Population Gradients in the SDSS Galaxy Catalog. The role of merging

C. Tortora1*, N.R. Napolitano2

1 Universität Zürich, Institut für Theoretische Physik, Winterthurerstrasse 190, CH-8057, Zürich, Switzerland
2 INAF – Osservatorio Astronomico di Capodimonte, Salita Moiariello, 16, 80131 - Napoli, Italy

Accepted Received

ABSTRACT

We investigate the role of the environment on the colour and stellar population gradients in a local sample of ~ 3500 central and ~ 1150 satellite SDSS early-type galaxies (ETGs). The environment is parameterized in terms of the number of satellite galaxies, N_{gal} in each group. For central galaxies, we find that both optical colour and mass-to-light (M/L) ratio gradients are shallower in central galaxies residing in denser environments (higher N_{gal}). This trend is driven by metallicity gradients, while age gradients appear to be less dependent on the environment and to have a larger scatter. On the other hand, satellites do not show any differences in terms of the environment. The same results are found if galaxies are classified by central age, and both central and satellite galaxies have shallower gradients if they are older and steeper gradients if younger, satellites being independent of ages. In central galaxies, we show that the observed trends can be explained with the occurrence of dry mergings, which are more numerous in denser environments and producing shallower colour gradients because of more uniform metallicity distributions due to the mixing of stellar populations, while no final clues about merging occurrence can be obtained for satellites. Finally, we discuss all systematics on stellar population fitting and their impact on the final results.

Key words: galaxies : evolution – galaxies : galaxies : general – galaxies : elliptical and lenticular, cD.

1 INTRODUCTION

Colour and stellar population gradients in galaxies are providing important clues to galaxy evolution (Hopkins et al. 2009, Spolaor et al. 2009, Kuntschner et al. 2010, Pipino et al. 2010, Rawle et al. 2010, Spolaor et al. 2010, Tortora et al. 2014, hereafter T+10; Tortora et al. 2011, hereafter T+11; La Barbera et al. 2011). The value of metallicity and age gradients and their trends with the mass have been recently investigated on samples of local ETGs, suggesting that different physical phenomena could concur to shape the gradients at low and high masses (e.g. T+10). From one side, gas infall and supernovae feedback (Larson 1974, 1977, Kawata 2001, Kawata & Gibson 2003, Kobayashi 2004, Pipino et al. 2014, Tortora et al. 2011a) seem to be the main phenomena driving the evolution of low mass ETGs, while merging and AGN feedback (Kobayashi 2004, Pipino et al. 2009, Sijacki et al. 2007) would work at larger masses (Dekel & Birnboim 2006). However, environment also plays a crucial role in galaxy evolution, since many physical phenomena like tidal interactions, strangulations and harassment would affect the star formation in low mass galaxies (e.g. Weinmann et al. 2009) and cause inner population gradients at different mass scales (e.g. Tortora et al. 2011a). In more massive systems, though, the major player in driving the stellar population mixing is galaxy merging (Davis et al. 1985, Springel et al. 2005, Romeo et al. 2008). Kobayashi (2004) have shown that overall merging events tend to flatten the metallicity gradients with time. Looking in more details, merging events can have a complex taxonomy: thus, minor or major merging, or even gas-rich or -poor merging are expected to produce different stellar population gradients. For instance, after the initial gas-rich merging events (generally occurring at high redshift), larger central metallicity and positive age gradients are observed (Kobayashi 2004, Mihos & Hernquist 1994); subsequent gas-poor merging may dilute the positive age gradient with time as well as make the metallicity gradients flattened out (White 1984, Hopkins et al. 2009, Di Matteo et al. 2004).

