Unwarranted Variation in the Quality of Care for Patients With Diseases of the Thoracic Aorta

Alex Bottle, MSc, PhD,* Giovanni Mariscalco, MD, PhD,* Matthew A. Shaw, MA; Umberto Benedetto, MD; Athanasios Saratzis, MD; Silvia Mariani, MD; Mohamad Bashir, MD, MRCS, PhD; Paul Aylin, FFPH; David Jenkins, BSc, MBBS, FRCS, MS; Aung Y. Oo, FRCS; Gavin J. Murphy, MD, FRCS; on behalf of the UK Aortic Forum†

Background—Thoracic aortic disease has a high mortality. We sought to establish the contribution of unwarranted variation in care to regional differences in outcomes observed in patients with thoracic aortic disease in England.

Methods and Results—Data from the Hospital Episode Statistics (HES) and the National Adult Cardiac Surgery Audit (NACSA) were extracted. A parallel systematic review/meta-analysis through December 2015, and structure and process questionnaire of English cardiac surgery units were also accomplished. Treatment and mortality rates were investigated. A total of 24 548 adult patients in the HES study, 8058 in the NACSA study, and 103 543 from a total of 33 studies in the systematic review were obtained. Treatment rates for thoracic aortic disease within 6 months of index admission ranged from 7.6% to 31.5% between English counties. Risk-adjusted 6-month mortality in untreated patients ranged from 19.4% to 36.3%. Regional variation persisted after adjustment for disease or patient factors. Regional cardiac units with higher case volumes treated more-complex patients and had significantly lower risk-adjusted mortality relative to low-volume units. The results of the systematic review indicated that the delivery of care by multidisciplinary teams in high-volume units resulted in better outcomes. The observational analyses and the online survey indicated that this is not how services are configured in most units in England.

Conclusions—Changes in the organization of services that address unwarranted variation in the provision of care for patients with thoracic aortic disease in England may result in more-equitable access to treatment and improved outcomes. (J Am Heart Assoc. 2017;6:e004913. DOI: 10.1161/JAHA.116.004913.)

Key Words: aortic disease • aortic dissection • cardiac surgery • quality of care

Diseases of the thoracic aorta are increasing in prevalence worldwide.1,2 In the United Kingdom (UK), between 1999 and 2010, hospital admissions for thoracic aortic dissection increased from 7.2 to 8.8 and for thoracic aortic aneurysm from 4.4 to 9.0 per 100 000 inhabitants.3 These diseases have a high mortality; in the UK, mortality rates for thoracic aortic dissection and aneurysm are 3.2 and 7.5 per 100 000 inhabitants, respectively.3 There is evidence of regional variation in clinical outcomes for patients with thoracic aortic disease (TAD)4–11; for example, operative mortality rates for acute type A dissection, the most common acute presentation of TAD, range from 2.8% to 47.6% between centers.4,9–16 This may reflect differences in socioeconomic, ethnic, and other demographic characteristics of local populations, but there is also evidence of variation in the provision of aortic services in the UK and elsewhere.7,10,16

From the Dr Foster Unit, Department of Primary Care and Public Health, School of Public Health, Imperial College, London, United Kingdom (A.B., P.A.); Leicester Cardiovascular Biomedical Research Unit & Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, United Kingdom (G.M., A.S., S.M., G.J.M.); Information Department (M.A.S.) and Department of Cardiothoracic Surgery (A.Y.O.), Liverpool Heart and Chest Hospital, Liverpool, United Kingdom; School of Clinical Sciences, Bristol Heart Institute, University of Bristol, United Kingdom (U.B.); Department of Health Economics, University of Liverpool, United Kingdom (M.B.); Department of Cardiothoracic Surgery, Papworth Hospital, Cambridge, United Kingdom (D.J.).

Accompanying Data S1, Tables S1 through S15 and Figures S1 through S10 are available at http://jaha.ahajournals.org/content/6/3/e004913/DC1/embed/inline-supplementary-material-1.pdf

*Dr Bottle and Dr Mariscalco contributed equally to this work.
†A complete list of the UK Aortic Forum Collaborators can be found in the Appendix at the end of the article.

Correspondence to: Giovanni Mariscalco, MD, PhD, Leicester Cardiovascular Biomedical Research Unit & Department of Cardiovascular Sciences, Clinical Science Wing, Glenfield Hospital, University of Leicester, Groby Road, Leicester LE39QP, United Kingdom. E-mail: gm247@le.ac.uk

Received November 8, 2016; accepted February 7, 2017.

© 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

DOI: 10.1161/JAHA.116.004913
Targeting unwarranted variation is a key objective for health services as a means of improving the quality and equity of access to care.17

The aim of the current study was to evaluate the contribution of unwarranted variations in care to regional differences in outcome observed in TAD patients in England and identify areas of structure and process for quality improvement.

Methods

Study Design

We measured mortality (primary outcome) along with a range of other important measures of quality, such as equity of access, timeliness of surgery, and the effect of treatment on longer-term patient outcomes in national databases used to monitor quality of care by National Health Service (NHS) England; the National Adult Cardiac Surgery Audit (NACSA), used by the National Institute for Comparative Outcomes Research (NICOR) to monitor cardiac surgeon and unit specific hospital mortality, and the administrative NHS database Hospital Episode Statistics (HES), used by Dr Foster to measure hospital performance. We also asked cardiac surgical units in England to complete a questionnaire on the structure and organization of TAD services. Because there is no agreed service specification for TAD services in England and elsewhere,7,10,16,18,19 and current recommendations for service organization are not evidence based,20–24 we also conducted a parallel systematic review of existing studies that have considered quality standards for TAD service delivery.

Data were extracted from the HES and the NICOR NACSA registry, according to The REporting of studies Conducted using Observational Routinely collected health Data (RECORD) statement (Table S1).25 The need to obtain informed consent from patients was waived by the University of Leicester Research Governance Office because the identifiable information was either removed or pseudonymized. The study was approved by the NICOR NACSA Research Board (study reference 14-ACS-25). A systematic review and meta-analysis on the standard of care for the management of TAD was also performed and adhered to MOOSE and PRISMA guidelines (Tables S2 and S3).26,27

Data Sources and Study Populations

Data, outcomes, and study populations obtained from HES and NICOR NACSA registries are fully reported in Data S1. Briefly, HES is the national hospital administrative database for England and covers all admissions to public (NHS) hospitals in the country.26 The data contain demographic, administrative, and clinical information, including procedures and operations (Table S4). The NICOR NACSA registry (version 4.1.2) contains prospectively data for all English adult patients undergoing major thoracic aortic surgery and undergoes robust validation and checking procedures to maintain data quality.16,29–31

To complement the NACSA study, we also contacted the Society for Cardiothoracic Surgery Unit Representatives for every cardiac surgery unit in England assessing their current service organization for TAD. Surgeons were queried on the presence of a dedicated aortic team, a specific on-call rota for thoracic aortic disease, a hybrid theater, and an aortic multidisciplinary team (MDT) recognized in the consultant job plan.

The study was approved by the NICOR NACSA Research Board (study reference 14-ACS-25). The need to obtain informed consent from patients was waived by the University of Leicester Research Governance Office because the identifiable information was either removed or pseudonymized.

Systematic Review and Meta-Analysis

Electronic search strategy, objectives, criteria for study selection, eligibility, data collection, and assessment of study quality were published online and registered in the PROSPERO International Prospective Register of Systematic Reviews (PROSPERO registry—CRD42015024137).32

Briefly, 3 reviewers systematically searched electronic databases (MEDLINE [PubMed and Ovid], Embase, SCOPUS, and Cochrane Library) without date or language restriction from inception to the end of December 2015. Our keywords and MeSH terms pertinent to the exposure of interest were used in relevant combinations and included: “aorta”, “aorta, thoracic”, “aorta, thoracoabdominal”, “aortic aneurysm”, “aortic dissection”, “standard of care”, “health care”, “treatment outcome”, “hospital mortality”, “hospital volume”, “surgeon volume”, “volume outcome relationship”, “teaching hospital”, and “urban hospital”. In addition, the reference lists of all retrieved articles were reviewed for further identification of potentially relevant studies that were not previously identified.

All adult major thoracic aortic procedures were considered. Exposures of interest included hospital volume activity, generally defined as yearly number of major aortic operations performed, subdivided in low- or high-volume, surgeon volume, presence of multidisciplinary thoracic aortic surgery program, and teaching/urban hospital status. The primary outcome of interest was all-cause mortality in hospital or within 30 days from index admission or procedure. Secondary outcomes included postoperative stroke, re-exploration for bleeding/tamponade, postoperative renal failure, and total length of hospital stay. Inclusion and exclusion criteria for qualitative/quantitative analyses were summarized according to PICOS approach (Table S5).

Year of publication, study design, country, sample size, recruitment period, inclusion and exclusion criteria, measured
outcomes, aortic center configuration, and definition of low- and high-volume threshold, baseline patient demographics (age, sex), and outcomes among low- and high-volume groups were extracted. Quality assessment was performed using the Newcastle-Ottawa Scale (NOS).33

Statistical Analysis

HES cohort

Outcomes were calculated as crude proportions and adjusted for a number of patient factors as listed in Tables S6 and S7. Comorbidity information was taken from the index admission or any admission for any reason in the previous year. All outcomes were binary, so logistic regression was used. These models were hierarchical with 2 levels, with random effects for each county. Predicted probabilities for each patient were derived from the fixed-effects part of the model.34 Hierarchical models adjust for the clustering of patients within county and allow the estimation of the proportion of variation in the outcome that is attributable to each level of the model (ie, to patient factors and to county). To obtain adjusted outcome rates by county, observed and predicted probabilities were summed by county, with the former divided by the latter to obtain relative risks. These were then multiplied by the national crude outcome rate to obtain adjusted rates. Rates were put onto funnel plots with 95% and 99.8% control limits, the latter to determine how many counties were statistical outliers. To assess model fit, deviance residuals were plotted and the Hosmer-Lemeshow risk deciles and chi-squared value also inspected. Discrimination was assessed using the area under the receiver-operating characteristic curve (c statistic). This was done for logistic regression without adjustment for clustering, because there is no consensus over how to calculate the equivalent measures for hierarchical models.35 As well as random effects for each geographical area, random slopes were tried in the model for receiving surgery for several binary patient factors: age over 75 versus younger, 1 or more versus none of 5 major comorbidities, dissection versus none, and aneurysm versus none. This was to see whether any of these factors had different effects on the outcome depending on the area. We did not find such effects and therefore report only results from using fixed slopes. Finally, obtained rates for TAD treatment by county as well as 6-month mortality for treated and untreated patients were mapped using ArcMap version 10.3 (ESRI, Redlands, CA).

NACSA cohort

Categorical and dichotomous variables were summarized as absolute number and percentage. Non-normally distributed continuous data were summarized as medians and interquartile ranges (IQRs). The effects of operational and institutional characteristics on in-hospital mortality were assessed using multiple logistic regression models. Relevant patient-level variables were offered to the models to adjust for any potential confounding factors. Results of the regression analyses were expressed as odds ratios (ORs) and 95% CIs. Box and whisker plots were used to present case mix distributions by center: These plots show the 25th percentile, median and 75th percentile of a given distribution at the bottom, middle and top of the boxes, respectively, then the mean is then plotted as a dot, and the lower and upper whiskers then represent the 5th and 95th percentiles, respectively. Scatter plots were generated to assess the relationship between observed in-hospital mortality and volume, and ordinary least squares (OLS) regression lines were included for visual inspection. Statistical analyses were performed with SAS software (version 9.3; SAS Institute Inc., Cary, NC). In all cases, P<0.05 was considered statistically significant.

Systematic review and meta-analysis

Treatment effect on operative outcomes is reported as ORs with a 95% CI. Yates correction was implemented if a cell contained a zero in the 2×2 contingency table.36 Individual ORs (OR <1: high volume centers better) and variance were computed by using number of events and sample size and pooled by using Mantel–Haenszel method and random-effects model.37 A fixed-effects model was also computed as sensitivity analysis. A subgroup analysis according to the primary aortic pathology (aneurysm vs aortic dissection) was performed, being a possible significant effect modifier. Finally, to account for inherent patient selection bias related with an observational study design, individual risk-adjusted ORs for the primary endpoint were obtained when reported, and pooled adjusted risk estimates were computed by using log transformation and a generic inverse-variance weighting method.38 I² statistic was used to estimate the percentage of total variation across studies attributed to heterogeneity rather than chance. Suggested thresholds for heterogeneity were used, with i² values of 25% to 49%, 50% to 74%, and >75%, indicative of low, moderate, and high heterogeneity.38 Publication bias was evaluated using visual inspection of funnel plot asymmetry and by Egger’s test.39 P<0.05 was used as the level of significance and 95% CIs were reported where appropriate. Statistical analysis was conducted using meta package for R (version 4.3-2; R Foundation for Statistical Computing, Vienna, Austria).40,41

Results

HES Cohort

Of 26 551 patients with a TAD admission in England between 2004–2005 and 2010–2011, 25 282 had not had such an
admission in the previous 5 years and were defined as index admissions. Seven hundred thirty-four (2.8%) were excluded because of lack of area identifiers, leaving a final population of 24,548 adult patients coded as having a new diagnosis of TAD. Of these, 16,448 (67%) were affected by aneurysms, 6,345 (25.9%) by dissections, and 1,665 (6.8%) by unspecified TAD. A total of 5,445 (22%) underwent treatment (surgical and/or endovascular) within 6 months of diagnosis. The 6-month mortality in treated patients was 17.7% and in untreated patients was 30%. Patient characteristics are summarized in Table 1.

Variation attributable to patient-related factors

Predictive variables for receiving treatment, or an emergent procedure, are reported in Table S6. Briefly, increasing age, pre-existing diabetes mellitus, comorbidities, and a diagnosis of cancer were associated with a conservative approach. The greater the deprivation status, the lower were the odds of being treated. Patients affected by aortic dissection and comorbid conditions, including ischemic heart disease and congenital and other vascular disorders, were more prone to be treated on an emergent basis. Predictors of 6-month mortality in treated and untreated patients are summarized in Table S7. In patients receiving treatment, mortality was associated with increasing age, comorbidity presence, and nonelective admission. Emergent/urgent admission, increasing age, severe comorbidity, and the presence of aortic dissection were associated with mortality in untreated patients.

Variation attributable to non-patient-related factors

Significant variance by county of residence was observed in terms of the percentages of patients receiving treatment within 6 months of their index admission, ranging from 7.6% in Leicestershire to 31.5% in the West Midlands (Figure 1). The percentage of subjects treated emergently ranged from 29.6% in Merseyside to 67.9% in Durham (Figure 2). Multilevel modeling confirmed the statistically significant differences in treatment rates by county of residence. A null model containing only random effects for the counties estimated the variance between counties in log odds of treatment as 0.096 (SE, 0.024); adding patient factors to this null model actually increased the estimated between-county variance (to 0.105; SE, 0.026). To adjust for regional differences in detection rates, the TAD admission rates per 100,000 resident populations for each county were entered into the model. This reduced the between-county variance in treatment rates by 40% to 0.060 (SE, 0.016). Despite this, the overall number of counties flagged as high or low outliers on funnel plots using 99.8% control limits were very similar to those observed using crude TAD admission rates.

Regional differences by county were also observed for 6-month mortality (Figure 1 and Figure S1). For treated patients, risk-adjusted mortality rates ranged from 6.5% in Oxfordshire to 23.3% in North Yorkshire. Risk-adjusted mortality rates in untreated patients ranged from 19.4% in Leicestershire to 36.3% in East Sussex. Adding patient factors to the null model reduced the variation in mortality in treated patients attributable to county of origin by 27%, therefore becoming nonsignificant (variance estimate, 0.037; SE, 0.023). A 62% fall in the variation in mortality was observed in untreated patients, although the between-county variance remained statistically significantly greater than zero, but modest in size (0.027; SE, 0.009).

Using Pearson correlation with counties weighted by their total number of index admissions, we compared the sets of county-level adjusted outcome rates. The proportion of patients receiving treatment showed positive, but nonsignificant, correlations with the proportion of treatments done nonelectively (r = +0.20; P = 0.029) and the postoperative mortality rate (r = +0.25; P = 0.114). Conversely, the proportion of treated patients demonstrated a positive and statistically significant correlation with the mortality rate in untreated patients (r = +0.47; P = 0.002). This latter relation was driven by patients without dissection: for these patients alone, the correlation was +0.68 (P < 0.001), whereas for those with dissection it was −0.28 (P = 0.079). In order to verify whether the positive correlation between treatment rates and 6-month

Table 1. National Crude Outcome Rates Split by Age, Major Comorbidity, and TAD Subtype (HES Cohort)

Patient Factor*	Receiving Operation (%)	Nonemergent Operation (%)	Postoperative Mortality (%)	Mortality in Patients With No Operation (%)
Age <75, y	31.6	54.4	14.0	18.4
Age 75+, y	11.6	52.6	24.3	40.7
TAD: dissection	19.4	10.9	21.5	39.9
TAD: aneurysm	15.8	69.3	12.5	26.4
No major comorbidity	27.6	50.1	12.2	27.6
1+ major comorbidities	18.8	58.2	21.0	31.7
All patients combined	22.2	53.7	16.7	30.5

HES indicates Hospital Episodes Statistics; TAD, thoracic aortic disease.

*Patients with neither dissection nor aneurysm recorded have been omitted from the rows for TAD subtype. Major comorbidities covered ischemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, renal disease, and cancer. Mortality is defined as death in or out of hospital within 6 months of diagnosis or operation.
mortality in both treated and untreated patients may reflect an underlying difference in access to care, patients’ risk profiles were analyzed. No correlation between the proportion of high-risk patients treated by county, defined as those in the highest tertile for predicted probability, and mortality rate in the untreated was observed ($q=+0.17; P=0.294$).

