Asymptotics and statistical inferences on independent and non-identically distributed bivariate Gaussian triangular arrays

Xin Liao Zuoxiang Peng*

School of Mathematics and Statistics, Southwest University, 400715 Chongqing, China

Abstract In this paper, we establish the first and the second-order asymptotics of distributions of normalized maxima of independent and non-identically distributed bivariate Gaussian triangular arrays, where each vector of the nth row follows from a bivariate Gaussian distribution with correlation coefficient being a monotone continuous positive function of i/n. Furthermore, parametric inference for this unknown function is studied. Some simulation study and real data sets analysis are also presented.

Key words Bivariate Gaussian random vector; Maximum; Limiting distribution; Second-order expansion; Estimation.

AMS 2000 subject classification Primary 62E20, 60G70; Secondary 60F15, 60F05.

Running Title Asymptotics and statistical inferences on bivariate Gaussian triangular arrays

1 Introduction

Let $\{(X_{ni}, Y_{ni}), 1 \leq i \leq n, n \geq 1\}$ be independent bivariate Gaussian triangular arrays, and let ρ_{ni} denote the correlation coefficient of $(X_{ni}, Y_{ni}), 1 \leq i \leq n$. The bivariate maxima M_n are defined componentwise by

$$M_n = (M_{n1}, M_{n2}) = \left(\max_{1 \leq i \leq n} X_{ni}, \max_{1 \leq i \leq n} Y_{ni} \right).$$

For the asymptotic distribution of M_n, Sibuya (1960) showed that M_{n1} and M_{n2} are asymptotic independent if $\rho_{ni} = \rho \in (-1, 1)$, which coincides with the tail asymptotic independence of Gaussian copula, see Embrechts et al. (2002). For the case of $\rho_{ni} = \rho_n$, Hüsler and Reiss (1989) derived that

$$\lim_{n \to \infty} \sup_{x \in \mathbb{R}, y \in \mathbb{R}} \left| \mathbb{P} \left(M_{n1} \leq b_n + \frac{x}{b_n}, M_{n2} \leq b_n + \frac{y}{b_n} \right) - H_\lambda(x, y) \right| = 0 \quad (1.1)$$

provided that the following Hüsler-Reiss condition

$$\lim_{n \to \infty} b_n^2 (1 - \rho_n) = 2 \lambda^2 \quad (1.2)$$

*Corresponding author. Email: pzx@swu.edu.cn
holds with \(\lambda \in [0, \infty] \) (the converse assertion is proved by Kabluchko et al. (2009)), where the norming constant \(b_n \) satisfies

\[
1 - \Phi(b_n) = \frac{1}{n},
\]

where \(H_\lambda(x, y) \), the so-called Hüsler-Reiss max-stable distribution, is given by

\[
H_\lambda(x, y) = \exp \left(-\Phi \left(\lambda + \frac{x - y}{2\lambda} \right) e^{-y} - \Phi \left(\lambda + \frac{y - x}{2\lambda} \right) e^{-x} \right)
\]

with \(\Phi(x) \) standing for the standard Gaussian distribution. Obviously, components of \(M_n \) are asymptotically dependent when \(\lambda < \infty \).

For Hüsler-Reiss model, the asymptotic behavior of the dynamic copula version of normalized \(M_n \) has also been studied in recent literature. Under the Hüsler-Reiss condition (1.2), Frick and Reiss (2013) considered the asymptotic behaviors of the distribution of \((n(\max_{1 \leq i \leq n} \Phi(X_{ni}) - 1), n(\max_{1 \leq i \leq n} \Phi(Y_{ni}) - 1)) \). Allowing \(\rho_{ni} \) to depend on both \(i \) and \(n \), Liao et al. (2014a) extended the result in Frick and Reiss (2013) by assuming that

\[
\rho_{ni} = 1 - m(i/n)/\log n
\]

for some positive function \(m(x) \). For other work related to Hüsler-Reiss model and its extensions, see, e.g., Hashorva (2005, 2006), Hashorva et al. (2012), Hashorva and Weng (2013), Kabluchko (2011), Engelke et al. (2014), Das et al. (2014) and reference therein.

The objective of this paper is to derive the first and the second-order distributional expansions of the dynamic Hüsler-Reiss model with \(\rho_{ni} \) given by (1.4) and establish statistical inferences related to the function \(m(x) \). For the convergence rates and higher-order expansions of univariate extremes, we refer to de Haan and Resnick (1996), Nair (1981), Liao et al. (2014b) and reference therein. For the convergence rates of bivariate extremes, see de Haan and Peng (1997) for the general case. For the special case of the bivariate Hüsler-Reiss model, Hashorva et al. (2014) established the higher-order distributional expansions of \(M_n \), and Liao and Peng (2014) established the uniform convergence rate of (1.1). Liao and Peng (2015) also derived the second-order expansion of the joint distribution of normalized maximum and minimum. So far, there are no studies on the convergence and distributional expansion of \(M_n \) under the assumption that \((X_{ni}, Y_{ni})'s \) are not identically distributed. The main goal of this paper is to fill this gap. Borrowing the ideas from Liao et al. (2014a), we derive in this paper the limit distribution of the normalized maxima \(M_n \) if the function \(m(i/n) \) in (1.4) satisfies some regular conditions, and establish its second-order distributional expansion provided that the convergence rate of \(\max_{1 \leq i \leq n} m(i/n) \) is given. Furthermore, parametric estimation of \(m(x) \) is considered through maximum likelihood estimation. The asymptotic properties of the estimators can be employed to test the condition proposed by Hüsler and Reiss (1989).

The rest of this paper is organized as follows. In section 2, we provide the main results and statistical procedures. A simulation study and some real data analysis are presented in Section 3. All proofs are given in Section 4.
2 Methodology

2.1 Convergence of maxima

In this section, the limiting distribution and the second-order expansion of distribution of normalized M_n are provided with ρ_n, satisfying (1.3). The first result is about the first-order asymptotic which is stated as follows.

Theorem 1. Under the condition (1.3),

(i) if $\max_{1 \leq i \leq n} m(i/n) \to 0$, then for any $x, y \in \mathbb{R}$

$$\lim_{n \to \infty} \mathbb{P}(M_{n1} \leq b_n + x/b_n, M_{n2} \leq b_n + y/b_n) = \Lambda(\min(x, y));$$

(ii) if $\min_{1 \leq i \leq n} m(i/n) \to \infty$, then for any $x, y \in \mathbb{R}$

$$\lim_{n \to \infty} \mathbb{P}(M_{n1} \leq b_n + x/b_n, M_{n2} \leq b_n + y/b_n) = \Lambda(x)\Lambda(y);$$

(iii) if $m(s)$ is a continuous positive function on $[0, 1]$, then for any $x, y \in \mathbb{R}$

$$\lim_{n \to \infty} \mathbb{P}(M_{n1} \leq b_n + x/b_n, M_{n2} \leq b_n + y/b_n) = H(x, y)$$

with

$$H(x, y) = \exp \left(-e^{-y} \int_0^1 \Phi \left(\sqrt{m(t)} + \frac{x-y}{2\sqrt{m(t)}} \right) dt - e^{-x} \int_0^1 \Phi \left(\sqrt{m(t)} + \frac{y-x}{2\sqrt{m(t)}} \right) dt \right).$$

To establish the second-order distributional expansion of normalized maxima, we consider the following three cases in turn: $m(t)$ is monotone and continuous on $[0, 1]$; $\lim_{n \to \infty} \max_{1 \leq i \leq n} m(i/n) = 0$; and $\lim_{n \to \infty} \min_{1 \leq i \leq n} m(i/n) = \infty$.

