The Ecological Variety Testing of Foreign Melon and Watermelon Hybrids in the Climatic Conditions of Southeastern Kazakhstan

T E Aitbayev1,2, Zh Zh Mamyrbekov1,2, A T Aitbaeva2 and B D Zorzhanov1,2

1Kazakh National Agrarian Research University, Abay Avenue, 8, Almaty, Republic of Kazakhstan
2TOO “Kazakh Scientific Research Institute of Fruit and Vegetable Growing”, 238/5 Gagarin Avenue, Almaty, Republic of Kazakhstan

E-mail: aitbayev.t@mail.ru

Abstract. The results of the ecological variety testing of melon and watermelon hybrids are presented in the paper. In the period from 2018 to 2020, 10 foreign varieties and hybrids of melon and watermelon were evaluated according to economic and valuable characteristics in the adaptation nursery in the climatic conditions of southeastern Kazakhstan. According to the set of qualities and indicators, 4 melon and watermelon varieties were distinguished and suggested for production.

1. Introduction
Melon cultivation is a highly profitable branch of agriculture in Kazakhstan. Melons (watermelon, melon) are cultivated in almost all regions, while the main areas are concentrated in the south and southeast of the country. The area under melons reached 105 thousand hectares, gross harvests exceeded 2.5 million tons, the average yield of fruits is about 24 tons / ha [1].

The consumption rate of melon products per 1 inhabitant of the republic is 26 kg per year. Taking this into account, the internal demand of Kazakhstan for melons is about 500 thousand tons, the security is 500%.

Watermelon and melon are of great value as sources of easily digestible sugars, vitamins, mineral salts, organic acids and other biologically valuable substances. In terms of the content of a number of vitamins, melons are not inferior, but are equated and even surpass many fruit and berry crops. Melon fruits are especially valuable, because they contain a rich set of vitamins: ascorbic acid, beta-carotene, tocopherol, nicotinic and pantothenic acid, riboflavin, pyridoxine, folacin and thiamine. Melon is better in terms of nutritional value than many types of fruits. The high taste qualities of the tender juicy pulp of the fruit are complemented by an extraordinary variety of aromas. Melon products are in great demand among the population of the country [2].

As can be seen from the statistics, there is an overproduction of watermelon and melon in our country. In this regard, there is an urgent need to search for foreign sales markets. Kazakhstan has traditionally exported melon products. Now, taking into account the significant increase in production volumes, new sales markets are required. It is important to ensure high quality indicators and transportability of watermelon and melon fruits. In this aspect, there is a need to select varieties (hybrids) of these crops, both with high yields, and with the best quality and ease of production.
The "State Register of Breeding Achievements Approved for Use in the Republic of Kazakhstan" includes 29 varieties of melon, of which 19 varieties (65.5%) are of Kazakh selection. The share of melon varieties (hybrids) from abroad is 13.8% (4 hybrids). As for the watermelon, 34 varieties and hybrids are zoned and cultivated in the regions of Kazakhstan, including 11 varieties of domestic selection (32.4%) [3].

Melon growers of Kazakhstan, along with domestic varieties, also use foreign varieties (hybrids). In this regard, varieties of watermelon and melon of foreign selection were studied to offer melon growers of the country the best samples in terms of yield and quality.

The importance of the quality of exported melon products is also increasing due to Kazakhstan's accession to the World Trade Organization. Organic production is developing in many countries of the world. Eco-friendly natural products are in great demand among the population and are widely used. The importance of the transition to the production of organic agricultural products has been noted by many scientists and specialists [4–8]. Kazakhstan in the world community of producers of products may well act as an exporter of organic and/or environmentally friendly melon products.

The above stated determines the relevance of the research.

2. Research methods
The soil of the experimental plantation of the "Kainar" Regional branch is dark chestnut, has a fully developed profile, the mechanical composition is medium loamy. The upper layer of the soil contains 2.9–3.0% of humus; 0.18–0.2% of total nitrogen; 0.19–0.2% of total phosphorus. The content of mobile phosphorus in the arable layer is 30–40 mg/kg of soil, exchangeable potassium is 350–390 mg/kg. The capacity of cation exchange is 20–21 mg·eq./100 g of soil. The reaction of the soil solution is slightly alkaline, close to neutral (pH 7.3–7.4). The volume mass of the soil is 1.1–1.2 kg/cm³, the lowest moisture capacity is 26.6%. The structure of the soil is loose, weakly expressed.

