Transgenerational effects of lambda-cyhalothrin on *Musca domestica* L. (Diptera: Muscidae)

Hamed A. Ghramh¹,²,³, Nauman Sadiq⁴, Muhammad Nadir Naqqash*, Allah Ditta Abid⁵, Sohail Shahzad⁵, Shafqat Saeed⁴, Naeem Iqbal⁴ & Khalid Ali Khan¹,²,⁶

The hormetic effect may cause disease control measures to fail due to inadequate treatment of human disease vectors such as houseflies. Age-stage, two-sex life table is used for accurate estimation of the hermetic impacts on insects as it allows to study sub-lethal or transgenerational effects. Pyrethroids insecticides are primarily used for the management of houseflies. This study used lambda-cyhalothrin (a pyrethroid insecticide) to quantify its transgenerational impacts on houseflies. Life table parameters of a progeny of adult houseflies exposed to LC₁₀, LC₃₀, and LC₅₀ of lambda-cyhalothrin were computed. Statistically higher fecundity (71.31 per female) was observed in control treatment, while it was the adults exposed to LC₅₀ recorded the lowest progeny. Significantly higher values for intrinsic rate of growth (r), limiting rate of growth (λ), and net reproductive rate (R₀) (0.16, 1.16, and 31.38 per day, respectively) were recorded for the control treatment of the study. Contrarily, lower values for λ, R₀, and r were (0.10, 1.10, and 9.24 per day, respectively) were noted in the LC₅₀ treatment. Decreased population parameters suggest that lambda-cyhalothrin can be successfully used in indoor environments to control houseflies.

The housefly [*Musca domestica* L. (Muscidae: Diptera)], is a noxious insect-pest of both large farms and households globally¹. It is a major source of many dangerous foodborne infections in human environments, which represent its synanthropic characteristics²,³. Insect behavior to retain pathogens in their alimentary tract, and contamination of various exterior body parts during regurgitation, defecation, or feeding leads to food contamination⁴. Houseflies significantly aid in the spread of cholera, salmonellosis, and other severe foodborne diseases⁵. In contrast to helminthic (roundworms, hookworms, pinworms, and tapeworms), bacterial (shigellosis, salmonellosis, cholera), and protozoan (amoebic dysentery) infections, houseflies are also engaged in rickettsial and viral disorders⁶.

Insecticides are the first choice to manage housefly in animal sheds and urban vicinities⁷,⁸. However, potential health and environmental risks are associated with indoor application of pesticides. It has been observed that insecticide-based baits are more effective and ecologically safe in insect-vector control efforts than residual sprays⁹,¹⁰. Pyrethroid insecticides like lambda-cyhalothrin are among the most popular options for the management of insect-vectors at domestic and commercial scale. However, residual sprays of pyrethroid insecticides are relatively less dangerous for humans, kids, animals, and the environment as compared to other insecticides since they present significant exposure risks¹¹,¹². The use of baits could be less harmful to humans and the environment compared to the residual sprays. However, sound studies are needed on the impacts associated with the bait candidates for the management of insect-vectors.

Traditional bioassays have been unable to provide comprehensive information on the long-term use of insecticides in the baits⁶. Transgenerational studies on the offspring of the individuals exposed to certain stressor allow for in-depth examination of insecticides as a potential insect control method¹³,¹⁴. The use of insecticides may hormonally prime insect pests to become significantly more resilient to extreme circumstances by retaining stressful events. Several researchers have indicated that using insecticides at their sublethal dosages could lead to pest outbreaks¹⁵,¹⁷. The evolution of insecticide resistance in the vectors is a major failure cause of disease control

¹Research Center for Advanced Materials Science (RCAMS), King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia. ²Unit of Bee Research and Honey Production, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia. ³Biology Department, Faculty of Science, King Khalid University, P. O. Box 9004, 61413 Abha, Saudi Arabia. ⁴Institute of Plant Protection, Muhammad Nawaz Shareef University of Agriculture, Multan 60000, Pakistan. ⁵Department of Plant Protection, Ministry of National Food Security and Research, Islamabad, Pakistan. ⁶Applied College, King Khalid University, P. O. Box 9004, Abha 61413, Saudi Arabia. *email: naeem.iqbal@mnsuam.edu.pk; naeemiqbal18@yahoo.com
programs. Therefore, studying the transgenerational effects is necessary for the evaluation of any insecticide against insect vectors like houseflies prior to use. Age-stage, two-sex life table dealing with the age differentiation is the best option for developing efficient management programs for urban insect pests. Age-stage, two-sex life table is an excellent tool for evaluating population parameters of any species exposed to various environmental conditions or stresses.

