AUTOMORPHISMS OF NONSPLIT COVERINGS OF $PSL_2(q)$
IN ODD CHARACTERISTIC DIVIDING $q - 1$

ANDREI V. ZAVARNITSINE

Abstract. We classify the nonsplit extensions of elementary abelian p-groups by $PSL_2(q)$, with odd p dividing $q - 1$, for an irreducible induced action, calculate the relevant low-dimensional cohomology groups, and describe the automorphism groups of such extensions.

Keywords: Automorphism group, nonsplit extension, cohomology.

1. Introduction

Given a short exact sequence of groups

$$0 \rightarrow V \rightarrow G \rightarrow L \rightarrow 1,$$

where V is abelian (written additively), we say that G is an extension of V by L, or a covering of L with kernel V. Such extensions arise naturally in inductive arguments or when constructing minimal examples and counterexamples. We will be interested in the case where G is finite and nonsplit and V acquires the structure of an irreducible FL-module (for a suitable finite field F of characteristic p) from the conjugation in G. Such extensions can only exist if p divides $|L|$. We also restrict ourselves to the case $L \cong PSL_2(q)$. Extensions of this form for $p = 2$ and q odd were explicitly constructed in [1], and their automorphism groups were described in [11]. Some results in the case of q being a power of p were obtained in [2].

The aim of this paper is to classify such extensions in the case $2 \neq p | (q - 1)$ and describe their automorphism groups. In this case, we can use the fact that the natural permutation FL-module arising from the action of L on the projective line over F_q is completely reducible. This is not so if $2 \neq p | (q + 1)$ which case will be a subject of future research. We now state the main results.

Theorem 1. Up to isomorphism there is a unique nonsplit extension of an elementary abelian p-group V by $L = PSL_2(q)$ with irreducible induced action of L on V, where $2 \neq p | (q - 1)$. In this extension, $|V| = p^q$.

The group V from Theorem 1 as an $F_p L$-module can be identified with the unique nonprincipal irreducible module in the principal p-block of L. The low-dimensional cohomology of V is as follows.

Theorem 2. In the above notation, we have $H^1(L, V) \cong H^2(L, V) \cong F_p$.

Recall that $PGL_2(q)$ denotes the extension of $PGL_2(q)$ by its field automorphisms. The automorphism group of the nonsplit extension from Theorem 1 is described by

Theorem 3. Let G fit in the nonsplit exact sequence (1), where V is an irreducible $F_p L$-module for $L = PSL_2(q)$ and $2 \neq p | (q - 1)$. Then there is a short exact sequence

$$0 \rightarrow V \rightarrow G \rightarrow L \rightarrow 1,$$
sequence

$$0 \to W \to \text{Aut}(G) \to \text{PGL}_2(q) \to 1,$$

where W is elementary abelian of order p^{q+1}.

2. Auxiliary facts

Basic notation and facts of homological algebra can be found in [7, 13]. For abelian groups A and B, we denote $\text{Hom}(A,B) = \text{Hom}_\mathbb{Z}(A,B)$ and $\text{Ext}(A,B) = \text{Ext}_1^\mathbb{Z}(A,B)$.

Lemma 4 (The Universal Coefficient Theorem for Cohomology). [7, Ch. 3, Theorem 3] For all $i \geq 1$, every group G, and every trivial G-module A,

$$H^i(G, A) \cong \text{Hom}(H_i(G, \mathbb{Z}), A) \oplus \text{Ext}(H_{i-1}(G, \mathbb{Z}), A).$$

Lemma 5. [7, §3.5] For a trivial G-module A, we have

(i) $H^1(G, A) \cong \text{Hom}(G/G', A)$.
(ii) $H_1(G, A) \cong G/G' \otimes \mathbb{Z} A$.

Lemma 6 (Shapiro’s lemma). [13, §6.3] Let $H \leq G$ with $|G : H|$ finite. If V is an H-module and $i \geq 0$ then $H^i(G, V^G) \cong H^i(H, V)$, where V^G is the induced G-module.

