A REVIEW OF BOTANY, THERAPEUTICAL VALUE, PHYTOCHEMISTRY, AND PHARMACOLOGY OF CUSSONIA PANICULATA

ALFRED MAROYI*
Department of Botany, Medicinal Plants and Economic Development Research Centre, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa. Email: amaroyi@ufh.ac.za

Received: 04 June 2019, Revised and Accepted: 01 July 2019

INTRODUCTION
Cussonia paniculata is a small tree widely used as herbal medicine throughout its distributional range in southern Africa. This study is aimed at providing a critical review of the botany, biological activities, phytochemistry, and medicinal uses of C. paniculata. Documented information on the botany, biological activities, medicinal uses, and phytochemistry of C. paniculata was collected from several online sources which included BMC, Scopus, SciFinder, Google Scholar, Science Direct, Elsevier, PubMed, and Web of Science. Additional information on the botany, biological activities, phytochemistry, and medicinal uses of C. paniculata was gathered from pre-electronic sources such as book chapters, journals, articles, and scientific publications sourced from the University Library. This study showed that the bark, fruits, leaves, roots, and stems of C. paniculata are used as a tonic, for sore throat, colds, domestic catarrh, coughs, colds, bruises, bruises, sprains, and wounds. Phytochemical compounds identified from the leaves of C. paniculata include acetylated triterpene glycosides, unacetylated triterpene glycosides, flavonoids, steroidal saponins, and triterpenoid saponins. Pharmacological research revealed that C. paniculata extracts have analgesic, antibacterial, antitumor activities [29,33-39]. The genus Cussonia comprises about 22 species which are mainly trees or shrubs or occasionally subshrubs recorded in grasslands, woodlands, and forests of sub-Saharan Africa, the Arabian Peninsula (Yemen), and the Comoro Islands [40-46]. C. paniculata is widely used as a decorative and ornamental plant, as the species is frost-resistant and therefore recommended for mceries, bonsai, and other gardens [42,47-55]. C. paniculata is domesticated in home gardens in South Africa [56], and the thick tuberous roots are peeled and eaten raw as an emergency food, as a source of water or snack in South Africa and Swaziland [57-59]. In South Africa, research by Makunga et al. [60] showed that the flowers, leaves, and roots of C. paniculata are used in the production of essence and tinctures. Local communities in the Eastern Cape province in South Africa described C. paniculata as “rare” in the Eastern Thorn bushveld [61], an observation which has important implications for conservation and sustainable use of the species. It is against this background that this study was undertaken aimed at appraising the botany, medicinal uses, phytochemistry, and biological activities of C. paniculata.

TAXONOMY AND BOTANICAL DESCRIPTION OF C. PANICULATA
The genus name Cussonia is in honor of Pierre Cusson (1727–1783), a French botany professor at the University of Montpellier who specialized in the plant group Umbrelliferae [50,62,63]. The specific name “paniculata” refers to the paniculate or branched inflorescence which terminates the growth of the species’ branches. The English common name of C. paniculata is “mountain cabbage tree,” mainly because the species is associated with dry stony hills and the thick, often blue-green leaves resemble those of a cabbage (Brassica oleracea) [49]. The leaves of C. paniculata are gray-green or blue-green in color which is probably due to the thick waxy layers on the leaves. These waxy layers are believed to protect the leaves from severe frost in winter [49]. Two subspecies of C. paniculata are recognized subsp. paniculata and subsp. sinuata (Reynke and Kok) De Winter [64]. The subsp. paniculata is characterized by entire leaflet margins, confined to the northern Karoo, Eastern Cape, KwaZulu-Natal, Northern Cape, and Western Cape provinces of South Africa at an altitude ranging from 300 m to 2000 m above the sea level [41,64]. The subsp. sinuata is characterized by shallowly to deep lobed and waxy (sinuate) leaflet margins and widely distributed and recorded in Botswana, Lesotho, Swaziland, the Free State, Gauteng, KwaZulu-Natal, Limpopo, Mpumalanga, and North West provinces of South Africa at an altitude ranging from 900 m to 1980 m above the sea level [41,64]. However, most ethnobotanical and ethnomedicinal literature do not separate C. paniculata into specific subspecies but rather to C. paniculata sensu lato, which is the approach that has been adopted in this study. Synonyms associated with C. paniculata include C. paniculata Eckl. and Zeyh. var. paniculata and C. paniculata Eckl. and Zeyh. var. sinuata Reynke and Kok. [64]. C. paniculata is an evergreen small tree with a sturdy trunk which is sparsely branched, rarely exceeding 5 m in height [41,63,65-68]. The stem is reddish gray to gray, rough, corky, swollen at the base and roughly 3.5 cm in diameter, the branches marked with prominent leaf scars as the species usually sheds old leaves while new flush of leaves are being produced. The branches have a mop-like crown of leathery, green, frequently blue-green leaves, composed of several leaflets on short stalks springing from the same point at the end of a stout common stalk. The leaves are bi-digitate, oblong in shape, apex and base tapering, margin
sparserly to distinctly toothed. The flowers are a branched panicle of spikes which are greenish yellow in color. The fruits are fleshy, almost globose in shape, pale purplish in color, and closely clustered along the spikes. C. paniculata has been recorded in Botswana, Lesotho, South Africa, and Swaziland [41,63,66-68] in bushveld, wooded grassland, usually in rocky places at an altitude ranging from 300 m to 2000 m above the sea level [64].

