Effect of entomopathogenic fungi, *Beauveria bassiana* and *Metarhizium anisopliae*, on *Thrips tabaci* Lindeman (Thysanoptera: Thripidae) populations in different onion cultivars

Quratul Ain 1*, Ata Ul Mohsin 1, Muhammad Naeem 1 and Ghulam Shabbir 2

Abstract

Background: *Thrips tabaci* Lindeman (Thysanoptera: Thripidae) is the key pest of onions that causes economic yield losses in commercial onion production in Pakistan. In this study, potential of the entomopathogenic fungi (EPF), *Beauveria bassiana* and *Metarhizium anisopliae*, as a bio agent was evaluated to manage buildup of thrips population on onion crop.

Results: Efficacy tests for EPF were conducted against *T. tabaci* infesting 3 different onion varieties (Phulkara, Swat 1, and Virio 7). Commercial formulations of *B. bassiana* strain GHA and *M. anisopliae* strain ESC-1, were evaluated at 4 different concentrations (10^8, 10^9, 10^10, and 10^11 conidia/ml) under field conditions for 2 years. The efficacy was assessed 3, 5, 7, and 10 days after spray application of the whole onion plant. Efficacy expressed as *T. tabaci* (nymphs and adults) percent population reduction in comparison to controls. Maximum corrected percent population reduction was observed in onion plants treated with *B. bassiana* 10^11 conidia/ml, i.e., 86.62, 84.59, and 86% in Phulkara, Swat 1, and Virio 7 onion varieties respectively, after 10 days of spray application. While onion plants treated with *M. anisopliae* 10^8 conidia/ml showed minimum corrected percent population reduction, i.e., 69.42, 68.45, and 69.11% in Phulkara, Swat 1, and Virio 7 onion varieties respectively, after 10 days of spray.

Conclusions: *Beauveria bassiana* could significantly reduce thrips population and could provide a better long-term management of *T. tabaci* on onion. *B. bassiana* had a high toxic effect against offspring production of the *T. tabaci* under field conditions than *M. anisopliae*.

Keywords: *Beauveria bassiana*, *Metarhizium anisopliae*, *Thrips tabaci*, Onion, Biological control
In Pakistan, sucking insect pests is the major reason of decrease in onion production. These pests include thrips as major pest and onion maggot (Delia antiqua), leaf minors (Lyriomyza spp.), and cutworm (Agrotis ipsilon) as minor pests (Khan et al. 2015). The demand for organic horticulture products that are safe for environment and consumers is increasing. Non-chemical methods such as biotechnical methods and intercropping (Trdan et al. 2006), late planting, physical barriers, and mulching are identified control methods for T. tabaci on onion crop (Gawande et al. 2010). However, all the above tactics could form one component of integrated pest management. Biological control in onion fields faces an immense difficulty because onion is treated intensively with insecticides. In organic horticulture, biological control is recognized as a basic component of IPM in which microbial control is a preferred technique due to its positive attributes such as amenable to production, broad spectrum effectiveness, and long-term storage (Dinesh 2017).

Among entomopathogenic microbial agents, fungal pathogens EPF isolated from different thrips species and proven to be pathogenic to T. tabaci include Metarhizium anisopliae (Metschn.) Sorokin., Beauveria bassiana (Bals.) Vuill., Neozygites cucumeriformis, Zoophthora radicans, Entomophthora thripidium, Verticillium lecanii, and Paecilomyces fumosoroseus (Butt and Brownbridge 1997). EPF are developed for the management of onion thrips T. tabaci, western flower thrips Frankliniella occidentalis and legume thrips Megalurothrips sjostedti in leguminous crops, ornamental plants, and vegetables (Maniania et al. 2002). Biopesticide usage for integrated crop pest management has increased in last few years (Sahayaraj and Namasivayam 2008). Various EPF have been industrialized as formulated products such as (i) Beauveria as BotaniGard® ES, Beauverin®, and Mycotrol® WPO, Betel®; (ii) M. anisopliae as Met52® EC, Bio-Catch-M® SL, and Green Muscle® SU; (iii) M. flavoviride as Biogreen® L; and (iv) Isaria fumosorosea as Preferal® WG and Priority® WP (Faria and Wraight 2007). These formulated products are being used to manage a wide range of pests such as thrips, whiteflies, aphids, mealybugs, psyllids, plant bugs, scarab beetles, and weevils (Copping 2009). These EPF have potential to be used in integrated insect pest management programs due to their less persistent nature, low mammalian toxicity, and natural occurrence (Lee et al. 2016). Although EPF formulated products have been developed, there is a little or no information about their evaluation in Pakistan farmer’s greenhouse and field conditions.