Figure 1. Geographical variation by county across England with reference to treatment rates in patients diagnosed with thoracic aortic disease (left panel), 6-month mortality in treated (mid panel) and untreated (right panel) patients. From HES (Hospital Episodes Statistics) cohort data.

Figure 2. Percentage of patients affected by thoracic aortic disease (TAD) by county and urgency of the operation received (elective vs emergent). From HES (Hospital Episodes Statistics) cohort data.
Table 2. Baseline, Operative, and Mortality Details by Center Volume (Tertiles of Latest 3-Year Activity) (NACSA Cohort)

Patient Factor*	Low-Volume Center (n=1308)	Medium-Volume Center (n=2159)	High-Volume Center (n=4591)
Demographics			
Age at operation, y	64 (52, 72)	64 (52, 73)	64 (51, 73)
BMI, kg/m²	27.2 (24.4, 30.2)	27.0 (24.1, 30.4)	26.7 (23.9, 29.9)
Female sex	450 (34.4)	715 (33.1)	1526 (33.2)
Comorbidities			
Unstable angina	77 (5.9)	114 (5.3)	181 (3.9)
NYHA ≥III	411 (31.4)	721 (33.4)	1184 (25.8)
MI within 90 days of operation	58 (4.4)	72 (3.3)	138 (3.0)
Previous cardiac surgery	150 (11.5)	307 (14.2)	795 (17.3)
Previous aortic surgery	27 (2.1)	71 (3.3)	237 (5.2)
Diabetes mellitus	102 (7.8)	175 (8.1)	276 (6.0)
Current smoker	166 (12.7)	236 (12.2)	478 (10.4)
Hypertension	838 (64.1)	1419 (65.7)	2779 (60.5)
Creatinine >200 μmol/L	39 (3.0)	62 (2.9)	123 (2.7)
History of renal dysfunction	16 (1.2)	37 (1.7)	81 (1.8)
History of pulmonary disease	153 (11.7)	267 (12.4)	554 (12.1)
History of stroke	119 (9.1)	192 (8.9)	350 (7.6)
Neurological dysfunction	55 (4.2)	91 (4.2)	160 (3.5)
Peripheral vascular disease	213 (16.3)	452 (20.9)	647 (14.1)
Preoperative nonsinus heart rhythm	182 (13.9)	278 (12.9)	478 (10.4)
Triple vessel disease	68 (5.2)	134 (6.2)	169 (3.7)
Left main stem disease	30 (2.3)	45 (2.1)	77 (1.7)
Moderate ejection fraction (30–50%)	308 (23.6)	419 (19.4)	857 (18.7)
Poor ejection fraction (<30%)	57 (4.4)	92 (4.3)	179 (3.9)
PA systolic >60 mm Hg	26 (2.0)	26 (1.2)	42 (0.9)
Preoperative IV nitrates	62 (4.7)	118 (5.5)	231 (5.0)
Preoperative IV inotropes	35 (2.7)	58 (2.7)	133 (2.9)
Preoperative ventilation	22 (1.7)	42 (2.0)	102 (2.2)
Preoperative cardiogenic shock	88 (6.7)	100 (4.6)	154 (3.4)
Nonelective priority	497 (38.0)	801 (37.1)	1643 (35.8)
Urgent priority	202 (15.4)	396 (18.3)	697 (15.2)
Emergency priority	267 (20.4)	355 (16.4)	888 (19.3)
Salvage priority	28 (2.1)	50 (2.3)	58 (1.3)
Dominant pathology			
Aneurysm	697 (53.3)	1248 (57.8)	2477 (54.0)
Dissection	326 (24.9)	481 (22.3)	1012 (22.0)
Trauma	7 (0.5)	7 (0.3)	36 (0.8)
“Other”	166 (12.7)	366 (17.0)	702 (15.3)
Data N/A	112 (8.6)	57 (2.6)	364 (7.9)

Data N/A
NACSA Cohort

We considered that confounders not contained within HES data might also contribute to unwarranted variance. We therefore evaluated regional variance in treatment of TAD using the NACSA registry, which contains validated data on the severity and complexity as well as the treatment of TAD by regional cardiac centers.

Study cohort

Of the 219,741 patients that underwent surgery in cardiac surgery centers in England, complete case data were available on 8058 major aortic surgery cases from 29 hospitals that comprised the analysis data set. Patient characteristics and operative details are summarized in Table 2 and Table S8. All centers provided data on patients operated on root/ascending aorta and aortic arch segments, 28 (96.6%) centers on the descending thoracic aorta, and 17 (58.6%) on the thoracoabdominal aorta (Figure 3).

Variation attributable to patient-related factors

There were differences between centers with respect to predicted operative risk (Figure 3C); the median calculated logistic EuroSCORE of in-hospital mortality ranged from 4.6% to 9.1%. Pathology, emergent treatment, and the most distal aortic surgery segment treated (case complexity) were important determinants of hospital mortality (Table 3).

Variation attributable to non-patient-related factors

There were differences between centers with respect to the complexity and volume of cases performed. The largest volume of cases by a single center was 662 and the smallest 117 (Figure 3A). The percentage of root/ascending aortic operations as a share of total aortic operations ranged from 45.1% to 96.0%, for aortic arch procedures the range was from 1.7% to 32.1%, for descending thoracic aortic procedures from 0.7% to 18.7%, and for thoracoabdominal aortic procedures from 0.2% to 9.9% (Table S9 and Figure S2). More-complex surgery was more common in high-volume centers. The results of the survey of service organization are shown alongside details of case volume, complexity, and outcome by unit in Figure 3D. All the units responded to the questionnaire. This demonstrated regional variation in care delivery in terms of the presence of dedicated aortic teams, multidisciplinary aortic team meetings, specific on-call rotas for aortic emergencies, or use of hybrid operating theaters.

Table 3 and Table S10 show unadjusted and fully risk-adjusted in-hospital mortality effects by operation category, tertile of volume activity, dominant pathology, and priority. Case complexity was a principal determinant of in-hospital mortality. Relative to proximal segments (root/ascending) the adjusted ORs for aortic arch procedures as well as descending thoracic and thoracoabdominal aortic procedures were 1.88 (95% CI, 1.48–2.37), 2.47 (95% CI, 1.77–3.44), and 3.05 (95% CI, 1.82–5.11), respectively. For the increasing volume...
Figure 3. Activity (total number of procedures) (A) and in-hospital mortality rate (B) by center, by most distal aortic segment; patient risk profile by center expressed by EuroSCORE II (C). From NACSA (National Adult Cardiac Surgery Audit) cohort data. Results of the national survey assessing current service organization for thoracic aortic disease in cardiac surgery centers across England; surgeons were queried on the presence of a dedicated aortic team, a specific on-call rota for thoracic aortic disease, a hybrid theater, and an aortic multidisciplinary team (MDT) recognized in the consultant job plan (D): The presence of a vertical bar for a given center means that that center had the particular feature given in the chart key.
activity tertiles, the corresponding adjusted risk of in-hospital mortality relative to low-volume centers was 0.84 (95% CI, 0.66–1.07) for medium-volume centers and 0.72 (95% CI, 0.57–0.89) for high-volume centers (Table 4). Similar results were observed when cases were stratified by most distal segment, as well for the OLS regression analyses that demonstrated lower mortality in centers with high-volume activity (Figure S3).

Systematic Review and Meta-Analysis

Of the 12,804 records identified, 33 eligible observational cohort studies were included in the systematic review, comprising a total of 103,543 patients (Figure S4).6–14,42–67 The identified studies (20 multicenter and 13 single-center) were published between 1994 and 2015. Study characteristics and collected study outcomes are summarized in Tables S11 through S13. Quality assessment indicated that 20 of 33 studies were at significant risk of bias (NOS, <8; Table S14). Twelve observational cohort studies analyzing impact of hospital volume on in-hospital mortality were identified for the primary analysis, including a total of 14,562 and 16,036 patients who underwent surgery in high- and low-volume centers, respectively. Pooled unadjusted ORs showed that high-volume centers were associated with a 50% relative risk reduction in mortality when compared with low-volume centers (Figure 4, upper panel),* with a moderate heterogeneity among studies (I²=53.4%). No publication bias was found (P=0.19; Figure S5). Overall, 9 studies reported on adjusted effect size of hospital volume on mortality (Table S15). Pooled adjusted estimates of individual log ORs confirmed that high-volume centers were independently associated with a significantly reduced incidence of in-hospital/30-day mortality (adjusted OR, 0.56; 95% CI, 0.45–0.70; I²=70.2%; Figure 4 lower panel).7,8,10,13,50,58–60,62 Subgroup analysis showed similar effects for high-volume centers with respect to both aneurysms and aortic dissection (Figure S6). Pooled estimates did not reveal any significant differences between high- and low-volume centers with reference to postoperative stroke (OR, 1.29; 95% CI, 0.85–1.95; I²=58.8%), re-exploration for bleeding/tamponade (OR, 0.91; 95% CI, 0.72–1.15; I²=68.5%), and postoperative renal failure (OR, 0.82; 95% CI, 0.65–1.04; I²=77.6%; Figure S7). Centers that introduced a specific multidisciplinary TAD program also reported a significant reduction in mortality

*References: 7–10, 13, 50, 58–60, 62, 65, 66.

| Table 3. Unadjusted and Risk-Adjusted In-Hospital Mortality Effects (NACSA Cohort) |
|--|-----------------|---------------|------------------|------------------|
Aortic segment*	Frequency	Observed Mortality (%)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Root/ascending aorta	6848	8.3	Reference	Reference
Aortic arch	762	13.3	1.75 (1.42, 2.16)	1.86 (1.47, 2.35)
Descending aorta	320	15.3	1.86 (1.38, 2.51)	2.30 (1.66, 3.18)
Thoracoabdominal aorta	128	22.7	1.91 (1.18, 3.09)	2.75 (1.67, 4.56)
Low-volume (latest 3 years’ activity)	1308	10.6	Reference	Reference
Medium-volume (latest 3 years’ activity)	2159	9.5	0.89 (0.71, 1.12)	0.80 (0.62, 1.02)
High-volume (latest 3 years’ activity)	4591	8.8	0.82 (0.67, 1.00)	0.76 (0.60, 0.95)
Dominant pathology‡			Reference	Reference
Aneurysm	4422	4.9	Reference	Reference
Dissection	1819	17.2	4.07 (3.39, 4.89)	2.27 (1.82, 2.82)
Other	1284	13.2	2.97 (2.40, 3.67)	2.05 (1.61, 2.61)
Data N/A	533	9.6	2.07 (1.50, 2.85)	1.78 (1.26, 2.52)
Priority†			Reference	Reference
Elective	5117	4.8	4.08 (3.47, 4.78)	2.54 (2.09, 3.08)
Nonelective	2941	17.1	Reference	Reference

*Adjusted for preoperative comorbidities, operative risk factors, and activity tertile.
†Adjusted for preoperative comorbidities, operative risk factors, and most distal aortic segment.
‡Adjusted for preoperative comorbidities, operative risk factors, most distal aortic segment, and activity tertile.
Table 4. Mortality Rates by Volume Center Activity (NACSA Cohort)

Activity tertile*	Frequency	Observed Mortality (%)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Low-volume (latest 3 years’ activity)	1308	10.6	Reference	Reference
Medium-volume (latest 3 years’ activity)	2159	9.5	0.89 (0.71, 1.12)	0.80 (0.62, 1.02)
High-volume (latest 3 years’ activity)	4591	8.8	0.82 (0.67, 1.00)	0.76 (0.60, 0.95)

Activity tertile*	Frequency	Observed Mortality (%)	Unadjusted OR (95% CI)	Adjusted OR (95% CI)
Low-volume (6 years’ activity)	1424	11.1	Reference	Reference
Medium-volume (6 years’ activity)	2353	9.5	0.84 (0.68, 1.05)	0.83 (0.66, 1.05)
High-volume (6 years’ activity)	4281	8.6	0.75 (0.62, 0.91)	0.71 (0.57, 0.88)

NACSA indicates National Adult Cardiac Surgery audit; OR, odds ratio.

*Adjusted for preoperative comorbidities, operative risk factors, and most distal aortic segment.

(OR, 0.35; 95% CI, 0.13–0.96) although with significant heterogeneity (I²=75.7%; Figure S8). Surgeon volume (high- vs low-volume surgeon) and hospital status (teaching vs non-teaching hospitals and urban vs rural hospitals) had no effect on hospital outcomes (Figures S9 and S10).

Discussion

The current study has demonstrated significant regional variation in access to treatment, the organization of clinical services, and mortality for patients with TAD in England. An analysis of HES data demonstrated that the variation in the proportion of TAD patients treated within 6 months of diagnosis ranged from 7.6% to 31.5% among counties and remained statistically significant after adjustment for potential confounders, including comorbidity, deprivation, disease severity, and population density. Regional variation was not associated with differences in mortality rates for patients that received treatment, but was associated with differences in mortality in those that did not receive treatment, implying that inequity in access to care has important effects on outcome. The analysis of NASCA data indicated wide regional variation in the volume and complexity of TAD cases undertaken in English cardiac centers. Centers undertaking higher volumes were more likely to treat more-complex disease and had lower risk-adjusted mortality. A systematic review that attempted to benchmark service specifications for TAD indicated that patients treated by multidisciplinary teams in high-volume centers have better clinical outcomes. A survey of structure and processes indicated that this standard of care is not consistently available to patients in England. In addition, our systematic literature search confirmed a world-wide knowledge gap with respect to the safest, most effective referral model/organization of services for the management of TAD. Neither was identified the minimum service specification for centers that undertake interventions on the thoracic aorta.

To our knowledge, this is the first nation-wide analysis of the quantity and quality of care for patients with TAD. The study used prospectively collected data from 2 large independent national databases used by the NHS to monitor quality. These contain data on every patient presenting to hospital with TAD or undergoing surgery for TAD in English hospitals. The limitations are those of all registry analyses, notably the risks of confounding and other sources of bias, including variable data quality. We attempted to minimize confounding by adjusting for a large number of baseline patient-related factors, including demographics, social deprivation, comorbidity, and presentation. Detection bias was mitigated by using objective measures of outcome and exposures of interest. The NACSA database uses consistent, well-defined definitions of exposures and outcomes and undergoes regular internal and external quality assurance processes. Being an administrative database, HES is more likely to have variations in data quality by hospital; under-recording of comorbidities, for instance, is a well-known limitation. For the TAD diagnosis date, we used the date of first recording of TAD in 1 of the diagnosis fields or the date of the TAD procedure if the patient had no earlier TAD admission, implying some uncertainty in the actual diagnosis date. However, certain fields, such as for the primary diagnosis and procedure, have been shown to be reliable by a recent systematic review. A further limitation is that it was not possible to link the HES and NACSA analyses to further explore potential reasons for variability in care. This is because the geographical regions served by individual cardiac centers often overlap. The 2 cohorts also considered different time periods; this was attributed to the availability of complete, cleaned HES data to March 2011, and the availability of data that used consistent definitions for aortic
disease in the NACSA database between 2007 and 2013. Our analyses did not specifically consider the role of thoracic endovascular aortic repair (TEVAR). It has been suggested that this has important effects on the mortality of aortic disease, and almost all studies have shown excellent operative mortality rates post-TEVAR compared to open repair, with even higher survival rates after emergent aortic procedures. 57, 69 The total numbers of TEVARs listed in the HES database to 2011 were small (n=532), however, preventing useful and detailed analysis.

Figure 4. Forest plot with unadjusted (top) and adjusted (bottom) risk estimates for in-hospital/30-day mortality in high- versus low-volume hospitals. OR indicates odds ratio.
In addition, our analysis did not account for the potential impact of surgical techniques adopted across English units in the outcomes of TAD patients undergoing surgery. Rates and modality of circulatory arrest used during complex TAD operation, arterial cannulation, and cerebral protection strategies per center were not collected in HES and NACSA databases. This precluded further analyses and the possibility to evaluate these surgical strategies as an additional measure of the quality of care in TAD patients, although arterial cannulation strategies and cerebral protection strategies have been proved to influence operative outcomes in aortic surgery.70,71

The systematic review was limited in that it relied on the reported information on confounding variables that were controlled for; consistent analyses of all studies can be done only when data on individual patients are combined. Many of the included studies were at risk of bias, and there was substantial heterogeneity in many of the effect estimates. We speculate that this reflected differences in the definitions of exposures of interest, including the definition of a high case volume or what constituted an aortic multidisciplinary team. For example, the definition of high versus low volume was defined, in some studies, as annualized activity versus study period activity, with the numbers of cases expressed varyingly as tertiles or medians.**

These limitations notwithstanding, this study has demonstrated variability in the quality of care for patients with TAD that appears to be unwarranted. This is a common finding in studies of variation in access to care for patients with cardiovascular disease in England and elsewhere.17,72 Some of the contributory factors to variation identified in this report, such as social deprivation, require complex and difficult solutions; however, variations in structure and processes of care are more readily addressed. For example, service specifications for the provision of vascular surgery in England have led to substantive reorganization of care pathways, the concentration of multidisciplinary expertise in teams, and significant improvements in key markers of quality, such as mortality following elective aneurysm repair.73,74 In the current study, higher-volume units and those undertaking significant numbers of more-complex procedures were more likely to have structures in place that were identified in the systematic review as being associated with better outcomes, specifically hybrid operating theatres, and adequately resourced MDT aortic teams. On the basis of these results, we suggest that these structures should be included in any future service specification for thoracic aortic disease. The definition of an adequate unit volume is more difficult; the NASCA data identified units in the lowest tertile of total cases (<32 cases per year) as having a higher mortality, often with a denominator that included a less-complex caseload. However, the current study did not specifically address whether this reflects outcomes following the treatment of emergent patients. This is important: Patients with acute type A dissection who do not receive treatment die at a rate of 1% to 2% per hour during the first day and almost half die by 1 week.75 A reduction in the numbers of units providing emergency services should be balanced by the increase in risk posed by delays in treatment. However, both HES and NACSA databases do not account for information regarding the referral time, interhospital coordination, and transport of patient affected by TAD, especially in the emergent setting, and we were unable to investigate this important aspect of quality of care.56

The results of the NASCA analysis also indicated uncertainty as to whether the volume outcome relationship applied to all segments of the aorta, although this may be attributable to a smaller sample size for more-distal segments resulting in less precision in the estimates. The systematic review did not indicate that surgeon volume was associated with outcome. This may also reflect the limits of precision when evaluating small numbers of surgeons, the majority of whom undertake low numbers of cases. Alternatively, as suggested by the systematic review, it may be the structures and process beyond that surgeon that are critical determinants of outcome.