Lemma 7. [5, p. 322] $\text{Ext}(\mathbb{Z}_m, \mathbb{Z}_n) \cong \mathbb{Z}_d$, where $d = (m, n)$.

Lemma 8. [13, Proposition 3.3.4]. $\text{Ext}_R^i(A, B_1 \oplus B_2) \cong \text{Ext}_R^i(A, B_1) \oplus \text{Ext}_R^i(A, B_2)$ for all rings R, R-modules A, B_1, B_2, and all $i \geq 0$.

The Schur multiplier of a group G is denoted by $\text{Sch}(G)$. If A is a finite abelian group and p a prime then $A(p)$ denotes the p-primary component of A. Henceforth, we assume that G is finite.

Lemma 9. [9, Theorem 25.1] Let p be a prime and let $S \in \text{Syl}_p(G)$. Then $\text{Sch}(G)(p)$ is isomorphic to a subgroup of $\text{Sch}(S)$.

Lemma 10. [6] Let F be a field of characteristic $p > 0$ and let V be an irreducible FG-module that does not belong to the principal p-block of G. Then $H^n(G, V) = 0$ for all $n \geq 0$.

Let θ be an irreducible character of G. If $Z(G) = 1$ then $G \cong \text{Aut}(G)$ and we may speak of the inertia group $I_{\text{Aut}(G)}(\theta) = \{g \in \text{Aut}(G) \mid \theta^g = \theta\}$.

Proposition 11. [11] Proposition 4] Let F be a field and \mathcal{X} a faithful irreducible F-representation of a group G with Brauer character $\theta \in \text{iBr}_F(G)$ of degree n. Suppose that $Z(G) = 1$ and denote

$$N = N_{\text{GL}_n(F)}(\mathcal{X}(G)) \quad \text{and} \quad Z = C_{\text{GL}_n(F)}(\mathcal{X}(G)).$$

Then $N/Z \cong I_{\text{Aut}(G)}(\theta)$.
3. Isomorphic extensions

Let Q be a group, K a commutative ring with 1, and M a right KQ-module. The pair $(\nu, \mu) \in \text{Aut}(Q) \times \text{Aut}_K(M)$ is \textit{compatible} if
\[(mg)\mu = (m\mu)(g\nu)\]
for all $m \in M$, $g \in Q$. The set of all compatible pairs forms a group $\text{Comp}(Q, M)$ under composition. Given $\tau \in Z^2(Q, M)$, one can define
\[\tau^{(\nu, \mu)}(g, h) = \tau(g\nu^{-1}, h\nu^{-1})\mu\]
for all $g, h \in Q$. Then the map $\tau \mapsto \tau^{(\nu, \mu)}$ is an action of $\text{Comp}(Q, M)$ on $Z^2(Q, M)$ which preserves $B^2(Q, M)$ and so yields an action on $H^2(Q, M)$.

A KQ-module extension on M by Q is a group E that fits in the short exact sequence
\[0 \to M \xrightarrow{i} E \xrightarrow{\pi} Q \to 1\]
so that the conjugation of M (identified with M_1) by elements of E agrees with the KQ-module structure of M, i.e. $m^e = m(e\pi)$ for all $m \in M$, $e \in E$.

\textbf{Proposition 12.} \cite{3} [2.7.4] \textit{The classes of those isomorphisms of KQ-module extensions of M by Q that leave M invariant as a K-module are in a one-to-one correspondence with the orbits of $\text{Comp}(Q, M)$ on $H^2(Q, M)$.}

In Proposition 12, an isomorphism leaving M invariant as a K-module means one that induces on M an element of $\text{Aut}_K(M)$.

