The mathematical research-data repository MathRepo

Claudia Fevola and Christiane Görgen
fevola@mis.mpg.de and goergen@math.uni-leipzig.de

Research data in mathematics

MathRepo, located at https://mathrepo.mis.mpg.de, is an online repository for mathematical research data. Research data, broadly speaking, can be defined as ‘the recorded factual material commonly accepted in the scientific community as necessary to validate research findings’\(^1\). In mathematics, research data comes in many different flavours. For instance, in computer algebra it most often takes the form of mathematical documents, notebooks, research-software packages and libraries, computer algebra systems, algorithms, and collections of mathematical objects [GS21, e.g.]. MathRepo contains foremostly computer-algebra research data of three main types: computations performed for paper publications, additional lists of examples to theoretical results, and presentations of problems solved in workshops or lectures. It provides one central location for mathematicians to store and share any additional data they might want to make publicly available alongside their paper publications.

The repository was established in 2017 at the Max Planck Institute for Mathematics in the Sciences\(^2\) (MPI MiS) in Leipzig, following the initiative of Bernd Sturmfels, Ronald Kriemann, and Yue Ren. It has had seven different maintainers over the past five years: Yue Ren and Mahsa Sayyary in 2017 and 2018, Lukas Kühne and Verena Morys from 2019, and the authors of this paper together with Carlos Améndola since 2021. There are of course a variety of other storage solutions across different scientific fields\(^3\), some research data can be published as software packages [BEO02, e.g.], and some mathematical libraries have their own homepages\(^4\). However, an infrastructure which can both store and visually present a wide range of different data in a wiki- or blog-entry style was—and at the time of writing is—not yet broadly established. In particular, for smaller contributions to papers like proofs by computation in a particular programming language or lists of examples of objects with properties of interest, a centralised infrastructure was completely missing. MathRepo aimed to fill this gap.

At the time of writing, the repository has gathered a total of forty individual contributions. The contributor community is the nonlinear-algebra working group\(^5\) at MPI MiS, though being a member is not necessary to gain access to the repository. Informally registering with MPI MiS’s IT service is sufficient to obtain contributor rights. MathRepo is hosted on the servers of MPI MiS\(^6\). It is planned to last for at least the coming decade and is limited in size and capacities as is the underlying open-source software GitLab\(^7\). Just like with paper-storage options such as arXiv.org, also in MathRepo there is no hard quality control. Merge requests are accepted after a brief visual check of three basic requirements: that the content of a new page is mathematical research data, that it provides references to relevant literature, and that the authors are generally known in the nearby scientific community. In particular, there are no strict rules for the actual presentation of the mathematical content. Using MathRepo as a pure repository is just as possible as using it to provide an in-depth introduction to a topic of interest, as we will see in a number of examples below.

What makes a good repository?

In 2021 the Mathematical Research Data Initiative MaRDI\(^8\) has set about developing and establishing infrastructure for research data in the German mathematics community. The declared purpose of the consortium is to establish the FAIR principles for these data: their long-term findability, accessibility, interoperability, and reusability shall be ensured [WDA+16, HWS21]. Currently, twenty-five partnering research organisations within MaRDI are working towards this aim. These are universities and institutes from the Fraunhofer and Max Planck societies as well as the Leibniz Gemeinschaft, the professional societies DMV, GAMM, and GOR.

\(^1\)OMB Circular 110, https://www.whitehouse.gov/sites/whitehouse.gov/files/omb/circulars/A110/2cfr215-0.pdf

\(^2\)https://www.mis.mpg.de

\(^3\)See the list of research-data repositories at https://www.re3data.org, e.g.

\(^4\)See the library ‘Small Phylogenetic Trees’ https://www.coloradocollege.edu/aapps/ldg/small-trees/small-trees_0.html or ‘The Markov Bases Database’ https://markov-bases.de, e.g.

