Frequency of infraposition and missing contact points in implant-supported restorations within natural dentitions over time: A systematic review with meta-analysis

Papageorgiou, Spyridon N; Eliades, Theodore; Hämmerle, Christoph H F

Abstract: OBJECTIVES The aim of this systematic review was to assess clinical evidence on adverse effects of osseointegrated implants placed among natural teeth of a residual dentition. METHODS Seven databases were searched without restrictions up to January 2018 for clinical studies on implant infra-position (IIP) or proximal contact point (PCP) loss to the adjacent teeth. After duplicate selection, data extraction, and risk of bias assessment according to the Cochrane guidelines, random-effects meta-analyses of odds ratios (OR) or mean differences (MD) and their 95% confidence intervals (CI) were performed, followed by meta-regression and sensitivity analyses. RESULTS A total of 27 nonrandomized studies with 1,572 patients (mean age 42.2 years/51.2% female) followed up to 18.5 years after implant placement were included. The pooled %prevalence of IIP was 50.5% (nine studies; 95% CI = 26.3-74.5%), and the pooled IIP extent was 0.58 mm (six studies; 95% CI = 0.33-0.83 mm), while IIP > 1 mm was seen for 20.8% of placed implants (five studies; 95% CI = 8.3-37.1%), and male patients were less prone to IIP than female patients (three studies; OR = 0.30; 95% CI = 0.10-0.88; p = 0.03). The pooled %prevalence of PCP loss was 46.3% (nine studies; 95% CI = 32.3-60.6%), with increase through observation time (two studies; OR = 1.09; 95% CI = 1.03-1.16; p = 0.004) and predilection for mesial PCPs (five studies; OR = 2.25; 95% CI = 1.06-4.77; p = 0.03). However, the quality of evidence was very low due to bias. CONCLUSIONS Patients and doctors need to be aware that long-term adverse effects of dental implants among natural teeth can be observed in terms of IIP and PCP loss to the adjacent teeth.

DOI: https://doi.org/10.1111/clr.13291

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-169514
Journal Article
Accepted Version

Originally published at:
Papageorgiou, Spyridon N; Eliades, Theodore; Hämmerle, Christoph H F (2018). Frequency of infraposition and missing contact points in implant-supported restorations within natural dentitions over time: A systematic review with meta-analysis. Clinical Oral Implants Research, 29 Suppl:309-325.
DOI: https://doi.org/10.1111/clr.13291
Title Page

Frequency of infraposition and missing contact points in implant supported restorations within natural dentitions over time: a systematic review with meta-analysis

Spyridon N. Papageorgiou¹, Theodore Eliades¹, Christoph H.F. Hämmerle²

¹Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
²Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Dental School, University of Zurich, Zurich, Switzerland

Running title
Infraposition and contact loss of dental implants

Correspondence
Spyridon N. Papageorgiou, Clinic of Orthodontics and Pediatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland, Tel: +41 (0)44 634 32 87.
Email: snpapage@gmail.com

Funding Information
None.

ORCID
Spyridon N. Papageorgiou: https://orcid.org/0000-0003-1968-3326
Theodore Eliades: https://orcid.org/0000-0003-2313-4979
Christoph H.F. Hämmerle: https://orcid.org/0000-0002-8280-7347
ACKNOWLEDGEMENTS

This investigation was performed for and presented in the 5th EAO Consensus Conference of the European Association of Osseointegration, Feb. 7–10, 2018, in Pfäffikon, SZ. The authors would like to thank all participants of the Consensus Conference for helpful comments and Mses. M. Spiess & D. Esterhammer (Library, Center of Dental Medicine, University of Zurich) for assistance in obtaining identified studies.

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

Words in Abstract: 250/250
Words in Text: 4646
Abstract

Objectives: Aim of this systematic review was to assess clinical evidence on adverse effects of osseointegrated implants placed among natural teeth of a residual dentition.

Methods: Seven databases were searched without restrictions up to January 2018 for clinical studies on Implant Infra-Position (IIP) or Proximal Contact Point (PCP) loss to the adjacent teeth. After duplicate selection, data extraction, and risk of bias assessment according to the Cochrane guidelines, random-effects meta-analyses of Odds Ratios (OR) and Mean Differences (MD) and their 95% confidence intervals (CIs) were performed, followed by meta-regression, and sensitivity analyses.

Results: A total of 27 non-randomized studies with 1572 patients (mean age 42.2 years/ 51.2% female) followed up to 18.5 years after implant placement were included. The pooled %prevalence of IIP was 50.5% (9 studies; 95% CI=26.3-74.5%) and the pooled IIP extent was 0.58 mm (6 studies; 95% CI=0.33-0.83 mm), while IIP>1 mm was seen for 20.8% of placed implants (5 studies; 95% CI=8.3-37.1%), and female patients were less prone to IIP than male patients (3 studies; OR=0.30; 95% CI=0.10-0.88; P=0.03). The pooled %prevalence of PCP loss was 46.3% (9 studies; 95% CI=32.3-60.6%), with increase through observation time (2 studies; OR=1.09; 95% CI=1.03-1.16; P=0.004) and predilection for mesial PCPs (5 studies; OR=2.25; 95% CI=1.06-4.77; P=0.03). However, the quality of evidence was very low due to bias.

Conclusions: Patients and doctors need to be aware that long-term adverse effects of dental implants among natural teeth can be observed in terms of IIP and PCP loss to the adjacent teeth.

KEYWORDS
dental implants, osseointegration, adverse effects, clinical research, systematic review, meta-analysis
1 | INTRODUCTION

1.1. | Rationale

Osseointegrated dental implants have become an integral part in contemporary dentistry as a popular treatment choice to replace one or more missing teeth. They have high survival rates after 5 to 10 years (Jung et al., 2012; Moraschini et al., 2015) or 15 or more years, even though research on their long-term performance focuses mostly on bone remodeling and clinical response parameters (Jemt 2008; Bergenblock et al., 2012; Dierens et al., 2012).

However, a wide variety of biological, technical, and aesthetic complications that are frequently seen has been reported (Albrektsson and Donos, 2012; Wittneben et al., 2014) with estimated cumulative complication rates around 7% after 5 years (Jung et al., 2012). Additionally, most complications described in the literature pertain to technical or biological failures of the osseointegrated fixture and its supraconstruction or on tissue destruction due to peri-implantitis. Aesthetic parameters, like soft tissue topography around the implant restoration and the position of its crown in relation to the adjacent teeth, are equally significant factors for the success of treatment success from an aesthetic point of view (Chang et al., 1999) and especially for implants placed in the anterior maxilla—yet, receive less attention.

Additionally, the absence of maxillary permanent anterior teeth due to trauma or congenital aplasia and the subsequent impact on the person’s quality of life means that sometimes the recipients of dental implants might be young patients with residual growth potential. The use of implants in growing patients has been studied both in humans (Thilander et al., 1994) and animals (Ödman et al. 1991), leading to the observation that dental implants behave like ankylosed teeth and are capable of following neither the growth of the jaws nor the continuous eruption of adjacent natural teeth (Thilander et al., 1994; Iseri and Solow, 1996). This most often results in a discrepancy in the occlusal plane, manifesting clinically in an Implant Infra-Position (IIP) compared to the crowns of the adjacent teeth. However, similar observations of IIP have also been done among mature adult patients (Thilander et al. 1999; Bernard et al., 2004) with little to no active growth potential, which could lead to aesthetic impairment and ultimately the need to replace the implant-supported restoration.
Another post-treatment complication that has been reported increasingly during the last decade is the loss of the Proximal Contact Point (PCP) between the restored implant’s crown and the adjacent natural teeth (Wei et al., 2008; Byun et al. 2015; Wong et al. 2015). It has been postulated that natural teeth move in vertical and sagittal directions both during active adolescent growth of the jaws, but also during the slow growth that can be seen in both young and mature adults (Oesterle and Croni, 2000). Additionally, the position of the teeth within the dental arch is not stable and a number of factors, including among others location, tooth type, gender, age, vitality of adjacent teeth, and the strength of occlusal forces, have been proposed as important in both PCP tightness and PCP loss (Pang et al., 2017). At the same time PCP loss has been associated with food impaction in the interdental area, with subsequent patient dissatisfaction (Jeong and Chang, 2015), and with periodontal disease (Jernberg et al., 1983).

1.2. | Aim

Current evidence on long-term complications of implants functioning among natural teeth that are related to their osseointegration and ankylotic nature is limited. Therefore, aim of the present systematic review was to assess in an evidence-based manner the existing data from longitudinal studies and try to answer the question: What are the adverse effects of osseointegrated dental implants functioning among natural teeth in residual dentitions of adolescent and adult patients and especially the rate and extent of IIP and PCP loss?

2 | MATERIAL AND METHODS

2.1. | Protocol and registration

The review’s protocol was made a priori following the PRISMA-P statement (Shamseer et al. 2015), registered in PROSPERO (CRD42018086404), and all post hoc changes were appropriately noted. This systematic review was conducted and reported according to Cochrane Handbook (Higgins and Green 2011) and PRISMA statement (Liberati et al. 2009), respectively.

2.2. | Eligibility criteria
According to the Participants-Intervention-Comparison-Outcome-Study design (PICOS) schema, we included randomized or non-randomized clinical studies on human patients of any age, sex, or ethnicity with at least one osseointegrated dental implant placed (including its restoration) among natural teeth. The primary outcome of this systematic review was the IIP of the osseointegrated implant (and its suprastructure) compared to adjacent teeth, while the secondary outcome pertained to loss of the PCP of the implant’s crown with the adjacent natural tooth. Excluded were non-clinical studies, case reports, animal studies, studies on patients with systemic diseases or syndromes, studies on implant-supported overdentures or tooth-and-implant restorations, studies on surgical or short-term (< 6 months) outcomes, and studies with non-relevant outcomes.

2.3. | Information sources and literature search

Seven electronic databases were systematically searched by one author (SNP) without any limitations from inception up to January 10th, 2018 (Appendix S1): MEDLINE (searched via PubMed), Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Embase, Virtual Health Library, Scopus, and Web of Knowledge. Additionally, five sources (Google Scholar, International Standard Registered Clinical/ soCial sTudy Number Registry, Directory of Open Access Journals, Digital Dissertations, metaRegister of Controlled Trials, and ClinicalTrials.gov) and the reference/citation lists of included trials were manually searched for any additional trials. No limitations concerning publication language, publication year, or publication status were applied.

2.4. | Study selection

The eligibility of identified studies was checked sequentially from their title, abstract, and full-text against the eligibility criteria by one person (SNP) and were subsequently checked independently by a second one (TE), with any conflicts being resolved by a third person (CHFH).

2.5 | Data collection and data items

Study characteristics and numerical data were extracted from included studies independently by two authors (SNP, TE) using predefined and piloted extraction forms including: (i) study characteristics (design,
clinical setting, country), (ii) patient characteristics (age, sex, or smoking at implant placement and orthodontic treatment prior to implant placement), (iii) number and type of implants, (iv) type and localization of prosthetic restoration, (v) analyzed sample, and (vi) outcome details (type of adverse effect, nature, measurement method, timing, and any treatments for these adverse effects). Piloting of the forms was performed during the protocol stage until over 90 per cent agreement was reached. Missing or unclear information was calculated, whenever possible. Any individual patient data provided in an included study were extracted and re-analyzed firsthand (Appendix S2).

2.6. | Risk of bias in individual trials

The risk of bias of included randomized trials was to be assessed using Cochrane’s risk of bias tool (Higgins and Green 2011); the risk of bias of included non-randomized studies was assessed using a modified Newcastle-Ottawa scale for cohort studies (Wells et al. 2017) on outcome level as, as guided by the Cochrane Handbook (Higgins and Green 2011).

2.7. | Outcomes and data synthesis

The primary outcome of IIP was measured as binary yes/no variable (existence of IIP), as continuous variable (extent of IIP in mm), and as categorical variable according to magnitude, for which most authors took the 1 mm cut-off to denote considerable IIP. The secondary outcome of PCP loss was measured as binary yes/no variable (lack of PCP). These outcomes were reported either on patient level or on implant/tooth level and, as the latter was more often reported, this was adopted as main analysis unit.

Initially, the pooled % event rate of IIP or PCP loss and the pooled IIP extent in mm was calculated in an indirect explorative analysis across studies (1-group pooling). Subsequently, direct comparisons were made from within- and across-studies data regarding the influence of various patient-, implant-, or study-related characteristics using Relative Risks (RR) for binary/categorical or Mean Differences (MD) for continuous outcomes with the corresponding 95% Confidence Intervals (CI) (2-groups’ pooled comparisons). In case of identified studies reporting Odds Ratios (OR) adjusted for confounders, these were used instead of RRs to improve effect precision. Statistically significant ORs/RRs were translated clinically with the Number Needed to Treat (NNT).
As adverse effects of dental implants among natural teeth are bound to be affected by the person’s residual growth potential, the masticatory habits, issues pertaining to the implant or its prosthetic reconstruction, and the periodontal or functional status of adjacent teeth, a wide variation of true effects was expected to exist. Therefore, a random-effects model was judged a priori to be appropriate to calculate the average of the distributions of effects, based on biological, clinical, and statistical grounds (Papageorgiou 2014a). Novel random-effects model estimators were used instead of the more widely known DerSimonian and Laird (1986) estimator, based on contemporary guidelines and software availability, due to their improved performance. The bootstrapped-DerSimonian-Laird method (Petropoulou and Mavridis, 2017) was used for indirect pooling of IIP/PCP loss event rates and the Paule-Mandel method (Veroniki et al., 2016) was used for indirect pooling of IIP extent and direct meta-analyses of OR, RR, and MD.

The extent and impact of between-study heterogeneity was assessed by inspecting the forest plots and calculating the tau^2 (absolute heterogeneity) and the I^2 (relative heterogeneity), respectively; I^2 defines the proportion of total variability in the result explained by heterogeneity, and not chance (Higgins et al. 2003). Heterogeneity was roughly categorized as low, moderate, and high according to I^2 values of 25, 50, and 75 per cent (Higgins et al. 2003), although the heterogeneity’s localization on the forest plot was also judged. Additionally, the 95 per cent CIs around tau^2 and I^2 were calculated (Ioannidis et al. 2007) to quantify our uncertainty around these estimates. Ninety-five per cent predictive intervals were calculated for meta-analyses of ≥3 trials to incorporate existing heterogeneity and provide a range of possible effects for a future clinical setting, which is crucial for the correct interpretation of random-effects meta-analyses (IntHout et al. 2016). All analyses were conducted in Stata SE version 14.2 (StataCorp LP, College Station, Texas, USA) by one author (SNP) with the data made freely available in Zenodo (Papageorgiou et al. 2018). A two side P < 0.05 was considered significant for hypothesis-testing, except for P < 0.10 used for tests of between-studies or between-subgroups heterogeneity (Ioannidis 2008).

2.8. | Additional analyses and quality of meta-evidence

Possible sources of heterogeneity were a priori planned to be sought through random-effects subgroup analyses and random-effects meta-regression for meta-analyses of ≥ five studies, including: mean patient
age, % male proportion of the patient sample, % of restorations in the maxilla, % of restoration in the anterior region (canine to canine), and the length of follow-up. Additional analyses for subgroups, meta-regressions, and reporting biases were planned, but were not conducted, due to lack of available studies (Appendix S2).

The overall quality of clinical recommendations for outcomes addressed by direct evidence (analyses with OR, RR, or MD) was rated using the GRADE approach, as very low, low, moderate, or high (Guyatt et al. 2011) and a Summary of Findings table was constructed using the improved format proposed by Carrasco-Labra et al. (2016) and recent guidance on incorporating non-randomized studies (Schünemann et al. 2018). The minimal clinical important (Norman et al. 2003), large, and very large effects were defined as half, one, and two standard deviations (using the average standard deviation for an outcome across included studies), respectively. Arbitrary cut-offs of 1.5, 2.0, and 5.0 (Schünemann et al. 2009) were adopted for OR and RR. The produced forest plots were augmented with contours denoting the magnitude of the observed effects (Papageorgiou 2014b) to visually gauge heterogeneity, clinical relevance, and imprecision.

