MARIANA TIROLLI RETT

INCONTINÊNCIA URINÁRIA DE ESFORÇO EM MULHERES NO MENACME: TRATAMENTO COM EXERCÍCIOS DO ASSOALHO PÉLVICO ASSOCIADOS AO BIOFEEDBACK ELETROMIOGRÁFICO

Dissertação de Mestrado

ORIENTADOR: Prof. Dr. JOSÉ ANTONIO SIMÕES
CO-ORIENTADORA: Prof.ª Dr.ª VIVIANNE HERRMANN

UNICAMP
2004
MARIANA TIROLLI RETT

INCONTINÊNCIA URINÁRIA DE ESFORÇO EM MULHERES NO MENACME: TRATAMENTO COM EXERCÍCIOS DO ASOALHO PÉLVICO ASSOCIADOS AO BIOFEEDBACK ELETROMIOGRÁFICO

Dissertação de Mestrado apresentada à Pós-Graduação da Faculdade de Ciências Médicas da Universidade Estadual de Campinas para obtenção do Título de Mestre em Tocoginecologia, área de Ciências Biomédicas

ORIENTADOR: Prof. Dr. JOSÉ ANTONIO SIMÕES
CO-ORIENTADORA: Prof.ª Dr.ª VIVIANNE HERRMANN

UNICAMP
2004
Rett, Mariana Tirolli
Incontinência urinária de esforço em mulheres no menacme: tratamento com exercícios do assoalho pélvico associados ao biofeedback eletromiográfico / Mariana Tirolli Rett. Campinas, SP : [s.n.], 2004.
Orientadores : José Antonio Simões, Vivianne Herrmann
Dissertação (Mestrado) Universidade Estadual de Campinas. Faculdade de Ciências Médicas.
1. Fisioterapia. 2. Tratamento alternativo. 3. Uroginecologia. 4. Eletromiografia. 5. Qualidade de vida. I. José Antonio Simões. II. Vivinne Herrmann. III. Universidade Estadual de Campinas. Faculdade de Ciências Médicas. IV. Título.
BANCA EXAMINADORA DA DISSERTAÇÃO DE MESTRADO

Aluna: MARIANA TIROLLI RETT

ORIENTADOR: Prof. Dr. JOSÉ ANTONIO SIMÕES

CO-ORIENTADORA: Prof.ª Dr.ª VIVIANNE HERRMANN

Membros:
1.
2.
3.

Curso de Pós-Graduação em Tocoginecologia da Faculdade de Ciências Médicas da Universidade Estadual de Campinas

Data: 25/11/2004
Dedico este trabalho...

... aos meus queridos pais, Angelo e Ivani,
pelo incondicional carinho, confiança, estímulo e apoio profissional....,
...mostrando que Deus e a família constroem nossas vidas.
Sem “eles” nada seria possível!

... ao meu Henrique, amor....
pela paciência, tolerância e sobretudo
pela atenção em todos os momentos.
Pela sua admiração...
...Sempre me querendo bem...
Agradecimentos

Agradeço especialmente ao meu orientador, Prof. Dr. José Antonio Simões...Figura ímpar e de dedicação imensurável...Muito obrigada pela confiança, paciência, pelas oportunidades e crescimento profissional e pessoal. Obrigada, sobretudo pelos ensinamentos de como vencer através de seus exemplos e atitudes!

À minha co-orientadora, Vivianne Herrmann, pela contribuição em todas as fases de execução deste trabalho e pelos ensinamentos de como atingir os objetivos com simplicidade.

À Equipe do Serviço de Fisioterapia, que me acompanhava desde 2001, sempre acreditando, colaborando e oferecendo oportunidades...equipe que me acolheu e que me ensina a cada dia as virtudes da nossa profissão.

Em especial à Fisioterapeuta Andréa Marques, pessoa maravilhosa que incentivou e contribuiu para a realização deste trabalho...Pela sua ética singular.

À Maitê, Marcela, Andréa Gonçalves e Patrícia, que sempre dôceis me ensinaram, apoiaram e me socorreram...

Às alunas do curso de especialização dos anos de 2003 e 2004, por me alegrarem e compartilharem muitos momentos...À Marisa, secretária, sempre pronta e bem humorada...

Pela amizade e pelas sucessivas gentilezas da Sirlei e Lucio Gurgel...pelo trabalho perfeito...Por sempre estarem sorrindo e me estenderem as mãos em todos os momentos...

Às novas amizades construídas aqui dentro: Gislaine Carvasan, Klésio, Sílmar, Denilza, Márcia...especialmente à Margareth Donadon, sempre solícita e pronta.
Ao Dr. Caio Lett, por tornar este trabalho verdade e pela contribuição profissional.

À Katiuscia, amiga sempre companheira.

À equipe da ASTEC, pela contribuição e dedicação para a transformação dos nossos trabalhos.

Aos funcionários da Farmácia do CAISM, que me ajudaram na realização de alguns exames.

Ao CAISM, que tornou meus sonhos realidade… a todos do Departamento de Tocoginecologia, sempre colaborando para que tudo desse certo. Aos professores do curso de pós-graduação.

Aos funcionários do Hospital das Clínicas que me ajudaram no início do trabalho.

Em especial às mulheres que participaram deste estudo...

A todos que não foram citados e que estiveram comigo neste momento.

MUITO OBRIGADA!!!
Nosso agradecimento especial à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pelo financiamento deste estudo através do auxílio à pesquisa, processo 2002/12181-5. Ao Fundo de Apoio ao Ensino e à Pesquisa da Universidade Estadual de Campinas (FAEP) que financiou parcialmente o início deste trabalho. E à Coordenação de Aperfeiçoamento do Pessoal de Ensino Superior (CAPES), pelo financiamento.
Sumário

Símbolos, Siglas e Abreviaturas ix

Resumo x

Summary xii

1. Introdução 14

2. Objetivos 26
 2.1. Objetivo geral 26
 2.2. Objetivos específicos 26

3. Publicação 28

4. Conclusões 50

5. Referências Bibliográficas 51

6. Bibliografia de Normatizações 60

7. Anexos 61
 7.1. Anexo 1 - Ficha De Dados 61
 7.2. Anexo 2 - Termo de Consentimento Livre e Esclarecido 65
 7.3. Anexo 3 - Tabelas e Gráficos Gerais dos Resultados 68
 7.4. Anexo 4 - Fotos dos Equipamentos 74
Símbolos, Siglas e Abreviaturas

CAISM Centro de Atenção Integral à Saúde da Mulher
CAPES Coordenadoria de Aperfeiçamento do Pessoal de Ensino Superior
cmH2O centímetros de água
et al., e outros (as)
FAEP Fundo de Apoio ao Ensino e à Pesquisa da Universidade Estadual de Campinas
FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo
FCM Faculdade de Ciências Médicas
ICS International Continence Society
IU incontinência urinária
IUE incontinência urinária de esforço
IMC índice de massa corpórea
Kg quilograma (s)
m² metro (s) quadrado (s)
µV Microvolts
n tamanho amostral
PFME pelvic floor muscle exercise
sEMG eletromiografia de superfície
Unicamp Universidade Estadual de Campinas
Com o objetivo de avaliar o tratamento da incontinência urinária de esforço feminina com exercícios do assoalho pélvico associados ao biofeedback eletromiográfico, realizou-se um ensaio clínico não controlado de 26 mulheres no menacme. Elas foram acompanhadas no período de outubro de 2003 a junho de 2004, na Seção de Fisioterapia do Centro de Atenção Integral à Saúde da Mulher (CAISM) da Universidade Estadual de Campinas (Unicamp). Todas as mulheres foram clinicamente avaliadas e submetidas a um estudo urodinâmico para preencher os critérios de inclusão e exclusão. Antes do início e ao final do tratamento, as participantes preencheram um diário miccional durante uma semana, foram submetidas ao teste do absorvente (pad test) de uma hora e à avaliação da força muscular do assoalho pélvico pelo toque vaginal e pelo perineômetro. Em seguida, foram submetidas à avaliação eletromiográfica de superfície (sEMG) do assoalho pélvico. Além disso, elas responderam a um questionário de qualidade de vida e outro para elaboração de um índice de perda urinária. As mulheres foram tratadas individualmente, duas vezes por semana, totalizando 12 sessões de fisioterapia. O protocolo de exercícios consistia inicialmente em quatro seqüências de 20 contrações (fásicas e tônicas) com um
acréscimo gradativo nas primeiras quatro sessões, até atingir o total de 200 contrações, mantidas até o final do tratamento. Os exercícios foram realizados em decúbito dorsal, nas posições sentada e ortostática. Os resultados mostraram uma redução significativa na frequência de perdas urinárias, na noctúria e no número de absorventes utilizados. A cura objetiva foi encontrada em 20 (76,9%) mulheres. Houve um aumento significativo na força de contração do assoalho pélvico. Em relação à eletromiografia de superfície do assoalho pélvico, as amplitudes das contrações fásica e tônicas de 10 e 20 segundos aumentaram significativamente ao longo do tratamento, principalmente na primeira metade. O índice de perda urinária diminuiu significativamente e observou-se melhora da qualidade de vida em praticamente todos os parâmetros avaliados. A maioria das mulheres referiu melhora importante dos sintomas urinários, sentindo-se curadas ou quase curadas, logo após o término do tratamento. Concluiu-se que os exercícios do assoalho pélvico associados ao biofeedback eletromiográfico podem ser uma alternativa eficaz no tratamento conservador da incontinência urinária de esforço de mulheres no menacme.
The aim of this study was to evaluate the treatment of stress urinary incontinence by pelvic floor muscle exercise associated to electromyography biofeedback. This is an uncontrolled clinical trial of 26 pre-menopausal women, performed from October 2003 to June 2004 at the Physical Therapy Section of CAISM/UNICAMP. All participants were clinically evaluated and were submitted to urodynamics test to fulfill the inclusion and exclusion criteria. Evaluation before and after treatment included a seven-day diary, a one-hour pad test, pelvic floor muscle strength was accessed by vaginal palpation, perineometry and a surface electromyography (sEMG) of pelvic floor muscle. In addition, women answered a quality of life questionnaire and the leakage index. Participants were treated individually twice a week for 12 physiotherapy sessions. The initial protocol started with four sets of 20 contractions (phasics and tonics) gradually increased, over the four first sessions to achieve a maximum of 200 contractions, which were maintained until the end of treatment. All subjects performed pelvic floor muscle exercise in supine, sitting and standing positions. The results showed a significant decrease in urinary losses frequency, nocturia and number of pads. Objective cured was found in 20 (76.9%) women. There was a significant increase in
the pelvic floor muscle strength. Regarding to pelvic floor sEMG, amplitudes values of phasic and tonic contractions significantly increased throughout the treatment, especially in the middle of treatment. The leakage index decreased and it was observed an improvement in practically all quality of life parameters. Most of women self reported being cured or almost cured immediately after the treatment. In conclusion, the pelvic floor muscle exercise associated to electromyography biofeedback might be an effective alternative as a conservative treatment of stress urinary incontinence in pre-menopausal women.
1. Introdução

Segundo a International Continence Society (ICS), a incontinência urinária (IU) é definida como qualquer queixa de perda involuntária de urina (ABRAMS et al., 2003). Aproximadamente 200 milhões de pessoas no mundo apresentam algum tipo de IU, ocorrendo mais em mulheres do que em homens e estimando-se que uma em cada quatro mulheres tem perda urinária (ORTIZ, 2004). O custo anual envolvido com o manejo da IU é de 16,3 bilhões de dólares, dos quais, 12,4 bilhões são destinados aos programas femininos de prevenção, diagnóstico, tratamento e complicações (WILSON et al, 2001).

