Infrared Phases of 2d QCD

Matthew Yu

Perimeter Institute

9/10/22

Based on [2108.02202] w/ D. Delmastro and J. Gomis
A key problem in QFT is understanding strong coupling dynamics. We will consider the macroscopic limit of 2d QCD with the data (G, R), i.e. explore gapped or gapless phase?
A key problem in QFT is understanding strong coupling dynamics. We will consider the macroscopic limit of 2d QCD with the data \((G, R)\), i.e. explore gapped or gapless phase?

\[
\mathcal{L} = \frac{1}{g^2} \text{Tr} F^2 + \bar{\psi} D \psi ,
\]

\[
F = dA + [A, A] , \quad D_\mu = \partial_\mu + iA_\mu^a t_R^a
\]

We can decompose into left and right sectors \(\psi_{l/r}\), transforming in some representation of \(G\).

Introduction

A key problem in QFT is understanding strong coupling dynamics. We will consider the macroscopic limit of 2d QCD with the data \((G, R)\), i.e. explore gapped or gapless phase?

\[
\mathcal{L} = \frac{1}{g^2} \text{Tr} F^2 + \bar{\psi} D \psi,
\]
\[
F = dA + [A, A], \quad D_\mu = \partial_\mu + iA_\mu^a t_R^a
\]

We can decompose into left and right sectors \(\psi_{l/r}\), transforming in some representation of \(G\).

For \(N_f\) fermions, chiral symmetry \(h_{l/r} = \begin{cases} \text{SO}(N_f) & \text{real} \\ \text{Sp}(N_f) & \text{pseudoreal} \\ \text{U}(N_f) & \text{complex} \end{cases} \)
In the IR we have two choices of phases.

Gapped theories: In the IR they are not necessarily trivial
- No propagating degrees of freedom, multiple vacua
- Topological order (long range entanglement)

Gapless theories: Possible dof are Goldstone bosons from continuous symmetry breaking.
- Massless dof not from broken symmetry.
- Generically becomes a CFT at long distances.

If the theory is gapped in the IR we will answer what TQFT we get.
If gapless, what CFT description is available?
In the IR we have two choices of phases.

Gapped theories: In the IR they are not necessarily trivial
- No propagating degrees of freedom, multiple vacua
- Topological order (long range entanglement)

Gapless theories:
- Possible dof are Goldstone bosons from continuous symmetry breaking.
- Massless dof not from broken symmetry.
- Generically becomes a CFT at long distances.
In the IR we have two choices of phases.

Gapped theories: In the IR they are not necessarily trivial
- No propagating degrees of freedom, multiple vacua
- Topological order (long range entanglement)

Gapless theories:
- Possible dof are Goldstone bosons from continuous symmetry breaking.
- Massless dof not from broken symmetry.
- Generically becomes a CFT at long distances.

If the theory is gapped in the IR we will answer what TQFT we get.
If gapless, what CFT description is available?
Mermin-Wagner: If there exists a current $J_{\ell/r}$ for the chiral symmetry in the UV \rightarrow the symmetry also exists in the IR.
Mermin-Wagner: If there exists a current $J_{\ell/r}$ for the chiral symmetry in the UV \rightarrow the symmetry also exists in the IR.

In 2d, any chiral symmetry is anomalous, and a theory with an anomaly yields massless particles. This puts constraints on N_f and the representations that are possible.
Facts about Symmetries in 2d

Mermin-Wagner: If there exists a current $J_{\ell/r}$ for the chiral symmetry in the UV \rightarrow the symmetry also exists in the IR.

In 2d, any chiral symmetry is anomalous, and a theory with an anomaly yields massless particles. This puts constraints on N_f and the representations that are possible.

In 2d, there are no intrinsic topological orders \rightarrow we only see the number of ground states.
Facts about Symmetries in 2d

Mermin-Wagner: If there exists a current $J_{\ell/r}$ for the chiral symmetry in the UV → the symmetry also exists in the IR.

In 2d, any chiral symmetry is anomalous, and a theory with an anomaly yields massless particles. This puts constraints on N_f and the representations that are possible.

In 2d, there are no intrinsic topological orders → we only see the number of ground states.

We will see that a necessary and sufficient condition for a theory to be gapped is if $R_{\ell/r}$ are sums of real reps of G.
In 2d, the gluon kinetic term is classically irrelevant. We assume this to be true also quantum mechanically.
In 2d, the gluon kinetic term is classically irrelevant. We assume this to be true also quantum mechanically.

We will take \mathcal{L}_{eff} to be governed by $\bar{\psi} \phi \psi$, and then we have access to other techniques.
In 2d, the gluon kinetic term is classically irrelevant. We assume this to be true also quantum mechanically.

We will take \mathcal{L}_{eff} to be governed by $\bar{\psi} \Phi \psi$, and then we have access to other techniques.

Starting with $\bar{\psi} \Phi \psi$, which is a $\text{SO}(\text{dim } R)_1$ WZW theory we gauge $G \subset \text{SO}(\text{dim } R)$ and we have

$$\mathcal{L}_{\text{eff}} = \frac{\text{SO}(\text{dim } R)_1}{G_{I(R)}},$$

where $I(R)$ is the Dynkin index.
Dynamics

In 2d, the gluon kinetic term is classically irrelevant. We assume this to be true also quantum mechanically.

We will take \mathcal{L}_{eff} to be governed by $\bar{\psi} \slashed{D} \psi$, and then we have access to other techniques.