The climate of the foothill zone of the south-east of Kazakhstan is sharply continental. The average temperature in July is 22–24 °C above zero, in January – 6–10 °C below zero. A steady transition of air temperature through 0 °C in spring occurs at the end of the II-beginning of the III decade of March, in autumn – at the end of the I – beginning of the III decade of November. The sum of positive temperatures is 3450–37500 °C, and the sum of temperatures for the period above 100 °C is 3100–34000 °C. The duration of the frost-free period is 140–170 days. The average annual precipitation is 350–600 mm. In the years of research (2018–2020), meteorological conditions significantly differed from the average long-term data.

Within 3 years, 20 foreign samples of melon crops were studied according to economically valuable characteristics. The purpose of the research is to evaluate foreign varieties and hybrids of watermelon and melon to identify the productivity, taste, transportability of fruits and adaptation to the conditions of the south-east of Kazakhstan, to recommend the best of them for production.

In the studies on the ecological variety testing of melon crop samples, classical methods (techniques) such as: methods of state variety testing of agricultural crops (potatoes, vegetables and melons) [9]; methods of experimental work in vegetable growing and melon growing [10], methods of selection of watermelon and melon [11] were used.

3. Results
10 samples of melons of foreign selection (Turkey, Germany, France) were evaluated according to economically valuable characteristics at the selection plantation of the laboratory of vegetable and melon breeding of the "Kainar" Regional Branch of the Kazakh Scientific Research Institute of Fruit and Vegetable Growing LLP.

According to the total fruit yield in the early-ripening group, 3 melon varieties were distinguished, the excess of the Shugyld standard (13.8 t/ha) was 38.9% for the Sari Ball hybrid, 22.9% for Darwina F1, 19.4% for the DS 45-259 F1. In the mid-late group, not a single sample stood out in terms of yield, the samples of Giallo da Inverno and Pirona F1 showed a slightly lower yield (19.6 t/ha), against the background of the Muse standard (20.9 t/ha). All the selected varieties had a high (95.0-97.2%)
marketability, a high content (10.41-15.0%) of dry soluble substances and a high tasting score of 4.5-5.0 points. These varieties are suitable for cultivation in the conditions of the south-east of Kazakhstan.

According to productivity, 4 melon hybrids are recommended for cultivation in melon farms in the south-east of the country. They are: Sari Ball, Darwin F1, AH 6404 F1, Giallo da Inverno.

Table 1. Yield and quality of the selected melon varieties and hybrids.

Melon varieties	Total yield, t/ha	Including in 2 harvests	Averaging fruit weight, kg	Content of dry substances,%	Tasting rating, point	Exceeding standard,%			
Shugyla, Standard	14.4	13.5	94.2	6.0	41.8	1.2	13.0	4.8	-
Sari Ball	20.0	13.9	96.8	6.2	31.1	2.7	13.5	5.0	38.9
Lilian F1	15.1	14.2	94.5	6.2	41.0	1.6	12.5	4.5	4.8
Darwin F1	17.7	17.0	96.0	7.1	40.1	1.5	11.0	5.0	22.9
AX 6404 F1	15.2	14.4	95.0	5.5	36.2	1.5	13.5	5.0	5.5
DC 45-259 F1	17.2	16.7	97.1	6.8	39.8	2.1	12.0	4.0	19.4
DC 45-160 F1	14.6	13.8	94.7	6.1	41.3	2.5	13.0	4.5	1.4
Muse, Standard	20.9	20.0	95.6	4.2	20.3	2.1	12.0	4.8	-
Giallo da Inverno	19.6	18.7	95.7	3.6	18.7	2.8	13.0	4.8	- 6.2
Darimo F1	17.9	17.3	96.6	5.2	29.2	1.9	15.0	5.0	- 14.3
Ax70-158F1	15.1	14.5	96.0	3.7	24.4	1.8	11.0	4.0	- 27.7
Pirona F1	19.6	18.9	96.3	6.2	31.8	2.5	15.0	5.0	- 6.2

Table 2 shows the biometric and morphological characteristics of samples (hybrids) of melon of foreign selection. As can be seen from the data, the fruits of different hybrids of the culture differ markedly in weight, size, shape, pattern, juiciness, taste and other indicators.

In the conditions of the south-east of Kazakhstan, the main harmful disease of melon is powdery mildew. This disease, regardless of the conditions of the year, appears at the end of the growing season of plants, and in some years even earlier, it quickly spreads and causes great damage to melon crops. Consequently, the yield, taste and commercial qualities of the fruits are significantly reduced.

