More than a rabbit’s tale – *Encephalitozoon* spp. in wild mammals and birds

Barbara Hinney a, *, Bohumil Sak b, Anja Joachim a, Martin Kváč b, c

a Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinarplatz 1, A-1210 Vienna, Austria
b Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, v.v.i. Branitovská 31, 370 05 České Budějovice, Czech Republic
c Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 13, 370 05 České Budějovice, Czech Republic

Abstract

Within the microsporidian genus *Encephalitozoon*, three species, *Encephalitozoon cuniculi, Encephalitozoon hellem* and *Encephalitozoon intestinalis* have been described. Several orders of the Class Aves (Passeriformes, Psitaciformes, Apodiformes, Ciconiiformes, Gruiformes, Columbiformes, Suliformes, Podicipediformes, Anseriformes, Struthioniformes, Falconiformes) and of the Class Mammalia (Rodentia, Lagomorpha, Primates, Artyodactyla, Soricomorpha, Chiroptera, Carnivora) can become infected. Especially *E. cuniculi* has a very broad host range while *E. hellem* is mainly distributed amongst birds. *E. intestinalis* has so far been detected only sporadically in wild animals. Although genotyping allows the identification of strains with a certain host preference, recent studies have demonstrated that they have no strict host specificity. Accordingly, humans can become infected with any of the four strains of *E. cuniculi* as well as with *E. hellem* or *E. intestinalis*, the latter being the most common. Especially, but not exclusively, immunocompromised people are at risk. Environmental contamination with as well as direct transmission of *Encephalitozoon* is therefore highly relevant for public health. Moreover, endangered species might be threatened by the spread of pathogens into their habitats. In captivity, clinically overt and often fatal disease seems to occur frequently. In conclusion, *Encephalitozoon* appears to be common in wild warm-blooded animals and these hosts may present important reservoirs for environmental contamination and maintenance of the pathogens. Similar to domestic animals, asymptomatic infections seem to occur frequently but in captive wild animals severe disease has also been reported. Detailed investigations into the epidemiology and clinical relevance of these microsporidia will permit a full appraisal of their role as pathogens.

© 2016 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

With their broad host spectrum and often poor host specificity, microsporidia receive increasing scientific attention as pathogens of humans and animals. Recent developments in molecular diagnostics and phylogenetic analyses now allow for the screening of large numbers of samples for microsporidial infections and yield detailed information on different genotypes and their relationships. This gives a clearer picture on host specificity, transmission pathways and zoonotic risks (Deplazes et al., 2000; Ghosh and Weiss, 2009).

Since the first description of clinically overt infection in human patients with AIDS (for a review see Kotler and Orenstein, 1999), microsporidia including Encephalitozoon spp. have been recognised as opportunistic pathogens and further research revealed infections also in non-immunocompromised humans (Cotte et al., 1999; Didier and Weiss, 2011).

Within the genus Encephalitozoon, three species have been described in mammals and birds (for a review see Didier, 2005; Mathis et al., 2005). Encephalitozoon cuniculi, Encephalitozoon hellem and Encephalitozoon intestinalis. E. cuniculi infections of pet rabbits and laboratory rabbits are best described (for review see (Künzel and Joachim, 2010)). However this species can also infect several other mammals (Wasson and Peper, 2000; Levkutova et al., 2004; Mathis et al., 2005; Goodwin et al., 2006; Lindsay et al., 2009; Sasaki et al., 2011; Wagnerová et al., 2012; Cray and Rivas, 2013; Meng et al., 2014).

In contrast to infections of humans and domestic animals, comparatively little is known about the situation in wild animals. As the awareness of the role of wildlife as a source of infectious agents for human and animal health is growing, so is research on this topic (Thompson, 2013). Infections of wild animals are not only considered a possible threat to human and animal health, but also an issue concerning wildlife conservation since infections with pathogens not previously encountered might be detrimental to wild animal species themselves. This is of special concern to endangered species that might become infected through the intrusion of infected hosts into their habitat (Thompson, 2013).

Until now, the sylvatic cycles of Encephalitozoon spp. are largely unknown, but understanding the epidemiology of these pathogens is a crucial step for controlling microsporidial infections. In this review, we want to give an overview of the occurrence of Encephalitozoon spp. in wildlife and discuss the possibility of cross-species (zoonotic and animal-to-animal) transmission. We focus on wild mammals and wild birds and included both non-domesticated animals living in their natural environment as well as captive animals.

2. Encephalitozoon: species, diagnosis and transmission

2.1. Encephalitozoon species

Spores of Encephalitozoon spp. are morphologically indistinguishable from each other. While E. cuniculi has already been described in 1923, the detection of further species of the genus Encephalitozoon was not made before the early 1990s when molecular analyses allowed identification and discrimination on the species level.

2.1.1. Encephalitozoon cuniculi

E. cuniculi can be assumed to circulate in rabbit populations worldwide and has the broadest host range, mainly among the non-human Mammalia, but also in birds and humans. Four different strains have so far been differentiated by analysis of the ITS region of ribosomal genes, although there seems to be a certain host preference in each strain this specificity is not strict (Selman et al., 2013). Strain I (“rabbit strain”) is found predominantly in rabbits; strain II (“mouse strain”) is found in rodents but also in blue foxes and cats; strain III (“dog strain”) has been shown to cause high mortality in monkeys, steppe lemmings and dogs. The recently discovered strain IV (“human strain”) has so far been found in humans, cats and dogs (Tabaní et al., 2010; Nell et al., 2014, 2015).

Humans have been found to be infected with all known strains (although only rarely with strain III). It is most likely that infections with E. cuniculi are predominantly zoonotic (Shadduck et al., 1979; Didier, 2005; Mathis et al., 2005; Didier and Weiss, 2011; Sokolova et al., 2011).