Theorem 2. Under the condition (1.4), assume that $m(t)$ is monotone and continuous on $[0, 1]$, we have

$$\lim_{n \to \infty} \frac{\log n}{\log \log n} \left(\mathbb{P}(M_{n1} \leq b_n + x/b_n, M_{n2} \leq b_n + y/b_n) - H(x, y) \right)$$

$$= \frac{1}{2} \left(\int_0^1 \sqrt{m(t)} \varphi \left(\frac{y-x}{2\sqrt{m(t)}} \right) dt \right) e^{-x} H(x, y), \quad (2.1)$$

where $\varphi(x)$ is the probability density function of standard Gaussian distribution.

Theorem 3. Let the norming constant b_n be given by (1.3). Assume that $\lim_{n \to \infty} (\log n)^4 \max_{1 \leq i \leq n} m(i/n) = 0$, we have

$$\lim_{n \to \infty} (\log n) \left(\mathbb{P}(M_{n1} \leq b_n + x/b_n, M_{n2} \leq b_n + y/b_n) - \Lambda(\min(x, y)) \right)$$

$$= \frac{1}{4} \left(\min(x, y) \right)^2 + 2 \min(x, y) e^{-\min(x, y)} \Lambda(\min(x, y)). \quad (2.2)$$

Theorem 4. Let the norming constant b_n be given by (1.3). Assume that $\lim_{n \to \infty} (\log \log n)/(\min_{1 \leq i \leq n} m(i/n)) = 0$, we have

$$\lim_{n \to \infty} (\log n) \left(\mathbb{P}(M_{n1} \leq b_n + x/b_n, M_{n2} \leq b_n + y/b_n) - \Lambda(x)\Lambda(y) \right)$$

$$= \left(\frac{x^2 + 2x}{4} e^{-x} + \frac{y^2 + 2y}{4} e^{-y} \right) \Lambda(x)\Lambda(y). \quad (2.3)$$
2.2 Parametric inference

Now we consider statistical inference for fitting a parametric form to the unknown function \(m(s) \). Here we consider the family \(m(s) = \alpha + \beta s^\gamma \), where \(\alpha > 0, \beta \neq 0, \gamma > 0 \). Note that when \(\beta = 0, \gamma \) can not be identified, and when \(\gamma = 0, \alpha \) and \(\beta \) can’t be distinguished, cf. Liao et al. (2014a).

We use the maximum likelihood estimation (MLE) to get the estimator, which is

\[
\left(\hat{\alpha}, \hat{\beta}, \hat{\gamma} \right) = \arg \max_{(\alpha, \beta, \gamma)} \left(-n \log 2\pi - \frac{1}{2} \sum_{i=1}^{n} \log(1 - \rho_{ni}^2) - \frac{1}{2} \sum_{i=1}^{n} \frac{X_{ni}^2 + Y_{ni}^2}{2(1 - \rho_{ni}^2)} + \sum_{i=1}^{n} \frac{\rho_{ni}}{1 - \rho_{ni}^2} X_{ni} Y_{ni} \right).
\]

That is, \(\left(\hat{\alpha}, \hat{\beta}, \hat{\gamma} \right) \) is the solution to the following score equations

\[
\begin{align*}
{l}_{n1}(\alpha, \beta, \gamma) &= \sum_{i=1}^{n} \left(\frac{\rho_{ni}}{(\log n)(1 - \rho_{ni}^2)} + \frac{(1 + \rho_{ni}^2)X_{ni}Y_{ni}}{(\log n)(1 - \rho_{ni}^2)^2} \right) - \frac{\rho_{ni}(X_{ni}^2 + Y_{ni}^2)}{(\log n)(1 - \rho_{ni}^2)^2} = 0, \\
l_{n2}(\alpha, \beta, \gamma) &= \sum_{i=1}^{n} \left(\frac{\rho_{ni}}{(\log n)(1 - \rho_{ni}^2)} + \frac{(1 + \rho_{ni}^2)X_{ni}Y_{ni}}{(\log n)(1 - \rho_{ni}^2)^2} \right) - \frac{\rho_{ni}(X_{ni}^2 + Y_{ni}^2)}{(\log n)(1 - \rho_{ni}^2)^2} (\frac{\hat{\gamma}}{\hat{n}})^{\gamma} = 0, \\
l_{n3}(\alpha, \beta, \gamma) &= \sum_{i=1}^{n} \left(\frac{\rho_{ni}}{(\log n)(1 - \rho_{ni}^2)} + \frac{(1 + \rho_{ni}^2)X_{ni}Y_{ni}}{(\log n)(1 - \rho_{ni}^2)^2} \right) - \frac{\rho_{ni}(X_{ni}^2 + Y_{ni}^2)}{(\log n)(1 - \rho_{ni}^2)^2} (\frac{\hat{\gamma}}{\hat{n}})^{\gamma} \log(\frac{\hat{\gamma}}{\hat{n}}) = 0.
\end{align*}
\]

The following theorem gives the asymptotic normality of the proposed estimator.

Theorem 5. Assume that \((1.4) \) holds with \(m(s) = \alpha + \beta s^\gamma \) for some \(\alpha > 0, \beta \neq 0, \gamma > 0 \). Then we have

\[
\Delta \left(\sqrt{n}(\hat{\alpha} - \alpha), \sqrt{n}(\hat{\beta} - \beta), \sqrt{n}(\hat{\gamma} - \gamma) \right) T \xrightarrow{d} N(0, \Sigma),
\]

where the matrices \(\Delta \) and \(\Sigma \) are given by

\[
\Delta = \begin{pmatrix}
\int_0^1 \frac{1}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{t^\gamma}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\alpha} t^\gamma \log t}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^\gamma}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{t^\gamma}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\beta} t^\gamma \log t}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{\hat{\alpha} t^\gamma \log t}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\beta} t^\gamma \log t}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\gamma} t^\gamma \log t}{2(\alpha + \beta t)^2} dt
\end{pmatrix},
\]

and

\[
\Sigma = \begin{pmatrix}
\int_0^1 \frac{1}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{t^\gamma}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{t^\gamma \log t}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^\gamma}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{1}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\beta} t^\gamma \log t}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^\gamma \log t}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\beta} t^\gamma \log t}{2(\alpha + \beta t)^2} dt & \int_0^1 \frac{\hat{\gamma} t^\gamma \log t}{2(\alpha + \beta t)^2} dt
\end{pmatrix}.
\]

Another interesting parametric form is \(m(s) = \alpha + \beta s \) for some \(\alpha > 0, \beta \in \mathbb{R} \). In this case, when \(\beta = 0, m(s) \) becomes constant, which means that the observations \((X_1, Y_1, \ldots, X_n, Y_n) \) are independent and identically distributed random vectors.

