A contribution to ethnobotany and review of phytochemistry and biological activities of the Iranian local endemic species Sclerorhachis leptoclada Rech.f.

Toktam Mohammadi, Atefeh Pirani, Jamil Vaezi and Hamid Moazzeni

Reviews

Abstract

Background: Sclerorhachis leptoclada Rech.f. is endemic to the South Khorassan province in east of Iran. Although S. leptoclada has been widely used as medicinal and edible plant by indigenous people, its ethnomedical uses have not been well documented yet. This study presents the results of an ethnobotanical survey and reviews phytochemistry and biological activities of S. leptoclada.

Methods: The ethnobotanical study was conducted in Birjand and adjacent areas between March 2018 and December 2019. During this survey, 58 local people were interviewed using a semi-structured questionnaire. The ethnobotanical data were analyzed by using indices Fidelity Level (FL) and Relative Frequency of Citation (RFC). In addition, the available scientific literatures were reviewed to avail the information on phytochemistry and biological activities of Sclerorhachis leptoclada.

Results: The present study revealed the folklore uses of Sclerorhachis leptoclada for different purposes such as increasing lactation, blood purification, treating digestive disorders, headache, body pains, herpes, and cold. The literature review showed that a total of 57 compounds have been isolated from S. leptoclada.

Conclusions: Variety of ethnomedical uses of Sclerorhachis leptoclada highlights its notable pharmacological potential. However, further tests on its bioactivity, active phytochemicals, and their mechanisms of action are needed to ensure a safe use. The limited distribution of the plant and excessive harvesting of the aerial plant parts necessitate educating local people to conserve populations of this local endemic species.

Keywords: Asteraceae, ethnobotany, Iran, medicinal plants, Sclerorhachis

Correspondence

Toktam Mohammadi1, Atefeh Pirani1,2, Jamil Vaezi1, Hamid Moazzeni2*

1Department of Biology, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2FUMH Herbarium, Department of Botany, Research Center for Plant Sciences, Ferdowsi University of Mashhad, Mashhad, Iran

*Corresponding Author: hmoazzeni@um.ac.ir

Ethnobotany Research & Applications 20:45 (2020)
Background
As a result of its unique climatic and geographical conditions, Iran enjoys a rich flora of ca. 8000 plant species, including a considerable number of medicinal plants (Ghahremaninejad & Nejad-Falatoury 2016, Mohammadhosseini et al. 2017). The family Asteraceae includes a high number of popular medicinal genera (e.g., Achillea L., Artemisia L., Calendula L., and Tanacetum L.). Nonetheless, some of the medicinally important genera of the family are not well-known, most probably due to their limited geographical distribution. As one of the small and less-known genera of this family, Sclerorhachis (Rech.f.) Rech.f. (called "Minaei" in Persian) distributes mainly in dry highlands of Iran, Afghanistan, and Turkmenistan (Hassanpour et al. 2018, Kadereit & Jeffrey 2007, Mozaffarian 2008, Rechinger 1986, Sales & Hedge 2013).

Sclerorhachis leptoclada, locally known as "Mastar" (mæstər), is widely used by local people and traditional healers as a medicinal and edible plant in Birjand and its adjacent areas (South Khorassan province). It is sold freshly as an ordinary vegetable in the local markets of the study area during the growing season (Fig.1).

Botany, ecology and geography
Sclerorhachis leptoclada is a perennial herb reaching the height of 15-30 cm, covered with rough hairs, almost leafless in the upper half. Leaves are bipinnately dissected, shortly petiolated, and the inflorescence is a semi-spherical corymb. Flowers are tubular and fruit is an achene in brown (Kadereit & Jeffrey 2007, Rechinger 1981, Rechinger 1986;
Fig. 1 A-C). The flowering period is from April to May. From the ecological point of view, it prefers open sunny areas, especially on top of rocky mountains. The distribution map and *S. leptoclada* is presented in Fig. 2B.

Study area description

Birjand is the capital city of South Khorassan province situated (59° 13′N and 32° 53′E) in the east of Iran (Fig. 2A). Having an average annual rainfall of ca. 160 mm, the climate of Birjand is classified as warm and dry (Ahmadian 1995, Behnia 2002, Vafaie-Fard 2005). The predominant vegetation elements of the area are Xerophytes e.g., *Artemisia* spp., *Astragalus* spp., *Haloxylon* spp. and *Tamarix* spp.). Barberry and saffron are the main agricultural products of this region (Ahmadian 1995, Behnia 2002, Vafaie-Fard 2005).

Historically, Birjand and its adjacent areas have been part of a region called "Qohestan" or "Kohistan" (which means mountains). The topological structure of this area is composed of mountains and plains whose origin dates back to the first to the third geological era (Behnia 2002, Nakhaee-Nezhad Farad et al. 2013). This area is bordered from central Iran by Siah-Kuh mountain range. This mountainous barrier along with the warm and dry climate have played an important role in protecting "Qohestan" from attacks by outlanders. Therefore, the traditions and language of its inhabitants have been less affected by non-local people (Ahmadian 1995, Behnia 2002, Vafaie-Fard 2005). This implies the importance of conducting ethnobotanical studies in Birjand and the neighboring areas.

