On a theorem of Nosal

V. Nikiforov*

Abstract

Let \(G \) be a graph with \(m \) edges and spectral radius \(\lambda_1 \). Let \(bk(G) \) stand for the maximal number of triangles with a common edge in \(G \).

In 1970 Nosal proved that if \(\lambda_1^2 > m \), then \(G \) contains a triangle. In this paper we show that the same premise implies that

\[
bk(G) > \frac{1}{12} \sqrt{m}.
\]

This result settles a conjecture of Zhai, Lin, and Shu.

Write \(\lambda_2 \) for the second largest eigenvalue of \(G \). Recently, Lin, Ning, and Wu showed that if \(G \) is a triangle-free graph of order at least three, then

\[
\lambda_1^2 + \lambda_2^2 \leq m,
\]

thereby settling the simplest case of a conjecture of Bollobás and the author. We give a simpler proof of their result.

Keywords: triangle-free graph; spectral radius; graph booksize; second largest eigenvalue.

AMS classification: 05C50

1 Introduction

In 1970 Nosal showed that if \(G \) is a graph with \(m \) edges, and its largest adjacency eigenvalue \(\lambda_1 \) satisfies

\[
\lambda_1^2 > m,
\]

then \(G \) contains a triangle.

During the years this striking and elegant result has attracted significant attention (see, e.g., [8] and its references for some highlights.) In this note we discuss two recent developments of Nosal’s result.

The first one concerns the class of subgraphs that are present in \(G \) if \(\lambda_1^2 > m \) and \(m \) is sufficiently large.

As shown by Zhai, Lin, and Shu in the nice recent paper [8], this class contains graphs other than triangles. These authors studied similar problems in depth and surveyed some earlier research. In particular, they raised the following conjecture:

*Department of Mathematical Sciences, University of Memphis, Memphis TN 38152, USA. Email: vnikifrv@memphis.edu
Conjecture 1 For every natural number \(k \), there exists \(m(k) \) such that if \(m > m(k) \) and \(\lambda_2^2 \geq m \), then \(bk(G) > k \), unless \(G \) is complete bipartite graph with possibly some isolated vertices.

In the above conjecture, \(bk(G) \) stands for the booksize of \(G \), that is, the maximum number of triangles with a common edge in \(G \). Lower bounds on the booksize are known for Mantel’s theorem, but not for the context of Nosal’s inequality.

We confirm Conjecture 1 by the following theorem:

Theorem 2 If \(G \) is a graph with \(m \) edges and \(\lambda_2^2 \geq m \), then
\[
bk(G) > \frac{1}{12} \sqrt[m]{m},
\]
unless \(G \) is a complete bipartite graph with possibly some isolated vertices.

The other main result of our note concerns the following conjecture of Bollobás and the author [1]:

Conjecture 3 Let \(G \) be a graph with \(m \) edges, at least \(r + 1 \) vertices, and second largest eigenvalue \(\lambda_2 \). If \(G \) is \(K_{r+1} \)-free, then
\[
\lambda_1^2 + \lambda_2^2 \leq 2 \left(1 - \frac{1}{r} \right) m. \quad (1)
\]

Recently, Lin, Ning, and Wu [4] settled the case \(r = 2 \) of Conjecture 3 by a clever argument using majorization theory.

Before stating their result, recall that a blow-up of a graph \(H \) is obtained by replacing each vertex \(v \) of \(H \) by an independent set \(B_v \) and replacing each edge \(\{u, v\} \) of \(H \) by a complete bipartite graph with vertex classes \(B_u \) and \(B_v \). Also, \(P_k \) stands for the path of order \(k \).

Theorem 4 (Lin, Ning, Wu) Let \(G \) be a graph with \(m \) edges, of order at least 3, and let \(\lambda_2 \) be its second largest adjacency eigenvalue. If \(G \) is triangle-free, then
\[
\lambda_1^2 + \lambda_2^2 \leq m.
\]
Equality holds if and only if \(G \) is a blow-up of \(P_2 \cup K_1, 2P_2 \cup K_1, P_4 \cup K_1, \) or \(P_5 \cup K_1 \).

In Section 5 we give a simple straightforward proof of Theorem 4. Theorem 2 is proved in Sections 3 and 4.

2 Notation and preliminary results

A \(k \)-walk stands for a walk on \(k \) vertices, that is, a walk of length \(k - 1 \).