The application of sublethal doses of the pyrethroid deltamethrin on resistant insect species could result in a stimulating effect that makes exposed individuals grow bigger, a feature that can be passed down through generations. However, the sublethal effect can significantly vary among different insect species. This study evaluated the impacts of lambda-cyhalothrin on housefly populations using age-stage, two-sex life table. Life table was constructed on the progeny of exposed and un-exposed housefly populations for comparison.

Materials and methods

Insect rearing. The housefly population consisted of adults collected from low chemical zone in Multan, Punjab, Pakistan. Insect rearing cages (30 × 30 × 60 cm) were used for the rearing of adults. Adult food was a mixture of sugar and yeast (70:30). Cotton soaked in 20% sugar solution was provided as water source. The adults were reared under 16:8 (Light: Dark), photoperiod. Plastic cups (300 g capacity) half-filled with larval diet were used for egg laying. Larval diet consisted of wheat paste containing rice husk, wheat bran, sugar, milk powder, and yeast in the ratio of 40:10:3:3:1, according to Bell et al. A new batch of larval food was provided after 2–4 days.

Insecticide and solutions. The commercial formulation of lambda-cyhalothrin (Karate® 2.5 EC Syngenta Pvt. Ltd. Pakistan) was purchased from local market in Multan, Pakistan. Stock solution (500 µg/ml) of lambda-cyhalothrin was prepared in 20% sugar solution. Different insecticidal concentrations were obtained by serial dilution of insecticides in distilled water from the stock solution.

Screening test. Food-incorporated bioassay designed by Kristensen et al. was followed to evaluate the acute toxicity of lambda-cyhalothrin to housefly. Bioassay was conducted in 30 × 30 cm boxes. A mesh was installed on the sides of the boxes to ensure proper ventilation. The insecticide solutions of 1.56, 3.12, 6.25, 12.5, 25, and 50 µg/ml were used in the bioassays. A cotton plug was soaked in sugar or insecticide solution.

A total 30 individuals were exposed to a single treatment (10 in each replication with equal male and female ratio). Mortality was recorded 48 h after insecticide treatment to calculate LC10, LC30 and LC50 values, respectively. The housefly populations were reared for five consecutive generations prior to use in the experiments.

Transgenerational studies. After computing LC10, LC30 and LC50 values, a total of 50 adults were exposed to calculated values of insecticide and an untreated control. After exposing the adults, larval medium was provided for egg laying (48 h after the treatment). Eggs of the exposed adults were randomly selected for transgenerational effects on population and demographic parameters.

Adults (F1) of houseflies were monitored daily to calculate the adult longevity and the values for fecundity were calculated. Newly hatched eggs were continuously removed and counted until the adult died in the treated population. The methodology was same for all the treatment and control to make precise comparison. The larval development, survival, and growth were recorded from hatching to adulthood. The data were recorded daily until the mortality of individuals. Transgenerational studies were conducted under 27 °C temperature, 65–75% relative humidity and of 12:12 (L: D) h photoperiod. The collected data from this experiment was used to construct age-stage, two-sex life table.

Statistical analysis. The raw data on life table parameters from each exposed individual were analyzed according to Chi and Liu and Chi. Age stage two-sex life table theory was used to analyze the data for life table according to Chi and Su and Chi. The life table parameters, i.e., net productive rate, S_{xj} (age-stage specific survival rates), T (mean generation time), l_x (age-specific survival rate), m_x (age-specific fecundity), r (Intrinsic rate of increase), e_{xj} (age-stage specific life expectancy), TPOP (total pre-oviposition period), APOP (adult pre-oviposition period), and R (reproductive value) were computed. The intrinsic rate of growth was calculated by the following formula:

$$\sum_{x=0}^{\infty} e^{-r(x+1)} l_x m_x = 1$$

The formula to compute age stage-specific survival is given below. Using the same formula, value for S_{xj} was computed.

$$l_x = \sum_{j=1}^{k} S_{xj}$$

The R_0 was computed by using the following equation:

$$R_0 = \sum_{x=0}^{\infty} l_x m_x$$
Similarly, the below equation was used to compute T.

