Catalogue of averaged stellar effective magnetic fields.

I. Chemically peculiar A and B type stars

V.D. Bychkov¹,², L.V. Bychkova¹, J. Madej³

¹ Special Astrophysical Observatory of the Russian Academy of Sciences, Nizhnij Arkhyz, 369167 Russia
² Isaac Newton Institute of Chile, SAO Branch, Nizhnij Arkhyz, 369167 Russia
³ Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, 00-478 Warszawa, Poland

Received ...; accepted ...

Abstract.
This paper presents the catalogue and the method of determination of averaged quadratic effective magnetic fields \(\langle B_e \rangle \) for 596 main sequence and giant stars. The catalogue is based on measurements of the stellar effective (or mean longitudinal) magnetic field strengths \(B_e \), which were compiled from the existing literature.

We analysed the properties of 352 chemically peculiar A and B stars in the catalogue, including Am, ApSi, He-weak, He-rich, HgMn, ApSrCrEu, and all ApSr type stars. We have found that the number distribution of all chemically peculiar (CP) stars vs. averaged magnetic field strength is described by a decreasing exponential function. Relations of this type hold also for stars of all the analysed subclasses of chemical peculiarity. The exponential form of the above distribution function can break down below about 100 G, the latter value representing approximately the resolution of our analysis for A type stars.

Key words. Stars: magnetic fields – Stars: fundamental parameters

1. Introduction
Research on stellar magnetic fields is among the most important issues in both observational and theoretical astrophysics. The first measurements of magnetic fields in stars were done more than 50 years ago (Babcock & Burd 1952). From that time, both the number of magnetic field measurements and the number of investigated stars have grown enormously. Therefore we decided to collect and present in some homogeneous form all the published magnetic field measurements. We have also attempted to analyse these preprocessed observational data.

Similar efforts have been made previously, but were based on much less numerous sets of measurements (Brown et al. 1981; Borra et al. 1983; Glagolevskij et al. 1986; Bychkov 1990; Bychkov et al. 1990). The above compilations have been essential for our understanding of the magnetic field strength and structure in stellar atmospheres, and their generation and time evolution in stellar interiors. Taking into account the large increase of the accumulated observational material, we believe that analogous new research of this kind is necessary and fully justified.

The catalog and analyses presented below do not include either isolated degenerate stars (cooling neutron stars and most white dwarfs), or degenerate stars in interacting binaries. Only a few of the brightest white dwarfs are present in the catalog.

2. Averaging of stellar effective magnetic fields
The differential contribution \(dB_e \) to the effective magnetic field of a star is defined as the area-weighted projection of the local vector of the magnetic field \(B_{loc} \) onto the line of sight. The local monochromatic intensity \(I_\nu \) of outgoing radiation is also a weighting factor in that projection. The effective (or mean longitudinal) magnetic field \(B_e \) is the weighted mean value, integrated over the visible stellar disc

\[
B_e = \frac{\int_0^{2\pi/2} \int_0^{\pi/2} B_{loc} \cos \gamma I_\nu(\theta) \sin \theta \cos \theta \, d\theta \, d\phi}{\int_0^{2\pi/2} \int_0^{\pi/2} I_\nu(\theta) \sin \theta \cos \theta \, d\theta \, d\phi},
\]

where \(\gamma \) denotes the angle between the local vector \(B_{loc} \) and the direction towards the observer. The variable \(\theta \) denotes the colatitude angle, and \(\phi \) stands for the azimuthal angle of the angular integration. The above definition assumes a simplified situation, in which the \(B_e \) is determined at a single discrete frequency only (Madej 1983).

In general, the specific intensity of radiation \(I_\nu(\theta) \) depends strongly on the frequency of radiation \(\nu \), and exhibits various
limb-darkening relations for different vs. Therefore the value of the effective magnetic field \(B_e \) is also a frequency dependent quantity, when measured for the given magnetic field configuration of a star.

The dependence of \(B_e \) on frequency, or on the finite range of frequencies in which measurements were done, has always been ignored in earlier papers, which are collected and analysed here. Therefore also in this paper we do not distinguish \(B_e \) values measured in the wings of the hydrogen Balmer lines, or elsewhere in the optical spectra of stars.

In most magnetic stars the values of \(B_e \) change periodically with the rotational phase of the star. Values of \(B_e \) can be either positive or negative. Moreover, it is possible that a star with strong magnetic field can momentarily exhibit \(B_e = 0 \), depending on the aspect. Therefore it is useful to characterize the magnetic properties of various stars by the averaged quadratic effective magnetic field \(\langle B_e \rangle \), which is always positive (Borra et al. 1983).

For a series of \(B_e \) measurements, we define

\[\langle B_e \rangle = \left(\frac{1}{n} \sum_{i=1}^{n} B_{ei}^2 \right)^{1/2}, \]

where \(B_{ei} \) denotes the i-th measurement of the effective magnetic field, and \(n \) is the total number of observations for a given star. The variable \(\sigma_{ei} \) is the standard error of \(B_{ei} \), and \(\langle \sigma_{ei} \rangle \) is the rms standard error of \(\langle B_e \rangle \).

The value of \(\chi^2/n \) (given per single degree of freedom) allows one to judge whether a series of \(B_{ei} \) for a given star represents a reliable detection of a nonzero effective magnetic field, or whether this series is rather the result of random noise

\[\chi^2/n = \frac{1}{n} \sum_{i=1}^{n} \frac{B_{ei}^2}{\sigma_{ei}^2}. \]

This method for averaging the individual \(B_e \) measurements of a magnetic star was introduced by Borra et al. (1983), to study magnetic properties of He-weak stars. This evaluation of \(\langle B_e \rangle \) is particularly useful to study stars with few or high noise \(B_e \) observations, where full magnetic curves cannot yet be constructed.

Borra et al. (1983) have pointed out that the value of \(\langle B_e \rangle \) gives an estimate of the amplitude of the \(B_e \) variations of a given star, provided that this amplitude is substantially larger than \(\langle \sigma_{ei} \rangle \).

3. Description of the tables

Descriptions of stars and the available magnetic field data about each are included in a series of 10 tables. The basic and most extensive Table A.1, included in Appendix A, presents the full listing of stars for which we performed computations of the quadratic \(\langle B_e \rangle \) averages. For convenience, these stars are ordered according to their HD number. Successive rows of Table A.1 give: HD number (or BD number in case of faint stars), spectral type, number \(N \) of magnetic observations, value of \(\langle B_e \rangle \) in G, standard deviation \(\sigma \) in G, value of \(\chi^2/n \), method of \(B_e \) determination (abbreviations are explained at the bottom of Table A.1), and numbers referring to papers where we found the original magnetic field measurements. Cross-references between these numbers and the original papers are also given at the bottom of Table A.1.

Table A.1 contains magnetic data on a total of 596 stars of various spectral types. One can easily see that in the case of many stars listed there, the value of \(\langle B_e \rangle \) is approximately equal or smaller than \(\langle \sigma_{ei} \rangle \), which usually means that detection of the magnetic field itself highly uncertain.

Table 1 summarizes our results on the distribution of averaged effective magnetic fields in Ap type stars of various subclasses. In this table, the number \(N \) in the second column displays the number of stars of a given peculiarity type in our sample.

One should note that some CP stars exhibit more than one type of chemical peculiarity simultaneously. For example, it is a well known observational fact that some Si-type stars appear also as He-weak stars, etc. When this happened, we have included such ambiguous stars in both samples. Consequently, the sum of all Ap stars (352) is lower than the number of stars summed over all particular types of peculiarity in Table 1.

Tables 2–9, which are put in the main body of the paper, present lists of the 352 Ap stars of the sample distributed into various types of spectral peculiarity. The tables present individual stars and give for each of them: HD number, HR number, name of the star (or BD number), and spectral type including the type of peculiarity. No magnetic field data are listed here.

Due to enormous complexity of Sr-like chemical peculiarities which have been identified in some Ap stars, we have attempted to separate 136 stars which exhibit essentially only the SrCrEu spectral type. These stars are listed in Table 8. Complementing this table, Table 9 presents list of the other 43 Sr-type stars which exhibit SrCrEu type mixed with other peculiarities. The logical sum of Tables 8 and 9 forms the class “Sr all”, which contains 179 stars and is a single entry in Table 1.

The stars listed in Tables 2–9 are exactly the objects which were used to construct Figures 1–9, and to obtain number distribution functions of the averaged quadratic magnetic fields \(\langle B_e \rangle \) for each types of peculiarity considered among the A type stars on the main sequence.

3.1. Reevaluation of \(\langle B_e \rangle \) errors

For many years observers have always estimated the standard error of effective magnetic field measurements. However, some early papers tabulated probable errors of \(B_e \), which should be transformed to standard errors to ensure their compatibility.

Moreover, some of the early \(\langle B_e \rangle \) measurements have unrealistically small standard errors of the order of a few tens of G. This comment refers mostly to photographic magnetic field observations; see papers by Babcock et al. in the list of references, for example.

An independent error estimate of published \(B_e \) determinations can be obtained by one of the following methods.
1. Consider a star with no apparent B_e variations. In the case where we have a sufficiently large set of B_e measurements, we can simply determine the mean (B_e) value and the error of a single B_e measurement in the standard manner.

2. If the magnetic field B_e varies with time, and the parameters of phase variability are unknown, then we can estimate the (B_e) and the upper limit of error of a single measurement in the same standard way. In this case the observed scatter of individual B_e observations include both real errors plus the unknown magnetic field variability. The lower the contribution of B_e variability is to the scatter, the more realistic the error estimates are.

3. If the magnetic field varies with time, and if the parameters of (periodic) phase variability are known, then we simply determine the mean $B_e(\phi)$ phase curve and compute the predicted magnetic field strength corresponding to each observed point. Finally, we determine the error of single measurement as was done in paragraph 1.

The general considerations presented above should be supplemented by the following comments:

4. The averaged value of the effective field, (B_e), significantly depends on the choice of useful spectral lines. This is particularly important for early observations, since then analysing instruments worked in narrow spectral windows (200-300 Å), and the number of lines used for the B_e determination was very small.

5. The best average $B_e(\phi)$ curves were obtained analysing Zeeman splitting of the Balmer lines. However, B_e measurements obtained from Balmer lines and metallic lines can differ substantially due to the well-known effect of inhomogeneous distribution of elements over the surface of a magnetic star.

6. The accuracy of B_e measurements depends not only on the particular set of spectral lines and their total number, but also on the apparent rotational broadening, i.e. on $v\sin i$. Rotational broadening of lines strongly influences the accuracy.

In order to obtain reliable error estimates of older B_e measurements, we have selected 21 stars observed by the following authors: H.W. Babcock, G.W. Preston, S.C. Wolff, and W.K. Bonsack. Those stars were not necessarily observed by all four of them. We also took into account papers in which they were present in the author’s list (cf. Bibliography in this paper).

The set of 21 stars consists of (HD numbers): 9996, 18296, 24712, 32633, 62140, 65339, 71866, 74521, 112413, 118022, 125248, 133029, 137909, 152107, 153882, 168733, 175362, 187474, 188041, 196502, 201601, and 215441. For all of them we have projected rotational velocities $v\sin i$ are known. Numerous B_e determinations for these stars were obtained both with the “old” photographic technique, and with new high-accuracy methods. Details of our error calibrations of the earliest measurements, we have selected 21 stars observed by the following authors: H.W. Babcock, G.W. Preston, S.C. Wolff, and W.K. Bonsack. Those stars were not necessarily observed by all four of them. We also took into account papers in which they were present in the author’s list (cf. Bibliography in this paper).

4. Distribution of averaged effective magnetic fields

Let us substitute $B = (B_e)$ for brevity. From the data collected in Table A.1 and in Tables 2–9 we have constructed two types of relations. They display the dependence of the number distribution function $N(B)$, and its integral over B, on the average effective magnetic field B of the A type stars.

Quantity $N(B) dB$ gives the number of stars in a given group having the average quadratic effective magnetic field B in the range $[B, B + dB]$.

4.1. Integrated distribution function

We define the integrated distribution function as

$$N_{\text{int}}(B) = N_{\text{tot}} - \int_{0}^{B} N(B') dB',$$

where N_{tot} denotes the total number of stars belonging to that group.

We have investigated separately $N(B)$ for Am, He-weak, He-rich, Si, HgMn, SrCrEu, all Sr-type, and all stars displaying Hg or Mn. Discussion of the distribution function for stars of other spectral types has been deferred to the following papers.

For a given subclass of stars, we have divided the range of the quadratic averaged magnetic field (B_e) from zero to the maximum field in this group into up to 40 bins of equal length (80 bins for Si stars), and counted the number of stars in each bin. Figures 1–9 display the relation between the discrete (B_e) and the summed number of stars located in higher bins, expressed in percent of the total number of stars in that peculiar-ity class. Such a relation represents the integrated distribution function $N_{\text{int}}(B)$, and describes the probability that upon investigating a new star of this chemical peculiarity, its (B_e) will be higher than the value of B. That relation is given by series of dots in the Figures.

Figures 1–9 demonstrate the striking rule, that all the corresponding functions $N_{\text{int}}(B)$ are well approximated by the exponential function, normalized to unity at $B = 0$

$$N_{\text{int}}(B)/N_{\text{tot}} = \frac{a_1}{100\%} \exp(-B/a_2).$$

Coefficients a_1 (in %) and a_2 (in G) depend on the class of chemical peculiarity.

Columns 3–4 of Table 1 present the best fit coefficients a_1 and a_2 for all the analysed subclasses. The last three columns
Table 1. Best fit parameters

Peculiarity	N	a_1 (%)	a_2 (G)	30%	50%	70%
all Ap	352	97.2	789.2	928	525	259
Sr all	167	106.9	1081.2	1360	819	448
Sr only	126	108.6	1018.1	1310	790	447
Am	44	95.3	110.5	127	71	34
He-rich	19	97.2	916.1	1080	609	301
He-weak	60	116.0	717.9	970	604	363
Hg & Mn	39	74.9	515.7	471	208	34
HgMn only	19	75.2	350.1	322	143	25
Si	159	102.0	906.1	1110	646	341

a Some of the stars exhibit few different peculiarity types simultaneously, and they are counted in more than one row of Table 1.

4.2. The distribution function

The distribution function can immediately be obtained from N_{int} by the relation

$$N(B) = \frac{dN_{\text{int}}}{dB}.$$ \hspace{1cm} (7)

The function $N(B)$ is therefore also an exponential function with the above analytic approximation

$$N(B) = N_{\text{int}} \frac{a_1}{100\%} a_2^{-1} \exp(-B/a_2).$$ \hspace{1cm} (8)

If one attempts to construct the distribution function in direct way, based on the tabulated data, then this function would exhibit serious noise due to the limited number of data points.

