Research article

On θ_ω-continuity

Samer Al Ghour *, Bayan Irshidat

Department of Mathematics and Statistics, Jordan University of Science and Technology, Irbid 22110, Jordan

A R T I C L E I N F O

Keywords:
- Mathematics
- θ-open
- ω-open
- θ_ω-open
- θ_ω-continuous
- Weakly continuous
- Faintly continuous

A B S T R A C T

We use the closure and the theta omega closure operators to introduce θ_ω-continuous, ω-θ-continuous, weakly θ_ω-continuous and faintly θ_ω-continuous as new four classes of functions. We obtain several properties, relationships, examples and counter-examples related to them.

1. Introduction and preliminaries

Let A be any subset of a topological space (X, τ). The set $\{x \in X : \forall O \in \tau \text{ with } x \in O, O \cap A \text{ is uncountable}\}$ is called the set of condensation points of A and is denoted by $\text{Cond}(A)$. A is called an ω-closed set [1] if $\text{Cond}(A) \subseteq A$ and A is called an ω-open set if $X - A$ is ω-closed. The family of all ω-open sets of (X, τ) forms a topology on X which is finer than τ and this topology is denoted by τ_ω. ω-open sets played a vital role in general topology research see, [2, 3, 4, 5, 6, 7, 8, 9]. The closure of A in (X, τ) (resp. (X, τ_ω)) is called by \overline{A} (resp. \overline{A}_ω). $\text{Cl}_\omega(A) = \{x \in X : \forall O \in \tau \text{ with } x \in O, \overline{O} \cap A \neq \emptyset\}$ [10] and $\text{Cl}_\omega(A) = \{x \in X : \forall O \in \tau_\omega \text{ with } x \in O, \overline{O}_\omega \cap A \neq \emptyset\}$ [11] are the theta-closure and the theta-ω-closure operators. A is θ-closed [10] (resp. θ_ω-closed [11]) if $\text{Cl}_\omega(A) = A$ (resp. $\text{Cl}_\omega(A) = A$). A is θ-open [10] (resp. θ_ω-open [11]) if $X - A$ is θ-closed (resp. θ_ω-closed). The family of θ-open (resp. θ_ω-open) sets in (X, τ) are denoted by τ_θ (resp. τ_{θ_ω}). It is proved in [10] and [11] that (X, τ_θ) and $(X, \tau_{\theta_\omega})$ are topological spaces, τ_θ coarser than τ_{θ_ω} and τ_{θ_ω} coarser than τ. Authors in [11] defined and investigated θ_{ω}-open sets. And they used them to characterize some separation axioms. Studying continuities in topological spaces is still a hot area of research see, [12, 13, 14, 15, 16]. This paper is devoted to introduce and investigate four new classes of functions, namely: θ_ω-continuous, ω-θ-continuous, weakly θ_ω-continuous and faintly θ_ω-continuous.

In this paper, for any nonempty set X, $\tau_{\text{ind}}, \tau_{\text{cof}}, \tau_{\text{cov}}$ will denote respectively the indiscrete topology, the cofinite topology, and the countable topology on X.

The following sequence of definitions and propositions will be used in the sequel:

Definition 1.1. [17] A topological space (X, τ) is called anti-locally countable if each $U \in \tau - \{\emptyset\}$ is uncountable.

Proposition 1.2. [18] If (X, τ) is an anti-locally countable topological space, then for all $A \in \tau_{\omega}, A = \overline{A}$.

Definition 1.3. [18] A topological space (X, τ) is called ω-regular if for each closed set F in (X, τ) and $x \in X - F$, there exist $U \in \tau$ and $V \in \tau_{\omega}$ such that $x \in U, F \subseteq V$ and $U \cap V = \emptyset$.

Proposition 1.4. [18] A topological space (X, τ) is ω-regular if and only if for each $U \in \tau$ and each $x \in U$ there is $V \in \tau$ such that $x \in V \subseteq \overline{V} \subseteq U$.

Recall that a topological space (X, τ) is locally indiscrete if every open set in (X, τ) is closed and (X, τ) is locally countable if for each $x \in X$, there is $U \in \tau$ such that $x \in U$ and U is countable.