MEDICINAL USES OF C. PANICULATA

The bark, fruits, leaves, roots, and stems of C. paniculata are used as herbal medicines against 32 human diseases in southern Africa (Table 1). C. paniculata is mainly used as emetic, immune booster, and herbal medicine for dysmenorrhea, intestinal parasites and worms, mental problems, boils, shingles and skin diseases, indigestion and stomach complaints, sores, and wounds (Fig. 1). In Lesotho, the leaves of C. paniculata are mixed with those of Searsia divaricata (Eckl. and Zeyh.) Moffett and Scabiosa columbaria L. as herbal medicine for menstrual problems [69].

PHYTOCHEMISTRY OF C. PANICULATA

Several researchers such as Dogoví et al. [93], Grishkovets et al. [94], Adedapo et al. [95], and Thakur et al. [76] identified acetylated triterpene glycosides, unacylated triterpene glycosides, flavonoid, steroidal saponin, and triterpenoid saponins from the leaves of C. paniculata (Table 2). Some of these phytochemical compounds may be responsible for the pharmacological properties associated with C. paniculata. For example, research by Panche et al. [96] revealed that flavonoids are associated by acetylicholinesesterase, antioxidant, steroid-genesis modulating, xanthine oxidase modulating, countering antibiotic resistance, and disease-combating activities. Research by Careaga et al. [97] and Bahrami and Franco [98] showed that acetylated triterpene glycosides have induction of caspase, antiproliferative, apoptosis, hemolytic, cytotoxicity, antitumor, antifungal, and antibacterial properties. While saponins have demonstrated anti-apoptosis, hemolytic, cytotoxicity, anticancer, antifungal, and antibacterial properties. While saponins have demonstrated anti-apoptosis, hemolytic, cytotoxicity, anticancer, antifungal, and antibacterial properties. While saponins have demonstrated anti-apoptosis, hemolytic, cytotoxicity, anticancer, antifungal, and antibacterial properties. While saponins have demonstrated anti-apoptosis, hemolytic, cytotoxicity, anticancer, antifungal, and antibacterial properties. While saponins have demonstrated anti-apoptosis, hemolytic, cytotoxicity, anticancer, antifungal, and antibacterial properties.

BIOLOGICAL ACTIVITIES OF C. PANICULATA EXTRACTS

Biological activities of C. paniculata extracts include analgesic [95], antibacterial [104], antitumor [105,106], anti-inflammatory [52,75,95], antiparasitic [52,75,104], antiviral [104], anti-inflammatory [95], and cytotoxic [104] activities.

Analgesic activities

Adedapo et al. [95] evaluated the analgesic activities of aqueous extract of the stem bark of C. paniculata using the formalin test by treating male Wistar rats with 50 mg/kg, 100 mg/kg, and 200 mg/kg of extract; 10 mg/kg of indomethacin; and 2 ml/kg of normal saline, and the licking time and frequency of the injected paw were recorded for 30 min. In the acetic acid-induced writhing model, the extract showed a good analgesic effect characterized by reduction in the number of writhes when compared to the control. The extract caused dose-dependent decrease of licking time and licking frequency in rats injected with 2.5% formalin, signifying its analgesic effect [95].