One should note that the above exponential dependence has been determined using a resolution $\Delta B \approx 100$ G only, which corresponds to average size of single bin in Figs. 1–9. This implies that with our method of figure construction, we cannot say anything about the shape of the distribution function in the region of the weakest magnetic fields B below ≈ 100 G. Note that the value of ΔB resolution mentioned above is averaged over all spectral subclasses, in fact, it is in the range $\Delta B = 25 - 200$ G (see the Figures).

It is important to stress here, that we have set the total number of stars of a given subtype N_{int} to 100%, no matter whether the given stars had detectable magnetic fields or not.

4.3. Distortion of the distribution functions

The referee pointed out that our $\langle B_e \rangle$ and $\langle \sigma_e \rangle$ statistics, and the distribution functions N_{int} presented in this paper, can be distorted due to the following reasons.

1. Errors of B_e measurements taken by different observers and techniques sometimes strongly differ. In such case average values of $\langle B_e \rangle$ and $\langle \sigma_e \rangle$ in Table A.1 can be inflated by few very inaccurate measurements with large individual σ_e, cf. Eqs 2–3. This is particularly important for stars with weak magnetic fields, for which the number of available B_e observations is small (e.g. the Am star 68 Tau).

 The most accurate B_e measurements should weight mostly when computing averages $\langle B_e \rangle$ and $\langle \sigma_e \rangle$. However, Eqs 2–3 defined by Borra et al. (1983) assign the same weight of unity to all B_e measurements; i.e. their $\langle B_e \rangle$ and $\langle \sigma_e \rangle$ statistics are most meaningful when they resulted from data with comparable errors. In the present paper we follow strictly the above definitions, Eqs 2–3, and did not alter them in any way e.g. by eliminating B_e data of outstanding σ_e errors.

2. The above effect implies also, that the distributions of N_{int} are certainly distorted by inclusion of stars for which $\langle B_e \rangle$
4.4. Low magnetic fields

One can easily see that the distribution function $N(B)$ exhibits a significant drop of the averaged quadratic field at the limit $B \to 0$. Such behaviour can be seen for almost all of investigated classes of chemical peculiarities, with the exception of Am stars only. The origin of this behaviour of the directly measured $N(B)$ cannot be explained with full confidence. On one hand, the numbers of star counts in B bins in Figures 1–9 is very low, and therefore strong random fluctuations are very likely. On the other hand, we believe that such asymptotic drops of $N(B)$ are rather due to random errors of the directly measured effective magnetic fields B_e. The quadratic average of errors ΔB_e is not likely to approach 0 G, particularly for poorer observations, and it is comparable with the width of a bin. Therefore a low number of stars with quadratic field $B \approx 0$ represents just some type of statistical selection effect.

As was pointed out by the referee, the observational data analysed here for magnetic star classes probably exhibit a deficiency of stars with low magnetic fields. This is because observers frequently were not interested in observing stars in which the intrinsic magnetic field appeared to be small, and stars with stronger fields were always favoured. Such a personal bias certainly distorts the observed distributions N_{int} in each subclass of A type stars, which are convolutions of intrinsic distributions with an “observer interest” distribution.
effect is very difficult, if not impossible, to correct in general. We believe, however, that the effect influences counts \(N_{\text{int}} \) only in the lowest bins of our histograms, which are underpopulated also due to reasons discussed in the previous paragraph.

The above selection effect started from the earliest observations by H.W. Babcock, who first identified strong magnetic fields in Ap stars after many unsuccessful attempts. Indeed, stellar magnetic data sets now available exhibit a strong tendency to present stars with strong or even extreme fields. This selection effect can be avoided only when measuring a “canonical” distribution of the magnetic fields for all stars in a fixed volume of space. We are aware that there exists general understanding of this problem, and that there are observational projects of this type in progress.

The amount of necessary observational effort is very large, and it will take years to complete. Our paper, however, was prepared taking into account all existing \(B_e \) measurements disregarding the observational selection.

5. Comments on CP classification

Classification of chemically peculiar stars represents a very complex problem. Commonly adopted criteria of classification rely on the presence of particular elements or groups of elements in the spectra of Ap stars. Such observables represent only the surface properties of the magnetic field configuration of a star, and the resulting surface chemical anomalies. The resulting classification of Ap stars into subclasses is very complex and not unique, which is also reflected in Table 1 of this paper.

The referee suggested that since the existing classifications of magnetic Ap stars are very inhomogeneous, one could divide them by colour, \((U-B)_0\) for example. Such a choice would give a rough division of Ap stars collected here by mass, which may be a more physically meaningful parameter than the surface peculiarities.

We agree that one should seek for classification criteria among Ap stars which are more physically meaningful than just the apparent surface peculiarities. This will be a subject of our research in the near future. In this paper, however, we adopt spectroscopic classification of chemical peculiarities in various CP stars.

5.1. HgMn stars

The group of HgMn stars exhibits rather inhomogeneous content, similar to the Sr group discussed in previous Sections (cf. Figs 2–3). There exists small group of classical HgMn stars (e.g. \(\iota \) CrB and \(\alpha \) And) for which no really convincing evidence of longitudinal fields is available. There exist also other Ap stars (such as HD 21699 and 79158) which display Hg or Mn along with numerous other peculiarities in their spectra. These subgroups should be investigated separately.

The most actual list of both all HgMn stars and classical HgMn stars (the latter are objects with pure HgMn peculiarity) has been recently published in Adelman et al. (2003).

In the case of HgMn stars we have investigated the distribution functions \(N_{\text{int}} \) for the whole the group (see Fig. 8 and Table 5), and for only the classical HgMn stars (Fig. 9 and Table 6). Fig. 9 clearly shows the well-known fact that the classical HgMn stars have very weak longitudinal magnetic fields. They are substantially different than other Hg or Mn stars, which simultaneously exhibit also other chemical peculiarities. The latter stars exhibit sometimes strong fields \(B_e \).

Fig. 9 shows that only three classical HgMn stars apparently exhibit noticeable magnetic field \(B_e \): HD 172044, HD 210873, and HD 221507. However, in all three cases the accuracy of \(B_e \) observations is relatively low. We speculate that their \(B_e \) reflect essentially errors of measurement, and that high precision \(B_e \) measurements will yield much weaker averaged longitudinal magnetic fields for all HgMn stars.

One should keep in mind that the detailed investigation of various subclasses of chemical peculiarities among CP stars is
limited by the small number of stars in subclasses. For example, there are only 15 classical HgMn stars in our compilation with which to construct Fig. 9 and Table 6.

6. Summary and conclusions

The most important results of this paper can be summarized in the following list:

1. We present an extensive list of the averaged quadratic effective magnetic fields \(\langle B_e \rangle \) for main sequence and giant stars. Individual \(B_e \) observations were compiled from the existing literature, and were further processed to obtain a homogeneous set of averaged effective magnetic fields. We consider our averaged values of \(\langle B_e \rangle \) as a reasonable representative measure of the field strength in the atmosphere of a given star. This is because the value of \(\langle B_e \rangle \) results directly from the observed effective magnetic field strengths \(B_e \) and is a strictly model-independent quantity.

Moreover, it is a single scalar parameter which describes the magnetic field of a star even if the number of individual \(B_e \) is low or the \(B_e \) observations are noisy. In such a case the full curve describing \(B_e(\phi) \) changes with rotational phase \(\phi \) cannot be constructed.

2. We have determined for the first time that the relation between the number of occurrences \(N_{int} \) of the magnetic field higher than a specified \(\langle B_e \rangle \) is given by the decreasing exponential function, at least starting from the minimum value of \(\langle B_e \rangle \approx 100 \) G

\[
N_{int}(\langle B_e \rangle) = N_{tot} \frac{a_1}{100\%} \exp(-\langle B_e \rangle/a_2).
\]

Therefore the number distribution function \(N(\langle B_e \rangle) \) of Ap type stars is also given by a decreasing exponential function. This relations is found to hold for all analysed subclasses: Am, Si, He-weak, He-rich, HgMn, SrCrEu, and all Sr type stars. We determined and listed values of the parameters \(a_1 \) and \(a_2 \) for each subclass, see Table 1.

3. We cannot rule out the possibility, that this exponential relation represents just the tail of the true distribution, with its maximum hidden below \(\langle B_e \rangle \approx 100 \) G. This is because our Figures and fitting curves have limited resolution in the independent variable \(\langle B_e \rangle \), which is limited by the observational errors and limited sample sizes to the width of the average bin, typically of the order of 100 G (in each individual sample the value of the resolution is between 25 G and 200 G).

4. Our results demonstrate that the number distribution of the averaged quadratic effective magnetic fields \(N(\langle B_e \rangle) \) is not similar in any way to tail of the Gaussian distribution, which would be proportional to \(\exp(-\langle B_e \rangle^2/\sigma^2) \).

The analysis presented in this paper is concentrated on the integrated distribution function \(N_{int}(B) \), due to the rather low number of stars available in most chemical peculiarity classes. Still, the function \(N_{int} \) seems relatively smooth in all the subclasses, and is credibly represented by an exponent. However, some small distortions can be easily seen in upper panels of all the Figures 1–9.

The distribution function \(N(B) \) is the first derivative of \(N_{int} \), and obviously all numerical distortions of the latter involve fluctuations of the derivative. This is seen in lower panels of Figures 1–9, in which directly measured distribution functions exhibit serious noise. Therefore the exponential shape of the distribution function \(N(B) \), given in Eq. (8), is just an extrapolation of the smoothed \(N_{int} \), which is not inconsistent with the measured \(N(B) \).

We exclude from the above rule region of the lowest magnetic fields \(B \) of extend comparable with the resolution \(\Delta B \) of our histograms.

Acknowledgements. We are grateful to J.D. Landstreet, the referee, for his criticism and numerous suggestions which helped us to improve this paper. Our research is based on data compiled and posted in the SIMBAD, ADS, and CDS databases. We acknowledge support from the Polish Committee for Scientific Research grant No. 2 P03D 021 22.
Table 2. List of He-weak stars.

HD	HR	Name	Sp. type
4778	234	GO And	A1 CrSrEu He-w
5737	280	α Scl	B6p SrTi He-w
19400	939	θ Hyi	B3+V+A0IV He-w
19805		PPM45935	A0 He-w
21699	1063	V396 Per	B8IIp MnSi He-w
22470	1100	20 Eri	B9p Si He-w
22920	1121	22 Eri	B8p Si4200 He-w
23387		PPM92834	A0 He-w Si
23408	1149	20 Tau	B8IIp Hg He-w
28843	1441	DZ Eri	B5-B9 Si He-w
35298		V1156 Ori	B6 He-w
35456		GC 6661	B7 He-w
35502		BD -2 1241	B6 He-w
36313		V1093 Ori	B8 Si He-w
36429		V1099 Ori	B8 He-w
36526		V1101 Ori	B7 He-w
36629		PPM188166	B3 He-w
36668		V1107 Ori	B7 Si He-w
36916		V1045 Ori	B8 SiMn He-w
37043	1899	η Ori B	O9III He-w
37058		V359 Ori	B3p SrTi He-w
37129		PPM188247	B2.5Vp He-w
37140		V1130 Ori	B8 He-w SiSr
37151		V1179 Ori	B8pSi He-w
37210		V1133 Ori	B8 He-w Si
37642		V1148 Ori	B9 Si He-w
37807		PPM188352	B4 He-w
40933	2509	12 CMa	B7IIp He-w Si
40960	2519	33 Gem	B7III MnHgSi He-w
51688	2605	40 Gem	B8III Hg He-w
79158	3652	36 Lyn	B9IIIp SrTiMn He-w
10906	4773	γ Mus	B5V He-w
12070	5210	V983 Cen	B5III He-w
12582	5378	V761 Cen	B7IIpSi He-w
13120	5543	V1076 Ori	B7IIpSi He-w
13759		NN Aps	B8pSrCrFe He-w
14031	5912	V927 Sco	B8IIp Si He-w
14288		V928 Sco	B9 Si He-w
14399	5942	V913 Sco	B6IV He-w
14423	5967	14 ν Sco	B8+B9p Si He-w
14434	5988	V929 Sco	B4(8)p Si He-w
14461	5998	V1076 Ori	B4(7)IIlp He-w
14484	6003	B5(9)IVp Si He-w	
14550	6026	14 ν Sco	B8V+B9p Si He-w
14601	6054	8399	B6(B7IV) He-w
14819		GC 22126	B9 SiSr He-w
16237	6647	V957 Sco	B7V He-w
16873	6870	V4050 Sgr	B8p TiSr He-w
17516	7119	V686 CrA	B6IVp SiMn He-w
17536	7129	19 Lyr	B9p Si He-w
18256	7372	2 Cyg	B3IV He-w
18333	7401	10926	B8IV Si He-w
20031		BD+43 3786	B9p SiCrHg He-w
20261	8137	30 Cap	B6(8)III SrTi He-wmn
21245	8535	V638 Cas	B8III SrCrEuHg He-w
21783	8770	PPM41495	Bpe He-w
21839		PPM41495	Bpe He-w
22492	9087	29 Psc	B6(7)III-IV Si He-w

Table 3. List of He-rich stars.

HD	HR	Name	Sp. type
35912	1820	B2V He-r	
36430	1848	B2V He-r	
36855	1851	δ Ori B	
37017	1890	B2p He-r	
37479	1932	σ Ori E	
37776		PPM175998	B3 He-r
47777		PPM151028	B2 He-r
58260		PPM283900	B3 He-r
60344		PPM252646	B3 He-r
64740	3089	B1.5Vp He-r	
93030	4199	θ Car	
96446		PPM339754	B2 He-r
120640	5206	B2Vp He-r	
133518		PPM343417	B3 He-r
151346		PPM265974	B4 He-r
177003	7210	B2.5IV He-r	
184927		PPM83182	B2 He-r
186205		PPM168470	B3 He-r
209339	8399	B0IV He-r	
Table 4. List of Am-stars.

