Many viruses express noncoding RNAs (ncRNAs). The gammaherpesviruses (γHVxs), including Epstein-Barr virus, Kaposi’s sarcoma-associated herpesvirus, and murine γHV68, each contain multiple ncRNA genes, including microRNAs (miRNAs). While these ncRNAs can regulate multiple host and viral processes in vitro, the genetic contribution of these ncRNAs to infection and pathogenesis remains largely unknown. To study the functional contribution of these ncRNAs to γHV infection, we have used γHV68, a small-animal model of γHV pathogenesis. γHV68 encodes eight small hybrid ncRNAs that contain both tRNA-like elements and functional miRNAs. These genes are transcribed by RNA polymerase III and are referred to as the γHV68 TMERs (tRNA-miRNA-encoded RNAs). To determine the total concerted genetic contribution of these ncRNAs to γHV acute infection and pathogenesis, we generated and characterized a recombinant γHV68 strain devoid of all eight TMERs. TMER-deficient γHV68 has wild-type levels of lytic replication in vitro and normal establishment of latency in B cells early following acute infection in vivo. In contrast, during acute infection of immunodeficient mice, TMER-deficient γHV68 has reduced virulence in a model of viral pneumonia, despite having an enhanced frequency of virus-infected cells. Strikingly, expression of a single viral tRNA-like molecule, in the absence of all other virus-encoded TMERs and miRNAs, reverses both attenuation in virulence and enhanced frequency of infected cells. These data show that γHV ncRNAs play critical roles in acute infection and virulence in immunocompromised host and identify these RNAs as a new potential target to modulate γHV-induced infection and pathogenesis.

IMPORTANCE The gammaherpesviruses (γHVxs) are a subfamily of viruses associated with chronic inflammatory diseases and cancer, particularly in immunocompromised individuals. These viruses uniformly encode multiple types of noncoding RNAs (ncRNAs) that are not translated into proteins. It remains unclear how virus-expressed ncRNAs influence the course and outcome of infection in vivo. Here, we generated a mouse γHV that lacks the expression of multiple ncRNAs. Notably, this mutant virus is critically impaired in the ability to cause disease in immunocompromised hosts yet shows a paradoxical increase in infected cells early during infection in these hosts. While the original mouse virus encodes multiple ncRNAs, the expression of a single domain of one ncRNA can partially reverse the defects of the mutant virus. These studies demonstrate that γHV ncRNAs can directly contribute to virus-induced disease in vivo and that these RNAs may be multifunctional, allowing the opportunity to specifically interfere with different functional domains of these RNAs.
[HSURs]) to functional miRNAs (3–11). ncRNAs have been shown to regulate a number of cellular and viral processes, with recent studies particularly focused on how viral miRNAs modulate the outcome of infection (12, 13). While viral miRNAs can modulate diverse processes, multiple reports have identified the capacity of these miRNAs to autoregulate viral gene expression during lytic and latent infections and to alter host gene expression (e.g., to promote immune evasion).

Despite major advances in the understanding of γHV miRNAs, the genetic contribution of viral ncRNAs to primary infection and pathogenesis in vivo remains largely unknown. While there is evidence that γHV ncRNAs can contribute to various stages of infection, including lymphocyte transformation in vitro and regulation of lytic replication in vitro (14–17), roles for viral ncRNAs in many aspects of infection have been more difficult to ascertain by available assays (18–20). Importantly, the strict species specificity of the human γHV has impeded the understanding of the role of viral ncRNAs during primary infection in vivo.

γHV68 is a close genetic relative of the other γHV and is now a well-established small-animal model used to study γHV pathogenesis (21). A major strength of this model is the ability to analyze the full course of infection in vivo, from acute infection to long-term maintenance of latency and reactivation from latency. Similar to the human γHV, γHV68 establishes latency in B cells, with latency also found in macrophages, dendritic cells, and possibly epithelial cells (21); γHV68 can spontaneously reactivate from latency ex vivo. Like the human γHV, γHV68 induces chronic diseases, ranging from B cell tumors to chronic inflammatory diseases, in immunocompromised individuals (21). Given the genetic tractability of γHV68 and its ability to infect inbred and genetically modified mice, this model has become a powerful system used to study factors that regulate γHV pathogenesis.

Early studies of γHV68 revealed the presence of eight tRNA-like ncRNAs that were clustered in a 6-kb region at the left end of the genome (22). Despite their sequence similarity to eukaryotic tRNAs, these viral tRNA-like RNAs (vtRNAs) were not aminoacylated, suggesting that they would not actively function as charged tRNAs (22). More recently, we and others found that γHV68 encodes at least 15 bona fide microRNAs (miRNAs) (6, 10, 11) and that these miRNAs are cotranscribed with the vtRNAs from RNA polymerase III (Pol III)-dependent promoters (23). Given the hybrid nature of these transcripts and their similarity to the EBERs, we refer to these tRNA-miRNA-encoded RNAs as the γHV68 TMERs (24). Though studies have revealed basic mechanisms that facilitate the production of mature miRNAs from these transcripts (24, 25), how these ncRNAs contribute to γHV68 infection and pathogenesis remains poorly defined. Here, we report the characterization of a recombinant γHV68 rendered deficient in the expression of all eight TMER genes. Through characterization of this mutant virus, we found that the γHV68 TMERs are dispensable for lytic replication and the establishment of latency. However, the TMERs have a profound role in constraining the frequency of virus-infected cells during acute infection of immunocompromised hosts. Despite an exaggerated frequency of virus-infected cells upon ablation of the γHV68 TMERs, TMER-deficient γHV68 is significantly impaired in pathogenesis in immunocompromised hosts. These data provide evidence that γHV ncRNAs actively shape the course of viral infection in vivo.

RESULTS

Features of the γHV68 TMER coding locus. γHV68 encodes eight RNA Pol III-transcribed TMERs within a region of the γHV68 genome including nucleotide positions 127 to 5585, interspersed among two protein-coding genes, MI and M2 (Fig. 1A). While early studies found that this region produced vtRNA elements (22), subsequent studies found that the TMER genes produce hybrid transcripts with a 5′ vtRNA followed by one or more 3′ miRNA-containing hairpins (6, 23, 25) (Fig. 1B). Transcription of the TMERs is dependent on RNA Pol III, and during viral infection, TMER-derived miRNAs are processed and functional (23).

The hybrid nature of the TMERs raised the possibility that the TMERs may function through both vtRNA- and miRNA-dependent mechanisms. Additionally, transcription of the TMER genes may play roles in epigenetic control of viral gene expression. In order to define the total genetic contribution of both TMER-derived vtRNA and miRNA elements during infection, we sought to disrupt all eight TMER genes. Instead of a straight deletion of each of the TMER genes, we built on our previous observation that transcription of the TMERs is absolutely dependent on an intact RNA Pol III promoter (23, 24, 26). On the basis of this insight, we systematically deleted each TMER Pol III promoter sequence, a mutation typically spanning 56 to 68 bp within the 5′ end of each TMER. These mutations were engineered into a plasmid containing the native γHV68 TMER locus (pLE-WT) to generate a modified TMER locus in which all TMER promoter elements were disrupted (pLE-TKO, for total knockout) (Fig. 1C).

To generate γHV68 recombinants lacking the expression of all eight TMERs, we next used bacterial artificial chromosome (BAC)-based recombination employing a two-step Red-mediated recombination protocol (27, 28). By using the pLE-TKO plasmid as a recombination substrate, we generated TMER total-knockout (TMER-TKO) γHV68 strains in two different backgrounds, (i) a wild-type (WT) γHV68 BAC (29) and (ii) a WT γHV68 BAC containing an open reading frame 73 (ORF73) β-lactamase fusion gene, referred to here as γHV68,βla (30). Notably, γHV68,βla-derived viruses express β-lactamase enzymatic activity at all stages of infection, allowing virus-infected cells to be identified by virtue of β-lactamase-mediated cleavage of a cell-permeating fluorescent substrate (30). The TMER-TKO mutations in the WT and WT βla backgrounds were generated independently and analyzed in parallel throughout this study. The predicted genomic structure of the TMER-TKO mutation is presented in Fig. 2A, with verification of the TMER-TKO mutant done by (i) restriction digest analysis of intact BAC DNA (Fig. 2B), (ii) restriction digest analysis of a PCR product amplified from BAC DNA of the left end of the γHV68 genome (Fig. 2C), and (iii) direct sequencing of the left end of the BAC DNAs. Following confirmation of these mutations, we generated the TMER-TKO viruses (see Materials and Methods).