Antibacterial activities

De Villiers et al. [104] evaluated antibacterial activities of aqueous and methanol leaf extracts of C. paniculata subsp. paniculata and C. paniculata subsp. sinuata against Enterococcus faecalis, Escherichia coli, Neisseria gonorrhoeae, Staphylococcus aureus, and Pseudomonas aeruginosa using the microplate bioassay with ciprofloxacin (0.01 mg/mL) as a positive control. The extract exhibited activities with minimum inhibitory concentration values ranging from 0.3 mg/mL to 16.0 mg/mL [104].

Anticancer activities

Fouché et al. [105] evaluated anticancer activities of dichloromethane leaf extracts of C. paniculata against sixty human cancer cell lines organized into subpanels representing leukemia, melanoma and cancer of the lung, colon, kidney, ovary, and central nervous system. The extracts exhibited a moderate growth inhibition of above 50% for two or more of the cell lines (GI50) with values ranging from >0 µg/mL to 1.1 µg/mL [105]. Similarly, Fouché et al. [106] evaluated anticancer

Medicinal use	Plant part used	Country	References
Anemia	Bark	Lesotho	[70]
Bladder problems	Bark	Lesotho	[71-74]
Breast and cervical cancer	Leaves	Lesotho	[69,74]
Cardiovascular problems	Bark	Lesotho	[70]
Cleanses blood	Bark	Lesotho	[70]
Colic	Bark	South Africa	[52,75,76]
Dysmenorrhea	Bark	South Africa	[52,75,76]
Menstrual problems	Leaves mixed with those of Searsia divaricata (Eckl. and Zeyh.) Moffett and Scabiosa columbaria L.	Lesotho	[69]
Emetic	Bark and leaves	Lesotho and Swaziland	[57,71-74]
Heartburn	Bark	Lesotho and Swaziland	[57,71-74]
Human immunodeficiency virus	Bark and leaves	South Africa	[78-80]
Opportunistic infections	Bark and leaves	Lesotho and Swaziland	[77-81]
Immune booster	Bark, leaves, and roots	Lesotho and South Africa	[71-74,77]
Intestinal ulcers	Leaves	Lesotho and South Africa	[70,82,83]
Intestinal parasites and worms	Bark, fruits, roots, and stems	Lesotho and South Africa	[71-74]
Kidney problems	Leaves	Lesotho	[77]
Loss of appetite	Roots	South Africa	[78,79,84-86]
Malaria	Roots	South Africa and Swaziland	[52,57,58,75,82,87,88]
Mental problems	Leaves	South Africa	[52,75,76,82,87,89]
Nervous problems	Leaves	Lesotho	[70]
Phlegm	Bark	Lesotho	[70]
Pelliagra	Bark	South Africa	[78,79]
Purgative	Leaves	South Africa	[75,76,90]
Rheumatism and swollen limbs	Leaves	Lesotho and South Africa	[71-74,78-81]
Boils, shingles, and skin diseases	Bark and leaves	Lesotho and South Africa	[71-74,77-79,84,91]
Indigestion and stomach complaints	Leaves and roots	South Africa	[78-80]
Tonic	Bark and leaves	Lesotho and South Africa	[70-74,82,90,92]
Sores and wounds	Bark and leaves	Lesotho and South Africa	[70-74,82,90,92]

Table 1: Medicinal uses of Cussonia paniculata
activities of dichloromethane: methanol (1:1) leaf extracts of *C. paniculata* against sixty human cancer cell lines organized into subpanels representing leukemia, melanoma and cancer of the lung, colon, kidney, ovary, and central nervous system. The extracts exhibited activities against leukemia RPMI-8226, colon HCT-116, and colon KM12 with total growth inhibition (TGI) values of 1.0 µg/ml, 1.5 µg/ml, and 2.7 µg/ml, respectively [106].

Anti-inflammatory activities

Tetyana [52] and Tetyana et al. [75] evaluated anti-inflammatory activities of bark, leaves, roots, and stems ethanolic, ethyl acetate and water extracts of *C. paniculata* using the cyclooxygenase-1 (COX-1) assay. The extracts inhibited COX in the COX-1 assay with 85.0% being the highest inhibition [52,75]. Adedapo et al. [95] evaluated the anti-inflammatory activities of aqueous extract of the stem bark of *C. paniculata* using the carrageenan-induced rat paw edema and histamine-induced rat paw edema assays with indomethacin and cyproheptadine as positive controls. The extract at 50 mg/kg, 100 mg/kg, and 200 mg/kg body weight reduced significantly, the formation of edema induced by carrageenan and histamine [95].

