ИЗВОД: У раду су приказане резултати дендроклиматолошке анализе раста јеле на подручју планине Борја, Босна и Херцеговина. Потребни подаци су узети на 2 локалитета, а узорком је обухватао укупно 60 серија радијалног прираста (15 доминантних стабала по локалитету са по два извртка). Проведена је стандардна дендрохронолошка обрада и анализа подataka примењеном софтвера Coffecha и Arstan. Добијена је прелиминална регионална хронологија јеле за подручје планине Борја, дужине 137 година (1878-2014. година). Добијени резултати корелационе анализе између индекса радијалног прираста дефинисане хронологије, са једне стране и падавина и температуре по месецима, са друге стране, показали су да веће кoličine падавина у лето изражено повећавају прираст јеле, а да повећање температуре у овим месецима не изазива значајну редукцију прираста. Резултати примене FAI индекса суше у наведене сврхе показали су да интензивнији суше у летњим месецима могу изазвати значајну редукцију прираста јеле на датом подручју. Кључне речи: јела, прираст, дендроклиматологија, Борја, Босна и Херцеговина

УВОД

Иако одају утисак изражене статичности и непромењивости, стабла у шумама и приградским и градским зонама су подложна сталним променама, које се, поред остала, изражавају и у променама димензија стабала или појединих њихових елемената раста (пречника, висина, запремине, крошње итд.). Неповратно повећање димензија стабала или неког његовог дела у одређеном временском периоду, према Стајићу и Вучковићу (2016), назива се раст (купан временски период) или прираст (раст у периоду од 1 или више година, а мањи од укупне старости). У оквиру анализе промена услова средине и последица тих промена на људе и њихово окружење, истраживањем везе између утицаја климе, као фактора средине и раста и прираста шумских стабала и шума припада посебно место. Због низа својих специфичности (еезактност мерења, узасто веза са климатским и другим еколошким факторима, могућност прикупљања подataka и више векова уназад итд.), истраживања раста и прираста стабала у дебљину су од нарочитог значаја за анализу и дефинисање природе реакције стабала на измене основних услова за раст (Stajić et al. 2014, 2015). Јење...
живањима која проучавају дебљински или радијални прираст, њихове годишње, средњорочне и дугорочне варијације, као и утицај различитих еколошких и осталих фактора животне средине, који условљавају њихове токове, баве се истраживачи из области раста и производности шума и дендрохронолози, али и различити истраживачи из сродних и повезаних шумарских дисциплина, као што су дендрохронологија и дендроклиматологија, али и дендро-екологија, дендрогеоморфологија итд. (Stajić 2010). Према Вучковићу et al. (2005) ''дендрохронологија је настала применом датирања макарантних, углавном узих годова, тзв. карактеристичних годова, коришћењем хронолошког редоследа годова типичног за врсту, регион, старост и порекло...'' Стајић (2010), цитирајући рад ове Schweingruber (1983) и Cherubini et al. (2004), наводи да се дендрохронологија ''...бави истраживањем раста стабала и његовог односа према условима средине, у зависности од простора и времена...'' Smith и Lewis (2007) наводе да је дендрохронологија наука која се бави датирањем и проучавањем годишњих слојева раста (прираста) у шумском дрвећу и жбуњу.

У оквиру дендрохронологије, издиференцирала се (под)дисциплина која се назива дендроклиматологија и која се, у суштини, базира на утврђивању везе између грађе и величине радијалног прираста и климатских елемената и њихових варијација. Speer (2010) напомиње да је дендроклиматологија део шире научне дисциплине палеоклиматологија, која осим престнова прираста, за проучавање климе користи и записе из леденика, депозита, корала и појединих стена, указујући на њен прогресивно већи значај услед актуализације и јачања глобалне свести о климатским променама и њиховом испољавању кроз природне различите екстремне природне појаве, са разорним утицајима на људе и њихове животе.

Јела је била предмет истраживања у већем броју дендрохронолошких односно дендроклиматолошких студија на подручју Балкана и Европе. У Босни и Херцеговини и Србији јела није много истраживана у овом смислу. У Босни и Херцеговини, утицај варијација климатских елемената на прираст јеле истраживан је у мешовитим састојинама букве, јеле и смрче (Ballian, Halilović 2016). Обична јела у горском појасу гради шумске заједнице са смрчем и понекад с белим бором, те са буквом, чинећи тако најзначајнију шумску заједницу у Босни и Херцеговини - заједницу буково-јелових шума (Stefanović 1977, Stefanović et al. 1983, Beus 1984).

Имајући у виду да је на подручју Републике Српске, односно Босне и Херцеговине, јела једна од најзаступљенијих и најзначајнијих врста дрвећа, истраживања радијалног прираста стабала јеле, као биоиндикатора њене виталности и реакције на промену фактора средине, имају наглашен привредни и еколошки значај. Тога, циљ овог рада је добијање основних — прелиминарних сазнања о дендроклиматолошком одзиву јеле на 2 локалитета у оквиру подручја планине Борја и потенцијалу израде једне регионалне хронологије за дато подручје.

МАТЕРИЈАЛ И МЕТОД РАДА

Подручје истраживања је планина Борја у западном делу Републике Српске, БиХ (слика 1). Њен највиши врх је Велика Руњевица (1.078 m) и налази се у северозападном делу планине. Борја је углавном изграђена од магматских стена. Преовладавају мешовите састојине букве, јеле и смрче, те јављају се чисте састојине јеле. Утврђено је присуство три асоцијације: јела са рабичом Blechno-Abietetum (Ht. 1938) Ht. in Cestar 1967, јела са округлолисним броћем Galio rotundifolii-Abietetum M. Wraber 1959 и Rusco hypoglossi-Abietetum Brujić 2004. Такође је потребно нагласити да подручје планине Борја представља гранично подручује где јела према северу.
ДЕНДРОКЛИМАТОЛОШКА АНАЛИЗА РАСТА ЈЕЛЕ (Abies Alba Mill.) НА ПОДРУЧЈУ ПЛАНИНЕ БОРЈА...

Узорци (извртци) су узети из две састојине на планини Борја (Слика 1), у којима су постављене две огледне површине (50 m x 50 m), у њиховим очуваним и хомогеним деловима. На првој огледној површини, у асоцијацији Rusco hypoglossi-Abietetum Brujić 2004. на дистрибутивном камбисолу, утврђени број стабала по хектару је 732, темељица 45,7 m²/ha и запремина 590,2 m³/ha. На другој огледној површини, у асоцијацији Galio rotundifolii-Abietetum M. Wraber 1959 на еутричном камбисолу, утврђени број стабала по хектару је 588, темељица 28,7 m²/ha и запремина 273,7 m³/ha.

