INTRODUCTION

The phenomenon of transgenerational immune priming (TGIP) has received significant attention, especially in insect systems. Organisms exposed to stressful environmental selection pressures can increase the survival of their offspring by priming their progeny with beneficial nutrients, hormones, and epigenetic factors (Knorr, Schmidtberg, Arslan, Bingsohn, & Vilcinskas, 2015; Pigeault, Garnier, Rivero, & Gandon, 2016; Trauer-Kizilelma & Hilker, 2015a, 2015b). Insects can also respond to pathogenic pressures by priming their immune system and, thus, have protective effects against future lethal doses. Immune priming has been reported across several insect species, including the red flour beetle, the honeycomb moth, the bumblebee, and the European honeybee, among others. Immune priming can also be transgenerational where the parent's pathogenic history influences the immune response of its offspring. Phenotypic evidence of transgenerational immune priming (TGIP) exists in the tobacco moth Manduca sexta where first-instar progeny of mothers injected with the bacterium Serratia marcescens exhibited a significant increase of in vivo bacterial clearance. To identify the gene expression changes underlying TGIP in M. sexta, we performed transcriptome-wide, transgenerational differential gene expression analysis on mothers and their offspring after mothers were exposed to S. marcescens. We are the first to perform transcriptome-wide analysis of the gene expression changes associated with TGIP in this ecologically relevant model organism. We show that maternal exposure to both heat-killed and live S. marcescens has strong and significant transgenerational impacts on gene expression patterns in their offspring, including upregulation of peptidoglycan recognition protein, toll-like receptor 9, and the antimicrobial peptide cecropin.

KEYWORDS
insects, invertebrates, life history evolution, transcriptomics, transgenerational immune priming
Evidence for transgenerational immunity in *Manduca sexta* has also been recently documented in the offspring of mothers exposed to heat-killed and live *Serratia marcescens* bacteria (Rosengaus et al., 2017). Rosengaus et al. (2017) demonstrated that maternal pathogen exposure significantly affected in vivo bacterial clearance by their offspring. Using an in vivo “clearance of infection” assay, they showed that first-instar larvae, offspring of *Manduca* females injected with either live or heat-killed *S. marcescens* had significantly lower microbial loads 24 and 48 hr after injection of live *Serratia* than offspring of females injected with a sterile saline control. Here, we used transcriptome-wide RNA sequencing to identify gene expression changes underlying the transgenerational phenotypic effects reported by Rosengaus et al. (2017). We compared gene expression patterns in fat body and ovariole tissues of mothers exposed to live and heat-killed *S. marcescens* and then compared gene expression patterns in their embryos to identify any transgenerational impacts on gene expression due to maternal pathogen exposure.

The gram-negative bacterium, *S. marcescens*, was chosen to elicit a maternal immune response because it is an ecologically relevant pathogen, commonly found on foliage and in soil (Sikorowski, Lawrence, & Inglis, 2001). *Serratia marcescens* is likely also encountered by developing larvae during herbivory and during the fifth and final larval stage when larvae wander and/or when they pupate subterraneously. In addition, our prior experiments on pathogen-induced maternal effects, which resulted in in vivo evidence of enhanced immune responsiveness across generations, were also carried out with the same strain of *Serratia* as this work (Rosengaus et al., 2017). It was important for us to maintain consistency with regard to the pathogenic strain so that we could transpose the current molecular data onto the in vivo clearing assay results of 2017.

Although previous work on *Manduca* included transcriptomic analyses of specific genes (Lee & Horodyński, 2006) in the context of starvation and mating, transcriptome-wide analyses for sex chromosome differences (Smith, Chen, Blissard, & Briscoe, 2014) and within-generation immune challenges (Van Munster et al., 2007), and phenotypic analyses of TGIP (Rosengaus et al., 2017) the present work, based on genome-wide transcriptomic analyses, provide more nuanced information with respect to gene expression changes involved in TGIP.

## METHODS

*Manduca sexta* eggs were obtained from Carolina Biological Supply (Burlington, NC), then reared, and treated following the same protocol used by Rosengaus et al. (2017). Briefly summarizing, larvae were reared on a standard artificial diet (Bell & Joachim, 1976) at 25°C under a 16-hr:8-hr light/dark cycle. Two days prior to expected eclosion, female pupae were swabbed with 70% ethanol and injected with sterile saline (10 μl, n = 8), heat-killed *Serratia* (10 μl at 1 × 10⁸ cells/ml, n = 8), or live *Serratia* (10 μl at 4 × 10⁸ CFU/ml, n = 8) using a 10 μl Hamilton syringe and sterile needle. After eclosion, twelve of the treated females (4 each from saline, heat-killed, and live exposures)
were sacrificed and RNA was extracted from ovarioles and fat bodies to profile their transcriptomic response to pathogen exposure. Total RNA was extracted from fat bodies and ovarioles of each adult female (n = 4 from the saline-treated mothers, n = 4 from the heat-killed mothers, and n = 4 from the live S. marcescens-injected mothers) using the Promega SV Total RNA Isolation Kit.