The present study focused on determining the efficacy of these EPF against T. tabaci under field conditions, in order to generate knowledge for their use as a component in organic farm production.

Methods

Experimental site
Field trials were conducted at Chak Shahzad, Islamabad, where vegetables are grown through the year. This site is situated at longitude 33° 40’ N, latitude 73° 8.9’ E and with elevation 499 meters ASL. The minimum and maximum average temperature of the area is 10 and 38 °C, respectively. Crops grown in the surroundings of the experimental area were wheat in the South, brassica and canola in the West, cabbage in the East, and bamboos in the North.

Nursery sown
Seeds of onion varieties (Phulkara, Swat 1, and Virio 7) were acquired from Ayub Agriculture Research Institute, Faisalabad. Nursery of these three varieties was raised after soil preparation during the October 2018 and 2019. Fertilizer was applied in 3 split concentrations: at the time of nursery raising, at transplanting stage, and at bulb initiation stage for better yield. Nursery was transplanted in December 2018 and 2019 for the winter season at 4-5 leaf stage after 8 weeks of emergence.

Experimental layout
The plot layout was a randomized complete block design for onion varieties Phulkara, Swat 1, and Virio 7 with 3 replications. Each experimental plot consisted of (3 m × 3 m) with distance of 10 cm between seedlings with 30 cm distance between rows. To avoid contamination and drift hazards among treatments, each experimental plot was separated by a distance of 1.5 m.

Formulations of entomopathogenic fungi
The B. bassiana WP and M. anisopliae WP formulations contained active ingredient based on 2.01 × 10^10 cfu/g of product. Commercial formulations of B. bassiana strain GHA and M. anisopliae strain ESC-1 were added in distilled water to make spray solution (Maniania et al. 2003). Spore germination rates of these EPF were tested on PDA at 25 °C after 24 h for 80% germination. The conidial concentration of EPF was determined by a hemocytometer.

EPF were applied after the 7th week of transplantation. Treatments were sprayed to onion plants infested with thrips with the help of Solo 418-One Hand Pressure Sprayer. Surfactant (0.02% tween 80) was mixed to the spray solution to enhance the adjuvant ability of solution and for better spread of entomopathogens. Treatments were sprayed during the evening times to lessen the ultraviolet radiation adverse effects on spore germination (Morley et al. 1996) and providing better conditions regarding humidity and temperature for fungal growth. Experimental plots were irrigated before spray of EPF to maintain relative humidity. Entomopathogens and
insecticide were sprayed with the help of separate hand sprayer to avoid contamination. Five randomly selected onion plants were observed for thrips population density in each experimental plot before and after application of treatments. Following experimental treatments were prepared:

Treatments	Entomopathogenic fungi	Concentrations (conidia/ml)
T1	M. anisopliae	1×10^8
T2	B. bassiana	1×10^9
T3	M. anisopliae	1×10^8
T4	B. bassiana	1×10^9
T5	M. anisopliae	1×10^{10}
T6	B. bassiana	1×10^{10}
T7	M. anisopliae	1×10^{11}
T8	B. bassiana	1×10^{11}
T9	Bifenthrin 10 EC	330 ml/acre
T10	Untreated control	1.5 l + 0.02% tween 80 surfactant

Control plants were sprayed by water and surfactant as a negative control and recommended insecticide (Bifentrin) as positive control. Entomopathogens were applied in the evening.

Statistical analysis
Conidial application of these EPF was made 3 times at 10 days interval as experiment replication. The results were presented as onion thrips (%) population reduction pooled means of these replications. Thrips population reduction percentage in comparison to control treatments were calculated by the Henderson-Tilton’s formula (Henderson and Tilton 1955).

