Observation of the $\eta_c(2S)$ in exclusive $B \to KK_SK^-\pi^+$ decays

S.-K. Choi7, S. L. Olsen8, K. Abe9, K. Abe30, R. Abe30, T. Abe44, I. Adachi9, Byoung Sup Ahn16, H. Aihara45, M. Akatsu23, Y. Asano50, T. Aso49, V. Aulchenko2, T. Aushev13, A. M. Bakich40, Y. Ban34, E. Banas28, A. Bay19, P. K. Behera51, A. Bondar2, A. Bozok28, M. Bracko21,14, J. Brodzicka28, T. E. Browder8, B. C. K. Casey8, P. Chang27, Y. Chao27, B. G. Cheon39, R. Chistov13, Y. Choi39, M. Danilov13, L. Y. Dong11, A. Drutskoy13, S. Eidelman2, V. Eiges13, Y. Enari23, F. Fang8, H. Fujii9, C. Fukumaga47, N. Gabyshev9, T. Gershon9, A. Gordon22, R. Guo25, F. Handa44, T. Hara32, Y. Harada30, H. Hayashii24, M. Hazumi9, E. M. Heenan22, I. Higuchi44, T. Higuchi45, T. Hojo32, T. Hokune23, Y. Hoshi43, S. R. Hou27, W.-S. Hou27, H.-C. Huang27, T. Igaki23, Y. Igarashi9, T. Iijima23, K. Inami23, A. Ishikawa9, M. Iwasaki9, Y. Iwasaki9, J. Kaneko46, J. H. Kang54, J. S. Kang16, P. Kapusta28, N. Katayama9, H. Kawai13, Y. Kawakami23, N. Kawamura1, T. Kawasaki30, H. Kichimi9, D. W. Kim39, Heejong Kim54, H. J. Kim54, H. O. Kim39, Hyunwoo Kim16, T. H. Kim54, K. Kinoshita5, P. Krizan20,14, P. Krokovny2, R. Kulasiri1, S. Kumar33, A. Kuzmin2, Y.-J. Kwon54, J. S. Lange6,36, G. Leder12, S. H. Lee38, J. Li37, D. Liventsev13, R.-S. Lu27, J. MacNaughton12, G. Majumder41, F. Mandl12, S. Matsumoto4, T. Matsumoto47, H. Miyake32, H. Miyata30, G. R. Moloney22, T. Mori4, T. Nagamine44, Y. Nagasaka10, E. Nakano31, M. Nakao9, J. W. Nam39, Z. Natkaniec28, K. Nechi43, S. Nishida17, O. Nitoh48, T. Nozaki9, S. Ogawa42, F. Ohno46, T. Ohshima23, T. Okabe23, S. Okuno15, W. Ostrowicz28, H. Ozaki9, P. Pakhlov13, H. Palka28, C. W. Park16, H. Park18, L. S. Peak40, J.-P. Perroud19, M. Peters8, L. E. Piilonen32, F. J. Ronga19, N. Root2, M. Rozanska28, K. Rybicki28, H. Sagawa9, S. Saitoh9, Y. Sakai9, M. Satapathy51, A. Satpathy9,5, O. Schneider19, S. Schrenk5, S. Semenov13, K. Senyo23, M. E. Sevior22, H. Shibuya42, B. Shwartz2, V. Sidorov2, J. B. Singh33, S. Stanič50,*, M. Starič14, A. Sugiyama23, A. Sugiyama23, K. Sumisawa9, T. Sumiyoshi47, S. Suzuki53, S. Y. Suzuki9, T. Takahashi31, F. Takasaki9, K. Tamai9, N. Tanura30, J. Tanaka45, M. Tanaka9, G. N. Taylor22, Y. Teramoto31, S. Tokuda23, T. Tomura45, S. N. Tovey22, T. Tsukamoto9, T. Uehara9, K. Ueno27, S. Uno9, Y. Ushiroda9, S. E. Vahsen45, G. Varner8, K. E. Varvell40, C. C. Wang27, C. H. Wang26, J. G. Wang52, M.-Z. Wang27, Y. Watanabe46, E. Won16, B. D. Yabsley52, Y. Yamada9, A. Yamaguchi14, Y. Yamashita23, M. Yamauchi9, H. Yanai30, J. Yashima9, M. Yokoyama45, Y. Yuan11, Y. Yusa44, Z. P. Zhang37, V. Zhilich2, and D. Žontar50

