This is the published version of a paper published in *Chemical Communications*.

Citation for the original published paper (version of record):

Villo, P., Kervefors, G., Olofsson, B. (2018)
Transition metal-free, chemoselective arylation of thioamides yielding aryl thioimidates or N-aryl thioamides
Chemical Communications, 54(64): 8810-8813
https://doi.org/10.1039/c8cc04795b

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-158893
Transition metal-free, chemoselective arylation of thioamides yielding aryl thioimidates or N-aryl thioamides
Reactions of secondary thioamides with diaryliodonium salts under basic, transition metal-free conditions resulted in chemoselective S-arylation to provide aryl thioimidates in good to excellent yields. Equimolar amounts of thioamide, base and diaryliodonium salt were sufficient to obtain a diverse selection of products within short reaction times. Reactions with thiocarbamates delivered N-arylated thioamides in good yield at room temperature.

Thioamides and their aryl thioimidate derivatives are important units in bioactive molecules, and in intermediates towards such compounds. The thioimidate moiety can also be found in heterocycles such as thiazoles and benzothiazoles, and in early stage solar absorbers.

Continuing on this track, we explored the arylation of thioamides, and herein describe the highly selective S-arylation of secondary thioamides with diaryliodonium salts under basic, transition metal-free conditions (Scheme 1).

Initial screenings revealed that the reaction of thioamide 1a with diphenyliodonium triflate (2a) delivered phenyl thioimidate 3a in 30–40% yield with a selection of organic and inorganic bases in toluene at room temperature. Recovered 1a and side-products from either hydrolysis of 3a into the corresponding amide and thiol, or desulfurization, constituted the remaining mass. Remarkably, no N-arylated thioamide product was observed. Product 3a was isolated as an inseparable Z:E isomeric mixture in 93:7 ratio, based on NMR analysis and literature data on similar compounds.

Scheme 1 Arylation of thioamides with diaryliodonium salts.

DOI: 10.1039/c8cc04795b
Based on these initial promising results, an extensive optimization was performed. A solvent screening with LiO\textsubscript{t}Bu as base revealed that EtOAc, iPrOAc and CH\textsubscript{2}Cl\textsubscript{2} gave comparable yields to reactions in toluene. The reaction temperature had a great impact on the reaction outcome, and reactions at 80 °C allowed the reaction time to be decreased from overnight to one hour (Table 1, entries 1–4). While running the reaction under argon atmosphere only influenced the outcome marginally (entry 5), degassing the solvent enhanced the yield considerably (entry 6). A counterion effect for the iodonium salt was also observed, where diphenyliodonium salts with OTf, OTs and Br outperformed iodonium salts with BF\textsubscript{4}, TFA\textsubscript{a} and PF\textsubscript{6}.21

With the optimized conditions in hand, we looked into the scope of diaryliodonium salts with thioamide \textit{1a} (Scheme 2A). Symmetric and unsymmetric diaryliodonium salts were synthesized using efficient one-pot methodology, with phenyl, anisyl and trimethoxyphenyl (TMP) as “dummy” groups. The use of unsymmetric iodonium salts is often more atom efficient and cost effective, e.g. when highly functionalized or precious aryl groups are transferred.21 High chemoselectivity is crucial for this approach, i.e. selective transfer of only one of the aryl groups,19,d and the arylation results with unsymmetric diaryliodonium salts proved superior to the corresponding symmetric salts in several S-arylations shown below.21 Electron deficient diaryliodonium salts generally behave well in heteroatom arylations, and the synthesis of p-CN product \textit{3b} indeed proceeded in excellent yield. Likewise, the p-NO\textsubscript{2} product \textit{3c} was easily obtained, and surprisingly performed better in a non-degassed solvent.27

Further so, aryls with p-OCF\textsubscript{3} (\textit{3d}) and p-CF\textsubscript{3} (\textit{3e}) were delivered in good yields as well. Electron-withdrawing substituents in the meta- and ortho-positions were also tolerated, providing m-CF\textsubscript{3} substituted \textit{3f}, with slightly lower Z:E ratio than previously observed; and o-F and o-COOMe decorated \textit{3g–3h}. Importantly, the introduction of aryl groups with a straightforward handle for further derivatization proved feasible, as exemplified by a p-N\textsubscript{3} aryl moiety in \textit{3i} and halide-substituted products \textit{3j, 3k}, for which unsymmetric iodonium salts proved more efficient than the corresponding symmetric salts.21 Arylations with electron donating diaryliodonium salts can be demanding, as competing reaction pathways tend to give product mixtures.19c Pleasingly, this S-arylation proved compatible with such iodonium salts, and alkyl-substituted products \textit{3l–3o} were obtained in good yields, including the sterically congested \textit{3n–3o}. Furthermore, an anisyl group could easily be transferred (\textit{3p}), and the synthesis of pyridyl product \textit{3q} was viable. Complete chemoselectivity was generally observed in the arylation, with minor amounts of dummy group transfer only in the synthesis of \textit{3j}.21 The reaction was demonstrated to have a considerable ortho-effect,28 with high yields and complete chemoselectivity in

Entry	Solvent quality	Temp (°C)	Time (h)	Yield\(^a\) (%)
1	Anhydrous	rt	16	42
2	Anhydrous	40	16	61
3	Anhydrous	80	16	71
4	Anhydrous	80	1	75
5	Anhydrous under Ar	80	1	79
6	Degassed, anhydrous under Ar	80	1	91

\(^a\) Isolated yields, major isomer of \textit{3a} shown.