Although *Sclerorhachis leptoclada* has been widely used by indigenous people in the south of Khorassan, little is known about its ethnobotany and pharmacological properties. Only a few studies have partially investigated phytochemistry and biological activities of *S. leptoclada*, while its ethnobotanical data has not been documented yet. The aims of the
present study are to 1) document traditional uses of *S. leptoclada* 2) review phytochemical properties and biological activities of *S. leptoclada*.

Materials and Methods

Data collection

To document local knowledge and different uses of *Sclerorhachis leptoclada*, several field trips were conducted during March and April in 2018 and 2019. Birjand and 18 different neighboring villages were visited (Figure 2C-D). Medicinal plant vendors and 15 local markets offering edible and medicinal plants were also visited. We interviewed 58 traditional healers and elderly knowledgeable people using semi-structured questionnaires, oral, and personal observations. We used open-ended type of questions as shown in Table 1.

Table 1. Structure of the questionnaire used to interview with the informants.

Questionnaire sections	Details
Demographic information	Name, gender, age, ethnic group and address of informant, how to get
	information about the plant
Uses of plant	Category of uses (medicinal, industrial, food and religious), plant part
	uses, modes of preparation, and routes of administration
Botanical information	The scientific name, local name, locality of collection, type of habitat

The informants were asked to either identify the plant in the field or confirm the fresh samples we collected as “Mastar”. We used Flora Iranica (Rechinger 1986) and Flora of Iran (Mozaffarian 2008) to determine the scientific name of the collected specimens. The voucher specimens are deposited at FUMH.

The disorders treated by *S. leptoclada* were classified according to the categories suggested by the International Classification of Primary Care (ICPC3; https://icpc3.icpc-3.info/).

To overview phytochemistry and biological activities of *Sclerorhachis leptoclada*, we reviewed online and grey literature, including journals and books published in English and Persian languages until August 2019. The information was collected from medicinal plants textbooks, ethnobotanical, pharmacological, and phytochemical studies, and scientific databases. The scientific and author names of the plant species were checked for the latest changes according to “IPNI” (https://www.ipni.org) and “plants of the world online” (http://www.powo.science.kew.org). The distribution maps were prepared using the species incidence data in ArcMap 10.3 (Esri 2011).

Data analyses

The collected ethnobotanical data were analyzed using Fidelity Level (FL) and Relative Frequency of Citation (RFC) indices. The statistical analyses were performed using Microsoft Excel 2016 and “ethnobotanyR” package in R version 4.0.2 (Oksanen et al. 2017). Fidelity level (FL) is obtained by dividing the number of informants mentioning a specific use for certain plant species \(I_p \) by the total number of informants participating in the study \(N \) multiplied by 100 which is calculated by following formula (Hoffman & Gallaher 2007):

\[
FL(\%) = \frac{I_p}{N} \times 100
\]

Relative Frequency of Citation (RFC) is obtained by dividing frequency of citation (FC) (the number of informants mentioning the use of the species) by total number of informants participating in the survey (N). RFC varies from 0 (if nobody refers to the plants as useful) to 1 (if every informant would mention it as useful) and is calculated by the following formula (Tardio & Pardo-de Santayana 2008):

\[
RFC = \frac{FC}{N}
\]

Results and Discussion

Informant data

A total of 58 local informants including 31 women (53.45%) and 27 men (46.55%) aged from 20 to 90 years old were interviewed (Table 2). However, the majority of the interviewees were over 60 years old. The participants were mainly medicinal plant vendors (33.9%) and housewives (32.30%). The local people describe and identify “Mastar” as a plant that has shrubby lifeform, relatively short green leaves with a bitter taste as well as its button-like flowers.

Plant part used

Aerial parts (74.28%) and young fresh leaves of *Sclerorhachis leptoclada* (25.72%) are consumed. The priority of leaves might be due to their availability and easy cutting. This is in accordance with Kunwar et al. (2020) that hypothesized people frequently forage the most visible and accessible plants.
Table 2. Number and gender of informants interviewed in this study.

Locations 1 to 19 represent visited sites (1. Akbar-abad, 2. Bijar, 3. Bojd, 4. Borj-ziad, 5. Bozghoj, 6. Chahowz, 7. Chenesht, 8. Esfahroud, 9. Eshtakhan, 10. Elghar, 11. Ggazik, 12. Hasan-abad, 13. Islam-abad Shokri, 14. Kase-sang, 15. Mahouk, 16. Makhounik, 17. Rokat, 18. Shoushoud, 19. Birjand).

F: Female; M: Male.

Age	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	
	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	M	F	
20-30			2	0						0	1	0	4							
30-40									0	1	1	3								
40-50	1	0	1	0	1	0							0	4						
50-60			1	0			0	1	1	0	1	0	2	3						
60-70	2	0	1	0	0	1	0	1	2	1	1	0	1	0	1	0	1	0		
70-80	1	1	1	0	1	0	1	1	2	0			1	1	1	0	1			
80-90			0	1	2	0														

Locations 1 to 19 represent visited sites (1. Akbar-abad, 2. Bijar, 3. Bojd, 4. Borj-ziad, 5. Bozghoj, 6. Chahowz, 7. Chenesht, 8. Esfahroud, 9. Eshtakhan, 10. Elghar, 11. Ggazik, 12. Hasan-abad, 13. Islam-abad Shokri, 14. Kase-sang, 15. Mahouk, 16. Makhounik, 17. Rokat, 18. Shoushoud, 19. Birjand).

