Active	
	the hospital team	Adequate	Active	
Salako 1992	Inadequate	Adequate	Active	Prospective
	“Particular	Adequate	Active	
	attention was	Adequate	Active	
	paid to	Adequate	Active	
	complaints such	Adequate	Active	
	as fever, chills,	Adequate	Active	
	malaise, nausea	Adequate	Active	
	and vomiting,	Adequate	Active	
	rashes and other	Adequate	Active	
	symptoms and	Adequate	Active	
	signs that could	Adequate	Active	
	be regarded as	Adequate	Active	
	adverse events.	Adequate	Active	
	Comment: no clear	Adequate	Active	
	definition of	Adequate	Active	
	adverse events	Adequate	Active	
	was provided	Adequate	Active	

Adverse events defined clinically, and starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team.

Adverse events defined clinically, and starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team.

Adverse events defined clinically, and starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team.

Adverse events defined clinically, and starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team.

Adverse events defined clinically, and starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team.

Adverse events defined clinically, and starting week 14, volunteers reporting adverse events were interviewed by members of the hospital team.
Study	Reporting Quality	Adverse Event Reporting	Study Design	Study Period
Sossouhounto 1995	Inadequate	Unclear	Passive	Prospective
	“Participants had access to a village health center, where they could notify personnel of any malaise or side effects”	“Clinical examinations and parasitologic tests were performed every 4 weeks”		
Steketee 1996	Adequate	Adequate	Active	Prospective
Cohort studies				
Albright 2002	Adequate	Adequate	Passive	Retrospective
Corominas 1997	Inadequate	Adequate	Active	Retrospective
	Comment: insufficient information was provided about the questions that travellers were asked			
Cunningham 2014	Inadequate	Adequate	Passive	Unclear
	Comment: questionnaire included a targeted list of side effects, including "other psychological problems". What was included within this was not defined		"questionnaire was performed while participants were still taking chemoprophylaxis medication, although 75% were non-compliant"	
Hill 2000	Inadequate	Adequate	Active	Retrospective
	Comment: insufficient information was provided about the questions that travellers were asked			
Korhonen 2007	Adequate	Adequate	Passive	Unclear
	Comment: No information was provided regarding the timing of the questionnaire during treatment			
Laverone 2006	Adequate	Adequate	Passive	Retrospective
Lobel 2001	Inadequate	Adequate	Passive	Unclear
	“Travellers… were given a questionnaire that asked for... adverse health		"information was collected at the airport, when travellers	
Table 13. Mefloquine versus chloroquine; quality of adverse events reporting

Study	Data Collection	Reporting	Data Acceptability	Monitoring	Methodology
Napoletano 2007	Unclear	Adequate	Active	Retrospective	
Comment: adverse events were categorised on a scale of one to four, but it is unclear whether and how causality was assessed.					
Petersen 2000	Inadequate	Adequate	Active	Retrospective	
Comment: it was unclear whether the questionnaire implied causality to the drug regimen.					
Rietz 2002	Adequate	Adequate	Active	Retrospective	
Steffen 1993	Adequate	Adequate	Passive		
Comment: information was collected during the flight home, when travellers should still have been taking the prophylactic regimen.					
Stoney 2016	Inadequate	Inadequate	Active	Prospective	
Comment: insufficient information provided on the questions that travellers were asked.					
Tan 2017	Adequate	Adequate	Active	Retrospective	
Waner 1999	Inadequate	Adequate	Passive		
Comment: insufficient information provided on the questions that travellers were asked.					

1. Were harms pre-defined using standardised or precise definitions?
2. Was ascertainment technique adequately described?
3. Monitoring classed as ‘active’ if it occurred at set time points during treatment.
For full description of analysis methods, see Table 2.
Table 14. Mefloquine versus currently used regimens; by duration of travel