Scheme 2 Arylation scope with major isomer (\textit{Z}) shown. Z:E ratios 91:9 to 96:4, except \textit{3d} (89:11), \textit{3f} (88:12), \textit{3h} (86:14), \textit{3i} (90:10), \textit{3o} (86:14), and \textit{3q} (87:13). Only one isomer obtained of \textit{3w–4b}. 4\textsuperscript{In non-degassed toluene. b NMR yield. c Combined yield. d At rt for 16 h, 1.5 equiv. base.16
the synthesis of 3k and 3o.21 The scope of thioamide scaffolds was explored next (Scheme 2B). Both electron donating and withdrawing groups on the benzothioamide were well tolerated, delivering 3r and 3s in good yields. Contrary to the aryl thioamides, the arylation of alkylated thioamides resulted in S-arylated products 3t, 3u in moderate yield, along with a minor amount of N-arylation. The N-benzyl group could be replaced by a hexyl group to deliver 3w. More importantly, an easily removable Boc group was also tolerated, delivering S-arylated products 3w and 3x in high yields. Interestingly, reactions with this substrate in the presence of the weaker base potassium carbonate only gave recovered starting material, despite the more acidic NH proton.21 Furthermore, the heteroaromatic substrate pyridine-2-thiol proved suitable for this transformation, providing 3y in 78% yield. Cyclic thioamides, on the other hand, acted differently under the optimized conditions. Pyrrolidine-2-thione gave a mixture of N- and S-arylated products (4a, N:S ratio 1.5:1).21 Interestingly, the synthesis of 4b proceeded in excellent yield and complete N-selectivity at room temperature. This product class could give access to N-arylated amides after a one-step desulfurization.22,23 Competition experiments were performed to evaluate the S-arylation in the presence of O- and N-nucleophiles that have been reported to undergo arylation with diaryliodonium salts under metal-free conditions.19,20 Hence, reactions of thioamide 1a and Ph2IOTf were performed in the presence of amide 5 or 6, benzoic acid (7), or alcohol 8, and 2 equiv of base, to allow deprotonation of both nucleophiles (Scheme 3). The reactions proved to be completely chemoselective, with arylation of only thioamide 1a in all of the cases. S-arylated thioimidate 3a was isolated in yields of 40–80%, with complete recovery of the competing nucleophile in all reactions.

Preliminary mechanistic investigations revealed that addition of aryle or radical scavengers (piperidine and 1,1-diphenylethylene, respectively) had negligible effect on the reaction outcome.21 Hence both an aryle pathway and a radical mechanism can be excluded. Based on previous experimental and mechanistic studies of enolates, amides and nitrite,18,19 the reaction proceeds by deprotonation and ligand exchange to provide T-shaped intermediate A and/or B (Scheme 4). Ligand coupling in I–N intermediate A to form the S-arylated thioimide 3 would proceed via a [2,3] rearrangement, whereas I–S intermediate B would undergo a [1,2] rearrangement to yield 3. Alternatively, intermediates A and B could yield N-aryl thioamide 4 through [1,2] and [2,3] rearrangement, respectively. The S-arylation selectivity observed for all acyclic thioamides, as well as the aromatic thioamide, can be rationalized by efficient conjugation of the nitrogen lone pair in the thioamide moiety, making the sulfur lone pairs most nucleophilic. The observed N-selectivity in arylation of thiolactams could be caused by less efficient conjugation due to cyclic constraints, making nitrogen a better nucleophile. While early literature proposed a rearrangement from S-arylated to N-arylated products,21 we observed constant N/S-arylation ratios throughout the reactions, making this mechanism unlikely.21

To conclude, we have developed a transition metal-free arylation of thioamides with diaryliodonium salts under basic conditions. Complete selectivity in favor of S-arylated products was observed with acyclic and aromatic thioamides, whereas thiolactams preferably were N-arylated. A wide scope of functional groups are tolerated in both thioamides and diaryliodonium salts. Furthermore, sterically congested aryl groups were transferred in high yield, and a considerable ortho-effect was observed. Efficient use of unsymmetric diaryliodonium salts have been demonstrated, with excellent chemoselectivity and improved yields compared to the corresponding symmetric reagents.