Thrips counts before treatment application were used in population reduction percentage calculation by Henderson-Tilton’s formula for each treatment. Pre-treatment and post-treatment means were analyzed by using the statistical software (Statistix 8.1) for ANOVA. Means were compared at 0.05 probability levels by Tukey’s Honest Significant Difference test (HSD).

Results
The present study was carried out, using 2 EPF, with 4 different concentrations on 3 onion varieties, i.e., Phulkara, Swat 1, and Virio 7. Effect of EPF on thrips population percentage in 3 different onion varieties is shown in Fig. 1. Maximum thrips population reduction percentages were recorded in Swat 1 onion variety after application.

Onion thrips corrected population reduction percentage on Phulkara variety
Effect of EPF on thrips population reduction percentage during 2019 at Phulkara onion variety is presented in Table 1. High corrected population reduction percentage was recorded in case of high concentrations of EPF. Among all the treated onion plots, the highest reduction in thrips population (89.14 %) was observed in bifenthrin-treated plots. Results revealed that B. bassiana treatment of onion plots at the concentration of 10^{11} conidia/ml showed the highest thrips population reduction (22.03%), which is at par with *M. anisopliae* at

Fig. 1 Entomopathogenic effects on thrips population reduction percentage in three different onion varieties
Thrips population significantly reduced after 5 to 7 days of EPF application. After 5 days, all the fungal treatments significantly reduced onion thrips population in comparison to control plots. Population reductions between 35.47 and 41.15% were observed in the treatments *M. anisopliae* 10^10 and *B. bassiana* 10^11 conidia/ml, respectively. After 7 days of EPF application, the highest reduction in populations was observed in *B. bassiana* at the concentration of 10^11 conidia/ml (73.33%) treated onion plots.

Significant differences (F = 5.21; P = 0.00) were observed among treatments after 7 days of EPF application. After 10 days, the highest population reduction percentage was observed in *B. bassiana* at the concentration of 10^11 conidia/ml (73.33%) treated onion plots.

10^10 conidia/ml (21.92%) after 3 days of application. Thrips population significantly reduced after 5 to 7 days of EPF application. After 5 days, all the fungal treatments significantly reduced onion thrips population in comparison to control plots. Population reductions between 35.47 and 41.15% were observed in the treatments *M. anisopliae* 10^10 and *B. bassiana* 10^11 conidia/ml, respectively. After 7 days of EPF application, the highest reduction in populations was observed in *B. bassiana* at the concentration of 10^11 conidia/ml (73.33%) treated onion plots.

Significant differences (F = 5.21; P = 0.00) were observed among treatments after 7 days of EPF application. After 10 days, the highest population reduction percentage was observed in *B. bassiana* at the concentration of 10^11 conidia/ml (73.33%) treated onion plots.

Table 1 Entomopathogenic fungi on thrips population reduction percentage on Phulkara onion variety during 2019

Treatments (conidia/ml)	Reduction (%) of onion thrips			
	(3rd day)	(5th day)	(7th day)	(10th day)
Metarhizium anisopliae 10^8	13.43d	24.65c	40.32b	69.42d
M. anisopliae 10^9	15.96cd	26.14c	56.11ab	72.61cd
M. anisopliae 10^10	14.16d	30.28bc	44.76b	72.75cd
M. anisopliae 10^11	18.00bcd	33.92bc	62.20ab	77.72bc
Beauveria bassiana 10^8	16.15cd	34.33bc	56.26ab	74.07cd
B. bassiana 10^9	19.85bc	38.32b	67.29a	81.31ab
B. bassiana 10^10	21.92b	35.47bc	61.71ab	81.66ab
B. bassiana 10^11	22.03b	38.67b	58.1a	69.52ab
Bifenthrin	89.14a	79.62a	54.73ab	38.58e
HSD value	5.6	11.0	13.49	6.68

Columns having same letter are not statistically different (P ≥ 0.05, ANOVA)

Table 2 Entomopathogenic fungi on thrips population reduction percentage on Phulkara onion variety during 2020