\(^5\)https://www.mis.mpg.de/nlalg/nlalg-people.html

\(^6\)https://gitlab.mis.mpg.de

\(^7\)https://docs.gitlab.com/ee/administration/instance_limits.html

\(^8\)https://www.mardi4nfdi.de

\[\text{arXiv:2202.04222v1 [math.HO] 8 Feb 2022} \]
the European Mathematical Society and partners from mathematically-inclined Clusters of Excellence within Germany. This network ensures a nationally consistent implementation and follows a bottom-up approach in setting up new standards. In MaRDI’s computer-algebra task area, the OSCAR\(^9\) group is a key player, for instance.

One way of implementing the FAIR principles in practice is via the usage of trustworthy storage solutions for research data. This article is a snapshot of the service that MathRepo provides to the computer-algebra and other mathematical communities in this context and at this precise point in time, in February 2022—after nearly five years of maintenance under different leads, with new programming languages and software solutions coming up, and MaRDI waiting in the wings.

All present and past maintainers of MathRepo have themselves contributed to the repository. In particular, the initiators had plenty hands-on experience in handling not FAIR research data: data which was promised in papers and stored on long-gone personal homepages, data blocked by pay walls, data which would run on one computer but not on another, and data which would just not provide the promised results. Their key strategy to address these issues with MathRepo was usability. They envisioned that if the repository was easy to access for authors that would offer a practical counterpart to other, decentralised, research-type specific or hard-to-maintain storage options. And if it was used by authors, it would become known to readers as well and thus self-establish in the community, replacing cumbersome past solutions. A low entry barrier was initially achieved by Yue Ren being the sole maintainer who uploaded and curated all of the contributions in 2017 and ’18. It was later replaced by annual GitLab-training sessions with local contributors at the MPI MiS. Both strategies have had success and facilitated acceptance of the service in their local academic community, though MathRepo has never been aimed solely at that particular audience.

The key question for us is now: is the content of MathRepo FAIR in a MaRDI context? Or, more practically for you as the reader, is using MathRepo for your own research a solution for the future? We will discuss these questions over the coming sections, presenting the mathematics currently present on the repository and discussing what the FAIR principles mean for these in practice.

The mathematics in MathRepo

The common theme of all research data currently present on MathRepo is nonlinear algebra. This is a diverse and developing field of mathematics promoted by the recent expansion of nonlinear methods across applications [MS21, Stu22]. Of course, the theory, algorithms, and software from linear algebra and numerical linear algebra have a crucial function in the process of modelling problems arising in the natural sciences and engineering. But the natural occurrence of nonlinear equations in real-world applications together with an increasingly strong toolbox of new computational methods brought about a growing use of nonlinear approaches to mathematical modelling. These recent developments rely on techniques from algebraic geometry, topology, combinatorics, group theory, commutative algebra or representation theory. Vice versa, applications are also a central motor for driving new results in this field. Examples of this can be found in physics, polynomial optimization, partial differential equations, algebraic statistics, and algebraic vision [BÇD⁺21].

In practice, many of the applications of nonlinear algebra boil down to the problem of finding solutions to systems of polynomial equations. Broadly speaking, there are then two main computational approaches: symbolic and numerical. The former often relies on Gröbner bases’ computations, the latter typically uses homotopy continuation. Several software and programming languages provide effective tools for these computations and MathRepo furnishes a valid collection of the most well known ones, including GAP, Julia, Macaulay2, Magma, Maple, Mathematica, Matlab, Polymake, Sage, and Singular.