The present analyses also identified potential sources of unwarranted variation that will not be addressed solely by reconfiguration of specialist teams, for example, with respect to differences in treatment rates for aneurysms versus nonaneurysms, or for emergent versus nonemergent surgery. We speculate that additional barriers to treatment exist before hospital treatment. This variation can be addressed by guidelines for screening, for example, in first-degree relatives of patients with acute aortic syndromes or bicuspid aortic valves, the use of appropriate imaging, and referral to the TAD service. However, a barrier to the development of these processes is the absence of evidence from randomized trials as to how TAD should be diagnosed and treated. Recent guidelines were based exclusively on evidence from observational analyses and expert opinion.20–22

A final comment is that the variation in TAD services that were observed in this study were not apparent when comparing mortality rates in treated patients by center, the current methods used by Dr Foster (HES), and the National Institute for Comparative Outcomes Research (NASCA) for measuring quality in English cardiac units.28–30 It is also noteworthy that there was no evidence from the HES analysis that cardiac surgery units preferentially select patients that will have an acceptable outcome following surgery; treatment rates were not determined by patient mortality risk. This

**References: 6–10,13,34–36,50–55,58–63,65.
refutes a common criticism that the publication of mortality rates in treated patients, as has occurred in England since 2004, contributes to unwarranted variation.76

In conclusion, evidence of unwarranted variation in the quality of care supports a reorganization of TAD services in England, with greater emphasis on care delivered by multidisciplinary teams in specialist centers. Similar service specifications and recommendations for standards of care and service delivery for TAD patients have also been commonly observed in other countries, mainly in North America and Europe. However, the safest, most effective referral model/organization of services for the management of TAD has not been identified. Further research must focus on the identification of barriers to early diagnosis and referral for treatment, and comparative trials of treatment options for patients with TAD.

Appendix

Collaborators

UK Aortic Forum (Chairman: Mr Geoff Tsang): Mr Alan J. Bryan, Bristol Heart Institute, University Hospital Bristol NHS Trust; Mr Graham Cooper, Sheffield Teaching Hospitals; Mr Andrew Duncan, Biomedical Research Unit, The Royal Brompton Hospital; Miss Deborah Harrington and Mr Manoj Kuduvalli, Liverpool Heart and Chest Hospital; Mr Jorge Mascaro, Queen Elizabeth Hospital, University Hospitals Birmingham; Mr Ulrich Rosendahl, Aortic Centre, Royal Brompton and Harefield NHS Trust; Mr Geoff Tsang, University Hospital Southampton NHS Foundation Trust; Mr Jonathan Unsworth-White, Southwest Cardithoracic Centre, Derriford Hospital, Plymouth.

Author Contributions

Bottle, Mariscalco, Murphy, and Shaw had full access to all of the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. Study concept and design: Bashir, Benedetto, Bottle, Mariscalco, Murphy, and Oo. Acquisition of data: Aylin, Bottle, Mariani, Mariscalco, Saratzis, and Shaw. Analysis and interpretation of data: Benedetto, Bottle, Mariscalco, Murphy, and Oo. Drafting of the manuscript: Bottle, Mariscalco and Murphy. Critical revision of the manuscript for important intellectual content: Aylin, Bashir, Bottle, Jenkins, Mariani, Mariscalco, Murphy, and Oo. Paper supervision: Aylin, Mariscalco, Murphy, and Oo. Statistical analysis: Benedetto, Bottle, and Shaw.

Sources of Funding

This study was supported by Leicester NIHR Cardiovascular Biomedical Research Units and British Heart Foundation. The

Disclosures

Mariscalco, Oo and Murphy declare that they have received support from Vascutek, an aortic prosthesis manufacturer, to attend scientific meetings. Oo has received fees for acting as a proctor for Vascutek. Benedetto has received support to attend scientific meetings from Maquet, who also manufactures aortic prostheses. These authors declare that they have no other conflicts of interest. Members of the UK Aortic forum have also declared competing interests: Debora Harrington, Manoj Kuduvalli, Jorge Mascaro, Geoff Tsang, Graham Cooper, and Jonathan Unsworth-White declare that they have received support from Vascutek for attending scientific meetings. These members of the UK Aortic Forum declare that they have no other conflicts of interest. The remaining authors and members of the UK Aortic Forum declare that they have no financial relationships with any organizations that might have an interest in the submitted work in the previous 3 years, nor other relationships or activities that could appear to have influenced the submitted work, and no other relevant relationships with industry or other disclosures.

References

1. Sampson UK, Norman PE, Fowkes FG, Aboyans V, Yanna SONG, Harrell FE Jr, Forouzanfar MH, Naghavi M, Denenberg JO, McDermott MM, Criqui MH, Mensah GA, Ezzati M, Murray C. Global and regional burden of aortic dissection and aneurysms: mortality trends in 21 world regions, 1990 to 2010. Glob Heart. 2014;9:171–180.
2. Olsson C, Thelin S, Ståhle E, Ekborn A, Granath F. Thoracic aortic aneurysm and dissection: increasing prevalence and improved outcomes reported in a nationwide population-based study of more than 14,000 cases from 1987 to 2002. Circulation. 2006;114:2611–2618.
3. von Allmen RS, Anjum A, Powell JT. Incidence of descending aortic pathology and evaluation of the impact of thoracic endovascular aortic repair: a population-based study in England and Wales from 1999 to 2010. Eur J Vasc Endovasc Surg. 2013;45:154–159.
4. Raghunath A, Nienaber CA, Harris KM, Mymel T, Fattori R, Sechtem U, Oh J, Trimbarchi S, Cooper J, Boohr A, Eagle K, Isselbacher E, Bossonne E, International Registry of Acute Aortic Dissection (IRAD) Investigators. Geographic differences in clinical presentation, treatment, and outcomes in type A acute aortic dissection (from the International Registry of Acute Aortic Dissection). Am J Cardiol. 2008;102:1562–1566.
5. Liao JM, Bakaeen FG, Cornwell LD, Simpson K, Lemaire SA, Coselli JS, Chu D. Nationwide trends and regional/hospital variations in open versus endovascular repair of thoracoabdominal aortic aneurysms. J Thorac Cardiovasc Surg. 2012;144:612–616.
6. Goodney PP, Brooke BS, Wallaert B, Travis L, Lucas FL, Goodman DC, Cronenwett JL, Stone DH. Thoracic endovascular aneurysm repair, race, and volume in thoracic aneurysm repair. J Vasc Surg. 2013;57:56–63.
Quality of Care Variation in Thoracic Aorta Disease

Mariscalco et al

10. Chikwe J, Cavallaro P, Itagaki S, Seigerman M, Diluozzo G, Adams DH. National outcomes in acute thoracic aortic dissection: influence of surgeon and institutional volume on operative mortality. Ann Thorac Surg. 2013;95:1563–1569.

11. Wang W, Duan W, Xue Y, Wang L, Liu J, Yu S, Yi D; Registry of Aortic Dissection in China Sino-RAD Investigators. Clinical features of acute aortic dissection from the Registry of Aortic Dissection in China. J Thorac Cardiovasc Surg. 2014;148:2995–3000.

12. Russo CF, Mariscalco G, Colli A, Santé P, Nicolini F, Miceli A, De Chiara B, Beghi C, Gerota G, Glauber M, Gherli T, Nappi G, Murzi M, Molaroli A, Merlanti B, Vizzardi E, Bonadie I, Coletti G, Carrozzini M, Gelsomino S, Ciaiazzo A, Lorussou R. Italian multicentre study on type A acute aortic dissection: a 33-year follow-up. Eur J Cardiothorac Surg. 2016;49:125–131.

13. Iribarne A, Milner R, Merlo AE, Singh A, Saunders CR, Russo MJ. Outcomes of pregnant women presenting with acute aortic dissection. JVascSurg. 2016;63:1506–1512.

14. Pompilio G, Spirtio R, Alamanni F, Agrofiglio M, Polvani G, Porqueddu M, Reali M, Biglioli P. Determinants of early and late outcome after surgery for type A aortic dissection. World J Surg. 2001;25:1500–1506.

15. Bridgewater B, Keogh B, Kinsman R, Walton P. The Society for Cardiothoracic Surgery in Great Britain & Ireland: The Sixth National Adult Cardiac Surgical Database Report. Heart Disease in the UK: Dendrite Clinical Systems Ltd 2009. Available at: http://www.scts.org/_users/files/resources/SixthNACSDreport2008withcovers.pdf. Accessed June 30, 2015.

16. https://www.england.nhs.uk/rightcare/intel/cfv/atlas/. Accessed May 31, 2016.

17. http://www.england.nhs.uk/rightcare/intel/cfv/atlas/. Accessed May 31, 2016.

18. http://www.vascularsociety.org.uk/wp-content/uploads/2013/06/Service-Specification.pdf. Accessed June 30, 2016.

19. https://www.england.nhs.uk/rightcare/intel/cfv/atlas/. Accessed May 31, 2016.

20. http://www.vascularsociety.org.uk/wp-content/uploads/2013/06/Service-Specification.pdf. Accessed June 30, 2016.

21. Hirtzak LF, Bakris GL, Beckman JA, Bertsin RM, Carr VF, Casey DE Jr, Eagle KA, Hermann LK, Isselbacher EM, Kazerouei EN, Kouchoukos NT, Lyte BW, Milewicz DM, Reich DL, Sen S, Shinn JA, Svensson LG, Williams DM; American College of Cardiology Foundation; American Heart Association Task Force on Practice Guidelines; American Association for Thoracic Surgery. American College of Radiology; American Stroke Association; Society of Cardiovascular Anesthesiologists; Society for Cardiovascular Angiography and Interventions; Society of Interventional Radiology; Society of Thoracic Surgeons; Society for Vascular Medicine. 2010 ACCF/AHA/ASCO/ASCIA/SCAI/SIR/SRS/SVM Guidelines for the diagnosis and management of patients with thoracic aortic disease. A report of the American College of Cardiology Foundation/ American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. J Am Coll Cardiol. 2011;57:e27–e129.

22. Erbel R, Aboyans V, Boileau C, Bossone E, Bartolomeo RD, Eggebrecht H, Evangelista A, Flik V, Frank H, Gaemperli O, Grabenwoger M, Haverich A, Iung B, Manolis AJ, Meijboom F, Nienaber CA, Roffi M, Rognoni S, Simonneau G, Sirnes PA, Allmen RS, Vrints CJ; International Aortic Arch Surgery Study Group. Eur J Cardiothorac Surg. 2015;47:102–113.

23. Yan TD, Tian DH, LeMaire SA, Hughes GC, Chen EP, Misfeld M, Griepp RB, Kazui T, Banerjee VC, Coselli JS, Eeftjesme JG, Kouchoukos NT, Underground MJ, Mathew JP, Mohr FW, Oo A, Sundt TM, Bavaria JE, Di Bartolomeo R, Di Eusanio M, Trimmeri S; International Aortic Arch Surgery Study Group. Standardizing clinical end points in aortic arch surgery: a consensus statement from the International Aortic Arch Surgery Study Group. Circulation. 2014;129:1610–1616.

24. Boodhwani M, Andelodfer G, Leipic J, Lindsay T, McMurtry MS, Terrien J, Siu SC; Canadian Cardiovascular Society. Canadian Cardiovascular Society position statement on the management of thoracic aortic disease. Can J Cardiol. 2014;30:577–585.

25. Benchimol EI, Smeeth L, Gutzmann A, Harren K, Moher D, Petersen I, Sereens HT, von Elm E, Langan SM; RECORD Working Committee. The Reporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2016;12:e1001885.

26. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008–2012.

27. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535.

28. http://www.hscic.gov.uk/hes. Accessed June 30, 2015.

29. http://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/datasets/NAC SAdatasetV4.4.2. Accessed April 30, 2015.

30. http://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/datasets/nac sAdatasetV4.4.1.2. Accessed April 30, 2015.

31. Hickey G, Grant SW, Cosgriff R, Dimarokos I, Pagano D, Kappetein AP, Bridgewater B. Clinical registries: governance, management, analysis and applications. Eur J Cardiothorac Surg. 2013;44:605–614.

32. Mariscalco G, Murphy GJ, Mariann S, Saratzi A. Standard of care for the management of thoracic aortic disease: a systematic review and meta-analysis. PROSPERO 2015:CRD42015024137.

33. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses. Available at: http://www.ohri.ca/programs/clinica l_epidemiology/oxford.asp. Accessed June 30, 2016.

34. Cohen ME, Dimick JB, Bilimoria KY, Co CY, Richards K, Hall BL. Risk adjustment in the American College of Surgeons National Surgical Quality Improvement Program: a comparison of logistic versus hierarchical modeling. J Am Coll Surg. 2009;209:657–665.

35. van Klaveren D, Steyerberg EW, Perel P, Vergouw Y. Assessing discriminative ability of risk models in clustered data. BMC Med Res Methodol. 2014;14:5.

36. Yates F. Contingency tables involving small numbers and the y2 test. J R Stat Soc. 1934;suppl:1:217–235.

37. Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res Synth Methods. 2010;1:97–111. DOI: 10.1002/jrsm.12.

38. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21:1539–1558.

39. Egger M, Davey Smith G, Schneider M, Cibin C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634.

40. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2013. Available at: http://www.R-project.org/. Accessed March 1, 2016.

41. https://cran.r-project.org/web/packages/meta/meta.pdf. Accessed March 1, 2016.

42. Schaffer JM, Lingala B, Fischbein MP, Dake MD, Woo YJ, Mitchell RS, Miller DC. Midterm outcomes of open descending thoracic aortic repair in more than 5,000 Medicare patients. Ann Thorac Surg. 2015;100:2087–2094.

43. Schaffer JM, Lingala B, Miller DC, Woo YJ, Mitchell RS, Dake MD. Midterm survival after thoracic endovascular aortic repair in more than 10,000 Medicare patients. J Thorac Cardiovasc Surg. 2015;149:808–820.

44. Bhatt P, Patel NJ, Patel A, Sonani R, Patel A, Panaich SS, Thakkar B, Savani C, Jhamnani S, Patel N, Patel N, Pant S, Patel S, Sarra A, Davae A, Singh V, Chothani A, Patel J, Ansari M, Deshmukh A, Bhiman R, Gines C, Clemen M, Mang M, Forrest JK, Badheka AO. Impact of hospital volume on outcomes of endovascular stenting for adult aortic coarctation. Am J Cardiol. 2015;116:1418–1424.

45. Brat R, Gaj J, Barto J. Early and mid-term outcomes of the aortic arch surgery: experience from the low-volume centre. J Cardiothorac Surg. 2015;10:31.

46. Grau JB, Kuschner CE, Ferrari G, Wilson SR, Brizzo ME, Zapolanski A, Yallowitz J, Shaw RE. Effects of a protocol-based management of type A aortic dissections. J Surg Res. 2015;197:265–269.
Quality of Care Variation in Thoracic Aorta Disease

53. Tsagakis K, Konorza T, Dohle DS, Kottenberg E, Buck T, Thielmann M, Erbel R, Soppa G, Abdulkareem N, Smelt J, Van Besouw JP, Jahangiri M. High-volume centers for aortic surgery: a 10-year single institutional experience. *Eurol J Cardiothorac Surg.* 2015;47:608–615.

49. Sales Mda C, Frota Filho JD, Aguzzoli C, Souza LD, Ribeiro AM, Lucio AM, Alvaro LH, Lencastre OA, Lacerda FG, Ribeiro GM, de Sa LM, Magalhaes EF. Early and mid-term outcomes of surgery of the ascending aorta/arch: is there a relationship with case load? *Eurol J Cardiothorac Surg.* 2004;25:676–682.

52. Davies MG, Younes HK, Harris KM, Bossone E, Pyeritz RE, Eagle KA; IRAD Investigators. The IRAD aortic dissection registry: a 10-year single institutional experience. *Ann Thorac Surg.* 2015;101:959–966.

58. Gazoni LM, Speir AM, Kron IL, Fonner E, Crosby IK. Elective thoracic aortic surgery: better outcomes from high-volume centers. *J Thorac Cardiovasc Surg.* 2014;148:953–959.

44. Atterbury KM, O’Rourke P, South M, Pekow P, Criddle L, Rinn HY, Kwon EJ, Church D, Joseph M, Lumsden JA, Edwards FH. Annals of thoracic surgery quality improvement of thoracic aortic surgery: estimating volume-outcome relationships in vascular surgery: the current status. *J Endovasc Ther.* 2010;17:356–365.

62. Committee for Scientific Affairs, Kazui T, Osada H, Fujita H. An attempt to analyze the relationship between hospital surgical volume and clinical outcome. *Gen Thorac Cardiovasc Surg.* 2007;55:483–492.

63. Rigberg DA, McGory ML, Zimmond DS, Maggard MA, Agustin M, Lawrence PF, Ko CY. Thirty-day mortality statistics underestimate the risk of repair of thoracoabdominal aortic aneurysms: a statewide experience. *J Vasc Surg.* 2006;43:217–222.

