Lateral gene transfer (LGT) facilitates many processes in bacterial ecology and pathogenesis, especially regarding pathogen evolution and the spread of antibiotic resistance across species. The obligate intracellular chlamydiae, which cause a range of diseases in humans and animals, were historically thought to be highly deficient in this process. However, research over the past few decades has demonstrated that this was not the case. The first reports of homologous recombination in the *Chlamydiaceae* family were published in the early 1990s. Later, the advent of whole-genome sequencing uncovered clear evidence for LGT in the evolution of the *Chlamydiaceae*, although the acquisition of tetracycline resistance in *Chlamydia (C.) suis* is the only recent instance of interphylum LGT. In contrast, genome and *in vitro* studies have shown that intraspecies DNA exchange occurs frequently and can even cross species barriers between closely related chlamydiae, such as between *C. trachomatis*, *C. muridarum*, and *C. suis*. Additionally, whole-genome analysis led to the identification of various DNA repair and recombination systems in *C. trachomatis*, but the exact machinery of DNA uptake and homologous recombination in the chlamydiae has yet to be fully elucidated. Here, we reviewed the current state of knowledge concerning LGT in *Chlamydia* by focusing on the effect of homologous recombination on the chlamydial genome, the recombination machinery, and its potential as a genetic tool for *Chlamydia*.

Keywords: horizontal gene transfer, homologous recombination, *Chlamydiaceae*, RecBCD, RecFOR, co-infection, membrane proteins, DNA uptake

INTRODUCTION

The gram-negative *Chlamydiaceae* family consists of several pathogenic species that cause diseases ranging from pneumonia to sexually transmitted infections (STI) in humans, livestock, pets, and wildlife. In humans, *Chlamydia (C.) trachomatis* is the cause of chronic eye infections leading to blindness (trachoma), and STI, while *C. pneumoniae* induces community-acquired pneumonia. *C. psittaci* is a zoonotic pathogen primarily detected in birds causing flu-like symptoms to life-threatening pneumonia in humans. *C. abortus* is the cause of ovine enzootic abortion (OEA) in sheep and goats and may also induce miscarriage in women. In contrast, *C. suis*, another chlamydial species with zoonotic potential, is found in the eyes and intestinal tract of pigs, often remaining asymptomatic (Dean et al., 2013; De Puysseleyr et al., 2014; De Puysseleyr et al., 2017; Sachse and Borel, 2020; Jordan et al., 2020). Although the chlamydial obligate intracellular life cycle is reflected...
by extensive streamlining and reduction of the genome (Palmer, 2002; Toft and Andersson, 2010), the Chlamydiaceae possess a number of genes involved in DNA uptake, recombination, and repair (Stephens et al., 1998; LaBrie et al., 2019) enabling intra- and interspecies lateral gene transfer (Suchland et al., 2009; Somboonna et al., 2011; Joseph and Read, 2012; Joseph et al., 2015; Marti et al., 2017).

Lateral, or horizontal, gene transfer (LGT) involves transfer of genetic material (DNA) from one cell to another and subsequent integration into the genome of the recipient cell. In bacteria, DNA transfer is primarily facilitated by transduction (bacteriophage infection), conjugation/mobilization/conduction (plasmid transfer), and transformation (upake of naked DNA). DNA integration is then directed by homologous or non-homologous recombination (Redfield, 2001).

Here, we will review the current state of knowledge regarding lateral gene transfer (LGT) in the Chlamydiaceae by focusing on i) the impact of recombination on the Chlamydiaceae genome, ii) the homologous recombination machinery of the Chlamydiaceae, and iii) homologous recombination as a potential genetic tool.

THE IMPACT OF HOMOLOGOUS RECOMBINATION ON THE CHLAMYDIAL GENOME

The first reports providing evidence for intrastrain recombination within C. trachomatis were published in the 1990s and were based on gene-specific sequence analysis of ompA, which encodes the major outer membrane protein (MOMP) (Lampe et al., 1993; Brunham et al., 1994; Hayes et al., 1994; Hayes et al., 1995).

Whole-genome analysis of laboratory and clinical strains later revealed that recombination events occurred across the entire genome during the evolution of C. trachomatis (Jeffrey et al., 2010; Joseph et al., 2013; Harris et al., 2012), as well as other chlamydial species such as C. pneumoniae, C. psittaci, and C. suis (Read et al., 2013; Roulis et al., 2015; Joseph et al., 2016; Seth-Smith et al., 2017b). Interestingly, investigation of C. abortus revealed no sign of recombination in currently circulating strains (Joseph et al., 2015; Seth-Smith et al., 2017a).

