A derivative-free conjugate gradient projection method based on the memoryless BFGS update

M. Koorapetse and P. Kaelo

Abstract
Conjugate gradient-based projection methods are widely used for solving large-scale nonlinear monotone equations. This is due to their simplicity and that they are derivative-free. In this paper, we propose another conjugate gradient-based projection method for large-scale nonlinear monotone equations. We show that the method satisfies the descent condition independent of line searches and that the method is globally convergent. Numerical results show that the method is both efficient and effective.

Keywords
Global convergence, Nonlinear monotone equations, Derivative-free.

AMS Subject Classification
90C06, 90C56, 65K05, 65K10.

1. Introduction
Consider the constrained nonlinear monotone equations
\[F(x) = 0, \quad x \in \Omega, \]
(1.1)
where \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is continuous and satisfies the monotonicity condition
\[(F(x) - F(y))^T (x - y) \geq 0, \quad \forall x, y \in \mathbb{R}^n, \]
(1.2)
and \(\Omega \subseteq \mathbb{R}^n \) is a nonempty closed convex set.

Nonlinear monotone equations arise in many applications such as subproblems in the generalized proximal algorithms with Bregman distances [7]. Some monotone variational inequality problems can also be converted into systems of nonlinear monotone equations by means of fixed point maps or normal maps if the underlying function satisfies some coercive conditions [21].

The study of iterative methods for solving Problem (1.1) with \(\Omega = \mathbb{R}^n \) has received much attention. For instance, Solodov and Svaiter [15], proposed an inexact Newton method which is a combination of Newton method and hyperplane projection strategy. By the monotonicity of \(F \), for any \(x^* \) such that \(F(x^*) = 0 \), we have
\[F(z_k)^T (x^* - z_k) \leq 0, \]
where \(z_k = x_k + \alpha_k d_k, \) \(x_k \) is the current iterate, \(\alpha_k \) is the step length and \(d_k \) is the search direction. Thus, by performing some kind of line search procedure along the direction \(d_k \), a point \(z_k \) can be computed such that
\[F(z_k)^T (x_k - z_k) > 0. \]
The above two inequalities indicate that the hyperplane
\[H_k = \{ x \in \mathbb{R}^n \mid F(z_k)^T (x - z_k) = 0 \} \]
strictly separates the current iterate \(x_k \) from the solution set of Problem (1.1). Using the hyperplane \(H_k \), the next iterate is obtained by
\[
x_{k+1} = x_k - \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2} F(z_k),
\]
which is a projection of \(x_k \) onto \(H_k \).

Conjugate gradient-based projection methods [1, 2, 4–6, 8, 9, 11, 12, 17–20, 22] are probably the most popular methods for solving nonlinear monotone equations (1.1). These methods are motivated by the hyperplane projection method in [15]. Recently, Ou and Li [14] presented a new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints in which

\[
d_k = \begin{cases} -F_k, & \text{if } k = 0, \\ -\hat{Q}_k F_k, & \text{if } k \geq 1, \end{cases}
\]

where the matrix \(\hat{Q}_k \in \mathbb{R}^{n \times n} \) is defined by
\[
\hat{Q}_k = \hat{\theta}_k I - \hat{\theta}_k \frac{w_k s_k^T + s_k w_k^T}{w_k^T s_k} + (1 + \hat{\theta}_k \frac{w_k^T w_k}{w_k^T s_k}) \frac{s_k s_k^T}{w_k^T s_k},
\]
with \(\hat{\theta}_k = \frac{\|s_k\|^2}{w_k^T s_k} \).

\(F_k = F(x_k), s_k = x_k - x_{k-1} \) and \(w_k = F_k - F_{k-1} + ts_k \), where \(t > 0 \) is a constant. The next iterate \(x_{k+1} \) in [14] is computed by projecting \(x_k \) onto the hyperplane \(H_k \) and then onto the feasible set \(\Omega \) as
\[
x_{k+1} = P_{\Omega} \left[x_k - \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2} F(z_k) \right],
\]
where \(P_{\Omega} : \mathbb{R}^n \rightarrow \Omega \) is a projector operator
\[
P_{\Omega}[x] = \arg \min_{y \in \Omega} \| x - y \|, \quad \forall x \in \mathbb{R}^n,
\]
which is nonexpansive, i.e.
\[
\|P_{\Omega}[x] - P_{\Omega}[y]\| \leq \|x - y\|, \quad \forall x, y \in \mathbb{R}^n.
\]
This method was shown to be globally convergent and efficient.

