Response of Six Dwarf-type Bermudagrasses to Trinexapac-ethyl

Patrick E. McCullough1
Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901-8520

Haibo Liu2 and Lambert B. McCarty3
Department of Horticulture, Clemson University, Clemson, SC 29634-0375.

Abstract. Trinexapac-ethyl (TE) is an effective plant growth retardant for hybrid bermudagrass; however, growth responses of various dwarf-type bermudagrass cultivars to TE have not been reported. Two 60-day greenhouse experiments were conducted at the Clemson Greenhouse Research Complex, Clemson, S.C., to evaluate the response of ‘Champion’, ‘FloraDwarf’, ‘MiniVerde’, ‘MS Supreme’, ‘Tifdwarf’, and ‘TifEagle’ bermudagrass with and without TE at 0.0125 kg·ha−1·a.i. per 10 days. From 20 to 60 days after initial treatments, TE enhanced visual quality 9% to 13% for all cultivars. From four samples, TE reduced clipping yields 63%, 63%, 69%, 62%, 64%, and 46% for ‘Champion’, ‘FloraDwarf’, ‘MiniVerde’, ‘Tifdwarf’, and ‘TifEagle’, respectively. Trinexapac-ethyl enhanced root mass 23% and 27% for ‘MiniVerde’ and ‘FloraDwarf’ bermudagrass, respectively. ‘Champion’, ‘MS Supreme’, ‘Tifdwarf’, and ‘TifEagle’ bermudagrass treated with TE had similar root mass to the untreated respective cultivars. Among untreated cultivars, ‘FloraDwarf’, ‘MiniVerde’, ‘MS Supreme’, and ‘Tifdwarf’ had similar root masses; however compared to these cultivars, ‘Champion’ and ‘TifEagle’ had 33% and 81% less root mass, respectively. Root length was unaffected by TE; however, ‘Champion’ and ‘TifEagle’ averaged 20% and 36% less root length compared to ‘Tifdwarf’ bermudagrass, respectively, while ‘FloraDwarf’, ‘MiniVerde’, and ‘MS Supreme’ had similar root length to ‘Tifdwarf’. Trinexapac-ethyl safely enhanced turf quality and reduced clipping yield at 0.0125 kg·ha−1 per 10 days without inhibiting root growth of six dwarf-type bermudagrasses.

Materials and Methods

Two studies were conducted at the Clemson University Greenhouse Research Complex, Clemson, S.C., from January to March 2004 (Study 1) and April to June 2004 (Study 2). Greenhouse day/night temperatures were set for about 26/20 °C. Due to reduced lighting during winter months, supplemental lighting was added for about 3 h·d−1 at 50 μmol·m−2·s−1. The experimental design was a randomized complete block with four replications of twelve polyvinylchloride containers per block. To help reduce leaf burn, blocks were rotated biweekly and experimental units rerandomized within ‘TifEagle’ and ‘Champion’ bermudagrass plugs were collected from experimental greens located at the Turf Service Center, Clemson, established in July 2002 and 2003, respectively. ‘Tifdwarf’ and ‘MiniVerde’ bermudagrass sod was obtained from American Turf in Duluth, Ga. ‘FloraDwarf’ bermudagrass sod was obtained from the University of Florida, Gainesville. ‘MS Supreme’ bermudagrass sod was provided by Mississippi State University, Mississippi State.

Sod was established in 10 cm pots in the greenhouse for about 4 weeks. Turf plugs were washed free of soil, roots were cut to about 2.5 cm from the thatch layer, and sod was then transplanted to polyvinyl chloride containers. Containers were built approximately to United States Golf Association specification (USGA Green Section Staff, 1993) to help mimic field conditions. A rootzone mix (by volume) of 85 sand : 15 peatmoss was the soil medium...
Table 1. Pooled visual quality from 20, 30, 40, 50, and 60 d after initial treatments for six dwarf-type bermudagrasses treated with and without trinexapac-ethyl at 0.0125 kg·ha\(^{-1}\) per 10 d in two combined greenhouse experiments.