The twelve remaining females (4 each from saline, heat-killed, and live) were mated with untreated (naïve) males following the monogamous mating protocol: A single treated female paired with an untreated male inside a cage (30 x 30 x 60 cm) (Rosengaauw et al., 2017). The mated moths oviposited on 30 mm tobacco extract-infused foam plugs suspended from the cage ceiling. Twenty-four hours post-oviposition, embryos were collected and sacrificed for RNA extraction to profile the transgenerational transcriptomic response to maternal pathogen exposure. Total RNA was extracted from whole embryos (n = 12) using the Promega SV Total RNA Isolation Kit.

Three samples for each tissue/treatment group were selected for library preparation for a total of 27 RNA samples. mRNA was isolated using the NEBNext® Poly(A) mRNA Magnetic Isolation Module, Illumina libraries were produced using the NEBNext® Ultra™ Directional RNA Library Prep Kit for Illumina®, and the libraries were sequenced at the Bauer Core Facility of Harvard University. The ovariole and fat body libraries were sequenced on two lanes in rapid-run paired-100 mode producing a total of 45,260,841 read pairs for fat body and 130,646,641 read pairs for ovariole. The embryo libraries were sequenced on one lane in rapid-run paired-100 mode producing a total of 38,189,468 reads. The reads were adapter- and quality-trimmed using Trimmomatic version 0.36 (Bolger, Lohse, & Usadel, 2014) using a 4-base sliding-window quality cutoff of 30 (Phred + 33) and the TruSeq3 adapter sequence file (TruSeq3-PE.fa). Transcript counts were quantified against M. sexta predicted coding sequences published by Kanost et al. (2016) using Salmon (Patro, Duggal, Love, Irizarry, & Kingsford, 2017). Transcript counts were imported into DESeq2 (Love, Huber, & Anders, 2014) using tximport (Soneson, Love, & Robinson, 2015).

### 2.1 Gene expression analysis

MDS and PERMANOVA analyses were used to identify transcriptome-wide differences in gene expression due to immune treatment (saline, heat-killed Serratia, live Serratia) and tissue type (adult fat body, adult ovariole, whole embryo). Hellinger-transformed, DESeq2-normalized (Love et al., 2014) counts for each tissue type were analyzed using PERMANOVA to identify transcriptome-wide differences in expression patterns using the adonis function within the R package Vegan (Oksanen, Blanchet, & Friendly, 2019) with 10,000 permutations.

A two-factor negative binomial GLM implemented in DESeq2 (Love et al., 2014) was used to compare saline versus heat-killed and live S. marcescens exposures in the two maternal tissues (ovarioles and fat bodies) and their embryos to identify TGIP. This approach allows us to identify differentially expressed (DE) genes and then characterize the function of those genes using protein annotations and KEGG pathway analyses.

### 2.2 Annotation

To facilitate KEGG pathway analysis, differentially expressed transcripts were mapped to KEGG ortholog IDs. The transcripts were aligned to Swiss-Prot (The Uniprot Consortium, 2017) using blastx (Camacho et al., 2009). Swiss-Prot hits were filtered using an e-value cutoff of 1e−5 and matched to KEGG orthologs using the KEGG API. For each Manduca transcript, the KEGG ortholog corresponding to the lowest BLAST e-value was selected.

### 3 RESULTS

RNA-Seq data were generated from 27 samples, three replicates for each tissue type (adult fat body, adult ovariole, and embryos) and treatment group (saline, heat-killed, and live S. marcescens) combination. The number of mapped RNA-seq reads per sample averaged 5,407,438 (±1,528,155 SE). The Friedman rank tests showed no significant mapping differences due to tissue type ($X^2 = 0.667, df = 2, p$-value = .717) or treatment ($X^2 = 0.667, df = 2, p$-value = .717). The means of mapped reads by tissue type were 3,371,322 (± 456,357 SE) for fat body, 10,563,659 (± 4,180,785 SE) for ovariole, and 2,287,335 (± 152,030 SE) for embryo.