64. Narayan P, Caputo M, Rogers CA, Alwair H, Mahesh B, Angelini GD, Bryan AJ. Early and mid-term outcomes of surgery of the ascending aorta/arch: is there a relationship with case load? *Eurol J Cardiothorac Surg.* 2004;25:676–682.

54. Chavanon O, Baguet JP, Albalad

60. Miyata H, Motomura N, Ueda Y, Tsukihara H, Tabayashi K, Takamoto S. Toward aortic dissection in the United States. *Eur J Cardiothorac Surg.* 2007;32:222–227.

61. Knipp BS, Deeb GM, Prager RL, Williams CY, Upchurch GR Jr, Patel HJ. A contemporary analysis of outcomes for operative repair of type A aortic dissection in the United States. *Surgery.* 2007;142:524–528.
ONLINE-ONLY SUPPLEMENTARY MATERIAL

Bottle A, Mariscalco G, Shaw MA, Benedetto U, Saratzis A, Mariani S, Bashir M, Aylin P, Jenkins D, Oo AY, Murphy GJ; on behalf of the UK Aortic Forum. Unwarranted variation in the quality of care for patients with diseases of the thoracic aorta.

Supplemental Methods
Data sources and study populations

Supplemental Tables
Table S1. The RECORD statement - checklist of items, extended from STROBE statement
Table S2. MOOSE checklist for meta-analyses of observational studies
Table S3. PRISMA checklist of items to include when reporting a systematic review or meta-analysis
Table S4. List of ICD10 codes for the comorbidities used in the HES analysis
Table S5. PICOS criteria for inclusion and exclusion of studies into meta-analysis
Table S6. Risk factors for patients affected by thoracic aortic disease who received treatment and for patients who received non-emergent rather than emergent treatment (HES cohort)
Table S7. Risk factors for six-month mortality in patients receiving treatment for thoracic aortic disease and in those not receiving any thoracic aortic treatment (HES cohort)
Table S8. Baseline, operative and mortality details by most distal aortic segment (NACSA cohort)
Table S9. Hospital volume terciles by most distal aortic segment (calculated by mean 3 year annual activity) (NACSA cohort)
Table S10. Unadjusted and adjusted in-hospital mortality rates by aortic procedure and hospital volume (NACSA cohort)
Table S11. Characteristics of the studies included in the systematic review
Table S12. Study outcomes stratified by hospital and surgeon volume
Table S13. Study outcomes for study with defined a specific thoracic aortic program
Table S14. Quality assessment of observational studies according the New-Ottawa Scale
Table S15. List of variables included in the final multivariable model

Supplemental Figures
Figure S1. Adjusted six-month mortality in patients affected by TAD receiving an operation (treated) and in those who did not (untreated) by county (HES cohort)
Figure S2. Centre activity by the most distal aortic segment (NACSA dataset)
Figure S3. Correlation between the hospital activity (number of cases) and in-hospital mortality (NACSA dataset)
Figure S4. PRISMA flow chart of search strategy
Figure S5. Funnel plots showing the absence of publication bias
Figure S6. Forest plot for high volume versus low volume hospitals on operative mortality according to the primary aortic pathology (upper panel), and forest plot reporting risk adjusted estimates for high- versus low-volume hospitals on operative mortality according to the primary aortic pathology (lower panel)
Figure S7. Forest plots comparing the effect of hospital volume for secondary outcomes
Figure S8. Forest plots comparing the effect of a multidisciplinary TAD program presence on outcomes
Figure S9. Forest plots comparing the effect of surgeon volume for hospital mortality and secondary outcomes Cumulative forest plots by NOS
Figure S10. Forest plots comparing the effect of hospital status on hospital mortality

Supplemental References

This supplementary material has been provided by the authors to give readers additional information about their work.
Supplemental Methods

Data sources and study populations
Data were extracted from the HES and the NICOR NACSA registry, according to The REporting of studies Conducted using Observational Routinely collected health Data (RECORD) statement. The need to obtain informed consent from patients was waived by the University of Leicester Research Governance Office since the identifiable information was either removed or pseudonymized. The study was approved by the NICOR NACSA Research Board (study reference 14-ACS-25).

HES cohort
Hospital Episodes Statistics is the national hospital administrative database for England and covers all admissions to public (NHS) hospitals in the country. The data contain demographic, administrative and clinical information including procedures and operations. The database includes 20 diagnostic fields coded using ICD-10 and 24 procedure fields coded using the UK’s own OPCS-4 system (Office of Population, Censuses and Surveys: Classification of interventions and procedures, 4th Revision). Admissions with a primary or secondary diagnosis code of TAD (ICD10 I710, I711, I712, I715, I716) or with a procedure for TAD repair (OPCS codes L181, L182, L191, L192, L201, L202, L208, L209, L211, L212, L273, L283, L221) were extracted for the financial years 2005/6 to 2010/11 inclusive (the most recent for which we had out-of-hospital deaths from the Office for National Statistics [ONS] files linked to HES) (Table S1 in the online-only Data Supplement). Using HES’s anonymised patient identifier and admission dates, admissions were ordered chronologically by patient, with their first one between 2005/6 and 2010/11 flagged. After tracking back five years from this first TAD admission (back to 2000/1), patients were excluded if they had had a TAD admission or procedure during these five years. The remainder were considered index TAD admissions. We then tracked forward in time from these index admissions to capture any TAD procedures (surgery or endovascular procedures) within six months. Outcomes of interest were: having an operation (surgical and/or endovascular) either during the index or within six months of it; having an elective rather than an emergency operation; post-operative mortality within six months; and mortality within six months in patients not having an operation. Death was defined as that in or out of hospital within six months of the index admission date.

For each patient, the postcode sector was mapped to a county via online look-ups between postcode sector and local authority and then local authority and county. “County” is actually unitary authority, but many retain their county names and we therefore refer to “county” throughout. Some had to be combined due to small numbers, finally leaving 40 counties (e.g., the Isle of Wight was merged with Hampshire).

NACSA cohort
Prospectively collected data for all adult patients undergoing major aortic surgery were extracted from the NICOR NACSA registry (version 4.1.2) on 20th November 2014. All surgical procedures included in the study were performed in England between the 1st of April 2007 and the 31st of March 2013 and constituted the “complete-case” dataset. NICOR manage the audit and receive clinical direction and strategy from the Society for Cardiothoracic Surgery in Great Britain and Ireland (SCTS). Reproducible cleaning algorithms were applied to the database. Briefly, duplicate records and non-adult cardiac surgery entries were removed, transcriptional discrepancies harmonised and clinical and temporal conflicts and extreme values corrected or removed. The output from the pre-processing is regularly checked by reporting data summaries back to individual units for local validation and inspection as part of the NACSA in the UK. For each operation, records on patient characteristics and demographics, comorbidities, intraoperative factors, and postoperative outcomes were collected. Administrative data were also extracted including: patient admission, procedure and discharge dates and responsible consultant surgeon. For each record, calibrated logistic EuroSCORE was calculated. Missing data were assumed to be absent for categorical variables or replaced with the mean value for continuous variables. Ejection fraction was the categorical variable with the highest incidence of missing data (3.5%). The proportions of missing data for continuous variables were: age, 0%; BMI, 3.6%; cardiopulmonary bypass time, 2.3%; and aortic cross clamp time, 2.9%. The primary outcome measure was in-hospital mortality, defined as death in hospital following the index surgical procedure and prior...
to transfer from the cardiac surgery unit as per the definition used in the national audit. Therefore, records were excluded from the analysis if in-hospital mortality status was missing (n=32, 0.4%).

Operations were divided into four separate categories based on the operated segment most distal to the aortic valve included in the procedure, including the aortic root or ascending aorta, aortic arch, descending aorta, and the thoracoabdominal aorta. Elective, urgent or emergency procedures were all included. Where operational pathology was available, it was divided into three categories: aneurysm, dissection and “other”, the latest containing the categories “trauma” and “other”.

To complement the NACSA study we contacted the Society for Cardiothoracic Surgery Unit Representative for every cardiac surgery unit in England and asked 4 questions with respect to the current configuration of TAD services in their unit. The questions were: 1. Is there a dedicated Aortic Team? 2. Is there a specific on call rota for aortic emergencies? 3. Is there a hybrid operating theatre? 4. Is there a specific aortic multidisciplinary team (MDT) meeting recognized in the consultant job plans? Obtained data were cross-referenced with the NACSA data on aortic case-volume, complexity and outcomes. Statistical analysis
Supplemental Tables

Table S1. The RECORD statement – checklist of items, extended from the STROBE statement

Item No.	STROBE items and Recommendation	Location in manuscript where items are reported (pag.n.)	RECORD items and Recommendation	Location in manuscript where items are reported (pag.n.)	
Title and abstract					
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found	1,2	RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	1,2	
		2	RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.		
			RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.		
Introduction					
2	Explain the scientific background and rationale for the investigation being reported	3		3	
Objectives	3	State specific objectives, including any prespecified hypotheses	3		3
Methods					
Study Design	4	Present key elements of study design early in the paper	3,4 Supplemental Material		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4,5 Supplemental Material		
Participants	6	*(a) Cohort study* - Give the eligibility criteria, and the sources and methods	RECORD 6.1: The methods of study population selection (such as codes or	3,4 Supplemental Material	
of selection of participants. Describe methods of follow-up
Case-control study - Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls
Cross-sectional study - Give the eligibility criteria, and the sources and methods of selection of participants
(b) *Cohort study* - For matched studies, give matching criteria and number of exposed and unexposed
Case-control study - For matched studies, give matching criteria and the number of controls per case

Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable.	3,4 Supplemental Material	RECORD 7.1: A complete list of codes and algorithms used to classify exposures, outcomes, confounders, and effect modifiers should be provided. If these cannot be reported, an explanation should be provided.	3,4 Supplemental Material
Data sources/ measurement	8	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	3,4, Supplemental Material		
Bias	9	Describe any efforts to address potential sources of bias	Supplemental Material		
Study size	10	Explain how the study size was arrived at	3,4		
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen, and why	3,4 Supplemental Material		
------------------------	----	---	--------------------------		
Statistical methods	12	(a) Describe all statistical methods, including those used to control for confounding			
(b) Describe any methods used to examine subgroups and interactions					
(c) Explain how missing data were addressed					
(d) **Cohort study** - If applicable, explain how loss to follow-up was addressed					
Case-control study - If applicable, explain how matching of cases and controls was addressed					
Cross-sectional study - If applicable, describe analytical methods taking account of sampling strategy					
(e) Describe any sensitivity analyses	5,6 Supplemental Material				
Data access and cleaning methods	..	RECORD 12.1: Authors should describe the extent to which the investigators had access to the database population used to create the study population.			
RECORD 12.2: Authors should provide information on the data cleaning methods used in the study.	3-6 Supplemental Material				
Linkage	..	RECORD 12.3: State whether the study included person-level, institutional-level, or other data linkage across two or more databases. The methods of linkage and methods of linkage quality evaluation should be provided.	3,4 Supplemental Material		

Results

| Participants | 13 | (a) Report the numbers of individuals | 8-11 | RECORD 13.1: Describe in detail the | 8-11 |
at each stage of the study (e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed)
(b) Give reasons for non-participation at each stage.
(c) Consider use of a flow diagram

Descriptive data

| 14 | (a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders
(b) Indicate the number of participants with missing data for each variable of interest
(c) Cohort study - summarise follow-up time (e.g., average and total amount) | 8-11 |

Outcome data

| 15 | Cohort study - Report numbers of outcome events or summary measures over time
Case-control study - Report numbers in each exposure category, or summary measures of exposure
Cross-sectional study - Report numbers of outcome events or summary measures | 8-11 |

Main results

| 16 | (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included
(b) Report category boundaries when continuous variables were categorized
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period | 8-11 |

Other analyses

| 17 | Report other analyses done—e.g., | 8-11 |
Discussion
Key results
Limitations
INTERPRETATION
Generalisability

Other Information
Funding
Accessibility of protocol, raw data, and programming code
Table S2. MOOSE Checklist for Meta-analyses of Observational Studies10

Item N.	Recommendation	Reported on Page N.
	Reporting of background should include	
1	Problem definition	3
2	Hypothesis statement	3
3	Description of study outcome(s)	4, 5, tab S5
4	Type of exposure or intervention used	5, tab S5
5	Type of study designs used	4, 5
6	Study population	5
	Reporting of search strategy should include	
7	Qualifications of searchers (eg, librarians and investigators)	4, 5
8	Search strategy, including time period included in the synthesis and key words	4, 5
9	Effort to include all available studies, including contact with authors	Ref.#32
10	Databases and registries searched	5
11	Search software used, name and version, including special features used (eg, explosion)	Ref.#32
12	Use of hand searching (eg, reference lists of obtained articles)	Ref.#32
13	List of citations located and those excluded, including justification	fig S4, Ref.#32
14	Method of addressing articles published in languages other than English	Ref.#32
15	Method of handling abstracts and unpublished studies	Ref.#32
16	Description of any contact with authors	Ref.#32
	Reporting of methods should include	
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Ref.#32
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	Ref.#32
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	Ref.#32
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Ref.#32
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	5, Ref.#32
22	Assessment of heterogeneity	Supplement
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	Supplement
24	Provision of appropriate tables and graphics	Supplement
	Reporting of results should include	
25	Graphic summarizing individual study estimates and overall estimate	fig 4
---	---	
26	Table giving descriptive information for each study included	fig S9-13
27	Results of sensitivity testing (eg, subgroup analysis)	tab S11-13
28	Indication of statistical uncertainty of findings	11,12

Reporting of discussion should include

29	Quantitative assessment of bias (eg, publication bias)	Supplement
30	Justification for exclusion (eg, exclusion of non-English language citations)	Ref.#32
31	Assessment of quality of included studies	tab S14

Reporting of conclusions should include

32	Consideration of alternative explanations for observed results	13,14
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	16
34	Guidelines for future research	16
35	Disclosure of funding source	17,18
Table S3. PRISMA checklist of Items to Include when Reporting a Systematic Review or Meta-analysis11

Section/topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	tab V
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4,5 Ref.#32
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4,5 tab S5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4,5 Ref.#32
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5 Ref.#32
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	2 Ref.#32
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5 Ref.#32
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Ref.#32
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Ref.#32
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	Supplement
------------------	----	---	------------
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I²) for each meta-analysis.	Supplement
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Supplement
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Supplement

RESULTS

Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	11,12
Study characteristics	18	For each study, present characteristics for which data were extracted and provide the citations.	tab S11-13
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	tab S14
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	fig 4 tab S12-13
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	fig 4 fig S9-13
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	tab S14-15
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Supplement

DISCUSSION

Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	14-16
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16

FUNDING

| Funding | 27 | Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review. | 17,18 |
Code	Description
I10-I15	Hypertensive diseases
I10	Essential (primary) hypertension
I11	Hypertensive heart disease
I12	Hypertensive renal disease
I13	Hypertensive heart and renal disease
I15	Secondary hypertension
I20-I25	Ischaemic heart diseases
I20	Angina pectoris
I21	Acute myocardial infarction
I22	Subsequent myocardial infarction
I23	Certain current complications following acute myocardial infarction
I24	Other acute ischaemic heart diseases
I25	Chronic ischaemic heart disease
I30-I52	Other forms of heart disease
I34	Nonrheumatic mitral valve disorders
I35	Nonrheumatic aortic valve disorders
I36	Nonrheumatic tricuspid valve disorders
I37	Pulmonary valve disorders
I60-I69	Cerebrovascular diseases
I60	Subarachnoid haemorrhage
I61	Intracerebral haemorrhage
I62	Other nontraumatic intracranial haemorrhage
I63	Cerebral infarction
I63.0	Cerebral infarction due to thrombosis of precerebral arteries
I63.1	Cerebral infarction due to embolism of precerebral arteries
I63.2	Cerebral infarction due to unspecified occlusion or stenosis of precerebral arteries
I63.3	Cerebral infarction due to thrombosis of cerebral arteries
I63.4	Cerebral infarction due to embolism of cerebral arteries
I63.5	Cerebral infarction due to unspecified occlusion or stenosis of cerebral arteries
I63.6	Cerebral infarction due to cerebral venous thrombosis, nonpyogenic
I63.8	Other cerebral infarction
I63.9	Cerebral infarction, unspecified
I64	Stroke, not specified as haemorrhage or infarction
I65	Occlusion and stenosis of precerebral arteries, not resulting in cerebral infarction
I66	Occlusion and stenosis of cerebral arteries, not resulting in cerebral infarction
I67	Other cerebrovascular diseases
I68	Cerebrovascular disorders in diseases classified elsewhere
I69	Sequelae of cerebrovascular disease
I70	Atherosclerosis
I70.0	Atherosclerosis of aorta
I70.1	Atherosclerosis of renal artery
I70.2	Atherosclerosis of arteries of extremities
I70.8	Atherosclerosis of other arteries
I70.9	Generalized and unspecified atherosclerosis
I71	Aortic Aneurysms not affecting the thoracic aorta
I71.3	Abdominal aortic aneurysm, ruptured
I71.4	Abdominal aortic aneurysm, without mention of rupture
I71.8	Aortic aneurysm of unspecified site, ruptured
I71.9	Aortic aneurysm of unspecified site, without mention of rupture
I72	Other aneurysm and dissection (not affecting the thoracic aorta)
I72.0	Aneurysm and dissection of carotid artery
I72.1	Aneurysm and dissection of artery of upper extremity
I72.2	Aneurysm and dissection of renal artery
I72.3	Aneurysm and dissection of iliac artery
I72.4	Aneurysm and dissection of artery of lower extremity
I72.5	Aneurysm and dissection of other precerebral arteries
I72.8	Aneurysm and dissection of other specified arteries
I72.9	Aneurysm and dissection of unspecified site
I73	Other peripheral vascular diseases
I73.0	Raynaud syndrome
I73.1	Thromboangiitis obliterans [Buerger]
I73.8	Other specified peripheral vascular diseases
I73.9 Peripheral vascular disease, unspecified	
--	
I77.6 Arteritis, unspecified	
I77.8 Other specified disorders of arteries and arterioles	
I77.2 Rupture of artery	
--	
I77 Other disorders of arteries and arterioles	
I79 Disorders of arteries, arterioles and capillaries in diseases classified elsewhere	
I79.0 Aneurysm of aorta in diseases classified elsewhere	
I79.1 Aortitis in diseases classified elsewhere	
I79.2 Peripheral angiopathy in diseases classified elsewhere	
I79.8 Other disorders of arteries, arterioles and capillaries in diseases classified elsewhere	
--	
Q20-Q28 Congenital malformations of the circulatory system	
Q20 Congenital malformations of cardiac chambers and connections	
Q21 Congenital malformations of cardiac septa	
Q22 Congenital malformations of pulmonary and tricuspid valves	
Q23 Congenital malformations of aortic and mitral valves	
Q24 Other congenital malformations of heart	
Q25 Congenital malformations of great arteries	
Q26 Congenital malformations of great veins	
Q27 Other congenital malformations of peripheral vascular system	
Q28 Other congenital malformations of circulatory system	
--	
Q79.6 Ehlers-Danlos syndrome	
Q87 Other specified congenital malformation syndromes affecting multiple systems	
Q87.4 Marfan syndrome	
Q87.5 Other congenital malformation syndromes with other skeletal changes	
Q87.8 Other specified congenital malformation syndromes, not elsewhere classified	
--	
J40-J44 Chronic obstructive pulmonary disease	
J40 Bronchitis, not specified as acute or chronic	
J41 Simple and mucopurulent chronic bronchitis	
J42 Unspecified chronic bronchitis	
J43 Emphysema	
J44 Other chronic obstructive pulmonary disease	
--	
E10-E14 Diabetes mellitus	
E10 Insulin-dependent diabetes mellitus	
E11 Non-insulin-dependent diabetes mellitus	
E12 Malnutrition-related diabetes mellitus	
E13 Other specified diabetes mellitus	
E14 Unspecified diabetes mellitus	
--	
E66 Obesity	
--	
E78 Disorders of lipoprotein metabolism and other lipidaemias	
Parameter	Inclusion criteria
--------------------	---
Patients	Adult patients affected by TAD
Intervention*	Open surgery or endovascular repair of TAD
Comparator	Hospital volume activity
Outcomes	Primary: in-hospital/30-day mortality (all cause)
	Secondary: postoperative stroke; re-exploration for
	bleeding/tamponade; postoperative renal failure;
	length of hospitalization
Study design	Clinical randomised trials
	Controlled before-and-after studies
	Prospective and retrospective cohort studies
	Cross-sectional studies
	Case-control studies

