INTRODUCTION

Staphylococcus species are opportunistic bacteria and the most pathogenic species. Strains of Staphylococcus aureus are able to colonize all tissues [1], secrete various enzymes and toxins [2-4] and cause various diseases including skin infections [5,6]. Microbial infections are normally treated using antibiotics, but the development of resistant strains has become an increasingly common problem which constitutes a growing public health problem, especially since these multi-resistant strains are no longer confined to hospital environments but are also found in the community [7,8]. Moreover, the emergence of strains of S. aureus resistant to methicillin (MRSA) makes the bacterium very dangerous and put a therapeutic problem. This resistance has stepped up the use of vancomycin, main antibiotic drug and a large number of plants possess antimicrobial activity [11-13]. In this context, we target the region of Fez-Meknes located in the center of Morocco known by its particular geographical situation very rich in biodiversity to select anti skin infections medicinal plants and to evaluate theirs in vitro actions against Staphylococcus strains and especially MRSA.

METHODS

Study area

Located in the central North of Morocco (Fig. 1), partially integrating the plain of Saïss and along the mountain ranges of the Rif and the Middle Atlas, Fez-Meknes region covers an area of 40,075 km² corresponding to 5.7% of the national territory [14]. This region regroups the Prefectures of Fez and Meknes and the provinces of Boulemane, El Hajeb, Ifrane, Moulay Yaâcoub, Sefrou, Taounate and Taza [14].

The region of Fez-Meknes has 4,236,892 inhabitants [15], the density is 105.7 inhabitants per km², very high compared to the national average (47.6 hab/km²). Due to its particular strategic position, the region is characterized by three climatic types: (i) a continental climate in the northern part, very hot and very dry in summer and cold and wet in winter. The winds are dry and cold or cold and wet in winter and hot in summer (Chergui), (ii) a cold and humid climate in a mountainous area, very cold and very snowy in winter and temperate in summer, and (iii) semi-arid climate in the high hills of Boulemane. Winters are very cold and snowy [14]. The current study was undertaken in the prefectures of Fez and Meknes that are most populated (1,150,131 and 835,695 inhabitants, respectively) [15] and the province of Taounate that 90% of its communes are rural [16]. The local population of this province resorts commonly to herbal medicine.

ABSTRACT

Objective: The present study aims the investigation of the antimicrobial potential of medicinal plants selected in the central north of Morocco against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis strain often involved in dermatitis.

Methods: Structured interviews were carried out among 91 herbalists and traditional healers through a specific information questionnaire, the in vitro susceptibility of Staphylococcus strains award ethanol extracts was evaluated using the well-diffusion assay, while the agar-microdilution method was used to determinate the minimal inhibitory concentrations (MIC). The total phenolic and flavonoids contents of all tested extracts were also determined.

Results: Based on the ethnomedical survey, a total of 55 plant species belonging to 30 families were mentioned. The Lamiaceae family was the most represented (18.80%) followed by the Apiaceae family (10.90%). Leaves (45.00%) were the favored used part. Decoction method (48.53%) was the most frequently used to prepare remedies that are taken externally (75.00%). Nine of the 17 most selected species have shown an effective antistaphylococcal activity; the most active extracts were Punica granatum and Rhamnus alaternus with MIC values ranging between 0.25 mg/ml and 2.00 mg/ml.

Conclusion: The current data confirm the good antistaphylococcal activity of P. granatum and R. alaternus and suggest that these species could constitute a promoter source for antistaphylococcal drugs with deeply studies.

Keywords: Ethnobotanical study, Morocco, Plant extracts, Antistaphylococcal activity, Phytochemical assay.
Ethnobotanical survey

Skin infections such as Impetigo or Furunculosis (Fig. 2) are specific infections caused by *S. aureus*, for this reason, they were the basis of a questionnaire among herbalists. The survey was carried out during the year 2017. In addition to personal sociodemographic data of the interviewers, the questionnaire has also included information about the recommended plants, vernacular names, used parts, preparation, and administration mode. In general, the most recommended plants were collected from the field; voucher specimens of each plant were identified by a specialist (from the Scientific Institute in Rabat-Morocco) and then deposited at a herbarium in Laboratory of Microbial Biotechnology in Faculty of Sciences and Techniques in Sidi Mohamed Ben Abdellah University of Fez-Morocco. The frequency index (FI) was calculated for each plant to evaluate the importance of each plant using the following formula:

\[FI = \frac{n}{N} \times 100 \]

n: Total number of herbalists who listed a particular plant species.

N: Total number of interviewed herbalists.

Plants selection and preparation

Certainly, the local population usually uses the decoction mode to prepare remedies. However, our findings in a previous study show that aqueous extracts have not shown any antibacterial activity due to the influence of solvents nature and polarity. For this reason, ethanol extracts of the seventeen most common plants cited by the healers (FI≥8.88%) have been prepared in accordance to the methods described by Elaloui et al. and Yeo et al. [17,18]. The used part of each plant as mentioned by herbalists was grounded to powder, and then 10 g of the powder of each plant was macerated in 100 ml of ethanol under agitation (500 rpm), at room temperature for 6 h. The resulting mixture was filtered through Whatman filter n°1 then evaporated under vacuum. Dried extracts were stored in a refrigerator at 4°C until further use.