У сврху анализе утицаја климе на прираст јеле Преслеровим сврдлом, конструисаним за узимање дугих узвртака, бушено је по 15 доминантних стабала јеле (укупно 30 стабала) са по два извртка (укупно 60 серија радијалног прираста). Потребан број стабала за бушење је одређен полазећи од препорука већег броја аутора, према којима је минимална величина узорка за успостављање квалитетне појединачне хронологије станишта 15 дубећих стабала, уколико се из сваког стабла узимају по два извртка (Luckman, 2007, Fritts 1976, Accetto 1977, Levanič, 1996).

Након прикупилања, потребни узорци су прослеђени у лабораторију, постављени и залепљени на ужлебљене дрвене носаче. Након што се лепило осушило, приступило се обради узорака, односно припреми извртка (брушењу) са брусинским папиром, у циљу што прецизнијег мерења величина прираста. Обрађени узорци су скенирани коришћењем скенера високих перформанси (Epson Perfection V30 Photo). Мерење ширине радијалног прираста је извршено коришћењем лиценцираних софтвера CooRecorder 7,6 и CDendro 7,6.

Хронологије јеле по локалитетима су развијене полазећи од података о емпиријским величинама радијалног прираста. Провера коректног датирања сваке величине прираста, односно тачности придодавања дате величине прираста „правој” календарској години проведена је поступком тзв. унакрсног датирања (eng. crossdating). Унакрсно датирање је извршено визуелно и помоћу статистичких метода у оквиру специјализованог статистичких програма „Cofecha” (Holmes, 1983, Grissino-Mayer, 2001) који омогућава квалитативну контролу прикупилањених серија ширине прстенова прираста и указује на евентуалне проблеме у датирању и мерењу (Stajić 2010).

Стандардизација (детрендовање) серија низова прстенова прираста у суштини представља елимисање тзв. старосног тренда. Стандардизација серија низова прстенова прираста је извршена применом програма Arstan, коришћењем тзв. глатких кубних сплајнова (ег. smoothing cubic spline). Резултат обраде у програму Arstan су серије индекса радијалног прираста, односно три верзије хронологија индекса радијалног прираста (стандардна - STD, резидуална - RES и арстан – ARS хронологија) и свеобухватни приказ резултата статистичке анализе. У овом програму су обликоване просечне хронологије локалитета спајањем и упросечањем појединачних серија у једну хронологију техником коришћења тежинске средине путем Тацијеве биквадратне функције, која је пројектована да смањи утицај изолованих вредности изван интервала података (Cook, 1985, Cook, Holmes, 1986). За поређење са климатским параметрима коришћена је ARS хронологија индекса радијалног прираста.

За оцене могућности удруживања добивених хронологија прираста по локалитетима у регионалну хронологију за подручје планине Борја коришћени су коефицијент корелације (r) и коефицијент подударности (истосмерности) или индекса прираста - GLK (Huber, 1943; Eckstein, Bauch 1969), који су мера степена слагања низова серија или хронологија у посматраном интервалу.
За анализу утицаја климатских елемената на величине радијалног прираста коришћени су подаци са регионалне метеоролошке станице Добој, за период од 1951. до 2014. године. По-менути утицај анализиран је применом корелације (1) између месечних температура и пада- вина и ARS хронологије индекса радијалног прираста и (2) података о FAI индексу суше и ARS хронологије индекса радијалног прираста.

РЕЗУЛТАТИ ИСТРАЖИВАЊА

Основне карактеристике и дендрохронолошко-статистички параметри анализираних емпиријских величина радијалног прираста по локалитетима-огледним површинама (ОП) приказани су у табели 1.

Укупан број мерених величина радијалног прираста (Бр) је 1017 (ОП 1) и 1592 (ОП 2). Аритметичка средина (АС) појединих серија емпиријских величина прираста износи 3,54 mm (ОП 1) и 1,92 mm, (ОП 2), а стандардна девијација (СД) је 1,667 mm (ОП 1) и 0,961 mm (ОП 2). Серијска корелација (СК) између емпиријских величина и мастер хронологије радијалног прираста износи 0,444 (ОП 1) и 0,434 (ОП 2). Величине утврђеног средњег степени сензитивности (МС) су из категорије ‹›средњих›› према упутствима Grissino-Mayer (2001) и износе од 0,228 (ОП 1) и 0,241 (ОП 2). Број уочених ‹›проблемних сегмената›› са недовољним степеном слагања токова прираста (БПС) у укупном броју сегмената (БС) у серијама прираста је од 2 до 4 (табела 1).

На графikonу 1 приказан је број узорака и тзв. дубина узорка по ОП. Резултати показују да је од 1972. године на обе ОП забележено по 15 серија прираста у узорку.

На графikonу 2 приказане су просечне емпиријске серије радијалног прираста (I r) на оба локалитета. Уочава се знатно већа просечна величина прираста у другој половини XX века у односу на претходни период. На основу токова прираста и познатих сазнања, за претпоставити је да је знатно мањи радијални прираст у првих

ОП	Бр	БС	БПС	СК	АС	Макс	СД	АК1	МС
1	1017	33	2	0.444	3.54	15.48	1.667	0.802	0.228
2	1592	62	4	0.434	1.92	14.58	0.961	0.752	0.241

Графikon 1. Број узорака (серija прстенова прираста) по годинама и локалитетима
ДЕНДРОКЛИМАТОЛОШКА АНАЛИЗА РАСТА ЈЕЛЕ (Abies Alba Mill.) НА ПОДРУЧЈУ ПЛАНИНЕ БОРЈА...

100-тинак година живота стабала последица неповољног положаја посматраних стабала у састојини у том периоду (нпр. засењеност), а не јасног утицаја климатског фактора.

Као резултат примене програма Arstan дефинисана је ARS хронологија индекса радијалног прираста (I) - графикон 3. Ова хронологија је даље коришћена за поређење са климатским параметрима, односно за анализу утицаја анализираних климатских параметара на величину I (Графикон 3).

У следећој фази приступило се анализи односа између дефинисаних хронологија по ОП, при чему су утврђени r и GLK (табела 2). Износ r између дефинисаних хронологија (0,515) је висок и статистички значајан. Величина GLK коефицијента (0,848) је, такође, статистички значајна.