Abbreviations: TAD, thoracic aortic disease.

* Main intervention/comparator; other intervention/comparator: surgeon volume (high- vs. low-volume); teaching hospital status (teaching vs. non-teaching); urban hospital status (urban vs. rural); aortic dedicated team presence (aortic team vs. no-aortic team); dedicated thoracic aortic surgery program (program vs. no program; presence of cardiothoracic unit along with hybrid room.)
Table S6. Risk factors for patients affected by thoracic aortic disease who received treatment and for patients who received non-emergent rather than emergent treatment (HES cohort)

Factor	Receiving treatment		Receiving non-emergent rather than emergency treatment	
Value	OR (95% CI)	P-value	OR (95% CI)	P-value
Age 0-39	2.15 (1.82 to 2.53)	<.0001	0.68 (0.50 to 0.91)	0.01
Age 40-44	1.55 (1.27 to 1.90)	<.0001	1.12 (0.77 to 1.64)	0.5504
Age 45-49	1.36 (1.13 to 1.64)	0.0012	0.98 (0.68 to 1.40)	0.9022
Age 50-54	1.32 (1.12 to 1.56)	0.0011	0.98 (0.71 to 1.34)	0.8743
Age 55-59	1.35 (1.17 to 1.56)	<.0001	0.88 (0.67 to 1.16)	0.3626
Age 60-64	1.16 (1.01 to 1.32)	0.0315	0.87 (0.67 to 1.12)	0.2699
Age 65-69	1		1	
Age 70-74	0.84 (0.75 to 0.95)	0.0041	0.88 (0.70 to 1.10)	0.2626
Age 75-79	0.61 (0.54 to 0.69)	<.0001	0.85 (0.67 to 1.07)	0.1621
Age 80-84	0.29 (0.25 to 0.33)	<.0001	0.52 (0.39 to 0.68)	<.0001
Age 85-89	0.11 (0.09 to 0.14)	<.0001	0.29 (0.18 to 0.46)	<.0001
Age 90+	0.02 (0.01 to 0.04)	<.0001	0.37 (0.09 to 1.45)	0.1516
Sex Female	1.04 (0.97 to 1.12)	0.2385	1.00 (0.87 to 1.15)	0.9975
Sex Male	1		1	
Year 2004	1.24 (1.09 to 1.40)	0.0099	0.88 (0.69 to 1.13)	0.3185
Year 2005	1.30 (1.15 to 1.47)	<.0001	0.84 (0.66 to 1.06)	0.1313
Year 2006	1.36 (1.20 to 1.53)	<.0001	0.75 (0.60 to 0.94)	0.0131
Year 2007	1.21 (1.07 to 1.35)	0.0014	0.83 (0.66 to 1.04)	0.1012
Year 2008	1.01 (0.90 to 1.13)	0.8694	0.97 (0.77 to 1.21)	0.7698
Year 2009	0.98 (0.87 to 1.09)	0.6823	0.93 (0.74 to 1.16)	0.5082
Year 2010	1		1	
Deprivation 1 (least deprived)	1		1	
Deprivation 2	0.95 (0.86 to 1.04)	0.2541	1.05 (0.87 to 1.26)	0.6245
Deprivation 3	0.88 (0.79 to 0.97)	0.0093	0.74 (0.61 to 0.90)	0.0021
Deprivation 4	0.82 (0.73 to 0.91)	0.0001	0.83 (0.68 to 1.01)	0.0605
Deprivation 5 (most deprived)	0.69 (0.62 to 0.78)	<.0001	0.61 (0.49 to 0.76)	<.0001
Atherosclerosis	1.45 (1.24 to 1.68)	<.0001	0.98 (0.74 to 1.29)	0.8616
Cancer	0.70 (0.62 to 0.80)	<.0001	1.25 (0.97 to 1.60)	0.0847
Congenital malformation	1.17 (1.03 to 1.34)	0.0182	1.82 (1.43 to 2.31)	<.0001
circulatory disorders				
COPD	0.64 (0.57 to 0.71)	<.0001	0.79 (0.63 to 0.98)	0.0332
Cerebrovascular disease	0.83 (0.73 to 0.94)	0.0025	0.86 (0.67 to 1.11)	0.2421
Diabetes	0.82 (0.73 to 0.93)	0.0019	1.02 (0.80 to 1.30)	0.8775
Hypertension	1.04 (0.97 to 1.12)	0.3026	1.15 (1.00 to 1.33)	0.0444
Ischaemic heart disease	0.84 (0.78 to 0.91)	<.0001	1.38 (1.20 to 1.60)	<.0001
Lipid disorders	1.06 (0.97 to 1.15)	0.1928	1.57 (1.33 to 1.84)	<.0001
Other aneurysm	1.07 (0.86 to 1.34)	0.5549	0.86 (0.58 to 1.28)	0.4506
Other aortic disease	2.42 (2.24 to 2.63)	<.0001	1.32 (1.15 to 1.53)	0.0001
Disorders of other arteries	2.04 (1.05 to 2.77)	<.0001	0.30 (0.18 to 0.49)	<.0001
Other congenital malformation	0.90 (0.72 to 1.12)	0.3464	3.17 (2.04 to 4.91)	<.0001
Other IHD	1.41 (1.31 to 1.51)	<.0001	1.52 (1.33 to 1.74)	<.0001
	Estimate (95% CI)	p-value	Estimate (95% CI)	p-value
--------------------------------	-------------------	---------	-------------------	---------
Other PVD	0.90 (0.78 to 1.05)	0.1857	0.85 (0.64 to 1.14)	0.2802
Renal disease	0.58 (0.50 to 0.68)	<.0001	0.74 (0.55 to 1.00)	0.0466
Dissection	0.71 (0.66 to 0.77)	<.0001	0.06 (0.05 to 0.08)	<.0001

Abbreviations: CI, confidence interval; COPD, chronic pulmonary disease; HES, hospital episodes statistics; IHD, ischemic heart disease; OR, odds ratio; PVD, peripheral vascular disease.
Table S7. Risk factors for 6-month mortality in patients receiving treatment for thoracic aortic disease and in those not receiving any thoracic aortic treatment (HES cohort)

Factor	Mortality in those receiving treatment	Mortality in those not receiving treatment	p value	p value		
	Value	OR (95% CI)	p value	OR (95% CI)		
Age 0-39	0.75	(0.51 to 1.10)	0.1407	0.45	(0.33 to 0.61)	<.0001
Age 40-44	0.37	(0.20 to 0.67)	0.011	0.70	(0.50 to 0.98)	0.0351
Age 45-49	0.41	(0.24 to 0.71)	0.014	0.49	(0.35 to 0.67)	<.0001
Age 50-54	0.60	(0.39 to 0.93)	0.0211	0.57	(0.43 to 0.75)	<.0001
Age 55-59	0.77	(0.55 to 1.08)	0.1307	0.72	(0.58 to 0.90)	0.0039
Age 60-64	0.93	(0.69 to 1.26)	0.6272	0.89	(0.74 to 1.08)	0.2349
Age 65-69	1		1			
Age 70-74	1.12	(0.85 to 1.46)	0.4236	1.32	(1.14 to 1.54)	0.0003
Age 75-79	1.35	(1.03 to 1.77)	0.0272	1.66	(1.44 to 1.92)	<.0001
Age 80-84	1.57	(1.14 to 2.16)	0.0057	2.03	(1.77 to 2.34)	<.0001
Age 85+	2.72	(1.71 to 4.32)	<.0001	2.85	(2.47 to 3.28)	<.0001
sex Female	0.96	(0.81 to 1.13)	0.6129	0.79	(0.74 to 0.85)	<.0001
sex Male	1		1			
Year 2004	1.38	(1.02 to 1.85)	0.0343	1.70	(1.50 to 1.94)	<.0001
Year 2005	1.84	(1.39 to 2.44)	<.0001	1.65	(1.46 to 1.88)	<.0001
Year 2006	1.20	(0.90 to 1.59)	0.2115	1.40	(1.23 to 1.58)	<.0001
Year 2007	1.20	(0.91 to 1.58)	0.2048	1.21	(1.07 to 1.37)	0.0021
Year 2008	1.16	(0.87 to 1.53)	0.3118	1.13	(1.00 to 1.27)	0.0445
Year 2009	0.97	(0.73 to 1.29)	0.8283	1.03	(0.92 to 1.16)	0.5994
Year 2010	1		1			
Elective adm No	0.29	(0.24 to 0.34)	<.0001	0.26	(0.23 to 0.28)	<.0001
Elective adm Yes	1		1			
Deprivation 1 (least deprived)	1		1			
Deprivation 2	1.11	(0.88 to 1.40)	0.3893	1.02	(0.91 to 1.14)	0.7717
Deprivation 3	1.18	(0.94 to 1.50)	0.1581	1.12	(1.00 to 1.25)	0.0413
Deprivation 4	1.20	(0.94 to 1.53)	0.1517	1.18	(1.05 to 1.32)	0.0047
Deprivation 5 (most deprived)	1.13	(0.86 to 1.49)	0.3757	1.11	(0.98 to 1.25)	0.0877
Atherosclerosis	1.73	(1.27 to 2.35)	0.0005	1.17	(0.99 to 1.38)	0.0658
Cancer	1.72	(1.31 to 2.27)	0.0001	1.65	(1.49 to 1.83)	<.0001
Congenital malformation	0.88	(0.62 to 1.24)	0.4621	0.70	(0.51 to 0.94)	0.0188
cirulatory disorders						
COPD	1.37	(1.07 to 1.74)	0.0126	1.28	(1.17 to 1.40)	<.0001
Cerebrovascular disease	1.92	(1.50 to 2.46)	<.0001	1.25	(1.13 to 1.39)	<.0001
Diabetes	1.25	(0.95 to 1.65)	0.1103	1.06	(0.94 to 1.18)	0.3545
Hypertension	0.85	(0.71 to 1.00)	0.0508	0.93	(0.86 to 1.00)	0.0557
Ischaemic heart disease	1.45	(1.22 to 1.72)	<.0001	0.81	(0.75 to 0.87)	<.0001
Lipid disorders	0.77	(0.63 to 0.94)	0.0092	0.73	(0.66 to 0.80)	<.0001
Other aneurysm	1.05	(0.65 to 1.70)	0.8285	1.09	(0.85 to 1.39)	0.5058
Other aortic disease	1.17	(0.97 to 1.40)	0.0969	1.18	(1.07 to 1.29)	0.0008
Disorders of other arteries	0.92	(0.52 to 1.64)	0.7854	1.02	(0.68 to 1.53)	0.9235
Other congenital malformation	0.71	(0.38 to 1.34)	0.2933	0.68	(0.43 to 1.07)	0.096
Condition	Odds Ratio (CI)	p Value	Odds Ratio (CI)	p Value		
--------------------	----------------	-----------	----------------	-----------		
Other IHD	1.00 (0.85 to 1.18)	0.9932	1.15 (1.07 to 1.23)	0.0002		
Other PVD	1.28 (0.93 to 1.78)	0.1332	1.44 (1.25 to 1.66)	<.0001		
Renal disease	2.11 (1.56 to 2.85)	<.0001	1.55 (1.38 to 1.73)	<.0001		
Dissection	1.07 (0.88 to 1.30)	0.509	1.83 (1.69 to 1.98)	<.0001		

Abbreviations: Adm, admission; CI, confidence interval; COPD, chronic pulmonary disease; HES, hospital episodes statistics; IHD, ischemic heart disease; OR, odds ratio; PVD, peripheral vascular disease.
Table S8. Baseline, operative and mortality details by most distal aortic segment (NACSA cohort)

Variables*	Root/Ascending Aorta (n = 6848)	Aortic Arch (n = 762)	Descending Aorta (n = 320)	Thoracoabdominal (n = 128)
Demographics				
Age at operation (years)	64 (51, 73)	68 (57, 74)	62 (45, 71)	63 (48, 70)
BMI (kg/m2)	26.9 (24.1, 30.1)	26.5 (23.8, 29.8)	26.1 (23.4, 29.3)	25.0 (21.8, 28.3)
Female gender	2216 (32.4)	308 (40.4)	117 (36.6)	50 (39.1)
Co-morbidities				
Unstable angina	332 (4.9)	29 (3.8)	7 (2.2)	4 (3.1)
NYHA ≥ III class	2075 (30.3)	165 (21.7)	58 (18.1)	18 (14.1)
MI within 90 days of operation	246 (3.6)	15 (2.0)	0 (0)	7 (5.5)
Previous cardiac surgery	984 (14.4)	121 (15.9)	113 (35.3)	34 (26.6)
Previous aortic surgery	199 (2.9)	59 (7.7)	60 (18.8)	17 (13.3)
Diabetes	487 (7.1)	44 (5.8)	14 (4.4)	8 (6.3)
Current smoker	749 (10.9)	90 (11.8)	46 (14.4)	22 (17.2)
Hypertension	4148 (60.6)	569 (74.7)	231 (72.2)	88 (68.8)
Creatinine > 200 (μmol/l)	190 (2.8)	22 (2.9)	7 (2.2)	5 (3.9)
History of renal dysfunction	106 (1.6)	19 (2.5)	6 (1.9)	3 (2.3)
History of pulmonary disease	783 (11.4)	111 (14.6)	47 (14.7)	33 (25.8)
History of stroke	558 (8.2)	80 (10.5)	19 (5.9)	4 (3.1)
Neurological dysfunction	252 (3.7)	38 (5.0)	14 (4.4)	2 (1.6)
Peripheral vascular disease	909 (13.3)	242 (31.8)	104 (32.5)	57 (44.5)
Non sinus cardiac rhythm	828 (12.1)	85 (11.2)	19 (5.9)	6 (4.7)
Triple vessel disease	318 (4.6)	35 (4.6)	6 (1.9)	12 (9.4)
Left main stem disease	138 (2.0)	8 (1.1)	2 (0.6)	4 (3.1)
Moderate LVEF (30-50%)	1418 (20.7)	125 (16.4)	29 (9.1)	12 (9.4)
Poor LVEF (<30%)	308 (4.5)	17 (2.2)	3 (0.9)	0 (0)
PA systolic > 60mmHg	90 (1.3)	4 (0.5)	0 (0)	0 (0)
Pre-operative IV nitrates	324 (4.7)	60 (7.9)	19 (5.9)	8 (6.3)
Pre-operative IV inotropes	187 (2.7)	15 (2.0)	18 (5.6)	6 (4.7)
---------------------------	-----------	---------	----------	-------
Pre-operative ventilation	138 (2.0)	15 (2.0)	13 (4.1)	0 (0)
Pre-operative cardiogenic shock	306 (4.5)	24 (3.2)	10 (3.1)	2 (0.8)

Operative details

Non-elective priority	2438 (35.6)	317 (41.6)	141 (44.1)	45 (35.2)
Urgent priority	1076 (15.7)	127 (16.7)	64 (20.0)	28 (21.9)
Emergency priority	1249 (18.2)	177 (23.2)	68 (21.3)	16 (12.5)
Salvage priority	113 (1.7)	13 (1.7)	9 (2.8)	1 (0.8)
Concomitant CABG operation	1334 (19.5)	122 (16.0)	12 (3.8)	14 (10.9)
Concomitant valve operation	4963 (72.5)	326 (42.8)	24 (7.5)	6 (4.7)
Concomitant 'other' operation	2320 (33.9)	188 (24.7)	99 (30.9)	39 (30.5)

Dominant pathology

Aneurysm	3800 (55.5)	410 (53.8)	138 (43.1)	74 (57.8)
Dissection	1410 (20.6)	269 (35.3)	93 (29.1)	47 (36.7)
Trauma	27 (0.4)	4 (0.5)	19 (5.9)	0 (0)
'Other'	1113 (16.3)	58 (7.6)	58 (18.1)	5 (3.9)
Data N/A	498 (7.3)	21 (2.8)	12 (3.8)	2 (1.6)
CPB time (minutes)	157 (116, 216)	205 (152, 266)	184 (78, 260)	164 (110, 227)
ACC time (minutes)	107 (79, 142)	112 (70, 156)	42 (0, 100)	27 (0, 117)
Circulatory arrest time (minutes)	25 (18, 33)	28 (18, 46)	36 (28, 57)	27 (15, 42)

Outcome

| In-hospital mortality | 569 (8.3) | 101 (13.3) | 49 (15.3) | 29 (22.7) |

Abbreviations: ACC, aortic cross clamp time; CABG, coronary artery bypass grafting; CPB, cardiopulmonary bypass; LVEF, left ventricle ejection fraction; N/A, not available; NACSA, National Adult Cardiac Surgery Audit; NYHA, New York Heart Association; PA, pulmonary artery.

