RESEARCH ARTICLE

Pharmacological treatments of Chinese herbal medicine for irritable bowel syndrome in adults: A network meta-analysis of randomized controlled trials

Yun-bo Wu\(^1,2\), Yun-kai Dai\(^1,2\), Ling Zhang\(^1,2\), Huai-geng Pan\(^1,2\), Wei-jing Chen\(^1,2\), Rui-liu Li\(^1,2\), Ling Hu\(^1,2\)*

\(^1\) Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China, \(^2\) Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China

* drhuling@163.com

Abstract

Introduction

Plenty of clinical studies have suggested the value of Chinese herbal medicine (CHM) for patients with irritable bowel syndrome (IBS), but their efficacy and safety have not been systematically concluded yet. This article aimed to compare and rank the therapeutic effect and safety of CHM with routine pharmacotherapies and placebo in the treatment of IBS.

Methods

Randomized controlled trials regarding CHM to treat IBS were searched in six databases from inception to Jan 31, 2020. A network meta-analysis was conducted to analyze the data of included publications. The quality assessment was assessed by Cochrane Handbook and GRADEpro software. The risk ratio was calculated for dichotomous outcomes while the standardized mean difference was used for continuous variables with 95% credible intervals. A Funnel plot was performed to evaluate publication bias. The surface under the cumulative ranking curve was conducted to rank the included interventions. Data were analyzed with STATA 15.0 and Review Manager 5.3.

Result

3194 records were searched, and 28 eligible trials involving 3323 patients were identified. Compared with conventional therapies and placebo, Jianpi-Chushi therapy showed significant improvement in adequate relief and IBS symptom severity scale; Shugan-Jianpi therapy showed the best efficacy in relieving the abdominal pain and abdominal distension; Wenshen-Jianpi therapy had a better effect on avoiding adverse effects and improving stool character.
Conclusion
This study confirmed that CHM could be beneficial for patients with IBS in relieving their clinical symptoms and should be recommended as alternative therapies. The quality of evidence in this study based on the GRADE system was “low”.

Introduction
Irritable bowel disease (IBS) is one of the most common chronic digestive disorders in the world, which is characterized by abdominal pain and discomfort, defecation as well as change in stool consistency and frequency [1]. According to epidemiological research, the incidence ranges from 19.58%~23.40% in China and 10~25% in North America and Europe [2, 3]. According to the Rome IV criteria [4], IBS can be presented as 4 pattern subtypes: IBS with diarrhea (IBS-D), IBS with constipation (IBS-C), mixed IBS (IBS-M), and unclassified IBS (IBS-U).

The main pathogenesis of IBS has been conceptualized as a condition of visceral hypersensitivity (leading to abdominal discomfort or pain) [5], and gastrointestinal motor disturbances (leading to diarrhea or constipation) [6]. In addition, there is increasing evidence regarding the roles of mood and anxiety disorders, infection and immune activation, serotonin dysregulation, bacterial overgrowth, central dysregulation as well as brain-gut interaction, family genetics in the etiology of IBS [7–12]. Due to the diversity of pathogenesis, the main pharmacological treatments of IBS such as smooth-muscle relaxants, prokinetic agents, peripheral opioid agonist, antidiarrheal, antidepressants, and probiotics, can only achieve limited clinical benefits [13, 14], and some of them may even cause a risk of cardiovascular events in long term use [15]. Therefore, it is necessary to look for more effective and safer alternative therapies.

Traditional Chinese medicine (TCM) has been used to treat symptoms associated with IBS for thousands of years in East Asia and may offer insights into a more targeted approach for therapeutic development [16]. Plenty of previous studies have evaluated the efficacy and safety of CHM (Chinese herbal medicine) formulae in the treatment of IBS-C and IBS-D [17–20], but these studies focused on pairwise comparisons between single formula and conventional medicines, and no comparison with different CHM formulae was conducted in the treatment of IBS on a large scale.

Therefore, a Bayesian network meta-analysis (NMA) which integrates direct evidence with indirect for multiple intervention comparisons was performed to compare and rank different CHM formulae with routine pharmacotherapies in the management of clinical symptoms in patients with IBS.

Methods
This study was performed in conformity to the Cochrane Handbook for the Systematic Review of Interventions and the Preferred Reporting Items for Systematic Review and Meta-Analyses [21]. The completed PRISMA checklist was presented as S1 File.

Data source and search strategy
An electronic search was conducted in the following databases from their inception to January 31, 2020: PubMed, Springer, EMBASE, China National Knowledge Infrastructure, Chinese...
Inclusion criteria and study selection

According to the PICOS (participants, interventions, comparisons, outcomes, and study design) criteria, inclusion criteria and exclusion criteria are summarized in Table 1. In the treatment group (participants in the treatment group should be treated by CHM used alone), CHM formulae, based on its function, were classified into 3 categories: soothe the liver and fortify the spleen (TCM jargon: Shugan-Jianpi therapy (SJ)), fortify the spleen and drain dampness (TCM jargon: Jianpi-Chushi therapy (JC)) and warm the kidney and fortify the spleen (TCM jargon: Wenshen-Jianpi therapy (WJ)). The formulations of CHM included decoction, tablet, pill, powder, granule, capsule, and oral liquid. The following interventions with usual care were included as the control group: placebo, antispasmodic agents (pinaverium and trimebutine), antidiarrheal (smectite), and probiotics.

Data extraction and quality assessment

Two investigators independently selected the studies. The review of the selected studies, the extraction of the relevant information, and the assessment of the risk of bias tool were performed by two investigators. Relevant information was extracted from each included study: Study ID (first author and publication year), classification of disease and diagnostic criteria, the characteristics of participants (gender, age, and sample size), the course of disease, detailed of interventions (treatment and duration), primary outcomes (adequate relief, IBS symptom severity scale); Secondary outcome: adverse effects; improvement of clinical symptoms. Any missing information will be acquired by contacting the corresponding author. The access to the included trials was displayed in S3 File.

The risk of bias of the included studies was evaluated with the Cochrane Collaboration Recommendations assessment tool [22]. Seven domains were assessed as low-risk, high-risk, or unclear-risk including random sequence generation, allocation concealment, blinding of participants and personnel, blinding (or) masking of outcomes assessors, incomplete outcome data, selective reporting, and other bias. Besides, the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) was performed to assess the quality of evidence as high, moderate, low, or very low quality.
Statistical analysis

An NMA with a Bayesian framework using Software for Statistics and Data Science (STATA, version 15.1) was conducted to assess the outcomes of different interventions. For continuous variables (IBS-SSS and the improvement of clinical symptoms), standardized mean differences (SMD) were calculated with a 95% confidence interval (CI). For dichotomous data (adequate relief, adverse effects), risk ratios (RR) were calculated with a 95% CI. Considering the diversity of interventions and potential heterogeneity among included studies, a random-effect model was applied in all meta-analyses. The consistency test results were judged by node-splitting analysis and an inconsistency model. When the p-value of the node-splitting analysis was greater than 0.05, a consistency mode was selected [23]; otherwise, an inconsistency model was used. Heterogeneity analysis was assessed through inconsistency index statistic (I^2). The I^2 value above 50% was considered as heterogeneity throughout the study. Additionally, sensitivity analysis was conducted to verify the robustness of the results and test the source of heterogeneity in each RCT. To summarize the probabilities for all interventions, the surface under the cumulative ranking curve (SUCRA) was selected to offer a summary statistic for the cumulative ranking [24]. Based on the definition, the larger SUCRA scores are, the more effective interventions are.

Results

Study identification and selection

In total, 3194 citations (PubMed 43, Spring 643, EMBASE 73, CNKI 459, CBD 1933, WanFang 43) published from inception to January 31, 2020, were identified by the search. After removing duplicates and unrelated articles, 28 articles comprising 3323 patients were deemed eligible for further quantitative analyses [25–52]. A flow diagram of the specific screening procedures is shown in Fig 1. The baseline characteristics of the studies were extracted in Table 2. The frequency of utilization of the included herbs is summarized in Fig 2 while the components of each formula are summarized in Table 3.

Quality assessment of included studies

We evaluated the quality of included studies with the Cochrane Collaboration Recommendations assessment tools [53]. All of the studies (28/28) described a random component in the sequence generation process such as a computer-generated random number or a random number table. Allocation concealment was performed using an appropriately sealed method in 17.9% (5/28) of the studies, while 82.1% (23/28) either did not describe concrete methods or used an inappropriate allocation concealment method. In performance bias, 35.7% (10/28) of the included trials reported the methods of blinding for both participants and personnel. In detection bias, 64.3% (18/28) of the outcome assessors in the studies either could not be blinded or were unclear. In attrition bias, all of the studies were deemed to have low-risk outcome data (i.e., reported drop out rates within the range of statistical estimations, provided detailed explanations of drop out rates, or performed intention-to-treat analysis). A detailed quality assessment is presented in Fig 3.

Primary outcome

Adequate Relief (AR). A total of 26 studies with 8 treatments reported adequate relief. The specific network is presented in Fig 4A. In terms of efficacy (Table 4), JC was better than the placebo (RR 1.79, 95% CI 1.49 to 2.15), pinaverium (RR 1.28, 95% CI 1.14 to 1.45), trimebutine (RR 1.43, 95% CI 1.24 to 1.64), probiotics (RR 1.54, 95% CI 1.13 to 2.10), antidiarrheal
(RR 1.62, 95% CI 1.30 to 2.02) and the differences were statistically significant. The efficacy of WJ (RR 1.70, 95% CI 1.39 to 2.17) and SJ (RR 1.52, 95% CI 1.30 to 1.78) were also better than placebo and rank 2nd, 3rd among all the therapies. The treatments were ranked as follow according to the SUCRA (Fig 4B): JC > WJ > SJ > pinaverium > trimebutine > probiotics > antidiarrheal > placebo. The heterogeneity in Fig 5A indicated good homogeneity (I^2 = 0.0%, P = 0.958), and sensitivity analysis showed strong stability in Fig 5B. Meanwhile, the symmetry funnel plot was observed in Fig 6.

