GLAST and Lorentz violation

Raphael Lamon
Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
E-mail: raphael.lamon@uni-ulm.de

Received 4 June 2008
Accepted 2 August 2008
Published 20 August 2008

Online at stacks.iop.org/JCAP/2008/i=08/a=022
doi:10.1088/1475-7516/2008/08/022

Abstract. We study possible Lorentz violations by means of gamma ray bursts with special focus on the large array telescope of GLAST (gamma ray large area space telescope), where we concentrate on models with linear corrections to the speed of light. We simulate bursts with gtobssim and introduce a Lorentz violating term in the arrival times of the photons. We further perturb these arrival times and energies with a Gaussian distribution corresponding to the time and energy resolution of GLAST. We then vary the photon flux in gtobssim in order to derive a relation between the photon number and the standard deviation of the Lorentz violating term. We conclude with the fact that our maximum likelihood method as first developed in Lamon et al (2008 Gen. Rel. Grav. 40 1731 [0706.4039] [gr-qc]) is able to make a statement on whether Nature breaks the Lorentz symmetry if the number of bursts with known redshifts is of the order of 100. However, the systematic errors caused by unknown mechanisms for photon emission are not considered here, despite the fact that these errors should be the main obstacle to detecting Lorentz violations.

Keywords: gamma ray bursts, gamma ray burst experiments, quantum gravity phenomenology

ArXiv ePrint: 0805.1219
GLAST and Lorentz violation

1. Introduction

The space–time structure as described by general relativity is a classic one in the sense that it is smooth even at very small distances and very large energies. However, there is an agreement that new phenomena caused by quantum gravity (QG) should affect this smoothness at a distance of the order of the Planck length

\[l_P = \sqrt{\frac{\hbar G}{c^3}} \approx 1.6 \times 10^{-33} \text{ cm} \]

or equivalently the Planck mass

\[M_P = \sqrt{\frac{\hbar c}{G}} \approx 1.2 \times 10^{19} \text{ GeV} \]

Despite the fact that we still lack a full quantum theory of gravity we can make some predictions derived from phenomenological quantum gravity. One of these predictions is a distortion of the photon dispersion relation [2]–[4]

\[E^2 = p^2 c^2 + \alpha \frac{E^3}{E_P} + \mathcal{O}(E^4/E_P^2), \]

where \(E \) denotes the photon energy, \(p \) its momentum, \(\alpha \) a model-dependent dimensionless parameter of order unity and \(c \) the speed of light in vacuo. This distortion leads to an energy-dependent velocity of light given by

\[v(E) = c \left(1 + \alpha \frac{E}{E_P} \right) + \mathcal{O} \left(\left(\frac{E}{E_P} \right)^2 \right). \]

A more general relation with an explicit Lorentz symmetry breaking could be used [9]; however there are stringent experimental limits on modifications of first order in \(l_P \) to dispersion relations in a Lorentz breaking scenario; see e.g. [11] or the constraint from the Crab [10, 12]. On the other hand Lorentz invariance could be seen as a consequence of the foamy structure of space–time caused by quantum fluctuations on short time and distance scales [13]–[16]. Another approach, called deformed (or doubly) special relativity (DSR) [17]–[21], introduces a second constant scale (the Planck length \(l_P \) or equivalently the Planck energy \(E_P \)) that is observer independent. This yields a non-linear Casimir
operator of DSR which may result in an energy-dependent speed of light, depending on the chosen model. However, a common feature of all DSR models is that the speed of light does not depend on the helicity.

One reason that present experiments have not been able until now to either rule out or confirm a violation of the Lorentz symmetry is the fact that the correction to the velocity of light in equation (2) is suppressed by the Planck energy. However, despite this small effect it was pointed out that one powerful way to look for an energy-dependent velocity of light is given by gamma ray bursts (GRB) [4]–[8], [22]–[26]. GRBs are the most luminous electromagnetic events occurring in the universe since the big bang. They can last from a few milliseconds to minutes, with a typical duration of a couple of seconds [27, 28]. However, the main problem that we face when looking for QG effects in GRB signals is our ignorance of the internal physical processes which are at the origin of the photon emission. Photons with different energies may emanate from different mechanisms, thus further complicating the comparison between events. Despite these difficulties several studies were able to put strong constraints on a Lorentz invariance violation with GRBs [29]–[32]. In a recent work [33] a preferred range for the linear QG mass scale of $M_{QG} \sim 0.4 \times 10^{18}$ GeV could even be found by studying a flare observed by MAGIC. This result has a sensitivity that probes, for the first time, the Planck mass range.

