Compound Batch Normalization for Long-tailed Image Classification

Lechao Cheng Chaowei Fang∗ Dingwen Zhang Guanbin Li Gang Huang
Zhejiang Lab Xidian University Northwestern Polytechnical University Sun Yat-sen University Zhejiang Lab
chenglc@zhejianglab.com chaoweifang@outlook.com zhangdingwen2006yyy@gmail.com liguanbin@mail.sysu.edu.cn huanggang@zju.edu.cn

ABSTRACT

Significant progress has been made in learning image classification neural networks under long-tail data distribution using robust training algorithms such as data re-sampling, re-weighting, and margin adjustment. Those methods, however, ignore the impact of data imbalance on feature normalization. The dominance of majority classes (head classes) in estimating statistics and affine parameters causes internal covariate shifts within less-frequent categories to be overlooked. To alleviate this challenge, we propose a compound batch normalization method based on a Gaussian mixture. It can model the feature space more comprehensively and reduce the dominance of head classes. In addition, a moving average-based expectation maximization (EM) algorithm is employed to estimate the statistical parameters of multiple Gaussian distributions. However, the EM algorithm is sensitive to initialization and can easily become stuck in local minima where the multiple Gaussian components continue to focus on majority classes. To tackle this issue, we developed a dual-path learning framework that employs class-aware split feature normalization to diversify the estimated Gaussian distributions, allowing the Gaussian components to fit with training samples of less-frequent classes more comprehensively. Extensive experiments on commonly used datasets demonstrated that the proposed method outperforms existing methods on long-tailed image classification.

CCS CONCEPTS

• Computing methodologies → Computer vision; Computer vision problems.

KEYWORDS

Image classification; Long-tailed; Compound batch normalization

∗ Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:

Lechao Cheng, Chaowei Fang∗, Dingwen Zhang, Guanbin Li, and Gang Huang. 2022. Compound Batch Normalization for Long-tailed Image Classification. In Proceedings of the 30th ACM International Conference on Multimedia (MM ’22), October 10–14, 2022, Lisboa, Portugal. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/3503161.3547805

1 INTRODUCTION

Real-world image classification data usually exhibits an imbalanced distribution due to the natural scarcity of certain classes, industry barriers, and large data collection costs. The severely imbalanced data distribution causes substantial obstruction to the learning process, considering it is difficult to balance the classification performance of head and tail classes. The imbalanced learning problem attracts extensive research interests [4, 12, 34]. However, existing methods are incapable of deriving high accuracy on tail classes without hindering the performance of head classes or maintaining an efficient framework. This paper is targeted at learning with long-tailed training data while alleviating the above issues.

When learning deep convolutional neural networks (CNNs) with long-tailed samples, the optimization of network parameters is dominated by samples of head classes, which leads to relatively low performance for tail classes. Conventional solutions to the data imbalance problem is biasing the optimization process towards less frequent classes, such as class-balanced re-sampling [4, 14],
works attempt to address this problem through ensembling multiple classifiers learned under diverse sampling strategies [49] or adopting auxiliary classifiers to highlight the learning of tail classes [40]. However, such methods require increased network parameters and computational burden. Besides, the impact of data imbalance on feature representation learning cannot be thoroughly alleviated since they still depend on data resampling or reweighting algorithms to manage multiple classifiers.

Batch normalization is a critical component for mitigating the internal covariate shift in the feedforward calculation process of CNNs [21]. It can accelerate the optimization rate of network parameters and improve the generalization ability. Under the scenario of data imbalance, a single-modal Gaussian probability function cannot fully model the feature space and is prone to overlook tail classes. Thus, the conventional batch normalization can merely eliminate the global covariate shift but neglect the internal covariate shift of tail classes. This harms the learning efficiency and generalization capacity on tail classes.

To address the above problem, we generalize the feature normalization by modeling the feature space with compound Gaussian distributions. As shown in Figure 1, the features of training samples are composed of several scattered clusters. For the purpose of fitting the features more comprehensively, we employ a compound set of mean and variance parameters to implement the feature normalization process. Every set of mean and variance parameters is applied for whitening a group of features within a local subspace, and independent affine parameters are utilized for reconstructing the distribution statistics. Such a compound feature normalization helps to eliminate the local covariate shift and alleviate the dominance of head classes. Based on the compound feature normalization, we set up the mainstream branch for the classification model and devise a moving average based expectation maximization algorithm to evaluate the statistical parameters.

The estimation of statistical parameters in the multi-modal Gaussian probability function is easily affected by local minima, where multiple Gaussian distributions still concentrate on head classes while ignoring tail classes. Hence, we devise a dual-path learning framework to diversify those Gaussian distributions among all classes. An auxiliary branch is set up with the split normalization, which separates classes into different subsets and processes them with independent statistical and affine parameters. This benefits to disperse statistical parameters of different Gaussian distributions. Additionally, the mainstream and auxiliary branches interact with each other via the stop-gradient based consistency constraint [7] for enhancing the representation learning. The main contributions of this paper are concluded as follows:

- We propose a novel compound batch normalization algorithm based on a mixture of Gaussian distributions, which can alleviate the local covariate shift and prevent the dominance of head classes.
- A dual-path learning framework based on the compound and split feature normalization techniques is devised to diversify the statistical parameters of different Gaussian distributions.
- Exhaustive experiments on commonly used datasets demonstrate significant improvement of our method compared to existing state-of-the-art methods.

2 RELATED WORK

2.1 Long-tailed Image Classification

Real-world data usually has an unbalanced distribution. Image classification models are difficult to maintain high performance on tail classes. A vast number of methods are targeted at overcoming the issue of long-tailed data distribution, which can be mainly categorized into five types including data re-sampling, data re-weighting, classifier calibration, two-stage training, and model ensembling.