$$ T = \frac{(\ln R_0)}{r} $$

The value of r was estimated by using the formula given below:

$$ \sum_{x=0}^{\infty} e^{-r(x+1)} i_x m_x = 1 $$

The value of λ (finite rate of increase) was calculated as under:

$$ \lambda = e^r $$

The e_{xj} was calculated according to the following equation:

$$ e_{xj} = \sum_{i=x}^{\infty} \sum_{y=j}^{\infty} s_{iy} $$

The equation for estimating v_{xj} value is given below:

$$ v_{xj} = \frac{e^{-r(x+1)}}{s_{xj}} \sum_{i=x}^{\infty} e^{-r(x+1)} \sum_{y=j}^{\infty} s_{iy} f_{iy} $$

TWO SEX- MSChart program was used to analyze various life table parameters. The 100,000 random resampling were performed using the bootstrap method to determine the variances in population parameters and standard errors. The comparison was made between population parameters of control and insecticide-treated groups, and among generations of each treatment group. The confidence intervals of differences were generated by Two Sex-MSChart.

Results

Lethal concentration estimation. The LC10, LC30 and LC50 values for Lambda-cyhalothrin were 41.22 μg/ml, 14.47 μg/ml and 0.25 μg/ml. Where the value of chi-square was calculated as 1.420 (Table 1).

Life table parameters. Life table parameters, i.e., oviposition, male longevity, APOP, TPOP, and fecundity are given in Table 2. Data from the control group and experimental groups were used to compare the parameters (under three different concentrations, i.e., LC10, LC30, and LC50). Pre-adult duration in F1 individuals treated with lambda-cyhalothrin was significantly reduced from 13.85 d (LC50) to 12.26 d (LC10), while the value for the pre-adult duration in control 13.12 d was lower than LC30 and LC50 ($P < 0.0001$). Female longevity of F1 was significantly higher in control (27.09 d), followed by LC10 (22.50 d), while significantly lower value (21.61 d) was noted for LC30.

Table 1. Toxicity of lambda-cyhalothrin to housefly adults after 48 h. LC lethal concentration, DF degree of freedom, χ^2 Chi square.

Insecticide	LC10 (95% FL) (μg mL$^{-1}$)	LC30 (95% FL) (μg mL$^{-1}$)	LC50 (95% FL) (μg mL$^{-1}$)	χ^2	DF	P
Lambda-cyhalothrin	0.25 (0.03–1.54)	14.46 (3.74–24.06)	47.07 (29.90–83.26)	1.420	4	0.841

Table 2. Transgenerational effect of Lambda-cyhalothrin on different life table parameters of Musca domestica. TPOP total pre-oviposition period of female counted from birth, TPOP total pre-oviposition period of female counted from birth. Means in the same row followed by the same letter are not significantly different ($P > 0.05$) using bootstrap test.

Parameters	Control	LC10	LC30	LC50
Pre-adult duration (days)	13.12 ± 0.05a	12.26 ± 0.15a	13.81 ± 0.07a	13.85 ± 0.06a
Female longevity (days)	27.09 ± 0.54a	22.50 ± 0.64b	21.61 ± 0.91b	22.13 ± 0.08b
Male longevity (days)	24.8 ± 0.77a	22.14 ± 0.54a	21.68 ± 0.81a	23.61 ± 1.02a
APOP (days)	5.86 ± 0.07b	3.31 ± 0.11b	4.00 ± 0.06b	5.00 ± 0.00a
TPOP (days)	17.00 ± 0.06b	15.56 ± 0.13b	17.54 ± 0.16b	19.00 ± 0.00a
Oviposition days	8.09 ± 0.31a	4.12 ± 0.03b	3.72 ± 0.43b	4.23 ± 0.70b
Fecundity (per female)	71.31 ± 2.34a	34.00 ± 3.20b	36.76 ± 7.83b	30.80 ± 7.76b
Male longevity was reduced from 24.8 days (control group) to 21.68 days (LC50). The APOP was significantly higher in the individuals exposed to LC50 (5.00 d), whereas lower values were recorded for LC10 (3.31 d) and control (3.86 d). The TPOP value was significantly higher (19.00 d) at LC50, followed by LC30 (17.54 d) and control (17.00 d), while significantly lower (15.56 d) values were recorded for LC10. Oviposition days were significantly lower in the population exposed to LC30 (3.72 days). Furthermore, the value for oviposition days was significantly higher in control treatment (8.09 days) compared to the rest of the treatments included in the study. The value was twice higher in control compared to LC50-exposed population. Fecundity was also higher in control population (71.31/female), whereas, the values were lower (30.80/female) in the population exposed to LC50.