Given a graph \(G \), we write:
- \(V(G) \) for the set of its vertices and \(E(G) \) for the set of its edges;
- \(e(G) \) for the number of its edges;
- \(t(G) \) for the number of its triangles;
For a vertex $u \in V(G)$, we write:

- $w_k(G)$ for the number of its k-walks;
- $\rho(G)$ for its largest adjacency eigenvalue.

Note, in particular, that

$$\sum_{u \in V(G)} t''(u) = t''(G).$$

For a proof of the following theorem of Wei [7] we refer the reader to [3], p. 182.

Theorem 5 (Wei) Let G be a connected nonbipartite graph of order n and let (x_1, \ldots, x_n) be a positive eigenvector to $\rho(G)$. For every vertex $u \in V(G)$,

$$\lim_{k \to \infty} \frac{w_k(u)}{w_k(G)} = \frac{x_u}{x_1 + \cdots + x_n}.$$

The following inequality is the instance $r = 2$ of Theorem 1 in [1]:

Lemma 6 If G is a graph with $e(G) = m$, $\rho(G) = \rho$, and $t(G) = t$, then

$$3t \geq \rho^3 - \rho m.$$
for all edges \(\{i, j\} \in E(G') \), it turns out that \(G' \) may have only one nontrivial component and is nonbipartite. Under these premises for \(G' \), Theorem 9 implies that \(bk(G') \) is as large as needed.

Theorem 9 itself is based on two rather technical results–Theorem 7 and Lemma 8.

Theorem 7 Let \(G \) be a connected nonbipartite graph of order \(n \) with

\[
e(G) = m, \quad \rho(G) = \rho, \quad t(G) = t, \quad t''(G) = t''.
\]

Suppose that \((x_1, \ldots, x_n) \) is a positive unit eigenvector to \(\rho \) and let

\[
c = \frac{1}{x_1 + \cdots + x_n} \min \{x_1, \ldots, x_n\}.
\]

Then

\[
\rho^3 - \rho m + c\rho t'' \leq 3t.
\]

Proof For every edge \(\{u, v\} \in E(G) \), obviously

\[
w_k(G) = \sum_{w \in N(u) \cup N(v)} w_k(w) + \sum_{w \in N(u) \cap N(v)} w_k(w)
\]

\[
= \sum_{w \in N(u)} w_k(w) + \sum_{w \in N(v)} w_k(w) - \sum_{w \in N(u) \cap N(v)} w_k(w) + \sum_{w \in N(u) \cap N(v)} w_k(w)
\]

\[
= w_{k+1}(u) + w_{k+1}(v) - \sum_{w \in N(u) \cap N(v)} w_k(w) + \sum_{w \in N(u) \cap N(v)} w_k(w).
\]

Summing this identity over all edges \(\{u, v\} \in E(G) \), we get

\[
w_k(G)m = \sum_{u \in V(G)} w_{k+1}(u)d(u) - \sum_{u \in V(G)} t(u)w_k(u) + \sum_{u \in V(G)} t''(u)w_k(u)
\]

\[
= w_{k+2}(G) - \sum_{u \in V(G)} t(u)w_k(u) + t''(u)w_k(u).
\]

Since for any vertex \(u \) we have \(w_k(u) \leq w_{k-1}(G) \), it follows that

\[
\sum_{u \in V(G)} t(u)w_k(u) \leq \sum_{u \in V(G)} t(u)w_{k-1}(G) = 3tw_{k-1}(G).
\]

Hence,

\[
w_k(G)m \geq w_{k+2}(G) - 3tw_{k-1}(G) + \sum_{u \in V(G)} t''(u)w_k(u).
\]

Dividing both sides by \(w_{k-1}(G) \), we get

\[
\frac{w_k(G)}{w_{k-1}(G)}m \geq \frac{w_{k+2}(G)}{w_{k-1}(G)} - 3t + \frac{w_k(G)}{w_{k-1}(G)} \sum_{u \in V(G)} t''(u) \frac{w_k(u)}{w_k(G)}
\]

The formula for the number of \(k \)-walks by Cveković [2] (see also [3], p. 15) implies that

\[
\lim_{k \to \infty} \frac{w_k(G)}{w_{k-1}(G)} = \rho \quad \text{and} \quad \lim_{k \to \infty} \frac{w_{k+2}(G)}{w_{k-1}(G)} = \rho^3.
\]
Hence, in view of Theorem 5, we see that

\[m\rho \geq \rho^3 - 3t + \rho \sum_{u \in V(G)} t''(u) \frac{x_u}{x_1 + \cdots + x_n} \]
\[\geq \rho^3 - 3t + cpt''. \]