Outcome	Mefloquine versus atovaquone-proguanil and doxycycline	Test for subgroup differences	
	Short- term travellers¹	Longer- term travellers²	
	Relative effect (RR) (95% CI) Studies (participants)	Relative effect (RR) (95% CI) Studies (participants)	
Serious adverse effects	RR 5.38 (0.60 to 47.84) 3 cohort studies (2657)	RR 0.93 (0.43 to 2.01) 3 cohort studies (3147)	P = 0.14
Discontinuations due to adverse effects (RCTs)	RR 2.64 (1.51 to 4.62) 5 RCTs (2048)	-	-
Discontinuations due to adverse effects (cohort studies)	RR 1.81 (0.86 to 3.80) 7 cohort studies (2907)	RR 1.19 (0.45 to 3.17) 4 cohort studies (5711)	P = 0.50
Nausea	RR 2.02 (0.87 to 4.68) 6 cohort studies (2469)	RR 0.96 (0.22 to 4.18) 3 cohort studies (2725)	P = 0.39
Abdominal pain	RR 0.66 (0.22 to 1.98) 5 cohort studies (1801)	RR 0.30 (0.22 to 0.42) 3 cohort studies (2725)	P = 0.18
Diarrhoea	RR 0.64 (0.15 to 2.71) 5 cohort studies (2428)	RR 0.57 (0.22 to 1.49) 4 cohort studies (5187)	P = 0.89
Headache	RR 2.39 (0.69 to 8.22) 5 cohort studies (2086)	RR 2.09 (1.10 to 3.95) 4 cohort studies (3506)	P = 0.85
Dizziness	RR 3.05 (1.15 to 8.12) 4 cohort studies (1067)	RR 3.84 (1.34 to 11.00) 4 cohort studies (3506)	P = 0.76
Abnormal dreams	RR 6.25 (1.16 to 33.67) 3 cohort studies (1037)	RR 7.62 (2.06 to 28.18) 4 cohort studies (3506)	P = 0.86
Insomnia	RR 3.09 (0.30 to 32.21) 4 cohort studies (1760)	RR 8.67 (4.73 to 15.89) 4 cohort studies (3506)	P = 0.40
Table 14. Mefloquine versus currently used regimens; by duration of travel
(Continued)

Anxiety	RR 3.26 (0.20 to 53.46)	1 cohort study (487)	RR 18.05 (9.75 to 33.42)	3 cohort studies (2854)	P = 0.24
Depressed mood	RR 2.52 (0.76 to 8.29)	3 cohort studies (1026)	RR 12.59 (6.47 to 24.49)	3 cohort studies (3210)	P = 0.02
Abnormal thoughts and behaviours	RR 1.29 (0.07 to 22.44)	1 cohort study (487)	RR 7.78 (1.12 to 54.06)	2 cohort studies (2558)	P = 0.31
Adherence: during travel	RR 1.10 (1.03 to 1.18)	7 cohort studies (7241)	RR 1.20 (0.88 to 1.62)	4 cohort studies (4890)	P = 0.61
Adherence: after return	RR 1.04 (0.92 to 1.17)	4 cohort studies (1221)	-	-	-

1 Short-term travellers: Approximately 3 weeks (range 1 day to 3 months). References: Goodyer 2011; Kato 2013; Kuhner 2005; Napoletano 2007; Laver 2001; Laverone 2006; Lobel 2001; Philips 1996; Schwartz 1999; Shamiss 1996; Sonmez 2005; Stoney 2016; Terrell 2015

2 Longer-term travellers: Approximately 6 months (range 0 to 36 months in Cunningham 2014. Otherwise 3 months or longer). References Andersson 2008; Cunningham 2014; Korhonen 2007; Landman 2015; Saunders 2015; Sharafeldin 2010

Table 15. Mefloquine versus currently used regimens; by military or non-military participants

Outcome	Military¹	Non-military²	Test for subgroup differences	
	Relative effect (RR) (95% CI) Studies (participants)	Relative effect (RR) (95% CI) Studies (participants)		
Serious adverse effects	0 events in 1386 participants	RR 1.21 (0.60 to 2.44)	4 cohort studies (4418)	-
Discontinuations due to adverse effects (RCTs)	RR 2.08 (0.13 to 32.73)	2 RCTs (441)	RR 2.22 (1.17 to 4.21)	4 RCTs (1669)
Discontinuations due to adverse effects (cohorts)	RR 1.24 (0.32 to 4.88)	4 cohort studies (3408)	RR 1.89 (1.35 to 2.64)	8 cohort studies (8938)

