Complete spectral energy distribution of the hot, helium-rich white dwarf RX J0503.9–2854

D. Hoyer, T. Rauch, K. Werner, J. W. Kruk, and P. Quinet

1 Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, 72076 Tübingen, Germany
e-mail: rauch@astro.uni-tuebingen.de
2 NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
3 Physique Atomique et Astrophysique, Université de Mons – UMONS, 7000 Mons, Belgium
4 IPNAS, Université de Liège, Sart Tilman, 4000 Liège, Belgium

Received 10 October 2016 / Accepted 17 October 2016

ABSTRACT

Context. In the line-of-sight toward the DO-type white dwarf RX J0503.9–2854, the density of the interstellar medium (ISM) is very low, and thus the contamination of the stellar spectrum almost negligible. This allows to identify many metal lines in a wide wavelength range from the extreme ultraviolet to the near infrared.

Aims. In previous spectral analyses, many metal lines in the ultraviolet spectrum of RX J0503.9–2854 have been identified. A complete line list of observed and identified lines is presented here.

Methods. We compared synthetic spectra that had been calculated from model atmospheres in non-local thermodynamical equilibrium (NLTE) to observations.

Results. In total, we identified 1272 lines (279 of them were newly assigned) in the wavelength range from the extreme ultraviolet to the near infrared. 287 lines remain unidentified. A close inspection of the EUV shows that still no good fit to the observed shape of the stellar continuum flux can be achieved although He, C, N, O, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Ni Zn, Ga, Ge, As, Kr, Zr, Mo, Sn, Xe, and Ba are included in the stellar atmosphere models.

Conclusions. There are two possible reasons for the deviation between observed and synthetic flux in the EUV may have two reasons. Opacities of hitherto unconsidered elements in the model-atmosphere calculation may be missing, and/or the effective temperature is slightly lower than previously determined.

Key words. atomic data – line: identification – stars: abundances – stars: individual: RX J0503.9–2854 – virtual observatory tools

1. Introduction

The white dwarf (WD) RX J0503.9–2854 (henceforth RE 0503–289, WD 0501–289) was discovered in the ROSAT (ROentgen SATellite) wide field camera all-sky survey of extreme-ultraviolet (EUV) sources (Pounds et al. 1993). Barstow et al. (1993) reported its discovery by the Extreme Ultraviolet Explorer (EUV), and identified it with a peculiar He-rich DO-type WD, namely MCT 0501–2858 in the Montreal-Cambridge-Tololo survey of southern hemisphere blue stars (Demers et al. 1986). They found that RE 0503–289 is located in a direction with very low density of the interstellar medium (ISM). In the line of sight (LOS) toward RE 0503–289, Vennes et al. (1994) measured a column density of \(N_{\text{H1}} / \text{cm}^2 = 17.75 \pm 18.00 \) using EUVE photometry data. Rauch et al. (2016) resolved at least two ISM components in the LOS toward RE 0503–289 based on high-resolution and high signal-to-noise ultraviolet (UV) spectroscopy performed by Far Ultraviolet Spectroscopic Explorer (FUSE) and HST/STIS (Hubble Space Telescope / Space Telescope Imaging Spectrograph) and measured a very low \((E_{\text{B-V}} = 0.015 \pm 0.002)\) interstellar reddening.

The almost negligible contamination by ISM line absorption allows us to identify even weak lines of many species from so far He up to trans-iron elements as heavy as Ba (Table 1). For reliable abundance analyses of these elements, a precise \(T_{\text{eff}} \) and \(g \) determination is a prerequisite to keep error propagation as small as possible. An initial constraint of \(T_{\text{eff}} = 60 000 \) – 70 000 K was given by Vennes et al. (1994) from EUV photometry. The first spectral analysis by means of non-local thermodynamic equilibrium (NLTE) stellar atmosphere models considering opacities of H, He, and C was published by Dreizler & Werner (1996) used ultraviolet (UV) spectra in addition and NLTE model atmospheres and determined \(T_{\text{eff}} = 70 000 \pm 5 000 \) K and \(g = 7.5 \pm 0.5 \). Recently, Rauch et al. (2016b) analyzed optical and ultraviolet (FUSE and HST/STIS) spectra and significantly reduced the error limits to \(\pm 2000 \) K and \(\pm 0.1 \), respectively. Table 1 summarizes previous analyses.

* Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26666.
** Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer.
*** Based on observations made with ESO Telescopes at the La Silla Paranal Observatory under program IDs 072.D-0362, 165.H-0588, and 167.D-0407.
Table 1. History of T_{eff} and log g determinations (cf., Müller-Ringel 2013). PM denotes photometry.

T_{eff} / kK	log g	Model atmosphere	Method	Comment	Reference
60 – 90		EUV, PM	very low N_{H_1},	Barstow et al. (1993)	
60 – 80		EUV, OPT	very low N_{H_1},	Barstow et al. (1993)	
60 – 70	7.5 – 8.0	He, HHeC	EUV, OPT, UV, EUV	EUV problem a	Barstow et al. (1994)
60 – 70	7.0	HHeC	EUV, PM	very low N_{H_1},	Vennes et al. (1994)
70 a	7.5	HHeC	NLTE, OPT, UV	$M = 0.49 M_\odot$	Dreizler & Werner (1996)
66.6 – 70.4	7.13 – 7.27	HHeC	LTE, UV	$M = 0.40 M_\odot$	Vennes et al. (1998)
70 b	7.5	HHeC	NLTE, diffusion	no good fit achieved	Dreizler (1999)
69 – 75	7.26 – 7.63	HHeC	NLTE, OPT, UV, EUV	EUV problem a	Barstow et al. (2000)
65 – 70	7.5 a	HeCNOSiFeNi	LTE, UV	EUV problem a	Werner et al. (2001)
70 b	7.5 a	HeCNOSiFeNi	LTE, UV	EUV problem a	Barstow et al. (2007)
68 – 72	7.4 – 7.6	HeCNOSiFeNi	LTE, OPT, UV	$M = 0.514 ^{+0.15}_{-0.05} M_\odot$	Rauch et al. (2016c)

Notes. $^{(a)}$ Sect 7. $^{(b)}$ adopted upper limit of Vennes et al. (1994). $^{(c)}$ adopted value close to lower limit of Barstow et al. (1994). $^{(d)}$ adopted from Barstow et al. (1994). $^{(e)}$ adopted from Dreizler & Werner (1996).

Table 2. Photospheric abundances (mass fraction) of RE 0503–289. The reference for the 1st line identifications is given in the final column.

Element	Abundance	1st Line identifications
He	9.73×10^{-1}	Barstow et al. (1994)
C	2.22×10^{-2}	Barstow et al. (1994)
N	5.49×10^{-5}	Dreizler & Werner (1996)
O	2.94×10^{-3}	Polomski et al. (1995)
Al	5.01×10^{-5}	Rauch et al. (2016a)
Si	1.60×10^{-4}	Dreizler & Werner (1996)
P	1.06×10^{-6}	Vennes et al. (1998); Barstow et al. (2007)
S	3.96×10^{-5}	Barstow et al. (2007)
Ni	7.25×10^{-5}	Barstow et al. (2000)
Zn	1.13×10^{-4}	Rauch et al. (2014a)
Ga	3.44×10^{-5}	Werner et al. (2012b)
Ge	1.58×10^{-4}	Werner et al. (2012b)
As	1.60×10^{-5}	Werner et al. (2012b)
Se	1.60×10^{-5}	Werner et al. (2012b)
Kr	5.04×10^{-4}	Werner et al. (2012b)
Zr	3.00×10^{-4}	Rauch et al. (2016a)
Mo	1.88×10^{-4}	Rauch et al. (2016b)
Sn	2.06×10^{-4}	Werner et al. (2012b)
Te	2.06×10^{-4}	Werner et al. (2012b)
I	2.16×10^{-4}	Werner et al. (2012b)
Xe	2.16×10^{-4}	Werner et al. (2012b)
Ba	3.57×10^{-4}	Rauch et al. (2014b)

2. Observations

In this paper, we used the observed spectra that are briefly described in the following. If they are compared to synthetic spectra, the latter are convolved with Gaussians to model the respective instrument’s resolution.

Extreme ultraviolet observations by the EUVE observatory were performed using the short-wavelength ($70 \lambda < \lambda < 190\,\text{Å}$), the medium-wavelength ($140 \lambda < \lambda < 380\,\text{Å}$), and the long-wavelength ($280 \lambda < \lambda < 760\,\text{Å}$) spectrometers with a resolving power of $R \approx 300$. Details of the data reduction are given by Dupuis et al. (1995).

Far ultraviolet spectra (910 $\lambda < \lambda < 1900\,\text{Å}$) were obtained with FUSE. Their data IDs are M1123601 (2000-12-04), M1124201 (2001-02-02), and P2041601 (2000-12-05). The spectra were shifted to rest wavelengths and co-added. For details see Werner et al. (2012b).

Ultraviolet spectroscopy was performed with HST/STIS on 2014-08-14. Two observations with grating E140M (1144 $\lambda < \lambda < 2014\,\text{Å}$) were obtained with FUSE. Their data IDs are M1123601 (2000-12-04), M1124201 (2001-02-02), and P2041601 (2000-12-05). The spectra were shifted to rest wavelengths and co-added. For details see Werner et al. (2012b).

Optical spectra (3290 $\lambda < \lambda < 4524\,\text{Å}$, $4604 \lambda < \lambda < 5609\,\text{Å}$, $5673 \lambda < \lambda < 6641\,\text{Å}$) were obtained by the EUVE observatory, and two observations with grating E230M (1560 $\lambda < \lambda < 2366\,\text{Å}$, $2277 \lambda < \lambda < 3073\,\text{Å}$) were co-added. These observations are retrievable from the Barbara A. Mikulski Archive for Space Telescopes (MAST).

The spectra were shifted to rest wavelengths and co-added. For details see Werner et al. (2012b).

Optical spectra (3290 $\lambda < \lambda < 4524\,\text{Å}$, $4604 \lambda < \lambda < 5609\,\text{Å}$, $5673 \lambda < \lambda < 6641\,\text{Å}$) were obtained by the EUVE observatory, and two observations with grating E230M (1560 $\lambda < \lambda < 2366\,\text{Å}$, $2277 \lambda < \lambda < 3073\,\text{Å}$) were co-added. These observations are retrievable from the Barbara A. Mikulski Archive for Space Telescopes (MAST).
Table 3. Newly calculated transition probabilities.

Element	Ions	Reference
Zn	iv-v	Rauch et al. (2014a)
Ga	iv-vi	Rauch et al. (2015b)
Ge	v-vi	Rauch et al. (2012)
Kr	iv-vii	Rauch et al. (2016c)
Zr	iv-vii	Rauch et al. (2016a)
Tc	ii-vi	Werner et al. (2015)
Mo	iv-vii	Rauch et al. (2016b)
Xe	iv-vii	Rauch et al. (2015a, 2016a)
Ba	v-vii	Rauch et al. (2014b)

Near infrared spectroscopy (9500 Å < λ < 13420 Å, R ≈ 950) was performed on 2003-12-10 using the Son-of-Isaac (SoI) instrument at the NTT. The spectrum used here was digitized with Dexterc from Fig. 1 in Dobbie et al. (2005).

3. Model atmospheres and atomic data

The stellar model atmospheres used for this paper were calculated with our Tübingen NLTE Model Atmosphere Package (TMAD), Werner et al. 2003, 2012a). They assume plane-parallel geometry, are chemically homogeneous, and in hydrostatic and radiative equilibrium. An adaptation is the New Generation Radiative Transport (NGRT) code (Dreizler & Wolff 1999, Schuh et al. 2002) that can consider diffusion in addition to calculate stratified stellar atmospheres.

The Tübingen Model Atom Database (TMAD) provides ready-to-use model atoms in TMAP format for many species up to Ba. TMAD has been constructed as part of the Tübingen contribution to the German Astrophysical Virtual Observatory (GAVO).

Werner et al. (2012b) discovered lines of trans-iron elements, namely Ga (atomic number Z = 31), Ge (32), As (33), Se (34), Kr (36), Mo (42), Sn (50), Te (52), I (53), and Xe (54), in the FUSE spectrum of RE 0503–289. For precise abundance determinations of these species, reliable atomic data is mandatory. For example, reliable transition probabilities are required, not only for lines that are identified in the observation but for the complete model atoms that are considered in the model-atmosphere calculations. Due to the lack of such data, Werner et al. (2012a) were restricted to abundance determinations of Kr and Xe only.

We initiated the calculation of new transition probabilities that were then used to determine the abundance of the respective element. Table 3 gives an overview of the so far calculated data. To provide easy access to this data, the registered Tübingen Oscillator Strengths Service (TOSS) has been created within the GAVO project.

To construct model atoms for the use within TMAP, the elements given in Table 3 require the calculation of so-called super levels and super lines with our Iron Opacity and Interface (IrOnIc, Rauch & Deetjen 2003) due to the very high number of atomic levels and lines. We transferred the TOSS data into Kurucz’s data format that can be read by IrOnIc.

4. Radial velocity and gravitational redshift

To shift the observation to rest wavelength, we determined the radial velocity v_{rad} of RE 0503–289 from FUSE and HST/STIS spectra. To measure the wavelengths of the line centers, we used IRAF fit to fit Gaussians to the line profiles. In total, we evaluated 100 lines in the FUSE wavelength range and 103 lines in the STIS wavelength range. The averages are v_{FUSE} = 25.7 ± 4.2 km/s and v_{STIS} = 25.8 ± 3.7 km/s. We adopted the mean value of v_{rad} = 25.7 ± 4.0 km/s. From this value, the gravitational redshift z has to be subtracted. To calculate z and the respective radial velocity, we created the GAVO tool Tübingen Gravitational Redshift calculator (TGRED, Fig. 1). For RE 0503–289, we derive v_{rad} = 15.5 ± 4.6 km/s. The true radial velocity is then v_{FUSE} = 10.2 ± 3.6 km/s.

5. Line identification

To unambiguously identify lines in our observed spectra (Sect. 2), we used the best synthetic model of Rauch et al. (2016b) and calculated additional spectra with oscillator strengths set to zero for individual elements. This allows to find weak lines, even if they are blended by stronger lines. The detection limit is an equivalent width of W_1 = 2 mÅ. Table 4 shows the total numbers of lines identified in the four wavelength ranges and the numbers of lines that were suited to determine W_1 and v_{rad}.

The current line lists are presented in Tables 1 and 2. A regularly updated version is available at http://astro.uni-tuebingen.de/~hoyer/objects/RE0503-289.

References:
1. http://dc.zah.uni-heidelberg.de/sdexter
2. http://astro.uni-tuebingen.de/~TMAP
3. http://astro.uni-tuebingen.de/~TMAD
4. http://www.g-vo.org
5. http://kurucz.harvard.edu/atoms.html
6. IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Associated Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.

Fig. 1. Determination of v_{rad} from individual lines in the FUSE (top panel) and HST/STIS observations (bottom). The full horizontal lines indicate the average v_{rad} for FUSE and HST/STIS, respectively. The dashed lines show the 1 σ error.
Table 4. Statistics of the identified (in brackets: newly identified in this paper) and unidentified lines in the observed spectra. The last two columns give the numbers of lines that were used to measure their equivalent widths W_d and ξ_{rad} (Fig. 4), respectively.

Wavelength Range	Total	Identified	Unidentified	W_d	ξ_{rad}
EUV	74	74(35)	0	0	0
FUV	616	536(55)	76	148	100
NUV	790	579(120)	211	252	103
optical	83	83(69)	0	0	0
NIR	2	2(0)	0	0	0

Fig. 2. Determination of E_{B-V}. Top: Reddening with $E_{B-V} = 0.00026$ applied to our synthetic spectrum in the wavelength range from the EUV to the NIR. Bottom: Same like top panel, for $E_{B-V} = 0.00016$ (blue), 0.00026 (red), and 0.00036 (green) in the EUV wavelength range. Prominent lines are marked.

6. Visualization and online line list

In the framework of the Tübingen (GAVO project, we have developed the registered Tübingen VISualization tool (TVIS) that allows the user to plot any data in an easy way on the WWW. The plotter itself is written in HTML5 and Javascript. To strongly increase the security of this web application, no Flash or Java is necessary to use it, meaning that TVIS will even work when Flash is dead and Java applets are blocked by the browsers.

The comparison of our best model spectra with the available observation of RE0503–289 in the EUV, FUV, NUV, and optical wavelength ranges was realized with TVIS and is shown at http://astro.uni-tuebingen.de/~TVIS/objects/RE0503–289. Figures B.1 to B.3 show the FUV to optical range.

7. Is there still an EUV problem in RE0503–289?

To analyze the EUVE observation, Barstow et al. (1995) used NLTE model atmospheres that were calculated with the code that is nowadays called TMAP. A synthetic spectrum (scaled to match the observed EUV flux) that was calculated from a model with $T_{eff} = 70,000$ K, $log g = 7.0$, $C/He = 1 \%$, and $N/He = 0.01 \%$ (the latter being number ratios) reproduced well the observation. A major problem arose, however, from the fact that the model flux (reddened and interstellar neutral hydrogen absorption considered) in the wavelength range $228 \AA < \lambda < 400 \AA$ was about an order of magnitude higher than observed. Only models with $T_{eff} < 65,000$ K produced an acceptable fit. He λ 5875.62 Å (2p $^1P^0$ - 3d 1D) in the optical wavelength range (e.g., in spectra taken with the TWINSpectrograph at the Calar Alto observatory in the spectra, Dreizler & Werner 1996; Rauch et al. 2016c) establishes a stringent constraint of $T_{eff} = 70,000 \pm 2,000$ K.

Werner et al. (2001) calculated TMAP models that were composed of He, C, O, and the iron-group elements (Ca - Ni). Interstellar He i absorption was applied in addition to that of Hi. The flux discrepancy was reduced (model flux three times higher than observed) but the basic problem, finding an agreement at $T_{eff} = 70,000$ K, was not solved.

Müller-Ringat (2013) created the Tübingen EUV absorption tool (TEUV, Fig.C.1), that corrects synthetic stellar fluxes for ISM absorption for $\lambda < 911$ Å. Presently, only radiative bound-free absorption of the lowest ionization states of H, He, C, N, and O is simulated. Opacity Project data (Seaton et al. 1994) is used for the photoionization cross-sections. These consider, for example, autoionization features. For this paper, Si has been added to TEUV. Two interstellar components with different radial and turbulent velocities, temperatures, and column densities can be considered. Müller-Ringat (2013) calculated TMAP models ($T_{eff} = 70,000$ K, $log g = 7.5$) that included He, C, N, O, and the iron-group elements. Although Kurucz’s line lists were strongly extended in 2009 (Kurucz 2009, 2011), and about a factor of ten more iron-group lines were considered, the EUV model flux was about twice as high as that observed. To match the observed EUV flux, T_{eff} had to be reduced to $\leq 65,000$ K.

Rauch et al. (2016a) determined $T_{eff} = 70,000 \pm 2,000$ K and $log g = 7.5 \pm 0.1$ in a detailed reanalysis of optical and UV spectra. They included 27 elements, namely, He, C, N, O, Al, Si, P, S, Ca, Sc, Ti, V, Cr, Mn, Fe, Cr, Ni, Zn, Ga, Ge, As, Kr, Zr, Mo, Sn, Xe, and Ba, in their models. From these, we calculated the EUV spectrum (228 Å $\leq \lambda \leq 910$ Å) with 1601 atomic levels treated in NLTE, considering 2481 lines of the elements He - S and about 30 million lines of the elements with $Z \geq 20$. The frequency grid comprised 174,873 points with $\Delta \lambda \leq 0.005$ Å.

