Retrospective Study

Timing theory continuous nursing, resistance training: Rehabilitation and mental health of caregivers and stroke patients with traumatic fractures

Ya-Li Shen, Zong-Qun Zhang, Li-Juan Zhu, Jing-Hua Liu

ORCID number: Ya-Li Shen 0000-0002-3673-7157; Zong-Qun Zhang 0000-0002-6687-0688; Li-Juan Zhu 0000-0003-3093-5264; Jing-Hua Liu 0000-0002-6040-5291.

Author contributions: Shen YL and Zhang ZQ design the experiment; Zhu LJ drafted the work, Liu JH and Shen YL collected the data; Zhang ZQ and Zhu LJ analyzed and interpreted data, Liu JH and Shen YL wrote and revised the manuscript.

Institutional review board statement: This study was Approved by the Ethics Committee of Chengde Central Hospital.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: The authors declared that there is no conflict of interest between them.

Data sharing statement: No additional data are available.

Country/Territory of origin: China

Ya-Li Shen, Li-Juan Zhu, Department of Orthopedics, Chengde Central Hospital, Chengde 067000, Hebei Province, China
Zong-Qun Zhang, Department of Neurology, Chengde Central Hospital, Chengde 067000, Hebei Province, China
Jing-Hua Liu, Department of Nursing, Chengde Central Hospital, Chengde 067000, Hebei Province, China

Corresponding author: Jing-Hua Liu, MD, Nurse, Department of Nursing, Chengde Central Hospital, No. 11 Guangren Street, Shuangqiao District, Chengde 067000, Hebei Province, China. 5446468liu@163.com

Abstract

BACKGROUND
Stroke is the leading cause of adult lifelong disability worldwide. A stroke is an acute cerebrovascular disease with a variety of causes and corresponding clinical symptoms. Around 75% of surviving stroke patients experience impaired nerve function, and some suffer from traumatic fractures, which can lead to special care needs.

AIM
To determine the effect of timing theory continuous care, with resistance training, on the rehabilitation and mental health of caregivers and stroke patients with traumatic fractures.

METHODS
Between January 2017 to March 2021, we selected 100 hospital admissions with post-stroke hemiplegia complicated with a traumatic fracture. Two participant groups were created: (1) Control group: given resistance training; and (2) Observation group: given timing theory continuous care combined with resistance training. The degree of satisfaction and differences in bone and phosphorus metabolism indexes between the two groups were compared. The self-perceived burden scale (SPBS) and caregiver burden questionnaire were used to evaluate the psychological health of patients and caregivers. The Harris hip function score, ability of daily living (ADL) scale, and global quality of life
INTRODUCTION

Patients with stroke that is complicated by a traumatic fracture after surgery often experience a partial or total loss of self-care ability, causing them to require assistance in their daily life and activities[1,2]. Currently, China’s medical resources tend to be insufficient and unevenly available, and there is a lack of health human resources. Therefore, caregivers undertake a large part of patients’ daily care[3-6]. Caring for patients who have experience both stroke and fracture require more difficult care. Patients often have limb dysfunction, and severe osteonecrosis can occur. Therefore, effective rehabilitation care can significantly improve the patient’s prognosis. This study showed that caregivers are under considerable pressure, which is related in part to the health status of the patient. Adverse emotions, such as depression, seriously affect the recovery of patients, and the existence and influence of the burden of care is long-lasting[7]. However, there are very few reports about the continuation of nursing care in stroke patients with fractures.

This study analyzed the effect of timing theory continuous nursing combined with resistance training on the rehabilitation of stroke patients with traumatic fractures and the mental health of caregivers. The purpose is to provide guidance and a basis for clinical practice.
MATERIALS AND METHODS

Participant inclusion and exclusion criteria

Inclusion criteria: (1) Stroke was diagnosed by CT or MRI and stroke had not occurred previously; (2) ≥ 40 years old and ≤ 75 years old; (3) Disease duration was ≥ 6 mo; (4) Diagnosed with hemiplegia and muscle strength < grade 4; (5) Diagnosed with a femoral neck fracture who had undergone hip arthroplasty; and (6) Complete clinical data.