Dentre os vários tipos de IU feminina, a mais freqüente é a incontinência urinária de esforço (IUE), definida como a queixa de perda involuntária de urina no esforço físico, espirro ou tosse (ABRAMS et al., 2003). Entretanto, ainda de acordo com a terminologia e padronização da ICS, a IUE pode ser considerada como um sintoma, um sinal, uma observação urodinâmica ou uma condição como um todo, que é a combinação destes fatores (ABRAMS et al., 2003).
Dependendo da faixa etária, das características da população, da definição e do critério diagnóstico utilizado, a prevalência da IUE pode variar de 12% a 56% (BURGIO et al., 1991; PEYRAT et al., 2002; SIRACUSANO et al., 2003). Cerca de metade das mulheres incontinentes apresentam IUE, sendo mais comum entre 25 e 49 anos de idade, com um pico na quarta década de vida (HANNESTAD et al., 2000; MINASSIAN et al., 2003). Em um estudo brasileiro, quando considerada a queixa clínica, a prevalência da IUE foi de 36%, sendo, entretanto, confirmada através do estudo uridinâmico em apenas 29% (FELDNER JUNIOR et al., 2002). Em Campinas, Estado de São Paulo, através de um inquérito populacional, 35% das mulheres climatéricas entre 45 e 60 anos, queixavam-se de IUE (GUARISI et al., 2001a)

Como visto, a IUE é muito frequente entre as mulheres jovens e de meia-idade, não somente nas idosas. As mulheres jovens e na meia-idade são profissional e socialmente ativas, e essa condição provavelmente representa um grande impacto, causando efeitos negativos na qualidade de vida (HANNESTAD et al., 2000; MINASSIAN et al., 2003; ORTIZ, 2004). A maioria delas sente-se extremamente incomodada com esses sintomas, que podem limitar suas atividades cotidianas (FULTZ et al., 2003). Elas referem limitações em níveis físicos (praticar esporte, carregar objetos), alterações nas atividades sociais, ocupacionais, domésticas e nas relações pessoais, influenciando no estado emocional e na vida sexual (SALEH et al., 2004). Além disso, pode provocar desconforto social e higiênico, pelo medo da perda urinária, pelo cheiro de urina, pela necessidade de
utilizar protetores (absorventes) e de trocas mais frequentes de roupas (FULTZ et al., 2003; SALEH et al., 2004).

Todavia, muitas mulheres acreditam que a IU faz parte do envelhecimento e desconhecem as terapêuticas disponíveis. Isso provavelmente tem uma influência negativa na decisão de procurar tratamento, levando as mulheres a tentativas individuais de ajustar o estilo de vida às perdas urinárias e a não revelarem esta problemática ao profissional da saúde (BLANES et al., 2001). Ainda é um assunto que causa constrangimento e somente cerca de 20% a 59% daquelas que têm algum tipo de IU e, em especial a IUE, procuram tratamento (GUARISI et al., 2001b; SIRACUSANO et al., 2003; SLAEH et al., 2004). Cabe ainda ressaltar que há uma forte relação entre a freqüência e intensidade da perda com a procura de ajuda, ou seja, as mulheres que têm perdas mais severas são as que buscam assistência (BURGIO et al., 1991).

Em termos práticos, a IUE pode ocorrer em duas situações distintas, embora algumas vezes elas possam coexistir. A primeira situação é denominada IUE anatômica ou hipermobibilidade do colo vesical e uretra proximal (PALMA e RICCETO, 1999; HERRMANN e PALMA, 2000). Em uma situação normal de repouso, a pressão uretral é maior que a pressão vesical, determinando a continência. No entanto, na vigência de uma hipermobibilidade, quando ocorre aumento da pressão abdominal durante os esforços, esta pressão não é transmitida igualmente para uretra e bexiga, de maneira que a pressão vesical torna-se maior que a pressão uretral, ocorrendo a perda urinária. Por ser considerada uma incontinência anatômica, as principais estruturas que podem estar comprometidas
são os músculos do assoalho pélvico, a fásica endopélvica e os ligamentos. Sendo assim, alguns fatores de risco que podem comprometer tais estruturas e levar à fraqueza do assoalho pélvico são: idade, paridade, partos vaginais mal conduzidos ou traumáticos, alterações hormonais, obesidade, tosse crônica, histerectomia e cirurgias prévias para correção de IUE, dieta e tipo de atividade física (BURGIO et al., 1991; PEYRAT et al., 2002; SIRACUSANO et al., 2003; MINASSIAN et al., 2003; ORTIZ, 2004).

A segunda condição é denominada IUE esfincteriana, decorrente da lesão do mecanismo esfincteriano intrínseco da uretra, onde a pressão uretral é constantemente baixa e a perda urinária ocorre geralmente aos mínimos esforços, e até no repouso. Nesta situação a hiper mobilidade é pouco presente, pois geralmente o colo vesical encontra-se fixo, com fibrose periuretral. Pode estar associada a cirurgias prévias para IUE, traumas, hipoestrogenismo, malformações congênitas, mielodisplasias, entre outras (PALMA e RICCETO, 1999; HERRMANN e PALMA, 2000).

Portanto, a escolha do tratamento adequado para IUE implica o conhecimento das estruturas anatômicas e também a correta interpretação fisiopatológica dos mecanismos envolvidos na perda urinária, como visto anteriormente. Na IUE por deficiência esfincteriana, o tratamento é exclusivamente cirúrgico, pois o mesmo tem como objetivo aumentar a resistência uretral, melhorando sua coaptação (BRUSCHINI, 2001). Já na IUE por hiper mobilidade do colo vesical há um comprometimento anatômico e funcional dos elementos responsáveis pelo suporte
uretral e do assoalho pélvico. Assim, o objetivo do tratamento deste tipo de IUE é restaurar a anatomia local, buscando o reposicionamento da uretra e do colo vesical.

Em geral, o tratamento da IUE por hiper mobilidade também tem sido preferencialmente cirúrgico, inclusive no Brasil. Existem diversas técnicas cirúrgicas disponíveis para essa correção e, dependendo da indicação e da experiência do profissional, podem ser realizadas via vaginal ou suprapúbica. Apesar dos procedimentos cirúrgicos para correção da IUE apresentarem bons resultados, não são isentos de possíveis complicações transoperatorias e pós-operatórias, tais como infecções e disfunções miccionais (BRUSCHINI, 2001; KOFF, 2001).

A colporrafia anterior, conhecida como Kelly-Kennedy, foi uma abordagem vaginal utilizada por muito tempo. Entretanto, por apresentar falhas e recidivas freqüentes, tem sido cada vez menos indicada para o tratamento da IUE (HERRMANN e PALMA, 2000; BOMBIERI e FREEMAN, 2003). As técnicas mais difundidas de uretrocistopexias retropúbica são as técnicas de Marshall-Marchetti-Krantz e Burch. Apesar das taxas de sucesso serem similares, o índice de complicações é maior para o Marshall-Marchetti-Kantz, principalmente em relação à dificuldade miccional (em até 28% dos casos) e à possibilidade de osteite pública (em até 5% dos casos). O índice de hiperatividade do detrusor após a cirurgia oscila entre 5% e 18% para ambos os procedimentos (BRUSCHINI, 2001; BOMBIERI e FREEMAN, 2003). Técnicas cirúrgicas mais recentes, consideradas minimamente invasivas, como tension vaginal free (TVT) e slings têm mostrado bons resultados em até 93% dos casos (BOMBIERI e FREEMAN, 2003; ABOUASSALY et al., 2004). Entretanto, também podem apresentar complicações.
como perfuração vesical em 6% dos casos, hiperatividade do detrusor e retenção urinária em 15% a 20% dos casos, respectivamente (ABOUASSALY et al., 2004).

Além das possíveis complicações citadas, a necessidade de materiais específicos, internação, medicações e treinamento dos profissionais, torna a cirurgia uma abordagem relativamente de alto custo. Diante disso, em alguns casos, é importante que sejam oferecidas opções de tratamento conservador, como, por exemplo, em situações de IUE leve ou moderada, em mulheres jovens que desejam nova gravidez, que apresentem contra-indicação clínica para cirurgia ou que estão inseguras em se submeter a um procedimento cirúrgico (PACETTA et al., 1996; KOFF, 2001). Apesar da possibilidade de mulheres no período reprodutivo engravidarem após a correção cirúrgica para IUE, isso não tem sido considerado como uma contra-indicação absoluta para a cirurgia. Entretanto, alguns autores têm relatado casos de gestações complicadas por uma cirurgia prévia (CASPER et al., 1999). LYNCH et al., (2001) descreveram um caso de gravidez complicada após um sling, resultando em obstrução uretral, pielonefrite e recidiva dos sintomas de perda urinária.

Assim, nos últimos anos, tem surgido interesse crescente por opções de tratamento que apresentem bons resultados, associados à baixa morbidade e de baixo custo. A Agency for Healthcare Research and Quality (AHRQ) recomenda que, dependendo da severidade da IU, a abordagem inicial deve ser o menos invasiva possível, com poucos efeitos colaterais e deve preservar a integridade do indivíduo, para que na falha das terapêuticas iniciais possa ser realizada uma futura cirurgia (FANTL et al., 1996). Atualmente, as opções de tratamentos
conservadores compreendem os tratamentos comportamental, medicamentoso e fisioterápico. Dentre eles, os que apresentam menos efeitos colaterais são os tratamentos comportamental e fisioterápico, sendo que este último contempla o objetivo citado anteriormente de reestruturação anatômica do assoalho pélvico.

O comprometimento do assoalho pélvico é visto como um dos principais fatores etiopatogênicos da IUE (TELEMAN et al., 2003). Alguns autores observaram uma diminuição da força e da espessura deste grupo muscular em mulheres incontinentes, sugerindo um dano neuromuscular (GUNNARSSON e MATTIASSON, 1999; MORKEVED et al., 2002b). Portanto, como na maioria das mulheres incontinentes há uma alteração anatomofuncional do assoalho pélvico, justifica-se a utilização de tratamentos para o fortalecimento e a reeducação desta musculatura. Esse fortalecimento pode ser atingido através dos exercícios do assoalho pélvico isolados ou associados ao biofeedback, dos cones vaginais e da eletroestimulação intravaginal (BO et al., 1999; BERNARDES et al., 2000; HAY-SMITH et al., 2001; AMARO et al., 2003; HERRMANN et al., 2003, BO, 2004, SKILLING e PETROS, 2004; BURGIO, 2004).