In this work we shall mainly consider the first-order correction to the speed of light with the conservative bound $\alpha = 1$. In other words we assume that a Lorentz symmetry breaking starts to become important only at the Planck scale $M_{QG} = M_P$, resulting in the following relation for the speed of light:

$$v(E) = c \left(1 \pm \frac{E}{M_P c^2}\right).$$ \hspace{1cm} (3)

The dependence of the speed of light on the energy as described by equation (3) causes a difference between the arrival times of two photons emitted at the same time, but with different energies. Assuming a flat universe described by the ΛCDM model (for different models see [34]), the integrated time delay between two photons with an energy difference ΔE is given by [35]

$$\Delta t = \pm H_0^{-1} \frac{\Delta E}{M_P c^2} \int_{z_0}^{z} \frac{1 + z'}{\sqrt{\Omega_\Lambda + \Omega_m (1 + z')^3}} \, dz',$$ \hspace{1cm} (4)

where $\Omega_m = 0.27$, $\Omega_\Lambda = 0.73$ and $H_0 = 71$ km s$^{-1}$ Mpc$^{-1}$. At the end of the paper we will briefly discuss the case of a quadratic correction where the integrated time delay is given by

$$\Delta t = \pm \frac{3}{2} H_0^{-1} \left(\frac{\Delta E}{M_P c^2}\right)^2 \int_{z_0}^{z} \frac{(1 + z')^2}{\sqrt{\Omega_\Lambda + \Omega_m (1 + z')^3}} \, dz'.$$ \hspace{1cm} (5)

The paper is organized as follows. In section 2 we describe the relevant properties of GLAST and in sections 3.1 and 3.2 our method for creating a photon list with arrival times and energies. Section 3.3 is devoted to explaining our results, section 3.4 to giving an estimate of GLAST for quadratic corrections to the speed of light and section 3.5 to studying non-FRED distributions. We then conclude with section 4.
2. GLAST

The gamma ray large area space telescope (GLAST) is a space-based gamma ray telescope designed to explore the high-energy universe. It includes two instruments: the large array telescope (LAT), which is an imaging gamma ray detector which detects photons with energy from about 30 MeV to 300 GeV, and the gamma ray burst monitor (GBM) that consists of 14 scintillation detectors which detect photons with an energy between 8 keV and 30 MeV. The LAT has a very large field of view that allows it to see about 20% of the sky at any time. Despite the fact that it will cover the entire sky every three hours we shall assume that the instrument response changes on time scales longer than a typical burst duration. On the other hand, GLAST can be pointed as needed when a bright GRB is detected by either LAT or GBM so that it will detect around 200 GRBs each year. The energy resolution ranges from 20% at 30 MeV to about 7% at 1 GeV, as can be seen in figure 1 [36]. The time resolution of an event should be around 10 μs with a dead time shorter than 100 μs. In summary, LAT will have superior area, angular resolution, field of view, time resolution and dead time. This will at least provide an advance of a factor 30 in sensitivity compared to previous missions.

The GLAST Science Support Center (GSSC) provides analysis tools freely available to the scientific community on their homepage [37]. As we are interested in simulating the detection of GRBs by GLAST we mainly used the tool called *gtobssim* which is software that generates photon events from astrophysical sources with the instrument response functions of GLAST. Because we will only study the measurement of possible Lorentz violation we assumed that LAT pointed in the same direction as the burst. Further information on the effects of QG on LAT GRBs can be found in e.g. [23, 24].

![Figure 1. Energy resolution as a function of the energy for the LAT [36]. The energy uncertainty at 30 MeV is about 17% before going down to a couple of percent in the GeV range. Most of the photons that LAT detects have an energy around ~100 MeV with an uncertainty of about 10%.](image-url)
Figure 2. Sketch of a typical light curve of a GRB for a given energy interval. The curve is parameterized with four parameters: R the duration of the rise, h the height above the background, D the decay time for $\exp(-t/D)$ and κ describing the magnitude of the dependence on the energy of the distribution f, $t_{\text{max}} = P + \kappa \cdot E$, where P is the time when the intensity reaches a maximum and E is the photon energy. The dashed line shows a distribution for another energy interval that is shifted by an amount $\Delta t = \kappa \cdot \Delta E$, sketching the shift in time due to quantum gravitational effects.