Whole-genome analyses further identified regions of high genomic diversity and, in parallel, regions with apparently higher rates of recombination. In C. trachomatis and C. pneumoniae, these included ompA (Hayes et al., 1994), the polymorphic membrane protein-encoding genes (pmps) (Jordan et al., 2001; Rocha et al., 2002; Brunelle and Sensabaugh, 2006), incA, and the translocated actin-recruiting phosphoprotein-encoding gene tarp (Joseph et al., 2012; Joseph and Read, 2012; Roulis et al., 2015), as well as the plasticity zone (PZ) (Jeffrey et al., 2010).

Tarp is an important effector protein involved in the restructuring of the host cytoskeleton (Tolchard et al., 2018). The PZ encodes for a range of different genes that are hypothesized to have important functions in the pathogenicity of the chlamydiae and may be a site of increased susceptibility for DNA uptake, genetic variation, and functional gene loss (Read et al., 2000; Thomson et al., 2008; Rajaram et al., 2015).

In the evolution and diversification of the Chlamydiaceae family, widespread gene rearrangement and translocation were identified between C. pneumoniae and C. trachomatis (Tillier and Collins, 2000). Furthermore, LGT events were detected both within and among the four major strain clusters of C. trachomatis, namely, the lymphogranuloma venereum (LGV), the trachoma, and two urogenital (T1, T2) clusters (Hadfield et al., 2017). Some studies have shown that this could have a clinical impact in terms of virulence and epidemiology (Somboonna et al., 2011; Andersson et al., 2016; Hadfield et al., 2017; Borges et al., 2019). Moreover, the effect of recombination can vary greatly between the four above-mentioned lineages of C. trachomatis, with the ocular strains being less affected than the urogenital lineages and the clonal LGV lineage having undergone no significant recombination (Hadfield et al., 2017; Seth-Smith et al., 2021).

Overall, current data suggest that C. psittaci, C. pneumoniae, and C. suis have undergone higher rates of recombination than the entirety of the four C. trachomatis lineages. However, direct comparison between studies remains difficult due to the varying number of available genomes per species and because of the different approaches used to calculate recombination rates and other statistics that aim to quantify the recombination rate of a population (Read et al., 2013; Joseph et al., 2015; Roulis et al., 2015; Joseph et al., 2016; Hadfield et al., 2017; Seth-Smith et al., 2017b).

Additionally, one study proposed that ribosomal binding sites and tRNA may be associated with recombinant breakpoints (Gomes et al., 2006). However, these findings have yet to be confirmed in in vitro studies. So far, in vitro studies dealing with LGT following co-infection found little evidence for specific patterns, regions, or sites of recombination (Jeffrey et al., 2013; Marti et al., 2021), although there are notable differences between interspecies and intraspecies crosses, with intraspecies crosses generally leading to a higher proportion of donor DNA in the recombinant strains (Suchland et al., 2019). Moreover, the same study found that the replication termination is a target for interspecies recombination.

One very interesting chlamydial species in the context of LGT is C. suis. It is the only chlamydial species to have naturally obtained a resistance gene, tetA(C), which encodes a tetracycline efflux pump. This resistance allele and its genetic content were transferred via feeding of pigs with fish meal (Sandoz and Rockey, 2010) and was selected for with the use of tetracycline as a growth promoter in pig production facilities (Dugan et al., 2004). The use of tetracycline in pigs as prophylactic and...
therapeutic treatment has been shown to increase the rate of *C. suis* strains positive for *tetA(C)* (Borel et al., 2012; Borel et al., 2016; Wanninger et al., 2016), and whole-genome analysis and *in vitro* studies have indicated that intraspecies spread of *tetA(C)* is the result of homologous recombination (Joseph et al., 2016; Marti et al., 2017; Marti et al., 2021).

It is concerning that the *tetA(C)* marker can readily and stably integrate into *C. trachomatis* and *C. muridarum* strains *in vitro* (Suchland et al., 2009), leading to the possibility that these strains could acquire tetracycline resistance in clinical settings. This possibility was strengthened when *C. suis* was detected and isolated from the eyes, feaces, and pharynges of veterinarians, pig farmers, and abattoir workers, although tetracycline-resistant *C. suis* strains have yet to be isolated from human samples (Dean et al., 2013; De Puyssely et al., 2014; De Puyssely et al., 2017). Because ocular *C. trachomatis* infection (inclusion conjunctivitis) through autoinoculation with genital *C. trachomatis* strains D-K has been reported (Haller-Schober and El-Shabrawi, 2002), the possibility of Tet-island transmission from *C. suis* to *C. trachomatis* cannot be excluded.