O músculo elevador do ânus, componente mais importante do assoalho pélvico, é um músculo estriado esquelético, formado por dois tipos de fibras: 70% do tipo I (contração lenta), responsável pela manutenção do tônus e 30% do tipo II: (contração rápida), responsável pelo reflexo de contração em resposta ao aumento da pressão intra-abdominal (KOELBL et al., 1989). Com o fortalecimento deste grupo muscular há uma tendência em aumentar o tamanho das fibras musculares dos tipos I e II do assoalho pélvico e também do esfíncter uretral.
externo. Além disso, há um favorecimento do reflexo de contração, contribuindo para uma contração consciente e efetiva nos momentos de aumento da pressão intra-abdominal, evitando assim as perdas urinárias. Há melhora do tônus e das transmissões de pressões da uretra, reforçando o mecanismo de continência urinária (BOURCIER, 1999; AMARO et al., 2001; BO, 2004; MORENO, 2004).

Os exercícios do assoalho pélvico, também conhecidos como cinesioterapia, vêm sendo utilizados com sucesso no tratamento conservador da IUE há mais de 50 anos, desde que KEGEL (1948) apresentou seus resultados. Com estes exercícios a melhora dos sintomas clínicos, da perda urinária no pad test e da força muscular do assoalho pélvico variam entre 30% a 85% dos casos (BO et al., 1999; HAY-SMITH et al., 2001; AMARO et al., 2003; BURGIO, 2004). Quando os exercícios são realizados regularmente há uma chance de 75% das mulheres manterem-se continentes por pelo menos cinco anos (CAMMU e VAN NYLEN, 1995). Recentemente, em um seguimento de 15 anos, cerca de 78% das mulheres que ainda realizam estes exercícios estão satisfeitas (BO e KVARSTEIN, 2004). Todavia, é muito importante que a mulher esteja motivada e compromissada com o tratamento, pois como ainda não está estabelecida a quantidade ideal de exercícios, o acompanhamento na maioria das vezes é relativamente extenso, o que contribui para o abandono, seguimento inadequado do tratamento ou recorrência dos sintomas (HAY-SMITH et al., 2001).

Muitas mulheres ignoram a localização e a função do assoalho pélvico e aproximadamente metade das incontinentes são incapazes de contrair satisfatoriamente essa musculatura após apenas uma instrução verbal ou
escrita. Em geral, elas não conseguem contrair isoladamente essa musculatura, substituindo pela contração dos músculos abdominais, glúteos e/ou adutores (BUMP et al., 1991). Deste modo, a utilização de equipamentos que informem o indivíduo por meio de sinais visuais ou sonoros qual grupo muscular deve ser trabalhado durante o exercício, auxilia no reconhecimento de alguns grupos pouco utilizados, como é o caso do assoalho pélvico (MORENO, 2004).

O *feedback* aplicado ao ser humano passou a ser chamado de *biofeedback*, definido como “técnica que utiliza um equipamento habitualmente eletrônico de monitorização para revelar aos indivíduos de maneira contínua e instantânea, alguns eventos fisiológicos ou condições do corpo, que as pessoas não estão conscientes, na tentativa de desenvolver controle consciente sobre estes processos” (BASMAJAN, 1981). Uma das suas principais características é prover informações de forma direta ao indivíduo, através dos sinais representados, despertando-o para suas capacidades fisiológicas através da retroalimentação (KNIGHT e LAYCOCOK, 1994; BOURCIER, 1999). Seu objetivo é, portanto, transformar a atividade muscular em um evento compreensível e melhorar a coordenação e utilização correta do músculo desejado (BOURCIER, 1999; GROSSE e SENGLER, 2002). O mecanismo de aprendizagem com o *biofeedback* é feito através da detecção de uma função, e em seguida esta função é amplificada e traduzida em um sinal visual e/ou sonoro, imediatamente disponível para o indivíduo (GROSSE e SENGLER, 2002).

Em uroginecologia, o termo *biofeedback* é comumente usado de maneira inadequada para classificar um método ou técnica diferente dos exercícios do
assoalho pélvico. Entretanto, o *biofeedback* não é um tratamento por si só, mas um adjuvante ao treinamento que mensura e demonstra uma simples contração muscular. Portanto, ele participa da conscientização da função e controle seletivo dos músculos do assoalho pélvico e potencializa os efeitos dos exercícios perineais, favorecendo o recrutamento das unidades motoras ligadas ao nervo pudendo (KNIGHT e LAYCOCK, 1994; GROSSE e SENGLER, 2002). Inúmeros equipamentos de *biofeedback* de pressão, que registram as contrações em cmH₂O ou em mmHg, são empregados na prática clínica. Entretanto, eles são criticados pela sua falta de seletividade muscular e, por esta razão, equipamentos mais sensíveis, com sensores eletromiográficos de superfície e softwares específicos, são atualmente mais utilizados (TRIES e BRUBAKER, 1995; MORENO, 2004).

A eletromiografia de superfície (sEMG) é o sinal elétrico do músculo, registrado em microvolts (µV) e captado através de sensores eletromiográficos. Os potenciais elétricos gerados pela despolarização das fibras musculares em repouso e durante as contrações voluntárias ou reflexas são utilizados para oferecer um *feedback* ao indivíduo, conhecido como *biofeedback* eletromiográfico de superfície – sEMG *biofeedback* (KOBATA et al., 2001). Os eletrodos de superfície são caminhos de condução elétrica que estão em contato com a pele ou mucosa e, portanto, não-invasivos e bem tolerados (KOBATA et al., 2001). Por outro lado, em geral são equipamentos de alto custo, necessitam de um local apropriado para seu uso e de esterilização dos eletrodos (GROSSE e SENGLER, 2002).

Além de ser empregado no tratamento da IUE, o sEMG *biofeedback* é utilizado em hiperatividade idiopática do detrusor, dissinergia vésico-esfincteriana,
enurese, IU pós-prostatectomia e em incontinência fecal (TRIES e BRUBAKER, 1995; HUNTER et al., 2004; MARTINEZ-PUENTE et al., 2004). Em ginecologia pode ainda ser utilizado como adjuvante ao tratamento da dor pélvica crônica e dispareunia (BERGERON et al., 2001).

KEGEL (1948) também foi o pioneiro em utilizar alguma forma de biofeedback, sendo o criador do primeiro perineômetro de pressão. Posteriormente, na década de 80, alguns estudos constataram os efeitos do biofeedback de pressão associado aos exercícios do assoalho pélvico para o tratamento da IUE (SHEPHERD et al., 1983; CASTLEDEN et al., 1984; TAYLOR e HANDE RSON, 1986; BURGIO et al., 1986).

BERGHMANS et al. (1996) não observaram diferença nos resultados após o tratamento de mulheres com IUE que realizaram os exercícios associados ou não ao sEMG biofeedback. Entretanto, quando foram avaliadas na metade do tratamento, as mulheres que utilizaram o biofeedback obtiveram uma melhora significativa das perdas urinárias, em relação às que somente realizaram os exercícios (p=0,01). Neste estudo, o biofeedback foi essencial no início do tratamento, colaborando para obter bons resultados em um período de tempo relativamente curto.

A maioria dos autores concorda que as mulheres que realizam os exercícios associados ao biofeedback diminuem significativamente as perdas urinárias e apresentam melhora crescente e significativa da força muscular do assoalho pélvico (BURNS et al., 1993; DE KRUIF e VAN WEGEN, 1996; GLAVIND et al., 1996;
1998; WEATHERALL, 1999; PAGES et al., 2001; JUNDT et al., 2002; MORKEVED et al., 2002a; AKSAC et al., 2003; SUGAYA et al., 2003). AUKEE et al. (2002) demonstraram superior atividade eletromiográfica do assoalho pélvico e redução significativa das perdas urinárias somente naquelas que utilizaram biofeedback.

Pelo exposto, este método tem se mostrado uma boa alternativa de tratamento conservador para IUE, sobretudo nos casos em que a indicação da cirurgia ou de outros tratamentos conservadores apresentem alguma restrição. Contudo, o tratamento da IUE com exercícios do assoalho pélvico associado ao sEMG biofeedback ainda não foi avaliado no Setor de Fisioterapia do Centro de Atenção Integral à Saúde da Mulher (CAISM) da Universidade Estadual de Campinas (Unicamp), especialmente em mulheres no menacme com IUE.

Como essas mulheres ainda são relativamente jovens, as possíveis complicações de um procedimento cirúrgico para a correção da IUE podem repercutir negativamente no seu cotidiano. São mulheres que geralmente têm um nível regular de atividade física e uma vida social e sexual bastante ativas e, provavelmente, podem beneficiar-se com este tipo de tratamento mais conservador. Além disso, por ainda estarem no período reprodutivo, podem vir a engravidar, o que colocaria em risco os resultados obtidos com uma correção cirúrgica prévia. Além de ser uma opção de baixo custo, a abordagem fisioterápica proposta poderá oferecer uma melhora na qualidade de vida destas mulheres, sem impor-lhes necessariamente um ônus muito grande.
2. Objetivos

2.1. Objeto geral

Avaliar o tratamento da incontinência urinária de esforço com exercícios do assoalho pélvico associados ao biofeedback eletromiográfico em mulheres no menacme.

2.2. Objetivos específicos

- Comparar a freqüência de perdas urinárias semanais antes e após o tratamento fisioterápico.

- Comparar o volume de perda urinária antes e após o tratamento fisioterápico.

- Comparar a força de contração muscular do assoalho pélvico antes e após o tratamento fisioterápico.

- Comparar a atividade eletromiográfica dos músculos do assoalho pélvico, antes, na metade e após o término do tratamento.
• Comparar o índice de perda urinária antes e após o tratamento fisioterápico.

• Comparar a qualidade de vida antes e após o tratamento fisioterápico.

• Avaliar a melhora subjetiva das mulheres com incontinência urinária de esforço submetidas ao tratamento fisioterápico.
3. Publicação

Stress urinary incontinence treatment with sEMG-assited biofeedback in pre-menopausal women

Mariana Tirolli Rett, PT
Jose Antonio Simoes, MD, PhD
Viviane Herrmann, MD, PhD
Carlos Alberto Petta, MD, PhD
Andrea de Andrade Marques, PT
Sirlei Siani Morais,

Department of Obstetrics and Gynecology, State University of Campinas (UNICAMP),
SP, Brazil

Financial support: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP),
SP, Brazil. Process: 02/12181-5.