Theorem 7 is proved. \(\square\)

Lemma 8 If \(G\) is a graph of order \(n\) with \(b_k(G) = \beta\), then

\[(n - 3\beta) t(G) \leq \beta t''(G).\]

Proof For \(0 \leq j \leq 2\), write \(k_4^{(j)}(G)\) for the number of induced subgraphs of \(G\) that are isomorphic to a triangle together with an additional vertex joined to precisely \(j\) vertices of the triangle. E.g., \(k_4^{(0)}(G)\) is the number of induced subgraphs of \(G\) that are isomorphic to a triangle with an isolated vertex. In addition, we write \(k_4\) for the number of 4-cliques of \(G\).

It is not hard to check the following three relations:

\[(n - 3) t = k_4^{(0)} + k_4^{(1)} + 2k_4^{(2)} + 4k_4. \quad (2)\]

\[3(\beta - 1) t \geq \sum_{\{u,v\} \in E(G)} |N(u) \cap N(v)| (|N(u) \cap N(v)| - 1) = 2k_4^{(2)} + 12k_4. \quad (3)\]

\[\beta t'' \geq \sum_{\{u,v\} \in E(G)} |N(u) \cap N(v)| |\overline{N}(u) \cap \overline{N}(v)| = k_4^{(1)} + 3k_4^{(0)}. \quad (4)\]

Now, subtracting (3) from (2), in view of (4), we find that

\[nt - 3\beta t \leq k_4^{(0)} + k_4^{(1)} + 2k_4^{(2)} + 4k_4 - 2k_4^{(2)} - 12k_4 \]
\[= k_4^{(0)} + k_4^{(1)} - 8k_4 \]
\[\leq \beta t''. \]

\(\square\)

Having Theorem 7 and Lemma 8 in hand, we are ready to prove a statement similar to Theorem 2 under some extra assumptions.

Theorem 9 Let \(G\) be a connected graph with \(m\) edges such that \(\rho(G) > \sqrt{m}\). Suppose that \((x_1, \ldots, x_n)\) is a positive unit eigenvector to \(\rho(G)\). If

\[x_i x_j \geq \frac{1}{8\sqrt{m}}\]

for every edge \(\{i, j\} \in E(G)\), then

\[b_k(G) > \frac{1}{12} \sqrt{2m}.\]
Proof Let $\rho = \rho (G)$, let i be a vertex, and suppose that $\{i, j\} \in E (G)$. We have
\[
\rho x_i^2 \geq x_j > \frac{1}{8\sqrt{m}} > \frac{1}{8\rho}.
\]
Now, letting
\[
c = \frac{1}{x_1 + \cdots + x_n} \min \{x_1, \ldots, x_n\},
\]
we see that
\[
c \rho > \frac{1}{\sqrt{8}} \cdot \frac{1}{x_1 + \cdots + x_n} \geq \frac{1}{\sqrt{8n}}.
\]
Note that G is nonbipartite as $\rho > \sqrt{m}$. Hence, Theorem 7 implies that
\[
t'' < \sqrt{8n} \left(3t + \rho m - \rho^3\right).
\]
Combining this inequality with Lemma 8 and letting $\beta = bk (G)$, we find that
\[
(n - 3\beta) t \leq \beta t'' < \beta \sqrt{8n} \left(3t + \rho m - \rho^3\right)
\]
\[
\left(n - 3\beta - 3\beta\sqrt{8n}\right) t < \beta \sqrt{8n} \left(m - \rho^2\right) \rho \leq 0.
\]
Therefore, $n - 3\beta - 3\beta\sqrt{8n} < 0$, and we see that
\[
\beta > \frac{n}{3 \left(1 + \sqrt{8n}\right)} > \frac{n}{3 \left(4\sqrt{n}\right)} = \frac{\sqrt{n}}{12} \geq \frac{1}{12} \sqrt[4]{2m}.
\]
The proof of Theorem 9 is completed. \qed

4 Proof of Theorem 2

We may suppose that G has no isolated vertices.

We first describe a simple procedure that constructs a sequence of graphs
\[
G_0 \supset G_1 \supset \cdots \supset G_l
\]
such that $V (G_i) = V (G)$ and $e (G_i) = m - i$ for every $i = 1, \ldots, l$.

Step 1 Set $l := 0$ and $G_0 := G$.

Step 2 If $l = \lceil m/2 \rceil$, stop.

Step 3 Let $x_l = (x_1, \ldots, x_n)$ be a nonnegative unit eigenvector to $\rho (G_l)$.