We previously found that disruption of the TMER promoters prevented TMER expression following plasmid transfection (23). To verify that these mutations had a similar effect on TMER expression during virus infection, we measured the expression of the TMER-derived miRNAs and TMERs in the TMER-TKO. To measure TMER-derived miRNA expression, we used RNA ligation-mediated reverse transcription-PCR (RLM-RT-PCR) to detect mature miRNAs (23, 24). Whereas WT virus-infected cells had
detectable expression of multiple TMER-derived miRNAs, TMER-TKO virus-infected cells had no detectable miRNA expression (Fig. 3A). RLM-RT-PCR detection of the cellular miRNA mmu-miR-21 indicated that miRNA recovery and preparation were efficient and equivalent across all of the samples (Fig. 3A). These data demonstrate that TMER-TKO /HV68 fails to express TMER-derived miRNAs.

To determine if any RNA species was being transcribed from the TMERs in the TMER-TKO virus, we performed northern blot analysis of RNAs from WT and TMER-TKO virus-infected cells. While WT virus-infected cells showed the expression of multiple TMER-derived elements (including primary miRNAs [pri-miRNAs]- and pre-miRNAs), TMER-TKO virus-infected cells had no detectable expression of TMER-derived elements (Fig. 3B). In total, these studies revealed that the TMER-TKO /HV68 fails to express TMER-derived miRNAs.

The TMERs are interspersed among the M1, M2, and M3 protein-coding genes. To verify the specificity of the TMER-TKO and to determine whether deletion of the ~60-bp TMER promoters (and thus lack of Pol III binding and transcription) could alter the expression of these neighboring genes, we measured the expression of M1, M2, M3, and Rta/ORF50 by RT-PCR and quantitative real-time PCR (Fig. 3C and D). This analysis showed mRNA levels for each of these viral genes that were comparable in the WT and TMER-TKO viruses. These data indicate that deletion of the TMER promoter elements specifically prevents transcription of the TMERs while having no effect on the expression of neighboring protein-coding genes, including M1, M2, or M3.

Lytic replication of /HV68 TMER-TKO. The ability to generate and amplify the TMER-TKO virus indicated that the TMERs are not essential for lytic replication, a finding consistent with previous reports of /HV68 variants lacking the TMER locus and neighboring genes (31, 32). To determine the effect of the TMERs on lytic infection in vitro, we measured virus production in either single or multiple rounds of replication by using either a high or a low multiplicity of infection (MOI), respectively. This analysis compared the replication of both /HV68- and /HV68,βla-derived TMER-TKO recombinants. While we noted minor differences at intermediate time points, including some with statistical significance, these studies revealed that ablation of the /HV68 TMERs had a negligible impact on replication fitness in vitro (Fig. 4). Further, both single-step and multistep replications were independent of the TMERs in interferon (IFN)-deficient BHK cells (data not shown). Our data indicate that the TMERs are genetically dispensable for lytic replication in vitro.
Infection of immunocompetent mice with the γHV68 TMER-TKO. We next analyzed TMER-TKO acute infection in WT, immunocompetent hosts (C57BL/6J [B6] mice). WT and TMER-TKO virus-infected mice showed comparable splenomegaly at 14 days postinfection (p.i.) (Fig. 5A). To determine the frequency of virus-infected cells, we next infected B6 mice with the WT γHV68,βla, intermediate viral recombinant γHV68,βla KanR/I-Sce-I TMER-TKO (for antibiotic selection in bacteria), and γHV68,βla TMER-TKO (in which the KanR-encoding gene is removed). TMERs are indicated by gray triangles in WT γHV68 and as white triangles indicating the deletion of RNA Pol III promoter elements in the TMER-TKO recombinants. Restriction enzyme sites (H for HindIII, X for Xhol) and distances between these sites are indicated. (B) Agarose gel electrophoresis of restriction digests of BAC DNA for WT γHV68,βla (lane A), γHV68,βla KanR/I-Sce-I TMER-TKO (lane B), and γHV68,βla TMER-TKO (lane C) following digestion with HindIII (left) or Xhol (right). (C) Agarose gel electrophoresis of restriction digests of PCR amplicons from the WT γHV68,βla and γHV68,βla TMER-TKO following digestion with XbaI (left) or MfeI (right). Predicted sizes of restriction digest fragments are indicated. The 25-bp MfeI fragment of the WT γHV68,βla PCR amplicon cannot be visualized on this gel. Molecular size markers are shown beside each gel.
β-lactamase-cleaved substrate (which emits fluorescence at 447 nm) (30). This analysis revealed that the WT and TMER-TKO viruses both infected CD19⁺ B cells (Fig. 5B). When we analyzed the properties of virus-infected cells, WT and TMER-TKO virus-infected B cells both showed increased cell size (forward scatter [FSC]), increased granularity (side scatter [SSC]), and downregulation of surface IgD expression (Fig. 2C) relative to B cells in mock-infected mice. These data suggest that both the WT and TMER-TKO viruses have the capacity to infect activated B cells undergoing the process of isotype class switching, consistent with previous studies of γHV68 latency (33, 34). While the frequencies of infection with the WT and TMER-TKO viruses, defined by β-lactamase-expressing (βla⁺) cells, were similar, there was a slight increase in the frequency of TMER-TKO virus-infected cells at 14 days p.i. (Fig. 5D and E), an observation also noted at 21 days p.i. (data not shown).

The γHV68 TMERs are required for optimal virulence in acute viral pneumonia in immunocompromised mice. WT γHV68 causes acute lethal pneumonia in BALB/IFN-γ−/− mice (35). Whereas mice infected with WT γHV68 had an ~60 to 80% mortality rate by 14 days p.i., mice inoculated with γHV68Δ9473 (31) (a virus with a 9,473-bp deletion that removes all eight TMERs, M1, M2, and Rta/ORF50 transcripts with total RNA isolated from WT or Tko virus-infected or mock-infected 3T12 cells (MOI of 5) at 24 h.p.i. Amplification occurred only in the presence of reverse transcriptase (+RT), demonstrating that all amplifications reflect detection of RNA and not genomic DNA. (D) Quantitative RT-PCR analysis of the γHV68 M1, M2, and M3 transcripts from total RNA isolated from WT and Tko virus-infected 3T12 cell samples at 24 h.p.i. All quantification are standardized relative to 18S rRNA levels.

FIG 3 Validation of the γHV68 TMER-TKO RNA analysis of WT and TMER-TKO virus-infected samples demonstrates that the TMER-TKO virus completely and specifically ablates transcription of the TMERs with no effect on neighboring genes. (A) RLM-RT-PCR analysis of mature miRNAs from total RNA isolated from WT or TMER-TKO (TKO) virus- or mock-infected 3T12 cells (MOI of 5) at 24 or 48 h.p.i. miRNAs are identified to the left of the gels, and the associated TMERs are identified on the right. TMER-TKO virus-infected samples uniformly failed to express viral miRNAs. mmu-miR-21 is a host miRNA to control for miRNA detection in all the samples. (B) Northern blot analysis for TMER1, TMER5, and TMER7 from total RNA isolated from WT or Tko virus-infected or mock-infected 3T12 cells (MOI of 5) at 24 h.p.i. Ethidium bromide-stained 5S rRNA (shown below the blots) served as a loading control. TMER1 and TMERS have an alternative termination site after the first hairpin that results in two different sizes of pri-miRNA products, where TMER7 does not and results in only one band for the pri-miRNA products. (C) RT-PCR analysis for the γHV68 M1, M2, and M3 transcripts with total RNA isolated from WT or Tko virus-infected or mock-infected 3T12 cells (MOI of 5) at 24 h.p.i. A no-template control (NTC) was included. Amplification occurred only in the presence of reverse transcriptase (+RT), demonstrating that all amplifications reflect detection of RNA and not genomic DNA. (D) Quantitative RT-PCR analysis of the γHV68 M1, M2, and M3 transcripts from total RNA isolated from WT and Tko virus-infected 3T12 cell samples at 24 h.p.i. All quantification are standardized relative to 18S rRNA levels...

