Redetermination of di-u-hydrido-hexahydridotetrakis(tetrahydrofuran)~
dialuminium(III)magnesium(II)

Hima Kumar Lingam
Ohio State University

Xuenian Chen
Ohio State University

Teshome B. Yisgedu
Ohio State University

Zhenguo Huang
Ohio State University, zhenguo@uow.edu.au

Ji-Cheng Zhao
Ohio State University

See next page for additional authors

Follow this and additional works at: https://ro.uow.edu.au/aiimpapers

Part of the Engineering Commons, and the Physical Sciences and Mathematics Commons

Recommended Citation
Lingam, Hima Kumar; Chen, Xuenian; Yisgedu, Teshome B.; Huang, Zhenguo; Zhao, Ji-Cheng; and Shore, Sheldon G., "Redetermination of di-u-hydrido-hexahydridotetrakis(tetrahydrofuran)~
dialuminium(III)magnesium(II)" (2010). Australian Institute for Innovative Materials - Papers. 1891.
https://ro.uow.edu.au/aiimpapers/1891

Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: research-pubs@uow.edu.au
Redetermination of di-u-hydrido-hexahydridotetrakis(tetrahydrofuran)~dialuminium(III)magnesium(II)

Keywords
hexahydridotetrakis, redetermination, di, ii, dialuminium, u, hydrido, iii, magnesium, tetrahydrofuran

Disciplines
Engineering | Physical Sciences and Mathematics

Publication Details
Lingam, H. Kumar., Chen, X., Yisgedu, T., Huang, Z., Zhao, J. & Shore, S. G. (2010). Redetermination of di-u-hydrido-hexahydridotetrakis(tetrahydrofuran)~dialuminium(III)magnesium(II). Acta Crystallographica Section E: Structure Reports Online, E66 m575-m582.

Authors
Hima Kumar Lingam, Xuenian Chen, Teshome B. Yisgedu, Zhenguo Huang, Ji-Cheng Zhao, and Sheldon G. Shore

This journal article is available at Research Online: https://ro.uow.edu.au/aiimpapers/1891
Redetermination of di-μ-hydrido-hexahydridotetrakis(tetrahydrofuran)-
dialuminium(III)magnesium(II)

Hima Kumar Lingam,* Xuenian Chen,† Teshome Yisgedu,* Zhengu Huanga, Ji-Cheng Zhao* and Sheldon G. Shoreb

*Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA, and †Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA

Correspondence e-mail: zhao.199@osu.edu

Received 23 February 2010; accepted 18 April 2010

The structure of the title compound, [Mg(AlH4)$_2$(C$_4$H$_8$O)$_4$], has been redetermined at 150 K. The MgII ion is hexacoordinated to four tetrahydrofuran (THF) ligands, and two AlH$_4^-$ anions through bridging H atoms. The Al–H distances are more precise compared to those previously determined [Nöth et al. (1995). Chem. Ber. 128, 999–1006; Fichtner & Fuhr (2002). J. Alloys Compd, 345, 386–396]. The molecule has twofold rotation symmetry.

Related literature

For the synthesis of Mg(AlH$_4$)$_2$·4THF, see: Ashby et al. (1970); Shen & Che (1991); Nöth et al. (1995). For the synthesis of AlH$_4$MgBH$_4$, see: Ashby & Goel (1977). For previous determinations of the crystal structure of Mg(AlH$_4$)$_2$·4THF, see: Noth et al. (1995); Fichtner & Fuhr (2002). For the thermal decomposition properties of Mg(AlH$_4$)$_2$·4THF, see: Dilts & Ashby (1972). For other alanate structures, see: Sklar & Post (1967); Lauher et al. (1979); Fichtner & Fuhr (2002); Fichtner et al. (2004).

Data collection

Nonius Kappa CCD diffractometer

5018 measured reflections

2687 independent reflections

1973 reflections with $I > 2\sigma(I)$

$R_{int} = 0.017$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$

$wR(F^2) = 0.119$

$S = 1.07$

2687 reflections

122 parameters

H atoms treated by a mixture of independent and constrained refinement

$\Delta \rho_{\text{max}} = 0.30$ e Å$^{-3}$

$\Delta \rho_{\text{min}} = -0.30$ e Å$^{-3}$

This work was funded by the US Department of Energy, the Office of Energy Efficiency and Renewable Energy (EERE) under Contract No. DE-FC3605GO15062 as part of the DOE Metal Hydride Center of Excellence.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5044).