The Estonian Research Council (MOBT P59, PUTJD114) and the Swedish Research Council (2015-04404) are kindly acknowledged for financial support.

Conflicts of interest
There are no conflicts to declare.

Notes and references
1 Recent applications of thioamide and thioimidate scaffolds: (a) S. Julie, R. Patrick and T. Arnaud, Angew. Chem., Int. Ed., 2010, 49, 577–580; (b) W. Zhang, J. Li, L.-W. Liu, K.-R. Wang, J.-J. Song, J.-X. Yan, Z.-Y. Li, B.-Z. Zhang and R. Wang, Peptides, 2010, 31, 1832–1838; (c) H. Verma, B. Khatri, S. Chakraborti and J. Chatterjee, J. Chem. Sci., 2018, 9, 2443–2451; (d) S. Goyne, C. Chizzali, M. N. A. Khalil, A. Litomska, K. Ricter, L. Beerhues and C. Hertweck, Angew. Chem., Int. Ed., 2013, 52, 10564–10568; (e) O. V. Solod, K. N. Zelenin and V. V. Pinson, Chem. Heterocycl. Compd., 1996, 32, 1–11; (f) T. S. Jagodziński, Chem. Rev., 2003, 103, 197–228.
2 Reviews on synthesis of heterocycles: (a) M. Witalewska, A. Wróna-Piotrowicz, A. Makal and J. Zakrzewski, J. Org. Chem., 2018, 83, 1933–1939; (b) M. Koketsu and H. Ishihara,Curr. Org. Synth., 2007, 4, 15–29; (c) W.-S. Guo, L.-R. Wen and M. Li, Org. Biomol. Chem., 2015, 13, 1942–1953.
3 A. L. Catherall, S. Harris, M. S. Hill, A. L. Johnson and M. F. Mahon, Cryst. Growth Des., 2017, 17, 5544–5551.
4 Y. Minami, H. Kuniyasu, A. Sanagawa and N. Kambe, Org. Lett., 2010, 12, 3744–3747.
5 Reviews on thioimidate synthesis: (a) R. Roger and D. G. Neilson, Chem. Rev., 1961, 61, 179–211; (b) W. Kantelehr, in Comprehensive Organic Synthesis, ed. I. Fleming, Pergamon, Oxford, 1991, pp. 485–599; (c) N. Nakajima and M. Ubu kata, Sci. Synth., 2005, 22, 361–366.
6 A. N. Kolontsova, M. N. Ivantsova, M. I. Tokareva and M. A. Mironov, Mol. Diversity, 2010, 14, 543–550.
13 Selected references on functionalization of thioamides with iodine(III)