Data Re-sampling. Oversampling tail classes [4] and undersampling head classes [14] are early methods for re-balancing the training data. [20] proposes to split samples into clusters and constructs cluster-level and class-level quintuplets to achieve re-balanced representation learning. Data augmentation by distorting images or intermediate features [10, 24, 28, 37] can be utilized for expanding the sample sizes of tail classes. However, these methods easily lead to under-fitting of head classes or over-fitting of tail classes.

Data Re-weighting. The other type of commonly used methods is increasing weighting coefficients when calculating training losses for samples of tail classes. Simple data re-weighting can be implemented with the inverse class frequencies [20, 38]. [13] devises a more reasonable way to estimate the effective number of samples and incorporate it into the cross entropy loss. Focal loss [26] is capable of concentrating on ‘hard’ samples and can also benefit the learning of tail classes. [30] re-weights individual samples with influence factors estimated from gradients of network parameters. [12] devises a novel contrastive loss based on center learning and attempts to incorporate it with the balanced soft-max function for addressing the data imbalance issue.

Classifier Calibration. Another type of data imbalance learning methods focus on calibrating the supervision signals, decision margins, or parameters of classifiers. [48] smooths the one-hot label vectors and relieves the over-confidence on head classes. [18] leverages predictions of the teacher model to rectify the label distribution. [5] transfers the knowledge of head classes to tail classes considering the invariant label-conditional features across different labels. [3] shifts the decision boundary to head classes, thus improving the generalization error for tail classes without influencing the performance of head classes. [34] devises a distributionally robust loss by penalizing distances between samples and empirical category centroids. [46] utilizes an adaptive module to directly adjust the classification scores. [19] compensates the prediction logits for alleviating the label distribution shift between source and target data. [27] utilizes a set of classifier displacement vectors to transfer the geometry of head classes to tail classes. [22] devises a vector-scaling loss to unify the advantages of additive and multiplicative logit adjustments. [41] resorts to the mixup algorithm to encourage the occurrence of sample pairs from head and tail classes, and compensates the cross entropy with the Bayes bias.

Multi-Stage Training. Deferring the re-balancing procedure helps to relieve the intrinsic artifacts of data re-balancing methods, such as over-fitting with minority classes caused by data...
re-sampling and optimization instability caused by loss reweighting [3]. [49] constructs a two-branch framework to combine the instance-balanced learning and class-balanced learning in the cumulative manner. [25] employs three cascaded training stages, including self-supervised feature learning, class-balanced learning, and instance-balanced learning under the guidance of the knowledge distilled from the second stage.

Model Ensembling. A few imbalance learning algorithms aim at combining the advantages of multiple models separately trained with different subsets of samples. [40] splits classes into a few subsets, learns an expert model for each class subset, and integrates different expert models to teach the student model. [2] further devises a distribution-aware class splitting planner to increase the exposure of tail classes among upper models. [36] trains multiple diversified expert models simultaneously and sets up a routing mechanism to prune the multi-expert system for reducing the computation cost. [47] builds up multiple expert classifiers guided with conventional or balanced loss functions. It also attempts to leverage the cross-augmentation prediction consistency to improve the generalization of learned expert models on testing data with unknown distributions. The main drawback of this kind of methods is that learning multiple models inevitably increases the computation burden during training or testing.

2.2 Feature Normalization

Feature normalization, such as batch normalization [21], layer normalization [1], and group normalization [39], is commonly applied for eliminating the covariate shift in various tasks [8, 9, 15, 43–45]. Such kind of operations benefit to accelerate the optimization process, prevent over-fitting, and relieve the gradient vanishing/explosion phenomenon. However, these methods utilize a single Gaussian distribution, namely one set of mean and variance, to model the input features. The practical feature points usually exhibit a multi-modal Gaussian distribution. When the training samples are severely imbalanced, fitting them with a single-modal distribution leads to overlook of tail classes, which harms the efficiency of the normalization in learning tail classes. To address this issue, we design a novel feature normalization method based on the multi-modal Gaussian distribution. The momentum-based expectation maximization algorithm is incorporated for estimating multiple means and variances. Similar to our approach, SL-BN [48] proposes to update the mean and variance variables of batch normalization layers in the deferred training stage with class-balanced resampling. Our proposed compound batch normalization (CBN) differs from SL-BN in that, Gaussian mixtures are used to model the feature space in CBN while SL-BN still relies on single Gaussian distribution. Targeted at preventing pure noise images from distorting the estimation of the feature distribution, DAR-BN [42] splits the mean and variance variables for normal images and pure noise images. Auxiliary BN [29] is used for alleviating the disparity between training images processed with strong augmentation and testing images by setting up an extra batch normalization branch for strongly augmented images. The target of our devised CBN is distinct to them. CBN aims at modeling training data with multiple Gaussian distributions and preventing overlooking samples of tail classes during the batch normalization. Besides, the core algorithmic principle of our CBN is different to that of DAR-BN and Auxiliary BN. DAR-BN and Auxiliary BN essentially depends on a main branch to implement the feature normalization for input images. CBN accomplishes the normalization process by adaptively accumulating the normalization results calculated with individual Gaussian components.

