Spatial reference frame agreement in quantum networks

Tanvirul Islam1,2, Loïck Magnin1, Brandon Sorg1 and Stephanie Wehner1,2

1 Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore
2 School of Computing, National University of Singapore, 13 Computing Drive, 117417 Singapore, Singapore
E-mail: tanvir@locc.la, loick@locc.la and steph@locc.la

Received 17 February 2014, revised 13 April 2014
Accepted for publication 24 April 2014
Published 17 June 2014
New Journal of Physics \textbf{16} (2014) 063040
doi:10.1088/1367-2630/16/6/063040

Abstract
In order to communicate information in a quantum network effectively, all network nodes should share a common reference frame. Here, we propose to study how well \(m\) nodes in a quantum network can establish a common spatial reference frame from scratch, even though \(t\) of them may be arbitrarily faulty. We present a protocol that allows all correctly functioning nodes to agree on a common reference frame as long as they are fully connected and not more than \(t < m/3\) nodes are faulty. Our protocol furthermore has the appealing property that it allows any existing two-node protocol for reference frame agreement to be lifted to a protocol for a quantum network.

Keywords: quantum networks, reference frame agreement, quantum communication

Quantum networks are gaining importance [1] for a variety of tasks such as quantum distributed computing [2], quantum cloud computing [3] and quantum key distribution (see e.g. [4–7]). From the current architecture of the internet one can assume that any such network will contain a large number of nodes that are distributed over widespread geographical locations on Earth or on satellites [8–12] and connected via quantum and classical communication channels [13]. Some of the many challenges in building a quantum network spanning long distances include...
how to perform quantum error correction [14] and construct quantum repeaters (see e.g. [15]). Yet, before we can hope to implement even such basic building blocks effectively, we would like all nodes in the quantum network to agree on a common reference frame to enable easy quantum communication.

A significant research effort has been devoted to developing protocols for agreeing on a reference frame between just two nodes [16–23]. Such protocols demand quantum communication because in the absence of a pre-shared reference frame, a node cannot meaningfully share directional information with a distant node by exchanging only classical data. Instead, a quantum system must be sent, for example, a qubit with its Bloch vector pointing in the required direction. A simple two-node protocol is thus to send many copies of the same qubit such that the receiver can approximate the direction with a certain level of accuracy.

Here, our goal is to allow $m > 2$ number of nodes in a quantum network to agree on a common spatial reference frame, where in this first work we assume a fully connected network graph. That is, every node is connected to every other node using both classical and quantum communication channels. Why is this problem any more difficult than solving the problem for two nodes? Note that in an ideal case, where all the nodes are perfect and the channels connecting them are error-free, one node can send a reference frame to everyone else, and everyone can subsequently use that as their common frame of reference. But one can see that in a practical network, where some of the nodes can be arbitrarily faulty this simple method will not work because if the sending node is faulty, then it might send a different frame to different receivers and thus cause different nodes to output different reference frames. That is, it can prevent them from agreeing on a common frame. Dealing with faulty nodes in a quantum network is challenging because we do not know a priori which nodes are faulty, and to make things even worse, the faulty nodes might have correlated errors. This is quite realistic in a practical setting where for example their hardware might have the same manufacturing defects, they might be located at a geographical location which is going through some disaster, or they might even be hijacked by an adversary trying to disrupt the network. Such arbitrarily correlated errors can all be characterized by imagining a worst case scenario in which the t faulty nodes in the network are indeed actively cooperating to thwart our efforts in trying to establish a common reference frame.

To state the requirements for our protocol for establishing a common Cartesian reference frame, let us first clarify what it means to (approximately) agree on a frame. Let $v_i = (\alpha_i, \beta_i, \gamma_i)$ be the classical representation of the vector $\alpha_i \hat{x} + \beta_i \hat{y} + \gamma_i \hat{z}$, held by the node P_i, expressed relative to its local Cartesian frame $(\hat{x}_i, \hat{y}_i, \hat{z}_i)$. We denote $d(v_i, v_j)$ the Euclidean distance between the two vectors3, expressed with respect to the same reference frame. That is, when considering the distance between vectors v_i held by node P_i and v_j held by node P_j, we translate them into one fixed frame which without loss of generality we take to be the frame of the first node P_i. Informally, P_i and P_j thus (approximately) η-agree on a reference frame if $d(v_i, v_j) \leq \eta$ where η is ideally small. We are now ready to define our goal.

3 For unit vectors, d takes values between 0 and 2.
Definition 1. For $\eta > 0$, a η-reference frame consensus protocol among m network nodes is a protocol such that

Termination Each correct node P_i terminates the protocol, and outputs a reference frame v_i.

Consistency For all pairs of correct nodes P_i and P_j we have $d(v_i, v_j) \leq \eta$.

Note that consistency does not require that all the correct nodes share the same reference frame ($\eta = 0$), but that each node has an approximation of it (η is small). This is important because already any two-node protocol using only a finite number of rounds of communication cannot allow the two nodes to share a frame exactly.

Results

We introduce the first protocol to solve the reference frame agreement problem in a quantum network of m nodes of which $t < m/3$ can be arbitrarily faulty. Our protocol has the appealing feature that it can use any two-node protocol as a black box. Such two-node protocols [22] are characterized by the accuracy δ (i.e., the two nodes δ-agree) and the success probability q_{succ} with which such an approximation guarantee is achieved.

Theorem 1. Given any two-node protocol to estimate a direction with accuracy δ and success probability q_{succ}, the protocol RF-consensus is a (30δ)-reference frame consensus protocol tolerant to $t < m/3$ faulty nodes. It succeeds with probability at least q_{m2}^{m2}.

Our protocol is efficient as we need only a linear (in the number of nodes m) number of rounds of quantum communication. As an example, we take the simplest two-node protocol in which the sender encodes the direction in the Bloch vector of a qubit and sends n identical copies of it to the receiver. For accuracy $\delta > 0$, the success probability of this two-node protocol is $q_{succ} \geq 1 - e^{\Omega(-n\delta^2)}$. From this, we get the overall success probability of our protocol to be $q_{m2}^{m2} \geq 1 - e^{-\Omega(n\delta^2 - \log m)}$. We also show that this setting is robust to noise on the channel connecting any two nodes. To give some examples of parameters, protocol RF-consensus achieves accuracy $30\delta = 0.02$ with success probability 99% in a network of $m = 10$ nodes with noiseless communication, if each node transmits $n \approx 3.1 \times 10^8$ qubits at each round.