Treatments (conidia/ml)	Reduction (%) of onion thrips			
	(3rd day)	(5th day)	(7th day)	(10th day)
Metarhizium anisopliae 10^8	24.08b	31.21b	44.4b	60.01ab
M. anisopliae 10^9	25.10b	36.60b	56.43a	67.55ab
M. anisopliae 10^10	18.32b	38.67b	58.1a	69.52ab
M. anisopliae 10^11	21.47b	40.19b	65.63a	71.76ab
Beauveria bassiana 10^8	15.27b	36.49b	62.2a	73.49ab
B. bassiana 10^9	22.13b	40.78b	70.63a	76.05ab
B. bassiana 10^10	23.68b	30.12b	67.79a	77.16a
B. bassiana 10^11	35.48b	37.64b	74.20a	79.19a
Bifenthrin	75.43a	67.99a	53.95a	49.47b
HSD value	24.55	24.25	22.01	27.44

Columns having same letter are not statistically different (P ≥ 0.05, ANOVA)
Reduction of thrips population was recorded up to 35.48% by the application of *B. bassiana* at the concentration of 10^{11} conidia/ml. Thrips population further reduced after 5 and 7 days of EPF application. *B. bassiana* 10^{11} conidia/ml induced the population reduction (74.20%), followed by *B. bassiana* 10^{10} conidia/ml (70.63%) and *M. anisopliae* 10^{11} conidia/ml (67.79%) after 7 days of EPF application (F = 0.59; P = 0.77). Maximum reduction in thrips population was observed after 10 days of EPF application. For treated onion plots, *B. bassiana* at the concentration of 10^{11} conidia/ml showed the highest thrips population reduction 79.19% which is at par with *M. anisopliae* 10^{11} conidia/ml (77.16%) (F = 2.46; P = 0.06) after 10 days of EPF application.

Population counts were undertaken before treatment application ranged between 69 and 135 thrips per 5 plants. Thrips densities reduced in both insecticide- and EPF-treated plots in comparison to untreated control plots during the trials (Table 2).

Onion thrips population reduction percentage on Swat 1 variety

The population reduction percentage after the application of EPF on Swat 1 variety during 2019 is presented in Table 3 and Fig. 1. After 3 days of EPF application, the highest population reduction percentage observed was induced by *B. bassiana* 10^{11} conidia/ml (24.43%), followed by *B. bassiana* 10^{10} conidia/ml (22.36%) treatments. Significant difference in population reduction percentage of onion thrips was observed after 5 days of spray. The highest population reduction percentage observed was induced by *B. bassiana* 10^{11} conidia/ml (40.83%) followed by *B. bassiana* 10^{10} conidia/ml (37.04%) and *M. anisopliae* 10^{11} conidia/ml (36.45%) treatment (F = 7.91; P = 0.00) after 5 days of spray. Significant differences were observed among treatments after 7 days of application. After 7 days, the highest population reduction percentage observed was induced by *B. bassiana* 10^{11} conidia/ml (76.50%), followed by *B. bassiana* 10^{10} conidia/ml (65.22%) treatments. After 10 days of EPF application, the highest population reduction percentage observed was induced by *B. bassiana* 10^{11} conidia/ml (84.16%) and *M. anisopliae* 10^{11} conidia/ml (82.90%) treatments (F = 6.38; P = 0.00). A significant difference in population reduction percentage was observed at all the treatments at different level of concentrations for *T. tabaci*. After EPF applications, thrips numbers were reduced in treated plots than the untreated control plots. However, significant differences were observed in the treatments applied at different concentration.

Significant differences (F = 21.68; P = 0.00) in corrected population reduction percentage of onion thrips were observed after 3 days of treatment application on Swat 1 variety (Table 4). The highest population reduction percentage (89.46%) was observed in 3 days after spraying with bifenthrin. After 5 days, the highest population reduction percentage observed was induced by *B. bassiana* 10^{11} conidia/ml (60.62%), followed by *B. bassiana* 10^{10} conidia/ml (59.89 %) treatments. After 7 days, the highest population reduction percentage observed was induced by *B. bassiana* 10^{11} conidia/ml (87.92%), followed by *B. bassiana* 10^{10} conidia/ml (81.22%) and *M. anisopliae* 10^{11} conidia/ml (78.70%) treatments (F = 3.62; P = 0.01). After 10 days of entomopathogenic application, the highest percent population reduction observed was induced by *B. bassiana* 10^{11} conidia/ml (76.58%) followed by *B. bassiana* 10^{10} conidia/ml (75.76%) treatment (F = 9.61; P = 0.04). A significant difference in population reduction percentage was observed for all the treatments at different level of doses for *T. tabaci* on Swat 1 onion variety.