Population parameters. Sublethal doses of the insecticide were used to study various population parameters. The studied parameters included net reproductive rate (R0), finite rate of increase (λ), intrinsic rate of increase (r), and the mean generation time (T). These parameters are presented in Table 3. Significant variation was noted between insecticide-treated and control group in term of main population parameters. The r was higher in the control group (0.16/day), and lower in the LC50-exposed population (0.11/day). The R0 of control population (31.38/day) was significantly higher than the population exposed to LC10 (22.88/day). The R0 was significantly lower (9.24 days) in the population exposed to LC30. The T was significantly higher in the population exposed to LC30 (22.88/day), while lower values were noted for the population exposed LC10 (19.31/day). The λ significantly differed among insecticide treatments and control. The highest value was noted for control (1.17/day), and the lowest value for LC50 (1.10 per day).

Table 3. Transgenerational effect of Lambda cyhalothrin on different life table parameters of *Musca domestica*.

Parameters	Control	LC10	LC30	LC50
r (per day)	0.16 ± 0.01a	0.13 ± 0.01b	0.11 ± 0.02b	0.11 ± 0.01b
R0 (per day)	31.38 ± 5.12a	10.88 ± 5.4e6b	9.56 ± 3.01b	9.24 ± 3.03b
T (days)	21.06 ± 1.0b	19.31 ± 2.7b	20.81 ± 0.20b	22.88 ± 0.52a
λ (per day)	1.17 ± 0.01a	1.14 ± 0.01b	1.11 ± 0.02b	1.12 ± 0.02b

The APOP value was significantly higher (19.00 d) at LC50, followed by LC30 (17.54 d) and control (17.00 d), while significantly lower (15.56 d) values were recorded for LC10. Oviposition days were significantly lower in the population exposed to LC30 (3.72 days). Furthermore, the value for oviposition days was significantly higher in control treatment (8.09 days) compared to the rest of the treatments included in the study. The value was twice higher in control compared to LC50-exposed population. Fecundity was also higher in control population (71.31/female), whereas, the values were lower (30.80/female) in the population exposed to LC50.

Age-stage specific survival rate (s_j). The higher values of S_j were recorded for males and females in control and LC30, which were around 0.44 (day 12 to 17) for males, and 0.32 (Day 12 to 16) for females (Fig. 1A and B). The peak S_j values in male and female adults were 0.26 and 0.38 on 14th day in LC50 treatment (Fig. 1C). The S_j in males declined to 0 on 25th day, while similar value for females was noted on 29th day. The variation and overlapping in S_j curves indicated that individuals exposed to different concentrations develop at different rates. The lowest peak for S_j was observed in LC50-exposed males (Fig. 1 D).

Age-stage life expectancy (e_j). The e_j is an indication of expected time length for an individual at stage j and age x (Fig. 2). The e_j value was higher in control treatment (reached to 0 on 31st day), whereas adults treated with LC50 recorded lower value for e_j (reached to 0 on 29th day).

Age-specific maternity (l_jm_j). Age-specific maternity is another important factor in determining population parameters. Age-specific maternity (l_jm_j) is a composite of two parameters, i.e., age-specific survival rate (l_j) and the overall population’s age-specific fecundity (m_j). These cumulative parameters are shown in Fig. 3. The age-stage specific fecundity (f_j) was significantly higher in progeny of LC30-treated adults (23.44 offspring at the age of 19 days), while the lowest value was noted for the progeny of the adults exposed to LC10 (12.37 offspring on day 17).

The age-stage specific survival (l_j) gradually decreased and l_j value was lower in LC50 compared to other treatments of the study. The age-specific maternity (l_jm_j) was highest in the control (7.82 offspring at day 18) and lowest in LC50 treatment (1.94 offspring at day 20).

Age-stage reproductive values (V_j). Age-stage reproductive (V_j) is given in Fig. 4. The reproductive value curves clearly indicate the variation in data. The higher V_j value (23.83 on day 18) was noted for the control treatment. The V_j curve showed a clear decline in the value starting at 18th day 18, which declined to 0 on 27th day. The LC10 population had the lowest peak value (11.21 on 15th day) which decreased to 0 on 24th day.