2.1.2. Encephalitozoon hellem

E. hellem was first described as the cause of keratoconjunctivitis in a human AIDS patient but its broadest distribution can be found amongst birds. Monkeys, carnivore and rodents can also be infected by this species (Tables 1, 2, 4 and 5). Different genotypes can be distinguished using three different gene loci: Mathies distinguished three genotypes (named 1,2,3) using internal transcribed spacer (ITS) sequences (Mathies et al., 1999). Later Xiao et al. (2001) could further distinguish these genotypes by additionally targeting the polar tube protein gene locus and the small subunit rRNA gene: The former genotype 1 could be distinguished in 1A, 1B, 1C; genotype 2 was distinguished into 2A and 2B moreover genotype 3 was suggested to be renamed 2C. There are further interspecies variations so that more genotype variants can be described (Haro et al., 2003). Distinguishing the genotypes could be helpful to exclude or suggest infections of a common origin (Haro et al., 2006a).
Taxa diagnosed (genotype)	Host (scientific name)	Country	Substrate	Techniques	Reference
Psittaciformes					
Encephalitozoon	Blue-masked lovebird (Agapornis personatus)	USA*	Tissue	M	Kemp and Kluge 1975
Encephalitozoon	Double yellow-headed Amazon parrot (Amazona ochrocephala)	USA*	Tissue	M	Poonacha et al., 1985
E. hellem	Budgerigar (Melopsittacus undulatus)	USA*	Tissue	M + PCR	Black et al., 1997
E. hellem	Eclectus parrots (Eclectus roratus)	USA*	Tissue	M + PCR	Pulparampil et al., 1998
E. hellem	Peach-faced lovebird (Agapornis roseicollis)	USA*	Faeces	M + IF + PCR	Snowden et al., 2000
E. hellem	Umbrella cockatoo (Cacatua alba)	USA*	Conjunctival epithelium	PCR/seq	Phelan et al., 2006
E. hellem (I)	Yellow-streaked lory (Chalcopitta scintillata)	Switzerland	Caught in the wild in Indonesia	PCR/seq	Suter et al., 1998; Mathis et al., 1999
E. hellem (I)	Lovebirds (Agapornis spp.)	USA*	Faeces	M + culture + PCR/seq	Barton et al., 2003
E. hellem	Galah (Eolophus roseicapillus); Superb parrot Polytelis swainsonii	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A)	Festive amazon (Amazona festiva); Yellow-crowned amazon (Amazona ochrocephala); White cockatoo (Cacatua alba); Little corella (Cacatua sanguinea); Elegant parrot (Neophema elegans); Red-rumped parrot (Psephotus haematonotus)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. cuniculi	Mealy amazon (Amazona farinosa); Tucumán amazon (Amazona tucumanana); Red-crowned amazon (Amazona viridigenalis); Bronze-winged parrot (Pionus chalcopera); Scaly-headed parrot (Pionus maximilianii); Dusky parrot (Pionus fuscus); Major Mitchell’s Cockatoos (Cacatua leucopeva); Green rosella (Platycercus caledonicaus); Parakeets (Pyrhura sp.); Monk parakeet (Myiopsitta monachus)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. cuniculi (I)	Solomons cockatoos (Cacatua goffini)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. cuniculi (II)	Red-fan parrot (Deroptyus accipitrinus); Red-crowned parakeet (Cyanorhamphus novaezelandia); Senegal parrot (Poicephalus senegalus); African grey parrot (Psittacus erithacus); Crimson rosella (Platycercus elegans)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. cuniculi (III)	Cockateel (Nymphicus hollandicus)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem, E. cuniculi	Fischer’s lovebird (Agapornis fischeri)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A, 1B)	Rosy-faced lovebirds (Agapornis roseicollis); Rose-ringed parakeet (Psittacula krameri)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A)	Yellow-collared lovebirds (Agapornis personata)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (2C)	Red-lored amazon (Amazona autumnalis)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A)	Budgerigar (Melopsittacus undulatus)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A)	Australian ringneck (Barnardius zonarius)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (II)	Cockatiel (Nymphicus hollandicus)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A)	Turquoise parrot (Neophema pulchella)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A)	Eastern rosella (Platycercus eximius)	Czech Republic*	Faeces	PCR/RFLP	Kašicková et al., 2009
E. hellem (1A, 2C)	Budgerigars (Melopsittacus undulatus)	Czech Republic*	Tissue, faeces	PCR/RFLP	Sak et al., 2010
E. hellem (1A, 2B, 2C)	Parrots: African grey parrot (Psittacus erithacus); Blue-streaked lory (Eos reticulata); South Korea*	Faeces	PCR/RFLP	Lee et al., 2011	
E. hellem (1A)	Blue-fronted parrot (Amazona aestiva); Mealy parrot (Amazona farinosa); Peach-fronted parakeet (Aratinga aurea); Scaly headed parrot (Pionus maximilianii); Budgerigar (Melopsittacus undulatus)	Brazil confined (illegal trafficking)	Faeces	PCR/seq	Lallo et al., 2012b
E. hellem (2C)	Blue-and-yellow macaw (Ara ararauna); Blue-headed parrot (Pionus menstruus)	Brazil confined (illegal trafficking)	Faeces	PCR/seq	Lallo et al., 2012b
Apodiformes	Hummingbirds (Calypte anna; Archilochus alexandri; Selasporus sasin)	USA (migratory birds in rescue facility)	Tissue, faeces	M + PCR/seq	Snowden et al., 2001

Table 1: Encephalitozoon spp. identified in wild Aves. PCR – polymerase chain reaction; M – Microscopy; IF – immunofluorescence; FISH – fluorescent in situ hybridization; S – serology; seq – sequencing; * – captive wild.
2.1.3. *Encephalitozoon intestinalis*

E. intestinalis is the most prevalent *Encephalitozoon* species in humans and occurs worldwide. It also has been shown to occur in several, predominantly domestic, mammalian species (e.g., goat, pig, cattle, dog, donkey or gorilla). Zoonotic transmission was proposed to be an important source in human infections (Bornay-Llinares et al., 1998; Graczyk et al., 2002; Didier, 2005; Malčeková et al., 2010). In Slovakia especially domesticated pigs were the animals most often infected, with prevalences of 51% or more (Llinares et al., 1998; Graczyk et al., 2002; Didier, 2005; Malčeková et al., 2009). In birds *E. intestinalis* has only been reported sporadically (Table 1). Genotypic variations in *E. intestinalis* were demonstrated (Galvan et al., 2013) but have not been applied to broader surveys.

Table 1 (continued)

Genus	Host (scientific name)	Country	Substrate	Techniques	Reference
Passeriformes		USA	Tissue	M + PCR	Carlisle et al., 2002
E. hellem	Gouldian finch (*Erythrura Gouldiae*)	Poland	Faeces	M + FISH	Siodkowicz-Kowalska et al., 2006
E. hellem	Carrion crow (*Corvus corone*)	Czech Republic	Faeces	PCR/RFLP	Kašíčková et al., 2009
E. hellem	Greater blue-eared starling (*Lamprotornis chalybeus*); Java sparrow (*Padda oryzivora*)	Czech Republic	Faeces	PCR/RFLP	Kašíčková et al., 2009
E. cuniculi (II)	Red-billed firefinch (*Lagonosticta senega*); Brahminy starling (*Tememuchus pagodarum*)	Czech Republic	Faeces	PCR/RFLP	Kašíčková et al., 2009
E. hellem (1A),	Atlantic canary (*Serinus canaria*)	Czech Republic	Faeces	PCR/RFLP	Kašíčková et al., 2009
E. cuniculi (1 + II)	Zebra finch (*Taeiypygia guttata*)	Czech Republic	Faeces	PCR/RFLP	Lallo et al., 2012b
E. hellem	Grassland yellow-finch (*Sicalis luteola*)	Brazil	Faeces	M + PCR/seq	Lallo et al., 2012b
E. hellem	Saffron finch (*Sicalis flaveola*)	Brazil	Faeces	M + PCR/seq	Lallo et al., 2012b
E. hellem (1A)	Double-collared seedeater (*Sporophila caeruleens*); Chopi blackbird (*Gnorimopsor chopi*)	Brazil	Faeces	M + PCR/seq	Lallo et al., 2012b
Anseriformes		Poland	Faeces	M + FISH	Siodkowicz-Kowalska et al., 2006
E. hellem	Mallard duck (*Anas platyrhynchos*); Greyleg goose (*Anser anser*); Mute swan (*Cygnus olor*); Black-necked swan (*Cygnus melancoryphus*); Black swan (*Cygnus atratus*); Coscoroba swan (*Coscoroba coscoroba*)	Poland	Faeces	M + PCR/seq	Siodkowicz-Kowalska et al., 2006
Gruiformes		Poland*	Faeces	M + FISH	Siodkowicz-Kowalska et al., 2006
E. hellem	Black-crowned crane (*Balearica pavonina*)	Poland	Faeces	M + FISH	Siodkowicz-Kowalska et al., 2006
Columbiformes		Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
E. hellem	Nicobar pigeon (*Caloenas nicobarica*)	Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
Suliformes		Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
E. cuniculi (I)	Great cormorant (*Phalacrocorax carbo*)	Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
Podicipediformes		Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
E. cuniculi (I)	Great crested grebe (*Podiceps cristatus*)	Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
Ciconiformes		Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
E. cuniculi (I)	White stork (*Ciconia ciconia*)	Slovakia	Faeces	M + PCR/seq	Malčeková et al., 2013
Struthioniformes		Spain	Faeces	M + PCR	Galvan-Díaz et al., 2014
E. intestinalis	Ostrich (*Struthio camelus*)	Ostrich	Tissue	M + PCR	Snowden and Logan 1999
E. hellem	Ostrich (*Struthio camelus*)	USA	Tissue	M + PCR	Snowden and Logan 1999
Falconiformes		Slovakia*	Faeces	M + PCR/seq	Malčeková et al., 2011
E. cuniculi (II)	Gyrfalcon (*Falco rusticolus*)	Slovakia*	Faeces	M + PCR/seq	Malčeková et al., 2011

2.2. Diagnosis of *Encephalitozoon* spp.

Materials that can be used for microsporidial diagnosis are tissue samples, fluids such as urine as well as faeces and serum (Garcia, 2002). When detecting spores in faeces only it cannot be excluded that these pathogens were just passaged in the gastrointestinal tract, e.g., via ingestion of infected mice (Bornay-Llinares et al., 1998). However, long term shedding of spores indicates infection (Sak et al., 2010).