The most common and harmful diseases of infectious origin in Kazakhstan, causing great damage to the crop and its quality, are: powdery mildew, anthracnose, bacteriosis and fusarium infection. Diseases such as bacteriosis, viral mosaic affect melon crops, including melon, in some years and, as a rule, do not cause much damage. Among non-infectious diseases, physiological wilting and root rot are widespread.

According to the results of the assessment, disease-resistant melon samples are: Darimo F1, Darwin F1, Ah70-158 F1, Pirona F1, DS 45-160 F1 (table 3).

It should be noted that the following melon hybrids (Darimo F1, Darwin F1, Ah70-158 F1, Pirona F1, DS 45-160 F1) were resistant to a complex of culture diseases – powdery mildew, perongosporosis and fusarium. This is very important, since the treatment of melon crops with fungicides is excluded or minimized. This is very profitable both economically, since there is no need to spend money on expensive pesticides (fungicides), and environmentally, which is expressed in the purity of products. Based on this, these melon hybrids can be recommended for production.
10 foreign samples were studied for watermelon in order to adapt and evaluate valuable traits. As a result of 3-year crop productivity accounting, all samples of different maturation periods significantly exceeded the standards.

№	Variety name	Weight, kg	Length, cm	Width, cm	Shape	Backgrou nd	Pattern	Rind thickness	Taste	Juice content	Pulp consistency	Pulp colour	Pulp thickness
1	Shugyla, Standard	1.2	20	16	Circular	Yellow	Net	0.9	Sweet	Juicy	Melting	White	4.8
2	Sari Ball	2.7	15	16	Oval	Yellow	Wrinkled	0.9	Very sweet	Juicy	Melting	White and green	6.2
3	Giallo da Inverno	2.8	27	17	Fusiform	Yellow	Wrinkled	1.0	Sweet	Juicy	Grainy	White	5.5
4	Lilian F1	1.6	20	16	Elongated oval	Yellow	Net	0.9	Not sweet	Not very juicy	Melting	Light orange	4.8
5	Darwinia F1	1.5	14	15	Circular	Brown	Net	1.0	Very sweet	Very juicy	Melting	Green	3.8
6	Darimo F1	1.9	15	14	Oval	Bright brown	Net	1.0	Not very sweet	Extremely juicy	Melting	White	5.0
7	Ax70-158F1	1.8	16	15	Oval	Brown	Elongated stripe s	1.0	Pineapple	Not juicy	Crispy	Orange	3.5
8	AX 6404 F1	1.52	15	16	Circular	Brown	Net	0.9	Not very sweet	Juicy	Melting	White and orange	6.2
9	DC 45-259 F1	2.1	13, 5	15	Circular	Light yellow	Net	0.8	Low sweet	Not very juicy	Melting	Light green	4.5
10	DC 45-160 F1	2.5	21	17	Oval	Bright yellow	Net	1.1	Sweet	Not very juicy	Grainy	White	4.3
11	Pirona F1	2.5	21	15	Oval	Brown	Net	0.9	Not very sweet	Extremely juicy	Melting	White	5.0
Table 3. The degree of susceptibility of foreign varieties and hybrids of melon to diseases.

Melon varieties	Origin	powdery mildew	peronosporosis	fusarium infection
Shugyla, stand.	Kazakhstan	Average perceptive	Low perceptive	Resistant
Sari Ball	Turkey	Low perceptive	Average perceptive	Average perceptive
Giallda da	France	Low perceptive	Low perceptive	Low perceptive
Inverno				
Lilian F1	Germany	Average perceptive	Low perceptive	Resistant
Darwina F1	Germany	Resistant	Resistant	Resistant
Darimo F1	Germany	Resistant	Resistant	Resistant
Ax70-158 F1	Germany	Resistant	Resistant	Resistant
AX 6404 F1	Germany	Low perceptive	Low perceptive	Average perceptive
DC 45-259 F1	Turkey	Average perceptive	Average perceptive	Resistant
DC 45-160 F1	Turkey	Resistant	Resistant	Resistant
Pirona F1	Germany	Resistant	Resistant	Resistant

In the early-ripening group, AX-CR258 F1, AX-CR268 F1, AX-AL 368 F1, AX-AL 428 F1, AX-AL 438 F1 were distinguished, as they exceeded the standard variety of Mezhduurechensky by 21.2-31.7%. Bella F1, AX-AL 448 F1, AX-CR157F1 and DS 44-22 F1 distinguished themselves in the mid-season and mid-late group, exceeding the Melitopol 147 standard variety by 8.5-10.0%. The distinguished watermelon varieties had a high (94.0–98.0%) marketability, a high content (10.0–11.0%) of dry substances and a high tasting rating (table 4).

