Graphs with C_3-free vertices are not universal fixers

Magdalena Lemańska ¹, Monika Rosicka ¹, Rita Zuazua ²

¹Gdańsk University of Technology, Poland, magda@mif.pg.gda.pl, rosamo@op.pl
²Science Faculty, UNAM, Mexico ritazuazua@gmail.com

Abstract

A non-isolated vertex $x \in V(G)$ is called C_3-free if x belongs to no triangle of G. In [1] Burger, Mynhardt and Weakley introduced the idea of universal fixers. Let $G = (V, E)$ be a graph with n vertices and G' a copy of G. For a bijective function $\pi : V(G) \mapsto V(G')$, we define the prism πG of G as follows: $V(\pi G) = V(G) \cup V(G')$ and $E(\pi G) = E(G) \cup E(G') \cup M_\pi$, where $M_\pi = \{u \pi(u) : u \in V(G)\}$. Let $\gamma(G)$ be the domination number of G. If $\gamma(\pi G) = \gamma(G)$ for any bijective function π, then G is called a universal fixer. In [1] it is conjectured that the only universal fixer is the edgeless graph K_n.

In this note, we prove that any graph G with C_3-free vertices is not a universal fixer.

Keywords: dominating sets, universal fixers.

Subject Classification: 05C69

1 Introduction

Let $G = (V, E)$ be an undirected graph. The neighborhood of a vertex $v \in V(G)$ in G is the set $N_G(v)$ of all vertices adjacent to v in G. For a set $X \subseteq V(G)$, the open neighborhood $N_G(X)$ is defined to be $\bigcup_{v \in X} N_G(v)$, the closed neighborhood, $N_G[X] = N_G(X) \cup X$ and we denote by $[X]$ the subgraph of G induced by the set of vertices X. For two sets of vertices $X, Y \subseteq V(G)$, we denote by $E(X, Y)$ the set of edges $xy \in E(G)$ such that $x \in X$ and $y \in Y$.

A set $D \subseteq V(G)$ is a dominating set of G if $N_G[D] = V$. The domination number of G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set in G. A γ-set of G is a dominating set of G of cardinality $\gamma(G)$. If a set of vertices $A \subseteq V(G)$ is dominated by a set of vertices $D \subseteq V(G)$, that is, if for every vertex $v \in A$ there is $u \in D$ such that $vu \in E(G)$, we write $D \triangleright A$. A set $S \subset V(G)$ is a 2-packing of G if $N_G[u] \cap N_G[v] = \emptyset$ for every distinct $u, v \in S$.

Definition 1 Let $G = (V, E)$ be a graph and G' a copy of G. For a bijective function $\pi : V(G) \mapsto V(G')$, we define the prism πG of G as follows:

$$V(\pi G) = V(G) \cup V(G') \text{ and } E(\pi G) = E(G) \cup E(G') \cup M_\pi,$$

where $M_\pi = \{u \pi(u) : u \in V(G)\}$.

It is clear that every permutation π of $V(G)$ defines a bijective function from $V(G)$ to $V(G')$, so we indistinctly use the permutation π of $V(G)$ or the associated bijection $\pi : V(G) \mapsto V(G')$.
It is known [3] that for any permutation \(\pi \) and any graph \(G \), the domination numbers \(\gamma(G) \) and \(\gamma(\pi G) \) have the following relation: \(\gamma(G) \leq \gamma(\pi G) \leq 2\gamma(G) \). The graph \(G \) is called a universal fixer if \(\gamma(\pi G) = \gamma(G) \) for every permutation \(\pi \) of \(V(G) \).

Universal fixers were studied in [3] for several classes of graphs and it was conjectured that the edgeless graph \(K_n \) is the only universal fixer. In [2], [4] and [5] it is shown that regular graphs, claw-free graphs and bipartite graphs are not universal fixers.