In this paper, we present a new derivative-free conjugate gradient-based projection method for solving convex constrained nonlinear monotone equations and perform some numerical experiments to test its efficiency and effectiveness. This proposed method is presented in the next section and the rest of this paper is organized as follows. In Section 3, we show that the proposed method satisfies the descent property and also establish its global convergence. We also show the method converges R-linearly in Section 4. Numerical results follow in Section 5 and conclusion in Section 6.

2. Motivation and the algorithm

The method we propose is motivated by the work of Livieris et al. [13], Stanimirović et al. [16] and Liu and Feng [10]. Livieris et al. [13] recently proposed a hybrid conjugate gradient method based on the memoryless BFGS update for solving the unconstrained optimization problem
\[
\min \{ f(x) \mid x \in \mathbb{R}^n \}
\]
where \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is continuously differentiable. This is an iterative method that generates a sequence of points \(\{ x_k \} \), starting from an initial point \(x_0 \in \mathbb{R}^n \), using the recurrence
\[
x_{k+1} = x_k + \alpha_k d_k, \quad k = 0, 1, 2, \ldots,
\]
where \(\alpha_k > 0 \) is the stepsize obtained by some line search, and \(d_k \) is the search direction defined by
\[
d_k = \begin{cases} -g_k, & \text{if } k = 0, \\ (1 + \mu_h^{-1}) g_k + \mu_h^{-1} d_{k-1}, & \text{if } k \geq 1, \end{cases}
\]
where
\[
\beta_h = \lambda_h \beta_d + (1 - \lambda_h) \beta_h^{HS},
\]
with
\[
\beta_d = \frac{\|g_k\|^2}{d_k^T y_{k-1}}, \quad \beta_h^{HS} = \max\{\beta_h^{HS}, 0\},
\]
and
\[
\beta_h^{HS} = \frac{y_k^T y_{k-1}}{d_k^T y_{k-1}}.
\]
The parameter \(\lambda_h \in [0, 1] \) is given by
\[
\lambda_h = \frac{s_k^T y_{k-1}}{\|g_k\|^2} \left[\frac{s_k^T y_{k-1}}{\|s_k\|^2} - \frac{1}{\|y_{k-1}\|^2} \right] - 1
\]
and
\[
\lambda_h = \frac{1 - \mu_h^{-1}}{\|g_k\|^2} s_k^T y_{k-1}^T y_{k-1}^T g_{k-1}.
\]
where \(s_k = x_k - x_{k-1} \), \(y_{k-1} = g_k - g_{k-1} \) and \(g_k = \nabla f(x_k) \) is the gradient of \(f \) at \(x_k \). Two different parameters of \(\theta_h \) are presented, \(\theta_h = \max\{\theta_h^{OL}, 1\} \) and \(\theta_h = \max\{\theta_h^{OS}, 1\} \), in order to give two methods ADHCG1 and ADHCG2 respectively, with
\[
\theta_h^{OL} = \frac{s_k^T y_{k-1}}{\|s_k\|^2} \quad \text{and} \quad \theta_h^{OS} = \frac{\|y_{k-1}\|^2}{s_k^T y_{k-1}^T y_{k-1}}.
\]
These methods satisfy the sufficient descent property
\[
d_k^T g_k \leq -\|g_k\|^2, \quad \forall k \geq 0.
\]
The methods were shown to perform well numerically as compared to other methods in the literature and global convergence was established by means of the strong Wolfe line search technique.