Definition 1.5. [11] A topological space (X, τ) is said to be ω-locally indiscrete if every open set in (X, τ) is ω-closed.

Proposition 1.6. [11] a. Every locally indiscrete topological space is ω-locally indiscrete.

- Every locally countable topological space is ω-locally indiscrete.
2. Continuity

Definition 2.1. [19] A function $f : (X, τ) \rightarrow (Y, σ)$ is said to be $θ$-continuous if for every $x \in X$ and every open subset V in Y containing $f(x)$, there exists an open subset U in X containing x such that $f(U) \subseteq V$.

Definition 2.2. A function $f : (X, τ) \rightarrow (Y, σ)$ is said to be $θ_{α}$-continuous if for every $x \in X$ and every open subset V in Y containing $f(x)$, there exists an open subset U in X containing x such that $f(U) \subseteq V^α$.

Theorem 2.3. Every $θ_{α}$-continuous function is $θ$-continuous.

Proof. Let $f : (X, τ) \rightarrow (Y, σ)$ be $θ_{α}$-continuous. Let $x \in X$ and let V be any open set in Y containing $f(x)$. Since f is $θ_{α}$-continuous, there exists an open subset U in X containing x such that $f(U) \subseteq V^α$. It follows that f is $θ$-continuous.

The converse of Theorem 2.3 is not true in general as the following example clarifies:

Example 2.4. Consider the function $f : (ℕ, τ_{ind}) \rightarrow (ℕ, τ_{cof})$ defined as $f(x) = x$. Then
- f is $θ$-continuous.
- f is not $θ_{α}$-continuous.

Proof. a. Let $x \in ℕ$ and let $V \in τ_{cof}$ such that $f(x) = x \in V$. Take $U = ℕ$. Then $x \in U \in τ_{ind}$ and $f(U) \subseteq V = ℕ$. It follows that f is $θ$-continuous.

b. Let $x = 1$ and let $V = ℕ - \{2\}$. Then $V \in τ_{cof}$ with $f(\{1\}) = 1 \in V$. If there exists $U \in τ_{ind}$ such that $1 \in U \in τ_{ind}$ and $f(U) \subseteq V^α$, then $U = ℕ$ and $f(ℕ) = ℕ$. But $V^α = ℕ - \{2\}$. It follows that f is not $θ_{α}$-continuous.

Theorem 2.5. If $f : (X, τ) \rightarrow (Y, σ)$ is a $θ$-continuous function and $(Y, σ)$ is an anti-locally countable topological space, then $f : (X, τ) \rightarrow (Y, σ)$ is $θ_{α}$-continuous.

Proof. Let $x \in X$ and let V be any open subset in Y containing $f(x)$. Since f is $θ$-continuous, there exists an open subset U in X containing x such that $f(U) \subseteq V$. Since $(Y, σ)$ is anti-locally countable, then by Proposition 1.2 we have $V = V^α$ and thus $f(U) \subseteq V^α$. It follows that f is $θ_{α}$-continuous.

Theorem 2.6. [19] Every continuous function is $θ$-continuous but not conversely.

The following two examples show that continuity and $θ_{α}$-continuity are independent:

Example 2.7. Consider the function $f : (ℝ, τ_{ind}) \rightarrow (ℝ, τ_{cof})$ defined as $f(x) = x$. Clearly that f is discontinuous. Let $x \in ℝ$ and let $V \in τ_{cof}$ such that $f(x) = x \in V$. Then $V^α = ℝ$. Take $U = ℝ$. Then $x \in U \in τ_{ind}$ and $f(U) = ℝ \subseteq ℝ = V$. It follows that f is $θ_{α}$-continuous.