Discussion

The lambda-cyhalothrin has been reported to possess high toxicity against insects. The modes of action of the pesticide is ingestive, contact, and ovicidal. Lambda-cyhalothrin insecticide is frequently used for the management of houseflies especially in indoor environment. In addition to lethal effects of the
Figure 1. Transgenerational effect of lambda-cyhalothrin, (A) control, (B) LC10, (C) LC30, and (D) LC50 on Age stage specific survival rate (S_x) of *Musca domestica*.

Figure 2. Transgenerational effect of lambda-cyhalothrin on Life expectancy (e_x) of *Musca domestica* *Ct* control, A) LC10, B) LC30, and C) LC50.
Figure 3. Transgenerational effect of Lambda-cyhalothrin, (A) control, (B) LC10, (C) LC30, and (D) LC50 on Age-specific survival rate (l_x), age-specific fecundity of total population (m_x), and age-specific maternity (l_xm_x) of initial Musca domestica exposed to LC10, LC30 and LC50 of lambda-cyhalothrin in F5.

Figure 4. Transgenerational effect of lambda-cyhalothrin on reproductive value (V_{xj}) on Musca domestica *Ct) control, A) LC10, B) LC30, and C) LC50.
insecticides, insect populations are routinely exposed to sublethal doses of the applied insecticides in the field due to variability in pesticide distribution variability and continual degradation18,28.

Life tables are important tools to estimate age stage-specific survival, net reproductive rate, and growth of insects under varying conditions. Intrinsic rate of growth (r) is determined by birth rate minus death rate over time31. The value for r will assist in predicting the possible implications of insect population after the application of a chemical control strategy25,33. Results indicated that female longevity (27.09 days) and fecundity (71.31 eggs/female) were higher in the progeny of control treatment, which coincide with the findings of Sylvestre et al.33. Results of the current study are also close to the findings of other researchers who reported reduced survival in insects after exposure to insecticides34,35. Reduced fecundity in the progeny of insecticide-exposed populations was observed in this study. Similar results have been reported by Michaelides et al.36, and Laycock et al.37. Nevertheless, it is known that insect pests respond to stress with a variety of behaviors, including longer adult lifespan38.

Another important factor for population estimation is oviposition period. Of oviposition days; the data showed APOP and TPOP values as 3.86 and 17.00, respectively which are lower than control group (8.09 days). Loriatti et al.38 also argued that fecundity was earlier and oviposition days were higher in the control group. This increase indicates that the populations can propagate efficiently in the absence of external stressors40. The results of the current study are also in accordance with the findings of Yao et al.41 who reported decreased egg-laying in Conopomorpha sinensis after insecticide exposure. Additionally, exposure to sublethal doses of insecticide decreased fecundity in Chilo suppressalis larvae and vitellogenin gene expression in female adults42.

Dolezal43 also reported reduced reproduction rate due to insecticides’ exposure in bees. The highest value (22.88 days) for T was noted for LC\textsubscript{50}. This increase in T under stress conditions is like the findings of Sial et al.44 who evaluated the effectiveness of lambda-cyhalothrin against Myzus persicae and reported an increase in mean generation time after exposure to sublethal doses of insecticides. Tan et al.8 also reported similar results for T in the population exposed to lambda-cyhalothrin. Moreover, S\textsubscript{e} was higher at LC\textsubscript{50} on day 12. The increase in survival rate in green peach aphid has been reported by Wang et al.45. Contrarily, life expectancy (e_x) is an important parameter for population and survival estimation. In this study the lowest peak for e_x was noted for LC\textsubscript{50} which indicates that lambda-cyhalothrin could reduce expected survival. The higher values for expected survival in control and the lowest in LC\textsubscript{50} are analogous to the results of Hatami et al.46. In this experiment, peak for age-specific maternity (l_xm_x) was higher in control compared to other treatments. These results are in accordance with the results of Marcic47, who reported that acaricides greatly contribute in reducing insect growth. The peak for age stage-specific reproductive value (V_x) was highest in control group and this peak can be justified by comparing with the results of Rimy et al.48. The higher V_x peak in control can be limited efficiently by the usage of lambda-cyhalothrin. As a matter of fact, metabolic enzymes can alter the biological processes. Detoxification enzymes, such as cytochrome P450 and monooxygenases (P450) are known to metabolize insecticides18,49. Moreover, P450 enzymes are also involved in biosynthetic pathways related to insect growth and reproduction50. Though various control methods like CRISPR, RNAi and several formulations of biopesticides are gaining importance nowadays51,52. Additionally, they are ecofriendly too. However, chemical control is still preferred by community in developing and/or under-developed countries18. Also, RNAi does not work well in houseflies while further research work is required for choosing CRISPR as a control option for highly notorious pests like housefly found in a variety of ecological zones. Contrarily, biopesticides are slower in action and take time to control while in the case of household pests quick control is required35,54.