Figure 2 demonstrates the determination of the interstellar reddening. We apply the reddening data of Morrison & McCammon (1983) provided for 1.26 Å $\leq \lambda \leq 413$ Å and extrapolated toward the He i ground-state threshold) and Fitzpatrick (1999 $\lambda \geq 911$ Å). Between the He i ground-state edge and the Hi Lyman edge, only absorption due to Hi is considered. To determine E_{B-V}, we normalized our models to the 2MASS H brightness (14.766 ± 0.063, Cutri et al. 2003c). To match the observed flux level between about 400 Å to 600 Å, $E_{B-V} = 0.00026 \pm 0.00003$ is necessary. This is less than $E_{B-V} = 0.015 \pm 0.002$ that was used by Rauch et al. (2016a) to reproduce the observed FUSE flux level. With the Galactic reddening law of Groenewegen & Lamers (1989) $log(N_{HI}/E_{B-V} = 21.58 \pm 0.1)$ and the total cloud column den-
Fig. 3. Comparison of the EUVE observation (gray line in both panels) with our models. Top panel: Two models with $T_{\text{eff}} = 70\,000$ K (red) and $T_{\text{eff}} = 66\,000$ K (blue). Identified photospheric lines are marked at the top. Bottom panel: Three models with $T_{\text{eff}} = 70\,000$ K. Red, thick line: model from the top panel, red, dashed line: model with 200 times increased Ni abundance, blue, thin line: model that considered only opacities of He, C, N, O, Fe, and Ni.

A close look at the EUV wavelength range shows still a significant difference between model and observation (Fig. 3, top panel), most prominent between 250 Å and 400 Å and between 504 Å and 550 Å. Our present models reduced the deviation by about a factor of two compared to the models of Werner et al. (2001). The EUV problem cannot be solved by using a cooler model, even at $T_{\text{eff}} = 66\,000$ K, which is already outside the error range of $T_{\text{eff}} = 70\,000 \pm 2000$ K given by Rauch et al. (2016c). No sufficient improvement is achieved. The impact of metal opacities is demonstrated in Fig. 3 by a model that considered only opacities from He, C, N, O, Fe, and Ni with same abundance ratios like our best model. To test the impact of additional opacity, we artificially increased the Ni abundance by factor of 200 to match the model’s flux to the observed between 250 Å and 280 Å. This reduced the flux discrepancy between 300 Å and 400 Å as well while the wavelength region above the He I ground-state threshold is unaffected. However, we conclude that even in our advanced models opacity is missing from elements that are hitherto not considered. To include, for example, other trans-iron elements requires detailed laboratory measurements of their spectra and the extensive calculation of transition probabilities.

8. What is the nature of RE 0503–289?

RE 0503–289 was first classified to be a DO-type WD (Barstow et al. 1993). Its optical spectrum exhibits an absorption trough around C IV $\lambda\lambda 4646.62 - 4687.95$ Å and He II $\lambda 4685.80$ Å. This trough is the spectroscopic criterion for the H-deficient PG 1159-type stars (e.g., Werner & Herwig 2006). Figure 4 shows the comparison of the wavelength region around this trough for the PG 1159 prototype PG 1159–035 (V* GW Vir, $T_{\text{eff}} = 140\,000 \pm 5\,000$ K, $\log g = 7.0 \pm 0.5$, Jahn et al. 2007) and the O(He)-type WD KPD 0005+5106 (WD 0005+511, $T_{\text{eff}} = 195\,000 \pm 15\,000$ K, $\log g = 6.7 \pm 0.2$, Werner & Rauch 2015). Both objects are at an earlier state of stellar evolution than RE 0503–289.
strengths of the PG 1159 absorption troughs are almost the same for the much hotter PG 1159–035 and RE 0503–289, although their photospheric C abundances are significantly different, ≈ 48% by mass (Jahn et al. 2007) and ≈ 2%, respectively. The cool PG 1159-type star PG 0122+200 has about 22% of C in its photosphere (Werner & Rauch 2014).

In a log T_{eff} − log g diagram (Fig 5), RE 0503–289 is located at the so-called PG 1159 wind limit (Unglaub & Bues 2000, their Fig. 13, digitized with Dexter) that was predicted for a ten-times-reduced mass-loss rate (line A, calculated with $\dot{M} = 1.29 \times 10^{-15} L_{\odot}^{1.86}$ from Bloesch et al. 1995; Paudel et al. 1988). This line approximately separates the regions that are populated by PG 1159-type stars and DO-type WDs. Lines B and C in Fig 5 show where the photospheric C/He content is reduced by factors of 0.5 and 0.1, respectively, when using the mass-loss rate given above. To the right of line D, no PG 1159 star is located.

Werner et al. (2014) suggested a mass ratio $C/He = 0.02$ to conserve previously assigned spectroscopic classes. However, PG 1159 stars span a wide range of C/He (0.03–0.33, Werner et al. 2014).

RE 0503–289 is located close to line B of Unglaub & Bues (2000) in Fig 5 that is, its C abundance should be already reduced by a factor of 0.5. Thus, it is likely that RE 0503–289 had a $C/He = 0.05$ in its antecedent PG 1159-star phase. Even now, its C/He lies a bit higher than 0.02 and RE 0503–289 may be classified as a PG 1159 star as well. This is corroborated by the still high efficiency of radiative levitation that is responsible for the extremely high overabundances of trans-iron elements (Rauh et al. 2016b). However, the transition from a PG 1159-type star to a DO-type star is smooth and RE 0503–289 is an ideal object to study this in detail. Unfortunately, the strong radiative levitation of trans-iron elements wipes out all information about their asymptotic giant branch (AGB) abundances and RE 0503–289 is not suited to constrain AGB nucleosynthesis models.

9. Results

RE 0503–289 fulfills criteria of PG 1159 star and of DO-type WD classifications. The presence of the strong PG 1159 absorption trough around He II λ4685.80 Å (Fig 5) shows that RE 0503–289 could be classified as a PG 1159 star, although its C abundance would then be the lowest of this group. It is located close to the so-called PG 1159 wind limit (Fig 5), meaning that it is close to the regime in which gravitation will dominate and pull metals down, out of the atmosphere. The strongly increased abundances of trans-iron elements, however, indicate that radiative levitation is still efficiently counteracting this process. Thus, RE 0503–289 has not arrived in its final stage of evolution. Formally, due to its log $g > 7$, the DO-type WD classification is right.

In the observed spectra, we identified 1272 lines in the wavelength range from the extreme ultraviolet to the near infrared. 287 lines remain unidentified. The best model of Rauh et al. (2016a) reproduces well most of the identified lines.

The EUV problem (Sect. 7) – the difference between observed and synthetic flux in the EUV is still present. Our advanced model atmospheres include opacities of 27 metals but their flux in the EUV is still partly about a factor of approximately two too high compared with the observed. We expect that missing metal opacities are the reason for this discrepancy.

Acknowledgements. DH and TR are supported by the German Aerospace Center (DLR, grants 50 OR 1501 and 50 OR 1507, respectively). The German Astronomical Virtual Observatory (GAVO) project at Tübingen had been supported by the Federal Ministry of Education and Research (BMBF, 05 AC 6 VTB, 05 AC 11 VTB). Financial support from the Belgian FRSGFNRS is also acknowledged. PQ is research director of this organization. Some of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST). STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Support for MAST for non-HST data is provided by the NASA Office of Space Science via grant NNX09AF08G and by other grants and contracts. We thank Ralf Napierowski for putting the reduced ESO/VLT spectra at our disposal. The TEUV tool (http://astro-uni-tuebingen.de/~TEUV), the TGRED tool (http://astro-uni-tuebingen.de/~TGRED), the TIO service (http://astro-uni-tuebingen.de/~TIO), the TMAD service (http://astro-uni-tuebingen.de/~TMAD), the TOSS service (http://astro-uni-tuebingen.de/~TOSS), and the TVIS tool (http://
References

Althaus, L. G., Panei, J. A., Miller Bertolami, M. M., et al. 2009, ApJ, 704, 1605
Barstow, M. A., Dobbie, P. D., Forbes, A. E., & Boyce, D. D. 2007, in Astrophysical Society of the Pacific Conference Series, Vol. 372, 15th European Workshop on White Dwarfs, ed. R. Napiwotzki & M. R. Burleigh, 243
Barstow, M. A., Dreizler, S., Holberg, J. B., et al. 2000, Monthly Notices of the Royal Astronomical Society, 314, 109
Barstow, M. A., Holberg, J. B., Koester, D., Nousek, J. A., & Werner, K. 1995, in Lecture Notes in Physics, Berlin Springer Verlag, Vol. 443, White Dwarfs, ed. D. Koester & K. Werner, 302
Barstow, M. A., Holberg, J. B., Werner, K., Buckley, D. A. H., & Stobie, R. S. 1994, MNRAS, 267, 653
Barstow, M. A., Wesemael, F., Holberg, J. B., et al. 1993, Advances in Space Research, 13, 281
Bloecher, T. 1995, A&A, 299, 755
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003a, 2MASS All Sky Catalog of point sources.
Cutri, R. M., Skrutskie, M. F., van Dyk, S., et al. 2003b, VizieR Online Data Catalog, 2246
Demers, S., Belland, S., Kibblewhite, E. J., Irwin, M. J., & Nithakorn, D. S. 1986, AJ, 92, 878
Dobie, P. D., Burleigh, M. R., Levan, A. J., et al. 2005, A&A, 439, 1159
Dreizler, S. 1999, Astronomy and Astrophysics, 352, 632
Dreizler, S. & Werner, K. 1996, A&A, 314, 217
Dreizler, S. & Wolff, B. 1999, A&A, 348, 189
Dupuis, J., Vennes, S., Bowyer, S., Pradhan, A. K., & Thejll, P. 1995, ApJ, 455, 574
Fitzpatrick, E. L. 1999, PASP, 111, 63
Groenewegen, M. A. T. & Lamers, H. J. G. L. M. 1989, A&AS, 79, 359
Hipplemeyer, S. D., Dreizler, S., Homeier, D., et al. 2006, A&A, 454, 617
John, D., Rauch, T., Reiff, E., et al. 2007, A&A, 462, 281
Kepler, S. O., Pelisoli, I., Koester, D., et al. 2016, MNRAS, 455, 3413
Kurucz, R. L. 1991, in NATO ASIC Proc. 341: Stellar Atmospheres - Beyond Classical Models, ed. L. Crivellari, I. Hubeny, & D. G. Hummer, 441
Kurucz, R. L. 2009, in American Institute of Physics Conference Series, Vol. 1171, American Institute of Physics Conference Series, ed. I. Hubeny, J. M. Stone, K. MacGregor, & K. Werner, 43–51
Kurucz, R. L. 2011, Canadian Journal of Physics, 89, 417
McCook, G. P. & Sion, E. M. 1999b, VizieR Online Data Catalog, 3210, 0
Morrison, R. & McCammon, D. 1983, ApJ, 270, 119
Müller-Ringat, E. 2013, Dissertation, University of Tübingen, Germany, http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-67747
Napiwotzki, R., Christlieb, N., Drechsel, H., et al. 2001, Astronomische Nachrichten, 322, 411
Napiwotzki, R., Christlieb, N., Drechsel, H., et al. 2003, The Messenger, 112, 25
Pauldrach, A., Puls, J., Kudritzki, R. P., Mendez, R. H., & Heap, S. R. 1988, A&A, 207, 123
Polomski, E. F., Vennes, S., & Chayer, P. 1995, in Bulletin of the American Astronomical Society, Vol. 27, American Astronomical Society Meeting Abstracts, 1311
Pounds, K. A., Allar, D. J., Barber, C., et al. 1993, MNRAS, 260, 77
Rauch, T. & Deetjen, J. L. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 103
Rauch, T., Gamrath, S., Quinet, P., et al. 2016a, A&A in prep.
Rauch, T., Hoyer, D., Quinet, P., Gallardo, M., & Raineri, M. 2015a, A&A, 577, A88
Rauch, T., Quinet, P., Hoyer, D., et al. 2016b, A&A, 587, A39
Rauch, T., Quinet, P., Hoyer, D., et al. 2016c, A&A, 590, A128
Rauch, T., Werner, K., Biemont, E., Quinet, P., & Kruk, J. W. 2012, A&A, 546, A55
Rauch, T., Werner, K., Quinet, P., & Kruk, J. W. 2014a, A&A, 564, A41
Rauch, T., Werner, K., Quinet, P., & Kruk, J. W. 2014b, A&A, 566, A10
Rauch, T., Werner, K., Quinet, P., & Kruk, J. W. 2015b, A&A, 577, A6
Reindl, N., Rauch, T., Werner, K., et al. 2014a, A&A, 572, A117
Reindl, N., Rauch, T., Werner, K., & Todt, H. 2014b, A&A, 566, A116
Schneider, S. L., Dreizler, S., & Wolff, B. 2002, A&A, 382, 164
Seaton, M. J., Yan, Y., Mihalas, D., & Pradhan, A. K. 1994, MNRAS, 266, 805
Unglaub, K. & Bues, I. 2000, A&A, 359, 1042

Vennes, S., Dupuis, J., Bowyer, S., et al. 1994, ApJ, 421, L35
Vennes, S., Dupuis, J., Chayer, P., et al. 1998, The Astrophysical Journal, 500, L41
Werner, K. 1996, Astronomy and Astrophysics, 309, 861
Werner, K., Deetjen, J. L., Dreizler, S., et al. 2003, in Astronomical Society of the Pacific Conference Series, Vol. 288, Stellar Atmosphere Modeling, ed. I. Hubeny, D. Mihalas, & K. Werner, 31
Werner, K., Deetjen, J. L., Rauch, T., & Wolff, B. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 226, 12th European Workshop on White Dwarfs, ed. J. L. Provencal, H. L. Shipman, J. MacDonald, & S. Goodchild, 55
Werner, K., Dreizler, S., & Rauch, T. 2012a, TMAP: Tübingen NLTE Model-Atmosphere Package, Astrophysics Source Code Library [record ascl:1212.015]
Werner, K. & Herwig, F. 2006, PASP, 118, 183
Werner, K. & Rauch, T. 2014, A&A, 569, A99
Werner, K. & Rauch, T. 2015, A&A, 583, A131
Werner, K., Rauch, T., & Kepler, S. O. 2014, A&A, 564, A53
Werner, K., Rauch, T., Kučas, S., & Kruk, J. W. 2015, A&A, 574, A29
Werner, K., Rauch, T., Ringat, E., & Kruk, J. W. 2012b, ApJ, 751, L7
Appendix A: Identified and unidentified lines in the spectrum of RE 0503–289
Ion	Levels	\(f \)	\(W_\lambda / \text{mÅ} \)	Wavelength / Å	\(\nu_{\text{rad}} / \text{km/s} \)	Comment	
He I	1 1	6	7.80 \times 10^{-3}	234.347		newly identified	
He I	1 1	5	1.39 \times 10^{-2}	237.331		Vennes et al. (1998)	
He I	1 1	4	2.90 \times 10^{-2}	243.026		Vennes et al. (1998)	
C IV	2p 2P\(_{1/2}\) 6s 2S\(_{1/2}\)	1.32 \times 10^{-3}	247.341		newly identified		
C IV	2p 2P\(_{3/2}\) 6s 2S\(_{1/2}\)	1.32 \times 10^{-3}	247.407		newly identified		
He I	1 1	3	7.91 \times 10^{-2}	256.316		Vennes et al. (1998)	
C IV	2p 2P\(_{1/2}\) 5d 2D\(_{3/2}\)	4.57 \times 10^{-2}	259.468				
C IV	2p 2P\(_{3/2}\) 5d 2D\(_{3/2}\)	4.11 \times 10^{-2}	259.539				
O IV	2p\(_{2}\) 2D\(_{5/2}\) 3d 2D\(_{5/2}\)	1.48 \times 10^{-1}	266.953				
O IV	2p\(_{2}\) 2D\(_{3/2}\) 3d 2D\(_{3/2}\)	1.60 \times 10^{-2}	266.941				
O IV	2p\(_{2}\) 2D\(_{5/2}\) 3d 2D\(_{5/2}\)	1.07 \times 10^{-2}	266.971				
O IV	2p\(_{2}\) 3P\(_{3/2}\) 3s 4P\(_{3/2}\)	5.18 \times 10^{-2}	271.990				
O IV	2p\(_{2}\) 3P\(_{1/2}\) 3s 4P\(_{3/2}\)	9.58 \times 10^{-2}	272.076				
O IV	2p\(_{2}\) 3P\(_{3/2}\) 3s 4P\(_{3/2}\)	8.05 \times 10^{-2}	272.127				
O IV	2p\(_{2}\) 3P\(_{3/2}\) 3s 4P\(_{3/2}\)	1.53 \times 10^{-2}	272.137				
O IV	2p\(_{2}\) 3P\(_{1/2}\) 3s 4P\(_{3/2}\)	1.91 \times 10^{-2}	272.176				
O IV	2p\(_{2}\) 3P\(_{1/2}\) 4s 3P\(_{2}\)	4.61 \times 10^{-3}	280.109				
O IV	2p\(_{2}\) 3P\(_{1/2}\) 4s 3P\(_{0}\)	1.11 \times 10^{-2}	280.234				
O IV	2p\(_{2}\) 3P\(_{2}\) 4s 3P\(_{2}\)	8.30 \times 10^{-3}	280.261				
O IV	2p\(_{2}\) 3P\(_{2}\) 4s 3P\(_{0}\)	2.77 \times 10^{-3}	280.323				
O IV	2p\(_{2}\) 3P\(_{2}\) 4s 3P\(_{0}\)	3.69 \times 10^{-3}	280.408				
O IV	2p\(_{2}\) 3P\(_{2}\) 4s 3P\(_{0}\)	2.76 \times 10^{-3}	280.474				
N IV	2p 2p\(_{0}\) 3d 3D\(_{1}\)	6.21 \times 10^{-1}	283.417			newly identified	
N IV	2p 2p\(_{0}\) 3d 3D\(_{3}\)	4.59 \times 10^{-1}	283.465			newly identified	
N IV	2p 2p\(_{1}\) 3d 3D\(_{1}\)	1.53 \times 10^{-1}	283.468			newly identified	
N IV	2p 2p\(_{2}\) 3d 3D\(_{1}\)	4.14 \times 10^{-1}	283.574			newly identified	
N IV	2p 2p\(_{0}\) 3d 3D\(_{1}\)	9.20 \times 10^{-2}	283.581			newly identified	
C IV	2p\(_{2}\) 2P\(_{1/2}\) 4d 2D\(_{3/2}\)	1.22 \times 10^{-1}	289.141				
C IV	2p\(_{2}\) 2P\(_{1/2}\) 4d 2D\(_{3/2}\)	1.01 \times 10^{-1}	289.292				
C IV	2p\(_{2}\) 2P\(_{0}\) 4d 2D\(_{3/2}\)	1.22 \times 10^{-2}	289.231				
O IV	2p\(_{2}\) 2P\(_{3/2}\) 3d 2P\(_{3/2}\)	7.07 \times 10^{-2}	299.853				newly identified
Ion	Levels	f	Wₐ / mÅ	Wavelength / Å	vₐd / km/s	Comment	
-----	--------	---	---------	----------------	------------	---------	
He i	1 s 1S	4p 1Pₒ	2.99×10⁻²	522.213	newly identified		
He i	1 s 1S	3p 1Pₒ	7.35×10⁻²	537.030	newly identified		
O ii	2p 3Dₒ	3p 3P₁	6.20×10⁻⁵	554.759	newly identified		
O ii	2p 3D₁	3p 3P₂	1.52×10⁻³	554.773	newly identified		
He i	1 s 1S	2p 1Pₒ	2.76×10⁻¹	584.334	newly identified		
O vi	2p 3D₁	4d 3D₂	1.38×10⁻¹	609.591	newly identified		
O vi	2p 3P₁/₂	2p 1S₁/₂	1.26×10⁻¹	624.169	newly identified		
O vi	2p 3P₃/₂	2p 1S₄/₂	1.26×10⁻¹	625.127	newly identified		
O vi	2p 3P₃/₂	2p 1S₄/₂	1.26×10⁻¹	625.853	newly identified		
O vi	3p 2P₁/₂	3p 2P₁/₂	1.24×10⁻¹	626.446	newly identified		
O vi	3p 2P₁/₂	3p 2P₁/₂	1.56×10⁻¹	626.539	newly identified		
O vi	3p 2P₁/₂	3p 2P₁/₂	1.56×10⁻¹	626.198	newly identified		
O vi	3p 2P₁/₂	3p 2P₁/₂	1.56×10⁻¹	626.198	newly identified		
O vi	3p 2P₁/₂	3p 2P₁/₂	1.56×10⁻¹	626.539	newly identified		
He i	1 s 1S	2p 1Pₒ	2.76×10⁻¹	584.334	newly identified		
Table A.1. Continued.