One remarkable finding that has emerged during natural LGT in *Chlamydia* is the difference between cross-species vs. intraspecies genetic transfer occurrence. We envision a model where LGT within the inclusion is very common, to the extent that clonal *C. trachomatis* recombines regularly in inclusions that form following infection with a single EB. The selective driver for such common genetic exchange is currently unclear but would be consistent with the principles of Muller’s Ratchet, where it is hypothesized that random mutation in haploid organisms would lead to fully degraded genomes in the absence of LGT (Joseph et al., 2011; Takeuchi et al., 2014). Other selective drivers, such as the Hill–Robertson effect, where the overall responsiveness to selection is reduced in finite populations, may also play a role (Joseph et al., 2011). Therefore, we propose that the reason for such common intraspecies LGT is to regenerate or maintain wild-type genomes in an intracellular environment that otherwise might be considered stressful and mutagenic (MacLean et al., 2013; Maharjan and Ferenci, 2017).

THE CHLAMYDIAL RECOMBINATION MACHINERY

Homologous recombination allows inter- and intragenomic exchange of DNA and therefore plays a crucial role in genetic diversification and DNA repair (Rocha et al., 2005). In bacteria, homologous recombination consists of two major pathways, the RecBCD (*Figure 1A*) and the RecFOR pathway (*Figure 1B*), both of which facilitate DNA exchange between a homologous DNA sequence and single-strand DNA (ssDNA) using the RecA protein (Rocha et al., 2005).

In *Chlamydia*, whole-genome sequencing revealed that the genome contains various genes from the recombination and DNA repair machinery (Stephens et al., 1998; Azuma et al., 2006). However, only few studies have investigated the function and exact mechanism of the chlamydial homologous recombination machinery. The first chlamydial recombination-associated protein to be analyzed was RecA in *C. trachomatis*, which was found to have moderate recombinational activity and possessed low efficiency after DNA damage by UV radiation compared to other bacteria (Hintz et al., 1995; Zhang et al., 1995). Chlamydial RecJ has a similar function as that of other eukaryotic and prokaryotic RecA proteins (Ennis et al., 2000). For the RecBCD pathway, the exact identity of *Chlamydia*-specific Chi sites is unknown, as indicated in *Figure 1* (Gomes et al., 2006).

Overall, it appears that the recombination machinery of the *Chlamydiaceae* family is complete, which underlines the importance of homologous recombination for a bacterial species that has undergone significant gene reduction (Palmer, 2002). However, more studies are necessary to confirm current assumptions that are only based on genomic data. With increasing options to genetically modify the chlamydiae (Valdivia and Bastidas, 2018), these investigations have become a possibility. First advances have already been made in recent years by the creation of knockout mutants in which genes involved in LGT are inactivated (Kokes et al., 2015; LaBrie et al., 2019; Wang et al., 2019). Currently available knockout mutants concerning LGT involving DNA uptake and homologous recombination are listed in *Table 1*.

HOMOLOGOUS RECOMBINATION AND GENETIC ENGINEERING

Genetic manipulation is an indispensable tool for understanding the biology of eukaryotic and prokaryotic cells. In the *Chlamydia* research field, tools for genetic modification have only recently been developed. The currently available methods have been reviewed in detail (Bastidas and Valdivia, 2016); therefore, we will only discuss genetic engineering in the context of homologous recombination.

The first report of successful, albeit transient, transformation of *Chlamydia* was published in the 1990s (Tam et al., 1994). Fifteen years later, a study could stably introduce kasugamycin and spectinomycin resistance into *C. psittaci* by introducing a pUC derivative, which carried the ribosomal RNA (rrn) region of *C. psittaci* with resistance-inducing point mutations, into the wild type using electroporation (Binet and Maurelli, 2009). Shuttle vectors comprising an *E. coli* vector and the chlamydial plasmid later allowed stable and reproducible transformation of *Chlamydia* (Wang et al., 2011), overthrowing the field of *Chlamydia* genetics.
One of the remaining challenges of genetic manipulation of *Chlamydia* spp. is the inability of the pathogen to maintain plasmids with replication systems that do not include the native chlamydial plasmid. There has been significant progress in this field when a very recent report used a recombinant construct based on a broad-spectrum plasmid from *Bordetella pertussis* (pBBR1 MCS4) to transform a *C. trachomatis* L2 strain. This plasmid, pBVR1, contained *C. trachomatis* genomic sequences that allowed integration of the element into the *C. trachomatis* chromosome. This construct was maintained as both an episome and an integrated element in transformed strains. It is expected that further work with the pBBR1 vector system will perhaps allow the maintaining of non-chlamydial-plasmid-based genetic elements in transformed strains (Garvin et al., 2021).