Exclusion criteria: (1) Cognitive dysfunction and comprehension disorder; (2) Complications with brainstem and cerebellar infarction; (3) Long-term use of hormones and other drugs that can affect calcium and phosphorus metabolism; (4) Malignant tumor; (5) Liver and kidney dysfunction; and (6) Illiteracy.

Baseline data

A total of 100 patients with post-stroke hemiplegia combined with trauma fractures that had been admitted to our hospital from January 2017 to March 2021 were divided into two groups according to the intervention plan. The comparison of general data between the two groups was not statistically significant (P > 0.05) (Table 1).

Method

The control group completed resistance training, and patients were guided on active ankle flexion training. Ankle flexion actions were performed with patients’ maximum strength, and nursing staff held the lower third of their calf with the left hand to enable patients to perform the resistance training in the opposite direction with equal strength. In active ankle dorsiflexion exercises, patients performed active ankle dorsiflexion with their maximum strength, and nursing staff crossed their hands and placed them on the dorsum of patients’ feet. The training was conducted with equal strength in the opposite direction. Each training session lasted for 5 s, 300 times each day, and patients were divided into 5 groups to gradually complete the exercise.

For the observation group, timing theory continuous care combined with resistance training was conducted and divided into 5 stages, which were determined based on literature reviews and expert consultation. The intervention content at each stage was based on the specific needs of the caregivers, and targeted intervention was implemented. A health education manual for patient caregivers was formulated according to the results of qualitative studies, from admission to 3 mo after discharge. Each manual included basic information about the disease, treatment methods, rehabilitation exercise guidance, daily nursing, discharge procedures, and postoperative complications and prevention. An intervention group was established to jointly control data collection, implementation of health education, follow-up after discharge, and the construction of a public platform. Duties were divided between team members depending on their personal expertise. They regularly shared reviewed articles and videos related to rehabilitation training, answered patients’ questions, and encouraged the exchange of experiences among patients to form a mutual assistance team. Patients regularly attended group face-to-face lectures. Concurrently, those in the intervention group were asked to conduct three 30-minute lectures. Hand-in-hand demonstrations were performed. The resistance training method was the same as in the control group.

Standard for evaluation

The self-perceived burden scale (SPBS)[8] and caregiver burden questionnaire[9] were used to evaluate the mental health of the patients and caregivers, respectively. The Harris hip function score[10] (HHS), ability of daily living (ADL) scale, and comprehensive quality of life questionnaire (GQOL-74)[11] were used to evaluate the patients’ hip function, ability of daily living and quality of life.

Detection method

Fasting venous blood (3 mL) was drawn and centrifugated at 2000 r/min for 30 min. The concentrations of ALP, osteocalcin, vitamin D3 and β-CTX were determined by Enzyme-linked immunosorbent assay using the Hitachi 7600i automatic biochemical analyzer provided by Nanjing Jianchi Biological Products Co. Ltd.

Statistical analysis

SPSS19.0 was used for data analysis and measurement data was expressed as mean ± SD, a t-test was applied for comparison, and an χ² test was used for comparison of
Table 1 Comparison of two groups of general data, n (%)

General information	Control group (n = 50)	Observation group (n = 50)
Gender		
Male	29 (58.00)	27 (54.00)
Female	21 (42.00)	23 (46.00)
Age (yr)	62.32 ± 8.92	61.69 ± 9.22
Course of stroke (yr)	2.12 ± 0.56	2.09 ± 0.54
Body mass index (kg/m²)	22.85 ± 3.23	22.80 ± 3.37
Stroke type		
Cerebral infarction	32 (64.00)	28 (56.00)
Cerebral hemorrhage	18 (36.00)	22 (44.00)
Education		
Primary plus junior	9 (18.00)	10 (20.00)
Technical secondary school, high school and College	23 (46.00)	19 (38.00)
Bachelor degree or above	18 (36.00)	21 (42.00)
Caregiver patient relationship		
Children	17 (34.00)	15 (30.00)
Spouse	24 (48.00)	24 (48.00)
Other	9 (18.00)	11 (22.00)

enumeration data. \(P < 0.05 \) was statistically significant.