* E-mail: ctortora@physik.uzh.ch
Although higher mass systems would be the ones which have experienced a larger fraction of merging events, it is also interesting to investigate if central galaxies in groups and clusters may differ, in their population gradient properties, from satellite systems orbiting in the cluster potential. The central galaxies in clusters (and groups) are the most luminous and massive (in terms of stellar mass) objects in the Universe. They are found to have different luminosity profiles when compared with typical cluster galaxies (Schombert 1986) and do not seem to be drawn from the same luminosity function as bright ellipticals (Dressler 1978, Bernstein & Bhavsar 2001). These evidences suggest that the evolutive processes of central galaxies can be strongly different from the ones driving normal (satellite) systems. Moreover, they still hold imprints from the early evolutionary stages since they reside in the very central regions of clusters and groups, where mass started to be accreted earlier after the Big Bang than other density environments. These regions have witnessed during the cosmic time a variety of galaxy interactions with the environment, and merging events (e.g. Romeo et al 2008) contributing to the mass accretion of larger and larger galaxy systems, a process which is more efficient in denser environments like group/cluster haloes (e.g. Whitley et al 2008, Stott et al 2005, Stott et al 2010).

From this perspective it is natural to expect that the galaxy in the center of very dense environments might be more sensitive to the effect of the large amount of merging events expected in the hierarchical growth which shall be recorded in the stellar population parameters (e.g. age and metallicity).

Thus, we have considered a local sample of SDSS galaxies (Blanton et al 2005b), recently analyzed and discussed in T+10 and T+11, where we have discussed colour, mass-to-light ratio and stellar population gradients in terms of mass and compared with independent observations. These results have been framed within the predictions of hydrodynamical and chemo-dynamical simulations of galaxy formation. In the present paper we will discuss the connection with the environment, selecting those galaxies classified as centrals and satellites in groups and clusters and investigating if gradients change as a function of the environment.

The paper is organized as follows. The data sample and the analysis have been presented in [2] the results are discussed in [3] while [4] is devoted to the physical interpretation and conclusions. Systematics in stellar population fit have been discussed in [A]

2 DATA AND SPECTRAL ANALYSIS
We start from a database consisting of 50 000 low redshift (0.0033 ⩽ z ⩽ 0.05) galaxies in the NYU Value-Added Galaxy Catalog extracted from SDSS DR4 (Blanton et al 2005b, hereafter B05) recently analyzed in T+10 and T+11, where stellar population synthesis models have been used to determine stellar galaxy mass, M∗, colour and stellar population parameters/gradients. Following T+10, we have sorted out ETGs by keeping those systems with a Sérsic index satisfying the condition 2.5 ⩽ n ⩽ 5.5 and with a concentration index C > 2.6. The final ETG sample consists of 10.508 galaxies. We have cross-matched our datasample with the (z > 0.01) DR4 SDSS based group catalog from Yang et al (2007) to recover information about the environment the galaxies live. Yang et al (2007) have identified the groups and have separated the most massive (or most luminous) galaxies in each group, labeled as centrals, from the satellites. We will use both 1) the identification of satellite and centrals on the base of stellar mass selection, and 2) the number of galaxies Ngal in each group as an environment indicator. We have retained galaxies – isolated (having Ngal = 1), central and satellite – with a mass log M∗ > 10.5 and left with a final sample of 3525 central (including 1941 isolated systems) and 1141 satellite galaxies. As a further criterion, we have also ranked satellites in each group on the basis of their stellar masses.

We notice that the fraction of central ETGs in each mass bin is lower than the fraction of satellite and field galaxies at log M∗/M⊙ ⩽ 10.7 – 10.9, while it increases at larger masses, with 62 centrals, 6 satellites and 1 field galaxy for log M∗/M⊙ > 11.4.

As discussed in T+10, we have used the structural parameters given by B05 to derive the color profile (X − Y) (R) of each galaxy as the differences between the (logarithmic) surface brightness measurements in the two bands, X and Y. The stellar population properties are derived by the fitting of Bruzual & Charlot (2003, hereafter BC03) “single burst” synthetic stellar models to the observed colours. Age and metallicity are free to vary, and a Chabrier (2001) IMF is assumed. However, in order to check the effect of the existing degeneracies between age and metallicity, we will also assume the age gradient to zero (Tortora et al 2011b) by fixing the age to 10 Gyr as a prior. We define the CG as the angular coefficient of the relation X − Y vs log R/R eff, as we will also discuss later, \(\nabla_{\text{age}} = 0 \) is a reasonable assumption for the older galaxies, which are found to have \(\nabla_{\text{age}} \approx 0 \) (Tortora et al 2010).
and/or correlations among parameters with respect to stellar models including near-IR or UV data. In particular, we will quantify any systematics and possible trends with stellar mass and N\textsubscript{gal} in the Appendix A and discuss the impact on our results in 4.

