From 2015 to the end of 2016, the Internet set off a wave of payment for knowledge. Pay-for-knowledge platforms such as Fenda, iGet, and Qianliao went online quickly, and platforms such as Himalaya FM, Zhihu, and Qingting FM gathered to launch paid columns. The number of users increased rapidly, and payment for knowledge was considered to have reached the trend of development. This article aims to study the introduction of edge computing in the mobile information system into the existence and inevitability of the knowledge payment platform; analyze the advantages, dilemmas, and optimization paths of the knowledge payment platform; and try to provide a theoretical reference for promoting its development. This article puts forward an explanation of the related content of mobile edge computing and RFID technology overview, using comparative experiment and behavior analysis methods. The experimental results show that there are 98 people under the age of 18 in the questionnaire, accounting for 19.1% of the total, 201 people aged 18–29, accounting for 39.1% of the total, 142 people aged 30–39, accounting for 27.6% of the total, and 73 people over 40 years old, accounting for 14.2% of the total number. It can be seen from the data that the sample age is mainly concentrated in the 18–29 years old, followed by the 30–39 years old; the sample age is biased towards young people. It has well completed the continuous use behavior analysis of the knowledge payment platform based on edge computing under the mobile information system.

1. Introduction

Cloud computing has been dynamically promoted due to its low operating cost, strong dynamic scalability, and simple operation and maintenance. My country’s cloud computing-related industries are developing rapidly. In cloud computing architecture, all data are transmitted over the network and stored in the cloud. The main characteristics of cloud computing are being dynamic, flexible, and on demand. Data required for cloud computing are collected by related equipment. Different types of terminals transmit a large amount of collected data to their respective cloud platforms and receive analysis results through a central function. At present, a large number of mature intelligent management cloud platforms have been used, but with the widespread use of distributed intelligent devices, a large amount of data transmission has caused the transmission channel to be blocked. There are many difficulties in using cloud computing technology to solve this problem, and cutting-edge computing technology provides an effective way to solve this problem.

With the popularity of the Internet, the explosive growth of content has led to a lack of public attention. Content parties can only attract attention by selling content for free or at low prices and then indirectly selling their attention to a third party for profit. With the gradual deepening of content grading, low-quality content is surplus, high-quality content is scarce, and the value of high-quality content begins to emerge, which eventually forms a basis for charging. Since the end of 2015, the payment of knowledge platforms has increased significantly. By the end of 2016, core payments for more than 10 knowledge platforms or subprojects had been launched. However, in less than two years, the knowledge payment platform and the subcolumns went hand in hand,
2. The Method of Continuous Use Behavior of Knowledge Payment Platform Based on Edge Computing under Mobile Information System

2.1. System Hardware Architecture Design. In the computer edge system, the data collection of acne equipment is completed by each data collection node [4, 5]. Each node basically consists of a terminal device and many external devices [6]. For physical data, data collection is done through external equipment [7]. In the data collection process, all types of equipment will transmit the collected data to the terminal equipment in real time in a predefined format [8]. In order to be compatible with most external devices, the most advanced devices provide various forms of hardware interfaces, such as UART, USB, and wireless transmission interfaces [9]. When there are many sensors sending data to the most advanced equipment [10], whether it is physical data or network data, it must be cleared by the data processing unit inside the device [11, 12]. After that, the data are uploaded to the cloud in a predefined format [13, 14].

According to the system operation target and application script design, the first is the edge device [15]. Network congestion causes a series of problems such as packet loss and delay [16, 17]. Secondly, in order to meet the transmission requirements of various sensors on the market, the device must support various hardware communication interfaces, and finally it is aimed at specific scenarios that can be used [18, 19]. The system frame diagram is shown in Figure 1.

2.2. Knowledge Payment Platform. The traditional behavior of paying for knowledge has existed since the rise of education [20]. The knowledge payment referred to in this article is a more direct and spontaneous knowledge transaction relationship between the disseminator and the audience [21, 22]. It refers to users who use the knowledge payment platform to share personal knowledge with others to obtain economic benefits, and other users pay for knowledge online through the platform [23]. The knowledge payment platform is an Internet media system that provides a venue for the exchange of knowledge and money. It uses computer technology to support a new relationship of knowledge dissemination, and at the same time, it builds two realistic values of economic benefits and knowledge benefits for both parties [24, 25].