F: Female; M: Male.
Modes of preparations

Table 3 lists the preparation modes of *Sclerorhachis leptoclada*. The most common preparation modes are decoction (74.28%), followed by raw (11.42%), and infusion (8.57%). In 77.14% of the reports, it is used as pure, while in 22.86% of the cases used as mixed. It is mixed with tea, potage, yogurt, or other medicinal plants such as *Fumaria asepala* Boiss. (Fumariaceae), and *Tribulus terrestris* L. (Zygophyllaceae). The widespread use of decoction in the present study is comparable to several studies in Iran (e.g., Khajoei Nasab & Khosravi 2014, Maleki & Akhani 2018, Mosaddegh et al. 2012; Sadat-Hosseini et al. 2017) that reported decoction as the most commonly utilized method of preparation.

Routes of administration

Except for one case of topical administration (herpes), all of the documented administration modes of *Sclerorhachis leptoclada* are oral (Table 3). The predominance of oral administration could be due to the high incidence of internal disorders in the region (Mohammadi et al. in prep.). Besides, oral administration of medicinal plants is the most common mode of use reported by recent ethnobotanical studies in Iran (e.g., Khajoei Nasab & Khosravi 2014, Maleki & Akhani 2018, Mosaddegh et al. 2012; Sadat-Hosseini et al. 2017).

Ailments Treated

Sclerorhachis leptoclada is used by local people in various cases such as digestive problems, blood purification, treatment of body pains, lactation insufficiency, herpes, cold, sore throat, and headache (Table 3).

Different uses of *S. leptoclada* can be classified as below:

Part used	Mode(s) of preparation	Mode of administration	Use(s)
Aerial parts	Decoction or infusion	Oral	Galactogogue, Heat exhaustion, Blood purifier
Leaves and flowers	Decoction or infusion (mixed with black tea)	Oral	Headache and body pain
Leaves and flowers	Liniment	Topical	Herpes symptoms
Leaves and flowers or the aerial parts	Decoction or powdered	Oral	Digestive disorders (including: antacid, stomachache, nausea, gastric ulcer, and intestinal problem)
Young leaves and flowers	Infusion	Oral	Food poisoning
Leaves	Raw or cooked	Oral	Vegetable
	Decoction or infusion		Cold, cough, sore throat, and flu

The main application of *Sclerorhachis leptoclada* in the visited area is for lactation promotion in human. Decoction or infusion of the plant aerial parts is taken for milk augmentation. Our literature survey shows that majority of the plants prescribed as galactagogue by Iranian traditional medicine belong to the family Apiaceae with *Foeniculum vulgare* Mill. as the most cited species (Table 4). So far, only one species from the family Asteraceae (*Cnicus benedictus* L.) has been documented for lactation promotion (Khodayari et al. 2015, Table 4). Here, we report *S. leptoclada* as another species from this family with local usage as galactagogue. The milk augmentation effect of this plant might be attributed to its phenolic compounds (Kakhkeshani et al. 2015, Mohanty et al. 2014).

Decoction or infusion of leaves and flowers are used for blood purification, to treat digestive problems (stomachache, high stomach acidity, nausea, gastric ulcer and intestinal problems), Infective disorders (cold, cough, sore throat and flu), dissipate and treat heat exhaustion, relieve body pain and headache, and food poisoning. Furthermore, powder of leaves and flowers are used as liniment against herpes. Local people also eat fresh leaves as raw or added to the potage.

Quantitative analysis

Fidelity level index (FL)

We considered fidelity level (FL) for each category-use of *Sclerorhachis leptoclada* (Table 5). FL value varied from 4.55% to 63.64%. The highest number of FL belongs to Digestive System category (63.64%).
followed by General and Unspecified (infection category) (31.82%), Pregnancy, Childbearing, Family Planning (18.18%), and the lowest number of FL belongs to Skin, Neurological, and Musculoskeletal categories (4.55%). These findings signify that digestive and infectious disorders are widespread in the study area. The prevalence of digestive problems has already been reported by ethnomedical surveys in different parts of Iran (e.g., Ghorbani 2005, Khajoei-Nasab et al. 2014, Mosaddegh et al. 2012, Sadat-Hosseini et al. 2017).

Table 4. List of medicinal plants introduced as galactogogue by Iranian traditional medicine and ethnomedical studies.