The KQ-module structure on M gives rise to the representation homomorphism $C : Q \to \text{Aut}_K(M)$ by the rule $C(g) : m \mapsto mg$ for all $m \in M$, $g \in Q$. Let C be the centraliser of $C(Q)$ in $\text{Aut}_K(M)$. Then $(1, \gamma) \in \text{Comp}(Q, M)$ for every $\gamma \in C$, because
\[(mg)\gamma = mC(g)\gamma = m\gamma C(g) = (m\gamma)g\]
for all $m \in M$, $g \in Q$. Hence, we also have an action of C on both $Z^2(Q, M)$ and $H^2(Q, M)$ by setting $\tau^{\gamma} = \tau^{(1, \gamma)}$ for $\tau \in Z^2(Q, M)$, $\gamma \in C$, i.e. $\tau^{\gamma}(g, h) = \tau(g, h)^\gamma$. By Proposition 12 this yields the following:

\textbf{Lemma 13.} \textit{The elements of $H^2(Q, M)$ that are in the same C-orbit correspond to isomorphic KQ-module extensions.}

In particular, we have the following fact, where two elements of $H^2(Q, M)$ are called scalar multiples if they differ by a factor in K^\times.

\textbf{Corollary 14.} \textit{KQ-module extensions of M by Q corresponding to scalar multiples in $H^2(Q, M)$ are isomorphic.}

4. Automorphisms of extensions

Fix an extension
\[e : 0 \to M \xrightarrow{i} E \to Q \to 1\]
with abelian kernel M. Let $C : Q \to \text{Aut}(M)$ be the induced representation and let $\tau \in H^2(Q, M)$ be the element that corresponds to e. We assume that C is faithful. In particular, $Q \cong C(Q)$ and the conjugation of $C(Q)$ by any $\mu \in N_{\text{Aut}(M)}(C(Q))$
induces an element \(\mu' \in \text{Aut}(Q) \), i.e. \(C(g)\mu = C(g\mu') \) for all \(g \in Q \). One defines an action of \(N_{\text{Aut}(M)}(C(Q)) \) on \(H^2(Q, M) \) given by

\[
\overline{\psi} \mapsto (\mu')^{-1}\overline{\psi}\mu
\]

for every \(\mu \in N_{\text{Aut}(M)}(C(Q)) \) and \(\overline{\psi} \in H^2(Q, M) \), which should be understood modulo \(B^2(Q, M) \) for representative cocycles, see [12] for details. We denote by \(N_{\text{Aut}(M)}(C(Q)) \) the stabilizer of \(\overline{\psi} \) with respect to this action. Let \(\text{Aut}(e) \) denote the group of those automorphisms of \(E \) that leave \(M \) invariant as a set.

Proposition 15. [12] Statements (4.4),(4.5) Let the extension (5) have an abelian kernel \(M \) and let it determine an element \(\overline{\psi} \in H^2(Q, M) \) and an injective induced representation \(C : Q \to \text{Aut}(M) \). Then there exists a short exact sequence of groups

\[
0 \to Z^1(Q, M) \to \text{Aut}(e) \to N_{\text{Aut}(M)}(C(Q)) \to 1.
\]

Remark. It is easy to see that, in the notation above, there is an embedding \(N_{\text{Aut}(M)}(C(Q)) \to \text{Comp}(Q, M) \), \(\mu \mapsto (\mu', \mu) \), where we view \(M \) as a \(\mathbb{Z}Q \)-module, under which action (6) becomes a particular case of (3), and that this embedding is in fact an isomorphism in case \(C \) is faithful (which we assume).

5. **Cohomology of \(PSL_2(q) \) in characteristic dividing \(q - 1 \)**

The aim of this section is to classify up to group isomorphism nonsplit extensions (1), where \(L = PSL_2(q) \), \(V \) is an elementary abelian \(p \)-group with irreducible induced action of \(L \), and \(p \neq 2 \) is a divisor of \(q - 1 \).

By Lemma [10], \(V \) must belong to the principal \(p \)-block of \(L \). This block contains only one nonprincipal module with Brauer character \(\chi \), see [3]. The values of characters in the principal block are shown in Table 1.