Knowledge is divided into subjective knowledge and objective knowledge [26]. Knowledge or thinking in the subjective sense includes mental state, state of consciousness, or the intention of behavior or reaction; knowledge or thinking in the objective sense includes problems, theories, and arguments [27]. Simply put, objective knowledge is knowledge without cognitive objects and has nothing to do with claiming to know or opposing it. There are currently two types of empirical scientific knowledge. One is to describe, explain, and test conclusions and inductive knowledge in the sense of “natural events”, and the other is to conduct a systematic and critical investigation or interpretation of phenomenological experience knowledge in the sense of phenomenon content [28]. The theoretical point of view is that knowledge can be divided into actual knowledge and value knowledge. Real knowledge is a universal law that does not change with discipline, especially natural science knowledge. Value knowledge has the personal trace of the cognitive subject; that is, the cognitive object is the fact. Knowledge is processed based on knowledge such as
The total service delay \(t \) can be expressed as follows:

\[
t (TA) = \max \left\{ \frac{Task_i}{C_{v,i}} + \omega_{v,i}m_{v,i} \cdots, \frac{Task_k}{C_{v,k}} + W_{v,k}m_{v,k} \right\} + \frac{Task_{pre}}{C_c} + W_{c,e}.
\]

(3)

The solution of the task allocation coefficient can be transformed into the solution of the vector TA, so (3) is modeled as the following optimization problem:

\[
\min \{t (TA)\}, \quad TA \in I,
\]

(4)

\[
s.t. TA (i) \geq 0,
\]

(5)

In (4), \(I \) represents the search space of the feasible solution TA, which is expressed as follows:

\[
I = \prod_{i=1}^{k} [Task_{i_{min}}, Task_{i_{max}}] = \prod_{i=1}^{k} [0, Task].
\]

(6)

Using the firework algorithm to solve the optimization, (4) becomes the firework solving equation. The explosion radius \(A_i \) and the number of explosion sparks \(S_i \) of each firework \(TA_i \) are calculated as follows:

\[
A_i = A \times \frac{t (TA_i) - t_{min} + \varepsilon}{\sum_{i=1}^{N} (t (TA_i) - t_{min}) + \varepsilon},
\]

(7)

\[
S_i = Q \times \frac{t_{max} - t (TA_i) + \varepsilon}{\sum_{i=1}^{N} (t_{max} - t (TA_i)) + \varepsilon}.
\]

(8)

In order to prevent fireworks with high fitness values from generating too many explosion sparks, and fireworks with lower fitness values will not produce too few sparks, the number of explosion sparks produced by each firework needs to be limited, as shown below:

\[
\tilde{S}_i = \begin{cases} \round(a \times Q), & S_i < aM, \\ \round(b \times Q), & S_i > bM, a < b < 1, \\ \round(S_i), & \text{others,} \end{cases}
\]

(9)

where \(a, b \) are both constants.

The selected \(z \) dimensions are calculated as follows:

\[
z = \round(d^2 \times U (0, 1)).
\]

(10)

The selected \(z \) dimensions form the set \(zs \), and the resulting explosion spark is expressed as follows:

\[
T \tilde{A}_{ik} = TA_{ik} + A_i \times U (-1, 1), \quad k \in zs.
\]

(11)

Update the value of this dimension according to the following formula:

\[
T \tilde{A}_{ik} = TA_{LB,k} + |T \tilde{A}_{ik}| \mod (TA_{LB,k} - TA_{LB,k} - TA_{UB,k}).
\]

(12)
The k-th dimension of the generated Gaussian mutation spark is calculated as follows:

$$TA_{ik}^{'} = TA_{ik} \times N(1, 1). \quad (13)$$

From the current generation of fireworks, explosion sparks and Gaussian mutation sparks, select N fireworks as the new population to enter the next generation, and the fireworks individuals with the smallest fitness value will be definitely selected to enter the next generation. In order to maintain the diversity of the population, the remaining $N-1$ individuals are selected according to the roulette selection algorithm. The probability is calculated as follows:

$$P(TA_i) = \frac{R(TA_i)}{\sum_{TA_j \in K} TA_j},$$

$$R(TA_i) = \sum_{TA_j \in K} d(TA_i - TA_j) = \sum_{TA_j \in K} \|TA_i - TA_j\|. \quad (14)$$