ANTISTAPHYLOCOCCAL TESTING

Target microorganisms

The prepared ethanolic extracts have been the objective for the antistaphylococcal activity using agar well diffusion method and the minimum inhibitory concentrations (MIC) determination against strains often involved in cutaneous infections including *S. aureus ATCC 29213*, *S. aureus* clinical isolate, and *Staphylococcus epidermidis ATCC 12228*. The antibiogram profile of strains’ bacteria was identified at the Laboratory of Bacteriology in Fez-Morocco, and it has shown that both *S. aureus* strains are methicillin-resistant (Table 1).

Agar well diffusion method

Re-vivification of bacteria has been performed by subculturing the agar plate surface Luria-Bertani (LB) pre-poured in Petri dishes and incubated at 37°C for 18 to 24 h. The microbial inoculums were obtained from fresh colonies through the direct colony suspension method. Hence, 1–2 colonies were suspended in sterile saline (NaCl 0.9%) and adjusted to 0.5 McFarland scale (10⁸ colony-forming unit/ml). Agar well diffusion method as described in Balouiri et al. [19] was used to evaluate the antimicrobial activity. The agar surface was inoculated

Table 1: Antibiogram profile of the targets bacterial strains

Antibiotic family	Antibiotic	Dose per disk (µg)	*S. epidermidis*	*S. aureus ATCC 29213*	*S. aureus* clinical isolate
Penicillins	Penicillin	10 units	Susceptible	Resistant	
	Ampicillin	10	Susceptible	Susceptible	
	Amoxicillin	20	Susceptible	Susceptible	
	Oxacillin	1	Susceptible	Resistant	
	Methicillin	5	Susceptible	Susceptible	
Penicillin combinations	Amoxicillin/Clavulanate	20/10	Susceptible	Susceptible	
Cephalosporins	Ceftriaxone	30	Susceptible	Resistant	
	Ceftazidime	30	Susceptible	Resistant	
Glycopeptides	Vancomycin	30	Susceptible	Susceptible	
	Teicoplanin	30	Susceptible	Susceptible	
Macrolides	Erythromycin	15	Susceptible	Resistant	
	Spiramycin	15	Susceptible	Resistant	
Tetracyclines	Tetracycline	30	Resistant	Susceptible	
Polypeptides	Colistin	10	Resistant	Resistant	
Others	Fusidic acid	10	Susceptible	Susceptible	
	Pristinamycin	10	Susceptible	Susceptible	

S. aureus: *Staphylococcus aureus*, *S. epidermidis*: *Staphylococcus epidermidis*
Botanical name	Family name	Local name	Part used	Administration route	Preparation mode	FI (%)
Allium ampeloprasum (=Allium porrum)	Alliaceae	Krrat	Leave flower	Cutaneous	Decoction	2.22 (FS)
Aloe vera	Aloeaceae	Alovera	Leaves	Cutaneous	Decoction	5.88 (TN)
Daucus carota	Apiaceae	Khizzo/Jaada	Whole plant fruit	Cutaneous	Decoction	2.22 (FS)
Petroselinum crispum	Apiaceae	Madnous	Leaves	Oral	Decoction	2.22 (FS)
Ammi majus	Apiaceae	Trillan/Tillan	Leaves	Cutaneous	Decoction	8.88 (FS) 11.76 (TN)
Ammi visnaga	Apiaceae	Elkhella el bariya/Bechnika; Kessiba Elwashch	Leaves	Cutaneous	Decoction	2.22 (FS)
Ferula assa - foetida	Apiaceae	Chemmar/Besbas/Nafaâ/Amsi	Leaves	Cutaneous	Decoction	2.22 (FS)
Aloe vera	Aloeaceae	Alovera	Leaves	Cutaneous	Decoction	5.88 (TN)
Ferula assa - foetida	Apiaceae	Chemmar/Besbas/Nafaâ/Amsi	Leaves	Cutaneous	Decoction	2.22 (FS)
Aloe vera	Aloeaceae	Alovera	Leaves	Cutaneous	Decoction	5.88 (TN)
Carlinum officinale	Acanthaceae	Tafarkha	Roots	Cutaneous	Decoction	2.22 (FS)
Arctium lappa (=Arctium lappa)	Asteraceae	Chih	Leaves	Cutaneous	Decoction	4.44 (FS) 17.64 (MK) 5.88 (TN)
Dittrichia viscosa (=Inula viscosa)	Asteraceae	Magraman Bayraman	Leaves	Cutaneous	Decoction	2.22 (FS) 6.25 (MK) 5.88 (TN)
Artemisia herba alba	Asteraceae	Chih	Leaves	Cutaneous	Decoction	4.44 (FS) 17.64 (MK) 5.88 (TN)
Dittrichia viscosa (=Inula viscosa)	Asteraceae	Magraman Bayraman	Leaves	Cutaneous	Decoction	2.22 (FS) 6.25 (MK) 5.88 (TN)
Arnica montana	Asteraceae	Addad	Roots	Cutaneous	Decoction	2.22 (FS)
Table 2: (Continued)