3. Creation of a photon list

3.1. Analysis method

We shall use the same method as we used to study integral GRBs by modeling bursts with a fast rise and exponential decay (FRED) distribution [1]. We parameterize this distribution with four parameters: $f = f(t_i, E_i; P, R, D, \kappa, h)$ as shown in figure 2. We suppose that a photon i came from the probability density function f at time t_i with energy E_i. We use the method of maximum likelihood which consists in finding the set of values \hat{P}, \hat{R}, \hat{D}, $\hat{\kappa}$ and \hat{h} that maximizes the joint probability distribution of all data, given by

$$F(P, R, D, \kappa, h) = \prod_i f(t_i, E_i; P, R, D, \kappa, h), \quad (6)$$

together with the constraint

$$\int_{t_0}^{t_1} dt' f(t', E_i; P, R, D, \kappa, h) = 1, \quad (7)$$

where F is the likelihood function and the integral runs between t_0 and t_1 as shown in figure 2. The specifics of this distribution does not play a significant role in our study as we are only interested in seeking possible violations of the Lorentz symmetry. In order to further improve our model we also simulated an isotropic background with a spectrum following an exponential decay with exponent 2.1. However, this background does not
play a significant role for the following two reasons. The first one is that LAT will only be able to detect photons with energies above \(\sim 30 \) MeV, where such events are rare. The second one is the fact that we are only interested in GRBs, e.g. events of short duration.

3.2. Spectrum of the GRBs

As described in the previous section we also need to simulate the energy of the photons. Normally a typical energy distribution of GRBs follows the pattern of the so-called Band function [38] given by the following equation:

\[
N_E(E) = A \left(\frac{E}{100 \text{ keV}} \right)^\alpha \exp \left(-\frac{E}{E_0} \right), \quad (\alpha - \beta)E_0 \geq E, \\
= A \left[\frac{(\alpha - \beta)E_0}{100 \text{ keV}} \right]^{\alpha - \beta} \left(\frac{E}{100 \text{ keV}} \right)^\beta \exp(\beta - \alpha), \quad (\alpha - \beta)E_0 \leq E, \tag{8}
\]

where \(\alpha \) is the low-energy exponent, \(\beta \) the high-energy one and \(E_0 \) the break energy. As LAT starts measuring at 30 MeV and the break energy is around 500 keV we shall only be interested in the high-energy behavior of the Band function. However, LAT will open a new window on the spectrum where little is known; therefore there is no certainty as regards whether the Band function is still valid throughout the energy range of LAT.

In order to make the simulations as realistic as possible we used \texttt{gtobssim}. As described in the previous section, we simulated a GRB with photons following a FRED distribution together with an isotropic background. Since we are only interested in the detection of a possible Lorentz violation we used the same FRED distribution for all GRBs, i.e. with a rise time of the order of a second and a decay time around 10 s (see figure 3). In order to get a feeling for the uncertainty we varied the flux of the burst and only selected the bursts which got about the same number of hits in the detector. We then introduced a Lorentz violating term with the following relation (see figure 5):

\[
\Delta t = \kappa \times E_{\nu},
\]

where \(E_{\nu} \) is the energy of the detected photon in MeV and \(\Delta t \) is the time delay in s caused by quantum gravity given by the relation \(t_1 = t_0 + \Delta t \). The parameter \(\kappa \) describes the effect of a Lorentz violation and is given by the following relation:

\[
\kappa = \frac{H_0^{-1}}{M_{\text{QG}} c^2} \int_0^z \frac{1 + z'}{\sqrt{\Omega_{\Lambda} + \Omega_m (1 + z')^3}} \, dz' =: \frac{H_0^{-1}}{M_{\text{QG}} c^2} I(z), \tag{10}
\]

where \(M_{\text{QG}} \) is the mass scale where the Lorentz symmetry breaks down. Henceforth we will take the most conservative scale and set \(M_{\text{QG}} = M_P \approx 1.2 \times 10^{19} \text{ GeV} \).

