Improved packings of \(n(n-1) \) unit squares in a square

M.Z. Arslanov * S.A. Mustafin
Institute of Information and Computational Technologies
Almaty, Kazakhstan
mzarlanov@hotmail.com sam@ipic.kz

Z.K. Shangitbayev
Almaty Management University
Almaty, Kazakhstan
sh.zhanbek@gmail.com

Submitted: Mar 14, 2019; Accepted: Oct 15, 2021; Published: Nov 5, 2021
© The authors. Released under the CC BY-ND license (International 4.0).

Abstract

Let \(s(n) \) be the side of the smallest square into which we can pack \(n \) unit squares. The purpose of this paper is to prove that \(s(n^2 - n) < n \) for all \(n \geq 12 \). Besides, we show that \(s(18^2 - 17) < 18, s(17^2 - 16) < 17, \) and \(s(16^2 - 15) < 16 \).

Mathematics Subject Classifications: 05B40, 52C15

1 Introduction

The problem of packing equal squares in a square has been around for some 40 years [1]. Let \(s(n) \) be the side of the smallest square into which we can pack \(n \) unit squares. Nagamochi [3] proved that \(s(n^2 - 2) = s(n^2 - 1) = n \). It follows from [1] that \(s(n^2 - O(n^{7/11})) < n \) for big \(n \). From [4] it follows that the 7/11 degree can be reduced to 5/8.

An important question is to find the minimum \(n \) for which \(s(n^2 - n) < n \). For small \(n \), only \(s(2) = 2 \) and \(s(6) = 3 \) have been proved, but we don’t even know the proof of \(s(12) = 4 \). It was proved in [2] that \(s(n^2 - n - 1) < n \) for \(3 < n < 11 \). Due to Lars Cleemann it was known that \(s(17^2 - 17) < 17 \) [2]. Nagamochi in [3] mistakenly says that the following is proved in [2]

\[
s(n^2 - n) < n \quad \forall n \geq 17. (1)
\]

*Supported by MSE of Kazakhstan grant GF4 AP05133090.
The truth is that in [2] a sporadic squeezable packing of 272 unit squares in a square \((17,17)\) is given, proving that \(s(17^2 - 17) < 17\), but from this it does not follow that \(s(18^2 - 18) < 18\) etc. Thus, Nagamochi’s implicit conjecture (1) needs a proof.

We prove the conjecture and even more: \(s(n^2 - n) < n \ \forall n \geq 12\), and, moreover,

\[
\begin{align*}
s(18^2 - 17) &< 18, \\
s(17^2 - 16) &< 17, \\
s(16^2 - 15) &< 16.
\end{align*}
\]

2 Some squeezable packing of rectangles

Let a packing of \(m\) unit squares in a rectangle \(R = (R_x, R_y)\) be given. We assume that \((R_x - 1)(R_y - 1) < m < R_x R_y\) and we can’t pack a unit square in the waste area. This packing is called squeezable if both sides of a rectangle can be reduced, i.e., for some \(\delta > 0\) there exists a packing of \(m\) unit squares in a rectangle \((R_x - \delta, R_y - \delta)\). The maximum of such \(\delta > 0\) is called the value of squeezing and is denoted by \(\delta(R, m)\). We write \(\delta(R, m) = 0\) if the packing is not squeezable.

The property of squeezability of a packing for small parameters can be proved rather simply. However proving this property for large parameters is a non-trivial mathematical problem. The following obvious formula connects \(\delta(R, m)\) and \(s(n)\):

\[
s(n) = \lceil s(n) \rceil - \delta(\lceil s(n) \rceil, \lceil s(n) \rceil, n).
\]

If \(\delta((R_x, R_y), m) < 1\) then the fact that for integer \(R_x, R_y\)

\[
\delta((R_x, R_y), m) \leq \delta((R_x + 1, R_y), m + R_y - 1)
\]

can be proved by adding \(R_y - 1\) unit squares to the \(x\)-side of a rectangle \((R_x, R_y)\). Figure 1 shows the basic idea for efficiently packing unit squares in a square \(S\), where rectangles \(C\) and \(D\) are integer and the waste is in rectangles \(A\) and \(B\). It is easy to see that if the packing of unit squares in rectangles \(A, B\) is squeezable, then the packing of unit squares in \(S\) is squeezable and

\[
\delta(S, \cdot) \geq \min(\delta(A, \cdot), \delta(B, \cdot)).
\]

This bound can be increased if we note that after squeezing there is a little space between rectangles \(A, B\). We can give this space to a rectangle with minimal squeezing value in order to increase that value and thus to increase the evaluation of \(\delta(S, \cdot)\).