### 3.1 Transcriptome-wide analyses

Two-way PERMANOVA (Table 1) identified strong and significant differences in transcriptome-wide gene expression patterns between...

| Factor          | df | Sums of sqs | Mean sqs | F. Model | $R^2$ | Pr($>\text{F}$) |
|-----------------|----|-------------|----------|----------|-------|-----------------|
| Tissue          | 2  | 0.865       | 0.432    | 39.778   | 0.772 | 0.0001          |
| Treatment       | 2  | 0.019       | 0.009    | 0.863    | 0.016 | 0.472           |
| Tissue:Treatment| 4  | 0.041       | 0.010    | 0.938    | 0.036 | 0.498           |
| Residuals       | 18 | 0.196       | 0.011    | 0.175    |       |                 |
| Total           | 26 | 1.120       |          | 1.000    |       |                 |
the three tissue types explaining 77% of the variation \( (F = 39.78, r^2 = 0.77, df = 2, p = .0001) \), but nonsignificant effects of pathogenic treatment (saline, heat-killed, or live S. marcescens) \( (F = 0.86, r^2 = 0.02, df = 2, p = .47) \) or any of their interactions \( (F = 0.94, r^2 = 0.04, df = 4, p = .50) \). Because of these strong differences between tissue types, we ran three independent PERMANOVAs for each tissue type—maternal fat bodies and ovarioles as well as embryos—focused on identifying differences in gene expression due to pathogenic treatment.

Although the independent PERMANOVAs did not identify significant differences in transcriptome-wide gene expression due to maternal immune treatment in maternal fat bodies \( (F = 0.96, r^2 = 0.24, df = 2, p = .49) \) and ovarioles \( (F = 0.48, r^2 = 0.14, df = 2, p = .97) \), transcriptome-wide patterns of gene expression in the embryos of the exposed mothers differed significantly \( (F = 2.2, r^2 = 0.44, df = 2, p = .03) \). In embryos, maternal immune treatment explained 44% of the variation in transcriptome-wide gene expression. An MDS plot of all tissue types and treatments (Figure 1) also shows tissue type differences obscuring treatment differences. Separate MDS plots for each tissue type (Figure 2) show treatment differences within tissue types, with heat-killed and live treatment groups clustering separately from the saline control for fat body and embryo but not ovariole.

### 3.2 Gene-level analyses

Negative binomial GLMs were run separately for the two maternal tissues (fat body and ovarioles) as well as the embryos in order to identify genes that were differentially expressed due to heat-killed or live Serratia exposure compared to the saline control (Table 2).

Relative to the maternal saline treatment, fat bodies of heat-killed Serratia-treated mothers had 17 genes that were differentially expressed (DE). The fat bodies of live Serratia-treated mothers had 99 genes that were DE. For the ovariole tissue, only one gene was differentially expressed (DE) for heat-killed Serratia-treated mothers. For the live Serratia-injected mothers, their ovarioles also had one DE gene. In sharp contrast, embryos from heat-killed Serratia-treated mothers had 469 DE genes while embryos from live Serratia-treated mothers had 150 DE genes.

When KEGG gene annotations were identified for the DE genes, fat body had seven DE genes with annotations for heat-killed exposures and 57 DE annotated genes for live exposures. Ovariole had zero DE annotated genes for heat-killed exposure and one DE annotated gene for live exposures. Embryo had 334 DE annotated genes for heat-killed and 106 live DE annotated genes. To focus on annotated genes showing the strongest effect, we focused on highly differentially expressed genes with absolute \( \log_2 \) fold change values greater than 2 (i.e., a five-fold difference in gene expression). Among the highly differentially expressed genes, fat body had five heat-killed and 51 live genes, ovariole had zero heat-killed and one live gene, and embryo had 31 heat-killed and 15 live genes (Table 2 and Figure 3).

A heat map plotting highly DE genes for maternal fat body (Figure 4) shows that mothers treated with live S. marcescens strongly upregulated DE genes (41/49) relative to the more intermediate expression in the heat-killed treatment and lower expression in the saline control. The remaining eight highly DE genes in maternal fat body were downregulated in the live treatment relative to the heat-killed or saline treatments. Three of the highly DE genes were immune genes; interferon gamma-inducible protein 30 was upregulated in live-treated fat bodies, whereas cathepsin B and gelsolin were both downregulated. Eight of the highly DE genes were xenobiotic genes; six of which were upregulated in live-treated fat bodies (carbonyl reductase 3, cytochrome P450 family 6 [Msex2.13294, Msex2.13295, Msex2.10215], glucuronosyltransferase, cytochrome P450 family 12); and two of which were downregulated (carboxylesterase 2, glutathione S-transferase).