Botanical name	Family name	Local name	Part used	Administration route	Preparation mode	FI (%)
Laurus nobilis	Lauraceae	Elghar/Chajrat	Leaves	Cutaneous	Decoction	2.22 (FS)
Syzygium aromaticum	Myrtaceae	Sidna Moussa/Rand	Cloves	Oral	Infusion	2.22 (FS)
Eucalyptus globulus	Myrtaceae	Krenfel/Oud	Leaves	Cutaneous	Decoction	2.22 (FS)
Olea europaea	Oleaceae	Emnawar	Leaves	Cutaneous	Decoction	8.88 (FS)
Oenothera sp.	Onagraceae	Alkhdariya	Leaves	Cutaneous	Decoction	2.22 (FS)
Globularia alypium	Plantaginaceae	Ain larneb/tasalgha/	Leaves	Cutaneous	Decoction	6.66 (FS)
Plantago major	Plantaginaceae	Leen Hamal/Aslouj	Leaves	Cutaneous	Decoction	2.22 (FS)
Rhamnus alaternus	Rhamnaceae	Mililes	Leaves	Cutaneous	Decoction	17.77 (FS)
Ziziphus lotus	Rhamnaceae	Nbeg	Leaves	Cutaneous	Decoction	2.22 (FS)
Rubia tinctorum	Rubiaceae	Elfossa	Roots	Cutaneous	Decoction	4.44 (FS)
Citrus aurantium	Rutaceae	Renj	Fruit	Oral	Cutaneous	2.22 (FS)
Crataegus monogyna (= Crataegus oxyacantha)	Rosaceae	Zeerour/adnam	Leaves arial part	Cutaneous	Cutaneous	4.44 (FS)
Salvadoria persica	Salvadoriaceae	Swak	Roots	Cutaneous	Cataplasme	5.88 (MK)
Thymelaea tartonraira	Thymelaceae	El matan/ Talacaz	Leaves	Cutaneous	Cataplasme	17.64 (TN)
Aquilaria malaccensis	Thymelaceae	Oud aghris	Roots	Cutaneous	Cataplasme	35.29 (MK)
Urtica dioica	Urticaceae	Herriga Herricha	Leaves flowers whole plant	Cutaneous	Decoction	8.88 (FS)
Curcuma longa	Zingiberaceae	Karkum/ Kharqoum	Roots	Cutaneous	Decoction	2.22 (FS)

% FI: Frequency index. Reported cities: FS: Fez, MK: Meknes, TN: Taounate

spreading bacterial inoculums. After 30 min of the drying process in ambient temperature and inoculums' diffusion, a hole with a diameter of 6 mm was punched aseptically using a tip, then 80 µl of each extract solution (50 µg/ml) were introduced into the wells. Finally, agar plates were incubated for 24 h at 37°C. Distilled water was used as negative control, while ampicillin (100 µg/ml) was used as positive control. After measuring the diameter of inhibition's zones around the well, means were calculated, and then the active extracts were subjected to the determination of the MIC.

Determination of the MIC

The MIC was determined following the agar dilution method described by Balouiri et al. with slight modifications [19]. It involves the incorporation of varying concentrations of extract as an antimicrobial agent into the agar medium before its solidification. Different concentrations of each extract ranging from 50 to 160 µg/ml per factor of (2) were prepared in dimethyl sulfoxide (20%), and 1 ml of each dilution was incorporated in 9 ml of medium culture (sterile and soft LB). The mixture was grounded carefully and distributed into Petri dishes. After medium’s solidification and from a suspension adjusted to 10⁵ UFC/ml, volumes of 5 µl were deposited on agar surface as spots. Finally, the dishes were incubated for 24 h at 37°C. A growth control agent into the agar medium before its solidification. Different concentrations of each extract ranging from 50 to 160 µg/ml per factor of (2) were prepared in dimethyl sulfoxide (20%), and 1 ml of each dilution was incorporated in 9 ml of medium culture (sterile and soft LB). The mixture was grounded carefully and distributed into Petri dishes. After medium’s solidification and from a suspension adjusted to 10⁵ UFC/ml, volumes of 5 µl were deposited on agar surface as spots. Finally, the dishes were incubated for 24 h at 37°C. A growth control

The flavonoid content has been determined as described in Bahorun et al. [20]. Technically, 0.5 ml of each extract was mixed with 0.1 ml of aluminum chloride (1%), 0.1 ml of potassium acetate (1 ml), and 4.3 ml of distilled water; after a vigorous agitation, the mixture was incubated for 30 min in ambient temperature. DO’s values have been read using spectrophotometer visible-UV at 415 nm. Flavonoid content was expressed as µg Quercetin equivalents per mg dry weight of the extract (µg GA eq mg E).