Табела 2. Износи r и GLK коефицијената
ОП
ОП1/ОП2

Напомена:
* - Статистички значајна вредност уз вероватноћу од 95%
** - Статистички значајна вредност уз вероватноћу од 99%

Полазећи од претходно приказане анализе, чији резултати су показали добро подударање дефинисаних хронологија оба локалитета, приступило се изради прелиминарне регионалне хронологије јеле за подручје Борља планине. На
Горан Јовић, Војислав Дукић, Бранко Стајић, Марко Казимировић, Данијела Петровић

Графикону 4 приказана је ARS верзија ове хронологије. Прва година хронологије прираста је 1849, а последња 2014. година, што значи да хронологије износи 166 година (линија "а" графикона 4). Ако се за почетак хронологије узме година у којој су присутне минимально 4 серије радијалног прираста онда је прва година хронологије 1878, а дужина тада износи 137 година (линија "б" графикона 4). Просеча величина индекса радијалног прираста је врло блиска 1, стандардна девијација је 0,130, коефицијент асиметрије је 0,36, а коефицијент спљоштено сти је 5,058. Средња осетљивост је 0,138, а се ријска корелација је -0,106.

У циљу даље оцене квалитета и поузданости добијене хронологије за даља дендроклимATOLOШКУ анализу, величине коефицијента EPS израчунане су за првим годинама и деценијама хронологије (од 1878. године до 1950) су испод доње граници прихватљивости и поверења хронологија, која према Wigley et al. (1984) износи 0,85. Међутим, од 1950-тих година (од када постоја подаци о падавинама и температури) величине EPS су веће од 0,85, указујући на могућност коришћења ове дефинисане хронологије за дендроклимATOLOШКУ анализу.

У сврху утврђивања зависности прираста од климе проведене су корелационе анализе између индекса радијалног прираста и износа падавина и температуре за август, септембар и октобар претходне године (Авг п, Септ п и Окт п) и период од априла до октобра текуће године (Апр т – Окт т). Израчунати коефицијенти корелације између анализираних варијабли на нивоу значајности p < 0,05 утврђена је за септембар претходне године.

Утврђени коефицијенти корелације између индекса радијалног прираста и месечних температура приказани су у табели 4. Статистички значајна негативна корелација између анализираних варијабли на нивоу значајности p < 0,05 утврђена је за септембар претходне године.

Месяц	Авг п	Сеп п	Окт п	Апр т	Май т	Јун т	Јул т	Авг т	Сеп т	Окт т
r – коефицијент корелације	-0,0041	0,3534	0,0967	0,1238	0,2277	0,0444	0,2388	0,2229	0,0177	-0,0294
p - вредност	0,975	0,004	0,451	0,334	0,073	0,730	0,049	0,079	0,891	0,819

Графикон 4. Регионална хронологија јеле за подручје планине Борја

Табела 3. Коефицијенти корелације између индекса радијалног прираста и месечних падавина.
У циљу даље анализе релација између климе и прираста јеле и минимизирања ефекта мултикорелираности падавина и температуре, истраживан је и однос између прелиминарне регионалне хронологије прираста јеле и FAI индекса сусе. Утврђени коефицијент корелације између анализираних варијабли за подручје Борја планине износи $r = -0.27$ и статистички је значајан ($p = 0.033$).

ДИСКУСИЈА

На основу резултата анализе приказаних карактеристика и дендрохронолошко-статистичких параметара серија радијалног прираста може се констатовати да подаци о прирасту са планине Борја представљају добар материјал за развој хронологија по локалитетима. На два локалитета удео проблематичних сегмената, односно сегмената у којима серије радијалног прираста немају тако изражен степен подударности у токовима, је у дозвољеним границама. Величине утврђеног средњег степена сензитивности (MC) спокују да су серије прираста "средње сензитивне" према упуштима Grissino-Mayer (2001) на дејство фактора средине. Извођено утврђење стандардизованог утицаја различитих фактора из предходних или претходних година. Израдом хронологије прираста и проведеном процесурано стандартизације, упркосећивања величине прираста и ауторегресионог моделирања, аутокорелација као нежељено дејство, је скоро у потпуности елиминисана из величина прираста, али је и умањен просечен ниво сензитивности преда дејству фактора средине.

Провера степени слагања токова индекса радијалног прираста у дефинисане две хронологије по локалитетима извршена је применом коефицијената корелације (r) и коефицијената подударности (истосмерности) низа величине прираста – GLK. Добијени величине ових коефицијената показале су да постоји значајан подударање, односно сличност дефинисаних хронологија прираста по локалитетима, што је пружило могућност израде регионалне хронологије за подручје Борја планине. Овакво дефинисана хронологија има прелиминаран карактер, имајући у виду да је, како је то већ речено, циљ овог рада било добијање основних сазнања о дендроклимatalogском одзиву јеле на 2 локалитета у оквиру подручја планине Борја. Да је јела у стању да одговори слично на варијације климатских елемената на овом подручју показале су добијене величине основних дендроклимatalogско-статистичких показатеља дефинисане прелиминарне хронологије. Као једног од основних показатеља довољне величине узора унутар референцне хронологије за добијање стабилног и јасног заједничког климатског сигнала у климатологским истраживањима, Butler et al. (2013) наводе EPS. Коефицијент EPS (expressed population signal) је показатељ који квантификује ниво заједничког сигнала међу серијама прираста коришћених за добијање хронологије. Емпиријски утврђена и прихваћена гранична величина EPS коефицијената од 0,85 представља границу испод које посматрана хронологија почиње губити кохерентни заједнички сигнали и почиње доминирати сигнали појединачних стабала. Стога се хронологије прираста са нижим вредностима од граничне

Месяц	Авг п	Сеп п	Окт п	Апр т	Май т	Юн т	Юл т	Авг т	Сеп т	Окт т
r – коэффициент корелации										
-0,0926	-0,4236	0,1004	0,0377	0,0008	-0,1572	-0,1009	-0,1645	-0,0501	0,0303	
p - вредност										
0,478	0,001	0,441	0,773	0,995	0,226	0,439	0,205	0,701	0,817	
могу користити за датирање (нпр. у дендроархеолошким истраживањима), али због варијабилности нису поуздане за калибацију са климатским подацима (Briffa, Jones 1990; Speer, 2010). Овде добијени резултати сигнализирали су да, према величама EPS, да је јачина заједничког сигнала у првих неколико деценија незадовољавајућа. Ово се може објаснити природом овог показатеља, али и чињеницом да је он уско везан за тзв. дубину узорка, односно број величина прираста који је утврђен у свакој календарској години. Наиме, дубина узорка код свих серија прираста у хронолошкој низији није иста, па због серија које имају мањи број величина прираста и израчунатата унаксарна корелацija између серија је у првим деценијама далеко слабије изражена. Међутим, величине EPS за сегменте хронолошке 1950-1990. године су изнад 0,85, што се поклапа и с периодима за које су доступни овде климатски подаци.
годишња величина FAI индекса у периоду 1953-2014. године износи 4,86. Резултати проведене корелације између FAI индекса суша и индекса радијалног прираста (r = -0,34) показали су да се са повећањем индекса суше статистички значајно смањује дебљински прираст јеле. Добијени резултати о природи дендроклиматаолошке реакције јеле на подручју Борја планине коинцидирају са резултатима истраживања Castagneri et al. (2014), обављеним на подручју прашуме Лом. Поменути аутори су, слично нашим резултатима, утврдили да веће падавине у летњим месецима “веома пријају” јели, изазивајући значајно повећање прираста. Такође, Castagneri et al. (2014) посебно апострофирају чињеницу да се уочено повећање температуре у последње три деценије није одразило на значајно смањење прираста.