Ion	Levels	\(f \)	\(W_{\lambda} \)	Wavelength/Å	\(v_{\text{rad}} \)	Comment	
	Lower	Upper		Theoretical	Observed	km/s	
C iv	\(3D \) \(2D_{5/2} \)	\(7F \) \(2F_{7/2} \)	\(2.45 \times 10^{-2} \)	\(627.144 \)	newly identified		

Table A.2. Like Table A.1 for the FUSE observations.

Ion	Levels	\(f \)	\(W_{\lambda} \)	Wavelength/Å	\(v_{\text{rad}} \)	Comment			
	Lower	Upper		Theoretical	Observed	km/s			
H i	1	25				913.215	ISM multi-component		
H i	1	24				913.339	ISM multi-component		
H i	1	23				913.480	ISM multi-component		
H i	1	22				913.641	ISM multi-component		
H i	1	21				913.826	ISM multi-component		
H i	1	20				914.039	ISM multi-component		
H i	1	19				914.286	ISM multi-component		
H i	1	18				914.576	ISM multi-component		
H i	1	17				914.919	ISM multi-component		
H i	1	16				915.329	ISM multi-component		
N ii	1	15				915.613	ISM multi-component		
H i	1	14				915.834	ISM multi-component		
H i	1	13				916.429	ISM multi-component		
H i	1	12				917.181	ISM multi-component		
H i	1	11				918.129	ISM multi-component		
Ge vi	306243	415143	\(2.34 \times 10^{-4} \)		918.278				
Kr vii	170835	279714.8	\(1.39 \times 10^{-1} \)	12.2	918.444	918.53	26.4		
H i	1	10				919.351	ISM multi-component		
H i	1	9				919.938	ISM multi-component		
O iv	2s2p\(^2\) \(2p_{1/2} \)	2p\(^3\) \(2p_{3/2} \)	\(5.62 \times 10^{-2} \)		921.296	ISM multi-component			
O iv	2s2p\(^2\) \(2p_{1/2} \)	2p\(^3\) \(2p_{3/2} \)	\(1.12 \times 10^{-1} \)		921.365	ISM multi-component			
N iv	2s2p\(^3\) \(3p_{1/2} \)	2p\(^2\) \(3p_{2} \)	\(9.38 \times 10^{-2} \)	75.7	921.994	922.07	23.1		
N iv	2s2p\(^3\) \(3p_{1/2} \)	2p\(^2\) \(3p_{2} \)	\(2.55 \times 10^{-1} \)	91.6	922.519	922.59	22.8		
N iv	2s2p\(^3\) \(3p_{1/2} \)	2p\(^2\) \(3p_{2} \)	\(5.62 \times 10^{-2} \)		923.056	ISM multi-component			
H i	1	8				923.150	ISM multi-component		
N iv	2s2p\(^3\) \(3p_{2} \)	2p\(^2\) \(3p_{2} \)	\(1.69 \times 10^{-1} \)		923.220	ISM multi-component			
O iv	2s2p\(^2\) \(2p_{3/2} \)	2p\(^3\) \(2p_{3/2} \)	\(1.41 \times 10^{-1} \)		923.367	ISM multi-component			
O iv	2s2p\(^2\) \(2p_{3/2} \)	2p\(^3\) \(2p_{1/2} \)	\(2.81 \times 10^{-2} \)		923.436	ISM multi-component			
N iv	2s2p\(^3\) \(3p_{0} \)	2p\(^3\) \(3p_{0} \)	\(7.49 \times 10^{-2} \)	69.5	923.676	923.75	24.0		
S v	3s3p\(^1\) \(1p_{1} \)	3p\(^2\) \(1s_{0} \)	\(1.71 \times 10^{-1} \)		924.220	blend with N iv			
N iv	2s2p\(^3\) \(3p_{0} \)	2p\(^3\) \(3p_{1} \)	\(5.61 \times 10^{-2} \)		924.284	blend with S v			
Ge vi	303696	411886	\(2.34 \times 10^{-4} \)		924.302	blend with N iv			
Ion	Lower Levels	Upper Levels	f	$W_4/\text{mÅ}$	Wavelength/Å	$v_{\text{rad}}/\text{km/s}$	Comment		
----------	--------------	--------------	---------	----------------	--------------	-------------------------------	------------------		
Ba vii	226198	334319		1.27×10⁻³	924.892		newly identified		
Ba vii	42514	150634		1.74×10⁻³	924.898		newly identified		
H i	1	8					ISM multi-component		
Ge vi	303696	411592		3.63×10⁻¹	926.824				
Kr vi	0	107836		1.58×10⁻³	927.334	927.43 31.4			
Xe vi	$5p^2 - 2D_{3/2}$	$5p^3 - 2D_{3/2}$	3.53×10⁻²	928.371					
Xe vi	$5p^2 - 2P_{3/2}$	$5p^3 - 2P_{3/2}$	4.87×10⁻²	929.141					
O i					929.517		ISM multi-component		
Ge vi	313025	420542		2.44×10⁻¹	930.082				
Ge vi	306243	413728		8.07×10⁻⁴	930.366				
H i	1	7			930.748		ISM multi-component		
Kr vi	8110	115479		2.23×10⁻³	931.368	931.43 19.3	unid.		
S vi	$3s - 2S_{1/2}$	$3p - 2P_{0}$	4.36×10⁻¹	933.378	933.47 28.9				
O i					936.630		ISM multi-component		
Ge iv	190852.5	81402.3		8.91×10⁻¹	936.765	936.82 17.6			
Ba vii	36156	142852		7.40×10⁻³	937.241				
Ba vii	15507	122163		1.08×10⁻²	937.595				
H i	1	6			937.803				
Ge iv	190601.5	84102.3		9.89×10⁻²	938.973				
Ge v	234219	340296		8.22×10⁻³	942.717				
Ba vii	42514	148547		3.40×10⁻³	943.102				
Kr vi	170084	276011		3.88×10⁻²	944.046				
S vi	$2S - 2P_{0}$			2.20×10⁻¹	944.523	944.62 29.8	unid.		
Ge vi	306243	411886		1.28×10⁻¹	946.589				
Ge vi	303696	409188		1.15×10⁻¹	947.937				
C iv	$3s - 2S_{1/2}$	$4p - 2P_{0}$	1.36×10⁻¹	948.090			blend with C iv		
C iv	$3s - 3S_{1/2}$	$4p - 2P_{1/2}$	6.78×10⁻²	948.208					
O i					948.686		ISM multi-component		
H i	1	5			949.743		ISM multi-component		
P iv	$3s^2 - 1S_0$	$3p^1 - 1P_1$	1.60 33.1	950.655	950.75 30.0				
O i					950.887		ISM multi-component		
N i					951.079		ISM multi-component		
Ge vi	308657	413728		1.03×10⁻¹	951.739		unid.		
Ba vii	23547	128436		6.95×10⁻³	953.388	953.47 26.4	ISM multi-component		
N i					953.415		ISM multi-component		
N i					953.655		ISM multi-component		
N i					953.970		ISM multi-component		
Ion	Levels	Lower	Upper	f	$W_A / \text{mÅ}$	$\lambda / \text{Å}$	$v_{\text{rad}} / \text{km/s}$	Comment	
-----	--------	-------	-------	-----	----------------	----------------	----------------	---------	
N iv	$2s2p^1P_1^o$	$2p^2^1S_0$		1.33x10^{-1}	13.6	955.334	954.45	unid.	
Kr vi	222122	326657		2.68x10^{-2}	71.8	956.617			
Ge v	235967	340296		3.17x10^{-2}		958.509			
He ii	2	9		5.43x10^{-3}		958.698			
P i						963.800		ISM multi-component	
N i						963.990		ISM multi-component	
N i						964.626		ISM multi-component	
Kr vi	223040	326657		1.59x10^{-1}	25.6	965.093	965.16	21.8	
Ge v	235967	339540		3.56x10^{-2}	24.3	965.501	965.59	27.3	
Ge vi	310199	413728		2.62x10^{-1}		965.914			
Ge vi	308657	412038		1.67x10^{-1}	967.300				
Xe vi	$5p^2^2D_{5/2}$	$5p^1^2D_{3/2}$		1.06x10^{-2}	967.550				
Ge v	308657	411886		1.96x10^{-1}	968.723				
Kr vi	8110	111193		4.34x10^{-4}	970.092				
Ge v	234219	337168		1.22x10^{-1}	16.0	971.357	971.41	16.4	
Ge vi	306243	409188		1.81x10^{-1}	971.392			blend with Ge v	
O i						971.737		ISM multi-component	
O i						971.738		ISM multi-component	
O i						971.738		ISM multi-component	
He ii	2	8		8.04x10^{-3}	972.111				
D i		1	4			972.272		ISM multi-component	
H i						972.537		ISM multi-component	
O i						976.448		ISM multi-component	
C iii	$2s3s^3S_1$	$2p(2p^3)3d^3P_2^o$		8.93x10^{-3}	977.020				
Ge v						977.798			
N iii	$2s2p^2^2D_{5/2}$	$2p^3^2D_{3/2}$		9.79x10^{-3}	979.768				
N iii	$2p^2^2D_{3/2}$	$2p^1^2D_{3/2}$		1.27x10^{-1}	979.832				
N iii	$2s2p^2^2D_{5/2}$	$2p^3^2D_{3/2}$		1.33x10^{-1}	979.905				
N iii	$2s2p^2^2D_{3/2}$	$2p^3^2D_{3/2}$		1.44x10^{-2}	979.969				
Kr vi	222122	324120		1.31x10^{-1}	22.7	980.411	980.51	28.7	
C iii	$3s^3S_1$	$3d^3P_2^o$		8.98x10^{-1}	24.9	981.462	981.53	20.5	
Ge v	238766	340296		1.08x10^{-1}	20.7	984.923	985.00	23.4	
Ge v						1.13x10^{-3}	987.064		
As v	$4s^2S_{1/2}$	$4p^2P_{3/2}$		5.28x10^{-1}	35.7	987.651	987.74	27.0	
Ion	Lower	Upper	f	$W_A/\text{mÅ}$	Wavelength/Å	$v_{\text{rad}}/\text{km/s}$	Comment		
------	----------	----------	----------	-----------------	--------------	----------------------------	--------------------------		
Fe i	235967	337168	1.00×10^{-1}	21.6	987.687	988.132 988.22 25.8	ISM multi-component		
O iv	3d 4Fe$^o_{3/2}$	4f 4G$^o_{5/2}$	7.72×10^{-1}	988.523	988.619	988.627	ISM multi-component		
O iv	3d 4Fe$^o_{3/2}$	4f 4G$^o_{7/2}$	6.89×10^{-1}	988.573	988.578	ISM multi-component			
Fe v	357329.1	256177.9	5.88×10^{-1}	988.655	988.708	ISM multi-component			
O i	3d 4Fe$^o_{3/2}$	4f 4G$^o_{9/2}$	6.87×10^{-1}	988.773	ISM multi-component				
O i	3d 4Fe$^o_{3/2}$	4f 4G$^o_{11/2}$	7.20×10^{-1}	988.773	ISM multi-component				
N i	2p 2P$^o_{1/2}$	2s2p2 2D$^o_{3/2}$	1.23×10^{-1}	37.0	989.799	989.88 24.8	ISM multi-component		
Si ii	234219	335161	1.13×10^{-1}	10.8	990.668	990.76 27.5	ISM multi-component		
N iii	2p 2P$^o_{3/2}$	2s2p2 2D$^o_{3/2}$	1.20×10^{-2}	991.511	ISM multi-component				
N iii	2p 2P$^o_{3/2}$	2p2 2D$^o_{3/2}$	1.11×10^{-1}	991.577	ISM multi-component				
He ii	2	7	1.27×10^{-2}	992.263	ISM multi-component				
Ba vi	21499	122163	5.38×10^{-3}	14.2	993.411	993.49 22.6			
Xe vi	5s2 S_0	5p 3P$^o_{1}$	2.45×10^{-1}	26.2	995.511	995.59 24.1			
Mo vi	182404	282826	1.12	12.9	995.806	995.90 28.3			
Xe vi	5p 2P$^o_{1/2}$	5p2 2P$^o_{3/2}$	5.66×10^{-5}	996.233	ISM multi-component				
Se iv	231122	331087	2.69×10^{-2}	28.5	996.710	996.77 18.0			
P v	3d 2D$^o_{3/2}$	4p 2P$^o_{3/2}$	1.50×10^{-1}	18.5	997.612	997.72 33.4			
Zn v	437678	537502	1.27×10^{-1}	20.2	1001.765	1001.99 unid.			
S vi	231122	331087	2.69×10^{-2}	1000.350	uncertain, newly identified				
Zr v	437678	537502	1.27×10^{-1}	1000.372	ISM multi-component				
C vi	3p 1P$^o_{1}$	6d 1D$^o_{2}$	4.12×10^{-2}	1001.988	ISM multi-component				
Zr v	277146	376898	1.11×10^{-2}	1002.484	ISM multi-component				
Kr vi	337037	437537	3.30×10^{-4}	16.3	1002.748	1002.82 21.5			
Ge v	8110	107836	1.11×10^{-2}	1004.380	ISM multi-component				
C vi	3s 1S$^o_{0}$	3d1P$^o_{1}$	5.49×10^{-2}	1004.596	ISM multi-component				
Ge v	238765	338274	5.41×10^{-2}	14.0	1004.938	1005.00 18.5 newly identified			
Ge v	238765	338274	5.41×10^{-2}	15.9	1005.304	1005.39 25.6			
Ge v	238765	338274	5.41×10^{-2}	16.6	1005.304	1007.15 unid.			
O ii	3p 3D$^o_{3}$	4p 3D$^o_{3}$	5.04×10^{-2}	11.5	1008.122	1008.21 26.2			
O iii	3s 3P$^o_{2}$	4p 3D$^o_{3}$	5.04×10^{-2}	19.6	1008.66	unid.			
O iii	3s 3P$^o_{2}$	4p 3D$^o_{3}$	5.04×10^{-2}	20.3	1009.81	unid.			
Ion	Levels	f	W_λ	Wavelength/Å	v_{rad}/km	Comment			
------	------------	------------	-------------	--------------	----------------------	---------			
	Lower	Upper	λ/Å	Theoretical	Observed				
					1009.928				
					1012.44	unid.			
					1013.80	unid.			
					1014.01	unid.			
					1014.55	27.8			
					1015.83	19.2			
					1016.668	30.1	unid.		
					1017.21	unid.			
					1017.935	36.1	unid.		
					1018.13	unid.			
					1018.57	unid.			
					1019.711	32.7			
					1021.49	unid.			
					1021.73	unid.			
					1025.727	ISM multi-component			
					1025.722	unid.			
					1027.13	unid.			
					1029.54	17.5			
					1030.517	21.2	unid.		
					1031.22	unid.			
					1031.42	unid.			

