High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms

Ben Wen Li
Washington University School of Medicine in St. Louis

Amy C. Rush
Washington University School of Medicine in St. Louis

Gary J. Weil
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation

Li, Ben Wen; Rush, Amy C.; and Weil, Gary J., "High level expression of a glutamate-gated chloride channel gene in reproductive tissues of Brugia malayi may explain the sterilizing effect of ivermectin on filarial worms." *International Journal for Parasitology: Drugs and Drug Resistance*. 4,2. 71-76. (2014).
https://digitalcommons.wustl.edu/open_access_pubs/2456

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
1. Introduction

Parasitic nematodes cause major diseases in humans, livestock, and crops (Broughan and Wall, 2007; Coles, 2001; Chitwood, 2003; Hotez et al., 2007). Nematodes are responsible for several important neglected tropical diseases of humans including lymphatic filariasis, onchocerciasis, and soil transmitted helminthiasis (STH) which affect a large portion of the world’s population (Hotez et al., 2007). Because no effective vaccines are available for these infections, anthelmintic drugs are the most important tool available for controlling diseases caused by nematodes (Geary et al., 2010). For example, macrocyclic lactones (MLs) such as ivermectin and moxidectin are routinely used to control nematode infections in animals, and hundreds of millions of people receive ivermectin (IVM) each year in mass drug administration programs for lymphatic filariasis and onchocerciasis (Alleman et al., 2006; Campbell, 2012; Fox, 2006; Martin et al., 2005; Ottesen et al., 2008; Wolstenholme and Rogers, 2005). Ivermectin interferes with neurotransmission in nematode worms by interacting with glutamate-gated chloride channels (GluCls) (Cully et al., 1994). Ivermectin irreversibly activates GluCls in invertebrates (Cully et al., 1994; Forrester et al., 2003; McCaera et al., 2009; Vassilatis et al., 1997a; Yates and Wolstenholme, 2004). In the free-living model nematode Caenorhabditis elegans, IVM activates alpha subunits of GluCl channels that are encoded by avr-14, avr-15, glc-1, and glc-3 genes (Dent et al., 1997, 2000; Horoszok et al., 2001). GluCls are members of the Cys-loop ligand-gated ion channel family. While they are only present in invertebrates (Cleland, 1996), they are distantly related to vertebrate γ-aminobutyric acid-A (GABA_A) receptors (Vassilatis et al., 1997b). Six GluCl genes have been identified in C. elegans that encode as many as eight protein subunits that are formed by alternative splicing (Cully et al., 1994;
Dent et al., 1997, 2000; Horoszok et al., 2001; Vassilatis et al., 1997b). The *avr-14* gene is highly conserved in free-living and parasitic nematodes (Dent et al., 2000; El-Abdellati et al., 2011; Janganathan et al., 1999; Laughton et al., 1997; McCavera et al., 2007; Njue and Prichard, 2004; Tandon et al., 2006; Williamson et al., 2007; Yates and Wolstenholme, 2004). The gene is alternatively spliced in most species to yield two subunits, GluCl3α and α3β. These subunits share a common N-terminal ligand-binding domain, but they have different C-terminal channel-forming domains. Detailed functional studies of GluCl genes have not been performed for *Brugia malayi*, however, an analysis of the presence of genes that encode four GluCl subunits including *BmAVER-14A* and *BmAVER-14B* (Ghedin et al., 2007; Williamson et al., 2007).