![FIGURE 1](image-url) MDS of all tissue types showing clustering across tissue type (Embryo, Adult Fat Body, and Adult Ovariole) according to whether the mothers were exposed to heat-killed Serratia (Heat-Killed), live Serratia (Live), or saline (Saline) as a control.
A heat map of highly DE genes for the embryos (Figure 5) showed clear clustering of the three treatment groups (saline, heat-killed and live) with the heat-killed and live treatments clustering together. Among the 25 highly DE genes that were upregulated in the heat-killed and live exposure treatments, heat-killed treatment generally showed higher expression than the live treatment. These 25 highly DE genes include five immune genes (cecropin, peptidoglycan recognition protein, toll-like receptor 9, plasminogen activator inhibitor 1, gelsolin)—and three xenobiotic genes (xanthine dehydrogenase/oxidase, glutathione S-transferase, carbonyl reductase 3) showing transgenerational effects. Sixteen highly DE genes were downregulated in the heat-killed and live exposure treatments; nine DE genes were more downregulated in the heat-killed treatment; and seven DE genes were more downregulated in the live treatment. Only one of the 16 downregulated genes (KRAB domain-containing zinc finger protein) was an immune gene.

### DISCUSSION

Our results showed a strong upregulation of genes in the fat bodies, but not ovarioles of adult female moths in response to injections of heat-killed and live Serratia. Moreover, we observed a stronger upregulation of immune-related genes in embryos from heat-killed Serratia-injected mothers than that from embryos exposed to live bacteria. This may be a result of mothers dealing with an active (i.e.,

---

**TABLE 2** DE gene summary—all DE, annotated DE, and annotated DE with absolute LFC greater than 2 each tissue type (embryo, adult fat body, and adult ovariole) according to whether samples were treated with live or heat-killed Serratia compared to the saline control.

| Tissue        | Differentially expressed | Annotated | Annotated LFC > 2 |
|---------------|--------------------------|-----------|------------------|
|               | Heat-killed | Live     | Heat-killed | Live | Heat-killed | Live |
| Embryo        | 469         | 150      | 334         | 106  | 31           | 15   |
| Adult—Fat Body| 17          | 99       | 7           | 57   | 5            | 51   |
| Adult—Ovariole| 1           | 1        | 0           | 1    | 0            | 1    |
live) *Serratia* infection engaging in trade-offs and prioritizing their own survival over the transgenerational immune priming (TGIP) of their offspring, or possibly, due to the known immunosuppressive effect of *Serratia* (Ishii, Adachi, Hamamoto, & Sekimizu, 2014) which could have precluded TGIP if the mother’s immune system was compromised by the immunosuppressive compounds synthesized by *Serratia*. Higher numbers of DE immune genes in the offspring of mothers treated with heat-killed *Serratia*, on the other hand, provide strong evidence for TGIP. Interestingly, the DE genes observed in the immune responses of adult moths versus via transgenerational priming do not mirror each other. The DE immune-related genes differed between mothers and their offspring, with xenobiotics predominating in the mother’s response, and PRRs and antimicrobial peptides predominating in the TGIP response.

Patterns of differential expression of genes can be characterized as sets of DE immune and xenobiotic genes that were (a) similarly upregulated for both adults and embryos, (b) DE of immune and xenobiotic genes only in mothers (but not embryos), or (c) DE of immune and xenobiotic genes only in embryos of treated mothers. We discuss these groups of genes below. A complete list of differentially expressed genes, annotations, annotation identities, and e-values is available in Appendix S1.

### 4.1 Shared upregulated adult and offspring xenobiotic genes

There was very little overlap of shared DE xenobiotic genes detected in the adults and transgenerationally primed embryos. Only carbonyl reductase 3 (CBR3/Msex2.09445) was upregulated in adults treated with live *Serratia* and embryos whose mothers were exposed to heat-killed *Serratia*. Upregulation of carbonyl reductases has been reported in gypsy moth (*Lymantria dispar*) on protein-deficient diets (Lindroth, Barman, & Weisbrod, 1991). Upregulation of carbonyl reductase 3 has also been reported in human cancer cells in response to oxidative stress (Ebert, Kisiela, Malátková, El-Hawari, & Maser, 2010). To the best of our knowledge, this is the first report of upregulation in response to immune challenge in Lepidoptera.