Microscopical, molecular and serological methods are established for the detection of Microsporida. Microscopy in combination with staining (e.g., Chromotrope 2R or fluorescent staining) allows to detect Microsporida but not to differentiate species (Garcia, 2002). Whereas electron microscopy can be used for species detection (Garcia, 2002). Also detection of antibodies by serological techniques (e.g. indirect immunofluorescent-antibody testing (IFAT), enzyme-linked immunosorbent assay (ELISA), Western blotting; direct agglutination test (DAT)) is species specific (Garcia, 2002). Serological tests have been primarily established for detection of *E. cuniculi* and IFAT and ELISA are routinely used for
detection of this pathogen in rabbits where they are considered to be the most important diagnostic tool (Künzel and Joachim, 2010). Detection of this pathogen in wild Lagomorpha. PCR — polymerase chain reaction; H — histology; M — microscopy; IF — immunofluorescence; FISH — fluorescent in situ hybridization; S — serology; seq — sequencing; “c” — captive wild.

Table 2

Taxa diagnosed (genotype)	Host (scientific name)	Country	Substrate	Techniques	Reference
Encephalitozoon sp.	Squirrel monkey (Saimiri sciureus)	USA*	Tissue	H + M	Anver et al., 1972
E. cuniculi	Squirrel monkey (Saimiri sciureus)	USA*	Tissue	H	Brown et al., 1972
E. hellem	South American titi monkey (Cacalisebus moloch cupreus)	USA*	Tissue	H + M	Seibold and Fussell 1973, Zeman and Raskin 1985
E. intestinalis sp.	Mountain gorilla (Gorilla b. beringei)	Uganda	Faeces	M + PCR + FISH	Graczyk et al., 2002
E. intestinalis	Ring tailed lemur (Lemur catta)	USA*	Blood	S	Yabsley et al., 2007
E. intestinalis	Goeldi's monkey (Callimico goeldii)	USA*	Vessels	H + PCR/seq	Davis et al., 2008
E. cuniculi (I)	Bonobo (Pan paniscus)	UK; Germany*	Faeces	PCR/seq	Sak et al., 2011b
E. cuniculi (I, II),	Common chimpanzee (Pan troglodytes)	Kenya; Cameroon*	Faeces	PCR/seq	Sak et al., 2011b
E. cuniculi (I)	Common chimpanzee (Pan troglodytes)	Germany*; Spain*; Slovakia*; Ireland*; Czech Republic*	Faeces	PCR/seq	Sak et al., 2011b
E. cuniculi (I)	Western gorilla (Gorilla g. gorilla)	Cameroon	Faeces	PCR/seq	Sak et al., 2011b
E. cuniculi (I, II)	Western gorilla (Gorilla g. gorilla)	France*; Germany*; Poland*	Faeces	PCR/seq	Sak et al., 2011b
E. intestinalis	Red ruffed lemur (Varecia rubra); Ring tailed lemur (Lemur catta)	Poland*	Faeces	M + FISH + PCR	Stodkowicz-Kowalska et al., 2012
E. cuniculi (I, II)	Western gorilla (Gorilla g. gorilla)	Rwanda	Faeces	PCR/seq	Sak et al., 2013
E. cuniculi (I, II)	Mountain gorilla (Gorilla b. beringei)	Cameroon	Faeces	PCR/seq	Sak et al., 2014
E. intestinalis	Moustached monkeys (Cercocetus cephus); Agile mangabey (Cercocetus agilis); Common chimpanzee (Pan troglodytes); Bonobo (Pan paniscus); Western gorilla (Gorilla g. gorilla)	Central African Republic	Faeces	PCR/seq	Bátová et al., 2015

The Fluorescence in situ hybridization technique (FISH) is a fluorescent microscopy method targeting rRNA and allows simultaneous identification of *Encephalitozoon* spores to the species level (Stodkowicz-Kowalska et al., 2006).

PCR is a highly sensitive and specific method. If followed by sequencing or restriction fragment length polymorphism techniques it allows to detect strains and genotypes. These PCR methods with subsequent genotyping yield valuable results for epidemiological studies as differentiation to the subspecies level allows assumptions on host specificity, origin, transmission pathways and spreading dynamics of the pathogen (Xiao et al., 2001;...
Haro et al., 2005; Mathis et al., 2005; Ghosh and Weiss, 2009).

2.3. Infection routes

The main sources of infection with microsporidia and for zoonic transmission are in most cases unclear. Microsporidia produce spores which are excreted via faeces, sputum or urine and have a long lifespan in the environment (Li et al., 2003; Sinski, 2003). Besides oral uptake, it is suggested that inhalation can lead to infection as Encephalitozoon spp. are present in lung tissue and lung secretion (Cox et al., 1979; Rinder, 2004; Didier et al., 2004; Didier and Weiss, 2006; Graczyk et al., 2007). Successful experimental intranasal transmission was described in mice (Nelson, 1967). Transplacental transmission is described in rabbits and carrion (Cox et al., 1979; Baneux and Pognan, 2003). As a similar mechanism, transovarial transmission of microsporidia was described for birds (Reetz, 1994). Encephalitozoon was also found in the salivary glands of ticks (Ribeiro and Guimaraes, 1998), but until now the significance of Arthropoda as vectors of microsporidia is unknown (Didier, 2005). Human-to-human transmission e.g. through smear infections in case of keratoconjunctivitis or through organ transplantation has been described and sexual transmission is considered likely to occur (Didier et al., 2004; Didier, 2005; Hocevar et al., 2014).

3. Orders of wild animals infected with Encephalitozoon

3.1. Encephalitozoon in wild birds

Several infections caused by Encephalitozoon spp. have been described in wild birds (Table 1) and these seem to be infected more commonly than mammals (Stodkowicz-Kowalska, 2009). Besides Enterocytozoon spp. (Haro et al., 2006b; Lobo et al., 2006; Bart et al., 2008), E. hellem is a highly prevalent microsporidian species of birds (Stodkowicz-Kowalska et al., 2006; Maltecková et al., 2013). However, in most studies only one of several genera of

Table 4	Encephalitozoon spp. identified in wild Rodentia. PCR – polymerase chain reaction; H – histology; M – Microscopy; S – serology; seq – sequencing; * – captive wild.				
Taxa diagnosed (genotype)	Host (Scientific name)	Country	Substrate	Technique	Reference
Encephalitozoon sp.	Muskrat (Ondatra zibethicus)	N/A	Tissue	H	Webster and Schuh, 1979
E. cuniculi	Arctic lemming (Dicrostonyx torquatus)	USA	Tissue	H	Cutlip and Beall, 1989, Cutlip and Dennis, 1993
E. cuniculi	House mice (Mus musculus); Wood mice (Apodemus sylvaticus)	Iceland	Tissue	M+S	Hersteinsson et al., 1993
E. cuniculi (II)	Brown rat (Rattus norvegicus)	Switzerland	Tissue	S, PCR/seq, culture	Müller-Doblies et al., 2002
E. cuniculi	Common vole (Microtus arvalis); Water vole (Arvicola terrestris)	Austria	Tissue	PCR	Fuehrer et al., 2010
E. hellem (1A), E. cuniculi (I)	Eastern European house mouse (Mus musculus musculus)	Czech Republic, Germany	Tissue	PCR/seq	Sak et al., 2011a
E. hellem (1A), E. cuniculi (II)	Western European house mouse (M. m. domesticus)	Czech Republic, Germany	Tissue	PCR/seq	Sak et al., 2011a
E. cuniculi (I, III), E. hellem, E. intestinalis	Wood mouse (Apodemus speciosus)	Japan	Tissue	PCR/seq	Tskada et al., 2013
E. cuniculi (I), E. hellem	Small Japanese field mouse (Apodemus argenticeps)	Japan	Tissue	PCR/seq	Tskada et al., 2013
E. cuniculi (I, III), E. hellem, E. intestinalis	Japanese grass vole (Microtus montebelli)	Japan	Tissue	PCR/seq	Tskada et al., 2013
E. cuniculi (III)/seq	Steppe lemmings (Lagurus lagurus)	Czech Republic*	Tissue	H+PCR	Hofmannová et al., 2014
Encephalitozoon sp.	Wild rat (species not determined)	Egypt	–	S	Abu-Akkada et al., 2015
E. cuniculi, E. intestinalis	House mouse (Mus musculus)	Slovakia	Faeces	PCR	Danišová et al., 2015
Encephalitozoon sp.	Bank vole (Myodes glareolus); Field vole (Microtus agrestis); Wood mouse (Apodemus speciosus)	UK	–	S	Meredith et al., 2015