Table A.2. Continued.
Ion	Lower Levels	Upper Levels	f	$W_A/\text{mÅ}$	Wavelength/Å	v$_{rad}$/km/s	Comment	
Ca $^{\text{III}}$	277380.86	374143.84	1.03×10^{-5}	12.4	1033.453	1033.52	19.4 blend with Ge v	
Ge v	234219	330791	1.01×10^{-3}	17.1	1034.18	1034.60	unid.	
Zn v	231831	328369	1.25×10^{-2}	16.2	1035.04	1035.38	unid.	
Ge v	285885	382420	5.02×10^{-2}	3.5	1035.859	1035.887		
N $^{\text{IV}}$	3d 3D_3	4f 3P_0	8.56×10^{-1}	1036.119	1036.149	1036.179		
N $^{\text{IV}}$	3d 3D_2	4f 3P_0	8.28×10^{-1}	1036.149	1036.179	1036.199		
N $^{\text{IV}}$	3d 3D_1	4f 3P_0	9.33×10^{-1}	1036.196	1036.226	1036.246		
N $^{\text{IV}}$	3d 3D_2	4f 3P_0	1.05×10^{-1}	1036.237	1036.257	1036.277		
N $^{\text{IV}}$	3d 3D_3	4f 3P_0	7.53×10^{-2}	1036.239	1036.259	1036.289		
C $^{\Pi}$			1036.337	1036.37	1036.38	1036.39	ISM multi-component	
C $^{\Pi}$			1037.018	1037.02	1037.03	1037.04	ISM multi-component	
O $^{\text{VI}}$			1037.67	1037.68	1037.69	1037.70	unid.	
O $^{\text{VI}}$			1037.617	1037.62	1037.63	1037.64	ISM multi-component	
Ge v	241935	338274	1.45×10^{-1}	1038.430	1038.450	1038.470	blend with Zn v	
Mo $^{\text{VI}}$	187331	283611	9.73×10^{-1}	1038.640	1038.660	1038.680	blend with Mo $^{\text{VI}}$, newly identified	
Ga v	214000	310267	4.38×10^{-2}	1038.778	1038.798	1038.818	unid.	
O i			1039.230	1039.24	1039.25	1039.26	ISM multi-component	
Ge $^{\text{VI}}$	313025	409188	3.69×10^{-2}	1039.892	1039.912	1039.932	blend with S v	
S v	3s3d 1D_2	3p3d 1P_0	3.41×10^{-1}	1040.02	1040.04	1040.06	blend with Ge $^{\text{VI}}$	
O $^{\text{III}}$	2p3 1P_1	3p 1D_2	2.42×10^{-2}	1040.320	1040.340	1040.360	unid.	
Zn v	286575	382420	2.54×10^{-1}	1043.353	1043.373	1043.393	25.0 unid.	
Sn $^{\text{IV}}$			1044.490	1044.50	1044.52	1044.53	unid.	
Kr $^{\text{VI}}$	180339	276011	5.24×10^{-2}	1045.238	1045.258	1045.278	unid.	
O $^{\text{IV}}$	3p $^2P_{3/2}$	4s $^2S_{1/2}$	9.21×10^{-2}	1045.364	1045.384	1045.404		
Ge v	234219	329848	3.93×10^{-1}	1045.713	1045.733	1045.753	unid.	
O $^{\text{IV}}$	3p $^3P_{0}$	4s $^2S_{1/2}$	9.19×10^{-2}	1046.313	1046.333	1046.353		
Zn v	222940	318436	2.65×10^{-2}	1047.164	1047.184	1047.204	unid.	
Mo $^{\text{VI}}$	187331	282826	1.07×10^{-1}	1047.182	1047.202	1047.222	blend with Zn v	
Ga v	242026	337491	1.31×10^{-1}	1047.504	1047.524	1047.544	blend with O $^{\text{IV}}$, newly identified	
O $^{\text{IV}}$	3s $^2S_{1/2}$	2s2p$(^3P_0)^3s$ $^2P_{3/2}$	2.89×10^{-2}	1047.590	1047.610	1047.630	blend with Ga v	
Ge v	464652	560097	1.18×10^{-1}	1047.730	1047.750	1047.770	newly identified	
Ion	Levels	Comment						
-----	--------	---------						
Ar i		ISM multi-component						
Ge v	464077	559463	2.43×10⁻¹	1048.220				
Zn v	285523	380902	1.01×10⁻¹	1048.448				
Ge v	241935	337168	1.55×10⁻¹	1050.057				
Ga v	210052	305249	1.95×10⁻¹	1050.453				
O iv	3s 2S₁/2	2s2p(3P)3s 2P₀/₁	1.44×10⁻²	1050.505				
As v			14.4	1051.18				
Kr vi	183817	278787	4.76×10⁻³	1052.964				
Zr vi	427119	522036	2.20×10⁻¹	1053.548				
Ge v	235967	330791	8.93×10⁻²	1054.590				
Zn v	221631	316339	5.31×10⁻²	1055.878				
Se vi			10.7	1056.980				
Ga v	212121	306628	1.65×10⁻¹	1058.123				
Zn v	198962	293463	6.01×10⁻³	1058.185				
C iv	4p 2P₀/₁	10d 2D₃/₂	1.30×10⁻³	1060.740				
Kr vi	183817	278062	3.89×10⁻²	1061.064				
O iv	2s2p(3P)3d 4D₁/₂	2s2p(3P)4f 4F₁/₂	7.40×10⁻¹	1061.780				
Zn v	221631	315801	1.40×10⁻²	1061.914				
O iv	2s2p(3P)3d 4D₅/₂	2s2p(3P)4f 4F₇/₂	6.02×10⁻¹	1062.133				
O iv	2s2p(3P)3d 4D₇/₂	2s2p(3P)4f 4F₉/₂	6.60×10⁻¹	1062.271				
Ga v	236072	330174	2.58×10⁻¹	1062.677				
Ge v	464853	558877	8.57×10⁻²	1063.554				
Ga v	231711	325713	3.82×10⁻²	1063.807				
Zn v	222042	316029	8.15×10⁻²	1063.979				
Se vi			25.3	1064.620				
Zr vi	421258	515171	4.55×10⁻¹	1064.818				
Si iv	3d 2D₅/₂	4f 2F₀/₁	4.34×10⁻²	1066.636				
O iv	3d 2D₃/₂	4f 2F₀/₁	7.97×10⁻¹	1067.768				
O iv	3d 2D₅/₂	4f 2F₀/₁	7.59×10⁻¹	1067.832				
O iv	3d 2D₅/₂	4f 2F₀/₁	3.80×10⁻²	1067.958				
Ion	Lower	Upper	\(f\)	\(W_A/\text{mÅ}\)	Wavelength/Å	\(v_{\text{rad}}/\text{km/s}\)	Comment	
-----	-------	-------	------	-------------	-------------	----------------	---------	
Zn v	221631	315239	5.19\times10^{-2}	1068.284	1068.53	28.1	blend with Ga v	
Ge v	234219	327891	6.53\times10^{-2}	1068.430	1068.43	25.4	blend with Zr v	
Zr v	378753	472338	1.68\times10^{-1}	1068.551	1068.593	28.0	blend with Ga v	
Ga v	232968	326549	1.61\times10^{-1}	1068.616	1068.616	27.8	blend with Ga v	
Ga v	242026	335605	1.65\times10^{-2}	1068.616				
Ge v	241935	335560	8.73\times10^{-2}	1069.130	1069.23	28.0	blend with Ga v	
Ge v	461829	555337	5.02\times10^{-1}	1069.420	1069.420	28.0	blend with Ga v	
Ga v	235609	329103	2.87\times10^{-1}	1069.587	1069.587	28.0	blend with Ga v	
Zn v	235599	329085	7.85\times10^{-2}	1069.674	1069.674	27.8	blend with Ga v	
Ge v	461815	555299	6.07\times10^{-1}	1069.703	1069.703	27.8	blend with Ga v	
Zn v	231997	325476	3.03\times10^{-2}	1069.764	1069.764	27.8	blend with Ga v	
Ge v	461829	555299	1.10\times10^{-1}	1069.859	1069.859	27.8	blend with Ga v	
Ga v	235752	329112	2.75\times10^{-1}	1071.123	1071.123	27.8	blend with Ga v	
Ga v	235752	329108	2.34\times10^{-1}	1071.168	1071.168	27.8	blend with Ga v	
Te vi				1070.81	1070.81	27.8	unid.	
Zn v	221631	314958	3.27\times10^{-2}	1071.501	1071.501	27.8	blend with Zn v	
Ge v	461418	554658	9.97\times10^{-1}	1072.495	1072.495	27.8	blend with Zn v	
Ga v	241935	335161	2.52\times10^{-1}	1072.661	1072.661	27.8	blend with Te vi	
Zn v	222042	315239	2.14\times10^{-1}	1072.992	1072.992	27.8	blend with Te vi	
Ga v	212121	305249	1.22\times10^{-1}	1073.791	1073.791	27.8		
Zn v	222940	316029	6.35\times10^{-2}	1074.241	1074.241	27.8		
Ge v	461643	554690	9.68\times10^{-1}	1074.719	1074.719	27.8		
Zn v	240446	333455	3.01\times10^{-1}	1075.171	1075.171	27.8		
Zn v	222042	314958	1.95\times10^{-2}	1076.239	1076.239	27.8		
Zn v	222940	315801	1.56\times10^{-1}	1076.878	1076.878	27.8		
Xe vi	5p \(^1\text{Po}\)	5p \(^1\text{D}\)	8.10\times10^{-1}	1077.120	1077.120	27.8		
Ga v	231711	324407	2.96\times10^{-1}	1078.795	1078.795	27.8		
O iv	3p \(^2\text{Po}\)	2s2p \(^3\text{Po}\) \(3p\) \(^2\text{D}\)	5.18\times10^{-2}	1079.056	1079.056	27.8		
Ga v	214000	306628	1.56\times10^{-1}	1079.587	1079.587	27.8		
Ga v	215237	307864	2.23\times10^{-1}	1079.599	1079.599	27.8		
Ga v	231711	324314	1.29\times10^{-2}	1079.879	1079.879	27.8		
Xe vi	5p \(^2\text{Po}\)	5p \(^2\text{P}\)	1.90\times10^{-3}	1080.077	1080.077	27.8		
Zn v	232946	325476	6.65\times10^{-2}	1080.735	1080.735	27.8		
O iv	3d \(^2\text{D}\)	4f \(^2\text{F}\)	7.33\times10^{-1}	1080.967	1080.967	27.8		
O iv	3d \(^2\text{D}\)	4f \(^2\text{F}\)	6.98\times10^{-1}	1080.969	1080.969	27.8		
Ion	Levels	Lower	Upper	f	\(W_\lambda / \text{mÅ} \)	Wavelength / Å	\(v_{\text{rad}} / \text{km/s} \)	Comment
-----	--------	-------	-------	-------	-----------------	----------------	----------------	-----------------
O IV	3p \(^2P^0_{1/2}\)	4p \(^2D_{3/2}\)	5.77\times10^{-2}	1081.024				
N II					1083.994	ISM multi-component		
He II	2	5	4.47\times10^{-2}	1084.942	1086.60	unid.		
Ge v	238765	330791	3.18\times10^{-1}	1086.653				
Ge v	235967	327891	3.03\times10^{-1}	1087.855	1087.95	26.2		
Zn v	235730	327581	2.87\times10^{-1}	1088.709				
Sn v	260880	352553	2.98\times10^{-1}	1090.831				
Ge v	214888	310588	2.70\times10^{-1}	1091.703				
Zn v	238765	330333	1.01\times10^{-1}	1092.089				
O IV	3d \(^2D_{3/2}\) 2s2p\(^3P^0\)3d \(^2F^0_{7/2}\)	3.78\times10^{-2}	1093.774					
Zn v	236969	328369	2.86\times10^{-1}	1094.088	1094.00	unid.		
Ga v	218301	309679	1.73\times10^{-1}	1094.355	1094.23	unid.		
Ni vi	347278.5	438639.4	2.27\times10^{-1}	1094.560				
Se v	232968	324314	6.28\times10^{-2}	1094.739				
Ga v	218301	309616	1.81\times10^{-1}	1095.110				
Ge v	464077	555337	1.53\times10^{-2}	1095.769				
Zn v	285885	377144	4.69\times10^{-2}	1095.774				
Zn v	235730	326987	2.94\times10^{-2}	1095.797				
Zn v	239843	331087	1.30\times10^{-1}	1095.961				
O IV	3d \(^2D_{3/2}\) 2s2p\(^3P^0\)3d \(^2F^0_{5/2}\)	3.95\times10^{-2}	1096.359	1096.28	unid.			
Ge v	464076	555852	7.69\times10^{-1}	1097.134				
Zn v	235599	326664	3.51\times10^{-2}	1098.108	1099.02	11.6		
Zr vi	427119	518062	8.55\times10^{-1}	1099.591	1099.85	unid.		
Ga v	243053	333929	4.24\times10^{-1}	1100.401				
Ge v	469683	560547	9.01\times10^{-1}	1100.585	1100.66	20.4		
Mo v	146977	237760	2.05\times10^{-1}	1101.530				
Ga v	246133	336909	2.07\times10^{-1}	1101.613				
Mo v	151195	241965	2.02\times10^{-2}	1101.690				
Xe vi	5p \(^2P_{1/2}\)	5p \(^2P^0_{1/2}\)	1.88\times10^{-3}	1101.940	1102.26	unid.		
Ion	Levels	f	W_A/ mÅ	Wavelength/Å	v_{rad}/ km/s	Comment		
----------	--------------	--------------	-----------	--------------	----------------	------------------------------		
Ga v	242026, 332707	2.39×10⁻¹	1102.767					
Ga v	210052, 300730	1.12×10⁻¹	1102.803					
Ga v	212121, 302779	1.34×10⁻¹	1103.047					
Zn v	236969, 327581	2.67×10⁻²	1103.598	1103.37	unid.	newly identified		
Zn v	291107, 381670	2.70×10⁻¹	1104.199	1104.29	24.2	newly identified		
Ga v	221488, 311991	1.35×10⁻¹	1104.936					
Ga v	236072, 326549	3.18×10⁻²	1105.253					
Ni v	229413, 319860.4	3.02×10⁻⁴	1105.615			blend with Ga v		
Ga v	242026, 332473	3.45×10⁻¹	1105.620			blend with Ni v		
C iv	3p ²P₃/₂, 4d ²D₃/₂	5.41×10⁻¹	1107.591			forbidden C iv component		
C iv	3p ²P₃/₂, 4d ²D₃/₂	4.86×10⁻¹	1107.930			forbidden C iv component		
Zn v	221631, 311796	1.53×10⁻¹	1109.078					
Zn v	230614, 320772	5.16×10⁻²	1109.166					
Zn v	232946, 322969	2.06×10⁻²	1110.821			weak		
Zn v	256235, 346201	1.14×10⁻¹	1111.530					
Zn v	255763, 345723	2.37×10⁻¹	1111.603					
Zn v	255763, 345624	1.46×10⁻¹	1112.829					
Zn v	221631, 311359	2.16×10⁻¹	1114.482					
Zn v	230542, 345146	1.29×10⁻¹	1115.266					
Ga v	236072, 325713	1.91×10⁻¹	1115.561					
Zn v	237032, 326664	2.83×10⁻³	1115.668					
Zn v	227195, 316827	1.34×10⁻¹	1115.680			newly identified		
Zn v	256235, 345791	3.51×10⁻¹	1116.630					
Zn v	198962, 288500	3.70×10⁻¹	1116.842			blend with Ge v		
Ge v	234219, 323749	1.97×10⁻¹	1116.949			blend with Zn v		
Zn v	256235, 345723	4.53×10⁻²	1117.466	1117.37	22.5	newly identified		
S vi	4f ²F₅/₂, 5g ²G₇/₂	1.34	1117.756					
S vi	4f ²F₅/₂, 5g ²G₇/₂	3.78×10⁻²	1117.756					
S vi	4f ²F₅/₂, 5g ²G₇/₂	1.30	1117.756					
P v	3s ²S₁/₂, 3p ²P₃/₂	4.50×10⁻¹	95.6	1118.06	22.5	ISM multi-component		
Zr vi	440555, 529945	9.37×10⁻¹	1118.689					
Table A.2. Continued.

Ion	Levels	f	W_{λ} mÅ	Wavelength/Å	v_{rad}/ km/s	Comment		
	Lower	Upper	f	W_{λ}	v_{rad}/ km/s	Comment		
Zr v	382985	472338	1.42×10^{-1}	1119.158	1119.31	1119.68	uncertain	
Zn v	255482	344771	2.05×10^{-1}	1119.950				
Zn v	232946	322224	8.00×10^{-2}	1120.101				
I vi	226334	315594	2.23×10^{-1}	1120.325				
Zn v	239843	329085	4.82×10^{-2}	1120.545				
Zn v	230435	319632	1.26×10^{-1}	1121.109				
Zn v	235903	325068	8.18×10^{-2}	1121.524				
Ge v	226334	315594	9.44×10^{-2}	1122.001				
S v	3s3d	3p3d	1.73×10^{-1}	1122.031				
Si iv	3p	2p0	8.07×10^{-1}	43.7	1122.24			
Zn v	240446	329533	1.62×10^{-1}	1122.502				
Zn v	230435	319472	3.03×10^{-2}	1123.127				
Ga v	215237	304272	2.81×10^{-1}	16.8	1123.26	1123.70		
Ge v	238765	327753	3.83×10^{-2}	1123.746				
Zn v	221631	310519	1.36×10^{-1}	1125.019				
Zn v	228335	317220	1.72×10^{-1}	1125.048				
Zn v	231997	320871	6.18×10^{-3}	1125.182				
Ge v	241935	330791	1.29×10^{-2}	1125.424				
C iii	3d	3D1	6f3p0	8.13×10^{-2}	1125.629			
C iii	3d	3D2	6f3p0	7.22×10^{-2}	1125.639			
C iii	3d	3D2	6f3p0	9.19×10^{-3}	1125.643			
C iii	3d	3D4	6f3p0	7.46×10^{-2}	1125.670			
Mo v	240878	329714	5.57×10^{-1}	1125.672				
C iii	3d	3D3	6f3p0	6.57×10^{-3}	1125.675			
C iii	3d	3D3	6f3p0	1.49×10^{-4}	1125.679			
Mo v	148949	237760	5.53×10^{-1}	1125.988				
Ga v	214000	302779	2.05×10^{-1}	27.0	1126.393	1126.50	28.5	
Ga v	235609	324314	3.96×10^{-2}	1127.332				
Ga v	215237	303911	1.41×10^{-1}	1127.726				
Ga v	246093	334765	3.63×10^{-1}	10.8	1127.752	1127.85	26.1	
P v	3s	2S1/2	3p 2p0	2.21×10^{-1}	1128.006			
P v	3s	2S1/2	3p 2p0	1.18×10^{-1}	1128.008			
Ga v	218301	306947	3.07×10^{-1}	1128.082				

Note: unid. indicates unidentified lines.
Table A.2. Continued.

Ion	Levels	Lower	Upper	\(f \)	\(W_4/\text{mÅ} \)	Wavelength/Å	\(v_{rad}/\text{km/s} \)	Comment
Si iv	\(3p \) \(2^2P_3/2 \)	3d \(2^2D_5/2 \)	7.25×10^{-1}	53.4	1128.340	1128.45	29.2	
Ga v	212121	300730	1.94×10^{-1}	9.6	1128.554	1128.65	25.5	
S v	\(3d \) \(3^2D_2 \)	\(3d \) \(3^2P_3 \)	1.74×10^{-1}	12.1	1128.699	1128.80	26.8	
S v	\(3d \) \(3^2D_3 \)	\(3d \) \(3^2P_3 \)	1.55×10^{-2}	1128.812				
Zn v	255482	344070	5.38×10^{-2}	1128.813	8.8	1129.07	unid.	
Zn v	226334	314838	4.16×10^{-2}	1129.898				
Ga v	214000	302499	1.75×10^{-1}	1129.956	blend with Ga v			
Zn v	228335	316827	9.66×10^{-2}	1130.051				
Zn v	222042	310519	1.55×10^{-1}	1130.242	1130.34	26.0		
Zn v	227195	315594	6.70×10^{-2}	1131.242				
Ga v	231711	320093	2.30×10^{-1}	1131.452	newly identified			
Zn v	222940	311296	1.33×10^{-1}	1131.788				
Zn v	231122	319472	1.29×10^{-1}	1131.863				
Zn v	208715	297033	1.40×10^{-1}	1132.271				
Zn v	235599	323886	3.93×10^{-1}	1132.659				
Sn v	330141	418553.6	3.12×10^{-1}	1131.061				
Zn v	200644	288903	3.36×10^{-1}	1133.031				
Zn v	228335	316586	2.11×10^{-1}	1133.128				
Zn v	241829	330069	3.40×10^{-1}	1133.278				
Zn v	222042	310265	1.66×10^{-1}	1133.498				
S v	\(3s3d \) \(3^2D_1 \)	\(3p3d \) \(3^2P_3 \)	1.84×10^{-1}	1133.901				
S v	\(3s3d \) \(3^2D_2 \)	\(3p3d \) \(3^2P_3 \)	2.19×10^{-2}	1133.973				
N v				1134.165	ISM multi-component			
N v				1134.415	ISM multi-component			
N v				1134.980	ISM multi-component			
Zn v	208715	296796	1.50×10^{-2}	1135.324				
Zn v	200644	288704	4.32×10^{-2}	1135.588				
Ga v	212121	300144	1.98×10^{-1}	1136.067				
Zn v	228335	316339	7.85×10^{-2}	1136.311	blend with Xe v, newly identified			
Xe vi	\(5d \) \(2^2D_5/2 \)	\(6p \) \(2^2P_3/2 \)	1.91×10^{-1}	1136.410	blend with Zn v			
Zn v	198962	286943	4.06×10^{-2}	1136.603				
Zn v	201973	289925	4.03×10^{-2}	1136.986	18.9	1137.33	unid.	
Zn v	235730	323632	5.74×10^{-2}	1137.625				
Mo v	151195	239069	2.98×10^{-1}	1137.995				
Mo v	151213	239069	2.30×10^{-1}	1138.229	blend with Zn v			
Zn v	201973	289827	3.67×10^{-1}	1138.248	36.1	1138.35	26.9	blend with Mo v
Table A.2. Continued.

Ion	Levels	Lower	Upper	f	W_A/mA	Wavelength/Å	$v_{rad}/\text{km/s}$	Comment
Zn v	256235	344070	1.72×10^{-1}	1138.497				
Zn v	210973	298801	1.93×10^{-2}	1138.586	newly identified			
Zn v	230614	318436	2.59×10^{-2}	1138.671	newly identified			
Zn v	202929	290731	4.08×10^{-3}	1138.933	newly identified			
Zn v	231831	319632	3.28×10^{-3}	1138.937	newly identified			
Ge v	235967	323749	9.14×10^{-3}	1139.187	blend with Zn v			
Zn v	202929	290704	6.62×10^{-2}	1139.278	blend with Ge v			
Ni vi	347278.5	435011.5	2.59×10^{-1}	1139.822	blend with C iii			
C iii	2s3p $^3P_i^0$	2s5d 3D_2	8.86×10^{-2}	1139.899				
Zn v	222940	310659	8.37×10^{-2}	1139.997	blend with C iii, newly identified			
Zn v	286575	374241	3.85×10^{-1}	1140.703				
Zn v	227195	314838	9.68×10^{-2}	1141.003				
Zn v	231197	319632	9.35×10^{-2}	1141.095				
Zn v	222042	309658	7.60×10^{-2}	1141.344				
Zn v	228335	315840	3.27×10^{-2}	1142.792	1143.03	27.5		
Zn v	202929	290424	3.99×10^{-1}	1142.925	ISM multi-component			
Zn v	237032	324526	3.40×10^{-1}	1142.938				
Zn v	203548	291022	8.87×10^{-2}	1143.196				
Fe ii				1143.226				
Ba vi	61083	148547	2.88×10^{-3}	1143.317	newly identified			
Zn v	255763	343221	1.16×10^{-1}	1143.403				
Zn v	210973	298375	1.27×10^{-1}	1144.136	unid.			
Ni vi	298130.5	385520.9	3.52×10^{-1}	1144.290	ISM multi-component			
Fe i				1144.938				
Zn v	222940	310265	7.64×10^{-2}	1145.151	unid.			
Zn v	241829	329085	6.47×10^{-2}	1146.057				
Zn v	234582	321830	3.55×10^{-1}	1146.149				
Zn v	203548	290731	4.50×10^{-1}	1147.020	1147.11	23.5		
Zn v	203548	290704	1.63×10^{-1}	1147.371				
Zn v	255482	342616	2.00×10^{-1}	1147.648	newly identified			
Mo v	153040	240110	4.03×10^{-1}	1148.502				
Zn v	232946	319984	3.33×10^{-1}	1148.922	1149.01	23.0		
Zn v	227195	314197	1.89×10^{-1}	1149.398				
Zn v	202929	289925	2.05×10^{-1}	1149.486				
Zn v	256235	343221	1.34×10^{-1}	1149.608				
Zn v	226334	313300	3.62×10^{-1}	1149.873				
Ni vi	330580.5	417538.4	1.17×10^{-1}	1149.982	1149.10			