Scientific name	Common name (Arabic)	Vernacular name	Plant part(s) used	Province	Ref.
Apiaceae					
Anethum graveolens L.	Dill (Shebet)	Shevid	Seeds, leaves, fruit	Razavi Khorassan	Ahwazi 1877, Amiri & Joharchi 2013, Ibn-Sina 2015, Razi 1986
Bunium persicum (Boiss.) B.Fedtsch.	Black Cumin	Zireh Siah	Fruit	Razavi Khorassan	Amiri & Joharchi 2013
Coriandrum sativum L.	Coriander	Gardilou, gishniz	Seeds, leaves, stem	Khuzestan and Bushehr	Dolatkhahi & Nabipour 2014, Khodayari et al. 2015
Cuminum cyminum L.	Cumin	Zireh Sabz	Fruit	Razavi Khorassan	Amiri & Joharchi 2013
Foeniculum vulgare Mill.	Fennel (Razianaj)	Razouneh	Seeds, leaves, fruit, and root	Khuzestan, Bushehr and Razavi Khorassan	Ahwazi 1877, Amiri & Joharchi 2013, Heravi 1967, Ibn-Sina 2015, Jorjani 1976, Khodayari et al. 2015, Lavari et al. 2017, Razi 1986
Pimpinella anisum L.	Anise (Razianaj roomi, Badian)	-	Seeds	-	Aqili Khorasani 1992, Ibn-Sina 2015, Razi 1986
Trachyspermum ammi (L.) Sprague	Ajwain (Khordaneh)	Zenyan	Fruit	Razavi Khorassan	Amiri & Joharchi 2013
Trachyspermum copticum (L.) Link.	-	Zenian	Seeds	Bushehr	Dolatkhahi & Ghorbani 2013
Asteraceae					
Cnicus benedictus L.	Cnicus	Khar-e Moghaddas	Seeds, fruit	Khuzestan	Khodayari et al. 2015
Brassicaceae					
Lepidium sativum L.	Garden cress	Teleh	Leaves	Khuzestan and Bushehr	Dolatkhahi & Nabipour 2014
Nasturtium officinale R.Br.	Watercress	Boulaq Outi	Flowering branch	East Azarbaijan	Khaleghi et al. 2016
Fabaceae					
Cicer arietinum L.	Chickpea (Hemmas)	-	Seeds	-	Heravi 1967, Jorjani 1976, Razi 1986
Table 5. Percentage of FL (Fidelity Level) based on ICPC − 3\(^{*}\) (International Classification of Primary Care) on *Sclerorhachis leptoclada*.

Categories of disease	FL
Digestive system	63.64
General and Unspecified	31.82
Pregnancy, Childbearing	18.18
Blood, Blood Forming Organs and Immune Mechanism	9.09
Respiratory system	9.09
Musculoskeletal system	4.55
Neurological system	4.55
Skin	4.55

\(^{*}\) Retrieved from https://app.icpc-3.info/

Relative Frequency of Citation (RFC)

Sclerorhachis leptoclada acquired 0.4 for RFC index which indicates that it is one of the most popular medicinal plants agreed by the majority of the informants in the study area. This also implies that *S. leptoclada* has been neglected by previous contributions to the ethnobotany of Birjand (Ganjali & Khaksafidi 2016, Ghollassi-Mood 2008).

Phytochemistry

There are only a few investigations on chemical composition and phytochemistry of *Sclerorhachis leptoclada*. Isolation of essential oil from flowering parts of *S. leptoclada* by hydro-distillation method and analyzing its chemical composition by GC and GC-MS system (Akramian et al. 2008, Mohanty et al. 2014, Sonboli et al. 2014, Tahmasebi et al. 2012, Zamani 2013) has resulted in reporting 57 compounds (Appendix 1). Among the important compounds are α-pinene, δ-cadinene, p-cymene, 1,8-cineole, bornyl acetate, camphene, Germacrene D, phenols and thymol, of which bornyl acetate, camphor, and δ-cadinene are the most significant (Akramian et al. 2008, Mohanty et al. 2014, Sonboli et al. 2014, Tahmasebi et al. 2012).

Bornyl acetate

It is an acetate ester of borneol that is used as an aromatic agent and a food additive for flavoring. It also possesses medicinal properties, including analgesic, anti-inflammatory, sedative, and antitumor (Wu et al. 2005, Yang et al. 2014).

Camphor

It is an oxygenated monoterpene which has different uses in the perfume industry, traditional and modern medicine. Its general effects can be summarized as slowed breathing, reduced appetite, as well as...
increased heart rate, perspiration, and urination (Cooper & Nicola 2015, Donkin 1999).

Cadinenes

Cadinenes are bicyclic sesquiterpenes which happen in essential oil-producing plants. For example, 8-cadinene is usually found in the family Asteraceae (Borg-Karlson et al. 1981, Nishamura et al. 1981). Cadinenes display antioxidant activities (Kundu et al. 2013).

Hydrodistilled essential oil of *Sclerorhachis leptoclada* contains 54 compounds including high amounts of oxygenated monoterpenes from which terpinen-4-ol, camphor, and 1,8-cineole constitute the main ingredients (Sonboli et al. 2014). Terpinen-4-ol is an isomer of terpineol and the primary antibacterial component of tea tree oil which its biological properties and potential for clinical uses have not been investigated yet (Dewick 2009). 1,8-cineole inhibits mitosis and reduces germination in plants (Yang et al. 2014).

Sonboli et al. (2014) showed that oxygenated sesquiterpenes constituted 26.8% of the total essential oil of *Sclerorhachis leptoclada*, and (E)-nerolidol was the principal component of this group of compounds. Nerolidol has a woody smell and is used as a flavoring agent, detergent, and cleanser in perfumery (Chan et al. 2016). It also shows antioxidant, antifungal, anticancer and antimicrobial properties (Chan et al. 2016, Osbourn & Lanzotti 2009).