As can be seen in figure 4, typical values for \(\kappa \) lie between \(10^{-5} \) and \(10^{-4} \) s MeV\(^{-1} \). In the Monte Carlo simulations we used a value of \(\kappa = 4 \times 10^{-5} \) corresponding to a redshift of \(z = 1 \).

We studied two models: one simple one with only the time delays caused by quantum gravity and a more realistic one where we perturbed the energy and the arrival time according to the scheme shown in figure 5 in order to take into account the energy and time resolution of the LAT. For a given event at time \(t_0 \) with energy \(E_0 \) obtained with \texttt{gtobssim} we read the energy uncertainty \(\sigma_{E_0}/E_0 \) from figure 1 and perturbed this energy with a Gaussian with maximum at \(E_0 \) and standard deviation \(\sigma_{E_0} \). The next step is to
Figure 3. Left panel: example of a LAT GRB simulated with *gtobssim* with a total photon number of 74. The burst starts at \(t_0 = 5 \text{ s} \) and has a decay time of the order of 10 s. Right panel: spectrum of the same GRB as was simulated by *gtobssim* for LAT. The first detected photons have an energy of roughly 30 MeV. We choose the high-energy exponent \(\beta = 2 \) (see equation (8)) and a background with exponent \(\gamma = 2.1 \).

3.3. Results

In the previous section we explained how we constructed a burst with photons and perturbed their energies and arrival times to account for the Lorentz violation and finite energy and time resolution of LAT. The question is now whether it is possible to get back the value of \(\kappa \) parameterizing the Lorentz violating term despite the perturbation of both the energy and arrival time. In [1] we found an exponential dependence between the standard deviation \(\sigma_\kappa \) and the number of detected photons \(N \) with an exponent of \(-0.617\). However, we only perturbed the arrival time and not the energy.

The final step is to search for \(\bar{\kappa} \) which minimizes the likelihood (6). For a single burst we scanned through a large range of \(\kappa \) in order to find the global (and not just a local) minimum of the likelihood. We performed 100 Monte Carlo simulations for different luminosities of the burst, i.e. different numbers of total events \(N \) (see table 1).

Figure 6 shows a comparison between the standard deviations of the perturbed and unperturbed systems. The fit of the unperturbed system is given by

\[
\sigma_\kappa = (2.5 \times 10^{-2}) N^{-0.93},
\]

and the fit of the perturbed system by

\[
\sigma_\kappa = (6.0 \times 10^{-2}) N^{-1.07}.
\]
GLAST and Lorentz violation

Figure 4. The Lorentz violation parameter κ as a function of the redshift. As we shall see below, a value of $\kappa = 10^{-4} \text{ s MeV}^{-1}$ could even be measured without requiring a bright burst (see table 1).

Figure 5. Setup of the simulation process. The software gtobssim gives as output the arrival time t_0 and the energy E_0 of a photon. The arrival time is then corrected by means of the relation (9) from t_0 to t_1 (box QG). The simpler case with only QG effects is shown by the arrow number 1. In the second case, the energy of the photon was perturbed from E_0 to E_1 with a Gaussian distribution with standard deviation according to figure 1 (box ER). Furthermore, the arrival time was perturbed a second time from t_1 to t_2 with a Gaussian distribution with standard deviation of 10 μs corresponding to the time resolution of LAT (box TR). The photon with arrival time t_2 and energy E_1 is then given to the fitter (box FIT) to get a value for the QG corresponding to κ.

The results described above allow us to simulate a full set of GRBs with different redshifts z and time shifts κ. Figure 7 shows a set of 100 GRBs with redshifts between 0 and 10, where we used the results from [40] and [39] in order to get a rough estimate of the expected number of GRBs detected by GLAST as a function of the number of detected photons and the redshift. Each value for κ has been perturbed with a Gaussian with a standard deviation given by equation (12). Considering a linear approximation to quantum gravitational effects we have the relation [30, 31]

$$\kappa = aI(z) + b(1 + z),$$

(13)
Figure 6. Comparison between the standard deviations σ_κ of the unperturbed and perturbed systems. The vertical crosses show the values for the unperturbed system and the solid line its fit. The inclined crosses show the values for the system with perturbed arrival times and energies.

Table 1. Results of 100 Monte Carlo simulations. The first column shows the number of photons detected by LAT, the second one the approximate flux in $m^{-2}s^{-1}$. The third column shows the mean value of $\bar{\kappa}$ for the unperturbed system (1.) and the fourth one its standard deviation. The last two columns are the same as the third and fourth ones, except for the fact that the arrival times and energies were perturbed with a Gaussian distribution (see section 3.2).