Robustness of the results was planned a priori to be checked with sensitivity analyses based on (i) inclusion/exclusion of trials with methodological shortcomings, (ii) improvement of the Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) classification, and (iii) inclusion/exclusion of large-scale studies.

3 | RESULTS

3.1. | Study selection

The literature search yielded a total of 579 hits (Figure 1), 161 of which proceeded to full text assessment after eliminating duplicates and ineligible studies by title or abstract (Appendix S3). Finally, a total of 34 papers were identified as eligible for inclusion in the present systematic review. After pooling multiple papers relating to the same study, a total of 27 unique clinical studies published in Dutch, English, Japanese, or Portuguese between 1994 and 2017 were included. Apart from data from published reports, a total of 4 authors of identified studies were contacted for raw data, from which however none responded up to now (Appendix S4).
3.2. | Study characteristics

The descriptive characteristics of the 27 included studies can be seen in Table 1a and Table 1b. From these, none was a randomized trial, 4 (15%) were prospective non-randomized studies, and the remaining 23 (85%) studies were non-randomized studies with retrospective or unclear design. Most studies were conducted in university clinics (n=16; 59%) or private practices (n=8; 30%) in at least 15 different countries (with Sweden contributing the greatest with 8 studies). Overall, at least 1,572 patients were included (from the 26 studies reporting patient sample) with a mean age of 42.2 years (from the 22 studies reporting age) and with 51.2% of the patients being female (from the 22 studies reporting sex). These patients had been treated with the placement of at least 7835 implants (from the 25 studies reporting implant number) and re-examined after a median of average follow-up periods 5.7 years afterward, ranging from 1 to 18 years (from the 22 studies reporting mean follow-up). The primary outcome of IIP was the most widely-used outcome (assessed in 16 studies), followed by the secondary outcome of PCP loss (assessed in 10 studies). Other outcomes (not analyzed here) included mesiodistal movement of adjacent tooth at crown or root (2 studies each), buccolingual movement of adjacent tooth at crown (1 study), PCP space (1 study), and PCP tightness (1 study).

3.3. | Risk of bias within studies

The methodological adequacy (with possible implications for the risk of bias) of identified studies according to the modified Newcastle-Ottawa tool is given in detail in Appendix S5a-5b and in summary in Figure 2. All included studies were found to have serious methodological issues, with the most problematic domains being the blinding of outcome assessment (completely absent in 93% of studies), the basic study design (being retrospective in 85% of studies), the use of reliable outcome measurement methods (issues existing in 81% of studies), and the use of inadequate samples (in 74% of studies), which could influence the studies' results and their precision.

3.4. | Results of individual studies and data synthesis

All analyses are based on data extracted from the published reports of identified studies, which apart from aggregate data also included raw data on three occasions (Thilander et al., 1994; Bernard et al., 2004;
Kuijpers et al., 2006) that were re-analyzed in Appendix S6a-6c. The results of the Thilander et al. (1994) study indicated that patient age, skeletal maturation stage, and residual height growth all had a significant effect on the amount of observed IIP, with older/more skeletally mature patients having less IIP. Additionally, maxillary implants were tangentially more likely to experience considerable IIP (>1 mm) than mandibular ones.

As far as data synthesis is concerned, initially the average event rates or the average amounts of the primary and secondary outcomes were calculated across all studies through indirect random-effects meta-analyses (1-group pooling; Table 2). The results indicated that about half of placed implants show after average periods of 4.0 to 18.5 year signs of IIP (9 studies; pooled average rate of 50.5%; Figure 3) and the extent of which is on average at 0.58 mm (6 studies; Figure 4). However, extreme heterogeneity existed across the identified studies, which led to a random-effects prediction of 10.4% to 90.0% for the prevalence of IIP and a prediction of up to 1.43 mm for the extent of IIP. The pooled prevalence for IIP of considerable magnitude (IIP > 1 mm), again after an average follow-up of 4.3 to 18.5 years, was 20.8% (5 studies; Figure 5), which meant that about every 5th implant placed will be in risk of considerable IIP at some time. For this analysis too, great heterogeneity was seen across studies, which led to a very imprecise future prediction for IPP > 1 mm prevalence of 4.3%-60.9%. Finally, as far as mesiodistal movements of the adjacent teeth are concerned, meta-analysis of 9 studies indicated that the risk of PCP loss after mean observations of 3.9 to 7.0 years was 46.3% (Figure 6), which translated roughly to every second implant loosing its PCP. Similarly to the previous analyses however, a wide random-effects prediction was calculated, which placed the PCP loss risk for a future implant somewhere between 20.0% and 74.8%, due to the extreme heterogeneity seen across the results of existing studies.

This heterogeneity observed across studies was attempted to be explained through various patient-, implant-, or study-related characteristics (Table 3). As such, implant placement jaw was significantly associated with IIP development, with IIP rate increasing parallel to an increasing proportion of implants placed in the maxilla (P=0.02). Additionally, the extent of observed IIP was significantly associated with patient age, patient sex, placement jaw, and follow-up duration. This indicated that smaller amounts of IIP were observed for older patients and for male patients. Additionally, the amount of IIP observed was significantly associated with observation period, which averaged a 0.05 mm increase in IIP per year.

11
Interestingly, the amount of IIP seem to decrease as the proportion of implants placed in the maxilla increased, which is contrary to the effect seen for the prevalence of IIP. However, a post hoc meta-regression indicated an association of mean age with % of implants placed in the maxilla across studies (11.7% increase of maxillary-placed implants for every 10 patient years; \(P<0.001 \)), which could indicate a possible confounding effect. Finally, implantation area in terms of anterior jaw (up to the canine) or posterior jaw (from the premolar and posteriorly) was significantly associated with the risk of considerable IIP (>1 mm).

Insights into the effect of patient-, implant-, or study-related characteristics can be more robustly gleamed from the direct random-effects meta-analyses of these factors from within- and across-studies (2-groups’ comparison; Table 4). Patient sex was confirmed as a significant factor for IIP, where male patients had lower odds for IIP than female patients (3 studies; \(OR=0.3; 95\% \text{ CI}=0.1 \text{ to } 0.9 \)). This is translated clinically to an NNT of 6 (95% CI=3 to 77), which indicates that for every 6 implants placed in female patients, one more implant will have IIP than in male patients. A tendency for less IIP in the mandible compared to the maxilla was seen (MD=-0.21 mm), although this was marginally close to significance (\(P=0.07 \)). Apart from that, a significant influence was seen for follow-up duration and PCP side on the observed PCP loss, where the odds for PCP loss increased by about 10% each additional year the implant was in the mouth (2 studies; \(OR=1.1; 95\% \text{ CI}=1.0 \text{ to } 1.1 \)) and implants had higher odds of losing their mesial PCP than their distal one (5 studies; \(OR=2.3; 95\% \text{ CI}=1.1 \text{ to } 4.8 \)). This would be translated to an NNT of 6 (95% CI=3 to 91) and would indicate that for every 6th implant placed, one additional mesial PCP is lost over the loss rate of the distal PCP.

The GRADE approach was used to assess the quality of evidence originating from direct meta-analytical comparisons (Table 5). As analyses were done in an explorative fashion and multiple meta-analytical comparisons existed (Table 4), only comparisons with \(P < 0.05 \) were included in the GRADE approach (Table 5), where very low quality of evidence was found in all cases. This indicates that our confidence in these recommendations is limited and could be altered by future studies.

Finally, several patient-, implant-, or study-related characteristics were assessed within included studies, but as only one study contributed to each comparison, no meta-analysis could be performed (Appendix S7). Summarizing studies with results that were both statistically and clinically relevant, it was
seen that IIP was greater in the anterior region (compared to the posterior region), in orthodontically-treated patients (compared to not treated patients), and in skeletally young patients (compared to skeletally mature patients). As far as PCP is concerned, greater PCP loss was seen in patients over 60 years old (compared to patients between 20-39 years old), as well as for teeth with increased marginal bone loss (compared to no bone loss), with bone density D3-D4 according to Misch (compared to categories D1-D2), for single-rooted teeth (compared to multi-rooted teeth), for teeth with increased mobility (compared to teeth with normal mobility), and for teeth participating in lateral occlusal guidance (compared to non-participating teeth). However, only one study contributed to each factor and caution is warranted by the interpretation of these, until they are confirmed by future studies.

3.5. | Sensitivity analyses
Sensitivity analyses were attempted using the blinding of outcome assessment, but no identified study employed properly blinded assessors. Likewise, sensitivity analyses using only prospective studies were impossible, as 1-2 prospective studies were included at best in each meta-analysis, making comparisons unstable. A post hoc sensitivity analysis was conducted by including data on the patient level, instead of the implant-level that was included in the main analysis (Appendix S8a-b), which indicated no important influence on effect estimation, precision, or heterogeneity. The only exception was the direct meta-analysis of IIP among male and female patients, where the sensitivity analysis found a smaller effect (RR of 0.7 compared to OR of 0.3), which was attributed to the ORs used in the main analysis that were adjusted for confounders. A post hoc sensitivity analysis including only studies with patients over 20 years old (judging by their inclusion criteria and age range) indicated similar results to the main analysis (Appendix S9). Finally, an a priori sensitivity analysis was attempted by including only large-scale studies (set as including at least 100 implants), but could only partially be conducted, and no discrepancies were found (Appendix S10).

4 | DISCUSSION
4.1. | Summary of evidence
To our knowledge this is the first systematic review to summarize and assess in a systematic manner the late post-treatment complications of dental implants placed among natural teeth. The literature search yielded a total of 27 (mostly retrospective) non-randomized studies including at least 1572 patients (mean age 42.2 years; 51.2% female) and at least 7,835 dental implants followed for up to 18.5 years post-insertion. The pooled % prevalence of IIP on tooth level was 50.5% (9 studies; 95% CI=26.3-74.5%; Figure 3) and the pooled average IIP extent was 0.58 mm (6 studies; 95% CI=0.3-0.8 mm; Figure 4), while IIP>1 mm was seen for 20.8% of placed implants (5 studies; 95% CI=8.3-37.1%; Figure 5). This indicated that both IIP on general and considerable IIP (> 1 mm) are frequent complications of dental implants during their long-term function in the mouth. As stated before, this has been described by some authors as a response to sagittal or transversal growth of the jaws during adolescent and post-adolescent active growth (Thilander et al., 1994). Indeed, re-analysis of available raw data indicated that the amount of IIP was directly associated to the skeletal maturation phase as gauged by hand-wrist radiographs and to the amount of residual height a patient attained through growth (Appendix S6b). However, the results were the same in the sensitivity analysis with the inclusion criterion of only patients ≥ 20 years old (Appendix S9), with IIP prevalence being 43% (including patients 27-63 years old), IIP extent being 0.44 mm (including patients 20-56 years old), IIP > 1 mm prevalence being 42% (including patients 33-58 years old), and PCP loss prevalence being 46% (including patients 21-83 years old). This indicates that both IIP and PCP are not limited in the active growth period of adolescence and early adulthood. Other studies have described that IIP can also be seen among mature adults with practically no active growth potential, as a response to ‘slow growth’ and the continuous eruption of natural teeth (Oesterle and Croni, 2000). The available data from Bernard et al. (2004) corroborate this, as even patients older than 35 years showed definite signs of IIP (mean IIP of 0.67 mm and range of 0.12-1.86 mm for the 19 patients over 35 years).

As far as the extent of IIP is concerned, the results of existing studies were very heterogeneous, which was reflected in a random-effects prediction for IIP ranging from 0 to 1.43 mm (Table 2), and even IIPs of up to 1.86 or 2.00 mm have been reported (Appendix S6a-c). It seems that IIP is the result of a slow continuous process through time with an estimated mean increase of 0.05 mm per observation year (Table 3), which indicates that the combination of patient age and follow-up duration might explain some of the heterogeneity observed across studies. It seems therefore prudent that regular clinical examinations of...
placed implants take place to timely identify implant crowns with IIP, where action might be indicated (for example in terms of crown replacement).

Additionally, a significant influence of patient sex on IIP was found, which was supported by indirect (Table 3) and direct evidence (Table 4) and indicated that male patients were associated with milder IIP than female patients. This might be attributed to the more pronounced increase of anterior face height and posterior rotation of the mandible seen among female patients (Jemt et al., 2007). Especially in late growth periods of 25-45 years of age, female patients seem to have greater increases in both overbite and upper anterior face height than male patients (Bishara and Jakobsen 1998), which might explain at least in part this sex-specific difference in IIP.

Furthermore, no reliable evidence was found of a significant influence of pre-implant orthodontic treatment on increased risk of IIP or PCP loss (Brahem et al. 2017). Even though signs were seen for increased risk of orthodontically-treated patients for IIP (OR=3.42), IIP>1 mm (RR=2.83), or PCP loss (OR=2.97) were found (Appendix S7), these were not statistically significant (P>0.05). Additionally, a potentially large difference in the amount of IIP was found between orthodontically treated and untreated patients (IIPs of 0.97 and 0.21 mm, respectively) by one study (Gjelvold et al. 2017). However, caution is warranted since the risk of confounding by indication is high, due to the non-randomized design of included studies. To put it simply, patient receiving orthodontic treatment might present with more extreme craniofacial configurations in the vertical or sagittal plane and a potential for increased mandibular rotation than non-orthodontic patients, which might directly influence the observed IIP or PCP loss. Therefore, additional prospective studies are needed with either randomized design or statistical methods that minimize confounding in order to provide more conclusive evidence on the subject.

The influence of craniofacial morphology on the observed IIP has been previously suggested (Jemt et al. 2007), but remains currently unclear. This is based on the assumption that patients with slow continuous posterior rotation of the mandible, combined with slow increase of anterior face height, would present a more "long-face" appearance in combination with greater infraposition of single-implant restorations in relation to adjacent anterior teeth in the upper jaw. However, this was not formally confirmed from the single study on the matter (Bergenblock et al. 2012), even though long-face patients tended to have higher IIP odds than normal-face patients (OR=2.14; P=0.42). This needs to be assessed in the future.
with robust methodology (for example through cephalometric analysis), as only a subjective evaluation of face shape was performed in the currently existing study.

As far as the review’s secondary outcome of PCP loss is concerned, a likewise high prevalence of 46.3% was found (Table 2; Figure 6), which indicated that almost every second implant might be in risk. Open PCPs of implant-restorations have been associated with increased patient discomfort (Jeong et al., 2015; Ryu et al., 2016), which might be attributed to the increased food impaction between teeth (Jeong et al., 2015), reduced fill of the proximal spaces by the papilla (Jeong et al., 2015), and periodontal health (Jernberg et al., 1983). Also, similar to IIP, the process of PCP loss seemed to be a continuous procedure, with its prevalence increased with each follow-up year (Table 4; OR=1.09) and with the time of half occurrence being reported between 3.0 years (Pang et al., 2017) and 5.5 years post-insertion (Koori et al., 2010).

There was a clear predilection of PCP loss for the mesial PCP of implant-supported prostheses over the distal ones (Table 4), which remained after including only bounded cases of restorations (i.e. having both mesial and distal PCPs with natural teeth) (Pang et al., 2017). This has been attributed to mesial drifting of the teeth mesially to the implant restoration mesial components of the occlusal forces (Heij et al. 2006; Koori et al., 2010; Wat et al. 2011). Finally, marginal bone loss of the adjacent tooth was significantly associated with PCP loss (Pang et al., 2017), which could be explained by an increased mesial dislocation of the tooth under occlusal forces (Wei et al., 2008). All these indicate that the physiological or increased mobility of the natural adjacent teeth in combination with the anterior or lateral force components of mastication might play an important role in PCP loss of the implant-supported reconstruction.