Total flavonoids quantification

The flavonoid content has been determined as described in Bahorun et al. [20]. Technically, 0.5 ml of each extract was mixed with 0.1 ml of aluminum chloride (1%), 0.1 ml of potassium acetate (1 ml), and 4.3 ml of distilled water; after a vigorous agitation, the mixture was incubated for 30 min in ambient temperature. DO’s values have been read using spectrophotometer visible-UV at 415 nm. Flavonoid content was expressed as µg Quercetin equivalents per mg dry weight of the extract (µg Quer eq mg E) using a calibration range from 25 to 300 µg/ml.

Data analysis

The data collected from the ethnobotanical surveys have been analyzed using Excel software. The other results have been presented as means ± standard deviation, and statistical analyses were performed using analysis of variance by IBM SPSS Statistics 21. Differences at p<0.05 were considered statistically significant.

RESULTS

Ethnobotanical survey

In the present survey, 91 traditional herbalists and healers (n=91) from provinces of Fez (FS), Meknes (MK) and Taounate (TN) were interviewed. 55 plant species distributed in 30 families were mentioned (Table 2). The most representative family was the Lamiaceae (18.18%) with 10 species, followed by the Apiaceae (10.91%) with 6 species and the Asteraceae (7.27%) with 4 species. Other families have been presented by one or two species.

On the one hand, leaves were the most frequently cited used part to prepare remedies with 45% followed by roots or whole plant with 12.5% each, then flowers (11.25%). The remedies were prepared

288
using decoctions in water as solvent (48.53%), followed by cataplasm with 35.29%. Most of the anti-cutaneous infections preparations were administered externally (75%) against 25% orally.

On the other hand, the calculated FI has indicated that the most frequently cited (FI=8.88%) anti-dermatitis plant species in the three studied areas were Rhamnus alaternus (FI =17.77%; FI (MK)=29.41%; FI (TN)=29.41%). Punica granatum (FI =11.11%; and FI (MK)=23.52%); Dittrichia (Inula) viscosa (FI=0.2%; FI(MK/TN)=17.64%); Alkanna tinctoria (FI (MK)=23.52%). Aquilaria malaccensis (FI (MK)=35.29%); Urtica dioica (FI (FS)=8.88%); FI (MK)=11.76%); Crateagus monogyna (Fl (FS)=11.11%; FI (TN)=17.64%); Artemisia herba alba (FI (MK)=17.64%); Berberis hispanica (FI (FS)=8.88%; FI (MK)=11.76%); Rubia tinctoria (FI (MK)=17.64%); FI (TN)=11.76%); Thymelae a tartonraia (FI (MK)=17.64%); Globularia alypum (FI (TN)=11.76%); and Anmmi majus (FI (FS)=8.88%; FI (TN)=11.76%), then Nerium oleander, Eruca sativa, Olea europea with FI (FS)=8.88%. Aquilaria malaccensis has presented an important score of citation; however, it is not from Morocco and especially Fez-Meknes region, the species is reported from Asia so for that we didn’t test it.

Antistaphylococcal activity

The crude ethanolic extracts of the 17 most cited plants were tested against *S. epidermidis*, and two MRSA clinical isolate and *S. aureus* reference. The data pertaining to the in vitro assay are presented in Tables 3 and 4. The obtained data have revealed that among the 17 tested plants, nine were active against the target strains, and eight plant extracts have not shown antistaphylococcal activity. The quantitative determination of MIC values has shown that the antibacterial activity varied on the plant species and the target microorganism.

Both extracts from *P. granatum* peel and *R. alaternus* leaves have registered the highest effect against the three *Staphylococcus* strains with a MIC ranging between 0.25 and 2.00 mg/ml.

In the other side, *I. viscosa* leaves extract has exhibited the same effect with with MIC of 4.00 mg/ml against the three strains which were the same for *O. majorana* expect for *S. epidermidis* that its MIC was superior to 16.00 mg/ml. *O. europea* has also inhibited the growth of *S. aureus* clinical isolate at 4.00 mg/ml, but it was effective against *S. aureus* reference at MIC of 0.50 mg/ml and more than 16.00 mg/ml for *S. epidermidis*. In addition, the MIC values of the other active plant extracts were ranging from 0.25 mg/ml to upper than 16.00 mg/ml against the tested strains.

Quantitative phytochemical assays

The total phenolic and total flavonoids contents of the 17 extracts were presented in Table 5. As can be noted from this table, *O. majorana* and *O. europaea* have presented the highest content of total phenols (307.87±1.12 µg eq GA/mg E and 297.5±16.45 µg eq GA/mg E, respectively), followed by *P. granatum* extract which has noticed 153.4±14.36 µg eq GA/mg E, then *R. alaternus* with 119.38±3.71 µg eq GA/mg E. *L. viscosa* and *C. oxyacantha* extracts were in the same rang with 88.63 ±3.12 µg eq GA/mg E and 113.6±1.88 µg eq GA/mg E. The total phenols amount of the other plant extracts were ranging from 57.98±2.66 µg eq GA/mg E to 59.5±0.99 µg eq GA/mg E. *N. oleander*, *E. sativa*, and *A. tinctoria* extracts have indicated the lowest concentration of total phenols in comparison with the other extracts (p<0.05).