Table 5	Encephalitozoon spp. identified in wild Carnivora. PCR – polymerase chain reaction; M – microscopy; S – serology; seq – sequencing; * – captive wild.				
Taxa diagnosed (genotype)	Host (Scientific name)	Country	Substrate	Techniques	Reference
E. cuniculi	Red fox (Vulpes vulpes)	UK	N/A	N/A	Wilson, 1979
Encephalitozoon sp.	Mink	Norway (farmed)	Tissue	M	Bjerks and Nesland, 1987
E. cuniculi	Wild dogs (Lycaon pictus)	South Africa	Tissue	M	Van Heerden et al., 1989
E. cuniculi	Arctic fox (Alopex lagopus); Feral mink (Mustela vison)	Iceland	Tissue	M+S	Hersteinsson et al., 1993
E. cuniculi	European otter (Lutra lutra); Martens (Martes sp.)	Czech Republic	Brain	PCR	Hůrková and Modřý, 2006
E. cuniculi, E. intestinalis	Red fox (Vulpes vulpes)	Ireland	Tissue	M+PCR	Murphy et al., 2007
E. cuniculi, E. hellem, E. intestinalis	Coati (Nasua nasua)	Brazil	Faeces, urine	M+PCR	Lallo et al., 2012a
E. cuniculi	Red fox (Vulpes vulpes)	UK	–	S	Meredith et al., 2015
Encephalitozoon sp.	South American fur seal (Arctocephalus australis)	Chile	Tissue	H	Seguel et al., 2015
E. cuniculi (III)	Snow leopard (Panthera uncia)	Austria*	Eye lens	M+PCR/seq	Scurrell et al., 2015

Table 6	Encephalitozoon spp. identified in wild Artiodactyla. PCR – polymerase chain reaction.				
Taxa diagnosed (genotype)	Host (Scientific name)	Country	Substrate	Techniques	Reference
E. cuniculi (I, II)	Cape buffalo (Syncerus caffer)	Central African Republic	Faeces	PCR/seq	Sak et al., 2013
E. cuniculi (I)	Duiker (Cephalophus spp.)	Central African Republic	Faeces	PCR/seq	Sak et al., 2013
E. cuniculi (II)	Wild boar (Sus scrofa)	Austria	Faeces	PCR/seq	Némec et al., 2014
E. cuniculi (I, II)	Wild boar (Sus scrofa)	Czech Republic	Faeces	PCR/seq	Némec et al., 2014
E. cuniculi (II)	Wild boar (Sus scrofa)	Slovakia	Faeces	PCR/seq	Némec et al., 2014
microsporidia was tested for so that a direct comparison is not feasible. *E. cuniculi* and *E. intestinalis* have also been detected in the faeces of birds by molecular analysis, albeit with lower prevalence. Although birds are most probably not the main host of *E. cuniculi* (Kasicková et al., 2009) in some studies this species was the most prevalent in exotic pet birds and in pigeons and such birds therefore seem to constitute an additional reservoir for *E. cuniculi*, too (Haro et al., 2006b; Lobo et al., 2006; Bart et al., 2008).

3.2. Encephalitozoon in wild mammals

In the Class Mammalia several orders (Rodentia, Lagomorpha, Primates, Artyodactyla, Soricomorpha, Chiroptera, Carnivora) were detected with *Encephalitozoon* and are listed in Tables 1–6 (Soricomorpha and Chiroptera are not shown in the tables). Some special features will be highlighted in the following text:

3.2.1. Encephalitozoon in the order primates

In great apes the geographical distribution of different *Encephalitozoon* species seems to vary so location of affected animals seems to determine which species of pathogen is present (Table 1). While Western lowland gorillas from a Central African Republican free-ranging population, kept in a sanctuary in Cameroon and in various zoos in Poland, Germany and France, were positive for the presence of *E. cuniculi* genotype I and II (Sak et al., 2011b), only *E. hellem* was detected in three free-ranging animals from Cameroon (Butel et al., 2015). Similarly, in bonobos (*Pan paniscus*) and common chimpanzees (*Pan troglodytes*) screened by Butel et al. (2015) from Cameroon, only *E. hellem* was detected, while the same species kept in sanctuaries in Kenya and Cameroon and various zoos in UK, Germany, Spain, Slovakia, Ireland and the Czech Republic was mostly positive for *E. cuniculi* genotype I and II, *E. hellem* was detected in two cases only (Sak et al., 2011b). This demonstrates the ubiquitous character and low host specificity of this genus.

3.2.2. Encephalitozoon in the suborder Lagomorpha

Despite the abundance and importance of encephalitozoonosis in domestic rabbits (*Oryctolagus cuniculus*) (Künzel and Joachim, 2010) reports of this infection in wild lagomorphs are rather limited (Table 3). *Encephalitozoon* - positive wild rabbits were described from France with a comparatively low prevalence of 3.9% (Chalupský et al., 1990) compared to domestic populations. Except for a single description of an *E. cuniculi* infected wild rabbit by Wilson (1979), no infections in the UK and in Germany in wild populations could be demonstrated so far (Cox et al., 1980; Bose et al., 2015). However, prevalence in captive rabbits in these countries were quite high (Keeble and Shaw, 2006; Hein et al., 2014). In an early prevalence study, 880 wild rabbits (*O. cuniculus*) from Australia (*Victoria*) and New Zealand as well as 46 hares (*Lepus europaeus*) form Australia tested negative for *E. cuniculi* by serology although susceptibility to the parasite was demonstrated by experimental infections (Cox and Ross, 1980). This may be because housed animals are much more exposed to spores especially in overcrowded conditions (Cox and Ross, 1980). However, in a study from Western Australia, a prevalence of 25% for *E. cuniculi* was detected in wild rabbits (Thomas et al., 1997), indicating a possible spread in the wild population.

In a recent study in the Czech Republic, Austria and the Slovak Republic 1.42% of European hares (*Lepus europaeus*) were tested positive for *E. cuniculi* by serology (Bárta et al., 2015).

3.2.3. Encephalitozoon in the suborder Rodentia

Rodents comprise about 40% of the mammalian diversity and occupy a wide range of habitats (Musser and Carleton, 2005). They are generally considered an important reservoir of zoonotic pathogens including microsporidia (Begon, 2003; Mathis et al., 2005). Although mice and rats are widespread, our current knowledge on the occurrence, prevalence and pathogenicity of *Encephalitozoon* spp. in wild rodents is very limited (Table 4). In Europe as well as in Japan up to 34% house mice and up to 19% of voles were tested positive for *Encephalitozoon* spp. (Fuehrer et al., 2010; Sak et al., 2011a; Tsukada et al., 2013; Danisová et al., 2015).

3.2.4. Encephalitozoon in the order Carnivora

While examination of wild canids from Iceland showed that 11% of the examined arctic foxes (*Alopex lagopus*) had positive antibody titres against *E. cuniculi* (Hersteinsson et al., 1993), Akerstedt and Kapel (2003) did not detect *E. cuniculi* infections in arctic foxes in Greenland and suggested that these differences to the study in Iceland were due to different feeding habits. Unlike foxes in Iceland, mice are not part of the diet of foxes in Greenland.