In the above calculation task offloading strategy based on the firework algorithm, it is necessary to obtain the total calculation tasks, the computing power, and communication resources of the cloud server and the MEC device in advance. Therefore, it is very necessary to introduce a central control node into the network to obtain the information of the entire network. The entire algorithm model introduces the SDN controller as the central node in the cloud-edge computing network architecture. The SDN controller collects the information of all devices, runs the firework algorithm to formulate the optimal computing task offloading strategy, and delivers the strategy to each MEC device through the flow table. Next, start the experiment.

2.4. Edge Computing. Edge computing refers to the use of an open platform that integrates network, computing, storage, and application core capabilities on the side close to the source of things or data to provide the nearest-end services nearby. Its applications are initiated on the edge side to generate faster network service response and meet the basic needs of the industry in real-time business, application intelligence, security, and privacy protection. Edge computing is between physical entities and industrial connections, or at the top of physical entities. While regarding cloud computing, you can still access the historical data of edge computing.

Automation is actually a “control” as the core. Control is based on “signal”, while “calculation” is based on data. More meaning is “strategy” and “planning.” Therefore, it focuses more on “scheduling, optimization, and routing.” Just like the dispatching system of the national high-speed rail, every increase of the number of trains will cause the adjustment of the dispatching system, which is based on time and node operations and planning issues. The application of edge computing in the industrial field is more of this type of “computing.”

Simply put, traditional automatic control is based on signal control, while edge computing can be understood as “information-based control”.

\[\text{Figure 2: Knowledge payment platform model diagram.}\]
3. Experiment and Analysis of Continuous Use Behavior of Knowledge Payment Platform Based on Edge Computing under Mobile Information System

3.1. Short Length to Adapt to Fragmentation Time. The fragmentation of Internet information leads to fragmentation of audience time and attention. Fragmented learning has become the mainstream. Therefore, fragmentation and dissemination of system knowledge are more in line with the audience’s learning habits and reduce the effort of learning. The audiences of payment-knowledge platforms are generally busy, and the characteristics of fragmentation are more prominent. Figure 3 shows the duration of the unit paid course.

Through the analysis of the duration of paid courses of different APPs, it is not difficult to see that the main course time of APP1 is concentrated in the daytime and less time on weekends, while the course time of APP2 is mainly concentrated in the evening and weekends. This is better for learners.

The sample data of the system is shown in Figure 4. The annual distribution of the number of articles published on the domestic and foreign knowledge payment platform research are shown in Figure 5. The scatter diagram of the rotating component matrix is shown in Figure 6. The descriptive statistics of each variable are shown in Figure 7.

3.2. Sample Description. Cultural capital theory believes that cultural consumption behavior is not only a way to embody self-identity, but also a social class reproduction strategy adopted to express one’s own social identity and to occupy a more favorable social position and is a channel to achieve self-improvement. Therefore, the acquisition of cultural capital is extremely utilitarian, and it is an effort to obtain more material capital, although the “concealment and secrecy” of cultural capital investment may conceal the utilitarian characteristics of its behavior. For the tools used in the actual statistical process, EXCeI is generally used to perform statistics and analysis of relevant data. Table 1 is a summary of several categories of paid knowledge.

From the above analysis of the content of Himalaya FM, iGet, and Zhihu Live, it can be seen that the three models use paid subscription, online Q and A, and online lectures as their core knowledge sharing models. In terms of the breadth and depth of content, these three platforms involve all aspects of life and work and have different content biases: the knowledge on these three platforms is both popular and professional, multilevel, and diversified. The content meets the different needs of users, and the trend of verticalization and IPization is obvious. Table 2 is a comparative analysis table of dissemination content.

The comparative analysis of the communication effects of the three platforms is shown in Table 3.

The qualifications of Zhihu Live speakers are shown in Table 4.