D. Hoyer et al.: The complete spectral energy distribution of the helium-rich white dwarf RX J0503.9-5654
Ion	Lower	Upper	f	W_{λ} / mÅ	Wavelength / Å	v_{rad} / km/s	Comment	
Ni vi	376343.7	463301.5	2.29×10⁻¹	1149.983				
Ga v	218301	305249	2.22×10⁻²	1150.113				
Ga v	210052	296992	2.24×10⁻¹	1150.219				
Zn v	212471	299372	1.66×10⁻¹	1150.743	1150.84	25.3	unid.	
O iii	2p³ 3S₁ ³P₀	2p³ 3P₂	8.43×10⁻²	1150.884	1151.03	38.0		
Se v				1151.000	1151.13	33.9		
Ni v	212095.8	298972.3	2.34×10⁻²	1151.059				
Zn v	255763	342616	1.16×10⁻¹	1151.368				
Zn v	230614	317466	4.50×10⁻²	1151.393			newly identified	
Zr vi	427649	514487	2.33×10⁻¹	1151.571				
Zn v	201973	288704	2.26×10⁻¹	1152.985	1153.08	24.7		
Zn v	222940	309658	4.82×10⁻²	1153.160				
O iii	2p³ 3S₁ ³P₀	2p³ 3P₂	1.41×10⁻¹	1153.775	1153.90	32.5	unid.	
Zn v	208715	295293	7.17×10⁻²	1155.027	1155.14	29.3		
Zn v	232946	319472	1.27×10⁻¹	1155.725				
Zn v	285885	372360	3.17×10⁻¹	1156.394			newly identified	
Ga v	246133	332600	3.44×10⁻¹	1156.511	1156.62	28.3		
Zn v	231997	318436	2.76×10⁻²	1156.885				
Zn v	203548	289925	2.90×10⁻²	1157.725			newly identified	
Ni vi	337993.9	424363.7	1.04×10⁻¹	1157.812				
Zn v	239843	326189	7.13×10⁻²	1158.122			unid.	
Zn v	235903	322224	1.83×10⁻¹	1158.475				
Zn v	200644	286943	2.38×10⁻¹	1158.759	1158.86	26.1	unid.	
Zn v	226334	312534	1.04×10⁻²	1160.091			weak	
Zn v	234582	320772	2.88×10⁻¹	1160.221				
Zn v	255482	341627	7.26×10⁻²	1160.827			blend with Zn v	
Zn v	210973	297033	5.56×10⁻²	1161.971			unid.	
Zn v	291107	377144	3.72×10⁻¹	1162.281				
Zn v	230614	316643	9.18×10⁻²	1162.401				
Ge v	241935	327891	1.29×10⁻²	1163.389				
Zn v	230435	316339	7.96×10⁻²	1164.082				
Zn v	212471	298375	6.62×10⁻²	1164.100			newly identified	
O iv	3d ²F5/2	4f ²G7/2	8.50×10⁻¹	1164.321	1164.41	22.9		
O iv	3d ²F7/2	4f ²G9/2	8.26×10⁻¹	1164.546	1164.65	26.8		
Ion	Lower Wavelength	Upper Wavelength	Theoretical Wavelength	Observed Wavelength	Speed	Comment		
-----	------------------	------------------	------------------------	---------------------	-------	---------		
Zn v	255763	341627	5.07 x 10^{-2}	1164.632				
Zn v	228335	314197	1.72 x 10^{-2}	1164.656				
Zn v	210973	296796	4.52 x 10^{-2}	1165.186				
Ge v	241935	327753	1.48 x 10^{-2}	1165.259				
Zn v	286575	372360	4.41 x 10^{-2}	1165.706				
Zn v	210973	296757	5.56 x 10^{-2}	1165.716				
Zn v	234846	320618	3.60 x 10^{-1}	1165.880				
C iv	3d 2D_{3/2}	4f 2F_{5/2}	1.02	1168.849				
C iv	3d 2D_{3/2}	4f 2F_{7/2}	4.88 x 10^{-2}	1168.993				
C iv	3d 2D_{5/2}	4f 2F_{5/2}	9.97 x 10^{-1}	1168.993				
Zn v	226334	311796	1.02 x 10^{-1}	1170.105				
C iv	231831	317220	7.01 x 10^{-2}	1171.106				
Zn v	239843	325068	3.11 x 10^{-1}	1173.366				
Zn v	198962	284116	3.01 x 10^{-1}	1174.346				
C iii	2s2p	3P_{1}	2P_{2}	3P_{2}	1.17 x 10^{-1}	1174.933		
Zn v	235599	320709	1.24 x 10^{-1}	1174.945				
C iii	2s2p	3P_{0}	2P_{2}	3P_{1}	2.72 x 10^{-1}	1175.263		
C iii	2s2p	3P_{1}	2P_{2}	3P_{1}	7.03 x 10^{-2}	1175.590		
C iii	2s2p	3P_{1}	2P_{2}	3P_{1}	2.11 x 10^{-1}	1175.711		
C iii	2s2p	3P_{0}	2P_{2}	3P_{0}	9.07 x 10^{-2}	1175.987		
Zn v	226334	311796	1.02 x 10^{-1}	1176.122				
C iii	2s2p	3P_{2}	2P_{2}	3P_{1}	7.02 x 10^{-2}	1176.370		
Zn v	231831	316827	7.34 x 10^{-2}	1176.527				
Ge v	238765	323749	2.06 x 10^{-3}	1176.690				
Zn v	198962	283933	1.86 x 10^{-1}	1176.868				
Zn v	201973	286936	1.46 x 10^{-1}	1176.980				
Zn v	226334	311295	7.56 x 10^{-2}	1177.016				
Zn v	202929	287888	1.00 x 10^{-1}	1177.036				
Zn v	206444	285603	1.68 x 10^{-1}	1177.044				
Zn v	231831	316786	3.06 x 10^{-1}	1177.087				
Zn v	260880	345723	8.22 x 10^{-2}	1178.639				
Zn v	241829	326664	1.12 x 10^{-1}	1178.759				
Ni v	232655.6	314777.9	9.35 x 10^{-3}	1178.935				
Zn v	236969	321776	1.93 x 10^{-1}	1179.145				
Zn v	230435	315239	1.10 x 10^{-1}	1179.179				
Xe vi	5p	3P_{1/2}	5P_{2}	4P_{3}	4.65 x 10^{-4}	1179.537	1179.63	23.6
Table A.2.

Ion	Levels	f	$W_\lambda / \text{mÅ}$	Wavelength / Å	$v_{\text{rad}} / \text{km/s}$	Comment
Zn v	208715	293463	2.79 × 10^{-1}	1179.969	1180.10	33.3
Zn v	260880	345624	4.73 × 10^{-2}	1180.018		
Xe vi	5d $^2D_{3/2}$	6s $^2P_{1/2}$	1.54 × 10^{-1}	1181.455		
Zn v	227195	311796	2.22 × 10^{-2}	1182.019		
Mo vi	283610/94	345624	7.44 × 10^{-1}	1182.142	1182.24	24.9
Zn v	212471	297033	7.26 × 10^{-2}	1182.567	1182.67	26.1
Zn v	235730	320257	1.94 × 10^{-2}	1183.041		
Zn v	230435	314958	3.17 × 10^{-2}	1183.100		
Zn v	232946	317466	2.31 × 10^{-2}	1183.158		
Zn v	231831	316339	2.99 × 10^{-2}	1183.314		
Zn v	230614	314958	8.97 × 10^{-2}	1185.619		
Zn v	231997	316339	5.02 × 10^{-2}	1185.645		
Zn v	203548	287888	1.30 × 10^{-1}	1185.676		
Zn v	212471	296796	3.24 × 10^{-1}	1185.898		
Zn v	210973	295293	1.84 × 10^{-1}	1185.948		
Mo vi	159857	244170	7.85 × 10^{-1}	1186.050		blend with Zn v
Zn v	235730	320043	1.94 × 10^{-1}	1186.057		blend with Mo vi
Mo vi	151195	235496	4.73 × 10^{-1}	1186.227		
Mo vi	245600	329898	4.77 × 10^{-1}	1186.277		
Zn v	212471	296757	2.05 × 10^{-1}	1186.447		
Zn v	210973	295168	3.51 × 10^{-1}	1187.061		
Zn v	200644	286943	2.38 × 10^{-1}	1187.706		

Table A.3.

Like Table A.1 for the HST/STIS observations.

Ion	Levels	f	$W_\lambda / \text{mÅ}$	Wavelength / Å	$v_{\text{rad}} / \text{km/s}$	Comment
Zn v	201973	288704	2.26 × 10^{-1}	1150.35	1151.10	unid.
O iii	2p $^3 S$	2p $^4 S$	1.41 × 10^{-1}	1153.775	1153.92	37.7
Zn v	208715	295293	7.17 × 10^{-2}	1155.027	1155.12	24.1
Zn v	285885	372360	3.17 × 10^{-1}	1156.394		newly identified
Ga v	246133	332600	3.44 × 10^{-1}	1156.511		
Zn v	231997	318436	2.76 × 10^{-2}	1156.885		
Zn v	200644	286943	2.38 × 10^{-1}	1158.00	1158.83	18.4
Zn v	200644	286943	2.38 × 10^{-1}	1159.90		
Table A.3. Continued.

Ion	Lower Levels	Upper Levels	\(f \)	\(W_{\lambda}/ \text{mÅ} \)	Wavelength / Å	\(v_{\text{rad}}/ \text{km/s} \)	Comment	
Sn v								
Ge v	241935	327891	36.4	36.4	1160.740	1160.85	28.4	
			25.2		1161.97		uncertain	
O iv	3d \(2P_2 \)/2	4f \(2G_7/2 \)	1.29×10⁻²	1.29×10⁻²	1163.389			
	3d \(2P_2 \)/2	4f \(2G_7/2 \)	8.50×10⁻¹	8.50×10⁻¹	1164.321	1164.41	22.9	
Zn v	255763	341627	8.26×10⁻1	8.26×10⁻1	1164.546	1164.65	26.8	
	228335	314197	5.07×10⁻²	5.07×10⁻²	1164.632			
Zn v	210973	296796	4.52×10⁻²	4.52×10⁻²	1165.186		blend with Ge v	
Ge v	241935	327753	1.48×10⁻²	1.48×10⁻²	1165.259		blend with Zn v	
					23.1	1165.40		
Zn v	210973	296757	5.56×10⁻²	5.56×10⁻²	1165.716			
Zn v	234846	320618	3.60×10⁻¹	3.60×10⁻¹	1165.880			
C iv	3d \(2D_{3/2} \)/2	4f \(2P_0 \)/2	1.02	1.02	1168.849			
C iv	3d \(2D_{3/2} \)/2	4f \(2P_0 \)/2	9.97×10⁻¹	9.97×10⁻¹	1168.993			
C iv	3d \(2P_0 \)/2	4f \(2P_0 \)/2	4.88×10⁻²	4.88×10⁻²	1168.993			
						10.2		
C iv					1170.130		unid.	
C iv					1170.330			
Zn v	231831	317220	7.01×10⁻²	7.01×10⁻²	1171.106			
						15.4	unid.	
Zn v	239843	325068	3.11×10⁻¹	3.11×10⁻¹	1173.366			
Zn v	237032	322224	7.26×10⁻²	7.26×10⁻²	1173.823			
Zn v	230614	315801	1.79×10⁻¹	1.79×10⁻¹	1173.892		newly identified	
Zn v	198962	284116	3.01×10⁻¹	3.01×10⁻¹	1174.346	1174.43	21.4	
			23.6		1174.43			
C m	2s2p \(3P_0 \)/2	2p² \(3P_0 \)/2	1.17×10⁻¹	1.17×10⁻¹	1174.933	1175.03	24.8	
C m	2s2p \(3P_0 \)/2	2p² \(3P_1 \)/2	2.72×10⁻¹	2.72×10⁻¹	1175.263	1175.37	27.3	
C m	2s2p \(3P_0 \)/2	2p² \(3P_1 \)/2	7.03×10⁻²	7.03×10⁻²	1175.590			
C m	2s2p \(3P_0 \)/2	2p² \(3P_2 \)/2	2.11×10⁻¹	2.11×10⁻¹	1175.711			
C m	2s2p \(3P_0 \)/2	2p² \(3P_0 \)/2	9.07×10⁻²	9.07×10⁻²	1175.987	1176.09	26.3	
Zn v	226334	311359	8.10×10⁻²	8.10×10⁻²	1176.122		blend with Zn v	
Zn v	226334	311359	8.10×10⁻²	8.10×10⁻²	1176.122		blend with Zn v	
Zn v	198962	283933	1.86×10⁻¹	1.86×10⁻¹	1176.868			
Zn v	201973	286936	1.46×10⁻¹	1.46×10⁻¹	1176.980			
Zn v	226334	311295	7.56×10⁻²	7.56×10⁻²	1177.016			
Zn v	202929	287888	1.00×10⁻¹	1.00×10⁻¹	1177.036			
Zn v	200644	285603	1.68×10⁻¹	1.68×10⁻¹	1177.044		newly identified	
Ion	Levels	Lower	Upper	\(f \)	\(W_\lambda \)	Wavelength / Å	\(v_{\text{rad}} \) / km/s	Comment
-----	--------	-------	-------	------	----------	----------------	-------------------	---------
Zn v	231831	316786	3.06 × 10^{-1}	1177.087	20.2	1178.68	newly identified unid.	
Zn v	260880	345723	8.22 × 10^{-2}	1178.639			newly identified	
Zn v	241829	326664	1.12 × 10^{-1}	1178.759				
Ni v	232655.6	317477.9	9.35 × 10^{-3}	1178.935				
Zn v	236969	321776	1.93 × 10^{-1}	1179.145				
Zn v	230435	315239	1.10 × 10^{-1}	1179.179				
Xe vi	5p \(^2\!P^o_{3/2}\)	5p \(^4\!P^o_{3/2}\)	4.65 × 10^{-4}	1179.537				
Zn v	208715	293463	2.79 × 10^{-1}	1179.969				
Xe vi	5d \(^2\!D^o_{3/2}\)	6p \(^2\!P^o_{3/2}\)	1.54 × 10^{-1}	1181.455				
Xe vi	5d \(^2\!D^o_{5/2}\)	5d \(^4\!F^o_{5/2}\)	6.24 × 10^{-3}	1181.474			newly identified	
Zn v	227195	311796	2.22 × 10^{-2}	1182.019				
Zn iv	151574	236175	5.65 × 10^{-2}	1182.022				
Mo vi	283611	368203	7.44 × 10^{-1}	1182.142	1182.24	24.9		newly identified
Zn v	212471	297033	7.26 × 10^{-2}	1182.567				
Zn v	235730	320257	1.94 × 10^{-2}	1183.041				
Zn v	230435	314958	3.17 × 10^{-2}	1183.100				
Zn v	232946	317466	2.31 × 10^{-2}	1183.158				
Zn v	230614	314958	8.97 × 10^{-2}	1185.619				
Zn v	231997	316339	5.02 × 10^{-2}	1185.645				
Zn v	203548	287888	1.30 × 10^{-1}	1185.676				
Zn v	212471	296796	3.24 × 10^{-1}	1185.898				
Zn v	210973	295293	1.84 × 10^{-1}	1185.948				
Zn v	285523	369843	1.03 × 10^{-1}	1185.961				
Zn v	235730	320043	2.18 × 10^{-1}	1186.057				
Zn v	212471	296757	2.05 × 10^{-1}	1186.447	1186.54	23.5		
Zn v	228335	312534	2.72 × 10^{-1}	1187.664	8.9	1187.05	unid.	
Zn v	210973	295168	3.51 × 10^{-1}	1187.706				
N iv	2s3s \(^1\!S^o_0\)	2p(\(^2\!P^o_{3/2}\))3s \(^1\!P^o_1\)	6.02 × 10^{-1}	1188.005	24.8	1188.11	26.5	
Ge iv	84102.3	0	5.52 × 10^{-1}	1189.028	51.7	1189.028	20.7	
Zn v	227195	311295	2.43 × 10^{-1}	1189.072			newly identified	
Zn v	234846	318927	2.55 × 10^{-2}	1189.331			newly identified	
Zn v	235903	319984	7.13 × 10^{-2}	1189.332			newly identified	
Sn v	235999	319632	1.40 × 10^{-1}	1190.003			newly identified	
Zn v	208715	292722	3.13 × 10^{-1}	1190.376			newly identified	
Zn v	202929	286935	8.34 × 10^{-2}	1190.380			newly identified unid.	
Ga v	235609	319570	2.23 × 10^{-2}	1191.029	83.2	1190.48	newly identified	
Ion	Levels	Lower	Upper	f	W_{λ}/mÅ	Wavelength/Å	v_{rad}/km/s	Comment
-----	--------	-------	-------	-----	-----------------	--------------	----------------	-------------------------------
Zn v	260880	344771		6.24×10^{-2}	1192.014			newly identified
Ga iv	153086	236907		1.87×10^{-1}	1193.024			newly identified
Ga v	235752	319570		1.20×10^{-1}	1193.061			newly identified
Zn v	231997	315801		1.66×10^{-2}	1193.260			ISM multi-component
Ba vii	157675	241412		3.06×10^{-3}	1194.221			newly identified
Zn v	201973	285603		7.16×10^{-2}	1195.745			newly identified
O iii	3p 3D_2	4d $^3P_0^-$		8.82×10^{-2}	1196.753			unid.
O iii	3p 3D_3	4d $^3P_0^-$		9.11×10^{-2}	1197.331			unid.
C iv	3d $^2D_{3/2}$	4p $^2P_{1/2}$		2.76×10^{-3}	1198.403			unid.
C iv	3d $^2D_{5/2}$	4p $^2P_{3/2}$		1.65×10^{-2}	1198.554			unid.
C iv	3d $^2D_{3/2}$	4p $^2P_{1/2}$		1.38×10^{-2}	1198.591			unid.
Ni v	241773.6	325148.4		1.18×10^{-1}	1199.403			ISM multi-component
N i	14.1				1200.250			unid.
Zn v	200644	283933		6.25×10^{-2}	1200.639			newly identified
Zn v	236969	320257		3.36×10^{-1}	1200.643			newly identified
N i	15.6				1200.710			ISM multi-component
Zr v	453681	536961		8.10×10^{-1}	1200.760			blend with Mo vi
Mo vi	151213	234490		5.26×10^{-1}	1200.808			blend with Zr v, newly identified
Zn v	234846	317978		2.38×10^{-1}	1201.37			unid.
Zn v	239843	322969		4.20×10^{-2}	1201.60			unid.
Zn v	231831	314838		9.24×10^{-2}	1204.72			unid.
Sn v	14.1				1205.720			ISM multi-component
Table A.3. Continued.

Ion	Levels	f	Wavelength \AA	v_{rad}/km/s	Comment	
	Lower	Upper	W_2/mÅ	Theoretical	Observed	
C	3d	1D_2	6f $^3P_0^o$	1.01×10$^{-1}$	1210.081	unid.
He	2	4	1.19×10$^{-1}$	1215.133		unid.
Ge	241935	323749	4.91×10$^{-3}$	1222.289		unid.
Zn	160886	242640	2.88×10$^{-1}$	1223.182		newly identified
Ga	156025	237458	1.95×10$^{-1}$	1227.999		newly identified
Ni	274965.4	356036.3	1.89×10$^{-1}$	1229.394		blend with Mo v
Ge	81311.4	0	2.66×10$^{-1}$	1229.839		blend with Ni v, newly identified
Ni	208163.7	289298	7.34×10$^{-2}$	1232.524		unid.
Ni	246240.9	327356.6	1.68×10$^{-1}$	1232.807		unid.
Ni	234125.4	315168.2	1.10×10$^{-1}$	1233.916		unid.
Ni	208164.6	289247.1	9.35×10$^{-2}$	1233.312		unid.
Ni	274695.4	355765.2	2.33×10$^{-3}$	1233.508		unid.
Ni	263735.7	344805.3	3.16×10$^{-1}$	1233.508		unid.
Ni	234125.4	315168.2	1.10×10$^{-1}$	1233.916		unid.
Table A.3. Continued.

