A case report: ‘happy heart’ syndrome in a patient treated with atomoxetine for attention deficit hyperactivity disorder

Petros Athanassopoulos * and Shams Y-Hassan

Heart and Vascular Theme, Karolinska Institute and Karolinska University Hospital, Stockholm, Sweden

Received 21 March 2019; first decision 3 April 2019; accepted 26 July 2019; online publish-ahead-of-print 30 September 2019

Background
Takotsubo syndrome (TS) is an acute cardiac disease entity with a clinical presentation resembling that of an acute coronary syndrome. Numerous physical stress factors including pheochromocytoma, epinephrine, and norepinephrine administration, and even physiological exercise have been reported to induce TS. Takotsubo syndrome induced by medications causing elevation of plasma norepinephrine as serotonin-norepinephrine reuptake inhibitor or selective norepinephrine reuptake inhibitor (atomoxetine) has been reported.

Case summary
We report on the case of a 49-year-old woman who was on atomoxetine treatment for attention deficit hyperactivity disorder, developed TS in association with sexual intercourse.

Discussion
The TS pattern in this patient was the type of mid-apical ballooning with apical tip-sparing at presentation. Two days later, TS evolved to mid-ventricular pattern. Takotsubo syndrome resolved completely 1 month after the index presentation.

Keywords
Case report • Atomoxetine • Takotsubo syndrome • Happy Heart

Introduction
Takotsubo syndrome (TS) is an acute cardiac disease entity with a clinical presentation resembling that of an acute coronary syndrome. ¹⁻³ The disease is characterized by a transient left ventricular wall motion abnormality with regional distribution resulting in a conspicuous ballooning of the left ventricle during systole. It affects predominantly women and is often preceded by emotional or physical stress.¹⁻³,⁴ Countless physical stress factors including pheochromocytoma,⁵ epinephrine,⁶ and norepinephrine⁷ administration, and even physiological exercise have been reported as a trigger factor for TS.¹,³ Takotsubo syndrome induced by exogenously administered norepinephrine or medications causing elevation of plasma norepinephrine as serotonin-norepinephrine reuptake inhibitor or selective norepinephrine reuptake inhibitor (S-NRI) (atomoxetine) has been reported.⁷ To our knowledge, only two cases of atomoxetine-triggered TS have been described.⁷ Herein, we report on the case of a 49-year-old woman who was on atomoxetine treatment for attention deficit hyperactivity disorder (ADHD) and developed TS in association with sexual intercourse.
Timeline

Symptoms	Clinical examination	Laboratory findings	Initial treatment	Clinical investigation Day 2–3	Final treatment	Follow-up and outcome 1 month
Chest pain, dyspnoea, and dizziness in association with sexual intercourse in a woman treated with atomoxetine for attention deficit hyperactivity disorder	Blood pressure 120/94 mmHg	Troponin 710 ng/L	Atomoxetine discontinued and treatment with acetylsalicylic acid, beta-blocker, and angiotensin-converting enzyme inhibitor was initiated	Invasive coronary angiography revealed normal coronary arteries	Acetylsalicylic acid, beta-blocker, and angiotensin-converting enzyme inhibitor	Patient clinically recovered
	Electrocardiogram with no remarkable changes	Echocardiography showed mid-apical ballooning with apical tip-sparing, good basal contraction, and markedly depressed left ventricular ejection fraction (30–35%)		New echocardiography showed findings typical for mid-ventricular takotsubo syndrome	**Cardiac magnetic resonance imaging** showed complete resolution of the left ventricular wall motion abnormality; there was no late gadolinium enhancement	