Example 2.8. Consider the function $f : (ℕ, τ) \rightarrow (ℕ, σ)$ where $τ = σ = \{∅, ℕ, \{1\}\}$ and $f(x) = x$. Clearly that f is continuous. Suppose that f is $θ_{α}$-continuous. Take $x = 1$ and $V = \{1\}$. Then $V \in σ$ with $f(x) = x \in V$ and $V^α = V$. On the other hand, if $U \in τ$ with $1 \in U$, then either $U = \{1\}$ or $U = ℕ$. In both cases, $V = ℕ$ and $f(U) = ℕ \subseteq V^α = \{1\}$ which is impossible. It follows that f is not $θ_{α}$-continuous.

In the following result we give a sufficient condition for a $θ_{α}$-continuous function to be continuous:

Theorem 2.9. If $f : (X, τ) \rightarrow (Y, σ)$ is a $θ_{α}$-continuous function with $(Y, σ)$ is $ω$-regular, then f is continuous.

Proof. Let $x \in X$ and let V be any open set in Y containing $f(x)$. Since $(Y, σ)$ is $ω$-regular, then by Proposition 1.4 there exists an open set H in Y such that $f(x) \in H \subseteq \overline{H} \subseteq V$. Since f is $θ_{α}$-continuous, there exists an open set U in X containing x such that $f(U) \subseteq \overline{H}$. Thus we have $f(U) \subseteq f(U) \subseteq \overline{H} \subseteq V$.

It follows that f is continuous.

Definition 2.10. [20] A function $f : (X, τ) \rightarrow (Y, σ)$ is said to be weakly continuous if for every $x \in X$ and every open set V in Y containing $f(x)$, there exists an open subset U in X containing x such that $f(U) \subseteq \overline{V}$.

Definition 2.11. A function $f : (X, τ) \rightarrow (Y, σ)$ is said to be $ωθ$-continuous if for every $x \in X$ and every open set V in Y containing $f(x)$, there exists an open subset U in X containing x such that $f(U) \subseteq \overline{V}$.

Theorem 2.12. Every $ωθ$-continuous function is weakly continuous.

Proof. Let $f : (X, τ) \rightarrow (Y, σ)$ be $ωθ$-continuous. Let $x \in X$ and let V be any open set in Y containing $f(x)$. Since f is $ωθ$-continuous, there exists an open set U in X containing x such that $f(U) \subseteq \overline{V}$. Thus $f(U) \subseteq f(U) \subseteq \overline{V}$. It follows that f is weakly continuous.

Theorem 2.13. If $f : (X, τ) \rightarrow (Y, σ)$ is weakly continuous such that $(X, τ)$ is $ω$-locally indiscrete, then f is $ωθ$-continuous.

Proof. Let $x \in X$ and let V be any open set in Y containing $f(x)$. Since f is weakly continuous, there exists an open set U in X containing x such that $f(U) \subseteq \overline{V}$. Since $(X, τ)$ is $ω$-locally indiscrete, then U is $ω$-closed and $U^ω = U$. Thus $f(U^ω) = f(U) \subseteq \overline{V}$. It follows that f is $ωθ$-continuous.

Corollary 2.14. If $f : (X, τ) \rightarrow (Y, σ)$ is weakly continuous such that $(X, τ)$ is locally indiscrete, then f is $ωθ$-continuous.

Proof. Proposition 1.6 (b) and Theorem 2.13.

Corollary 2.15. If $f : (X, τ) \rightarrow (Y, σ)$ is weakly continuous such that $(X, τ)$ is locally countable, then f is $ωθ$-continuous.

Proof. Proposition 1.6 (b) and Theorem 2.13.

Theorem 2.16. If $f : (X, τ) \rightarrow (Y, σ)$ is weakly continuous such that $(X, τ)$ is $ω$-regular, then f is $ωθ$-continuous.

Proof. Let $x \in X$ and let V be any open set in Y containing $f(x)$. Since f is weakly continuous, there exists an open set H in X containing x such that $f(H) \subseteq \overline{V}$. Since $(X, τ)$ is $ω$-regular, then there is an open set U in X containing x such that $U^ω \subseteq H$. Thus $f(U^ω) = f(H) \subseteq \overline{V}$. It follows that f is $ωθ$-continuous.

Theorem 2.17. Every $θ$-continuous function is $ωθ$-continuous.