3 GRADIENTS AND ENVIRONMENT

In T+10 and T+11 we have discussed the colour, age, Z and M/L gradients as a function of stellar mass without distinguishing central from satellite galaxies. Here, we will expand the analysis by investigating the effect of the environment on the most massive central and satellite galaxies, showing the significance of the correlations in Table 1 and the slopes in Table 2.

We start in Fig. 1 by showing the gradients \(\nabla_{g-r}, \nabla_{r-z}, \nabla_{Z} \) and \(\nabla_{\text{age}} \) as a function of the stellar mass for central and satellite galaxies. The trend of central galaxies alone does not differ much from the one of the total sample studied in T+10 and T+11. They have colour and metallicity gradients which become shallower at larger masses. \(\nabla_{r-z} \) is negative at low masses, turn out to be null around log \(M_{*}/M_\odot \approx 11 \) and finally become slightly positive at very high masses. The positive trend of \(\nabla_{\text{age}} \) is statistically significant (as shown in Tables 1 and 2) despite its large scatter. \(\nabla_{Z} \) show an increasing trend with \(M_{*} \) (from -0.5 to -0.3 across the mass range), although the scatter at lower masses is quite large.

If one forces \(\nabla_{\text{age}} = 0 \) (assuming \(\text{age}_1 = \text{age}_2 = 10 \text{Gyr} \)), \(\nabla_{Z} \) are rigidly shifted toward larger values and show a steeper trend with stellar mass, with \(\nabla_{Z} \approx 0 \) for the most massive galaxies. Similarly, \(\nabla_{Z} \) are shifted toward more negative values while their trend with mass is shallower (see T+11). Note that in case of no age gradients, (negative) shallower \(\nabla_{r-z} \) naturally correspond to (negative) shallower colour and metallicity gradients. On the contrary, in presence of non-zero age gradients negative colour gradients could correspond to positive M/L gradients due to recent star formation episodes. Almost all of these correlations are significant at more than 99% (see Table 1).

Satellite galaxies behave differently from centrals. Colour gradients are less dependent on mass, while the \(\nabla_{r-z} \) trend is steeper with mass. This is driven by the \(\nabla_{\text{age}} \) which is increasing at the higher mass bins, being \(\nabla_{Z} \) less dependent on \(M_{*} \). The fact that the \(\nabla_{r-z} \) trend is mainly driven by the age gradients is confirmed when forcing \(\nabla_{\text{age}} = 0 \): in this case the trend of \(\nabla_{r-z} \) with mass gets shallower although \(\nabla_{Z} \) show a steep increasing trend with \(M_{*} \).

In Fig. 2 colour, metallicity, age and M/L gradients are plotted as a function of N\textsubscript{gal}. We find that in denser environments (higher N\textsubscript{gal}) central galaxies have shallower colour gradients, going from \(\nabla_{g-r} \sim -0.09 \) in the field to \(\nabla_{g-r} \sim -0.04 \) in the clusters (N\textsubscript{gal} \(\geq 50 \)). This trend is reproduced by a similar behaviour of metallicity gradients which are on average \(\sim -0.5 \) in the field and \(\sim -0.3 \) in denser environments. On the contrary, \(\nabla_{Z} \) are only slightly steeper in densest environments. According to the trends of colour and Z gradients, \(\nabla_{r-z} \) tend to be steeper in the field (\(\sim -0.05 \)), almost null in poor groups (N\textsubscript{gal} \(\sim 10 \)), while they are positive (\(\sim 0.1 \)) at N\textsubscript{gal} \(\geq 50 \). The trends with environment are clearer if we divide the sample in terms of the central age, \(\text{age}_1 \). Three age intervals are adopted, i.e. \(0 < \text{age}_1 \leq 6, 6 < \text{age}_1 \leq 10 \) and \(\text{age}_1 > 10 \), which gather 1808, 594, 1123 centrals and 577, 198, 366 satellites, respectively. Older galaxies have progressively shallower age and metallicity gradients, independently from N\textsubscript{gal} (see also the discussion in T+10). The trends with N\textsubscript{gal} are still statistically significant for \(\nabla_{Z} \), which become shallower going from the field to denser environments by \(\sim 0.15, 0.2, 0.4 \), while the correlations for \(\nabla_{\text{age}} \) get flat for each age bin. The behaviour of \(\nabla_{r-z} \) is different: oldest galaxies have negative \(\nabla_{r-z} \) (\(\sim -0.2, -0.1 \)) with a shallower trend with N\textsubscript{gal} (in the very rich systems they are almost zero), while the youngest ones have positive gradients (\(\sim 0.05, 0.15 \)), which get larger in higher density environment.