Irritable bowel syndrome—severity scoring system (IBS-SSS). The improvement of IBS-SSS was reported in 10 studies with 7 treatments. The specific network is presented in Fig 7A. It is revealed from Table 5 that JC was better than trimebutine (SMD 2.93, 95% CI 1.16 to 7.39), antidiarrheal (SMD 14.01, 95% CI 3.42 to 57.50) in the improvement of IBS-SSS. The efficacy of SJ (SMD 8.25, 95% CI 3.34 to 20.35) and WJ (SMD 6.86, 95% CI 2.13 to 22.12) were also better than antidiarrheal. The SUCRA is presented in Fig 7B and the treatments are ranked as follow: JC > SJ > pinaverium > WJ > trimebutine > placebo > antidiarrheal.

Secondary outcome

Improvement of clinical symptoms. This NMA included 3 subgroups: abdominal pain, abdominal distension, and stool character. The specific networks were presented in Fig 8A–8C. As displayed in Table 6, SJ was better than placebo (SMD 1.99, 95% CI 1.04 to 3.83), pinaverium (SMD 1.55, 95% CI 1.01 to 2.40), trimebutine (SMD 1.84, 95% CI 1.25 to 2.70), antidiarrheal (SMD 2.37, 95% CI 1.29 to 4.35) in alleviating abdominal pain. For the abdominal distension, SJ was better than antidiarrheal (SMD 4.01, 95% CI 1.14 to 14.17). As for the stool
Study ID	Country	Classification of IBS	Diagnostic criteria	Sample Size	Study population	Age (years)	Course of disease (years)	Duration (weeks)	Intervention	Outcomes	Follow-up	Side effects			
Chen 2019 [25]	China	IBS-D	Rome IV	13/16	Single center	E:37.97±11.63	N/A	4	SJ	Trimebutine	a, b, c, g, i	4 weeks	E:0/29		
Shih et al. 2019 [26]	China	IBS-C/IBS-D	Rome III	11/21	Single center	E:43.07±13.77	N/A	4	SJ	Placebo	b, e, h, o, p	N/A	E:0/31		
Tang et al. 2019 [27]	China	IBS-D	Rome III	85/86	Multi centers	E:43.97±13.82	E:2.02±1.92	6	SJ	Pinaverium Bromide 50mg/t.i.d	a, b, c, d, e, i	8 weeks	E:5/171		
Wang 2019 [28]	China	IBS-D	Rome IV	13/17	Single center	E:38.57±12.81	C:45.59±12.81	C:2.16±2.94	8	JC	Pinaverium Bromide 50mg/t.i.d	a, b, c, f, g	6 months	E:0/30	
Yue 2019 [29]	China	IBS-D	Rome IV	11/16	Single center	E:32.48±8.00	E:4.47±3.51	C:39.56±13.07	C:4.97±3.74	8	JC	Trimebutine	a, b, c, d, e, f, g, h	8 weeks	E:0/27
Zhao et al. 2019 [31]	China	IBS-D	Rome IV	18/17	Single center	E:46.40±10.31	N/A	4	SJ	Antidiarrheal	a, b, c, f, g	4 weeks	E:0/35		
Zheng 2019 [32]	China	IBS-D	Rome IV	23/17	Single center	E:34.3±5.0	E:3.2±0.6	C:35.2±4.7	C:2.8±0.3	4	JC	Pinaverium Bromide 50mg/t.i.d	a, b, c, d, f, g	2 months	E:1/40
Chen et al. 2018 [33]	China	IBS-D	Rome III	41/39	Multi centers	E:35.4±10.7	E:4.9±1.6	C:32.2±8.2	C:5.4±1.5	4	SJ	Trimebutine	a, b, c, d, e, f, g	2 months	E:5/80
Tang et al. 2018 [34]	China	IBS-D	Rome III	62/37	Multi centers	E:42.88±13.77	E:6.4±6.65	C:42.48±13.96	C:7.54±6.74	8	SJ	Placebo	a, b, d, c, k	N/A	E:5/99

(Continued)
Study ID	Country	Classification of IBS	Diagnostic criteria	Sample Size Study population	Age (years)	Course of disease (years)	Duration (weeks)	Interventions	Outcomes	Side effects
Fan et al. 2017	China	IBS-D	Rome III	146/202	E:36.5	C:3.6	E:32.3	SJ Pinaverium Bromide 50mg/t.i.d	N/A	E:68/348
Wang et al. 2017	China	IBS-D	Rome III	44/37	E:19.8	C:19.4	E:27.7	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Zhang 2016	China	IBS-D	Rome III	46/35	E:18.3	C:18.4	E:25.7	SJ Pinaverium Bromide 50mg/t.i.d	N/A	E:5.9/194
Chen 2016	China	IBS-D	Rome III	21/20	E:21.2	C:21.3	E:21.2	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Huang et al. 2016	China	IBS-D	Rome III	20/25	E:19.5	C:19.4	E:25.7	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Benussan et al. 2015	Australia	IBS-C	Rome III	4/59	E:23.7	C:23.7	E:23.7	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Cheng 2015	China	IBS-D	Rome III	10/19	E:33.5	C:33.5	E:33.5	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Liang et al. 2015	China	IBS-D	Rome III	2/21	E:30.7	C:30.7	E:30.7	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Wei 2015	China	IBS-D	Rome III	17/20	E:21.1	C:21.1	E:21.1	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194
Yan 2015	China	IBS-D	Rome III	13/18	E:39.1	C:39.1	E:39.1	SJ Trimebutine 100mg/1ld	N/A	E:5.9/194

Continued
Study ID	Country	Classification of IBS	Diagnostic criteria	Sample Size	Study population	Age (years)	Course of disease (years)	Duration (weeks)	Intervention	Outcomes	Follow-up	Side effects
Chen et al. 2014 [46]	China	IBS-D	Rome III	38/20	Single center	32/26	E:38.48 ±11.93	4	SJ Pinaverium Bromide	a, b, c, e, f, g, l, r	8 weeks	E:0/58
							E:5.81 ±5.04					E:0/58
							C:38.35 ±11.75		150ml/b.i.d			C:0/28
							C:5.90 ±4.12		50mg/t.i.d			C:0/28
Cai et al. 2013 [47]	China	IBS-D	Rome III	11/6	Single center	4/14	E:43.24 ±10.26	8	SJ Placebo	b, d, g	N/A	E:0/27
							E:4.56 ±4.42					C:0/31
							C:41.89 ±9.33		150ml/1.d			C:0/31
Bian 2011 [48]	China	IBS-D	Rome III	19/9	Single center	12/18	E:47.68 ±12.98	4	WJ Placebo	a, b, d, e, g, k	N/A	E:5/38
							E:6.65 ±8.64					C:4/30
							C:46.13 ±13.01		150ml/t.i.d			C:4/30
Liang et al. 2009 [49]	China	IBS-D	Rome III	7/13	Single center	9/11	E:38.30 ±7.83	4	SJ Pinaverium Bromide	a, f, g	N/A	N/A
							E:6.15 ±2.90					N/A
							C:38.75 ±5.91		50mg/t.i.d			N/A
Wu 2009 [50]	China	IBS-D	Rome III	15/20	Single center	14/21	E:38.26 ±12.58	4	SJ Probiotics	a, b, f	N/A	E:0/32
							E:2.51 ±4.04					C:0/31
							C:37.00 ±11.12		0.42g/b.i.d			C:0/31
Zhao 2007 [51]	China	IBS-D	Rome II	44/25	Single center	3/29	E:37.10 ±10.40	4	SJ Pinaverium	a, b, g	N/A	E:0/68
							E:1.7 ±0.3					C:1/66
							C:36.90 ±8.90		Bromide 50mg/t.i.d			C:1/66
Leung et al. 2006 [52]	China	IBS-D	Rome II	31/29	Single center	26/33	E:45.4 ±11.9	8	SJ Placebo	a, b, g, n	N/A	E:2/60
							N/A					C:1/59

Annotations: E: experiment group; C: control group; N/A: not applicable; TCM: traditional Chinese medicine; M: male; F: female; IBS: Irritable Bowel Syndrome; IBS-D: diarrhea-predominant irritable bowel syndrome; IBS-C: Constipation-predominant irritable bowel syndrome; JC: Jianpi Chushi therapy; SJ: Shugan Jianpi therapy; WJ: Wenshen Jianpi therapy; a: overall efficiency; b: Adverse effect rate; c: Recurrent rate; d: IBS symptom severity scale; e: IBS Quality of life; f: Clinical symptoms scores; g: TCM symptom scores; h: the expression of Immunohistochemistry; i: Hamilton Anxiety Scale & Hamilton Depression Scale; j: Bristol Stool Form Scale; k: Hospital Anxiety and Depression Scale; l: IBS bowel symptom severity scale; m: IBS Visual Analogue Scale; n: SF-36; α: Total and specific scores of gastrointestinal symptom rating Scale; p: IBS-WHO-QOL; q: chronic liver disease questionnaire; r: IBS defecation state questionnaire.

https://doi.org/10.1371/journal.pone.0255665.t002
The ranking probabilities of therapies are presented in Fig 10A–10C. Based on the SUCRA for abdominal pain, the therapies are ranked as follow: SJ > JC > WJ > pinaverium > trimebutine > placebo > antidiarrheal; for abdominal distension: SJ > JC > WJ > pinaverium > trimebutine > antidiarrheal; for stool character: WJ > SJ > JC > pinaverium > placebo > antidiarrheal > trimebutine.