Additionally, co-culture models were established as an alternative method to genetically modify the chlamydiae by co-infecting cells with two *C. trachomatis* strains, each carrying resistance-conferring mutations to either ofloxacin, lincomycin,
trimethoprim, or rifampicin, and selecting for double-resistant recombinants. These studies detected recombination frequencies of 10^{-4} to 10^{-3} and further proposed that LGT likely played an important part in chlamydial evolution (DeMars et al., 2007; DeMars and Weinfurter, 2008). Similar protocols further demonstrated that interspecies transfer of the Tet-island from *C. suis* to *C. trachomatis* and *C. muridarum*, but not the more distantly related *C. caviae*, is possible. While *C. muridarum* obtained an approximately 100 kb-long sequence (the Tet-island and surrounding genes) as the result of a homologous recombination-mediated crossover event, co-infection of *C. suis* and *C. trachomatis* produced a mosaic strain with three instead of two *rrn* operons (Suchland et al., 2009). Interspecies transfer of the Tet-island via homologous recombination has been shown for *C. trachomatis* (Jeffrey et al., 2013) and *C. suis*, both in the presence (Marti et al., 2021) and absence (Marti et al., 2017) of double selection. Interestingly, comparison of *in vitro*-generated recombinant strains with clinical strains demonstrated that there are statistically more breakpoints in *in vitro* *C. trachomatis* strains compared to clinical strains, especially in the resistance-conferring genes *rpoB* (rifamycin group) and *gyrA* (ofloxacin) (Srinivasan et al., 2012).

The principle of co-infection and selection for recombinants has since become crucial in genetic engineering of the *Chlamydia*. For example, it has been used as a mapping tool in forward genetics, either by chemical mutagenesis and subsequent selection of recombinants using resistance markers (Nguyen and Valdivia, 2013; Nguyen and Valdivia, 2014) or by employing markerless recombination approaches (Brothwell et al., 2016). Moreover, suicide vectors that allow gene deletion following homologous recombination have been successfully constructed and used (Mueller et al., 2016; McKuen et al., 2017; Mueller et al., 2017). Finally, the principle of interspecies LGT has been exploited to create a hybrid strain library of *C. trachomatis/C. muridarum* crosses: a *tet* resistant *C. trachomatis* strain was crossed *in vitro* with *C. muridarum* strains mutated by the plasmid-based Himar transposition system that randomly integrated a chloramphenicol marker into the genome (Suchland et al., 2019; Wang et al., 2019). This method was then used to produce PZ chimeras where the *C. muridarum* PZ replaced that of *C. trachomatis*, which demonstrated that the *C. muridarum*-specific large putative cytoxins are not responsible for cytopathic and cytotoxic effects. This switch-out method further led to the detection of an inclusion protein, CT147, and CTL042, which plays a role in the inclusion integrity (Dimond et al., 2021). A back-crossing strategy, which is a technique that can be used to effect functional complementation of mutants, was then used to restore both the wild-type genotype and phenotype.

DISCUSSION AND OUTLOOK

Research over the past two decades has identified a paradox with regard to the genetic exchange and transformation within chlamydial. First, decades of effort have demonstrated that *Chlamydia* spp. are very challenging to transform genetically, and even now the use of genetic systems remains difficult. This challenge is further exemplified by the near absence of LGT by members of the chlamydiae from bacteria across species. In contrast, some chlamydiae, notably *C. trachomatis*, undergo regular intraspecies LGT between different isolates.

The rarity of interphyllum LGT events is contrasted with the presence of abundant LGT machinery retained in the chlamydial genome, even despite the considerable genome reduction following adaptation to its intracellular life cycle (Toft and Andersson, 2010). As described in this review, the recombination machinery of *Chlamydia* is complete, although some questions remain, and of the three major known forms of DNA uptake, two have been described. Specifically, while the *Chlamydiaceae* family does not possess a known conjugation machinery (Greub et al., 2004), transformation and transduction are possible. For example, one recent study showed that CT336 in *C. trachomatis*, a protein with limited sequence similarity to the *Bacillus* ComEC protein, plays an important role in DNA uptake *via* transformation (LaBrie et al., 2019). However, the same study noted that other important genes involved in the uptake of free dsDNA, namely, homologs of PilQ, ComEA, and DprA, are absent, which led to the conclusion that natural transformation in the *Chlamydiaceae* is different from that of other gram-negative bacteria, similar to *Helicobacter pylori* (LaBrie et al., 2019). Furthermore, chlamydiaphages (chlamydial bacteriophages) in the *Chla-mydiamicrovirus* genus have been

TABLE 1 | List of knockout mutants concerning genes involved in lateral gene transfer.