Let us consider a packing of 26 unit squares in a rectangle \((4, 8)\) (see Figure 2). This packing is centrally symmetric and the waste is equal to 6.

In Figure 2 we see one of the main ideas for packing unit squares: using of stacks \((4, 1)\) tilted by an angle \(\alpha = \arcsin(8/17)\). The main idea for squeezing a packing follows from it: tilting stacks \((4, 1)\) by an angle \(\alpha + \varepsilon\) so that the stack \((4, 1)\) is located in a vertical strip of width \(4 - \delta\), where \(\varepsilon\) and \(\delta\) are sufficiently small. Hereinafter we determine the orientation of a unit square by a unit vector \((x, y)\) with \(x > 0, y \geq 0, x^2 + y^2 = 1\) directed along the side of this unit square. If the bottom vertex of the unit square is at the origin then the three other vertices have coordinates \((x, y), (x - y, y + x), (-y, x)\). Note that if
two points P_t, P_b are taken on the top side and the bottom side of this unit square then the scalar product $\langle P_t - P_b, (x, y) \rangle$ is equal to 1.

Continuing with the example in Figure 2, after increasing the tilt the stack $(4, 1)$ in a vertical strip of width $4 - \delta$ has orientation $(x_1, y_1), x_1 > 0, y_1 \geq 0$ satisfying the system of equations

$$4x_1 + y_1 = 4 - \delta, x_1^2 + y_1^2 = 1.$$

To evaluate the squeezing value $\delta((4, 8), 26)$, we use the bisection method. The packing remains centrally symmetric. The distance between the point $P = (P_x, P_y) = (1 - \delta/2, 2 - \delta/2)$ and the upper side of the square S_2 intersecting the line $x = 1 - \delta/2$ in the point $P_1 = (P_{1x}, P_{1y}) = (1 - \delta/2, (1 - \delta/2)x_1 + \frac{1}{x_1} + \frac{1-x_1}{x_1y_1})$ is critical. For $\delta = 0.01$ we have $x_1 = .877695\ldots, y_1 = .479219\ldots, P_y - P_{1y} = 0.021604 > 0$. For $\delta = 0.02 x_1 = .87312663\ldots, y_1 = .48749347\ldots, P_y - P_{1y} = -0.0061309\ldots < 0$. The bisection method gives evaluation $\delta((4, 8), 26) > 0.0177702$.

Figure 3 shows a more complex example, a centrally symmetric squeezable packing of
64 unit squares in a rectangle (6,12). Four unit squares: \(S_3, S_6 \) and their symmetric ones have not the orientation \((\frac{35}{37}, \frac{12}{37}) \) nor \((1,0) \). Hereinafter we denote points and squares by the same indices in different figures without losing accuracy.

In this packing the left vertex of \(S_2 \) is on a side of \(S_1 \). The square \(S_3 \) is placed so that the right vertices of squares \(S_2, S_5 \), and the top vertex of \(S_4 \) are on the sides of \(S_3 \). Vertices of the squares \(S_8, S_7, S_9 \) are on sides of \(S_6 \). Calculations show that there is a small distance between \(S_3 \) and \(S_6 \), which guarantees squeezability of the given packing.

To calculate the squeezing value \(\delta((6,12), 64) \), take \(\delta = 0.004 \) and define the existence of a packing 64 unit squares in a rectangle \((6-\delta, 12-\delta)\). The distance between the right vertex of \(S_3 \) and the top side of \(S_6 \) should be not less than 1.

Table 1 contains calculations with \(\delta = 0.004 \).

Calculations with \(\delta = 0.005 \) give \(\langle P_8 - P_5, (x_2, y_2) \rangle = 0.999617371807702270 \), i.e., the squares \(S_3, S_6 \) intersect. The bisection method gives evaluation \(\delta((6,12), 64) > .00490823 \).