Antiplasmodial activities

Tetyana [52] and Tetyana et al. [75] evaluated antiplasmodial activities of the bark ethanolic, ethyl acetate and water extracts of *C. paniculata* against *Plasmodium falciparum* in an *in vitro* assay, a slightly modified version of the parasite lactate dehydrogenase assay with chloroquine as a positive control. The extracts exhibited weak inhibitory activities ranging from 10% to 35% at a concentration of 200 mg/ml [52,75]. De Villiers et al. [104] evaluated antiplasmodial activities of aqueous and methanol leaf extracts of *C. paniculata* subsp. paniculata and *C. paniculata* subsp. sinuata against protozoan pathogen associated with urogenital or sexually transmitted infections, *Trichomonas vaginalis* using the microplate bioassay with ciprofloxacin.

Antiprotozoan activities

De Villiers et al. [104] evaluated antiprotozoan activities of aqueous and methanol leaf extracts of *C. paniculata* subsp. paniculata and *C. paniculata* subsp. sinuata using the microplate bioassay with ciprofloxacin in an adapted version of the parasite lactate dehydrogenase assay with chloroquine as the test organism. The extracts exhibited moderate antiprotozoal activities with half maximal inhibitory concentration (IC$_{50}$) value of >50.0 mg/ml [104].

Phytochemical composition

Phytochemical composition	References
Acetylated triterpene glycosides	[94]
3-O-acetyl-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of 23-hydroxybetulinic acid	[94]
28-O-(α-L-arabinopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of hederagenin	[94]
3-O-acetyl-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of hederagenin	[94]
3-O-α-L-arabinopyranosyl-28-O-(α-L-arabinopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of oleic acid	[94]
3-O-acetyl-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of oleic acid	[94]
3-O-α-L-arabinopyranosyl-28-O-(α-L-arabinopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of ursolic acid	[94]
3-O-acetyl-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of ursolic acid	[94]
3-O-α-L-arabinopyranosyl-28-O-(α-L-arabinopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of hederagenin	[94]
2-O-acetyl-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of hederagenin	[94]
3-O-α-L-arabinopyranosyl-28-O-(α-L-arabinopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of ursolic acid	[94]
3-O-acetyl-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of oleic acid	[94]
Acetylated triterpene glycosides	[93]
28-O-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of 23-hydroxyursolic acid	[94]
3-O-β-D-glucopyranosides of β-sitosterol	[93]
3-O-α-L-arabinopyranosides of oleic acid	[93]
3-O-α-L-arabinopyranosides of ursolic acid	[93]
3-O-α-L-arabinopyranosides of hederagenin	[93]
3-O-β-D-glucopyranosyl-(1→2)-α-L-arabinopyranoside of oleic acid	[93]
3-O-α-L-arabinopyranosyl-28-O-α-L-rhamnopyranosyl-(1→4)-O-β-D-glucopyranosyl-(1→6)-O-β-D-glucopyranosides of oleic acid	[93]
Flavonoid	[76]
Rutin	[76]
Steroidal saponin	[76]
Pseudoprostodioscin	[76]
Triterpenoid saponin	[76]
Glaucinoid B	[76]
Spinasaponin A	[76]
(0.01 mg/mL) as a positive control. Only methanol extract exhibited activities with MIC value of 1.0 mg/mL and 1.3 mg/mL against C. paniculata subsp. paniculata and C. paniculata subsp. sinuata extracts, respectively, and these values were higher than 0.001 mg/mL exhibited by the control [104].

Aβ42 protein reduction activities

Thakur et al. [76] evaluated the Aβ42 protein reduction activities of dichloromethane: methanol (1:1) leaf and stem extracts of C. paniculata using ELISA – sAPPα, sAPPβ, and Aβ peptide assays. The extract reduced the secreted level of Aβ42 in a dose-dependent manner compared to the control by 57.5%. The extract also decreased the levels of Aβ40, sAPPβ-sw, and sAPPα in a dose-dependent manner [76].

Cytotoxicity activities

De Villiers et al. [104] evaluated cytotoxicity activities of aqueous and methanol leaf extracts of C. paniculata subsp. paniculata and C. paniculata subsp. sinuata against the human T-cell leukemia (Jurkat) cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide colorimetric assay with (S)-(+)-camptothecin as a positive control. The extracts exhibited moderate cytotoxicity activities with IC₅₀ values ranging from 26.5 mg/mL to >5.0 mg/mL [104].