In the UK, red foxes had higher seroprevalences than rodents from the same area, namely 52%. They might therefore play an important role as a reservoir for microsporidia in the sylvatic cycle and could be suitable sentinel animals (Meredith et al., 2015).

3.2.5. Encephalitozoon in the suborder Soricomorpha

The taxon most closely related to the Primates is not very well studied for infections of *Encephalitozoon* spp. *E. cuniculi* genotype I and *E. intestinalis* were detected by PCR in Japanese shrew mole (*Urotomus talpoides*) in Japan. One of two examined Dsinezumi shrews (*Crocidura dsinezumi*) was positive for *E. hellem* in the same study (Tsukada et al., 2013).

3.2.6. Encephalitozoon in the order Chiroptera

Despite Chiroptera representing about 20% of the mammalian fauna, only one case of *E. hellem* (based on sequencing of the SSUrDNA locus) in a captive Egyptian fruit bat (*Rousettus aegyptiacus*) was reported.

4. Medical implications

4.1. Human health

4.1.1. Encephalitozoonosis in humans

Microsporidia are common causative agents of diarrhea in HIV infected patients worldwide. Besides the intestine they can infect any other organ of the human body as well and might cause severe live threatening systemic diseases. Incidence of clinical cases decreased in areas where widespread application of antiretroviral therapy was initiated. Besides AIDS other immune compromising conditions can go along with clinical microsporidiosis. It is supposed that in addition to a possible acute infection disease could also be due to a reactivation of a persistent infection under immune-compromising conditions. *Encephalitozoon* is increasingly recognized to occur in non immunocompromised individuals. The significance of this observation is not fully clear and while most infections might be asymptomatic some cases of diarrhea of unknown aetiology might be caused by microsporidal infection (Didier and Weiss, 2011; Didier et al., 2004; Mathis et al., 2005; Didier and Weiss, 2006).

4.1.2. Sources of infection and zoonotic transmission

A wide range of animals are infected with microsporidia which are infective for humans as well. Zoonotic transmission therefore seems likely (McCully et al., 1978; Didier, 2005; Snowden et al., 2009). Zoonotic transmission through wildlife might occur irrespective of the immediate presence of animals and rather through contamination of the environment with spores shed by faeces or urine.
Microsporidial spores have been detected in various water sources and as their spores are very viable in water, water is considered to play an important role in transmission of microsporidia (Dowd et al., 1998; Fournier et al., 2000; Coupe et al., 2006; Izquierdo et al., 2011; Guo et al., 2014). Indeed contact to water is a frequently identified risk factors for the infection of humans with microsporidia (Hutin et al., 1998; Cotte et al., 1999; Didier et al., 2004; Mathis et al., 2005). A waterborne outbreak of microsporidia was suggested in a study were people infected with microsporidia all lived in an area with the same water supply (Cotte et al., 1999). In this study, however, water was not tested for microsporidial contamination so that a waterborne outbreak could not be proven. Another substrate shown to be contaminated with microsporidia is soil (Dado et al., 2012; Kim et al., 2015). Lack of sanitation has been identified as a risk factor (Halanová et al., 2013) and in a recent study it was observed that municipality solid waste workers had a high prevalence of microsporidial infections with about 20% of workers being infected (Abd El Wahab et al., 2015). Fruits, leaves and juices have been shown to be contaminated by microsporidia as well (Calvo et al., 2004; Mossallam, 2010) and a foodborne outbreak of encephalitozoonosis associated with cucumber has been described in Sweden (Decraene et al., 2012). Further proposed risk factors are age (possibly elderly and children are more commonly infected) and travelling (Tumwine et al., 2005; Didier and Weiss, 2006; Halanová et al., 2013).

The extent to which animals contribute to contamination of the environment still is unknown and in the following some pathways that might be crucial for zoonotic transmission are discussed:

Infections of wild birds are of special epidemiologic importance as these hosts can spread zoonotic agents, including microsporidia, via different substrates (e.g. air, soil or water) and across long distances (Graczyk et al., 2008). This also applies to domestic free-ranging birds, especially pigeons which have frequently been shown to be infected with zoonotic microsporidia including all three Encephalitozoon spp. (Haro et al., 2006a; Graczyk et al., 2007; Bart et al., 2008; Pirestani et al., 2013). Microsporidial spores can be aerosolized, e.g. when surfaces contaminated with pigeon faeces (and spores) are pressure-cleaned. That way spores might get inhaled or swallowed by cleaning staff or people nearby (Graczyk et al., 2007). Surface water may also become contaminated with faeces runoff during periods of rain. Exposure to infected urban park pigeons might thus lead to zoonotic transmission of microsporidia (Haro et al., 2005). Especially waterfowl may be a major source of contamination of surface waters as they show very high infection rates with potentially zoonotic microsporidia (Graczyk et al., 2008; Malčeková et al., 2013). Furthermore, aquatic birds frequently defeate into water and usually have unlimited access to surface water used for drinking water production. As otters and minks live close to water, they could also be an important source of waterborne infections. Measures to protect drinking and recreational water resources might therefore be important in preventing waterborne human infections (Graczyk et al., 2008).

In Brazil, coatis were infected at high rates (Table 5) and they might be a relevant reservoir for zoonotic microsporidia in this area, especially in public parks that become contaminated by animals shedding spores, as coatis live in close proximity to humans and sometimes even enter houses in search for food (Lallo et al., 2012a). Similar considerations apply for foxes that have been observed to shed a considerable amount of spores. Through their ubiquitous presence rodents might be an important source for potential zoonotic transmission as well.

Besides the environmental contamination by free-living wild animals, direct transmission through contact to captive wild animals might pose a specific risk.

4.2. Animal health

4.2.1. Encephalitozoonosis in wildlife

There is very limited information on encephalitozoonosis of free living wild animals.

We just give some examples of disease that could be observed in wild animals. Most cases described in the following were observed in captive wild or free living animals recently caught.

4.2.1.1. Encephalitozoonosis in wild birds

Several case reports of encephalitozoonosis in captive wild birds are described. Diseased animals showed keratoconjunctivitis or frequently fatal systemic disease e.g. with lesions in several organs such as the lungs, intestine, liver, spleen or kidney (Poonacha et al., 1985; Black et al., 1997; Snowden and Logan, 1999; Carlisle et al., 2002; Phalen et al., 2006). Subsequent studies on larger populations showed that asymptomatic infections in captive wild birds are widespread (Barton et al., 2003; Kasicková et al., 2009; Sak et al., 2010; Lee et al., 2011). However, the impact of infections on the health of free-living wild birds is largely unknown. A yellow-streaked lori (Chalcopsis scintillata) that was caught from the wild in Indonesia and died soon after in poor health state tested positive for E. hellem (Suter et al., 1988). In wild hummingbirds kept in a rehabilitation facility, E. hellem genotype I was associated with enteritis, especially in nestlings, while older birds were more likely to harbour asymptomatic infections. E. cuniculi is known to cause ocular cataracts in blue foxes; felids and in dogs (Arnesen and Nordstoga, 1977; Benz et al., 2011; Nell et al., 2015), it was also suspected to be a possible cause of eye lens cataracts in wild birds, as E. cuniculi could be detected in the lens of an owl (with no obvious impairment of the eyes) and by PCR in the phacoemulsified lens of a captive saker falcon chick with cataractous lenses (Hinney et al., 2015). Coupled with a loss of vision, e.g. due to cataract, the infection might influence the bird’s behaviour (such as problems with hunting for prey).

4.2.1.2. Encephalitozoonosis in primates

In non-human primates lethal infection with E. cuniculi were described with genotype II and III (Davis et al., 2008; Juan-Salles et al., 2006; Reetz et al., 2004).

4.2.1.3. Encephalitozoonosis in Chiroptera

In Chiroptera histopathological examination revealed disseminated microsporidiosis with pronounced lesions particularly in the urogenital tract and liver (Childs-Sanford et al., 2006).