RESULTS

The comparison of bone phosphorus metabolism indexes between the two groups

Before the intervention, there was no statistically significant difference in the bone phosphorus metabolism indexes between the two groups (\(P > 0.05 \)). After intervention, ALP, osteocalcin, and vitamin D3 increased in both the observation group and control group (\(P < 0.05 \)), and carboxy-terminal peptide of type I collagen \(\beta \) Special sequence (\(\beta \)-CTX) decreased (\(P < 0.05 \)) in both groups. ALP and osteocalcin in the observation group were higher than they were in the control group (\(P < 0.05 \)) and there was no significant difference in \(\beta \)-CTX and vitamin D3 between the observation and control group (\(P > 0.05 \)). Before intervention, there was no statistically significant difference in the SPBS scores between groups (\(P > 0.05 \)). After intervention, the SPBS scores of patients in both groups decreased (\(P < 0.05 \)), but they were lower for patients in the observation group than for those in the control group (\(P < 0.05 \)). Before intervention, there was no statistically significant difference in ADL scores between groups (\(P > 0.05 \)). After intervention, ADL scores of both groups increased (\(P < 0.05 \)), and the ADL scores of the observation group were higher than those of the control group (\(P < 0.05 \)) (Table 2).

Comparison of burden scores of caregivers between the two groups

Before intervention, there was no statistically significant difference between the two groups regarding the burden scores of caregivers (\(P > 0.05 \)). After intervention, time-dependent, development-constrained, physiological, social, and emotional load and total score in the observation and control group decreased (\(P < 0.05 \)) and the burden scores of caregivers in the observation group were lower than the control group (\(P < 0.05 \)) (Table 3).

Comparison of HHS between the two groups

Before intervention, there was no statistically significant difference in the HHS (\(P > 0.05 \)) between the two groups. After intervention, pain, function, gait, walking aid, walking distance, deformity, range of joint motion, and the total HHS between the two
Table 2 Comparison of bone phosphorus metabolism, self-perceived burden scale, ability of daily living in two groups (mean ± SD)

Group	Control group (n = 50)	Observation group (n = 50)		
	Before intervention	After intervention	Before intervention	After intervention
ALP (IU/L)	82.36 ± 12.05	95.25 ± 13.65	179.85 ± 25.11	
	164.02 ± 15.34	159.03 ± 12.74		
β-CTX (ng/mL)	182.02 ± 23.66	101.14 ± 14.58		
	164.02 ± 15.34	159.03 ± 12.74		
Osteocalcin (μg/L)	9.56 ± 1.21	12.36 ± 1.52	9.53 ± 1.26	
	13.02 ± 1.61			
Vitamin D3 (ng/L)	9.66 ± 2.85	13.65 ± 3.12	9.71 ± 2.91	
	14.02 ± 3.05			
SPBS score	35.23 ± 4.56	28.65 ± 3.36	34.95 ± 5.02	
	22.01 ± 3.77			
ADL score	31.25 ± 3.69	28.63 ± 4.02	30.98 ± 4.05	
	22.01 ± 3.77			

*P < 0.05 vs pre-intervention.
Testing: $P < 0.05$ vs the control group.

ALP: Alkaline phosphatase; β-CTX: carboxy-terminal peptide of type I collagen β Special sequence; SPBS: self-perceived burden scale; ADL: Ability of daily living.