Mefloquine for preventing malaria during travel to endemic areas (Review)
Copyright © 2017 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.
Condition	RR (95% CI)	Studies	p-value
Nausea			
	RR 1.39 (0.36 to 5.36)	4 cohort studies (1578)	P = 0.26
	RR 1.70 (0.60 to 4.81)	6 cohort studies (3767)	
Abdominal pain			
	RR 0.43 (0.14 to 1.29)	4 cohort studies (1578)	P = 0.72
	RR 0.56 (0.23 to 1.35)	5 cohort studies (3099)	
Diarrhoea			
	RR 0.30 (0.09 to 0.96)	4 cohort studies (3999)	P = 0.07
	RR 1.05 (0.54 to 2.06)	6 cohort studies (3767)	
Headache			
	RR 1.19 (0.14 to 9.79)	2 cohort studies (1386)	P = 0.51
	RR 2.48 (1.40 to 4.40)	7 cohort studies (4206)	
Dizziness			
	RR 2.95 (1.37 to 6.36)	3 cohort studies (844)	P = 0.76
	RR 3.58 (1.39 to 9.25)	6 cohort studies (3880)	
Abnormal dreams			
	RR 11.02 (4.61 to 26.34)	1 cohort study (652)	P = 0.53
	RR 6.59 (1.74 to 25.00)	6 cohort studies (3891)	
Insomnia			
	RR 2.34 (0.41 to 13.35)	3 cohort studies (1537)	P = 0.11
	RR 10.24 (6.26 to 16.76)	6 cohort studies (3880)	
Anxiety			
	-		
	RR 16.94 (9.36 to 30.64)	4 cohort studies (3390)	
Depressed mood			
	RR 13.44 (3.34 to 54.05)	1 cohort study (652)	P = 0.39
	RR 6.49 (2.66 to 15.85)	5 cohort studies (3584)	
Abnormal thoughts and behaviours			
	-		
	RR 5.11 (1.11 to 23.53)	3 cohort studies (3045)	
Adherence: during travel			
	RR 1.18 (1.00 to 1.40)	5 cohort studies (4652)	P = 0.85
	RR 1.16 (0.99 to 1.35)	8 cohort studies (10785)	
Adherence: after return			
	RR 1.16 (0.86 to 1.55)	1 cohort study (43)	P = 0.44
	RR 1.02 (0.89 to 1.16)	3 cohort studies (1178)	
APPENDICES

Appendix 1. List of study design features

Feature	RCT	Q-RCT	N-RCT	PCS	RCS
Was there a comparison:					
Between two or more groups receiving the intervention?	Y	Y	Y	Y	Y
Within the same group of participants over time?	P	P	N	N	N
Were participants allocated to groups by:					
Concealed randomization?	Y	N	N	N	N
Quasi-randomization?	N	Y	N	N	N
By other action of researchers?	N	N	Y	N	N
Time differences?	N	N	N	N	N
Location differences?	N	N	P	P	P
Treatment decisions?	N	N	N	P	P
Participants’ preferences?	N	N	N	P	P

1 Military participants: References: RCTs: Arthur 1990; Ohrt 1997. Cohort studies: Andersson 2008, Saunders 2015; Shamiss 1996; Sonmez 2005; Terrell 2015; Tuck 2016

2 Non-military participants: References: RCTs: Overbosch 2001; Schlagenhauf 2003; van Riemsdijk 2002; Weiss 1995. Cohort studies: Cunningham 2014; Goodyer 2011; Kato 2013; Kuhner 2005; Korhonen 2007; Landman 2015; Laver 2001; Laverone 2006; Lobel 2001; Napoletano 2007; Philips 1996; Schwartz 1999; Sharafeldin 2010; Stoney 2016
(Continued)

On the basis of outcome?	N	N	N	N	N

Which parts of the study were prospective:

Identification of participants?	Y	Y	Y	Y	N

Assessment of baseline and allocation to intervention?	Y	Y	Y	Y	N

Assessment of outcomes?	Y	Y	Y	Y	P

Generation of hypotheses?	Y	Y	Y	Y	Y

On what variables was comparability between groups assessed:

Potential confounders?	P	P	P	P	P

Baseline assessment of outcome variables?	P	P	P	P	P

Footnotes

Y = Yes, N = No, P = Possibly

Abbreviations: RCT = randomized controlled trial; Q-RCT = quasi-randomized controlled trial; NRCT = non-randomized controlled trial; PCS = prospective cohort study; RCS = retrospective cohort study

Adapted from Reeves 2011.

Appendix 2. Search strategies - malaria chemoprophylaxis

Search set	CIDG Register	Specialized Register	CENTRAL	MEDLINE	Embase	LILACS
1	malaria	Malaria ti, ab, MeSH	Malaria ti, ab, MeSH	Malaria ti, ab, Emtree	malaria	
2	Mefloquine OR Lariam	Antimalaria* ti, ab	Antimalaria* ti, ab	Antimalaria* ti, ab	Mefloquine OR Lariam	
3	Prevent* OR prophyla* OR chemoprevent* OR chemopro-	1 or 2	1 or 2	1 or 2	Prevent* OR prophyla* OR chemoprevent* OR chemopro-	
(Continued)

phyla*	1 and 2 and 3	Mefloquine ti, ab, MeSH	Mefloquine ti, ab, Emtree	1 and 2 and 3
4				
5	-	Lariam ti, ab	Lariam ti, ab	-
6	-	4 or 5	4 or 5	-
7	-	Prevent* OR prophyla* OR chemoprevent* OR chemoprphylla* ti, ab	Prevent* OR prophyla* OR chemoprevent* OR chemoprphylla* ti, ab	-
8	-	6 and 7	6 and 7	-

Footnotes

Date of search: 22 June 2017.
Search terms for MEDLINE, Embase, and LILACS were used in combination with the search strategy for retrieving trials developed by the Cochrane Collaboration (Lefebvre 2011).

