Draft Genome Sequences of Interpatient and Intrapatient Epidemiologically Linked *Neisseria gonorrhoeae* Isolates

Sonja Hirk, a Sarah Lepuschitz, a Adriana Cabal Rosel, a,b Steliana Huhulescu, a Marion Blaschitz, a Anna Stöger, a Silke Stadlbauer, a Petra Hasenberger, a Alexander Indra, a Daniela Schmid, a Werner Ruppitsch, a Franz Allerberger a

a Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, Vienna, Austria
b European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden

ABSTRACT *Neisseria gonorrhoeae* is the causative agent of gonorrhea and was identified by the World Health Organization as an urgent public health threat due to emerging antibiotic resistance. Here, we report 13 draft genome sequences of *N. gonorrhoeae* isolates derived from two epidemiologically linked cases from Austria.

Neisseria gonorrhoeae is the etiological agent of the sexually transmitted disease gonorrhea, and it poses a public health threat due to the emergence of multidrug-resistant strains (1–4). Whole-genome sequencing is considered a powerful strategy to elucidate chains of transmission (5). Here, we announce the draft genome sequences of 13 epidemiologically linked *N. gonorrhoeae* isolates.

Two vaginal swabs, taken from a 3-year-old girl on 10 January 2018, and her rectal swab, gained on 13 January 2018, yielded *N. gonorrhoeae* colonies on Chocolat PolyViteX VCAT3 agar plates (bioMérieux, Marcy-l’Etoile, France). A 46-year-old male household member was sampled on 13 January 2018, and *N. gonorrhoeae* colonies grew from a rectal swab. Eight single colonies from the child and five from the adult were further analyzed.

For each isolate, antimicrobial susceptibility was determined according to the EUCAST recommendations for gonococci (6). All 13 isolates showed resistance to penicillin G (median MIC, 6 μg/ml; range, 1.5 to 32 μg/ml), tetracycline (median MIC, 24 μg/ml; range, 24 to 64 μg/ml), and ciprofloxacin (median MIC, 0.75 μg/ml; range, 0.5 to 1.5 μg/ml), but were susceptible to ceftriaxone, ceftixime, and azithromycin.

Genomic DNA isolation, whole-genome sequencing, assembly, and contig filtering were performed as described previously (7). Paired-end sequencing (2 × 300 bp) generated 348,172 to 847,328 reads, with a mean coverage of 41- to 89-fold. The NCBI Prokaryotic Genome Automatic Annotation Pipeline identified 2,654 to 2,720 genes, 2,604 to 2,664 coding sequences, 273 to 305 pseudogenes, 3 to 6 rRNA genes, and 47 to 51 tRNA genes.

Antimicrobial resistance genes were identified using the Comprehensive Antibiotic Resistance Database (CARD) (8). All 13 isolates had gyrA, *N. meningitidis* PBP2 and rpsJ, and the efflux genes farA, farB, macA, macB, mtrC, mtrD, and mtrR. In addition, blaTEM-1 was detected in three child and three household member isolates. Three isolates from the child and one from the household member carried blaTEM-90. One child isolate had blaTEM-150 and another one carried blaTEM-150 plus the efflux gene patA.

All 13 isolates belonged to multilocus sequence type (MLST) 1588 (ST1588). An ad hoc core genome MLST (cgMLST) scheme comprising 1,524 targets was established using strain MS11 (ATCC BAA-1833) as a reference. Child isolates differed by zero to three alleles and household member isolates by zero to one alleles; the maximum interindividual variability of the isolates was five allelic differences. In the course of comparison with the Austrian Agency for Health and Food Safety (AGES) *N. gonor-
$N. \text{gonorrhoeae}$ whole-genome database (currently covering 452 isolates from the years 2014 to 2018), all but one isolate differed by at least 303 alleles. An isolate gained in 2016 (strain 980016-16) from a urethral swab of an epidemiologically unrelated 32-year-old male patient, registered in the same Austrian province as the two described case patients, showed a six-allele difference. From these results, we propose a complex-type threshold of a maximum of five allelic differences for direct transmission events of $N. \text{gonorrhoeae}$. Our findings underline the considerable potential of whole-genome sequencing (WGS) to document chains of transmission.

Accession number(s). This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession numbers shown in Table 1. The versions described in this paper are the first versions.

ACKNOWLEDGMENT
A.C.R. was supported by a grant from the European Public Health Microbiology Training Programme (EUPHEM), European Centre for Disease Prevention and Control (specific grant agreement 1 ECD.7550, implementing ECDC/GRANT/2017/003). No further funding was received from any funding agency in the public, commercial, or not-for-profit sectors.

REFERENCES

1. WHO 2014. Antimicrobial resistance: global report on surveillance. WHO, Geneva, Switzerland.
2. Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, Stevens G, Gottlieb S, Kiarie J, Temmerman M. 2015. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 10:e0143304. https://doi.org/10.1371/journal.pone.0143304.
3. Unemo M, Shafer WM. 2014. Antimicrobial resistance in $N. \text{gonorrhoeae}$ in the 21st century: past, evolution, and future. Clin Microbiol Rev 27:587–613. https://doi.org/10.1128/CMR.00010-14.
4. Cole MJ, Spiteri G, Jacobsson S, Woodford N, Tripodo F, Amato-Gauci AJ, Unemo M. 2017. Overall low extended-spectrum cephalosporin resistance but high azithromycin resistance in $N. \text{gonorrhoeae}$ in 24 European countries, 2015. BMC Infect Dis 17:617. https://doi.org/10.1186/s12879-017-2707-z.
5. De Silva D, Peters J, Cole K, Cole MJ, Cresswell F, Dean G, Dave J, Thomas DR, Foster K, Waldram A, Wilson DJ, Didelot X, Grad YH, Crook DW, Petö TE, Walker AS, Paul J, Eyre DW. 2016. Whole-genome sequencing to determine $N. \text{gonorrhoeae}$ transmission: an observational study. Lancet Infect Dis 16:1295–1303. https://doi.org/10.1016/S1473-3099(16)30157-8.
6. European Committee on Antimicrobial Susceptibility Testing. 2018. Breakpoint tables for interpretation of MICs and zone diameters, version 8.0. http://www.eucast.org/clinical_breakpoints/.
7. Lepuschitz S, Sorschag S, Springer B, Allerberger F, Ruppitsch W. 2017. Draft genome sequence of carbapenemase-producing $S. \text{marcescens}$ isolated from a patient with chronic obstructive pulmonary disease. Genome Announc 5:e01288-17. https://doi.org/10.1128/genomeA.01288-17.
8. Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FS, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. https://doi.org/10.1093/nar/gkw1004.

TABLE 1 Fourteen $N. \text{gonorrhoeae}$ isolates included in BioProject PRJNA433931

Strain	GenBank accession no.	No. of contigs	Total length (bp)
980035-18	PTPT000000000	173	2,234,140
980036-18	PTPS000000000	155	2,227,585
980037-18	PTPR000000000	203	2,214,439
980038-18	PTPO000000000	193	2,239,226
980039-18	PTPP000000000	164	2,214,439
980040-18	PTPO000000000	191	2,232,201
980041-18	PTPO000000000	156	2,226,960
980042-18	PTPO000000000	168	2,223,307
980043-18	PTPO000000000	160	2,217,312
980044-18	PTPO000000000	137	2,214,035
980045-18	PTPO000000000	141	2,210,712
980046-18	PTPO000000000	140	2,217,914
980047-18	PTPO000000000	199	2,209,742
980016-16	PTPO000000000	178	2,233,553