Ion	Lower Levels	Upper Levels	f	W_2/ mÅ	Wavelength/Å	v_{rad}/ km/s	Comment		
Ni v	208151.5	289163	1.33 × 10^{-1}	1234.393					
Ni v	233839.2	314756.4	2.15 × 10^{-1}	1235.831					
Ni v	240193.8	321081.9	3.86 × 10^{-2}	1236.276					
Ni v	234412.7	315300.7	1.12 × 10^{-1}	1236.277					
Zn v	230435	311296	4.58 × 10^{-2}	1236.689	newly identified				
Zn v	234846	315594	3.44 × 10^{-5}	1238.425	newly identified				
Zn v	260880	341627	1.01 × 10^{-1}	1238.430	newly identified				
N v	2s $^2S_{1/2}$	2p $^2P_{1/2}$	1.56 × 10^{-1}	141.3	1238.821	1238.93	26.4	newly identified	
Zn v	231831	312534	2.67 × 10^{-2}	9.2	1239.108	unid.			
Kr v	278928	359544	2.25 × 10^{-1}	1240.449	newly identified				
Ni v	243331.5	323908.6	3.93 × 10^{-2}	1241.047					
Ni v	234125.4	314702.2	3.71 × 10^{-2}	1241.052					
Ni v	234275.2	314834.7	1.28 × 10^{-1}	1241.319					
Ni v	233839.2	314392	6.46 × 10^{-2}	1241.422					
Ni v	234082.1	314599.2	1.24 × 10^{-1}	1241.972					
Ni v	229408.8	309919.5	1.85 × 10^{-1}	1242.071					
O iv	3d $^2D_{3/2}$	4p $^2P_{1/2}$	8.21 × 10^{-3}	1242.176					
O iv	3d $^2D_{5/2}$	4p $^2P_{1/2}$	4.93 × 10^{-2}	1242.434					
N v	2s $^2S_{1/2}$	2p $^2P_{3/2}$	7.80 × 10^{-2}	132.4	1242.804	1242.91	25.6	blend with O iv	
O iv	3d $^2D_{3/2}$	4p $^2P_{1/2}$	4.11 × 10^{-2}	1242.838					
Ni v	234125.4	314562.8	1.46 × 10^{-1}	1243.203					
Ni vi	337993.9	418368.8	3.60 × 10^{-2}	21.2	1244.170	1244.29	28.9		
Ni v	164525.9	244900.5	3.97 × 10^{-1}	21.2	1244.174	1244.29	28.0		
Ni v	229408.8	309743.6	1.68 × 10^{-2}	1244.791					
Ni v	234275.2	314599.2	9.70 × 10^{-2}	1244.958					
Ni v	216596	296919.3	3.91 × 10^{-2}	1244.969					
Ni v	240193.8	320513.8	1.23 × 10^{-1}	1245.020					
Ni v	234082.1	314392	2.55 × 10^{-1}	1245.176					
Ni v	274695.4	354989.6	3.46 × 10^{-1}	1245.420					
Ga iv	156025	236312	1.38 × 10^{-1}	9.5	1245.529	newly identified			
Zr v	491116	571376	8.57 × 10^{-3}	1245.74					
Zr v	457547	537803	7.85 × 10^{-1}	1245.87					
Ni v	263700.9	343905.7	3.56 × 10^{-1}	1246.808					
Zn v	208715	288903	3.85 × 10^{-2}	1247.074	newly identified				
C iii	2s2p $^1P_{1/2}$	2p 1S_0	1.62 × 10^{-1}	93.2	1247.383	1247.50	28.1		
Ion	Lower Levels	Upper Levels	f	W_λ / mÅ	Wavelength / Å	v_{rad} / km/s	Comment		
-----	--------------	--------------	-----	------------------	----------------	-------------------------	---------		
Ni v	208131	288161.6	1.30×10^{-1}	1249.522	1247.81	unid.			
Zn v	232946	312967	5.28×10^{-2}	1249.675	1249.98	newly identified			
Ni v	208163.7	288161.6	5.58×10^{-2}	1250.033	1250.40	unid.			
Ni v	208046.4	288021.6	3.50×10^{-1}	1250.388	1250.39	newly identified			
Zn v	231831	311796	9.46×10^{-3}	1250.539	1250.539	blend with Ni v, newly identified			
Ni v	217048.7	296932.9	2.74×10^{-1}	1251.812	1251.812				
Ni v	232910.8	312778.2	1.69×10^{-1}	1252.075	1252.075				
Ni v	208046.4	287906.9	1.62×10^{-1}	1252.183	1252.183				
Ni v	229408.8	309264	8.26×10^{-2}	1252.267	1252.267				
Ni v	217048.7	296897	2.05×10^{-2}	1252.375	1252.375				
Ni v	229440.6	309264	1.67×10^{-1}	1252.765	1252.765				
Ni v	263700.9	343478.2	1.77×10^{-1}	1253.38	1253.38				
Ni v	208131	287906.9	6.50×10^{-2}	1253.539	1253.539				
Kr v	213932.87	293705	3.74×10^{-2}	1253.571	1253.571				
Ni v	217129.1	296897	2.43×10^{-1}	1253.637	1253.637				
Ni v	217101	296847.1	2.52×10^{-1}	1253.980	1253.980				
Ba II	42514	122163	6.18×10^{-4}	1255.520	1255.520	newly identified			
C III	3s 1S_0^3	3p 3p_0^3	4.26×10^{-2}	1256.466	1256.466				
C III	3s 1S_0^3	3p 3p_0^3	2.56×10^{-2}	1256.542	1256.542				
C III	3p 1P_0^1	5s 3S_1^1	2.55×10^{-2}	1256.549	1256.549				
C III	3s 1S_0^3	3p 3p_0^3	8.52×10^{-3}	1256.577	1256.577				
Ni v	208131	287645.9	3.46×10^{-1}	1257.626	1257.626				
Ni v	243331.5	322820.8	7.67×10^{-2}	1258.031	1258.031				
Ga IV	149512	228953	4.03×10^{-1}	1258.801	1258.801				
Ni v	229413	308804.1	9.65×10^{-2}	1259.587	1259.587				
Ni v	234082.1	313464.7	8.37×10^{-2}	1259.722	1259.722				
Ni v	234125.4	313464.7	1.98×10^{-1}	1260.409	1260.409	blend with ?			
Si II	234125.4	313464.7	1.98×10^{-1}	1260.422	1260.422				
Zr v	391998	471306	1.05	1260.909	1260.909				
Ni v	212253.4	291541.7	6.11×10^{-2}	1261.220	1261.220				
Ni v	243331.5	322617.6	1.13×10^{-1}	1261.255	1261.255				
Ni v	235420.6	314702.2	2.90×10^{-1}	1261.327	1261.327				
Ion	Lower	Upper	f	W_λ	Wavelength/Å	v_{rad}/km/s	Comment		
----------	--------	--------	-----------	-------------	--------------	------------------------	-------------		
Ni v	279199.5	358475.6	3.28×10^{-1}	1261.414					
Ni v	216189.9	295444.3	3.32×10^{-1}	1261.760					
Zn v	230435	309658	3.99×10^{-2}	1262.252		15.9	newly identified		
Ni v	274738.6	353944.1	1.81×10^{-1}	1262.539	1262.38	unid.			
Mo vi	395181	474296	2.07×10^{-1}	1263.989		11.0	unid.		
Ni v	164525.9	243608.5	2.98×10^{-1}	1264.501		1264.24	unid.		
Ga iv	150967	230040	9.57×10^{-2}	1264.654			newly identified		
Ni v	243370.5	322436.4	1.14×10^{-1}	1264.768					
Zr v	376898	455925	8.93×10^{-1}	1265.381	1265.49	25.8	newly identified		
Zn v	128730	207737	2.04×10^{-1}	1265.707		8.5	unid.		
Ni v	247049.1	326029.9	1.14×10^{-1}	1266.131		1266.00	unid.		
Ni v	208163.7	287127.2	3.11×10^{-1}	1266.408	1266.52	26.5			
Ni v	240193.8	319138.7	7.81×10^{-2}	1266.706					
Ni v	212455.7	291390	3.00×10^{-1}	1266.876					
Ga iv	156025	234940	1.26×10^{-1}	1267.189			newly identified		
Ni v	229408.8	308317.3	1.59×10^{-1}	1267.291		8.0	unid.		
Ni v	229440.6	308317.3	1.60×10^{-1}	1267.802		9.7	unid.		
Ni v	236454.1	315326.2	1.02×10^{-1}	1267.875		18.6	unid.		
Ni v	274738.6	353548.7	2.22×10^{-1}	1268.873		1268.09	unid.		
Ni v	241082.2	319860.4	1.63×10^{-1}	1269.387		1268.40	unid.		
Ni v	242290.4	321018.3	1.44×10^{-1}	1270.198					
N iv	$2s3p\,^3P_2$	$2p^2\,^3P_3\,^3D_3$	1.39×10^{-1}	1270.270					
Mo vi	316477	395184	1.14×10^{-2}	1270.523					
Ni v	229440.6	308138.8	3.40×10^{-1}	1270.677	1270.80	29.0			
Ni v	234275.2	312889.4	7.80×10^{-2}	1272.035					
N iv	$2s3p\,^3P_0$	$2p^2\,^3P_3\,^3D_2$	1.23×10^{-1}	1272.145		6.9	1272.52	unid.	
Ni v	242504.3	321081.9	9.12×10^{-2}	1272.627					
Ni v	208131	286706.6	1.33×10^{-2}	1272.660					
Ion	Lower Levels	Upper Levels	\(f \)	\(W_r / mÅ \)	Wavelength / Å	\(v_{rad} / \text{km/s} \)	Comment		
-----	--------------	--------------	--------	----------------	-----------------	-----------------	---------		
Ni v	274773.5	353347.1	8.85\times10^{-2}	1272.692	1272.790	1273.08	21.2	newly identified	
Zn iv	130366	208921	1.65\times10^{-1}	1272.990	1273.08				
Ni v	208164.6	286706.6	3.51\times10^{-1}	1273.204					
Ni v	216596	294939.6	2.88\times10^{-1}	1276.428					
Ni v	164525.9	242837	2.13\times10^{-1}	1276.958	1277.06	1277.06	24.0		
Ni v	212095.8	290262	2.31\times10^{-1}	1279.325	1279.45	1279.45	29.3		
Ni v	208151.5	286293.6	3.95\times10^{-1}	1280.115					
Ni v	247104.9	325222.9	1.05\times10^{-1}	1280.138					
Ni v	240959.6	319076.2	2.26\times10^{-1}	1280.213					
Xe vi	5p^2 4P_{3/2} 4f 2F_{9/2}								
Zn iv	131805	209999	1.71\times10^{-1}	1280.213					
Ni v	229408.8	307399.7	1.14\times10^{-1}	1282.13	1282.58	18.7	newly identified		
Ni v	229413	307399.7	1.08\times10^{-1}	1282.357					
Zn iv	151250	229231	1.22\times10^{-1}	1282.719					
Ni v	251654.9	329614.3	1.78\times10^{-3}	1282.719					
Zn v	212471	290424	9.80\times10^{-3}	1282.832					
Sn v	18.2	1283.810	1283.91	23.4					
Ni v	216590.5	294443.3	2.73\times10^{-1}	1284.475					
Ni v	253905.2	331678.2	3.87\times10^{-1}	1285.793					
Ni v	232545.9	310212.6	1.60\times10^{-1}	1286.64					
Ni v	268273.9	345936.1	3.03\times10^{-1}	1287.553					
Ni v	216434.7	294086	2.41\times10^{-1}	1287.808					
Zn iv	132777	210187	2.44\times10^{-1}	1291.826					
Zn iv	132777	210187	2.44\times10^{-1}	1291.826					
Zn iv	132777	210187	2.44\times10^{-1}	1291.826					
Ion	Lower	Upper	f	$W_2/\text{mÅ}$	Wavelength/Å	v_{rad}/km/s	Comment		
-------	---------	---------	------	-----------------	--------------	------------------------	--------------------------		
Zn iv	130366	207737	1.11×10⁻¹	1292.476			newly identified		
Sn v	212095.8	289298	1.20×10⁻¹	1295.300			blend with Ni		
Ni v	221631	298801	1.03×10⁻¹	1295.850			blend with Ni		
C m	3d 3D_2	5f 3P_0	2.04×10⁻¹	1296.322			blend with Ni		
C m	3d 3D_1	5f 3P_0	2.29×10⁻¹	1296.327			blend with Ni		
C m	3d 3D_3	5f 3P_2	2.10×10⁻¹	1296.333			blend with Ni		
C m	3d 3D_2	5f 3P_2	2.59×10⁻²	1296.345			blend with Ni		
C m	3d 3D_3	5f 3P_0	1.85×10⁻²	1296.369			blend with Ni		
Zn iv	131805	208921	1.67×10⁻¹	1296.734			blend with Ni		
Ni v	242862.6	319860.4	1.61×10⁻¹	1298.738			blend with Ni		
Xe vi	5p $^2P_{3/2}$	5p² $^4P_{1/2}$	1298.921				blend with Ni		
Ga iv	153086	230040	3.26×10⁻¹	1299.476			blend with Ni		
Ni v	178019.8	254885	1.79×10⁻¹	1300.979			blend with Ni		
Zn iv	148180	225033	3.10×10⁻¹	1301.189			blend with Ni		
Ni v	242862.6	319652.7	5.50×10⁻²	1302.251			blend with Ni		
Ni v	212095.8	288877.9	7.57×10⁻²	1302.387			blend with Ni		
Zn v	222042	298801	8.34×10⁻²	1302.786			blend with Ni		
Ni v	235736.5	312463.3	2.32×10⁻¹	1303.326			blend with Ni		
Ga iv	150967	227681	3.17×10⁻¹	1303.540			blend with Ni		
Zr v	378753	455444	9.01×10⁻¹	1303.933			blend with Ni		
Ni v	247165	323853.1	7.66×10⁻²	1303.983			blend with Ni		
Ni v	229048.8	306049	4.36×10⁻²	1304.19	7.1		blend with Ni		
Ni v	229413	306049	1.78×10⁻¹	1304.798			blend with Ni		
Ni v	212253.4	288877.9	1.26×10⁻¹	1305.066			blend with Ni		
Ni v	229408.8	305996.3	1.66×10⁻¹	1305.696			blend with Ni		
Ni v	243370.5	319926.5	1.30×10⁻³	1306.233			blend with Ni		
Ni v	229440.6	305996.3	1.24×10⁻¹	1306.238			blend with Ni		
Ni v	208046.4	284579.5	2.83×10⁻¹	1306.624			blend with Ni		
Zn iv	128730	205261	3.80×10⁻¹	1306.657			blend with Ni		
Zr v	395995	472520	1.00	1306.762	8.1		blend with Ni		
Ni v	178019.8	254495.6	2.94×10⁻¹	1307.603	24.5		blend with Ni		
Ion	Lower Levels	Upper Levels	\(f \)	\(W_\lambda \) mÅ	Wavelength / Å	\(v_{\text{rad}} \) km/s	Comment		
-----	--------------	--------------	--------	-----------------	-----------------	-----------------	---------		
C iii	2p\(^2\) 1S\(_0\)	2s3p 1P\(_1\)	2.52×10\(^{-2}\)	8.9	1308.07	unid.			
Zn v	240446	316827	1.47×10\(^{-2}\)	6.8	1309.23	newly identified			
N iv	2s3p 1P\(_1\)	2p(2P\(_0\),3P\(_1\))/3p 1P\(_1\)	1.79×10\(^{-1}\)	3.8	1309.55				
Ni v	243266.2	319620.2	1.60×10\(^{-1}\)	2.6	1309.65				
Ni v	221087.6	297418.1	2.79×10\(^{-1}\)	3.5	1310.00	unid.			
Ni v	243331.5	319652.7	1.63×10\(^{-1}\)	3.2	1312.39				
Ni v	242862.6	319138.7	6.10×10\(^{-2}\)	14.8	1311.106	1311.21	23.8		
Ni v	229413	305590.8	2.17×10\(^{-1}\)	7.5	1312.646				
Ni v	208163.7	284308.9	2.21×10\(^{-1}\)	1313.280					
Ni v	208164.6	284249	2.12×10\(^{-1}\)	18.3	1314.01	unid.			
Sn iv	5s 2S\(_{1/2}\)	5p 2P\(_0\) \(_{3/2}\)	6.00×10\(^{-1}\)	7.5	1314.330	1314.46	29.7		
Ni v	208151.5	284215.5	2.17×10\(^{-1}\)	1314.682					
C iv	4p 2P\(_{1/2}\)	7d 2D\(_{3/2}\)	5.89×10\(^{-2}\)	11.4	1315.623				
Ni v	225545.1	301553	3.32×10\(^{-1}\)	1315.653	blend with C iv				
C iv	4p 2P\(_{0}\) \(_{3/2}\)	7d 2D\(_{3/2}\)	5.88×10\(^{-3}\)	1315.849					
Ni v	225616.5	301553	6.38×10\(^{-2}\)	1315.855					
Ni v	232655.6	308592	1.42×10\(^{-1}\)	1316.890					
Ni v	221087.6	297013.9	4.55×10\(^{-2}\)	1317.067					
Ni v	233839.2	309743.6	3.13×10\(^{-1}\)	5.7	1317.447	1317.56	25.7		
Zn iv	135951	211824	1.73×10\(^{-1}\)	7.7	1317.447	unid.			
Zn v	222940	298801	5.79×10\(^{-2}\)	1318.001	newly identified				
Ni v	225616.5	301470.2	3.22×10\(^{-1}\)	1318.204					
Ni v	178019.8	253862.7	4.05×10\(^{-1}\)	1318.515	1318.62	23.9			
Kr v	291138	366900	1.91×10\(^{-1}\)	9.6	1319.03	unid.			
Kr v	291138	366900	1.91×10\(^{-1}\)	1319.54					
Kr v	291138	366900	1.91×10\(^{-1}\)	1319.923	newly identified				
Kr v	291138	366900	1.91×10\(^{-1}\)	1320.14	unid.				
Ion	Levels	f	Wλ/ mÅ	Wavelength/Å	υrad/ km/s	Comment			
-------	---------	-----	--------	--------------	------------	-------------------------------			
Ni v	225200.7	3.27×10⁻¹	1320.700	blend with Zn iv					
Zn iv	128730	1.10×10⁻¹	1320.704	blend with Ni v, newly identified					
Ni v	212253.4	4.38×10⁻²	1320.889	blend with Zn iv					
Zn iv	138479	2.77×10⁻¹	1321.215	blend with Ni v, newly identified					
						unid.			
Zn iv	130366	1.37×10⁻¹	1322.316	newly identified					
Ni v	236454.1	9.08×10⁻²	1323.553	24.2					
Ni v	241773.6	1.52×10⁻¹	1323.562	22.2					
Zr v	382985	7.96×10⁻¹	1323.826	25.8					
Ni v	217101	3.50×10⁻¹	1323.977						
Zn iv	208715	9.90×10⁻³	1326.253						
Ni v	131805	1.08×10⁻¹	1326.774						
N iv	2s3d 3D 1 2p²P 3d 3P 2	1.46×10⁻²	12.8	27.8	uncertain				
Zn iv	135951	1.11×10⁻¹	1329.110						
Ni v	217129.1	3.28×10⁻¹	1329.358						
Zn iv	208715	4.42×10⁻³	1329.471						
Zn iv	160919	2.17×10⁻¹	1329.959						
Zn iv	157075	2.56×10⁻¹	1330.302						
Zn iv	327617	6.65×10⁻²	1332.065						
Zn iv	157930	5.48×10⁻¹	1333.180						
Zn iv	138479	1.59×10⁻¹	1333.326	27.9	newly identified				
Ni v	233839.2	1.31×10⁻¹	1333.958						
Ni v	241773.6	3.18×10⁻¹	1334.169						
Ni v	225616.5	4.14×10⁻²	1334.280						
C ii						ISM multi-component			
Ni v	241082.2	1.60×10⁻¹	1334.966						
Ni v	217048.7	3.25×10⁻¹	1336.136	32.3					
Ga iv	149512	2.02×10⁻¹	1338.129	27.1	newly identified				
O iv	2s2p² 2P 1/2	1.17×10⁻¹	91.9	1338.615	30.2				
						unid.			
Zn iv	157075	3.70×10⁻¹	1340.156						
Ni v	225616.5	1.26×10⁻¹	1340.332						
Ni v	216189.9	8.26×10⁻²	1341.074						
Zn iv	241829	1.10×10⁻²	1342.104						
Ni v	217048.7	2.03×10⁻¹	1342.176						
O iv	2s2p² 2P 3/2	1.16×10⁻²	54.9	1342.990	29.0				
O iv	2s2p² 2P 3/2	1.04×10⁻¹	106.7	1343.514	30.4				
Zn iv	149191	3.61×10⁻¹	1343.750		newly identified				

Table A.3. Continued.
Table A.3. Continued.