Toxicity activities

Adeapo et al. [95] evaluated acute toxicity activities of aqueous extract of the stem bark of C. paniculata by oral administration of graded doses of the extract of 200 mg/kg, 400 mg/kg, 800 mg/kg, 1600 mg/kg, and 3200 mg/kg body weight in Wistar male rats. All the rats were allowed free access to food and water and observed over a period of 48 h for signs of acute toxicity and deaths within this period. Acute toxicity test showed that the extract caused 80% mortality in rats, and hence, C. paniculata can be regarded as toxic [95].

CONCLUSION

The diverse medicinal uses of C. paniculata documented in southern Africa, and the scientific evidence of its phytochemistry and biological activities indicates its potential as herbal medicine. However, there is a need for detailed phytochemical and pharmacological studies aimed at correlating its documented ethnomedical uses with the phytochemical and pharmacological properties of the species. There is a need for clinical and toxicological evaluations since preliminary acute toxicity studies by Adeapo et al. [95] indicated that aqueous extract of the stem bark of C. paniculata contains potentially toxic compounds. Therefore, future research should focus on the identification of toxic compounds, the possible side effects caused by taking C. paniculata as herbal medicine, and mechanisms of how potential toxic components of the species can be managed when the species is used as herbal medicine.

ACKNOWLEDGMENTS

I would like to express my gratitude to the National Research Foundation, South Africa and Govan Mbeki Research and Development Centre, University of Fort Hare for financial support to conduct this study.

AUTHORS’ CONTRIBUTIONS

The author declares that this work was done by the author named in this article.

CONFLICTS OF INTEREST

The author declares that he has no conflict of interest.

REFERENCES

1. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: Multiple constituents and multiple actions. Biochem Pharmaco 1999;58:1685-93.

2. Choi KT. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmaco Sin 2008;29:1109-18.

3. Yıldırım A, Erenen G. The possibilities using of ginseng (Panax spp.) in poultry nutrition. Haso J Anim Sci 2010;26:56-9.

4. Leung KW, Wong AS. Ginseng and male reproductive function. Spermatogenesis 2013;3:e26391.

5. Yıldırım A, Şekerolu A, Eleroğlu H, Şen M, Duman M. Effects of Korean ginseng (Panax ginseng C.A. Meyer) root extract on egg production performance and egg quality of laying hens. S Afr J Anim Sci 2013;43:194-207.

6. Yang L, Yu QT, Ge YZ, Zhang WS, Fan Y, Ma CW, et al. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci Rep 2016;6:39045.

7. Li TSC, Mauza G, Cottrell AC, Gao L. Ginsenosides in roots and leaves of American ginseng. J Agr Food Chem 1996;44:717-20.

8. Vuksan V, Sievonenpiper JL, Koo YV, Francis T, Beljan-Zdravkovic U, Xu Z, et al. American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with Type 2 diabetes mellitus. Arch Intern Med 2000;160:1009-13.

9. Vuksan V, Sievonenpiper JL, Wong J, Xu Z, Beljan-Zdravkovic U, Arnason JT, et al. American ginseng (Panax quinquefolius L) attenuates postprandial glycemia in a time-dependent but not dose-dependent manner in healthy individuals. Am J Clin Nutr 2001;73:753-8.

10. Stavro PM, Woo M, Heim T, Leiter LA, Vuksan V. North American ginseng exerts a neutral effect on blood pressure in individuals with hypertension. Hypertension 2005;46:406-11.

11. Scholey A, Osoukhova A, Owen L, Ibbraa A, Pipingas A, Ke H, et al. Effects of American ginseng (Panax quinquefolius) on neurocognitive function: An acute, randomised, double-blind, placebo-controlled, crossover study. Psychopharmacology (Berl) 2010;212:345-56.

12. Lui EM, Azike CG, Guerrero-Analo JA, Romeh AA, Pei H, Kaldas SJ, et al. Bioactive polysaccharides of American ginseng Panax quinquefolius L. in modulation of immune function: Phytochemical and pharmacological characterization. In: Karunaratne DN, editor. The Complex World of Polysaccharides. London: IntechOpen; 2012. p. 513-34.

13. Jiang M, Murias JM, Chones T, Sims SM, Lui E, Noble EG, et al. American ginseng acutely regulates contractile function of rat heart. Front Pharmacol 2014;5:43.

14. Erdle SC, Chan ES, Yang H, Vallance BA, Mill C, Wong T, et al. First-reported pediatric cases of American ginseng anaphylaxis and allergy. Allergy Asthma Clin Immunol 2018;14:79.