Stanimirović et al. [16], on the other hand, suggested a hybridization

\[
d_k = \begin{cases}
-\beta_k \geq 0, & \text{if } k = 0, \\
-\beta_k \leq 0, \kappa_1 \leq 1, & \text{if } k \geq 1,
\end{cases}
\]

where \(\beta_k^{LSCD} = \max \{0, \min \{\beta_k^{LS}, \beta_k^{CD}\}\} \),

with

\[
\beta_k^{LS} = -\beta_k \leq 0, \kappa_1 \leq 1,
\]

\[
\beta_k^{CD} = -\beta_k \leq 0, \kappa_1 \leq 1.
\]

This method was shown to be efficient and convergent.

In another recent work, Liu and Feng [10] presented a derivative-free method for nonlinear monotone equations (1.1) with

\[
d_k = \begin{cases}
-F_k, & \text{if } k = 0, \\
-\beta_k^{PDY} d_k, & \text{if } k \geq 1,
\end{cases}
\]

where

\[
\beta_k^{PDY} = \frac{\|F_k\|^2}{d_k u_k}, \theta_k = c - \frac{F_k d_k}{d_k u_k},
\]

with \(u_k = y_k + t_k d_k, y_k = F_k - F_{k-1}, t_k = 1 + \max \{0, -d_k^T s_{k-1} / \|s_{k-1}\|^2\} \) and \(c > 0 \) a constant. The global convergence of the method was established and its efficacy was tested against other competing methods.

Now, inspired by the work of Livieris et al. [13], Liu and Feng [10] and that of Stanimirović [16], we define our proposed method as

\[
d_k = \begin{cases}
-F_k, & \text{if } k = 0, \\
-\beta_k d_k, & \text{if } k \geq 1,
\end{cases}
\]

(2.2)

where

\[
\beta_k = \max \{\beta_k^{HCG+}, \beta_k^{LSCD}\},
\]

(2.3)

with

\[
\beta_k^{HCG+} = \lambda_k \beta_k^{PDY} + 1 - \lambda_k \beta_k^{HS+},
\]

\[
\beta_k^{PDY} = \frac{\|F_k\|^2}{d_k \|F_k\|^2}
\]

and \(\beta_k^{HS+} = \max \{\beta_k^{HS}, 0\} \),

where

\[
\beta_k^{HS} = \frac{F_k \|F_k\|^2}{d_k \|F_k\|^2},
\]

and

\[
\beta_k^{LSCD} = \max \{0, \min \{\beta_k^{LS}, \beta_k^{CD}\}\},
\]

with

\[
\beta_k^{LS} = -\beta_k \leq 0, \kappa_1 \leq 1,
\]

\[
\beta_k^{CD} = -\beta_k \leq 0, \kappa_1 \leq 1.
\]

The parameter \(\lambda_k \in [0, 1] \) is given by

\[
\lambda_k = s_k^T F_k w_k / \|F_k\|^2 \|w_k\|^2 - 1 \left(\frac{\|w_k\|^2}{\|w_k\|^2} - 1 \right) + \left(\frac{1}{\theta_k^M} - 1 \right) \|F_k\|^2 / \|w_k\|^2,
\]

(2.4)

where \(\theta_k^M = c - F_k S_k w_k / \|w_k\|^2 \) with \(c \) being a positive constant. Here, \(w_k = F(z_k - 1) - F_k + r S_k + 1 \) and \(r \in (0, 1) \). We state the algorithm as follows.

Algorithm 2.1. Memoryless BFGS Conjugate Gradient-based Method (MBCG)

1. Give \(x_0 \in \Omega \) and the parameters \(\sigma, r, \rho \in (0, 1) \). Set \(k = 0 \).

2. for \(k = 0, 1, \ldots \) do

3. If \(\|F_k\| = 0 \), then stop. Otherwise, go to Step 4.

4. Compute \(d_k \) by (2.2) and (2.3).

5. Compute \(z_k = x_k + \alpha_k d_k \) where \(\alpha_k = \max \{\rho^i : i = 0, 1, 2, \ldots\} \) such that the inequality

\[
-F(x_k + \alpha_k d_k) d_k \geq \sigma \alpha_k \|F(z_k)\| / \|d_k\|^2
\]

(2.4)

is satisfied.