3 APPROACH

3.1 Preliminary Knowledge on Batch Normalization

First, we remind the calculation procedure of batch normalization. Suppose the input feature map be $X \in \mathbb{R}^{B \times D \times H \times W}$, where B, D, H, and W denote the batch size, number of channels, height, and width, respectively. We can flatten dimensions except for channels into a single dimension, resulting in a two-dimensional tensor $x \in \mathbb{R}^{D \times N}$ ($N = BHW$). Channel-wise statistical variables including mean $\mu \in \mathbb{R}^{D \times 1}$ and variance $\sigma^2 \in \mathbb{R}^{D \times 1}$ are estimated as,

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i, \quad (1)$$

$$\hat{\sigma}^2 = \frac{1}{N} \sum_{i=1}^{N} (x_i - \hat{\mu})^2, \quad (2)$$

where $x_i \in \mathbb{R}^{D \times 1}$ represents the feature of the i-th point. During the network optimization, these statistical variables are accumulated with the moving average operation:

$$\mu := \lambda \mu + (1 - \lambda) \hat{\mu}, \quad (3)$$

$$\sigma^2 := \lambda \sigma^2 + (1 - \lambda) \hat{\sigma}^2. \quad (4)$$

λ is the momentum factor, determining the updating rate of μ and σ. Afterwards, the input feature x is normalized as below:

$$\hat{x} = \Sigma^{-\frac{1}{2}}(x - \mu), \quad (5)$$

where ϵ denotes a constant. $\Sigma = \text{diag}(\sigma^2)$, where $\text{diag}(\cdot)$ transforms the input vector into a diagonal matrix. Finally, the feature values are scaled and shifted with affine parameters γ and β,

$$x' = \gamma \hat{x} + \beta. \quad (6)$$

The batch normalization operation can remove the internal covariate shift during the feedforward propagation of neural networks, which benefits to stabilizing and accelerating the training speed. However, when the training samples are severely unbalanced, the calculation of the statistical variables is dominated by head classes, and the learning of affine parameters is also biased towards them. This induces to overlook of tail classes in the normalization process, which hinders the learning on less frequent classes.

3.2 Compound Batch Normalization

For modeling the feature space more comprehensively, we adopt a mixture of statistical variables to fit the feature distribution. Suppose the number of Gaussian distributions be M. The j-th Gaussian distribution is represented with a triplet of variables, including prior probability, mean, and variance variables, which are defined by τ_j, μ_j, and Σ_j, respectively. $\Sigma_j \in \mathbb{R}^{D \times P}$ is the diagonal variance matrix. Then, the batch normalization can be extended to compound
probability distributions. The input feature is normalized according to M Gaussian distributions independently, deriving of M normalization branches. Provided a feature vector x_i, the normalization with the j-th Gaussian distribution is formulated as follows,

$$
\hat{x}_i^{(j)} = \Sigma_j^{-\frac{1}{2}}(x_i - \mu_j).
$$

For the estimation of compound statistic variables, we apply the moving average to implement the expectation-maximization algorithm. First, we calculate the probability values of every feature vector in M Gaussian distributions. Then, a temporary set of prior variables are accumulated in the moving average manner. The algorithmic detail of the estimation process is introduced below.

Expectation Step. Based on the previously estimated statistic variables, we can calculate the probability values of all input feature vectors with respect to M Gaussian distributions. The probability of x_i belonging to the j-th distribution is estimated as follows,

$$
\omega_{ij} = \frac{\tau f(x_i, \mu_j, \Sigma_j)}{\sum_{k=1}^M \eta_k f(x_i, \mu_k, \Sigma_k)}.
$$

$f(\cdot)$ is the Gaussian probability density function, which is formulated as follows,

$$
f(x_i, \mu_j, \Sigma_j) = \frac{\exp\left(-\frac{1}{2}(x_i - \mu_j)^T \Sigma_j^{-1} (x_i - \mu_j)\right)}{\sqrt{(2\pi)^M |\Sigma_j|}}.
$$

Maximization Step. Temporary parameters are estimated according to the probability values for each training batch. Practically, the temporary prior probability $\tilde{\tau}_j$, mean $\tilde{\mu}_j$, and variance $\tilde{\sigma}_j$ of the j-th Gaussian distribution are calculated as below,

$$
\tilde{\tau}_j = \frac{1}{N} \sum_{i=1}^N w_{ij},
$$

$$
\tilde{\mu}_j = \frac{\sum_{i=1}^N w_{ij} x_i}{\sum_{i=1}^N w_{ij}},
$$

$$
\tilde{\sigma}_j = \frac{\sum_{i=1}^N w_{ij} (x_i - \tilde{\mu}_j)^2}{\sum_{i=1}^N w_{ij}}.
$$

Temporal Accumulation. Similar to the conventional batch normalization, the moving average is applied to accumulate the above temporary variables, namely,

$$
\tau_j := \lambda^c \tau_j + (1 - \lambda^c) \tilde{\tau}_j,
$$

$$
\mu_j := \lambda^c \mu_j + (1 - \lambda^c) \tilde{\mu}_j,
$$

$$
\Sigma_j := \lambda^c \Sigma_j + (1 - \lambda^c) \text{diag}(\tilde{\sigma}_j).
$$

Here, $\text{diag}(\cdot)$ transforms the input vector into a diagonal matrix, and λ^c is a constant.

Finally, separate scaling and bias coefficients are learned to redistribute the values of different normalization branches. Those redistributed values are combined by the following weighted summation operation,

$$
x'_i = \sum_{j=1}^M w_{ij}(y_j \hat{x}_i^{(j)} + \beta_j).
$$

y_j and β_j represent the scaling and bias coefficient of the j-th normalization branch respectively. The calculation process of the above normalization algorithm is illustrated in Figure 2. More details can be found in Appendix A.

3.3 Split Batch Normalization

The generalized batch normalization can be easily incorporated into existing convolutional neural networks by replacing their original normalization layers. However, learning compound distributions with the expectation-maximization algorithm may easily fall into local optima and suffer from model collapse. To overcome this problem, we set up a split normalization strategy to diversify the Gaussian distributions with different sets of training samples.