Starting with $\bar{\psi} \slashed{D} \psi$, which is a $\text{SO}(\text{dim } R)_1$ WZW theory we gauge $G \subset \text{SO}(\text{dim } R)$ and we have

$$\mathcal{L}_{\text{eff}} = \frac{\text{SO}(\text{dim } R)_1}{G_{I(R)}},$$

where $I(R)$ is the Dynkin index.

Symmetries and anomalies of QCD are captured by the gauged WZW.
The CFT described by this theory is gapped if \(T_{SO} - T_G = 0 \).
This holds if
\[
t_{ij}t^{a}_{kl} + t^{a}_{ik}t^{a}_{lj} + t^{a}_{il}t^{a}_{jk} = 0
\] (1)

If nonzero, \(T_{SO} - T_G \) can generate massless states.
The CFT described by this theory is gapped if $T_{SO} - T_G = 0$. This holds if
\[t^a_i t^a_k + t^a_i t^a_l + t^a_i t^a_j = 0 \] (1)

If nonzero, $T_{SO} - T_G$ can generate massless states.

This is true if $G_{I(R)} \subset SO(\text{dim } R)_1$ conformally embeds.

Here,
\[T_{SO} = -\frac{1}{2} : \psi \partial \psi : , \quad T_G = \frac{1}{2(I(R) + h)} : J^a J^a : , \quad J^a = : \psi t^a \psi : \]
List of Gapped Theories

1. Take any G with $R = \text{Adjoint representation}$
2. $G = S(U(N) \times U(M)), \quad SO(N) \times SO(M), \quad Sp(N) \times Sp(M)$
 with $R = (\text{fund, fund})$
3. $G = U(N), \ SO(N), \ Sp(N)$ with $R = \text{rank 2 (sym or alt)}$.
4. Isolated Theories: $(F_4, \psi_{26}), \ (\text{Spin}(9), \psi_{16})$
5. Combinations of above
List of Gapped Theories cont.

g	R	g	R
$\forall g$	adjoint	su(2)	5
so(N)		so(9)	16
u(N)		F_4	26
so(N)		sp(4)	42
sp(N)		su(8)	70
u(N)		so(16)	128
u(N)		so(10) + u(1)	16
su(M) + su(N) + u(1)		E_6 + u(1)	27
so(M) + so(N)	(□,□)	su(2) + su(2)	(2,4)
sp(M) + sp(N)	(□,□)	su(2) + sp(3)	(2,14)
		su(2) + su(6)	(2,20)
		su(2) + so(12)	(2,32)
		su(2) + E_7	(2,56)
Examples

\[G + \text{Adj} \rightsquigarrow 2^{\text{rank}(G)} \text{ vacua: } \quad \text{IR coset given by } \frac{\text{SO}(\text{dim } R)_1}{G_h} \]

\[\text{SU}(2) + \psi_7 \rightsquigarrow \text{gapless: } \quad \text{IR coset given by } \frac{\text{SO}(7)_1}{\text{SU}(2)_{28}} \]

i.e. fermionic tricritical Ising, \(c = \frac{7}{10} \).

\[G + N_f \psi_{\text{fund}} \rightsquigarrow \text{gapless: except } G = \text{SO}(N), \text{U}(N), \text{and } N_f = 1 \]

theory is gapped rest are gapless:

IR coset coset given by \(\frac{\text{SO}(\nu N_f N)_1}{G_{N_f}} \), \(\nu = \begin{cases} 1 & \text{orthogonal} \\ 2 & \text{unitary} \\ 4 & \text{symplectic} \end{cases} \)
There is an algebraic description of gauged WZW as GKO cosets for G/H.

Branching functions

$\chi_g(q) = \sum_{h} b_{h}^{g}(q) \chi_h(q)$

If gapped: $b_{h}^{g}(q)$ does not depend on q this just gives us a count of the vacua.

If gapless: $b_{h}^{g}(q) \sim b_0 + b_1 q + b_2 q^2 + \cdots$ counts states at $L_0 = n$.

From the coset, one can derive modular data, scaling dimension of operators, OPEs, etc.
There is an algebraic description of gauged WZW as GKO cosets for G/H. The chiral degrees of freedom in the quotient is given by branching functions

$$\chi_g(q) = \sum_h b^h_g(q) \chi_h(q)$$
Facts about the Coset

There is an algebraic description of gauged WZW as GKO cosets for G/H. The chiral degrees of freedom in the quotient is given by branching functions

$$\chi_g(q) = \sum_h b^h_g(q) \chi_h(q)$$

If gapped: b^h_g does not depend on q this just gives us a count of the vacua.
Facts about the Coset

There is an algebraic description of gauged WZW as GKO cosets for G/H. The chiral degrees of freedom in the quotient is given by branching functions

$$\chi_g(q) = \sum_h b^h_g(q) \chi_h(q)$$

If gapped: b^h_g does not depend on q this just gives us a count of the vacua.

If gapless: $b^h_g(q) \sim b_0 + b_1 q + b_2 q^2 + \ldots$ counts states at $L_0 = n$.

From the coset, one can derive modular data, scaling dimension of operators, OPEs, etc.
We gave a list of \((G, R)\) QCD theories that are gapped/gapless

- Low energy theory is a TQFT or a CFT and the description is via \(SO/G\) gauged WZW (which is a rational CFT).
- There are cases where we can identify the theory as a minimal model
- It is possible to access dynamical data of the QCD theory from the RCFT.
Fin.