Localization of GluCl gene expression may provide clues regarding the function(s) of these genes in nematode worms. Prior studies of free-living *C. elegans* and gastrointestinal nematode parasites showed that GluCl are expressed in pharyngeal muscle and in motor neurons (Dent et al., 1997, 2000; Gill et al., 1991; Geary et al., 1993; Glendinning et al., 2011; Laughton et al., 1997; Martin, 1996; Portillo et al., 2003). This finding is consistent with the inhibitory effects of avermectin/milbemycin (A/M) anthelmintics on pharyngeal pumping and motor activity in these species. However, other effects of these drugs are not explained by these localization studies. For example, the A/M anthelmintics are effective for treatment of onchocerciasis, because they clear microfilariae (Mf) from the skin and temporarily sterilize adult *B. malayi*. This has been confirmed by sequencing. Biotinylated anti-sense and sense probes were prepared by reverse transcription from the template plasmid using MEGAscript T7 and Sp6 promoter PCRII vector (K2060-0, Invitrogen, Carlsbad, CA, USA). The sections were hybridized at 50 °C overnight in 5xSSC, 5xDenhardt’s solution, 0.5% SDS, 0.5% sodium dodecyl sulfate, 10% dextran sulfate, 1 mg/mL of RNA probe in hybridization buffer, washed at 60 °C for 30 min and incubated in a humid chamber with 1 μg/mL of RNA probe in hybridization buffer. An in situ hybridization detection system kit (K0601, Dako, Carpinteria, CA, USA) was used for stringency wash and detection. Briefly, sections were washed at 60 °C for 30 min and incubated for 40 min with biotinylated rRNA with streptavidin-AP conjugate at room temperature. After washing, sections were developed with BCIP/NBT substrate solution for 10–30 min. Slides were viewed using an Olympus-BX40 microscope (Olympus, Tokyo, Japan) and photographed with an Infinity2 digital microscope camera using Infinity Capture software (Lumenera, Ottawa, Ontario, Canada). The signal intensity of each object was scored as strong, moderate or weak according to the intensity of staining to provide a semi-quantitative assessment of gene expression. The stage of the embryos was defined as previously reported (Jiang et al., 2008). According to Lok et al. (1988) the embryonic stages were classified as follows: prelarvae (forms ranging from unfertilized eggs to morulae); developed embryos (forms ranging from morulae with a first invagination to elongated embryos with the two extremities in contact); pretzels (forms ranging from embryos with overlapping extremities to microfilariae coiled within the egg membrane; stretched microfilariae). The distal part of uterus contains mostly prelarval stages, the middle part of uterus mainly contains developing embryos, and the proximal uterus contains pretzel larvae and mature stretched microfilariae (Breton et al., 1997).

2. Materials and methods

2.1. Parasite material and slide preparation

Adult *B. malayi* worms were isolated from infected jirds and separated carefully by gender as previously described (Li et al., 2004). Live worms were washed twice using phosphate buffered saline (PBS) and immediately fixed in 4% formalin buffer. Fixed worms were embedded in paraffin in the Histology Core Laboratory at Washington University School of Medicine. The embedded worms were cut into 5 μm sections, using a microtome. Sections were floated onto Superfrost/Plus microscope slides (Fisher Scientific, Pittsburgh, PA, USA) and placed on a warming block in at 65 °C for 20 min to bond the tissue to the glass. Slides were then stored at room temperature for future use.

2.2. Selection of target genes and primer design

Subunit-specific RNA probes were designed with consensus cDNA sequences for *B. malayi* avr-14 GluCl subunits *BmAVER-14A* and *BmAVER-14B*. The sequences were retrieved from the NCBI database (http://www.ncbi.nlm.nih.gov/) using accession numbers HQ123446 and HQ123447 (Moreno et al., 2010). Primers were designed using PrimerQuest software (http://idtdna.com/primerquest/home). The primers listed were purchased from Integrated DNA Technology Inc. (Coralville, IA, USA).

2.3. RNA probe construction and in situ hybridization

Target gene sequences were amplified by PCR using *B. malayi* adult cDNA template as previously reported (Li et al., 2004). Amplified fragments of the selected genes were cloned into a dual promoter PCRII vector (K2060-0, Invitrogen, Carlsbad, CA, USA) according to the manufacturer’s protocol, and insertion of the fragments was confirmed by sequencing. Biotinylated anti-sense and sense probes were prepared by reverse transcription from the template plasmid using MEGAscript T7 and Sp6 in vitro transcription kits (Ambion, Grand Island, NY, USA) with biotinylated NTPs (Roche Diagnostics, Indianapolis, IN, USA). The biotinylated RNA probes were purified and concentrated by ethanol precipitation, dissolved in DEPC-water, and stored at −20 °C until use.

Paraffin sections were deparaffinized and digested with pepsin HCL for approximately 4 min. Sections were pre-hybridized with hybridization buffer (KPL, catalog #50-86-10, Gaithersburg, Maryland, USA) for 30 min at 37 °C. The sections were hybridized at 60 °C or 42 °C (depending on the probe being used) overnight in a humid chamber with 1 μg/mL of RNA probe in hybridization buffer. An in situ hybridization detection system kit (K0601, Dako, Carpinteria, CA, USA) was used for stringency wash and detection. Briefly, sections were washed at 60 °C for 30 min and incubated for 40 min with biotinylated rRNA with streptavidin-AP conjugate at room temperature. After washing, sections were developed with BCIP/NBT substrate solution for 10–30 min. Slides were viewed using an Olympus-BX40 microscope (Olympus, Tokyo, Japan) and photographed with an Infinity2 digital microscope camera using Infinity Capture software (Lumenera, Ottawa, Ontario, Canada). The signal intensity of each object was scored as strong, moderate or weak according to the intensity of staining to provide a semi-quantitative assessment of gene expression. The stage of the embryos was defined as previously reported (Jiang et al., 2008). According to Lok et al. (1988) the embryonic stages were classified as follows: prelarvae (forms ranging from unfertilized eggs to morulae); developed embryos (forms ranging from morulae with a first invagination to elongated embryos with the two extremities in contact); pretzels (forms ranging from embryos with overlapping extremities to microfilariae coiled within the egg membrane; stretched microfilariae). The distal part of uterus contains mostly prelarval stages, the middle part of uterus mainly contains developing embryos, and the proximal uterus contains pretzel larvae and mature stretched microfilariae (Breton et al., 1997).
3. Results and discussion