(The Belle Collaboration)

1 Aomori University, Aomori
2 Budker Institute of Nuclear Physics, Novosibirsk
3 Chiba University, Chiba
4 Chuo University, Tokyo
5 University of Cincinnati, Cincinnati OH
6 University of Frankfurt, Frankfurt
7 Gyeongsang National University, Chinju
8 University of Hawaii, Honolulu HI
9 High Energy Accelerator Research Organization (KEK), Tsukuba
10 Hiroshima Institute of Technology, Hiroshima
11 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12 Institute of High Energy Physics, Vienna
13 Institute for Theoretical and Experimental Physics, Moscow
14 J. Stefan Institute, Ljubljana
15 Kanagawa University, Yokohama
16 Korea University, Seoul
17 Kyoto University, Kyoto
18 Kyungpook National University, Taegu
19 Institut de Physique des Hautes Énergies, Université de Lausanne, Lausanne
20 University of Ljubljana, Ljubljana
21 University of Maribor, Maribor
22 University of Melbourne, Victoria
23 Nagoya University, Nagoya
24 Nara Women’s University, Nara
25 National Kaohsiung Normal University, Kaohsiung
26 National Lien-Ho Institute of Technology, Miao Li
27 National Taiwan University, Taipei
28 H. Niewodniczanski Institute of Nuclear Physics, Krakow
29 Nihon Dental College, Niigata
30 Niigata University, Niigata
31 Osaka City University, Osaka
32 Osaka University, Osaka
33 Panjab University, Chandigarh
34 Peking University, Beijing
35 Princeton University, Princeton NJ
36 RIKEN BNL Research Center, Brookhaven NY
37 University of Science and Technology of China, Hefei
38 Seoul National University, Seoul
39 Sungkyunkwan University, Suwon
40 University of Sydney, Sydney NSW
41 Tata Institute of Fundamental Research, Bombay
42 Toho University, Funabashi
43 Tohoku Gakuin University, Tagajo
44 Tohoku University, Sendai
45 University of Tokyo, Tokyo
46 Tokyo Institute of Technology, Tokyo
47 Tokyo Metropolitan University, Tokyo
48 Tokyo University of Agriculture and Technology, Tokyo
49 Toyama National College of Maritime Technology, Toyama
Abstract

We report the observation of a narrow peak in the $K_S K^- \pi^+$ invariant mass distribution in a sample of exclusive $B \to KK_S K^- \pi^+$ decays collected with the Belle detector at the KEKB asymmetric e^+e^- collider. The measured mass of the peak is $M = 3654 \pm 6\text{(stat)} \pm 8\text{(syst)}$ MeV$/c^2$ and we place a 90% confidence level upper limit on the width of $\Gamma < 55$ MeV$/c^2$. The properties agree with heavy-quark potential model expectations for the $\eta_c(2S)$ meson, the $n = 2$ singlet S charmonium state.
Major experimental issues for the charmed-quark anticharmed-quark \((c\bar{c})\) charmonium particle system are the two \(c\bar{c}\) states that are expected to be below open charm threshold but are still not well established: the radially excited \(n = 2\) singlet \(S\) state, the \(\eta_c(2S)\) meson, and the \(n = 1\) singlet \(P\) state, the \(h_c(1P)\). The observation of these states and the determination of their masses would complete the below-threshold charmonium particle spectrum and provide useful information about the spin-spin part of the charmonium potential \([1]\).

\(B\) meson decays provide an excellent opportunity for searching for the \(\eta_c(2S)\) and clarifying its properties. They are a copious \(\eta_c(1S)\) source: the decays \(B \to K\eta_c(1S)\) have been observed by CLEO \([2]\), BaBar \([3]\), and Belle \([4]\) with relatively large branching fractions: \(\mathcal{B}(B \to K\eta_c(1S)) \simeq \mathcal{B}(B \to KJ/\psi) \simeq 1 \times 10^{-3}\). (In the following, we use \(\eta_c\) to denote the \(\eta_c(1S)\).) Moreover, in the case of the triplet charmonium \(S\) states, \(B\) meson decays to the radially excited \(\psi(2S)\) are nearly as common as those to the \(n = 1\) \(J/\psi\) radial ground state: \(\mathcal{B}(B^+ \to K^+\psi(2S))/\mathcal{B}(B^+ \to K^+J/\psi) \sim 0.6\) \([4]\). Thus, it is reasonable to expect the decays \(B \to K\eta_c(2S)\) to occur at a rate comparable to that for \(B \to K\eta_c\). Unlike the \(J/\psi\) and \(\psi(2S)\), where hadronic decays proceed via highly suppressed three-gluon intermediate states, the \(\eta_c\) and \(\eta_c(2S)\) decay via less-suppressed two-gluon processes. As a result, intercharmonium transitions are not very important and the hadronic decay branching fractions for the two states are expected to be similar \([4]\). Thus, any final state that shows a strong \(B \to K\eta_c\) signal is a promising channel for an \(\eta_c(2S)\) search.