Proof. Let $f : (X, τ) \rightarrow (Y, σ)$ be $θ$-continuous. Let $x \in X$ and let V be any open set in Y containing $f(x)$. Since f is $θ$-continuous, there exists an open set U in X containing x such that $f(U) \subseteq \overline{V}$. Thus $f(U^ω) \subseteq f(U) \subseteq \overline{V}$. It follows that f is $ωθ$-continuous.
Proposition 1.4, \(f \) is \(\omega \)-\(\theta \)-continuous if and only if \(f \) is \(\theta \)-continuous.\]

Remark 2.19. The function in Example 3.3 of [21] is weakly continuous but not \(\theta \)-continuous, moreover, its domain is anti-locally countable. So by Theorem 2.18, this function is not \(\omega \)-\(\theta \)-continuous. Therefore, the converse of Theorem 2.12 is not true in general.

The following example shows that the converse of Theorem 2.17 is not true in general:

Example 2.20. We utilize Example 3.2 of [21]. Let \(X = Y = \{ a, b, c, d \} \) and \(\tau = \sigma = \{ \emptyset, X, \{ a \}, \{ b \}, \{ a, b \}, \{ a, b, c \}, \{ a, b, c, d \} \} \). Define \(f : (X, \tau) \rightarrow (Y, \sigma) \) by \(f(a) = c, f(b) = d, f(c) = b, f(d) = a \). As in [21] \(f \) is weakly continuous and by Corollary 2.15 \(f \) is \(\omega \)-\(\theta \)-continuous. On the other hand, it is proved in [21] that \(f \) is not \(\theta \)-continuous.

Definition 2.21. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is said to be weakly \(\theta \)-continuous if for every \(x \in X \) and every open set \(V \) in \(Y \) containing \(f(x) \), there exists an open subset \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \).

Theorem 2.22. Every weakly \(\theta \)-continuous function is weakly continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be weakly \(\theta \)-continuous. Let \(x \in X \) and let \(V \) be any open set in \(Y \) containing \(f(x) \). Since \(f \) is weakly \(\theta \)-continuous, there exists an open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \). Thus \(f(U) \subseteq V \). It follows that \(f \) is weakly continuous.

The following example shows that the converse of Theorem 2.22 is not true in general:

Example 2.23. Consider the identity function \(f : (\mathbb{N}, \tau) \rightarrow (\mathbb{N}, \sigma) \) where \(\tau = \{ \emptyset, \mathbb{N} \} \) and \(\sigma = \{ \emptyset, \{ 1 \} \} \). It is not difficult to check that \(\{ 1 \} = \mathbb{N} \) and \(\mathbb{N} = \{ 1 \} \). To see that \(f \) is weakly \(\theta \)-continuous, let \(x \in \mathbb{N} \) and \(V \in \sigma \) such that \(f(x) = x \in V \). Then \(V = \mathbb{N} \) or \(V = \{ 1 \} \) and in both cases \(f(V) = \mathbb{N} \). Choose \(U = \mathbb{N} \). Then \(x \in U \) and \(f(U) = \mathbb{N} \subseteq \mathbb{N} = V \). To see that \(f \) is not weakly \(\theta \)-continuous, suppose to the contrary that \(f \) is weakly \(\theta \)-continuous. Let \(x = 1 \) and take \(V = \{ 1 \} \). Then there is \(U \in \tau \) such that \(1 \in U \) and \(f(U) \subseteq \{ 1 \} \). Then \(f(U) = f(\mathbb{N}) = \mathbb{N} \subseteq \{ 1 \} \) which is a contradiction.

Theorem 2.24. If \(f : (X, \tau) \rightarrow (Y, \sigma) \) is weakly continuous such that \((Y, \sigma) \) is anti-locally countable, then \(f \) is weakly \(\theta \)-continuous.

Proof. Let \(x \in X \) and let \(V \) be any open set in \(Y \) containing \(f(x) \). Since \(f \) is weakly continuous, there exists an open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \). Since \((Y, \sigma) \) is anti-locally countable, then by Proposition 1.4, \(\overline{V} = \overline{V} \), and so \(f(U) \subseteq \overline{V} = \overline{V} \). It follows that \(f \) is weakly \(\theta \)-continuous.