15. Lui JH, Staba EJ. The ginsenosides of various ginseng plants and selected products. J Nat Prod 1980;43:340-6.

16. Radad K, Gille G, Frausch WD. Use of ginseng in medicine: Perspectives on CNS disorders. Iran J Pharmacol Ther 2004;3:30-40.

17. Chan HH, Hwang TL, Reddy MV, Li DT, Qian K, Bastow KF, et al. Bioactive constituents from the roots of Panax japonicus var. Major and development of a LC-MS/MS method for distinguishing between natural and artifactual compounds. J Nat Prod 2011;74:796-802.

18. Lee OR, Han JH, Kim Y. Agrobiotector-mediated transformation of mature ginseng embryos. Bio-protocol 2014;4:e1362.

19. Rai A, Yamazaki M, Takahashi H, Nakamura M, Kojima M, Suzuki H, et al. RNA-seq transcriptome analysis of Panax japonicus, and its comparison with other Panax species to identify potential genes involved in the saponins biosynthesis. Front Plant Sci 2016;7:481.

20. Agarwal H, Gayathri M. Biological synthesis of nanoparticles from medicinal plants and its uses in inhibiting biofilm formation. Asian J Pharm Clin Res 2017;10:64-68.

21. Manzanilla A, Kool A, Nguyen Nhat L, Nong Van H, Le Thi Thu H, de Boer HJ, et al. Phylogenomics and barcoding of Panax: Toward the identification of ginseng species. BMC Evol Biol 2018;18:44.

22. Pennisi BV, Oetting RD, Stegelin FE, Thomas PA, Woodward JL. Commercial production of English ivy (Hedera helix L.). Athens Bulletin 1206. Georgia: University of Georgia; 2009.

23. Saiha H, Allem R, El Kebir FZ. Antioxidant and antibacterial activities of six Algerian medicinal plants. Int J Pharm Sci 2016;8:367-74.

24. Small E. Ivy (Hedera species): Virtues and vices of the world’s most popular ornamental vine. Biodiversity 2019;20:62-74.

25. Hofmann D, Hecker M, Völpi A. Efficacy of dry extract of ivy leaves in children with bronchial asthma-a review of randomized controlled trials. Phytomedicine 2003;10:213-20.

26. Bolbot Y, Prokhorov E, Mokia S, Yurtseva A. Comparing the efficacy and safety of high concentrate (5-7.5:1) ivy leaves extract and
Maroyi
Asian J Pharm Clin Res, Vol 12, Issue 9, 2019, 1-6

J Ethnopharmacol 2015;171:109-15.
81. Maroyi A. Diversity of use and local knowledge of wild and cultivated plants in the Eastern Cape province, South Africa. J Ethnobiol Ethnomed 2017;13:43.
82. Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa. Edinburgh: S and L Livingstone; 1962.
83. Cock IE, Selesho MI, Van Vuuren SF. A review of the traditional use of Southern African medicinal plants for the treatment of selected parasite infections affecting humans. J Ethnopharmacol 2018;220:250-64.
84. Schmidt E, Lotter M, McCleland W. Trees and Shrubs of Mpmulamanga and Kruger National Park. Johannesburg: Jacana Media; 2002.
85. Fouché G, Khorombi E, Kolesnikova N, Maharaj VJ, Nthambeleni R, De Villiers BJ, Van Vuuren SF, Van Zyl RL, Van Wyk BE. Antimicrobial, cytotoxic and anti-inflammatory activities of a triterpene glycoside from Psidium guajava and its desulfated analog. J Ethnopharmacol 2015;171:109-15.
86. Thakur M, Melzig MF, Fuchs H, Weng A. Chemistry and pharmacology of saponins: Special focus on cytotoxic properties. Bot. Targets Ther 2011;1:183-205.
87. Moses T, Papadopoulou KK, Osbourn A. Metabolic and functional diversity of saponins, biosynthetic intermediates and semi-synthetic derivatives. Crit Rev Biochem Mol Biol 2014;49:439-62.
88. Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016;5:e47.
89. Careaga VP, Bueno C, Muniaín C, Alché L, Maier MS. Antiproliferative, cytotoxic and hemolytic activities of a triterpene glycoside from Psidium guajava and its desulfated analog. Chemotherapy 2009;55:60-8.
90. Afolayan AJ, Adebola PO. Acetylated triterpene glycosides and their biological activity from Holothuroidea reported in the past six decades. Mar Drugs 2016;14:e147.