A simple application of heavy-quark potential models \([4]\) predicts a \(\psi(2S)-\eta_c(2S)\) mass splitting that is smaller than that for the ground-state \(J/\psi-\eta_c\) splitting because of the smaller value of the wave function at zero \(c\bar{c}\) separations and the running of the QCD coupling strength \(\alpha_s(M^2)\). These models predict an \(\eta_c(2S)\) mass in the range \(3625 < M_{\eta_c(2S)} < 3645\) MeV/c\(^2\). Similar factors result in the expectation that the \(\eta_c(2S)\) total width is somewhat smaller than that of the \(\eta_c\).

The Crystal Ball group \([8]\) reported an excess of \(E_\gamma \simeq 91\) MeV gamma rays from inclusive \(\psi(2S) \to \gamma X\) decays, and interpreted this as possible evidence for the \(\eta_c(2S)\) with mass \(3594 \pm 5\) MeV/c\(^2\). This result implies a \(\psi(2S)-\eta_c(2S)\) mass splitting that is considerably larger than heavy-quark model expectations. The result has not been confirmed by other experiments \([4]\).

In this letter we report a search for the \(\eta_c(2S)\) produced via the processes \(B^+ \to K^+\eta_c(2S)\) and \(B^0 \to K_S\eta_c(2S)\), where \(\eta_c(2S) \to K_SK^-\pi^+\) \([1]\). We concentrate on this final state because it is a strong decay channel for the \(\eta_c\) \((B \simeq 1.8\%)\), has low combinatorial backgrounds, and, since the final state contains all charged particles, is reconstructed with good resolution. Moreover, the process \(\psi(2S) \to K_SK^-\pi^+\) is strongly suppressed, and the background in this channel from \(B \to K\psi(2S)\) decays is expected to be less than 0.1 events.

The search uses a 41.8 fb\(^{-1}\) data sample collected with the Belle detector \([1]\) at the KEKB \(e^+e^-\) collider \([12]\) operating at the \(\Upsilon(4S)\) resonance \((\sqrt{s} = 10.58\) GeV\). The data sample contains 44.8 million \(B\bar{B}\) meson pairs.

The Belle detector is a large-solid-angle magnetic spectrometer that consists of a three-layer silicon vertex detector, a 50-layer central drift chamber (CDC), an array of aerogel threshold Čerenkov counters (ACC), a barrel-like arrangement of time-of-flight scintillation counters (TOF), and an electromagnetic calorimeter comprised of CsI(Tl) crystals located...
inside a superconducting solenoid coil that provides a 1.5 T magnetic field. An iron flux-
return located outside of the coil is instrumented to detect K_L mesons and to identify muons.
The detector is described in detail elsewhere [11].

We select events with $K^+K_S^0K^{±\pi^±}$ or $K^0\bar{K}S\pi^±\pi^±$ combinations.
Here the charged
kaon (pion) tracks are required to originate from within $\delta r < 0.3$ cm and $|\delta z| < 2.2$ cm
of the run-by-run determined interaction point (IP) in the transverse ($r\phi$) and beamline (z)
directions, respectively. In addition, they must be positively identified as kaons (pions) by
the combined information from the ACC, TOF and CDC dE/dx measurement. Candidate
$K_S^0 \rightarrow \pi^+\pi^-$ decays correspond to pairs of oppositely charged tracks with invariant mass
within 12 MeV/c^2 (3σ) of M_{K^0} that originate from a common vertex that is displaced
by more than 0.3 cm from the IP. The direction of the K_S^0 momentum vector is required to be
within 0.2 rad of the direction between the IP and the position of the displaced vertex.