Case presentation

A 49-year-old woman presented with acute chest pain. The past history was not remarkable apart from being treated with thyroxine 125 μg o.d. for hypothyroidism, pregabalin 150 mg b.i.d. for chronic neurogenic back pain, and atomoxetine 60 and 18 mg daily for ADHD. In association with sexual intercourse, she developed acute chest pain associated with mild dyspnoea and some dizziness. The chest pain disappeared after sublingual nitroglycerine on admission to the hospital. The patient developed transient hypotension and bradycardia after nitroglycerine, which stabilized after atropine injection. The electrocardiogram (Figure 1) revealed no remarkable changes. Laboratory results showed modest elevation of troponin T (maximum 710 ng/L), C-reactive protein <5 mg/L, and normal cholesterol levels. Echocardiography 1 day after admission revealed a-hypokinesia in the mid-apical regions with good contraction of the apical tip segment (apical tip-sparing) and the basal segments with marked reduction of left ventricular ejection fraction, 30–35% (Supplementary material online, Video S1, echocardiography). Atomoxetine was discontinued and treatment with acetylsalicylic acid, beta blocker, and angiotensin-converting enzyme inhibitor was initiated. Invasive coronary angiography 1 day after admission showed normal coronary arteries (Figure 2A and B; Supplementary material online, Video S2, left coronary artery). A new echocardiography 3 days after admission showed a-hypokinesia in the middle segments of the left ventricle circumferentially, with good contractions in both the basal and apical segments resulting in a pattern consistent with mid-ventricular TS (Supplementary material online, Video S3, contrast echocardiography). Left ventricular systolic function recovered completely within 1 month from admission as demonstrated by cardiac magnetic resonance imaging, which did not show late gadolinium enhancement.

Discussion

We present a case of a woman treated with atomoxetine for ADHD who developed TS following sexual intercourse (‘happy heart’ syndrome). The TS had a mid-apical pattern with apical tip-sparing (Supplementary material online, Video S1, echocardiography), which evolved to typical mid-ventricular TS pattern 2 days later (Supplementary material online, Video S3, contrast echocardiography). Of 1750 TS patients, Ghadri et al.8 identified a total of 485 TS patients with a definite emotional trigger factor. Of these, 20 TS patients (4.1%) presented with pleasant preceding events. The mid-ventricular TS pattern was more prevalent among the ‘happy hearts’ than among the ‘broken hearts’. Our patient had also mainly mid-ventricular involvement.

Atomoxetine, a S-NRI used for the treatment of ADHD,9 has been reported to trigger TS.7 To our knowledge, two cases of documented atomoxetine-triggered TS have been reported (Table 1). Both cases10,11 developed apical TS pattern after increasing the dose of atomoxetine. In our case, atomoxetine dose was not increased before the index presentation, but further physical stress could have triggered TS.

Conclusion

A case of ‘happy heart’ syndrome triggered by a lovely physical activity in a woman who was treated with atomoxetine for ADHD is described. The TS pattern was of mid-apical ballooning with apical
Figure 1 The 12 leads electrocardiogram shows sinus rhythm. No remarkable changes are seen.

Figure 2 Left coronary artery in (A) and right coronary artery in (B) showed no signs of obstructive coronary artery disease.
table 1 clinical features on admission, in-hospital complications and outcome in the three known patients with atomoxetine-induced TS

Authors	Year	Age, years	Gender	S-NRI trigger factor	Reasons for S-NRI administration	Presenting symptoms, manifestations	TS localization/time (where available)	Complications	Recovery/time	Outcome/recovery time
Yamaguchi et al.	2014	11 Male	Atomoxetine	Dose increased for ADHD	Loss of consciousness, bradycardia	Apical	Long QT time (829 ms), need of pacemaker 4 days later	No	Yes/2 weeks	Yes/2 weeks
Nagay et al.	2016	26 Female	Atomoxetine	Dose increased to 40 mg b.i.d. for ADHD, continued fluoxetine treatment	Chest pain and dyspnea	Apical	No	Yes/5 weeks	Yes/5 weeks	
Current case	2019	49 Female	Atomoxetine, sexual intercourse		Chest pain, dyspnea and dizziness	Mid-apical/apical tip-sparing	No	No	Yes/4 weeks	

ADHD, attention-deficit hyperactivity disorder; S-NRI, selective norepinephrine reuptake inhibitor; TS, takotsubo syndrome.