Strain name	Species/strain	Mutation	Locus (gene), function	Literature
UWCM026	Cm/Ngg	Transposon mutant (knockout)	TC0212 (muC), DNA recombination protein	Wang et al., 2019
UWCM031	Cm/Ngg	Transposon mutant (knockout)	TO0302 (recD), RecBCD complex	Wang et al., 2019
ctf10707 (ct447)	Ct/L2	Transposon mutant (knockout)	CT1447 (recJ), RecFOR pathway	LaBrie et al., 2019
ctf10730 (ct470)	Ct/L2	Transposon mutant (knockout)	CT470 (recO), RecFOR pathway	LaBrie et al., 2019
CTL2M934	Ct/L2	Transposon mutant, nonsense SNV	CT339 (comEC), DNA uptake (transformation)	Kokes et al., 2015; LaBrie et al., 2019
CTL2M_Pool 27	C.t/L2	Nonsense SNV (knockout)	CT298 (radA), DNA repair protein (recombinase)	Kokes et al., 2015
CTL2M_Pool 23	C.t/L2	Nonsense SNV (knockout)	CT040 (ruvB), Holliday junction ATP-dependent DNA helicase	Kokes et al., 2015
CTL2M_Pool 30	C.t/L2	Nonsense SNV (knockout)	CT625 (muC), DNA recombination	Kokes et al., 2015
CTL2M924	C.t/L2	Nonsense SNV (knockout)	CT660 (gyrA2), DNA gyrase subunit 2, DNA replication	Kokes et al., 2015

C. m. muridarum; C. t. C. trachomatis.

a Single-nucleotide variant (SNV) created with chemical mutagenesis. Nonsense mutants were listed in Kokes et al. (2015).
described in various chlamydial species such as C. psittaci, C. abortus, C. felis, C. caviae, C. pecorum, and C. pneumoniae, but not in the more distantly related C. suis, C. muridarum, and C. trachomatis (Pawlikowska-Warych et al., 2015; Bastidas and Valdivia, 2016). Effort to use these phages to facilitate genetic in-transduction has not yet been successful, but perhaps future research will identify ways to use transduction as a tool of genetic exchange in Chlamydia.

In conclusion, despite significant progress in our understanding of LGT in Chlamydia, many open questions remain. For example, most in vitro studies concerning LGT and homologous recombination have been conducted with C. suis, C. muridarum, and C. trachomatis. While it is possible to induce competence in C. psittaci, C. felis, and C. pneumoniae (Shima et al., 2018; Shima et al., 2020), we know very little about their DNA uptake system and if it is similar to that of C. trachomatis, C. muridarum, and C. suis. There may be a different mechanism for these species, as there appears to be a barrier of recombination between different mechanism for these species, as there appears to be a family, we can tackle these challenging questions and further and a more extensive knowledge of LGT in the Chlamydiae family, we can tackle these challenging questions and further explore the biology of these complex bacteria.

REFERENCES

Andersson, P., Harris, S. R., Smith, H. M. B. S., Hadfield, J., O’Neill, C., Cutcliffe, L. T., et al. (2016). Chlamydia Trachomatis From Australian Aboriginal People With Trachoma Are Polyphyletic Composed of Multiple Distinctive Lineages. Nat. Commun. 7, 10688. doi: 10.1038/ncomms10688

Azuma, Y., Hirakawa, H., Yamashita, A., Cai, Y., Rahman, M. A., Suzuki, H., et al. (2006). Genome Sequence of the Cat Pathogen, Chlamydophila Felis. DNA Res. 13, 15–23. doi: 10.1093/dnare/dsi027

Bastidas, R. J., and Valdivia, R. H. (2016). Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen. Microbiol. Mol. Biol. Rev. 80, 411–427. doi: 10.1128/mmbrr.00071-15

Binet, R., and Maurelli, A. T. (2009). Transformation and Isolation of Allelic Exchange Mutants of Chlamydia Psittaci Using Recombinant DNA Introduced by Electroporation. Proc. Natl. Acad. Sci. 106, 292–297. doi: 10.1073/pnas.0806768106