N	Flux ($s^{-1} m^{-2}$)	$\bar{\kappa}$ (s MeV$^{-1}$)	σ_κ (s MeV$^{-1}$)	$\bar{\kappa}$ (s MeV$^{-1}$)	σ_κ (s MeV$^{-1}$)
20	10	1.2×10^{-4}	2.0×10^{-3}	3.9×10^{-4}	1.7×10^{-3}
50	28	9.5×10^{-5}	9.5×10^{-4}	6.4×10^{-5}	7.8×10^{-4}
75	46	8.5×10^{-5}	5.3×10^{-4}	1.4×10^{-4}	2.4×10^{-4}
100	60	6.5×10^{-5}	4.3×10^{-4}	8.4×10^{-5}	3.7×10^{-4}
150	96	4.2×10^{-5}	2.2×10^{-4}	4.6×10^{-5}	3.3×10^{-4}
200	128	5.3×10^{-6}	2.1×10^{-4}	3.7×10^{-5}	2.4×10^{-4}
500	330	2.9×10^{-5}	6.6×10^{-5}	1.4×10^{-5}	6.6×10^{-5}
1000	660	2.3×10^{-5}	5.1×10^{-5}	2.9×10^{-5}	4.3×10^{-5}

where a and b are fitted coefficients. The constant b parameterizes time lags in the frame of the source caused by unknown internal processes of the GRBs, a describes the expected Lorentz violating effects through

$$a_{\text{th}} = \frac{H_0^{-1}}{M_P c^2} \approx 2.56 \times 10^{-5} \text{ s MeV}^{-1}.$$ (14)
Figure 7. Simulation of 100 GRBs where κ has been perturbed with a Gaussian according to the relation (12). The error bars show the 1σ deviation given by equation (12). The distribution of the GRBs and the luminosity has been computed using results from [40, 39] where a histogram of the number of GRBs as a function of either the redshift or the luminosity is given. The solid line shows the fit given by equation (15). Note that no systematic errors have been incorporated.

Table 2. Results of the fit (13) for a variable number of bursts. The first column shows the number of bursts considered for the fit, the second one shows the value of a describing the Lorentz violating effects and the third one the value of b parameterizing the time lags caused by unknown internal processes. The theoretical value of a is given by equation (14). The error on a and b only reduces considerably between $N = 10$ and 20.

N	a (s MeV$^{-1}$)	b (s MeV$^{-1}$)
10	$(1.7 \pm 5.6) \times 10^{-5}$	$(-1.8 \pm 3.3) \times 10^{-5}$
20	$(2.6 \pm 3.6) \times 10^{-5}$	$(-1.8 \pm 2.8) \times 10^{-5}$
50	$(2.6 \pm 3.2) \times 10^{-5}$	$(-1.9 \pm 2.6) \times 10^{-5}$
100	$(2.6 \pm 3.1) \times 10^{-5}$	$(-1.9 \pm 2.5) \times 10^{-5}$

A fit of the 100 GRBs shown in figure 7 gives

$$\kappa = (2.6 \pm 3.1) \times 10^{-5}I(z) - (1.9 \pm 2.5) \times 10^{-5}(1 + z).$$

We see that the Lorentz violating term agrees well with the theoretical value a_{th} while the second term is less than one σ off the input values $b_{th} = 0$ (see table 2). Considering the fact that LAT should see around 500 GRBs each year it might be tantalizing to conclude that after only a couple of months the question of whether the Lorentz symmetry is broken might be answered. However, we would like to stress the fact that we did not consider systematic errors caused by the lack of knowledge of the internal processes.
leading to photon emissions. As these systematic errors were the main problem that past works [1], [30]–[32] had to deal with, this oversimplified analysis must be treated with caution. Moreover, a known redshift of the bursts is also needed, thus reducing the number of usable bursts.