References

1. Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, Cammann VL, Crea F, Galiuto L, Desmet W, Yoshida T, Manfredini R, Etel I, Kosuge M, Nef HM, Deshmukh A, Lerman A, Bossone E, Citro R, Ueyama T, Corrado D, Kosuge M, Nef HM, Deshmukh A, Lerman A, Bossone E, Citro R, Ueyama T, Corrado D, Kursiu S, Ruschitzka F, Winchester D, Lyon AR, Omerovic E, Bax JJ, Meimoun P, Tarantini G, Rimal C, Y-Hassan S, Migliore F, Horowitz JD, Shimokawa H, Lüscher TF, Templin C. International Expert Consensus Document on Takotsubo Syndrome (Part I): clinical characteristics, diagnostic criteria, and pathophysiology. Eur Heart J 2018;39:2032–2046.
2. Y-Hassan S, Tornvall P. Epidemiology, pathogenesis, and management of takotsubo syndrome. Clin Auton Res 2018;28:53–65.
3. Ghadri JR, Wittstein IS, Prasad A, Sharkey S, Dote K, Akashi YJ, Cammann VL, Crea F, Galiuto L, Desmet W, Yoshida T, Manfredini R, Etel I, Kosuge M, Nef HM, Deshmukh A, Lerman A, Bossone E, Citro R, Ueyama T, Corrado D, Kursiu S, Ruschitzka F, Winchester D, Lyon AR, Omerovic E, Bax JJ, Meimoun P, Tarantini G, Rimal C, Y-Hassan S, Migliore F, Horowitz JD, Shimokawa H, Lüscher TF, Templin C. International Expert Consensus Document on Takotsubo Syndrome (Part II): diagnostic workup, outcome, and management. Eur Heart J 2018;39:2047–2062.
4. Y-Hassan S, De Palma R. Contemporary review on the pathogenesis of takotsubo syndrome: the heart shedding tears: Norepinephrine churn and foam at the cardiac sympathetic nerve terminals. Int J Cardiol 2017;228:528–536.
5. Y-Hassan S. Clinical features and outcome of pheochromocytoma-induced takotsubo syndrome: analysis of 80 published cases. Am J Cardiol 2016;117:1836–1844.

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The author’s confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: none declared.
6. Y-Hassan S. Clinical features and outcome of epinephrine-induced takotsubo syndrome: analysis of 33 published cases. Cardiovasc Revasc Med 2016;17:450–455.

7. Y-Hassan S. Serotonin norepinephrine re-uptake inhibitor (SNRI)-, selective nor- epinephrine reuptake inhibitor (S-NRI)-, and exogenously administered norepinephrine-induced takotsubo syndrome: Analysis of published cases. Int J Cardiol 2017;231:228–233.

8. Ghadri JR, Sarcon A, Diekmann J, Bataiosu DR, Cammann VL, Jurisic S, Napp LC, Jaguszewski M, Scherff F, Brugger P, Jänicke L, Seifert B, Bax JJ, Ruschitzka F, Lüscher TF, Tempel C. Happy heart syndrome: role of positive emotional stress in takotsubo syndrome. Eur Heart J 2016;37:2823–2829.

9. Garnock-Jones KP. Atomoxetine: a review of its use in attention-deficit hyperactivity disorder in children and adolescents. Pediatr Drugs 2009;11:203–226.

10. Yamaguchi H, Nagumo K, Nakashima T, Kinugawa Y, Kumaki S. Life-threatening QT prolongation in a boy with attention-deficit/hyperactivity disorder on atomoxetine. Eur J Pediatr 2014;173:1631–1634.

11. Nguy A, Al-Mutairi H, Al-Tajali A. Atomoxetine-related Takotsubo Cardiomyopathy. J Psychiatr Pract 2016;22:232–233.