4.2.1.4. Encephalitozoonosis in wild carnivores

Susceptibility of farmed arctic foxes is documented since the early cases of severe systemic diseases with brain and kidney as predilection organs caused by E. cuniculi genotype II with high mortality (Mohn, 1982; Henriksen, 1986; Persin and Dousek, 1986; Akerstedt et al., 2002; Martino et al., 2004; Meng et al., 2014). Captive arctic foxes are known to be very susceptible to encephalitozoonosis and Akerstedt and Kapel (2003) further hypothesised that this might be due to the lack of contact of this host with the pathogen during evolution with implications for the development of an appropriate defence mechanism of their immune system. Red foxes usually do not show clinical signs of infection but are frequently infected with Encephalitozoon (Table 5).

4.2.2. Transmission paths in wildlife

In principle infection sources might be similar to those discussed for humans, namely contaminated water, soil and food (including prey). For some animals e.g. rabbits and carnivores transplacental transmission might be of importance and probably
helps to maintain the pathogen within the population of a species (Hersteinsson et al., 1993; Cox et al., 1979; Baneux and Pognan, 2003).

In great apes, being endangered species, the anthropozoontic transmission of human pathogens is of special concern, as humans and apes are closely related and thus susceptible for inter-species infections (Groves, 2005). Moreover, an increased anthropogenic impact on primate populations (through tourism and habituation) may result in changes in communities of their parasites, also in a direct exchange of parasites between humans and primates (Sak et al., 2011b). Indeed, infections with *Encephalitozoon* spp. that can also affect humans have been detected in great apes (Table 2). Graczyk et al. (2002) observed that humans and free-ranging mountain gorillas (*Gorilla beringei beringei*) in Uganda both harboured *E. intestinals* infections. Close interactions between humans and non-human primates can create pathways for the transmission of zoonotic diseases in both directions.

5. Discussion

Encephalitozoonosis is substantially more than a rabbit’s parasitosis. Quite the contrary, in many geographic regions wild rabbits do not seem to be important reservoirs of this infection in the wild. A large range of birds and wild mammals may act as hosts, many of them probably also as reservoirs for these pathogens with an ever increasing number of reports of new host species for all genotypes of *Encephalitozoon*. As observed in great apes, location of animals rather than host species may influence the species composition of microsporidia in the animal environment. This further confirms that the situation in captivity does not permit extrapolations on the dimension of natural infections in the wild.

Nevertheless, despite the lack of data for many species, differences in prevalence between the animal orders investigated so far are evident. *E. intestinals* is comparatively rarely found in wild life. While domestic pigs have been shown to be infected with *E. intestinals* in high prevalences (Valencáková et al., 2006; Malčeková et al., 2010), this does not seem to be the case for wild boar so far (Nemec et al., 2014). For this species, domestic animals rather than wildlife might constitute the most important reservoir for zoonotic transmission. Birds can be assumed to be the primary reservoir for *E. hellem*, while some but not all mammals are frequent carriers of *E. cuniculi*. Due to their abundance and close proximity to humans and carnivores might be important carriers of *E. cuniculi*; however, they also constitute the groups that are most intensively studied.

Wildlife thus should be considered as possible source for zoonotic transmission of microsporidia of the genus *Encephalitozoon* (Didier et al., 2004; Didier, 2005; Mathis et al., 2005; Murphy et al., 2007). Conversely, humans entering wild animal habitats in search for food or land often bring their domestic animals with them which may harbour pathogens previously unknown to that area, posing a threat to indigenous species, especially endangered ones. Disease caused by *Encephalitozoon* seems to be governed more by the immune status of the individual host than by the host species itself. Indeed, free-living animals were frequently observed to develop disease shortly after captivity, which may be related to stress and resulting immunosuppression (Mbyaya et al., 2009; Dickens et al., 2009). Thus, although *Encephalitozoon* infections are observed to be predominantly subclinical, they could be an important driver of selection during stressful events (Cox and Ross, 1980; Bose et al., 2015).

Due to the different methodologies applied in previous studies, no conclusion can be drawn regarding the geographic distribution of the different *Encephalitozoon* species. Studies in great apes have shown that geographical differences exist, but the extent and epidemiological consequence of this finding is unclear. Animals that have been shown to shed high amounts of spores might be useful sentinel animals to draw conclusion on environmental contamination.

To fully apprehend the importance of *Encephalitozoon* as a pathogen for wild and domestic animals as well as humans, future studies must be guided by appropriate methodologies to cover all *Encephalitozoon* species and known genotypes, and by selection of appropriate sentinel host species to receive meaningful information.

References

Abid El Wahab, E.W., Easa, S.M., Lofti, S.E., El Masry, S.A., Kotkat, A.M., Shatat, H.Z., 2015. Risk factors associated with parasitic infection among municipality solid waste workers in an egyptian community. J. Parasitol. http://dx.doi.org/10.1645/15-782.

Abu-Akkada, S.S., Ashmawy, K.I., Dawn, A.W., 2015. First detection of an ignored parasite, *Encephalitozoon cuniculi*, in different animal hosts in Egypt. Parasitol. Res. 114, 843–850.

Åkerstedt, J., Kapel, 2003. CM Survey for *Encephalitozoon cuniculi* in arctic foxes (*Alopex lagopus*) in Greenland. J. Wildl. Dis. 39, 228–232.

Åkerstedt, J., Nordstoga, K., Sverdrup, A, Snoeks, E., Deplazes, P. 2002. *Encephalitozoonosis*: isolation of the agent from an outbreak in farmed blue foxes (*Alopex lagopus*) in Finland and some hitherto unreported pathologic lesions. J. Vet. Med. B Infect. Dis. Vet. Public Health 49, 400–405.

Amer, M.N, King, N.W., Hunt, R.D., 1977. Congenital encephalitozoonosis in a squirrel monkey (*Saimiri sciureus*). Vet. Pathol. 9, 475–480.

Arnesen, K., Nordstoga, K. 1977. Ocular encephalitozoonosis (nosematosis) in blue foxes. polyarteritis nodosa and cataract. Acta Ophthalmol. (Copenh). 55, 641–651.

Asakura, T., Nakamura, S., Ohta, M., Une, Y., Furuya, K., 2006. Genetically unique microsporidian *Encephalitozoon cuniculi* strain type III isolated from squirrel monkeys. Parasitol. Int. 55, 159–162.

Baneux, P.J., Pognan, F., 2001. In utero transmission of *Encephalitozoon cuniculi* strain type I in rabbits. Lab. Anim. 37, 132–138.

Bart, A., Wentink-Bonnema, E.M., Heddemaa, E.R., Buijs, J., van Gool, 2008. T. Frequent occurrence of human-associated microsporidia in feral droppings of urban pigeons in Amsterdam, the Netherlands. Appl. Environ. Microbiol. 74, 7056–7058.

Barton, C.E., Phalen, D.N., Snowden, K.F., 2003. Prevalence of microsporidian spores shed by asymptomatic lovebirds: evidence for a potential emerging zoonosis. J. Avian Med. Surg. 17, 197–202.

Bartova, E., Marková, J., Sedlak, K., 2015. Prevalence of antibodies to *Encephalitozoon cuniculi* in European hares (*Lepus europaeus*). Anim. Agric. Environ. Med. 22, 674–676.

Begon, M., 2003. Disease: health effects on humans, population effects on rodents. In: Singleton, G.R., Hinds, L.A., Krebs, C.J., Spratt, D.M. (Eds.), Rats, Mice and People: Rodent Biology and Management. Australian Centre for International Agricultural Research, Canberra, pp. 13–19.

Benz, P., Maas, G., Gisak, J., Fuchs-Baumgartinger, A., Schwendenwein, I., Tichy, A., Nell, B., 2011. Detection of *Encephalitozoon cuniculi* in the feline cataract lens. Vet. Ophthalmol. 14 (Suppl. 1), 37–47.

Bjerkaa, L, Nesland, J.M., 1987. Brain and spinal cord lesions in encephalitozoonosis in the blue fox. Acta Vet Scand. 28, 15–22.