Adverse effects. There were 26 studies with 8 treatments that reported adverse effects. The most common side effects in the treatment groups were nausea and vomiting, constipation, and slight elevation of liver aminotransferases while abdominal pain and distension, nausea, and flatulence in the controlled groups. The specific network was presented in Fig 8D. The result in Table 7 indicated that there were no significant statistical differences among all the
Table 3. The ingredients of each formula in the included trials.

Author	Quality assessment (Y/N)	Ingredients of each formula
Chen 2019	Y-National Food and Drug Administration National Drug Standards	Atractylodes macrocephala Koidz., Paoniae Radix Alba, Bupleuri Radix, Citrus Reticulata
		(Bai zhu) 12g, (Bai shao) 10g, (Chai hu) 10g, (Chen pi) 10g
		Saposhnikoviae Radix, Codonopsis Radix, Rhizoma Dioscoreae, Poria cocos (Schw.) Wolf
		(Dang feng) 10g, (Dang shen) 10g, (Shan yao) 10g, (Fu ling) 10g
		Carumae Radix, Glycyrhizae Radix et Rhizoma (Yu jin) 10g
Shih et al 2019	Y-Briion Research Institute of Taiwan	Aucklandiae Radix, Amormum Aurantiacum H. T. Tsai Et S. W. Zhao, Arum Ternatum Thunb. (Ban xia) 2.5g, Citrus Reticulata
		(Mu xiang) 2g, (Sha ren) 2g, (Chen pi) 2g
		Panax Ginseng C. A. Mey., Poria cocos (Schw.) Wolf, Atractylodes macrocephala Koidz.
		(Ren shen) 2.5g, (Fu ling) 5g, (Chen pi) 5g
		Zingiber officinalis Roscoae (Sheng jiang) 5g
Tang et al 2019	Y-National Food and Drug Administration National Drug Standards	Peoniae Radix Alba, Citri Reticulatae Pericarpium Viride, Allium Azereum Ledeb., Atractylodes macrocephala Koidz.
		(Bai shao), (Qing pi) (Xie bai) (Bai zhu)
Wang 2019	Y-National Food and Drug Administration National Drug Standards	Massa Medicata Fermentata, Crataegi Fructus, Rhus Fructus Murr. (Ren shen) 20g, Panax Ginseng C. A. Mey.
		(Shen qu) 10g, (Shan zha) 10g, (Chen pi) 10g
		Glycyrhizae Radix et Rhizoma, Poria cocos (Schw.) Wolf, Citr. Sarcodactylis Fructus, Citrus Reticulata
		(Gan cao) 6, (Fu ling) 10g, (Chen pi) 6g
		Atractylodes macrocephala Koidz., Saposhnikoviae Radix
		(Bai zhu) 10g, (Fang feng) 10g
Yue 2019	Y-National Food and Drug Administration National Drug Standards	Radix Puerariae, Citri Reticulatae Pericarpium Viride, Scutellariae Radix, Glycyrhizae Radix et Rhizoma
		(Ge gen) 30g, (Huang lian) 10g, (Huang qin) 10g, (Gan cao) 10g
		Peoniae Radix Alba, Bupleuri Radix, Auranitii Fructus Immaturus
		(Bai shao) 15g, (Chai hu) 25g, (Zhi shi) 10g
Zhang 2019	Y-National Food and Drug Administration National Drug Standards	Citrus Reticulata, Atractylodes macrocephala Koidz., Paoniae Radix Alba, Saposhnikoviae Radix
		(Chen pi) 15g, (Bai zhu) 25g, (Bai shao) 30g, (Fang feng) 15g
		Bupleuri Radix, Auranitii Fructus, Glycyrhizae Radix et Rhizoma, Codonopsis Radix
		(Chai hu) 15g, (Zhi qiao) 25g, (Gan cao) 10g, (Dang shen) 30g
		Poria cocos (Schw.) Wolf, Zingiberis Rhizoma, Eudiae Fructus
		(Fu ling) 25g, (Gan jiang) 10g, (Wu zhu yu) 6g
Zhao et al 2019	Y-National Food and Drug Administration National Drug Standards	Magnolia Officinalis Behd Et Wils., Rhizoma Dioscoreae, Amormum Aurantiacum H. T. Tsai Et S. W. Zhao, Alpinia Katsumada Hayat
		(Hou po) 20g, (Shan yao) 30g, (Sha ren) 10g, (Cao dou lou) 6g
		Hedysarum Multijugum Maxim. (Huang qin) 15g, Bupleuri Radix, Saposhnikoviae Radix Aconiti Lateralis Radix Praeparata
		(Chai hu) 6g, (Fang feng) 6g, (Fu zi) 9g
		Myristiceae Semen, Atractylodes macrocephala Koidz., Chaenomeles Sinensis (Thouin) Koehne, Zingiberis Rhizoma
		(Rou dou kou) 20g, (Bai zhu) 10g, (Mu gua) 6g, (Gan jiang) 10g
		Glycyrhizae Radix et Rhizoma (Gan cao) 6g
Zheng 2019	Y-National Food and Drug Administration National Drug Standards	Codonopsis Radix, Bupleuri Radix, Schizonepetae Herba, Saposhnikoviae Radix
		(Dang shen) 20g, (Chai hu) 10g, (Jing jie) 1g, (Fang feng) 5g
		Notopterygii Rhizoma Et Radix (Qiang huo) 5g, Bupleuri Radix, Auranitii Fructus
		(Du huo) 5g, (Fu ling) 15g, (Zhi qiao) 10g
		Platycodon Grandiflorus, Glycyrhizae Radix et Rhizoma (Gan cao) 6g
		(Jie geng) 10g
Chen et al 2018	Y-National Food and Drug Administration National Drug Standards	Atractylodes macrocephala Koidz., Citrus Reticulata, Paoniae Radix Alba, Saposhnikoviae Radix
		(Bai zhu) 10g, (Chen pi) 5g, (Bai shao) 6.7g, (Fang feng) 3.7g

(Continued)
Author	Quality assessment (Y/N)	Ingredients of each formula	
Tang et al. 2018	Y-National Food and Drug Administration National Drug Standards	Hedyarum Multijugum Maxim. Atractyloides macrophela Koidz. Paeoniae Radix Alba Saposhnikoviae Radix	
		(Huang qi) 18g (Bai zhu) 18g	(Bai shao) 24g (Fang feng) 9g
		Zingiber officinale Rosae Myristicae Semen Arum Ternatum Thunb. Aucklandiae Radix	
		(Sheng jiang) 6g (Rou dou kou) 9g	(Ban xia) 9g (Mu xiang) 12g
		Citrus Reticulata Coptidis Rhizoma Glycyrrhizae Radix et Rhizoma	
		(Chen pih) 9g (Huang lian) 6g	(Gan cao) 6g
Fan et al. 2017	Y-National Food and Drug Administration National Drug Standards	Atractyloides macrophela Koidz. Citrus Reticulata Paeoniae Radix Alba Saposhnikoviae Radix	
		(Bai zhu) (Chen pih) (Bai shao) (Fang feng)	
Wang et al. 2017	Y-National Food and Drug Administration National Drug Standards	Atractyloides macrophela Koidz. Lablab semen Albus Coicis Semen Paeoniae Radix Alba (Chen pi) (Bai zhu) (Yi yi ren) 20g (Bai shao) 15g	
		Cyperi Rhizoma Myristicae semen Granati Pericarpium Radix Puerariae	
		(Xiang fu) 15g (Rou dou kou) 15g	(Shi liu pi) 20g (Ge gen) 20g
Zhang 2017	Y-National Food and Drug Administration National Drug Standards	Aconitii Lateralis Radix Praeparata Panax Ginseng C. A. Mey. Zingiberis Rhizoma Glycyrrhizae Radix et Rhizoma	
		(Fu zi) (Ren shen) (Gan cao) (Gan jiang)	
		Myristicae semen Psoralea corylifolia Linn. Schisandraceae Chinesis Fructus Evodiae Fructus	
		(Rou dou kou) (Bu gu zhi) (Bei wu wei zi) (Wu zhu yu)	
Chen 2016	Y-National Food and Drug Administration National Drug Standards	Psoralea corylifolia Linn. Evodiae Fructus Poria cocos (Schw.) Wolf Euryales Semen	
		(Bu gu zhi) 10g (Wu zhu yu) 5g	(Fu ling) 15g (Qian shi) 15g
		Myristicae semen Schisandraceae Chinesis Fructus Poria cocos (Schw.) Wolf Rhizoma Dioscoreae	
		(Rou dou kou) 10g (Bei wu wei zi) 10g	(Fu ling) 15g (Shan yao) 15g
		Hedyarum Multijugum Maxim. Portaluas Herba Foeniculi Fructus Zingiberis Rhizoma	
		(Huang qi) 15g (Ma chi xian) 20g	(Xiao hui xian) 10g (Gan jiang) 10g
Huang et al. 2016	Y-National Food and Drug Administration National Drug Standards	Bupleuri Radix Aurantii Fructus Paeoniae Radix Alba Atractyloides macrophela Koidz.	
		(Chai hu) 9g (Zhi qiao) 4g	(Bai zhu) 10g (Bai shao) 15g
		Citrus Reticulata Saposhnikoviae Radix Rhizoma Dioscoreae Codonopis Radix	
		(Chen pih) 6g (Fang feng) 9g	(Shan yao) 15g (Dang shen) 9g
		Coicis semen Agrimonia eupatoria	
		(Yi yi ren) 15g	(Xian he cao) 15g
Bensoussan et al. 2015	Y-Australian Therapeutic Goods Administration	Paeoniae Radix Alba Aurantii Fructus Immaturus Magnoliae Officinalis Rehd Et Wils. Citrus Reticulata	
		(Bai shao) (Zhi sha)	(Hou po) (Chen pih)
		Glycyrrhizae Radix et Rhizoma Atractyloides lancea (Thunb.) DC. Radix Rhei Et Rhizome	
		(Gan cao) (Cang zhu)	(Da huan)
Cheng 2015	Y-National Food and Drug Administration National Drug Standards	Bupleuri Radix Cypere Rhizoma Chuanshing Rhizoma Citrus Reticulata	
		(Chai hu) 9g (Xiang fu) 20g	(Chuan xiong) 9g (Chen pi) 12g
		Paeoniae Radix Alba Glycyrrhizae Radix et Rhizoma Aurantii Fructus Atractyloides macrophela Koidz.	
		(Bai shao) 20g (Gan cao) 10g	(Zhi qiao) 15g (Bai zhu) 15g
		Saposhnikoviae Radix Citri Fructus Codonopis Radix Radix Puerariae	
		(Fang feng) 6g (Xiang yuan) 12g	(Dang shen) 15g (Ge gen) 20g
		Artemisiae Scopariae Herba	
		(Yin chen) 6g	
Huang 2015	Y-National Food and Drug Administration National Drug Standards	Paeoniae Radix Alba Atractyloides macrophela Koidz. Corydalis Rhizoma Poris coccus (Schw.) Wolf	
		(Bai shao) 15g (Bai zhu) 15g	(Yuan hu) 15g (Fu ling) 15g
		Ziziphi Spinosae Semen Jasminum polyanthum Franch.	
		(Suan zao) 10g (Su xin hua) 10g	