Conclusion
Variation in the development rate is a common phenomenon in biology. If these variations are ignored, they may affect the fecundity and survival curves. The study of these changes is considered an important component in developing precise life table. The key benefits of two-sex life table are that the developmental variability rates among different individuals are considered, rather than development times, total population is discussed during the analysis, including males, females, and those who die before reaching adulthood. Simulation studies are also thought to be extremely useful. Because of their different susceptibilities to insecticides, different stages are focused. The behavior pattern in different stages is also different. Furthermore, the study’s main conclusion is that Pyrethroids, specifically lambda-cyhalothrin, is an effective insecticide for the control of housefly. It could be used as a component of traps or baits to control this pest. The parameters investigated during this experiment suggest that it could be a useful population suppressor.

Data availability
All data generated or analyzed during this study are included in this published article as supplementary files: Control Population Data, LC10 Selected Population Data, LC30 Selected Population Data and LC50 Selected Population Data.

Received: 27 April 2022; Accepted: 1 November 2022
Published online: 10 November 2022

References
1. Olagunju, E. A. Housefly: common zoonotic diseases transmitted and control. J. Zoonotic Dis. 6, 1–10 (2022).
2. Chaisong, T. et al. The blowfly, Chrysomya megacephala, and the house fly, Musca domestica, as mechanical vectors of pathogenic bacteria in Northeast Thailand. Trop. Biomed. 31, 336–346 (2014).
3. Sanei-Dehkhordi, A., Soleimani-Ahadi, M., Cheshmiposhan, A. & Akbarzadeh, K. Biodiversity of medically important calypttrate flies (Diptera: Schizophora) in Hospitals in the Northern Coastline of the Persian Gulf, Iran. J. Med. Entomol. 57, 766–771 (2020).
4. Sarwar, M. Insect vectors involving in mechanical transmission of human pathogens for serious diseases. Int. J. Bioinform. Biomed. Eng. 1, 300–306 (2015).
10. Abobakr, Y., Al-Hussein, F. I., Bayoumi, A. E., Alzabib, A. A. & Al-Sarar, A. S. Organophosphate Insecticides resistance in field populations of house flies, *Musca domestica*: levels of resistance and acetylcholinesterase activity. *Insects* 13, 192 (2022).

11. Abu El-Saad, A. M. The influence of naringenin on lambda-cyhalothrin induced nephrotoxicity in male rats. *J. Basic Appl. Res.* 2, 743–752 (2016).

12. Al-Masri, S., Al-Adham, M. A. & Al-Sabti, A. A. The impact of several insecticides on the reproduction of *Musca domestica*. *Bull. Inst. Zool. Acad. Sin.* 22, 213–219 (2003).

13. Betini, G. S., Wang, X. & Fryxell, J. M. Transgenerational plasticity mediates temperature effects on fitness in the water flea *Daphnia pulex*. *PeerJ* 6, e11369 (2018).

14. Berti, G., Wang, X. & Fryxell, J. M. Transgenerational plasticity mediates temperature effects on fitness in the water flea *Daphnia pulex*. *PeerJ* 6, e11369 (2018).

15. Cui, L., Yuan, H., Wang, Q., Wang, Q. & Rui, C. Sublethal effects of the novel cis-nitromethylene neonicotinoid cycloxaprid on the pest management. *Aphid. Sci. Rep.* 1, 1–9 (2018).

16. Tran, T. T., Janssens, L., Dinh, K. V. & Stoks, R. Transgenerational interactions between pesticide exposure and warming in a vector mosquito. *Evol. Appl.* 11(6), 906–917 (2018).

17. Jimenez-Guri, E. et al. Transgenerational effects on development following microplastic exposure in *Drosophila melanogaster*. *PeerJ* 9, e11369 (2021).

18. Nqabash, M. N., Gökçe, A., Balshah, A. & Salim, M. Insecticide resistance and its molecular basis in urban insect pests. *Parasitol. Res.* 115, 1363–1373 (2016).

19. Tang, Q., Ma, K., Chi, H., Hou, Y. & Gao, X. Transgenerational hormetic effects of sublethal dose of flupyradifurone on the green peach aphid, *Myzus persicae* (Sulzer)(Hemiptera: *Aphididae*). *PloS ONE* 14, e0208058 (2019).