On the contrary, satellite galaxies have gradients which are completely independent of the environment they live (see slopes in Table 2). To have a complete view of behaviours in satellites, we have also considered the rank-2 satellites, i.e. the second most massive galaxy in each group and plotted their gradients in the right panel of Fig. 2. Here, we see little changes in the \(\nabla_{g-r} \) and \(\nabla_{Z} \) trends, while \(\nabla_{\text{age}} \) and \(\nabla_{r-z} \) seem to be steeper functions of N\textsubscript{gal}, with steeper values in very high density environment. To avoid a too low statistics, we have not investigated higher rank systems.

Figure 1. Gradients in terms of stellar mass for centrals (left) and satellites (right). In each panel we show \(g – r \) (top left), M/L (top right), age (bottom left) and Z (bottom right) gradients as a function of stellar mass. The medians and 25-75th quantiles are shown. The dashed symbols are for the case with \(\nabla_{\text{age}} = 0 \) (i.e. \(\text{age}_1 = \text{age}_2 = 10 \text{Gyr} \)).
Figure 2. Gradients in terms of the environment for centrals (left) and satellites (right). Medians and 25-75th quantiles are shown. From the top to the bottom, colour, metallicity, age and M/L gradients are plotted as a function of N_{gal}. The black symbols are as in Fig. 1. Moreover, blue, green and red symbols are for galaxies with central age in the intervals $0 < \text{age}_1 \leq 6$, $6 < \text{age}_1 \leq 10$ and $\text{age}_1 > 10$ Gyr, respectively. In the bottom panel, the cyan line is relative to the V-band M/L gradients. Orange lines and yellow regions set medians and 25-75th quantiles for the second most massive galaxy in each group.

As a comparison, we also show in Fig. 2 the results when galaxy colours are fitted to a synthetic spectral model with no age gradient. In this case, metallicity gradients turn out to be shallower, independently of N_{gal}, while M/L gradients are steeper. Note that these last trends are consistent with what was found for the older galaxies in the reference fit. In centrals, the trend is almost unchanged for ∇Z, while a shallower slope is found for $\nabla \Upsilon^*$. For satellites, slopes resulted unchanged. For completeness, in the bottom panel we also compare with V-band M/L gradients, which despite a slight shift are very similar to the reference B-band ones.

We have finally checked that the different trends in Fig. 2 between centrals and satellites survive if we cut the most massive galaxies with $\log M_*/M_\odot > 11.4$ or if we include in our sample the galaxies with $10 < \log M_*/M_\odot \leq 10.5$.

If we bin the galaxies in terms of stellar mass we find
that if considering the lower mass galaxies the trends in Fig. 2 for centrals disappear, while for more massive systems the trend become more significant and also the N_{gal}-M relation is steeper. On the contrary, if we bin the gradients-M relations in Fig. 2 in terms of N_{gal} we find that field galaxies show some trends in \nabla_{age} and \nabla_{Z}, which are stronger in group centrals.