Borel, N., Leonard, C., Slade, J., and Schoborg, R. V. (2016). Chlamydial Antibiotic Resistance and Treatment Failure in Veterinary and Human Medicine. Curr. Clin. Microbiol. Rep. 3, 10–18. doi: 10.1007/s40588-016-0028-4

Borel, N., Regenscheit, N., Di Francesco, A., Donati, M., Markov, J., Masserey, Y., et al. (2012). Selection for Tetracycline-Resistant Chlamydia Suis in Treated Pigs. Vet. Microbiol. 156, 143–146. doi: 10.1016/j.vetmic.2011.10.011

Borges, V., Cordeiro, D., Salas, A. I., Lodhia, Z., Correia, C., Isidro, J., et al. (2019). Chlamydia Trachomatis: When the Virulence-Associated Genome Backbone Imports a Prevalence-Associated Major Antigen Signature. Microb. Genomics 5, e000313. doi: 10.1099/mgen.0.000313

Brothwell, J. A., Muramatsu, M. K., Toh, E., Rockey, D. D., Putman, T. E., Steinberg, D., et al. (2016). Interrogating Genes That Mediate Chlamydia Trachomatis Survival in Cell Culture Using Conditional Mutants and Recombination. J. Bacteriol. 198, 2131–2139. doi: 10.1128/JB.00161-16

Brunelle, B. W., and Sensabaugh, G. F. (2006). The ompA Gene in Chlamydia Trachomatis Differs in Phylogeny and Rate of Evolution From Other Regions of the Genome. Infect. Immun. 74, 578–585. doi: 10.1128/IAI.74.1.578-585.2006

Brunham, R., Yang, C., Maclean, J., Kimani, J., Maitha, G., and Plummer, F. (1994). Chlamydia Trachomatis From Individuals in a Sexually Transmitted Disease Core Group Exhibit Frequent Sequence Variation in the Major Outer Membrane Protein (Omp1) Gene. J. Clin. Invest 94, 458–463. doi: 10.1172/JCI117347

Dean, D., Rothschild, J., Ruettger, A., Kandell, R. P., and Sachse, K. (2013). Zoonotic Chlamydiaceae Species Associated With Trachoma, Nepal. Emerg. Infect. Dis. 19, 1948–1955. doi: 10.3201/eid1912.130656

DeMars, R., and Weinifurter, J. (2008). Interstrain Gene Transfer in Chlamydia Trachomatis In Vitro: Mechanism and Significance. J. Bacteriol. 190, 1605–1614. doi: 10.1128/JB.01592-07

DeMars, R., Weinifurter, J., Guex, E., Lin, J., and Potucek, Y. (2007). Lateral Gene Transfer In Vitro in the Intracellular Pathogen Chlamydia Trachomatis. J. Bacteriol. 189, 991–1003. doi: 10.1128/JB.00845-06

De Puysselys, L., De Puysselys, K., Braeckman, L., Morri, S. A., Cox, E., and Vanrompay, D. (2017). Assessment of Chlamydia Suis Infection in Pig Farmers. Transbound Emerg. Dis. 64, 826–833. doi: 10.1111/tbed.12446

De Puysselys, L., De Puysselys, L., Dhondt, H., Geens, T., Braeckman, L., Morri, S. A., et al. (2014). Evaluation of the Genetic and Zoonotic Transmission of Chlamydia Suis in a Pig Slaughterhouse. BMC Infect. Dis. 14, 560. doi: 10.1186/s12879-014-0560-x

Dimond, Z. E., Suchland, R. J., Baid, S., LaBrie, S. D., Soules, K. R., Stanley, J., et al. (2021). Inter-Species Lateral Gene Transfer Focused on the Chlamydia Plasticity Zone Identifies Loci Associated With Immediate Cytotoxicity and Inclusion Stability. Mol. Microbiol 116, 1433–48. doi: 10.1111/mmi.14832

Dugan, J., Andersen, A. A., and Rockey, D. D. (2007). Functional Characterization of IcsA665, an Insertion Element Carried by Tetracycline-Resistant Chlamydia Suis. Microbiology 153, 71–79. doi: 10.1099/mic.0.29253-0

Dugan, J., Rockey, D. D., and Jones, L. (2004). And Andersen, aTetracycline Resistance in Chlamydia Suis Mediated by Genomic Islands Inserted Into the Chlamydia Inv-Like Gene. A Antimicrob. Agents Chemother. 48, 3989–3995. doi: 10.1128/AAC.48.10.3989-3995.2004

Ennis, D. G., Woodgate, R., and Shi, M. (2000). Selective Inhibition of RecA Functions by the HisC Nucleoid Condensation Protein From Chlamydia Trachomatis. FEMS Microbiol. Lett. 182, 279–283. doi: 10.1111/j.1574-6968.2000.tb08908.x