4.2. | Strengths and limitations

The strengths of this systematic review consist of the registration of its a priori protocol in PROSPERO (Sideri et al., 2018), its exhaustive literature search, its improved analytical methods (Veroniki et al., 2016; Petropoulou et al., 2017), the use of the GRADE approach (Guyatt et al. 2011) to assess the quality of the meta-evidence, and the transparent provision of the study’s data (Papageorgiou et al. 2018). However, certain limitations also exist. First and foremost, this systematic review included only non-randomized trials that are at higher risk of bias than randomized ones (Papageorgiou et al., 2015b). As the scope of the
review pertained more to adverse effects and diagnosis, non-randomized designs might be applicable, but the vast majority of included studies (85%) were retrospective and therefore at higher risk of bias than prospective studies (Papageorgiou et al., 2015c). Additionally, methodological issues existed for all included studies, as has been often reported for clinical trials in prosthodontics and implant dentistry (Papageorgiou et al., 2015a), and these might have influenced the review’s results. Furthermore, the identified studies were predominantly small and this might introduce small-study effects (Cappelleri et al. 1996). Finally, the limited number of included studies and their suboptimal reporting did not enable robust assessments of heterogeneity, as well as the conduct of several analyses for subgroup, small-study effects, and reporting biases that were planned.

5 | CONCLUSIONS

Based on a limited number of mostly small to medium non-randomized studies on the long-term performance of implant supported restorations among natural teeth, it seems that about every second implant is affected by IIP and PCP loss during its first 5 to 15 years of life. However, high heterogeneity exists among the results of existing studies, which make accurate predictions about the risk and extent of these adverse effects difficult. There is some scant evidence about increased risk of IIP for female patients and increased risk of PCP loss for the mesial side of the implant, but the quality of evidence is very low. Given the high prevalence of both IIP and PCP loss and their potential influence on patient satisfaction, further research on the minimization and treatment of IIP and PCP loss is advised, which should however be utilized using well-controlled prospective blinded study designs with higher internal validity than existing studies.
REFERENCES

Albrektsson, T., & Donos, N. (2012). Implant survival and complications. The Third EAO consensus conference. *Clinical Oral Implant Research, 23*, 63–65.

Bergenblock, S., Andersson, B., Fürst, B., & Jemt, T. (2012). Long-term follow-up of CeraOne™ single-implant restorations: an 18-year follow-up study based on a prospective patient cohort. *Clinical Implant Dentistry and Related Research, 14*, 471–479.

Bernard, J. P., Schatz, J. P., Christou, P., Belser, U., & Kiliaridis, S. (2004). Long-term vertical changes of the anterior maxillary teeth adjacent to single implants in young and mature adults. A retrospective study. *Journal of Clinical Periodontology, 31*, 1024–1028.

Bishara, S. E., & Jakobsen, J. R. (1998). Changes in overbite and face height from 5 to 45 years of age in normal subjects. *The Angle Orthodontist, 68*, 209–216.

Brahem, E. B., Holm, B., Sonnesen, L., Worsaae, N., & Gottfredsen, K. (2017). Positional changes of maxillary central incisors following orthodontic treatment using single-crown implants as fixed reference markers. *Clinical Oral Implants Research, 28*, 1560–1566.

Byun, S. J., Heo, S. M., Ahn, S. G. & Chang, M. (2015) Analysis of proximal contact loss between implant-supported fixed dental prostheses and adjacent teeth in relation to influential factors and effects. A cross-sectional study. *Clinical Oral Implants Research, 26*, 709–714.

Cappelleri, J. C., Ioannidis, J. P., Schmid, C. H., de Ferranti, S. D., Aubert, M., Chalmers, T. C., & Lau, J. (1996). Large trials vs meta-analysis of smaller trials: how do their results compare? JAMA, 276, 1332–1338.

Carrasco-Labra, A., Brignardello-Petersen, R., Santesso, N., Neumann, I., Mustafa, R. A., Mbuagbaw, L., … Schünemann, H.J. (2016). Improving GRADE evidence tables part 1: a randomized trial shows improved understanding of content in summary of findings tables with a new format. *Journal of Clinical Epidemiology, 74*, 7–18.

Chang, M., Ödman, P. A., Wennström, J. L., & Andersson, B. (1999). Esthetic outcome of implant-supported single-tooth replacements assessed by the patient and by prosthodontists. *International Journal of Prosthodontics, 12*, 335–341.

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. *Controlled Clinical Trials, 7*, 177–188.
Dierens, M., Vandeweghe, S., Kisch, J., Nilner, K., & De Bruyn, H. (2012). Long-term follow-up of turned single implants placed in periodontally healthy patients after 16-22 years: radiographic and peri-implant outcome. *Clinical Oral Implant Research, 23*, 197–204.

Gjelvold, B., Chrzanovic, B. R., Bagewitz, I. C., Kisch, J., Albrektsson, T., & Wennerberg, A. (2017). Esthetic and Patient-Centered Outcomes of Single Implants: A Retrospective Study. *International Journal of Oral & Maxillofacial Implants, 32*, 1065–1073.

Guyatt, G. H., Oxman, A. D., Schünemann, H. J., Tugwell, P., & Knottnerus, A. (2011). GRADE guidelines: a new series of articles in the Journal of Clinical Epidemiology. *Journal of Clinical Epidemiology, 64*, 380–382.

Heij, D. G., Opdebeeck, H., van Steenberghe, D., Kokich, V. G., Belser, U., & Quirynen, M. (2006). Facial development, continuous tooth eruption, and mesial drift as compromising factors for implant placement. *The International Journal of Oral & Maxillofacial Implants, 21*, 867–878.

Higgins, J. P. T., & Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 (updated March 2011). The Cochrane Collaboration, http://www.cochrane handbook.org.

Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. *BMJ, 327*, 557–560.

IntHout, J., Ioannidis, J. P., Rovers, M. M., & Goeman, J. J. (2016). Plea for routinely presenting prediction intervals in meta-analysis. *BMJ Open, 6*, e010247.

Ioannidis, J. P. (2008). Interpretation of tests of heterogeneity and bias in meta-analysis. *Journal of Evaluation in Clinical Practice, 14*, 951–957.

Ioannidis, J. P., Patsopoulos, N. A., & Evangelou, E. (2007). Uncertainty in heterogeneity estimates in meta-analyses. *BMJ, 335*, 914–916.

Iseri, H., & Solow, B. (1996). Continued eruption of maxillary incisors and first molars in girls from 9 to 25 years, studied by the implant method. *European Journal of Orthodontics, 18*, 245–256.

Jemt, T. (2008). Single implants in the anterior maxilla after 15 years of follow-up: comparison with central implants in the edentulous maxilla. *International Journal of Prosthodontics, 21*, 400–408.
Jemt, T., Ahlberg, G., Henriksson, K., & Bondevik, O. (2007). Tooth movements adjacent to single-implant restorations after more than 15 years of follow-up. *International Journal of Prosthodontics, 20*, 626–632.

Jeong, J. S., & Chang, M. (2015). Food Impaction and Periodontal/Peri-Implant Tissue Conditions in Relation to the Embrasure Dimensions Between Implant-Supported Fixed Dental Prostheses and Adjacent Teeth: A Cross-Sectional Study. *Journal of Periodontology, 86*, 1314–1320.

Jemberg, G. R., Bakdash, M. B., & Keenan, K. M. (1983). Relationship between proximal tooth open contacts and periodontal disease. *Journal of Periodontology, 54*, 529–533.

Jung, R. E., Zembic, A., Pjetursson, B. E., Zwahlen, M., & Thoma, D. S. (2012). Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. *Clinical Oral Implants Research, 23 Suppl 6*, 2–21.

Koori, H., Morimoto, K., Tsukiyama, Y., & Koyano, K. (2010). Statistical analysis of the diachronic loss of interproximal contact between fixed implant prostheses and adjacent teeth. *International Journal of Prosthodontics, 23*, 535–540.

Kuijpers, M. A., de Lange, J., & van Gool, A. V. (2006). [Maxillofacial growth and dental implants in the maxillary anterior region]. *Nederlands Tijdschrift Voor Tandheelkunde, 113*, 130–133.

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gotzsche, P. C., Ioannidis, J. P., … Moher D. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *Journal of Clinical Epidemiology, 62*, e1–34.

Moraschini, V., Poubel, L. A., Ferreira, V. F., & Barboza Edos, S. (2015). Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. *International Journal of Oral & Maxillofacial Surgery, 44*, 377–388.

Norman, G. R., Sloan, J. A., & Wyrwich, K. W. (2003). Interpretation of changes in health-related quality of life: the remarkable universality of half a standard deviation. *Medical Care, 41*, 582–592.

Ödman, J., Grondahl, K., Lekholm, U., & Thilander, B. (1991). The effect of osseointegrated implants on the dento-alveolar development. A clinical and radiographic study in growing pigs. *European Journal of Orthodontics, 13*, 279–286.
Oesterle, L. J. & Cronin, R. J., Jr. (2000). Adult growth, aging, and the single-tooth implant. *International Journal of Oral Maxillofacial Implants, 15*, 252–260.

O'Leary, T. J., Badell, M. C., & Bloomer, R. S. (1975). Interproximal contact and marginal ridge relationships in periodontally healthy young males classified as to orthodontic status. *Journal of Periodontology, 46*, 6–9.

Pang, N. S., Suh, C. S., Kim, K. D., Park, W., & Jung, B. Y. (2017). Prevalence of proximal contact loss between implant-supported fixed prostheses and adjacent natural teeth and its associated factors: a 7-year prospective study. *Clinical Oral Implants Research, 28*, 1501–1508.

Papageorgiou, S. N. (2014a). Meta-analysis for orthodontists: part i–how to choose effect measure and statistical model. *Journal of Orthodontics, 41*, 317–326.

Papageorgiou, S. N. (2014b). Meta-analysis for orthodontists: part II–Is all that glitters gold? *Journal of Orthodontics, 41*, 327–336.

Papageorgiou, S. N., Eliades, T., & Hämmerle, C. H. F. (2018). Frequency of infraposition and missing contact points in implant supported restorations within natural dentitions over time: a systematic review with meta-analysis [Data set]. Clinical Oral Implants Research. Zenodo. http://doi.org/10.5281/zenodo.1183339

Papageorgiou, S. N., Kloukos, D., Petridis, H., & Pandis, N. (2015a). An Assessment of the Risk of Bias in Randomized Controlled Trial Reports Published in Prosthodontic and Implant Dentistry Journals. *International Journal of Prosthodontics, 28*, 586–593.

Papageorgiou, S. N., Kloukos, D., Petridis, H., & Pandis, N. (2015b). Publication of statistically significant research findings in prosthodontics & implant dentistry in the context of other dental specialties. *Journal of Dentistry, 43*, 1195–1202.

Papageorgiou, S. N., Xavier, G. M., & Cobourne, M. T. (2015). Basic study design influences the results of orthodontic clinical investigations. *Journal of Clinical Epidemiology, 68*, 1512–1522.

Petropoulou, M, & Mavridis, D. (2017). A comparison of 20 heterogeneity variance estimators in statistical synthesis of results from studies: a simulation study. *Statistics in Medicine, 36*, 4266–4280.

Ryu, S. B. (2016). *Clinical study on the contact loss between implant prostheses and adjacent teeth. Master Thesis, Seoul National University, 2016.*
Schünemann, H. J., Cuello, C., Akl, E. A., Mustafa, R. A., Meerpohl, J. J., Thayer, K., Morgan, R. L., Gartlehner, G., Kunz, R., Katikireddi, S. V., Sterne, J., Higgins, J. P., Guyatt, G., & GRADE Working Group. (2018). GRADE Guidelines: 18. How ROBINS-I and other tools to assess risk of bias in non-randomized studies should be used to rate the certainty of a body of evidence. *Journal of Clinical Epidemiology, [Epub ahead of print]*.

Schünemann, H., Brozek, J., & Oxman, A, editors. (2009). *GRADE handbook for grading quality of evidence and strength of recommendation*. Version 3.2 [updated March 2009]. The GRADE Working Group, http://www.cc-ims.net/gradepro.

Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., … PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ, 349*, g7647.

Sideri, S., Papageorgiou, S. N., & Eliades, T. (2018). Registration in PROSPERO of systematic review protocols was associated with increased review quality. *Journal of Clinical Epidemiology*, http://dx.doi.org/10.1016/j.jclinepi.2018.01.003

Thilander, B., Ödman, J., & Jemt, T. (1999). Single implants in the upper incisor region and their relationship to the adjacent teeth. An 8-year follow-up study. *Clinical Oral Implant Research, 10*, 346–355.

Thilander, B., Ödman, J., Gröteborg, K., & Friberg, B. (1994). Osseointegrated implants in adolescents. An alternative in replacing missing teeth? *European Journal of Orthodontics, 16*, 84–95.

Veroniki, A. A., Jackson, D., Vieechtbaier, W., Bender, R., Bowden, J., Knapp, G, … D, Salanti G. (2016). Methods to estimate the between-study variance and its uncertainty in meta-analysis. *Research Synthesis Methods, 7*, 55–79.

Wat, P. Y., Wong, A. T., Leung, K. C., & Pow, E. H. (2011). Proximal contact loss between implant-supported prostheses and adjacent natural teeth: a clinical report. *The Journal of Prosthetic Dentistry, 105*, 1–4.

Wei, H., Tomotake, Y., Nagao, K & Ichikawa, T. (2008). Implant prostheses and adjacent tooth migration: preliminary retrospective survey using 3-dimensional occlusal analysis. *International Journal of Prosthodontics, 21*, 302–304.
Wells, G. A., Shea, B., O'Connell, D., Petersen, J., Welch, V., Losos, M., & Tugwell, P. (2010). The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm.

Wittneben, J. G., Buser, D., Salvi, G. E., Bürgin, W., Hicklin, S., & Brägger, U. (2014). Complication and failure rates with implant-supported fixed dental prostheses and single crowns: a 10-year retrospective study. *Clinical Implant Dentistry and Related Research, 16*, 356–364.