Appendix 3. Decision aid for inclusion of meta-analyses in 'Summary of findings' tables

Outcome reported	Study design	Population studied	Preference
Adverse effects	RCTs	Short term international travellers	1
		Other populations	2
	Cohort studies	Short term international travellers	3
		Other populations	4
Adverse events	RCTs	Short term international travellers	5
		Other populations	6
	Cohort studies	Short term international travellers	7
		Other populations	8
Appendix 4. Mefloquine versus placebo: other outcomes and groups of symptoms

Groups of symptoms

RCTs

Potasman 2002 (an RCT) compared 'neuropsychiatric' outcomes between study arms, and did not show a difference (RR 2.28, 95%CI 0.70 to 7.41, 90 participants). The authors did not define what they included within 'neuropsychiatric' although they do note that it 'included sleep disturbances, strange dreams, and inability to concentrate'. Within the RCTs there was no difference in the number of participants experiencing 'any adverse event' (RR 1.04, 95% CI 0.85 to 1.27, 7 trials, 1040 participants).

Other outcomes

RCTs

Three RCTs reported other outcomes which could be used as proxy measures of psychological or neurological adverse effects. These are described in the table below.

Study ID	Mefloquine participants	Drug comparator(s) (N)	Outcome(s) measured	Results reported
Davis 1996	46	Placebo (49)	1. Symbol digit modalities test¹	
 2. Digit span backwards and forwards²
 3. ECG
 4. Hearing loss at 6k | Symbol digit modalities test and digit span backwards and forwards: no significant differences between groups
 ECG: "there was a statistically significant prolongation in the electrocardiographic QTc interval between the first and second assessments in the subjects who received mefloquine (P 0.007); a less pronounced and later trend was in the placebo group (P 0.03)."
 Hearing loss at 6k: reports no statistically significant differences between groups |
| Schlagenhaus 1997 | 23 (cross-over) | Placebo (23, cross-over) | 1. POMS³,
 2. ESQ⁴,
 3. NES⁵,
 4. Sleep assessment
 5. ICA⁶
 6. Body sway | POMS: Reports no statistically significant differences between groups
 ESQ: Reports no statistically significant differences between groups |
NES: Reports no statistically significant differences between groups
Sleep assessment: “the means of participants taking the mefloquine loading dose (456 mm) and weekly dose (450 mm) were less than the corresponding means for those taking the placebo loading (491 mm) and weekly doses (484 mm) by 35 and 34 mm, respectively”
ICA: Reports no statistically significant differences between groups
Body sway: “mefloquine users had a higher mean sway than placebo users but no differences were significant”

Vuurman 1996	22	Placebo (20)
1. Critical flicker/fusion frequency	2. Critical instability tracking tests	3. Body sway
4. Tests of driving performance		
Critical flicker/fusion frequency: Reports no statistically significant differences between groups		
Critical instability tracking tests: Reports no statistically significant differences between groups		
Body sway: Reports no statistically significant differences between groups		
Tests of driving performance: “[mefloquine] significantly improved road tracking performance on Day 4”		

1Symbol digit modalities test: a test of information processing speed.
2Digit span backwards and forwards: Participants are presented a series of numbers (for example, 2, 7, 4 at a rate of one digit per second), and asked to repeat them in the same (digit span forwards) or reverse (digit span backwards) sequence. These are usually viewed as simple short-term memory tasks.
3Profile of Mood States (POMS): a validated questionnaire designed to measure feelings in five domains: tension, depression, anger, fatigue, and vigor. Answers are graded ranging from ‘not at all (0)’ to ‘extremely (4)’. The total mood disturbance (TMD) is a composite overall score which is calculated by adding the scores across the four categories of tension, anger, fatigue and depression and subtracting the score for vigour. The total ranges from 20 to 108. An increased TMD score indicates a deterioration of mood.
Environmental Symptoms Questionnaire (ESQ): a standardized form containing 68 questions relating to all body systems. Responses consist of six graded answers ranging from ‘not at all’ to ‘extreme’.

Neurobehavioral evaluation system (NES): a series of computerized tests designed to provide quantitative neurobehavioral outcomes which measures performance, such as sustained attention (response latency), coding speed, and visuomotor accuracy.

Instrument co-ordination analyser (ICA): This is a tool used in the selection of trainee pilots, and measures multiple task abilities. It simulates simplified cockpit tasks with controls for the altitude, direction, and speed. It is used to test for coordination, psychomotor function, spatial discrimination, fine coordination, and stress resistance.

Critical flicker/fusion frequency: this tests measures the frequency at which a flickering light is perceived as a steady light source. Changes are thought to be indicative of alterations in central nervous system activation, or fatigue.