HD	HR	Name	Sp. type
20210	976	V423 Per	A1m
27962	1389	68 Tau	A3V Am
29140	1458	88 Tau	A5 Am
29173	1460	A1m	
31295	1570	π1 Ori	A0V Am
48915	2491	A1m	A1Vm
56495		PPM190112	Am
60178	2890	α Gem B	A2 Vm
73709		PPM125572	F2IIIm
76756	3572	65 α Cnc	A5m
78209	3619	15 UMa	A1m
78362	3624	τ UMa	F3m
89021	4033	33 UMa	A21 Vm
90277	4090	30 LMi	F2m
94334	4248	ω UMa	G5IIIa
95418	4295	β UMa	A1Vm
95608	4300	60 Leo	A1m
97633	4359	70 θ Leo	A2m
104513	4594	DP UMa	A7m
108642	4750		A7m
108651	4751	17 Com B	A0p Am
109485	4789	23 Com	A0IVm
110380	4826	γ Vir B	F0V m
110951	4847	32 Vir	F2m
112412	4914	α2 CVn	F3m
114330	4963	51 θ Vir	A11Vs+Am
116657	5055	ζ UMa	A1m
123998	5303	η Aps	A2(m) CrEu
125337	5359	λ Vir	A2m
126661	5405	22 Boo	F1m
130841	5531	9 α2 Lib	A3-7mA(A3IV) CrSr
141675	5887	F3m	
141795	5892	37 ε Ser	A7 m
144197	5980	δ Nor	A3p (Am) Sr?
159560	6555	ν2 Dra	F0m
173648	7056	6 ε1 Lyr	A4m
188728	7610	φ Aql	
189849	7653	15 NT Vul	A4III m
195479	7839	F2m	
198743	7990	6 μ Aqr	A3m
205073		PPM61601 Am	
207098	8322	49 δ Cap	A6mv
209790	8417	ξ Cep	A3m
214994	8641	ο Peg	A1 III m

Table 5. List of Mn and Hg stars.

HD	HR	Name	Sp. type	
358	15	α And	B9p HgMn	
21699	1063	V396 Per	B8IIIp MnSi He-w	
22316	1094	GC 4315	B9p HgMnCrSi	
23408	1149	20 Tau	B8IIIP Hg He-w	
27295	1339	53 Tau	B9HgMn	
27376	1347	41 υ1 Ori	B9V HgMn	
33904	1702	μ Lep	B9p HgMn	
36916		V1045 Ori	B8 SiMn He-w	
37752	1951		B8p HgMn	
49606	2519	33 Gem	B7IIIMnHgSi He-w	
51688	2605	40 Gem	B8III HgHe-w	
63975	3059	13 ψ CMi	B8HgMn	
75333	3595	14 Hya	B9HgMn	
77350	3595	ν Cnc	B9p Si4012, CrHg	
78316	3623	κ Cnc	B8IIIP MnHg	
79158	3652	36 Lyn	B9IIIP SrTiMn He-w	
89822	4072	ET UMa	A0p SiSrHgMn	
106625	4662	γ Crv	B8gMn	
110073	4817	1 Cen	A0p SiMn 4121, 4128	
112185	4905	77 ε UMa	A1 CrEuMn	
112413	4915	12 α2 CVn	A0p SiEuHgCr	
116458	5049		A0p SrEuCrSiHgMn	
120709	5210	3 Cen A	HgMn	
129174	5475	29 π1 Boo	B9p HgMn	
141556	5883	5 χ Lup	B9IV HgMn	
143807	5971	14 ε CrB	A0p MnHg	
144206	5982	6 ν Her	B9III MhMg	
145389	6023	11 φ Her	B9p HgMn	
169027	6023	38 Dra	A0 Mn A-horiz.br. star	
172044	6997	172883 7028	GC 25559	
172883	7028	143807 5971	A0p MnHg	
173524	7049	174933 7113	B9III MnHg	
177517	7230	141556 5883	B9HgSi	
200311	43786	BD+433786	B9p SiCrHg He-w	
210873	8473		B9p HgMn	
212454	8535		B8III SrCrEuHg He-w	
216494	8704		B9III HgMn binary star	
221507	8936	74 HI Aqr	B9.5IVp HgMnEu	
HD	HR	Name	Sp. type	
------	------	---------	-------------------	
358	15	α And	B9p HgMn	
27295	1339	53 Tau	B9HgMn	
27376	1347	41 ν° Eri	B9V HgMn	
33904	1702	μ Lep	B9p HgMn	
37752	1951	B8p HgMn		
63975	3059	ζ CMi	B8HgMn	
75333	3500	14 Hya	B9HgMn	
78316	3623	κ Cnc	B8IIIp MnHg	
120709	5210	3 Cen A	B9p HgMn	
129174	5475	29 π° Boo	B9p HgMn	
141556	5883	5 χ Lup	B9IV HgMn	
143807	5971	14 δ CrB	A0p MnHg	
144206	5982	6 ν Her	B9III MnHg	
145389	6023	11 φ Her	B9p HgMn	
172044	6997	B8II-IIIp HgMn		
172883	7028	GC 25559	B9p SiHgMn	
20873	8473	B9p HgMn		
216494	8704	74 HII Aqr	B9III HgMn,Mn binary star	
221507	8936	β Scl	B9.5IVp HgMnEu	
HD	HR	Name	Sp. type	
------	------	-----------	------------------	
66255	3151	PY Pup	A0p Si	
68351	3215	15 Cnc	A0p SiCrSr	
70331		CoD-47 3803	B8p Si	
71866		TZ Lyn	A1 SiSrEu	
73340	3413	HV Vel	B9 Si	
74521	3465	49 Cnc	A1p EuSiCr	
77350	3595	69 ν Cnc	B9p Si4012, CrHg	
83625		IO Vel	A0 SiSr	
89822	4072	ET UMa	A0p SiCrSrHgMn	
90044	4082	25 Sex	B9p SiCrSr	
90569	4101	45 Leo	A1 SiSrEu	
92664	4185	V364 Car	B9p Si	
93507		CoD-67 1494	B8p SiCr	
94660	4263	KQ Vel	A0p EuCrSi	
96910		CoD-47 6547	B9 SiCrEu	
98088	4369	SV Crt	A8Ifp SrCrSiEu	
98457		LS Hya	A0p Sr	
10319	4552	β Hya	B9IIIp SiCrSr	
10862	4752	17 Com A	A0p SrCrEuSi	
11007	4817	V823 Cen	A0p SrCr	
11238		V828 Cen	A0p SiCrCr	
11243	4912	12 α2 CVn	A0p SiEuHgCr	
11436	4965	V824 Cen	A0p Si	
11648	5049	17 Com A	A0p SrCrSiHgMn	
11941	5158	V827 Cen	A0p SiCrEu	
12253	5269	V828 Cen	B9p Si	
12424	5313	CU Vir	B9pVp Si	
12582	5378	V761 Cen	B9 pSrSiHe-w	
12679		PPM 319563	B9 Si	
12877		IT Lup	B9 p	
12897	5466	55 Hya	A0p Si	
13015	5514	55 Hya	A0p Si	
13057	5522	B9V SiCr	8206 GC 30005	
13112	5543	B7IIIp SiHe-w	8240 B9p SiCr	
13309	5597	BX Boo	B9p SiCrSr	
13365	5619	HZ Lup	A0p SiCr	
13388	5624	HR Lup	B9p Si400	
13475	5652	24 ω Lib	A0p Si(B7)	
13634	5697	A0p Si	820859 B6 IV-V SiSrCrEu	
13693	5719	ν Lup	A0p Si	
13719		HQ Lup	B9 Si	
13738	5731	A0p Si	821544 GL Lac	
13759		NN ApS	B8p SiCrFeHe-w	
13952		KU Lup	B8 Si	
14072	5857	PPM 19594	A2p Si:Sr	
14198		3 Sco	B8IIIp SiHe-w	
14231	5912	V928 Sco	B9 SiHe-w	
14284		V929 Sco	B4(8)p SiHe-w	
14347		LL Lup	B9 Si	
14433	5988	V930 Sco	B4(8)p SiHe-w	
14484	6003	V931 Sco	B5(9)Ivp SiHe-w	
14510		V932 Sco	B9p Si	
14551	6026	B9v Sco	B8V+B9p SiHe-w	

Table 7. List of Si stars – continued
Table 8. List of SrCrEu stars.

HD	HR	Name	Sp. type
2453	248	GR And	A1 SrEuCr
3980	207	ε Phe	A7 SrCrEu
4778	276	GO And	A1 CrSrEuHe-w
5797	258	V551 Cas	A0 SrCrEu
6532	46	AP Scit	A3p SrCr
8441	28	HN And	A2 SrCrEu
9996	465	Υ And	B9p CrEuSi
10221	151	A3 SrCrEu	
10783	23	UZ Psc	A2 SrCrSi
11187	65	PPM 26824	A0 SrCrEu
11503	545	γ² Ari	A1p SrCrEu
12447	396	α Psc	A0p SiSrCr
14437	502	BD+42 502	B9p CrEuSr
15089	707	ι Cas	A5p SrCr
15144	710	ΑВ CeT	A6Vp SrCrEu
17775		PPM 13941	A1 CrEu
18296	873	21 Per	B9p SrSrCrEu
19653		PPM 14140	A0 SrCrEu
19918		CPD-82 54	A5p SrEuCr
20135		PPM45983	A1 CrEu
22374		V486 Tau	A1 CrSrSi
22401		PPM 46394	B9p CrSiSr
24155	1194	V766 Tau	B9p SrSiCr
24712	1217	DO Eri	A9p SrCrEu
25354		V380 Per	A2 SrCrEu
25823	1268	41 Tau	B9p SrSiCr
39317	2033	V809 Tau	B9p SrCrEu
42616		QR Aur	A1 SrCrEu
47103		Rns12630	A0 SrEu
49976	2534	V592 Mon	A1p SrCrEu
50169		BD+1 1414	A3p SrCrEu
51418		NY Aur	A0 HoDy SrCrEu
55719		2727	A3p CrSrEu
56022	2746	OU Pup	A0p SiSrCr
62140	2977	49 Cam	A8p SrEu
65339	3109	53 Cam	A3p SrCrEu
68351	3215	15 Cnc	A0p SiCrSr
71866		TZ Lyn	A1 SrSiEu
72968	3398	3 Hya	A2 SrCrEu
74521	3465	49 Cnc	A1p EuSrCr
81009	3724	KU Hya	A3p SrCrEuSi
83688	3831	IM Vel	A8p SrCrEu
90044	4082	25 Sex	B9p SrCrSr
90569	4101	45 Leo	A0p SiCrSrEu
94660	4263	KQ Vel	A0p EuCrSi
96616	4327	V815 Cen	A3p SrCrEu
96707	4330	EP UMa	A8-F0p SrCrEu
96910		CoD-45 6547	B9 SrCrEu
98088	4369	SV Cr	A8IIVp SrCrSiEu

Table 8. List of SrCrEu stars - continued

HD	HR	Name	Sp. type
103192	4552	β Hya	B9IIIp SiCrSr
103498	4561	65 UMa	A1p SrCrEu
108662	4752	17 Com A	A0p SrCrEuSi
108945	4766	AX CVn	A1(0)p SrCrEu
110066	4816	EP Com	A2pv SrCr
111133	4854	A1 SrCrEu	
112185	4905	77 η UMa	A1 CrEuMn
112413	4915	12 α² CVn	A0p SiEuHgCr
115708		HH Com	A3 SrCrEu
116114		BD-17 3829	F0p SrCrEu
116458	5049	A0p SrEuCrSiHgMn	
118022	5105	78 CW Vir	A2p SrCrEu
119213	5153	CQ UMa	A2Vp SrCrEu
119419	5158	V827 Cen	A0p SrCrEu
120198	5187	CR UMa	A0p EuCr
123998	5303	η Aps	A2(m) CrEu
125248	5355	CS Vir	A1p EuCr
126515		FF Vir	A2p CrSr
128898	5463	α Cir	A9p SrCrEu
130559	5523	7 μ Lib A+B	A1p SrCrEu
130841	5531	9 α² Lib	A3-7m(A3IV) CrSr
133029	5597	BX Boo	B9p SrCrEu
134793		LV Ser	A4 SrCrEu
135297		FI Ser	A0 SrCrEu
137909	5747	3 β CrB	A9p SrCrEu
137949		33 Lib	F0p SrCrEu
140160	5843	20 γ Ser	A0p SrCr
141556	5883	5 χ Lup	B9IV HgMnSrEu
144897		CoD-40 10236	B8p EuCr
147010		V933 Sco	B9p SrCrFeSr
147105		V961 Sco	A3p SrCrEu
148112	6177	24 ω Her	A0p SrCr
148321		PPM 265557	A1-Α8 Sr
148330	6127	DQ Dra	A2 Si3955v:SrCrEu
148898	6153	9 ω Oph	A6p SrCrEu
149822	6176	V773 Her	B9p SrCrEu
149911	6179	GC 22360	A0p CrEuSiSr
150035		V955 Sco	A3 CrEuSr
152107	6254	52 Her	A3Vp SrCrEu
153286		PPM 55775	A3-F5 Sr
153882	6326	V451 Her	A1p CrEu
154258	6709	V2126 Oph	A3p SrCrEu
156474	6758	BD +12 3382	A7p SrCrEu
164429	6718	V771 Her	B9p SiSrCrEu
170397	6932	V432 Sco	B9p CrSiEu
170793	6958	MV Ser	A0p SiCrEuSr
171586		FR Ser	A2 SrCr
173650	7058	V535 Her	A0p SiSrCr
176155	7165	FF Aql	F8Ib SrCr
176232	7167	10 Aql	A6p SrCrEu?
Table 8. List of SrCrEu stars - continued

HD	HR	Name	Sp. type
184905	7552	V1264 Cyg	A0 SiSrCr
187474	7575	V3961 Sgr	A0p EuSrCrSi
188041	7575	V1291 Aql	A6p SrCrEu
191742	PPM 59411	V5 SiCrEu	A5 SrCrEu
193756	CPD-52 11681	V9p SrCrEu	A9p SrCrEu
196502	7879	73 AF Dra	A2p SrCrEu
200177	PPM 60816	V3961 Sgr	A0p EuCrSi
201601	8097	5 γ Equ	A9p SrCrEu
203006	8151	θ¹ Mic	A2 MgCrSrEu
203932	CoD-30 18600	A5p SrCrEu	A5p SrCrEu
204131	8206	GC 30005	B9p SiSrCr
205087	8240	B9p SiSrCrEu	B9p SiSrCrEu
208095	8357	B6IV-V SiSrCrEu	B6IV-V SiSrCrEu
212454	8535	B8III SrCrEuHg He-w	B8III SrCrEuHg He-w
216018	BD-12 6357	A7p SrCrEu	A7p SrCrEu
216533	MX Cep	A1 SrCr	A1 SrCr
217522	CoD-45 14901	A5p SrEuCr	A5p SrEuCr
218495	CPD-64 4322	A2p EuSr	A2p EuSr
220825	8911	8 α Psc	A1p CrSi:Si:CrEu
221394	8933	GC 32719	A0p SrCrEu:Si
221568	V436 Cas	A1 SrCrEu	A1 SrCrEu
221760	8949	ι Phe	A2Vp SrCrEuSi
223640	9031	ET Aqr	B9p SiSrCr
224801	9080	CG And	B9.5p SiCrEu
335238	BD+29 4202	A1p CrEu	A1p CrEu