January/February 2015 Volume 6 Issue 1 e01670-14
(Fig. 6C to F), mice infected with the TMER-TKO virus were characterized by an attenuated course of disease, as manifested by delayed death and a reduced mortality rate (Fig. 6A). While both WT and TMER-TKO virus-infected lungs had pronounced cellular infiltration and pulmonary inflammation, TMER-TKO virus-infected lungs tended to have a slightly higher prevalence of exudative infiltrates (Fig. 6D to G). Similar deficits of TMER-TKO viruses were observed in both the WT and WT/H9253HV68 backgrounds (Fig. 6A). In total, these data demonstrate that the γHV68 TMERs are required for optimal pathogenesis in immunocompromised hosts.

FIG 4 The γHV68 TMERs are dispensable for *in vitro* replication in fibroblasts. Analysis of single (A and B) and multiple (C and D) rounds of viral replication in 3T12 fibroblasts, comparing infection with the WT γHV68 and γHV68 TMER-TKO viruses (A and C) and infection with the WT γHV68.ßla and γHV68.ßla TMER-TKO viruses that contain the ORF73-ßla reporter gene (B and D). (A and B) Single-step replication analysis with WT (black filled symbols) or TMER-TKO (open red symbols) with cells infected at an MOI of 5. Cells and supernatants were collectively harvested at the postinfection times indicated. (C and D) Multistep replication analysis was done comparably to single-step analysis, with cells infected at an MOI of 0.05. Viral titers were assessed by plaque assay, and the data depict the mean ± the standard error of the mean of three independent experiments, with one to three replicates per experiment. All plots include error bars; in cases where error bars are not shown, the standard error of the mean is very low. Statistically significant differences were calculated by unpaired t test comparing WT and TKO values at each individual time, and statistically significant differences are indicated (*, *P* < 0.05).

Determination of the minimal genetic requirement sufficient to reverse the TMER-TKO deficit. The γHV68 TMER-TKO virus lacks transcription from all 8 TMER genes, ablating the production of 8 TMER-derived vRNA-As and 15 TMER-derived miRNAs. While the hybrid nature of the TMERs suggests that both vRNAs and miRNAs may contribute to γHV68 infection, one notable difference between the vRNAs and the miRNAs is their conservation. While the vRNAs are remarkably similar to one another in sequence and structure, the final processed miRNAs have distinct sequences and therefore likely possess specific and unique biological functions.
To better understand which elements of the TMERs are required for optimal pathogenesis in vivo, we generated viral recombinants that contained either a single, intact TMER (\(\gammaHV68\) TMER1 only) or expressed only the vtRNA module of TMER1 (\(\gammaHV68\) vtRNA1 only, lacking the associated miRNA stem-loops). The \(\gammaHV68\) vtRNA1 only was generated by insertion of a strong transcriptional terminator between the vtRNA and downstream miRNA elements (as described in Materials and Methods). Each of these recombinants has promoter deletions in the remaining TMERs, such that these viruses express only a single TMER (TMER1) or a single vtRNA (vtRNA1) (Fig. 7A).

Following generation and sequence confirmation of correct genomic targeting of these recombinants, we next sought to define the consequences of these mutations for TMER gene expression.

FIG 5 The \(\gammaHV68\) TMERs are dispensable for the establishment of latent infection of B cells in B6 mice. B6 mice were infected with either WT or TMER-TKO virus as indicated and harvested at day 14 p.i. (A) Spleen weights of mice infected with the viruses indicated. Shown is the mean value ± the standard error of the mean of five mice per group. (B) Representative flow cytometric analysis of cells from the spleens of B6 mice at day 14 p.i. comparing mock-infected samples and samples infected with the WT \(\gammaHV68\)BLa or \(\gammaHV68\)BLa TMER-TKO virus. Data depict the frequency of CD19+ B cells that are single cells (left column) and the frequency of CD19+ B cells that are virus infected (BLa-expressing cells), with BLa+ cells identified in the top right quadrant and identified as red dots within the identified polygon (right column). (C) Analysis of cell size (FSC), granularity (SSC), and IgD expression comparing B cells from mock-infected spleen cells (gray) to WT \(\gammaHV68\)BLa (black) or \(\gammaHV68\)BLa TMER-TKO (red) virus-infected CD19+ cells. (D and E) Quantitation of the frequency of virus-infected BLa+ cells among CD19+ B cells (D) and the total number of virus-infected BLa+ cells from WT \(\gammaHV68\)BLa (black) or \(\gammaHV68\)BLa TMER-TKO (red) virus-infected splenocytes (E). Each symbol indicates an individual mouse value, where horizontal black lines indicate the mean value ± the standard error of the mean. The data in panels B to E are from two independent experiments with two mice per group per experiment.
To do this, we analyzed the expression of TMER-derived elements by northern blot analysis and found that the vtRNA1-only and TMER1-only viruses differ from the WT virus in that they lack TMERs 2 to 8 and express an increased level of TMER1 (Fig. 7B). As predicted, the vtRNA1-only virus transcribes the TMER1 gene only up to the intended insertion of two runs of T(6). This efficient termination signal limits TMER1 expression to the vtRNA module and the first alternative termination signal and prevents expression of the TMER1 stem-loops. The selection of this termination site is significant in that it is coincident with the first natural termination site in TMER1, ensuring that normal termination and RNase Z processing to produce the vtRNA-like element are intact.

Following validation of the TMER1-only and vtRNA1-only viruses, we tested the ability of these viral recombinants to induce disease in the pneumonia model. In contrast to the TMER-TKO deficit, we found that infection with either the γHV68 TMER1-only or the γHV68 vtRNA1-only recombinant virus resulted in an intermediate phenotype, with reduced virulence relative to that of WT γHV68 but increased virulence relative to that of the TMER-TKO viruses (Fig. 7B). These data indicate that virulence in this disease model does not require all of the TMERs. Given that the vtRNA1-only recombinant is phenotypically identical to the TMER1-only virus, these data further indicate that the expression of a single vtRNA, in the absence of all other TMER-derived vtRNAs and miRNAs, is sufficient to facilitate virulence in vivo.

We previously showed that the viral cyclin and M11 genes of γHV68 are required for optimal virulence in BALB.IFN−/− mice, a phenotype associated with reduced virus replication in infected lungs (35). To determine whether the TMER-TKO virus had a similar replication defect in vivo, we measured viral replication in the lungs at days 5 and 8 p.i. Notably, however, this analysis revealed that the TMER-TKO, TMER1-only, and vtRNA1-only viruses had titers comparable to those of the WT virus in infected lungs. This finding suggests that the observed phenotype is not due to a replicative defect but rather reflects the ability of the TMER1-only and vtRNA1-only viruses to induce disease despite defects in the TMERs.