6. If \(z \in \Omega \) and \(\|F(z_k)\| = 0 \), then stop. Otherwise, compute \(s_k+1 \) using (1.4).

7. Set \(k = k + 1 \) and go to Step 3.

8. end for

3. Global convergence

In this section, we analyze the global convergence of Algorithm 2.1. For this purpose, we first make the following assumptions.

Assumption 3.1. (i) The function \(F(x) \) is monotone on \(\mathbb{R}^n \), i.e. \(F(x) - F(y) \geq 0 \), \(\forall x, y \in \mathbb{R}^n \).

(ii) The solution set \(\Omega^* \) is nonempty.
(iii) The function $F(\cdot)$ is Lipschitz continuous on \mathbb{R}^n, i.e., there exists a positive constant L such that
\[
\| F(x) - F(y) \| \leq L \| x - y \|, \quad \forall x, y \in \mathbb{R}^n.
\] (3.1)

Lemma 3.2. Let the sequences $\{d_k\}$ and $\{F_k\}$ be generated by Algorithm 2.1. Then we have
\[
F_k^T d_k = -\|F_k\|^2, \quad \forall k \geq 0. \tag{3.2}
\]

Proof. Since $d_0 = -F_0$, we have $F_0^T d_0 = -\|F_0\|^2$, which satisfies (3.2). For $k \geq 1$, by taking the inner product of (2.2) with the vector F_k, we have
\[
F_k^T d_k = -\left(1 + \beta_k F_k^T s_{k-1} \right)\|F_k\|^2 + \beta_k F_k^T s_{k-1} \tag{3.2}
\]

Thus (3.2) holds. \hfill \Box

Lemma 3.3. Let $\{x_k\}$ and $\{z_k\}$ be generated by Algorithm 2.1. Then
\[
\alpha_k \geq \min \left\{ 1, \frac{\rho \|F_k\|^2}{(L + \sigma \|F(z_k)\|)\|d_k\|^2} \right\}, \tag{3.3}
\]

where $z_k = x_k + \rho^{-1} \alpha_k d_k$.

Lemma 3.4. Suppose Assumption 3.1 holds and sequences $\{x_k\}$ and $\{z_k\}$ are generated by Algorithm 2.1. Then $\{x_k\}$ and $\{z_k\}$ are both bounded. Furthermore, it holds that
\[
\lim_{k \to \infty} \|x_k - z_k\| = 0. \tag{3.4}
\]

Proof. From (2.4), we have
\[
F(z_k)^T (x_k - z_k) \geq \sigma \|F(z_k)\| \|x_k - z_k\|^2 > 0. \tag{3.5}
\]

For $x^* \in \Omega$ we have from (1.4) and (1.5) that
\[
\|x_{k+1} - x^*\|^2 = \|P_{\Omega} [x_k - \xi_k F(z_k)] - x^*\|^2 \\
\leq \|x_k - \xi_k F(z_k) - x^*\|^2 \\
= \|x_k - x^*\|^2 - 2\xi_k F(z_k)^T (x_k - x^*) \\
+ \xi_k^2 \|F(z_k)\|^2, \tag{3.6}
\]

where $\xi_k = \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2}$. By the monotonicity of F, it follows that
\[
F(z_k)^T (x_k - x^*) = F(z_k)^T (x_k - z_k) + F(z_k)^T (z_k - x^*) \\
\geq F(z_k)^T (x_k - z_k) + F(x^*)^T (z_k - x^*) \\
= F(x^*)^T (x_k - z_k). \tag{3.7}
\]

From (3.5)-(3.7), we obtain
\[
\|x_{k+1} - x^*\|^2 \leq \|x_k - x^*\|^2 - 2\xi_k F(z_k)^T (x_k - z_k) \\
+ \xi_k^2 \|F(z_k)\|^2 \\
= \|x_k - x^*\|^2 - \frac{(F(z_k)^T (x_k - z_k))^2}{\|F(z_k)\|^2} \\
\leq \|x_k - x^*\|^2 - \sigma^2 \|x_k - z_k\|^4. \tag{3.8}
\]