Based on the results of Sonboli et al. (2014), 16.1% of the essential oil of *Sclerorhachis leptoclada* is composed of monoterpen hydrocarbons, among which p-cymene and γ-terpinene were the major ingredients. They also reported that sesquiterpene hydrocarbons represent 7.9% of the total oil (Sonboli et al. 2014). The p-cymene is an aromatic organic compound with antimicrobial properties (Dewick 2009, Marchese et al. 2017), while γ-terpinene is a colorless liquid with a turpentine-like smell and is used as a flavoring agent and carminative (Dewick 2009, Eggersdorfer 2012).

Some nutrient compounds, such as fibers, proteins and phenolic compounds have been reported to exist in *S. leptoclada* (Dourandishan et al. 2013). Phenolic compounds are used as flavoring agent and many of them have antimicrobial and antioxidant activity (Cooper & Nicola 2015).

Pharmacological uses

To date, very limited studies have been carried out to establish the pharmacological description of *Sclerorhachis leptoclada* (Sonboli et al. 2014, Tahmasebi et al. 2012, Zamani 2013).

Pharmacological activities of this species are summarized as follows:

Antibacterial activity

The essential oil of *Sclerorhachis leptoclada* has inhibitory activity against eight bacteria including *Bacillus subtilis*, *Candida albicans*, *Enterococcus faecalis*, *Escherichia coli*, *Klebsiella pneumonia*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, and *S. epidermidis* (Sonboli et al. 2014). Moreover, the results of bioassay tests displayed that the gram-positive *Bacillus subtilis* and *Staphylococcus epidermidis* show the most sensitivity to the essential oil of *S. leptoclada* (Sonboli et al. 2014). The antimicrobial properties of *S. leptoclada* support the results of our ethnobotanical results, where the plant is used for the treatment of infectious diseases (cold, cough, and sore throat).

Antifungal activity

The essential oil of *Sclerorhachis leptoclada* has strong antifungal activity against *Aspergillus flavus*, *Fusarium verticilloides*, and *Saccharomycetes cerevisiae* (Sonboli et al. 2014, Tahmasebi et al. 2012). Sonboli et al. (2014) reported that *Saccharomycetes cerevisiae* is greatly inhibited by the oil of *Sclerorhachis leptoclada* and suggested that it could be used as a natural source of fungicides in agronomic crops and foods. The antifungal activity of essential oil of *S. leptoclada* may be related to its (E)-nerolidol and terpinene-4-ol content (Jeung 2007, Mondello et al. 2006, Sonboli et al. 2014).

Insecticidal activity

The methanol extract of leaves of *Sclerorhachis leptoclada* has toxic effect on adults and larvae of the lesser pumpkin fly (*Dacus ciliatus*) (Zamani 2013).

Nutritional value

The nutritious compounds of *Sclerorhachis leptoclada* e.g., phenolic compounds, fibers, and proteins are of great importance in the diabetic diet which highlights the significant nutritional value of this plant (Dourandishan et al. 2013).

Conservation status

Sclerorhachis leptoclada is restricted to a few localities in the east of Iran. Due to its medicinal and edible uses in the region, the aerial parts of the plant are harvested by local people and medicinal plant vendors. However, there are no restrictions or prohibitions for people to harvest this species. The overexploitation of this plant and lack of conservation can lead to decrease of its population in the area. Therefore, training the local people about conservation and sustainable use of *S. leptoclada* is a critical issue.
The ethnobotanical importance of *Sclerorhachis leptoclada* has not been properly addressed due to its limited and local distribution in the east of Iran. However, it has still retained its importance as a plant resource for medicine among the local community. Here, we document the traditional uses of *S. leptoclada* for the first time. Our field survey revealed that *S. leptoclada* is generally prepared as a decoction or infusion for the treatment of cold, cough, sore throat, the sign of food poisoning, and lactation promotion in humans. However, its biological activity, active compounds, and chemical characterization need to be further evaluated and authenticated to ensure a safe use. Due to the extensive harvesting of the aerial plant parts and local distribution of the plant, it is critical to educate the local community in terms of conservation and sustainable use of *S. leptoclada*.

Declarations

Ethics approval and consent to participate: We obtained prior oral informed consent from all study participants before any study. Ethical committee permits were not needed. Collecting voucher specimens needed no permits.

Competing interests: The authors declare that there is no conflict of interest.

Funding: This research financially was supported by Ferdowsi University of Mashhad (Grant no. 46314-3).

Authors’ contributions: Toktam Mohammadi interviewed with local people and prepared the first draft of the manuscript; Atefeh Pirani supervised the study, and contributed to the manuscript preparation; Hamid Moazzeni supervised the study and contributed to the manuscript preparation; Jamil Vaezi advised the study and revised the manuscript.

Acknowledgments

The authors wish to thank all interviewed people for their hospitality and kindness. We are also grateful to Khadijeh Motahhari (Ferdowsi University of Mashhad) for her assistance in preparing the distribution map.

Literature cited

Ahmadian MA. 1995. Geography of Birjand. Astan Quds Razavi Institute of Printing & Publishing, Mashhad, Iran.

Ahwazi M. 1877. Kamel-al-Sanaat al-Tibbiah (Kamel-al-Sanaat al-Tibbiah). Al-Matbaah al-Misryyah, Cairo, Egypt.