First, we uniformly split all class labels into M independent groups according to their serial numbers, resulting in $(C_j^M)_{j=1}^M$, where C_j^l represents the j-th set of class labels. For $j \neq k$, $C_j^l \cap C_k^l = \emptyset$. The union of all class sets $(\bigcup_{j=1}^M C_j^l)$ is equal to the sequence of integers from 1 to the number of classes (K). According to these class sets, the input features in x can be separated into M groups as well, namely $(x^j_{M \times N_j})_{j=1}^M$, where the features in x^j come from images with class labels in C_j^l, and N_j represents the number of features in the j-th group. Then, a split normalization strategy illustrated in Figure 3 is devised to process M sets of features with M Gaussian distributions, respectively. Meanwhile, each set of features
is utilized for calculating the other temporary mean and variance,

\[\mu^*_j = \frac{1}{n_j} \sum_{i=1}^{n_j} x_i^j, \]

\[\sigma^*_j = \frac{1}{n_j} \sum_{i=1}^{n_j} (x_i^j - \mu^*_j)^2. \]
(17)
(18)

The above variables are also leveraged to update \(\mu_j \) and \(\Sigma_j : \mu_j := \lambda^5 \mu_j + (1 - \lambda^5) \mu^*_j, \) and \(\Sigma_j := \lambda^5 \Sigma_j + (1 - \lambda^5) \text{diag}(\sigma^*_j) . \) This process is beneficial for diversifying multiple Gaussian distributions and preventing the distribution collapse issue. The calculation process of the split batch normalization is illustrated in Algorithm 3 (Appendix A).

3.4 Dual-Path Learning

As shown in Figure 4, we build up the classification model with ResNet [17], which is learned with two branches. In the top branch, the compound normalization is applied for implementing the network feedforward process, while the split normalization is adopted for standardizing intermediate features in the bottom branch. Given an input image \(I \in \mathbb{R}^{3 \times H \times W} \), we utilize a series of weak augmentation operations to transform it into \(I_{\text{weak}} \); and the other series of strong augmentation operations is leveraged to produce the other variant of the input image denoted by \(I_{\text{strg}} \). Feeding \(I_{\text{weak}} \) and \(I_{\text{strg}} \) into the branch based on the compound normalization, we can obtain predicted class-wise logits \(o^s_{\text{weak}} \in \mathbb{R}^{K \times 1} \) and \(o^s_{\text{strg}} \in \mathbb{R}^{K \times 1} \), respectively. \(K \) denotes the number of classes. The split normalization branch also derives class-wise logits \(o^s_{\text{weak}} \) and \(o^s_{\text{strg}} \) from \(I_{\text{weak}} \) and \(I_{\text{strg}} \), respectively. The maximization of the similarity between predictions of two branches is employed for optimizing network parameters,

\[L_{\text{sim}} = -S(o^c_{\text{strg}} \text{detach}(o^c_{\text{weak}})) - S(o^c_{\text{strg}} \text{detach}(o^c_{\text{weak}})). \]

Finally, the balanced softmax function is employed for calculating the training loss on the network prediction of strongly augmented image \(I_{\text{strg}} \),

\[L_{\text{cls}} = -\log \left(\frac{n_y \exp(o^c_{\text{strg}}[y])}{\sum_{i=1}^K n_i \exp(o^c_{\text{strg}}[i])} \right). \]
(20)

\(n_i \) denotes the number of samples in the \(i \)-th class, and \(o^c_{\text{strg}}[i] \) is the \(i \)-th element in \(o^c_{\text{strg}} \). \(y \) represents the ground-truth label of the input image \(I \). The practical training procedure is implemented with the minibatch size of \(B \). One training epoch of the dual learning framework is summarized in Algorithm 1.

![Diagram](image-url)

Figure 4: The proposed dual-path learning framework.

Algorithm 1: Algorithm for one training epoch of the dual learning framework.

Input: Training images: \(\{I_i\}_{i=1}^L \) and their labels: \(\{y_i\}_{i=1}^L \); \(M \) sets of class labels: \(\{C_i\}_{i=1}^M \); \(M \) sets of Gaussian statistic variables: \(\{\tau_i\}_{i=1}^M, \{\mu_j\}_{j=1}^M, \text{and} \{\Sigma_j\}_{j=1}^M \).

Output: Optimized network parameters.

1. Shuffle training images and separate into minibatches with size of \(B \);
2. for \(i = 1 \) to \(\frac{L}{B} \) do
3. Fetch a batch of training images \(B \in \mathbb{R}^{B \times 3 \times H \times W} \);
4. Distort images in \(B \) with weak augmentation operations, resulting in \(B_{\text{weak}} \);
5. Distort \(B \) with strong augmentation operations, deriving of \(B_{\text{strg}} \);
6. Feed \(B_{\text{weak}} \) through the compound and split network paths, resulting in \(o^s_{\text{weak}} \) and \(o^s_{\text{strg}} \), respectively;
7. Feed \(B_{\text{strg}} \) through the compound and split network paths, resulting in \(o^c_s_{\text{strg}} \) and \(o^c_s_{\text{strg}} \), respectively;
8. Calculate training losses according to Eq. (19) and (20);
9. Update network parameters by stochastic gradient descent;
10. end for

In training stage, the running variables (mean, variance and prior probability) of each Gaussian distribution are updated with temporal variables. During testing, the running variables are fixed, and
only the calculation path of compound batch normalization is preserved while the path of split batch normalization is no longer used in the inference process of the model.

4 EXPERIMENTS

We test the effectiveness of the proposed strategy on representative synthetic data as well as real-world datasets in this section. Table 1 describes the details of long-tailed data used in this work. The evaluation metric for image classification is top-1 accuracy (%).