Table 4. Yield and quality of distinguished foreign varieties of watermelon.

Watermelon varieties and hybrids	Total yield, t/ha	Marketability, quantity, t/ha	In 2 harvests, quantity, t/ha	Averag. fruit weight, kg	Refractometer indicator, %	Tasting rating, point	Exceeding standard, %		
Mezhduurechensky, Standard	25.5	23.2	92.	9.1	35.	5.3	9.0	4.8	-
AX-CR268 F1	31.1	30.0	96.	12.9	41.	5.7	11.0	5.0	21.9
AX-AL 438 F1	33.6	31.9	95.	15.1	45.	6.5	10.0	5.0	31.7
AX-CR138F1	28.9	27.8	96.	12.4	42.	7.5	10.0	4.9	13.3
AX-AL 428 F1	31.6	30.8	97.	14.9	47.	6.3	10.0	5.0	23.9
AX-AL 368 F1	31.0	28.9	96.	14.9	46.	7.3	11.0	5.0	21.5
AX-CR258 F1	31.4	30.2	96.	13.6	43.	4.6	10.0	5.0	23.1
Melitopolsky 142, standard	25.9	24.1	93.	6.7	25.	5.0	9.5	4.6	-
Bella F1	28.1	26.6	94.	4.7	16.	7.6	11.0	5.0	8.5
AX-AL 448 F1	28.1	26.6	94.	7.1	25.	6.0	12.0	5.0	8.5
DS 44-22 F1	30.9	29.9	96.	7.5	23.	6.9	10.0	4.6	19.3
AX-CR157F1	28.5	27.4	96.	9.1	32.	6.2	10.0	5.0	10.0
Table 5 shows the biometric and morphological characteristics of the studied varieties of watermelon of foreign selection. As can be seen from the data, the fruits of different hybrids of the culture differ markedly in weight, size, shape, pattern, juiciness, taste and other biometric indicators.

Table 5. Biometric indicators and description of foreign watermelon varieties.

№	Watermelon varieties and hybrids	Fruit weight, kg	Fruit length, cm	Fruit width, cm	Fruit shape	Fruit background	Fruit pattern	Pattern colour	Rind thickness	Pulp colour
1	Mezhdurechensky, Standard	5.3	23.5	22.0	Oval	Green	Narrow stripes	Dark green	1.5	Red
2	Bella F₁	7.6	26.0	22.0	Circular	Light green	Thorn stripes	Dark green	1.1	Red
3	AX-AL 448 F₁	6.0	24.0	22.5	Cylindrical	Light green	Thorn stripes	Dark green	1.3	Red
4	DC 44-22 F₁	6.9	24.0	23.0	Cylindrical	Light green	Wide stripes	Dark green	1.2	Dark red
5	AX-CR268 F₁	5.7	22.0	21.5	Oval	Light green	Wide stripes	Dark green	1.5	Red
6	AX-AL 438 F₁	6.5	26.0	22.0	Cylindrical	Light green	Wide stripes	Dark green	1.5	Red
7	AX-CR138F₁	7.5	37.0	19.5	Oval	Light green	Wide stripes	Dark green	1.3	Red
8	AX-CR157F₁	6.2	25.0	23.0	Oval	Light green	Wide stripes	Dark green	1.7	Red
9	AX-AL 428 F₁	6.3	25.0	190	Cylindrical	Light green	Wide stripes	Dark green	1.0	Dark red
10	AX-AL 368 F₁	7.3	31.0	23.0	Cylindrical	Light green	Wide stripes	Dark green	1.4	Dark red
11	AX-CR258F₁	4.6	22.5	20.0	Oval	Light green	Wide stripes	Dark green	1.5	Red

Table 6 shows the data of biochemical analyses of fruits of different watermelon varieties studied in the adaptation nursery.

Table 6. Qualitative indicators of foreign watermelon varieties.