Our protocol uses ideas of [24] which solves a simpler problem from classical distributed computing called Byzantine agreement [25]; in particular we use classical consensus as a subroutine. This problem has been extensively studied using synchronous [26, 27] and asynchronous [28–31] classical communication, as well as quantum communication [32], also in a fail-stop model in which the faulty nodes can prevent the protocol from ever terminating [33]. There, the correct nodes should perfectly agree on a single classical bit. Recall that we cannot send a direction classically without a shared reference frame, and hence we cannot use such protocols. In addition, we face two extra challenges: first, we are dealing with a continuous set of outcomes; and second, it is impossible to transmit a direction perfectly using a finite amount of communication, even on an otherwise perfect channel. In quantum networks,
furthermore, we also have errors on the communication channel, which are pretty much unavoidable in a regime where we cannot easily perform quantum error correction due to the lack of a common frame. In the Byzantine problem such errors would be attributed to faulty nodes, but in our setting this would mean that all nodes in the network are faulty and no protocol could ever hope to succeed. Here, we thus require a careful treatment of such approximation errors.

Model of communication

We assume that all the communication channels are public (faulty nodes can adapt their strategy depending on the network traffic), authenticated (faulty nodes cannot tamper with the channel connecting correct nodes), and synchronous (correct nodes know when they are supposed to receive a message, and if none is received, e.g. due to communication error, the protocol continues which ensures that our protocol cannot stall indefinitely).

We only use quantum communications to send a direction between a sender and a receiver. As an example we use protocol 2ED, one of the simplest possible protocols as studied in [16]. Here a sender creates many identical qubits with their Bloch vector pointing in the intended direction and the receiver measures them with Pauli measurements. From the statistics of the measurement outcomes, the receiver then estimates the Bloch vector’s direction closely with high success probability. We use this protocol since it has some experimental advantages for implementation: it does not require any quantum memory or creation of entangled states, and it succeeds even if the quantum channel has a depolarizing noise. But the downside of this choice is that our protocol is not optimal in the number of qubits sent to achieve a certain accuracy. Optimal protocols [34–36] can align frames in the so-called Heisenberg limit [21], they have a quadratic gain over the one we use here.

We prove the following theorem in the appendix.

Theorem 2. For all $\delta > 0$, using a depolarizing channel $\rho \mapsto (1 - \varepsilon)\rho + \varepsilon 1/2$ between the sender and the receiver, protocol 2ED provides to the receiver a $\left(1 - \varepsilon\right)\delta + \frac{\varepsilon}{2}$ approximation of the sender’s direction. It succeeds with probability $q_{\text{suc}} \geq 1 - e^{-\Omega\left(\delta \varepsilon\right)}$.

Protocol 1: 2ED
input: Sender, direction u
output: Receiver, direction v
Sender: 2ED-Send
1. Prepare $3n$ qubits with direction u
2. Send them to the receiver
Receiver: 2ED-Receive
3. Receive $3n$ qubits from the sender
4. Measure n qubits with σ_x and compute p_x, the frequency of getting outcome $+1$
5. Similarly on the remaining qubits, compute p_y and p_z with measurements σ_y and σ_z on n qubits each
6. Assign $x \leftarrow 2p_x - 1$, $y \leftarrow 2p_y - 1$, $z \leftarrow 2p_z - 1$
7. Assign $l \leftarrow \sqrt{x^2 + y^2 + z^2}$
8. Output $v \leftarrow \{x/l, y/l, z/l\}$

We prove the following theorem in the appendix.
Protocols

In this section, we present a summary of our protocols and an outline of their proof of correctness. For further detail, we refer to the appendix.

Our protocol works in two phases: first, a node is elected as the king \(P_k \). Second, the king chooses a direction \(w_k \) and sends it to all the other nodes. We denote \(w_i \) the direction received by the node \(P_i \) in its own frame. If the king is not faulty, 2ED ensures that \(d(w_i, w_k) \leq \delta \). Then the correct nodes should decide either all to accept this direction (they output \(v_i \approx w_i \) in their respective own frame), or all to reject it (output \(\bot \)). This second phase is known as king-consensus. More formally, a king-consensus protocol should satisfy two properties: \(\delta \)-persistency: if the king is not faulty, all the correct nodes \(P_i \) should output \(v_i \) such that \(d(v_i, w_k) \leq \delta \); and \(\eta \)-consistency: All the correct nodes reach a consensus, that is, they either all output \(\bot \), or they all output directions that are \(\eta \)-close to each other, i.e., for all correct nodes \(P_i \) and \(P_j \), the distance \(d(v_i, v_j) \leq \eta \).

We repeat those two phases with different kings as long as a consensus is not reached. In particular, the protocol will terminate after at most \(t + 1 \) rounds since there are at most \(t \) faulty nodes.

Protocol 2: RF-Consensus

Input	None
Output:	\(v_i \) at every \(P_i \)

\[
\text{for } k = 1 \text{ to } t + 1 \text{ do} \\
\quad v_i = \text{King-Consensus}(P_k) \\
\quad \text{if } v_i \neq \bot \text{ then} \\
\quad \quad \text{Output } v_i
\]

The rest of this paper is thus devoted to constructing a king-consensus protocol, which is done in three steps.

Step 1: Weak-consensus We first create a weaker protocol than king-consensus by relaxing the condition that the correct nodes either all output a direction, or all output \(\bot \). In a weak-consensus, some nodes can output \(\bot \) and the others a direction. However we keep the condition that if two correct nodes \(P_i \) and \(P_j \) output directions \(u_i \) and \(u_j \), they should be close to each other. Formally, we define a weak-consensus protocol as a protocol with the following two properties: \(\delta \)-weak persistency: if there exists a direction \(w_k \) such that for every correct node \(P_i \), \(d(w_i, w_k) \leq \delta \), then \(d(u_i, w_k) \leq \delta \); and \(\eta \)-weak consistency: For every pair of correct nodes \(P_i \) and \(P_j \) which output \(u_i \neq \bot \) and \(u_j \neq \bot \) respectively, we have \(d(u_i, u_j) \leq \eta \).