Theorem 6. Suppose \((1.4) \) holds with \(m(s) = \alpha + \beta s \) for some \(\alpha > 0, \beta \neq 0 \). Then we have

\[
\left(\sqrt{n} \left(\frac{1}{2\beta} \log \left(1 + \frac{\hat{\beta}}{\alpha} \right) - \frac{\hat{\beta} \alpha - \hat{\beta} \beta}{2a \beta (\alpha + \beta)} + \frac{\beta}{2\beta} \log \left(1 + \frac{\hat{\beta}}{\alpha} \right) \right) \right) \xrightarrow{d} N \left(0, \tilde{\Sigma} \right),
\]

where \(\tilde{\Sigma} \) is given by

\[
\tilde{\Sigma} = \begin{pmatrix}
\frac{1}{2\alpha \beta (\alpha + \beta)} & \frac{1}{2\beta} \log \left(1 + \frac{\hat{\beta}}{\alpha} \right) & -\frac{1}{2\beta} + \frac{1}{2\beta} \log \left(1 + \frac{\hat{\beta}}{\alpha} \right) \\
\frac{1}{2\beta} \log \left(1 + \frac{\hat{\beta}}{\alpha} \right) & \frac{1}{2\beta^2} \left(1 + \frac{\alpha}{\alpha + \beta} - \frac{2a \beta}{\beta} \log \left(1 + \frac{\hat{\beta}}{\alpha} \right) \right) & \frac{1}{2\beta^2} \left(1 + \frac{\alpha}{\alpha + \beta} \right)
\end{pmatrix}.
\]
3 Simulation and data analysis

In this section we examine the finite sample performance of the proposed estimators by drawing independent \((X_{ni}, Y_{ni})\), \(\cdots\), \((X_{nn}, Y_{nn})\) with \((X_{ni}, Y_{ni})\) following the bivariate Gaussian distribution with coefficient \(\rho_{ni} = 1 - \frac{m(i/n)}{\log n}\). We consider \(n = 1000, 3000\) or \(10000\), and repeat \(1000\) times.

First we consider \(m(s) = \alpha\) with \(\alpha = 1\) or \(10\), and calculate the average and mean squared error for \(\hat{\alpha}\). We can observe from Table 1 that i) the averages of \(\hat{\alpha}\) is near by the true value \(\alpha\); ii) small mean squared errors show the robustness of \(\hat{\alpha}\). Next the case of \(m(s) = \alpha + \beta s\) is considered. Table 2 reports the averages and mean squared errors for estimator \((\hat{\alpha}, \hat{\beta})\). As \(n\) becomes large, the accuracy of all estimators improve. Finally, we consider the case of \(m(s) = \alpha + \beta s \gamma\) with sample size \(n = 10000\). The simulation shows that all estimators are closer to their true values with small mean squared errors, cf. Table 3 for details.

Table 1: Estimators for the case of \(m(s) = \alpha\)

\(\alpha = 1\)	\(\alpha = 10\)	\(\alpha = 1\)	\(\alpha = 10\)	\(\alpha = 1\)	\(\alpha = 10\)	
\(n = 1000\)	\(n = 1000\)	\(n = 3000\)	\(n = 3000\)	\(n = 10000\)	\(n = 10000\)	
\(E(\hat{\alpha})\)	0.9980043	9.992257	1.001875	9.997267	1.00005	9.999436
\(\text{MSE}(\hat{\alpha})\)	0.002109944	0.02555685	0.0006846334	0.01812748	0.0002033414	0.007965965

Table 2: Estimators for the case of \(m(s) = \alpha + \beta s\) with \(\alpha = 1\).

\(\beta = 1\)	\(\beta = 0\)	\(\beta = 1\)	\(\beta = 0\)	\(\beta = 1\)	\(\beta = 0\)	
\(n = 1000\)	\(n = 1000\)	\(n = 3000\)	\(n = 3000\)	\(n = 10000\)	\(n = 10000\)	
\(E(\hat{\alpha})\)	1.002458	1.002368	1.001585	0.9973226	0.9996816	1.000073
\(\text{MSE}(\hat{\alpha})\)	0.01125451	0.00864667	0.00385037	0.002605236	0.00124363	0.000797927
\(E(\hat{\beta})\)	0.9978728	-0.000328	0.9967	0.004754433	1.001072	0.000712807
\(\text{MSE}(\hat{\beta})\)	0.04707124	0.02588997	0.01669121	0.007914633	0.00509091	0.002447169

Table 3: Estimators for the case of \(m(s) = \alpha + \beta s \gamma\) with \(\alpha = \beta = 1\).

\(\gamma = 0.5\)	\(\gamma = 1\)	\(\gamma = 1.5\)				
\(\hat{\alpha}\)	\(\text{MSE}(\hat{\alpha})\)	\(\hat{\beta}\)	\(\text{MSE}(\hat{\beta})\)	\(\hat{\gamma}\)	\(\text{MSE}(\hat{\gamma})\)	
\(\gamma = 0.5\)	0.9437925	0.05247714	1.058977	0.04504459	0.5092629	0.03055645
\(\gamma = 1\)	0.994503	0.004061697	1.009859	0.005172654	1.01609	0.03928909
\(\gamma = 1.5\)	0.9955838	0.001943133	1.003917	0.007914633	1.504647	0.06171575

For the applications, we consider four couples of real data sets: The first is the log-returns of the exchange rates between US dollar and British pound and those between Canadian dollar and British pound from April 3, 2000 to November 11, 2014. The second is the log-returns of the Shanghai Stock Exchange composite
index (SSE Composite) and ShenZhen Stock Exchange Composite index (SZSE Composite) from March 4, 1996 to November 12, 2014. The third is the log-returns of the CSI 300 index and CSI 300 index futures from April 16, 2010 to November 13, 2014. The forth is the wave and surge heights in southwest England which comprise 2894 wave heights and 2894 surge heights. All time series are plotted in Figure 1.

First, we calculate the ith sample correlation for each couple of the mentioned data sets by using \{$(X_{ni}, Y_{ni}), \cdots , (X_{ni}, Y_{ni})$\}. Figures 2-5 show respectively that each tends to constant ultimately. Now we estimate the correlation $\rho = 1 - m(i/n)/\log(n)$ by assuming that $m(s)$ is a constant, which also are illustrated by Figures 2-5 respectively. The constancy of $m(s)$ shows that observations are identically distributed.

Figure 1: log-returns of the exchange rates between US dollar and British pound and those between Canadian dollar and British pound (top left); the log-returns of SSE Composite and SZSE Composite from (top right); the log-returns of the CSI 300 index and CSI 300 index futures (bottom left); the wave and surge heights in southwest England (bottom right).