Candidate B mesons are reconstructed using the energy difference $\Delta E \equiv E_{\text{cm}}^B - E_{\text{beam}}^B$
and the beam-energy constrained mass $M_{bc} \equiv \sqrt{(E_{\text{cm}}^B)^2 - (p_B^B)^2}$, where E_{beam}^B is
the center of mass (cms) beam energy, and E_{cm}^B and p_B^B are the cms energy and momentum of
the B candidate. The signal region is defined as $5.271 < M_{bc} < 5.287$ GeV/c^2 and $|\Delta E| <
0.040$ GeV, which correspond to $±3\sigma$ from the central values for both quantities.

In order to suppress background from the $e^+e^- \rightarrow q\bar{q}$ continuum ($q = u, \ d, \ s \ & \ c$),
we form a likelihood ratio from two variables. One is a Fisher discriminant determined
from five modified Fox-Wolfram moments [13], the cosine of the angle formed by the thrust
axis of the candidate $B \rightarrow KK_S\pi^±$ tracks and that of the remaining tracks in the
event, and the sum of the absolute values of transverse momenta of particles relative to the
B candidate’s thrust axis with angle larger than 60° normalized by the sum of the total
momenta. The coefficients of the Fisher discriminant are chosen to optimize the separation
between signal and continuum Monte Carlo (MC) events [14]. The other is the cosine of the
angle between the B candidate flight direction and the beam axis in the $\Upsilon(4S)$ rest
frame ($\cos \theta_B$). Normalized probability density functions (pdfs) formed from the Fisher
discriminants and the $\cos \theta_B$ distribution are multiplied to form likelihood functions for
the signal (L_{sig}) and continuum (L_{cont}) processes. We select events with a likelihood ratio
$LR \equiv L_{\text{sig}}/(L_{\text{sig}}+L_{\text{cont}}) > 0.6$, which was determined by optimizing $S/\sqrt{S+\bar{B}}$ (S and B are
signal and background, respectively) for Monte Carlo simulations of the process $B \rightarrow K\eta_c$,
where $\eta_c \rightarrow K_SK^-\pi^+$.

We reduce potential backgrounds from $B \rightarrow D(D_s)X$ decays by rejecting D and D_s
mesons with the requirements $|M_{K_S^0}-M_D| > 10$ MeV/c^2 and $|M_{K_S^0K^±}-M_{Ds}| > 10$ MeV/c^2.
The decay $\eta_c(nS) \rightarrow K^*(890)K$ is suppressed by an angular momentum barrier; in order to
reduce backgrounds from other B meson decay modes with minimal loss in signal, we reject
events with a K^* candidate with the requirement $|M_{K_S^0}-M_{K^*}| > 50$ MeV/c^2.

Figure [14] shows the M_{bc} projections of events in the $|\Delta E| \leq 0.040$ GeV signal region for
twenty five $M_{K_S^0K^±}$ mass bins, each 40 MeV/c^2-wide and with central values ranging from
2840 through 3800 MeV/c^2. The mass bins of Figs. [14](d) and (e) straddle M_{η_c} and clear
peaks corresponding to $B \rightarrow K\eta_c, \eta_c \rightarrow K_SK^-\pi^+$ decays are apparent. Figures [14](u) and
(v), which cover a region near the expected mass of the $\eta_c(2S)$, also show distinct B meson
signals.
FIG. 1. The M_{bc} projections for 40 MeV/c2 bins of $M_{K_S K\pi}$, with central values ranging from 2840 (a) to 3800 MeV/c2 (y). Only events with $|\Delta E| < 40$ MeV are included; the charged and neutral B decay modes are combined.

We perform simultaneous fits to each of the M_{bc} distributions of Fig. 1 and the corresponding ΔE distributions for events in the M_{bc} signal region (not shown). The fits use Gaussian functions with MC-determined widths to represent the signals; the areas of the M_{bc} and ΔE signal functions are constrained to be equal. The M_{bc} background is modeled by a smooth function that behaves like phase-space near the kinematic end point [15]; for the ΔE background, we use a second-order polynomial. As an example, the results of the fit to the M_{bc} and ΔE distributions of the $M_{K_S K\pi} = 3640$ MeV/c2 bin are shown in Figs. 2(a) and (b), respectively.
The signal yields extracted from the simultaneous fits to the different $K_SK^-\pi^+$ mass bins are plotted vs. $M_{K_SK\pi}$ in Fig. 2 where, in addition to a prominent η_c peak and a hint of a J/ψ, a clear peak at higher mass is evident. We identify this as a candidate for the $\eta_c(2S)$. Between the peaks is a non-zero, non-resonant contribution. The curve in Fig. 2 is the result of a fit with simple Breit-Wigner functions that represent the η_c and candidate $\eta_c(2S)$, a Gaussian function with mass and width fixed at the J/ψ values, and a second-order polynomial to represent the non-resonant contribution. These functions are convolved with a Gaussian resolution function with a MC-determined width of $\sigma = 15\text{ MeV}/c^2$.