3.3. Node Address. Compared with wired networks, wireless networks have disadvantages such as weak anti-interference ability. The ZigBee network in the system uses a tree-like network topology that is more convenient to manage. The address of the sensor node in the ZigBee network can be determined by a distributed routing algorithm, and with the continuous addition of nodes, a stable tree network is formed. The following briefly introduces the formation process of the ZigBee network to realize the formation of the network topology on the mobile terminal. The corresponding relationship list of each node is shown in Table 5.

By looking up the node names in the above table, we can easily obtain the corresponding node address and calculate the top node address corresponding to it by adding the ZigBee tree network to the node address. Several common network protocols are as follows:

TCP/IP: in order to realize the interconnection between different networks, the US Department of Defense developed the TCP/IP architecture and protocol from 1977 to 1979.

NetBEUI: it is an enhanced version of the NetBIOS protocol, which has been adopted by many operating systems, such as Windows for Workgroup, Win 9x series, and Windows NT.

IPX/SPX protocol: it was originally a protocol developed by Novell dedicated to NetWare networks, but it is also very commonly used—most of the games that can be connected support the IPX/SPX protocol, such as StarCraft and Counter-Strike.

The last one is the SLIP protocol. The calculation consumption comparison of the four protocols is shown in Table 6.

The improved protocol increases the computational consumption required by the user (mobile terminal) and the A and B protocols in the registration phase and the login phase, but it increases the protection of the user’s identity ID and avoids the storage of confidential parameters in plain text.

Relevant classifications are made for the samples: gender, age, and education level are classified; gender is classified according to men and women, and age is classified based on 18, 30, and 40 years. The education level is classified according to the dividing line between undergraduate and master.

The basic characteristics of the sample are shown in Table 7.

From the perspective of gender distribution, there are 254 males in the questionnaire, accounting for 49.4% of the total, and 260 females, accounting for 50.6% of the total. The ratio of men to women is not much different, almost the same, but the number of women is slightly higher than the number of men.

From the perspective of age distribution, there are 98 people under the age of 18 in the questionnaire, accounting for 19.1% of the total, 201 people aged 18–29, accounting for 39.1% of the total, and 142 people aged 30–39, accounting for 27.6% of the total number of people; there are 73 people over...
40 years old, accounting for 14.2%. It can be seen from the data that the sample age is mainly concentrated in the 18–29 years old, followed by the 30–39 years old; the sample age is biased towards young people. Such distribution characteristics are mainly related to the characteristics of the paid education platform itself, and young people are more likely to accept this emerging education. The data show that the vast majority of users who use paid knowledge platforms are mainly undergraduates. This distribution structure is mainly because the number of people with a bachelor’s degree in China is much higher than the number of people with a master’s degree or above; the second is because of the recycling. The questionnaire is mainly an electronic questionnaire. People with higher education are more likely to go online than those with lower education. Thirdly, people with higher education are more likely to accept new things and can keep up with market trends.
Table 1: Himalaya FM, iGet, Zhihu, and ZXYD paid course classification.

Category	Himalaya FM	iGet	Zhihu	ZXYD	Amount
Personal promotion	19	26	19	17	81
Parent-child education	43	3	7	0	53
Humanity history	24	10	2	0	36
Business finance	14	10	2	8	34
Emotional psychology	10	2	9	8	29
Foreign language sharp goods	9	1	5	0	15
Music life	7	1	4	0	12
Comic opera	3	0	0	0	3

Table 2: Comparative analysis table of dissemination content.

Disseminate content	Himalaya FM	iGet	Zhihu
Content form	Free/paid subscription	Q&A, community	Consultation, bookstore
Content scale	Over 10,000 paid courses	—	5000 lives
Content breadth	Top ten categories of boutique area	Ten commonly used categories	17 categories
Content depth	PUGC-based, utilitarian, high quality and depth, IP-based	UGC, strong purpose, strong practicability, vertical IP	PUGC-based, utilitarian, high quality and depth, IP-based
Content bias	Finance, emotion, literature	Health, workplace, popular science, psychology	Education and Internet

Table 3: Comparative analysis of the communication effects of the three platforms.