4 Proofs

The aim of this section is to prove our main results. In the sequel, let $F_i(x, y)$ denote the distribution function of $(X_{ni}, Y_{ni}), 1 \leq i \leq n$; and let $u_n(x) = b_n + x/b_n$ for notational simplicity.

Proof of Theorem 1. We only consider the case (iii) here, since the other two cases can be derived by Slepian’s Lemma and the result of case (iii).
Figure 2: Exchange rates. Dotted line represents the sample correlations, and solid line represents the correlation estimate $\hat{\rho} = 0.4738478$ with $\hat{m} = 4.338189$.

Figure 3: SSE Composite and SZSE Composite. Dotted line represents the sample correlations, and solid line represents the correlation estimate $\hat{\rho} = 0.9048648$ with $\hat{m} = 0.8009351$.
Figure 4: CSI 300 index and CSI 300 index futures. Dotted line represents the sample correlations, and solid line represents the correlation estimate $\hat{\rho} = 0.9455578$ with $\hat{m} = 0.3817058$.

Figure 5: Wave and surge heights. Dotted line represents the sample correlations, and solid line represents the correlation estimate $\hat{\rho} = 0.2955482$ with $\hat{m} = 5.614759$.
It follows from (1.3) that
\[b_n = (2 \log n)^{\frac{1}{2}} - \frac{\log \log n + \log 4\pi}{2(2 \log n)^{\frac{1}{2}}} + o\left(\frac{1}{(\log n)^{\frac{1}{2}}}\right), \tag{4.1} \]
which implies that \(b_n^2 \sim 2 \log n \) as \(n \to \infty \). Combining with (1.4), we have
\[
\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} = \sqrt{1 - \frac{\rho_n}{1 + \rho_n}} \frac{b_n}{b_n \sqrt{1 - \rho_n^2}} + \sqrt{1 - \frac{\rho_n}{1 + \rho_n}} \frac{z}{b_n}
\]
\[
= \left(1 - \frac{\log \log n + \log 4\pi}{4 \log n}\right)^{\frac{1}{2}} \left(1 - \frac{\log \log n + \log 4\pi}{4 \log n} + o\left(\frac{1}{\log n}\right)\right) + o\left(\frac{1}{\log n}\right)
\]
for large \(n \).

By using the inequality \(|\Phi(x) - \Phi(y)| \leq |x - y| \) for any \(x, y \in \mathbb{R} \), we have
\[
\left| \Phi\left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}}\right) - \Phi\left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x - z}{2 \sqrt{m\left(\frac{i}{n}\right)}}\right) \right| \leq (1 + |z|)O\left(\frac{\log \log n}{\log n}\right) + (1 + |z|)O\left(\frac{1}{\log n}\right)
\]
for large \(n \) and any \(z \in \mathbb{R} \), which implies that
\[
\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi\left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}}\right) \exp\left(-z - \frac{z^2}{2b_n^2}\right) dz
\]
\[
= \frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi\left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x - z}{2 \sqrt{m\left(\frac{i}{n}\right)}}\right) e^{-z}dz(1 + o(1))
\]
\[
\to \int_{0}^{1} \int_{y}^{\infty} \Phi\left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}}\right) e^{-z}dzdt
\]
\[
= -e^{-x} + e^{-y} \int_{0}^{1} \Phi\left(\sqrt{m(t)} + \frac{y - x}{2 \sqrt{m(t)}}\right) dt + e^{-x} \int_{0}^{1} \Phi\left(\sqrt{m(t)} + \frac{y - x}{2 \sqrt{m(t)}}\right) dt \tag{4.3}
\]
as \(n \to \infty \).

Note that by Castro (1987) and (1.3)
\[
n^{-1} = 1 - \Phi(b_n) = \frac{\varphi(b_n)}{b_n} (1 - b_n^{-2} + O(b_n^{-4})) \tag{4.4}
\]
for large \(n \), and Nair (1981) showed that
\[
\lim_{n \to \infty} b_n^2 (-n(1 - \Phi(u_n(x))) + e^{-x}) = \frac{x^2 + 2x}{2} e^{-x}. \tag{4.5}
\]
Combining with (4.3), we have
\[-n \sum_{i=1}^{n} (1 - F_i(u_n(x), u_n(y)))\]
\[= -n \left(\Phi(u_n(x)) - n^{-1} \left(1 + b_n^{-2} + O(b_n^{-4}) \right) \right) \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right) \exp \left(-s - \frac{s^2}{2b_n^2} \right) ds\]
\[\rightarrow -e^{-x} \int_{0}^{1} \int_{y}^{\infty} \Phi \left(\frac{\sqrt{m(t)} + \frac{x - s}{2\sqrt{m(t)}}}{\sqrt{1 - \rho_n^2}} + \frac{x - z}{2\sqrt{m(t)}} \right) e^{-s} ds dt\]
\[= -e^{-y} \int_{0}^{1} \Phi \left(\sqrt{m(t)} + \frac{x - y}{2\sqrt{m(t)}} \right) dt - e^{-x} \int_{0}^{1} \Phi \left(\sqrt{m(t)} + \frac{y - x}{2\sqrt{m(t)}} \right) dt\]
(4.6)
as \(n \rightarrow \infty\), which implies the desired result.

The proof is complete. □

Proof of Theorem 2 By (4.2) we can get
\[-\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}}}{\sqrt{1 - \rho_n^2}} \right) \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right) e^{-z} dz\]
\[= \log \log n - \frac{1}{4} \log n \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}}}{\sqrt{1 - \rho_n^2}} \right) \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right) e^{-z} dz + O \left(\frac{1}{\log n} \right)\]
\[\sim \log \log n \int_{0}^{1} \int_{y}^{\infty} \Phi \left(\frac{\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}}}{\sqrt{1 - \rho_n^2}} \right) \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right) e^{-z} dz dt\]
\[= \log \log n \int_{0}^{1} \Phi \left(\sqrt{m(t)} + \frac{y - x}{2\sqrt{m(t)}} \right) dt\]
(4.7)
as \(n \rightarrow \infty\).

By Taylor expansion with Lagrange reminder term, we have
\[\Phi \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right)\]
\[= \Phi \left(\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}} \right) + \varphi \left(\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}} \right) \left(\frac{u_n(x) - \rho_n u_n(z)}{2\sqrt{m(t)} \left(\frac{z}{2\sqrt{m(t)}} \right)} - \sqrt{m(t)} - \frac{x - z}{2\sqrt{m(t)}} \right)\]
\[+ \frac{1}{2} \theta \varphi(\theta) \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right) - \sqrt{m(t)} - \frac{x - z}{2\sqrt{m(t)}} \right)^2\]
where
\[\min \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \left(\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}} \right) \right) < \theta \leq \max \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \left(\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}} \right) \right)\]