Protocol 3: Weak-Consensus

Input	\(\forall i, u_i \) inputs direction \(w_i \)
Output:	\(u_i \) at every \(P_i \)

\[
\text{Send } w_i \text{ to all other nodes} \\
\text{Receive } a_i[j] \leftarrow \text{direction received from } P_j \\
\text{Create the set } S_i \leftarrow \{ P_j : d(w_i, a_i[j]) \leq 3\delta \} \\
\text{if } |S_i| \geq m - t \text{ then} \\
\quad \text{Assign } w_i \leftarrow a_i[j] \\
\text{else} \\
\quad \text{Assign } w_i \leftarrow \bot \\
\text{Output } w_i
\]
Protocol \textbf{weak-consensus} achieves \(\delta\)-weak persistency and \((8\delta)\)-weak consistency with probability at least \(q_{\text{succ}}^{-m^2-m}\) where \(\delta\) is the accuracy achieved with probability \(q_{\text{succ}}\) by the two-node protocol used to send directions.

Here, with probability at least \(q_{\text{succ}}^{-m^2-m}\), for every correct node \(P_i\) and \(P_j\), \(d\left(a_i[j], w_i\right) \leq \delta\). It is easy to see that this protocol is \(\delta\)-weak persistent. We sketch the proof of the weak consistency. Consider the sets \(S_i\) and \(S_j\) of two correct nodes \(P_i\) and \(P_j\). If \(u_i \neq \bot\) and \(u_j \neq \bot\), then \(S_i\) and \(S_j\) contains at least one correct node in common, let us call it \(P_\alpha\). Thus, \(d\left(u_i, u_j\right) \leq d\left(u_i, a_i[\alpha]\right) + d\left(a_i[\alpha], w_i\right) + d\left(w_i, a_j[\alpha]\right) + d\left(a_j[\alpha], u_j\right) \leq 3\delta + \delta + \delta + 3\delta = 8\delta.\)

\textbf{Step 2: Graded-consensus.} In a king-consensus protocol, the correct nodes should have a ‘global’ behavior, as they should all either output a direction or \(\bot\), whereas in the weak-consensus each node has a ‘local’ strategy. A \textit{graded-consensus} protocol behaves intermediately. Alongside a direction \(v_i \neq \bot\) the nodes also output a grade \(g_i \in \{0, 1\}\) which carries a ‘global’ property, namely, \(\eta\)-\textit{graded consistency}: If any correct node outputs a grade 1, then the directions between all the correct nodes should be \(\eta\)-close to each other, that is, for every pair \((P_i, P_j)\) of correct nodes, \(d\left(v_i, v_j\right) \leq \eta.\)

\begin{center}
\begin{tabular}{l}
\textbf{Protocol 4: Graded-Consensus} \\
\textbf{Input} : \(\forall i, P_i\) inputs direction \(w_i\) \\
\textbf{Output} : \(\forall i, P_i\) outputs direction \(v_i\) and grade \(g_i \in \{0, 1\}\) \\
1 Run Weak-Consensus(\(w_i\)) \\
// This initializes the variables \(u_i\) and \(a_i[j]\)’s \\
2 if \(u_i = \bot\) then \\
3 \hspace{1em} Send flag \(f_i = 0\) to all other nodes \\
4 else \\
5 \hspace{1em} Send flag \(f_i = 1\) to all other nodes \\
6 for all the nodes \(P_j\) do \\
7 \hspace{1em} \(f_i[j] \leftarrow \text{Receive} f_j\) \\
8 for all the nodes \(P_j\) with \(f_i[j] = 1\) do \\
9 \hspace{1em} Create set \(T_i[j] \leftarrow \{P_k : f_k[i] = 1, \text{and} \}
\hspace{1em} d(a_i[j], a_k[i]) \leq 10\epsilon\} \}
10 \hspace{1em} Assign \(i \leftarrow \text{arg max}(|T_i[j]|)\) \\
11 if \(i = 1\) then \\
12 \hspace{1em} Assign \(u_i \leftarrow w_i\) \\
13 else \\
14 \hspace{1em} Assign \(u_i \leftarrow a_i[i]\) \\
15 if \(|T_i[i]| > m - t\) then \\
16 \hspace{1em} Assign \(g_i \leftarrow 1\) \\
17 else \\
18 \hspace{1em} Assign \(g_i \leftarrow 0\) \\
19 Output \((v_i, g_i)\)
\end{tabular}
\end{center}

Protocol graded-consensus achieves \((30\delta)\)-graded consistency. It succeeds with probability at least \(q_{\text{succ}}^{-m^2-m}\).

The main idea of \textit{graded-consensus} is that the nodes which output \(\bot\) in the weak-consensus inform the other nodes (by sending the flags \(f_i\)). The first consequence is that for all
correct! nodes P_a and P_{β} with $f_a = f_{\beta} = 1$, $d\left(\alpha, \beta\right) \leq 8\delta$. The second consequence is that if a correct node has grade 1, then for all correct nodes P_i and P_j, the sets T_i and T_j each contain at least one correct node, let us denote them P_a and P_{β}. Thus, $d\left(\alpha, \beta\right) \leq d\left(\alpha, a\right) + d\left(a, \beta\right) \leq 10\delta + \delta = 11\delta$. Finally, we get, $d\left(\alpha, \beta\right) \leq d\left(\alpha, \alpha\right) + d\left(\alpha, \beta\right) + d\left(\beta, \beta\right) \leq 11\delta + 8\delta + 11\delta = 30\delta$.

Step 3: King-consensus. We are ready to present the king-consensus protocol that achieves δ-persistency and (30δ)-consistency. Our protocol uses classical-consensus as a subroutine. It solves a problem which is closely related to Byzantine agreement. Here, every node P_i starts with a bit g_i and outputs a bit y_i. All the correct nodes agree on a bit b, that is if P_i is correct, $y_i = b$ where at least one of the correct nodes, P_j has input $g_j = b$. Classical-consensus can be reached if there are $t < m/3$ faulty nodes; for an example of such protocol, see e.g. [37].

Protocol 5: King-Consensus

Input : Id of the king P_k, v_i, P_i outputs direction v_i or \perp

Output : v_i, P_i outputs v_i

1. if I am the king then
2. Fix an arbitrary direction u_k
3. Send u_k to all other nodes
4. else
5. Receive $w_i \leftarrow$ direction received from the king
6. Assign $(v_i, g_i) \leftarrow$ Graded-Consensus(w_i)
7. Assign $y_i \leftarrow$ Classical-Consensus(g_i)
8. if $y_i = 1$ then
9. Output v_i
10. else
11. Output \perp

If the king is not faulty, then all the correct nodes will have grade $g_i = 1$. Hence the classical-consensus will also be reached with value $y_i = 1$. So, all the correct nodes will accept the direction shared by the king. If the king is faulty and yet the correct nodes reach a consensus with $y_i = 1$, it means that at least one correct node had grade 1. In this case the (30δ)-graded consistency implies that $d\left(v_i, v_j\right) \leq 30\delta$ for all the correct nodes P_i and P_j. As a consequence, king consensus is (30δ)-consistent, and so is RF-consensus.