2 Useful lemmas

In what follows, we suppose that the graph \(G = (V,E) \) has \(n \) vertices. For \(x \in V(G) \), the copy of \(x \) in \(V(G') \) is denoted by \(x' \). Similarly, if \(A \subset V(G) \), we denote \(A' = \{u' \in V(G') : u \in A\} \).

Definition 2 A \(\gamma \)-set \(A \) of \(G \) is called a separable \(\gamma \)-set (or an \(A_1-\gamma \)-set) if it can be partitioned into two nonempty subsets \(A_1 \) and \(A_2 \), such that \(A_1 \geq V - A \).

In [3], the following lemma is proved:

Lemma 1 If \(A = A_1 \cup A_2 \) is an \(A_1-\gamma \)-set of \(G \), then:

1. \(A_2 \) is an independent set;
2. \(E(A_1, A_2) = \emptyset \);
3. \(A_2 \) is a 2-packing of \(G \).

For an \(A_1-\gamma \)-set \(A \) in \(G \) and a permutation \(\pi \), we denote \(B'_1 = \pi(A_1), B'_2 = \pi(A_2) \) and \(B' = \pi(A) \). It is clear that \(B' = B'_1 \cup B'_2 \). If the permutation \(\pi \) is the identity, then \(B'_1 = A'_1 \) and \(B'_2 = A'_2 \).

Definition 3 We say that an \(A_1-\gamma \)-set \(A = A_1 \cup A_2 \) is effective under some permutation \(\pi \) if \(B' = \pi(A) \) is a \(B'_2-\gamma \)-set in \(G' \), where \(B'_2 = \pi(A_2) \).

Observation 1 By Lemma 1, if an \(A_1-\gamma \)-set \(A \) is effective under some permutation \(\pi \), then \(B'_1 = \pi(A_1) \) is an independent set, \(E(B'_1, B'_2) = \emptyset \) and \(B'_1 \) is a 2-packing in \(G' \).

The next Theorem is proved in [3].

Theorem 2 A graph \(G \neq K_n \) is a universal fixer if for every permutation \(\pi \) of \(V(G) \) there exists a separable \(\gamma \)-set which is effective under \(\pi \).

3 Main result

Definition 4 Let \(G \) be a graph. We say that a non-isolated vertex \(x \) is \(C_3 \)-free if \(x \) belongs to no triangle of \(G \).

Observe that \(x \in V(G) \) is \(C_3 \)-free if and only if \(|V[G[x]| \cong K_{1,m} \) with \(m \geq 1 \).

Our main result is the following theorem.

Theorem 3 If \(G \) has a \(C_3 \)-free vertex \(x \), then \(G \) is not a universal fixer.

Proof. Let \(G \) be a graph and \(x \) a \(C_3 \)-free vertex of \(G \). Denote by \(X \) the subgraph \(\langle V[G[x]| \cong K_{1,m} \) of \(G \) for \(m \geq 1 \). We define \(\pi : V(G) \to V(G') \) such that:
1. \(\pi(v) = v' \) for every \(v \in V(G) - X \),
2. \(\pi(v) \neq v' \) for every \(v \in X \) and
3. if \(m \geq 2 \) and \(\pi(v) = u' \), then \(\pi(u) \neq v' \) for every \(u, v \in X \).

Let \(A = A_1 \cup A_2 \) be an arbitrary separable \(\gamma \)-set of \(G \). We prove that \(A \) is not effective under \(\pi \).

Since \(X = \lbrack N_G \{x\} \rbrack \), we get that \(|A \cap X| \geq 1 \) for every dominating set \(A \). We consider the following three cases.

Case 1. \(A \cap X = \{v\} \).

(1) If \(v \in A_1 \), then \(\pi(A_2) = A_2' = B_2' \) and \(v' \in V(G') - B' \). By Lemma 1, we have that \(E(A_1, A_2) = \emptyset \). Thus \(E(\{v'\}, A_2') = \emptyset \) and it is a contradiction to the fact that \(B_2' = A_2' \not> V(G') - B' \).