Garvin, L., Vande Voorde, R., Dickinson, M., Carrell, S., Hybiske, K., and Rockey, D. (2021). A Broad-Spectrum Cycling Vector That Exists as Both an Integrated Element and a Free Plasmid in Chlamydia Trachomatis. PloS One 16, e0261088. doi: 10.1371/journal.pone.0261088

AUTHOR CONTRIBUTIONS

HM, RS, and DR substantially contributed to the conception and design of the manuscript and reviewed the literature. All authors drafted and/or critically revised the manuscript, finally approved the version to be published, and agreed to be accountable for all aspects of the work.

FUNDING

This work was funded in part by the National MD-Ph.D. scholarship program organized by the Swiss Academy of Medical Sciences (SAMW), sponsored by the Swiss National Science Foundation (SNSF; Grant No. 323530_177579, awarded to HM from September 2017 to August 2020).

ACKNOWLEDGMENTS

We are grateful to Addison DeBoer for a careful reading of the manuscript.
Redfield, R. J. (2001). Do Bacteria Have Sex? Nat. Rev. Genet. 2, 634–639. doi: 10.1038/35084593
Rocha, E. P. C., Pradillon, O., Bui, H., Sayada, C., and Denamur, E. (2002). A New Family of Highly Variable Proteins in the Chlamydiophila Pneumoniae Genome. Nucleic Acids Res. 30, 4351–4360. doi: 10.1093/nar/gkf571
Roulis, E., Bachmann, N. L., Myers, G. S. A., Huston, W., Summersgill, J., Hudson, A., et al. (2015). Comparative Genomic Analysis of Human Chlamydia Pneumoniae Isolates From Respiratory, Brain and Cardiac Tissues. Genomics 106, 373–383. doi: 10.1016/j.ygeno.2015.09.008
Sachse, K., and Borel, N. (2020). “Recent Advances in Epidemiology, Pathology and Immunology of Veterinary Chlamydiidae,” in Chlamydia Biology: From Genome to Disease. Eds. M. Tan, J. H. Hegeman and C. Sütterlin (Norfolk: Caister Academic Press), 403–428. doi: 10.21775/9781912530281.17
Sandoz, K. M., and Rockey, D. D. (2010). Antibiotic Resistance in Chlamydiae. Future Microbiol. 5, 1427–1442. doi: 10.2217/fmb.10.96
Seth-Smith, B., Bénard, A., Bruisten, S. M., Versteeg, B., Herrmann, B., Kok, J., et al. (2021). Ongoing Evolution of Chlamydia Trachomatis Lymphogranuloma Venereum: Exploring the Genomic Diversity of Circulating Strains. Microb. Genomics 7, 599. doi: 10.1099/mgen.0.000599
Seth-Smith, H. M. B., Buis, L. S., Livingstone, M., Satt, M., Harris, S. R., Aitchison, K. D., et al. (2017a). European Chlamydia Abortus Livestock Isolate Genomes Reveal Unusual Stability and Limited Diversity, Reflected in Geographical Signatures. BMC Genomics 18, 344. doi: 10.1186/s12864-017-3657-y
Seth-Smith, H. M. B., Wanninger, S., Bachmann, N., Marti, H., Qi, W., Donati, M., et al. (2017b). The Chlamydia Suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes. Genome Biol. Evol. 9, 750–760. doi: 10.1093/gbe/exy043
Shima, K., Wanker, M., Skilton, R. J., Cutcliffe, L. T., Schnee, C., Kohl, T. A., et al. (2018). The Genetic Transformation of Chlamydia pneumoniae. mSphere 3. doi: 10.1128/mSphere.00412-18
Shima, K., Weber, M. M., Schnee, C., Sachse, K., Rading, N., Klinger, M., et al. (2020). Development of a Plasmid Shuttle Vector System for Genetic Manipulation of Chlamydia Psittaci. mSphere 5, e00787–20. doi: 10.1128/mSphere.00787-20
Snyder, L., Peters, J. E., Henkin, T., Champness, W., and Snyder, L. (2013). Molecular Genetics of Bacteria. 4th (Washington DC, USA: American Society for Microbiology (ASM)).
Somboonna, N., Wan, R., Ocjus, D. M., Pettingill, M. A., Joseph, S. J., Chang, A., et al. (2011). Hypervirulent Chlamydia Trachomatis Clinical Strain Is a Recombinant Between Lymphogranuloma Venereum (I2) and D Lineages. MBio 2, e00045–11. doi: 10.1128/mBio.00045-11