Table 3 Comparison of burden scores of caregivers between the two groups (mean ± SD, min)

Parameter	Control group (n = 50)	Observation group (n = 50)		
	Before intervention	After intervention	Before intervention	After intervention
Time dependent load	16.23 ± 3.24	10.23 ± 2.12	16.09 ± 3.36	7.82 ± 1.92
Development-constrained load	14.25 ± 2.96	7.56 ± 2.01	14.06 ± 3.11	5.23 ± 1.49
Physiological load	10.26 ± 2.13	5.87 ± 1.41	10.21 ± 2.06	3.96 ± 0.95
Social load	6.21 ± 1.25	2.58 ± 0.45	6.09 ± 1.33	1.51 ± 0.38
Emotional load	4.02 ± 1.02	1.85 ± 0.23	3.97 ± 0.91	1.02 ± 0.18
Total score	50.56 ± 5.36	28.63 ± 4.02	51.04 ± 4.98	19.85 ± 3.47

*P < 0.05 vs pre-intervention.
Testing: $P < 0.05$ vs the control group.

Comparison of GQOL-74 scores between the two groups

Before intervention, there was no statistically significant difference in GQOL-74 scores between the two groups ($P > 0.05$). After intervention, GQOL-74 scores for physical and mental health, material life, and social function in the two groups increased ($P < 0.05$), and the GQOL-74 score in the observation group was higher than the control group ($P < 0.05$) (Table 5).

Comparison of satisfaction between the two groups

In the observation group, there were 30 very satisfied cases and 17 basically satisfied cases; the overall satisfaction rating was 94.00%, which was higher than the control group. The difference was statistically significant ($P < 0.05$) (Table 6).
Table 4 Comparison of Harris hip function scores between the two groups (mean ± SD, min)

Parameter	Control group (n = 50)	Observation group (n = 50)		
	Before intervention	After intervention	Before intervention	After intervention
Pain degree	8.56 ± 1.65	35.69 ± 4.12^a	8.70 ± 1.71	40.52 ± 4.56^{ac}
Daily activity function	2.96 ± 0.52	10.12 ± 2.02^a	3.05 ± 0.45	11.89 ± 2.14^{ac}
Gait	1.85 ± 0.63	7.12 ± 1.63^a	1.87 ± 0.59	9.36 ± 1.45^{ac}
Walking aid	1.63 ± 0.36	5.24 ± 0.96^a	1.68 ± 0.30	7.11 ± 1.41^{ac}
Walking distance	1.98 ± 0.37	6.36 ± 1.32^a	1.95 ± 0.31	8.05 ± 1.17^{ac}
Deformity	2.03 ± 0.41	3.12 ± 0.29^a	2.06 ± 0.35	3.56 ± 0.31^{ac}
Joint range of motion	1.98 ± 0.29	3.22 ± 0.37^a	2.03 ± 0.26	3.69 ± 0.41^{ac}
Total score	20.36 ± 2.12	70.52 ± 6.02^a	20.13 ± 2.23	83.12 ± 7.02^{ac}

^aP < 0.05 vs pre-intervention.
^cP < 0.05 vs the control group.

Table 5 Comparison of global quality of life questionnaire scores between the two groups (mean ± SD, min)

Group	Control group (n = 50)	Observation group (n = 50)		
	Before intervention	After intervention	Before intervention	After intervention
Physical health	51.02 ± 9.63	75.69 ± 11.05^a	50.29 ± 10.13	82.34 ± 10.53^{ac}
Mental health	68.36 ± 10.26	81.36 ± 8.66^a	66.95 ± 12.97	87.96 ± 9.43^{ac}
Material life	61.62 ± 8.63	66.36 ± 7.44^a	61.62 ± 8.63	73.05 ± 8.05^{ac}
Social function	59.02 ± 7.14	67.36 ± 5.98^a	59.02 ± 7.14	75.45 ± 8.06^{ac}

^aP < 0.05 vs pre-intervention.
^cP < 0.05 vs the control group.