Regarding to flavonoids, the first range belonged to *R. alaternus* with a content of 321.03±0.63 µg eq Que/mg E, followed by *P. granatum* extract (125.07±3.90 µg eq Que/mg E) and *E. sativa* (152.53±4.85 µg eq Que/mg E), then *O. europaea* with 83.54±1.92 µg eq Que/mg E, followed by *A. majus*, *T. tartonraia*, *O. majorana*, *A. herba alba*, *J. oxycedrus*, *C. oxyacantha*, and *I. viscosa*, the flavonoid contents of these plants were between 73.64±1.47 and 49.90±2.80 µg eq Que/mg E. *B. hispanica* and *A. tinctoria* extracts have shown the lowest total flavonoids content (14.75±3.18 and 12.17±2.36 µg eq/mg E, respectively).

DISCUSSION

The current survey realized in three areas in the central north of Morocco aimed the identification of plants used in the treatment of skin infections, the in vitro evaluation of the most recommended plants against *Staphylococcus* strains often involved in dermatitis and the analysis of phytochemical compounds that could be responsible for skin care.

Table 3: Antibacterial screening of the plant extracts using the agar well-diffusion method

Plant extracts	Target microorganisms	S. epidermidis	S. aureus clinical isolate	S. aureus ATCC 29213
Punica granatum	22.3±1.24	25.0±1.00	24.66±0.47	
Rhamnus	16.00±1.00	25.50±1.5	25.00±1.00	
Inula viscosa	11.66±1.24	13.66±1.88	13.00±0.81	
Crateagus	14.00±0.81	12.33±1.88	11.66±1.24	
Rubia tinctoria	13.33±1.24	10.33±0.47	12.50±0.50	
Artemisia herba alba	7.0±0.00	14.50±2.12	13.00±0.70	
Berberis hispanica	24.0±0.00	26.0±1.00	24.00±1.00	
Olea europaea	25.33±0.94	14.50±0.5	14.00±0.81	
Origanum majorana	8.00±0.00	10.00±0.81	11.00±0.81	
Nerium oleander	-	-	-	
Alkanna tinctoria	-	-	-	
Juniperas	-	-	-	
J. oxycedrus	-	-	-	
Eruca sativa	-	-	-	
Urtica dioica	-	-	-	
Thymelae a	-	-	-	
Tartonraia	-	-	-	
Globularia	-	-	-	
A. albulm	-	-	-	
Anmmi majus	-	-	-	
Ampicillin	17.0	-	0.70	

Table 4: MICs (mg/ml) of the most active studied extracts

Ethanolic extracts	CMI (mg/ml)	S. aureus clinical isolate	S. aureus ATCC 29213	S. epidermidis
Artemisia herba alba	8.00	8.00	8.00	
Berberis hispanica	16.00	16.00	>16.00	
Crateagus oxyacantha	16.00	16.00	8.00	
Inula viscosa	4.00	4.00	4.00	
Olea europaea	4.00	8.00	>16.00	
Origanum majorana	4.00	4.00	>16.00	
Punica granatum	1.00	0.25	2.00	
Rhamnus	0.50	0.50	2.00	
Rubia tinctoria	16.00	16.00	>16.00	

S. aureus: Staphylococcus aureus, S. epidermidis: Staphylococcus epidermidis
In the present study, 55 medicinal plants belonging to 30 families have been prescribed by herbalists and traditional healers in Fez, Meknes, and Taounate to cure skin disorders that can be caused by the Staphylococcus genus. The Lamiaceae family was the most abundant (18.18%). This family has been demonstrated to have antibacterial and antifungal activities against skin infections [21]. Furthermore, several pharmacological properties have been attributed to this family due to its richness in active bio-molecules. Admittedly there has been a qualitative and quantitative difference in chemical composition of species belonging to the Lamiaceae family or else the same genus [22], but this family stills generally rich in polyphenols, saponins, irroisides, alkaloids, anthocyanins, and aldehydes [23]. Those compounds possess broad-spectrum antimicrobial [24].

The obtained results have also revealed that (i) the leaves were the most used part (45%) which accords other studies [24]. This extensive use could be explained by the abundance of phytochemical compounds in leaves which are the synthesis site of vegetal secondary metabolites [25]; (ii) decoction mode was the most recommended (48.53%). Many investigations concerning the plants’ uses in traditional medicine have highlighted the preponderance of decoction method to prepare remedies [26,27] which appears to have a number of advantages like the extraction of the maximum of herbal substances that are soluble in boiling water which makes them easily absorbed and perceived by human body [28]; (iii) external administration route was in the first ring (75.00%) including flushing and cataplasm depending on the patient preference. This is may be explained by the fact that both of methods could be fast and efficient. The internal use of medicinal plants consisted, for example, for digestive disease, stomachache, or rheumatic pain. However, skin infections need the use of external remedies which is in agreement with literature [29,30].