\(q \) odd	1a	2a	la	lb	\((x^r)^L\)	\((y^r)^L\)	\(q \) even	1a	2a	\((x^r)^L\)	\((y^r)^L\)
1 \(\chi \)	1	1	1	1	1	1	1	1	1	1	1
q	-1	0	0	1	-1	0	q	1	1	1	-1

We first note that \(V \) is not the principal module. Indeed, extension (1) would otherwise be central, but \(\text{Sch}(L) \) has no \(p \)-torsion, because

\[
\text{Sch}(L) = \left\{ \begin{array}{ll}
\mathbb{Z}_2, & q \neq 9 \text{ odd or } q = 4; \\
\mathbb{Z}_6, & q = 9; \\
1, & q \neq 4 \text{ even}
\end{array} \right.
\]

as follows from [4]. Therefore, \(V \) must be the \(\mathbb{F}_p \)-module with character \(\chi \).

We can now prove Theorem 2 stated in the introduction.

Proof. Let \(P \) be the permutation \(\mathbb{F}_p \)-module of dimension \(q + 1 \) that corresponds to the natural permutation action of \(L \) on the projective line over \(\mathbb{F}_q \). We have \(P = I_L \oplus V \), where \(I_L \) is the principal \(\mathbb{F}_p \)-module. This can be deduced either by considering the Brauer character \(\chi \) of \(V \) or from [10] Table 1. In particular, by Lemma 8 we have

\[
H^i(L, P) \cong H^i(L, I_L) \oplus H^i(L, V)
\]
Consider the extension ϕ follows. By Corollary 14, they correspond to isomorphic nonsplit extensions. The claim has Brauer character χ from Table 1. By Proposition 15, we have the short exact sequence $0 \to Z^1(L, V) \to \text{Aut}(e) \to N_{\text{Aut}(V)}(\chi(L)) \to 1$, \hfill (16)

where the representation $\chi : L \to \text{Aut}(V)$ and the element $\overline{\varphi} \in H^2(L, V)$ are determined by \hfill (15). First, note that $\text{Aut}(e) = \text{Aut}(G)$ as V is characteristic in G. Denote $W = Z^1(L, V)$. Since $B^3(L, V) \cong V/C_V(L)$ and L acts on V irreducibly

for $i = 1, 2$, since $H^i(L, B) \cong \text{Ext}^i_{\mathbb{F}_p}(F_p, B)$ for every \mathbb{F}_pL-module B, see \hfill [13]

Exercise 6.1.2]. Since P is a permutation module, we have $P \cong (I_H)^G$, where I_H is the principal \mathbb{F}_pH-module for a point stabiliser $H \leq L$. Hence, Lemma 3 implies

$$H^i(L, P) \cong H^i(H, I_H)$$ \hfill (10)

for $i = 1, 2$. By Lemma 5(i), we have

$$H^1(L, I_L) \cong \text{Hom}(L/L', I_L) = 0,$$ \hfill (11)

since $L = L'$. Also,

$$H^1(H, I_H) \cong \text{Hom}(H/H', I_H) \cong \mathbb{F}_p,$$ \hfill (12)

since $I_H \cong \mathbb{F}_p$, $H \cong \mathbb{F}_q \times \mathbb{Z}_{q-1}/(2,q-1)$, and $p \mid (q-1)$. By Lemma 6 we have

$$H^2(L, I_L) \cong \text{Hom}(H_2(L, \mathbb{Z}), I_L) \cong \text{Ext}(H_1(L, \mathbb{Z}), I_L),$$

where the first summand vanishes, since $H_2(L, \mathbb{Z}) \cong \text{Sch}(L)$ has no p-torsion by \hfill [5], and the second summand vanishes by Lemma 5(ii), since $L/L' = 1$. Thus

$$H^2(L, I_L) = 0.$$ \hfill (13)

Finally, Lemma 4 also yields

$$H^2(H, I_H) \cong \text{Hom}(H_2(H, \mathbb{Z}), I_H) \cong \text{Ext}(H_1(H, \mathbb{Z}), I_H).$$ \hfill (14)