Wong, A.T.Y., Wat, P.Y.P., Pow, E.H.N. & Leung, K.C.M. (2015). Proximal contact loss between implant-supported prostheses and adjacent natural teeth: a retrospective study. *Clinical Oral Implants Research, 26*, e68–e71.
FIGURE 1 PRISMA flow diagram for the identification and selection of eligible studies

561 records identified electronically

18 records identified manually

152 duplicates were removed

391 records were screened

225 were excluded by title/abstract

161 Full texts were checked for eligibility against the criteria

127 were not eligible
6 had missing full texts
5 was no clinical study
1 with systematic health problems
5 had no implants among natural teeth
21 were on tooth-implant restorations
1 were on surgical aspects
1 assessed implants in the short-term
70 included no relevant outcomes
3 assessed caries/loss of adjacent teeth
8 were review articles
5 were case series/reports
1 was study protocol
5 had data handling issues

34 papers (27 unique studies) were included
FIGURE 2 Summary of the methodological adequacy (including potential bias) of identified studies using a modified Newcastle-Ottawa tool

1. Selection
 - Representative of cohort
 - Ascertainment of exposure
 - Outcome was absent at start

2. Outcome
 - Blind assessment
 - Method valid and reliable
 - Free from contact artifacts
 - Method reliability assessed
 - Follow-up adequate for outcome
 - Follow-up of the whole cohort

3. Reporting
 - Was the study’s main scope
 - Patient characteristics given
 - Treatment characteristics given

4. Bias
 - Prospective planning/conduct
 - Adjust for variable follow-ups
 - Clustering adequately assessed
 - Adjusted for confounders
 - Sufficient sample size

Legend:
- Not applicable
- Unclear
- Criterion met
- Criterion half-met
- Criterion unmet
FIGURE 3 Contour enhanced forest plot of the pooled % event rate of implant infraocclusion at implant level. CI, confidence interval; mAge, mean age at implant placement in year; mFU, mean follow-up in years after implant placement; R, range

Study	mAge (R)	mFU (R)	Implant infraposition (% event rate)	% Rate (95% CI)	Weight
Avivi-Arber 1996	33.5 (14.5-63.9)	4.0 (1.0-8.0)	33.5 (14.5-63.9)	3.39 (0.13, 10.79)	11
Bonde 2013	NR (NR)	10.0 (8.0-12.0)	10.0 (8.0-12.0)	18.07 (8.52, 30.22)	11
Ekfeldt 2011	30.0 (27.0-63.0)	10.5 (10.0-11.0)	30.0 (27.0-63.0)	17.71 (6.53, 32.86)	11
Jemt 2007	26.9 (NR)	15.9 (NR)	26.9 (NR)	39.65 (22.91, 57.74)	11
Chang 2012	40.0 (19.0-71.0)	8.0 (-)	40.0 (19.0-71.0)	57.82 (40.58, 74.12)	11
Dierens 2013	23.0 (33.0-68.0)	18.0 (16.0-22.0)	23.0 (33.0-68.0)	70.02 (51.00, 86.00)	11
Bergenblock 2012	31.4 (18.0-56.0)	18.5 (17.0-19.0)	31.4 (18.0-56.0)	70.01 (54.02, 83.63)	11
Brahem 2017	29.7 (NR)	7.0 (NR)	29.7 (NR)	81.59 (70.58, 90.48)	11
Jamilian 2015	20.0 (NR)	5.6 (NR)	20.0 (NR)	98.30 (85.99, 98.51)	11
Overall (I²=95%)			Overall (I²=95%)	50.46 (26.28, 74.53)	100

with 95% prediction
FIGURE 4 Contour enhanced forest plot of the pooled amount of implant infraocclusion in mm at implant level. CI, confidence interval; mAge, mean age at implant placement in year; mFU, mean follow-up in years after implant placement; R, range

Study	mAge (R)	mFU (R)	Implant infraposition (extent in mm)	Effect (95% CI)	Weight
Gjelvold 2017	NR (NR)	7.5 (3.6-11.1)		0.13 (0.01, 0.25)	20
Chang 2012	40.0 (19.0-71.0)	8.0 (-)		0.38 (0.16, 0.60)	18
Vilhjalmsson 2013	34.8 (20.0-56.0)	3.0 (-)		0.66 (0.15, 1.17)	11
Bernard 2004	31.0 (15.4-56.7)	4.3 (1.1-9.1)		0.69 (0.55, 0.83)	20
Kuijpers 2006	16.7 (12.9-18.8)	11.0 (9.9-12.0)		0.77 (0.42, 1.12)	15
Thilander 1994c	15.3 (13.2-19.3)	10.0 (-)		0.98 (0.69, 1.27)	16
Overall (I²=88%)				0.58 (0.33, 0.83)	100
with 95% prediction				(0, 1.43)	
FIGURE 5 Contour enhanced forest plot of the pooled % event rate of considerable implant infraocclusion (>1 mm) at implant level. CI, confidence interval; mAge, mean age at implant placement in year; mFU, mean follow-up in years after implant placement; R, range

Study	mAge (R)	mFU (R)	Implant infraposition >1 mm (% event rate)	% Rate (95% CI)	Weight
Brahem 2017	29.7 (NR)	7.0 (NR)		4.34 (0.64, 11.11)	21
Jemt 2007	26.9 (NR)	15.9 (NR)		15.48 (4.86, 30.61)	19
Bernard 2004	31.0 (15.4-56.7)	4.3 (1.1-9.1)		18.28 (8.11, 31.40)	21
Bergenblock 2012	31.4 (18.0-56.0)	18.5 (17.0-19.0)		35.71 (20.90, 52.07)	20
Dierens 2013	23.0 (33.0-58.0)	18.0 (16.0-22.0)		41.99 (23.75, 61.46)	19
Overall (I²=84%)				20.84 (8.35, 37.09)	100
with 95% prediction				(4.30, 60.90)	
FIGURE 6 Contour enhanced forest plot of the pooled % event rate of proximal contact point loss at implant level. CI, confidence interval; mAge, mean age at implant placement in year; mFU, mean follow-up in years after implant placement; PCP, proximal contact point; R, range

Study	mAge (R)	mFU (R)	Contact point loss to implant (% event rate)	% Rate (95% CI)	Weight
Son 2009	NR (NR)	6.0 (NR)		13.38 (10.11, 17.03)	11
Ryu 2016	60.0 (21.0-78.0)	5.8 (0-14.9)		28.31 (19.19, 38.43)	11
Byun 2015	56.0 (27.0-83.0)	4.8 (0.3-13.0)		34.11 (27.59, 40.96)	11
Koori 2010	58.4 (21.0-79.0)	NR (0.1-10.3)		43.05 (36.05, 50.19)	11
Varthis 2016	NR (19.0-91.0)	NR (0.3-11.0)		52.86 (45.46, 60.19)	11
Fukunishi 2016	61.6 (NR)	5.0 (NR)		57.26 (50.10, 64.27)	11
Pang 2017	58.4 (21.0-79.0)	7.0 (-)		59.83 (54.23, 65.31)	11
Wong 2015	45.0 (27.0-74.0)	3.9 (0.5-12.0)		64.93 (53.18, 75.82)	11
Brahem 2017	29.7 (NR)	7.0 (NR)		69.83 (57.50, 80.86)	11
Overall (I²=97%)				46.31 (32.52, 60.40)	100
with 95% prediction				(20.00, 74.8)	
TABLE 1a
Patient and implant characteristics of included studies

Nr	Study ID	Design; Setting; Country (ISO Alpha 3)	Patients (F/M); mAge (R) in years	Smok\%	Ortho\%	Imps	Restoration	Max\%	ANT\%
1	Avivi-Abber 1996	uNRS; Uni; CAN	41 (19/22); 33.5 (14.5-63.9)	NR	NR	49 Imps (NB)	SC	71\%	63\%
2	Bergenblock 2012; Andersson 2013\a	rNRS; Clinic; SWE	57 (25/32); 31.9 (15.0-57.0)	8/27	9\%	65 Imps (NB)	SC	>50\%	77\%
3	Bernard 2004	rNRS; Uni; CHE	G1: 14 (9/5); 18.4 (15.5-21.0) G2: 14 (9/5); 43.6 (40.0-55.0)	NR	NR	G1-2: 40 Imps (ST)	SC	100\%	100\%
4	Bonde 2013\b	rNRS; Uni; DNK	51 (NR); NR	NR	NR	55 Imps (NB)	SC	NR	NR
5	Brahem 2017	uNRS; Uni; DNK	G1: 20 (13/7); 33.8 (G1-2 18.0-61.0) G2: 37 (24/13); 27.5 (G1-2 18.0-61.0)	NR	in G2 (43\% Ret)	G1-2: 89 Imps (NR)	SC	100\%	100\%
6	Byun 2015\c; Jeong 2015	rNRS; Uni; KOR	94 (44/50); 56.0 (27.0-83.0)	NR	NR	188 Imps (NR)	SC/FIP	48\%	6\%
7	Chang 2012	rNRS; Uni; SWE	31 (13/18); 40.0 (19.0-71.0)	NR	NR	33 Imps (AT)	SC	100\%	58\%
8	Cosyn 2012	rNRS; Uni/practice; BEL	97 (37/60); 51.0 (23.0-80.0)	NR	NR	97 Imps (NB)	SC	100\%	66\%
9	Dieren 2013\d; Dieren 2016	rNRS; clinic; SWE	21 (9/12); 23.0 (33.0-58.0)	4\%	NR	24 Imps (NB)	SC	100\%	83\%
10	Ekfeldt 2011; 2017	rNRS; clinic; SWE	30 (NR); 23.0 (17.0-72.0)	3\%	NR	30 Imps (NB)	SC	84\%	6\%
11	Fukunishi 2016	uNRS; clinic; JAP	135 (83/52); 61.6 (NR)	NR	NR	185 Imps (BM)	SC	0\%	0\%
12	Gjevold 2017	rNRS; clinic; SWE	87 (36/51); 21.4 (17.0-68.0)	17\%	67\%	126 Imps (DE)	SC	81\%	83\%
13	Jamilian 2015	rNRS; Uni; IRN	10 (5/5); 20.0 (NR)	NR	Prb. (100\%)	14 Imps (NR)	SC	100\%	100\%
14	Jemt 2007\e; Jemt 2008	rNRS; clinic; SWE	25 (7/18); 26.9 (NR)	NR	NR	56 Imps (NB)	SC	100\%	100\%
15	Koori 2010	rNRS; practice; JAP	105 (67/38); NR (20.0-78.0)	NR	NR	353 Imps (misc)	SC/FIP	26\%	NR
16	Kuipers 2006	rNRS; clinic; NLD	8 (3/5); 16.6 (12.1-18.9)	NR	86\%	11 Imps (NR)	SC	100\%	100\%
17	Nilsson 2017	pNRS; hosp; SWE	52 (29/23); 22.0 (17.0-52.0)	15\%	Few	69 Imps (ST)	SC	93\%	100\%
18	Pang 2017	pNRS; Uni; KOR	150 (83/67); 58.4 (21.0-79.0)	NR	NR	384 (misc)	SC/FIP	42\%	0\%
19	Ren 2016	pNRS; Uni; CHN	20 (10/10); 40.0 (NR)	NR	NR	20 Imps (NB)	SC	0\%	0\%
20	Ryu 2016	uNRS; Uni; KOR	28 (14/14); 60.0 (21.0-78.0)	NR	NR	62 Imps (NR)	SC/FIP	NR	NR
21	Schwartz-Arad 2015	rNRS; clinic; ISR	35 (14/21); 29.2 (NR)	NR	NR	35 (NR)	SC	100\%	100\%
22	Son 2009	uNRS; Uni; KOR	196 (NR); NR	NR	NR	NR; NR	NR	NR	0\%
23	Thilander 1994\f; Thilander 1999; Thilander 2001	rNRS; Uni; SWE	15 (7/8); 15.3 (13.2-19.3)	NR	100\%	27 Imps (NB)	SC	70\%	67\%
24	Varthis 2016	rNRS; Uni/practice; USA	128 (NR); NR (19.0-91.0)	NR	NR	174 Imps (misc)	SC	NR	NR
25	Vilhjalmsson 2013	pNRS; Uni; NOR	26 (11/15); 34.8 (20.0-56.0)	35\%	NR	28 Imps (NB/AT)	SC	100\%	100\%
26	Wang 2016\g	rNRS; practice; AUS	NR; NR	NR	NR	5621 Imps (NR)	SC/FIP	NR	NR
27	Wong 2015\h	rNRS; Uni; HKG	45 (27/18); 45.0 (27.0-74.0)	NR	None	(NB)	SC/FIP	NR	0\%

ANT, in anterior region (canine to canine); AT, Astra Tech; BM, Biomet; DE, Dentsply; F/M, female/male; FIP, fixed implant prosthesis; FR, Friatec; G, group; Hosp, hospital; Imp, implant; mAge, mean age; Max, in the maxilla; Misc, miscellaneous; NB, Nobel Biocare; NR, not reported; Ortho, had orthodontic treatment prior to implant treatment; pNRS, prospective non-randomized study; Prb., probably; R, range of included ages; Ret, retention regimen; rNRS, retrospective non-randomized study; SC, single crown; Smok, smokers at baseline; ST, Straumann; Uni, university; uNRS, unclear design of non-randomized study (probably retrospective); WA, Warentec.

\a follow-up publication of previous studies (Andersson B. Implants for single-tooth replacement. A clinical and experimental study on the Brånemark Cera-One system. Swed Dent J 1995; Suppl. 108;7–41 / Andersson B, Ödman P, Lindvall A-M, Brånemark P-I. Cemented single crowns on osseointegrated implants after 5 years: results from a prospective study on CeraOne abutments. Int J Prosthodont 1998; 11:212–218).

\b follow-up publication of previous study (Bonde MJ, Stokholm R, Isidor F, Schou S. Outcome of implant-supported single-tooth replacements performed by dental students. A 10-year clinical and radiographic retrospective study. Eur J Oral Implantol 2010;3:37-46).

\c the subsequent identified study Jeong 2015 was judged to have the same cohort according to the patient/methods description given; results regarding mesiodistal tooth-to-implant distance and contact point height are given only at the follow-up appointment and not at baseline and therefore are not reported here.
follow-up publication of previous study (Dierens M, Vandeweghe S, Kisch J, Nilner K, De Bruyn H. Long-term follow-up of turned single implants placed in periodontally healthy patients after 16-22 years: radiographic and peri-implant outcome. Clin Oral Implants Res 2012;23(2):197-204). The subsequent identified study Dierens 2016 also used the same patient cohort, but reported only infrapositions that were severe enough to lead to crown replacement and therefore the Dierens 2013 publication is primarily used here.

follow-up publication of previous report (Jemt T, Ahlberg G, Henriksson K, Bondevik O. Changes of anterior clinical crown height in patients provided with single-implant restorations after more than 15 years of follow-up. Int J Prosthodont 2006;19:455–461) The subsequent identified study Jemt 2008 also used the same patient cohort, but reported infrapositions in terms of crown replacement need and therefore the Jemt 2007 study is primarily used here.
two subsequent identified studies Thilander 1999 and Thilander 2001 reported results from the same cohort of patients, but with different follow-up.

various types of fixed restorations were included that were supported by implants, teeth, or both. Only single implant crowns, single-implant cantilever crowns, and three-unit implant-supported fixed restorations are included here.
TABLE 1b Outcome details of the included studies

Nr	Study ID	Analyzed sample	Outcome	Outcome details	mFU (R) in years \(^{1} \)	Treatment	
1	Avivi-Arber 1996	35/41 Pats; 42/49 Imps	IIP	bin; clin; Pat/Imp-L	4.0 (1.0-8.0)	Replacement	
2	Bernard 2004	All	IIP	cont; Rx; Pat/Imp-L	4.3 (1.1-9.1)	NR	
3	Bergenblock 2012; Andersson 2013	Prb all	IIP	cat (Jemt 2007); photo.; Pat/Imp-L; 4 obs	NR (17-19)	Replacement	
4	Bonde 2013	42/51 Pats; 46/55 Imps	IIP	bin; clin; Imp-L	10.0 (8.0-12.0)	NR	
5	Brahem 2017	Prb all	IIP	MD displacement at crown	cat (Jemt 2007); 3D superimposition.;Imp-L; cat; clin	7.0 (NR)	NR
6	Byun 2015; Jeong 2015	Prb all	PCP loss	cat (O’Leary et al., 1975); clin	4.8 (0.3-13.0)	Tx	
7	Chang 2012	31/33 Imps	IIP	MD displacement at root	Rx; Imp-L; Rx; Imp-L	1.0/ 5.0/ 8.0 (-)	NR
8	Cosyn 2012	Prb all	PCP loss	MD displacement at root	bin; bin; clin	2.6 (1.4-3.5)	NR
9	Dierens 2013; Dierens 2016	Prb all	IIP	cat; clin/phot	18.0 (16.0-22.0)	NR	
10	Eksfeldt 2011; 2017	30/31 Pats/Imps	IIP	bin; NR	NR (10.0-11.0)	NR	
11	Fukunishi 2016	Prb all	PCP loss	bin; clin	5.0 (NR)	NR	
12	Gjelvold 2017	59/87 Pats; 85/126 Imps	IIP	MD displacement at crown	cont; Rx; Pat/Imp-L	7.5 (3.6-11.1)	NR
13	Jamilian 2015	All	IIP	BP displacement at crown	cont; Rx; Pat/Imp-L	5.6 (NR)	NR
14	Jemt 2007; Jemt 2008	All	IIP	BP displacement at crown	cat (Jemt 2007); photo.; Imp-L; 3 obs	15.9 (NR)	NR
15	Koon 2010	All	PCP loss	bin; clin; Imp-L	(0.1-10.3)	NR	
16	Kuijpers 2006	All	IIP	cont; clin/Rx; Imp-L	11.0 (9.9-12.0)	NR	
17	Nilsson 2017	All	IIP	cont; clin; Imp-L	4.5 (3.3-6.6)	Replacement	
18	Pang 2017	Prb all	PCP loss	bin; clin; Imp-L	7.0 (-)	NR	
19	Ren 2016	18/20 Pats/Imps	PCP tightness	cont; clin-app; Imp-L	1.0 (-)	NR	
20	Ryu 2016	All	PCP loss	cat (O’Leary et al., 1975); clin	5.8 (0-14.9)	NR	
21	Schwartz-Arad 2015	All	IIP	cont; clin; Imp-L	7.5 (NR)	NR	
22	Son 2009	NR	PCP loss	bin; clin	NR (0-6.0)	Composite filling; Replacement	
23	Thilander 1994; Thilander 1999; Thilander 2001	14/15 Pats; 26/27 Imps	IIP	cont; clin/Rx; Pat/Imp-L	3.0/ 8.0/ 10.0 (-)	NR	
24	Varthis 2016	Prb all	PCP loss	bin; clin/floss & Rx	(0.3-11.0)	NR	
25	Vilhjalmssson 2013	23/26 Pats	IIP	cont; Rx; Pat/Imp-L	3.0 (-)	NR	
26	Wang 2016	Prb all	PCP loss	bin; clin; Imp-L	3.1 (NR)	NR	
27	Wong 2015	Prb all	PCP loss	PCP space	bin; clin-matrix; Imp-L	3.9 (0.5-12.0)	NR

app, appliance specific for contact area/point/tightness/thickness measurement; bin, binary; BP, buccopalatal (or -lingual); cat, categorical; clin, clinical examination; cont, continuous; Imp, implant; IIP, infraposition of the implant restoration compared to the adjacent teeth; L, level; MD, mesiodistal; NR, not reported; obs, observers; Pat, patient; PCP, proximal contact point; photo, photographic examination; Prb, probably; Rx, radiology.