The localization of *avr*-14 expression and GluCl proteins has attracted considerable attention, because the protein product of *avr*-14 is the site of action of A/M anthelmintics (Cully et al., 1994). Prior studies have used reporter gene constructs that could not distinguish between the two splice variants in *C. elegans* and subunit-specific antibodies in *Haemonchus contortus* (Dent et al., 2000; Jaganathan et al., 1999; Portillo et al., 2003). In these species, *avr*-14 gene expression (or Avr-14 protein) were detected in extra-pharyngeal neurons in the head, sensory neurons, and ventral cord motor neurons in adults using whole-mount preparations of adult worms. These expression patterns correlated well with the observed action of A/M in these species including inhibition of pharyngeal pumping and spastic muscle contraction. A recent study used an anti-peptide antibody (not subunit-specific) to show that BmAVR-14 was expressed in a muscle structure that surrounds the MF excretory–secretory (ES) vesicle (Moreno et al., 2010).

We studied expression patterns of BmAVR-14 in adult worms to improve understanding of how IVM affects MF reproduction and release. We searched for the region of greatest sequence diversity between the two subunits (BmAVR-14A and -14B) and synthesized subunit-specific probes for hybridization studies with sections from adult worms. Before reviewing our results with these probes, we should mention that control probes with sense sequences did not produce hybridization signals in sections from male or female worms (Figs. 1A and F and 2A and F).

Gene expression results for BmAVR-14 are summarized in Table 1. The probes against both subunits produced very similar signals in female worms (Figs. 1B–E and 2B–E). Intense labeling for both transcripts was seen in oocytes in the ovaries (Figs. 1B and 2B), developing morulae (Figs. 1C and 2C), and early pretzel stage larvae (Figs. 1D and 2D). Stretched MF in the uterus were weakly labeled (Figs. 1E and 2E). Hybridization signals were also observed in the body wall muscle toward the anterior end of female worms where the uterus contains stretched MF (Figs. 1E and 2E). Both probes produced expression signals in the lateral chords (Figs. 1B and 2D and E). No signal was observed for BmAVR-14B in the proximal end of the oviduct (spermatheca) (Fig. 2B).

Strong expression of BmAVR-14 in early embryos (prelarval stages) suggests that this gene plays an important role in embryogenesis, and it is consistent with the observed suppressive effect of A/M on embryogenesis reported in previous studies (Breton et al., 1997; Lok et al., 1988; Tompkins et al., 2010). Prior studies have also shown that ivermectin has a profound effect on embryonic development in *O. volvulus* (Chavasse et al., 1992) and in *Dirofilaria immitis* (Lok et al., 1988). Tompkins, et al observed degenerating embryos/MF in the uterus of A/M-treated filarial worms (Tompkins et al., 2010). Our findings provide a molecular explanation for the effect of A/M on embryo development and MF production. The strong expression of AVR-14 in the wall of the uterus with stretched MF may explain the observed increased proportion of stretched MF in the uterus and reduction in MF release following A/M treatment in filarial worms (Lok et al., 1988; Tompkins et al., 2010).

Hybridization results obtained with male worms are summarized in Table 1. Moderate expression signals were observed in spermatogonia in the testis (Figs. 1G and 2G), and strong signals were observed in the lateral chords (Figs. 1G–H and 2G–H) and in the walls of the *vas deferens* which contain spermatozoa, which