Combining with (4.7) we have
\[-\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1 - \rho_n^2}} \right) - \Phi \left(\sqrt{m(t)} + \frac{x - z}{2\sqrt{m(t)}} \right) e^{-z} dz\]
\[
= -\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \varphi \left(\sqrt{\frac{m(i/n)}{n}} + \frac{x-z}{2\sqrt{m(i/n)}} \right) \left(u_n(x) - \rho_n u_n(z) - \sqrt{m(i/n)} - \frac{x-z}{2\sqrt{m(i/n)}} \right) e^{-z}dz
\]

\[
- \frac{1}{2n} \sum_{i=1}^{n} \int_{y}^{\infty} \theta \varphi(\theta) \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1-\rho_n^2}} - \sqrt{m(i/n)} - \frac{x-z}{2\sqrt{m(i/n)}} \right)^2 e^{-z}dz
\]

\[
\sim \frac{\log \log n}{2 \log n} e^{-z} \int_{0}^{1} \sqrt{m(t)} \varphi \left(\sqrt{m(t)} + \frac{y-x}{2\sqrt{m(t)}} \right) dt \quad (4.8)
\]
as \(n \to \infty\) since

\[
\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \theta \varphi(\theta) \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1-\rho_n^2}} - \sqrt{m(i/n)} - \frac{x-z}{2\sqrt{m(i/n)}} \right)^2 e^{-z}dz = O \left(\frac{\log \log n}{\log n} \right)^2 .
\]

Now, we first assert that

\[
\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\sqrt{\frac{m(i/n)}{n}} + \frac{x-z}{2\sqrt{m(i/n)}} \right) e^{-z}dz - \int_{0}^{1} \int_{y}^{\infty} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt = 0 \left(\frac{1}{n} \right) \quad (4.9)
\]
holds for any \(x, y \in \mathbb{R}\). Combining with (4.8), we can get

\[
\sim \frac{\log \log n}{2 \log n} e^{-z} \int_{0}^{1} \sqrt{m(t)} \varphi \left(\sqrt{m(t)} + \frac{y-x}{2\sqrt{m(t)}} \right) dt \quad (4.10)
\]
as \(n \to \infty\).

From (4.4), (4.5) and (4.10), it follows that

\[
- \sum_{i=1}^{n} \left(1 - F_1(u_n(x), u_n(y)) \right) + e^{-x} + \int_{0}^{1} \int_{y}^{\infty} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
= -n(1 - \Phi(u_n(x))) + e^{-x} - n^{-1} \left(1 + b_n^{-2} + O(b_n^{-4}) \right) \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1-\rho_n^2}} \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz
\]

\[
+ \int_{0}^{1} \int_{y}^{\infty} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
= -n(1 - \Phi(u_n(x))) + e^{-x} - \frac{1}{n} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1-\rho_n^2}} \right) e^{-z}dz + \int_{0}^{1} \int_{y}^{\infty} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
- \frac{1}{nb_n^2} \sum_{i=1}^{n} \int_{y}^{\infty} \Phi \left(\frac{u_n(x) - \rho_n u_n(z)}{\sqrt{1-\rho_n^2}} \right) e^{-z} \left(1 - \frac{z^2}{2} \right) dz + O(b_n^{-4})
\]

\[
\sim \frac{\log \log n}{2 \log n} e^{-x} \int_{0}^{1} \sqrt{m(t)} \varphi \left(\sqrt{m(t)} + \frac{y-x}{2\sqrt{m(t)}} \right) dt
\]
as \(n \to \infty\), which implies that

\[
\mathbb{P}(M_{n1} \leq u_n(x), M_{n2} \leq u_n(y)) \to H(x, y)
\]
\[H(x, y) \left(\exp \left(\sum_{i=1}^{n} \log F_i(u_n(x), u_n(y)) + e^{-x} + \int_0^{1} \int_y^\infty \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt \right) - 1 \right) \]

\[= H(x, y) \left(- \sum_{i=1}^{n} (1 - F_i(u_n(x), u_n(y))) + e^{-x} + \int_0^{1} \int_y^\infty \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt \right) \]

\[\sim \log \log n \left(\int_0^{1} \sqrt{m(t)} \varphi \left(\sqrt{m(t) + \frac{y-x}{2\sqrt{m(t)}}} \right) dt \right) e^{-z} H(x, y) \]

as \(n \to \infty \).

The remainder is to show that (4.9) holds for any fixed \(x, y \in \mathbb{R} \). Without loss of generality, we assume that \(m(t) \) is increasing.

If \(x \leq y \), note that \(\int_y^\infty \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz \) is increasing about \(t \), so we have

\[\frac{1}{n} \sum_{i=1}^{n} \int_y^\infty \Phi \left(\sqrt{m \left(\frac{i}{n} \right) + \frac{x-z}{2\sqrt{m \left(\frac{i}{n} \right)}}} \right) e^{-z} dz \]

\[= \sum_{i=1}^{n} \int_{\frac{i-1}{n}}^{\frac{i}{n}} \Phi \left(\sqrt{m \left(\frac{i}{n} \right) + \frac{x-z}{2\sqrt{m \left(\frac{i}{n} \right)}}} \right) e^{-z} dz dt \]

\[< \sum_{i=1}^{n} \int_{\frac{i-1}{n}}^{\frac{i}{n}} \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt \]

\[= \int_0^{1} \int_y^\infty \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt \]

and

\[\frac{1}{n} \sum_{i=1}^{n} \int_y^\infty \Phi \left(\sqrt{m \left(\frac{i}{n} \right) + \frac{x-z}{2\sqrt{m \left(\frac{i}{n} \right)}}} \right) e^{-z} dz \]

\[= \sum_{i=1}^{n} \int_{\frac{i-1}{n}}^{\frac{i}{n}} \Phi \left(\sqrt{m \left(\frac{i}{n} \right) + \frac{x-z}{2\sqrt{m \left(\frac{i}{n} \right)}}} \right) e^{-z} dz dt \]

\[< \int_0^{1+\frac{1}{n}} \int_y^\infty \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt \]

\[= \int_0^{1} \int_y^\infty \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt + O \left(\frac{1}{n} \right) , \]

which implies that (4.9) holds for \(x \leq y \).

To verify (4.9) holding for \(x > y \), we just need to prove that

\[\frac{1}{n} \sum_{i=1}^{n} \int_x^y \Phi \left(\sqrt{m \left(\frac{i}{n} \right) + \frac{x-z}{2\sqrt{m \left(\frac{i}{n} \right)}}} \right) e^{-z} dz - \int_0^{1} \int_x^y \Phi \left(\sqrt{m(t) + \frac{x-z}{2\sqrt{m(t)}}} \right) e^{-z} dz dt = O \left(\frac{1}{n} \right) , (4.11) \]
which will be proved in return by the following three cases: (i) \(y \leq x - 2m(1) \); (ii) \(x - 2m(1) < y < x - 2m(0) \), and (iii) \(x - 2m(0) \leq y < x \). In fact, the arguments of (i) and (iii) are similar. The rest is to focus on (i) and (ii).