Nine of the most recommended plant species reported in the current survey were found to be efficient against the three studied Staphylococcus strains. These plants included P. granatum, R. alaternus, I. viscosa, O. europea, O. majorana, C. oxyacantha, B. hispanica, A. herba alba, and B. hispanica. In some cases, these findings support the traditional uses of the inventorying plant species through the ethnobotanical study.

Many previous investigations have confirmed the significant antibacterial activity of these plants against various bacterial species including S. aureus. Indeed, the anti-staphylococcal activity of B. hispanica extract is in agreement with a previous study that has reported the effect of ethanolic extract of B. hispanica roots against S. aureus [31]. Stelmarki et al. [32] reported that the aqueous extract of C. oxyacantha leaves has revealed antibacterial activity against S. aureus and S. epidermidis.

Table 5: Total phenolic and flavonoids contents of the ethanolic extracts

Plants	Total phenolic contents (µg equivalent of gallic acid/mg of extract)	Total flavonoid contents (µg equivalent of quercetin/mg of extract)
P. granatum	153.4±1.436ab	125.0±3.90bc
R. alaternus	119.3±3.71c	32.1±6.63a
I. viscosa	88.6±3.12de	57.4±6.58d
C. oxyacantha	113.6±1.88cd	57.01±5.38d
R. tinctorum	51.3±3.64f	22.95±2.82e
A. herba alba	52.6±3.61f	52.26±0.77f
O. majorana	307.8±7.12a	73.64±1.47f
B. hispanica	50.7±8.34e	14.75±3.18f
G. alypum	52.4±2.71f	43.99±1.79f
O. europaea	297.5±1.64a	83.54±1.92c
N. oleander	5.95±0.99f	19.76±0.51f
A. tinctoria	8.50±3.40f	12.17±2.36f
J. oxycedra	16.63±1.63h	67.00±5.25f
E. sativa	9.25±0.88f	15.23±4.85f
U. dioica	13.29±0.56f	33.00±0.94f
T. tartaronaira	57.98±2.66d	62.67±1.97f
A. majus	28.5±2.58h	60.59±5.53f

Means that not share the same letter are statistically different at p<0.05. Data represent mean±standard error of mean.
Numerous causes may justify the variations of total phenolic and flavonoids contents reported in this work. Indeed, the variation of the polyphenolic content of a plant could be influenced by many biotic factors (Plant species, used part, and physiological stage) and abiotic factors (Environment, solvent) which can affect the metabolism of the plant [50]. Based on all results in the present work, complementary studies are necessary to improve and strengthen these current preliminary findings. This is concern because bioassay-guided isolation, purification of the bioactive components, and in vivo and toxicity assays. Advanced and succeeding scientific research could lead to discover novel and cost-effective drugs against Staphylococcus genus and especially methicillin-resistant strains.

CONCLUSION

The ethnobotanical study conducted in Fez, Meknes and Taounat cities belonging to Fez-Meknes region in the central North of Morocco documented 55 plant species belonging to 30 families that were traditionally used by the local populations to cure dermatitis. The 17 most recommended plants were screened for their in vitro antistaphylococcal activity, nine of them found to demonstrate appreciable effects, namely P. granatum, R. alaternus, I. viscosa, O. europea, O. majorana, C. oxyacantha, R. tinctorium, A. herba alba, and B. hispanica with MIC values ranging between 0.25 mg/ml and 16 mg/ml against MRSA. These plants could be good candidates to overcome infectious diseases associated with Staphylococcus including MRSA infections. Hence, additional deep studies must be maintained such as the search for bioactive fractions and pure compounds that may serve as a potential source of new drugs to treat S. aureus, especially MRSA. Furthermore, despite the presence of rich herbal knowledge in the studied region, skin disorders are dermatologic conditions that have a similar clinical appearance, for this reason, much attention must be paid due to the correct diagnosis impacts both the prognosis and the treatment options.

ACKNOWLEDGMENTS

We are grateful to Professor IBN TATTOU Mohammed from the Scientific Institute in Rabat-Morocco for its help to identify the inventorying plants in this study. We thank also Doctor BALOUIRI Mounyr for his help and his bacterial strains.