4.1 Datasets

- **CIFAR10-LT/100-LT.** CIFAR10-LT/100-LT is formed by re-sampling images from the original CIFAR10-LT/100 [23] dataset. The class-wise sample sizes obey an exponential distribution. We denote the imbalance ratio as \(\rho = \frac{N_{\text{max}}}{N_{\text{min}}} \), where \(N_{\text{max}} \) and \(N_{\text{min}} \) is the sample size of the most frequent class and the least frequent class, respectively. We validate the performance of all models under three settings for \(\rho \in \{100, 50, 10\} \).
- **ImageNet-LT.** ImageNet-LT is a subset of the ImageNet1K [33] dataset that contains images from 1000 categories, with a maximum of 1280 images per class and a minimum of 5 images per class. The dataset consists of 115.8k training images, 20k validation images, and 50k test images.
- **Places-LT.** Places-LT features an unbalanced training set from Places-2 [50], with 62,500 images for 365 classes. The class frequencies are distributed according to a natural power law with a maximum of 4,980 images per class and a minimum of 5. The validation and testing sets are evenly distributed, with 20 and 100 images per class in each.
- **iNaturalist2018.** There are 437k images in iNaturalist-2018 [35], with 6 degrees of label granularity. This dataset is challenging since the labels are long-tailed and fine-grained. We only evaluate the most granular descriptors (species), resulting in 8142 distinct classes with a naturally imbalanced distribution.

Table 1: Introduction of long-tailed datasets used in the experiments. Noted that * means original data size in CIFAR10 and CIFAR100

Dataset	Class	\(\rho \)	Train	Val.	Test
CIFAR10-LT	10	10-100	50k*	-	10k
CIFAR100-LT	100	10-100	50k*	-	10k
ImageNet-LT	1000	256	~115.8k	20k	50k
Places-LT	365	996	62.5k	7.3k	36.5k
iNaturalist2018	8142	500	~437.5k	~24.4k	~149.4k

4.2 Implementation Detail

Our method is implemented with PyTorch [31]. The weak augmentation is composed of random cropping and flipping, whereas AutoAugment [11] is used to generate strongly augmented images. We use SGD as the optimizer, with a learning rate of 0.05 that decays concerning the cosine annealing schedule. The number of training epochs is set to 400, and the mini-batch size is set to 128. \(\lambda, \lambda^c \) and \(\lambda^s \) are all set to 0.1. Without specification, the backbone is ResNet32, and all models are trained from scratch by default.

4.3 Ablation Studies

This section examines the efficacy of each component of the proposed approach and provides a detailed experimental study.

Components Analysis We conduct comprehensive ablation research to validate the essential components of our framework. Table 2 shows the results of the experiments. The loss criteria for evaluating the consistency between predictions and provided labels is the Balanced Softmax Cross-Entropy [32]. As can be seen in Table 2, using CBN (compound batch normalization) improves performance significantly. For example, on the CIFAR10-LT dataset with \(\rho = 100 \), the CBN results in a 2.25% increase in accuracy. The SBN (split batch normalization) assists in diversifying the statistical variables of multiple Gaussian distributions. The DPL (dual-path learning) approach, which was devised for feature learning, results in considerable performance gains. When \(\rho \) is set to 100, 50, and 10, the accuracy of CIFAR100-LT is raised by 0.67%, 1.49%, and 1.38%, respectively.

Single-Modal Gaussian vs. Multi-Modal Gaussian. We first highlight the significance of compound normalization mentioned in section 3.2. We follow [32] to evaluate the classification accuracy on three disjoint sets of classes: many-shot (classes with more than 100 training samples), medium-shot (classes with 20–100 training samples), and few-shot (classes with fewer than 20 training samples). Figure 5 shows the top-1 accuracy against the number of mixtures on CIFAR100-LT. Here, balanced loss and dual-path learning are employed in this comparison. The plot demonstrates that estimating multiple Gaussian distributions favors all three subgroups. As can be seen that, multiple Gaussians (\(M=1 \)) are superior to single Gaussian (\(M=1 \)) while too large \(M \) (larger than 4) cannot bring continuous performance gain since the difficulty of parameter estimation increases as \(M \) grows up. Apart from this, our proposed method causes subtle increase of computational burden compared to the baseline method. For example, when ResNet32 is used as the backbone, our model (\(M=4 \)) occupies the space of 0.464M compared to original 0.461M in memory. Besides, the training process of the baseline and our approach consumes 3 hours and 4 hours respectively on CAFIR10-LT under imbalance factor of 100. The inference time difference between our method and the baseline can be very small.

Different Backbones. To test whether our method can generalize to other network architectures, we try to apply it to various variants of ResNet. The experimental results are presented in Figure 6. Unlike conventional residual networks, ResNet-20/32/44/56/110 is built upon three hyper-blocks. As can be observed, the proposed compound batch normalization consistently outperforms the conventional batch normalization across network architectures.

Combination with Re-sampling and Re-weighting We study the impact of CBN on data re-sampling/re-weighting algorithms in this subsection, by training our devised model with those algorithms. We accomplish decoupling training by decoupling the learning procedure into representation learning (80% epochs) and classification learning (20% epochs). The re-sampling/re-weighting
Table 2: Analysis of different components. The experiments are conducted on CIFAR10-LT and CIFAR100-LT, and we train the model from scratch for all cases. The ‘Baseline’ models are trained with AutoAugment [11] transforms and balanced loss [32]. ‘SBN’ and ‘CBN’ indicate split batch normalization and compound batch normalization respectively. ‘DPL’ means dual path learning mentioned in Section 3.4. The number of mixtures M is empirically set to 4 for CBN.