Communicating author:
Prof. Dr. Jose A. Simoes
Department of Obstetrics and Gynecology
UNICAMP
Caixa Postal 6181
13084-971 Campinas, SP, Brazil
Telephone: +55-19-32892856
Fax: +55-19-32892440
jsimoes@caism.unicamp.br
Abstract

This study evaluated the treatment of SUI with PFME sEMG-assisted biofeedback in 26 pre-menopausal women. Participants were treated individually for 12 sessions. Treatment was evaluated by: seven-day voiding diary; one-hour pad test; pelvic floor strength by vaginal palpation and perineometry; sEMG amplitudes; leakage index; and quality of life. These variables were compared before and after treatment with a p value < 0.05 defined as significant. Urinary losses frequency, nocturia and number of pads decreased significantly. Objective cure was found in 76.9% women. There was a significant improvement in pelvic floor muscle strength and in semg amplitudes of all contractions throughout the treatment (p<0.0001). The quality of life showed a significant improvement in practically all score domains. The PFME sEMG-assisted biofeedback is efficient in relieving the symptoms of SUI in pre-menopausal women and, therefore, might be a promising alternative as a conservative treatment for SUI of these women.

Keywords: stress urinary incontinence; pre-menopausal; biofeedback; pelvic floor muscle exercise; conservative treatment.
Brief Summary

The PFME sEMG-assisted biofeedback was efficient in relieving the symptoms of SUI of pre-menopausal women and in improving their quality of life.
Introduction

Approximately 50% of the incontinent women had stress urinary incontinence (SUI) and most of them are aged between 25 and 49 years [1]. Many of these women have an active professional and/or social life and are likely to be seriously bothered by the symptoms. It’s a socially embarrassing condition, causing withdrawal from physical activity, affecting sexual life and reducing quality of life [2].

Surgery has been widely accepted as the treatment of choice for SUI. However, recently an increasing interest for conservative management has been developed [3, 4, 5, 6]. Besides behavioral methods has been recommended as the first option for SUI in many cases. The initial treatment should be the least invasive with fewest potential side effects [7]. The aim of conservative rehabilitation therapy is a stabilization of the urethra by increasing the pelvic floor muscle strength. Conservative modalities include pelvic floor muscle exercise (PFME), vaginal cones, electrical stimulation and biofeedback. Because of their lower cost and lack of side effects, biofeedback and PFME are usually preferred [5, 8, 9].

Many women are not aware of how to contract their pelvic floor muscles. Biofeedback promotes correct contraction control and visualization of muscle activity. Therefore, training with biofeedback enhances pelvic floor muscle strength and collaborates to achieve good results when comparing with exercise alone [3, 8, 10, 11].

The aim of this study was to evaluate the treatment of SUI in pre-menopausal women with PFME electromyography (sEMG) assisted biofeedback.
Patients and methods

A total of 26 pre-menopausal women with SUI symptoms underwent a protocol of 12 sessions of PFME sEMG-assisted biofeedback at the Physiotherapy Division of Centro de Atenção Integral à Saúde da Mulher (CAISM), State University of Campinas (UNICAMP) between October 2003 and June 2004. The local Institutional Review Board (IRB) approved the study and all women signed a consent form prior study admission. Initial evaluation included: clinical history, pelvic floor examination and urine analysis. Patients with genital prolapses greater than grade II and previous surgery for SUI were excluded from the study. A multichannel urodynamics testing on a Dantec Manuet recorder (Skovlund, Denmark) was performed to exclude overactive bladder or intrinsic sphincter deficiency.

Participants were treated individually twice a week during 40 minutes for 12 sessions. All subjects performed pelvic floor muscle exercises in supine, sitting and standing positions, beginning with four sets of 20 contractions (10 phasic for 3 seconds and 10 sustained for 10 seconds) and increased by 10 contractions per set over 4 weeks until a total of 200 exercises [3]. Biofeedback treatment was accomplished through the use of Myotrac 3G (Thought Technology, Montreal, Canada).

A seven-day voiding diary was completed before the first session and before the 12th session. To objectively evaluate the results, a standardized one-hour pad test was performed before and after treatment. Objective cure was defined as 2 g or less of leakage after treatment [12]. Pelvic floor muscle strength was assessed by vaginal palpation and perineometry (vaginal squeeze pressure). Vaginal palpation was evaluated by two-finger
palpation to grade the contractions into 0 (none); 1 (weak, <1 sec); 2 (moderate, 1-5 sec) and 3 (strong, > 5 seconds) [13]. Perineometry was accessed using an air-filled silicone sensor connected to a portable pressure transducer perineometer (Peritron 9300V™ Cardio-Desing Pty. Ltd, Baulkham Hills, Australia) [14]. All women were encouraged to contract the pelvic floor muscles during 5 seconds. Maximum contraction pressure and average contraction pressure were recorded.

All participants underwent surface electromyographic (sEMG) evaluation of pelvic floor muscle activity. A vaginal sEMG sensor consisting of bipolar longitudinal electrode plates was connected to the biofeedback equipment and muscle electrical activity was recorded in microvolts (mµ). An adapted sEMG assessment consisted of initial rest period of 60 seconds, followed by a phasic contraction, a tonic contraction of 10 seconds and a tonic contraction of 20 seconds [15]. Phasic and tonics contractions values sEMG were obtained from the difference between the final contraction amplitude and the amplitude of rest. This sEMG assessment was performed before starting the treatment, at the 6th session and at the 12th session.

Leakage index, an instrument designed to evaluated women’s perceptional stress incontinence is a 5-point scale (1=never, 5=always) containing 13 types of physical activities known to trigger urinary leakage [16]. This index was applied before and after treatment. The king’s Health Questionnaire (khq) was also applied for the assessment of quality of life [17]. After treatment, all participants still answered a subjective improvement grade: cured, almost cured, improved, unchanged and worse [4].
Absolute frequencies were used for the categorical variables and Wilcoxon test was applied for non-parametric data. A P-value < 0.05 was defined as significant. Data were entered into excel and analyzed by the statistical analyzing system (SAS) version 8.2.

Results

The mean age was 42.5 years old (range 31-52), mean of body mass index was 27.1 kg/m2 (range 21.2-34.7) and duration of symptoms was 5.4 years (range 2-10). One woman was nuliparous, 14 had 1-3 deliveries and 11 have had more than 3 deliveries. Seven women have had only cesarean section and 19 have had at least one vaginal delivery. The pelvic examination revealed cystocele grade I in most women (61,5%).

Based on the seven-day diary the voiding frequency did not change. Urinary losses frequency, nocturia and the number of pads decreased significantly at the end of the treatment (table 1).

After completing the treatment, 8 (61,5%) women did not use any pads, compared to 13 (50%) before treatment. Twenty-two (84.6%) women showed a reduction of 50% or more in urine losses frequency. Ten (38,5%) of these women reported complete remission of the symptom. The remaining four participants have had an improvement of less than 50% of urinary losses frequency.
Objective cure (≤ 2 grams) was found in 20 (76.9%) women and six women (23.1%) still had mild leakage on pad test. Based on the amount of leakage in grams, 18 women improved at least 75%, four between 50%-74% and four improved less than 50% of the urine leakage.

There was a significant improvement in pelvic floor muscle strength evaluated by vaginal palpation and by perineometry. Results showed an increase of 15 and 12 cmh$_2$o in the maximum and in the average pressure contractions, respectively (table 2).

According to the grade of pelvic floor muscle strength, 20 (76.9%) women showed grade 0 or 1 (absent/weak) before treatment. After the treatment, almost all of women (92.3%) showed grade 2 or 3 (moderate/strong), demonstrating an evolution/improvement in at least one grade after PFME sEMG-assisted biofeedback.

There was a significant increase in the sEMG amplitudes of all contractions throughout the treatment (p<0.0001). In the middle of treatment (after six sessions) the difference in phasic and tonic 10 and 20 seconds was significantly higher in comparison with initial (p<0.0001). However, these values still increased until the end of treatment, except to the tonic contraction of 20 seconds, which remained quite similar from to the 6th to 12th session (0.0653) (figure 1).

Figure 2 shows the leakage index values before and after treatment. The corresponding means were 3.52 (± 0.83) and 1.66 (± 0.63), respectively. The difference was statistically significant (p<0.001).
The quality of life (QOL) by King’s Health Questionnaire (KHQ) showed a significant improvement in all score domains with the exception of the personal relationships domain. The results of the score domains are detailed in table 3.

Additional subjective reports showed that 23 (88.5%) women referred improvement: 6 (23.1%) cured and 17 (65.4%) almost cured. None women reported as unchanged or worsening after treatment.

Discussion

This study showed that PFME sEMG-assisted biofeedback is efficient in relieving the symptoms of SUI in pre-menopausal women. These results are in agreement to others authors about the effect of pfme with biofeedback [8, 11, 18, 19, 20, 21]. Most of these studies, however, have included women not regarding their age and/or their hormonal status.

Our study included only pre-menopausal women because they might obtain additional benefits from initial conservative therapies for SUI. Although stress incontinence is common in postmenopausal patient it does frequently occur in women of reproductive age who may wish to retain their reproductive potential. Despite this fact, most urologists and gynecologists do not view potential future childbearing as a contraindication to incontinence surgery [22]. However, reports have been made regarding the effects of pregnancy on prior surgery procedures. Casper et al. [23] on his experience four patients who had a pregnancy complicated by a prior Burch or Marshall–Marchetti–Krantz procedure. Lynch et al. [24] reported a pregnancy complicated by a sling procedure, resulting in
urethral obstruction, pyelonephritis and recurrence of incontinence. Determining which anti-incontinence procedure offers the greatest benefit to a patient who expresses her desire for future childbearing is difficult. Women with prior surgery who still desire fertility should probably be advised toward conservative treatment as physical therapy.

The present study found a significant improvement in urinary losses frequency per week, showing improvement in 84.6% women, whereas only 10 (38.4%) women reported complete remission of symptoms. Our results are quite similar to previous reports that found cure and improvement from 69% to 85% [11, 20]. Those authors used longer treatment and/or associated with semg-controlled biofeedback home training. Instead of a long-term treatment we performed a protocol of 12 sessions and without additional home training. It suggests that success can be reached with relative fewer number of physiotherapy sessions.

A significant decrease in the amount of urinary leakage on pad test was found in the present study, showing that 77% of women were dry. This rate is in according to other trials that found rates range from 58% - 80% [8, 18, 21, 25]. Some of these studies used a pad test with standardized bladder volume, witch is known more reliable than those without standardized volume [25]. We did not perform the pad test with standardized volume due to local restrictions. The objective cure rate was higher than the subjective cure (23% vs. 77%). This might mean that the subjective feeling not always reflects the objective cure or dry on the objective pad test. In addition, the pad test could have had a bias due to the knowledge of this procedure by the patient after the first test.
The evaluation of pelvic floor muscle strength by vaginal palpation and perineometry are very simple methods to control success of therapy. Using both measures, we found significant increase in pelvic muscle strength. At the initial vaginal palpation, 20 (76.9%) women were unable to satisfactorily contract their pelvic floor muscle, similarly reported in the literature [26]. However, after treatment, almost all of them (92.3%) were able to satisfactorily contract these muscles and the pressure contractions were twice by perineometry. It suggests that one of the benefits of sEMG biofeedback is the acquisition of the appropriate pelvic floor contraction. This device facilitates this specific physiologic response otherwise undetected and the visualization of a small amplitude contraction with low force [27].