Treatments (conidia/ml)	Reduction (%) of onion thrips
	(3rd day)
	(5th day)
	(7th day)
	(10th day)
Metarhizium anisopliae	14.25e
10^8	20.62f
10^9	41.65f
10^{10}	68.45c
10^{11}	
M. anisopliae	16.49de
10^8	27.36e
10^9	53.25de
10^{10}	70.82c
10^{11}	
M. anisopliae	15.06e
10^8	28.14de
10^9	46.36ef
10^{10}	75.12bc
10^{11}	
M. anisopliae	17.75de
10^8	34.35cd
10^9	60.62bcd
10^{10}	77.99abc
10^{11}	
Beauveria bassiana	16.35de
10^8	33.96cd
10^9	57.39bcd
10^{10}	80.64abc
10^{11}	
B. bassiana	22.36bc
10^8	37.04bc
10^9	65.22bc
10^{10}	82.90a
10^{11}	
B. bassiana	19.36cd
10^8	36.45bc
10^9	63.72bc
10^{10}	84.16a
10^{11}	
B. bassiana	24.43b
10^8	40.83b
10^9	76.50a
10^{10}	84.59a
10^{11}	
Bifenthrin	81.01a
10^8	76.63a
10^9	52.60cde
10^{10}	39.31d
10^{11}	
HSD value	3.99
	6.48
	9.92
	6.69

Columns having same letter are not statistically different (P ≥ 0.05, ANOVA)
Thrips population before spray ranged between 65 and 170 thrips/5 plants. After 1 week of treatment applications, decline in thrips population density was more in EPF treatments than in insecticide-treated plots (Table 4). Average hourly temperature and RH measurements ranged from 23.2 to 31.3 °C and 28 to 76%, respectively, during the study.

Onion thrips population reduction percentage on Virio 7 variety
A high population reduction percentage was recorded at high concentrations of EPF during 2019 (Table 5). Results revealed that the maximum population reductions were 23.74% and 40.97% after 3 and 5 days of B. bassiana 10^11 conidia/ml application, respectively. Further population reduction of thrips was observed after 7 days of spray. B. bassiana at the concentration of 10^{11} conidia/ml treated onion plants showed the highest population reduction 71.91% which is at par with M. anisopliae 10^{11} conidia/ml (67.14%) (F = 20.40; P = 0.00). Significant differences were observed in treatments after 7 days of application. After 10 days, the highest population reduction percentage observed was induced by B. bassiana 10^{11} conidia/ml (86.00%), followed by M. anisopliae 10^{11} conidia/ml (82.70%) and B. bassiana 10^{10} conidia/ml (80.58%) treatments (F = 6.97; P = 0.00). A significant difference in population reduction percentage was observed at all the treatments at different level of doses for T. tabaci.

Significant difference in population reduction percentage of onion thrips was observed after 3 days of application on Virio 7 variety (Table 6). The highest population reduction percentage (80.78%) observed was induced by bifenthrin (F = 7.47, P = 0.00) after 3 days of spray. After 5 days, the highest population reduction percentage observed was induced by B. bassiana 10^{11} conidia/ml (49.93%) followed by M. anisopliae 10^{11} conidia/ml (45.53%) treatment (F = 0.92; P = 0.52). Thrips generations showed peak populations after 5 to 6 weeks in control treatments. There were significant differences

Table 4
Entomopathogenic fungi on thrips population reduction percentage on Swat 1 onion variety during 2020