Method	CIFAR10-LT	CIFAR100-LT				
	$\rho = 100$	$\rho = 50$	$\rho = 10$	$\rho = 100$	$\rho = 50$	$\rho = 10$
Baseline	81.87	84.65	88.34	49.66	52.18	62.49
Baseline + SBN	82.03 (+0.16)	84.73 (+0.08)	88.89 (+0.55)	49.86 (+0.20)	52.44 (+0.26)	62.55 (+0.06)
Baseline + CBN	84.12 (+2.25)	86.75 (+2.10)	89.89 (+1.55)	52.16 (+2.50)	57.26 (+5.08)	64.37 (+1.88)
Baseline + CBN + SBN	84.31 (+2.44)	87.21 (+2.56)	90.44 (+2.10)	52.76 (+3.10)	58.04 (+5.86)	64.97 (+2.48)
Baseline + CBN + DPL	84.98 (+3.11)	88.70 (+4.05)	91.82 (+3.48)	53.31 (+3.65)	58.13 (+5.95)	65.35 (+2.86)

Figure 5: Performance of models trained with various numbers of Gaussian distributions on three disjoint subgroups. CIFAR100-LT with $\rho = 100$ is used for training and testing.

Figure 6: We test our technique on CIFAR10-LT with an imbalance factor of 100 and the number of mixtures is set to 4.

4.4 Comparison with State-of-the-art Methods

We compare our method against existing algorithms, including MiSLAS [48], LADE [19], ACE [2], DRO-LT [34], PaCo [12], DiVE [18], IB+Focal [30], VS [22], TCM [41], DisAlign [46], and GistNet [27] on datasets mentioned in Table 1.

Results on CIFAR10-LT/100-LT. Table 4 summarizes the details, showing that all existing cutting-edge long-tailed approaches produce promising results. In comparison to previous approaches, our compound batch normalization properly accommodates the distribution shift between training and testing, resulting in a significant improvement. In particular, we attain an average precision of 85.0%/53.3%, whereas the available best of the rest is 82.8%/52.0% under imbalance condition $\rho = 100$ for CIFAR10-LT and CIFAR100-LT,

Table 3: Performance of our compound batch normalization (CBN) incorporated with data re-sampling (RS), data re-weighting (RW), and decoupling training (DT).

EXP	CBN	DT	RW	RS	Total	Many	Medium	Few
(I)	X	X	X	X	49.66	66.93	51.20	28.24
(II)	X	✓	✓	✓	49.62	67.17	50.61	28.54
(III)	✓	✓	✓	✓	50.56	62.49	52.08	35.21
(IV)	✓	✓	✓	✓	50.66	60.73	52.47	37.07
(V)	✓	X	X	X	52.16	69.26	54.18	30.34
(VI)	✓	✓	X	X	52.76	70.32	55.17	29.97
(VII)	✓	✓	✓	X	52.83	69.34	55.58	30.82
(VIII)	✓	✓	✓	✓	52.86	68.65	55.61	31.67

as the baseline that the model is trained with AutoAugment [11] transforms and balanced loss [32]. Experiment (II) demonstrates that merely using re-sampling and decoupling training is ineffective in improving the accuracy. On the other hand, experiments (III) and (V) boost the baseline performance by promoting the accuracy on tail classes, but degrade the performance on head classes. For our compound normalization, it delivers significant increases for most classes (except for ‘Many’ in (VIII) and ‘Few’ in (VI)) when combining re-weighting or re-sampling with decoupling training.
Table 4: Comparison against other methods on CIFAR10-LT and CIFAR100-LT. ResNet32 is used as the backbone model.

Methods	CIFAR10-LT	CIFAR100-LT				
	$\rho = 100$	$\rho = 50$	$\rho = 10$	$\rho = 100$	$\rho = 50$	$\rho = 10$
MiSLAS [48]	82.1	85.7	90.0	47.0	52.3	63.2
LADE [19]	81.4	84.9	-	49.6	51.9	-
ACE [2]	-	-	-	47.3	57.6	63.4
DRO-LT [34]	-	-	-	52.0	56.0	64.2
PaCo [12]	-	-	-	45.4	51.1	62.0
SSD [25]	-	-	-	46.0	50.5	62.3
IB+Focal [30]	78.0	82.4	87.9	45.0	48.9	59.5
VS [22]	80.8	-	-	43.5	-	-
TCM [41]	82.8	84.3	89.7	45.5	51.1	61.3
Ours	85.0	88.7	91.8			

respectively. The compound normalization method can be considered as a novel genre which is orthogonal to existing re-sampling, re-weighting strategies. More analysis can be noticed in Table 3.

Results on ImageNet-LT. On ImageNet-LT, Table 5 presents detailed experimental results for comparisons with contemporary state-of-the-art algorithms using the ResNet50. We observe that PaCo [12] achieves comparable results (57.0%) that are slightly inferior to ours (57.4%). However, PaCo extends the contrastive framework MoCo [6, 16] by introducing a new momentum encoder, which is much more demanding than our approach, to alleviate the long-tail problem. In addition to PaCo, our approach outperforms the remaining methods with an remarkable margin.

Results on Places-LT. Places-LT is a long-tail variation of Places2 [48]. The studies are carried out using the backbone ResNet152 which is initialized with network parameters pre-trained on ImageNet. Table 6 demonstrates that our method consistently surpasses the state-of-the-art results with notable gains.

Results on iNaturalist 2018. We examine our approach on the real-world long-tailed dataset iNaturalist 2018. Table 7 shows the experimental results. Our method outperforms contemporary state-of-the-art approaches such as PaCo [12], and ACE [2]. The results indicate that our approach can handle extremely unbalanced fine-grained data in real-world scenarios despite the enormous number of classes.

5 CONCLUSION

This paper presents a compound batch normalization approach based on a mixture of Gaussian distributions that can comprehensively describe the feature space while avoiding the dominance of head classes. A moving average based expectation maximization (EM) method is introduced to capture the statistical variables for compound Gaussian distributions. The EM algorithm is sensitive to initialization and may easily get trapped in local minima. To tackle these issues, we build a dual-path learning approach that incorporates split feature normalization to diversify the Gaussian distributions. Extensive results on frequently used datasets show that the proposed method surpasses existing methods in long-tailed image classification by a considerable margin. To conclude, we present a novel perspective to address the imbalance issue at the feature level, which is inspiring to future work on this topic.