AUTHORS’ CONTRIBUTIONS

All the authors have contributed equally.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

1. Clarke SR, Foster SJ. Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 2006;51:187-224.
2. Jarvis AW, Lawrence RC. Production of extracellular enzymes and enterotoxins A, B, and C by Staphylococcus aureus. Infect Immun 1971;4:110-5.
3. Gillet Y, Issartel B, Vanhems P, Fournet JC, Lina G, Bes M, et al. Association between Staphylococcus aureus strains carrying gene for panton-valentine leukocidin and highly lethal necrotising pneumonia in young immunocompetent patients. Lancet 2002;359:753-9.
4. Valle J, Vázquez J, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 2015;28:603-61.
5. Totté JEE, van Doorn MB, Pasmans SGMA. Successful treatment of chronic Staphylococcus aureus-Related dermatoses with the topical endosylin staphefekt SA.100: A Report of 3 cases. Case Rep Dermatol 2017;9:19-25.
6. Morchon B, Courvalin P. vanA-type vancomycin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1999;53:4580-7.
7. Ishi J, Ashwini H, Pooja R, Radhakrishna M. Nasal colonization of Methicillin-resistant Staphylococcus aureus among clinical postgraduates in a coastal Karnataka medical college prevalence and antimicrobial pattern. Asian J Pharm Clin Res 2018;11:104-9.
8. Moran GJ, Krishnasadan A, Gorwitz RJ, Fosheim GE, McDougal LK, Carey RB, et al. Methicillin-resistant S. aureus. Infections among patients in the emergency department. N Engl J Med 2006;355:666-74.
9. Newman DJ, Crugg GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 2012;75:311-35.
10. Swarnamon D, Mukundam B, Shaguaf A. Antibacterial activity of the ethanolic extract of leaves of Citrus maxima (b) murr. on Escherichia coli and Pseudomonas aeruginosa. Asian J Pharm Clin Res 2013;6:136-39.
11. Badduri N, Gupta NV, Gowda DV, Manohar M. Formulation and development of topical anti acne formulation of spirulina extract. Int J App Pharm 2018;10:229-33.
12. Bikash G, Biswajit D, Sujata P, Aditya B. Preliminary phytochemical screening and in vitro anti-microbial activity of ethanolic extract of Delonix regia (hook) raf. bark (family-Leguminosae). Int J Curr Pharm Res 2018;10:43-6.
13. Moroccan Ministry of the Interior Wilaya of the Region Fez-Meknes, Monograph of the Region Fez-Meknes, Thèses et Mémoires, C28613/14, Thèse No. D1.097/48/19; 2016.
14. Kingdom of Morocco: Ministry of Interior. Fez-Meknes Regional Direction, Regional Statistical Directory Fez Meknes, Regional Direction; 2016.
15. Agency for the Promotion and Development of the North (APDN). Morocco: The Province of Taounat; 2018.
16. Yeo YL, ChiuYY, Lee CH, Sow HS, Yap WS: Effectiveness of maceration periods with different extraction solvents on in-vitro antimicrobial activity from fruit of Monordica charantia L. J Appl Pharm Sci 2014;4:16-23.
17. Elmout A, Laamouri A, Ennajah C, Cery M, Mathieu C, Vilarem G, et al. Phytoconstituents of leaf extracts of Ziziphus jujuba Mill. plants harvested in Tunisia. Ind Crops Prod 2016;83:133-9.
18. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71-9.
19. Bahorun T, Gressier B, Trotin F, Brunet C, Dine T, Luyckx M, et al. Oxygen species scavenging activity of phenolic extracts from Hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel-Forschung 1996;46:1086-9.
20. Chaumont JP, Mandin D, Sanda K, Kobe K, de Souza CA. Activités antibactériennes in vitro de cinq huiles essentielles de Lamiacées togolaises vis-à-vis de germes représentatifs de la microflore cutanée. Acta Bot Galli 2001;148:93-101.
21. Zgórka G, Głowniak K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J Pharm Biomed Anal 2001;26:79-87.
22. Bissam R, Fatima EIM, Mohamed N, Fatima EIM, Rubia L. In vitro Study of antibacterial activity of hydro-alcohol moroccan plants extracts. Pharmacogn J 2018;10:519-26.
23. Cocan I, Alexia E, Dancia C, Radulov I, Galuscan A, Obistioiu D, et al. Phytochemical screening and biological activity of Lamiaceae family plant extracts. Exp Ther Med 2018;15:1863-70.
24. Dulla O, Jahan F. Ethnopharmacological survey on traditional medicinal plants at Kalaroa Upazila, Sylhet district, Bangladesh. J Interdict Ethnopharmacol 2017;6:316-25.
25. Azzi R, Rabah F, Farid L, Zohra SF, Houcine B, Nacerè B. Ethnopharmacological survey of medicinal plants used in the traditional treatment of diabetes mellitus in the North Western and South Western Algeria. J Med Plants Res 2012;6:2041-50.
26. Rupani R, Chavez A. Medicinal plants with traditional use: Ethnobotany of the North Eastern of Algeria. Phytomedicine 2017;36:68-81.
27. Elaloui M, Laamouri A, Ennajah A, Cerny M, Mathieu C, Vilarem G, et al. Phytoconstituents of leaf extracts of Ziziphus jujuba Mill. plants harvested in Tunisia. Ind Crops Prod 2016;83:133-9.
28. Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71-9.
29. Bahorun T, Gressier B, Trotin F, Brunet C, Dine T, Luyckx M, et al. Oxygen species scavenging activity of phenolic extracts from Hawthorn fresh plant organs and pharmaceutical preparations. Arzneimittel-Forschung 1996;46:1086-9.
30. Chaumont JP, Mandin D, Sanda K, Kobe K, de Souza CA. Activités antibactériennes in vitro de cinq huiles essentielles de Lamiacées togolaises vis-à-vis de germes représentatifs de la microflore cutanée. Acta Bot Galli 2001;148:93-101.
31. Zgórka G, Głowniak K. Variation of free phenolic acids in medicinal plants belonging to the Lamiaceae family. J Pharm Biomed Anal 2001;26:79-87.
32. Bissam R, Fatima EIM, Mohamed N, Fatima EIM, Rubia L. In vitro Study of antibacterial activity of hydro-alcohol moroccan plants extracts. Pharmacogn J 2018;10:519-26.
bark of Berberis hispanica Boiss. and Reut. J Liq Chromatogr Relat Technol 2017;40:894-9.