Spread effect	Himalaya FM	iGet	Zhihu
Daily active users	873.64	1.11	321.05
Number of starts per person per day	4.68	3.7	5.35
Average usage time per person per day	22.92	17.6	34.71
User experience	The boutique area has high audio quality, many usage scenarios, and a good community atmosphere	The early stage is too entertaining to produce a sense of boredom. After the improvement, the knowledge is enhanced and the community atmosphere is general	The live quality is high, the interaction efficiency is high, and the community atmosphere is good

Table 4: Qualifications of Zhihu Live speakers.

Topic of live	Speaker qualification
Psychology	Certificate of master’s degree or above in psychology, certificate of national registered psychologist, certificate of employment in psychiatric hospital, certificate of employment in psychology clinic
Medical and health	Front desk blue label certification, relevant work certificate, medical qualification certificate
Finance and economy	CFA/CPA/FRM/RFC
Commercial finance/manager finance	Registered financial planner, financial planner, national financial planner, etc.
Legal	Legal professional qualification certificate, court work certificate, lawyer professional qualification certificate, lawyer practice certificate
Workplace	Hard skills or soft skills related certificates
Education	Proof of passing a certain professional title examination, etc.
Lifestyle	Fitness coach, medical practitioner, interior decoration designer certificate, contract photographer of photography agency, first-class architect, etc.
Tourism	At least one Q and A related to tourism edited and included
Music, film and games	Certificate of practice related to the field, etc.
Delicacy	Currently only accept invited guests
4. Discussion of Continuous Use Behavior of Knowledge Payment Platform Based on Edge Computing under Mobile Information System

4.1. Validity Analysis. Validity test is mainly used to test whether the accuracy of the sample can effectively reflect the relationship between different variables. Generally speaking, the higher the validity of the measurement is, the more accurately the measurement result can reflect the degree of confirmation of the measurement elements. This article will examine the validity from two aspects: the validity of the content and the validity of the structure.

Content validity is also called usage validity, empirical validity, surface validity, or logical validity. The main statistical questionnaire data do not cover all the content that the researcher wants to study. Usually the score of a single object is used to reflect all the correlation coefficients of the total score of the object. If the correlation coefficient is not significant, it means that the explanatory power of the item is low, and the item must be eliminated. Since most of the latent variables in this study refer to the existing foreign literature, citing more mature scales, combined with expert evaluation and user in-depth interviews, the final scale is obtained after analysis, so its validity is effective.

Structure validity is an important indicator to judge whether a scale can measure variables. The text mainly uses convergence validity and discretion to test validity. Convergence validity is used to measure the degree of correlation between measurement elements of the same variable. If the correlation is high, the convergence validity is good. Instead, the measurement data must be corrected, usually using a load factor loader for testing. Discrete validity, also known as discrete validity, is used to measure the degree of correlation of measured data between different variables. The correlation between the measurement elements must be very low. Generally speaking, the average output variable of each latent variable on the measurement scale should be greater than the latent variable. Through the common variance of the variable and other latent variables or the average value of the correlation coefficient, the measurement scale has good resolution. Before analyzing the sample data, KMO test and Bartlett ball test will be performed on the collected sample data to confirm whether the sample is suitable for exploratory factor analysis. The value of KMO statistic is between 0 and 1. The closer the KMO value to 1, the stronger the correlation between the variables, and the more suitable the initial variables for factor analysis. Conversely, the closer the KMO value to 0, the weaker the correlation between the variable and the initial variable, which is not suitable for factor analysis.

4.2. Overview of RFID Technology. Perception technology can also be called information collection technology, which is the basis for the realization of the Internet of Things. Currently, information collection mainly uses RFID tags and

Node name	Node address	Top node address
A	0 × 0000	0 × 0000
B	0 × 0001	0 × 0000
C	0 × 0025	0 × 0000
D	0 × 0049	0 × 0000
E	0 × 0002	0 × 0001
F	0 × 0026	0 × 0025
G	0 × 0027	0 × 0025
H	0 × 0003	0 × 0002
I	0 × 0004	0 × 0002

Protocol	Registration stage	Login authentication stage			
	Users	Gateway (H)	Users	Gateway (H)	Terminal node (H)
A protocol	—	3	3H	4	1
B protocol	1H	5	5H	5	1
C protocol	1H	3	7H	7	3
D protocol	2H	3	5H	5	1