For case (i), i.e. \(y \leq x - 2m(1) \), it is known that \(y \leq x - 2m(t) \leq x \) for any \(t \in [0, 1] \). Hence,

\[
\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{x-2m\left(\frac{i}{n}\right)} \Phi \left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x-z}{2\sqrt{m\left(\frac{i}{n}\right)}} \right) e^{-z}dz
\]

\[
= \sum_{i=1}^{n} \int_{y}^{x-2m\left(\frac{i}{n}\right)} \Phi \left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x-z}{2\sqrt{m\left(\frac{i}{n}\right)}} \right) e^{-z}dz dt
\]

\[
< \sum_{i=1}^{n} \int_{y}^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
< \sum_{i=1}^{n} \int_{y}^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
= \int_{0}^{1} \int_{y}^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[(4.12)\]

and

\[
\frac{1}{n} \sum_{i=1}^{n} \int_{y}^{x-2m\left(\frac{i}{n}\right)} \Phi \left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x-z}{2\sqrt{m\left(\frac{i}{n}\right)}} \right) e^{-z}dz
\]

\[
= \sum_{i=1}^{n} \int_{y}^{x-2m\left(\frac{i}{n}\right)} \Phi \left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x-z}{2\sqrt{m\left(\frac{i}{n}\right)}} \right) e^{-z}dz dt
\]

\[
> \sum_{i=1}^{n} \int_{y}^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
> \sum_{i=1}^{n} \int_{y}^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt
\]

\[
= \int_{0}^{1} \int_{y}^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt + O \left(\frac{1}{n} \right).
\]

\[(4.13)\]

Similarly,

\[
\frac{1}{n} \sum_{i=1}^{n} \int_{x-2m\left(\frac{i}{n}\right)}^{x} \Phi \left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x-z}{2\sqrt{m\left(\frac{i}{n}\right)}} \right) e^{-z}dz \leq \int_{0}^{1} \int_{x-2m(t)}^{x} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt + O \left(\frac{1}{n} \right)
\]

\[(4.14)\]

and

\[
\frac{1}{n} \sum_{i=1}^{n} \int_{x-2m\left(\frac{i}{n}\right)}^{x} \Phi \left(\sqrt{m\left(\frac{i}{n}\right)} + \frac{x-z}{2\sqrt{m\left(\frac{i}{n}\right)}} \right) e^{-z}dz > \int_{0}^{1} \int_{x-2m(t)}^{x} \Phi \left(\sqrt{m(t)} + \frac{x-z}{2\sqrt{m(t)}} \right) e^{-z}dz dt.
\]

\[(4.15)\]

Combining with \[(4.12) - (4.15)\], it shows that \[(4.11)\] holds for case (i).
Next we consider case (ii), i.e. \(x - 2m(1) < y < x - 2m(0) \). Note that there exists \(x^* \in (0, 1) \) such that \(y = x - 2m(x^*) \) since \(m(t) \) is increasing and continuous. Split the following integral into two parts:

\[
\int_0^1 \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz \, dt
\]

\[
= \int_0^x \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz \, dt + \int_x^{x^*} \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz \, dt.
\]

By arguments similar with (4.12)-(4.15), we can get

\[
\frac{1}{n} \sum_{i=1}^{[nx^*]} \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz = \int_0^x \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz + O \left(\frac{1}{n} \right)
\]

and

\[
\frac{1}{n} \sum_{i=|nx^*|+1}^{n} \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz = \int_x^{x^*} \int_y^{x-2m(t)} \Phi \left(\sqrt{m(t)} + \frac{x - z}{2 \sqrt{m(t)}} \right) e^{-z} \, dz + O \left(\frac{1}{n} \right).
\]

Combining above with (4.12) and (4.15), we show that (4.11) holds for case (ii).

Now, (4.11) is derived for any fixed \(x, y \in \mathbb{R} \), which complete the proof. \(\square \)

Proof of Theorem 3 For fixed \(x, y \in \mathbb{R} \), if \(\max(x, y) < z < 4 \log n \) we have

\[
\Phi \left(\frac{u_n(\min(x, y)) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) < \exp \left(- \frac{b_n^2 (1 - \rho_{ni})}{4} - \frac{\min(x, y)}{1 + \rho_{ni}} \right)
\]

for large \(n \) by using Mills' inequality. Combining with (4.14), (4.11) and \(\lim_{n \to \infty} (\log n)^4 \max_{1 \leq i \leq n} m(i/n) = 0 \), we have

\[
\int_{\max(x, y)}^{4 \log b_n} \Phi \left(\frac{u_n(\min(x, y)) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) e^{-z} \, dz \, dz
\]

\[
\leq \frac{2 \sqrt{2m \left(\frac{i}{n} \right)} \left(1 - \frac{\log \log n + \log 4\pi}{4 \log n} \right) + o \left(\frac{1}{\log n} \right) \exp \left(- \frac{1}{2} \left(\frac{1}{n} \right) \left(1 - \frac{\log \log n + \log 4\pi}{2 \log n} \right) + o \left(\frac{1}{\log n} \right) \right)}{\sqrt{\pi} \left(\max(x, y) - \min(x, y) - 2m \left(\frac{i}{n} \right) \left(1 - \frac{\log \log n + \log 4\pi}{2 \log n} \right) + o \left(\frac{1}{\log n} \right) \right) - 4 \frac{m \left(\frac{i}{n} \right)}{\log n} \log b_n}
\]

\[
< \frac{2 \max_{1 \leq i \leq n} m \left(\frac{i}{n} \right) \left(1 - \frac{\log \log n + \log 4\pi}{4 \log n} \right) + o \left(\frac{1}{\log n} \right)}{\sqrt{\pi} \left(\max(x, y) - \min(x, y) - 2m \left(\frac{i}{n} \right) \left(1 - \frac{\log \log n + \log 4\pi}{2 \log n} \right) + o \left(\frac{1}{\log n} \right) \right) - 4 \frac{\max_{1 \leq i \leq n} m(i/n)}{\log n} \log b_n}
\]
for any \(1 \leq i \leq n\).

Noting that
\[
\int_{4 \log b_n}^{\infty} \Phi \left(\frac{u_n(\min(x, y)) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz = O(b_n^{-4})
\]
for \(1 \leq i \leq n\), we have
\[
n^{-1} \sum_{i=1}^{n} \int_{\max(x, y)}^{\infty} \Phi \left(\frac{u_n(\min(x, y)) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz = O(b_n^{-4})
\]
for large \(n\). Hence combining above with (2.2), we can get
\[
b_n^2 \left(-\sum_{i=1}^{n} \left(1 - F_i(u_n(x), u_n(y)) \right) + e^{-\min(x, y)} \right) = b_n^2 \left(-n(1 - \Phi(\min(x, y))) + e^{-\min(x, y)} \right)
\]
\[
-b_n^2 n^{-1} \left(1 - b_n^{-2} + O(b_n^{-4}) \right)^{-1} \sum_{i=1}^{n} \int_{\max(x, y)}^{\infty} \Phi \left(\frac{u_n(\min(x, y)) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz
\]
\[
\to \frac{(\min(x, y))^2 + 2 \min(x, y)}{2} e^{-\min(x, y)}
\]
as \(n \to \infty\), which implies (2.2). The proof is complete.

\[\Box\]

Proof of Theorem 4 By Mills’ inequality we have
\[
1 - \Phi \left(\frac{u_n(y) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) < \frac{\exp \left(-\frac{b_n^2 (1 - \rho_{ni})}{2(1 + \rho_{ni})} - \frac{u - \rho_{ni} z}{1 + \rho_{ni}} - \frac{1}{2} \log b_n^2 (1 - \rho_{ni}) \right)}{\sqrt{\pi} \left(1 + \frac{u - \rho_{ni} z}{\sigma_{n}(1 - \rho_{ni}) + \frac{2}{b_n^2}} \right)}
\]
for large \(n\), which implies that
\[
\int_{4 \log b_n}^{\infty} \left(1 - \Phi \left(\frac{u_n(y) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz = O(b_n^{-4})
\]
for any \(1 \leq i \leq n\) due to (4.1, 4.1), \(\lim_{n \to \infty} \min_{1 \leq i \leq n} m(i/n) = \infty\) and \(\lim_{n \to \infty} \frac{\log \log n}{\min_{1 \leq i \leq n} m(i/n)} = 0\).