References

Ashby, E. C. & Goel, A. B. (1977). Inorg. Chem. 16, 2082–2085.

Ashby, E. C., Schwartz, R. D. & James, B. D. (1970). Inorg. Chem. 9, 325–332.

Dilts, J. A. & Ashby, E. C. (1972). Inorg. Chem. 11, 1230–1236.

Fichtner, M., Frommen, C. & Fuhr, O. (2004). Inorg. Chem. 43, 3479–3484.

Fichtner, M. & Fuhr, O. (2002). J. Alloys Compd. Compd, 345, 286–296.

Lauher, J. W., Dougherty, D. & Herley, P. J. (1979). Acta Cryst. B35, 1454–1456.

Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.

Nöth, H., Schmidt, M. & Treitl, A. (1995). Chem. Ber. 128, 999–1006.

Otwonowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326, New York: Academic Press.

Sklar, N. & Post, B. (1967). Inorg. Chem. 6, 669–671.

Acta Cryst. (2010). E66, m575

doi:10.1107/S1600536810014200

Lingam et al. m575

metal-organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368
supplementary materials
Redetermination of di-/µ-hydrido-hexahydridotetrakis(tetrahydrofuran)dialuminium(III)magnesium(II)

H. K. Lingam, X. Chen, T. Yisgedu, Z. Huang, J.-C. Zhao and S. G. Shore

Comment

Mg(AlH$_4$)$_2$-4THF, (I), is a starting material for the synthesis of Mg(AlH$_4$)$_2$ which is an interesting candidate for hydrogen storage applications because of its high theoretical hydrogen storage capacity. Ashby et al. (1970) reported the synthesis of (I) by the metathesis reaction between NaAlH$_4$ and MgCl$_2$. Noth et al. (1995) and recently Fichtner & Fuhr (2002) reported the crystal structure of (I), but neither of the groups obtained high quality single crystal X-ray diffraction data. In the present work good quality single crystals were obtained from reaction between NaAlH$_4$ and ClMgBH$_4$ where the product, AlH$_4$MgBH$_4$.THF disproportionated to form (I). The crystal structure was determined using single crystal X-ray diffraction and compared with the previously reported data.

In general, the present crystal structure determination confirms the previous results. As previously described by Noth et al. (1995) and Fichtner & Fuhr (2002), the structure of (I) consists of discrete octahedral building blocks where four THF molecules and two tetrahedral AlH$_4^-$ units are connected to a Mg central atom. Fichtner & Fuhr (2002) reported only lattice parameters without coordinates of the atoms. Noth et al. (1995) reported the Al—H(t) and Al—H(b) bond lengths as 1.214 and 1.528 Å, respectively, which are shorter than expected. Moreover, the structure was only refined to a final R value of 0.065. We have redetermined this crystal structure at 150 K, with a final R value of 0.040 to obtain more precise data. In the present work, the Al—H(t) and Al—H(b) bond lengths were found to be 1.524 and 1.573 Å, respectively, which are close to the Al—H bond distance in other alanates. Al—H distances reported in other alanates with AlH$_4^-$ tetrahedral are 1.547 Å (at 8 K) for LiAlH$_4$ (Sklar & Post, 1967), 1.532 Å (at 296 K) for NaAlH$_4$ (Lauher et al., 1979), 1.55 Å (at 200 K) for Mg(AlH$_4$)$_2$.Et$_2$O (Fichtner & Fuhr, 2002) and 1.65 Å (at 230 K) for Ca(AlH$_4$)$_2$.4THF (Fichtner et al., 2004).