### 4.2 Upregulated adult-only immune and xenobiotic genes

The adult-only response was characterized by strong upregulation of xenobiotic genes in mothers injected with live bacteria. Cytochrome P450 family 12 (CYP12/Msex2.10889) and cytochrome P450 family 6 (CYP6/Msex2.13294, CYP6/Msex2.10215, and CYP6/Msex2.13295) were upregulated in adults exposed to live *Serratia*. CYP12 and CYP6 are members of the cytochrome P450 family involved in oxidation/reduction of organic chemicals including drugs, environmental toxins, and carcinogens in humans (Guengerich, Waterman, & Egli, 2016). Upregulation of cytochrome P450 has been reported in several invertebrates including silkworms (*Bombyx mori*) challenged with *B. thuringiensis* (Wu & Yi, 2018), flour beetles (*T. castaneum*) challenged with LPS (Altincicek et al., 2013), and abalone (*Haliotis diversicolor*) challenged with gram-negative and gram-positive bacteria (Wang, Ren, Xu, Cai, & Yang, 2008). The role upregulation of cytochrome P450 plays in the insect immune response is unclear, but Wu and Yi (2018) proposed that this may be a detoxification response to protect the host from intermediate
metabolites involved in the energetic cost of mounting an immune response. Glucuronosyltransferase (UGT/Msex2.12524) was also upregulated when mothers were injected with live *Serratia*. UGT catalyzes the attachment of sugars to toxins to facilitate their excretion (Meech, Miners, Lewis, & Mackenzie, 2012). Upregulation of UGT in response to immune challenge has been reported in *Drosophila* exposed to *E. coli* (Johansson, Metzendorf, & Söderhäll, 2005), and perhaps its upregulation helps *Manduca* mothers detoxify the toxins produced by *Serratia*.

Only one immune gene was strongly upregulated in mothers injected with live bacteria—interferon gamma-inducible protein 30 (GILT). GILT is involved in MHC antigen processing in mammals (Jensen, 1993), and upregulation of GILT in response to immune challenge has been identified in several invertebrates including disk abalone exposed to gram-negative *Vibrio alginolyticus* (Zoysa & Lee, 2007), mosquito exposed to the malarial parasite *Plasmodium falciparum* (Schleicher et al., 2018), and fruit fly exposed to gram-negative *E. coli* (Kongton et al., 2014).
4.3 Downregulated adult-only immune and xenobiotic genes

Carboxylesterase 2 (CES2/Msex2.07504) and cathepsin B (CTSB/Msex2.01721) were downregulated within fat body in mothers exposed to live *Serratia*. It is unclear why these two genes were downregulated as we find no comparative studies showing a similar pattern. CES2 catalyzes the metabolism of ester and pyrethroid toxins (Wang et al., 2018). Cathepsins are proteases expressed in lysosomes. CTSB is highly expressed in the fat body of *B. mori* during the larval–pupal transformation, and it is involved in the programmed cell death of the fat body during metamorphosis (Lee et al., 2009). In addition to its role in metamorphosis, cathepsin B has been associated with the response to immune challenge. Wu et al. (2011) reported upregulation of cathepsins B and D in *B. mori* challenged with *B. mori* nuclear polyhedrosis virus (BmNPV). Our results showed a counter-intuitive pattern in *M. sexta* (downregulation) relative to results reported by Wu et al. (2011) in the closely related species *B. mori*, but this downregulation could be a host response to the known immunosuppressive effects of *S. marcescens* (Ishii et al., 2014).
4.4 | Signatures of TGIP in Embryos

Compared to the maternal response, the transgenerational immune responses in embryos of mothers who experienced heat-killed Serratia injections (Figure 5) involved strong upregulation of immune genes—cecropin (CEC), peptidoglycan recognition protein (PGRP), toll-like receptor 9 (TLR9), and plasminogen activator inhibitor 1 (PAI1).

Cecropins are antimicrobial peptides active against many gram-negative bacteria and fungi (Lee et al., 2013). Contreras-Garduño et al. (2015) reported within-generation immune priming and upregulation of cecropin in marsh mosquitoes (Anopheles albimanus) exposed to the protozoan parasite Plasmodium berghei, but to our knowledge, we are the first to document transgenerational upregulation of cecropin in an insect.

PGRP is involved in the response to gram-positive bacteria via the toll pathway and gram-negative bacteria like Serratia via the IMD pathway (Göttar et al., 2002). Freitak et al. (2014) reported transgenerational upregulation of PGRP in the eggs of immune-challenged M. sexta mothers, and Eggert et al. (2014) reported upregulation PGRP in the offspring of T. castaneum fathers exposed to B. thuringiensis.

Msex2.01919, whose best BLAST hit was for mammalian TLR9, was upregulated in embryos of mothers exposed to heat-killed Serratia. In mammals, toll-like receptors are primarily involved in immune responses, while in insects, toll-like receptors contribute to both development and immune response roles (Imler & Zheng, 2004). In mammals, TLR9 binds CpG motifs in bacterial DNA (Cornellie et al., 2004). Upregulation of other toll-like homologues (TLR4 homolog MsToll) has been reported in M. sexta challenged with gram-negative bacteria (E. coli), gram-positive bacteria (M. lysodeikticus), and yeast (Saccharomyces cerevisiae) (Ao et al., 2008).