Note: Numerical data are expressed as median and interquartile range (IQR); categorical data as absolute number (percentage).
Table S9. Hospital volume tertiles by most distal aortic segment (calculated by mean 3 year annual activity) (NACSA cohort)

Tertiles of activity*	Low volume	Medium volume	High volume
(n = 1308)	(n = 2159)	(n = 4591)	
Category range for all aortic surgery	0 to 31 operations	32 to 52 operations	53 or more operations
Root / Ascending Aorta	1211 (92.6)	1798 (83.3)	3839 (83.6)
Aortic Arch	75 (5.7)	275 (12.7)	412 (9.0)
Descending Aorta	17 (1.3)	58 (2.7)	245 (5.3)
Thoracoabdominal Aorta	5 (0.4)	28 (1.3)	95 (2.1)
Half (median) of activity	Lower half activity	Upper half activity	
(n = 2254)	(n = 5804)		
Category range for all aortic surgery	0 to 38 operations	39 or more operations	
Root / Ascending Aorta	1964 (87.1)	4884 (84.2)	
Aortic Arch	214 (9.5)	548 (9.4)	
Descending Thoracic Aorta	44 (2.0)	276 (4.8)	
Thoracoabdominal Aorta	32 (1.4)	96 (1.7)	

Abbreviations: NACSA, National Adult Cardiac Surgery Audit.

*Data are expressed in absolute numbers (percentage).
Tables S10. Unadjusted and adjusted in-hospital mortality rates by aortic procedure and hospital volume (NACSA cohort)*

Procedure	Observed mortality rate (%)	Low volume	Medium volume	High volume
Root / Ascending Aorta		10.7	8.3	7.4
Unadjusted odds ratio (95% CI)	Reference	0.76 (0.60, 0.96)	0.67 (0.54, 0.83)	
Adjusted odds ratio (95% CI)	Reference	0.75 (0.57, 0.98)	0.65 (0.51, 0.83)	
Aortic Arch		13.1	13.2	13.4
Unadjusted odds ratio (95% CI)	Reference	1.01 (0.52, 1.97)	1.02 (0.54, 1.93)	
Adjusted odds ratio (95% CI)	Reference	1.28 (0.61, 2.65)	1.27 (0.63, 2.55)	
Descending Aorta		20.0	28.1	11.8
Unadjusted odds ratio (95% CI)	Reference	1.56 (0.50, 4.87)	0.53 (0.19, 1.53)	
Adjusted odds ratio (95% CI)	Reference	2.36 (0.64, 8.76)	0.75 (0.23, 2.48)	
Thoracoabdominal Aorta		14.3	28.6	22.6
Unadjusted odds ratio (95% CI)	Reference	2.40 (0.41, 14.11)	1.75 (0.36, 8.44)	
Adjusted odds ratio (95% CI)	Reference	2.28 (0.35, 14.65)	2.19 (0.42, 11.50)	

Abbreviations: CI, confidence interval; NACSA, National Adult Cardiac Surgery Audit.

*Hospital volume was calculated by mean of the last 3 year annual activity and subdivided for tertiles of activity.
Study (Author, Year)	Design	Country (Source)*	Sample size	Study period	Inclusion criteria	Exclusion criteria	Outcomes	Aortic centre configuration	Hospital Volume Threshold (cases/yr)	
Shaffer et al, 2015	Retrospective cohort study, Multicenter	USA (MEDPAR)	5578	1999-2010	Open descending thoracic aorta and thoracoabdominal repair	Postoperative survival	No	LV:<50†	MV: 50-200 HV:>200	
Shaffer et al, 2015	Retrospective cohort study, Multicenter	USA (MEDPAR)	11996	2005-2010	TEVAR	Postoperative survival	No	LV:<20†	MV: 20-99 HV:≥100	
Bhatt et al, 2015	Retrospective cohort study, Multicenter	USA (NIS)	105	2000-2011	TEVAR in adult aortic coarctation	Vascular complications (vascular injury, hemorrhage requiring transfusion, aortic dissection, arteriovenous fistula, accidental puncture, other vascular complications), any cardiac complications, open vascular/cardiac surgery, stroke/TIA, any respiratory complications, PE/DVT, anaesthetic complications, infection	NO	LV:<3	HV:≥3	
Brat et al, 2015	Retrospective cohort study, Monocenter	Czech Republic (Inst.Dat.)	30	1999-2013	Elective aortic arch aneurysm	Acute operation and aortic dissection	30-day/in-hospital mortality, postop complications (permanent/transient neurological deficit,	No	NA	
Study	Design	Country	Population	Year	Primary Diagnosis	In-hospital Mortality/complications	LV	MV	HV	
-------	--------	---------	------------	------	------------------	-----------------------------------	-----	-----	-----	
Grau et al, 2015	Retrospective case controlled, Monocenter	USA (Inst.Dat.)	54	2002-2013	Acute type A aortic dissection	In-hospital mortality, postop complications (cardiac arrest, stroke, ARF, reoperation for bleeding, AF, prolonged intubation), LOS	Yes	NA		
Lenos et al, 2015	Retrospective cohort study, Monocenter	Germany (Inst.Dat.)	162	2002-2013	Acute type A aortic dissection	30-day/in-hospital mortality, 90-day mortality, new permanent neurological deficit, adverse outcome	No	NA		
Iribarne et al, 2015	Retrospective cohort study, Multicenter	USA (NIS)	1230	2005-2008	Acute aortic dissection	Non-emergent pts, pts<18 yr, TEVAR	No	LV: ≤ 5	MV: 6-10	HV: >10
Murzi et al, 2015	Retrospective cohort study, Monocenter	Italy (Inst.Dat.)	867	2003-2013	Aortic root, ascending and aortic arch surgery	Descending and thoraco-abdominal aortic surgery	No	NA		
Study	Study Design	Setting	Sample Size	Time Period	Procedure	Outcome Measures	Results	Location		
---------------------	-----------------------	---------	-------------	-------------	----------------------------	--	---------	----------		
Andersen et al, 2014	Retrospective case controlled, Monocenter	USA (Inst.Dat.)	128	1999-2011	Acute type A aortic dissection	Iatrogenic dissection 30-day/in-hospital mortality, 30 day/in-hospital postop complications (AMI, stroke, ARF, reoperation for bleeding, prolonged ventilation, delayed sternum closure, DSWI, new-onset dialysis, tracheostomy), surgeon-specific mortality rates, LOS, postoperative survival	Yes	NA		
Sales et al, 2014	Retrospective case controlled, Monocenter	Brazil (Inst.Dat.)	332	2003-2010	Thoracic aortic surgery, TAAA surgery	In-hospital mortality, postop complications (AMI, stroke, ARF, reopening for bleeding, pneumonia, mediastinitis, AV block, arrhythmia, sepsis, myocardial ischemia, pleural effusion, low cardiac output), LOS	Yes	NA		
Weiss et al, 2014	Retrospective cohort study, Multicenter	USA (OSHPD)	1188	1995-2010	TAAA	TAA, AAA, pts < 18 yr	In-hospital mortality, postop complications (AMI, stroke, ARF, prolonged intubation, ARDS, infection, sepsis, paraplegia)	No	LV: <9 HV: ≥9	
Patel et al, 2013	Retrospective cohort study,	USA (MEDPAR)	7071	2004-2007	TAA-descending (intact)	TAA ruptured, TAAA, aortic 30-day mortality, postop complication	No	Open surgery:		
Study	Design	Cohort	N	Time Period	Diagnosis/Procedure	Outcomes	Complications	Hospital Charges	Mortality	
-------	--------	--------	---	-------------	---------------------	----------	---------------	-----------------	-----------	
Arnaoutakis et al, 2013	Retrospective cohort study, Multicenter	USA (NIS)	1865	2005-2009	TAAA (intact)	Ruptured-traumatic-mycotic-syphilitic aneurysms, patients <18 yr or pts > 99 yr	In-hospital mortality, postop complications (cardiac, AMI, nervous, ARF, bleeding, paralysis, respiratory, digestive, visceral vascular, bowel resection, renal, seroma, wound, infectious), hospital charges	No	LV: ≤8 HV: >8 TEVAR: LV: ≤8 HV: >8	
Chikwe et al, 2013	Retrospective cohort study, Multicenter	USA (NIS)	5184	2003-2008	Acute aortic dissection	Lack of surgeon identification	In-hospital mortality‡	No	Lowest:<3 Low:>3-8 High:>8-13 Highest:>13	
Goodney et al, 2013	Retrospective cohort study, Multicenter	USA (MP/Sf & MDf)	15305	1998-2007	TAA-Descending	Aortic dissection, TAA ascending, TAAA, use of CPB with HCA, debranching procedures, procedures to extend endovascular landing zone	30-day mortality, 1-year mortality and 5-year mortality	No	Open surgery: Lowest: 1-4 LV: 5-8 MV: 9-15 HV: 16-46 Highest:>46 TEVAR: Lowest: 0-1 LV: 2-3 MV: 4-8 HV: 9-17 Highest:>18	
Study	Study Design	Country	Location	Study Population	Study Period	Disease	Study Endpoints	Analysis	Discharge Mortality	
------------------------------	-----------------------	------------------	--------------	------------------	--------------	--------------------------	---	---------------	--------------------	
Soppa et al, 2013	Retrospective cohort	UK	Inst.Dat.	163	2005-2011	Aortic root dilatation	Marfan, in-hospital mortality, postop complications	Yes	NA	
	study, Monocenter						(stroke, temporary hemofiltration, reopening for bleeding), LOS, follow-up (late dilatation, late reoperations, late death)			
Tsagakis et al, 2013	Retrospective cohort	Germany	Inst.Dat.	124	2004-2011	Acute type A aortic	Pts died preoperatively, 30-day mortality, postop complications (stroke, temporary hemofiltration, reopening for bleeding, malperfusion, laparotomy, peripheral surgery)	Yes	NA	
	study, Monocenter					aortic dissection				
Hughes et al, 2013	Retrospective cohort	USA	STS	13358	2004-2007	TAA-ascending/Aortic root	Aortic dissection, non-elective cases, 30-day/in-hospital mortality, postop complications (stroke, ARF, reopening for bleeding, prolonged ventilation)	No	Lowest: <6	
	study, Multicenter								Low: 6-13 MV:13-30 HV: 30-100	
Sakata et al, 2012	Retrospective cohort	Japan	JATS	14095	2005-2009	Acute type A aortic	30-day mortality	No	Lowest: 1-4	
	study, Multicenter					dissection			Low: 5-9 MV: 10-14 High: 15-19 Highest: ≥20	
Chavanon et al, 2011	Retrospective cohort	France	Inst.Dat.	380	1990-2009	Acute type A aortic	In-hospital mortality	Yes	NA	
	study, Monocenter					dissection				
Study	Design	Setting	Sample Size	Time Period	Main Diagnosis	Associated Conditions	Outcomes	LV§		
-------	--------	---------	-------------	-------------	----------------	-----------------------	----------	-----		
Gopaldas et al, 2010	Retrospective cohort study, Multicenter	USA (NIS)	923	2006-2008	TAA-descending (ruptured)	Vasculitis, connective tissue disorders, aortic dissection, concomitant aneurysm, patients treated with both open surgery and TEVAR	In-hospital mortality, postop complications (hemopericardium, open cardiac massage, procedure-related complications, deep venous thrombosis, infections, mediastinitis, neurologic complications, pneumothorax, respiratory complications, renal complications, disposition), LOS	No	LV§ HV	
Harris et al, 2010	Retrospective case controlled, Monocenter	USA (Inst.Dat.)	101	2003-2009	Acute aortic dissection	Iatrogenic dissection	In-hospital mortality, time from presentation or diagnosis to OR	Yes	NA	
Davies et al, 2010	Retrospective case controlled, Monocenter	USA (Inst.Dat.)	621	2007-2008	Acute aortic dissection, symptomatic TAA and TAAA, AAA	IMH, aortic ulcers, chronic aneurysms and dissections	In-hospital mortality, postop complications (AMI, ARF, respiratory failure, pulmonary embolisms, pneumonia, cardiovascular accident, spinal cord ischemia, arrhythmia, bowel ischemia, blood transfusion units [n], coagulopathy), LOS, time to therapy	Yes	NA	
Gazoni et al, 2010	Retrospective cohort study, Multicenter	USA (NIS)	731	2004-2007	Elective TAA+TAAA		30-day/in-hospital mortality, postop	No	LV: ≥39 HV: ≥83	
Study										

Miyata et al, 2009										
Schermerhorn et al, 2008										
Knipp et al, 2007										
Kazui et al, 2007										
Rigberg et al, 2006										

Study
Multicenter
Retrospective cohort study, Multicenter

Location
Japan (JACVSD)
USA (NIS)
USA (NIS)
Japan (JATS)
USA (OSHPD)

Procedures/yr, center with incomplete submission data
Hospitals <5
30-day/in-hospital mortality
No LV: 5-20
MV: 20-40
HV: >40

Procedures/yr, center with incomplete submission data
TAA, AA, use of cardioplegia, hypothermia, cardiac surgery debranching of epiaortic vessels, intrathoracic bypass, pts<18yr
In-hospital mortality, postop complications (cardiac, stroke, ARF, respiratory, neuro non-stroke), LOS
No
LV: 1
MV: 2 [2,3]
HV: 4 [3,25]

Procedures/yr, center with incomplete submission data
Acute type A aortic dissection
In-hospital mortality
No
LV: <1
MV: 1-2.5
HV: >2.5

Procedures/yr, center with incomplete submission data
Acute type A aortic dissection
30-day mortality
No
Lowest:1-4 Low: 5-9 High: 15-19 Highest: ≥20

Procedures/yr, center with incomplete submission data
TAAA
Aortic dissections
30-day mortality, 31-365 days mortality, 1-year mortality
No
LV: 1
MV: 2-7
MV: 7-14
Study

Narayan et al, 2004
Cowan et al, 2003
Derrow et al, 2001
Albrink et al, 1994

Abbreviations: AAA, abdominal aortic aneurysm; AF, atrial fibrillation; AMI, acute myocardial infarction; ARDS, acute respiratory distress syndrome; ARF, acute renal failure; AV, atrio-ventricular; CPB, cardiopulmonary bypass; DSWI, deep sternal wound infection; DVT, deep venous thrombosis; HCA, hypothermic circulatory arrest; HV, high volume hospital; IABP, intra-aortic balloon pump; IMH, intramural hematoma; Inst.Dat., Institutional Database; LOS, length of stay; LV, low volume hospital; MV, medium volume hospital; NA, not available; OR, operating room; PE, pulmonary embolism; TAA, thoracic aorta aneurysm; TAAA, thoracoabdominal aneurysm; TEVAR, thoracic endovascular aortic repair.
*Data source: JATS=Japanese Association for Thoracic Surgery. JACVSD=Japan Adult Cardiovascular Surgery Database. MEDPAR=Medicare Provider Analysis and Review. MP/Sf & MDF=Medicare Physician/Supplier file and Medicare Denominator file. NIS=Nationwide Inpatient Sample. OSHPD=California Office of Statewide Health Planning and Development. STS-ACSD=Society of Thoracic Surgeons Adult Cardiac Surgery Database. VCSQI=Virginia Cardiac Quality Initiative.
†Volume activity defined over the entire study period.
‡Major postoperative complications listed, but no comparison was made with reference to the hospital or surgeon volume or hospital location or teaching status.
§Not specified the threshold (cases/year); general definition of LV (vs MV) vs HV hospital only.
¶Low volume thoracic aortic center performing <5 case/yr excluded (n=2 hospitals).
**Defined as median [range] of cases.
Table S12. Study outcomes stratified by hospital and surgeon volume

Study (Author, Year)	High-Volume (HV)	Low-Volume (LV)	Mortality (%)	Re-exploration bleeding/tamponade (%)	Stroke (%)	Acute renal failure (%)	Perioperative MI (%)	LOS (days)								
	Age (yr)	Female (%)	Pts	Age (yr)	Female (%)	Pts	HV	LV								
Iribarne et al, 2015	58.7 (16.2)	33.1	124	59.5 (14.6)	32.6	798	12.1	23.4*	9.7	9.5	20.2	30.3*	0.8	5.5*	13.9 (11.7)	14.9 (15.4)
Weiss et al, 2014	49.2	479	42.6	709	20.4	25.2	7.9	2.6*	28.4	22.4*	12.5	13.0*				
Patel et al, 2013 (open repair)	72 (8.1)	49.0	1772	72 (8.1)	51.0	1782	11.0	15*	17.0	16.0	20.0	17.0				
Patel et al, 2013 (TEVAR)	75 (7.9)	42.0	1758	75 (7.7)	43.0	1759	5.5	3.9	13.0	11.0	6.9	5.3				
Chikwe et al, 2013	59.9	29.2	3404	60.9	30.9	3331	3.4	5.8*	1.9	2.3	4.6	5.7				
Hughes et al, 2013	59.9	29.2	3404	60.9	30.9	3331	3.4	5.8*	1.9	2.3	4.6	5.7				
Sakata et al, 2012	1379	1312	16.4	27.4*												
Gazoni et al, 2010	62.5	515	61.0	216	3.7	8.3*	5.4	7.9	4.8	1.4*	4.5	8.3	8.5 (10.1)	11.6 (17.0)*		
Miyata et al, 2009	69 (58-75)	30.9	1398	69 (61-75)	36.4	481	4.4	9.6*								
Schermerhorn et al, 2008	68 (18-92)	42.2	1262	68 (21-89)	43.1	685	15.5	21.7*	3.2	2.3	9.8	10.8	19 (1-330)	15 (15-176)*		
Kazui et al, 2007	541	3085	7.9	18.5*												
	Surgeon Volume	Surgeon Volume														
----------------	----------------	----------------														
Cowan et al, 42	68.3 (9.2) 42.0	506	68.5 (9.9) 40.0	569	15.0	27.3*	10.3	14.8	13.0	12.3*						
Derrow et al, 43	69.5 (8.8) 403	69.2 (5.9) 17	18.2	25.0	19.3	11.5 (18.9) 21.9 (20.1)										
Lenos et al, 17	62 (15) 34.7	75	63 (14) 32.2	87	4.0	21.8*	2.7	11.5*								
Murzi et al, 19	27.6	460	31.7	407	3.7	2.2	9.6	11.3	2.6	2.5	8.7	10.1	2.2	1.5		
Andersen et al, 20	54 (14) 28.0	72	58 (15) 30.0	56	2.8	33.9*	4.2	33.9*	5.6	12.5	16.7	26.8	1.4	1.8	12 (12)	10 (12)
Chikwe et al, 25	938	1130	17.0	27.5*												
Narayan et al, 41	64 (52-72) 29.2	130	60 (47-68) 29.5	166	10.8	13.9	7.7	3.8	4.8							
Albrink et al, 44	36.1	13.0	15	35.9	17.0	12	7.0	50*								

Abbreviations: LV, low volume; LOS, length of hospital stay; HV, high volume; SD, standard deviation; TEVAR, thoracic endovascular aortic repair.