3.4. Quadratic corrections

In this section we are concerned with quadratic corrections given by equation (5). Such corrections may be interesting in view of the fact that previous works have already put stringent constraints on linear corrections to the speed of light [10, 11, 32, 33]. To get a rough estimate of the sensitivity of GLAST to quadratic corrections we must first get a bound on the time difference that should be detectable with GLAST. With equation (9) we see that for \(\sigma_\kappa \sim 5 \times 10^{-4} \text{ s MeV}^{-1} \) (see table 1) and \(\Delta E \sim 10^3 \text{ MeV} \) we get a bound on the time difference of \(\sigma_{\Delta t} \sim 5 \times 10^{-1} \text{ s} \). Solving equation (5) for the mass scale and inserting these results we get a mass scale of

\[
M_{\text{quadratic}} \gtrsim 2 \times 10^9 \text{ GeV} \tag{16}
\]

for \(z = 1 \) up to which GLAST should be sensitive for a single burst. This bound may probably be raised by a couple of orders of magnitude with better statistics. However, we do not think that GLAST will be able to detect a quadratic correction if the QG scale is at the Planck scale.

The above estimate may seem very crude. We therefore checked it with results obtained in the literature and found a good agreement between this estimate and a more rigorous statistical analysis. For example, taking \(M_L > 7 \times 10^{15} \text{ GeV} \) obtained in equation (36) in [30] together with \(\Delta E \sim 100 \text{ keV} \) and \(\sigma_{\Delta t} \sim 5 \times 10^{-3} \text{ s} \) for BATSE we get a bound on the quadratic correction of \(M_Q \gtrsim 0.8 \times 10^6 \text{ GeV} \), which corresponds more or less to the result \(M_Q > 3 \times 10^6 \text{ GeV} \) obtained in [30] with a rigorous analysis.

3.5. Other distributions

Until now we only considered FRED distributions for GRBs. However, despite the fact that these distributions may describe a large number of GRBs, we also have to consider other burst shapes in order to get an estimate for the validity of our likelihood method with non-FRED distributions. We studied two other shapes, a linearly rising and falling distribution and a double-peak distribution (see figure 8). We then applied the likelihood method to these peaks with 200 photons and compared the results with table 1 for \(N = 200 \). For the linear peak (see the left panel in figure 8) we found a value \(\bar{\kappa} = 1.7 \times 10^{-6} \text{ s MeV}^{-1} \) and a standard deviation of \(\sigma_{\kappa} = 1.6 \times 10^{-4} \text{ s MeV}^{-1} \). Comparing this value with the perturbed system for \(N = 200 \) (see table 1) we see that the likelihood method gives slightly better results for the linear peak. We also studied the double peak (see the right panel in figure 8) and found a value of \(\bar{\kappa} = 2.0 \times 10^{-6} \text{ s MeV}^{-1} \) with a standard deviation of \(\sigma_{\kappa} = 1.6 \times 10^{-4} \). Thus the results for both cases lead to the conclusion that our likelihood method is also able to deal with non-FRED distributions.

We fixed the duration time of the simulated GRBs to about 20 s, which seems quite arbitrary. However, we expect the likelihood to get better as the duration of the burst gets shorter (as long as the total number of photons remains constant). The reason is that, while \(\kappa \) is independent of the duration, the ratios \(\kappa/R \) and \(\kappa/D \) (see figure 2) are inversely
proportional to $t_1 - t_0$. We checked this claim for bursts with a duration time of about 6 s, with 200 photons and FRED distributed. We found a value $\kappa = 2.6 \times 10^{-5}$ s MeV$^{-1}$ with a standard deviation of $\sigma_\kappa = 3.7 \times 10^{-5}$ s MeV$^{-1}$. Comparing this value with table 1 we see that the likelihood is able to recover the Lorentz violating term with a precision of about one order of magnitude better. On the other hand, the convergence of the likelihood decreases with the duration time of the bursts, thus narrowing the study of short bursts to the brighter ones.

4. Conclusion

As can be seen from table 1 values of the Lorentz violation parameter κ of the order of $\sim 10^{-5}$ s MeV$^{-1}$ could theoretically be measurable. In [39]–[41] the BATSE catalog was used to build up the statistics for LAT. The authors made the assumption of extrapolating the BATSE observations to LAT energies in order to get a rough estimate on the number of detected bursts each year as a function of the number of photons per burst and the energy threshold (see table 1 in [40]). If this assumption is correct we may get a couple of bursts each year that could answer the question of whether the Lorentz symmetry is violated. Nevertheless, as explained above, the systematics should considerably wash out the signal from a Lorentz violating term so a lot of bursts with known redshifts should be needed to get a tight bound on a Lorentz violating term. Even without systematics a number of bursts of the order of 100 still yields an uncertainty of the order of the expected Planck corrections, as can be seen from equation (15).