By Lemma 9 the p-part of $H_2(H, \mathbb{Z}) \cong \text{Sch}(H)$ is isomorphic to a subgroup of $\text{Sch}(S)$ for a p-Sylow subgroup S of H. However, S is cyclic and cyclic groups have trivial Schur multiplier. Thus, the first summand in (14) vanishes, because $I_H \cong \mathbb{F}_p$. Since $H_1(H, \mathbb{Z}) \cong H/H' \cong \mathbb{Z}_{(q-1)/d}$ and $\text{Ext}(\mathbb{Z}_{(q-1)/d}, \mathbb{F}_p) \cong \mathbb{F}_p$ by Lemma 7, we have

$$H^2(H, I_H) \cong \mathbb{F}_p.$$ \hfill (15)

The claim follows by combining \hfill (9) through \hfill (15).

We can now prove Theorem 1 stated in the introduction.

Proof. As we explained in the beginning of this section, V viewed as an \mathbb{F}_pL-module must be the unique nonprincipal module in the principal p-block of L. This module has dimension q and can be written over \mathbb{F}_p, since it is a direct summand of a permutation module. Therefore, $|V| = p^q$. By Theorem 2, we have $H^2(V, L) \cong \mathbb{F}_p$ and so all nonzero elements of $H^2(V, L)$ are scalar multiples of one another. By Corollary 14 they correspond to isomorphic nonsplit extensions. The claim follows. \hfill \square

6. The Automorphism Group

In this section, we prove that the structure of the automorphism group of the unique nonsplit extension from Theorem 1 is as stated in Theorem 3.

Proof. Consider the extension e given by \hfill (11). Theorem 1 implies that G is unique up to isomorphism and V has order p^q. Moreover, viewed as an \mathbb{F}_pL-module, V has Brauer character χ from Table 1. By Proposition 15, we have the short exact sequence

$$0 \to Z^1(L, V) \to \text{Aut}(e) \to N_{\text{Aut}(V)}(\chi(L)) \to 1,$$ \hfill (16)

where the representation $\chi : L \to \text{Aut}(V)$ and the element $\overline{\varphi} \in H^2(L, V)$ are determined by \hfill (15). First, note that $\text{Aut}(e) = \text{Aut}(G)$ as V is characteristic in G. Denote $W = Z^1(L, V)$. Since $B^3(L, V) \cong V/C_V(L)$ and L acts on V irreducibly
and nontrivially, we have $C_V(L) = 0$ and $B^1(L, V) \cong V$. Now, since $H^1(L, V) = Z^1(L, V) / B^1(L, V)$, we have $|Z^1(L, V)| = p^{r+1}$ in view of Theorem 2.

Denote $N = \bar{N}_{GL(V)}(\mathcal{X}(L))$ and $Z = C_{GL(V)}(\mathcal{X}(L))$. By Proposition 11, we have $N/Z \cong I_{\text{Aut}(L)}(\chi)$. Since χ is the only irreducible character of L of dimension q, it must be invariant under any automorphism; in particular, $I_{\text{Aut}(L)}(\chi) = \text{Aut}(L)$. By [11], $\text{Aut}(L) \cong \text{PTL}_2(q)$. Since V is absolutely irreducible as an \mathbb{F}_p-L-module, by Schur’s lemma, we see that $Z \cong \mathbb{F}_p^r \cong \mathbb{Z}_{p-1}$ consists of scalars.