Critical instability tracking tests: this test is used to measure the ability of the participant to control a displayed error signal using a joystick. It is a first-order, compensatory tracking task.

Additional outcomes

Santos 1993 (RCT) reported only on adverse effects, which the study authors attributed to the drug regime used. They report 1 case of “nervosismo” (anxiety) and discomfort in a participant who took 500 mg of mefloquine every 4 weeks (31 participants in this study arm).

Additionally, Weiss 1995 reported on mean number of symptoms reported per participant. This includes all spontaneously reported symptoms, and included diarrhoea, stomach pains, nausea, fever and headache. No significant differences were found between the multivitamin (placebo) group and the mefloquine groups. Pearlman 1980 reported that “there was no clinical evidence of drug toxicity in the 990 study participants, nor were there significant changes in the measured biochemical parameters”. However, they did not actively seek out adverse events, and did not describe how causality was assessed (Table 5). Davis 1996 reports on events occurring in the first week of the study (when both groups had received 1 placebo tablet) and the relative risk of those symptoms worsening over time, for symptoms including headache, lethargy, abdominal pain, diarrhoea, cough and nausea. Diarrhoea increased transiently with mefloquine compared to placebo, there was no difference in the other symptoms. Schlagenhauf 1997 was a cross-over randomized controlled trial including 23 participants. They report one withdrawal due to dizziness, diarrhoea, and flu-like symptoms and three volunteers spontaneously reported minor sleep-related adverse events, including insomnia, unpleasant dreams, superficial sleep, and early awakening. These events all occurred in the mefloquine loading dose phase. Petersen 2000 had important differences in the numbers of exposed/non-exposed participants and was at high risk of bias. Sensitivity analysis removing this trial did not alter the overall results.

Appendix 5. Mefloquine versus doxycycline: other outcomes and groups of symptoms

Groups of symptoms

RCTs

Ohrt 1997 reported the overall number of adverse events, and Schlagenhauf 2003 reported the overall number of mild, moderate and severe events, and no differences were found between groups (2 RCTs, 429 participants). Both trials also grouped symptoms together by body system. Schlagenhauf 2003 found that mefloquine users were more likely to experience both moderate (RR 1.56, 95% CI 1.09 to 2.22; 306 participants) and severe (RR 8.00, 95% CI 1.01 to 63.19; 306 participants) ‘neuropsychological’ adverse effects. However, there was no difference between groups in the number of neuropsychological adverse events overall (RR 1.26, 95% CI 0.91 to 1.75; 2 trials; 429 participants).

Cohort studies

In cohort studies reporting grouped adverse effects, there was no difference between groups for the overall number of adverse effects (RR 0.93, 95% CI 0.74 to 1.17; 12 cohort studies, 13,576 participants). There was also no difference between groups in the only cohort study that reported adverse events (RR 1.39, 95% CI 1.17 to 1.65; 668 participants).

Mefloquine users were more likely to experience ‘constitutional’ adverse effects (RR 3.53, 95% CI 1.92 to 6.49; 1 study; 684 participants) and ‘neuropsychologic’ adverse effects (RR 5.48, 95% CI 2.49 to 12.05; 3 studies; 4568 participants). They were less likely to experience
gastrointestinal (RR 0.33, 95% CI 0.19 to 0.58; 3 studies; 5190 participants), genitourinary (RR 0.05, 95% CI 0.01 to 0.19; 1 study; 684 participants) or skin and subcutaneous (RR 0.08, 95% CI 0.02 to 0.32; 2 studies; 1915 participants) effects.

Other outcomes

RCTs

Schlagenhauf 2003 reported the Profile of Moods States (POMS) and a quality of life questionnaire, and found no significant differences between groups. Weiss 1995 reported on the mean number of symptoms reported per participant, which included diarrhoea, stomach pains, nausea, fever and headache, but we were unable to reliably include these data.

Cohort studies

Jute 2007, Rack 2005 and Rieckmann 1993 were additional cohort studies including users of both mefloquine and atovaquone-proguanil but did not present their data in a way that could be included in meta-analyses. Jute 2007 was a cross-sectional cohort study which included 17 users of mefloquine and 16 users of doxycycline and reported that "no significant adverse effects were reported by any users of chemoprophylaxis". Rack 2005 included 167 mefloquine users and 16 users of doxycycline and reported that "side effects were reported by 80 (28.9%) of 276 travelers with malaria prophylaxis, which affected the journey in 27 (9.8%) cases. In users of mefloquine, the most common side effects were central nervous system problems, such as headache, dizziness, sleep disorders, and emotional lability (53 of 167 [31.7%]). These kinds of side effects occurred significantly more often with mefloquine than with other antimalarial drugs (31.7% vs 8.6%, p < .01). Of those patients on atovaquone/proguanil and doxycycline, gastrointestinal side effects were most frequent (15.1% and 25%, respectively). Dermatologic problems occurred significantly more often with doxycycline than with any other antimalarial drug (12.5% vs 1.5%, p < .01)." Rieckmann 1993 included 40 mefloquine users and 115 doxycycline users and reported that "mefloquine was well tolerated and no dizziness or neurotoxicity was observed, the incidence of gastrointestinal disturbance was 24.5%".