Pelvic floor muscle strength is an important feature for stabilization of bladder neck and urethra [28]. Results using pelvic floor rehabilitation based on the Integral Theory have recently encouraged this approach. This theory postulates that pelvic floor is a closely integrated system whereby three directional muscle forces pull against the pelvic ligaments and fascia to open and close urethra and bladder neck. This is a fundamental biomechanical concept that strengthening a muscle will also strengthen its insertion point [6].

In addition, we observed that the highest increase in sEMG amplitude values was found between the initial and after the 6th session (i.e., in the middle of treatment). Berghmans et al. [10] comparing PFME with or without biofeedback showed that a significant improvement was also reached after six sessions in the biofeedback group. At the final of 12 sessions, however, the difference between groups was not significant. Based on these results we can hypothesize that biofeedback is essential on the beginning of treatment for a faster improvement.
A criticism to PFME has been that its long-term duration could influence the compliance to this therapy for SUI. Some women may find the exercise hard to conduct at a regular basis [28]. We have had no dropouts and this could probably have occurred due to the relative low number of sessions in our study protocol. However, Glavind et al. [19] concluded that long-term effect with biofeedback was better than PFME alone because of the higher patient motivation for training. We believe that the motivation is not only related with the frequency of sessions but with believe, interest and ability of both the instructor and the patient.

Quality of life has become an important outcome measure in clinical trials of treatment for incontinence. All participants in the present study were in pre-menopausal period and an important consideration for some authors is that younger women revealing more impairment on quality of life than older women [2]. These women are socially, economic and sexual active, what probably contributes to negative effects on quality of life face to stress urinary incontinence. We observed a significant improve in the quality of life after treatment especially those related to the limitations (role, physical and social) and to severity measures.

In conclusion, PFME sEMG-assited biofeedback has shown to be effective for SUI in pre-menopausal women. Despite of this therapy is taking time and costs consuming, this approach is an option and can be a promising alternative as a conservative treatment for SUI for appropriate medical indication, as well as in pre-menopausal women.
References

1. Hannestad YS, Rortveit G, Sandvik H, Hunskaar A (2000) A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. J Clin Epidemiol 53: 1150-1157

2. Fultz NH, Burgio K, Diokno A, Kinchen K, Obenchain R, Bump R (2003) Burden of stree urinary incontinence for community-dwelling women. Am J Obstet Gynecol 189: 1275-1282

3. Burns PA, Pranikoff K, Nochajski TH, Hadley EC, Levy KJ (1993) A comparison of effectiveness of biofeedback and pelvic floor muscle exercise treatment of stress urinary incontinence in older community dwelling women. J Gerontol Med Sci 48:167-174

4. Bo K, Talseth T, Holme I (1999) Single blind, randomized controlled trial of pelvic floor exercise, electrical stimulation, vaginal cones, and no treatment in management of genuine stress incontinence. BMJ 318: 487-493

5. Skilling P, Petros P (2004) Synergystic non-surgical management of pelvic floor dysfunction: second report. Int Urogynecol J 15:106-110

6. Fantl JA, Newman DK, Colling J, DeLancey J, Keeys C, Loughery, et al (1996) Urinary incontinence in adults: acute and chronic management 2, update [96-0682], 1-154. U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. Clinical Practice Guideline, Rockville, MD
7. Aksac B, Aki S, Karan A, Yalcin O, Isikoglu M, Eskiyurt N (2003) Biofeedback and pelvic floor exercises for the rehabilitation of urinary stress incontinence. Gynecol Obstet Invest 56: 23-27

8. Amaro JL, Oliveira MO, Padovani CR (2003) Treatment of urinary stress incontinence by intravaginal electrical stimulation and pelvic floor physiotherapy. Int Urogynecol J 14: 204-208

9. Herrmann V, Potrik BA, Palma PCR, Zanetini CL, Marques AA, Junior NRN (2003) Eletroestimulação transvaginal do assoalho pélvico no tratamento da incontinência urinária de esforço: avaliações clínica e ultra-sonográfica. Rev Assoc Med Bras 49: 401-405

10. Berghmans LCM, Frederick CMA, de Brie RA, van Waalwijk van Doorn ESC, Janknegt RA (1996) Efficacy of biofeedback, when included with pelvic floor muscle exercise treatment, for genuine stress incontinence. Neurourol Urodyn 15: 37-52

11. Pages IH, Jarh S, Schaufele MK, Conrad E (2001) Comparative analysis of biofeedback and Physical Therapy for the treatment of urinary stress incontinence in women. Am J Phys Med Rehabil 80: 494-502

12. Jorgensen L, Lose G, Andersen JT (1987) One-hour pad-weighing test for objective assessment of female urinary incontinence 69: 39-42

13. Brink CA, Wells J, Sampselle CM, Taillie ER, Mayer R (1994) A digital test for pelvic muscle strength n women with urinary incontinence. Nurs Res 43: 352-356

14. Isherwood PJ, Rane A (2000) Comparative assessment of pelvic floor strength using a perineometer and digital examination. Br J O & G 107: 1007-1011

15. Glazer HI, Romanzi L, Polaneczky M (1999) Pelvic floor muscle surface electromyography: reability and clinical predictive validity. J Reprod Med 44: 779-782
16. Bo K (1994) Reproducibility of instruments designed to measure subjective evaluation of female stress urinary incontinence. Scand J Urol Nephrol 28: 97-100

17. Tamanini JTN, D’Ancona CAL, Botega JN, Jr NRN (2003) Validação do “King’s Health Questionnaire” para o português em mulheres com incontinência urinária. Rev Saúde Pública 37: 203-211

18. Glavind K, Nohr B, Walter S (1996) Biofeedback and physiotherapy versus physiotherapy alone in the treatment of genuine stress incontinence. Int Urogynecol J 7: 339-343

19. Glavind K, Laursen B, Jaquet A (1998) Efficacy of biofeedback in the treatment of urinary stress incontinence. Int Urogynecol J 9: 151-153

20. Hirsh A, Weirauch G, Steimer B, Bihler K, Peschers U, Bergauer F, Leib B, Dimpfl T (1999) Treatment of female urinary incontinence with EMG-controlled biofeedback home training. Int Urogynecol J 10: 7-10

21. Sugaya K, Owan T, Hatano T, Nishijima S, Miyazato M, Mukouyama H et al (2003) Device to promote pelvic floor muscle training for stress incontinence. Int J Urol 10: 416-422

22. Dainer M (1998) Pregnancy following incontinence surgery. Int Urogynecol J 9: 385-390

23. Casper FW, Lin JF, Black P (1999) Obstetrical management following incontinence surgery. J Obstet Gynecol Res 25: 51-53

24. Lynch CM, Powers AK, Keating AB (2001) Pregnancy complicated by a suburethral sling: a case report. Int Urogynecol J 12: 218-219

25. Morkeved S, Bo K, Fjortoft T (2002) Effect of adding biofeedback to pelvic floor muscle training to treat urodynamic stress incontinence. Obstet Gynecol 100: 730-739
26. Bump RC, Hurt WG, Fantl AJ (1991) Assessment of Kegel pelvic muscle exercise performance after brief verbal instruction. Am J Obstet Gynecol 165: 322-329

27. Aukee P, Immonen P, Penttinen J, Laippala P, Airaksinen O (2002) Increase in pelvic floor muscle activity after 12 week’s training: a randomized prospective pilot study. Urolgy 60: 1020-1024

28. Bo K (2004) Pelvic floor muscle training is effective in treatment of female stress urinary incontinence, but how does it work?. Int Urogynecol 15: 76-84
Figure legends

Figure 1. Surface electromyography (sEMG) amplitudes in microvolts (µV) of phasic and 10 and 20 tonics contractions: before, in the middle and after treatment (n=26).

Figure 2. Leakage index values before and after treatment (n=26).
Table 1. Seven-day voiding frequency, urinary losses frequency, nocturia and number of pads before and after treatment (n=26).

Seven-day diary	Before treatment*	After treatment*	P value**
Voiding frequency	47.8 ± 18.3	48.9 ± 11.3	0.2878
Urinary losses frequency	14.8 ± 17.0	3.2 ± 4.2	<0.0001
Nocturia	11.1 ± 11.1	5.6 ± 3.1	0.0012
Number of pads	6.0 ± 8.1	1.0 ± 2.1	0.0014

*values are in means ± SD

** Wilcoxon sign rank test
Table 2. Pelvic floor muscle strength evaluated by vaginal palpation and perineometry before and after treatment (n=26).

Pelvic floor muscle strength	Before treatment*	After treatment*	P value**
Grade of vaginal palpation	1.0 ± 0.8	2.4 ± 0.6	<0.0001
Perineometry (cm de H₂O)			
Maximum contraction	24.5 ± 16.0	40.0 ± 17.0	<0.0001
Average contraction	14.6 ± 9.4	26.7 ± 11.7	<0.0001

*values are in means ± SD

** Wilcoxon test
Table 3. Comparison of scores in domains of King’s Health Questionnaire (KHQ) before and after treatment (n=26).

Quality of life (QOL) domains	Before treatment*	After treatment*	P value**
General health perception	49.4 ± 23.9	26.9 ± 15.6	0.0015
Incontinence impact	78.2 ± 28.1	32.5 ± 30.5	0.0001
Role limitation	75.0 ± 27.1	13.4 ± 22.6	<0.0001
Physical limitation	72.4 ± 29.4	15.3 ± 24.4	<0.0001
Social limitation	38.2 ± 28.5	6.4 ± 14.6	<0.0001
Personal relationships	60.5 ± 33.8	41.6 ± 16.6	0.0679
Emotions	58.9 ± 33.8	14.1 ± 24.6	0.0001
Sleep / energy	33.9 ± 23.8	6.4 ± 16.3	0.0001
Severity measures	66.9 ± 19.6	22.3 ± 24.2	<0.0001

*values are in means ± SD

**Wilcoxon test
Figure 1

* values are in means ± SD
** Wilcoxon test
Figure 2

*values are in mean ± SD

** Wilcoxon test
4. Conclusões

- A frequência de perdas urinárias foi significativamente menor após o tratamento fisioterápico.

- Houve redução significativa do volume de perda urinária após o tratamento fisioterápico.

- Houve um aumento significativo da força muscular do assoalho pélvico após o tratamento fisioterápico.

- Os valores eletromiográficos das amplitudes das contrações fásicas e tônicas de 10 e 20 segundos aumentaram significativamente ao longo do tratamento, principalmente na primeira metade do tratamento.

- Houve uma melhora significativa em relação ao índice de perda urinária após o tratamento fisioterápico.

- Houve melhora da qualidade de vida em praticamente todos os parâmetros avaliados após o tratamento fisioterápico.