Akrarian M, Nejad-Ebrahimi S, Yousefzadi M, Joharchi MR. 2008. Chemical composition and biological activities of the essential oils of two *Sclerorhachis* species from Iran. 5th International Crop Science Congress & Exhibition. The Republic of Korea.

Amiri MS, Joharchi MR. 2013. Ethnobotanical investigation of traditional medicinal plants commercialized in the markets of Mashhad, Iran. Avicenna Journal of Phytomedicine 3(3):254-271.

Aqili-Khorasani M. 1992. Makhzan al-Advieh. Enqelab-e Esliami Publishing and Educational Organization, Qom, Iran.

Behnia MR. 2002. Birjand: Jewel of desert stone of desert. Tehran University Printing & Publishing Institute, Tehran, Iran.

Borg-Karlsson AK, Norin T, Talvitie A. 1981. Configurations and conformations of torreyol (5-cadinol), α-cadinol, T-muurolol and T-cadinol. Tetrahedron 37(2):425-430.

Chan WK, Tan LT, Chan KG, Lee LH, Goh BH. 2016. Nerolidol: A sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21(5):1-40.

Cooper R, Nicola G. 2015. Natural products chemistry, Sources, Separations, and Structures. CRC Press, Boca Raton, USA.

Dewick PM. 2009. Medicinal natural products: A biosynthesis approach. 3rd ed. John Wiley & Sons Limited Publication, UK.

Dolatkhahi M, Ghorbani-Nowooji M. 2013. Identification of most used medicinal plants in Dashtestan (Bushehr Province), with emphasize on their traditional uses. Journal of Medicinal Plants12(46):85-105.

Dolatkhahi M, Nabipour I. 2014. Ethnobotanical study of medicinal plants used in the northeast watershed of Persian Gulf. Journal of Medicinal Plants 13(50):129-144.

Donkin R. 1999. Dragon’s brain perfume. An historical geography of camphor. Brill, Leiden, Netherlands.

Dourandishan M, Dastory L, Sharafy R, Khazaee M. 2013. Investigation the amount of fiber and phenolic compounds in *Sclerorhachis leptoclada* from South Khorassan. 2nd National Congress on Medicinal Plants, Tehran, Iran.

Ganjali A, Khaksafidi A. 2016. Ethnobotanical study of some medicinal plant species in Birjand. Journal of Islamic and Iranian Traditional Medicine 7(3):349-357.

Ghahremaninejad F, Nejad-Falatoury A. 2016. An update on the flora of Iran: Iranian angiosperm orders and families in accordance with APG IV. Nova Biologica Reperta 3(1):80-107.
Ghollassi-Mood Sh. 2008. A contribution to some ethnobotanical aspects of Birjand flora (Iran). Pakistan Journal of Botany 40(4):1783-1791.

Ghorbani A. 2005. Studies on pharmaceutical ethnobotany in the region of Turkmen Sahra, north of Iran: (part 1): general results. Journal of Ethnopharmacology 102:58-68.

Eggersdorfer M. 2012. Ullmann’s encyclopedia of industrial chemistry. Vol. 36. Wiley-VCH, Weinheim, Germany.

ESRI 2011. ArcGIS Desktop: Release 10.3. Redlands, CA: Environmental Systems Research Institute.

Hassanpour H, Zare-Maivan H, Sonboli A, Kazempour-Osaloos S, Florian W, Tomasello S, Oberprieler C. 2018. Phylogenetic species delimitation unravels a new species in the genus Sclerorhachis (Rech.f.) Rech.f. (Compositae, Anthemideae). Plant Systematics and Evolution 304(2):185-203.

Heravi M. 1967. Al-Abniyah an Haqayeq al-Adwiyah. Tehran University Publications, Tehran, Iran.

Hoffman B, Gallaher T. 2007. Importance indices in ethnobotany. Ethnobotany Research and Applications 5:201-218.

Jeung EB. 2007. Antifungal Effect of Eugenol and Nerolidol against Microsporum gypseum in a Guinea Pig Model. Biological & Pharmaceutical Bulletin 30(1):184-188.

Jorjani S. 1976. Zakhireh Kharazmshahi. Academy of Medical Sciences of the Islamic Republic of Iran Press, Tehran, Iran.

Kaderiret JW, Jeffrey C. 2007. The families and genera of vascular plants. Vol. VIII: Flowering plants, Eudicots, Asterales. Kubitzki K, Ed. Springer, Berlin, Germany.

Kakheshani N, Hadjiakhoondi A, Maafi N, Khanavi M. 2015. Standardization of a galactogogue herbal mixture based on its total phenol and flavonol contents and antioxidant activity. Research Journal of Pharmacognosy 2(1):35-39.

Khajoei Nasab F, Khosravi AR. 2014. Ethnobotanical study of medicinal plants of northeast of Khuzestan province. Eco-phytochemical Journal of Medicinal Plants 8(4):12-26.

Kundu A, Saha S, Walia S, Ahluwalia V, Kaur C. 2013. Antioxidant potential of essential oil and cadinene sesquiterpenes of Eupatorium adenophorum. Toxicological & Environmental Chemistry 95(1):127-137.