Ion	Lower Levels	Upper Levels	f	W_{λ}/mÅ	Wavelength/Å	v_{rad}/km/s	Comment
Ni v 240959.6	315370.1	1.30×10^{-1}	1343.896	newly identified			
Zn iv 132777	207175	2.94×10^{-1}	1344.122	newly identified			
Zn v 240446	314838	4.45×10^{-2}	1344.241	newly identified			
O m 3p 3P_2	3p $^3D_3^0$	7.89×10^{-2}	1344.943				
O m 3p 3P_1	3p $^3D_2^0$	7.05×10^{-2}	1344.962				
Ni v 217129.1	291328.5	1.82×10^{-1}	1347.720				
C m 3p $^1P_1^0$	3p 1D_2	3.03×10^{-2}	1347.947	blend with Zn iv			
Zn iv 131805	205991	2.15×10^{-1}	1347.954	blend with C m, newly identified			
Zn iv 130366	204447	1.98×10^{-1}	1349.876	blend with C m, newly identified			
Ni v 216189.9	290262	6.02×10^{-2}	1350.036				
C iv 4d $^2D_{3/2}$	4f $^2P_{3/2}^0$	7.22×10^{-2}	1351.214				
C iv 4d $^2D_{5/2}$	4f $^2F_{5/2}^0$	3.44×10^{-3}	1351.287				
C iv 4d $^2D_{5/2}$	4f $^2F_{5/2}^0$	6.88×10^{-2}	1351.292				
C iv 4f $^2F_{7/2}^0$	7g $^2G_{9/2}$	5.65×10^{-2}	1352.975				
C iv 4f $^2F_{7/2}^0$	7g $^2G_{7/2}$	1.64×10^{-2}	1352.975				
C iv 4f $^2F_{7/2}^0$	7g $^2G_{7/2}$	5.81×10^{-2}	1352.975				
C iv 4f $^2F_{7/2}^0$	7d $^2D_{3/2}$	5.37×10^{-4}	1353.427				
C iv 4f $^2F_{7/2}^0$	7d $^2D_{5/2}$	5.75×10^{-4}	1353.433				
C iv 4f $^2F_{7/2}^0$	7d $^2D_{5/2}$	3.85×10^{-5}	1353.433				
Zr v 402688	476677	1.05	1355.216				
Zr v 328941	402688	4.39×10^{-2}	1355.975				
Zn iv 160886	234623	3.72×10^{-1}	1356.171				
Zn iv 131805	205453	1.79×10^{-1}	1357.801				
Zn iv 148180	221373	2.35×10^{-1}	1359.477				
Zn iv 138479	211824	1.39×10^{-1}	1363.432				
Zn iv 130366	203685	2.01×10^{-1}	1363.912				
Zn iv 148180	221426	1.18×10^{-1}	1365.253				
Zn iv 135951	208970	3.07×10^{-1}	1369.510				
O v 2s2p $^1P_1^0$	2p 1D_2	1.57×10^{-1}	1371.294				
Sr v							
Table A.3. Continued.

Ion	Levels	\(f \)	\(W_{\lambda} \)	Wavelength/Å	\(v_{\text{rad}} \)/km/s	Comment		
Zn iv	138479	211190	2.47\times10^{-1}	1375.325	1376.45	newly identified		
Zr v	382985	455631	3.17\times10^{-1}	1376.544	1376.79	unid.		
Zn iv	128730	201319	2.29\times10^{-1}	1377.615	1377.75	29.4		
C \(^{3}\)D_{2}	3d	5f 1P_{0}	3.46\times10^{-1}	1381.652	1381.76	23.4		
Kr v	211336.57	283559	5.14\times10^{-2}	1384.611	1384.72	23.6		
Zn iv	160919	232981	3.61\times10^{-1}	1387.961	1388.07	23.5		
C \(^{3}\)P_{0}	3s 2S_{1/2}	3p 2P_{1/2}	5.13\times10^{-1}	1393.755	1393.87	24.7		
Ni v	221087.6	292981	1.41\times10^{-1}	1390.910	unid.			
Kr v	216874.54	288683	4.28\times10^{-2}	1392.594	1392.77	38.3		
Kr v	213932.87	285981	7.46\times10^{-2}	1390.94	1390.94	unid.		
Ni v	219823.27	291138	4.66\times10^{-2}	1402.235	1402.32	18.2		
Si iv	3s 2S_{1/2}	3p 2P_{1/2}	2.55\times10^{-1}	1402.770	1402.90	27.8		
Sr v	219823.27	291138	2.40\times10^{-2}	1408.56	1409.60	1413.09		
C \(^{3}\)D_{2}	3d	3d' 1P_{0}	3.40\times10^{-2}	1425.903	1426.194			
C \(^{3}\)D_{2}	3d	3d' 1P_{0}	3.56\times10^{-2}	1426.194	1426.216			
C \(^{3}\)D_{2}	3d	3d' 1P_{0}	4.60\times10^{-2}	1426.446	1426.58	28.2		
Mo vi	316477	386552	7.53\times10^{-4}	1427.030	1427.15	25.2		
C \(^{3}\)P_{0}	3s 2S_{1/2}	2p(2P)3s 1P_{1/2}	1.62\times10^{-1}	1427.839	1427.97	27.5		
C \(^{3}\)P_{0}	3s 2S_{1/2}	2p(2P)3s 1P_{1/2}	9.78\times10^{-2}	1427.911	1427.911	unid.		
Ion	Levels	Lower	Upper	f	W_λ	Wavelength/Å	v_{rad}/km/s	Comment
-------	--------	-------	-------	----------	-------------	--------------	----------------	----------------
					mÅ	Theoretical	Observed	
C	3p 3P_0	3p' 3P_2	8.22×10^{-2}	23.8	1428.178	1428.31	27.7	
C	3p 3P_0	3p' 3P_1	1.10×10^{-1}	1428.553				
C	3p 3P_0	3p' 3P_1	2.74×10^{-2}	1428.668				
C	3p 3P_0	3p' 3P_1	2.74×10^{-2}	1428.935				
C	3p 3P_0	3p' 3P_2	3.66×10^{-2}	1429.099				
Sn	5s $^2S_{1/2}$	5p $^2P_{1/2}$	3.00×10^{-1}	1437.525	1437.64	24.0		
Kr	213932.87	283439.05	1.10×10^{-2}	1438.722	1438.83	22.5	newly identified	
C	4s $^3S_{1/2}$	6p $^3P_{1/2}$	4.70×10^{-2}	1440.283				
C	4s $^3S_{1/2}$	6p $^3P_{1/2}$	2.35×10^{-2}	1440.364				
Ba	173154	241412	1.46×10^{-2}	1465.045				
C	3d 3D_2	3d' $^3D_{1/2}$	1.92×10^{-2}	1477.626				
C	3d 3D_3	3d' $^3D_{5/2}$	1.10×10^{-1}	1477.810	24.8			
Ba	156151	223820	1.72×10^{-2}	1477.775				
C	3d 3D_1	3d' $^3D_{3/2}$	3.09×10^{-2}	1478.021				
C	3d 3D_2	3d' $^3D_{5/2}$	8.56×10^{-2}	1478.045	1478.170	25.4		
C	3d 3D_3	3d' $^3D_{7/2}$	1.37×10^{-2}	1478.106				
C	3d 3D_1	3d' $^3D_{5/2}$	9.25×10^{-2}	1478.303				
C	3d 3D_2	3d' $^3D_{3/2}$	1.86×10^{-2}	1478.327				
Mo	119726	187331	6.15×10^{-1}	1479.168	1479.30	26.8		
Ge	4d $^2D_{3/2}$	4f $^2P_{1/2}$	1.04×10^{-1}	1501.799	1501.92	24.2		
Ge	4d $^2D_{5/2}$	4f $^2P_{3/2}$	1.04×10^{-1}	1501.799	1501.92	24.2		
S	3p 1P_0	3p' 3D	1.04×10^{-1}	1501.799	1501.92	24.2		
Zr	393555	459581	2.70×10^{-1}	1514.568				
Kr	278928	344908	8.37×10^{-1}	1515.611				
Zr	369712	435428	1.99×10^{-1}	1521.699				
Table A.3. Continued.

Ion	Levels	f	W_3/ mÅ	Wavelength/A	v_rad/km/s	Comment				
	Lower	Upper		Theoretical	Observed					
Ba	178316	243933	1.07×10^{-2}	1524.009	1526.05	newly identified				
Si						unid.				
C	3p	1P^o_1	4d	1D_2	2.03×10^{-1}	23.4	1531.835	1531.97	26.4	ISM multi-component
C	3d	1D_2	3d'	1P^o_1	6.86×10^{-2}	56.6	1541.115	1541.26	28.2	unid.
C	2s	2P^o_1/2	2p	3P^o_1/2	1.90×10^{-1}	245.9	1548.203	1548.33	24.6	unid.
C	2s	2P^o_1/2	2p	3P^o_1/2	9.52×10^{-2}	217.7	1550.772	1550.90	24.8	unid.
Kr	288683	352537	6.65×10^{-1}	1566.073	1567.70	unid.				
C	3d	1D_3	3d'	3P^o_1	2.28×10^{-1}	36.5	1576.479	1576.61	24.9	unid.
C	3p	3P^o_1	3p'	3D_3	1.07×10^{-2}	1576.878				
C	3d	1D_2	3d'	3P^o_1	2.21×10^{-1}	1577.297				
C	3d	1D_1	3d'	3P^o_1	2.01×10^{-1}	1577.35				
C	3p	3P^o_1	3p'	3D_2	9.58×10^{-1}	1577.532				
C	3p	3P^o_1	3p'	3D_2	1.92×10^{-3}	1577.858				
C	3d	1D_1	3d'	3P^o_1	2.49×10^{-1}	1577.849				
C	3d	1D_2	3d'	3P^o_1	2.81×10^{-2}	1577.907				
C	3d	1D_3	3d'	3P^o_1	4.56×10^{-4}	1577.977				
C	3p	3P^o_1	3p'	3D_1	1.28×10^{-2}	1578.001				
C	3p	3P^o_1	3p'	3D_1	3.20×10^{-3}	1578.142				
Ba	178140	241412	4.22×10^{-3}	1580.480	1580.483	newly identified				
Ba	156256	219528	2.05×10^{-3}	1580.483	1582.54	newly identified				
Kr	291138	354291	3.56×10^{-1}	1583.456	1583.456	unid.				
C	4p	3P^o_1/2	6d	3D_3/2	1.36×10^{-1}	1585.811				
C	4p	3P^o_1/2	6d	3D_3/2	1.22×10^{-1}	1586.111				
C	4p	3P^o_1/2	6d	3D_3/2	1.35×10^{-2}	1586.141				
Mo	94835	157851	1.46×10^{-1}	1586.898	1586.898	unid.				
Kr	283677	346599	9.57×10^{-1}	1589.269	1589.269	unid.				
Mo	99380	162257	1.66×10^{-1}	1590.414	1590.414	unid.				
C	3s	3S_0	3s'	3P^o_1	6.85×10^{-1}	37.5	1591.443	1591.59	27.7	unid.
Zr	364827	427649	4.28×10^{-1}	1591.799	1591.799	unid.				
Kr	291138	353957	6.18×10^{-1}	1591.875	1591.875	unid.				
Mo	119726	183240	2.81×10^{-1}	1595.435	1595.58	27.2	unid.			
Zr	84461	147002	9.73×10^{-1}	1598.948	1600.88	unid.				
					1610.42	unid.				
Table A.3. Continued.

Ion	Levels	Lower	Upper	f	W_2/ mÅ	Wavelength / Å	v_{rad}/ km/s	Comment
						Theoretical	Observed	
C iii	$3p^3 3p^2$	4d 3D_3	4.57×10$^{-1}$	46.1	1620.069	1620.18	20.5	
C iii	$3p^3 3p^2$	4d 3D_2	4.03×10$^{-1}$	19.9	1620.338	1620.46	22.6	
C iii	$3p^3 3p^2$	4d 3D_1	5.44×10$^{-1}$	35.4	1620.594			
C iii	$3p^3 3p^2$	4d 3D_0	8.18×10$^{-2}$	129.5	1620.681			
C iii	$3p^3 3p^2$	4d 3D_1	1.36×10$^{-1}$	63.7	1620.743			
C iii	$3p^3 3p^2$	4d 3D_0	5.49×10$^{-3}$	38.9	1621.087			
Zr v	327617	388853	1.21×10$^{-1}$	1633.027				
C iv	4d $^2D_{3/2}$	6f $^2P_{3/2}$	1.86×10$^{-1}$	1637.543				
C iv	4d $^2D_{3/2}$	6f $^2P_{3/2}$	8.85×10$^{-3}$	1637.650				
C iv	4d $^2D_{5/2}$	6f $^2P_{3/2}$	1.77×10$^{-1}$	1637.650				
He ii	2	3	6.41×10$^{-1}$	254.3	1640.377	1640.54	29.8	
Mo v	99380	159857	3.81×10$^{-1}$	1653.541				
C iv	4p $^2P_{1/2}$	6s $^2S_{1/2}$	2.46×10$^{-2}$	1653.633				
C iv	4p $^2P_{1/2}$	6s $^2S_{1/2}$	2.46×10$^{-2}$	1653.992				
C iv	4d $^2D_{3/2}$	6p $^2P_{1/2}$	1.35×10$^{-3}$	1654.457				
C iv	4d $^2D_{3/2}$	6p $^2P_{3/2}$	6.75×10$^{-3}$	1654.564				
C iv	4d $^2D_{5/2}$	6p $^2P_{3/2}$	8.10×10$^{-3}$	1654.566				
Mo v	94835	155032	3.93×10$^{-1}$	1661.215				
Xe vi	$5p^2 2D_{3/2}$	$4f^2F_{3/2}$		1663.116				
Xe vi	$5d^2 2F_{5/2}$	$5g^2G_{7/2}$	3.02×10$^{-1}$	1663.146				
Mo v	93111	153040	2.83×10$^{-1}$	1668.662				
Zr vi	393555	453000	4.00×10$^{-1}$	1682.241				
N iv	$2s2p^1P_1$	$2p^2 1D_{2}$	1.71×10$^{-1}$	1718.550				
Zr v	325015	382985	2.14×10$^{-1}$	1725.024				
Zr vi	364827	421991	2.77×10$^{-1}$	1749.350				
Kr v	250993	307667	2.31×10$^{-1}$	1764.478				
Ion	Levels	\(f \)	\(W_\lambda / \text{mÅ} \)	Wavelength / Å	\(v_{\text{rad}} / \text{km/s} \)	Comment		
-----	--------	-------	----------------	----------------	----------------	---------		
Ba vii	157675	213712	2.22×10\(^{-2}\)	1784.535	newly identified			
					49.4	unid.		
					34.9	unid.		
					33.0	unid.		
Ba vii	152397	206668	1.50×10\(^{-2}\)	1842.595	newly identified			
					1849.26	unid.		
					1851.95	unid.		
					1855.49	unid.		
					1879.01	unid.		
Xe vi	5p\(^2\) \(^3\)D\(_{5/2}\)	5d \(^3\)D\(_{5/2}\)		1884.016	newly identified			
					1885.53	unid.		
					1888.08	unid.		
C iii	2s3p \(^1\)P\(_o\)	2s4s \(^1\)S\(_0\)	9.68×10\(^{-2}\)	1894.290	unid.			
					1901.53	unid.		
					1901.77	unid.		
					1901.97	unid.		
					1902.29	unid.		
C iii	3d \(^3\)D\(_3\)	4f \(^3\)F\(_4\)	5.77×10\(^{-1}\)	1922.957	unid.			
					1923.164	unid.		
					1923.268	unid.		
C iii	3d \(^3\)D\(_1\)	4f \(^3\)F\(_2\)	6.29×10\(^{-1}\)	1923.341	unid.			
					1923.382	unid.		
C iii	3d \(^3\)D\(_2\)	4f \(^3\)F\(_2\)	7.11×10\(^{-2}\)	1923.382	unid.			
					1923.486	unid.		
C iii	3d \(^3\)D\(_3\)	4f \(^3\)F\(_2\)	1.15×10\(^{-3}\)	1923.486	unid.			
Kr vi	275380	326657	6.59×10\(^{-1}\)	1950.192	newly identified			
					1957.24	unid.		
					1967.57	unid.		
					1984.64	unid.		
C iii	3p \(^3\)P\(_o\)	4s \(^3\)S\(_1\)	1.39×10\(^{-1}\)	2009.985	unid.			
					2010.214	unid.		
C iii	3p \(^3\)P\(_o\)	4s \(^3\)S\(_1\)	1.39×10\(^{-1}\)	2010.743	unid.			
					2010.91	24.9	unid.	
					2011.39	unid.		
					2011.83	unid.		
					2012.15	unid.		
					2029.38	unid.		
					2051.02	unid.		
					2051.89	unid.		
					2066.42	unid.		
Ion	Levels	Lower	Upper	f	W_λ / mÅ	Wavelength / Å	v_{rad} / km/s	Comment
-------	--------	-------	-------	---------	-----------------	----------------	--------------------------	----------------
C	3d 3D_1	4p $^1P_1^0$	7.22×10^{-4}	2092.467				
C	3d 3D_2	4p 3P_2	7.69×10^{-3}	2092.516				
C	3d 3D_3	4p $^3P_2^0$	3.34×10^{-2}	2092.639				
C	3d 3D_1	4p 3P_1	1.80×10^{-2}	2092.677				
C	3d 3D_2	4p 3P_1	3.23×10^{-2}	2092.725				
C	3d 3D_1	4p 3P_0	2.39×10^{-2}	2092.776				
C	4s $^2S_{1/2}$	5p 1P_1	1.43×10^{-1}	2104.607				
C	4s $^2S_{1/2}$	5p $^3P_{1/2}$	7.14×10^{-2}	2104.922				
Xe	6s $^2S_{1/2}$	6p $^3P_{1/2}$	7.40×10^{-1}	2135.479				
C	3d 1D_2	4f 1F_3	7.96×10^{-1}	2163.605	2163.84	32.6	unid.	
C	2p 1P_1	2p2 3D_2	1.80×10^{-1}	2297.578	2297.78	26.4	unid.	
C	5d $^2D_{3/2}$	8f 1F_3	8.12×10^{-2}	2333.504				
C	5d $^2D_{5/2}$	8f 3F_3	3.87×10^{-3}	2333.597				
C	5d $^2D_{3/2}$	8f 3P_2	7.73×10^{-2}	2333.597				
C	5f $^2F_{5/2}$	8g $^3G_{7/2}$	2.39×10^{-3}	2366.247				
C	5f $^2F_{7/2}$	8g $^3G_{9/2}$	8.23×10^{-2}	2336.247				
C	5g $^2G_{7/2}$	8h $^3H_{9/2}$	8.46×10^{-2}	2336.247				
C	5g $^2G_{9/2}$	8h $^3H_{11/2}$	5.98×10^{-2}	2336.700				
C	5g $^2G_{9/2}$	8h $^3H_{11/2}$	1.12×10^{-3}	2336.700				
C	5p $^2P_{3/2}$	8s $^2S_{1/2}$	5.87×10^{-2}	2336.700				
C	5p $^2P_{3/2}$	8s $^2S_{1/2}$	1.32×10^{-2}	2336.722				
C	5g $^2G_{7/2}$	8f 3P_0	3.77×10^{-4}	2336.787				
C	5g $^2G_{7/2}$	8f 3P_2	1.42×10^{-5}	2336.787				
C	5g $^2G_{9/2}$	8f 3P_2	3.91×10^{-4}	2336.787				
C	5f $^2F_{5/2}$	8d $^3D_{5/2}$	1.11×10^{-4}	2337.066				
C	5f $^2F_{7/2}$	8d $^3D_{3/2}$	1.56×10^{-3}	2337.066				
C	5f $^2F_{7/2}$	8d $^3D_{3/2}$	1.67×10^{-3}	2337.066				
C	5p 1P_1	2p2 3D_2	1.32×10^{-2}	2337.109				

| He | 3 | 8 | 1.60×10^{-2} | 2386.221 |

Table A.3. Continued.
Ion	Levels	f	W_λ/mÅ	Wavelength/Å	v_{rad}/km/s	Comment
C iv	$4p\ 3p_2/2$	$5d\ 3D_{3/2}$	5.23×10^{-1}	2405.170		
C iv	$4p\ 3p_2/2$	$5d\ 3D_{3/2}$	4.61×10^{-1}	2405.830		
C iv	$4p\ 3p_2/2$	$5d\ 3D_{3/2}$	5.12×10^{-2}	2405.928		
O iv	$4f\ 3p_2/2$	$5g\ 2G_{7/2}$	1.20	2450.116		
O iv	$4f\ 3p_2/2$	$5g\ 2G_{7/2}$	3.38 $\times 10^{-2}$	2450.782		
O iv	$4f\ 3p_2/2$	$5g\ 2G_{9/2}$	1.17	2450.782		
Ge iv	$5p\ 3p_2/2$	$5d\ 3D_{5/2}$	17.6	2460.82	unid.	
He ii	3	7	2.77 $\times 10^{-2}$	2512.059		
C iv	$4d\ 2D_{3/2}$	$5f\ 3P_{3/2}$	8.86 $\times 10^{-1}$	2525.017		
C iv	$4d\ 2D_{5/2}$	$5f\ 3P_{3/2}$	4.22 $\times 10^{-2}$	2525.272		
C iv	$4d\ 2D_{5/2}$	$5f\ 3P_{3/2}$	8.44 $\times 10^{-1}$	2525.272		
C iv	$4f\ 2P_{3/2}$	$5g\ 2G_{7/2}$	1.30	2530.736		
C iv	$4f\ 2P_{3/2}$	$5g\ 2G_{9/2}$	3.78 $\times 10^{-2}$	2530.736		
C iv	$4f\ 2P_{3/2}$	$5g\ 2G_{7/2}$	1.34	2530.736		
C iv	$4f\ 2P_{3/2}$	$5d\ 3D_{5/2}$	9.08 $\times 10^{-3}$	2534.488		
C iv	$4f\ 2P_{3/2}$	$5d\ 3D_{5/2}$	6.05 $\times 10^{-4}$	2534.488		
C iv	$4f\ 2P_{3/2}$	$5d\ 3D_{3/2}$	8.47 $\times 10^{-3}$	2534.597		
C iv	$4d\ 2D_{3/2}$	$5p\ 3P_{3/2}$	6.74 $\times 10^{-3}$	2595.596		
C iv	$4d\ 2D_{5/2}$	$5p\ 3P_{3/2}$	4.06 $\times 10^{-2}$	2595.865		
C iv	$4d\ 2D_{3/2}$	$5p\ 3P_{1/2}$	3.38 $\times 10^{-2}$	2596.074		
C iv	$4p\ 3p_2/2$	$5s\ 3S_{1/2}$	1.28 $\times 10^{-1}$	2698.516		
C iv	$4p\ 3p_2/2$	$5s\ 3S_{1/2}$	1.28 $\times 10^{-1}$	2699.471		
He ii	3	6	5.59 $\times 10^{-2}$	2734.220		
Mg ii	3	6		2796.352	ISM multi-component	
Mg ii	3	6		2803.531	ISM multi-component	
C iv	$5p\ 3p_{1/2}$	$7d\ 3D_{3/2}$	1.40 $\times 10^{-1}$	2819.687		
Table A.3. Continued.