ЗАКЉУЧЦИ
Дендроклиматаолошка анализа раста јеле, која има за циљ утврђивање каракtera uticaja климатских параметара на радијални прираст, урађена је за подручје планине Борја у Босни и Херцеговини. Резултати анализе токова и дендрохронолошко-статистичких параметара серија прираста показали су да прикупљени и обрађени узорак представља прикладан и статистички довољно квалитетан материјал за развој локалних (мастер) хронологија радијалног прираста по огледним површинама (локалитетима). Утврђено је да су токови прираста у оквиру дефинисаних локалних хронологија прилично слични, те стога и да постоји статистички значајно слагање (усклађеност) формираних хронологија, што је омогућило израду предвидених регионалних хронологија јеле за подручје Борја планине. Дефинисана хронологија прираста, са довољном статистичком потужаношћу и јачином заједничког сигнала у расту, је укупне дужине 137 година (1878-2014. година).

Проведене математичко-статистичке анализе између предвидених регионалних хронологије (серије индекса радијалног прираста) и месечних износа падавина и температура показале су да веће количине падавина у касно лето претходне године и у току лета температуре више зави- ће године изазивају значајно повећање прираста јеле. Са друге стране, више летње температуре не изазивају изражено смањење прираста текуће године. Међутим, до тога долази само приликом повећања температуре у току септембра претходне године. С обзиром на ове резултате, може се предвидети значајно смањење прираста у условљено повећање температуре у летњим месецима не би изазвало значајно преуређење прираста јеле, сугеришући да јела у овом подручју може претрпети ниво смањења количине падавина и повећање температуре, а да то не изазове значајнију редукцију прираста. Ипак, резултати примене корелације између индекса радијалног прираста и FAI индекса суше показали су да у случају интензивнијих суша у летњим месецима јела може доживети значајно редуковање величине прираста.

Генерално, добијени резултати сугеришу да раст јеле на подручју планине Борја више зависи од варијација количине падавина него варијација температуре. Ове се може делом и очекивати, имајући у виду релативно малу надморску висину ова два локалитета на којим јела расте у односу на цел ареал јеле у Босни и Херцеговини, али и чињеницу да је у питању врста дрвећа која захтева доста влаге. С обзиром да је за планирање и провођење озбиљних и мултидисциплинарних истраживања о реакцији јеле на измене климатских услова на овом анализираном подручју неопходно прикупити низ предвидених сазнања, добијених почетних резултати веома су илустративни и сврсисходни. Ипак, потребно је провести нова истраживања релације између климе и раста јеле на више других локалитета овог подручја, али и приме- нити и низ других методолошких процедура којима се додатно "осветљава" природа прира- сне реакције јеле на вишестепенске промене температуре и падавина, као најзначајнијих климатских елемената.
A DENDROCLIMATOLOGICAL ANALYSIS OF FIR (Abies Alba MILL.) GROWTH IN THE BORJA MOUNTAIN AREA OF BOSNIA AND HERZEGOVINA

Goran Jović, Vojislav Dukić, Branko Stajić, Marko Kazimirović, Danijela Petrović

Abstract: This paper presents the results of a dendroclimatological analysis of the growth of fir trees in the Borja mountain area, Bosnia and Herzegovina. The required data were taken in 2 sites, and the sample covered a total of 60 series of radial increment (15 dominant trees per site with two cores). Standard dendrochronological processing and data analyses using the Coffecha and Arstan software were performed. The preliminary 137-years long regional fir chronology for the Borja mountain area was obtained. The obtained results of the correlation analysis between the radial increment index of the defined chronology, on the one hand, and the monthly precipitation and temperature, on the other, showed that higher summer precipitation significantly increased the increment of fir, and that the increase in temperature in these months did not cause a significant increment reduction. However, the results of the FAI drought index application for the stated purposes have shown that more intense droughts in the summer months can cause a significant reduction in the increment of fir in a given area.

Key words: fir, increment, dendroclimatology, Borja, Bosnia and Herzegovina

INTRODUCTION

Although they give an impression of expressed staticity and invariability, the trees in the forests, suburban and urban zones are subject to constant changes, which are expressed in changes in the dimensions of trees or their elements of growth (diameter, height, volume, crown, etc.). According to Stajić and Vučković (2016), irreversible increase in the size of a tree or some part of it in a certain period of time is called growth (total time period) or increment (growth in the period of 1 year or more, and less than the total age).

In the context of the analysis of changes in the conditions of the environment and the consequences of these changes on people and their surrounding area, the research of the link between climate impact, as a factor of the environment, and growth and the increment of forest trees and forests has a special place. Because of their specificity (exactness of measurement, close connection with climatic and other ecological factors, the ability to collect data and several centuries back, etc.), research of the growth and diameter increment of trees are of particular importance for analyzing and defining the nature of the reaction of trees to changes in the basic conditions for growth (Stajić et al. 2014, 2015). The research of diameter increment, its annual, mid-term and long-term variations, as well as the impacts of various environmental factors that determine its flows, is concerned with researchers in the field of forest growth, but also various researchers from related disciplines, such as dendrochronology and dendroclimatology, as well as dendroecology, dendrogeomorphology, etc. (Stajić 2010). According to Vučković et al. (2005) “...dendrochronology was created by the application of dating markant, mostly narrow tree-rings, the so-called characteristic ring, using the chronological order of annual rings typical of species, region, age, and origin... “.
A DENDROCLIMATOLOGICAL ANALYSIS OF FIR (Abies Alba Mill.) GROWTH IN THE BORJA MOUNTAIN AREA...

Stajić (2010), quoting papers by Schweingruber (1983) and Cherubini et al. (2004) states that dendrochronology “...is concerned with the study of the growth of trees and its relation to environmental conditions, depending on space and time...”. Smith and Lewis (2007) pointed out that dendrochronology is a science that deals with dating and studying annual growth layers (increments) in forest trees and shrubs.