- Após o tratamento fisioterápico, a maioria das mulheres referiu melhora importante dos sintomas urinários, sentindo-se curadas ou quase curadas.
5. Referências Bibliográficas

ABOUASSALY, R.; STEINBERG, J.R.; LEMIEUX, M.; MAROIS, C.; GILCHRIST, L.I.; BOURQUE, J.L. et al. Complications of tension-free vaginal tape surgery: a multi-institutional review. *BJU Int*, 94:110-3, 2004.

ABRAMS, P.; CARDOZO, L.; FALL, M.; GRIFFITHS, D.; ROSIER, P.; ULMSTEN, U. et al. The standardization of terminology of lower urinary tract function: report from the standardization of terminology sub-committee of the International Continence Society. *Urology*, 61:3-49, 2003.

AMARO, J.A.; GAMEIRO, M.O.; MOREIRA, E.H. Exercícios perineais. In: RIBEIRO, R.M; ROSSI. P.; PINOTTI, J.A. *Uroginecologia e cirurgia vaginal*. São Paulo: Roca; 2001. p.5-62.

AMARO, J.L.; OLIVEIRA, M.O.; PADOVANI, C.R. Treatment of urinary stress incontinence by intravaginal electrical stimulation and pelvic floor physiotherapy. *Int Urogynecol J*, 14:204-8, 2003.

AKSAC, B.; AKI, S.; KARAN, A.; YALCIN, O.; ISIKOGLU, M.; ESKİYURT, N. Biofeedback and pelvic floor exercises for the rehabilitation of urinary stress incontinence. *Gynecol Obstet Invest*, 56:23-7, 2003.
AUKEE, P.; IMMONEN, P.; PENTTINEN, J.; LAIPPALA, P.; AIRAKSINEN O. Increase in pelvic floor muscle activity after 12 week’s training: a randomized prospective pilot study. *Urology*, 60:1020-4, 2002.

BASMAJAN, J.V. Introduction: principles and background. In: BASMAJAN, J.V. *Biofeedback: principles and practice for clinicians*. 3ª ed. Maryland: Williams & Williams; 1981. p.1-4.

BERGERON, S.; BINIK, Y.M.; KHALIFE, S.; PAGIDAS, K.; GLAZER, H.; MEANA, M. et al. A randomized comparison of group cognitive-behavioral therapy, surface electromyographic biofeedback, and vestibulectomy in the treatment of dyspareunia resulting from vulvar vestibulitis. *Pain*, 91:29-306, 2001.

BERGHMANS, L.C.M.; FREDERICK, C.M.A.; DE BRIE, R.A.; VAN WAALWIJK VAN DOORN, E.S.C.; JANKNEGT, R.A. Efficacy of biofeedback, when included with pelvic floor muscle exercise treatment, for genuine stress incontinence. *Neurourol Urodyn*, 15:37-52, 1996.

BERNARDES, N.O.; PERES, F.R.; SOUZA, E.B.L; SOUZA, O.L. Métodos de tratamento utilizados na incontinência urinária de esforço genuína: um estudo comparativo entre cinesioterapia e eletroestimulação endovaginal. *RBGO*, 22:49-54, 2000.

BLANES, L.; PINTO, R.C.T.; SANTOS, V.L.C.G. Urinary incontinence knowledge and attitudes in São Paulo. *Braz J Urol*, 27:281-8, 2001.

BO, K. Reproducibility of instruments designed to measure subjective evaluation of female stress urinary incontinence. *Scand J Urol Nephrol*, 28:97-100, 1994.

BO, K.; TALSETH, T.; HOLME, I. Single blind, randomized controlled trial of pelvic floor exercise, electrical stimulation, vaginal cones, and no treatment in management of genuine stress incontinence. *BMJ*, 318:487-93, 1999.
BO, K. Pelvic floor muscle training is effective in treatment of female stress urinary incontinence, but how does it work? *Int Urogynecol*, 15:76-84, 2004.

BO, K; KAVARSTEIN, B. 15 year follow-up randomized controlled trial of pelvic floor muscle training to treat female udodynamics stress incontinence. In: International Continence Society and International Urogynecological Association Joint Meeting, 658., 2004, Paris. Anais eletrônicos…Paris, 2004. Disponível em <http://www.icsoffice.com>. Acesso em; 18 out. 2004.

BOMBIERI, L.; FREEMAN, R.M. Surgery for stress urinary incontinence. *Cur Obstet Gynaecol*, 13:287-93, 2003.

BOURCIER, A.P. Applied biofeedback in pelvic floor reeducation. In: APPELL, R.A.; BOURCIER, A.P.; LA TORRE, F. *Pelvic Floor Dysfunction–investigations & conservative treatment*. Paris: Casa Editrice Scientifica Internazionale; 1999. p 241-8.

BRINK, C.A.; WELLS, J.; SAMPSELLE, C.M.; TAILLIE, E.R.; MAYER, R. A digital test for pelvic muscle strengh n women with urinary incontinence. *Nurs Res* 43:352-6, 1994.

BRUSCHINI, H. Avaliação crítica das principais formas de tratamento cirúrgico da incontinência urinária na mulher. In: RUBINSTEIN, I. *Clínicas Brasileiras de Urologia – Incontinência urinária na mulher*. Rio de Janeiro: Atheneu; 2001. p.177-81.

BUMP, R.C.; HURT, W.G.; FANTL, A.J. Assessment of Kegel pelvic muscle exercise performance after brief verbal instruction. *Am J Obstet Gynecol*, 165:322-9, 1991.

BURGIO, K.L.; ROBINSON, C.J.; ENGEL, B.T. The role of biofeedback in Kegel exercise training for stress urinary incontinece. *Am J Obstet Gynecol*, 154:58-64, 1986.
BURGIO, K.L.; MATTEWS, K.A.; ENGEL, B. Prevalence, incidence and correlates of urinary incontinence in health, middle-aged women. *J Urol*, 146:1255-9, 1991.

BURGIO, K. Behavioral treatment options for urinary incontinence. *Gastroenterology*, 126:S82-9, 2004.

BURNS, P.A.; PRANIKOFF, K.; NOCHAJSKI, T.H.; HADLEY, E.C.; LEVY, K.J. A comparison of effectiveness of biofeedback and pelvic floor muscle exercise treatment of stress urinary incontinence in older community dwelling women. *J Gerontol Med Sci*, 48:167-74, 1993.

CAMMU, H.; VAN NYELEN, M.; Pelvic floor muscle exercise: 5 years later. *Urology*, 45:113-8, 1995.

CASPER, F.W.; LIN, J.F; BLACK, P. Obstetrical management following incontinence surgery. *J Obstet Gynecol Res*, 25:51-3, 1999.

CASTLEDEN, C.M.; DUFFIN, H.M.; MITCHELL, E.P. The efficacy of physiotherapy on stress incontinence. *Age Agein*, 13:235-7, 1984.

DAINER, M.. Pregnancy following incontinence surgery. *Int Urogynecol J*, 9:385-90, 1998.

DE KUIJF, Y.P.; VAN WEGEN, E. Pelvic floor muscle exercise therapy with myofeedback for women with stress urinary incontinence: a meta-analysis. *Physiotherapy*, 82:107-13, 1996.

FANTL, J.A.; NEWMAN, D.K.; COLLING, J.; DELANCEY, J.; KEEYS, C.; LOUGHERY, A. et al. Urinary incontinence in adults: acute and chronic management 2, update [96-0682], 1-154. U.S. Department of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research. Clinical Practice Guideline, Rockville, MD, 1996.
FELDNER, J. P.C.; BEZERRA, L.R.P.S.; GIRÃO, M.J.B.C.; CASTRO, R.A.; SARTORI, M.G.F.; BARACAT, E.C. et al. Valor da queixa clínica e exame físico no diagnóstico da incontinência urinária. *RBGO*, 24:87-91, 2002.

FULTZ, N.H.; BURGIO, K.; DIOKNO, A.; KINCHEN, K.; OBENCHAIN, R.; BUMP, R. Burden of stress urinary incontinence for community-dwelling women. *Am J Obstet Gynecol*, 189:1275-82, 2003.

GUARISI, T.; PINTO-NETO, A.M.; OSIS, M.J.; PEDRO, A.O.; PAIVA, L.H.C.; FAÚNDES, A. Incontinência urinária entre mulheres climatéricas brasileiras: inquérito domiciliar. *Rev Saúde Pública*, 35:428-35a, 2001.

GUARISI, T.; PINTO-NETO, A.M.; OSIS, M.J.; PEDRO, A.O.; COSTA-PAIVA, L.H.S.; FAUNDES, A. Procura de serviço médico por mulehres com incontinência urinária. *RBGO*, 23:439-43, 2001b.

GLAVIND, K.; NOHR, B.; WALTER, S. Biofeedback and physiotherapy versus physiotherapy alone in the treatment of genuine stress incontinence. *Int Urogynecol J*, 7:339-43, 1996.

GLAVIND, K.; LAURSEN, B.; JAQUET, A. Efficacy of biofeedback in the treatment of urinary stress incontinence. *Int Urogynecol J*, 9:151-3, 1998.

GLAZER, H.I.; ROMANZI, L.; POLANECZKY, M. Pelvic floor muscle surface electromyography: reliability and clinical predictive validity. *J Reprod Med*, 44:779-82, 1999.

GROSSE, D.; SENGLER, J. As técnicas da reeducação perineal. In: GROSSE, D.; SENGLER, J. *Rodoela*. São Paulo: Manole; 2002. p.61-100.

GUNNARSSON, M.; MATTIASSON A. Female stress, urge and mixed urinary incontinence are associated with a chronic and progressive pelvic floor/vaginal neuromuscular disorder: an investigation of 317 health and incontinent women using vaginal surface electromyography. *Neuroourol Urodyn* 18:613-21, 1999.
HANNESTAD, Y.S.; RORTVEIT, G.; SANDVIK, H.; HUNSKAAR, A. A community-based epidemiological survey of female urinary incontinence: the Norwegian EPINCONT study. *J Clin Epidemiol*, 53:1150-7, 2000.

HAY-SMITH, E.J.C.; BO, K.; BERGHMANS, L.C.M.; HENDRIKS, H.J.M.; DE BIE, R.A.; VAN WAALWIJK VAN DOORN, E.S.C. Pelvic floor muscle training for urinary incontinence in women. Cochrane Database Syst Rev 2001 CD:Review.

HERRMANN, V.; PALMA, P.C.R. Incontinência urinária. In: NETO JUNIOR, N.R.; WROCLAWSKI, E.R. *Urologia: fundamentos para o clínico*. São Paulo: Sarvier; 2000. p.247-56.

HERRMANN, V.; POTRIK, B.A.; PALMA, P.C.R.; ZANETINI, C.L.; MARQUES, A.A.; JUNIOR, N.R.N. Eletroestimulação transvaginal do assoalho pélvico no tratamento da incontinência urinária de esforço: avaliações clínica e ultrasonográfica. *Rev Assoc Med Bras*, 49:401-5, 2003.

HIRSH, A.; WEIRAUCH, G.; STEIMER, B.; BIHLER, K.; PESCHERS, U.; BERGAUER, F. et al. Treatment of female urinary incontinence with EMG-controlled biofeedback home training. *Int Urogynecol J*, 10:7-10, 1999.