Table 9. List of other Sr stars

HD	HR	Name	Sp. type
5737	280	α Scl	B6p SrTi He-w
8855	PPM 44016	B9 SiCr	B9 SiCr
12288	V540 Cas	A2p CrSi	A2p CrSi
22316	1094	GC4315	B9p HgMnCrSi
22407	PPM 185972	Cr	Cr
23387	PPM 92834	A0 CrSi He-w	A0 CrSi He-w
27309	1341	56 Tau	A0p SiCr
30466	V473 Tau	A0 SiCr	A0 SiCr
32549	1638	11 Ori	A0p SiCr
32633	HZ Aur	B9 SiCr4012	HZ Aur
35497	1791	β Tau	B7III SiCr?
37058	V359 Ori	B3p SrTi He-w	V359 Ori
37140	V1130 Ori	B8 He-w SiSr	V1130 Ori
38104	1971	α Aur	A2Vp Cr
43819	2258	V1155 Ori	B9IIp Si4012,Cr
77350	3595	γ Cnc	B9p Si4012,CrHg
79158	3652	36 Lyn	B9IIP SrTiMn He-w
83625	IO Vel	A0 SiSr	IO Vel
89822	4072	ET UMa	A0p SiSrHgMn
93507	CoD-67 1494	A0p SiCr	CoD-67 1494
112381	V823 Cen	A0 SiCr	V823 Cen
130557	5522	V9V Si:Cr:v	V9V Si:Cr:v
133652	5619	HZ Lup	A0p SiCr
135382	5671	γ TrA	A0 Eu(A1V)
137509	NN Aps	B8p SiCrFe:He-w	NN Aps
140728	5857	A0p SiCr	5857
141988	PPM 19594	A2p Si:Sr	PPM 19594
144197	5980	A3p (Am) Sr?	5980
147890	V936 Sco	B9.5p SiSr	V936 Sco
148199	GC 22126	B9 SiSr He-w	GC 22126
168605	PPM 134572	A0 SiSr	PPM 134572
168733	6870	V4050 Sgr	B8p TiSr He-w
175156	7119	B4(5)II SrTi He-w	B4(5)II SrTi He-w
189160	V2095 Cyg	A0(B8)p Si3955 Cr4012	V2095 Cyg
192678	V1372 Cyg	A2 Cr	V1372 Cyg
192913	MW Vul	A0 SiCr	MW Vul
200311	BD+43 3786	B9p SiCrHg He-w	BD+43 3786
202671	8137	30 Cap	B6(8)III SrTi He-w
209515	8407	GC 30848	A0IV CrSiSrMg 4012
213918	V362 Lac	B6p SiSrFe	V362 Lac
217833	8770	V638 Cas	V638 Cas
217833	8770	V936 Sco	V936 Sco
References

Adam, M.G., 1965, Observatory, 85, 204
Adelman, S.J., Adelman, A.S., Pintado, O.I., 2003, A&A, 397, 267
Albright, R., Jenker, H., Weiss, W.W., Wood, H.J., 1977, A&A, 58, 93
Aleksseev, I.Yu., Gershberg, R.E., 1997, Stellar Magnetic Fields, Proc. Int. Conf., 76
Anderson, C.M., Hartmann, L.W., 1976, ApJ, 204, L51
Angel, J.R.P., Landstreet, J.D., 1970, ApJ, 160, L147
Angel, J.R.P., McGraw, J.T., Stockman, H.S., 1973, ApJ, 184, L79
Aslanov, I.A., Rustamov, Y.S., 1975, IAU Coll., 32, 613
Aslanov, I.A., Salomatina, N.A., 1981, Comm. of the Spec. Astrophys. Obs., 32, 29
Babcock, H.W., 1954, ApJ, 120, 66
Babcock, H.W., 1956, ApJ, 124, 489
Babcock, H.W., 1967, The Magnetic and Related Stars, 1967
Babcock, H.W., 1960, ApJ, 132, 521
Babcock, H.W., 1956, ApJ, 120, 66
Babcock, H.W., 1954, ApJ, 120, 66
Aslanov, I.A., Salomatina, N.A., 1981, Comm. of the Spec. Astrophys. Obs., 32, 29
Babcock, H.W., 1954, ApJ, 120, 66
Babcock, H.W., 1956, ApJ, 124, 489
Babcock, H.W., 1967, The Magnetic and Related Stars, 1967
Babcock, H.W., 1960, ApJ, 132, 521
Babcock, H.W., 1956, ApJ, 120, 66
Babcock, H.W., 1954, ApJ, 120, 66
Aslanov, I.A., Salomatina, N.A., 1981, Comm. of the Spec. Astrophys. Obs., 32, 29

References

Bychkov, V.D., 1990, Mitteilungen des Karl-Schwarzschild-Observatoriums Tautenburg, No. 125, 13
Bychkov, V.D., Bychkova L.V., 2002, personal comm.
Bychkov, V.D., Shtol', V.G., 1997, Stellar Magnetic Fields, Proc. Int. Conf., 200
Bychkov, V.D., Glagolevskij, Yu.V., El'kin, V.G., Kopylova, F.G., Naidenov, I.D., Romanuyk, I.I., Chunakova, N.M., Shtol', V.G., 1989, Preprint Spec. Astrophys. Obs., No. 29, 1
Bychkov, V.D., Glagolevskij, Yu.V., El'kin, V.G., Kopylova, F.G., Naidenov, I.D., Romanuyk, I.I., Chunakova, N.M., Shtol', V.G., 1990, Bull. Spec. Astrophys. Obs., No. 30, 78
Bychkov, V.D., Fabrika, S.N., Shtol', V.G., 1991, Pis'ma Astron. Zh., 17, 43
Bychkov, V.D., El'kin, V.G., Shtol', V.G., 1992, Stellar Magnetism, International Conference Proceedings, Russia, Nauka, 211
Bychkov, V.D., Kostynchuk, L.Yu., Shtol', V.G., 1997, Stellar Magnetic Fields, Proc. Int. Conf., 110
Bychkov, V.D., Monin, D.N., Fabrika, S.N., Valyavin, G.G., 1997a, Stellar Magnetic Fields, Proc. Int. Conf., 124
Bychkov, V.D., Monin, S.N., Fabrika, S.N., Valyavin, G.G., Burlakova, T.E., 1997b, Stellar Magnetic Fields, Proc. Int. Conf., 128
Bychkov, V.D., Hric, L., El'kin, V.G., Shtol', V.G., 1997c, Stellar Magnetic Fields, Proc. Int. Conf., 193
Bychkov, V.D., Hubrig, S., Shtol', V.G., 1997d, Stellar Magnetic Fields, Proc. Int. Conf., 197
Bychkov, V.D., Shtol', V.G., Gerth, E., Kroll, R., 1997e, Stellar Magnetic Fields, Proc. Int. Conf., 204
Chunakova, N.M., Bychkov, V.D., Glagolevskij, Yu.V., 1981a, Comm. of Spec. Astrophys. Obs., 31, 5
Chunakova, N.M., Bychkov, V.D., Glagolevskij, Yu.V., 1981b, Comm. of Spec. Astrophys. Obs., 32, 28
Chuntovon, G.A., 1997, Stellar Magnetic Fields, Proc. Int. Conf., 203
Chunovon, G.A., 2001, Bull. Spec. Astrophys. Obs., No. 51, 112
Conti, P.S., 1969, ApJ, 156, 661
Conti, P.S., 1970a, ApJ, 159, 723
Conti, P.S., 1970b, ApJ, 160, 1077
Dudorov, A.E., 1995, Astron. Zh., 72, 884
El'kin, V.G., 1990, Mitteilungen des Karl-Schwarzschild-Observatoriums Tautenburg, No. 125, 29
El'kin, V.G., 1992a, Stellar Magnetism, International Conference Proceedings, Russia, Nauka, 65
El'kin, V.G., 1992b, Stellar Magnetism, International Conference Proceedings, Russia, Nauka, 67
El'kin, V.G., 1994, Chemically Peculiar and Magnetic Stars, Tatranska Lomnica, Proc. Int. Conference, 35
El'kin, V.G., 1995, Astron. Zh., 72, 884
El'kin, V.G., 1998, Contributions of the Astronomical Observatory Skalnate Pleso, No. XXVII, 452

V.D. Bychkov, L.V. Bychkova, J. Madej: Catalogue of averaged stellar effective magnetic fields.
Appendix A: The catalogue of averaged effective magnetic fields

Table A.1 presents the complete listing of stars with individual averaged quadratic values of \(B_e \) and the additional data. Columns of the Table list: HD number, spectral type of the star, number \(N \) of individual \(B_e \) values, standard deviation \(\sigma \), corresponding value of \(\chi^2 \) per one degree of freedom, method of \(B_e \) determination, and reference numbers. The list of references for Table 1 is given at the end of this Appendix.
Table A.1. List of stellar magnetic fields

HD	Sp.type	N	$\langle B_\parallel \rangle$	$\sigma\langle B_\parallel \rangle$	χ^2	Method	References/notes
358	B9p	14	65.3	134.5	1.45	all	2 56 127 140
358	B9p	13	67.8	67.7	1.56	all	2 127 140
358	B9p	7	57.3	46.8	1.81	HI	2 127
358	B9p	6	78.2	85.9	1.27	Met	140
432	F2IV	3	220.1	175.6	1.11	HI	235 266
886	B2IV	13	670.3	357.6	2.16	all	77 96 232
886	B2IV	12	694.5	368.9	2.18	HI	77 96
2435	A2	2	749.5	200.0	14.04	Met	137
2453	A1	28	587.8	202.8	8.88	Met	1 26 256
3360	B2V	1	70.0	310.0	.05	HI	77
3627	K3III	2	8.5	2.5	12.50	Met	321
3980	A7p	8	1202.1	200.0	36.12	Met	121
4161	A2IV	21	655.0	261.4	9.78	Met	327
4502	M2ep	8	43.0	57.6	1.33	Met	47 322
4778	A1p	23	1026.2	425.3	7.24	HI	171
5377	B6p	24	324.0	142.3	10.75	HI	37 181 256
5797	A0	1	2200.0	350.0	39.51	Met	225
6532	A3p	1	517.0	273.0	3.59	Met	256
6860	M0III	2	9.2	2.0	21.25	Met	299 321
8441	A2	21	284.1	228.7	2.36	Met	1 327
8855	B9	2	997.5	355.4	12.83	Met	41
8860	G6IV	1	24.0	30.0	.64	He	327
8890	F7Ib	7	7.8	3.6	5.23	Met	76
8890	F7Ib	3	35.4	40.3	.62	HI	327
9270	G7IIa	3	6.6	4.4	2.72	Met	321
9996	B9p	57	833.2	174.1	73.02	all	1 19 208 209
1092	A2	21	284.1	228.7	2.36	Met	1 327
1092	A2	2	997.5	355.4	12.83	Met	41
9996	A0	17	615.8	238.8	6.69	Met	1
11503	A1p	32	545.0	343.9	11.39	HI	2 25 327
11636	A5V	2	1200.0	742.8	6.74	Met	327
12288	A2P	20	1643.3	292.1	185.80	all	312
12288	A2P	7	1500.1	463.9	11.00	HI	312 - UWO
12288	A2P	13	1715.5	123.9	279.93	Met	312 - SAO
12447	A0p	35	365.3	266.3	4.88	all	2 25 327
12447	A0p	30	362.9	283.6	4.18	HI	2 25
12447	A0p	5	379.3	117.6	9.07	Met	327
12767	B9.5p	8	242.1	93.9	6.71	HI	2
13480	G5III	1	163.0	72.0	5.13	Met	47
14392	B9p	4	195.2	316.0	.44	HI	2 25 230
14437	B9p	71	1829.0	259.7	115.25	all	41 142 276 312
14437	B9p	63	1829.6	234.7	126.33	Met	41 142 276 312
15089	A5p	4	202.9	150.8	1.76	HI	2
15144	A6Vp	57	802.5	216.4	15.11	Met	1 87
16582	B2IV	13	1068.3	1141.0	1.50	all	77 96 327
16582	B2IV	11	1161.0	1238.1	1.49	HI	77 96
16582	B2IV	2	72.0	176.3	1.56	Met	327
16970	A2	2	163.2	347.9	.19	HI	334
17463	F5Ib	1	14.0	44.0	.01	Met	76
17775	A1	1	376.0	100.0	14.14	Met	327
18296	B9p	70	440.0	216.6	3.73	all	1 2 14 197