20. Lee, C. Y. Sublethal effects of insecticides on longevity, fecundity and behavior of insect pests: a review. *J. Biosci.* 11, 107–112 (2000).

21. Bell, H. A., Robinson, K. A. & Weaver, R. J. First report of cyromazine resistance in a population of UK house fly (*Musca domestica*) associated with intensive livestock production. *Pest Manag. Sci.* 66, 693–695 (2010).

22. Kristensen, M., Jespersen, J. B. & Knorr, M. Cross-resistance potential of fipronil in *Musca domestica*. *PLoS Negl. Trop. Dis.* 15, e1009586 (2021).

23. Ioriatti, C., Anfora, G., Angeli, G., Mazzoni, V. & Trona, F. Effects of chlorantraniliprole on eggs and larvae of the cotton aphid *Aphis gossypii* Glover (Hemiptera: *Aphididae*). *Sci. Rep.* 8, 1–9 (2018).

24. Jha, R. K., Chi, H. & Tang, L.-C. A comparison of artificial diet and hybrid sweet corn for the rearing of worker bumblebees (*Bombus terrestris*). *Environ. Toxicol. Pharmacol.* 60, 203–211 (2021).

25. Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. *Environ. Entomol.* 26, 26–34 (1988).

26. Michaelides, P. K., Cleverly, A. L. & Wright, D. J. Sub-lethal effects of tefluthrin on *Eurosta solidaginis* (Hymenoptera: *Symphyta*). *Environ. Entomol.* 7, 246 (1978).

27. Tuan, S. J., Lee, C. C. & Chi, H. Population and damage projection of *Spodoptera litura* (F.) on peanuts (*Arachis hypogaea* L.) under different conditions using the age-stage, two-sex life table. *Pest Manag. Sci.* 70, 805–813 (2014).

28. Prasanthi, S., Chalam, M., Devaki, V. & Naidu, M. G. Evaluation of efficacies of newer insecticides against mango leafhoppers. *Pharm. Innov. J.* 10, 385–391 (2021).

29. Bonmatin, J. et al. Quantification of imidacloprid uptake in maize crops. *J. Agric. Food Chem.* 53, 5336–5341 (2005).

30. Desneux, N. et al. Diaterella rapei limits *Myzus persicae* populations after applications of deltamethrin in oilseed rape. *J. Econ. Entomol.* 98, 13–21 (2005).

31. Stark, J. D. & Vargas, R. J. Toxicity and hazard assessment of fipronil to *Daphnia pulex*. *Ecotoxicol. Environ. Saf.* 62, 11–20 (2005).

32. Leslie, P. H. On the use of matrices in certain population mathematics. *Bull. Math. Biol.* 37, 1–25 (1975).

33. Sylvestre, G., Gandini, M. & Maciel-de-Freitas, R. Age-dependent effects of oral infection with dengue virus on *Aedes aegypti* (Diptera: Culicidae) feeding behavior, survival, oviposition success and fecundity. *J. Vector Ecol.* 38, 246–250 (2013).

34. Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. *Environ. Health Perspect.* 124(5), 693–697 (2016).

35. Guo, L. et al. Sublethal and transgenerational effects of chlorantraniliprole on biological traits of the diamondback moth, *Plutella xylostella*. *Crop Prot.* 48, 29–34 (2013).

36. Michaelaides, P. K., Cleverly, A. L. & Wright, D. J. Sub-lethal effects of tefluthrin on *Diabrotica undecimpunctata* howardi, Barber: plant protection and larval development. *Crop Prot.* 16, 423–429 (1997).

37. Laycock, I., Lenthall, K. M., Barratt, A. T. & Cresswell, J. E. Effects of imidacloprid, a neonicotinoid pesticide, on reproduction in worker bumblebees (*Bombus terrestris*). *Ecotoxicol. Environ. Saf.* 21, 1937–1945 (2012).

38. Charwood and J. et al. Survival and infection probabilities of anthropophagic anophelines from an area of the high prevalence of *Plasmodium falciparum* in humans. *Bull. Entomol. Res.* 87, 445–453 (1997).

39. Ioriatti, C., Anfora, G., Angeli, G., Mazzoni, V. & Trona, F. Effects of chlorantraniliprole on eggs and larvae of *Lobesia botrana* (Denis & Schiffermüller) (Lepidoptera: Tortricidae). *Pest Manag. Sci.* 65, 717–722 (2009).