Step 4 If there is an edge $\{i, j\} \in E (G_l)$ with
\[
x_i x_j < \frac{1}{8\sqrt{m - l}}.
\]
set
\[G_{l+1} := G_l - \{i, j\} \]
\[l := l + 1 \]

and iterate the procedure from step 2.

Step 5 If there is no such edge, stop.

Let \(k \) be the number of the last graph constructed by the procedure. Note that for every \(s = 1, \ldots, k \)
\[\rho (G_s) > \rho (G_{s-1}) - \frac{1}{4\sqrt{m - s + 1}}. \]

Indeed, let \(x_{s-1} = (x_1, \ldots, x_n) \) be the unit eigenvector to \(\rho_{s-1} \) and let \(\{i, j\} \in E(G_{s-1}) \) be the edge such that
\[G_s = G_{s-1} - \{i, j\} , \]
which entails
\[x_i x_j < \frac{1}{8\sqrt{m - s + 1}}. \]

The Rayleigh principle implies that
\[\rho (G_s) \geq \sum_{\{u,v\} \in E(G_s)} x_u x_v = -2x_i x_j + 2 \sum_{\{u,v\} \in E(G_s)} x_u x_v \]
\[= \rho (G_{s-1}) - 2x_i x_j > \rho_{s-1} - \frac{1}{4\sqrt{m - s + 1}}. \]

Now, adding inequalities (5) for \(s = 1, \ldots, k \), we get
\[\rho (G_k) \geq \rho (G_0) - \frac{1}{4\sqrt{m}} - \cdots - \frac{1}{4\sqrt{m - k + 1}} \]
\[\geq \sqrt{m - k} + \sqrt{m} - \sqrt{m - k} - \frac{k}{4\sqrt{m - k + 1}} \]
\[> \sqrt{m - k} + \frac{k}{2\sqrt{m}} - \frac{k}{4\sqrt{m/2}} \]
\[= \sqrt{m - k} + \frac{k}{4\sqrt{m}} (2 - \sqrt{2}) . \]

Suppose that the procedure stops because \(k = \lceil m/2 \rceil \). Then we have
\[\rho (G_k) > \sqrt{m - k} + \frac{1}{4} (\sqrt{2} - 1) \sqrt{m - k} , \]
and in view of
\[b_k (G_k) (m - k) \geq 3t (G_k) , \]
Lemma 6 implies that
\[
bk(G_k) (m-k) \geq \rho(G_k) \left(\rho^2(G_k) - (m-k) \right)
\]
\[
\geq (m-k) \sqrt{m-k} \left(\left(1 + \frac{1}{4} (\sqrt{2} - 1) \right)^2 - 1 \right)
\]
\[
> \frac{1}{5} (m-k) \sqrt{m-k}.
\]

Now, we see that
\[
bk(G) \geq bk(G_k) > \frac{1}{5} \sqrt{\lceil m/2 \rceil} > \frac{1}{12} \sqrt{m},
\]
completing the proof of Theorem 2 in the case \(k = \lfloor m/2 \rfloor \).

Next, suppose that the procedure stops because
\[
x_i x_j \geq \frac{1}{8 \sqrt{m-k}}
\]
for every edge \(\{i,j\} \in E(G_k) \).

Let us drop all isolated vertices that \(G_k \) may have and write \(G'_k \) for the resulting graph. Let \((x_1, \ldots, x_p) \) be the restriction of \(x_k = (x_1, \ldots, x_n) \) to the vertices of \(G'_k \).

Inequality (6) implies that \((x_1, \ldots, x_p) \) is positive. We shall show that \(G'_k \) is connected. Indeed, since \((x_1, \ldots, x_p) \) is positive, the spectral radius of each component of \(G'_k \) is equal to \(\rho(G'_k) \). If \(G \) has more than one component, let \(C \) be a component of \(G'_k \) with smallest number of edges. We see that
\[
2e(C) \leq e(G'_k) \leq \rho(G'_k) = \rho(C),
\]
which is a contradiction. Hence, \(G'_k \) is connected.