A packing of 58 unit squares in a rectangle \((6,11-2/35)\) can be obtained by removing one stack \((6,1)\) in Figure 3 and lifting up by \(37/35 \) all the squares that are below this
Table 1: Calculations with $\delta = 0.004$

Object	Formulae or system of equations	Numerical value
δ	$y_1^2 + x_1^2 = 1, 6y_1 + x_1 = 6 - \delta$	0.004
Orientation ((x_1, y_1)) of stack (6,1)	$P_0 = (-2 + \delta/2, (2 - \delta/2)x_1/y_1 + \frac{2}{y_1} + \frac{1-y_1}{x_1y_1})$	(-1.998,2.989621361)
	$P_1 = P_0 + (x_1 + y_1, y_1 - x_1)$	(-0.725282311,3.6062165968)
	$P_2 = (\delta/2 - 1.4 - \delta/2)$	(-0.998,3.998)
	$P_3 = (3 - 3y_1 - \frac{\delta}{2}, -(3 - 3y_1 - \frac{\delta}{2})x_1/y_1 + \frac{x_1}{y_1})$	(1.1640306130, 4.177378839)
Orientation (x_2, y_2) of S_3	$x_2^2 + y_2^2 = 1,$ $(P_2 - P_3, (-y_2, x_2)) = 1$	(3.90085325,9207787136)
	$P_4 = (P_1, (x_2, y_2)) \cdot (x_2, y_2) + (P_2, (y_2, -x_2)) \cdot (y_2, -x_2)$	(-1.09722313,76378828)
	$P_5 = P_4 + (x_2 + y_2, y_2 - x_2)$	(0.213640902,4.29448167498)
	$P_6 = (\frac{1}{2}\delta, 5 - \frac{1}{2}\delta)$	(0.002,4.998)
	$P_7 = (3 - \delta/2, -3 - \delta/2)x_1/y_1 + 5(0,1/y_1) + 2(-y_1, x_1)$	(1.108687,4.9079035)
	$P_8 = (1 - \delta/2, 5 - \delta/2)$	(0.998,4.998)
Orientation (x_3, y_3) of S_6	$x_3^2 + y_3^2 = 1,$ $(P_6 - P_7, (-y_3, x_3)) = 1$	(5.062565099,862382946)
Distance between P_5 and top side of S_6	$(P_8 - P_5, (x_3, y_3)) = 1$	1.00378910536129684

Consider a more difficult problem of a squeezable packing of 43 unit squares in a rectangle $(5,10)$. In Figure 4 six unit squares $S_1, S_4, S_9, S_{10}, S_{11}, S_{12}$ have not the orientation $\langle 0,1 \rangle$ nor $(1,0)$. The square S_1 has a vertex on the side of the rectangle $(5,10)$, one on a side of S_2, and one on a side of S_3. The right vertex of S_1 is on the bottom side of S_4. S_4 is tilted so that the bottom right vertex of S_3 is on the left side of S_4 and the top vertex of the stack $(3, 1)$ is on the right side of S_4. The left vertex of S_5 is on the side of S_6. The squares S_9, S_{10} are tilted by the same angle so that the vertex of S_8 is on the side of S_9, the vertex of S_5 is on the bottom side of S_9, and the vertex of S_7 is on the bottom side of S_{10}. The squares S_{11}, S_{12} form a rectangle $(2,1)$. The right vertex of S_{12} is on the right side of a rectangle $(5,10)$. The vertex of S_{13} is on the top side of S_{11}. The bottom sides of S_{11} and S_{12} are parallel to the line connecting the right vertices of S_9 and S_{10}. The vertex of S_{14} is on the bottom side of S_{15}. Calculations show that there is a small distance 0.0055111... between the bottom side of the rectangle $(2,1) = S_{11} \cup S_{12}$ and the line connecting the
Figure 4: Squeezable packing of 43 unit squares in a rectangle (5,10)

right vertices of S_9 and S_{10}. This guarantees squeezability of the given packing.

Calculation of the squeezing value $\delta((5,10), 43)$ gives the evaluation $\delta((5,10), 43) > 0.0009652493$. This packing plays an important role in the squeezable packing of 132 unit squares in a square (12,12). Below we show the evaluation of $\delta((12,12), 132)$. From this evaluation one can obtain the evaluation of $\delta((5,10), 43)$. Analogous calculations give the evaluation of the squeezing value $\delta((5,9), 38) > 0.020403$.