Fig. 1. *In situ* hybridization patterns for BmAVR-14A in adult *B. malayi* adult worms. The sense RNA probe (negative control) did not label tissues in female (A) or male worms (F). In contrast, the antisense probe produced strong signals in female (B–E) and male worms (G–H). Oocytes in ovary (B), morulae stage embryos (C) and the uterine wall (arrow) adjacent to pretzel or stretched microfilariae (MF) were intensely labeled (arrows) and stretched MF were weakly labeled (D–E). The antisense probe also labeled spermatogonia in the male testis (G), the lateral chord (G–H) and the wall of the *vas deferens* (arrow) [H], whereas mature sperm within the *vas deferens* were not labeled (H). Weak to moderate labeling was also observed in the male body wall. Abbreviations: Ov, ovary; I, intestine; U, uterus; M, muscle; Lc, lateral chord, Vd, *vas deferens*; T, testis. Scale bar is 10 μm in panel A–E and 5 μm in panel F–H.
were not labeled (Figs. 1H and 2H–K). The expression signals of BmAVR-14 increased toward the caudal end of male worms where the somatic muscle and the wall of vas deferens are thicker. This was more evident for BmAVR-14B (Fig. 2I–J). These results suggest that the products of BmAVR-14 may influence body movement, development and release of sperm. Studies of D. immitis support this hypothesis. Ivermectin-sterilized D. immitis females recovered their ability to produce larvae if they were transferred into normal dogs together with untreated male worms; fertility was not restored if treated females were transferred with treated males (Lok et al., 1988). Embryogenesis was arrested at the single-cell stage possibly because of reduced fertilization as shown by the absence of sperm in the seminal receptacle of female O. volvulus following multiple doses of ivermectin, despite the fact that there was no significant reduction in the number of live male worms per nodule (Chavasse et al., 1993). Explanations suggested for this included abnormal spermatogenesis, a disinclination of the male worms to mate, male immobilization due to drug exposure, or a block to the passage of sperm by degenerating Mf in the uteri (Awadzi et al., 1999).

Table 1

subunit	Female reproductive system	Male reproductive system													
	Uteral-epithelium	Early	Later	Morulae	Early	Later	Pretzel	Early	Later	Stretched MF	Spermatogonia	Spermatocytes	Spermatids	Spermatozoa	Vas deferens
BmAVR-14A	3	3	3	2	2	1	1	1	2	1	0	0	2		
BmAVR-14B	3	3	3	2	2	1	1	1	2	3	1	0	0	2	

* Signal intensity was scored as follows: 1, weak; 2, moderate; 3, strong.
HcGluClα3 subunits A and B in H. contortus (protein products of the GluCl gene avr-14) were expressed in different neurons using subunit-specific antibodies (Portillo et al., 2003), we designed subunit-specific probes for BmAavr-14A and -B and compared their expression patterns in adult B. malayi worms. However, both subunits of BmAavr-14 had very similar expression patterns in male and female worms.

In summary, we have used in situ hybridization to show that GluCl genes are highly expressed in reproductive tissues of B. malayi. These results are novel, because GluCl transcripts or proteins have not been reported in the reproductive organs of other nematodes. Our results suggest that GluCl could be involved in the development of embryos and sperm in adult filarial worms. This may explain the suppressive effects of A/M anthelmintics on MF production and release in filarial nematodes.

References

Awadzi, K., Dadzie, K.Y., Shulz-Key, H., Haddock, D.R., Gilles, H.M., Aziz, M.A., 1985. The chemotherapy of onchocerciasis. An assessment of four single dose treatment regimes of MK-933 (ivermectin) in onchocerciasis. Ann. Trop. Med. Parasitol. 79, 63–78.

Awadzi, K., Attaah, S.K., Addy, E.T., Opoku, N.O., Quartey, B.T.Q., 1999. The effects of high-dose ivermectin regimens on Onchocerca volvulus in onchocerciasis patients. Trans. R. Soc. Trop. Med. Hyg. 93, 189–194.

Alleman, M.M., Twum-Danor, N.A., Thylefors, B.I., 2006. The Mectizan donation program – highlights from 2005. Filaria J. 5, 11.

Bretón, B., Daigne, M., Wanji, S., Bougnoux, M.E., Chandre, F., Marechal, P., Petit, G., Vuong, P.N., Bain, O., 1997. Ivermectin and mosquitocidal in two filarial systems: resistance of Mononema martinii; inhibition of Litomosoides sigmodontis insemination. Parasitologia 39, 19–28.

Brown, K.R., Ricci, F.M., Ottesen, E.A., 2000. Ivermectin: effectiveness in lymphatic filariasis. Int. J. Parasitol. 30, 1367–1374.

Cleland, T.A., 1996. Inhibitory glutamate receptor channels. Mol. Neurobiol. 13, 97–136.

Coles, C.C., 2001. The future of veterinary parasitology. Vet. Parasitol. 98, 31–39.

Chitwood, D.J., 2003. Research on plant-parasitic nematode biology conducted by the United States department of agriculture–agricultural research service. Pest Manag. Sci. 59, 748–753.

Campbell, W.C., 2012. History of avermectin and ivermectin, with notes on the United States department of agriculture–agricultural research service. Pest Manag. Sci. 59, 748–753.