Hence the sequence $\{x_k - x^*\}$ is decreasing and convergent, thus $\{x_k\}$ is bounded. From (3.5), we get
\[
\sigma \|F(z_k)\| \|x_k - z_k\|^2 \leq F(z_k)^T (x_k - z_k) \\
\leq \|F(z_k)\| \|x_k - z_k\|^2, \tag{3.9}
\]

which shows that
\[
\sigma \|x_k - z_k\| \leq 1,
\]
indicating that $\{z_k\}$ is bounded. It then follows from (3.8) that
\[
\sigma^2 \sum_{m=0}^{\infty} \|x_k - z_k\|^2 \leq \sum_{m=0}^{\infty} (\|x_m - x^*\|^2 - \|x_{m+1} - x^*\|^2) < \infty,
\]
which implies
\[
\lim_{k \to \infty} \|x_k - z_k\| = 0. \tag{3.10}
\]

Note that $\{x_k\}$ and $\{z_k\}$ bounded imply that there exist constants $M > 0$ and $M_0 > 0$ such that $\|x_k\| = \| \alpha_k d_k \| \leq M$, and that both $\|F_k\| \leq M_0$ and $\|F(z_k)\| \leq M_0$. That is, the sequences $\{x_k\}$ and $\{F_k\}$ are bounded.

Theorem 3.5. Suppose that Assumption 3.1 holds, and the sequence $\{x_k\}$ is generated by Algorithm 2.1. Then
\[
\lim_{k \to \infty} \inf \|F_k\| = 0. \tag{3.11}
\]

Proof. Suppose (3.10) does not hold. Then there is a constant $\varepsilon_0 > 0$ such that
\[
\|F_k\| \geq \varepsilon_0, \quad \forall k \geq 0.
\]

By (3.2) we have that
\[
\|d_k\| \geq \|F_k\| \geq \varepsilon_0, \quad \forall k \geq 0.
\]

By definition of w_k we have that there exist constants γ and M_1 such that
\[
\|w_k\| \leq \gamma \quad \text{and} \quad d_{k-1} w_k \geq M_1 \|d_{k-1}\|, \quad \forall k \geq 0.
\]

Now, if $\beta_k = \beta_k^{HCG+}$, we have that
\[
\beta_k^{HCG+} \leq \frac{\|F_k\|^2 + \|F_k\| \|w_k\|}{d_{k-1}^T w_k} \tag{3.11}
\]

\[
\leq \frac{M_0 (M_0 + \gamma)}{M_1 \|d_{k-1}\|}. \tag{3.12}
\]

This gives that
\[
\|d_k\| \leq \|F_k\| + 2\beta_k^{HCG+} \alpha_{k-1} \|d_{k-1}\| \\
\leq M_0 + 2\frac{M_0 (M_0 + \gamma)}{M_1} = \gamma_1. \tag{3.13}
\]
On the other hand, if $\beta_k = \beta_k^{LSCD}$ we obtain that $\beta_k \leq \beta_k^{CD}$. Hence
\[
\|d_k\| \leq \|F_k\| + 2\beta_k^{CD}\|s_{k-1}\|
\leq M_0 + 2\frac{\|F_k\|^2}{\|F_k\| \|s_{k-1}\|}
\leq M_0 + \frac{2M_0^2}{\epsilon_0^2} \alpha_{k-1}\|d_{k-1}\|.
\]
(3.14)
for all $k \geq 0$.

Since (3.4) holds, we obtain that for every $\epsilon_1 > 0$ there is a k_0 such that $\alpha_{k-1}\|d_{k-1}\| < \epsilon_1$ for all $k > k_0$. Now, choosing $\epsilon_1 = \epsilon_0^2$ and $\sigma = \max\{\gamma_1, \|d_0\|, \|d_1\|, \ldots, \|d_{\mu_0}\|, \gamma_2\}$, where $\gamma_2 = M_0 + 2M_0^2$, it holds that
\[
\|d_k\| \leq \sigma, \quad \forall k \geq 0.
\]
From (3.3) we have that
\[
\alpha_k\|d_k\| \geq \min\left\{1, \frac{\rho \|F_k\|^2}{(L + \sigma \|F_k\|) \|d_k\|^2}\right\} \|d_k\|
= \min\left\{\|d_k\|, \frac{\rho \|F_k\|^2}{(L + \sigma \|F_k\|) \|d_k\|^2}\right\}
\geq \min\left\{\epsilon_0, \frac{\rho \epsilon_0^2}{(L + \sigma M_0)\sigma}\right\} > 0.
\]
This contradicts (3.4), therefore (3.10) holds. \qed