\(^{1} \) Follow-up ranges given as (-) indicate that exact follow-up periods were followed in the study.
TABLE 2 Indirect random-effects meta-analysis across studies on the pooled event rate or values of the primary and secondary outcomes at implant/tooth/contact point level. All datasets (pertaining to different follow-ups) are extracted from each study, but only the one with the longest follow-up is included in the analysis.

Outcome	Studies	Effect	95% CI	tau^2 (95% CI)	I^2 (95% CI)	95% prediction
IIP, infraposition of the implant restoration relative to adjacent teeth						
binary % event rate	9	50.5%	26.3% to 74.5%	0.56 (NC)	95% (92 to 97%)	10.4 to 90.0%
continuous extent in mm	6	0.58 mm	0.33 to 0.83 mm	0.08 (0.02 to 0.53)	88% (69 to 98%)	0* to 1.43 mm
IIP > 1 mm, binary % event rate	5	20.8%	8.3 to 37.1%	0.14 (NC)	84% (63 to 93%)	4.3 to 60.9%
PCP, proximal contact point	9	46.3%	32.3 to 60.6%	0.19 (NC)	97% (96 to 98%)	20.0 to 74.8%

CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; NC, non-calculable; PCP, proximal contact point. *truncated at zero.
TABLE 3 Random-effects meta-regression on the event rates or average values of the primary and secondary outcomes (indirect data) at implant/tooth/contact point level. All datasets (pertaining to different follow-ups) are extracted from each study and all are included in the analyses.

Outcome	Factor	Category	n	b	95% CI	P
IIP binary % event rate	Age	Per year	9	-0.90%	-4.8 to 3.0%	0.60
	Sex	% male (per 10%)	8	-11.20%	-35.1 to 12.7%	0.29
	Follow-up	Per year	10	1.90%	-1.6 to 5.3%	0.25
	Jaw*	% in maxilla (per 10%)	8	19.70%	5.1 to 34.3%	0.02†
	Region	% anterior (per 10%)	9	5.50%	-1.6 to 12.6%	0.11
IIP continuous extent in mm	Age	Per year	13	-0.02 mm	-0.03 to -0.01 mm	0.001†
	Sex	% male (per 10%)	12	-0.48 mm	-1.06 to 0.11 mm	0.10†
	Follow-up	Per year	14	0.05 mm	-0.01 to 0.10 mm	0.08†
	Jaw	% in maxilla (per 10%)	14	-0.11 mm	-0.22 to -0.01 mm	0.04†
	Region	% anterior (per 10%)	13	0.04 mm	-0.06 to 0.15 mm	0.41
IIP > 1 mm binary % event rate	Age	Per year	5	-1.80%	-9.7 to 6.1%	0.52
	Sex	% male (per 10%)	4	NC		
	Follow-up	Per year	5	1.60%	-1.4 to 4.7%	0.19
	Jaw	% in maxilla (per 10%)	4	NC		
	Region	% anterior (per 10%)	5	-12.90%	-26.3 to 0.4%	0.05†
PCP loss binary % event rate	Age	Per year	8	-0.40%	-1.5 to 0.6%	0.34
	Sex	% male (per 10%)	8	-12.70%	-29.8 to 4.5%	0.12
	Follow-up	Per year	8	0.50%	-16.8 to 17.7%	0.95
	Jaw	% in maxilla (per 10%)	6	0.40%	-4.4 to 5.2%	0.84
	Region	% anterior (per 10%)	8	1.20%	-2.8 to 5.2%	0.50

b, unstandardized meta-regression coefficient; CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; NC, non-calculable; PCP, proximal contact point.
† Statistically significant meta-regression findings with P<0.10
Outcome	Reference	Experimental	n	Effect	95% CI	P	I² (95% CI)	tau² (95% CI)	95% prediction
IIP_binary	Female	Male	3	OR=0.29	0.10,0.88	0.03	0% (0%,98%)	0 (0.55.68)	0.390.39
IIP_continuous	Central incisor	Lateral incisor	2	MD=0.12	-0.21,0.44	0.48	0% (0%,97%)	0 (0.3.16)	NA
IIP_continuous	Female	Male	3	MD=0.00	-0.43,0.44	1.00	70% (16%,99%)	0.10 (0.01,4.80)	NA
IIP_continuous	Posterior region	Anterior region	2	MD=0.19	-0.14,0.52	0.25	34% (0%,100%)	0.02 (0.58,82)	NA
IIP_continuous	Maxilla	Mandibula	2	MD=0.21	-0.44,0.02	0.07	0% (0%,99%)	0 (0.3,23)	NA
IIP > 1 mm_binary	Age over 20 years	Age under 20 years	2	RR=2.13	0.98,4.61	0.06	0% (0%,99%)	0 (0.65,58)	NA
IIP > 1 mm_binary	Age over 25 years	Age under 25 years	2	RR=1.77	0.82,3.83	0.15	0% (0%,99%)	0 (0.58,45)	NA
IIP > 1 mm_binary	Age over 30 years	Age under 30 years	2	RR=2.33	0.95,5.70	0.07	0% (0%,44%)	0 (0.0,36)	NA
IIP > 1 mm_binary	Age over 30 years	Age between 25 and 30 years	2	RR=1.32	0.47,3.72	0.61	0% (0%,0%)	0 (0.0)	NA
IIP > 1 mm_binary	Female	Male	2	RR=0.62	0.28,1.39	0.25	0% (0%,100%)	0 (0.15,9.14)	NA
PCP loss_binary	Adjacent tooth not splinted	Adjacent tooth splinted	2	OR=0.6	0.19,2.49	0.58	76% (0%,100%)	0.65 (0.87,3.51)	NA
PCP loss_binary	Adjacent tooth vital	Adjacent tooth non-vital	2	OR=1.19	0.66,2.17	0.56	29% (0%,100%)	0.06 (0.2,0.93)	NA
PCP loss_binary	Patient age in years		2	OR=1.02	0.99,1.05	0.16	0% (0%,100%)	0 (0.0,20)	NA
PCP loss_binary	Distal PCP	Mesial PCP	5	OR=2.25	1.06,4.77	0.03	78% (25%,98%)	0.56 (0.05,6.30)	0.16,32.53
PCP loss_binary	Female	Male	4	OR=0.83	0.33,1.10	0.19	0% (0%,89%)	0 (0.0,68)	0.44,1.54
PCP loss_binary	Follow-up in years		2	OR=1.09	1.03,1.16	0.004	0% (0%,0%)	0 (0,0)	NA
PCP loss_binary	Maxilla	Mandibula	5	OR=1.32	0.84,2.08	0.23	59% (7%,95%)	0.15 (0.01,1.82)	0.31,5.62
PCP loss_binary	Molar	Premolar	2	OR=0.84	0.40,1.77	0.64	66% (0%,100%)	0.19 (0.29,3.97)	NA

CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; MD, mean difference; NC, not calculable; OR, odds ratio; PCP, proximal contact point; RR, relative risk.
TABLE 5 Summary of findings table according to the Grades of Recommendations, Assessment, Development, and Evaluation (GRADE) approach

Outcome	Trials (patients)	Relative effects (95% CI)	Anticipated absolute effects\(^a\) (95% CI)	Quality of the evidence (GRADE)\(^c\)	What happens		
			CTR	EXP	Difference		
IIP	3 studies (88 patients)	OR 0.3 (0.10 to 0.88)	89.3\(^b\)	70.8% (45.5 to 88.0)	18.5% fewer implants (1.3 to 43.8 fewer)	☐☐☐☐ very low\(^d\) due to bias	Lower IIP incidence among male patients
			Female	Male			
PCP loss	5 studies (573 patients)	OR 2.3 (1.06 to 4.77)	24.1\(^b\)	41.7% (25.2 to 60.2)	17.6% more PCPs (1.1 to 36.1 more)	☐☐☐☐ very low\(^d\) due to bias	Greater incidence of PCP loss on the mesial side of the implant
			Distal PCP	Mesial PCP			
PCP loss	2 studies (229 patients)	OR 1.1 (1.03 to 1.16)	45.7\(^b\)	47.8% (46.4 to 49.4)	2.1% more PCPs (0.7 to 3.7 more)	☐☐☐☐ very low\(^d\) due to bias	Incidence of PCP loss increases each year
			Baseline year	Per extra year			

Factors associated with implant infra-position or proximal contact point loss.

Population & intervention: adolescent / adult patients receiving dental implant treatment.

Settings: university clinics, private practices, and clinics (Japan, South Korea, Sweden).

\(^a\) The basis for the risk in the control group (e.g., the median control group risk across studies) is provided in footnotes. The risk in the intervention group (and its 95% confidence interval) is based on the assumed risk in the comparison group and the relative effect of the intervention (and its 95% CI).

\(^b\) Response in the control group is based on average event rate of included studies in each case.

\(^c\) GRADE for both randomized and non-randomized studies starts from “high”.

\(^d\) Downgraded initially to ‘low’ due to the lack of randomization; further downgraded to very low for lack of blinding serious limitations (high risk of bias).

CI, confidence interval; CTR, control category; EXP, experimental category; GRADE, Grading of Recommendations Assessment, Development and Evaluation; IIP, implant infra-position; PCP, proximal contact point.
APPENDIX

Appendix S1 List of databases searched with search strategies, limitations, and hits (all searched on January 10, 2018)

Database	Search strategy	Limits	Hits
MEDLINE (via PubMed)	(dent* OR tooth OR teeth OR osseointegrated) AND implant* AND ("natural dentition" OR "natural teeth" OR "adjacent teeth") AND ("adverse effects" OR "negative effects" OR "undesirable effects" OR "adverse reaction" OR "negative reaction" OR "undesirable reaction" OR complication$ OR tolerability OR toxicity)	Human	126
https://www.ncbi.nlm.nih.gov/pubmed		Human	63
Embase	Same as MEDLINE’s search 1		34
https://www.embase.com/login	Same as MEDLINE’s search 2		5
Cochrane Database of Systematic Reviews	Same as MEDLINE’s search 1		2
http://www.cochranelibrary.com/	Same as MEDLINE’s search 2		4
Cochrane Central Register of Controlled Trials	Same as MEDLINE’s search 1		4
http://www.cochranelibrary.com/	Same as MEDLINE’s search 2		1
Scopus	Same as MEDLINE’s search 1	Dentistry	104
https://www.scopus.com/	Same as MEDLINE’s search 2	Human(s)	36
Web of Science	Same as MEDLINE’s search 1	Dentistry	128
https://apps.webofknowledge.com/	Same as MEDLINE’s search 2	Dentistry	42
Virtual Health Library*	Same as MEDLINE’s search 1		14
http://bvsalud.org/en/	Same as MEDLINE’s search 2		2

Hits (with overlap)

561

Hits (without overlap)

373

* covering among other the databases LILACS (Literatura Latino Americana em Ciências da Saúde), BBO (Brazilian Bibliography of Dentistry), WHOLIS (WHO Library Database), IBECS (Índice Bibliográfico Español en Ciencias de la Salud), CUMED (Cuba Medicina), PAHO (Pan American Health Organization), and MedCarib (Caribbean Health Sciences Literature).
APPENDIX S2 Additional details of review procedures

Notes on data extraction

For outcome measurement infraposition of the implant or vertical movement of the adjacent tooth are reported interchangeably. Additionally, only outcomes relevant to the present review as per its protocol are listed here.

When identified studies provided raw study results in tabular form in their paper, these were extracted and re-analyzed statistically. If this was allowed, descriptive statistics were calculated in both implant/tooth and patient level separately, to fuel both analyses. Generalized linear regression models for continuous or binary outcomes were fitted accounting for within-patient clustering with robust standard errors. Either the unstandardized regression coefficients or the relative risks with their 95% confidence intervals were calculated, according to outcome nature.

Notes on risk of bias assessment

- When judging the methodological adequacy of individual studies, and subjective visual/photographic assessments of IIP were conducted, multiple evaluators were deemed appropriate to remove some of this subjectivity.
- When raw data (including follow-up and confounders) were given in a study, these were re-analyzed firthisand for this review. Therefore, this was taken to be equivalent to the identified study accounting for different follow-ups or confounders in its analysis
- When a study included follow-up ranges of more than 2 years, this was taken to mean that sufficiently different follow-up periods existed, which the analysis should have taken account of.

Notes on data analysis

- Reports of horizontal crown movement (diagnostic limits were 0.50 or 0.25) were also taken to mean that a contact point loss existed.
Cosyn 2012 reported that 11 contact points were missing, but didn’t say how many were examined, so this was excluded; the same for the number of analyzed implants/teeth for the horizontal teeth (that was also excluded).

Eckfeldt 2011 gave a follow-up range of 10-11 years, but not a mean follow-up. For the analyses, a mean follow-up of 10.5 years was inputed, as the range was pretty narrow.

Koori 2010 gave multivariate regression with RR of only mesial contact losses. These were excluded from the analyses and raw data requested from the authors (simple cross-tabulation provided was included).

Nilsson 2017: “At the clinical follow-up, in mean 54 months after placement of the implant-supported restoration, several crowns in infraposition were registered and this will be discussed in an additional publication.”; otherwise the authors reported in the present publication only one infraposition, which was probably the most severe that was identified from patient/doctor. Data were excluded and the authors contacted for raw data or results.

Pang 2016 gave multivariate regression with HR of proximal contact losses. These were excluded from the analyses and raw data requested from the authors (simple cross-tabulation provided was included)

Schwartz-Arad 2015 gave % submersion rate per year and was therefore not compatible with the rest of the studies.

Varthis 2016 gave % of CP loss according to factors but not the eligible denumerators; this was not included and data were requested from the author (only the main overall CP loss rate is included).

Wang 2016 reported vaguely on “Food impaction and contact point complications included problems with the contours of implant prostheses, such as an open contact that led to food packing between the prosthesis and an adjacent tooth. In splinted crowns and FPDs, this also includes fitting surface issues.”. As this did not pertain solely to contact point problematic and no description of any assessment for contact point was given, this was though not to be precise enough to be included in the analyses.