Treatments (conidia/ml)	Reduction (%) of onion thrips
	(3rd day)
	(5th day)
	(7th day)
	(10th day)
Metarhizium anisopliae 10^8	17.85b
M. anisopliae 10^9	18.29bc
M. anisopliae 10^{10}	20.09bc
M. anisopliae 10^{11}	28.48bc
Beauveria bassiana 10^9	6.19c
B. bassiana 10^9	16.40bc
B. bassiana 10^{10}	19.11b
B. bassiana 10^{11}	21.68bc
Bifenthrin	89.46a
HSD value	26.17

Columns having same letter are not statistically different (P ≥ 0.05, ANOVA)

Table 5
Entomopathogenic fungi on thrips population reduction percentage on Virio 7 onion variety during 2019

Treatments (conidia/ml)	Reduction (%) of onion thrips
	(3rd day)
	(5th day)
	(7th day)
	(10th day)
Metarhizium anisopliae 10^8	14.68f
M. anisopliae 10^9	16.37ef
M. anisopliae 10^{10}	17.89de
M. anisopliae 10^{11}	18.26cde
Beauveria bassiana 10^9	19.93cd
B. bassiana 10^9	21.01bc
B. bassiana 10^{10}	20.86bc
B. bassiana 10^{11}	23.74b
Bifenthrin	78.14a
HSD value	3.22

Columns having same letter are not statistically different (P ≥ 0.05, ANOVA)
observed in treatments after 5 days of application. After 7
days of application, the highest population reduction
percentage was induced by *B. bassiana* 10^{11} conidia/ml
(68.65%) followed by *M. anisopliae* 10^{11} conidia/ml
(65.51%) treatment..

Discussion

Obtained results highlighted the prospective of EPF for
controlling onion thrips. In particular, more than 80%
thrips population reduction was recorded by *B. bassiana*
and *M. anisopliae* application field trials.

The EPF species used against *T. tabaci* varied in their ef-
cfficacy to reduce pest’s populations. *B. bassiana* concentra-
tion (1×10^{11} conidia/ml) tested was more effective than
any *M. anisopliae* treatments. The results are in agree-
ment with Neves and Alves (2000). *B. bassiana* is an effi-
cient alternative method for use in biocontrol against the
onion thrips (Maniania et al. 2003). In this study, *B. bassi-
ana* showed 86.62 ± 1.43 population reduction percentage
after 10 days of treatment application which are similar to
Ansari et al. (2008) who stated that *Beauveria* spp. were
the most efficient, causing 54-84% onion thrips corrected
population reduction percentage after 11 days of applica-
tion. Low population reduction percentage by *M. aniso-
pliae* application might be due to the more time required
for conidial germination on insect body as compared with
filtrate. Some other factors like viability of conidia, rate of
germination, hyphae growth rate, and environmental fac-
tors such as temperature, humidity, and UV light could
also affect spore production and virulence of fungal iso-
lates on different insects (Molenaar 1984).

Results showed that EPF induce an immediate effect
on thrips populations to obtain 2-3 thrips/onion leaf
(Diaz-Montano et al. 2011) economic threshold levels in
field conditions. However, a lot of variations in thrips
counts were observed during the field trial. Environmen-
tal factors like rainfall had a significant effect on the
population densities of thrips by washing or dislodging
them from the plants. Results also showed that thrips
populations were reduced at insecticidal-treated plots,
which is in agreement with Ghelani et al. (2014) find-
ings. Although EPF formulations were efficient in redu-
cing the thrips numbers, they caused moderate
population reduction as compared to insecticides. The
highest efficacy of *B. bassiana* against thrips is in ac-
cordance with Boopathi et al. (2011) who stated that
among different EPF *B. bassiana* gave better results in
reducing the population of thrips. For maximum bene-
fits, therefore, this approach should be integrated with
other thrips management strategies, such as the use of
resistant varieties, polythene mulches, proper sanitation,
sticky traps, and botanicals (Maniania et al. 2003).

T. tabaci population on vegetables may be controlled
well with entomopathogens at concentration of 1×10^{11}
conidia/ha in field crops. But there is one limitation in
the use of these EPF that they are relatively less persist-
ent (Inglis et al. 1997). Results showed that these EPF
were able to persist for 10 days under the field condi-
tions. The present results showed also that *B. bassiana*,
M. anisopliae, and bifenthrin had great potentials for
use as important component in developing integrated in-
sect pest management packages against thrips on onion
(Nyasani et al. 2015). Further studies are required to
standardize concentrations of these EPF at different
stages of onion thrips infestations under field conditions.