Discussion

We have presented the first protocol for reference frame agreement in a quantum network. Even in the classical setting, the algorithms to solve the Byzantine agreement problem are surprisingly complicated. We would be very keen to know if simpler and more efficient protocols could be designed for our setting, possibly by using entangled states. It is an interesting open question to construct protocols that also work in an asynchronous communication model. The latter is already challenging for the classical case [28–31], so we expect a similar behavior to hold here. Another interesting question is whether more faulty nodes than $t < m/3$ can be tolerated. If our protocol were to succeed with probability 1 and η sufficiently small, we can prove that it is optimal in that sense by adapting the classical proof.
[38] to our setting. However, for equating reference frames, any protocol can only succeed with probability strictly less than 1. This problem has been partially studied in the classical case [39]. Even in the constant error scenario the optimal number of faulty nodes that can be tolerated is not known for the classical Byzantine agreement problem [40]. This leaves hope to find protocols that can tolerate \(t < m/2 \) faulty nodes when allowing constant success probability both for Byzantine and reference frame agreement.

Acknowledgments

We thank Esther Hänggi and Jürg Wullschleger for useful discussions. This work is funded by the Ministry of Education (MOE) and National Research Foundation Singapore, as well as MOE Tier 3 Grant MOE2012-T3-1-009.

Appendix A. Estimating directions

In this section, we analyze the protocol 2ED to exchange a direction between two nodes. Since this cannot be done perfectly, the receiver has to estimate the direction sent by the sender. This task is formally defined by:

Definition 2. A \(\delta \)-estimate direction protocol is a two-node protocol where one node (the sender) sends a direction \(u \) to the other node (the receiver). Upon termination the receiver gets a \(\delta \)-approximation \(v \) of \(u \), that is, \(d(u, v) \leq \delta \).

This simple protocol has several advantages: it does not require any quantum memory or the creation of entangled states, and it succeeds even if the quantum channel has a depolarizing noise. But the downside of this choice is that the protocol is not optimal in the number of qubits sent to achieve a certain accuracy. Any other protocol can be used here [22].

Protocol 1: 2ED

input	Sender, direction \(u \)
output	Receiver, direction \(v \)
1 Sender: 2ED-Send	Prepare 3\(n \) qubits with direction \(u \)
2	Send them to the receiver
4 Receiver: 2ED-Receive	Receive 3\(n \) qubits from the sender
5	Measure \(n \) qubits with \(\sigma_x \) and compute \(p_x \), the frequency of getting outcome \(+1 \)
6	Similarly on the remaining qubits, compute \(p_y \) and \(p_z \)
7	with measurements \(\sigma_y \) and \(\sigma_z \) on \(n \) qubits each
8	Assign \(x \leftarrow 2p_x - 1 \), \(y \leftarrow 2p_y - 1 \), \(z \leftarrow 2p_z - 1 \)
	Assign \(l \leftarrow \sqrt{x^2 + y^2 + z^2} \)
9	Output \(v \leftarrow (x/l, y/l, z/l) \)

Theorem 2. For all \(\delta > 0 \), using a depolarizing channel \(\rho \mapsto (1 - \epsilon)\rho + \epsilon I/2 \) between the sender and the receiver, protocol 2ED provides to the receiver an \(a(1 - \epsilon)\delta + \frac{5\epsilon}{2} \) approximation of the sender’s direction. It succeeds with probability \(q_{\text{succ}} \geq \left(1 - 2e^{(-2\delta^2/25)} \right)^3 \).
Proof. We will prove this theorem in two steps. First, we consider the case when the communication channel is noise free ($\epsilon = 0$), and then, we see how depolarizing noise affects the approximation factor.

In the noise-free case, let us fix $\delta > 0$ and denote by θ_x, θ_y, and θ_z the angles between u and the x-, y-, and z-axis of the local frame of the receiver. So, $\cos^2\frac{\theta_x}{2}$ is the probability of getting outcome $+1$ after the Pauli measurement σ_x on a qubit. Similarly, $\cos^2\frac{\theta_y}{2}$ and $\cos^2\frac{\theta_z}{2}$ are the probabilities for outcome $+1$ on measurement σ_y and σ_z respectively.

Now, we will show that each of the following three conditions:

\begin{align*}
|p_x - \cos^2\frac{\theta_x}{2}| &\leq \frac{\delta}{5}, \quad (A.1) \\
|p_y - \cos^2\frac{\theta_y}{2}| &\leq \frac{\delta}{5}, \quad (A.2) \\
|p_z - \cos^2\frac{\theta_z}{2}| &\leq \frac{\delta}{5}, \quad (A.3)
\end{align*}

holds with probability at least \(1 - 2e^{-\frac{2\delta^2}{25}}\), and later show that equations (A.1), (A.2), and (A.3) imply that $d(u, v) \leq \delta$.

We know in the ideal case, when $n \to \infty$ the relative frequency $p_i \to \cos^2\frac{\theta_i}{2}$ but in 2ED n is finite. So, using Hoeffding’s inequality we get,

\[
Pr\left(|p_x - \cos^2\frac{\theta_x}{2}| > \frac{\delta}{5}\right) \leq 2 \exp\left(-\frac{2n^2\delta^2}{25n}\right),
\]

hence conditions (A.1), (A.2), and (A.3) are all satisfied with probability at least \(1 - 2e^{(-2\delta^2/25)}\). Denoting the vector u in the receiver’s basis by (x_u, y_u, z_u), we have

\[
x_u = \cos \theta_u = 2 \cos^2\frac{\theta_u}{2} - 1.
\]

So,

\[
|x - x_u| = \left|\left(2p_x - 1\right) - \left(2 \cos^2\frac{\theta_x}{2} - 1\right)\right|,
\]

\[
= 2 \left|\left(p_x - \cos^2\frac{\theta_x}{2}\right)\right|,
\]

\[
\leq 2\delta/5.
\]