(Continued)
Table 3. (Continued)

Author	Quality assessment (Y/N)	Ingredients of each formula		
Liang et al. 2015				
Y-National Food and Drug Administration National Drug Standards				
Psoralea corylifolia Linn.		Evodiae Fructus	Myristicae Semen	Schisanthe Chinensis Fructus
(Bu gu zhi) 10g	(Wu zhu yu) 10g	(Rou dou kou) 10g	(Bei wu wei zi) 10g	
Psoralea corylifolia Linn.		Evodiae Fructus	Myristicae Semen	Schisanthe Chinensis Fructus
(Bu gu zhi) 10g	(Wu zhu yu) 10g	(Rou dou kou) 10g	(Bei wu wei zi) 10g	
Wei 2015				
Y-National Food and Drug Administration National Drug Standards				
Codonopsis Radix	Atractylodes macrocephala	Poria cocos (Schw.) Wolf	Lablab Semen Album	
(Dang shen) 15g	(Bai zhu) 15g	(Fu ling) 15g	(Bai bian dou) 20g	
Platyodon Grandiflorus	Rhizoma Dioscoreae	Amomum Aurantiacum H. T. Tsai Et S. W. Zhao	Coicis Semen	
(lie geng) 6g	(Shan yao) 20g	(Sha ren) 3g	(Yi yi ren) 30g	
Yan 2015				
Y-National Food and Drug Administration National Drug Standards				
Silktree Albizia Bark	Poria cocos (Schw.) Wolf	Atractylodes macrocephala	Coicis Semen	
(He huan pi) 20g	(Fu ling) 30g	(Bai zhu) 15	(Yi yi ren) 20g	
Angelicae Sinensis Radix	Paoniae Radix Alba	Bupleuri Radix	Caulis Polygoni Multiflori	
(Dang gui) 12g	(Bai shao) 20g	(Chai hu) 9g	(Shou wu teng) 15g	
Glycyrrhiza Radix et Rhizoma	Cornus Officinalis Sieb. ET Zucc.	Cypori Rhizoma	Mentheae Herba	
(Gan cao) 10g	(Shan zhu yu) 12g	(Xiang fu) 20g	(Bo he) 10g	
Chen et al. 2014				
Y-National Food and Drug Administration National Drug Standards				
Paoniae Radix Alba	Atractylodes macrocephala	Coptis Rhizoma	Evodiae Fructus	
(Bai shao)	(Bai zhu)	(Huang lian)	(Wu zhu yu)	
Cimicifugae Rhizoma	Silktree Albizia Bark	(Sheng ma)	(He huan pi)	
Cai et al. 2013				
Y-National Food and Drug Administration National Drug Standards				
Codonopsis Radix	Paoniae Radix Alba	Atractylodes macrocephala	Saposhnikoviae Radix	
(Dang shen)	(Bai shao)	(Bai zhu)	(Fang feng)	
Citrus Reticulata	Carumae Radix	Silktree Albizia Bark	Glycyrrhizae Radix et Rhizoma	
(Chen pi)	(Ya jin)	(He huan pi)	(Gan cao)	
Lablab Semen Album	Poria cocos (Schw.) Wolf	Amomum Aurantiacum H. T. Tsai Et S. W. Zhao	Platyodon Grandiflorus	
(Bai bian dou)	(Fu ling)	(Sha ren)	(lie geng)	
Coicis Semen	Alpinia Katsumadai Hayat	(Yi ren)	(Ca dou kou)	
Bian 2011				
Y-National Food and Drug Administration National Drug Standards				
Hedyasarum Multijugum Maxim.	Atractylodes macrocephala	Paoniae Radix Alba	Saposhnikoviae Radix	
(Huang qi)	(Bai zhu)	(Bai shao)	(Fang feng)	
Citrus Reticulata	Zingiberis Rhizoma	(Chen pi)	(Gan jiang)	
Liang et al. 2009				
Y-National Food and Drug Administration National Drug Standards				
Paoniae Radix Alba	Bupleuri Radix	Atractylodes macrocephala	Citrus Reticulata	
(Bai shao) 10g	(Chai hu) 10g	(Bai zhu) 15g	(Chen pi) 10g	
Saposhnikoviae Radix	Poria cocos (Schw.) Wolf	Aucklandiae Radix	Pogostemon Cablin (Blanco) Benth.	
(Fang feng) 10g	(Fu ling) 15g	(Mu xiang) 6g	(Huo xiang) 10g	
Coicis Semen	Glycyrrhizae Radix et Rhizoma	(Yi yi ren) 30g	(Gan cao) 6g	
Wu 2009				
Y-National Food and Drug Administration National Drug Standards				
Bupleuri Radix	Atractylodes macrocephala	Paoniae Radix Alba	Saposhnikoviae Radix	
(Chai hu) 15g	(Bai zhu) 15g	(Bai shao) 30g	(Fang feng) 15	
Citrus Reticulata	Hedyasarum Multijugum Maxim.	Jujubae Fructus	Lablab Semen Album	
(Chen pi) 5g	(Huang qi) 30g	(Da zao) 15g	(Bai bian dou) 30g	
Poria cocos (Schw.) Wolf	(Fu ling) 15g			
therapies. Based on the SUCRA in Fig 9D, the treatments are ranked as follow: WJ > placebo > Pinaverium > JC > SJ > Probiotics > Trimebutine > Antidiarrheal.

GRADE quality evidence. The application of the GRADE approach aims to provide ratings for the confidence in the estimates of effect for specific comparison [54]. There are five elements to downgrade the quality of evidence: risk of bias, inconsistency, indirectness, imprecision, and publication bias while three factors to upgrade: large effect, plausible confounding that would change effect, dose-response gradient. Based on these criteria, the evidence quality

Table 3. (Continued)

Author	Quality assessment (Y/N)	Ingredients of each formula			
Zhao 2007	Y-National Food and Drug Administration National Drug Standards	*Pulsatillae Radix*	*Coptidis Rhizoma*	*Phellodendri Chinensis Cortex*	*Fraxini Cortex*
	(Bai tou weng) 9g	(Huang lian) 6g	(Huang bo) 6g	(Qin pi) 12g	
	Mongolian Dandelion Herb	*Portulaca Herba*	*Citrus Reticulata*	*Atractylodes macrocephala Koidz.*	
	(Pu gong ying) 18g	(Ma chi xian) 25g	(Chen pi) 6g	(Bai zhu) 9g	
	Paoniae Radix Alba	*Saposhnikoviae Radix*	*Aucklandiae Radix*	*Massa Medicata Fermentata*	
	(Bai shao) 9g	(Fang feng) 9g	(Mu xiang) 6g	(Shen qu) 12g	
	Sophorae Flavescentis Radix	*Radix Sanguisorbae*	*Cocis Semen*	*Angelicae Sinensis Radix*	
	(Ku shen) 12g	(Di yu) 12g	(Yi yi ren) 15g	(Dang gui) 15g	
	Glycyrrhiza Radix et Rhizoma* (Gan cao) 6g				

Leung et al 2006	Y-National Food and Drug Administration National Drug Standards	*Atractylodes macrocephala Koidz.*	*Hedysarum Multijugum Maxim.*	*Paoniae Radix Alba*	*Atractylodes lancea (Thunb.) DC.*
	(Bai zhu) 15g	(Huang qi) 15g	(Bai shao) 15g	(Cang zhu) 12g	
	Bupleuri Radix	*Citrus Reticulata*	*Saposhnikoviae Radix*	*Murraya exotica L.*	
	(Chai hu) 9g	(Chen pi) 9g	(Fang feng) 9g	(Jiu li xiang) 9g	
	Granati Pericarpium	*Portulaca Herba*	*Coptidis Rhizoma*		
	(Shi liu pi) 9g	(Ma chi xian) 30g	(Huang lian) 6g		

https://doi.org/10.1371/journal.pone.0255665.t003

Fig 3. Risk of bias of the included trials: (a) Risk of bias in individual study; (b) Risk of bias summary.

https://doi.org/10.1371/journal.pone.0255665.g003
of adequate relief was "low", which could be attributed to the high risk of bias and indirectness. The result of the GRADE assessment was presented in Fig 10.