Cultivar	Untreated	Treated
Champion	7.4	7.8***
FloralDwarf	7.0	7.6***
MiniVerde	7.0	7.4***
MS Supreme	7.0	7.7***
Tifdwarf	6.8	7.6***
TifEagle	6.8	7.6***
Mean	6.9	7.7***

***Significant at P < 0.0001 by row.

Table 2. Pooled clipping yield of six dwarf-type bermudagrass treated with and without trinexapac-ethyl at 0.0125 kg·ha\(^{-1}\) per 10 d in two combined greenhouse experiments.

Cultivar	Dry clipping yield\(^{c}\) (g·m\(^{-2}\))
Champion	1.50
FloralDwarf	1.01
MiniVerde	1.34
MS Supreme	1.22
Tifdwarf	1.26
TifEagle	1.50
Mean	1.31

Clippings were harvested 15, 30, 45, and 60 d after initial treatments.

***Significant at P < 0.0001 by row.

About 24 h after the last mowing. Roots were harvested from the entire container 60 DAIT and cut back to the thatch layer. Root length was determined by measuring the distance from where roots were no longer present in the soil profile to the top of the container. After harvestings, clippings and roots were oven-dried at 80 °C for 48 h, then weighed. Data were subjected to an analysis of variance with SAS General Linear Model procedure. Mean separations were based on Fisher's protected LSD test at P = 0.05.

Results

Turf injury and visual quality: Turf injury did not occur from trinexapac-ethyl (TE) applications for any bermudagrass cultivar (data not shown). Trinexapac-ethyl significantly enhanced visual quality for all cultivars on every observation from 20 to 60 DAIT; therefore, results were pooled from those dates and presented with cultivar with and without TE (Table 1). The main effect of TE enhanced bermudagrass visual quality 12% compared to the untreated. Among cultivars, TE improved visual quality 11%, 9%, 13%, 10%, 12%, and 12% for ‘Champion’, ‘FloraDwarf’, ‘MiniVerde’, ‘MS Supreme’, ‘Tifdwarf’, and ‘TifEagle’ bermudagrasses, respectively.

Clipping yield. Trinexapac-ethyl significantly reduced clipping yield for all cultivars on every sampling date; therefore, clippings were pooled and presented by bermudagrass cultivar (Table 2). From four samples, TE averaged clipping yield reductions by 63%, 63%, 69%, 62%, 64%, and 46% for ‘Champion’, ‘FloraDwarf’, ‘MiniVerde’, ‘MS Supreme’, ‘Tifdwarf’, and ‘TifEagle’, respectively. Comparing untreated turf, ‘Champion’ and ‘TifEagle’ bermudagrass had the most clipping yield. The untreated ‘FloraDwarf’, ‘MiniVerde’, ‘MS Supreme’, and ‘Tifdwarf’ bermudagrasses averaged 33%, 11%, 19%, and 16% less clipping yield compared to ‘Champion’ and ‘TifEagle’.

Root mass and length. Study × treatment and study × cultivar interactions did not occur; therefore, studies were combined. Root mass was enhanced 23% and 27% for ‘MiniVerde’ and ‘FloraDwarf’ bermudagrass, respectively, following TE applications (Fig. 1). ‘Champion’, ‘MS Supreme’, ‘Tifdwarf’, and ‘TifEagle’ bermudagrasses treated with TE had similar root mass to the untreated respective cultivars. Among untreated cultivars, ‘FloraDwarf’, ‘MiniVerde’, ‘MS Supreme’, and ‘Tifdwarf’ had similar root masses; however compared to these cultivars, ‘Champion’ and ‘TifEagle’ had 33% and 81% less root mass, respectively.

All bermudagrass cultivars treated with TE had similar root length to untreated turf; however, there were highly significant differences among bermudagrass cultivars (P < 0.0001). Root length results are presented by bermudagrass cultivar (means of treated and untreated). ‘Champion’ and ‘TifEagle’ bermudagrass averaged 20% and 36% less root length, respectively, compared to ‘Tifdwarf’ bermudagrass (Fig. 2). ‘FloraDwarf’, ‘MiniVerde’, and ‘MS Supreme’ had similar root length to ‘Tifdwarf’ bermudagrass.

Discussion

Applying PGRs to putting greens may enhance turf quality and provide smoother putting surfaces by inhibiting undesirable top growth (Fagerness et al., 2000; Murphy et al., 2005). Trinexapac-ethyl is considered the
safest PGR for dwarf bermudagrasses and is the most suitable compound currently available for routine management of these grasses (McCullough et al., 2004). The application method of low TE rates at frequent intervals has been adopted by dwarf bermudagrass managers (Lowe, personal communication). Thus, evaluating growth responses of various dwarf bermudagrasses to this PGR regimen is important for the future of dwarf bermudagrass culture and research.