Here, inequality (A.8) follows from inequality (A.1). Similarly we have,

\[
y - y_u \leq 2\delta/5 \quad \text{and} \quad z - z_u \leq 2\delta/5.
\]
Using (A.8) and (A.9), we get,
\[
d \left((x, y, z), u \right) = \sqrt{(x - x_u)^2 + (y - y_u)^2 + (z - z_u)^2},
\]
\[
\leq \sqrt{(2\delta/5)^2 + (2\delta/5)^2 + (2\delta/5)^2},
\]
\[
= \frac{2\sqrt{3}\delta}{5}.
\] (A.10)

This means that \((x, y, z)\) is within a sphere of radius \(\frac{2\sqrt{3}\delta}{5}\) centered in \(u\), so its angle \(\theta\) with \(u\) is at most \(\arcsin\left(\frac{2\sqrt{3}\delta}{5}\right)\). Since \(v\) is the normalization of \((x, y, z)\), its angle with \(u\) is also \(\theta\) and from a simple trigonometric observation, we have,
\[
d(u, v) = 2 \sin \left(\theta / 2 \right) \leq 2 \sin \left(\frac{1}{2} \arcsin \left(\frac{2\sqrt{3}\delta}{5} \right) \right).
\] (A.12)

Moreover, one can check that for all \(\alpha \in [0, 1]\), \(\sin \left(\frac{1}{2} \arcsin (\alpha) \right) \leq \frac{\sqrt{3}}{\sqrt{5}} \alpha\), thus,
\[
d(u, v) \leq \delta.
\] (A.13)

So far we have considered only a noiseless channel, let us now turn to the case of a depolarizing channel: if the sender sends a pure state \(|\psi\rangle\), the receiver gets the mixed state
\[
\rho = (1 - \epsilon)|\psi\rangle\langle\psi| + \epsilon \frac{I}{2}.
\] (A.14)

From equation (A.14) one can see that the effective relative frequency \(p_x\) is given by
\[
p_x = (1 - \epsilon)p'_x + \frac{\epsilon}{2},
\] (A.15)
where \(p'_x\) is the relative frequency that the receiver would have got if the channel was noise-free, meaning that \(\left| p'_x - \cos^2 \frac{\delta}{2} \right| \leq \delta/5\). Therefore,
\[
\left| p_x - \cos^2 \frac{\theta}{2} \right| = \left| (1 - \epsilon)p'_x + \frac{\epsilon}{2} - \cos^2 \frac{\theta}{2} \right|.
\] (A.16)
\[
\leq \left| (1 - \epsilon) \frac{\delta}{5} + \frac{\epsilon}{2} - \epsilon \cos^2 \frac{\theta}{2} \right|,
\] (A.17)
\[
\leq \left| (1 - \epsilon) \frac{\delta}{5} + \frac{\epsilon}{2} \right|,
\] (A.18)
\[
= (1 - \epsilon) \frac{\delta}{5} + \frac{\epsilon}{2}.
\] (A.19)

Here inequality (A.18) follows because \(\epsilon \cos^2 (\theta/2)\) is positive.

The rest of the analysis remains the same as the noise-free case by replacing \(\delta/5\) by \(\arcsin \left(2\sqrt{3}\delta/5 \right)\) in equation (A.1). □
Appendix B. Step 1: Weak-consensus

Let us start by giving a more formal definition of a weak-consensus protocol.

Definition 3. A (δ, η)-weak-consensus protocol is an m-node protocol, in which each node P_i has an input direction w_i and outputs either a direction u_i or \perp, that satisfies the following two properties:

- **δ-weak persistency:** If there exists a direction s such that for every correct node P_i, $d(s, w_i) \leq \delta$, then every correct node P_i outputs a direction u_i with $d(s, u_i) \leq \delta$.

- **η-weak consistency:** For every pair of correct nodes P_i and P_j who output $\neq \perp u_i$ and $\neq \perp u_j$ respectively, we have $\eta \leq d(u_i, u_j)$.

Theorem 3. Using a two-node δ-estimate direction protocol that succeeds with probability q_{succ}, the protocol weak-consensus is a $(\delta, 8\delta)$-weak consensus protocol tolerant to $t < m/3$ faulty nodes that succeeds with probability at least $q_{\text{succ}}^{m^2-m}$.

Proof. After line 2, the property

\[\forall \text{ correct nodes } P_i, P_j, \quad d(a_{ij}, w_i) \leq \delta, \quad (B.1) \]

holds with probability at least $q_{\text{succ}}^{m^2-m}$ since each of the m nodes uses 2ED $m - 1$ times. The rest of the proof shows that Property (B.1) implies δ-weak persistency and 8δ-weak consistency. This means that weak-consensus succeeds with probability at least $q_{\text{succ}}^{m^2-m}$.

Weak persistency. We assume there exists a direction s such that the input w_i of every correct node P_i satisfies $d(s, w_i) \leq \delta$. Let P_i be a correct node. We now show that $d(s, u_i) \leq \delta$.

The idea is to show that $|S| \geq m - t$, hence $d(s, u_i) = d(s, w_i) \leq \delta$. This is done by showing that every correct node is in the set S. Indeed, let us consider a correct node P_j, then by triangular inequality we get,

\[d(w_i, a_{ij}) \leq d(w_i, s) + d(s, w_j) + d(w_j, a_{ij}). \quad (B.2) \]

Each of the first two terms is at most δ by assumption, and the last one is also at most δ by property (B.1). Thus,
Since there are at least \((m - t)\) non faulty nodes, \(|S_i| \geq (m - t)\). This completes the proof of the \(\delta\)-weak persistency.

Weak consistency. Let us consider two correct nodes \(P_i\) and \(P_j\) which output \(u_i \neq \perp\) and \(u_j \neq \perp\) respectively. Now we show that \(d(u_i, u_j) \leq 8\delta\). The idea is to show that there exists a direction \(w_0\) such that \(d(u_i, w_0) \leq 4\delta\) and \(d(u_j, w_0) \leq 4\delta\). This is done by first showing that there exists one correct node \(P_a\) in both sets \(S_i\) and \(S_j\). For that, let us define the sets \(C_i\) and \(C_j\) by,

\[
C_i = \{ P_i; P_i \in S_i \text{ and node } P_i \text{ is correct}\},
\]

\[
C_j = \{ P_j; P_j \in S_j \text{ and node } P_j \text{ is correct}\}.
\]

We need to prove that \(C_i \cap C_j \neq \emptyset\). We do it by contradiction: let us assume that \(C_i \cap C_j = \emptyset\).