Coding

In many research projects in nonlinear algebra the symbolic and the numerical approach are both needed for solving different parts of the same problem, and turn out to be highly interlinked. As a result, scientists frequently use different software and programming languages even for a single research project. An example of this is shown on the MathRepo page Landau Discriminants, providing auxiliary material to [MT21]. This work applies methods from nonlinear algebra to the theory of scattering amplitudes in particle physics. In particular, these seemingly far-apart fields are practically and theoretically connected in the study of the so-called Landau equations. These are a set of polynomial equations determining allowed positions of singularities of Feynman integrals which arise in quantum field theory. The Landau discriminant parametrizes points for which the Landau equations have solutions. For each Feynman integral, the authors introduce the Landau discriminant as a projective variety whose points are potential singularities of the integral. Nonlinear algebraists can then foster the understanding of this physical setting by studying geometric properties of the discriminant, such as irreducibility, dimension, and degree.

Together with the theoretical findings, they provide an implementation of their work. Their Julia package Landau.jl numerically computes defining equations of the Landau discriminant for some Feynman integrals which were previously out of reach. A tutorial illustrating how to use the package is provided as a Jupyter notebook, linked to the MathRepo page. Further symbolic elimination methods are implemented in Macaulay2 for computing Landau discriminants and are also presented and

\footnote{https://oscar.computeralgebra.de}
illustrated on the project page. These approaches complement and enrich each other: the symbolic method provides reliable outputs but cannot deal with examples involving a high number of variables while the numerical computations are not exact but can be used to compute the desired equations in an efficient way.

This project illustrates one big advantage of using MathRepo over different, say software-specific solutions: there is no constraint on choosing a particular programming language to work with, and the mathematician is free to do whatever their problem demands. Indeed, code fragments written in different languages can be easily combined and illustrated on the same webpage, together with information about the respective software version and hardware setup provided at the bottom of the project page. An additional written explanation between these code snippets greatly facilitates interoperability between different systems and improves reusability for the reader.

Teaching A third type of contribution to MathRepo are presentations of problems solved in workshops or lectures. Indeed, the repository is also a possible useful tool for teaching purposes or for learning how to code in the languages previously specified. For instance, *Invitation to Nonlinear Algebra* is a page where exercises, and examples dealing with polynomial rings, primary decomposition of ideals, tropical geometry, and tensors presented in the textbook [MS21] are solved and explained using *Macaulay2* and *Polymake*.

The webpages from MathRepo we illustrate here are just some examples of many very different contributions included in the repository and they emphasize some of its main features. An autonomous navigation of the webpage is encouraged to get a more accurate idea of its possible types of use and to discover more interesting code presentations that are the building blocks of intuitions, examples, theorems, and their proofs.

A discussion of FAIRness

Nowadays there are general, not mathematics-specific guidelines for producing FAIR research data [JdMAJ*+20, e.g.] and some of MaRDI’s partnering research-data consortia in other disciplines are advanced in the process of implementing an apt infrastructure across their communities. Centrally, these implementations address *automated* search and usage of research data. Especially with respect to findability and accessibility, extensive metadata in some agreed-upon standard format is then essential. To implement interoperability, it need be possible to automatically combine different digital resources, and for re-usability automated decisions of relevance and legal terms need to be made. These developments were not known to the MathRepo group until the kickoff of MaRDI in 2021 and are, at the time of writing, not yet established in the mathematics community. However, all four principles have throughout been implicitly addressed from a human-user standpoint as follows.

Findability Every subpage of MathRepo has a unique and persistent URL of the format https://mathrepo.mis.mpg.de/<project-name> assigned by its respective authors. Project names are encouraged to be telling and related to the title of the corresponding publication, if existent. The MPI MiS’s internal library service provides up-to-date references for the latter. Vice versa, the link to the MathRepo project page can be explicitly stated in a paper publication. The additional index on the repository’s website which sorts entries by year and by programming language enables a direct as well as an associative
findability on the webpage itself. These measures facilitate findability for humans. The MPI MiS’s front webpage contains a link to the repository and it is known to the most widely-used search engines, thus also improving machine findability. Persistence of the repository and its links is guaranteed by the MPI MiS’s directors’ decision and is independent of the respective project and author location.