Carr, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Carter, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Cleland, T.A., 1996. Inhibitory glutamate receptor channels. Mol. Neurobiol. 13, 97–136.

Coles, C.C., 2001. The future of veterinary parasitology. Vet. Parasitol. 98, 31–39.

Chitwood, D.J., 2003. Research on plant-parasitic nematode biology conducted by the United States department of agriculture–agricultural research service. Pest Manag. Sci. 59, 748–753.

Campbell, W.C., 2012. History of avermectin and ivermectin, with notes on the United States department of agriculture–agricultural research service. Pest Manag. Sci. 59, 748–753.

Carr, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.

Cartel, J.L., Moulia-Pelat, J.P., Glazio, P., Nguyen, L.N., Chanteau, S., Roux, J.F., Spiegel, A., 1993. Polychloro recurrence in Polynesian Wathenia bancriffi carriers treated with repeated single doses of 100 micrograms/kg of ivermectin. Trans. R. Soc. Trop. Med. Hyg. 87, 478–480.

Chavasse, D.C., Post, R.J., Lemoa, P.A., Whitworth, J.A., 1992. The effect of repeated doses of ivermectin on adult female Onchocerca volvulus in Sierra Leone. Trop. Med. Parasitol. 43, 256–262.
Ottesen, E.A., Hooper, P.J., Bradley, M., Biswas, G., 2008. The global programme to eliminate lymphatic filariasis: health impact after 8 years. PLoS Negl. Trop. Dis. 2, e317.

Petersen, M.B., Varady, M., Bjorn, H., Nansen, P., 1996. Efficacies of different doses of ivermectin against male, female and L4 Osophagostomum dentatum in pigs. Vet. Parasitol. 65, 55–63.

Portillo, V., Jagannathan, S., Wolstenholme, A.J., 2003. Distribution of glutamate-gated chloride channel subunits in the parasitic nematode Haemonchus contortus. J. Comp. Neurol. 462, 213–222.

Schares, G., Hofmann, B., Zahner, H., 1994. Antifilarial activity of macrocyclic lactones: comparative studies with ivermectin, doramectin, milbemycin A4 oxime, and moxidectin in Litomosoides carinii, Acanthocheilonema vitreum, Brugia malayi, and B. pahangi infection of Mastomys coucha. Trop. Med. Parasitol. 45, 97–106.

Stolk, W.A., VAN Oortmarssen, G.J., Pani, S.P., DE Vlas, S.J., Subramanian, S., Das, P.K., Habbema, J.D., 2005. Effects of ivermectin and diethylcarbamazine on microfilariae and overall microfilaria production in bancroftian filariasis. Am. J. Trop. Med. Hyg. 73, 881–887.

Tandon, R., Lefage, K.T., Kaplan, R.M., 2006. Cloning and characterization of genes encoding alpha and beta subunits of glutamate-gated chloride channel protein in Cylicoclycus nassatus. Mol. Biochem. Parasitol. 150, 46–55.

Tompkins, J.B., Stitt, L.E., Ardelli, B.F., 2010. Brugia malayi: in vitro effects of ivermectin and moxidectin on adults and microfilariae. Exp. Parasitol. 124, 394–402.

Vassilatis, D.K., Arena, J.P., Plasterk, R.H., Wilkinson, H.A., Schaeffer, J.M., Cully, D.F., Van der Ploeg, L.H., 1997a. Genetic and biochemical evidence for a novel avermectin-sensitive chloride channel in Caenorhabditis elegans. Isolation and characterization. J. Biol. Chem. 272, 33167–33174.

Vassilatis, D.K., Elliston, K.O., Pares, P.S., Hamelin, M., Arena, J.P., Schaeffer, J.M., Van der Ploeg, L.H., Cully, D.F., 1997b. Evolutionary relationship of the ligand-gated ion channels and the avermectin-sensitive, glutamate-gated chloride channels. J. Mol. Evol. 44, 501–508.

Wolstenholme, A.J., Rogers, A.T., 2005. Glutamate-gated chloride channels and the mode of action of the avermectin/milbemycin anthelmintics. Parasitology 131 (Suppl.), S85–95.

Williamson, S.M., Walsh, T.K., Wolstenholme, A.J., 2007. The cys-loop ligand-gated ion channel gene family of Brugia malayi and Trichinella spiralis: a comparison with Caenorhabditis elegans. Invert. Neurosci. 7, 219–226.

Yates, D.M., Wolstenholme, A.J., 2004. Dirofilaria immitis: identification of a novel ligand-gated ion channel-related polypeptide. Exp. Parasitol. 108, 182–185.