V.D. Bychkov, L.V. Bychkova, J. Madej: Catalogue of averaged stellar effective magnetic fields.
HD	Sp.type	N	$\langle B_e \rangle$	$\sigma (B_e)$	χ^2	Method	References/notes
18296		51	503.6	22.76	4.72	Met	1 14 327
18296		14	191.0	177.5	1.29	HI	2 197 243
19356	B8V	1	0	320.0	.00	Met	56
19400	B3V+A0	4	206.7	156.9	1.61	HI	37
19445	A4p	1	415.0	550.0	.57	Met	1
19653	A0	1	548.0	115.0	2.21	Met	327
19805	A0V	4	1039.6	239.6	1.78	Met	327
19832	B9p	11	314.8	233.0	2.17	HI	2
19918	A5p	1	848.0	221.0	1.42	Met	256
20135	A1	3	556.5	428.7	1.78	Met	327
20210	A1m	2	183.8	238.0	.60	Met	1
20283	B9Vp	2	2324.0	2428.0	1.37	Met	91
20902	F5Ib	3	.6	49.0	.08	all	56 333
20902		1	1.0	2.0	.25	LSD	333
21291	B9Ia	1	312.0	102.0	9.36	Met	327
21590	B9	3	1098.2	461.6	5.43	Met	41
21699	B8IIp	19	827.6	397.9	8.98	all	40 252
21699		17	739.5	342.6	9.45	HI	252
22316	B9p	19	1250.2	347.8	18.20	HI	309
22374	A1	1	140.0	238.0	.35	Met	1
22401	B9p	3	520.3	402.2	1.75	all	204 327
22407	K0	1	405.0	220.0	3.39	Met	141
22470	B9p	14	732.9	408.6	17.89	HI	25 37
22649	S3.5	1	450.0	238.0	3.57	Met	1
22920	B8p	5	307.1	159.3	3.97	all	37 256
23249	K0IV	3	2.5	5.1	.28	Met	299 322
23387	A0V	2	1861.4	545.0	11.69	Met	327
23408	B8III	5	410.0	120.0			203
24155	B9p	6	1034.2	351.9	8.96	HI	230
24712	A9p	38	802.6	171.2	45.41	all	21 111 120 184
							195 256 285 327
							310
24760		1	130.0	140.0	.86	all	333
25267	B9+B9.5V	7	240.6	91.0	7.66	HI	2
25354	A2	5	206.6	240.0	.74	Met	1
25475	F5	1	1690.0	947.0	3.18	HI	221
25823	B9p	20	667.7	470.3	2.33	Met	1 71
27295	B9V	2	26.9	27.9	1.41	LSD	330 333
27309	A0p	13	1755.1	602.5	7.94	all	2 41 142
27309		5	787.6	443.6	3.01	HI	2 41
27309		8	2148.9	683.4	11.01	Met	142
27371	K0IIab	3	13.2	6.8	6.18	Met	322
27376	B9V	4	266.9	292.6	.62	Met	20 - primary comp.
27376		4	403.1	263.4	2.55	Met	20 - secondary comp.
27962	A3V	16	779.3	241.0	15.58	all	1 77 98
28305	G9.5III	1	22.3	5.4	19.36	Met	322
28307	K0IIIb	1	59.0	27.0	4.78	Met	322
28843	B5-B9p	5	344.2	238.9	2.59	HI	37
29009	B9p	2	206.2	195.1	1.15	HI	230
29139	K5III	10	77.1	40.5	4.16	Met	56 123 140 299
							322
29140	A5m	1	46.0	167.0	.08	HI	77
29173	A1m	1	28.0	32.0	.77	LSD	333
29248	B2III	9	1063.2	1175.0	1.47	HI	96
29305	A0III	4	53.8	50.6	1.45	HI	2
30466	A0p	10	1464.7	293.3	28.48	Met	1 142 327
30652	G0V	1	8.3	18.0	21.26	Met	299
31295	A0Vc	5	263.6	179.5	2.16	HI	183
31327	B2Ib	1	40.0	290.0	.02	Hel	75
HD	Sp.type	N	\(\langle B_y \rangle\)	\(\sigma (B_y)\)	\(\chi^2\)	Method	References/notes
-----	---------	---	----------------	----------------	----------------	--------	-----------------
31648	A2	1	180.0	300.0	.36	Met	286
32549	A0p	4	50.2	132.9	.14	Hi	2
32630	B3V	1	1672.0	1134.0	2.17	Met	327
32633	B9p	120	2760.6	262.9	171.85	all	1 2 8 175 184 285 310 327
32633	B9p	17	2514.3	456.8	36.84	Hi	2
33328	B2IV	1	26.0	247.0	.01	Hi	200
33254	A2m	20	192.4	162.3	1.57	Met	1 10 327
33904	B9p	14	143.2	194.5	.88	all	1 2 140
33904	B9p	8	177.9	80.7	7.17	Met	1 140
33904	B9p	3	106.3	136.9	.25	Hi	2 140
34085	B8Iac	4	153.7	71.1	204.56	Met	56 128 131
34452	A0p	20	743.4	433.6	4.35	all	2 41 230
34452	A0p	11	527.0	242.2	5.37	Hi	2 230
34452	A0p	9	942.6	588.3	3.10	Met	41
35008	B9p	4	385.2	368.5	1.22	Hi	201 204
35039	B3V	3	450.9	300.0	2.26	Met	55
35298	B6	5	2275.9	443.3	26.12	Hi	201
35299	B1.5V	2	.0	255.0	.00	Met	55
35456	B6	13	1189.0	318.8	11.97	all	201 327
35456	B6	12	1180.2	318.4	11.64	Hi	201
35497	B7III	1	103.0	125.0	.68	Hi	141
35502	B5	6	1523.3	341.9	18.16	Hi	201
35912	B2V	10	902.6	383.2	11.86	Met	55 327
36313	B8p	6	1019.7	448.2	5.40	Hi	201
36429	B4	5	518.2	374.6	2.28	Hi	201
36430	B2V	5	329.1	232.5	2.14	Met	327
36485	B2p	7	3223.2	317.9	109.32	Hi	135 256
36512	B0V	1	93.0	105.0	.78	Hi	77
36526	B8	6	2227.4	476.2	23.09	Hi	201
36540	B7	4	574.7	447.8	1.85	Hi	201
36629	B3	8	919.9	665.2	4.82	Met	53 55
36668	B7	6	985.7	447.5	4.87	Hi	201
36862	B0.5V	1	1090.0	1650.0	.44	Met	232
36916	B8	2	627.6	177.9	12.62	Hi	37
36959	B1V	4	387.3	308.2	1.97	Met	55
37017	B1.5V	40	1488.1	338.4	26.28	all	24 135
37017	B1.5V	35	1518.6	330.5	28.70	Hi	24 135
37017	B1.5V	5	1254.4	389.4	9.34	He	135
37043	O9III	4	315.7	580.6	.45	all	37 55
37055	B3IV	3	270.8	571.5	.47	Met	55
37058	B3p	10	1091.3	412.2	10.78	all	37 53 55 256
37129	B2.5V	3	245.1	311.6	.39	all	37 286
37140	B8	6	575.5	521.8	1.32	Hi	201
37151	B8p	5	310.7	353.8	.78	Hi	201 204
37210	B8p	4	497.4	503.5	.96	Hi	201
37470	B8p	4	155.6	461.7	.11	Hi	201
37479	B2Vp	22	1907.9	402.5	25.49	all	28 135
37479	B2Vp	16	1979.2	419.0	24.21	Hi	28 135
37479	B2Vp	6	1703.0	354.7	28.92	He	135
37642	B9p	6	2136.8	450.1	21.56	Hi	201
37752	B8p	1	260.0	680.0	.15	Met	327
37776	B3	51	1259.7	384.9	12.35	Hi	24 174
37807	B4	2	500.0	552.3	.85	Met	55
38104	A2Vp	6	367.7	220.0	2.87	all	326 327
38545	A3Vn	4	555.2	276.2	3.52	Hi	183
39317	B9p	1	400.0	210.0	3.63	Hi	2
40183	A2V	2	100.8	157.6	.58	all	77 327

Table A.1. List of stellar magnetic fields – continued
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B_e \rangle$	$\sigma\langle B_e \rangle$	χ^2	Method	References/notes
40312 A0p	26	223.2	57.3	16.36	HI	2 60 - only H_β	
40312	9	340.6	290.3	1.58	HI	25 - only H_α	
40312	10	1025.8	505.7	6.66	Met	226	
40312	11	213.2	41.9	48.09	LSD	310	
41753 B3V	1	120.0	420.0	0.08	LSD	333	
42474 M1ab	8	528.1	206.3	38.56	Met	1 72	
42616 A1	4	620.4	238.0	6.80	Met	1	
43378 A2V	1	70.0	460.0	0.02	HI	327	
43819 B9IIIp	5	269.5	253.6	4.78	Met	120 327	
44743 B1III	12	450.8	559.1	1.23	Hl	96	
45348 F0lb	14	277.6	50.0	30.83	Met	42	
45412 F8Ibv	1	33.0	35.0	5.89	Met	76	
46328 B0.5V	8	810.1	1295.6	0.74	Hl	96	
47103 A0	8	3526.0	365.4	391.01	Met	259	
47105 A0IV	4	162.1	122.6	2.31	all	77 326 327	
4777 B2	1	355.0	280.0	1.61	Met	141	
48915 A1Vm	12	17.0	35.4	0.74	all	54 56 57	
49333 B7IIIn	10	618.4	300.2	5.02	Hl	37 230	
49606 B7III	84	916.0	556.8	3.34	all	38 230 241 267 327 330	
49606	32	815.1	423.6	5.66	Met	38 241	
49976 A1p	25	1488.8	358.0	18.31	Met	1 91 92 184 285	
50169 A3p	7	1218.2	222.1	65.84	Met	1 256	
51418 A0	11	401.0	200.0	4.02	Met	29	
51688 B8II	7	550.2	557.7	1.71	all	40 230 327 328	
51688	5	562.3	332.3	22.8	HI	230 327	
52918 B1.5III	1	97.0	162.0	0.36	HI	200	
53367 B0IV	8	376.0	537.7	2.10	Met	261 286 331	
54118 A0p	14	1032.5	255.9	38.66	HI	81 230 — $H_\beta + H_\alpha$	
54118	7	1029.3	326.2	12.48	HI	81 — H_α	
54118	7	1035.6	156.6	64.83	HI	230 — H_α	
55719 A3p	31	1397.8	263.6	76.97	Met	32 93 256	
56022 A0p	3	201.7	116.7	3.03	HI	2	
56495 Am	2	429.5	238.0	3.26	Met	1	
56537 A3V	2	561.0	1731.0	0.11	Met	327	
58260 B3	10	2291.2	301.7	65.81	HI	24 135	
58715 B8Ve	3	212.3	199.1	1.14	HI	200	
60178 A2Vm	12	136.1	92.0	1.80	all	77 140 327 333 334	
60179	1	24.0	10.0	5.76	LSD	333	
60179 A1V	4	42.8	38.5	1.59	all	77 333 334	
60179	1	26.0	13.0	4.00	LSD	333	
60344 B3	4	334.9	451.8	56	HI	24 135	
60778 A1V	1	150.0	115.0	1.70	Met	223	
61421 F5IV	44	15.8	16.6	1.43	all	56 77 138 140 192 296 299 307 327	
61421	23	2.1	2.2	1.14	Met	296 307	
61421	1	2.0	5.0	33.16	LSD	333	
62140 A8p	36	1336.3	305.6	236.56	all	62 91 310	
62140	22	1458.5	388.5	31.05	Met	62 91	
62140	14	117.5	55.1	559.50	LSD	310	
62345 G8IIIa	2	12.5	3.2	23.28	Met	321	
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B \rangle$	$\sigma \langle B \rangle$	χ^2	Method	References/notes
62509	K0IIIb	12	6.6	13.8	1.43	Met	56 299 321 322
63401	BIII	1	280.0	210.0	1.78	HI	230
63975	B8	1	100.0	110.0	.83	LSD	333
64486	B9p	6	854.7	513.6	5.40	all	91 230
64486		3	1118.3	665.2	7.94	Met	91
64486	B1.5Vp	21	571.9	113.8	24.99	all	24 135
64740		15	565.8	113.9	24.74	HI	24 135
64740	A3p	142	3208.1	443.2	242.54	all	1 9 25 33
		79	3113.3	315.7	210.65	Met	74 96 105 106
		48	3253.7	631.4	70.47	HI	190 327 326
66255	A0p	1	240.0	190.0	1.60	HI	230
68351	A0p	3	151.8	393.1	.21	HI	230
69267	K4III	2	3.5	2.5	2.50	Met	321
70331	B8p	1	2819.0	184.0	234.72	Met	256
71866	A1p	105	1678.1	236.5	86.66	all	3 6 196 310
71866		95	1691.4	247.2	54.40	Met	3 6 196
72524	A2Vn	1	338.0	402.0	.71	HI	327
72968	A2p	24	479.7	288.3	19.30	all	1 9 1 327
72968		21	481.2	238.5	34.38	Met	1 91
72968		3	469.6	62.3	133.84	Met	327
73340	B9	5	1643.8	218.6	60.39	HI	230
73709	F2III	2	62.1	46.5	2.03	LSD	333
74521	A1p	25	812.5	141.0	103.39	all	1 184 285 230
		12	921.4	217.9	20.73	Met	327
		9	983.0	238.0	17.06	HI	1
75333	F7Vn	1	.0	140.0	.00	Met	56
75333		1	120.0	100.0	1.44	LSD	333
76294	G9II	1	15.3	2.9	25.00	Met	321
76644	A7IV	1	80.0	140.0	.33	HI	77
76756	A5m	2	119.3	270.1	.17	all	2 327
76943	F5V	2	10.1	21.6	.25	Met	334
77327	A1V	4	589.7	365.9	2.60	Met	334
77350	B9p	19	846.1	265.9	10.78	all	1 230 327
77350		5	395.7	289.4	2.04	HI	230 327
77750		12	1024.1	271.0	14.56	Met	1 327
77750		2	12.7	35.5	.13	LSD	333
78209	A1m	2	113.2	113.4	.55	all	2 333
78209		1	3.0	10.0	.09	LSD	333
78316	B8IIIp	31	208.7	204.7	.99	Met	1 1 330
78316		1	37.0	26.0	2.03	LSD	333
78362	F3	2	4.1	5.0	.68	LSD	333
79158	B9IIIp	27	672.0	226.2	12.07	HI	37 181 327
79469	B9.5V	4	126.5	119.1	1.11	all	334
81009	A3p	6	1430.5	235.9	120.43	all	91 256 310
80081	A3V	4	440.9	332.0	1.95	all	334
82328	F6IV	1	250.0	160.0	2.44	HI	77
82328		1	.0	4.0	.00	LSD	333
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B_z \rangle$	$\sigma \langle B_z \rangle$	χ^2	Method	References/notes
83368	A8p	34	576.8	264.1	7.16	all	184 186 256 285
83368		25	604.8	290.7	6.65	Met	184 256 285
83368		9	490.8	169.5	8.56	Hl	186
83625	A0	2	306.1	405.2	1.18	Hl	230
84367	F7V	1	210.0	80.0	6.89	Met	120
84441	G0II	3	29.6	23.3	22.44	Met	56 322
84999	F2IV	6	376.2	466.5	.59	Hl	235 266
86986	A1V	1	430.0	580.0	.55	Met	232
87737	A0lb	2	102.5	59.0	2.96	Met	327
87737		2	5.1	13.5	.15	LSD	333
87901	B7V	3	17.1	152.4	.05	Hl	77 126 327
88230	K5	1	57.0	100.0	.32	Met	70
89021	A2IV	1	66.0	22.0	9.00	LSD	333
89822	A0p	17	560.7	221.9	2.08	all	1 2 20 140
							230 327 330
90044	B9p	11	738.8	373.7	15.36	all	230 324
90044		5	872.1	339.7	28.74	Met	324
90277	F2	1	9.0	20.0	.20	LSD	333
90605	A0p	8	192.5	248.2	.54	Met	1
92664	B9p	20	803.0	179.0	41.65	Hl	81 230
93030	B0Vp	4	40.3	57.9	.50	Hl	24
93507	A0p	2	2164.0	278.1	62.10	Met	256
94334	A1Vs	15	127.5	140.5	1.10	Hl	265
94660	A0p	11	2353.7	265.3	264.24	all	81 184 230 256
							285
94660		5	2654.3	374.6	123.87	Hl	81 230
94660		6	2070.1	109.7	381.22	Met	184 256 285
95418	A1V	4	36.2	64.3	.34	all	77 333 334
95418		1	3.0	10.0	.09	LSD	333
95608	A1m	2	4.1	41.6	.01	all	77 333
95608		1	3.0	21.0	.02	LSD	333
96446	B2	24	1104.5	247.8	37.79	all	24 184 285
96446		6	1492.0	296.1	25.76	Hl	24
96446		18	940.6	229.5	41.80	Met	184 285
96616	Ap	1	90.0	740.0	.01	Hl	81
96707	F0p	27	1072.1	722.4	4.45	all	91 260 324
96707		17	1333.7	891.1	6.08	Met	91 260 324
96707		10	282.7	242.6	1.69	Hl	260
96910	B9p	2	392.2	231.4	3.51	Met	184 285
97603	A4V	1	75.0	65.0	1.33	Hl	77
97633	A2V	3	66.6	78.6	.79	Hl	77
97633		13	54.9	47.3	1.87	all	77 333 334
97633		9	53.6	34.1	2.38	Met	334
97633		1	9.0	12.0	.56	LSD	333
97859	A0	1	400.0	4420.0	.01	Met	275
98088	A8IVP	19	802.3	284.1	109.26	all	1 108 310
98088		15	827.8	237.6	77.26	Met	1 108
98088		3	806.9	48.0	641.75	LSD	310
98353	A2V	2	93.3	105.2	.70	all	185 333
98353		1	120.0	120.0	1.00	LSD	333
98457	A0p	5	318.8	229.2	1.82	Met	184 256 285
99028	F4IV	1	200.0	8.0	6.25	LSD	333
100546	B9Vne	1	.0	100.0	.00	Met	331
101065	G8Ve	3	2241.3	450.0	24.81	Met	85
102509	A7V+G5IVE	1	11.0	24.0	21	Met	299
102647	A3V	1	80.0	65.0	1.51	Hl	77
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$⟨B_e⟩$	$σ(⟨B_e⟩)$	$χ^2$	Method	References/notes
102870	F8V	1	270.0	151.0	3.20	Met	124
102870		2	7.4	18.5	.15	Met	334
103192	B9IIIp	5	204.2	104.1	3.92	Hi	2 230
103287	A0Ve	1	25.0	50.0	.25	Hi	77
103287		6	235.2	221.4	.98	all	77 333 334
103498	A1p	6	333.0	138.7	6.24	Met	41 327
104321	A5V	1	93.0	53.0	3.08	LSD	333
104513	A7m	1	40.0	217.0	.03	Hi	328
106591	A3V	1	340.0	200.0	2.89	Hi	327
106591		5	329.8	274.1	1.71	all	327 334
106625	B8	1	29.0	40.0	.40	LSD	333
108642	A7m	2	13.2	17.5	.58	LSD	333
108651	A0p	5	378.9	240.0	2.16	Met	91
108651		1	14.0	56.0	.06	LSD	333
108662	A0p	52	619.9	200.9	9.49	Met	1 11 118
108844	A5	1	66.0	52.0	1.61	Met	333
109026	B5V	5	342.2	95.4	14.30	Hi	37
109387	B5IIIpe	2	117.0	172.6	.64	Hi	200
110066	A0p	5	378.9	240.0	2.16	Met	91
110073	B8p	3	145.4	158.4	1.58	all	1 2
110379	F0V	16	241.1	74.2	12.86	Met	1 61 77 327 333
112185	A1	117	365.0	255.0	5.52	all	2 25 56 123
112185		37	248.0	165.8	2.51	Hi	182 271 310 327
112185		8	63.6	20.0	13.13	LSD	330
112185		8	92.7	33.6	8.13	Met	334
112381	A0	5	3402.5	244.7	225.49	Hi	183
112413	A0p	301	1349.2	444.3	42.49	all	25 27 33 58
112413	A0	1	1.0	18.0	.00	LSD	333
112413	A0p	8	93.0	50.0	.15	Met	327
112413		5	8.2	4.5	4.47	Met	299 321 322
112413		1	9.0	30.0	.09	Hi	77
112413		4	324.1	198.2	2.40	Hi	168
114710	F9.5V	1	5.0	4.0	1.56	LSD	333
115604	F0II	1	10.0	260.0	.00	Hi	235
Table A.1. List of stellar magnetic fields – continued