Discussion

The treatments of IBS are largely based on its subtypes [1, 55]. In this study, there were 26 trials focus on IBS-D [25, 27–39, 41–54], 1 trial on IBS-C [40], and 1 trial on IBS (contained both IBS-D and IBS-C) [26]. Limited by the treatments of the controlled group, we could only compare TCM with placebo, pinaverium, trimebutine, antidiarrheal, and probiotics. Pinaverium, trimebutine, and probiotics are universal therapies for all types of IBS in relieving abdominal pain while antidiarrheal suits patients with IBS-D.

Table 4. Risk ratio with 95% confidence interval of adequate relief.

JI	WJ	SJ	Pinaverium	Trimebutine	Probiotics	Antidiarrheal	Placebo
			1.28 (1.43, 1.64)	1.35 (1.43, 1.58)	1.21 (1.21, 1.32)	1.11 (1.08, 1.23)	1.08 (1.04, 1.12)
1.18 (1.04, 1.34)	1.11 (0.96, 1.29)	1.09 (1.03, 1.16)	1.21 (1.12, 1.32)	1.11 (1.01, 1.23)	1.08 (0.97, 1.17)	1.12 (1.02, 1.23)	1.11 (0.91, 1.33)
1.54 (1.33, 1.70)	1.46 (1.05, 2.03)	1.31 (0.97, 1.76)	1.20 (0.89, 1.62)	1.08 (0.79, 1.47)	1.08 (0.79, 1.47)	1.12 (1.02, 1.23)	1.11 (0.91, 1.33)
1.62 (1.30, 2.02)	1.53 (1.21, 1.93)	1.37 (1.15, 1.65)	1.26 (1.04, 1.52)	1.13 (0.93, 1.38)	1.05 (0.74, 1.49)	1.12 (1.02, 1.23)	1.11 (0.91, 1.33)
1.79 (1.49, 2.15)	1.70 (1.39, 2.07)	1.52 (1.30, 1.78)	1.39 (1.18, 1.64)	1.26 (1.05, 1.50)	1.16 (0.83, 1.63)	1.11 (0.87, 1.41)	1.11 (0.91, 1.33)

Annotation

* P<0.05. JI: Jianpi-Chu shi therapy; WJ: Wenshen-Jianpi therapy; SJ: Shugan-Jianpi therapy.

https://doi.org/10.1371/journal.pone.0255665.g004

https://doi.org/10.1371/journal.pone.0255665.t004
This NMA systematically evaluated the AR, improvement of IBS-SSS, the improvement of clinical symptoms, and adverse effects after the application of CHM as compared to conventional pharmacological therapies for patients with IBS. In patients with IBS-D, JC performed the best in AR and the improvement of IBS-SSS compared with placebo and any other pharmacological treatments. WJ showed great improvement in improving stool character. SJ had better effects on relieving abdominal pain and abdominal distension. Similarity, in patients with IBS-C, JC also was more effective on adequate relief and in improving stool consistency compared to placebo [40]. There was no difference between CHM and other therapies in adverse effects. In conclusion, CHM could be more beneficial to patients with IBS in decreasing their clinical symptoms and improving their quality of life, which provided more suggestions and guidance in clinical decisions.

Fig 5. Heterogeneity analysis and sensitivity analysis: (a) Heterogeneity analysis; (b) Sensitivity analysis.

https://doi.org/10.1371/journal.pone.0255665.g005

Fig 6. Funnel plot. JC: Jianpi-Chushixi therapy; SJ: Shugan-Jianpi therapy; WJ: Wenshen-Jianpi therapy.

https://doi.org/10.1371/journal.pone.0255665.g006
As is mentioned before, the etiologies of IBS are diverse, so it is hard to treat it from one single dimension. The core principle of diagnosing and treating disease in TCM is a treatment based on syndrome differentiation (TCM jargon: bian zheng lun zhi”) [56]. According to TCM theory, syndrome (TCM jargon: Zheng) is a presentation of the pathological changes of a certain disease course, revealing the location, cause, and nature of a disease, the correlation between pathogenic factors and health factors, and the body’s ability to resist disease, and thus is a precondition and fundamental for diagnosis and treatments [57]. Under the principle of “bian zheng lun zhi”, the CHM formulae, composed of many different herbs, take the basic prescription as the core and add or delete some drugs on the condition of patients’ symptoms. Therefore, the effective substance of CHM formulae is multi-component, and its functions are multi-target, multi-pathway, and multi-effects. A review study involved 67784 IBS participants found out that the major syndromes of IBS patients were the syndrome of liver stagnation and spleen deficiency, spleen-stomach weakness, and spleen-kidney yang deficiency [58].

![Network meta-analysis of IBS-severity scoring system](https://doi.org/10.1371/journal.pone.0255665.g007)

Fig 7. Network meta-analysis of IBS-severity scoring system: (a) Network evidence plot; (b) Surface under the cumulative ranking curve plot.

Table 5. Standard mean difference with 95% confidence interval of irritable bowel syndrome symptom severity scale.

	JC	SJ	Pinaverium	WJ	Trimebutine	Placebo	Antidiarrheal
JC	1.70 (0.57,5.03)	1.02 (0.49,2.13)	1.18 (0.41,3.38)	1.43 (0.69,2.96)	1.70 (0.71,4.05)	1.44 (0.51,1.96)	1.72 (0.98,3.02)
SJ	1.73 (0.46,6.43)	1.20 (0.57,2.53)	1.69 (0.67,4.29)	1.73 (0.71,4.05)	1.44 (0.70,2.93)	1.00 (0.51,1.96)	1.70 (0.98,3.02)
Pinaverium			1.86 (2.13,22.12)	1.86 (2.13,22.12)			
WJ							
Trimebutine							
Placebo							
Antidiarrheal							

Annotation

P<0.05. JC: Jianpi-Chushi therapy; WJ: Wenshen-Jianpi therapy; SJ: Shugan-Jianpi therapy.

https://doi.org/10.1371/journal.pone.0255665.t005
Therefore, based on the syndrome differentiation, the treatment of CHM formulae was concluded as Shugan-Jianpi therapy, Jianpi-Chushi therapy, and Wenshen Jianpi therapy.

Shugan-Jianpi therapy mainly consists of herbs such as *Atractylodes macrocephala Koidz.* (Bai zhu), *Bupleuri Radix* (Chai hu), *Paeoniae Radix Alba* (Bai shao), which can influence the expression of transient receptor potential vanilloid-1 and Calcitonin Gene-Related Peptide (CGRP) in the colon tissue of the rat model with visceral hypersensitivity by increasing the pressure threshold of abdominal inwards reflex affected by colorectal distension so that to decrease the visceral sensitivity [59]. Besides, a clinical trial showed that Shugan therapy can also regulate the IBS-D patients’ immune system by decreasing the number of IgM in the serum while enhancing the transformation of T-lymphocyte and increasing the number of T8+ lymphocyte [60]. Jianpi-Chushi therapy, which mostly contains herbs such as *Atractylodes macrocephala Koidz.* (Bai zhu), *Citrus Reticulata* (Chen pi), *Poria Cocos (Schw.) Wolf* (Fu ling), can regulate the intestinal flora by reducing the number of aerobes as well as increasing the probiotics, which can significantly relieve the clinical symptoms and achieve ideal effect [61].

https://doi.org/10.1371/journal.pone.0255665.g008

Fig 8. Network evidence of improvement of clinical symptoms and adverse effects: (a) Abdominal pain; (b) Abdominal distension; (c) Stool character; (d) Adverse effects.
Wenshen-Jianpi therapy, largely consists of *Myristicae Semen* (Rou dou kou), *Zingiberis Rhizoma* (Gan jiang), can regulate the expression of gastrointestinal hormones and their receptors such as melatonin, cholecystokinin, and CGRP [62]. Another clinical study also found that Wenshen-Jianpi therapy can regulate the expression of neurotransmitters such as 5-HT, neuropeptide Y, and immune factors such as TNF-γ [63]. In conclusion, CHM formulae can act on the IBS patients through multi-targets and multi-pathway, so that to improve their clinical symptoms.