In this work we had to make a couple of simplifications. For example we had to assume that the Band function is still valid at LAT energies. In other words, GLAST will be able to measure the high-energy index at energies out of reach of past and present experiments. Furthermore, we studied the effect of a linear correction to the speed of light.
and assumed a simultaneous emission of the photons of different energies from the source. This last assumption is the most problematic one because in [1] we obtained results for κ with even different signs for the same burst (see also e.g. [30,31,42] where the same kind of problems arises). Therefore, the unknown emission mechanisms for photon emission should be the major problem in seeking Lorentz violation. This is why either a lot of bursts or a better understanding of the burst mechanism is needed before we can settle the question of whether the Lorentz symmetry is violated in Nature.

Acknowledgments

I would like to thank Nicolas Produit, Frank Steiner and Eric Sträng for correcting this manuscript.

References

[1] Lamon R, Produit N and Steiner F, Study of Lorentz violation in INTEGRAL gamma-ray bursts, 2008 Gen. Rel. Grav. 40 1731 [SPIRES] [gr-qc]
[2] Pavlopoulos T G, Breakdown of Lorentz invariance, 1967 Phys. Rev. 159 1106 [SPIRES]
[3] Amelino-Camelia G, Enlarged bound on the measurability of distances and quantum κ-Poincaré group, 1997 Phys. Lett. B 392 283 [SPIRES]
[4] Amelino-Camelia G, Ellis J, Mavromatos N E, Nanopoulos D V and Sarkar S, Tests of quantum gravity from observations of big gamma-ray bursts, 1998 Nature 393 763 [SPIRES]
[5] Piran T, Gamma ray bursts as probes of quantum gravity, 2004 Preprint astro-ph/0407462v1
[6] Jacob U and Piran T, GRBs neutrinos as a tool to explore quantum gravity induced Lorentz violation, 2007 Nat. Phys. 3 87
[7] Rodríguez Martínez M and Piran T, Constraining Lorentz violations with gamma ray bursts, 2004 J. Cosmol. Astropart. Phys. JCAP04(2004)006 [SPIRES]
[8] Pavlopoulos T G, Are we observing Lorentz violation in gamma ray bursts?, 2005 Phys. Lett. B 625 13 [SPIRES]
[9] Kahniashvili T, Godoberidze G and Ratra B, Gamma ray burst constraints on ultraviolet Lorentz invariance violation, 2006 Phys. Lett. B 643 81 [SPIRES]
[10] Jacobson T, Liberati S and Mattingly D, Lorentz violation and Crab synchrotron emission: a new constraint far beyond the Planck scale, 2003 Nature 424 1019 [SPIRES]
[11] Fan Y-Z, Wei D-M and Xu D, Gamma-ray burst UV / optical afterglow polarimetry as a probe of quantum gravity, 2007 Mon. Not. R. Astron. Soc. 376 1857
[12] Maccione L, Liberati S, Celotti A and Kirk J G, New constraints on Planck-scale Lorentz violation in QED from the Crab Nebula, 2007 J. Cosmol. Astropart. Phys. JCAP10(2007)013 [SPIRES]
[13] Ellis J, Mavromatos N E and Nanopoulos D V, String theory modifies quantum mechanics, 1992 Phys. Lett. B 293 37 [SPIRES]
[14] Ellis J, Mavromatos N E and Nanopoulos D V, Probing models of quantum space–time foam, 1999 Preprint gr-qc/9909085
[15] Kostelecký V A and Samuel S, Spontaneous breaking of Lorentz symmetry in string theory, 1989 Phys. Rev. D 39 683 [SPIRES]
[16] Myers R C and Pospelov M, Ultraviolet modifications of dispersion relations in effective field theory, 2003 Phys. Rev. Lett. 90 211601 [SPIRES]
[17] Amelino-Camelia G, Relativity in spacetimes with short-distance structure governed by an observer-independent (Planckian) length scale, 2002 Int. J. Mod. Phys. D 11 35 [SPIRES]