Trinexapac-ethyl had no deleterious effects on visual quality or root growth of six dwarf-type bermudagrasses. ‘MiniVerde’ and ‘FloraDwarf’ bermudagrass treated with TE had enhanced root mass after six applications of 0.0125 kg·ha⁻¹ per 10 d over 2 months. Results are consistent with field studies on ‘TifEagle’ bermudagrass having enhanced visual color and quality resulting from increased chlorophyll concentrations following TE use (Bunnell, 2003; McCullough, 2004).

‘TifEagle’ bermudagrass had exceptionally lower root mass than other dwarf-type bermudagrass cultivars. With the current popularity of this cultivar, it appears that promoting root growth will be a critical cultural aspect relative to other dwarf-type bermudagrasses. Root growth comparisons among various dwarf bermudagrass cultivars are limited. White (1998) noted similar results 4 months after sprigging with ‘TifEagle’ bermudagrass having 63% less root mass compared to the traditional bermudagrass cultivar ‘Tifdwarf’. It was observed that ‘Tifdwarf’, ‘FloraDwarf’, and ‘MiniVerde’ had similar total root mass after 8 weeks in this experiment, while ‘Champion’ and ‘TifEagle’ had less root mass compared to those cultivars.

As dwarf bermudagrasses continue to be planted as putting green turf, PGR use will become an important issue for long-term culture. Trinexapac-ethyl safely reduced leaf growth and enhanced visual quality without restricting root growth of six dwarf-type bermudagrasses. Overall, the TE application regime of low rates at frequent intervals appears to be effective and safe for various dwarf-type bermudagrasses.

Literature Cited

Beard, J.B. 2002. Turf management for golf courses, 2nd ed. Ann Arbor Press, Chelsea, Mich.

Bunnell, B.T. 2003. Physiological response of hybrid bermudagrass (Cynodon dactylon (L.) Pers. × C. transvaalensis Burtt-Davy) to reduced light environments. PhD diss. Clemson Univ., Clemson, S.C.

Emmons, R.D. 2002. Turfgrass science and management. 3rd ed. Delmar Thompson Learning, Albany, N.Y.

Fagerness, M.J., F.H. Yelverton, J. Isgrigg, and R.J. Cooper. 2000. Plant growth regulators and mowing height affect ball roll and quality of creeping bentgrass putting greens. HortScience 35:755–759.

McCarty, L.B. and G.L. Miller. 2004. Managing bermudagrass turf: Selection, construction, cultural practices and pest management strategies. Sleeping Bear Press, Chelsea, Mich.

McCullough, P.E. 2004. Physiological response of ‘TifEagle’ bermudagrass to nitrogen and trinexapac-ethyl. MS thesis. Clemson Univ., Clemson, S.C.

McCullough, P.E., H. Liu, L.B. McCarty, and T. Whitwell. 2004. Response of ‘TifEagle’ bermudagrass to seven plant growth regulators. HortScience 39(7):1759–1762.

Murphy, T.R., T. Whitwell, B. McCarty, and F.H. Yelverton. 2005. Turfgrass plant growth regulators, p. 705–714. In: L.B. McCarty (ed.). Best golf course management practices. 2nd ed. Prentice-Hall, Upper Saddle River, N.J.

Rademacher, W. 2000. Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:501–531.

SAS Institute. 1999. The SAS system for Windows. v. 8.2. SAS Inst., Cary, N.C.

United States Golf Association Green Section Staff. 1999. Recommendations for a method of putting green construction. The 1993 Revision. USGA Green Section Record 31(2):1–3.

Watschke, T.L., M.G. Prinster, and J.M. Brenninger. 1992. Plant growth regulators and turfgrass management, p. 557–588. In: D.V. Waddington, R.N. Carrow, and R.C. Shearman (eds.). Turfgrass. Amer. Soc. Agron. Monogr. 32.

White, R.H. 1998. Performance and management of new dwarf bermudagrasses, p. 12. 1998 Semi-Annul. Res. Progr. Rpt. Texas Agr. Expt. Sta. Texas A&M Univ.