Srinivasan, T., Bruno, W. J., Wan, R., Yen, A., Duong, J., and Dean, D. (2012). In Vitro Recombinants of Antibiotic-Resistant Chlamydia Trachomatis Strains Have Statistically More Breakpoints Than Clinical Recombinants for the Same Sequenced Loci and Exhibit Selection at Unexpected Loci. J. Bacteriol. 194, 617–626. doi: 10.1128/JB.06268-11
Stephens, R. S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., et al. (1998). Genome Sequence of an Obligate Intracellular Pathogen of Humans: Chlamydia Trachomatis. Sci. (80-) 282, 754–759. doi: 10.1126/science.282.3389.754
Suchland, R. J., Carroll, S. I., Wang, Y., Hybiske, K., Kim, D. B., Dimond, Z. E., et al. (2019). Chromosomal Recombination Targets in Chlamydia Interspecies Lateral Gene Transfer. J. Bacteriol. 201, e00365–19. doi: 10.1128/JB.00365-19
Suchland, R. J., Sandoz, K. M., Jeffrey, B. M., Stamm, W. E., and Rockey, D. D. (2009). Horizontal Transfer of Tetracycline Resistance Among Chlamydia Spp. In Vitro. Antimicrob. Agents Chemother. 53, 4604–4611. doi: 10.1128/AAC.00477-09
Takeuchi, N., Kaneko, K., and Koonin, E. V. (2014). Horizontal Gene Transfer can Rescue Prokaryotes From Muller’s Ratchet: Benefit of DNA From Dead Cells and Population Subdivision. G3 Genes Genomes Genet. 4, 325–339. doi: 10.1534/g3.113.009845/-/DC1
Tam, J. E., Davis, C. H., and Wyrick, P. B. (1994). Expression of Recombinant DNA Introduced Into Chlamydia Trachomatis by Electroporation. Can. J. Microbiol. 40, 583–591. doi: 10.1139/m94-093
Thomson, N. R., Holden, M. T. G., Carder, C., Lennard, N., Lockey, S. J., Marsh, P., et al. (2008). Chlamydia Trachomatis: Genome Sequence Analysis of Lymphogranuloma Venereum Isolates. Genome Res. 18, 161–171. doi: 10.1101/gr.702108
Tillier, E. R. M., and Collins, R. A. (2000). Genome Rearrangement by Replication-Directed Translocation. Nat. Genet. 26, 195–197. doi: 10.1038/77919
Toft, C., and Andersson, S. G. E. (2010). Evolutionary Microbial Genomics: Insights Into Bacterial Host Adaptation. Nat. Rev. Genet. 11, 465–475. doi: 10.1038/nrg2798
Tolchard, J., Walpole, S. J., Miles, A. J., Maytum, R., Eagle, L. A., Hackstadt, T., et al. (2018). The Intrinsically Disordered Tarp Protein From Chlamydia Binds Actin With a Partially Preformed Helix. Sci. Rep. 8, 1960. doi: 10.1038/s41598-018-20290-8
Valdivia, R. H., and Bastidas, R. J. (2018). The Expanding Molecular Genetics Tool Kit in Chlamydia. J. Bacteriol. 200, e00590–18. doi: 10.1128/JB.00590-18
Wang, Y., Kahane, S., Cutcliffe, L. T., Skilton, R. J., Lambden, P. R., and Clarke, I. N. (2011). Development of a Transformation System for Chlamydia Trachomatis: Restoration of Glycogen Biosynthesis by Acquisition of a Plasmid Shuttle Vector. PloS Pathog. 7, e1002258. doi: 10.1371/journal.ppat.1002258
Wang, Y., LaBrie, S. D., Carrell, S. J., Suchland, R. J., Dimond, Z. E., Kwong, F., et al. (2019). Development of Transposon Mutagenesis for Chlamydia Muridarum. J. Bacteriol. 201, e002258. doi: 10.1128/JB.00266-19
Wanninger, S., Donati, M., Di Francesco, A., Hässig, M., Hoffmann, K., Seth-Smith, H. M. B., et al. (2016). Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs. PloS One 11, e0166917. doi: 10.1371/journal.pone.0166917
Zhang, D. J., Fan, H., McClarty, G., and Brunham, R. C. (1995). Identification of the Chlamydia Trachomatis RecA-Encoding Gene. Infect. Immun. 63, 676–680. doi: 10.1128/iai.63.2.676-680.1995

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Marti, Suchland and Rockey. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.