Note that,

\[
|S_i| \geq m - t \Rightarrow |S_i - C_i| + |C_i| \geq m - t,
\]

\[
\Rightarrow t + |C_i| \geq m - t,
\]

\[
\Rightarrow |C_i| \geq m - 2t,
\]

\[
\Rightarrow |C_i| > \frac{m}{3}.
\]

Inequality (B.8) follows because there can be at most \(t\) faulty nodes, and inequality (B.10) since \(t < \frac{m}{3}\). Now,

\[
|S_i \cup S_j| = |(S_i - C_i) \cup (S_j - C_j) \cup C_i \cup C_j|,
\]

\[
= |(S_i - C_i) \cup (S_j - C_j)| + |C_i| + |C_j|,
\]

\[
\geq |(S_i - C_i)| + |C_i| + |C_j|,
\]

\[
= |(S_i - C_i) \cup C_i| + |C_j|,
\]

\[
= |S_i| + |C_j|,
\]

\[
\geq (m - t) + |C_j|,
\]

\[
> m - \frac{m}{3} + \frac{m}{3}.
\]

Here, equation (B.12) follows from equation (B.6), and inequality (B.17) from inequality (B.10). We just proved that \(|S_i \cup S_j| > m\) which contradicts the fact that there are exactly \(m\) nodes. So, we have \(C_i \cap C_j \neq \emptyset\).
Consider a correct node $P_a \in (C_i \cap C_j)$. We have:

$$d(u_i, w_i) = d(w_i, w_a), \tag{B.18}$$

$$\leq d(w_i, a_i[\alpha]) + d(a_i[\alpha], w_a), \tag{B.19}$$

$$\leq 3\delta + \delta. \tag{B.20}$$

The factor 3δ comes from the fact that P_a is in S_i and the remaining δ since P_a is correct. We can do the same reasoning with the node P_j, hence we also have:

$$d(u_j, w_a) \leq 4\delta. \tag{B.21}$$

By combining equations (B.20) and (B.21), we prove the 8δ-weak consistency:

$$d(u_i, u_j) \leq d(u_i, w_a) + d(w_a, u_j) \leq 4\delta + 4\delta = 8\delta. \tag{B.22}$$

Appendix C. Step 2: Graded-consensus

Again, we shall start by giving a formal definition of a graded-consensus protocol.

Definition 4. A (δ, η)-graded consensus protocol is an m-party protocol, in which each node P_i has an input direction w_i and outputs a direction v_i as well as a grade $g_i \in \{0, 1\}$, that satisfies the following properties:

- **δ-graded persistency** If there exists a direction s such that for every correct node P_i, $d(s, w_i) \leq \delta$, then every correct node P_i outputs a direction v_i such that $d(s, v_i) \leq \delta$ and $g_i = 1$.

- **η-graded consistency** If there exists a correct node P_c which outputs grade $g_c = 1$, then for all pairs (P_i, P_j) of correct nodes, $d(v_i, v_j) \leq \eta$.

Protocol 4: Graded-Consensus

1. **Input**: $\forall i$, P_i inputs direction w_i.
2. **Output**: $\forall i$, P_i outputs direction and grade $g_i \in \{0, 1\}$
3. **Run Weak-Consensus(w_i)**
 - // This initializes the variables u_i and $a_i[j]$'s
 - if $u_i = \perp$ then
 - Send flag $f_i = 0$ to all other nodes
 - else
 - Send flag $f_i = 1$ to all other nodes
4. **for all the nodes P_i do**
 - $f_i[j] \leftarrow$ Receive f_j
5. **for all the nodes P_i with $f_i[j] = 1$ do**
 - Create set $T_i[j] \leftarrow \{P_k : f_k[j] = 1, a_k[i] \leq 10\delta\}$
 - $d(a_i[j], a_i[k]) \leq 10\delta$
6. **Assign $i, \leftarrow\arg\max(|T_i[j]|)**
7. **if $f_i = 1$ then**
 - Assign $u_i \leftarrow w_i$
8. **else**
 - Assign $u_i \leftarrow a_i[l_i]$
9. **if $|T_i[l_i]| > m - t$ then**
 - Assign $g_i \leftarrow 1$
10. **else**
 - Assign $g_i \leftarrow 0$
11. **Output** (v_i, g_i)
From line 2 to line 7, the nodes send and receive classical bits, there is no approximation here. An important consequence is that \(f_i[j] = f_j[j] \) whenever the nodes \(P_i \) and \(P_j \) are correct.

Theorem 4. Consider that weak-consensus uses a \(\delta \)-estimate direction protocol that succeeds with probability \(q_{\text{suc}} \). Protocol graded-consensus is a \((\delta, 30\delta)\)-graded-consensus protocol tolerant to \(t < m/3 \) faulty nodes that succeeds with probability at least \(q_{\text{suc}}^{m^2-m} \).

Proof. Similarly to the weak-consensus protocol, with probability at least \(q_{\text{suc}}^{m^2-m} \), the following property holds:

\[
\forall \text{ correct nodes } P_i, P_j, \quad d(a_i[j], w_j) \leq \delta. \tag{C.1}
\]

Graded persistency. We assume there exists a direction \(s \) such that, for each correct node \(P_i \), \(d(s, w_i) \leq \delta \). We first show that every correct node \(P_i \) outputs grade \(g_i = 1 \), and then show their output \(v_i \) satisfies \(d(s, v_i) \leq \delta \).

Let us consider a correct node \(P_i \). It outputs \(g_i = 1 \) if and only if \(T_i[l_i] \geq m - t \). To show that the later condition holds, we first show that for each of the \((m - i)\) correct nodes \(P_j \) we \(|T_j[j]| \geq m - t \). Therefore, by definition of \(l_i \), we have \(|T_i[l_i]| \geq |T_i[j]| \geq m - t \). This is proved by showing that for every correct node \(P_a \), we have \(d(a_i[j], a_i[a]) \leq 4\delta \), that is, every correct node \(P_a \in T_i[j] \).