14 (a) E. A. Merritt and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052–9070.
15 (b) I. I. Kandror and I. O. Bragina, Izv. Akad. Nauk SSSR, Ser. Khim., 1982, 23, 5093–5096.
16 (c) I. I. Kandror and B. V. Kopylova and R. K. Freidлина, Sulfur Rep., 1984, 3, 289–316.
17 (d) E. A. Merritt and B. Olofsson, Angew. Chem., Int. Ed., 2009, 48, 9052–9070.
18 (a) K. Andi, R. L. Töth, G. L. Tolnai and Z. Novák, Synlett, 2016, 1456–1485; (b) B. Olofsson, Top. Curr. Chem., 2016, 373, 135–166; (c) A. Yoshimura and V. V. Zhdankin, Chem. Rev., 2016, 116, 3328–3435.
19 (a) Z. Bianxiang, K. Yongqiang, Y. Lihua and C. Xia, ChemSelect, 2016, 1, 1529–1532; (b) R. Sathunuru, H. Zhang, C. W. Rees and E. Biehl, Heterocycles, 2005, 65, 1613–1627; (c) R. Sathunuru and E. Biehl, ARKIVOC, 2004, 51–60; (d) S. Bátori and A. Messmer, J. Heterocycl. Chem., 1988, 25, 437–444; (e) Z. Chen, Y. Jin and P. J. Stang, J. Org. Chem., 1987, 52, 4117–4118; The arylation of pyridine 2-thiol is reported: (f) A. M. Wagner and M. S. Sanford, J. Org. Chem., 2014, 79, 2263–2267.
20 (a) H. Zhu, X. Liu, Y. Cheng, H.-Y. Peng, Y.-S. Li and Z.-B. Dong, Synthesis, 2018, 2247–2254.
21 Selected references on functionalization of thioamides with iodine(III) reagents: (a) M. Ochiai, S. Yamaamoto, T. Suefuji and D.W. Chen, Org. Lett., 2001, 3, 2753–2756; (b) M. Ochiai and S. Yamamoto, Chem. Commun., 2002, 2802–2803; (c) P. Wipf and S. Venkatraman, J. Org. Chem., 1996, 61, 8004–8005; (d) K. Miyamoto, Y. Nishi and M. Ochiai, Angew. Chem., Int. Ed., 2005, 44, 6896–6899; Selected references on functionalization of similar substrates with iodine(III) reagents: (e) R. Frei and J. Waser, J. Am. Chem. Soc., 2013, 135, 9620–9623; (f) S. P. Spyroudis, Liebig Ann. Chem., 1986, 947–951; (g) E. D. Matveeva, T. A. Podrugina, A. S. Pavlova, A. V. Mironov and N. S. Zefirov, Russ. Chem. Bull., 2008, 57, 400–405; (h) W. Zhang, J. Zhu and J. Hu, Tetrahedron Lett., 2008, 49, 5006–5008.
22 (a) N. K. Downer-Riley and Y. A. Jackson, Tetrahedron, 2008, 64, 7741–7744.
23 (a) G. L. Tolnai, U. J. Nilsson and B. Olofsson, Angew. Chem., Int. Ed., 2016, 55, 11226–11230; (b) M. Reitti, P. Villo and B. Olofsson, Angew. Chem., Int. Ed., 2016, 55, 8928–8932; (c) F. Tinnis, E. Stridfeldt, H. Lundberg, H. Adolfsson and B. Olofsson, Org. Lett., 2015, 17, 2688–2691; (d) C. Dey, E. Lindstedt and B. Olofsson, Org. Lett., 2015, 17, 4554–4557.
24 (a) P.-O. Norrby, T. B. Petersen, M. Bielawski and B. Olofsson, Chem. – Eur. J., 2010, 16, 8251–8254; (b) J. Malmgren, S. Santoro, N. Jalalian, F. Himo and B. Olofsson, Chem. – Eur. J., 2013, 19, 10334–10342; (c) E. Stridfeldt, E. Lindstedt, M. Reitti, J. Blix, P.-O. Norrby and B. Olofsson, Chem. – Eur. J., 2017, 13249–13258; (d) D. R. Stuart, Chem. – Eur. J., 2017, 23, 15852–15863; (e) H. Pinto de Magalhães, H. P. Lüthi and A. Togni, Org. Lett., 2012, 14, 3830–3833.
25 (a) X.-P. Ma, W.-M. Shi, X.-L. Mo, X.-H. Li, L.-G. Li, C.-X. Pan, B. Chen, G.-F. Su and D.-L. Mo, J. Org. Chem., 2015, 80, 10098–10107; (b) M. K. Mehra, M. P. Tantak, V. Arun, I. Kumar and D. Kumar, Org. Biomol. Chem., 2017, 15, 4956–4961.
26 See the ESI for details.
27 (a) W. Walter and J. Krohn, Chem. Ber., 1969, 102, 3786–3794; (b) R. K. Chaturvedi, A. E. MacMahon and G. L. Schmir, J. Am. Chem. Soc., 1967, 89, 6984–6993.
28 (a) S. Nobutaka, S. Kaniti, W. Satoshi, T. Noriyuki and I. Yasuji, Bull. Chem. Soc. Jpn., 1982, 55, 3351–3352; (b) A. K. Yadav, V. P. Srivastava and L. D. S. Yadav, New J. Chem., 2013, 37, 4119–4124.
29 Z. Guan, M. Nieger and A. Schmidt, Eur. J. Org. Chem., 2015, 4710–4719.
30 Y. Karibe, H. Kusama and N. Iwasawa, Angew. Chem., Int. Ed., 2012, 51, 6214–6218.
31 (a) E. Lindstedt, M. Reitti and B. Olofsson, J. Org. Chem., 2017, 82, 11909–11914; (b) M. Zhu, N. Jalalian and B. Olofsson, Synlett, 2008, 392–396; (c) M. Bielawski, M. Zhu and B. Olofsson, Adv. Synth. Catal., 2007, 349, 2610–2618.
32 A preliminary substrate scope was performed without degassing the solvent, as this effect was discovered late in the project. See the ESI for details.
33 Y. Yama and M. Okawara, Bull. Chem. Soc. Jpn., 1972, 45, 1860–1863.
34 I. Mohammadpoor-Balturk, M. M. Sadeghi and K. Esmayilpour, Phosphorus, Sulfur Silicon Relat. Elem., 2003, 178, 61–65.
35 (a) T. B. Petersen, R. Khan and B. Olofsson, Org. Lett., 2011, 13, 3462–3465; (b) R. Ghosh, E. Lindstedt, N. Jalalian and B. Olofsson, ChemistryOpen, 2014, 3, 54–57.
36 A. Varvoglis, Synthesis, 1984, 709–726.

ChemComm

This journal is © The Royal Society of Chemistry 2018

Chem. Commun., 2018, 54, 8810–8813 | 8813