ACKNOWLEDGMENTS

This work is partially supported by the National Natural Science Foundation of China (Grant No. 62106235, 62003256, 61876140, 61976250, 62027813, U1801265, and U21B2048), by the Exploratory Research Project of Zhejiang Lab(2022PG0AN01), by the Zhejiang Provincial Natural Science Foundation of China (LRQ21F020003), by Open Research Projects of Zhejiang Lab (No. 2019kD0AD01/010) and in part by the Guangdong Basic and Applied Basic Research Foundation under Grant No.2020B1515020048.
REFERENCES

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-

[2] Chris Drummond, Robert C Holte, et al. 2003. C4.5, cost of class balance, and

[3] Ganesh Ramachandra Kini, Orestis Paraskevas, Samet Oymak, and Christos

[4] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-

[5] Shuang Li, Kaixiong Gong, Chi Harold Liu, Yulin Wang, Feng Qiao, and Xinjing

[6] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. 2021. Parametric

[7] Lechao Cheng, Chengyi Zhang, and Zicheng Liao. 2018. Intrinsic image transfor-

[8] Junya Chen, Zidi Xiu, Benjamin Goldstein, Ricardo Henao, Lawrence Carin, and

[9] Jiarui Cai, Yizhou Wang, and Jenq-Neng Hwang. 2021. Ace: Ally complementary

[10] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

[12] Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. 2016. Learning deep

[13] Jiaou Su, Jonathan Xroux, Sangeer Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. 2015. ImageNet large scale visual recognition challenge. International journal of computer vision 115, 3 (2015), 211–252.

[14] Devi Samuel and Gal Chechik. 2021. Distributional robustness loss for long-tail learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4945–4954.

[15] Grant Van Horn, Oson Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Sherpad, Hartwig Adam, Pietro Perona, and Serge Belongie. 2018. The inaturalist species classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition. 8769–8778.

[16] Xuadong Wang, Long Lian, Zhongqiiao Zao, Ziwei Liu, and Stella X. Yu. 2020. Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv:2010.01809 (2020).

[17] Yulin Wang, Xuran Pan, Shijie Song, Hong Zhang, Gao Huang, and Cheng Wu. 2019. Implicit semantic data augmentation for deep networks. Advances in neural information processing systems 32 (2019).

[18] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2017. Learning to model the tail. Advances in Neural Information Processing Systems 30 (2017).

[19] Xiyun Wu and Kaiming He. 2018. Group normalization. In Proceedings of the European conference on computer vision (ECCV). 3–19.

[20] Liuyu Wang, Xingang Ding, and Jingpeng Han. 2020. Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification. In European Conference on Computer Vision. Springer, 247–263.

[21] Zhengzhao Xu, Zenghao Chai, and Chun Yuan. 2021. Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective. Advances in Neural Information Processing Systems 34 (2021).

[22] SharanZada, Itay Benou, and MichalIrani. 2021. Noise Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8209–8218.

[23] Taifun Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. 2017. Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision. 2980–2988.

[24] Bo Liu, Haoxiang Li, Hao Kang, Gang Hua, and Nuno Vasconcelos. 2021. GhostNet: a Geometric Structure Transfer Network for Long-Tailed Recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 8209–8218.

[25] Junhao Liu, Yifan Sun, Chongwu Zhou, Zhaozhong Dong, and Wenhui Li. 2020. Deep representation learning on long-tailed data: A learnable embedding augmentation perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2970–2979.

[26] Anil Merchant, Barret Zoph, and Ekin Dogus Cubuk. 2020. Does data augmentation benefit from split batchnorms? arXiv preprint arXiv:2010.07810 (2020).

[27] Seulki Park, Jongin Lim, Youngchan Jeon, and Jin Young Choi. 2021. Influence-balanced loss for imbalanced visual classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 735–744.

[28] Jiepan Ji, Shuai Yi, and Jenq-Neng Hwang. 2021. Exploiting long-tailed recognition in one-shot. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 112–121.

[29] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. 2002. SMOTE: synthetic minority over-sampling technique. Journal of artificial intelligence research 16 (2002), 321–357.

[30] Jiaqun Cui, Zhiheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. 2021. Parametric contrastive learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 715–724.

[31] Ying Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. 2019. Class-

[32] Chunhua Shen, Zhirong Yang, Jianlong Fu, and Anton van den Hengel. 2020. Learning long-tailed representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 928–938.

[33] Jiepan Ji, Shuai Yi, and Jenq-Neng Hwang. 2021. Exploiting long-tailed recognition in one-shot. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 112–121.

[34] Dvir Samuel and Gal Chechik. 2021. Distributional robustness loss for long-tail learning. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 4945–4954.

[35] Grant Van Horn, Osin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Sherpad, Hartwig Adam, Pietro Perona, and Serge Belongie. 2018. The inaturalist species classification and detection dataset. In Proceedings of the IEEE conference on computer vision and pattern recognition. 8769–8778.

[36] Xuadong Wang, Long Lian, Zhongqiiao Zao, Ziwei Liu, and Stella X. Yu. 2020. Long-tailed recognition by routing diverse distribution-aware experts. arXiv preprint arXiv:2010.01809 (2020).

[37] Yulin Wang, Xuran Pan, Shijie Song, Hong Zhang, Gao Huang, and Cheng Wu. 2019. Implicit semantic data augmentation for deep networks. Advances in neural information processing systems 32 (2019).

[38] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2017. Learning to model the tail. Advances in Neural Information Processing Systems 30 (2017).

[39] Xiyun Wu and Kaiming He. 2018. Group normalization. In Proceedings of the European conference on computer vision (ECCV). 3–19.