Black, S.S., Steinohrth, L.A., Bertucci, D.C., Rogers, L.B., Didier, E.S., 1997. *Encephalitozoon hellem* in budgerigars (*Melopsittacus undulatus*). Vet. Pathol. 34, 189–198.

Bornay-Ullanes, F.J., da Silva, A.J., Moura, H., Schwartz, D.A., Vivesvaya, G.S., Pieniazek, N.J., Cruz-Lopez, A., Hernandez-Jauregui, P., Guerrero, J., Enriquez, F., 1998. Immunologic, microscopic, molecular evidence of *Encephalitozoon intestinalis* (Septata intestinalis) infection in mammals other than humans. J. Infect. Dis. 178, 820–826.

Bose, H.M., Woodhouse, M.A., Powell, R., 2015. Absence of *Encephalitozoon cuniculi* antibodies in wild rabbits in England. Vet. Rec. 177, 48.

Brown, R.J., Hinkle, D.K., Trovethan, S.P., Kopper, J.L., McLean, A.E., 1972. Nosematosis in a Syrian Monkey (*Saimiri sciureus*). First Reported Case. Department of the Navy, Naval Aerospace Medical Institute, Naval Aerospace Medical Research Laboratory, pp. 1–8.

Bute, C., Mundone, S.A., Drakulovski, P., Krasteva, D., Ngole, E.M., Mallie, P., Delaporte, E., Peeters, M., Locatelli, S., 2015. Assessment of infections with microsporidia and Cryptosporidium spp. in fecal samples from wild primate populations from Cameroon and Democratic Republic of Congo. Int. J. Primatol. 36, 219–243.

Calvo, M., Carazo, M., Arias, M.L., Chaves, C., Monge, R., Chinchilla, M., 2004. Prevalence of *Cyclospora sp.*, *Cryptosporidium sp.* microsporidia and fecal coliform determination in fresh fruit and vegetables consumed in Costa Rica. Arch. Latinoam. Nutr. 54, 428–433.

Carlisle, M.S., Snowden, K., Gill, J., Jones, M., O’Donoghue, P., Prociv, P., 2002. Microsporidiosis in a Gouldian finch (*Erythura chloeoboea* gouldiae). Aust. Vet. J. 80, 41–44.

Chalupek, J., Vavra, J., Gaudi, J., Vanderwalle, P., Arthur, C.P., Guenezan, M.,
Künzel, F., Joachim, A., 2010. Encephalitozoonosis in rabbits. Parasitol. Res. 106, 295–309.

Künzel, F., Peschke, R., Tichy, A., Joachim, A., 2014. Comparison of a fluorescent antibody test with Western blot for the detection of serum antibody against Encephalitozoon cuniculi in cats. Parasitol. Res. 113, 4457–4462.

Lallo, M.A., Calabria, P., Bondan, F.E., Milanello, L., 2012a. Identification of Encephalitozoon cuniculi and Enterocytozoon (microsporidia) spores in stool and urine samples obtained from free-living South American cosus (Nassa nasus). Appl. Environ. Microbiol. 78, 4490–4492.

Lallo, M.A., Calabria, P., Bondan, F.E., Milanello, L., 2012b. Encephalitozoon cuniculi and Enterocytozoon (microsporidia) spores in stool from pigeons and exotic birds: microsporidia spores in birds. Vet. Parasitol. 190, 418–422.

Lee, S.Y., Lee, S.S., Lyoo, Y.S., Park, H.M., 2011. DNA detection and genotypic identification of pathogenic microsporidia from asymptomatic pet parrots in South Korea as a risk factor for zoonotic emergence. Appl. Environ. Microbiol. 77, 8442–8444.

Levkutová, M., Hipkova, V., Faitelzón, S., Benath, G., Faulík, S., Levkt, M., 2004. Prevalence of antibodies to Encephalitozoon cuniculi in horses in the Israel. Agric. Environ. Med. 11, 265–267.

Li, X., Palmer, R., Trout, J.M., Fayer, R., 2003. Infectivity of microsporidia spores stored in water at environmental temperatures. J. Parasitol. 89, 185–188.

Lindsay, D.S., Goodwin, D.C., Zajac, A.M., Cortes-Vecino, J.A., Gennari, S.M., 2009. Distribution of Encephalitozoon cuniculi infection in the cat resulting in ophthalmological symptoms in Europe. In: Annual Scientific Meeting of the European College of Veterinary Ophthalmologists, London, UK, May 15–18, 2014. Veterinary Ophthalmol., vol. 6, p. E24.

Lipton, B., Cook, J., Fuchsbau-Aufinger, A., Myn/Nov/C20, 2015. Microsporidia, Cryptosporidium and Giardia infections in western lowland gorillas (Gorilla gorilla gorilla) at different stages of habitat in Central Africa. Onderstepoort J. Vet. Res. 83, 1–9.

Lobo, M.L., Xiao, L., Cama, V., Magalhães, N., Antunes, F., Matos, O., 2006. Identification of potentially human-pathogenic Enterocytozoon bieneusi genotypes in various birds. Appl. Environ. Microbiol. 72, 7380–7382.

Máleková, B., Hálč, I., Makačová, Z., Molas, L., Pavlová, P., Adam, J., Halán, M., Valocký, J., Baranovic, M., 2010. Seroreivalence of antibodies to Encephalitozoon cuniculi and Enterocytozoon intestinalis in humans and animals. Res. Vet. Sci. 89, 358–361.

Maléková, B., Valenková, A., Luptcová, L., Molnár, L., Pavlová, P., Novotný, F., 2011. First detection and genotyping of Encephalitozoon cuniculi in a new host species, gyrfalcon (Falco rusticolus). Parasitol. Res. 108, 1479–1482.

Maléková, B., Valenková, A., Molnár, L., Kociová, A., 2011. First detection and genotyping of human-associated microsporidia in wild waterfowl of Slovakia. Acta Parasitol. 58, 13–17.

Martinó, P.E., Montenegro, J.L., Preziosi, J.A., Venturiini, C., Bacigalupi, D., Stanchi, N.O., Bautista, E.L., 2004. Serological survey of selected pathogens of farmed feeding foxes in Southern Argentina, 1998-2001. Rev. Sci. TECH. 23, 801–806.

Mathis, A., Tanner, I., Weber, R., Deplazes, P., Rinder, H., 1997. Genetic and phenotypic in vitro specific variation in the microsporidian Encephalitozoon hellem. In: J. Parasitol. 93, 799–803.

Mathis, A., Weber, R., Deplazes, P., 2005. Zoonotic potential of the microsporidia. Mathis, A., Tanner, I., Weber, R., Deplazes, P., 1997. Genetic and phenotypic in vitro specific variation in the microsporidian Encephalitozoon hellem. In: J. Parasitol. 93, 799–803.

Mbhaya, A.W., Aiyu, M.M., Ibrahim, U.J., 2009. The clinico-pathology and mechanisms of trypanosomiasis in captive and free-living wild animals: a review. J. Res. Commun. 33, 793–809.

McCully, R.M., Van Dellen, A.F., Basson, P.A., Lawrence, J., 1978. Observations on the pathoogy of canine microsporidiosis. Onderstepoort J. Vet. Res. 45, 75–91.

Meng, G., Wang, Y., Zhu, J., Xue, C., Zhang, Y., 2011. Isolation and Characterization of Encephalitozoon cuniculi in the blue fox (Alopex lagopus). J. Eukaryot. Microbiol. 61, 580–585.

Meredith, A.L., Cleaveland, S.C., Brown, J., Mahajan, A., Shaw, D.J., 2010. Serological identification of Encephalitozoon cuniculi in wild rodents, foxes and domestic cats in Central African Republic. PLoS One 5, e97840.

Seguel, M., Howerth, E.W., Ritter, J., Paredes, E., Colegrove, K., Gottdenker, N., 2015. First isolation and characterization of Encephalitozoon cuniculi from a yellow-streaked lory (Melopsittacus undulatus). J. Med. Entomol. 52, 442–445.