Experimental

All the manipulations were carried out in high vacuum lines and an Ar filled glove box to avoid the compounds reacting with oxygen and moisture. Solvents were dried by vacuum distillation from sodium benzophenone ketyl. Precursor ClMgBH$_4$ was synthesized by ball milling MgCl$_2$ and Mg(BH$_4$)$_2$ in 1:1 mole ratio in a high energy ball mill for 1 h. AlH$_4$MgBH$_4$ was prepared by the procedure reported by Ashby & Goel (1977). In a typical procedure, a clear solution of NaAlH$_4$ in THF was added to a solution of ClMgBH$_4$ in THF with rapid stirring for 60 min at room temperature. After completion of reaction, NaCl was filtered out from the solution and the solvent was removed from the filtrate under dynamic vacuum. The obtained AlH$_4$MgBH$_4$.THF powder was dissolved in benzene, filtered, concentrated, and aged for 2 days. AlH$_4$MgBH$_4$.THF slowly disproportionated to give colourless crystals of (I).
supplementary materials

Refinement

H atoms bonded to aluminium atoms were located and refined isotropically. The range of refined Al–H distances is 1.50 (2)–1.573 (18) Å. The remaining H atoms were placed in calculated positions [C–H = 0.99 Å] and refined using a rigid model with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of [Mg(AlH$_4$)$_2$(C$_4$H$_8$O)$_4$], showing 50% probability displacement ellipsoids and the atomic numbering scheme. Atoms labelled with the suffix A are generated by the symmetry operation (-x, 1/2-y, z).

Di-μ-hydrido-hexahydridotetrakis(tetrahydrofuran)dialuminium(III)magnesium(II)

Crystal data

$\text{[Al}_2\text{MgH}_8\text{(C}_4\text{H}_8\text{O})_4]\n
F(000) = 824

M_r = 374.75

$D_x = 1.063 \text{ Mg m}^{-3}$

Orthorhombic, $Pcnb$

Hall symbol: -P 2b 2ac

$a = 10.161$ (2) Å

$\theta = 2.4–27.5^\circ$

$b = 14.027$ (3) Å

$\mu = 0.16 \text{ mm}^{-1}$

$c = 16.429$ (3) Å

$T = 150 \text{ K}$

$V = 2341.6$ (8) Å3

Cube, colourless

$Z = 4$

$T_{min} = 0.940$, $T_{max} = 0.969$

$0.38 \times 0.31 \times 0.19 \text{ mm}$

Data collection

Nonius Kappa CCD
diffractometer

Radiation source: fine-focus sealed tube

graphite

φ and ω scans

Absorption correction: multi-scan

(SCALEPACK; Otwinowski & Minor, 1997)

$\theta_{max} = 27.5^\circ$, $\theta_{min} = 2.4^\circ$

$h = -13 \rightarrow 13$

1973 reflections with $I > 2\sigma(I)$

$R_{int} = 0.017$

5018 measured reflections

$\mu = 0.16 \text{ mm}^{-1}$

$T = 150 \text{ K}$

$Z = 4$

$T_{min} = 0.940$, $T_{max} = 0.969$

$0.38 \times 0.31 \times 0.19 \text{ mm}$

Refinement

Refinement on F^2

Primary atom site location: structure-invariant direct methods
supplementary materials

Least-squares matrix: full

Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.041$

Hydrogen site location: inferred from neighbouring sites

$wR(F^2) = 0.119$

H atoms treated by a mixture of independent and constrained refinement

$S = 1.07$

2687 reflections (Δ/σ)_{max} = 0.001

122 parameters

0 restraints

$\Delta \rho_{\text{max}} = 0.30 \text{ e Å}^{-3}$

$\Delta \rho_{\text{min}} = -0.30 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2, conventional R-factors R are based on F, with F set to zero for negative F^2. The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters ($Å^2$)