In the framework of dendrochronology, a (sub) discipline called the dendroclimatology is differentiated, which is based on determining the relationship between the structure and the size of radial increment and climatic elements and their variations. Speer (2010) notes that dendroclimatology is part of a wider scientific discipline called paleoclimatology, which, apart from annual rings, uses glacial glossary, deposition of sediments, coral and individual rocks to study the climate, indicating its progressively greater significance due to the actualization and strengthening of global awareness of climate change and their manifestation through the presence of various extreme natural phenomena, with devastating effects on people and their lives.

Fir was the subject of research in a number of dendrochronological and dendroclimate studies on the Balkan peninsula and Europe. In Bosnia and Herzegovina and Serbia, fir has not been much explored in this regard. In Bosnia and Herzegovina, the influence of variation of climatic elements on the growth of fir was investigated in mixed beech, fir and spruce stands in the forest of Lom (Castagneri et al., 2014), while in dendroclimatic sense fir in Serbia is unexplored. According to preliminary data of the Second Forest Inventory on large areas, the wood volume in high forests is 38.780.852 m³ or 18% of the total wood volume in the territory of the Republic of Srpska. In Bosnia and Herzegovina, fir is represented in mixed forests of beech and fir and in beech, fir and spruce forests and very rarely in pure forests of fir (Ballian, Halilović 2016). Fir in the mountainous zone forms forest communities with spruce and sometimes with Scots pine and beech, making it the most important forest community in Bosnia and Herzegovina - a community of beech-fir forests (Stefanović 1977, Stefanović et al., 1983, Beus 1984).

Bearing in mind that fir is one of the most common and most important species of trees in the Republic of Srpska and Bosnia and Herzegovina, research of the diameter increment of fir trees, as a bioindicator of their vitality and reactions to the change of environmental factors, has an emphasized economic and ecological significance. Therefore, the aim of this paper is to obtain the basic - preliminary knowledge about the dendroclimatological response of fir in 2 sites within the area of Borja mountain and the potential of creating a regional chronology for the given area.

MATERIAL AND METHOD

The area of research is the Borja Mountain in the western part of the Republic of Srpska, Bosnia and Herzegovina (Figure 1). Its highest peak is Velika Runjevica (1,078 m) and is located in the northwestern part of the mountain. Borja is mostly built of magmatic rocks. It is dominated by mixed stands of fir and beech, and clean stands of fir are also present. The presence of three associations was established: Blechno-Abietetum (Ht. 1938) Ht. and Cestar 1967, Galio rotundifolii-abietetum M. Wraber 1959 and Rusco hypoglosi-Abietetum Br ujić 2004. It should also be noted that the Borja mountain area represents the border area of fir in the north.

Samples (cores) were taken from two stands on Borja Mountain (Figure 1), in which two sample plots – SPs (50 m x 50 m) were established in their preserved and homogeneous parts. On the first sample plot, in the association Rusco hypoglosi-Abietetum Br ujić 2004 on the dystric cambisol, the determined number of trees per hectare is 732, the basal area is 45.7 m²/ha and the volume is 590.2 m³/ha. In the second sample plot, in the association Galio rotundifolii-Abietetum M. Wraber 1959 on eutric cambisol, the number of trees per hectare is 588, the basal area is 28.7 m²/ha and the volume is 273.7 m³/ha.

To study the influence of climate on fir increment, Presler’s borer was used for drilling 15 dominant trees of fir (30 trees in total) with two cores (total of 60 series of radial increment). The required number of drilling trees is determined based on the recommendations of a number of
authors, according to which the minimum sample size for establishing a quality individual chronology is 15 trees, if two cores are taken from each tree (Luckman, 2007, Fritts 1976, Accetto 1977, Levanich, 1996).

After collection, the necessary samples were forwarded to the laboratory, placed and glued to the wooden carriers. After the glue was dried, the processing of the samples, i.e. the preparation of the core with sand paper (grinding) was initiated, with the aim of making an accurate measurement of the radial increment. The processed samples were scanned using high performance scanners (Epson Perfection V30 Photo). The measurement of the width of radial increment was made using licensed software CooRecorder 7.6 and CDendro 7.6.

Fir chronology by localities was developed based on empirical radial increment data. Checking the correct dating of each increment value, that is, the accuracy of adding the given increment in the “right” calendar year, was carried out by the Crossdating procedure. Crossdating was done visually and using statistical methods within the specialized statistical program “Cofecha” (Holmes, 1983, Grissino-Mayer, 2001), which provides qualitative control of the collected series of the radial increment (tree-rings width) and points to possible problems in dating and measurement (Stajić 2010).

Standardization of the radial increment series was made using the Arstan program, by applying smoothing cubic splines. The result of processing in the Arstan program is the radial increment index series, i.e. three versions of the radial increment index chronology (standard - STD, residual - RES and Arstan - ARS chronology) and a comprehensive overview of the results of statistical analysis. In this program, the average chronologies of the sites are formed by averaging the individual series into a single chronology using biweight robust mean procedure, designed to reduce the influence of isolated values outside the data interval (Cook, 1985, Cook, Holmes, 1986). For the comparison with climatic parameters, the ARS chronology of the radial increment index was used.

The correlation coefficient \((r)\) and the coefficient of convergence - GLK (Huber, 1943; Eckstein, Bauch 1969), which are a measure of the degree of agreement of series sequences or chronologies in the observed interval, were used for estimating the possibility of merging the obtained local increment chronologies into the a regional chronology for the Borja mountain area.

For the analysis of the influence of climatic elements on the radial increment, data from the regional weather station “Doboj” were used for the period from 1951 to 2014. This impact was analyzed by applying the correlation (1) between monthly temperatures and precipitation and the ARS chronology of the radial increment indices and (2) the FAI index of drought and ARS chronology of the radial increment indices.

RESULTS

The basic dendrochronological-statistical parameters of the analysed empirical radial increment values for the SP are shown in Table 1.

![Figure 1. The location of Borja mountain and the sample plots/sites](image)

Table 1. The basic characteristics and dendrochronological-statistical parameters of empirical series of radial increment

SP	No	NS	NPS	SC	Mean	Max	SD	AC1	MS
1	1017	33	2	0.444	3.54	15.48	1.667	0.802	0.228
2	1592	62	4	0.434	1.92	14.58	0.961	0.752	0.241
The total number of measured radial increments (No) is 1017 (SP1) and 1592 (SP2). The arithmetic mean (Mean) of individual series of empirical increment values is 3.54 mm (SP1) and 1.92 mm (SP2), and standard deviation (SD) is 1.667 mm (SP1) and 0.961 mm (SP2). Serial correlation (SC) between the empirical increment values and the master chronology of radial increment is 0.444 (SP 1) and 0.434 (SP 2). The values of the mean sensitivity (MS) are from the category of “medium” according to the guidelines of Grissino-Mayer (2001) and amounts to 0.228 (SP1) and 0.241 (SP2). The number of “problematic” (flagged) segments” (NPS) with an insufficient degree of agreement between the series (low correlation) in the total number of segments (NS) in series is from 2 to 4 (Table 1).