(2) If \(v \in A_2 \) and \(\pi(v) = w' \), then the definition of \(A_1 \) implies that there exists \(u \in A_1 \) such that \(uw \in E(G) \). Hence \(u'w' \in E(G') \) and consequently, \(E(\pi(A_1), \pi(A_2)) \neq \emptyset \), which is a contradiction to Observation 1.

Case 2. \(A \cap X = \{u, v\} \). Recall that for every \(u, v \in X \) we have that either \(uv \in E(G) \), or \(uv \notin E(G) \) and \(N(u) \cap N(v) \neq \emptyset \).

(1) If \(u, v \in A_1 \), then \(|B_1' \cap X'| = 2 \). Thus \(B_1' \) is neither independent nor a 2-packing, a contradiction to Observation 1.

(2) If \(u, v \in A_2 \), then \(A_2 \) is neither independent nor a 2-packing, a contradiction to Lemma 1.

From (1) and (2), we conclude that

\[
|A_1 \cap X| \leq 1 \text{ and } |A_2 \cap X| \leq 1
\]

(1)

for every \(A_1 \)-\(\gamma \)-set and therefore we only have to consider the case when \(u \in A_1 \) and \(v \in A_2 \). Since \(E(A_1, A_2) = \emptyset \), vertices \(u, v \) and \(x \) are all distinct. Analogously, since \(E(B_1', B_2') = \emptyset \), vertices \(\pi(u), \pi(v) \) and \(x' \) are all distinct too. By the definition of \(\pi \), if \(\pi(y) = z' \), then \(\pi(z) \neq y' \) for every \(y \in X \). Thus there exists \(z \in X \cap (V(G) - A) \) such that either \(\pi(u) = z' \neq v' \) or \(\pi(v) = z' \neq u' \).

1. Suppose \(\pi(u) = z' \neq u' \). Since \(A_1 \not> V - A \), there exists \(w \in A_1 \) such that \(zw \in E(G) \) and \(\pi(w) = w' \in B_1' \). Then \(z'w' \in E(B_1', B_1') \), which is a contradiction with Observation 1.

2. Suppose that \(\pi(v) = z' \neq u' \). Since \(A_1 \not> V - A \), there exists \(w \in A_1 \) such that \(zw \in E(G) \) and \(\pi(w) = w' \in B_1' \). Then \(z'w' \in E(B_1', B_2') \), which is a contradiction with Observation 1.

Case 3. \(|A \cap X| \geq 3 \). In this case, \(|A_1 \cap X| \geq 2 \) or \(|A_2 \cap X| \geq 2 \), which is impossible by (1) of Case 2.

From these cases, we conclude that every separable \(\gamma \)-set is not effective under \(\pi \). By Theorem 2, the graph \(G \) is not a universal fixer.

Recall that the girth of a graph \(G \) is the length of a shortest cycle contained in the graph. Notice that in a graph \(G \) with girth four or more, every vertex is \(C_3 \)-free. In particular, the bipartite graphs satisfy this condition.

Acknowledgements

We thank Bernardo Llano for useful comments. The authors thank the financial support received from Grant UNAM-PAPIIT IN-117812 and SEP-CONACyT.
References

[1] A. P. Burger, C.M. Mynhardt, W.D. Weakley, On the domination number of prisms of graphs, Discussiones Mathematicae Graph Theory 24, (2004), no. 2, 303-318.

[2] A.P. Burger, C.M. Mynhardt, Regular graphs are not universal fixers, Discrete Mathematics 310, (2010), no. 2, 364-368.

[3] C.M. Mynhardt, Z. Xu, Domination in Prisms of Graphs: Universal Fixers, Utilitas Mathematica 78, (2009), 185-201.

[4] E.J. Cockayne, R.G. Gibson, C.M. Mynhardt Claw-free graphs are not universal fixers, Discrete Mathematics 309, (2009), no. 1, 128-133.

[5] R.G. Gibson Bipartite graphs are not universal fixers, Discrete Mathematics 308, (2008), no. 24, 5937-5943.