Watermelon varieties	Origin	Dry substance, %	Total sugar, %	Vitamin C, mg %	Nitrates, mg/kg
Mezhdurechensky, Standard	KazRIPVG	10.1	8.2	5.3	55
Bella F₁	Turkey	10.2	10.5	6.6	45
AX-AL 448 F₁	Germany	11.0	11.0	7.6	63
DS 44-22 F₁	Turkey	8.0	7.5	6.6	58
AX-CR268 F₁	Germany	10.0	9.5	7.2	50
AX-AL 438 F₁	Germany	10.0	11.0	8.8	60
AX-CR138F₁	Germany	10.0	10.1	6.6	69
AX-AL 428 F₁	Germany	11.0	10.0	7.2	45
AX-CR157F₁	Germany	10.0	9.5	5.8	59
AX-AL 368 F₁	Germany	10.0	10.5	5.0	55
AX-CR258F₁	Germany	9.0	8.2	5.8	63

Foreign watermelon hybrids differed significantly in quality indicators. The content of dry substances in the fruits ranged from 8.0–11.0%, total sugar amounts to 8.2–11.0%. The level of nitrates in the products was below the maximum permissible concentration – 45–69 mg/kg. According to the content
of total sugar in fruits (11%), the AX-AL 428 F1, AX-AL 448 F1 varieties distinguished themselves in the conditions of the foothills of the south-east of Kazakhstan.

4. Conclusion
20 foreign samples were evaluated according to the complex of economically valuable characteristics, including 10 - watermelon varieties and 10 – melon varieties.

According to the results of the melon, 3 varieties were distinguished in the early-ripening group in terms of total yield, the excess of the Shugyl standard (13.8 t/ha) was 38.9% for Sari Ball, 22.9% for Darwin F1, and 19.4% for DS 45-259 F1. In the mid-late group, not a single sample stood out in terms of yield, Giallo da Inverno and Pirona F1 showed a slightly lower yield (19.6 t / ha), against the background of the Muse standard (18.2 t/ha). All the selected melon varieties had a high (95.0–97.2%) marketability, a high content (10.41–15.0%) of dry substances and a high tasting score of 4.5–5.0 points.

As for the watermelon, taking the yield into account, all samples of different ripening periods significantly exceeded the standards. In the early-ripening group, AX-CR258 F1, AX-CR268 F1, AX-AL 368 F1, AX-AL 428 F1, AX-AL 438 F1 were distinguished, exceeding the Mezhdurechensky standard by 21.2–31.7%. The Bella F1, AX-AL 448 F1, AX-CR157 F1 and DS 44-22 F1 varieties, exceeding the Melitopol 147 standard by 8.5–10.0%, distinguishing themselves in the middle-ripe and mid-late group. All the selected watermelon varieties had a very high marketability of fruits (94.0–98.0%), a high dry substance content (10.0–11.0%) and a high tasting rating.

According to the research results, 4 melon hybrids are recommended for cultivation in the conditions of the south-east of Kazakhstan. They are: Sari Ball, Darwin F1, AH 6404 F1, Giallo da Inverno. 5 watermelon hybrids are offered for production. They are: AX-CR268 F1, AX-AL 428 F1, AX-AL 368 F1 (early-ripening varieties), Bella F1, AX-CR157 F1 (late-ripening varieties).

References
[1] Committee on Statistics of the Ministry of National Economy of the Republic of Kazakhstan Retrieved from: http://www.stat.gov.kz (accessed: 20.06.2021)
[2] Gutsaliuk T G and Aitbaev T E 2012 Melon growing in Kazakhstan: history, current state and development prospects (Almaty) 269 p
[3] 2019 State Register of Breeding Achievements Approved for Use in the Republic of Kazakhstan (Nyr-Sultan) 101 p
[4] Chychkalo-Kondrats'ka I B and Novyts'ka I V 2018 World experience of promotion of organic products Efective Economics 2 Retrieved from: http://www.eco&nomy.nayka.co m.ua/top=1&z=6104 (accessed: 20.06.2020)
[5] Kaminska A 2020 World experience of development of organic production 17–18 25
[6] Wilier H and Lernoud J 2016 The World of Organic Agriculture. Statistics and Emerging Trends Frick and IFOAM – Organics International
[7] The World of Organic Agriculture 2020 Organic World Retrieved from: http://www.organic&world.net/yearbook/yearbook& 2020.html (accessed: 23.06.2020)
[8] Organic Farming in Germany 2017 Retrieved from: www.bmel.de/EN/Agriculture/SustainableLandUse/_Texte/OrganicFarmingInGermany.html (accessed: 21.02.2017)
[9] 1975 Methods of state variety testing of agricultural crops (potatoes, vegetables and melons) 4 183 p
[10] Belik V F 1992 Methods of experimental work in vegetable growing and melon growing (Moscow: Agropromizdat) 64–228
[11] Gutsaliuk T G 1998 Methods of watermelon and melon n selection (Almaty) 156 p