Table 2 contains the evaluations of the squeezing values of some rectangles.

Rectangle R	n	$\delta(R, n)$
(4,8)	26	> 0.01777021751
(5,10)	43	> 0.0009652493
(5,9)	38	> 0.020403
(6,12)	64	> 0.004908231774819
(6,11)	58	> 0.01681735886

Table 2. Evaluations of squeezing value of some rectangles

To prove conjecture (1), we need the following lemma.

Lemma 1. For any $k \geq 3$ there exists a squeezable packing of $4k^2 + 6k - 2$ unit squares in a rectangle $(2k, 2k + 4)$ (the waste is equal to $2k + 2$).
The proof is technically simple and can be understood from Figure 5, showing a centrally symmetric squeezable packing of 86 unit squares in a rectangle \((8, 12)\). For an arbitrary \(k \geq 3\), the centrally symmetric packing in the upper half of a rectangle \((2k, 2k + 4)\) consists of 2 staircases. A staircase with orientation \((1,0)\) having \(\frac{k(k+1)}{2}\) unit squares, and a staircase with orientation \((x_1, y_1) = \left(\frac{4k^2-1}{4k^2+1}, \frac{4k}{4k^2+1}\right)\) that has \(\frac{(3k-1)(k+2)}{2}\) unit squares. The top vertex of \(S_{k+1}\) has ordinate

\[y_{k+1} = -\frac{4k^2}{4k^2 - 1} + (k + 2) \frac{4k^2 + 1}{4k^2 - 1} + (k - 1) \frac{4k}{4k^2 + 1} < \]

\[< -\frac{4k^2}{4k^2 - 1} + (k + 2) \frac{4k^2 + 1}{4k^2 - 1} + (k - 1) \frac{4k}{4k^2 - 1} = k + 2 - \frac{2(k - 2)}{4k^2 - 1} < k + 2, \]

i.e., \(S_{k+1}\) is in rectangle \((2k, 2k + 4)\). The top vertex of \(S_0\) has ordinate

\[\frac{4k^2}{4k^2 - 1} + \frac{4k^2 - 1}{4k^2 + 1} = 2 + \frac{1}{4k^2 - 1} - \frac{2}{4k^2 + 1} < 2,\]

i.e., \(S_0\) does not intersect the staircase with orientation \((1,0)\). Each square \(S_j, 1 \leq j \leq k\) intersects the vertical line \(x = k - j\) in the point

\[(k - j, j \cdot \frac{1 - x_1}{x_1y_1} + (k - j) \frac{y_1}{x_1} + \frac{j}{x_1}).\]

The ordinate of this point satisfies

\[j \cdot \frac{1 - x_1}{x_1y_1} + (k - j) \frac{y_1}{x_1} + \frac{j}{x_1} = 1 + j + \frac{1}{2} \cdot j \cdot \frac{(-4k^2 + 4k + 1) + 2k}{k(4k^2 - 1)} < 1 + j, \]

i.e., none of the \(S_j, 1 \leq j \leq k\) intersects the staircase with orientation \((1,0)\). We see that there is a positive distance between the two staircases. Therefore, this packing is squeezable. The lemma is proved.

3 Improved squeezable packing of some squares

As mentioned in the introduction, in [3] Nagamochi mistakenly says that in [2] it is proved that

\[s(n^2 - n) < n \quad \forall n \geq 17. \]

Thus he implicitly formulates the conjecture (4). For the proof of this conjecture we use lemma 1 as follows.

For even \(n \geq 14\) we use Figure 1 with rectangles \(A = (12, 6), B = (n - 10, n - 6), C = (10, n - 6), D = (n - 12, 6)\).

For odd \(n \geq 13\) we use Figure 1 with rectangles \(A = (10, 5), B = (n - 9, n - 5), C = (9, n - 5), D = (n - 10, 5)\).

Thus the conjecture (4) is proved for \(n \geq 13\).