Accessability All content available on MathRepo, both research data and their metadata, is freely accessible for all users from any location. The current project-page template features the following recommendations: provide author names, a citation of a relevant publication, possibly arXiv link, an abstract, and the system setup (programming language, version, hardware) for computations, as well as a corresponding author for the project page itself. These minimum requirements establish a local metadata structure for research data.

The website is built on the http protocol, amenable to automated machine-search. The underlying GitLab is an open-source software. It provides an easy tracking tool, making historical changes and versions available for maintainers and contributors. These implementations make the website reasonably accessible without introducing a too technical setup.

Interoperability On a theoretical level, MathRepo facilitates interoperability of its content by providing an abstract for each page. This embeds the employed mathematical terms into context and thus allows readers to translate the content into their own mathematical language, making it interoperable for humans. On the computational side, the more recent pages on MathRepo provide information on how to reproduce their respective system setup, facilitating interoperability on a technical level.

Reusability Two implementations help readers to reproduce and reuse the MathRepo content. First, the abstract of each project page is often taken from a corresponding paper publication. It gives an indication as to which area of mathematics the research data belongs to and where to find additional background literature. Second, the pages created after 2018 each have a corresponding author named who can be contacted for direct information.

The combination of these measures makes the data present on MathRepo FAIRer than research material which is simply put on personal homepages. MathRepo retains the low entry barrier and the flexibility of such user-implemented solutions, as shown in examples in the previous section, while providing long-term storage and independence of the authors’ current academic location. To the best of our knowledge, this is a standalone feature of the repository in the mathematics community. However, many of these solutions are practical in a local sense and are not yet embedded in a national or even global infrastructure for research data.

Current challenges

At the time of writing, the MathRepo project standards do not follow a recommended protocol for mathematical research-data presentation and metadata supply. They rather reflect the maintainers’ experience with documentation needed for the usage and maintenance of computer-algebra software. This approach has initially allowed for a swift setup of the repository. However, it does come with certain limitations, many of which became visible only with the growth of the repository. Now, challenges are threefold: inconsistent layout across the individual project pages, out-of-date or broken content, and large variations in mathematical quality.

The reasons and implications of these issues are numerous and the MathRepo contributions of the past five years clearly show a process of how priorities changed over time. For instance, the template for authors has improved with every handover between different sets of maintainers, providing increasingly refined metadata and new guidelines for presentation. As a result however, the depth of detail of the individual contributions’ metadata and the overall layout of the MathRepo project pages is not uniform. This is now a hurdle to both findability and automated accessibility, as well as a hurdle to reusability. For instance, metadata provided in different places across different pages encumbers findability for the human reader. Broken links to e.g. **binder** notebooks are an obstacle to accessibility and convey a general impression of content being out of date. Not sufficiently detailed references to employed programming languages hinder reproducibility on systems different from the authors’. Missing corresponding-author names in the early contributions impede reusability.

Even though training sessions at MPI MiS allow newcomers to learn to operate the **GitLab** setup, MathRepo’s recommended project-page template is then often not followed in detail. This issue together with the great flexibility—to use MathRepo as a pure storage solution or, on the other extreme, as a platform for presenting teaching material—entail that contributions vary largely in quality. But then a combination of large variations both in quality and in presentation can confuse readers and, worse, make them wary to trust the content. This is challenging from a user perspective.

From a maintainers’ perspective, non-compliance with locally established standards in the new contributions and an increasing number of breakage in the past contributions hugely increase the workload that is needed to ensure some sort of consistency between the individual subpages of the repository. Additionally, the user community has recently grown in numbers and has spread in mathematical diversity, making it hard for the maintainers to understand and judge new content. For scientists for whom MathRepo is only one of many projects and time commitment is limited, this is manageable only while the repository is still reasonably small. This issue actually is part of a bigger problem in a publishing culture which values code and
software less than research data that comes in the form of paper publications. But based on the past experiences and based on current research projects in the different working groups at MPI MiS, we predict more and more non-text research data and future growth of MathRepo. This snapshot marks a point at which it is still possible to tend to present issues before they become too large to manage.