Diebel et al. 2015. The γHV68 TMERs are required for virulence in a model of acute lethal pneumonia in BALB.IFN−/− mice. (A) Survival of BALB.IFN−/− mice following infection with a series of viral recombinants. The survival of mock-infected mice (gray diamonds) is compared with that of mice infected with WT (closed black symbols) or TMER-TKO (open red symbols) γHV68 with or without the βla reporter. γHV68Δ9473 (gray circles) is a γHV68 variant that lacks the entire TMER locus and the M1, M2, M3, and M4 genes (31). The number of mice in each group is indicated in the box. Hematoxylin-and-eosin-stained lung tissue from mock-infected (B and E) and WT γHV68,βla (C and F) and γHV68,βla TMER-TKO (D and G) virus-infected mice at either low (×40, B to D) or high (×200, E to G [circled areas in panels B to D]) magnification. Lungs were harvested at 8 days p.i. from virus-infected mice and 14 days p.i. from mock-infected mice. In this model, 8 to 11 days p.i. is the peak of disease signs, where there is notable infiltration and severe pneumonia. Statistical analysis of survival curves was done by log-rank (Mantel-Cox) test performing pairwise comparisons of virus mutants relative to the appropriate WT control (WT γHV68 or WT γHV68,βla). Statistically significant differences from the WT are indicated.
The γHV68 TMER1-only and vtRNA1-only mutant viruses partially reverse the deficit of the γHV68 TMER-TKO recombinant. (A) Schematic showing the genomic organization of the γHV68 TMER locus in the γHV68,βla TMER1-only and vtRNA1-only viruses. (B) Diagram of TMER-derived RNAs (left) and northern blot analysis of TMER1-derived products from WT, TMER-TKO (TKO), TMER1-only, or vtRNA1-only virus-infected or mock-infected 3T12 cells at 24 h.p.i. (MOI of 5). Ethidium bromide-stained 5S rRNA (bottom) served as a loading control. Molecular size markers are indicated at the left; a nonspecific band is indicated by an asterisk. (C) Survival of BALB.IFN-γ−/− mice infected with γHV68,βla TMER1-only (brown squares) and vtRNA1-only (blue triangles) recombinants, relative to that of mock-infected and WT γHV68 and TMER-TKO virus-infected mice, indicated in gray (these data sets are the same data shown in Fig. 6A). ns, not significant. (D) Analysis of viral titers in the lungs of infected BALB.IFN-γ−/− mice at either day 5 (left) or day 8 (right) p.i. comparing WT and TMER mutant viruses, where each individual symbol represents a value from an individual mouse. The horizontal black lines indicate the mean titer of each group ± the standard error of the mean. The horizontal dashed line at 2 PFU/ml indicates the limit of detection of the plaque assay. The number of mice per group is indicated. Statistical analysis of survival curves was done by log-rank (Mantel-Cox) test performing pairwise comparisons of mutant viruses and WT γHV68,βla. Statistically significant differences from the WT are indicated. There were no statistically significant differences in virus titer as assessed by one-way ANOVA and Dunnnett’s multiple-comparison test, with all comparisons done relative to WT γHV68,βla.
lungs at days 5 and 8 p.i. (Fig. 7C). These data indicate that the attenuation of the ability of the TMER-TKO mutant to induce viral pneumonia does not result from impaired viral replication in vivo.

The γHV68 TMERs negatively regulate the frequency of virus-infected cells in immunodeficient mice. Despite the profound impairment of the ability of the TMER-TKO virus to induce lethal pneumonia in BALB.IFN−γ−/− mice, acute viral replication titers are comparable to those of the WT virus. To further characterize the status of infection in TMER-TKO virus-infected mice, we quantified the frequency of virus-infected cells by flow cytometric analysis of βla+ cells in the lungs and spleens of infected BALB.IFN−γ−/− mice at day 8 p.i., comparing WT, TMER-TKO, and vtRNA1-only virus-infected mice. Whereas WT γHV68,βla virus-infected mice had a mean βla+ cell frequency of 1.3% in their lungs, strikingly, TMER-TKO virus-infected mice showed a profound increase in the frequency of infected cells (mean of 7.1%). This phenotype was observed in both the frequency and the number of βla+ cells (Fig. 8A to C). Notably, TMER-TKO virus-infected lung samples did not show an overall

FIG 8 The γHV68 TMERs limit the frequency of virus-infected cells in BALB.IFN−γ−/− mice. (A) Representative flow cytometric analysis of virus-infected cells from the lungs of infected BALB.IFN−γ−/− mice at day 8 p.i., as measured by the detection of βla-expressing cells, with βla+ cells identified in the top right quadrant as red dots within the identified polygon. Plots were gated by using a large gate based on cell size and granularity, followed by doublet exclusion. Quantitation of the frequency (B) and number (C) of βla+ cells in the lungs of mice at 8 days p.i. with WT γHV68,βla, γHV68,βla TMER-TKO, and γHV68,βla vtRNA1-only viruses, with each symbol indicating an individual mouse value and horizontal black lines indicating the mean value ± the standard error of the mean. (D) Total cellularity in lung tissue samples in panels B and C. Quantitation of the frequency (E) and number (F) of βla+ cells in the spleens of mice at 8 days p.i. with WT γHV68,βla, γHV68,βla TMER-TKO, and γHV68,βla vtRNA1-only viruses. (G) Total cellularity in spleen tissue from samples in panels E and F. Data are from two or three independent experiments, with 7 to 10 mice per group. Statistical significance was assessed by one-way ANOVA and Dunnnett’s multiple-comparison test with adjusted P values as indicated; all comparisons were done relative to WT γHV68,βla.
increase in the total number of cells recovered compared to WT virus-infected lung samples (Fig. 8D). Although the overall magnitude of infection was much lower in the spleen, TMER-TKO virus-infected mice also showed a parallel increase in the frequency and number of $\beta\alpha^+$ cells in the spleen at this time (Fig. 8E and F), with only a modest increase in the total splenic cellularity of TMER-TKO virus-infected mice (Fig. 8G).

Whereas TMER-TKO virus-infected samples had a profound increase in the frequency of infected cells, infection with the vtRNA1-only yHV68 virus revealed an intermediate phenotype, in which there was partial restoration of WT values in both the lungs and the spleen (Fig. 8), with a mean frequency of 4.1% $\beta\alpha^+$ cells in the lungs. In sum, these data indicate that the TMERs limit the extent of viral infection in BALB.IFN-$\gamma^{-/-}$ hosts and that the expression of a single vtRNA in the absence of other TMER-associated elements is able to partially reverse this phenotype.

DISCUSSION

ncRNAs regulate a variety of gene expression pathways and cellular processes (36). Despite this, the genetic contribution of many virus-encoded ncRNAs to primary infection has remained unclear. Since the discovery of vtRNA-like elements in the yHV68 genome (22) and the subsequent identification of hybrid vtRNA-miRNA ncRNAs (6, 23), there has been significant interest in the function of these ncRNAs but little genetic insight (31, 32, 37). Here, we report the generation of viral recombinants completely lacking all eight yHV68 TMERs, a series of mutations that genetically ablates the expression of eight vtRNA-like elements and all of the associated viral miRNAs.

On the basis of our studies of acute replication in *vitro* and *in vivo*, the yHV68 TMERs are dispensable for lytic replication in *vitro* and the establishment of latency in B cells in normal, immunocompetent mice. Conversely, the yHV68 TMERs have a pronounced role in regulating infection and pathogenesis in immunodeficient hosts, as demonstrated by the reduced virulence of the TMER-TKO virus following the infection of BALB.IFN-$\gamma^{-/-}$ hosts. At this time, the precise mechanism(s) by which the TMERs promote pathogenesis in the context of viral pneumonia remains unknown. Notably, the impaired pathogenesis of the TMER-TKO virus is not due to reduced viral replication, since the TMER-TKO has WT levels of viral replication in the lung. This was surprising, given that previous studies demonstrated that attenuated virulence in this model corresponded to a reduced viral titer (35).

One striking effect of infection with the TMER-TKO virus is a pronounced increase in the frequency of virus-infected cells during acute infection. This enhanced frequency of infection is particularly notable because it far exceeds the frequency of infected cells at the peak of viral latency found at early times postinfection. These data indicate an unexpected role for the TMERs in limiting the extent of viral infection at early times postinfection. Despite this, the genetic contribution of many virus-encoded ncRNAs (including the EBV EBERs, the KSHV PAN RNA, the HVS HSURs, and the adeno virus V\(\beta\)s) can have important functional roles in shaping the course of viral infection in the absence of associated miRNAs (3–5, 39). In particular, we are struck by the parallels between the yHV68 TMERs and the EBV EBERs; both are abundantly expressed, Pol III-dependent small ncRNAs. Previous studies of the EBERs have demonstrated that these RNAs are multifunctional during infection (40), capable of altering innate sensor pathways, including PKR and RIG-I (41, 42), functioning extracellularly (43), and contributing to lymphocyte survival and transformation (40). Though our studies of yHV68 have focused on parameters different from those studied in the human yHV68 (14–20), our data clearly demonstrate the functional complexity and importance of the TMERs have comparable roles in pathogenesis and infection in other states of immunodeficiency.