Mbhaya, A.W., Aiyu, M.M., Ibrahim, U.J., 2009. The clinico-pathology and mechanisms of trypanosomiasis in captive and free-living wild animals: a review. J. Res. Commun. 33, 793–809.

McCully, R.M., Van Dellen, A.F., Basson, P.A., Lawrence, J., 1978. Observations on the pathoogy of canine microsporidiosis. Onderstepoort J. Vet. Res. 45, 75–91.

Meng, G., Wang, Y., Zhu, J., Xue, C., Zhang, Y., 2011. Isolation and Characterization of Encephalitozoon cuniculi in the blue fox (Alopex lagopus). J. Eukaryot. Microbiol. 61, 580–585.

Meredith, A.L., Cleaveland, S.C., Brown, J., Mahajan, A., Shaw, D.J., 2010. Serological identification of Encephalitozoon cuniculi in wild rodents, foxes and domestic cats in three sites in the United Kingdom. Transbound. Emerg. Dis. 62, 148–156.

Mohn, S.F., 1982. Encephalitozoonosis in the blue fox. comparison between the indiana-ink immuno-reactive and the indirect fluorescent antibody test in detecting Encephalitozoon cuniculi antibodies. Acta. Vet. Scand. 23, 99–106.

Mossalam, S.F., 2010. Detection of some intestinal protozoa in commercial fresh juices. J. Egypt. Soc. Parasitol. 40, 135–149.

Muller-Dobles, U.U., Hezog, K., Tanner, I., Mathis, A., Deplazes, P., 2002. First isolation and characterization of Encephalitozoon cuniculi from a free-ranging rat (Rattus norvegicus). Vet. Parasitol. 107, 279–285.

Murphy, T.M., Walochnik, J., Hassl, A., Morsatty, J., Mooney, J., Toolan, D., Sanchez-Miguesa, J., McAuliffe, A., 2007. On the prevalence of Toxoplasma gondii and Neospora caninum and molecular evidence of Encephalitozoon cuniculi and Enterocytozoon (Septata) intestinalis infections in red foxes (Vulpes vulpes) in rural Ireland. Vet. Parasitol. 146, 227–234.

Müser, G., Carleton, M., 2005. Superfamily Muroidea. In: Wilson, D., Reeder, D. (Eds.), Mammal Species of the World. Smithsonian Institution Press, Washington, D.C.

Neil, B., Fuchs-Baumgartinger, A., Fritsche, J., Borger-German, S., Thyssen, C., Hoffmann, L., Hinrichs, M., 2014. Distribution of Encephalitozoon cuniculi infections in the cat resulting in ophthalmological symptoms in Europe. In: Annual Scientific Meeting of the European College of Veterinary Ophthalmologists, London, UK, May 15–18, 2014. Veterinary Ophthalmol., vol. 6, p. E24.

Neill, B., Cook, J., Fuchsbau-Aufinger, A., Myn/Nov/C20, 2015. Microsporidia encephalitozoon cuniculi causes focal anterior cataract and uveitis in dogs. Tierarztl. Prax. Ausg. K. Kliniere Heimtiere 43, 337–344.

Nelson, J.B., 1967. Experimental transmission of a murine microsporidium in Swiss mice. J. Bacteriol. 94, 1340–1345.
microsporidian species. Wiad. Parazytol. 55, 63–65.
Slodkowicz-Kowalska, A., Graczyk, T.K., Tamang, L., Jedrzejewski, S., Nowosad, A., Zdunak, P., Solarczyk, P., Girouard, A.S., Majewska, A.C., 2006. Microsporidian species known to infect humans are present in aquatic birds: implications for transmission via water? Appl. Environ. Microbiol. 72, 4540–4544.
Slodkowicz-Kowalska, A., Majewska, A.C., Trzesowska, E., Skrzypczak, L., 2012. Occurrence of *Encephalitozoon intestinalis* in the red ruffed lemur (*Varecia rubra*) and the ring-tailed lemur (*Lemur catta*) housed in the Poznan zoological garden, Poland. Ann. Parasitol. 58, 49–52.
Talabani, H., Sarfati, C., Pillebout, E., van Gool, T., Derouin, F., Menotti, J., 2010. Disseminated infection with a new genovar of *Encephalitozoon cuniculi* in a renal transplant recipient. J. Clin. Microbiol. 48, 2651–2653.
Thomas, C., Finn, M., Twigg, L., Deplazes, P., Thompson, R.C., 1997. Microsporida (*Encephalitozoon cuniculi*) in wild rabbits in Australia. Aust. Vet. J. 75, 808–810.
Thompson, R.C., 2013. Parasite zoonoses and wildlife: one health, spillover and human activity. Int. J. Parasitol. 43, 1079–1088.
Tsukada, R., Tsuchiyama, A., Sasaki, M., Park, C.H., Fujii, Y., Takesue, M., Hatai, H., Kudo, N., Ikadai, H., 2013. *Encephalitozoon infections* in rodentia and Soricomorpha in Japan. Vet. Parasitol. 198, 193–196.
Tumwine, J.K., Kekitiinwa, A., Bakeera-Kitaka, S., Ndeezi, G., Downing, R., Feng, X., Akiyoshi, D.E., Tzipori, S., 2005. Cryptosporidiosis and microsporidiosis in Ugandan children with persistent diarrhea with and without concurrent infection with the human immunodeficiency virus. Am. J. Trop. Med. Hyg. 73, 921–925.
Valencáková, A., Balent, P., Hůska, M., Novotný, F., Luptáková, L., 2006. First report on *Encephalitozoon intestinalis* infection of swine in Europe. Acta Vet. Hung 54, 407–411.
Van Heerden, J., Bainbridge, N., Burroughs, R.E., Kriek, N.P., 1989. Distemper-like disease and encephalitozoonosis in wild dogs (*Lycaon pictus*). J. Wildl. Dis. 25, 70–75.
Wagnerová, P., Šak, B., Kvetonová, D., Buňatová, Z., Civisová, H., Mariálek, M., Kváč, M., 2012. *Enterocytozoon bieneusi* and *Encephalitozoon cuniculi* in horses kept under different management systems in the Czech Republic. Vet. Parasitol. 190, 573–577.
Wasson, K., Peper, R.L., 2000. Mammalian microsporidiosis. Vet. Pathol. 37, 113–128.
Wilson, J.M., 1979. *Encephalitozoon cuniculi* in wild European rabbits and a fox. Res. Vet. Sci. 26, 114. Cited in: Mathis, A., Weber, R., Deplazes, P., 2005. Zoonotic potential of the microsporidia. Clin. Microbiol. Rev. 18, 423–445.
Wobester, G., Schuh, J.C., 1979. Microsporidal encephalitis in muskrats. J. Wildl. Dis. 15, 413–417.
Xiao, L., Li, L., Moura, H., Sulaiman, I., Lal, A.A., Gatti, S., Scaglia, M., Didier, E.S., Visvesvara, G.S., 2001. Genotyping *Encephalitozoon hellem* isolates by analysis of the polar tube protein gene. J. Clin. Microbiol. 39, 2191–2196.
Yabsley, M.J., Jordan, C.N., Mitchell, S.M., Norton, T.M., Lindsay, D.S., 2007. Sero-prevalence of *Toxoplasma gondii*, *Sarcocystis neurona*, *Encephalitozoon cuniculi* in three species of lemurs from St. Catherines Island, GA, USA. Vet. Parasitol. 144, 28–32.
Zanet, S., Palese, V., Trisciuoglio, A., Canton Alonso, C., Ferroglio, E., 2013. *Encephalitozoon cuniculi*, *Toxoplasma gondii* and *Neospora caninum* infection in invasive eastern cottontail rabbits (*Sylvilagus floridanus*) in northwestern Italy. Vet. Parasitol. 197, 682–684.
Zeman, D.H., Baskin, G.B., 1985. Encephalitozoonosis in squirrel monkeys (*Saimiri sciureus*). Vet. Pathol. 22, 24–31.