The fit values for the event yields, masses and total widths of the η_c and the $\eta_c(2S)$ candidate state are listed with their statistical errors in Table I. The fit value for the η_c mass is in good agreement with the world-average value of $M_{\eta_c} = 2979.8 \pm 1.8\text{ MeV}/c^2$ [5]; the value for the η_c width is consistent, within its rather large errors, both with the existing world average of $\Gamma_{\eta_c}^{\text{tot}} = 13.2^{+3.8}_{-3.2}\text{ MeV}/c^2$ [5] and the recent CLEO result of $26\pm6\text{ MeV}/c^2$ [10].

The sum of the observed events in the three mass bins in the signal region (i.e., centered around $M(K_SK\pi) = 3640\text{ MeV}/c^2$) is 56, while the integral of the second-order polynomial over the same interval gives a non-resonant expectation of 21 ± 2 events. The probability for this to fluctuate up to 56 events is $\sim 10^{-8}$, which corresponds to a signal significance of more than 6σ.

The fitted mass of the candidate $\eta_c(2S)$ is substantially above the Crystal Ball mass

FIG. 2. The (a) M_{bc} and (b) ΔE projections for the $M_{K_SK\pi} = 3640\text{ MeV}/c^2$ mass bin. The curves are the results of the simultaneous fit described in the text.

FIG. 3. The distribution of signal events from the simultaneous fits to M_{bc} and ΔE for each $K_SK\pi$ mass bin. The curve is the result of the fit described in the text.
value and consistent, within errors, with the upper end of potential model expectations. The systematic error on the mass is evaluated by redoing the analysis using different likelihood ratio selection requirements, 50 MeV/c^2-wide bins, bins with central values shifted by half a bin-width, and with different values of the experimental resolution. The maximum change in the fitted mass value is 8 MeV/c^2, which is taken as the systematic error. The limited statistics and the resolution precludes a precise measurement of the width. However, we can establish a 90% confidence level upper limit of \(\Gamma < 55 \text{ MeV}/c^2 \).

Monte Carlo simulations indicate that the acceptance is very nearly constant for the \(K_S K^- \pi^+ \) mass region covered by this measurement \[17\]. Thus, the ratio of product branching fractions for the \(\eta_c \) and \(\eta_c(2S) \) is just the ratio of event yields:

\[
\frac{B(B \rightarrow K\eta_c(2S))B(\eta_c(2S) \rightarrow K_S K^- \pi^+)}{B(B \rightarrow K\eta_c)B(\eta_c \rightarrow K_S K^- \pi^+)} = 0.38 \pm 0.12 \pm 0.05 ,
\]

where the first error is statistical and the second systematic. The systematic error is determined from changes in the ratio observed for different binning, values of resolution, and functions used to model the non-resonant contribution.

In summary, we observe a peak in the \(K_S K^- \pi^+ \) mass from exclusive \(B^+ \rightarrow K^+ K_S K^- \pi^+ \) and \(B^0 \rightarrow K_S K_S K^- \pi^+ \) decays with mass and width values

\[
M = 3654 \pm 6 \pm 8 \text{ MeV}/c^2 \\
\Gamma < 55 \text{ MeV}/c^2 ;
\]

these are consistent with expectations for the \(B \rightarrow K\eta_c(2S) \), where \(\eta_c(2S) \rightarrow K_S K^- \pi^+ \). In addition, the product branching fraction is comparable in magnitude to that for the \(\eta_c \), also in agreement with expectations for the \(\eta_c(2S) \). The observed properties of this system lead us to conclude that we have observed the \(\eta_c(2S) \).