Plasminogen activator inhibitor 1 (PAI-1) was upregulated in embryos of mothers exposed to heat-killed Serratia. PAI-1 is a serine protease inhibitor involved in hemostasis in mammals (Lijnen, 2005). PAI-I is upregulated in humans during gram-negative sepsis caused by Burkholderia pseudomallei and protects the host by limiting bacterial growth, inflammation, and coagulation (Kager et al., 2011). We believe we are the first to report transgenerational PAI-1 upregulation in invertebrates, and it is possible that PAI-1 plays a similar protective anticoagulation role in Manduca.

5 | CONCLUSION

Maternal exposure of M. sexta to both heat-killed and live S. marcescens had strong and significant transgenerational impacts on gene expression patterns of their offspring, and these patterns include upregulation of genes that could play a role in the transgenerational phenotypic effects reported by Rosengaus et al. (2017). This combination of phenotypic and transcriptomic transgenerational effects adds to the growing body of evidence for transgenerational immune priming in insects. Our results indicate that immune priming includes upregulation of genes associated with pathogen recognition, pathogen elimination, and modulation of downstream effects like coagulation. Further exploration is warranted to determine the mechanisms that drive these TGIP gene expression changes.

ACKNOWLEDGMENTS
We thank James Kemos, James MacArthur, Emily Moore, Shannon Rudolph, Matt Simhon, and Jamaica Siwak for their assistance in Manduca rearing and tissue sampling. This work was partially funded by a TIER1 award, Northeastern University.

CONFLICT OF INTEREST
None declared.

AUTHOR CONTRIBUTIONS
Charles L. Roesel: Data curation (lead); formal analysis (lead); methodology (equal); project administration (equal); supervision (equal); validation (equal); writing – review and editing (equal). Rebeca B. Rosengaus: Conceptualization (lead); formal analysis (equal); funding acquisition (equal); investigation (equal); methodology (lead); project administration (equal); supervision (equal); validation (equal); writing – review and editing (equal). Wendy Smith: Conceptualization (lead); formal analysis (equal); funding acquisition (equal); investigation (equal); methodology (lead); project administration (equal); supervision (equal); validation (equal); writing – review and editing (equal).

Steven V. Vollmer: Conceptualization (lead); formal analysis (equal); funding acquisition (equal); investigation (equal); methodology (equal); project administration (equal); supervision (equal); validation (equal); writing – review and editing (equal).

DATA AVAILABILITY STATEMENT
The Illumina RNA-Seq read data are available on NCBI SRA https://www.ncbi.nlm.nih.gov/sra under BioProject accession number PRJNA603121. Normalized read count data, DESeq2, and annotation files (.csv) are available on Dryad https://doi.org/10.5061/dryad.wpzgmsbjt.

ORCID
Charles L. Roesel https://orcid.org/0000-0001-5608-1979
Rebeca B. Rosengaus https://orcid.org/0000-0002-2532-5608
Steven V. Vollmer https://orcid.org/0000-0002-1123-8706

REFERENCES
Altincicek, B., Elashry, A., Guz, N., Grundler, F. M. W., Vilcinskas, A., & Dehne, H.-W. (2013). Next generation sequencing based transcriptome analysis of septic-injury responsive genes in the beetle Tribolium castaneum. PLoS One, 8, e52004. https://doi.org/10.1371/journal.pone.0052004
Ao, J.-Q., Ling, E., & Yu, X.-Q. (2008). A Toll receptor from Manduca sexta mimics a primary immune response. PLoS One, 11(7), e0159635. https://doi.org/10.1371/journal.pone.0159635
Bell, R., & Joachim, F. (1976). Techniques for rearing laboratory colonies of tobacco hornworms and pink bollworms. Annals of the Entomological Society of America, 69, 365–373.

Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30, 2114–2120. https://doi.org/10.1093/bioinformatics/btu170

Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., & Madden, T. L. (2009). BLAST: Architecture and applications. BMC Bioinformatics, 10, 421. https://doi.org/10.1186/1471-2105-10-421

Contreras-Garduño, J., Rodríguez, M. C., Hernández-Martínez, S., Martínez-Barnetche, J., Alvarado-Delgado, A., Izquierdo, J., ... Lanz-Mendoza, H. (2015). Plasmodium berghei induced priming in Anopheles albimanus independently of bacterial co-infection. Developmental and Comparative Immunology, 52, 172–181. https://doi.org/10.1016/j.dci.2015.05.004

Cornélie, S., Hoebeke, J., Schacht, A.-M., Bertin, B., Vicogne, J., Capron, M., & Riveau, G. (2004). Direct evidence that toll-like receptor 9 (TLR9) functionally binds plasmid DNA by specific cytosine-phosphate-guanine motif recognition. Journal of Biological Chemistry, 279, 15124–15129. https://doi.org/10.1074/jbc.M313406200