Atom	x	y	z	U_{iso}/U_{eq}
Al1	0.22387 (5)	0.44321 (4)	0.13620 (3)	0.03294 (17)
Mg1	0.0000	0.2500	0.13728 (4)	0.02116 (19)
O1	0.16625 (10)	0.16699 (8)	0.13767 (6)	0.0298 (3)
O3	0.0000	0.2500	0.01068 (8)	0.0269 (3)
O2	0.0000	0.2500	0.26391 (8)	0.0270 (3)
C8	−0.06993 (19)	0.23112 (14)	−0.12525 (9)	0.0429 (5)
H8A	−0.1341	0.2828	−0.1356	0.052*
H8B	−0.0815	0.1806	−0.1667	0.052*
C4	0.27768 (17)	0.17950 (14)	0.19205 (12)	0.0439 (5)
H4A	0.2588	0.1515	0.2461	0.053*
H4B	0.2982	0.2480	0.1991	0.053*
C5	0.02463 (19)	0.33286 (12)	0.31515 (9)	0.0370 (4)
H5A	−0.0285	0.3880	0.2967	0.044*
H5B	0.1189	0.3507	0.3136	0.044*
C7	−0.08466 (18)	0.19178 (13)	−0.04047 (9)	0.0382 (4)
H7A	−0.1773	0.1962	−0.0222	0.046*
H7B	−0.0570	0.1242	−0.0386	0.046*
C6	−0.0151 (2)	0.30305 (13)	0.39968 (10)	0.0445 (5)
H6A	−0.1098	0.3151	0.4094	0.053*
H6B	0.0373	0.3370	0.4415	0.053*
C2	0.3257 (2)	0.05289 (16)	0.10336 (13)	0.0573 (6)
H2A	0.3781	0.0396	0.0538	0.069*
supplementary materials

H2B	0.3177	-0.0066	0.1354	0.069*
C3	0.3878 (2)	0.1296 (2)	0.15261 (16)	0.0763 (8)
H3A	0.4480	0.1022	0.1938	0.092*
H3B	0.4382	0.1737	0.1174	0.092*
C1	0.1945 (2)	0.09039 (16)	0.08170 (14)	0.0587 (6)
H1A	0.1945	0.1143	0.0250	0.070*
H1B	0.1272	0.0396	0.0865	0.070*
H1	0.1142 (17)	0.3641 (12)	0.1382 (9)	0.034 (5)*
H2	0.2892 (19)	0.4426 (13)	0.2215 (13)	0.055 (6)*
H3	0.3167 (19)	0.4126 (16)	0.0687 (13)	0.063 (6)*
H4	0.156 (2)	0.5361 (18)	0.1206 (14)	0.076 (7)*

Atomic displacement parameters (Å²)

	U₁¹	U₂²	U₃³	U₁₂	U₁³	U₂₃
Al1	0.0350 (3)	0.0315 (3)	0.0323 (3)	-0.0085 (2)	-0.0024 (2)	0.0047 (2)
Mg1	0.0227 (4)	0.0223 (4)	0.0184 (3)	0.0009 (3)	0.000	0.000
O1	0.0284 (6)	0.0313 (6)	0.0297 (6)	0.0073 (5)	-0.0075 (4)	-0.0111 (4)
O3	0.0292 (8)	0.0336 (8)	0.0178 (7)	-0.0037 (6)	0.000	0.000
O2	0.0401 (9)	0.0208 (7)	0.0200 (7)	-0.0038 (7)	0.000	0.000
C8	0.0587 (12)	0.0459 (11)	0.0243 (8)	0.0041 (9)	-0.0085 (8)	-0.0006 (7)
C4	0.0391 (10)	0.0438 (10)	0.0488 (11)	0.0098 (8)	-0.0215 (8)	-0.0096 (9)
C5	0.0550 (11)	0.0294 (9)	0.0268 (8)	-0.0089 (8)	0.0003 (7)	-0.0075 (7)
C7	0.0442 (10)	0.0455 (10)	0.0249 (8)	-0.0094 (8)	-0.0090 (7)	-0.0014 (7)
C6	0.0556 (12)	0.0522 (12)	0.0257 (8)	-0.0139 (9)	0.0049 (8)	-0.0098 (8)
C2	0.0657 (14)	0.0601 (14)	0.0462 (11)	0.0366 (11)	-0.0033 (10)	-0.0097 (10)
C3	0.0344 (12)	0.107 (2)	0.0876 (17)	0.0248 (12)	-0.0139 (11)	-0.0386 (16)
C1	0.0526 (12)	0.0554 (13)	0.0681 (14)	0.0211 (10)	-0.0125 (10)	-0.0379 (11)