Table 6 Comparison of satisfaction between the two groups, n (%)

Group	Number of cases	Very satisfied	Basically satisfied	Dissatisfied	Satisfied
Control group	50	21 (42.00)	18 (36.00)	11 (22.00)	39 (78.00)
Observation group	50	30 (60.00)	17 (34.00)	3 (6.00)	47 (94.00)^a

^aP < 0.05 vs the control group.

DISCUSSION

Timing theory advocates that during hospitalization, nurses provide appropriate interventions for caregivers by identifying the stage of the patient and strengthening the caregivers’ performance through repeated guidance. The goal is to improve caregivers’ ability to provide care, the quality of care, and the effectiveness of patients’ rehabilitation⁹. A continuous nursing care plan, guided by post-discharge timing theory, can reduce the pressure on caregivers’ through the application of a variety of intervention tools and measures, ensuring the effectiveness of post-discharge patient rehabilitation¹². The continuous nursing model based on timing theory and combined with resistance training was used for patients with stroke that had been complicated with a traumatic fracture and incorporated both patients and caregivers.
Caregivers have multidimensional needs during the nursing period, and the primary needs changed over time depending on the patient’s stage of disability. Therefore, to better meet the needs of caregivers, nursing staff should be cognizant of the characteristics of caregivers’ needs when formulating health education content and nursing intervention measures to achieve comprehensive and multi-dimensional support. Staff should also be aware of changes in caregivers’ needs so they can provide timely and corresponding needs support. After discharge, through regular telephone follow-up, WeChat groups, and public account information pushes, caregivers and patients can continue to acquire health knowledge. This can assist the caregivers in regularly evaluating the patient’s disease status and adjusting their individualized care plan accordingly. This can help them to effectively manage a variety of problems in the process of rehabilitation and can encourage multi-directional and multi-channel access to health resources.

In this study, the SPBS and load scores of both patients and caregivers in the observation group was lower after intervention, suggesting that the use of timing theory continuous nursing, combined with resistance training, can reduce patients’ sense of self-burden as well as caregivers’ sense of load in patients with stroke combined with a traumatic fracture. Continuous nursing based on timing theory can effectively reduce the caregivers’ psychological pressure and improve their caring ability\[13-17\]. Caregivers can share their caring experiences and emotional communication, thereby effectively relieving the psychological pressure. The study also found that the ADL score of the observation group after intervention was higher than that of the control group, and the Harris hip function score of the observation group after intervention was higher than that of the control group. By improving the hip joint function score, the quality of daily life is improved.

According to the study, after intervention, ALP, osteocalcin, and ADL scores in the observation group were higher than those in the control group, suggesting that timing theory continuous nursing, combined with resistance training, can be conducive to bone phosphorus metabolism recovery and improvement. Both ALP and osteocalcin are important indicators in the process of bone metabolism, so active rehabilitation care is of great significance for regulating human bone metabolism. The quality of daily life in patients with stroke combined with a traumatic fracture. The GQOL-74 and HHS in the observation group, after intervention, were higher than those in the control group, indicating that the application of this model can enable patients and caregivers to adapt to the new role of caring more quickly for patients and rearranging their work and life. Over time, the caregivers can slowly accept the reality of the disease, adapt to the reality of caregiving, and accumulate further care experience, while the patients’ own functional defects and their self-care ability can gradually improve\[18\].

Timing theory has been applied in a variety of disease groups abroad, but it is rarely applied in stroke patients with a traumatic fracture in China\[19,20\]. In this study, the specific needs of patients at different stages and the timing to meet these needs were analyzed. An investigation was conducted according to patients’ needs. Based on this, intervention measures conforming to the characteristics of caregivers’ needs were formulated and implemented, and positive intervention effects were achieved. However, there was a short follow-up time in this study, so the long-term effects cannot be identified. The sample size and sampling range were small. Future studies should increase the sample size and conduct longer continuous intervention studies to understand their long-term effects.

CONCLUSION

In conclusion, timing theory continuous nursing combined with resistance training can reduce the hip function of stroke patients with a traumatic fracture, improve their ability of daily life and quality of life, and promote the mental health of both patients and their caregivers.