4. R-linear convergence rate

In this section, we discuss the R-linear convergence rate for Algorithm 2.1. From Theorem 3.5, we know that the sequence $\{x_k\}$ converges to a solution of Problem (1.1). Thus, we always assume that $x_k \to x^*$ as $k \to \infty$, where $x^* \in \Omega^*$. To prove the R-linear convergence of $\{x_k\}$, we need the following assumption.

Assumption 4.1. For any $x^* \in \Omega^*$, there exist $\mu \in (0, 1)$ and $\delta > 0$ such that
\[
\mu \text{dist}(x, \Omega^*) \leq \|F(x)\|^2, \quad \forall x \in \mathcal{N}_\delta(x^*),
\]
(4.1)
where $\mathcal{N}_\delta(x^*)$ is the neighbourhood of x^* defined by $\mathcal{N}_\delta(x^*) = \{x \in \mathbb{R}^n : \|x - x^*\| \leq \delta\}$ and $\text{dist}(x, \Omega^*)$ denotes the distance from x to the solution set Ω^*.

Theorem 4.2. Suppose that Assumptions 3.1 and 4.1 hold. Let the sequence $\{x_k\}$ be generated by Algorithm 2.1. Then the sequence $\{\text{dist}(x_k, \Omega^*)\}$ is Q-linearly convergent to 0, and so the sequence $\{x_k\}$ is R-linearly convergent to x^*.

Proof. Let $\tilde{x}_k := \arg\min\{\|x_k - x\| : x \in \Omega^*\}$, which implies that \tilde{x}_k is the closest solution to x_k, namely,
\[
\|x_k - \tilde{x}_k\| = \text{dist}(x_k, \Omega^*).
\]
From (3.2), (3.8) and (4.1), for $\tilde{x}_k \in \Omega^*$ we have
\[
dist(x_{k+1}, \Omega^*)^2 = \|x_{k+1} - \tilde{x}_k\|^2
\leq \dist(x_k, \Omega^*)^2 - \sigma^2\|\alpha_k d_k\|^4
\leq \dist(x_k, \Omega^*)^2 - \sigma^2\|\alpha_k d_k\|^4
\leq \dist(x_k, \Omega^*)^2 - \mu^2\sigma^2\|\alpha_k d_k\|^4 \text{dist}(x_k, \Omega^*)^2
= (1 - \mu^2\sigma^2\|\alpha_k d_k\|^4)\text{dist}(x_k, \Omega^*)^2.
\]
Since $\mu \in (0, 1)$, $\sigma \in (0, 1)$ and $\alpha_k \in (0, 1)$, we have that $(1 - \mu^2\sigma^2\|\alpha_k d_k\|^4) \in (0, 1)$. Therefore, we obtain that the sequence $\{\text{dist}(x_k, \Omega^*)\}$ Q-linearly converges to 0. Therefore, the whole sequence $\{x_k\}$ converges to x^* R-linearly. \qed

5. Numerical Experiments

In this section, numerical results are given to substantiate the efficacy of the proposed Algorithm 2.1, herein denoted as MBCG. We compare it with two other methods from the literature, namely, an efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints [4], herein denoted as ETT, and a derivative-free iterative method for nonlinear monotone equations with convex constraints, denoted as PDY [10]. The methods are compared using NI, NFE and CPU, where NI presents the number of iterations, NFE is the number of function evaluations and CPU is the time in seconds. All codes are written in MATLAB R2016a and are tested using the following test problems with different initial starting points and various dimensions.