Mavrogordato 2012 included a categorical measure of adherence to the drug regime which we could not combine for meta-analysis. The study included 12 mefloquine users and six doxycycline users.

Appendix 6. Mefloquine versus atovaquone-proguanil: other outcomes and groups of symptoms

Groups of symptoms

RCTs

Of the RCTs, Overbosch 2001 reported an increase in any adverse effect (RR 1.40, 95% CI 1.18 to 1.66; 976 participants), and ‘any moderate or severe adverse effect’ with mefloquine (RR 1.84, 95% CI 1.34 to 2.53; 976 participants). Schlagenhauf 2003 reported the overall number of mild, moderate and severe events, and no differences were found between groups. Schlagenhauf 2003 also grouped symptoms together by body system: ‘gastrointestinal’, ‘neuropsychological’, ‘skin and subcutaneous’ and ‘skin and vaginal’. The only statistically significant finding was an increase in moderate ‘neuropsychological’ symptoms with mefloquine (RR 1.88, 95% CI 1.29 to 2.73; 317 participants).

Cohort studies

Of the cohort studies, mefloquine users were more likely to experience ‘cardiovascular’ adverse effects (RR 7.32, 95% CI 1.06 to 50.42; 1 cohort study, 316 participants), ‘constitutional’ adverse effects (RR 13.53, 95% CI 1.89 to 96.60; 1 cohort study, 477 participants), ‘gastrointestinal’ adverse effects (RR 1.99, 95% CI 1.09 to 3.60; 2 cohort studies, 793 participants) and ‘neuropsychologic’ adverse effects (RR 8.48, 95% CI 3.18 to 22.62; 3 cohort studies, 1021 participants). Overall participants who took mefloquine were more likely to experience any adverse effect (RR 2.40, 95% CI 1.84 to 3.13; 10 cohort studies; 5404 participants). Although there was moderate statistical heterogeneity among trials (I^2 statistic = 65%), the direction of the effect was consistent.
Other outcomes

RCTs

Two RCTs reported other outcomes which could be used as proxy measures of psychological adverse effects. These are described in the table below.

Study ID	Mefloquine participants	Drug comparator(s) (n)	Outcome(s) measured	Results reported
Schlagenhaus 2003	153	Atovaquone-proguanil (164), doxycycline (153)	1. POMS¹ 2. Quality of life questionnaire²	POMS: Reports no statistically significant differences between groups
Quality of life questionnaire: Reports no statistically significant differences between groups				
van Riemsdijk 2002	58	Atovaquone-proguanil (61)	1. POMS¹ 2. NES³	POMS: “Significant deterioration on the domains of depression, anger, fatigue, and vigor. The TMD increased by 7.52 points (95% confidence interval, 3.32 to 11.71 points)”
NES: Both groups showed improvement between the first and second measurement. No differences were observed between groups |

¹Profile of Mood States (POMS): a validated questionnaire designed to measure feelings in five domains: tension, depression, anger, fatigue, and vigor. Answers are graded ranging from ‘not at all (0)’ to ‘extremely (4)’. The total mood disturbance (TMD) is a composite overall score which is calculated by adding the scores across the four categories of tension, anger, fatigue and depression and subtracting the score for vigour. The total ranges from 20 to 108. An increased TMD score indicates a deterioration of mood.

²Quality of life questionnaire: participants were asked to grade 13 positive statements (for example, ‘I can enjoy my everyday life’) on scale of 1 (‘not at all true’) to 6 (“true”)

³Neurobehavioral evaluation system (NES): a series of computerized tests designed to provide quantitative neurobehavioral outcomes which measures performance, such as sustained attention (response latency), coding speed, and visuomotor accuracy.

Cohort studies

Schneider 2013 analysed a large UK General Practice research database for incident cases of ‘neuropsychiatric’ disorders including anxiety, stress-related disorders or psychosis, depression, epilepsy or peripheral neuropathies during or after antimalarial drug use. There was no difference between mefloquine or atovaquone-proguanil for incident cases of depression, epilepsy, neuropathy or ‘anxiety or stress-related disorders or psychosis’ in ‘current’ or ‘past’ users. The authors did not present their data in a way which we could include within meta-analysis.