Diagram 1 shows sample depth by SPs. The results show the sample depth of the longest radial increment series in SP dates back to 1849 (SP2) and to 1870 (SP1).

The averaged empirical radial increment series (Ir) of both SP are presented in Diagram 2. A significantly larger average value of increment in the second half of the 20th century could be seen compared to the previous period. Based on the
obtained growth rates and previous knowledge, it can be assumed that significantly smaller radial increment in the first 100 years of the tree’s life results from the unfavourable position of the observed trees in the stand in that period (e.g. stagnation stage) rather than from the clear influence of the climate factor.

As a result of the application of the Arstan program, the ARS chronology of the radial increment indices (I) was defined (Diagram 3). This chronology will be further used for comparison with climate parameters, i.e. for analysing the impact of analysed climate parameters on the forest growth.

In the next phase, the analysis of the relationship between the defined chronologies in the SP was initiated, with \(r \) and GLK being determined (Table 2). The \(r \)-value between defined chronologies (0.515) is high and statistically significant. The value of the GLK coefficient (0.848) is also statistically significant.

Table 2. Values of \(r \) and GLK coefficients

SP	\(r \)/GLK
SP1/SP2	\(r = 0.5151, p = 0.000 \) GLK = 0.848**

* - Statistically significant value with probability of 95%
** - Statistically significant value with probability of 99%

Starting from the previously presented analysis, whose results showed a good matching of the defined chronologies of both locations, the preparation of the preliminary regional chronology of fir for the Borja mountain region began. Diagram 4 shows the ARS version of this chronology. The first year of the chronology of the increment was 1849, and last one 2014, which means that the chronology is 166 years (line “a” of Diagram 4). If the beginning of the chronology takes years in which there are at least 4 series of radial increments, then the first year of chronology is 1878, and the length then is 137 years (line “b” of Diagram 4). The average size of the radial increment index is very close to 1, the standard deviation is 0.130, the skewness coefficient is 0.36 and the kurtosis coefficient is 5.058. The mean sensitivity and the serial correlation are 0.138 and -0.106, respectively.

In order to further assess the quality and reliability of the obtained chronology for dendroclimatology researches EPS was calculated. The value of this indicator in the first years and decades of chronology (from 1878 to 1950) is below the lower limit of acceptance and trust chronology, which according to Wigley *et al.* (1984) is 0.85. However, since the 1950s (since precipitation and temperature data exist), the EPS is higher than 0.85, indicating the possibility of partial use of the above defined chronology for dendroclimatic analysis.

To detect the period of a year during which precipitation and temperature correlated best with the radial increment, correlation analyses were performed between the radial increment indices and precipitation and temperature for August, September and October of the previous year (Avg p, Sep p and Oct p) and April to October of
the current year (Apr t - Oct t). The calculated correlation coefficients between the radial increment index and monthly precipitation data are shown in Table 3. A statistically significant positive correlation between the analyzed variables at the significance level $p<0.05$ was found for September of the previous year and July of the current year.

The determined correlation coefficients between the radial increment index and monthly temperatures are shown in Table 4. A statistically significant negative correlation between the analyzed variables at significance level $p<0.05$ was established for September of the previous year.

In order to further analyze the relationship between the climate and fir increment as well as to minimize the effect of multi-correlation of precipitation and temperature, the relationship between the preliminary regional chronology and the FAI index of drought was investigated. The determined coefficient of correlation between the analysed variables for the Borja mountain range is -0.27 and it is statistically significant ($p = 0.033$).

Table 3. Correlation coefficients between radial increment indices and monthly precipitation.

Month	Avg p	Sep p	Oct p	Apr t	May t	Jun t	Jul t	Avg t	Sep t	Oct t
r	-0.0041	0.3534	0.0967	0.1238	0.2277	0.0444	0.2388	0.2229	0.0177	-0.0294
p	0.975	0.004	0.451	0.334	0.073	0.730	0.049	0.079	0.891	0.819

Table 4. Correlation coefficients between the radial increment index and monthly temperatures.

Month	Avg p	Sep p	Oct p	Apr t	May t	Jun t	Jul t	Avg t	Sep t	Oct t
r	-0.0926	-0.4236	0.1004	0.0377	0.0008	-0.1572	-0.1009	-0.1645	-0.0501	0.0303
p	0.478	0.001	0.441	0.773	0.995	0.226	0.439	0.205	0.701	0.817
DISCUSSION

Based on the obtained dendrochronological-statistical parameters of the series of radial increment, it can be concluded that the used increments series from the Borja Mountains represent a good material for the development of chronologies per localities. At both locations, the number problematic segments, i.e. segments in which the radial increment series do not have such a pronounced degree of “coincidence in flows” are within the allowed range. MS values indicate that the series of increments are “medium-sensitive” to the effect of the environmental factors. The ACI coefficient of row chronology was high, indicating that it is necessary to “clear” the increment size of the current year from the “part of the increment size” caused by the influence of different factors from the previous year(s). By developing the chronology and the procedures of standardization, averaging of increments values and autoregressive modelling, autocorrelation as an adverse effect was almost completely eliminated from the increment values, but the average level of sensitivity was also reduced.