If \(k \geq 1 \), we have
\[
\rho(G'_k) > \sqrt{m-k},
\]
so \(G'_k \) is nonbipartite. Now, Theorem 4 implies that
\[
bk(G) \geq bk(G'_k) > \frac{1}{12} \sqrt{2(m-k)}.
\]
In view of \(k \leq \lfloor m/2 \rfloor \), we get
\[
bk(G) \geq \frac{1}{12} \sqrt{m}.
\]

It remains the case \(k = 0 \), that is, \(G_k = G \). We assumed that \(G \) has no isolated vertices, and we showed above that \(\rho(G) \geq m \) implies that \(G \) is connected. Hence, if \(G \) is nonbipartite, then Theorem 9 implies that
\[
bk(G) > \frac{1}{12} \sqrt{2m} > \frac{1}{12} \sqrt{m}.
\]
Finally, if \(G \) is bipartite, then \(\rho(G) = \sqrt{m} \) implies that \(G \) is complete bipartite. Theorem 2 is proved.
5 Proof of Theorem 4

In this section we prove Theorem 4. Our proof is based on a simple analytic result:

Lemma 10 Let \(k \geq 3 \), and \(a, b, x_1, \ldots, x_k \) be nonnegative numbers such that

\[
0 \leq x_1 \leq a, \ldots, x_k \leq a.
\]

If

\[
x_1^2 + \cdots + x_k^2 \leq a^2 + b^2,
\]

then for every real \(p > 2 \),

\[
x_1^p + \cdots + x_k^p < a^p + b^p,
\]

unless

\[
x_1 = a, x_2 = b, x_3 = \cdots = x_k = 0.
\]

Proof We may suppose that \(a > 0 \), as otherwise the assertion is trivially true.

Fix \(a > 0 \) and \(b \geq 0 \), and write \(X_{a,b} \) for the compact set of all vectors \((y_1, \ldots, y_k)\) satisfying

\[
0 \leq y_i \leq a, \quad (1 \leq i \leq k)
\]

\[
y_1^2 + \cdots + y_k^2 \leq a^2 + b^2.
\]

Let the continuous function \(y_1^p + \cdots + y_k^p \) attains maximum over \(X_{a,b} \) at \((x_1, \ldots, x_k)\), and suppose by symmetry that

\[
x_1 \leq x_2 \leq \cdots \leq x_k.
\]

We shall show that \(x_k = a \). Assume for contradiction that \(x_k < a \). Then we have

\[
x_1^2 + \cdots + x_k^2 = a^2 + b^2,
\]

as otherwise we can increase \(x_k \) by a tiny bit, keeping the resulting vector in \(X \) and increasing \(x_1^p + \cdots + x_k^p \), which contradicts the choice of \((x_1, \ldots, x_k)\).

Since \(x_k < a \), we find that \(x_{k-1} > 0 \), for otherwise

\[
x_{k-1} = \cdots = x_1 = 0,
\]

and so

\[
x_1^2 + \cdots + x_k^2 < a^2 + b^2.
\]

Since the function \(x^2 \) is a homeomorphism for \(x > 0 \), we can find \(\varepsilon > 0 \) and \(\delta > 0 \) such that

\[
x_{k-1} - \varepsilon > 0, \quad x_k + \delta < a,
\]

and

\[
(x_{k-1} - \varepsilon)^2 + (x_k + \delta)^2 = x_{k-1}^2 + x_k^2.
\]

Therefore, the \(k \)-vector

\[
(x_1, \ldots, x_{k-2}, x_{k-1} - \varepsilon, x_k + \delta)
\]
belongs to $X_{a,b}$.

Note that for $z > 0$ the function $z^{p/2}$ is strictly convex, as its second derivative

$$\frac{p(p-2)}{4} z^{p/2-2}$$

is positive. Hence, if $0 < \alpha < z_1 \leq z_2$, we have

$$(z_1 - \alpha)^{p/2} + (z_2 + \alpha)^{p/2} > z_1^{p/2} + z_2^{p/2}.$$

Now setting

$$z_1 = x_{k-1}^2,$$

$$z_2 = x_k^2,$$

$$\alpha = x_{k-1}^2 - (x_{k-1} - \delta)^2 = (x_k + \delta)^2 - x_k^2,$$

we see that

$$(x_{k-1} - \delta)^p + (x_k + \delta)^p = (z_1 - \alpha)^{p/2} + (z_2 + \alpha)^{p/2}$$

$$> z_1^{p/2} + z_2^{p/2}$$

$$= x_{k-1}^p + x_k^p.$$

This inequality contradicts the assumption that $y_1^p + \cdots + y_k^p$ attains maximum over $X_{a,b}$ at (x_1, \ldots, x_k), and therefore $x_k = a$.