De Zoya, M., & Lee, J. (2007). Molecular cloning and expression analysis of interferon-gamma inducible lysosomal thiol reductase (GILT)-like cDNA from disk abalone (Halopsis discus discus). Journal of Invertebrate Pathology, 96(3), 221–229. https://doi.org/10.1016/j.jip.2007.05.009

Ebert, B., Kisiela, M., Malátová, P., El-Hawari, Y., & Maser, E. (2010). Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by hemocytes of Manduca sexta. Journal of Invertebrate Pathology, 1028. https://doi.org/10.1016/j.jip.2014.01.007

Eleftherianos, I., Millichap, P. J., Ffrench-Constant, R. H., & Reynolds, S. E. (2006). RNAi suppression of recognition protein mediated immune responses in the tobacco hornworm Manduca sexta causes increased susceptibility to the insect pathogen Photorhabdus. Developmental and Comparative Immunology, 30, 1099–1107. https://doi.org/10.1016/j.dci.2006.02.008

Freitak, D., Schmidtberg, H., Dicke, L., Lochnit, G., Vogel, H., & Vilcinskas, A. (2014). The maternal transfer of bacteria can mediate trans-generational immune priming in Tribolium castaneum. Biology Letters, 11, 20150885.

Kongton, K., McCall, K., & Phongdara, A. (2014). Identification of gamma-interferon-inducible lysosomal thiol reductase (GILT) homologues in the fruit fly Drosophila melanogaster. Developmental and Comparative Immunology, 44(2), 389–396. https://doi.org/10.1016/j.dci.2014.01.007

Lee, E., Jeong, K.-W., Lee, J., Shin, A., Kim, J.-K., Lee, J., ... Kim, Y. (2013). Structure/activity relationships of cecropin-like peptides and their interactions with phospholipid membrane. BMB Reports, 46, 282–287. https://doi.org/10.5483/BMBRep.2013.46.5.252

Lindroth, R. L., Barman, M. A., & Weisbrod, A. V. (1991). Nutrient deficiencies and the gypsy moth, Lymantria dispar: Effects on larval performance and detoxication enzyme activities. Journal of Insect Physiology, 37, 45–52. https://doi.org/10.1016/0022-1910(91)90018-U

Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology, 15. https://doi.org/10.1186/s13059-014-0550-8

Mcmamara, K. B., Leshout, E., & Simmons, L. W. (2014). The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. Journal of Evolutionary Biology, 27, 1020–1028. https://doi.org/10.1111/jeb.12376
Meech, R., Miners, J., Lewis, B., & Mackenzie, P. (2012). The glycosidation of xenobiotics and endogenous compounds: Versatility and redundancy in the UDP glycosyltransferase superfamily. Pharmacology & Therapeutics, 134, 200–218. https://doi.org/10.1016/j.pharmthera.2012.01.009

Noroziitallab, P., Baruah, K., Biswas, P., Vanrompay, D., & Bossier, P. (2016). Probing the phenomenon of trained immunity in invertebrates during a transgenerational study, using brine shrimp Artemia as a model system. Scientific Reports, 6, 21166. https://doi.org/10.1038/srep21166

Oksanen, J., Blanchet, F. G., Friendly, M. et al. (2019). Vegan: Community ecology package. R package version 2.5-6 https://CRAN.R-project.org/package=vegan

Patro, R., Duggal, G., Love, M. I., Irizarry, R. A., & Kingsford, C. (2015). Salmon: Fast and bias-aware quantification of transcript expression using dual-phase inference. Nature Methods, 14, 417–419.

Pigeault, R., Garnier, R., Rivero, A., & Gandon, S. (2016). Evolution of transgenerational immunity in invertebrates. Proceedings of the Royal Society B: Biological Sciences, 283, 20161136. https://doi.org/10.1098/rspb.2016.1136

Rosengaurs, R. B., Hays, N., Biro, C., Kemos, J., Zaman, M., Murray, J., ... Smith, W. (2017). Pathogen-induced maternal effects result in enhanced immune responsiveness across generations. Ecology and Evolution, 7, 2925–2935. https://doi.org/10.1002/ece3.2887

Roth, O., Beemelmanns, A., Barribeau, S. M., & Sadd, B. M. (2018). Recent advances in vertebrate and invertebrate transgenerational immunity in the light of ecology and evolution. Heredity, 121(3), 225–238. https://doi.org/10.1038/s41437-018-0101-2

Sadd, B. M., Kleinlogel, Y., Schmid-Hempel, R., & Schmid-Hempel, P. (2005). Trans-generational immune priming in a social insect. Biology Letters, 1(4), 386–388. https://doi.org/10.1098/rsbl.2005.0369