Napoletano 2007 reports the number of ‘neuropsychiatric’ and ‘gastrointestinal’ adverse effects reported in each group. ‘Neuropsychiatric’ symptoms accounted for 44% of symptoms reported by mefloquine users, and 12% of symptoms reported by users of atovaquone-
They report a higher incidence of both ‘neuropsychiatric’ and ‘gastrointestinal’ symptoms in mefloquine users (data not provided).

Jute 2007 and Rack 2005 were additional cohort studies including users of both mefloquine and atovaquone-proguanil but did not present their data in a way which could be included within meta-analysis.

Jute 2007 was a cross-sectional cohort study which included 17 users of mefloquine and one user of atovaquone-proguanil and reported that “no significant adverse effects were reported by any users of chemoprophylaxis”. Rack 2005 included 167 mefloquine users and 86 users of atovaquone-proguanil and reported that "side effects were reported by 80 (28.9%) of 276 travelers with malaria prophylaxis, which affected the journey in 27 (9.8%) cases. In users of mefloquine, the most common side effects were central nervous system problems, such as headache, dizziness, sleep disorders, and emotional lability (53 of 167 [31.7%]). These kinds of side effects occurred significantly more often with mefloquine than with other antimalarial drugs (31.7% vs 8.6%, p < .01). Of those patients on atovaquone/proguanil and doxycycline, gastrointestinal side effects were most frequent (15.1% and 25%, respectively). Dermatologic problems occurred significantly more often with doxycycline than with any other antimalarial drug (12.5% vs 1.5%, p < .01)."

Mavrogordato 2012 included a categorical measure of adherence to the drug regime which we could not combine within meta-analysis. The study included 12 mefloquine users and 11 users of atovaquone-proguanil.

Appendix 7. Mefloquine versus chloroquine: other outcomes and groups of symptoms

Groups of symptoms

Four RCTs and 12 cohort studies compared participants reporting any adverse symptom. The results are mixed with mefloquine users less likely to report any adverse event in the few small RCTs (RR 0.59, 95% CI 0.42 to 0.83; three RCTs trials; 641 participants), and more likely to report any adverse effect in the cohort studies (RR 1.43, 95% CI 1.19) to 1.73; 11 cohort studies, 63,286 participants). Within cohort studies, mefloquine users were more likely to report ‘gastrointestinal’ symptoms (RR 2.88, 95% CI 1.09 to 7.57; 1 cohort study, 3822 participants), ‘neuropsychologic’ symptoms (RR 2.12, 95% CI 1.24 to 3.60; 2 cohort studies, 3965 participants), and ‘skin and subcutaneous’ symptoms (RR 1.27, 95% CI 1.08 to 1.50; 2 cohort studies, 53,550 participants).

Other outcomes

Boudreau 1993 also reported outcomes which could be used as proxy markers of psychological or neurological adverse effects, including the POMS (a validated questionnaire designed to measure feelings in five domains: tension, depression, anger, fatigue, and vigor), environmental symptoms questionnaire (ESQ) (a standardized form containing 68 questions relating to all body systems. Responses consist of six graded answers ranging from ‘not at all’ to ‘extreme’) and a sleep assessment. They reported as follows:

POMS: “On day 4, depression was significantly greater in the loading dose mefloquine group. At week 6, depression, tension and anger were significantly greater in the mefloquine group. No differences were found between groups for vigour, fatigue or confusion.”

ESQ: “On day 4, significant differences were found for depression, dizziness, co-ordination off for both mefloquine groups... eye irritability was more common in the chloroquine group... During week 6: depression, nausea, hands shaking higher in mefloquine weekly group and irritability higher in both [mefloquine] groups.”

Sleep assessment: no group differences (in total sleep time) were statistically significant, however, both mefloquine groups slept less (about 20 minutes less per night).

WHAT’S NEW

Date	Event	Description
20 October 2017	New search has been performed	New author team appointed. Protocol rewritten. Criteria for included studies, methods, and outcomes revised. Protocol checked and agreed by two editors. Modifications included:
• Scope of protocol changed to cover only efficacy and safety of mefloquine.
• Updated search.
• Types of studies changed to include non-randomized controlled trials/cohort studies for analysis of safety.
• Control changed to include placebo or no intervention.
• Types of participants changed to include all adults and children, including pregnant women (now includes immune and partially-immune participants).
• Adverse outcomes altered, added adverse events and adverse effects monitoring, measures of adherence and adverse pregnancy outcomes.
• 'Risk of bias' assessment modified to include methods of assessment for non-randomized trials and risk of bias in conduct and reporting of adverse events and adverse effects.
• We did not include any analysis of deaths, suicides, or parasuicides attributable to mefloquine prophylaxis; these are addressed in a separate review (Tickell-Painter 2017).
• Review title modified to reflect the change in the protocol to evaluate mefloquine against alternatives

20 October 2017	New citation required and conclusions have changed
	The previous version of this review, 'Drugs for preventing malaria in travellers', was withdrawn. The reason for this was the editorial team detected several errors in a subsidiary analysis of case reports described in the discussion and in appendix 9 of the withdrawn review. This new edition covers only mefloquine and comparisons with alternative drugs. The case reports analysis has been removed entirely. A separate team, including the lead author of this review, carried out a new review of case reports of death and parasuicide associated with mefloquine, published in the journal, 'Travel Medicine and Infectious Disease'.