Values are expressed as mean (±SD) or median (with interquartile range or normal range) for numerical variables, and percentage for categorical variables.

*P-value <0.05 for comparison between LV versus HV hospital/surgeon.
Table S13. Study outcomes for study with defined a specific thoracic aortic program

Study (Author, Year)	Post-Thoracic Program	Pre-Thoracic Program	Mortality (%)	Re-exploration bleeding/tamponade (%)	Stroke (%)	Acute renal failure (%)	Myocardial infarction (%)	LOS (days)											
	Age	Female %	Pts	Age	Female %	Pts	Post	Pre											
Grau et al,16 2015	62 (12)	22.7	38	63 (12)	50*	16	7.9	12.5	21.2	6.3	2.6	6.3	7.9	6.3	8.2	6	13.5	11*	
Andersen et al,20 2014	54 (14)	28.0	72	58 (15)	30.0	56	2.8	33.9*	4.2	19.6*	5.6	12.5	16.7	26.8	1.4	1.8	12	12	10
Sales et al,21 2014	60 (15)	49.0	175	56 (13)*	51.0	157	9.7	23*	14.3	20.4	4.6	10.9*	2.3	1.9	1.7	1.9	14.8	14.4	14.4
Davies et al,34 2010	69 (12)	28.0	173	70 (13)	23.0	133	6.0	4.0	9	7	21	14	2	2	10	6	11		
Harris et al,33 2010	64 (17)	48.0	71	64 (18)	27.0	30	26.8	33.3											
Albrink et al,44 1994	36.1	13.0	15	35.9	17.0	12	7.0	50*											

Abbreviations: LOS, length of hospital stay; SD, standard deviation.

Values are expressed as mean (±SD) for the numerical variables, and percentage for the categorical variables.

*P-value <0.05 for comparison between pre-thoracic and post-thoracic program introduction.
Table S14. Quality assessment of observational studies according to the Newcastle-Ottawa Scale

Study* (Author, Year)	Selection	Comparability	Outcome	Exposure	Total
Cohort Studies					
Schaffer et al, 12 2015	4	2	3	-	9
Schaffer et al, 13 2015	4	2	3	-	9
Bhatt et al, 14 2015	4	2	3	-	9
Brat et al, 15 2015	2	1	1	-	4
Lenos et al, 17 2015	3	2	2	-	7
Iribarne et al, 18 2015	4	2	2	-	8
Murzi et al, 19 2014	4	0	1	-	5
Weiss et al, 22 2014	4	0	2	-	6
Patel et al, 23 2013	4	2	2	-	8
Arnaoutakis et al, 24 2013	4	1	2	-	7
Chikwe et al, 25 2013	4	1	2	-	7
Goodney et al, 26 2013	4	2	2	-	8
Soppa et al, 27 2013	4	2	3	-	9
Tsagakis et al, 28 2013	3	0	1	-	4
Hughes et al, 29 2013	4	2	2	-	8
Sakata et al, 30 2012	4	1	2	-	7
Chavanon et al, 31 2011	3	0	2	-	6
Gopaldas et al, 32 2010	4	2	2	-	8
Gazoni et al, 33 2010	4	2	2	-	8
Miyata et al, 34 2009	4	1	2	-	7
Schermerhorn et al, 35 2008	4	2	2	-	8
Knipp et al, 36 2007	4	1	2	-	7
Kazui et al, 37 2007	4	1	2	-	7
Rigberg et al, 38 2006	4	2	3	-	9
Narayan et al, 39 2004	3	2	2	-	7
Cowan et al, 40 2003	4	2	3	-	9
Derrow et al, 41 2001	4	0	2	-	6
Mean score	3.8	1.4	2.1	-	7.3

Case Controlled Studies					
Grau et al, 42 2015	2	2	-	3	7
Andersen et al, 43 2014	2	2	-	3	7
Sales et al, 44 2014	2	0	-	2	4
Harris et al, 45 2010	2	2	-	3	7
Davies et al, 46 2010	2	2	-	3	7
Albrink et al, 47 1994	1	1	-	1	3
Mean score	1.8	1.5	-	2.5	5.8

A study can be awarded a maximum of 4 points for the Selection category, 2 points for the comparability category and 3 points for the Outcome/Exposure categories. Therefore the maximum points a study can obtain is 9 which indicates a high quality study.
Table S15. List of variables included in the final multivariable model

Study* (Author, Year)	Adjustement performed	Variables included in the final model	Reference	Adjusted OR (95% CI)	
Iribarne et al, 2015	Binary logistic regression	Charlson comorbidity score*	LV	0.47 (0.27 to 0.82)	
Weiss et al, 2014	Binary logistic regression	Age, sex, race, admission year, Charlson comorbidity index*, aneurysm rupture, elective repair, HV centers with ≥ 9 cases per year	LV	0.40 (0.17 to 0.96)	
Hughes et al, 2013	Binary logistic regression	Age, LVEF, BSA, serum creatinine, time trend, active endocarditis, need for dialysis, atrial fibrillation, female gender, hypertension, immunosuppressive treatment, presence of an IABP, inotrope use, peripheral vascular disease, unstable angina (no myocardial infarction<7 days), left main disease, aortic stenosis, aortic insufficiency, mitral stenosis, mitral insufficiency, tricuspid insufficiency, chronic lung disease, cerebrovascular disease or cerebrovascular accident, diabetes, number of diseased coronary vessels, MI, race, admission status, congestive heart failure. NYHA class, reoperation, and concomitant CABG	LV	0.42 (0.31 to 0.58)	
Chikwe et al, 2013	Binary logistic regression (4 distinct model including: i) annual thoracic aortic dissection surgeon volume; ii) annual thoracic aortic dissection institution volume; iii) annual total cardiac surgeon volume; iv) annual total cardiac institution volume)	Age, sex, race, payer status, anemia, coagulopathy, congestive heart failure, chronic pulmonary disease, obesity, renal failure, cerebrovascular disease, hypertension, peripheral vascular disease, valve disorders, diabetes, ischemic heart disease, previous cardiac surgery, concomitant CABG, smoking history, hospital location, hospital bed size, and teaching status, annual thoracic annual thoracic aortic dissection surgeon volume, the second model included annual thoracic aortic dissection institution volume, the third model included annual total cardiac surgeon volume, and the fourth model included annual total cardiac institution volume	HV	2.21 (1.72 to 2.86)	
Patel et al, 2013	Binary logistic regression	n/a	HV (open repair)	1.4 (1.1 to 1.8)	
Gazoni et al, 2010	Binary logistic regression	n/a	LV	0.41 (0.18 to 0.92)	
Study	Model Description	Predictors	Effect Measure	CI	Reference
-----------------------	--	---	---------------	------------	-----------
Miyata et al, 36 2009	Hierarchical mixed-effects logistic regression model	Clinical risk factors, procedure year, clinical events (beta-blocker usage), range of replacement (root, ascending, arch, distal aorta, descending, thoracoabdominal, abdominal) hospital procedural volume, and surgeon volume were set as fixed effects, and sites were used as random intercepts	LV	0.989	
Shermerhorn et al, 37 2008	Binary logistic regression with and without comorbidities	Comorbidities	HV	1.3 (1.1 to 1.6)	
Cowan et al, 42 2003	Binary logistic regression	n/a	HV	2.2 (1.6 to 3.1)	

Abbreviations: BSA, body surface area; CABG, coronary artery bypass grafting; CI, confidence interval; HV, high volume; IABP, intra-aortic balloon pump; LV, low volume; n/a, not available; NYHA, New York Heart Association; OR, Odds ratio.

*List of variables defined in Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987;40:373-83.
Supplemental Figures

Figure S1. Adjusted six-month mortality in patients affected by TAD receiving an operation (treated) and in those who did not (untreated) by county (HES cohort)

Abbreviations: adj, adjusted; TAD, thoracic aortic disease.
Figure S2. Centre activity by the most distal aortic segment (NACSA dataset)
Figure S3. Correlation between the hospital activity (number of cases) and in-hospital mortality (NACSA dataset)

For the regression line in the root and ascending category, $r^2=0.13$, in the aortic arch category $r^2=0.01$. Because of the small number in each sub-groups, and for the purposes of the present analysis descending thoracic and thoracoabdominal procedures were grouped together, leaving a r^2 value of 0.07. In all of the categories, the OLS regression lines indicate that a trend towards decreasing mortality was observed in centres with HV activity. Abbreviations: HV, high volume (centre); OLS=ordinary least squares.
Figure S4. PRISMA flow chart of search strategy

1. Additional record identified through additional sources

12803 Records identified through database searching

6897 Records excluded after duplicates removed, title review (case reports, editorials, other surgeries, inappropriate patient)

5907 Articles reviewed for more detailed evaluation (including cross references)

5837 Titles excluded (other surgeries, case reports, case series, editorial/reviews, irrelevant)

70 Full-text articles assessed for eligibility

37 Full-text articles excluded
 Duplicate 2
 No outcome/inappropriate 6
 Editorial not identified before 1
 No thoracic aorta disease 10
 Irrelevant 18

33 Studies included for qualitative synthesis

22 Studies included for quantitative synthesis (meta-analysis)
Figure S5. Funnel plots showing the absence of publication bias
Figure S6. Forest plot for high-volume versus low-volume hospitals on operative mortality according to the primary aortic pathology (upper panel), and forest plot reporting risk adjusted estimates for high- versus low-volume hospitals on operative mortality according to the primary aortic pathology (lower panel).

Study	High Volume Events	Low Volume Events	Odds Ratio (95%CI)	OR 95%CI	W(fixed)	W(random)
Pathology = ADA						
Irarine, 2015	15	124	0.45 [0.26; 0.79]	2.3%	3.8%	
Chikwe, 2013	226	1379	0.52 [0.43; 0.63]	16.3%	12.8%	
Sakata, 2012	270	2779	0.56 [0.48; 0.66]	22.3%	13.9%	
Kazui, 2007	43	541	0.38 [0.27; 0.53]	8.3%	8.0%	
Fixed effect model	4823	8246	0.51 [0.46; 0.57]	49.2%	--	
Random effects model			0.50 [0.43; 0.59]	38.5%	--	
Pathology = ADA+Aneurysm						
Miyata, 2009	62	1398	0.44 [0.30; 0.65]	3.5%	6.3%	
Fixed effect model	1398	481	0.44 [0.30; 0.65]	3.5%	--	
Random effects model	0.44 [0.30; 0.65]	3.5%	--	6.3%	--	
Pathology = Aneurysm						
Weiss, 2014	67	479	0.37 [0.27; 0.50]	8.0%	8.6%	
Hughes, 2013	114	3404	0.56 [0.44; 0.71]	10.0%	10.9%	
Patel, 2013	195	1772	0.70 [0.58; 0.85]	12.5%	12.3%	
Gazoni, 2010	19	515	0.42 [0.22; 0.82]	1.3%	2.9%	
Shermerhorn, 2008	196	1262	0.66 [0.52; 0.84]	8.6%	10.8%	
Cowan, 2003	76	506	0.47 [0.35; 0.64]	6.6%	8.6%	
Derew, 2001	73	423	0.72 [0.23; 2.27]	0.3%	1.1%	
Fixed effect model	8341	7309	0.57 [0.51; 0.63]	47.3%	55.2%	
Random effects model	0.54 [0.45; 0.66]	47.3%	55.2%	--	--	

Abbreviations: ADA, acute aortic dissection; CI, confidence interval; OR, odds ratio.
Figure S7. Forest plots comparing the effect of hospital volume for secondary outcomes

STROKE

Study	High Volume	Low Volume	Odds Ratio	95% CI	W(fixed)	W(random)
Inbar 2015			1.02	[0.84; 1.23]	13.5	16.4
Weiss 2014		26	1.76	[1.00; 3.02]	12.3	21.2
Hughes 2013		67	6.64	[0.60; 1.16]	56.6	29.6
Gazani 2010		25	3.62	[1.08; 12.13]	2.9	6.8
Shemeshon 2008		40	1.37	[0.76; 2.47]	21.0	

Fixed effect model: 5784, 5739
Random effects model: 1.14 [0.91; 1.43] 100% --
Heterogeneity: F=58.8%, t²=0.12, P=0.0458

RE-EXPLORATION FOR BLEEDING/TAMPONADE

Study	High Volume	Low Volume	Odds Ratio	95% CI	W(fixed)	W(random)
Hughes 2013	349	429	0.77	[0.67; 0.90]	55.2	35.5
Patel 2013	301	265	1.07	[0.90; 1.26]	33.5	33.5
Gazani 2010	28	17	0.67	[0.30; 1.20]	3.2	10.3
Cowan 2003	66	70	1.07	[0.75; 1.53]	8.1	20.7

Fixed effect model: 6197, 5898
Random effects model: 0.88 [0.80; 1.06] 100% --
Heterogeneity: F=68.5%, t²=0.03, P=0.0232

RENAL FAILURE

Study	High Volume	Low Volume	Odds Ratio	95% CI	W(fixed)	W(random)
Inbar 2015		25	0.56	[0.36; 0.92]	8.7	11.5
Weiss 2014		93	0.64	[0.49; 0.85]	15.3	15.6
Hughes 2013		155	0.76	[0.63; 0.97]	23.9	17.2
Patel 2013		355	1.22	[1.03; 1.45]	31.3	18.3
Gazani 2010		23	0.51	[0.27; 0.97]	3.1	8.3
Shemeshon 2008		124	0.90	[0.66; 1.22]	11.2	15.2
Cowan 2003		66	1.07	[0.75; 1.53]	7.4	13.8

Fixed effect model: 8062, 8060
Random effects model: 0.91 [0.82; 1.01] 100% --
Heterogeneity: F=77.6%, t²=0.02, P=0.0002

Abbreviations: CI, confidence interval; OR, odds ratio.
Figure S8. Forest plots comparing the effect of a multidisciplinary TAD program presence on outcomes

Mortality

Study	Post program	Pre program	Odds Ratio	OR	95% CI	W(fixed)	W(random)
Grau 2015	3	38	2.16	0.60	[0.90; 3.90]	1.3%	12.1%
Andersen 2014	2	72	19.66	0.08	[0.01; 0.25]	26.1%	15.1%
Sales 2014	17	175	36.15	0.36	[0.19; 0.67]	43.1%	23.5%
Davies 2010	10	173	5.133	1.57	[0.52; 4.71]	6.7%	19.0%
Harris 2010	19	71	10.30	0.73	[0.29; 1.84]	13.0%	20.7%
Albrink 1994	1	15	6.12	0.07	[0.01; 0.73]	7.8%	9.5%

Fixed effect model: 544; Random effects model: 404

Stroke

Study	Post program	Pre program	Odds Ratio	OR	95% CI	W(fixed)	W(random)
Grau 2015	1	38	1.16	0.41	[0.02; 6.91]	4.8%	5.4%
Andersen 2014	4	72	7.50	0.41	[0.11; 1.40]	25.0%	26.3%
Sales 2014	6	175	17.157	0.39	[0.17; 0.64]	59.4%	57.2%
Davies 2010	133		0.00	0.00	[0.00; 0.00]	0.0%	0.0%
Harris 2010	71	30	0.00	0.00	[0.00; 0.00]	0.0%	0.0%
Albrink 1994	2	15	3.12	0.46	[0.08; 3.35]	10.0%	11.0%