Salmela, H., Amdam, G. V., & Freitak, D. (2015). Transfer of immunity from mother to offspring is mediated via egg-yolk protein vitellogenin. PLoS Path. Jl, 1, 1–12. https://doi.org/10.1371/journal.ppat.1005015

Schleicher, T., Yang, J., Freudzon, M., Rembisz, A., Craft, S., Hamilton, M., ... Fikrig, E. (2018). A mosquito salivary gland protein partially inhibits Plasmodium sporozoite cell traversal and transmission. Nature Communications, 9(1), 1–12. https://doi.org/10.1038/s41467-018-05374-3

Sikorowski, P. P., Lawrence, A. M., & Inglis, G. D. (2001). Effects of Serratia marcescens on rearing of the tobacco budworm (Lepidoptera: Noctuidae) (PP Sikorowski, AM Lawrence, GD Inglis, Trans.). American Entomologist, 47, 51–61. https://doi.org/10.1093/ae/47.1.51

Smith, G., Chen, Y.-R., Blissard, G. W., & Briscoe, A. D. (2014). Complete dosage compensation and sex-biased gene expression in the moth Manduca sexta. Genome Biology and Evolution, 6(3), 526–537. https://doi.org/10.1093/gbe/evu035

Soneson, C., Love, M. I., & Robinson, M. D. (2015). Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Research, 4, 1521. https://doi.org/10.12688/f1000 research.7563.1

The Uniprot Consortium (2017). UniProt: The universal protein knowledgebase. Nucleic Acids Research, 45, D158.

Trauer-Kizilelma, U., & Hilker, M. (2015a). Insect parents improve the anti-parasitic and anti-bacterial defence of their offspring by priming the expression of immune-relevant genes. Insect Biochemistry and Molecular Biology, 64, 91–99. https://doi.org/10.1016/j.ibmb.2015.08.003

Trauer-Kizilelma, U., & Hilker, M. (2015b). Impact of transgenerational immune priming on the defence of insect eggs against parasitism. Developmental and Comparative Immunology, 51, 126–133. https://doi.org/10.1016/j.dci.2015.03.004

Van Munster, M., Prêfontaine, G., Meunier, L., Elias, M., Mazza, A., Broussseau, R., & Masson, L. (2007). Altered gene expression in Choristoneura fumiferana and Manduca sexta in response to sublethal intoxication by Bacillus thuringiensis Cry1Ab toxin. Insect Molecular Biology, 16(1), 25–35. https://doi.org/10.1111/j.1365-2583.2006.00692.x

Wang, D., Zou, L., Jin, Q., Hou, J., Ge, G., & Yang, L. (2018). Human carboxylesterases: A comprehensive review. Acta Pharmaceutica Sinica B, 8, 699–712. https://doi.org/10.1016/j.apsb.2018.05.005

Wang, K.-J., Ren, H.-L., Xu, D.-D., Cai, L., & Yang, M. (2008). Identification of the upregulated expression genes in hemocytes of variously colored abalone (Haliotis diversicolor Reeve, 1846) challenged with bacteria. Developmental & Comparative Immunology, 32, 1326–1347. https://doi.org/10.1016/j.dci.2008.04.007

Wu, F.-Y., Zou, F.-M., Jia, J.-Q., Wang, S.-P., Zhang, G.-Z., Guo, X.-J., & Gui, Z.-Z. (2011). The influence of challenge on Cathepsin B and D expression patterns in the silkworm Bombyx mori L. International Journal of Industrial Entomology, 23, 129–135. https://doi.org/10.1080/17487112.2011.23.1.129

Wu, G., & Yi, Y. (2018). Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Molecular Immunology, 103, 220–228. https://doi.org/10.1016/j.molimm.2018.10.006

Yu, X.-Q., Zhu, Y.-F., Ma, C., Fabrick, J. A., & Kanost, M. R. (2002). Pattern recognition proteins in Manduca sexta plasma. Insect Biochemistry and Molecular Biology, 32, 1287–1293. https://doi.org/10.1016/S0965-1748(02)00091-7

Zhu, Y., Johnson, T. J., Myers, A. A., & Kanost, M. R. (2003). Identification by subtractive suppression hybridization of bacteria-induced genes expressed in Manduca sexta fat body. Insect Biochemistry and Molecular Biology, 33, 541–559. https://doi.org/10.1016/S0965-1748(03)00028-6

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Roesel CL, Rosengaurs RB, Smith W, Vollmer SV. Transcriptomics reveals specific molecular mechanisms underlying transgenerational immunity in Manduca sexta. Ecol Evol. 2020;10:11251-11261. https://doi.org/10.1002/ece3.6764