Combining with
\[
\int_{4 \log b_n}^{\infty} \left(1 - \Phi \left(\frac{u_n(y) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz = O(b_n^{-4}),
\]
we have
\[
\sum_{i=1}^{n} \mathbb{P}(X_{ni} > u_n(x), Y_{ni} > u_n(y))
\]
\[
= n^{-1} \left(1 - b_n^{-2} + O(b_n^{-4}) \right)^{-1} \sum_{i=1}^{n} \int_{x}^{\infty} \left(1 - \Phi \left(\frac{u_n(y) - \rho_{ni} u_n(z)}{\sqrt{1 - \rho_{ni}^2}} \right) \right) e^{-z} \exp \left(-\frac{z^2}{2b_n^2} \right) dz
\]
\[
= O(b_n^{-4}).
\] (4.16)
It follows from (4.3) and (4.16) that
\[b_n^2 \left(-n \left(1 - F_i(u_n(x), u_n(y)) \right) + e^{-x} + e^{-y} \right) \]
\[= b_n^2 \left(-n(1 - \Phi(u_n(x))) + e^{-x} - n(1 - \Phi(u_n(y))) + e^{-y} + \sum_{i=1}^{n} \mathbb{P}(X_{ni} > u_n(x), Y_{ni} > u_n(y)) \right) \]
\[\to \frac{x^2}{2} e^{-x} + \frac{y^2}{2} e^{-y} \]
as \(n \to \infty \). Hence (4.20) can be derived, which complete the proof. \(\square \)

Proof of Theorem 5 Define
\[Z_i = -\frac{\rho_{ni}}{(\log n)(1 - \rho_{ni}^2)} \left(X_{ni}^2 + Y_{ni}^2 \right) + \frac{1 + \rho_{ni}^2}{(\log n)(1 - \rho_{ni}^2)} X_{ni} Y_{ni} + \frac{\rho_{ni}}{(\log n)(1 - \rho_{ni}^2)} \]
\[:= Z_{i,1} + Z_{i,2} + Z_{i,3} \]

one can check that
\[\mathbb{E} Z_{i,1}^2 = \frac{4(\rho_{ni}^4 + 2\rho_{ni}^2)}{(\log n)^2(1 - \rho_{ni}^2)^2}, \quad \mathbb{E} Z_{i,2}^2 = \frac{(1 + \rho_{ni}^2)^2}{(\log n)^2(1 - \rho_{ni}^2)^2}(1 + 2\rho_{ni}^2) \]
\[\mathbb{E} Z_{i,3}^2 = \frac{\rho_{ni}^2}{(\log n)^2(1 - \rho_{ni}^2)^2}, \quad \mathbb{E} Z_{i,1} Z_{i,2} + \mathbb{E} Z_{i,2} Z_{i,3} = -\frac{6\rho_{ni}^2(1 + \rho_{ni}^2)}{(\log n)^2(1 - \rho_{ni}^2)^2} \]
which implies that
\[\frac{1}{n} \sum_{i=1}^{n} \mathbb{E} Z_i^2 = \frac{1}{n} \sum_{i=1}^{n} \left(\frac{1 - \alpha + \beta (\frac{1}{\pi})^2}{\log n} + \frac{\alpha + \beta (\frac{1}{\pi})^2}{2(\log n)^2} \right) \]
\[\to \int_{0}^{1} \frac{1}{2(\alpha + \beta t)^2} \, dt \quad (4.17) \]
as \(n \to \infty \). It is easy to check that
\[\mathbb{E} \left(\frac{1}{n} \sum_{i=1}^{n} \left(Z_i^2 - \mathbb{E} Z_i^2 \right) \right)^2 = \frac{1}{n^2} \sum_{i=1}^{n} \mathbb{E} \left(Z_i^2 - \mathbb{E} Z_i^2 \right)^2 = O \left(\frac{1}{n} \right), \]
which combining with (4.17) implies that
\[\sum_{i=1}^{n} \left(\frac{1}{\sqrt{n}} Z_i \right)^2 \xrightarrow{p} \int_{0}^{1} \frac{1}{2(\alpha + \beta t)^2} \, dt \quad (4.18) \]

Obviously, we have
\[\max_{1 \leq i \leq n} \left| \frac{1}{\sqrt{n}} Z_i \right| \xrightarrow{p} 0 \quad \text{and} \quad \mathbb{E} \left(\max_{1 \leq i \leq n} \frac{1}{\sqrt{n}} Z_i \right) = o(1). \quad (4.19) \]

Hence combining with (4.18), (4.19) we can get
\[\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (\alpha, \beta, \gamma) \xrightarrow{p} N \left(\begin{array}{c} 0, \int_{0}^{1} \frac{1}{2(\alpha + \beta t)^2} \, dt \end{array} \right) \quad (4.20) \]
as \(n \to \infty \).
Define
\[
Z_i^* = -\frac{\left(\frac{1}{n}\right)^{\gamma} \rho_{ni}}{(\log n) (1 - \rho_{ni}^2)^2} (X_n^2 + Y_n^2) + \frac{\left(\frac{1}{n}\right)^{\gamma} (1 + \rho_{ni})}{(\log n) (1 - \rho_{ni}^2)^2} X_n Y_n + \frac{\left(\frac{1}{n}\right)^{\gamma} \rho_{ni}}{(\log n) (1 - \rho_{ni}^2)^2} Y_n,
\]
so that
\[
Z_i = Z_{i,1} + Z_{i,2} + Z_{i,3}^*.
\]
and
\[
Z_i^{**} = -\frac{\left(\frac{1}{n}\right)^{\gamma} \rho_{ni}}{(\log n) (1 - \rho_{ni}^2)^2} (X_n^2 + Y_n^2) + \frac{\left(\frac{1}{n}\right)^{\gamma} (1 + \rho_{ni})}{(\log n) (1 - \rho_{ni}^2)^2} X_n Y_n + \frac{\left(\frac{1}{n}\right)^{\gamma} \rho_{ni}}{(\log n) (1 - \rho_{ni}^2)^2} Y_n^2
\]
so that
\[
Z_i^{**} = Z_{i,1} + Z_{i,2} + Z_{i,3}^{**}.
\]