HD	Sp. type	N	$\langle B_e \rangle$	$\sigma (B_e)$	χ^2	Method	References/notes
115708	A3	14	927.1	405.8	6.53	all	1 248
115708	A0V	11	1001.0	440.3	6.72	Hi	248
115735	A0p	37	1925.5	273.0	242.81	Met	93 184 187 256
115735	A1V	5	89.8	73.2	.94	Met	333 334 ζ UMa A
115735	A0p	1	9.0	16.0	.32	LSD	333 ζ UMa A
115735	A1V	4	56.2	98.0	.36	Met	334 ζ UMa B
116657	A1m	3	41.2	60.5	.60	Met	333 334
116822	A2p	199	808.2	225.4	55.19	all	1 2 13 22
116822	A2p	1	875.5	249.5	16.15	Met	1 13 22 64 84
116822	A2p	4	10.0	380.0	.00	LSD	333 334
116822	A0V	11	1001.0	440.3	6.72	Hi	248
120198	A0p	10	704.2	337.7	4.17	all	184 256 285
120198	A0p	7	823.1	360.0	5.53	Met	41
120198	A0p	3	269.3	279.0	1.01	Hi	2
120315	B3V	1	5.0	65.0	.01	Hi	77
120640	B2Vp	5	193.6	235.2	.81	Hi	24
120709	B5III	4	135.0	104.5	1.47	Hi	37
122532	B9p	35	645.9	268.5	11.05	all	168 184 230 256
122532	B9p	13	571.4	162.5	13.72	Hi	168 230
122532	B9p	22	714.4	314.8	9.48	Met	184 285
122999	A0III	1	29.0	30.0	.93	LSD	333
123998	A2	3	357.7	415.8	.67	Hi	2
124224	B9Vp	26	577.1	323.7	9.26	Hi	2
124850	F6III	1	3.0	5.0	.36	LSD	333
124897	K2IIIbp	13	3.9	7.5	1.50	Met	56 123 140 299
125162	A0p	7	83.3	151.3	.44	Hi	183 185
125238	B2.5IV	2	65.1	98.0	.44	Hi	200
125248	A1p	108	1504.9	295.4	85.44	all	1 2 25 88
125248	A1p	92	1446.0	257.9	96.52	Met	119 184 231 239
125248	A1p	16	1806.8	454.4	21.73	Hi	2
125337	A2m	1	20.0	23.0	.76	LSD	333
125823	B7IIIov	28	469.3	253.0	5.89	all	37 176
125823	A2p	19	523.1	300.0	3.04	Met	176
126515	A2p	31	1723.4	373.5	42.37	Met	1 18 91 184
126660	F7V	1	208.0	83.0	6.28	Met	61
126661	F1m	2	32.3	29.6	1.06	LSD	333
126759	B9	5	345.2	246.7	2.21	Hi	168
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	⟨B_e⟩	σ(B_e)	χ²	Method	References/notes
127972	B2IV	1	66.0	76.0	.75	HI	200
128167	F2V	2	9.6	35.7	.13	HI	77
128167	F2V	1	8.0	13.0	.38	LSD	333
128220	G	3	371.9	711.4	.36	all	232 275
128775	B9p	1	435.0	185.0	5.53	HI	168
128898	A0p	31	644.6	324.3	6.55	all	2 81 93 184
128898		8	389.6	188.7	10.20	HI	2 81
128898		8	389.6	188.7	10.20	Met	2 81
128974	K0II	1	8.8	3.4	4.00	Met	321
130158	A0p	1	350.0	270.0	1.68	HI	327
130557	B9Vp	2	291.5	423.9	.97	HI	230
130559	A1p	15	1375.4	496.8	99.51	Met	1 327 μ Lib A
130559	A1p	3	2387.2	413.0	36.87	Met	327 μ Lib B
130841	A3-7m	1	.0	135.0	.00	Met	57
131120	B7IIIp	4	106.1	167.7	.39	HI	37
131156	G8V+K4Ve	51	47.8	13.7	9.66	Met	47 61 82 299
133029	B9p	218	2419.8	319.5	135.72	all	1 2 25 94
133029		167	2450.8	420.1	95.35	Met	1 94 282
133029		25	3260.0	694.8	81.79	HI	2 25 326
133518	B3	3	182.4	254.0	.57	HI	24
133640	F9-G1Vn	1	10.0	23.0	.19	Met	47
133652	A0p	9	1116.2	200.4	31.02	HI	230
133880	B9p	15	2414.5	241.0	171.99	HI	81 172
134214	F2p	2	458.0	238.8	3.98	Met	256
134759	A0p	7	319.9	415.0	1.32	HI	2 25
134793	A4	5	355.1	249.7	2.00	Met	1
135297	A0	2	784.9	242.0	10.52	Met	1
135382	A0p	6	192.5	175.9	1.25	HI	2 81
136347	A0p	4	256.1	204.9	1.64	HI	168
136933	A0p	2	932.2	433.5	4.61	Met	184 285
137052	F5V	1	74.0	60.0	1.52	HI	77
137193	B9p	1	24.7	79.3	.10	Met	325
137193		4	679.8	220.7	9.26	HI	168
137389	A0p	2	1137.1	3207.7	.29	all	91 230
137422	A3lab	1	24.7	79.3	.10	Met	325
137509	B8p	25	1021.0	416.5	7.66	all	184 230 256 285
137509		23	1062.2	425.7	8.27	Met	184 256 285
137909	A9p	513	673.2	298.4	192.38	all	1 2 17 22
							25 31 39 47
							51 56 57 59
							63 72 76 77
							84 110 125 131
							184 190 211 217
							232 256 280 285
							287 310 324 327
							1 17 22
							39 47 51 56
							57 59 63 72
							84 110 125 131
							184 190 211 217
							232 256 280 285
							287 310 324 327
							225 76 77
							190 327
137909		439	750.6	262.7	22.65	Met	1 17 22
137909		48	507.8	205.6	348.21	HI	2 25 76 77
137909		17	514.5	22.3	523.82	LSD	310
HD	Sp.type	N	(B,)	σ(B,)	χ²	Method	References/notes
--------	---------	-----	------	-------	-----	--------	------------------
137949	F0p	18	1497.7	197.0	63.97	Met	1 26 91 256
138749	B6III	1	100.0	190.0	.28	HI	200
139365	B2.5V	2	47.4	70.1	.49	HI	168
139525	B8	4	214.8	234.1	.88	HI	168
140160	A0p	9	859.1	712.3	1.51	HI	2 25
140160	A0p	1	230.0	120.0	3.67	LSD	333
140573	K2IIib	1	2.4	1.8	.25	Met	321
140728	A0p	9	436.7	337.5	5.19	HI	2 25 41 230
141527	F8Ibp	2	87.8	175.3	1.11	Met	192
141556	B9IV	2	155.8	129.8	.80	HI	2 303 - primary comp.
141556	B9IV	1	274.0	56.0	23.94	HI	323
141637	B1.5V	1	65.0	125.0	.27	HI	168
141675	F3m	1	42.0	26.0	2.61	LSD	333
141795	A2m	7	39.5	55.1	.41	all	6 27 333 334
141795	A2m	3	5.7	14.1	.15	LSD	333
141988	A2p	1	377.0	636.0	.35	HI	326
142114	B2.5Vn	1	145.0	120.0	1.46	HI	168
142165	B6IVn	1	70.0	140.0	.25	HI	168
142250	B6Vp	3	301.8	159.4	3.52	HI	168
142301	B8IIIp	20	2103.6	420.0	30.01	HI	89
142373	F8V	1	27.0	16.0	2.85	Met	61
142378	B3V	2	195.7	156.1	1.68	HI	168
142860	F6V	3	82.1	30.9	3.11	Met	61 334
142860	F6V	2	5.5	18.0	.10	Met	334
142883	B3V	1	145.0	180.0	.65	HI	168
142884	B9	4	285.4	279.2	1.31	HI	37
142990	B6IV	18	1304.3	255.3	36.06	HI	37 230
143473	B9p	8	4292.5	362.0	159.99	all	184 230 285
143473	B9p	4	4775.3	416.7	145.31	HI	230
143699	B4IV	4	167.2	140.4	1.45	HI	37
143807	A0p	10	137.2	193.0	.92	all	1 57 140
143807	A0p	1	31.0	17.0	3.33	LSD	333
144197	A3p	8	169.7	151.7	1.18	Met	85
144206	B9III	1	165.0	185.0	.80	HI	2
144206	B9III	1	24.0	49.0	.24	LSD	333
144284	F8IV	1	3.0	8.0	.14	LSD	333
144432	F0IV	1	2150.0	950.0	5.12	Met	331
144334	B8	12	783.2	257.7	13.14	HI	37
144470	B1V	1	5.0	115.0	.00	HI	168
144661	B7IIIp	5	542.0	318.5	1.54	HI	37
144844	B9IVp	4	318.1	265.5	2.13	HI	37
144897	B8p	1	2046.0	158.0	167.69	Met	256
145102	B9p	4	280.8	190.7	1.73	HI	168
145389	B9p	6	150.5	236.2	1.07	all	2 140 327
145389	B9p	1	7.0	16.0	.19	LSD	333
145482	B2V	2	57.1	102.2	.29	HI	168
145501	B8V+B9p	5	1241.6	238.3	37.84	HI	37 327
145502	B2IV	1	45.0	110.0	.17	HI	168
145792	B5V	2	286.5	190.0	2.27	HI	168
146001	B6IV	5	647.2	381.9	1.62	HI	37
147010	B9p	72	4032.1	402.7	150.66	all	41 142 168 184
147010	B9p	24	4050.7	466.5	149.73	Met	41 142 327
147010	B9p	36	3594.4	379.8	100.19	Met	184 256 285
147010	B9p	12	5096.0	324.0	303.91	HI	168
147084	A5II	4	169.7	97.8	3.28	HI	168
147105	A3p	4	455.6	417.7	1.21	HI	168
147165	B2III+O9V	9	1162.1	1199.2	1.30	HI	96 200
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B_r \rangle$	$\sigma (B_r)$	χ^2	Method	References/notes
147394	B5IV	1	230.0	190.0	1.47	HI	77
147394		1	33.0	87.0	.14	LSD	333
147550	B9V	4	416.5	430.2	1.29	Met	91
147888	B5V	1	100.0	200.0	.25	HI	168
147890	B9.5p	4	235.1	256.4	.85	HI	168
148112	A0p	22	649.7	441.1	2.10	all	2 25 327
148112		20	677.8	436.1	2.28	HI	2 25 327
148112		1	81.0	47.0	2.97	LSD	333
148199	B9p	14	898.7	247.1	14.25	HI	168 230
148321	A1+A8	4	284.7	248.0	1.75	HI	168
148330	A2	16	303.7	154.6	5.05	all	179 326 327
148330		1	52.0	37.0	1.98	LSD	333
148478	M1.5Lab	3	26.0	120.5	2.64	Met	56 138
148605	B2V	2	129.8	115.1	1.34	HI	168
148885	G7IIIa	1	4.5	4.8	1.00	Met	322
148898	A6p	4	248.6	169.4	1.96	HI	2
149438	B0V	2	44.6	26.7	2.31	HI	77
149822	B9p	3	214.3	453.5	.52	HI	230
149911	A0p	6	1035.7	626.8	3.16	Met	91
150035	A3	4	616.5	415.8	2.24	HI	168
150059	A0p	3	304.2	210.6	2.01	HI	2 81
150997	G7.5III	1	5.7	5.3	5.44	Met	321
151346	B4	1	245.0	495.0	.24	HI	37
151965	B9	9	2602.7	282.3	85.08	HI	230
152107	A3Vp	703	1487.0	578.5	22.81	all	1 2 83 178
							197 219 220 290
							326 327
152107		253	1330.9	371.9	21.43	Met	1 83 178 219
							290 327
							2 197 220 290
							326
153286	A3-F5	2	486.5	247.5	3.87	Met	1
153847	F0	1	187.0	508.0	.14	HI	327
153882	A1p	105	1751.0	461.8	170.44	Met	1 6 31 72
							90 184 256 285
							310
153919	O6	3	563.4	387.0	2.22	HI	74
155763	B6III	1	41.0	43.0	.91	LSD	333
156056	B2IV	1	7.0	71.0	.01	HI	200
158926	B2IV+B	1	2.0	70.0	.00	HI	200
159181	G0II	1	2.2	4.2	.25	Met	299
159560	F0m	1	33.0	34.0	.94	LSD	333
160762	B3IV	4	233.1	153.9	1.19	HI	77
160762		1	13.0	43.0	.09	LSD	333
161096	K2III	1	1.6	3.3	.44	Met	322
161817	sdA2	4	283.5	127.6	4.03	Met	232
161868	A0V	2	247.6	291.5	.60	Met	334
162374	B7V	5	269.8	279.6	1.00	HI	37
163472	B2IV-V	1	150.0	330.0	.21	LSD	333
163930	F4IV-V	1	52.0	150.0	.12	Met	47
163993	G8III	3	17.8	5.5	11.62	Met	322
164136	F2II	1	165.0	185.0	.80	HI	140
164258	A3p	12	755.9	477.9	3.73	Met	41 327
164429	B9p	1	640.0	480.0	1.78	HI	230
164458	K4	1	1780.0			Met	102
165474	A7p	4	470.0	165.2	4.60	Met	1 184 256
166014	B9.5V	2	299.7	205.1	2.22	Met	334
166182	B2V	2	209.5	135.4	1.96	HI	77
166473	A5p	3	2148.3	222.7	180.93	Met	256
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B_z \rangle$	$\sigma(B_z)$	χ^2	Method	References/notes
167817	G0V	4	283.6	131.0	4.01	Met	223
168605	A0	1	1784.0	605.0	8.70	HI	326
168733	B8p	30	815.4	276.2	19.58	Met	86 93 184 256
168733	B9.5III	20	832.4	305.3	13.78	Met	86 93
169022	B9.5III	3	70.5	60.0	1.38	HI	183
169027	A0	1	325.0	820.0	.16	Met	275
169887	Ap	3	1552.6	254.7	32.01	Met	329
170000	A0p	33	374.3	402.0	3.78	HI	25 60 $H_Y + H_P + H_T$
170000	A0p	17	426.0	542.7	.70	HI	25 H_Y only
170000	A0p	15	319.8	120.2	7.53	HI	60 H_P only
170153	F7V	15	67.4	48.1	4.49	Met	334
170397	B9p	13	615.7	252.2	11.52	all	2 184 230 285
170397	B9p	11	602.0	239.6	11.89	HI	2 230
170973	A0p	5	532.5	285.4	3.04	all	230 285
171566	F0	1	164.0	592.0	.08	HI	327
171586	A2	2	523.3	238.0	4.87	Met	1
172044	B8IIIp	3	1286.7	447.6	8.88	all	141 327
172044	B8III-IIp	2	1316.5	481.8	7.83	Met	327
172167	A0Vα	25	173.9	80.0	10.65	all	56 77 123 140
172283	B9p	1	140.0	480.0	.09	Met	327
173524	B9.5p	5	342.8	151.7	7.30	Met	20 primary comp.
173524	B9.5p	5	137.9	141.4	.96	Met	20 secondary comp.
173648	A4m	2	77.8	115.8	.24	Met	2 56
173650	A0p	24	326.3	275.9	22.40	Met	1
174933	B9IIIp	8	104.6	107.5	1.02	Met	20 primary comp.
174933	B9IIIp	5	738.6	523.0	1.15	Met	20 secondary comp.
175132	B9p	1	1008.0	79.0	162.80	Met	327
175156	B4II	8	136.3	116.4	1.58	HI	37
175362	B6IVp	81	3509.9	448.1	107.06	all	37 52 184 256
175362	B6IVp	12	3917.5	215.9	333.50	HI	37
175362	B6IVp	15	3767.1	500.0	56.76	Met	52
175362	B6IVp	69	3505.9	477.1	67.68	Met	52 184 256 285
175744	B9p	1	35.0	75.0	.22	Met	327
176155	F8Ib	1	21.0	24.0	.77	Met	76
176232	A6p	6	311.4	229.1	1.79	Met	1 256
177003	B2.5IV	6	233.5	230.9	2.07	all	327
177410	B9p	1	60.0	410.0	.02	HI	230
177517	B9V	3	386.1	322.2	1.42	HI	2
177645	F0	3	171.6	271.7	.87	all	221
177724	A0V	2	326.0	316.0	.98	Met	334
179218	B9	2	487.5	302.1	2.50	Met	286
179527	B9p	2	153.0	353.2	.18	HI	2
179761	B8III	4	479.5	238.0	4.06	Met	1
180163	B2.5IV	2	169.0	115.9	1.88	HI	77
182274	F6IV	1	333.0	120.0	7.70	Met	221
182568	B3IV	1	19.0	298.0	.00	HI	327
182989	F5	83	751.6	267.9	10.68	Met	1 153
183056	B9p	4	325.6	270.0	1.45	HI	2 25
183324	A0V	5	360.9	359.5	.83	HI	183
183339	B8IV	8	1296.2	465.5	8.71	all	40 327
184552	A1m	1	230.0	245.0	.88	Met	1
184905	A0	3	5051.6	3093.4	3.69	Met	327
184927	B2	38	1464.6	430.3	15.06	all	40 281 327
184927	B2	20	1305.0	338.5	17.22	Met	40 281 327
184927	B2	18	1623.6	513.5	12.66	HI	281
186205	B3	1	298.0	96.0	9.64	Met	327
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	\(\langle B_{\text{e}} \rangle \)	\(\sigma \langle B_{\text{e}} \rangle \)	\(\chi^2 \) Method	References/notes	
187013	F5V	1	20.0	19.0	1.11	Met	299
187474	A0p	56	1488.0	143.9	125.50	Met	1 184 256 285
187642	A7IV	2	46.4	55.2	.60	Hl	77
187642	A7IV	6	109.8	89.0	4.35	all	77 334
187929	F6Iab	40	39.0	29.7	2.53	Met	76 299 335 336
187929	20	45.5	41.1	2.37	Met	335	
187929	14	7.6	4.4	3.33	LSD	336	
188041	A6p	97	2225.5	401.0	126.58	Met	1 4 15 16 184 232 256 285
188728	A1IV	5	162.1	222.3	.92	Hl	183
191600	A0	56	427.5	66.7	20.71	Met	10 97 98 327
190073	Ape	2	111.9	218.3	.28	Met	1 286
190967	BII-BII	3	468.4	556.9	.81	Hl	216 327
191195	F5V	1	133.0	28.0	22.56	Met	327
191742	A5	3	610.7	246.8	5.70	Met	1
192136	WN	2	1455.8	407.1	13.22	Hl	327
192560	A2I	47	200.6	230.7	.64	Hl	183
192678	A2	31	1411.4	163.4	90.88	all	1 41 255 327
192678	2	1458.1	235.5	40.29	Hl	255	
192913	A0	5	482.9	221.0	4.77	Met	1
193756	A9p	1	467.0	241.0	3.75	Met	256
194093	F8Ib	107	237.8	104.6	3.32	Met	56 76 131 140
195479	F2m	1	15.0	53.0	.08	LSD	333
196178	B8p	11	973.1	238.5	18.21	all	2 327
196178	9	1069.4	251.4	20.13	Hl	2	
196502	A2p	102	491.8	522.8	32.36	all	1 7 22 190
196502	78	488.6	98.6	26.21	Met	1 7 22	
196502	18	545.5	493.2	1.88	Hl	190	
196502	4	414.3	16.4	788.18	Met	327	
197345	A2Iae	14	16.8	37.5	1.93	Met	140 325 327
197345	10	11.2	6.4	2.65	Met	325	
197461	A7IIIp	1	10.0	140.0	.01	Hl	2
197572	F7-G8Ib	1	10.0	120.0	.01	Met	76
197989	K0III	7	5.2	2.4	4.46	Met	321
198183	B5Ve	1	290.0	170.0	2.91	Hl	200
198583	F5	1	310.0	220.0	1.99	Hl	221
198743	A3m	1	30.0	200.0	.02	Hl	2
199478	B8Ia	2	10.1	44.0	.05	Met	325
199629	A1V	4	493.5	284.0	3.98	Met	334
200177	A1	4	1124.4	433.2	10.08	Met	41
203280	A7V	2	47.4	228.1	.08	Met	334
203111	B9p	21	1490.2	427.5	13.84	all	291
203111	11	904.4	360.6	11.08	Met	291	
203111	10	1940.0	490.8	16.88	Hl	291	
201078	A0V	1	31.0	27.0	1.32	Met	76
201601	A9p	208	585.3	187.7	311.22	all	1 2 46 47 48 49 105 146 184 232 256 268 285 327
201601	175	455.9	197.9	194.50	Met	1 46 48 49 105 146 285 327	
201601	14	728.0	169.3	18.85	Hl	2 268	
201601	12	1347.1	31.4	241.449	Met	327	
202109	G8II-III	3	2.9	2.0	2.08	Met	321
202444	F2IV	1	24.0	1.0	576.00	Hl	266
202627	A2V	3	150.3	205.5	.53	Hl	2
202671	B8III	4	183.0	147.7	1.44	Hl	37
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B_v \rangle$	$\sigma \langle B_v \rangle$	χ^2	Method	References/notes	
202850	B9lab	1	110.0	900.0	.01	Hl	163	
203006	A2	4	344.7	153.5	3.01	all	1 2	
203006	A5p	2	132.5	105.2	1.71	Hl	2	
203932	B2	2	250.0	150.5	2.70	Met	256	
204041	A2V	2	527.9	405.3	1.73	Hl	183	
204131	B9p	7	788.9	535.0	2.30	Met	327	
205021	B1IV	10	1034.5	1539.9	2.86	Hl	96	
205073	Am	3	327.0	350.0	.47	Hl	327	
205087	B9p	8	538.2	391.7	2.76	all	41 230 327	
205087	A0IV	4	404.5	181.7	4.10	Met	41 327	
205087	F8	4	644.8	523.3	1.42	Hl	230	
206433	A0V	6	203.2	145.2	1.47	Hl	2	
206826	F6V	1	.0	90.0	.00	Hl	77	
207098	A6IV	4	82.1	79.4	.88	Hl	2	
207260	A2Ia	157	813.3	368.8	6.01	all	136 194 325	
207260	B9	4	9.0	10.4	.95	Met	325	
207260	F5V	3	1330.6	216.4	41.51	Hl	194	
207757	WN	19	575.7	210.3	9.61	Met	1 4772	
207840	B8V	1	1300.0	530.0	6.02	Met	120	
208063	A1p	1	730.0	460.0	2.52	Met	331	
208095	B8V-IV	2	7636.9	3206.3	4.52	all	91 327	
208392	B1IVe	5	305.1	375.6	.81	Hl	205	
208816	A2Ia	8	410.0	194.3	8.57	Met	1 72	
209308	B9	1	452.0	1039.0	.19	Hl	326	
209339	B0IV	3	493.3	545.5	1.71	Hl	327	
209459	B9.5V	6	176.4	238.5	.84	Hl	183	
209515	A0IV	10	466.4	399.9	1.33	Hl	2 25 327	
209664	B9	1	1206.0	709.0	2.89	Hl	326	
209790	A3m	1	80.0	140.0	.33	Hl	2	
210027	F5V	8	30.4	19.6	4.10	all	61 77 82	
210336	M5III	1	77.0	123.0	.39	Hl	266	
210418	A2IV	9	63.7	127.4	.35	Hl	164 183 185	
210418	B9p	13	150.2	225.1	.43	all	164 183 185 334	
210873	B9	10	986.3	593.0	3.21	Met	327	
212454	A0IV	4	434.0	506.9	.87	Met	40 327	
212593	B9lab	2	247.8	410.5	.40	all	163 325	
213258	A3	1	204.1	121.1	3.00	Met	221	
213558	B9	2	161.4	220.9	.61	Met	334	
213871	B9	1	112.0	807.0	.02	Hl	326	
213918	B6p	3	1751.1	381.3	22.13	Hl	204	
214923	B9	2	35.4	260.0	.02	Met	334	
214783	B9p	1	50.0	280.0	.03	Hl	204	
214993	A2Ia	6	2352.3	1604.9	1.58	Hl	96	
214994	A1III	1	32.0	20.0	2.56	LSD	333	
215441	B9	75	19437.3	2086.5	113.26	all	5 12 30 190	
215441	217522	A5p	1	394.0	124.0	10.10	Met	256
217675	B6III+A2	1	10.0	120.0	.01	Hl	200	
Table A.1. List of stellar magnetic fields – continued