Variable	Measurement item	Frequency	Frequency rate
Gender	Male	254	49.4
	Female	260	50.6
Age	Under 18	98	19.1
	18–29	201	39.1
	30–39	142	27.6
	Above 40	73	14.2
Education	Under undergraduate	174	33.9
	Undergraduate	275	53.5
	Master’s degree or above	65	12.6
Monthly income	Under 2000	169	32.9
	2000–3000	112	21.8
	3001–5000	120	23.3
	Above 5000	113	22.0

Table 5: Node relationship table.

Table 6: Comparing the computational cost of the four protocols.

Table 7: Basic characteristics of the sample.
The radio signal can be converted into an electromagnetic radio frequency field, and the data can be sent to the object through the tag to identify and monitor the marked object. According to the electromagnetic field emitted by the ID, certain tags can be activated during identification without the need for an additional battery. Some tags have their own power source and can be integrated into the object being monitored. The signal emitted by the radio can be controlled by the electromagnetic field of the corresponding frequency, and the tag on the object transmits some data, which can be detected and identified. ID’s electromagnetic field will make some tags get power without using another battery; some tags have their own power source and can automatically send radio signals. The tag mainly stores the data of the electronic storage device and can identify or send the first signal within a few meters. Unlike barcodes, radio frequency technology does not necessarily have to appear on the surface of the ID, and it can also be integrated into the object being monitored.

The specific questionnaire recovery situation is shown in Table 8. In order to explore the faster acquisition of platform information and improve users’ satisfaction with the platform and to promote users to continue to use the knowledge payment platform, the content of variable characteristics is designed. The sample size required by each statistical method is different, and the study of structural equation models also needs to pay attention to the problem of this capacity. Maximum likelihood estimation is the most commonly used method in structural equation models. Generally, the number of samples is 100 as the lowest limit. A total of 514 questionnaires were collected in this article, far exceeding the minimum number of samples for studying structural equation models. In addition, the maximum likelihood estimation method can only be used when the measured variable is a continuous variable and obeys a multivariate normal distribution. Researchers usually use skewness and kurtosis to analyze whether the sample data conforms to the normal distribution. When the absolute values of skewness and kurtosis are both less than 2, we think that the sample data obey the normal distribution and can be estimated by the maximum likelihood method for data analysis. This paper uses Spss24.0 to measure the skewness and kurtosis of the sample data.

SPSS software: SPSS is the world’s first statistical software that uses a graphical menu-driven interface. Its most prominent feature is that the operation interface is extremely friendly, and the output results are beautiful. It displays almost all functions in a unified and standardized interface. It uses Windows to display the functions of various data management and analysis methods, and the dialog box displays various function options. Users only need to master certain Windows operating skills and be proficient in statistical analysis principles, and they can use the software to serve specific scientific research work. SPSS uses a method similar to EXCEL form to input and manage data. The data interface is more general, and data can be easily read from other databases. Its statistical process includes commonly used and more mature statistical processes, which can fully meet the work needs of nonstatistical professionals. The output result is very beautiful, and it is stored in a special SPO format, which can be transferred to HTML format and text format. For users who are familiar with the old version...
of the programming operation mode, SPSS also specially designed a grammar generation window. The user only needs to select each option in the menu and then press the “Paste” button to automatically generate a standard SPSS program, a great convenience for middle and advanced users.

SPSS for Windows is a combined software package that integrates data entry, sorting, and analysis functions. Users can select modules according to actual needs and computer functions to reduce the requirements for system hard disk capacity, which is conducive to the popularization and application of the software. The basic functions of SPSS include data management, statistical analysis, chart analysis, and output management. The SPSS statistical analysis process includes several categories such as descriptive statistics, mean comparison, general linear model, correlation analysis, regression analysis, log-linear model, cluster analysis, data reduction, survival analysis, time series analysis, and multiple response. There are several statistical processes in the regression analysis, such as linear regression analysis, curve estimation, logistic regression, probit regression, weighted estimation, two-stage least squares, nonlinear regression, and other statistical processes, and each process also allows users to choose different methods and parameters. SPSS also has a special drawing system, which can draw various graphics based on data.