The checking of the level of radial increment agreement into the defined two chronologies by locations was made using the correlation coefficient (r) and the coefficient of convergence (GLK). The obtained values of these coefficients showed that there is a significant matching, or similarity of the defined chronologies of growth between the localities provided the possibility of producing a regional chronology for the Borja mountain area. This defined chronology has a preliminary character, bearing in mind that, as already mentioned, the aim of this paper was to obtain basic knowledge about the dendroclimatic response of fir in two locations within the area of Borja Mountain. In that context, the obtained basic dendrochronological-statistical indicators of preliminary fir chronology suggested that fir trees were able to respond similarly to the variations of climate in this area. According to Butler et al. (2013), EPS is one of the basic indicators of a chronology sample depth quality and a parameter that quantifies the level of common signal among the increment series used to obtain a chronology. The empirically determined and accepted limit value of the EPS coefficient of 0.85 represents the border below which the observed chronology begins to lose a coherent common signal and begins to dominate the signal of individual trees. Therefore, the chronology of radial increment with lower boundary values can be used for dating (for example, in dendroarheological researches), but due to variability, they are not reliable for calibration with climatic data (Briffa, Jones 1990; Speer, 2010). The results obtained here signalled that, according to the EPS sizes, the strength of the common signal in the first few decades was unsatisfactory. This can be explained by the nature of this indicator, but also by the fact that it is closely related to sample depth or the number of increment values determined in each calendar year. Namely, sample depth in all series in chronology is not the same. There are some series with a quite small number of data in the first portion of chronology, and because of that such series have low calculated cross-correlation between the series in the first decades. However, the EPS values for chronology segments 1950-1990 and 1975-2014 are above 0.85, which coincides with the periods for which climatic data exist. Therefore, this preliminary chronology can be used for preliminary conclusions about the “nature” of the relationship between fir growth and climate of the given area. However, new research of climate-fir growth are necessary in this area, which will allow for a more representative sample and increase the strength of the common sample (variance) between the series in chronology.

The results of the conducted climate-growth analysis showed that the increased precipitation in summer months (July) positively resulted in statistically larger fir increment. This stems from a logical fact about the need of each tree species for high water in the summer part of the vegetation period, especially in the hottest month of this period, when precipitation is at least available. The pronounced effect of precipitation is to be expected because fir is a tree species that requires a lot of moisture for growth (Dizdarević et al., 1987) and does not tolerate dry soil and air (Cvjetičanin et al., 2016). The average amount of rainfall in the area of the fir distribution range in Bosnia and Herzegovina is 1000 - 2000 mm, so that the distribution of fir in a large number of cases is caused by a lack of sufficient moisture.
In addition, a statistically significant correlation was found between the radial increment and precipitation (positive) and temperature (negative) in September of the previous year. This practically means that fir is not able to suffer more temperatures and less precipitation in the late summer of the previous year, which can cause a significant reduction in the increment in the next year. Generally, the influence of temperature variation on fir increment variation is far less pronounced than the influence of precipitation. This is somewhat understandable, bearing in mind that the sample plots are at a relatively low altitude for fir (an average of about 840 m). Starting from a commonly accepted principle in dendrochronology, the so-called principle of limiting factors (Fritts 1976, Cook et al., 1990), it is expected to detect a significant increase in the influence of temperature on fir growing at higher altitudes, where temperature is the dominant limiting growth factor. Bearing in mind that only 12% of the area of pure and mixed forests of fir and spruce and mixed forests of fir, spruce and beech in Bosnia and Herzegovina are at an altitude lower than 800 m (Matić et al., 1971), it is also necessary to conduct such research in the predominant part of fir forests at higher altitudes, which, according to the mentioned authors, are at an average altitude of 1100 m.

In order to eliminate the consequences of the so-called multicollinearity, or mutual inter-correlation between temperature and precipitation (higher temperatures also cause less precipitation and vice versa, which can impede a valid conclusion about the individual (separated) influence of these two climatic elements on increment) for the assessment of the relations between climate and growth drought indexes should be used, in which data on precipitation and temperature are “combined” at the same time. Of the numerous drought indexes used in dendroclimatological studies, the FAI (Forest Aridity Index) drought index was used for this research. This index represents the ratio of average temperatures in July and August, and rainfall from May to August corresponding to the most intensive period of importance for growth and production of organic matter of forest trees (Führer et al., 2011, Moricz et al., 2018). For the research area, the average annual value of the FAI index in the period 1953-2014 is 4.86. The results of the correlation between the FAI drought index and the radial increment indices \(r = -0.34 \) showed that the increase of the drought index causes statistically significant decreases in the radial increment of fir.

The obtained results on the nature of the dendroclimatological reaction of fir in the Borja mountain region coincide with the results of the research by Castagneri et al. (2014), carried out in the area of the Lom virgin forest. These authors, similar to our results, found that higher precipitation in summer months was “very appealing” for fir, and caused a significant increase in increment. Additionally, Castagneri et al. (2014) specifically pointed out the fact that the observed increase in temperature in the last three decades did not have a reflection on the significant reduction of increment values.

CONCLUSIONS

In order to determine the character of climatic influence on radial increment, a dendroclimatic analysis of fir growth was carried out in the region of Borja mountain in Bosnia and Herzegovina. The results of growth trend analysis and dendrochronological-statistical parameters of radial increment series reveal that the collected and processed sample represents suitable and statistically sufficient quality material for the development of local (master) chronologies of radial increment at the investigated locations (sites). It was determined that the growth increment trends in the defined local chronologies were quite similar, and therefore there was a statistically significant agreement between the established chronologies, which enabled the preparation of a preliminary regional chronology of fir in the Borja mountain area. The defined chronology of radial increment, with sufficient statistical reliability and the strength of a common signal in growth, has a total length of 137 years (1878-2014 years).

The conducted mathematical-statistical analyses of the relationship between the preliminary regional chronology (series of annual tree rings indices) and the monthly sum of precipitation and temperature show that higher amounts of precipitation in late summer of the previous year and during the current year cause a significant increase in the increment of the fir. On the other hand,
higher summer temperatures do not result in a significant decrease in the current year’s increment. However, this happens only due to the increase in temperature during September of the previous year. Having in mind these results, it can be preliminarily concluded that the eventual decrease in the amount of precipitation caused by the temperature rise in summer months would not cause a significant decrease in the radial growth of fir, suggesting that fir in this area may endure some level of precipitation reduction and temperature increase without a significant reduction in the radial increment. However, the results of the applied correlation analysis between the radial increment index and the FAI index of drought showed that in the case of more severe drought in summer months, fir may experience significant reductions in increment size.

In general, the obtained results suggest that the growth of fir in the Borja mountain area is more dependent on the variation of precipitation than the temperature. This can be partly expected, bearing in mind the relatively low altitude of these two sites where fir grows in comparison with the whole altitudinal range of fir in Bosnia and Herzegovina, but also the fact that it is a species of trees that require a lot of moisture. Since it is necessary to collect a series of preliminary findings for the planning and implementation of serious and multidisciplinary research on the reaction of fir to changes in climatic conditions in the analyzed area, the initially obtained results are very illustrative and practical. Nevertheless, it is necessary to conduct new research of the relation between the climate and the growth of fir in several other locations in this region, as well as to apply a number of other methodological procedures that additionally “illuminate” the nature of the increment reaction to a multidecadal temperature and precipitation changes, as the most important climatic elements.