Outlook

With increasing awareness of the importance of FAIR principles for sustainable research and with MaRDI launched, it is timely for us to address the above points of criticism. In particular, we plan to tackle three main issues: trustworthiness of the repository, barriers to reusability, and forward-compatibility of the standards for embedding into coming MaRDI infrastructure.

With respect to trustworthiness, we see two possible ways for improvement of the status quo: to implement a user check for executability of code and for mathematical correctness of the research data similar to a small-scale peer-review system, or to follow an established standard for research-data repositories and to apply for third-party certification, e.g. with CoreTrustSeal\(^\text{10}\). This latter idea immediately leads to our point on reusability. Many seals of quality require a clear statement of the terms of use of a repository. However, at the time of writing this is not present in MathRepo and the lack of a license statement does not imply that data is automatically open access [JdMAJ+20, cf.]. For future FAIRness of the repository, it is thus mandatory to choose an appropriate license. This can either be by maintainer’s choice or each user could be required to choose their own from a list of standard open-access licenses.

We aim to address the above issues and also facilitate a future embedding into MaRDI infrastructure by setting up a new template with metadata standards. These shall beforehand be discussed within the current MaRDI community. Compliance with the new standards shall then be achieved by embedding a section on research-data management into coming MathRepo-training sessions, stressing the importance of making your research FAIR.

References

Reference	Title
[BBMS22]	Katalin Berlow, Marie-Charlotte Brandenburg, Chiara Meroni, and Isabelle Shankar. Intersection bodies of polytopes. *Beiträge zur Algebra und Geometrie/Contributions to Algebra and Geometry*, pages 1–21, 2022.
[BÇD+21]	Paul Breiding, Türkü Özlim Ceklik, Timothy Duff, Alexander Heaton, Aida Maraj, Anna-Laura Saturnberger, Lorenzo Venturello, and Oğuzhan Yürük. Nonlinear algebra and applications. *Preprint available at arXiv:2103.16300*, 2021.
[BEO02]	Hans Ulrich Besche, Bettina Eick, and E. A. O’Brien. A millennium project: constructing small groups. *Internat. J. Algebra Comput.*, 12(5):623–644, 2002.
[GB21]	Christiane Görgen and Rainer Sinn. Mathematik in der Nationalen Forschungsdateninfrastruktur. *Mitteilungen der Deutschen Mathematiker-Vereinigung*, 29(3):122–123, 2021.
[HWS21]	Nathalie Hartl, Elena Wüstner, and York Sure-Vetter. Nationale Forschungsdateninfrastruktur (NFDI). *Inform. Spektrum*, 44(5):370–373, 2021.
[JdMAJ+20]	Annika Jacobsen, Ricardo de Miranda Azevedo, Nick Juty, Dominique Batista, Simon Coles, Ronald Cornet, Mélanie Courtot, Mercé Crosas, Michel Dumontier, et al. FAIR principles: Interpretations and implementation considerations. *Data Intelligence*, 2(1-2):10–29, 2020.
[MS21]	Mateusz Michalek and Bernd Sturmfels. *Invitation to nonlinear algebra*, volume 211. American Mathematical Soc., 2021.
[MT21]	Sebastian Mizera and Simon Telen. Landau discriminants. *Preprint available at arXiv:2109.08036*, 2021.
[Stu22]	Bernd Sturmfels. Beyond linear algebra. In *Proceedings of the International Congress of Mathematicians, St. Petersburg*, 2022. Preprint available at *arXiv:2108.09494*.
[WDA+16]	Mark Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg, Gaby Appleton, et al. The FAIR guiding principles for scientific data management and stewardship. *Scientific Data*, 3(160018), 2016.

\(^{10}\text{https://www.coretrustseal.org}\)