Kunwar RM, Fadiman M, Thapa S, Acharya RP, Cameron M, Bussmann RW. 2020. Plant use values and phytosociological indicators: Implications for conservation in the Kailash Sacred Landscape, Nepal. Ecological Indicators 108 (2020) 105679

Lavari N, Ghasemi M, Nabipour I. 2017. Ethnopharmacology of medicinal plants in the Southwest Mand mountain. Iranian South Medical Journal 20(4):380-398.

Maleki T, Akhani H. 2018. Ethnobotanical and ethnomedicinal studies in Baluchi tribes: A case study in Mt. Taftan, southeastern Iran. Journal of Ethnopharmacology 217:163-177. doi: https://doi.org/10.1016/j.jep.2018.02.017

Marchese A, Arciola CR, Barbieri R, Silva AS, Nabavi SF, Sokeng AJT, Izadi M, Jafari NJ, Sundar I, Baglia M, Nabavi SM. 2017. Update on monoterpenes as antimicrobial agents: a particular focus on p-cymene. Materials 10(8):947-962.

Mohammadhosseini M, Sarker SD, Akbarzadeh A. 2017. Chemical composition of the essential oils and extracts of Achillea species and their biological activities: A review. Journal of Ethnopharmacology 199(2):257-315.

Mohanty I, Senapati MR, Jena D, Behera PC. 2014. Ethnoveterinary importance of herbal galactogogues- a review. Veterinary World 7(5):325-330.

Mondello F, Bernardis FD, Girolamo A, Cassone A, Salvatore G. 2006. In-vivo activity of terpinen-4-ol, the main bioactive component of Melaleuca alternifolia Cheel (tea tree) oil against azole-susceptible and resistant human pathogenic Candida species. BMC Infectious Diseases 6:158-165.

Mosaddegh M, Naghibi F, Moazzeni H, Pirani A, Esmaeili S. 2012. Ethnobotanical survey of herbal remedies traditionally used in Kohgiluyeh va Boyer Ahmad province of Iran. Journal of Ethnopharmacology 141:80-95. doi: https://doi.org/10.1016/j.jep.2012.02.004

Mozaffarian V. 2008. Flora of Iran, No. 59: Compositae: Anthemideae & Echinopaeae tribes.
Asadi M, Masoumi AA, Ed. Forest and rangeland research institute publication, Tehran, Iran.

Nakhaee-Nezhadford S, Karimi K, Khosravi H. 2013. Assessment of climatic drought and its economic effects (case study: South Khorasan Province). Journal of Rangeland Science 4(1):62-70.

Nishamura H, Takabatake T, Kaku K, Seo A, Mizutani J. 1981. A simple total synthesis of (±)-delta-cadinene. Agricultural and Biological Chemistry 45(8):1861-1864.

Oberprieler C, Himmelreich S, Vogt R. 2007. A new subtribal classification of the tribe Anthemideae (Compositae). Willdenowia 37(1):89-114.

Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2017. vegan: Community Ecology Package. R package version 2.4-3. https://CRAN.Rproject.org/package=vegan

Osbourn AE, Lanzotti V. 2009. Plant-derived Natural Products, Synthesis, Function and application. Springer, Dordrecht, Netherlands.

Razi M. 1986. Al-Hawi fl'l-Tibb. Osmania Oriental Publications Bureau, Hyderabad, India.

Rechinger KH. 1981. Sclerorhachis leptoclada (Asteraceae-Anthemideae), a new species from southern Khorassan. Plant Systematics and Evolution 138(3-4):297-299.

Rechinger KH. 1986. Flora Iranica, No. 158. Akademische Druck- u. Verlagsanstalt, Graz, Austria.

Sadat-Hosseini M, Farajpour M, Boroomand N, Solaimani-Sadrou F. 2017. Ethnopharmacological studies of indigenous medicinal plants in the south of Kerman, Iran. Journal of Ethnopharmacology 199: 194–204

Sales F, Hedge IC. 2013. Generic endemism in South-West Asia: an overview. Rostaníha 14(1):22-35.

Sonbolí A, Mirjalili MH, Hadian J, Yousefzadi M. 2014. The biological activity and composition of the essential oil of Sclerorhachis leptoclada (Asteraceae-Anthemideae) from Iran. Iranian Journal of Pharmaceutical Research 13(3):1097-1104.

Tahmasebi A, Andi SA, Ahmadi MR, Ghods-Alavi BS, Tahmasebi A. 2012. Inhibitory effect of essential oils of Sclerorhachis platyrachis and Sclerorhachis leptoclada on phytopathogenic fungi. International Journal of Agricultural Science 2(1):48-53.

Tardio J, Pardo de Santayana M. 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (Northern Spain). Economic Botany 62:24-39.

Vafaie-Fard M. 2005. In search of urban identity of Birjand. edited by Ayati M. Ministry of housing and urbanization, Tehran, Iran.

Wu X, Xiao F, Zhang Z, Li X, Xu Z. 2005. Research on the analgesic effect and mechanism of bornyl acetate in volatile oil from amomum villosum. Zhong Yao Cai 28(6):505-507.

Yang H, Zhao R, Chen H, Jia P, Bao L, Tang H. 2014. Bornyl acetate has an anti-inflammatory effect in human chondrocytes via induction of IL-11. IUBMB Life 66(12):854-859.