There were several limitations to this meta-analysis. Firstly, the quality of included trials was not optimal due to methodological shortcomings. When evaluating these studies, we found that many lacked details on allocation concealment or blinding. The former will cause selection bias and the latter will result in detection bias. Besides, although many studies reported the dropouts, only 3 studies [34, 41, 44] performed intention-to-treat (ITT), which, to

SJ	JC	WJ	Pinaverium	Trimebutine	Placebo
1.18 (0.67,2.08)	1.28 (0.58,2.81)	1.03 (0.58,1.83)	1.18 (0.70,2.00)	1.08 (0.51,2.31)	1.19 (0.49,2.90)
1.55 (1.01,2.40)	1.32 (0.77,2.26)	1.22 (0.56,2.65)	1.28 (0.59,2.81)	1.32 (0.58,2.81)	
1.84 (1.25,2.70)	1.56 (0.91,2.68)	1.22 (0.56,2.65)	1.28 (0.59,2.81)	1.08 (0.51,2.31)	
1.99 (1.04,3.83)	1.69 (0.71,4.01)	1.32 (0.50,3.48)	1.28 (0.59,2.81)	1.08 (0.51,2.31)	
2.37 (1.29,4.35)	2.01 (0.87,4.61)	1.57 (0.61,4.02)	1.52 (0.72,3.21)	1.29 (0.63,2.65)	

Table 6. Standard mean difference with 95% confidence interval of clinical improvement.

Abdominal pain

SJ	JC	WJ	Pinaverium	Trimebutine	Placebo
1.34 (0.38,4.73)	1.05 (0.25,4.35)	1.03 (0.39,2.72)	1.30 (0.48,3.51)	1.29 (0.50,3.48)	
1.45 (0.71,2.98)	1.08 (0.38,3.05)	1.34 (0.33,5.38)	1.28 (0.72,3.21)	1.29 (0.63,2.65)	
1.88 (0.94,3.76)	1.41 (0.33,5.92)	1.34 (0.33,5.38)	1.28 (0.72,3.21)	1.29 (0.63,2.65)	
4.01 (1.14,14.17)	2.99 (0.50,17.81)	2.85 (0.50,16.33)	2.76 (0.65,11.80)	2.13 (0.51,8.98)	

Abdominal distension

SJ	JC	WJ	Pinaverium	Trimebutine	Placebo
1.34 (0.42,4.72)	1.41 (0.25,4.35)	1.03 (0.39,2.72)	1.30 (0.48,3.51)	1.29 (0.50,3.48)	
1.45 (0.71,2.98)	1.08 (0.38,3.05)	1.34 (0.33,5.38)	1.28 (0.72,3.21)	1.29 (0.63,2.65)	
1.88 (0.94,3.76)	1.41 (0.33,5.92)	1.34 (0.33,5.38)	1.28 (0.72,3.21)	1.29 (0.63,2.65)	
4.01 (1.14,14.17)	2.99 (0.50,17.81)	2.85 (0.50,16.33)	2.76 (0.65,11.80)	2.13 (0.51,8.98)	

Stool character

SJ	JC	WJ	Pinaverium	Trimebutine	Placebo
1.17 (0.49,2.82)	1.14 (0.46,2.80)	1.16 (0.58,2.33)	1.16 (0.58,2.33)	1.02 (0.58,1.81)	
1.34 (0.61,2.92)	1.14 (0.46,2.80)	1.16 (0.58,2.33)	1.16 (0.58,2.33)	1.02 (0.58,1.81)	
1.36 (0.80,2.33)	2.32 (1.21,4.45)	2.03 (0.67,6.18)	1.99 (0.77,5.18)	1.03 (0.45,2.35)	
2.72 (0.91,8.12)	2.32 (1.21,4.45)	2.03 (0.67,6.18)	1.99 (0.77,5.18)	1.03 (0.45,2.35)	
2.79 (1.01,7.71)	2.37 (1.42,3.97)	2.08 (0.74,5.88)	2.04 (0.86,4.86)	1.03 (0.45,2.35)	
3.22 (1.23,8.44)	2.75 (1.85,4.08)	2.41 (0.90,6.44)	2.36 (1.06,5.26)	1.19 (0.55,2.54)	

Annotation

*P<0.05. JC: Jianpi-Chu shi therapy; WJ: Wenshen-Jianpi therapy; SJ: Shugan-Jianpi therapy.

https://doi.org/10.1371/journal.pone.0255665.t006

Wenshen-Jianpi therapy, largely consists of *Myristicae Semen* (Rou dou kou), *Zingiberis Rhizoma* (Gan jiang), can regulate the expression of gastrointestinal hormones and their receptors such as melatonin, cholecystokinin, and CGRP [62]. Another clinical study also found that Wenshen-Jianpi therapy can regulate the expression of neurotransmitters such as 5-HT, neuropeptide Y, and immune factors such as TNF-γ [63]. In conclusion, CHM formulae can act on the IBS patients through multi-targets and multi-pathway, so that to improve their clinical symptoms. There were several limitations to this meta-analysis. Firstly, the quality of included trials was not optimal due to methodological shortcomings. When evaluating these studies, we found that many lacked details on allocation concealment or blinding. The former will cause selection bias and the latter will result in detection bias. Besides, although many studies reported the dropouts, only 3 studies [34, 41, 44] performed intention-to-treat (ITT), which, to
Table 7. Risk ratio with 95% confidence interval of adverse effects.

	WJ	Placebo	Pinaverium	JC	SJ	Probiotics	Trimebutine	Antidiarrheic
	0.91	0.74	0.97	0.74	0.72	0.70	0.70	0.97
	(0.32,2.64)	(0.35,1.57)	(0.41,2.31)	(0.35,1.45)	(0.72,1.28)	(0.15,3.55)	(0.18,2.79)	(0.05,11.34)
	0.68	0.74	0.96	0.96	0.72	0.70	0.73	0.79
	(0.21,2.21)	(0.35,1.45)	(0.41,2.38)	(0.35,1.45)	(0.72,1.28)	(0.13,4.22)	(0.11,8.50)	(0.07,9.27)
	0.66	0.74	0.97	0.74	0.72	0.70	0.70	0.79
	(0.17,2.60)	(0.35,1.45)	(0.41,2.38)	(0.35,1.45)	(0.72,1.28)	(0.15,3.55)	(0.11,8.50)	(0.07,9.27)
	0.65	0.71	0.96	0.98	0.73	0.73	0.97	0.81
	(0.20,2.08)	(0.35,1.45)	(0.41,2.38)	(0.41,2.38)	(0.13,4.22)	(0.11,8.50)	(0.05,11.34)	(0.07,9.27)
	0.48	0.52	0.70	0.70	0.72	0.73	0.70	0.79
	(0.06,3.70)	(0.08,3.23)	(0.12,4.03)	(0.12,4.03)	(0.15,3.55)	(0.13,4.22)	(0.18,2.79)	(0.05,11.34)
	0.46	0.51	0.68	0.70	0.71	0.71	0.70	0.79
	(0.10,2.13)	(0.12,2.16)	(0.17,2.73)	(0.15,3.29)	(0.18,2.79)	(0.13,4.22)	(0.11,8.50)	(0.05,11.34)
	0.37	0.41	0.55	0.57	0.58	0.79	0.79	0.81
	(0.04,3.84)	(0.05,3.47)	(0.07,4.24)	(0.06,5.13)	(0.08,4.33)	(0.05,11.34)	(0.07,9.27)	(0.07,9.27)

Annotation

*P<0.05. JC: Jianpi-Chushi therapy; WJ: Wenshen-Jianpi therapy; SJ: Shugan-Jianpi therapy.

https://doi.org/10.1371/journal.pone.0255665.t007

Fig 9. Surface under the cumulative ranking curve plot: (a) Abdominal pain; (b) Abdominal distension; (c) Stool character; (d) Adverse effects.

https://doi.org/10.1371/journal.pone.0255665.g009
some extent, may lead to incomplete outcome data and increase the attrition bias. Secondly, most of the included trials were single center with only 5 multicenter studies [27, 33, 34, 35, 40] and small sample sizes. The study contains 20 arms of SJ with 1361 patients, but there were only 4 arms of JC with 130 patients and 4 arms of WJ involving 163 patients. Due to the limited number of trials, the results of JC and WJ may cause bias. Therefore, more multi-center and large-scale trials should be conducted to offer more proofs in the future. Thirdly, the diversity of different CHM formulae may generate heterogeneity. Although we classified CHM formulae into 3 categories based on their function, the constitution of herbs was different from one formula to another and the dosage of each formula was personalized. Therefore, the

Fig 10. Grading of recommendations assessment, development and evaluation quality grading assessment.

https://doi.org/10.1371/journal.pone.0255665.g010
differentiation of herbs and ingredients may affect the final effects. Moreover, the variation in the herbs themselves such as source, preparation, complication proportion, and decoction time might all be the source of heterogeneous. Besides, the differentiation of Chinese medicine formulations such as decoction, capsules, and powder, may influence the chemical composition and may result in heterogeneous. Fourthly, nearly all of the included trials were conducted in China and the populations were Chinese, which will generate publication and cultural bias. In addition, the positive-controlled in this study were not strictly in accord with the guideline. Hence, it does limit the value of the evidence, and more clinical trials using standard treatments as a comparison should be conducted in the future. Further, most of our included studies involved patients with IBS-D, which makes it hard to evaluate the efficacy of TCM in other subtypes of IBS. Finally, the treatment course of the included studies varied from 4 to 8 weeks, most of which lack long-term follow-up. Consequently, the recurrent rate remained unclear after treatment and thus was unable to evaluate the long-term efficacy of CHM formulae. In conclusion, it is still hard to find out whether patients with IBS in large-scale trials and other races can still get similar benefits from CHM formulae in the long-term use.

Conclusion
Evidence from this NMA confirmed that Shugan-Jianpi therapy, Jianpi-Chushi therapy, and Wenshen-Jianpi therapy could be beneficial for patients with IBS in relieving their different dimensions of clinical symptoms and improving their quality of life. These findings could provide physicians and patients with appropriate treatments based on the specific characteristics of IBS. However, additional high-quality RCTs should be performed to provide more powerful evidence in a wider population of IBS patients.