Asked the authors of both Koori 2010 and Pang 2017 if there is any overlap between the two studies.
Notes on additional analyses

- Additional subgroup/meta-regression analyses were planned in the review protocol to assess the impact of among others skeletal age, ethnicity, craniofacial configuration, masticatory activity, replaced tooth's category, implant characteristics, surgical technique, type of fixed prosthesis, occlusal contact scheme installed, loading timing, nature of the opposing/adjacent tooth, prosthesis materials, orthodontic treatment, attachment loss, attrition, vitality, number of existing roots, etc. However, some of these characteristics were assessed in either the re-analysis of available raw data or the direct comparisons with OR, RR, and MD.

- Sensitivity analyses planned a priori included forming subsets of studies according to methodological inadequacies. As no randomized trials were identified, a sensitivity analysis was attempted using blinding of outcome measurement, as this is the single item from the Newcastle-Ottawa scale that has robustly been linked to bias empirically.

- Indications of reporting biases (including small-study effects and publication bias) were planned to be conducted for meta-analyses of ≥ 10 studies (Sterne et al., 2011) using contour-enhanced funnel plots and Egger’s test (Egger et al., 1997). However, all meta-analyses included less than 10 studies and such analyses were not possible.

REFERENCES TO APPENDIX S2

Sterne, J.A., Sutton, A.J., Ioannidis, J.P., Terrin, N., Jones, D.R., Lau, J., ... Higgins, J.P. (2011). Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. *BMJ, 343, d4002.*

Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. *BMJ, 315, 629-34.*
No.	Paper	Status
1	Abou Rass M. Interim Endodontic Therapy for Alveolar Socket Bone Regeneration of Infected Hopeless Teeth Prior to Implant Therapy. J Oral Implantol 2010;36(1):37-59.	Excluded by title
2	Alftarlarma GM, Al-Multi H, Grant MH. Release of soluble metal ions from copper based dental alloys measured by ICPMS. Toxicology. 2011;290(2-3):17.	Excluded by title
3	Assal J, Assal P, Arnaud C. [Modification of some occlusion concepts in implant dentistry: thoughts inspired by clinical experience]. Schweiz Montatsschr Zahnmed. 2001;111(2):159-63.	Excluded by title
4	Ata-All J, Candel-Marti ME, Fichly-Fernandez AJ, Penarocchia-Oltra D, Balaguer-Martinez JF, Diago MP. Peri-implantitis: Associated microbiota and treatment. Medicina Oral Patologia Oral Y Cirugia Bucal. 2011;16(7):C937-C43.	Excluded by title
5	Bernhart G, Koob A, Schmitter M, Gabbert O, Stober T, Rammelsberg P. Clinical success of implant-supported and tooth-implant-supported double crown-retained dentures. Clin Oral Invest. 2012;16(4):1031-7.	Excluded by title
6	Boeckler AF, Morton D, Kraemer S, Geiss-Gerstdrofer J, Seitz JM. Marginal accuracy of combined tooth-implant-supported fixed dental prostheses after in vitro stress simulation. Clin Oral Implants Res 2008;19(12):1261-9.	Excluded by title
7	Cavallaro J, Greenstein G, Angeloni P, et al. Angled implant abutments: A practical application of available knowledge. Journal of the American Dental Association. 2011;142(2):150-8.	Excluded by title
8	Consolaro A. Diagnosis of the trauma occlusal: extrapolations para a região óssea peri-implantar podem ser feitas. Dent press implantol. 2012;6(4):22-37.	Excluded by title
9	Cordaro L, Ercoli C, Rossini C, Torsello F, Feng C. Retrospective evaluation of complete-arch fixed partial dentures concerning teeth and implant abutments in patients with normal and reduced periodontal support. Journal of Prosthetic Dentistry. 2005;94(4):313-20.	Excluded by title
10	Drago CJ. Tamish and corrosion with the use of intraoral magnets. J Prosthet Dent. 1991;66(4):536-40.	Excluded by title
11	Eckert SE, Carr AB. Implant-retained overdentures. Dental Clinics of North America. 2004;48(3):585-601.	Excluded by title
12	Fang M, Wang ZY, Yu J, Li M, Jin D. Osteoprotegerin expression in the peri-implant sulcus fluid after mechanical stimulations at different angles. Chinese Journal of Tissue Engineering Research. 2013;17(20):3666	Excluded by title
13	Farrett MM, Farrett MM. Absence of multiple premolars and ankylosis of deciduous molar with cant of the occlusal plane treated using skeletal anchorage. Angle Orthod. 2015;85(1):134-41.	Excluded by title
14	Galie M. Surgical complications and failures in implantology. International Journal of Maxillofacial Surgery 2011;40(10):1053.	Excluded by title
15	Hanisch O, Sorensen RG, Kinoshita A, Spiekermann H, Wojnery JM, Wikeso UM. Effect of recombinant human bone morphogenetic protein-2 in dehiscence defects with non-submerged immediate implants: an experimental study in Cynomolagus monkeys. J Periodontol. 2003;74(5):648-57.	Excluded by title
16	Heravi F, Shafaei H, Forozanfar A, Zarch SHH, Merati M. The effect of canine disimpaction performed with temporary anchorage devices (TADs) before comprehensive orthodontic treatment to avoid root resorption of adjacent teeth. Dental Press J. Orthod. 2016;21(2(6):65.	Excluded by title
17	Higaki N, Goto T, Ishida Y, Watanabe M, Tomotake Y, Ichikawa T. Do sensation differences exist between implant and natural teeth?: a meta-analysis. Clin Oral Implants Res 2014;25(11):1307-10.	Excluded by title
18	Horikawa PG, Gumeiro EH, Pequeneza RC, Almeida RCG. Mini-implante para verticalização de molares. Ortodontia. 2014;47(4):347-50.	Excluded by title
19	Inbaraj A, Veeravalli PT, Vaidyanathan AK, Grover M. Short-term evaluation of dental implants in a diabetic population: an in vivo study. Journal of Advanced Prosthodontics. 2012;4(3):134-8.	Excluded by title
20	Isaacson BM, Vance RE, Chou TG, Bloebaum RD, Bachus KN, Webster JB. Effectiveness of resonance frequency in predicting orthopedic implant strength and stability in an in vitro osseointegration model. J Rehabil Res Dev. 2009;46(9):1109-20.	Excluded by title
21	Janson G, Valarelli DP, Valarelli FP, de Freitas MR, Pinzian A. Atypical extraction of maxillary central incisors. American Journal of Orthodontics and Dentofacial Orthopedics. 2010;138(4):510-7.	Excluded by title
22	Kawanami M, Andreasen JO, Borum MK, Schou S, Hjorting-Hansen E, Kato H. Infraposition of ankylosed permanent maxillary incisors after replantation related to age and sex. Endodontics & Dental Traumatology. 1999;15(2):50-6.	Excluded by title
23	Kon K, Shioita M, Sakuyama A, Ozeki M, Kozuma W, Kawakami S, et al. Evaluation of the Alteration of Occlusal Distribution in Unand Intermidate Missing Cases. J Oral Implantol 2017;43(1):3-7.	Excluded by title
24	Krennmair G, Krainhoffer M, Wandelberger O, Pleislinger E. Dental implants as strategic supplementary abutments for implant-tooth-supported telescopic crown-retained maxillary dentures: a retrospective follow-up study for up to 9 years. Int J Prosthodont. 2007;20(6):617-22.	Excluded by title
25	Larsson C, von Steyven PV, Nilken K. A Prospective Study of Implant-Supported Full-Arch Yttria-Stabilized Tetragonal Zirconia Polycrystall Mandibular Fixed Dental Prostheses: Three-Year Results. Int J Prosthodont 2010;23(4):364-9.	Excluded by title
26	Lee FK, Tan KB, Nichols JL. Critical bonding moment of four implant-abutment interface designs. Int J Oral Maxillofac Implants. 2010;25(4):744-51.	Excluded by title
27	Lee KJ, Joo E, Yu HS, Park YC. Restoration of an alveolar bone defect caused by an ankylosed mandibular molar by root movement of the adjacent tooth with miniscREW implants. American Journal of Orthodontics and Dentofacial Orthopedics. 2009;136(3):440-9.	Excluded by title
28	Lehner R, Maassen MM, Muller G, Leyssiefer H, Zemner HP. [An osseointegrated micromanipulator as anchor for implantable hearing aid transducers. 1: Fitting to the surgical anatomy of the temporal bone and surgical technical properties]. Hno. 1998;46(4):311-23.	Excluded by title
29	Leonardi M, Armi P, Baccetti T, Franchi L, Caltabiano M. Mandibular growth in subjects with intraoccluded deciduous molars: A superimposition study. Angle Orthodontist. 2005;75(6):927-34.	Excluded by title
30	Luan W, Shi XX. Proper position of the temporomandibular joint in the occlusal reconstruction with linear measurement. Chinese Journal of Tissue Engineering Research. 2013;17(20):3666-70.	Excluded by title
31	Lygidakis NA, Chatzidimitriou K, Lygidakis NN. A novel approach for building up infraoccluded ankylosed primary molars in cases of missing premolars: A case report. Eur Arch Paediatr Dent. 2015;16(5):425-9.	Excluded by title
32	Machtie EE. The Effect of Membrane Exposure on the Outcome of Regenerative Procedures in Humans: A Meta-Analysis. Journal of Periodontology. 2001;72(4):512-6.	Excluded by title
33	Malmgren B, Malmgren O. Rate of infraposition of reimplanted ankylosed incisors related to age and growth in children and adolescents. Dental Traumatology. 2002;18(1):28-36.	Excluded by title
34	Malmgren B. Ridge preservation/decoronation. Pediatr Dent. 2013;35(2):164-9.	Excluded by title
35	Mohadeeb JVN, Somar M, He H. Effectiveness of decoronation technique in the treatment of ankylosis: A systematic review. Dental Traumatology. 2016;32(4):255-63.	Excluded by title
and teeth on biological and technical complications: a systematic review and a meta-analysis. Clin Oral Implants Res 2017;28(7):849-63.

Vidallo ST, Pinheiro AdR, Schoichet JJ, Monte Alto RV. Aspectos e fundamentos de conexões entre dente-implante em próteses parciais fixas. Rev bras implantodontia. 2011;17(1):12-6.

On WS, Koumanas EB, Beumer J. 3rd. Mandibular fracture in conjunction with bicortical penetration, using wide-diameter endosseous dental implants. J Prosthodont. 2010;19(8):625-9.

Bichacho N. Achieving optimal gingival esthetics around restored natural teeth and implants. Rationale, concepts, and techniques. Dent Clin North Am. 1998;42(4):763-80.

Andersson B, Oldman P, Lindvall AM, Branemark PI. Cemented single crowns on osseointegrated implants after 5 years: results from a prospective study on CeraOne. J Int Prosthodont. 1998;11(3):212-8. Non-eligible outcome

Andersson B, Oldman P, Lindvall AM, Branemark PI. Five-year prospective study of prosthetic and surgical single-tooth implant treatment in general practices and at a specialist clinic. Int J Prosthodont. 1998;11(4):351-5. Non-eligible outcome

Anitua E, Alkharast MH, Pina L, Begona L, Orive G. Implant survival and crestal bone loss around extra-short implants supporting a fixed denture: the effect of crown height space, crown-to-implant ratio, and offset placement of the prosthesis. Int J Oral Maxillofac Implants 2014;29(3):682-9. Non-eligible outcome

Appleton RS, Nummikoski PV, Pigno MA, Cronin RJ, Chung KH. A radiographic assessment of progressive loading on bone around single osseointegrated implants in the posterior maxilla. Clin Oral Implants Res. 2005;16(2):161-7. Non-eligible outcome

Bekker CM. Cantilever fixed prostheses utilizing dental implants: A 10-year retrospective analysis. Quintessence International. 2004;35(6):437-41. Non-eligible outcome

Borges T, Lima T, Carvalho A, Dourado C, Carvalho V. The influence of customized abutments and custom abutments on the presence of the interproximal papilla at implants inserted in single-unit gaps: a 1-year prospective clinical study. Clin Oral Implants Res. 2014;25(11):1222-7. Non-eligible outcome

Bragger U, Aeschlimann S, Burgin W, Hammerle CHF, Lang NP. Biological and technical complications and failures with fixed partial dentures (FPD) on implants and teeth after four to five years of function. Clin Oral Implants Res 2001;12(1):26-34. Non-eligible outcome

Bragger U, Burgin WB, Hammerle CH, Lang NP. Associations between clinical parameters assessed around implants and teeth. Clin Oral Implants Res. 1997;8(5):412-21. Non-eligible outcome

Brandenborg FD, Sailer I, Fehmer V, Buchi DLE, Hammerle CHF, Thomas DS. Randomized controlled clinical pilot study of all-ceramic single-tooth implant reconstructions: clinical and microbiological outcomes at one year of loading. Clin Oral Implants Res 2017;28(4):406-13. Non-eligible outcome

Broseghini C, Brogioni M, Gracios S, Vigolo P. Aesthetic Functional Area Protection Concept for Prevention of Ceramic Chipping with Zirconia Frameworks. Int J Prosthodont. 2014;27(2):174-6. Non-eligible outcome

Bryant SR, Zarb GA. Crestal bone loss proximal to oral implants in older and younger adults. J Prosthet Dent. 2003;89(6):589-97. Non-eligible outcome

Buchi DLE, Sailer I, Fehmer V, Hammerle CHF, Thoma DS. All-Ceramic Single-Tooth Implant Reconstructions Using Modified Zirconia Abutments: A Prospective Randomized Controlled Clinical Trial of the Effect of Pink Venereering Ceramic on the Esthetic Outcomes. Int J Periodontics Restorative Dent 2013;34(1):29-38. Non-eligible outcome

Cardaropoli G, Wennstrom JL, Lekholm U. Peri-implant bone alterations in relation to inter-unit distances. A 3-year retrospective study. Clin Oral Implants Res. 2003;14(4):430-6. Non-eligible outcome

Degidi M, Iezzi G, Perrelli V, Piattelli A. Comparative analysis of immediate functional loading and immediate nonfunctional loading to traditional healing periods: a 5-year follow-up of 550 dental implants. Clin Implant Dent Relat Res. 2009;11(4):257-66. Non-eligible outcome

Degidi M, Perrelli V, Piattelli A. Immediately loaded titanium implants with a porous anodized surface with immediately loaded follow-up. Clin Implant Dent Relat Res. 2006;8(4):169-77. Non-eligible outcome

den Hartog L, Huddleston Slater JJR, Vissink A, Meijer HJA, Raghoebar GM. Treatment outcome of immediate, early and conventional single-tooth implants in the aesthetic zone: a systematic review to survival, bone level, soft-tissue, aesthetics and patient satisfaction. J Clin Periodontol 2008;35(12):1073-86. Non-eligible outcome

Döring K, Eisenmann E, Stiller M. Functional and esthetic considerations for single-tooth Ankylos implant crowns: 8 years of clinical performance. J Oral Implantol 2004;30(3):198-209. Non-eligible outcome

Dupont N, Koenig V, Vanheusden A, Mainiott F. Failure of zirconia-based prostheses on natural teeth and implants: Focus on risk factors. Revue Medecine de Lieue. 2014;69:66-71. Non-eligible outcome

Esquivel-Upshaw JF, Mehler A, Clark AE, Neal D, Anusavice KJ. Fracture analysis of randomized implant support fixed prostheses on natural teeth and implants: Focus on risk factors. Clin Implant Dent Relat Res. 2004;1(2):75-82. Non-eligible outcome

Fabbri G, Zaronie F, Dellicortore G, Cannistraro G, De Lorenzi M, Mosca A, et al. Clinical Evaluation of 860 Anterior and Posterirr Lithium Disilicate Restorations: Retrospective Study with a Mean Follow-up of 6 Years. Int J Prosthodontics Restorative Dent 2014;34(2):165-77. Non-eligible outcome

Gerber C, Hardt N, von Arx T. [Esthetic plus-Ti implants (ITI): a prospective clinical study]. Schweiz Monatsschr Zahnmed. 2003;113(1):12-9. Non-eligible outcome