Since the nodes \(P_i \) and \(P_a \) are both correct, and weak-consensus is \(\delta \)-weak persistent, we know that \(u_j \neq \bot, u_a \neq \bot \) with

\[
d(s, u_j) \leq \delta \quad \text{and} \quad d(s, u_a) \leq \delta. \tag{C.2}
\]

As a consequence \(f_i[j] = f_i[a] = 1 \). We also know that \(a_i[j] \) and \(a_i[a] \) are \(\delta \)-approximations of \(u_j \) and \(u_a \) respectively, that is,

\[
d(a_i[j], u_j) \leq \delta \quad \text{and} \quad d(a_i[a], u_a) \leq \delta. \tag{C.3}
\]

Using the triangular inequality again with the inequalities (C.2) and (C.3), we get,

\[
d(a_i[j], a_i[a]) \leq d(a_i[j], u_j) + d(u_j, s) + d(s, u_a) + d(u_a, a_i[a]), \tag{C.4}
\]

\[
\leq 4\delta. \tag{C.5}
\]

Since \(f_i[j] = 1 \), the set \(T_i[j] \) exists, and since \(f_i[a] = 1 \) and \(d(a_i[j], a_i[a]) \leq 4\delta \leq 10\delta \), \(P_a \in T_i[j] \). This proves that \(g_i = 1 \).

Now, let us show that \(d(s, v_i) \leq \delta \). By \(\delta \)-weak persistency, we know that \(u_i \neq \bot \), therefore, \(f_i = 1 \). In this case, line 12 assigns \(v_i \leftarrow w_i \). As a direct consequence, we get,

\[
d(s, v_i) = d(s, w_i) \leq \delta \quad \text{This concludes the proof of the } \delta \text{-graded persistency.}
\]

Graded consistency. Let us assume that there exists a correct node \(P_i \) that outputs grade 1. In this case we show that for any two correct nodes \(P_i \) and \(P_j \), the distance \(d(v_i, v_j) \leq 30\delta \).
This proof is in three steps. First, we will show that all the correct nodes that are in the sets created at line 9 are close to each other. More precisely, we will show that for all the correct nodes \(P_a \) and \(P_\beta \) with \(f_a = f_\beta = 1 \), we have \(d(u_a, u_\beta) \leq 8\delta \). The second step shows that \(v_i \) and \(v_j \) are 11\(\delta \)-close to some \(u_a \) and \(u_\beta \) respectively where \(P_a \) and \(P_\beta \) are correct nodes with \(f_a = f_\beta = 1 \). The last step combines these two facts to conclude the proof.

Step (1): This first step is a consequence of the \(8\delta \)-weak consistency of the weak-consensus protocol used at line 1. Indeed, consider two correct nodes \(P_a \) and \(P_\beta \) such that \(a = \alpha \) and \(\beta \) with \(f_a = f_\beta = 1 \). This means that \(\parallel a = \parallel \beta \leq \delta \) (C.6).

Step (2): We now prove that there exists a correct node \(P_k \) such that \(d(v_i, u_a) \leq 11\delta \). There are two cases to consider here. First, \(j = 1 \): in this case, the correct node \(P_i \) outputs \(v_i = u_a \), thus \(d(v_i, u_a) = 0 \leq 11\delta \). The more interesting case is \(j = 0 \). We are going to show that in this case, there exists a correct node \(P_k \in T_i[l_i] \). This is done by showing that the number of nodes in the set \(T_i[l_i] \) is more than the number of faulty nodes, that is, \(|T_i[l_i]| > m/3 \). In a similar way to the graded persistency, we will in fact prove that for every correct node \(P_k \) with \(f_k = 1 \), \(|T_i[k]| > m/3 \), hence \(|T_i[l_i]| \geq |T_i[k]| \geq m/3 \).

Let us then consider a correct node \(P_k \) with \(f_k = 1 \). By equation (C.6), we have \(d(u_k, u_k) \leq 8\delta \) for every correct node \(P_k \) with \(f_k = 1 \). As a consequence, we also have

\[
d(a_i[k], a_i[k']) \leq d(a_i[k], u_k) + d(u_k, u_k) + d(u_k, a_i[k']),
\]

\[
\leq \delta + 8\delta + \delta.
\]

This with line 9 implies that the set \(T_i[k] \) contains every correct node \(P_k \) with \(f_k = 1 \). Let us argue that there are more than \(m/3 \) such correct nodes. Recall that we have assumed that the correct node \(P_i \) has outputted grade \(g_i = 1 \). We thus have \(|T_i[l_i]| > (m - t)\). We also know that there are at most \(t < \frac{m}{3} \) faulty nodes. So, there must be at least \(m - 2t > \frac{m}{3} \) correct nodes in \(T_i[l_i] \), that is, there are more than \(m/3 \) correct nodes \(P_k \) with \(f_k = 1 \).

We just proved that there exists at least one correct node \(P_a \) in \(T_i[l_i] \), therefore,

\[
d(v_i, u_a) = d(a_i[l_i], u_a),
\]

\[
\leq d(a_i[l_i], a_i[\alpha]) + d(a_i[\alpha], u_a),
\]

\[
\leq 10\delta + \delta.
\]

Using similar arguments, there exists at least one correct node \(P_\beta \) such that

\[
d(v_i, u_\beta) \leq 11\delta.
\]

Step (3): Now using triangular inequality with inequalities (C.10), (C.6), and (C.11) we get,
\[
\delta \leq \frac{d(v_i, v_j)}{d(u_i, u_j) + d(u_j, v_j)} \leq 11\delta + 8\delta + 11\delta.
\]
(C.12)

This proves the \((30\delta)\)-graded consistency of the protocol.

\[\square\]

Appendix D. Step 3: King-consensus

Definition 5. A \((\delta, \eta)\)-king-consensus protocol is an \(m\)-node protocol in which one node \(P_k\), called the king, chooses a direction \(w_k\) and each of the other nodes \(P_i\) outputs either a direction \(v_i\) or each of them outputs \(\perp\), which satisfies the following two properties:

\(\delta\)-persistency If the king is correct, then all the correct nodes \(P_i\) output \(v_i \neq \perp\) with \(d(w_k, v_i) \leq \delta\).

\(\eta\)-consistency All correct nodes reach a consensus, that is, they either all output \(\perp\), or they all output directions that are \(\eta\)-close to each other, i.e., for all correct nodes \(P_i\) and \(P_j\), the distance \(d(v_i, v_j) \leq \eta\).

Our protocol to solve the king-consensus problem uses graded-consensus and classical-consensus as subroutines. The latter is a protocol between \(m\) nodes, in which each node starts with an input bit \(g_i\) and outputs a bit \(y_i\), that satisfies the following two properties:

Agreement All correct nodes should output the same bit.