We wish to thank the KEKB accelerator group for the excellent operation of the KEKB accelerator. We acknowledge support from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and the Japan Society for the Promotion of Science; the Australian Research Council and the Australian Department of Industry, Science and Resources; the National Science Foundation of China under contract No. 10175071; the Department of Science and Technology of India; the BK21 program of the Ministry of Education of Korea and the CHEP SRC program of the Korea Science and Engineering Foundation; the Polish State Committee for Scientific Research under contract No. 2P03B 17017; the Ministry of Science and Technology of the Russian Federation; the Ministry of Education, Science and Sport of the Republic of Slovenia; the National Science Council and the Ministry of Education of Taiwan; and the U.S. Department of Energy.
TABLE I. Results of the fit to the data points in Fig. 3. Only statistical errors are listed.

Peak	Events	Mass (MeV/c^2)	Γ^{tot} (MeV/c^2)
η_c	104 ± 14	2979 ± 2	11 ± 11
$\eta_c(2S)$	39 ± 11	3654 ± 6	15^{+24}_{-15}
REFERENCES

[1] For a recent review of this subject see J.L. Rosner, Comments on Nucl. & Part. Phys. 21, 369 (1999).
[2] K.W. Edwards et al. (CLEO Collab.), Phys. Rev. Lett. 86, 30 (2001).
[3] B. Aubert et al. (BaBar Collab.), contribution to the XXXVIIth Rencontres de Moriond on QCD and Hadronic Interactions, Les Arcs, Savoie, France (March, 2002), hep-ex/0203040.
[4] F. Fang (Belle Collab.), talk at the Conference on Flavor Physics and CP Violation, May 18, 2002, Philadelphia, PA (unpublished).
[5] D.E. Groom et al. (Particle Data Group), Eur. Phys. J. C15, 1 (2000).
[6] K.T. Chao, Y.F. Gu, and S.F. Tuan, Commun. Theor. Phys. 25, 471 (1996).
[7] The range of mass splittings quoted in the text is based on an application of formulae in W. Buchmüller and S-H.H. Tye, Phys. Rev. D24, 132 (1981). Other authors have have given predictions for the $\eta_c(2S)$ mass; see, for example, G.S. Bali et al., Phys. Rev. D56, 2566 (1997); D. Ebert et al., Phys. Rev. D62, 034014 (2000); E.J. Eichten and C. Quigg, Phys. Rev. D49, 5845 (1994); and T.A. Lahde and D.O. Riska, hep-ph/0112131, submitted to Nucl. Phys. A.
[8] C. Edwards et al. (Crystal Ball Collab.), Phys. Rev. Lett. 48, 70 (1982).
[9] T.A. Armstrong et al. (E760 Collab.), Phys. Rev. D52, 4839 (1995); M. Masuzawa, Ph.D. Thesis, Northwestern Univ. report UMI-94-15774 (1993), unpublished; M. Ambrogiani et al., Phys. Rev. D64, 052003 (2001); P. Abreu et al. (DELPHI), Phys. Lett. B441, 479 (1998); and M.Acciarri et al. (L3), Phys. Lett. B461, 155 (1999).
[10] Throughout this Letter, whenever a mode is quoted the inclusion of the charge conjugate mode is implied.
[11] A. Abashian et al. (Belle Collab.), Nucl. Instr. and Meth. A479, 117 (2002).
[12] E. Kikutani ed., KEK Preprint 2001-157 (2001), to appear Nucl. Instr. and Meth. A.
[13] The Fox-Wolfram moments were introduced in G.C. Fox and S. Wolfram, Phys. Rev. Lett. 41, 1581 (1978). The modified moments used in this analysis are described in K. Abe et al. (Belle Collab.), Phys. Lett. B 511, 151 (2001).
[14] Events are generated with the CLEO group’s QQ program (www.lngs.cornell.edu/public/CLEO/soft/qq); the detector response is simulated using GEANT, R. Brun et al., GEANT 3.21, CERN Report DD/EE/84-1, 1984.
[15] H. Albrecht et al. (ARGUS Collab.), Phys. Lett. B241, 278 (1990).
[16] G. Brandenburg et al. (CLEO Collab.), Phys. Rev. Lett. 85, 3095 (2000).
[17] The acceptance for the $K^+K_SK^+\pi^-$ and $K_SK_SK^+\pi^-$ final states are 14.0% and 12.4%, respectively. (These do not include reductions due to the $K_S \rightarrow \pi^+\pi^-$ decay branching fraction.)