One of the challenges in understanding the genetic role of the yHV68 TMERs has been the plethora of TMERs and TMER-derived ncRNAs. To investigate the possibility of redundancy between TMERs, we generated recombinant viruses that contained only a single TMER (TMER1) or a single vtRNA in the absence of its associated miRNAs (vtRNA1). Strikingly, both the TMER1-only and vtRNA1-only recombinants had a partial restoration of virulence in the induction of lethal pneumonia. Furthermore, analysis of the vtRNA1-only recombinant revealed that the expression of only a single vtRNA, in the absence of the remaining 7 vtRNAs and 15 miRNAs, was capable of partially reversing the enhanced infectivity in BALB.IFN-$\gamma^{-/-}$ hosts. On the basis of these studies, during primary yHV68 infection, the vtRNA element in the absence of associated miRNAs appears to be a primary functional unit that regulates the extent of infection and pathogenesis. While our lead hypothesis is that the vtRNA is a functional unit, it is possible that the Pol III promoter (internal to vtRNA1) exerts a *cis* regulatory effect on viral gene expression. The phenotype of the vtRNA1 recombinant and the relative contributions of individual miRNA elements in long-term models of infection and pathogenesis remain to be determined.

Our present study has focused on understanding the genetic contribution of the TMER genes, including both vtRNA and miRNA elements, to the early stages of yHV68 infection. Recently, our collaborators characterized the phenotype of miRNA-deficient yHV68, generated by deletion of the miRNA stem-loops, leaving only the vtRNA elements intact, followed by an altered, truncated 3' tail (38). Consistent with our results, they found that this mutant virus (i) had nearly WT levels of lytic replication, (ii) can establish latency *in vivo*, and (iii) is impaired in the ability to induce acute lethal pneumonia in immunodeficient mice. They further found that the cellular distribution of the miRNA-deficient yHV68 virus during latency was perturbed in a dose-dependent manner, with the miRNA-deficient mutant relatively underrepresented in memory B cells. Further studies are required to investigate whether the mutant viruses we have characterized here will reveal similar changes in the latent reservoir; conversely, it remains to be seen if miRNA-deficient yHV68 has an increased frequency of infected cells, as we have seen for our TMER-TKO virus. Ultimately, it will be important to compare the relative stability and functionality of the vtRNAs among these distinct TMER recombinant viruses.

Though recent research has focused on the role of viral miRNAs as regulators of viral infection (12, 13), it is noteworthy that there is a clear precedent that viral ncRNAs (including the EBV EBERs, the KSHV PAN RNA, the HVS HSURs, and the adeno virus V\(\beta\)s) can have important functional roles in shaping the course of viral infection in the absence of associated miRNAs (3–5, 39). In particular, we are struck by the parallels between the yHV68 TMERs and the EBV EBERs; both are abundantly expressed, Pol III-dependent small ncRNAs. Previous studies of the EBERs have demonstrated that these RNAs are multifunctional during infection (40), capable of altering innate sensor pathways, including PKR and RIG-I (41, 42), functioning extracellularly (43), and contributing to lymphocyte survival and transformation (40). Though our studies of yHV68 have focused on parameters different from those studied in the human yHV68 (14–20), our data clearly demonstrate the functional complexity and importance of
that during primary infection in vivo, associated vtRNAs have a functional role in unique biological functions. Our data indicate that the TMERs have distinct sequences and therefore likely possess specific and the vtRNAs are not simply scaffolds on which miRNAs are hung both miRNAs and regulatory ncRNAs, each with their own propose that the TMERs may be bifunctional RNAs containing with 5% fetal bovine serum (FBS; Atlanta Biologicals), 2 mM L-glutamine, co’s modified Eagle medium (DMEM; Life Technologies) supplemented with 5% fetal bovine serum (FBS; Atlanta Biologicals), 2 mM L-glutamine, and (iii) a hold at 68°C for 3 min. PCR amplimers were cloned into the pCR4-TOPO vector (Invitrogen) with constructs confirmed by sequencing. In step 2, to generate the pLE-TKO.Kan’/I-SceI plasmid, the BlgII-Kan’ fragment of the pTOPO-TA.BlgII-Kan’ plasmid was cloned into the BlgII restriction site of pLE-TKO by standard techniques and confirmed by sequencing.

Generation of electrocompetent and recombination-electrocompetent pGS1783 cells. An overnight culture of *Escherichia coli* strain pGS1783 cells (27, 28) was subcultured in LB medium without drug selection and incubated in a platform shaker at 32°C until the culture reached an optical density at 600 nm (OD600) of 0.5 to 0.7. The culture was chilled in an ice bath for 20 min with gentle rocking. Cultures were spun at 4,500 × g at 4°C for 5 min, after which the cell pellet was resuspended in ice-cold 10% glycerol and washed in cold glycerol. After these two sequential washes, cells were resuspended in ice-cold 10% glycerol, aliquoted into prechilled tubes, and flash frozen in a dry ice-ethanol bath. Cells were stored at –80°C. Recombination-electrocompetent pGS1783 cells were prepared by using the identical methods, with the following modifications. (i) pGS1783 cells were transformed with *γHV68* BAC DNA and grown in LB medium containing 34 μg/ml of chloramphenicol (CAM). (ii) Following the growth of bacteria to an OD600 of 0.5 to 0.7, the culture was incubated for 15 min at 42°C in a shaking water bath prior to being chilled in an ice bath for 20 min with gentle rocking.

Generation of γHV68 recombinant TMER-TKO viruses. All mutant virus constructs were generated by BAC-mediated recombination by using a modified homologous recombination method based on the use of *E. coli* strain pGS1783 (27, 28). Mutations were introduced into *E. coli* pGS1783 transformed with either WT *γHV68* BAC DNA (29) or WT *γHV68* BAC DNA (30). Restriction digest analysis of the BAC DNA isolated from transformed pGS1783 cells confirmed that fully intact, unaltered *γHV68* BAC DNA was present in these cells prior to recombination. Step 1 was the generation of BAC DNA containing a Kan’ insertion in the TMER locus. Initial disruption of the TMER locus was achieved by the insertion of a Kan’ cassette into the TMER locus. The pLE-TKO.Kan’/I-SceI plasmid was used as a template for PCR to amplify a 6.1-kb fragment that includes promoter deletions of all eight of the TMER genes, a Kan’ selectable marker, an I-SceI cut site, and a sequence duplication around the BlgII site. This PCR product was electroporated into recombination-electrocompetent pGS1783 cells containing either WT *γHV68* or WT *γHV68* BAC DNA. The pLE-TKO.Kan’/I-SceI-derived amplicon was generated with the Pol III mir-M1-1 forward and HV68 pol III-8 Universal reverse primers and the Advantage-HF2 polymerase kit (Clontech). The amplicon was purified with the standard Advantage-HF2 PCR protocol, 1.5 ng of template DNA (pLE-TKO.Kan’/I-SceI) was used to generate the amplicon. The PCR cycling conditions used were (i) a hold at 94°C for 1 min, followed by (ii) 30 cycles of 94°C for 30s, 51°C for 30s, and 68°C for 7 min and (iii) a hold at 68°C for 7 min. PCR products were treated with 20 U DpnI (New England Biolabs) for 1 h at 37°C, after which PCR products were resolved on a 0.8% Tris-acetate-EDTA (TAE)–agarose gel, followed by gel purification with the QIAquick gel extraction kit (Qiagen). Gel-
purified PCR products were electrooporated with an ECM399 electroporator (BTX) at the HV1500 setting in a chilled 1-mm-gap cuvette into pGS1783 recombination-competent, electrocompetent cells containing either WT γHV68 or WT γHV68, bla BAC DNA. Electrooporated cells were grown on LB plates with CAM and KAN at 32°C for 48 h. Kan^R bacteria were screened to identify the γHV68, Kan’/I-SceI TMER-TKO and γHV68, bla,Kan’/I-SceI TMER-TKO recombinant intermediates (Fig. 2A).