Validity If all correct nodes start with the same input \(g_i = b\), they should all output this value, that is \(y_i = b\).

Classical-consensus is tolerant to \(t < m/3\) faulty nodes (for a protocol see, e.g., [37]).

Protocol 5: King-Consensus

Input	Id of the king \(P_k\).
Output	\(P_k\) outputs direction \(v_k\) or \(\perp\)
1 if	\(I am the king then\)
2	Fix an arbitrary direction \(u_k\)
3	Send \(u_k\) to all other nodes
4 else	\(Receive w_k, \leftarrow direction received from the king\)
5	Assign \((v_i, y_i) \leftarrow \text{Graded-Consensus}(w_k)\)
6 if \(y_i = 1\) & \(y_j = 1\)	\(Output v_i\)
7 else	\(Output \perp\)

Theorem 5. Using a \(\delta\)-estimate direction protocol that succeeds with probability \(q_{\text{succ}}\), king-consensus is a \((\delta, 30\delta)\)-king-consensus protocol that succeeds with probability at least \(q_{\text{succ}}^m\).
Proof. Persistency. Let us assume that the king is correct. We want to show that every correct node P_i outputs $v_i \neq \bot$ with $d\left(w_k, v_i\right) \leq \delta$. Since the king is non faulty, with probability at least q_{succ}^m, we have that for all correct players P_i, the distance $d\left(w_k, w_i\right) \leq \delta$.

From the δ-graded persistency of graded-consensus used in line 6, we know that for all correct nodes P_i, $d\left(v_i, w_i\right) \leq \delta$ and $g_i = 1$ with success probability at least q_{succ}^m; and from the validity of classical-consensus, we have that $y_i = 1$ for all correct nodes P_i. Hence all the correct nodes output a δ-approximation of w_k with probability at least q_{succ}^m.

Consistency. To prove consistency we will show that all the correct nodes output \bot, or they all output a direction. In this case we also have to show that for every pair (P_i, P_j) of correct nodes, $d\left(v_i, v_j\right) \leq 30\delta$.

Since the variables y are outputs of classical-consensus, the agreement property ensures that there exists a bit b such that for all the correct nodes P_i, $y_i = b$.

If $b = 0$, all the correct nodes output \bot.

If $b = 1$, by validity of classical-consensus, at least one of the correct nodes, let us denote it by P_i, has flag $g_i = 1$. Recall that the (30δ)-graded consistency of graded-consensus says that we have in this case $d\left(v_i, v_j\right) \leq 30\delta$ for every correct node P_i and P_j. □

References

[1] Kimble H J 2008 Nature 453 1023
[2] Beals R, Brieler S, Gray O, Harrow A W, Kutin S, Linden N, Shepherd D and Stather M 2013 Proc. R. Soc. A 469 20120686
[3] Barz S, Kashefi E, Broadbent A, Fitzsimons J F, Zeilinger A and Walther P 2012 Science 335 303
[4] Elliott C 2002 New J. Phys. 4 46
[5] Poppe A, Peev M and Maunhart O 2008 Int. J. Quantum Inf. 06 209
[6] Stucki D et al 2011 New J. Phys. 13 123001
[7] Sasaki M et al 2011 Opt. Express 19 10387
[8] Bonato C, Tommello A, Depo V D, Naletto G and Villoresi P 2009 New J. Phys. 11 045017
[9] Peng C-Z et al 2005 Phys. Rev. Lett. 94 150501
[10] Armengol J M P et al 2008 Acta Astronaut. 63 165
[11] Bonato C, Aspelmeyer M, Jennewein T, Pernechele C, Villoresi P and Zeilinger A 2006 Opt. Express 14 10050
[12] Aspelmeyer M, Jennewein T, Pfennigbauer M, Leeb W and Zeilinger A 2003 IEEE J. Sel. Top. Quantum Electron. 9 1541
[13] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[14] Shor P W 1995 Phys. Rev. A 52 2493
[15] Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33
[16] Massar S and Popescu S 1995 Phys. Rev. Lett. 74 1259
[17] Peres A and Scudo P F 2001 Phys. Rev. Lett. 87 167901
[18] Bagan E, Baig M, Tapia R M and Rodriguez A 2004 Phys. Rev. A 69 010304
[19] Chiribella G and D'Arjava G M 2004 J. Math. Phys. 45 4435
[20] Bagan E and Tapia R M 2006 Int. J. Quantum Inf. 4 5
[21] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[22] Bartlett S D, Rudolph T and Spekkens R W 2007 Rev. Mod. Phys. 79 555
[23] Skotiniotis M and Gour G 2012 New J. Phys. 14 073022
[24] Fitzi M and Maurer U 2000 Proc. ACM STOC’00 pp 494–503
[25] Lamport L, Shostak R and Pease M 1982 ACM T. Prog. Lang. Syst. 4 382
[26] Feldman P and Micali S 1997 SIAM J. Comput. 26 873
[27] Ben-Or M, Pavlov E and Vaikuntanathan V 2006 Proc. ACM STOC’06 pp 179–86
[28] Abraham I, Aguilera M K and Malkhi D 2010 Proc. DISC’10 pp 4–19
[29] Abraham I, Dolev D and Halpern J Y 2008 Proc. ACM PODC’08 (ACM) pp 405–14
[30] Bracha G 1984 Proc. ACM PODC’84 pp 154–62
[31] Canetti R and Rabin T 1993 Proc. ACM STOC’93 (ACM) pp 42–51 0-89791-591-7
[32] Ben-Or M and Hassidim A 2005 Proc. ACM STOC’05 (ACM) pp 481–5
[33] Fitzi M, Gisin N and Maurer U 2001 Phys. Rev. Lett. 87 217901
[34] Chiribella G, Giovannetti V, Maccone L and Perinotti P 2012 Phys. Rev. A 86 010304
[35] Bagan E, Baig M and Tapia R M 2004 Phys. Rev. A 70 030301
[36] Chiribella G, D’Ariano G M and Sacchi M F 2005 Phys. Rev. A 72 042338
[37] Pease M, Shostak R and Lamport L 1980 J. ACM 27 228
[38] Fischer M J, Lynch N A and Merritt M 1985 Proc. ACM PODC’85 pp 59–70
[39] Graham R L and Yao A C 1989 Proc. ACM STOC’89 pp 467–78
[40] Fitzi M, Wolf S and Wullschleger J 2006 Proc. IEEE ISIT’06 pp 504–5