LITERATURA/REFERENCES

Accetto, M. (1977). Razvojna dinamika in naravna regeneracija naravnih gozdov črnega bora (Pinus nigra Arnold), [Doktorska disertacija], Ljubljana, Univerza v Ljubljani, Biotehniška fakulteta, Oddelek za gozdarstvo, 102 p.

Ballian, D., Halilović, V. (2016). Varijabilnost obične jele (Abies alba Mill.) u Bosni i Hercegovini, UŠIT FBiH i Silva Slovenica, Sarajevo, 345 p.

Beus V. (1984). Vertikalno raščlanjenje šuma u svijetu odnosa realne i primarne vegetacije u Jugoslaviji, ANU BiH, Radovi LXXVI, Odjelj, Prir. i matemat. nauka, knjiga 23: 23-32.

Briffa, K.R., i Jones, P.D. (1990). Basic chronology statistics and assessment. U: Cook, E.R., i Kairiukstis, L.A., eds, Methods of Dendrochronology: Applications in the Environmental Sciences, Kluwer Academic Publications, Dordrecht: 137-162

Butler, P.G. i sur. (2013). EPS, rbar and associated statistics. U: Butler, Paul G.; Wanamaker, Alan D.; Scourse, James D.; Richardson, Christopher A.; Reynolds David J. (2013): Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology 373: 141-151.

Castagneri, D., Nola, P., Motta, R., Carrer, M. (2014): Forest Ecology and Management 320, 21–29.

Cook, E.R. (1985). A time series analysis approach to tree-ring standardization. [Dissertation], University of Arizona, Tucson, AZ, 171 p.

Cook, E.R., i Holmes, R.L. (1986). Users manual for program ARSTAN. U: Holmes, R.L., Adams, R.K., i Fritts, H.C., eds, Tree-Ring Chronologies of Western North America, Chronology Series Vol. 6. Laboratory of Tree-Ring Resarch, University of Arizona, Tucson: 50-56.

Cook, E., Briff, K., Shiyatov, S., Mazepa, V. (1990): Tree-Ring Standardization and Growth-Trend Estimation. Y: Cook, E.R., Kairiukstis L.A. (1992): Methods of Dendrochronology – Applications in the Environmental Sciences. Kluwer, Dordrecht, Boston, London (104-123

Cvjetičanin, R., Brujić, J., Perović, M., Stupar, V. (2016): Dendrologija. Udžbenik, Univerzitet u Beogradu-Šumarski fakultet, 557 s.

Dizdarević H., Pintarić K., Stefanović V., Prolić N., Ušćuplić M., Vukorep I., Lazarev V., Luteršek D., Gavrilović D. (1987). Revizija postoječih i izdvajanje novih sjemenskih sastojina i proučavanje bioloških karakteristika smreke, jele, bijelog i crnog bora u funkciji proizvodnje kvalitetnog sjemena za potrebe šumarstva u SRBiH. Šumarski fakultet u Sarajevu: 1 - 452.
Eckstein, D., Bauch, J. (1969). Beitrag zur Rationalisierung eines dendrochronologischen Verfahrens und zur Analyse seiner Aussage sicherheit - Forstwissenschaftliches Centralblatt 88, 4: 230-250.

Fritts H.C. (1976). Tree Rings and Climate. Academic Press, 582 p.

Führer, E., Horváth, L., Jagodics, A., Machon, A., Szabados, I. (2011). Application of new aridity index in Hungarian forestry practice. Időjárás 115 (3): 205–216.

Grissino-Mayer, H. D. (2001). Evaluating crossdating accuracy: a manual and tutorial for the computer program COFECHA. Tree-Ring Research 57: 205–221.

Holmes, R.L. (1983). Computer-assisted quality control in treering dating and measurement. Tree-Ring Bulletin 43: 69-75.

Huber, B. (1943). Über die Sicherheit jahrringchronologische Datierung. Holz als Roh und Werkstoff. Vol. 6: 263–268.

Levanič, T. (1996). Dendroekološka in dendrokronološka analiza propadajocih sovladajocih jelk (Abies alba MILL.) v dinarskem fitogeografskem območju, [Doktorska disertacija], Univerza v Ljubljani Biotehniška fakulteta-oddelek za lesarstvo, 166 p.

Luckman, B. H. (2007). Dendroclimatology. Encyclopedia of Quaternary Science. Edited by: S.A. Elias. Elsevier Scientific. Volume 1: 465-476.

Matić, V., Drinić, P., Stefanović, V., Ćirić, M. (1971). Stanje šuma u SR Bosni i Hercegovini prema inventuri šuma na velikim površinama u 1964 – 1968 godini, Posebna izdanja Šumarskog fakulteta i Instituta za šumarstvo u Sarajevu, Broj 7, Sarajevo, 639 p.

Smith, D.J., Lewis, D. (2007). Dendrochronology. Encyclopedia of Quaternary Science. Edited by: S.A. Elias. Elsevier Scientific. Volume 1: 459-465.

Speer, J.H. (2010) Fundamentals of Tree Ring Research. The University of Arizona Press. Tucson, 509 p

Stajić B. (2010): Karakteristike sastojinske strukture i rasta stabala u mešovitim sastojinama bukve i plemenitih lišćara na području Nacionalnog parka „Đerdap“. Doktorska disertacija, ŠumarSKI fakultet, Beograd.

Stajić B., Vučković M., Janjatović Z. (2014): Dendrochronološka istraživanja u veštacki podignutoj sastojini hrasta kitnjaka na području Fruške gore. Glasnik Šumarskog fakulteta 109, Beograd, (149-168).

Stajić, B., Vucković, M., Janjatovic, Z. (2015): Preliminary Dendroclimatological Analysis of Sessile Oak (Quercus petraea (Matt.) Liebl.) in ”Fruska Gora“ National Park, Serbia. Baltic Forestry 21(1): 83-95.

Stanić, B., Vučković, M. (2016): Rast i proizvodnost šuma - praktikum. Univerzitet u Beogradu, Šumarski fakultet, 144 s., ISBN: 978-86-7299-243-4

Štefanović V. (1977). Fitocenologija sa pregledom šumskih fitocenoza Jugoslavije. Zavod za udžbenike Sarajevo, 283 p

Štefanović V., Beus V., Burlica Č., Dizdarević H., Vuko rep I. (1983). Ekološkovegetacijska rejonizacija Bosne i Hercegovine, Sarajevo, 1983, Šumarski fakultet, Posebna izdanja br. 17: 1-51.

Vučković M., Stajić, B., Radaković N. (2005): Značaj monitoringa debljinskog prirasta sa aspekta bioindikacije vitalnosti stabala i sastojina, Šumarstvo br. 1-2, s. 1-10