4 DISCUSSION AND CONCLUSIONS

In this paper we have investigated the correlation between the colour, M/L and stellar population gradients with environment for a sample of local central and satellite SDSS central galaxies ([Blanton et al. 2005](#))). We have found some indications which point to a different behaviour in terms of stellar mass and the environment for central and satellite galaxies. Central galaxies dominate the galaxy sample in the massive side, thus have gradients which behave like in T+10 and T+11 when the gradients are plotted in terms of M_{star}, with \nabla_{g-r}, \nabla_{r-g} and \nabla_{Z} getting shallower and \nabla_{age} (positive) steeper in the most massive galaxies. On the contrary, satellite galaxies have a \nabla_{g-r} which is less dependent on M_{star}. Thus, while \nabla_{age} are steeper at larger masses (where they drive the trend of \nabla_{r-g}), metallicity gradients show a shallower trend. The steeper and stronger trend of \nabla_{Z} and the slightly shallower \nabla_{Z} in the most massive centrals, when compared with satellites, are consistent with the role of dry mergings ([Kobayashi 2004](#)), which are more efficient to mix stellar populations at the largest masses where their fraction is larger (i.e. [de Lucia et al. 2006](#)). Shallower trends are found in satellites, suggesting a minor role of such kind of phenomena. In satellite we have found a strong trend of \nabla_{age} with mass (stronger that the one found in centrals), with very massive satellites having steeper \nabla_{age}, and thus younger cores. These surviving young cores could be due to bursts of star formation after gas-rich mergers or close encounters. In T+10 we have also seen that central age has an important role, since centrally younger galaxies have steeper gradients, while older systems have, on average, null \nabla_{age} and shallower \nabla_{Z}. This seems consistent with the intervention of processes like dry-mergings, which are responsible for a star formation suppression and a mixing of stellar population.

Plotting the gradients in terms of the number of galaxies inside the group, N_{gal}, for central galaxies we find that age gradients seem less dependent on the environment, while colour, M/L and metallicity gradients are shallower in denser environment (with a number of galaxies in the groups of N_{gal} ~ 50 or more) when compared with isolated galaxies. This correlation is even stronger when galaxies are classified in terms of their central ages, which have been shown to drive the scatter of the relation between metallicity/age gradients and mass. On the contrary, massive satellite galaxies do not present any trend with N_{gal} (and independently on the age bin adopted). Consistently with the results found in terms of stellar mass, while dry-mergings seem to be important process in massive centrals, no strong indication is found for satellites. Finally, we have also checked that ranking satellites on the basis of their masses, and considering the second most massive galaxy in each group, some slight positive correlations seem to appear in our trends in Fig. 2. These findings suggest that if on one hand conclusions on centrals are firm and clear, on the other hand satellite results are more complicated to interpret. More detailed analysis would investigate the correlation of population gradients not only with N_{gal}, but also with the local and global density, the distance from the center of the groups and the mass ranking in the group, which all together give a more complete representation of the environmental properties.

The positive correlation found between colour and Z gradients with both M_{star} and N_{gal} in central galaxies are not completely independent each others, since it is easy to show that more massive central galaxies are residing in denser environments with larger cluster/group haloes and populated by a larger number of galaxies ([e.g. Whitley et al. 2008](#), [Stott et al. 2008](#), [Stott et al. 2014](#)).

The systematics on the gradients have been investigated in the Appendix A where we have shown that \nabla_{r-g} is very little affected (see, e.g., T+11), while a shift and a larger scatter could be induced in the estimates of \nabla_{age} and \nabla_{Z}. The trend with M_{star} and N_{gal} could be possibly affected, in the sense that the true trends for \nabla_{Z} can be shallower or flat and the one for \nabla_{age} steeper (in the worst cases when input data are strongly inaccurate).

4 A comment is in order here. Metallicity gradients are less sensitive to recent starburst events, while they are more indicative of the total integrated star formation history. This because the metal content responds more slowly to the star formation as metals are not strongly altered by new stars, but instead by the integral of all the star formation history. On the other hand age gradients are by definition sensitive to (significant) star burst events.
From the observational point of view, these are the first steps in the systematic study of the correlations between stellar population gradients and the environment as measured by N_{gal} where the behavior of the central galaxies is distinguished by the one of satellites (see e.g. La Barbera et al. 2011). Former studies made no selection on the galaxy type (centrals or satellites), and found that color gradients in massive galaxies are shallower in denser environment (Ko & Im 2003 and La Barbera et al. 2005) similarly to our findings, although, La Barbera et al. 2011 have shown that the optical-IR $\nabla g-K$ is almost independent of the environment. Along the same line, Roche, Bernardi & Hyde (2010) have demonstrated that central galaxies have shallower gradients than normal E/S0 galaxies at the same luminosity.