Similar to the proofs of (4.20), we can show that
\[
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} l_{n2}(\alpha, \beta, \gamma) &\overset{p}{=} N \left(0, \int_0^1 \frac{t^{2\gamma}}{2(\alpha + \beta t)^2} dt \right), \\
\lim_{n \to \infty} \frac{1}{n} l_{n3}(\alpha, \beta, \gamma) &\overset{p}{=} N \left(0, \int_0^1 \frac{t^{2\gamma} \log t}{2(\alpha + \beta t)^2} dt \right).
\end{align*}
\]

By arguments similar to (4.17), we have
\[
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mathbb{E} Z_i Z_i^* &= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^{\gamma} \mathbb{E} Z_i^2 = \int_0^1 \frac{t^{\gamma}}{2(\alpha + \beta t)^2} dt, \\
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mathbb{E} Z_i^* Z_i^{**} &= \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^{2\gamma} \left(\log \frac{i}{n}\right) \mathbb{E} Z_i^2 = \int_0^1 \frac{t^{2\gamma} \log t}{2(\alpha + \beta t)^2} dt,
\end{align*}
\]
and
\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \mathbb{E} Z_i Z_i^{**} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left(\frac{i}{n}\right)^{\gamma} \left(\log \frac{i}{n}\right) \mathbb{E} Z_i^2 = \int_0^1 \frac{t^{2\gamma} \log t}{2(\alpha + \beta t)^2} dt.
\]

Hence, by Cramér device, we can derive that
\[
\lim_{n \to \infty} \frac{1}{\sqrt{n}} (l_{n1}(\alpha, \beta, \gamma), l_{n2}(\alpha, \beta, \gamma), l_{n3}(\alpha, \beta, \gamma))^T \overset{d}{=} N(0, \Sigma),
\]
where \(\Sigma\) is given by (2.6).

It is straightforward to check that
\[
\begin{align*}
\lim_{n \to \infty} \frac{1}{n} \begin{pmatrix}
\frac{\partial l_{n1}(\alpha, \beta, \gamma)}{\partial \alpha} \\
\frac{\partial l_{n1}(\alpha, \beta, \gamma)}{\partial \beta} \\
\frac{\partial l_{n1}(\alpha, \beta, \gamma)}{\partial \gamma}
\end{pmatrix} &= \begin{pmatrix}
\int_0^1 \frac{1}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^2}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^{2\gamma} \log t}{2(\alpha + \beta t)^2} dt
\end{pmatrix}
\overset{p}{=} \begin{pmatrix}
\int_0^1 \frac{1}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^2}{2(\alpha + \beta t)^2} dt \\
\int_0^1 \frac{t^{2\gamma} \log t}{2(\alpha + \beta t)^2} dt
\end{pmatrix} := \Delta.
\end{align*}
\]

Hence, the desired result is derived by (4.21), (4.23) and Taylor expansion. The proof is complete.

\textbf{Proof of Theorem 6} It follows from the proof of Theorem 5 with known \(\gamma = 1\).
Acknowledgements This work was supported by the National Natural Science Foundation of China grant no.11171275, the Natural Science Foundation Project of CQ no. cstc2012jjA00029, and the Fundamental Research Funds for the Central Universities(XDJ2014D020).

References

[1] Castro, L.C.E. (1987) Uniform rate of convergence in extreme-value theory: Normal and Gamma models. Annales Scientifiques de l’Université de Clerment-Ferrand 2, tome 90, série Probabilités et applications, 6, 25–41.

[2] Das, B., Engelke, S. and Hashorva, E. (2015). Extremal behavior of squared Bessel processes attracted by the Brown-Resnick process. Stochastic Processes and their Applications, 2, 780-796.

[3] de Haan, L. and Peng, L. (1997). Rates of convergence for bivariate extremes. Journal of Multivariate Analysis, 61, 195–230.

[4] de Haan, L., and Resnick, S. I. (1996). Second order regular variation and rates of convergence in extreme value theory. The Annals of Probability, 24, 97–124.

[5] Embrecherts, P., McNeil, A. and Straumann, D. (2002). Correlation and dependence in risk management: properties and pitfalls. In Dempster, M. H. A. (editor), Risk management: Value at Risk and Beyond, pages 176-233. Cambridge University Press, Cambridge.

[6] Engelke, S., Kabluchko, Z. and Schlather M. (2014). Maxima of independent, non-identically distributed Gaussian vectors. Bernoulli, in press.

[7] Frick, M. and Reiss, R.-D. (2013). Expansions and penultimate distributions of maxima of bivariate Gaussian random vectors. Statistics and Probability Letters, 83, 2563–2568.

[8] Hashorva, E. (2005). Elliptical triangular arrays in the max-domain of attraction of Hüsler-Reiss distribution. Statistics and Probability Letters, 72, 125–135.

[9] Hashorva, E. (2006). On the max-domain of attractions of bivariate elliptical arrays. Extremes, 8, 225–233.

[10] Hashorva, E., Kabluchko, Z., and Wübker, A. (2012). Extremes of independent chi-square random vectors. Extremes, 15, 35–42.

[11] Hashorva, E., Peng, Z. and Weng, Z. (2014). Higher-order expansions of distributions of maxima in a Hüsler-Reiss model. Methodology and Computing in Applied Probability, doi 10.1007/s11009-014-9407-6.

[12] Hashorva, E. and Weng, Z. (2013). Limit laws for extremes of dependent stationary Gaussian arrays. Statistics and Probability Letters, 83, 320-330.

[13] Hüsler, J. and Reiss, R-D. (1989). Maxima of normal random vectors: Between independence and complete dependence. Statistics and Probability Letters, 7, 283–286.
[14] Kabluchko, Z. (2011). Extremes of independent Gaussian processes. *Extremes*, 11, 393–420.

[15] Kabluchko, Z., de Haan, L. and Schlatter, M. (2009). Stationary max-stable fields associated to negative definite functions. *The Annals of Probability*, 37, 2042–2065.

[16] Liao X., Peng, L., Peng, Z. and Zheng, Y. (2014a). Dynamic bivariate normal copula. Submitted.

[17] Liao, X. and Peng, Z. (2014). Convergence rate of maxima of bivariate Gaussian arrays to the Hüsler-Reiss distribution. *Statistics and Its Interface*, 7(3), 351-362.

[18] Liao, X. and Peng, Z. (2015). Asymptotics for the maxima and minima of Hüsler-Reiss bivariate Gaussian arrays. *Extremes*, 18, 1–14.

[19] Liao, X., Peng, Z., Nadarajah, S. and Wang, X. (2014b). Rates of convergence of extremes from skew normal samples. *Statistics and Probability Letters*, 84, 40–47.

[20] Nair, K. A. (1981). Asymptotic distribution and moments of normal extremes. *The Annals of Probability*, 9, 150–153.

[21] Sibuya, M. (1960). Bivariate extreme statistics. *Annals of the Institute of Statistical Mathematics*, 11, 195–210.