HISTORY

Protocol first published: Issue 2, 2007

Review first published: Issue 4, 2009
CONTRIBUTIONS OF AUTHORS

Maya Tickell-Painter (MTP) and David Sinclair (DS) performed title and abstract and full text screening of the search results. MTP and Nicola Mayaan assessed the methodological quality of trials and extracted and analysed data. MTP completed the first draft of the review. DS, Cheryl Pace and Rachel Saunders provided advice on content and methodology. All authors approved the final version for publication.

DECLARATIONS OF INTEREST

NM was contracted by the Cochrane Infectious Diseases Group (CIDG) as a freelance consultant to work on this review and previously worked for Enhanced Reviews Ltd, a company that conducts systematic reviews mostly for the public sector. NM is currently employed by Cochrane Response, an evidence services unit operated by Cochrane.

CP has been involved in aspects of clinical trial management for trials of antimalarials (other than mefloquine) where the study drug has been supplied free of charge by the manufacturer.

David Sinclair was employed at Liverpool School of Tropical Medicine as an author and editor with the CIDG, funded through a grant from the UK Department for International Development.

RS was employed at Liverpool School of Tropical Medicine as an author with the CIDG, funded through a grant from the UK Department for International Development.

MTP was employed at Liverpool School of Tropical Medicine as an author with the CIDG, funded through a grant from the UK Department for International Development.

SOURCES OF SUPPORT

Internal sources

- Liverpool School of Tropical Medicine, UK.
DIFFERENCES BETWEEN PROTOCOL AND REVIEW

In the protocol we planned to use a modified version of the ACROBAT-NRSI tool (now referred to as ROBINS-I) (ACROBAT-NSRI tool). In the full review we used the original version.

In the protocol we stated that we would include “clinical cases of malaria, diagnosed by PCR or microscopy”. In the full review we included trials in which the methods of detection for malaria were unclear, or different (one RCT which tested for antibodies to a circumsporozoite protein four weeks after travel). This change occurred due to difficulties in establishing diagnoses of malaria in short-term travellers. No cases of malaria occurred in any study arm in any of these additionally included studies.

In the full review we did not include comparisons with regimens that are currently not routinely used or single-arm cohort studies. These are planned to be analysed in separate systematic reviews (Rodrigo 2016; Tickell-Painter 2017).

Differences between 2015 review and this review update

We amended the review title from 'Drugs for preventing malaria in travellers' to 'Mefloquine for preventing malaria during travel to endemic areas.

We rewrote the protocol. Criteria for included studies, methods, and outcomes were revised. The was externally peer refereed by two editors.

The scope of the review changed to cover only efficacy and safety of mefloquine. The search was updated. The types of studies were changed to include non-RCTs/cohort studies for analysis of safety. The control arm was changed to include placebo or no intervention, as well as the commonly used alternatives of atovaquone-proguanil, doxycycline, and chloroquine. Types of participants were changed to include all adults and children, including pregnant women (now includes immune and partially-immune participants). We altered the inclusion of adverse outcomes; we included measures of adherence to the drug regime and adverse pregnancy outcomes. We modified the ‘Risk of bias’ assessment to include methods of assessment for non-randomized trials and risk of bias in conduct and reporting of adverse events and adverse effects.

We did not include any analysis of deaths, suicides, or parasuicides attributable to mefloquine prophylaxis; these are addressed in a separate review (Tickell-Painter 2017).

The author team changed from Jacquerioz FA and Croft AM to Tickell-Painter M, Mayaan N, Saunders R, Pace C, and Sinclair D.

INDEX TERMS

Medical Subject Headings (MeSH)

*Travel-Related Illness; Antimalarials [adverse effects; *therapeutic use]; Atovaquone [adverse effects; therapeutic use]; Chloroquine [adverse effects; therapeutic use]; Doxycycline [adverse effects; therapeutic use]; Drug Combinations; Drug Resistance; Drug Therapy, Combination [methods]; Malaria, Falciparum [*prevention & control]; Mefloquine [adverse effects; *therapeutic use]; Primaquine [adverse effects; therapeutic use]; Proguanil [adverse effects; therapeutic use]; Randomized Controlled Trials as Topic
MeSH check words

Adult; Child; Humans