HUNTER, K.F.; MOORE, K.N.; CODY, D.J.; GLAZENER, C.M. Conservative management for prostatectomy urinary incontinence, Cochrane Database Syst Rev, 2: CD001843, 2004.

ISHERWOOD, P.J.; RANE, A. Comparative assessment of pelvic floor strength using a perineometer and digital examination. *Br J Obstet Gynecol*, 107:1007-11, 2000.

JORGENSEN, L.; LOSE, G.; ANDERSEN, J.T. One-hour pad-weighing test for objective assessment of female urinary incontinence. *Obstet Gynecol*, 69:39-42, 1987.
JUNDT, K.; PESCHERS, U.M.; DIMPFL, T. Long-term efficacy of pelvic floor re-education with EMG-controlled biofeedback. *Eur J Obstet Gynecol*, 105:181-5, 2002.

KEGEL, A.H. Progressive resistance exercise in the functional restoration of the perineal muscle. *Am J Obstet Gynecol*, 56:238-49, 1948.

KNIGHT, S.J.; LAYCOCK, J. The role of biofeedback in pelvic floor reeducation. *Physiotherapy*, 80:145-8, 1994.

KOBATA, S.A.; TAKANO, C.C.; CASTRO, R.A.; SARTORI, M. G. F.; BARACAT, E. B.; LIMA, G.R. et al. *Eletromiografia*. In: RIBEIRO, R.M.; ROSSI, P.; PINOTTI, J.A. *Uroginecologia e cirurgia vaginal*. São Paulo: Roca; 2001. p.48-52.

KOELBL, H.; STRASSEGGER, H.; RISS, P.A.; GRUBER, H. Morphologic and functional aspects of pelvic floor muscle in patients with pelvic relation and genuine stress incontinence. *Obstet Gynecol*, 74:789-95, 1989.

KOFF, W. J. Principais formas de tratamento. In: RUBINSTEIN, I. *Clínicas Brasileiras de Urologia – Incontinência urinária na mulher*. Rio de Janeiro: Atheneu; 2001. p.177-81.

LYNCH, C.M.; POWERS, A.K.; KEATING, A.B. Pregnancy complicated by a suburethral sling: a case report. *Int Urogynecol J*, 12:218-9, 2001.

MARTINEZ-PUENTE, M. C.; PASCUAL-MONTEIRO, J.A.; GARCIA-OLMO, D. Customized biofeddback therapy improves results in fecal incontinence. *Int J Colorectal Dis*, 19:210-4, 2004.

MINASSIAN, V.A.; DRUTZ, H.P.; AL-BADR, A. Urinary incontinence as a worldwide problem. *Int J Gynecol Obstet*, 82:327-38, 2003.

MORENO, A.L. Recuperação funcional do assoalho pélvico. In:MORENO, A.L. *Fisioterapia em uroginecologia*. São Paulo: Manole; 2004. p.113-40.
MORKEVED, S.; BO, K.; FJORTOFT, T. Effect of adding biofeedback to pelvic floor muscle training to treat urodynamic stress incontinence. *Obstet Gynecol*, 100:730-9, 2002a.

MORKEVED, S.; SALVESSEN, K.; BO, K.; EIK-NES, S. Pelvic floor muscle strength and thickness in incontinent women. *Neurol Urodyn*, 21:358-9, 2002b.

ORTIZ, O.C. Stress urinary in gynecological practice. *Int J Gynecol Obstet*, 86:S6-S16, 2004.

PAGES, I.H.; JARH, S.; SCHAUFELE, M.K.; CONRADI, E. Comparative analysis of biofeedback and Physical Therapy for the treatment of urinary stress incontinence in women. *Am J Phys Med Rehabil*, 80:494-502, 2001.

PACETTA, A.P.; RIBEIRO, R.M.; HADDAD, J.M.; PINOTTI, J.A. Tratamento não-cirúrgico da incontinência urinária de esforço. *Rev Centro Ref*, 1:22-6, 1996.

PALMA, P.C.R.; RICCETO, C.LZ. Incontinência urinária de esforço na mulher. In: NETTO JÚNIOR, N.R. *Urologia prática*. São Paulo: Atheneu; 1999. p.107-21.

PEYRAT, L.; HAILLOT, O.; BRUYERE, F.; BOUTIN, J.M.; BERTRAND, P.; LANSON, Y. Prevalence and risk factors of urinary incontinence in young and middle-aged women. *BJU Int*, 98:61-6, 2002.

SALEH, N.; BERNER, A.; KHENYAB, N.; AL-MANSORI, Z.; AL-MURAIKHI, A. Prevalence, awareness and determinants of health care-seeking behavioral for urinary incontinence in Qatari women: a neglected problem? *Maturitas*, in press, 2004.

SIRACUSANO, S.; PREGAZZI, R.; D’ALOIA, G.; SARTORE, A.; DI BENEDETTO, P.; PECORARI, V. et al. Prevalence of urinary incontinence in young and middle-aged women in a Italian urban area. *Eur J Obstet Gynecol*, 107:201-4, 2003.
SHEPHERD, A.M.; MONTGOMERY, E.; ANDERSON, R.S. Treatment of genuine stress incontinence with a new perineometer. *Physiotherapy*, 69:113, 1983.

SKILLING, P.; PETROS, P. Synergistic non-surgical management of pelvic floor dysfunction: second report. *Int Urogynecol J*, 15:106-10, 2004.

SUGAYA, K.; OWAN, T.; HATANO, T.; NISHIJIMA, S.; MIYAZATO, M.; MUKOYAMA, H. et al. Device to promote pelvic floor muscle training for stress incontinence. *Int J Urol*, 10:416-22, 2003.

TAYLOR, K.; HANDERSON, J. Effects of Biofeedback and urinary stress incontinence in older women. *J Gerontol Nur*, 12:25-30, 1986.

TAMANINI, J.T.N.; D’ANCONA, C.A.L.; BOTEBA, J.N.; JUNIOR, N.R.N. Validação do “King’s Health Questionnaire” para o português em mulheres com incontinência urinária. *Rev Saúde Pública*, 37:203-11, 2003.

TELEMAN, P.M.; GUNNARSSON, M.; LIDFELDT, J.; NERBRAND, C.; SAMSIOE, G.; MATTIASSON, A. Urethral pressure changes in response to squeeze: A population-based study in health and incontinent 53- to 63-year-old women. *Am J Obstet Gynecol*, 189:1100-5, 2003.

TRIES, J.; BRUBAKER, L. Application of biofeedback in the treatment of urinary incontinence. *Prof Psychol*, 27:554-60, 1995.

WEATHERALL, M. Biofeedback or pelvic floor muscle exercise for female genuine stress incontinence: a meta-analysis of trials identified in a systematic review. *BJU Int*, 83:1015-6, 1999.

WILSON, L.; BROWON, J.S.; SHIN, G.P.; LUC, K.; SUBAK, L. Annual direct cost of urinary incontinence. *Obstet Gynecol*, 98:398:406, 2001.
6. Bibliografia de Normatizações

FRANÇA, J.L.; BORGES, S.M.; VASCONCELLOS, A.C.; MAGALHÃES, M.H.A.
– Manual para normatização de publicações técnico-científicas. 4ª ed.,
Editora UFMG, Belo Horizonte, 1998. 213p.

Normas e procedimentos para publicação de dissertações e teses. Faculdade
de Ciências Médicas, UNICAMP. Ed. SAD – Deliberação CCPG-001/98
(alterada 2002).
7. Anexos

7.1. Anexo 1 - Ficha De Dados

DATA: /____/____/____/ No. /____/____/

SEÇÃO 1- DADOS GERAIS

1.1 Idade: /____/____/
1.2 Data de nascimento: /____/____/ /____/____/ /____/____/____/____/
1.3 Peso: /____/____/, /_____/kg
1.4 Altura: /_____/, /_____/_____/m
1.5 Cor da pele/etnia:
 (1)branca (2)preta (3)amarela (4)parda (5)indígena (6) outra
1.6 Número de gestações: /_____/_____/
1.7 Número de partos vaginais: /_____/_____/
1.8 Prolapso (graus):
 Cistocèle I () II ()
 Reticèle I () II ()
 Uretrocèle I () II ()
 Prolapso uetrino I () II ()
1.9 Tempo de perda urinária: /____/____/ anos /____/____/ meses
1.10 Dados urodinâmicos:___
SEÇÃO 2- AVALIAÇÃO INICIAL

diário miccional:

2.1 freqüência urinária semanal: /_____/_____
2.2 noctúria semanal: /_____/_____
2.3 episódios de perdas urinárias semanal: /_____/_____
2.4 número de absorventes semanal: /_____/_____

2.5 Pad test: /_____/_____/, /_____//_____/ gramas

2.6 Força de contração: (0) ausente (1) leve (2) moderada (3) forte

2.7 Perineômetro:
 2.4.1 máxima: ___________ cmH20
 2.4.2 média: ___________ cmH20

2.8 Valor da eletromiografia (sEMG) em microvolts:
 - repouso inicial: /_____/_____/, /_____/
 - contração fásica: /_____/_____/, /_____/
 - contração tônica (10s): /_____/_____/, /_____/
 - contração tônica (20s): /_____/_____/, /_____/
 - repouso final: /_____/_____/, /_____/

2.9 Índice de perda (perde urina quando?)

Atividade	(1)nunca	(2)raramente	(3)as vezes	(4)freqüentemente	(5)sempre
Tosse					
Dá risada					
Espirra					
Deitada - sentada					
Sentada – em pé					
Andando no plano					
Subida					
Descida					
Pula (pernas juntas)					
Pula (pernas afastadas)					
Corre					
Carrega/levanta peso					
Movimento rápido					

SEÇÃO 3- AVALIAÇÃO FINAL

DATA: /____/____/____

diário miccional:

3.1 freqüência urinária semanal: /____/____/

3.2 noctúria semanal: /____/____/

3.3 episódios de perdas urinárias semanal: /____/____/

3.4 número de absorventes semanal: /____/____/

3.5 Pad test: /____/____/, /_____//_____/ gramas

3.6 Força de contração: (0) ausente (1) leve (2) moderada (3) forte

3.7 Perineômetro:

3.4.1 máxima: ____________ cmH2O

3.4.2 média: ____________ cmH2O
3.8 Valor da eletromiografia (SEMG) em microvolts:

- repouso inicial: /____/____/, /_____/
- contração fásica: /____/____/, /_____/
- contração tônica (10s): /____/____/, /_____/
- contração tônica (20s): /____/____/, /_____/
- repouso final: /____/____/, /_____/

3.9 Índice de perda (perde urina quando?)