Further, we see that

$$x_1^2 + \cdots + x_{k-1}^2 \leq b^2,$$

which yields

$$x_1 \leq b, \ldots, x_{k-1} \leq b.$$

Therefore,

$$b^p \geq x_1^2 b^{p-2} + \cdots + x_{k-1}^2 b^{p-2}$$

$$\geq x_1^p + \cdots + x_{k-1}^p.$$

Equality may hold only if

$$x_{k-1} = b \quad \text{and} \quad x_{k-2} = \cdots = x_1 = 0.$$

Hence,

$$a^p + b^p \geq x_1^p + \cdots + x_{k-1}^p + a^p$$

$$= x_1^p + \cdots + x_k^p,$$

completing the proof of the lemma. \hfill \Box

Proof of Theorem 4 Let $\lambda_1 \geq \cdots \geq \lambda_n$ be the adjacency eigenvalues of G.

10
We first prove the contrapositive of the statement of the theorem: if
\[\lambda_1^2 + \lambda_2^2 > m, \]
then \(G \) has a triangle.

Clearly, we may assume that \(G \) is a noncomplete graph and therefore \(\lambda_2 \geq 0 \). Since
\[\lambda_1^2 + \cdots + \lambda_n^2 = 2m, \]
we see that
\[\lambda_1^2 + \lambda_2^2 > m > \lambda_3^2 + \cdots + \lambda_n^2. \] (7)

Let
\[k = n - 2, \]
\[a = \lambda_1, \]
\[b = \lambda_2, \]
\[x_i = |\lambda_{i+2}|, \quad i = 1, \ldots, k, \]
\[p = 3. \]

Since \(a \geq b \) and \(a \geq x_i \) for \(i = 1, \ldots, k \), Lemma 10 implies that
\[\lambda_1^3 + \lambda_2^3 \geq |\lambda_3|^3 + \cdots + |\lambda_n|^3. \]

Note that equality cannot hold above, for otherwise Lemma 10 implies that
\[\lambda_1^2 + \lambda_2^2 = \lambda_3^2 + \cdots + \lambda_n^2, \]
contradicting (3).

Hence,
\[6t(G) = \lambda_1^3 + \lambda_2^3 + \lambda_3^3 + \cdots + \lambda_n^3 \geq \lambda_1^3 + \lambda_2^3 - |\lambda_3|^3 - \cdots - |\lambda_n|^3 > 0. \]

Therefore, \(G \) contains a triangle, proving the inequality of Theorem 4.

If \(G \) is triangle-free and
\[\lambda_1^2 + \lambda_2^2 = m, \]
setting \(k, a, b, x_i, p \) as above, Lemma 10 implies that
\[\lambda_1^3 + \lambda_2^3 = |\lambda_3|^3 + \cdots + |\lambda_n|^3, \]
and therefore, the condition for equality in Lemma 10 implies that
\[\lambda_1^2 = \lambda_n^2, \]
\[\lambda_2^2 = \lambda_{n-1}^2, \]
\[\lambda_3 = \cdots = \lambda_{n-2} = 0. \]

Now the condition for equality in Theorem 4 follows from a result of Oboudi [6], exactly as in [4].
6 Concluding remarks

The bound on $bk(G)$ given by Theorem 2 seems far from optimal, as the multiplicative constant and perhaps the exponent $1/4$ can be improved.

It seems unlikely that Lemma 10 can be extended to support the proof of Conjecture 3 for $r \geq 3$.

References

[1] B. Bollobás and V. Nikiforov, Cliques and the spectral radius, *J. Combin. Theory Ser. B* 97 (2007), 859–865.

[2] D. Cvetković, Graphs and their spectra (*PhD Thesis*), *Univ. Beograd. Publ. Elektrotehn. Fak., Ser. Mat. Fiz.* 354–356 (1971), 1–50.

[3] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, *Cambridge University Press*, 2010, *LMS Student Texts* 75, pp. 364+xi.

[4] H. Lin, B. Ning, and B. Wu, Eigenvalues and triangles in graphs, *Combin, Probab. Comput.* 30 (2021), 258–272.

[5] E. Nosal, Eigenvalues of Graphs, *Master’s thesis*, University of Calgary, 1970.

[6] M.R. Oboudi, Bipartite graphs with at most six non-zero eigenvalues, *Ars Math. Contemp.* 11 (2016), 315–325.

[7] T.H. Wei, The Algebraic Foundations of Ranking Theory. *PhD thesis*, University of Cambridge, 1952.

[8] M. Zhai, H. Lin, and J. Shu, Spectral extrema of graphs of fixed size: cycles and complete bipartite graphs, to appear in *Eur. J. Combin.* 95 (2021).