Conclusion

Entomopathogenic fungi *B. bassiana* and *M. anisopliae*
significantly reduced thrips population build up in onion
crop after 7-10 days post applications. The fungal species
used against *T. tabaci* varied in their ability to reduce its
populations. *B. bassiana* as EPF was much against the
onion thrips than the *M. anisopliae*. Use of EPF to control
thrips populations could reduce the application of

Treatments (conidia/ml)	Reduction (%) of onion thrips			
	(3rd day)	(5th day)	(7th day)	(10th day)
Metarhizium anisopliae 10^{8}	16.63b	32.04a	51.0a	61.68ab
M. anisopliae 10^{9}	20.57b	33.92a	58.93a	62.59ab
M. anisopliae 10^{10}	22.27b	37.04a	57.07a	67.12ab
M. anisopliae 10^{11}	33.75b	38.09a	57.77a	71.14ab
Beauveria bassiana 10^{9}	21.28b	36.43a	55.12a	74.97a
B. bassiana 10^{9}	25.61b	41.47a	56.00a	76.96a
B. bassiana 10^{10}	26.42b	45.53a	65.51a	77.95a
B. bassiana 10^{11}	26.70b	49.93a	68.65a	79.41a
Bifenthrin	80.78a	66.81a	54.77a	35.21b
HSD value	34.77	56.4	36.14	38.54

Columns having same letter are not statistically different (P ≥ 0.05, ANOVA)
insecticide thereby preventing and/or delaying the population buildup of resistant thrips progenies. It is suggested that EPF can provide a better long-term management of *T. tabaci* on onion under field conditions.

Abbreviations

T. tabaci: Thrips tabaci; *B. bassiana*: Beauveria bassiana; *M. anisopliae*: Metarhizium anisopliae; EPF: Entomopathogenic fungi

Acknowledgements

We acknowledge and thanks teachers and staff, Entomology Department Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi, Pakistan, for their assistance with the fieldwork. We also thank Mr. Khalid Rafique, Honey Bee Research Institute for his helpful comments and suggestions on the manuscript.

Authors’ contributions

Q and AM conceived, planned, and carried out the experiments, while MN helped shape the research, analysis and manuscript. The authors read and approved the final manuscript.

Funding

This research work was funded by the Higher Education Commission of Pakistan, PIN NO. 518-76242-2AV5-106, PHASE II, BATCH V-2019 indigenous Scholarship Scheme.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Author details

1. Department of Entomology, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan.

2. Department of Plant Breeding and Genetics, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan.

Received: 1 March 2021 **Accepted:** 19 June 2021 **Published online:** 29 June 2021

References

Ananthakrishnan TN (1993) Bionomics of thrips. Annu. Rev. Entomol 38:71–92.

Ansari MA, Brownbridge M, Shah FA, Butt TM (2008) Efficacy of entomopathogenic fungi against soil-dwelling life stages of western flower thrips, Frankliniella occidentalis, in plant-growing media. Entomol Exp Appl 127(2):80–87. https://doi.org/10.1111/j.1570-4488.2008.00674.x

Boopathi T, Pathak K, Singh B, Verma A (2011) Efficacy of entomopathogenic fungi for the management of onion thrips, *Thrips tabaci* Lind. Pest Manag Hortic Ecosyst 17:92–98

Butt TM, Brownbridge M (1997) Fungal pathogens of thrips. In: Lewis T (ed) Thrips as crop pests. CAB International, Wallingford

Copping LG (2009) The manual of biocontrol agents: a world compendium, 3rd edn. British Crop Production Council, Hampshire

Diaz-Montano J, Fuchs M, Nault BA, Fail J, Shelton AM (2011) Onion thrips (*Thysanoptera: Thripidae*): a global pest of increasing concern in onion. J Econ Entomol 104(1):1–13. https://doi.org/10.1603/EC10269

Dinesh (2017) Annual Report for 2017-18. ICAR-Indian Institute of Horticultural Research, Bengaluru