Step 2 was the generation of BAC DNA that contains the TMER-TKO mutation in the absence of the Kan’-encoding gene. The Kan’ selectable marker was removed from the above-described recombination intermediates. Induction of the I-SceI restriction enzyme in conjunction with the recombination enzymes in pGS1783 cells removed the Kan’ selectable marker from the recombiant intermediates through homologous recombination of the duplication sequences found surrounding the BglII cut site. To do this, pGS1783 cells containing either γHV68, Kan’/I-SceI TMER-TKO or γHV68, bla,Kan’/I-SceI TMER-TKO BAC DNA were grown in LB-CAM broth overnight at 32°C and then 1 ml volumes of these cultures were subcultured in fresh LB-CAM. After an ~90-min incubation at 32°C, freshly made prewarmed 2% t-arabinose containing LB-CAM broth was added at a 1:1 ratio to the culture and it was incubated for 1 h at 32°C. Cultures were transferred to a 42°C shaking water bath for 32°C for ~48 h. Bacteria in which BAC DNA was retained but the Kan’-encoding gene was deleted by I-SceI induction were identified by replica plating on LB-CAM and LB-KAN plates. Colonies that were CAM insensitive and KAN sensitive were screened via PCR to confirm the loss of the Kan’ selectable marker gene. PCR was conducted with the Taq DNA polymerase kit (Qiagen) with the HV68 Left End Seq. #4 Forward, KanR Screen Reverse, and trna6 Reverse primer cocktail. The PCRs were set up in accordance with the Taq DNA polymerase manufacturer’s protocol. The PCR cycling conditions used were (i) a hold at 95°C for 2 min, followed by (ii) 40 cycles of 94°C for 30 s, 51°C for 30 s, and 72°C for 1 min and (iii) a hold at 72°C for 10 min. Correct genomic structure was verified by restriction digest analysis and direct sequencing of BAC DNA.

The γHV68, bla TMER1-only BAC DNA construct was generated by an incomplete recombination event during the construction of the γHV68,bla TMER-TKO BAC DNA. In this recombinant, the TMER1-encoding gene remained intact while promoter deletions recombined into TMER2 through TMER8. Genomic structure was confirmed through restriction digests of BAC DNA; restriction digestion of a PCR product from the left end of the γHV68 genome and direct sequencing of the left end of the γHV68 genome.

The γHV68, bla vRNA1-only BAC DNA was made from the γHV68 TMER1-only BAC DNA by inserting a termination signal (TTTTT) before the first stem-loop in TMER1 (nucleotides [nt] 203 to 232). This mutation converted an alternative RNA Pol III transcriptional stop element into two canonical RNA Pol III transcriptional termination sequences in tandem separated by 2 nt, an approach we previously used to prevent TMER-derived miRNA production (24). Confirmation of the correct construction of this BAC DNA was achieved through direct sequencing of the left end of the γHV68 genome.

Following confirmation of the indicated mutations in BAC DNA, we generated infectious virus from these BACs by transfection into 293 cells, generated infectious virus from these BACs by transfection into 293 cells, and then subjected to extraction with a phenol-chloroform-isoamyl alcohol (25:16,000 g) at 24 or 48 h p.i., and RNA was obtained with the mirVana miRNA isolation kit (Ambion). RLM-RT-PCR was done with 10 μg of RNA combined with 50 ng of either the 5’ P or 3’ OH—RNA Linker oligonucleotide (see Table S2 in the supplemental material).

Northern blot analysis for small RNAs. Small RNAs were detected by northern blot analysis as previously described (23), with the following modifications. Ten micrograms of total RNA isolated from WT, TKO, vRNA1-only, or TMER1-only virus-infected or mock-infected 3T12 cells at 24 h was resolved on a 12% denaturing acrylamide gel with 7 M urea. Samples were boiled for 5 min at 95°C, loaded, and run at 30 mA for 1 h. Following imaging of the gel by ethidium bromide staining (23), the gel was transferred at 500 mA for 1 h onto BrightStar Plus positively charged nylon membrane (Ambion) by semidry transfer in 1× Tris-borate-EDTA transfer buffer. After transfer, the UV-cross-linked membrane was prehybridized at the hybridization temperature indicated by the probe for 1 h in formamide hybridization buffer (KPL). During prehybridization, the 5’-biotinylated miR-M1-1 RNA probe (5’-biotin-AAGAAAGUAGCAGC-CAUUUCU-3’; genome location, positions 236 to 257), 5’-biotinylated miR-M1-7-3p RNA probe (5’-biotin-AUAAAGGUGGGCGC-GAUAUC-3’; genome location, positions 1699 to 1719), 5’-biotinylated miR-M1-14 RNA probe (5’-biotin-AAGAAGUUGGAGCAGCAUGCU-3’; genome location, positions 5141 to 5161), 5’-biotinylated HV68 TMER1 hard stop probe (5’-biotin-AAGAAUGUGCGACCCUGCAUGCU-3’; genome location, positions 203 to 221), or HV68 TMER1 stem-loop 2 probe (5’-biotin-AAGAACCUCUCCGUUGAUAAC-3’; genome location, positions 298 to 320) was denatured for 10 min at 68°C. The genome coordinates of TMER1 are positions 127 to 322. Following prehybridization, 2.4 μg of denatured probe was added to the hybridization buffer, which was incubated overnight at the hybridization temperature indicated by the probe.

Following hybridization, the membrane was washed twice with 2× SSPE (1× SSPE is 0.18 M NaCl, 10 mM NaH₂PO₄, and 1 mM EDTA [pH 7.7])–0.1% SDS, twice with 0.1× SSPE–0.1× SDS for 15 min at 47°C, and once with 1× SSPE at room temperature for 5 min. The biotin-labeled probe was detected with the KPL Blotting kit (KPL). The AP-SA conjugate (KPL) was used at a 1:7,000 dilution. The membrane was exposed to Blue Autorad film (ISC BioExpress) for 2 h (23).

SYBR green quantitative RT-PCR analysis. One hundred nanograms of RQ1 DNase-treated total RNA was combined with primers for the amplification of M1, M2, M3, or 18S rRNA (see Table S3 in the supplemental material). RT-PCR mixtures consisted of RNA primers, and the iScript OneStep RT-PCR with SYBR green kit (Bio-Rad). RT-PCR was done on an iCyler (Bio-Rad) with the following cycles: (i) a hold at 50°C for 10 min, (ii) a hold at 95°C for 5 min, and (iii) 45 cycles of 95°C for 10 s and 56°C for 30 s. A melting curve analysis was done as follows: 95°C for 1 min, 55°C for 1 min, and 55°C for 10 s for 80 cycles with a 0.5°C decrease every cycle.

RT-PCR amplification. The PCR primers used are listed in Table S2 in the supplemental material. RT-PCR and no-RT control reactions were performed in a 25-μL volume containing a final primer concentration of 0.5 μM with either the OneStep RT-PCR kit (Qiagen) or the Taq polymerase (1,000 U) kit (Qiagen), respectively. Prior to amplification, 1 μg of total RNA was treated with 2 μL of RQ1 RNase-Free DNase (Promega). One hundred nanograms of RQ1 DNase-treated RNA was used as the template for amplification in the RT-PCR and no-RT amplification reactions. RT-PCR cycles were as follows: (i) 30 min at 50°C, followed by 15 min at 95°C, (ii) 35 amplification cycles of 30 s at 94°C, 30 s at 51 to 61°C (dependent on the T_m of each primer set), and 30 s at 72°C, and (iii)
a 5-min hold at 72°C. No-RT reactions were identical to the RT-PCR conditions, except that prior to the 35 amplification cycles there was a single incubation for 3 min at 95°C. All PCR products were resolved on a 2% TAE-agarose gels and visualized by etidium bromide staining.

Viral replication analysis. NIH 3T12 fibroblasts were infected at an MOI of 5 for single-step replication analysis or an MOI of 0.05 for multistep replication analysis as previously described (47). Samples (cells and supernatant) were harvested at 0, 6, 12, 24, and 48 h postinfection for single-step analysis and at 0, 24, 48, 72, and 144 h p.i. for multistep analysis. Samples were subjected to three freeze-thaw cycles prior to quantitation by plaque assay (35).