ARTICLE HIGHLIGHTS

Research background

Stroke is the main cause of lifelong disability in adults worldwide. It refers to acute cerebrovascular diseases with multiple etiologies and corresponding clinical
symptoms. Approximately 75% of surviving stroke patients have neurological impairment. Because of this, some patients are prone to traumatic fractures and require special care.

Research motivation
Provide new methods and ideas for the nursing of patients with traumatic fracture and stroke.

Research objectives
The authors aimed to determine the effect of timing theory continuous care, with resistance training, on rehabilitation and mental health of caregivers and stroke patients with traumatic fractures.

Research methods
We conducted a study on 100 patients with traumatic fractures who came to our hospital from January 2017 to March 2021 due to post-stroke hemiplegia.

Research results
After the intervention, compared with before the intervention, the observation group and the control group increased alkaline phosphatase (ALP), osteocalcin, and vitamin D3, and type I collagen β-carboxy terminal peptide (β-CTX) decreased. ALP and osteocalcin in the observation group were higher than those in the control group. There was no statistically significant difference between the two groups of β-CTX and vitamin D3. The SPBS score of the observation group was lower than that of the control group, and the ability of daily living score of the observation group was higher than that of the control group. The burden score was lower than that of the control group, Harris hip joint function and global quality of life questionnaire scores were higher than that of the control group, and the satisfaction degree was higher than that of the control group.

Research conclusions
Timing theory continuous nursing with resistance training can reduce hip dysfunction of stroke patients with a traumatic fracture and enhance quality of life and mental health of patients and caregivers.

Research perspectives
In the subsequent treatment, it can improve the ability of daily living and quality of life of patients with traumatic fracture of stroke, and promote the mental health of patients and their caregivers.

REFERENCES

1. Cao Y, DiPro N, Krause JS. Association of Secondary Health Conditions With Future Chronic Health Conditions Among Persons With Traumatic Spinal Cord Injury. *Top Spinal Cord Inj Rehabil* 2020; 26: 283-289 [PMID: 33336734 DOI: 10.46292/sci20-00020]

2. Hoffman H, Bunch KM, Protas M, Chin LS. Risk Factors and Outcomes Associated with Blunt Cerebrovascular Injury in Patients with Mild or Moderate Traumatic Brain Injury. *Ann Vasc Surg* 2021; 71: 157-166 [PMID: 32768544 DOI: 10.1016/j.avsg.2020.07.031]

3. Macovei L, Magopet R, Tanasa A, Raileanu C, Prisacariu C, Presura MR, Balasanian MO. Coronary artery bypass graft surgery versus percutaneous coronary intervention in unprotected left main coronary artery disease: A systematic review. *Rev Cardiovasc Med* 2020; 21: 65-73 [PMID: 32259905 DOI: 10.31083/j.rcm.2020.01.590]

4. Paterno R, Folweiler KA, Cohen AS. Pathophysiology and Treatment of Memory Dysfunction After Traumatic Brain Injury. *Curr Neurol Neurosci Rep* 2017; 17: 52 [PMID: 28500417 DOI: 10.1007/s11910-017-0762-x]

5. Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. *Nature* 2010; 464: 529-535 [PMID: 20336135 DOI: 10.1038/nature08983]

6. Braun T, Marks D. Comment on: “Evaluating the effectiveness of aquatic therapy on mobility, balance, and level of functional independence in stroke rehabilitation: a systematic review and meta-analysis”. *Clin Rehabil* 2020; 34: 845-847 [PMID: 32380862 DOI: 10.1177/0269215520919057]

7. Khodadadi M, Shayanfar H, Maghooli K, Hooshang Mazinan A. Fuzzy cognitive map based approach for determining the risk of ischemic stroke. *IET Syst Biol* 2019; 13: 297-304 [PMID: 31776126 DOI: 10.1049/iet-syb.2018.5128]