Geometric parameters (Å, °)

Al1—H1	1.573 (18)			1.471 (3)
Al1—H2	1.55 (2)			0.99
Al1—H3	1.52 (2)			0.99
Al1—H4	1.50 (2)			1.505 (2)
Mg1—O1	2.0517 (11)			0.99
Mg1—O1	2.0518 (11)			0.99
Mg1—O3	2.0800 (15)			0.99
Mg1—O2	2.0804 (15)			0.99
Mg1—H1	1.977 (18)			1.519 (4)
O1—C1	1.443 (2)			0.99
O1—C4	1.4529 (19)			0.99
O3—C7	1.4537 (17)			1.477 (3)
O3—C7	1.4537 (17)			1.487 (3)
C8—C7	1.506 (2)			0.99
C8—C8	1.517 (4)			0.99
Bond	Dist. (Å)	Bond	Dist. (Å)	
------	----------	------	----------	
C8—H8A	0.99	C1—H1A	0.99	
C8—H8B	0.99	C1—H1B	0.99	
H1—Al1—H2	106.3 (9)	O2—C5—C6	105.40 (13)	
H1—Al1—H3	104.8 (10)	O2—C5—H5A	110.7	
H2—Al1—H3	113.1 (11)	C6—C5—H5A	110.7	
H1—Al1—H4	107.0 (11)	O2—C5—H5B	110.7	
H2—Al1—H4	110.9 (11)	C6—C5—H5B	110.7	
H3—Al1—H4	114.0 (12)	H5A—C5—H5B	108.8	
O1—Mg1—O1	179.65 (6)	O3—C7—C8	105.66 (13)	
O1—Mg1—O3	90.18 (3)	O3—C7—H7A	110.6	
O1—Mg1—O2	89.82 (3)	C8—C7—H7A	110.6	
O1—Mg1—O2	89.82 (3)	C8—C7—H7B	110.6	
O3—Mg1—O2	180.0	H7A—C7—H7B	108.7	
O1—Mg1—H1	91.4 (5)	C5—C6—C6i	102.59 (11)	
O1—Mg1—H1	88.6 (5)	C5—C6—H6A	111.2	
O3—Mg1—H1	90.4 (4)	C6i—C6—H6A	111.2	
O2—Mg1—H1	89.6 (4)	C5—C6—H6B	111.2	
C1—O1—C4	109.08 (13)	C6i—C6—H6B	111.2	
C1—O1—Mg1	125.75 (10)	C1—C2—H2A	110.8	
C1—O1—Mg1	125.10 (10)	H6A—C6—C6i	110.2	
C7—O3—C7	109.37 (16)	C3—C2—H2B	110.8	
C7—O3—Mg1	125.32 (8)	C7—C8—H8A	110.2	
C7—O3—Mg1	125.32 (8)	C2—C3—H3A	110.7	
C5—O2—C5i	109.39 (16)	C8—C8—H8A	110.2	
C5—O2—Mg1	125.30 (8)	C4—C3—H3A	110.7	
C5—O2—Mg1	125.30 (8)	H8A—C8—C8i	110.2	
C7—C8—C8i	102.78 (11)	C4—C3—H3A	110.7	
C7—C8—H8A	111.2	C2—C3—H3A	110.7	
C8—C8—H8A	111.2	C4—C3—H3B	110.7	
C8—C8—H8B	111.2	C2—C3—H3B	110.7	
H8A—C8—H8B	109.1	H3A—C3—H3B	108.8	
O1—C4—C3	105.34 (15)	O1—C1—C2	106.93 (15)	
O1—C4—H4A	110.7	O1—C1—H1A	110.3	
C3—C4—H4A	110.7	C2—C1—H1A	110.3	
O1—C4—H4B	110.7	O1—C1—H1B	110.3	
C3—C4—H4B	110.7	C2—C1—H1B	110.3	
H4A—C4—H4B	108.8	H1A—C1—H1B	108.6	

Symmetry codes: (i) −x, −y+1/2, z.