Mice. B6 mice (stock no. 000064) were purchased from the Jackson Laboratory (Bar Harbor, ME). BALB/c.IFN-γ−/− mice, originally obtained from the Jackson Laboratory [strain C129Flt(B6)-Ifngtm1Ts/J, stock no. 002286], were bred in house at the University of Colorado Denver Anschutz Medical Campus in accordance with university regulations. Mice were infected between 8 and 16 weeks of age. All infected mice were housed in an animal biosafety level 2 facility in accordance with all university regulations.

Virus infection of mice. Mice were inoculated intranasally at 4 × 10^5 PFU/mouse with either WT HV68 or the indicated viral recombinants in a 40-μl total volume of complete medium and harvested at the indicated time postinfection. Mice were monitored daily for signs of disease, and any mice that appeared moribund were sacrificed, and their lungs, hearts, and spleens were removed for histologic and molecular analyses (35).

Ex vivo viral titer analysis. Infected tissues were removed and collected at the indicated time postinfection and frozen at −80°C. After one freeze-thaw cycle, 1 ml of complete medium was added to each tissue with 1.0-mm silicone beads (BioSpec Products Inc. catalog no. 11079110z) and tissues were homogenized via FastPrep FP120 (Thermo Savant). Sample viral titers were determined by plaque assay on 3T12 fibroblasts (47).

Histology. Lungs were removed from euthanized mice and submerged in a 10% buffered formalin phosphate solution (Fisher Scientific). Tissues were placed in fresh formalin 24 to 72 h postfixation and then submitted to the University of Colorado Denver Cancer Center histology facility. Tissues were paraffin embedded, and tissue sections were stained with hematoxylin and eosin prior to analysis by a pathologist (C.D.C.).

Flow cytometric analysis. Infected lungs and spleens were analyzed at the postinfection time points indicated. Lungs were harvested from mice that had been previously perfused with phosphate-buffered saline; this was followed by tissue mincing and enzymatic digestion with collagenase D (from Clostridium histolyticum; Roche) for 1 h at 37°C (48). Following digestion, lungs were mechanically disrupted into single-cell suspensions over 100-μm nylon filters and resuspended for staining. Spleens were mechanically disrupted into single-cell suspensions and subjected to red blood cell lysis. To identify β-lactamase expression, 6 × 10^5 cells were incubated with the β-lactamase substrate CCF2-AM (1 mM; Invitrogen, Life Technologies) in accordance with the manufacturer’s directions. Cells were then stained with fluorescein conjugated antibodies against CD44 (eBioscience clone eBioIM7), CD19 (eBioscience clone eBio1D3), and IgG (BioLegend clone 11-26c.2a). All staining was done in the presence of Fc receptor-blocking antibody 2.4G2. Flow cytometric analyses were performed on an LSR II flow cytometer (BD Biosciences). Compensation values were calculated with the DIVA software (BD Biosciences), and compensation values were based on fluorescence values obtained with antibody-stained compensation beads.

Software and statistical analysis. Data analysis and plotting were done with Prism 6.0d (GraphPad Software, Inc., San Diego, CA). Statistical analyses were performed with Prism 6.0d and assessed by unpaired t test or one-way analysis of variance (ANOVA) and Dunnett’s multiple-comparison test, and the P values obtained are shown. In the case of survival curves, statistical analysis was done by log-rank (Mantel-Cox) test. Flow cytometric data were analyzed with FlowJo (TreeStar, Inc., Ashland, OR), and the data are displayed as dot plots showing outliers on log10 scales.

Ethics statement. This study was carried out in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal studies were conducted in accordance with the University of Colorado Denver Institutional Animal Use and Care Committee under the Animal Welfare Assurance of Compliance policy (no. a3269-01). All procedures were performed under isoflurane anesthesia, and all efforts were made to minimize suffering.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at http://mbio.asm.org/lookup/suppl/doi:10.1128/mBio.01670-14/-/DCSupplemental.

Table S1, PPT file, 0.2 MB.
Table S2, PPTX file, 0.1 MB.
Table S3, PPT file, 0.2 MB.

ACKNOWLEDGMENTS

We thank N. Osterrieder for the kind gift of pGS1783 cells and the pE PKan-S plasmid for BAC recombination, the ClinImmune flow cytometry core, the University of Colorado Cancer Center Histology core, the Center for Comparative Medicine, and members of the van Dyk laboratory for critical discussion.

This research was funded by a Burroughs Wellcome Investigators in the Pathogenesis of Infectious Disease grant and National Institutes of Health grants R01CA168558 and R56AI091994 to L.F.V. and 2T32NS7323-21A1 to K.W.D and American Heart Association National Scientist Development Award (#15SDG14510023) to E.T.C. These studies were supported by core services through NIH/NCATS Colorado CTSA Grant ULI TR001082 and University of Colorado Cancer Center P30CA046934. The contents of this report are our sole responsibility and do not necessarily represent official NIH views. We have no competing financial interests to declare.

REFERENCES

1. Speck SH, Virgin HW. 1999. Host and viral genetics of chronic infection: a mouse model of gamma-herpesvirus pathogenesis. Curr Opin Microbiol 2:403–409.
 http://dx.doi.org/10.1016/S1369-5274(99)80071-X.

2. Cesaran E. 2011. Gammaherpesvirus and lymphoproliferative disorders in immunocompromised patients. Cancer Lett 305:163–174.
 http://dx.doi.org/10.1016/j.canlet.2010.11.013.

3. Conrad NK, Fok V, Cazalla D, Borah S, Steitz JA. 2006. The challenge of viral snRNPs. Cold Spring Harb Symp Quant Biol 71:377–384.
 http://dx.doi.org/10.1101/sq1.2006.71.057.

4. Takada K. 2001. Role of Epstein-Barr virus in Burkitt’s lymphoma. Curr Top Microbiol Immunol 258:141–151.
 http://dx.doi.org/10.1007/978-3-642-56515-1_9.

5. Sun R, Lin SF, Gradoville I, Miller G. 1996. Polyadenylated nuclear RNA encoded by Kaposi sarcoma-associated herpesvirus. Proc Natl Acad Sci U S A 93:11883–11888.
 http://dx.doi.org/10.1073/pnas.93.21.11883.

6. Pfeifer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C, Grässer FA, van Dyk IF, Ho CK, Shuman S, Chien M, Russo JJ, Ju J, Randall GA, Lindenbach BD, Rice CM, Simon V, Ho DD, Zavolan M, Tuschi T. 2005. Identification of microRNAs of the herpesvirus family. Nat Methods 2:269–276.
 http://dx.doi.org/10.1038/nmeth746.

7. Samols MA, Hu J, Skalsky RL, Renne R. 2005. Cloning and identification of a microRNA cluster within the latency-association region of Kaposi’s sarcoma-associated herpesvirus. J Virol 79:9301–9305.
 http://dx.doi.org/10.1128/JVI.79.14.9301-9305.2005.

8. Cai X, Lu S, Zhang Z, Gonzalez CM, Damania B, Cullen BR. 2005. Kaposi’s sarcoma-associated herpesvirus expresses an array of viral microRNAs in latently infected cells. Proc Natl Acad Sci U S A 102:5557–5575.
 http://dx.doi.org/10.1073/pnas.0408192102.

9. Grundhoff A, Sullivan CS, Ganem D. 2006. A combined computational and microarray-based approach identifies novel microRNAs encoded by human gamma-herpesviruses. RNA 12:733–750.
 http://dx.doi.org/10.1261/rna.2326106.

10. Zhu JY, Trehule M, Frohn A, Kremmer E, Höfig KP, Meister G, Adler H. 2010. Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J Virol 84:10266–10275.
 http://dx.doi.org/10.1128/JVI.01119-10.

11. Reese TA, Xia J, Johnson LS, Zhou X, Zhang W, Virgin HW. 2010. Identification of novel microRNA-like molecules generated from herpes-
Diebel KW, Smith AL, van Dyk LF. 2013. Gamma-herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Curr Opin Virol 3:266–275. http://dx.doi.org/10.1016/j.coviro.2013.05.013.