For the proof of this conjecture for \(n = 12\) see Figure 6.
Figure 5: Squeezable packing of $4k^2 + 6k - 2$ unit squares in a rectangle $(2k, 2k + 4)$

The packing in Figure 6 is obtained from the squeezable packing in rectangles $(8, 4)$, $(5, 10)$. In the packing in $(5, 10)$ we tilt the angular squares S_1, S_2 by an angle $\arcsin(10/26)$ so that the bottom vertex of S_1 has an integer y-coordinate and S_2 has intruded space in the rectangle $(8, 4)$. From the packing in $(8, 4)$ we remove two right top squares and move to the left by $1/20$ unit squares tilted by an angle $\arcsin(8/17)$ so that the bottom vertex of S_3 is on the side of S_4. The small distance between S_2 and S_5 makes the packing in Figure 6 squeezable.

Thus we have proved that

$$s(n^2 - n) < n \ \forall n \geq 12.$$

To evaluate $\delta((12, 12), 132)$, take $\delta = 0.002$. The origin is in the right bottom vertex of the integer rectangle $(7, 8)$. The bottom side of $(12, 12)$ has y-coordinate $-4 + \delta$, the right side of $(12, 12)$ has x-coordinate $5 - \delta$.

Table 2 contains the calculations.
Object	Formulae or system of equations	Numerical value		
Orientation \((x_1, y_1)\) of stack \((4, 1)\)	\(y_1^2 + x_1^2 = 1, y_1 + 4x_1 = 4 - \delta \)	\((0.881413748866,\)		
	\(P_0 = (4/x_1 - 1/y_1 + x_1/y_1 - 5, 0)\)	\(0.4723450045357421)\)		
Orientation \((x_2, y_2)\) of stack \((5, 1)\)	\(y_2^2 + x_2^2 = 1, 5y_2 + x_2 = 5 - \delta \)	\((0.386451637219073,...,\)		
	\(P_1 = (1.788247541, -1.998)\)	\(.9223096725561...)\)		
Orientation \((x_3, y_3)\) of square \(S_6\)	\(x_3 + y_3^2 = 1, \) \((x_3 + y_3^2 - 2 + \delta) + P_0 \)	\((1.788247541,-1.998)\)		
Lower ordinate of intersection \(S_2\) with line \(x = 0\)	\(Y_1 = P_{1y} + P_{1x} \cdot \frac{x_2}{y_2} \)	\(-1.248716749\)		
Orientation \((x_4, y_4)\) of square \(S_0\)	\(x_4^2 + y_4^2 = 1, \) \((1, \frac{6}{y_4} + (P_{1x} - 1) \frac{x_4}{y_4} - 2 + \delta + \frac{1-y_4}{x_2}/y_2)\)	\((0.9893426726...)\)		
	\(P_2 = (x_3 + y_3^2 - 4 - x_3)\)	\((3.847656465)\)		
	\((P_{3y} - 1) \frac{y_4}{y_2} + 2y_2, y_1 + \frac{5}{y_2} + y_2 - 2x_2)\)	\((2.321070982,4.321862330)\)		
Orientation \((x_5, y_5)\) of squares \(S_{14}, S_{15}\)	\(x_5^2 + y_5^2 = 1, \) \((P_8 - (2, 6), (y_5 - x_5)) = 2\)	\((2.30876131,5.5915134434)\)		
	\((P_8 - 2, 6)) \cdot (x_5 - y_5)\)	\((4.608883990)\)		
	\(P_7 = P_6 + (x_2 + y_2, y_2 - x_2)\)	\((3.2057967042318,5.14474202553891)\)		
	\(P_8 = P_3 + (2y_2, 2/y_2 - 2x_2)\)	\((4.075690327,5.717428128)\)		
	\(P_9 = P_8 + (2y_2, 2/y_2 - 2x_2)\)	\((4.235421115,9.05876415...)\)		
	\(P_0 = (P_{9x}, P_{9y})\) \((x_5, y_5)\) \cdot (y_5, x_5)\)	\((3.222807975740513)\)		
	\((2, 6), (x_5, y_5)\) \cdot (x_5, y_5)	\((6.265585540152)\)		
	\((x_5 + y_5, y_5 - x_5)\) \cdot (x_5 + y_5, y_5 - x_5)	\((4.1243576636105)\)		
	\((x_5 + y_5, y_5 - 2x_5)\) \cdot (x_5 + y_5, y_5 - 2x_5)	\((5.81959314362795)\)		
Distance between \(P_{11}\) and segment \([P_3, P_10]\)	\(\frac{	(P_{11} - P_{10}) \cdot (P_{11} - P_{10})	}{\sqrt{(P_{11} - P_{10})^2 + (P_{11} - P_{10})^2}}\)	\((1.000648944...)\)