Supporting information
S1 File. PRISMA checklist.
(PDF)
S2 File. Search strategy.
(PDF)
S3 File. Access to include trials.
(PDF)

Acknowledgments
We would like to appreciate all editors/reviewers for their helpful comments and valuable suggestions.

Author Contributions
Conceptualization: Yun-bo Wu, Ling Hu.
Data curation: Yun-bo Wu, Yun-kai Dai.
Formal analysis: Yun-bo Wu, Ling Zhang.
Funding acquisition: Ling Hu.
Investigation: Yun-bo Wu.
Methodology: Yun-bo Wu, Yun-kai Dai, Ling Hu.
Project administration: Yun-bo Wu.
Software: Yun-bo Wu, Ling Zhang.
Supervision: Huai-geng Pan, Wei-jing Chen, Ru-liu Li, Ling Hu.
Writing – original draft: Yun-bo Wu.
Writing – review & editing: Yun-bo Wu, Yun-kai Dai.

References
1. Ford AC, Lacy BE, Talley NJ. Irritable Bowel Syndrome. N Engl J Med. 2017; 376(26):2566–78. https://doi.org/10.1056/NEJMra1607547 PMID: 28657875
2. Li X, Chang M, Dong X, Fang X. The current status of the epidemiological study of irritable bowel syndrome in China. Chinese Journal of Gastroenterology and Hepatology. 2013; 22(8):734–9. http://doi.org/10.3969/j.issn.1006-5709.2013.08.005
3. Card T, Canavan C, West J. The epidemiology of irritable bowel syndrome. Clin Epidemiol. 2014:71. https://doi.org/10.2147/CLEP.S40245 PMID: 24523597
4. Drossman DA, Hasler WL. Rome IV: Functional GI Disorders: Disorders of Gut-Brain Interaction. Gastroenterology. 2016; 150(6):1257–61. https://doi.org/10.1053/j.gastro.2016.03.035 PMID: 27147121
5. Drossman DA, Camilleri M, Mayer EA, Whitehead WE. AGA technical review on irritable bowel syndrome. Gastroenterology. 2002; 123(6):2108–31. https://doi.org/10.1053/gast.2002.37095 PMID: 12454866
6. Talley NJ, Spiller R. Irritable bowel syndrome: a little understood organic bowel disease? Lancet. 2002; 360(9332):555–64. https://doi.org/10.1016/S0140-6736(02)09712-X PMID: 12241674
7. Jones MP, Tack J, Van Oudenhove L, Walker MM, Holtmann G, Koloski NA, et al. Mood and Anxiety Disorders Precede Development of Functional Gastrointestinal Disorders in Patients but Not in the Population. Clin Gastroenterol Hepatol. 2017; 15(7):1014–20. https://doi.org/10.1016/j.cgh.2016.12.032 PMID: 28087404
8. Matronic J, Meleine M, Gelot A, Piche T, Dapoigny M, Muller E, et al. Review article: associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment Pharmac Ther. 2012; 36(11–12):1009–31. https://doi.org/10.1111/apt.12080 PMID: 23066886
9. Saha L. Irritable bowel syndrome: Pathogenesis, diagnosis, treatment, and evidence-based medicine. World J Gastroenterol. 2014; 20(22):6759. http://doi.org/10.3748/wjg.v20.i22.6759
10. Spiegel BMR. Questioning the Bacterial Overgrowth Hypothesis of Irritable Bowel Syndrome: An Epidemiologic and Evolutionary Perspective. Clin Gastroenterol H. 2011; 9(6):461–9. http://doi.org/10.1016/j.cgh.2011.02.030
11. Morgan V. Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome. Gut. 2005; 54(5):601–7. https://doi.org/10.1136/gut.2004.047423 PMID: 15831901
12. Spiller RC. Effects of serotonin on intestinal secretion and motility. Curr Opin Gastroenterol. 2001; 17(2):99–103. https://doi.org/10.1097/00001574-200103000-00001 PMID: 11224663
13. Jailwala J, Imperiale TF, Kroenke K. Pharmacologic treatment of the irritable bowel syndrome: a systematic review of randomized, controlled trials. Ann Intern Med. 2000; 133(2):136–47. https://doi.org/10.7326/0003-4819-133-2-200007180-00013 PMID: 10896640
14. Distrutti E, Monaldi L, Ricci P, Fiorucci S. Gut microbiota role in irritable bowel syndrome: New therapeutic strategies. World J Gastroenterol. 2016; 22(7):2219–41. https://doi.org/10.3748/wjg.v22.i7.2219 PMID: 26900286
15. Brandt LJ, Chey WD, Foxx-Orenstein AE, Schiller LR, Schoenfeld PS, Spiegel BM, et al. An evidence-based position statement on the management of irritable bowel syndrome. Am J Gastroenterol. 2009; 104 Suppl 1: S1–35. https://doi.org/10.1038/aig.2008.122 PMID: 19521341
16. Bi Z, Zheng Y, Yuan J, Bian Z. The Efficacy and Potential Mechanisms of Chinese Herbal Medicine on Irritable Bowel Syndrome. Curr Pharm Des. 2017; 23(34):5163–72. https://doi.org/10.2174/138161223666170822101606 PMID: 28909984
17. Li DY, Dai YK, Zhang YZ, Huang MX, Li RL, Ou-Yang J, et al. Systematic review and meta-analysis of traditional Chinese medicine in the treatment of constipation-predominant irritable bowel syndrome. Plos One. 2017; 12(12): e189491. https://doi.org/10.1371/journal.pone.0189491 PMID: 29253850
18. Dai Y, Li D, Zhang Y, Huang M, Zhou Y, Ye J, et al. Efficacy and safety of Modified Tongxie Yaofang in diarrhea-predominant irritable bowel syndrome management: A meta-analysis of randomized, positive medicine-controlled trials. Plos One. 2018; 13(2): e192319. https://doi.org/10.1371/journal.pone.0192319 PMID: 29408906

19. Zhou Y, Han S, He Y. Clinical Effects and Safety of Tongxieyaofang on Diarrhea Predominant Irritable Bowel Syndrome: A Meta-Analysis of Randomized Trails. Evid Based Complement Alternat Med. 2019; 2019:4893876. https://doi.org/10.1155/2019/4893876 PMID: 30723513

20. Zhu JJ, Liu S, Su XL, Wang ZS, Guo Y, Li YJ, et al. Efficacy of Chinese Herbal Medicine for Diarrhea-Predominant Irritable Bowel Syndrome: A Meta-Analysis of Randomized, Double-Blind, Placebo-Controlled Trials. Evid Based Complement Alternat Med. 2016; 2016:4071260. https://doi.org/10.1155/2016/4071260 PMID: 27547226

21. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009; 339: b2700. https://doi.org/10.1136/bmj.b2700 PMID: 19622552

22. Higgins JP, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011; 343:d5928. https://doi.org/10.1136/ bmj.d5928 PMID: 22008217

23. Dias S, Welton NJ, Caldwell DM, Ades AE. Checking consistency in mixed treatment comparison meta-analysis. Stat Med. 2010; 29(7–8):932–44. https://doi.org/10.1002/sim.3767 PMID: 20213715

24. Salianti G, Ades AE, Ioannidis JP. Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial. J Clin Epidemiol. 2011; 64(2):163–71. https://doi.org/10.1016/j.jclinepi.2010.03.016 PMID: 20688472

25. Chen C. A clinical observation on the treatment of Diarrhea-Predominant Irritable Bowel Syndrome (Liver depression and Spleen deficiency pattern) with modified Tongxie Formula: Hunan University of Chinese Medicine. 2019. http://doi.org/10.27138/d.cnki.gzhucc.2019.000149

26. Shih Y, Tsai C, Li T, Lai H, Wang K, Liao W, et al. The effect of Xiang-Sha-Liu-Jun-Zi Tang (XSLJZT) on irritable bowel syndrome: A randomized, double-blind, placebo-controlled trial. J Ethnopharmacol. 2019; 238:111889. https://doi.org/10.1016/j.jep.2019.111889 PMID: 31009707

27. Tang XD, Zhang SS, Hou XH, Li ZH, Chen SN, Feng PM, et al. Post-marketing Re-evaluation of Tongxi-ening Granules in Treatment of Diarrhea-Predominant Irritable Bowel Syndrome: A Multi-center, Randomized, Double-Blind, Double-Dummy and Positive Control Trial. Chin J Integr Med. 2019; 25(12):987–94. https://doi.org/10.1007/s11655-019-9303-x PMID: 31292845

28. Wang X. Clinical observation on treatment of diarrhea-predominant irritable bowel syndrome (spleen and stomach weakness type) with modified YiGong Decoction: Hubei University of Traditional Chinese Medicine; 2019.

29. Yue Z. A clinical observation on Gegenqinl ian Decoction with Sini Decoction in the treatment of IBS-D (Dampness-Heat pattern): Guangxi University of Chinese Medicine; 2019. http://doi.org/10.27879/d.cnki.ggxzy.2019.000156

30. Zhang S. Research on Diarrhea formula in treating diarrhea-predominant irritable bowel syndrome with syndrome of Liver depression and Spleen deficiency: Chengdu University of TCM; 2019. http://doi.org/10.26988/d.cnki.gctzu.2019.000467

31. Zhao H, Wu X, Yang Y, Ge Z. Therapeutic Evaluation of Irritable Bowel Syndrome with Diarrhea Treated by Warming the Spleen and Stomach and Nourishing the Gut. Chinese General Practice. 2019; 22(25):3137–43.