For what concerns stellar population gradients, Spolaor et al. (2009) (their right panel in Figure 1) have compared central galaxies in both clusters and groups with those in the field, but a clear trend is not found since the scatter of the data is too large and the sample too small. Using a combined sample of satellite and central galaxies, La Barbera et al. (2011) have found that ∇_{age} are slightly increasing with M_* (similarly to our Fig. 1), while ∇Z decreases, and galaxies in groups present steeper ∇_{age} and ∇Z, which are in contrast with our results. The latter discrepant results may be a consequence of a different sample selection or systematics in our stellar population models. Differences in the galaxy sample selection would contribute to some of the discrepancies discussed above. In fact, they are adopting a sample without any selection in centrals and satellites, with the latter dominating in number, while in our case the number of centrals is larger and if we derive the plots in Fig. 2 for the whole sample, then no trend is found and a better agreement is found. Then, if we consider the worst case analyzed in simulations discussed in the Appendix (see e.g. Fig. A1) there seems to be some spurious trends introduced by the use of the optical bands only: if we correct our results for this systematics we can also conclude that a steeper trend with mass for ∇_{age} and a shallower trend (if any) for ∇Z would be accommodated by our data, in a way more consistent with La Barbera et al. (2011) findings. If this is the case, it might indicate a major role of gas-rich mergings, cold accretion at high redshift, later gas accretion or close encounters, in satellites, in order to produce steeper gradients in very massive galaxies, rather than dry merging as we would conclude if the gradients are shallower like optical data suggest. Model systematics seem to weakly affect the conclusions with N_{gal} though, which clearly indicates a difference of the gradient behaviour between central galaxies and satellites.

Our results give an indication of the role of physical processes in the mass accretion of massive central and satellite galaxies. The effect of merging and, in general, of interactions with environment crucially depends on the kind of process under analysis (minor vs major merging, dry vs wet mergings, accretion, stripping, etc. etc.). E.g., the positive age gradients found mainly in both (centrally young) central and satellite galaxies supports two kinds of processes: a) a dissipative formation picture, whereby wet mergers fuel the central region with cold gas (de Lucia et al. 2006), or b) cold accretion at high redshift (Dekel & Birnboim, 2006), which generate the observed younger stellar populations in the center. But, central galaxies have more chances to merge or interact with neighbors in denser environments, in fact they are predicted to have larger masses in clusters when compared with similar galaxies in the centers of groups (Romeo et al. 2008). The flatter gradients of centrals we observe in denser environments are consistent with the intervention of a larger number of dry (major) galaxy mergings, which are predicted to mesh stellar populations inside the galaxies (e.g. White 1980; Kobayashi 2004). On the contrary, satellite galaxies do not show any strong evidence in favour of this kind of merging events. The observed younger cores in the youngest galaxies suggest that mergings was not so effective to erase these pre-existing age gradients (possibly generated after a gas-rich merging or cold accretion) or some recent accretion in the center has happened. While, dry mergings were really efficient to dilute those gradients in older galaxies.

The results discussed in this paper represent an useful reference exercise for further analysis performed on higher-z samples, typically involving optical rest frame bandpasses (e.g. from the VLT Survey Telescope, VST). Future analysis with wider wavelength baselines will help to alleviate the problem of parameter degeneracies in stellar modelling (e.g., La Barbera et al. 2011).

ACKNOWLEDGMENTS
CT was supported by the Swiss National Science Foundation.

REFERENCES
Bernstein J. P. & Bhavsar S. P., 2001, MNRAS, 322, 625
Blanton M. R. et al. 2005, AJ, 129, 2562 (B05)
Bruzual, A. G. & Charlot, S. 2003, MNRAS, 344, 1000
Capaccioli M., Cason N. & D’Onofrio M. 1992, MNRAS, 259, 323
Chabrier, G. 2001, ApJ, 554, 1274
Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. 1985, ApJ, 292, 371
Dekel A., & Birnboim Y. 2006, MNRAS, 368, 2
de Lucia, G., Springel, V., White, S. D. M., Croton, D., Kauffmann, G. 2006, MNRAS, 366, 499
di Matteo P., Pipino A., Lehnert M. D., Combes F., Semelin B. 2009, A&A, 499, 427
Dressler A., 1978, ApJ, 223, 765
Gallazzi, A. et al. 2005, MNRAS, 362, 41
Hopkins P. F., Cox T. J., Dutta S. N., Hernquist L., Kormendy J., & Lauer T. R. 2009, ApJS, 181, 135
Jarrett T. H., Chester T., Cutri R., Schneider S. E., Huchra J. P. 2003, AJ, 125, 525
Kauffmann G. et al. 2003, MNRAS, 341, 54
Kawata D. 2001, ApJ, 558, 598
Kawata D. & Gibson B. K. 2003, MNRAS, 340, 908
Ko J. & Im M., 2005, JKAS, 38, 149
Kobayashi C. 2004, MNRAS, 347, 740
Kuntschner H. et al. 2010, MNRAS, 408, 97
La Barbera F., et al. 2005, ApJ, 626, 19
La Barbera F., Ferreras I., de Carvalho R. R., Lopes P.
A. A., Pasquali A., de la Rosa I. G., De Lucia G. 2011, \textit{arXiv:1108.0946}