Fixed effect model: 544; Random effects model: 404

Re-exploration for bleeding/tamponade

Study	Post program	Pre program	Odds Ratio	OR	95% CI	W(fixed)	W(random)
Grau 2015	8	38	1.16	4.00	[1.58; 35.01]	1.6%	9.3%
Andersen 2014	3	72	11.56	0.18	[0.03; 0.87]	17.0%	18.7%
Sales 2014	26	175	32.157	0.65	[0.17; 2.16]	41.6%	37.3%
Davies 2010	16	173	27.133	0.40	[0.21; 0.78]	39.8%	34.6%
Harris 2010	71	30	0.00	0.00	[0.00; 0.00]	0.0%	0.0%
Albrink 1994	15	12	0.00	0.00	[0.00; 0.00]	0.0%	0.0%

Fixed effect model: 544; Random effects model: 404

Renal failure

Study	Post program	Pre program	Odds Ratio	OR	95% CI	W(fixed)	W(random)
Grau 2015	3	38	1.16	1.28	[0.12; 13.36]	4.2%	8.5%
Andersen 2014	4	72	4.56	0.76	[0.18; 3.29]	13.8%	18.8%
Sales 2014	4	175	3.157	1.20	[0.28; 5.45]	10.0%	17.4%
Davies 2010	36	173	19.133	1.58	[0.86; 2.90]	55.2%	48.0%
Harris 2010	71	30	0.00	0.00	[0.00; 0.00]	0.0%	0.0%
Albrink 1994	1	15	5.12	0.10	[0.01; 1.03]	16.8%	8.5%

Fixed effect model: 544; Random effects model: 404

Abbreviations: CI, confidence interval; OR, odds ratio.
Figure S9. Forest plots comparing the effect of surgeon volume for hospital mortality and secondary outcomes

MORTALITY

Study	High volume	Low volume	Events	Total	Events	Total	OR	95% CI	OR
Lenos 2015†	3	75	12	87	2.26	[0.07; 0.96]	3.6%	13.2%	
Andersen 2014‡	2	72	19	56	0.66	[0.01; 0.35]	7.0%	11.8%	
Muzi 2014§	11	425	4	328	2.15	[0.58; 8.82]	1.5%	14.5%	
Muzi 2014†	6	35	5	79	3.00	[0.63; 1.82]	0.6%	13.5%	
Chikwe, 2013‡	180	938	311	1130	0.64	[0.44; 0.97]	78.0%	21.3%	
Narayan 2004‡	14	130	23	168	0.75	[0.37; 1.52]	6.1%	18.5%	
Abbrink 1994‡‡‡	1	15	6	12	0.67	[0.01; 0.73]	2.1%	7.0%	

STROKE

Study	High volume	Low volume	Events	Total	Events	Total	OR	95% CI	OR
Lenos 2015†	2	75	10	87	0.21	[0.04; 1.00]	25.6%	13.2%	
Andersen 2014‡	4	72	7	55	0.41	[0.11; 1.46]	21.1%	17.4%	
Muzi 2014§	9	425	4	328	1.75	[0.53; 5.74]	12.5%	19.3%	
Muzi 2014†	3	35	6	79	1.14	[0.27; 4.85]	9.0%	14.6%	
Chikwe, 2013‡	11	353	1	1130	1.30	[0.52; 3.22]	23.0%	26.5%	
Narayan 2004‡	10	130	10	168	0.46	[0.06; 3.35]	8.2%	8.9%	

RE-EXPLORATION FOR BLEEDING/TAMPOONADE

Study	High volume	Low volume	Events	Total	Events	Total	OR	95% CI	OR
Lenos 2015†	75	112	87	165	0.09	[0.05; 0.27]	19.8%	16.1%	
Andersen 2014‡	3	72	11	68	0.87	[0.28; 2.94]	50.5%	34.1%	
Muzi 2014§	33	425	29	528	1.67	[0.68; 4.06]	12.0%	24.5%	
Muzi 2014†	11	35	17	79	0.90	[0.42; 2.31]	17.6%	25.3%	
Chikwe, 2013‡	10	350	1	1130	0.01	[0.01; 0.38]	0.0%	0.0%	

RENOAL FAILURE

Study	High volume	Low volume	Events	Total	Events	Total	OR	95% CI	OR
Lenos 2015†	75	112	87	165	0.09	[0.05; 0.27]	19.8%	16.1%	
Andersen 2014‡	3	72	11	68	0.87	[0.28; 2.94]	50.5%	34.1%	
Muzi 2014§	33	425	29	528	1.67	[0.68; 4.06]	12.0%	24.5%	
Muzi 2014†	11	35	17	79	0.90	[0.42; 2.31]	17.6%	25.3%	

Abbreviations: CI, confidence interval; OR, odds ratio.
Figure S10. Forest plots comparing the effect of hospital status on hospital mortality

Abbreviations: CI, confidence interval; OR, odds ratio.
Supplemental References

1. Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM; RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Med. 2015;12:e1001885. doi:10.1371/journal.pmed.1001885.

2. http://www.hscic.gov.uk/hes. Accessed June 30, 2015.

3. Bridgewater B, Keogh B, Kinsman R, Walton P. The Society for Cardiothoracic Surgery in Great Britain & Ireland: the Sixth National Adult Cardiac Surgical Database Report. Henley-on-Thames, UK: Dendrite Clinical Systems Ltd, 2009. Available at: http://www.scts.org/_userfiles/resources/SixthNACSDreport2008withcovers.pdf. Accessed June 30, 2015.

4. http://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/datasets/NACSAdatasetV4.1.2.

5. Accessed April 30, 2015.

6. http://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/datasets/nacsacleaning10.3. Accessed April 30, 2015.

7. Hickey GL, Grant SW, Cosgriff R, Dimarakis I, Pagano D, Kappetein AP, Bridgewater B. Clinical registries: governance, management, analysis and applications. Eur J Cardiothorac Surg. 2013;44:605-14. doi:10.1093/ejcts/ezt018.

8. Roques F, Michel P, Goldstone AR, Nashef SA. The logistic EuroSCORE. Eur Heart J. 2003;24:881-2. doi:10.1016/S0195-668X(02)00799-6.

9. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. BMJ. 2007;335:806-8. doi:10.1136/bmj.39335.541782.AD.

10. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Meta-analysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008-12. doi:10.1001/jama.283.15.2008.

11. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ. 2009;339:b2535. doi:10.1136/bmj.b2535.

12. Schaffer JM, Lingala B, Fischbein MP, Dake MD, Woo YJ, Mitchell RS, Miller DC. Midterm outcomes of open descending thoracic aortic repair in more than 5,000 Medicare patients. Ann Thorac Surg. 2015;100:2087-94. doi: 10.1016/j.athoracsur.2015.06.068.

13. Schaffer JM, Lingala B, Miller DC, Woo YJ, Mitchell RS, Dake MD. Midterm survival after thoracic endovascular aortic repair in more than 10,000 Medicare patients. J Thorac Cardiovasc Surg. 2015;149:808-20. doi: 10.1016/j.jtcvs.2014.10.036.

14. Bhatt P, Patel NJ, Patel A, Sonani R, Patel A, Panaich SS, Thakkar B, Savani C, Jhamnani S, Patel N, Patel N, Pant S, Patel S, Arora S, Dave A, Singh V, Chothani A, Patel J, Ansari M, Deshmukh A, Bhimani R, Grines C, Cleman M, Mangi A, Forrest JK, Badheka AO. Impact of hospital volume on outcomes of endovascular stenting for adult aortic coarctation. Am J Cardiol. 2015;116:1418-24. doi: 10.1016/j.amjcard.2015.07.066.

15. Brat R, Gaj J, Barta J. Early and mid-term outcomes of the aortic arch surgery: experience from the low-volume centre. J Cardiothorac Surg. 2015;10:31. doi: 10.1186/s13019-015-0229-6.

16. Grau JB, Kuchner CE, Ferrari G, Wilson SR, Brizzio ME, Zapolanski A, Yallowitz J, Shaw RE. Effects of a protocol-based management of type A aortic dissections. J Surg Res. 2015;197:265-9. doi: 10.1016/j.jss.2015.04.018.

17. Lenos A, Bougioukaakis P, Irinie V, Zacher M, Diegeler A, Urbanski PP. Impact of surgical experience on outcome in surgery of acute type A aortic dissection. Eur J Cardiothorac Surg. 2015;48:491-6. doi: 10.1093/ejcts/ezu454.

18. Iribarne A, Milner R, Merlo AE, Singh A, Saunders CR, Russo MJ. Outcomes following emergent open repair for thoracic aortic dissection are improved at higher volume centers. J Card Surg. 2015;30:74-9. doi:10.1111/jocs.12470.

19. Murzi M, Miceli A, Di Stefano G, Cerillo AG, Kallushie E, Farneti P, Solinas M, Glauber M. Enhancing quality control and performance monitoring in thoracic aortic surgery: a 10-year single institutional experience. Eur J Cardiothorac Surg. 2015;47:608-15. doi:10.1093/ejcts/ezu249.
20. Andersen ND, Ganapathi AM, Hanna JM, Williams JB, Gaca JG, Hughes GC. Outcomes of acute type a dissection repair before and after implementation of a multidisciplinary thoracic aortic surgery program. *J Am Coll Cardiol.* 2014;63:1796-803. doi:10.1016/j.jacc.2013.10.085.

21. Sales MdC, Frotta Filho JD, Aguzzoli C, Souza LD, Rösler AM, Lucio EA, Leaes PE, Pontes MR, Lucchese FA. Aortic Center: specialized care improves outcomes and decreases mortality. *Rev Bras Cir Cardiovasc.* 2014;29:494-504. doi:10.5935/1678-9741.20140122.

22. Weiss A, Anderson JA, Green A, Chang DC, Kansal N. Hospital volume of thoracoabdominal aneurysm repair does not affect mortality in California. *Vasc Endovascular Surg.* 2014;48:378-82. doi:10.1177/1538574414540344.

23. Patel VI, Mukhopadhyay S, Ergul E, Aranson N, Conrad MF, Lamuraglia GM, Kwolek CJ, Cambria RP. Impact of hospital volume and type on outcomes of open and endovascular repair of descending thoracic aneurysms in the United States Medicare population. *J Vasc Surg.* 2013;58:346-54. doi:10.1016/j.jvs.2013.01.035.

24. Arnaoutakis DJ, Propper BW, Black JH 3rd, Schneider EB, Lum YW, Freischlag JA, Perler BA, Abularrage CJ. Racial and ethnic disparities in the treatment of unruptured thoracoabdominal aortic aneurysms in the United States. *J Thorac Cardiovasc Surg.* 2013;184:651-7. doi:10.1016/j.jtcvs.2013.03.018.

25. Chikwe J, Cavallaro P, Itagaki S, Seigerman M, Diluozzo G, Adams DH. National outcomes in acute aortic dissection: influence of surgeon and institutional volume on operative mortality. *Ann Thorac Surg.* 2013;95:1563-9. doi:10.1016/j.athoracsur.2013.02.039.

26. Goodney PP, Brooke BS, Wallaert J, Travis L, Lucas FL, Goodman DC, Cronenwett JL, Stone DH. Thoracic endovascular aneurysm repair, race, and volume in thoracic aneurysm repair. *J Vasc Surg.* 2013;57:56-63. doi:10.1016/j.jvs.2012.07.036.

27. Soppa G, Abdulkareem N, Smelt J, Van Besouw JP, Jahangiri M. High-volume practice by a single specialized team reduces mortality and morbidity of elective and urgent aortic root replacement. *Aorta (Stamford).* 2013;1:40-4. doi:10.12945/j.aorta.2013.13.001.

28. Tsagakis K, Konorza T, Dohle DS, Kottenberg E, Buck T, Thielmann M, Erbel R, Jakob H. Hybrid operating room concept for combined diagnostics, intervention and surgery in acute type A dissection. *Eur J Cardiothorac Surg.* 2013;43:397-404. doi:10.1093/ejcts/ezt143.

29. Hughes GC, Zhao Y, Rankin JS, Scarborough JE, Gammie JS, Shahian DM, Smith PK. Effects of institutional volumes on operative outcomes for aortic root replacement in North America. *J Thorac Cardiovasc Surg.* 2013;145:166-70. doi:10.1016/j.jtcvs.2011.09.044.

30. Sakata R, Kuwano H, Yokomise H. Hospital volume and outcomes of cardiothoracic surgery in Japan: 2005-2009 national survey. *Gen Thorac Cardiovasc Surg.* 2012;60:625-38. doi:10.1007/s11748-012-0128-x.

31. Chavanon O, Baguet JP, Albaladéjo P, Blin D, Vanzetto G. Direct admission to the operating room: an efficient strategy for patients with diagnosed or highly suspected acute type A aortic dissection. *Can J Cardiol.* 2011;27:685-91. doi:10.1016/j.cjca.2011.01.014.

32. Gopaldas RR, Dao TK, LeMaire SA, Huh J, Coselli JS. Endovascular versus open repair of ruptured descending thoracic aortic aneurysms: a nationwide risk-adjusted study of 923 patients. *J Thorac Cardiovasc Surg.* 2011;142:1010-8. doi:10.1016/j.jtcvs.2011.08.014.

33. Harris KM, Strauss CE, Duval S, Unger BT, Kroshus TJ, Inampudi S, Cohen JD, Kapsner C, Boland LL, Eales F, Rohman E, Orlandi QQ, Flavin TF, Kshettry VR, Graham KJ, Hirsch AT, Henry TD. Multidisciplinary standardized care for acute aortic dissection: design and initial outcomes of a regional care model. *Circ Cardiovasc Qual Outcomes.* 2010;3:424-30. doi:10.1161/CIRCOUTCOMES.109.920140.

34. Davies MG, Younes HK, Harris PW, Masud F, Croft BA, Reardon MJ, Lumsden AB. Outcomes before and after initiation of an aortic treatment center. *J Vasc Surg.* 2010;52:1478-85. doi:10.1016/j.jvs.2009.03.020.

35. Gazoni LM, Speir AM, Kron IL, Fonner E, Crosby IK. Elective thoracic aortic aneurysm surgery: better outcomes from high-volume centers. *J Am Coll Surg.* 2010;210:855-9. doi:10.1016/j.jamcollsurg.2010.01.013.

36. Miyata H, Motomura N, Ueda Y, Tsukihara H, Tabayashi K, Takamoto S. Toward quality improvement of thoracic aortic surgery: estimating volume-outcome effect from nationwide survey. *Eur J Cardiothorac Surg.* 2009;36:517-21. doi:10.1016/j.ejcts.2009.03.020.

37. Schermerhorn ML, Giles KA, Hamdan AD, Dalhberg SE, Hagberg R, Pomposelli F. Population-based outcomes of open descending thoracic aortic aneurysm repair. *J Vasc Surg.* 2008;48:821-7. doi:10.1016/j.jvs.2008.05.022.
38. Knipp BS, Deeb GM, Prager RL, Williams CY, Upchurch GR Jr, Patel HJ. A contemporary analysis of outcomes for operative repair of type A aortic dissection in the United States. *Surgery.* 2007;142:524-8. doi:10.1016/j.surg.2007.07.012.

39. Committee for Scientific Affairs, Kazui T, Osada H, Fujita H. An attempt to analyze the relation between hospital surgical volume and clinical outcome. *Gen Thorac Cardiovasc Surg.* 2007;55:483-92. doi:10.1007/s11748-007-0172-0.

40. Rigberg DA, McGory ML, Zingmond DS, Maggard MA, Agustin M, Lawrence PF, Ko CY. Thirty-day mortality statistics underestimate the risk of repair of thoracoabdominal aortic aneurysms: a statewide experience. *J Vasc Surg.* 2006;43:217-22. doi:10.1016/j.jvs.2005.10.070.

41. Narayan P, Caputo M, Rogers CA, Alwair H, Mahesh B, Angelini GD, Bryan AJ. Early and mid-term outcomes of surgery of the ascending aorta/arch: is there a relationship with caseload? *Eur J Cardiothorac Surg.* 2004;25:676-82. doi: 10.1016/j.ejcts.2004.01.011.

42. Cowan JA Jr, Dimick JB, Henke PK, Huber TS, Stanley JC, Upchurch GR Jr. Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: hospital and surgeon volume-related outcomes. *J Vasc Surg.* 2003;37:1169-74. doi:10.1016/S0741-5214(03)00085-5.

43. Derrow AE, Seeger JM, Dame DA, Carter RL, Ozaki CK, Flynn TC, Huber TS. The outcome in the United States after thoracoabdominal aortic aneurysm repair, renal artery bypass, and mesenteric revascularization. *J Vasc Surg.* 2001;34:54-61. doi: 10.1067/mva.2001.115596.

44. Albrink MH, Rodriguez E, England GJ, McKeown PP, Hurst JM, Rosemurgy AS 2nd. Importance of designated thoracic trauma surgeons in the management of traumatic aortic transection. *South Med J.* 1994;87:497-501.
Unwarranted Variation in the Quality of Care for Patients With Diseases of the Thoracic Aorta
Alex Bottle, Giovanni Mariscalco, Matthew A. Shaw, Umberto Benedetto, Athanasios Saratzis, Silvia Mariani, Mohamad Bashir, Paul Aylin, David Jenkins, Aung Y. Oo, Gavin J. Murphy and the UK Aortic Forum

J Am Heart Assoc. 2017;6:e004913; originally published March 14, 2017;
doi: 10.1161/JAHA.116.004913

The *Journal of the American Heart Association* is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Online ISSN: 2047-9980

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://jaha.ahajournals.org/content/6/3/e004913

Subscriptions, Permissions, and Reprints: The *Journal of the American Heart Association* is an online only Open Access publication. Visit the Journal at http://jaha.ahajournals.org for more information.