Supplementary content

Sword-like CuO/CeO$_2$ composites derived from Ce-BTC metal organic framework with superior CO oxidation performance

Yin Wang a, Yiqiang Yang a, Ning Liu a, Yuxin Wang b, Xiaodong Zhang $^a, ^*$

a School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China

b Institute of Applied Biotechnology, Taizhou Vocation & Technical College, Taizhou Zhejiang 318000, China

* To whom correspondence should be addressed. Tel. +86 15921267160, Fax. +86 021 55275979
E-mail address: fatzhxd@126.com, zhangxiaodong@usst.edu.cn (X.D. Zhang)
Table S1 Physicochemical properties of CuCe-BTC materials

Catalysts	BET (m² g⁻¹)	Pore volume (cm³ g⁻¹)	Pore size (nm)
CuCeBTC-2	101	0.25	1.3~4
CuCeBTC-5	120	0.28	1.3~4
CuCeBTC-10	143	0.31	0.5~4
CuCeBTC-20	194	0.23	0.5~4
Ce-BTC [¹]	42	0.085	1.5~2
Table S2 Surface elemental composition and states of CuO/CeO$_2$ catalysts determined by XPS results

Catalysts	Surface composition (at.%)	O_{lat} (%)	O_{ads} (%)	O_{OH} (%)	Cu$^{+0}$ (%)	Cu$^{2+}$ (%)
CuCeO-2	4.51 17.97 54.16 23.36	60.3	18.2	21.5	48	52
CuCeO-5	5.07 16.59 53.61 24.73	72	17.2	10.8	70	30
CuCeO-10	5.55 16.94 52.4 25.11	69	10.8	20.2	63	27
CuCeO-20	8.61 15.19 51.13 25.07	64	10.3	25.7	54	46
CeO$_2$[2]	— 12.27 50.19 37.54	91.7	—	—	—	—
Table S3 H_2 consumption amount and reduction temperature of CuO/CeO$_2$ catalysts

Catalysts	α peak H_2 consumption ($\mu\text{mol g}^{-1}$)	Peak temperature ($^\circ\text{C}$)	β peak H_2 consumption ($\mu\text{mol g}^{-1}$)	Peak temperature ($^\circ\text{C}$)	γ peak H_2 consumption ($\mu\text{mol g}^{-1}$)	Peak temperature ($^\circ\text{C}$)
CuCeO-2	373	150	907	165	619	193
CuCeO-5	1030	146	1994	175	186	204
CuCeO-10	1122	150	4030	176	211	214
CuCeO-20	2364	182	5791	212	346	251
Table S4 Catalytic activities for CO oxidation of CuO/CeO$_2$ catalysts derived from MOFs

Catalysts	Synthesis method	Morphology	Cu content (%)	Space velocity (mL h$^{-1}$ g$^{-1}$)	T_{100}(°C)	References
CuO/CeO$_2$	In-situ solvothermal	Sword	4.18	18000	100	This work
CuO-CeO$_2$	Incipient wetness	Irregular particle	-	20000	150	20
CeO$_2$:Cu$^{2+}$	In-situ solvothermal method	Nanorods made up of many particles	10	60000	200	21
CuO@CeO$_2$	Incipient wetness	Irregular spherical	30	48000	95	33
Supplementary caption

Fig. S1 XRD patterns of CeBTC (a), CuBTC (b), CuCeBTC-2 (c), CuCeBTC-5 (d), CuCeBTC-10 (e) and CuCeBTC-20 (f).

Fig. S2 TG curves of CeBTC (a), CeCuBTC-5 (b), CeCuBTC-10 (c) and CeCuBTC-20 (d).

Fig. S3 N_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeBTC (a), CuCeBTC-2 (b), CuCeBTC-5 (c), CuCeBTC-10 (d) and CuCeBTC-20 (e).

Fig. S4 SEM images of CeBTC (a), CeCuBTC-2 (b), CeCuBTC-5 (c), CeCuBTC-10 (d) and CeCuBTC-20 (e).

Fig. S5 N_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeO$_2$ (a), CuCeO-2 (b), CuCeO-5 (c), CuCeO-10 (d) and CuCeO-20 (e).

Fig. S6 XRD results of CuCeO-5 before (a) and after (b) CO oxidation reaction

Fig. S7 TEM result of CuCeO-5 after CO oxidation reaction

Fig. S8 Catalytic activities for CO oxidation of CuCeO-2 (A), CuCeO-5 (B), CuCeO-10 (C) and CuCeO-20 (D) reused for three times

Fig. S9 Catalytic activities for CO oxidation at different space velocities (30000 mL h$^{-1}$ g$^{-1}$ (A), 60000 mL h$^{-1}$ g$^{-1}$ (B)) of CuCeO-2 (a), CuCeO-5 (b), CuCeO-10 (c) and CuCeO-20 (d).
Fig. S1 XRD patterns of CeBTC (a), CuBTC (b), CuCeBTC-2 (c), CuCeBTC-5 (d), CuCeBTC-10 (e) and CuCeBTC-20 (f).
Fig. S2 TG curves of CeBTC (a), CeCuBTC-5 (b), CeCuBTC-10 (c) and CeCuBTC-20 (d).
Fig. S3 \textit{N}_2 adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeBTC (a), CuCeBTC-2 (b), CuCeBTC-5 (c), CuCeBTC-10 (d) and CuCeBTC-20 (e).
Fig. S4 SEM images of CeBTC (a), CeCuBTC-2 (b), CeCuBTC-5 (c), CeCuBTC-10 (d) and CeCuBTC-20 (e).
Fig. S5 N$_2$ adsorption-desorption isotherms (A) and corresponding pore size distributions (B) of CeO$_2$ (a), CuCeO-2 (b), CuCeO-5 (c), CuCeO-10 (d) and CuCeO-20 (e).
Fig. S6 XRD results of CuCeO-5 before (a) and after (b) CO oxidation reaction
Fig. S7 TEM result of CuCeO-5 after CO oxidation reaction
Fig. S8 Catalytic activities for CO oxidation of CuCeO-2 (A), CuCeO-5 (B), CuCeO-10 (C) and CuCeO-20 (D) reused for three times.
Fig. S9 catalytic activities for CO oxidation at different space velocities (30000 mL h⁻¹ g⁻¹ (A), 60000 mL h⁻¹ g⁻¹ (B)) of CuCeO-2 (a), CuCeO-5 (b), CuCeO-10 (c) and CuCeO-20 (d).