Guan J, Astrand P, Lindh T, Borg K, Olsson M. Tooth-implant and implant supported fixed partial dentures: A 10-year report. Int J Prosthodont 1999;12(3):216-21. Non-eligible outcome

Hartlev J, Kohberg P, Gottfredsen E, Isidor F, Schou S. Immediate placement and provisionalization of single-tooth implants involving a final individual abutment. A 3-year clinical and radiographic retrospective study. J Oral Maxillofac Surg 2011;69(9):e29-e30. Non-eligible outcome

Hartman GA, Cochran DL. Initial implant position determines the magnitude of crestal bone remodeling. J Periodontol. 2004;75(4):572-7. Non-eligible outcome

Hosny M, Duyck J, van Steenberghen D, Naert I. Within-subject comparison between connected and nonconnected tooth-to-implant fixed partial prostheses: Up to 14-year follow-up study. Int J Prosthodont 2000;13(4):340-6. Non-eligible outcome

Hultin M, Fischer J, Gustafsson A, Kallus T, Kingle B. Factors affecting late fixture loss and marginal bone loss around teeth and dental implants. Clin Implant Dent Relat Res. 2000;2(4):203-8. Non-eligible outcome

Jemm T, Pettersson P. A 3-year follow-up study on single implant treatment. J Dent. 1999;21(4):203-8. Non-eligible outcome

Jemm T. Cemented porcelain® and porcelain fused to tiadapt ™ abutment single-implant crown restorations: A 10-year comparative follow-up study. Clin Implant Dent Relat Res 2008;11(4):303-10. Non-eligible outcome

Levin L, Hertzberg R, Harrison S, Schwartz-Arad D. Long-term marginal bone loss around single dental implants affected by current and past smoking habits. Implant Dent. 2008;17(4):422-9. Non-eligible outcome

Levin L, Laviv A, Schwartz-Arad D. Long-term success of implants replacing a single molar. J Periodontol. 2006;77(9):1528-32. Non-eligible outcome

Li JH, Di P, Hu XL, Qiu LX, Cui HY, Lin Y. [Clinical study of the application of non-invasive porcelain veneer to improve the restoration of 32 non-eligible outcome
development of endosseous dental implants. J Prosthodont. 2010;19(8):625-9. Surgical issues

Non-eligible outcome

Jemt T, Pettersson P. A 3-year follow-up study on single implant treatment. J Dent. 1999;21(4):203-8. Non-eligible outcome

Jemt T. Cemented ceramic® and porcelain fused to tiadapt ™ abutment single-implant crown restorations: A 10-year comparative follow-up study. Clin Implant Dent Relat Res 2008;11(4):303-10. Non-eligible outcome

Levin L, Hertzberg R, Harrison S, Schwartz-Arad D. Long-term marginal bone loss around single dental implants affected by current and past smoking habits. Implant Dent. 2008;17(4):422-9. Non-eligible outcome

Levin L, Laviv A, Schwartz-Arad D. Long-term success of implants replacing a single molar. J Periodontol. 2006;77(9):1528-32. Non-eligible outcome

Li JH, Di P, Hu XL, Qiu LX, Cui HY, Lin Y. [Clinical study of the application of non-invasive porcelain veneer to improve the
Cosyn J, Sabzevar MM, De Bruyn H. Predictors of inter-proximal and midfacial recession following single implant treatment in the anterior maxilla: a multivariate analysis. J Clin Periodontol 2012;39(9):895-903.

Dierens M, De Bruecker E, Vandeweghe S, Kisch J, de Bruyn H, Cosyn J. Alterations in soft tissue levels and aesthetics over a 16-22 year period following single implant treatment in periodontally-healthy patients: a retrospective case series. J Clin Periodontol. 2013;40(3):311-8.

Dierens M, De Bruyn H, Kisch J, Nilner K, Cosyn J, Vandeweghe S. Prosthetic Survival and Complication Rate of Single Implant Treatment in the Periodontally Healthy Patient after 16 to 22 Years of Follow-Up. Clin Implant Dent Relat Res 2016;18(1):117-28.

Ekfeldt A, Fürst B, Carlsson GE. Zirconia abutments for single-tooth implant restorations: a 10- to 11-year follow-up study. Clin Oral Implants Res. 2017;28(10):1303-1308.

Ekfeldt A, Fürst B, Carlsson GE. Zirconia abutments for single-tooth implant restorations: a retrospective and clinical follow-up study. Clin Oral Implants Res. 2011;22(11):1308-14.

Fukunishi K, Kitajima H, Ishikawa T, Takeshita H, Maeda Y. Related Factors of Proximal Contact Loss between Implant-Supported Fixed Prostheses and Adjacent Teeth. J Jap Soc Oral Implantol 2016;29(4):243-249.

Gjevolid B, Chrcanovic BR, Bagewitz IC, Kisch J, Albrektsson T, Wennenber A. Esthetic and Patient-Centered Outcomes of Single Implants: A Retrospective Study. Int J Oral Maxillofac Implants 2017;32(5):1065-73.

Jamilian A, Perillo L, Rosa M. Missing upper incisors: a retrospective study of orthodontic space closure versus implant. Prog Orthod 2015;16:2.

Jemt T, Ahlberg G, Henriksson K, Bondevik O. Tooth movements adjacent to single-implant restorations after more than 15 years of follow-up. Int J Prosthodont 2007;20(6):626-32.

Jemt T. Single implants in the anterior maxilla after 15 years of follow-up: comparison with central implants in the edentulous maxilla. Int J Prosthodont 2008;21(5):400-8.

Jeong JS, Chang M. Food Impaction and Periodontal/Periodontal Conditions in Relation to the Embrasure Dimensions Between Implant-Supported Fixed Dental Prostheses and Adjacent Teeth: A Cross-Sectional Study. J Periodontol. 2015;86(12):1314-20.

Koori H, Morimoto K, Tsukiyama Y, Koyano K. Statistical Analysis of the Diachronic Loss of Interproximal Contact Between Fixed Implant Prostheses and Adjacent Teeth. Int J Prosthodont 2010;23(6):535-40.

Kuijpers MA, de Lange J, van Gool AV. [Maxillofacial growth and dental implants in the maxillary anterior region]. Ned Tijdschr Tandheelkd 2006;113(4):130-3.

Nilsson A, Johansson LA, Lindh C, Ekfeldt A. One-piece internal zirconia abutments for single-tooth restorations on narrow and regular diameter implants: A 5-year prospective follow-up study. Clin Implant Dent Relat Res. 2017;19(5):916-925.

Pang NS, Suh CS, Kim KD, Park W, Jung BY. Prevalence of proximal contact loss between implant-supported fixed prostheses and adjacent natural teeth and its associated factors: a 7-year prospective study. Clin Oral Implants Res 2017;28(12):1501-8.

Ren S, Lin Y, Hu X, Wang Y. Changes in proximal contact tightness between fixed implant prostheses and adjacent teeth: A 1-year prospective study. J Prostheth Dent. 2016;115(4):437-40.

Ryu SB. Clinical study on the contact loss between implant prostheses and adjacent teeth. Master Thesis, Seoul National University. 2016.

Schwartz-Arad D, Bichacho N. Effect of age on single implant submersion rate in the central maxillary incisor region: a long-term retrospective study. Clin Implant Dent Relat Res. 2015;17(3):509-14.

Son Y, Kwon JH, Kim S, Han CH. Clinical study of proximal contact loss between implant and tooth. Implantology 2009;13(3):128-133.

Thilander B, Ödman J, Grötebeck B, Friberg B. Osseointegrated implants in adolescents. An alternative in replacing missing teeth? Eur J Orthod 1994;16(2):84-95.

Thilander B, Ödman J, Jemt T. Single implants in the upper incisor region and their relationship to the adjacent teeth. An 8-year follow-up study. Clin Oral Implants Res 1999;10(5):346-55.

Thilander B, Ödman J, Lekholm U. Orthodontic aspects of the use of oral implants in adolescents: a 10-year follow-up study. Eur J Orthod 2001;23(6):715-31.

Varhils S, Rand A, Tarnow DP. Prevalence of Interproximal Open Contacts Between Single-Implant Restorations and Adjacent Teeth. Int J Oral Maxillofac Implants 2016;31(5):1089-92.

Vilhjálmsson VH, Klock KS, Starksen K, Bårdsen A. Radiological evaluation of single implants in maxillary anterior sites with special emphasis on their relation to adjacent teeth: a 3-year follow-up study. Dent Traumatol. 2013;29(1):66-72.

Wang JHY, Judge R, Bailey D. A 5-Year Retrospective Assay of Implant Treatments and Complications in Private Practice: The Restorative Complications of Single and Short-Span Implant-Supported Fixed Prostheses. Int J Prosthodont 2016;29(5):435-44.

Wong AT, Wat PY, Pow EH, Leung KC. Proximal contact loss between implant-supported prostheses and adjacent natural teeth: a retrospective study. Clin Oral Implants Res 2015;26(4):68-71.

† Its reference list was checked for additional eligible studies.
‡ Its reference list and citations in Google Scholar were checked for additional eligible studies.
APPENDIX S4 Communication attempts with authors of identified studies.

Author	Study	Reason	Status
Yoshihiro Tsukiyama	Koori, H., Morimoto, K., Tsukiyama, Y., & Koyano, K. (2010)	Asked for raw data; also asked if Pang 2017 study has any overlap/	Response pending
	Statistical analysis of the diachronic loss of interproximal contact		
	between fixed implant prostheses and adjacent teeth. *International		
	Journal of Prosthodontics*, 23, 535–540		
Lars-Åke Johansson	Nilsson A, Johansson LA, Lindh C, Ekfeldt A. One-piece internal	Asked if subsequent study on IIP has been accepted/ published or they are willing to share	Response pending
	zirconia abutments for single-tooth restorations on narrow and regular	the raw data or the results	
	diameter implants: A 5-year prospective follow-up study. Clin Implant		
	Dent Relat Res. 2017;19(5):916-925		
Bock-Young Jung	Pang NS, Suh CS, Kim KD, Park W, Jung BY. Prevalence of proximal	Asked for raw data or results with adjusted OR or RR (HRs are not compatible with the	Response pending
	contact loss between implant-supported fixed prostheses and adjacent	others); also asked if Koori 2010 study has any overlap/	
	natural teeth and its associated factors: a 7-year prospective		
	study. Clin Oral Implants Res 2017;28(12):1501-8.		
Spyridon Varthis	Varthis S, Randi A, Tarnow DP. Prevalence of Interproximal Open	Asked for raw data or complete descriptives.	Response pending
	Contacts Between Single-Implant Restorations and Adjacent Teeth.		
	*Int J Oral Maxillofac Implants 2016;31(5):1089-92.		
APPENDIX S5a Assessment of the methodological adequacy (potentially associated with risk of bias) of included studies with a modified Newcastle-Ottawa tool for cohort studies (1st part)

Issue†	Avivi-Arber 1996	Bernard 2004	Bergenblock 2012	Bonde 2013	Brahem 2015	Byun 2015	Chang 2012	Cosyn 2012	Dierens 2013	Ekfeldt 2011	Fukunishi 2016	Gjelvold 2017	Jamilian 2015
Selection													
Representativeness of the exposed cohort	Yes	Yes	Yes	Unclear	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Ascertainment of exposure?	Yes												
Demonstration that IIP/PCPL was not present at delivery of restoration?	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	No	No	Yes	Yes
Outcome													
Assessment of outcome blindly?	No	Partially	No										
Was the IIP/PCPL measurement method accurate (valid and reliable)?*	Unclear	Yes	Unclear	Yes	Yes	Yes	Unclear	Unclear	Unclear	Yes	Partially	Yes	
Were CP to be measured free from artifacts (restorations/mobility of adjacent teeth)?*	N/A	N/A	N/A	N/A	Yes	No	N/A	No	N/A	N/A	Partially	N/A	N/A
Was error/reliability of the method assessed?*	No	Yes	No	No	Yes	No	Yes	No	No	No	No	No	No
Was follow-up of all Imps long enough for IIP/PCPL to occur (>6 months)	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes
Adequacy of follow-up of cohorts?	Unclear												
Reporting													
Was assessment of IIP/PCPL in the study's primary scope?*	No	Yes	No	No	Yes	Yes	Partially	No	No	No	Yes	No	Yes
Are characteristics of the patients (age/sex) included clearly described?*	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	Partially	Yes	Partially
Are the interventions of interest clearly described (sites & implants)?*	Yes	Yes	Yes	No	Partially	Yes	Yes	Yes	Yes	Yes	Partially	Yes	Yes
Bias													
Is the study prospectively planned?*	No												
Do the analyses adjust for different lengths of follow-up of patients?*	No	Yes	N/A	No	Yes	Yes	N/A	No	No	N/A	Unclear	No	Unclear
Is clustering adequately assessed in the statistical analysis? (if existing)?*	N/A	Yes	N/A	No	Partially	Yes	N/A	N/A	No	No	No	No	No
Were possible confounders adjusted for in the analyses (age, sex, jaw, site)?*	No	Yes	Partially	No	No	Yes	Yes	No	No	No	Yes	Partially	No
Did the study have sufficient sample to detect a clinically important effect (arbitrarily set as 100 implants)?*	No	No	No	No	No	No	Yes	No	No	No	No	Yes	No

IIP, infraposition of the implant restoration; PCPL, proximal contact point loss.
* Question added manually to the Newcastle-Ottawa tool by the review authors during the protocol stage.
† The questions “Selection of the non-exposed cohort” & “Comparability of cohorts on the basis of the design or analysis” were omitted, as no non-exposed group was planned in the protocol of this review.
c multiple published reports were collacted as they pertained to the same patient cohort.
APPENDIX S5b Assessment of the methodological adequacy (potentially associated with risk of bias) of included studies with a modified Newcastle-Ottawa tool for cohort studies (2nd part)

Issue	Jemt 2007c	Koori 2010	Kuipers 2006	Nilsson 2017	Pang 2017	Ren 2016	Ryu 2016	Schwartz-Arad 2015	Son 2009	Thilander 1994c	Vartio 2016	Vilhjálmsson 2013	Wang 2016	Wong 2015
Selection														
Representativeness of the exposed cohort	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Partially	Yes	Yes
Ascertainment of exposure?	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Demonstration that IIP/PCP LOSS was not present at delivery of restoration?	Yes	Yes	No	Yes	No	Yes	No	Yes	Yes	Yes	Yes	No	No	No
Outcome														
Assessment of outcome blindly?	No	No	No	No	No	No	No	No	No	No	No	Partially	No	No
Was the IIP/PCP LOSS measurement method accurate (valid and reliable)?*	Yes	Yes	Unclear	Unclear	Yes	Yes	Yes	Partially	Yes	Yes	Yes	Yes	Yes	No
Were CP to be measured free from artifacts (restorations/mobility of adjacent teeth)?*	N/A	Yes	N/A	N/A	Yes	No	N/A	No	N/A	No	N/A	Yes	No	No
Was error/reliability of the method assessed?*	No	No	No	No	No	No	No	No	Yes	No	No	Yes	No	No
Was follow-up of all Imps long enough for IIP/PCP LOSS to occur (>6 months)	Unclear	No	Yes	Yes	Yes	No	Unclear	Unclear	Yes	No	Yes	Unclear	No	No
Adequacy of follow up of cohorts?	Unclear	Unclear	Unclear	No	Yes	Unclear	Unclear	Unclear	Yes	Unclear	Unclear	Unclear	Yes	Unclear
Reporting														
Was assessment of IIP/PCP LOSS in the study’s primary scope?*	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Are characteristics of the patients (age/sex) included clearly described?*	Partially	Yes	Yes	Yes	Partially	Yes	Partially	No	Yes	Partially	Yes	No	Yes	No
Are the interventions of interest clearly described (sites & implants)?*	Yes	Partially	Yes	Yes	Yes	No	Yes	No	Yes	Partially	Yes	Yes	Yes	Yes
Bias														
Is the study prospectively planned?*	No	No	No	Yes	Yes	No	No	No	No	No	Yes	No	No	No
Do the analyses adjust for different lengths of follow-up of patients?*	Unclear	Yes	Yes	No	Yes	N/A	No	Unclear	No	N/A	No	Unclear	No	No
Is clustering adequately assessed in the statistical analysis? (if existing)?*	No	No	Yes	No	No	N/A	No	N/A	Yes	No	N/A	Unclear	No	No
Were possible confounders adjusted for in the analyses (age, sex, jaw, site)?*	No	Yes	Yes	No	No	No	Partially	Yes	No	Partially	Yes	Yes	Yes	Yes
Did the study have sufficient sample to detect a clinically important effect (arbitrarily set as 100 implants)?*	No	Yes	No	No	Yes	No	No	Yes	No	Yes	No	Yes	No	No

IIP, infraposition of the implant restoration; PCP, proximal contact point.
* Question added manually to the Newcastle-Ottawa tool by the review authors during the protocol stage.
† The questions “Selection of the non-exposed cohort” & “Comparability of cohorts on the basis of the design or analysis” were omitted, as no non-exposed group was planned in the protocol of this review.
‡ multiple published reports were collacted as they pertained to the same patient cohort.
APPENDIX S6a Re-analysis of data provided in the study by Bernard et al., 2004.