[18] Amelino-Camelia G, Proposal of a second generation of quantum-gravity-motivated Lorentz-symmetry tests: sensitivity to effects suppressed quadratically by the Planck scale, 2003 Int. J. Mod. Phys. D 12 1633 [SPIRES]
[19] Maguiejo J and Smolin L, Lorentz invariance with an invariant energy scale, 2002 Phys. Rev. Lett. 88 190403 [SPIRES]
[20] Maguiejo J and Smolin L, Generalized Lorentz invariance with an invariant energy scale, 2002 Phys. Rev. D 67 044017 [SPIRES]
[21] Hossenfelder S, Multi-particle states in deformed special relativity, 2007 Phys. Rev. D 75 105005 [SPIRES]
[22] Scargle J D, Norris J P and Bonnell J T, An algorithm for detecting quantum gravity photon dispersion in gamma-ray bursts: discan, 2008 Astrophys. J. 673 972 [SPIRES]
[23] Norris J P, Bonnell J T, Marani G F and Scargle J D, GLAST, GRBs and quantum gravity, 1999 Int. Cosmic Ray Conf. vol 4, p 20
[24] Band D L et al, Analysis of burst observations by GLAST’s LAT detector, 2004 American Institute of Physics Conf. Series vol 727, p 692
[25] Bertolami O and Carvalho C S, Proposed astrophysical test of Lorentz invariance, 2000 Phys. Rev. D 61 103002 [SPIRES]
[26] Bertolami O, Ultra-high energy cosmic rays and symmetries of spacetime, 2002 Gen. Rel. Grav. 34 707 [SPIRES]
[27] Piran T, Gamma-ray bursts and the fireball model, 1999 Phys. Rep. 314 575 [SPIRES]
[28] Piran T, The physics of gamma-ray bursts, 2005 Rev. Mod. Phys. 76 1143 [SPIRES]
[29] Ellis J, Farakos K, Mavromatos N E, Mitsou V A and Nanopoulos D V, Astrophysical probes of the constancy of the velocity of light, 2000 Astrophys. J. 535 139 [SPIRES]
[30] Ellis J, Mavromatos N E, Nanopoulos D V and Sakharov A S, Quantum-gravity analysis of gamma-ray bursts using wavelets, 2003 Astron. Astrophys. 402 409 [SPIRES]
[31] Ellis J, Mavromatos N E, Nanopoulos D V, Sakharov A S and Sarkisyan E K G, Robust limits on Lorentz violation from gamma-ray bursts, 2006 Astropart. Phys. 25 402 [SPIRES]
[32] Ellis J, Mavromatos N E, Nanopoulos D V, Sakharov A S and Sarkisyan E K G, Erratum (astro-ph/0510172): Robust limits on Lorentz violation from gamma-ray bursts, 2007 Preprint 0712.2781 [astro-ph]
[33] Albert J et al, Probing quantum gravity using photons from a Mkn 501 flare observed by MAGIC, 2007 Preprint 0708.2889 [astro-ph]
[34] Biesiada M and Pirkowska A, GRB neutrinos, Lorenz invariance violation and the influence of background cosmology, 2007 J. Cosmol. Astropart. Phys. JCAP05(2007)011 [SPIRES]
[35] Jacob U and Piran T, Lorentz-violation-induced arrival delays of cosmological particles, 2008 J. Cosmol. Astropart. Phys. JCAP01(2008)031 [SPIRES]
[36] GLAST LAT Performance, 2007 http://www-glast.slac.stanford.edu/software/IS/glast_lat_performance.htm
[37] GLAST Science Support Center http://glast.gsfc.nasa.gov/gssc
[38] Band D et al, BATSE observations of gamma-ray burst spectra. I-Spectral diversity, 1993 Astrophys. J. 413 281 [SPIRES]
[39] Omodei N, and GLAST/LAT GRB Science Group, The GLAST mission, LAT and GRBs, 2006 Preprint astro-ph/0603762
[40] Omodei N et al, GRB Simulations in GLAST, 2007 American Institute of Physics Conf. Series vol 906, p 1
[41] Omodei N and Norris J, LAT observation of GRBs: simulations and sensitivity studies, 2007 American Institute of Physics Conf. Series vol 921, p 472
[42] Rodriguez Martinez M, Piran T and Oren Y, GRB 051221A and tests of Lorentz symmetry, 2006 J. Cosmol. Astropart. Phys. JCAP05(2006)017 [SPIRES]