The results are shown in Table 9. The absolute values of the skewness and kurtosis of all variables are less than 2, which meets the normal distribution of the data and meets the requirements of structural equation analysis.

5. Conclusions

The experimental results show that the continuous use behavior analysis of the edge computing-based knowledge...
payment platform under the mobile information system proposed in this paper is better than the traditional knowledge platform, and the statistical indicators are more comprehensive. The article adds an explanation about the computing task offloading strategy of the firework algorithm, mobile edge computing, and an overview of RFID technology. In terms of simplification and interpretation of the algorithm, the optimal task allocation ratio is solved according to the computing and communication capabilities of the MEC equipment. This article uses the questionnaire survey method and the comparative experiment method to analyze the rotating component matrix. The experimental results show that there are 98 people under the age of 18 in the questionnaire, accounting for 19.1% of the total, 201 people aged 18–29, accounting for 39.1% of the total, 142 people aged 30–39, accounting for 27.6% of the total, and 73 people over 40 years old, accounting for 14.2% of the total number. It can be seen from the data that the sample age is mainly concentrated in the 18–29 years old, followed by the 30–39 years old; the sample age is biased towards young people. The shortcomings of this article are as follows: (1) the amount of data collected in the sample is relatively limited. In future research, the experimental sample can be expanded to obtain the credibility of the research results. (2) The firework algorithm designed in this paper does not have separate control variables in the process of simplifying the algorithm. Although the actual experimental results did not have an impact, the reliability of the algorithm should be more rigorously studied in future research.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest with any financial organizations regarding the material reported in this manuscript.

References

[1] W. Kazimierski and M. Włodarczyk-Sielicka, "Technology of spatial data geometrical simplification in maritime mobile information system for coastal waters," Polish Maritime Research, vol. 23, no. 3, pp. 3–12, 2016.

[2] F. Mata, M. Torres-Ruiz, G. Guzmán et al., "A mobile information system based on crowd-sensed and official crime data for finding safe routes: a case study of Mexico city," Mobile Information Systems, vol. 2016, no. 1, 11 pages, Article ID 8068209, 2016.

[3] S. Ismail, N. Wan, and A. F. Hashim, "The development of augmented reality mobile information system (ARMIS) influences the psychological factors in consumers' preferences," Journal of Physics: Conference Series, vol. 29, no. 3, pp. 32–72, 2020.

[4] Manado State University, "Indonesian mobile learning information system using social media platforms," International Journal of Mobile Computing and Multimedia Communications, vol. 8, no. 2, pp. 44–67, 2017.

[5] R. Wang and L. Zhu, "Group key agreement protocol among terminals of the intelligent information system for mobile edge computing," International Journal of Intelligent Systems, vol. 9, no. 6, pp. 23–44, 2021.

[6] O. Akanbi and O. Abegunde, "Design and implementation of mobile information system for federal road safety corps (FRS) of Nigeria," International Journal of Sensor Networks and Data Communications, vol. 9, no. 1, pp. 8–12, 2021.

[7] C. Wang, Z. Li, and Y. Li, "Design and implementation of mobile information system for electric power engineering environment evaluation water conservation," Journal of Geomatics, vol. 43, no. 5, pp. 100–103, 2018.

[8] H. Indriyawati and B. V. Christioko, "Mobile information system untuk mendukung pengelolaan kegiatan pelaksanaan pendidikan bagi dosen," Jurnal Transformatika, vol. 15, no. 2, pp. 86–98, 2018.

[9] O. I. Chumachenko and L. V. Roshinsky, "Intelligent mobile information system for underground," Electronics and Control Systems, vol. 1, no. 5, pp. 101–121, 2017.

[10] S. Rios-Aguilar, I. Sarria Martinez Mendivil, and M. Beltrán Pardo, "NFC and VLC based mobile business information system for registering class Attendance," International Journal of Interactive Multimedia and Artificial Intelligence, vol. 6, no. 2, pp. 7–13, 2020.

[11] A. Hadiana, "Designing interface of mobile parental information system based on users' perception using kansei engineering," Journal of Data Science and Its Applications, vol. 1, no. 1, pp. 10–19, 2018.