[40] Liuyu Wang, Xingang Ding, and Jingpeng Han. 2020. Learning from multiple experts: Self-paced knowledge distillation for long-tailed classification. In European Conference on Computer Vision. Springer, 247–263.

[41] Zhengzhao Xu, Zenghao Chai, and Chun Yuan. 2021. Towards Calibrated Model for Long-Tailed Visual Recognition from Prior Perspective. Advances in Neural Information Processing Systems 34 (2021).

[42] SharanZada, Itay Benou, and MichalIrani. 2021. Noise Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8209–8218.

[43] Dingwen Zhang, Junwei Han, Gong Cheng, and Ming-Hsuan Yang. 2021. Weakly supervised object localization and detection: A survey. IEEE transactions on pattern analysis and machine intelligence (2021).

[44] Dingwen Zhang, Wenyuan Zeng, Jieyu Yao, and Junwei Han. 2020. Weakly supervised object detection using proposal-and semantic-level relationships. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

[45] Hao Zhang, Yanbin Hao, and Chong-Wah Ngo. 2021. Token shift transformer for video classification. In Proceedings of the 29th ACM International Conference on Multimedia. 917–925.

[46] Zhirong Zhong, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. 2021. Distribution alignment: A unified framework for long-tail visual recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2561–2570.

[47] Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jashi Feng. 2021. Test-agnostic long-tailed recognition by test-time aggregating diverse experts with self-supervision. arXiv preprint arXiv:2107.09249 (2021).

[48] Zhirong Zhong, Jesiquan Cui, Shu Liu, and Jia Jia. 2021. Improving calibration for long-tailed recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 16489–16498.

[49] Boyan Zhou, Quan Cui, Xu-Shen Wei, and Zhao-Min Chen. 2020. Bbn: Bilateral-branch network with cumulative learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 9719–9728.

[50] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. 2017. Places: A 10 million Image Database for Scene Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence (2017).
Algorithm 2: Algorithm for the calculation process of the generalized batch normalization.

Input: Features: \(x \in \mathbb{R}^{D \times N} \); \(M \) sets of Gaussian statistic variables: \(\{\tau_j\}_{j=1}^M \), \(\{\mu_j\}_{j=1}^M \), and \(\{\Sigma_j\}_{j=1}^M \).

Output: Normalized features; updated Gaussian statistic variables.

1. Standardize \(x \) with Gaussian distributions: \(\hat{x}_i^j = \sum_j^{1/2} (x_i - \mu_j) \), for \(i \in [1, N] \) and \(j \in [1, M] \);
2. Calculate probabilities of input features in Gaussian distributions: \(w_{ij} = \frac{e^{-\frac{1}{2} (x_i - \mu_j)^2}}{\sqrt{2\pi}} \);
3. Aggregate results of normalization branches: \(x'_i = \sum_{j=1}^{M} w_{ij} (y_j \hat{x}_i^j + \beta_j) \);
4. if training then
5. Calculate temporary Gaussian statistic variables:
 \(\hat{\tau}_j = \frac{1}{N} \sum_{i=1}^{N} w_{ij} \), \(\hat{\mu}_j = \frac{1}{N} \sum_{i=1}^{N} w_{ij} x_i \), and
 \(\hat{\Sigma}_j = \frac{1}{N} \sum_{i=1}^{N} w_{ij} (x_i - \hat{\mu}_j)^2 \);
6. Update permanent Gaussian statistic variables:
 \(\tau_j \leftarrow \lambda^c \tau_j + (1 - \lambda^c) \hat{\tau}_j \), \(\mu_j \leftarrow \lambda^c \mu_j + (1 - \lambda^c) \hat{\mu}_j \), and
 \(\Sigma_j \leftarrow \lambda^c \Sigma_j + (1 - \lambda^c) \text{diag}(\hat{\Sigma}_j) \).
7. end if

Algorithm 3: Algorithm for the calculation process of the split batch normalization.

Input: Features: \(x \in \mathbb{R}^{D \times N} \), and their labels: \(y \in \mathbb{R}^N \); \(M \) sets of class labels: \(\{C_j\}_{j=1}^M \); \(M \) sets of Gaussian statistic variables: \(\{\tau_j\}_{j=1}^M \), \(\{\mu_j\}_{j=1}^M \), and \(\{\Sigma_j\}_{j=1}^M \).

Output: Normalized features; updated Gaussian statistic variables.

1. Initialize feature groups: \(x^j = [] \), for \(j \in [1, M] \);
2. for \(i = 1 \) to \(N \) do
3. Retrieve the index of label class set \(s \) which \(x_i \)'s label belongs to;
4. Append \(x_i \) into \(x^s \);
5. end for
6. for \(j = 1 \) to \(M \) do
7. Normalize \(x^j \) with the \(j \)-th Gaussian distribution:
 \(\hat{x}_i^j = \sum_j^{1/2} (x_i - \mu_j) \);
8. Redistribute \(\hat{x}_i^j \) with the affine parameters of the \(j \)-th normalization branch: \(x_i^j = y_j \hat{x}_i^j + \beta_j \);
9. if training then
10. Calculate temporary Gaussian statistic variables:
 \(\hat{\mu}_j = \frac{1}{N_j} \sum_{i \in s} (x_i^j - \hat{\mu}_j) \), and
 \(\hat{\Sigma}_j = \frac{1}{N_j} \sum_{i \in s} (x_i^j - \hat{\mu}_j)^2 \), where \(N_j \) denotes the number of features in \(x^j \);
11. Update permanent Gaussian statistic variables:
 \(\mu_j \leftarrow \lambda^c \mu_j + (1 - \lambda^c) \hat{\mu}_j \), and
 \(\Sigma_j \leftarrow \lambda^c \Sigma_j + (1 - \lambda^c) \text{diag}(\hat{\Sigma}_j) \).
12. end if
13. end for