32. Zheng F. Clinical observation on Ren Shen Bai Du powder modification treating diarrhea-predominant irritable bowel syndrome (Liver-stagnation and Spleen-deficiency syndrome): Chengdu University of CHM; 2019. http://doi.org/10.26988/d.cnki.gctzu.2019.000610

33. Chen M, Tang TC, Wang Y, Shui J, Xiao XH, Lan X, et al. Randomised clinical trial: Tong-Xie-Yao-Fang granules versus placebo for patients with diarrhea-predominant irritable bowel syndrome. Aliment Pharm Ther. 2018; 48(2):160–8. https://doi.org/10.1111/apt.14817 PMID: 29856472

34. Tang X, Lu B, Li Z, Wei W, Meng L, Li B, et al. Therapeutic Effect of Chang’an I Recipe (I) on Irritable Bowel Syndrome with Diarrhea: A Multicenter Randomized Double-Blind Placebo-Controlled Clinical Trial. Chin J Integr Med. 2018; 24(9):645–52. https://doi.org/10.1007/s11655-016-2596-9 PMID: 27487786

35. Wang JD, Yang ZT, Qiu XP, Niu KM, Shen QY, T Z. Observation of the therapeutic effects of methods of liver-dispersing, spleen-invigorating, kidney-reinforcing and intestine-strengthening on diarrhea-predominant irritable bowel syndrome. Beijing Journal of Traditional Chinese Medicine. 2017; 36(08):696–9. http://doi.org/10.16025/j.1674-1307.2017.08.009
36. Fan H, Zheng L, Lai Y, Lu W, Yan Z, Xiao Q, et al. Tongxie Formula Reduces Symptoms of Irritable Bowel Syndrome. Clin Gastroenterol H. 2017; 15(11):1724–32. https://doi.org/10.1016/j.cgh.2017.06.026 PMID: 28634136

37. Zhang Y. A clinical observation on Treatment of Diarrhea Predominant Irritable Bowel Syndrome with different syndrome types of Traditional Chinese Medicine Granules.: Hubei University of Traditional Chinese Medicine; 2017.

38. Chen M. Observation of the Curative Effect of BaShen Decoction in the Treatment of Diarrhea Irritable Bowel Syndrome of Spleen and Kidney Yang Deficiency.: Fujian University of Traditional Chinese Medicine; 2016.

39. Hang M, Chen Q, Huang J, Li S, Wang W, Wang X, et al. Observation of curative effect of the method of regulating the function of liver and spleen on diarrhea-predominate irritable bowel syndrome. Modern Journal of Integrated Traditional Chinese and Western Medicine. 2016; 25(22):2406–7.

40. Bensoussan A, Kellow JE, Bourchier SJ, Fahey P, Shim L, Malcolm A, et al. Efficacy of a Chinese Herbal Medicine in Providing Adequate Relief of Constipation-predominant Irritable Bowel Syndrome: A Randomized Controlled Trial. Clin Gastroenterol Hepatol. 2015; 13(11):1946–54. https://doi.org/10.1016/j.cgh.2015.06.022 PMID: 26133902

41. Cheng Y. The clinical study of Chaishao Tiaogan Decoction treatment on Diarrhea-Predominant Irritable Bowel Syndrome of liver stagnation and spleen deficiency type: Hebei Medical University; 2015.

42. Huang S. The study of Efficacy and mechanism in IBS-D’ Treatment by ChangJiLing based on the “Three Blood Organs” Theory.: Guangzhou University of Chinese Medicine; 2015.

43. Liang H, Chen Q, Wu Y, Chen Y, Huang D. Clinical observation of Bashen Decoction in the treatment of Diarrhea-predominant Irritable Bowel Syndrome. Traditional Chinese Medicine Journal. 2015; 14(03):60–3. http://doi.org/10.14046/j.cnki.zyytb2002.2015.03.027

44. Wei D. Clinical Research of Shenling Baizhu Decoction combined with Pinaverium and Probiotics in the treatment of Diarrhea-Predominant Irritable Bowel Syndrome (Spleen deficiency with dampness encumbrance).: Zhejiang Chinese Medical University; 2015.

45. Yan D. The clinical study of Hehuanlingzhu Decoction treatment on Diarrhea-predominant irritable bowel syndrome of Liver qi stagnation and mind dystrophy type.: Hebei Medical University; 2015.

46. Chen M, Chen J, Xia L, Fu R, Lu Z. reating Irritable Bowel Syndrome with Diarrhea Patients by Yigan Fupi Decoction: A Randomized Controlled Trial. Chinese Journal of Integrated Traditional and Western Medicine. 2014; 34(06):656–60.

47. Cai L, Lv B, Meng L, Ma L, Fan Y. Efficacy of Patients with Diarrhea-Predominant Irritable Bowel Syndrome Treated with Treatment of Dispersing Stagnated Liver-Qi Invigorating Spleen and Warming Kidney. Chinese Archives of Traditional Chinese Medicine. 2013; 31(05):1097–9. http://doi.org/10.13193/j.archtcm.2013.05.139.callj.026

48. Bian L. Clinical effect evaluation of Chang‘anyihao Decoction in treating IBS-D and Research of IBS clinical effect assessment indices.: China Academy of Chinese Medical Sciences; 2011.

49. Liang Z, Chen R, Xu Y, Chen Q, Dong M. Tiaohe Ganpi Hexin Decoction in the treatment of irritable bowel syndrome with diarrhea: a randomized controlled trial. Journal of Integrative Medicine. 2009; 7(09):819–22. https://doi.org/10.3736/jcim20090904 PMID: 19747435

50. Wu W. A clinical study of modified Heganpiyin in the treatment of IBSD.: Guangzhou University of Chinese Medicine; 2009.

51. Zhao Y. The Experimental and Clinical Study on the Effect of JianpiJieduHuazhuofan g on Irritable Bowel Syndrome.: Hebei Medical University; 2007. Availability: http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=2007177327.nlh&DbName=CDFD2007 Via the Internet.

52. Leung WK, Wu JC, Liang SM, Chan LS, Chan FK, Xie H, et al. Treatment of Diarrhea-Predominant Irritable Bowel Syndrome with Traditional Chinese Herbal Medicine: A Randomized Placebo-Controlled Trial. The American Journal of Gastroenterology. 2006; 101(7):1574–80. https://doi.org/10.1111/j.1572-0241.2006.00576.x PMID: 16863563

53. Savovic J, Weeks L, Sterne JA, Turner L, Altman DG, Moher D, et al. Evaluation of the Cochrane Collaboration’s tool for assessing the risk of bias in randomized trials: focus groups, online survey, proposed recommendations and their implementation. Syst Rev. 2014; 3:37. https://doi.org/10.1186/2046-4053-3-37 PMID: 24731537

54. Puhan MA, Schunemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, et al. A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. BMJ. 2014; 349:g5630. https://doi.org/10.1136/bmj.g5630 PMID: 25252733

55. Gastroenterology Society of CMA. Chinese expert consensus of irritable bowel syndrome in 2020. Chin J Dig. 2020; 40(12):803–18.
56. Lu AP, Jia HW, Xiao C, Lu QP. Theory of traditional Chinese medicine and therapeutic method of diseases. World J Gastroenterol. 2004; 10(13):1854–6. https://doi.org/10.3748/wjg.v10.i13.1854 PMID: 15222022

57. Choi SH, Chang IM. A Milestone in Codifying the Wisdom of Traditional Oriental Medicine: TCM, Kampo, TKM, TVM-WHO International Standard Terminologies on Traditional Medicine in the Western Pacific Region. Evid Based Complement Alternat Med. 2010; 7(3):303–5. https://doi.org/10.1093/ecam/nen083 PMID: 19124553

58. Li Q, Yang GY, Liu JP. Syndrome differentiation in chinese herbal medicine for irritable bowel syndrome: a literature review of randomized trials. Evid Based Complement Alternat Med. 2013; 2013:232147. https://doi.org/10.1155/2013/232147 PMID: 23554827

59. Shang J, Yuan J, Xie J. Effects of “Shugan Beverage” on expression of TRPV1 and content of CGRP in colon tissue of rats with visceral hypersensitivity. Shanghai Journal of Traditional Chinese Medicine. 2012; 46(07):69–72. http://doi.org/10.16305/j.1007-1334.2012.07.023

60. Li G, Ning Z, Li X, Su W. Immunology mechanism of harmonizing the liver and spleen on irritable bowel syndrome. Journal of Tianjin Medical University. 2011; 17(03):317–9.

61. Feng W, Wu H. Effect of traditional Chinese Medicine on Intestinal Flora Imbalance in Irritable Bowel Syndrome. Liaoning Journal of Traditional Chinese Medicine. 2017; 44(08):1787–8. http://doi.org/10.13192/j.issn.1000-1719.2017.08.076

62. Wang X, Ye M. Ye W. Effect of Chaihu Guizhi ganjiang Decoction on Irritable Bowel Syndrome of Diarrhea Type Gastrointestinal Hormones. Fujian Journal of Traditional Chinese Medicine. 2006(01):10–1.

63. Liang J, Chen Q, Zhang X. Changes of Gastrointestinal Hormones in Diarrhea Predominant Irritable Bowel Syndrome Treated by Tongxie Sishen Decoction and Its Clinical Significance. World Journal of Traditional Chinese Medicine. 2020; 15(01):71–5.