In order to determine the structure of the stabiliser $N_0 = N_{\text{Aut}(V)}(\mathcal{X}(L))$, we consider the action of N on $H^2(L, V)$ as explained in Section 4. Let H^\times denote the set of $p - 1$ nonzero elements of $H^2(L, V)$. The elements of H^\times correspond to nonsplit extensions and so we have an action homomorphism $\alpha : N \to \text{Sym}(H^\times)$ to the symmetric group on H^\times. Since all nonsplit extension of V by L are isomorphic by Theorem 11 we may assume that \mathcal{V} is an arbitrary element of H^\times. The subgroup $Z \leq N$ acts on H^\times by scalar multiplication, cf. Corollary 11 and so the image $\alpha(Z)$ is a cyclic subgroup of $\text{Sym}(H^\times)$ generated by a full cycle of length $p - 1$. Since Z is central in N, $\alpha(N)$ must centralise $\alpha(Z)$. However, a full cyclic subgroup is self-centralising in $\text{Sym}(H^\times)$ and so $\alpha(Z)$ must be the entire image $\alpha(N)$. Thus, $\text{Ker}(\alpha)$ is a normal subgroup of N of index $p - 1$ which intersects trivially with Z and is thus isomorphic to $N/Z \cong \text{PTL}_2(q)$. Furthermore, $\ker(\alpha)$ coincides with the stabiliser of every element of H^\times which yields $N = N_0 \times Z$ and $N_0 \cong \text{PTL}_2(q)$ as claimed.

It also follows from this proof that the representation $\mathcal{X} : L \to \text{Aut}(V)$ with character χ extends to a representation of $I_{\text{Aut}(L)}(\chi) \cong \text{PTL}_2(q)$. This fact does not hold in general for a simple group L and its irreducible character χ, see [11] Example 1.

Acknowledgement. The work was supported by the RAS Fundamental Research Program, project FWNF-2022-0002.

References

[1] V. P. Burichenko, Extensions of abelian 2-groups by $L_2(q)$ with irreducible action, Algebra Logic 39 (2000), no. 3, 160–183.
[2] V. P. Burichenko, Nonsplit extensions of Abelian p-groups by $L_2(p^n)$ and general theorems on extensions of finite groups, Siberian Adv. Math., 25 (2015), no. 2, 77–109.
[3] R. Burkhardt, Die Zerlegungsmatizen der Gruppen $PSL(2,p^l)$, J. Algebra 40 (1976), no. 1, 75–96 (German).
[4] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, Atlas of finite groups, Clarendon Press, Oxford, 1985.
[5] S. Deo, Algebraic topology. a primer, Texts and Readings in Mathematics, vol. 27, Hindustan Book Agency; Springer, New Delhi–Singapore, 2018.
[6] S. M. Gagola, A splitting condition using block theory, Michigan Math. J. 23 (1976), no. 3, 203–206.
[7] K. W. Gruenberg, Cohomological topics in group theory, Lecture Notes in Mathematics, vol. 143, Springer-Verlag, Berlin–New York, 1970.
[8] D. F. Holt, B. Eick, and E. A. O’Brien, Handbook of computational group theory, Discrete Mathematics and its Applications, Chapman & Hall/CRC Press, Boca Raton, FL, 2005.
[9] B. Huppert, Endliche Gruppen. I, Grundlehren der Mathematischen Wissenschaften, vol. 134, Springer-Verlag, Berlin, 1967.
[10] B. Mortimer, The Modular Permutation Representations of the Known Doubly Transitive Groups, Proceedings of the London Mathematical Society s3-41 (1980), no. 1, 1–20.
[11] D. O. Revin and A. V. Zavarnitsine, Automorphisms of nonsplit extensions of 2-groups by $PSL_2(q)$, J. Group Theory 24 (2021), no. 6, 1245–1261.
[12] D. J. S. Robinson, *Applications of cohomology to the theory of groups*, Proceedings of the Conference “Groups St Andrews 1981” in London Mathematical Society Lecture Note Series, vol. 71 (1982), 46–80.

[13] C. A. Weibel, *An introduction to homological algebra*, Cambridge Studies in Advanced Mathematics, vol. 38, Cambridge University Press, Cambridge, 1994.

Andrei V. Zavarnitsine
Sobolev Institute of Mathematics,
4, Koptyug av.
630090, Novosibirsk, Russia
Email address: zav@math.nsc.ru