Larson R. B., 1974, MNRAS, 166, 585

Larson R. B., 1975, MNRAS, 173, 671

Martin D. C. et al., 2005, ApJ, 619, L1

Matteucci F. 1994, A&A, 288, 57

Mihos J. C. & Hernquist L., 1994, ApJ, 437, L47

Pipino A., D’Ercole A. & Matteucci F. 2008, A&A, 484, 679

Pipino A., D’Ercole A., Chiappini C. & Matteucci F. 2010, \textit{arXiv:1005.2154}

Rawle T. D., Smith R. J. & Lucey J. R. 2010, MNRAS, 401, 852

Roche, N., Bernardi, M., Hyde, J. 2010, MNRAS, 407, 1231

Romeo A. D., Napolitano N. R., Covone G., Sommer-Larsen J., Antonuccio-Delogu V., & Capaccioli M. 2008, MNRAS, 389, 13

Schombert J. M., 1986, ApJS, 60, 603

Sijacki D. et al. 2007, MNRAS, 380, 877

Spolaor M., Proctor, R. N., Forbes, D. A., Couch, W. J. 2009, ApJ, 691, 138

Spolaor M., Kobayashi C., Forbes D. A., Couch, W. J., Hau G. K. T. 2010, MNRAS, 408, 272

Springel, V., et al. 2005, Nature, 435, 629

Stott, J. P., Edge, A. C., Smith, G. P., Swinbank, A. M., & Ebeling, H. 2008, MNRAS, 384, 1502

Stott, J. P. et al. 2010, ApJ, 718, 23

Tamura, N., et al. 2000, AJ, 119, 2134

Tamura, N., & Ohta, K. 2000, AJ, 120, 533

Tamura, N., & Ohta, K. 2003, AJ, 126, 596

Tortora C. et al. 2009b, MNRAS, 396, 61

Tortora C. et al. 2010, MNRAS, 407, 144 (T+10)

Tortora C., Romeo A. D., Napolitano N. R., Antonuccio-Delogu V., Meza A., Sommer-Larsen J., Capaccioli M. 2011a, MNRAS, 411, 627

Tortora C. et al. 2011b, MNRAS in press, \textit{arXiv:1107.2918} (T+11)

Yang X., Mo H.J., van den Bosch F.C., Pasquali A., Li C., Barden M. 2007, ApJ, 671, 153

Weinmann S.M., Kauffmann G., van den Bosch F.C., Pasquali A., Mehtosh D.H., Mo H., Yang X., Guo Y., 2009, MNRAS, 394, 1213

Whiley, I. M., et al. 2008, MNRAS, 387, 1253

White S. D. M. 1980, MNRAS, 191, 1

Worthey G. 1994, ApJS, 95, 107

we checked age and metallicity inferences using optical versus optical+NIR constraints, and found, on average, little systematic difference. Anyway, depending case by case, a spurious shift can appear in the estimated gradients and a wide scatter when the fit is made only using optical data. Here we will carry out a similar analysis to study the trends with stellar mass and \(N_{\text{gal}}\), using a suite of Monte Carlo simulations. Because of the large amount of details involved, we will consider the results from these simulations as a qualitative guide to understand in what direction the correlations found would change.