Faria MRR, Wraight SP (2007) Mycoinsecticides and mycocoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:357–370

Ganga VN, Krishnamoorthy A (2012) Comparative field efficacy of various entomopathogenic fungi against *Thrips tabaci*: prospects for organic production of onion in India. Acta Hortic 933:433–437

Gawande SJ, Khar A, Lavande KE (2010) First report of irish yellow spot virus on garlic in India. Plant Dis 94(8):1066–1066. https://doi.org/10.1094/PDIS-94-8-1066C

Gent DrH, Schwartz HF, Khosla R (2004) Distribution and incidence of irish yellow spot virus in Colorado and its relation to onion plant population and yield. Plant Dis 88(5):446–452. https://doi.org/10.1094/PDIS.2004.88.5.446

Ghelani MK, Kabaria BB, Chhodavadia SK (2014) Field efficacy of various insecticides against major sucking pests of Bt cotton. J Biopestic 7:27–30

Henderson CF, Tilton EW (1955) Tests with acaricides against the brown wheat mite. J Econ Entomol 48(2):157–161. https://doi.org/10.1093/jee/48.2.157

Inglis GD, Johnson DL, Goettel MS (1997) Field and laboratory evaluation of two conidial batches of Beauveria bassiana (Balsamo) vuillemin against grasshoppers. Can Entomol 129(1):171–186. https://doi.org/10.4039/Ent129171-1

Khan IA, Shah RA, Said F (2015) Distribution and population dynamics of *Thrips tabaci* (*Thysanoptera: Thripidae*) in selected districts of Khyber Pakhtunkhwa province. Pak J Entomol Zoology Stud 3:153–157

Lee SJ, Kim S, Skinner M, Parker BL, Kim JS (2016) Screen bag formulation of *Beauveria* and *Metarhizium* granules to manage *Aptorius pedestris* (*Hemiptera: Alydidae*). J Asia Pac Entomol 19(3):887–892. https://doi.org/10.1016/j.aspen.2016.08.005

Maniani NK, Ekesi S, Lohr B, Mwangi F (2002) Prospects for biological control of the western flower thrips, *Frankliniella occidentalis*, with the entomopathogenic fungus, *Metarhizium anisopliae*, on chrysanthemum. Mycoecology 155(4):229–235. https://doi.org/10.1023/A:1021177626246

Maniani NK, Sithananthan S, Ekesi S, Ampomp-Nyako B, Baumgärtner J, Lohr B, Matoka CM (2003) A field trial of the entomogenous fungus *Metarhizium anisopliae* for control of onion thrips, *Thrips tabaci*. Crop Prot 22(3):553–559. https://doi.org/10.1016/S0261-2194(02)00221-1

Molenaar ND (1984) Genetics, thrips (*Thrips tabaci*) resistance and epicuticular wax characteristics of nonglory and glossy onions (*Allium cepa* L.). Diss. Abstr. Int B Sci Eng 45:1075

Morley DJ, Moore D, Prior C (1996) Screening of *Metarhizium* and *Beauveria* spp. conidia with exposure to simulated sunlight and a range of temperatures. Mycol Res 100(1):31–38. https://doi.org/10.1016/0953-7562(96)80097-9

Neves PJ, Alves SB (2000) Selection of a combinatory fungicide against two native grasshoppers. Can Entomol 30(1):171–186. https://doi.org/10.4039/Ent30131-1

Nyasani JO, Subramanian S, Poehling HM, Maniani NK, Ekesi S, Meyhofer R (2013) Optimizing western flower thrips management on French beans by combined use of beneficials and imidacloprid. Insects 6(1):279–296. https://doi.org/10.3390/insects6010279

Sahayara K, Namasiayam SKR (2008) Mass production of entomopathogenic fungi using agricultural products and by products. Afr J Biotechnol 7:1907–1910

Trdan S, Zdinarcic D, Valic N, Rozman L, Vidrih M (2006) Intercropping against *Cornitermes* (*Blattodea: Termite*). J Asian Nat Hist Soc 7:893–897. https://doi.org/10.1016/j.aspen.2016.08.005

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.