Ion	Levels	f	W₄/ mÅ	Wavelength/ Å	v₄rad/ km/s	Comment		
C iv	5p ²P³/₂	7d ²D₃/₂	1.40×10⁻²	2820.251				
C iv	5p ²P³/₂	7d ²D₅/₂	1.26×10⁻¹	2820.278				
O iv	3s ²S₁/₂	3p ²S₁/₂	6.83×10⁻²	2837.105				
C iv	5d ²D₃/₂	7f ²P₀/₂	1.96×10⁻¹	2902.303	54.5	2881.55	unid.	
C iv	5d ²D₅/₂	7f ²P₀/₂	9.34×10⁻³	2902.446				
C iv	5d ²D₅/₂	7f ²P₀/₂	1.87×10⁻¹	2902.466				
C iv	5f ²P₀/₂	7g ²G₉/₂	2.21×10⁻¹	2906.502				
C iv	5f ²P₀/₂	7g ²G₇/₂	6.42×10⁻³	2906.502				
C iv	5g ²G₇/₂	7h ²H₇/₂	2.00×10⁻¹	2907.193				
C iv	5g ²G₇/₂	7h ²H₇/₂	3.73×10⁻³	2907.193				
C iv	5g ²G₇/₂	7h ²H₀/₇₁	1.96×10⁻¹	2907.193				
C iv	5g ²G₇/₂	7f ²P₀/₂	1.13×10⁻³	2907.382				
C iv	5g ²G₇/₂	7f ²P₀/₂	4.24×10⁻⁵	2907.402				
C iv	5f ²P₀/₂	7d ²D₅/₂	3.01×10⁻⁴	2907.589				
C iv	5f ²P₀/₂	7d ²D₅/₂	4.21×10⁻⁴	2907.589				
C iv	5f ²P₀/₂	7d ²D₅/₂	4.52×10⁻³	2907.617				
O iii	3p ¹P₁	3d ¹D₀	4.20×10⁻¹	2960.559	60.1	2958.83	unid.	
C iii	3d ¹D₂	3s ¹P₁	6.72×10⁻²	2982.986			2983.23	24.5

Table A.4. Like Table A.1 for the optical observations.

Ion	Levels	f	W₄/ mÅ	Wavelength/ Å	v₄rad/ km/s	Comment
O iv	3s ²P₁/₂	3p ²P₀/₂	2.84×10⁻¹	3348.055		newly identified
O iv	3s ²P₁/₂	3p ²D₃/₂	2.55×10⁻¹	3349.110		newly identified
O iv	3s ⁴P₁/₂	3p ⁴D₃/₂	1.83×10⁻¹	3381.212		newly identified
O iv	3s ⁴P₁/₂	3p ⁴D₅/₂	1.45×10⁻¹	3381.304		newly identified
O iv	3s ⁴P₁/₂	3p ⁴D₀/₂	2.32×10⁻¹	3385.518		newly identified
O iv	3s ⁴P₁/₂	3p ⁴D₁/₂	1.45×10⁻¹	3390.191		newly identified
O iv	3s ⁴P₁/₂	3p ⁴D₁/₂	9.29×10⁻²	3396.803		newly identified
S iv	4s ¹S	4p ¹P₀	6.37×10⁻¹	3397.334		blend with O iv, newly identified
O iv	3p ²P₁/₂	3d ²D₃/₂	2.95×10⁻¹	3403.545		newly identified
Table A.4. Continued.

Ion	Levels	f	$W_A / \text{mÅ}$	Wavelength / Å	$v_{rad} / \text{km/s}$	Comment		
O $^{\text{iv}}$ 3s $^3\text{P}_0/2$	3p $^3\text{D}_{5/2}$	5.22 × 10$^{-2}$	3409.698	3411.688 3412.02	29.2	newly identified		
O $^{\text{iv}}$ 3p $^3\text{P}_0/2$	3d $^3\text{D}_{5/2}$	2.65 × 10$^{-1}$	49.1	newly identified				
O $^{\text{iv}}$ 3p $^3\text{P}_0/2$	3d $^3\text{D}_{3/2}$	2.95 × 10$^{-2}$	3413.633	newly identified				
C $^{\text{iii}}$ 4p $^3\text{P}_0$	5d $^3\text{D}_{1}$	3.17 × 10$^{-1}$	3608.778	newly identified				
C $^{\text{iii}}$ 4p $^3\text{P}_1$	5d $^3\text{D}_{2}$	2.38 × 10$^{-1}$	3609.051	newly identified				
C $^{\text{iii}}$ 4p $^3\text{P}_1$	5d $^3\text{D}_{1}$	7.96 × 10$^{-2}$	3609.071	newly identified				
C $^{\text{iii}}$ 4p $^3\text{P}_1$	5d $^3\text{D}_{3}$	2.67 × 10$^{-1}$	3609.620	newly identified				
C $^{\text{iii}}$ 4p $^3\text{P}_1$	5d $^3\text{D}_{2}$	4.78 × 10$^{-2}$	3609.676	newly identified				
C $^{\text{iii}}$ 4p $^3\text{P}_1$	5d $^3\text{D}_{1}$	3.20 × 10$^{-3}$	3609.695	newly identified				
C $^{\text{iv}}$ 6f $^3\text{F}_3/2$	9g $^3\text{G}_{7/2}$	9.78 × 10$^{-2}$	3689.263	newly identified				
C $^{\text{iv}}$ 6f $^3\text{F}_5/2$	9g $^3\text{G}_{7/2}$	2.76 × 10$^{-3}$	3689.263	newly identified				
C $^{\text{iv}}$ 6f $^3\text{F}_7/2$	9g $^3\text{G}_{9/2}$	9.51 × 10$^{-2}$	3689.263	newly identified				
C $^{\text{iv}}$ 6g $^3\text{G}_9/2$	9h $^1\text{H}_{11/2}$	9.15 × 10$^{-2}$	3689.635	newly identified				
C $^{\text{iv}}$ 6g $^3\text{G}_9/2$	9h $^1\text{H}_{9/2}$	1.74 × 10$^{-3}$	3689.636	newly identified				
C $^{\text{iv}}$ 6g $^3\text{G}_9/2$	9h $^1\text{H}_{9/2}$	9.32 × 10$^{-2}$	3689.636	newly identified				
C $^{\text{iv}}$ 6h $^2\text{H}_9/2$	9i $^1\text{I}_{11/2}$	5.77 × 10$^{-2}$	3689.717	newly identified				
C $^{\text{iv}}$ 6h $^2\text{H}_9/2$	9i $^1\text{I}_{9/2}$	8.54 × 10$^{-4}$	3689.717	newly identified				
C $^{\text{iv}}$ 6h $^2\text{H}_9/2$	9i $^1\text{I}_{13/2}$	5.69 × 10$^{-2}$	3689.717	newly identified				
C $^{\text{iv}}$ 6h $^2\text{H}_9/2$	9g $^3\text{G}_{7/2}$	2.73 × 10$^{-4}$	3689.753	newly identified				
C $^{\text{iv}}$ 6h $^2\text{H}_9/2$	9g $^3\text{G}_{9/2}$	6.36 × 10$^{-6}$	3689.753	newly identified				
C $^{\text{iv}}$ 6h $^2\text{H}_9/2$	9g $^3\text{G}_{9/2}$	2.79 × 10$^{-4}$	3689.753	newly identified				
C $^{\text{iv}}$ 6g $^3\text{G}_9/2$	9f $^3\text{F}_5/2$	1.15 × 10$^{-3}$	3689.785	newly identified				
C $^{\text{iv}}$ 6g $^3\text{G}_9/2$	9f $^3\text{F}_7/2$	4.34 × 10$^{-5}$	3689.785	newly identified				
O $^{\text{iv}}$ 3p $^3\text{D}_{1/2}$	3d $^3\text{F}_3/2$	2.31 × 10$^{-1}$	3725.889	newly identified				
O $^{\text{iv}}$ 3p $^3\text{D}_{1/2}$	3d $^3\text{F}_5/2$	1.85 × 10$^{-1}$	3725.945	newly identified				
O $^{\text{iv}}$ 3p $^3\text{D}_{3/2}$	3d $^3\text{F}_7/2$	1.89 × 10$^{-1}$	3729.030	newly identified				
O $^{\text{iv}}$ 3p $^3\text{D}_{3/2}$	3d $^3\text{F}_3/2$	4.62 × 10$^{-2}$	3736.682	newly identified				
O $^{\text{iv}}$ 3p $^3\text{D}_{3/2}$	3d $^3\text{F}_7/2$	2.06 × 10$^{-1}$	3736.850	newly identified				
He $^{\text{i}}$ 2s ^3S	3p $^3\text{P}_0$	6.45 × 10$^{-2}$	3888.643	newly identified				
H $^{\text{i}}$ 2s	8	8.04 × 10$^{-3}$	3889.049	newly identified				
C $^{\text{iii}}$ 4d $^3\text{D}_{3}$	5f $^3\text{F}_4$	3.28 × 10$^{-1}$	3889.137	blend with H $^{\text{i}}$, newly identified				
C $^{\text{iii}}$ 4d $^3\text{D}_{3}$	5f $^3\text{F}_3$	2.89 × 10$^{-2}$	3889.462	blend with H $^{\text{i}}$, newly identified				
C $^{\text{iii}}$ 4d $^3\text{D}_{3}$	5f $^3\text{F}_2$	6.57 × 10$^{-4}$	3889.670	blend with H $^{\text{i}}$, newly identified				
C $^{\text{iv}}$ 5s $^2\text{S}_{1/2}$	6p $^2\text{P}_0$	1.52 × 10$^{-1}$	3934.283	newly identified				
C $^{\text{iv}}$ 5s $^2\text{S}_{1/2}$	6p $^2\text{P}_1$	7.62 × 10$^{-2}$	3934.887	newly identified				
C $^{\text{iii}}$ 4d $^3\text{D}_{3}$	5f $^1\text{F}_3$	3.70 × 10$^{-1}$	4056.061 4056.33	19.9	uncertain, newly identified			
Ion	Levels	Lower	Upper	\(f\)	\(W_\lambda\) / mÅ	\(\lambda\) / Å	\(v_{rad}\) / km/s	Comment
------	----------------------	-------	-------	---------------	---------------------	-----------------	-------------------	-----------------------
N iv	3p \(3P_1^0\)	3d \(1D_2\)	3.74×10^{-1}	4057.757	newly identified			
C iii	4f \(3F_2\)	5g \(3G_1\)	1.02	4067.939	recently identified			
C iii	4f \(3F_2\)	5g \(3G_3\)	6.50×10^{-2}	4068.916	recently identified			
C iii	4f \(3F_2\)	5g \(3G_3\)	9.78×10^{-1}	4068.916	recently identified			
C iii	4f \(3F_2\)	5g \(3G_4\)	9.92×10^{-1}	4070.260	recently identified			
C iii	4f \(3F_2\)	5g \(3G_4\)	9.92×10^{-4}	4070.306	recently identified			
C iii	4f \(3F_2\)	5g \(3G_4\)	5.06×10^{-2}	4070.306	recently identified			
C iii	4p \(3P_1^0\)	5d \(1D_2\)	3.40×10^{-1}	4121.845	newly identified			
C iii	3\(p^0\) 3\(D_2\)	5f \(3P_1^0\)	2.23×10^{-1}	4156.504	newly identified			
C iii	3\(p^0\) 3\(D_2\)	5f \(3P_1^0\)	2.84×10^{-2}	4167.741	newly identified			
C iii	3\(p^0\) 3\(D_2\)	5f \(3P_1^0\)	2.31×10^{-1}	4162.877	newly identified			
C iii	4f \(3P_1^0\)	5g \(3G_1\)	1.18	4186.900	newly identified			
C iii	3\(s^0\) 3\(P_1^0\)	3\(p^0\) 3\(D_2\)	5.03×10^{-1}	4325.561	newly identified			
He ii	4 10	1.20×10^{-2}	4338.659	Barstow et al. (2000)				
C iv	5p \(3P_{3/2}^0\)	6d \(2D_{3/2}\)	4.14×10^{-1}	4440.335	newly identified			
C iv	5p \(3P_{3/2}^0\)	6d \(2D_{3/2}\)	4.62×10^{-1}	4441.499	newly identified			
C iv	5p \(3P_{3/2}^0\)	6d \(2D_{3/2}\)	5.12×10^{-2}	4441.736	newly identified			
C iii	4p \(3P_0^0\)	5s \(3P_1^0\)	1.74×10^{-1}	4515.352	newly identified			
C iii	4p \(3P_0^0\)	5s \(3P_1^0\)	1.74×10^{-1}	4515.811	newly identified			
C iii	4p \(3P_0^0\)	5s \(3P_1^0\)	1.74×10^{-1}	4516.788	newly identified			
C iv	5f \(3P_{3/2}^0\)	6g \(2D_{7/2}\)	1.18	4675.474	Barstow et al. (2000)			
C iv	5f \(3P_{3/2}^0\)	6g \(2D_{7/2}\)	1.15	4657.606	Barstow et al. (2000)			
C iv	5f \(3P_{3/2}^0\)	6g \(2D_{7/2}\)	3.32×10^{-2}	4657.690	Barstow et al. (2000)			
C iv	5g \(2G_{7/2}^0\)	6h \(2H_{9/2}^0\)	1.66	4658.147	Barstow et al. (2000)			
C iv	5g \(2G_{9/2}^0\)	6h \(2H_{9/2}^0\)	1.63	4658.228	Barstow et al. (2000)			
C iv	5g \(2G_{9/2}^0\)	6h \(2H_{9/2}^0\)	3.10×10^{-2}	4658.278	Barstow et al. (2000)			
C iii	3\(s^0\) 3\(P_1^0\)	3\(p^0\) 3\(P_2^0\)	7.53×10^{-2}	4659.058	newly identified			
C iii	3\(s^0\) 3\(P_2^0\)	3\(p^0\) 3\(P_2^0\)	2.26×10^{-1}	4665.860	newly identified			
He ii	3 4	8.43×10^{-1}	4686.059	Barstow et al. (2000)				
He ii	4 8	3.23×10^{-2}	4859.299	Barstow et al. (2000)				
He ii	4 7	6.55×10^{-2}	5411.492	Barstow et al. (2000)				
C iii	3\(p^0\) 3\(P_1^0\)	3\(d^0\) 3\(D_2\)	3.47×10^{-1}	5695.916	newly identified			
C iv	3\(s^0\) 3\(P_2^0\)	3\(p^0\) 3\(P_2^0\)	3.19×10^{-1}	5801.313	Barstow et al. (2000)			
C iv	3\(s^0\) 3\(P_2^0\)	3\(p^0\) 3\(P_2^0\)	1.59×10^{-1}	5811.970	Barstow et al. (2000)			
N iv	3\(p^0\) 3\(P_2^0\)	3\(d^0\) 3\(P_2^0\)	1.12×10^{-2}	5812.308	blend with C iv, newly identified			
He i	2p \(3P_0^0\) 3d \(3D\)	6.11×10^{-1}	5875.661	Barstow et al. (2000)				
He ii	4 6	1.79×10^{-1}	6560.049	Barstow et al. (2000)				
Table A.5. Like Table A.1 for the SofI observations.

Ion	Levels	f	W_4 (mÅ)	Wavelength/Å	v_{rad} (km/s)	Comment
He ii	4	5	1.04	10234.99		
He ii	5	7	2.07×10^{-1}	11626.406		
Appendix B: Observed spectra of RE 0503–289 compared with our best model

In the following figures, we show the comparison of our synthetic spectra with the FUSE (Fig B.1), HST/STIS (Fig B.2), and optical (Fig B.3) observations. A visualization via TVIS is available at http://astro.uni-tuebingen.de/~TVIS/objects/RE0503-289.
Fig. B.1. FUSE observation (gray) compared with the best model (red). Stellar lines are identified at top. "unid." denotes unidentified lines.
Fig. B.1 continued.
Fig. B.1. Figure B.1 continued.
Figure B.1 continued.

3.88 x 10^{12} \times f_i / \text{erg cm}^2 s^{-1} \text{ Å}^{-1}

Fig. B.1.
Fig. B.2. HST/STIS observation (gray) compared with the best model (red). Stellar lines are identified at top. "unid." denotes unidentified lines.
Fig. B.2. Figure B.2 continued.
Fig. B.2. Figure B.2 continued.

1.58 \times 10^{12} \times f_\lambda / \text{erg cm}^2 \text{s}^{-1} \text{Å}^{-1}
Figure B.2 continued.
Figure B.2 continued.
Fig. B.2. Figure B.2 continued.
Fig. B.2.

Figure B.2 continued.
Fig. B.2. Figure B.2 continued.
Figure B.2 continued.
Fig. B.2. Figure B.2 continued.
Fig. B.3. Optical (SPY) observation (gray) compared with the best model (red). Stellar lines are identified at top. “unid.” denotes unidentified lines.
Figure B.3 continued.

Relative flux vs. wavelength.

Symbols:
- C III
- He I
- H I
- C IV
Fig. B.3. Figure B.3 continued.
Figure B.3 continued.
Fig. B.3. Figure B.3 continued.
Fig. B.3. Figure B.3 continued.

Relative flux vs. wavelength (λ) for different elemental effects in a spectroscopic analysis.
Appendix C: WWW interfaces of TEUV, TGRED, and TVIS
Fig. C.1. TEUV WWW interface. Not shown on astro-ph, please visit the WWW page.

Fig. C.2. TGRED WWW interface. Not shown on astro-ph, please visit the WWW page.

Fig. C.3. TVIS WWW interface. Not shown on astro-ph, please visit the WWW page.