Yajima M, Kanda T, Takada K. 2005. Critical role of Epstein-Barr virus (EBV)-encoded RNA in efficient EBV-induced B-lymphocyte growth transformation. J Virol 79:4298–4307. http://dx.doi.org/10.1128/JVI.79.10.4298-4307.2005.

Feederle R, Linnaestaed SD, Bannert H, Lips H, Bencun M, Cullen BR, Delecluse HJ. 2011. A viral microRNA cluster strongly potentiates the transforming properties of a human herpesvirus. PLoS Pathog. 7:e1001294. http://dx.doi.org/10.1371/journal.ppat.1001294.

Rossetto GC, Pari G. 2012. KSHV PAN RNA associates with demethylases UTX and JMJD3 to activate lytic replication through a physical interaction with the virus genome. PLoS Pathog. 8:e1002680. http://dx.doi.org/10.1371/journal.ppat.1002680.

Moody R, Zhu Y, Huang Y, Cui X, Jones T, Bedolla R, Lei X, Bai Z, Gao SJ. 2013. KSHV microRNAs mediate cellular transformation and tumorigenesis by redundantly targeting cell growth and survival pathways. PLoS Pathog. 9:e1003857. http://dx.doi.org/10.1371/journal.ppat.1003857.

Swaminathan S, Tomkinson B, Kieff E. 1991. Reombinant Epstein-Barr virus (EBV) small RNA (EBER) genes deleted transform lymphocytes and replicate in vitro. Proce Natl Acad Sci U S A 88:1546–1550. http://dx.doi.org/10.1073/pnas.88.4.1546.

Ensasser A, Pfander A, Muller-Fleckenstein I, Fleckenstein B. 1999. The URNA genes of herpesvirus saimiri (strain C488) are dispensable for transformation of human T cells in vitro. J Virol 73:1055–10555.

Wahl A, Linnaestaed SD, Esoda C, Krisko JF, Martinez-Torres F, Delecluse HJ, Cullen BR, Garcia JV. 2013. A cluster of virus-encoded microRNAs accelerates acute systemic Epstein-Barr virus infection but does not significantly enhance virus-induced oncogenesis in vivo. J Virol 87:5437–5446. http://dx.doi.org/10.1128/JVI.00281-13.

Barton E, Mandal P, Speck SH. 2011. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 29:351–397. http://dx.doi.org/10.1146/annurev-immunol-072710-081639.

Bowden RJ, Simas JP, Davis AJ, Estathiou S. 1994. Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol 75:149–153.

Feldman ER, Kar M, Coleman CB, Grau KR, Oko LM, Krueger BJ, Renne R, van Dyk LF, Tibbetts SA. 2014. Virus-encoded microRNAs facilitate gammaherpesvirus latency and pathogenesis in vivo. mBio 5:e00981-00914. http://dx.doi.org/10.1128/mBio.00981-14.

Dzananovic E, Patel TR, Deo S, McElenery K, Stetfeld J, McKenna SA. 2013. Recognition of viral RNA stem-loops by the tandem double-stranded RNA binding domains of PKR. RNA 19:333–344. http://dx.doi.org/10.1261/rna.039511.112.

Iwakiri D, Takada K. 2010. Role of ERBs in the pathogenesis of EBV infection. Adv Cancer Res 107:119–136. http://dx.doi.org/10.1016/S0065-230X(10)07004-1.

Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. 2002. Epstein-Barr virus RNA confers resistance to interferon-alpha-induced apoptosis in Burkitt's lymphoma. EMBO J 21:954–965. http://dx.doi.org/10.1093/emboj/cdf284.

Samanta M, Iwakiri D, Kanda T, Imai T, Takada K. 2006. EBV-encoded RNA is recognized by RIG-I and activates signaling to induce type I IFN. EMBO J 25:4207–4214. http://dx.doi.org/10.1038/sj.emboj.7601314.

Iwakiri D, Zhou L, Nanbo A, Inoue K, Adachi-Takasawa K, Takada K. 2000. Epstein-Barr virus gene products induce type I IFN. J Virol 74:7684–7694. http://dx.doi.org/10.1128/JVI.74.16.7684-7694.2000.

Clambey ET, Virgin HW, Speck SH. 2002. Characterization of a spontaneous 9.5-kilobase-deletion mutant of murine gammaherpesvirus 68 reveals tissue-specific genetic requirements for latency. J Virol 76:6532–6544. http://dx.doi.org/10.1128/JVI.76.17.6532-6544.2002.

Macrae AJ, Dutia BM, Milligan S, Brownstein DG, Allen DJ, Mistriko J, Davison AJ, Nash AA, Stewart JP. 2001. Analysis of a novel strain of murine gammaherpesvirus reveals a genomic locus important for acute pathogenesis. J Virol 75:5315–5327. http://dx.doi.org/10.1128/JVI.75.11.5315-5327.2001.

Flano E, Kim JJ, Woodland DL, Blackman MA. 2002. Gamma-herpesvirus latency is preferentially maintained in splenic germinal center and memory B cells. J Exp Med 196:1363–1372. http://dx.doi.org/10.1084/jem.20020890.

Willer DO, Speck SH. 2003. Long-term latent murine gammaherpesvirus 68 infection is preferentially found within the surface immunoglobulin D-negative subset of splenic B cells in vivo. J Virol 77:8310–8321. http://dx.doi.org/10.1128/JVI.77.15.8310-8321.2003.

Lee KS, Cool CD, van Dyk LF. 2009. Murine gammaherpesvirus 68 infection of gamma interferon-deficient mice on a BALB/c background results in acute lethal pneumonia that is dependent on specific viral genes. J Virol 83:7684–7694. http://dx.doi.org/10.1128/JVI.00989-09.

Cech TR, Steitz JA. 2014. The noncoding RNA revolution—trashing old rules to forge new ones. Cell 157:77–94. http://dx.doi.org/10.1016/j.cell.2014.03.008.

Simas JP, Bowden RJ, Paige V, Estathiou S. 1998. Four tRNA-like sequences and a serpin homologue encoded by murine gammaherpesvirus 68 are dispensable for lytic replication in vitro and latency in vivo. J Gen Virol 79:1351–1364. http://dx.doi.org/10.1099/009926.2000.

Suarez AL, van Dyk LF. 1994. mEBERs mediate separate phases of infection by integrally deleted EBV-infected cells and activates signaling from Toll-like receptor 3. J Exp Med 180:2091–2099. http://dx.doi.org/10.1084/jem.199417.

Virgin HW, Lataille P, Wamsley P, Hallsworth K, Weck KE, Dal Canto AJ, Speck SH. 1997. Complete sequence and genomic analysis of murine gammaherpesvirus 68. J Virol 71:5894–5904.

Suarez AL, van Dyk LF. 2008. Endothelial cells support persistent gammaherpesvirus 68 infection. PLoS Pathog. 4:e1000152. http://dx.doi.org/10.1371/journal.ppat.1000152.

Lee KS, Suarez AL, Claypool DJ, Armstrong TK, Buckingham EM, van Dyk LF. 2012. Viral cyclins mediate separate phases of infection by integrating functions of distinct mammalian cyclins. PLoS Pathog. 8:e1002496. http://dx.doi.org/10.1371/journal.ppat.1002496.

van Dyk LF, Virgin HW, Speck SH. 2000. The murine gammaherpesvirus 68 v-cyclin is a critical regulator of reactivation from latency. J Virol 74:7451–7461. http://dx.doi.org/10.1128/JVI.74.17.7451-7461.2000.

Ehrentraut H, Westrich JA, Eltzschig HK, Clambey ET. 2012. Adora2b adenosine receptor engagement enhances regulatory T cell abundance during endotoxin-induced pulmonary inflammation. PLoS One 7:e32416. http://dx.doi.org/10.1371/journal.pone.0032416.

Kozomara A, Griffiths-Jones S. 2011. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. http://dx.doi.org/10.1093/nar/gkq1027.