Table 2: Calculations for \(\delta = 0.002\).
Figure 6: Squeezable packing of 132 unit squares in a square (12,12)

Calculations with $\delta = .0021$ give the distance 0.9999866543 between the bottom left vertex of S_{18} and the segment $[P_9, P_{10}]$. The bisection method gives the evaluation $\delta((12,12), 132) > 0.00209798269$, i.e., $s(132) < 11.99790201731$.

Analogous calculations give evaluations

\[\delta((5,10), 43) > 0.0009652493, \delta((5,9), 38) > 0.020403\]

\[\delta((13,13), 156) > 0.0059576, s(156) < 12.9940424.\]

Calculations with $C = (10,8), D = (3,6), A = (11,6), B = (4,8)$ in Figure 1 give

\[\delta((14,14), 182) > 0.01681735886, s(14^2 - 14) < 13.98318264114.\]

For the square (15,15) we have $\delta((15,15), 210) \geq \min(\delta((5,9), 38), \delta((11,6), 58)) > 0.01681735886$, i.e., $s(210) < 14.98318264114$.

For the square (16,16) we have $\delta((16,16), 241) > \min(\delta((5,10), 43), \delta((12,6), 64)) > 0.0009652493$, i.e., $s(16^2 - 15) < 15.9990347507$.

More careful analysis when we use the space between rectangles (5,10) and (12,6) gives $\delta((16,16), 241) > 0.00404996$, i.e., $s(16^2 - 15) < 15.99595004$.

Calculations with $A = (12,6), B = (6,11), C = (11,11), D = (5,6)$ give

\[\delta((17,17), 17^2 - 16) > 0.0049082317748, s(17^2 - 16) < 16.9950017682252.\]
Notice that this squeezable packing of a square (17,17) contains one unit square more than in [2].

Calculations with $A = (13, 6), B = (6, 12), C = (12, 12), D = (5, 6)$ give

$$\delta((18, 18), 18^2 - 17) \geq 0.0049082317748, s(18^2 - 17) < 17.9950917682252.$$

Table 4 contains the evaluations of the squeezing values and the upper bounds of $s(n)$ for new n.

n	$s(n)$	$\delta(\lceil s(n) \rceil, \lceil s(n) \rceil, n)$
132	$s(12^2 - 12) < 11.99790201731$	$\delta((12, 12), 132) > 0.00209798269$
156	$s(13^2 - 13) < 12.9940424$	$\delta((13, 13), 156) > 0.0059576$
182	$s(14^2 - 14) < 13.98318264114$	$\delta((14, 14), 182) > 0.01681735886$
210	$s(15^2 - 15) < 14.98318264114$	$\delta((15, 15), 210) > 0.01681735886$
241	$s(16^2 - 16) < 15.99595004$	$\delta((16, 16), 241) > 0.00404996$
273	$s(17^2 - 16) < 16.9950917682252$	$\delta((17, 17), 17^2 - 16) > 0.0049082317748$
307	$s(18^2 - 17) < 17.9950917682252$	$\delta((18, 18), 18^2 - 17) > 0.0049082317748$

Table 4. Evaluations of squeezing values and upper bounds of $s(n)$ for new n

References

[1] P. Erdős and R. L. Graham, On packing squares with equal squares, J. Combin. Theory Ser. A, 19 (1975) 119-123.

[2] E. Friedman, Packing unit squares in squares: A survey and new results, Elect. J. Combin., Dynamic Survey # DS7 (1998, last version 2009). DOI: https://doi.org/10.37236/28

[3] Nagamochi H., Packing unit squares in a rectangle, Elect. J. Combin., 12 (2005), #R37. DOI: https://doi.org/10.37236/1934

[4] Shuang Wang, Tian Dong, Jiamin Li, A New Result on Packing Unit Squares into a Large Square, arXiv:1603.02368 [math.CO]