Problem 1. [10].
\[
F_i(x) = e^{x_i} - 1, \quad i = 1, 2, 3, \ldots, n,
\]
and $\Omega = \mathbb{R}^n$.

Problem 2. [10].
\[
F_i(x) = x_i - e^{\cos(x_i^2 + x_i^2)}, \quad i = 2, 3, \ldots, n - 1,
F_n(x) = 2x_n - e^{\cos(x_n^2 + x_n^2)},
\]
and $\Omega = \mathbb{R}^n$.

Problem 3. [2].
\[
F_i(x) = x_i - \sin(|x_i| - 1), \quad i = 1, 2, 3, \ldots, n,
\]
and $\Omega = \{x \in \mathbb{R} : \sum_{i=1}^n x_i \leq n, x_i \geq 0\}$.

Problem 4. [10].
\[
F_i(x) = 2x_1 + 0.5h^2(x_1 + h)^3 - x_2,
F_i(x) = 2x_i + 0.5h^2(x_i + ih)^3 - x_{i-1} + x_{i+1}, \quad i = 2, 3, \ldots, n - 1,
F_n(x) = 2x_n + 0.5h^2(x_n + nh)^3 - x_{n-1},
\]
where \(h = \frac{1}{\pi r^2} \) and \(\Omega = \mathbb{R}^n_+ \).

Problem 5. [4].

\[F_i(x) = x_i - \sin(|x_i| - 1), \quad i = 1, 2, 3, \ldots, n, \]

where \(\Omega = \{ x \in \mathbb{R} : \sum_{i=1}^n x_i \leq n, x_i \geq -1 \} \).

Problem 6. [5].

\[F_i(x) = e^{2x_i} + 3\sin(x_i)\cos(x_i) - 1, \quad i = 1, 2, 3, \ldots, n, \]

and \(\Omega = \mathbb{R}^n_+ \).

In our experiments, all the algorithms are stopped whenever the inequality \(\| F_i \| \leq 10^{-5} \) is satisfied, or the total number of iterations exceeds 5000. The parameters used in ETT and PDY methods are set as in respective papers. The parameters in MBCG are selected as \(\sigma = 10^{-4}, \rho = 0.5, r = 10^{-2} \) and \(\epsilon = 1 \). The results are listed in Table 1, where DIM stands for the dimension of the test problems. We tested the given problems with initial points \(x_0 = (10, 10, \ldots, 10)^T, \) \(x_0 = (-10, -10, \ldots, -10)^T, \) \(x_0 = (0.1, 0.1, \ldots, 0.1)^T \) and \(x_0 = (-0.1, -0.1, \ldots, -0.1)^T \).

We see in Table 1 that the proposed MBCG method performs generally better than the other two methods. In order to further make detailed comparison of the proposed method with the other methods, we use the performance profiles tool proposed by Dolan and More [3]. We show the performance profiles in Figures 1-3, where Figure 1 shows performance profile of number of iterations, Figure 2 gives performance profile of number of function evaluations and Figure 3 is the performance profile of CPU time. From Figures 1-3, it can be readily seen that the proposed MBCG method out-performed both the two methods in all the comparable characteristics, hence the proposed method is both effective and efficient.

6. Conclusion

In this paper, we proposed a derivative-free conjugate gradient projection method based on the memoryless BFGS update. The proposed method is free from derivative evaluations, and therefore, is suitable for solving large-scale nonlinear monotone equations with convex constraints. The method also satisfies the descent condition independent of any line search. Global convergence of the proposed method was established and numerical results from a number of benchmark test problems from the literature validate the efficacy of the method.
A derivative-free conjugate gradient projection method based on the memoryless BFGS update — 508/509

Figure 1. Iterations performance profile

Figure 2. Function evaluations performance profile

Figure 3. Cpu time performance profile

References

[1] A. B. Abubakar, P. Kumam, H. Mohammad and A. M. Awwal, An efficient conjugate gradient method for convex constrained monotone nonlinear equations with applications, Mathematics, 7:767 (2019), https://doi.org/10.3390/math7090767.

[2] Y. Ding, Y. Xiao and J. Li, A class of conjugate gradient methods for convex constrained monotone equations, Optim., 66(12) (2017), 2309–2328.