Theorem 2.25. Every continuous function is weakly \(\theta \)-continuous.

Proof. Let \(f : (X, \tau) \rightarrow (Y, \sigma) \) be continuous. Let \(x \in X \) and let \(V \) be any open set in \(Y \) containing \(f(x) \). Since \(f \) is continuous, there exists an open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \). Thus \(f(U) \subseteq \overline{V} \). It follows that \(f \) is weakly \(\theta \)-continuous.
Theorem 2.36. Let \(f : (X,\tau) \rightarrow (Y,\sigma) \) be a function. Then the following are equivalent:

a. \(f : (X,\tau) \rightarrow (Y,\sigma) \) is faintly \(\theta_{\omega} \)-continuous.

b. \(f : (X,\tau) \rightarrow \{Y,\sigma_{\omega}\} \) is continuous.

c. The inverse image of each \(\theta_{\omega} \)-open set in \(Y \) is open in \(X \).

d. The inverse image of each \(\theta_{\omega} \)-closed set in \(Y \) is closed in \(X \).

Theorem 2.37. Every weakly \(\theta_{\omega} \)-continuous function is faintly \(\theta_{\omega} \)-continuous.

Proof. \(f : (X,\tau) \rightarrow (Y,\sigma) \) be weakly \(\theta_{\omega} \)-continuous. Let \(x \in X \) and \(Y \) be \(\theta_{\omega} \)-open set containing \(f(x) \). There is \(B \in \theta_{\omega} \) such that \(f(x) \subseteq B \subseteq Y \). Since \(f \) is weakly \(\theta_{\omega} \)-continuous, then there exists \(U \in \tau \) containing \(x \) such that \(f(U) \subseteq B \subseteq Y \). It follows that \(f \) is faintly \(\theta_{\omega} \)-continuous.

The following example shows that the implication in Theorem 2.37 is not reversible in general:

Example 2.38. Consider the identity function \(f : (\mathbb{R},\sigma) \rightarrow (\mathbb{R},\tau) \) where \(\sigma = \{\emptyset,\mathbb{R},\mathbb{N}\} \) and \(\tau \) as in Example 2.26. Then:

a. \(f \) is faintly \(\theta_{\omega} \)-continuous.

b. \(f \) is not weakly continuous.

Proof. (a) Since by Example 2.26 \(\tau_{\omega} = \{\emptyset,\mathbb{R},\mathbb{N}\} = \sigma \), then \(f : (\mathbb{R},\sigma) \rightarrow (\mathbb{R},\tau) \) is continuous and by Theorem 2.36 \(f : (\mathbb{R},\sigma) \rightarrow (\mathbb{R},\tau) \) is faintly \(\theta_{\omega} \)-continuous.

(b) Suppose to the contrary that \(f \) is weakly continuous. Since \(f(\sqrt{2}) = \sqrt{2} \in \mathbb{Q} \subseteq \tau \), there is \(U \subseteq \sigma \) such that \(\sqrt{2} \in U \) and \(f(U) \subseteq \mathbb{Q} = \mathbb{R} - \mathbb{N} \). Since \(\sqrt{2} \in U \subseteq \sigma \), then \(U = \mathbb{R} \) and \(f(U) = \mathbb{R} \), a contradiction.

Theorem 2.39. Every faintly \(\theta_{\omega} \)-continuous function is faintly \(\theta_{\omega} \)-continuous.

Proof. Theorems 2.18, 2.35 and 2.36.

The implication in Theorem 2.39 is not reversible as it can be seen from the following example:

Example 2.40. Consider the identity function \(f : (\mathbb{R},\tau) \rightarrow (\mathbb{R},\sigma) \) where \(\tau = \{\emptyset,\mathbb{R}\} \) and \(\sigma = \{\emptyset,\mathbb{R},\mathbb{Q}\} \). It is not difficult to check that \(\sigma_{\theta} = \{\emptyset,\mathbb{R}\} \) and \(\sigma_{\omega} = \sigma \). Therefore, by Theorems 2.35 and 2.36, it follows that \(f \) is faintly continuous but not faintly \(\theta_{\omega} \)-continuous.