Descriptives	Regression on IIP	Regression on IIP>1									
Na	n (%)	Mean (SD)	Range	Univariable	RR	95% CI	P	Univariable	RR	95% CI	P
Patient level					b	95% CI	P		b	95% CI	P
Age (years)	28	31.4 (13.8)	15.4-56.7	Age	Per year	0	-0.01, 0.01	0.50	0.96	0.91, 1.02	0.20
Follow-up (years)	28	4.3 (2.4)	1.1-9.1	Tooth	C. incisor	Ref					
Implant level					b	95% CI	P		b	95% CI	P
Central incisor	40	16 (40%)		L. incisor	0.06	-0.11, 0.24	0.49	0.94	0.41, 2.13	0.88	
Lateral incisor	40	12 (30%)		Follow-up	Per year	0.03	-0.04, 0.10	0.45	1.02	0.78, 1.32	0.90
Canine	40	12 (30%)									
IIP	40	0.69 (0.43)	0.10-1.86								
IIP>1 mm	40	7 (18%)									

CI, confidence interval; IIP, implant infraposition; Na, eligible sample; RR, relative risk; SD, standard deviation.
APPENDIX S6b

Re-analysis of data provided in the study by Thilander et al., 1994

Descriptives	Regression on mean IIP	Regression on IIP>1 mm										
	Na	n (%)	Mean (SD)	Range	Factor	b	95% CI	P	RR	95% CI	P	
Patient level	15	15	15.3 (1.7)	13.2-19.3	Age	Per year	-0.16	-0.25, -0.07	<0.001	0.45	0.19, 1.08	0.08
Age	15	8 (53%)	15.3 (1.7)	13.2-19.3	Sex	Female	Ref					
Male	15	8 (53%)	15.3 (1.7)	13.2-19.3	Male	0.34	-0.16, 0.84	0.18	5.00	0.93, 26.78	0.06	
Growth ended (HR)	15	9 (60%)	15.3 (1.7)	13.2-19.3	Jaw	Mandible	Ref					
Height growth	15	4.57 (5.22)	0-18.00									
Implant level	27	19 (70%)										
Maxilla	27	19 (70%)										
Anterior region	27	18 (67%)										
IIP (Rx)	26	0.52 (0.50)	0-1.70									
IIP (model)	22	0.50 (0.41)	0-1.60									
IIP difference Rx-model	21	0.09 (0.22)	-0.30, 0.50	Growth end	No	Ref						
IIP>1 mm	26	6 (23%)										

CI, confidence interval; HR, hand radiograph; IIP, implant infraposition; Na, eligible sample; RR, relative risk; Rx, radiology; SD, standard deviation.
APPENDIX S6c Re-analysis of data provided in the study by Kuijpers et al., 2006. Data are given only on implant-level and only descriptive statistics were calculated due to the limited sample.

Na	n (%)	Mean (SD)	Range
Implant-level			
Age	11	16.7 (1.8)	12.9-18.8
Male	8 (73%)		
Central incisor	6 (55%)		
Lateral incisor	5 (45%)		
Trauma	8 (73%)		
Graft	3 (27%)		
Follow-up	11	11.0 (0.8)	9.9-12.0
IIP		0.77 (0.61)	0-2.00
IIP>1mm	1 (9%)		

IIP, implant infraposition; Na, eligible sample; SD, standard deviation.
APPENDIX S7

Results of the included studies for factors assessed by a single study

Outcome	Control	Experimental	Effect	95% CI	P	SS	CS	What happens
IIP risk	Age (per year)	OR: 0.98	0.91,1.06	0.62	-	-	-	Higher IIP odds in the posterior area
IIP risk	Age over 20 yrs	OR: 0.57	0.08,4.06	0.58	-	-	-	
IIP risk	Age over 25 yrs	OR: 0.50	0.11,2.27	0.37	-	-	-	
IIP risk	Age over 30 yrs	OR: 0.43	0.09,2.05	0.29	-	-	-	
IIP risk	No Ortho Tx	OR: 3.42	0.83,14.03	0.09	-	-	-	
IIP risk	Normal face	OR: 2.14	0.33,13.76	0.42	-	-	-	
IIP risk	Normal face	OR: 0.91	0.17,4.84	0.92	-	-	-	
IIP risk	Posterior area	OR: 8.67	1.30,58.04	0.03	Yes	Yes	Higher IIP odds in the anterior region	
IIP ext>1mm risk	Age over 18 yrs	OR: 1.88	1.06,3.36	0.03	Yes	Yes	Greater IIP after ortho Tx	
IIP ext>1mm risk	Central incisor	OR: 3.86	1.86,8.05	0.009	Yes	Yes	Greater IIP in skeletally young patients	
IIP ext>1mm risk	Lateral incisor	OR: 2.66	1.15,6.19	0.02	Yes	Yes		
IIP ext>1mm risk	Canine incisor	OR: 4.87	2.03,12.29	0.002	Yes	Yes		
IIP ext>1mm risk	Follow-up under 3 yrs	OR: 0.78	0.41,1.47	0.22	Yes	Yes		
IIP ext>1mm risk	Follow-up under 5 yrs	OR: 0.30	0.16,0.61	0.003	Yes	Yes		
IIP ext>1mm risk	No Ortho Tx	OR: 0.43	0.25,0.72	0.0004	Yes	Yes		
IIP ext>1mm risk	Skeletally mature	OR: 0.51	0.30,0.91	0.003	Yes	Yes		
IIP ext>1mm risk	Bilateral agenesis	OR: 0.42	0.23,0.79	0.0006	Yes	Yes		
PCP loss	Age between 20 to 39 yrs	OR: 2.08	0.76,5.64	0.15	-	-	-	Higher PCP odds in patients over 60 yrs
PCP loss	Age over 60 yrs	OR: 0.92	1.07,7.92	0.04	Yes	Yes		
PCP loss	FD as antagonist	OR: 1.42	0.84,2.41	0.20	-	-	-	
PCP loss	RD antagonist	OR: 1.73	0.43,6.97	0.44	-	-	-	
PCP loss	Implant antagonist	OR: 0.84	0.44,1.60	0.59	-	-	-	
PCP loss	No antagonist	OR: 2.23	0.09,55.39	0.63	-	-	-	
PCP loss	Gold restoration	OR: 0.34	0.04,2.96	0.33	-	-	-	
PCP loss	Crown to implant ratio	OR: 1.21	1.05,1.39	0.0007	Yes	Maybe		
PCP loss	Implant splinted	OR: 1.75	0.88,3.48	0.11	-	-	-	Higher PCP odds with increased MBL
PCP loss	MBL<13%	OR: 2.12	0.99,4.55	0.05	Yes	Yes		
PCP loss	MBL 13 to 25%	OR: 2.66	1.15,6.19	0.02	Yes	Yes		
PCP loss	MBL 25 to 50%	OR: 5.87	1.61,21.40	0.007	Yes	Yes		
PCP loss	MBL 50 to 75%	OR: 1.46	0.08,25.57	0.80	-	-	-	
PCP loss	MBL 75%	OR: 0.45	0.23,0.88	0.02	Yes	Yes	Lower PCP odds with Misch category D3-D4	
PCP loss	Single-rooted tooth	OR: 2.64	1.65,4.22	<0.001	Yes	Yes	Higher PCP odds for single-rooted teeth	
PCP loss	Attrition	OR: 0.78	0.48,1.27	0.32	-	-	-	
PCP loss	Lateral contact	OR: 2.83	1.40,5.73	0.004	Yes	Yes	Higher PCP odds for teeth with contact on lateral excursion	
PCP loss	Mobility	OR: 3.86	1.39,10.69	0.009	Yes	Yes	Higher PCP odds for teeth with mobility	
PCP loss	Molar	OR: 1.88	0.96,3.66	0.06	-	-	-	
PCP loss	No Ortho Tx	OR: 2.97	0.92,9.64	0.07	-	-	-	
PCP loss	Digital measurement	OR: 0.88	0.48,1.61	0.68	-	-	-	

CI, confidence interval; CS, clinically significant (judged as MD greater than ½ SD of the control group or as OR/RR greater than 2); FD, fixed denture; IIP, implant infra-position; MBL, marginal bone loss; MD, mean difference; OR, odds ratio; Ortho, orthodontic; PCP, proximal contact point; RD, removable denture; RR, relative risk; SS, statistically significant at 5%; Tx, treatment; yr, year
APPENDIX S8a Indirect random-effects meta-analysis across studies on the pooled event rate or values of the primary and secondary outcomes at implant/tooth/contact point level and patient level. All datasets (pertaining to different follow-ups) are extracted from each study, but only the one with the longest follow-up is included in the analysis. Comparison of results at the implant/site level (main analysis) and at the patient level (sensitivity analysis).

Outcome	Level	Studies (datasets)	Effect	95% CI	tau^2 (95% CI)	I^2 (95% CI)	95% prediction
IIP_{binary} % event rate	Site	9 (11)	50.5%	26.3% to 74.5%	0.56 (NC)	95% (92 to 97%)	10.4 to 90.0%
IIP_{binary} % event rate	Patient	6 (6)	56.6%	23.0% to 87.1%	0.74 (NC)	96% (93 to 97%)	4.5 to 97.3%
IIP_{continuous} extent	Site	6 (14)	0.58 mm	0.33 to 0.83 mm	0.08 (0.02 to 0.53)	88% (69 to 98%)	0 to 1.43 mm*
IIP_{continuous} extent	Patient	3 (4)	0.64 mm	0.51 to 0.76 mm	0 (0 to .32)	0% (0% to 95%)	0 to 1.47 mm*
IIP > 1 mm_{binary} % event rate	Site	5 (5)	20.8%	8.3 to 37.1%	0.14 (NC)	84% (63 to 93%)	4.3 to 60.9 mm
IIP > 1 mm_{binary} % event rate	Patient	4 (4)	18.4%	6.0 to 35.6%	0.13 (NC)	82% (53 to 93%)	1.8 to 73.4%

CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; NC, non-calculable; PCP, proximal contact point.

* truncated at zero.
APPENDIX S8b Random-effects meta-regression on the event rates or average values of the primary and secondary outcomes (indirect data) at implant/tooth/contact point level and patient level. All datasets (pertaining to different follow-ups) are extracted from each study and all are included in the analyses. Comparison of results at the implant/site level (main analysis) and at the patient level (sensitivity analysis).

Outcome	Level	Factor	Category	n	b	95% CI	P
IIP_{binary} % event rate	Site	Age	Per year	9	-0.90%	-4.8%, 3.0%	0.60
		Sex	% male (per 10%)	8	-11.20%	-35.1%, 12.7%	0.29
		Follow-up	Per year	10	1.90%	-1.6%, 5.3%	0.25
		Jaw	% in maxilla (per 10%)	8	19.70%	5.1%, 34.3%	0.02
		Region	% anterior (per 10%)	9	5.50%	-1.6%, 12.6%	0.11

IIP_{binary} % event rate	Patient	Age	Per year	5	-8.90%	-31.0%, 13.2%	0.29
		Sex	% male (per 10%)	4	NC		
		Follow-up	Per year	5	3.30%	-5.9%, 12.5%	0.34
		Jaw	% in maxilla (per 10%)	4	NC		
		Region	% anterior (per 10%)	5	7.00%	-4.7%, 18.6%	0.15

b, unstandardized meta-regression coefficient; CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; NC, non-calculable; PCP, proximal contact point.
Meta-analyses of direct evidence (within- and across-studies) on the primary and secondary outcomes at implant/tooth/contact point level and patient level. Comparison of results at the implant/site level (main analysis) and at the patient level (sensitivity analysis).

Outcome	Level	Reference	Experimental	n	Effect	95% CI	P	I² (95% CI)	tau² (95% CI)	95% prediction
IIPbinary	Site	Female	Male	3	OR=0.29	0.10,0.88	0.03	0% (0%,98%)	0 (0,55.68)	0.390.39
IIPbinary	Patient	Female	Male	2	RR=0.71	0.51,0.98	0.04	7% (0%,100%)	0 (0,55.39)	NA

CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; MD, mean difference; NC, not calculable; OR, odds ratio; PCP, proximal contact point; RR, relative risk.
APPENDIX S9 Sensitivity analysis of Table 2 according to age of included patients in each study. Comparison of results of all studies (main analysis) and the results by including only studies with patients older than 20 years of age (sensitivity analysis)

Indirect random-effects meta-analysis across studies on the pooled event rate or values of the primary and secondary outcomes at implant/tooth/contact point level. All datasets (pertaining to different follow-ups) are extracted from each study, but only the one (Xyz) with the longest follow-up is included in the analysis.

Outcome	Analysis	Studies	Effect	95% CI
IIP_{binary} % event rate	Any patients	9	50.5%	26.3% to 74.5%
	Only patients with ≥20 years	2	42.6%	2.6% to 90.7%
IIP_{continuous} extent in mm	Any patients	6	0.58 mm	0.33 to 0.83 mm
	Only patients with ≥20 years	1	0.44 mm	0.15 to 1.17 mm
IIP > 1 mm_{binary} % event rate	Any patients	5	20.8%	8.3 to 37.1%
	Only patients with ≥20 years	1	42.0%	23.8% to 61.5%
PCP loss_{binary} % event rate	Any patients	9	46.3%	32.3 to 60.6%
	Only patients with ≥20 years	5	45.8%	32.8% to 59.2%

CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; NC, non-calculable; PCP, proximal contact point
*truncated at zero
APPENDIX S10 Sensitivity analysis of Table 2 according to the number of included implants per study. Comparison of results of all studies (main analysis) and the results by including only studies with at least 100 implants (sensitivity analysis)

Inclusion	Outcome	Studies	Effect	95% CI	tau² (95% CI)	I² (95% CI)
All studies	IIP_{binary} % event rate	9	50.5%	26.3% to 74.5%	0.56 (NC)	95% (92 to 97%)
IIP_{continuous} extent in mm	6	0.58 mm	0.33 to 0.83 mm	0.08 (0.02 to 0.53)	88% (69 to 98%)	
IIP > 1 mm_{binary} % event rate	5	20.8%	8.3 to 37.1%	0.14 (NC)	84% (63 to 93%)	
PCP loss_{binary} % event rate	9	46.3%	32.3 to 60.6%	0.19 (NC)	97% (96 to 98%)	

Studies with >100 implants	IIP_{binary} % event rate	-	-	-	-	-
IIP_{continuous} extent in mm	-	-	-	-	-	
IIP > 1 mm_{binary} % event rate	-	-	-	-	-	
PCP loss_{binary} % event rate	4	48.6%	36.6 to 60.6	0.06 (NC)	92% (83 to 96%)	

CI, confidence interval; IIP, infraposition of the implant restoration relative to adjacent teeth; NC, non-calculable; PCP, proximal contact point.