40. Iha, R. K., Chi, H. & Tang, L.-C. A comparison of artificial diet and hybrid sweet corn for the rearing of *Helicoverpa armigera* (Hübner)(Lepidoptera: Noctuidae) based on life table characteristics. *Environ. Entomol.* 41, 30–39 (2012).

41. Yao, Q. et al. Characterization of vitellogenin and vitellogenin receptor of *Conopomorpha sinensis* Bradly and their responses to sublethal concentrations of insecticide. *Front. Physiol.* 9, 1250 (2018).

42. Huang, L., Lu, M., Han, G., Du, Y. & Wang, J. Sublethal effects of chlorantraniliprole on development, reproduction and vitellogenin gene (*CvVg*) expression in the rice stem borer, *Chilo suppressalis*. *Pest Manag. Sci.* 72, 2280–2286 (2016).

43. Dolezal, A. G. Carryover insecticide exposure reduces bee reproduction across years. *Proc. Natl. Acad. Sci.* 119, e2120281811 (2022).

44. Sial, M. U. et al. Evaluation of insecticides induced hormesis on the demographic parameters of *Myzus persicae* and expression changes of metabolic resistance detoxification genes. *Sci. Rep.* 8, 1–8 (2018).

45. Wang, X. et al. Yang, Z. Q., Shen, Z. R., Lu, J. & Xu, W. B. Sublethal effects of selected insecticides on fecundity and wing dimorphism of green peach aphid (*Hom., *Aphididae*). *J. Appl. Entomol.* 132, 135–142 (2008).

46. Hatami, M., Ziaie, M., Seraji, A. A., Mehrabi-Koushki, M. & Franciskowi, J. Effects of immunity insecticide on biological characteristics and life table parameters of *Spodoptera litura* (Lepidoptera: Noctuidae). *Insects* 12, 1138 (2021).
47. Marcic, D. Sublethal effects of spiromesifen on life history and life-table parameters of two-spotted spider mite (Tetranychus urticae). *Exp. Appl. Acarol.* 42, 121–129 (2007).
48. Rimy, S. J., Das, G., Gotoh, T. & Ullah, M. S. Lethal and sublethal effects of bifenazate on the biological parameters of *Tetranychus truncatus* Ehara (Acari: Tetranychidae). *Syst. Appl. Acarol.* 26(11), 2118–2132 (2021).
49. Liang, X. et al. Insecticide-mediated up-regulation of cytochrome P450 genes in the red flour beetle (Tribolium castaneum). *Int. J. Mol. Sci.* 16(1), 2078–2098 (2015).
50. Feyereisen, R. Insect P450 enzymes. *Annu. Rev. Entomol.* 44, 507 (1999).
51. Christiaens, O., Niu, J. & Nj Tizi Taning, C. RNAi in insects: a revolution in fundamental research and pest control applications. *Insects* 11(7), 415 (2020).
52. Whitten, M. M. Novel RNAi delivery systems in the control of medical and veterinary pests. *Curr. Opin. Insect Sci.* 34, 1–6 (2019).
53. Wang, Y., Cheng, J., Luo, M., Wu, J. & Guo, G. Identifying and characterizing a novel peritrophic matrix protein (Md PM-17) associated with antibacterial response from the Housefly, *Musca domestica* (Diptera: Muscidae). *J. Insect Sci.* 20(6), 34 (2020).
54. Damalas, C. A. & Koutroubas, S. D. Botanical pesticides for eco-friendly pest management: Drawbacks and limitations. *Pesticides in Crop Production: Physiological and Biochemical Action*, pp.181–193 (2020).

Acknowledgements
The authors are thankful to Muhammad Zaryab Khan for helping in collection of housefly from field.

Author contributions
N.S. and M.N.N. collected the data. M.N.N., N.I. and A.D.A. conceptualized the experiment, performed data analysis and wrote manuscript. S.S. provided access to the experimental site and supervised the study. H.A.G., K.A.K. and Sohail Shazad help in data interpretation, prepared figures and approved the final version of manuscript.

Funding
H.A.G. and K.A.K. extend their appreciation to the Research Center for Advanced Materials Science (RCAMS) at King Khalid University, Abha, Saudi Arabia for funding this study through a project number RCAMS/KKU/008-22.

Competing interests
The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-022-23492-3.

Correspondence and requests for materials should be addressed to N.I.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022