8. McFarlane TD, Love J, Hanley S, Dixon BE, Hammond FM. Increased Risk of Stroke Among
Shen YL et al. Nursing care of traumatic fracture after stroke

Young Adults With Serious Traumatic Brain Injury. *J Head Trauma Rehabil* 2020; 35: E310-E319 [PMID: 31834059 DOI: 10.1097/HTR.0000000000000539]

Davies L, Delcourt C. Current approach to acute stroke management. *Intern Med J* 2021; 51: 481-487 [PMID: 33890368 DOI: 10.1111/imj.15273]

Giubertoni A, Boggio E, Ubertini E, Zanaboni J, Caltagirone C, Bellacosa I, Marino PN; from the Novara Atrial Fibrillation (NAIF) Study Group. Atrial conduit function quantitation precardioversion predicts early arrhythmia recurrence in persistent atrial fibrillation patients. *J Cardiovasc Med (Hagerstown)* 2019; 20: 169-179 [PMID: 30829875 DOI: 10.2459/JCM.0000000000000756]

Vieira CS, de Nadai MN, de Melo Pereira do Carmo LS, Braga GC, Infante BF, Stifani BM, Ferriani RA, Quintana SM. Timing of postpartum etonogestrel-releasing implant insertion and bleeding patterns, weight change, 12-month continuation and satisfaction rates: a randomized controlled trial. *Contraception* 2019; 100: 258-263 [PMID: 31145885 DOI: 10.1016/j.contraception.2019.05.007]

Lee CK, Gong J. Fokker-Planck equation with arbitrary dc and ac fields: continued fraction method. *Phys Rev E Stat Nonlin Soft Matter Phys* 2011; 84: 011104 DOI: 10.1103/PhysRevE.84.011104

Wollesen B, Hagemann D, Pabst K, Schlüter R, Bischoff LL, Otto AK, Hold C, Fenger A. Identifying Individual Stressors in Geriatric Nursing Staff-A Cross-Sectional Study. *Int J Environ Res Public Health* 2019; 16: [PMID: 31557867 DOI: 10.3390/ijerph16193587]

Conradie M, Erwee D, Serfontein I, Visser M, Calitz FJ, Joubert G. A profile of perceived stress factors among nursing staff working with intellectually disabled in-patients at the Free State Psychiatric Complex, South Africa. *Curationis* 2017; 40: e1-e8 [PMID: 28397510 DOI: 10.4102/curationis.v40i1.1578]

Tran DT, Johnson M, Fernandez R, Jones S. A shared care model vs. a patient allocation model of nursing care delivery: comparing nursing staff satisfaction and stress outcomes. *Int J Nurs Pract* 2010; 16: 148-158 [PMID: 20487060 DOI: 10.1111/j.1440-172X.2010.01823.x]

Glozier N, Hough C, Henderson M, Holland-Elliott K. Attitudes of nursing staff towards co-workers returning from psychiatric and physical illnesses. *Int J Soc Psychiatry* 2006; 52: 525-534 [PMID: 17294598 DOI: 10.1177/0020764006066843]

Salášek M, Šlechtová J, Pavelk T. [Heparin-Induced Thrombocytopenia after Total Knee Replacement]. *Acta Chir Orthop Traumatol Cech* 2020; 87: 129-133 [PMID: 32396515]

Sonaglioni A, Lonati C, Lombardo M, Rigamonti E, Binda G, Vincenti A, Nicolosi GL, Bianchi S, Harari S, Anzà C. Incremental prognostic value of global left atrial peak strain in women with new-onset gestational hypertension. *J Hypertens* 2019; 37: 1668-1675 [PMID: 30950977 DOI: 10.1097/HJH.0000000000002086]

Nazzari H, Chue CD, Toma M. Mechanical circulatory support in the heart failure population. *Curr Opin Cardiol* 2019; 34: 194-201 [PMID: 30633077 DOI: 10.1097/HCO.0000000000000600]