	(1)nunca	(2)raramente	(3)as vezes	(4)frequentemente	(5)sempre
Tosse					
Dá risada					
Espirra					
Deitada - sentada					
Sentada – em pé					
Andando no plano					
Subida					
Descida					
Pula (pernas juntas)					
Pula (pernas afastadas)					
Corre					
Carrega/levanta peso					
Movimento rápido					

4.0 Como a senhora se sente depois de ter feito este tratamento?

(1) não perco mais nada de urina [continente - curada]
(2) ainda perco urina, mas muito pouco [quase continente - quase curada]
(3) ainda perco urina, mas estou melhor [melhor]
(4) não percebi nenhuma mudança [inalterada]
(5) sinto que estou pior [pior]

No. /____/_____/

Nome:__ H.C: __________
Endereço:__
Cidade: ___________________________ telefone: ___________________________
Data de nascimento: _____/_____/_______ Idade: _______ anos.
7.2. **Anexo 2 - Termo de Consentimento Livre e Esclarecido**

INCONTINÊNCIA URINÁRIA DE ESFORÇO EM MULHERES NO MENACME: TRATAMENTO COM EXERCÍCIOS DO ASSOALHO PÉLVICO ASSOCIADOS AO BIOFEEDBACK ELETROMIOGRÁFICO

Responsável pela pesquisa: Mariana Tirolli Rett

No.:____/_____/

Eu,__,______anos,
RG:_______________________________pronutário(HC):________________
Endereço:______________________________No.:_______Bairro:________________
Cidade:________________________Telefone:________________________________

fui convidada a participar de uma pesquisa que tem como objetivo avaliar um dos tratamentos oferecido pela fisioterapia para melhorar a perda urinária.

Fui informada que há diferentes formas de tratar a perda urinária. Existe a cirurgia e a fisioterapia. A fisioterapia oferece tratamento com estimulação elétrica, com os cones vaginais, com os exercícios e o biofeedback. Sabemos que todos estes tratamentos são bons, mas o interesse desta pesquisa é ajudar na escolha de um destes tratamentos da fisioterapia e assim, não será feita cirurgia.

O tratamento que vai ser feito é com exercícios para fortalecimento do períneo (músculos que estão em volta da vagina) junto com o biofeedback, que é um aparelho que mostra como o exercício está sendo feito. Este aparelho tem um sensor, que será colocado na vagina (intra-vaginal), para que eu possa ver na tela deste aparelho se estou fazendo a correta contração dos músculos. Todos os exercícios vão ser feitos na posição deitada.
Antes de iniciar e depois de terminar o tratamento com a fisioterapeuta responsável, preencherei o registro miccional simplificado, que é uma anotação de quantas vezes eu vou ao banheiro por dia, quantas vezes perco urina e qual o motivo da perda. Também serei submetida às seguintes avaliações do perineo:

- **toque vaginal**: exame que avalia a força dos músculos perineais, através do toque com os dois primeiros dedos do pesquisador dentro da vagina;
- **perineômetro**: aparelho intravaginal que também avalia a força dos músculos do perineo;
- **eletromiografia de superfície**: exame que avalia os tipos de contrações muscular e será feito com o mesmo sensor vaginal que será feito os exercícios;
- **teste do absorvente**: exame que avalia o quanto se perde de urina, usando um absorvente. Colocarei um absorvente oferecido pela pesquisadora no início do teste e após eu realizar algumas atividades, como: andar, subir e descer escada, tossir, espirrar, este absorvente será pesado.

Me comprometo a comparecer duas (2) vezes por semana no Setor de Fisioterapia do CAISM para realizar os exercícios, até completar seis (6) semanas. Cada sessão será de no máximo uma (1) hora, com dia e hora combinados. Caso não aceite participar da pesquisa, terei acesso a qualquer tratamento que a fisioterapia oferece para a perda urinária e também não terei nenhum prejuízo, caso queira ou necessite realizar uma cirurgia.

Caso eu apresente alguma complicação (infecção vaginal ou urinária, dor articular ou muscular intensa), poderei ser atendida normalmente nesta Instituição. A qualquer momento posso deixar de participar deste estudo não havendo nenhum problema futuro nos atendimentos médicos em qualquer setor da Unicamp. Meu nome será mantido em total sigilo quando os resultados forem divulgados em Congresso ou publicações em revistas.

Como este tratamento é uma alternativa para evitar a cirurgia, ele é mais demorado e é necessário que eu venha mais vezes até a Unicamp. Portanto, cada dia que eu comparecer na Fisioterapia para realizar o tratamento, receberei 13 reais da fisioterapeuta responsável, para ajudar nos gastos com transporte e alimentação.
Qualquer dúvida a respeito da pesquisa poderei falar diretamente com a fisioterapeuta responsável: Mariana Tirolli Rett, no telefone (19) 3788- 9428, todos os dias das 8:30h às 17:00h.

Podem ser pedidas informações ou reclamações junto ao Comitê de Ética em Pesquisa: (19) 3788- 8936.

Autorizo ser contatada pelo telefone () sim () não.

Declaro estar ciente e ter entendido o documento acima.

Data: Campinas, _____/_____/_______.

Assinatura da paciente:

Assinatura da pesquisadora:

7.3. **Anexo 3 - Tabelas e Gráficos Gerais dos Resultados**

Características sociodemográficas, ginecológicas e obstétricas (n=26)
TABELA 1
média

Idade (anos)
Índice de massa corpórea (IMC) kg/m²
Tempo de perda urinária (anos)
Cor da pele
branca
preta
parda
Gestações
nuliparas
1 - 3
> 3
Partos vaginais
0
1 - 2
> 2
Cistocele
ausente
grau I
grau II
TABELA 2

Freqüência urinária, freqüência de perdas urinárias, noctúria, número de absorventes anotados no diário miccional durante uma semana, antes e após o tratamento fisioterápico (n=26)

Diário miccional	Antes do tratamento*	Após o tratamento*	p**
Freqüência urinária	47,8 ± 18,3	48,9 ± 11,3	0,2878
Freqüência de perdas urinárias	14,8 ± 17,0	3,2 ± 4,2	<0,0001
Noctúria	11,1 ± 11,1	5,6 ± 3,1	0,0012
Número de absorventes	6,0 ± 8,1	1,0 ± 2,1	0,0014

* valores em médias ± desvio padrão
** teste de Wilcoxon Sign Rank Test para amostras pareadas

TABELA 3

Porcentagem de melhora em relação aos episódios de perdas urinárias anotadas no diário miccional durante uma semana, antes e após o tratamento (n=26)

% de melhora	n	%
≥ 75 - 100%	14*	53,8
50 - 74%	8	30,8
0 - 49%	4	15,4

* 10 mulheres apresentaram 100% de melhora, não registrando nenhum episódio de perda urinária ao término do tratamento.
TABELA 4
Distribuição dos valores do pad test antes e após o tratamento fisioterápico

Valores do pad test (em gramas)	Antes do tratamento	Após o tratamento
		≤ 2g
≤ 2 g (normal, seca)	1	1
> 2 ≤ 10 g (perda leve)	12	9
>10 ≤ 50 g (perda moderada)	11	8
> 50 g (perda severa)	2	2
Total	26	20

TABELA 5
Porcentagem de melhora em relação ao volume de perda urinária através do teste do absorvente (pad test) antes e após o tratamento fisioterápico (n=26)

% de melhora	n	%
≥ 75 - 100%	18	69,2
50 - 74%	4	15,4
0 - 49%	4	15,4
TABELA 6
Força muscular do assoalho pélvico avaliada pelo toque vaginal e perineômetro, antes e após o tratamento fisioterápico (n=26)

Força muscular do assoalho pélvico	Antes do tratamento*	Após o tratamento*	p**
Toque vaginal (grau de 0-3)	1,0 ± 0,8	2,4 ± 0,6	<0,0001
Perineômetro (cm de H₂O)			
contração máxima	24,5 ± 16,0	40,0 ± 17,0	< 0,0001
contração média	14,6 ± 9,4	26,7 ± 11,7	<0,0001

* valores em médias ± desvio padrão
** teste de Wilcoxon para amostras pareadas
TABELA 7

Evolução do grau de contração muscular do assoalho pélvico avaliado pelo toque vaginal, antes e após o tratamento fisioterápico

Grau de contração muscular	Antes do tratamento	Após o tratamento
	0 (ausente)	0
	I (fraco)	0
	II (moderado)	0
	III (forte)	0
	Total	26

Grau de contração muscular	Antes do tratamento	Após o tratamento
	0 (ausente)	2
	I (fraco)	5
	II (moderado)	0
	III (forte)	0
	Total	14

TABELA 8

Comparação dos valores da eletromiografia de superfície (sEMG) do assoalho pélvico antes do tratamento, na metade (6 sessões) e após o tratamento (12 sessões) das 26 mulheres

Tipos de contrações avaliadas	Valores da sEMG *	p**				
	Antes do tratamento	Metade (após 6 sessões)	Após o tratamento	P1	P2	P3
Fásicas	16,0 ± 13,7	25,3 ± 15,2	27,4 ± 14,8	< 0,0001	< 0,0001	0,0215
Tônica 10 s	10,2 ± 9,9	20,3 ± 12,2	23,8 ± 13,9	< 0,0001	< 0,0001	0,0103
Tônica 20 s	8,6 ± 8,8	17,9 ± 10,6	19,8 ± 11,0	< 0,0001	< 0,0001	0,0653

* valores em média ± desvio padrão
**Teste de Wilcoxon para amostras pareadas
P1 = inicial x após 6 sessões
P2 = inicial x final
P3 = 6 sessões x final
TABELA 9
Comparação dos escores da qualidade de vida, segundo os domínios do King’s Health Questionnaire (KHQ) antes e após o tratamento (n=26)

Domínios da qualidade de vida (QV)	Antes do tratamento*	Após o tratamento*	p**
Percepção geral da saúde	49,4 ± 23,9	26,9 ± 15,6	0,0015
Impacto da incontinência	78,2 ± 28,1	32,5 ± 30,5	0,0001
Limitações de atividades diárias	75,0 ± 27,1	13,4 ± 22,6	<0,0001
Limitações físicas	72,4 ± 29,4	15,3 ± 24,4	<0,0001
Limitações sociais	38,2 ± 28,5	6,4 ± 14,6	<0,0001
Relações pessoais	60,5 ± 33,8	41,6 ± 16,6	0,0679
Emoções	58,9 ± 33,8	14,1 ± 24,6	0,0001
Sono e disposição	33,9 ± 23,8	6,4 ± 16,3	0,0001
Medidas de gravidade	66,9 ± 19,6	22,3 ± 24,2	<0,0001

* valores em médias ± desvio padrão

** teste de Wilcoxon

TABELA 10
Classificação da avaliação subjetiva da paciente após o tratamento fisioterápico (n=26)

Avaliação subjetiva da paciente	n	%
Curada	6	23,1
Quase curada	17	65,4
Melhor	3	11,5
Inalterada	0	0
Pior	0	0
7.4. Anexo 4 - Fotos dos Equipamentos

Figura 1. Equipamento de Biofeedback Myotrac 3G™ Thought Technology

Figura 2. Perineômetro Peritron 9300V™ Cardio-Desing