Zamani SH. 2013. Study on population dynamics and lethal effect of Ferula foetida and Sclerorhachis leptoclada extracts on Dacus ciliatus in Birjand. M.Sc. thesis. Faculty of Agriculture, Department of Plant Protection, University of Zabol, Zabol, Iran.
Appendix 1. Chemical composition of *Sclerorhachis leptoclada*

No.	Compound	Molecular formula	Chemical structure (2D)	Plant organ	Extract	Ref.
1	(E)-β-farnesene	\(C_{15}H_{24}\)	![structure](image)	Aerial flowering parts	Distilled water	Sonboli *et al.* 2014
2	(E)-caryophyllene	\(C_{15}H_{24}\)	![structure](image)			
3	(E)-nerolidol	\(C_{15}H_{26}O\)	![structure](image)			
4	(Z)-β-ocimene	\(C_{10}H_{16}\)	![structure](image)			
5	(Z)-jasmone	\(C_{11}H_{16}O\)	![structure](image)			
6	α-bisabolol	\(C_{15}H_{26}O\)	![structure](image)			
7	α-cadinol	\(C_{15}H_{26}O\)	![structure](image)			
8	α-copaene	\(C_{15}H_{24}\)	![structure](image)			
9	α-muurolol	\(C_{15}H_{26}O\)	![structure](image)			
10	α-pinene	\(C_{10}H_{16}\)	![structure](image)			
11	α-terpinene	\(C_{10}H_{16}\)	![structure](image)			
	Chemical Name	Molecular Formula				
---	-----------------------------	-------------------				
12	α-terpineol	$C_{10}H_{15}O$				
13	α-thujene	$C_{10}H_{16}$				
14	β-pinene	$C_{10}H_{16}$				
15	β-selinene	$C_{15}H_{24}$				
16	δ-cadinene	$C_{15}H_{24}$				
17	γ-terpinene	$C_{10}H_{16}$				
18	allo-aromadendrene epoxide	$C_{15}H_{24}O$				
19	ar-curcumene	$C_{15}H_{22}$				
20	cis-chrysanthenyl acetate	$C_{12}H_{18}O_2$				
21	cis-p-menth-2-en-ol	$C_{10}H_{18}O$				
	Chemical	Molecular Formula	Example Structure			
---	----------	-------------------	-------------------			
22	cis-sabinene hydrate	$C_{10}H_{18}$![Structure](image1)			
23	p-cymene	$C_{10}H_{14}$![Structure](image2)			
24	trans-p-menth-2-en-ol	$C_{10}H_{18}O$![Structure](image3)			
25	1,8-cineole	$C_{10}H_{18}O$![Structure](image4)			
26	2-methyl butyl-2-methyl butyrate	$C_{16}H_{26}O_2$![Structure](image5)			
27	1,2-dehydrosesquicineole	$C_{15}H_{24}O$![Structure](image6)			
28	Amorpha-4,9-dien-2-ol	$C_{15}H_{24}O$![Structure](image7)			
29	Bicyclogermacrene	$C_{15}H_{24}$![Structure](image8)	Aerial flowering parts		
30	Borneol	$C_{10}H_{18}O$![Structure](image9)	Distilled water		
	Chemical Name	Molecular Formula	Source(s)			
---	-----------------------	-------------------	---			
31	Bornyl acetate	C₁₂H₂₀O₂	Akramian et al. 2008, Tahmasebi et al. 2012, Sonboli et al. 2014			
32	Butyl butanoate	C₆H₁₆O₂	Sonboli et al. 2014			
33	Camphene	C₁₀H₁₆				
34	Camphor	C₁₀H₁₆O	Akramian et al. 2008, Tahmasebi et al. 2012, Sonboli et al. 2014			
35	Caryophyllene oxide	C₁₅H₂₄O	Sonboli et al. 2014			
36	Chrysanthenone	C₁₀H₁₄O				
37	Fiber	-	Ethanol, ethyl acetate			
38	Germacrene D	C₁₅H₂₄	Aerial flowering parts, Distilled water			
39	Isoamyl isobutyrate	C₆H₁₆O₂	Sonboli et al. 2014			
40	Isoamyl propionate	C₆H₁₆O₂				
41	Isobutyl isobutyrate	C₆H₁₆O₂				
42	Isopentyl butanoate	C₆H₁₆O₂				
No.	Compound	Formula	Additional Information			
-----	---------------------	------------------	------------------------			
43	Lavandulyl acetate	$C_{12}H_{20}O_2$				
44	Limonene	$C_{10}H_{16}$				
45	Linalool	$C_{10}H_{18}O$				
46	Longipinanol	$C_{15}H_{26}O$				
47	Neryl acetate	$C_{12}H_{20}O_2$				
48	Phenols	-	Ethanol, ethyl acetate			
49	Prenyl isobutyrate	$C_9H_{16}O_2$	Aerial flowering parts			
50	Sabinene	$C_{10}H_{16}$	Distilled water			
51	Sesquicineole	$C_{15}H_{26}O$				
52	Spathulenol	$C_{15}H_{25}O$				
53	Terpinen-4-ol	$C_{10}H_{16}O$				
---	---	---				
54	Terpinen-4-ol acetate	$C_{32}H_{46}O_2$				
55	Terpinolene	$C_{10}H_{16}$				
56	Thymol	$C_{10}H_{14}O$				
57	Thymol methyl ether	$C_{11}H_{16}O$				