[12] G. Liu, S. Fei, Z. Yan, C.-H. Wu, S.-B. Tsai, and J. Zhang, "An empirical study on response to online customer reviews and E-commerce sales: from the mobile information system perspective," Mobile Information Systems, vol. 2020, no. 83, pp. 1–12, 2020.

[13] Y. Vykylyuk, P. Sydor, P. Sydor, and V. Savchuk, "Mobile tourist information system with safety recommender component," MEST Journal, vol. 6, no. 2, pp. 158–166, 2018.

[14] Y. Sun, H. Song, A. J. Jara, and R. Bie, "Internet of things and big data analytics for smart and connected communities," IEEE Access, vol. 4, pp. 766–773, 2016.

[15] B. Daniawan and A. Hermawan, "Sales information system of mobile marketing at PT. World innovative telecommunications using up selling, cross selling and down selling methods," Tech Europe, vol. 4, no. 1, pp. 79–81, 2020.

[16] A. Setyanto, "Pregnancy monitoring and mapping using integrated mobile application and geographic information system," International Journal of Advanced Trends in Computer Science and Engineering, vol. 8, no. 6, pp. 3362–3368, 2019.

[17] U. Nugraha and B. Vystim, "REFERENCES website and mobile based emergency reporting information system," Journal of Advanced Research in Dynamical and Control Systems, vol. 11, no. 2, pp. 957–967, 2019.

[18] Z. Ly, H. Song, P. Basanta-Val, A. Steed, and M. Jo, "Next-generation big data analytics: state of the art, challenges, and future research topics," IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 1891–1899, 2017.

[19] Q. Zhang, Y. Chen, G. Wu, H. Chen, X. Sun, and H. Zang, "A satisfaction degree evaluation model of knowledge payment platform for college students in guangzhou city," American Journal of Mathematical and Computer Modelling, vol. 5, no. 1, pp. 22–32, 2020.

[20] L. Cao, "Research on two decision models in third-party payment platform transaction," Wireless Personal Communications, vol. 110, no. 5, pp. 64–67, 2020.
[21] Y. C. Zhao, X. Peng, Z. Liu, S. Song, and P. Hansen, “Factors that affect asker’s pay intention in trilateral payment-based social Q and A platforms: from a benefit and cost perspective,” Journal of the Association for Information Science and Technology, vol. 71, no. 5, pp. 79–91, 2019.

[22] B. Mukhopadhyay and C. R. Chatwin, “Your driver is DiDi and minutes away from your pick-up point: understanding employee motivation in the gig economy of China,” Journal of Entrepreneurship in Emerging Economies, vol. 8, no. 1, pp. 1–17, 2020.

[23] X. Zhang, J. Chang, and Y. Zhou, "Study of the charging mechanism of knowledge payment platforms based on a tripartite game model," Enterprise Information Systems, vol. 2, no. 12, pp. 1–20, 2020.

[24] Y. Zhang, X. Xiao, L. X. Yang, Y. Xiang, and S. Zhong, "Secure and efficient outsourcing of PCA-based face recognition," IEEE Transactions on Information Forensics and Security, vol. 15, 2019.

[25] J. Jia, “Analysis and research on operating mode of voice platform based on knowledge payment,” Open Journal of Social Sciences, vol. 07, no. 8, pp. 397–404, 2019.

[26] X. Wang, “Analysis on the influencing factors of college students’ payment for knowledge under the background of “Internet+-”—a case study of college students in Hefei,” Advances in Applied Mathematics, vol. 09, no. 9, pp. 1522–1528, 2020.

[27] L. Yu, Z. Chen, P. Yao, and H. Liu, “A study on the factors influencing users’ online knowledge paying—behavior based on the UTAUT model,” Journal of Theoretical and Applied Electronic Commerce Research, vol. 16, no. 5, pp. 1768–1790, 2021.

[28] M. V. Fernandes and J. R. Verschoore, “How blockchain affects the technological strategy of the financial industry: an analysis based on knowledge discovery in text,” Future Studies Research Journal: Trends and Strategies, vol. 12, no. 2, pp. 311–334, 2020.