[3] E.D. Dolan and J.J. Moré, Benchmarking optimization software with performance profiles, Math. Program., 91 (2002), 201–213.

[4] P. Gao and C. He, An efficient three-term conjugate gradient method for nonlinear monotone equations with convex constraints, Calcolo, 55:53 (2018), https://dx.doi.org/10.1007/s10092-018-0291-2.

[5] P. Gao, C. He and Y. Liu, An adaptive family of projection methods for constrained monotone equations with applications, Appl. Math. Comput., 359 (2019), 1–16.

[6] J. Guo and Z. Wan, A modified spectral PRP conjugate gradient projection method for solving large-scale monotone equations and its application in compressed sensing, Math. Prob. Eng., 2019 Article ID 5261830 (2019), 17 pages.

[7] A.N. Iusem and M.V. Solodov, Newton-type methods with generalized distances for constrained optimization, Optim., 41 (1997), 257–278.

[8] M. Koorapetse, P. Kaelo and E.R. Offen, A scaled derivative free projection method for solving nonlinear monotone equations, Bull. Iran. Math. Soc., 45 (2019), 755–770.

[9] J. Liu and S. Li, Multivariate spectral DY-type projection method for convex constrained nonlinear monotone equations, J. Ind. Manag. Optim., 13 (2017), 283–295.

[10] J. Liu and Y. Feng, A derivative-free iterative method for nonlinear monotone equations with convex constraints, Numer. Algor., 82 (2019), 245–262.

[11] S.Y. Liu, Y.Y. Huang and H.W. Jiao, Sufficient descent conjugate gradient methods for solving convex constrained nonlinear monotone equations, Abstr. Appl. Anal., 2014 Article ID 305643 (2014), 12 pages.

[12] Z. Liu, S. Du and R. Wang, A new conjugate gradient projection method for solving stochastic generalized linear complementarity problems, J. Appl. Math. Phys., 4 (2016), 1024–1031.

[13] I.E. Livieris, V. Tampakas and P. Pintelas, A descent hybrid conjugate gradient method based on the memoryless BFGS update, Numer. Algor., 79(4) (2018), 1169–1185.

[14] Y. Ou and J. Li, A new derivative-free SCG-type projection method for nonlinear monotone equations with convex constraints, J. Appl. Math. Comput., 56 (2018), 195–216.

[15] M.V. Solodov and B.F. Svaiter, A globally convergent inexact newton method for systems of monotone equations, In Fukushima M., Qi L. (eds) Reformulation: Nonsmooth,
Piecewise Smooth, Semismoothing methods, Applied Optimization, it J. (eds). Springer, Boston, MA, (1998), 355–369.

[16] P.S. Stanimirović, B. Ivanov, S. Djordjević and I. Brajević, New hybrid conjugate gradient and Broyden-Fletcher-Goldfarb-Shanno conjugate gradient methods, J. Optim. Theory Appl., 178 (2018), 860–884.

[17] C. Wang, Y. Wang and C. Xu, A projection method for a system of nonlinear monotone equations with convex constraints, Math. Meth. Oper. Res., 66 (2007), 33–46.

[18] S. Wang and H. Guan, A scaled conjugate gradient method for solving monotone nonlinear equations with convex constraints, J. Optim. Theory Appl., 178 (2018), 860–884.

[19] X.Y. Wang, S.J. Li and X.P. Kou, A self-adaptive three-term conjugate gradient method for monotone nonlinear equations with convex constraints, Calcolo, 53 (2016), 133–145.

[20] Y. Xiao and H. Zhu, A conjugate gradient method to solve convex constrained monotone equations with applications in compressive sensing, J. Math. Anal. Appl., 405 (2013), 310–319.

[21] Y.B. Zhao and D.H. Li, Monotonicity of fixed point and normal mapping associated with variational inequality and its application, SIAM J. Optim., 11 (2001), 962–973.

[22] L. Zheng, A modified PRP projection method for nonlinear equations with convex constraints, Int. J. Pure. Appl. Math., 79 (2012), 87–96.