We can summarize the results and examples above by means of the following diagram:

Declarations

Author contribution statement

S. Al Ghour, B. Irshidat: Conceived and designed the experiments; Performed the experiments; Analyzed and interpreted the data; Contributed reagents, materials, analysis tools or data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

References

[1] H. Hdeib, \(\omega \)-closed mappings, Rev. Colomb. Mat. 16 (1982) 65–78.
[2] B. Roy, On nearly Lindelöf spaces via generalized topology, Proyecciones 38 (1) (2019) 49–57.
[3] P. Agarwal, C.K. Goel, Delineation of \(\omega \)-bitopological spaces, Proc. Jangjeon Math. Soc. 22 (4) (2019) 507–516.
[4] S. Al Ghour, Theorems on strong paracompactness of product spaces, Math. Notes 103 (1–2) (2018) 54–58.
[5] S. Al Ghour, K. Mansur, Between open sets and semi-open sets, Univ. Sci. 23 (1) (2018) 9–20.
[6] A. Al-Omari, T. Noiri, Characterizations of \(\omega \)-Lindelöf spaces, Arch. Math. (Brno) 53 (2) (2017) 93–99.
[7] T. Noiri, V. Popa, The unified theory of certain types of generalizations of Lindelöf spaces, Demonstr. Math. 43 (1) (2010) 203–212.
[8] E. Ekici, S. Jafari, S.P. Moholkar, On a weaker form of \(\omega \)-continuity, Ann. Univ. Craiova, Ser. Mat. Inform. 37 (2) (2010) 38–46.
[9] E. Ekici, S. Jafari, R.M. Latif, On a finer topological space than \(\tau_{\omega} \) and some maps, Ital. J. Pure Appl. Math. 27 (2010) 293–304.
[10] N.V. Velicko, \(H \)-closed topological spaces, Mat. Sh. 70 (1966) 98–112; English transl. (2), in Am. Math. Soc. Transl. 78 (1968) 102–118.
[11] S. Al Ghour, B. Irshidat, The topology of \(\theta_{\omega} \)-open sets, Filomat 31 (16) (2017) 5369–5377.
[12] C. Carpintero, J. Pacheco, N. Rajesh, E. Rosas, S. Sarayvari, Properties of nearly \(\omega \)-continuous multifunctions, Acta Univ. Sapientiae Mat. 9 (1) (2017) 13–25.
[13] C. Carpintero, N. Rajesh, E. Rosas, On real valued \(\omega \)-continuous functions, Acta Univ. Sapientiae Mat. 10 (2) (2018) 242–248.
[14] E. Ekici, S. Jafari, On a new topology and decompositions of continuity, Int. J. Math. Game Theory Algebr. 19 (1–2) (2010) 129–141.
[15] E. Ekici, S. Jafari, On a new weaker form of Popa’s rare continuity via \(J \)-open sets, Kuwait J. Sci. Eng. 36 (1A) (2009) 33–41.
[16] E. Ekici, Generalization of weakly clopen and strongly \(\theta \)-b-continuous functions, Chaos Solitons Fractals 38 (2008) 79–88.
[17] K. Al-Zoubi, K. Al-Nashef, The topology of \(\omega \)-open subsets, Al-Manarah J. 9 (2003) 169–179.
[18] S. Al Ghour, Certain covering properties related to paracompactness, Ph.D. thesis, University of Jordan, Amman, Jordan, 1999.
[19] S. Fomin, Extensions of topological spaces, Ann. Math. 44 (2) (1943) 471–480.
[20] N. Levine, A decomposition of continuity in topological spaces, Am. Math. Mon. 68 (1961) 44–46.
[21] F. Cammaroto, T. Noiri, On weakly $\#$-continuous functions, Mat. Vesn. 38 (1) (1986) 33–42.
[22] P. Long, L. Herrington, The T_φ-topology and faintly continuous functions, Kyungpook Math. J. 22 (1) (1982) 7–12.