32. Stehnkiene A, Ramaukskiene K, Petrikaite V, Jakstas V, Briedia V. Application of dry hawthorn (Crataegus oxyacantha L.) extract in natural topical formulations. Acta Pol Pharm 2016;73:955-65.

33. Burke-Colvin D, Hines M, Gan D. Skin Care Formulations. Justia Patents Number 9833642 United States; 2017.

34. Pacheco-Palencia LA, Noratto G, Hingorani L, Talcott ST, Mertens-Talcott SU. Protective effects of standardized pomegranate (Punica granatum L.) polyphenolic extract in ultraviolet-irradiated human skin fibroblasts. J Agric Food Chem 2008;56:8434-41.

35. Moorthy K, Punitha T, Vinodhini R, Sureshkumar BT, Vijayalakshmi P, Thajuddin N. Antimicrobial activity and qualitative phytochemical analysis of Punica granatum Linn. (PERICARP). J Med Plants Res 2013;7:474-9.

36. Park HM, Moon E, Kim AJ, Kim MH, Lee S, Lee JB, et al. Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation. Int J Dermatol 2010;49:276-82.

37. Ammar RB, Sghaier MB, Boubaker J, Bhouri W, Naffeti A, Skandrani I, et al. Antioxidant activity and inhibition of aflatoxin B1-, nifuroxazide-, and sodium azide-induced mutagenicity by extracts from Rhamnus alaternus L. Chem Biol Interact 2008;174:1-0.

38. Rhimi W, Salem IB, Immediato D, Saidi M, Boulila A, Cafarchia C, et al. Chemical composition, antibacterial and antifungal activities of crude Dittrichia viscosa (L.) greuter leaf extracts. Molecules 2017;22:E942.

39. Sadjana AN, D'Orazio C, Ryan V, Rasool N, Ng J, Islam N, et al. Antimicrobial activity of commercial Olea europaea (olive) leaf extract. Int J Antimicrob Agents 2009;33:461-3.

40. Leeja L, Thoppil JE. Antimicrobial activity of methanol extract of Origanum majorana L. (Sweet marjoram). J Environ Biol 2007;28:145-6.

41. Abachi S, Khademi F, Fatemi H, Malekzadeh F. Study of antimicrobial activity of selected Iranian plant extracts on vancomycin resistant Staphylococcus epidermidis. J Dent Med Sci 2013;4:59-63.

42. Yashphe J, Segal R, Breuer A, Erdreich-Naftali G. Antibacterial activity of artemisia herba-alba. J Pharm Sci 1979;68:924-5.

43. Dioua NC, Ollengo MA. Traditional and ethnobotanic dermatology practices in Africa. Clin Dermatol 2018;36:353-63.

44. Draeols ZD. Updates in medical skin care. Adv Cosmet Surg 2018;1:211-7.

45. Cushnie TP, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents 2011;38:99-107.

46. Cushnie TP, Lamb AJ. Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005;26:343-56.

47. Cushnie TP, Hamilton VE, Chapman DG, Taylor PW, Lamb AJ. Aggregation of Staphylococcus aureus following treatment with the antibacterial flavonol galangin. J Appl Microbiol 2007;103:1562-7.

48. Musumeci R, Speciale A, Costanzo R, Annino A, Ragusa S, Rapisarda A, et al. Berberis aetnensis C. Presl. Extracts: Antimicrobial properties and interaction with ciprofloxacin. Int J Antimicrob Agents 2003;22:48-53.

49. Stapleton PD, Shah S, Ehler K, Kara Y, Taylor PW. The beta-lactam-resistance modifier (-)-epicatechin gallate alters the architecture of the cell wall of Staphylococcus aureus. Microbiology 2007;153:2093-103.

50. Orhan DD, Harteviglo A, Kupeli E, Yesilada E. In vivo anti-inflammatory and antinociceptive activity of the crude extract and fractions from Rosa canina L. Fruits. J Ethnopharmacol 2007;112:394-400.