We extract 1000 simulated galaxy spectra from our BC03 spectral energy distribution libraries with random, uncorrelated stellar parameters and gradients. In order to have gradients similar to the ones we observe, we only impose some constraints on the input stellar parameters, producing, on average, \(\nabla_{\text{age}} \sim 0.2\) and \(\nabla_{\text{Z}} \sim -0.3\). We add simulated (equal) measurement errors for each band, as randomly extracted steps from the interval \((-\delta,+\delta)\), with \(\delta=0.01,0.03,0.05\). We apply our fitting procedure and then compare the output parameter estimates to the input model values. We perform the fit (1) using only the optical SDSS bands \(ugriz\) and (2) adding NIR photometry \((J, H \text{ and } KS)\); (Jarrett et al. 2003) and (3) ultraviolet photometry \((N\text{UV and FUV): Martin et al.} 2003\). Finally, to plot the results in terms of stellar mass we have adopted two linear relation to convert the \(M/Ls\) into stellar mass. As test relations we have recovered from our results at \(R_1\) and \(R_2\) the following best relations: \(\log M/L = -0.75 + 0.11 \log M_\star\) and \(\log M/L = -1.08 + 0.15 \log M_\star\). Moreover, the best fitted relation between stellar mass and \(N_{\text{gal}}\) have been derived and used to plot the shift in the gradients in term of \(N_{\text{gal}}\).

We define the quantity \(\nabla_{X,\text{OUT}} - \nabla_{X,\text{IN}}\), where \(X = (\text{age}, Z)\), IN and OUT are the input and output \(X\) values. In Fig. A1 we show the \(\nabla_{X,\text{OUT}} - \nabla_{X,\text{IN}}\) as a function of \(M_\star\) and \(N_{\text{gal}}\), for both age and metallicity and the two \(M/L\)-\(M_\star\) relations. We find that, adding the NIR or UV data, the gradients, independently from the shift \(\delta\) adopted, are perfectly recovered with a very little scatter. With optical data only, the uncertainties are larger and some systematic shifts emerge, mainly for \(\delta \geq 0.03\). In this case, our predicted \(\nabla_{\text{age}}\) and \(\nabla_{\text{Z}}\) are underestimated and overestimated with respect to the input values, respectively. These discrepancies are larger for galaxies with larger \(M_\star\) and \(N_{\text{gal}}\), and in the worst case can amount to \(\sim 0.1\) with respect to the ones with lower \(M_\star\) and \(N_{\text{gal}}\), for \(\delta=0.05\). Although these findings would lead to a possible flattening of the trends of \(\nabla_{\text{Z}}\) in terms of mass and \(N_{\text{gal}}\), a weaker trend would survive. If one assumes a constant relation between stellar mass and \(N_{\text{gal}}\), for as satellites, the trend with \(N_{\text{gal}}\) in Fig. A1 would be canceled and a simple offset in gradient trends would arise in Fig. 2.

APPENDIX A: SYSTEMATICS IN THE STELLAR FIT

Here, we check for systematic effects on our gradient \((\nabla_{\text{age}}\) and \(\nabla_{\text{Z}}\) estimates from the stellar population fits. Because of the well known age-metallicity degeneracy \(\text{(Worthey, 1994)}\), \textit{Bruzual & Charlot 2003, Gallazzi et al. 2005}, the stellar population parameters and the gradients might be biased when using the optical colours only, as we do now. Widening the wavelength baseline to include near-infrared (NIR) colours should ameliorate the degeneracy. Although the synthetic prescriptions in the near-IR region of the spectra are still uncertain, it is very important to understand their impact on our analysis. In T+10 and \(\text{Tortora et al. 2011b}\)
Figure A1. Systematics in stellar population fitting in terms of stellar mass (left panels) and galaxy number in the groups (right panels). We define the quantity $\nabla_{X, \text{OUT}} - \nabla_{X, \text{IN}}$, where $X = (\text{age}, Z)$, IN and OUT are the input and output values. In each big panel, from the top to the bottom we show the systematics in age gradients for two M/L-M_* relations and Z gradients for the same two M/L-M_* relations. From the left to the right we show the cases $\delta = 0.01$, 0.03 and 0.05. The continue line is the median while dashed ones are the 25-75th quantiles. Green, red and blue are for the fit using optical, optical+NIR and optical+UV, respectively.