HD	Sp.type	N	$\langle B_e \rangle$	$\sigma(B_e)$	χ^2	Method	References/notes
217833	B9III	23	3648.7	697.5	36.59	all	40 230 233 326
217833	B9III	18	4105.5	768.2	45.42	Met	40 233
217833	B9III	5	748.9	336.5	4.78	HI	230 326
218393	Bpe	3	1820.7	416.6	23.57	Met	327
218398	F0	2	436.6	418.4	.98	Met	41
218495	A2p	1	606.0	280.0	4.68	Met	256
219749	B9p	26	1000.5	412.1	6.38	HI	198 230 327
220825	A1p	13	269.3	247.7	1.37	all	2.25 327
220825		10	193.9	245.6	.94	HI	2.25
221006	Ap	3	772.1	163.8	21.75	HI	230
221336	K	1	77.0	123.0	.39	HI	328
221394	A0p	4	1275.8	446.0	9.79	Met	41
221507	B9.5IVp	1	660.0	196.0	11.34	Met	1
221568	A1	3	595.5	120.4	36.16	Met	327
221756	A1III	6	193.2	265.2	.60	HI	183
221760	A2Vp	5	104.3	121.9	.55	HI	2
223385	A3Ia	1	43.6	35.8	1.49	Met	325
223438	A5m	1	809.0	545.0	2.20	Met	327
223640	B9p	27	643.0	217.9	15.47	HI	224
223960	B0Ia	2	201.5	136.5	1.64	Met	325
224166	B9	1	410.0	470.0	.76	HI	230
224559	B4Ven	8	886.6	916.2	1.35	HI	199 205
224801	B9.5p	3	1318.5	382.4	9.94	Met	1
224926	B7III	4	47.2	168.8	.102	HI	37
226868	O9.7Iab	7	824.7	2300.1	.16	all	75 295 327
231054	A2	4	1647.2	238.1	40.43	Met	329
234677	K6Ve	5	161.1	100.0	2.59	Met	70 A star
234677		5	119.8	100.0	1.43	Met	70 B star
250550	B9eq	5	1148.5	575.8	4.02	Met	286
293764	A2	3	3804.5	278.7	203.23	Met	329
318107	B8p	1	1985.0	230.0	74.48	Met	256
335238	A1p	1	1738.0	247.0	29.34	Met	256
338226	A0	3	1079.4	195.1	34.41	Met	329
343872	Ap	17	2658.3	280.8	123.45	Met	319 329
Feige	Bp	1	100.0	2800.0	.00	HI	37
BD + 15 115	B2	1	3914.0	2720.0	2.07	HI	327
BD + 40 175A	A2	5	2910.6	208.4	225.61	Met	289 A star
BD + 40 175B	A2	5	1603.0	170.4	111.04	Met	289 B star
BD + 51 3356	B9	1	2407.0	971.0	6.14	HI	326
BD + 17 3622	A2	3	1390.5	182.7	65.47	Met	319 329
Cross-reference list:

1 Babcock H.W., 1958.
2 Borra E.F. & Landstreet J.D., 1980.
3 Babcock H.W., 1956.
4 Babcock H.W., 1954.
5 Babcock H.W., 1960.
6 Preston G.W. & Pyper D.M., 1965.
7 Preston G.W., 1967.
8 Preston G.W. & Stepieniš K., 1968a.
9 Preston G.W. & Stepieniš K., 1968b.
10 Conti P.S., 1969.
11 Preston G.W. et al., 1969.
12 Preston G.W., 1969a.
13 Preston G.W., 1969b.
14 Preston G.W., 1969c.
15 Wolff S.C., 1969a.
16 Wolff S.C., 1969b.
17 Wolff S.C. & Wolff R.J., 1970.
18 Preston G.W., 1970.
19 Preston G.W. & Wolff S.C., 1970.
20 Conti P.S., 1970a.
21 Preston G.W., 1972.
22 Wolff S.C. & Bonsack W.K., 1972.
23 Wolff S.C. & Wolff R.J., 1972.
24 Borra E.F. & Landstreet J.D., 1979.
25 Landstreet J.D. et al., 1975.
26 Wolff S.C., 1975.
27 Borra E.F. & Vaughan A.H., 1978.
28 Landstreet J.D. & Borra E.F., 1978.
29 Jones T.J. et al., 1974.
30 Borra E.F. & Landstreet J.D., 1978.
31 Vogt S.S. et al., 1980.
32 Bonsack W.K., 1976a.
33 Borra E.F. & Landstreet J.D., 1977.
34 Borra E.F., 1981.
35 Preston G.W. & Stepieniš K., 1968c.
36 Preston G.W., 1971.
37 Borra E.F et al., 1983.
38 Chunakova N.M. et al., 1981a.
39 Plachinda S.I., 1986.
40 Glagolevskij Yu.V. & Chunakova N.M., 1985.
41 Glagolevskij Yu.V. et al., 1985a.
42 Rakos K.D. et al., 1977.
43 Pyper D.M., 1969.
44 Huchra J., 1972.
45 Angel J.R.P. & Landstreet J.D., 1970.
46 Bonsack W.K. & Pilachowski C.A., 1974.
47 Brown D.N. & Landstreet J.D., 1981.
48 Scholz G., 1979.
49 Scholz G., 1971b.
50 Preston G.W., 1969d.
51 Preston G.W., 1969e.
52 Wolff R.J., Wolff S.C., 1976.
53 Sargent W.L.W. et al., 1967.
54 Borra E.F., 1975a.
55 Conti P.S., 1970b.
56 Borra E.F. & Landstreet J.D., 1973a.
57 Borra E.F. & Landstreet J.D., 1973b.
58 Kodaira K. & Unno W., 1969.
59 Borra E.F. & Dworetsky M.M., 1973.
60 Landstreet J.D. & Borra E.F., 1977.
61 Boesgaard A.M., 1974.
62 Bonsack W.K. et al., 1974.
63 Borra E.F. & Vaughan A.H., 1977.
64 Borra E.F., 1980.
65 Anderson C.M., Hartmann L.W., 1976.
66 Mullan D.J. & Bell R.A., 1976.
67 Kemp J.C. & Wolstencroft R.D., 1973a.
68 Marcy G.W., 1981.
69 Kemp J.C. & Wolstencroft R.D., 1973b.
70 Vogt S.S., 1980.
71 Wolff S.C., 1973.
72 Slovak M.H., 1982.
73 Borra E.F. & Vaughan A.H., 1976.
74 Angel J.R.P. et al., 1973.
75 Borra E.F., 1975b.
76 Borra E.F. et al., 1981.
77 Landstreet J.D., 1982.
78 Robinson R.D. & Worden S.P., 1980.
79 Barker P.K. et al., 1981.
80 Bonsack W.K., 1976b.
81 Borra E.F. & Landstreet J.D., 1975.
82 Boesgaard A.M. et al., 1975.
83 Wolff S.C., Preston G.W., 1978.
84 Wolff S.C., 1978.
85 Wolff S.C. & Hagen W., 1976.
86 Jones T.J., Wolff S.C., 1974.
87 Bonsack W.K., 1981.
88 Hockey M.S., 1969.
89 Landstreet J.D. et al., 1979.
90 Hockey M.S., 1971.
91 Heuvel E.P.J. van den, 1971.
92 Pilachowski C.A. et al., 1974.
93 Wood H.J. & Campusano L.B., 1975.
94 Bonsack W.K., 1977.
95 Hensberge G., 1974.
96 Rudy R.J. & Kemp C.J., 1978.
97 Kuvshinov V.M., 1972.
98 Kuvshinov V.M. et al., 1976.
99 Babcock H.W. & Burd S., 1952.
100 Evans J.C. & Elste G., 1971.
101 Weiss W.W. & Wood H.J., 1975.
102 Weiss W.W. et al., 1978.
103 Hensberge H., De Loore C., 1974.
104 Oetken L. et al., 1970.
105 Scholz G., 1975.
106 Scholz G., 1971a.
107 Kemp J.C. & Wolstencroft R.D., 1973c.
108 Hildebrandt G. et al., 1973.
109 Oetken L. & Orwert R., 1973.
110 Glagolevskij Yu.V. et al., 1977.
111 Golubow H., 1964.
112 Glagolevskij Yu.V. et al., 1981a.
113 Glagolevskij Yu.V. et al., 1981b.
114 Chunakova N.M. et al., 1981b.
Reference	Year
Aslanov I.A. & Salomatina N.A.	1981
Gerth E.	1981
Skulskij M.Yu.	1981
Rustamov Yu.S. & Khotnyanskij A.N.	1980
Adam M.G.	1965
Gollnow H.	1971
Maitzen H.M. et al.	1980
Landstreet J.D.	1980
Glagolevskij Yu.V. et al.	1979
Bonsack W.K. & Simon T.	1982
Preston G.W. & Sturch C.	1967
Wolstencroft R.D. et al.	1981
Kemp J.C. & Wolstencroft R.D.	1974
Severny A.B.	1970
Landstreet J.D. & Borra E.F.	1975
Aslanov I.A. & Rustamov Y.S.	1975
Severny A.B. et al.	1974
Brown D.N. et al.	1981
Wood H.J. & Albrecht R.	1981
Babcock H.W.	1967
Bohlender D.A. et al.	1987
Scholz G. & Gerth E.	1980
Rudiger G. & Scholz G.	1988
Fahlman G.G. et al.	1974
Ryabchikova T.A.	1989
Bychkov V.D. et al.	1989
Glagolevskij Yu.V. et al.	1982a
Merrill P.W.	1959
Saar S.H. & Linsky J.L.	1985a
Saar S.H. et al.	1986
Zverko J. et al.	1989
Mikulasek Z. et al.	1984
Glagolevskij Yu.V. et al.	1984c
Gollnow H.	1971
Glagolevskij Yu.V. et al.	1984a
Romanov Yu.S. et al.	1988
Stepier K.	1984
Scholz G.	1984
Romanov Yu.S. et al.	1988
Glagolevskij Yu.V. et al.	1984a
Glagolevskij Yu.V. et al.	1984b
Skulskij M.Yu.	1984
Romanov Yu.S. et al.	1984
Glagolevskij Yu.V. et al.	1988
Ryabchikova T.A. et al.	1988
Skulskij M.Yu.	1988a
Plachinda S.I.	1988
Mikulasek Z.	1988
Gerth E.	1988
Iliev I.Kh. et al.	1988
Hubrig S.	1988
Willson R.F. et al.	1988
Saar S.H.	1988
Thompson I.B. et al.	1987
Landstreet J.D.	1988
Mathys G.	1987
Bohlender D.A.	1989
Landstreet J.D.	1990
231 Mathys G. & Stenflo J.O., 1988.
232 Plachinda S.I. & Polosukhina N., 1994.
233 El’kin V.G., 1994.
234 Gerth E. & Bychkov V.D., 1994.
235 Udovichenko S.N. et al., 1994.
236 Romanyuk I.I., 1994.
237 Plachinda S.I. et al., 1993.
238 Johnstone R.M. & Penston M.V., 1984.
239 Johnstone R.M. & Penston M.V., 1987.
240 Mathys G. & Lanz T., 1990.
241 Glagolevskij Yu.V. et al., 1985b.
242 Romanov Yu.S. et al., 1994.
243 Glagolevskij Yu.V. et al., 1995.
244 Saar S.H. et al., 1985.
245 Mathys G. & Lanz T., 1994.
246 Wade G.A. et al., 1996.
247 Bohlender D.A., 1994.
248 Hubrig S. & Mathys G., 1994.
249 Mathys G., 1994a.
250 Brown D.N. et al., 1985.
251 Wade G.A. et al., 1996.
252 Mathys G. et al., 1997.
253 Wade G.A. et al., 1996.
254 Mathys G. & Hubrig S., 1997.
255 Mathys G. & Hubrig S., 1997.
256 Mathys G. & Hubrig S., 1997.
257 Romanyuk I.I. et al., 1997.
258 Aksenov I.Y. & Gershberg R.E., 1997.
259 El’kin V.G. & Wade G.A., 1997.
260 Bychkov V.D. et al., 1997.
261 Glagolevskij Yu.V. & Chuntonov G.A., 1997.
262 El’kin V.G., 1996.
263 Bohlender D.A. et al., 1997a.
264 Bychkov V.D. et al., 1997b.
265 Bychkov V.D. et al., 1997c.
266 Udovichenko S.N. et al., 1997.
267 Bychkov V.D. et al., 1997d.
268 Bychkov V.D. & Shtol’ V.G., 1997.
269 Chuntonov G.A., 1997.
270 Bychkov V.D. et al., 1997e.
271 El’kin V.G. et al., 1997.
272 Babel J. & North P., 1997.
273 Wade G.A. et al., 1999.
274 El’kin V.G., 1998.
275 Mathys G., 1993.
276 Romanyuk I.I. & Kudryavtsev D.O., 1998.
277 Babel J. et al., 1995.
278 Maizzen H.M. & Albrecht R., 1975.
279 Steinitz R. & Pyper D.M., 1970.
280 Freedman R.S., 1978.
281 Wade G.A. et al., 1997.
282 Steinitz R. & Pyper D.M., 1971.
283 Romanyuk I.I. et al., 1998.
284 Mathys G., 1994.
285 Mathys G., 1994.
286 Glagolevskij Yu.V. & Chuntonov G.A., 1998.
287 Romanyuk I.I., 1980.
288 Romanyuk I.I., 1984.
289 El’kin V.G., 1999.
290 Gerth E., 1994.
291 Wade G.A. et al., 1997.
292 Glagolevskij Yu.V. et al., 1982b.
293 Glagolevskij Yu.V. et al., 1984d.
294 Glagolevskij Yu.V. et al., 1981.
295 Glagolevskij Yu.V. et al., 1978.
296 Bednow D.K. et al., 1995.
297 El’kin V.G., 1995.
298 Marcy G.W., 1984.
299 Borra E.F. et al., 1984.
300 Dudoitov A.E., 1995.
301 Mathys G., 1995a.
302 Mathys G., 1995b.
303 Basri G. et al., 1992.
304 Johnstone R.M. & Penston M.V., 1986.
305 Takada-Hidai M. & Jugaku J., 1993.
306 Bednow D.K. et al., 1994.
307 Guenther E.W. et al., 1999.
308 Hill G.M. & Blace C.C., 1996.
309 Wade G.A. et al., 2000a.
310 Plachinda S.I. & Tarasova T.N., 2000.
311 Wade G.A. et al., 2000b.
312 Marcy G.W. & Bruning D.H., 1984.
313 Glagolevskij Yu.V. et al., 1984.
314 Giampapa M.S. & Golub L., 1983.
315 Basri G. & Marcy G., 1988.
316 Valenti J.A. et al., 1995.
317 Bagnulo S. & Landolfi M., 1999.
318 Gerth E. et al., 1999.
319 El’kin V.G. et al., 2001.
320 Wade G.A. et al., 2000.
321 Tarasova T.N., 2002.
322 Hubrig S. et al., 1994.
323 Mathys G. & Hubrig S., 1995.
324 Leonid F. & Catanzaro G., 2001.
325 Verdugo E. et al., 2002.
326 El’kin V.G., 2000.
327 Bychkov V.D., Bychkova L.V., 2002.
328 Udovichenko S., Keir L., 1995.
329 Elkin V.G. et al., 2002.
330 Chuntonov G.A., 2001.
331 Glagolevskij Yu.V. & Chuntonov G.A., 2001.
332 Bohlender D.A. & Landstreet J.D., 1990.
333 Shorlin S.L.S. et al., 2002.
334 Monin D.N. et al., 2002.
335 Plachinda S.I., 2000.
336 Wade G.A. et al., 2002.